INTRODUCTION

Neuroblastoma is the most common extra-cranial solid tumor of childhood [1]. Less than 50% of patients with high-risk features survive long-term, despite multi-modal therapy with surgery, chemotherapy, antibody therapy, retinoic acid, high-dose chemotherapy, and autologous hematopoietic progenitor cell transplant [2,3]. Among the novel therapeutic agents under active investigation to improve outcomes is 131I-mIBG (meta-iodobenzylguanidine).

mIBG is an analog of the catecholamine norepinephrine, which can be labeled with a radioactive isotope, 123Iodine or 131Iodine, to use clinically for imaging or treatment, respectively, of neuroendocrine tumors. Neuroblastoma and other cancers of sympathetic neuronal precursors express the norepinephrine transporter (NET), a transmembrane protein which functions to shuttle norepinephrine across the cell membrane. 90% of children with neuroblastoma have mIBG-avid tumors by imaging with 123I-mIBG, but a recent meta-analysis suggests that only 30% of children who receive 131I-mIBG radiotherapy have any clinical response, which is usually not curative [4–6]. The reasons for this discrepancy are not clear but are likely multifactorial. One possibility is the lower mRNA and protein expression of NET found in children with high-risk neuroblastoma compared to those with low or intermediate-risk disease, as classified by anatomic, histologic, and genetic factors [6].

In order to improve the utility of 131I-mIBG therapy and to rationally design combination treatment strategies, it is important to understand the detailed mechanisms of tumor-selective 131I-mIBG uptake, retention, and efflux, as well as the dynamics of NET expression (Fig. 1).

NOREPINEPHRINE TRANSPORTER FUNCTION

Neuroblastomas arise from the sympathetic neural precursors derived from the embryonic neural crest. As such, 90% of neuroblastomas express the NET, a 12 domain transmembrane protein encoded by the SLC6A2 gene with high affinity and specificity for norepinephrine and its analogs [5,7]. NET actively transports norepinephrine primarily into adrenal chromaffin cells and pre-synaptic terminals by an ATP-dependent and specific process known as Uptake-1 [8,9]. Uptake-1 transportation is saturable and dependent upon serum sodium and chloride (co-)transported substrates, temperature, pH, oxygen, and vascularity. Norepinephrine transportation is impaired in hypoxic, hyperthermic, and nitric oxide depleted environments [10–12]. Tricyclic antidepressants, such as desmethylinipramine (DMI), specifically inhibit the norepinephrine transporter uptake of norepinephrine and its analogs [13]. DMI most likely binds to the substrate recognition site but may interact with an additional sodium-dependent site of NET as DMI is more lipophilic and bulky than norepinephrine [8]. Uptake-1 can also be inhibited by Na-K-ATPase inhibitors, such as ouabain and by competitive inhibition by other catecholamines/analogs [14]. Several non-neuronal cells also uptake norepinephrine by a transportation system similar to Uptake-1 (adrenal medulla, locus ceruleus, lung, heart, endothelial cells of small vessels, dental polyp, myometrial cells, placenta, vas deferens, syncytiotrophoblasts, and in glial cells in the CNS) [15,16].

The majority of NET is freely mobile within the cytoplasm when it is either unoccupied or fully occupied with its substrate and co-substrates; however, once sodium binds to NET, this mobility is lost. Thus, NET localization to the cell membrane is dependent on the presence of an inward sodium gradient created by the Na-K-ATPase pump. Sodium and chloride binding to NET also decreases the Michaelis Constant (Km) for norepinephrine transportation,

Key words: meta-iodobenzylguanidine; neuroblastoma; norepinephrine transporter

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2014 The Authors. Pediatric Blood & Cancer Published by Wiley Periodicals, Inc.
DOI 10.1002/pbc.25200
Published online 30 August 2014 in Wiley Online Library (wileyonlinelibrary.com).
The majority of mIBG uptake in neuroblastoma cells is by active transport (Uptake-1), which is approximately 50 times more efficient than passive transport [8,20]. DMI and other noradrenaline analogs can inhibit Uptake-1, thus patients undergoing 131I-mIBG therapy are asked to minimize concomitant medications such as tricyclic antidepressants in the recognition that these and possibly other drugs may affect Uptake-1. Any decrease in the activity of the Na/K-ATPase leads to reduced uptake and increased outward transport of norepinephrine and its analogs. Thus, if the neuroendocrine cells are located in a hypoxic and glucose-depleted microenvironment, there is decreased ATP synthesis, an increase in intracellular sodium concentration, and enhanced outward transport of norepinephrine/mIBG. These features, common to many cancers, may thus limit mIBG uptake [16]. Additionally, norepinephrine and mIBG are stored in cells with large serotonin storing capacities, such as in platelets, which may contribute to the significant thrombocytopenia commonly noted in patients after high-dose mIBG therapy [21].

mIBG Uptake

In the 1980s, Dr. Wieland and his colleagues at the University of Michigan developed mIBG, an analog of norepinephrine, as a scintigraphic agent to allow imaging of the adrenal medulla. They showed that mIBG, accumulates in the neurosecretory granules of adrenal chromaffin cells, similarly to norepinephrine [19]. In 1984, mIBG was also found to accumulate in neuroblastoma [5]. Numerous studies since then have provided a more detailed understanding of the mechanisms of mIBG’s uptake, efflux, and retention in neural crest derived tumors.

mIBG Efflux

mIBG often follows a diffusion gradient out of the cells and requires enough NET protein expression for re-uptake of the radioactively labeled mIBG to exert its cytotoxic effects. Efflux is highly temperature-sensitive and is inducible by high extra cellular potassium concentrations or the addition of norepinephrine, unlabeled mIBG, or DMI [29]. Efflux may be carrier-mediated by the same NET receptors responsible for mIBG uptake. mIBG efflux is also a saturable process, thus adding more support to the

Fig. 1. Representation of the mechanisms involved in 131I-mIBG uptake, retention, and efflux. Along with a passive diffusion phenomenon and exocytosis, 131I-mIBG may be released by the uptake carrier working in a reverse mode. The latter mechanism can be triggered either by the inversion of the sodium gradient across the cell membrane or by trans-stimulation by a ligand outside the cell membrane. Red text and lines represent the mechanisms being explored to enhance 131I-mIBG uptake, retention, and cytotoxicity. Some therapies radiosensitize neuroblastomas (HDAC inhibitors, gamma radiation, topoisomerase inhibitors, proteasome inhibitors) while others directly increase NET expression or enhance its function. Circle = 131I-mIBG, triangle = norepinephrine. HDAC = histone deacetylase; VMAT = vesicular monoamine transporter.

Pediatr Blood Cancer DOI 10.1002/pbc
idea that NET reverses directions and transports mIBG out of cells at low intracellular mIBG concentrations. At high intracellular concentrations, mIBG efflux is due to the passive transport across the cell membrane secondary to the diffusion gradient created after mIBG uptake. NET-mediated mIBG efflux is further supported by Servidei’s study, which showed that DMI likely immobilizes NET outside of the cell membrane; whereas sodium-depleted media, calcium channel blockers, cell depolarization by hyperkalemia, and additional unradiolabeled mIBG all enhanced mIBG efflux [29]. Studies by Lashford et al. show 66% of the injected radioactivity remained in the cells 24 hr later. However, upon adding DMI to block NET, only 10% of injected radioactivity was detected, likely secondary to the inhibition of the reuptake of mIBG by NET. Lashford demonstrated that mIBG typically is rapidly lost from the cells and then undergoes reuptake back into the cells via NET [28]. Therefore, not only is NET important for uptake, but also mIBG accumulation likely depends on a dynamic equilibrium generated by the re-uptake of the released drug [25]. We can also conclude the main efflux mechanisms of mIBG are likely carrier-mediated efflux and passive diffusion. To improve the cytotoxic effect of mIBG, stimulation/enhancement of mIBG uptake and/or inhibition of mIBG release may be important [29].

Clinical Applications of mIBG

mIBG scintigraphy was first clinically utilized in adult patients with pheochromocytoma, another neuroendocrine tumor secreting catecholamines [31,32]. In the early 1990’s, 131I-mIBG was first found to be safe for use in children and to have a therapeutic benefit in patients with relapsed/refractory neuroblastoma [33–35]. Escalating doses of 131I-mIBG showed efficacy until the maximum tolerated dose of 18 mCi/kg [35]. A few small clinical trials increased the number of cycles and/or the cumulative dose of 131I-mIBG, which also demonstrated feasibility and efficacy [21,36–42]. Today, mIBG remains an investigational therapy and continues to offer palliative pain relief and hope for a cure, mainly in some form of multi-modal therapy.

Current relapsed/refractory neuroblastoma protocols utilizing 131I-mIBG alongside high-dose chemotherapy and autologous stem cell rescue (ASCR) also demonstrate outcome improvement but not significantly increased long-term survival [30,43–46]. Several recent European studies show efficacy of 131I-mIBG as an induction monotherapy or in combination with multiple-drug chemotherapy for newly diagnosed high-risk neuroblastoma [47–50]. The Children’s Oncology Group is currently evaluating 131I-mIBG during induction therapy with five cycles of multiple chemotherapy agents, surgical resection and ASCR for high-risk neuroblastoma in the pilot study ANBL-09P1. However, in spite of all of these efforts, the discrepancy between mIBG uptake and therapy response remains.

131I-mIBG uptake in tumors in children with neuroblastoma is less than 0.1% of the injected dose per gram of tumor [51]. A “no-carrier added” (NCA) preparation of 131I-mIBG enhances the specific uptake and antitumor efficacy of 131I-mIBG in preclinical studies [20,52–54]. However, the utility of such preparation in patients is not yet known as the increased treatment efficacy and improved imaging did not translate in the few small Phase I/II clinical trials reported to date [55,56]. Further randomized clinical trials are required to evaluate the clinical utility of NCA-mIBG.

Multiple infusions of 131I-mIBG, with both higher cumulative and fractionating doses, have yielded mixed results in small Phase I/II clinical trials. While many trials show efficacy, significant improvements in long-term outcomes in children with neuroblastoma remain to be seen [35,41]. Additionally, myelotoxicity, secondary malignancy, and other systemic effects occasionally occur acutely and as late-effects in patients who received mIBG radiotherapy, further demonstrating the need for a comprehensive understanding of 131I-mIBG therapy to improve its therapeutic window [57–59].

The clinical therapeutic benefit exists due to 131I-mIBG’s pleomorphic effects on cells with high NET protein expression [35]. Certainly some of the cytotoxic effect on cells is due to the emission of β-radiation, inducing DNA strand breaks and inducing cell death. However, the majority of cytotoxicity is thought to be due to the phenomenon known as the radiation-induced bystander effect. In this bystander effect, non-irradiated neighboring cells are affected by soluble factors transmitted from the irradiated cell through direct gap junction intercellular communications and by signaling molecules released from the irradiated cell into the immediate surrounding microenvironment [60–63]. The cytotoxic effects on bystander cancer cells and/or normal tissues largely remain unclear, but studies have shown radiation-induced bystander effects to cause apoptosis and other forms of cell death, oxidative stress, proliferation, and genomic instability. Even non-radioactive mIBG exhibits cytotoxic effects, thought in part to be due to its guanidinylated side chain inhibiting neuroendocrine cellular mono ADP-ribosyl transferases [64,65] and possibly due to effects on mitochondria [64,66–69]. However, the clinical significance of unlabeled mIBG’s direct cytotoxicity is minimal [70].

Enhancing NET Expression

According to a recent study by the Children’s Oncology Group, children with high-risk neuroblastoma frequently have negative 123I-mIBG scans and a lower mRNA and protein expression of NET in their tumors by PCR and protein analysis [6], possibly related to the undifferentiated state of high-risk neuroblastomas, since NET expression is a property of relatively mature neuroendocrine/nerve cells [71,72]. Low NET protein expression is likely a barrier for efficacy, though given the limited tools available; a correlation between 131I-mIBG dosimetry and 131I-mIBG efficacy in clinical trials has not been established [73,74].

It follows from these studies that one strategy to improve clinical responses in patients with neuroblastoma is to either be more selective of eligible patients or to undertake strategies to increase NET protein expression on tumor cells (Fig. 1) [7,75,76]. Selecting patients for 131I-mIBG therapy eligibility is possible by testing one’s tumor sample for NET mRNA by PCR analysis [7], but this approach will not help those with low or absent NET protein expression. Early studies found only a subset of neuroblastoma cell lines demonstrate specific uptake of radiolabeled mIBG while the other neuroblastoma lines show only passive diffusion of the drug into the cells [11]. Interestingly, ionizing radiation itself increases mIBG uptake in SK-N-SH neuroblastoma cells in vitro, suggesting there could be a positive-feedback effect [77]. Priming doses of radiation may thus show benefit in mIBG therapy, a concept not yet tested clinically.

It is also possible to pharmacologically stimulate NET expression. Neuroblastoma and adult neuroendocrine tumor cells treated with interferon-gamma and/or alpha prior to mIBG show increased mRNA NET expression, increased 131I-mIBG uptake and increased 131I-mIBG retention. This enhancement of NET
expression and/or function may be due to tumor cell differentiation and maturation [70,72,78]. The effects of retinoic acid are more controversial. An early study showed retinoic acid-induced terminal neuronal differentiation enhanced mIBG uptake and retention in vitro, but this was not a direct effect of retinoic acid on the neuroblastoma cells [79]. Retinoic acid had no effect on mIBG uptake in another early study [80]. A third study showed increased mIBG uptake in neuroblastoma cells treated with retinoids combined with gamma-interferon [72]. The effect of retinoic acid on neuroblastoma mIBG uptake remains unclear due to these conflicting studies and requires further investigation.

In another neuroblastoma experiment in vitro, treatment with corticosteroids upregulated NET mRNA expression in a dose-dependent manner prior to ¹³¹I-mIBG exposure. Prolonged exposure over three weeks increased NET protein expression by almost 250% and enhanced norepinephrine uptake in neuroblastoma cells but downregulated NET mRNA expression in vitro [81]. No studies have been done to date showing this same effect in vivo.

Pretreatment with cisplatin and doxorubicin, both active chemotherapy agents in treating patients with neuroblastoma, also increases NET mRNA expression and increases Uptake-1 transportation of mIBG in vitro and in vivo [82,83]. Cisplatin has been studied in combination with ¹³¹I-mIBG in several small clinical trials in children in Italy and showed two patients with a complete response and 14 patients had a partial response of 21 total patients [48,84,85].

Several signaling pathways have been implicated in regulating NET expression, suggesting that targeted therapies may have utility in enhancing mIBG therapy. Protein kinase C (PKC) activation causes decreased NET protein surface expression and/or NET transport activity via PKC-dependent and PKC-independent pathways. Decreased norepinephrine uptake was noted in the presence of PKC activation and phorbol esters (which inhibit PKC) increased NET expression and norepinephrine uptake as well [86]. Thus, as PKC inhibitors are developed, they may be useful in upregulating NET. Other intracellular signaling cascades involved in augmenting the activity of membrane-localized NET include mitogen activated protein kinase (MAPK), phosphatidyl inositol-3 kinase (PI3K), and calcium/calmodulin dependent protein kinase (CaMK). Brief membrane depolarization of neuroblastoma cells with potassium chloride rapidly enhances mIBG uptake via the calcium/calmodulin pathway. Potassium chloride may act through CaMKII and myosin light chain kinase to upregulate the functional capacity surface NET [87]. Further exploitation of the calcium/calmodulin pathway could thus also lead to increased NET expression. Caution is required for interpreting cell line studies, however, which may not correlate with effects on cells within a tumor microenvironment.

Radiosensitizers

HDAC inhibitors, such as Vorinostat, are another category of novel anti-cancer therapeutics under clinical investigation that may play a role in enhancing ¹³¹I-mIBG therapy. HDAC inhibitors have radiosensitizing effects in a variety of cancer models [88]. Vorinostat inhibits the expression of double strand DNA break repair enzyme Ku-86 and also prolongs the expression of phosphorylated γH2AX; thus, Vorinostat sensitizes cells to radiation by inhibiting repair of radiation-induced DNA damage. HDAC inhibitors also increase NET protein expression and demonstrate an additive effect with ¹³¹I-mIBG radiotherapy in neuroblastoma cell cytotoxicity [89]. The use of Vorinostat prior to mIBG is being tested in a current clinical trial (www.clinicaltrials.gov, NCT02035137).

Proteasome inhibitors are currently in preclinical evaluation for use in combination with ¹³¹I-mIBG for neuroblastoma. Proteasome inhibitors downregulate NF-κB and induce cell cycle arrest in the G2/M phase, thus leading to radiosensitization of cancer cells. Proteasome inhibitors, such as Bortezomib, further enhance targeted radiotherapy by enhancing the effect of HDAC inhibitors and topoiseromerase I inhibitors. Early studies suggest the combination of proteasome inhibition and ¹³¹I-mIBG radiation shows promise for enhancing radiation-induced cancer cell kill [90].

Topoisomerase I inhibitors increase mIBG uptake in neuroblastoma cells and disrupt DNA repair, thus also serving as radiosensitizers [91]. Topotecan is active as monotherapy for some patients with refractory neuroblastoma [92]. Irinotecan, in combination with vincristine and escalating doses of ¹³¹I-mIBG, also shows a 25% complete or partial response rate in patients with relapsed/refractory disease [93]. When combined with ¹³¹I-mIBG, topoisomerase inhibitors induce supra-additive levels of cancer cytotoxicity and increased efficacy against neuroblastoma xenografts in vivo [94].

Even further efficacy was noted in vitro and in vivo when PJ34, a poly (ADP-ribose) polymerase (PARP) inhibitor, was added to mIBG and Topotecan. Disruption of PARP activity leads to further disruption in DNA repair pathways, increased formation of double-stranded DNA breaks, and increased G2/M cell cycle arrest (which thus enhances radiosensitivity). Another contribution to this combination’s anti-tumor efficacy is the simultaneous inhibition of PARP-1 by PJ34 and PARP-3 by mIBG. Of note, resistance to radiation developed in cancer cells after pretreatment with the PARP-inhibitor PJ34 [94]. Further investigation utilizing a PARP-1/2 inhibitor (MK-4827) together with irradiation in neuroblastoma cells revealed radiosensitization by inhibition of DNA repair, enhanced cytotoxicity, and improved survival in a metastatic murine model compared to either MK-4827 or radiation monotherapy. Preclinically, a PARP inhibitor and ¹³¹I-mIBG combination holds promise for more efficacious targeted radiotherapy [95].

Gene therapy is also effective in increasing both NET expression and mIBG uptake in vitro and in vivo [96–98]. Neuroblastoma cell lines can be transfected with the NET gene and induced to actively take-up mIBG when they previously only demonstrated passive mIBG diffusion [97]. However, further targeting cytotoxicity to cancer cells by gene therapy is dependent upon achieving selective expression of therapeutic transgenes in tumors. Gene promoters stimulated by ionizing radiation are especially of interest in the field of radiotherapy; promoters regulating early growth response gene 1 (Egr-1), the bacterial RecA gene, GADD45α, the NF-κB binding site of the c-IAP2 gene, and the promoter WAF1 for the p21_{WAF1/CIP1} gene all show promise. The WAF1 promoter is of particular interest to neuroblastoma as it displays radiation-, tumor- and hypoxia-specificity in addition to increasing NET mRNA expression and increasing ¹³¹I-mIBG uptake with both external beam gamma radiation and with the radionuclide, 211^{At}astatine (At)-mABG [99]. Notably, gene therapy with NET creates the potential for utilizing this targeted radiation therapy for tumors that don’t normally express NET.

Further investigation into interferon gamma, HDAC inhibitors, PKC modulation, gamma irradiation, and gene therapy are also necessary to improve the clinical efficacy of ¹³¹I-mIBG.
radiotherapy, as these treatments demonstrate pre-clinical and/or clinical efficacy, as summarized in Table I. Utilization of other radionuclides, such as 4-methylated 131I-mIBG (able to retain mIBG within neuroblastoma cells longer), and 211At-mABG may improve the therapeutic window of radiotherapy as its shorter wavelength may cause less damage to surrounding normal tissue [60,63]. It is likely that curative therapy for neuroblastoma will require combinations of such targeted and/or molecular therapies.

CONCLUSION

High-risk and relapsed/refractory neuroblastoma remain challenging and children continue to have unacceptably low survival rates despite contemporary multimodal and intensive therapies [2,3]. While we have made clear advances in recent years with the addition of retinoic acid and anti-GD2 antibody therapy, pediatric oncologists and families continue to struggle with this disease and urgent novel therapies and/or combinations of therapies are necessary. A promising strategy for improving outcomes is to enhance the expression and function of NET by combining chemotherapy and other agents or treatments with 131I-mIBG, including ionizing radiation, phorbol esters, retinoids, interferon-gamma, cisplatin, and doxorubicin. The 30% response rate with mIBG therapy affords hope of a cure if this treatment modality can be fully understood and exploited as a targeted therapy. Limiting toxicities while improving outcomes remains a challenge in oncology but is one that is vitally important in neuroblastoma children who are already at significant risk of multiple toxicities after standard treatment.

ACKNOWLEDGMENTS

Research reported in this publication was supported by the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health under Award Number T32HD043003. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

REFERENCES

1. Castleberry RP. Neuroblastoma. Eur J Cancer 1997;33:1430–1437 discussion 1437–1438.
2. Matheny KK. Intensification of therapy using hematopoietic stem cell support for high-risk neuroblastoma. Pediatr Transplant 1999;3:72–77.
3. Maris JM. Recent advances in neuroblastoma. N Engl J Med 2010;362:2202–2211.
4. Wilson JS, Gains JE, Moroz V, et al. A systematic review of [131I]-meta-iodobenzylguanidine molecular radiotherapy for neuroblastoma. Eur J Cancer 2014;50:801–815.
5. Teunier J, Feine U, Niethammer D, et al. Scintigraphic imaging of neuroblastoma with [131I]iodobenzylguanidine. Lancet 1984;1:333–334.
6. Dubois SG, Grier E, Batta V, et al. Evaluation of Norepinephrine Transporter Expression and [131I]iodobenzylguanidine Avidity in Neuroblastoma: A Report from the Children’s Oncology Group. Int J Mol Imaging 2012;2012:250834.
7. Carlin S, Mairs RJ, McCluskey AG, et al. Development of a real-time polymerase chain reaction assay for prediction of the uptake of meta-[131I]iodobenzylguanidine by neuroblastoma tumors. Clin Cancer Res 2003;9:3338–3344.
8. Brosch H, Botas M. The norepinephrine transporter in physiology and disease. Handb Exp Pharmacol 2006; 485–524.

Pediatr Blood Cancer DOI 10.1002/pbc
10 Streby et al.

46. Yanik GA, Levine JE, Matthay KK, et al. Pilot study of iodine-131-metaiodobenzylguanidine in the human neuroblastoma cell line SK-N-SH. Cancer Res 1985;45:6636-6700.

44. Castel V, Ca...

43. Corbett R, Pinkerton R, Tait D, et al. [131I]metaiodobenzylguanidine and high-dose chemotherapy with autologous bone marrow support in refractory neuroblastoma. J Clin Oncol 1998;16:229-236.

42. Johnson K, McGlynn B, Saggio J, et al. Safety and efficacy of tandem 131I-metaiodobenzylguanidine infusions in relapsed/refractory neuroblastoma. Pediatr Blood Cancer 2011;57:1124-1129.

41. Matthay KK, Quach A, Huberty J, et al. Iodine-131–metaiodobenzylguanidine double infusion with autologous bone marrow support in refractory neuroblastoma. J Pediatr Hematol Oncol 1999;21:212-219.

37. Castellani MR, Chiti A, Seregni E, et al. Role of 131I-metaiodobenzylguanidine (MIBG) in the treatment of neuroendocrine tumors. Ann N Y Acad Sci 2004;1014:280-283.

36. Kołby L, Bernhard P, Johanson V, et al. Can quantification of VMAT and SSTR expression be helpful for targeted radiotherapy? Cancer Res 1999;59:4342-4346.

35. Mothersill C, Seymour C. Radiation-induced bystander and other non-targeted effects: Novel mechanisms of action. J Radiat Res 2011;52:334-345.

34. Prise KM, O’Sullivan JM. Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer 2009;9:351-360.

33. Lewis IJ, Lashford LS, Fielding S, et al. A phase I/II study of 131I mIBG in chemo-resistant neuroblastoma. J Nucl Med 2000;41:2142-2149.

32. Shapiro B, Sisson JC, Eyre P, et al. 131I-MIBG—a new agent in diagnosis and treatment of neuroendocrine tumors of neuroendocrine origin. J Clin Oncol 1998;16:2193-2198.

31. Montaldo PG, Lanciotti M, Casalaro A, et al. Accumulation of m-iodobenzylguanidine by neuroblastoma cells results from independent uptake and storage mechanisms. Cancer Res 1991;51:4341-4346.

30. Garaventa A, Gambini C, Villavecchia G, et al. Second malignancies in children with neuroblastoma after combined treatment with 131I-metaiodobenzylguanidine. Cancer 2003;97:1332-1338.

29. Polischuk AL, Dubois SG, Haas-Kogan D, et al. Response, survival, and toxicity after iodine-131-metaiodobenzylguanidine therapy for neuroblastoma in paraneoplastic, familial, and adult patients. Cancer 2011;117:4286-4293.

28. DuBois SG, Messia J, Matthay KK. Hematologic toxicity of high-dose 131I-metaiodobenzylguanidine (MIBG) therapy for advanced neuroblastoma. J Nucl Med 2000;41:1388-1393.

27. Gaze MN, Huxham IM, Mairs RJ, et al. Intracellular localization of metaiodobenzylguanidine in human neuroblastoma cells. Biochim Biophys Acta 1990;1030:198-204.

26. Montaldo PG, Carbone R, Cornaglia Ferraris P, et al. Interferon-gamma increases metaiodobenzylguanidine (MIBG) uptake and tyrosine hydroxylase gene expression. Eur J Cancer 1995;31A:586-590.

25. Smets LA, Janssen M, Rutgers M, et al. Pharmacokinetics and intracellular distribution of the tumor-targeting agent metaiodobenzylguanidine in patients with neuroblastoma. J Nucl Med 2006;47:1007-1015.

24. Kołby L, Bernhard P, Johanson V, et al. Can quantification of VMAT and SSTR expression be helpful for targeted radiotherapy? Cancer Res 1999;59:4342-4346.

23. Montaldo PG, Raffaghello L, Guarnaccia F, et al. Increase of metaiodobenzylguanidine uptake and total body irradiation with bone marrow rescue: Feasibility study of a new strategy for advanced neuroblastoma. Eur J Cancer 1999;35:252-266.

22. Shapiro B, Coppe JI, Sisson JC, et al. In situ 131I-metaiodobenzylguanidine for the locating of suspected pheochromocytoma. Exp in Clin Med 1980;2:107-115.

21. Tad TG, Hoefelag C, Bosi H, et al. Improved effect of 131I-MIBG treatment by pretreatment with non-radioactive MIBG in cancerous patients, and studies in xenografted mice. Ann Oncol 2000;11:1437-1443.

20. Kölby L, Bernhard P, Levins-Jakobsen AM, et al. Uptake of metaiodobenzylguanidine in neuroendocrine tumors can act as a hormone receptor. J Nucl Med 2003;44:1388-1393.

19. Nilsson O, Jakobsen AM, Kölby L, et al. Importance of vesicle proteins in the diagnosis and treatment of neuroendocrine tumors. Ann N Y Acad Sci 2004;1014:280-283.

18. Kölby L, Bernhard P, Johanson V, et al. Can quantification of VMAT and SSTR expression be helpful for targeted radiotherapy? Cancer Res 1999;59:4342-4346.

17. Melikian HE, Ramamoorthy S, Tate CG, et al. Inability to N-glycosylate the human norepinephrine transporter reduces protein stability, surface trafficking, and transport activity but not ligand recognition. J Neurochem 1999;70:235-243.

16. Gaze MN, Huxham IM, Mairs RJ, et al. Intracellular localization of metaiodobenzylguanidine in human neuroblastoma cells. Biochim Biophys Acta 1990;1030:198-204.

15. Mothersill C, Seymour C. Radiation-induced bystander and other non-targeted effects: Novel mechanisms of action. J Radiat Res 2011;52:334-345.

14. Boyd M, Ross SC, Dorrens J, et al. Radiation-induced biologic bystander effect elicited in vitro by targeted radiopharmaceuticals labeled with alpha-, beta-, and gamma-electron-emitting radionuclides. J Nucl Med 2006;47:1007-1015.

13. Smets LA, Bosi H, Wiersma J, et al. Extracellular storage of the neuron blocking agent metaiodobenzylguanidine (MIBG) in human neuroblastoma cells. Biochim Biophys Acta 1990;1030:198-204.

12. Montaldo PG, Bacia R, Fusco P, et al. Effect of sodium iodide and dexamethasone on the uptake of metaiodobenzylguanidine in neuroblastoma cells: Evidence of a carrier-mediated effect. Eur J Cancer 1993;29A:591-595.

11. Montaldo PG, Lanciotti M, Casalaro A, et al. Accumulation of m-iodobenzylguanidine by neuroblastoma cells results from independent uptake and storage mechanisms. Cancer Res 1991;51:4341-4346.

10. Streby et al.

9. Ivenos II, The uptake of noradrenaline by the isolated perfused rat heart. Br J Pharmacol Chemother 1963;23:531-537.

8. Lee KH, Ko BH, Paik YJ, et al. Characteristics and regulation of 132I-MIBG transport in cultured pulmonary endothelial cells. J Nucl Med 2006;47:437-442.

7. Back J, Bouchet G, Rijcke R, et al. Specific uptake of [125I]iodobenzylguanidine in the human neuroblastoma cell line SK-N-SH. Cancer Res 1985;45:6636-6700.

6. Armour A, Mansi RJ, Gaze MN, et al. Modulation of meta-iodobenzylguanidine uptake in neuroblastoma cells by elevated temperature. Br J Cancer 1987;54:445-448.

5. Smets LA, Loesberg C, Janssen M, et al. Active uptake and extracellular storage of m-iodobenzylguanidine in human neuroblastoma SK-N-SH cells. Cancer Res 1989;49:2941-2944.

4. Mansi RJ, Gaze MN, Balia G, et al. The uptake and retention of metaiodobenzylguanidine by the human neuroblastoma cell line NB-L1. Br J Cancer 1997;64:203-208.

3. Bioush H, Briosi M. The noradrenaline transport of the neuronal plasma membrane. Ann N Y Acad Sci 1969;155:192-202.

2. Kippenberger AG, Palmer DJ, Comer AM, et al. Localization of the noradrenaline transporter in rat adrenal medulla and PC12 cells: evidence for its association with secretory granules in PC12 cells. J Neurochem 1992;59:268-272.

1. Nguyen TT, Amaro SG. N-linked oligosaccharides are required for surface expression of the noradrenaline transporter but do not influence substrate or inhibitor recognition. J Neurochem 1999;71:1915-1921.
85. Mastrangelo R, Tornesello A, Lassorella A, et al. Optimal use of the 131-I-metaiodobenzylguanidine and cisplatin combination in advanced neuroblastoma. J Neurooncol 1997;31:155–158.

86. Apparsundaram S, Galli A, DeFelice LJ, et al. Acute regulation of norepinephrine transport: I. protein kinase C-linked muscarinic receptors influence transport capacity and transporter density in SK-N-SH cells. J Pharmacol Exp Ther 1998;287:733–743.

87. Chung HW, Park JW, Lee EJ, et al. 131I-MIBG targeting of neuroblastoma cells is acutely enhanced by KCI stimulation through the calcium/calmodulin-dependent kinase pathway. Cancer Biother Radiopharm 2013;28:488–493.

88. Mueller S, Yang X, Sottero TL, et al. Cooperation of the HDAC inhibitor vorinostat and radiation in metastatic neuroblastoma: Efficacy and underlying mechanisms. Cancer Lett 2011;306:223–229.

89. More SS, Ijaz A, Yang X, et al. Vorinostat increases expression of functional norepinephrine transporter in neuroblastoma in vitro and in vivo model systems. Clin Cancer Res 2011;17:2339–2349.

90. Rae C, Tesson M, Babich JW, et al. Radiosensitization of noradrenaline transporter-expressing tumor cells by proteasome inhibitors and the role of reactive oxygen species. EJNMMI Res 2013;3:73.

91. McCluskey AG, Boyd M, Ross SC, et al. [131I]meta-iodobenzylguanidine and topotecan combination treatment of tumors expressing the noradrenaline transporter. Clin Cancer Res 2005;11:7929–7937.

92. Nitschle R, Parkhurst J, Sullivan J, et al. Topotecan in pediatric patients with recurrent and progressive solid tumors: A Pediatric Oncology Group phase II study. J Pediatr Hematol Oncol 1998;20:315–318.

93. DuBois SG, Chesler L, Groshen S, et al. Phase I study of vincristine, irinotecan, and 131-I-metaiodobenzylguanidine for patients with relapsed or refractory neuroblastoma: A new approaches to neuroblastoma therapy trial. Clin Cancer Res 2012;18:2679–2686.

94. McCluskey AG, Maers RJ, Tesson M, et al. Inhibition of poly(ADP-Ribose) polymerase enhances the toxicity of 131I-metaiodobenzylguanidine/topotecan combination therapy to cells and xenografts that express the noradrenaline transporter. J Nucl Med 2012;53:1146–1154.

95. Mueller S, Bhargava S, Molinaro AM, et al. Poly (ADP-Ribose) polymerase inhibitor MK-4827 together with radiation as a novel therapy for metastatic neuroblastoma. Anticancer Res 2013;33:755–762.

96. Boyd M, Maers RJ, Maers SC, et al. Expression in UVW glioma cells of the noradrenaline transporter gene, driven by the telomerase RNA promoter, induces active uptake of [131I]MIBG and clonogenic cell kill. Oncogene 2001;20:7804–7808.

97. Cunningham S, Boyd M, Brown MM, et al. A gene therapy approach to enhance the targeted radiotherapy of neuroblastoma. Med Pediatr Oncol 2000;35:708–711.

98. Doubrovin MM, Doubrovina ES, Zanzonico P, et al. In vivo imaging and quantitation of adoptively transferred human antigen-specific T cells transduced to express a human norepinephrine transporter gene. Cancer Res 2007;67:19959–19969.

99. McCluskey AG, Maers RJ, Sorensen A, et al. Gamma irradiation and targeted radionuclides enhance the expression of the noradrenaline transporter transgene controlled by the radio-inducible p21(WAF1/CIP1) promoter. Radiat Res 2013;179:282–292.