INTRODUCTION

Extraskeletal Ewing’s sarcoma (EES) is a rare, aggressive, malignant tumor, usually occurring in the chest wall of children and young adults. Although EES shows an aggressive growth pattern, it seldom demonstrates distant metastasis at diagnosis. Herein, we present computed tomography (CT) and positron emission tomography computed tomography (PET/CT) findings of EES in anterior mediastinum in a 68-year-old man, showing multi-organ distant metastasis at diagnosis. It is another atypical case with unusual presentation in point of old age, mediastinal location and distant metastasis at diagnosis, showing PET/CT findings.

Index terms
Extraskeletal Ewing’s Sarcoma
Mediastinum
CT
Positron Emission Tomography/CT

CT and Positron Emission Tomography/CT Findings of Mediastinal Extraskeletal Ewing’s Sarcoma with Extensive Distant Metastasis: A Case Report
광범위한 원격 전이를 보인 종격동 과격외 유잉씨 육종의 전산화단층촬영과 양전자방출전산화단층촬영소견: 증례 보고

Bom Yi Kim, MD, Jeong Min Ko, MD, Hyun Jin Park, MD
Department of Radiology, St. Vincent’s Hospital, The Catholic University of Korea College of Medicine, Suwon, Korea

Received January 31, 2012; Accepted September 19, 2012
Corresponding author: Hyun Jin Park, MD
Department of Radiology, St. Vincent’s Hospital, The Catholic University of Korea College of Medicine, 93 Jungbu-daero, Paldal-gu, Suwon 442-723, Korea.
Tel. 82-31-249-8490 Fax. 82-31-247-5713
E-mail: radiodoc@catholic.ac.kr

Copyrights © 2012 The Korean Society of Radiology

We report a case of a 68-year-old man diagnosed as mediastinal EES with extensive hematogenous and lymph node metastasis by a CT and PET/CT.

CASE REPORT

Institutional Review Board exemption was obtained to perform this case report.

A 68-year-old man was presented with a 3-week history of a painless palpable mass in the left supraclavicular region. Plain chest radiograph showed an elongated multilobulated mass in the left parahilar region, not obscuring the overlying hilar vessels. An ovoid homogeneous opacity was seen in the left supraclavicular region.

Contrast-enhanced CT scans of neck and chest were per-
formed. Chest CT revealed a multilobulated mass, about 7 cm in size, in the anterior mediastinum, which was heterogeneously enhanced with internal non-enhancing hypodense area. Fat planes between the mass, aorta and main pulmonary artery were obscured (Fig. 1A). Multiple enlarged nodes with heterogeneous enhancement pattern were also visible in mediastinum, both supraclavicular regions and celiac axis (Fig. 1B). Multiple small hypodense lesions were detected in the liver (Fig. 1C). In PET/CT performed subsequently, the anterior mediastinal mass showed strong FDG uptake [peak standard uptake value (pSUV), 8.0], and lymphadenopathy that was detected by CT showed a strong uptake (range of pSUV 3.6-7.5) (Fig. 1D). In addition, T3, T9, T10, T11, L1 and L5 vertebral bodies and in the pelvic bone, multiple, variable sized and round osteoblastic lesions that were associated with FDG uptake could be observed (Fig. 1E).

The patient subsequently underwent surgical resection of the left supraclavicular mass lesion for pathologic examination. Histopathological examination showed a poorly differentiated malignant tumor, with neuroendocrine differentiation (Fig. 1F). The mass lesion was negative for leukocyte common antigen, cytokeratin, CK20, CK7, CK5/6 and S100. Immunohistochemical evidence of CD99 in Ewing sarcoma, were weakly positive, confirming ESS.

Starting 1 month after neck mass resection, the patient received chemotherapy, which composed of vincristine, doxorubicin, cyclophosphamide and actinomycin D. In follow-up CT, performed after 5 months, the overall tumor size was increased, new lung metastasis was detected, and malignant pericardial effusion and pleural effusion were developed; thus, pericardio-

Fig. 1. A 68-year-old man with extraskeletal Ewing’s sarcoma in anterior mediastinum.
A. Axial CT scan shows a multilobulated, heterogeneously enhancing mass with extensive necrosis in the anterior mediastinum (arrow). Fat planes between the mass and adjacent vasculatures, aorta and main pulmonary artery, are obliterated.
B. Axial CT scan shows a left supraclavicular lymphadenopathy with homogenous enhancement (thin arrow).
C. Axial CT scan shows a small hypodense nodular lesion (arrowhead) in the liver.
D. Axial PET/CT scan shows an anterior mediastinal mass with peripheral intense FDG uptake and central metabolic defect.
E. Maximum-intensity-projection FDG PET image shows multifocal FDG uptakes in the anterior mediastinum, both supraclavicular regions, liver, retroperitoneal nodes, spines and pelvic bones.
F. Photomicrograph (hematoxylin-eosin, original × 400) shows densely packed sheets of small round neoplastic cells. The nuclei are round with “salt and pepper” chromat and have inconspicuous or small nucleoli. Mitotic figures are common.

Note. — FDG = fluorodeoxyglucose; PET/CT = positron emission tomography/CT
Mediastinal EES occasionally shows a local relapse or distant metastasis during treatments or after treatments. However, cases showing distant metastasis at the time of diagnosis are very rare. Differently from Ewing's sarcoma with common metastatic sites in the lung and bone, mediastinal EES metastasizes in the skeleton and liver most frequently (1). At the time of diagnosis, our case had metastatic lymphadenopathy and liver metastasis. Even after treatments, additional metastasis had developed in the bone, leptomeninges, pericardium and pleura.

In regard to treatments, as for EES with distant metastasis, it is better to perform early aggressive combination chemotherapy rather than single agent monotherapy. Further, these tumors are also radiosensitive; tumors are not appropriate to surgical resection or have positive surgical margins, and are treated with radiation (8). In our case, combined chemotherapy consisting of vincristine, doxorubicin, cyclophosphamide and actinomycin D was performed; nonetheless, the outcome was not good.

Although it is generally known that EES shows poor prognosis, a 5-year survival rate is over 60%, if surgeries and appropriate chemotherapies are applied (1, 6). Prognostic factors are age, tumor location, tumor size, with or without metastasis, genetic mutation type and treatment programs (6). Our patient showed disease progression even after the treatments; thus, the prognosis was speculated to be poor. Patient's advanced age, distant metastasis at the time of diagnosis and atypically high pSUV might be associated with such poor prognosis.

In conclusion, mediastinal EES is a tumor that may show diverse imaging findings, clinical manifestation and PET-CT findings. It should be considered in the differential diagnosis of any patient, of any age, with a non-calcified mediastinal mass with malignant feature.

REFERENCES

1. Zhang WD, Zhao LL, Huang XB, Cai PQ, Xu GX. Computed tomography imaging of anterior and middle mediastinal Ewing sarcoma/primitive neuroectodermal tumors. J Thorac Imaging 2010;25:168-172
2. O’Keeffe F, Lorigan JG, Wallace S. Radiological features of extraskeletal Ewing sarcoma. Br J Radiol 1990;63:456-460
3. Askin FB, Rosai J, Sibley RK, Dehner LP, McAlister WH. Malignant small cell tumor of the thoracopulmonary region...
in childhood: a distinctive clinicopathologic entity of uncertain histogenesis. Cancer 1979;43:2438-2451
4. Kara Gedik G, Sari O, Altinok T, Tavli L, Kaya B, Ozcan Kara P. Askin’s Tumor in an Adult: Case Report and Findings on 18F-FDG PET/CT. Case Report Med 2009;2009:517329
5. Guiter GE, Gamboni MM, Zakowski MF. The cytology of extraskeletal Ewing sarcoma. Cancer 1999;87:141-148
6. Xie CF, Liu MZ, Xi M. Extraskeletal Ewing’s sarcoma: a report of 18 cases and literature review. Chin J Cancer 2010;29:420-424
7. Ahmad R, Mayol BR, Davis M, Rougraff BT. Extraskeletal Ewing’s sarcoma. Cancer 1999;85:725-731
8. Gaona-Luviano P, Unda-Franco E, González-Jara L, Romero P, Medina-Franco H. Primitive neuroectodermal tumor of the vagina. Gynecol Oncol 2003;91:456-458