Dysregulation of Ca\textsubscript{1.4} channels disrupts the maturation of photoreceptor synaptic ribbons in congenital stationary night blindness type 2

Xiaoni Liu1,2, Vasily Kerov1,2,3, Françoise Haeseleer,4 Anurima Majumder,1 Nikolai Artemyev,1 Sheila A Baker,2 and Amy Lee1,2,*

1Department of Molecular Physiology and Biophysics; University of Iowa; Iowa City, IA USA; 2Departments of Otolaryngology-Head and Neck Surgery, and Neurology; University of Iowa; Iowa City, IA USA; 3Department of Biochemistry; University of Iowa; Iowa City, IA USA; 4Department of Physiology and Biophysics; University of Washington; Seattle, WA USA

Keywords: Ca\textsubscript{1.4}, CACNA1F, congenital stationary night blindness, Ca\textsubscript{1.4} channel, retina, photoreceptor, ribbon synapse

Mutations in the gene encoding Ca\textsubscript{1.4}, CACNA1F are associated with visual disorders including X-linked incomplete congenital stationary night blindness type 2 (CSNB2). In mice lacking Ca\textsubscript{1.4} channels, there are defects in the development of “ribbon” synapses formed between photoreceptors (PRs) and second-order neurons. However, many CSNB2 mutations disrupt the function rather than expression of Ca\textsubscript{1.4} channels. Whether defects in PR synapse development due to altered Ca\textsubscript{1.4} function are common features contributing to the pathogenesis of CSNB2 is unknown. To resolve this issue, we profiled changes in the subcellular distribution of Ca\textsubscript{1.4} channels and synapse morphology during development in wild-type (WT) mice and mouse models of CSNB2. Using Ca\textsubscript{1.4}-selective antibodies, we found that Ca\textsubscript{1.4} channels associate with ribbon precursors early in development and are concentrated at both rod and cone PR synapses in the mature retina. In mouse models of CSNB2 in which the voltage-dependence of Ca\textsubscript{1.4} activation is either enhanced (Ca\textsubscript{1.4}\textsubscript{I756T}) or inhibited (CaBP4 KO), the initial stages of PR synaptic ribbon formation are largely unaffected. However, after postnatal day 13, many PR ribbons retain the immature morphology. This synaptic abnormality corresponds in severity to the defect in synaptic transmission in the adult mutant mice, suggesting that lack of sufficient mature synapses contributes to vision impairment in Ca\textsubscript{1.4}\textsubscript{I756T} and CaBP4 KO mice. Our results demonstrate the importance of proper Ca\textsubscript{1.4} function for efficient PR synapse maturation, and that dysregulation of Ca\textsubscript{1.4} channels in CSNB2 may have synaptopathic consequences.

Introduction

In the retina, light-dependent changes in the photoreceptor (PR) membrane potential modulate the opening of presynaptic voltage-gated Ca\textsubscript{1.4} (L-type) Ca2+ channels— a process that shapes Ca2+-dependent exocytosis of glutamate at the first synapse in the visual pathway. Of multiple classes of Ca\textsubscript{1.4} channels (Ca\textsubscript{1.1–1.4}), Ca\textsubscript{1.4} is thought to be the major Ca\textsubscript{1.4} channel at PR synapses. More than 50 mutations in the CACNA1F gene encoding the pore-forming α subunit of Ca\textsubscript{1.4} are linked to multiple visual disorders including incomplete congenital stationary night blindness type 2 (CSNB2).1 The visual phenotypes associated with CSNB2 are heterogeneous and may include abnormal visual acuity, night blindness, myopia, and/or nystagmus.2

Despite strongly reduced transmission by rod and/or cone PRs, vision impairment is relatively modest in CSNB2 patients.3–5 It has been suggested that Ca\textsubscript{1.4} may not predominate at cone PR synapses,6 which is at odds with the lack of cone and rod PR synaptic transmission in Ca\textsubscript{1.4} knockout (KO) mice.7 A confounding factor is that in addition to their role in regulating PR synaptic transmission, Ca\textsubscript{1.4} channels are required for the development of both rod and cone PR synapses in the mouse.8,9 The mature “ribbon” structure that is specialized for high-throughput and tonic exocytosis10 is absent in Ca\textsubscript{1.4} KO mice,8,9 which may contribute to the complete absence of retinal output in these mice.7 It is not known if CSNB2-associated mutations that alter the function rather than expression of Ca\textsubscript{1.4} channels similarly affect PR synapses.

In the mouse retina, rod PR synaptogenesis occurs postnatally and involves formation of dyadic synapses between PRs and horizontal cell dendrites around postnatal day 8 (P8); invagination of postsynaptic bipolar dendrites after eye opening (~P13) completes maturation of the PR synaptic triad.11 A hallmark of PR synapse development is the assembly of the ribbon, which originates as small round spheres that gradually take on the horseshoe-shaped morphology of the mature synapse.12 Presynaptic abnormalities have been evaluated only after P10 in Ca\textsubscript{1.4} KO mice,8,9 so whether Ca\textsubscript{1.4} channels are required for synapse formation and/or maintenance is unknown. Moreover,
it is not clear if alterations in PR synapse development are common features of CSNB2 that can contribute to the pathogenic mechanisms.

To clarify these ambiguities, we defined the subcellular localization of Ca\(_{1.4}\) in the developing and mature retina, and compared the development of PR synaptic ribbons in WT mice and in mouse models of CSNB2 in which the voltage-dependence of activation of Ca\(_{1.4}\) is either enhanced or inhibited. Our findings indicate that Ca\(_{1.4}\) channels are positioned at the developing and mature active zone of PR synapses, where their presence is required for the initial stages of ribbon assembly. Moreover, the proper function of Ca\(_{1.4}\) channels is required for the efficient maturation of the synaptic ribbon, which is functionally disrupted in different mouse models of CSNB2.

Figure 1. Rabbit polyclonal antibodies specifically recognize Ca\(_{1.4}\) in transfected cells and in mouse retina. (A and B) Western blot (A) and immunofluorescence (B) of HEK293T cells that were untransfected (U) or transfected with Ca\(_{1.2}\), Ca\(_{1.3}\), or Ca\(_{1.4}\). In (A and B), antibodies against Ca\(_{1.2}\) (top panels), Ca\(_{1.3}\) (middle panels), or Ca\(_{1.4}\) (bottom panels) were used. (C) Western blot of retinal lysate from WT and Ca\(_{1.4}\) KO mice (50 μg protein/lane) probed with Ca\(_{1.4}\) antibodies. Asterisks indicate proteins present in WT but not Ca\(_{1.4}\) KO retina. (D) Immunofluorescent labeling with Ca\(_{1.4}\) and RIBEYE antibodies in retina from WT and Ca\(_{1.4}\) KO mice. Nuclei are stained with Hoechst. Lower panels show high magnification images of double-labeling in the outer plexiform layer (OPL); ONL, outer nuclear layer; INL, inner nuclear layer. Scale bars: 2 μm (B); 10 μm, (D, upper panels); 2 μm (D, lower panels). Results shown are representative of at least 3 independent experiments.
Results

Polyclonal antibodies are selective for Cav1.4 and report the localization of the channel at rod and cone PR synapses in the retina.

To characterize the subcellular localization of Cav1.4 during development in the mouse retina, we generated polyclonal antibodies against the cytoplasmic N-terminal domain of the Cav1.4 α1 subunit. Since both Cav1.3 and Cav1.2 are thought to be expressed in cone PRs and bipolar neurons, respectively, we confirmed that the antibodies detected Cav1.4, but not Cav1.2 or Cav1.3, by western blot and immunofluorescence of transfected HEK293T cells (Fig. 1A and B). To determine the specificity of the antibodies for detecting Cav1.4 in the retina, we performed western blotting of retinal lysates from wild-type (WT) mice and mice lacking expression of functional Cav1.4 channels (Cav1.4 KO) due to excision of exons 14 to 17 of the mouse CACNA1F gene. In lysate from WT but not Cav1.4 KO retina (Fig. 1C), the antibodies detected a ~200–250 kDa protein that corresponded to the predicted molecular weight of the Cav1.4 α1 subunit. A protein of higher molecular weight was also detected, which may reflect the reduced electrophoretic mobility of aggregated Cav1.4 protein upon denaturation, as such high-molecular bands were also detected in HEK293T cells transfected with Cav1.4 (Fig. 1A). Additional lower-molecular weight proteins were also detected, but were considered non-specific in that they were seen in both genotypes.

By immunofluorescence of WT mice, Cav1.4 antibodies labeled numerous horseshoe-shaped structures in the outer plexiform layer (OPL), which contains mostly rod PR terminals (spherules) in the mouse retina (Fig. 1D). These structures were also labeled with antibodies against RIBEYE, the major component of the ribbon, and resembled synapses formed between a single rod spherule and dendrites of bipolar neurons and horizontal

Figure 2. Ca1.4 antibodies label cone PR synapses. Double-labeling with antibodies against Ca1.4 (green) and PNA (red) in retina from mouse (A), macaque (B), and human (C). In (A and B), arrows and arrowheads indicate localization of PNA and Ca1.4, respectively, at elongated structures resembling cone synapses. In (C), arrowheads indicate Ca1.4 labeling clustered at PNA-labeled cone synapses. Inset in (C) shows high magnification view of boxed region. Scale bars: 2 μm. Results in (A) are representative of at least 3 independent experiments. Results in (B and C) are from 1 experiment.

Figure 3. Cav1.4 is required for synapse formation. (A) Immunofluorescence for RIBEYE (green) and Cav1.4 (red) in retina from WT mice (P5–P15). (B) Immunofluorescence for RIBEYE (green) and GluR2 in retina from WT (left) and Cav1.4 KO (right) mice (P5–P15). Mature (arrows) and immature (arrowheads) ribbon morphologies are indicated. Scale bars: 2 μm. Results shown are representative of at least 3 independent experiments.
Mature rod PR synapses fail to form in Ca\(1.4\) KO mice

Using these Ca\(1.4\)-selective antibodies, we profiled the distribution of Ca\(1.4\) at developing PR synapses from P5-P15 in the mouse retina. From P5-P8, labeling for Ca\(1.4\) and RIBEYE was largely colocalized in small puncta resembling ribbon precursor spheres\(^{10,12}\) in the OPL (Fig. 3A). Between P11-P15, Ca\(1.4\)-labeled ribbons become more elongated, and depending on the plane of section, take on the horseshoe-shaped morphology of mature rod PR synapses (Fig. 3A).\(^{11}\) The temporal and spatial coincidence of Ca\(1.4\) and RIBEYE labeling in the OPL is consistent with a role for Ca\(1.4\) channels in directing PR synapse assembly.

To determine if the synaptic defects in Ca\(1.4\) KO mice\(^{7,9,17}\) result from alterations in PR synapse formation or maintenance, we double-labeled with antibodies against RIBEYE and a glutamate receptor (GluR2) expressed in postsynaptic horizontal cell dendrites.\(^{18}\) In the OPL of WT retina, morphologically mature synapses are seen as early as P11 and predominate at P15 (Fig. 3B). In Ca\(1.4\) KO retina, mature ribbons were not found; only RIBEYE-positive spheres were present, none of which were associated with GluR2-labeling at any age that was examined (Fig. 3B). The amount of RIBEYE labeling declines slightly beginning at P15 and is most apparent in adult Ca\(1.4\) KO mice (compare Figs. 3B and 1D). These results demonstrate that Ca\(1.4\) channels are required for the initial formation of PR synapses.

PR synapse maturation is impaired in mouse models of CSNB2

CaBP4 is a Ca\(^{2+}\) binding protein that interacts with, and enhances voltage-dependent activation of, Ca\(1.4\) channels.\(^{19,20}\) Electroretinograms (ERGs) of CaBP4 KO mice indicate a loss of both rod and cone PR synaptic transmission,\(^{19,21}\) consistent with reduced function of Ca\(1.4\) channels and the CSNB2-like phenotypes associated with human mutations in the C\(abp4\) gene.\(^{22,23}\) PR synapses are morphologically abnormal in CaBP4 KO mice,\(^{19}\) which may be due to aberrant ribbon synapse assembly and/or maturation. To probe the underlying mechanism, we analyzed developmental changes in PR ribbon morphologies in WT and CaBP4 KO mice. Compared with age-matched WT control retina, ribbons were similar in CaBP4 KO retina through P13 (Fig. 4A and B). At this age, a number of elongated and horseshoe-shaped ribbons were seen in both genotypes, which indicated no deficits in the initial stages of synapse assembly. However at P15, when all ribbons take on elongated and horseshoe-shaped morphologies in WT retina, RIBEYE-positive structures that were small and round outnumbered those resembling mature ribbons in CaBP4 KO retina (Fig. 4A and B). Double-labeling with Ca\(1.4\) antibodies revealed the association of Ca\(1.4\) channels with both normal and abnormal ribbons, which indicated that alterations in ribbon structure did not result from failures in Ca\(1.4\) expression or trafficking to synapses. These findings supported a requirement for...
CaBP4, perhaps via regulation of Ca\textsubscript{1.4} channels, in the maturation of rod PR ribbons.

To confirm the importance of proper Ca\textsubscript{1.4} function for ribbon synapse development, we utilized knock-in mice harboring a mutation that causes CSNB2 in humans (Ca\textsubscript{1.4}\textsubscript{I756T}). This mutation (I745T in the human CACNA1F gene) results in a large negative shift in the voltage-dependence of channel activation24 and so should potentiate Ca\textsubscript{1.4} function, in contrast to the inhibition of Ca\textsubscript{1.4} that would be expected in CaBP4 KO mice. As in CaBP4 KO mice, the pattern of RIBEYE/Ca\textsubscript{1.4} labeling was similar in WT and Ca\textsubscript{1.4}\textsubscript{I756T} mice (~P13), but diverged at P15, with many ribbons exhibiting the immature morphology in the mutant but not the WT mice (Fig. 4A and C). Thus, both the loss – and gain – of

Figure 5. Postsynaptic remodeling and ectopic ribbons in mice with altered Ca\textsubscript{1.4} function. Double-label immunofluorescence of PK\textalpha (green) and RIBEYE (red) in retina from WT, Ca\textsubscript{1.4} KO, CaBP4 KO, or Ca\textsubscript{1.4}\textsubscript{I756T} mice (P8-adult). In WT retina, bipolar dendrites labeled with PK\textalpha antibodies ramify in the OPL where they form synapses with rod spherules. In Ca\textsubscript{1.4} KO mice, bipolar dendrites (arrows) start extending into the outer nuclear layer (ONL) at P11, and ectopic ribbons labeled by RIBEYE antibodies are evident (arrowheads). Postsynaptic remodeling emerges later in CaBP4 KO and Ca\textsubscript{1.4}\textsubscript{I756T} mice (~P13), and is less severe in adulthood (2-mo old) compared with WT mice. Scale bars: 2 \textmu m. Results shown are representative of at least 3 independent experiments.
function in Ca\(_{1.4}\) channel properties can impair PR ribbon development in the mouse retina.

To quantitate the severity of the synaptic defects in the various adult mutant mice, we compared the distribution of RIBEYE-labeled profiles as circular, ellipsoid, or elongated. We assumed that circular profiles generally represent immature ribbon precursors, as nearly all (99.8 ± 0.1%) RIBEYE-positive structures were circular in Ca\(_{1.4}\) KO retina (Fig. 4D). However, some mature elongated ribbons could appear circular or ellipsoid, depending on the plane of section. Indeed, a minor fraction of RIBEYE labeling in WT mice was associated with circular (14.8 ± 0.94%) or ellipsoid (8.0 ± 2.9%) profiles. Unlike in WT mice, circular profiles accounted for most of the RIBEYE labeling in CaBP4 KO (97.0 ± 0.9%) and Ca\(_{1.4}\)I756T (84.9 ± 0.2%) (Fig. 4D). Notably, the proportion of elongated and ellipsoid profiles was significantly greater (p < 0.001 by ANOVA) in Ca\(_{1.4}\)I756T (2.6 ± 0.5% elongated, 12.6 ± 1.5% ellipsoid) than in CaBP4 KO (0.4 ± 0.3% elongated, 2.6 ± 0.7% ellipsoid; p < 0.001 by ANOVA) mice (Fig. 4D). Taken together, these results suggested a defect in PR ribbons of the following rank order in severity: Ca\(_{1.4}\) KO ≥ CaBP4 KO > Ca\(_{1.4}\)I756T (Fig. 4D).

Structural remodeling of horizontal and bipolar cell dendrites and the formation of ectopic synapses in the outer nuclear layer (ONL) are common features of mice with PR synapse defects. If postsynaptic modeling results from altered PR ribbon maturation in CaBP4 KO and Ca\(_{1.4}\)I756T mice, it should be evident between P13 and P15, when presynaptic defects in these mice are first apparent (Figs. 3B and 4D). To test this, we analyzed retinas from P8 to adulthood that were double-labeled with RIBEYE and PKC\(\alpha\), a marker for rod bipolar cells. As shown previously, bipolar dendrites extending into the ONL were found in adult retina of Ca\(_{1.4}\) KO and CaBP4 KO mice. RIBEYE-labeled puncta were associated with these processes, suggestive of ectopic ribbon synapses (Fig. 5). This pattern of labeling emerged earlier in Ca\(_{1.4}\) KO (~P11) than in CaBP4 KO and Ca\(_{1.4}\)I756T retinas (~P13, Fig. 5), consistent with the more severe presynaptic defects in the Ca\(_{1.4}\) KO mice (Figs. 3B and 4D).

To determine if the impaired ribbon maturation in the mutant mice corresponded to deficits in PR synaptic transmission, we performed ERG analyses, which monitor light-induced changes in the electrical activity of presynaptic PRs (a-wave) and postsynaptic second-order neurons (b-waves) (Fig. 6A). Previous ERG analyses established strongly reduced b-waves in CaBP4 KO mice under dark-adapted conditions to measure rod PR transmission. Therefore, we restricted analyses to comparisons of Ca\(_{1.4}\)I756T mice with WT mice. Due to the presence of rod – and cone-driven responses in WT mice, plots of b-wave amplitudes against flash intensity were fit with a double-sigmoidal function (Fig. 6B). In contrast, the corresponding data in Ca\(_{1.4}\)I756T mice were described by a single sigmoidal fit (Fig. 6B). Since ERG recordings under light-adapted conditions indicated that Ca\(_{1.4}\)I756T mice...
mice lack cone-driven responses (Fig. 6A), we assumed that the b-wave responses from dark-adapted Ca$_{1.4}^{I756T}$ mice are largely due to rod transmission. Compared with rod-driven responses in WT mice, b-waves were significantly reduced, although not abolished, in Ca$_{1.4}^{I756T}$ mice (~66–74% compared with WT, at light intensities (I) < –1.0 log cd•s/m2, p < 0.001 by ANOVA; Fig. 6B). In addition, the sensitivity of rod-rod bipolar synaptic transmission in Ca$_{1.4}^{I756T}$ mice (I$_{1/2}$) was significantly reduced (I$_{1/2}$ = –3.2 ± 0.2 log cd•s/m2 for WT vs. –0.3 ± 0.6 log cd•s/m2 for Ca$_{1.4}^{I756T}$; p = 0.001 by t-test). While the maximal a-wave amplitudes appeared to be reduced in Ca$_{1.4}^{I756T}$ mice, the difference with WT was not significant (385.3 ± 14.2 for WT vs. 301.3 ± 48.2 for Ca$_{1.4}^{I756T}$; p = 0.1 by t-test, Fig. 6C). There was also no significant difference in the flash intensities evoking the half-maximal a-wave response (I$_{1/2}$ = –0.9 ± 0.1 for WT vs. –0.5 ± 0.4 log cd•s/m2 for Ca$_{1.4}^{I756T}$; p = 0.2 by t-test). These results argued against the possibility that deficient b-wave responses in dark-adapted Ca$_{1.4}^{I756T}$ mice were due to decreased sensitivity or changes in the numbers of functional rod PRs. Moreover, at light intensities at which the a-waves were nearly identical in dark-adapted WT and Ca$_{1.4}^{I756T}$ mice (e.g., I < –1 log cd•s/m2), the b-wave was still significantly smaller in the latter (p < 0.001 by ANOVA; Fig. 6B and C). Taken together, these results strongly supported a major defect in PR transmission in Ca$_{1.4}^{I756T}$ mice. The less severe rod-driven responses in Ca$_{1.4}^{I756T}$ mice compared with CaBP4 KO and Ca$_{1.4}^{I756T}$ KO mice were consistent with the more moderate abnormalities in ribbon maturation in the former compared with the latter 2 mice (Figs. 4 and 5). Our results support a requirement for normal Ca$_{1.4}$ function in the maturation of rod PR synaptic ribbons, which may impact the efficacy of synaptic transmission in the adult mice.

Discussion

Localization of Ca$_{1.4}$ at rod and cone PR synapses

Due to the notorious non-specificity of Ca$_{1.4}$ channel antibodies, we rigorously characterized the Ca$_{1.4}$ antibodies that we generated and used in this study (Fig. 1). While other antibodies generated against Ca$_{1.4}$ were shown to label rod PR synapses, our study is the first to document the localization of Ca$_{1.4}$ in cone PR synapses (Fig. 2). Cones comprise < 3% of the PRs in the rodent retina, which may explain the difficulties in detecting Ca$_{1.4}$ colocalization with markers of cone PR synapses in the rat. Ca$_{1.3}$ expression has been reported in cone PRs in mouse and tree shrew retinas, and modest morphological changes in PR ribbon morphology have been reported in mice lacking Ca$_{1.3}$. However, we propose that Ca$_{1.4}$ channels are functionally the dominant Ca$_{1.3}$ channels in cone PRs for the following reasons. First, we found strong labeling of cone PR terminals in multiple species (Fig. 2). Second, mice lacking Ca$_{1.4}$ but not Ca$_{1.3}$ expression exhibit severe defects in cone-mediated visual responses, and a loss-of-function mutation in the CACNA1D gene encoding Ca$_{1.3}$ channels, causes cardiac arrhythmia and deafness, but no major visual deficits. In contrast, a number of mutations in CACNA1F including the human I745T mutation produce severe defects in cone and rod responses in humans. Therefore, Ca$_{1.4}$ channels likely play an analogous role in regulating exocytosis at cone and rod PRs.

A dual role for Ca$_{1.4}$ in PR ribbon assembly

The stages involved in the molecular and morphological development of PR ribbon synapses have been elegantly described. Prior to P10, ribbon precursor spheres complete their molecular assembly with the addition of ribbon-associated proteins (e.g., RIBEYE, bassoon, and piccolo) and proteins of the arciform density (e.g., RIM2, munc13, Ca$_{1.4}$). Between P10 and P14, ribbons are largely mature at the molecular level, but make the final morphological transition and become anchored to the plasma membrane. The observation that PR ribbons develop normally through P13 in CaBP4 KO and Ca$_{1.4}^{I756T}$ mice (Fig. 4), but not in Ca$_{1.4}$ KO mice (Fig. 3B), indicates that the maturation but not the initial assembly of the ribbon depends on the proper activation properties of the Ca$_{1.4}$ channel.

Initially, Ca$_{1.4}$ channels may be required to scaffold key presynaptic proteins such as PSD-95 and the plasma membrane Ca$_{2+}$ ATPase, both of which are absent in developing PR terminals of Ca$_{1.4}$-deficient mice. At this stage, Ca$_{1.4}$ channels are clustered in RIBEYE-positive puncta that likely represent immature ribbon precursors (Fig. 3A), and so may not be positioned at the presynaptic membrane where their Ca$^{2+}$ conducting function may be required. Upon eye-opening at P13, light-modulated changes in Ca$_{1.4}$ opening may shape presynaptic Ca$^{2+}$ signals and exocytosis which support efficient PR synapse maturation. These Ca$^{2+}$ signals would be strongly reduced in CaBP4 KO mice, since there would be limited activation of Ca$_{1.4}$ channels at the PR membrane potential in darkness (~40 mV) in the absence of CaBP4. In Ca$_{1.4}^{I756T}$ mice, presynaptic Ca$^{2+}$ influx in darkness should be abnormally elevated due to a ~30 mV shift in the voltage-dependence of activation, and slower voltage-dependent inactivation, caused by this mutation. The more severe morphological and functional defects in PR synapses in CaBP4 KO compared with Ca$_{1.4}^{I756T}$ mice (Figs. 4 and 6) may reflect greater synaptic consequences of the loss-of-function compared with the gain-of-function of Ca$_{1.4}$, although we cannot discount the possibility that CaBP4 may have effects independent of Ca$_{1.4}$ on promoting ribbon maturation. While our immunocytochemical data indicated no major differences in the intensity of Ca$_{1.4}$ labeling at PR synapses in CaBP4 KO and Ca$_{1.4}^{I756T}$ mice at P15 (Fig. 4), we cannot rule out that there may be a progressive reduction in levels of Ca$_{1.4}$ channels, which could contribute to the visual impairment measured in these mice at later ages (Fig. 6 and in Haezeleer et al.) . Ca$_{1.4}$ channels may play a general role in the development of ribbon synapses, since proper function of Ca$_{1.3}$ channels has been shown to regulate ribbon size and maintenance at zebrafish hair cell ribbon synapses. Determining the molecular mechanisms by which Ca$_{1.4}$ channels promote PR synapse assembly and maturation remains an important challenge for future studies.

Synapthopathic origins of CSNB2

Our findings that most (75–90%) RIBEYE-positive structures exhibited the immature (round) morphology in adult CaBP4 KO and Ca$_{1.4}^{I756T}$ mice (Fig. 4B) are consistent with the strong reductions in rod PR transmission measured in these mice (Fig. 6). Smaller, spherical ribbons are unlikely to support the tethering of
hundreds of synaptic vesicles primed for tonic glutamate release at mature ribbon synapses in darkness.38 Based on findings that alterations in ribbon structure significantly inhibit rod PR transmission,39,40 weakened exocytosis at these immature synapses likely contributes to the almost complete absence of rod PR synaptic transmission in Ca\textsubscript{1.4} KO (Fig. 6B) and CaBP4 KO15 mice. The greater preservation of ribbons in Ca\textsubscript{1.4\textsubscript{I756T}} mice compared with Ca\textsubscript{1.4} KO or CaBP4 KO mice (Fig. 4D) may account for the partial sparing of rod PR synaptic transmission in these mice (Fig. 6B). Since rod PRs mediate vision in low-light conditions, our findings may help explain the night-blindness phenotype in some patients with loss-of-function mutations in \textit{CACNA1F} and \textit{CaBP4}.5,22 On the other hand, we found that cone-mediated (light-adapted) b-wave responses are absent in Ca\textsubscript{1.4\textsubscript{I745T}} mice (Fig. 6A). Interestingly, patients harboring the analogous I745T mutation13 as well as some patients with \textit{Cabp4} mutations33,41 exhibit a more severe loss of vision mediated by cones than by rods. Considering the localization of Ca\textsubscript{1.4} in cone PRs (Fig. 2), and previous results that cone PR synaptogenesis is impaired in Ca\textsubscript{1.4} KO mice,7 we expect that a disruption in cone PR synaptic ribbon maturation may contribute to these visual phenotypes in humans.

Alterations in PR ribbon morphologies and synapses have been reported in mice with reduced or absent expression of Ca\textsubscript{1.4}.3,42 Considering that a number of CSNB2 mutations in \textit{CACNA1F} are predicted to yield dysfunctional channels rather than cause the complete absence of channel expression,33,43 our findings reveal that alterations in PR synapse development may be a common feature of CSNB2, and that therapeutic interventions for offsetting visual impairment may require early targeting of the synaptopathic consequences of the mutations.

Materials and Methods

Animals

CaBP4 KO39 and Ca\textsubscript{1.4} KO35 mice were characterized previously. Ca\textsubscript{1.4} KO (B6.Cg-Cacna1ftm1.1Sdie/J) and Ca\textsubscript{1.4\textsubscript{I756T}} (B6.Cg-Cacna1ftm1.1Sdie/J) were obtained from the Jackson Laboratory. The generation of the Ca\textsubscript{1.4} KO and Ca\textsubscript{1.4\textsubscript{I756T}} lines was described previously.15 Ca\textsubscript{1.4} KO mice lack exons 14–17, while Ca\textsubscript{1.4\textsubscript{I756T}} mice bear a threonine substitution for isoleucine 756, of the mouse \textit{CACNA1F} gene. Male and female mice (5–d – 3 mo old) were used. All animals were maintained on a 12-h light/dark cycle. Experimental procedures using animals were approved by the Institutional Animal Care and Use Committee at the University of Iowa and the University of Washington.

Antibody production and characterization

Polyclonal rabbit Ca\textsubscript{1.4} antibodies were generated against a peptide corresponding to amino acids 1–20 (MSESEVKGDDTTPESPANGTC) of mouse \textit{CACNA1F} (NP_065258.2) by a commercial source (Covance). Antiserum was subject to affinity purification by standard protocols prior to use.

Immunofluorescence and western blotting of transfected HEK293T cells

Human embryonic kidney (HEK) 293T cells were transfected with cDNAs encoding the \(\alpha_1\) subunit for Ca\textsubscript{1.2}, Ca\textsubscript{1.3}, Ca\textsubscript{1.4} along with \(\beta_2A\) and \(\alpha_6\) using GenePORTER transfection reagent (\# T201015, Genlanits). After 24 h, transfected cells were processed the next day for immunofluorescence essentially as described previously.45 Rabbit polyclonal primary antibodies were used at 1:1000 dilution: anti-Ca\textsubscript{1.2},2,46 anti-Ca\textsubscript{1.3},45 anti-Ca\textsubscript{1.4} (this study). Alexa488-conjugated and Alexa568-conjugated secondary antibodies (1:1000; \#A11011, Life Technologies) were used. Image analysis was performed using a Fluoview 1000 confocal microscope (Olympus). For western blots, lysates from transfected cells or retina (from 2-mo old mice) were prepared and subjected to SDS-PAGE and western blotting as described.69 Primary antibodies were the same as those used for immunofluorescence experiments. Secondary detection was with HRP-conjugated anti-rabbit IgG (1:1000; \#RPN4301, GE Healthcare) and SuperSignal West Pico Chemiluminescent Substrate (\# 34077, Thermo Scientific).

Immunofluorescence of retina

Immunofluorescence processing of the retina was generally described previously.19 Macaque retina was obtained at the University of Washington Regional Primate Center and frozen unfixed human retina was obtained from the Iowa Lions Eye Bank (provided by Dr Robert Mullins) following full consent of the donors’ next of kin. Mice younger than P10 were killed by decapitation, and mice at P10 or older were anesthetized with isoflurane first and killed by decapitation. Three mice (male or female) per developmental stage were used for each genotype. Mice were allocated to groups according to age or genotype prior to experimentation. Eyes were quickly removed and incubated in 4% paraformaldehyde in 0.1 M phosphate buffer for 10–60 min. The anterior segments were removed, and the posterior eye cups were infiltrated with 30% sucrose on ice and frozen in embedding media on dry ice. Frozen blocks were cut in vertical sections (12 \(\mu\)m) with a cryostat (Leica), collected on electrostatic slides, and stored at \(-80\) °C until use. Sections were blocked in blocking buffer (3–10% normal goat serum \[NGS\] and 0.1% Triton X-100 \[TX-100\]) diluted in phosphate-buffered saline \[PBS\] \(-80\) °C overnight at 4 °C. Sections were incubated in primary antibodies for 4 h at room temperature. The following primary antibodies and working dilutions were used: rabbit Ca\textsubscript{1.4} (1:1000), RIBEYE (1: 500–1:1000 \#612044, BD bioscience), PKC-\(\alpha\) (1:500, \#5C208, Santa Cruz, Biotechnology). After rinsing, sections were incubated for 1 h in darkness in secondary antibodies (Life Technologies) used at 1:400 or 1:1000 dilution: Alexa Fluor 488 – goat anti-mouse (\#R37120); Alexa 555 – goat anti-rabbit (\#A13169); Alexa 488 – goat anti-rabbit (\#A11008); Alexa568 – goat anti-mouse (\#A11004). All antibodies were diluted in 0.1% TX-100 in PBS and incubations were performed in humidified chambers. In some experiments, Hoechst stain (\# H6024, Sigma; 1:1000) was applied for 10 min at room temperature. Between incubations, sections were washed 3 times for 5 min using 0.1% TX-100 in PBS. Sections were coverslipped, sealed with clear nail polish, and stored at 4 °C. Confocal microscopy was performed using an Olympus Fluoview 1000 confocal microscope with 60X or 100X oil-immersion objectives or a Zeiss LSM710 confocal microscope with a Plan-Neofluar 63x/1.4 oil-immersion objective. Previous experience with variabilities in histological techniques was used to determine the number of animals (at least 3 per developmental age per genotype) required.
to substantiate conclusions. Samples with poor preservation of tissue morphology, as indicated by transmitted light microscopy or Hoechst staining, were excluded from analysis. For developmental series, processing of tissue from a given mouse strain was done in a single experiment to reduce variability due to differences in experimental conditions. Results shown in all figures are representative of at least 3 independent experiments.

For quantitative analyses of RIBEYE-labeled structures in the adult mouse retina, confocal Z-stack images (5 μm thick) were taken about 1 mm from the optic nerve (2 images/mouse for each of 3 mice per genotype). For elongated structures the length was measured with three segments along the ribbon. Ratios of length to width were calculated and categorized accordingly: spherical (ratio < 2), ellipsoid (2 to 3), elongated (> 3). To reduce experimenter bias, image acquisition and quantitative analyses were done by different researchers in a blinded fashion.

Electroretinography (ERG)

ERG recordings were obtained using the Espion E3 system (Diagnosys LLC). After overnight dark adaptation, 5- to 6-week old mice were prepared for ERG recording under dim red light. Mice (5–6 week old, males and females) were anesthetized by intraperitoneal injection of a ketamine/xylazine mixture (100 and 10 mg/kg, respectively). The pupils were dilated by applying a drop of 1% tropicamide, followed by a drop of 2.5% phenylephrine hydrochloride. ERGs were recorded simultaneously from the corneal surface to ensure electrical contact and to prevent eyes from drying and cataract formation. Body temperature of mice was maintained at 37°C using the system’s heating pad. Mice were placed in a Ganzfeld stimulator chamber (ColorDome; Diagnosys) for delivery of stimuli, and the mouse head and electrode positioning were monitored on the camera attached to the system. ERG responses were evoked in mice by a series of flashes ranging from 0.0001 to 100 cd·s/m². Responses to 6 sweeps were averaged for dim flashes up to 0.6 cd·s/m², 2 sweeps were averaged for 4 cd·s/m², and responses to brighter flashes were recorded without averaging. Intersweep intervals for flashes with increasing strength were increased from 10 to 60 s to allow full recovery from preceding flashes. To record photopic ERGs, mice were exposed to a background light (30 cd·s/m²) for 3 min before flash stimulation (3, 30, or 100 cd·s/m²). Six sweeps were averaged. The data were analyzed as described previously using GraphPad Prism software (version 4).

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

This work was supported by grants from the National Institutes of Health (DC009433 and HL87120 to Lee A, DC010362 (Iowa Center for Molecular Auditory Neuroscience), EY020850 to Haseleer F, EY020542 to Baker SA, EY012682 to Arteneyev NO), and a Carver Research Program of Excellence Award to Lee A. The authors thank Maw M for permission to use the Ca₁₄ KO and Ca₁₄-KOT mice; Koschak A for human Ca₁₄ cDNAs; Pampaloni B for assistance in preparing the manuscript; Koschak A, Sampath A, and Singer J for comments on earlier versions of the manuscript.

References

1. Lodha N, Loucks CM, Beaulieu C, Parboosingh JS, Bech-Hansen NT. Congenital stationary night blindness: mutation update and clinical variability. Adv Exp Med Biol 2012; 723:371-9; PMID:22183355; http://dx.doi.org/10.1007/978-1-4614-0631-0_48
2. Boycott KM, Pearce WG, Bech-Hansen NT. Clinical variability among patients with incomplete X-linked congenital stationary night blindness and a founder mutation in CACNA1F. Can J Ophthalmol 2005; 35:204-13; PMID:10909517
3. Tremblay F, Laroché RG, De Becker I. The electroretinographic diagnosis of the incomplete form of congenital stationary night blindness. Vision Res 1995; 35:2383-93; PMID:7571473; http://dx.doi.org/10.1016/0042-6989(95)00006-L
4. Miyake Y, Yagasaki K, Horiguchi M, Kawase Y, Kanda T. Congenital stationary night blindness with negative electroretinogram. Arch Ophthalmol 1986; 104:1013-20; PMID:3488053; http://dx.doi.org/10.1001/archopht.1986.0105010901042
5. Bijveld MM, Florijn RJ, Bergen AA, van den Born LI, Kamermans M, Prick L, Riemslag FC, van Genderen MM. Extraretinal attenuation of ERGs in congenital stationary night blindness. Arch Ophthalmol 1986; 104:1013-20; PMID:3488053; http://dx.doi.org/10.1001/archopht.1986.0105010901042
6. Morgans CW. Calcium channel heterogeneity among cone photoreceptors in the tree shrew retina. Eur J Neurosci 1999; 11:2899-93; PMID:10457194; http://dx.doi.org/10.1046/j.1460-9568.1999.00719.x
7. Mansergh RP, Orton NC, Vossey JP, Lalonde MR, Stell WK, Tremblay F, Barnes S, Rancourt DE, Bech-Hansen NT. Mutation of the calcium channel gene Cacna1f disrupts cellular calcium signaling, synaptic transmission and cellular organization in mouse retina. Hum Mol Genet 2005; 14:3035-46; PMID:1605113; http://dx.doi.org/10.1093/hmg/ddi336
8. Zabouri N, Haverkamp S. Calcium channel-dependent molecular maturation of photoreceptor synapses. PLoS One 2013; 8:e63853; PMID:23675510; http://dx.doi.org/10.1371/journal.pone.0063853
9. Raven MA, Orton NC, Nassar H, Williams GA, Stell WK, Jacobs GH, Bech-Hansen NT, Reese BE. Early afferent signaling in the outer plexiform layer regulates development of horizontal cell morphology. J Comp Neurol 2008; 506:745-58; PMID:18076080; http://dx.doi.org/10.1002/cne.21526
10. tom Dieck S, Brandsträdter JH. Ribbon synapse of the retina. Cell Tissue Res 2006; 326:339-46; PMID:16775608; http://dx.doi.org/10.1007/s00441-006-0234-0
11. Plaas KC, Adinolfi AM, Lolley RN. Synaptopogenesis in the photoreceptor terminal of the mouse retina. J Comp Neurol 1974; 156:81-93; PMID:4836656; http://dx.doi.org/10.1002/cne.901560107
12. Regus-Leidig H, Tom Dieck S, Specht D, Meyer L, Brandsträdter JH. Early steps in the assembly of photoreceptor ribbon synapses in the mouse retina: the involvement of precursor spheres. J Comp Neurol 2009; 512:814-24; PMID:19067356; http://dx.doi.org/10.1002/cne.21953
13. Taylor WR, Morgans C. Localization and properties of voltage-gated calcium channels in cone photoreceptors of Tupaia belangeri. Vis Neurosci 1998; 15:741-52; PMID:9686206; http://dx.doi.org/10.1017/S0952523898951342
14. Xu HP, Zhao JW, Yang XL. Expression of voltage-dependent calcium channel subunits in the rat retina. Neurosci Lett 2002; 329:297-300; PMID:12183035; http://dx.doi.org/10.1016/S0304-3903(02)00688-2
15. Specht D, Wu SB, Turner P, Dearden P, Knorr F, Wolfrum U, Maw M, Brandsträdter JH, tom Dieck S. Effects of presynaptic mutations on a postsynaptic Cacna1f calcium channel colocalized with mGlur6 at mouse photoreceptor ribbon synapses. Invest Ophthalmol Vis Sci 2009; 50:505-15; PMID:18592919; http://dx.doi.org/10.1167/iovs.08-0785
16. Schmitz F, Königstorfer A, Sudhof TC. RIBEYE, a component of synaptic ribbons: a protein’s journey through evolution provides insights into synaptic ribbon function. Neuron 2005; 28:857-72; PMID:15615272; http://dx.doi.org/10.1016/j.neuron.2004.10.019
17. tom Dieck S, Altrdock WD, Kessels MM, Quellmann B, Regus H, Brauner D, Fejóva A, Bracko O, Gündelfinger ED, Brandsträdter JH. Molecular dis- section of the photoreceptor ribbon synapse: physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon complex. J Cell Biol 2005; 168:825-36; PMID:15728193; http://dx.doi.org/10.1083/jcb.20040857
18. Hack I, Frech M, Dick O, Peichl L, Brandstätter JH. Heterogeneous distribution of AMPA glutamate receptor subunits at the photoreceptor synapses of rodent retina. Eur J Neurosci 2001; 13:15-24; PMID:11155069; http://dx.doi. org/10.1046/j.1460-9568.2001.01357.x

19. Haseefer F, Imanishi Y, Maeda T, Possin DE, Maeda A, Lee A, Rieke F, Palczewski K. Essential role of Ca²⁺-binding protein 4, a Ca₁,4 channel regulator, in photoreceptor synaptic function. Nat Neurosci 2004; 7:1079-87; PMID:15452577; http://dx.doi.org/10.1038/nn1320

20. Shaltiel L, Paparizos C, Fenske S, Hassan G, Gruner C, Röhrlich P. Two cone types of rat retina detected by anti-visual pigment antibodies. Exp Eye Res 2012; 107:263-72; PMID:22936811; http://dx.doi.org/10.1016/j.eye研.2012.03.014

21. Maeda T, Len J, Palczewski K, Haseefer F. A critical role of CaBP4 in the cone synapse. Invest Ophthalmol Vis Sci 2005; 46:4320-7; PMID:16249514; http://dx.doi.org/10.1167/iovs.05-0478

22. Zeita C, Klockeener-Gruijsem B, Forster U, Kohl S, Magyar I, Wissinger B, Mawn R, Bietz M, Wahl-Schott CA. Complex regulation of phototransduction and inactivation properties of retinal voltage-gated Ca₁,4 L-type Ca²⁺ channels by Ca²⁺-binding protein 4 (CaBP4). J Biol Chem 2012; 287:36312-21; PMID:22936811; http://dx.doi.org/10.1074/jbc.M112.392811

23. Hemara-Wahanui A, Sissingh RM, LoGiudice L, Matthews G. The role of the presynaptic scaffold CAST reduces active zone size in rod photoreceptors and impairs visual processing. J Neurosci 2012; 32:12192-203; PMID:22933801; http://dx.doi.org/10.1523/JNEUROSCI.0752-12.2012

24. Roosmaa MA, Al-Owain M, Alqahtani F, Hazzaa S, Alkuraya FS. A null mutation in CABP4 causes Leber’s congenital amaurosis-like phenotype. Mol Vis 2010; 16:207-12; PMID:20157620

25. Bayley PR, Morgans CW. Rod bipolar cells and horizontal cells form displaced synaptic contacts with rods in the outer nuclear layer of the nob2 retina. J Comp Neurol 2005; 500:286-98; PMID:15773851; http://dx.doi.org/10.1002/cne.20496

26. Baig SM, Koschak A, Lieb A, Gehharts M, Daifinger C, Nürnberg G, Ali A, Ahmad I, Sinnecker-Brauns MJ, Brandt N, et al. Loss of Ca₁,3 (CAGNAHD) function in a human chelator syndrome with brydactyly and congenital deafness. Nat Neurosci 2011; 14:77-84; PMID:21139553; http://dx.doi.org/10.1038/nn.2694

27. Hope CJ, Sharp DM, Hemara-Wahanui A, Sissing HJ, Lundon P, Mitchell EA, Maw MA, Clover GM. Clinical manifestations of a unique X-linked retinal disease in a large New Zealand family with a novel mutation in CAGNAHD, the gene responsible for CSNB2. Clin Experiment Ophthalmol 2005; 33:129-36; PMID:15807819; http://dx.doi.org/10.1111/j.1442-9071.2005.00987.x

28. Jacobi FK, Hamal CP, Arnaud A, Bliin N, Berghammer M, Jacobs PC, Apllestedt-Sylla E, Pause CM. A novel CACNA1F mutation in a French family with the incomplete type of X-linked congenital stationary night blindness. Am J Ophthalmol 2003; 135:733-6; PMID:12719097; http://dx.doi.org/10.1016/S0002-7165(03)01530-8

29. Brashaw K, Allen I, Trump D, Hardcastle A, George N, Moore A. A comparison of ERG abnormalities in XLRS and XLCNSB. Doc Ophthalmol 2004; 108:135-45; PMID:15457976; http://dx.doi.org/10.1007/s10623-004-0119-4

30. Martin DW, Wangen MR, Basar E, Tani M, Alzamora J, Alquicira-Hernández B, Harku J, Doering CJ, Peloquin JB, McRory JE. The Ca(1,1).2, Ca(1,3), and Ca(1,4) L-type voltage-gated L-type Ca²⁺ channels. Pflugers Arch 2010; 460:461-74; PMID:20213496; http://dx.doi.org/10.1007/s00424-010-0800-x

31. Doering CJ, Pelquin JB, McBrey RE. The Ca(1,4) calcium channel: more than meets the eye. Channels (Austin) 2007; 1:3-10; PMID:1915588; http://dx.doi.org/10.4161/chan.3938

32. Gregory PD, Bryan KE, Pangriš T, Colín-Jagman JE, Moser T, Lee A. Hamrin inhibits presynaptic Cav1.3 Ca²⁺ channels in mouse inner hair cells. Nat Neurosci 2011; 14:1109-11; PMID:21822269; http://dx.doi.org/10.1038/nn.2895

33. Tippets AL, Pare JF, Langwieser N, Moosmang S, Molner TA, Smith Y, Lee A. Ultrastructural evidence for pre- and postsynaptic localization of Ca₁,2 L-type Ca²⁺ channels in the rat hippocampus. J Comp Neurol 2008; 506:569-83; PMID:18067152; http://dx.doi.org/10.1002/cne.21567

34. Herrmann R, Lobanova ES, Hammond T, Kessler C, Burns ME, Frishman LJ, Adarkhuy YV. Phorducin regulates transmission at the photoreceptor-to-ON-bipolar cell synapse. J Neurosci 2010; 30:3259-65; PMID:20207183; http://dx.doi.org/10.1523/JNEUROSCI.3050-12.2012

35. LoGiudice L, Matthews G. The role of ribbons at sensory synapses. Neuroscientist 2009; 15:380-91; PMID:19264728; http://dx.doi.org/10.1177/1073858408335173