Studying Effect of Eu Doping on the Structural Properties and Infrared Spectroscopy of Aluminum Oxide powders by Solid State Reaction Method

Abd almajed krawe1* Ahmad Khoudro2 Talalkhalas3
1.MSc Student, Department of Physics, Faculty of science, Tishreen University, Syria
2.Professor, Department of Physics, Faculty of science, Tishreen University, Syria
3.Assistant Professor, Department of Physics, Faculty of science, Tishreen University, Syria

Abstract
Eu doped Aluminum oxide transparent conducting powder were prepared by solid state reaction method. Structural properties of the samples were investigated as a function of various Eu-doping levels (x=0.00-0.0012-0.0016-0.002-0.003). The results of x-ray diffraction have shown that the samples are polycrystalline structure in tetragonal phase with preferential orientations along the (400) for all samples The relative intensities, distance between crystalline planes (d), crystallite size (D) and lattice parameters (a), (c) were determined. Infrared Spectroscopy have been studied by Infrared Spectrometer Device.

Keywords: powder, Eu doped Aluminum Oxide, solid state reaction, Structural properties, Infrared Spectroscopy.
DOI: 10.7176/CMR/12-4-02
Publication date: April 30th 2020

1. Introduction
Transparent conducting oxides (TCOs) are semiconductors that are produced from a combination of metal and oxygen such as: ZnO, In2O3, SnO2. The studying of TCOs is very important because of their special properties that is used in technology applications [1].

Aluminum oxide (Al2O3) is considered as one of the most important member of the TCOs for its unique electrical and optical properties because it has low electrical resistivity, high optical transparency in visible region, high optical reflectance in infrared region and chemical inertness. So, Al2O3 is used in solar cells, sensors, display devices and in other important applications [2].

Al2O3 is an p-type semiconductor with wide band gap energy (Eg = 3.5-4 eV) [3]. Al2O3 has tetragonal structure belonging to the P42/mnm space group. The lattice parameters are a = b = 2.184 and c = 3.184 A [4]. Its unit cell contains two Aluminum and three oxygen atoms as is shown in figure 1. The Aluminum atom is at the center of six oxygen atoms placed at the corners of a regular octahedron. Every oxygen atom is surrounded by four Aluminum atoms at the corners of an equilateral triangle [5,6].

![Fig. 1: Unit cell of the crystal structure of Al2O3. Large circles indicate oxygen atoms and the small circles indicate tin atoms.](image)

2. Experimental Method
Al1-xEuO3 powders (x = 0.00, 0.012, 0.016, 0.002, 0.003) were prepared by solid state reaction method. were accurately weighed in required proportions and were mixed and ground thoroughly using an Agate mortar and pestle to convert to very fine powders.

The grinding of the mixtures was carried out for 3 hours for all the powder samples. The ground powder samples were firing at 700°C for 3 hours.
3. Results and discussions
3.1 Structural properties
The X-ray diffraction patterns of undoped and Au doped \(\text{Al}_2\text{O}_3 \) powders prepared with various Au concentration 0 wt\%, 0.12 wt\%, 0.16 wt\%, 0.2 wt\% and 0.3 wt\% are shown in Fig. 2.

The XRD reveals that all samples are having polycrystalline nature with tetragonal structure and peaks correspond to (105), (305), (400), (440), (4.0.12), (113), (314), (116), planes. The preferred orientation is (400) for all samples. We noticed disappearance of these orientations (501), (518) in all doped samples.
Fig. 2: XRD results of pure Al_2O_3, 0.12 wt% Eu doped Al_2O_3, 0.16 wt% Eu doped Al_2O_3, 0.2 wt% Eu doped Al_2O_3, 0.3 wt% Eu doped Al_2O_3.

Table (1) shows results of structural values of undoped Al_2O_3 sample.

عينات المدروسة	2θ (deg)	(hkl)	d (Å)	Rel. int. [%]	β (deg)	D (nm)	D (nm)	ثوابت الشبكة	
عينات المدروسة								a(Å)	c(Å)
(نقي)	23.93	(114)	3.717	8	1.12	7.577	1.184	2.184	3.184
	38.52	(305)	2.336	72	1.17	7.516			
	44.71	(400)	2.026	100	1.25	7.180			
	73.12	(501)	1.294	9	1.25	8.266			
	76.63	(518)	1.243	10	1.50	7.052			

Table (2) shows results of structural values of Au doped Al_2O_3 samples ($x=0.012$).

عينات المدروسة	2θ (deg)	(hkl)	d (Å)	Rel. int. [%]	β (deg)	D (nm)	D (nm)	ثوابت الشبكة	
عينات المدروسة								a(Å)	c(Å)
(0.12wt%)	22.36	(113)	3.975	6	0.34	24.888	18.65	4.748	3.184
	38.47	(314)	2.339	18	0.23	38.226			
	44.60	(400)	2.031	100	0.20	44.860			
	65.09	(440)	1.433	8	0.28	35.165			
	67.52	(40.12)	1.387	10	0.23	43.406			

Table (3) shows results of structural values of Au doped Al_2O_3 samples ($x=0.016$).
Table (3)

المدخلة	2θ (deg)	(Å)	Rel. int. [%]	β (deg)	D (nm)	متواسط ثبات الشبكة
(0.16wt%)	23.14	3.843	6	1.12	7.566	3.68
	38.87	2.316	28	1.17	7.524	
	44.73	2.025	100	1.25	7.181	
	66.31	1.409	7	1.25	7.931	
	67.07	1.395	10	1.50	6.638	

Table (4) shows results of structural values of Au doped \(Al_{2}O_{3} \) powders (x=0.002).

Table (4)

المدخلة	2θ (deg)	(Å)	Rel. int. [%]	β (deg)	D (nm)	متواسط ثبات الشبكة
(0.2wt%)	25.27	3.523	4	1.12	7.596	3.68
	38.52	2.336	16	1.17	7.516	
	44.72	2.026	100	1.25	7.181	
	65.07	1.433	8	1.25	7.876	
	67.45	1.388	6	1.50	6.653	

Table (5) shows results of structural values of Au doped \(Al_{2}O_{3} \) powders (x=0.003).

Table (5)

المدخلة	2θ (deg)	(Å)	Rel. int. [%]	β (deg)	D (nm)	متواسط ثبات الشبكة
(0.3wt%)	28.05	3.180	8	1.12	7.640	3.68
	38.51	2.337	84	1.17	7.515	
	44.74	2.025	100	1.25	7.181	
	64.99	1.434	10	1.25	7.873	
	67.13	1.394	14	1.50	6.641	

The relative intensities of undoped and Au doped \(Al_{2}O_{3} \) powders are calculated. The distance between crystalline planes values (d) are calculated by using following relation:

\[2d \sin \theta = n \lambda \]

Where \(d \) is distance between crystalline planes (Å), \(\theta \) is the Bragg angle, \(\lambda \)is the wavelength of X-rays (\(\lambda=1.54056 \) Å).

The crystallite size is calculated from Scherrer’s equation [7]:

\[D = \frac{0.94 \lambda}{B_{1/2} \sin \theta} \]

Where, D is the crystallite size, \(\lambda \) is the wavelength of X-ray, \(\beta \) is full width at half maximum (FWHM) intensity in radians and \(\theta \) is Bragg’s angle.

The lattice constants a and c for tetragonal phase structure are determined by the relation [8]:

\[\frac{1}{a^2} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2} \]

Where \(d \) and (hkl) are distance between crystalline planes and Miller indices, respectively. The calculated lattice constants a, c values are given in table 1,2,3. It was seen that a, c and c/a match well with JCPDS data (\(a=b=2.184 \) Å and \(c=3.184 \) Å).

The change in peak intensities is basically due to the replacement of \(Al^{3+} \) ions with \(Au^{2+} \) ions in the lattice of the \(Al_{2}O_{3} \). This process leads to the movement of \(Al^{3+} \) ions in interstitial sites.

5. Conclusion

This paper presents a study of structural properties of Au doped \(Al_{2}O_{3} \) powders prepared by solid state reaction method. X-ray diffraction patterns confirm that the samples have polycrystalline nature with tetragonal structure and show presence (105), (305), (400), (440), (4.0.12), (113), (314), (116) planes in pure tin oxide sample. The all samples have preferred orientation along (400) plane. The average of crystallite size is within the range \([11.877-7.004 \text{ nm}] \) for all samples. It was defined that the lattice constants a, c for all the samples, were almost
identical with JCPDS values, and the ratio c/a remained constant with increasing Fe dopant concentration. FTIR analysis revealed that the Fe doping manifests itself by a shift in Al_2O_3 absorption peaks positions.

REFERENCE:

[1] – Sakhta A.R. et al (2016), "Studying Effect of Mg Doping on the Structural Properties of Tin Oxide Thin Films Deposited by the Spray Pyrolysis Technique", Chemistry and Materials Research, 8, 12-18.

[2] - Turgut G., Keskenler E. F., Aydin S.; Sonmez E., Dogan S., Duzgun B. & Ertugrul M. (2013), “Effect Of Nb Doping On Structural, Electrical And Optical Properties Of Spray Deposited SnO2 Thin Films”, Superlattices and Microstructures, 56, 107-116.

[3] - Gandhi T., Babu R. & Ramamurthi K. (2013) “Structural, Morphological, Electrical and Optical Studies Of Cr Doped SnO2 Thin Films Deposited By The Spray Pyrolysis Technique”, Materials Science in Semiconductor Processing, 16, 427-479.

[4] - Vadivel S. & Rajarajan G. (2015) “Effect Of Mg Doping On Structural, Optical And Photocatalytic Activity Of SnO2 Nanostructure Thin Films”, Journal of Materials Science, 5, 304-373.

[5] - Jarzembski Z. & Marton J. (1976) “Physical Properties of SnO2 Materials”, Journal of the Electrochemical Society, 199-205.

[6] – Khanna V. & Mohanta K. (2013) “Synthesis and Structural Characterization of SnO2 Thin Films Prepared by Spray Pyrolysis Technique”, International Journal of Advanced Research, 1(7), 666-669.

[7] - Mariappan R., PonnuSwamy V. & Suresh P. (2012) “Effect Of Doping Concentration On The Structural And Optical Properties Of Pure And Tin Doped Zinc Oxide Thin Films By Nebulizer Spray Pyrolysis (NSP) Technique”, Superlattices and Microstructures, 52, 500-513.

[8] - Gurakar S., Serin T & Serin N. (2014) “Electrical And Microstructural Properties Of (Cu, Al, In)-Doped SnO2 Films Deposited By Spray Pyrolysis”, Advanced Materials Letters, 5(6), 309-314.

[9] - Ashokkumar M, et al, (2014), "Zn0.96−xCu0.04FexO(0 ≤ x ≤ 0.04) alloys – Optical and structural studies", Superlattices and Microstructures, 69, 53-64.

[10] - Faisal M, et al, (2015), "SnO2 doped ZnO nanostructures for highly efficient photocatalyst", Journal of Molecular Catalysis A: Chemical, 39, 19-25.

[11] - Gnanam S, Rajendran V, (2010), "Preparation of Cd-doped SnO2 nanoparticles by sol–gel route and their optical properties", Journal of Solid-Gel Science and Technology, 56, 128–133.

[12] – Sharma A., et al., (2011), "Magnetic Properties of Fe and Ni Doped SnO2 Nanoparticles" Nanomaterials and Nanotechnology, 1, 29-33.

[13] - Mohamed S.H., et al, (2012), "SnO2 dendrites–nanowires for optoelectronic and gas sensing applications", Journal of Alloys and Compounds, 510, 119-124.

[14] - Srinivas K, (2011), "Structural, electronic and magnetic properties of Sn0.95Ni0.05O2 nanorods", Nanoscale, 3, 642-653.