Compressive Phase Retrieval via Generalized Approximate Message Passing

Philip Schniter

Joint work with Sundeep Rangan.

Supported in part by NSF grant CCF-1018368 and DARPA/ONR grant N66001-10-1-4090.

Allerton – Oct. 3, 2012
Phase Retrieval

- **Goal:** Recover signal $x_0 \in \mathbb{C}^n$ from m magnitude-only measurements

 $$y = |Ax_0 + w|,$$

 where $A \in \mathbb{C}^{m \times n}$ is a known linear transform and $w \in \mathbb{C}^m$ is noise.

- **Motivation:** In many applications, it feasible to measure the intensity, but not the phase, of the Fourier transform of the signal-of-interest:
 - X-ray crystallography,
 - transmission electron microscopy,
 - coherent diffractive imaging,
 - astronomical imaging, etc.

- **Feasibility:** To make the solution to $y = |Ax|$ unique (up to a global phase) w.p.1, $m=3n-2$ i.i.d Gaussian measurements are necessary [Finkelson'04] and $m=4n-2$ are sufficient [Balan/Casazza/Edidin'06].
Phase Retrieval: Classical Approaches

Most classical approaches are **iterative** in nature. For example,

- Alternate between...
 - projecting $A\hat{x}$ onto the magnitude constraint y, yielding \hat{z},
 - projecting $A^+\hat{z}$ onto an apriori known support set, yielding \hat{x}.

However, due to the non-convexity of the first projection, it is easy for such algorithms to get trapped in **local minima**.
Phase Retrieval: Convex Approaches

Recently, some convex relaxations have been proposed.

- Noting that $y_i^2 = |a_i^H x|^2 = \text{tr}(a_i a_i^H X)$ for $X = xx^H$, pose as “min $X \succeq 0 \ \text{rank}(X)$ s.t. $\text{tr}(a_i a_i^H X) = y_i^2$ for $i = 1...m$.” (NP hard!)

Relax to “min $\text{tr}(X)$ s.t. $\text{tr}(a_i a_i^H X) = y_i^2$ for $i = 1...m$,” (convex!) known as PhaseLift [Candes/Eldar/Strohmer/Voroninski’11].

- Another semidefinite program (with similar performance) known as PhaseCut was proposed in [Waldspurger/D’Aspremont/Mallat’12].

It was recently shown [Candes/Li’12] that

- with very high probability, PhaseLift perfectly recovers an arbitrary x from $m \geq c_0 n$ noiseless measurements, where c_0 is a constant,
- and PhaseLift can be made robust to noise.
Recall that $m \geq 3n - 2$ magnitude measurements are needed for $y = |Ax|$ to have a unique solution for $x \in \mathbb{C}^n$.

Sometimes we can only afford $m < 3n - 2$ magnitude measurements, in which case the problem becomes one of compressive phase retrieval.

For successful compressive phase retrieval (CPR), one needs to leverage additional structure in x, such as sparsity.
Compressive Phase Retrieval: Prior Work

- Assuming knowledge of $\|x_0\|_1$, [Moravec/Romberg/Baraniuk'07]
 - appended this constraint onto the classical RAAR algorithm, and
 - used RIP-based arguments to establish that $m \gtrsim k^2 \log(n/k^2)$ magnitude measurements suffice for recovery.

However, the algorithm was prone to local minima and slow convergence. Also, knowledge of $\|x_0\|_1$ is rarely available in practice.

- Taking a convex approach, [Ohlsson/Yang/Dong/Sastry'12] proposed the following generalization of PhaseLift, which they call CPRL:
 $$\min_{X \succeq 0} \text{tr}(X) + \lambda \|X\|_1 + \mu \sum_{i=1}^m \left| \text{tr}(a_i a_i^H X) - y_i^2 \right|^2 \quad \text{for } i = 1 \ldots m,$$
 and performed both RIP and mutual coherence analyses. Seems promising...
Bring out the GAMP

Zed: Bring out the Gimp.

Maynard: Gimp’s sleeping.

Zed: Well, I guess you’re gonna have to go wake him up now, won’t you?

—Pulp Fiction, 1994.

We propose a new approach to CPR based on generalized approximate message passing (GAMP).

Numerical results show

- excellent phase transitions,
- excellent NMSE & robustness to noise,
- excellent runtime,

with direct application to compressive image retrieval.
The evolution of GAMP:

- The original AMP [Donoho/Maleki/Montanari’09] solves the LASSO problem \(\min_x \|y - Ax\|_2^2 + \lambda \|x\|_1 \) popular in compressive sensing, i.e., MAP estimation under i.i.d Laplacian signal and AWGN.
- The Bayesian AMP [Donoho/Maleki/Montanari’10] extended the above to generic i.i.d signal priors and MMSE estimation.
- The generalized AMP [Rangan’10] extended the above to generic i.i.d likelihood models of the form \(p_{Y|Z}(y_i|a_i^H x) \).

In the end, GAMP produces a sophisticated iterative thresholding alg, whose complexity is dominated by one application of \(A \) and \(A^H \) per iteration with relatively few (e.g., tens) iterations. Very fast!

- Rigorous large-system analyses (under i.i.d Gaussian \(A \)) have established that (G)AMP follows a state-evolution trajectory with optimal properties [Bayati/Montanari’10], [Rangan’10].
GAMP Heuristics (Sum-Product)

1. Message from y_i node to x_j node:
 \[
 p_{i\rightarrow j}(x_j) \propto \int p_{Y|Z}(y_i; \sum_r a_{ir} x_r, \psi) \prod_{r \neq j} p_{i\leftarrow r}(x_r) \approx \mathcal{N} \text{ via CLT}
 \]
 \[
 \approx \int_{z_i} p_{Y|Z}(y_i; z_i, \psi) \mathcal{N}(z_i; \hat{z}_i(x_j), \nu_i^z(x_j)) \approx \mathcal{N}
 \]
 To compute $\hat{z}_i(x_j), \nu_i^z(x_j)$, the means and variances of $\{p_{i\leftarrow r}\}_{r \neq j}$ suffice, thus Gaussian message passing!

Remaining problem: we have $2mn$ messages to compute (too many!).

2. Exploiting similarity among the messages $\{p_{i\leftarrow j}\}_{i=1}^m$, GAMP employs a Taylor-series approximation of their difference, whose error vanishes as $m \to \infty$ for dense A (and similar for $\{p_{i\rightarrow j}\}_{j=1}^n$ as $n \to \infty$).

Finally, need to compute only $O(m+n)$ messages!
To apply GAMP, we need an appropriate likelihood function $p_{Y|Z}(y_i|z_i)$, where r.v. Y represents the noisy magnitude measurements y_i and r.v. Z represents the corresponding noiseless transform outputs $z_i \triangleq a_i^H x$.

For this, we assume the statistical model

$$y_i = e^{j\theta_i}(z_i + w_i) \quad \text{with} \quad \theta_i \in \mathcal{U}[0, 2\pi) \quad \text{and} \quad w_i \sim \mathcal{CN}(0, \nu^w),$$

from which we margin out θ_i and w_i to obtain

$$p_{Y|Z}(y_i|z_i) = \frac{1}{\pi \nu^w} e^{-\frac{(|y_i| - |z_i|)^2}{\nu^w}} I_0(\rho) e^{-\rho} \quad \text{for} \quad \rho \triangleq \frac{2|y_i| |z_i|}{\nu^w},$$

where $I_0(\cdot)$ is the 0th-order modified Bessel function of the first kind.

See paper for other algorithmic details.
Numerical Results

For our numerical results we generated

- the signal x_0 as k-sparse Bernoulli-circular-Gaussian,
- the matrix as $A = \Phi F$ where $\Phi \in \mathbb{C}^{m \times n}$ is i.i.d circular Gaussian and F is the $n \times n$ DFT matrix,
- the (pre-magnitude) noise w as circular white Gaussian,

and we monitored the phase-corrected normalized reconstruction MSE

$$\text{NMSE} \triangleq \min_{\theta} \frac{\|\hat{x} - e^{i\theta} x_0\|^2}{\|x_0\|^2}.$$
Phase transition

PR-GAMP’s empirical success rate, averaged over 500 realizations, was

where \(\text{success} \triangleq \{ \text{NMSE} < 10^{-4} \} \).
Comparison to phase-oracle

Comparing the 50%-success contours of PR- and phase-oracle GAMP:

we see that PR-GAMP requires about $4\times$ the number of measurements.
Noise Robustness of PR-GAMP

The median NMSE, measured over 2000 realizations:

![Graph showing noise robustness of PR-GAMP]

shows that PR-GAMP loses about 3 dB at medium-to-high SNR.
Compressive Image Recovery

65536 image pixels, 32768 measurements, 30dB SNR:

original image

PR-GAMP (-29.7dB NMSE)

PR-GAMP runtime: only 11.1 sec.
Comparison to CPRL [Ohlsson/Yang/Dong/Sastry’12]

Empirical success rate (and runtime) on two toy problems:

	\((m, n) = (20, 32)\)	\((m, n) = (30, 48)\)	\((m, n) = (40, 64)\)
\(k = 1\):	CPRL 0.96 (4.9 sec)	CPRL 0.97 (51 sec)	CPRL 0.99 (291 sec)
	PR-GAMP 0.83 (0.4 sec)	PR-GAMP 0.94 (0.3 sec)	PR-GAMP 0.99 (0.3 sec)
\(k = 2\):	CPRL 0.55 (5.8 sec)	CPRL 0.55 (58 sec)	CPRL 0.58 (316 sec)
	PR-GAMP 0.72 (0.4 sec)	PR-GAMP 0.92 (0.3 sec)	PR-GAMP 1.0 (0.3 sec)

Notice:

- CPRL works great with sparsity \(k = 1\), but poorly when \(k \geq 2\). GAMP instead suffers when problem dimensions are small.
- CPRL’s runtime grows very quickly with problem dimensions! GAMP’s runtime is negligible for these toy problems.
Conclusions

- **(Compressive) phase retrieval** is a longstanding problem that is experiencing a rebirth through compressive sensing and convex relaxation.

- We proposed a new approach to CPR based on **generalized approximate message passing (GAMP)**.

- Empirical results show an **excellent phase transition** ($4 \times$ meas of phase-oracle), **excellent noise robustness** (~ 3 dB worse than phase-oracle), and **excellent runtime** (many orders of magnitude faster than convex relaxation).

- As a practical demonstration, we accurately recovered a **64k-pixel image** from **32k measurements** in only **11 seconds**.