The Evolutionary Robustness of Forgiveness and Cooperation

Pedro Dal Bó Enrique R. Pujals

May 1, 2014

Abstract

We study the evolutionary robustness of strategies in infinitely repeated prisoners’ dilemma games in which players make mistakes with a small probability and are patient. The evolutionary process we consider is given by the replicator dynamics. We show that there are strategies with a uniformly large basin of attraction independent of the size of the population. Moreover, we show that those strategies forgive defections and, assuming that they are symmetric, they cooperate. We provide partial efficiency results for asymmetric strategies.

1 Introduction

The theory of infinitely repeated games has been very influential in the social sciences showing how repeated interaction can provide agents with incentives to overcome opportunistic behavior. However, a usual criticism of this theory is that there may be a multiplicity of equilibria. While cooperation can be supported in equilibrium when agents are sufficiently patient, there are also equilibria with no cooperation. Moreover, a variety of different punishments can be used to support cooperation.

To solve this multiplicity problem, we study what types of strategies will have a large basin of attraction regardless of what other strategies are considered in the evolutionary dynamic. More precisely, we study the replicator dynamic over arbitrary finite set of infinitely repeated strategies in which the strategy makes a mistake with a small probability $1 - p$ in every round of the game. We study which strategies have a non-vanishing basin of attraction with a uniform size regardless of the set of strategies being considered in the population. We say that a strategy has a uniformly large basin of attraction if it repels invasions of a given size for arbitrarily patient players and small probability of errors and for any possible combination of alternative strategies (see definition 3 for details).

We find that two well known strategies, "always defect" and "grim," do not have uniformly large basins of attraction. Moreover, any strategy that does not forgive cannot have a uniformly large basin either. The reason is that, as players become arbitrarily patient and the probability of errors becomes small, unforgiving strategies lose in payoffs relative to strategies that forgive and the size of the basins of attraction between these two strategies will favor the forgiving one. This is the case even when the inefficiencies happen off the equilibrium path (as it is the case for grim).

Also, we show that symmetric strategies leading to inefficient payoffs (on or off the path) cannot have uniformly large basins of attractions. We also provide some efficiency results for asymmetric strategies. First, we show that there is a relationship between the size of the basin of attraction and the frequency of cooperation. Second, we show that there is a relationship between the degree of asymmetry of a strategy and its efficiency. Third, we show that strategies with a uniformly large basin of attraction cannot have inefficient payoffs in all histories.

It could be the case that inefficient and unforgiving strategies do not have uniformly large basins since actually there may be no strategies with that property! We prove that that is not the case by...
showing that the strategy "win-stay-lose-shift" has a uniformly large basin of attraction, provided a sufficiently small probability of mistakes. As this strategy is efficient (and symmetric), we show that the concept of uniformly large basins of attraction provides a (partial) solution to the long studied problem of equilibrium selection in infinitely repeated games: only efficient equilibria survive for patient players if we focus on symmetric strategies.

Note that we not only provide equilibrium selection at the level of payoffs but also at the level of the type of strategies used to support those payoffs: the payoffs from mutual cooperation can only be supported by strategies that do not involve asymptotically inefficient punishments. This provides theoretical support to the claims of Axelrod [Ax], that successful strategies should be cooperative and forgiving.

In addition, we prove that our results are robust to perturbation of the replicator dynamic provided that it is still the case that the only growing strategies are those that perform better than the average.

In our study of the replicator dynamics (and its perturbations) we develop tools that can be used to analyze the basins of attractions outside of the particular case of infinitely repeated games. In fact the results are based in a series of theorems about general replicator dynamics which can be used to study the robustness of steady states for games in general.

An extensive previous literature has addressed the multiplicity problem in infinitely repeated games. Part of this literature focuses on strategies of finite complexity with costs of complexity to select a subset of equilibria (see Rubinstein [R], Abreu and Rubinstein [AR], Binmore and Samuelson [BiS], Cooper [C] and Volij [V]). This literature finds that the selection varies with the equilibrium concept being used and the type of cost of complexity. Another literature appealed to ideas of evolutionary stability as a way to select equilibria and found that no strategy is evolutionary stable in the infinitely repeated prisoners’ dilemma (Boyd and Lorberbaum [BL]). The reason is that for any strategy there exists another strategy that differs only after events that are not reached by this pair of strategies. As such, the payoff from both strategies is equal when playing with each other and the original strategy cannot be an attractor of an evolutionary dynamic. Bendor and Swistak [BeS] circumvent the problem of ties by weakening the stability concept and show that cooperative and retaliatory strategies are the most robust to invasions.

In a different approach to ties, Boyd [B] introduced the idea of errors in decision making. If there is a small probability of errors in every round, then all events in a game occur with positive probability destroying the certainty of ties allowing for some strategies to be evolutionary stable. However, as shown by Boyd [B] and Kim [Ki], many strategies that are sub-game perfect for a given level of patience and errors can also be evolutionary stable.

Fudenberg and Maskin [FM2] (see also Fudenberg and Maskin [FM]) show that evolutionary stability can have equilibrium selection implications if we ask that the size of invasions that the strategy can repel to be uniformly large with respect to any alternative strategy and for large discount factors and small probabilities of mistakes. They show that the only strategies with this characteristic must be cooperative. There are three main differences with our results. First, Fudenberg and Maskin [FM2] focus on strategies of finite complexity while we do not have that restriction. Second, our robustness concept does not only consider the robustness to invasion by a single alternative strategy but also robustness to invasion by any arbitrary combination of alternative strategies. In other words, we also look at the size of the basin of attraction inside the simplex. Third, our full efficiency result only applies to the case of symmetric strategies and we only provide partial efficiency results for the general case. We want to point out that to prove efficiency we use a similar approach to the one used in [FM2].

Our results also relate to Johnson, Levine and Pesendorfer [JLP], Volij [V] and Levine and Pesendorfer [LP] who use stochastic stability (Kandori, Mailath and Rob [KMR] and Young [YP]).
to select equilibria in infinitely repeated games. As having large basin of attraction is a necessary condition (but not sufficient) for stochastic stability, the present results could help characterize strategies that are stochastically stable in any finite population.

There is a previous theoretical literature providing evolutionary support for the strategy win-stay-lose-shift (see Nowak and Sigmund [NS] and Imhof, Fudenberg and Nowak [IFN]). This strategy has received little support from experiments on infinitely repeated games (see Dal Bó and Fréchette [DBF], Fudenberg, Rand and Dreber [FRD] and Dal Bó and Fréchette [DBF2]). We hope that new experiments can be designed to test this strategy’s robustness to invasions when it is already highly prevalent in the population.

Finally, our result linking the size of the basin of attraction and the frequency of cooperation relates to other experimental evidence provided by Dal Bó and Fréchette [DBF]. They find that the frequency of cooperation is increasing in the size of the basin of attraction of Grim versus the strategy Always Defect.

The paper is organized as follows: In section 2 we introduce the infinite repeated prisoners’ dilemma with trembles. In section 3 we define the replicator dynamics in any dimension. In theorem 1 we give sufficient conditions for a vertex to have a large local basin of attraction independent of the dimension of the payoff matrix. More precisely, the conditions give a lower bound for the size of the basin of attraction. Those conditions are based on comparing simultaneously the dynamics associated to group of three vertices. Moreover, in subsection 3.4 we show that for a two dimensional simplex, the conditions of theorem 1 with extra assumptions, also provide an upper bound for the size of the basin of attraction. In particular, we show that to have a large basin of attraction is not enough to analyze the dynamic of one dimensional simplex. In section 4 we recast the replicator dynamics in the context of infinite repeated prisoners’ dilemma with trembles. We define the notion of strategy having a uniformly large basin of attraction (see definition 3). In section 5 we show that unforgiving strategies do not have a uniformly large basin (this includes the strategies always defect and grim). In section 6 we prove that for any history, the frequency of cooperation converges to one for symmetric strategies that have a uniformly large basin of attraction. In subsection 6.2 we obtain an efficiency result for asymmetric strategies.

First, we show that there is a relationship between the frequency of cooperation of a strategy and the size of its basin of attraction. Second, we show the frequency of cooperation after any history is bounded below by a quantity that is related to how asymmetric the strategy involved is (the less asymmetric a strategy is, the higher the frequency of cooperation). Third, we show that if there is a finite path such that the strategy does no fully cooperate with itself for any sequel history, then the strategy does not have a uniformly large basin of attraction (see theorem 7 and observe that this result requires considering populations of at least three strategies). In section 7 we show how to adapt theorem 1 to the context of the set of all the strategies. In particular, in subsection 7.1 we provide sufficient conditions to guarantee that a strategy has a uniform large basin of attraction. As they follow from theorem 1 these conditions basically consist of analyzing all the possible set of three strategies. Moreover, in subsection 7.2 we show that weaker conditions that consist of comparing sets of two strategies are not enough to have a uniformly large basin of attraction. In section 8 we develop a technique to calculate the payoff with trembles for certain type of strategies (see definition 11 provided certain restriction on the probability of mistakes (see lemma 16). In section 9 we apply this techniques for the particular case of win-stay-lose-shift, proving that it has a uniformly large basin of attraction. We also consider in subsection 9.1 a generalization of win-stay-lose-shift. In subsection 10 we show that theorem 1 also holds for a general type of equation that resembles the replicator dynamics.
2 Infinitely repeated prisoners’ dilemma with trembles

In the present section, we state the definitions of the game first without trembles and later with trembles as in [FM2]. We explain how the payoff are calculated with and without trembles.

In each period \(t = 0, 1, 2, \ldots \) the 2 agents play a symmetric stage game with action space \(A = \{C, D\} \). At each period \(t \) player one chooses action \(a^t \in A \) and player two chooses action \(b^t \in A \). We denote the vector of actions until time \(t \) as \(a_t = (a^0, a^1, \ldots, a^t) \) for player one and \(b_t = (b^0, b^1, \ldots, b^t) \) for player two. The payoff from the stage game at time \(t \) is given by utility function \(u(a^t, b^t) : A \times A \rightarrow \mathbb{R} \) for player one and \(u(b^t, a^t) : A \times A \rightarrow \mathbb{R} \) for player two such that \(u(D, C) = T, u(C, D) = R, u(D, D) = P, u(C, C) = S \), with \(T > R > P > S \) and \(2R > T + S \).

Agents observe previous actions and this knowledge is summarized by histories. When the game begins we have the null history \(h^0 = (a^0, b^0) \), afterwards \(h_t = (a_{t-1}, b_{t-1}) = ((a^0, b^0), \ldots, (a^{t-1}, b^{t-1})) \) and \(\mathbb{H}^t \) is the space of all possible \(t \) histories. Let \(\mathbb{H}_\infty \) be the set of all possible histories. A pure strategy is a function \(s : \cup_{t\geq0} \mathbb{H}_t \rightarrow A \). In other words, a pure strategy \(s \) is a function \(s : H_t \rightarrow A \) for all \(t \).

It is important to remark, that given two strategies \(s_1, s_2 \) and a finite path \(h_t = (a_{t-1}, b_{t-1}) \), if \(s_1 \) encounter \(s_2 \) then

\[
h^t = (s_1(h_t), s_2(h_t)),
\]

where

\[
\hat{h}_t := (b_{t-1}, a_{t-1}).
\]

(1)

Given a pair of strategies \((s_1, s_2) \) we denote the history that they as \(h_{s_1, s_2} \). In other words, denoting with \(h_{s_1, s_2} \) the path up to period \(t - 1 \) then the path \(h_{s_1, s_2} \), is the path that verifies

\[
s_1(h_{s_1, s_2}) = a^t, \quad s_2(\hat{h}_{s_1, s_2}) = b^t.
\]

Given a pair of strategies \(s_1, s_2 \) the utility of the agent playing \(s_1 \) is

\[
U(s_1, s_2) = (1 - \delta) \sum_{t=0}^{\infty} \delta^t u(s_1(h_{s_1, s_2}), s_2(\hat{h}_{s_1, s_2})),
\]

where the common and constant discount factor \(\delta < 1 \).

Given a finite path \(h_t \), with \(h_{s_1, s_2} \) we denote the equilibrium path between \(s_1 \) and \(s_2 \) with seed \(h_t \) given the recursivity of the discounted utility function we can write the utility starting from history \(h_t \) as

\[
U(s_1, s_2|h_t) = (1 - \delta) \sum_{k=t}^{\infty} \delta^{k-t} u(s_1(h_{s_1, s_2|h_k}), s_2(\hat{h}_{s_1, s_2|h_k})).
\]

For the case of trembles, we have the probability of making a mistake, more precisely, with a positive \(p < 1 \) we denote the probability that a strategy perform what intends. Now, given two strategies \(s_1, s_2 \) (they can be the same strategy) we define

\[
U_{p, \delta}(s_1, s_2) = (1 - \delta) \sum_{t>0, a_t, b_t} \delta^t p_{s_1, s_2}(a_t, b_t) u(a^t, b^t)
\]

where \(u(a^t, b^t) \) denotes the usual payoff of the pair \((a^t, b^t) \) and \(p_{s_1, s_2}(a_t, b_t) \) denote the probability that the strategies \(s_1 \) and \(s_2 \) go through the path \(h_t = (a_t, b_t) \) when they are playing one to each other. To define \(p_{s_1, s_2}(a_t, b_t) \) we proceed inductively:

\[
p_{s_1, s_2}(a_t, b_t) = p_{s_1, s_2}(a_{t-1}, b_{t-1})p^{i_t+j_t}(1-p)^{1-i_t+1-j_t}
\]

where
Observe that if s consider all the paths where k

From now on, to avoid notation we drop the dependence on the path, and with s

It is also said that h

From now on, given k

We say that s

\begin{definition}
Definition 1. We say that s is a subgame perfect strategy if for any s' different than s it follows that $U_{\delta,p}(s, s/h_t) - U_{\delta,p}(s', s/h_t) \geq 0$.

It is also said that s is a strict subgame perfect strategy if $U_{\delta,p}(s, s/h_t) - U_{\delta,p}(s', s/h_t) > 0$.
\end{definition}

Let us consider two strategies s_1 and s_2 and let

$$R_{s_1, s_2} := \{h \in H_0 : \exists k \geq 0, \ s_1(h_t) = s_2(h_t) \ \forall t < k ; \ s_1(h_k) \neq s_2(h_k)\}.$$

Observe that if $s_1(h_0) \neq s_2(h_0)$ then any path $h \in H_\infty$ belongs to R_{s_1, s_2}. In other words, we consider all the paths where s_1 and s_2 differ at some moment, including the first move. Observe that k depends on h, and it is defined as the first time that s_1 differs with s_2 along h, i.e.

$$k_h(s_1, s_2) = \min\{t \geq 0 : s_1(h_t) \neq s_2(h_t)\}.$$

From now on, to avoid notation we drop the dependence on the path, and with h_k we denote the k–finite truncation of h where k is the first time that s_1 and s_2 deviate along h. Observe that for $h \in R_{s_1, s_2}$, the fact that $s_1(h_t) = s_2(h_t)$ for any $t < k$ does not imply that $h^t = s_1(h_t)$. Moreover, observe also that if $s_1 \neq s_2$ then

$$R_{s_1, s_2} \neq \emptyset.$$

From now on, given $h \in R_{s_1, s_2}$ with h_k we denote the finite path contained in h such that $s_1(h_t) = s_2(h_t)$ for any $t < k$ and $s_1(h_k) \neq s_2(h_k)$
Lemma 1. It follows that

$$U_{δ,p}(s_1, s_1) - U_{δ,p}(s_2, s_1) = \sum_{h, h_k \in R_{s_1, s_2}} δ^k p_{s_1, s_1}(h_k) (U_{δ,p}(s_1, s_1/h_k) - U_{δ,p}(s_2, s_1/h_k)). \quad (4)$$

Proof. If $s_1(h_0) \neq s_2(h_0)$ then $R_{s_1, s_2} = H_0$, $h_k = h_0$ and in this case there is nothing to prove. If $s_1(0) = s_2(0)$, the result follows from the next claim that states that given a history path h then

$$p_{s_1, s_1}(h_t) = \begin{cases} p_{s_2, s_1}(h_t) & \text{if } t \leq k \\ p_{s_2, s_1}(h_k)p_{s_2, s_1/h_k}(σ^k(h)_{t-k}) & \text{if } t > k \end{cases}$$

(recall that $σ(h)$ is a history path that verifies $σ^k(h)_{j} = h_{j+k}$). To prove the claim in the case that $t \leq k$ we proceed by induction: recalling (4) follows that

$$p_{s_1, s_1}(a_t, b_t) = p_{s_1, s_1}(a_{t-1}, b_{t-1})p^{i'_t + j'_t}(1 - p)^{2-i'_t - j'_t} \quad (5)$$

where

(i) $i'_t = 1$ if $a_t = s_1(h_{t-1}) = s_1(a_{t-1}, b_{t-1})$, $i'_t = 0$ otherwise,

(ii) $j'_t = 1$ if $b_t = s_1(h_{t-1}) = s_1(b_{t-1}, a_{t-1})$, $j'_t = 0$ otherwise

and

$$p_{s_2, s_1}(a_t, b_t) = p_{s_2, s_1}(a_{t-1}, b_{t-1})p^{i''_t + j''_t}(1 - p)^{2-i''_t - j''_t} \quad (6)$$

where

(i) $i''_t = 1$ if $a_t = s_2(h_{t-1}) = s_2(a_{t-1}, b_{t-1})$, $i''_t = 0$ otherwise,

(ii) $j''_t = 1$ if $b_t = s_1(h_{t-1}) = s_1(b_{t-1}, a_{t-1})$, $j''_t = 0$ otherwise.

Now, by induction follows that $p_{s_1, s_1}(a_{t-1}, b_{t-1}) = p_{s_2, s_1}(a_{t-1}, b_{t-1})$ and from $s_1(h_{t-1}) = s_2(h_{t-1})$ follows that $i'_t = i''_t$, $j'_t = j''_t$. \hfill \Box

Lemma 2. Given any pair of strategies s_1, s_2 it follows that

$$|U_{δ,p}(h^c_{s_2, s_1}/h_t)| < \frac{1 - p^2}{p^2(1 - δ)} M$$

where $M = \max\{T, |S|\}$.

Proof. Observe that fixed t then

$$\sum_{h_t \in H_t} p_{s_1, s_2}(h_t) = 1,$$

since in the equilibrium path at time t the probability is p^{2t+2} it follows that

$$\sum_{h_t \notin H_t \cap NE} p_{s_1, s_2}(h_t) = 1 - p^{2t+2}.$$
Therefore, and recalling that \(u(h^t) \leq M \),
\[
|U_{\delta,p}(h_{s_2,t}/h_t)| = \frac{1-p^2\delta}{p^2} \sum_{t \geq 0, h_t \notin N\mathcal{E}} \delta^t p_{s_1,s_2}(h_t)u(h^t) \\
\leq (1-\delta) \sum_{t \geq 0} \delta^t \sum_{h_t \notin N\mathcal{E}} p_{s_1,s_2}(h_t)|u(h^t)| \\
\leq (1-\delta)M \sum_{t \geq 0} \delta^t(1-p^{2t+2}) \\
= M[(1-\delta) \sum_{t \geq 0} \delta^t - (1-\delta) \sum_{t \geq 0} \delta^t p^{2t+2}] \\
= M[1-\frac{p^2}{1-p^2}\frac{1-\delta}{1-\frac{p^2\delta}{p^2}}] \\
= \frac{1-p^2}{(1-p^2\delta)} M.
\]

\[
\square
\]

From previous lemma, we can conclude the next two lemmas:

Lemma 3. Given two strategies \(s_1 \) and \(s_2 \)
\[
\lim_{p \to 1} \sum_{h_t \in N\mathcal{E}} U_{\delta,p}(s_1,s_2/h_t) = 0.
\]

Lemma 4. Given two strategies \(s_1,s_2 \) then
\[
\lim_{p \to 1} U_{\delta,p}(s_2,s_2) - U_{\delta,p}(s_1,s_2) = \sum_{h_k, h \in \mathcal{R}_{s_1,s_2}} \delta^k[U_{\delta}(h_{s_2,s_2}/h_k) - U_{\delta}(h_{s_1,s_2}/h_k)].
\]

Now, we are going to rewrite the equation (4) considering at the same time the paths \(h \) and \(\hat{h} \). The reason to do that it will become more clear in subsection 7.1.

Remark 1. Observe that given a strategy \(s \) if \(\hat{h}_t \neq h_t \) it could hold that \(s(\hat{h}_t) \neq s(h_t) \). Also, given two strategies \(s_1,s_2 \) it also could hold that \(k(h,s_1,s_2) \neq k(\hat{h},s_1,s_2) \). However, it follows that if \(k(h,s_1,s_2) \leq k(\hat{h},s_1,s_2) \) then
\[
p_{s_1,s_1}(h_k) = p_{s_1,s_1}(\hat{h}_k) = p_{s_1,s_2}(h_k) = p_{s_1,s_2}(\hat{h}_k) = \\
p_{s_2,s_1}(h_k) = p_{s_2,s_1}(\hat{h}_k) = p_{s_2,s_2}(h_k) = p_{s_2,s_2}(\hat{h}_k)
\]

Using previous remark, we define the set \(\mathcal{R}_{s_1,s_2}^* \) as the set
\[
\mathcal{R}_{s_1,s_2}^* = \{h \in \mathcal{R}_{s_1,s_2} : k(h,s_1,s_2) \leq k(\hat{h},s_1,s_2)\}
\]
and therefore the differences \(U_{\delta,p}(s_2,s_2) - U_{\delta,p}(s_1,s_2) \) can be written in the following way (denoting \(k \) as \(k(h,s_1,s_2) \))
\[
U_{\delta,p}(s_2,s_2) - U_{\delta,p}(s_1,s_2) = \\
\sum_{h_k, h \in \mathcal{R}_{s_1,s_2}^*} \delta^k p_{s_1,s_1}(h_k)[U_{\delta,p}(s_1,s_1/h_k) - U_{\delta,p}(s_2,s_1/h_k) + U_{\delta,p}(s_1,s_1/\hat{h}_k) - U_{\delta,p}(s_2,s_1/\hat{h}_k)].
\]

Now we are going to give a series of lemmas that relates equilibrium paths with seeds \(h_t \) and \(\hat{h}_t \); later, we also relate the payoff along those paths. The proofs of the first two next lemmas are obvious and left to the reader.
Lemma 5. Given two strategies s, s^* and a path h_t follows that
\[\hat{h}_{ss/s} = h_{s,s} / \hat{h}_t \]
(7)

Now, we try to relate the payoffs. Given two strategies s, s^* and a path h_k, we take
\[
\begin{align*}
 b_1 &= (1 - \delta) \sum_{j:u^j(s^*,s/h_k)=R} \delta^j, \\
 b_2 &= (1 - \delta) \sum_{j:u^j(s^*,s/h_k)=S} \delta^j, \\
 b_3 &= (1 - \delta) \sum_{j:u^j(s^*,s/h_k)=T} \delta^j, \\
 b_4 &= (1 - \delta) \sum_{j:u^j(s^*,s/h_k)=P} \delta^j.
\end{align*}
\]
Observe that $b_1 + b_2 + b_3 + b_4 = 1$ and
\[U(s^*, s) = b_1 R + b_2 S + b_3 T + b_4 P. \]

In the same way, for \hat{h}_k we define $\hat{b}_1, \hat{b}_2, \hat{b}_3, \hat{b}_4$
\[
\begin{align*}
 \hat{b}_1 &= (1 - \delta) \sum_{j:u^j(s^*,\hat{s}/h_k)=R} \delta^j, \\
 \hat{b}_2 &= (1 - \delta) \sum_{j:u^j(s^*,\hat{s}/h_k)=S} \delta^j, \\
 \hat{b}_3 &= (1 - \delta) \sum_{j:u^j(s^*,\hat{s}/h_k)=T} \delta^j, \\
 \hat{b}_4 &= (1 - \delta) \sum_{j:u^j(s^*,\hat{s}/h_k)=P} \delta^j.
\end{align*}
\]
Observe that $\hat{b}_1 + \hat{b}_2 + \hat{b}_3 + \hat{b}_4 = 1$. Now we define
\[B_1 = b_1 + \hat{b}_1, \ B_2 = b_2 + \hat{b}_2, \ B_3 = b_3 + \hat{b}_3, \ B_4 = b_4 + \hat{b}_4. \]

Remark 2. The above numbers b_j depend on δ and the infinite sums converge fixed δ. However, they could not converge as δ goes to 1.

Lemma 6. Given two strategies s, s^* and a path h_k, if
\[U_\delta(h_{s^*,s/h_k}) = b_1 R + b_2 S + b_3 T + b_4 P S \]
then
\[U_\delta(h_{s,s} / h_k) = b_1 R + b_2 T + b_3 S + b_4 P. \]
Moreover, if
\[U_\delta(h_{s^*,s/h_k}) + U_\delta(h_{s^*,\hat{s}/h_k}) = B_1 R + B_2 T + B_3 S + B_4 P, \]
then
\[U_\delta(h_{s,s^*/h_k}) + U_\delta(h_{s^*,\hat{s}/h_k}) = B_1 R + B_2 S + B_3 T + B_4 P. \]

Lemma 7. Given two strategies s, s^* and a path h_k, follows that
\[U_\delta(h_{s,s^*}/h_k) + U_\delta(h_{s^*,s}/h_k) \leq 2R. \]

Lemma 8. For any $\lambda_0 < 1$ follows that there exists $\hat{\lambda}_0 < 1$ such that if $U_\delta(h_{s,s}/h_t) = \lambda_0 R$ then
\[U_\delta(h_{s,s}/h_t) + U_\delta(h_{s,s}/h_t) \leq 2\hat{\lambda}_0 R. \]
Moreover, for any $\lambda_0' < \lambda_0$ then $\hat{\lambda}_0' < \hat{\lambda}_0$. In particular,
\[U_\delta(h_{s,s}/h_t) + U_\delta(h_{s,s}/h_t) < 2R. \]
Proof. If \(U_\delta(h_{s,s/h_t}) = b_1 R + b_2 S + b_3 T + b_4 P = \lambda_0 R \) then it follows that
\[
\max\{b_2, b_3, b_4\} > \frac{1 - \lambda_0}{3}.
\] (8)
In fact, if it is not the case,
\[
b_1 R + b_2 S + b_3 T + b_4 P \geq b_1 R = (1 - (b_2 + b_3 + b_4)) \geq [1 - (1 - \lambda_0)] R = \lambda_0 R,
\]
a contradiction. From equality \((7)\) follows \(U(h_{s,s/h_t}) = b_1 R + b_2 T + b_3 S + b_4 P \) so
\[
U_\delta(h_{s,s/h_t}) + U_\delta(h_{s,s/h_t}) = 2b_1 R + (b_2 + b_3)(T + S) + 2b_4 P
\]
and from the fact that \(b_1 + b_2 + b_3 + b_4 = 1 \) follows that is equal to
\[
2R - [2b_2(R - P) + (b_3 + b_4)(2R - (T + S))]
\]
So taking
\[
\hat{R} = \min\{R - P, R - \frac{(T + S)}{2}\}
\]
which is positive, follows from inequality \((8)\) that
\[
U_\delta(h_{s,s/h_t}) + U_\delta(h_{s,s/h_t}) < 2R - 2 \frac{1 - \lambda_0}{3} \hat{R},
\]
and taking
\[
\hat{\lambda}_0 = 1 - \frac{1 - \lambda_0}{3} \frac{\hat{R}}{R}
\]
the result follows. \(\square\)

From now one, given a pair of strategies \(s_1 \) and \(s_2 \) (\(s_2 \) could be equal to \(s_1 \)) we use the following notations,
\[
U_{\delta,p}(s_1, s_2/h_k, \hat{h}_k) := U_{\delta,p}(s_1, s_2/h_k) + U_{\delta,p}(s_1, s_2/h_k),
\]
\[
U_{\delta,p}(h_{s_1,s_2/h_k, \hat{h}_k}) := U_{\delta,p}(h_{s_1,s_2/h_k}) + U_{\delta,p}(h_{s_1,s_2/h_k}).
\]

3 Replicator dynamics

In this section we introduce the notion of replicator dynamics and we analyze the attractors.

Given the payoff matrix
\[
A = \begin{pmatrix}
 a_{11} & \cdots & a_{1i} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 a_{i1} & \cdots & a_{ii} & \cdots & a_{in} \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 a_{n1} & \cdots & a_{ni} & \cdots & a_{nn}
\end{pmatrix}
\]

Let \(\Delta \) be the \(n \)-dimensional simplex
\[
\Delta = \{(x_1 \ldots x_n) \in \mathbb{R}^n : x_1 + \cdots + x_n = 1, \ x_j \geq 0, \forall j\}.
\]
We consider the replicator dynamics X associated to the payoff matrix A on the n dimensional simplex given by the equations:

$$
\dot{x}_j = X_j(x) := x_j F_j(x) = x_j (f_j - \bar{f})(x) \quad (9)
$$

where

$$
f_j(x) = (Ax)_j, \quad \bar{f}(x) = \sum_{l=1}^{n} x_l f_l(x),
$$

where $(AX)_j$ denotes the j-th coordinate of the vector Ax. In other words, provided a payoff matrix A, the replicator equation is given by

$$
\dot{x}_j = x_j [(Ax)_j - x^t Ax], \quad j = 1, \ldots, n
$$

where x^t denotes the transpose vector.

Using that $1 = x_1 + x_2 + \cdots + x_n$ we can write

$$
F_j = f_j(x)(x_1 + x_2 + \cdots + x_n) - \bar{f}(x) = f_j(x)(x_1 + x_2 + \cdots + x_n) - \sum_{l=1}^{n} x_l f_l(x) = \sum_{l \neq j} x_l (f_j - f_l)(x).
$$

We denote with φ the associated flow:

$$
\varphi : \mathbb{R} \times \Delta \to \Delta.
$$

Giving $t \in \mathbb{R}$ with $\varphi_t : \Delta \to \Delta$ we denote the t-time diffeomorphism. Observe that any vertex is a singularity of the replicator equation, therefore, any vertex is a fixed point of the flow.

3.1 Affine coordinates for the replicator equation

We consider an affine change of coordinates to define the dynamics in the positive quadrant of \mathbb{R}^{n-1} instead of the simplex Δ. The affine change of coordinates is given by

$$
\bar{x}_1 = 1 - \sum_{j \geq 2} x_j, \quad \bar{x}_j = x_j \quad \forall j \geq 2
$$

and so, the replicator equation is defined as

$$
\dot{x}_j = F_j(\bar{x}) x_j, \quad j = 2, \ldots, n
$$

where $\bar{x} = (\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_n)$ with $x_i \geq 0, x_2 + \cdots + x_n \leq 1$ and

$$
F_j(\bar{x}) = (f_j - \bar{f})(1 - \sum_{i \geq 2} x_i, x_2, \ldots, x_n).
$$

Observe that in these coordinates the point $e_1 = (1, 0, \ldots, 0)$ corresponds to $(0, \ldots, 0)$ and in the new coordinates the simplex Δ is replaced by $\{(x_2, \ldots, x_n) : x_i \geq 0, \sum_{i=2}^{n} x_i \leq 1\}$.

10
We also can rewrite F_j in the following way:

$$F_j(\bar{x}) = \sum_{l \neq j, l \geq 2} (f_j - f_l)(\bar{x})x_l$$

$$= (f_j - f_1)(\bar{x}) - \sum_{l \geq 2} (f_j - f_l)(\bar{x})x_l + \sum_{l \neq j, l \geq 2} (f_j - f_l)(\bar{x})x_l$$

$$= (f_j - f_1)(\bar{x}) - \sum_{l \geq 2} [(f_j - f_l)(\bar{x}) - (f_j - f_1)(\bar{x})]x_l$$

$$= (f_j - f_1)(\bar{x}) + (f_1 - f_j)(\bar{x})x_j + \sum_{l \neq j, l \geq 2} (f_1 - f_l)(\bar{x})x_l$$

$$= (f_j - f_1)(\bar{x}) + \sum_{l \geq 2} (f_1 - f_l)(\bar{x})x_l.$$ \hspace{1cm} \text{(10)}

Denoting

$$R(\bar{x}) := \sum_{l \geq 2} (f_1 - f_l)(\bar{x})x_l,$$ \hspace{1cm} \text{(10)}

it follows that

$$F_j(\bar{x}) = (f_j - f_1)(\bar{x}) + R(\bar{x})$$ \hspace{1cm} \text{(11)}

where

$$(f_j - f_1)(\bar{x}) = \sum_{k \geq 1} (a_{jk} - a_{lk})\bar{x}_k = (a_{j1} - a_{l1})\bar{x}_1 + \sum_{k \geq 2} (a_{jk} - a_{lk})\bar{x}_k$$

$$= (a_{j1} - a_{l1})(1 - \sum_{l \geq 2} x_l) + \sum_{k \geq 2} (a_{jk} - a_{lk})x_k$$

$$= a_{j1} - a_{l1} + \sum_{k \geq 2} (a_{jk} - a_{lk} - a_{j1} + a_{l1})x_k.$$ \hspace{1cm} \text{(12)}

Observe that if we take the matrix $M \in \mathbb{R}^{(n-1) \times (n-1)}$ and the vector $N \in \mathbb{R}^{n-1}$ such that

$$M_{jk} = a_{jk} - a_{lk} + a_{l1} - a_{j1}$$

and

$$N_j = a_{j1} - a_{l1}$$

then the replicator equation on affine coordinates is given by

$$\dot{x}_j = x_j[(v + Mx)_j - x^t(v + Mx)], \quad j = 2, \ldots, n;$$ \hspace{1cm} \text{(12)}

where $(v + Mx)_j$ is the j–th coordinate of $v + Mx$.\hspace{1cm} 11
3.2 Attracting fixed points

Given a point e and a positive constant ϵ, $B_\epsilon(e)$ denotes the ball of radius ϵ and center e.

Definition 2. Attracting fixed point and local basin of attraction. Let e be a singular point of X (i.e.: $X(e) = 0$). It is said that e is an attractor if there exists an open neighborhood U of e such that for any $x \in U$ follows that $\varphi_t(x) \to e$. The global basin of attraction $B^s(e)$ is the set of points that its forward trajectories converges to e. Moreover, given $\epsilon > 0$ we say that $B_\epsilon(e)$ is contained in the local basin of attraction of e if $B_\epsilon(e)$ is contained in global basin of attraction and any forward trajectory starting in $B_\epsilon(e)$ remains inside $B_\epsilon(e)$. This is denoted with $B_\epsilon(e) \subset B^s_{loc}(e)$.

For the sake of completeness, we give a folklore’s sufficient condition for the vertex e_1 to be an attractor. Before that, we need to calculate the derivative DX of the function $X = (X_1 \ldots X_n)$ given by the replicator equation (see equation 9). For that, for any l, we compute $DX_l = (\frac{\partial X_1}{\partial x_1} \ldots \frac{\partial X_n}{\partial x_n})$ and observe that for $k \neq l$ then $\frac{\partial X_l}{\partial x_k} = (\partial x_k f_l - \partial x_k \tilde{f})x_k$, and for $k = l$ follows that $\frac{\partial X_l}{\partial x_l} = (\partial x_l f_l - \partial x_l \tilde{f})x_l + f_l - \tilde{f}$.

Lemma 9. If e_1 is a strict Nash equilibrium (i.e. $a_{11} - a_{j1} > 0$ for any $j \neq 1$) then e_1 is an attractor. Moreover, the eigenvalues of DX at e_1 are given by $\{a_{11} - a_{j1}\}_{j>1}$.

Proof. To prove the result, observe first that $\bar{0}$ (the point e_1 in the simplex) is a fixed point. To finish, observe that D_0X is a diagonal matrix with $\{a_{j1} - a_{11}\}_{j \neq 1}$ in the diagonal. Therefore, $\{a_{j1} - a_{11}\}_{j \neq 1}$ are the eigenvalues which by hypothesis are all negative.

3.3 Large Basin of attractions for fixed points

The goal of the following theorem is to give sufficient conditions for a vertex to have a “large local basin of attraction”, independent of the dimension of the space. In other words, provided a vertex e and a positive number K, the goal is to find sufficient condition for any payoff matrix A, independently of the dimension, such that the neighborhood $B_K(e)$ is contained in the local basin of attraction of e.
A natural condition is to assume that the eigenvalues are “uniformly negative”. But this criterion is not appropriate for the context of games, since the quantities $a_{j1} - a_{11}$ even when negative could be arbitrary close to zero. However, we take advantage of the fact that the replicator equations are given by a special type of cubic polynomials, and we provide a sufficient condition for “large local basin of attraction” even for the case that the eigenvalues are close to zero. To do that, we need to introduce some other quantities. From now on we use the L^1-norm

$$||x|| = \sum_{i \geq 1} |x_i|.$$

Now, let us go back to the replicator equations and let us assume from now on that e is a strict Nash equilibrium, i.e.

$$a_{11} - a_{j1} > 0$$

for any $j \neq 1$. Recall as we define in the previous subsection the matrix M and N given by

$$N_{j1} = a_{j1} - a_{11} \quad (13)$$

$$M_{ij} = a_{ji} - a_{1i} + a_{11} - a_{j1} \quad (14)$$

$$M_{ji} = a_{ij} - a_{1j} + a_{11} - a_{i1}. \quad (15)$$

Moreover, we assume that the vertex $\{e_2 \ldots e_n\}$ are ordered in such a way that

$$a_{11} - a_{i1} \geq a_{11} - a_{j1}, \ \forall 2 \leq i < j.$$

Theorem 1. Let $A \in \mathbb{R}^{n \times n}$ (n arbitrary) such that $a_{j1} < a_{11}$. Let

$$M_0 = \max_{i,j \geq i} \{\frac{M_{ij} + M_{ji}}{-N_i}, \ 0\}. \quad (16)$$

Then,

$$\Delta_{\frac{1}{M_0}} = \{\bar{x} : \sum_{i \geq 2} x_i \leq \frac{1}{M_0}\} \subset \mathcal{B}_{\text{loc}}^s(e_1).$$

The proof of the theorem is based on a crucial lemma about quadratic polynomials (see lemma [10]). So, first we recall a series of definitions and results involving quadric, we state the lemma, provide its proof and latter we prove theorem [1].

First recall that a *quadratic polynomial* Q is a function from \mathbb{R}^n to \mathbb{R} of the form $Q(x) = Nx + x^tMx$ (where N is a vector, M is a square matrix and x^t means the transpose of x). It is said that Q is *positive-definite* if $x^tMx \geq 0$ for any x. It is said that Q is negative-definite if $x^tMx \leq 0$ for any x. Now, associated to a quadratic polynomial Q we consider the set

$$\{x \in \mathbb{R}^n : Q(x) = 0\}$$

which is a smooth submanifold of codimension one. Observe that $Q(0) = 0$. If Q is either positive-definite or negative-definite then $\{Q(x) = 0\}$ is an ellipsoid, in particular, it is a connected compact set and $\{x \in \mathbb{R}^n : Q(x) \leq 0\}$ is a convex set (see first two cases in figure [2]). If Q is neither positive-definite nor negative-definite then $\{Q(x) = 0\}$ is a hyperboloid, and in particular, it is not a bounded set. However, it could be connected or not (see third case of figure [2]).
Lemma 10. Let $Q : \mathbb{R}^n \to \mathbb{R}$ given by

$$Q(x) = Nx + x^tMx$$

with $x \in \mathbb{R}^n$, $N \in \mathbb{R}^n$ and $M \in \mathbb{R}^{n \times n}$. Let us assume that $N_i < 0$ for any i and for any $j > i$, $|N_i| \geq |N_j|$. Let

$$M_0 = \max_{i,j>i}\left\{\frac{M_{ij} + M_{ji}}{-N_i}, 0\right\}.$$

Then, the set $\Delta_{\frac{1}{M_0}} = \{x \in \mathbb{R}^n : x_i \geq 0, \sum_{i=1}^{n} x_i < \frac{1}{M_0}\}$ is contained in $\{x : Q(x) < 0\}$. In particular, if $M_0 = 0$ then $\frac{1}{M_0}$ is treated as ∞ and this means that $\{x \in \mathbb{R}^n : x_i \geq 0\} \subset \{x : Q(x) \leq 0\}$.

Proof. For any $v \in \mathbb{R}^n$ such that $v_i \geq 0$ and $\sum_i v_i = 1$, we consider the following one dimensional quadratic polynomial, $Q^v : \mathbb{R} \to \mathbb{R}$ given by

$$Q^v(s) := Q(sv) = sNv + s^tMv.$$

To prove the thesis of the lemma, we claim that is enough to show that

"for any positive vector v with norm equal to 1, if $0 < s < \frac{1}{M_0}$ then $Q^v(s) < 0$"; \hfill (17)

in fact, to prove that claim, we can argue by contradiction: if there is a point $x_0 \in \Delta_{\frac{1}{M_0}}$ different than zero (i.e.: $0 < |x_0| < \frac{1}{M_0}$) such that $Q(x_0) = 0$, then taking $v = \frac{x_0}{|x_0|}$ and $s = |x_0|$ follows that $Q^v(s) = Nx_0 + x_0^tMx_0 = 0$, but $|v| = 1, s < \frac{1}{M_0}$, a contradiction.

Now we proceed to show (17). Observe that the roots of $Q^v(s)$ are given by $s = 0$ and

$$s = \frac{-Nv}{v^tMv}.$$

Observe that

$$-Nv = \sum_i (-N_i)v_i > 0.$$

If $v^tMv < 0$ then it follows that Q^v is a one dimensional quadratic polynomial with negative quadratic term and two non-positive roots, so for any $s > 0$ holds that $Q^v(s) < 0$ and therefore proving the claim in this case. So, it remains to consider the case that $v^tMv > 0$. In this case, since Q^v is a one dimensional quadratic polynomial with positive quadratic term (v^tMv), therefore for any s between both roots ($0, \frac{-Nv}{v^tMv}$) follows that $Q < 0$ so to finish we have to prove that

$$\frac{-Nv}{v^tMv} \geq \frac{1}{M_0}. \hfill (18)$$
Using that $\sum_{j \geq i} v_j \leq 1$ observe

\[
v^t M v = \sum_{ij} v_i v_j M_{ij} \\
= \sum_i [v_i^2 M_{ii} + \sum_{j>i} v_i v_j (M_{ij} + M_{ji})] \\
\leq \sum_i [v_i^2 (-N_i)M_0 + \sum_{j>i} v_i v_j (-N_i)M_0] = \\
= M_0 \sum_i (-N_i) v_i \sum_{j \geq i} v_j \\
\leq M_0 \sum_i (-N_i) v_i \\
= M_0 (-Nv).
\]

Therefore, (18) holds and so proving (17). \qed

Now we provide the proof of theorem 1.

Proof of theorem 1: We consider the affine change of coordinates: $\bar{x}_1 = 1 - \sum_{j \geq 2} x_j, \bar{x}_j = x_j, j = 2, \ldots, n$ introduced before. Let $X = (X_2, \ldots, X_n)$ the vector field in these coordinates, where $X_j = \bar{x}_j F_j(\bar{x})$. For any $k < 1$ we denote

\[
\Delta_k := \{ \bar{x} : \sum_{i \geq 2} x_i \leq k \}, \partial \Delta_k = \{ \bar{x} : \sum_{i \geq 2} x_i = k \}.
\]

We want to show that for any initial condition \bar{x} in the region Δ_{1, M_0} follows that the map

\[
t \rightarrow \bar{x}(t) = \sum_{i \geq 2} \bar{x}_k(t)
\]

is a strict decreasing function and so the trajectories remains inside Δ_{1, M_0} and since it can not escape Δ it follows that $\bar{x}(t) \rightarrow 0$ and therefore the trajectory converge to $(0, \ldots, 0)$. To do that, we prove $\dot{\bar{x}} < 0$.

Therefore, we have to show

\[
Q(\bar{x}) := \dot{\bar{x}} = \sum_{j \geq 2} X_j = \sum_{j \geq 2} x_j F_j(\bar{x}) < 0.
\]

Recall that $F_j = (f_j - f_1)(\bar{x}) + R(\bar{x})$ where $R(\bar{x}) = \sum_{l \geq 2} (f_1 - f_l)(\bar{x}) x_l$ (see equations (10) and (11)). Therefore,

\[
Q(\bar{x}) = \sum_{j \geq 2} (f_j - f_1)(\bar{x}) x_j + \sum_{j \geq 2} R(\bar{x}) x_j \\
= \sum_{j \geq 2} (f_j - f_1)(\bar{x}) x_j + R(\bar{x}) \sum_{j \geq 2} x_j.
\]

Since $\sum_{j \geq 2} x_j = k$ (with $k < 1$) follows that

\[
Q(\bar{x}) = \sum_{j \geq 2} (f_j - f_1)(\bar{x}) x_j + R(\bar{x}) k.
\]

\pagebreak
Recalling the expression of R we get that
\[Q(\bar{x}) = (1 - k) \sum_{j \geq 2} (f_j - f_1)(\bar{x})x_j. \]

So, to prove inequality (19) is enough to show that
\[Q(\bar{x}) = (1 - k) \sum_{j} x_j(f_j - f_1)(\bar{x}) < 0 \quad \forall \bar{x} \in \Delta_k, \quad k < \frac{1}{M_0}. \]

First we rewrite Q. Observe that
\[(f_j - f_1)(\bar{x}) = \sum_{i} (a_{ji} - a_{1i})\bar{x}_i = a_{j1} - a_{11} + \sum_{i \geq 2} (a_{ji} - a_{1i} + a_{11} - a_{j1})x_i. \]

If we note the vector
\[N := (a_{j1} - a_{11})_j \]
and the matrix
\[M := (M_{ij}) = a_{ji} - a_{1i} + a_{11} - a_{j1}. \]

Therefore,
\[Q(\bar{x}) = N\bar{x} + \bar{x}^t M\bar{x}. \]

So we have to find the region given by \(\{ \bar{x} : Q(\bar{x}) = 0 \} \). To deal with it, we apply lemma 10 and we use equation (16) and the theorem is concluded.

Remark 3. Observe that in the theorem 10 it only matters to compare $a_{11} - a_{1i}$ with the entries $M_{ij} + M_{ji}$ that are positive.

Remark 4. If we apply the proof of lemma 10 to the particular case that $v = e_j$, we are considering the map
\[Q^v(s) = s[a_{j1} - a_{11} + (a_{jj} - a_{1j} + a_{11} - a_{j1})s] \]
and $Q(s) = 0$ if and only if $s = 0$ or
\[s = \frac{a_{11} - a_{j1}}{a_{11} - a_{j1} + a_{jj} - a_{1j}} = \frac{1}{1 + \frac{a_{jj} - a_{1j}}{a_{11} - a_{j1}}} = p_{1j} \]
and so
\[Q(s) < 0, \quad \forall 0 < s < p_{1j}. \]

In particular, if we apply this to theorem 10, it follows that the whole segment $[0, p_{1j})$ is in the basin of attraction of e_j. In particular, observe that $p_{1j} = (1 - p_{1j}, \ldots, p_{1j}, \ldots)$, is the unique fixed point of the replicator dynamics in the interior of the one dimensional simplex that contains e_1, e_j.

Remark 5. Observe that the basin of attraction could be much larger than the region given by the previous theorem. It may be the case that better linear upper bounds for the quadratics map F_j could provide better estimates for the size of the basin of attraction.
3.4 Comparing strategies by pairs is not enough

In this section we show that to guarantee that a strategy has a uniformly large basin of attraction is not enough to compare it with every other single strategy one at the time. In other words is not enough to bound by below the basin of attraction of only considering populations of two strategies. More precisely, we provide a set of conditions for a population of three strategies where only one is an attractor (and therefore its basin is large in each one dimensional simplex) but it has a small local basin.

We consider a replicator dynamics in dimension two and we write the equation in affine coordinates \(\{(x_1, x_2) : 0 \geq x_2 \leq 1, 0 \geq x_3 \leq 1, x_2 + x_3 \leq 1\} \). Given \(\lambda > 0 \) and close to zero, we consider the almost horizontal and vertical lines given by

\[
H_\lambda(x_2) = (x_2, \lambda(1-x_2)), \quad V_\lambda(x_3) = (\lambda(1-x_3), x_3).
\]

Theorem 2. Given \(\lambda > 0 \) close to zero and \(a > 0 \), there exist \(A \in \mathbb{R}^{3 \times 3} \) such that \(0 < a_{ij} < a \), satisfying that

(i) \((0, 0)\) is an attractor and the horizontal line \((x_1, 0), 0 \leq x_1 < 1\) and vertical line \((0, x_2), 0 \leq x_2 < 1\) are contained in the basin of attraction of \((0, 0)\);

(ii) \((1, 0)\) and \((0, 1)\) are repellers;

(iii) there is a point \(p = (p_1, p_2) \) with \(p_1 + p_2 = 1 \) which is an attractor;

(iv) the region bounded by \(H_\lambda, V_\lambda \) and \(x_1 + x_2 = 1 \) is contained in the basin of attraction of \(p \).

Proof. To prove the result, we choose \(A \in \mathbb{R}^{3 \times 3} \) such that for any \((x_2, x_3) \in H_\lambda \) and \((x_2, x_3) \in V_\lambda \) follows that \(X(x_2, x_3) \) points towards the region bounded by \(H_\lambda, V_\lambda \) and \(x_1 + x_2 = 1 \). For that, it is enough to show that

\[
\frac{X_3(H_\lambda(x_2))}{X_2(H_\lambda(x_2))} = \frac{\lambda(1-x_2)F_3(H(x_2))}{|x_2F_2(H(x_2))|} > \frac{1}{4}, \quad F_3(H(x_2)) > 0 \quad \text{for} \quad \frac{\lambda}{1-\lambda} < x_2 < 1,
\]

and

\[
\frac{X_2(V_\lambda(x_3))}{X_3(V_\lambda(x_3))} = \frac{\lambda(1-x_3)F_2(V(x_3))}{|x_3F_3(V(x_3))|} > \frac{1}{4}, \quad F_2(V(x_3)) > 0 \quad \text{for} \quad \frac{\lambda}{1-\lambda} < x_3 < 1,
\]

where \(\left(\frac{\lambda}{1-\lambda}, \frac{\lambda}{1-\lambda}\right) \) is the intersection point of \(H_\lambda \) and \(V_\lambda \). Recall the definition of \(N \in \mathbb{R}^2, M \in \mathbb{R}^{2 \times 2} \) that induce the replicator dynamics in affine coordinates. Given \(\lambda \) we assume that

(i) \(N_2 = N_3 \),

(ii) \(\frac{M_{32}}{N_3} = \frac{M_{33}}{N_3} = \frac{1}{\lambda} \),

(iii) \(\frac{M_{22}}{N_2} = \frac{M_{33}}{N_2} = 2 \).

To get that, and recalling the relation between the coordinates of \(M \) and \(A \) (recall identities [13]), we choose the matrix \(A \) such that

(i) \(\frac{a_{31} - a_{11}}{N_4} = 3, \frac{a_{22} - a_{12}}{N_2} = 3 \);

(ii) \(a_{32} > a_{22}, a_{23} > a_{33} \) and \(\frac{a_{32} - a_{22}}{N_2} = \frac{a_{23} - a_{33}}{N_2} = \frac{1}{\lambda} - 2 \).
With this assumption, now we prove that inequality (21) is satisfied: Let us denote \(x := x_2 \) and we first calculate \(F_3(x, \lambda(x-1)) \) and \(F_2(x, \lambda(x-1)) \),

\[
F_3(x, \lambda(1-x)) = N_3 + M_{32} x + M_{33} \lambda (1-x) - [x(N_2 + M_{22} x + M_{23} \lambda (1-x)) + \lambda (1-x)(N_3 + M_{32} x + M_{33} \lambda (1-x))]
\]

so,

\[
\frac{F_3(x, \lambda(1-x))}{N_3} = 1 + \frac{M_{32}}{N_3} x + \frac{M_{33}}{N_3} \lambda (1-x) -
[x(\frac{N_2}{N_3} + \frac{M_{22}}{N_3} x + \frac{M_{23}}{N_3} \lambda(1-x)) + \lambda(1-x)(1 + \frac{M_{32}}{N_3} x + \frac{M_{33}}{N_3} \lambda(1-x))]
= 1 + \frac{1}{\lambda} x + 2 \lambda (1-x) -
[x(1 + 2x + \frac{1}{\lambda} \lambda(1-x)) + \lambda(1-x)(1 + \frac{1}{\lambda} x + 2 \lambda (1-x))]
= 1 + 2 \lambda + \left(\frac{1}{\lambda} - 2 \lambda\right) x - [2 \lambda^2 + \lambda + (3 - \lambda - 4 \lambda^2) x + 2 \lambda^2 x^2]
= 1 + \lambda - 2 \lambda^2 + \left(\frac{1}{\lambda} - \lambda + 4 \lambda^2 - 3\right) x - 2 \lambda^2 x^2
\]

\[
F_2(x, \lambda(1-x)) = N_2 + M_{22} x + M_{23} \lambda (1-x) - [x(N_2 + M_{22} x + M_{23} \lambda (1-x)) + \lambda (1-x)(N_3 + M_{32} x + M_{33} \lambda (1-x))]
\]

so,

\[
\frac{F_2(x, \lambda(1-x))}{N_2} = 1 + \frac{M_{22}}{N_2} x + \frac{M_{23}}{N_2} \lambda (1-x) -
[x(1 + \frac{M_{22}}{N_2} x + \frac{M_{23}}{N_2} \lambda (1-x)) + \lambda (1-x)(1 + \frac{M_{32}}{N_2} x + \frac{M_{33}}{N_2} \lambda (1-x))]
= 1 + 2 x + \frac{1}{\lambda} \lambda (1-x) -
[x(1 + 2x + \frac{1}{\lambda} \lambda (1-x)) + \lambda (1-x)(1 + \frac{1}{\lambda} x + 2 \lambda (1-x))]
= 2 + x - [x + 2 x^2 + (1-x)[1 + \lambda + 2 \lambda^2 + (1 - 2 \lambda^2)x]]
= (1-x)[2(1+x) - [1 + \lambda + 2 \lambda^2 + (1 - 2 \lambda^2)x]]
= (1-x)[1 - \lambda - 2 \lambda^2 + (1 + 2 \lambda^2)x].
\]

Therefore, on one hand observe that \(1 + \lambda - 2 \lambda^2 + (\frac{1}{\lambda} - \lambda + 4 \lambda^2 - 3)x - 2 \lambda^2 x^2 \) is a quadratic polynomial with negative leading term that is positive at 1 and \(\frac{\lambda}{1-x} \) (provided that \(|\lambda| \) is small) so is positive for \(\frac{\lambda}{1-x} \times 1 < x < 1 \), on the other hand \((1-x)[1 - \lambda - 2 \lambda^2 + (1 + 2 \lambda^2)x]\) is positive in the same range, so

\[
\frac{\lambda(x-1) F_3(x, \lambda(x-1))}{|xF_2(x, \lambda(x-1))|} = \frac{\lambda(1 + \lambda - 2 \lambda^2 + (\frac{1}{\lambda} - \lambda + 4 \lambda^2 - 3)x - 2 \lambda^2 x^2]}{x[1 - \lambda - 2 \lambda^2 + (1 + 2 \lambda^2)x]},
\]

since the minimum of the numerator is attained at \(\frac{\lambda}{1-x} \) getting a value close to 1 and the maximum of the denominator is attained at 1 getting a value close to 2, follows that in the range \(\frac{\lambda}{1-x} < x < 1 \) holds

\[
\frac{\lambda(x-1) F_3(x, \lambda(x-1))}{|xF_2(x, \lambda(x-1))|} \geq \frac{1}{3},
\]

18
and therefore the inequality (21) is proved. The proof of inequality (22) is similar and left for the reader.

\[\Box\]

Remark 6. Observe that under the hypothesis of theorem 2 the point \(\left(\frac{\lambda}{\lambda + 1}, \frac{\lambda}{\lambda + 1}\right)\) is not in the basin of attraction of \(e_1\).

Remark 7. It is natural to wonder if the conditions of theorem 1 are necessary? More precisely, theorem 1 provides a lower bound in the size of the basin of attraction related to information on the payoff matrix. We could wonder if the lower bound also works as an upper bound: is it true that if \(\frac{1}{M_0}\) is small then the basin of attraction is small? Previous shows that under certain conditions, this is the case.

4 Uniformly large basin of attraction

In the rest of the paper we study the replicator dynamics when the matrix of payoffs is given by a finite set of strategies \(S = \{s_1, \ldots, s_n\}\) from an infinitely repeated prisoners’ dilemma game with discount factor \(\delta\) and error probability \(1 - p\). It is well known, that any strict subgame perfect is an attractor in any population containing it. In this case, with \(B_{\text{loc}}(s, \delta, p, S)\) we denote the local basin of attraction of \(s\) in any set of strategies \(S\) and identifying \(s\) with \(s_1\). Related to that we give the following definition:

Definition 3. We say that a strategy \(s\) has a uniformly large basin if there is \(K_0\) verifying that for any finite set of strategies \(S\) containing \(s\) and any \(\delta\) and \(p\) close to one, it holds that

\[\{(x_1, \ldots, x_n) : x_2 + \cdots + x_n \leq K_0\} \subset B_{\text{loc}}(s, p, \delta, S)\]

where \(n = \text{cardinal}(S)\).

One particular case of previous definition is when \(S\) has only one strategy different than \(s\). In this case, and based on remark 4 we can obtain the following remark:
Lemma 11. If s has a uniformly large basin then there exists C_0 such that for any strategy s^* and for any p, δ large (independently of s^*) follows that

$$\frac{U_{\delta,p}(s^*, s^*) - U_{\delta,p}(s, s^*)}{U_{\delta,p}(s, s) - U_{\delta,p}(s^*, s)} < C_0.$$

In particular,

$$\lim_{\delta \to 1} \lim_{p \to 1} \frac{U_{\delta,p}(s^*, s^*) - U_{\delta,p}(s, s^*)}{U_{\delta,p}(s, s) - U_{\delta,p}(s^*, s)} < C_0.$$

The goal of this paper is to understand which characteristics of strategies lead them to have uniformly large basin of attraction. We show first that a strategy that is commonly used in the literature, grim, does not have a uniformly large basin of attraction. Then, we show that is due to the fact that grim never forgives a defection. As a positive results we show that another well known strategy, win-stay-lose-shift, does have a uniformly large basin of attraction under certain conditions.

5 The importance of forgiveness

In this section we show the importance of forgiveness for the evolutionary robustness of strategies. First we prove that neither the strategy Grim nor Always Defect has a uniformly large basin of attraction. Recall that Grim is the strategy that cooperates in the first period and then cooperates if there has been no defection before. We provide the proof for Grim and we observe that this proof is obviously adapted for Always Defect. To prove that Grim (g from now on) does not have a large uniformly basin of attraction, we are going to find a strategy s such that when the population with g and s is considered, the basin of attraction of g is arbitrary small provided that δ and p are close to 1. In fact, we use the equation (20) to determine the boundary point $p_{g,s} = \frac{1}{1 + \frac{U_{\delta,p}(g,g) - U_{\delta,p}(s,g)}{U_{\delta,p}(s,s) - U_{\delta,p}(s^*, s)}}$ of the basin of attraction of g (the smaller $p_{g,s}$ is, the smaller the basin of attraction of g is). Relatively, Myerson [M] proved that whenever the strategy Always Defect is compared with Grim (without tremble), its basin of attraction collapses as the discount factor converges to one.

Theorem 3. Grim does not have a uniformly large basin of attraction. More precisely, there exists a strategy s such that for any population $S = \{s, g\}$ and $\epsilon > 0$ small, there exist p_0, δ_0 such that for any $p > p_0, \delta > \delta_0$, the size of the basin of attraction of grim is smaller than ϵ.

Proof. We consider the strategy s that behaves like g but forgives defections in the first period ($t = 0$). We need to show that for any $\epsilon > 0$ small, there exist p_0, δ_0 such that for any $p > p_0, \delta > \delta_0$, follows that

$$p_{g,g}(h_t) = p_{g,s}(h_t) = p_{g,g}(h_t) = p_{s,s}(h_t).$$

Therefore,

$$U_{\delta,p}(s, s/(C, C)) = U_{\delta,p}(s, g/(C, C)) = U_{\delta,p}(g, g/(C, C)) = U_{\delta,p}(g, s/(C, C)),$$

$$U_{\delta,p}(s, s/(D, C)) = U_{\delta,p}(s, g/(D, C)) = U_{\delta,p}(g, g/(D, C)) = U_{\delta,p}(g, s/(D, C)).$$
Therefore

\[U_{\delta,p}(s, s/(C, D)) = U_{\delta,p}(g, g/(C, D)) = U_{\delta,p}(g, s/(C, D)) = U_{\delta,p}(g, s/(C, D)), \]

so

\[U_{\delta,p}(s, s) - U_{\delta,p}(g, s) = U_{\delta,p}(s, s/(D, D))p_{s,s}(D, D) - U_{\delta,p}(g, s/(D, D))p_{g,s}(D, D), \]

\[U_{\delta,p}(g, g) - U_{\delta,p}(s, g) = U_{\delta,p}(g, g/(D, D))p_{g,g}(D, D) - U_{\delta,p}(s, g/(D, D))p_{s,g}(D, D). \]

Recalling that \(s \) after \((D, D)\) behaves as \(g \) and \(g \) after \((D, D)\) behaves as the strategy always defect (denoted as \(a \)) and \(p_{s,s}(D, D) = p_{s,g}(D, D) = p_{g,s}(D, D) = p_{g,g}(D, D) = (1 - p)^2 \), then

\[
U_{\delta,p}(s, s) - U_{\delta,p}(g, g) = (1 - p)^2[U_{\delta,p}(g, g) - U_{\delta,p}(a, g)],
\]

\[
U_{\delta,p}(g, g) - U_{\delta,p}(s, g) = (1 - p)^2[U_{\delta,p}(a, a) - U_{\delta,p}(g, a)].
\]

Therefore, it remains to calculate the payoffs involving \(a \) and \(g \). Also observe that for any path \(h \) if we take \(k \) as the first non-negative integer such that \(h_k \neq (C, C) \) then for any \(t > k \) \(p_{s_1,s_2}(h_t) = p_{s_1,s_2}(h_k)p_{a,s}(\sigma(h)_{t-k}) \) where \(s_1 \) and \(s_2 \) is either \(g \) or \(a \) and \(\sigma(h) \) is a history path that verifies \(\sigma_k(h)_j = h_{j+k} \).

Therefore

\[
U_{\delta,p}(g, g/h_k) = U_{\delta,p/h_k}(a, g) = U_{\delta,p}(g, a/h_k) = U_{\delta,p/h_k}(a, a).
\]

So, noting with \((C, C)^t\) a path of \(t \) consecutive simultaneous cooperation and

\[
L = \sum_{t \geq 0, h_t} \delta^t p_{a,a}(h_t) u(h_t) = \frac{1}{1 - \delta}[(1 - p)^2 R + (S + T)(1 - p)p + p^2 P],
\]

follows that

\[
U_{\delta,p}(g, g) - U_{\delta,p}(a, g) =
(1 - \delta)\{\sum_{t \geq 0} \delta^t u(C, C)[p_{g,g}((C, C)^t) - p_{a,g}((C, C)^t)] +
\]

\[
\sum_{t \geq 0} \delta^t[u(C, D) + \delta L][p_{g,g}((C, C)^t(C, D) - p_{a,g}((C, C)^t(C, D))] +
\]

\[
\sum_{t \geq 0} \delta^t[u(D, C) + \delta L][p_{g,g}((C, C)^t(D, C) - p_{a,g}((C, C)^t(D, C))] +
\]

\[
\sum_{t \geq 0} \delta^t[u(D, D) + \delta L][p_{g,g}((C, C)^t(D, D) - p_{a,g}((C, C)^t(D, D))] =
\]

\[
(1 - \delta)\{\sum_{t \geq 1} \delta^{t-1} R[p^{2t} - p^t(1 - p)^t] + \sum_{t \geq 0} \delta^t[S + \delta L][p^{2t}p(1 - p) - p^t(1 - p)^t(1 - p)^2] +
\]

\[
\sum_{t \geq 0} \delta^t[T + \delta L][p^{2t}(1 - p)p - p^t(1 - p)^t p^2] + \sum_{t \geq 0} \delta^t[P + \delta L][p^{2t}(1 - p)^2 - p^t(1 - p)^t(1 - p)p].
\]

Therefore

\[
U_{\delta,p}(g, g) - U_{\delta,p}(a, g) = (1 - \delta)GA(\delta, p)
\]

where

\[
GA(\delta, p) = R[p^2 \left(\frac{1}{1 - p^2 \delta} - \frac{1}{1 - p(1 - p)\delta} \right)] + [S + \delta L]\left[p^{2t}p(1 - p) - p^t(1 - p)^t(1 - p)^2\right] +
\]

\[
[T + \delta L][p^{2t}(1 - p)p - p^t(1 - p)^t p^2] + [P + \delta L][p^{2t}(1 - p)^2 - p^t(1 - p)^t(1 - p)p].
\]
and we write

\[GA(\delta, p) = GA^0(\delta, p) + GA^1(\delta, p) \]

where

\[
GA^0(\delta, p) = R[\frac{p^2}{1 - p^2 \delta} - \frac{p(1 - p)}{1 - p(1 - p) \delta}] + S[\frac{p(1 - p)}{1 - p^2 \delta} - \frac{(1 - p)^2}{1 - p(1 - p) \delta}] + \\
T[\frac{(1 - p)p}{1 - p^2 \delta} - \frac{p^2}{1 - p(1 - p) \delta}] + P[\frac{p(1 - p)^2}{1 - p^2 \delta} - \frac{(1 - p)p}{1 - p(1 - p) \delta}] = \\
[Rp^2 + (S + T)p(1 - p) + P(1 - p)^2][\frac{1}{1 - p^2 \delta} - \frac{1}{1 - p(1 - p) \delta}],
\]

\[
GA^1(\delta, p) = \delta L[\frac{p(1 - p)}{1 - p^2 \delta} - \frac{(1 - p)^2}{1 - p(1 - p) \delta}] + \\
\delta L[\frac{(1 - p)p}{1 - p^2 \delta} - \frac{p^2}{1 - p(1 - p) \delta}] + \delta L[\frac{(1 - p)^2}{1 - p^2 \delta} - \frac{(1 - p)p}{1 - p(1 - p) \delta}] = \\
\delta L[\frac{1 - p^2}{1 - p(1 - p) \delta}],
\]

Observe that when \(p, \delta \to 1 \) then

\[Rp^2 + (S + T)p(1 - p) + P(1 - p)^2 \to R, \quad \frac{1}{1 - p(1 - p) \delta} \to 1, \quad \frac{1 - (1 - p)p}{1 - p(1 - p) \delta} \to 1 \]

and recalling that \((1 - \delta)L = \hat{P} = (1 - p)^2R + (S + T)(1 - p)p + p^2P\) then for \(\delta, p \) large follows that

\[
(1 - \delta)GA^0(\delta, p) \geq \frac{R}{2} \frac{1 - \delta}{1 - p^2 \delta}, \quad (23)
\]

\[
(1 - \delta)GA^1(\delta, p) \geq \frac{\hat{P}}{2} \frac{1 - p^2}{1 - p^2 \delta}, \quad (24)
\]

In the same way

\[
U_{\delta, p}(a, a) - U_{\delta, p}(g, a) = \\
(1 - \delta)\left\{ \sum_{t > 0} \delta^t u(C, C)[p_{a, a}((C, C)^t) - p_{g, a}((C, C)^t)] + \right. \\
\left. \sum_{t > 0} \delta^t[u(C, D) + \delta L][p_{a, a}((C, C)^t(C, D)) - p_{g, a}((C, C)^t(C, D))] + \right. \\
\left. \sum_{t > 0} \delta^t[u(D, C) + \delta L][p_{a, a}((C, C)^t(D, C)) - p_{g, a}((C, C)^t(D, C))] + \right. \\
\left. \sum_{t > 0} \delta^t[u(D, D) + \delta L][p_{a, a}((C, C)^t(D, D)) - p_{g, a}((C, C)^t(D, D))] \right\} = \\
(1 - \delta)\left\{ \sum_{t \geq 1} \delta^{t-1} R[(1 - p)^{2t} - p^t(1 - p)^t] + \sum_{t > 0} \delta^t[S + \delta L][(1 - p)^{2t}p(1 - p) - p^t(1 - p)^tp^2] + \right. \\
\left. \sum_{t \geq 0} \delta^t[T + \delta L][(1 - p)^{2t}(1 - p)p - p^t(1 - p)^t(1 - p)^2] + \right. \\
\left. \sum_{t > 0} \delta^t[P + \delta L][(1 - p)^{2t}p^2 - p^t(1 - p)^t(1 - p)p] \right\}.
\]
Recall now that the size of the basin of attraction of a

Therefore

\[U_{\delta,p}(a,a) - U_{\delta,p}(g,a) = (1 - \delta)AG(\delta,p) \]

where

\[
AG(\delta,p) = R\bigg[\frac{(1-p)^2}{1-(1-p)^2\delta} - \frac{p(1-p)}{1-p(1-p)\delta}\bigg] + [S + \delta L][\frac{p(1-p)}{1-(1-p)^2\delta} - \frac{p^2}{1-p(1-p)\delta}] +
\]

\[
[T + \delta L]\bigg[\frac{(1-p)p}{1-(1-p)^2\delta} - \frac{(1-p)^2}{1-p(1-p)\delta}\bigg] + [P + \delta L][\frac{p^2}{1-(1-p)^2\delta} - \frac{(1-p)p}{1-p(1-p)\delta}] \]

and we write

\[AG(\delta,p) = AG^0(\delta,p) + AG^1(\delta,p) \]

where

\[
AG^0(\delta,p) = R\bigg[\frac{(1-p)^2}{1-(1-p)^2\delta} - \frac{p(1-p)}{1-p(1-p)\delta}\bigg] + S\bigg[\frac{p(1-p)}{1-(1-p)^2\delta} - \frac{p^2}{1-p(1-p)\delta}\bigg] +
\]

\[
T\bigg[\frac{(1-p)p}{1-(1-p)^2\delta} - \frac{(1-p)^2}{1-p(1-p)\delta}\bigg] + P\bigg[\frac{p^2}{1-(1-p)^2\delta} - \frac{(1-p)p}{1-p(1-p)\delta}\bigg] \]

\[
AG^1(\delta,p) = \delta L\bigg[\frac{p(1-p)}{1-(1-p)^2\delta} - \frac{p^2}{1-p(1-p)\delta}\bigg] +
\]

\[
\delta L\bigg[\frac{(1-p)p}{1-(1-p)^2\delta} - \frac{(1-p)^2}{1-p(1-p)\delta}\bigg] + \delta L\bigg[\frac{p^2}{1-(1-p)^2\delta} - \frac{(1-p)p}{1-p(1-p)\delta}\bigg] =
\]

\[
\delta L\bigg[\frac{2p(1-p)}{1-(1-p)^2\delta} - \frac{1-p}{1-p(1-p)\delta}\bigg] + \delta L\bigg[\frac{p^2}{1-(1-p)^2\delta} - \frac{(1-p)p}{1-p(1-p)\delta}\bigg] =
\]

\[
\delta L\bigg[\frac{2p(1-p)}{1-(1-p)^2\delta} - \frac{1-p}{1-p(1-p)\delta}\bigg] + \delta L\bigg[\frac{p^2}{1-(1-p)^2\delta} - \frac{(1-p)p}{1-p(1-p)\delta}\bigg] =
\]

\[
\delta L(1-p)\bigg[\frac{2p}{1-(1-p)^2\delta} - \frac{1-p}{1-p(1-p)\delta} + \frac{p^2\delta}{(1-(1-p)^2\delta)(1-p(1-p)\delta)}\bigg] \]

Observe that when \(p, \delta \to 1 \) then

\[AG^0(\delta,p) \to AG^0(1,1) = P - S, \]

\[
\frac{2p}{1-(1-p)^2\delta} - \frac{1-p}{1-p(1-p)\delta} + \frac{p^2\delta}{(1-(1-p)^2\delta)(1-p(1-p)\delta)} \to 3
\]

and recalling that \((1-\delta)L = \hat{P} = (1-p)^2R + (S + T)(1-p)p + p^2P\) then for \(\delta, p\) large follows that

\[(1-\delta)AG^0(\delta,p) \leq 2(1-\delta)(P - S) \tag{25} \]

\[(1-\delta)AG^1(\delta,p) \leq 4(1-p)\hat{P}. \tag{26} \]

Recall now that the size of the basin of attraction of a is given by

\[E(\delta,p) := \frac{1}{1 + \frac{\delta L(1-p)^2\delta}{(1-\delta)AG(\delta,p)}}. \]
Observe that for any $\epsilon > 0$ for p, δ large then from inequalities (23) and (25)

$$(1 - \delta)AG^0(\delta, p) \leq \epsilon(1 - \delta)GA^0(\delta, p)$$

and from inequalities (24) and (26)

$$(1 - \delta)AG^1(\delta, p) \leq \epsilon(1 - \delta)GA^1(\delta, p),$$

therefore, for p, δ large

$$E(\delta, p) \leq \frac{1}{1 + \frac{\epsilon}{\epsilon}} = \frac{\epsilon}{1 + \epsilon}$$

and so the theorem is concluded. \qed

Theorem 3 shows that the well known strategy grim does not have a uniformly large basin of attraction given that after a defection it behaves like always defect, which does not a uniformly large basin of attraction either. In an world with trembles unforgivingness is evolutionary costly. We formalize next the idea of unforgivingness and and provide a general results regarding the basin of attraction of unforgiving strategies.

Definition 4. We say that a strategy s is unforgiving if there exists a history h_t that $s(h_t+\tau) = D$ for all $h_{t+\tau}$ with $\tau = 0, 1, 2, \ldots$.

Theorem 4. Unforgiving strategies do not have a uniformly large basin of attraction.

The proof is similar to the proof of theorem 3 with the difference that the first point of divergence may not be $t = 1$.

6 Efficiency and size of basin of attraction

In the present section we study the relationship between efficiency of a strategy and the size of its basin of attraction. Roughly speaking, full efficiency means that strategies cooperate with itself.

Given a history h_t, and a pair of strategies s, s^* we define

$$U(s, s/h_t) = \lim_{\delta \to 1} \lim_{p \to 1} U_{\delta, p}(s, s/h_t).$$

Definition 5. We say that a strategy s is efficient if for any finite path h_t follows that

$$U(s, s/h_t) = R.$$

In next subsection we prove that strategies having a uniformly large basin of attraction are efficient provided that the strategies are symmetric. In subsection 6.2 we discuss the case of non-symmetric strategy provided some form of weak efficiency.

6.1 The symmetric case

Definition 6. We say that a strategy s is symmetric if for any finite path h_t it follows that

$$s(h_t) = s(\hat{h}_t).$$

Theorem 5. If s has a uniform large basin of attraction and is symmetric, then it is efficient.

The previous result established efficiency if the probability of mistake is much smaller than $1 - \delta$. An easy corollary is the following:
Corollary 1. If \(s \) has uniform large basin of attraction and is symmetric, then for any \(R_0 < R \) there exists \(\delta_0 := \delta_0(s) \) such that for any \(\delta > \delta_0 \) there exists \(p_0(\delta) \) verifying that if \(\delta > \delta_0, p > p_0(\delta) \) then

\[
U_{\delta,p}(s, s/h_t) > R_0
\]

for any history \(h_t \).

Here it is important to compare the statement of theorem 3 with theorem 5 and corollary 1. First, observe that the conclusion of theorem 3 is obtained for any \(\delta > \delta_0 \) and any \(p > p_0 \); instead, in corollary 1 is for \(d > \delta_0 \) but \(p > p(\delta) \) with \(p(\delta) \) strongly depending of \(\delta \). Second, a weaker version of theorem 3 can be concluded from corollary 1.

Lemma 12. If \(s \) has a uniformly large basin of attraction, then there exists \(C_0 \) such that for any \(s^\ast \) and \(h_t \) follows that

\[
\lim_{\delta \to 1} \lim_{p \to 1} \frac{U_{\delta,p}(s^\ast, s^\ast/h_t) - U_{\delta,p}(s, s^\ast/h_t) + U_{\delta,p}(s^\ast, s^\ast/\hat{h}_t) - U_{\delta,p}(s, s^\ast/\hat{h}_t)}{U_{\delta,p}(s, s/h_t) - U_{\delta,p}(s, s/\hat{h}_t) + U_{\delta,p}(s, s/\hat{h}_t) - U_{\delta,p}(s^\ast, s/\hat{h}_t)} < C_0.
\]

Proof. It follows immediately from lemma 11 considering a strategy \(s^\ast \) such that the first deviation from \(s \) occurs at \(h_t \) (and obviously also at \(\hat{h}_t \)).

Proof of theorem 5. Let us assume that there exists a path \(h_t \) and \(\lambda_0 < 1 \) such that

\[
U(s, s/h_t) = \lambda_0 R
\]

and \(s \) is a sub game perfect. We start assuming that \(h_t \) is not symmetric. Then we show how to deal with the symmetric case using the asymmetric one.

From the fact that \(s \) is symmetric, then follows that

\[
U(s, s/h_t) = U(s, s/\hat{h}_t)
\]

and therefore

\[
U(s, s/h_t) + U(s, s/\hat{h}_t) = 2\lambda_0 R.
\]

Moreover, since \(U(s, s/h_t) < R \), we can assume that \(s(h_t) = D \). We are going to build a strategy \(s^\ast \) such that

(i) \(U(s^\ast, s^\ast/h_t) = U(s^\ast, s^\ast/\hat{h}_t) = R \),

(ii) \(s^\ast \) acts like \(s \) after meeting \(s \) at \(h_t \) and \(\hat{h}_t \).

To build that strategy \(s^\ast \), first we take \(s^\ast \) such that \(s^\ast(h_t) = s^\ast(\hat{h}_t) = C \) and then we consider all the paths that follows after \(h_t, \hat{h}_t \) for the pairs \(s, s^\ast; s^\ast, s; s, s^\ast; s^\ast, s^\ast \):

(i) \(h_t(D, D), \hat{h}_t(D, D) \) for \(s, s \)

(ii) \(h_t(C, D), \hat{h}_t(C, D) \) for \(s^\ast, s \)

(iii) \(h_t(D, C), \hat{h}_t(D, C) \) for \(s, s^\ast \)

(iv) \(h_t(C, C), \hat{h}_t(C, C) \) for \(s^\ast, s^\ast \).
Observe that the paths involving h_t are all different and the same holds for the paths involving \hat{h}_t.

Now we request that s^* after $h_t(C, C)$ and $\hat{h}_t(C, C)$ plays C for ever, so

$$h_{s^*, s^* / h_t} = (C, C) \ldots (C, C) \ldots, \quad h_{s^*, s^* / \hat{h}_t} = (C, C) \ldots (C, C) \ldots,$$

and so

$$U(s^*, s^* / h_t) = U(s^*, s^* / \hat{h}_t) = R.$$

We also request that

$$s^*(h_t(C, D)) = s(h_t(C, D)), \quad s^*(\hat{h}_t(C, D)) = s(\hat{h}_t(C, D)),$$

and observe that both requirement can be satisfied simultaneously and inductively we get that

$$h_{s^*, s / h_t(C, D)} = h_{s, s / h_t(C, D)}; \quad h_{s^*, s / \hat{h}_t(C, D)} = h_{s, s / \hat{h}_t(C, D)}.$$

From the fact that s is symmetric, it follows that each entry of $h_{s^*, s / h_t(C, D)} = h_{s, s / h_t(C, D)}$ and $h_{s^*, s / \hat{h}_t(C, D)} = h_{s, s / \hat{h}_t(C, D)}$ is (C, C) or (D, D) and recalling equality 7 follows that

$$U(s^*, s / h) + U(s^*, s / \hat{h}) = U(s, s^* / h) + U(s, s^* / \hat{h}).$$

Since, s is a sub game perfect (otherwise it would not have a uniform large basin of attraction) then $U(s^*, s / h_t) + U(s^*, s / \hat{h}_t) < 2\lambda_0 R$ and therefore $U(s, s^* / h_t) + U(s, s^* / \hat{h}_t) < 2\lambda_0 R$; by remark (12) follows that if we denote $U(s^*, s / h_t) + U(s^*, s / \hat{h}_t) = 2\lambda_1 R$, then

$$\frac{1 - \lambda_1}{\lambda_0 - \lambda_1} < C_0,$$

and taking a positive constant $C_1 < 1 - \lambda_0 < 1 - \lambda_1$ it follows that λ_1 satisfies inequality

$$\frac{C_1}{\lambda_0 - \lambda_1} < C_0. \quad (28)$$

Therefore, it follows that there exists $\gamma > 0$ such that

$$\lambda_1 < \lambda_0 - \gamma.$$

Now, we consider the path $h_t(C, D)$ and we denote it as h_{t_2} and as before we construct a new strategy $s^*_{t_2}$ that satisfies the same type of properties as the one satisfied by s^* respect to s but on the path h_{t_2} instead on the path h_t. Inductively, we construct a sequences of paths h_{t_i}, strategies $s^*_{t_i}$ and constants λ_{i} such that

$$U(s^*_{t_i}, s / h_{t_i}) = \lambda_i R$$

and they satisfy the following equation equivalent to (27)

$$\frac{1 - \lambda_{i+1}}{\lambda_i - \lambda_{i+1}} < C_0,$$

and since $\lambda_{i+1} < \lambda_i$ then also satisfy an equation equivalent to (28)

$$\frac{C_1}{\lambda_i - \lambda_{i+1}} < C_0. \quad (31)$$
and therefore
\[\lambda_{i+1} < \lambda_i - i\gamma \]
but this implies that \(\lambda \to -\infty \) and so \(U(s^*, s/h_t) \to -\infty \), a contradiction because utilities along equilibrium are bounded by \(P \).

To finish, we have to deal with the case that \(h_t \) is symmetric and \(U(s, s/h_t) < R \). Recall that we can assume that \(s(h_t) = s(h_t) = D \). Now, let us consider the sequel path \(h_t(C, D) \). We claim that if \(U(s, s/h_t) < R \) then
\[U(s, s/h_t(C, D)) < R. \]
In fact, we can consider the strategy \(s^* \) such that only differs on \(h_t \) and after that plays the same as \(s \) plays. Since \(s \) is a sub game perfect (otherwise it would not have a uniform large basin of attraction), it follows that \(U_{\delta,p}(s, s/h_t) \geq U_{\delta,p}(s^*, s/h_t) \) therefore, \(U(s, s/h_t) = \lim_{\delta \to 1} \lim_{p \to 1} U_{\delta,p}(s, s/h_t) \geq \lim_{\delta \to 1} \lim_{p \to 1} U_{\delta,p}(s^*, s/h_t) \), but since
\[\lim_{\delta \to 1} \lim_{p \to 1} U_{\delta,p}(s^*, s/h_t) = \lim_{\delta \to 1} \lim_{p \to 1} U_{\delta,p}(s, s/h_t(C, D)) = U(s, s/h_t(C, D)) \]
the claim follows.

Observe that the new path \(h_t(C, D) \) now is not symmetric and since \(U(s, s/h_t(C, D)) < R \), to conclude the proof of theorem \(\Box \) we argue as above.

It remains to be shown that there exists strategies with uniformly large basins of attraction. To do that we must first develop some simple way of calculating payoffs under the presence of trembles. This calculations will help us prove that there exist strategies with uniformly large basins of attractions.

6.2 Non-symmetric strategies

We are going to provide a series of results about weak forms of efficiency for strategies having a uniform large basin of attraction without assuming that the strategies are symmetric. The first ones actually only compare pair of strategies; in other words, it is only used that the strategies has a uniform large basin of attraction in populations with two strategies (see propositions \(\Box \) and \(\Box \) and theorem \(\Box \)); moreover, theorem \(\Box \) gives a lower estimate of the size of the basin related to a quantity that measure the non-symmetry of a strategy.

In theorems \(\Box \) and \(\Box \) we show that if there is a history such that a strategy is not fully efficient for any subsequent path, then it can not have a uniform large basin of attraction. The proof of both theorems are based on theorem \(\Box \) where we analyzed the dynamics of a population of three strategies.

Proposition 1. If \(s \) has a uniformly large basin of attraction, then there exists \(\epsilon > 0 \) such that for any \(h_t \) follows that
\[U(s, s/h_t) > P + \epsilon. \]

Proof. Choosing \(s^* \) such that \(s^*(h_t) \neq s(h_t) \) and for any \(h_k \) containing \(h_t(s^*(h_t), s(h_t)) \) then \(s(h_k) = D \) follows that \(U(s^*, s) \geq P \) and \(U(s, s^*) \leq P \). Since also we can chose \(s^* \) such that \(h_{s^*, s^*}(s(h_t), s(h_t)) \) is a path of full cooperation, then by lemma \(\Box \) the conclusion of the proposition follows. \(\Box \)

Observe that previous result is stronger than theorem \(\Box \) (provided that \(p \) is much closer to one than \(\delta \)) since here it is shown that strategies with uniformly large basin of attraction have a payoff uniformly away from zero. Next result goes in the same direction but relating payoff with the size
of the basin of attraction; actually, a lower bound in the basin of attraction provides a lower bound on the payoff that a strategies get when plays with itself.

Proposition 2. If \(s \) has a uniformly large basin of attraction and for any \(p \) and \(\delta \) large follows that there exists \(k \) verifying \(B_k(s) \subset B^*(s) \), then

\[
U(s, s/h_t) > P + (R - P)k.
\]

Proof. The proof is similar to the proof of proposition \[1\] and using remark \[4\] that estimate the size of the basin of attraction when only two strategies are involved.

Next definition is related to the asymmetry of a strategy. In few words, it measures how frequent is \(s(h_t) \neq s(h_t) \) along a path.

Definition 7. Given a strategy \(s \), it is said that \(s \) is \(c \)-asymmetric if for any \(h_t \) holds

\[
\sum_{j:w'(s,s/h_t)} \delta^j + \sum_{j':w'(s,s/h_t)=S} \delta^j \leq c
\]

and there are paths such that \(\sum_{j:w'(s,s/h_t)} \delta^j + \sum_{j':w'(s,s/h_t)=S} \delta^j \) is arbitrary close to \(c \). In particular, if \(s \) is 0-asymmetric, then it follows that it is symmetric.

The next two lemmas relates the payoff of \(s \) with \(s \) starting at \(h_t \) and starting at \(h_t \).

Lemma 13. Given a strategy \(s \) and a history \(h_t \) it follows that

\[
U_\delta(s, s/h_t) = U_\delta(s, s/h_t) + (x - y)(T - S),
\]

where \(x = \sum_{j:w'(s,s/h_t)} S \delta^j \) and \(y = \sum_{j':w'(s,s/h_t)=T} \delta^j \).

Proof. If \(U_\delta(s, s/h_t) = aR + xS + yT + bP \) where \(a = \sum_{j:w'(s,s/h_t)} R \delta^j \) and \(b = \sum_{j':w'(s,s/h_t)=T} \delta^j \) then \(U_\delta(s, s/h_t) = aR + xT + yS + bP = U_\delta(s, s/h_t) + xT + yS - xS - yT = U_\delta(s, s/h_t) + (x - y)(T - S) \).

Lemma 14. Given a strategy \(s \) and a path \(h_t \) it follows that if \(c = x + y \) then \(U_\delta(s, s/h_t) \leq U_\delta(s, s/h_t) + c(T - S) \) if \(c < \frac{R - U_\delta(s, s/h_t)}{R - S} \) and \(U_\delta(s, s/h_t) \leq -U_\delta(s, s/h_t) + 2R + c(T + S - 2R) \) otherwise.

Proof. From lemma \[13\] follow that \(U_\delta(s, s/h_t) = U_\delta(s, s/h_t) + (2x - c)(T - S) \). To conclude, observe that under the restriction \(x + y = c, a + c + b = 1, a, b, x, y \) are in \([0, 1]\) and \(U_\delta(s, s/h_t) = aR + xS + yT + bP \), the maximum of \(2x - c \) is equal to \(c \) if \(c < \frac{R - U_\delta(s, s/h_t)}{R - S} \) and is equal to \(2\frac{R - U_\delta(s, s/h_t)}{T - S} + c\frac{T + S - 2R}{T - S} \) otherwise.

Theorem 6. If \(s \) has a uniformly large basin of attraction in populations with two strategies and is \(c \)-asymmetric, then for any \(h_t \) follows that

\[
U(s, s/h_t) \geq R - 2c(T - S).
\]
Proof. Let us assume by contradiction that $U(s, s/h_t) < R_1 - \frac{3}{2} c(T - S)$ for some $R_1 < R$. We can assume also that if h_{t+1} (or \hat{h}_{t+1}) is the deviation from h_t (or \hat{h}_t), i.e., the first coordinate of h_{t+1} (or \hat{h}_{t+1}) is different to $s(h_t)$ (or $s(\hat{h}_t)$) but the second one is equal to $s(\hat{h}_t)$ (or $s(h_t)$) follows that $U(s, s/h_t) - U(s, s/h_{t+1})$ ($U(s, s/\hat{h}_t) - U(s, s/\hat{h}_{t+1}$), respectively) is smaller than ϵ with ϵ chosen arbitrary small (provided δ large and $1 - p$ small). Now we take s^* such that $s^*(h_t) \neq s(h_t)$, $s^*(\hat{h}_t) \neq s(\hat{h}_t)$ and after that deviation s^* is like s (observe that at this point we are using that s/h_t is not symmetric, but we can do that because otherwise if for any t, $s(h_t) = s(\hat{h}_t)$ we can argue as in the proof of theorem 5. Moreover, we also assume that $U(s^*, s^*/h_t) = R$ and $U(s^*, s^*/\hat{h}_t) = R$. From the assumption, follows $c < \frac{R - U(s, s/h_t)}{R - S}$ and so by lemma 4 $U(s, s/\hat{h}_t) < R_1 - c(T - S)$. Therefore, $U(s^*, s/h_t) < R_1 - 2c(T - S)$ and $U(s^*, s/\hat{h}_t) < R_1 - c(T - S)$, so $U(s, s/h_t) < R_1 - c(T - S)$ and $U(s, s/\hat{h}_t) < R_1$ and therefore,

$$U(s^*, s^*/\hat{h}_t) + U(s^*, s^*/h_t) - [U(s, s^*/\hat{h}_t) + U(s, s^*/h_t)] > R_1 - c(T - S) \geq R - R_1,$$

and since

$$U(s, s/h_t) + U(s, s/\hat{h}_t) - [U(s^*, s/h_t) + U(s^*, s/\hat{h}_t)]$$

is arbitrarily small, by lemma 11 follows that s does not have a uniformly large basin of attraction.

Note that in previous results only populations of two strategies were used. Now we explore consequences of considering groups of three strategies.

Theorem 7. Given a strategy s, if there exists h_t such that for any h_k either containing h_t or \hat{h}_t (either $h_t < h_k$ or $h_t > h_k$) follows

$$U(s, s/h_k) < R_1$$

for some $R_1 < R$ then s does not have a uniformly large basin of attraction.

Proof. We are going to use theorem 2 which gives conditions, on group of three strategies, that implies that one of the strategies is an attractor but has an arbitrary small basin of attraction. More precisely, for s not to have a uniform large basin of attraction, it has to be shown that there exists $C_0 > 0$ such that for any $\epsilon > 0$, there is s^* and s' satisfying:

(i) $0 < U(s, s) - U(s^*, s) = U(s, s^*) - U(s^*, s^*) < \epsilon$;

(ii) $0 < U(s, s) - U(s', s) = U(s, s') - U(s', s') < \epsilon$;

(iii) $U(s^*, s') - U(s', s') > C_0$;

(iv) $U(s', s^*) - U(s^*, s^*) > C_0$.

Observe that under that above conditions, it follows from theorem 2 and remark 6 that once we identify s with the vertex e_1, the point $(\frac{\epsilon}{C_0 + 2\epsilon}, \frac{\epsilon}{C_0 + 2\epsilon})$ is not in the basin of e_1.

Given h_t such that for any h_k that contains either h_t or \hat{h}_t follows that $U(s, s/h_k) < R_1$ for some $R_1 < R$, we can also take h_t such that for the deviation h_{t+1} from h_t (i.e., the first coordinate of h_{t+1} is different to $s(h_t)$ but the second one is equal to $s(\hat{h}_t)$) follows that $U(s, s/h_t) - U(s, s/h_{t+1})$ is smaller than ϵ with ϵ chosen arbitrary small, provided δ large and $1 - p$ small. Moreover, the election can be done in such a way that the same holds for h_{t+1}.

Now we build two strategies s^*, s', that upset s. The strategy s^* deviate respect to s at h_t but coincide with s on \hat{h}_t. On the other hand, the strategy s' deviate respect to s at \hat{h}_t but coincide with s on h_t. Both strategies coincide with s after the first deviation with s. In other words:
(i) \(s^*(h_t) \neq s(h_t) \) and \(s^*(\hat{h}_t) = s(\hat{h}_t) \);
(ii) \(s'(h_t) = s(h_t) \) and \(s'(\hat{h}_t) \neq s(\hat{h}_t) \);
(iii) \(h_{s^*/h_t(s^*(h_t), s(h_t))} = h_{s,s/h_t(s^*(h_t), s(h_t))} \) and \(h_{s^*/s/h_t(s^*(h_t), s(h_t))} = h_{s,s/h_t(s^*(h_t), s(h_t))} \);
(iv) \(h_{s', s'/h_t(s'(h_t), s(h_t))} = h_{s,s/h_t(s'(h_t), s(h_t))} \) and \(h_{s', s'/h_t(s'(h_t), s(h_t))} = h_{s,s/h_t(s'(h_t), s(h_t))} \).

Observe that from that properties follows:

(i) \(U(s, s^*/h_t(s(h_t), s^*(\hat{h}_t))) = U(s, s/h_t) \);
(ii) \(U(s^*, s^*/h_t(s^*(h_t), s^*(\hat{h}_t))) = U(s, s/h_t(s^*(h_t), s(\hat{h}_t))) \);
(iii) \(U(s^*, \hat{h}_t) = U(s, s/\hat{h}_t), U(s, s^*/\hat{h}_t) = U(s^*, \hat{h}_t) \);
(iv) \(U(s, s'/h_t(s(\hat{h}_t), s'(h_t))) = U(s, s/\hat{h}_t) \);
(v) \(U(s', s'/\hat{h}_t(s'(\hat{h}_t), s(h_t))) = U(s, s/\hat{h}_t(s(\hat{h}_t), s(h_t))) \);
(vi) \(U(s', s/h_t) = U(s, s/h_t), U(s, s'/h_t) = U(s', s'/h_t) \).

Therefore it follows that:

(i) \(U(s, s/h_t) - U(s^*, s/h_t) < \varepsilon \) and \(U(s, s/\hat{h}_t) - U(s^*, s/\hat{h}_t) = 0 \),
(ii) \(U(s, s/h_t) - U(s', s/\hat{h}_t) < \varepsilon \) and \(U(s, s/h_t) - U(s', s/h_t) = 0 \),
(iii) \(U(s^*, s/h_t) - U(s, s^*/h_t) = -[U(s, s/h_t) - U(s^*, s/h_t)] \) and \(U(s^*, s^*/\hat{h}_t) = U(s, s^*/\hat{h}_t) \);
(iv) \(U(s', s'/\hat{h}_t) - U(s, s'/\hat{h}_t) = -[U(s, s/\hat{h}_t) - U(s', s/\hat{h}_t)] \) and \(U(s, s/h_t) = U(s, s/h_t) \).

Now we have to compare \(s' \) and \(s^* \). Observe that:

(i) \(h_{s'/s*/h_t(s'(h_t), s^*(h_t))} = h_{s,s/h_t(s(\hat{h}_t), s(h_t))} \) so \(U(s', s^*/h_t) \) is close to \(U(s^*, s^*/h_t) \),
(ii) \(h_{s'/s*/h_t(s^*(h_t), s'(h_t))} = h_{s,s/h_t(s(\hat{h}_t), s(h_t))} \) so \(U(s^*, s'/\hat{h}_t) \) is close to \(U(s', s/\hat{h}_t) \).

Since \(s^* \) and \(s' \) deviate from \(s \) at \(h_t \) and \(\hat{h}_t \) respectively and \(h_t(s^*(h_t), s'(\hat{h}_t)) \) is not one of the paths previously listed, we can assume that

\[
U(s^* s'/h_t(s^*(h_t), s'(\hat{h}_t))) = R.
\]

In the same way,

\[
U(s^* s'/\hat{h}_t(s^*(\hat{h}_t), s'(h_t))) = R.
\]

Therefore, and from the assumption that \(U(s, s/h_k) < R_1 \) follows that

\[
U(s's^*/h_t) + U(s's^*/\hat{h}_t) - [U(s's^*/h_t) + U(s's^*/\hat{h}_t)] > R - R_1 - \varepsilon
\]
and

\[
U(s's'/h_t) + U(s's'/\hat{h}_t) - [U(s's'/h_t) + U(s's'/\hat{h}_t)] > R - R_1 - \varepsilon
\]
and therefore the theorem is proved.
From the proof of previous theorem it can be concluded the following (details are left for the reader):

Theorem 8. If \(s \) has a uniformly large basin of attraction and let \(h_t \) such that \(U(s, s/h_t) \) is sufficiently close to \(\inf\{U(s, s/h_k) : \forall h_k\} \). Then it follows that either

\[
U(s, s/h_t(s(h_t)), s(h_t)) \geq R
\]

or

\[
U(s, s/\hat{h}_t(s(\hat{h}_t)), s(\hat{h}_t)) \geq R,
\]

where \(s(h_k) = D \) if and only if \(s(h_k) = C \).

7 Revisiting the sufficient conditions to have a uniformly large basin

In this section we provide general sufficient conditions to guarantee that a strategy has a uniformly large basin (see definition 3), i.e., conditions that implies that a strategy has a uniform large basin of attraction independent of the initial population, for large discount factor and small trembles. This is based in theorem \(\text{I} \). In subsection 7.1 we introduce another type of condition which is easier to calculate than the previous one and also implies that a given strategy satisfying it has a uniform large basin of attraction.

Given two strategies \(s_1 \) and \(s_2 \), to avoid notation, we write

\[
N_{\delta,p}(s_1, s_2) := U_{\delta,p}(s_1, s_1) - U_{\delta,p}(s_2, s_1).
\]

Let \(s \) be a subgame perfect strategy. Given \(s' \) and \(s^* \) with \(N_{\delta,p}(s, s^*) \geq N_{\delta,p}(s, s') \) we consider the following number

\[
M_{\delta,p}(s, s^*, s') := \frac{N_{\delta,p}(s, s^*) + N_{\delta,p}(s, s') + U_{\delta,p}(s', s^*) - U_{\delta,p}(s, s^*) + U_{\delta,p}(s^*, s') - U_{\delta,p}(s, s')}{N_{\delta,p}(s, s^*)}.
\]

\[
M_{\delta,p}(s) := \sup_{N_{\delta,p}(s, s^*) \geq N_{\delta,p}(s, s')} \{M_{\delta,p}(s, s^*, s'), 0\}.
\]

Remark 8. If we take the payoff matrix associated to a set of strategies that includes \(s, s^*, s' \) and \(s = e_1, s^* = e_i, s' = e_j \) it follows that \(M_{\delta,p}(s, s^*, s') = \frac{M_{s, s^*} + M_{s, s'}}{N_{s, s^*}} \) as in lemma \(\text{I} \) and theorem \(\text{II} \).

Remark 9. Observe that in the case that \(s^* = s' \), the quantity \(M_{\delta,p}(s, s^*, s') \) is equal to

\[
\frac{2[N_{\delta,p}(s, s^*) + N_{\delta,p}(s, s^*)]}{N_{\delta,p}(s^*, s^*)} = 2M_{\delta,p}(s, s^*).
\]

So, for the purpose of bounding \(M_{\delta,p}(s) \) from \(+\infty \) it is enough to take the supreme over \(M_{\delta,p}(s, s^*, s') \). Observe also that if we only consider the population \(\{s, s^*\} \) then the segment \([0, \frac{1}{M_{\delta,p}(s, s^*)}] \) is in the basin of attraction of \(s \) (provided that \(s \) is identified with \(e_1 \)).

Definition 8. We say that a strategy \(s \) satisfies the “Large Basin strategy condition” if it is a subgame perfect strategy and if there exist \(\delta_0 \) and \(M_0 \) such that for any \(\delta > \delta_0 \) and \(p > p(\delta) \) there exists \(M_0(\delta) \) verifying

\[
M_{\delta,p}(s) < M_0(\delta) < \infty.
\]
We can also define
\[M(s) := \limsup_{\delta, p \to 1} M_{\delta, p}(s) \]
and observe that in this case, if \(M(s) < \infty \) then \(s \) has a large basin of attraction (but the size could depend on \(\delta \) and \(p \)).

Remark 10. It is important to remark that it could hold that \(\limsup_{\delta \to 1} \sup_s \{ M_{\delta, p}(s, s^*) \} < +\infty \) but \(M(s) = +\infty \). This means that to guarantee a uniform \(L^1 \) size basin in any population, it is not enough that a strategy has uniform size of basin against any other strategy.

Definition 9. We say that a strategy \(s \) satisfies the “uniformly Large Basin condition” if it is a strict subgame perfect strategy and
\[M(s) < \infty. \]

Theorem 9. If \(s \) satisfies the “uniformly Large Basin condition”, then \(s \) has a uniformly large basin. More precisely, let \(\beta \) be small. Then, there exists \(\delta_0 \) such that for any \(\delta > \delta_0 \) \((p > p(\delta))\) and any finite set of strategies \(S \) containing \(s \), follows that \(s \) is an attracting point such that
\[B(s) \subset B_{loc}^s(s) \]
where
\[B(s) = \{ (x_1, \ldots, x_n) : x_2 + \cdots + x_n \leq \frac{1}{M(s) + \beta} \} \]
and \(n = \text{cardinal}(S) \).

Proof. The proof follows immediately from theorem [1] and the definition of \(M(s) \). In fact, ordering the strategies in such a way that \(s \) corresponds to the first one and \(N(s, s_i) \geq N(s, s_j) \) if \(j > i \) then it follows that for \(\delta \) large, then the constant
\[M_0 = \sup \{ \frac{M_{ij} + M_{ji}}{-N_{ij}}, 0 \} < M(s) + \beta \]
and therefore \(B(s) \) is contained in the basin of attraction of \(e_1 \).

Remark 11. Observe that to guarantee a uniform size of the basin of the attraction independent of the population, it is enough to bound a condition that only involves pair of strategies.

Remark 12. Given a strict subgame perfect strategy \(s \) and a population \(S \), the lower bound of the size of the basin of attraction of \(s \) can be improved by taking
\[M(s, S) := \sup_{N_{\delta, p}(s, s^*) \geq N_{\delta, p}(s, s'), s', s^* \in S} \{ M_{\delta, p}(s, s^*, s'), 0 \}. \]

To check that \(M_{\delta, p}(s) < +\infty \) observe that
\[
M_{\delta, p}(s, s^*, s') = \frac{N_{\delta, p}(s, s^*) + N_{\delta, p}(s, s') + U_{\delta, p}(s', s^*) - U_{\delta, p}(s, s^*) + U_{\delta, p}(s^*, s') - U_{\delta, p}(s, s')}{N_{\delta, p}(s, s^*)}
= 1 + \frac{N_{\delta, p}(s, s') - U_{\delta, p}(s, s^*) + U_{\delta, p}(s^*, s') - U_{\delta, p}(s, s')}{N_{\delta, p}(s, s^*)}.
\]
Then if
\[Z_{\delta, p}(s, s^*, s') := \frac{U_{\delta, p}(s', s^*) - U_{\delta, p}(s, s^*) + U_{\delta, p}(s^*, s') - U_{\delta, p}(s, s')}{N_{\delta, p}(s, s^*)}, \]
defining
\[Z_{\delta, p}(s) := \sup_{N_{\delta, p}(s, s^*) \geq N_{\delta, p}(s, s')} \{ Z_{\delta, p}(s, s^*, s') \}. \]
and using that $\frac{N_{\delta,p}(s,s')}{N_{\delta,p}(s,s^*)} \leq 1$ then follows that $M_{\delta,p}(s) < +\infty$ if and only if $Z_{\delta,p}(s) < +\infty$.

In other words, s is a “Large Basin strategy” if and only if $Z_{\delta,p}(s) < +\infty$. Similarly, defining

$$Z(s) := \limsup_{\delta,p(\delta) \to 1} Z_{\delta,p}(s),$$

s is a “uniform Large Basin strategy” if and only if

$$Z(s) < +\infty.$$

Question 1. *Is the uniformly large basin condition (recall definition 9) a necessary condition for a strategy to have a uniformly large basin strategy?*

7.1 Asymptotic bounded condition

We provide now a condition that implies that s is has a uniformly Large Basin of attraction. This new conditions are based on the conditions defined before but are easier to calculate. Moreover, if a strategy satisfies them it follows that has a uniformly large basin of attraction.

Definition 10. We say that a strict subgame perfect strategy s satisfies the asymptotic bounded condition if

- there exists R_0 such that for any s^* holds

$$\limsup_{\delta \to 1,p \to 1,p > p(\delta) \to 1} \sup_{s^*:N_{\delta,p}(s,s^*) > 0} \frac{U_{\delta,p}(s,s) - U_{\delta}(s,s^*)}{N_{\delta,p}(s,s^*)} < R_0, \quad (32)$$

- there exists R_1 such that for any s^*, s' for which $N_{\delta,p}(s,s^*) \geq N_{\delta,p}(s,s^*)$ holds, then

$$\limsup_{\delta \to 1,p \to 1,p > p(\delta) \to 1} \sup_{s^*:N_{\delta}(s,s^*) > 0} \frac{U_{\delta,p}(s',s^*) + U_{\delta,p}(s,s') - 2U_{\delta,p}(s, ss)}{N_{\delta,p}(s,s^*)} < R_1. \quad (33)$$

Theorem 10. Let s be a strict subgame perfect strategy satisfying the asymptotic bounded condition. Then, s has a uniformly large basin of attraction.

Proof. Recalling that $N_{\delta,p}(s,s') \leq N_{\delta,p}(s,s^*)$ we need to bound by above the following expression

$$\frac{U_{\delta,p}(s',s^*) - U_{\delta,p}(s,s^*) + U_{\delta,p}(s',s') - U_{\delta,p}(s,s')}{N_{\delta,p}(s,s^*)}.$$

So,

$$\begin{align*}
\frac{U_{\delta,p}(s',s^*) - U_{\delta,p}(s,s^*) + U_{\delta,p}(s',s') - U_{\delta,p}(s,s')}{N_{\delta,p}(s,s^*)} &= \\
&= \frac{U_{\delta,p}(s',s^*) + U_{\delta,p}(s,s') - 2U_{\delta,p}(s, ss)}{N_{\delta,p}(s,s^*)} + \\
&+ \frac{U_{\delta,p}(s,s) - U_{\delta,p}(s, ss^*)}{N_{\delta,p}(s,s^*)} + \frac{U_{\delta,p}(s,s) - U_{\delta,p}(s, ss')}{N_{\delta,p}(s,s^*)} \\
&\leq R_1 + \frac{U_{\delta,p}(s,s) - U_{\delta,p}(s, ss^*)}{N_{\delta,p}(s,s^*)} + \frac{U_{\delta,p}(s,s) - U_{\delta,p}(s, ss')}{N_{\delta,p}(s,s^*)} N_{\delta,p}(s,s^*) \\
&\leq R_1 + 2R_0.
\end{align*}$$

\square
From now on, we denote

\[\tilde{N}_{\delta,p}(s, s^*) := U_{\delta,p}(s, s) - U_{\delta,p}(s, s^*) \]

\[B_{\delta,p}(s, s^*, s') := U_{\delta,p}(s', s^*) + U_{\delta,p}(s^*, s') - 2U_{\delta,p}(s, s) \]

Remark 13. From the proof of theorem 10 follows that \(M(s) \leq 2 + 2R_0 + R_1 \).

7.2 Having uniform large basin for population of two strategies is not enough

In this section we give an example that shows that when a population of three strategies are considered it can happen that one of them has a uniformly large basin when we consider the subset of two strategies but it does not have a large basin when the three strategies are considered simultaneously. In other words, next theorem shows that the example given in theorem 2 can be obtained as the replicator equation associated to three strategies. In what follows, given a population of three strategies \(S = \{ s, s^*, s' \} \) and its replicator equation (in affine coordinates), the first strategy is identified with the point \((0,0,0)\). In the theorem below we considered the repeated prisoners’ dilemma without tremble and the proof in trivially adapted for the case of trembles provided small probability of mistakes.

Theorem 11. For any \(\lambda \) small, there exists a population of three strategies \(S = \{ s, s^*, s' \} \) such that

(i) \(s \) is an attractor in \(S \);

(ii) \(s \) always cooperate with itself;

(iii) in the population \(\{ s, s^* \} \), \(s \) is a global attractor (in the terminology of the replicator equation, the interior of the simplex associated to \(\{ s, s^* \} \) is in the basin of attraction of \(s \));

(iv) in the population \(\{ s, s' \} \) \(s \) is a global attractor;

(v) the region bounded by \(H_\lambda, V_\lambda \) and \(x_2 + x_3 = 1 \) does not intersect the basin of attraction of \(s \).

Proof. Given any small \(\lambda > 0 \), we build three strategies such that identifying \(s \) with \((0,0,0)\), \(s^* \) with \((1,0,0)\) and \(s' \) with \((0,1,0)\) satisfy the hypothesis of theorem 2. We also assume that the strategies \(s' \) and \(s^* \) deviate from \(s \) at the 0–history, \(s \) plays always cooperate with itself and so \(s'(0) = s^*(0) = D \). We fix \(\gamma > 0 \) and we take \(\epsilon \) small. Observe that provided any \(\epsilon > 0 \) small, taking \(\delta \) large, follows that there exist different \(b_1', b_2', b_3', b_4' \) and \(b_1^*, b_2^*, b_3^*, b_4^* \) such that

\[0 < R - (b_1'R + b_2'T + b_3'S + b_4'P) = R - (b_1^*R + b_2^*T + b_3^*S + b_4^*P) = \epsilon \]

but

\[R - (b_1'R + b_2'S + b_3'T + b_4'P) = R - (b_1^*R + b_2^*S + b_3^*T + b_4^*P) > \gamma. \]

Now, from \((C, D)\) we choose \(s, s', s^* \) such that

\[U_\delta(s, s^*) = U_\delta(s, s') = b_1'R + b_2'T + b_3'S + b_4'P \]

but in such a way that \(s' \neq s^* \). To show that it is possible to choose \(s' \) independently of \(s^* \) against \(s \) is enough to take \(s'(C, D) \neq s^*(C, D) \). Now, we take \(s^* \) and \(s' \) from \((D, D)\) such that

\[s^*(D, D) \neq s'(D, D) \]
and
\[U_\delta(s^*, s^*) - U_\delta(s, s^*) = U_\delta(s^*, s^*) - (b_1^* R + b_2^* S + b_3^* T + b_4^* P) = -\epsilon, \]
\[U_\delta(s', s') - U_\delta(s, s') = U_\delta(s', s') - (b_1^* R + b_2^* S + b_3^* T + b_4^* P) = -\epsilon. \]

Moreover, we can take \(s', s^* \) such that
\[U_\delta(s', s^*) = U_\delta(s', s^*) = R \]
	herefore
\[U_\delta(s', s^*) - U_\delta(s^*, s^*) = U_\delta(s', s^*) - U_\delta(s', s') > \gamma. \]

So,
\[\frac{U_\delta(s', s^*) - U_\delta(s^*, s^*)}{U_\delta(s, s) - U_\delta(s^*, s)} > \frac{\gamma}{\epsilon} \]
and so choosing \(\epsilon \) properly we can assume that the quotient is equal to \(\frac{1}{\delta} \).

Remark 14. Previous results can also be proved using a generalized versions of the Folklore’s theorem: Any payoff matrix can be realized as the payoff matrix of a finite set of strategies, provided that \(\delta \) is large, the entries of the matrices are in the admissible range of payoff and the entries \(a_{ij}, a_{ji} \) satisfy the relation given by lemma [2].

8 Recalculating payoff with trembles

Now, we develop a way to calculate the payoff for certain strategies which roughly speaking consists in approximating the payoff using equilibrium paths, provided that the probability of mistake is small. This first order approximation allows to prove the asymptotic bounded condition (see equalities \(32, 33, 38, 40 \) and lemma 17) for certain types of strategies (namely strict subgame perfect strategies, see definition 11). In few words, the difference in utility between two strategies can be estimated in the following way (provided that \(p \) is sufficiently close to 1):

- first, we consider all the paths (on and off equilibrium) up to its first node of divergence between the two strategies, namely \(h_k, \hat{h}_k \) (see equalities \(36, 37, 39 \)),
- from the node of divergence we only consider equilibrium payoffs (see lemma 16).

In particular, if \(s(h_0) \neq s^*(h_0) \) then \(U_{\delta,p}(s, s) - U_{\delta,p}(s^*, s) \) is approximated by \(U_{\delta,p,h_{s,s}}(s, s) - U_{\delta,p,h_{s,s}}(s^*, s) \).

More precisely, recalling that
\[N_{\delta,p}(s, s^*) = \sum_{h_k, h_{k}\in R_{s,s}^*} \delta^k p_{s,s}(h_k)[U_{\delta,p}(s, s/h_k \hat{h}_k) - U_{\delta,p}(s^*, s/h_k \hat{h}_k)], \]
\[\tilde{N}_{\delta,p}(s, s^*) = \sum_{h_k, h_{k}\in R_{s,s}^*} \delta^k p_{s,s}(h_k)[U_{\delta,p}(s, s/h_k \hat{h}_k) - U_{\delta,p}(s^*, s/h_k \hat{h}_k)], \]
we define
\[N_{\delta,p}^\epsilon(s, s^*) := \sum_{h_k, h_{k}\in R_{s,s}^*} \delta^k p_{s,s}(h_k)[U_{\delta,p}(s, s/h_k \hat{h}_k) - U_{\delta,p}(s^*, s/h_k \hat{h}_k)], \]
\[\tilde{N}_{\delta,p}(s, s^*) := \sum_{h_k, h \in \mathcal{R}_{s,s^*}} \delta^k p_{ss}(h_k)[U_{\delta,p}(h_{s,s^*/h_k}) - U_{\delta,p}(h_{s,s^*/h_k})] \]

where given strategies \(s_1, s_2 \)

\[U_{\delta,p}(h_{s_1,s_2/h_k}) := U_{\delta,p}(h_{s_1,s_2/h_k}) + U_{\delta,p}(h_{s_1,s_2/h_k}). \]

We look for conditions such that there exists a uniform constant \(C \) satisfying that

\[\frac{\tilde{N}_{\delta,p}(s, s^*)}{N_{\delta,p}(s, s^*)} \leq \frac{\tilde{N}_{\delta,p}(s, s^*)}{N_{\delta,p}(s, s^*)} + C. \]

(38)

We develop a similar approach \(B_{\delta,p}(s, s^*, s') \) (see equation (35)) that consists in comparing different paths for three strategies \(s, s^*, s' \). Given any pair of paths \(h, \hat{h} \) where \(s, s', s^* \) differ (meaning that at least two of the strategies differ at some finite paths contained either in \(h \) or \(\hat{h} \)), there exist \(k' = k(s, s', h), \hat{k}' = \hat{k}(s, s', \hat{h}), k^* = k(s, s^*, h), \hat{k}^* = \hat{k}(s, s^*, \hat{h}) \), such that \(s(h_{k'}) \neq s'(h_{\hat{k}'}) \), \(s(h_{k^*}) \neq s'(h_{\hat{k}^*}) \), \(s(h_{k^*}) \neq s'(h_{\hat{k}^*}) \). Observe that some of them could be infinity.

We take

\[k(s, s', s^*) := \min\{k', \hat{k}', k^*, \hat{k}^*\} \]

which is finite and observe that

\[p_{ss}(h_k) = p_{s's'}(h_k) = p_{s's'}(h_k) = p_{s's'}(h_k) \]

\[p_{ss}(\hat{h}_k) = p_{s's'}(\hat{h}_k) = p_{s's'}(\hat{h}_k) = p_{s's'}(\hat{h}_k) \]

so

\[B_{\delta,p}(s, s^*, s') = \sum_{h:k(s,s',s^*)} \delta^k p_{ss}(h_k)[U_{\delta,p}(s', s^*/h_k) + U_{\delta,p}(s^*, s'/h_k) - 2U_{\delta,p}(s, s/h_k)]. \]

(39)

Now we define

\[B_{\delta,p}^e(s, s^*, s') = \sum_{h:k(s,s',s^*)} \delta^k p_{ss}(h_k)[U_{\delta,p}(h_{s',s^*/h_k}) + U_{\delta,p}(h_{s,s'/h_k}) - 2U_{\delta,p}(h_{s,s/h_k})]. \]

So, in a similar way we look for conditions such that there exists a uniform constant \(C \)

\[\frac{B_{\delta,p}(s, s^*, s')}{N_{\delta,p}(s, s^*)} \leq \frac{B_{\delta,p}^e(s, s^*, s')}{N_{\delta,p}(s, s^*)} + C. \]

(40)

We are going to restrict a relation between \(p \) and \(\delta \). From now on we assume that

\[p \geq \sqrt{\delta}. \]

(41)

Moreover, and to simplify calculations we change the usual renormalization factor \(1 - \delta \) by \(\frac{1-p^2\delta}{p^2} \) and so we calculate the payoff as following:

\[U_{\delta,p}(s_1, s_2) = \frac{1-p^2\delta}{p^2} \sum_{t \geq 0, a_t, b_t} \delta^t p_{s_1, s_2}(a_t, b_t) u(a_t, b_t). \]

Both ways calculating the payoff (either with renormalization \(1 - \delta \) or \(\frac{1-p^2\delta}{p^2} \)) are equivalent as they rank histories in the same way. In addition it holds that:

\[\frac{1}{2} < \frac{1 - \delta}{1 - \delta p^2} < 1. \]
Observe that if \(s_1 = s_2 \) along the equilibrium it follows that
\[
U_{\delta,p}(h_{s,s}) = \frac{1 - \delta p^2}{p^2} \sum_{t \geq 0} p^{2t+2}\delta^t u(a^t, a^t) \leq R.
\]

Lemma 15. It follows that
\[
N_{\delta,p}(s, s^*) \leq N^e_{\delta,p}(s, s^*) + 2 \frac{1 - p^2}{p^2(1 - \delta)} M;
\]
\[
\bar{N}_{\delta,p}(s, s^*) \leq \bar{N}^e_{\delta,p}(s, s^*) + 2 \frac{1 - p^2}{p^2(1 - \delta)} M;
\]
\[
B_{\delta,p}(s, s^*, s') \leq B^e_{\delta,p}(s, s^*, s') + 3 \frac{1 - p^2}{p^2(1 - \delta)} M.
\]

The next definition is an extension of the definition of subgame perfect strategies.

Definition 11. We say that \(s \) is a uniformly strict subgame perfect if for any \(s^* \) follows that given \(h \in R_{s,s^*} \) then
\[
(1 - \delta^2)C_0 < U_{\delta,p}(h_{s,s/h_k}) - U_{\delta,p}(h_{s^*,s/h_k}),
\]
for \(p > p_0, \delta > \delta_0 \) where \(C_0, \delta_0, p_0 \) are positive constants that only depend on \(T, R, P, S \).

Given \(\delta \) we take \(p \) such that it is verified,
\[
3 \frac{1 - p^2}{p^2(1 - \delta)} \frac{M}{C_0(1 - \delta^2)} < 1.
\]

Since \(p < 1 \) follows that \(1 - \delta^2 \delta < 1 - \delta \) and taking \(p > \frac{1}{2} \) then to satisfies (43) we require that
\[
3 \frac{1 - p^2}{4(1 - \delta)^2} \frac{M}{C_0} < 1.
\]

Therefore, we take
\[
p_1(\delta) = \sqrt{\frac{1}{3} \frac{C_0}{M} (1 - \delta)^2}
\]
and observe that it is a function smaller than 1 for \(\delta < 1 \). Then, we define
\[
p(\delta) = \max\left\{\frac{1}{2}, p_1(\delta), \sqrt{\delta}\right\}
\]

Lemma 16. If \(s^* \) is strict subgame perfect and \(p > p(\delta) \) (giving by equality \([45]\)) then
\[
\frac{\bar{N}_{\delta,p}(s, s^*)}{\bar{N}_{\delta,p}(s, s^*)} \leq \frac{\bar{N}^e_{\delta,p}(s, s^*)}{\bar{N}^e_{\delta,p}(s, s^*)} + 1;
\]
\[
\frac{B_{\delta,p}(s, s^*, s')}{B_{\delta,p}(s, s^*, s')} \leq \frac{B^e_{\delta,p}(s, s^*, s')}{B^e_{\delta,p}(s, s^*)} + 1.
\]
Proof. It follows from lemma [15] that \(s \) is a subgame perfect and that inequality (43) is satisfied

\[
\frac{\hat{N}_{\delta,p}(s,s^*)}{N_{\delta,p}(s,s^*)} \leq \frac{N_{\delta,p}(s,s^*)}{N_{\delta,p}(s,s^*)} \left(1 + 2 \frac{1-p^2}{p(1-\delta)} M \right) + 2M \frac{1-p^2}{(1-\delta)p^2C_0(1-p^2)} \leq \frac{\check{N}_{\delta,p}(s,s^*)}{\check{N}_{\delta,p}(s,s^*)} + 1.
\]

In a similar way it is done the estimate for \(\frac{B_{\delta,p}(s,s^*,s')}{B_{\delta,p}(s,s^*)} \).

Now we will try to estimate \(\frac{U_{\delta,p}(s,s)-U_{\delta,p}(s,s^*)}{U_{\delta,p}(s,s)-U_{\delta,p}(s^*,s)} \) based on lemma [16].

Lemma 17. If \(p > p(\delta) \) (giving by equality (43)) and \(s \) is a uniform strict and there exists \(D \) such that for any \(h \in R_{s,s^*} \) holds

\[
\frac{U_{\delta,p}(h_{s,s/h_kh_k}) - U_{\delta,p}(h_{s,s^*/h_kh_k})}{U_{\delta,p}(h_{s,s/h_kh_k}) - U_{\delta,p}(h_{s^*,s/h_kh_k})} < D
\]

then

\[
\frac{U_{\delta,p}(s,s) - U_{\delta,p}(s,s^*)}{U_{\delta,p}(s,s) - U_{\delta,p}(s^*,s)} < D + 1.
\]

Proof. It is enough to estimate \(\frac{\check{N}_{\delta,p}(s,s^*)}{\check{N}_{\delta,p}(s,s^*)} \)

\[
\frac{\check{N}_{\delta,p}(s,s^*)}{\check{N}_{\delta,p}(s,s^*)} = \sum_{h \in R_{s,s^*}} \sum_{h \in R_{s^*,s}} \frac{\delta_k h_{s,s/h_k} h_{s^*,s/h_k}}{U_{\delta,p}(h_{s,s/h_k}) - U_{\delta,p}(h_{s^*,s/h_k})} \left(U_{\delta,p}(h_{s,s/h_k}) - U_{\delta,p}(h_{s^*,s/h_k}) \right) \leq \sum_{h \in R_{s,s^*}} \sum_{h \in R_{s^*,s}} \frac{\delta_k h_{s,s/h_k} h_{s^*,s/h_k}}{U_{\delta,p}(h_{s,s/h_k}) - U_{\delta,p}(h_{s^*,s/h_k})} \left(U_{\delta,p}(h_{s,s/h_k}) - U_{\delta,p}(h_{s^*,s/h_k}) \right) = D.
\]

\[
9 \quad \text{Existence of strategies with a uniformly large basin of attraction}
\]

In the present section we show that strategies like win-stay-lose-shift satisfy the conditions introduced in subsection [7.1].

Definition 12. win-stay-lose-shift Let us define the strategy known as win-stay-lose-shift: if it gets either \(T \) or \(R \) stays, if not, shifts. From now on, we denote win-stay-lose-shift as \(w \).
For win-stay-lose-shift to be a subgame perfect strategy it is required that $2R > T + P$ (see [NS] and [RC]). The next lemma is obvious but we state it since is fundamental to do a series of calculations related to w.

Lemma 18. Given a finite path h_t it follows that w is a symmetric strategy, meaning that $w(h_t) = w(\hat{h}_t)$.

Proof. It follows from the fact that $w(C, D) = w(D, C) = D$.

Theorem 12. If $2R > T + P$ then w has a uniformly large basin.

First we prove that w is a uniform strict subgame perfect (this is done in subsection 9.0.1), and later we show that w satisfies the “Asymptotic bounded condition”. For the latter we need to bound $\bar{N}_{\delta,p}(s, s^*)$ and $\bar{B}_{\delta,p}(s, s^*, s')$ this is done in subsection 9.0.2 and 9.0.3 respectively.

9.0.1 w is a uniformly strict subgame perfect.

Given h_k we have to estimate

$$U_{\delta,p}(h_{w,w/h_k}) - U_{\delta,p}(h_{s,w/h_k})$$

where $h_{w,w/h_k}$ is the equilibrium path for w, w starting with h_k and $h_{s,w/h_k}$ is the equilibrium path for s, w starting with h_k.

In what follows, to avoid notation, with $U(.,.)$ we denote $U_{\delta,p}(h_{.,./h_k})$. Following that, we take

$$b_1 = \frac{1 - p^2\delta}{p^2} \sum_{j:w'(s,w/h_k)=R} p^{2j+2}\delta^j, \quad b_2 = \frac{1 - p^2\delta}{p^2} \sum_{j:w'(s,w/h_k)=S} p^{2j+2}\delta^j,$$

$$b_3 = \frac{1 - p^2\delta}{p^2} \sum_{j:w'(s,w/h_k)=T} p^{2j+2}\delta^j, \quad b_4 = \frac{1 - p^2\delta}{p^2} \sum_{j:w'(s,w/h_k)=P} p^{2j+2}\delta^j.$$

Observe that $b_1 + b_2 + b_3 + b_4 = 1$ and

$$U(s, w) = b_1 R + b_2 S + b_3 T + b_4 P.$$

From the property of w, for each T that s can get (s plays D and w plays C) follows that in the next move s may get either S or P because w plays D, so,

$$b_2 + b_4 \geq p^2\delta b_3. \quad (48)$$
To calculate \(U(w, w) \) we have to consider either \(s(h_k) = C, w(h_k) = D \) or \(s(h_k) = D, w(h_k) = C \). So, from lemma (18)
\[
U(w, w) = \begin{cases}
 R & \text{if } w(h_k) = C \\
 \frac{1-p^2\delta}{p} + p^2\delta R & \text{if } w(h_k) = D
\end{cases}
\]

To calculate \(U(s, w) \) in case that \(s(h_k) = D, w(h_k) = C \), writing \(R = b_1R + b_2R + b_3R + b_4R \) by inequality (18) it follows that
\[
U(w, w) - U(s, w) = b_2(R - S) + b_3(R - T) + b_4(R - P) \\
\geq (b_2 + b_4)(R - P) + b_3(R - T) \\
\geq \delta p^2 b_3(R - P) + b_3(R - T) \\
\geq b_3[(1 + p^2\delta)R - (T + P)].
\]
Observing that if \(s(h_k) = D, w(h_k) = C \), then
\[
b_3 \geq 1 - p^2\delta
\]
and since \(2R - (T + P) > 0 \) it follows that for \(\delta \) and \(p \) large (meaning that they are close to one), then \([(1 + p^2\delta)R - (T + P)] > C_0 \) for a positive constant smaller than \(2R - (T + P) \) and therefore (provided that \(\delta \) and \(p \) large are large) follows that
\[
U(w, w) - U(s, w) > (1 - p^2\delta)C_0,
\]
concluding that \(w \) is a uniform strict subgame perfect in this case.

In the case that \(s(h_k) = C, w(h_k) = D \), observe that \(b_2 \geq 1 - \delta \) and calculating again the quantities \(b_1, b_2, b_3, b_4 \) but starting from \(j \geq 1 \) then we get that
\[
U(s, w) = (1 - p^2\delta)S + p^2\delta[b_1R + b_2S + b_3T + b_4P].
\]
Therefore, writing \(p^2\delta R = p^2\delta[b_1R + b_2R + b_3R + b_4R] \) and arguing as before,
\[
U(w, w) - U(s, w) = (1 - p^2\delta)(P - S) + \delta[b_2(R - S) + b_3(R - T) + b_4(R - P)] \\
\geq (1 - p^2\delta)(P - S) + \delta[(b_2 + b_4)(R - P) + b_3(R - T)] \\
\geq (1 - p^2\delta)(P - S) + \delta b_3[(1 + \delta)R - (T + P)] \\
\]
since \(2R - (T + P) > 0 \) it follows that for \(\delta \) large (\(b_3 \) now can be zero)
\[
U(w, w) - U(s, w) > (1 - p^2\delta)(P - S),
\]
proving that \(w \) is a uniform strict subgame perfect in this case.

Remark 15. Given \(\epsilon \) small follows that for \(\delta \) large then \(C_0 \) can be estimated as
\[
C_0 = \min\{P - S, 2R - (T + S) - \epsilon\}. \tag{49}
\]

Remark 16. To prove that \(w \) is a uniform strict subgame perfect, the main two properties of \(w \) used are

(i) it cooperates after seeing cooperation and so \(U(w, w) = R \) after \(w(h_k) = C \),

(ii) after getting \(P \) it goes back to cooperate, so \(U(w, w) = (1 - \delta p^2)P + \delta p^2 R \) after \(w(h_k) = D \),

(iii) it punishes after getting \(S \),

(iv) \(2R > T + P \).

Observe, that the previous calculation does not use that \(w \) keeps defecting after obtaining \(T \).
9.0.2 Bounding (46).

First we estimate \(U_{\delta,p}(w, w) - U_{\delta,p}(s, w) \) and \(U_{\delta,p}(w, w) - U_{\delta,p}(w, s) \). Recall that from lemma \([17]\) it follows that is enough to bound for any \(h \in R_{w,s}^* \):

\[
\frac{U_{\delta,p}(h_{w,w/h_k\delta_p}) - U_{\delta,p}(h_{w,s/h_k\delta_p})}{U_{\delta,p}(h_{w,w/h_k\delta_p}) - U_{\delta,p}(h_{s,w/h_k\delta_p})}.
\]

Calculating numerator and denominator.

For the moment, to avoid notation, we denote

\[U(s, s') := U_{\delta,p}(h_{s,s'/h_k\delta_p}) = U_{\delta,p}(h_{s,s'/h_k}) + U(h_{s,s'/h_k}). \]

Observe that if \(U(w, w) - U(s, w) = B_2(R - S) + B_3(R - T) + B_4(R - P) \), then

\[
U(w, w) - U(w, s) = B_2(R - T) + B_3(R - S) + B_4(R - P).
\]

To avoid notation, let us denote \(L = U(w, w) - U(s, w) = B_2(R - S) + B_3(R - T) + B_4(R - P) \) so, \(B_4(R - P) = L - [B_2(R - S) + B_3(R - T)] \) and therefore

\[
U(w, w) - U(w, s) = B_2(R - T) + B_3(R - S) + L - [B_2(R - S) + B_3(R - T)]
\]

\[
= L + B_3(T - S)
\]

\[
\leq L + B_3(T - S)
\]

Recalling that in case that \(b_3 \neq 0 \) then \(L = U(w, w) - U(s, w) \geq B_3[(1 + \delta)R - (T + P)] \) (if \(B_3 = 0 \) then \(\frac{U(w, w) - U(w, s)}{U(w, w) - U(s, w)} \leq 1 \)) it follows that

\[
\frac{U(w, w) - U(w, s)}{U(w, w) - U(s, w)} \leq \frac{L + B_3(T - S)}{L}
\]

\[
\leq 1 + \frac{B_3(T - S)}{B_3[(1 + \delta)R - (T + P)]}
\]

\[
= 1 + \frac{T - S}{(1 + \delta)R - (T + P)}.
\]

Therefore,

\[
\frac{U_{\delta,p}(h_{w,w/h_k\delta_p}) - U_{\delta,p}(h_{w,s/h_k\delta_p})}{U_{\delta,p}(h_{w,w/h_k\delta_p}) - U_{\delta,p}(h_{s,w/h_k\delta_p})} \leq 1 + \frac{T - S}{(1 + \delta)R - (T + P)},
\]

so by lemma \([17]\)

\[
\frac{U_{\delta,p}(w, w) - U_{\delta,p}(w, s)}{U_{\delta,p}(w, w) - U_{\delta,p}(s, w)} \leq 2 + \frac{T - S}{(1 + \delta)R - (T + P)}.
\]

Remark 17. The main property of \(w \) used to bound \((46)\) is that if \(b_3 \neq 0 \) then

\[
U(w, w) - U(s, w) \geq b_3[(1 + \delta)R - (T + P)]
\]

and this follows from the properties listed in remark \([16]\).
9.0.3 Bounding (47)

By lemma [16] we need to bound

$$B_{\delta,p}^e(s,s^*,s') \leq \frac{B_{\delta,p}^e(s,s^*,s')}{N_{\delta,p}^e(s,s^*)}.$$

Recall that

$$B_{\delta,p}^e(s,s^*,s') = \sum_{h:k(s,s^*,s')} \delta_k p_{ss}(h_k)[U_{\delta,p}(h_{s',s*/h_k}) + U_{\delta,p}(h_{s^*,s'/h_k}) - 2U_{\delta,p}(h_{s,s/h_k})].$$

For the particular case of $s = w$ we divide the paths in two types: either $w(h_k) = C$ or $w(h_k) = D$. In the first case we claim that

$$U_{\delta,p}(h_{s',s*/h_k}) + U_{\delta,p}(h_{s^*,s'/h_k}) - 2U_{\delta,p}(h_{w,w/h_k}) \leq 0.$$

Observe that $U_{\delta,p}(h_{w,w/h_k}) = 2R$ and by lemma [7] follows the assertion above. Therefore,

$$B_{\delta,p}^e(s,s^*,s') \leq \sum_{h:k(s,s^*,w(h_k)=D)} U_{\delta,p}(h_{s',s*/h_k}) + U_{\delta,p}(h_{s^*,s'/h_k}) - 2U_{\delta,p}(h_{w,w/h_k}).$$

In case that $w(h_k) = D$ observe that $U(h_{w,w/h_k}) = 2\frac{1-p^2\delta}{p}P + 2R\delta$. To deal with this situation we consider two cases: i) $s'(h_k) = C$ or $s'(h_k) = s^*$, and ii) $s'(h_k) = C$ or $s^*(h_k) = C$. So,

$$B_{\delta,p}^e(s,s^*,s') \leq \sum_{h:s'(h_k)=C \text{ or } s'(h_k)=s^*} U_{\delta,p}(h_{s',s*/h_k}) + U_{\delta,p}(h_{s^*,s'/h_k}) - 2U_{\delta,p}(h_{w,w/h_k}) +$$

$$\sum_{h:s^*(h_k)=C \text{ or } s^*(h_k)=C} U_{\delta,p}(h_{s',s*/h_k}) + U_{\delta,p}(h_{s^*,s'/h_k}) - 2U_{\delta,p}(h_{w,w/h_k}).$$

Case i) $s'(h_k) = C$ or $s'(h_k) = s^*$: In this situation follows that $h \in R^*(s', w)$. We rewrite

$$\sum_{h:s'(h_k)=C \text{ or } s'(h_k)=s^*} U_{\delta,p}(h_{s',s*/h_k}) + U_{\delta,p}(h_{s^*,s'/h_k}) - 2U_{\delta,p}(h_{w,w/h_k}) =$$

$$\sum_{h:s'(h_k)=C \text{ or } s'(h_k)=s^*} U_{\delta,p}(h_{s',s*/h_k}) + U_{\delta,p}(h_{s^*,s'/h_k}) - U_{\delta,p}(h_{w,w/h_k}) +$$

$$\sum_{h:s^*(h_k)=C \text{ or } s^*(h_k)=C} U_{\delta,p}(h_{s',s*/h_k}) + U_{\delta,p}(h_{s^*,s'/h_k}) - U_{\delta,p}(h_{w,w/h_k}).$$

Using that $h \in R^*(s', w)$, and again lemma [7] then

$$\sum_{h:s'(h_k)=C \text{ or } s'(h_k)=s^*} U_{\delta,p}(h_{s',s*/h_k}) + U_{\delta,p}(h_{s^*,s'/h_k}) - U_{\delta,p}(h_{w,w/h_k}) \leq$$

$$\frac{1-p^2\delta}{p^2} \sum_{h:h \in R^*(s', w)} p_{ws'}(h_k)\delta_k[S + T - 2P]$$

and

$$\sum_{h:s^*(h_k)=C \text{ or } s^*(h_k)=C} U_{\delta,p}(h_{s',s*/h_k}) + U_{\delta,p}(h_{s^*,s'/h_k}) - U_{\delta,p}(h_{w,w/h_k}) \leq$$

$$\frac{1-p^2\delta}{p^2} \sum_{h:h \in R^*(s', w)} p_{ws'}(h_k)\delta_k[S + T - 2P]$$

42
but since

\[U_{\delta,p}(w, w) - U_{\delta,p}(s', w) \geq \frac{1 - p^2 \delta}{p^2} \sum_{h: h \in R^*(s', w)} p_{w,s'}(h_k)\delta^k[2P - (S + P)] \]

follows that

\[\sum_{h: s'(h_k) = C \text{ or } s'(h_k) = C} U_{\delta,p}(h_{s', s'/h_k}) + U_{\delta,p}(h_{s', s'/h_k}) - U_{\delta,p}(h_{w, w/h_k, k}) \leq U_{\delta,p}(w, w) - U_{\delta,p}(s', w) \]

\[\sum_{h: s'(h_k) = C \text{ or } s'(h_k) = C} U_{\delta,p}(h_{s', s'/h_k}) + U_{\delta,p}(h_{s', s'/h_k}) - U_{\delta,p}(h_{w, w/h_k, k}) \leq U_{\delta,p}(w, w) - U_{\delta,p}(s', w). \]

Case ii) \(s^*(h_k) = C \text{ or } s^*(h_k) = C \): In this situation follows that \(h \in R^*(s^*, w) \), and using this key statement we conclude in a similar way that

\[\sum_{h: s^*(h_k) = C \text{ or } s^*(h_k) = C} U_{\delta,p}(h_{s^*, s'/h_k}) + U_{\delta,p}(h_{s^*, s'/h_k}) - U_{\delta,p}(h_{w, w/h_k, k}) \leq U_{\delta,p}(w, w) - U_{\delta,p}(s^*, w) \]

Therefore, recalling that

\[U_{\delta,p}(w, w) - U_{\delta,p}(s^*, w) \geq U_{\delta,p}(w, w) - U_{\delta,p}(s', w) \]

we conclude that

\[\frac{B_{\delta,p}(s, s^*, s')}{U_{\delta,p}(w, w) - U_{\delta,p}(s^*, w)} \]

is uniformly bounded and therefore bounding \([47]\).

9.1 Generalized \(w \) for any payoff system

Recall that \(w \) has uniformly large basin, provided that \(2R > S + T \). Now, we consider \(w \)-type strategies that have a uniformly large basin for any payoff system.

Definition 13. \(n \)-\textit{win-stay-lose-shift} \(n \)-\textit{win-stay lose-shift}. If it gets either \(T \) or \(R \) stays; if it gets \(S \), shifts to \(D \) and stays for \(n \)-period and then acts as \(w \). We denote it with \(w^n \).

Theorem 13. For any payoff set there exists \(n \) such that \(w^n \) is has a uniformly large basin.

Proof. The proof follows the same steps that we used to prove that \(w \) has a uniformly large basin of attraction when \(2R - (T + P) > 0 \) but using the fact that for any payoff matrix there exists \(n \) such that

\[nR > T + (n - 1)P. \]

To show that \(w^n \) has a uniformly large basin of attraction, we calculate the quantities \(b_1, b_2, b_3, b_4 \) for \(u(s, w^n) \) as it was done for \(w \) in subsection[4.0]. In addition, observe that for \(w^n \) it follows that

\[b_2 + b_4 \geq \delta^p \frac{1 - (\delta p^2)^n}{1 - \delta p^2} b_3 \]

43
and if n is large enough then $\frac{1-(\delta p^2)^n}{1-\delta p^2} > n - 1$ and therefore,

$$b_2 + b_4 \geq (n-1)b_3.$$

Repeating the same calculation done for w, in case $w^n(h_k) = C, s(h_k) = D$ follows that

$$U(w^n,w^n) - U(s,w^n) \geq (n-1)b_3(R-P) + b_3(R-T) \geq (1-\delta p^2)[nR - T - (n-1)P].$$

In case $w^n(h_k) = D, s(h_k) = C$, the calculation is similar.

To bound uniformly the quantities (46) and (47) for w^n, we proceed in a same way that was done for w and it is only changed the upper bound $2R - (T + S)$ by $nR - T - (n-1)P$.

\[\square\]

9.2 Examples of strategies with low frequency of cooperation which have large basin but they do not have uniformly large basin

In what follows, we give examples of strategies with arbitrary low frequency of cooperation which have large basins (with size depending on δ and p), however, those strategies do not have uniformly large basin of attraction. In other words, the lower bounds of their basin shrinks to zero when $\delta, p \to 0$. More precisely, they can not have uniformly large basin due to theorem 5. Those strategies are built combining w with a. Moreover, we establish some relation between the frequency of cooperation and the lower bounds of the size of their local basin (but depending on δ and p).

Definition 14. We take n large and $b_0 < 1$, we define the strategy aw^{n,b_0} as the strategy that in blocks of times $I^n_w = [l(n + m_0n), l(n + m_0n) + n - 1]$ behaves as w and in the blocks of times $I^n_a = [l(n + m_0n) + n, (l+1)(n + m_0n) - 1]$ behaves as a, where m_0 denotes the integer part of $\frac{1}{b_0}$ and l is a non-negative integer.

Theorem 14. For any n large, and any positive b_0 the strategy aw^{n,b_0} has a large basin of attraction, but not a uniformly large basin of attraction.

Proof. From now on, and to avoid notation, we denote aw^{n,d_0} with aw. First we are going to prove that aw is a strict sub game perfect.

The strategy aw is a uniform strict subgame perfect: The proof is similar to the one performed for w. Let s be another strategy and given a path h let k be the first deviation $(s(h_k) \neq aw(h_k))$. Either $k \in I^n_w$ or $k \in I^n_a$ for some non-negative l. It follows that

$$U_{\delta, p}(h_{aw,aw}/h_k) = b_0R + (1-b_0)P$$

where

$$b_0 = \frac{1-p^2\delta}{p^2} \sum_{j>0,w^j(aw,aw/h_k)=R} p^{2j+2}\delta^j = \frac{1-p^2\delta}{p^2} \sum_{j>0,I^n_w} p^{2j+2}\delta^j . \quad (51)$$

Observe that provided δ large, then b_0 is close to d_0. Now we take s and assuming that it differs in h_k and $aw(h_k) = R, s(h_k) = D$. In what follows, to avoid notation, with $U(\cdot, \cdot)$ we denote $U_{\delta, p,h_{\cdot},\cdot}(\cdot, \cdot/h_k)$. Following that, we take

$$b_1 = \frac{1-p^2\delta}{p^2} \sum_{j:w^j(s,aw/h_k)=R} p^{2j+2}\delta^j, \quad b_2 = \frac{1-p^2\delta}{p^2} \sum_{j:w^j(s,aw/h_k)=S} p^{2j+2}\delta^j ,$$

44
\[b_3 = \frac{1 - p^2 \delta}{p^2} \sum_{j:w^j(s, aw/hk) = T} p^{2j+2} \delta^j, \quad b_4 = \frac{1 - p^2 \delta}{p^2} \sum_{j:w^j(s, aw/hk) = P} p^{2j+2} \delta^j. \]

Observe that
\[b_1 + b_2 + b_3 + b_4 = 1 \]
and
\[U(s, w) = b_1 R + b_2 S + b_3 T + b_4 P. \]
Moreover, since in blocks \(I_a^l \) \(aw \) behaves as \(a \) then
\[b_4 \geq 1 - b_0 \quad (52) \]
From the property that \(aw \) behaves as \(w \) in blocks of the form \([l(n + m_0 n), (l + 1)(n + m_0 n) + n]\), for each \(T \) that \(s \) can get on those blocks (\(s \) plays \(D \) and \(w \) plays \(C \)) follows that in the next move \(s \) may get either \(S \) or \(P \) because \(w \) plays \(D \), so, noting
\[b_4^w = \frac{1 - p^2 \delta}{p^2} \sum_{j \in I_a^l: w^j(s, aw/hk) = P} p^{2j+2} \delta^j \]
then
\[b_4 \geq 1 - b_0 + b_4^w \quad (53) \]
\[b_2 + b_4^w \geq p^2 \delta b_3. \quad (54) \]
Writing
\[U(aw, aw) = b_0 R + (1 - b_0) P = [b_0 - (1 - b_4)] R + b_1 R + b_2 R + b_3 R + (1 - b_0) R \]
by inequalities \((52) (53) (54)\) it follows that
\[U(aw, aw) - U(s, aw) = [b_0 - (1 - b_4)] R + b_2 (R - S) + b_3 (R - T) + (1 - b_0 - b_4) (R - P) \]
\[\geq (b_0 + b_4 - 1 + b_2) (R - P) + b_3 (R - T) \]
\[\geq (b_4^w + b_2) (R - P) + b_3 (R - T) \]
\[\geq \delta p^2 b_3 (R - P) + b_3 (R - T) \]
\[\geq b_3 [(1 + p^2 \delta) R - (T + P)]. \]
Observing that if \(s(h_k) = D, aw(h_k) = C \), then
\[b_3 \geq 1 - p^2 \delta \]
and since \(2R - (T + P) > 0 \) it follows that for \(\delta \) and \(p \) large (meaning that they are close to one), then \([1 + p^2 \delta) R - (T + P)] > C_0\) for a positive constant smaller than \(2R - (T + P) \) and therefore (provided that \(\delta \) and \(p \) large are large) follows that
\[U(aw, aw) - U(s, aw) > (1 - p^2 \delta) C_0, \]
concluding that \(w \) is a uniform strict subgame perfect in the case \(aw(h_k) = C, s(h_k) = D \).

In the case that \(s(h_k) = C, aw(h_k) = D \) so we know that
\[U(aw, aw) = \frac{1 - p^2 \delta}{p^2} P + p^2 \delta [b_0 R + (1 - b_0) P] \]
where b_0 is calculated as in (51), but starting from $j = 1$. Calculating again the quantities b_1, b_2, b_3, b_4 but starting from $j \geq 1$ then we get that

$$U(s, aw) = (1 - p^2\delta)S + p^2\delta[b_1R + b_2S + b_3T + b_4P].$$

Therefore, writing

$$p^2\delta[b_0R + (1 - b_0)P] = p^2\delta[b_0 - (1 - b_4)]R + b_1R + b_2R + b_3R + (1 - b_0)R]$$

and observing that also holds inequalities (52, 53, 54) and arguing as before it follows that

$$U(aw, aw) = (1 - p^2\delta)(P - S) + \delta b_3[(1 + \delta)R - (T + P)]$$

since $2R - (T + P) > 0$ it follows that for δ large (b_3 now can be zero)

$$U(aw, aw) - U(s, aw) > (1 - p^2\delta)(P - S),$$

proving that aw is a uniform strict subgame perfect in the case $aw(h_k) = D, s(h_k) = C$.

The strategy aw verifies the asymptotic bounded condition, but depending on δp: Bounding (46) and (47) for aw: To bound $U_{\delta, p}(s, s) - U_{\delta, p}(s, aw)$ we repeat the argument done for w and observe that the key point is that $U(aw, aw/h_k) - U(s, aw/h_k) > b_3((1 + \delta)R - (T + S))$ which has been proved when is proved that aw is a uniform strict subgame perfect.

To bound (47) we perform the same approach for w, however the estimates changes depending on d_0. More precisely, given s' and s^* follows that

$$B(s', s^*, aw) \leq 2(1 - d_0)(R - P),$$

therefore, arguing as in the case of w follows that

$$\frac{B_{\delta, p}(s', s^*, aw)}{N_{\delta, p}(aw, s^*)} \leq 2(1 - d_0)(R - P) \frac{(1 - p^2\delta)(P - S)}{(1 - p^2\delta)(P - S)}.$$

The strategy aw does not a uniformly large basin of attraction: It follows from the fact that aw is symmetric but no efficient.

10 Perturbed Replicator Dynamics

We consider more general equations than the replicator dynamics with the restrictions that individuals with low scores die off and the ones with high ones flourish. More precisely, given a payoff matrix A we consider equations defined in the usual n–dimensional simplex \sum, of the form

$$\dot{x}_i = x_iG_i(x)$$

such that

$$G_i(x) > 0, \text{ if and only if } (Ax)_i - x^tAx > 0$$

$$G_i(x) < 0, \text{ if and only if } (Ax)_i - x^tAx < 0.$$

In this case, it follows that

$$G_i(x) = [(Ax)_i - x^tAx]H_i(x)$$

(55)
where \(H_i : \sum \to \mathbb{R} \). Moreover, form previous assumption it holds that \(H_i \) is always positive in the simplex \(\sum \). We require a slightly strong condition: \(C^+ = \max \{ H_i(x), x \in \sum, i = 1 \ldots m \} < +\infty \), and \(C^- = \min \{ H_i(x), x \in \sum, i = 1 \ldots m \} > 0 \).

Then

\[
0 < C^- \leq H_i < C^+.
\] (56)

The goal is to show that a version of theorem 1 can be obtained in the present case. More precisely, provided the hypothesis of theorem 1 and assuming equations as above, it is shown that

\[
\Delta_{\frac{1}{M_0}} \cap \Delta_{\frac{C^-}{2C^+}}
\]

is contained in the local basin of attraction of \(e_1 \). The proof, goes through the same strategy: we shows that for any \(k \leq \min \{ \frac{1}{M_0}, \frac{C^-}{2C^+} \} \), re-writing the equations in affine coordinates follows that

\[
\sum_{i \geq 2} x_i G_i = \sum_{i \geq 2} x_i F_i H_i < 0
\]

where \(F_i \) is \((Ax)_i - x^t Ax\) in affine coordinates. From inequalities (56) it follows that

\[
x_i F_i(x) H_i(x) < C^+ x_i F_i(x), \text{ if } F_i(x) > 0; \quad x_i F_i(x) H_i(x) < C^- x_i F_i(x), \text{ if } F_i(x) < 0.
\]

Recalling that \(F_j(x) = (f_j - f_1)(x) + R(x) \) with \(R(x) = \sum_i (f_1 - f_i)(x) x_i \) (the variable \(x \) is already assumed in affine coordinates) follows that

\[
\sum_i x_i F_i(x) H_i(x) \leq \sum_{\{i: F_i(x) > 0\}} C^+ x_i F_i(x) + \sum_{\{i: F_i(x) < 0\}} C^- x_i F_i(x)
\]

\[
= \sum_{\{i: F_i(x) > 0\}} x_i C^+(f_i - f_1)(x) + \sum_{\{i: F_i(x) < 0\}} x_i C^-(f_i - f_1)(x)
\]

\[
+ R(x) [\sum_{\{i: F_i(x) > 0\}} C^+ x_i + \sum_{\{i: F_i(x) < 0\}} C^- x_i].
\]

If \(x \in \Delta_k \) with \(k < \frac{C^-}{2C^+} \) it follows that \(\sum_{\{i: F_i(x) > 0\}} C^+ x_i + \sum_{\{i: F_i(x) < 0\}} C^- x_i \leq \frac{C^-}{2} \) and recalling the definition of \(R_0 \) follows that

\[
\sum_{\{i: F_i(x) > 0\}} x_i C^+(f_i - f_1)(x) + \sum_{\{i: F_i(x) < 0\}} x_i C^-(f_i - f_1) + R(x) [\sum C^+ x_i + \sum C^- x_i] \leq \frac{C^-}{2}
\]

\[
\sum_{\{i: F_i(x) > 0\}} x_i \hat{C}^+(f_i - f_1)(x) + \sum_{\{i: F_i(x) < 0\}} x_i \hat{C}^-(f_i - f_1)
\]

where \(\hat{C}^+ = C^+ - \frac{C^-}{2}, \hat{C}^- = \frac{C^-}{2} \). Therefore, rewriting the equation as it was done in the proof of theorem 1 to finish we have to prove that

\[
N(cx) + x^t M(cx) < 0
\] (57)

where \(cx = (c_1 x_1, c_2 x_2, \ldots, c_n x_n) \) and \(c_i \) is either \(\hat{C}^+ \) or \(\hat{C}^- \) and \(N, M \) are the vector and matrix induce by \(A \) and so. To prove (57), we need a more general version of lemma 10. The proofs are similar.
Lemma 19. Let \(c = (c_1, \ldots, c_m) \in \mathbb{R}^m \) such that each coordinate is positive. Let \(Q_c : \mathbb{R}^m \to \mathbb{R} \) given by
\[
Q(x) = N(cx) + x^t M(cx)
\]
with \(x \in \mathbb{R}^m, N \in \mathbb{R}^m, M \in \mathbb{R}^{m \times m} \) and \(cx := (c_1 x_1, \ldots, c_m x_m) \). Let us assume that \(N_i < 0 \) for any \(i \) and for any \(j > i, |N_i| \geq |N_j| \). Let
\[
M_0 = \max_{i, j > i} \left\{ \frac{M_{ij} + M_{ji}}{-N_i}, 0 \right\}.
\]
Then, the set \(\Delta_{\frac{1}{M_0}} = \{ x \in \mathbb{R}^m : x_i \geq 0, \sum_{i=1}^m x_i < \frac{1}{M_0} \} \), is contained in \(\{ x : Q_c(x) < 0 \} \). In particular, if \(M_0 = 0 \) then \(\frac{1}{M_0} \) is treated as \(\infty \) and this means that \(\{ x \in \mathbb{R}^m : x_i \geq 0 \} \subset \{ x : Q_c(x) \leq 0 \} \).

References

[AR] Abreu, D. and A. Rubinstein (1988). The Structure of Nash Equilibrium in Repeated Games with Finite Automata. Econometrica, 56(6): 1259-81.

[Ax] Axelrod, R. (1984). The Evolution of Cooperation. Basic Books.

[BiS] Binmore, K.G. and L. Samuelson (1992). Evolutionary Stability in Repeated Games Played by Finite Automata. Journal of Economic Theory, 57(2): 278-305.

[BeS] Bendor, J. and P. Swistak (1997). The Evolutionary Stability of Cooperation. The American Political Science Review, 91(2): 290-307

[B] Boyd, R. (1989). Mistakes allow evolutionary stability in the repeated prisoner’s dilemma game, Journal of Theoretical Biology 136(1): 47-56.

[BL] Boyd, R. and J.P. Lorberbaum (1987). No Pure Strategy Is Evolutionarily Stable in the Repeated Prisoner’s Dilemma Game. Nature, 327: 58-59.

[C] Cooper, D.J. (1996). Supergames Played by Finite Automata with Finite Costs of Complexity in an Evolutionary Setting. Journal of Economic Theory, 68(1): 266-275.

[DBF] Dal Bó, P. and G.R. Fréchette (2011). The Evolution of Cooperation in Infinitely Repeated Games: Experimental Evidence. American Economic Review 101(1).

[DBF2] Dal Bó, P. and G.R. Fréchette (2011). Strategy Choice In The Infinitely Repeated Prisoners Dilemma. Unpublished.

[FM] Fudenberg, D. and E. Maskin (1990). Evolution of cooperation in noisy repeated game, The American Economic Review, 90(2): 274-279.

[FM2] Fudenberg, D. and E. Maskin (1993). Evolution and Repeated Games. Unpublished.

[FRD] Fudenberg, D., D.G. Rand, and A. Dreber (2012). Slow to Anger and Fast to Forget: Cooperation in an Uncertain World. American Economic Review, 102(2): 720-749.

[IFN] Imhof, L., D. Fudenberg, M. Nowak (2007). Tit-for-tat or win-stay, lose-shift? Journal of Theoretical Biology, 247: 574-580.
[JLP] Johnson, P., D.K. Levine, and W. Pesendorfer (2001). Evolution and Information in a Gift-Giving Game. Journal of Economic Theory, 100(1): 1-21.

[KMR] Kandori, M., G.J. Mailath, and R. Rob (1993). Learning, Mutation, and Long Run Equilibria in Games. Econometrica, 61(1): 29-56.

[Ki] Kim, Y. (1994). Evolutionarily Stable Strategies in the Repeated Prisoner Dilemma. Mathematical Social Sciences, 28(3): 167-97.

[LP] Levine, D.K. and W. Pesendorfer (2007). The Evolution of Cooperation through Imitation. Games and Economic Behavior, 58(2): 293-315.

[M] Myerson, R.B. (1991). Game Theory: Analysis of Conflict. Cambridge, MA: Harvard University Press.

[NSTF] Nowak, M., A. Sasaki, C. Taylor and D. Fudenberg (2004). Emergence of cooperation and evolutionary stability in finite populations, Nature, 428(8).

[NS] Nowak, M. and K. Sigmund (1993). A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner’s Dilemma game. Nature, 364: 56-58.

[RC] Rapoport, A. and A.M. Chammah (1965), Prisoner’s dilemma: a study in conflict and cooperation. Ann Arbor: University of Michigan Press.

[R] Rubinstein, A. (1986). Finite Automata Play the Repeated Prisoner’s Dilemma. Journal of Economic Theory, 39(1): 83-96.

[S] Smith, J.M. (1982). Evolution and the Theory of Games. New York: Cambridge University Press.

[V] Volij, O. (2002). In Defense of DEFECT. Games and Economic Behavior, 39(2): 309-21.

[YP] Young, H.P. (1993). The Evolution of Conventions. Econometrica, 61(1): 57-84.

Pedro Dal Bó
Department of Economics Brown University
64 Waterman St. Providence, RI 02912, USA.
pdalbo@brown.edu

Enrique R. Pujals
IMPA-OS
Estrada Dona Castorina 110, 22460-320, Rio de Janeiro, Brazil.
enrique@impa.br