SOX1 Is Required for the Specification of Rostral Hindbrain Neural Progenitor Cells from Human Embryonic Stem Cells

HIGHLIGHTS
SOX1 is highly expressed in rostral hindbrain NPCs derived from hESCs
OTX2 inhibits SOX1 expression in addition to its inhibition on GBX2 expression
SOX1 contributes to the specification of rostral hindbrain NPCs from hESCs
GBX2 is a key factor for SOX1 to function in the rostral hindbrain NPC specification
SOX1 Is Required for the Specification of Rostral Hindbrain Neural Progenitor Cells from Human Embryonic Stem Cells

Xinyuan Liu,1,7 Zhuoqing Fang,1,7 Jing Wen,1 Fan Tang,2 Bing Liao,2 Naihe Jing,4,5 Dongmei Lai,6,* and Ying Jin1,2,3,5,8,*

SUMMARY
Region-specific neural progenitor cells (NPCs) can be generated from human embryonic stem cells (hESCs) by modulating signaling pathways. However, how intrinsic transcriptional factors contribute to the neural regionalization is not well characterized. Here, we generate region-specific NPCs from hESCs and find that SOX1 is highly expressed in NPCs with the rostral hindbrain identity. Moreover, we find that OTX2 inhibits SOX1 expression, displaying exclusive expression between the two factors. Furthermore, SOX1 knockout (KO) leads to the upregulation of midbrain genes and downregulation of rostral hindbrain genes, indicating that SOX1 is required for specification of rostral hindbrain NPCs. Our SOX1 chromatin immunoprecipitation sequencing analysis reveals that SOX1 binds to the distal region of OTX2/KO-induced aberrant gene expression. Taken together, this study uncovers previously unappreciated role of SOX1 in early neural regionalization and provides new information for the precise control of the OTX2/GBX2 interface.

INTRODUCTION
During embryonic development, the neuroectoderm develops into the forebrain, midbrain, hindbrain, and spinal cord along a rostral-caudal (R-C) axis. How neural regionalization is precisely controlled remains a critical unsolved issue. Insights from model animals show that the R-C identity of neural progenitor cells (NPCs) can be controlled by modulating WNT and retinoic acid (RA) signaling, and that the dorsal-ventral (D-V) identity can be controlled by modulating sonic hedgehog (Shh) signaling (Kiecker and Niehrs, 2001a, 2001b; Maden, 2007). These neural patterning principles have been applied to derive region-specific NPCs from human embryonic stem cells (hESCs). Recent advances permit highly efficient generation of NPCs from hESCs via dual inhibition of SMAD signaling (dSMADi) (Chambers et al., 2009; Fasano et al., 2010).

It is obvious that extrinsic signals play important roles in the process of neural regionalization. Meanwhile, intrinsic transcriptional factors also serve as key determinants during this process. Otx2 and Gbx2 were shown to be required for specification of the forebrain-midbrain and anterior hindbrain, respectively (Joyner et al., 2000). Otx2 and Gbx2 are among the earliest genes expressed in the nervous system. Otx2 is expressed in the forebrain and midbrain with a caudal limit at the midbrain-hindbrain boundary (MHB), whereas Gbx2 is expressed in the hindbrain (Bally-Cuif et al., 1995a, 1995b; Bouillet et al., 1995; Shamim and Mason, 1998; Simeone et al., 1992). Some genetic analyses of Otx2 and Gbx2 in mice demonstrated that the generation of the Otx2-Gbx2 border in the right place is important to position the MHB and favors the normal development of the midbrain and hindbrain (Acampora et al., 1995; Ang et al., 1996; Broccoli et al., 1999; Katahira et al., 2000; Matsuo et al., 1995; Millet et al., 1996, 1999; Simeone, 1998). However, how
Figure 1. SOX1 Was Highly Expressed in Rostral Hindbrain NPCs

(A) The illustration of our differentiation protocol. dSMADi, dual inhibition of SMAD signaling; NB, neurobasal; RA, retinoic acid. The following patterning factors were used to derive NPCs with R-C identities from hESCs: 2 μM-IWP2, 0–4.0 μM-ChIR99021 (CT0.0–CT4.0), and 1 μM RA with 4.0 μM CT (CT4.0RA).

(B) A diagram showing representative R-C markers in the neural tube.

(C) qRT-PCR analysis of mRNA levels of R-C markers as well as SOX1, SOX2, and NESTIN in NPCs at days 4 and 8, relative to undifferentiated WT hESCs (day 0). n = 3 independent experiments. Data are shown as mean ± SEM.

(D) Representative results of immunofluorescence staining of NPCs derived from SOX1-EGFP reporter hESCs (clone #6) using antibodies against FOXG1, OTX2, EN1, GBX2, SOX2, and NESTIN, respectively, at day 8. The nucleus was stained by DAPI. Scale bars, 50 μm.

See also Figures S1 and S2.

OTX2 and GBX2 function and what upstream factors regulate their expression during human neural regionalization are poorly understood.

SOX1 is a member of the B1 group of SOX family transcription factors, harboring a high-mobility group DNA-binding domain (Malas et al., 1997). The embryonic expression pattern of Sox1 in the mouse has been well characterized (Aubert et al., 2003; Pevny et al., 1998; Uchikawa et al., 2011). The study by Pevny et al. reported that Sox1 is detected throughout the neural plate and early neural tube, marking the dividing neural epithelial cells within the embryonic neural tube (Pevny et al., 1998). Moreover, using Sox1-gfp knockin mice, Aubert et al. showed that, at E9.5, Sox1 is expressed along the entire neural tube but in no other tissue, suggesting a potential role of Sox1 for early neural development (Aubert et al., 2003). Moreover, it was reported that, when somitogenesis begins after E8, strong Sox1 expression initiates in the closed posterior neural tube first, and then the anterior neural plate in mouse embryos (Uchikawa et al., 2011; Wood and Episkopou, 1999). This expression feature raises a question of whether Sox1 is involved with early neural regionalization. Homozygous mutant mice (Sox1^{-/-}) are viable but exhibit defects such as spontaneous seizures and microphthalmia (Malas et al., 2003; Nishiguchi et al., 1998). Compared with Sox1 studies in the mouse, little is known about the expression pattern of SOX1 during early human development and the function of SOX1 in the process of human neural regionalization. hESCs provide an attractive in vitro tool to address these issues. In the current study, with a goal to explore the function of SOX1 in the neural regionalization process of hESCs, we established SOX1-EGFP hESC reporter cell lines and generated NPCs with different regional identities from both wild-type (WT) and SOX1 knockout (KO) hESCs. Our study uncovers that SOX1 is required for the specification of NPCs with the rostral hindbrain identity from hESCs primarily by directly promoting GBX2 expression.

RESULTS

SOX1 Is Highly Expressed in Rostral Hindbrain NPCs

To investigate the molecular regulation during specification of region-specific NPCs from hESCs, we first generated NPCs with different regional identities from hESCs of the H9 line (Thomson et al., 1998) based on published protocols with minor modifications (Imaizumi et al., 2015; Kirkeby et al., 2012). According to the dSMADi strategy (Chambers et al., 2009), WNT and RA signaling pathways were modulated to generate the R-C identities of hESC-derived NPCs (Figures 1A and 1B). We then examined the expression of R-C markers in these NPCs at days 4 and 8, relative to undifferentiated WT hESCs (day 0). SOX1 expression peaked in NPCs treated with a narrow CT concentration range (1.0–2.0 μM), a pattern similar to that of HOXA2. However, the expression of SOX2 and NESTIN showed no...
preference among NPCs of different groups (Figure 1C). The result could be reproduced in another independently derived hESC line, SHhES2 (Li et al., 2010), under the same differentiation condition (Figure S1A).

To verify the expression pattern of SOX1 along the R-C axis, we generated a SOX1-EGFP reporter hESC line by knocking in a P2A-EGFP-Neo cassette following the endogenous SOX1 coding sequence (removing the SOX1 stop codon) in H9 hESCs (Figure S1B), using the CRISPR/Cas9 nickase system with a pair of small guide RNAs (sgRNAs) targeting the SOX1 sequence around its stop codon. The 2A self-cleaving sequences were used to generate a multicistronic reporter cassette that enables expression of EGFP and neomycin resistance gene flanked by the loxP sites (NeoR), allowing for the positive selection of correctly targeted clones. The excision of the NeoR cassette was catalyzed by Cre-induced recombination afterward. The correct integration was identified by genomic DNA PCR. Clone #6 hESCs were correctly targeted in one allele, whereas the non-targeted allele was intact. Heterozygous insertion of the reporter cassette was confirmed by genomic DNA PCR and Sanger sequencing (Figures S1C and S1D). The karyotype of clone #6 hESCs was normal (46, XX) (Figure S1E). We then performed flow cytometric analysis for NPCs derived from the SOX1-EGFP reporter hESCs and found that about 97% NPCs in the CT1.0 group exhibited high levels of both SOX1 and EGFP (Figure S1F), indicating the consistency between the expression of SOX1 and EGFP. In contrast, most NPCs in the CT0.0 group had low SOX1 and EGFP levels. As a control, SOX2 was highly expressed in both EGFPlow NPCs of the CT0.0 group and EGFPhigh NPCs of the CT1.0 group (Figure S1F). These results support the notion that the SOX1-EGFP reporter hESCs could faithfully indicate the endogenous SOX1 expression.

Moreover, immunofluorescence staining analysis of expression patterns of some neural markers in NPCs derived from the SOX1-EGFP reporter hESCs clone #6 further validated the SOX1 expression pattern and the robustness of our in vitro differentiation model at a protein level (Figure 1D). Intriguingly, we observed that SOX1-EGFPlow and SOX1-EGFPhigh NPCs were present in the same dish when the CT concentration was relatively low (0.4 and 0.8 μM) and that EGFP-expressing NPCs and OTX2-expressing NPCs were mutually exclusive (Figure 1D). When the CT concentration increased to relatively high levels (1.0 and 2.0 μM), most NPCs became SOX1-EGFPhigh. In contrast, expression of SOX2 and NESTIN was similar in NPCs of all groups, in line with their transcript levels (Figure 1C). As NPCs treated with 1.0 and 2.0 μM CT highly expressed rostral hindbrain genes, we considered them as rostral hindbrain NPCs for simplicity. NPCs treated with 0.4 μM CT were considered as midbrain NPCs due to their high expression of midbrain genes. Therefore, SOX1 was highly expressed in the rostral hindbrain NPCs.

In addition to the R-C identity, we also examined the expression of SOX1 in the D-V axis by modulating SHH signaling. When combined with SHH protein and purmorphamine (an SHH agonist) (termed the “+SHH” group) (Maroof et al., 2013), we could efficiently pattern NPCs toward a ventral fate (Figure S1G). In previous studies, PAX6 and PAX7 were used as the dorsal NPC markers, whereas NKX2.1 and NKX2.2 served as ventral NPC markers (Imaizumi et al., 2015; Kirkeby et al., 2012). Consistently, our qRT-PCR result indicated that the high expression of PAX6 and PAX7 was mainly found in NPCs of the “-SHH” group, although PAX6 was also highly expressed in CT4.0RA NPCs of the “+SHH” group. NKX2.1 and NKX2.2 were detected in NPCs of the “+SHH” group. Notably, SOX1 was only detected in NPCs of the “-SHH” group (Figure S1H). Thus, in the following experiments, we only studied the role of SOX1 in the R-C patterning process of NPCs with the dorsal identity.

To avoid the cell line bias, we generated additional two SOX1-EGFP reporter hESC lines using the same strategy. By genomic DNA PCR and Sanger sequencing, we identified hESCs of clones #4 and #8 having heterozygous insertion of the reporter cassette (Figures S2A and S2B). The flow cytometric analysis for NPCs derived from these two hESC clones showed that the NPCs in the CT1.0 group exhibited high levels of both SOX1 and EGFP, and the NPCs in the CT0.0 group had low levels of both SOX1 and EGFP. In contrast, SOX2 was highly expressed in both EGFPlow NPCs of the CT0.0 group and EGFPhigh NPCs of the CT1.0 group (Figure S2C). These results clearly show that these two hESC clones could faithfully reflect the expression of the endogenous SOX1. We also repeated the immunofluorescence staining analysis of OTX2 and GBX2 for NPCs derived from these two SOX1-EGFP reporter hESC clones, and results similar to those of NPCs derived from SOX1-EGFP reporter hESCs of clone #6 were obtained (Figure S2D). Thus, we reveal the unique expression pattern of SOX1 during early neural regionalization of hESCs and generate the SOX1-EGFP reporter hESC lines.

OTX2 Inhibits SOX1 Expression

As mentioned earlier, both SOX1-EGFPlow and SOX1-EGFPhigh NPCs could be present in the same dish or even in the same aggregate when the CT concentration was 0.8 μM (Figure 2A). To determine the
Figure 2. OTX2 Negatively Regulates SOX1 Expression

(A) Representative images of aggregates at day 4 treated with 0.8 μM CT. Scale bars, 100 μm.
(B) The design of sorting NPCs treated with 0.8 μM CT at day 8 into EGFP^{high} and EGFP^{low} subpopulations by fluorescence-activated cell sorting (FACS) for RNA-seq.
(C) The RNA-seq volcano plot is shown. The blue and red dots indicate the DEGs significantly enriched (FDR < 0.05) in the EGFP^{low} subpopulation (Low) and in the EGFP^{high} subpopulation (High), respectively. Black dots indicate the genes with no significant changes between the two subpopulations.
(D) Representative results for OTX2 immunofluorescence staining of SOX1-EGFP reporter hESC (clone #6)-derived NPCs treated with 0.8 μM CT at day 8. Scale bars: 50 μm in the upper row, 20 μm in the lower row from a different view using an oil immersion lens.
(E) A diagram showing the targeting sites of 2 sgRNAs (OTX2_{i-g1} and OTX2_{i-g2}) used for OTX2 knockdown in SOX1-EGFP reporter hESCs (clone #6).
(F) qRT-PCR analysis of the OTX2 knockdown efficiency as well as mRNA levels of SOX1 and other indicated neural markers in NPCs (CT0.4, day 4) derived from OTX2 knockdown (OTX2_{i-g1} or OTX2_{i-g2}) and control knockdown (Ctrl).
differently expressed genes (DEGs) identified 170 genes enriched in EGFPhigh cells and 336 genes enriched in EGFPlow cells (fold changes >1.5 and false discovery rate [FDR] < 0.05). Based on our previously published dataset obtained from positionally patterned NPCs derived from WT hESCs (Fang et al., 2019), clustering analysis of DEGs revealed that the EGFPhigh cells were grouped with NPCs treated with 0.8–2.0 μM CT, whereas EGFPlow cells were grouped with NPCs treated with 0.4 μM CT (Figure S3A). Moreover, as indicated by the volcano plot, OTX2, OTX2, LMX1A, LMX1B, EN1, WNT1, and WNT3A were enriched in the EGFPhigh cells, whereas GBX2, HOXA1, HOXA2, and SOX1 were enriched in the EGFPlow cells (Figure S3C). These analyses indicate the association of SOX1 with rostral hindbrain NPCs.

As OTX2 was highly expressed in EGFPlow cells and our immunofluorescence staining analysis showed the mutually exclusive expression of OTX2 and SOX1 (Figure 2D), we suspected that OTX2 may repress the expression of SOX1 in the EGFPlow NPCs. By analyzing published chromatin immunoprecipitation sequencing (ChIP-seq) data of OTX2 in hESCs, endoderm cells, and ectoderm cells (Tsankov et al., 2015), we found an OTX2-binding site located downstream of the SOX1 locus (Figure S3B), suggesting that OTX2 may bind to the regulatory region of SOX1 to inhibit its expression. In addition, we found an OTX2-binding site downstream of the GBX2 locus (Figure S3B). Our ChIP-qPCR analysis validated binding of OTX2 to these two sites (Figure S3C) in NPCs of the CT0.4 group. To test whether OTX2 could regulate SOX1 expression, we knocked down OTX2 in SOX1-EGFP reporter hESCs using the CRISPRi system (Mandegar et al., 2016) with two different sgRNAs (OTX2i-g1 and OTX2i-g2) targeting the 5′ UTR sequence of OTX2 gene and differentiated them into NPCs with 0.4 μM CT (Figure 2E). Results of qRT-PCR analysis indicated that SOX1 mRNA levels in NPCs were substantially increased by OTX2 knockdown. Expression of GBX2 and HOXA2 was also upregulated, whereas SOX2 levels were not significantly altered by OTX2 knockdown (Figure 2F). Furthermore, flow cytometric analysis showed that OTX2 knockdown resulted in a significant increase in the proportion of EGFPhigh NPCs (Figures 2G and 2H). Thus, we uncover a new role of OTX2 for inhibiting SOX1 expression and provide experimental evidence for the repressive effect of OTX2 on GBX2 expression in NPCs derived from hESCs.

SOX1 Is Required for Specification of Rostral Hindbrain NPCs from hESCs

To understand the role of SOX1 in specifying rostral hindbrain NPCs from hESCs, we generated SOX1 knockout (SOX1-KO) H9 hESC lines by the CRISPR/Cas9 nickase system. The PGK-PuroR cassette was used to replace the whole coding sequence (CDS) of SOX1 gene (Figure 3A). Our western blot result identified five hESC colonies lacking SOX1 expression (Figure 3B). Two colonies, #26 (S1KO-#26) and #48 (S1KO-#48), were selected for Sanger sequencing, which verified the precise insertion of the PGK-PuroR cassette (Figure 5A). hESCs with SOX1 homzygous deletion from these two clones were differentiated into NPCs with different regional identities along the R-C axis, including the rostral forebrain (IWP2), midbrain (CT0.4), and rostral hindbrain (CT1.0). RNA samples of undifferentiated hESCs (day 0) and NPCs from these three groups at days 4 and 8 were collected for RNA-seq (Figure 3C). Compared with our previously published RNA-seq data of WT samples (Fang et al., 2019), DEGs were identified (Figure 3D). Among the three groups of NPCs, SOX1-KO gave rise to the most DEGs in the CT1.0 group and the least DEGs in the IWP2 group (Figure 3D), suggesting that SOX1-KO affected NPCs of the CT1.0 group most. Therefore, Gene Ontology analyses were performed for DEGs between SOX1-KO (CT1.0) and WT NPCs (CT1.0) on day 8 (Figure 3E). Notably, upregulated DEGs in SOX1-KO NPCs enriched terms of pattern specification process and midbrain development. Moreover, both up- and downregulated DEGs enriched the term of WNT signaling. In addition, based on our previously published dataset (Fang et al., 2019), clustering analysis of DEGs revealed that the SOX1-KO NPCs (CT1.0) were grouped with WT NPCs of CT0.8 and CT0.4 groups (Figure 3F), suggesting that the regional identity of SOX1-KO NPCs of the CT1.0 group was closer to that of WT NPCs of CT0.8 and CT0.4 groups than to that of WT NPCs of the CT1.0 group. In contrast,
Figure 3. SOX1 Knockout Impairs the Specification of Rostral Hindbrain NPCs from hESCs

(A) The design for the construction of SOX1-KO hESC lines with two pairs of sgRNAs. The cleavage sites are indicated by red arrows. The sgRNA-Up pair: a pair of sgRNAs targeting the SOX1 genomic sequence around the 5’-end of its CDS region; the sgRNA-Down pair: a pair of sgRNAs targeting the SOX1 genomic sequence around the 3’-end of its CDS region.

(B) Representative results of western blot analysis for the identification of five hESC clones lacking SOX1 expression.

(C) A diagram of sample collection for RNA-seq analysis.

(D) The summary of the number of upregulated, downregulated, and total DEGs in SOX1-KO NPCs of each group. Fold change > 2.0, FDR < 0.05.

(E) Gene Ontology (GO) analyses for DEGs between WT and SOX1-KO NPCs (CT1.0). Only the top six GO terms with FDR < 0.05 and combined score > 15 are shown.

iScience 23, 101475, September 25, 2020
the SOX1-KO NPCs treated with IWP2 or 0.4 μM CT were grouped with WT NPCs under the same treatment. These results indicate that SOX1-KO impairs the specification of rostral hindbrain NPCs.

In addition, the aberrant expression of neural markers (Figure 3G) and WNT signaling-related genes (Figure S4B) were verified by qRT-PCR analysis. OTX2, EN1, EN2, LMX1A, and LMX1B were upregulated, whereas HOXA2 was downregulated, in NPCs of both SOX1-KO clones, when compared with WT NPCs. Of note, SOX1-KO caused most evident downregulation of GBX2 at day 4 of differentiation in NPCs (CT1.0). However, SOX1-KO did not alter the expression of SOX2 (Figure 3G). Western blot analyses also showed the elevation of OTX2 and LMX1A protein levels, and the reduction in GBX2 and HOXA2 protein levels in SOX1-KO NPCs (Figure 3H). Consistent with our qRT-PCR result (Figure S4B), luciferase assay results showed that SOX1-KO significantly enhanced the β-catenin/TCF reporter (TOP/FOPFlash) activity (Figure S4C), suggesting a repressive role of SOX1 for WNT signaling in rostral hindbrain NPCs.

As Sox1 has been reported to mark proliferating cells within the neural tube of mouse embryos (Pevny et al., 1998), we determined whether SOX1-KO would affect the cell cycle and proliferation of NPCs treated with 1.0 μM CT. Flow cytometric analyses indicated that there were not obvious differences in the distribution of cell cycle phases (Figures S4D and S4E) and the percentage of EdU⁺ cells between WT and SOX1-KO NPCs (Figures S4F and S4G).

SOX1 Activates GBX2 Expression Contributing to Rostral Hindbrain NPC Specification

To understand how SOX1 contributed to the specification of rostral hindbrain NPCs from hESCs, we carried out ChIP-seq of SOX1 in rostral forebrain NPCs at day 8 (IWP2 D8), rostral hindbrain NPCs at day 4 (CT1.0 D4), and rostral hindbrain NPCs at day 8 (CT1.0 D8) (Figure 4A). A total of 4,223 highly reliable SOX1-binding regions were identified using the MACS2 (FDR q-value < 0.01), with the most binding regions in the NPCs of CT1.0 D8 group (Figure S5A). Most SOX1-binding regions located in distal intergenic regions (Figure S5B). The DNA motif analysis revealed that 73.48% of SOX1-binding regions contained a [CT][AT]TTGT-enriched sequence (p value < 1 × 10⁻¹²³⁶), consistent with the common consensus motif of SOX proteins (Figure 4B). To identify downstream target genes of SOX1, we overlaid the DEGs (between SOX1-KO and WT NPCs) and SOX1-binding genes obtained from our SOX1 ChIP-seq data of NPCs (CT1.0) on day 4. Ninety-two putative downstream target genes of SOX1 in rostral hindbrain NPCs were identified (Figure 4C). Among these 92 genes, we focused on GBX2 and HOXA2 due to their close relationships with hindbrain development. SOX1-binding regions were found about 80 kb downstream of the GBX2 locus (Figure 4D) and in the second exon of the HOXA2 locus (Figure S5C).

To test the role of GBX2 and HOXA2 in the SOX1-mediated function, we established doxycycline (Dox)-inducible hESC lines overexpressing EGFP, GBX2, and HOXA2, respectively, in WT and SOX1-KO hESCs (clones #26 and #48). During neural differentiation under the CT 1.0 μM condition, Dox was added from day 0 to day 8, and NPCs were collected at days 4 and 8 for analyses. Our result of qRT-PCR analysis showed that GBX2 overexpression in SOX1-KO NPCs could largely abolish SOX1-KO-induced upregulation of midbrain markers and downregulation of HOXA2 (Figure 4E). Of note, overexpression of GBX2 dramatically reduced OTX2 expression levels in both WT and SOX1-KO NPCs, in agreement with the previous reports that Gbx2 represses Otx2 expression in embryos (Katahira et al., 2000; Millet et al., 1999). Furthermore, overexpression of GBX2 evidently blocked SOX1-KO-caused upregulation of WNT1, AXIN2, and WLS as well as downregulation of SFRP2 and SFRP4, to various degrees (Figure 4E). Western blot analysis further revealed that overexpression of GBX2 abrogated alterations in protein levels of OTX2 and HOXA2 induced by SOX1-KO (Figure 4F). In contrast, HOXA2 overexpression in SOX1-KO NPCs could not efficiently abolish SOX1-KO-caused alterations in the expression of the most tested genes (Figure S5D). Collectively, SOX1 may contribute to the specification of rostral hindbrain NPCs from hESCs primarily by controlling GBX2 expression.
Identification of the Regulatory Region for GBX2 Expression

As mentioned earlier, there was a SOX1-binding region downstream of the GBX2 locus in rostral hindbrain NPCs (Figure 4D), and analysis of published datasets (Rada-Iglesias et al., 2011) revealed that p300 and mono-methylation of histone H3 at lysine 4 (H3K4me1) were highly enriched around this region in hESCs (Figure 5A). However, whether this region would be functionally important for GBX2 expression has remained unclear. To address this question, we deleted the core SOX1-binding region (named S1B region) using the CRISPR/Cas9 system with a pair of sgRNAs (S1B-sgRNA1 and S1B-sgRNA2) (Figures 5A and 5B). Two clones (S1BKO-#5 and S1BKO-#27)
possessing biallelic deletion of the S1B region were identified and confirmed by Sanger sequencing (Figure 5C) and genomic DNA PCR analysis (data not shown). We then differentiated hESCs of WT and S1B KO clones into NPCs with different CT concentrations ranging from 0.0 to 3.0 μM. We found that deletion of the S1B region

Figure 5. Identification of Two Regulatory Regions for GBX2 Expression
(A) Genomic binding sites of SOX1 downstream of the GBX2 locus in NPCs of the CT1.0 group at day 4. ChIP-seq signal profiles of OTX2 in ectoderm cells (OTX2_ectoderm) and p300 and H3K4me1 in hESCs (p300_hESCs and H3K4me1_hESCs) were obtained from published datasets.
(B) The strategy to delete the core SOX1-binding region (S1B region) and OTX2-binding region (O2B region) in hESCs.
(C) Representative Sanger sequencing peak maps verified a deletion of 1.4 kb in hESCs of S1BKO-#5 and S1BKO-#27 clones.
(D) qRT-PCR analysis of mRNA levels of GBX2 and SOX2 in WT and S1BKO NPCs under the indicated CT concentrations at day 4, relative to undifferentiated WT hESCs (day 0). n = 3 independent experiments. Data are shown as mean ± SEM. ***p < 0.001.
(E) Representative Sanger sequencing peak maps verified a deletion of 0.6 kb in hESCs of O2BKO-#13 and O2BKO-#32 clones.
(F) qRT-PCR analysis of mRNA levels of GBX2 and SOX2 in WT and O2BKO NPCs under the indicated CT concentrations at day 4, relative to undifferentiated WT hESCs (day 0). n = 3 independent experiments. Data are shown as mean ± SEM. ***p < 0.001.
downregulated GBX2 dramatically in the NPCs of CT1.0, CT2.0, and CT3.0 groups, validating an important activating role of the S1B region for GBX2 expression (Figure 5D).

It has been shown that Otx2 could repress Gbx2 expression in animal models (Acampora et al., 1995, 1997; Ang et al., 1996; Matsuo et al., 1995; Simeone, 1998). However, the underlying mechanisms have not been fully elucidated, particularly in hESC-derived NPCs. Based on published OTX2 ChIP-seq data (Tsankov et al., 2015), we found an OTX2-binding region about 20 kb downstream of the Gbx2 locus (Figure S3B). We deleted the core OTX2-binding region (named O2B region) using the CRISPR/Cas9 system with a pair of sgRNAs (O2B-sgRNA1 and O2B-sgRNA2) to determine the role of the O2B region for GBX2 expression (Figures 5A and 5B). Two clones (O2BKO-#13 and O2BKO-#32) with a homozygous deletion of the O2B region were established and verified by Sanger sequencing (Figure 5E) and genomic DNA PCR analysis (data not shown). Deletion of the O2B region led to obvious upregulation of GBX2 in the NPCs of CT0.8, CT1.0, CT2.0, and CT3.0 groups (Figure 5F), indicating a repressive role of this O2B region for GBX2 expression in NPCs. In contrast, deletion of either S1B region or O2B region had no clear effects on the expression of SOX1 in NPCs, favoring the notion that these two regulatory regions are specifically responsible for the expression of GBX2. The question of how these regions participate in the control of GBX2 expression remains unclear.

DISCUSSION

In this study, we report the expression pattern and function of transcriptional factor SOX1 in hESC-derived NPCs. Our results show that SOX1 was highly expressed in NPCs with the rostral hindbrain identity at the early stage of hESC neural differentiation. Using the SOX1-EGFP reporter hESC line established in the current study, we found that SOX1-EGFPlow and SOX1-EGFPhigh NPCs were present in the same culture dish when the CT concentration was at 0.8 μM, and we were able to selectively purify these two subpopulations for transcriptomic analysis. As expected, EGFPPhigh cells highly expressed rostral hindbrain markers, whereas EGFPlow cells highly expressed midbrain markers, arguing for the association of SOX1 with rostral hindbrain NPCs. Furthermore, our immunofluorescence staining results showed that SOX1-EGFP signal and OTX2 expression were mutually exclusive when they were detected in the same culture dish. These observations point to the close relationship of SOX1 expression with rostral hindbrain NPCs. The following lines of evidence indicate a role of SOX1 in the specification of rostral hindbrain NPCs: (1) analysis of DEGs between WT and SOX1-KO NPCs showed that SOX1-KO affected gene expression in NPCs of the CT1.0 group most, (2) SOX1-KO downregulated hindbrain markers and upregulated midbrain markers, (3) SOX1-binding regions were mostly detected in NPCs of the CT1.0 group, and (4) SOX1 regulated expression of GBX2 and HOX2A2. Therefore, this study unraveled a new role of SOX1 for the specification of rostral hindbrain NPCs from hESCs. These findings will help to elucidate how human neural regionalization is regulated at a molecular level.

To dissect the molecular mechanism underlying the function of SOX1, we searched for its downstream targets and identified GBX2 as a key factor responsible for the function of SOX1 in the specification of rostral hindbrain NPCs from hESCs, based on the following evidence: (1) our SOX1 ChIP-seq analysis identified a SOX1-binding region downstream of the GBX2 locus, (2) SOX1-KO in NPCs of the CT1.0 group resulted in significant downregulation of GBX2, and (3) overexpression of GBX2 largely abrogates SOX1-KO-induced alterations in gene expression. It is significant to uncover a new regulator of GBX2 expression, as Gbx2 is an important factor for the normal development of the rostral hindbrain and the correct positioning of the MHB (Nakayama et al., 2013; Wassarman et al., 1997; Waters and Lewandoski, 2006).

One of the important contributions of this study is to propose a model for the interaction between OTX2, GBX2, and SOX1 in hESC-derived NPCs (Figure 6). It is known that a set of genes act in distinct domains around the Otx/Gbx boundary to specify cells of different fates. It remains an open question how these genes interact to pattern the cell fates around the boundary. We identified SOX1 as a downstream target of OTX2, a previously unreported regulatory relationship. Thus, OTX2 functions by repressing SOX1 expression in addition to its suppression of GBX2. Our discovery of mutual exclusion between SOX1-expressing NPCs and OTX2-expressing NPCs led to the identification of SOX1-EGFPPhigh rostral hindbrain NPCs and an important role of SOX1 in neural regionalization. Moreover, this study not only uncovered an activating role of SOX1 for GBX2 expression but also identified a SOX1-binding site-containing core regulatory region required for GBX2 expression. Furthermore, we provided experimental evidence for the role of an OTX2-binding site-containing core regulatory region in repressing GBX2 expression. These findings would greatly enhance our understanding of how the OTX2
and GBX2 boundary is regulated at a transcriptional level. However, our finding also raises more questions, such as how the SOX1-binding site-containing core regulatory region contributes to the spatiotemporal regulation of GBX2 expression during neural regionalization? What is the role of the local chromatin state for SOX1-mediated regulation of GBX2 expression? On the other hand, SOX proteins usually collaborate with their partner factors to control gene expression (Kondoh and Kamachi, 2010). Thus, it will be helpful to find factors associated with SOX1 in rostral hindbrain NPCs. In addition, comparison of the genome-wide chromatin accessibility and configuration between WT and SOX1-KO NPCs would be useful for comprehensively elucidating the molecular mechanisms by which SOX1 controls cell identity during early neural regionalization. The SOX1-EGFP reporter hESC lines generated in this study, allowing reliable visualization and purification of NPCs with the rostral hindbrain identity during hESC neural regionalization, will assist addressing the aforementioned issues.

Limitations of the Study
Our findings were obtained from an in vitro differentiation system, which may recapitulate the early stage of human neural regionalization. It remains to be tested whether our findings are consistent with the early human neural development process in vivo.

Resource Availability
Lead Contact
Further information and requests for resources should be directed to and fulfilled by the Lead Contact, Ying Jin (yjin@sibs.ac.cn).
Materials Availability
All plasmids generated in this study and their information are available from the corresponding author upon reasonable request.

Data and Code Availability
The accession number for the RNA-seq and ChIP-seq data reported in this paper is GEO: GSE138218.

METHODS
All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101475.

ACKNOWLEDGMENTS
This work was supported by grants from the Ministry of Science and Technology of China (2016YFA0100100), the National Natural Science Foundation of China (31730055, 31801224 and 31871373), Strategic Priority Research Program of the Chinese Academy of Sciences (XDB19020100), and the Innovative Research Team of High-level Local Universities in Shanghai (SSMU-ZLCX20180401).

AUTHOR CONTRIBUTIONS
X.L., Z.F., Y.J., and D.L. designed the project. X.L. and Z.F. performed major experiments, analyzed data, and wrote the manuscript. J.W and F.T helped with immunostaining. B.L. and N.J. discussed the project and edited the manuscript. Y.J. directed the project and wrote the manuscript. X.L. and Z.F. contributed equally to this study.

DECLARATION OF INTERESTS
The authors declare that they have no conflicts of interest with the contents of this article.

Received: December 10, 2019
Revised: July 11, 2020
Accepted: August 17, 2020
Published: September 25, 2020

REFERENCES
Acampora, D., Mazan, S., Lallemand, Y., Avantaggiato, V., Maury, M., Simeone, A., and Brulet, P. (1995). Forebrain and midbrain regions are deleted in Otx2-/- mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 121, 3279–3290.

Acampora, D., Avantaggiato, V., Tuorto, F., and Simeone, A. (1997). Genetic control of brain morphogenesis through Otx gene dosage requirement. Development 124, 3639–3650.

Ang, S.L., Jin, O., Rhinn, M., Daigle, N., Stevenson, L., and Rossant, J. (1996). A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development 122, 243–252.

Aubert, J., Stavridis, M.P., Tweedie, S., O'Reilly, M., Vierlinger, K., Li, M., Ghazal, P., Pratt, T., Mason, J.O., Roy, D., et al. (2003). Screening for mammalian neural genes via fluorescence-activated cell sorter purification of neural precursors from Sox1-gfp knock-in mice. Proc. Natl. Acad. Sci. U S A 100, 11836–11841.

Bally-Cuif, L., Cho, C., and Wassef, M. (1995a). Involvement of Wnt-1 in the formation of the mes/metencephalic boundary. Mech. Dev. 53, 23–34.

Bally-Cuif, L., Gulisano, M., Broccoli, V., and Boncinelli, E. (1995b). c-otx2 is expressed in two different phases of gastrulation and is sensitive to retinoic acid treatment in chick embryo. Mech. Dev. 49, 49–63.

Bouillet, P., Chazaud, C., Oulad-Abdelghani, M., Dalle, P., and Chambon, P. (1995). Sequence and expression pattern of the Stra7 (Gbx-2) homeobox-containing gene induced by retinoic acid in P19 embryonal carcinoma cells. Dev. Dyn. 204, 372–382.

Broccoli, V., Boncinelli, E., and Wurst, W. (1999). The caudal limit of Otx2 expression positions the isthmic organizer. Nature 401, 164–168.

Chambers, S.M., Fasano, C.A., Papapetrou, E.P., Tomishima, M., Sedelain, M., and Studer, L. (2009). Highly efficient neural conversion of human ES and iPSC cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280.

Fang, Z., Liu, X., Wen, J., Tang, F., Zhou, Y., Jing, N., and Jin, Y. (2019). SOX21 ensures rostral forebrain identity by suppression of WNT8B during neural regionalization of human embryonic stem cells. Stem Cell Reports 13, 1038–1052.

Fasano, C.A., Chambers, S.M., Lee, G., Tomishima, M.J., and Studer, L. (2010). Efficient derivation of functional floor plate tissue from human embryonic stem cells. Cell Stem Cell 6, 336–347.

Hanks, M., Wurst, W., Anson-Cartwright, L., Auerbach, A.B., and Joyner, A.L. (1995). Rescue of the en-1 mutant phenotype by replacement of en-1 with en-2. Science 269, 679–682.

Hunt, P., Gulisano, M., Cook, M., Sham, M.H., Faiella, A., Wilkinson, D., Boncinelli, E., and Krumlauf, R. (1991). A distinct Hox code for the branchial region of the vertebrate head. Nature 353, 861–864.

Imaiumi, K., Sone, T., Ibata, K., Fujimori, K., Yuzaki, M., Akamatsu, W., and Okano, H. (2015). Controlling the regional identity of hPSC-derived...
neurons to uncover neuronal subtype specificity of neurological disease phenotypes. Stem Cell Reports 5, 1010–1022.

Joyner, A.L., Liu, A., and Millet, S. (2000). Otx2, Gbx2 and Fgf8 interact to position and maintain a mid-hindbrain organizer. Curr. Opin. Cell Biol. 12, 736–741.

Katahira, T., Sato, T., Sugiyama, S., Okafujii, T., Araki, I., Funahashi, J., and Nakamura, H. (2000). Interaction between Otx2 and Gbx2 defines the organizing center for the optic tectum. Mech. Dev. 91, 43–52.

Kiecker, C., and Niehrs, C. (2001a). A morphogen gradient of Wnt/beta-catenin signalling regulates antero-posterior neural patterning in Xenopus. Development 128, 4189–4201.

Kiecker, C., and Niehrs, C. (2001b). The role of prechordal mesendoderm in neural patterning. Curr. Opin. Neurobiol. 11, 27–33.

Kirkeby, A., Grealiash, S., Wolf, D.A., Nelandor, J., Wood, J., Lundblad, M., Lindvall, O., and Parmar, M. (2012). Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep. 1, 703–714.

Kondoh, H., and Kamachi, Y. (2010). SOX-partner code for cell specification: regulatory target selection and underlying molecular mechanisms. Int. J. Biochem. Cell Biol. 42, 391–399.

Kiks, S., Shim, J.W., Piao, J., Ganat, Y.M., Wakeman, D.R., Xie, Z., Carrillo-Reid, L., Auyeung, G., Antonacci, C., Buch, A., et al. (2011). Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480, 547–551.

Li, C., Yang, Y., Lu, X., Sun, Y., Gu, J., Feng, Y., and Jin, Y. (2010). Efficient derivation of Chinese human embryonic stem cell lines from frozen embryos. In Vitro Cell. Dev. Biol. Anim. 46, 186–191.

Luu, B., Ellisor, D., and Zervas, M. (2011). The lineage contribution and role of Gbx2 in spinal cord development. PLoS One 6, e20940.

Maden, M. (2007). Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat. Rev. Neurosci. 8, 755–765.

Malas, S., Duthie, S.M., Mohri, F., Lovell-Badge, R., and Episkopou, V. (1997). Cloning and mapping of the human SOX1: a highly conserved gene expressed in the developing brain. Mamm. Genome 8, 666–668.

Malas, S., Postlthwaita, M., Economou, A., Whalley, B., Nishiguchi, S., Wood, H., Meldrum, B., Constanti, A., and Episkopou, V. (2003). Sox1-deficient mice suffer from epilepsy associated with abnormal ventral forebrain development and olfactory cortex hypersensitivity. Neuroscience 119, 421–432.

Mendegar, M.A., Huebsch, N., Frolov, E.B., Shin, E., Tsueng, A., Ohma, M.P., Chun, A.H., Miyakota, Y., Holmes, K., Spencer, C.I., et al. (2016). CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell 18, 541–543.

Maroof, A.M., Keros, S., Tyson, J.A., Yang, S.W., Ganat, Y.M., Merkle, F., Liu, B., Goublum, A., Stanley, E.G., Elefany, A.G., et al. (2013). Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 12, 559–572.

Matsuo, I., Kuratani, S., Kimura, C., Takeda, N., and Aizawa, S. (1995). Mouse Otx2 functions in the formation and patterning of rostral head. Genes Dev. 9, 2646–2658.

Millet, S., Bloch-Gallego, E., Simeone, A., and Alvarado-Mallart, R.M. (1996). The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridisation and chick/quail homotopic grafts. Development 122, 3785–3797.

Millet, S., Campbell, K., Epstein, D.J., Losos, K., Harris, E., and Joyner, A.L. (1999). A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. Nature 401, 161–164.

Nakayama, Y., Kikuta, H., Kanai, M., Yoshikawa, K., Kawamura, A., Kobayashi, K., Wang, Z., Khan, A., Kawakami, K., and Yamash, K. (2013). Gbx2 functions as a transcriptional repressor to regulate the specification and morphogenesis of the mid-hindbrain junction in a dosage- and stage-dependent manner. Mech. Dev. 130, 532–552.

Nishiguchi, S., Wood, H., Kondoh, H., Lovell-Badge, R., and Episkopou, V. (1998). Sox1 directly regulates the gamma-crystallin genes and is essential for lens development in mice. Genes Dev. 12, 776–781.

Penn, V.H., Sockanathan, S., Placzek, M., and Lovell-Badge, R. (1998). A role for SOX1 in neural determination. Development 125, 1967–1978.

Prince, V., and Lumsden, A. (1994). Hox-a expression in normal and transposed rhombomeres: independent regulation in the neural tube and neural crest. Development 120, 911–923.

Rada-Iglesias, A., Bapai, R., Swigut, T., Brugmann, S.A., Flynn, R.A., and Wysocka, J. (2011). A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283.

Schneider-Maunoury, S., Topliko, P., Seintandou, T., Levi, G., Cohen-Tannoudji, M., Pournin, S., Babinet, C., and Charnay, P. (1993). Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell 75, 1199–1214.

Shamim, H., and Mason, I. (1998). Expression of Gbx-2 during early development of the chick embryo. Mech. Dev. 76, 157–159.

Simeone, A. (1998). Otx1 and Otx2 in the development and evolution of the mammalian brain. EMBO J. 17, 6790–6798.

Simeone, A., Acampora, D., Giusiano, M., Stornaiuolo, A., and Boncini, E. (1992). Nested expression domains of four homeobox genes in developing rostral brain. Nature 358, 687–690.

Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.

Tsankov, A.M., Gu, H., Akopian, V., Ziller, M.J., Donaghey, J., Amiri, I., Gnrke, A., and Messner, A. (2015). Transcription factor binding dynamics during human ES cell differentiation. Nature 518, 344–349.

Uchikawa, M., Yoshida, M., Iwafuchi-Doi, M., Matsuda, K., Ishida, Y., Takemoto, T., and Kondoh, H. (2011). B1 and B2 Sox gene expression during neural plate development in chicken and mouse embryos: universal versus species-dependent features. Dev. Growth Differ. 53, 761–771.

Wassarman, K.M., Lewandoski, M., Campbell, K., Joyner, A.L., Rubenstein, J.L., Martinez, S., and Martin, G.R. (1997). Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 124, 2923–2934.

Waters, S.T., and Lewandoski, M. (2006). A threshold requirement for Gbx2 levels in hindbrain development. Development 133, 1991–2000.

Wilkinson, D.G., Bhatt, S., Chavrier, P., Bravo, R., and Charnay, P. (1989). Segment-specific expression of a zinc-finger gene in the developing nervous system of the mouse. Nature 337, 461–464.

Wood, H.B., and Episkopou, V. (1999). Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech. Dev. 86, 197–201.

Xuan, S., Baptist, C.A., Balas, G., Tao, W., Soares, V.C., and Lai, E. (1995). Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres. Neuron 14, 1141–1152.
Supplemental Information

SOX1 Is Required for the Specification of Rostral Hindbrain Neural Progenitor Cells from Human Embryonic Stem Cells

Xinyuan Liu, Zhuoqing Fang, Jing Wen, Fan Tang, Bing Liao, Naihe Jing, Dongmei Lai, and Ying Jin
Fig S1. Related to Fig 1.

(A) qRT-PCR analysis of mRNA levels of SOX1, SOX2 and NESTIN in NPCs derived from another hESC line (SHhES2) at day 4, relative to undifferentiated WT hESCs (day 0). n=3 independent experiments. Data are shown as mean ± SEM.
(B) A diagram showing the design of the targeting vector and the screening strategy to identify correctly targeted SOX1-EGFP reporter hESCs. The cleavage sites are indicated by a red arrow.

(C) The representative genomic DNA PCR result showing the correct targeting and the excision of the PGK-NeoR cassette after Cre-mediated recombination in hESCs of the clone #6.

(D) Representative results for Sanger sequencing peak maps verified precise joining of 5’ homologous arm with the P2A-EGFP cassette, and a loxP site remained with 3’ homologous arm after Cre-mediated recombination in SOX1-EGFP reporter hESCs of clone #6.

(E) The representative result from karyotype analysis of hESCs of the clone #6: normal 46, XX.

(F) Flow cytometric profiles of SOX1 and EGFP as well as SOX2 and EGFP in NPCs derived from SOX1-EGFP reporter hESCs of clone #6 under indicated conditions. Similar results were obtained in 3 independent experiments.

(G) The illustration of our differentiation protocol to generate NPCs with both D-V and R-C identities from hESCs. SHH: Sonic Hedgehog C24II; Pur: purmorphamine.

(H) qRT-PCR analysis of mRNA level of SOX1 and D-V markers in NPCs of “-SHH” and “+SHH” groups at day 4, relative to undifferentiated WT hESCs (day 0). n=3 independent experiments. Data are shown as mean ± SEM.
Fig S2. Related to Fig 1.

(A) The representative genomic DNA PCR result showing the correct targeting and the excision of the PGK-NeoR cassette after Cre-mediated recombination in SOX1-EGFP reporter hESCs of the clones #4 and #8.

(B) Representative Sanger sequencing peak maps verified precise joining of 5’ homologous arm with the P2A-EGFP cassette, and a loxP site remained with 3’ homologous arm after Cre-mediated recombination in SOX1-EGFP reporter hESCs of clones #4 and #8.

(C) Flow cytometric profiles of SOX1 and EGFP as well as SOX2 and EGFP in NPCs derived from SOX1-EGFP reporter hESCs of clones #4 and #8 under indicated conditions. Similar results were obtained in 3 independent experiments.

(D) Representative results of immunofluorescence staining of NPCs derived from SOX1-EGFP reporter hESCs of clones #4 and #8 using antibodies against OTX2 and GBX2, respectively, at day 8. The nucleus was stained by DAPI. Scale bars, 50 µM.
Figure S3

(A) Unsupervised hierarchical clustering and pearson correlation between EGFPhigh, EGFPlow and WT hESC-derived NPCs with different regional identities at day 8.

(B) ChIP-seq signal profiles of OTX2 at the SOX1 and GBX2 loci in hESCs, endoderm and ectoderm cells were obtained from published data.

(C) ChIP-qPCR results of OTX2 at the SOX1 and GBX2 loci as well as a negative control region in NPCs of the CT0.4 group at day 4. \(n = 3 \) independent experiments. Data are shown as mean ± SEM. ** \(p < 0.01 \), *** \(p < 0.001 \). NC: negative control, a gene desert region (chr21:25509072+25509220, GRCh37/hg19).
Fig S4. Related to Fig 3.

(A) Representative Sanger sequencing peak maps verified the replacement of the CDS region of SOX1 by the PGK-Puro cassette in hESCs of S1KO-#26 and S1KO-#48 clones.
(B) qRT-PCR analysis of mRNA levels of WNT signaling associated genes in WT and SOX1-KO NPCs (CT1.0) at the indicated time points, relative to undifferentiated WT hESCs (day 0). n = 3 independent experiments. Data are shown as mean ± SEM.

(C) Examination of WNT signaling activity by TOP/FOPFlash reporter assays in WT and SOX1-KO NPCs (CT1.0) at day 6 and day 8. n = 3 independent experiments. Data are shown as mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001.

(D) A representative flow cytometric analysis of the cell cycle using propidium iodide (PI) DNA staining assays in WT and SOX1-KO NPCs (CT1.0) at day 8.

(E) Quantitative analysis of results from the experiment shown in (D). n = 3 independent experiments. Data are shown as mean ± SEM.

(F) A representative flow cytometric analysis of the cell proliferation rate by EdU labeling assays in WT and SOX1-KO NPCs (CT1.0) at day 8. NC: WT NPCs (CT1.0) at day 8 without EdU treatment.

(G) Quantitative analysis of results shown in (F) n = 3 independent experiments. Data are shown as mean ± SEM.
Fig S5. Related to Fig 4.

(A) The Venn diagram showing the number of SOX1 binding regions in NPCs of IWP2 day 8, CT1.0 day 4 and CT1.0 day 8 groups.

(B) Genomic distribution of SOX1-binding regions relative to their nearest RefSeq genes using the cis-regulatory element annotation system.

(C) The SOX1 binding region at the HOXA2 locus in NPCs of the three groups indicated in Fig. 4A.

(D) qRT-PCR analysis of mRNA levels of neural markers and WNT signaling related genes at indicated time points in WT and SOX1-KO NPCs (CT1.0) overexpressing EGFP or HOXA2, relative to undifferentiated WT hESCs (day 0). n = 3 independent experiments. Data are shown as mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, n.s.: not significant.
Supplemental tables

Table S1. The list of qRT-PCR primers used in this study, related to Figs 1-5, S1, S3, S4 and S5.

Gene	Forward 5’ to 3’	Reverse 5’ to 3’
GAPDH	GCACCCTCAAGGGCTGAGAAC	AGGGATCTCGTCTCTGGAA
SOX1	GGAATGGGAGGACAGGATTT	ACTTTTTTTTCTCGGCCCCGT
SOX2	TGCTGCCTTTTAACTAGGAC	CCTGGGGGCTCAACTTTTCTCT
SOX3	TGGGAAACTGCAACGCCCTACGC	GATCACGCCAGAAAATCAACACTC
NESTIN	TTCCCTCAGCTTTCAAGGACAAA	AAGGCTGGCAGAGGTGTCTCAA
FOXG1	GCAGCAGTTTCTGTTTCAACGGA	AGTTCTGAGTCAACAGGGAGCTGT
OTX2	ACAAGTGCGCAAATTCACTCC	GAGGTGGGACAGGGATCTGA
OTX1	CACTAAGCGCGTGTGTTTCTGC	GGCGGAGCGCAAATCG
LMX1A	AGGCCCTACGGCTCCCAATGAG	TGTTTCTCGGAGCTTTGGGG
LMX1B	TTCCCTGATGCGAGTCAACGAG	GCAGTACAGTTTCCGATCCCC
EN1	CCGGACACAGGAGGTGCTA	CAGGCGCAGGGCGTTCTTTGA
EN2	CATGGGGCTGCTCGCTGTC	TACTCGACTGCTGCCACTTGC
GBX2	AAAGAGGGCTGCTGCTGCT	ATCGCTTCTCAGGCGAGAA
KROX20	TTGACCAGATGAACGGAGATG	TGTTTCTAGGTCGAGAGAGC
HOXA2	CTGCGGTGCTGCTGAGTGTGCTG	TGGTGCAGGTAAGGCGAGGCTG
PAX6	TCTTTGCTTGGGAAATCCG	CGGCCCGTTCAATCCCTTAG
PAX7	ACCCCTGCTAGACCACTAC	GCGGCAAGAATCTGGGAGAC
NKX2.1	CGCATCAATCTCAGGAAT	CAGAGTGTCGCCAAGGTGAA
NKX2.2	AAACCATGTACGCGGTCTCA	GGCCTTTGACTGCTGATGGCT
WNT1	GCCATTGAACAGCTGAGGC	CGTGCTCTGTATCCACGT
WNT3A	GTGTTTCACTGTTGCTGCTA	CCCTGCTTCAAGTGGAGGAT
WNT8B	TTGTCGATGCGCCCTGGAAAAA	TTGAGTGGCTGGCCTGACTT
WN10B	TGAGCTGGATGAGGAAGCAAAG	TAAACCGTGAGGGAGACTGC
WLS	CACAAAGCGAGGCTCCTACA	ACTCATCTCAGGTGAGGGGA
AXIN2	ACTTCTGGTCTGCTGCAATGGA	GTGCGAGGCTTTAGCTGCTT
LEF1	CAGATCACCACCCACCTCTTGG	GTGAGGATGGGTAGGGTGGT
Table S2. The list of genomic DNA PCR primers used in this study, related to Figs 3, 5, S1 and S2.

SP5	GCACGTCAAGACTCACCAGA	CATTTTGGGAGGCAGGCAAC
SFRP1	ACCACCGTCTCTCAGAGT	TCTGTGCCTACAGAGGCCT
SFRP2	AACGAAAAGCCCACCGAAT	ACAACCAACCAACCAGACCCA
SFRP4	GCGGAGAACAGTTAGGACA	AGTCGGAAGTCTCGGCTTTG

OTX2 ChIP-qPCR primers

NC	GGGGGATCAGATGACAGTAAA	AATGCCAGCATGGGAAATA
SOX1-F1/R1	GGGCCGAGGTTTTGTTAG	AAGGGTTTGACTTTGCGGT
GBX2-F2/R2	TATTTACAGCCACTGGGTCC	GGGCCCTTTAGGACGAAG

Primers for construction of pBSK-SOX1-P2A-EGFP donor plasmid

LeftArm-F	AAGCTTCCTGAACGTTGAGCACTAGTGT
LeftArm-R	TCCGGATCCGATGTGCGTCAGGGGCACCG
RightArm-F	GTGCACGCCTTCGGGACGCCGGGGACTCT
RightArm-R	ATCGATTAAGGAGGCACACTGCT

Primers for construction of pBSK-SOX1-Puro-Donor plasmid

PuroF	TGGGTACCAGCTCGACGGGTAGGGGAGGCCTTTT
PuroR	CTGAAATTCCCATAGAGCCCACCGCATCC
S1KO-LA-F	GTGCACGAAAAAGCGTGCGCCATATCA
S1KO-LA-R	GGATCCGATTTTCCTCGAGGCAAAACACACGCACTCG
S1KO-RA-F	GAATTCCGATCCCGAGAGCGCAAGCCACTTT
S1KO-RA-R	GCCGCGCCATATGGGCTACATTGGAGCGGACA

Primers for verification of S1B region and O2B region knockout

S1BS-F	TCCCTCCCCATCTCCAGCAG
S1BS-R	GTTTTCCAGGGCGTGTCT
O2BS-F	GGGACGAGGTCAGGATTTG
O2BS-R	CCCTCATCCCCCTCTGGGA
Table S3. The list of guide sequences of individual sgRNAs, related to Figs 2, 3 and 5.

	Sequence
pX335-SOX1-StopA	GAAGGCCTAGATGTGCCTGA
pX335-SOX1-StopB	GGACGCCGGGGACTCTGCGGG
pX462-SOX1-UpA	ATGCTGTACATCGGGGCGGGGC
pX462-SOX1-UpB	ACCGACCTGCACGTGGCCCGCG
CtrlI	GGAGACGGACGTCTCC
OTX2i-g1	TGCTCCAAACCCACCCACCA
OTX2i-g2	GGGCTGGTTTACTGCTTCTCG
S1B-sgRNA1	TACATTCCGACTGTCAGAGC
S1B-sgRNA2	ACTGCCCATGACGGGCTACT
S1B-sgRNA2	GCACTGGGGAAGTCCGGATGG
O2B-sgRNA1	CACGTGCTAGGCCTAGGGCG
O2B-sgRNA2	CACGTGCTAGGCCTAGGGCG

Table S4. The list of antibodies used in this study, related to Figs 1-4 and S2.

Antibody	Company
SOX1	R&D, AF3369
OTX2	R&D, AF1979
FOXG1	Abcam, ab18259
EN1	DSHB, 4G11
SOX2	Custom
NESTIN	Millipore, MAB5326
GBX2	Sigma, HPA067809
GBX2	EPIGENTEK, A69507-050
HOXA2	Sigma, HPA029774
α-Tubulin	Sigma, T9026
NESTIN-Alexa647	BD Biosciences, 51-9007230
SOX1-Cy5.5	BD Biosciences, 561549
SOX2-Alexa647	BD Biosciences, 51-9006407
Isotype-Alexa647	BD Biosciences, 557783
Isotype-Cy5.5	BD Biosciences, 550795
------------------------	------------------------
Cy3-Donkey Anti-Mouse	Jackson ImmunoResearch 715-165-150
Cy3-Donkey Anti-Rat	Jackson ImmunoResearch 712-165-150
Cy3-Donkey Anti-Rabbit	Jackson ImmunoResearch 711-165-152
Cy3-Donkey Anti-Rabbit	Jackson ImmunoResearch 705-165-147
Alexa Fluor 555-Donkey Anti-Rabbit	Invitrogen, A-31572
Transparent methods

Construction of donor plasmids and sgRNA plasmids

For the pBSK-SOX1-P2A-EGFP donor plasmid used to generate SOX1-EGFP reporter hESC lines, the P2A-EGFP-loxP-NeoR-loxP cassette was synthesized and inserted into pBlueScript-II-SK (+). The left homologous arm fragment of about 3 kb in length was amplified by PCR from the genomic DNA of H9 hESCs with 2 primers (LeftArm-F and LeftArm-R). The right homologous arm fragment of about 2.75 kb in length was amplified by PCR from the genomic DNA with 2 primers (RightArm-F and RightArm-R). The primer sequences are provided in Table S2. For the pCAGGS-CRE-T2A-puro plasmid used to remove the NeoR cassette, the T2A-Puro cassette was synthesized and inserted into the pCAGGS-CRE plasmid (gift from Niwa’s lab). For the pBSK-SOX1-Puro-Donor plasmid used to generate SOX1-KO hESC lines, the PGK-PuroR cassette was amplified by PCR from the pBigT (gift from Frank Costantini’s lab) with 2 primers (PGK-Puro-F and PGK-Puro-R) and inserted into pBlueScript-II-SK (+). The left homologous arm fragment of about 2.9 kb in length was amplified by PCR from the genomic DNA of H9 hESCs with 2 primers (S1KO-LA-F and S1KO-LA-R). The right homologous arm fragment of about 2.4 kb in length was amplified by PCR from the genomic DNA of H9 hESCs with 2 primers (S1KO-RA-F and S1KO-RA-R). For sgRNA plasmids, Cas9 sgRNA vectors (pX335, or pX462 or pX459) were digested with BbsI, and gel extraction was performed to obtain the fragments of interest. A pair of oligos including targeting sequences was annealed and cloned into the BbsI-digested Cas9 sgRNA vector. The guide sequences of individual sgRNAs are provided in Table S3. All plasmids constructed in this study were sequenced to ensure their exactness.

Cell culture and differentiation of hESCs

The H9 (Karyotype, 46, XX) and SHhES2 (Karyotype, 46, XX) hESC lines were cultured on hESC-qualified Matrigel (BD, 354277) supplemented with mTeSR1 (Stemcell, #85850), and dissociated with Gentle Cell Dissociation Reagent (Stemcell, #07174) every 5 to 7 days for routine passaging. For neural differentiation, hESC colonies were detached with 1 mg/mL Dispase II (Gibco, 17105041) and suspended in neural differentiation medium, which was prepared as follows: DMEM/F12: Neurobasal (1:1, Gibco, 11320033), N2 (Gibco, 17502048), B27 without vitamin A (Gibco, 12587010), GlutaMax-I (Gibco, 35050061), MEM Non-Essential Amino Acids Solution (Gibco, 11140050), 5 µM SB431542 (Stemgent, 04-0010),
and 50 nM LDN193189 (Stemgent, 04-0074). Rho Kinase (ROCK)-inhibitor (Y-27632, 10 µM, Selleck, S1049) was present from day 0 to day 2. On day 4, aggregates were plated onto Matrigel-coated 6-well plates. From day 0 to day 8, IWP-2 (2 µM, Millipore, 686770), or CHIR99021 (0-4.0 µM, Stemgent,04-0004-10), or RA (1 µM, Sigma, R2625) was included in the differentiation medium for region-specific neural differentiation.

Electroporation

hESCs were cultured in mTeSR1 (Stemcell, #85850) with the Rho Kinase (ROCK)-inhibitor (Y-27632, 10 µM, Selleck, S1049) for 2 hrs prior to electroporation. Cells were dissociated by Accutase (Stemcell, #07920) for 8 minutes at 37 °C. Cells were dispersed into single cells, and 1×10^7 cells were electroporated with appropriate combinations of plasmids in 500 µL of the electroporation buffer (5 mM KCl, 5 mM MgCl₂, 15 mM HEPES, 102.94 mM Na₂HPO₄, 47.06 mM NaH₂PO₄, pH 7.2) using the Gene Pulser Xcell System (Bio-Rad, 165-2661) at 250 V, 500 µF in 0.4 cm cuvettes (Bio-Rad, #1652088) (Chen et al., 2015).

Generation of the SOX1-EGFP reporter hESC line

H9 hESCs were electroporated with a pair of sgRNA plasmids (pX335-SOX1-StopA and pX335-SOX1-StopB) as well as the donor plasmid pBSK-SOX1-P2A-EGFP, and screened with G418 (125 µg/mL) for 5 days. The clones were characterized by genomic DNA PCR with two primers: Primer-F (5’-CTGCCGCAGCAGCTACCAG-3’); Primer-R (5’-GTTTTGGACCTGCCTTACT-3’). To excise NeoR cassette, the hESCs from #4, #6 and #8 clone were electroporated with the plasmid pCAGGS-CRE-T2A-puro, and screened with 0.5 µg/mL puromycin for 1 day. The colonies were individually picked and expanded, followed by genomic DNA PCR and sequencing analyses for successful recombination using Primer-F and Primer-R as mentioned above.

Generation of SOX1 knockout hESC lines

H9 hESCs were electroporated with two pairs of sgRNA plasmids (sgRNA-Up: pX462-SOX1-UpA and pX462-SOX1-UpB; sgRNA-Down: pX335-SOX1-StopA and pX335-SOX1-StopB) as well as donor plasmid pBSK-SOX1-Puro-Donor, and screened with 0.5 µg/mL puromycin for 5 days. The colonies were individually picked and expanded, followed by genomic DNA PCR with Primer-F and Primer-R as mentioned above. The guide sequences of individual
sgRNAs are provided in Table S3. The passages of SOX1 knockout hESC lines used for neural differentiation ranged from 5 to 23 after SOX1 deletion.

Generation of S1B region or O2B region knockout hESC lines

For S1B region knockout, H9 hESCs were electroporated with 2 sgRNA plasmids (pX459-S1B-sgRNA1 and pX459-S1B-sgRNA2). For O2B region knockout, H9 hESCs were electroporated with 2 sgRNA plasmids (pX459-O2B-sgRNA1 and pX459-O2B-sgRNA2). The cells were screened with 0.2 µg/mL puromycin for 2 days, and individual colonies were picked and expanded, followed by genomic DNA PCR and sequencing analyses. The primers for DNA PCR and sequencing analyses are provided in Table S2. The guide sequence of individual sgRNAs are provided in Table S3.

Generation of the OTX2 knockdown hESC line

The pAAVS1-CRISPRi plasmid (gift from Mohammad A. Mandegar) was used to generate the parental dCas9-KRAB SOX1-EGFP reporter hESCs (clone #6) with the dCas9-KRAB cassette integrated at the AAVS1 locus. The plentiGuide-puro vector was used to generate the sgRNA expressing plasmid (Addgene, #117986). The detailed method was described previously (Mandegar et al., 2016). Two sgRNAs targeting the 5’ UTR of OTX2 (OTX2i-g1 and OTX2i-g2) and control sgRNA (CtrlI) were synthesized and annealed into the BsmBI-digested plentiGuide-puro vector, respectively. These plasmids were used to generate OTX2 knockdown and control knockdown SOX1-EGFP reporter hESCs using the parental dCas9-KRAB SOX1-EGFP reporter hESCs (clone #6) mentioned above. The guide sequences of individual sgRNAs are provided in Table S3. Details of lentiviral production and infection were previously described (Rubin et al., 2019).

Karyotyping

The well-grown SOX1-EGFP hESCs were treated with 100 ng/mL colchicine for 16 hrs and karyotyped as previously described (Ma et al., 2012).

Flow cytometric analysis and fluorescence-activated cell sorting

For flow cytometric analysis, cells were dissociated into single cells and counted. Then they were fixed with 4% PFA for 15 min at room temperature, washed 3 times with 1×PBS, and
incubated in the blocking buffer (10% Bovine Serum Albumin (BSA) and 0.2% Triton X-100 in PBS) for 30 min at room temperature, followed by incubation with antibodies for 1 hr at room temperature. The data of stained samples were acquired on the Beckman Gallios cytometer.

For fluorescence-activated cell sorting, cells were dissociated into single cells and counted. Then the cell suspension was analyzed by the Beckman Moflo Astrios cytometer. About 1×10^6 to 1×10^7 of EGFP$^{\text{low}}$ or EGFP$^{\text{high}}$ NPCs were collected. Subsequently, total RNA was extracted by the TRizol reagent (Life Technologies, #15596026).

Luciferase reporter assays

Cells were dissociated into single cells and transfected with 500 ng of the 8×TOPFlash (Addgene, #12456) or 8×FOPFlash (Addgene, #12457) plasmid together with 50 ng of the pRL-TK internal control plasmid (Promega). After 48 hrs, luciferase activity was examined with the Dual Glow Luciferase Assay System (Promega, #E1960).

Cell cycle and cell proliferation analysis

For cell cycle analysis, cells were dissociated into single cells and counted. For each sample, 500 µL Cell Cycle Rapid Detection Solution (Dakewe, DKW41-DKK) was added into 1×10^6 cells and analyzed by the Beckman Gallios cytometer. For cell proliferation analysis, cells were incubated with EdU (10 µM; BD Biosciences) for 1 hr and labeled using a Cell-Light EdU Apollo488 In Vitro Flow Cytometry Kit (RIBO). Cells were then dissociated into single cells, fixed with 4% paraformaldehyde (PFA) solution, and permeabilized with 0.2% Triton X-100/3% BSA in PBS. Finally, the samples were analyzed by the Beckman Gallios cytometer.

ChIP-seq and ChIP-qPCR assays

ChIP-seq and ChIP-qPCR assays were performed as previously described (Zhu et al., 2017). All primers used in ChIP-qPCR assays are listed in Table S1.

For ChIP-seq, DNA libraries were constructed using the NEB Next Ultra DNA Library Prep Kit for Illumina, and sequenced using Illumina HiSeq X-ten at a target sequencing depth of 20 million reads. Published ChIP-Seq datasets (GEO:GSM1521760 for OTX2; GEO:GSM602291 for p300; GEO: GSM537679 for H3K4me1) were downloaded from the Gene Expression Omnibus for integrated analysis. For SOX1 ChIP-seq data, reads were
aligned to the hg19 reference assembly using bowtie2 with default parameter settings. Uniquely mapped reads were kept and extended by 200 bp for further analysis. We used MACS2 with q < 0.01 to identify significant binding events for SOX1. Peaks were then annotated according to their proximity to transcription start sites using Homer. ChIP-seq signal profiles at the specific locus were visualized with the Integrative Genomics Viewer (IGV).

RNA-seq

RNA was extracted from cell samples using the TRIzol reagent. Sequencing libraries for RNA with Poly(A) tails were prepared and sequenced on the Illumina Hiseq X-ten platform according to Illumina manufacturer instructions. Gene expression was quantified by the Salmon (Patro et al., 2017), and DEGs were analyzed by DESeq2 (Love et al., 2014) with following settings: fold changes > 2 and FDR < 0.05. GO analysis for DEGs was conducted using the GSEApy (https://github.com/zqfang/GSEApy) (Fang, 2020).

RNA extraction, cDNA synthesis and quantitative real time PCR (qRT-PCR)

Total RNA was extracted using the TRIzol reagent (Life Technologies, #15596026). Total RNA of 4 µg was reversely transcribed into cDNAs using a ReverTra Ace reverse transcriptase (Toyobo, #FSK-101) according to the manual. QRT-PCR was performed on the ABI ViiA7 Real-Time PCR system, using the SYBR Premix Ex Taq II (Takara, #RR820L) following manufacturer’s instructions. GAPDH was used as an internal control, and a list of primers for qRT-PCR is provided in Table S1.

Genomic DNA extraction and PCR

Genomic DNA was extracted with the Pure Link™ Genomic DNA Mini Kit (Invitrogen, K1820-01). Genomic DNA PCR was carried out using the Q5® High-Fidelity DNA Polymerase (New England Biolabs, M0492L). A list of primers for genomic DNA PCR is provided in Table S2.

Western blot analysis

Cells were rinsed with PBS twice and lysed with the Co-IP buffer (50 mM Tris-HCl, 150 mM NaCl, 5 mM MgCl2, 0.2 mM EDTA, 20% Glycerol, 0.1% NP-40, 3 mM β-Mercaptoethanol; pH 7.5) supplemented with a protease inhibitor cocktail (Selleck, B14001). Total protein
concentration was measured using the Pierce BCA Protein Assay Kit (Thermo Scientific, #23227), following the manufacturer’s instructions. Total proteins of 20 µg (per lane) were separated by the SDS-PAGE and transferred to 0.45 µM nitrocellulose blotting membranes (GE Healthcare, #10600002). Membranes were blocked with 5% BSA diluted in TBST (19 mM Tris, 2.7 mM KCl, 137 mM NaCl, 0.1% Tween-20; pH 7.4) for 1 hr and incubated with specific primary antibodies overnight at 4 °C, followed by incubation with HRP-conjugated secondary antibodies for 1 hr. The signals were detected from blotted membranes by exposing to the SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific, #34580). All western blot analyses were conducted in at least three independent experiments. Antibodies used are listed in Table S4.

Immunofluorescence staining

Aggregates formed during neural differentiation were attached to Matrigel-coated coverslips (Fisherbrand, #12-545-82). They were fixed with 4% PFA for 15 min at room temperature, rinsed 3 times with 1×PBS, and incubated in the blocking buffer (10% donkey serum and 0.2% Triton X-100 in PBS) for 30 min at room temperature followed by incubation with primary antibodies overnight at 4 °C. Next day, coverslip cultures were rinsed 3 times with PBS, and incubated with secondary antibodies (Cy3, 1:200) for 1 hr at room temperature. The nuclei were stained with DAPI (Sigma, #D9542). Images were captured using a Zeiss Cell Observer microscope. Antibodies used are listed in Table S4.

Statistical analysis

The unpaired Student’s t test was used for statistical tests unless stated otherwise. Data are shown as mean±SEM. Numbers of biological replicates relevant for individual experiments are stated in figure legends.
Supplemental references

Chen, Y., Cao, J., Xiong, M., Petersen, A.J., Dong, Y., Tao, Y., Huang, C.T., Du, Z., and Zhang, S.C. (2015). Engineering Human Stem Cell Lines with Inducible Gene Knockout using CRISPR/Cas9. Cell stem cell 17, 233-244.

Fang, Z. (2020). GSEApy: Gene Set Enrichment Analysis in Python. Zenodo.

Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550.

Ma, Y., Li, C., Gu, J., Tang, F., Li, C., Li, P., Ping, P., Yang, S., Li, Z., and Jin, Y. (2012). Aberrant gene expression profiles in pluripotent stem cells induced from fibroblasts of a Klinefelter syndrome patient. The Journal of biological chemistry 287, 38970-38979.

Mandegar, Mohammad A., Huebsch, N., Frolov, Ekaterina B., Shin, E., Truong, A., Olvera, Michael P., Chan, Amanda H., Miyaoka, Y., Holmes, K., Spencer, C.I., et al. (2016). CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs. Cell stem cell.

Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., and Kingsford, C. (2017). Salmon provides fast and bias-aware quantification of transcript expression. Nature methods 14, 417-419.

Rubin, A.J., Parker, K.R., Satpathy, A.T., Qi, Y., Wu, B., Ong, A.J., Mumbach, M.R., Ji, A.L., Kim, D.S., Cho, S.W., et al. (2019). Coupled Single-Cell CRISPR Screening and Epigenomic Profiling Reveals Causal Gene Regulatory Networks. Cell 176, 361-376 e317.

Zhu, Z., Li, C., Zeng, Y., Ding, J., Qu, Z., Gu, J., Ge, L., Tang, F., Huang, X., Zhou, C., et al. (2017). PHB Associates with the HIRA Complex to Control an Epigenetic-Metabolic Circuit in Human ESCs. Cell stem cell 20, 274-289 e277.