BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning

Xiao Xu1,2*, Chenfei Wu2, Shachar Rosenman3, Vasudev Lal3, Wanxiang Che1†, Nan Duan2†
1Research Center for Social Computing and Information Retrieval, Harbin Institute of Technology
2Microsoft Research Asia, 3Intel Labs, Cognitive Computing Research
\{xu,car\}@ir.hit.edu.cn, \{chenfei.wu,nanduan\}@microsoft.com, \{shachar.rosenman,vasudev.lal\}@intel.com

Abstract
Vision-Language (VL) models with the TWO-TOWER architecture have dominated visual-language representation learning in recent years. Current VL models either use lightweight uni-modal encoders and learn to extract, align and fuse both modalities simultaneously in a deep cross-modal encoder, or feed the last-layer uni-modal representations from the deep pre-trained uni-modal encoders into the top cross-modal encoder. Both approaches potentially restrict vision-language representation learning and limit model performance. In this paper, we propose BRIDGETOWER, which introduces multiple bridge layers that build a connection between the top layers of uni-modal encoders and each layer of the cross-modal encoder. This enables effective bottom-up cross-modal alignment and fusion between visual and textual representations of different semantic levels of pre-trained uni-modal encoders in the cross-modal encoder. Pre-trained with only 4M images, BRIDGETOWER achieves state-of-the-art performance on various downstream vision-language tasks. In particular, on the VQA v2 test-std set, BRIDGETOWER achieves an accuracy of 78.73%, outperforming the previous state-of-the-art model METER by 1.09% with the same pre-training data and almost negligible additional parameters and computational costs. Notably, when further scaling the model, BRIDGETOWER achieves an accuracy of 81.15%, surpassing models that are pre-trained on orders-of-magnitude larger datasets. Code and checkpoints are available at https://github.com/microsoft/BridgeTower.

1 Introduction
Vision-Language (VL) tasks aim to perceive, comprehend and fuse both visual and textual information in our complex multi-modal world and then produce cross-modal representations to address difficult cross-modal challenges, such as visual question answering, visual entailment, and image-text retrieval (Goyal et al. 2017, Xie et al. 2019, Young et al. 2014). Recently, by pre-training on large-scale image-text pairs, cross-modal representations have been improved considerably (Su et al. 2020, Lu et al. 2019, Chen et al. 2020, Zhang et al. 2021, Radford et al. 2021, Wang et al. 2021c, Li et al. 2021a, Dou et al. 2022, Wang et al. 2022b, Alayrac et al. 2022). Many elaborate Vision-Language Pre-training (VLP) objectives are proposed for mining cross-modal knowledge from image-text pairs, such as Masked Language Modeling (MLM) and Image-Text Matching (ITM).

Most existing VL models can be unified into the TWO-TOWER architecture, which consists of a visual encoder, a textual encoder, and a cross-modal encoder. The models differ in the design of the three encoders. Benefiting from the rapid progress and prominent performance of Vision Transformer (ViT) (Dosovitskiy et al. 2021) on various vision tasks, recent VL models can adopt ViT as a cross-modal or visual encoder without using region features from heavy and time-consuming pre-trained object detectors.

ViLT (Kim, Son, and Kim 2021) adopts linear projection and word embedding as lightweight uni-modal encoders, and uses ViT as the cross-modal encoder to extract, align and fuse the features of both modalities simultaneously. While parameter-efficient, it may be difficult for ViLT to learn intra- and cross-modal interactions concurrently, and thus its performance lags behind state-of-the-art performance on downstream VL tasks. METER (Dou et al. 2022) uses ViT and RoBERTa (Liu et al. 2019b) as pre-trained uni-modal encoders and feeds the last-layer uni-modal representations directly into the top cross-modal encoder. Although METER achieves performance competitive with the previous region-based state-of-the-art model VinVL (Zhang et al. 2021), it ignores and wastes different levels of semantic knowledge contained in different layers of pre-trained uni-modal encoders. Furthermore, the abstract representations from the last layer of pre-trained uni-modal encoders could be challenging for the top cross-modal encoder to learn cross-modal alignment and fusion [Lu et al. 2019, Tan and Bansal 2019].

It has been demonstrated that different layers encode different types of information in both vision (Zeiler and Fergus 2014, Dosovitskiy et al. 2021, Du et al. 2020, Raghu et al. 2021, Naseer et al. 2021) and language models (Peters et al. 2018b, Liu et al. 2019a, Jawahar, Sagot, and Seddah 2019, Dosovitskiy et al. 2021, and Raghu et al. 2021) find that lower layers of ViT attend both locally and globally, while higher layers primarily incorporate global information. Jawahar, Sagot, and Seddah (2019) find that the intermediate layers of BERT (Devlin et al. 2019) encode a rich hierarchy of linguistic information, starting with surface features at the bottom, syntactic features in the middle, and then semantic features at the top. Therefore, it makes perfect sense to utilize multi-layer uni-modal features to obtain effective improve-
Our contributions are threefold:

- We introduce BRIDGETOWER, a novel transformer-based VL model that achieves substantial improvements over previous state-of-the-art model METER both with and without pre-training.
- We propose using multiple bridge layers to connect the top layers of uni-modal encoders with each layer of the cross-modal encoder. Furthermore, we conduct extensive experiments on different design choices for BRIDGETOWER.
- We demonstrate the effectiveness of BRIDGETOWER on various VL downstream tasks, including visual question answering (VQAv2), visual entailment (SNLI-VE), and image-text retrieval (Flickr30K) tasks.

2 Related Work

2.1 TWO-TOWER Vision-Language Models

Following the taxonomy proposed by ViLT (Kim, Son, and Kim 2021), most VL models can be unified into the Two-Tower architecture shown in Figure 1(a) – (d). They feed last-layer representations of pre-trained uni-modal encoders into the top cross-modal encoder and can be differentiated by the depth of the textual, visual, and cross-modal encoders.

CLIP (Radford et al. 2021) and ALIGN (Jia et al. 2021) are representative models that directly perform a shallow fusion (e.g., dot product) of last-layer representations of equally expressive pre-trained uni-modal encoders in the cross-modal encoder, as illustrated in Figure 1(a). The remaining models perform deep fusion in the multi-layer transformer-based cross-modal encoder but choose pre-trained uni-modal encoders with varying levels of expressiveness. Numerous works (Li et al. 2019, Su et al. 2020, Li et al. 2020a, Chen et al. 2020, Li et al. 2020b, Zhou et al. 2020, Zhang et al. 2021, Cho et al. 2021, Huang et al. 2020, 2021, Shen et al. 2021, Liu et al. 2022, Li et al. 2021b, Xia et al. 2021, Ni et al. 2021, Chen et al. 2022, Wang et al. 2022a, Alayrac et al. 2022) fall in the category of Figure 1(b) as they adopt various types of deep vision models (e.g., Faster R-CNN (Ren et al. 2015), ResNet (He et al. 2016) or ViT (Dosovitskiy et al. 2021)) as their visual encoder to obtain region, grid, or patch features, and concatenate them with word embedding to feed into their top cross-modal encoder. The third category of models (Kim, Son, and Kim 2021, Wang et al. 2021c, b 2022b), illustrated in Figure 1(c), utilizes lightweight visual and lightweight textual encoders and handles both modalities in a single transformer-based cross-modal encoder. In contrast, models (Lu et al. 2019, Tan and Bansal 2019, Kamath et al. 2021, Li et al. 2021a, Zeng, Zhang, and Li 2021, Dou 2018) achieve state-of-the-art performance on various downstream VL tasks. The height of each rectangle represents its relative computational cost. VE = TE indicates that the visual encoder and the textual encoder have the same or a similar number of parameters or computational costs. Illustration inspired by ViLT.
Regardless of the visual, textual, or cross-modal encoders they utilize, most current models ignore the various levels of semantic information at the different layers of pre-trained uni-modal encoders, and simply utilize the last-layer uni-modal representations for cross-modal alignment and fusion. While the models belonging to Figure 1(c) appear to retain the possibility of utilizing different levels of uni-modal semantic information, it could be challenging for them to learn intra- and cross-modal interactions concurrently without modality-specific parameters. Their unconstrained cross-modal interaction could impede intra-modal interaction (Dou et al. 2022). This may be the reason why the performance of ViLT lags behind models in the Figure 1(d) category, and why SimVL M (Wang et al. 2021c) and OFA (Wang et al. 2022b) need to use significantly more data to obtain competitive performance compared with METER.

Unlike current models, BRIDGE TOWER, as shown in Figure 1(e), proposes using multiple bridge layers to connect the top layers of uni-modal encoders with each layer of the cross-modal encoder. This does not affect intra-modal interaction in the pre-trained uni-modal encoders, and enables different semantic levels of visual and textual representations to interact thoroughly and mildly in the bottom-up directions at each layer of the cross-modal encoder.

2.2 Multi-Layer Feature Utilization

Multi-layer feature utilization has been demonstrated to be an effective method of making full use of the information contained in different layers of neural networks to improve the representation and generalization capabilities of computer vision (Ronneberger, Fischer, and Brox 2015; Liu et al. 2016; Lin et al. 2017; Huang et al. 2017; Yu et al. 2018; Kirillov et al. 2019; Zheng et al. 2021; Xie et al. 2021; Naseer et al. 2021), natural language processing (Peters et al. 2018a; Wang et al. 2018; Shen et al. 2018; Dou et al. 2018; Jawahar, Sagot, and Seddah 2019; Sun et al. 2019; Dou et al. 2019) and multi-modal models (Dou et al. 2022; Nagrani et al. 2021).

Since Zeller and Fergus (2014) introduce a visualization technique and find that different patterns are learned in different layers of CNN models, then many researchers exploit features of different layers to improve detection and semantic segmentation. U-Net (Ronneberger, Fischer, and Brox 2015) and FPN (Lin et al. 2017) propose to adopt lateral connections for associating feature maps from different layers across resolutions and semantic levels. The same idea is also applicable to ViT-based models. SETR (Zheng et al. 2021) and SegFormer (Xie et al. 2021) aggregate features from different layers to improve semantic segmentation performance. In natural language processing, researchers Søgaard and Goldberg (2016) Hashimoto et al. 2017, Belinkov et al. 2017, Peters et al. 2018b, Jawahar, Sagot, and Seddah 2019, Liu et al. 2019a) find that Recurrent Neural Networks (RNN) (Hochreiter and Schmidhuber 1997) and BERT (Devlin et al. 2019) encode different types of semantic information in different layers. Hence, Peters et al. 2018a and Sun et al. 2019 use the concatenation or weighted sum of representations from different layers of RNN or BERT as input for different task heads. Dou et al. 2018 explore layer aggregation with multi-layer attention mechanisms.

Recent multi-modal models exploit features from different layers. MBT (Nagrani et al. 2021) introduces simple bottleneck tokens at multiple layers to jointly model intra- and restricted cross-modal correlations. While MBT achieves good performance on audio-visual benchmarks, learning complex vision-language alignment and fusion via a limited number of bottleneck tokens instead of a cross-modal encoder maybe too difficult, which limits cross-modal alignment. METER feeds the weighted sum of representations from each layer of the bottom uni-modal encoder into the top cross-modal encoder; they find this can improve performance by a small margin without VLP but can degrade performance with VLP.

In a departure from existing models, BRIDGETOWER considers detailed interactions between the top layers of uni-modal encoders and each layer of the cross-modal encoder. It is intuitive to connect pre-trained uni-modal encoders and the cross-modal encoder via multiple bridge layers, in order to achieve comprehensive cross-modal alignment and fusion of the uni-modal representations of different semantic levels. Most importantly, unlike the simple multi-layer feature fusion method in METER, BRIDGETOWER can significantly improve performance both with and without vision-language pre-training on large-scale image-text data.

3 Approach

As shown in Figure 2, BRIDGETOWER consists of a visual encoder, a textual encoder and a cross-modal encoder with multiple lightweight bridge layers. Our goal is to build a bridge between each uni-modal encoder and the cross-modal encoder to enable comprehensive and detailed interaction at each layer of the cross-modal encoder. Our goal is not to develop new encoders; in principle, one can apply any visual, textual, or cross-modal encoder in the proposed architecture.

3.1 Visual Encoder

Recent works (Shen et al. 2021; Dou et al. 2022) show that CLIP’s visual encoder has strong capabilities on VL tasks. We follow METER to adopt CLIP-ViT-B/16 as the pre-trained visual encoder. For each input 2D image \(I \in \mathbb{R}^{H \times W \times C} \), where \((H, W)\) is the resolution of the input image and \(C\) is the number of channels, ViT reshape it into a sequence of flattened 2D patches \(P \in \mathbb{R}^{N \times (p^2C)} \), where \((P, P)\) is the image patch resolution and \(N = \frac{HW}{p^2} \) is the number of patches. Similar to BERT, ViT also prepends the \([\text{class}]\) token to the patch sequence and uses learnable 1D position embeddings \(V^\text{pos} \in \mathbb{R}^{(N+1) \times D_v} \), where \(D_v\) is the dimension of the visual encoder. The input visual representation can be calculated as follows:

\[
V_0 = [E_{[\text{class}]}; p_1 W_p; \ldots; p_N W_p] + V^\text{pos},
\]

where \(W_p \in \mathbb{R}^{(p^2C) \times D_v} \) is the trainable linear projection layer and \(V_0 \in \mathbb{R}^{(N+1) \times D_v} \). Each layer of ViT consists of a multi-head self-attention (MSA) block and a feed-forward
network (FFN) block. We omit the computation details and simplify them as Encoder^V. The ℓ-th layer representation can be denoted as $V_\ell = \text{Encoder}^V_\ell (V_{\ell-1})$, $\ell = 1 \ldots L_V$, where L_V is the number of layers of the visual encoder.

3.2 Textual Encoder

Since RoBERTa achieves robust performance on a wide range of NLP tasks, we adopt RoBERTaBASE as our textual encoder. Each input sequence w is tokenized by the byte-level Byte-Pair Encoding (BPE) (Sennrich, Haddow, and Birch 2016; Radford et al. 2019). "$<s>\$" token and "$</s>\$" token are added to the sequence as the start and end tokens, respectively. The input textual representation can be represented as:

$$T_0 = [E_{<s>}; E_1; \ldots; E_w; E_{</s>}] + T^{pos}, \quad (2)$$

where $T_0 \in \mathbb{R}^{(M+2) \times D_t}$, E is the word embedding matrix, M is the number of tokens, D_t is the dimension of the textual encoder, and T^{pos} is the positional embedding matrix. Similarly, we denote the ℓ-th layer of the textual encoder as Encoder_t^T, and the ℓ-th layer representation can be denoted as $T_\ell = \text{Encoder}_t^T (T_{\ell-1})$, $\ell = 1 \ldots L_T$, where L_T is the number of layers of the textual encoder.

3.3 Cross-Modal Encoder with Bridge Layers

Hendricks et al. (2021) perform analysis on different types of attention mechanisms used in the existing transformer-based cross-modal encoders and demonstrate that the co-attention mechanism (Lu et al. 2019) performs best. This mechanism uses a different set of parameters for each modality. For example, for the visual part of the cross-modal encoder, the queries of each MSA block are from the visual modality. However, the keys and values are from the other modality (i.e., the textual modality). We, therefore, adopt the co-attention mechanism. Formally, we define the ℓ-th layer of the cross-modal encoder as Encoder^Z_ℓ, which consists of a visual part and a textual part. Each part consists of an MSA block, a multi-head cross-attention (MCA) block, and an FFN block. For brevity, the interactions at each layer are defined as:

$$Z^V_\ell = Z^V_{\ell-1}, \quad (3)$$

$$Z^T_\ell = Z^T_{\ell-1}, \quad (4)$$

$$Z^V_\ell, Z^T_\ell = \text{Encoder}^Z_\ell (Z^V_\ell, Z^T_\ell), \ell = 1 \ldots L_Z, \quad (5)$$

where Z^V_ℓ is the output representation of the visual or textual part at the ℓ-th layer, $Z^V_{\ell-1}$ is the input of each part, and L_Z is the number of layers of the cross-modal encoder.

Generally, current VL models, such as METER, directly use the output representation of the previous layer as the input to Encoder^Z_ℓ (Equation 5). Z^V_0, Z^T_0 are initialized with the last-layer representations from pre-trained uni-modal encoders: $Z^V_0 = W_{V}V + V^{type}$, $Z^{T}_0 = W_{T}T + T^{type}$, where $W_{V} \in \mathbb{R}^{D_V \times D_Z}$ and $W_{T} \in \mathbb{R}^{D_T \times D_Z}$ are linear projections, V^{type} and T^{type} are the modality type embeddings.

However, in this paper, we propose using multiple bridge layers to connect the top layers of uni-modal encoders with each layer of the cross-modal encoder:

$$\tilde{Z}^V_\ell = \text{BridgeLayer}^V_\ell (Z^V_{\ell-1}, V_k W_V + V^{type}), \quad (6)$$

$$\tilde{Z}^T_\ell = \text{BridgeLayer}^T_\ell (Z^T_{\ell-1}, T_k W_T + T^{type}), \quad (7)$$

where k denotes the index of layer representations of uni-modal encoders. In this paper, $L_V = L_T = 12$, $L_Z = 6$ and we use the representations of the top 6 layers of uni-modal encoders, which means that $k = 7, \ldots, 12$. Take the input of
We pre-train B and first compute the contrastive similarity for all images and use conditional masking for MLM, which means we ran- vision-language pre-training objectives: MLM and ITM.

We use the same strategy as for ITM. For image-text retrieval, we follow the common practice (Goyal et al. 2017; Teney et al. 2018): convert VQAv2 to a classification task with answer classes; train the model with training data and validation data, and evaluate the model on the test-dev data.

We evaluate BRIDGETOWER by fine-tuning the entire model on the visual question answering (VQA)v2 (Goyal et al. 2017), visual entailment (SNLI-VE) (Xie et al. 2019), and image-text retrieval (Flickr30K) (Young et al. 2014) tasks. We use an image resolution of 384×384 for these downstream VL tasks, except for VQAv2, where we use 576×576 for a robust evaluation and fair comparison with METEr. Standard settings and splits are used for all datasets. For VQAv2, where we follow the common practice (Goyal et al. 2017; Teney et al. 2018), convert VQAv2 to a classification task with 3, 129 answer classes; train the model with training data and validation data, and evaluate the model on the test-dev data.

In Sec. 4.2, we describe the extensive experiments we conducted on different design choices for BRIDGETOWER, including the formal definition of bridge layers and the number of cross-modal layers.

3.4 Pre-training Objectives

We pre-train BRIDGETOWER with two commonly used vision-language pre-training objectives: MLM and ITM.

Masked Language Modeling. MLM is a common objective for language and vision-language pre-training. Given an image-text pair, following UNITER (Chen et al. 2020), we use conditional masking for MLM, which means we randomly mask 15% of tokens in the token sequence while keeping the input image patch sequence untainted. The model is trained to reconstruct the original tokens conditioned on incomplete input token sequence and complete observed image patch sequence. We adopt the same masking strategy and MLM task head as RoBERTa. The last-layer representation of the textual part of the cross-modal encoder is used as input to the MLM task head.

Image-Text Matching. ITM aims to predict whether the given image-text pair is positive (matched) or negative (mismatched). Matched and mismatched image-text pairs are fed into our model with the same probability. We pass the final representations of $[\text{class}]$ and $[<s>]$ token in the cross-modal encoder to the non-linear layer activated by Tanh, respectively. The concatenation of the outputs is fed into a linear classifier with cross-entropy loss for binary classification.

3.5 Fine-Tuning on Downstream Tasks

For visual question answering and visual entailment, we use the same strategy as for ITM. For image-text retrieval, following ALBEF (Li et al. 2021a), our model is jointly optimized with image-text contrastive (ITC) loss and ITM loss. Two linear projections are added on top of both uni-modal encoders to obtain uni-modal representations of image-text pairs, and then compute their contrastive similarity by dot product. Then, instead of randomly sampling negatives for the ITM task, for each image (text) in a mini-batch, we use the contrastive similarity distribution from the ITC task to sample one hard in-batch negative text (image). In inference, we first compute the contrastive similarity for all images and texts, and then take the top-k candidates and calculate their ITM scores for ranking.

4 Experiment

4.1 Implementation Details

BRIDGETOWER consists of a pre-trained textual encoder, RoBERTaBASE with 124M parameters, a pre-trained visual encoder, CLIP-ViT-B-224/16 with 86M parameters, and a random-initialized 6-layer cross-modal encoder with 113M parameters. For each layer of the cross-modal encoder, the hidden size is set to 768, the intermediate size of feed-forward networks is set to 3,072, and the number of heads is set to 12. The maximum length of the text sequence is set to 50. The patch size is 16 \times 16. Center-crop is used to resize each input image to the same resolution, and we also apply RandAugment (Cubuk et al. 2020) to the input images following previous works (Li et al. 2021a; Dou et al. 2022). We use the AdamW (Loshchilov and Hutter 2019) optimizer with a base learning rate of $2e^{-3}$ and weight decay of 0.01. The learning rate is warmed up for 10% of the total training steps and then decayed linearly to zero for the rest of the training steps. Following METEr, the learning rate of the cross-modal encoder is five times higher than that of uni-modal encoders.

We evaluate BRIDGETOWER by fine-tuning the entire model on the visual question answering (VQA)v2 (Goyal et al. 2017), visual entailment (SNLI-VE) (Xie et al. 2019), and image-text retrieval (Flickr30K) (Young et al. 2014) tasks. We use an image resolution of 384×384 for these downstream VL tasks, except for VQAv2, where we use 576×576 for a robust evaluation and fair comparison with METEr. Standard settings and splits are used for all datasets. For VQAv2, where we follow the common practice (Goyal et al. 2017; Teney et al. 2018), convert VQAv2 to a classification task with 3, 129 answer classes; train the model with training data and validation data, and evaluate the model on the test-dev data.

4.2 Investigation and Analysis

In this section, we evaluate different design choices for BRIDGETOWER on the VQA$v2$ and Flickr30K datasets. Each model is initialized with CLIP-ViT-B-224/16 and RoBERTaBASE pre-trained weights, and then directly fine-tuned on the two downstream tasks without VLP. All experimental settings are the same as METEr for fair comparisons. In our preliminary experiments, the uni-modal representations of the top layers perform much better than the middle and bottom layers. Thus, we use the top 6 layer representations of the uni-modal encoders as the corresponding inputs for each bridge layer in the bottom-up directions.

Design Choice 1: Formal Definition of Bridge Layers Table 1 shows, perhaps unexpectedly but not very surprisingly, that row (a) provides the best results using the minimum number of parameters and achieves an accuracy of 75.18% on the test-dev set of VQA$v2$ and RSUM of 533.84 on the test set of Flickr30K. The additional parameters used for interpolation cause slight performance degradation in rows (c) & (d). Rows (e) - (h) try to incorporate generally used feature transformation forms into the bridge layer, but the additional computation and parameters instead lead to performance degradation. Inspired by ResNet and ViTDet (Li et al. 2022c), in row (i), we incorporate row (a) into row (e) as the residual connection. W_s is initialized as zero so that row (i) is...
BridgeLayer\((x, y)\) & # Params & Test-Dev & RSUM \\
\(a \times y\) & 18.4K & 75.18 & 533.8 \\
\(b \circ y\) & 18.4K & 73.41 & 530.4 \\
\(c \alpha x + (1 - \alpha) y, \alpha \in \mathbb{R}^{D_y}\) & 26.0K & 75.09 & 532.9 \\
\(d \alpha x + (1 - \alpha) y, \alpha = \sigma(W[x; y])\) & 11.8M & 75.13 & 533.1 \\
\(e W_2(\text{GELU} (W_1[x; y]))\) & 11.8M & 74.55 & 532.2 \\
\(f \text{MCA} (x, y)\) & 35.4M & 74.26 & 530.2 \\
\(g \text{FFN} (\text{MCA} (x, y))\) & 23.6M & 73.67 & 514.3 \\
\(i x + y + \varpi x, y\) & 70.8M & 73.54 & 511.1 \\
\(11.8M & 75.10 & 533.1 \\

Table 1: Performance and number of parameters for different formal definitions of bridge layers. We omit the layer normalization used in each form. \(x\) denotes the output cross-modal representation of the previous layer and \(y\) denotes the corresponding input uni-modal representation. RSUM indicates the sum of recall metrics for image-text retrieval.

initially equivalent to row (a). Although the performance is significantly higher than row (e) \((74.55 \rightarrow 75.10)\), there is no significant gain compared with row (a). Hence, we choose row (a) (Add\&Norm) as the default bridge layer.

Design Choice II: Number of Cross-Modal Layers

In BRIDGETOWER, the cross-modal encoder is not located on top of the uni-modal encoders, but between them. Each cross-modal layer is connected to the corresponding layer of the uni-modal encoder by a bridge layer. Therefore, based on the two 12-layer uni-modal encoders we used, the number of cross-modal layers can be \([1, 12]\). Table 2 shows the performance of BRIDGETOWER with different numbers of cross-modal layers. It is illuminating to note that adding more cross-modal layers does not constantly improve performance, possibly because \((i)\) more cross-modal layers are more difficult to train and are more data-hungry; \((ii)\) uni-modal representations of top layers are beneficial to cross-modal alignment and fusion, while uni-modal representations of bottom layers may be less useful and even detrimental. We also evaluate METER and find that while the only difference between the two models is the bridge layers, BRIDGETOWER can achieve consistent performance gains for different numbers of cross-modal layers. It further illustrates that the bridge layers can facilitate effective cross-modal alignment and fusion with uni-modal representations of different semantic levels in the cross-modal encoder.

Apply Different Visual and Textual Backbones

We apply different visual and textual backbones as pre-trained uni-modal encoders and directly fine-tune on downstream tasks to further investigate the impact brought by bridge layers. As shown in Table 3, no matter what visual and textual encoders we apply, the performances of BRIDGETOWER are consistently and significantly better than that of METER. This further demonstrates the effectiveness of our proposed BRIDGETOWER architecture and bridge layers for vision-language representation learning.

4.3 Comparison with Previous Arts

In this section, we describe how to pre-train BRIDGETOWER with the best-performing setting (Sec. 4.2) and compare its fine-tuning performance with previous works.

Pre-training Setup. We use four public image-caption datasets for pre-training: Conceptual Captions (CC) (Sharma et al. 2018), SBU Captions (Ordonez, Kulkarni, and Berg 2011), MSCOCO Captions (Chen et al. 2015), and Visual Genome (VG) (Krishna et al. 2017). The total number of unique images in the combined data is 4M. We pre-train BRIDGETOWER for 100k steps on 8 NVIDIA A100 GPUs with a batch size of 4,096. All the pre-training settings for BRIDGETOWER are the same as for METER for a fair comparison. The learning rate is set to \(1e^{-5}\). No data augmentation is used except for center-crop (Radford et al. 2022). The image resolution in pre-training is set to \(224 \times 224\). Other hyperparameters remain unchanged based on the experiments in Sec. 4.2.

Main Results. Table 4 and 5 show the performance of BRIDGETOWER compared with previous works on downstream VL tasks. With only 4M images for pre-training, BRIDGETOWER\(_{BASE}\) achieves state-of-the-art performance, in particular 78.73% accuracy on the VQAv2 test-set, outperforming the previous state-of-the-art model METER by 1.09% with the same pre-training setting and almost negligible additional parameters and computational costs. Remarkably, BRIDGETOWER\(_{BASE}\) not only outperforms all base-size models that use the same or a larger number of pre-trained images, but it even outperforms some large-size models. A similar trend also occurs on the visual entailment and image-text retrieval tasks. On the Flickr30K dataset, BRIDGETOWER\(_{BASE}\) achieves the best performance, surpassing not only ALBEF with its specially designed pre-training objective, but also ALIGN with 1.8B pre-train images.
Table 4: Comparisons with previous models on visual question answering (VQAv2). The best score is bolded. The models are divided into base size and large/huge size. B, N and M in ViT-B-N/M denote the model size, image resolution and patch size, respectively. * indicates that the model also uses VG-QA data to fine-tune on VQAv2. # denotes the model is trained from scratch. "# Pre-train Images" denotes the number of images in VLP (the images for pre-trained visual and textual backbones are not counted).

Table 5: Comparisons with previous models on visual entailment (SNLI-VE), image retrieval (IR) and text retrieval (TR) tasks (Flickr30K). The best score is bolded.
Scaling the Model. To investigate the effect of the scale of the model structure on performance, we replace our uni-modal encoders with the corresponding large version, i.e., RoBERTaLARGE with 355M parameters and CLIP-ViT-L/14 with 304M parameters. For each layer of the cross-modal encoder, the hidden size is set to 1,024, the intermediate size of feed-forward networks is set to 4,096, and the number of heads is set to 16. The number of cross-modal encoder layers remains 6 so the number of parameters grows to 200M. The patch size is 14 × 14, then we set the image resolution to 294 × 294 in pre-training and to 574 × 574 in fine-tuning on the VQA v2. Other hyperparameters remain unchanged. As shown in Table 4, BRIDGETOWER outperforms previous models trained with 10 times or even 1,000 times more images, not only in the base size but also in the large size. Notably, BRIDGETOWERLARGE achieves 81.15% accuracy on the VQA v2 test-std set, surpassing the previous state-of-the-art OFALARGE model by 0.48%. This further demonstrates the effectiveness and scalability of BRIDGETOWER. In addition, question-answer pairs from VG dataset are often used to extend the VQA v2 training data, thus further improving performance (Teney et al. 2018; Yu et al. 2019). Our performance of base and large size can be improved to 79.04% and 81.49% on the VQA v2 test-std set, respectively.

4.4 Visualization

Attention mechanism (Bahdanau, Cho, and Bengio 2015) is a critical and naturally interpretable component of transformer-based models. It is intuitive to analyze attention weights since it measures how much attention each token pays to the other tokens. Inspired by Xie et al. (2022), we compare the pre-trained METER and BRIDGETOWER models by analyzing the Kullback-Leibler (KL) divergence between attention weight distributions of different attention heads in each layer. KL divergence can be seen as the diversity of attention heads. Higher/lower KL divergence means that different attention heads pay attention to different/similar tokens.

As shown in Figure 3 by comparing the KL divergence of the two models in each row, there are two distinct trends: (i) the diversity of attention heads becomes progressively smaller as the layer goes deeper for BRIDGETOWER, but for METER, the diversity of attention heads becomes progressively larger and then smaller as the layer goes deeper; (ii) the diversity of attention heads of each layer of BRIDGETOWER is significantly larger than that of METER, especially for the 1st to the 5th layer. Thus, for different attention heads of self/cross-attention of the visual/textual part of the cross-modal encoder, compared with METER, BRIDGETOWER can aggregate more different tokens. We attribute this to our proposed bridge layer, which connects the top layers of uni-modal encoders with each layer of the cross-modal encoder. Different semantic levels of visual and textual representations are introduced by bridge layers, facilitating more effective and informative cross-modal alignment and fusion at each layer of the cross-modal encoder.

5 Conclusion and Future Work

We present BRIDGETOWER, a simple yet effective vision-language model that introduces multiple bridge layers to build a connection between the top layers of uni-modal encoders and each layer of the cross-modal encoder. This facilitates effective bottom-up cross-modal alignment and fusion between visual and textual representations of different semantic levels of the pre-trained uni-modal encoders in the cross-modal encoder. We experimentally prove the effectiveness of the proposed bridge layers and BRIDGETOWER, which achieves remarkable performance in all downstream VL tasks with almost negligible additional parameters and computational costs. We hope that our work will draw more attention to the rich semantic knowledge latent in the different layers of uni-modal encoders. Incorporating such semantic knowledge into cross-modal alignment and fusion can yield more expressive and powerful vision-language representations. Furthermore, experiments with different visual and textual backbones as pre-trained uni-modal encoders demonstrate that the perfor-
In the future, we plan to improve BRIDGE-TOWER in the following aspects:

Different Pre-training Objectives. We followed METER to directly adopt the masked language modeling (MLM) and image-text matching (ITM) as pre-training objectives for a fair comparison. More pre-training objectives, such as image-text contrastive learning (ITC) and masked image modeling (MIM), could be incorporated to investigate their impact on BRIDGE-TOWER and further improve the performance.

Larger Scale Pre-training. We have pre-trained our model with 4M images both on the BASE and LARGE sizes. In both versions, BRIDGE-TOWER achieves lower accuracy on the “Number” type questions of VQA-v2 than other models pre-trained with more data. We expect to investigate and further improve the performance of BRIDGE-TOWER after pre-training on larger-scale image-text data.

Generative Task. In this paper, we focus on discriminative tasks. It would be interesting to investigate the impact of the proposed bridge layer on the performance of a visual language generation task, such as image captioning.

Acknowledgements

This work was supported by the National Key R&D Program of China via grant 2020AAA0106501 and the National Natural Science Foundation of China (NSFC) via grant 62236004 and 61976072.

A Compare BRIDGE-TOWER and METER

In Section 4.2, we use different numbers of cross-modal layers and different visual/textual encoders in the BRIDGE-TOWER and METER architectures. The fair comparison with the same pre-trained uni-modal encoders and fine-tune settings on two datasets further demonstrates the pure effect of the proposed BRIDGE-TOWER architecture. Furthermore, after vision-language pre-training (VLP) using the same pre-training data and pre-training settings (Section 4.3), BRIDGE-TOWER still achieves significant performance improvements over METER on the downstream VL tasks. An interesting question naturally arises: Will performance improve if we combine the BRIDGE-TOWER and METER architectures?

Since the cross-modal layer in the METER architecture is on top of the uni-modal encoders, we denote it as the external cross-modal layer, while we denote the cross-modal layer in BRIDGE-TOWER as the internal cross-modal layer. We fix the number of cross-modal layers as $L_z = 6$ and study the performance of various combinations of internal and external cross-modal layer numbers.

Table 6 shows that more internal layers are more effective than more external layers. This demonstrates that the bridge layer of BRIDGE-TOWER, which connects the top layers of uni-modal encoders with each layer of the cross-modal encoder, can significantly improve performance. Comprehensive and effective bottom-up interactions between uni-modal representations of different semantic levels can be achieved, promoting more effective cross-modal alignment and fusion at each layer of the cross-modal encoder.

We also explore the simple multi-layer feature fusion [Dou et al., 2022] (last row), where the weighted sum of uni-modal representations of all layers is fed to the top cross-modal encoder. Although it obtains a slightly better performance than the 6 external cross-modal layers (penultimate row, i.e., METER), it is still significantly weaker than the proposed 6 internal cross-modal layers (first row, i.e., BRIDGE-TOWER).

Figure 4 gives a brief illustration of the four types of architecture mentioned in this section.

B Uni-Modal Tasks

Following previous work (Tan and Bansal 2020; Li et al., 2021b; Dou et al., 2022), we report the performance of our visual encoder and textual encoder after VLP on uni-modal tasks, to investigate the effect of VLP on uni-modal encoders of BRIDGE-TOWER.

For vision tasks, we append a linear classifier to the top of our visual encoder and report the linear probe performance on CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009). We perform the grid search over the learning rates and batch sizes for all three models, and the experiments are running on the NVIDIA A100 GPUs. Table 7 shows that, after VLP, the performance of our visual encoder drops slightly on both tasks, but still achieves higher performance compared to METER, especially on CIFAR-100 (0.68% accuracy improvement). It further proves that the bridge layers of our BRIDGE-TOWER can improve cross-modal interactions while having slighter impedance METER to the intra-modal interactions of the visual encoder compared to METER.

Recently, LiT (Zhai et al., 2021) empirically finds that locked pre-trained image models with unlocked text models work best for vision tasks. They believe that image-text data can be great for learning cross-modal alignment between vision and language, but it may not be precise and clean enough to result in state-of-the-art image encoders. OFA (Wang et al., 2022b) alleviates this problem by adding the image infilling as a pre-training objective, and achieves competitive fine-tuning performance on ImageNet-1K (Russakovsky et al., 2015). We will explore the image infilling or masked image modeling (Wang et al., 2022c) as a new pre-training objective.

For language tasks, we perform the same grid search as the
Table 8: Fine-tuning performance of RoBERTa\textsubscript{BASE} on GLUE dev sets before and after VLP. The number below each task denotes the number of training examples. BT is short for BRIDGETOWER. PT is short for Pre-Training. We report average scores and standard deviations over three runs of different random seeds. Matthews correlations are reported for CoLA, F1 scores are reported for QQP and MRPC, and Spearman correlations are reported for STS-B. The average of matched and mismatched accuracy scores are reported for MNLI.

Table 9 shows the number of parameters, the number of floating-point operations (FLOPs), and computational costs (ms), and computational costs (\approx 101.35\text{ ms}), and computational costs (\approx 1.0188) for the cross-modal encoder. Recent works [Hu and Singh [2021], Singh et al. [2021], Sileo [2021], Wang et al. [2022b]] have explored how to utilize the whole vision-language model for uni-modal tasks. We leave this problem as a future direction.

Overall, BRIDGETOWER can better maintain the capability of uni-modal encoders on the CIFAR and GLUE benchmarks compared to METER. Furthermore, it is a promising direction to explore more uni-modal pre-training objectives.

C Inference Time

Table 6 shows the number of parameters, the number of floating-point operations (FLOPs), the inference time and downstream performance of METER and BRIDGETOWER without VLP. We measure the average inference time of processing 1 VQA instance over 10K runs on 1 NVIDIA Tesla V100-PCIE-32GB GPU. The sequence length is 50 and the image resolution is 384 x 384. With almost negligible additional parameters (18.4K parameters), inference time (less than 0.5 ms), and computational costs (\approx 1.0188), BRIDGETOWER achieves 1.14\% and 3.1\% performance improvement over METER on the VQAv2 test-dev score and
Flickr30K RSUM score. This demonstrates the efficiency and effectiveness of BridgeTower compared with Meter.

D Performance on Other Downstream Tasks

We also evaluate BridgeTower on visual reasoning (Suhr et al. 2019) (NLVR2), and image-text retrieval (Lin et al. 2014) (Mscoco) tasks. We fine-tune our BridgeTower with the strategy in Sec. 3.5. For Mscoco dataset, we follow the standard Karpathy Split (Karpathy and Li 2015). Table 10 shows that, compared with previous work, BridgeTower achieves either best or competitive performance on the NLVR2 and Mscoco dataset. In the Mscoco dataset, BridgeTower achieves an RSUM of 498.9%, outperforming the previous state-of-the-art model Meter by 2.8% with the same pre-training setting and almost negligible additional parameters and computational costs. In particular, for the image retrieval task on the Mscoco dataset, BridgeTower achieves 62.4% for IR@1, which not only significantly surpasses Meter by 3.5%, but also surpasses the Align and Albef models pre-trained with orders-of-magnitude larger datasets. For the text retrieval task on the Mscoco dataset, BridgeTower achieves 75.0% for TR@1, which is lower than Meter by 1.2%. We leave the reason for the different performance of image retrieval and text retrieval tasks on the Mscoco dataset for future study.

E Detailed VQAv2 Performance Comparison

Table 11 shows the detailed performance comparison between Meter and BridgeTower on VQAv2. All experiments use an image resolution of 576 × 576 for fine-tuning.

Comparison Between Meter and BridgeTower. In the first block, Meter shows that the fusion strategy can improve performance by a small margin without pre-training, but it can degrade performance after pre-training. We re-implemented the Meter model with and without fusion strategy in the second block, which has been shown in Section 4.2.3 of the paper. We perform grid searches over the learning rates, which may contribute to the better performance (71.75% vs 74.04%, 72.90% vs 74.52%) compared to the same setting in Meter². Without VLP, our base model achieves an accuracy of 75.18% on the VQAv2 test-dev set, which outperforms Meter both with and without fusion strategy. With VLP, our base model achieves an accuracy of 78.66% on VQAv2, which still surpasses both versions of Meter. This demonstrates that through the connection established by bridge layers, our BridgeTower achieves comprehensive and detailed layer-wise interaction between the uni-modal representations of different semantic levels.

Utilization of VG-QA for Fine-Tuning. In the third and fourth blocks, we show the VQAv2 fine-tuning performance of our BridgeTowerBASE model and BridgeTowerLarge model with different settings of addition question-answer pairs from Visual Genome (Krishna et al. 2017). Following the standard practice (Teney et al. 2018; Yu et al. 2019), we only use question-answer pairs in Visual Genome where the correct answer appears in the answer classes of VQAv2. We denote the valid 932k question-answer pairs in Visual Genome as VG-QA. In VG-QA, there are 468k question-answer pairs using images that are also used in VQAv2, and we refer to this part of the data as VG-QA(COCO-only). As shown in the last two rows of the third and fourth blocks, VG-QA(COCO-only) can slightly improve the performance of the base model and large model (0.11%
Question: What time is it?
Answer: 4:00.

Figure 5: Visualization of the cross-attention map of our BRIDGETOWER and METER. The example comes from the VQAv2 validation set. Predictions come from the fine-tuning checkpoints of both models.

Table 11: Detailed performance comparisons between METER and BRIDGETOWER on visual question answering (VQA-v2) both with and without pre-training. The results in the first block come from METER (Dou et al. 2022). * denotes our re-implementation.

Table 12: Statistics of the pre-training datasets. We remove duplicate image-caption pairs in VG (Kim, Son, and Kim 2021; Dou et al. 2022) and only 2.9M image-caption pairs can be downloaded in CC.

Table 13: Detailed performance comparisons between METER and BRIDGETOWER on visual question answering (VQA-v2) both with and without pre-training. The results in the first block come from METER (Dou et al. 2022). * denotes our re-implementation.

G Experimental Settings

Pre-training Details: Table 12 shows the statistics of our pre-training datasets. Following previous work (Kim, Son, and Kim 2021; Chen et al. 2020; Li et al. 2021a; Dou et al. 2022), we adopt four public image-caption datasets for pre-training, including Conceptual Captions (CC) (Sharma et al. 2018), SBU Captions (SBU) (Ordonez, Kulkarni, and Berg 2011), MSCOCO Captions (COCO) (Chen et al. 2015), and Visual Genome (VG) (Krishna et al. 2017). The total numbers of the unique images and image-caption pairs in the com-
Table 13: Hyperparameters for pre-training BRIDGE_TOWER_BASE and BRIDGE_TOWER_LARGE. The first block is the hyperparameters for the cross-modal encoder in our BRIDGE_TOWER model.

Hyperparameters	BRIDGE_TOWER_BASE	BRIDGE_TOWER_LARGE
Number of Layers	6	6
Hidden size	768	1,024
FFN inner hidden size	3,072	4,096
Number of Attention heads	12	16
Dropout Ratio	0.1	0.1
Attention dropout	0.1	0.1
Total Steps	100k	100k
Batch Size	4,096	4,096
Optimizer	AdamW	AdamW
Learning Rate	$1e^{-5}$	$1e^{-5}$
Learning Rate Decay	Linear	Linear
Weight Decay	0.01	0.01
Warmup Steps	10k	10k
Adam ϵ	$1e^{-8}$	$1e^{-8}$
Adam β_1	0.9	0.9
Adam β_2	0.98	0.98
Center-Crop	✓	✓
Random Resized Crop	✗	✗
Random Augmentation	✗	✗
Random Horizontal Flipping	✗	✗
Textual Encoder	RoBERTa_BASE	RoBERTa_LARGE
Visual Encoder	CLIP-ViT-B	CLIP-ViT-L
Patch Size	16	14
Image Resolution for VLP	288	294

Table 14: Hyperparameters for fine-tuning BRIDGE_TOWER on downstream VL tasks. FT denotes fine-tuning. CE and BCE are short for cross-entropy loss and binary cross-entropy loss, respectively.

Hyperparameters	VQA2	SNLI-VE	Flickr30K
Total Epochs	10	5	20
Batch Size	512	64	512
Optimizer	AdamW	AdamW	AdamW
Learning Rate	$1e^{-7}$ / $4e^{-6}$	$3e^{-6}$ / $5e^{-6}$	
Learning Rate Decay	Linear	Linear	Linear
Weight Decay	0.05	0.01	0.01
Warmup Ratio	0.06	0.06	0.05
Adam ϵ	$1e^{-8}$	$1e^{-8}$	$1e^{-8}$
Adam β_1	0.9	0.9	0.9
Adam β_2	0.98	0.98	0.98
Center-Crop	✗	✗	✗
Random Resized Crop	✓	✓	✓
Random Augmentation	✓	✓	✓
Random Horizontal Flipping	✗	✓	✓
Textual Encoder	RoBERTa_BASE / LARGE	RoBERTa_BASE	RoBERTa_BASE
Visual Encoder	CLIP-ViT-B / L	CLIP-ViT-B	CLIP-ViT-B
Patch Size	16 / 14	16	16
Image Resolution for VLP	288 / 294	288	288
Image Resolution for FT	576 / 574	384	384
Loss Function	BCE	CE	CE

Hyperparameters for Fine-Tuning Downstream Tasks.
Similar to the image-text matching (ITM) pre-training objective, we pass the final representation of [class] token and [<s>] token to the non-linear layer activated by Tanh, and feed the concatenation of the output into a linear classifier (Flickr30K) or an MLP classifier (VQA2 and SNLI-VE). We apply cross-entropy loss for SNLI-VE and Flickr30K and binary cross-entropy loss for VQA2 (Kim, Son, and Kim 2021; Dou et al. 2022). Fine-tuning hyperparameters for VQA2, SNLI-VE, and Flickr30K are given in Table 14.
References

Alayrac, J.-B.; Donahue, J.; Luc, P.; Miech, A.; Barr, I.; Hasson, Y.; Lenc, K.; Mensch, A.; Millican, K.; Reynolds, M.; et al. 2022. Flamingo: a visual language model for few-shot learning. ArXiv preprint, abs/2204.14198.

Bahdanau, D.; Cho, K.; and Bengio, Y. 2015. Neural Machine Translation by Jointly Learning to Align and Translate. In Bengio, Y.; and LeCun, Y., eds., 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Belinkov, Y.; Durrani, N.; Dalvi, F.; Sajjad, H.; and Glass, J. 2017. What do Neural Machine Translation Models Learn about Morphology? In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 861–872. Vancouver, Canada: Association for Computational Linguistics.

Chen, X.; Fang, H.; Lin, T.-Y.; Vedantam, R.; Gupta, S.; Dollár, P.; and Zitnick, C. L. 2015. Microsoft coco captions: Data collection and evaluation server. ArXiv preprint, abs/1504.00325.

Chen, X.; Wang, X.; Changpinyo, S.; Piergiovanni, A.; Padlevski, P.; Salz, D.; Goodman, S.; Grycner, A.; Mustafa, B.; Beyer, L.; et al. 2022. Pali: A jointly-scaled multilingual language-image model. ArXiv preprint, abs/2209.06794.

Chen, Y.-C.; Li, L.; Yu, L.; El Kholy, A.; Ahmed, F.; Gan, Z.; Cheng, Y.; and Liu, J. 2020. Uniter: Universal image-text representation learning. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXX, 104–120. Springer.

Cho, J.; Lei, J.; Tan, H.; and Bansal, M. 2021. Unifying Vision-and-Language Tasks via Text Generation. In Meila, M.; and Zhang, T., eds., Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, 1931–1942. PMLR.

Cubuk, E. D.; Zoph, B.; Shlens, J.; and Le, Q. 2020. RandAugment: Practical Automated Data Augmentation with a Reduced Search Space. In Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M.; and Lin, H., eds., Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 4171–4186. Minneapolis, Minnesota: Association for Computational Linguistics.

Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; Uszkoreit, J.; and Houlsby, N. 2021. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.
Huang, G.; Liu, Z.; van der Maaten, L.; and Weinberger, K. Q. 2017. Densely Connected Convolutional Networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, 2261–2269. IEEE Computer Society.

Huang, Z.; Zeng, Z.; Huang, Y.; Liu, B.; Fu, D.; and Fu, J. 2021. Seeing out of the box: End-to-end pre-training for vision-language representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 12976–12985.

Huang, Z.; Zeng, Z.; Liu, B.; Fu, D.; and Fu, J. 2020. Pixel-bert: Aligning image pixels with text by deep multi-modal transformers. ArXiv preprint, abs/2004.00849.

Jia, C.; Yang, Y.; Xia, Y.; Chen, Y.; Parekh, Z.; Pham, H.; Le, Q. V.; Sung, Y.; Li, Z.; and Duerig, T. 2021. Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision. In Meila, M.; and Zhang, T., eds., Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, 4904–4916. PMLR.

Karpathy, A.; and Li, F. 2015. Deep visual-semantic alignments for generating image descriptions. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, 3128–3137. IEEE Computer Society.

Kim, W.; Son, B.; and Kim, I. 2021. ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision. In Meila, M.; and Zhang, T., eds., Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, 5583–5594. PMLR.

Kirillov, A.; Girshick, R. B.; He, K.; and Dollár, P. 2019. Panoptic Feature Pyramid Networks. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, 6399–6408. Computer Vision Foundation / IEEE.

Krishna, R.; Zhu, Y.; Groth, O.; Johnson, J.; Hata, K.; Kravitz, J.; Chen, S.; Kalantidis, Y.; Li, L.-J.; Shamma, D. A.; et al. 2017. Visual genome: Connecting language and vision using crowdsourced dense image annotations. International journal of computer vision.
Shen, S.; Li, L. H.; Tan, H.; Bansal, M.; Rohrbach, A.; Chang, K.-W.; Yao, Z.; and Keutzer, K. 2021. How Much Can CLIP Benefit Vision-and-Language Tasks? ArXiv preprint, abs/2107.06383.

Shen, Y.; Tan, X.; He, D.; Qin, T.; and Liu, T.-Y. 2018. Dense Information Flow for Neural Machine Translation. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), 1294–1303. New Orleans, Louisiana: Association for Computational Linguistics.

Sileo, D. 2021. Visual Grounding Strategies for Text-Only Natural Language Processing. In Proceedings of the Third Workshop on Beyond Vision and Language: Integrating Real-world Knowledge (LANTERN), 19–29. Kyiv, Ukraine: Association for Computational Linguistics.

Singh, A.; Hu, R.; Goswami, V.; Couairon, G.; Galuba, W.; Rohrbach, M.; and Kiela, D. 2021. FLAVA: A Foundational Language And Vision Alignment Model. ArXiv preprint, abs/2112.04482.

Soegaard, A.; and Goldberg, Y. 2016. Deep multi-task learning with low level tasks supervised at lower layers. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 231–235. Berlin, Germany: Association for Computational Linguistics.

Su, W.; Zhu, X.; Cao, Y.; Li, B.; Lu, L.; Wei, F.; and Dai, J. 2020. VL-BERT: Pre-training of Generic Visual-Linguistic Representations. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

Suhr, A.; Zhou, S.; Zhang, A.; Zhang, I.; Bai, H.; and Artzi, Y. 2019. A Corpus for Reasoning about Natural Language Grounded in Photographs. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 6418–6428. Florence, Italy: Association for Computational Linguistics.

Sun, C.; Qiu, X.; Xu, Y.; and Huang, X. 2019. How to fine-tune bert for text classification? In Chinese Computational Linguistics: 18th China National Conference, CCL 2019, Kunming, China, October 18–20, 2019, Proceedings 18, 194–206. Springer.

Tan, H.; and Bansal, M. 2019. LXMERT: Learning Cross-Modality Encoder Representations from Transformers. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 5100–5111. Hong Kong, China: Association for Computational Linguistics.

Tan, H.; and Bansal, M. 2020. Vokenization: Improving Language Understanding with Contextualized, Visual-Grounded Supervision. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2066–2080. Online: Association for Computational Linguistics.

Teney, D.; Anderson, P.; He, X.; and van den Hengel, A. 2018. Tips and Tricks for Visual Question Answering: Learnings From the 2017 Challenge. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18–22, 2018, 4223–4232. IEEE Computer Society.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. Attention is All you Need. In Guyon, I.; von Luxburg, U.; Bengio, S.; Wallach, H. M.; Fergus, R.; Vishwanathan, S. V. N.; and Garnett, R., eds., Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, 5998–6008.

Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; and Bowman, S. R. 2019. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6–9, 2019. OpenReview.net.

Wang, J.; Yang, Z.; Hu, X.; Li, L.; Lin, K.; Gan, Z.; Liu, Z.; Liu, C.; and Wang, L. 2022a. GIT: A Generative Image-to-text Transformer for Vision and Language. ArXiv preprint, abs/2205.14100.

Wang, P.; Yang, A.; Men, R.; Lin, J.; Bai, S.; Li, Z.; Ma, J.; Zhou, C.; Zhou, J.; and Yang, H. 2022b. Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework. ArXiv preprint, abs/2202.03052.

Wang, Q.; Li, F.; Xiao, T.; Li, Y.; Li, Y.; and Zhu, J. 2018. Multi-layer Representation Fusion for Neural Machine Translation. In Proceedings of the 27th International Conference on Computational Linguistics, 3015–3026. Santa Fe, New Mexico, USA: Association for Computational Linguistics.

Wang, W.; Bao, H.; Dong, L.; Bjorck, J.; Peng, Z.; Liu, Q.; Aggarwal, K.; Mohammed, O. K.; Singhal, S.; Som, S.; et al. 2022c. Image as a foreign language: Beit pretraining for all vision and vision-language tasks. ArXiv preprint, abs/2208.10442.

Wang, W.; Bao, H.; and Wei, F. 2021a. VLMo: Unified Vision-Language Pre-Training with Mixture-of-Modality-Experts. ArXiv preprint, abs/2111.02358.

Wang, Z.; Wang, W.; Zhu, H.; Li, M.; Qin, B.; and Wei, F. 2021b. Distilled Dual-Encoder Model for Vision-Language Understanding. ArXiv preprint, abs/2112.08723.

Wang, Z.; Yu, J.; Yu, A. W.; Dai, Z.; Tsvetkov, Y.; and Cao, Y. 2021c. Simvlm: Simple visual language model pretraining with weak supervision. ArXiv preprint, abs/2108.10904.

Xia, Q.; Huang, H.; Duan, N.; Zhang, D.; Ji, L.; Sui, Z.; Cui, E.; Bharti, T.; and Zhou, M. 2021. Xgpt: Cross-modal generative pre-training for image captioning. In Natural Language Processing and Chinese Computing: 10th CCF International Conference, NLPCC 2021, Qingdao, China, October 13–17, 2021, Proceedings, Part I 10, 786–797. Springer.

Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J. M.; and Luo, P. 2021. SegFormer: Simple and efficient design
for semantic segmentation with transformers. *Advances in Neural Information Processing Systems*, 34: 12077–12090.

Xie, N.; Lai, F.; Doran, D.; and Kadav, A. 2019. Visual entailment: A novel task for fine-grained image understanding. *ArXiv preprint*, abs/1901.06706.

Xie, Z.; Geng, Z.; Hu, J.; Zhang, Z.; Hu, H.; and Cao, Y. 2022. Revealing the Dark Secrets of Masked Image Modeling. *ArXiv preprint*, abs/2205.13543.

Young, P.; Lai, A.; Hodosh, M.; and Hockenmaier, J. 2014. From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions. *Transactions of the Association for Computational Linguistics*, 2: 67–78.

Yu, F.; Wang, D.; Shelhamer, E.; and Darrell, T. 2018. Deep Layer Aggregation. In *2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018*, 2403–2412. IEEE Computer Society.

Yu, J.; Wang, Z.; Vasudevan, V.; Yeung, L.; Seyyedhosseini, M.; and Wu, Y. 2022. Coca: Contrastive captioners are image-text foundation models. *ArXiv preprint*, abs/2205.01917.

Yu, Z.; Yu, J.; Cui, Y.; Tao, D.; and Tian, Q. 2019. Deep Modular Co-Attention Networks for Visual Question Answering. In *IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019*, 6281–6290. Computer Vision Foundation / IEEE.

Zeiler, M. D.; and Fergus, R. 2014. Visualizing and understanding convolutional networks. In *Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I*, 13, 818–833. Springer.

Zeng, Y.; Zhang, X.; and Li, H. 2021. Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts. *ArXiv preprint*, abs/2111.08276.

Zhai, X.; Wang, X.; Mustafa, B.; Steiner, A.; Keysers, D.; Kolesnikov, A.; and Beyer, L. 2021. LiT: Zero-Shot Transfer with Locked-image Text Tuning. *ArXiv preprint*, abs/2111.07991.

Zhang, P.; Li, X.; Hu, X.; Yang, J.; Zhang, L.; Wang, L.; Choi, Y.; and Gao, J. 2021. Vinyl: Revisiting visual representations in vision-language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 5579–5588.

Zheng, S.; Lu, J.; Zhao, H.; Zhu, X.; Luo, Z.; Wang, Y.; Fu, Y.; Feng, J.; Xiang, T.; Torr, P. H.; et al. 2021. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 6881–6890.

Zhou, L.; Palangi, H.; Zhang, L.; Hu, H.; Corso, J. J.; and Gao, J. 2020. Unified Vision-Language Pre-Training for Image Captioning and VQA. In *The Thirty-Fourth AAAI Conference on Artificial Intelligence*, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020*, 13041–13049. AAAI Press.