Marine Biodiversity - Warming vs. Biological Invasions and overfishing in the Mediterranean Sea: Take care, ‘One Train can hide another’

Abstract

Biodiversity means the variety of life, encompassing levels of complexity from within species to across ecosystems. Biodiversity therefore includes several dimensions: evolutionary scale (genetic, species, higher taxonomic levels and phylogenetic diversity), functional scale, organizational scale (patch, ecosystem, landscape/seascape diversity), spatial scale (from sample to local, regional and global richness) and heterogeneity diversity. Biodiversity can therefore be measured in different and complementary ways, thus involving the use of at least 200 different metrics, which can suggest different and contrasting conclusions. It is worth emphasizing that species richness may be the least appropriate metric, despite its popular acceptance. There is a growing tendency for stakeholders, managers, government officials, environmentalists, scientists, politicians and the media to focus, as concerns threats to biodiversity, on species richness and climate change. However, focusing on climate warming can mask other stressors that, today, and perhaps for decades to come, may have more impact on ecosystems than warming. In the Mediterranean Sea, the overall impact of Non-Indigenous Species (NISs) and overfishing on species diversity, ecosystem diversity and ecosystem functioning exceeds to a greater or lesser degree the direct impact of warming. Drastically altered functioning patterns, and even new ecosystems are spreading throughout the Mediterranean Sea. This trend is likely to become more pronounced over the next decades. Ecosystem goods and services are also being profoundly altered, generally towards a decline, as illustrated by the overgrazed barren grounds of the eastern basin, which no longer support fisheries, by the impact of the Caulerpa meadows on the scuba diving business and the economic value of the fisheries of the western basin, by the brackish lagoon ecosystems and by the blooms of the introduced comb jelly Mnemiopsis leidyi in the Black Sea, before the arrival of its predator Beroe ovata. Here, we draw attention to the fact that, at this moment and probably also in the future, the huge flow of NISs and overfishing constitute worrying issues, although largely ignored by stakeholders and political authorities. Take care: Un train peut en cacher un autre (one train can hide another; i.e. one danger may hide other unsuspected dangers), that is to say the impact of warming may contribute to hiding other effects, of at least equal gravity, such as biological invasions and overfishing.

Keywords: Biodiversity; Biological invasions; Global warming; Mediterranean Sea; Overfishing; stakeholders

Introduction

Global change is often considered erroneously as a nomenclatural equivalent to global warming. In fact, it refers to the interactions between natural changes in the Earth's physical and biological structure and the broader effects of human activities. Therefore, global change has natural and anthropogenic components. Global change encompasses biological invasions, modifications in biological diversity (species, ecosystems, etc.), ecosystem functioning, biogeochemical cycles, pollution, changes in land use and land cover, in addition to changes in climate and the distribution pattern of climatic zones, most of these parameters being in interaction (Figure 1 Board of Environmental Studies and Toxicology, 2000) [1,191]. Biodiversity is too often considered as a nomenclature equivalent to species richness, which actually represents a rather limited part of the species diversity concept, itself a relatively small part of the biodiversity concept [2]. In fact, biodiversity is a multidimensional concept, involving the use of hundreds of metrics. Species richness is perhaps the least appropriate metric to choose for describing biodiversity, while it is too often favoured by managers, the political authorities and even by some scientists unfamiliar with the concepts of modern ecology (see below). Here, we attempt to show that global warming, both natural and human-driven through the increase in greenhouse gas emissions, although favoured as a research focus by some scientists (seeking funding?), could in fact represent a limited part of the expected global change, at least in the Mediterranean Sea.
The modern concept of biodiversity

‘Biodiversity’ is today a term that has gained popular currency, widely used not only by scientists, but also by political leaders, government officials, conservationists, environmentalists (‘greens’) and the public at large. Although scientists have long defended the need for the adoption of the biodiversity concept by end-users, as an essential good for human societies, it is not yet accepted that it actually encompasses a wide spectrum of concepts, sometimes worlds away from its popular definition [2]. The term ‘biological diversity’ was first used by Darmian [3], Thomas Lovejoy, in the foreword to the book ‘Conservation Biology’ (Soule and Wilcox, 1980 [214]), introduced the term to the scientific community. The term’s contracted form, ‘biodiversity’, was coined by Wilson [4] in the proceedings of the National Forum on Biological Diversity. It gained in popularity after the ‘United Nations Conference on Environment and Development’ (UNCED), also known as the Rio Summit, Rio Conference and Earth Summit, held in Rio de Janeiro (Brazil) from June 3 to 14, 1992 [5]. Since then, both the term and the concept of biodiversity have achieved widespread use among biologists, conservationists, political leaders and the general public. The term is often used to reflect a concern for the natural environment, nature conservation and species extinctions. In the course of their more than 40-year lifespan, the meaning of the terms ‘biological diversity’ and ‘biodiversity’ has greatly evolved. The way their meaning has shifted in the environmentalist’s jargon is quite different from changes of meaning within the scientific community. As a result, misunderstandings between environmentalists and scientists are all too frequent. Misunderstanding also occurs within the scientific community, between those who refer to biodiversity as the species diversity is concerned (evolutionary scale), it can be measured in different and complementary ways and thus biodiversity can therefore be measured in different and complementary ways and thus involves the use of at least 200 different metrics (Sala and Knowlton, 2006; Boudouresque, 2014). This complexity of meanings, scale and units makes it impossible to assess the state of biodiversity using a single measure.

Evolutionary scale, i.e. diversity within species (genetic diversity), diversity between species, diversity between taxa higher than species (genera, families, orders, classes, phyla, kingdoms, etc.) and phylogenetic diversity (mean phylogenetic distance between taxa; Faith [9])

Functional scale, i.e. diversity in the functional role of species, functional groups and guilds within ecosystems, e.g. photosynthetic or chemosynthetic primary producers, diazotrophic species, filter-feeders, suspension-feeders.

Organizational scale, i.e. diversity between patches, communities, ecosystems, landscapes/seascapes, including beta-diversity [10,2].

Spatial scale, from local and regional to global [10-12]. As far as species diversity is concerned (evolutionary scale), it can be considered at the scale of a sample (point diversity), of an ecosystem within a region (alpha-diversity), of all the ecosystems of a region (gamma-diversity) and of all the ecosystems of a large biogeographic province (epsilon-diversity). The spatial (geographic) scale matters a great deal for biodiversity estimates Boudouresque [2,13-15].

In addition, biodiversity includes the proportional distribution of the individuals among the species, the so-called heterogeneity diversity, abundance diversity or evenness [12].

The concept of biodiversity integrates not a single but a multitude of meanings: it is par excellence a multidimensional concept. The choice with regard to the meaning (qualitative or quantitative, compositional or functional, scale, etc.) depends primarily on one’s goals and interests. Biodiversity can therefore be measured in different and complementary ways and thus involves the use of at least 200 different metrics (Sala and Knowlton, 2006; Boudouresque, 2014). This complexity of meanings, scale and units makes it impossible to assess the state of biodiversity using a single measure.

Species diversity (= species richness) means the taxonomic diversity at the level of the species (generally sensu the Linnaean system of classification), i.e. the number of species at a given scale of space (sample, habitat, ecosystem, landscape/seascape, region, Earth). Species diversity squares with the most popular perception of the concept of biodiversity [21]. Most studies dealing with biodiversity report this simple measure of biodiversity. Although species diversity may be relevant (as long as the spatial scale is provided) for comparisons between ecosystems, or within ecosystems over time, and therefore represent a prerequisite,
it may not constitute a good measure of the structure, function and degree of disturbance of the ecosystems. Moreover, different measures can suggest different and/or contrasting conclusions [15,10,2]. A naïve approach to the biodiversity concept could lead to regarding such conclusions as diametrically opposed. It is worth emphasizing that species richness maybe the least appropriate metric, despite its popular acceptance, often inducing bias in ecological reasoning, within global change science. Obviously, the taxonomic knowledge (including the species level) is of paramount importance in biodiversity studies and cannot be omitted; however, this cannot justify the kind of ‘species richness dictatorship’ found in most biodiversity studies.

The Mediterranean: a biodiversity hotspot

The Mediterranean Sea is a hotspot of marine epiplon species diversity; it harbours at least 17 000 taxa [16,17,2,18,19,181]. While it represents only 0.3 and 0.8 % of the volume and the surface area of the world ocean, respectively, it harbours 6.4 % of the world marine taxa, with species diversity of sponges (Porifera; kingdom Opisthokonta) and brown algae (Phaeophyceae; kingdom Stramenopiles) of up to 10 % and 17 % of the known species worldwide, respectively [19,2,6,19,194] (The Mediterranean is one of the few regions harbouring a species diversity hotspot in both the marine and continental realms (see e.g.[18,23-25]). Why are there so many species in the Mediterranean Sea? According to Lejeusne et al. [26], a first reason is its tormented geological history, which has led to high rates of environmental changes with successive extinctions, re-colonisations and speciation. A second reason is the wide range of climatic and hydrological situations which can be found in this sea, resulting in the co-occurrence of cold, temperate and subtropical biota. Finally, the rate of endemism is relatively high in the Mediterranean Sea, reaching at least 25 % of the whole biota. The sea has been considered as a factory designed to produce endemics. During the Pleistocene climatic glacial cycles, North-Atlantic species periodically shifted their latitudinal ranges, allowing populations to enter the Mediterranean via the Strait of Gibraltar. Once within this new environment, populations were subject to higher evolutionary pressures, in relation with wide variations in sea level, temperature and salinity. In addition, the Alboran basin, to the east of Gibraltar, might act as a buffer reducing gene flow, and highly compartmentalised coasts (total length 46 000 km) further increase isolation between already isolated sectors [26,192]. As pointed out by Bianchi [189], the Mediterranean functions as a ‘diversity pump’ from the Atlantic Ocean. Moreover, the presence of paleo-endemic species (e.g. the sea grass Posidonia oceanica) attests that the region also acted as a refuge for Tethyan relicts [27,28,205]. The Mediterranean Sea also harbours a wide range of ecosystems, some of them being unique, in terms of their structure and functioning [20,26,5], such as the mediolittoral Lithophyllum byssoides rims [29-32], the shallow vermetid platforms [30,31], the Posidonia oceanica sea grass meadow [8,33], the Cystoseira seaweed forest [29,34-40], the coralligenous assemblages [30,31,41,42,101,188] and the dark submarine caves [43-45].

The Mediterranean: a hotspot of biological invasions

The Mediterranean is the area that is worldwide the most severely hit by biological invasions, with ~1 000 Non-Indigenous Species (NIS) recorded so far [46-49,200,211]. This is in contradiction (at least within the marine realm) with the old paradigm of Elton [1958] [80], who claimed that species diversity was a factor of resistance to invasions [80]. In fact, in the marine realm, it frequently occurs that the higher the species richness is, the more vulnerable the habitat; this may concern point diversity, alpha diversity, gamma diversity and/or epsilon diversity; the reason partly lies in the fact that species-rich habitats are favourable for the life of organisms, regardless of their native or exotic status [52-54] (see Fridley et al., 2007 [55] for the ‘invasion paradox’). What matters is also the presence of a vector [80] such as the Suez Canal [22,56,61] and aquaculture facilities [58, 59].

The main vector of introduction of new species into the Mediterranean Sea is the Suez Canal, which was opened in 1869 and connects the Red Sea and the Eastern Mediterranean Basin. Since then, it has been enlarged and deepened several times, the last such operation having been conducted in 2015 [133,201]. The flow of tropical Red Sea species entering the Mediterranean, the so-called Lessepsian species, was first concentrated within the Levantine Basin, but these species have been steadily spreading westwards and northwards [22,26,56,61,62]. The second most important vector is shellfish farming (reared species escaping from the farms and species accompanying shellfish transfers), with warm and cold areas of the North Pacific Ocean as donor regions [59,63,65,196,212]. Other vectors include fouling and clinging on ship hulls, ballast waters, aquarium trade, fishing baits and waterways crossing watersheds [67-70,72-74,199,213].

Invisibility relies first upon the occurrence of a vector, and then on the propague pressure [76-80]. The invasion success also depends on a number of factors [80], such as the release from enemies (ERH, Enemy Release Hypothesis; Ivanov et al., 2000 [204]; MacLeod et al., 2010 [206]), the availability of unused resources, a community becoming more susceptible to invasion whenever there is an increase in the amount of unused resources, because there is either more resource supply or less resource uptake (FRAT, Fluctuation in Resource Availability Theory [81,82]), reallocation of resources from chemical defence towards growth and reproduction, made possible through the release from enemies (EICA, Evolution of Increased Competitive Ability; [83,84]), the possession of toxic biochemical compounds (‘allelochemical weapons’) unknown to native species in the recipient area (NWH, Novel Weapon Hypothesis; [71,85,86]) and the naïveté of native species, which do not recognize as an enemy the introduced predator and hence do not escape [87]. In contrast, warming is not a direct factor favouring habitat/ecomystem invisibility or species invasiveness [212; but see 88]. Warming can advantage thermophilic introduced species; however, at the same time, it can disadvantage cold water introduced species. The overall amount of new introduced species and the dominance of introduced species might therefore be unchanged. The alleged ‘aggressiveness’ of tropical introduced species, such as Caulerpa taxifolia and C. cylindracea (Chlorobionta; kingdom Archaeplastida) in the Mediterranean Sea, is due to the fact that they have been considered as of tropical origin [89], while they are actually from temperate seas [90,26,210]. Their success in the Mediterranean, a mostly temperate sea, is therefore in no way unexpected. Some of the most invasive species, such as Caulerpa spp., Sargassum muticum (Phaeophyceae, kingdom

Citation: Boudouresque CF, Blanfuné A, Fernandez C, Lejeusne C, Pérez T et al. (2017) Marine Biodiversity - Warming vs. Biological Invasions and overfishing in the Mediterranean Sea: Take care, ‘One Train can hide another’. MJ Eco Environ Sci 2(4): 00031. DOI: 10.15406/mojes.2017.02.00031
Stram enopilis) and the comb jelly Mnemiopsis leidyi (ctenophores, Metazoa, kingdom Opisthokonta), are not of tropical origin, but of temperate or even of cold water origin. This highlights the leading role of vectors that by far outweighs that of warming [80].

The overwhelming impact of biological invasions on Mediterranean species and ecosystems

NISs can be non-established (no sexual or asexual reproduction in the wild), casual (non-lasting reproduction), introduced (i.e. established, naturalized; reproduction in the wild without human assistance), invasive (high impact on native species and on the ecosystem functioning, and/or an economic impact, and/or an impact on human health) or transformers (ecosystem engineer of a new ecosystem)[47, 60, 80, 91, 92] Macrophyte NISs are widespread in the Mediterranean ecosystems of the infralittoral and ciralittoral zones [93] from sea level down to 30-40 m depth and from 30-40 m depth down to the lower limit of photosynthetic organisms, respectively. Disturbance regimes do not matter: NIS prevalence, NIS species richness and NIS cover and biomass generally do not differ between disturbed and pristine areas, such as Marine Protected Areas (MPAs) [53, 80, 94, 195] but see [95]. This contradicts the old paradigm of Elton [50], who claimed that disturbances enhance ecosystem invasibility. Undisturbed Mediterranean benthic ecosystems are characterized by a low level of herbivory; the sea urchin Paracentrotus lividus and the teleost Sarpa salpa are the most conspicuous macro-herbivores [96, 39, 97-99]. As a result, the food web is driven by the detritus-feeders rather than by the herbivores. In addition, most Mediterranean Multicellular Photosynthetic Organisms (MPOs) have not developed chemical defences against herbivores (Figure 3) [83, 100, 103].

Figure 3: A simplified sketch of food-webs in undisturbed Mediterranean marine benthic ecosystems. Here, a Cystoseira forest. Herbivores are the sea urchin Paracentrotus lividus and the teleost Sarpa salpa. The intensity of the flow is proportional to the width of the arrow between functional compartments (in red, the main path). From Boudouresque et al. (2005) and Boudouresque (2015b), modified.

In the north-western Mediterranean, the dramatic arrival of strongly defended and poorly palatable invasive species, such as Caulerpa taxifolia (Chlorobionta), Asparagopsis armata, Lophocladia lilianoides and Womersleyella setacea (Rhodobionta; kingdom Archaeplastida), has profoundly changed the functioning of the ecosystems, with a further decrease of the flow running through the herbivores being expected (Figure 4) [71, 86, 100, 104-107]. In contrast, in the eastern Mediterranean, the arrival of voracious herbivorous teleosts (Siganus luridus and S. rivulatus) from the Red Sea, via the Suez Canal, has strongly intensified the herbivore pressure (Figure 5) [100, 107-111, 202]. The recent arrival in the Levantine Basin of the voracious sea urchin, Diadema setosum, will further enhance the herbivore compartment [57, 112]. This has resulted in an impressive shift, from ecosystems dominated by canopy-forming primary producers and under bottom-up control, such as Cystoseira spp. and Sargassum spp. (Phaeophyceae; kingdom Stramenopiles), to an Alternative Stable State (ASS) dominated by encrusting calcified corallines (Rhodobionta) and sometimes characterized also by sea urchin overgrazing, called ‘barren ground’, with top-down control [113, 96, 40, 114]. Finally, in coastal lagoons harbouring shellfish farm facilities, on natural and artificial hard substrates, the dominance (species richness, cover, biomass) of MPOs introduced from the cold-temperate northern Pacific Ocean is overwhelming. In Thau Lagoon (Southern France), they represent 32% of the gamma species diversity, 97-99% and 48-95% of the spring and autumn biomass, respectively, and 100% of the cover (Figures 6 & 7). Similar observations have been reported in other Mediterranean lagoons, e.g. the Venice Lagoon (northern Adriatic Sea, Italy) [115-117].

Figure 4: A simplified sketch of a food-web in a Mediterranean benthic ecosystem, in the presence of non-palatable primary producers, here Caulerpa taxifolia. The possible increase in the DOC (Dissolved Organic Carbon) release towards the pelagic ecosystem is not considered here. The herbivore is Pancentrotus lividus. The intensity of the flow is proportional to the width of the arrow between functional compartments (in red, the main path). From Boudouresque et al. (2005) and Boudouresque (2015b), modified.

At Kos Island (Greece, eastern Mediterranean), Bianchi et al. [118] compared benthic data collected in 1981 and in 2013, by the same persons with the same method. During this 30+ year period, increases in Sea Surface Temperature (SST, +1-2°C), human pressure (resorts and hotels, 15 to 163 beds/km²), and NISs (e.g. rabbitfish Siganus rivulatus and S. luridus) were observed. Huge changes occurred in rocky reef habitats; the once flourishing Cystoseira and Sargassum forests have disappeared in favour of sponges and wide bare substratum areas (Figure 8). These changes can be seen as a synergistic action between biological invasions, SST warming and human impacts. More realistically, they evidence the supremacy of NISs (especially overgrazing...
rabbitfish), over the other stressors, including warming. Open ocean and coastal lagoon pelagic ecosystems are also widely impacted by NISs. The textbook case is the introduction in 1982 of one of the top 100 worst invasive species, according to IUCN, the ctenophore *Mnemiopsis leidyi* in the Black Sea through ballast waters. The introduction of this strong predator, native to the Gulf of Mexico [119,120], coincided with the collapse of local fisheries. Whether the introduction of this ctenophore is the reason for the collapse or just a collateral event that made things worse is still not clear. Nevertheless, the intentional introduction in 1997 of *Beroe ovata* (ctenophore), which feeds almost exclusively on *M. leidyi* in its native habitat, resulted in impressive changes in the pelagic ecosystem [121-126]. *M. leidyi* has been spreading through the Mediterranean Sea, possibly following currents, but other vectors must also be involved, especially in the case of coastal lagoons with very little connection with the patterns of circulation of main currents (Jasper et al., unpublished data). High abundance in some coastal lagoons, such as the Berre, Bages-Sigean, Salses-Leucate and Biguglia lagoons along the French coasts, have been observed for ~10 years [127,128].

Figure 5: A simplified sketch of a food-web in a Mediterranean benthic ecosystem, in the presence of herbivorous fish of the genus *Siganus* (eastern Mediterranean), here, a barren-ground. The intensity of the flow is proportional to the width of the arrow between functional compartments. In red, the main path. From Boudouresque et al. (2005) and Boudouresque (2015b), modified.

The Levantine Basin has hosted first the Lessepsian species, among which several conspicuous jellyfish *Rhopilema nomadica, Phyllorhiza punctata* and *Cassiopea andromeda* have been reported. Most large jellyfish are well known for feeding upon eggs and larvae of fish and crustaceans, but also for interacting strongly with human activities such as clogging fishing nets, damaging boat and power plant intakes and fishing gear and causing the closure of productive areas to fishing activities. *Rhopilema nomadica*, native to the Red Sea, has a bell diameter of up to 90 cm and can constitute dense rafts of up to dozen kilometres in length, drifting with the alongshore currents [129-133]. The jellyfish is spreading autochthonically as current-borne adults, reaching Maltese waters in 2004 [134], and then the Tunisian coasts in 2008 [132], where the species has established a reproducing population. *Phyllorhiza punctata*, another pelagic species known previously only from Australia, the Philippines and Japan entered the Mediterranean Sea either through the Gibraltar strait or the Suez Canal via vessels, and most likely as sessile polyp stages attached to ship hulls or drilling rigs [135].

Figure 6: A sketch of the dominant MPOs on shallow (down to 1 m depth) rocky substrates of the Thau Lagoon (southern France) in spring. Most of these taxa are native to Japan, Korea and the northwestern Pacific Ocean (see Figure 7). From Boudouresque et al., 2011, modified.

Figure 7: The same sketch as that of figure 6, after the removal of the species native to the northwestern Pacific Ocean. The only native taxa are *Cystoseira barbata, Gracilaria* sp. and *Gracilariopsis* sp. *Ulva rigida* is probably a cryptogenic species (sensu Carlton, 1996). Drawn from data in Boudouresque et al. (2011).

Figure 8: Schematic profile of a reef slope down to about 7 m depth at Kos Island (Greece), illustrating the impressive change between 1981 (top) and 2003 (bottom). Brown algae (Phaeophyceae) are in brown and red-brown, green algae (Chlorobionta) are in green, red algae (Rhodobionta) in red and sponges (Porifera, Metazoa) in blue. From Bianchi et al. (2014), redrawn.

Cassiopea andromeda is an atypical jellyfish, living upside down on the seafloor in shallow waters, and dispersion is mainly done through juvenile stages (ephyrae), so of limited extension within...
the oriental basin, even more so in the western basin. But it was observed in Turkey in 2000 [136], and then in 2010 further west in the central Mediterranean, around the Maltese Islands [137]. It is suggested therefore that the most likely vector responsible for transporting this species is shipping (ballast waters, hull-fouling) [135,138].

The impact of overfishing

Overfishing is ubiquitous in the Mediterranean Sea, as in most of the world ocean [139-141]. Both benthic and pelagic ecosystems are concerned. Some fishing techniques, such as artisanal fishing gear, target specific prey (see e.g. Leleu et al. [142]), while others, such as trawling capture non-targeted species and have a strong mechanical impact upon benthic ecosystems [143-146]. Due to overfishing, most benthic ecosystems are strongly depleted in teleosts (fish), especially in invertivores (consumers of invertebrates) and top predator fish, with a dramatic decrease in mean size and in number of individuals [64,147-149]. Only a very few Marine Protected Areas (MPAs), such as the Port-Cros National Park (Provence, France), the Stait of Bunifaziu Natural Reserve, the Scandula Natural Reserve (Corsica) and the Cabrera National Park (Balearic Islands), are free of this impact [40,149,150]. As a result, there is often an increase in the pressure of herbivorous species, such as the sea urchin Paracentrotus lividus and the teleost Sarpa salpa, which are released from predation by top predators [96,151] (but see [152]). This results in overgrazing, the decline or the collapse of marine forests (Cystoseira spp. and Sargassum spp.) and the phase shift to ‘barren grounds’ dominated by encrusting corallines (red algae, Rhodobionta), turf MPOs and sea urchins (Paracentrotus lividus, Arbacia lixula) (Figure 9). These barren grounds constitute an Alternative Stable State (ASS) of the previous forest state; even a small number of sea urchins, where the overfishing of their predators is reduced, can prevent the shift back towards the forest state [153-155]. The effects of other fishing techniques, such as uprooting by fishing nets, can also contribute to the extirpation of Cystoseira spp. and Sargassum spp. [66] Barren grounds nowadays occupy extensive, ever-increasing surface areas of infralittoral Mediterranean benthic habitats [156].

Figure 9: A barren ground dominated by sea urchins, encrusting corallines and turf MPOs. 5-6 m depth, Bay of Kotor, Montenegro. Photo © Thierry Thibaut.

The formerly canopy-forming species, Cystoseira spp. and Sargassum spp., are locally or functionally extinct in many Mediterranean regions [34,102,157]. This is particularly worrying if one considers that these long-lived (perhaps more than one century) species grow slowly and often disseminate at only very short distances, so that recolonization of lost habitats may be unlikely at the human timescale.

In pelagic ecosystems, the proliferation of gelatious planktonic organisms drives a regime shift from ecosystems dominated by top predators to ecosystems dominated by jellyfish [158-160] (but see [161]). The collapse of shark species, in the Mediterranean Sea, is particularly conspicuous; some species, such as hammerhead (Sphyra spp.), blue (Prionace glauca), thresher (Alopius vulpinus) and shortfin mako sharks (Isurus oxyrinchus) have declined by between 96 and 99.99 % since the late 19th century or the mid-20th century (Ferretti et al., 2008) [148]

The direct impact of the sea surface temperature warming

The warming of the Mediterranean Sea (SST) began at the end of the Last Glacial Maximum (LGM), ~20 ka ago. The mean annual SST was then between 8°C and 2°C lower than today, in the north western and the eastern basins, respectively [162]. Fucoids (Phaeophyceae; kingdom Stramenopiles) currently restricted to the North Atlantic Ocean, e.g. Fucus vesiculosus, were probably present in the NW Mediterranean Sea and in the Adriatic Sea, not only during the LGM, but must have remained until 6 000 years ago [163]. The distribution of species and ecosystems 20 ka ago was probably radically different from today, although this is partly speculative. The post-LGM natural reorganization of the Mediterranean biota could be still incomplete, as calcified remains of the thermophilic scleractinian Astroides calycularis, dating back to previous interglacial periods, have been discovered far north of their current distribution range [89]. The current warming of the Mediterranean Sea water triggers the northwards and eastwards range extension of warm water native species, such as the teleosts Coryphaena hippurus, Sardinella aurita, Sparisoma cretense, Sphyrena sphyrena and Thallassoma pavo in teleosts (fish), especially in invertivores (consumers of invertebrates) and top predator fish, with a dramatic decrease in mean size and in number of individuals [64,147-149]. Only a very few Marine Protected Areas (MPAs), such as the Port-Cros National Park (Provence, France), the Stait of Bunifaziu Natural Reserve, the Scandula Natural Reserve (Corsica) and the Cabrera National Park (Balearic Islands), are free of this impact [40,149,150]. As a result, there is often an increase in the pressure of herbivorous species, such as the sea urchin Paracentrotus lividus and the teleost Sarpa salpa, which are released from predation by top predators [96,151] (but see [152]). This results in overgrazing, the decline or the collapse of marine forests (Cystoseira spp. and Sargassum spp.) and the phase shift to ‘barren grounds’ dominated by encrusting corallines (red algae, Rhodobionta), turf MPOs and sea urchins (Paracentrotus lividus, Arbacia lixula) (Figure 9). These barren grounds constitute an Alternative Stable State (ASS) of the previous forest state; even a small number of sea urchins, where the overfishing of their predators is reduced, can prevent the shift back towards the forest state [153-155]. The effects of other fishing techniques, such as uprooting by fishing nets, can also contribute to the extirpation of Cystoseira spp. and Sargassum spp. [66] Barren grounds nowadays occupy extensive, ever-increasing surface areas of infralittoral Mediterranean benthic habitats [156].

In contrast to the above mentioned examples, the direct impact of the warming on habitat-forming MPOs could be weaker. Parravicini et al. [178] show that the increase in temperature may be more complex than the simple prediction of species modifying their ranges during the LGM, but must have remained until 6 000 years ago [163]. The distribution of species and ecosystems 20 ka ago was probably radically different from today, although this is partly speculative. The post-LGM natural reorganization of the Mediterranean biota could be still incomplete, as calcified remains of the thermophilic scleractinian Astroides calycularis, dating back to previous interglacial periods, have been discovered far north of their current distribution range [89]. The current warming of the Mediterranean Sea water triggers the northwards and eastwards range extension of warm water native species, such as the teleosts Coryphaena hippurus, Sardinella aurita, Sparisoma cretense, Sphyrena sphyrena and Thallassoma pavo
their distribution range according to their thermal limit, near their boundary, with even a decrease in their cover on shallow rocky reefs. The worrying regression of *Cystoseira* and *Sargassum* forests, with several species locally and/or functionally extinct, seems to be related to overfishing (resulting in overgrazing by herbivores; see above), uprooting by fishing nets and coastal development, in addition to invasive NISs, rather than to sea water warming [34,66,102,157,179,180], but see [166]. As far as the *Posidonia oceanica* seagrass meadows are concerned, a negative effect of warming is unclear; it can shrink its range near its warm limit (e.g. in south-eastern Turkey) and favour its expansion near its cold limit (e.g. northern Adriatic and Gulf of Lions) [51,145,181], but see [182,183]. Conversely, the increasingly rapid rise of the sea level will result in a significant withdrawal of the lower *P. oceanica* limit, whenever it is beyond the compensation depth [145].

Finally, one of the most important effects of sea water warming could be to enhance the range area progression of Red Sea (Lessepsian) invasive species, such as the rabbit-fish *Siganus* spp., and the lion-fish *Pterois miles* [184], with a potentially overwhelming impact.

Conclusion

There is a growing tendency for stakeholders, managers, government officials, environmentalists, scientists, political leaders and media reports to focus, as concerns threats to biodiversity, on species richness and climate change. They can hardly be blamed, as climate change obviously constitutes a major threat to species diversity, ecosystem diversity, ecosystem functioning, and to human lifestyles. However, the 'species richness lobby' and focusing on climate warming can mask other stressors that, today, and perhaps for decades to come, may have more impact on ecosystems than global warming [185-195] (see e.g. [185]). It would be beyond the scope of the present paper to discuss the reasons why most scientists, stakeholders and political leaders prefer to focus on global warming and its direct impact, such as the acidification of seawater.

In the Mediterranean Sea, the overall impact of NISs and overfishing on species diversity, ecosystem diversity and ecosystem functioning exceeds to a greater or lesser degree the direct impact of warming. Drastically altered functioning patterns and even new ecosystems are spreading throughout the Mediterranean Sea. This trend is likely to become more pronounced over the next decades. Ecosystem goods and services are also being profoundly altered, generally towards a decline, as illustrated by the overgrazed barren grounds of the eastern basin, which no longer support fisheries [40], by the impact of the *Caulerpa* meadows on the scuba diving business and the economic value of the fisheries of the western basin [186,187] and by the blooms of the introduced comb jelly *Mnemiopsis leidyi* in the Black Sea, before the arrival of its predator *Beroe ovata*.

In addition to direct impacts, which are far from negligible, warming not only boosts the expansion of the range of NISs but also triggers the rise of the sea-level; it therefore increases the huge impact of NISs and contributes to the submersion and death of the *Lithophyllum byssoides* algal rim, in the lower part of the mediolittoral zone [190] and to the withdrawal of *Posidonia oceanica* meadows at their lower depth limit.

Mediterranean coastal lagoons, such as Thau Lagoon and Venice Lagoon, and rocky reefs at Kos Island, Greece, may unfortunately be the harbingers of future Mediterranean seascapes. Here, we draw attention to the fact that, at this moment and probably also in the future, the huge flow of Non-Indigenous Species and overfishing constitute worrying issues, although largely ignored by stakeholders, managers, government officials and political leaders. Take care: Un train peut en cacher un autre (one train can hide another; i.e. there may be other, unsuspected dangers), that is to say the effects of the warming may contribute to hiding other effects, of at least equal importance, such as biological invasions and overfishing. The synergistic effects of the cocktail constituted by biological invasions, overfishing and global warming in the coming decades require, as a matter of urgency, a major effort at global scale in order to better assess the putative impact on Mediterranean marine ecosystems, and the goods and services they provide for the benefit of human society.

Acknowledgement

Work carried out within the framework of the BioDivMex programme (CNRS, Mistral). The authors are indebted to Michael Paul, a native English speaker, for improving the English text.

References

1. Verlaque M, Boudouresque CF (2004) Invasions biologiques marines et changement global. Actes des 2° journées de l’Institut français de la biodiversité ‘Biodiversité et changement global, dynamique des interactions’. Marseille 25-28 Mai 2004: 74-75.
2. Boudouresque CF (2014) Insights into the diversity of the biodiversity concept. Sci Rep. Port-Gros natl Park 28: 65-86.
3. Dasmann RF (1968) A different kind of country. New York, MacMillan Company publ i-vii + 1-276.
4. Wilson EO (Edt.), (1988) Biodiversity. Washington, National Academies Press publ: 1-538.
5. Boudouresque CF, Ruitton S, Bianchi CN, Chevaldonné P, Fernandez C, et al. (2014) Terrestrial versus marine diversity of ecosystems. And the winner is: the marine realm. Proceedings of the 5th Mediterranean Symposium on Marine Vegetation (Portoroz, Slovenia, 27-28 October 2014). Langar H & Bouafiz C (Eds.), IAC/SPA publ, Tunis p.1-25.
6. Verlaque M, Ruitton S, Mineur F, Boudouresque CF (2015) CIESM Atlas of exotic species. 4. Macrophytes. Briand F (Edt.), CIESM Publisher, Monaco: 1-362.
7. Boudouresque CF, Caumette P, Bertrand JC, Normand P, Sime-Ngando T (2015a) Systematic and evolution of microorganisms: general concepts. In: Environmental microbiology: Fundamentals and applications. Microbial ecology. Bertrand JC, Caumette P, Lebaron P, Matheron R, Normand P, Sime-Ngando T (Eds.). Springer publ pp. 107-144.
8. Boudouresque CF, Personnic S, Astruch P, Ballesteros E, Bellan-Santini D, et al. (2015b) Ecosystem-based versus species-based approach for assessment of the human impact on the Mediterranean seagrass *Posidonia oceanica* . Marine productivity, perturbations and resilience of socio-ecosystems. Cécaldi H, Hénocque Y, Koîle Y, et al. (Eds.), Springer International Publishing Switzerland pp. 235-241.
9. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61(1): 1-10.
10. Sala E, Knowlton N (2006) Global marine biodiversity trends. Annu Rev Environ Resour 31: 93-122.
11. Ramade F (1994) Qu’entendent-on par Biodiversité et quels sont les problématiques et les problèmes inhérents à sa conservation? Bull Soc Entomol Fr 99 (num. spécial): 7-18.
12. Gray B (2000) The measurement of marine species diversity, with an application to the benthic fauna of the Norwegian continental shelf. J Exp Mar Biol Ecol 250(1-2): 23-49.
13. Warwick RM (1998) Scaling of marine biodiversity. Ocean és, 24 (4): 51-59.
14. Ellingsen KE (2001) Biodiversity of a continental shelf soft-sediment macibbean community. Mar Ecol Prog Ser 218: 1-15.
15. Willis KJ, Whittaker RJ (2002) Species diversity – Scale matters. Science 295: 1245-1248.
16. Fredj G, Bellan-Santini D, Meinardi M (1992) Etat des connaissances sur la faune marine méditerranéenne. Bull. Inst. océanogr. Monaco, Num. spécial 9: 133-145.
17. Bianchi CN, Morri C (2000) Marine biodiversity of the Mediterranean Sea: situation, problems and prospects for future research. Mar. Poll Bull 40(5): 367-376.
18. Cuttelod A, Garcia N, Abdul Malik DA, Temple H, Katariya V (2008) The Mediterranean: a biodiversity hotspot under threat. In: Vé JC, Hilton-Taylor C, Stuart SN (Eds.). The 2008 review of the IUCN Red List of threatened species. IUCN, Gland: 1-13.
19. Giaccone G, Di Martino V (2000) Past, present and future of vegetational diversity and assemblages on Mediterranean Sea. Proceedings of the first Mediterranean symposium on marine vegetation, RAC/SPA publ. Tunis: 34-59.
20. Boudouresque CF (2003) The erosion of Mediterranean biodiversity: in: The Mediterranean Sea: an overview of its present state and plans for future protection, Rodríguez-Prieto C & Pardini G (Eds.). Servei de Publicacions de la Universitat de Girona pp. 53-112.
21. Boero F (2010) The study of species in the era of biodiversity: a tale of stupidity. Diversity 2(1): 115-126.
22. Katsanevakis S, CoI M, Piroddi C, Steenbeek J, Ben Rais Lamræ F, et al. (2014a) Invading the Mediterranean Sea: biodiversity patterns shaped by human activities. Front Mar Sci 1(52): 1-11.
23. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB da, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853-858.
24. Médail F (2008) Mediterranean. In: Jørgensen SE, Fath BD (Eds.), Ecosystems. Encyclopedia of Ecology 3: pp. 2296-2308.
25. Blouet S, Médail J (2009) Biodiversity and conservation. In: Woodward JC (Ed.), The physical geography of the Mediterranean. Oxford University Press, Oxford: 615-650.
26. Lejeune C, Chevaldonnaé P, Pergent-Martini C, Boudouresque CF, Perez T (2000) Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends in Ecology & Evolution 25 (4): 250-260.
27. Boury-Ésnault N, Pansini M, Uriz MJ (1992) A new Discorhabdella (Porifera, Demospongiae), a new Tethyan relict of pre-Messinian biota? Journal of Natural History 26: 1-7
28. Athanasiadis A (1999) Mesophyllum macdoniis, nov. sp. (Rhodophyta, Corallinales), a putative Tethyan relict in the North Aegean Sea. European Journal of Phycology 34 (3): 239-252.
29. Molinier R (1960) Étude des biocénoses marines du Cap Corse. Vegetatio 9(4-5): 121-192.
30. Laborel J (1987) Marine biogenic constructions in the Mediterranean, a review Sci Rep Port-Cros Natl Park 13: 97-126.
31. Laborel J, Boudouresque CF, Laborel-Deguen F (1994) Les biocoréactions entre les eaux littorales de Méditerranée. In: Les biocénoses marines et littorales de Méditerranée, synthèse, menaces et perspectives, Bellan-Santini D, Lacaze JC, Poizat C (Edt.), Muséum National d’Histoire Naturelle publ Paris: 88-97.
32. Faivre S, Bakran-Petricoli T, Horvatinič N, Sironič A (2013) Distinct phases of relative sea level changes in the central Adriatic during the last 1500 years – influence of climatic variations? Palaeogeogr Palaeoclim Palaeoecol 369: 163-174.
33. Personnic S, Boudouresque CF, Astruc P, Ballesteros E, Blouet S, et al. (2014) An ecosystem-based approach to assess the status of a Mediterranean ecosystem, the Posidonia oceanica seagrass meadow. Plos One 9 (6): (e98994).
34. Thibault T, Blanfuné A, Boudouresque CF, Verlaque M (2015a) Decline and local extinction of Fucales in the French Riviera: the harbinger of future extinctions? Mediterranean Marine Science 16(1): 206-224.
35. Verlaque M (1987) Contribution à l’étude du phytothèmes d’un écosystème photophile thermophile marin en Méditerranée occidentale. Thèse de doctorat de l’université d’Aix-Marseille II, France pp. 389.
36. Ballesteros E (1990a) Structure and dynamics of the community of Cystoseira xamachots (Turner) C. Agardh (Fucales, Phaeophyceae) in the North-Western Mediterranean. Sci Mar 54: 217-299.
37. Ballesteros E (1990b) Structure and dynamics of the Cystoseira caespitosa Sauvageau (Fucales, Phaeophyceae) community in the North-Western Mediterranean. Sci Mar 54(2): 155-168.
38. Giaccone G, Alongi D, Piruzio F, Cossu A (1994) La vegetazione marina bentonica fotofilta dei Mediterranei: 2: Infrafittale e circalitorale: proposte di aggiornamento. Boll Accad Gioenia Sci Nat Catania 27(346): 111-157.
39. Hereu Fina B (2004) The role of trophic interactions between fishes, sea urchins and algae in the northwestern Mediterranean rocky infralitoral. Tesi Doctoral, Univ. Barcelona: i-xii + 1-237.
40. Sala E, Ballesteros E, Dardinos P, Di Franco A, Ferretti F, et al. (2012) The structure of Mediterranean reef ecosystems across environmental and human gradients, and conservation implications: Plos One 7(2): e32742.
41. Laubier L. (1966) Le coralligéne des Albéres: monographie bioénocritique. Thèse Doct. Etat, Univ. Paris: i-315.
42. Boudouresque CF, Blanfuné A, Harmelin-Vivien M, Personnic S, Ruitton S et al. (2016a) Where seaweed forests meet animal forests: the examples of macrolgae in coral reefs and the Mediterranean coralligenous ecosystem. In: Marine animal forests. Rossi S (Edt.), Springer International Publishing, Switzerland p. 1-28.
43. Harmelin JC, Vacelet J, Vasseur P (1985) Les grottes sous-marines obscures: un milieu extrême et un remarquable biotope refuge. Téthys 11: 214-229.
44. Chevaldonné P, Lejeune C (2003) Regional warming-induced species shift in north-west Mediterranean marine coves. Ecology Letters 6(4): 371-379.

45. Lejeune C, Chevaldonné P (2006) Brooding crustaceans in a highly fragmented habitat: the genetic structure of Mediterranean marine care-dwelling mysid populations. Molecular Ecology 15(13): 4123-4140.

46. Ribera MA, Boudouresque CF (1995) Introduced marine plants, with special reference to macroalgae: mechanisms and impact. Progress in phylogeographical Research, Round FE, Chapman DJ (Edt.), Biopress Ltd publ 11: 187-268.

47. Boudouresque CF, Verlaque M (2002) Biological pollution in the Mediterranean Sea: invasive versus introduced macrophytes. Mar Poll Bull 44(1): 32-38.

48. Galil B, Froglia C, Noel P (2002) CIESM Atlas of exotic species in the Mediterranean 2. Crustaceans. Briand F (Edt.), CIESM publ, Monaco: 1-192.

49. Zenetos A, Gofas S, Verlaque M, Cinar ME, Garcia Raso JE, et al. (2010) Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution. Mediterr. Mar Sci 11(2): 381-493.

50. Elton CS (1958) The ecology of invasions by animals and plants. Methuen publ. Reprinted 2000 by University of Chicago Press: i-xiv + 1-181.

51. Pergent G, Bazairi H, Bianchi CN, Boudouresque CF, Buia MC, et al. (2012) Mediterranean seagrass meadows: resilience and contribution to climate change mitigation. A short summary. IUCN publ (Gland Mâlag: 1-40.

52. Dunstan PK, Johnson CR (2004) Invasion rates increase with species richness in a marine epibenthic community by two mechanisms. Oecologia 138(2): 285-292.

53. Klein J, Ruittton S, Verlaque M, Boudouresque CF (2005) Species introductions, diversity and disturbances in marine macrophyte assemblages of the northwestern Mediterranean Sea. Mar Ecol Prog Ser 290: 79-88.

54. Mineur F, Johnson MP, Maggs GA (2008) Non-indigenous marine macroalgae in native communities: a case study in the British Isles. J mar bio Ass UK 88 (4): 693-698.

55. Fridley JD, Stachowicz JJ, Naeem S, Sax DF, Seabloom EW, et al. (2007) The invasion paradox: reconciling pattern and process in species invasions. Ecology 88 (1): 3-17.

56. Por FD (1978) Lessepsian migrations. The influx of Red Sea biota into the Mediterranean by way of the Suez Canal. Springer publ, Berlin: i-viii + 1-228.

57. Katsanevakis S, Acar Ü, Ammar I, Balci BA, Bekas P, et al. (2014b) New Mediterranean biodiversity records Mediterr. Mar Sci 15(3): 675-695.

58. Verlaque M (2001) Checklist of the macroalgae of Thau Lagoon (Hérault, France), a hot spot of marine species introduction in Europe. Oceanologica Acta 24(1): 29-49.

59. Boudouresque CF, Klein J, Ruittton S, Verlaque M (2011) Biological Invasion: The Thau Lagoon, a Japanese biological island in the Mediterranean Sea. Global change: mankind-marine environment interactions. Cecalddi HJJ, Dekeyser I, Girault M, Srt al. (Edt.), Springer publ, Netherlands pp. 151-156.

60. Ojaveer H, Galil BS, Campbell ML, Carlton JT, Canning-Clode J et al. (2015) Classification of non-indigenous species based on their impacts: considerations for application in marine management. Plos Biology 13(4): 1-13 (e1002130).

61. Por FD (1990) Lessepsian migrations. An appraisal and new data. Bull Inst Océanogr 7 (numéro spécial): 1-10.

62. Boudouresque CF (1999) The Red Sea - Mediterranean link: unwanted effects of canals. Invasive species and biodiversity management, Sandlund OT & Schei PJ (Edt.), Kluwer Academic publ 213-228.

63. Verlaque M (2001) Checklist of the macroalgae of Thau Lagoon (Hérault, France), a hot spot of marine species introduction in Europe. Oceanologica Acta 24(1): 29-49.

64. Bánaru D, Harmelin-Vivien M, Boudouresque CF (2010) Man induced change in community control in the north-western Black Sea: the top-down bottom-up balance. Marine Environmental Research 69(4): 262-274.

65. Mineur F, Le Roux A, Maggs GA, Verlaque M (2014) Positive feedback loop between introductions of non-native marine species and cultivation of oysters in Europe. Conservation Biology 28 (6): 1667-1676.

66. Thibaut T, Blanfuné A, Boudouresque CF, Cotatalorda JM, Hereu B, et al. (2016) Unexpected temporal stability of Cystoseira and Sargassum forests in Port-Cros, one of the oldest Mediterranean marine National Parks. Cryptogamie Algologie 37(1): 61-90.

67. Sanchoire M (1988) Présence de Fucus spiralis (Phaeophyceae) en Méditerranée occidentale. Cryptogamie Algologie 9(2): 157-161.

68. Vinogradov ME, Shushkina EA, Musayeva EI, Sorokin PY (1989) A newly acclimated species in the Black Sea: the ctenophore Mnemiopsis leidyi (Ctenophora: Lobata). Oceanology 29(2): 220-224.

69. Meinesz A, Hesse B (1991) Introduction et invasion de l’algue tropicale Caulerpa taxifolia en Méditerranée nord-occidentale. Oceanologica Acta 14 (4): 415-426.

70. Ribera MA, Boudouresque CF (1995) Introduced marine plants, with special reference to macroalgae: mechanisms and impact. Progress in phylogeographical Research, Round FE, Chapman DJ (Edt.), Biopress Ltd publ 11: 187-268.

71. Boudouresque CF, Lemée R, Mari X, Meinesz A (1996) The invasive alga Caulerpa taxifolia is not a suitable diet for the sea-urchin Paracentrotus lividus. Aquatic Botany 53: 245-250.

72. Meinesz A, Boudouresque CF (1996) Sur l’origine de Caulerpa taxifolia en Méditerranée. CR Acad Sci Paris Life Sci 319: 603-613.

73. Vacchi M, Chaintore MC (2000) Abudedefuf vaigiensis (Quoy & Gaimard 1825): a tropical damselfish in Mediterranean Sea. Biol Mar 7(1): 841-843.

74. Galil BS, Nehring S, Panov V (2007) Waterways as invasion highways -impact of climate change and globalization. Biological invasions, Nentwig W (Edt.), Springer-Verlag publ, Berlin Heidelberg p. 59-74.

75. Ojaveer H, Galil BS, Campbell ML, Carlton JT, Canning-Clode J et al. (2015) Classification of non-indigenous species based on their impacts: considerations for application in marine management. Plos Biology 13(4): 1-13 (e1002130).

76. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16(4): 199-204.
77. Ruiz GM (2002) Propagule supply as a driver of biological invasions. Alien marine organisms introduced by ships in the Mediterranean and Black seas, CIESM Workshop monographs 20: 83-86.

78. Taylor CM, Hastings A (2005) Allee effects in biological invasions. Ecology Letters 8(9): 905-908.

79. Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends in Ecology and Evolution 22(9): 454-464.

80. Boudouresque CF, Verlaque M (2012) An overview of species introduction and invasion processes in marine and coastal lagoon habitats. Cah Biol mar 53(3): 309-317.

81. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88(3): 528-534.

82. Blumenthal DM (2006) Interactions between resource availability and enemy release hypothesis. Ecology Letters 9: 887-895.

83. Blossey B, Notzold R (1995) Evolution of increased competitive ability in non-indigenous plants: a hypothesis. J Ecol 83(5): 887-889.

84. Beaton LL, Van Zandt PA, Esselman EJ, Knight TM (2012) Comparison of the herbivore defense and competitive ability of ancestral and modern genotypes of an invasive plant, Lespedeza cuneata. Oikos, 120(9): 1413-1419.

85. Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2 (8): 436-443.

86. Tomas F, Box A, Tardos J (2011a) Effects of invasive seaweeds on feeding preference and performance of a key herbivore Mediterranean herbivore. Biol Invasions 13(7): 1559-1570.

87. Hutson KS, Ross DJ, Day RW, Ahern J (2005) Australian scallops do not recognise the introduced predatory seastar Asterias amurensis. Mar Ecol Prog Ser 298: 305-309.

88. Leishman MR, Gallagher VR (2015) Will alien plant invaders be advantaged under future climates? In: Biological invasions in changing ecosystems. Vectors, ecological impacts, management and predictions. Canning-Clode J (Edt.), De Gruyter publ, Warsaw, Berlin: 368-388.

89. Bianchi CN (2007) Biodiversity issues for the forthcoming tropical Mediterranean Sea. Hydrobiologia 580: 7-21.

90. Jousson O, Pawlowski J, Zaminetti L, Zechman EW, Dini F, et al. (2000) Invasive alga reaches California. Nature 408: 157-158.

91. Blackburn TM, Pysklywetz B, Bacher S, Carlton JT, Duncan RP, et al. (2011) A proposed unified framework for biological invasions. Trends in Ecology and Evolution 26 (7): 333-339.

92. Canning-Clode J (2015) General introduction–aquatic and terrestrial biological invasions in the 21st century. In: Biological invasions in the Mediterranean Sea: Take care, ‘One Train can hide another’. MOJ Eco Environ Sci 2(4): 00031. DOI: 10.15406/mojess.2017.02.00031
111. Shakman E, Boedecker C, Bariche M, Kinzelbach R (2009) Food and feeding habits of the Lessepsian migrants Siganus luridus Rüppel, 1828 and Siganus rivulatus Forskål, 1775 (Teleostei: Siganidae) in the southern Mediterranean (Libyan coast). J Biol Res Thessaloniki 12: 115-124.

112. Yokes B, Galili BS (2006) The first record of the needle-spined urchin Diadema setosum (Leske, 1778) (Echinodermata: Diadematidae) from the Mediterranean Sea. Aquatic Invasions 3(3): 188-190.

113. Sala E, Kizilayva Z, Yäldirim D, Ballesteros E (2011) Alien marine fishes deplete algal biomass in the Eastern Mediterranean. Plos One 6 (2): e17356.

114. Ballesteros E (2012) Tras las últimas focas del Mediterráneo. Crónicas de mis viajes científicos por el Mediterráneo Oriental. Galicanto publ Spain: 1-220.

115. Occhipinti Ambrogi A (2000) Biotic invasions in a Mediterranean lagoon. Biological Invasions 2(2): 165-176.

116. Pranovi F, Franceschini G, Casale M, Zacchetta M, Torricelli P, et al. (2006) An ecological imbalance induced by a non-native species: the Manila clams in the Venice Lagoon. Biological Invasions 8(4): 595-609.

117. Sfriso A, Curiel D (2007) Check-list of seaweeds recorded in the last 20 years in Venice Lagoon, and a comparison with the previous records. Botanica Marina 50(1): 22-58.

118. Bianchi CN, Corsini-Foka M, Morri C, Zemetas A (2014) Thirty years after: dramatic change in the coastal marine ecosystems of Kos Island (Greece), 1981-2013. Medd Mar Sci 15(3): 482-497.

119. Bolte S, Fuentes V, Haslob H, Huber W, Thibault-Botha D, et al. (2013) Population genetics of the invasive ctenophore Mnemiopsis leidyi in Europe reveal source-sink dynamics and secondary dispersal to Mediterranean Sea. Marine Ecology Progress Series 485: 25-36.

120. Ghabooli S, Shiganova TA, Brikci E, Piraino S, Fuentes V, et al. (2013) Invasion pathway of the ctenophore Mnemiopsis leidyi in the Mediterranean Sea. Plos One, 8(1): e011067.

121. Konovalov SM (1992) Impact of man on Black Sea ecosystem. Rapp PV Réun Commiss Int Explor Mèdit 33: 17.

122. Travis J (1993) Invader threatens Black, Azov Seas. Science 262(5138): 1366-1367.

123. Petran A, Moldoveanu M (1995) Post-invasion ecological impact of the Atlantic ctenophore Mnemiopsis leidyi Agassiz, 1865 on the zooplankton from the Romanian Black Sea waters. Cercetari marine 27-28: 135-157.

124. Zaitsev Y, Mamaev V (1997) Biological diversity in the Black Sea. A zoological record. Kluwer Academic Publishers, Dordrecht: 609.

125. Sfriso A, Curiel D (2007) Check-list of seaweeds recorded in the last 20 years in Venice Lagoon, and a comparison with the previous records. Botanica Marina 50(1): 22-58.

126. Stone R (2005) Attack of the killer jellies. Science 309: 1805-1806.

127. Delpy F, Pagano M, Blanchot J, Carlotti F, Thibault-Botha D (2012) Man-induced hydrological changes, metazooplankton communities and invasive species in the Berre Lagoon (Mediterranean Sea, France). Mar Poll Bull 64(9): 1921-1932.

128. Delpy F, Alouby-Boyser Y, Pagano M, Thibault D, Blanchot J, et al. (2016) Identifying the drivers of abundance and size of the invasive ctenophore Mnemiopsis leidyi in Northwestern Mediterranean lagoons. Marine Environmental Research, 119: 114-125.

129. Spanier E, Galili BS (1991) Lessepsian migrations: a continuous biogeographical process. Endeavour 16(3): 102-106.

130. Galili BS (1994) Lessepsian migration. Biological invasion of the Mediterranean. In: Introduced species in Euro-pan coastal waters, Boudouresque CF, Briand F, Nolan C (Eds.), European Commission publ, Luxembourg: 63-66.

131. Kidese AE, Guçu AC (1995) Rhopilema nomadica: a lessepsian Scyphomedusan new to the Mediterranean coast of Turkey. Israel J Zool 41: 615-617.

132. Daly Yahia MN, Kefi-Daly Yahia O, Gueroun SKM, Aksi M, et al. (2013) The invasive tropical scyphozoan Rhopilema nomadica Galil, 1990 reaches the Tunisian coast of the Mediterranean Sea. Bioinvasion Records 2(4): 319-323.

133. Galili BS, Boero F, Campbell ML, Carlton JT, Cook E, et al. (2015a) 'Double trouble': the expansion of the Suez Canal and marine bioinvasions in the Mediterranean Sea. Biological Invasions, 17 (4): 973-976.

134. Deidun A, Arigo S, Piraino S (2011) The westernmost record of Rhopilema nomadica (Galil, 1990) in the Mediterranean – off the Maltese Islands. Aquatic Invasions 6 (Supp 3): 599-5103.

135. Bolton TF, Graham WM (2004) Morphological variation among populations of an invasive jellyfish. Marine Ecology Progress Series 278: 125-139.

136. Bileccenoglu M (2002) Türkije kuyularında ilk kez rastlanan bir denizançası türü: Cassiopea andromeda (Forskal, 1775) (Cassiopeidae, Scyphozoa). Sualtı Dünyası Dergisi 72: 42-43.

137. Schembri PJ, Deidun A, Vella PJ (2010) First record of Cassiopea andromeda (Scyphozoa: Rhizostomeae: Cassiopeidae) from the central Mediterranean Sea. Marine Biodiversity Records 3: e6.

138. GalilB, Shoval L, GorenM (2009) Phylorhiza punctatavon Lendenfeld, 1884 (Scyphozoa: Rhizostomeae: Mastigiasidae) reappeared off the Mediterranean coast of Israel. Aquatic Invasions 4(3): 481-483.

139. Pauly D, Alder J, Bennett E, Christensen V, Tyedmers P, et al. (2003) The future for fisheries. Science 302: 1359-1361.

140. Lloret J, Muñoz M, Casadevall M (2012) Threats posed by artisanal fisheries to the reproduction of coastal fish species in a Mediterranean marine protected area. Estuarine, Coastal and Shelf Science 113: 133-140.

141. Christensen V, Coll M, Piroddi C, Steenbeek J, Buszowski J, et al. (2014) A century of fish biomass decline in the ocean. Marine Ecology Progress Series 512: 155-166.

142. Leleu K, Pelletier D, Charbonnel E, Letourneur Y, Alban F, et al. (2014) A century of fish biomass decline in the ocean. Marine Ecology Progress Series 512: 155-166.

143. Kaiser MJ (1998) Scrapping the bottom: are towed fishing gears a threat to benthic biodiversity? Océanis, 24 (4): 258-270.

144. Roberts CM, Hawkins JP (1999) Extinction risk in the sea. Trends Ecol Evol 14(6): 241-246.

145. Boudouresque CF, Bernard G, Persgent G, Shili A, Verlaque M (2009) Regression of Mediterranean seagrasses caused by natural processes and anthropogenic disturbances and stress: a critical review. Botanica Marina 52: 395-418.

146. Boudouresque CF, Bernard G, Bonhomme P, Charbonnel E, Diviacco et al. (2012) Protection and conservation of Posidonia oceanica meadows. RAMOGÈ and RAC/SPA publ Tunis: 1-202.
Marine Biodiversity - Warming vs. Biological Invasions and overfishing in the Mediterranean Sea: Take care, ‘One Train can hide another’

147. Myers RA, Worm B (2003) Rapid worldwide depletion of predatory fish communities. Nature 423: 280-283.
148. Ferretti F, Myers RA, Serena F, Lotze HK (2008) Loss of large predatory sharks from the Mediterranean Sea. Conservation Biology 22 (4): 952-964.
149. Harmelin-Vivien M, Cottalorda JM, Dominici JM, Harmelin JG, Le Diréach L, et al. (2015) Effects of reserve protection level on the vulnerable fish species Sciaena umbra and implications for fishing management and policy. Global Ecology and Conservation 3: 279-287.
150. Meinesz A, Blanfuné A (2015) 1983-2013: Development of marine protected areas along the French Mediterranean coasts and perspectives for achievement of the Aichi target. Marine Policy 54: 10-16.
151. Sala E, Zabala M (1996) Fish predation and the structure of the sea urchin Paracentrotus lividus populations in the NW Mediterranean. Mar Ecol Progr Ser 140: 71-81.
152. Sala E, Ribes M, Hereu B, Zabala M, Aba V, et al. (1998b) Temporal variability in abundance of the sea urchins Paracentrotus lividus and Arbacia lixula in the northwestern Mediterranean: comparison between a marine reserve and an unprotected area. Mar Ecol Progr Ser 168: 135-145.
153. Guidetti P (2006) Marine reserves reestablish lost predatory interactions and cause community changes in rocky reefs Ecol Appl 16(3): 963-976.
154. Hereu B, Zabala M, Sala E (2008) Multiple controls of community structure and dynamics in a sublittoral marine environment. Ecology 89(12): 3423-3435.
155. Ling SD, Scheibling RE, Rassweiler A, Johnson CR, Shears N, et al. (2015) Global regime shift of catastrophic sea urchin overgrazing. Phil Trans R Soc B 370: 1-10.
156. Falace A, Alongi G, Cormaci M, Furnari G, Curiel D, et al. (2010) Changes in the benthic algae along the Adriatic coast in the last three decades. Chemistry and Ecology, 26 (S1): 77-90.
157. Thibaut T, Pinedo S, Torras X, Ballesteros E (2005) Long-term decline of the populations of Fucales (Cystoseira spp. and Sargassum spp.) in the Alibères coast (France, North-western Mediterranean). Mar Pollut Bull 50: 1472-1489.
158. Pauly D, Christensen V, Dalsgaard J, Froese R, Torres Jr F (1998) Fishing down marine food webs. Science 279: 860-863.
159. Mills CE (2001) Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia, 451: 55-68.
160. Boero F, Boullion J, Gravili C, Miglietta MP, Parsons T, et al. (2008) Gelatinous plankton: irregularities rule the world (sometimes). Marine Ecology Progress Series 356: 299-310.
161. Condon RH, Graham WM, Duarte CM, Pitt RA, Lucas CH, et al. (2012) Questioning the rise of gelatinous zooplankton in the world’s oceans. BioScience 62 (2): 160-169.
162. Kuhlemann J, Behling EJ, Krumrei I, Kubik P, Ivy-Ochs S, et al. (2008) Regional synthesis of Mediterranean atmospheric circulation during the Last Glacial Maximum. Science 321 (5894): 1338-1340.
163. Assis J, Serrão EA, Claro B, Perrin C, Pearson GA (2014) Climate-driven range shifts explain the distribution of gene pools and predict future loss of unique lineages in a marine brown alga. Molecular Ecology 23(11): 2797-2810.
164. Francou P, Boudouresque CF, Harmelin JG, Harmelin-Vivien ML, Quignard JP (1994) Are the Mediterranean waters becoming warmer? Information from biological indicators. Mar Poll Bull 28(9): S23-S26.
165. Sabatès A, Martin P, Lloret J, Raya V (2006) Sea warming and fish distribution: the case of the small pelagic fish, Sardinella aurita, in the western Mediterranean. Global Change Biology 12(11): 2209-2219.
166. Privitera D, Noli M, Falugi C, Chiantore M (2011) Benthic assemblages and temperature effects on Paracentrotus lividus and Arbacia lixula larvae and settlement. J Exp Mar Biol Ecol 407(1): 6-11.
167. Lloret J, Sabatès A, Muñoz M, Demestre M, Solé I, et al. (2015) How a multidisciplinary approach involving ethnoecology, biology and fisheries can help explain the spatio-temporal changes in marine fish abundance resulting from climate change. Global Ecology and Biogeography 24(4): 448-461.
168. Ben Rais Labram F, Guilhamon F, Albouy C, Somot S, Thuillers W, et al. (2010) The Mediterranean Sea as a ‘cul-de-sac’ for endemic fishes facing climate change. Global Change Biol 16(12): 3235-3245.
169. Adloff F, Somot S, Sevault F, Jordà G, Azañ M, et al. (2015) Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Climate Dynamics 45 (9-10): 2775-2820.
170. Cerrano C, Baustrello G, Bianchi CN, Cattaneo-Vittori R, Bava S, et al. (2000) A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (North-western Mediterranean), summer 1999. Ecology Letters 3(4): 284-293.
171. Romano JC, Bensoussan N, Younes WAN, Arlha D (2000) Anomalie thermique dans les eaux du golfe de Marseille durant l’été 1999. Une explication partielle de la mortalité d’invertébrés fixés? CR Acad Sci Life Sci 323(4): 415-427.
172. Garrabou J, Perez T, Sartoretto S, Harmelin JG (2001) Mass mortality event in red coral Corallium rubrum populations in the Provence region (France, NW Mediterranean). Mar Ecol Progr Ser 217: 263-272.
173. Garrabou J, Laubier L, Perez T (2002) Sesile benthic invertebrates as indicators of climate change. Mass mortalities in the north-western Mediterranean in summer 1999. Ocean Challenge 12 (1): 17-23.
174. Coma R, Linares C, Ribes M, Díaz D, Garrabou J, et al. (2006) Consequences of a mass mortality in populations of Eunicella singularis (Cnidaria: Octocorallia) in Menorca (NW Mediterranean). Mar Ecol Progr Ser 327: 51-60.
175. Coma R, Ribes M, Serrano E, Jiménez E, Salat J, et al. (2009) Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proc National Acad Sci US 106 (15): 6176-6181.
176. Bensoussan N, Romano JC, Harmelin JG, Garrabou J (2010) High resolution characterization of northwest Mediterranean coastal waters thermal regime: to better understand responses of benthic communities to climate change. Estuarine, Coastal and Shelf Science 87(3): 431-441.
177. Rivetti I, Fraschetti S, Lionello P, Zambianchi E, Boero F (2014) Global warming and mass mortalities of benthic invertebrates in the Mediterranean Sea. Plos One 9 (12): e115655.
178. Parravicini V, Mangialajo L, Moussa L, Peirano A, Morri C, et al. (2015) Climate change and warm-water species at the north-western boundary of the Mediterranean Sea. Marine Ecology Progress 364: 897-909.

Citation: Boudouresque CF, Blanfuné A, Fernandez C, Lejeusne C, Pérez T et al. (2017) Marine Biodiversity - Warming vs. Biological Invasions and overfishing in the Mediterranean Sea: Take care, ‘One Train can hide another’. MJ Ecol Environ Sci 2(4): 00031. DOI: 10.15406/mojes.2017.02.00031
Marine Biodiversity - Warming vs. Biological Invasions and overfishing in the Mediterranean Sea: Take care, 'One Train can hide another'

Citation: Boudouresque CF, Blanfuné A, Fernandez C, Lejeusne C, Pérez T et al. (2017) Marine Biodiversity - Warming vs. Biological Invasions and overfishing in the Mediterranean Sea: Take care, 'One Train can hide another'. MOJ Eco Environ Sci 2(4): 00031. DOI: 10.15406/mojes.2017.02.00031

179. Perkel-Finkel S, Airoldi L (2010) Loss and recovery potential of marine habitats: an experimental study of factors maintaining resilience in subtidal algal forests at the Adriatic Sea. Plos One 5 (5): 11.

180. Faschetti S, Terlizzi A, Guarneri G, Pizzolante F, D’Ambrosio P, et al. (2011) Effects of unplanned development on marine biodiversity: a lesson from Albania (central Mediterranean Sea). J Coast Res, Special issue 58: 106-115.

181. Giakoumi S, Halpern BS, Michel LN, Gobert S, Sini M, et al. (2015) Towards a framework for assessment and management of cumulative human impacts on marine food webs. Conservation Biology 29 (4): 1228-1234.

182. Mayot N, Boudouresque CF, Charbonnel E (2006) Changes over time of shoot density of the Mediterranean seagrass Posidonia oceanica at its depth limit. Biol Mar Mediterr 13 (4): 250-254.

183. Marbà N, Duarte CM (2010) Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Global Change Biol 16(8): 2366-2375.

184. Kletou D, Hall-Spencer JM, Kletou P (2016) A lionfish (Pterois miles) invasion has begun in the Mediterranean Sea. Marine Biodiversity Records 9(1): 1.

185. Maxwell SL, Fuller RA, Brooks TM, Watson JEM (2016) The ravages of guns, nets and bulldozers. Nature 536(7615): 143-145.

186. Harmelin-Vivien M, Francour P, Harmelin JG, Le Dinich L (2001) Dynamics of fish assemblage alterations caused by the introduced alga Caulerpa taxifolia near Menton (France). Fourth international workshop on Caulerpa Taxifolia, Gravez V, Ruitton S, et al. (Edt.), GIS Posidoniem, Marseille: 236-234.

187. Boudouresque CF (2002) The spread of a non-native species, Caulerpa taxifolia. Impact on the Mediterranean biodiversity and possible economic consequences. In: Tourism, Biodiversity and Information, Di Castri F & Balaji V (Eds.), Backhuys publ, Leiden p. 75-87.

188. Ballesteros E (2006) Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanogr Mar. Biol: Ann. Rev 44: 123-195.

189. Bianchi CN (1996) The State of Marine Biodiversity In: International Symposium on Mediterranean Biodiversity, Agenda for New Technologies, Energy and Sustainable Economic Development 51-61.

190. Blanfuné A, Boudouresque CF, Thibaut T, Verlaque M (2016) The sea level rise and the collapse of a Mediterranean ecosystem, the Lithophyllum byssonodes algal rim. In: The Mediterranean region under climate change. A scientific update. Thibaut S & Moatti JP (Eds.), AlEnvi, IRD editions publisher Marseille: 285-289.

191. Board on Environmental Studies and Toxicology (2000) Global change ecosystem research. National Academy Press, Washington, USA, DC: xii + 1-48.

192. Boudouresque CF (2004) Marine biodiversity in the Mediterranean: status of species, populations and communities. Sci Rep Port-Cros Natl Park 20: 97-146.

193. Boudouresque CF (2015a) Taxonomy and evolution of unicellular eukaryotes. In: Environmental microbiology: Fundamentals and applications. Microbial ecology. Bertrand JG, Caumette P, Lebaron P, et al. (Eds.), Springer pub pp. 191-257.

194. Boudouresque CF, Boury-Esnault N, Harmelin-Vivien M (2003) Marine biodiversity: trends, patterns and threats. Seminar on biodiversity and biological conservation, Villà M, Ródà F, Ros J (Edt.), Institut d’Estudis Catalans publ, Barcelona pp. 391-410.

195. Boudouresque CF, Meinesz A, Ribera MA, Ballesteros E (1995) Spread of the green alga Caulerpa taxifolia (Caulerpales, Chlorophyta) in the Mediterranean: possible consequences of a major ecological event. Scientia Marina 59(1): 21-29.

196. Boudouresque CF, Perret-Boudouresque M, Verlaque M (2016b) Donor and recipient regions for exotic species of marine macrophytes: a case of unidirectional flow, the Mediterranean Sea. Rapports de la Commission Internationale pour la Mer Méditerranée, 41: 426.

197. Carlton JT (1996) Biological invasions and cryptogenic species. Ecology 77(6): 1653-1655.

198. Goll M, Piroddi C, Steenback J, Kaschner K, Ben Rais Lasram F, et al. (2010) The biodiversity of the Mediterranean Sea: Estimates, patterns and threats. Plos One 5(8): 1-334 (e11842).

199. David M, Gollasch S, Cabini M, Perković M, Bošnjak D, et al. (2007) Results from the first ballast water sampling study in the Mediterranean Sea—the port of Koper study. Mar Poll Bull 54(1): 53-65.

200. Galil BS (2008) Alien species in the Mediterranean Sea – when, where, why? Hydrobiologia 606(1): 105-116.

201. Galil B, Boem F, Faschetti S, Piraino S, Campbell M, et al. (2015b) The enlargement of the Suez Canal and introduction of non-indigenous species to the Mediterranean Sea. Limno Solarogr Bull 24(2): 43-45.

202. Golani N, Orsi-Relini L, M Quignard JP (2002) CIEMS atlas of exotic species in the Mediterranean. 1. Fishes. Briand F (Edt.), CIEMS Publishers, Monaco: 1-254.

203. Harmelin-JG, Vacelet J, Vasseur P (1985) Les grottes sous-marines obscurcs: un milieu extrême et un remarquable biotope refuge. Tethys 11: 214-229.

204. Ivanov VP, Kamakin A M, Ushitzev VB, Shiganova T, Zhukova O, et al. (2000) Invasion of the Caspian Sea by the comb jellyfish Mnemiopsis leidyi (Ctenophora). Biological Invasions 2(3): 255-258.

205. Logan A, Bianchi CN, Morri C, Zibrowius H (2004) The present-day Mediterranean brachiopod fauna: diversity, life habits, biogeography and paleobiogeography. Scientia marina 68(1): 163-170.

206. MacLeod CJ, Paterson AM, Tompkins DM, Duncan RP (2010) Parries lost do invaders miss the boat or drown on arrival? Ecology Letters 13(4): 516-527.

207. Martin S, Gattuso JP (2009) Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Global Change Biol 15(8): 2089-2100.

208. Perez T (2008) Impact des changements climatiques sur la biodiversité en mer Méditerranée. CAR/ASP publ Tunis: 1-62.

209. Perez T, Garrabou J, Sartoretto S, Harmelin JG, Francour P, et al. (2001) Mortalité massive d’invertébrés marins : un événement sans précédent en Méditerranée nord-occidentale. CR Acad Sci Life Sci 323: 853-865.

210. Verlaque M, Durand C, Huismann JM, Boudouresque CF, Le Parrot Y (2003) On the identity and origin of the Mediterranean invasive Caulerpa racemosa (Caulerpales, Chlorophyta). Eur J Phycol 38: 325-339.
211. Verlaque M, Ruitton S, Mineur F, Boudouresque CF (2015) CIESM Atlas of exotic species. 4. Macrophytes. Briand F (Edt.), CIESM Publisher, Monaco: 1-362.

212. Boudouresque CF, Verlaque M, (2010) Is global warming involved in the success of seaweed introductions in the Mediterranean Sea? Pp 31-50 in: Seaweeds and their role in globally changing environments. Israel A, Einav R, Seckbach J (Eds.), Springer publ, Dordrecht.

213. Carlton JT, Ruiz GM (2015) Anthropogenic vectors of marine and estuarine invasions: an overview framework. In: Biological invasions in changing ecosystems. Vectors, ecological impacts, management and predictions. Canning-Clode J. (edit.), De Gruyter publ., Warsaw, Berlin: 30-36.

214. Soulé ME, Wilcox BA (1980) Conservation biology: an evolutionary-ecological perspective. Sunderland, Massachusetts, USA, Sinauer Associates publ 1-395.