Nonlinear Second Order Ode’s

Factorizations and Particular Solutions

O. Cornejo-Pérez and H. C. Rosu

Potosinian Institute of Science and Technology,
Apdo Postal 3-74 Tangamanga, 78231 San Luis Potosí, Mexico

(Received April 19, 2005)

We present particular solutions for the following important nonlinear second order differential equations: modified Emden, generalized Lienard, convective Fisher and generalized Burgers-Huxley. For the latter two equations these solutions are obtained in the travelling frame. All these particular solutions are the result of extending a simple and efficient factorization method that we developed in Phys. Rev. E 71 (2005), 046607.

§1. Introduction

The purpose of this paper is to obtain, through the factorization technique, particular solutions of the following type of differential equations:

\[\ddot{u} + g(u)\dot{u} + F(u) = 0, \]

(1.1)

where the dot means the derivative \(D = \frac{d}{d\tau} \), and \(g(u) \) and \(F(u) \) could in principle be arbitrary functions of \(u \). This is a generalization of what we did in a recent paper for the simpler equations with \(g(u) = \gamma \), where \(\gamma \) is a constant parameter.\(^1\) Factorizing Eq. (1.1) means to write it in the form

\[[D - \phi_2(u)] [D - \phi_1(u)] u = 0. \]

(1.2)

Performing the product of differential operators leads to the equation

\[\ddot{u} - \frac{d\phi_1}{du} \dot{u}^2 - \phi_1 \dot{u} - \phi_2 \ddot{u} + \phi_1 \phi_2 u = 0, \]

(1.3)

for which one very effective way of grouping the terms is\(^1\)

\[\ddot{u} - \left(\phi_1 + \phi_2 + \frac{d\phi_1}{du} \right) \dot{u} + \phi_1 \phi_2 u = 0. \]

(1.4)

Identifying Eqs. (1.1) and (1.4) leads to the conditions

\[g(u) = - \left(\phi_1 + \phi_2 + \frac{d\phi_1}{du} \right), \]

(1.5)

\[F(u) = \phi_1 \phi_2 u. \]

(1.6)

If \(F(u) \) is a polynomial function, then \(g(u) \) will have the same order as the bigger of the factorizing functions \(\phi_1(u) \) and \(\phi_2(u) \), and will also be a function of the constant parameters that enter in the expression of \(F(u) \).
In this research, we extend the method to the following cases: the modified Emden equation, the generalized Lienard equation, the convective Fisher equation, and the generalized Burgers-Huxley equation. All of them have significant applications in nonlinear physics and it is quite useful to know their explicit particular solutions. The present work is a detailed contribution to this issue.

§2. Modified Emden equation

We start with the modified Emden equation with cubic nonlinearity that has been most recently discussed by Chandrasekhar et al.,

\[
\ddot{u} + \alpha \dot{u} + \beta u^3 = 0 .
\]

(2.1)

1) \(\phi_1(u) = a_1 \sqrt{\beta} u, \phi_2(u) = a_1^{-1} \sqrt{\beta} u,\) \((a_1 \neq 0\) is an arbitrary constant).

Then Eq. (1.5) leads to the following form of the function \(g(u)\)

\[
g_1(u) = -\sqrt{\beta} \left(\frac{2a_1^2 + 1}{a_1} \right) u .
\]

(2.2)

Thus we can identify \(\alpha = -\sqrt{\beta} \left(\frac{2a_1^2 + 1}{a_1} \right),\) or \(a_1^\pm = -\frac{\alpha \pm \sqrt{\alpha^2 - 8\beta}}{4\sqrt{\beta}},\) where we use \(a_1\) as a fitting parameter providing that \(a_1 < 0\) for \(\alpha > 0.\) Equation (2.1) is now rewritten as

\[
\ddot{u} - \sqrt{\beta} \left(2a_1 + a_1^{-1} \right) \dot{u} + \beta u^3 \equiv \left(D - a_1^{-1} \sqrt{\beta} u \right) \left(D - a_1 \sqrt{\beta} u \right) u = 0 .
\]

(2.3)

Therefore, the compatible first order differential equation is \(\dot{u} - a_1 \sqrt{\beta} u^2 = 0,\) whose integration gives the particular solution of Eq. (2.3)

\[
u_1 = \frac{1}{a_1 \sqrt{\beta}(\tau - \tau_0)} \quad \text{or} \quad \nu_1 = \frac{4}{(\alpha \pm \sqrt{\alpha^2 - 8\beta})(\tau - \tau_0)} ,
\]

(2.4)

where \(\tau_0\) is an integration constant.

2) \(\phi_1(u) = a_1 \sqrt{\beta} u^2, \phi_2(u) = a_1^{-1} \sqrt{\beta}.\) Then, one gets

\[
g_2(u) = -\sqrt{\beta} \left(a_1^{-1} + 3a_1 u^2 \right) .
\]

(2.5)

Therefore, \(g_2\) is quadratic being higher in order than the linear \(g\) of the modified Emden equation. We thus get the particular case \(GE = 3\beta, A = 0\) of the Duffing-van der Pol equation (see case 3 of the next section)

\[
\ddot{u} - \sqrt{\beta} \left(a_1^{-1} + 3a_1 u^2 \right) \dot{u} + \beta u^3 \equiv \left(D - a_1^{-1} \sqrt{\beta} u \right) \left(D - a_1 \sqrt{\beta} u^2 \right) u = 0 ,
\]

(2.6)

which leads to the compatible first order differential equation \(\dot{u} - a_1 \sqrt{\beta} u^3 = 0\) with the solution

\[
u_2 = \frac{1}{\left[-2a_1 \sqrt{\beta}(\tau - \tau_0) \right]^{1/2}} .
\]

(2.7)
§3. Generalized Lienard equation

Let us consider now the following generalized Lienard equation
\[\ddot{u} + g(u)\dot{u} + F_3 = 0, \quad (3.1) \]
where \(F_3(u) = Au + Bu^2 + Cu^3 \). We introduce the notation \(\Delta = \sqrt{B^2 - 4AC} \), and assume that \(\Delta^2 > 0 \) holds. Then:

1) \(\phi_1(u) = a_1 \left(\frac{B+\Delta}{2} + Cu \right), \quad \phi_2(u) = a_1^{-1} \left(\frac{B-\Delta}{2C} + u \right) \); \(g(u) \) takes the form
\[
g_1(u) = - \left[\frac{B+\Delta}{2} a_1 + \frac{B-\Delta}{2C} a_1^{-1} + (2Ca_1 + a_1^{-1}) u \right]. \quad (3.2)\]

For \(g(u) = g_1(u) \), we can factorize Eq. (3.1) in the form
\[
\left[D - a_1^{-1} \left(\frac{B-\Delta}{2C} + u \right) \right] \left[D - a_1 \left(\frac{B+\Delta}{2} + Cu \right) \right] u = 0. \quad (3.3)\]

Thus, from the compatible first order differential equation \(\dot{u} - a_1 \left(\frac{B+\Delta}{2} + Cu \right) = 0 \), the following solution is obtained
\[
u_1 = \frac{B+\Delta}{2} \left(\exp \left[- a_1 \left(\frac{B+\Delta}{2} \right) \right], - C \right) \quad (3.4)\]

2) \(\phi_1(u) = a_1 (A + Bu + Cu^2), \quad \phi_2(u) = a_1^{-1} ; \quad g(u) \) is of the form
\[
g_2(u) = - \left[(a_1 A + a_1^{-1}) + 2a_1 Bu + 3a_1 Cu^2 \right]. \quad (3.5)\]

Thus, the factorized form of the Lienard equation will be
\[
\left[D - a_1^{-1} \right] \left[D - a_1 \frac{F_3(u)}{u} \right] u = 0 \quad (3.6)\]
and therefore we have to solve the equation \(\dot{u} - a_1 F_3(u) = 0 \), whose solution can be found graphically from
\[
a_1 (\tau - \tau_0) = \ln \left(\frac{u^3}{F_3(u)} \right)^{\frac{1}{2}} - \ln \left(\frac{2Cu + B - \Delta}{2Cu + B + \Delta} \right)^{\frac{1}{2}} \quad (3.7)\]

3) The case \(B = 0 \) and \(C = 1 \): Duffing-van der Pol equation

The \(B = 0, C = 1 \) reduction of terms in Eq. (3.1) allows an analytic calculation of particular solutions for the so-called autonomous Duffing-van der Pol oscillator equation
\[
\ddot{u} + (G + E u^2) \dot{u} + Au + u^3 = 0, \quad (3.8)\]
where \(G \) and \(E \) are arbitrary constant parameters. Since we want to compare our solutions with those of Chandrasekhar et al., we use the second Lienard pair of factorizing functions \(\phi_1(u) = a_1 (A + u^2) \) and \(\phi_2(u) = a_1^{-1} \). Then
\[
g_2(u) = - (Aa_1 + a_1^{-1} + 3a_1 u^2). \quad (3.9)\]
Equation (3.8) is now rewritten
\[\ddot{u} - (a_1 A + a_1^{-1} + 3a_1 u^2) \dot{u} + Au + u^3 \equiv [D - a_1^{-1}] [D - a_1 (A + u^2)] u = 0 . \] (3.10)

Therefore, the compatible first order equation \(\dot{u} - a_1 (A + u^2) u = 0 \) leads by integration to the particular solution of Eq. (3.10)
\[u = \pm \left(\frac{A \exp[2a_1 A(\tau - \tau_0)]}{1 - \exp[2a_1 A(\tau - \tau_0)]} \right)^{1/2} = \pm \left(\frac{A \exp[-2AE(\tau - \eta_0)]}{1 - \exp[-2AE(\tau - \eta_0)]} \right)^{1/2} , \] (3.11)

where the last expression is obtained from the comparison of Eqs. (3.8) and (3.10) that gives \(a_1 = -\frac{E}{3} \) and \(G = \frac{AE^2 + 9}{3E} \).

This is a more general result for the particular solution than that obtained through other means by Chandrasekar et al.\(^3\) that corresponds to \(E = \beta \) and \(A = \frac{3}{\beta^2} \).

§4. Convective Fisher equation

Schönborn et al.\(^4\) discussed the following convective Fisher equation
\[\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2} + u(1 - u) - \mu u \frac{\partial u}{\partial x} , \quad \text{or} \quad \ddot{u} + 2(\nu - \mu u) \dot{u} + 2u(1 - u) = 0 \] (4.1)

where the transformation to the travelling variable \(\tau = x - \nu t \) was performed in the latter form. The positive parameter \(\mu \) serves to tune the relative strength of convection.

1) \(\phi_1(u) = \sqrt{2}a_1(1 - u), \quad \phi_2(u) = \sqrt{2}a_1^{-1} \). Then \(g(u) = -\sqrt{2} ([a_1 + a_1^{-1}] - 2a_1 u) \).

Therefore, for this \(g(u) \), we can rewrite the ordinary differential form in Eq. (4.1) as
\[\ddot{u} + 2 \left(-\frac{1}{\sqrt{2}}(a_1 + a_1^{-1}) + \sqrt{2}a_1 u \right) \dot{u} + 2u(1 - u) = 0 . \] (4.2)

If we set the fitting parameter \(a_1 = -\frac{\mu}{\sqrt{2}} \), then we obtain \(\nu = \frac{\mu}{2} + \mu^{-1} \). Equation (4.2) is factorized in the following form:
\[\left[D - \sqrt{2}a_1^{-1} \right] \left[D - \sqrt{2}a_1 (1 - u) \right] u = 0 , \] (4.3)

that provides the compatible first order equation \(\dot{u} + \mu u(1 - u) = 0 \), whose integration gives
\[u_1 = (1 \pm \exp[\mu(\tau - \tau_0)])^{-1} . \] (4.4)

2) Since we are in the case of a quadratic polynomial, a second factorization means exchanging \(\phi_1(u) \) and \(\phi_2(u) \) between themselves. This leads to a convective Fisher equation with compatibility equation \(\ddot{u} - \sqrt{2}a_1^{-1} u = 0 \), where now \(a_1 = -\sqrt{2}\mu \), having exponential solutions of the type
\[u_2 = \pm \exp[-\mu^{-1}(\tau - \tau_0)] . \] (4.5)
In this section we obtain particular solutions for the generalized Burgers-Huxley equation discussed by Wang et al.5)

\[
\frac{\partial u}{\partial t} + \alpha u \frac{\partial u}{\partial x} - \frac{\partial^2 u}{\partial x^2} = \beta u(1 - u^\delta)(u^\delta - \gamma), \tag{5.1}
\]
or in the variable \(\tau = x - \nu t\)

\[
\ddot{u} + (\nu - \alpha u^\delta)\dot{u} + \beta u(1 - u^\delta)(u^\delta - \gamma) = 0. \tag{5.2}
\]

1) \(\phi_1(u) = \sqrt{\beta}a_1(1 - u^\delta), \phi_2(u) = \sqrt{\beta}a_1^{-1}(u^\delta - \gamma)\). Then, one gets

\[
g_1(u) = \sqrt{\beta} \left(\gamma a_1^{-1} - a_1 + [a_1(1 + \delta) - a_1^{-1}]u^\delta \right) \tag{5.3}
\]
and the following identifications of the constant parameters \(\nu = -\sqrt{\beta} \left(a_1 - \gamma a_1^{-1} \right)\), \(\alpha = -\sqrt{\beta} \left(a_1(1 + \delta) - a_1^{-1} \right)\). Writing Eq. (5.2) in factorized form

\[
\left[D - \sqrt{\beta}a_1^{-1}(u^\delta - \gamma) \right] \left[D - \sqrt{\beta}a_1(1 - u^\delta) \right] u = 0, \tag{5.4}
\]
the solution

\[
u_1 = \left(1 \pm \exp[-a_1 \sqrt{\beta} \delta (\tau - \tau_0)] \right)^{-1/\delta} \tag{5.5}
\]
of the compatible first order equation \(\dot{u} - \sqrt{\beta}a_1 u(1 - u^\delta) = 0\) is also a particular kink solution of Eq. (5.2). It is easy to solve the second identification equation for \(a_1 = a_1(\alpha, \beta, \delta)\) leading to

\[
a_1 = \pm \frac{-\alpha \pm \sqrt{\alpha^2 + 4\beta(1 + \delta)}}{2\sqrt{\beta(1 + \delta)}}. \tag{5.6}
\]

Then Eq. (5.5) becomes a function \(u = u(\tau; \alpha, \beta, \delta)\) and \(\nu = \nu(\alpha, \beta, \gamma, \delta)\).

2) \(\phi_1(u) = \sqrt{\beta}e_1(u^\delta - \gamma), \phi_2(u) = \sqrt{\beta}e_1^{-1}(1 - u^\delta)\). This pair of factorizing functions lead to

\[
g_2(u) = \sqrt{\beta} \left(\gamma e_1 - e_1^{-1} + [e_1^{-1} - e_1(1 + \delta)]u^\delta \right) \tag{5.7}
\]
and the \(\nu\) and \(\alpha\) identifications: \(\nu = \sqrt{\beta} \left(e_1 \gamma - e_1^{-1} \right), \alpha = \sqrt{\beta} \left(e_1^{-1} - e_1(1 + \delta) \right)\). Equation (5.2) is then factorized in the different form

\[
\left[D - \sqrt{\beta}e_1^{-1}(1 - u^\delta) \right] \left[D - \sqrt{\beta}e_1(u^\delta - \gamma) \right] u = 0. \tag{5.8}
\]
The corresponding compatible first order equation is now \(\dot{u} - \sqrt{\beta}e_1 u(u^\delta - \gamma) = 0\), and its integration gives a different particular solution of Eq. (5.2) with respect to that obtained for the first choice of factorizing brackets:

\[
u_2 = \left(\frac{\gamma}{1 \pm \exp[e_1 \sqrt{\beta} \delta (\tau - \tau_0)]} \right)^{1/\delta}. \tag{5.9}
\]
u_2 is different from u_1 because the parameter α has changed for the second factorization. Solving the α identification for $e_1 = e_1(\alpha, \beta, \delta)$ allows to express the solution given by Eq. (5.9) in terms of the parameters of the equation, $u = u(\tau; \alpha, \beta, \gamma, \delta)$, and also one gets $\nu = \nu(\alpha, \beta, \gamma, \delta)$. If we set $\delta = 1$ in Eq. (5.9), then from $\alpha = \sqrt{\beta(e_1^{-1} - 2e_1)}$ one can get $e_{1\pm} = \frac{\alpha \pm \sqrt{\alpha^2 + 8\beta}}{4\sqrt{\beta}}$ that can be used to obtain $\nu_{\pm} = \nu(\alpha, \beta, \gamma)$. The solutions given by Eqs. (5.5) and (5.6) and in (5.9) have been obtained previously by Wang et al.5) by a different procedure.

§6. Conclusion

In this paper, the efficient factorization scheme that we proposed in a previous study1) has been applied to more complicated second order nonlinear differential equations. Exact particular solutions have been obtained for a number of important nonlinear differential equations with applications in physics and biology: the modified Emden equation, the generalized Lienard equation, the Duffing-van der Pol equation, the convective Fisher equation, and the generalized Burgers-Huxley equation.

References

1) H. C. Rosu and O. Cornejo-Pérez, Phys. Rev. E \textbf{71} (2005), 046607; math-ph/0401040.
2) V. K. Chandrasekar, M. Senthilvelan and M. Lakshmanan, Proc. R. Soc. London A \textbf{461} (2005), in press; nlin.SI/0408053.
3) V. K. Chandrasekar, M. Senthilvelan and M. Lakshmanan, J. of Phys. A \textbf{37} (2004), 4527.
4) O. Schönborn, R. C. Desai and D. Stauffer, J. of Phys. A \textbf{27} (1994), L251.
 O. Schönborn, S. Puri and R. C. Desai, Phys. Rev. E \textbf{49} (1994), 3480.
5) X. Y. Wang, Z. S. Zhu and Y. K. Lu, J. of Phys. A \textbf{23} (1990), 271.