Loxodromic Möbius Transformations with Disjoint Axes

Tan-Ran Zhang

Abstract

This paper is concerned with Loxodromic Möbius Transformations with disjoint Axes in a Kleinian Group. We study mainly the distance between their axes, and give some estimates about their translation lengths.

1. Introduction

Let the set

\[\mathcal{H}^3 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 > 0\} \]

be the hyperbolic 3-space, and its metric is the complete Riemannian metric \(ds = |dx|/x_3 \). Let \(\mathcal{M} \) denote the group of all Möbius Transformations of extended complex plane \(\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\} \). A Fuchsian group \(G \) is a discrete subgroup of \(\mathcal{M} \) with an invariant disc \(D \in \hat{\mathbb{C}} \). The group of orientation preserving isometries is denoted by \(Isom^+(\mathcal{H}^3) \), then a Kleinian group \(G \) is a discrete nonelementary subgroup of \(Isom^+(\mathcal{H}^3) \). So it is easy to see, this kind of Kleinian group \(G \) is not virtually abelian, and it is also can be regarded as the extension of a nonelementary Fuchsian group acting in \(\mathcal{H}^3 \). This paper is concerned with Loxodromic Möbius Transformations with disjoint Axes in a Kleinian group, and we will give some estimates about their translation lengths. For each Möbius Transformation

\[f = \frac{az + b}{cz + d} \in \mathcal{M}, \quad ad - bc = 1, \]

the \(2 \times 2 \) complex matrix

\[A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{C}) \]

induces \(f \), and set \(\text{tr}(f)^2 = \text{tr}(A)^2 \), where \(\text{tr}(A) = a + d \), denotes the trace of the matrix \(A \). And for each \(f \) and \(g \) in \(\mathcal{M} \), the commutator \([f, g]\) of \(f \) and \(g \) is \(f g f^{-1} g^{-1} \). We call the three complex numbers

\[\gamma(f, g) = \text{tr}([f, g]) - 2, \quad \beta(f) = \text{tr}^2(f) - 4, \quad \beta(g) = \text{tr}^2(g) - 4 \]
the parameters of the two-generator group $< f, g >$. These parameters are independent of the choice of matrix representations for f and g in $SL(2, \mathbb{C})$, and they determine uniquely up to conjugacy whenever $\gamma(f, g) \neq 0$.

Let $f \in \mathcal{M}$ not be the identity, then

1. f is parabolic if and only if $\beta(f) = 0$, and then f is conjugate to $z \to z + 1$.
2. f is elliptic if and only if $\beta(f) \in [-4, 0)$, and then f is conjugate to $z \to \mu z$, where $|\mu| = 1$.
3. f is loxodromic if and only if $\beta(f) \not\in [-4, 0]$, and then f is conjugate to $z \to \mu z$, where $|\mu| > 1$; and f is hyperbolic if $\mu > 0$, f is strictly loxodromic if $\mu < 0$ or μ is not real. Furthermore, $\beta(f) = \mu - 2 + \mu^{-1}$.

A parabolic or hyperbolic element g of a Fuchsian group G is said to be primitive if and only if g generates the stabilizer of each of its fixed points. If g is elliptic, it is primitive when it generates the stabilizer and has an angle of rotation of the form $2\pi/n$. And each Möbius transformation of $\hat{C} = \partial H^3$ has a natural extension uniquely via the Poincaré’s way to an orientation-preserving isometry of hyperbolic 3-space H^3, see [1]. Then Kleinian groups equal to discrete Möbius groups.

If $f \in \mathcal{M}$ is nonparabolic, then f has two fixed points in \hat{C} and the hyperbolic line (geodesic) joining these two fixed points in H is called the axis of f, denoted by $\text{ax}(f)$. In this case f translates along $\text{ax}(f)$ by an amount $t(f) \geq 0$, and $t(f)$ is called the translation length of f. f rotates about $\text{ax}(f)$ by an angle $\theta(f) \in (-\pi, \pi]$, and

$$\beta(f) = 4\sinh^2\left(\frac{t(f) + i\theta(f)}{2}\right).$$

(1.1) It then follows from (1.1) that

$$\cosh(t(f)) = \frac{|\beta(f) + 4| + |\beta(f)|}{4}$$
and

$$\cosh(\theta(f)) = \frac{|\beta(f) + 4| - |\beta(f)|}{4}$$
(cf. (15), (17) and (18) in [3]).

If $f, g \in \mathcal{M}$ are nonparabolic and if α is the hyperbolic line in H^3 that is orthogonal to $\text{ax}(f)$ and $\text{ax}(g)$, then

$$\frac{4\gamma(f, g)}{\beta(f)\beta(g)} = \sinh^2(\delta + i\phi),$$

(1.2)
where δ is the hyperbolic distance between $\text{ax}(f)$ and $\text{ax}(g)$ and $\phi \in [0, \pi]$ is the angle between the hyperplanes in H^3 that contain $\text{ax}(f) \cup \alpha$ and $\text{ax}(g) \cup \alpha$ respectively (see Lemma 4.2 in [4]). In particular if $\text{ax}(f)$ and $\text{ax}(g)$ are in the same hyperplane then

$$\frac{4\gamma(f, g)}{\beta(f)\beta(g)} = \sinh^2(\delta). \quad (1.3)$$

Finally, there is a definition of triangle groups. A group G of isometries of the hyperbolic plane is said to be of type (α, β, γ) if and only if G is generated by the reflections across the sides of some triangle with angles α, β and γ. A group G is a (p, q, r)-Triangle group if and only if G is a conformal group of type $(\pi/p, \pi/q, \pi/r)$. We call G a Triangle group if it is a (p, q, r)-Triangle group for some integers p, q and r. Triangle groups are an important class of Fuchsian groups. Roughly speaking, these are the discrete groups with the more closely packed orbits and the smallest fundamental regions, especially the $(2, 3, 7)$ triangle group, which is a simple but powerful example for kinds of extremal conditions. It also can deduce the following two numbers that occur frequently in this paper:

$$c = 2(\cos(2\pi/7) + \cos(\pi/7) - 1) = 1.048..., \quad d = 2(1 - \cos(\pi/7)) = 0.198....$$

F. W. Gehring and G. J. Martin have given some similar results, see [2] in details. Their research is mainly in the condition of intersecting axes. There are two Theorems form theirs.

THEOREM A. If $< f, g >$ is a Kleinian group, if f and g are hyperbolics, and if $\text{ax}(f)$ and $\text{ax}(g)$ intersect at an angle $0 < \phi < \pi$, then

$$\sinh(t(f)/2)\sinh(t(g)/2)\sin(\phi) \geq \lambda^2,$$

where $\lambda = 0.471....$ The constant λ is sharp and the exponent of $\sin(\phi)$ can not be replaced by a constant greater than 1.

THEOREM B. If $< f, g >$ is a Kleinian group, if f and g are loxodromics with axes that intersect at an angle $0 < \phi < \pi$, then

$$| \beta(f)\beta(g) | \sin^{4/3}(\phi) \geq b,$$

where $0.777 \geq b \geq 0.884.$
The main theorems of this paper are follows.

THEOREM 1. If \(< f, g >\) is a Kleinian group, \(f\) and \(g\) are hyperbolic, and if \(\text{ax}(f)\) and \(\text{ax}(g)\) do not intersect then

\[
\sinh(t(f)/2)\sinh(t(g)/2)\sinh(\delta) \geq \sqrt{d}/2, \tag{1.4}
\]

where \(\delta\) is the distance between \(\text{ax}(f)\) and \(\text{ax}(g)\).

THEOREM 2. If \(< f, g >\) is discrete, \(f\) and \(g\) are loxodromics, if \(\text{ax}(f)\) and \(\text{ax}(g)\) do not intersect, and if \(\sinh(\delta) \leq 1\), then

\[
|\beta(f)\beta(g)| \sinh^{4/3}(\delta) \geq 4d, \tag{1.5}
\]

where \(\delta\) is the hyperbolic distance between \(\text{ax}(f)\) and \(\text{ax}(g)\).

THEOREM 3. If \(< f, g >\) is discrete, if \(f\) and \(g\) are loxodromics, \(\text{ax}(f)\) and \(\text{ax}(g)\) do not intersect, and \(\sinh(\delta) \leq 1\), then

\[
\sinh(t(f))\sinh(t(g))\sinh^{4/3}(\delta) \geq \frac{3b}{16\pi^2}, \tag{1.6}
\]

where \(\delta\) is the hyperbolic distance between \(\text{ax}(f)\) and \(\text{ax}(g)\).

THEOREM 4. If \(< f, g >\) is discrete, if \(f\) and \(g\) are loxodromics with \(\beta(f) = \beta(g)\), and if \(\text{ax}(f)\) and \(\text{ax}(g)\) do not intersect, then

\[
\sinh(t(f))\sinh(\delta) \geq \frac{\sqrt{3d}}{2\pi}, \tag{1.7}
\]

where \(\delta\) is the hyperbolic distance between \(\text{ax}(f)\) and \(\text{ax}(g)\).

THEOREM 5. If \(< f, g >\) is discrete, if \(f\) is loxodromic and \(g\) is elliptic of order \(n \geq 3\), and if \(\text{ax}(f)\) and \(\text{ax}(g)\) do not intersect, then

\[
\sinh(t(f))\sin^2(\pi/n)\sinh^2(\delta) \geq \sqrt{3a(n)/4\pi}, \tag{1.8}
\]

where \(\delta\) is the hyperbolic distance between \(\text{ax}(f)\) and \(\text{ax}(g)\). When \(n \geq 5\), we also have

\[
\sinh(t(f))\sin^2(\pi/n)\sinh^2(\delta) \geq \sqrt{3\cos(2\pi/n)/2\pi}.
\]

2. Proofs of Theorems
These lemmas are to be used.

LEMMA 1. If \(< f, g >\) is a Fuchsian group, then

\[
|\gamma(f, g)| \geq d
\]

(see [5]).

The following result is established in [7] and [8], and then is sharpened by Cao in [9].

LEMMA 2. If \(< f, g >\) is a Kleinian group and if either

\[
|\beta(f)| \leq c \text{ or } \beta(f) = \beta(g),
\]

then

\[
|\gamma(f, g)| \geq d.
\]

This result is sharp under either assumption in (2.1).

LEMMA 3. For each loxodromic Möbius transformation \(f\) there exists an integer \(m \geq 1\) such that

\[
|\beta(f^m)| \leq \frac{4\pi}{\sqrt{3}} \sinh(t(f))
\]

(see [10]).

LEMMA 4. If \(< f, g >\) is a Kleinian group, \(f\) is elliptic of order \(n \geq 3\), and \(g\) is not of order 2, then

\[
|\gamma(f, g)| \geq a(n)
\]

where

\[
a(n) = \begin{cases}
2\cos(2\pi/7) - 1 & \text{if } n = 3, \\
2\cos(2\pi/5) & \text{if } n = 4, 5, \\
2\cos(2\pi/6) & \text{if } n = 6, \\
2\cos(2\pi/n) - 1 & \text{if } n \geq 7
\end{cases}
\]

(See [4]).

PROOF OF THEOREM 1. Let \(S\) be the hyperplane in \(H^3\) determined by \(ax(f)\) and \(ax(g)\), then \(S\) is invariant under \(G\), \(F = G\)\rceil S\) is conjugate to a Fuchsian group and

\[
|\gamma(f, g)| \geq d
\]

by Lemma 1.

Next since \(f\) and \(g\) are hyperbolic, \(\theta(f) = \theta(g) = 0\) and

\[
|\beta(f)| = 4\sinh^2(t(f)/2), \quad |\beta(g)| = 4\sinh^2(t(g)/2)
\]

(2.6)
by (1.1). Thus
\[16 \sinh^2(t(f)/2) \sinh^2(t(g)/2) \sinh^2(\delta) = |\beta(f)||\beta(g)| \sinh^2(\delta)\]
\[= 4|\gamma(f,g)|\]
\[\geq 4d\]
by (1.3), (2.5) and (2.6), then we obtain (1.4). \(\square\)

An example due to Jørgensen [6] shows that there exists no absolute lower bound for \(|\gamma(f,g)|\) when \(<f,g>\) is a Kleinian group.

PROOF OF THEOREM 2. By (1.2),
\[|\beta(f)\beta(g)| \sinh^2(\delta) = |4\gamma(f,g)|.\] \hspace{1cm} (2.7)

We want to find a lower bound for
\[u = |\beta(f)\beta(g)| \sinh^{4/3}(\delta).\]
By relabeling, we may assume that \(|\beta(f)| \leq |\beta(g)|\).

If \(|\beta(f)| \leq c = 1.048...\), then \(\gamma(f,g) \neq 0\), by (2.7), and \(<f,g>\) is a Kleinian group.
Thus \(|\gamma(f,g)| \geq d\) by Lemma 2, and
\[u \geq |\beta(f)\beta(g)| \sinh^2(\delta) = |4\gamma(f,g)| \geq 4d = 0.792...\]

Next, if \(|\beta(f)| \geq c\), then
\[c^{-2}u^3 + 4u^{3/2} = |\beta(f)\beta(g)|^3 c^{-2} \sinh^4(\delta) + 4|\beta(f)\beta(g)|^{3/2} \sinh^2(\delta)\]
\[\geq |\beta(f)\beta(g)|^2 \sinh^4(\delta) + 4|\beta(f)\beta(g)| \sinh^2(\delta) |\beta(f)|\]
\[\geq 16|\gamma(f,g)|^2 + 16|\gamma(f,g)||\beta(f)|\]
\[\geq 16dc = 3.320...\]
by (2.8) and Lemma 2, and we obtain
\[u > 0.798...\]

Thus (1.5) follows. \(\square\)

The fact that \(\sinh(\delta) \leq 1\) is necessary. When \(\sinh(\delta) > 1\), \(u\) has no uniform lower bound. There is a counterexample. For real \(\lambda, \mu\) and \(\delta\), define
\[
f = \left(\begin{array}{cc}
cosh(\lambda) & e^\delta \sinh(\lambda) \\
e^{-\delta} \sinh(\lambda) & \cosh(\lambda)
\end{array}\right), \quad g = \left(\begin{array}{cc}
cosh(\mu) & \sinh(\mu) \\
\sinh(\mu) & \cosh(\mu)
\end{array}\right).
\]
It is clear that \(f \) and \(g \) are both loxodromic. The axis of \(f \) has endpoints \(\pm e^\delta \) and the axis of \(g \) has endpoints \(\pm 1 \). By Reference [11], their axes are disjoint and the distance between the two axes is \(\delta \). Moreover, \(\beta(f) = 4 \sinh^2(\lambda) \) and \(\beta(g) = 4 \sinh^2(\mu) \).

We suppose that \(\text{tr}(fg^{-1}) = -2 \), so \(fg^{-1} \) is parabolic in \(PSL(2, \mathbb{C}) \). For all \(\lambda > 0 \) and all \(\mu > 0 \) the group \(< f, g > \) is clearly discrete and non-elementary. Indeed it is a free group. Moreover,

\[
-2 = \text{tr}(fg^{-1}) = 2 - 2 \sinh(\delta) \sinh(\lambda) \sinh(\mu).
\]

Therefore,

\[
\sinh(\delta) = \frac{2}{\sinh(\lambda) \sinh(\mu)}.
\]

We have

\[
u = |\beta(f) \beta(g)| \sinh^{4/3}(\delta)
= 16 \sinh^2(\lambda) \sinh^2(\mu) (2/(\sinh(\lambda) \sinh(\mu)))^{4/3}
= 2^{16/3} \sinh^{2/3}(\lambda) \sinh^{2/3}(\mu).
\]

Fixing \(\mu \) and letting \(\lambda \) tend to zero shows that there is no uniform lower bound on \(u \).

Proof of Theorem 3. By Lemma 3 we can choose integers \(m, n \geq 1 \) such that

\[
|\beta(f^m)| \leq \frac{4\pi}{\sqrt{3}} \sinh(t(f)), \quad |\beta(g^n)| \leq \frac{4\pi}{\sqrt{3}} \sinh(t(g)).
\]

(2.8)

Then \(< f^m, g^n > \) is Kleinian and we obtain

\[
\left(\frac{4\pi}{\sqrt{3}} \right)^2 \sinh(t(f)) \sinh(t(g)) \sinh^{4/3}(\delta) \geq |\beta(f^m) \beta(g^n)| \sinh^{4/3}(\delta) \geq b
\]

by (2.8) and (1.5). This implies (1.6). \(\square \)

We see immediately there is not a lower bound for \(\max(t(f), t(g)) \).

Proof of Theorem 4. By Lemma 3 we can choose an integer \(m \geq 1 \) such that

\[
|\beta(f^m)| \leq \frac{4\pi}{\sqrt{3}} \sinh(t(f)).
\]

Then \(< f^m, g^n > \) is Kleinian with \(\beta(f^m) = \beta(g^m) \) and we obtain

\[
\frac{4\pi}{\sqrt{3}} \sinh(t(f)) \sinh(\delta) \geq (|\beta(f^m) \beta(g^m)| \sinh^2(\delta))^{1/2}
= (4 |\gamma(f^m, g^n)|)^{1/2} \geq 2\sqrt{d}
\]

from (2.3), (1.3), and (2.2). This implies (1.7). \(\square \)
PROOF OF THEOREM 5. We may assume without loss of generality that g is a primitive elliptic. Next, by Lemma 3 we can choose an integer $m \geq 1$ such that

$$\beta(f^m) \leq \frac{4\pi}{\sqrt{3}} \sinh(t(f)).$$

Then $\langle f^m, g \rangle$ is Kleinian and f^m is not of order 2, so we obtain

$$\frac{4\pi}{\sqrt{3}} \sinh(t(f)) \sin^2(\pi/n) \sinh^2(\delta) \geq |\gamma(f^m, g)| \geq a(n)$$

from (1.3) and Lemma 4, where $a(n)$ is as in (2.4). Then (2.9) yields (1.8). □

3. Remarks

For elliptic transformations with disjoint axes whenever intersect, there are also similar results as Theorem 1 and Theorem 2. Theorem A holds with equality if f and g are hyperbolic generators for the $(2,3,7)$–triangle group with

$$\text{par}(<f, g>) = (-d, c, c) = (-0.198\ldots, 1.048\ldots, 1.048\ldots).$$

References

[1] A. Beardon, The geometry of discrete groups, Springer, New York, 1983.

[2] F. W. Gehring and G. J. Martin, Geodesics in Hyperbolic 3-Folds, J. Michigan. Math. 44 (1997), 331-343.

[3] F. W. Gehring and G. J. Martin, Chebyshev polynomials and discrete groups, Proceedings of the conference on complex analysis, pp. 114-125, International Press, Cambridge MA, 1994.
[4] F. W. Gehring and G. J. Martin, *Commutators, collars and the geometry of Möbius groups*, J. Anal. Math. 63 (1994), 175-219.

[5] G. Rosenberger, *All generating pairs of two-generator Fuchsian groups*, Arch. Math. (Basel) 46 (1986), 198-204.

[6] T. Jørgensen, *Comments on a discreteness condition for subgroups of SL(2, C)*, Canad. J. Math. 31 (1979), 87-92.

[7] T. Jørgensen, *Commutators in SL(2, C)*, Ann. of Math. Stud. 97, pp. 301-303, Princeton Univ. Press, Princeton, NJ, 1981.

[8] F. W. Gehring and G. J. Martin, *Some universal constrains for discrete Möbius groups*, Paul Halmos: Celebrating 50 years of mathematics, pp. 205-220, Springer, New York, 1991.

[9] C. Cao, *Some trace inequalities for discrete groups of Möbius transformations*, Proc. Amer. Math. Soc. 123 (1995), 3807-3815.

[10] R. Meyerhoff, *A lower bound for the volume of hyperbolic 3-manifolds*, Canad. J. Math. 39 (1987), 1038-1056.

[11] J. P. Matelski, *The classification of 2-generator subgroups of PSL(2, R)*, Israel. J. Maths. 42 (1982), 309-317.