Measurement of the Q^2-evolution of the Bjorken integral and extraction of an effective strong coupling constant at low Q^2.

A. Deur

Thomas Jefferson National Accelerator Facility, USA

We report on the measurement of the Bjorken sum in the range $0.16 < Q^2 < 1.1$ GeV2. The extraction of an effective strong coupling constant is then discussed.

1. Bjorken Sum Rule

The Bjorken sum rule [1] has been of central importance for studying the spin structure of the nucleon. Accounting for finite Q^2 corrections to the sum rule, it reads:

$$\int_0^1 (g_1^p - g_1^n) dx = \frac{g_a}{6} \left[1 - \frac{\alpha_s}{\pi} - 3.58 \left(\frac{\alpha_s}{\pi}\right)^2 - 20.21 \left(\frac{\alpha_s}{\pi}\right)^3 + \ldots \right] + \sum_{i=1}^{\infty} \frac{\mu_{2i+2}^{p-n}}{Q^{2i}},$$

where the μ_{2i+2}^{p-n} are higher twist terms. The sum rule has been checked experimentally at $Q^2=5$ GeV2 to better than 10%. As recently realized, the Bjorken sum rule is related to a more general sum rule, the generalized Gerasimov-Drell-Hearn (GDH) sum rule [2,3]:

$$\int_0^1 (g_1^p - g_1^n) dx = \frac{Q^2}{16\pi^2\alpha_s} \left(\text{GDH}_p(Q^2) - \text{GDH}_n(Q^2)\right).$$

Since the generalized GDH sum is, in principle, calculable at any Q^2, it can be used to study the transition from the partonic to hadronic degrees of freedom of the strong force. However, the validity domains for chiral perturbation theory (χPT) at low Q^2 and pQCD calculations at higher Q^2 used to calculate the GDH sum do not overlap. The Bjorken sum is the flavor non-singlet part of the GDH sum. This leads to simplifications that may help in linking the (χPT) validity domain to the pQCD validity domain [4]. Hence the Bjorken sum appears as a key quantity to study the hadron-parton transition.

We used data from the Thomas Jefferson National Accelerator Facility (JLab) [5,6,7] to extract the Bjorken sum from $Q^2 = 0.16$ to 1.1 GeV2 [8] (Fig. 1 panel A). At low Q^2, we can compare to χPT calculations [9,10]. The data agree well with models [11,12] and also with Eq. 1 calculated to third order in α_s and to leading twist. The agreement between the data and the leading twist calculation down to quite low Q^2 indicates that overall higher twist effects [8] are small.

2. The Effective Strong Coupling Constant, α_s^{eff}

α_s can be extracted from Eq. 1 if higher twists are known or negligible. This is not the case here. This difficulty disappears when considering effective coupling constants [13].
In that case, α_s^{eff} contains higher twists and QCD radiation effects. As a consequence, α_s^{eff} is analytical at any Q^2 and renormalization scheme independent. However, α_s^{eff} becomes process dependent which is not a problem since these different coupling constants are related by “commensurate scale relations” that connect observables without scheme or scale ambiguity [14,15]. Following this procedure, α_s^{eff} is extracted using the equation:

$$\Gamma_1^{p-n} = \frac{1}{6}g_a[1 - \frac{\alpha_s^{\text{eff}}}{\pi}].$$

Such α_s^{eff} is shown in Fig. 1B, together with α_s^{eff} extracted using Γ_1^{p-n} from Eq. 1 computed to third order in α_s and to leading twist. Also shown are α_s calculated to order β_0, α_s^{eff} calculated with the model [12], and α_s^{eff} extracted from world data on the Bjorken sum. α_s^{eff} merges with α_s at large Q^2 since their difference is due to higher twists and gluon bremsstrahlung. At $Q^2 = 0$, the GDH sum rule gives the slope of α_s^{eff}. The data, together with the constraint at $Q^2 \simeq 0$, hint that α_s^{eff} has no Q^2 scale dependence at low Q^2.

In QED or QCD, only loops on the exchanged photon or gluon are responsible for the running of the coupling constant because of the Ward identities. Consequently, theoretical calculations of the running coupling constant deal only with dressed propagators. We can assume that, in order to compare to non-perturbative calculations of α_s^{eff}, we do not need to include in α_s^{eff} the gluon bremsstrahlung and vertex corrections. This amounts to not folding the QCD radiative corrections into α_s^{eff} and redefining it using the equation:

$$\Gamma_1^{p-n} = \frac{g_a}{6}[1 - \frac{\alpha_s^{\text{eff}}'}{\pi} - 3.58 \left(\frac{\alpha_s^{\text{eff}}'}{\pi}\right)^2 - 20.21 \left(\frac{\alpha_s^{\text{eff}}'}{\pi}\right)^3 - 130 \left(\frac{\alpha_s^{\text{eff}}'}{\pi}\right)^4 - 893 \left(\frac{\alpha_s^{\text{eff}}'}{\pi}\right)^5].$$

The error from the series truncation is estimated by taking the difference between the fourth and fifth orders. With this redefinition, α_s^{eff}' becomes scheme-dependent (we work in the MS scheme). The result is shown in the panel C of Fig. 1 along with world data, the running of α_s from pQCD and estimates of the phenomenological running constant. In ref. [16] a solution to the Dyson-Schwinger equations regularizes the infrared behavior of α_s by generating an effective gluon mass that is found to be $m_g = 500 \pm 200$ MeV. For us, m_g is constrained by the GDH sum rule which determines the derivative of the Bjorken integral at $Q^2 = 0$. This imposes $\alpha_s^{\text{eff}}'(Q^2 = 0) = 0.629 \pm 0.086$ which in turn constrains the gluon mass at the photon point to be 407 ± 51 MeV. Mattingly and Stevenson [17] used $e^+e^-\rightarrow e^+e^-$ annihilation to extract an effective α_s. The curve from Godfrey and Isgur [18] shows the coupling constant needed in their quark model to reproduce hadron spectroscopy.

Lattice QCD results present more often the gluon propagator rather than the coupling constant. Since the behavior of α_s^{eff}' at low Q^2 may be accounted for by a dynamical gluon mass, which modifies the gluon propagator, we can extract from our result an “effective gluon propagator” and compare it to Lattice calculations. The Dyson-Schwinger equations provide the non-perturbative approach needed for studying the gluon propagator. However, the necessity of approximations to solve the equations results in some ambiguity. We use the results of Cornwall [16] which provide good comparison with results from various studies. Results on the gluon propagator multiplied by Q^2 are shown on the panel D of Fig. 1 along with quenched and unquenched Lattice QCD results [19]. More Lattice results exist but they are mostly quenched and agree with Ref. [19].
3. Summary and Conclusion

We have presented the Bjorken sum in the Q^2 range of 0.16-1.1 GeV2. The gap between the parton to hadron descriptions of the strong interaction, if smaller, is not bridged yet. With these data, we extracted an effective coupling for the strong interaction. We hypothesize that α_{s}^{eff} defined when QCD radiations are not folded in can be compared to the various effective couplings available from theories. These physical couplings, obtained within very different areas of strong interaction (hadron spectroscopy, non-perturbative calculations, lattice QCD and moments of structure functions) agree with our data. α_{s}^{eff} can be used to parametrize the strong force at any Q^2. Our data and the $Q^2 = 0$ constraint hint that α_{s}^{eff} loses its scale dependence at very low Q^2. This will be checked by upcoming experimental results at very low Q^2 \[20,21\].

4. Acknowledgments

This work was supported by the U.S. Department of Energy (DOE) and the U.S. National Science Foundation. The Southeastern Universities Research Association operates the Thomas Jefferson National Accelerator Facility for the DOE under contract DE-AC05-84ER40150.

REFERENCES

1. J. D. Bjorken, Phys. Rev. 148, 1467 (1966).
2. S. Gerasimov, Sov. J. Nucl. Phys. 2 ,1966. S. D. Drell and A. C. Hearn, Phys. Rev. Lett. 16, 908 (1966).
3. M. Anselmino, B.L. Ioffe and E. Leader, Sov. J. Nucl. 49, 136, (1989), X. Ji and J. Osborne, J.Phys. C27 127 (2001).
4. V. D. Burkert, Phys. Rev. D 63, 097904 (2001).
5. CLAS collaboration: R. Fatemi et al., Phys. Rev. Lett. 91, 222002 (2003).
6. CLAS collaboration: J. Yun et al., Phys. Rev. C 67, 055204 (2003).
7. JLab E94-010 collaboration: M. Amanian et al., Phys. Rev. Lett. 89, 242301 (2002); Phys. Rev. Lett. 92, 022301 (2004).
8. A. Deur et al., Phys. Rev. Lett. 93, 212001 (2004).
9. X. Ji, C. W. Kao and J. Osborne, Phys. Lett. B472, 1 (2000).
10. V. Bernard, T. R. Hemmert and Ulf-G. Meißner, Phys. Rev. D 67, 076008 (2003).
11. J. Soffer and O. V. Teryaev, hep-ph/041022.
12. V. D. Burkert and B. L. Ioffe, Phys. Lett. B296, 223 (1992); J. Exp. Theor. Phys. 78, 619 (1994).
13. G. Grunberg, Phys. Lett. B95, 70 (1980); Phys. Rev. D29, 2315 (1984).
14. S. J. Brodsky, H. J. Lu, Phys. Rev. D51, 3652 (1995).
15. S.J. Brodsky, et al, Phys. Lett. B372, 133 (1996).
16. J. M. Cornwall, Phys. Rev. D26, 1453 (1982).
17. A. C. Mattingly and P. M. Stevenson. Phys. Rev. Lett. 69, 1320 (1992); Phys. Rev. D49, 437 (1994).
18. S. Godfrey and N. Isgur, Phys. Rev. D32, 189 (1985).
19. P. Bowman et al, Phys. Rev. D70 034509 (2004)
20. J.P. Chen, A. Deur and F. Garibaldi, JLab experiment E97-110.
21. M. Battaglieri, A. Deur, R. De Vita and M. Ripani, JLab experiment E03-006.
Figure 1. Left top (Panel A): Q^2-evolution of the Bjorken sum. The dark (light) horizontal band is the experimental systematic error corresponding to the neutron extracted using 3He (D). Right top (Panel B): Effective strong coupling constant as defined by Eq. 3. Left bottom (Panel C): Extracted $\alpha_s^{\text{eff}}(Q)$ together with experimental $\alpha_s(Q)$, running of pQCD and phenomenological $\alpha_s(Q)$. The vertical band represents Λ_{QCD} and its uncertainty. The dark band gives the uncertainty on the Cornwall calculation due to Λ_{QCD}. The lighter band is the uncertainty on the Burkert-Ioffe model due to the truncation of the leading twist series to 5th order. Right bottom (Panel D): The gluon transverse propagator multiplied by Q^2, extracted from our result together with quenched and unquenched Lattice QCD calculations [19].