EDITORIAL

Circulating Lipids and COVID-19: Insights From Mendelian Randomization

Michael G. Levin

At a population level, dyslipidemia is both highly prevalent and undertreated, representing an important modifiable cardiometabolic risk factor from a public health perspective. Early observational studies of individuals with coronavirus disease 2019 (COVID-19) highlighted dyslipidemia and blood lipids as potential risk factors for disease. At a molecular level, several putative mechanisms link cholesterol/lipid metabolism to severe acute respiratory syndrome coronavirus 2 infection. For example, the SRB1 (scavenger receptor class B type 1), involved in trafficking HDL (high-density lipoprotein)-cholesterol, has been identified as a binding partner for severe acute respiratory syndrome coronavirus 2 proteins. Cholesterol-enriched lipid rafts within cellular membranes play important roles in severe acute respiratory syndrome coronavirus 2 binding, activation, internalization, and cell-cell spread. Cholesterol metabolism may also have immunomodulatory consequences, influencing the proliferation of regulatory T cells and activating inflammatory pathways via the NLRP3 (NLR family pyrin domain-containing 3) inflammasome. Thus, understanding the relationship between lipids and COVID-19 has important implications for both risk assessment and therapeutics.

See accompanying article on page 2802

Mendelian randomization (MR) is a clever framework for inferring causal relationships between risk factors and outcomes from observational data. The MR framework represents a specific application of instrumental variable analysis, a technique first described in the econometrics literature nearly a century ago. Within the MR framework, genetic variants are used as instrumental variables to overcome some of the biases that may limit traditional observational study designs. Due to the nature of genetic inheritance, genetic variants are randomly and independently passed from parents to offspring (Mendel’s laws of segregation and independent assortment). This scenario provides a natural experiment, which under certain assumptions mimics allocation within a randomized clinical trial. For genetic variants to serve as valid instrumental variables, they must satisfy 3 main assumptions (Figure). First, genetic variants must strongly associate with the risk factor of interest. Second, the variants should not be associated with confounders of the risk factor-outcome relationship. Finally, these variants must influence the outcome only through their effects on the risk factor of interest. Provided these assumptions, the MR framework permits the estimation of the lifelong effects of a risk factor on an outcome of interest. Because genetic variants are fixed at conception, before health outcomes occur, results from MR studies are less susceptible to reverse causality than traditional observational study designs. Furthermore, due to the random assortment of genetic variants, estimates are less susceptible to bias from residual/unmeasured confounding, the main limitation of some traditional observational designs. Interpreted within the context of evidence from other study designs, results of MR studies provide support for causal relationships between risk factors and outcomes. The increasing public availability of data from genetic association studies has facilitated the widespread application of the MR study design.

Key Words: Editorials • cholesterol • COVID-19 • dyslipidemias • population • public health • risk factors

The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.

Correspondence to: Michael G. Levin, MD, Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, 11-South, Philadelphia, PA 19104. Email michael.levin@pennmedicine.upenn.edu

For Sources of Funding and Disclosures, see page 2813.

© 2021 American Heart Association, Inc.

Arterioscler Thromb Vasc Biol is available at www.ahajournals.org/journal/atvb

Arterioscler Thromb Vasc Biol. 2021;41:2811–2813. DOI: 10.1161/ATVBAHA.121.316940

November 2021 2811
In this issue of *Arteriosclerosis, Thrombosis, and Vascular Biology*, Zhang et al.\(^1\) apply the MR framework to investigate the relationship between circulating lipids and risk of COVID-19.\(^1\) The authors constructed genetic instruments for dyslipidemia, total cholesterol, LDL (low-density lipoprotein)-cholesterol, HDL-cholesterol, triglycerides, ApoA1 (apolipoprotein-A1), and ApoB (apolipoprotein-B) from large publicly available genome-wide association studies (GWAS) of these traits. Using a 2-sample MR design, the authors estimated the effect of these traits on (1) risk of COVID-19 infection (UK Biobank [UKB], Host Genetics Initiative [HGI]) and (2) severe COVID-19 (HGI), based on separate GWAS of these traits. The authors identified significant associations with dyslipidemia, total cholesterol, and ApoB with risk of COVID-19 infection (UKB) after accounting for multiple testing. They further identified a nominal association between LDL-cholesterol and COVID-19. These effects were consistent across alternative MR methods which make different assumptions about the presence of directional pleiotropy and invalid genetic instruments. When considering an alternative COVID-19 infection outcome from the larger HGI GWAS (14,134 cases and 1,284,876 controls), the authors identified nominally significant (\(P < 0.05\)) associations with ApoB, total cholesterol, and triglycerides. However, the associations between ApoB and total cholesterol with risk of COVID-19 infection were substantially attenuated (ApoB odds ratio, 1.18 in UKB, 1.01 in HGI; total cholesterol odds ratio, 1.19 in UKB, 1.01 in HGI). The authors detected no significant associations between lipid traits and risk of severe COVID-19.

Overall, the results of this study should be interpreted cautiously. The UKB COVID-19 infection outcome GWAS used in this study was limited to participants from relatively early in the COVID-19 pandemic, when availability of testing was not universal. UKB participants who underwent COVID-19 testing at this time were substantially enriched for a range of factors, including demographic, cardiovascular, anthropometric, and genetic traits, potentially introducing a source of selection/collider bias.\(^1\) It is also worth noting the discrepant magnitude of associations between the UKB and HGI analyses which may be due to differences in the COVID-19 case/control definitions (cases in the UKB GWAS were compared with controls who had undergone negative testing, while controls in the HGI analysis were from the remaining population at large and could have unknown COVID-19 status), or differences in sample size (1221 cases in UKB versus 14,134 cases in HGI), and timing of each GWAS with respect to the onset of the pandemic (June 5, 2020, for UKB, October 20, 2020, for HGI release 4). Finally, the genetic instruments in the current study serve as proxies of lifelong changes in circulating lipids and may not reflect the efficacy of shorter-term pharmacological interventions on the circulating lipid profile.

Despite this caution, there is a reason for optimism. MR has been applied to COVID-19 more broadly, successfully anticipating the benefits of targeting the interleukin-6 pathway (ultimately validated as a target in randomized clinical trials), and prioritizing medications for drug repurposing.\(^15\)\(^,\)\(^6\) Given the rapid pace of the early COVID-19 pandemic, and the logistical challenges of
designing and implementing large-scale adaptive clinical trials to test causal hypotheses, MR represents an important methodological tool to infer putative causal relationships to prioritize for further evaluation. A broad literature of both observational and MR studies has identified links between circulating lipids and COVID-19, and several plausible biological mechanisms exist to support these associations. For example, 2 recently published propensity-matched cohort studies of 1296 and 922 hospitalized patients with COVID-19 identified a substantially reduced risk of mortality among individuals taking statins. Similarly, a recent systematic review and meta-analysis identifying 11078 hospitalized COVID-19 patients across thirteen retrospective cohorts found statin administration after diagnosis was associated with decreased mortality, particularly among individuals not requiring intensive care. In contrast to the current study, which found a reduced risk of COVID-19 infection but not severity, observational studies have largely focused on the effects of statin treatment on COVID-19 outcomes rather than infection. The current MR study thus complements the published literature, which in sum suggests that therapies modifying circulating cholesterol and ApoB levels may have beneficial effects on COVID-19 infection and severity. Several randomized clinical trials of lipid-modifying medications are underway to evaluate their role in modifying circulating cholesterol and ApoB levels the published literature, which in sum suggests that therapeutic effects of statin treatment on COVID-19 outcomes rather than infection. Several randomized clinical trials of lipid-modifying medications are underway to evaluate their role in the prevention or treatment of COVID-19. A recent systematic review identified 40 ongoing randomized clinical trials for medications including statins, fibrates, omega-3 fatty acids, niacin, and dalcetrapib. Ultimately, while randomized clinical trials remain the gold-standard for identifying causal relationships between traits, MR represents an important technique to synthesize causal insights from observational data.

REFERENCES

1. Goff DC, Jr., Bertoni AG, Kramer H, Bonds D, Blumenthal RS, Tsai MY, Peasy BM. Dyslipidemia prevalence, treatment, and control in the Multi-Ethnic Study of Atherosclerosis (MESA): gender, ethnicity, and coronary artery calcium. Circulation. 2006;113:647–656. doi: 10.1161/CIRCULATIONAHA.105.552737
2. Rodríguez CJ, Cai J, Swett K, González HM, Talavera GA, Wuick LM, Wassertier-Smoller S, Lloyd-Jones D, Kaplan R, Daviglus ML. High cholesterol awareness, treatment, and control among Hispanic/Latinos: results from the Hispanic Community Health Study/Study of Latinos. J Am Heart Assoc. 2015;4:e001867. doi: 10.1161/JAHA.115.001867
3. Petrelli CM, Jones SA, Yang J, Rajagopalan H, O’Donnell L, Chernyyk Y, Tobin KA, Cerfollio RJ, Frances F, Horwitz LL. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020;369:m1966. doi: 10.1136/bmj.m1966
4. Liu Y, Pan Y, Yin Y, Chen W, Li X. Association of dyslipidemia with the severity and mortality of coronavirus disease 2019 (COVID-19): a meta-analysis. PLoS ONE. 2021;16:157. doi: 10.3173/pdonline/journal/p053576.
5. Wei X, Zeng W, Su J, Wan H, Yu X, Cao X, Tan W, Wang H. Hypolipidemia is associated with the severity of COVID-19. J Clin Lipidol. 2020;14:297–304. doi: 10.1016/j.jacl.2020.04.008
6. Schmidt NW, Wing PAC, McKeating JA, Maini MK. Cholesterol-modifying drugs in COVID-19. Oxzf Open Immunol. 2020;1:aaq1001. doi: 10.1093/oximms/aaq1001
7. Gordon DE, Jiang GM, Bouhaddou M, Xu J, Obernent K, White KM, O’Meara MJ, Rezev V, Guo JZ, Swanye DL, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583:459–468. doi: 10.1038/s41586-020-22869-9
8. Sviridov D, Miller YI, Ballout RA, Remaley AT, Bukrinsky M. Targeting lipid rafts—a potential therapy for COVID-19. Front Immunol. 2020;1:2361. doi: 10.3389/fimmu.2020.574508
9. Zeng H, Yang K, Cioer C, Neale G, Vogel P, Chi H, mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature. 2013;499:486–490. doi: 10.1038/nature12997
10. Duwell R, Kono H, Rayner KJ, Sirois CM, Vladimir G, Bauernfeind FG, Abela GS, Franchi L, Nuñez G, Schurn M, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals that form early in disease. Nature. 2010;464:1357–1361. doi: 10.1038/nature08939
11. Angrist JD, Pischke J-S. Mostly Harmless Econometrics. Princeton University Press; 2008.
12. Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ. 2018;362:k6001. doi: 10.1136/bmj.k6001
13. Zhang K, Dong S, Guo Y, Tang S-H, Wu H, Yao S, Wang P-F, Zhang K, Xue H-Z, Huang W, et al. Causal associations between blood lipids and COVID-19 risk: a two-sample mendelian randomization study. Arterioscler Thromb Vasc Biol. 2021;41:2802–2810. doi: 10.1161/ATVBAHA.121.316324
14. Griffith JJ, Morris TT, Ttdub M, Herbert A, Mancano G, Pike L, Sharp GC, Sterne J, Palmer TM, Davey Smith G, et al. Collider bias undermines our understanding of COVID-19 disease risk and severity. Nat Commun. 2020;11:5749. doi: 10.1038/s41590-020-05749-2
15. Larsson SC, Burgess S, Gill D. Genetically proxied interleukin-6 receptor inhibition: opposing associations with COVID-19 and pneumonia. Eur Respir J. 2021;57:2003545. doi: 10.1183/13993003.03545-2020
16. Gaziano L, Giambartolomei C, Pereira AC, Gaulton A, Posner DC, Swanson M, Ho YL, Iyengar SK, Kosim NM, Vukovj M, et al. VA Million Veteran Program COVID-19 Science Initiative. Actionable druggable genome-wide Mendelian randomization identifies repurposing opportunities for COVID-19. Nat Med. 2021;27:668–676. doi: 10.1038/s41591-021-01310-z
17. Lee H-Y, Ahn J, Park J, Kyung Kang C, Won S-H, Wook Kim D, Park J-H, Chung K-H, Jho J-S, Bang JH, et al. The Korean Society of Hypertension, National Committee for Clinical Management of Emerging Infectious Diseases. Beneficial effect of statins in COVID-19–related outcomes—brief report: a National Population-Based Cohort Study. ATVB. 2021;41:XX-XX. doi: 10.1161/ATVB.AHA.120.315551
18. Gupta A, Madhavan MV, Potechura TJ, DeFilipps EM, Hennessey JA, Redfors B, Eckhardt C, Bikkedi B, Platt J, Nalbandian A, et al. Association between antecedent statin use and decreased mortality in hospitalized patients with COVID-19. Nat Commun. 2021;12:1325. doi: 10.1038/s41467-021-21553-1
19. Lohia P, Kapur S, Benjamin S, Cantor Z, Mahabadi N, Mit T, Badg MS. Statins and clinical outcomes in hospitalized COVID-19 patients with and without Diabetes Mellitus: a retrospective cohort study with propensity score matching. Cardiovasc Diabetol. 2021;20:140. doi: 10.1186/s12993-021-01336-0
20. Chow R, Im J, Chiu N, Chiu L, Aggarwal R, Lee J, Choi YG, Psicic EH, Shin HJ. The protective association between statins use and adverse outcomes among COVID-19 patients: a systematic review and meta-analysis. PLoS One. 2021;16:e0253576. doi: 10.1371/journal.pone.0253576
21. Leong A, Cole JB, Brenner LN, Meigs JB, Florez JC, Mercader JM. Cardiometabolic risk factors for COVID-19 susceptibility and severity: a Mendelian randomization analysis. PLoS Med. 2021;18:e1003553. doi: 10.1371/journal.pmed.1003553
22. Talassa AH, Sadeghpour P, Aghakouchakzadeh M, et al. Lipid-modulating agents for prevention or treatment of COVID-19 in randomized trials. medRxiv. Preprint posted online May 4, 2021. doi: 10.1101/2021.05.04.21256468