Review on Ethno-botany, Virucidal Activity, Phytochemistry and Toxicology of Solanum genus: Potential Bio-resources for the Therapeutic Management of Covid-19

Koto-te-Nyiwa Ngbolua¹,², Clement M. Mbadiko¹, Aristote Matondo³, Gideon N. Bongo¹,², Clement L. Inkoto¹, Benjamin Z. Gbolo¹,², Emmanuel M. Lengbiye¹, Jason T. Kilembe³, Domaine T. Mwanangombo³, Etienne M. Ngoyi³, Clarisse M. Falanga¹, Damien S. T. Tshibangu³, Dorothee D. Tshilanda³ and Pius T. Mpiana³*

¹Department of Biology, Faculty of Sciences, University of Kinshasa, P.O.Box 190, Kinshasa XI, Democratic Republic of the Congo.
²Department of Basic Sciences, Faculty of Medicine, University of Gbado-Lite, P.O.Box 111, Gbado-Lite, Democratic Republic of the Congo.
³Department of Chemistry, Faculty of Sciences, University of Kinshasa, P.O.Box 190, Kinshasa XI, Democratic Republic of the Congo.

Authors’ contributions

This work was carried out in collaboration among all authors. Authors CMM, KNN and PTM wrote the first draft of the manuscript. Authors BZG, JTK, DSTT, CLI, EML, DTM and CMF collected information on plants bioactivity. Authors AM, EMN and DDT collected information on plant phytochemistry. All authors read and approved the final manuscript.

ABSTRACT

Background and Aim: Condiment plants are not only a source of food, flavors or food additives but also antivirals. The aim of the present work consisted in compiling ethno-botanical, phytochemical, toxicological and biological activities literature data reported on some species of the Solanum genus, precisely their antiviral potential.
Methodology: The literature review was based mainly on the usual databases such as PubMed, PubMed Central, Science Direct, SCIELO, DOAJ, Science alert and Google scholar.

Results: The ethnobotanical studies show that Solanum species are used in traditional medicine for the treatment of several ailments, particularly those affecting the respiratory system. With regard to studies on their bioactivity, the literature indicates that the Solanum genus is full of species used in food and/or traditional medicine, in most cases presenting several biological properties such as antiviral potential. Among the viruses sensitive to extracts from Solanum species, are: Herpes virus type 1 or 2, viral hepatitis virus and HIV. Some phytochemical studies identified several compounds responsible for the antiviral activity, but polyphenolic compounds precisely glycoalkaloids have been shown to interact with SARS-CoV-2 protease such as quercetin, kaempferol and apigenin in some Solanum species (S. melongena, S. nigrum and S. torvum). Furthermore, the immunostimulant, haematopoietic or antioxidant potentials of some species of Solanum genus would be an asset for the management of Covid-19. There is little or no information in the literature on the toxicity of Solanum species used as food or drugs in traditional medicine.

Conclusion: The antiviral activity of Solanum species is linked to the presence of polyphenolic compounds. It is advisable to consume these Solanum species which are less toxic during this pandemic as they are considered to be nutraceuticals. Molecular docking study of the interaction of these compounds with SARS-CoV-2 protease is in progress.

Keywords: Solanum sp; Covid-19; antiviral activity; SARS-CoV-2; phytochemicals.

1. INTRODUCTION

Viral diseases are the major sources of death worldwide and significantly affect global health. This is the case with Covid-19, a disease caused by a virus called, SARS-CoV-2. This is a new strain of coronavirus identified in Wuhan, China in 2019. Covid-19 is a pandemic currently considered as a global health problem and is responsible for thousands of deaths worldwide. No specific treatment or vaccine has been developed so far though some are still in clinical trials [1]. Given the difficulties in finding an effective vaccine in record time and the inaccessibility to poor populations to the conventional drugs proposed for the treatment of Covid-19, it is imperative during this calamitous period of international mourning to conduct investigations to identify plants that could be used against this disease. Moreover, the possible emergence of new strains resistant to the proposed drugs, the high cost of these antivirals or their side effects raise the need to identify new effective and safe alternatives against Covid-19 [2,3]. The exploration of the plant kingdom constitutes for researchers nowadays an unavoidable path for the discovery or development of new antivirals. However, medicinal plants are widely used to cure various infectious diseases in humans and can serve as a source of new antiviral therapeutic agents due to the presence of various bioactive compounds [4,5]. Parvez [6] reported that 21,000 plants are used in traditional medicine and about 30% of these plants are exploited directly or indirectly for the manufacture of modern medicines. In the current work, Solanum genus of Solanaceae family was the main focus of this review. In fact, the solanaceae family is one of the most important angiosperms families from an economic and medical point of view [6,7]. It comprises 90 genera and about 3000 species [6,8]. However, Solanum genus appears to be the hyper-diverse taxon of this family.

There are about 2000 species of Solanum worldwide, mainly distributed in the tropics and subtropics, with a small number in temperate zones [7]. This genus includes species that are important foods such as potatoes (S. tuberosum L.), tomatoes (S. lycopersicum L.) and eggplants (S. melongena L.) (Fig. 1). Others are used in traditional medicine (S. torvum Sw, S. americanum Mill, S. bulbocastanum Dunal, S. nigrescens Mart and Gal., etc.) [9]. According to Valadares et al. [10], Solanum species are generally used against herpes virus (human herpes virus type 1: HHV-1) or cancer. We believe that species of Solanum genus used in the treatment of pathologies from viral origin or from which antiviral properties have been revealed by previous studies (S. melongena, S. tuberosum, S. torvum, S. nigrum). These constitute potential sources of compounds against Covid-19, since the active principles of plants are capable of acting on multiple targets. Henceforth, data from ethno-botanical and phytochemical studies as well as biological
activities of some commonly used species of Solanum genus, with particular emphasis on their antiviral activities can help to promote the use of Solanaceae species against Covid-19 as nutraceuticals. The aim of this study is to summarize plant species of Solanum genus and their secondary metabolites with antiviral properties, which can also prevent human against Covid-19.

2. METHODOLOGY
Various databases were used for the search of information on Solanum species, namely PubMed, PubMed Central, Science Direct, SCIELO, DOAJ, Science alert, semantic scholar and Google scholar. In addition to the scientific names of the species of Solanum genus, other keywords were used during the search: antiviral compounds, Virucidal/antiviral activity and toxicology.

3. RESULTS AND DISCUSSION
3.1 Results
3.1.1 Ethno-botanical study
The species of the genus solanum have different uses in the traditional medicine (Table 1).

3.1.2 Biological properties
Data on the biological properties of some species of Solanum are presented (Table 2).

Different viruses susceptible to extracts of Solanum species as well as some antiviral ingredients isolated from these species were studied (Table 3).

3.1.3 Phytochemical studies
Phytochemical results for Solanum species are recorded in the Table 4.

3.1.4 Toxicological studies
Many studies reports that solanaceous species used as ornamentals are in most cases considered toxic [8,38]. Meanwhile, others authors state that unripe fruits of some edible Solanum species (e.g. S. nigrum) are toxic [18]. Fouzia [18] and Chauban et al. [34] assert that the variety of S. nigrum with black fruits is toxic; only the reddish-brown fruits are used for edible purposes. On the other hand, it has been shown that glycoalkaloids present in most species of the Solanum genus are potentially toxic [11]. However, several toxicological studies on glycoalkaloids from members of the Solanaceae were carried out in different animal models like in rats, mice, hamsters and rabbits. The LD₅₀ for solanine, chaconine and tomatin in mice were 27, 30 and 34 mg/kg body weight intraperitoneally, respectively, and for most animals. Furthermore, other studies reveal that solanidanes appear to be more toxic than their corresponding spirosolanes, solamargine, solasonine and solasodine [11]. It should be noticed that there is little or no information on the toxicity for Solanum edible species and/or those used in traditional medicine to humans [11].

3.2 Discussion
3.2.1 Ethno-botanical studies
Several species of Solanum are used in traditional medicine in different countries around the world (Table 1). Many of the studies focused on the following species: S. melongena, S. macrocarpon, S. nigrum, S. aethiopicum, S. paniculatum, S. torvum, S. trilobatum, S. maunse, S. palinacanthum, S. incanum, S. xanthocarpum, S. tomentosum, S. indicum, S. nigrescens, S. Erythracanthu, S. americanum and S. tuberosum.
Scientific names	Uses	Parts used	References
S. melongena L.	Treatment of asthma, bronchitis, cholera and dysuria or as analgesic, expectorant, sedative, etc. the leaves are applied to ulcers, wounds, and inflammations or used for skin pathologies while the fruits are used for the treatment of diabetes, diarrhea, and eye diseases or as an antipyretic. The young shoots are administered for skin diseases and psoriasis. The root bark is laxative, useful in ear, eye and nose diseases or for ulcers, throat burns and inflammation of the liver. Seeds are laxative etc.	All parts	[11,12]
S. macrocarpon L	asthma, allergic rhinitis, nasal catarrh, skin infections, rheumatic disease, swollen joint pains, gastro-esophageal reflux disease, constipation, dyspepsia	Nd	[13]
S. nigrum L.	Treatment of mouth ulcers, hepatitis, pain, fever, cough, cold, skin diseases (psoriasis, ringworm, etc.), painful periods, diarrhea, eye diseases, or against tumours (liver cancer, etc.) and sexually transmitted diseases (STIs). It is also used as an anti-inflammatory, diuretic, anticonvulsant, antiulcer. Fruits, seeds and leaves are used for kidney problems, haemorrhoids and as an antifungal agent.	All parts	[14,15,16,4,17,18]
S. aethiopicum L.	It is used for the treatment of asthma, allergic rhinitis, nasal catarrh, skin infections, rheumatic disease, swollen joint pains, gastro-esophageal reflux disease, constipation, dyspepsia	Nd	[13,18]
S. paniculatum L.	Treatment of viral infections, bronchitis, cough, jaundice, arthritis, hepatitis and stomach disorders	Nd	[10]
S. torvum Sw.	Treatment of liver problems, cough, sore throat and stomach, seizures, epilepsy, diarrhoea, skin diseases, diabetes, toothache (tooth decay), sores, painful periods, jaundice, colds, pain, fever, stomach upset or as a sedative, diuretic, haemostatic or poison antidote. The fruits are used in the treatment of hypertension, cough, enlarged spleen and liver, anemia, or as an analgesic, The leaf juice and unripe fruits are used to reduce body, to strengthen the immunity of the body, haemostatic, haemopoietic or to treat wounds and female infertility	Leaves, fruit, roots	[19,20,21,22,23]
S. trilobatum L.	Hepatoprotective, treatment of lung cancer and respiratory diseases (asthma, coughs, colds, acute and chronic bronchitis etc.), tuberculosis, stomach ache, throat infections, flu, bone diseases (as it is rich in calcium), eosinophilia, constipation. It boosts memory and energy, improves fertility and vitality of men, improves blood circulation, The leaves is used to treat dullness in hearing by making ear drops, cancer of the mouth, uterus and throat, while the flower is used to treat rheumatism, constipation and gastritis problems.	Leaf, flower	[24,5]
Scientific names	Uses	Parts used	References
----------------------------------	--	------------	------------
S. mauense Bitter	Bitter Treatment of bacterial infections, cancer, tuberculosis, chest conditions, or used as an antihelmintic and purgative.	Nd	[25]
S. palinacanthum Dunal	Treatment of skin diseases	Nd	[26, 27]
S. incanum L.	Treatment of angina, headache, throat or stomach ache, painful periods, pain, rheumatism.	Nd	
S. xanthocarpum Schrad et Wendl	Treatment of gonorrhea, rheumatism, cough, asthma, catarrhal fever, and sore throat or used as an antihelmintic, antipyretic, laxative, anti-inflammatory, antiasthmatic, and aphrodisiac. The dried fruit decoction is used to treat cough, fever and heart disease.	Fruits, stems, flowers	[28, 15]
S. tomentosum L.	Treatment of syphilis, sore throat, boils.	Nd	[29]
S. indicum L.	Treatment of hypertension, diabetes	Nd	[15]
S. nigrescens M. Martens et Galeotti	Vaginal infections	Nd	[30, 31]
S. erythracanthum Bojer	Cough	Fruit	[31]
S. americanum Mill.	Sinusitis, flu, colds	Nd	[32]
S. tuberosum L	Bronchitis and other respiratory diseases	Nd	[32]

Legend: *nd*: Not determined
Table 2. Biological properties of some *Solanum* species

Scientific names	Biological properties	References
S. melongena L.	analgesic, antiviral, anti-inflammatory, antiasthmatic, anti-glaucome, hypoglycemic,	[11,12,13,33,35]
	hypolipidemic, cholesterol-lowering, antioxidant, antiallergic, antiangiogenic,	
	anticancer	
S. nigrum L.	Antioxidant, anti-tumorigenic, antiviral, antiinflammatory, hepato-protective, diuretic,	[18,23,34]
	antipyretic, anti-diabetic, antimicrobial, antihepatitis C, anti-helminthic, anticonvulsive,	
	anti-ulcer, anti-cancer, cardio-protective, analgesic, antidiabetic, immunosecretory,	
	antiulcerogenic activities, nephroprotective, angiotensin and serotonin receptor blocking activities.	
S. torvum Sw.	Antiviral, antibacterial, cytotoxic, antioxidant, antidiabetic, antiinflammatory,	[7,17,20,21,22,34,36]
	analgesic, anti-hypertensive, antipyretic, anti-diarrhoeic, anti-platelet, antitussive,	
	immunostimulant, hepato-protective, anti-convulsive, anti-tumour, cardiovascular,	
	nephroprotective, antiulcerogenic, systolic blood-pressure modification, cytotoxic,	
	sédatif, diurétique, enhanced cytotoxicity of some chemotherapy drugs in HT-29	
	human colorectal carcinoma cells, antinociceptive, antineoplastic, antimplantogenic	
	cardioprotective, antiulcerogenic	
S. trilobatum L.	Antioxidant, antidiabetic and antimicrobial	[5]
S. palinacanthum Dunal	Antibacterial, antifungal, antiviral	[26]
S. incanum L.	Antibacterial (*Staphylococcus aureus, Salmonella typhi, Vibrio, cholerae,* etc.)	[27]
S. xanthocarpum Schrad et Wendl.	Bronchodilator effect	[15]
S. tomentosum L.	Antimicrobial	[29]
S. indicum L.	Antihypertensive, anti-carcinogenic effects	[15]
Solanum nigrescens M. Martens et Galeotti	Vaginal infections	[30]
Table 3. Antiviral action of extracts from some *Solanum* species

Scientific names	Active compounds	Virus name	Mechanisms of action	References
S. paniculatum L.	Neotigogenin, Δ25 (27) tigogenin-3-O-β-Dglucopyranoside (steroidal saponins) Neotigogenin (steroidal saponins)	HHV-1 vaccinia virus HHV-1	Inhibits the viral replication	[10]
S. americanum Mill.	nd	HSV-1	Nd	[37]
S. melongena L.	Delphinidin-3-rutinoside (anthocyanin)	HSV-1	Inhibits the viral replication and reduces the expression of viral proteins	[2]
S. tuberosum L.	Pelanin (anthocyanin) Pelargonidin (anthocyanin) pelargonidin 3-p-coumaroylglucose-5-glucose (anthocyanin) pelargonidin 3-p-coumaroylglucose-5-malonylgluco (anthocyanin)	InfV A et B	Inhibits the attachment and adsorption of the virus in the host cell and/or Interacts with viral biomolecules	[2]
S. torvum Sw	Torvanol A (Isoflavonoids) Torvoside H (steroidal glycoside) Solasonine (glycoalkaloid)	HSV-1 et 2 HSV-1 HSV-1	Inhibits the viral replication	[21]
S. nigrum L.	Nd	HVC	Inhibits the expression or protease NS3	[16,34]
S. sanitwongsei W.G. Craib	nd	SINV	Nd	[14]
S. nodiflorum Jacq.	spirostanol-glycosides (saponins)	HSV-1	Nd	[38]
S. khasianum Clarke	Solamargine (glycoalkaloid)	VIH	Nd	[30]

Legend: Nd: Not determined, INSV: Sindbis virus, HVC: Hepatitis C virus, HSV-1 and 2: Herpes simplex virus types 1 and 2, InfV A and B: Influenza viruses A and B, HHV-1: Human herpes virus type 1, HIV: Human Immunodeficiency Virus
Table 4. Chemical composition of some *Solanum* species

Scientific name	Chemical composition	References
S. melongena L.	**Secondary metabolites** Phenols, anthocyanin, glycoalkaloids, α-chaconin, flavonoids (myricetin, quercetin, kaempferol, luteolin and apigenin), hydroxycinnamic acids, nasunin (anthocyanidin), ellagitannins, proanthocyanidins. **Macro and micronutrients** Fiber, proteins (comprising several necessary amino acids including: histidine, valine, isoleucine, leucine, Phe + Tyr, lysine, aspartate + asparagine, glutamine + serine, alanine, proline, arginine, glycine), lipids, carbohydrates, ascorbic acid or vitamin C, vitamins A, E, magnesium, calcium, sodium, potassium, selenium, manganese, zinc, copper, aluminium, iron.	[33,39,40]
S. aethiopicum L.	**Micro and macronutrients** Protein, fat, ash, crude fibre, carbohydrates, calcium, magnesium, iron.	[13]
S. macrocarpon L.	**Secondary metabolites** Alcaloids, saponins, tanins, terpenoids, **Micro and macronutrients** protein, fat, ash, crude fibre, carbohydrates, calcium, magnesium, iron	[13]
S. paniculatum L.	**Secondary metabolites** Alcaloids (jurubin, solanin, solanidin, and solamargin)	[10]
S. torvum Sw.	**Secondary metabolites** - Fruits: 3-O-acétyl-stigmasta-5,25-diène-2,3-diol, isoflavonoid, (torvanol A), steroidal glycoside (torvoside H, torvoside A), solanolactosides A et B (steroidal lactone saponin), sapogenin, steroid, chlorogenin, chlorogenin, solasodine. - Leaves: torvosides J, K, L, M, N, torvonine-B, Torvonine-A, hydroxy-(5α)-spirostanol glycosides, 22-β-O-spirostanol oligoglycosides, isoquercetin, rutin, kaempferol and quercetin **Macro and micronutrients** Proteins, lipids, carbohydrates, fibers, As, Fe Mn, Ca, Cu, Zn, vitamins A, C, B-carotene	[7,20,21,22]
S. nigrum L.	**Secondary metabolites** Tannins, flavonoids, steroids, saponins, glycoalkaloids (solamargine, solasonine, solanine, α and β-solamagrine, solasodinsolainidine, O-acetyl solasodine, soladulcoside A), saponins (degalactotigonin), polyphenolic compounds (gallic acid, catechin, protocatechuc acid, caffeic acid, epicatechin, rutin), tannins, diosgenin, gitogenin, etc. **Macro and micronutrients** Na, K, Ca, Mg, Fe, P et Zn	[15,17,18,34]
Scientific name	Chemical composition	References
-------------------------------	--	------------
S. tribolatum L.	Secondary and primary metabolites	[5]
	Glyco-alkaloids (solasoline), flavonoids, tannins, saponins, glycosides, terpenoids, proteins	
S. incanum L.	Secondary and primary metabolites	[25]
	carbohydrates, proteins, alkaloids, flavonoids, glycosides, saponins, tri-terpenes, tannins and steroids	
S. xanthocarpum Schrad et Wendl.	Secondary and primary metabolites	[28]
	carbohydrates, vitamin C, anthocyanin and solasonin	
Data from ethno-botanical studies indicated that several *Solanum* species are used in traditional medicine for the treatment of several diseases affecting the respiratory system. These diseases include asthma, cold or catarrh, which indicates the inflammation of mucous membranes located in the upper airways (nose, pharynx or throat), which sometimes characterize certain forms of influenza and the angina. Therefore, we believe that from the reported data that these plants used for the treatment of numerous pathologies affecting the respiratory system are considered as good candidates for the search of potential sources of active ingredients against Covid-19. Some upper respiratory tract pathologies are of viral origin like pneumonia (Coxackievirus group A or B), the common cold (entero-rhinovirus, adenovirus, parainfluenza virus, coronavirus), angina (enterovirus, adenovirus), laryngitis (parainfluenza virus), bronchiolitis (enterorhinovirus, respiratory syncytial virus, metapneumovirus, parainfluenza virus) or Covid-19 [41,42].

Despite the pathologies of the respiratory system, species of *Solanum* genus are also used in traditional medicine to treat infectious diseases such as: cholera, tuberculosis, Sexually Transmitted Infections (gonorrhoea, syphilis), vaginal infections, or helminth diseases along with diseases of the digestive system as well as metabolic diseases (diabetes, jaundice). It has to be noticed that (Table 2) *Solanum* species are also used as antipyretics, analgesic, antiulcerogenic, for the treatment of wounds or skin diseases, boils, female infertility, rheumatism, hepatitis, epileptic seizures, kidney problems, haemorrhoids, tooth decay, hypertension, enlarged spleen and liver. Also they might be immunostimulant, haemostatic, aphrodisiac, slimming, purgative, diuretic, antiallergic or as an antidote against poison, hepatoprotective, anticonvulsant, to boost memory and improve fertility and vitality in men.

Plants having antipyretic, analgesic, immunostimulant or haematopoietic potentials are good candidates for the management of Covid-19. Besides their likely virucidal effect, they can also stimulate the production of immune cells that can fight the infection of the Covid-19 virus, but also other blood cells such as red blood cells, specialized in oxygen transport, thus alleviating the respiratory distress characteristic of Covid-19. At the same time, they can also prevent the rise in temperature in patients, which is characteristic of SARS-CoV-2 infection [43].

However, *Solanum* species are also used in food. This is the case for the leaves and fruits of *S. melongena*, which are eaten cooked in water or fried, as condiments in sauces or as a side dish vegetable [33]. The same is true for the fruits and leaves of *S. torvum* that are incorporated in soups and sauces [22]. With regards to eggplants, it should be noted that there are at least three frequently cultivated eggplants species that can be easily distinguished by the characteristics of the flowers and fruits: the bitter eggplants with elongated fruits (*S. esculentum*), the bitter eggplants with spherical fruits (*S. incanum*), and the sweet eggplant (*S. melongena*) [33]. *S. nigrum* has two varieties, of which one bears black fruits and the other has reddish-brown fruits. The black fruits are poisonous whereas the reddish brown fruits are used for edible purposes [18,34].

In addition, the literature indicated that *S. trilobatum* leaves are also used in food in the preparation of certain food and juice recipes [5].

3.2.2 Biological activities

The species of *Solanum* genus exhibited a variety of biological activities including antiviral properties (Tables 2 and Table 3). Several species of *Solanum* genus have activity against human herpes virus type 1 or 2 (*S. paniculatum*, *S. americanum*, *S. melongena*, *S. torvum*, *S. sanitwongsei*, *S. nodiflorum*) (Table 3). This corroborates with the work of Valadares et al. [10], who showed that *Solanum* species are generally used against herpes virus. Although the actions of *Solanum* species, notably *S. tuberosum*, *S. nigrum* and *S. khasianum*, on other types of viruses like Influenza viruses A and B, viral hepatitis C virus (HCV) and HIV respectively, have also been reported in several studies [2,16,30,34].

Different antiviral ingredients of the *Solanum* species listed in Table 3 could have an effect on SARS-CoV-2 since the herbicides act on multiple targets. Therefore, with respect to their immunomodulatory effect, these species could contribute to the enhancement of the immune defense.

3.2.3 Phytochemical studies

The phytochemical data presented in Table 4 showed that different *Solanum* species explored have various types of secondary metabolites as well as micronutrients and macronutrients.
However, with respect to their antiviral activities, several chemical ingredients of *Solanum* species have been identified.

According to previous reports, Glycoalkaloids (solasonin, solamargine), anthocyanins and saponins are responsible for most of the antiviral actions of *Solanum* species (Table 3) [2,38]. Mohammadi et al. [2] reported that only red-fleshed potato anthocyanins (S. tuberosum) showed the antiviral activity. They showed that the antiviral activity of *S. tuberosum* anthocyanins depends on their structures and synergistic effects with other plant compounds. According to Morillo et al. [44], glycosides containing chacotriose are consistently more active than their solatriose-containing counterparts with respect to antiviral, anti-estrogenic, anti-inflammatory, anti-tumour, antibacterial and other activities. Furthermore, numerous studies have shown *in silico* that certain polyphenolic compounds (Kaempferol, quercetin, catechin, and its derivatives) may interact with SARS-CoV-2 protease [3,45]. The presence of catechin and epicatechin was revealed in *S. nigrum*, while the presence of Kaemferol and quercetin in the leaves of *S. torvum* was reported [7,34]. Moreover, Abdou [33] had shown the presence of quercetin, kaempferol and apigenin in *S. melongena*. Secondary metabolites present in the genus *Solanum* namely alkaloids, saponins, flavonoids, terpenoids, etc. can be used to treat Covid-19 because their properties have been demonstrated *in silico*. [46-54].

3.2.4 Toxicology

Toxicity studies have shown that most species of *Solanum* genus used in food and/or traditional medicine are less toxic except *S. nigrum*. However, the consumption of unripe fruits should be avoided due to the toxicity of these one [18,45]. Glycoalkaloids, a class of nitrogen-containing steroidal glycosides, are biologically active secondary plant metabolites and are commonly found in plants of the *Solanum* genus [55]. Due to its toxicity, which is evident, we would recommend for the use of edible species only for the management of Covid-19.

ACKNOWLEDGEMENT

Clement M Mbadiko thanks International Foundation for Science (IFS) and Pius T Mpiana the TWAS and the Swedish International Development Agency (SIDA) for the grant.

REFERENCES

1. Situ K, Hendra K, Rizki A, Suhartati S, Soetjipto S. Potential inhibitor of Covid-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints; 2020. Available:www.preprints.org
2. Mohammadi PP, Sajad F, Sedigheh A, Mohammad Hosein F, Echeverria J. The signaling pathways and therapeutic targets of antiviral agents: Focusing on the antiviral approaches and clinical perspectives of anthocyanins in the management of viral diseases. Frontiers in Pharmacology. 2019;10:1-23.
3. Siti K, Hendra K, Rizki A, Suhartati S, Soetjipto S. Potential inhibitor of Covid-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints. 2020;1-14.
4. Asha DP, Anantha SP, Starlet PF, Abima SJR. Phytochemical analysis and assessment of antimicrobial activity of *Solanum nigrum*. Ijppr. Human, 2017;11(1):135-141.
5. Fabiola V, Judia HS. A study on phytochemicals, antioxidant, antidiabetic and antimicrobial activity of the leaves of...
Solanum Trilobatum. International Journal of Engineering and Techniques. 2018;4(1):393-404.

6. Parvez MGM. Current advances in pharmacological activity and toxic effects of various capsicum species. International Journal of Pharmaceutical Sciences and Research. 2017;8(5):1900-1912.

7. Zubaida Y, Wanga Y, Baydoun E. Phytochemistry and pharmacological studies on Solanum torvum Swartz. Journal of Applied Pharmaceutical Science. 2013;3(04):152-160.

8. Gandhiappan J, Rengasamy R. Comparative evaluation of antimicrobial activities of the members of Solanaceae. Pelagia Research Library Der Pharmacia Sinica. 2012;3(3):357-360.

9. Tenorio JAB, Do Montea DS, Da Silvaa TMG, Da Silva TG, Ramos CS. Solanum paniculatum root extract reduces diarrhoea in rats. Revista Brasileira de Farmacognosia. 2016;26(3):375-378.

10. Valadaresa YM, Brandaoa GC, Kroonb EG, Souza FJD, Oliveiraa AB, Bragaa FC. Antiviral activity of Solanum paniculatum extract and constituents. Verlag der Zeitschrift fur Naturforschung, Tubingen. Available:http://www.znaturforsch.com

11. Neslihan T. Chromatographic determination of glycoalkaloids in eggplant. Thesis of Master, Izmir Institute of Technology. 2006;86.

12. Basudan N. Antioxidant, total phenolic content as well as antimicrobial potentiality effect of peel white and black eggplant extracts. International Journal of ChemTech Research. 2018;11(8):161-167.

13. Chinedu SN, Abayomi OOK, Eboji K, Opeyemi EC, Olajumoke AK, Damilola DL. Proximate and phytochemical analyses of Solanum aethiopicum L. and Solanum macrocarpon L. fruits. Research Journal of Chemical Sciences. 2011;1(3):63-71.

14. Mouhajir JB, Hudson RM, Towers GHN. Multiple antiviral activities of endemic medicinal plants used by Berber Peoples of Morocco. Pharmaceutical Biology. 2001;39(5):364-374.

15. Aggarwal BB, Prasad S, Reuter S, Kannapann R, Vivek Yadev R, Park B, Hye Kim J, Subash Gupta C, Kanokkarn P, Sundaram C, Prasad S, Madan M, Chaturvedi M, Sung B. Identification of novel anti-inflammatory agents from ayurvedic medicine for prevention of chronic diseases: “Reverse Pharmacology” and “Bedside to Bench” approach. Curr Drug Targets. 2011 ;12(11):1595–1653.

16. Javed T, Ali AU, Sana RS, Sidra RS, Sheikh RS. In-vitro antiviral activity of Solanum nigrum against hepatitis C virus. Virology Journal. 2011;8(26):1-7.

17. Hoang LTA, Phuong TT, Do TT, Duong TT, Nguyen HD, Pham VC, Phan VK, Chau VM, Jeong-Hyung L. Degalactotigogen, a steroidal glycoside from Solanum nigrum, induces apoptosis and cell cycle arrest via inhibiting the EGFR signaling pathways in pancreatic cancer cells. Hindawi BioMed Research International. 2018;1-9.

18. Fouzia B. Utility of Mako (Solanum Nigrum) in Unani system of medicine. International Journal of Current Research. 2019;11(08):6543-6548.

19. Jiofack T, Ayissi I, Fokunang C, Guedje N, Kemeuze V. Ethnobotany and phytomedicine of the upper Nyong valley forest in Cameroon. African Journal of Pharmacy and Pharmacology. 2009;3(4):144-150.

20. Karmakar K, Amirul IMD, Afrin CS, Islam TT, Muslim T, Azizur RMD. Secondary metabolites from the fruits of Solanum torvum SW. Journal of Pharmacognosy and Phytochemistry. 2015;4(1):160-163.

21. Christi IVE, Uma PT, Nagarajaperumal G, Mohan S. Phytochemicals detection, antioxidant and antimicrobial activity study on berries of Solanum torvum. Asian Journal Pharmaceutical and Clinical Research. 2018;11(11):418-423.

22. Chukwu OE, Osaretin II, Osewe Ol, Nnaemeka IJ, OAJ, OAE, Chibueze KP, Stanley CO. The mystery prickly berry: Solanum torvum. Indo American Journal of Pharmaceutical Sciences. 2019;06(10):13550-13562.

23. Rajathi MMD, Sindhu R, Cecily RLR, Anandan R. Phytochemical and antimicrobial activity of Solanum torvum against respiratory tract pathogens. Acta Scientific Pharmaceutical Sciences. 2020;4(1):62-66.

24. Vijayan P, Raghu C, Ashok G, Dhanaraj SA, Suresh B. Antiviral activity of medicinal plants of Nilgiris. Indian Journal of Medical Research. 2004;120(1):24-9.

25. Chirchir KD, Cheploogi KP, Omolo OJ, Langat M. Chemical constituents of Solanum mauense (Solanaceae) and Dovyalis abyssinica (Salicaceae).
26. Pereira AC, Denilson OF, Silva GH, Figueiredo HCP, Cavaleiro AJ, Carvalho DA, Souza LP, Chalfoun SM. Identification of the antimicrobial substances produced by *Solanum palinacanthum* (Solanaceae). Anais da Academia Brasileira de Ciências. 2008;80(3):427-432.

27. Sahle T, Ghebriel Okbatinsae G. Phytochemical investigation and antimicrobial activity of the fruit extract of *Solanum incanum* grown in Eritrea. Ornamental and Medicinal Plants. 2017;1(1):15-25.

28. Udayakumar R, Velmurugan K, Srinivasan D, Ram Krishna R. Phytochemical and antimicrobial studies of extracts of *Solanum xanthocarpum*. Ancient Science of Life. 2003;2:90-94.

29. Aliero AA, Afolayan AJ. Antimicrobial activity of *Solanum tomentosum*. African Journal of Biotechnology. 2006;5(4):369-372.

30. Cowan MM. Plant products as antimicrobial agents. Clinical Microbiology Reviews. 1999;12(4):564–582.

31. Razafindraibe M, Kuhlman AR, Rabarison H, Rakotoarimanana V, Rajeriarison C, Rakotoarivelo N, Randrianarivo T, Rakotoarivony F, Ludovic R, Randrianasolo A, Rainer BW. Medicinal plants used by women from Agnalazaha littoral forest (Southeastern Madagascar). Journal of Ethnobiology and Ethnomedicine. 2013;9(73):1-22.

32. Bussmann RW, Glenn A. Medicinal plants used in Peru for the treatment of respiratory disorders. Rev. Peru. Biol. 2010;17(2):331–346.

33. Abdou BA. Contribution à l’étude du développement dun aliment fonctionnel à base d’épices du Cameroun: Caractérisation physico- chimique et fonctionnelle Généralité Solanaceae, Thèse de Doctorat, Institut National Polytechnique de Lorraine & Université de Ngaoundere. 2009:228.

34. Chauhan R, Ruby KM, Shori A, Dwivedi J. *Solanum nigrum* with dynamic therapeutic role: A review. International Journal of Pharmaceutical Sciences Review and Research. 2012;15(1):65-71.

35. Sinanoglou VJ, Kavga A, Strati IF, Sotiroudis G, Lantzouraki D, Zoumpoulakis P. Effects of infrared radiation on eggplant (*Solanum melongena L.*) greenhouse cultivation and fruits’ phenolic profile. Foods. 2019;8(630):1-14.

36. Abdulaziz AR, Nashriyah M, Hasanb M, Jahana S. *In vitro* antioxidant activity of the ethanolic extract from fruit, stem and leaf of *Solanum torvum*. Science Asia. 2016;42:184–189.

37. Ali AM, Macleen MM, Saleh H. El-Sharkawy SH, Hamid JA, Ismail NH, Faujan BHA, Nordin HL. Antiviral and cytotoxic activities of some plants used in Malaysian indigenous medicine. Pertanika J. Trop. Agric. Sci. 1996;19(2/3):129-136.

38. Manase MJ. Étude chimique et biologique de saponines isolées de trois espèces Malgaches appartenant aux familles des Caryophyllacées, Pittosporacées et Solanacées, Thèse de Doctorat, Université de Bourgogne. 2013:222.

39. Tchiégang C, Mbuygueng PD. Composition chimique des épices utilisées dans la préparation du *Nah poh* et du *Nkui* de l’ouest Cameroun. Tropicalcultura. 2005;23(4):193-201.

40. Abdou BA, Yanou NN, Harquin FS, Scher J, Montet D, Moses MFC. Proximate composition, mineral and vitamin content of some wild plants used as spices in Cameroon. Food and Nutrition Sciences. 2012;3:423-432. DOI: 10.4236/fns.2012.34061

41. Edwin LH. Maladies à virus des voies respiratoires: vaccins et agents antiviraux. Bulletin de l’Organisation mondiale de la Santé. 1981;59(5):677-698.

42. Brouard J, Flammang A, Tran L, Dina J, Vabret A. Infections respiratoires aiguës virales des voies aériennes inférieures. EMC – Pédiatrie. 2018;13(3):1-11. [Article 4-064-A-12].

43. Cheng L, Zheng W, Li M, Huang J, Bao S, Xu Q, Ma Z. Citrus fruits are rich in flavonoids for immunoregulation and potential targeting ACE2; 2020. Preprints. Available:www.preprints.org

44. Morillo M, Rojas J, Lequart V, Lamarti A, Martin P. Natural and synthetic derivatives of the steroidal glycoalkaloids of *Solanum* genus and biological activity. Natural Products Chemistry & Research. 2020;8(1):1-14.

45. Trina TE, Sefren TG, Nurdjannah NJ, Fatimawali, Billy KJ, Idroes R, Yunus EY.
Potential of plant bioactive compounds as SARS-CoV-2 Main Protease (Mpro) and Spike (S) glycoprotein inhibitors: A molecular docking study. DOI:10.20944/preprint202004.0102.v1

46. Michael W. Potential of DNA intercalating alkaloids and other plant secondary metabolites against SARS-CoV-2 causing COVID-19. Diversity. 2020;12(175):1-12. DOI:10.3390/d12050175

47. Gideon AG, Olalekan BO, Adegbenu PA, Oludare MO, Saheed OA. Potential inhibitors of Coronavirus 3-Chymotrypsin-Like Protease (3CLpro): An in silico screening of alkaloids and terpenoids from African medicinal plants. 2020;1-32. DOI:https://doi.org/10.1080/07391102.2020.1764868

48. Bahbah EI, Negida A, Salah MN. Purposing saikosaponins for the treatment of COVID-19. Medical Hypotheses. 2020;1-5. DOI:https://doi.org/10.1016/j.mehy.2020.109782

49. Seri J, Suwon K, Dong HS, Mi-Sun K. Inhibition of SARS-CoV 3CL protease by flavonoids. Journal of Enzyme Inhibition and Medicinal Chemistry. 2020;35(1):145-151. DOI:10.1080/14756366.2019.1690480

50. Aanouz I, Belhassan A, El Khatabi K, Lakhfli T, El Idrissi M, Bouachrine M. Moroccan medicinal plants as inhibitors of COVID-19: Computational investigations, Journal of Biomolecular Structure and Dynamics. 2020;1-17. DOI: 10.1080/07391102.2020.1758790

51. Sharma S. Flavonoids from Carica papaya Linn. against SARS-CoV-2 protease: Molecular docking and ADME analysis; 2020.

52. Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS-CoV 3CL protease by 32. J. Enzyme Inhib. Med. Chem. 2020;35(1):145–151.

53. Siti Khairunnisa, Hendra Kurniawan, Rizki Aualiuddin, Suhartati Soetjipto. Potential Inhibitor of COVID-19 Main Protease (Mpro) from several medicinal plant compounds by molecular docking study; 2020. Preprints. DOI: 10.20944/preprints202003.0226.v1

54. Adem S, Eyupoglu V, Sarfraz I, Rasul A, Ali M. Identification of potent COVID–19 main protease (Mpro) inhibitors from natural polyphenols: An in silico strategy unveils a hope against CORONA; 2020. Preprints. DOI:https://doi.org/10.20944/preprints202003.0333.v1

55. Milner SE, Brunton NP, Jones PW, O’Brien NM, Collins SG, Maguire AR. Bioactivities of glycoalkaloids and their aglycones from Solanum species. Journal of Agricultural and Food Chemistry. 2011;59(8):3454–3484. DOI: 10.1021/jf200439q

© 2020 Ngbolua et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/58600