RIESZ MEANS ON SYMMETRIC SPACES

A. FOTIADIS AND E. PAPAGEORGIOU

To the memory of Professor Michel Marias.

Abstract. Let X be a non-compact symmetric space of dimension n. We prove that if $f \in L^p(X)$, $1 \leq p \leq 2$, then the Riesz means $S^z_R(f)$ converge to f almost everywhere as $R \to \infty$, whenever $\Re z > (n - \frac{1}{2}) \left(\frac{2}{p} - 1 \right)$.

1. Introduction and statement of the results

In this article we study the almost everywhere convergence of the Riesz means on a noncompact symmetric space of arbitrary rank. To state our results, we need to introduce some notation.

Let G be a semi-simple, noncompact, connected Lie group with finite center and let K be a maximal compact subgroup of G. We consider the n-dimensional symmetric space of noncompact type $X = G/K$, and let $\dim X = n$. Denote by \mathfrak{g} and \mathfrak{k} the Lie algebras of G and K, respectively. We have the Cartan decomposition $\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{k}$. Let \mathfrak{a} be a maximal abelian subspace of \mathfrak{p} and \mathfrak{a}^* its dual. If $\dim \mathfrak{a} = l$, we say that X has rank l.

The Killing form on \mathfrak{g} restricts to a positive definite form on \mathfrak{a}, which in turn induces a positive inner product and hence a norm $\| \cdot \|$ on \mathfrak{a}^*. Denote by ρ the half sum of positive roots, counted with their multiplicities. Fix $R \geq \|\rho\|^2$ and $z \in \mathbb{C}$ with $\Re z \geq 0$, and consider the bounded function

$$S^z_R(\lambda) = \left(1 - \frac{\|\rho\|^2 + \|\lambda\|^2}{R} \right)^z, \quad \lambda \in \mathfrak{a}^*.$$

Denote by κ^z_R its inverse spherical Fourier transform in the sense of distributions and consider the so-called Riesz means operator S^z_R:

$$S^z_R(f)(x) = \int_G f(y)\kappa^z_R(y^{-1}x)dy = (f * \kappa^z_R)(x), \quad f \in C_0(X).$$
For every pair \(p, q \) such that \(1 \leq p, q \leq \infty \), denote by \((L^p + L^q)(X)\) the Banach space of all functions \(f \) on \(X \) which admit a decomposition \(f = g + h \) with \(g \in L^p \) and \(h \in L^q \). The norm of \(f \in (L^p + L^q)(X) \) is given by

\[
\|f\|_{(p,q)} = \inf \{ \|f\|_p + \|g\|_q : \text{for all decompositions } f = g + h \}.
\]

For \(q \geq 1 \), denote by \(q' \) its conjugate. In the present work we prove the following results.

Theorem 1. Let \(z \in \mathbb{C} \) with \(\text{Re} z \geq n - \frac{1}{2} \) and consider \(q > 2 \). Then, for every \(p \) such that \(1 \leq p \leq q' \), and for every \(r \in [q'/(p' - q), \infty] \), \(S^*_R \) is uniformly bounded from \(L^p(X) \) to \((L^p + L^r)(X)\).

Next we deal with the maximal operator \(S^*_s \) associated with Riesz means:

\[
S^*_s(f)(x) = \sup_{R > \|\rho\|^2} |S^*_R(f)(x)|, \quad f \in L^p(X), \quad 1 \leq p \leq 2.
\]

Set

\[
Z_0(n, p) = \left(n - \frac{1}{2} \right) \left(\frac{2}{p} - 1 \right).
\]

We have the following result.

Theorem 2. Let \(1 \leq p \leq 2 \) and consider \(q > 2 \). If \(\text{Re} z > Z_0(n, p) \), then for every \(s \geq pq/(2 - p + pq - q) \), there is a constant \(c(z) > 0 \), such that for every \(f \in L^p(X) \),

\[
\|S^*_s f\|_{(p,s)} \leq c(z)\|f\|_p.
\]

Note that the \((p, s)\) norm is defined in (3). As a corollary of the Theorem 2 we obtain the almost everywhere convergence of Riesz means.

Theorem 3. Let \(1 \leq p \leq 2 \). If \(\text{Re} z > Z_0(n, p) \), then for \(f \in L^p(X) \),

\[
\lim_{R \to +\infty} S^*_R f(x) = f(x), \quad \text{a.e.}.
\]

Our result treats the general case of noncompact symmetric spaces of all ranks. It is interesting that the index \(Z_0(n, p) \) only depends on the Euclidean dimension of \(X \) and not on the rank of \(X \). The only known results studying the Riesz means on noncompact symmetric spaces are \([18, 37]\), where the authors treat the case of rank one noncompact symmetric spaces, as well as the case of arbitrary rank when \(G \) is complex, and the case of \(SL(3, \mathbb{H})/Sp(3) \) respectively.

Here we treat the general case of noncompact symmetric spaces of all ranks, by using the inverse Abel transform. This way we can study the general case of a noncompact symmetric space, an area that remained inactive since the seminal work \([18]\) in 1991. The price we pay is that
our result is valid for \(\operatorname{Re} z \) larger than \(Z_0(n, p) = (n - \frac{1}{2}) \left(\frac{2}{p} - 1 \right) \).

Note that in the setting of \(\mathbb{R}^n \), [31], as well as in case of the rank one symmetric spaces, [18], (4) is valid for \(\operatorname{Re} z \) larger than the critical index \(z_0(n, p) = \left(\frac{n-1}{2} \right) \left(\frac{2}{p} - 1 \right) \). Thus, we can treat the arbitrary rank case but our result is not optimal, as a consequence of the lack of an explicit formula for the inverse Abel transform in the general case of a symmetric space.

Many authors have investigated the almost everywhere convergence of Riesz means. They have already been extensively studied in the case of \(\mathbb{R}^n \) ([8, 9, 31, 32] as well as in the book [14]). In the case of elliptic differential operators on compact manifolds they are treated in ([6] [10] [19] [24] [30] [34]). The case of Lie groups of polynomial volume growth and of Riemannian manifolds of nonnegative curvature is studied in [1] [27] and the case of compact semisimple Lie groups in [11].

To prove Theorem 1, we split the Riesz means operator in the sum of two convolution operators: \(S^z_R = S^z_{R,0} + S^z_{R,\infty} \). The local part \(S^z_{R,0} \) has a compactly supported kernel around the origin, while the kernel of the part at infinity \(S^z_{R,\infty} \) is supported away from the origin. To treat the local part, we follow the approach of [1] [29]. More precisely, we express the kernel of \(S^z_{R,0} \) via the heat kernel \(p_t \) of \(X \), and we make use of its estimates. Let \(-\Delta \) be the Laplace-Beltrami operator on \(X \). Then, combining the with the fact that the wave operator \(\cos(t \sqrt{-\Delta - \|\rho\|^2}) \) of \(X \) propagates with finite speed, allows us to prove that \(S^z_{R,0} \) is continuous on \(L^p(X) \) for all \(p \geq 1 \). To treat the part at infinity of the operator, we proceed as in [25], and obtain estimates of its kernel by using the support preserving property of the Abel transform.

This paper is organized as follows. In Section 2 we present the necessary ingredients for our proofs. In Section 3 we deal with the local part and the part at infinity, of the Riesz mean operator and we prove Theorem 1. In Section 4 we prove Theorem 2 and we deduce Theorem 3.

2. Preliminaries

In this section we recall some basic facts about symmetric spaces. For details see for example [2] [17] [22] [26].

2.1. Symmetric spaces. Let \(G \) be a semisimple Lie group, connected, noncompact, with finite center and let \(K \) be a maximal compact subgroup of \(G \). We denote by \(X \) the noncompact symmetric space \(G/K \). In the sequel we assume that \(\dim X = n \). Denote by \(\mathfrak{g} \) and \(\mathfrak{k} \) the Lie
algebras of G and K. Let also \mathfrak{p} be the subspace of \mathfrak{g} which is orthogonal to \mathfrak{k} with respect to the Killing form. The Killing form induces a K-invariant scalar product on \mathfrak{p} and hence a G-invariant metric on X. Denote by Δ the Laplace-Beltrami operator on X, by $d(.,.)$ the Riemannian distance and by dx the associated Riemannian measure on X. Denote by Δ the Laplace-Beltrami operator on X, by $d(.,.)$ the Riemannian distance and by dx the associated Riemannian measure on X. Denote by $\overline{B}(x,r)$ the volume of the ball $B(x,r)$, $x \in X$, $r > 0$, and recall that there is a $c > 0$, such that

$$|B(x,r)| \leq cr^n \text{ for all } r \leq 1,$$

[35, p.117].

Fix a maximal abelian subspace of \mathfrak{p} and denote by \mathfrak{a}^* the real dual of \mathfrak{a}. If $\dim \mathfrak{a} = l$, we say that X has rank l. We also say that $\alpha \in \mathfrak{a}^*$ is a root vector, if the space

$$\mathfrak{g}^\alpha = \{X \in \mathfrak{g} : [H,X] = \alpha(H)X, \text{ for all } H \in \mathfrak{a}\} \neq \{0\}.$$

Let A be the analytic subgroup of G with Lie algebra \mathfrak{a}. Let $\mathfrak{a}_+ \subset \mathfrak{a}$ be a positive Weyl chamber and let $\overline{\mathfrak{a}_+}$ be its closure. Set $A^+ = \exp \mathfrak{a}_+$. Its closure in G is $A_+ = \exp \overline{\mathfrak{a}_+}$. We have the Cartan decomposition

$$G = K\overline{A_+}K = K\exp \overline{\mathfrak{a}_+}K.$$

Then, each element $x \in G$ is written uniquely as $x = k_1(\exp H)k_2$. We set

$$|x| = |H|, \quad H \in \overline{\mathfrak{a}_+},$$

the norm on G [34, p.2]. Denote by $x_0 = eK$ a base point of X. If $x, y \in X$, there are isometries $g, h \in G$ such that $x = gx_0$ and $y = hx_0$. Because of the Cartan decomposition (6), there are $k, k' \in K$ and a unique $H \in \overline{\mathfrak{a}_+}$ with $g^{-1}h = k \exp Hk'$. It follows that

$$d(x,y) = |H|,$$

where $d(x,y)$ is the geodesic distance on X [36].

Normalize the Haar measure dk of K such that $\int_K dk = 1$. Then, from the Cartan decomposition, it follows that

$$\int_G f(g)dg = \int_K dk_1 \int_{\overline{\mathfrak{a}_+}} \delta(H)dH \int_K f(k_1 \exp(H)k_2)dk_2,$$

where the modular function $\delta(H)$ satisfies the estimate

$$\delta(H) \leq ce^{2\rho(H)}.$$

We identify functions on $X = G/K$ with functions on G which are K-invariant on the right, and hence bi-K-invariant functions on G are
identified with functions on X, which are K-invariant on the left. Note that if f is K-bi-invariant, then by (8),

$$\int_G f(g) \, dg = \int_X f(x) \, dx = \int_{a_+} f(\exp H) \delta(H) \, dH. \tag{10}$$

2.2. The spherical Fourier transform. Denote by $S(K\backslash G/K)$ the Schwartz space of K-bi-invariant functions on G. For $f \in S(K\backslash G/K)$, the spherical Fourier transform \mathcal{H} is defined by

$$\mathcal{H}f(\lambda) = \int_G f(x) \varphi_{-\lambda}(x) \, dx, \quad \lambda \in a^*,$$

where φ_{λ} is the elementary spherical function of index λ on G. Note that from [22] we have the following estimate

$$\varphi_0(\exp H) \leq c(1 + |H|)^d e^{-\rho(H)}, \tag{11}$$

where d is the cardinality of the set of positive indivisible roots.

Let $S(a^*)$ be the usual Schwartz space on a^*. Denote by W the Weyl group associated to the root system of (g, a) and denote by $S(a^*)^W$ the subspace of W-invariant functions in $S(a^*)$. Then, by a celebrated theorem of Harish-Chandra, \mathcal{H} is an isomorphism between $S(K\backslash G/K)$ and $S(a^*)^W$ and its inverse is given by

$$(\mathcal{H}^{-1} f)(x) = c \int_{a^*} f(\lambda) \varphi_{-\lambda}(x) \frac{d\lambda}{|c(\lambda)|^2}, \quad x \in G, \quad f \in S(a^*)^W,$$

where $c(\lambda)$ is the Harish-Chandra function and c is a normalizing constant independent of f, [22, Theorem 7.5].

2.3. The heat kernel on X. Set

$$w_t(\lambda) = e^{-t(\|\lambda\|^2 + \|\rho\|^2)}, \quad t > 0, \quad \lambda \in a^*,$$

Then the heat kernel $p_t(x)$ of X is given by $(\mathcal{H}^{-1} w_t)(x)$ [4].

The heat kernel p_t on symmetric spaces has been extensively studied, see for example [4, 5]. Sharp estimates of the heat kernel have been obtained by Davies and Mandouvalos in [15] for the case of real hyperbolic space, while Anker and Ji [4] and later Anker and Ostellari [5], generalized the results of [15] to all symmetric spaces of noncompact type.

Denote by Σ^+_0 the set of positive indivisible roots α of (g, a) and by m_α the dimension of the root space g^α. In [5, Main Theorem] it is
proved the following sharp estimate:

\[
p_t(\exp H) \leq ct^{-n/2} \left(\prod_{\alpha \in \Sigma_0^+} (1 + t + \langle \alpha, H \rangle)^{m_{\alpha} + m_{2\alpha} - 1} \right) \times \times e^{-\|\rho\|^2t - \langle \rho, H \rangle - |H|^2/4t}, \quad t > 0, \ H \in \overline{a_+},
\]

where \(n = \dim X \).

From (12), we deduce the following crude estimate

\[
p_t(\exp H) \leq ct^{-n/2} e^{-\|H\|^2/4t}, \quad t > 0, \ H \in \overline{a_+},
\]

which is sufficient for our purposes.

Note also that (13) yields the on-diagonal upper bound

\[
p_t(e) \leq ct^{-n/2}.
\]

As it is shown in [21, Lemma 3.1], estimate (14) implies that there is an absolute constant \(D > 0 \), sufficiently large, such that for every \(a > 0 \), there holds

\[
\int_{d(x,x_0) > a} p_t^2(x) dx \leq ct^{-n/2} e^{-a^2/Dt}.
\]

3. Proof of Theorem 1

Let \(\kappa_R^z \) be the kernel of the Riesz means operator. We start with a decomposition of \(\kappa_R^z \):

\[
\kappa_R^z = \zeta \kappa_R^z + (1 - \zeta) \kappa_R^z := \kappa_R^{z,0} + \kappa_R^{z,\infty},
\]

where \(\zeta \in C^\infty(K \setminus G/K) \) is a cut-off function such that

\[
\zeta(x) = \begin{cases}
1, & \text{if } |x| \leq 1/2, \\
0, & \text{if } |x| \geq 1.
\end{cases}
\]

Denote by \(S_R^{z,0} \) (resp. \(S_R^{z,\infty} \)) the convolution operator on \(X \) with kernel \(\kappa_R^{z,0} \) (resp. \(\kappa_R^{z,\infty} \)).

3.1. The local part. We shall prove the following proposition.

Proposition 4. Assume that \(\Re z > n/2 \). Then the operator \(S_R^{z,0} \) is bounded on \(L^p(X) \), \(1 \leq p \leq \infty \), and \(\|S_R^{z,0}\|_{p \to p} \leq c(z) \), for some constant \(c(z) > 0 \).

The proof is lengthy and it will be given in several steps. First, we shall express the kernel \(\kappa_R^z \) in terms of the heat kernel \(p_t \) of \(X \). Then, we shall use the heat kernel estimates (13) to prove that \(\kappa_R^z \) is integrable in the unit ball \(B(0,1) \) of \(X \). This implies that \(S_R^{z,0} \) is
bounded on $L^\infty(X)$. We then prove that S^z_R is bounded on $L^2(X)$, and an interpolation argument between $L^\infty(X)$ and $L^2(X)$ allows us to conclude.

To express the kernel κ^z_R in terms of p_t, we follow [1] and we write

\begin{equation}
S^z_R(\lambda) = \left(1 - \frac{||\lambda||^2 + ||\rho||^2}{R}\right)^z.
\end{equation}

Set $r = \sqrt{R}, \xi = ||\lambda||$ and consider the function

\begin{equation}
h^z_R(\lambda) = h^z_R(\xi) := \left(1 - \frac{\xi^2 + ||\rho||^2}{r}\right)^z e^{\frac{\xi^2 + ||\rho||^2}{r^2}}.
\end{equation}

Then, from (18) and (19) we have

\begin{equation}
s^z_R(\lambda) = h^z_R(\lambda) e^{-\frac{||\lambda||^2 + ||\rho||^2}{r^2}},
\end{equation}

and thus

\begin{equation}
s^z_R(\sqrt{-\Delta - ||\rho||^2}) = h^z_R(\sqrt{-\Delta - ||\rho||^2}) e^{-1/r^2(-\Delta)}.
\end{equation}

Next, we recall the construction of the partition of unity of [1, p.213] we shall use for the splitting of the operator $s^z_R(-\Delta)$. For that we set $\psi(\xi) = e^{-\xi^2/2}, \xi \geq 0$, and $\psi_1(\xi) = \psi(\xi)\psi(1 - \xi)$. Then $\psi_1 \in C^\infty(\mathbb{R})$ and supp $\psi_1 = [0, 1]$. Set also $\phi(\xi) = \psi_1(\xi + \frac{5}{4})$, and

$\phi_j(\xi) = \phi(2^j(\xi - 1)), \quad j \in \mathbb{N}.$

Then $\phi_j(\xi)$ is a C^∞ function with support in $I_j = [1 - 5/2^{j+2}, 1 - 1/2^{j+2}]$. The functions

$\chi_j(\xi) = \frac{\phi_j(\xi)}{\sum_{i \geq 0} \phi_i(\xi)},$

form the required partition of unity.

Set

$\chi_{j,r}(\xi) = \chi_j((\xi/r)^2),$

and

$h^z_{j,r}(\xi) := h^z_R(\xi)\chi_{j,r}(\xi).$

Consider the operator

\begin{equation}
T^z_{j,r} := s^z_{j,r}(\sqrt{-\Delta - ||\rho||^2}) = h^z_{j,r}(\sqrt{-\Delta - ||\rho||^2}) e^{-1/r^2(-\Delta)}.
\end{equation}

Note that by (22) and (21),

\begin{equation}
\sum_{j \in \mathbb{N}} T^z_{j,r} = \sum_{j \in \mathbb{N}} h^z_{j,r}(\sqrt{-\Delta - ||\rho||^2}) e^{-1/r^2(-\Delta)} = h^z_R(\sqrt{-\Delta - ||\rho||^2}) e^{-1/r^2(-\Delta)} = s^z_R(\sqrt{-\Delta - ||\rho||^2}).
\end{equation}
Denote by \(\kappa_{j,r}^z \) the kernel of the operator \(T_{j,r}^z \). Then, (22) implies that
\[
\kappa_{j,r}^z(x) = T_{j,r}^z \delta_{x_0}(x) = h_{j,r}^z(\sqrt{-\Delta} - \|\rho\|^2)e^{-1/r^2(-\Delta)}\delta_{x_0}(x)
\]
(24)
where \(x_0 \) is the basepoint on \(X \). Consequently, (23) and (24) imply that
\[
(25) \quad \kappa_R^z = \sum_{j\in\mathbb{N}} \kappa_{j,r}^z.
\]
So, to estimate the kernel \(\kappa_R^z \), it suffices to estimate the kernels \(\kappa_{j,r}^z \), which by (24) are expressed in terms of the heat kernel \(p_t \) of \(X \) and the functions \(h_{j,r}^z \).

There is a \(c > 0 \) such that
\[
(26) \quad |\text{supp} \ h_{j,r}^z| \leq cr^{2-j},
\]
[1, p.214]. Note that the functions \(\chi_j \), as well as \(h_{j,r}^z \), are radial and thus invariant by the Weyl group [2, p.612].

Note also that for every \(k \in \mathbb{N} \), there is a \(c_k > 0 \), such that for every \(r > 0 \), it holds
\[
(27) \quad \|\chi_{j,r}^{(k)}\|_\infty \leq c_k r^{-k} 2^{kj}, \quad \|h_{j,r}^z(k)\|_\infty \leq c_k r^{-k} 2^{-(\text{Re} \ z-k)j}.
\]
As it is mentioned in [1, p.214], the estimates (26) and (27) imply that for every \(k \in \mathbb{N} \), there is a \(c_k > 0 \) such that
\[
(28) \quad \int_{|t| \geq s} |\hat{h}_{j,r}^z(t)| dt \leq c_k s^{-k} r^{-k} 2^{(k-\text{Re} \ z)j}, \quad s > 0,
\]
where \(\hat{h}_{j,r}^z \) is the euclidean Fourier transform of \(h_{j,r}^z \).

Lemma 5. Let \(\kappa_R^z \) be the kernel of the Riesz mean operator \(S_R^z \). Then, there is \(c > 0 \), independent of \(R \), such that for \(\text{Re} \ z > n/2 \),
\[
\|\kappa_R^z\|_{L^1(B(0,1))} \leq c.
\]

Proof. For the proof we shall consider different cases. Recall that \(R \geq \|\rho\|^2 \).

Case 1: \(\|\rho\|^2 \leq R \leq \|\rho\|^2 + 1 \).

Combining (13) and the heat semigroup property, we get that
\[
(29) \quad \|p_t\|_{L^2(X)} = \left(\int_X p_t(x,y)p_t(y,x)dy \right)^{1/2} \leq p_{2t}(x,x)^{1/2} \leq ct^{-n/4}.
\]
Thus, using (27), (24), (29) and (5) we have
\[
\|\kappa_{j,r}^z\|_{L^1(B(0,1))} \leq |B(0,1)|^{1/2}\|\kappa_{j,r}^z\|_{L^2(X)} \\
\leq c\|h_{j,r}^z(\sqrt{-\Delta} - \|\rho\|^2)\|_{L^2 \to L^2} \|p_{1/r^2}\|_{L^2(X)} \\
\leq c\|h_{j,r}^z\|_{\infty}(1/r^2)^{-n/4} \\
\leq c(n, \|\rho\|)2^{-j \text{Re} z}.
\]
(30)

So,
\[
\|\kappa_{j,r}^z\|_{L^1(B(0,1))} \leq \sum_{j \in \mathbb{N}} \|\kappa_{j,r}^z\|_{L^1(B(0,1))} \leq c \sum_{j \in \mathbb{N}} 2^{-j \text{Re} z} \leq c,
\]
\[
\text{since Re } z > 0.
\]

Case 2: \(R \geq \|\rho\|^2 + 1\).

Recall that \(r = \sqrt{R}\). So, the ball \(B(0,1/r)\) is contained in the unit ball. Next, let \(i \geq 0\) be such that \(2^i - 1 < r \leq 2^i\) and consider the annulus \(A_p = \{x \in X : 2^p \leq |x| \leq 2^{p+1}\}\), with \(p \geq -i\). We write
\[
B(0,1) \subseteq \bigcup_{p=-i}^{0} A_p.
\]

Applying (27), (24), (29) and (5) and proceeding as in Case 1, we have
\[
\|\kappa_{j,r}^z\|_{L^1(B(0,1/r))} \leq |B(0,1/r)|^{1/2}\|\kappa_{j,r}^z\|_{L^2(X)} \\
\leq c_n r^{-n/2}\|h_{j,r}^z(\sqrt{-\Delta} - \|\rho\|^2)\|_{L^2 \to L^2} \|p_{1/r^2}\|_{L^2(X)} \\
\leq c_n r^{-n/2}\|h_{j,r}^z\|_{\infty}(1/r^2)^{-n/4} \\
= c_n \|h_{j,r}^z\|_{\infty} \\
\leq c_n 2^{-j \text{Re} z},
\]
that is
\[
\|\kappa_{j,r}^z\|_{L^1(B(0,1/r))} \leq c 2^{-j \text{Re} z}.
\]
(31)

So, to finish the proof of the lemma it remains to prove estimates of the kernels \(\kappa_{j,r}^z\) on the annulus \(A_p\). For that, we shall use the fact that the kernel \(G_t(x,y), x,y \in X\), of the wave operator \(\cos(t \sqrt{-\Delta} - \|\rho\|^2)\), propagates with finite speed \([7, \text{p.19}]\), that is
\[
\text{supp}(G_t) \subset \{(x,y) : d(x,y) \leq |t|\}.
\]
(32)

As observed by the authors, \([7, \text{pp.39-40}]\), we may use the following formula for even functions \(f(\lambda)\):
\[
f(\sqrt{-\Delta} - \|\rho\|^2) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{f}(t) \cos(t \sqrt{-\Delta} - \|\rho\|^2) dt.
\]
(33)
Since \(h_{j,r}^z \) is even, by (33) we have

\[
\kappa_{j,r}^z(x) = [h_{j,r}^z(\sqrt{-\Delta - \|p\|^2})p_{r-2}(\cdot)](x)
\]

\[
= (2\pi)^{-1/2} \int_{-\infty}^{+\infty} \hat{h}_{j,r}^z(t)[\cos(t\sqrt{-\Delta - \|p\|^2})p_{r-2}(\cdot)](x)dt.
\]

So, if \(x \in A_p \), then

\[
\kappa_{j,r}^z(x) = (2\pi)^{-1/2} \int_{-\infty}^{+\infty} \hat{h}_{j,r}^z(t)[\cos(t\sqrt{-\Delta - \|p\|^2})p_{r-2}(\cdot)1_{\{|y|\leq 2^{p-1}\}}](x)dt \\
+ (2\pi)^{-1/2} \int_{-\infty}^{+\infty} \hat{h}_{j,r}^z(t)[\cos(t\sqrt{-\Delta - \|p\|^2})p_{r-2}(\cdot)1_{\{|y|> 2^{p-1}\}}](x)dt.
\]

(35)

\[
= (2\pi)^{-1/2} \int_{|t|\geq 2^{p-1}} \hat{h}_{j,r}^z(t)[\cos(t\sqrt{-\Delta - \|p\|^2})p_{r-2}(\cdot)1_{\{|y|\leq 2^{p-1}\}}](x)dt \\
+ (2\pi)^{-1/2} \int_{-\infty}^{+\infty} \hat{h}_{j,r}^z(t)[\cos(t\sqrt{-\Delta - \|p\|^2})p_{r-2}(\cdot)1_{\{|y|> 2^{p-1}\}}](x)dt,
\]

where in the last equality we have used the finite propagation speed of the wave operator: if \(|y| \leq 2^{p-1}\) and \(|x| \geq 2^p\), then (32) implies that \(|t| \geq 2^{p-1}\).

So, using (34), equality (35) rewrites

\[
\kappa_{j,r}^z(x) = (2\pi)^{-1/2} \int_{|t|\geq 2^{p-1}} \hat{h}_{j,r}^z(t)[\cos(t\sqrt{-\Delta - \|p\|^2})p_{r-2}(\cdot)1_{\{|y|\leq 2^{p-1}\}}](x)dt \\
+ \hat{h}_{j,r}^z(\sqrt{-\Delta - \|p\|^2})p_{r-2}(\cdot)1_{\{|y|> 2^{p-1}\}}(x).
\]

(36)

Applying Cauchy-Schwarz to (36) and using the fact that \(\|\cos t\sqrt{-\Delta}\|_{2\to 2} \leq 1 \), as well as the spectral theorem, we obtain

\[
\|\kappa_{j,r}^z\|_{L^1(A_p)} \leq c|A_p|^{1/2} \int_{|t|\geq 2^{p-1}} |\hat{h}_{j,r}^z(t)| \|p_{r-2}\|_{2} dt \\
+ c|A_p|^{1/2}\|\hat{h}_{j,r}^z\|_{\infty} \|p_{r-2}1_{\{|y|> 2^{p-1}\}}\|_2 := I_1 + I_2.
\]

(37)

From (27), (15) and the fact that \(2^{i-1} < r \leq 2^i \), it follows that

\[
I_2 \leq c2^{p/2}2^{-j}\Re z(r^{-1/2})^{-n/4}e^{-2^{p-1}/2Dr^{-2}} \\
\leq c2^{-j}\Re z2^{p/2}r^{-n/2}e^{-2^{p-2}/4D} \\
\leq c2^{-j}\Re z2^{(p+1)n/2}e^{-Dr2^{p-1}}.
\]

Using the elementary estimate

\[
e^{-Dr2^{p-1}x/n/2} \leq c_k x^{-k}, \text{ for all } x > 1, k \in \mathbb{N},
\]
we obtain
\begin{equation}
I_2 \leq 2^{-j \Re z} 2^{-k(p+i)}.
\end{equation}

Also, from (29) we have that
\begin{equation}
I_1 \leq c 2^{p/2} (r^{-2})^{-n/4} \int_{|t| \geq 2^{p-1}} |\hat{h}_{j,r}^z(t)| dt.
\end{equation}

Then, applying (28) for $k > n/2$, we obtain
\begin{equation}
I_1 \leq c n 2^{(p+i)n/2} 2^{-pk} 2^{(k-\Re z)j} \leq c 2^{-(p+i)(k-n/2) - j(\Re z - n/2)}.
\end{equation}

Finally, using (38) and (39), (37) implies that
\begin{equation}
\|\kappa_{j,r}^z\|_{L^1(A_p)} \leq c 2^{-(p+i)(k-n/2) - j(\Re z - n/2)}.
\end{equation}

End of proof of Lemma 5.

It follows from (31) and (40) that
\begin{equation}
\|\kappa_{j,r}^z\|_{L^1(B(0,1))} \leq c 2^{-j \Re z + c \sum_{p=0}^0 2^{-(p+i)(k-n/2) - j(\Re z - n/2)}} \leq c 2^{-j(\Re z - n/2)}.
\end{equation}

So, for $\Re z > n/2$,
\begin{equation}
\|\kappa_{j,r}^z\|_{L^1(B(0,1))} \leq \sum_{j \geq 0} \|\kappa_{j,r}^z\|_{L^1(B(0,1))} \leq c \sum_{j \geq 0} 2^{-j(\Re z - n/2)} \leq c.
\end{equation}

\[\square \]

Lemma 6. S^z_R is bounded on $L^2(X)$.

Proof. Set
\begin{equation}
\kappa_{j,r}^{z,0} = \zeta_{j,r}^z, \ T_{j,r}^{z,0} = *\kappa_{j,r}^{z,0} \text{ and } s_{j,r}^{z,0} = \mathcal{H}(\kappa_{j,r}^{z,0}),
\end{equation}

where ζ is the cut-off function given in (17).

By Plancherel theorem and using (42), we get that
\begin{equation}
\|T_{j,r}^{z,0}\|_{L^2 \to L^2} \leq \|s_{j,r}^{z,0}\|_{L^\infty(a^*)} = \|\mathcal{H}(\kappa_{j,r}^{z,0})\|_{L^\infty(a^*)} = \|\mathcal{H}(\zeta)\|_{L^\infty(a^*)} \leq c(\zeta) < \infty.
\end{equation}

But $\zeta \in S(K\backslash G/K)$. Therefore, its spherical Fourier transform $\mathcal{H}(\zeta)$, belongs in $S(a^*)^W \subset L^1(a^*)$, (see Section 2). So,
\begin{equation}
\|\mathcal{H}(\zeta)\|_{L^1(a^*)} \leq c(\zeta) < \infty.
\end{equation}
From (43), (22) and (27) it follows that
\[\| T_{j,r}z,0 \|_{L^2 \to L^2} \leq c(\zeta) \| h_{j,r}^z(\sqrt{\cdot}) e^{-1/j^2(\cdot)} \|_{L^\infty(a^*)} \]
(44)
Further, by (44) and the fact that \(S_{z,0}^R = \sum_{j \geq 0} T_{j,r}^z \) it follows that
\[\| S_{R}^z,0 \|_{L^2 \to L^2} \leq \sum_{j \geq 0} \| T_{j,r}^z \|_{L^2 \to L^2} \leq c \sum_{j \geq 0} 2^{-j \Re z} \leq c < \infty. \]
(45)

End of the proof of Proposition 4 Since \(\kappa_{z,0}^r = \sum_{j \geq 0} \kappa_{j,r}^z \), by Lemma 5, we have
\[\| \kappa_{R}^z,0 \|_{L^1(X)} = \| \zeta \kappa_{R}^z \|_{L^1(X)} \leq c \| \kappa_{R}^z \|_{L^1(B(0,1))} < c. \]
This implies that
\[\| S_{R}^z,0 \|_{L^\infty \to L^\infty} \leq c(z). \]
(46)

By interpolation and duality, it follows from (46) and (45), that for all \(p \in [1, \infty], \| S_{R}^z,0 \|_{p \to p} \leq c(z), \) with \(\Re z > n/2. \)

3.2. The part at infinity.
For the part at infinity \(S_{R}^z,\infty \) of the operator, we proceed as in [25] to obtain estimates of its kernel \(\kappa_{R}^z,\infty \). Let \(l = \text{rank}(X). \)
To begin with, recall that \(\kappa_{R}^z = \mathcal{H}^{-1}s_{R}^z. \) Recall also the following result from [25, p.650], based on the Abel transform conservation property.

Lemma 7. For \(x = k_{1}(\exp H)k_{2} \in G, \) with \(|x| > 1 \) and \(k \in \mathbb{N} \) with \(k > \frac{n}{2} - \frac{l}{4}, \) we have that
\[\| \kappa_{R}^z,0 \|_{L^1(X)} = \| \zeta \kappa_{R}^z \|_{L^1(X)} \leq c \| \kappa_{R}^z \|_{L^1(B(0,1))} < c. \]
(46)

Thus, to estimate the kernel for \(|x| > 1, \) it suffices to obtain estimates for the derivatives of the euclidean inverse Fourier transform of \(s_{R}^z(\lambda). \)
Denote by \(J_{\nu}(t) = r^{-\nu} J_{\nu}(t), \) \(t > 0, \) where \(J_{\nu} \) is the Bessel function of order \(\nu. \) Then, it holds
\[(\mathcal{F}^{-1}s_{R}^z)(\exp H) = c(n, z) R^{-z} (R - \| \rho \|^2)^{z+l/2} J_{z+l/2} \left(\sqrt{R - \| \rho \|^2} |H| \right), \]
[14, 18], and we shall need the following auxiliary lemma.
Lemma 8. For every multi-index \(\alpha \), it holds that
\[
|\partial_H^\alpha \mathcal{J}_{z+t/2}(\sqrt{R-\|\rho\|^2}|H|)| \leq c(R-\|\rho\|^2)^{|\alpha|/2} \cdot (\frac{\text{Re}z + l+1}{2}) |H|^{-(\text{Re}z+l+1/2)}.
\]

Proof. Using the identity \(\mathcal{J}'_\nu(t) = -t\mathcal{J}_{\nu+1}(t) \), it is straightforward to get that
\[
\mathcal{J}'_\nu(t) = (-1)^{\alpha} t^\alpha \mathcal{J}_{\nu+a}(t) + \sum_{j=1}^{[\alpha/2]} c_j^\alpha t^{a-2j} \mathcal{J}_{\nu+a-j}(t), \quad a \in \mathbb{N},
\]
for some constants \(c_j^\alpha \), where \([a]\) denotes the integer part of \(a \). Applying the inequality
\[
|\mathcal{J}_\nu(t)| \leq c\mu t^{-(\text{Re} \mu + 1/2)}, \quad \text{for all } t > 0,
\]

\[18\], it follows that
\[
|\partial_H^\alpha \mathcal{J}(\sqrt{R-\|\rho\|^2}|H|)| \leq c(R-\|\rho\|^2)^{|\alpha|/2} \cdot (\frac{\text{Re}z + l+1}{2}) |H|^{-(\text{Re}z+l+1/2)}
\]
and (49) follows by taking \(\nu = z + l/2 \). \(\square \)

Lemma 9. If \(R \geq \|\rho\|^2 + 1 \), then
\[
|\kappa^z_R(x)| \leq c\varphi_0(x) R^{-\frac{1}{2}(\text{Re}z-n+\frac{1}{2})} |x|^{-\text{Re}z-\frac{1}{2}}, \quad |x| > 1.
\]

Proof. From (49), we get that
\[
I^2 := \int_{|H|>|x|-\frac{1}{2}} \left(\sum_{|\alpha|\leq 2k} |\partial_H^\alpha \mathcal{J}_{z+t/2}(\sqrt{R-\|\rho\|^2}|H|)| \right)^2 dH
\]
\[
\leq c \left(\sum_{|\alpha|\leq 2k} (R-\|\rho\|^2)^{a/2} \right)^2 \times
\]
\[
\int_{|H|>|x|-\frac{1}{2}} \left((R-\|\rho\|^2)^{-\frac{\text{Re}z + l+1}{4}} |H|^{-(\text{Re}z+l+1/2)} \right)^2 dH
\]
\[
\leq c(R-\|\rho\|^2)^{-2(\text{Re}z + l+1)+2k} \int_{u>|x|-\frac{1}{2}} u^{-(l+1)-2\text{Re}z} u^{l-1} du
\]
\[
(52) \quad I \leq c(R-\|\rho\|^2)^{-2(\text{Re}z + l+1)+2k} \left(|x| - \frac{1}{2} \right)^{-2\text{Re}z-\frac{1}{2}}.
\]

For \(R \geq \|\rho\|^2 + 1 \), since \(k > \frac{n}{2} - \frac{l}{4} \), we have that
\[
(53) \quad I \leq c(R-\|\rho\|^2)^{-\frac{(\text{Re}z-1/2)+1}{2}} \left(|x| - \frac{1}{2} \right)^{-\text{Re}z-\frac{1}{2}}.
\]
Using (53) and (48), from (47) we obtain that
\[|\kappa_{z,R}(x)| \leq c\varphi_0(x)R^{-\Re z}(R - \|\rho\|^2)^{\Re z + \frac{1}{2}} \times \]
\[\times (R - \|\rho\|^2)^{-\left(\frac{\Re z + \frac{1}{2}}{2} + \frac{1}{4}\right)} \left(\frac{|x|}{2} - \frac{1}{2}\right)^{-\Re z - \frac{1}{2}} \]
\[\leq c\varphi_0(x)R^{-\frac{1}{2}(\Re z - \frac{1}{2})}|x|^{-\Re z - \frac{1}{2}}, \quad |x| > 1. \]

Using the estimate (53) and proceeding as above, one can prove the following result.

Lemma 10. If \(\|\rho\|^2 \leq R \leq \|\rho\|^2 + 1 \), then
\[|\kappa_{z,R}(x)| \leq c\varphi_0(x)|x|^{-\Re z - \frac{1}{2}}, \quad |x| > 1. \]

Finally, we shall prove the following result, which, combined with Proposition 4, finishes the proof of Theorem 1.

Proposition 11. Let \(\Re z \geq n - \frac{1}{2} \) and consider \(q > 2 \). Then for every \(p \) such that \(1 \leq p \leq q' \), \(S_{z,\infty}^{\ast} \) is continuous from \(L^p(X) \) to \(L^r(X) \) for every \(r \in [qp'/2 - q, \infty) \), and \(\|S_{z,\infty}^{\ast}\|_{p \to r} \leq c(z) \) for all \(R \geq \|\rho\|^2 \).

Proof. Recall that \(\kappa_{z,\infty}^{\ast}(x) = \kappa_{z,R}(x) \) for every \(|x| > 1 \). Using the estimates of \(\kappa_{z,R} \) from Lemmata 9 and 10, as well as the estimate (11), it follows that \(\kappa_{z,\infty}^{\ast} \) is in \(L^q(X) \) for every \(q > 2 \). Thus, by Young’s inequality, the operator \(f \to |f| * \kappa_{z,\infty}^{\ast} \) maps \(L^p(X) \), \(p \in [1, q'] \), continuously into \(L^r(X) \), for every \(r \in [qp'/2 - q, \infty) \).

Further, for \(z \geq n - \frac{1}{2} \), in Lemmata 9 and 10 the estimates of the kernel \(\kappa_{z,\infty}^{\ast} \) are uniform with respect to \(R \). This implies that the norm \(\|S_{z,\infty}^{\ast}\|_{p \to r} \) is bounded by a constant, uniform with respect to \(R \). \(\square \)

4. Proof of Theorem 2 and Theorem 3

In this section we give the proof of Theorem 2 which deals with the \(L^p \)-continuity of the maximal operator \(S_{z}^{\ast} \) associated with the Riesz means. This allows us to deduce the almost everywhere convergence of Riesz means \(S_{z}^{\ast}(f) \) to \(f \), as \(R \to +\infty \).

Recall first that
\[S_{z}^{\ast}(f) = \sup_{R > \|\rho\|^2} |S_{z,R}^{\ast}(f)|, \quad f \in L^p(X). \]

The following proposition holds true, [18, Lemma 4.1].

Proposition 12. Let \(\Re z > 0 \). Then, \(S_{z}^{\ast} \) is continuous on \(L^2(X) \).
Recall the following decomposition of the kernel κ^z_R of the operator S^z_R:

\begin{equation}
\kappa^z_R = \zeta \kappa^z_R + (1 - \zeta) \kappa^z := \kappa^z,0 + \kappa^z,\infty,
\end{equation}

where $\zeta \in C^\infty(K \setminus G/K)$ is a cut-off function such that

\begin{equation}
\zeta(x) = \begin{cases} 1, & \text{if } |x| \leq 1/2, \\ 0, & \text{if } |x| \geq 1. \end{cases}
\end{equation}

Denote by $S^z,0_R$ (resp. S^z,∞_R) the convolution operators on X with kernel $\kappa^z,0_R$ (resp. κ^z,∞_R). Then,

$$S^z_* f \leq \sup_{R \geq \|\rho\|^2} |S^z,0_R f| + \sup_{R \geq \|\rho\|^2} |S^z,\infty_R f|.$$

The following holds true for the part at infinity S^z,∞_R of the operator S^z_*.

Proposition 13. Let $\Re z \geq n - \frac{1}{2}$. Then, for every $q > 2$ and $p \in [1, q']$, S^z,∞_R is continuous from $L^p(X)$ to $L^r(X)$ for every $r \in [qp'/(p' - q), \infty]$.

The proof relies on the uniform kernel estimates for κ^z,∞_R implied by Lemmata 9 and 10. It is similar to the proof of Proposition 11, thus omitted.

We shall now prove the following result concerning the local part $S^z,0_R$ of the Riesz means maximal operator.

Proposition 14. Let $\Re z \geq n - \frac{1}{2}$. Then, $S^z,0_R$ is continuous on $L^p(X)$, for every $p \in (1, \infty)$, and it maps $L^1(X)$ continuously into $L^{1,w}(X)$.

Denote by $e^{t\Delta}$, $t > 0$, the heat operator on X. Then, $e^{t\Delta} = *p_t$, where p_t is the heat kernel on X. Recall that p_t is given as the inverse spherical Fourier transform of $w_t(\lambda) = e^{-t(\|\lambda\|^2 + \|\rho\|^2)}$, $\lambda \in a^*$. Consider the radial multiplier

\begin{equation}
M(R^{-1}\lambda) := s^z_R(\lambda) - w_{R^{-1}}(\lambda), \ R \geq \|\rho\|^2.
\end{equation}

Denote by $K_R(x)$ the kernel of the operator $M(-R^{-1}\Delta)$ and set $K^0_R(x) := \zeta(x)K_R(x)$. Similarly, set $s^z_R := \mathcal{H}(\zeta \kappa^z_R) = \mathcal{H}(\kappa^z,0_R)$ and $w^0_{R^{-1}} = \mathcal{H}(\zeta p_{R^{-1}}) = \mathcal{H}(p^0_{R^{-1}})$. Then, using (57), we have that

\begin{equation}
\mathcal{H}(\kappa^z_R) := M^0(-R^{-1}\cdot) = s^z_R - w^0_{R^{-1}},
\end{equation}
From (58) we have that
\begin{equation}
S_{*}^{z,0}f = \sup_{R \geq \|\rho\|^2} |s_{R}^{z,0}(-\Delta)f| \leq \sup_{R \geq \|\rho\|^2} |M^{0}(-R^{-1}\Delta)f| + \sup_{R \geq \|\rho\|^2} |f * p_{R^{-1}}^{0}|.
\end{equation}

Consider the operator \((-\Delta)^{i\gamma}, \gamma \in \mathbb{R}\), which in the spherical Fourier transform variables is given by
\begin{equation*}
\mathcal{H}((-\Delta)^{i\gamma}f) = (\|\lambda\|^2 + \|\rho\|^2)^{i\gamma} \mathcal{H}(f), \lambda \in \mathfrak{a}^{*}.
\end{equation*}
Denote by \(\kappa^{\gamma} = \mathcal{H}^{-1}(\|\lambda\|^2 + \|\rho\|^2)^{i\gamma}\) the kernel of \((-\Delta)^{i\gamma}\). As in [1, 18], using the Mellin transform \(M(\gamma)\) of the radial function \(M(\lambda)\), one can express the operator \(M(-R^{-1}\Delta)\) as follows:
\begin{equation}
M(-R^{-1}\Delta) = \int_{-\infty}^{+\infty} \mathcal{M}(\gamma) R^{-i\gamma} (-\Delta)^{i\gamma} d\gamma,
\end{equation}
where
\begin{equation}
|\mathcal{M}(\gamma)| \leq c(1 + |\gamma|)^{-(\Re z+1)},
\end{equation}
[18]. Using (60), the kernel \(K_{R}\) of \(M(-R^{-1}\Delta)\) is given by
\begin{equation*}
K_{R} = \int_{-\infty}^{+\infty} \mathcal{M}(\gamma) R^{-i\gamma} \kappa^{\gamma} d\gamma,
\end{equation*}
and thus
\begin{equation*}
K_{R}^{0}(x) = \zeta(x)K_{R}(x) = \int_{-\infty}^{+\infty} \mathcal{M}(\gamma) R^{-i\gamma} \zeta(x) \kappa^{\gamma}(x) d\gamma = \int_{-\infty}^{+\infty} \mathcal{M}(\gamma) R^{-i\gamma} \kappa^{0}(x) d\gamma.
\end{equation*}
It follows that
\begin{equation*}
M^{0}(-R^{-1}\Delta) = \int_{-\infty}^{+\infty} \mathcal{M}(\gamma) R^{-i\gamma} (-\Delta)^{i\gamma,0} d\gamma.
\end{equation*}
Hence,
\begin{equation}
\sup_{R \geq \|\rho\|^2} |M^{0}(-R^{-1}\Delta)f| \leq \int_{-\infty}^{+\infty} |\mathcal{M}(\gamma)||(-\Delta)^{i\gamma,0}f| d\gamma
\end{equation}

Lemma 15. The operator \((-\Delta)^{i\gamma,0}\) is bounded on \(L^{p}\), \(p \in (1, \infty)\), with
\begin{equation}
\|(-\Delta)^{i\gamma,0}\|_{L^{p}\to L^{p}} \leq c_{p}(1 + |\gamma|)^{\left\lfloor n/2 \right\rfloor + 1}.
\end{equation}
Moreover, the operator \((-\Delta)^{i\gamma,0}\) is also \(L^{1} \to L^{1,w}\) bounded, with
\begin{equation}
\|(-\Delta)^{i\gamma,0}\|_{L^{1}\to L^{1,w}} \leq c(1 + |\gamma|)^{\left\lfloor n/2 \right\rfloor + 1}.
\end{equation}
Proof. To prove the lemma, we shall proceed as in [2]. More precisely, by using a smooth, radial partition of unity (and thus invariant by the Weyl group), we decompose the multiplier $m^\gamma(\lambda) = (\|\lambda\|^2 + \|\rho\|^2)^i\gamma$ as follows

$$m^\gamma(\lambda) = \sum_{k=0}^{+\infty} m_k^\gamma(2^{-k}\lambda),$$

where $\text{supp } m_0^\gamma \subset \{\|\lambda\| \leq 2\}$ and $\text{supp } m_k^\gamma \subset \{1/2 \leq \|\lambda\| \leq 2\}$ for $k \geq 1$. Then, for every $p \in (1, +\infty)$, we have

$$\|(\Delta)^{i\gamma,0}\|_{p\rightarrow p} \leq c_p \sup_{k\geq 0} \|m_k^\gamma\|_{H^{\sigma/2}},$$

with $\sigma > n$ and $H_2^{\sigma/2}$ the usual Sobolev space, [2, Corollary 17, ii]. Note that the same upper bound also holds for the $L^1 \rightarrow L^{1,w}$ norm of $\|(\Delta)^{i\gamma,0}\|$, [2]. A straightforward computation yields

$$\|m_k^\gamma\|_{H^{\sigma/2}} \leq c(1 + |\gamma|)^{\sigma/2},$$

for $\sigma/2$ an integer, and Lemma 15 follows from (65). □

End of the proof of Proposition 14. We shall complete the proof for the L^p boundedness of $S_0^*, p \in (1, \infty)$; the $L^1 \rightarrow L^{1,w}$ result is similar, thus omitted. Recall that (59) states that

$$S_0^* f \leq \sup_{R \geq \|\rho\|^2} |M^0(-R^{-1}\Delta)f| + \sup_{R \geq \|\rho\|^2} |f \ast p_{R-1}|.$$

Note that since $p_t(x) \geq 0$, for every $x \in X$, we have $p_0^t(x) \leq p_t(x)$. Thus,

$$|(f \ast p_0^t)(x)| \leq (|f| \ast p_t)(x).$$

Also, it is known (see for example [3, Corollary 3.2]) that the heat maximal operator $\sup_{t>0} |e^{t\Delta}f|$ is L^p-bounded and also $L^1 \rightarrow L^{1,w}$ bounded. This implies that the operator $\sup_{R \geq \|\rho\|^2} |f \ast p_{R-1}|$ is also L^p-bounded and $L^1 \rightarrow L^{1,w}$ bounded. Thus, from (59), it follows that to prove the L^p-boundedness of the operator S_0^*, it suffices to prove the L^p-boundedness of the operator $\sup_{R \geq \|\rho\|^2} |M^0(-R^{-1}\Delta)|$, and similarly for the $L^1 \rightarrow L^{1,w}$ boundedness.
From (62) and (66), we have that
\[
\| \sup_{R \geq \|\rho\|^2} |M^0(-R^{-1}\Delta)| \|_p \leq \int_{-\infty}^{+\infty} |\mathcal{M}(\gamma)||(-\Delta)^{i\gamma,0}|_{p\rightarrow p} \|f\|_p d\gamma
\]
\[
\leq c\|f\|_p \int_{-\infty}^{+\infty} (1 + |\gamma|)^{-(\text{Re}z+1)}(1 + |\gamma|)^{\lfloor n/2 \rfloor + 1} d\gamma
\]
\[
\leq c\|f\|_p \int_{-\infty}^{+\infty} (1 + |\gamma|)^{-(\text{Re}z-\lfloor n/2 \rfloor)} d\gamma \leq c\|f\|_p,
\]
whenever \(\text{Re}z \geq n - \frac{1}{2} \). This completes the proof of Proposition 14. □

Proof of Theorem 2. The proof of Theorem 2 follows from Stein’s complex interpolation, between the \(L^p \) result for \(p \) close to 1 and the \(L^2 \) result (Propositions 12, 13 and 14).

Proof of Theorem 3. As it is already mentioned in the Introduction, from Theorem 2 and Propositions 13 and 14, and well-known measure theoretic arguments (see for example [20, Theorem 2.1.14]), we deduce the almost everywhere convergence of Riesz means: if \(1 \leq p \leq 2 \) and \(\text{Re}z > (n - \frac{1}{2}) \left(\frac{2}{p} - 1 \right) \), then
\[
\lim_{R \to +\infty} S^z_R(f)(x) = f(x), \text{ a.e., for } f \in L^p(X).
\]

ACKNOWLEDGEMENT

The authors would like to thank the anonymous referee for the valuable comments and remarks.

REFERENCES

[1] G. Alexopoulos, N. Lohoué, Riesz means on Lie groups and Riemannian manifolds of nonnegative curvature, *Bull. Soc. Math. France*, 122 (1994), no. 2, 209–223.

[2] J.-Ph. Anker, \(L^p \) Fourier multipliers on Riemannian symmetric spaces of noncompact type, *Ann. of Math.*, 132 (1990), 597–628.

[3] J.-Ph. Anker, Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces. *Duke Math. J.*, 65 (1992), no. 2, 257–297.

[4] J.-Ph. Anker, L. Ji, Heat kernel and Green function estimates on noncompact symmetric spaces, *Geom. Funct. Anal.*, 9 (1999), no. 6, 1035–1091.

[5] J.-Ph. Anker, P. Ostellari, The heat kernel on noncompact symmetric spaces, *Amer. Math. Soc. Transl. Ser. 2*, vol. 210 (2003), 27–46.

[6] P. Berard, Riesz means on Riemannian manifolds, *Proc. Sympos. Pure Math.*, 36 (1980), 1–12.

[7] J. Cheeger, M. Gromov, M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. *J. Differential Geom.*, 17 (1982), no. 1, 15–53.
[8] M. Christ, Weak type \((1,1)\) bounds for rough operators, *Ann. of Math.* (2), **128** (1988), 19–42.

[9] M. Christ, Weak type endpoint bounds for Bochner-Riesz operators, *Rev. Mat. Iberoamericana*, **3** (1987), 25–31.

[10] M. Christ and C. Sogge, Weak type \(L^1\) convergence of eigenfunction expansions for pseudodifferential operators, *Invent. Math.*, **94** (1988), 421–453.

[11] J.L. Clerc, Sommes de Riesz et multiplicateurs sur un groupe de Lie compact, *Ann. Inst. Fourier*, **24** (1974), 149–172.

[12] J.L. Clerc, E.M. Stein, \(L^p\) multipliers for noncompact symmetric spaces, *Proc. Nat. Acad. Sci. U.S.A.*, **71** (1974), 3911–3912.

[13] M. G. Cowling, Harmonic analysis on semigroups, *Ann. of Math.*, **117** (1983), 267–283.

[14] K. Davis, Y. Chang, *Lectures on Bochner-Riesz Means* (London Math. Soc. Lecture Note Series), Cambridge, Cambridge University Press, 1987.

[15] E.B. Davies, N. Mandouvalos, Heat kernel bounds on hyperbolic space and Kleinian groups, *Proc. London Math. Soc.*, (3) **57** (1988), no. 1, 182–208.

[16] C. Fefferman, The multiplier problem for the ball, *Annals of Mathematics*, **94**, no. 2 (1971), 330–336.

[17] A. Fotiadis, N. Mandouvalos, M. Marias, Schrödinger equations on locally symmetric spaces, *Math. Ann.*, **371** (2018), no. 3-4, 1351–1374.

[18] S. Giulini, G. Manceri, Almost everywhere convergence of Riesz means on certain noncompact symmetric spaces, *Annali di Matematica pura ed applicata* (1991) 159–357.

[19] S. Giulini and G. Travaglini, Estimates for Riesz kernels of eigenfunction expansions of elliptic differential operators on compact manifolds, *J. Func. Anal.*, **96** (1991), 1–30.

[20] L. Grafakos, (2004). *Classical and modern Fourier analysis*. New Jersey: Pearson Education.

[21] A. Grigor’yan, Gaussian upper bounds for the heat kernel and for its derivatives on a Riemannian manifold, in *Classical and Modern Potential Theory and Applications*, NATO ASI Series, **430**, Springer, Dordrecht.

[22] S. Helgason, *Groups and geometric analysis*, Academic Press, New York, 1984.

[23] C. Herz, The theory of \(p\)-spaces with an application to convolution operators, *Trans. Amer. Math. Soc.*, **154** (1971), 69–82.

[24] L. Hörmander, *On the Riesz means of spectral functions and eigenfunction expansions for elliptic differential operators*, Some Recent Advances in the Basic Sciences, 155–202, Yeshiva University, New York, 1966.

[25] N. Lohoué, M. Marias, Invariants géométriques des espaces localement symétriques et théorèmes de multiplicateurs, *Math. Ann.*, **343** (2009), 639–667.

[26] N. Lohoué, M. Marias, Multipliers on locally symmetric spaces, *J. Geom. Anal.*, **24** (2014), 627–648.

[27] M. Marias, \(L^p\)-boundedness of oscillating spectral multipliers on Riemannian manifolds, *Ann. Math. Blaise Pascal*, **10** (2003), 133–160.

[28] I. P. Natanson, *Constructive Function Theory, Vol. I: Uniform Approximation*, Ungar, New York, 1964.

[29] E. Papageorgiou, Oscillating multipliers on symmetric and locally symetric spaces, https://arxiv.org/abs/1811.03313.
[30] A. Seeger, Endpoint estimates for multiplier transformations on compact manifolds, *Indiana Univ. Math. J.*, 40 (1991), no. 2, 471–533.
[31] E. M. Stein, Localization and summability of multiple Fourier series, *Acta Math.*, 100 (1958), 93–147.
[32] E. M. Stein, C. Weiss, *Introduction to Fourier Analysis on Euclidean Spaces*, Princeton University Press, Princeton, 1971.
[33] E. M. Stein, *Topics in Harmonic Analysis Related to the Littlewood-Paley Theory*, (AM-63), Volume 63, Princeton University Press, Princeton, 1971.
[34] C. Sogge, On the convergence of Riesz means on compact manifolds, *Ann. of Math.* (2), 126 (1987), 439–447.
[35] J.-O. Strömberg, Weak type L1 estimates for maximal functions on non-compact symmetric spaces, *Ann. of Math.* (2), 114 (1) (1981), 115–126.
[36] A. Weber, Heat kernel bounds, Poincaré series, and L2 spectrum for locally symmetric spaces (thesis).
[37] F. Zhu, Almost everywhere convergence of Riesz means on noncompact symmetric space SL(3,H)/Sp(3), *Acta Math. Sinica*, New Series, 13 (1997), no.4, 545–552.
[38] A. Zygmund, *Trigonometric series*, Cambridge, Cambridge University Press, 1935.

Current address: Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki 54.124, Greece