Approaches to Decrease Hyperglycemia by Targeting Impaired Hepatic Glucose Homeostasis Using Medicinal Plants

Gerardo Mata-Torres, Adolfo Andrade-Cetto* and Fernanda Espinoza-Hernández

Laboratorio de Etnofarmacología, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico

Liver plays a pivotal role in maintaining blood glucose levels through complex processes which involve the disposal, storage, and endogenous production of this carbohydrate. Insulin is the hormone responsible for regulating hepatic glucose production and glucose storage as glycogen, thus abnormalities in its function lead to hyperglycemia in obese or diabetic patients because of higher production rates and lower capacity to store glucose. In this context, two different but complementary therapeutic approaches can be highlighted to avoid the hyperglycemia generated by the hepatic insulin resistance: 1) enhancing insulin function by inhibiting the protein tyrosine phosphatase 1B, one of the main enzymes that disrupt the insulin signal, and 2) direct regulation of key enzymes involved in hepatic glucose production and glycogen synthesis/breakdown. It is recognized that medicinal plants are a valuable source of molecules with special properties and a wide range of scaffolds that can improve hepatic glucose metabolism. Some molecules, especially phenolic compounds and terpenoids, exhibit a powerful inhibitory capacity on protein tyrosine phosphatase 1B and decrease the expression or activity of the key enzymes involved in the gluconeogenic pathway, such as phosphoenolpyruvate carboxykinase or glucose 6-phosphatase. This review shed light on the progress made in the past 7 years in medicinal plants capable of improving hepatic glucose homeostasis through the two proposed approaches. We suggest that Coreopsis tinctoria, Lithocarpus polystachyus, and Panax ginseng can be good candidates for developing herbal medicines or phytomedicines that target inhibition of hepatic glucose output as they can modulate the activity of PTP-1B, the expression of gluconeogenic enzymes, and the glycogen content.

Keywords: medicinal plants, hyperglycemia, hepatic glucose output, insulin resistance, PTP-1B inhibitors, natural products

INTRODUCTION

Diabetes mellitus (DM) is a chronic metabolic disease characterized by high blood sugar levels (hyperglycemia), caused by insulin malfunctioning, deficient insulin secretion, or both (Liu et al., 2019). Type 2 diabetes (T2D) is the most important type of DM due to its high worldwide prevalence (American Diabetes Association, 2021). It is characterized by insulin resistance, which is defined as a
poor response of insulin-sensitive tissues to normal insulin concentration (Milnar et al., 2007). The main cause of insulin resistance has been associated to an obesogenic environment in which large amounts of free fatty acids and adipokines are responsible for impairing insulin signaling by increasing serine phosphorylation that inhibits tyrosine phosphorylation of insulin receptor (IR) and insulin receptor substrates (IRSs) (DeFronzo et al., 2015). However, it has also been reported that protein tyrosine phosphatases (PTPs) could have a more important role since they are upregulated in insulin resistant states. Insulin action is negative regulated by PTPs, particularly the PTP-1B, because they promote the dephosphorylation of tyrosine residues of IR and IRSs (Saltiel and Kahn, 2001). When insulin signaling is impaired in liver by either insulin resistance or low insulin levels, the glucose storage and production is dysregulated, increasing the hepatic glucose output rates yielding hyperglycemia in diabetic patients.

Liver represents a crucial therapeutic target for treating hyperglycemia in T2D because hepatic glucose output is the pathophysiologic abnormality that contributes the most to the hyperglycemic state in fasting and postprandial state as a consequence of hepatic insulin resistance (Sharabi et al., 2015). During the overnight fast (postabsorptive state), the liver of a normal person produces glucose at a rate of approximately 1.8–2 mg/kg min. However, this rate increases around 0.5 mg/kg min in a patient with T2D, promoting a significant rise in the basal state of glucose production (Cersosimo et al., 2018). After food ingestion and the subsequent increase in insulin levels, the suppression of glucose production is slower in a diabetic patient, promoting an evident postprandial hyperglycemia due to the excess of glucose produced in addition to that from the exogenous source (Rizza, 2010).

Medicinal plants and natural products have shown to have numerous benefits on processes involved in glucose and lipid metabolism, leading to correct homeostasis imbalances that promote metabolic diseases such as T2D (Li J. et al., 2018; Xu L. et al., 2018; Saadeldeen et al., 2020). Unlike the classic “on-target” paradigm in pharmacology, namely a drug with a specific target, the polypharmacology approach, or the binding of a drug to more than one target, could be more effective against a disease as complex as T2D due to its multiple pathophysiological abnormalities (Reddy and Zhang, 2013). In this context, extract plants and phytochemicals isolated from medicinal plants exhibit multiple mechanisms of action on assorted metabolic targets that are involved in glucose homeostasis. Therefore, efforts have been made to describe all the beneficial effects on metabolism of these extracts and molecules in recent years.

The current review summarizes the medicinal plants reported from 2015 that can potentially decrease hyperglycemia resulting from imbalance in hepatic glucose metabolism by two different approaches: improving hepatic insulin resistance by inhibiting PTP-1B and decreasing hepatic glucose output by inhibiting rate-limiting enzymes involved in the storage and production of glucose.

METHODOLOGY

Two separate searches were performed based on the Preferred Reporting Items for Systematic review and Meta-Analysis (PRISMA) (Page et al., 2021) in the following databases: Scopus, Clarivate and PubMed (Figure 1). The first involved studies related to extracts or phytochemicals tested against the activity or expression of PTP-1B enzyme, while in the second, studies with extracts or phytochemicals with an effect on the glucose-producing pathways were sought. Only records related to the study of medicinal plants and their isolated compounds were considered.

THERAPEUTIC APPROACHES TO REDUCE HYPERGLYCEMIA RESULTING FROM IMPAIRED HEPATIC GLUCOSE HOMEOSTASIS

Each insulin-sensitive tissue presents abnormal characteristics that contribute to hyperglycemia in an insulin-resistant state. The underlying mechanisms that give rise to insulin resistance converge on deficient insulin signalling that limits the activation of factors involved in energy metabolism. In obesity and T2D, insulin resistance has been linked mainly to defects in the signalling pathway of phosphatidylinositol 3-kinase and protein kinase B (PI3K/Akt), particularly to the Akt2 isofrom (Cusi et al., 2000; Krook et al., 2000).

In normal conditions, the insulin secreted by pancreatic β cell binds to its receptor in the target cell, activating the tyrosine kinase activity, which promotes the receptor autophosphorylation and the subsequent phosphorylation of IRSs, mainly IRS-1 and IRS-2, in tyrosine residues. Afterwards, the enzyme P13K is recruited and activated by IRS to convert phosphatidylinositol 4,5-bisphosphate (PIP2) from the plasma membrane to phosphatidylinositol 3,4,5-trisphosphate (PIP3), which facilitates the phosphorylation and activation of Akt at two important sites: by phosphoinositide-dependent kinase 1 (PDK1) at residue Thr308 of the catalytic domain, and by mammalian target rapamycin complex 2 (mTORC2) at residue Ser473 of the regulatory domain (Schultz et al., 2012). Specifically in liver, the activated Akt enzyme is responsible for phosphorylating different factors that are involved in the regulation of processes such as glycogen synthesis, gluconeogenesis, and glycogenolysis, which are activated or inhibited under different nutritional circumstances (Dimitriadis et al., 2021).

Due to hepatic insulin resistance, this hormone losses its ability to regulate glucose metabolism in liver, resulting in enhanced glucose output that contributes greatly to fasting and postprandial hyperglycemia, namely glycogen synthesis is reduced, and production of glucose is increased (Figure 2). Therefore, we proposed two approaches by which medicinal plants could ameliorated hyperglycemia through enhancing hepatic glucose metabolism: improving the function of insulin in the liver by inhibiting the enzyme PTP-1B and modulating the
hepatic production/storage of glucose by regulating the enzymes involved in gluconeogenesis, glycogenolysis, and glycogenesis.

Inhibition of Protein Tyrosine Phosphatase 1B

The modification of proteins through phosphorylation and dephosphorylation of tyrosine residues represents one of the main mechanisms of cell signaling regulation (Alonso et al., 2016), which is carried out by two superfamilies of enzymes: protein tyrosine kinases (PTKs), and PTPs. In this regard, the classical PTP subfamily possess a domain of 240–250 amino acids characterized by a conserved site that exhibits a catalytic mechanism based on cysteine (Denu and Dixon, 1998). Specifically, the enzyme PTP-1B is a classic intracellular PTP widely distributed in mammalian tissues that is anchored on the cytoplasmic side of the endoplasmic reticulum membrane. Despite its localization, the PTP-1B enzyme can access its substrates located on the surface of the plasma membrane during endocytosis, biosynthesis, and by the movement of the endoplasmic reticulum towards the plasma membrane in specific regions (Bakke and Haj, 2015).

Since its first isolation from the human placenta in 1988 by Tonks et al., 1988 PTP-1B has become an attractive research object due to its direct link with the etiopathogenesis of insulin resistance. In addition to the processes promoted by the obesogenic inflammatory environment, such as the serine/threonine phosphorylation of IR and IRS, and their proteasomal degradation (Mlinar et al., 2007; Ahmed et al., 2021), the dephosphorylation of these components by PTP-1B has also been implied to the termination of the insulin signal (Ahmad et al., 1995; Kenner et al., 1996; Chen et al., 1997).

Experimental data obtained from various studies have shown that the PTP-1B enzyme is one of the main negative regulators of the insulin signaling pathway. For instance, studies performed in PTP-1B knock-out mice have been shown that the absence of this enzyme produces healthy organisms that exhibit enhanced insulin sensitivity, protection against the weight gain generated by high-fat diet, and increased hepatic phosphorylation of IR and IRS after an intraperitoneal insulin injection (Elchebly et al., 1999; Klaman et al., 2000). On the other hand, it has been reported an increased PTP-1B activity in hepatic cytosolic fractions isolated from streptozotocin (STZ)-hyperglycemic rats (Meyrovitch et al., 1989), while augmented hepatic microsomal enzyme...
activity, content of protein, and mRNA levels have only been observed after 2 weeks of insulin treatment in these insulinopenic organisms, suggesting that elevated insulin levels are necessary to modify PTP-1B content and activity, namely hyperinsulinemia caused by insulin resistance may lead to altered PTP-1B expression and activity (Ahmad and Goldstein, 1995). Additionally, it has also been shown that insulin rises hepatic microsomal PTP-1B activity in rat hepatoma cells (Hashimoto and Goldstein, 1992). Likewise, abnormal expression and activity of PTP-1B have been reported in skeletal muscle of insulin-resistant obese people (Ahmad et al., 1997), as well as in non-obese Goto-Kakizaki rats with spontaneously generated insulin resistance (Dadke et al., 2000), and in STZ-hyperglycemic rats fed with high-fat diet (Wu et al., 2005).

Based on the aforementioned, the PTP-1B inhibition represents a good therapeutic target for the treatment of insulin resistance-related diseases, such as DM2 (Zhang et al., 2006). Hence, an arsenal of molecules with inhibitory capacity of PTP-1B activity has been generated in recent years. The methodological approaches that have been applied are the rational design of synthetic phospho-(tyrosine)-mimetic molecules to be used as competitive inhibitors, considering the structural characteristics of the protein, and the search for molecules from natural sources (Sun et al., 2018). The latter is based on the statement that nature has a great variety of structures that present diverse pharmacological effects (Atanasov et al., 2021), so natural products can be used as a starting point for the creation of powerful inhibitors.

Table 1 summarizes all medicinal plants and their identified compounds that have proved to inhibit the activity or expression of PTP-1B since 2015. It was obtained a total of 125 medicinal plants used in various traditional medicine systems around the world, mainly represented in eastern folk, such as Chinese and Vietnamese. *Morus alba* L. (Moraceae), a plant used in the traditional Chinese system, has been the most evaluated for this purpose. In addition to direct PTP-1B activity inhibition and molecular docking studies, some extracts and compounds were assessed to improve glucose and lipid metabolism in vivo, such as lowering blood glucose levels, improved insulin resistance and glucose intolerance, and improved lipid profile. Furthermore, their effect on glucose uptake and phosphorylation of some components of insulin signaling, such as IR, IRS, and Akt, was evaluated in cell cultures under insulin-resistant conditions.

Inhibition of Hepatic Glucose Output by Modulating Glucose Metabolism in Liver

The liver is a key organ that plays a crucial role in the regulation of blood glucose because it manages both storage and synthesis of glucose. The latter involves two metabolic pathways: glycogenolysis and gluconeogenesis, which constitute total hepatic glucose production (HGP) (Lee et al., 2015).
Medicinal plant (scientific name [Family]/Traditional medicine system or places where it is used)	Part/Extract	Isolated compounds	Experiment/Outcome	References
Acnemla paniculata (Wall. ex DC.) R.K.Jansen [Asteraceae]/Indonesian	Aerial parts/EtOH	N-isobutyl-2E-decenamide	In vitro: PTP-1B enzyme assay/IC50 = 24 µM	Abdjul et al. (2018)
Agrimonia pilosa Ledeb. [Rosaceae]/Chinese	Aerial parts/EtOH	Apigenin-7-O-b-D-glucone-6"-methyl ester Quercetin-3-O-b-D-glucose Kaempferol Kaempferol-3-O-a-L-rhamnose b-sitosterol Ursolic acid Tormentic acid Methyl 2-hydroxytricosanoate Palmitic acid	In vitro: PTP-1B enzyme assay/IC50 = 14.35, 27.73, 42.93, 12.16, 49.78, 3.47, 0.5, 36.39, 0.1 µM	Na et al. (2016)
Akebia quinata (Thunb. ex Houtt.) Decne. [Lardizabalaceae]/Chinese	Stems/MeOH	Apigenin 7-O-b-D-glucuronide Elagic acid Agritannin Cyrtophylenes B Uncinatone 3-O-(14)-a-L-arabinopyranosyl)olean-12-en-28-oic acid 3-O-[b-glucopyranosyl (1-4)-a-L-arabinopyranosyl)olean-12-en-28-oic acid 2a,3a,23-trihydroxyolean-12-en-28-oic acid	In vitro: PTP-1B enzyme assay/IC50 = 7.14, 7.73, 17.03 µM	Nguyen et al. (2017)
Allium cepa L. [Amaryllidaceae]	Outer skins/MeOH	Cepadial B, C Cepabilla A-C Cepadial D	In vitro: PTP-1B enzyme assay/IC50 = 6.77, 5.41, 4.08, 21.8, 7.78 µM	An et al. (2016)
Alliophyly cominia (L.) Sw. [Sapindaceae]/Cuban	Leaves/MeOH	Pheophytin A, B	In vitro: PTP-1B enzyme assay/IC50 = 22.55, 22.33, 17.01, 24.07, 14.29, 1.68 µM	Semaan et al., 2017, 2018
Angelica decursiva (Miq.) Franch. & Sav. [Alicaeceae]/Korean Aneoctochilus chapaensis Gagnep. [Orchidaceae]/Chinese	Whole plant/MeOH	cis-3'-Acetyl-4'-angeloylkhellactone Isorutarine	In vitro: PTP-1B enzyme assay/IC50 = 88.95, 80.09 µM	Yousof Ali et al. (2015)
Artocarpus nanchuanensis S.S.Chang S.C.Tan & Z.Y.Liu [Moraceae]/Chinese	Stems/EtOH	Hypargyristolbe B, D, E	In vitro: PTP-1B enzyme assay/IC50 = 3.23, 37.31, 2.53 nM	Zhang et al. (2015)
Artocarpus styracolius Pierre [Moraceae]/Chinese Astragalus mongholicus Bunge [Fabaceae]/Chinese	Roots/EtOH	(±)-Styrastilibene A Styrastilibene B (±)-Styrastilibene C Astragaloside IV	In vitro: PTP-1B enzyme assay/IC50 = 4.52, 2.4, 8.23 µM	Li et al. (2019b)
Bidens pilosa L. [Asteraceae]/Chinese	Whole plant/Aqueous in combination with Euonymus alatus (Thunb.) Siebold [Celastraceae] winged branchlet Coptis chinensis Franch. [Ranunculaceae] rhizome Cornus officinalis Siebold & Zucc. [Cornaceae] fruit Ligustrum lucidum W.T.Aiton [Oleaceae] fruit Scrophularia ningpoensis Hemsl. [Scrophulariaceae] root	Full extract	In vivo: hypertensive rats fed with HFD (2020 mg/kg b.w.) prevention of increased body weight, triglycerides, LDL, insulin resistance, glucolose tolerance, PTP-1B expression in adipose tissue	Zhu et al. (2018)

(Continued on following page)
Medicinal plant (scientific name [Family]/Traditional medicine system or places where it is used)	Part/Extract	Isolated compounds	Experiment/Outcome	References
Bistorta officinalis Delarbre [Polygonaceae]/Chinese	Rhizome/EtOAc	Full extract	In vitro: PTP-1B enzyme assay/IC50 = 17.43 µg/ml Zhao et al. (2019b)	
Boehmeria nivea (L.) Gaudich. [Urticaceae]/Chinese	Root/EtOAc	Full extract	Hederagenin Pomolic acid In vitro: PTP-1B enzyme assay/IC50 = 20.19 µg/ml, 9.53, 4.89 µM Zhao et al. (2019b)	
Camellia crapnelliana Tutcher [Theaceae]/Chinese	Twigs and leaves/MeOH	Camellianol B, C, E-G A1-.barrigenol 22-O-angeloyl-A1-barrigenol Camelliaerin A 16-O-acetylcamelliaerin A 3β,11α,13β-trihydroxyolean-12-one α-arnyrtin Lupex 3β,20-dihydroxylupane In vitro: PTP-1B enzyme assay/IC50 = 4.87, 7.4, 20.03, 14.36, 11.08, 16.79, 2.56, 8.93, 10.16, 1.34, 19.26, 3.68, 12.44 µM Xiong et al. (2017)		
Cassia fistula L. [Fabaceae]/Vietnamese	Leaves/EtOAc	Full extract	In vitro: PTP-1B enzyme assay/IC50 = 24.1 µg/ml Trinh et al. (2017a)	
Catharanthus roseus (L.) G.Don [Apocynaceae]/Malaysia, India, China, South Africa, and Mexico	Leaves/DCM	Vindogentianine In vitro: PTP-1B enzyme assay/IC50 = 15.28 µg/ml In vitro: cell culture (L-TC6, C2C12)/glucose uptake Wang et al. (2017a)		
Cedrus deodara (Roxb. ex D.Don) G.Don [Pinaceae]/Taiwan	Needles/Essential oil	Caryophyllene oxide In vitro: PTP-1B enzyme assay/IC50 = 31.32 µM Wang et al. (2017a)		
Centella asiatica (L.) Urb. [Apicaceae]/Jamu	Aerial parts/Aqueous	Polyphenolic extract In vitro: cell culture (HepG2)/[PTP-1B enzyme assay/IC50 = 13.2 µg/ml Saifudin et al. (2016b)		
Clematis japonica (Thunb.) Lindl. ex Spach [Ranunculaceae]/Chinese	Fruits/acetone	Polyphenolic extract In vitro: cell culture (HepG2)/[PTP-1B enzyme assay/IC50 = 13.2 µg/ml Saifudin et al. (2016b)		
Cinnamomum osmophloeum Kaneh. [Lauraceae]/Taiwan	Twigs and leaves/acetone	Full extract n-hexane soluble fraction	In vitro: PTP-1B enzyme assay/IC50 = 1.9, 3.2, 2, 1.7, 1.9 µg/ml Lin et al. (2016)	
Cipadessa baccifera (Roth) Miq. [Melaceae]/Chinese	Leaves/EtOH	Cipacidon A In vitro: PTP-1B enzyme assay/IC50 = 16.7 µM Yu et al. (2016a)		
Clausena sarcin Perr. (P.) Molino [Rutaceae]/Chinese	Fruits/EtOH	Clausenamines A-C, E, F Euchrestifoline Dihydromupamine Clauraila B Kurryame Clausenaline F 3-formyl-1-hydroxycarbazole Coptisine, I Clausinolne, N, M In vitro: PTP-1B enzyme assay/IC50 = 16.43, 21.19, 26.14, 51.04 µM Liu et al. (2021)		
Coptis chinensis Franch. [Ranunculaceae]/Chinese	Rhizome/MeOH	Beberine Épibberine Magnoflorine Coptisine Capsiin Blut Tavinol 7.3',4'-trihydroxyflavone Quercetagtin-7-O-b-D-glucoside In vitro: PTP-1B enzyme assay/IC50 = 16.43, 21.19, 26.14, 51.04 µM Begrmatov et al. (2020)		
Corydalis tinctoria Nutt. [Oxalidaceae]/North American and Chinese	Capitula/EtOH	Full extract	In vitro: PTP-1B enzyme assay/IC50 = 20.92, 7.73, 27.93, 24.5 µM Liu et al. (2021)	
Cymbopogon nardus (L.) Rendle [Poaceae]/Jamu	Leaves/Aqueous	Full extract	In vitro: PTP-1B enzyme assay/IC50 = 10.63 µg/ml Saifudin et al. (2016b)	
Dioscorea bulbifera L. [Dioscoreaceae]/Chinese	Rhizome/EtOAc	Full extract 9,10-Dihydro-2,4,6,7-phenanthrenetolactone [1,1',2',2',3',3',6',6',7',7'-octaoctyl Cassigaroni D Biflavococbin B, F, G In vitro: PTP-1B enzyme assay/IC50 = 32.21 µg/ml, 23.79, 3.36, 13.16 µM Zhao et al. (2019b)		
Dracaena cochinchinensis (Lour.) S.C.Chen [Asparagaceae]/Chinese	Red resin/MeOH	Biflavococbin B, F, G In vitro: PTP-1B enzyme assay/IC50 = 32.21 µg/ml, 23.79, 3.36, 13.16 µM Zhao et al. (2019b)		
Duranta erecta L. [Verbenaceae]/Anuyveda	Whole plant/EtOH	Full extract	In vitro: PTP-1B enzyme assay/IC50 = 10.63 µg/ml Saifudin et al. (2016b)	

(Continued on following page)
TABLE 1 | (Continued) Medicinal plants and their phytochemicals with PTP-1B inhibitory capacity.

Medicinal plant (scientific name [Family])/Traditional medicine system or places where it is used	Part/Extract	Isolated compounds	Experiment/Outcome	References
Elaeocarpus grandiflorus Sm. [Elaeocarpaceae]/Jamu	Fruits/Aqueous	Full extract	In vitro: PTP-1B enzyme assay/IC50 = 6.9 µg/ml	Saifudin et al. (2016b)
Elephantopus scaber L. [Asteraceae]/Jamu	Aerial parts/Aqueous	Full extract	In vitro: PTP-1B enzyme assay/IC50 = 2.64 µg/ml	Saifudin et al. (2016b)
Euphorbia hirta L. [Euphorbiaceae]/Vietnamese	Leaves/EtOH	Eucarobustol A	In vitro: PTP-1B enzyme assay/IC50 = 15.2, 12.6, 16.1, 17.1, 31, 29.4 µM	Li et al. (2017a)
Euphorbia hirta L. [Euphorbiaceae]/Vietnamese	Stems/MeOH	(7S,8R)-3-hydroxy-4-methoxy-balanophon (7S,8R)-5-methoxy-balanophon Balanophonin	In vitro: PTP-1B enzyme assay/IC50 = 11.59, 9.94 µM	Zhao et al. (2019a)
Eremophila bignonii [Berberidaceae]/Chinese	Aerial parts/MeOH	Icartin Icariside II	In vitro: PTP-1B enzyme assay/IC50 = 52.4, 41.4 µM	Pedersen et al. (2020)
Eremophila lucida [Scrophulariaceae]/Australian	Leaves/EtOAc	5-hydroxyviscoda-3,14-dien-20-oic acid	In vitro: PTP-1B enzyme assay/IC50 = 42 µM	Tahtah et al. (2016)
Eremophila oppositifolia R.Br. [Scrophulariaceae]/Australian	Leaves/CH2CN	Type B dimeric fatty acids related to the branched-chain fatty acid (2E,4Z,6E)-5-acetoxyethyl tetradeca-2,4,6-trienic acid (Compounds 9, 12, 13a, 13b)	In vivo: 24, 4, 12, 12 µM	Pedersen et al. (2020)
Eriobotrya japonica (Thunb.) Lindl. [Rosaceae]/Chinese	Leaves/EtOH	Extract of triterpenoid acids (maslinic acid, corosolic acid, oleanolic acid, and ursolic acid)	In vivo: insulin-resistant mice (200 mg/kg b.w.); [insulin resistance, glucose tolerance, triglycerides, LDL, VLDL, and total cholesterol, HDL; in liver: PPARg, GLUT2, and glucokinase mRNA expression levels, PTP-1B mRNA expression levels	Li et al. (2020b)
Eucalyptus robusta Sm. [Myrtaceae]/Chinese	Leaves/EtOH	Eucarobustol A I Macrocarpal C	In vitro: PTP-1B enzyme assay/IC50 = 1.3, 4.3, 2.9, 4.1, 5.6, 1.8, 3.0, 1.8, 4.5 µM	Yu et al. (2016b)
Euphorbia hirta L. [Euphorbiaceae]/Vietnamese	Whole plant/EtOAc and n-BuOH	Full extracts	In vitro: PTP-1B enzyme assay/IC50 = 29.2, 38.3 µg/ml	Trinh et al. (2017a)
Ficus deltoidea Jack [Moraceae]/Malay	Leaves/EtOH	70% EIOH extract Lupeol 3β,11β-dihydroxyolean-12-en-23-oic acid	In vitro: PTP-1B enzyme assay/IC50 = 92%, 2.88, 4.55 µM in vivo: diabetic rats (125, 250, and 500 mg/kg b.w. of 70% EIOH extract)/chronic hypoglycemic effect, [triglycerides, LDL, and total cholesterol, HDL; in liver: PGL2 levels, PEPCK, G6Pase, and PTP-1B mRNA expression levels	Abdel-Rahman et al. (2020)
Ficus racemosa L. [Moraceae]/Vietnamese	Fruit/EtOAc	Isoderrone Derrone Alpinumisoflavone Mucusisoflavone B γ-Mangostin 8-Deoxyartanin 1,3,7-Trihydroxy-2,8-dil-(3-methylbut-2-enyl)-xanthone α-Mangostin Garcinone E 9-Hydroxycalabaxanthone Norcocinian	In vitro: PTP-1B enzyme assay/IC50 = 22.7, 12.6, 21.2, 2.5 µM	Trinh et al. (2017a)
Garcinia mangostana L. [Clusiaceae]/Southeast Asia and India	Fruits/EtOH		In vitro: PTP-1B enzyme assay/IC50 = 0.86, 1.57, 3.28, 1.34, 0.43, 12.89 µM	Hu et al. (2021)
Garcinia oblongifolia Champ. ex Benth [Clusiaceae]/Vietnamese	Twigs/EtOAc		In vitro: PTP-1B enzyme assay/IC50 = 14.1 µM	Trinh et al. (2017b)
TABLE 1 | (Continued) Medicinal plants and their phytochemicals with PTP-1B inhibitory capacity.

Medicinal plant (scientific name [Family]/Traditional medicine system or places where it is used)	Part/Extract	Isolated compounds	Experiment/Outcome	References
Geranium collinum Stephan ex Willd. [Geraniaceae]/Chinese	Root/EtOH in combination with Hypericum scabrum aerial parts (ratio: 7:3)	Full extract	In vitro: PTP-1B enzyme assay/IC50 = 0.48 µg/ml In vitro: cell culture [L6 myotubes, in the presence of insulin]/[PTP-1B protein, pAkt, pIRS-1, pGSK3β, pAMPK, glucose consumption	Edris et al. (2018)
			In vitro: PTP-1B enzyme assay/IC50 = 21.64, 6.26, 35.61, 2.19, 0.62, 0.23, 0.87 µM	Numonov et al. (2017)
Glycyrrhiza inflata Batalin [Fabaceae]/Japanese and Chinese	Roots and rhizomes/EtOAc	Licochalcone A Lico flavone B Full extract	In vitro: PTP-1B enzyme assay/IC50 = 0.97, 0.45, 4.5, 1.48, 0.5, 0.55, 0.84, 0.31, 0.13 µM	Lin et al. (2017)
Glycyrrhiza uralensis Fisch. ex DC. [Fabaceae]/Chinese	Rhizomes/EtOH	Licochalcone A Lico flavone B	In vitro: PTP-1B enzyme assay/IC50 = 27.95, 15.62 µM	Guo et al. (2015)
			In vitro: PTP-1B enzyme assay/IC50 = 3, 0.4 µM	Ji et al. (2016)
Glyptostrobus pensilis (Staunton ex D.Don) K.Koch [Cupressaceae]/Chinese	Trunk barks/MeOH	Sopropensilol A, B 3-epi-larixinol 3,2′-epi-epilarinol Abiesinol F Larixinol (Abiesinol E)	In vitro: PTP-1B enzyme assay/IC50 = 3.3, 11.2, 17.1, 4.6, 12.9, 8.1 µM	Xiong et al. (2020)
Gymnema latifolium Wall. ex Wight [Apochneraceae]/Vietnamese	Aerial parts/EtOH	Gymnatinoside GL2, GL3	In vitro: PTP-1B enzyme assay/IC50 = 22.66, 19.83 µM	Pham et al. (2020)
Glycyrrhiza uralensis Fisch. ex DC. [Fabaceae]/Chinese	Rhizomes/EtOH	Licochalcone A Lico flavone B	In vitro: PTP-1B enzyme assay/IC50 = 18.2, 23.5, 28.6, 8.2, 12.5 µM	Wang et al. (2017b)
Glycyrrhiza uralensis Fisch. ex DC. [Fabaceae]/Chinese	Gum/Aqueous	Licochalcone A Lico flavone B	In vitro: PTP-1B enzyme assay/IC50 = 3.49 µg/ml	Safdudin et al. (2016b)
			In vitro: PTP-1B enzyme assay/IC50 = 1.254, 2.016, 2.672, 1.862 µM	Ma et al. (2017)
Medicinal plant (scientific name [Family]/Traditional medicine system or places where it is used)	Part/Extract	Isolated compounds	Experiment/Outcome	References
---	---	---	---	---
Lagerstroemia speciosa (L.) Pers. [Lythraceae]/Vietnamese	Aerial parts/EtOH	24-hydroxy-lantadene B, 3-hydroxy-lantadene C, iterogenin 4-epi-hederagenic acid, oleanolic acid, 22b-oleanolic acid, 3b-hydroxy-lantadene A, 3b-hydroxy-lantadene B, A	In vitro: PTP-1B enzyme assay/IC50 = 19.6 µg/ml	Abdul et al. (2017)
Lantana camara L. [Verbenaceae]/Indonesian and Japanese	Aerial parts/EtOH	Full extract	40% inhibition at 10 μg/ml	He et al. (2020)
Litsea cubeba (L.) L. [Lauraceae]/Chinese	Leaves/EtOAc	(+)-9,9′-O-di-[E]-feruloyl-5,5′-dimethoxy secoisolariciresinol	In vitro: PTP-1B enzyme assay/IC50 = 13.5 µM	Li et al. (2019c)
Litsea cubeba (L.) L. [Lauraceae]/Chinese	Flower buds/EtOH	Lonjaponspiroside A, B	In vitro: PTP-1B enzyme assay/IC50 = 6.14, 8.42 µM	Liu et al. (2016)
Lithocarpus polystachyus (Wall.) M.F. Newman & Škorničk [Lauraceae]/Chinese	Aerial parts/EtOH	Full extract	In vitro: PTP-1B enzyme assay/IC50 = 16.9, 3.3 µg/ml	Trinh et al. (2017a)
Macaranga denticulata (Blume) Müll.Arg. [Euphorbiaceae]/Chinese	Twigs and leaves/EtOH	Macidentialcalcone 1-(5,7-dihydroxy-2,2,6-trimethyl-2H-1-benzopyran-8-yl)-3-phenyl-2-propen-1-one	In vitro: PTP-1B enzyme assay/IC50 = 21, 22 µM	Lei et al. (2016)
Macleaya cordata (Willd.) R.Br. [Papaveraceae]/Chinese	Aerial parts/EtOH	Macleayne	In silico: molecular docking	Sai et al. (2016)
Macleaya cordata (Willd.) R.Br. [Papaveraceae]/Chinese	Leaves/Aqueous	Full extract	In vitro: PTP-1B enzyme assay/IC50 = 65 µg/ml	Kim et al. (2016)
Magnolia aromatica (Dandy) V.S.Kumar [Magnoliaceae]/Chinese	Twigs and leaves/EtOH	(1R,6S,7S)-1-hydroxy-cadin-4,9-dien-8-one	In vitro: PTP-1B enzyme assay/IC50 = 83.5 µM	Wang et al. (2016b)
Magnolia aromatica (Dandy) V.S.Kumar [Magnoliaceae]/Chinese	Root barks/MeOH	Full extract	In vitro: PTP-1B enzyme assay/IC50 = 55.96 µg/ml	Sun et al. (2015)
TABLE 1 | (Continued) Medicinal plants and their phytochemicals with PTP-1B inhibitory capacity.

Medicinal plant (scientific name [Family]/Traditional medicine system or places where it is used)	Part/Extract	Isolated compounds	Experiment/Outcome	References

Magnolia officinalis Rehder & E.H.Wilson [Magnoliaceae]/Chinese

	Barks/MeOH	Magterpenoid A, C	In vitro: PTP-1B enzyme assay/IC₅₀ = 1.44, 0.81 µM	Li et al. (2018)

Magnolia officinalis var. biloba Rehder & E.H.Wilson

	(±)-Mooligomers B, D, E		In vitro: PTP-1B enzyme assay/IC₅₀ = 0.47, 2.1, 0.35, 12.2, 0.89, 0.14 µM	Li et al. (2020a)

Melaleuca leucadendra (L.) L. [Myrtaceae]/Jamu

	Fruit/MeOH	Betulnic acid, Ursolic acid	In vitro: PTP-1B enzyme assay/IC₅₀ = 1.5, 2.3 µM	Saifudin et al. (2016a)

Melicope ptelefolia (Champ. ex Benth.) T.G. Hartley

	Roots/CH₂Cl₂/CH₃OH (1:1)	Melicoptelin B1/B2, D1/D2, E	In vitro: PTP-1B enzyme assay/IC₅₀ = 34.4, 55.2, 66.6 µM	Xu et al. (2019b)

Momordica charantia L.

	Fruits/EtOH	25′-O-methylkaraviagein D (19R,23E)-5b,19-epoxy-19,25-dimethoxycucurbit-6,23-dien-3b-ol	In vitro: PTP-1B enzyme assay/IC₅₀ = 51.8, 54.95 µM	Yue et al. (2017)

Morus alba L.

	Roots bark/MeOH	Morusalfuran A–F, Morusalnol B, Morusibene A	In vitro: PTP-1B enzyme assay/IC₅₀ = 11.02, 8.92, 7.26, 18.02, 26.56, 17.64 µM	Ha et al. (2020)

	Roots/EtOAc	Kuwanon L, Mulberrofuran G, Moracenin B (Kuwanon G), Morusinol, Sanggenon G	In vitro: PTP-1B enzyme assay/IC₅₀ = 21.67, 20.03, 13.07, 30.49, 10.87, 17.48, 4.04, 9.83, 9.52, 10.71, 19, 63, 4.69, 13.28, 12.72 µg/ml	Zhao et al. (2018)

Morus macroura Miq.

	Twigs/EtOH	Notabilisin E, Taxifolin Hultenin	In vitro: PTP-1B enzyme assay/IC₅₀ = 0.87, 5.5, 1.04 µM	Wang et al. (2015)

(Continued on following page)
Table 1 | (Continued) Medicinal plants and their phytochemicals with PTP-1B inhibitory capacity.

Medicinal plant (scientific name [Family]/Traditional medicine system or places where it is used)	Part/Extract	Isolated compounds	Experiment/Outcome References	
Myrtus communis L. [Myrtaceae]/Italian	Leaves/chloroform	3β-cis-p-coumaroyloxy-2α,23-dihydroxyolean-12-en-28-oic acid	In vitro: PTP-1B enzyme assay/IC₅₀ = 15.38, 14.89, 25.73, 12.21, 8.93, 26.67, 11.93, 16.05, 8.92, 14.93 µM	Liang et al. (2020)
Nepenthes mirabilis (Lour.) Druce [Nepenthaceae]/Vietnamese	Whole plant/EtOAc and n-BuOH	Full extract	In vitro: PTP-1B enzyme assay/IC₅₀ = 1.4, 0.4 µg/ml	Trinh et al. (2017a)
Nigella sativa L. [Ranunculaceae]/From Turkey to India	Aerial parts/MeOH	3-O-[α-L-arabinopyranosyl-(1→2)-α-L-arabinopyranosyl]ederagenin	In vitro: PTP-1B enzyme assay/IC₅₀ = 91.3 µM	Parveen et al. (2020)
Ouret lanata (L.) Kuntze [Amaranthaceae]/Ayurveda	Leaves/MeOH	Siphonol B, D Orthosiphon B, F, G, I, N	In vitro: PTP-1B enzyme assay/IC₅₀ = 8.18, 24.75, 9.84, 27.56, 3.82, 0.33, 1.6 µM In vivo: cell culture (3T3-L1)/glucose uptake = 94.66 µg/ml In vitro: cell culture (L6 myotubes)/insulin-mediated glucose uptake/OSSTs by 18.44%	Nguyen et al. (2019)
Panax ginseng C. A. Meyer. [Araliaceae]/Vietnamese and Indonesian	Aerial parts/MeOH	Siphonol B, D Orthosiphon B, F, G, I, N	In vitro: PTP-1B enzyme assay/IC₅₀ = 21.27 µM In vivo: cell culture (L6 myotubes)/insulin-mediated glucose uptake/OSSTs by 18.99, 13.38 µM	Riya et al. (2015)
Paeonia lactiflora Pall. [Paeoniaceae]/Chinese	Seeds/EtOH	Paeonolactifloranol trans-gnetin H	In vitro: PTP-1B enzyme assay/IC₅₀ = 27.23, 27.81 µM	Zhang et al. (2019a)
Panax quinquefolius L. [Araliaceae]/Chinese	Stems, flowers, and fruits/EtOH	20(R)-25-methoxydammarane-3β,12β,20-tetrol 20(R)-dammarane-3β,6α,12β,20,25-pentol 20(R)-protopanaxatriol 20(S)-panaxadiol 20(R)-protopanaxadiol	In vitro: PTP-1B enzyme assay/IC₅₀ = 16.54, 10.07, 17.98, 21.02, 21.27 µM	Yang et al. (2016)
Pandanus odorifer (Forrissk.) Kuntze [Pandanaceae]/Vietnamese	Crude saponins/EtOH	20(S)-panaxadiol (20(S)-24R)-dammarane-20,24-epoxy-3β,6α,12β,20,25-tetrol 20(R)-dammarane-3β,6α,12β,20,25-pentol 20(R)-dammarane-3β,12β,20,25-tetrahydroxy-3β-O-β-D-glucopyranoside Oleandric acid 20(S)-protopanaxadiol	In vitro: PTP-1B enzyme assay/IC₅₀ = 27.23, 23.63, 10.39, 6.21, 5.91, 18.99, 13.38 µM	Han et al. (2020)
Pandanus odorifer (Forrissk.) Kuntze [Pandanaceae]/Vietnamese	Fruit/EtOAc and n-BuOH	Full extract	In vitro: PTP-1B enzyme assay/IC₅₀ = 20.8, 40.4 µg/ml	Trinh et al. (2017a)
Phyllanthus amarus Schumach. & Thonn. [Phyllanthaceae]/Vietnamese	Whole plant/EtOAc	Full extract	In vitro: PTP-1B enzyme assay/IC₅₀ = 74.4 µg/ml	Trinh et al. (2017a)
Phyllanthus niruri L. [Phyllanthaceae]/Jamu	Aerial parts/Aqueous	Full extract	In vitro: PTP-1B enzyme assay/IC₅₀ = 10.99 µg/ml	Salfudin et al. (2016b)
Phyllanthus urinaria L. [Phyllanthaceae]/Vietnamese	Whole plant/EtOAc and n-BuOH	Full extract	In vitro: PTP-1B enzyme assay/IC₅₀ = 14, 10.8 µg/ml	Trinh et al. (2017a)

(Continued on following page)
TABLE 1 | Medicinal plants and their phytochemicals with PTP-1B inhibitory capacity.

Medicinal plant (scientific name)	Part/Extract	Isolated compounds	Experiment/Outcome	References
Pithecellobium dulce (Roxb.) Benth. (Fabaceae)/Vietnamese	Stem/EtOAc	Full extract	In vitro: PTP-1B enzyme assay/IC₅₀: 26.1 µg/ml	Trinh et al. (2017a)
Pruus amygdalus Batsch (Rosaceae)	Fruits/EtOH	Hexane fraction Chloroform fraction	In vitro: PTP-1B enzyme assay/IC₅₀: 9.66, 37.95 µg/ml	Qureshi et al. (2019)
Paicium guajava L. (Myrtaceae)/Worldwide	Leaves/EtOAc	Psiguardiol A–J	In vitro: PTP-1B enzyme assay/IC₅₀: 4.7, 11, 11.9, 10.7, 19.1, 18.9, 6.2, 9.2, 22.8, 22.8 µM	Hou et al. (2019)
Psychotria subcordatius (DC.) Bridson (Rubiaceae)/African	Leaves/EtOH	Jejugaavone A, C	In vitro: PTP-1B enzyme assay/IC₅₀: 10.52, 9.4 µM	Ryu et al. (2021)
Quercus wutaishanica Mayr (Fagaceae)/Chinese and South Korean, and Chinese	Acorn/EtOH	Puerarin	In silico: molecular docking/PTP-1B binding energy: 6.4 kcal/mol	Ojo, (2021)
Reynoutria japonica Houtt. (Polygonaceae)/Japanese, South Korean, and Chinese	Roots/EtOAc	(trans)-emodin-physcion bianthrone (cis)-emodin-physcion bianthrone	In vitro: PTP-1B enzyme assay/IC₅₀: 5.56, 24.89, 20.56, 4.16, 3.92, 3.53, 9.58, 15.38, 20.16, 1.03 µM	Xu et al. (2018b)
Reynoutria multiflora (Thunb.) Moldenke (Polygonaceae)/Chinese	Roots/EtOH	Multiflorumiside H–K	In vitro: PTP-1B enzyme assay/IC₅₀: 1.2, 1.7, 1.5, 4.6 µM	Yang et al. (2020)
Rhizophora apiculata Blume (Rosaceae)/Vietnamese	Bark/EtOAc and n-BuOH	Full extracts	In vitro: PTP-1B enzyme assay/IC₅₀: 17.2, 1.8 µg/ml	Trinh et al. (2017a)
Rhododendron fastigiatum Franch. (Ericaceae)	Whole plant/MeOH	Arbutin	In vitro: PTP-1B enzyme assay/IC₅₀: 20.5 µM	Yuan et al. (2021)
Rubus auxillae (Thunb.)	Aerial parts/EtOH	(+)-fastinoid B (-)-fastinoid B Rubiginosin A (-)-rubiginosin A Gotrifolinone A	In vitro: PTP-1B enzyme assay/IC₅₀: 47, 54.9, 40.9, 49.2, 13 µM	Huang et al. (2019)

(Continued on following page)
TABLE 1 (Continued) Medicinal plants and their phytochemicals with PTP-1B inhibitory capacity.

Medicinal plant (scientific name [Family]/Traditional medicine system or places where it is used)	Part/Extract	Isolated compounds	Experiment/Outcome	References
Rhus chinensis L. [Euphorbiaceae]/Chinese	Leaves/EtOH	3a,19-dihydroxyl-ent-pimara-8 (14,15)-diene	In vitro: PTP-1B enzyme assay/IC50 = 49.49% at 20 μg/ml	Zhang et al. (2019b)
Rubus idaeus L. [Rosaceae]	Fruits/EtOH	Ursolic acid 2-oxopomolic acid 2α,19a-dihydroxy-3-oxo-urs-12-en-28-oic acid	In vitro: PTP-1B enzyme assay/IC50 = 7.1, 23.7, 52.3 μM	Zhang et al. (2019c)
Rubus occidentalis L. [Rosaceae]	Fruits/EtOH	Cynadin-3-O-xilosulinitoside Cynadin-3-O-rutinoside Quercetin-3-O-rutinoside Elagic acid	In vitro: PTP-1B enzyme assay/IC50 = 2.58, 1.86, 2.12, 0.03 μM	Xiao et al. (2017a)
Salvia cinnamomea Cav. [Lamiaceae]/Mexican	Aerial parts/Aqueous	6-hydroxymurolol Pedalin	In vitro: PTP-1B enzyme assay/IC50 = 5.5, 4.7, 37.6, 18.6, 27.1, 8.5 μM	Salinas-Arellano et al. (2020)
Salvia miltiorrhiza Bunge [Lamiaceae]/Chinese	Roots/EtOH	Tanshinone IIA Cryptotanshinone Tanshinone I Dehydrodanshenol A Dehydrodanshenol B	In vitro: PTP-1B enzyme assay/IC50 = 80.1, 62 μM	Kim et al. (2017b)
Selaginella rolandi-principis	Rhizomes/EtOH	Selaginolide A 2′-hydroxygenistein 6,7-dimethoxy-2′,4′-dihydroxysofavolane	In vitro: PTP-1B enzyme assay/IC50 = 7.4, 23.02, 11.08 μM In vitro: cell culture (3T3-L1)/glucose uptake, [pIRS-1, pPI3K, pAkt]	Nguyen et al. (2021)
Selaginella tamariscina (P.Beauv.) Spring [Selaginellaceae]/Chinese	Aerial parts/Methanol	Selariscin D Selariscin E	In vitro: PTP-1B enzyme assay/IC50 = 13.2, 9.8, 7.4, 6.2, 9.6, 5.4, 4.5 μM In vitro: cell culture (3T3-L1)/glucose uptake	Nguyen et al. (2015)
Selaginella uncinata (Desv.) Spring [Selaginellaceae]/Chinese	Whole plant/EtOH	Uncinatibflavone C 7-methyl ether Robustflavone 4′-methyl ether Robustflavone 7- methyl ether (2R)2, 3- dihydro- 4′- mero- flavone Amentoflavone Biobetin (2′S) chrysoacouflavone I Delicatiflavone (2S) 2,3-dihydro- 5′R,7′R,4′- pentahydroxy-6,6′-dimethyl-[3′′O- 4′′]-biflavanone	In vitro: PTP-1B enzyme assay/IC50 = 13.8, 14.5, 14.6, 15.9, 4.8 μM In vitro: PTP-1B enzyme assay/IC50 = 7.7, 9.2, 9.8, 16.1, 10.6, 14.6, 5.5, 6.2, 4.6 μM In vitro: cell culture [insulin-resistant HepG2]/glucose uptake, [pIRS-1, pPI3K, pAkt] (Uncinatibflavone C 7-methyl ether)	Le et al. (2017)
Senna obtusifolia (L.) H.S.Irwin & Barneby [Fabaceae]/Chinese	Seeds/EtOH	Physcion Chrysophanol Emodin Alatemin Obstusin Questin Chrysosobulin Aurantio-obstusin 2′-Hydroxyemodin-1 methylether	In vitro: PTP-1B enzyme assay/IC50 = 7.28, 5.86, 3.51, 1.22, 6.44, 5.69, 14.88, 27.19, 5.22 μM In vitro: cell culture [insulin-resistant HepG2]/glucose uptake (alatemin and emodin)	Jung et al. (2016)
Styllurus marianum (L.) Gaertn. [Asteraceae]	Seeds/EtOAc	Taxifolin Dihydrokaempferol Dihydroquercetin-4′-methyl ether Kaempferol	In vitro: PTP-1B enzyme assay/IC50 = 24.23, 27.83, 21.30, 6.79 μM	Qin et al. (2017)
Smilax china L. [Smilacaceae]/Thai	Leaves/EtOH	Morin Kaempferol 7-O-α-L-rhamnoside Quercetin-4′-O-β-D-glucoside 4′-methoxy-5,7-dihydroxyflavone-(3-O-7′)-4′′′,5′′′,7′′′-trihydroxyflavone Parteinse 1,3,6-trihydroxyxanthone	In vitro: PTP-1B enzyme assay/IC50 = 7.6, 10.80, 9.22, 26.8, 9.77, 24.17 μM	Zhao et al. (2016)

(Continued on following page)
TABLE 1
(Continued) Medicinal plants and their phytochemicals with PTP-1B inhibitory capacity.

Medicinal plant (scientific name [Family]/Traditional medicine system or places where it is used)	Part/Extract	Isolated compounds	Experiment/Outcome	References
Sophora flavescens Aiton [Fabaceae]	Roots/EtOH	Sophobilavonoid A, C	In vitro: PTP-1B enzyme assay/IC$_{50}$ = 0.33, 0.35 µM	Yan et al. (2019)
Symplocos cochinchinesis (Lour.) S. Moore. [Sympliocaceae]/Ayurveda	Bark/EtOH	Full extract	In vivo: insulin-resistant rats (250 and 500 mg/kg b.w.)	Antu et al. (2016)
Syzygium cumini (L.) Skeels [Myrtaceae]/Vietnamese, Ayurveda, Unani, and Chinese	Seeds/MeOH	Valoneic acid dilactone Rubuphenol Ellagic acid	In vitro: PTP-1B enzyme assay/IC$_{50}$ = 9.37, 28.14, 25.96 µM	Sawant et al. (2015)
	Fruit/EtOAc	Full extract	In vitro: PTP-1B enzyme assay/IC$_{50}$ = 27.5 µg/ml	Trinh et al. (2017a)
Tetradium ruticarpum (A.Juss.) T.G.Hartley [Rutaceae]/East Asia	Buds/MeOH	Schinifoline Intergifoliodiol	In vitro: PTP-1B enzyme assay/IC$_{50}$ = 24.3, 47.7 µM	To et al. (2021)
Thonningia sanguinea Vahl [Balanophoraceae]/Angola	Rhizomes/MeOH	2′-O-(3-O-galloyl-4,6-O-Sa-hexahydroxydiphenoyl-β-D-glucopyranosyl)-3′-O-(3-O-galloyl-4,6-O-Sa-hexahydroxydiphenoyl-β-D-glucopyranosyl)phloretin Thonningianin B, A	In vitro: PTP-1B enzyme assay/IC$_{50}$ = 24.7, 23.8, 19.3, 21.7, 4.4 µM	Pompermaier et al. (2018)
Tinospora sagittata (Oliv.) Gagnep. [Menispermaceae]/Chinese	Rhizome/EtOAc	Full extract	In vitro: PTP-1B enzyme assay/IC$_{50}$ = 38.5 µg/ml	Zhao et al. (2019b)
Tradescantia spathacea Sw. [Commelinaceae]/Vietnamese	Aerial parts/MeOH	Bracteandiolide A Latifolicinin C, A Oresbiusin A	In vitro: PTP-1B enzyme assay/IC$_{50}$ = 7.82, 6.80, 4.55, 6.38 µM	Vo et al. (2015)
Ugni molinae Turcz. [Myrtaceae]/Chilean	Leaves/EtOAc	Full extract Madecassic acid Myricetin	In vitro: PTP-1B enzyme assay/IC$_{50}$ = 97.2% at 2 µg/ml (full extract)	Arancibia-Radich et al. (2019)
Vaccinium myrtillus L. [Ericaceae]	Fruits/EtOH	Full extract	In vitro: PTP-1B enzyme assay/IC$_{50}$ = 6.96 µg/ml	Xiao et al. (2017b)
Vaccinium uliginosum L. [Ericaceae]	Fruits/EtOH	Full extract	In vitro: PTP-1B enzyme assay/IC$_{50}$ = 3.06 µg/ml	Xiao et al. (2017b)
		Phenolic compounds Cyanidin-3-arabinoside Dephinidin-3-glucoside Cyanidin-3-galactoside Cyanidin-3-glucoside Malvidin-3-galactoside Petunidin-3-glucoside	In vitro: PTP-1B enzyme assay/IC$_{50}$ = 8.91, 17.8, 19.8, 25.9, 34, 31.1 µM	Tian et al. (2019)
		Procyanidin B1, B2	In vitro: PTP-1B enzyme assay/IC$_{50}$ = 0.6, 4.79 µM	Li et al. (2021)

(Continued on following page)
Glycogenolysis consists of glycogen breakdown into glucose, being half of the basal HGP in fasting and decreasing the glycogen concentration at an almost linear rate during the first 22 h (Rothman et al., 1991; Cersosimo et al., 2018). In fasting, it is controlled by glucagon and epinephrine that activate glycogen phosphorylase (GP), the major enzyme responsible for digesting glycogen by releasing glucose 1-phosphate. In feeding condition, insulin inhibits glycogen breakdown and promotes glycogen synthesis through the activation of Akt and protein phosphatase 1 (PP1), leading the deactivation of both GP and glycogen synthase kinase-3 (GSK3), which in its active form (dephosphorylated), inactivates glycogen synthase (GS) (Han et al., 2016).

Glucogenesis, on the other hand, is defined as the production of glucose from a molecule that is not a carbohydrate. Its main substrates are pyruvate, glycerol, and amino acids such as alanine (Hanson and Owen, 2013). Another way to denote glucogenesis is as “reverse glycolysis” since both share not only substrates and final products, but also many enzymes. However, the direction of the reactions catalyzed in glucogenesis goes in the opposite direction, so the steps that are not shared with glycolysis can be determined as regulatory steps. These reactions are catalyzed by four rate-limiting enzymes: pyruvate carboxylase (PC), which is responsible for converting pyruvate into oxaloacetate; phosphoenolpyruvate carboxykinase (PEPCK), that converts oxaloacetate to phosphoenolpyruvate; fructose 1,6-bisphosphatase (FBPase), that dephosphorylates fructose 1,6-bisphosphate obtaining fructose 6-phosphate; and glucose 6-phosphatase (G6Pase), which is responsible for removing the phosphate group from glucose 6-phosphate, yielding novo synthesized glucose (Postic et al., 2004).

In the diabetic state, increased rates of HGP are observed as a result of an imbalance of various factors, such as the augmented availability of gluconeogenic substrates, the resistance of the liver to the action of insulin, and elevated levels of glucagon that activate HGP (Sharabi et al., 2015). Due to all these factors, the inhibition of HGP turns out to be an important therapeutic target for the reduction of hyperglycemia observed in T2D patients. In this regard, Table 2 summarizes the works made between 2015 and 2021 with extracts or natural products from 47 medicinal plants that showed to modulate hepatic glucose metabolism by inhibiting glucose production or promoting glucogen synthesis. As it can be observed, decreasing the expression of PEPCK and G6Pase is the principal mechanism related to gluconeogenesis inhibition, while phosphorylation of GSK3, promotion of GS activity, and inhibition of GP are the main mechanisms involved in glycogen breakdown and synthesis. Furthermore, although PI3K/Akt pathway stands out as a good pharmacological target to reduce insulin resistance, medicinal plants and their phytochemicals can also decrease HGP through AMP-activated protein kinase (AMPK).

DISCUSSION

Insulin resistance in liver leads to the release of large amounts of glucose into the bloodstream that affects long-term homeostasis. The regulation of hepatic glucose output represents a good pharmacological target for the control of metabolic diseases such as T2D, which are characterized by the presence of this pathophysiological phenomenon. The search for new molecules capable of regulating hepatic glucose metabolism from medicinal plants has focused on screening for phytochemicals that can directly inhibit key enzymes in glucose-producing pathways. However, considering compounds with the ability to also decrease the activity of the enzymes involved in terminating the insulin signal could result in more effective glycemic control.

According to the bibliographic search, plants used in different systems of traditional medicine have shown the ability to inhibit the activity or expression of PTP-1B, which could indicate that...
TABLE 2 | Medicinal plants and their phytochemicals capable to modulate hepatic glucose metabolism.

Medicinal plant (scientific name [Family]/Traditional medicine system or places where it is used)	Part/Extract	Isolated compounds	Experiment/Outcome	References
Abelmoschus esculentus (L.) Moench [Malvaceae]/Chinese	Whole plant/EtOH	Polysaccharides	In vivo: insulin-resistant mice (200 and 400 mg/kg b.w.)/pAkt and pGSK3β	Liao et al. (2019)
Averrhoa bilimbi (Mocz. & Sessê ex DC.) R.M.King & H.Rob. [Asteraceae]/Mexican	Aerial parts/Aqueous	Full extract	In vivo: diabetic rats (160 mg/kg b.w.)/Glucose production in PTTs	Mata-Torres et al. (2020)
Aloe vera (L.) Burm.f. [Asphodelaceae]/Ayurveda	Gel/EtOH	Carbohydrate fraction	In vivo: diabetic rats (27 and 54 mg/kg b.w.)/Liver glycogen content, [G6Pase activity, [G6Pase and PEPCK expression	Govindarajan et al. (2021)
Althaea officinalis (Baker) D.S.Conant [Malvaceae]/Mexican	Rhizome/Aqueous	Full extract	In vitro: G6Pase inhibition assay/IC50 = 45 μg/ml in vitro: FBPase inhibition assay/IC50 = 341 μg/ml	Andrade-Cetto et al. (2021b)
Aster kebulifolius Maxim. [Asteraceae]/Korean	Whole plant/EtOH	Full extract	In vivo: db/db mice (50, 100, and 200 mg/kg b.w.)/GK, [G6Pase and PEPCK expression	Yin et al. (2015)
Averrhoa bilimbi L. [Oxalidaceae]/Indian	Fruits/Aqueous	EtOAc fraction	In vivo: diabetic rats (25 mg/kg b.w.)/[G6Pase and FBPase activity	Kurup and S. (2017)
Bromelia kataras L. [Bromeliaceae]/Mexican	Aerial parts/Aqueous	Full extract	In vitro: G6Pase inhibition assay/IC50 = 1,136 μg/ml	Mata-Torres et al. (2020)
Canthium arborescens L. [Rutaceae]/Brazilian	Flowers/EtOH	Gold nanoparticles	In vitro: cell culture (insulin-resistant HepG2)/[Glycogen content, [G6Pase and PEPCK expression and protein levels	Jiang et al. (2018a)
Calotropis procera (Alton) W.T.Aiton [Apocynaceae]/Indian	Aerial parts/Latex	Protein fraction	In vivo: Wistar rats (5 mg/kg b.w.)/pAMPK, [PEPCK expression, [Glucose consumption, [Glycogen storage, [G6Pase activity and expression	de Oliveira et al. (2019)
Caralluma fimbriata Wall. [Apocynaceae]/Indian	Stems/EtOH	Full extract	In vivo: insulin-resistant rats (200 mg/kg b.w.)/[G6Pase and FBPase activity	Gujala et al. (2017)
Caralluma quadriangularis (Forsk.) N.E.Br. [Apocynaceae]/Kuwait	Whole plant/MeOH	Russelioside B	In vivo: diabetic rats (50 mg/kg b.w.)/[Glycogen content, [GP activity, [G6Pase activity, [G6Pase and GSK3β expression, [G6Pase activity and expression	Abdel-Sattar et al. (2016)
Chrysobalanus icaco L. [Chrysobalanaceae]/Nigerian	Leaves/Aqueous	Full extract	In vivo: diabetic rats (11,076, 22,134, and 44,268 mg/kg b.w.)/[Liver glycogen content, [G6Pase activity	Ekalitke et al. (2021)
Cota rotunda (Vent.) Schott & Endl. [Malvaceae]/African	Seeds/Aqueous	Full extract	In vivo: diabetic rats (300 mg/kg b.w.)/[GP, G6Pase, and FBPase activities	Erukainure et al. (2019b)
Convolvulus althaeoides L. [Convolvulaceae]/Brazilian	Flowers/Aqueous	Full extract	In vivo: diabetic rats (500 mg/kg b.w.)/[pAMPK and pAkt, [PEPCK expression, [Glucose production in PTTs	Siqueira et al. (2016)
Coreopsis tinctoria Nutt. [Asteraceae]/Chinese and Portuguese	Flowers/EtOAc	Marein	In vitro: cell culture (insulin-resistant HepG2)/[G6Pase and PEPCK expression	Jiang et al. (2018a)
Conspernum squarrosum L. [Amaranthaceae]/Mongol	Whole plant/EtOH	Oligosaccharides	In vivo: db/db mice (380 and 750 mg/kg b.w.)/In liver: [pRS2, [pAkt, [RS2, PISK, Akt, and IR expression and protein levels	Bao et al. (2020)
Couroupita guianensis Aubl. [Lecythidaceae]	Leaves/Aqueous	Full extract Gold nanoparticles	In vitro: diabetic rats (100 and 2.5 mg/kg b.w.)/[Glycogen storage, [G6Pase activity and expression	Manimegalai et al. (2020)
Edgeworthia gardneri (Wall.) Meisn. [Thymelaeaceae]/Chinese	Flowers/Aqueous	Full extract	In vivo: cell culture (insulin-resistant HepG2)/[G6Pase uptake and consumption, [Glycogen content, [Glucose production, [pRS1, [pAkt, [pGSK3	Zhang et al. (2020)
Equisetum myriochaetum Schmidt. & Cham. [Equisetaceae]/Mexican	Aerial parts/Aqueous	Full extract	In vivo: diabetic rats (330 mg/kg b.w.)/[Glucose production in PTTs	Mata-Torres et al. (2020)
(Continued on following page)				
TABLE 2 | (Continued) Medicinal plants targeting hepatic glucose metabolism.

Medicinal plant (scientific name [Family]/Traditional medicine system or places where it is used)	Part/Extract	Isolated compounds	Experiment/Outcome	References
Eryngium cymosum F.Delaroche [Apiaceae]/Mexican	Aerial parts/Aqueous	Full extract	In vivo: diabetic rats [470 mg/kg b.w./] Glucose production in PTTs in vitro: G6Pase inhibition assay/IC50 = 782 μg/ml in vitro: FBPase inhibition assay/IC50 = 57.4 μg/ml	Espinoza-Hernández et al. (2021)
Eryngium longifolium Cav. [Apiaceae]/Mexican	Aerial parts/EtOH	Full extract	In vitro: G6Pase inhibition assay/IC50 = 780 μg/ml in vitro: FBPase inhibition assay/IC50 = 93 μg/ml	Andrade-Cetto et al. (2021b)
Ficus carica L. [Moraceae]/Spain	Leaves/MeOH	Full extract	In vivo: diabetic mice (2 g/kg b.w./) [PEPCK and G6Pase expression, pAMPK] In vitro: [PEPCK and G6Pase expression, pAMPK]	Zhang et al. (2019d)
Forsythia suspensa (Thunb.) Vahl [Oleaceae]/Chinese	Roots/EtOH	Full extract	In vivo: [PEPCK and G6Pase expression, pAMPK]	Zhang et al. (2016b)
Graptopterum paraguayense (N.E.Br.) E.Watther [Crassulaceae]/Taiwan	Aerial parts/Aqueous	Full extract	In vitro: [PEPCK and G6Pase expression, pAMPK]	Jhuang et al. (2015)
Hyoscyamus albus L. [Solanaceae]/Mediterranean	Seeds/EtOH	Calystegine fraction	In vitro: cell culture (insulin-resistant mice)	Kowalczyk et al. (2021)
Hypericum attenuatum Fisch. ex Choisy [Hypericaceae]/Chinese	Whole plant/EtOH	Full extract	In vivo: insulin-resistant mice (100, 200, and 300 mg/kg b.w./) [PEPCK and G6Pase expression and protein levels, GS expression and protein levels, pIRS, pAkt, TGSK3]	Jin et al. (2019)
Iris domestica (L.) Goldblatt & Mabb. [Iridaceae]/Chinese	Leaves/EtOH	Saponins and polysaccharide fraction	In vivo: diabetic rats (100, 200, and 400 mg/kg b.w./) [GK and GLUT2 expression, G6Pase and PEPCK activities, G6Pase inhibition assay/IC50, G6Pase and PEPCK expression, pAMPK, pIRS]	Guo et al. (2019)
Launaea acanthodes (Boiss.) Kuntze [Asteraceae]/Iran	Aerial parts/EtOH	Full extract	In vivo: diabetic rats (800 mg/kg b.w./) [Glycogen content, Liver glucose influx/FBPase expression and protein levels, GS activity, pAMPK, pAkt, TGSK3]	Marvibaigi et al. (2021)
Lithocarpus polystachyus (Wall. ex A.DC.) Rehder [Fagaceae]/Chinese	Leaves/Aqueous	Full extract	In vivo: insulin-resistant mice (600 mg/kg b.w./) [G6Pase activity and PEPCK expression, pAMPK, pIRS]	Wang et al. (2016a)
Lupinus mutabilis Sweet [Fabaceae]/Andean	Seeds/Aqueous	Protein fraction	In vitro: cell culture (HepG2)/Glucose production and PEPCK expression	Muñoz et al. (2018)
Myrionthus arboreus P.Beauv. [Urticaceae]/African	Root bark/EtOH	EtOAc fraction Isoroorientin, Orientin Chlorogenic acid Full extracts or fractions	In vivo: cell culture (H4IIE hepatocytes)/G6Pase activity, pAMPK In vitro: cell culture (H4IIE hepatocytes)/G6Pase activity, pAMPK In vitro: cell culture (HepG2)/G6Pase expression, pAMPK, TGSK3	Kasangana et al. (2018)
Myrica rubra (Lour.) Siebold & Zucc. [Myricaceae]/Chinese	Fruits/EtOH	Full extract	In vivo: KK-A° mice (200 mg/kg b.w./) [PEPCK, G6Pase expression, G6Pase inhibition assay/IC50 expression in vitro: cell culture (HepG2)/PEPCK and G6Pase expression]	Zhang et al. (2016a)
Pachylobus edulis G.Don [Burseraceae]/African and Nigerian	Leaves/EtOH	BuOH fraction	In vivo: diabetic rats (150 and 300 mg/kg b.w./) [G6Pase activity and PEPCK expression, G6Pase activity and PEPCK expression, G6Pase activity and PEPCK expression, G6Pase activity and PEPCK expression]	Erukainure et al. (2020)
Passionflower edulis G.Don	Leaves/EtOH, Aqueous	Full extract	In vivo: G6Pase inhibition assay/IC50 = 0.66, 3.59, 0.05 μg/ml	Erukainure et al. (2017)

(Continued on following page)
TABLE 2 | (Continued) Medicinal plants and their phytochemicals capable to modulate hepatic glucose metabolism.

Medicinal plant (scientific name [Family]/Traditional medicine system or places where it is used)	Part/Extract	Isolated compounds	Experiment/Outcome	References
Panax ginseng C.A.Mey. [Araliaceae]/Korean	Roots/EtOH	Black ginseng extract	In vivo: diabetic mice (300 and 900 mg/kg b.w.)/G6Pase, PEPCK and GP expression,	Seo et al. (2016)
Plantago depressa Wild [Plantaginaceae]/Chinese	Seeds/EtOH	Plantadepurate A Plumbagine D Plantagoguanidinic acid	In vitro: cell culture (rat hepatocytes)/Glucagon secretion inhibition by 8.2, 18.5, and 12.5% at 40 μM	Zheng et al. (2015)
Raphia hookeri G.Mann & H.Wendl. [Arecaceae]	Raffia palm wine/ Concentrated in water bath	Concentrated wine	In vivo: diabetic rats (150 and 300 mg/kg b.w.)/GP, FBPase and G6Pase activity	Erukainure et al. (2019)
Rhizophora mangle L. [Rizophoraceae]/Mexican	Bark/EtOH	Full Extract	In vivo: diabetic rats (90 mg/kg b.w.)/Glucose production in PITTs in vitro: G6Pase inhibition assay/IC50 = 99 μg/ml	Mata-Torres et al. (2020)
Sarcopoterium spinosum (L.) Spach [Rosaceae]/Israel, Palestine, and Jordan	Root/Aqueous	Full extract	In vivo: insulin-resistant mice (35 and 100 mg/kg b.w.)/PπR, pAkt, TOS3, G6Pase activity	Rozenberg and Rosenzweig, (2018)
Senna alata (L.) Roxb. [Fabaceae]/Asia, Africa and South America	Leaves/EtOH	Full extract	In vivo: diabetic rats (400 mg/kg b.w.)/Liver glycogen content, TGS activity, GP and FBPase activities	Mohanasundaram et al. (2021)
Sesbania grandiflora (L.) Poir. [Fabaceae]/Ayurveda	Flowers/Aqueous	Full extract	In vivo: diabetic rats (75 mg/kg b.w.)/Glycogen storage	Uwazie et al. (2020)
Shrikòpsis elliptica (Hochst.) Esser [Euphorbiaceae]/Nigerian	Leaves/EtOH	Full extract	In vivo: diabetic rats (250 mg/kg b.w.)/Liver glycogen content, TGS activity, GP, G6Pase, and FBPase activities	Sureka et al. (2021)
Smilax moranensis M.Martens & Galeotti [Smilacaceae]/Mexican	Roots/EtOH	Full Extract	In vitro: G6Pase inhibition assay/IC50 = 84 μg/ml	Mata-Torres et al. (2020)
Swietenia humilis Zucc. [Melaceae]/Mexican	Seeds/Aqueous	Dried aqueous extract Mexicanolide 1 Mexicanolide 2 Mexicanolide 3	In vitro: G6Pase inhibition assay in H4IE hepatocytes: 100 μg/ml = 40.67%; 200 μg/ml = 61.11%; 9.46 μM = 42.68%; 2: 8.79 μM = 56.51%; 3: 8.13 μM = 41.79%	Ovall-Magalanies et al. (2019)
Tephrosia tinctoria (L.) Pers. [Fabaceae]/Ayurveda	Stems/EtOAc	EtOAc fraction	In vivo: diabetic rats (100 and 200 mg/kg b.w.)/Liver glycogen content, G6Pase and FBPase activity	Krishnasamy and Periyasamy, (2019)
Terminalia catappa L. [Combretaceae]/Ayurveda	Leaves/EtOH	Full extract	In vivo: diabetic rats (300 and 500 mg/kg b.w.)/G6Pase and FBPase activity	Divya et al. (2019)
Trigonella foenum-graecum L. [Fabaceae]/Asia, Africa, and the Mediterranean region	Seeds/EtOH	Fenugreek flavonoids	In vivo: diabetic rats (0.5 g in 10 ml/kg)/Liver glycogen content, G6Pase and FBPase activity	Jiang et al. (2018b)

ETOH: ethanolic extract; MeOH: methanolic extract; EtOAc: ethyl acetate extract; PTT: pyruvate tolerance test; IR: insulin receptor; IRS1: insulin receptor substrate 1; IRS2: insulin receptor substrate 2; GSK3: glycogen synthase kinase 3; Akt: protein kinase B; PK3: phosphoinositide 3-kinase; PEPCK: phosphoenolpyruvate carboxykinase; FBPase: fructose 1,6-bisphosphatase; G6Pase: glucose 6-phosphatase; GLUT4: glucose transporter 4; AMPK: AMP-activated protein kinase; GS: glycogen synthase; GP: glycogen phosphorylase.
they have a potential inhibitory effect on HGP. The determination of biological activity of full extracts and compounds isolated from medicinal plants has been approached through different perspectives. Generally, the medicinal plant is first identified using an ethnomedical approach. Afterwards, different types of extracts are elaborated (aqueous, ethanolic, methanolic, etc.) and then tested on the biological activity to be evaluated following several paths: 1) direct inhibition enzymatic assays, which can be complemented with structure-activity relationship (SAR) studies and molecular docking analysis to find the possible structures responsible for the bioactivity, relating them with the binding of amino acid residues present at the catalytic or regulatory sites (regarding isolated compounds); 2) the use of cell cultures to evaluate the effect of the extract or compound on the expression and protein levels of key enzymes; and 3) in vivo studies, where diabetic (hyperglycemic) animals induced with STZ or alloxan, or insulin-resistant animals generated by the consumption of high-fat diet are used.

Regarding PTP-1B, most of the studies published between 2015 and 2021 focused on conducting enzyme activity assays, and few of them had a multidisciplinary approach that encompassed enzyme assays and in vitro or in vivo studies. The main problem with the first type of studies is that, although the inhibition potency and selectivity of the molecule over the enzyme are directly evaluated, the pharmacokinetic properties of the compound are omitted. This particularity stands out since it has been reported that, despite having excellent inhibitory activity, many compounds lack adequate cellular permeability, namely they present poor absorption and low bioavailability (Zhang et al., 2017). Another aspect to highlight is that PTP-1B is almost identical to TC-PTP, another member of the PTP family with 74% identity at the catalytic site, so it is important that the identified inhibitors have a high selectivity towards PTP-1B to avoid unwanted effects (Dewang et al., 2005). Considering these facts, it would be necessary in the future to carry out more studies involving as many approaches as possible to obtain a more integrative panorama and to be able to evaluate potential inhibitors considering their pharmacokinetic properties and selectivity. Also, it is encouraged to directly evaluate the effect of medicinal plants and their compounds with reported PTP-1B inhibitory capacity on hepatic glucose metabolism.

In addition to exhibiting PTP-1B inhibitory capacity, some of the medicinal plants reported in Table 1 also improved hepatic glucose metabolism by promoting glucose consumption and glycogen synthesis, upregulating activity or expression of GS, decreasing activity or expression of key enzymes involved in glycogenolysis and gluconeogenesis such as GSK3, GP, PEPCK, FBPase, and G6Pase, and by modulating insulin signaling. The compounds isolated from these plants could have a greater modulatory capacity of hepatic glucose metabolism because they are capable of directly reducing both insulin resistance and glucose production. These species were Astragalus mongholicus (astragaloside IV), Chaenomeles japonica, Duranta erecta, Eriobotrya japonica (maslinic acid, corosolic acid, oleanolic acid, and ursolic acid), Symlocos cochinchinensis, Thonningia sanguinea (2′-O- (3-O-galloyl-4,6-O-Sa-hexahydroxydiphenoyl-β-D-glucopyranosyl)-3-hydroxyphloretin, 4′-O-(4,6-O-Sa-hexahydroxydiphenoyl-β-D-glucopyranosyl) phloretin, 2′-O-(3-O-galloyl-4,6-O-Sa-hexahydroxydiphenoyl-β-D-glucopyranosyl) phloretin, thonningianin A, and thonningianin B), Vaccinium uliginosum (cyaniding-3-arabinoside, delphinidin-3-glycoside, cyanidin-3-galactoside, cyanidin-3-glucoside, malvidin-3-galactoside, petunidin-3-glucoside, procyanidin B1, and procyanidin B2), and Vigna radiata. On the other hand, since Coreopsis tinctoria, Lithocarpus polystachyus, and Panax ginseng were documented in both Tables 1, 2, their isolated compounds may have better glycemic control.

This work focused on summarizing the medicinal plants with the potential capacity to reduce hyperglycemia resulting from an imbalance in the hepatic metabolism of glucose, encompassing two different approaches: the inhibition of PTP-1B (improvement of hepatic insulin resistance), and the modulation of enzymes involved in gluconeogenesis and glycogenolysis/glycogenesis (decreased hepatic glucose output). In recent years, PTP-1B research has focused on the characterization of different phytochemicals from medicinal plants, such as phenolic compounds, terpenes, and alkaloids. The main methodology used was to carry out direct enzyme inhibition tests to evaluate the potency of these molecules, omitting important aspects such as selectivity or pharmacokinetics. Therefore, it is proposed to use of multidisciplinary approaches that involve in vitro studies, such as the use of cell lines or primary culture to evaluate the effect of the extracts and compounds on expression and protein levels, and in vivo studies, where the concentration of the compound in systemic circulation and its duration is determined, as well as the transformation processes involved. In this regard, not only the inhibitory activity of the compounds is evaluated, but also the impact on other pharmacological aspects that can only be observed using animal models.

On the other hand, research on medicinal plants that modulate hepatic glucose metabolism has primarily focused on testing full extracts rather than compounds. However, it is worth mentioning that mixtures could have synergistic effects capable of regulating multiple targets (Caesar and Cech, 2019) and therefore compound fractions may exhibit more bioactivity than isolated molecules. Further studies are needed to identify potential multitarget phytochemicals in plants listed in Table 2. Finally, it is expected that this review will provide greater knowledge of medicinal plants and compounds for the development of drugs that improve hepatic glucose metabolism as a therapeutic target for the treatment of T2D. We suggest that Coreopsis tinctoria, Lithocarpus polystachyus, and Panax ginseng can be good candidates for developing herbal medicines or phytomedicines that target inhibition of hepatic glucose output as they can modulate the activity of PTP-1B, the expression of gluconeogenic enzymes, and the glycogen content. However, only their full extracts are tested until now. Therefore, compounds responsible for the effects mentioned above have not been identified, and pharmacological and toxicological tests in animal models are
required to assess their efficacy and safety, with the aim of moving forward to carry out clinical studies.

AUTHOR CONTRIBUTIONS

GM-T and FE-H performed the bibliographical research summarized in tables and wrote the first version of the manuscript. AA-C reviewed and edited the manuscript. All authors have read and agreed to the published version of the manuscript.

REFERENCES

Abdel-Rahman, R. F., Ezzat, S. M., Ogaly, H. A., Abd-Elslam, R. M., Hessin, A. F., Fekry, M. I., et al. (2020). Ficus Deltoidea Extract Down-Regulates Protein Tyrosine Phosphatase 1B Expression in a Rat Model of Type 2 Diabetes Mellitus: A New Insight into its Antidiabetic Mechanism. J. Natr. Sci. 9, e2. doi:10.1017/jns.2019.40

Abdel-Sattar, E., El-Maraghy, S. A., El-Dine, R. S., and Rizk, S. M. (2016). Russelioside B, a Pregnane Glycoside Ameliorates Hyperglycemia in Streptozotocin Induced Diabetic Rats by Regulating Key Enzymes of Glucose Metabolism. Chem. Biol. Interact. 252, 47–53. doi:10.1016/j.cbi.2016.03.033

Abdjul, D. B., Yamazaki, H., Maarist, W., Rotinsulu, H., Wewengkang, D. S., Sumilat, D. A., et al. (2017). Oleanane Triterpenes with Protein Tyrosine Phosphatase 1B Inhibitory Activity from Aerial Parts of Lantana Camara Collected in Indonesia and Japan. Phytochemistry 144, 106–112. doi:10.1016/j.phytochem.2017.08.020

Abdjul, D. B., Yamazaki, H., Maarist, W., Kikikoshi, R., Takahashi, O., Losung, F., et al. (2018). Protein Tyrosine Phosphatase 1B Inhibitory Components and a New Unique N-alkylamide Derivative with an Endoperoxide Bridge from Aerial Parts of Indonesian Spilanthes Paniculata. Phytochemistry Lett. 24, 71–74. doi:10.1016/j.phytochem.2018.01.013

Ahmad, F., Azevedo, J. L., Cortright, R., Dohm, G. L., and Goldstein, B. J. (1997). Alterations in Skeletal Muscle Protein-Tyrosine Phosphatase Activity and Expression in Insulin-Resistant Human Obesity and Diabetes. J. Clin. Invest. 100, 449–458. doi:10.1172/JCI95552

Ahmad, F., and Goldstein, B. J. (1995). Alterations in Specific Protein-Tyrosine Phosphatases Accompany Insulin Resistance of Streptozotocin Diabetes. Am. J. Physiol. 268, E932–E940. doi:10.1152/ajpendo.1995.268.5.e932

Ahmad, F., Li, P. M., Meyerovitch, J., and Goldstein, B. J. (1995). Osmotic Loading Alters in Specific Protein Tyrosine Phosphatases (PTP1B) Inhibiting Constituents from Anoectochilus Chapaensis and Aerial Parts of Indonesian Spilanthes Paniculata. J. Ethnopharmacol. 53, 103–112. doi:10.1016/0378-8741(95)00011-3

Ahmad, F., and Goldstein, B. J. (1995). Alterations in Specific Protein-Tyrosine Phosphatases Accompany Insulin Resistance of Streptozotocin Diabetes. Am. J. Physiol. 268, E932–E940. doi:10.1152/ajpendo.1995.268.5.e932

Semin. Cell Dev Biol. Metabolic Regulation. doi:10.1016/j.semcdb.2014.09.020

Ahmad, F., Azevedo, J. L., Cortright, R., Dohm, G. L., and Goldstein, B. J. (1997). Alterations in Skeletal Muscle Protein-Tyrosine Phosphatase Activity and Expression in Insulin-Resistant Human Obesity and Diabetes. J. Clin. Invest. 100, 449–458. doi:10.1172/JCI95552

Ahmad, F., and Goldstein, B. J. (1995). Alterations in Specific Protein-Tyrosine Phosphatases Accompany Insulin Resistance of Streptozotocin Diabetes. Am. J. Physiol. 268, E932–E940. doi:10.1152/ajpendo.1995.268.5.e932

FUNDING

This project was partially sponsored by DGAPA PAPIIT IN226719 and IN213222.

ACKNOWLEDGMENTS

Authors acknowledge “Consejo Nacional de Ciencia y Tecnología (CONACyT)” for the doctoral scholarship of GM-T and FE-H.

An, J. P., Ha, T. K., Kim, J., Cho, T. O., and Oh, W. K. (2016). Protein Tyrosine Phosphatase 1B Inhibitors from the Roots of Akebia Quinata. Phytochemistry 144, 106–112. doi:10.1016/j.phytochem.2017.08.020

Antu, K. A., Riya, M. P., Nair, A., Mishra, A., Srivastava, A. K., and Baghu, K. G. (2016). Symposco Cochinchinensis Enhances Insulin Sensitivity via the Down Regulation of Lipogenesis and Insulin Resistance in High Energy Diet Rat Model. J. Ethnopharmacol. 193, 500–509. doi:10.1016/j.jep.2016.09.050

Aranchibia-Radich, J., González-Blázquez, R., Alcalá, M., Martín-Ramos, M., Viana, M., Arribas, S., et al. (2019). Beneficial Effects of Murtilla Extract and Madeccasic Acid on Insulin Sensitivity and Endothelial Function in a Model of Diet-Induced Obesity. Sci. Rep. 9, 599. doi:10.1038/s41598-018-36555-1

Atanasov, A. G., Zotchev, S., Zotchev, S. B., Dirsch, V. M., and Supuran, C. T. (2021). The International Natural Product Sciences Taskforce, and Supuran, CNatural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug Discov. 20, 200–216. doi:10.1038/s41573-020-00114-z

Bakke, I., and Haj, F. G. (2015). Protein-tyrosine Phosphatase 1B Substrates and Metabolic Regulation. Semin. Cell Dev Biol. 37, 58–65. doi:10.1016/j.semcdb.2014.09.020

Bao, S., Wu, Y. L., Wang, X., Han, S., Cho, S., Ao, W., et al. (2020). Agriophyllum Oligosaccharides Ameliorate Hepatic Injury in Type 2 Diabetic Db/dB Mice Targeting INS-R/IRS-2/PI3K/ Akt/PPAR-y/ Glut4 Signal Pathway. J. Ethnopharmacol. 257, 112863. doi:10.1016/j.jep.2020.112863

Begmatov, N., Li, J., Bobakulov, K., Numonov, S., and Aisa, H. A. (2020). The Chemical Components of Coreopsis Tinctoria Nutt. And Their Antioxidant, Antidiabetic and Antibacterial Activities. Nat. Prod. Res. 34, 1772–1776. doi:10.1080/14786419.2018.1525377

Caesar, L. K., and Cech, N. B. (2019). Synergy and Antagonism in Natural Product Extracts: When 1 + 1 Does Not Equal 2. Nat. Prod. Rep. 36, 869–888. doi:10.1039/c9np00011a

Cai, J., Zhao, L., and Tao, W. (2015). Potent Protein Tyrosine Phosphatase 1B (PTP1B) Inhibiting Constituents from Anoectochilus Chaenaspas and Molecular Docking Studies. Pharm. Biol. 53, 1030–1034. doi:10.3109/10243979.2014.957781

Chen, H., Wertheimer, S. J., Lin, C. H., Katz, S. L., Amrein, K. E., Burn, P., et al. (1997). Protein-tyrosine Phosphatases PTP1B and Syp Are Modulators of Insulin-Simulated Translocation of GLUT4 in Transfected Rat Adipose Cells. J. Biol. Chem. 272, 8026–8031. doi:10.1016/j.jbc.2012.12.028

Choi, J. S., Ali, M. Y., Jung, H. A., Oh, S. H., Choi, R. J., and Kim, E. J. (2015). Protein Tyrosine Phosphatase 1B Inhibitory Activity of Alkaloids from Rhizoma Coptidis and Their Molecular Docking Studies. J. Ethnopharmacol. 171, 28–36. doi:10.1016/j.jep.2015.03.020

Cusi, K., Mazone, K., Osman, A., Pendergrass, M., Patti, M. E., Pratipanawatr, T., et al. (2000). Insulin Resistance Differentially Affects the PI 3-kinase- and MAP Kinase-Mediated Signaling in Human Muscle. J. Clin. Invest. 105, 311–320. doi:10.1172/JCI73535

Daske, S. S., Li, H. C., Kusari, A. B., Begum, N., and Kusari, J. (2000). Elevated Expression and Activity of Protein-Tyrosine Phosphatase 1B in Skeletal Muscle of Insulin-Resistant Type II Diabetic Goto-Kakizaki Rats. Biochem. Biophys. Res. Commun. 274, 583–589. doi:10.1016/j.bbrc.2000.03.188
de Oliveira, K. A., Moreira Gomes, M. D., Vasconcelos, R. P., de Abreu, E. S., Fortunato, R. S., Carneiro Loureiro, A. C., et al. (2019). Phytochemical Proxins Promote Inhibition of Hepatic Glucose Production and Favor Glycemic Control via the AMPK Pathway. Biomed. Pharmacother. 109, 2342–2347. doi:10.1016/j.biopha.2018.11.139

DeFronzo, R. A., Ferrannini, E., Groop, L., Henry, R. R., Herman, W. H., Holst, J. J., Ekakitie, L. I., Oyinloye, B. E., and Ajiboye, B. O. (2021). The Ameliorative Activity of Terminalia catappa and Inhibiting Redox Imbalance in a Rat Model of Diabetes Induced by High Fats. J. Funct. Foods 14, 324–336. doi:10.1016/j.jff.2014.12.003

Ha, M. T., Shrestha, S., Tran, T. H., Kim, J. A., Woo, M. H., Choi, J. S., et al. (2020). Inhibition of PTP1B by Farnesylated-2-arylbenzofuran Isolated from Morus alba Root Bark: Unraveling the Mechanism of Inhibition Based on In Vitro and In Silico Studies. Arch. Pharm. Res. 43, 961–975. doi:10.1007/s12277-020-02169-4

Han, S.-w., Shi, S.-m., Zou, Y.-x., Wang, Z.-c., Wang, Y.-q., Shi, L., et al. (2020). Chemical Constituents from Acid Hydrolyzates of Panax Quinquifolius Total Saponins and Their Inhibition Activity to α-glucosidase and Protein Tyrosine Phosphatase 1B. Chin. Herbal Medicines 12, 195–199. doi:10.1021/acs.jmedchem.2020.03.003

Hanson, R. W., and Owen, O. E. (2013). “Glucogenogenesis,” in Metabolism Vitamins And Hormones. Elsevier. 381–386. doi:10.1016/B978-0-12-378630-7.00040-2

Hao, J., Han, L., Zhang, Y., and Wang, T. (2020). Docking Studies on Potential Mechanisms for Decreasing Insulin Resistance by the Tangzhiquing Herbal Formula. Evidence-Based Complement. Altern. Med. 2020, 1–11. doi:10.1155/2020/1057648

Hashimoto, N., and Goldstein, B. J. (1992). Differential Regulation of mRNAs Encoding Three Protein-Tyrosine Phosphatases by Insulin and Activation of Protein Kinase C. Biochem. Biophys. Res. Commun. 188, 1305–1311. doi:10.1016/S0006-291X(92)91373-X

He, X. F., Chen, J. J., Li, T. Z., Zhang, X. K., Guo, Y. Q., Zhang, X. M., et al. (2020). Nineteen New Flavonol-Fatty Alcohol Hybrids with α-Glucosidase and PTP1B Dual Inhibition: One Unusual Type of Antidiabetic Constituent from Amomum Tsoa-Ko. J. Agric. Food Chem. 68, 11434–11448. doi:10.1021/acs.jafc.0c04615

Hou, J. Q., Fan, C. L., Pei, X., Zhang, P. L., Deng, F., Jiang, W. Q., et al. (2019). Psigaudiol A-J, Rearranged Meroterpenoids as Potent PTP1B Inhibitors from Psigaudia guaduensis. J. Nat. Prod. 82, 3267–3278. doi:10.1021/acs.jnatprod.9b00333

Hu, Y., Li, J., Chang, A. K., Li, Y., Tao, X., Liu, W., et al. (2021). Screening and Tissue Distribution of Protein Tyrosine Phosphatase 1B Inhibitors in Mice Following Oral Administration of Garcinia Mangostana L. Ethanolic Extract. Food Chem. 357, 129759–129768. doi:10.1016/j.foodchem.2021.129759

Huang, G. H., Lei, C., Zhu, K. X., Li, Y. L., Li, J., and Hou, A. J. (2019). Enantiomeric Pairs of Meroterpenoids from Rhododendron Fastigiatum. Chin. J. Nat. Med. 17, 963–969. doi:10.1016/S1875-5364(19)31019-0

Ighodaro, O. M., Akinyole, O. A., Ughaja, R. N., and Omotainse, S. O. (2017). Sapium Ellipticum (Hochst) Pax Ethanol Leaf Extract Modulates Glucokinase and Glucose-6-Phosphatase Activities in Streptozotocin Induced Diabetic Rats. Asian J. Trop. Biomed. 7, 544–548. doi:10.1016/j.ajtbi.2017.05.009

Jiang, H. J., Hu, W. H., Lin, K. T., Hu, S. L., Wang, F. S., Chou, C. K., et al. (2015). Glucogenogenesis, Lipogenesis, and HBV Replication Are Commonly Regulated by PGC-1α-dependent Pathway. Oncotarget 6, 7788–7803. doi:10.18632/oncotarget.3050

Ji, S., Li, Z., Song, W., Wang, Y., Liang, W., Li, K., et al. (2016). Bioactive Constituents of Glycyrrhiza Uralsenis (Licorice): Discovery of the Effective Components of a Traditional Herbal Medicine. J. Nat. Prod. 79, 281–292. doi:10.1021/acs.jnatprod.5b00877

Jiang, B.-p., Lv, Q.-y., Yang, J.-m., Le, L. L., Hu, K.-p., Xu, L.-j., et al. (2018a). Inhibition of Metabolic Disorders In Vivo and In Vitro by Main Constituent of Coreopsis Tintoria. Chin. Herbal Medicines 10, 157–168. doi:10.1016/j.jchmed.2018.03.004

Jiang, L., Numonov, S., Bobakulov, K., Qureshi, M. N., Zhao, H., and Aisa, H. A. (2015). Phytochemical Profiling and Evaluation of Pharmacological Activities of Hypericum Scabrum L. Molecules 20, 11257–11271. doi:10.3390/molecules20061125
Jiang, W., Li, L., Li, P., Bai, B., Qu, J., Hou, B., et al. (2018b). Serum Metabonomics in Hyperglycemia and Hyperinsulinemia Induced in HepG2 Cells through the Regulation of SIRT1/AMPK Pathway. J. Funct. Food. 94, 102813. doi:10.1016/j.jff.2018.10.022

Jin, D.-X., He, J.-F., Luo, X.-G., and Zhang, T.-C. (2019). Hypoglycemic Effect of Hypericum Attenuatum Choix Extracts on Type 2 Diabetes by Regulating Glucolipid Metabolism and Modulating Gut Microbiota. J. Funct. Foods 52, 479–491. doi:10.1016/j.jff.2018.11.031

Jung, H. A., Ali, M. Y., and Choi, J. S. (2016). Promising Inhibitory Effects of Magnolol from Hypericum Attenuatum Choisy on Type 2 Diabetes by Regulating Tyrosine Phosphoryse 1B. Molecules 22, 28. doi:10.3390/molecules22010028

Jung, H. J., Seong, S. H., Ali, M. Y., Min, B. S., Jung, H. A., and Choi, J. S. (2017). α-Methyl Arctoflavonocoumarin from Juniperus Chinensis Exerts Anti-diabetic Effects by Inhibiting PTP1B and Activating the PI3K/Akt Signaling Pathway in Insulin-Resistant HepG2 Cells. Arch. Pharm. Res. 40, 1403–1413. doi:10.1007/s12272-017-0992-0

Kasangana, P. B., Eid, H. M., Nachar, A., Stevanovic, T., and Haddad, P. S. (2019). Further Isolation and Identification of Anti-diabetic Principles from Root Bark of Myrtanthus Arbores P. Beauv.: The Ethyl Acetate Fraction Contains Bioactive Phenolic Compounds that Improve Liver Cell Glucose Homeostasis. J. Ethnopharmacol. 245, 112167. doi:10.1016/j.jep.2019.112167

Kasangana, P. B., Nachar, A., Eid, H. M., Stevanovic, T., and Haddad, P. S. (2018). Root-Bark Extracts of Myrtanthus Arbores P. Beauv. (Cecropiaeae) Exhibited Anti-diabetic Potential by Modulating Hepatocyte Glucose Homeostasis. J. Ethnopharmacol. 211, 117–125. doi:10.1016/j.jep.2017.09.017

Kenner, K. A., Anyanwu, E., Olefsky, J. M., and Kusari, J. (1996). Protein-tyrosine Phosphatase 1B Is a Negative Regulator of Insulin- and Insulin-like Growth Factor-I-Stimulated Signaling. J. Biol. Chem. 271, 19810–19816. doi:10.1074/jbc.271.33.19810

Khanal, P., and Patil, B. M. (2021). Integration of Network and Experimental Pharmacology to Decipher the Antidiabetic Action of Duranta Repens L. J. Integr. Med. 19, 66–77. doi:10.1016/j.jim.2020.10.003

Kim, D. H., Jung, H. A., Sohn, H. S., Kim, J. W., and Choi, J. S. (2017a). Potential of Icarin Metabolites from Epimedium Koeimanum Nakai as Anti-diabetic Therapeutic Agents. Molecules 22. doi:10.3390/molecules22060986

Kim, D. H., Lee, S., Chung, Y. W., Kim, B. M., Kim, H., Kim, K., et al. (2016). Antibioticy and Antidiabetes Effects of a Cudrania Tricuspidata Hydrophilic Fraction of Tephrosia Tinctoria Pers. In Carbohydrate Metabolism and Hypolipidemic Effects of Phellinus Linteus Mycelial Extract from Solid-State Fermentation. Biomed. Pharmacother. 84, 1205–1210. doi:10.1016/j.biopha.2016.12.022

Li, F., Li, Y., Li, Q., and Shi, X. (2020b). Eriochrysa Japonica Leaf Triterpenoid Acids Ameliorate Metabolic Syndrome in C57BL/6j Mice Fed with High-Fat Diet. Biomed. Pharmacother. 123, 109866. doi:10.1016/j.biopha.2020.109866

Li, J., Yu, H., Wang, S., Wang, W., Chen, Q., Ma, Y., et al. (2018b). Natural Products, an Important Resource for Discovery of Multitarget Drugs and Functional Food for Regulation of Hepatic Glucose Metabolism. Drug Des. Devel. Ther. 12, 121–135. doi:10.2147/DDDT.S151860

Li, J. L., Li, N., Xing, S. S., Zhang, N., Li, B. B., Chen, J. G., et al. (2017). New Neolignan from Acanthopanax Senticosus with Protein Tyrosine Phosphatase 1B Inhibitory Activity. Arch. Pharm. Res. 40, 1265–1270. doi:10.1007/s12272-015-0659-7

Li, W., Pu, Z., Yi, W., Ma, Q., Lin, Q., Zhang, G., et al. (2019b). Unusual Premylated Stilbene Derivatives with PTP1B Inhibitory Activity from Artocarpus Styracifolius. Planta Med. 85, 1263–1274. doi:10.1055/a-1013-1417

Li, X., Xia, H., Wang, L., Xia, G., Qu, Y., Shang, X., et al. (2019c). Lignans from the Twigs of Litsa Cubeba and Their Bioactivities. Molecules 24. doi:10.3390/molecules24020306

Li, Z. H., Guo, H., Xu, W. B., Ge, J., Li, X., Alimu, M., et al. (2016). Rapid Identification of Flavonoid Constituents Directly from PTP1B Inhibitive Extract of Raspberry (Rubus Idaeus L.) Leaves by HPLC-ESI-QTOF-MS-MS. J. Chromatogr. Sci. 54, 805–810. doi:10.1093/chromsci/bmu016

Lei, C., Chang, L.-B., Yang, Y., Gao, L.-X., Li, J.-Y., Li, J., et al. (2016). Macadentachalcone, a Unique Polycyclic Dimeric Chalcone from Macaranga Denticulata. Tetrahedron Lett. 57, 5475–5478. doi:10.1016/j.tetlet.2016.09.090

Li, B., Fu, R., Tan, H., Zhang, Y., Teng, W., Li, Z., et al. (2021). Characteristics of the Interaction Mechanisms of Procyanidin B1 and Procyanidin B2 with Protein Tyrosine phosphatase 1B: Analysis by Kinetics, Spectroscopy Methods and Molecular Docking. Spectrochimica Acta A: Mol. Biomol. Spectrosc. 259, 119910. doi:10.1016/j.saa.2021.119910

Lin, Y., Kuang, Y., Li, K., Wang, S., Song, W., Qiao, X., et al. (2017). Screening for Antidiabetic Activity of Icariin Metabolites from Epimedium Koreanum Nakai as Antidiabetic Agents. J. Integr. Med. 16, 66–77. doi:10.1016/j.jim.2017.09.003

Lin, Y., Kuang, Y., Li, K., Wang, S., Song, W., Qiao, X., et al. (2017). Screening for Antidiabetic Activity of Icariin Metabolites from Epimedium Koreanum Nakai as Antidiabetic Agents. J. Integr. Med. 16, 66–77. doi:10.1016/j.jim.2017.09.003

Liao, Z., Zhang, J., Liu, B., Yan, T., Xu, F., Xiao, F., et al. (2019). Polysaccharide from Cholecalciferol Inhibiting Activity of Rat Model of Type 2 Diabetes. Nutrients 11, 296. doi:10.3390/nu11020296
Rozenberg, K., and Rosenzweig, T. (2018). Sarcopoterium Spinousum Extract Improved Insulin Sensitivity in Mice Models of Glucose Intolerance and Diabetes. PLoS One 13, e0196736. doi:10.1371/journal.pone.0196736

Ryu, B., Cho, H. M., Zhang, M., Lee, B. W., Doan, T. P., Park, E. J., et al. (2021). Meroterpenoids from the Leaves of Psidium Guajava (Guava) Cultivated in Korea Using MS/MS-based Molecular Networking. Phytochemistry 186, 112723. doi:10.1016/j.phytochem.2021.112723

Saalddeen, F. S. A., Niu, Y., Wang, H., Zhou, L., Meng, L., Chen, S., et al. (2020). Improved Insulin Sensitivity in Mice Models of Glucose Intolerance and Diabetes. J. Ethnopharmacol. 261, 105117. doi:10.1016/j.jep.2020.105117

Sai, C.-M., Qin, N.-B., Jia, C.-C., Li, D.-H., Wang, K.-B., Pei, Y.-H., et al. (2016). The Potent Inhibitors of Protein Tyrosine Phosphatase 1B from the Fruits of Melaleuca Leucadendron. Phytochemistry 120, 58–64. doi:10.1016/j.phytochem.2015.09.003

Saiadeldeen, F. S. A., Niu, Y., Wang, H., Zhou, L., Meng, L., Chen, S., et al. (2020). Six New Diels-Alder Type Adducts, as Potential PTP1B Inhibitors from Cell Cultures of Morus alba. Fitoterapia 146, 104682. doi:10.1016/j.fitote.2020.104682

Saifudin, A., Lallo, S. A., and Tezuka, Y. (2016a). The Potent Inhibitors of Protein Tyrosine Phosphatase-1B in Insulin-Resistant HepG2 Cells. Molecules 26, 1452. doi:10.3390/molecules26051452

Salinas-Arellano, E., Pérez-Vásquez, A., Rivero-cruz, I., Torres-Colin, R., Tahtah, Y., Wubshet, S. G., Kongstad, K. T., Heskes, A. M., Pateraki, I., Møller, B., Pato, K. T., et al. (2016). High-resolution PTP1B Inhibition Profiling Combined with In Vivo Liquid Chromatography-High-Resolution Mass Spectrometry-solid-phase Extraction-Nuclear Magnetic Resonance Spectroscopy: Proof-Of-Concept and Antidiabetic Constituents in Crude Extract of Eremophila Lucida. Fitoterapia 110, 52–58. doi:10.1016/j.fitote.2016.02.008

Safadi, M., Allophylus Cominia Sw. On PTP1B, DPPIV, Alpha-Glucosidase and Alpha-Glucosidase Inhibitory Activities of Pueraria lobata Root Extract through Promoting Insulin Signaling by PTP1B Inhibition. Bioorg. Chem. 87, 12–15. doi:10.1016/j.bioorg.2019.02.046

Sadik, O., Chandarajoti, K., Phongphisutthinan, A., Hongsprabhas, P., and Sae-Tan, S. (2021). Water Extract of Mungbean (Vigna Radiata L.) Inhibits Protein Tyrosine Phosphatase 1B and its Mechanism of Action: An In Vivo Mechanism Study. J. Ethnopharmacol. 261, 112997. doi:10.1016/j.jep.2020.112997

Salinas-Arellano, E., Pérez-Vásquez, A., Rivero-cruz, I., Torres-Colin, R., Gonzalez-Andrade, M., Rangel-Grimaldo, M., et al. (2020). Flavonoids and Terpenoids with PTP1B Inhibitory Properties from the Infusion of Salvia Amarissimaria Ortega. Molecules 25, 1–18. doi:10.3390/molecules25153530

Saltiel, A. R., and Kahn, C. R. (2001). Insulin Signalling and the Regulation of Glucose and Lipid Metabolism. Nature 414, 799–806. doi:10.1038/414799a

Sawant, L., Singh, V. K., Deth, S., Bhaskar, A., Balachandran, J., Mundkinajeddula, D., et al. (2015). Aldose Reductase and Protein Tyrosine Phosphatase 1B Inhibitory Active Compounds from Syzygium Cumini Seeds. Molecules 20, 1176–1182. doi:10.3390/molecules20041176

Schulze, S. M., Hemmings, B. A., Niessen, M., and Tschopp, O. (2012). P3K/AKT, MAPK and AMPK Signalling: Protein Kinas in Glucose Homeostasis. Expert Rev. Mol. Med. 14, e1–e21. doi:10.1017/S1462399411002109

Selvaraj, G., Kalamursari, S., and Thirugsamabandam, R. (2016). Effect of Glycosin Alkaloid from Rhizobium atipacalata in Non-insulin Dependent Diabetic Rats and its Mechanism of Action: In Vivo and In Silico Studies. Phytochemistry 23, 632–640. doi:10.1016/j.phytochem.2016.03.004

Semaan, D. G., Igoli, J. O., Young, L., Gray, A. L., Rowan, E. G., and Marrero, E. (2018). In Vitro anti-diabetic Effect of Flavonoids and Phaeophytins from Allophylus Cominias Sw. On the Glucose Uptake Assays by HepG2, L2. 3T3-L1 and Fat Accumulation in 3T3-L1 Adipocytes. J. Ethnopharmacol. 216, 8–17. doi:10.1016/j.jep.2018.01.014

Semaan, D. G., Igoli, J. O., Young, L., Marrero, E., Gray, A. L., and Rowan, E. G. (2017). In Vitro anti-diabetic Activity of Flavonoids and Phaeophytins from Allophylus Cominias Sw. On PTP1B, DPPIV, Alpha-Glucosidase and Alpha-Amylase Enzymes. J. Ethnopharmacol. 203, 39–46. doi:10.1016/j.jethph.2017.03.023

Seo, Y. S., Shon, M. Y., Kong, K., Kang, O. H., Zhou, T., Kim, D. Y., et al. (2016). Black Ginseng Extract Exerts Anti-hyperglycemic Effect via Modulation of Glucose Metabolism in Liver and Muscle. J. Ethnopharmacol. 190, 231–240. doi:10.1016/j.jep.2016.05.060

Seong, S. H., Roy, A., Jung, H. A., Jung, H. J., and Choi, J. S. (2016). Protein Tyrosine Phosphatase 1B and a-glucosidase Inhibitory Activities of Pueraria lobata Root and its Constituents. J. Ethnopharmacol. 194, 706–716. doi:10.1016/j.jethph.2016.10.007

Sharabi, K., Tavares, C. D., Rines, A. K., and Puigserver, P. (2015). Molecular Pathophysiology of Hepatic Glucose Production. Mol. Aspects Med. 46, 21–33. doi:10.1016/j.mam.2015.09.003

Sierra, J. T., Batistela, E., Pereira, M. P., da Silva, V. C., de Sousa Junior, P. T., Andrade, C. M., et al. (2016). Combretum Lanceolatum Flowers Ethanol Extract Inhibits Hepatic Glucoseogenesis: an In Vivo Mechanism Study. Pharm. Biol. 54, 1671–1679. doi:10.3109/13880290.2015.1120321

Su, C., Duan, Y., Tian, J., Liu, J., Xie, K., Chen, D., et al. (2020). Morusalsin A-F, Six New Diels-Alder Type Adducts, as Potential PTP1B Inhibitors from Cell
Zhang, Y., Yan, L. S., Ding, Y., Cheng, B. C. Y., Luo, G., Kong, J., et al. (2020). Edgeworthia Grandis Water Extract Ameliorates Palmitate Induced Insulin Resistance by Regulating IRS1/GSK3β/FoxO1 Signaling Pathway in Human HepG2 Hepatocytes. *Front. Pharmacol.* 10, 1666. doi:10.3389/fphar.2019.01666

Zhao, B. T., Le, D. D., Nguyen, P. H., Ali, M. Y., Choi, J. S., Min, B. S., et al. (2016). Plantadepate A, a Tricyclic Monoterpen Zwitterionic Guanidium, and Related Derivatives from the Seeds of Plantago Depressa. *J. Nat. Prod.* 78, 2822–2826. doi:10.1021/acs.jnatprod.5b00368

Zhou, J., Wu, Z., Oyewalulu, B. O., Coker, H. A. B., Odukoya, O. A., Yao, G., et al. (2019). Protein Tyrosine Phosphatase 1B Inhibitory Iridoids from Psydrax Subcordata. *J. Nat. Prod.* 82, 2916–2924. doi:10.1021/acs.jnatprod.9b00770

Zheng, X. M., Meng, F. W., Geng, F., Qi, M., Luo, C., Yang, L., et al. (2015). Plantadepate A, a Tricyclic Monoterpene Zwitterionic Guanidium, and Related Derivatives from the Seeds of Plantago Depressa. *J. Nat. Prod.* 78, 2822–2826. doi:10.1021/acs.jnatprod.5b00368

Zhou, X., Wang, L. L., Tang, W. J., and Tang, B. (2021). Astragaloside IV Inhibits Protein Tyrosine Phosphatase 1B and Improves Insulin Resistance in Insulin-Resistant HepG2 Cells and Triglyceride Accumulation in Oleic Acid (OA)-treated HepG2 Cells. *J. Ethnopharmacol.* 268, 113556. doi:10.1016/j.jep.2020.113556

Zhu, Y., Huang, J. J., Zhang, X. X., Yan, Y., Yin, X. W., Ping, G., et al. (2018). Qing Gan Zi Shen Tang Alleviates Adipose Tissue Dysfunction with Up-Regulation of SIRT1 in Spontaneously Hypertensive Rat. *Biomed. Pharmacother.* 105, 246–255. doi:10.1016/j.biopha.2018.05.022

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Mata-Torres, Andrade-Cetto and Espinoza-Hernández. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.