Research Article

Strategic Flexibility, Institutional Pressure, and Proenvironmental Behavior among Sea Food Enterprises: Mediating Effect Based on Paradoxical Cognition

Man Qin,1,2 Yanyan Guo,1 and Kexiang Wang3

1School of Management, Ocean University of China, Qingdao 266100, China
2Institute of Marine Development of OUC, Ocean University of China, Qingdao 266100, China
3Qingdao Empyrean Intelligent Agriculture Group Co Ltd, Qingdao 266100, China

Correspondence should be addressed to Kexiang Wang; 447116340@qq.com

Received 3 March 2022; Accepted 19 July 2022; Published 7 September 2022

Academic Editor: A. M. Bastos Pereira

Copyright © 2022 Man Qin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The proenvironmental behavior of Sea Foods Enterprises is the microfoundation for the transformation and upgrading of the traditional marine aquatic industry. Integrating institutional theory and strategic cognitive theory, we use 221 marine aquaculture companies as research samples to explore the driving effect of strategic flexibility (resource flexibility and coordination flexibility) and institutional pressure (regulatory pressure and normative pressure) on proenvironmental behavior, and the mediating role of paradoxical cognition. The conclusion is as follows: (1) strategic flexibility and institutional pressure jointly drive Sea Food Enterprises to adopt proenvironmental behaviors, of which regulatory pressure has the most significant impact. (2) Paradox cognition plays a partial mediating role in the interaction between resource flexibility, coordination flexibility, regulatory pressure, and proenvironmental behavior. There is no mediating effect in the interaction between normative pressure and proenvironmental behavior.

1. Introduction

Over the past 40 years, China’s marine economy has been following the development model of scale expansion. This poses a serious threat to already fragile marine ecosystems, raising issues related to marine ecosystems, the environment, ecology, disasters, and resources. Although the Chinese government has taken various measures to improve the ecological environment to some extent, the overall situation remains grim. Therefore, it is imperative to strengthen the protection of the marine ecological environment. In this respect, the behavior of the sea food enterprises directly affects marine ecology and marine environment. Residual bait, fertilizer, fishery medicine, and wastewater discharged by the sea food enterprises have become the main sources of marine pollution. Therefore, corporate behavior has a significant impact on environmental conditions [1, 2], and it is of great significance to study the driving factors of aquatic enterprises’ proenvironmental behavior.

Proenvironmental behavior has always been a hot topic in psychological research. Proenvironmental behavior of enterprises refers to the positive environmental response behaviors taken by enterprises under the influence of environmental policies and external public pressure [3]. International studies on influencing factors of corporate proenvironmental behavior mainly focus on motivational factors (such as cost and benefit, ethics and norms, environmental emotions, and cognitive diversity) [4, 5], situational factors (such as interpersonal influence, social norms, government regulations, material incentives, and behavioral costs), and inertia factors [6, 7]. Recent empirical studies on driving factors of environmental behavior in China also show that Chinese enterprises’ environmental behavior is related to compliance with government supervision and media pressure [8] (Lee, 2012). Based on sociological theories, existing studies have also explored the influence of alternative punishment on enterprises’ proenvironmental behaviors by explaining how the
punishment of peers in the industry affects enterprises’ future trends [9]. However, the existing research has not discussed the driving factors of enterprises’ pro-environmental behavior from the two aspects of government regulations and industry pressure.

Sanchez [10] divides strategic flexibility into resource flexibility and coordination flexibility. Studies have shown that PEB is directly influenced by behavior perception [11–14] and the influence of firm resource capacity [15], such as firm financial position [16, 17], technical competence [18, 19], and competitive advantage [20]. Han and Gao [21] found that internal resources and capabilities of enterprises and pressure from external stakeholders jointly promoted the adoption of green management. CSR association and CSR participation also have a significant positive effect on the proenvironmental behavior of enterprises [2]. However, the existing research studies have not discussed the driving factors of strategic flexibility, an internal factor of enterprises, on proenvironmental behavior.

Based on the above analysis, this study decided to adopt an empirical approach to study the impact of strategic flexibility and institutional pressure on enterprises’ pro-environmental behavior.

Based on the existing research, this study constructs a structural equation model around strategic flexibility, institutional pressure, and firm’s proenvironmental behavior with paradox cognition as the mediating variable. To explore whether strategic flexibility and institutional pressure play an important role in promoting marine fishery enterprises to implement PEB. And to explore paradox cognition’s mediating role. The rest of this study is arranged as follows: the second part is literature review and hypothesis; the third part is the introduction of data collection and research methods; the fourth part is reliability and validity test; the fifth part is the result analysis; the sixth part is further analysis; and the seventh part is the research conclusion and policy suggestion.

2. Literature Review and Hypotheses

2.1. Explanatory Variables

2.1.1. Strategic Flexibility. The dynamic environment has become a key environmental feature that Chinese enterprises should consider when formulating their strategies. Under changing environmental conditions, a company’s ability to rapidly change direction and reconfigure its strategy is critical to its success in gaining competitive advantage, so companies need to embrace strategic flexibility [22]. Igor [23] was the first scholar to define strategic flexibility in the world. He believed that strategic flexibility was the most effective solution to “mutation management”. Brozovic [24] proposed that strategic flexibility refers to the ability of an organization to identify major changes in the external environment, quickly allocate resources to new courses of action in response to these changes, and immediately recognize and take action when it is time to stop or reverse existing resource commitments. Existing empirical studies on strategic flexibility mainly focus on the relationship between strategic flexibility and financial performance [25], enterprise innovation [26], and organizational performance [27], and few studies on the relationship between strategic flexibility and enterprise behavior.

2.1.2. Institutional Pressure. The institutional theory was developed in the early 1980s. According to DiMaggio and Powell (1983), this theory can explain why organizations in the same field tend to treat and solve problems in similar ways. The institutional theory holds that firms need legitimacy to survive. Legitimacy refers to being accepted or recognized by governments, associations, media, and other organizations (Fiss and Zajac, 2007). In recent years, researchers have studied institutional pressure as the driving mechanism of social environmental behavior and believe that institutional pressure is the main factor driving enterprise green innovation. For example, Tian and Liu [28] found that the environmental pilot policy significantly stimulated the green innovation activities of enterprises in the companion cities and pointed out that the policy had significant spillover effects among different enterprises.

2.2. Mediating Variables: Paradox Cognition. Smith and Lewis [29] define paradox as a relational structure formed between contradictory and interrelated elements. According to the paradox theory, the sustainable development of enterprises depends on whether they can reasonably solve the conflicting and interrelated problems encountered in the decision-making process [30]. People with high paradoxical awareness are more likely to see the opposite of things and recognize paradoxes in organizations (Wei et al., 2018). Wei et al. [31] found that enterprises with paradox cognition are more inclined to carry out effect change process and have a higher ability to cope with environmental uncertainty. Gao et al. [32] found that paradox cognition has a significant positive impact on enterprises’ green production behavior, and can also improve enterprises’ financial performance by influencing “green product provision,” “green production management,” and “green production technology.”

2.3. Explained Variable: Enterprise Proenvironmental Behavior. Zhou [3] pointed out that the proenvironmental behavior of enterprises refers to the positive environmental response behaviors taken by enterprises under the influence of environmental policies and external public pressure. Recent studies mainly focus on the impact of corporate environmental responsibility on employees’ pro-environmental behavior. Few studies have shown the impact of institutional pressure and strategic flexibility on employees’ proenvironmental behavior.

2.4. Hypothesis Proposal

2.4.1. Strategic Flexibility and Paradox Cognition. There is a recessive relationship between paradox cognition and strategic flexibility. The term “strategic” is associated with the stability of goals and visions, while “flexible” is associated
with adaptability and agility [29]. Thus, the term “strategic flexibility” itself implies a paradox—that is, agility and strategic stability are inevitably at variance with each other [33]. Lusher and Lewis [34] further support the link between paradox cognition and strategic flexibility, arguing that strategic flexibility makes organizations more effective because managers at different levels have similar paradoxical understandings. At the same time, Boonman et al. [35] concluded that teams with high flexibility in prediction strategies could make better use of the cognition of team members. Ivory (2018) argues that organizations with a high degree of strategic flexibility can locate the path of paradox from the perspective of paradox and manage corporate sustainability. At home and abroad, strategic flexibility is studied from the perspectives of dynamic capability theory, resource management theory, and absorptive capacity theory, respectively, and strategic flexibility is divided into two dimensions of resource flexibility and coordination flexibility. Based on this, the following hypotheses are proposed:

H1a. Resource flexibility has a significant positive effect on paradox cognition.

H1b. Competence flexibility has a significant positive effect on paradox cognition.

2.4.2. Strategic Flexibility and PEB. Dynamic capability school believes that strategic flexibility is the ability of an enterprise to quickly and effectively redeploy and invest resources in response to environmental changes [36]. When companies adopt green design, green manufacturing, and green marketing, this flexibility can adapt resources to a wider range of uses [10]. Some enterprises with high strategic flexibility can also coordinate enterprise resources by redefining strategies, reallocating supply chains, and effectively reallocating resources [37]. Taking enterprises in emerging economies as research objects, some studies have found that strategic flexibility has a positive impact on the adoption of green management practices [38]. Hu et al. [39] believe that resource flexibility can not only help enterprises quickly adapt to the constantly changing market but also help enterprises to carry out green ecological innovation activities. Xu et al. [40] proposed that the more flexible an enterprise is in implementing green innovation, the stronger its ability to adapt to environmental changes will be. Therefore, the following hypotheses are proposed:

H2a. Resource flexibility has a significant positive effect on PEB.

H2b. Capability flexibility has a significant positive effect on PEB.

2.4.3. Institutional Pressure and Paradox Cognition. Both institutional pressure and paradox cognition play a guiding role in individual behavior and decision-making, but they also show substantial differences. Budzinski [41] believes that although paradoxical cognition subjectively belongs to a single person, institutional pressure is shared among different individual managers, and paradoxical cognition is influenced and shaped by institutional pressure and social interaction. Jiang and Lai [42] found that when regulatory pressure is high in managers’ fields, they become more aware of violations that may lead to the loss of legitimacy of the company. In order to alleviate any crisis of legitimacy, managers attach importance to decision-making and enhance corporate social responsibility. Li [43] believes that the cognitive pressure of managers comes from the understanding of individuals or organizations to the external environment. When there is uncertainty in strategic organizational behavior, managers tend to imitate the successful behaviors of their peers. That is, institutional pressure affects the paradoxical cognition of managers. When institutional pressure is regarded as a driving mechanism for enterprises to undertake social responsibility, researchers usually divide it into regulatory pressure and normative pressure [44, 45]. Accordingly, it is proposed that:

H3a. Regulatory pressure has a significant positive effect on paradox cognition.

H3b. Norm stress has a significant positive effect on paradox cognition.

2.4.4. Institutional Pressure and PEB. When studying the driving mechanism of PEB, the institutional theory provides a perspective to explain green issues [46]. Since enterprise activities are embedded in a specific institutional environment, they are affected by institutional forces [47]. Institutional theory is increasingly used to explain the green management of enterprises. Delmas and Toffel [48] use institutional theory to explain how institutional pressure affects enterprises’ green behaviors. Other studies have found that the government can influence the CSR behavior of enterprises by supporting or restricting regulations, norms, or policies [15, 45, 49]. Berrone [50] pointed out that the stricter the government’s environmental regulations are, the more enterprises tend to adopt green innovation strategies and PEB. Fernando and Wah [51] propose that enterprises should not only consider the constraints of government environmental regulations but also consider market-oriented regulatory constraints when implementing green innovation practices. Therefore, the following hypotheses are proposed:

H4a. Regulatory pressure has a positive and significant effect on PEB.

H4b. Normative pressure has a positive and significant effect on PEB.

2.4.5. Paradox Cognition and PEB. Many studies have shown that enterprise-level environmental policies and enterprise-stakeholder relationships are the main drivers of PEB [52]. However, these two factors ignore the subjective initiative of enterprises and cannot explain the influence of enterprise cognition on PEB. Some argue that whether a company can make a profit while reducing pollution and saving energy depends on its level of ambivalence. The higher the level of paradox awareness, the more likely the company is to find a way to achieve this balance [53]. Researchers such as Hahn et al. [54] found that paradox cognition can help enterprises realize economic,
environmental, and social benefits at the same time. The higher the level of contradictory consciousness of enterprises, the higher the tolerance of contradictions, and the stronger the ability to implement PEB. On the contrary, the lower the level of paradox consciousness, the weaker the ability to implement PEB. Therefore, we propose H5 as follows:

H5. Paradoxical cognition has a significant positive effect on PEB.

2.4.6. The Mediating Role of Paradox Cognition. The theory of strategic cognition holds that the rational decision is bound to have limitations because the decision is made by people. Therefore, corporate decisions are influenced by cognitive propensity (Wei et al., 2018). As corporate executives are typical decision-makers, their paradoxical cognition directly affects the implementation of PEB. Corporate executives’ cognitive and decision-making information comes from the surrounding environment, including external environment and internal environment. It is found that institutional stress is an important external factor affecting PEB. The flexibility of resources and capabilities in the internal environment is the main factor that directly affects managers’ cognition. Therefore, the following hypotheses are proposed:

H6a. Resource flexibility positively affects paradox cognition and then affects PEB.

H6b. Competence flexibility positively affects paradox cognition and PEB.

H6c. Regulatory pressure can positively affect paradox perception and then affect PEB.

H6d. Normative stress positively affects paradox perception and PEB.

According to the characteristics of enterprise performance incentive and the hypothetical relationship between performance incentive and strategic flexibility, institutional pressure, paradox cognition, and other variables, this study puts forward the influencing factors’ theory of performance incentive of marine fishery enterprises. The corresponding research model is shown in Figure 1.

3. Materials and Methods

3.1. Sample Selection and Data Collection. Interviews were conducted with executives from Laizhou Mingbo Aquatic Products, Shandong Oriental Ocean Technology, and Shandong Blue Ocean Technology, among other companies. This provided an in-depth understanding of these companies’ main considerations with regard to PEB. Then, empirical data were collected through structured questionnaires. With the support of the Aquatic Fisheries Association and relevant government departments, 400 questionnaires were issued to Sea Food Enterprises in person, via the internet, and by post. Middle and upper managers were asked to complete the surveys. Excluding incomplete and unmatched questionnaires, data from 221 companies were obtained (effective recovery rate: 55.25%). The specific characteristics are shown in Table 1.

3.2. Variables and Measurements. Strategic flexibility, institutional pressure, paradoxical cognition, and PEB were measured using five-point Likert scales. During the investigation process, the respondents do not need to consider the questions for too long and only need to fill in truthfully based on their own knowledge.

3.2.1. Independent Variable. Following Shen and Jiang [55], five items were used to measure the strategic flexibility of Sea Food Enterprises: three items to measure resource flexibility and two to measure coordination flexibility.

Following He et al. [56], five items were used to measure Sea Food Enterprises’ external institutional pressure: three items to measure regulatory pressure and two to measure normative pressure.
3.2.2. Mediating Variable. Based on Wei et al. (2018), five items were used to measure managers’ paradoxical cognition levels.

3.2.3. Dependent Variable. Based on existing research, five items were used to measure whether marine aquatic product companies had chosen PEB and whether they had adopted green and innovative scientific feeding methods.

The details of each variable are shown in Table 2.

4. Reliability and Validity Tests

4.1. Reliability Test. SPSS 23.0 and AMOS 24.0 were used to assess data reliability. Table 3 shows the variable reliability and factor analysis results. The CR values of several latent variables are consistent with Cronbach’s coefficient. The variables’ standardized factor loadings are all above 0.6; thus, the scale passed the reliability test.
that the model was correctly designed.

LV_{hus}, the scale’s discriminant validity was verified, indicating than the correlation coefficients between the latent variables. The potential variables (i.e., resource flexibility, coordination flexibility, regulatory pressure, and normative pressure) are higher than the correlation coefficients between the latent variables. Thus, the scale’s discriminant validity was verified, indicating that the model was correctly designed.

4.2. Validity Test. SPSS 23.0 and AMOS 24.0 were used to test data validity; Table 4 shows the results for discriminant validity. All of the square roots of AVE values about the potential variables (i.e., resource flexibility, coordination flexibility, regulatory pressure, and normative pressure) are higher than the correlation coefficients between the latent variables. Thus, the scale’s discriminant validity was verified, indicating that the model was correctly designed.

4.3. Model Fit Test. AMOS 24.0 was used to analyze the goodness of fit; Table 5 shows the results. The absolute goodness-of-fit index chi-squared degree of freedom ratio is 1.534, which is below the standard value of 3. The simplified goodness-of-fit index PGFI is 0.670, which is above the standard value of 0.5. Thus, the discriminant validity of the scale was verified.

5. Results

5.1. Path Analysis of Direct Effects. The structural equation model (SEM) 00A0 results showed that all of the paths had a significant relationship, indicating that the correlations between all of the variables were statistically significant (Table 6). Thus, all of the hypotheses are supported. Among them, the correlation between regulatory pressure and paradoxical cognition was the most significant. Paradoxical cognition had a significant positive effect on PEB. Therefore, the paradoxical cognition has a significant mediating relationship between independent variable (strategic flexibility and institutional pressure) and dependent variable (PEB).

5.2. Path Analysis of the Mediating Effect. Bootstrapping, proposed by Taylor et al. [57], was used to test paradoxical cognition in the path resource flexibility⟶PEB, coordination flexibility⟶PEB, regulatory pressure⟶PEB, and normative pressure⟶PEB (Table 7).

6. Discussion

The direct effect path analysis results (Table 6) showed that the path coefficient of paradoxical cognition and resource flexibility of Sea Food Enterprises was 0.164. The path coefficient of paradoxical cognition and coordination flexibility was 0.165, indicating that enterprises’ levels of strategic flexibility positively affected the level of paradoxical cognition. H1a and H1b are thus supported. In short, the stronger a marine aquatic enterprise’s ability to quickly and effectively redeploy resources in response to environmental changes, the higher the management’s cognition levels [35]. The path coefficient of resource flexibility and PEB was 0.169. Coordination flexibility and PEB were 0.161, supporting H2a and H2b; that is, an enterprise’s strategic flexibility positively affects PEB. Resource flexibility can help Sea Food Enterprises to not only quickly adapt to changing
market environments but also carry out PEB. Meanwhile, the more flexible an enterprise’s ability, the stronger its ability to adapt to, utilize, and implement PEB [38–40].

In the model (Figure 2), regulatory pressure and normative pressure both positively affected paradoxical cognition (path coefficients: 0.212 and 0.192, respectively). In addition, among the factors influencing paradoxical cognition, regulatory pressure’s standardized path coefficient was the largest, indicating that regulatory pressure had the most profound influence on paradoxical cognition. H3a and H3b are thus supported. In other words, individual cognition at the management level is influenced and shaped by institutional pressure and social interaction [41, 42]. For H4b and H4a, the path coefficients between regulatory pressure and normative pressure and PEB were 0.196 and 0.243, respectively, thus supporting the hypotheses. This indicates that government-issued supportive or restrictive regulations, norms, or policies influence enterprises’ PEB, which aligns with previous research findings [47, 50].

For H5, the path coefficient of paradoxical cognition and enterprises’ PEB was 0.243 and significant at the 5% level. Meanwhile, among the factors directly affecting enterprises’ PEB, the standardized coefficient of paradoxical cognition was the largest, indicating that paradoxical cognition plays a crucial role in the process of enterprises implementing PEB. This indicates that the paradoxical cognition levels of enterprise managers have an essential influence on enterprise decision-making, which also aligns with many previous studies [56, 58, 59].

Table 7: Standardized bootstrap mediation effect test.

Path	Effect of value	SE	Bias-corrected 90% CI	Percentile 90% CI					
		Lower	Upper	Lower	Upper	P	Lower	Upper	P
rf-tcp-peb	0.04	0.028	0.004	0.1	0.056	0.002	0.096	0.073	
cf-tcp-peb	0.04	0.028	0.005	0.098	0.053	0.003	0.093	0.07	
rp-tcp-peb	0.052	0.031	0.011	0.113	0.02	0.011	0.112	0.021	
np-tcp-peb	0.047	0.031	0.004	0.111	0.071	-0.005	0.097	0.138	

Figure 2: Structural equation model and standardized path coefficient graph.
According to the mediation effect test (Table 7), in the interactive relationship between strategic flexibility and PEB with paradoxical cognition as the mediating variable, the two dimensions “resource flexibility” and “coordination flexibility” did not contain 0 in the 90% confidence interval (CI). This indicates a significant intermediary effect of strategic flexibility—paradoxical cognition—PEB. Since resource flexibility and coordination flexibility have significant direct effects on PEB, paradoxical cognition plays a role in the interaction of strategic flexibility and PEB. There is a partial mediating effect in the relationship, and H6a and H6b are verified.

In the path regulatory pressure—paradoxical cognition—PEB, 90% of the CI interval did not contain 0, indicating a significant mediating effect of paradoxical cognition. In addition, regulation stress had a direct positive effect at the 5% level on enterprises’ PEB (Table 6). Thus, paradoxical cognition has a partial mediating role in the relationship between regulatory pressure and PEB, and H6c is verified.

In the interaction between normative pressure and PEB with paradoxical cognition as the mediating variable, at the 90% CI, although the indirect effect of CI of the bias-corrected percentile did not contain 0, the CI of the percentile for indirect effect did. This indicates that the mediating effect of normative pressure—paradoxical cognition—PEB is not significant; that is, paradoxical cognition does not have a mediating effect in the interaction between normative pressure and PEB, and H6d is not verified.

7. Conclusions and Recommendations

7.1. Conclusions. Based on 221 questionnaires collected from managers of marine fishery enterprises, the relationship between PEB and strategic flexibility (resource flexibility and capability flexibility), institutional pressure (regulatory pressure and normative pressure), and paradox cognition were investigated by SEM. The results show that the following: [60–65].

1. For marine fishery enterprises, strategic flexibility and institutional pressure are the factors that promote the adoption of PEB. Enterprises with higher strategic flexibility not only have more resources that can be used, but also have higher coordination and utilization capacity of resources, technology, and experience. When pursuing green development can bring higher benefits, such enterprises can change their development strategies more quickly and seize market opportunities. At the same time, because the proenvironmental policy forced by the government will bring negative pressure to the performance of enterprises, enterprises will also choose to adopt PEB behavior in pursuit of economic benefits. The implementation of proenvironmental behaviors in the industry will also have spillover effects on other enterprises, and such “peer pressure” will also promote the choice of PEB behaviors of enterprises.

2. In marine fishery enterprises, paradox cognition plays a mediating role in the interaction between resource flexibility and PEB. In other words, the improvement of resource flexibility can not only directly promote PEB but also promote PEB through managers’ paradox cognition. Because most decisions in enterprises are made by managers, managers’ decisions are not completely rational. The cognition of managers is affected by the change in the internal and external environment of enterprises. When the internal resource conditions of enterprises change and it is suitable to take proenvironmental behavior, the cognition of managers will be affected, so as to make proenvironmental behavioral decisions.

3. Paradox cognition partially mediated the interaction between competence flexibility and PEB. In other words, enhancing the capability flexibility level of marine aquaculture enterprises can promote directly PEB or through paradox cognition. As mentioned above, when the conditions of internal capacity resources change and it is suitable to take proenvironmental behaviors, managers’ cognition will also be affected, thus making proenvironmental behavioral decisions.

4. Paradox cognition partially mediated the interaction between regulatory stress and PEB; that is, PEB was directly raised under the coercive pressure of the government. As mentioned above, when the external environment of enterprises changes, that is, when the government adopts mandatory regulations to require enterprises to implement proenvironmental behaviors, managers’ cognition will change and thus make proenvironmental behavioral decisions. However, paradoxical cognition only plays a partial mediating role, indicating that the change in internal resource and capability environment has a greater impact on managers’ cognition than the change in the external environment.

5. Paradoxical cognition did not mediate the interaction between norm stress and PEB. That is, although peer regulation and guidance promoted PEB of marine fishery enterprises, normative pressure did not influence environmental behavior through influencing paradox cognition. In other words, normative pressure does not directly affect managers’ cognition, and managers pay more attention to external mandatory policies when making decisions.

7.2. Recommendations

1. Institutional pressure is the most important driving factor for marine aquaculture enterprises to adopt PEB. The government should put more policy pressure on companies that need to implement green strategies. However, the government should pay attention to the appropriateness and rationality of
policymaking and leave a transitional period for enterprises’ green innovation. At the same time, the government should adhere to the principle of “market regulation first, environmental regulation second,” and use effective economic incentives instead of administrative penalties. When implementing specific enforcement measures, most marine fishery enterprises will be forced to adopt green innovation measures to form industry standards. In turn, industry standards will put regulatory pressure on companies that do not implement green innovation or implement things that do not meet industry standards. Thus, a cycle is formed, prompting the industry to implement increasingly detailed and in-depth environmental behavior, so as to promote the green development of the industry. Before and after the implementation of policies, the government should strengthen the relationship with enterprises through various measures to convey policy information to senior executives, so as to influence their cognition.

(2) The government can actively participate in green environmental innovation activities that reflect the government initiative. For example, the government can call environmental protection professionals to hold publicity meetings to encourage the participation of the management of marine fishery enterprises, improve the awareness of managers, and thus influence managers to take the initiative to make proenvironmental behavioral decisions.

(3) Finally, in addition to external pressure, the flexibility of enterprise resources and capabilities has a positive impact on the implementation of PEB by marine aquaculture enterprises. The government can also promote the implementation of PEB by helping marine fishery enterprises improve their endogenous capacity. For example, the government can help enterprises transform equipment and production lines through special investment and special subsidies, so as to guide enterprises to adopt proenvironmental behaviors.

Data Availability

The data of this study are the survey data of the research group and are not publicly used.

Conflicts of Interest

The authors declare no conflicts of interest.

Authors’ Contributions

Man Qin and Kexiang Wang conceived and designed the study; Man Qin and Yanyan Guo collected data; Kexiang Wang and Yanyan Guo performed the data analysis and drafted the paper; and Yanyan Guo wrote the first draft. All authors have read and agreed to the published version of the manuscript.

Acknowledgments

This research was funded by the National Natural Science Foundation of China (NSFC), grant numbers 71804170, 71874167, and 71462022; the Major Program of National Social Science Foundation of China, grant number 18ZDA055; and the Natural Science Foundation of Shan-dong Province of China under Grant number ZR2019QG008.

References

[1] Y. C. Wang, C. G. Liu, and Q. Y. Wang, “Impacts of natural and socioeconomic factors on PM2.5 from 2014 to 2017,” Journal of Environmental Management, vol. 284, p. 112071, 2021.
[2] Y. C. Wang, R. Wu, L. Liu et al., “Differential health and economic impacts from the COVID-19 lockdown between the developed and developing countries: perspective on air pollution,” Environmental Pollution, vol. 293, Article ID 118544, 2022.
[3] Y. Zhou, H. Hou, X. Zhou, and N. Gong, “Research on evaluation index system of China’s green growth policy,” Management modernization, vol. 38, no. 3, pp. 92–95, 2018.
[4] C. Brick, D. K. Sherman, and H. S. Kim, “Green to be seen and ‘brown to keep down’: visibility moderates the effect of identity on pro-environmental behavior,” Journal of Environmental Psychology, vol. 51, pp. 226–238, 2017.
[5] P. Walder and J. Kantellhardt, “The environmental behaviour of farmers – capturing the diversity of perspectives with a Q methodological approach,” Ecological Economics, vol. 143, pp. 55–63, 2018.
[6] A. Kollmuss and J. Agyeman, “Mind the gap: why do people act environmentally and what are the barriers to pro-environmental behavior?” Environmental Education Research, vol. 8, no. 3, pp. 239–260, 2002.
[7] J. Wang and C. Wang, “Influencing factors and Intervention Strategies of consumer pro-environment behavior – A review of relevant literature in developed countries,” Modern Management, vol. 35, pp. 127–129, 2015, in Chinese.
[8] Y. Hu and Y. Yan, “The research of enterprise’s environmental strategic transformation process mechanism under the environmental regulation from the perspective of dynamic capability,” Sci. Technol. Manag. Res.vol. 35, p. 236, 2015, in Chinese.
[9] J. Li, “The impact of alternative punishment on corporate pro-environmental behavior: based on social learning theory,” Theoretical Observation, no. 6, pp. 87–89, 2021.
[10] R. Sanchez, “Strategic flexibility in product competition,” Strategic Management Journal, vol. 16, no. S1, pp. 135–159, 1995.
[11] C. José Chiappetta Jabbour, A. Alves Teixeira, J. Henrique Caldeira de Oliveira, and D. Fouad Soubhia, “Managing environmental training in organizations: theoretical review and proposal of a model,” Management of Environmental Quality: An International Journal, vol. 21, no. 6, pp. 830–844, 2010.
[12] G. Papagiannakis and S. Lioukas, “Values, attitudes and perceptions of managers as predictors of corporate environmental responsiveness,” Journal of Environmental Management, vol. 100, pp. 41–51, 2012.
[13] D. A. Vazquez Brust and C. Liston-Heyes, “Environmental management intentions: an empirical investigation of
Argentina’s polluting firms,” *Journal of Environmental Management*, vol. 91, no. 5, pp. 1111–1122, 2010.

[14] X. Xie, Y. Wu, Z. Feng, and Z. Hao, “Investigation of green behavior of resource-based enterprise in China,” *China Popul. Resour. Environ.*, vol. 25, pp. 5–11, 2015, in Chinese.

[15] D. Li, M. Zheng, C. Cao, X. Chen, S. Ren, and M. Huang, “The impact of legitimacy pressure and corporate profitability on green innovation: evidence from China top 100,” *Journal of Cleaner Production*, vol. 141, pp. 41–49, 2017.

[16] E. Blanco, J. Rey-Maquieira, and J. Lozano, “The economic impacts of voluntary environmental performance of firms: a critical review,” *Journal of Economic Surveys*, vol. 23, no. 3, pp. 462–502, 2009.

[17] D. Earnhart and L. Lizal, “Effects of ownership and financial performance on corporate environmental performance,” *Journal of Comparative Economics*, vol. 34, no. 1, pp. 111–129, 2006.

[18] T. Sterr and T. Ott, “The industrial region as a promising unit for eco-industrial development - reflections, practical experience and establishment of innovative instruments to support industrial ecology,” *Journal of Cleaner Production*, vol. 12, no. 8-10, pp. 947–965, 2004.

[19] A. A. Teixeira, C. J. C. Jabbour, and A. B. Jabbour, “Relationship between green management and environmental training in companies located in Brazil: a theoretical framework and case studies,” *International Journal of Production Economics*, vol. 140, no. 1, pp. 318–329, 2012.

[20] P. Bansal and K. Roth, “Why companies go green: a model of ecological responsiveness,” *Academy of Management Journal*, vol. 43, no. 4, pp. 717–736, 2000.

[21] C. Han and S. Gao, “Institutional support, strategic flexibility, and corporation green management. West forum econ. Manag. Sichuan econ,” *Manag. Institute*, vol. 30, pp. 64–70, 2019, in Chinese.

[22] L. Liu, Y. Lin, and X. Zhang, “Strategic flexibility research review,” *Journal of cooperation in economy and technology*, no. 5, pp. 122–125, 2020.

[23] A. Igor, *Corporate Strategy*, 1965.

[24] D. Brozovic, “Strategic flexibility: A review of the literature,” *International Journal of Management Reviews*, vol. 20, 2018.

[25] L. Chen, L. Zhai, W. Zhu, G. Luo, J. Zhang, and Y. Zhang, “Financial performance under the influence of the coronavirus disease 2019: effects of strategic flexibility and environmental dynamics in big data capability,” *Frontiers in Psychology*, vol. 12, 2021.

[26] L. Jiang, H. Zhang, and S. Li, “Research on the effect of cross-border search on firm innovation performance: from the perspective of knowledge integration and strategic flexibility,” *Science and Technology Management Research*, vol. 42, no. 5, pp. 193–203, 2022.

[27] P. Liang, R. Liu, W. Zheng, K. Liu, and X. Ma, “Strategic flexibility and firm performance under the New “double Cycle” development pattern,” *Theory of finance and economics*, no. 6, pp. 71–80, 2021.

[28] L. Tian and C. Liu, “Peer institutional pressure and green innovation: spillover effects of environmental pilot policies,” *Economic management*, vol. 43, no. 6, pp. 156–172, 2021.

[29] M. W. Lewis, C. Andriopoulos, and W. K. Smith, “Paradoxical leadership to enable strategic agility,” *California Management Review*, vol. 56, no. 3, pp. 58–77, 2014.

[30] S. Gao, “Sustainability research: study findings from xian university of posts and telecommunications advance knowledge in sustainability research (A study on the relationship between paradox cognition, green industrial production, and corporate performance),” *Ecology Environment and Conservation*, vol. 11, 2019.

[31] Z. Wei, M. Li, and L. Zhang, “Paradox perception, strategic change and firm performance: the Moderating role of environmental uncertainty,” *Science of Science and Management of Science and Technology*, vol. 42, no. 10, pp. 98–118, 2021.

[32] L. Gao, “A study on the relationship between paradox cognition, green industrial production, and corporate performance,” *Sustainability*, vol. 11, no. 23, 2019.

[33] Y. Doz and M. Kosonen, “The dynamics of strategic agility: nokia’s rollercoaster experience,” *California Management Review*, vol. 50, no. 3, pp. 95–118, 2008.

[34] L. S. Lüscher and M. W. Lewis, “Organizational change and managerial sensemaking: working through paradox,” *Academy of Management Journal*, vol. 51, no. 2, pp. 221–240, 2008.

[35] H. J. Boonman, V. Hagspiel, and P. M. Kost, “Dedicated vs product flexible production technology: strategic capacity investment choice,” *European Journal of Operational Research*, vol. 254, no. 1, pp. 141–152, 2015.

[36] A. J. Bock, T. Opsahl, G. George, and D. M. Gann, “The effects of culture and structure on strategic flexibility during business model innovation,” *Journal of Management Studies*, vol. 49, no. 4, pp. 279–305, 2012.

[37] K. Z. Zhou and F. Wu, “Technological capability, strategic flexibility, and product innovation,” *Strategic Management Journal*, vol. 31, pp. 547–561, 2009.

[38] F. Zhang, X. Jiang, J. Yang, and W. Sun, “Strategic flexibility, green management and firm competitiveness in an emerging economy,” *Academy of Management Proceedings*, vol. 2013, no. 1, Article ID 11015, 2013.

[39] Y. Hu, J. Liu, and Y. Du, “Resource factors of enterprises ecological innovation: mediated by resource flexibility. East China econ,” *OR Manager*, vol. 34, pp. 38–46, 2020, in Chinese.

[40] Z. Xu, J. Zhang, and H. Qiu, “Effects of reputation demands on farmers’ pro-environmental behavior: taking the farmers’ disposal behavior of poultry waste as an example,” *China Popul. Resour. Environ.*, vol. 26, pp. 44–52, 2016, in Chinese.

[41] O. Budzinski, “Cognitive rules, institutions, and competition,” *Political Constitutional Economy*, vol. 14, no. 3, pp. 213–233, 2003.

[42] Y. Jiang and Y. Lai, “Research on the impact of senior executives’ overseas background on corporate social responsibility information disclosure—based on the moderating effect of regulating pressure in their office areas,” *J. Shanxi Financ. Econ. Univ.*, vol. 41, pp. 70–86, 2019, in Chinese.

[43] N. Li, “Pressure and expectation: research on driving mechanism of enterprise green technological innovation from the perspective of ecological civilization,” *Seek. Truth*, vol. 47, pp. 75–87, 2020, in Chinese.

[44] X. Li, H. Wang, and A. Sun, “Research on driving Factors of Green Behavior of Resource enterprises in China -- an exploratory study based on grounded theory,” *Modern Management*, vol. 36, pp. 68–70, 2016, in Chinese.

[45] Y. Li, “Enterprise environmental strategy formation mechanism: an analysis framework from the micro-dynamic perspective,” *Chinese J. Manag.* vol. 9, 2012 in Chinese.

[46] K. Babiak and S. Trendafilova, “CSR and environmental responsibility: motives and pressures to adopt green management practices,” *Corporate Social Responsibility and Environmental Management*, vol. 18, no. 1, pp. 11–24, 2011.

[47] H. Li and K. Atuahene-Gima, “The adoption of agency business activity, product innovation, and performance in
Chinese technology ventures,” *Strategic Management Journal*, vol. 23, no. 6, pp. 469–490, 2002.

[48] M. Delmas and M. W. Toffel, “Stakeholders and environmental management practices: an institutional framework,” *Business Strategy and the Environment*, vol. 13, no. 4, pp. 209–222, 2004.

[49] B. Roxas and A. Coetzer, “Institutional environment, managerial attitudes and environmental sustainability orientation of small firms,” *Journal of Business Ethics*, vol. 111, no. 4, pp. 461–476, 2012.

[50] P. Berrone, A. Fosfuri, L. Gelabert, and L. R. Gomez-Mejia, "Necessity as the mother of "green" inventions: institutional pressures and environmental innovations,” *Strategic Management Journal*, vol. 34, no. 8, pp. 891–909, 2013.

[51] Y. Fernando and W. X. Wah, "The impact of eco-innovation drivers on environmental performance: empirical results from the green technology sector in Malaysia,” *Sustainable Production and Consumption*, vol. 12, pp. 27–43, 2017.

[52] K. U. Shah, S. Arjoon, and M. Rambocas, “Aligning corporate social responsibility with green economy development pathways in developing countries,” *Sustainable Development*, vol. 24, no. 4, pp. 237–253, 2016.

[53] Z. Zou, P. Xin, Y. Chao, and X. Zhu, "Research on the influence of executive green cognition and corporate green behavior on its green performance——based on data of Shandong light industry enterprises. East China econ," *OR Manager*, vol. 33, pp. 35–41, 2019, in Chinese.

[54] T. Hahn, L. Preuss, J. Pinkse, and F. Figge, "Cognitive frames in corporate sustainability: managerial sensemaking with paradoxical and business case frames," *Academy of Management Review*, vol. 39, no. 4, pp. 463–487, 2014.

[55] A. Shen and X. Jiang, "Research on the effect of strategic flexibility on new product performance under dynamic environment," *Sci. Sci. Manag. S.&.T. (Monthly)*, vol. 40, pp. 124–136, 2019, in Chinese.

[56] S. He, X. Huang, and Q. Chen, “Does manager’s environmental cognition improve firms performance? The mediating role of proactive environmental strategy and the moderating role of business environmental uncertainty,” *Nankai Bus. Rev.*, vol. 19, pp. 49–57, 2016, in Chinese.

[57] A. B. Taylor, D. P. MacKinnon, and J.-Y. Tein, “Tests of the three-path mediated effect,” *Organizational Research Methods*, vol. 11, no. 2, pp. 241–269, 2007.

[58] X. Wang and X. Xu, "Competition heterogeneity, management moral cognition and firm eco-innovation,” *J. Shanghai Univ. Financ. Econ.*, vol. 18, pp. 52–66, 2016, in Chinese.

[59] D. Yang, J. Yang, R. Lou, and Q. Yao, "The influence of stakeholder, managerial interpretations on environmental protection strategy: empirical research based on China’s listed companies," *Management Review*, vol. 24, pp. 140–149, 2012, in Chinese.

[60] R. Coase, “The new institutional economics,” *The American Economic Review*, vol. 88, pp. 72–74, 1998.

[61] Y. Cui, S. Huang, and Q. Wu, "Influencing factors and the effects of Chinese farmer’s pro-environmental intention,” *Journal of Arid Land Resources & Environment*, vol. 31, pp. 45–49, 2017, in Chinese.

[62] P. R. Ehrlich and D. Kennedy, "Millennium assessment of human behavior,” *Science*, vol. 309, no. 5734, pp. 562-563, 2005.

[63] A. He, J. Du, and M. Chen, “The mechanism on the impact of retailers’ green perception and emotion on green behavior,” *China Soft Sci*, pp. 117–127, 2013, in Chinese.

[64] Y. Wang and H. Tian, "The impact of corporate social responsibility on employees’ pro-environment behavior: an in-role and out-role perspective,” *Journal of Northeastern University*, vol. 24, no. 2, pp. 34–43, 2022.

[65] O. E. Williamson, "The new institutional economics: taking stock, looking ahead,” *Journal of Economic Literature*, vol. 38, no. 3, pp. 595–613, 2000.