Introduction

Applying decomposition technique to matrices, which would then be extended to high order tensors

Unsupervised Coarse Graining

Experiment on classification task

Mixing prior

Conclusion
High Level Idea

- Provides a method to compress data originally in high dimensional space
- Preserves data properties at large scale while normalizing over smallest length scales
- Main idea comes from physics
- Eg. Looking at temperature of the entire system to understand state instead of dynamics about each particle
- Significantly reduces the size of feature space

(Stoudenmire., 2018)
Research Significance

- Computational Efficiency
- Building block for many machine learning tasks
- The algorithm proposed is unsupervised
- Can be applied to very large datasets with a large set of features
Main Contributions

- Uses tensor networks to produce a hierarchical representation of data using low order tensors
- Unsupervised learning based on statistical properties of data
- Only a single topmost layer of tensor needs to be optimized based on task
- Can be used with prior estimates of weights to make learning faster

(Stoudenmire., 2018)
Key Points

- Compressed space is represented using a layered tree tensor network
- The algorithm scales linearly with both the dimension of the input and training set size
- Uses kernel learning
- The tree tensor network obtained is generalizable to various tasks

(Stoudenmire., 2018)
Consider a model $f(x) = W \cdot \Phi(x)$, where $\Phi(x)$ is the kernel space mapping of the training data.

The optimal weights belong to the span of the training data within feature space.

Using *Representer Theorem*, W:

$$W = \sum_{j=1}^{N_T} \alpha_j \Phi^T(x_j)$$

Quadratic or worse dependence on training set size
Dealing with scale

\[W = \sum_{j=1}^{N_T} \alpha_j \Phi^T(x_j) \]

- \(W \) resides in the span of the \(\{ \Phi^T(x_j) \}_{j=1}^{N_T} \)

\[W = \sum_n \beta_n U_n^T \]

where \(U_n^T \) spans the same space as \(\Phi^T(x_j) \)

- One way to obtain \(U^T \) could be by performing SVD on \(\{ \Phi(x_j) \} \).

\[\Phi_j^s = \sum_{nn'} U_n^s S_{n'}^n (V^T)_{j'n'} \]

- Truncating singular values very close to zero, \(U^T \) will give the transformation from entire feature space to the reduced parameter space
Covariance to the Rescue!

- SVD is computationally challenging for large datasets
- Alternative method:

\[\rho_{s}' = \frac{1}{N_T} \sum_{j=1}^{N_T} \Phi_j s' (\Phi_j s')^T = \sum_n U_n s' P_n (U_n^T)_s \]

(5)

Thus, \(U \) diagonalizes the feature space covariance matrix \(\rho \)
- Truncate directions along which \(\rho \) has a very small projection to rapidly reduce the size of the space needed to carry out learning tasks.

(Stoudenmire., 2018)
We define a **local feature map** $\phi : \mathbb{R} \rightarrow \mathbb{R}^d$, and

$$
\Phi(x) = \phi(x_1) \circ \cdots \circ \phi(x_N),
$$

so that now W is a tensor of order N with d^N weight parameters.
As before, the idea is to compute the eigenvectors of ρ, then discard those with smallest eigenvalues.

We think of the collection of feature vectors $\{\Phi(x_j)\}_{j=1}^{N_T}$ as a single tensor of order $N + 1$, so that ρ is formed by contracting Φ and Φ^T over the index j:

$$\Phi^{s_1s_2\cdots s_N}(x_j) = \Phi_j^{s_1s_2\cdots s_N} = \Phi(x_j)\Phi^\dagger(x_j) = \frac{1}{N_T} \sum_{j=1}^{N_T} \Phi(x_j)\Phi^\dagger(x_j)$$
Local Isometry

- As it is not feasible to diagonalize ρ directly, we look at local isometries, which are third-order tensors $U^{s_1s_2}_t$ satisfying $\sum_{s_1s_2} U^{s_1s_2}_t U^{s_1s_2}_{t'} = \delta_{t'}^t$

$$U^{s_1s_2}_t = \begin{array}{c} \text{(a)} \\ \text{t} \\ s_1 \\ s_2 \end{array} = \begin{array}{c} \text{(b)} \\ \end{array}$$

- We define U_1 such that when it acts on the first two feature space indices, it maximizes the fidelity

$$F = \text{Tr}[\rho] = \frac{1}{N_T} \sum_j \Phi^T \Phi$$ \hspace{1cm} (7)
The fidelity of the approximated ρ is

$$F_1 = \frac{1}{N_T} \sum_j \Phi^T U_1 U_1^T \Phi \quad (8)$$

$$F_1 \leq F.$$

The reduced covariance matrix ρ_{12} is defined by tracing over all indices of ρ other than s_1 and s_2, so that

$$F_1 = \sum_{s_1 s_2 s'_1 s'_2} (U_1^T)^t_{s'_1 s'_2} \rho_{s'_1 s'_2 s_1 s_2} U_1^{s_1 s_2 t} \quad (9)$$

$$F' = \frac{1}{N_T} \sum_{j=1}^{N_T} \rho_{j j}$$
Reduced Covariance matrix

- \(\rho_{12} = U_1 P_{12} U_1^T \).
- \(U_1 \) is truncated keeping the eigenvectors corresponding to the \(D \) largest eigenvalues of \(\rho_{12} \), where the choice of \(D \) depends on a given truncation error cutoff \(\epsilon \).
Diagonalizing ρ

We use the isometry layer to coarse grain the feature vectors, and iterate to diagonalize ρ in $\log_2(N)$ steps.
Defining the model

- Having determined \mathcal{U}, our model is:

$$f(x) = \sum_{t_1 t_2} w_{t_1 t_2} \tilde{\Phi}_{t_1 t_2}(x)$$ \hspace{1cm} (10)

where

$$\tilde{\Phi}_{t_1 t_2}(x) = \sum_{t_1 t_2} \mathcal{U}_{s_1 s_2 \cdots s_N}^{t_1 t_2} \Phi_{s_1 s_2 \cdots s_N}(x)$$ \hspace{1cm} (11)
Experiments

- The local feature map $\phi^{s_n}(x_n)$ is defined by
 \[
 \phi^{s_n=1}(x_n) = 1 \\
 \phi^{s_n=2}(x_n) = x_n
 \]

- We use conjugate gradient to optimize the top tensor \mathcal{W}

ϵ	t_1	t_2	Accuracy on training set (%)	Accuracy on test set (%)
10^{-3}	107	151	98.75	97.44
6×10^{-4}	328	444	99.68	98.08

Table: Results on MNIST dataset using unsupervised / supervised algorithm
Mixed task-specific / unsupervised algorithm

- Mix the feature space covariance matrix ρ with another matrix based on a specific task:

$$\rho_\mu = \mu \hat{\rho}_W + (1 - \mu) \hat{\rho}$$ \hspace{1cm} (12)

- Given a prior guess for supervised task weights:

$$\hat{\rho}_W = \frac{1}{\text{Tr}(W^T W)} W^T W, \quad \hat{\rho} = \frac{1}{\text{Tr}(\rho)} \rho$$

μ	ϵ	t_1	t_2	Accuracy on training set(%)	Accuracy on test set(%)
0.5	4×10^{-4}	279	393	99.798	98.110

Table: Results on MNIST dataset using mixed task-specific / unsupervised algorithm
Partial coarse graining: tree curtain model

- Consider the weights \mathcal{W} as a matrix product state

$$f^\ell(x) = \Phi(x) \{ w^\ell \} \{ U \}$$

μ	ϵ	Accuracy on training set(%)	Accuracy on test set(%)
0.9	2×10^{-9}	95.38	88.97

Table: Results on fashion-MNIST dataset using partial coarse graining / unsupervised algorithm

Approach	Accuracy (%)
XGBoost	89.8
AlexNet	89.9
Two-layer convolutional neural network trained with Keras	87.6
GoogLeNet	93.7

Table: Results for state-of-the-art approaches without preprocessing

(Stoudenmire., 2018)
Constructing a model using a tree tensor network \mathcal{U} and a top tensor \mathcal{W}

- The algorithm scales linearly in both training set size and input space dimension
- This can be reduced to sublinear using stochastic optimization techniques
- Experimentation can be done with different choices of the covariance matrix ρ and feature map
- Stochastic Gradient Descent can be used for optimization of the top tensor to improve accuracy
- Instead of using tree tensor network, use MERA tensor network

(Stoudenmire., 2018)
References

[1] Jacob Biamonte and Ville Bergholm. Quantum tensor networks in a nutshell. 2017.

[2] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component analysis as a kernel eigenvalue problem. *Neural Comput.*, 10(5):1299–1319, July 1998.