タイトル	Holonomic rank of A-hypergeometric differential-difference equations
著者	Ohara, Katsuyoshi / Takayama, Nobuki
掲載誌・巻号・ページ	Journal of Pure and Applied Algebra, 213(8):1536-1544
刊行日	2009-08
資源タイプ	Journal Article / 学術雑誌論文
版区分	author
権利	
DOI	10.1016/j.jpaa.2008.11.018
JaLCDOI	
URL	http://www.lib.kobe-u.ac.jp/handle_kernel/90000952

PDF issue: 2018-11-02
Holonomic rank of A-hypergeometric differential-difference equations

Katsuyoshi Ohara* and Nobuki Takayama†

June 18, 2007

Abstract

We introduce A-hypergeometric differential-difference equation H_A and prove that its holonomic rank is equal to the normalized volume of A with giving a set of convergent series solutions.

1 Introduction

In this paper, we introduce A-hypergeometric differential-difference equation H_A and study its series solutions and holonomic rank.

Let $A = (a_{ij})_{i=1}^d_{j=1}^n$ be a $d \times n$-matrix whose elements are integers. We suppose that the set of the column vectors of A spans \mathbb{Z}^d and there is no zero column vector. Let a_i be the i-th column vector of the matrix A and $F(\beta, x)$ the integral

$$F(\beta, x) = \int_C \exp \left(\sum_{i=1}^n x_i t^{a_i} \right) t^{-\beta-1} dt, \quad t = (t_1, \ldots, t_d), \ \beta = (\beta_1, \ldots, \beta_d).$$

The integral $F(\beta, x)$ satisfies the A-hypergeometric differential system associated to A and β “formally”. We use the word “formally” because, there is no general and rigorous description about the cycle C ([11, p.222]).

We will regard the parameters β as variables. Then, the function $F(s, x)$ on the (s, x) space satisfies differential-difference equations “formally”, which will be our A-hypergeometric differential-difference system.

Rank theories of A-hypergeometric differential system have been developed since Gel’fand, Zelevinsky and Kapranov [4]. In the end of 1980’s,

*Department of Computational Science, Kanazawa University
†Department of Mathematics, Kobe University
under the condition that the points lie on a same hyperplane, they proved
that the rank of \(A \)-hypergeometric differential system \(H_A(\beta) \) agrees with
the normalized volume of \(A \) for any parameter \(\beta \in \mathbb{C}^d \) if the toric ideal
\(I_A \) has the Cohen-Macaulay property. After their result had been gotten,
many people have studied on conditions such that the rank equals the nor-
amalized volume. In particular, Matuschevich, Miller and Walther proved that
\(I_A \) has the Cohen-Macaulay property if the rank of \(H_A(\beta) \) agrees with the
normalized volume of \(A \) for any \(\beta \in \mathbb{C}^d \) ([5]).

In this paper, we will introduce \(A \)-hypergeometric differential-difference
system, which can be regarded as a generalization of difference equation
for the \(\Gamma \)-function, the Beta function, and the Gauss hypergeometric dif-
ference equations. As the first step on this differential-difference system,
we will prove our main Theorem 3 utilizing theorems on \(A \)-hypergeometric
differential equations, construction of convergent series solutions with a ho-
mogenization technique, uniform convergence of series solutions, and Mut-
sumi Saito’s results for contiguity relations [9], [10], [11, Chapter 4]. The
existence theorem 2 on convergent series fundamental set of solutions for
\(A \)-hypergeometric differential equation for generic \(\beta \) is the second main the-
orem of our paper. Finally, we note that, for studying our \(A \)-hypergeometric
differential-difference system, we wrote a program “yang” ([6], [8]) on a com-
puter algebra system Risa/Asir and did several experiments on computers
to conjecture and prove our theorems.

2 Holonomic rank

Let \(D \) be the ring of differential-difference operators
\[
\mathbb{C}\langle x_1, \ldots, x_n, s_1, \ldots, s_d, \partial_1, \ldots, \partial_n, S_1, \ldots, S_d, S_1^{-1}, \ldots, S_d^{-1}\rangle
\]
where the following (non-commutative) product rules are assumed
\[
S_i s_i = (s_i + 1)S_i, \quad S_i^{-1} s_i = (s_i - 1)S_i^{-1}, \quad \partial_i x_i = x_i \partial_i + 1
\]
and the other types of the product of two generators commute.

Holonomic rank of a system of differential-difference equations will be
defined by using the following ring of differential-difference operators with
rational function coefficients
\[
U = \mathbb{C}\langle s_1, \ldots, s_d, x_1, \ldots, x_n \rangle \langle S_1, \ldots, S_d, S_1^{-1}, \ldots, S_d^{-1}, \partial_1, \ldots, \partial_n \rangle
\]
It is a \(\mathbb{C} \)-algebra generated by rational functions in \(s_1, \ldots, s_d, x_1, \ldots, x_n \) and
differential operators \(\partial_1, \ldots, \partial_n \) and difference operators \(S_1, \ldots, S_d, S_1^{-1}, \ldots, S_d^{-1} \).
The commutation relations are defined by \(\partial_i c(s, x) = c(s, x)\partial_i + \frac{\partial c}{\partial x_i}, \) \(S_i c(s, x) = c(s_1, \ldots, s_i + 1, \ldots, s_d, x)S_i, \) \(S_i^{-1} c(s, x) = c(s_1, \ldots, s_i - 1, \ldots, s_d, x)S_i^{-1}. \)

Let \(I \) be a left ideal in \(D. \) The holonomic rank of \(I \) is the number \(\text{rank}(I) = \dim_{\mathbb{C}(s,x)} U / (UI). \)

In case of the ring of differential operators \((d = 0), \) the definition of the holonomic rank agrees with the standard definition of holonomic rank in the ring of differential operators.

For a given left ideal \(I, \) the holonomic rank can be evaluated by a Gröbner basis computation in \(U. \)

3 \(\mathcal{A} \)-hypergeometric differential-difference equations

Let \(A = (a_{ij})_{i=1,\ldots,d, j=1,\ldots,n} \) be an integer \(d \times n \) matrix of rank \(d. \) We assume that the column vectors \(\{a_i\} \) of \(A \) generates \(\mathbb{Z}^d \) and there is no zero vector. The \(\mathcal{A} \)-hypergeometric differential-difference system \(H_A \) is the following system of differential-difference equations

\[
\left(\sum_{j=1}^{n} a_{ij} x_j \partial_j - s_i \right) \bullet f = 0 \quad \text{for } i = 1, \ldots, d \quad \text{and}
\]

\[
\left(\partial_j - \prod_{i=1}^{n} S_i^{-a_{ij}} \right) \bullet f = 0 \quad \text{for } j = 1, \ldots, n.
\]

Note that \(H_A \) contains the toric ideal \(I_A. \) (use [12, Algorithm 4.5] to prove it.)

Definition 1. Define the unit volume in \(\mathbb{R}^d \) as the volume of the unit simplex \(\{0, e_1, \ldots, e_d\}. \) For a given set of points \(\mathcal{A} = \{a_1, \ldots, a_n\} \) in \(\mathbb{R}^d, \) the normalized volume \(\text{vol}(\mathcal{A}) \) is the volume of the convex hull of the origin and \(\mathcal{A}. \)

Theorem 1. \(\mathcal{A} \)-hypergeometric differential-difference system \(H_A \) has linearly independent \(\text{vol}(A) \) series solutions.

The proof of this theorem is divided into two parts. The matrix \(A \) is called homogeneous when it contains a row of the form \((1, \ldots, 1). \) If \(A \) is homogeneous, then the associated toric ideal \(I_A \) is homogeneous ideal [12]. The first part is the case that \(A \) is homogeneous. The second part is the case that \(A \) is not homogeneous.
Proof. (A is homogeneous.) We will prove the theorem with the homogeneity assumption of A. In other words, we suppose that A is written as follows:

$$A = \begin{pmatrix} 1 & \cdots & 1 \\ * & \end{pmatrix}. $$

Gel’fand, Kapranov, Zelevinski gave a method to construct $m = \text{vol}(A)$ linearly independent solutions of $H_A(\beta)$ with the homogeneity condition of A ([4]). They suppose that β is fixed as a generic C-vector. Let us denote their series solutions by $f_1(\beta; x), \ldots, f_m(\beta; x)$. It is easy to see that the functions $f_i(s; x)$ are solutions of the differential-difference equations H_A. We can show, by carefully checking the estimates of their convergence proof, that there exists an open set in the (s, x) space such that $f_i(s; x)$ is locally uniformly convergent with respect to s and x. Let us sketch their proof to see that their series converge as solutions of H_A. The discussion is given in [4], but we need to rediscuss it in a suitable form to apply it to the case of inhomogeneous A.

Let B be a matrix of which the set of column vectors is a basis of $\text{Ker}(A : \mathbb{Q}^n \to \mathbb{Q}^d)$ and is normalized as follows:

$$B = \begin{pmatrix} 1 & \cdots & 1 \\ * & \end{pmatrix} \in M(n, n - d, \mathbb{Q}).$$

We denote by $b^{(i)}$ the i-th column vector of B and by b_{ij} the j-th element of $b^{(i)}$. Then the homogeneity of A implies

$$\sum_{j=1}^{n} b_{ij} = 0.$$

Let us fix a regular triangulation Δ of $\mathcal{A} = \{a_1, \ldots, a_n\}$ following the construction by Gel’fand, Kapranov, Zelevinsky. Take a d-simplex τ in the triangulation Δ. If $\lambda \in \mathbb{C}^n$ is admissible for a d-simplex τ of $\{1, 2, \ldots, n\}$ (admissible \Leftrightarrow for all $j \notin \tau$, $\lambda_j \in \mathbb{Z}$), and $A\lambda = s$ holds, then H_A has a formal series solution

$$\phi_{\tau}(\lambda; x) = \sum_{l \in L} \frac{x^{\lambda+l}}{\Gamma(\lambda+l+1)},$$

where $L = \text{Ker}(A : \mathbb{Z}^n \to \mathbb{Z}^d)$ and $\Gamma(\lambda+l+1) = \prod_{i=1}^{n} \Gamma(\lambda_i+l_i+1)$ and when a factor of the denominator of a term in the sum, we regard the term
is zero. Put \(\# \tau = n' \). Note that there exists an open set \(U \) in the \(s \) space such that \(\lambda_i, \ i \in \tau \) lie in a compact set in \(\mathbb{C}^{n'} \setminus \mathbb{Z}^{n'} \). Moreover, this open set \(U \) can be taken as a common open set for all \(d \)-simplices in the triangulation \(\Delta \) and the associated admissible \(\lambda \)'s when the integral values \(\lambda_j (j \notin \tau) \) are fixed for all \(\tau \in \Delta \).

Put \(L' = \{(k_1, \ldots, k_{n-d}) \in \mathbb{Z}^{n-d} \mid \sum_{i=1}^{n-d} k_ib^{(i)} \in \mathbb{Z}^n\} \). Then, \(L' \) is \(\mathbb{Z} \)-submodule of \(\mathbb{Z}^{n-d} \) and \(L = \{\sum_{i=1}^{n-d} k_ib^{(i)} \mid k \in L'\} \). In other words, \(L \) can be parametrized with \(L' \). Without loss of the generality, we may suppose that \(\tau = \{n-d+1, \ldots, n\} \). Then, we have

\[
\phi_\tau(\lambda; x) = \sum_{l \in L} \frac{x^{\lambda+l}}{\Gamma(\lambda+l+1)} = \sum_{k \in L'} \frac{x^{\lambda+\sum_{i=1}^{n-d} k_ib^{(i)}}}{\Gamma(\lambda+\sum_{i=1}^{n-d} k_ib^{(i)}+1)}
\]

Note that the first \(n-d \) rows of \(B \) are normalized. Then, we have

\[
\lambda_j + \sum_{i=1}^{n-d} k_ib_{ij} + 1 = \lambda_j + k_j + 1 \in \mathbb{Z} \quad (j = 1, \ldots, n-d)
\]

Since \(1/\Gamma(0) = 1/\Gamma(-1) = 1/\Gamma(-2) = \cdots = 0 \), the sum can be written as

\[
\phi_\tau(\lambda; x) = \sum_{k \in L'} \frac{x^{\lambda+\sum_{i=1}^{n-d} k_ib^{(i)}}}{\Gamma(\lambda+\sum_{i=1}^{n-d} k_ib^{(i)}+1)}
\]

Moreover, when we put

\[
k'_j = \lambda_j + k_j, \quad (j = 1, \ldots, n-d)
\]

\[
\lambda' = \lambda - \sum_{i=1}^{n-d} \lambda_ib^{(i)}
\]

\[
\hat{\lambda} = (\lambda_1, \ldots, \lambda_{n-d})
\]

we have

\[
\sum_{i=1}^{n-d} k_ib^{(i)} = -\sum_{i=1}^{n-d} \lambda_ib^{(i)} + \sum_{i=1}^{n-d} k'_ib^{(i)}
\]
Hence, the sum $\phi_\tau (\lambda; x)$ can be written as

$$
\phi_\tau (\lambda; x) = \sum_{k' \in L'} x^{\lambda - \sum_{i=1}^{n-d} \lambda_i b^{(i)}} \cdot x^{\sum_{i=1}^{n-d} k'_i b^{(i)}} \Gamma (\lambda - \sum_{i=1}^{n-d} \lambda_i b^{(i)} + \sum_{i=1}^{n-d} k'_i b^{(i)} + 1)
$$

Note that our series with the coefficients in terms of Gamma functions agree with those in [11, §3.4], which do not contain Gamma functions, by multiplying suitable constants. Hence we will apply some results on series solutions in [11] to our discussions in the sequel.

Lemma 1. Let $(k_i) \in (\mathbb{Z}_{\geq 0})^m$ and $(b_{ij}) \in M(m, n, \mathbb{Q})$. Suppose that

$$
\sum_{i=1}^{m} k_i b_{ij} \in \mathbb{Z}, \quad \sum_{j=1}^{n} b_{ij} = 0
$$

and parameters $\lambda = (\lambda_1, \ldots, \lambda_n)$ belongs to a compact set K. Then there exists a positive number r, which is independent of λ, such that the power series

$$
\sum_{k' \in L' + \hat{\lambda}} \frac{x^{b^{(1)}_{k'}} \cdots x^{b^{(n-d)}_{k'}}}{\Gamma (\lambda + \sum_{i=1}^{n-d} k'_i b^{(i)} + 1)}
$$

is convergent in $|x^{b^{(1)}_{k'}}|, \ldots, |x^{b^{(n-d)}_{k'}}| < r$.

The proof of this lemma can be done by elementary estimates of Gamma functions. See [7, pp.18–21] if readers are interested in the details. Since

$$
k' \in L' + \hat{\lambda} \iff \sum_{i=1}^{n-d} k'_i b^{(i)} \in \mathbb{Z}^n
$$

it follows from Lemma 1 that there exists a positive constant r such that the series converge in

$$
|x^{b^{(1)}_k}|, \ldots, |x^{b^{(n-d)}_k}| < r
$$

for any s in the open set U. We may suppose $r < 1$. Take the log of (3.1). Then we have

$$
b^{(k)} \cdot (\log |x_1|, \ldots, \log |x_n|) < \log |r| < 0 \quad \forall k \in \{1, \ldots, n - d\}
$$
Following [4], for the simplex τ and r, we define the set $C(A, \tau, r)$ as follows.

$$C(A, \tau, r) = \{ \psi \in \mathbb{R}^n \mid \exists \varphi \in \mathbb{R}^d, \psi_i - (\varphi, a_i) \begin{cases} > -\log |r|, & i \notin \tau, \\ = 0, & i \in \tau, \end{cases} \}$$

The condition (3.2) and $(-\log |x_1|, \ldots, -\log |x_n|) \in C(A, \tau, r)$ is equivalent (see [3, section 4] as to the proof).

Since Δ is a regular triangulation of A, $\bigcap_{r \in \Delta} C(A, \tau, r)$ is an open set. Therefore, when s lies in the open set U and $-\log |x|$ lies in the above open set, the $\text{vol}(A)$ linearly independent solutions converge.

Let us proceed on the proof for the inhomogeneous case. We suppose that A is not homogeneous and has only non-zero column vectors. We define the homogenized matrix as

$$\tilde{A} = \begin{pmatrix} 1 & \cdots & 1 & 1 \\ a_{11} & \cdots & a_{1n} & 0 \\ \vdots & \vdots & \vdots & \vdots \\ a_{dn} & \cdots & a_{dn} & 0 \end{pmatrix} \in M(d+1, n+1, \mathbb{Z}).$$

For $s = (s_1, \ldots, s_n) \in \mathbb{C}^d$ and a generic complex number s_0, we put $\tilde{s} = (s_0, s_1, \ldots, s_d)$. We suppose that $\tau = \{n-d+1, \ldots, d, d+1\}$ is a $(d+1)$-simplex. Let us take an admissible λ for τ such that $\tilde{A}\lambda = \tilde{s}$ and $\hat{\lambda} = (\lambda_1, \ldots, \lambda_{n+1}) \in \mathbb{R}^{n+1}$ as in the proof of the homogeneous case. Put $\lambda = (\lambda_1, \ldots, \lambda_n)$. Consider the solution of the hypergeometric system for \tilde{A}

$$\tilde{\phi}_\tau(\hat{\lambda}; \tilde{x}) = \sum_{k' \in L' \cap \mathbb{Z}} \tilde{x}^{\lambda + \sum_{i=1}^{n-d} k'_i b_i(i)} \Gamma(\lambda + \sum_{i=1}^{n-d} k'_i b_i + 1)$$

and the series

$$\phi_\tau(\lambda; x) = \sum_{k' \in L' \cap \mathbb{Z}} \frac{\prod_{j=1}^n x_j^{\lambda + \sum_{i=1}^{n-d} k'_i b_{ij}}}{\prod_{j=1}^n x_j^{\lambda + \sum_{i=1}^{n-d} k'_i b_{ij} + 1}}$$

($\tilde{x} = (x_1, \ldots, x_{n+1}), x = (x_1, \ldots, x_n)$). Here, the set S is a subset of L' such that an integer in $\mathbb{Z}_{\leq 0}$ does not appear in the arguments of the Gamma functions in the denominator. We note that L' for \tilde{A} and L' for A agree, which can be proved as follows. Let (k_1, \ldots, k_{n+1}) be in the kernel of \tilde{A} in \mathbb{Q}^{n+1}. Since \tilde{A} contains the row of the form $(1, \ldots, 1)$, then $(k_1, \ldots, k_n) \in \mathbb{Z}^n$ implies that k_{n+1} is an integer. The conclusion follows from the definition of L'.
Definition 2. We call $\phi_\tau(\lambda; x)$ the dehomogenization of $\tilde{\phi}_\tau(\lambda; \tilde{x})$.

Intuitively speaking, the dehomogenization is defined by “forgetting” the last variable x_{n+1} associated Γ factors. See Example 1.

Formal series solutions for the hypergeometric system for inhomogeneous A do not converge in general. However, we can construct $\text{vol}(A)$ convergent series solutions as the dehomogenization of a set of series solutions for \tilde{A} hypergeometric system associated to a regular triangulation on \tilde{A} induced by a “nice” weight vector $\tilde{w}(\varepsilon)$, which we will define. Put $\tilde{w} = (1, \ldots, 1, 0) \in \mathbb{R}^{n+1}$. Since the Gröbner fan for the toric variety $I_{\tilde{A}}$ is a polyhedral fan, the following fact holds.

Lemma 2. For any $\varepsilon > 0$, there exists $\tilde{v} \in \mathbb{R}^{n+1}$ such that $\tilde{w}(\varepsilon) := \tilde{w} + \varepsilon \tilde{v}$ lies in the interior of a maximal dimensional Gröbner cone of $I_{\tilde{A}}$. We may also suppose $\tilde{v}_{n+1} = 0$.

Proof. Let us prove the lemma. The first part is a consequence of an elementary property of the fan. When I is a homogeneous ideal in the ring of polynomials of $n+1$ variables, we have

$$\text{in}_u(I) = \text{in}_{u+t(1, \ldots, 1)}(I)$$

for any t and any weight vector u. In other words, \tilde{u} and $\tilde{u} + t(1, \ldots, 1)$ lie in the interior of the same Gröbner cone.

When the weight vector $\tilde{w}(\varepsilon) = \tilde{w} + \varepsilon \tilde{v}$ lies in the interior of the Gröbner cone, we define a new \tilde{v} by $\tilde{v} - \tilde{v}_{n+1}(1, \ldots, 1)$. Since the initial ideal does not change with this change of weight, we may assume that $\tilde{v}_{n+1} = 0$ for the new \tilde{v}.

Since the Gröbner fan is a refinement of the secondary fan and hence $\tilde{w}(\varepsilon)$ is an interior point of a maximal dimensional secondary cone, it induces a regular triangulation ([12] p.71, Proposition 8.15). We denote by Δ the regular triangulation on \tilde{A} induced by $\tilde{w}(\varepsilon)$. For a d-simplex $\tau \in \Delta$, we define $b^{(i)}$ as in the proof of the homogeneous case. Since the weight for \tilde{a}_{n+1} is the lowest, $n+1 \in \tau$ holds. We can change indices of $\tilde{a}_1, \ldots, \tilde{a}_n$ so that $\tau = \{n-d+1, \ldots, n+1\}$ without loss of generality.

Let us prove that the dehomogenized series $\phi_\tau(\lambda; x)$ converge. It follows from a characterization of the support of the series [11, Theorem 3.4.2] that we have

$$\tilde{w}(\varepsilon) \cdot \left(\sum_{i=1}^{n-d} k^i b^{(i)} + \lambda\right) \geq \tilde{w}(\varepsilon) \cdot \lambda, \quad \forall k' \in L' \cap S.$$
Here, \(S \) is a set such that \(Z_{<0} \) does not appear in the denominator of the \(\Gamma \) factors. Take the limit \(\varepsilon \to 0 \) and we have

\[
\tilde{w} \cdot \sum_{i=1}^{n-d} k'_i b^{(i)} \geq 0, \quad \forall k' \in L' \cap S.
\]

From Lemma 2, \(\tilde{w}(\varepsilon) \in C(\tilde{A}, \tau) \) holds and then

\[
\tilde{w}(\varepsilon) \cdot b^{(i)} \geq 0.
\]

Similarly, by taking the limit \(\varepsilon \to 0 \), we have

\[
\tilde{w} \cdot b^{(i)} = \sum_{j=1}^{n} b_{ij} \geq 0.
\]

Therefore, we have \(\sum_{j=1}^{n+1} b_{ij} = 0 \), the inequality \(b_{i,n+1} \leq 0 \) holds for all \(i \).

Since \(k'_1 \geq -\lambda_1, \ldots, k'_{n-d} \geq -\lambda_{n-d} \), we have

\[
\sum_{i=1}^{n-d} k'_i b_{i,n+1} \leq -\sum_{i=1}^{n-d} \lambda_i b_{i,n+1}
\]

Note that the right hand side is a non-negative number. Suppose that \(\lambda_{n+1} \) is negative. In terms of the Pochhammer symbol we have \(\Gamma(\lambda_{n+1} - m) = \Gamma(\lambda_{n+1})(-\lambda_{n+1} + 1; m)^{-1} (-1)^m \), then we can estimate the \((n+1)\)-th gamma factors as

\[
\left| \Gamma(\lambda_{n+1} + \sum_{i=1}^{n-d} k'_i b_{i,n+1} + 1) \right| = \left| \Gamma(\lambda_{n+1} + 1) \right| \left| \left(-\lambda_{n+1} \sum_{i=1}^{n-d} k'_i b_{i,n+1} \right)^{-1} \right| \\
\leq c' \left| \Gamma(\lambda_{n+1} + 1) \right| \left| \left(-\lambda_{n+1} \sum_{i=1}^{n-d} \lambda_i b_{i,n+1} \right)^{-1} \right| \\
= c
\]

(3.4)

Here, \(c' \) and \(c \) are suitable constants.

When \(\lambda_{n+1} \geq 0 \), there exists only finite set of values such that \(\lambda_{n+1} + \sum_{i=1}^{n-d} k'_i b_{i,n+1} \geq 0 \). Then, we can show the inequality (3.4) in an analogous way.

Now, by (3.4), we have

\[
\frac{1}{\prod_{j=1}^{n} \Gamma(\lambda_j + \sum_{i=1}^{n-d} k'_i b_{ij} + 1)} \leq c \frac{1}{\Gamma(\lambda + \sum_{i=1}^{n-d} k'_i b^{(i)} + 1)}
\]
We note that the right hand side is the coefficient of the series solution for the homogeneous system for \tilde{A} and the series converge for $(-\log|x_1|, \ldots, -\log|x_{n+1}|) \in C(\tilde{A}, \tau, r) \ (r < 1)$ uniformly with respect to \tilde{s} in an open set.

Put $x_{n+1} = 1$. Since $-\log|x_{n+1}| = 0$ and $\tilde{w}(\varepsilon) \in \{y \mid y_{n+1} = 0\}$, we can see that

$$\bigcap_{\tau \in \Delta} C(\tilde{A}, \tau, r) \cap \{y \mid y_{n+1} = 0\}$$

is a non-empty open set of \mathbb{R}^n. Therefore the dehomogenized series $\phi_r(\lambda; x)$ converge in an open set in the (s, x) space.

Theorem 2. The dehomogenized series $\phi_r(\lambda; x)$ satisfies the hypergeometric differential-difference system H_A and they are linearly independent convergent solutions of H_A when λ runs over admissible exponents associated to the initial system induced by the weight vector $\tilde{w}(\varepsilon)$.

Proof. Since $A\lambda = s$, it is easy to show that they are formal solutions of the differential-difference system H_A. We will prove that we can construct m linearly independent solutions. We note that the weight vector $\tilde{w}(\varepsilon) = (1, \ldots, 1, 0) + \varepsilon v \in \mathbb{R}^{n+1}$ is in the neighborhood of $(1, \ldots, 1, 0) \in \mathbb{R}^{n+1}$ and in the interior of a maximal dimensional Gröbner cone of $I_{\tilde{A}}$.

It follows from [11, p.119] that the minimal generating set of in$(1, \ldots, 1, 0) I_{\tilde{A}}$ does not contain ∂_{n+1}. Since

$$\text{in}_{\tilde{w}(\varepsilon)} I_{\tilde{A}} = \text{in}_v(\text{in}_{(1, \ldots, 1, 0)} I_{\tilde{A}})$$

does not contain ∂_{n+1}, we have

$$M = \langle \text{in}_{\tilde{w}(\varepsilon)} I_{\tilde{A}} \rangle = \langle \text{in}_w I_A \rangle \quad \text{in } \mathbb{C}[\partial_1, \ldots, \partial_{n+1}].$$

Here, we define $w(\varepsilon)$ with $\tilde{w}(\varepsilon) = (w(\varepsilon), 0)$. Put $\tilde{\theta} = (\theta_1, \ldots, \theta_{n+1})$. From [11, Theorem 3.1.3], for generic $\tilde{\beta} = (\beta_0, \tilde{\beta})$, $\tilde{\beta} \in \mathbb{C}^d$, the initial ideal $\text{in}_{(\tilde{w}(\varepsilon), \tilde{w}(\varepsilon))} H_{\tilde{A}}(\tilde{\beta})$ is generated by $\text{in}_{\tilde{w}(\varepsilon)}(I_{\tilde{A}})$ and $\tilde{A}\tilde{\theta} - \tilde{\beta}$. Let us denote by $T(M)$ the standard pairs of M. From [11, Theorem 3.2.10], the initial ideal

$$\langle \text{in}_{\tilde{w}(\varepsilon)} I_{\tilde{A}}, \tilde{A}\tilde{\theta} - \tilde{\beta} \rangle$$

has $\#T(M) = \text{vol}(\tilde{A})$ linearly independent solutions of the form

$$\{\tilde{x}^{\tilde{\lambda}} \mid (\partial^n, T) \in T(M)\}$$

Here, $\tilde{\lambda}$ is defined by $\tilde{\lambda}_i = a_i \in \mathbb{Z}_{\geq 0}, \forall i \notin T$ and $\tilde{A}\tilde{\lambda} = \tilde{\beta}$. Note that $\tilde{\lambda}$ is admissible for the d-simplex T.

10
Since we have
\[(\text{in}_{\varepsilon}(\varepsilon I_A)) = (\text{in}_{\varepsilon}(\varepsilon I_A))\]
the difference between
\[(\text{in}_{\varepsilon}(\varepsilon I_A), A\theta - \beta)\]
and (3.5) is only
\[\theta_1 + \cdots + \theta_n + \theta_{n+1} - \beta_0\]
and other equations do not contain \(x_{n+1}, \partial_{n+1}\).

For any \((\partial^a, T) \in T(M)\), we have \(n + 1 \in T\). Therefore, the two solution
spaces (3.6) and (3.5) are isomorphic under the correspondence
\[x^\lambda \mapsto \tilde{x}^{\tilde{\lambda}}\]
(3.7)

Here, we put \(\tilde{\lambda} = (\lambda, \lambda_{n+1})\) and \(\lambda_{n+1}\) is defined by
\[\sum_{i=1}^{n} \lambda_i + \lambda_{n+1} - \beta_0 = 0\]
It follows from [11, Theorem 2.3.11 and Theorem 3.2.10] that
\[\{\tilde{x}^{\tilde{\lambda}} \mid (\partial^a, T) \in T(M)\}\]
are \(C\)-linearly independent. Therefore, from the correspondence (3.7), the functions
\[\{x^\lambda \mid (\partial^a, T) \in T(M)\},\]
of which cardinality is \(\text{vol}(A)\), are \(C\)-linearly independent. Hence, series
solutions with the initial terms
\[\left\{\frac{x^\lambda}{\Gamma(\lambda + 1)} \mid (\partial^a, T) \in T(M)\right\}\]
are \(C\) linearly independent, which implies the linear independence of series
solutions with these starting terms [11]. We have completed the proof of the
theorem and also that of Theorem 1. \(\Box\)

Theorem 3. The holonomic rank of \(H_A\) is equal to the normalized volume
of \(A\).
Proof. First we will prove $\text{rank}(H_A) \leq \text{vol}(A)$. It follows from the Adolphson’s theorem ([1]) that the holonomic rank of A-hypergeometric system $H_A(\beta)$ is equal to the normalized volume of A for generic parameters β. It implies that the standard monomials for a Gröbner basis of the A-hypergeometric system $H_A(s)$ in $C(s, x)(\partial_1, \ldots, \partial_n)$ consists of $\text{vol}(A)$ elements. We note that elements in the Gröbner basis can be regarded as an element in the ring of differential-difference operators with rational function coefficients U. We denote by ∂_j and r_j the creation and annihilation operators. The existence of them are proved in [10, Chapter 4]. Then, we have

$$H_j = \partial_j - \prod_{i=1}^{n} S_i^{-a_{ij}} \in H_A$$

and

$$B_j = r_j - \prod_{i=1}^{n} S_i^{a_{ij}} \in H_A, \quad r_j \in C(s, x)(\partial_1, \ldots, \partial_n).$$

Since the column vectors of A generate the lattice \mathbb{Z}^d, we obtain from B_j’s and H_j’s elements of the form $S_i - p(s, x)\partial, \ S_i^{-1} - q(s, x)\partial \in H_A$. It implies the number of standard monomials of a Gröbner basis of H_A with respect to a block order such that $S_1, \ldots, S_n > S_1^{-1}, \ldots, S_n^{-1} > \partial_1, \ldots, \partial_n$ is less than or equal to $\text{vol}(A)$.

Second, we will prove $\text{rank}(H_A) \geq \text{vol}(A)$. We suppose that $\text{rank}(H_A) < \text{vol}(A)$ and will induce a contradiction. For the block order $S_1, \ldots, S_d > S_1^{-1}, \ldots, S_d^{-1} > \partial_1, \ldots, \partial_n$, we can show that the standard monomials T of a Gröbner basis of H_A in U contains only differential terms and $\# T < \text{vol}(A)$ by the assumption. Let T' be the standard monomials of Gröbner basis $G(s)$ of $H_A(s)$ in the ring of differential operators with rational function coefficients $D(s)$. Note that $\# T' = \text{vol}(A)$. Then T is a proper subset of the set T'. For $r \in T' \setminus T$, it follows that

$$\partial^r \equiv \sum_{\alpha \in T} c_\alpha(x, s)\partial^\alpha \pmod{H_A}.$$

From Theorem 2, we have convergent series solutions $f_1(s, x), \ldots, f_m(s, x)$ of H_A, where $m = \text{vol}(A)$. So,

$$\partial^r \cdot f_i = \sum_{\alpha \in T} c_\alpha(x, s)\partial^\alpha \cdot f_i \quad (3.8)$$

Since $f_1(s, x), \ldots, f_m(s, x)$ are linearly independent, the Wronskian standing
for T'

$$W(T'; f)(x, s) = \begin{vmatrix} f_1(s; x) & \cdots & f_m(\beta; x) \\ \partial^{\delta} f_1(s; x) & \cdots & \partial^{\delta} f_m(\beta; x) \\ \vdots & \cdots & \vdots \\ \partial^{\delta} f_1(\beta; x) & \cdots & \partial^{\delta} f_m(\beta; x) \end{vmatrix} (\partial^{\delta} \in T' \setminus \{1\})$$

is non-zero for generic number s. However $r \in T'$ and (3.8) induce the Wronskian $W(T'; f)(s, x)$ is equal to zero.

Finally, by $\text{rank}(H_A) \leq \text{vol}(A)$ and $\text{rank}(H_A) \geq \text{vol}(A)$, the theorem is proved.

Example 1. Put $A = (1 \ 2 \ 3)$ and $\tilde{A} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 0 \end{pmatrix}$. This is Airy type integral [11, p.223].

The matrix \tilde{A} is homogeneous. For $\tilde{w}(\varepsilon) = (1, 1, 1, 0) + \frac{1}{100} (1, 0, 0, 0)$, the initial ideal $\text{in}_{\tilde{w}(\varepsilon)}(I_{\tilde{A}})$ is generated by $\partial_1^1, \partial_1 \partial_2, \partial_1 \partial_3, \partial_2^2$. Note that the initial ideal does not contain ∂_4. We solve the initial system $(\tilde{A} \tilde{\theta} - \tilde{s}) \bullet \ g = 0$, $(\text{in}_{\tilde{w}(\varepsilon)}(I_{\tilde{A}})) \bullet \ g = 0$. The standard pairs (∂^a, T) for $\text{in}_{\tilde{w}(\varepsilon)}(I_{\tilde{A}})$ are $(\partial_1^1 \partial_2^1, \{3, 4\})$, $(\partial_1^1 \partial_2^2, \{3, 4\})$, $(\partial_1^1 \partial_2^3, \{3, 4\})$. Hence, the solutions for the initial system are

$$x_1^0 x_2^0 x_3^{(s_1-2)/3} x_4^{s_0-1-(s_1-2)/3}, x_1^0 x_2^0 x_3^{s_1/3} x_4^{s_0-s_1/3}, x_1^0 x_2^0 x_3^{(s_1-4)/3} x_4^{s_0-2-(s_1-4)/3}$$

([11]). Therefore, the \mathcal{A}-hypergeometric differential-difference system $H_{\tilde{A}}$
has the following series solutions.

\[\tilde{\phi}_1(\tilde{\lambda}, \tilde{x}) = x_4^{s_0} \left(\frac{x_2}{x_4} \right) \left(\frac{x_3}{x_4} \right)^{s_1-2} \sum_{k_1 \geq 0, \ k_2 \geq -1 \atop (k_1, k_2) \in L'} \frac{\left(x_1 x_3^{-1/3} x_4^{-2/3} \right)^{k_1} \left(x_2 x_3^{-2/3} x_4^{-1/3} \right)^{k_2}}{k_1! (k_2 + 1)! \Gamma \left(\frac{s_1 - k_1 - 2k_2 + 1}{3} \right) \Gamma \left(\frac{s_0 - s_1 - 2k_1 - k_2 + 2}{3} \right)} \]

\[\tilde{\phi}_2(\tilde{\lambda}, \tilde{x}) = x_4^{s_0} \left(\frac{x_3}{x_4} \right)^{s_1} \sum_{k_1 \geq 0, \ k_2 \geq 0 \atop (k_1, k_2) \in L'} \frac{\left(x_1 x_3^{-1/3} x_4^{-2/3} \right)^{k_1} \left(x_2 x_3^{-2/3} x_4^{-1/3} \right)^{k_2}}{k_1! k_2! \Gamma \left(\frac{s_1 - k_1 - 2k_2 + 1}{3} \right) \Gamma \left(\frac{s_0 - s_1 - 2k_1 - k_2 + 3}{3} \right)} \]

\[\tilde{\phi}_3(\tilde{\lambda}, \tilde{x}) = x_4^{s_0} \left(\frac{x_2}{x_4} \right)^2 \left(\frac{x_3}{x_4} \right)^{s_1-4} \sum_{k_1 \geq 0, \ k_2 \geq -2 \atop (k_1, k_2) \in L'} \frac{\left(x_1 x_3^{-1/3} x_4^{-2/3} \right)^{k_1} \left(x_2 x_3^{-2/3} x_4^{-1/3} \right)^{k_2}}{k_1! (k_2 + 2)! \Gamma \left(\frac{s_1 - k_1 - 2k_2 - 1}{3} \right) \Gamma \left(\frac{s_0 - s_1 - 2k_1 - k_2 + 2}{3} \right)} \]

Here,

\[L' = \{(k_1, k_2) \mid k_1 \equiv 0 \mod 3, k_2 \equiv 0 \mod 3\} \cup \{(k_1, k_2) \mid k_1 \equiv 1 \mod 3, k_2 \equiv 1 \mod 3\} \]

The matrix \(A \) is not homogeneous and by dehomogenizing the series solution for \(\tilde{A} \) we obtain the following series solutions for the \(A \)-hypergeometric differential-difference system \(H_A \).

\[\phi_1(\lambda, x) = x_2 x_3^{s_1-2} \sum_{k_1 \geq 0, \ k_2 \geq -1 \atop (k_1, k_2) \in L'} \frac{\left(x_1 x_3^{-1/3} x_4^{-2/3} \right)^{k_1} \left(x_2 x_3^{-2/3} x_4^{-1/3} \right)^{k_2}}{k_1! (k_2 + 1)! \Gamma \left(\frac{s_1 - k_1 - 2k_2 + 1}{3} \right)} \]

\[\phi_2(\lambda, x) = x_3^{s_1} \sum_{k_1 \geq 0, \ k_2 \geq 0 \atop (k_1, k_2) \in L'} \frac{\left(x_1 x_3^{-1/3} x_4^{-2/3} \right)^{k_1} \left(x_2 x_3^{-2/3} x_4^{-1/3} \right)^{k_2}}{k_1! k_2! \Gamma \left(\frac{s_1 - k_1 - 2k_2 + 3}{3} \right)} \]

\[\phi_3(\lambda, x) = x_2 x_3^{s_1-4} \sum_{k_1 \geq 0, \ k_2 \geq -2 \atop (k_1, k_2) \in L'} \frac{\left(x_1 x_3^{-1/3} x_4^{-2/3} \right)^{k_1} \left(x_2 x_3^{-2/3} x_4^{-1/3} \right)^{k_2}}{k_1! (k_2 + 2)! \Gamma \left(\frac{s_1 - k_1 - 2k_2 - 1}{3} \right)} \]
Here $\phi_k(x)$ is the dehomogenization of $\tilde{\phi}_k(x)$.

Finally, let us present a difference Pfaffian system for A. It can be derived by using Gröbner bases of H_A and has the following form:

$$S_1 \begin{pmatrix} f \\ x_3 \partial_3 \bullet f \\ S_1 \bullet f \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ -\frac{s_1 x_1}{6 x_2} & -\frac{3 x_1 x_3 - 4 x_2^2}{6 x_2^2} & \frac{2 (s_1 - 1) x_2 + x_1^2}{6 x_2^2} \\ \frac{5}{6 x_2} & -\frac{2 x_1}{3 x_2} & -\frac{x_1^2}{x_2} \end{pmatrix} \begin{pmatrix} f \\ x_3 \partial_3 \bullet f \\ S_1 \bullet f \end{pmatrix}.$$

References

[1] A. Adolphson, Hypergeometric functions and rings generated monomials. Duke Mathematical Journal 73 (1994), 269–290.

[2] K. Aomoto and M. Kita, Hypergeometric Functions, Springer-Verlag, Tokyo, 1994. (in Japanese)

[3] L. J. Billera, P. Filliman, B. Sturmfels, Constructions and complexity of secondary polytopes, Advances in Mathematics 83 (1990), 155–179.

[4] I. M. Gel’fand, A. V. Zelevinsky, M. M. Kapranov, Hypergeometric functions and toral manifolds. Functional Analysis and its Applications 23 (1989), 94–106.

[5] L. F. Matusevich, E. Miller, and U. Walther, Homological Methods for Hypergeometric Families, Journal of American Mathematical Society 18 (2005), 919–941. math.AG/0406383

[6] K. Ohara, Risa/Asir Package for Non-commutative Gröbner Bases and its Applications, Süriken Kōkyuroku 1395 (2004), 45 – 49.

[7] K. Ohara, N. Takayama, Holonomic rank of A-hypergeometric differential-difference equations (in Japanese), in “Computational Analysis of Hypergeometric Differential Equations” Research report of Grant-in-Aid for scientific research (KAKENHI) 15340045 28–22, 2007. http://www.math.kobe-u.ac.jp/HOME/taka/2007/kaken-hg-all.pdf

[8] The OpenXM project, a project to integrate mathematical software systems, 1998-2007, http://www.OpenXM.org/

[9] M. Saito, Parameter shift in normal generalized hypergeometric systems. Tohoku Mathematical Journal 44 (1992), 523–534.
[10] M. Saito, B. Sturmfels, N. Takayama, N., Hypergeometric polynomials and integer programming. Compositio Mathematica, 155 (1999), 185–204.

[11] M. Saito, B. Sturmfels, N. Takayama, Gröbner Deformations of Hypergeometric Differential Equations, Springer, 2000.

[12] B. Sturmfels, Gröbner Bases and Convex Polytopes, University Lecture Series Volume 8, American Mathematical Society, 1996