High-Quality Draft Genome Sequence of *Xanthomonas arboricola* pv. *juglandis* CPBF 1521, Isolated from Leaves of a Symptomatic Walnut Tree in Portugal without a Past of Phytosanitary Treatment

Camila Fernandes,a,b,c Jochen Blom,d Joël F. Pothier,* Fernando Tavaresa,c

a CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Microbial Diversity and Evolution Group, Universidade do Porto, Vairão, Portugal
b Unidade Estratégica de Investigação e Serviços de Sistemas Agrários e Florestais e Sanidade Vegetal, Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
c Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Porto, Portugal
d Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
e Environmental Genomics and Systems Biology Research Group, Institute for Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland

ABSTRACT Here, we report the draft genome sequence of *Xanthomonas arboricola* pv. *juglandis* CPBF 1521, isolated from symptomatic leaves of an ornamental walnut in a public site in Portugal without any record of phytosanitary treatment. This isolate may constitute a genomic reference of a wild-type strain in comparative genomics studies.

Xanthomonas arboricola pv. *juglandis* (Gammaproteobacteria class, Xanthomonadales order, Xanthomonadaceae family) is a threatening and important pathogen of the principal commercial nut trees Persian walnut and English walnut (*Juglans regia* L.) (1, 2). Diseases caused by *X. arboricola* pv. *juglandis* have been demonstrated by the development of several symptoms, namely the presence of necrotic lesions on leaves and fruits, the presence of external apical necrosis near the blossom end evolving into fruit necrosis, and the presence of vertical cankers, brown to black exudates, and distortions on trunks (3–5). Not surprisingly, *X. arboricola* pv. *juglandis* is responsible for increasing losses in walnut production resulting in a negative economic impact for walnut crop regions in many countries worldwide (1, 2, 6).

The present announcement reports the whole-genome sequence of a *X. arboricola* pv. *juglandis* strain, CPBF 1521, isolated in October 2014 from the leaves of an ornamental *J. regia* specimen in a public site in Loures, Portugal, showing typical symptoms of walnut bacterial blight, and for which no phytosanitary treatments were applied. This set of features suggests that this strain has not been exposed to selective pressures caused by phytosanitary treatments, such as copper-based compound sprays, making this genomic data set particularly interesting for comparative genomics studies.

X. arboricola pv. *juglandis* CPBF 1521 was obtained from infected leaf samples as previously described (7) and was grown on M2 medium (yeast extract, 2 g liter\(^{-1}\); Bacto peptone, 5 g liter\(^{-1}\); NaCl, 5 g liter\(^{-1}\); KH\(_2\)PO\(_4\), 0.45 g liter\(^{-1}\); and Na\(_2\)HPO\(_4\) 12H\(_2\)O, 2.39 g liter\(^{-1}\)) at 28°C for 48 h with shaking (100 rpm). The EZNA bacterial DNA purification kit (Omega Bio-Tek, Norcross, GA) was used for DNA extraction. Standard genomic library preparation and sequencing was carried out with at the GATC Biotech AG (Konstanz, Germany) using an Illumina HiSeq platform with 2 × 150-bp paired-end reads. Raw sequence data with approximately 10,113,730 reads were assembled.

Received 10 August 2018 Accepted 2 October 2018 Published 25 October 2018 Citation Fernandes C, Blom J, Pothier JF, Tavares F. 2018. High-quality draft genome sequence of *Xanthomonas arboricola* pv. *juglandis* CPBF 1521, isolated from leaves of a symptomatic walnut tree in Portugal without a past of phytosanitary treatment. *Microbiol Resour Announc* 7:e00887-18. https://doi.org/10.1128/MRA.00887-18.
REFERENCES

1. Frutos D. 2010. Bacterial diseases of walnut and hazelnut and genetic resources. J Plant Pathol 92:579–585.

2. Lamichhane JR. 2014. *Xanthomonas arboricola* diseases of stone fruit, almond, and walnut trees: progress toward understanding and management. Plant Dis 98:1600–1610. https://doi.org/10.1094/PDIS-08-14-0831-FE.

3. Smith RE, Smith CO, Ramsey HJ. 1912. Walnut culture in California: walnut blight. California Agricultural Experiments Station Publications, Berkeley, CA.

4. Moragrega C, Ozaktan H. 2010. Apical necrosis of Persian (English) walnut (Juglans regia): an update. J Plant Pathol 92:567–571.

5. Haji A, Meyer D, Delort F, Guillaume J, Brin C, Manceau C. 2010. Identification of a genetic lineage within *Xanthomonas arboricola* pv. juglandis as the causal agent of vertical oozing canker of Persian (English) walnut in France. Plant Pathol 59:1014–1022. https://doi.org/10.1111/j.1365-3059.2010.02362.x.

6. Moragrega C, Matias J, Aleta N, Montesinos E, Rovira M. 2011. Apical necrosis and premature drop of Persian (English) walnut fruit caused by *Xanthomonas arboricola* pv. juglandis. Plant Dis 95:1565–1570. https://doi.org/10.1094/PDIS-03-11-0259.

7. Fernandes C, Albuquerque P, Sousa R, Cruz L, Tavares F. 2017. Multiple DNA markers for identification of *Xanthomonas arboricola* pv. juglandis isolates and its direct detection in plant samples. Plant Dis 101:858–865. https://doi.org/10.1094/PDIS-10-16-1481-RE.

8. Chevreux B, Wetter T, Suhai S. 1999. Genome sequence assembly using trace tracks and additional sequence information, p 45–56. In Winterger E (ed), Computer science and biology. Proceedings of the German Conference on Bioinformatics, GCB 99, Hannover, Germany.

9. Cesbron S, Briand M, Essakhi S, Gironde S, Boureau T, Manceau C, Fischer-Le Saux M, Jacques MA. 2015. Comparative genomics of pathogenic and nonpathogenic strains of *Xanthomonas arboricola* unveil molecular and evolutionary events linked to pathoadaptation. Front Plant Sci 6:1126. https://doi.org/10.3389/fpls.2015.01126.

10. Darling AC, Mau B, Blattner FR, Perna NT. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403. https://doi.org/10.1101/gr.2289704.

11. Darling AE, Mau B, Perna NT. 2010. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147. https://doi.org/10.1371/journal.pone.0011147.

12. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153.

13. Blom J, Kreis J, Spång S, Juhre T, Bertelli C, Ernst C, Goesmann A. 2016. EDGAR 2.0: an enhanced software platform for comparative gene con-
tent analyses. Nucleic Acids Res 44:W22–W28. https://doi.org/10.1093/nar/gkw255.

14. Higuera G, González-Escalona N, Véliz C, Vera F, Romero J. 2015. Draft genome sequences of four Xanthomonas arboricola pv. juglandis strains associated with walnut blight in Chile. Genome Announc 3:e01160-15. https://doi.org/10.1128/genomeA.01160-15.

15. Pereira UP, Gouran H, Nascimento R, Adaskaveg JE, Goulart LR, Dandekar AM. 2015. Complete genome sequence of Xanthomonas arboricola pv. juglandis 417, a copper-resistant strain isolated from Juglans regia L. Genome Announc 3:e01126 – e01115. https://doi.org/10.1128/genomeA.01126-15.

16. Fu B, Chen Q, Wei M, Zhu J, Zou L, Li G, Wang L. 2018. Complete genome sequence of Xanthomonas arboricola pv. juglandis strain DW3F3, isolated from a Juglans regia L. bacterial blighted fruitlet. Genome Announc 6:e00023-18. https://doi.org/10.1128/genomeA.00023-18.