Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Management of infections in critically ill returning travellers in the intensive care unit—I: considerations on infection control and transmission of resistance

Hakan Leblebicioglu, Alfonso J. Rodriguez-Morales, Gian Maria Rossolini, Rogelio López-Vélez, Jean-Ralph Zahar, Jordi Rello on behalf of ESGCIP and ESGITM

ARTICLE INFO

Keywords:
Resistance
Infection control
Traveller
ICU
Migrant

SUMMARY

Depending on their destinations and activities, international travellers are at a significant risk of contracting both communicable and non-communicable diseases. On return to their home countries, such travellers may require intensive care. The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), and more recently Ebola haemorrhagic fever, has highlighted the risks. Other well-known communicable pathogens such as methicillin-resistant Staphylococcus aureus and carbapenemase-producing Enterobacteriaceae have been described previously. However, malaria remains by far the most important cause of death. The issues related to imported antibiotic resistance and protection from highly contagious diseases are reviewed here. Surveillance strategies based on epidemiological data (country visited, duration of travel, and time elapsed since return) and clinical syndromes, together with systematic search policies, are usually mandatory to limit the risk of an outbreak. Single-bed hospital rooms and isolation according to symptoms should be the rule while awaiting laboratory test results. Because person-to-person contact is the main route of transmission, healthcare workers should implement specific prevention strategies.

© 2016 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Imported antibiotic resistance

Infections caused by multidrug-resistant (MDR) pathogens are typically associated with increases in morbidity, mortality, and healthcare-associated costs, and represent an increasing public health challenge of global dimensions. The combination of a progressive loss of antibiotic efficacy due to the emergence and dissemination of resistance and the slow rates of discovery and development of new antibiotics active against MDR pathogens has led to what has been termed the 'antibiotic resistance crisis'. The situation has been further complicated recently by the emergence and dissemination of strains that remain susceptible to only a few antibiotics (extensively drug-resistant (XDR) strains), which are difficult to treat.

The most challenging MDR pathogens include (1) methicillin-resistant Staphylococcus aureus (MRSA), (2) vancomycin-resistant enterococci (VRE), (3) Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs) or carbapenemases (CPE), (4) XDR Pseudomonas aeruginosa that remain susceptible only to polymyxins, and (5) carbapenem-resistant Acinetobacter (CRA). Among these, CPE and CRA are currently the most problematic due to their XDR phenotypes, their propensity for epidemic diffusion in...
healthcare settings, and the high mortality rates associated with invasive infections.7

In principle, any of these pathogens can be encountered, either as colonizers or as infecting agents, in travellers returning from areas of endemicity and in patients repatriated from foreign healthcare facilities. Acquisition may be the consequence of exposure to contaminated food or environments, of close contact with colonized individuals, or of admission to hospitals and exposure to medical practices either for unexpected reasons (e.g., trauma, acute diseases) or for medical tourism (e.g., specialized surgery, organ transplantation). As has been clearly documented, the transmission of MRSA has increased with the growth of international travel, resulting in either asymptomatic colonization or clinically significant MRSA infections.3,4 Some evidence is also available for the international dissemination of VRE via transfer/repatriation of patients from hospitals located in endemic areas.5 Concerning Gram-negative organisms, the impact of international travel has been firmly established in the dissemination of MDR Enterobacteriaceae, including high-risk clones producing ESBLs (especially enzymes of the CTX-M type) and/or carbapenemases of various types (e.g., KPC, OXA-48, NDM, VIM).6,7 The risk of the spread of MDR strains of Enterobacteriaceae in this situation includes not only Escherichia coli, Klebsiella spp, and Enterobacter spp but also classical enterobacterial pathogens such as Salmonella enterica and Shigella spp, with evidence of imported cases of typhoid fever and shigellosis caused by MDR strains.8,9 The transmission of MDR Acinetobacter has been documented following the international transfer of patients from intensive care units (ICUs) in countries with high-level endemicity,10 and the repatriation of evacuees involved in military operations in endemic areas.11 Less evidence is available for the travel-related dissemination of MDR/XDR P. aeruginosa strains, but this is clearly a possibility following the transfer of colonized patients from ICUs where these strains are endemic or are causing outbreaks.12

The admission to the ICU of patients colonized or infected by MDR/XDR pathogens is a matter of concern, since it may be followed by cross-infections and outbreaks in the ICU setting unless suitable infection control practices are enforced immediately. Moreover, infections caused by MDR/XDR pathogens may require different antimicrobial treatments from those routinely used in the ICU, which are based on the local epidemiology; this may result in inappropriate empiric treatment and thus increased morbidity and mortality. Therefore, the possibility of carriage or infection by an MDR/XDR pathogen should always be considered for critically ill returning travellers admitted to the ICU. A risk assessment should be performed, considering the area of provenance, the history of the patient, and the presence of additional risk factors for carriage or infection by similar resistant pathogens.2,12

The epidemiology of MDR/XDR pathogens may vary according to geographical area. The proportion of MRSA among S. aureus isolates remains very high in some European countries, the USA, Latin America, and the Far East, but is considerably lower in other European countries such as the Netherlands and the Scandinavian countries.13 ESBL-producing Enterobacteriaceae are now disseminated worldwide, with very high rates detected among ICU patients in Latin America, the Asia-Pacific region, and the Middle East.14 For their part, CPE have achieved a notable level of endemicity in some areas of Europe (e.g., Greece and Italy), the Middle East (e.g., Turkey, Israel), South America (e.g., Colombia), and China.15 Travellers/patients from areas of high endemicity for MDR/XDR pathogens have a higher risk of exposure to these pathogens, and the possibility of being infected or colonized by these agents at the time of repatriation should always be considered. When consulting sources of information regarding resistance and endemicity (such as ProMED-mail, http://www.promedmail.org), clinicians should consider that (1) for several countries (especially low-income settings) epidemiological information is scarce or lacking, and (2) the epidemiology of MDR/XDR pathogens can change rapidly. So this information should be considered partial and should be updated regularly.

Exposure to medical practices in facilities from endemic areas, either unanticipated or scheduled, is an additional risk factor for carriage/infection by MDR/XDR pathogens.16

Recommendations for ICUs, based on the current evidence, include the following:

1. Carrying out a risk assessment for carriage/infection by MDR/XDR pathogens for all ICU admissions of patients returning from international travel or transferred from foreign hospitals.
2. Enforcing infection control precautions upon admission for all patients returning from international travel or transferred from foreign hospitals with known risk factors for carriage/infection by MDR/XDR pathogens. The infection control precautions should cover the various types of MDR/XDR pathogens for which a risk was assessed, and should be kept in place until carriage/infection by MDR/XDR pathogens has been ruled out by the proactive surveillance and clinical microbiology diagnostic workup.
3. Carrying out proactive surveillance for MDR/XDR pathogens for which a risk was assessed by culture and/or molecular methods.

2. Protection from highly contagious disease in critically ill returning travellers in the ICU

2.1. Introduction to potentially life-threatening travel-associated infectious diseases

Depending on their destinations and activities, international travellers are at a significant risk of contracting both communicable and non-communicable diseases.17 The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and more recently Ebola haemorrhagic fever, has highlighted the risks. However, other well-known communicable pathogens such as MRSAs and CPE19,20 have been described previously. ICU patients, because of the severity of illness, the workload, and the antibiotic selection pressure, are important potential reservoirs of dangerous microorganisms. The most important challenges for ICU practitioners are first to identify admissions with the highest risk of communicable disease, and second to rapidly implement preventive measures in order to avoid nosocomial transmission.

Surveillance strategies for the early detection of unusual infectious disease events should be the rule. Syndromic surveillance can help to reduce the identification time. All patients transferred from hospitals in high-risk countries (Table 1) should be considered as potential carriers of MDR or highly drug-resistant microorganisms. All of these patients should be screened for rectal carriage at admission and a few days after any antibiotic therapy.21 While awaiting screening results, the patient should be hospitalized in a single-bed room. Contact and body fluid precautions should be added. All patients with fever and clinical or radiographic evidence of pneumonia or acute respiratory distress syndrome, and with a history of travel from countries in or near the Arabian Peninsula (Bahrain, Iraq, Iran, Israel, the West Bank and Gaza, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Syria, the United Arab Emirates, and Yemen) within 14 days before symptom onset, or close contact with a symptomatic traveller who developed fever and acute respiratory illness within 14 days after travelling from countries in the region, should be considered as potentially infected by MERS-CoV.22 Viral haemorrhagic fever
should be suspected in selected patients coming from Sub-Saharan Africa with fever and bleeding disorders, depending on the geographical origin and local epidemiological situation. A general syndromic approach to tropical infections in the ICU is described in Table 2.

Although many imported infectious diseases may require ICU admission, the most frequent ones are relatively few in number. In a descriptive analysis of acute and potentially life-threatening tropical diseases among 82,825 ill Western travellers reported to GeoSentinel from 1996 to 2011, 3655 patients (4.4%) with 13 diseases were identified; falciparum malaria (76.9%), enteric fever (18.1%), and leptospirosis (2.4%) were the most frequent. Ninety-one percent of patients had fever. The median time from travel to presentation was 16 days. Thirteen (0.4%) patients died: 10 with falciparum malaria, two with malaria, and one with severe dengue. Falciparum malaria was primarily acquired in West Africa, enteric fever in the Indian subcontinent, and leptospirosis, scrub typhus, and murine typhus in Southeast Asia.

2.2. Transmission risks of highly contagious tropical infectious diseases associated with healthcare settings

Emergency departments at general hospitals are the first units to deal with an unknown highly contagious tropical infectious disease and they should be prepared for this eventuality (a heavy price was paid during the SARS outbreak). In an endemic area, MERS-CoV infection is more likely to be acquired in healthcare facilities than in the community: in the 2014 outbreak in Jeddah, Saudi Arabia, more than four out of five exposures were at healthcare facilities, mainly due to poor and insufficient isolation measures at admission.

Patients with suspected highly contagious tropical infectious diseases should be placed directly in an emergency department isolation room (if available) and should be examined and assessed as soon as possible. Standard precautions and cough and respiratory etiquette should be applied systematically. During admission, these patients should avoid any contact with other patients, and unprotected healthcare workers should avoid contact with them. If possible, point-of-care bedside laboratory tests should be used for sampling, or all analyses should be done in a biosafety level 3/4 laboratory. Samples should be inactivated (with formalin) before testing in a routine laboratory. Transfer to the ICU or to a high-level isolation unit must be carried out in a secure manner.

Many organisms are present in the ICU, but only a few are involved in person-to-person transmission. An overview of the precautions recommended for selected tropical infections and conditions is shown in Table 3.

Table 1	Distribution of the most common organisms by region and reservoir			
Infectious agents	Geographical origin	Reservoir	Main type of transmission	Main type of protection
Viruses				
MERS-CoV	Middle East	Dromedary camels	Droplet contact	Droplet precautions
SARS-CoV	South China	Chinese horseshoe bats	Droplet contact, airborne	Droplet precautions
H7N9	Eastern China, Hong Kong, Taiwan, Malaysia	Poultry, wild birds	Droplet?	Droplet precautions
Haemorrhagic fever			Droplet	Droplet precautions
Ebola	Africa, Guinea, Sierra Leone	Bats	Droplet, contact	Droplet precautions
Bacteria				
Carbapenemase-producing Entrobacteriaceae	Southern Asia, India, Middle Eastern Countries; Maghreb countries, Israel, Romania, Italy, Turkey, Greece	Human	Human	Contact precautions
XDR-TB and MDR-TB	Russia, eastern Europe, southern Africa	Human	Human	Airborne precautions
Meningococci			Airborne	Airborne precautions
MERS-CoV	Middle East respiratory coronavirus; SARS-CoV, severe acute respiratory syndrome coronavirus; XDR-TB, extensively drug-resistant tuberculosis; MDR-TB, multidrug-resistant tuberculosis.			

Table 2	Syndromic approach to tropical infections in the ICU		
Syndrome	Diseases		
Fever and toxic appearance	Dengue fever, malaria, typhoid fever, early shigellosis, leptospirosis, and anicteric hepatitis. The presence of a haemorrhagic rash may indicate arboviral, rickettsial, and meningococcal aetiologies. Aetiologies of VHF that have been known to cause person-to-person transmission are Lassa virus, Ebola virus, Marburg virus, and Crimean-Congo haemorrhagic fever virus.		
Fever and rash	Schistosomiasis (Katayama fever or acute neurological sequelae of myelitis or encephalitis), visceral larval migrans, tropical pulmonary eosinophilia, acute fascioliasis, acute trichinosis		
Fever and thrombocytopenia	Streptococcus pneumoniae, Legionella pneumophila, bacterial sepsis with other pathogens, tuberculosis, Burkholderia pseudomallei (melioidosis), plague, hantaplasmosis, malaria, typhoid fever, leptospirosis, scrub typhus, hantaviruses, coronavirus, highly pathogenic avian influenza A (H5N1)		
Fever with eosinophilia			
Severe pneumonia or ARDS	Pulmonary renal syndrome	Falciparum malaria, leptospirosis, hantavirus infection, scrub typhus, severe pneumonia	Falciparum malaria, leptospirosis, scrub typhus, hepatitis E or A with fulminant hepatic failure and the hepatorenal syndrome, yellow fever virus
Pulmonary renal syndrome	Falciparum malaria, leptospirosis, scrub typhus, hepatitis E or A with fulminant hepatic failure and the hepatorenal syndrome, yellow fever virus		
Hepatorenal dysfunction	Appendicitis, cholecystitis, diverticulitis, perforated peptic ulcer, enteric fever, amoebic liver abscess		
Acute abdomen	Anoebic (Entamoeba histolytica) and bacillary (Shigella spp, especially S. dysenteriae and S. flexneri), Campylobacter jejuni, non-typhoidal Salmonella spp, Yersinia enteroxocolitica, enteroinvasive Escherichia coli, and enterohaemorrhagic E. coli (EHEC)		
Dyentery and severe gastrointestinal fluid losses	Cerebral malaria, meningitis, typhoid fever, viral encephalitis (Japanese encephalitis virus, Rift Valley fever virus, Murray Valley encephalitis virus, West Nile virus, St. Louis encephalitis virus, rabies virus, Nipah virus). Eosinophilic meningoencephalitis (Angiostrongylus cantonensis, Gnathostoma spinigerum, migrating ascarids, and schistosomiasis)		

ICU, intensive care unit; VHF, viral haemorrhagic fever; ARDS, acute respiratory distress syndrome.
Infection/condition	Precautions	Comments
Chikungunya	Standard	Not transmitted from person to person, except rarely by transfusion and for West Nile virus by organ transplant, breast milk, or transplacently install screens in windows and doors in endemic areas; use DEET-containing mosquito repellents and clothing to cover extremities
Dengue virus	Standard	Install screens in windows and doors in endemic areas; use DEET-containing mosquito repellents and clothing to cover extremities
Echinococcosis (hydatidosis)	Standard	Not transmitted from person to person, except rarely by transfusion and for West Nile virus by organ transplant, breast milk, or transplacently install screens in windows and doors in endemic areas; use DEET-containing mosquito repellents and clothing to cover extremities
Encephalitis, arthropod-borne viral	Standard	Not transmitted from person to person, except rarely by transfusion and for West Nile virus by organ transplant, breast milk, or transplacently install screens in windows and doors in endemic areas; use DEET-containing mosquito repellents and clothing to cover extremities
Japanese encephalitis	Standard	Not transmitted from person to person, except rarely by transfusion and for West Nile virus by organ transplant, breast milk, or transplacently install screens in windows and doors in endemic areas; use DEET-containing mosquito repellents and clothing to cover extremities
Central European tick-borne virus	Standard	Not transmitted from person to person, except rarely by transfusion and for West Nile virus by organ transplant, breast milk, or transplacently install screens in windows and doors in endemic areas; use DEET-containing mosquito repellents and clothing to cover extremities
Strongyloidiasis	Standard	Not transmitted from person to person, except through transfusion and through a failure to follow standard precautions during patient care
Meningitis: meningococcal disease	Standard	Not transmitted from person to person, except through transfusion and through a failure to follow standard precautions during patient care
Rabies	Standard	Not transmitted from person to person, except through transfusion and through a failure to follow standard precautions during patient care
Relapsing fever	Standard	Not transmitted from person to person, except through transfusion and through a failure to follow standard precautions during patient care
Schistosomiasis (bilharziasis)	Standard	Not transmitted from person to person, except through transfusion and through a failure to follow standard precautions during patient care
Strongyloidiasis	Standard	Not transmitted from person to person, except through transfusion and through a failure to follow standard precautions during patient care
Viral haemorrhagic fevers	Standard	Not transmitted from person to person, except through transfusion and through a failure to follow standard precautions during patient care
Rift Valley fever virus	Standard	Not transmitted from person to person, except through transfusion and through a failure to follow standard precautions during patient care
Viral haemorrhagic fevers (2)	Standard	Not transmitted from person to person, except through transfusion and through a failure to follow standard precautions during patient care
Kyasanur Forest disease virus	High-level isolation unit	Not transmitted from person to person, except through transfusion and through a failure to follow standard precautions during patient care
Omsk haemorrhagic fever virus	Standard	Not transmitted from person to person, except through transfusion and through a failure to follow standard precautions during patient care
Crimean-Congo haemorrhagic fever virus	Standard	Not transmitted from person to person, except through transfusion and through a failure to follow standard precautions during patient care
Ebola virus	Standard	Not transmitted from person to person, except through transfusion and through a failure to follow standard precautions during patient care
Marburg virus	Standard	Not transmitted from person to person, except through transfusion and through a failure to follow standard precautions during patient care
Lassa fever virus	Standard	Not transmitted from person to person, except through transfusion and through a failure to follow standard precautions during patient care
Junin virus (Argentine haemorrhagic fever)	Standard	Not transmitted from person to person, except through transfusion and through a failure to follow standard precautions during patient care
Guanarito virus (Venezuelan haemorrhagic fever)	Standard	Not transmitted from person to person, except through transfusion and through a failure to follow standard precautions during patient care
Machupo virus (Bolivian haemorrhagic fever)	Standard	Not transmitted from person to person, except through transfusion and through a failure to follow standard precautions during patient care
Sabiá virus (Brazilian haemorrhagic fever)	Standard	Not transmitted from person to person, except through transfusion and through a failure to follow standard precautions during patient care

SARS-CoV, severe acute respiratory syndrome coronavirus; MERS-CoV, Middle East respiratory syndrome coronavirus; DEET, N,N-diethyl-meta-toluamide; PPE, personal protective equipment.

* Standard precautions include hand hygiene, use of PPE, prevention of needlestick injuries, environment cleaning, and the appropriate handling of waste. Droplet precautions include standard precautions and the use of a single room, surgical masks for healthcare workers when working within 1–2 m of the patient, and a surgical mask on the patient if transport is necessary. Airborne precautions include standard precautions and a single monitored negative-pressure room, closed door, special high-filtration particulate respirators (N95 or FFP2 mask) for healthcare workers, and movement of the patient, wearing a surgical mask, only when essential.
ICUs attend patients who are severely ill and in some way uncompromised because of underlying diseases and the use of invasive medical devices and technology in their care. Consequently, person-to-person transmission of pathogens may be frequent. Intensive care therapy should be performed in collaboration with the infectious disease team. The unit should be subjected to negative pressure if available. The duration of manual ventilation during resuscitation procedures should be kept to a minimum. Non-invasive positive pressure ventilation should be used instead of facial mask aerosol therapy when possible. Endotracheal intubation and cardiopulmonary resuscitation have been associated with increased SARS-CoV transmission among physicians and nurses in the ICU. Endotracheal intubation should be performed with rapid sequence induction by the most skilled person available, who should wear personal protective equipment. Meticulous infection control measures must be followed.

Invasive procedures should be avoided unless absolutely essential. Chest radiography, ultrasonography, bronchoscopy, and gastrointestinal endoscopy should be performed at the bedside, avoiding moving the patient unnecessarily; if not possible, these procedures should be performed in an air-controlled environment. Patients who require dialysis at their bedside should receive either peritoneal dialysis or haemodialysis, and dedicated haemodialysis machines and decontaminated dialysate should be designated as infectious waste.

Detailed tutorials and guidelines have been produced by the US Centers for Disease Control and Prevention (CDC), the European Centre for Disease Prevention and Control (ECDC) and the European Network for Infectious Diseases (EUNID). There are also other guidelines focused on specific diseases such as Ebola virus disease (CDC) and Crimean-Congo haemorrhagic fever. New definitions of sepsis have different implications when applied in low-income and middle-income countries and a new paradigm for management should be developed. A research agenda highlighting the differences in approach between high-income and poor-resource settings is required.

Funding: None.

Conflict of interest: The authors have no conflicts of interest to report.

JR and HL designed the manuscript: ARM and GMR prepared the section on emerging resistance. RLV and JRZ wrote the section on infection control. JR wrote the final version. The final version was approved by all authors.

References

1. World Health Organization. Antimicrobial resistance: global report onsurveillance, 2014. Geneva: WHO: 2014.
2. Rossolini GM, Arena F, Pecile P, Pollini S. Update on the antibiotic resistance crisis. Curr Opin Pharmacol 2014;18:56–60.
3. Nurjadi D, Friedrich-Janicke B, Schafer J, Van Genderen PJ, Goorhuis A, Perignon A, et al. Skin and soft tissue infections in intercontinental travellers and the import of multi-resistant Staphylococcus aureus to Europe. Clin Microbiol Infect 2015;21(S6):567.e1–10.
4. Zhou YP, Wilder-Smith A, Hsu LY. The role of international travel in the spread of methicillin-resistant Staphylococcus aureus. J Travel Med 2014;21:272–81.
5. Kaiser AM, Schultz C, Kruthoff GJ, Debetos-Dosennkopf Y, Vandenbroucke-Grauls C. Carriage of resistant microorganisms in repatriates from foreign hospitals to the Netherlands. Clin Microbiol Infect 2004;10:972–9.
6. Kuehnzl E, Jaeger V, Frei R, Neumayr A, DeCrom S, Haller S, et al. High colonization rates of extended-spectrum beta-lactamase (ESBL)–producing Escherichia coli in Swiss travellers to South Asia—a prospective observational multicentre cohort study looking at epidemiology, microbiology and risk factors. BMC Infect Dis 2014;14:528.
7. Ostholm-Balkhed A, Tarnberg M, Nilsson M, Nilsson LE, Hanberger H, Hallgren A. Travel-associated faecal colonization with ESBL-producing Enterobacteriaceae: incidence and risk factors. J Antimicrob Chemother 2013;68:2144–53.
8. van der Bij JK, Pitout JD. The role of international travel in the worldwide spread of multidrug-resistant Enterobacteriaceae. J Antimicrob Chemother 2012;67:1990–100.
9. Patel TA, Armstrong M, Morris-Jones SD, Wright SG, Doherty T. Imported enteric fever: case series from the Hospital for Tropical Diseases, London, United Kingdom. Am J Trop Med Hyg 2010;82:1121–6.
10. Bogaerts P, Naas T, Wybo I, Baurain C, Soetens O, Pierard D, et al. Outbreak of infection by carbapenem-resistant Acinetobacter baumannii producing the carbapenemase OXA-58 in a Swiss hospital. Clin Microbiol 2006;44:1189–92.
11. Jones A, Morgan D, Walsh A, Turton J, Livermore D, Pitt T, et al. Importation of multidrug-resistant Acinetobacter spp infections with casualties from Iraq. Lancet Infect Dis 2006;6:317–8.
12. Memish ZA, Assi U, Almasri M, Rosdy H, Hathout H, Kaase M, et al. Molecular characterization of carbapenemase production among Gram-negative bacteria in Saudi Arabia. Microb Drug Resist 2015;21(3):307–14.
13. Stefani S, Chung DR, Lindsay JA, Friedrich AW, Kearns AM, Westh H, et al. Mecillinam-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonisation of typing methods. Int J Antimicrob Agents 2012;39:273–82.
14. Bertrand X, Dowzicky MJ. Antimicrobial susceptibility among Gram-negative isolates collected from intensive care units in North America, Europe, the Asia-Pacific Rim, Latin America, the Middle East, and Africa between 2004 and 2009 as part of the Tigecycline Evaluation and Surveillance Trial. Clin Ther 2012;34:124–37.
15. Muñoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Corman MC, et al. The clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 2013;13:785–96.
16. Syafinaz AM, Nur Ain NZ, Nadzirah SN, Fatimah JS, Shahram A, Nasir MD. Staphylococcus aureus nasal carriers among medical students in a medical school in Malaysia. Med J Malaysia 2014;69:283–8.
17. Kotlyar S, Rice BT. Fever in the returning traveler. Emerg Med Clin North Am 2013;31:927–44.
18. Zhou YP, Wilder-Smith A, Hsu LY. The role of international travel in the spread of methicillin-resistant Staphylococcus aureus. J Travel Med 2014;21(4):258.
19. Molton JS, Tambyah PA, Ang BS, Ling ML, Fisher DA. The global spread of healthcare-associated multidrug-resistant bacteria: a perspective from Asia. Clin Infect Dis 2013;56:1310–8.
20. Tängdén T, Giske CC. Global dissemination of extensively drug-resistant carbapenem-producing Enterobacteriaceae: clinical perspectives on detection, treatment and infection control. J Intern Med 2015;277:501–12.
21. Lepelletier D, Berthollet P, Lucet JC, Fourrier S, Jarlier V, Grandbastien B. National Working Group. French recommendations for the prevention of ‘extensively drug-resistant bacteria’ (eXDR) cross-transmission. J Hosp Infect 2015;90:186–95.
22. Al-Tawfiq JA, Zulama A, Memish ZA. Coronavirus: severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus in travelers. Curr Opin Infect Dis 2014;27:411–7.
23. Kothari VM, Kainad DR, Bichile LS. Tropical Infections in the ICU. J Assoc Physicians India 2006;54:291–8.
24. Jensonius M, Han PV, Schlagenhauf P, Schwartz E, Parola P, Castelli F, et al., for the GeoSentinel Surveillance Network. Acute and potentially life-threatening tropical diseases in Western travelers—a GeoSentinel multicenter study, 1996–2011. Am J Trop Med Hyg 2013;88:397–404.
25. Oboho IK, Tomczyk-SM, Al-Asmari AM, Banjar AA, Al-Mughi H, Aloraini MS, et al. 2014 MERS-CoV outbreak in Jeddah—a link to health care facilities. N Engl J Med 2015;372:846–54.
26. Siegel JD, Rhinehart E, Jackson M, Chiarello L, the Healthcare Infection Control Practices Advisory Committee. 2007 Guideline for isolation precautions: preventing transmission of infectious agents in healthcare settings. Am J Infect Control 2007;35:10 Suppl 2):565–164.
27. European Centre for Disease Prevention and Control. Safe use of personal protective equipment in the treatment of infectious diseases of high consequence. Stockholm: ECDC; 2014. Available at: http://ecdc.europa.eu/en/publications/Publications/safe-use-ofppe.pdf (accessed May 12, 2016).
28. Bouaziz P, Puro V, Fusco FM, Bannister B, Schilling S, Pollin P, et al., for the EUNID Working Group. Infection control in the management of highly pathogenic infectious diseases. Consensus of the European Network of Infectious Disease. Lancet Infect Dis 2009;9:301–11.
29. US Centers for Disease Control and Prevention. Infection prevention and control recommendations for hospitalized patients under investigation (PIUs) for Ebola virus disease (EVD) in U.S. hospitals. Atlanta, GA: CDC; Available at: http://www.cdc.gov/vhf/ebola/healthcare-us/hospitals/infection-control.html (accessed May 12, 2016).
20. Hellebichligo H, Bodur H, Dokuzoguz B, Alidni N, Guner R, Koçak I, et al. Case management and supportive treatment for patients with Crimean-Congo hemorrhagic fever. Vector Borne Zoonotic Dis 2012;12:803–13.
31. Rello J, Hellebichligo H. Sepsis definitions in middle-income and low-income countries: need for a different paradigm. Int J Infect Dis 2016. in press.