Benchmarking and tuning the MILC code on clusters and supercomputers

Steven Gottlieb

a Department of Physics—SW117; Indiana University; Bloomington, IN 47405; USA

b Theory Group MS106; Fermilab; P.O. Box 500; Batavia, IL 60510–0500; USA

Recently, we have benchmarked and tuned the MILC code on a number of architectures including Intel Itanium and Pentium IV (PIV), dual-CPU Athlon, and the latest Compaq Alpha nodes. Results will be presented for many of these, and we shall discuss some simple code changes that can result in a very dramatic speedup of the KS conjugate gradient on processors with more advanced memory systems such as PIV, IBM SP and Alpha.

1. INTRODUCTION

This contribution is a condensation of a 16 page poster with 17 tables of benchmarks. The poster is available on the web \footnote{http://milc.colorado.edu/}. Benchmarks presented here are for the Conjugate Gradient algorithm with Kogut-Susskind quarks, not just for \bar{D}. They are done within the context of a complete application for creation of gauge fields using the R-algorithm \footnote{Gottlieb: hep-lat/0112038v1}. The application uses even-odd checkerboarding, which reduces possible reuse of data in cache. Even the single CPU benchmarks are done with a fully parallel application that splits the computation within \bar{D} into two stages to accommodate the need to wait for boundary values that would come from another node in a multiCPU run. This also reduces potential cache reusage. On some of the architectures, we make use of assembly code for basic $SU(3)$ arithmetic routines or for prefetching data to cache. We use Kogut-Susskind quarks for benchmarking because they are used in our dynamical quark calculations. KS quarks are more demanding than Wilson quarks in terms of memory bandwidth. In single precision, the former require 1.45 bytes/flop of input data and produce 0.36 byte/flop of output. For Wilson quarks only 0.91 bytes/flop of input is required and output is unchanged. Thus, it should not be surprising to find that a Wilson quark code can achieve higher speed than reported here \footnote{At Fermilab until June 15, 2002}.

2. ARCHITECTURES

Since August 2000, MILC has been working with Intel and NCSA under a non-disclosure agreement to tune our code for the Itanium processor. In December 2000, we were allowed to report first results without assembly code \footnote{At Fermilab until June 15, 2002}. Some limited results with assembly code were reported at Linux World last January. We may now talk more freely about results on Itanium.

MILC has had several months of production running on the initial Terascale Computer System at the Pittsburgh Supercomputer Center. It is based on Compaq ES40 nodes that contain 667 MHz EV67 Alpha chips. The full 6 TF computer will be based on 1000 MHz EV68 chips. At the end of March, we were given access to the first ES45 node at PSC that contains that chip.

IBM SP tests have been run on either the Indiana University SP or Blue Horizon at SDSC. They have 375 MHz Power 3 chips deployed on 4-way and 8-way SMP nodes, respectively.

During the Spring, we had access to a 1.5 GHz Pentium IV system and a dual 1.2 GHz Athlon system, thanks to NCSA and Penguin Computing, respectively.

3. CODE CHANGES

The work on the Itanium processor was carried out in conjunction with two Intel engineers, Gaantham Doshi and Brian Nickerson. Doshi worked on in-lining and optimizing compiler flags for the
C code. Nickerson wrote assembly code that includes prefetching and looping over sites. The changes described next have not yet been tried on Itanium.

The MILC code data structure is “site major,” i.e., there is a structure for each site that contains all the physical variables for that site. The lattice is an array of site structures. Adding variables to the application is quite easy: One only needs to modify the site structure, and when the lattice is allocated, the new variables will be globally accessible. This Spring, we tested performance enhancements from temporary allocations of “field major” variables for the conjugate gradient routine. On chips with wider cache lines, this results in substantial speedups. The gauge fields and necessary vectors are copied to temporary variables that are much better localized in memory. If a cache line contains data not needed for the current site, it is most likely the data required for the next site to be computed, rather than a different physical variable, as would be found in the next bytes of the site structure. I suggested these changes to Dick Foster, of Compaq, who implemented them and improved prefetching.

4. SINGLE NODE RESULTS

The benchmarks presented here were run on lattices of size L^4. They are all for single precision gauge links and vectors, with dot products accumulated in double precision. The fermion matrix is either for the Kogut-Susskind (KS) or fat-link plus Naik (fat-Naik) action [5]. For production runs, we are using the “Asqtad” action [6]. (The performance of the inverter is independent of the details of the fattening).

4.1. Itanium

Results on Itanium without assembly code were presented at CCP2000 [7], and are available on the web. With an 800 MHz processor, performance was 916, 867 and 732 MF for $L = 4$, 6 and 8, respectively. Because of memory access issues, performance drops to 326 MF for $L = 14$. With Nickerson’s assembly code, the numbers are quite impressive. We have 1223, 1139 and 938 MF for $L = 4$, 6 and 8, respectively, and even for $L = 14$, we achieve 464 MF. The field major code has not yet been tried on Itanium.

4.2. Alpha

In Table 1, we compare the performance of the old site major code with the new field major code. We present results for both the 667 MHz EV67 chips in the ES40 and the 1000 MHz EV68 chips in the ES45. We can see substantial speedups both from the newer processor and the code improvement. Currently, Itanium is the performance leader for smaller L, while Alpha leads for large L. Of course, the codes are different and considerable work would be required to combine both the benefits of assembly code (with loop control) and field major organization on each chip.

4.3. Power 3

The IBM SP really benefits from the new field major code. Table 2 shows the performance and speedup for various L. The substantial falloff with increasing L has been greatly ameliorated, and the overall performance level has increased substantially even for small L. These results and the corresponding multinode results were obtained on the Indiana University SP. Now let’s turn to the commodity processors.

Table 1	Megaflop rate on Alpha Processors		
L	ES40 site major	ES40 site major	ES40 field major
---------	-----------------	-----------------	-----------------
6	517	731	977
8	495	701	843
10	395	548	934
12	249	395	778
14	253	347	609

Table 2	Megaflop rate and speedup on IBM SP		
L	site major	field major	speedup
---------	------------	-------------	---------
4	512	663	1.29
6	458	705	1.54
8	391	682	1.74
10	215	557	2.58
12	158	528	3.35
14	135	449	3.32
Table 3
MegaFlop rate and speedup on 1.5 GHz PIV

L	site major	field major	speedup
4	591	577	0.98
6	240	503	2.10
8	220	481	2.19
10	208	491	2.36
12	205	480	2.34
14	202	469	2.33

Table 4
MegaFlop rate per CPU on dual 1.2 GHz Athlon MP system

L	site m.	site m.	field m.	field m.
	single	dual	single	dual
4	590	464	654	457
6	203	167	336	236
8	176	142	298	232
10	170	134	289	228
12	165	132	287	239
14	166	133	281	218

4.4. Intel IA32 and AMD

Both Pentium IV and AMD Athlon MP processors show excellent speedup on the new field major code. Details appear in Tables 3 and 4. For the Athlon we had a dual CPU system and show results for both one and two processors. The Pentium IV is performing at almost 500 MF even for $L = 8$ and greater. It is not as fast as the previous chips discussed, but it is certainly very cost effective. The Athlon system has DDR memory rather than Rambus (RDRAM). One can see that for $L = 4$ for which the problem fits in cache, the Athlon, despite its slower clock speed out performs the Pentium IV. However, for larger L, access to memory becomes crucial and the Pentium IV excels. It would be interesting to try a Pentium IV motherboard that uses DDR memory. On the dual Athlon system the Fat-Naik inverter was benchmarked and found to be 10–20 MF faster than KS [1].

5. MULTINODE RESULTS

The program Netpipe has been used to compare message passing speeds of Fast Ethernet, Myrinet, Scali, Quadrics and the IBM SP network. Fast Ethernet only achieves 20–60 Mbit/s for messages of the size needed during the conjugate gradient (800–30K bytes). The other networks, except for Quadrics are about a factor of 10 faster. Quadrics is about an additional factor of two faster.

Tables of results are available [1] for ES45 with up to four CPUs, the ES40 with up to 256 CPUs, the IBM SP with up to 256 CPUs, the prototype Itanium cluster with up to 16 CPUs, the Pentium (Pentium III) cluster with up to 128 CPUs and a Pentium II cluster with Scali interconnect.

Here we just display results for $L = 8$. The table indicates whether the code was site major or field major. Scali is limited by the power of the CPU. Results on larger numbers of ES45 and Itanium nodes should be available in late October.

Thanks to Compaq, Intel, NCSA, Penguin Computing, PSC, SDSC, UITS and the MILC Collaboration.

REFERENCES

1. S. Gottlieb, http://physics.indiana.edu/sg/lattice01/.
2. S. Gottlieb et al., Phys. Rev. D 35 (1987) 2531.
3. M. Lüscher, these proceedings, [hep-lat/0110007](http://arxiv.org/abs/hep-lat/0110007).
4. S. Gottlieb, http://physics.indiana.edu/sg/ccp2000/, Comp. Phys. Comm., to appear, [hep-lat/0112026](http://arxiv.org/abs/hep-lat/0112026).
5. S. Naik, Nucl. Phys. B316 (1989) 238.
6. K. Orginos, D. Toussaint and R.L. Sugar,
Phys. Rev. D 60 (1999) 054503, hep-lat/9903032. G. P. Lepage, ibid, 59 (1999) 074502, hep-lat/9809157.