Properly Coloured Cycles and Paths: Results and Open Problems

Gregory Gutin∗ Eun Jung Kim†

Abstract

In this paper, we consider a number of results and seven conjectures on properly edge-coloured (PC) paths and cycles in edge-coloured multigraphs. We overview some known results and prove new ones. In particular, we consider a family of transformations of an edge-coloured multigraph \(G\) into an ordinary graph that allow us to check the existence PC cycles and PC \((s, t)\)-paths in \(G\) and, if they exist, to find shortest ones among them. We raise a problem of finding the optimal transformation and consider a possible solution to the problem.

1 Introduction

The class of edge-coloured multigraphs generalize directed graphs. There are several other generalizations of directed graphs such as arc-coloured digraphs, hypertournaments and star hypergraphs, but the class of edge-coloured multigraphs has been given the main attention in graph theory literature because many concepts and results on directed graphs can be extended to edge-coloured multigraphs and there are several important applications of edge-coloured multigraphs. For a more extensive treatment of this topic, see [6, 7].

In this paper we overview some known results on properly coloured (PC) cycles and paths in edge-coloured multigraphs, prove new ones and consider several open problems on the topic. In Section 2 we briefly consider a problem of whether an edge-coloured graph has a PC cycle. In Sections 3 and 4 we offer a useful tool to study edge-coloured multigraphs. In investigating problems on PC subgraphs of edge-coloured multigraphs, it is convenient to transform an edge-coloured graph into an ordinary graph. We suggest a new technique that somewhat automates this transformation. Moreover,

∗Department of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK, gutin@cs.rhul.ac.uk
†Department of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK, eunjung@cs.rhul.ac.uk
by proving some new results, we illustrate how the proposed technique allows us to obtain more efficient algorithms for PC cycle and PC \((s, t)\)-path problems by reducing the order and size of the transformed graph. We raise a problem of determining the minimum order and size of the transformed graph, and describe the family of graphs that may be the solution to the problem.

In Section 5 we study long PC cycles and paths in arbitrary edge-coloured multigraphs and Section 6 is devoted to longest (mostly Hamilton) PC cycles in edge-coloured complete graphs.

An \(m\)-path-cycle subgraph \(F\) of a multigraph \(G\) is a vertex-disjoint union of \(m\) paths and a number of cycles in \(G\) (some cycles can be of length 2). If \(m = 0\), we call \(F\) a cycle subgraph of \(G\). For a vertex set \(X\) of a multigraph \(G\), \(G\langle X \rangle\) denotes the subgraph of \(G\) induced by \(X\).

For a pair \(s, t\) of distinct vertices of \(G\), a path between \(s\) and \(t\) is called an \((s, t)\)-path.

We consider edge-coloured multigraphs, i.e., undirected multigraphs in which each edge has a colour, but no parallel edges have the same colour. If an edge-coloured multigraph \(G\) has \(c\) colours, we assume that the colours are \(1, 2, \ldots, c\) and we call \(G\) a \(c\)-edge-coloured multigraph. We denote the colour of an edge \(e\) of an edge-coloured multigraph \(G\) by \(\chi(e)\). When \(G\) has no parallel edges, we call \(G\) an edge-coloured graph.

Let \(G\) be a \(c\)-edge-coloured multigraph and let \(v \in V(G)\). By \(N_i(v)\) we denote the set of neighbours of \(v\) adjacent to \(v\) by an edge of colour \(i\); let \(d_i(x) = |N_i(x)|\). The maximum (minimum) monochromatic degree of \(G = (V, E)\) is defined by

\[
\Delta_{\text{mon}}(G) = \max \{d_j(v) : v \in V, 1 \leq j \leq c\} \\
(\delta_{\text{mon}}(G) = \min \{d_j(v) : v \in V, 1 \leq j \leq c\}).
\]

Let \(\chi(v) = \{i : 1 \leq i \leq c, N_i(v) \neq \emptyset\}\). A path or cycle \(Q\) of \(G\) is properly coloured (PC) if every two adjacent edges of \(Q\) are of different colours.

2 Existence of PC Cycles

Since a pair of parallel edges in a \(c\)-edge-coloured multigraph \((c \geq 2)\) forms a PC cycle, in this section, we consider only \(c\)-edge-coloured graphs.

It is easy to see that the problem of checking whether a \(c\)-edge-coloured graph has a PC cycle is more general (even for \(c = 2\)) than the simple problem of verifying whether a digraph contains a directed cycle. Indeed, consider a digraph \(D\) and, to obtain a 2-edge-coloured graph \(G\) from \(D\), replace each arc \(xy\) of \(D\) with edges \(xz_{xy}\) and \(z_{xy}y\) of colours 1 and 2, where \(z_{xy}\) is a new vertex \((z_{xy} \neq z_{x'y'}\) provided \(xy \neq x'y')\). Observe that \(G\) has a PC cycle if and only if \(D\) has a directed cycle.
The following theorem by Yeo [19] provides a simple recursive way of checking whether a \(c\)-edge-coloured graph has a PC cycle. (For \(c = 2\), Theorem 2.1 was first proved by Grossman and Häggkvist [12].)

Theorem 2.1. Let \(G\) be a \(c\)-edge-coloured graph, \(c \geq 2\), with no PC cycle. Then, \(G\) has a vertex \(z \in V(G)\) such that no connected component of \(G - z\) is joined to \(z\) with edges of more than one colour.

Let us consider the following function introduced by Gutin [13]:

\[d(n, c), \text{ the minimum number } k \text{ such that every } c\text{-edge-coloured graph of order } n \text{ and minimum monochromatic degree at least } k \text{ has a PC cycle. } \]

It was proved in [13] that

\[d(n, c) \leq \frac{1}{\lfloor c/2 \rfloor} (\log_2 n - \frac{1}{3} \log_2 \log_2 n + \Theta(1)). \tag{1} \]

Abouelaoualim et al. [1] stated a conjecture which implies that \(d(n, c) = 1\) for each \(c \geq 2\). Using a recursive construction inspired by Theorem 2.1 of \(c\)-edge-coloured graphs with minimum monochromatic degree \(p\) and without PC cycles, Gutin [13] showed that

\[d(n, c) \geq \frac{1}{c} (\log_c n - \log_c \log_c n) \tag{2} \]

and, thus, the conjecture does not hold. The bounds (1) and (2) imply that \(d(n, c) = \Theta(\log_2 n)\) for every fixed \(c \geq 2\).

Conjecture 2.2. [13] There is a function \(s(c)\) dependent only on \(c\) such that

\[d(n, c) = s(c) \log_2 n (1 + o(1)). \]

In particular, it would be interesting to determine \(s(2)\).

3 P-Gadgets

We consider gadget constructions which generalize some known constructions mentioned below. The P-gadget graphs \(G^*\) and \(G^{**}\) of an edge-coloured multigraph \(G\) described in the next section allow one to transform several problems on properly coloured subgraphs of \(G\) into perfect matching problems in \(G^*\) or \(G^{**}\).

Let \(G\) be an edge-coloured multigraph and let \(G' = G - \{x \in V(G) : |\chi(x)| = 1\}\). For each \(x \in V(G')\) let \(G_x\) be an arbitrary (non-edge-coloured) graph with the following four properties:

- **P1** \(\{x_q : q \in \chi(x)\} \subseteq V(G_x)\);
- **P2** \(G_x\) has a perfect matching;
For each \(p \neq q \in \chi(x) \), if the graph \(G_x - \{x_p, x_q\} \) is not empty, it has a perfect matching;

For each set \(L \subseteq \chi(x) \) with at least 3 elements; if the graph \(G_x - \{x_l : l \in L\} \) is not empty, it has no perfect matching.

Each \(G_x \) with the properties P1-P4 is called a \textbf{P-gadget}. Let us consider the following three P-gadgets; the first two are known in the literature and the third one is new.

1. One P-gadget is due to Szeider [17]:
 \[
 V(G_x) = \{x_i, x'_i : i \in \chi(x)\} \cup \{x'_a, x''_b\} \quad \text{and} \quad E(G_x) = \{x''_a x''_b, x'_i x'_a, x'_i x''_b : i \in \chi(x)\} \cup \{x'_i : i \in \chi(x)\}.
 \]
 We will call this the \textbf{SP-gadget}.

2. Another gadget is due to Bang-Jensen and Gutin [4]:
 \[
 V(G_x) = \{x_j : j \in \chi(x)\} \cup \{y_j : j \in \chi(x) \setminus \{m, M\}\},
 \]
 where \(m = \min \chi(x) \), \(M = \max \chi(x) \), and
 \[
 E(G_x) = \{x_j y_k : j \in \chi(x), k \in \chi(x) \setminus \{m, M\}\} \cup \{x_j x_k : j \neq k \in \chi(x)\}.
 \]
 We will call this the \textbf{BJGP-gadget}.

3. The following new gadget is a sort of crossover of the above two and is called the \textbf{XP-gadget}:
 \[
 V(G_x) = \{x_j : j \in \chi(x)\} \cup \{y_j : j \in \chi(x) \setminus \{m, M\}\},
 \]
 where \(m \) and \(M \) are defined above, and
 \[
 E(G_x) = \{x_m x_M\} \cup \{x_j y_j, x_m y_j, x_M y_j : j \in \chi(x) \setminus \{m, M\}\}.
 \]
 It is not difficult to verify that the tree P-gadgets indeed satisfy P1-P4.

Let \(z = \chi(x) \). Observe that the SP-gadget has \(2z + 2 \) vertices and \(3z + 1 \) edges, the BJGP-gadget \(2z - 2 \) vertices and \(z(3z - 5)/2 \) edges, the XP-gadget \(2z - 2 \) vertices and \(3z - 5 \) edges. Thus, the XP-gadget has the minimum number of vertices and edges among the three P-gadgets. It is not difficult to verify that the XP-gadget has the minimum number of vertices and edges among all possible P-gadgets for \(z = 2, 3, 4 \). Perhaps, this is true for any \(z \).

\textbf{Conjecture 3.1.} \textit{The XP-gadget has the minimum number of vertices and edges among all possible P-gadgets for every} \(z \geq 2 \).

We will see in the next section why minimizing the numbers of vertices and edges in P-gadgets is important for speeding up some algorithms on edge-coloured multigraphs.
4 P-gadget Graphs

Let G be a c-edge-coloured multigraph and let G_x be a P-gadget for $x \in V(G')$. The graph G^* is defined as follows: $V(G^*) = \cup_{x \in V(G')} V(G_x)$ and $E(G^*) = E_1 \cup E_2$, where $E_1 = \cup_{x \in V(G')} E(G_x)$ and $E_2 = \{y_qz_q : y, z \in V(G'), yz \in E(G), \chi(yz) = q, 1 \leq q \leq c\}$.

Let s, t be a pair of distinct vertices of G and let $H = G - \{s, t\}$. Let G^{**} be constructed from H^* by adding s and t and edges $E_3 = \{sx_i : sx \in E(G), \chi(sx) = i\} \cup \{tx_i : tx \in E(G), \chi(tx) = i\}$.

We will denote the number of vertices and edges in multigraph sG, G^* and G^{**} by n, m, n^*, m^*, respectively.

The following result relates perfect matchings of G^* with PC cycle subgraphs of G. PC cycle subgraphs are important in several problems on edge-coloured multigraphs (for example, for the PC Hamilton cycle problem), see [6]. Recall that $G' = G - \{x \in V(G) : |\chi(x)| = 1\}$.

Theorem 4.1. Let G be a connected edge-coloured multigraph such that G' is non-empty. Then G has a PC cycle subgraph with r edges if and only if G^* has a perfect matching with exactly r edges in E_2.

Proof: Let M be a perfect matching of G^* with exactly edges

$$x_{p_1}^1y_{q_1}, \ldots, x_{p_r}^r, y_{q_r}$$

in E_2. For a vertex x of G', let Q_x be the set of edges in E_2 adjacent to G_x. By P2, each G_x has even number of vertices ($x \in V(G')$) and since M is a perfect matching in G^*, there is even number of edges in Q_x. By P4, Q_x has either no edges or two edges for each $x \in V(G')$. Let X be the set of all vertices $x \in V(G')$ such that $|Q_x| = 2$. Then, by the definition of G^*, $G(X)$ contains a PC cycle factor. It remains to observe that $|X| = r$.

Now let F be a PC cycle subgraph of G with r edges. Observe that the edges of F correspond to a set Q of r independent edges of G^* and that either no edges or two edges of Q are adjacent to G_x for each $x \in V(G')$. Now delete the vertices adjacent with Q from each G_x and observe that each remaining non-empty gadget has a perfect matching by P2 and P3. Combining the perfect matchings of the non-empty gadgets with Q, we get a perfect matching of G^* with exactly r edges from E_2.\[\]

The first part of the next assertion generalizes a result from [4]. The second part is based on an approach which leads to a more efficient algorithm than in [2].

Corollary 4.2. One can check whether an edge-coloured multigrap G has a PC cycle and, if it does, find a maximum PC cycle subgraph of G in time $O(n^* \cdot (m^* + n^* \log n^*))$. Moreover one can find a shortest PC cycle in G in time $O(n \cdot n^* \cdot (m^* + n^* \log n^*))$.\[\]
Proof: We may assume that G is connected and that G' is not empty. By Theorem 4.1, it is enough to find a perfect matching of G^\ast containing the maximum number of edges from E_2. Assign weight 0 (1, respectively) to edges of G^\ast in E_1 (E_2, respectively). Now we need to find a maximum weight perfect matching of G^\ast which can be done in time $O(n^* \cdot (m^* + n^* \log n^*))$ by a matching algorithm in [11].

To find a shortest PC cycle in G, choose a vertex $x \in V(G')$. We will find a shortest PC cycle in G traversing x. By Theorem 4.1, it is enough to find a perfect matching of G^\ast containing the minimum number of edges from E_2 while containing at least one edge from E_2 so that the corresponding PC cycle in G should be non-trivial. We define the weights on edges of G^\ast as follows. Assign M, where M is a sufficiently large number, to each edge in E_2 incident with G_x. For all other edges, assign weight 1 (0, respectively) to edges of G^\ast in E_1 (E_2, respectively). A maximum weight perfect matching of G^\ast contains exactly two edges of weight M by P4, and contains the minimum number of edges in E_2. Finding a maximum weight perfect matching of G^\ast can be done in time $O(n^* \cdot (m^* + n^* \log n^*))$ and we iterate the process for each $x \in V(G')$.

The proof of the following result is analogous to the proof of Theorem 4.1.

Theorem 4.3. Let G be an edge-coloured multigraph and let s, t be a pair of distinct vertices of G. If G^{**} is non-empty, then G has a PC 1-path-cycle subgraph with r edges in which the path is between s and t if and only if G^{**} has a perfect matching with exactly r edges not in E_1.

The next assertion generalizes a result from [2].

Corollary 4.4. Let G be an edge-coloured multigraph. One can check whether there is a PC (s, t)-path in G in time $O(m^{**})$ and if G has one, a shortest PC (s, t)-path can be found in time $O(n^{**} \cdot (m^{**} + n^{**} \log n^{**}))$.

Proof: Let L be a graph. Given a matching M in L, a path P in L is M–augmenting if, for any pair of adjacent edges in P, exactly one of them belongs to M and the first and last edges of P do not belong to M. Consider a perfect matching M of H^\ast, where $H = G - \{s, t\}$, which is a collection of perfect matchings of G_x for all $x \in V(G')$. The existence of a perfect matching in G_x is guaranteed by P2. Observe that G has a PC (s, t)-path if and only if there is an M–augmenting (s, t)-path P in G^{**}. Since an M–augmenting path P can be found in time $O(m^{**})$ (see [13]), we can find a PC (s, t)-path in G, if one exists, in time $O(m^{**})$.

To find a shortest PC (s, t)-path, we assign each edge in $\bigcup_{x \in V(G')} E(G_x)$ weight 0 and every other edge of G^{**} weight 1. Observe that a minimum
weight perfect matching \(Q \) in the weighted \(G^{**} \) corresponds to a shortest \(PC(s,t) \)-path. Finding a minimum weight perfect matching can be done in time \(O(n^{**} \cdot (m^{**} + n^{**} \log n^{**})) \).

5 Long PC Cycles and Paths

The following interesting result and conjecture were obtained by Abouelaoualim, Das, Fernandez de la Vega, Karpinski, Manoussakis, Martinhon and Saad [1].

Theorem 5.1. [1] Let \(G \) be a \(c \)-edge-coloured multigraph \(G \) with \(n \) vertices and with \(\delta_{mon}(G) \geq \lceil \frac{n+1}{2} \rceil \). If \(c \geq 3 \) or \(c = 2 \) and \(n \) is even, then \(G \) has a Hamilton PC cycle. If \(c = 2 \) and \(n \) is odd, then \(G \) has a PC cycle of length \(n - 1 \).

Conjecture 5.2. [1] Theorem 5.1 holds if we replace \(\delta_{mon}(G) \geq \lceil \frac{n+1}{2} \rceil \) by \(\delta_{mon}(G) \geq \lceil \frac{n}{2} \rceil \).

We cannot replace \(\delta_{mon}(G) \geq \lceil \frac{n+1}{2} \rceil \) by \(\delta_{mon}(G) \geq \lceil \frac{n-1}{2} \rceil \) due to the following example. Let \(H_1 \) and \(H_2 \) be \(c \)-edge-coloured complete multigraphs (for each pair \(x, y \) of vertices and each \(i \in \{1,2,\ldots,c\} \) and \(j \in \{1,2\} \), \(H_j \) has an edge between \(x \) and \(y \) of colour \(i \)) of order \(p+1 \) that have precisely one vertex in common. Clearly, a longest PC cycle in \(H_1 \cup H_2 \) is of length \(p+1 \).

Since the longest PC path problem is \(\mathcal{NP} \)-hard, it makes sense to study lower bounds on the length of a longest PC path. The following result was proved by Abouelaoualim et al. [1].

Theorem 5.3. Let \(G \) be a \(c \)-edge-coloured graph of order \(n \) with \(\delta_{mon}(G) = d \geq 1 \). Then \(G \) has a PC path of length at least \(\min\{n-1,2\lfloor\frac{c}{2}\rfloor d\} \).

The authors of [1] raised the following two conjectures.

Conjecture 5.4. Let \(G \) be a \(c \)-edge-coloured graph of order \(n \) and let \(d = \delta_{mon}(G) \geq 1 \). Then \(G \) has a PC path of length at least \(\min\{n-1,2cd\} \).

They also conjectured the following analog of Theorem 5.3 for multigraphs:

Conjecture 5.5. Let \(G \) be a \(c \)-edge-coloured multigraph of order \(n \) with \(\delta_{mon}(G) = d \geq 1 \). Then \(G \) has a PC path of length at least \(\min\{n-1,2d\} \).

6 Longest PC Cycles and Paths in Edge-Coloured Complete Graphs

Let \(K^c_n \) denote a \(c \)-edge-coloured complete graph with \(n \) vertices.

Feng, Giesen, Guo, Gutin, Jensen and Rafiey [10] proved the following:
Theorem 6.1. A K^c_n ($c \geq 2$) has a PC Hamilton path if and only if K^c_n contains a PC spanning 1-path-cycle subgraph.

This theorem was first proved by Bang-Jensen and Gutin [4] for the case $c = 2$ and they conjectured that Theorem 6.1 holds for each $c \geq 2$. Theorem 6.1 implies that the maximum order of a PC path in K^c_n equals the maximum order of a PC 1-path-cycle subgraph of K^c_n.

As a result, the problem of finding a longest PC path in K^c_n is polynomial-time solvable for arbitrary $c \geq 2$. To see that a PC 1-path-cycle subgraph of K^c_n can be found in polynomial time, add a pair x, y of new vertices to K^c_n together with all edges needed to have a complete multigraph on $n + 2$ vertices. Let the colour of all edges between x and y and K^c_n be $c+1$ and let the colour of xy be $c+2$. Observe that the maximum order of a PC 1-path-cycle subgraph of K^c_n equals the maximum order of a PC cycle subgraph of the $c + 2$-edge-coloured complete graph described above. It remains to apply Corollary 4.2.

The problem of finding a longest PC cycle K^c_n has not been solved yet for $c \geq 3$ as we will see below. For $c = 2$, Saad [15] found a characterization for longest PC cycles using the following notions. A pair of distinct vertices x, y of G are colour-connected if there exist PC (x, y)-paths P and Q such that $\chi(f_P) \neq \chi(f_Q)$ and $\chi(\ell_P) \neq \chi(\ell_Q)$, where f_P and f_Q are the first edges of P and Q, respectively, and ℓ_P and ℓ_Q are the last edges of P and Q, respectively. We say that G is colour-connected if every pair of distinct vertices of G is colour-connected. Saad’s characterization is as follows.

Theorem 6.2. The length of a longest PC cycle in a colour-connected K^2_n is equal to the maximum order of a PC cycle subgraph of K^2_n.

Colour-connectivity for K^2_n is an an equivalence relation (see [6]). Using Theorem 6.2, Saad [15] showed that the problem of finding a longest PC cycle in K^2_n is random polynomial. Using a special case of Corollary 4.2, Bang-Jensen and Gutin [5] proved that the problem is, in fact, polynomial-time solvable. Theorem 6.2 implies the following:

Corollary 6.3. [15] A K^2_n has a PC Hamilton cycle if and only if K^2_n is colour-connected and contains a PC cycle factor.

There is another characterization of K^2_n with a PC Hamilton cycle due to Bankfalvi and Bankfalvi, see [6]. The straightforward extension of Corollary 6.3 is not true for any $c \geq 3$ [9]. In fact, no characterization of K^c_n with a PC Hamilton cycle is known for any fixed $c \geq 3$ and it is a very interesting problem to obtain such a characterization. Even the following problem by Benkouar, Manoussakis, Paschos and Saad [8] is still open.

Problem 6.4. Determine the complexity of the PC Hamilton cycle problem for c-edge-coloured complete graphs when $c \geq 3$.

8
We conjecture that the PC Hamilton cycle problem for \(c \)-edge-coloured complete graphs when \(c \geq 3 \) is polynomial-time solvable.

In absence of characterization of \(K_n^c \) with a PC Hamilton cycle, sufficient conditions are interest. Manoussakis, Spyropoulos, Tuza and Voigt [14] proved the next result.

Proposition 6.5. If \(c \geq \frac{1}{2}(n - 1)(n - 2) + 2 \), then every \(K_n^c \) has a PC Hamilton cycle.

Let \(\Delta_{\text{mon}}(K_n^c) \) denote the largest monochromatic degree of \(K_n^c \). Bollobás and Erdős [9] posed the following:

Conjecture 6.6. Every \(K_n^c \) with \(\Delta_{\text{mon}}(K_n^c) \leq \lfloor n/2 \rfloor - 1 \) has a PC Hamilton cycle.

Improving some previous results on this conjecture, Shearer [16] showed that if \(7\Delta_{\text{mon}}(K_n^c) < n \), then \(K_n^c \) has a PC Hamilton cycle. So far, the best asymptotic estimate was obtained by Alon and Gutin [3].

Theorem 6.7. [3] For every \(\epsilon > 0 \) there exists an \(n_0 = n_0(\epsilon) \) so that for each \(n > n_0 \), every \(K_n^c \) satisfying \(\Delta_{\text{mon}}(K_n^c) \leq (1 - \frac{1}{\sqrt{2}} - \epsilon)n \) contains a PC Hamilton cycle.

References

[1] A. Abouelaoualim, K.Ch. Das, W. Fernandez de la Vega, Y. Manoussakis, C.A. Martinhon, and R. Saad, Cycles and paths in edge-colored graphs with given degrees, Manuscript, 2007.

[2] A. Abouelaoualim, K.Ch. Das, L. Faria, Y. Manoussakis, C.A. Martinhon, and R. Saad, Paths and Trails in Edge-Colored Graphs, Proc. LATIN’08, Lecture Notes Comput. Sci., 4957 (2008), 723–735.

[3] N. Alon and G. Gutin, Properly colored Hamilton cycles in edge colored complete graphs. Random Struct. & Alg., 11 (1997), 179-186.

[4] J. Bang-Jensen and G. Gutin, Alternating cycles and paths in edge-coloured multigraphs: a survey, Discrete Math., 165-166 (1997), 39–60.

[5] J. Bang-Jensen and G. Gutin, Alternating cycles and trails in 2-edge-coloured multigraphs, Discrete Math., 188 (1998), 61–72.

[6] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer, London, 2000, Freely available online at www.cs.rhul.ac.uk/books/dbook/.

[7] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, 2nd Edition, Springer, London, In preparation.

[8] A. Benkouar, Y. Manoussakis, V. Paschos and R. Saad, On the Complexity of Some Hamiltonian and Eulerian Problems in Edge-colored Complete Graphs, Lect. Notes Computer Sci., 557 (1991), 190–198.
[9] B. Bollobás and P. Erdős, Alternating Hamiltonian cycles, Israel J. Math., 23 (1976), 126–131.

[10] J. Feng, H.-E. Giesen, Y. Guo, G. Gutin, T. Jensen and A. Rafiey, Characterization of edge-colored complete graphs with properly colored Hamilton paths, J. Graph Theory, 53 (2006), 333–346.

[11] H.N. Gabow, Data structures for weighted matching and nearest common ancestors with linking, Proc. SODA’90, 1990, 434–443.

[12] J.W. Grossman and R. Häggkvist, Alternating cycles in edge-partitioned graphs, J. Combin. Theory Ser. B 34 (1983), 77–81.

[13] G. Gutin, Note on edge-colored graphs and digraphs without properly colored cycles. Austral. J. Combin., To appear.

[14] Y. Manoussakis, M. Spyros, Zs. Tuza and M. Voigt Minimal colorings for properly colored subgraphs, Graphs & Combin., 12 (1996), 345–360.

[15] R. Saad, Finding a longest alternating cycle in a 2-edge-colored complete graph is in RP, Combin. Prob. & Comput., 5 (1996), 297–306.

[16] J. Shearer, A property of the colored complete graph, Discrete Math., 25 (1979), 175–178.

[17] S. Szeider, Finding paths in graphs avoiding forbidden transitions, Discrete Appl. Math., 126 (2003), 261–273.

[18] R.E. Tarjan, Data structures and network algorithms, SIAM-Philadelphia, 1983.

[19] A. Yeo, A note on alternating cycles in edge-coloured graphs, J. Combin. Theory Ser. B 69 (1997), 222–225.