Effect of Açaí (Euterpe Oleracea) Intake on Vascular Function and Lipid Profile: What is the Recommendation?

Heitor Oliveira Santos

Universidade Federal de Uberlândia, Uberlândia, MG - Brazil

Introduction

The açaí palm tree (Euterpe oleracea Mart.) is mostly native to Brazil, and its fruit, açaí berry, is very popular among physically active individuals. The açaí berry pulp, very pleasing to the taste buds, has gained adepts in Brazil, Europe and USA in recent years, being even considered a “superfruit”.

The açaí berry pulp is rich in anthocyanins, which is reflected on its deep purple color, in addition to other bioactive substances, such as phenolic compounds and flavonoids. Because of its content of such substances, the açaí fruit has been claimed to have a significant pharmacodynamic effect, mainly on the cardiovascular physiology, affecting dyslipidemia and arterial hypertension.

Thus, considering the pharmacodynamic substances and nutritional composition of the açaí berry, understanding the impact of its intake on the lipid profile and blood pressure is necessary.

Development

Nutrition facts

The pulp of the Brazilian açaí has a considerable amount of fats and dietary fibers. When compared to popularly consumed foods, whose cardiovascular benefits have been well established, vitamin E is the nutrient of açaí that stands out. The amount of carbohydrates in the açaí pulp alone, without syrup or any dietary item added, is low (Table 1).

The lipid composition of the Brazilian açaí berry is as follows: polyunsaturated fatty acids, 11.1%; monounsaturated fatty acids, 60.2%; and saturated fatty acids, 28.7%.

Bioactive substances of cardiovascular importance

A significant amount of anthocyanins is present in the açaí berry, which also contains other antioxidant phytochemicals important to the cardiovascular system, such as sterols, mainly beta-sitosterol, which, similarly to monounsaturated fats, is also found in olive oil and avocado. Beta-sitosterol acts mainly on lipid modulation, while anthocyanins act mainly by reducing blood pressure.

Impact of açaí intake on vascular function

The most important effect of the açaí berry on vascular function is vasodilation, mainly via the anthocyanins. An easily accessible clinical parameter to monitor the açaí effect on vascular function is blood pressure. Despite the expectations, Aqurashi et al., and Udani et al., have not found any improvement in blood pressure deriving from the açaí intake, but their sample was formed by normotensive individuals. However, Aqurashi et al., have reported a 1.4% increase in the flow-mediated dilation of the brachial artery resulting from the intake of 150 g of açaí pulp in an acute test, which reflects a significant improvement in vascular function.

Effect of açaí intake on lipid profile

Despite not finding any improvement in blood pressure, Udani et al. have shown a reduction in total cholesterol...
Table 1 - Comparison of the nutrition facts of the açaí pulp with servings of foods which display cardiovascular protection

Dietary item (homemade amount)	Calories	Protein (g)	Total fat (g)	Carbohydrate available (g)	Total fibers (g)	Vitamin E (mg)
Açaí pulp (100 g)	72	1	4.9	5.8	5.3	14.8
Avocado (100 g)	167	2	15.4	8.6	6.8	2
Powder cocoa (30 g)	123	6	3	18	6	0.1
Mix of oilseeds (28.5 g)	172	5.5	15.2	6.4	1.8	1.7
Extra virgin olive oil (14 mL)	120	0	14	0	0	1.9

Adapted from the United States Department of Agriculture (USDA).²

from 159 to 142 mg/dL (p < 0.030) in overweight patients consuming 100 g of açaí pulp twice a day for one month, but the other lipid profile parameters showed no change.⁷ Surprisingly, Sadowska-Krepa et al.,⁸ have reported an increase in HDL-C levels from 50 to 60 mg/dL in young athletes following the intake of 100 mL/day of açaí juice for six weeks, in addition to a decrease in total cholesterol from 159 to 134 mg/dL, in LDL-C from 90 to 60 mg/dL, and in triglycerides from 94 to 72 mg/dL.

However, a new study has reported that the intake of 200 g/day of açaí pulp for four weeks did not improve the traditional lipid profile parameters of healthy women. Nevertheless, açaí consumption elevated the serum levels of apolipoprotein A1 and the activity of paraoxonase-1, whose molecules are HDL-C precursors. The consumption of açaí improved the transfer of cholesteryl esters to HDL-C, a beneficial biochemical process, because that is an HDL-C function, which captures cholesteryl esters from VLDL-C (reverse cholesterol transport).⁹

Conclusions/Dietary Management

The açaí pulp is popularly consumed combined with other foods, and some dietary items that can enhance the claimed cardiovascular effects of açaí are cocoa or dark chocolate and oilseeds, such as almonds, chestnuts and walnuts.

Author contributions

Conception and design of the research: Santos HO. Acquisition of data: Santos HO. Analysis and interpretation of the data: Santos HO. Writing of the manuscript: Santos HO. Critical revision of the manuscript for intellectual content: Santos HO.

Potential Conflict of Interest

No potential conflict of interest relevant to this article was reported.

Sources of Funding

There were no external funding sources for this study.

Study Association

This study is not associated with any thesis or dissertation work.

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.
References

1. de Moura RS, Resende ÂC. Cardiovascular and Metabolic Effects of Açaí, an Amazon Plant. J Cardiovasc Pharmacol. 2016 Jul;68(1):19-26.

2. United States Department of Agriculture (USDA). Food composition Databases. [Cited in 2018 Jan 10]. Available from: https://www.ars.usda.gov/northeast-area/beltsville-md/beltsville-human-nutrition-research-center/nutrient-data-laboratory/docs/usda-national-nutrient-database-for-standard-reference/.

3. Schauss AG, Wu X, Prior RL, Ou B, Patel D, Huang D, et al. Phytochemical and nutrient composition of the freeze-dried amazonian palm berry, Euterpe oleracea mart. (acai). J Agric Food Chem. 2006 Nov;54(22):8598-603.

4. Perona JS, Cabello-Moruno R, Ruiz-Gutierrez V. The role of virgin olive oil components in the modulation of endothelial function. J Nutr Biochem. 2006;17(7):429-45.

5. Herrera-Arellano A, Flores-Romero S, Chávez-Soto MA, Tortoriello J. Effectiveness and tolerability of a standardized extract from Hibiscus sabdariffa in patients with mild to moderate hypertension: a controlled and randomized clinical trial. Phytomedicine. 2004;11(5):375-82.

6. Alqurashi RM, Galante LA, Rowland IR, Spencer JP, Commane DM. Consumption of a flavonoid-rich açaí meal is associated with acute improvements in vascular function and a reduction in total oxidative status in healthy overweight men. Am J Clin Nutr. 2016;104(5):1227-35.

7. Udani JK, Singh BB, Singh VJ, Barrett ML. Effects of Açaí (Euterpe oleracea Mart.) berry preparation on metabolic parameters in a healthy overweight population: A pilot study. Nutr J. 2011 May 12;10:45.

8. Sadowska-Kępka E, Kłapcińska B, Podgórska T, Szade B, Tyl K, Hadzik A. Effects of supplementation with acai (Euterpe oleracea Mart.) berry-based juice blend on the blood antioxidant defence capacity and lipid profile in junior hurdlers. A pilot study. Biol Sport. 2015;32(2):161-8.

9. Pala D, Barbosa PO, Silva CT, de Souza MO, Freitas FR, Volp AC, et al. Açaí (Euterpe oleracea Mart.) dietary intake affects plasma lipids, apolipoproteins, cholesteryl ester transfer to high-density lipoprotein and redox metabolism: A prospective study in women. Clin Nutr. 2018;37(2):618-623.