Case Report

Pemphigus Vulgaris with Solitary Toxic Thyroid Nodule

Mostafa Alfishawy,1,2 Karim Anwar,2 Amira Elbendary,3,4 and Ahmed Daoud2

1 Department of Medicine, Icahn School of Medicine, Queens General Hospital-Mount Sinai Hospital, New York City, NY 11432, USA
2 Department of Internal Medicine, Kasr Al-Ainy University Hospital, Cairo University, Cairo 11559, Egypt
3 Dermatology Department, Kasr Al-Ainy University Hospital, Cairo University, Cairo 11559, Egypt
4 Ackerman Academy of Dermatopathology, New York City, NY 10016, USA

Correspondence should be addressed to Amira Elbendary; aelbendary@residents.kasralainy.edu.eg

Received 27 July 2014; Accepted 3 September 2014; Published 21 September 2014

Academic Editor: Hidetoshi Ikeda

Copyright © 2014 Mostafa Alfishawy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Pemphigus vulgaris is an autoimmune vesiculobullous disease, affecting the skin and mucous membranes. It is reported to be associated with other autoimmune diseases including autoimmune thyroid diseases. However, we report herein a case of pemphigus vulgaris associated with autonomous toxic nodule.

Case Presentation. A 51-year-old woman was evaluated for blisters and erosions that develop on her trunk, face, and extremities, with a five-year history of progressively enlarging neck mass, and a past medical history of pemphigus vulgaris seven years ago. The condition was associated with palpitation, dyspnea, and heat intolerance. Thyroid function tests and thyroid scan were compatible with the diagnosis of thyrotoxicosis due to autonomous toxic nodule. Exacerbation of pemphigus vulgaris was proved by skin biopsy from the patient which revealed histologic picture of pemphigus vulgaris.

Conclusion. Autoimmune thyroid diseases are reported to associate pemphigus vulgaris. To our knowledge, this case is the first in the English literature to report association between pemphigus vulgaris and autonomous toxic nodule and highlights the possibility of occurrence of pemphigus vulgaris with a nonautoimmune thyroid disease raising the question: is it just a coincidence or is there an explanation for the occurrence of both conditions together?

1. **Introduction**

Pemphigus is a term applied to a group of autoimmune chronic, sometimes fatal, blistering disorders characterized clinically by flaccid blisters that arise on skin and mucous membranes [1]. It is reported to be associated with other autoimmune diseases as myasthenia gravis [2], Sjogren’s disease, rheumatoid arthritis [3], and autoimmune diseases of the thyroid [4–7] and accordingly when a pemphigus patient is thyrotoxic, the expected cause would be Graves’ disease, which is one of the autoimmune thyroid diseases. Herein we report a case of pemphigus vulgaris associated with thyrotoxicosis due to autonomous toxic nodule.

2. **Case Presentation**

A 51-year-old woman was evaluated for blistering eruption on her face, mouth, trunk, and extremities that develop over one week; they were painful, and she was not able to swallow from the pain. There was no pruritus. She was diagnosed as having pemphigus vulgaris for seven years that was controlled on steroids with a history of occasional exacerbations that required dose adjustment of corticosteroids. Her past medical history included a five-year history of slowly progressively enlarging swelling at frontal neck. The swelling moves up and down with deglutition. The swelling was not associated with palpitation, dyspnea, weight loss with increased appetite, nervousness, and heat intolerance. There is no association of diarrhea, polyuria, protrusion of eyes, diplopia, photosensitivity, or blurring of vision. There is no history of fever or trauma, and she denied presence of other swellings in her body.

On physical examination the patient was noted to be irritable. She had swelling in lower part of frontal neck measuring 5 × 8 cm, which was homogenous and firm in consistency. The swelling moves up and down with deglutition. The skin overlying the mass was normal, and the mass was not...
Table 1: The alteration in thyroid function tests and thyroid autoantibodies in patients with pemphigus vulgaris.

Reference	Number of patients	Thyroid abnormality (%)	Anti-TPO (%)
Pitoia et al. [4]	15	Goiter, subclinical hypothyroidism (6.7%)	40%
		Hashimoto's thyroiditis (6.7%)	
Ansar et al. [5]	22	None	22.7%
Michailidou et al. [6]	129	Thyroid disease, not specified (2.6%)	Not stated
Daneshpazhooh et al. [7]	75	Autoimmune thyrotoxicosis, Hashimoto (2.7%)	16%
		Antithyroglobulin (9.3%)	
Leshem et al. [13]	110	Autoimmune thyroid disease, not specified (3.6%)	3.6%
Kavala et al. [14]	80	Hashimoto's thyroiditis (9%)	9%
		Thyroid disease, not specified (16%)	

TPO: thyroid peroxidase.

3. Discussion

Pemphigus vulgaris is an immunobullous disease, where autoantibodies target antigens on cell surface keratinocytes that function in cell to cell adhesion within the epidermis. This is reflected clinically by the flaccid blisters and erosions on the skin and mucous membranes [1].

The association of autoimmune diseases in the same patient has been reported, with a tendency that approaches 25% [8]. Pemphigus vulgaris was reported to be associated with autoimmune diseases including rheumatoid arthritis, Sjogren's syndrome [3], myasthenia gravis [2], and autoimmune thyroid diseases, namely, Graves' disease and Hashimoto's thyroiditis [4–7].

Alteration in thyroid function tests and thyroid autoantibodies were found in pemphigus vulgaris with variable significant results (Table 1).

This predisposition is believed to be genetically determined; Firooz et al. [9] found that first degree relatives of pemphigus vulgaris patients had a threefold increase in the frequency of thyroid disease; in addition, HLA DR3 and HLA D4 were found in high frequency in pemphigus vulgaris and Graves' disease patients [10], emphasizing this theory.

Graves' disease, multinodular goiter, solitary autonomous nodule, and thyroiditis are different causes of hyperthyroidism. Toxic multinodular goiter is presumed to be autoimmune disorder where thyroid stimulating immunoglobulins bind and activate receptors for thyroid stimulating hormone on the thyroid, whereas in case of solitary toxic nodule the role of iodine deficiency and activating mutations in the thyroid stimulating hormone receptor (TSHr) and Gs alpha gene with consequent marked expression of growth factors and their receptors have been implicated [11].

Although previous studies showed the association between autoimmune diseases and so pemphigus vulgaris with autoimmune thyroid diseases, to the best of our knowledge, this is the first report of pemphigus vulgaris to be associated with autonomous toxic nodule. Kahana et al. [12] reported a case of a 44-year-old female patient who presented with pemphigus foliaceus coexisting with toxic nodular goiter. This report raises awareness regarding association between pemphigus vulgaris and a nonautoimmune thyroid disease.
4. Conclusion

Pemphigus is an immunobullous disease, reported to be associated with other autoimmune diseases. We reported a case of pemphigus vulgaris and solitary toxic nodule. There is only one previously reported similar case of pemphigus foliaceus and toxic multinodular goiter. To our knowledge, this is the first case to be reported in the English literature and it highlights the possibility of occurrence of pemphigus vulgaris with a nonautoimmune thyroid disease, although it seems most probably an incidental finding, but what remains is raising the following question: is there a relation between pemphigus and solitary toxic nodule or is it just a coincidence?

Consent

Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review.

Conflict of Interests

The authors declare that they have no competing interests.

References

[1] F. Femiano, “Pemphigus vulgaris: recent advances in our understanding of its pathogenesis,” *Minerva Stomatologica*, vol. 56, no. 4, pp. 215–223, 2007.

[2] W.-K. Huh, J. Tada, W. Fujimoto et al., “Thyroid gland tumour, pemphigus foliaceus and myasthenia gravis in the daughter of a woman with myasthenia gravis,” *Clinical and Experimental Dermatology*, vol. 26, no. 6, pp. 504–506, 2001.

[3] L. A. Diaz, R. W. Glamb, and J. Silva Jr., “A syndrome of multiple immune autoreactivity. A breakdown in immune regulation,” *Archives of Dermatology*, vol. 116, no. 1, pp. 77–79, 1980.

[4] F. Pitoia, D. Moncet, R. Glorio et al., “Prevalence of thyroid autoimmunity in patients with pemphigus vulgaris,” *Medicina*, vol. 65, no. 4, pp. 307–310, 2005.

[5] A. Ansar, M. Farshchian, S. Farahnaki, and M. Farshchian, “Thyroid autoimmunity in Iranian patients with pemphigus vulgaris,” *Journal of the European Academy of Dermatology and Venereology*, vol. 23, no. 6, pp. 719–720, 2009.

[6] E. Z. Michailidou, M. A. Belazi, A. K. Markopoulos, M. I. Tsatsos, O. N. Mourellou, and D. Z. Antoniades, “Epidemiologic survey of pemphigus vulgaris with oral manifestations in Northern Greece: retrospective study of 129 patients,” *International Journal of Dermatology*, vol. 46, no. 4, pp. 356–361, 2007.

[7] M. Daneshpazhooh, J. Behjati, P. Hashemi et al., “Thyroid autoimmunity and pemphigus vulgaris: is there a significant association?” *Journal of the American Academy of Dermatology*, vol. 62, no. 2, pp. 349–351, 2010.

[8] P. M. Mohan and T. C. Ramesh, “Multiple autoimmune syndrome,” *Indian Journal of Dermatology, Venereology and Leprology*, vol. 69, no. 4, pp. 298–299, 2003.

[9] A. Firooz, A. Mazhar, and A. R. Ahmed, “Prevalence of autoimmune diseases in the family members of patients with pemphigus vulgaris,” *Journal of the American Academy of Dermatology*, vol. 31, no. 3, pp. 434–437, 1994.

[10] L. Bartalena, F. Bogazzi, L. Chiovato, M. L. Tanda, and E. Martino, “Graves’ hyperthyroidism and ophthalmopathy associated with pemphigus vulgaris: onset of thyroid autoimmune disease during chronic low-dose glucocorticoid therapy,” *Journal of Endocrinological Investigation*, vol. 20, no. 3, pp. 155–157, 1997.

[11] M. Derwahl, D. Manole, A. Sobke, and M. Broecker, “Pathogenesis of toxic thyroid adenomas and nodules: relevance of activating mutations in the TSH-receptor and Gs-alpha gene, the possible role of iodine deficiency and secondary and TSH-independent molecular mechanisms,” *Experimental and Clinical Endocrinology and Diabetes*, vol. 106, supplement 4, pp. S6–S9, 1998.

[12] M. Kahana, A. Levy, M. Schewach-Millet, Z. Eisenstein, M. Ronnen, and A. Feinstein, “Pemphigus foliaceus coexisting with toxic, multinodular goiter,” *International Journal of Dermatology*, vol. 25, no. 7, pp. 465–466, 1986.

[13] Y. A. Leshem, V. Katzenelson, G. Yosipovitch, M. David, and D. Mimouni, “Autoimmune diseases in patients with pemphigus and their first-degree relatives,” *International Journal of Dermatology*, vol. 50, no. 7, pp. 827–831, 2011.

[14] M. Kavala, E. Kural, E. Kocaturk, I. Zindanci, Z. Turkoglu, and B. Can, “The evaluation of thyroid diseases in patients with pemphigus vulgaris,” *The Scientific World Journal*, vol. 2012, Article ID 146897, 4 pages, 2012.