Validation Framework for Generic Radar Sensor Models

MICHAŁ JASIŃSKI¹, 2, (Graduate Student Member, IEEE), PAWEŁ SKRUCH², (Senior Member, IEEE), AND MATEUSZ KOMORKIEWICZ², (Senior Member, IEEE)

¹AGH University of Science and Technology
Department of Automatic Control and Robotics
al. A. Mickiewicza 30,
30-059 Kraków, Poland (e-mail: author@agh.edu.pl)
²APTIV Services Poland S.A.
ul. Podgórki Tynieckie 2
30-399 Kraków, Poland (e-mail: author@aptiv.com)

Corresponding author: Michał Jasiński (e-mail: jasinski@agh.edu.pl).

Research was funded by Polish Ministry of Science and Higher Education Project No. 0014/DW/2018/02 and carried out in cooperation of Aptiv Services Poland S.A. – Technical Center Kraków and AGH University of Science and Technology – Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering.

ABSTRACT Automotive radar sensors are vital in Advanced Driver Assistance Systems (ADAS). To be more precise, their ability to explicitly measure the relative velocity to its targets is essential in Adaptive Cruise Control (ACC) and Emergency Braking (EB) applications. Nevertheless, ADAS systems are getting more and more complex, due to constantly increasing demands regarding safety and performance. As a result, to speed up the development and validation time of ADAS systems, part of the testing is performed in simulations. Replacing some of the test drives by the runs in virtual environments not only reduces the cost of a product, but also helps in fully safe execution of dangerous corner cases. However, to enable reliable testing of radar-based ADAS systems in virtual environments, high-fidelity radar sensor models are required. In order to prove the reliability of a given model, a proper evaluation process has to be conducted. This paper presents an end-to-end, straightforward methodology for performance assessment and fine-tuning of radar sensor models. To show how the full pipeline of the framework can be executed, an exemplary radar sensor model has been incorporated. The successful fine-tuning of the model proves the usefulness of the introduced method.

INDEX TERMS mathematical modelling, sensor modelling, simulation, radars, virtual validation

I. INTRODUCTION

In recent years the automotive industry has focused on the intensive development of Advanced Driver Assistance Systems (ADAS) systems, e.g. Emergency Braking (EB) or Adaptive Cruise Control (ACC), that support a driver in dangerous situations and, if necessary, take the control of a car. Usually, such applications have the following parts: sensing, object detection and decision making. Sensing and object detection modules are oftentimes coupled, forming an automotive perception system. The perception module has two main roles. First, to gather measurements from a given sensor, such as camera, lidar or radar. Then, based on raw sensor measurements, to fit an oriented bounding box (OBB) to each object that is visible from the sensor perspective. A list of OBBs generated in a given scene is called object list. It is worth mentioning, that an automotive perception system can also use multi-sensor data as an input. In that case, a high-level fusion of outputs from multiple object detectors needs to be performed.

Taking into account that complexity of ADAS systems is rapidly growing, an immense effort must be made in order to prove the robustness of a given system. Moreover, potential multi-sensor input makes the system and its validation even more complicated. To properly assess the reliability of an ADAS application in all possible road conditions and scenarios, a million miles of test drives has to be conducted [1]. Performing such tests entirely on the real road might be too time-consuming and also expensive. Therefore, to reduce the cost of a product, virtual environments are incorporated. It is mainly due to the fact, that a high-fidelity simulation allows to verify the system behaviour in any given road scenario (and under different weather conditions) in a relatively short
period of time. Also, the reliability of the product itself can be increased, since dangerous corner cases can be safely reproduced within a virtual environment. The process of testing a real system in a simulation is usually called the virtual validation.

In order to make the virtual validation reliable and robust, the realism of a simulation should be proved. In other words, 3D scene rendered by a given simulator have to precisely emulate a real scenario, including road profile, static objects, objects in move and weather conditions. However, a photorealistic simulation itself is not enough to reliably test an ADAS function, e.g. ACC. To make the simulation robust, a proper input to the ADAS system, written in the same format as in the production setup, has to be provided. In other words, sensor models precisely imitating raw measurements of a real sensor have to be incorporated into the virtual environment.

One of the key sensors that has to be considered within the simulation is radar. Its measurements are sparse and noisy compared to data provided by camera or lidar sensors. On the other hand, an explicit measure of the relative velocity of a target is provided, which is vital in applications like EB or ACC. Also, weather conditions have a little influence on radar performance. Unfortunately, free to use, state-of-the-art simulation environments, e.g. [2] [3], lack accurate radar sensor models [4].

Radar modelling task is challenging, due to the amount of effects that highly influence its measurements, like micro-Doppler effect caused by rotating wheels or multi-path propagation of the electromagnetic wave [5]. Nevertheless, radar sensor modelling topic can be handled on many abstraction layers. According to [6], three main approaches can be defined based on state-of-the-art research papers: black-box models [7] [8] [9], that are usually based on deep neural networks, physical models explicitly simulating all radar effects and components [10] [11] [12] [13] and generic models that combine deterministic geometrical models with the noise injection in order to derive radar detections [14] [15] [16]. The choice of the approach depends on the application. However, taking into account the ratio of modeling and validation time to the expected quality, a well-designed generic radar sensor model (GRSM) can be treated (in most cases) as a good compromise. For instance, there is no need to gather huge amounts of training data that is a prerequisite for a neural-network-based solution. Also, the number of components to be emulated is significantly lower compared to physical models.

According to the best knowledge of the authors, robust radar sensor model being able to thoroughly reproduce radar measurements in real-time still does not exist, regardless of the virtual scene complexity. However, a novel GRSM introduced in [16] can be treated as a good starting point for further work, based on the results presented by the authors. Nevertheless, before improving a baseline model, there is a requirement to introduce some performance metrics, in order to compare subsequent sensor model versions.

As shown in a comprehensive survey [17], evaluation of simulation models is still an open research area. What is more, the verification method strictly depends on an application. The novelty of this paper is based on an introduction of an end-to-end methodology for GRSMs evaluation. The method provides a straightforward fidelity assessment of a given GRSM using a set of simple metrics. As a result, new extensions added to the baseline model can be easily verified, by checking if the overall sensor model performance has improved. Also, thanks to the proposed method, fine-tuning of a given model is easily achievable.

In order to prove the usefulness of the approach and to show how the full pipeline of a performance assessment can be carried out, the proposed validation framework has been explicitly employed in the fine-tuning process of the GRSM introduced in [16]. The obtained results clearly show that the optimized model outperforms the one with the original settings. The straightforward validation methodology together with the successful fine-tuning of the GRSM is the main contribution of that work.

The structure of this paper is organized as follows. In Section II, a background of radar sensor modelling is presented. Section III shortly describes the incorporated GRSM. In Section IV the details of the proposed validation framework are depicted. Section V comprehensively explains the evaluation process and the results of the sensor model fine-tuning procedure.

II. RADAR SENSOR MODELLING APPROACHES

As mentioned in [6], three main approaches for radar sensor modelling can be found in the literature. This section presents basics of automotive radar sensors operation and gives an overview of the radar modelling techniques.

A. RADAR BACKGROUND

Radar (radio detection and ranging) is a sensor that transmits a set of electromagnetic waves, which bounce off from various objects and static scenery. The electromagnetic echo is captured by radar antennas and transformed from the time to frequency domain using a digital signal processing unit. Then, given the transformed signal, radar signal processing algorithms extract the desired information from the clutter. There are several radar sensor types but usually Frequency-Modulated Continuous-Wave (FMCW) radars are employed in automotive industry. FMCW systems are able to simultaneously measure radial distance to a given target and its relative velocity w.r.t. the host vehicle. Additionally, FMCW radars oftentimes use multiple transmitting and receiving antennas. Thanks to an array of antennas, a measure of an angle in the horizontal plane is enabled, calculated w.r.t. the radar boresight. It is worth mentioning, that range, relative velocity and angle to a point on a given object form a single radar detection. As a consequence, considering these three measurement sources, an FMCW radar can return multiple detections per single target (e.g. car). A result of a single scan through the radar field-of-view is then a point cloud of detections. Please note that in some automotive applications...
a radar detection can explicitly refer to an outcome of an object detection algorithm (a so-called tracking process), that is used to find an OBB for each object in the radar field-of-view, based on the raw point cloud. Nevertheless, in this paper a tracking part is separated from an FMCW scanning procedure and its product is called object list rather than detection list.

Unfortunately, raw radar data (point cloud) obtained from the radar signal processing chain is sparse and still contain huge amount of ambiguities and noise. Therefore, a radar sensor model should take this fact into account and generate a synthetic point cloud of a high fidelity. What is more, in order to enable the virtual validation of ADAS systems, the sensor model integration with a given virtual environment is needed, to make sure that the synthetic measurements are calculated in real-time and explicitly based on simulation data. Additionally, a radar sensor model must have a configurable mounting position and orientation, to support cases where multiple radar sensors are mounted on a vehicle equipped with an ADAS system. An example way of handling this, is to define mounting positions and orientations of each radar sensor (and its corresponding model in the virtual environment) w.r.t. to a fixed reference coordinate system. As a result, even though each radar sensor returns a point cloud w.r.t. its own coordinate system, transformations to the reference coordinate system is possible, explicitly defined by the mounting offsets. Despite the fact that an ultimate automotive simulator does not exist yet [4], several tools for virtual validation are available on the market, e.g. [2] or [3].

B. BLACK-BOX RADAR MODELLING

Considering current advances in architectures and training processes of neural network algorithms, there is also a possibility to incorporate artificial intelligence in the radar modelling area. In other words, it is feasible to find a mapping from a simulation-based data to synthetic radar detections, based on training data. That approach is called black-box modelling, since there is no explicit implementation of the radar model components. Several black-box radar models have already been introduced in the literature [7] [8] [9] with satisfactory results. However, taking into account the complexity of the radar systems, development of a robust and scene-independent black-box radar model would require an immense amount of labelled data from wide range of road scenarios. Unfortunately, data gathering and labelling processes are both time-consuming and expensive. Therefore, a more generic approach should be used for the radar sensor modelling. In particular, there is a need of the model being more independent from real data, so that it can be used in virtual validation of ADAS algorithms in case real sensor suite is not yet ready for test drives campaigns.

C. DETAILED RADAR MODELLING

An opposite way to create a radar sensor model is to explicitly simulate all components of a given radar system from the electromagnetic wave propagation to signal processing chain. Such models are usually called physical models or white-box models. The development of a white-box model itself is data-independent and only small amount of data is required to fine-tune a given model. That is a significant advantage compared to black-box modelling, where a labelled training dataset is a prerequisite.

Physical models are usually based on ray-tracing algorithms [10] [11] [12]. As shown in [12] a real-time implementation of a physical model in a simulation environment is possible. However, a reliable emulation of the electromagnetic wave propagation using simulation data and other radar components require a bulk of computational resources. What is more, due to the fact that all components of an automotive radar system have to be explicitly emulated, the development of a white-box model requires huge expertise in radar systems. In general, as a consequence, it is difficult and time-consuming to implement and fine-tune a real-time capable white-box radar sensor model.

D. GENERIC RADAR MODELLING

To simplify the development time of the radar sensor model an alternative approach can be used. The goal is to derive a set of synthetic radar detections (a point cloud) explicitly using high-level simulation data - without detailed modelling of the radar physics. To achieve that, a scattering-centers concept known from radar cross-section studies can be used. It states that the electromagnetic scattering from an electrically large target can be approximated with a sparse set of points - called scattering-centers (SCs) - located on that target [14]. Each point (a single SC) corresponds to a single radar detection, represented by range, relative velocity and angle values. In other words, instead of emulating directly the propagation of the electromagnetic wave together with the signal processing chain, synthetic radar detections can be obtained by generating SCs from a high-level simulation data (so-called ground truth, i.e. set of bounding boxes). Unfortunately, raw synthetic detections (SCs) do not encapsulate physics of a given radar sensor. Therefore, a noise model has to be additionally incorporated to ensure that the synthetic point cloud has similar stochastic properties to the real sensor measurements.

In such a manner, generation of SCs is sensor-independent. Only noise model has to be fine-tuned to real measurements. As a result, a radar model developed using this approach can be called generic radar sensor model (GRSM). GRSMs can be easily used in rigorous hardware-in-the-loop (HIL) simulations of ADAS systems, due to their relatively low computational complexity. Also, they do not require large, labelled datasets as black-box models do. A well-designed white-box model will be in general more accurate than a GRSM. However, considering the development time and computational complexity, a GRSM can be sufficient for HIL applications, if only its noise model is well-designed.
III. GENERIC RADAR SENSOR MODEL

The term generic radar sensor model (GRSM) introduced in the previous section and used further for the need of this work applies to any radar sensor model that is not based on neural networks and that mimics the behaviour of a real sensor without a detailed modelling of its physics. The goal of a GRSM is to derive a set of synthetic radar detections (set of range, relative velocity and angle triplets) of a high-fidelity. The simulated point cloud has to be acquired using as low computational resources as possible in order to meet strong real-time requirements of the HIL simulations of ADAS systems.

To conduct a fine-tuning procedure of a GRSM using the validation framework, a novel GRSM introduced in [16] has been incorporated. The model is based on Open Simulation Interface (OSI) data format [18] and consists of two main parts:

- Deterministic Geometrical Model that generates set of SCs (raw synthetic detections) based on data provided by OSI,
- Stochastic Model that injects noise over time to raw synthetic data.

In this section, a brief description of OSI data format and details about the used GRSM are presented.

A. OPEN SIMULATION INTERFACE DATA FORMAT

OSI defines a high-level abstraction layer for data exchange in virtual environments for virtual validation purposes. To be more precise, a well-organized structures are defined, where high-level simulation data is stored. In OSI-based simulation, each sensor model is fed with data stored in an OSI::SensorView structure. That is a so-called ground-truth message, which contains information about all object in a given scene, where vehicles and static scenery are represented by oriented bounding boxes (OBBs). Each object in OSI::SensorView is defined w.r.t. a global coordinate system of a given simulator. The output from each sensor model executed in a given simulator is then written in an OSI::SensorData structure, which stores synthetic sensor measurements, defined w.r.t. a sensor coordinate system. It is worth mentioning that OSI, apart from OBBs and synthetic detections, defines structures for storing simulation metadata, such as: object classification, environmental conditions, lanes description, lane assignment, etc.

B. DETERMINISTIC GEOMETRICAL MODEL

The goal of the geometrical model is to generate a set of scattering-centers (SCs). Currently the geometrical model generates detections only for vehicles - namely, for each vehicle type defined in the OSI::VehicleClassification structure.

SC point cloud play a role of a spatial simulation of the electromagnetic wave scattering. Therefore, the location of points on a given object have to be accurately aligned with the places, from which the electromagnetic wave is most often scattered back to the sensor. As a result, each object type within the model has a unique set of SCs that take into account the shape and curvatures of that object.

To handle this properly, a separate 3D vehicle model is generated for each OSI vehicle type defined in the OSI::VehicleClassification structure [18]. Each model contains a set of interconnected triangular polygons, scaled to the default dimensions of the given type. The example sets of polygons generated for OSI::TYPE_SMALL_CAR and OSI::TYPE_SEMITRAILER (truck with semitrailer) are presented in the figure 1.

![Figure 1](image1.png)

FIGURE 1. Examples of vehicle models generated within the sensor model

Also, in order to properly generate detections the following metadata must be defined for each polygon: its middle position, normal vector, area and material type. The middle position of a given polygon explicitly represents a single SC. The SCs corresponding to the polygons of OSI::TYPE_SMALL_CAR and OSI::TYPE_SEMITRAILER are shown in the figure 2.

![Figure 2](image2.png)

FIGURE 2. Scattering-centers generated for small car and truck with semitrailer

To sum up, using the polygons generated for all OSI vehicle types, the following procedure represents deterministic part of the GRSM:

1) For each vehicle, rendered at the given time moment by a simulation environment like [2], the information about its OBB and type is extracted. Data collected from all objects form a ground truth message, which is stored in a OSI::SensorView message.

2) Then, for each vehicle in the ground truth, the triangular polygons corresponding to the type of that vehicle are scaled to the dimensions of the OBB.

3) In the next step, range r, azimuth ϕ and elevation θ are calculated separately for all of the generated poly-
gons. It is worth mentioning that the calculations are performed w.r.t. the sensor coordinate systems (SCS), defined by the viewing angle of the sensor model. This case is presented in the figure 3.

4) Also, for each SC, the relative velocity along the viewing angle is calculated.

5) Finally, using \((r, \phi, \theta, v)\) gathered from all the vehicles available in the ground truth, the field-of-view and occlusions filters are applied, in order to get rid of the detections (SCs) that are not visible from the sensor model perspective. In other words, each point that is not covered by the sensor range or is shadowed by an obstacle is deleted and not acknowledged as detection. The remaining elements form a set of raw sensor model detections.

![Target vehicle](image)

FIGURE 3. Radar detection definition w.r.t. the viewing angle for a given scattering center

It is worth noting down, that even though the current GRSM version is able to generate point cloud of detections only for vehicles, the model can be easily extended to support also other targets detectable by radar sensors, e.g. guardrails, bicycles, poles, etc. In order to achieve this it is necessary to build a 3D geometrical model (consisting of triangular polygons) for a given target. Also, the high-level data of this object has to be extracted from the simulation environment and stored properly in an OSI message. In other words, if the SCs are provided for an object, the GRSM is able to generate set of detections based on them.

C. STOCHASTIC MODEL

Taking into account the stochastic properties of the real system in sensor model detections, the obtained deterministic measurements have to be modified. First, a radar-specific noise is injected to range, azimuth and elevation estimates. The noise is a normally distributed random variable with mean equal zero and variance defined by using both radar system specification and the estimated signal-to-noise ratio [16]. Also, to mimic the sparsity of the real data, a statistic test is executed separately for each SC that removes some of the elements from the raw detection list. In particular, the \(i_{th}\) SC is acknowledged as a detection only when the measured signal \(x_i\), calculated from that SC, exceeds the current threshold \(th_i\) [16]:

\[
x_i > th_i
\]

\[
x_i = \sqrt{P_{si}} + N(0, \sigma_{noise}^2)
\]

\[
 th_i = \sqrt{2\sigma_{noise}^2erf^{-1}(1 - 2P_{FA})}
\]

where:

- \(P_{si}\) represents an estimation of the received signal power amplified by the radar system gain,
- \(N(0, \sigma_{noise}^2)\) is the probability distribution of the system noise - normal random variable with zero mean and variance equal to \(\sigma_{noise}^2\),
- \(erf^{-1}\) stands for the inversion of the error function that depends on the probability of false alarm \(P_{FA}\).

The values of all the parameters defined above highly influence the fidelity of the sensor model point cloud, e.g., its sparsity and the distribution of points. Therefore, in order to increase the plausibility of the sensor model output as much as possible, a proper fine-tuning algorithm has to be executed. The role of that procedure is to modify the values of the parameters (selected initially from the radar system specification) using real radar measurements as a reference. The procedure has to be executed until the score from a given set of metrics meets the desired criteria. In particular, in the used GRSM the number and the distribution of points depend on both \(P_{si}\) and \(th_i\). In each \(P_{si}\) estimation, the structure of a given target is reflected, since the \(P_{si}\) value is mostly based on the radar cross section value that is calculated using area, material and an angle to the radar boresight of the \(i_{th}\) SC. However, it turns out that both \(P_{si}\) and \(th_i\) are affected by the value of the noise figure parameter \(F_n[dB]\). As a result, the location and the sparsity of SCs can be explicitly controlled via the \(F_n\) parameter, so that the resulted point cloud accurately emulates real measurements.

IV. VALIDATION FRAMEWORK

Development and testing of ADAS systems in simulation environments (virtual validation) requires accurate sensor models emulating a given automotive perception system. However, in order to properly assess a sensor model performance, synthetic data has to be compared to data from sensor logs, i.e. synthetic detections returned from a GRSM have to be set against detections from a real radar sensor.

To answer this problem, a straightforward framework is introduced in this paper. Using that methodology, a given GRSM can be explicitly fine-tuned based on real measurements. As a consequence, the fidelity of the GRSM itself can be easily boosted - thus increasing the reliability of the whole simulation environment. The proposed methodology extends the idea presented in [6]. The concept adopts the property of automotive radar systems, where additionally an object list (set of OBBs) generated on top of point cloud of
detections is provided. The assumption of the method is high-
fidelity radar detections (point cloud) result in realistic object
list. Therefore, a GRSM performance evaluation metrics can
be explicitly defined based on the comparison of the real
radar object list to the object list generated using simulated
detections.

To be more precise, a set of object-based metrics are
defined that return an evaluation score of a GRSM. On top
of this it is possible to explicitly compare detections point
clouds as shown in the original GRSM paper [16]. In such
a manner, object-based comparison can be treated as an
additional source of information in the sensor model fine-
tuning process.

A. COORDINATE SYSTEMS DEFINITION

In order to compare real and synthetic data, sensor measure-
ments need to be gathered. In particular two sources of data
are essential:

- Object list from a radar object detector for calculating
 object-based metrics,
- OSI-based labels obtained from a reference sensor to
 generate a GRSM detections.

However, in order to reliably collect the data, mounting
positions for all radar sensors have to be properly selected
on a test vehicle. Most importantly, it is necessary to choose
a reference coordinate system. In this case a vehicle coor-
dinate system (VCS) is selected. VCS is defined as a right-
handed Cartesian coordinate system, with x-axis pointing
to the front, y-axis pointing to the left and z-axis pointing
upwards. Its origin is set in the middle of the front bumper
of the test vehicle, in the ground level. Then, using VCS, all
sensor mounting positions and orientations can be defined. In
other words, each sensor provides its measurements w.r.t.
sensor coordinate system (SCS). Nevertheless, an SCS origin
is defined w.r.t. VCS, in the sensor mounting position and
according to the sensor orientation.

Different radar sensors setups are used in vehicles
equipped with ADAS systems. In that case it is assumed that
a vehicle has four corner radar sensors: front left (FL), front
right (FR), rear left (RL) and rear right (RR). Also, on top of
the radar sensors, an object detection algorithm is executed
in real-time during the test drive. The object detector returns
an object list expressed w.r.t. VCS. The configuration of the
radar sensors on the host vehicle is shown in the figure 4

B. DATA DESCRIPTION

In order to evaluate a GRSM, both real radar measurements
and ground truth (labels written as oriented bounding boxes)
are required. To achieve this goal, a test drive has been
performed on a two-way highway road. Then, to acquire
proper ground truth, the data from the reference sensor has
been labelled. Finally, radar measurements and ground truth
have been synchronized.

1) Ground truth
At a given time frame, the ground truth data contain a set of
oriented bounding boxes (OBB), which are defined using the
following parameters:

- position: \([x, y, z]\) [m] of the OBB center expressed w.r.t.
 VCS,
- orientation: \([\text{yaw, pitch, roll}]\) [rad], defined w.r.t. VCS
 using the right-handed convention,
- dimensions: \([\text{length, width, height}]\) [m],
- object type: mapped to the elements of the,
 OSI::VehicleClassification

An example frame of the recorded ground truth is pre-
sented in the figure 5.

2) Radar measurements
A radar sensor returns a point cloud of detections. A single
detection is defined by:

- range \(R\) [m] (radial distance to a given SC),
- azimuth \(\phi\) [rad],
- elevation \(\theta\) [rad],
- radial velocity [m/s] (a change of range in the direction
 of the incident angle).

Additionally, the data from a radar-based object detection
algorithm (oftentimes referred as tracker) has been recorded.
The incorporated object detector takes as input detection lists
from four corner radars and returns a set of two-dimensional OBBs (object list, tracks). Each OBB is defined using:

- position: \([x, y]\) [m] of the 2D OBB center, expressed w.r.t VCS.
- orientation: \(\text{yaw}\) [rad] defined w.r.t VCS using the right-handed convention,
- dimensions: \([\text{length}, \text{width}]\) [m].

An example frame of all types of recorded data, including radar object list, radar detections and labels, is visualized in the figure 6, where:

- to each radar a color is assigned: red - rear right, green - rear left, blue - front right and yellow - front left,
- dashed lines represent the field-of-view area of a given radar sensor,
- dots represent radar detections,
- black-dashed boxes are the radar tracks,
- gray boxes represent labels.

As it is visible on the graph, objects generated from the tracker (black-dashed boxes) and labels (gray boxes) are accurately aligned. As a consequence, the data is valid in terms of synchronization and extrinsic calibration. Also, an important fact can be observed in the presented plot - radar sensors return huge amount of detections on road edges. This is captured by the tracker that generates a set of objects (tracks) on top of that detections.

C. RESIMULATION

Apart from real tracks, a synthetic object list is required to evaluate a GRSM using the proposed methodology. To be able to associate real and synthetic tracks, the simulated data has to be generated using the recorded ground truth (labels). This can be achieved in two steps:

1) Generation of synthetic radar detections (point cloud) by feeding the GRSM with recorded labels.
2) Feeding the simulated detections to radar tracking algorithm.

This process is called resimulation, due to the fact that the production radar tracking algorithm is executed in offline mode using the simulated detections. Also, it is worth to mention, that the GRSM should be executed four times - each time using the extrinsic calibration of one of the four radar sensors.

An example frame of resimulated data (sensor model detections and synthetic object list) is presented in the figure 7, where the meaning of colors is the same as in the case of the figure 6. As it can be noticed in the graph, radar objects are generated only on the OBBs from ground truth. However, this is an expected behaviour, since the current version of the GRSM does not generate detections on static scenery.

D. END-TO-END METHODOLOGY

Taking into account all of the components, the simplified flow of the framework can be defined as follows:

1) Data gathering from a test drive, such as: radar detections, radar object list and measurements from a reference sensor, e.g. camera or lidar.
2) Reference data labelling in order to produce a list of OBBs for each object in the recorded scenario. The annotated object list at each time frame is called ground truth. Also, each OBB in the ground truth is called label.
3) Synchronization of radar data and ground truth
4) Generation of synthetic detections from a GRSM using ground truth as input.
5) Generation of synthetic radar object list using GRSM detections
6) Comparison of real and synthetic object list using a set of defined metrics.
7) Fine-tuning of GRSM parameters to obtain the best possible evaluation score

The pipeline listed above is presented with details in the figure 8.

![Figure 8. Block diagram of the framework](image-url)

where:
- \(label_{i,t} \) is an \(i_{th} \) OBB in the ground truth at time frame \(t \), represented by its type, dimensions, position w.r.t. VCS and orientation w.r.t. VCS,
- \(sc_{k,j,t} \) is an \(j_{th} \) scattering-center generated for the \(i_{th} \) label,
- extrinsic calibration stores mounting position and orientation of the radar sensor \(k \in [1, 4] \),
- \(R, \phi, \theta, v \) are the range, azimuth, elevation and relative velocity estimates respectively for the \(j_{th} \) scattering-center of the \(k_{th} \) GRSM (a single detection expressed w.r.t. \(k_{th} \) SCS),
- \(track_{real}^{t,n} \) is an \(n_{th} \) element of the real radar object list,
- \(track_{synth}^{t,m} \) is an \(m_{th} \) element of the synthetic radar object list.

To put it in a different way, the input of the framework at a given time moment is a set of labels and the extrinsic calibration stores mounting position and orientation of the radar sensor. The output of the system is an evaluation score of a GRSM. It is calculated based on a set of object-based metrics that take into account the associated real and synthetic radar tracks. The score can be explicitly used to fine-tune the parameters of the given GRSM. It is worth mentioning, that to robustly assess the fidelity of a given GRSM, a point-cloud-based comparison should be executed together with an object-based evaluation, e.g. using the methodology proposed in the original GRSM paper or a metric based on a deep neural network classifier. That is because, the object-based evaluation may not be enough to check if the sensor model is generating a proper amount of radar-specific noise or if the sparsity of the data is comparable to the real measurements. Nevertheless, as it is shown in this paper, the object-based evaluation provides highly valuable feedback that can be incorporated in the sensor model fine-tuning process. If necessary, a point-cloud-based comparison can be easily added to the framework.

V. SENSOR MODEL EVALUATION

Two sets of radar object lists (tracks) are available for the framework at a given time moment: real and synthetic. Real object list is taken from the data gathered during the test drive. This object list is treated as a reference, because it encapsulates the desired radar-specific noise. In particular, the real tracks will not be accurately sticking to their associated ground truth OBBs. Instead, their parameters, e.g. positions, will be floating proportionally to the current amount of noise.

It is assumed, that a GRSM provides a high-fidelity point cloud when the synthetic object list, obtained from the resimulation, is as close as possible to the reference, in the meaning of the generated amount of noise. Let us treat the noise encapsulated in an object list as a random variable \(X \) that is normally distributed with mean \(\mu \) and standard deviation \(\sigma \). Therefore, two random variables can be defined for real and synthetic object lists respectively:\n
\[
X_{real} \sim N(\mu_{real}, \sigma_{real}^2) \quad \text{and} \quad X_{synth} \sim N(\mu_{synth}, \sigma_{synth}^2).
\]

The goal of the fine-tuning is to change the GRSM parameters in the way, that the distribution of \(X_{synth} \) gets as close as possible to \(X_{real} \). However, to enable such fine-tuning, the metrics for comparing probability distributions have to be well-designed and the sensor model itself is required to have a configurable noise profile. For the GRSM used in this paper, the level of clutter is explicitly controlled via the noise figure parameter \(F[n dB] \) and therefore its fine-tuning (evaluation) is possible.

A. DATA ASSOCIATION

As it was mentioned before, radar data is extremely sparse and contain a lot of clutter. This fact influences radar tracks that are noisy compared to ground truth OBBs. However, looking at the deviations between radar tracks and the associated ground truth OBBs, it is possible to identify the parameters of both: noise probability distributions \(X_{real} \) and \(X_{synth} \).

In order to make the comparison between probability distributions reliable, each label has to be associated with only one real and only one synthetic radar track. As a result, the associated data is a set of \(\{label_{i}, track_{real}^{i}, track_{synth}^{i}\} : i \in [1, M] \) triples, collected from all available data. The
number of elements in this set, M, is a sum of all successful associations:

$$M = \sum_{t=1}^{T} M_t$$ \hspace{1cm} (4)

where:

- T is the number of recorded time frames
- M_t represents successful associations count in the time frame t

A synthetic object is associated with a label and a real object (an i_{th} triplet) when:

$$\|p_s - p_t\| < \epsilon$$ \hspace{1cm} (5)

$$\|p_s - p_r\| < \epsilon$$ \hspace{1cm} (6)

where:

- p_s, p_r, p_l are the positions of the synthetic object, real object and label respectively
- ϵ is set to a constant value

An example subset of associated data is presented in the figure 9, with the synthetic objects marked orange, real objects marked green, labels marked gray and host marked black.

B. PROBABILITY DISTRIBUTION IDENTIFICATION

As it was mentioned above, the noise in a radar object list is described as a univariate normal random variable $X \sim N(\mu, \sigma^2)$. Therefore, the noise measure has to be represented by a real number. It is rather difficult, since the noise should be intuitively described using the multivariate normal distribution. This is due to the fact, that unknown and independent errors are injected to object position, orientation, dimensions, velocity and more.

However, using a label (OBB) as a reference, it is possible to calculate the Intersection Over Union (IoU) metric for a given radar track [20], associated to this label. IoU is a single-number measure of how well two OBBs fit to each other. It returns 1 in case of perfect overlapping and 0 when the OBBs do not intersect. It can be assumed, that IoU is a joint estimation of all errors injected to the parameters of a given OBB (radar track). As a result, the normal random variable X can be explicitly represented by the IoU measure, with quite a good accuracy.

In order to identify the probability distribution of the noise injected to a given radar object list (either real or synthetic), the IoU metric has to be computed for all the associated items. Then, based on the IoU results, the mean and variance of X can be easily calculated.

C. EARTH MOVER DISTANCE

Taking the probability distributions of X_{real} and X_{synth}, representing the IoU measures from real and synthetic data respectively, it is possible to measure how close these two distributions are to each other. To do this, the first Wasserstein distance can be incorporated. It is known as the so-called Earth-Mover-Distance, due to the fact that it describes how much work is required to transfer a given distribution μ into another distribution ν.

Let μ and ν denote probability measures on \mathbb{R} that are regular and finite. The first Wasserstein distance $W(\mu, \nu)$ is defined as follows [21]:

$$W(\mu, \nu) = \inf_{\pi \in \Gamma(\mu, \nu)} \int_{\mathbb{R} \times \mathbb{R}} \|x - y\| \, d\pi(x, y)$$ \hspace{1cm} (7)

Where $\Gamma(\mu, \nu)$ is a set of all joint probability measures on $\mathbb{R} \times \mathbb{R}$ whose marginals are μ and ν.

The Wasserstein metric is extremely powerful and it has been already incorporated in various research works, e.g. in training of Generative Adversarial Networks [22] and in clustering of automotive test scenes [23]. Here, the first Wasserstein distance is explicitly used to fine-tune the parameters of the GRSM.

D. FINE-TUNING

The goal of the fine-tuning is to optimize the noise parameters of the sensor model with respect to the Wasserstein distance, so that the synthetic distribution gets as close as possible to the real distribution. As it has been mentioned before, the noise in the GRSM is explicitly controlled by the noise figure parameter F_n [dB]. It is a gain that is injected to both measured signal x_i and current threshold t_{hi}, during the process of calculating the parameters of a synthetic detection [16]. Note that when F_n is set to 0, the noise is still injected and statistical test is performed. However, there is no additional gain added to both quantities. When $F_n >> 0$, sensor model is expected to add a lot of noise to each SC parameter. Also, the final set of synthetic detections (point cloud) should be sparse. In the opposite case ($F_n << 0$), the set of detections gets close to the one returned by the deterministic geometrical model.

In other words, the goal of the fine-tuning is to find an F_n value so that the distribution of the set of synthetic detections is of a high-fidelity. It means that the synthetic radar object list should contain similar amount of noise compared to real radar object list. It is worth adding, that the quality of a radar object list is explicitly related to the sparsity of
radar detections. In case there are no thresholding and noise applied to the synthetic detections, the radar object list would be almost perfectly aligned with the corresponding labels. On the other hand, when the set of synthetic detections gets very sparse, the radar tracker would have huge problems with accurate estimation of tracks.

To fine-tune the GRSM parameters 500 frames of data have been used. Then, the full pipeline of the validation framework has been executed, separately for each $F_n \in [-10, 10]$. In other words, in each iteration all sensor models have been configured given the current F_n value. In every iteration of the framework pipeline, real objects, synthetic objects and labels have been associated. Then, for each association two IoUs have been computed: real object w.r.t. label and synthetic object w.r.t. label. Finally, using these two sets of IoUs, collected separately for real and synthetic objects, the Wasserstein metric has been calculated. Its value is the evaluation score for the given noise setting.

E. EVALUATION RESULTS

The Wasserstein metric calculated for all F_n values using the dataset mentioned above is presented in the figure 10. As expected, a local minimum can be found on the graph. The optimal noise figure value, that has the lowest value of the Wasserstein distance, is $F_n = -1$ [dB]. Consequently, to obtain results of the highest fidelity, the GRSM should be configured with this F_n value.

To show how the GRSM noise figure settings affect the quality of radar objects, lateral and longitudinal errors (figures 11 and 12 respectively) have been plotted for a single object located in the front of the host vehicle, for three different F_n values: -8, -1 and 8 decibels. Additionally, to quantitatively show the differences, minimum, maximum and mean deviations from real data have been computed for those decibels values - tables 1 and 2 for lateral and longitudinal deviations respectively. As it can be noticed on the red plot ($F_n = 8$ [dB]), when the level of noise injected to synthetic radar detections generated by the GRSM is high, the errors on both lateral and longitudinal axes are significant. On the other hand, in case synthetic detections are ideal, the error encapsulated in the radar object (blue plot, $F_n = -8$ [dB]) does not correspond to real data (black plot). Finally, the distribution of errors encapsulated in the radar object generated for the noise settings equal to the optimal value (green plot, $F_n = -1$ [dB]) is close to real data.

FIGURE 10. Sensor model fine-tuning using wasserstein metric

FIGURE 11. Lateral error over time for a single radar object (recorded for a few different noise parameters) to its associated label

FIGURE 12. Longitudinal error over time for a single radar object (recorded for a few different noise parameters) to its associated label

F_n	min	max	mean
-8 dB	0.00305	1.4253	0.4766
-1 dB	0.00222	2.2016	0.6062
8 dB	0.00376	2.7902	1.2592

TABLE 1. Lateral error - minimum, maximum and mean deviations from real data distribution

In other words, the obtained results prove that the stochastic properties of the radar object list are affected by the qual-
TABLE 2. Longitudinal error - minimum, maximum and mean deviations from real data distribution

Δ	min	max	mean
-8 dB	0.000005	1.055016	0.242126
-1 dB	0.000518	0.947814	0.300391
8 dB	0.001888	2.025263	0.400833

TABLE 2. Longitudinal error - minimum, maximum and mean deviations from real data distribution

VI. CONCLUSION
In this paper a robust and straightforward end-to-end methodology for validating generic radar sensor models has been presented. The goal of the method is to assess the performance of a given sensor model on an object-list level, due to the fact that objects are crucial in decision-making processes in Advanced Driver Assistance Systems. To show how the full pipeline of the framework can be executed, an exemplary radar sensor model has been integrated. Thanks to the presented framework and incorporation of a well-defined metric a successful sensor model fine-tuning has been performed.

REFERENCES
[1] Nidhi Kalra and Susan M. Paddock. Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability? Transportation Research Part A: Policy and Practice. 94:182 – 193, 2016.
[2] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla: An open urban driving simulator, 2017.
[3] Shital Shah, Debadeepa Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In Field and Service Robotics, 2017.
[4] T. Sulkowski, P. Bugiel, and J. Izydorczyk. In search of the ultimate autonomous driving simulator. In 2018 International Conference on Signals and Electronic Systems (ICSES), pages 252–256, Sep. 2018.
[5] M. Holder, P. Rosenberger, H. Winner, T. D’hondt, V. P. Makkapati, M. Maier, H. Schreiber, Z. Magosi, Z. Slavik, O. Bringmann, and W. Rosenstiel. Measurements revealing challenges in radar sensor modeling for virtual validation of autonomous driving. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pages 2616–2622, 2018.
[6] M. Jasinski. A generic validation scheme for real-time capable automotive radar sensor models integrated into an autonomous driving simulator. In 2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR), pages 612–617, 2019.
[7] Tim Wheeler, Martin Holder, Hermann Winner, and Mykel Kochenderfer. Deep stochastic radar models. 01 2017.
[8] A. Scheel and K. Dietmayer. Tracking multiple vehicles using a variational radar model. IEEE Transactions on Intelligent Transportation Systems, 20(10):3721–3736, 2019.
[9] Nils Hirsenkorn, Timo Hanke, Andreas Rauch, Bernhard Dehlink, Ralph Rasshofer, and Erwin Biebl. Virtual sensor models for real-time applications. Advances in Radio Science, 14:31–37, 09 2016.
[10] H. Ling, R. Chou, and S. Lee. Shooting and bouncing rays: calculating the rects of an arbitrarily shaped cavity. IEEE Transactions on Antennas and Propagation, 37(2):194–205, 1989.
[11] Chang-Fa Yang, Ruo-Cheng Wu, and Chuen-Jyi Ko. A ray-tracing method for modeling indoor wave propagation and penetration. IEEE Transactions on Antennas and Propagation, 46(6):907–919, 1998.
[12] N. Hirsenkorn, P. Subkowksi, T. Hanke, A. Schaerrman, A. Rauch, R. Rasshofer, and E. Biebl. A ray launching approach for modeling an fmcw radar system. In 2017 18th International Radar Symposium (IRS), pages 1–10, 2017.
[13] Christian Schüßler, Marcel Hoffmann, Johanna Bräunig, Ingrid Ullmann, Randolph Ebelt, and Martin Vossiek. A realistic radar ray tracing simulator for large mimo-arrays in automotive environments. IEEE Journal of Microwaves, PP:1–13, 09 2021.
[14] Karin Schuler, Denis Becker, and W Wiesbeck. Extraction of virtual scattering centers of vehicles by ray-tracing simulations. Antennas and Propagation, IEEE Transactions on, 56:3543 – 3551, 12 2008.
[15] Jiao Guo, Weiwen Deng, Sumin Zhang, Shiqian Qi, Xin Li, Chenghao Wang, and Jun Wang. A novel method of radar modeling for vehicle intelligence. SAE International Journal of Passenger Cars - Electronic and Electrical Systems, 10:50–56, 2016.
[16] A. Martowicz, A. Gallina, and G. Karpil. Uncertainty propagation for vehicle detections in experimentally validated radar model for automotive application. In 2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR), pages 606–611, 2019.
[17] Stefan Riedmaier, Benedikt Danquaß, Bernhard Schick, and Frank Diermeyer. Unified framework and survey for model verification, validation and uncertainty quantification. Archives of Computational Methods in Engineering, 28, 08 2020.
[18] T Hanke, N Hirsenkorn, C van Driesten, P Garcia-Ramos, M Schiementz, S Schneider, and E Biebl. Open simulation interface - a generic interface for the environment perception of automated driving functions in virtual scenarios, 2017.
[19] Anthony Ngo, Max Bauer, and Michael Resch. Deep evaluation metric: Learning to evaluate simulated radar point clouds for virtual testing of autonomous driving. 04 2021.
[20] Adrian Rosebrock. Intersection over union (iou) for object detection, 2016. https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/. Accessed: 2019-03-26.
[21] Aaditya Ramdas, Nicolas Garcia, and Marco Cuturi. On wasserstein two sample testing and related families of nonparametric tests, 2015.
[22] Martin Arjovsky, Soumith Izhica, and Léon Bottou. Wasserstein gan, 2017.
[23] Pawel Kowalczyk, Paulina Bugiel, Jacek Izydorczyk, and Marcin Szeleść. Clustering of test scenes by use of Wasserstein metric and analysis of tracking quality in optically degraded videos, March 2021.
PAWEL SKRUCH is a professor of control engineering at the AGH University of Science and Technology, Cracow, and Advanced Engineering Manager AI & Safety at Aptiv Technical Center, Cracow. His current research is in the areas of dynamical systems, autonomous systems, artificial intelligence, machine learning, modeling and simulation, and applications of control theory to software systems. He is a Senior Member of IEEE.

MATEUSZ KOMORKIEWICZ is a senior computer vision and artificial intelligence engineer in Advanced Engineering department in Aptiv. His research interest are related to deploying AI solutions on SoC devices as well as nonstandard ML usage in automotive. He is a Senior Member of IEEE.