The Influence of Cr doping on the Structural and Magnetic Properties of HoMnO$_3$ Multiferroic Ceramics

J. F. M. Ibrahim1,2,3, A. Mergen1, Umut Parlak1,4, Emese Kurovics2

1Department of Metallurgical and Materials Engineering, Marmara University, Turkey.
2Department of Materials Sciences and Engineering, University of Miskolc, Hungary.
3Department of Materials Technology, University of Bahri, Sudan.
4Peter Grünberg Institute, Research Centre Jülich, Jülich, Germany.

jamalfadoul@gmail.com, fememese@uni-miskolc.hu, umut.parlak@marmara.edu.tr

Abstract. In this research single-phase Cr-doped HoMnO$_3$ ceramics were synthesized via solid state reaction method. The structural and magnetic characteristics of the prepared samples were examined using various characterization techniques, including x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and vibrating sample magnetometer (VSM). All samples exhibit single phase that emphasized by SEM and XRD. Magnetic properties of the prepared samples at low temperature (10K) showed the presence of different magnetic characteristics. The change in magnetic behavior could probably occur due to slight decrease in the unit cell volume that leads to a structural distortion in the lattice. Cr-doped HoMnO$_3$ could be a good candidate with a better ferromagnetic property for practical multiferroic applications.

1. Introduction

Nowadays the research, development and applications of ceramic materials are the most fast growing field of material science [1-16]. Multiferroic materials which show coexistence of (anti) ferromagnetic and ferroelectric orders have achieved a great deal of interest for many years [17-19]. In principle, these materials could enable single device components to perform multiple functions [20]. Due to magnetoelectric effect in these materials many expected technical applications are recommended such as, future multiple-state memory technologies, traditional magnetic data storage tools and high-density low-power data storage devices [21]. Furthermore, they could be applied in various ways for sensors, transducers as well as fiber optical communications [22]. Although these materials are highly interesting, different challenges have emerged in dealing with multiferroicity, which hinder the practical applications of these materials, the first dilemma is that multiferroic materials are rare and normally show small coupling of multiferroic characteristics or exist only at low temperatures [23]. Also, synthesizing these kind of materials normally produces a mixture of the main phase along with other impurity phases [24]. To address these obstacles, intensive work has been done to discover new single phase multiferroic materials, as well as to improve the multiferroic properties through doping processes.

Single-phase rare-earth manganites are one of the well-known multiferroic materials, it is of huge interest in the context as different cations can be chosen in order to combine magnetic and polar properties. The multiferroic phenomenon normally occurs in perovskite-structure oxide [25]. In these materials multiferroic properties can be enhanced through A-site doping which is a partial replacement in the rare-earth site, or B-site doping which is a partial replacement in manganese site.
Multiferroic behavior has been reported in hexagonal and orthorhombic $\text{RE}_3\text{Mn}_2\text{O}_5$ [28, 29] and some other compounds lately. Strong enhancement of magneto-electric coupling has been reported in Dy$^{3+}$ doped HoMnO$_3$, Fe-substituted Mn in YMnO$_3$ and ErMnO$_3$ respectively [30-32]. Moreover, substantial changes in the electric and magnetic properties have been observed in Yttrium doped GdMnO$_3$ [33]. Since HoMnO$_3$ (HMO) compounds in either the orthorhombic or hexagonal structure are multiferroic and exhibiting both antiferromagnetic and ferroelectric order below antiferromagnetic transition temperature, Cr-doped HMO samples may become interesting due to formation of ferromagnetism of Mn moments and structural distortion in the lattice, which can enhance the dipole ordering. Cr-doped HMO samples could be the promising candidate for multiferroic applications performing good ferroelectric and ferromagnetic properties. As far as is concerned, the effect of Cr doping in HoMnO$_3$ will be performed first time in the literature. This research work aims at substituting Cr into Mn site in the HoMnO$_3$ to produce single phase perovskite multiferroic ceramics.

2. Experimental methods

2.1. Synthesis of HoMn$_{1-x}$Cr$_x$O$_3$

Single-phase HoMn$_{1-x}$Cr$_x$O$_3$ ($x=0.2$ and 0.8) bulk ceramic materials were prepared by conventional solid state synthesis technique. A high purity Ho$_2$O$_3$ (99.9%; Alfa Aesar), Mn$_2$O$_3$ (98%; Alfa Aesar) and Cr$_2$O$_3$ (99.9%; Alfa Aesar) powders were used as reactants. Stoichiometric proportions of these powders were milled to obtain a homogeneous mixture of green powder of fine particle size. The green powder was then mixed in ethanol in a plastic container using zirconium balls for 6 hours. Two different compositions were prepared; HoMn$_{1-x}$Cr$_x$O$_3$ where $x=0.2$ and 0.8. After drying the liquid mixture in an oven at 95°C for 24 h, the powder mixture was calcined at 600°C for 10 h, then ground in a mortar to refine particles and sintered at different temperatures between 1100-1350°C for 10 h with a heating and cooling rate of 5°C/min to obtain the phases development. Part from the powders were used to produce dense cylindrical pellets with radius about 5 mm and thickness 2 mm, using pressing device with pressure of 10 MPa. Heat treatment was carried out in a high temperature programmable furnace at 1400°C for 24 h with a heating and cooling rate of 2°C/min.

2.2. Characterization

The structural properties of the sintered ceramic materials were investigated using a Bruker D2 PHASER powder x-ray diffractometer, operated in the Bragg-Brentano geometry with Cu Kα radiation at 1.54 Å in the angular range of 10° ≤ 2θ ≤ 70° with a scanning rate of 1°/min and a step size of 0.01016°. FullProf/Rietveld software was used for computer based examination. Microstructures of the sintered samples were studied using scanning electron microscopy (SEM, JEOL5910 LV) with different magnification values using secondary and back-scattered electrons and surface analyses of samples were investigated by energy dispersive X-ray spectrometer (EDX). Furthermore, the magnetic measurements of Cr doped HoMnO$_3$ samples were made at low temperature (10 K) using the vibrating sample magnetometer (VSM).

3. Results and discussion

3.1. Structures

Figure 3.1 shows the XRD pattern of B-site doped HoMn$_{1-x}$Cr$_x$O$_3$ ($x=0.2$, 0.8) ceramics carried out at ambient temperature. The unit cell parameters were obtained using FullProf/Rietveld software. The observed and standard diffraction peaks from Inorganic Crystal Structure Database showed good matching and no additional peaks were seen. Rietveld refinements on all the samples confirmed the synthesizing of pure single-phase perovskite structure crystallized in an orthorhombic structure (Figures 1, 2 and 3).
Figure 1. Room temperature XRD patterns of HoMn_{1-x}Cr_xO_3 ceramics compound (x=0.2 and 0.8) sintered at 1350°C.

Figure 2. XRD pattern for HoMn_{1-x}Cr_xO_3 ceramics sample at (x=0.2) Rietveld fit agreement factors are Rp= 56.8, Rwp = 37.0, Chi2=3.48.

Figure 3. XRD pattern for HoMn_{1-x}Cr_xO_3 ceramics sample at (x=0.8) Rietveld fit agreement factors are Rp= 73.4, Rwp = 48.0, Chi2=4.32.
The most important notice to be made here is that a close investigation of the peaks shows a presence of a shift in the peak positions to the higher angles with increasing the amount of doping elements. This feature agrees with Vegard’s law [34], as the replacement of large radius Mnq+ ion (rMn= 1.79 Å) by smaller Crq+ (rCr=1.18 Å) result on decrease in the unit cell volume that may cause a slight distortion in the lattice and a modification of the crystal structure. This latter might be a crucial factor controlling the magnetic behavior of the material. FullProf/Rietveld software was used to evaluate the unit cell parameters (Table 1). With increasing the amount of Cr the units cell volume is decreasing due to the smaller ionic radius of Cr (1.18 Å) compared to Mn (1.79 Å).

Table 1. Lattice parameters resulted from refinement procedure of powder XRD pattern of HoMn\textsubscript{1-x}Cr\textsubscript{x}O\textsubscript{3} ceramics compound (x=0.2, 0.8).

Composition	a (Å)	b (Å)	c (Å)	Volume (Å3)	Space group
HoMnO\textsubscript{3}	5.2700	5.8400	7.360	226.52	Pnma
HoMn\textsubscript{0.8}Cr\textsubscript{0.2}O\textsubscript{3}	5.2720	5.7950	7.380	225.45	Pnma
HoMn\textsubscript{0.2}Cr\textsubscript{0.8}O\textsubscript{3}	5.2277	5.5080	7.508	215.92	Pnma

3.2. Scanning electron microscopy (SEM) and EDS investigation of HoMn\textsubscript{1-x}Cr\textsubscript{x}O\textsubscript{3}

Microstructure investigations of Cr-doped HoMnO\textsubscript{3} are carried out by SEM and shown in Fig. 4(a), (b), (c) and (d). From the secondary and backscattered SEM photographs of the two samples (HoMn\textsubscript{0.8}Cr\textsubscript{0.2}O\textsubscript{3} and HoMn\textsubscript{0.2}Cr\textsubscript{0.8}O\textsubscript{3}), it is clearly visible that there is no any phase contrast, which is a good indication for the formation of the single phase. The grain sizes of the prepared samples were between 2-4 μm and 1-3 μm respectively, showing that the grains sizes were decreasing when the doping concentration were increased.

The results of EDS analysis taken from grains of HoMn\textsubscript{0.8}Cr\textsubscript{0.2}O\textsubscript{3} and HoMn\textsubscript{0.2}Cr\textsubscript{0.8}O\textsubscript{3} showed that the theoretical weight percentages were near to the calculated values. Au and Pd were due to coating made on the samples.

![Figure 4](image-url)
Figure 4. SEM micrographs of Cr doped HoMnO\textsubscript{3} sample at ×5.000
a) SEI of HoMn\textsubscript{0.8}Cr\textsubscript{0.2}O\textsubscript{3},
b) BEI of HoMn\textsubscript{0.8}Cr\textsubscript{0.2}O\textsubscript{3},
c) SEI of HoMn\textsubscript{0.2}Cr\textsubscript{0.8}O\textsubscript{3} and
d) BEI of HoMn\textsubscript{0.2}Cr\textsubscript{0.8}O\textsubscript{3} samples (HoMn\textsubscript{1-x}Cr\textsubscript{x}O\textsubscript{3} ceramic where x=0.2 and x=0.8).
Elements	O	Cr	Mn	Ho	Total
Wt (%)	13.11	6.95	13.51	66.43	100.00
Calculated (Wt %)	17.95	3.89	16.44	61.70	100.00

Figure 5. EDS analysis Cr doped HoMnO₃ samples a) EDS analysis of HoMn₀.₈Cr₀.₂O₃ and b) EDS analysis of HoMn₀.₂Cr₀.₈O₃ sample (Tables show the theoretical weight fractions of the elements and practical values from EDS results).

3.3. Magnetic properties

The magnetic characteristics of HoMnₓ⁻¹⁻⁻CrₓO₃ (x = 0.2, 0.8) multiferroic ceramics were studied at low temperature (10 K) to reveal the influence of Cr doping in the magnetic behaviors. Magnetization of HoMn₀.₈Cr₀.₂O₃ and HoMn₀.₂Cr₀.₈O₃ at 10 K as a function of magnetic field (M–H) is shown in Fig. 5. The enhancement in the magnetization of HoMn₀.₅Cr₀.₅O₃ multiferroic ceramic might be attributed to the change in canting angle [35] or suppression of the complicated spiral spin structure [36] along with coupling interaction between the Mn³⁺ and Cr³⁺ ions in the sample [37].
Figure 6. The magnetic hysteresis loops of HoMn\textsubscript{1-x}Cr\textsubscript{x}O\textsubscript{3} ceramics compound (0.2 and 0.8) sintered at 1350°C

4. Conclusion
The work in this research verifies the influence of B-site doping on the structural and magnetic properties of bulk HMO multiferroic ceramics. Through tuning the reaction conditions such as, sintering temperature and the chemical synthesis procedure, a variety of single phase orthorhombic HoMn\textsubscript{1-x}Cr\textsubscript{x}O\textsubscript{3} bulk samples with different morphologies, structure and compositions were successfully prepared via conventional solid state reaction route at ambient conditions, all samples showed distorted orthorhombic perovskite structures with space group Pnma. The produced doped samples exhibit significant change of the magnetic characteristics probably due to the structural distortion.

5. Acknowledgments
We would like to express our massive thank to Prof. Ayhan MERGEN, for all the help and academic guidance he has contributed to this work, who unfortunately passed away, may his soul rest in peace. We also like to thank Turkish government for their financial support in this research.

"The described study was finalized as part of the EFOP-3.6.1-16-2016-00011 "Younger and Renewing University – Innovative Knowledge City – institutional development of the University of Miskolc aiming at intelligent specialization" project implemented in the framework of the Szechenyi 2020 program. The realization of this project is supported by the European Union, co-financed by the European Social Fund."

"The described study was finalized as part of the EFOP-3.6.1-16-2016-00011 "Younger and Renewing University – Innovative Knowledge City – institutional development of the University of Miskolc aiming at intelligent specialization" project implemented in the framework of the Szechenyi 2020 program. The realization of this project is supported by the European Union, co-financed by the European Social Fund."
References

[1] L A Gömze, L N Gömze 2008 Ėpítőanyag–JSBCM 60 (4) 102 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2008.16

[2] L A Gömze, L N Gömze 2009 Ėpítőanyag–JSBCM 61 (2) 38 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2009.7

[3] L A Gömze, L N Gömze 2010 Ėpítőanyag–JSBCM 62 (4) 98 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2010.18

[4] L A Gömze 2010 Mater. Sci. Forum 659 19 http://dx.doi.org/10.4028/www.scientific.net/MSF.659.19

[5] L A Gömze, L N Gömze 2011 IOP Conf. Ser.: Mater. Sci. Eng. 18 082001 http://dx.doi.org/10.1088/1757-899X/18/8/082001

[6] L A Gömze, L N Gömze 2013 IOP Conf. Ser.: Mater. Sci. Eng. 47 012033 http://dx.doi.org/10.1088/1757-899X/47/1/012033

[7] N Savchenko, L A Gömze, S N Kulkov 2014 AIP Conference Proceedings 1623 (1) 547 http://dx.doi.org/10.1063/1.4899003

[8] S N Kulkov, S R Buyakova, L A Gömze 2014 Ėpítőanyag–JSBCM 66 (1) 2 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2014.1

[9] A S Apkaryan, S N. Kulkov and L A Gömze 2014 Ėpítőanyag–JSBCM 66 (2) 38 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2014.8

[10] N L Savchenko, I N Sevastyanova, T Yu Sablina, L Molnár, R Géber, L A Gömze, S N Kulkov, L N Gömze 2014 Ėpítőanyag–JSBCM 66 (2) 44 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2014.9

[11] L A Gömze, L N Gömze, S N Kulkov, I L Shabalina, I Gotman, F Pedraza, L G Lecomte, T Mayorova, E Kurovics, A Hamza 2015 Ėpítőanyag–JSBCM 67 (4) 149 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2015.24

[12] L A Gömze 2016 Applied Materials Science I. Compilation of Selected Scientific Papers, Published by IGREX Ltd, Hungary ISBN 978-963-12-6600-9

[13] L A Gömze, L N Gömze 2017 IOP Conf. Ser.: Mater. Sci. Eng. 175 012001 http://dx.doi.org/10.1088/1757-899X/175/1/012001

[14] E Kurovics, A Shmakova, B Kanev, L A Gömze 2017 IOP Conf. Ser.: Mater. Sci. Eng. 175 012013 http://dx.doi.org/10.1088/1757-899X/175/1/012013

[15] L A Gömze 2018 Applied Materials Science II. Compilation of Selected Scientific Papers, Published by IGREX Ltd, Hungary ISBN 978-615-00-3118-7

[16] A Y Buzimov, S N Kulkov, L A Gömze, R Géber, I Kocserha 2018 Inorg. Mater. Appl. Res. 9 910. https://doi.org/10.1134/S2075113318050040

[17] W Eerenstein, N D Mathur, and J F Scott 2006 Nature 442 (7104) 759 https://doi.org/10.1038/nature05023

[18] T Kimura, T Goto, H Shintani, K Ishizaka, T H Arima, and Y Tokura, 2003 Nature 430 (6962) 55 https://doi.org/10.1038/nature02018

[19] T Lottermoser, T Lonkai, U Amann, D Hohlwein, J Ihringer, and M Fiebig, 2004 Nature 430 (6962) 55 https://doi.org/10.1038/nature02728

[20] D P Norton 2009 Synthesis and Characterization of BaFeO₃,(Ba, Bi)FeO₃, and Related Epitaxial Thin Films and Nanostructures https://apps.dtic.mil/dtic/tr/fulltext/u2/a510215.pdf

[21] L Gerhard, T K Yamada, T Balashov, A F Takács, R J H Wesselink, M Däne, M Fechner, S Ostanin, A Ernst, I Mertig, and W Wulfhekel, 2010 Nature Nanotechnology 5 (11) 792 https://doi.org/10.1038/nnano.2010.214

[22] Y N Venevtsev, V V Gagulin and I D Zhitomirsky 1987 Ferroelectrics 73 (1) 221
[23] J W Kim, K Nenkov, L Schultz, K Dörr 2009 *Journal of Magnetism and Magnetic Materials* **321** (11) 1727 https://doi.org/10.1016/j.jmmm.2009.02.007

[24] A Ghazala 2011 Multiferroic properties of Mn doped La$_{0.8}$Bi$_{0.2}$FeO$_3$ system and effect of SHI irradiation http://hdl.handle.net/10603/12935

[25] A K Kundu, R Ranjith, B Kundys, N Nguyen, V Caignaert, V Pralong, W Prellier, and B Raveau, 2008 *Applied Physics Letter* **93** (5) 052906 https://doi.org/10.1063/1.2961022

[26] Z J Huang, Y Cao, Y Y Sun, Y Y Xue, C W Chu, C.W. 1997 *Journal of Physical Review B* **56** (5) 2623 https://doi.org/10.1103/PhysRevB.56.2623

[27] B Lorenz, Y Q Wang, Y Y Sun, C W Chu 2004 *Journal of Physical Review B* **70** (21) 212412 https://doi.org/10.1103/PhysRevB.70.212412

[28] D Higashiyama, S Miyasaka, N Kida, T Arima, Y Tokura 2004 *Journal of Physical Review B* **70** (17) 174405 https://doi.org/10.1103/PhysRevB.70.174405

[29] S Kobayashi, T Osawa, H Kimura, Y Noda, I Kagomiiya, K Kohn 2004 *Journal of the Physical Society of Japan* **73** (6) 1593 https://doi.org/10.1143/JPSJ.73.1593

[30] J Magesh, P Murugavel, R V K Mangalam, K Singh, C Simon and W Prellier 2012 *Applied Physics Letters* **101** (2) 022902 https://doi.org/10.1063/1.4733367

[31] B B Van Aken, T T Palstra, A Filippetti, N A Spaldin 2004 *Journal of Nature materials*, **3** (3) 164 https://doi.org/10.1038/nmat1080

[32] P Liu, Z X Cheng, X L Wang, Y Du, Z W Yu, X X Dou, H Kimura 2012 *Journal of Nanoscience and Nanotechnology* **12** (2) 1238 http://works.bepress.com/sxdou/449/

[33] N V Andreev, T A Sviridova, N Y Tabachkova, V I Chichkov, Y M Mukovskii 2012 *Journal of Russian Microelectronics* **41** (8) 511 https://doi.org/10.1134/S1063739712080033

[34] L Vegard 1921 *Journal of Zeitschrift für Physik*, **5** (1) 17

[35] J A Wang, H Scholl, S B Zheng, D Ogale, D G Viehland, N A Schlom, Spaldin et al. 2005 *Science* **307** (5713) 1203 https://doi.org/10.1126/science.1103959

[36] P Uniyal, and K L Yadav 2009 *Journal of Physics: Condensed Matter* **21** (40) 405901. https://doi.org/10.1088/0953-8984/21/40/405901

[37] L Bingcheng, C Chang-le and J Ke-xin 2011 *Solid State Communications* **151** (9) 712 https://doi.org/10.1016/j.ssc.2011.02.014