Double commutants of multiplication operators on $C(K)$.

A. K. Kitover
Department of Mathematics, CCP, Philadelphia, PA 19130, USA

Abstract. Let $C(K)$ be the space of all real or complex valued continuous functions on a compact Hausdorff space K. We are interested in the following property of K: for any real valued $f \in C(K)$ the double commutant of the corresponding multiplication operator F coincides with the norm closed algebra generated by F and I. In this case we say that $K \in \mathcal{DCP}$. It was proved in [1] that any locally connected metrizable continuum is in \mathcal{DCP}. In this paper we indicate a class of arc connected but not locally connected continua that are in \mathcal{DCP}. We also construct an example of a continuum that is not arc connected but is in \mathcal{DCP}.

1. Introduction

The famous von Neumann’s double commutant theorem [2] can be stated the following way. Let (X, Σ, μ) be a space with measure and f be a real-valued element of $L^\infty(X, \Sigma, \mu)$. Let F be the corresponding multiplication operator in $L^2(X, \Sigma, \mu)$, i.e. $(Fx)(t) = f(t)x(t)$ for $x \in L^2(X, \Sigma, \mu)$ and t from a subset of full measure in X. Then

$$\{F\}^{cc} = \mathcal{A}_F$$

where $\{F\}^{cc}$ is the double commutant (or bicommutant) of F, i.e. $\{F\}^{cc}$ consists of all bounded linear operators on $L^2(X, \Sigma, \mu)$ that commute with every operator commuting with F and \mathcal{A}_F is the closure in the weak (or strong) operator topology of the algebra generated by F and the identity operator I.

The generalization on the case of complex multiplication operators (or normal operators on a Hilbert space) is then immediate. Quite naturally arises the question of obtaining similar results for multiplication operators on other Banach spaces of functions. De Pagter and Ricker proved in [3] that von Neumann’s result remains true for spaces $L^p(0, 1), 1 \leq p < \infty$, and more generally for any Banach ideal X in the space of all measurable functions such that X has order continuous norm and $L^\infty(0, 1) \subset X \subseteq L^1(0, 1)$. But they also proved that the double commutant of the operator T, $(Tx)(t) = tx(t), x \in L^\infty, t \in [0, 1]$, is considerably larger than the algebra \mathcal{A}_T and consists of all operators of multiplication by Riemann integrable functions on $[0, 1]$. The
last result gives rise to the following question: let \(C(K) \) be the space of all continuous real-valued functions on a Hausdorff compact space \(K \). When is it true that for every multiplication operator \(F \) on \(C(K) \) its double commutant coincides with the algebra \(A_F \)? This property is obviously a topological invariant of \(K \) and we will denote the class of compact Hausdorff spaces that have it as \(\mathcal{DCP} \) (short for double commutant property).

2. Continuums with \(\mathcal{DCP} \) property

In [I] the author proved that if \(K \) is a compact metrizable space without isolated points then the following implications hold.

(1) If \(K \) is connected and locally connected then \(K \in \mathcal{DCP} \).
(2) If \(K \in \mathcal{DCP} \) then \(K \) is connected.

In the presence of isolated points the analogues of the above statements become more complicated (see [I, Theorem 1.15]). To avoid these minor complications and keep closer to the essence of the problem we will assume that the compact spaces we consider have no isolated points.

A simple example (see [I, Example 1.16]) shows that the condition that \(K \) is connected is not sufficient for \(K \in \mathcal{DCP} \).

Example 1. Let \(K \) be the closure in \(\mathbb{R}^2 \) of the set \(\{(x, \sin 1/x) : x \in (0, 1]\} \). Let \(f(x, y) = x, (x, y) \in K \), and let \(F \) be the corresponding multiplication operator. Then it is easy to see (see details in [I, Example 1.16]) that the double commutant \(\{F\}^{cc} \) consists of all operators of multiplication on functions from \(C(K) \) but \(A_F \) consists of operators of multiplication on functions from \(C(K) \) that are constant on the set \(\{(0, y) : y \in [0, 1]\} \).

Therefore the next question is whether the condition that \(K \) is connected and locally connected is necessary for \(K \in \mathcal{DCP} \)? Below we provide a negative answer to this question. In order to consider the corresponding example let us recall the following two simple facts.

Proposition 2. Let \(K \) be a compact Hausdorff space and \(f \in C(K) \). Let \(F \) be the corresponding multiplication operator. Then

(1) The double commutant \(\{F\}^{cc} \) consists of multiplication operators.
(2) The algebra \(A_F \) coincides with the closure of the algebra generated by \(F \) and \(I \) in the operator norm.
Proof. (1) Let $T \in \{F\}^{cc}$. Let 1 be the function in $C(K)$ identically equal to 1. Clearly for every $a \in C(K)$ the operator F commutes with the multiplication operator A where $Ax = ax, x \in C(K)$. Therefore for any $a \in C(K)$ T commutes with A and $T(a) = T(a1) = TA1 = AT1 = aT1 = (T1)a$. Hence if we take $g = T1$ then T coincides with the multiplication operator G generated by the function g.

(2) If $T \in \{F\}^{cc}$ then by part (1) of the proof $T = G$ where G is a multiplication operator by a function $g \in C(K)$. It remains to notice that $\|G\| = \|G1\|_{C(K)}$ and therefore on $\{F\}^{cc}$ the convergence in strong operator topology implies convergence in the operator norm.

\[\square\]

Corollary 3. Let $f \in C(K)$ and F be the corresponding multiplication operator. The following two statements are equivalent.

1. $\{F\}^{cc} = A_F$.
2. For any $G \in \{F\}^{cc}$ and for any $s, t \in K$ the implication holds

\[f(s) = f(t) \Rightarrow g(s) = g(t),\]

where $g \in C(K)$ is the function corresponding to the operator G.

In what follows our main tool will be the following lemma which was actually proved though not stated explicitly in [1] (see [1, Proof of Theorem 1.14]).

Lemma 4. Let K be a compact metrizable space, $f \in C(K)$, and F be the corresponding multiplication operator. Let $G \in \{F\}^{cc}$ and g be the corresponding function from $C(K)$. Let $u, v \in K$ be such that

- $f(u) = f(v)$.
- The points u and v have open, and locally connected neighborhoods in K.
- For any open connected neighborhood U of u there is an open interval I_U in \mathbb{R} such that $f(u) \in I_U \subset f(U)$.

Then $g(u) = g(v)$.

We will also need a simple lemma proved in [1, Lemma 1.13]

Lemma 5. Let K be a compact Hausdorff space, F,G multiplication operators on $C(K)$ by functions f and g, respectively and $G \in \{F\}^{cc}$. Let $k \in K$ be such that $\text{Int}f^{-1}(\{f(k)\}) \neq \emptyset$. Then g is constant on $f^{-1}(\{f(k)\})$.

Now we are ready to give an example of a metrizable connected compact space K such that K is not locally connected but $K \in DCP$.
Let B be the well known “broom”.

$$B = \text{cl}\{(x,y) \in \mathbb{R}^2 : x \geq 0, y = \frac{1}{n} x, n \in \mathbb{N}, x^2 + y^2 \leq 1\}.$$

Proposition 6. $B \in \mathcal{DCP}$.

Proof. Let $f \in C(B)$ and $G \in \{F\}^{cc}$. By part (1) of Proposition 2 G is a multiplication operator. Let g be the corresponding function from $C(K)$. Let $u, v \in B$ and $f(u) = f(v)$. We can assume without loss of generality that $f \geq 0$ and $\min_{k \in B} f(k) = 0$. Let $D = \{k \in B : k = (x,0), 0 < x \leq 1\}$. We will divide the remaining part of the proof into four steps.

1. Assume first that $u, v \in B \setminus D$ and that $0 < f(u) = f(v) < M = \max_{k \in B} f(k)$. For any $m \in \mathbb{N}$ let $B_m = \{(x,y) \in \mathbb{R}^2 : x \geq 0, y = \frac{1}{n} x, n \geq m, x^2 + y^2 \leq 1\}$. Then for any large enough m we have

$$\min_{k \in B_m} f(k) < f(u) < \max_{k \in B_m} f(k).$$

Notice that for every $m \in \mathbb{N}$ the set B_m is a compact, connected and locally connected subset of B. Moreover, every point of B_m is a point of local connectedness in B and the set $B_m \setminus \{0,0\}$ is open in B. Let $B^1_m = \text{cl}\{k \in B_m : f(k) < f(u)\}$ and $B^2_m = \text{cl}\{k \in B_m : f(k) > f(u)\}$. There are two possibilities. (a) The set $B^1_m \cap B^2_m$ is empty. In this case, because B_m is connected, $f \equiv f(u)$ on some open subset of B and by Lemma 3 we have $g(u) = g(v)$.

(b) $\exists w \in B^1_m \cap B^2_m$. Because B is locally connected at w the pairs of points (u,w) as well as (v,w) satisfy all the conditions of Lemma 4 whence $g(u) = g(v)$.

2. Let $u, v \in B \setminus D$ and $f(u) = f(v) = 0$. There are two possibilities. First: $f \equiv 0$ on some open neighborhood of either u or v. Then $g(u) = g(v)$ by Lemma 5. Second: f is not constant on any open neighborhood of either u or v. In this case, because $B \setminus D$ is locally connected, we can find sequences $u_n \to u$ and $v_n \to v$ such that $u_n, v_n \in B \setminus D$ and $0 < f(u_n) = f(v_n) < M$, $n \in \mathbb{N}$. Then by the previous step $g(u_n) = g(v_n)$ whence $g(u) = g(v)$. The case $u, v \in B \setminus D$ and $f(u) = f(v) = M$ can be considered similarly.

3. Now we will assume that u and v are arbitrary distinct points of B and that $0 < f(u) = f(v) < M$. Let again $m \in \mathbb{N}$ be so large that inequalities (1) hold. Like on step (I) we have two alternatives (a) and

1 We can assume of course that $M > 0$ because otherwise $F = 0$ and the statement $\{F\}^{cc} = \mathcal{A}_F$ becomes trivial.
(b). In case (a) we apply again Lemma 5. In case (b) we cannot apply Lemma 4 directly because B might be not locally connected at u and/or at v. Therefore we fix $w \in B_1 \cap B_2$ and consider two subcases. (b1). f is constant on some neighborhood of either u or v. Then $f(u) = f(v)$ by Lemma 5. (b2). f is not constant on any open neighborhood of u or v. Let $u_n \in B \setminus D$ be such that $u_n \to u$. Because $f(w)$ is an inner in R point of the set $f(W)$ where W is an arbitrary connected open neighborhood of w in B_m we can find a sequence of points $u_n \in B_1 \cap B_2$ and consider two subcases. (b1). f is constant on some neighborhood of either u or v. Then $f(u_n) = f(u)$. (b2). f is not constant on any open neighborhood of u or v. Let $u_n \in B \setminus D$ be such that $u_n \to u$.

(IV). Finally assume that u and v are arbitrary points in B and $f(u) = f(v) = 0$ (the case $f(u) = f(v) = M$ can be considered in the same way). If there is a point $w \in B \setminus D$ such that $f(w) = 0$ then we can proceed as in step (III). Let us assume therefore that $f > 0$ on $B \setminus D$. Let $a \in (0, 1)$ be the smallest number such that $f(a, 0) = 0$. Then for any $n \in N$ such that $n > 1/a$ the set $f\{\{(x, 0): a-1/n \leq x \leq a\}\}$ is an interval $[0, \delta_n]$ where $\delta_n > 0$. Therefore we can find $a_n \in [a-1/n, a)$ and $u_n \in B \setminus D$ such that $u_n \to u$ and $f(u_n) = f(a_n, 0), n \in N, n > 1/a$, whence by step (III) $g((a_n), 0) = g(u_n)$ and therefore $g((a, 0) = g(u)$. Similarly, $g(v) = g((a, 0) = g(u)$ and we are done.

By analyzing the steps of the proof of Proposition 6 and the properties of the broom B we used, we come to the following more general statement that can be proved in exactly the same way as Proposition 6.

Proposition 7. Let K be a compact connected metrizable space. Assume that there are compact subsets $K_m, m \in N$ of K with the properties.

1. $K_m \subsetneq K_{m+1}$.
2. K_m is connected and locally connected.
3. The interior of K_m in K is dense in $K_m, m \in N$.
4. Every point of K_m is a point of local connectedness in K.
5. The set $\bigcup_{m=1}^{\infty} K_m$ is dense in K.
6. For every point $k \in K \setminus \bigcup_{m=1}^{\infty} K_m$ there is a path in K from k to a point in $\bigcup_{m=1}^{\infty} K_m$.
Then $K \in \mathcal{DCP}$.

Example 8. This example is somewhat similar, though topologically not equivalent to the broom. The corresponding compact subspace of \mathbb{R}^2 is traditionally called the “bookcase” and is defined as follows.

$$BC = \overline{\bigcup_{n=1}^{\infty} \{(x, 1/n) : x \in [0, 1]\}} \cup \{(0, y) : y \in [0, 1]\} \cup \{(1, y) : y \in [0, 1]\}.$$

We claim that $BC \in \mathcal{DCP}$.

Proof. For any $m \in \mathbb{N}$ let $BC_m = BC \cap \{(x, y) \in \mathbb{R}^2 : y \geq 1/m\}$. Then the compacts BC_m have properties (1) – (6) from the statement of Proposition 7. □

The conditions of Proposition 7 and the arc connectedness theorem (see [4, Theorem 5.1, page 36]) guarantee that the compact space K satisfying the conditions of that proposition is arc connected. It is not known to the author if the arc connectedness of a metrizable compact K is sufficient for $K \in \mathcal{DCP}$, but as our next example shows it surely is not necessary.

Proposition 9. Let K be the union of the square $[-1, 0] \times [-1, 1]$ and the set $\{(x, \sin(1/x)) : 0 < x \leq 1\}$. Then $K \in \mathcal{DCP}$.

Proof. Let $f \in C(K)$, F be the corresponding multiplication operator, $G \in \{F\}^{cc}$, and $g \in C(K)$ the function corresponding to G. We can assume without loss of generality that $f(K) = [0, M]$ where $M > 0$. Let $E = \{(0, y) : y \in [-1, 1]\}$. Notice that K is locally connected at any point of $K \setminus E$. The set $K \setminus E$ is the union of two disjoint open connected subsets of K: $C_1 = [-1, 0] \times [-1, 1]$ and $C_2 = \{(x, \sin(1/x)) : x \in (0, 1]\}$. Like in the proof of Proposition 6 we have to consider several possibilities.

(1) If $u, v \in C_1$ or $u, v \in C_2$ and $0 < f(u) = f(v) < M$. In this case we can prove that $g(u) = g(v)$ in very much the same way as in step (I) of the proof of Proposition 6 by considering the sets $C_{1,m} = [-1 \times -1/m], m \in \mathbb{N}$ (respectively the sets $C_{2,m} = \{(x, \sin(1/x)) : 1/m < x < 1\}$).

(2) Let now assume that $0 < f(u) = f(v) < M$, $u \in C_1$, $v \in C_2$, and at least one of the inequalities holds $f(u) < \sup_{k \in C_1} f(k)$ or $f(v) < \sup_{k \in C_2} f(k)$. Then like in the proof of Proposition 6, we can either find an open subset of K on which f is identically equal
Problem 10.

1) Is it possible to characterize the metrizable continua from the class DCP in purely topological terms not involving multiplication operators?
(2) In particular, is it true that any metrizable arc connected continuum belongs to \mathcal{DCP}?

(3) This question is a special case of the previous one. Let C be the standard Cantor set and

$$K = \{(x, y) : x \in C, y \in [0, 1]\} \cup \{(x, 0) : x \in [0, 1]\}.$$

Is it true that $K \in \mathcal{DCP}$? A positive answer to question (3) would be in the author’s opinion a strong indication that the answer to question (2) should also be positive.

References

[1] Kitover A.K., *Bicommutants of multiplication operators.*, Positivity, Volume 14, Issue 4, 2010, pp 753-769.
[2] von Neumann, J. *Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren*, Math. Ann. 102 (1929), 370-427.
[3] de Pagter B., Ricker W. J., *Bicommutants of algebras of multiplication operators*. Proc. London Math. Soc. (3) 72(2) (1996), 458–480.
[4] Whyburn G.T., *Analytic topology*, AMS Colloquium Publications, v. 28, 1942.