Microstructural observations of fracture-filling goethite vein along the Kerajang Fault Zone in the Rengali Province of eastern India

Takafumi YAMAMOTO*,**, Jun-ichi ANDO*, Naotaka TOMIOKA**, Kaushik DAS*, Gautam GHOSH*** and Sankar BOSE***

*Department of Earth and Planetary Systems Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
**Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, 200 Monobe Otsu, Nankoku, Kochi 783-8502, Japan
***Centre for Advanced Study, Department of Geology, Presidency University, 86/1 College Street, Kolkata 700073, India

INTRODUCTION

‘Geoﬂuid’ has recently attracted the attention of geoscientists because it drastically changes the physical and chemical properties of rocks and affects various geological phenomena, including earthquake activity, magma generation, and ore deposit formation (e.g., Yardley and Bodnar, 2014; Kawamoto et al., 2015). The microstructures and chemical compositions of vein-filling minerals, such as calcite and quartz, are particularly well known as indicators of the ﬂuid characteristics, deformation kinematics, and paleo-stress ﬁeld (e.g., Nishikawa and Take-shita, 2000; Bons et al., 2012; Okamoto, 2014). Here, we report on a fracture-filling vein solely composed of goethite, present in quartzite bands along the Kerajang Fault Zone (KFZ) in the Rengali Province (RP) of eastern India. Microstructural observations and chemical analyses were carried out, primarily using electron microscopy, to determine the formation process of the goethite vein.

Glikson et al. (2008) reported on a fracture-filling goethite vein in the Hickman Crater in Western Australia, which is interpreted to have been formed by an impact-triggered cratering and subsequent hydrothermal process. The researchers considered the goethite to have originated from Fe leaching in groundwater from the neighboring formation. However, they did not describe the details of microstructures of the vein. The present study focuses on the formation process of a fracture-filling goethite vein.
GEOLOGICAL BACKGROUND

The RP is a unique terrane located at the eastern Indian cratonic margin, sandwiched between the Archean Singhbhum craton (SC) and the Proterozoic Eastern Ghats Belt (EGB) (Mahalik, 1994; Crowe et al., 2003) (Fig. 1a). The occurrence of deep–crustal rocks alongside middle–to shallow–crustal rocks on the present–day erosional surface suggests a very complex history of structural and metamorphic evolution. The deep–crustal rocks include granulite, whereas the middle–to shallow–crustal rocks include medium–to low–grade metasedimentary to metaigneous rocks. The deep–crustal granulites preserve a Neoarchean history of tectonothermal evolution through orogenesis (e.g., Bose et al., 2016). The pressure–temperature (P–T) histories of mafic and pelitic granulites in the central gneissic belt of the RP were apparently different, which are high P–T conditions (10–12 kbar, 860 °C) and mid–crustal heating up to 730 °C at 6 kbar, respectively (Bose et al., 2015). Such a complex metamorphic evolution suggests the juxtaposition of crustal sections of different depths. This E–W–trending belt is bounded by major fault systems and separated from the northern SC by the E–W–trending Barkot shear zone and the southern EGB by another E–W–trending KFZ (Mahalik, 1994).

The overall structural evolution is interpreted as the product of a crustal–scale flower structure in transpressional tectonics (Ghosh et al., 2016). Based on the structural geometry, the kinematic analysis, and in situ monazite U–Th–total Pb ages, the different crustal sections of the RP have been interpreted to have juxtaposed during the ca. 500 Ma tectonic event (Ghosh et al., 2016).

The present study was carried out in the central part of the RP, where the amphibolite–to granulite–grade central gneissic belt is flanked by two gneisschist facies supracrustal belts, termed the Northern and Southern Supracrustal Belts (NSB and SSB) by Ghosh et al. (2016). The boundary between the SSB and the southerly placed EGB is marked by the KFZ. The immediate southern part of the KFZ, however, is now concealed by the undeformed Phanerozoic sedimentary basin fill (Gondwana Basin). Samples for the present study were collected from the SSB, where the rock types include quartzite, muscovite schist, and calc–schist. Fracture–filling goethite veins with widths of a few centimeters occur in quartzite (Figs. 1b and 1c), which is developed mostly parallel to the preexisting foliation, forming networks in some places. In a locality southeast (~ 20 km) of the studied area, close to the southernmost boundary of the KFZ, thick foliation–parallel brecciated zones filled by black minerals with widths on the order of 10 cm, which are likely to be thick goethite veins, are also present in the same quartzite unit. This indicates that fracture–filling goethite veins occur widely along the southern margin of the KFZ.

Figure 1. (a) Geological map of the study area around Rengali, showing the major lithological units, shear/fault zones, foliation traces, and sampling location (modified after Ghosh et al., 2016). KFZ, Kerajang Fault Zone; SSB, Southern Supracrustal Belt; CGB, Central Gneissic Belt; NSB, Northern Supracrustal Belt; BSZ, Barkot Shear Zone; RSZ, Riamol Shear Zone; AFZ, Akul Fault Zone; SRS, South Riamol Splay; NRS, North Riamol Splay. (b) Outcrop photograph of dark fracture–filling goethite vein in the weakly metamorphosed quartzite. (c) Rock chip of the quartzite, including the fracture–filling goethite vein.
ANALYTICAL METHODS

Polished thin sections were observed using an optical microscope. Backscattered electron imaging (BSI) and chemical composition mapping of the vein in one of the polished thin sections were carried out using an electron probe microanalyzer (EPMA; JEOL JXA8200) at the Natural Science Center for Basic Research and Development (N-BARD) of Hiroshima University. Raman spectroscopy was carried out on a Renishaw inVia Raman Reflex microscope equipped with a Leica DMLM microscope at Hiroshima University. The Raman spectra were excited with a 532-nm LD laser and identified by reference to Hanesch (2009). Thin foils for transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) were prepared using a focused-ion-beam (FIB) machine (Hitachi SMI4050) at the Kochi Institute for Core Sample Research (KOCHI) of the Japan Agency for Marine-Earth Science and Technology. TEM and STEM observations were conducted using the JEOL JEM-2010 at N-BARD and the JEOL JEM-ARM200F at KOCHI, operated at an accelerating voltage of 200 kV. STEM was also used for high-angle annular dark-field (HAADF) imaging, in which the contrast is sensitive to the average Z number, and energy dispersive X-ray spectroscopy (EDS) analysis.

RESULTS

The microstructures inside the vein are symmetrically arranged with respect to the center of the vein. One half of the vein, from the vein wall to the center, was divided into domains A and B, based primarily on differences in the transmitted colors and grain sizes (Fig. 2a). All of the Raman spectra obtained from the domains A and B were identified as goethite, based on the combination of the strongest band at 398 cm$^{-1}$ and sharp bands around 244, 300, 483, 555, 687, 1000, and 1320 cm$^{-1}$ (Fig. 3). Therefore, the difference between the domains A and B are not due to mineralogical compositions, but due to the microstructural differences of goethite, primarily depending on their grain sizes. The grain sizes of the goethite in the domains A and B are several hundred nanometers to micrometers and ten to several tens of nanometers, respectively.

In addition to the variation of goethite grain size mentioned above, the domains A and B show different characteristics, in terms of their chemical compositions,
the degrees of shape- and lattice-preferred orientations (SPO and LPO), and porosities. The domain A exhibits alternation of layers with a few hundred micrometers thick (Fig. 2b), and the Al contents of each layer are different (Fig. 2c). According to the TEM results, the layer in contact with the vein wall has a higher Al content (Fig. 2c) and its goethite grains are acicular in shape and several hundred nanometers to micrometers in size (Fig. 4a). These goethite grains exhibit the strong SPO and LPO of [020] and [110], as indicated by the selected-area electron diffraction (SAED) pattern (Fig. 4a). On the other hand, the goethite grains in the layer with a lower Al content are larger (several micrometers in size) (Fig. 4b). These goethite grains exhibit a weak LPO of [021], as indicated by the SAED pattern (Fig. 4b).

The domain B exhibits a lower Fe content than do-

Figure 4. TEM (a), (b), (d), and (f) and STEM (c) and (e) images of goethite grains. These thin foils were made from the areas numbered 1 for (a), 2 for (b), and 3 for (c) to (f) in Figure 2b. The SAED patterns in (a) and (d), which were collected from the areas indicated by the circles in each image, can be identified as goethite (orthorhombic space group Pbnm, \(a = 4.5979(2) \text{ Å}, b = 9.9510(5) \text{ Å}, c = 3.0178(1) \text{ Å}, Yang et al., 2006\). The electron diffraction pattern in (b) was collected without a selected-area aperture and also identified as goethite. The broken lines in (c) to (f) show the boundaries of the concentric zoning. The solid arrows in (c) and (d) indicate the direction perpendicular to the zoning plane. The large circles in the background of (c) and (d) are holes in the carbon support film. The dark-contrast dots in the HAADF images represent the presence of lighter elements or pores. (a) Bright-field (BF) image of acicular-shaped goethite grains. The SAED pattern shows that goethite grains develop the strong LPO of [020] and [110]. (b) BF image of goethite grains with weak LPO of [021]. The grain size of the goethite is greater than those in (b). (c) HAADF image of the concentric zoning. The NNE-SSW trend lines are artifacts created by the Ga ion beam during the FIB preparation. (d) BF image of the same area shown in (c). The SAED pattern shows that goethite grains develop the weak LPO of [110]. (e) Magnified HAADF image at the boundary of the concentric zoning. The porous area with larger goethite grains (on the left-hand side in the figure) and the densely packed area with smaller goethite grains (on the right-hand side) are adjacent to each other. (f) Magnified BF image of the same area shown in (e). The solid lines represent the trace of the individual goethite grains.
Microstructural observations suggest that the studied vein was formed from a fluid by fracture-filling process. The formation processes of both domains A and B can be explained as follows. The grain size distribution of the goethite in the domain A was influenced by the Al content of the original fluid. The Al content of the smaller goethite grains, initially crystallized along the wall, was much higher than that of the larger goethite grains crystallized later (Figs. 2c, 4a, and 4b). This might have resulted from inhibition of crystal growth by the substitution of Al^{3+} for Fe^{3+} (Bazilevskaya et al., 2012). These goethite grains developed the LPO and SPO, which are considered to be formed by geometrical selection due to anisotropic growth kinetics and competitive growth during the nucleation and growth stages (e.g., Sunagawa, 2005).

The concentric zoning with grain-size grading in the domain B, which is similar to that of chalcedony (e.g., Taijing and Sunagawa, 1994; Heaney and Davis, 1995), can be explained by crystallization resulting from multiple stages of interaction of fluid with different chemical compositions. The microstructural similarity with chalcedony suggests two possible formation processes: precipitation from a colloidal fluid with electrophoretic force (Taijing and Sunagawa, 1994) or a supersaturation-nucleation-depletion cycle (Heaney and Davis, 1995; French et al., 2013). In the former case, our microstructural observation implies that smaller colloidal particles of goethite in the Fe-rich fluid are more easily attracted to the wall by electrophoretic force than larger particles are. In the latter case, intense nucleation of goethite grains in the Fe-rich supersaturated fluid, i.e., heterogeneous nucleation, initially occurs at numerous sites along the interfacial boundary between the fluid and the vein wall. This phenomenon probably prevents the growth of individual goethite grains and decreases the saturation level through the formation of numerous goethite nucleation sites, which subsequently promotes less nucleation and more grain growth to larger sizes. At present, we cannot pinpoint which of these two processes is responsible for the formation observed.

The source of fracture-filling Fe-rich fluid is intriguing because the goethite vein observed was developed in quartzite. One possible source of the Fe-rich fluid is the Banded Iron Formation (BIF), which is the same situation of the goethite vein found in the Hickman Crater (Glikson et al., 2008). The BIF-bearing Iron Ore Group is widely distributed in the southern part of the SC, presently bounded at the north of the RP (e.g., Saha, 1994). A recent study on gravity anomalies suggested that the cratonic crust, one of the main components of which is the BIF, exists below the surface distribution of the RP (Mandal et al., 2015). These facts suggest that the BIF may be the source of the Fe-rich fluid. However, geochemical data, such as trace elements and isotopic compositions, are needed to confirm the exact origin of the Fe-rich fluid.

The goethite vein is presently found only along the KFZ in the studied area. The preliminary results of the vein orientation measurements suggest that the veins are mostly parallel to the E-W strike direction of the associated quartzites and the boundary fault (KFZ) between the RP and the Gondwana basin. Bose et al. (2016) and Ghosh et al. (2016) have demonstrated that the KFZ was reactivated during the opening-up of the Phanerozoic.
Gondwana basin and at relatively shallower depth. Considering these findings, we conclude that the formation of the studied goethite vein may have been related to the latest tectonic activity of the KFZ in the RP. More detailed analyses of the vein orientations may provide a better understanding of the relation between the goethite vein formation and tectonic activity around the KFZ.

ACKNOWLEDGMENTS

The authors thank Y. Shibata of N–BARD at Hiroshima University for his support of the EPMA measurements. We are grateful to H. Hidaka of Nagoya University for his support of the Raman spectroscopy analysis. A. Dasgupta of the Government General Degree College and Y. Hayasaka of Hiroshima University are also appreciated for their assistance in the field work. We also thank two reviewers for their critical comments and suggestions that helped to improve this manuscript. This study was carried out as part of the DST–JSPS Bilateral Research Program (DST/INT/JSPS/P–190/2014).

REFERENCES

Bazilevskaya, E., Archibald, D.D. and Martinez, C.E. (2012) Rate constants and mechanisms for the crystallization of Al nano-goethite under environmentally relevant conditions. Geochimica et Cosmochimica Acta, 88, 167–182.

Bons, P.D., Elburg, M.A. and Gomez-Rivas, E. (2012) A review of the formation of tectonic veins and their microstructures. Journal of Structural Geology, 43, 33-62.

Bose, S., Guha, S., Ghosh, G., Das, K. and Mukhopadhyay, J. (2015) Tectonic juxtaposition of crust and continental growth during orogenesis: Example from the Rengali Province, eastern India. Geoscience Frontiers, 6, 537-555.

Bose, S., Das, K., Kimura, K., Hidaka, H., Dasgupta, A., Ghosh, G. and Mukhopadhyay, J. (2016) Neoarchean tectonothermal imprints in the Rengali Province, eastern India and their implications on the growth of Singhbhum Craton: Evidence from zircon U–Pb SHRIMP data. Journal of Metamorphic Geology, 34, 743–764.

Crowe, W.A., Nash, C.R., Harris, L.B., Leeming, P.M. and Rankin, L.R. (2003) The geology of the Rengali Province: Implications for the tectonic development of northern Orissa, India. Journal of Asian Earth Sciences, 21, 697-710.

French, M.W., Worden, R.H. and Lee, D.R. (2013) Electron backscatter diffraction investigation of length-fast chalcedony in agate: Implications for agate genesis and growth mechanisms. Geofluids, 13, 32-44.

Ghosh, G., Bose, S., Das, K., Dasgupta, A., Yamamoto, T., Hayasaka, Y., Chakrabarti, K. and Mukhopadhyay, J. (2016) Transmission and juxtaposition of middle crust over upper crust forming a crustal scale flower structure: Insight from structural, fabric, and kinematic studies from the Rengali Province, eastern India. Journal of Structural Geology, 83, 156–179.

Glikson, A.Y., Hickman, A.H. and Vickers, J. (2008) Hickman Crater, Ophthalmia Range, Western Australia: Evidence supporting a meteorite impact origin. Australian Journal of Earth Sciences, 55, 1107–1117.

Hanesch, M. (2009) Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophysical Journal International, 177, 941–948.

Heaney, P.J. and Davis, A.M. (1995) Observation and origin of self-organized textures in agates. Science, 269, 1562-1565.

Kawamoto, T., Nakajima, J., Reynard, B. and Toh, H. (2015) Special issue “Geofluid processes in subduction zones and mantle dynamics”: Earth, Planets and Space, 67, 1–4.

Mahalik, N.K. (1994) Geology of the contact between the Eastern Ghats Belt and North Orissa Craton, India. Journal of the Geological Society of India, 44, 41-51.

Mandal, A., Gupta, S., Mohanty, W.K. and Misra, S. (2015) Sub-surface structure of a craton-mobile belt interface: Evidence from geological and gravity studies across the Rengali Province-Eastern Ghats Belt boundary, eastern India. Tectonophysics, 662, 140–152.

Nishikawa, O. and Takeshita, T. (2000) Progressive lattice misorientation and microstructural development in quartz veins deformed under subgreenschist conditions. Journal of Structural Geology, 22, 259–276.

Okamoto, A. (2014) Vein texture: a window for fluid dynamics in the crust (in Japanese with English abstract). Japanese Magazine of Mineralogical and Petrological Sciences, 43, 25–29.

Saha, A.K. (1994) Crustal evolution of Singhbhum-North Orissa, India (Memoir No. 27). pp. 341, Geological Society of India, Bangalore.

Sunagawa, I. (2005) Crystals: growth, morphology and perfection. pp. 295, Cambridge University Press, New York.

Tajing, L. and Sunagawa, I. (1994) Texture formation of agate in geode. Mineralogical Journal, 17, 53–76.

Yang, H., Lu, R., Downs, R.T. and Costin, G. (2006) Goethite, α-FeO(OH), from single-crystal data. Acta Crystallographica Section E Structure Reports Online, 62, i250–i252.

Yardley, B.W.D. and Bodnar, R.J. (2014) Fluids in the continental crust. Geochemical Perspectives, 3, 1–127.

Manuscript received November 13, 2016
Manuscript accepted April 5, 2017
Manuscript handled by M. Satish-Kumar