Cell death-based treatment of neuroblastoma

Kadri Valter1, Boris Zhivotovsky1,2 and Vladimir Gogvadze1,2

Abstract

Neuroblastoma (NB) is the most common solid childhood tumor outside the brain and causes 15% of childhood cancer-related mortality. The main drivers of NB formation are neural crest cell-derived sympathoadrenal cells that undergo abnormal genetic arrangements. Moreover, NB is a complex disease that has high heterogeneity and is therefore difficult to target for successful therapy. Thus, a better understanding of NB development helps to improve treatment and increase the survival rate. One of the major causes of sporadic NB is known to be MYCN amplification and mutations in ALK (anaplastic lymphoma kinase) are responsible for familial NB. Many other genetic abnormalities can be found; however, they are not considered as driver mutations, rather they support tumor aggressiveness. Tumor cell elimination via cell death is widely accepted as a successful technique. Therefore, in this review, we provide a thorough overview of how different modes of cell death and treatment strategies, such as immunotherapy or spontaneous regression, are or can be applied for NB elimination. In addition, several currently used and innovative approaches and their suitability for clinical testing and usage will be discussed. Moreover, significant attention will be given to combined therapies that show more effective results with fewer side effects than drugs targeting only one specific protein or pathway.

Introduction

Neuroblastoma (NB) is the most common solid childhood tumor outside the brain. It originates from primitive cells of the sympathetic nervous system. NB causes 15% of childhood cancer-related mortality and overall survival rate for metastatic tumors is considerably low, 40% after 5 years. Most incidences are diagnosed during the first year of life, which also gives a better prospect for the outcome, whereas older patients have a poorer diagnosis. In some NB cases, spontaneous regression has also been detected; however, underlying mechanisms remain unclear. Moreover, NB is a complex disease that has high genetic, biological, clinical, and morphological heterogeneity, and is therefore difficult to target for successful therapy. Thus, NB is under thorough investigation to better understand its progression and to improve the treatment to increase the survival rate.

Several classification systems have been used in order to improve risk assessment and prognosis of NB. For example, the outcome of the disease can be assessed by the presence or absence of stroma, the degree of differentiation, and the mitosis-karyorrhexis index. Currently, even more parameters are used for the classification of NBs, such as stage, age, histologic category, grade of tumor differentiation, the status of the MYCN oncogene, chromosome 11q status, and DNA ploidy. These are the most statistically significant and clinically relevant factors in use to describe two stages of localized (L1 and L2) and two stages of metastatic disease (M and MS).

The main drivers of NB formation are abnormalities in sympathoadrenal cells that derive from neural crest cells (Figure 1). Several germline and sporadic genomic rearrangements have been detected in NB, for example, LIN28B (encoding lin 28 homolog B), PHOX2B (paired-like homeobox 2b), ALK (anaplastic lymphoma kinase), etc.
GALNT14 (polypeptide N-acetylgalactosaminyltransferase 14)\(^{17}\), and MYCN\(^{18}\) (Table 1). Around 2% of NB cases appear to be hereditary, with ALK being the first gene identified to be responsible for familial NB\(^{16,19}\). Furthermore, MYCN oncogene amplification is found in 20% of all NB cases, especially in patients who are resistant to therapy and have poor prognosis\(^{18,20,21}\). More than 50% of these high-risk patients relapse even after intensive treatment\(^{22}\).

Whole-genome sequencing has been used to identify additional mutations and genes responsible for de novo NB development, but no other specific “NB driver mutations” have been found\(^{23,24}\). Thus, MYCN amplification seems to be the major cause of sporadic NB and other mutations support tumor aggressiveness\(^{25}\). Therefore, investigation of the MYCN gene amplification is considered to be a mandatory step for treatment specification\(^{26}\).

In this review, we provide a thorough overview of how different modes of cell death are exploited or can be employed as treatment for NB. In addition, several novel or already clinically tested drugs against NB and their mechanisms of action are discussed. A special emphasis is also placed on combined therapies that attack many pathways and have been shown to be more effective than drugs targeting only one specific protein or pathway.

Genetic background

Anaplastic lymphoma kinase

Changes in the ALK gene are identified as being responsible for \(~50\%\) of familial and \(~1\%\) of all NBs\(^ {16}\) (Table 1). ALK is a member of the insulin receptor superfamily of transmembrane RTKs (receptor tyrosine kinase). Mutations and amplifications of the ALK gene can lead to a constitutive activation of ALK that supports cell survival and proliferation in the peripheral neuronal

![Fig. 1 The main drivers of NB formation are neural crest cell-derived sympathoadrenal cells with genetic abnormalities. Several germline and sporadic genomic rearrangements have been detected in NB, for example, in ALK (anaplastic lymphoma kinase) and MYCN genes. These changes are responsible for the suppression of differentiation and apoptosis to support rapid proliferation of the cells.](Image)
and central nervous system. This can be achieved by the engagement of several pathways, such as Janus kinase–signal transducer and activator of transcription27, PI3K–AKT27 in anaplastic large cell lymphoma, and/or RAS–mitogen-activated protein kinase28 in NB.

The central role of the ALK in NB development makes it a possible target for NB treatment. For example, NB cell lines with constitutively active or overexpressed ALK are susceptible to RNAi and ALK inhibitors39. For instance, crizotinib30 and entrectinib31 reduce the cells’ proliferation rate and are currently in Phase 1/2 trials (NCT00939770, NCT01606878, and NCT02650401) for relapsed or refractory NB; however, there are problems with their off-target effects and acquired resistance. Therefore, new-generation ALK inhibitors are already been developed and tested for NB therapy, for example, lorlatinib (NCT03107988)32, AZD3463 (ref. 33), and ceritinib (NCT01742286)34. In addition to reducing the proliferation rate, clinical tests have shown that most ALK inhibitors also sensitise NB cells to conventional cytotoxic drugs and their combined use is causing more prominent cell death35,36. On the other hand, this approach is helpful for only ALK-positive tumors and, due to the high heterogeneity of NB, more strategies are needed for successful treatment of NBs carrying other mutations.

MYCN

MYCN is part of the MYC family of transcription factors that regulate several cellular processes including proliferation, cell cycle, glycolysis, glutaminolysis, mitochondrial function, and biogenesis37–39. MYCN expression is essential for normal prenatal development and is present until a few weeks after birth40. Amplifications of the MYCN gene are known to be responsible for increased tumor growth, proliferation, and NB development (Table 1)41,42. Derepression of MYC induces cell proliferation and apoptosis; however, this apoptotic signal is inhibited by reducing p53 activity, overexpressing anti-apoptotic proteins, or downregulating pro-apoptotic proteins43,44. Thus, a combined suppression of MYC-induced apoptosis and MYC-driven proliferative signals supports extensive tumor development.

MYCN usually has a very short half-life, but after amplification it is highly expressed and forms heterodimers with MAX to act as a transcriptional factor and support constant NB tumor growth45. Therefore, down-regulation of MYCN is one possible approach to induce apoptosis, decrease NB proliferation, and/or induce neuronal differentiation46. For example, antisense oligonucleotides47 and RNAi48–50 have been successfully used for MYCN downregulation in NB that resulted in decreased tumor growth, cellular migration, and invasion. The described approach has proved to be effective in the laboratory; however, off-target effects and clinical delivery of these compounds to the tumor site are still problematic.

Blocking the MYCN/MAX interaction is another option for NB therapy, because unbound MAX homodimerizes and stimulates differentiation51. Several compounds blocking the heterodimerization, such as 10058-F4 (ref. 52,53) and 10074-G5 (ref. 52), have shown cell cycle arrest, apoptosis, and differentiation in vitro, and also increased survival in MYCN transgenic mice. Another approach is to inhibit bromodomain and extra-terminal domain family of transcription-regulating proteins by small molecules such as JQ1 (ref. 54), OTX015 (ref. 55), or I-BET762 (ref. 56), which lead to the suppression of MYCN transcription and proliferation. These compounds can help high-risk patients with MYCN-driven NB; however, thorough clinical testing is still needed. The role of ALK and MYCN in regulation of NB cell fate is shown on Figure 1.

Other genomic abnormalities

Overexpression and amplifications of LIN28B are very common in NB cells and can in turn lead to high MYCN expression (Table 1)14,57. Moreover, whole-genome sequencing revealed that 25% of the patients have rearrangements in TERT (encoding telomerase reverse transcriptase)58,59 promoter and 10% in transcriptional regulator ATRX (encoding the RNA helicase)25, supporting rapid cellular proliferation (Table 1). Chromosomal copy number alterations are also represented in almost all NBs, for example, more than 50% have gain of 17q (ref. 60) and 30% have loss of 1p36 and/or 11q1 (ref. 61) (Table 1). These arrangements have a strong correlation with MYCN amplification and poor prognosis. However, the function of these regions and how they regulate NB formation is still unclear60,61.

Targeting NB via stimulation of various modes of cell death

Apoptosis induction in NB therapy

Apoptosis is essential for the normal growth of an organism, being involved in early embryonic and immune system development. It also has an important role in the maintenance of normal tissue homeostasis and helps to eliminate damaged and harmful cells62. Therefore, misregulation of apoptotic pathways has an important role in cancer development, because mutations or amplifications in the oncogenes (e.g., MYC) can compromise apoptotic pathways. On the other hand, apoptosis induction is the most prominent anticancer strategy.

Targeting p53/MDM2 interaction

The members of the p53 protein family are important regulators of cell cycle and apoptosis in normal and transformed cells63. In addition, p53 as well as p73 act as
tumor suppressors. Mutations in the p53 gene that control cell fate occur in more than 80% of tumor cell lines and more than 40% of human cancers. However, abnormalities of p53 are mostly found in relapsed NB after chemotherapy, but not at the time of the diagnosis. Instead, overexpressed MYCN regulates p53 and MDM2 (murine double minute 2) expression to achieve stringent control over cell death (Figure 2). Tumors such as NB, which generally have wild-type p53, are likely to induce the degradation of p53 and avoid cell death by overexpression or amplification of MDM2, which is a negative regulator and the primary E3 ubiquitin ligase for p53. MYCN binds to the promoter of MDM2 to induce its expression and vice versa, suggesting that downregulation of MDM2 can also be used to decrease MYCN expression and stabilize p53 to induce apoptosis (Figure 2).

Understanding these peculiarities of NB and targeting the p53–MDM2 pathway may be helpful in finding better therapeutic treatments for pediatric patients with wild-type p53. In addition to the regulation of p53–MDM2, MYCN facilitates an increase in the expression of FAK (focal adhesion kinase), which interacts with p53 and causes its sequestering in the cytoplasm (Figure 2). Interrupting this binding by small molecules or peptides enables p53 to move to the nucleus to induce apoptotic cell death of in vivo breast and colon tumors.

Furthermore, MYCN-upregulated MDM2 can similarly bind with another member of the p53 family, tumor suppressor TAp73 (p73 locus encodes two isoforms – tumor suppressor (TAp73) and putative oncogene (ΔNp73)) (Figure 2). MDM2 decreases TAp73 transcription and supports resistance to the treatment. MYCN and TAp73 might also directly decrease each other expression and influence the outcome of the NB development and treatment.

Fig. 2 NB cell death can be avoided by overexpression or amplification of MDM2 (murine double minute 2), negative regulator of the p53. The p53–MDM2 pathway may be targeted by small antagonistic molecules, such as nutlin-3, MI-773/219/63, idasanutlin (RG7388), which bind to MDM2, to block its interaction with p53. MYCN also facilitates expression of p53 and FAK (focal adhesion kinase) that in turn interacts with p53 and causes its sequestering in the cytoplasm. Furthermore, MYCN-upregulated MDM2 can in turn bind to MYCN and tumor suppressor TAp73, and decrease its transcription to support resistance to the treatment. MYCN and TAp73 might also directly decrease each other expression and influence the outcome of the NB development and treatment.
that MYCN has many cellular targets, disrupting its interaction with one of them is probably not enough for successful treatment.

BCL-2 family

Other important apoptosis regulators are B-cell lymphoma/leukemia 2 (BCL-2) family proteins, which are divided into two groups: pro-apoptotic and anti-apoptotic proteins. The main anti-apoptotic proteins are BCL-2, BCL-xL, and myeloid cell leukemia (MCL)-1, which prevent outer mitochondrial membrane (OMM) permeabilization by binding and inhibiting pro-apoptotic proteins. Apoptosis-promoting proteins from this family can in turn be divided into two groups: BH-3 only and effector proteins. The pro-apoptotic BH-3 only proteins (Bid and Bim) respond to apoptotic stimuli and inhibit anti-apoptotic BCL-2 proteins or activate the effector proteins (BAK and BCL-2-associated X protein), which form pores in the OMM to induce cytochrome c release and apoptosis. The balance between pro- and anti-apoptotic proteins determines the fate of the cells through regulation of the mitochondrial apoptotic pathway\(^{88,89}\). As with p53, mutations in BCL-2 are scarce in NB, although dysregulation and increased levels of the BCL-2 gene are frequent\(^{90-92}\). Moreover, in B-cell lymphomas a link between MYC and BCL-2 expression has been described, because overexpression of MYC in tumor cells is often found together with rearrangements in the BCL-2 family to support tumor growth and suppress apoptosis\(^{93,94}\). Therefore, therapies that change the balance between pro- and anti-apoptotic proteins are promising strategies for tumor treatment.

One possible approach might be using conventional chemotherapeutics together with inhibitors of anti-apoptotic BCL-2 proteins (e.g., ABT-199)\(^{95}\), although there have been problems with modest outcome, side effects\(^{96}\), and resistance in relapsed NBs\(^{97}\). This is due to the compensatory upregulation of the anti-apoptotic MCL-1 protein that rescues cells from apoptosis. However, when the MCL-1 inhibitor (e.g., A-1210477) is used in combination with ABT-199, successful induction of NB cell death has been demonstrated\(^{96}\).

Targeting cellular bioenergetics pathways

Considering the key role of mitochondria in various modes of cell death, they might be potential targets for tumor therapy. For instance, many anticancer drugs destabilize mitochondria to induce apoptotic cell death\(^{99}\). Rapidly proliferating tumors easily become hypoxic, which is the reason why the majority of tumors change their source of energy from mitochondrial oxidative phosphorylation (OXPHOS) to glycolysis. These cells usually have lowered amount of mitochondria and/or mutations in one or more OXPHOS complexes\(^{100-102}\). In contrast, relapsing cancer cells tend to have increased levels of OXPHOS\(^{103-105}\). The role of MYC overexpression in these processes is to increase the expression of mitochondrial complexes and hence mitochondrial respiration\(^{38}\). These metabolic changes help cells to survive in nutrient-deprived environments\(^{106}\). Therefore, to eliminate resistant tumor cells, chemotherapeutic drugs could be used in combination with electron transport chain inhibitors, such as the complex I inhibitors metformin\(^{107}\) or tamoxifen\(^{108}\), to induce leakage of electrons and excessive formation of reactive oxygen species (ROS). In addition, using non-toxic doses of the complex II blockers of the respiratory chain, such as thenoyltrifluoroacetone\(^{109}\) or α-tocopherol succinate\(^{110}\) together with harmless doses of cytotoxic drugs, synergistically stimulates the formation of ROS and thereby increases the effectiveness of the therapy on breast cancer and NB cell lines.

Fast growth of the tumor cells and poor vascularization leads to hypoxia, which causes the activation of transcription factors, such as hypoxia-inducible factor 1 (HIF-1), that regulate the hypoxic adaptation (Figure 3)\(^{111-113}\). Specifically, HIF-1 regulates developmental and physiological pathways that facilitate O2 delivery to the cells or...
help cells to survive in low O2 conditions. HIF-1 is activated in a hypoxic environment that is very common in solid tumors. HIF-1 expression leads to the activation of glycolysis and angiogenesis, and correlates with aggressive tumors and poor outcome. HIF-1 is a heterodimer consisting of the O2-regulated HIF-1α subunit and a constantly expressed HIF-1β subunit. HIF-1α becomes stable in a low O2 environment and binds with HIF-1β to form an active HIF-1 complex that has both anti- and pro-apoptotic effects. For instance, severe and continuous hypoxia will result in HIF-1 activation, p53 expression, and apoptosis. On the other hand, simultaneous stabilization of HIF-1 with activation of the PI3K/Akt pathway, survivin, glycolytic enzymes, p21, and/or erythropoietin can inhibit apoptosis and support NB tumor growth.

Furthermore, recent data suggest that the aforementioned TAp73 also regulates the degradation of HIF-1 and the suppression of vascularization in an oxygen-independent manner (Fig. 3). Therefore, loss of TAp73 activity in MYCN-overexpressed tumors can be associated with increased HIF-1 activity and thereby the stimulation of angiogenesis in tumor cells. Another isoform of p73, NH2 terminally truncated putative oncogene ΔNp73, is also involved in angiogenesis regulation (Fig. 3). In tumor cell lines, ΔNp73 is stabilized in O2-deficient conditions and activates vascularization via vascular endothelial growth factor A expression, indicating that cellular response to hypoxic conditions and HIF-1 activity is tightly regulated by MYCN and p53 family proteins. Moreover, HIF-1 activity is also associated with low responsiveness to differentiation therapy and the downregulation of HIF-1 can improve the outcome of the NB treatment. Therefore, taking into account the importance of HIF-1 in NB tumor progression, the search for its inhibitors, such as topotecan and acriflavine, is a promising strategy. Several of these have already been shown to improve the effects of antiangiogenic drugs in vivo.

Cancer cells modify their metabolism to support their constant proliferation. Adjustments in cancer cells’ metabolism result in excessive glycolytic activity to produce ATP, the Warburg effect, to support rapid cell proliferation. These changes are also seen in aerobic conditions, even though glycolysis generates less ATP than OXPHOS. This decrease in oxygen demand helps tumor cells to survive in hypoxic conditions and continue proliferation due to excessive glycolytic activity. Such a drastic metabolic change is attained by the activity of various oncogenes and regulatory proteins, such as MYC and HIF-1.

Oncogenic MYC upregulates glucose import (e.g., GLUT1), glycolytic enzymes (e.g., hexokinase 2 (HK2) and PDK1), and mitochondrial biogenesis, thereby ensuring metabolic intermediates that support cell growth. Elevated glucose transport into the cells and glycolysis itself can be targeted for cancer cell-specific therapy. For example, glucose analog 2-DG (2-deoxy-D-glucose) that is phosphorylated by HK2 cannot be metabolized further and accumulates in the cell, leading to the inhibition of glycolysis and tumor growth. This approach has been successful in several NB cell lines and also in xenograft models, regardless of their MYCN status, indicating its potential for clinical significance. Furthermore, the clinical efficacy of 2-DG is enhanced when combined with cytotoxic drugs in breast, head and neck, and ovarian cancer cell lines.

Another hexokinase inhibitor lonidamine was under clinical trials and revealed promising results in combination therapy for ovarian cancer clinical trial and NB cell lines. Furthermore, HK inhibitor 3-bromopyruvate (3-BP) effectively reduces cell growth of leukemia, breast, and colon cancer cells without any significant toxicity or recurrence. It has been efficient when used alone or in combination with other inhibitors (e.g., rapamycin or cytotoxic drugs), small-molecule PDK inhibitors, such as dichloroacetate (DCA) or the downregulation of lactate dehydrogenase A (LDHA) can also be used to reverse the glycolytic shift by directing pyruvate into mitochondria, to restore the characteristic phenotype of non-malignant cells. For example, DCA has successfully reduced lactate production, proliferation rate, cell viability, and increased respiration in NB cell lines. In addition, LDHA inhibitor FX11 has successfully inhibited aerobic glycolysis and growth of NB cell lines.

Besides increased glucose metabolism, many tumors, and especially NB, show signs of glutamine dependency. Glutamine regulates cellular energetics, redox state, amino acid production, cell signaling, and nucleotide synthesis. Therefore, glutamine addiction helps cancer cells to acquire substrates for rapid proliferation and to survive better in complex environments. In tumors, stimulation of glutaminolysis in low glucose and oxygen conditions is mainly induced by MYC, whereas MYC knockdown results in reduced glutamine metabolism in glioblastoma cell line. Thus, removal of glutamine should lead to the death of addicted cells, whereas oxaloacetate, pyruvate, and α-ketoglutarate can rescue cells from dying, suggesting that MYC-driven glutamine metabolism is a major carbon source for the tricarboxylic
acid cycle. Therefore, targeting glutamine metabolism for MYC-driven tumors is a promising strategy for cancer therapy.

Glutamine depletion results in activating transcription factor 4 (ATF4)-dependent, but p53-independent, apoptosis as a result of the stimulation of expression of the pro-apoptotic BCL-2 family proteins PUMA and NOXA. Therefore, combinations of ATF4 agonists and glutaminolysis inhibitors have shown the induction of apoptosis and a decrease in NB tumor growth. Inhibitors of glutaminase 1 by small molecules such as 986 (ref. 166) and bis-2-[5-phenylacetamido-1,2,4-thiadiazol-2-yl] ethyl sulfide, suppressed cell growth, migration, invasion, and resistance to oxidative stress in MYC-overexpressing tumors. However, MYCN-amplified NB cells that predominantly express GLS2 might be less sensitive to these drugs. Besides GLS blockers, inhibitors of glutamate dehydrogenases, such as epigallocatechin-3-gallate, or aminotransferases, such as aminooxyacetate, can be used to block subsequent glutamate processing. However, problems with identifying the predominant pathway in specific cancers make it difficult to predict the NB sensitivity to these drugs.

Autophagy and NB therapy

Autophagy is a catabolic survival mechanism that is activated in somatic cells under metabolic stress, to provide the cell with metabolites and to eliminate damaged organelles, protein aggregates, and infecting organisms. Extensive autophagy can also lead to cell death, but its function is not yet fully understood. In many solid tumors, including NB, the outcome of the chemotherapeutic agents is also affected by the cellular stimulation/activation of autophagy, which can lead to unexpected consequences and autophagy-mediated cell survival or death. However, there are ongoing discussions and research to better understand whether extensive activation of autophagy could be used to induce cell death or whether it should be blocked, because it helps cells to survive in extreme environments and therefore support tumor growth.

For example, one of the reasons why previously discussed ALK inhibitors may cause resistance is due to their ability to activate autophagy-mediated cell survival. This can be avoided by using ALK inhibitors together with autophagy inhibitors, such as chloroquine, which have been shown to increase cell death of ALK-positive lung cancer. In addition, research on histone deacetylase 10 has shown its role in autophagy-mediated cell survival and poor outcomes in high-risk NB. Moreover, BCL-2, a regulator of apoptosis, also controls and inhibits autophagy, which is why it seems to be one of the key factors and a potential target in balancing autophagy and apoptosis. Therefore, inhibition of autophagy in combination with other apoptosis-inducing drugs is a potential strategy to induce apoptotic cell death of NB cells, especially in resistant tumors.

Targeting PI3K/AKT/mTOR pathway

The PI3K/AKT/mTOR (mechanistic target of rapamycin) signaling pathway is an important regulator of autophagy. In NB, it correlates with a poor outcome and is shown to be upregulated by constitutively activated ALK and MYCN genes. The PI3K/AKT/mTOR pathway is regulated by the aforementioned RTKs, which are shown to be involved in malignant NB cell transformation, when mutated and/or amplified. Therefore, several inhibitors of RTK and PI3K/AKT/mTOR pathways have also been tested for NB therapy. However, there are also problems with resistance, as these inhibitors cause secondary mutations and autophagy activation that supports cell survival.

Protein kinase mTOR is considered to be the main inhibitor of autophagy and controller of cellular metabolism. Deregulation of mTOR expression is very common in tumor cells and it is targeted in many NB studies, as its inhibition destabilizes MYCN, reduces NB growth, and induces excessive autophagy activation that will result in the stimulation of cell death. Although clinical benefits from mTOR inhibitors, when used alone, have been modest, their effectiveness for NB in combination therapies is under investigation. For example, the mTOR inhibitor temsirolimus (rapamycin analog) has been tested for NB in clinical trials, in combination with standard chemotherapy and monoclonal antibodies. In addition, the combination of mTOR inhibitors, such as dactolisib, or INK128 (ref. 199), with ALK inhibitors or other conventional chemotherapeutics has shown the ability of the treatment to overcome drug resistance and to prevent NB tumor growth. Moreover, elevated levels of AKT are also very common in NBs. Studies on combined AKT targeting have shown even more successful results, for example, the combination of AKT inhibitor perifosine and mTOR inhibitor temsirolimus is in clinical testing for pediatric solid tumors (NCT01049841). Furthermore, AKT inhibitor MK2206 in combination with etoposide or rapamycin has shown promising results in NB cell lines. Taken together, targeting the PI3K/AKT/mTOR pathway and thereby inducing excessive autophagy can be used as a strategy for cancer therapy; however, targeting several pathways simultaneously should be used to avoid resistance to treatment.

Necroptosis induction in NB therapy

Cellular stress can activate various caspase- and p53-independent forms of cell death in normal and transformed cells. One of them is necroptosis, which is...
morphologically similar to inflammation and immune response caused by necrosis.202 It is mediated by necrotic death receptors, their ligands, interferons, Toll-like receptors, and the necosome complex, consisting of receptor-interacting protein kinases 1/3 (RIPK1/3) and mixed lineage kinase domain-like203–206. Necroptosis is induced by necrosis206,207. Normal cell survival is supported by the inhibition of apoptosis and necroptosis, where apoptosis induction is suppressed by FLICE-inhibitory protein inhibiting caspase-8 (ref. 208) and necroptosis induction is blocked by caspase-8-mediated cleavage of RIPK1/3 (ref. 209). Therefore, the balance between these proteins will determine whether the cell will survive or die and through which pathway. Thus, it is expected that necroptosis has an important role in several human disorders, such as neurodegenerative and inflammatory diseases210. Moreover, necrototic cell death can be used as a novel approach to modulate antitumor immunity and apoptosis in the treatment of resistant cells211.

As many aggressive NBs do not express caspase-8 and are resistant to apoptosis, inducing necrototic cell death to eliminate these cells is another strategy to increase the efficiency of treatments212. One way to trigger necroptosis in NB cells is through the increase of cytoplasmic Ca2+ that activates calcium-calmodulin kinase II, which in turn activates RIPK1 (ref. 213). Other agents inducing necroptosis in RIPK3-expressing NB cells are polyphyllin D214 and n-gal215. On the other hand, many NBs have a decreased expression of caspase-8 and low level of proteins involved in necroptosis, especially in the advanced stages, making them also resistant to necroptosis induction216. It is not clear why these genes are downregulated in NB, but epigenetic modifications may be the reason of this outcome. Thus, demethylating drugs and/or histone deacetylase inhibitors217,218 can be used to overcome this issue and support the use of necroptosis as a new approach for NB therapy.

Immunotherapy in NB treatment

Owing to the limitations of current therapies, many immunotherapeutic approaches can be used to induce NB cell death through redirecting the immune system to eliminate the malignant cells and to achieve long-term immunity and protection against relapse. One way is through targeting ALK-positive NBs with antibodies, to inhibit cell growth and induce cytotoxicity219,220. Antibodies can also be used to deliver immunotoxins, radioisotopes, liposomes, or nanoparticles221. This new method of drug delivery has a high potential for very specific on-the-spot effects on tumor cells, at the same time avoiding toxicity on healthy cells.

This approach is also used for other surface epitopes, because NB is derived from embryonic tissue and it expresses surface antigens that are not widespread in non-embryonic tissues, such as L1-cell adhesion molecule (L1-CAM), GD2/3 (disialoganglioside), and B7H3 (ref. 222–224). These antigens can be used as biomarkers to target advanced and chemotherapy-resistant NB cells with immunotherapeutic antibodies. The described strategy has shown promising results in preclinical and clinical trials with monoclonal antibodies, such as Hu3F8 (ref. 225–228) and dinutuximab229–232, on GD2-positive NB tumors. It has been shown that treatment with these antibodies will lead to cytotoxicity mediated by monocytes, macrophages, granulocytes, the complement system, and natural killer (NK) cells. As anti-GD2 antibodies act via cell-mediated cytotoxicity and NK cell reactivity, NB patients with higher immune activity have better outcomes from this treatment233–238. This method seems to be even more effective when used in combination with cytotoxic chemotherapy, cytokines, adoptive NK cell therapy, and 13-cis-retinoic acid232,239–245. However, there have been problems with treatment efficiency, pain toxicity, and relapse; attempts to eliminate these issues have not yet been fully successful244. Another problem with this kind of treatment is that, generally, it does not induce immunological memory and other parts of the immune system should be used to achieve long-term effects.

For instance, there is evidence for “natural immunity” against ALK-positive NB cells. This is due to NB’s peculiarity in presenting ALK peptides on human leukocyte antigen I, which is then recognized by T cells246,247. This led to a novel strategy that uses designed and/or activated T cells to induce bio-distributed, long-term, and direct cytotoxicity, which is free of the immunosuppressive influences of the tumor. These designed T cells have a chimeric antigen receptor against GD2, L1-CAM, or ALK, and they have demonstrated safety and no pain toxicity in relapsed NB248–253. Another similar approach is to use a peptide vaccine, such as ganglidiximab254, made from the tumor proteins, to activate T cells against the NB255–257. These strategies are already in clinical trials and demonstrating high efficiency. However, there are several potential drawbacks with these therapies, starting with the low or altered expression of HLA and its co-stimulatory molecules on the cells, complex and expensive standardization processes, and its requirement to use disease compromised immune system246,258.

Spontaneous regression and TrKA pathway

NB is known for its spontaneous regression by differentiation or reactivated apoptosis, which can be considered as a possible strategy for improved therapy259,260. Experiments with differentiation supporting vorinostat261, a histone deacetylase inhibitor, and didymin262, a citrus-
derived compound, have resulted in regression of NB in xenograft models and differentiation in relapsed NB261,262. There are also several other simple compounds, such as all-trans retinoic acid263–269, nitric oxide270, and phenylacetate271 that trigger the induction of differentiation and inhibition of NB growth by inducing the expression of neural differentiation genes. However, this mechanism is not clear, but there is evidence that NB spontaneous regression caused by retinoids is associated with increased expression of tropomyosin receptor kinase A (TrkA) receptors269,271.

Furthermore, spontaneous regression of NB is correlated with high expression of TrkA and its ligand nerve growth factor (NGF), which protects cells from apoptosis and directs them to differentiation, whereas NGF alone promotes apoptosis272–277. Therefore, changing the balance between TrkA and NGF expression can be used for the activation of NB differentiation and apoptosis. For example, re-expression of exogenous TrkA in NB cells guides cells to NGF-induced differentiation.274,277–279 Apoptotic cell death can be induced by TrkA inhibitors, like K252a (ref. 280), and GTx-186 (ref. 281) or by downregulating TrkA with miRNA-92a (ref. 282), however, these strategies are not yet clinically tested for NB. NGF can also sensitize TrkA-expressing cells for TRAIL-induced apoptosis and this effect can be further increased by using inhibitors of NF-κB and/or Mcl-1 (ref. 283). However, this approach may work better for the primary NB, but not relapsed NB, which often has mutations in this regulatory pathway.

Another Trk family protein kinase is TrkB, whose expression is correlated with poor NB prognosis and MYCN amplification. For example, TrkB ligands, such as BDNF and NT-4/5, are distributed via autocrine or paracrine signaling to support overall NB viability, drug resistance, and angiogenesis of TrkB-positive tumors284–286. Therefore, targeting TrkB may reduce the malignancy of NB with dysregulated TrkB, which can be achieved by the TrkB inhibitors GNF-4256 (ref. 287) or AZD6918 (ref. 288), which have shown promising results alone and in combination in a xenograft mouse model.

Moreover, expression of a homeobox gene HOXC9 is associated with a favorable prognostic outcome and is known as a marker of spontaneous regression in infant NBs, whereas its downregulation is present in advanced-stage NBs. Therefore, re-expression of HOXC9 can be used to induce NB regression or activation of apoptotic cell death in NB cell lines289,290. Based on all of the aforementioned information on spontaneous regression in NB, it is not clear how it is regulated. Regression seems to be as complex mechanism as all the other cellular pathways and it can include a variety of cross-talking cell death mechanisms.

Conclusion
Therapeutics inducing different modes of cell death, mainly apoptosis, have been proved to be successful, but sometimes they demonstrate a modest efficiency and side effects. The main problem with stimulating apoptosis in tumor cells is their ability to compensate for pro-apoptotic signals via upregulating anti-apoptotic agents. Therefore, searching new strategies is crucial to achieve improved outcome of NB therapy. One way to enhance the treatment is to understand better the genetic and metabolic background of NB. This in turn can be used for more specific and even personalized therapy, thereby improving the outcome of the treatment. Moreover, recent developments in NB treatment are directed towards combined therapies that target many pathways, not just different sites of one pathway. Another promising and clinically tested approach is immunotherapy, which can be used to induce NB cell death through redirecting the immune system to eliminate the malignant cells and to achieve long-term immunity and avoid relapse. However, there are several potential drawbacks, starting with the requirement to use healthy and functional immune system, as well as difficult and expensive standardization processes. Thus, there is no easy way to overcome this complex and heterogeneous disease, but step-by-step improvements are bringing us closer to prolonged survival and gain in life quality.

Acknowledgements
We are very grateful to Professor Marie Arsenian-Henriksson for critical reading of the article and valuable discussions. The work in the authors’ laboratories is supported by grants from the Swedish and Stockholm Cancer Societies, the Swedish Childhood Cancer Foundation, the Swedish Research Council. BZ and VG were supported by the Russian Science Foundation (14-25-00056).

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published online: 25 January 2018

References
1. Brodeur, G. M. Neuroblastoma: biological insights into a clinical enigma. Nat. Rev. Cancer 3, 203–216 (2003).
2. Smith, M. A. et al. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J. Clin. Oncol. 28, 2625–2634 (2010).
3. Spix, C., Pastore, G., Sankila, R., Stiller, C. A. & Steliarova-Foucher, E. Neuroblastoma incidence and survival in European children (1978-1997): report from the Automated Childhood Cancer Information System project. Eur. J. Cancer 42, 2081–2091 (2006).
4. Gustafsson G. K. P., Heyman M. (eds). Childhood Cancer Incidence and Survival in Sweden 1984-2010. Swedish Childhood Cancer Registry. 2013.
5. Maris, J. M. Recent advances in neuroblastoma. N. Engl. J. Med. 362, 2202–2211 (2010).
of Valter et al.

van Limpt, V. et al. The Phox2B homeobox gene is mutated in sporadic neuroblastoma. J Natl Cancer Inst 73, 373–381 (1996).

Bosse, K. R. & Mars, J. M. Advances in the translational genomics of neuroblastoma. From improving risk stratification and revealing novel biology to identifying actionable genetic alterations. Cancer 122, 20–33 (2016).

Lukach, R. et al. Neuroblastoma (Peripheral neuroblastic tumours). Crit. Rev. Oncol. Hematol. 107, 163–181 (2016).

Pinto, N. R. et al. Advances in Risk Classification and Treatment Strategies for Neuroblastoma. J Clin Oncol 33, 3008–3017 (2015).

Shimada, H. et al. Histopathologic prognostic factors in neuroblastoma: definition of subtypes of ganglioneuroblastoma and an age-linked classification of neuroblastomas. J Natl Cancer Inst 73, 405–416 (1984).

Cohn, S. L. et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol 27, 289–297 (2009).

Park, J. R., Eggert, A. & Caron, H. Neuroblastoma: biology, prognosis, and treatment. Hematol. Oncol. Clin. North. Am. 24, 65–66 (2010).

Diskin, S. J. et al. Common variation at 6q16 within HACE1 and LIN28B influences susceptibility to neuroblastoma. Nat Genet. 44, 1126–1130 (2012).

van Limpt, V. et al. The Phox2B homeobox gene is mutated in sporadic neuroblastomas. Oncogene 23, 5290–5298 (2004).

Mose, Y. P. et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455, 930–935 (2008).

De Mariano, M. et al. Identification of GALNT14 as a novel neuroblastoma predisposition gene. Oncogene 6, 26335–26346 (2015).

Schwab, M. et al. Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature 305, 245–248 (1983).

Ogawa, S., Takita, J., Sanada, M. & Hayashi, Y. Oncogenic mutations of ALK in neuroblastoma. Cancer Sci. 102, 302–308 (2011).

Brodeur, G. M. Neuroblastoma: clinical significance of genetic abnormalities. Cancer Surv. 9, 673–688 (1990).

Wang, L. L. et al. Augmented expression of MYC and/or MYCN protein defines highly aggressive MYC-driven neuroblastoma in a Children’s Oncology Group study. Br. J. Cancer 113, 57–63 (2015).

Irwin, M. S. & Park, J. R. Neuroblastoma: paradigm for precision medicine. Pediatr. Clin. North. Am. 62, 225–256 (2015).

Molenaar, J. J. et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neurotigenesis genes. Nature 483, 589–593 (2012).

Pugh, T. J. et al. The genetic landscape of high-risk neuroblastoma. Nat. Genet. 45, 279–284 (2013).

Zhu, S. et al. Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. Cancer Cell 21, 362–373 (2012).

Ambros, I. M. et al. Quality assessment of genetic markers used for therapy stratification. J. Clin. Oncol. 21, 2077–2084 (2003).

Palmer, R. H., Vemerson, E., Grabbe, C. & Hallberg, B. Anaplastic lymphoma kinase signalling in development and disease. Biochem. J. 420, 349–361 (2009).

Elefent, T. F. et al. Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations. Nat. Genet. 47, 864–871 (2015).

Brester, S. C. et al. ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma. Cancer Cell 26, 682–694 (2014).

Mose, Y. P. et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma. A Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 14, 472–480 (2013).

Iyer, R. et al. Entrectinib is a potent inhibitor of Trk-driven neuroblastomas in a xenograft mouse model. Cancer Lett. 372, 178–186 (2016).

Infarnato, N. R. et al. The ALK/ROS1 Inhibitor PF-06463922 Overcomes Primary Resistance to Crizotinib in ALK-Driven Neuroblastoma. Cancer Discov. 6, 96–107 (2016).

Wang, Y. et al. Novel ALK inhibitor AZD3465 inhibits neuroblastoma growth by overcoming crizotinib resistance and inducing apoptosis. Sci. Rep. 6, 26269–26275 (2016).

Nishio, M. et al. Phase I Study of Cediranib (LDC378) in Japanese patients with advanced, anaplastic lymphoma kinase-rearranged non-small-cell lung cancer or other tumors. J. Thorac. Oncol. 10, 1058–1066 (2015).

Kytyska, K. et al. Crizotinib synergizes with chemotherapy in preclinical models of neuroblastoma. Clin. Cancer Res. 22, 948–960 (2016).
64. Brown, C. J., Lain, S., Verma, C. S., Ferho, A. R. & Lane, D. P. Awakening guardian angels: drugging the p53 pathway. Nat. Rev. Cancer 9, 862–873 (2009).
65. Carr-Wilkinson, J. et al. High frequency of p53/MDM2/p14ARF pathway abnormalities in relapsed neuroblastoma. Clin. Cancer Res. 16, 1108–1116 (2010).
66. Vogan, K. et al. Absence of p53 gene mutations in primary neuroblastomas. Cancer Res. 53, 5269–5273 (1993).
67. Slack, A. et al. The p53 regulatory gene MDM2 is a direct transcriptional target of MYCN in neuroblastoma. Proc. Natl Acad. Sci. USA 102, 731–736 (2005).
68. Tweddle, D. A. et al. The p53 pathway and its inactivation in neuroblastoma. Cancer Lett. 197, 93–98 (2003).
69. Corvi, R. et al. Non-syntetic amplification of MDM2 and MYCN in human neuroblastoma. Oncogene 10, 1081–1086 (1995).
70. Chen, L. et al. MDM2 regulates MYCN mRNA stabilization and translation in human neuroblastoma cells. Oncogene 31, 1342–1353 (2012).
71. Barone, G. et al. MDM2-p53 interaction in paediatric solid tumours: preclinical rationale, biomarkers and resistance. Curr. Drug Targets 15, 114–123 (2014).
72. Wolter, J., Angelinei, P. & Irwin, M. Mdm2 family: Therapeutic targets in neuroblastoma. Future Oncol. 6, 629–444 (2010).
73. Barbieri, E. et al. MDM2 inhibition sensitizes neuroblastoma to chemotherapy-induced apoptotic cell death. Mol. Cancer Ther 5, 2358–2365 (2006).
74. Gamble, L. D., Kees, U. R., Tweddle, D. A. & Lunec, J. MDM2 sensitizes neuroblastoma to chemotherapy-induced apoptotic cell death. Cell Death Discov. 2015, 1, 5026.
75. Michaelis, M. et al. Adaptation of cancer cells from different entities to the MDM2 inhibitor nutlin-3 results in the emergence of p53-mutated multidrug-resistant cancer cells. Cell Death Dis. 2, e243 (2011).
76. Golubkovska, V. M. et al. A small-molecule inhibitor, S'-O-tritylmidine, targets FAK and Mdm-2 interaction, and blocks breast and colon tumorgenicity in vivo. Anticancer Agents Med Chem. 13, 552–545 (2013).
77. Balint, E., Bates, S. & Voussden, K. H. Mdm2 binds p73 alpha without targeting degradation. Oncogene 18, 3932–3949 (1999).
78. Zeng, X. et al. MDM2 suppresses p73 function without promoting p73 degradation. Mol. Cell Biol. 19, 3257–3266 (1999).
79. Zhu, X. et al. N-myc modulates expression of p73 in neuroblastoma. Neoplasia 4, 432–459 (2002).
80. De Launay, V. et al. Induction of neuronal differentiation by p73 in a neuroblastoma cell line. J. Biol. Chem. 275, 15226–15231 (2000).
81. Honvileur, E. et al. p73alpha isoforms drive opposite transcriptional and post-transcriptional regulation of MYCN expression in neuroblastoma cells. Nucleic Acids Res. 36, 4222–4232 (2008).
82. de Lange, T. et al. Synergistic growth inhibition based on small-molecule p53 activation as treatment for intracranial melanoma. Oncogene 31, 1105–1116 (2012).
83. Tovar, C. et al. MDM2 antagonists boost antitumor effect of androgen withdrawal: implications for therapy of prostate cancer. Mol. Cancer 10, e9 (2011).
84. Vatasyan, R., Singhhal, J., Nagaprasanthan, H. D., Awasthi, S. & Singhal, S. S. Nutlin-3 enhances sorafenib efficacy in renal cell carcinoma. Mol. Carcinog. 52, 60–68 (2013).
85. Corry, S. & Adams, J. M. The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2, 647–666 (2002).
86. Ola, M. S., Nawaz, M. & Ahsan, H. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol. Cell Biochem. 351, 41–58 (2011).
87. Castell, V. P. et al. Expression of the apoptosis-suppressing protein bcl-2, in neuroblastoma is associated with unfavorable histology and N-myc amplification. Am. J. Pathol. 143, 1543–1550 (1993).
88. Goldsmith, K. C. et al. Mitochondrial Bcl-2 family dynamics define therapy response and resistance in neuroblastoma. Cancer Res. 72, 2565–2577 (2012).
172. Berardi, D. E., Campodonico, P. B., Diaz Bessone, M. I., Untergreit, A. J. & Todaro, L. B. Autophagy friend or foe in breast cancer development, progression, and treatment. Int. J. Breast Cancer 2011, 595902 (2011).

173. Kroemer, G. et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 16, 3–11 (2009).

174. Shen, S., Kepp, O. & Kroemer, G. The end of autophagic cell death? Autophagy 8, 1–3 (2012).

175. Oehme, I. et al. Histone deacetylase 10 promotes autophagy-mediated cell survival. Proc. Natl Acad. Sci. USA 110, E2592–E2601 (2013).

176. Avice, S. et al. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

177. Ji, C. et al. Induction of autophagy contributes to cisplatin resistance in ALK-positive lung cancer. Cancer Biol. Ther. 15, 570–577 (2014).

178. Oehme, I. et al. Histone deacetylase 10 promotes autophagy-mediated cell survival. Proc. Natl Acad. Sci. USA 110, E2592–E2601 (2013).

179. Xu, H. D. et al. The pro-survival role of autophagy depends on Beclin1 under nutrient stress conditions. Proc. Natl Acad. Sci. USA 108, E5952–E5961 (2013).

180. Avice, S. et al. Combating autophagy is a strategy to increase cytotoxic effects of novel ALK inhibitor entrectinib in neuroblastoma cells. Oncotarget 7, 5646–5665 (2016).

181. Mohan, N., Chakrabarti, M., Banik, N. L. & Ray, S. K. Combination of LC3 3RHA plasmid transfection and genistein treatment inhibited autophagy and increased apoptosis in malignant neuroblastoma in cell culture and animal models. PLOS ONE 8, e76958 (2013).

182. Izdyk-Swieszkowska, E. et al. Analysis of PI3K/AKT/mTOR signalling pathway in high-risk neuroblastoma tumours. Pediatr. Blood Cancer 61, 192–198 (2010).

183. Johnsen, J. I. et al. Inhibitors of mammalian target of rapamycin down-regulate MYCN protein expression and inhibit neuroblastoma growth in vitro and in vivo. Oncogene 27, 2910–2922 (2008).

184. Watanabe, S. et al. A steroidal saponin in Paris polyphylla, induces apoptosis and necroptosis cell death of neuroblastoma cells. Proc. Natl Acad. Sci. USA 110, E577–E586 (2013).

185. Hoekstra, M. et al. Analysis of PI3K/AKT/mTOR signalling pathway in high-risk neuroblastoma. Pediatr. Hematol. Oncol. 30, 605–615 (2013).

186. Segerstom, L. et al. Effects of small molecule inhibitors of PI3K/Akt/mTOR signalling on neuroblastoma growth in vitro and in vivo. Int. J. Cancer 129, 2956–2965 (2011).

187. Broekman, F., Govanniotti, E. & Peters, G. J. Tyrosine kinase inhibitors: multi-targeted or single-targeted? World J. Clin. Oncol. 2, 80–93 (2011).

188. Cox, G. D. et al. Dual inhibition of PI3K and mTOR in neuroblastoma cell lines and in vivo. Proc. Natl Acad. Sci. USA 108, 13147–13152 (2011).

189. Kang, H. et al. mTOR-competitive inhibitor INK128 inhibits neuroblastoma growth via blocking mTORC1 signaling. Apoptosis 20, 50–62 (2015).

190. Rodrik-Outmezguine, V. S. et al. mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discov. 1, 248–259 (2011).

191. Jung, C. H. et al. ULK-Atg13-FIP200 complex mediates mTOR signaling to the autophagy machinery. Cell Death Differ. 21, 32–41 (2014).

192. Zhao, W. & Yuan, J. Necroptosis in health and diseases. Semin. Cell. Dev. Biol. 35, 14–23 (2014).

193. Ioannou, H. & Tani, K. Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments. Cell Death Differ. 21, 39–49 (2014).

194. Zauli, G. et al. TRAIL activates a caspase-9-dependent pathway in caspase 8/10-defective SK-N-SH neuroblastoma cells with two functional end points: induction of apoptosis and PGE2 release. Neoplasia 5, 457–466 (2003).

195. Nomura, M., Ueno, A., Saga, K., Fukuizawa, M. & Kaneda, Y. Accumulation of cytosolic calcium induces necroptotic cell death in human neuroblastoma. Cancer Res. 74, 1056–1066 (2014).

196. Wang, S. et al. A steroidal sapogenin in Paris polyphylla, induces apoptosis and necroptosis cell death of neuroblastoma cells. Pediatr. Surg. Int. 33, 713–719 (2017).

197. Li, N. et al. D-galactose induces necroptotic cell death in neuroblastoma cell lines. J. Cell Biochem. 112, 3834–3844 (2011).

198. Caicciolo, I. et al. Expression of the caspase-8 gene in neuroblastoma cells is regulated through an essential interferon-sensitive response element (ISRE). Cell Death Differ. 11, 131–134 (2004).

199. Bolden, J. E. et al. HDAC inhibitors induce tumor-cell-selective pro-apoptotic transcriptional responses. Cell Death Dis. 4, e519 (2013).

200. Condorelli, F., Gennemi, I., Vallario, A., Genazzani, A. A. & Canonica, P. L. Inhibitors of histone deacetylase (HDAC) restore the p53 pathway in neuroblastoma cells. Br. J. Pharmacol. 153, 657–666 (2008).

201. Carpenter, E. L. et al. Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma. Oncogene 31, 4859–4867 (2012).

202. Moog-Lutz, C. et al. Activation and inhibition of anaplastic lymphoma kinase receptor tyrosine kinase by monoclonal antibodies and absence of agonist activity of pleiotrophin. J. Biol. Chem. 280, 26039–26048 (2005).

203. Matthews, K. K., George, R. E. & Yu, A. L. Promising therapeutic targets in neuroblastoma. Clin. Cancer Res. 18, 2740–2752 (2012).

204. Bérois, N. & Otsinga, E. Glycolysis of neuroblastoma: impact on tumor behavior, prognosis, and therapeutic strategies. Front. Oncol. 4, 114 (2014).

205. Zvonok-Hofer, I. The L1 cell adhesion molecule as a target for radioimmunotherapy. Cancer Radiother. Radiopharm. 22, 175–184 (2007).

206. Wu, Z. L., Schwartz, E., Seeger, R. & Ladisch, S. Expression of CD2 ganglioside by untreated primary human neuroblastomas. Cancer Res. 46, 440–443 (1986).
235. Delgado, D. C. et al. Genotypes of NK cell KIR receptors, their ligands, and
234. Castriconi, R. et al. Human NK cell infusions prolong survival of metastatic
245. Neal, Z. C. et al. Enhanced activity of hu14.18-IL2 immunocytokine against
244. Cheung, N. K. et al. Murine anti-GD2 monoclonal antibody 3F8 combined
228. Saito, M., Yu, R. K. & Cheung, N. K. Ganglioside GD2 specificity of monoclonal antibodies to human neuroblastoma cell. Biochem. Biophys. Res. Commun. 127, 1–7 (1985).

Handretinger, R. et al. A phase I study of human/mouse chimeric anti-
ganglioside GD2 antibody ch14.18 in patients with neuroblastoma. Eur. J. Cancer 31A, 261–267 (1995).

Ladentien, R. et al. CD40 is expressed on human neuroblastoma and osteosarcoma. J. Clin. Oncol. 16, 2169–2180 (1998).

Yu, A. L. et al. Phase I trial of a human-mouse chimeric anti-disialoganglioside monoclonal antibody ch14.18 in patients with refractory neuroblastoma and osteosarcoma. J. Clin. Oncol. 20, 801–809 (2013).

Barker, E. et al. Effect of a chimeric anti-ganglioside GD2 antibody on cell-mediated lysis of human neuroblastoma cells. Cancer Res. 51, 144–149 (1991).

Costin, R. et al. Human NK cell infusions prolong survival of metastatic neuroblastoma-bearing NOD/scid mice. Cancer Immunol. Immunother. 56, 1733–1742 (2007).

Delgado, D. C. et al. Genotypes of NK cell KIR receptors, their ligands, and Fcgamma receptors in the response of neuroblastoma patients to Hu14.18-IL2 immunotherapy. Cancer Res. 70, 9554–9561 (2010).

Tarek, N. et al. Unicloned NK cells target neuroblastoma following anti-GD2 antibody treatment. J. Clin. Invest. 122, 3260–3270 (2012).

Venstrom, J. M. et al. KIR and HLA genotypes are associated with disease progression and survival following autologous hematopoietic stem cell transplantation for high-risk neuroblastoma. Clin. Cancer Res. 15, 7330–7334 (2009).

Zeng, Y. et al. Anti-neuroblastoma effect ofCh14.18 antibody produced in CHO cells is mediated by NK-cells in mice. Cancer Immunol. Immunother. 56, 1733–1742 (2007).

Dobrenkov, K. & Cheung, N. K. GD2-targeted immunotherapy and radio-immunotherapy. Semin. Oncol. 41, 589–612 (2014).

Gilman, A. L. et al. Phase I study of ch14.18 with granulocyte-macrophage colony-stimulating factor and interleukin-2 in children with neuroblastoma after autologous bone marrow transplantation or stem-cell rescue: a report from the Children’s Oncology Group. J. Clin. Oncol. 27, 85–91 (2009).

Hank, J. A. et al. Treatment of neuroblastoma patients with anti-ganglioside GD2 antibody plus interleukin-2 induces antibody-dependent cellular cytoxicity against neuroblastoma detected in vitro. J. Immunother. Emphasis Tumor Immunol. 15, 29–37 (1994).

Kroesen, M. et al. Anti-GD2 mAb and Vorniostatin synergize in the treatment of neuroblastoma. Oncology 65, 1694-1699 (2016).

Osakian, M. et al. Phase I study of chimeric human/mouse anti-ganglioside GD2 monoclonal antibody (ch14.18) with granulocyte-macrophage colony-stimulating factor in children with neuroblastoma immediately after hematopoietic stem-cell transplantation: a Children’s Cancer Group Study. J. Clin. Oncol. 18, 4077–4085 (2000).

Cheung, N. K. et al. Murine anti-GD2 monoclonal antibody 3F8 combined with granulocyte-macrophage colony-stimulating factor and 13-cis-retinoic acid in high-risk patients with stage 4 neuroblastoma in first remission. J. Clin. Oncol. 30, 3264–3270 (2012).

Neal, Z. C. et al. Enhanced activity of ch14.18-4L2 immunocytokine against murine NXS2 neuroblastoma when combined with interleukin 2 therapy. Clin. Cancer Res. 10, 4859–4847 (2004).

Delgado, D. C. et al. Expression of costimulatory molecules in human neuroblastoma. Evidence that CD40+neuroblastoma cells undergo apoptosis following interaction with CD40L. Br. J. Cancer 88, 1527–1536 (2003).

Ait-Tahar, K., Barnardo, M. C. & Pullford, K. CD4 T-helper responses to the anaplastic lymphoma kinase (ALK) protein in patients with ALK-positive anaplastic large-cell lymphoma. Cancer Res. 67, 1898–1901 (2007).

Gonzalez, S. et al. Genetic engineering of cytolytic T lymphocytes for adoptive T-cell therapy of neuroblastoma. J. Gene Med. 6, 704–711 (2004).

Jena, B., Dotti, G. & Cooper, L. J. Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor. Blood 116, 1035–1044 (2010).

Louis, C. U. et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 118, 6050–6056 (2011).

Park, J. R. et al. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol. Ther. 15, 825–833 (2007).

Pule, M. A. et al. Vpu-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat. Med. 14, 1264–1270 (2008).

Sun, J. et al. T cells expressing constitutively active Akt resist multiple tumor-associated inhibitory mechanisms. Mol. Ther. 18, 2006–2017 (2010).

Eger, C. et al. Generation and characterization of a human/mouse chimeric GD2-mimicking anti-idiotypic antibody ganglionevral for active immunotherapy against neuroblastoma. PLoS ONE 11, e0150479 (2016).

Fest, S. et al. Survivin mimgene DNA vaccination is effective against neuroblastoma. Int. J. Cancer 125, 104–114 (2009).

Krisnadas, D. K., Shapiro, T. & Lucas, K. Complete remission following deci-
erative cell pulses with necrotic primary tumor. J. Pediatr. Surg. 42, 54–61 2007 (discussion).

Selget, B., Cabreira, T., Gamido, F. & Serrone, S. HLA class I antigen abnormalities and immune escape by malignant cells. Semin. Cancer Biol. 12, 3–13 (2002).

Evans, A. E., Gerson, J. & Schnaufer, L. Spontaneous regression of neuro-
blastoma. Natl Cancer Inst. Monogr. 44, 49–54 (1976).

Pritchard, J. & Hickman, J. A. Why does stage 4S neuroblastoma regress spontaneously? Lancet 334, 869–870 (1994).

Foulds, M. et al. Pediatric phase I trial and pharmacokinetic study of vor-
inosatin: a Children’s Oncology Group phase I consortium report. J. Clin. Oncol. 28, 3623–3629 (2010).

Singhal, J. et al. Didymin induces apoptosis by inhibiting N-Myc and upre-
gulation RIK in neuroblastoma. Cancer Prev. Res. (Phila.) 5, 473–483 (2012).

Higashi, M. et al. Retinoic acid-induced CHD5 upregulation and neuronal differentiation of neuroblastoma. Mol. Cancer 14, 150 (2015).

Matthay, K. K. et al. Long-term results for children with high-risk neuro-
blastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid a children’s oncology group study. J. Clin. Oncol. 27, 1007–1013 (2009).

Merrill, R. A. et al. All-trans retinoic acid-responsive genes identified in the human-SH-SY5Y neuroblastoma cell line and their regulated expression in the nervous system of early embryos. Biol. Chem. 385, 605–614 (2004).

Sidell, N. Retinoic acid-induced growth inhibition and morphologic differ-
entiation of human neuroblastoma cells in vitro. J. Natl Cancer Inst. 68, 589–596 (1982).

Sidell, N. et al. In vitro and in vivo effects of easily administered, low-toxic retnoid and phenylacetate compounds on human neuroblastoma cells. Br. J. Cancer 89, 412–419 (2003).

Thiele, C. J., Reynolds, C. P. & Israel, M. A. Decreased expression of N-myc precedes retinoic acid-induced morphological differentiation of human neuroblastoma. Nature 313, 404–406 (1985).

Yuza, Y., Agawa, M., Matsuzaki, M., Yamada, H. & Urashima, M. Gene and protein expression profiling during differentiation of neuroblastoma cells triggered by 13-cis retinoic acid. J. Pediatr. Hematol. Oncol. 25, 715–720 (2003).

Ciani, E., Severi, S., Contestabile, A., Barsethges, R. & Contestabile, A. Nitric oxide negatively regulates proliferation and promotes neuronal differentiation through N-Myc downregulation. Blood 117, 4727–4737 (2004).

Gao, Q. et al. Elevated TαA receptor expression is associated with all-trans retinoic acid-induced neuroblastoma differentiation. Genet. Mol. Res. 14, 13195–13202 (2015).

Broder, G. M. et al. Tkr receptor expression and inhibition in neuroblastomas. Clin. Cancer Res. 15, 3244–3250 (2009).
273. Kogner, P. et al. Coexpression of messenger RNA for TRK protooncogene and low affinity nerve growth factor receptor in neuroblastoma with favorable prognosis. *Cancer Res.* **53**, 2044–2050 (1993).

274. Matsushima, H. & Bogenmann, E. Expression of trkA cDNA in neuroblastomas mediates differentiation in vitro and in vivo. *Mol. Cell. Biol.* **13**, 7447–7456 (1993).

275. Nakagawara, A. et al. Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. *N. Engl. J. Med.* **328**, 847–854 (1993).

276. Nakagawara, A. Trk receptor tyrosine kinases: a bridge between cancer and neural development. *Cancer Lett.* **169**, 107–114 (2001).

277. Poluha, W., Poluha, D. K. & Rossi, A. H. TRK neurogenic receptor regulates differentiation of neuroblastoma cells. *Oncogene* **10**, 185–189 (1995).

278. Eggert, A. et al. Molecular dissection of TrkA signal transduction pathways mediating differentiation in human neuroblastoma cells. *Oncogene* **19**, 2043–2051 (2000).

279. Lavenius, E., Gestblom, C., Johansson, I., Nanberg, E. & Pahlman, S. Transfection of TRK-A into human neuroblastoma cells restores their ability to differentiate in response to nerve growth factor. *Cell. Growth Differ.* **6**, 727–736 (1995).

280. Jardi, F., Martinez, V. & Vergara, P. NGF is involved in oral ovalbumin-induced altered colonic contractility in rats: evidence from the blockade of TrkA receptors with K252a. *Neurogastroenterol. Motil.* **24**, e580–e590 (2012).

281. Narayanan, R. et al. Discovery and preclinical characterization of novel small molecule TRK and ROS1 tyrosine kinase inhibitors for the treatment of cancer and inflammation. *PloS ONE* **8**, e83380 (2013).

282. Liao, W. et al. Downregulation of TrkA protein expression by miRNA92a promotes the proliferation and migration of human neuroblastoma cells. *Mol. Med. Rep.* **10**, 778–784 (2014).

283. Ruggeri, P., Cappabianca, L., Farina, A. R., Gneo, L. & Mackay, A. R. NGF sensitizes TrkA SH-SYSY neuroblastoma cells to TRAIL-induced apoptosis. *Cell Death Discov.* **2**, 16004 (2016).

284. Ho, R. et al. Resistance to chemotherapy mediated by TrkB in neuroblastomas. *Cancer Res.* **62**, 6462–6466 (2002).

285. Matsumoto, K., Wada, R. K., Yamashiro, J. M., Kaplan, D. R. & Thiele, C. J. Expression of brain-derived neurotrophic factor and p145TrkB affects survival, differentiation, and invasiveness of human neuroblastoma cells. *Cancer Res.* **55**, 1798–1806 (1995).

286. Nakagawara, A., Azar, C. G., Scawarda, N. J. & Brodeur, G. M. Expression and function of TRK-B and BDNF in human neuroblastomas. *Mol. Cell. Biol.* **14**, 759–767 (1994).

287. Croucher, J. L. et al. TrkB inhibition by GNF-4256 slows growth and enhances chemotherapeutic efficacy in neuroblastoma xenografts. *Cancer Chemother. Pharmacol.* **75**, 131–141 (2015).

288. Li, Z., Zhang, Y., Tong, Y., Tong, J. & Thiele, C. J. Trk inhibitor attenuates the BDNF/TrkB-induced protection of neuroblastoma cells from etoposide in vitro and in vivo. *Cancer Biol. Ther.* **16**, 477–483 (2015).

289. Kocak, H. et al. Hox-C9 activates the intrinsic pathway of apoptosis and is associated with spontaneous regression in neuroblastoma. *Cell Death Dis.* **4**, e586 (2013).

290. Mao, L. et al. HOXC9 links cell-cycle exit and neuronal differentiation and is a prognostic marker in neuroblastoma. *Cancer Res.* **71**, 4314–4324 (2011).