Mechanisms orchestrating the enzymatic activity and cellular functions of deubiquitinases

Benjamin Estavoyer1,4, Clémence Messmer1,4, Mohamed Echbicheb©, Christopher E. Rudd3,3, Eric Milot3,4©, and El Bachir Affar1,3,*

From the 1Laboratory for Cell Signaling and Cancer, and 2Laboratory for Cell Signaling in Immunotherapy, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada; 3Department of Medicine, University of Montréal, Montréal, Québec, Canada; 4Laboratory for Malignant Hematopoiesis and Epigenetic Regulation of Gene Expression, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada

Edited by George DeMartino

Deubiquitinases (DUBs) are required for the reverse reaction of ubiquitination and act as major regulators of ubiquitin signaling processes. Emerging evidence suggests that these enzymes are regulated at multiple levels in order to ensure proper and timely substrate targeting and to prevent the adverse consequences of promiscuous deubiquitination. The importance of DUB regulation is highlighted by disease-associated mutations that inhibit or activate DUBs, deregulating their ability to coordinate cellular processes. Here, we describe the diverse mechanisms governing protein stability, enzymatic activity, and function of DUBs. In particular, we outline how DUBs are regulated by their protein domains and interacting partners. Intramolecular interactions can promote protein stability of DUBs, influence their subcellular localization, and/or modulate their enzymatic activity. Remarkably, these intramolecular interactions can induce self-deubiquitination to counteract DUB ubiquitination by cognate E3 ubiquitin ligases. In addition to intramolecular interactions, DUBs can also oligomerize and interact with a wide variety of cellular proteins, thereby forming obligate or facultative complexes that regulate their enzymatic activity and function. The importance of signaling and post-translational modifications in the integrated control of DUB function will also be discussed. While several DUBs are described with respect to the multiple layers of their regulation, the tumor suppressor BAP1 will be outlined as a model enzyme whose localization, stability, enzymatic activity, and substrate recognition are highly orchestrated by interacting partners and post-translational modifications.

The attachment of ubiquitin (Ub) moieties to proteins is a highly conserved post-translational modification in eukaryotes. Protein ubiquitination is catalyzed by E1 Ub-activating, E2 Ub-conjugating, and E3 Ub-ligating enzymes, culminating in the modification of internal lysines or N-terminal residues of proteins (1–4). Ligation of Ub to proteins regulates different signaling pathways and cellular processes by inducing changes in protein function or targeting proteins for proteasomal degradation (4–9). Deubiquitinases (DUBs) constitute a superfamily of proteases that participate in the timely reversal of protein ubiquitination, thus controlling the functional outcomes of this post-translational modification (10–15). In mammals, DUBs can be classified into seven major families based on sequence conservation of the catalytic domain (Fig. 1). These include the Ub carboxy-terminal hydrolases (UCH), the Ub-specific proteases (USP), the Machado–Josephin domain-containing proteases, the ovarian tumor proteases (OTU), the JAMM/MPN+ metalloproteases (JAMM), the motif interacting with Ub–containing novel DUB family, and the recently discovered Zinc finger-containing Ub peptidase 1 (12). Most DUB enzymes are cysteine proteases, which are characterized by a catalytic triad containing, notably, cysteine and histidine residues. Their mechanism of catalysis involves a nucleophilic attack mediated by the cysteine thiol side chain, which results in the cleavage of the peptide bonds. On the other hand, the JAMM/MPN+ family of DUBs are metalloproteases that use a zinc atom coordinated by histidine and aspartic acid to ensure catalysis and Ub removal (10–15).

In addition to representing a substantial class of proteins in higher eukaryotes, DUBs are also found in viruses, bacteria, and yeast (12, 16–28). Studies in eukaryotes indicate that DUBs regulate a wide spectrum of cellular processes including protein quality control, membrane receptor signaling, endocytosis, DNA-dependent processes, cell cycle regulation, differentiation, cell survival, and cell death (10–15). Moreover, these enzymes have emerged as key factors in the cellular responses that orchestrate host–pathogen interactions (16–30).

Several mechanisms of control ensure the spatiotemporal deubiquitination of substrates and prevent unrestrained DUB catalysis. This includes mechanisms influencing gene expression levels, protein abundance, folding, and tissue distribution (10–15). Moreover, DUBs contain a variety of domains and motifs that could be post-translationally modified to regulate their subcellular localization, conformation, protein–protein interaction, and enzymatic activity (10–15).

In this review, we outline regulatory mechanisms responsible for controlling DUB stability, localization, and enzymatic

‡ These authors contributed equally to this work.
* For correspondence: El Bachir Affar, el.bachir.affar@umontreal.ca.

© Laboratory for Cell Signaling and Cancer, and 2Laboratory for Cell Signaling in Immunotherapy, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada; 3Department of Medicine, University of Montréal, Montréal, Québec, Canada; 4Laboratory for Malignant Hematopoiesis and Epigenetic Regulation of Gene Expression, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada

From the 1Laboratory for Cell Signaling and Cancer, and 2Laboratory for Cell Signaling in Immunotherapy, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada; 3Department of Medicine, University of Montréal, Montréal, Québec, Canada; 4Laboratory for Malignant Hematopoiesis and Epigenetic Regulation of Gene Expression, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada

Edited by George DeMartino

Deubiquitinases (DUBs) are required for the reverse reaction of ubiquitination and act as major regulators of ubiquitin signaling processes. Emerging evidence suggests that these enzymes are regulated at multiple levels in order to ensure proper and timely substrate targeting and to prevent the adverse consequences of promiscuous deubiquitination. The importance of DUB regulation is highlighted by disease-associated mutations that inhibit or activate DUBs, deregulating their ability to coordinate cellular processes. Here, we describe the diverse mechanisms governing protein stability, enzymatic activity, and function of DUBs. In particular, we outline how DUBs are regulated by their protein domains and interacting partners. Intramolecular interactions can promote protein stability of DUBs, influence their subcellular localization, and/or modulate their enzymatic activity. Remarkably, these intramolecular interactions can induce self-deubiquitination to counteract DUB ubiquitination by cognate E3 ubiquitin ligases. In addition to intramolecular interactions, DUBs can also oligomerize and interact with a wide variety of cellular proteins, thereby forming obligate or facultative complexes that regulate their enzymatic activity and function. The importance of signaling and post-translational modifications in the integrated control of DUB function will also be discussed. While several DUBs are described with respect to the multiple layers of their regulation, the tumor suppressor BAP1 will be outlined as a model enzyme whose localization, stability, enzymatic activity, and substrate recognition are highly orchestrated by interacting partners and post-translational modifications.

The attachment of ubiquitin (Ub) moieties to proteins is a highly conserved post-translational modification in eukaryotes. Protein ubiquitination is catalyzed by E1 Ub-activating, E2 Ub-conjugating, and E3 Ub-ligating enzymes, culminating in the modification of internal lysines or N-terminal residues of proteins (1–4). Ligation of Ub to proteins regulates different signaling pathways and cellular processes by inducing changes in protein function or targeting proteins for proteasomal degradation (4–9). Deubiquitinases (DUBs) constitute a superfamily of proteases that participate in the timely reversal of protein ubiquitination, thus controlling the functional outcomes of this post-translational modification (10–15). In mammals, DUBs can be classified into seven major families based on sequence conservation of the catalytic domain (Fig. 1). These include the Ub carboxy-terminal hydrolases (UCH), the Ub-specific proteases (USP), the Machado–Josephin domain-containing proteases, the ovarian tumor proteases (OTU), the JAMM/MPN+ metalloproteases (JAMM), the motif interacting with Ub–containing novel DUB family, and the recently discovered Zinc finger-containing Ub peptidase 1 (12). Most DUB enzymes are cysteine proteases, which are characterized by a catalytic triad containing, notably, cysteine and histidine residues. Their mechanism of catalysis involves a nucleophilic attack mediated by the cysteine thiol side chain, which results in the cleavage of the peptide bonds. On the other hand, the JAMM/MPN+ family of DUBs are metalloproteases that use a zinc atom coordinated by histidine and aspartic acid to ensure catalysis and Ub removal (10–15).

In addition to representing a substantial class of proteins in higher eukaryotes, DUBs are also found in viruses, bacteria, and yeast (12, 16–28). Studies in eukaryotes indicate that DUBs regulate a wide spectrum of cellular processes including protein quality control, membrane receptor signaling, endocytosis, DNA-dependent processes, cell cycle regulation, differentiation, cell survival, and cell death (10–15). Moreover, these enzymes have emerged as key factors in the cellular responses that orchestrate host–pathogen interactions (16–30).

Several mechanisms of control ensure the spatiotemporal deubiquitination of substrates and prevent unrestrained DUB catalysis. This includes mechanisms influencing gene expression levels, protein abundance, folding, and tissue distribution (10–15). Moreover, DUBs contain a variety of domains and motifs that could be post-translationally modified to regulate their subcellular localization, conformation, protein–protein interaction, and enzymatic activity (10–15).

In this review, we outline regulatory mechanisms responsible for controlling DUB stability, localization, and enzymatic

‡ These authors contributed equally to this work.
* For correspondence: El Bachir Affar, el.bachir.affar@umontreal.ca.
activity as well as coordinating protein interactions and multi-protein complex assembly. While we provide examples of regulation for key DUBs in multiple families, the tumor suppressor BAP1 is outlined as a model DUB that is subjected to multiple levels of tight regulation. BAP1 is an essential DUB best known for its DUB activity toward histone H2AK119ub and the regulation of chromatin-associated processes (9, 31, 32). BAP1 is mutated in multiple cancers including malignant pleural mesothelioma, uveal melanoma, renal cell carcinoma, and intrahepatic cholangiocarcinoma, rendering this enzyme as the most frequently mutated DUB in human cancers (32, 33).

Regulation of DUBs by intramolecular interactions and self-assembly

Intramolecular interactions and DUB catalysis

Most DUBs have modular structures and contain diverse domains, nonorganized extensions and motifs, in addition to their catalytic domains. These additional structures can engage in intramolecular and intermolecular interactions and play critical roles in coordinating DUB activity and function (12, 13, 34–36). Moreover, several DUBs contain one or multiple Ub-binding domains as well as insertions of variable lengths inside their catalytic domains (12, 34, 35). The importance of intramolecular interactions is notably provided by the Ub specific protease 7 (USP7) (also termed Herpes-Associated Ub-Specific Protease (HAUSP)), which contains a TNF receptor-associated factor (TRAF) domain, a catalytic domain in the N-terminal region as well as five Ub-like domains (UBLs) in the C-terminal region (Fig. 2A). As a member of the USP family, USP7 is characterized by architectural features known as the palm, the thumb, and the finger subdomains. While the finger subdomain is mostly associated with Ub-binding, the catalytic triad responsible for hydrolysis is localized at the junction between the palm and the thumb subdomains (35). To enable DUB enzymatic activity, USP7 uses its most distant C-terminal UBL domain to stabilize and coordinate its catalytic site (37–39) (Fig. 2B). To allow USP7 to switch between active and inactive conformations, this DUB partly relies on a long α-helix, termed the connector helix, that connects the catalytic domain to the first UBL domain (40). Furthermore, linker regions separating the UBL domains permit intramolecular flexibility and rearrangements. Indeed, the binding of Ub to USP7 promotes the localization of the C-terminal tail within an activation cleft located within the catalytic domain of USP7 (37–39) (Fig. 2B). To allow USP7 to switch between active and inactive conformations, this DUB partly relies on a long α-helix, termed the connector helix, that connects the catalytic domain to the first UBL domain (40). Indeed, GMP-synthetase
interacts with UBL1-2-3 and stabilizes UBL4-5 at the catalytic domain of USP7 (38). Altogether, these results suggest that USP7-mediated deubiquitination is achieved by intramolecular interactions. The multiple domains of USP7 endow this DUB with the functional versatility to deubiquitinate many substrates and regulate various cellular processes including DNA damage signaling, epigenetic control of gene expression, viral infection, and immune response (42, 44).

Figure 2. DUB regulation by intramolecular interactions and self-assembly. A, schematic representation of USP7 domain organization and boundaries. USP7 catalytic triad is shown in red as well as the C-terminal tail (K1084 to N1102) required for its activation in black. B, USP7 self-activation. USP7 adopts two conformations respectively associated with an activated and an inactivated state. The switch from the inactive to the active conformation requires USP7 C-terminal tail binding into an activating cavity located in the catalytic domain (CD). This leads to a conformational rearrangement of the UBLs that takes place in the presence of the ubiquitin-conjugated substrate. This rearrangement might also involve a long flexible charged α-helix positioned at the interface between the CD and the UBLs. Once the C-terminal tail is engaged into the activation cleft, the catalytic domain is stabilized and fully active. The “plus” signs show the charged helix. C, schematic representation of Calypso and ASX domain organization and boundaries. Calypso catalytic triad is shown in red. D, Calypso dimerization promotes its recruitment to the nucleosomes. The Drosophila Calypso and ASX proteins form a 2:2 stoichiometric complex. This assembly is needed for chromatin recruitment and catalytic activity toward H2AK118ub. ASX, additional-sex comb; CC1/2, coiled-coil 1/2; CD, catalytic domain; CTE, C-terminal extension, DEUBAD, DEUbiquitinase ADaptator; NLS, nuclear localization signal; NTE, N-terminal extension; PHD, plant homeo-domain; TRAF, tumor necrosis factor receptor–associated factor; Ub, ubiquitin; UBL, ubiquitin-like; UCH, ubiquitin carboxy-terminal hydrolase; ULD, UCHL5-like domain.
Intramolecular interactions between distinct DUB domains can also be permanent, as part of the 3D structure of the enzyme. An example of a stable intramolecular interaction is provided by the UCH family DUB BAP1 (45–49). BAP1 is localized predominantly in the nucleus, as part of a large multiprotein complex (discussed in section 3). BAP1 and its Drosophila ortholog Calypso contain a highly conserved UCH catalytic domain adjacent to a small coiled-coil motif, followed by an insertion in the middle of the protein (termed the nonorganized regions for BAP1), and then a C-terminal domain (CTD) containing a coiled-coil motif adjacent to the nuclear localization signal (NLS) (Fig. 2C). Through coiled-coil motif interactions, the catalytic domain of BAP1/Calypso establishes a stable interaction with the CTD. The UCH–CTD interaction is important for the stimulation of BAP1/Calypso DUB activity by cofactors (45–49) (Fig. 2D). A similar strategy of 3D organization is employed by UCHL5 (UCH37), a component of the proteasome and the INO80 chromatin-remodeling complex (50–55). Of note, BAP1 and UCHL5 also use a similar mechanism of regulation by their respective cofactors, involving a distinct domain termed DEUBD (DEUBiquitinase ADaptor) found in ASXLs, ADRM1 (RPN13), and NFRKB (INO80G) (described in section 3). Overall, these studies assert the importance of intramolecular interactions between the catalytic domain and other DUB domains for the control of enzymatic activity and regulation by cofactors.

DUB oligomerization and catalysis

Another level of DUB regulation involves their oligomerization. For example, USP25 is assembled into a homotetrameric quaternary complex that inhibits its enzymatic activity (Fig. 3) (56–58). A coiled-coil insertion within the catalytic domain is extended by a disordered sequence that contacts the catalytic site in the tetramer, but not in the active dimer, precluding Ub binding (56–58). In support of this autoinhibitory mechanism, cancer-associated mutations that disrupt this intermolecular interaction lead to relief from autoinhibition, emphasizing the biological importance of USP25 oligomerization states (57). Currently, it remains unclear whether specific molecular signals, interacting partners, and/or post-translational modifications regulate the oligomerization states of USP25 and hence its enzymatic activity.

While the example of USP25 indicates how oligomerization induces DUB autoinhibition, self-assembly can also promote DUB activity. The Drosophila ortholog of BAP1, Calypso, was recently shown to undergo dimerization (48). While this assembly is not directly required for stimulating catalytic activity, it favors the recruitment of this DUB to chromatin, whereby it can access and deubiquitinate histone H2Aub. The dimerization of Calypso requires the coiled-coil regions that are also conserved in human BAP1. Interestingly, Calypso dimerization would simultaneously position the two UCH domains near the two-ubiquitination sites of the H2A dimer within the nucleosome (Fig. 2D). Thus, Calypso/BAP1 interaction with nucleosomes and subsequent deubiquitination of H2Aub appear to be highly coordinated. Nonetheless, further studies are needed to determine how BAP1 dimerization regulates its DUB activity in vivo. In particular, it will be worthwhile to define how transcription factors and chromatin-associated proteins cooperate with the BAP1 dimer to ensure timely deubiquitination of H2AK119ub at defined genomic regions.

In summary, DUBs can undergo oligomerization, regulating intrinsic DUB activity and access to substrates, thus providing an important level of regulation. The extent to which transient or stable oligomerization can be generalized to the majority of DUBs and whether this influences their functions remain to be determined.

DUB action through diverse modes of association with E2-conjugating and E3 ligases

DUB-mediated inhibition of ubiquitination by diverting E2s from E3s

DUBs do not necessarily act only following the action of E2 Ub-conjugating enzymes and E3 Ub ligases to terminate ubiquitination reactions (10–14). Indeed, DUBs can actively participate, in conjunction with E2 and E3 enzymes, to orchestrate Ub-signaling events. For instance, an intricate relationship between DUBs and E2s is exemplified by OTUB1, a DUB involved in DNA damage signaling and immune regulation. OTUB1 inhibits chromatin-associated ubiquitination events mediated by the E3 Ub ligase RNF168, which occur during the cellular response to DNA double-strand breaks (59). Mechanistically, OTUB1 interacts with and inhibits several E2 Ub-conjugating enzymes, including UBC13 and UBCH5. These events are mediated in a DUB catalytic activity–independent manner and result in the inhibition of Ub chain elongation. This occurs through binding of the DUB to E2–Ub thioester intermediates, thus diverting them from their cognate E3 Ub ligases (59–61). In addition, OTUB1–E2 interactions stimulate OTUB1-mediated cleavage of K48-linked Ub chains through conformational changes of this DUB. Interestingly, this is further modulated by E2 charging and free Ub, providing a potential mechanism for the coordination of signaling processes with Ub metabolism (60, 62).

DUBs also assemble into multiprotein complexes wherein they simultaneously interact with both E2 Ub-conjugating enzymes and E3 Ub ligases. For instance, the DUB Ataxin3 (AT3), whose polyglutamine expansion underlies the Machado–Joseph neurodegenerative disorder (63), interacts with UBC7 and UBCH7 E2 Ub-conjugating enzymes as well as the E3 Ub ligase Parkin. Parkin promotes autophagy-mediated clearance of damaged mitochondria, and its mutation or deregulation is also involved in the pathogenesis of Parkinson’s disease (64, 65). AT3 deubiquitinates Parkin and their interaction is strongly promoted by Parkin auto-ubiquitination. AT3 subsequently stabilizes an unproductive UBC7–Parkin complex that limits Parkin autoubiquitination, possibly through inhibition of the E2 release from Parkin and its subsequent charging by Ub. In addition, the E2-mediated transfer reaction might be diverted toward Ub ligation to AT3 itself (64, 65). While the significance of AT3 interactions with E2s/
DUB complexes: Composition, regulation, and functions

Factors	Subunit organization and function	Complex structure
BRCA1-A complex (JAMM) / DNA repair	K63 poly-Ub chain DUB involved in several biological processes	Refs: 108, 109, 192, 193
BRCC36	Cofactor involved in BRCA1-A dimerization and BRCC36 DUB activity through its interaction with JAMM/MPN- domain	
ABRAAXS	Interacts with BRCA1-A and binds mixed SUMO/K63 Ub chains	
RAP80	Interacts with MERIT40, mediates RAP80 interaction and BRCA1 sequestration, and binds Ub	
BRE	Mediates RAP80 integration and binds Ub	
MERIT40	Promotes homologous recombination	
BRCC36	K63 poly-Ub chain DUB involved in several biological processes	Refs: 102, 105, 108, 109
ABRO1	Cofactor involved in BRCC36 DUB activity through its interaction with JAMM/MPN- domain and recruits SHMT2	
BRE	Involved in SHMT2 recruitment, interacts with ABRO1, MERIT40, and binds Ub	
SHMT2	Blocks BRCC36 DUB activity through the exclusion of Ub chains from its catalytic site	
OTULIN-LUBAC complex (OTU) / Cell death, immunity	Met1 poly-Ub chain DUB. Stabilizes the LUBAC complex by promoting its poly-deubiquitination	Refs: 74, 80, 81, 83, 88, 88, 194
OTULIN	Subunit of the LUBAC complex and a RBR (RING-Between-RING) E3 ligase that catalyzes Met1-Ub-mediated ubiquitination. It also interacts with OTULIN	
HOIP	Subunit of the LUBAC complex and a RBR E3 ligase that monoubiquitinitates all the subunits	
SHARPIN	Subunit of the LUBAC complex. SHARPIN is a scaffold subunit that stimulates HOIP activity and is required for LUBAC formation and stability	
CYLD-LUBAC complex (USP) / Cell death, immunity	Met1/K63 poly-Ub chain DUB	Refs: 74, 90, 91, 194, 195
CYLD	Required for CYLD recruitment to its target substrates and stimulates its activity. Also acts as a bridging factor between CYLD and HOIP	
SPATA2	Catalyzes Met1-Ub-mediated ubiquitination. Also acts as a scaffold through its interaction with SPATA2	
HOIP	Subunit of the LUBAC complex and a RBR E3 ligase that monoubiquitinitates all the subunits	
SHARPIN	Subunit of the LUBAC complex. SHARPIN is a scaffold subunit that stimulates HOIP activity and is required for LUBAC formation and stability	
Parkin remains incompletely understood, the above findings emphasize the intricate partnerships between Ub ligation and deubiquitination in fine-tuning Ub-signaling events.

Consistent with the variety of cellular processes in which DUBs limit the access of E3s to cognate E2s, the zinc finger DUB A20 (also known as tumor necrosis factor, alpha-induced protein 3) constitutes an important regulator of inflammation. A20 negatively regulates the nuclear factor kappa B (NF-κB) and inflammation through multiple mechanisms \(^{66–69}\), including the targeting of receptor-interacting protein 1 of the TNF receptor signaling pathway for proteasomal degradation through its own E3 Ub ligase activity \(^{67}\). A20 blocks the interactions between the E3 Ub ligases TRAF6, TRAF2, and cIAP1 and the corresponding E2 Ub-conjugating enzymes.
UBC13 and UBCH5C. This ensures the targeting of the latter enzymes for proteasomal degradation (69).

In summary, in addition to Ub removal from proteins, DUBs can also limit substrate ubiquitination by interfering with E2s and E3s, providing additional means to tightly regulate ubiquitin-signaling events.

DUBs modulating ubiquitination through direct interaction with E3s

A notable example of direct DUB-E3 coordination is provided by the LUBAC (linear Ub chain assembly complex) E3 Ub ligase, which is known to interact with two DUBs; OTULIN (OTU DUB with linear linkage specificity) and CYLD (cylindromatosis). LUBAC is an E3 Ub ligase complex composed of three interacting partners: SHARPIN (Shank-associated RH domain-interacting protein), HOIP (HOIL-1-interacting protein), and HOIL-1 (heme-oxidized IRP2 Ub ligase-1) (Fig. 3) (70–74). It functions as a linear Met1-Ub chain conjugating E3 complex that regulates innate immune signaling, notably by promoting NF-κB activation (72, 75–78). HOIP is activated through association with its interacting partners, which triggers the ligation of linear Ub chains on receptor-interacting protein 1 (RIPK1) and NEMO (IKKγ), two downstream activators of NF-κB signaling (72, 73, 77, 79).

Furthermore, HOIL-1 catalyzes the monoubiquitination of LUBAC subunits, which primes for HOIP-mediated linear Ub chain extension, therefore dampening LUBAC activity (80). Meanwhile, OTULIN specifically cleaves the Met1-Ub chains generated by LUBAC (81, 82). The PIM (PUB-interaction motif) domain of OTULIN interacts specifically with the PUB domain of HOIP to ensure DUB-E3 interaction (83, 84).
Regulation of DUBs through assembly into large heteromeric and multienzymatic complexes

DUB assembly in mutually exclusive complexes

Several DUBs are assembled into large stable multiprotein complexes found in several tissues and subcellular compartments (12, 13, 35) (Fig. 3). Indeed, a systematic purification and mass spectrometry identification of DUB complexes and interacting partners indicated that these enzymes are associated with a plethora of proteins and enzymes covering a wide spectrum of cellular functions and processes (93). Association into large complexes endows DUBs with additional interaction interfaces to regulate substrate recruitment and modulation of enzymatic specificity and activity. BRCC36 provides a prominent example of a DUB assembled in two distinct complexes in a mutually exclusive manner. BRCC36 is a member of the JAMM family DUBs that exhibit a preference for K63-linked Ub chains (94). BRCC36 is found in the BRCA1-A complex and the BRCC36 isopeptidase complex (BRISC), which are involved in DNA repair and immune signaling, respectively (95–106) (Fig. 3). Structural studies indicate that BRCC36 and ABRAXAS2 or ABRO1 form heterodimers, which ensure enzymatic activity and association with additional cofactors including RAP80 and BRCA1 (in the BRCA1-A complex) or the serine hydroxymethyltransferase 2 (SHMT2) (in the BRISC complex) (107–109). Of note, the dimeric form of SHMT2 interacts with the BRISC complex and blocks the catalytic site of BRCC36, thereby preventing deubiquitination. However, SHMT2 can also undergo tetramerization, which results in its dissociation from BRISC and the subsequent activation of BRCC36 (106). Thus, BRCC36 exemplifies how a DUB can be regulated by its interacting partners to mediate distinct cellular processes. Nonetheless, several questions await further studies to fully establish how BRCC36 is regulated. In particular, it remains unknown the manner by which BRCC36 molecules are allocated to nuclear (BRCA1-A) or cytoplasmic (BRISC) complexes. In addition, how BRCC36-mediated deubiquitination is coordinated with other functions of its associated complexes also remains incompletely understood.

Similar to BRCC36, UCHL5 is a component of two distinct multiprotein assemblies. Indeed, UCHL5 interacts, in a mutually exclusive manner, with the proteasome or the INO80 ATPase chromatin remodeling complex (Fig. 3) (51–54, 110, 111). UCHL5 uses its ULD (UCHL5-like domain) to interact with the DEUBAD domain of the proteasome subunit RPN13, promoting a conformational change that activates UCHL5 (53, 55). Notably, the active site cross-over loop, normally localized above the catalytic cysteine inside the Ub-binding site of UCHL5, is repositioned to allow deubiquitination (53, 55). Functionally, UCHL5 recruitment to the proteasome ensures poly-Ub chain debranching, enhancing proteasomal degradation, and promoting proper cell cycle progression (112, 113). Additionally, UCHL5 can also bind the DEUBAD of NFRKB, a subunit of the INO80 chromatin-remodeling complex (52, 53, 55). However, in contrast to RPN13, NFRKB inhibits UCHL5 DUB activity. A spatial rearrangement of an NFRKB loop with the ULD and UCH domains prevents substrate docking and deubiquitination (53, 55).

DUBs can also compete for specific partners. For instance, UAF1 (USP1-associated factor 1), first identified as a factor that activates USP1 DUB activity (114), was later shown to interact with and activates, in a mutually exclusive manner, several DUBs including USP12 and USP46 (Fig. 3) (115–119). UAF1 contains three domains with an N-terminal β-propeller domain, a central ancillary domain, and a C-terminal SUMO-like domain. The β-propeller domain of UAF1 binds to the distal end of the USP finger and promotes structural rearrangements in the Ub-binding site, increasing its overall activity. Adding more complexity, USP12 and USP46 display a
high degree of homology (88%) and can both interact with an additional coactivator named WDR20 (116, 119–122). Composed of multiple WD40-repeat motifs, WDR20 interacts with the back of the finger and the palm subdomains of USP12/46, which triggers conformational modifications in the catalytic center of these DUBs. These events enhance the activity of USP12 and USP46, independently of UAF1 (119, 120). Thus, UAF1 and WDR20 represent allosteric activators that mediate, through multiple structural rearrangements, the synergistic activation of USP12 and USP46. Of note, both UAF1 and WDR20 are subjected to multiple post-translational modifications, including phosphorylation and ubiquitination (PhosphoSite database (123)), but the significance of these modifications with respect to modulation of DUB activity remains to be established.

DUB assembly in multiprotein complexes with distinct enzymatic activities

DUBs can also be integrated into large multiprotein complexes with several subcomplex modules. This is the case for the highly conserved Spt-Ada-Gcn5 acetyltransferase (SAGA) transcription coactivator complex, which has multiple structural and functional modules including a core module, a histone acetyltransferase module and a DUB module (Fig. 3) (124). In yeast, the SAGA DUB module is composed of the DUB Ubp8 and three subunits, Sgf11, Sus1, and Sgf73, that are all required for deubiquitination of H2BK123 (K120 in mammals), a modification associated with gene transcription by RNA polymerase II (124–127). Indeed, the four subunits establish extensive contacts with each other, illustrating the importance of complex assembly for DUB activity (125, 126). In addition, the DUB module creates contacts with nucleosomes through the zinc finger domain of Sgf11 which interacts with the H2A/H2B acidic patch, while Ubp8 forms contacts with H2B and Ub (125, 126). Moreover, structural studies indicate that positioning of the multiple SAGA modules within the supercomplex ensure coordinated deubiquitination and acetylation of nucleosomes to promote gene transcription (125, 128–131). Thus, the SAGA multiprotein complex provides a notable example of how DUB enzymatic activity is tightly controlled by associated proteins. In addition, it also shows how a DUB, as being part of a multifunctional complex, can exert its function in concert with additional activities.

The DUB BAP1 assembles several multiprotein complexes containing diverse chromatin-associated factors (Fig. 3). These include the additional sex comb–like proteins (ASXL1/ASXL2/ASXL3), the host cell factor 1, the O-linked N-acetylglucosamine transferase, and the lysine demethylase KDM1B/LSD2 (93, 132, 133). While host cell factor 1, O-linked N-acetylglucosamine transferase, and KDM1B are known regulators of transcription and other chromatin-associated processes (134–141), their exact coordination with BAP1 DUB activity remains incompletely understood. Nonetheless, BAP1 might deubiquitinate and stabilize these cofactors or their associated proteins to regulate transcription (140, 141). BAP1 also associates with transcription factors, including FOXK1, FOXK2, and Yin Yang1 (YY1), which ensure the recruitment of this DUB to chromatin (133, 142). Of interest, BAP1 forms mutually exclusive complexes with ASXLs, which play important roles in maintaining BAP1 stability and promoting its DUB activity. Notably, similar to the RPN13-UCHL5 interaction, these factors also use their DEUBAD to interact with the CTD of BAP1 (see above). These interactions are necessary for histone H2AK119ub deubiquitination and transcription regulation by this DUB. The UCH and CTD domains of BAP1 as well as the DEUBAD form a composite Ub-binding interface that interacts with the hydrophobic and the charged patches of ubiquitin, thus ensuring catalysis (Fig. 4A) (46). Notably, cancer-associated mutations of BAP1 that inhibit its interaction with ASXLs also engender abrogation of its DUB activity toward H2AK119ub and reduce cell proliferation. How BAP1 activity is dynamically controlled by its partners in diverse ASXL complexes and contexts remains a fundamental question with respect to understanding the regulation of this tumor suppressor.

In summary, DUB function is intimately orchestrated by interacting partners that regulate protein stability or activity. Several DUBs are integrated into large complexes with multiple functions. However, how DUBs are regulated within such complexes in response to developmental, physiological, or stress-associated signaling remains an area of active investigation.

Regulation of DUBs by ubiquitination and self-deubiquitination

Regulation of DUB catalytic activity by ubiquitination

Several DUBs were shown to be regulated by ubiquitination targeting the catalytic domain or other regions of the enzyme. The biological significance and exact mechanisms controlling these ubiquitination events are far from being fully established. Nonetheless, over the years, valuable information has been gained regarding the regulation imposed by this post-translational modification on interactions and activity of specific DUBs. For instance, UCHL1 is monoubiquitinated in its catalytic domain, blocking its capacity to bind Ub and substrates (Fig. 5) (143). Importantly, mutation of residues that abolish Ub-binding by UCHL1 also inhibits its mono-ubiquitination. This intriguing dependency of DUB ubiquitination on Ub-binding suggests that there may exist an intermediate step of noncovalent Ub transfer occurring between the catalytic domain of UCHL1 and the E2-E3 complex. Additionally, mutation of the catalytic cysteine results in increased monoubiquitination of UCHL1, suggesting that its ubiquitination state is reversed by self-deubiquitination through intramolecular interactions. Thus, it is possible that the equilibrium between ubiquitination and deubiquitination regulates UCHL1 DUB activity to ensure a tight control of its activity toward substrates (143).

The DUB AT3 described above (section 2A) is also associated with ubiquitination-dependent quality control mechanisms (Fig. 5) (144–146). AT3 is constitutively ubiquitinated near the catalytic site, and this ubiquitination state is increased
following proteasome inhibition or when the unfolded protein response is induced by treatment with dithiothreitol. The ubiquitinated form of AT3 is more effective in cleaving Ub chains, indicating that Ub modification increases AT3 catalytic activity (147, 148). AT3 ubiquitination might thus constitute a feedback mechanism that links Ub metabolism to DUB activity. However, AT3 regulation appears to be more complex, as the catalytic activity of this DUB also regulates its own stability and cellular localization (149, 150). While the significance of these events remains unclear, they suggest that AT3 ubiquitination plays an important role in controlling its activity and stability.

Regulation of DUB localization by ubiquitination

Self-deubiquitination of BAP1 provides a notable example of DUB regulation at the level of subcellular localization (Fig. 4B). The E2-conjugating/E3-ligase hybrid UBE2O is a substoichiometric component of BAP1 complexes (93, 132, 133). UBE2O monoubiquitinates multiple lysines on the BAP1 NLS, thereby inducing its cytoplasmic sequestration (45). These ubiquitination events are actively counteracted by BAP1 self-deubiquitination which, importantly, could only be observed when the BAP1 UCH domain interacts with the CTD (Fig. 4B). Indeed, the UCH–CTD interaction brings the NLS of BAP1 close enough to the catalytic domain to promote self-deubiquitination (45). Thus, UBE2O-mediated ubiquitination of BAP1 might constitute a quality control mechanism that prevents the nuclear import of an improperly folded DUB. Consistent with this notion, it was later found that UBE2O targets orphan proteins that fail to assemble into their cognate multiprotein complexes (151, 152). It will therefore be interesting to determine whether similar mechanisms of regulation target other DUBs, safeguarding their proper folding, localization, and stabilization.

Regulation of DUBs by other post-translational modifications

Regulation of DUB activity and function by phosphorylation

Owing to their involvement in controlling a wide spectrum of cellular processes, DUBs are regulated by other post-translational modifications including phosphorylation, acetylation, limited proteolysis, hydroxylation, and oxidation (11, 153). Selected examples of DUBs indicate the diversity of post-translational modifications that regulate these enzymes (Fig. 5). Phosphorylation is widespread in eukaryotes and regulates a large variety of cellular signaling processes. Several examples demonstrate how phosphorylation regulates DUB stability, activity, or recruitment, further reinforcing the notion that phosphorylation-mediated signaling is intimately associated with deubiquitination. For instance, the stability of USP4, a DUB that regulates transforming growth factor-β signaling, is regulated by phosphorylation (154). Akt-mediated phosphorylation of USP4 prevents its ubiquitination and promotes its accumulation at the plasma membrane, thereby stabilizing transforming growth factor-β receptor and downstream signaling in the regulation of epithelial to mesenchymal transition (154). Another example of tight control of DUB stability by phosphorylation is observed for USP7, which deubiquitinates and stabilizes the E3 Ub ligase MDM2. Phosphorylation of USP7 by casein kinase 2 promotes its stability, thereby maintaining higher
levels of MDM2. This, in turn, promotes p53 degradation, hence maintaining this transcription factor at basal protein levels (155). However, in response to genotoxic stress, dephosphorylation of USP7 by PPM1G results in its destabilization, leading to MDM2 degradation, stabilization of p53, and upregulation of the p53 transcriptional response (155).

Phosphorylation can also directly regulate DUB enzymatic activity. For instance, phosphorylation of OTUD5 catalytic domain induces conformational changes thereby promoting substrate binding and facilitating deubiquitination (156). Another interesting example is provided by OTUD4 whose phosphorylation occurs near the catalytic domain. OTUD4 phosphorylation can also directly regulate DUB enzymatic activity. For instance, phosphorylation of OTUD5 catalytic domain induces conformational changes thereby promoting substrate binding and facilitating deubiquitination (156). Another interesting example is provided by OTUD4 whose phosphorylation occurs near the catalytic domain. OTUD4
phosphorylation, in conjunction with an adjacent Ub-binding domain, promote deubiquitination of K63-linked Ub chains. This mechanism is used by OTUD4 to target MyD88 for deubiquitination and to dampen NF-κB activation in response to Toll-like receptor signaling (157). The DUB OTULIN (described above) can also be subjected to phosphorylation during genotoxic stress, this phosphorylation event seems to be required for the association with and deubiquitination of β-catenin. This, in turn, leads to the noncanonical activation of the Wnt signaling pathway (158).

Phosphorylation is also critical for the BAP1-mediated response to genotoxic stress. BAP1 promotes the recruitment of BRCA1 and RAD51 to sites of DNA double-strand breaks (DSBs) and promotes homologous recombination-mediated DNA repair (9, 32, 159–161). Moreover, BAP1 is directly recruited to genomic regions in the vicinity of DSBs, which promotes the deubiquitination of H2AK119ub on the chromatin (9, 32, 159–161) (Fig. 6A). BAP1 is phosphorylated on six serine/threonine residues following ionizing radiation and mutation of these residues inhibits BAP1 recruitment to DSB sites. However, whether BAP1 phosphorylation involves DUB conformational changes or recruitment of additional proteins remain to be determined.

Altogether, the studies described above emphasize the versatility of phosphorylation in regulating the activity of DUBs and their interaction with other factors. In addition, a survey of the DUB repertoire of phosphorylation sites (PhosphoSite database) shows that DUBs are extensively phosphorylated on multiple domains. This suggests that an intricate crosstalk between multiple signaling pathways tightly orchestrates DUB function.

Regulation of DUB activity and function by acetylation

Another prominent example of DUB regulation by post-translational modifications is illustrated by acetylation of OTUD3 in the context of innate immune surveillance (162). Following infection by RNA viruses, the mitochondrial antiviral-signaling protein MAVS undergoes K63-linked polyubiquitination, which is essential for its multimerization and activation of the host antiviral response (163–165). Remarkably, acetylation of OTUD3 on lysine 129 (K129) triggers deubiquitination of K63-polyubiquitination chains on MAVS thereby blocking the antiviral response (162) (Fig. 6B). While OTUD3 acetylation promotes its DUB activity, its deacetylation by SIRT1 inhibits MAVS deubiquitination following viral infection, thus promoting activation of innate immune signaling (162). K129 is found in the variable loop of the OTU catalytic domain, i.e., within an acetylation motif conserved throughout OTUD3 orthologues. Acetylation of this residue abolishes its positive charge, promoting substrate binding. Thus, OTUD3 provides a noteworthy example of direct regulation of DUB catalytic activity by acetylation, with important implications for the antiviral response.

Together, these investigations emphasize the versatility of phosphorylation or acetylation in mediating DUB regulation and suggest that an intricate crosstalk might take place between signaling pathways in order to provide a strict regulation of DUB function.

Regulation of DUB by atypical post-translational modifications

In addition to mechanisms involving classical post-translational modifications, other biochemical processes that coordinate DUB activity have been proposed. For instance, UCHL1, a DUB highly expressed in the brain and whose deregulation is associated with neurodegeneration, is subjected to nitrosylation (166). Moreover, its catalytic activity might be affected under conditions of pronounced oxidative stress (Fig. 5). Notably, in vitro studies indicated that oxidation of the three cysteines C90, C152, and C220 inhibits the enzyme and induces significant conformational changes that prevent Ubbinding and, hence, removal from substrates (166). In addition, C152, within the substrate recognition cross-over loop, might act as a scavenger of reactive oxygen species, possibly protecting the catalytic cysteine, although this needs further demonstration in vivo (167). Finally, UCHL1 could also be modified by lipidation (Fig. 5). Under inflammatory conditions, C152 could be subjected to the covalent ligation of cyclopentanone prostaglandins, causing DUB misfolding and neurotoxicity (168, 169).

Consistent with the variety of post-translational modifications regulating DUBs, USP1 is regulated by autocleavage-mediated inactivation during exposure to ultraviolet radiations (170). In particular, USP1 contains an internal Ub-like diglycine (Gly-Gly) motif, which is essential for DUB recognition and catalysis. The autocleavage of USP1 permits the accumulation of monoubiquitinated PCNA and execution of translesion synthesis across UV-induced pyrimidine dimers (170). Of note, USP1 is also regulated by reversible oxidation of cysteine upon oxidative stress, a mechanism proposed to promote PCNA ubiquitination in response to oxidative DNA damage (171). Finally, the DUB Cezanne (OTUD7B) is hydroxylated by the asparaginyl β-hydroxylase factor inhibiting HIF1 (FIH1) within a domain similar to the Ub-associated domain, and this modification blocks Ub-binding, although the significance of this event remains unknown (172).

In summary, the above examples illustrate the relevance of post-translational modifications and their crosstalk in the dynamic regulation of DUB function.

Concluding remarks

As outlined in this review, the proper regulation of Ub signaling is of crucial importance for the maintenance of cellular homeostasis. Indeed, humans express more than 600 E3-Ub ligases and about 100 DUBs that regulate thousands of Ub-modified sites (173–175). A substantial body of evidence now indicates that DUBs mediate multiple, highly
orchestrated mechanisms to counterbalance ubiquitination events and regulate Ub signaling. We have summarized diverse control systems that regulate the catalytic activity of DUBs as well as their interaction with E3 ligases and substrates. Deregulation of DUB function is therefore expected to profoundly perturb cellular processes. Indeed, mutation of DUB genes or dysfunction of their protein homeostasis are increasingly associated with major pathologies such as neurodegenerative diseases (USP25, UCHL1, OTUB1, and AT3) (176–181), cancers (BAP1, CYLD, USP46, USP28, and PSMD14) (32, 182–186) and inflammation (A20, CYLD, USP7, and USP47) (187–191). To properly target these enzymes in the clinic, several wide-ranging questions remain to be addressed: (i) What is the full spectrum of substrates modified by each DUB? (ii) What is the complete DUB interactome and how dynamic is it? (iii) To what extent ubiquitination and deubiquitination reactions are spatiotemporally interconnected? and (iv) How the inhibition of DUBs affects physiological processes at the organismal level. Undoubtedly, with the development of new tools and
biotechnologies, there are many exciting prospects for the upcoming decades.

Acknowledgments—We thank Dr Nathalie Labrecque and Dr Elliot Drobetsky for comments and suggestions on the manuscript.

Author contributions—B. E., C. M., and E. B. A. writing-review and editing. E. and C. M. data curation; E. B. A. writing-original draft; B. E., C. M., and E. B. A. writing-review and editing.

Funding and additional information—This work was supported by the Canadian Institutes of Health Research.

Conflicts of interest—The authors declare that they have no conflicts of interest with the content of this article.

Abbreviations—The abbreviations used are: CTD, C-terminal domain; DEUBAD, DEUBiquitinate ADaptator; DUB, deubiquitinate; JAMM, JAB1/MPN/MOV34 metalloenzymes; MINDY, motif-interacting with ubiquitin-containing novel DUB family; MJD, Machado–Joseph domain-containing proteases; MAVS, mitochondrial antiviral signaling protein; NLS, nuclear localization signal; OTU, ovarian tumor proteases; TRAF, tumor necrosis factor receptor–associated factor; UCH, ubiquitin carboxy-terminal hydrolases; USP, ubiquitin-specific proteases; Ub, ubiquitin; UBL, ubiquitin-like; ULD, UCHL5-like domain; ZUP1, zinc-finger-containing ubiquitin peptidase 1.

References

1. Komander, D., and Rape, M. (2012) The ubiquitin code. Annu. Rev. Biochem. 81, 203–229

2. Yau, R., and Rape, M. (2016) The increasing complexity of the ubiquitin code. Nat. Cell Biol. 18, 579–586

3. Swatek, K. N., and Komander, D. (2016) Ubiquitin modifications. Cell Res. 26, 399–422

4. Rape, M. (2018) Ubiquitylation at the crossroads of development and disease. Nat. Rev. Mol. Cell Biol. 19, 59–70

5. Popovic, D., Vucic, D., and Dikic, I. (2014) Ubiquitination in disease pathogenesis and treatment. Nat. Med. 20, 1242–1253

6. Sentf, D., Qi, J., and Ronai, Z. A. (2018) Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat. Rev. Cancer 18, 69–88

7. Meyer-Schwesinger, C. (2019) The ubiquitin-proteasome system in kidney physiology and disease. Nat. Rev. Nephrol. 15, 393–411

8. Hnia, K., Clausen, T., and Moog-Lutz, C. (2019) Shaping striated muscles with ubiquitin proteasome system in Health and disease. Trends Mol. Med. 25, 760–774

9. Barbour, H., Daou, S., Hendzel, M., and Affar, E. B. (2020) Polyclomb group-mediated histone H2A monoubiquitination in epigenome regulation and nuclear processes. Nat. Commun. 11, 5947

10. Eletr, Z. M., and Wilkinson, K. D. (2014) Regulation of proteolysis by human deubiquitinating enzymes. Biochim. Biophys. Acta 1843, 114–128

11. Sahtoe, D. D., and Sixma, T. K. (2015) Layers of DUB regulation. Trends Biochem. Sci. 40, 456–467

12. Clague, M. J., Urbe, S., and Komander, D. (2019) Breaking the chains: deubiquitylating enzyme specificity begets function. Nat. Rev. Mol. Cell Biol. 20, 338–352

13. Mevissen, T. E. T., and Komander, D. (2017) Mechanisms of deubiquitinate specificity and regulation. Annu. Rev. Biochem. 86, 159–192

14. Snyder, N. A., and Silva, G. M. (2021) Deubiquitinating enzymes (DUBs): regulation, homeostasis, and oxidative stress response. J. Biol. Chem. 297, 101077

15. Lange, S. M., Armstrong, L. A., and Kulathu, Y. (2022) Deubiquitinating enzymes: from mechanisms to their inhibition by small molecules. Mol. Cell 82, 15–29

16. Bodd, C., Reinert, L. S., Frühwirth, S., Richardo, T., Sun, C., Zhang, B. C., et al. (2020) HSV1 VP1-2 deubiquititates STING to block type I interferon expression and promote brain infection. J. Exp. Med. 217, e20191422

17. Dzimianski, J. V., Beldon, B. S., Daczkowski, C. M., Goodwin, O. Y., Scholte, F. E. M., Bergeron, E., et al. (2019) Probing the impact of nairovirus genomic diversity on viral ovarian tumor domain protease (vOTU) structure and deubiquitinate activity. PLoS Pathog. 15, e1007515

18. Lee, J. I., Sollars, P. J., Baver, S. B., Pickard, G. E., Leelawong, M., and Smith, G. A. (2009) A herpesvirus encoded deubiquitinate is a novel neuroinvasive determinant. PLoS Pathog. 5, e1000387

19. Zheng, D., Chen, G., Guo, B., Cheng, G., and Tang, H. (2008) PLP2, a potent deubiquitinate from murine hepatitis virus, strongly inhibits cellular type I interferon production. Cell Res. 18, 1105–1113

20. Berglund, I., Giordreki, R., Verney, E., Maupin-Furlow, J. A., and Edelmann, M. J. (2020) Modification of the host ubiquitome by bacterial enzymes. Microbiol. Res. 235, 126429

21. Le Negrate, G., Faustin, B., Welsh, K., Loeffler, M., Krajewska, M., Hasegawa, P., et al. (2008) Salmonella secreted factor L deubiquitinate of Salmonella typhimurium inhibits NF-kappaB, suppresses IkappaBAlpha ubiquitination and modulates innate immune responses. J. Immunol. 180, 5054–5056

22. Pruneda, J. N., Bastidas, R. J., Bertoulaki, E., Swatek, K. N., Santhanam, B., Clague, M. J., et al. (2018) A Chlamydia effector combining deubiquitination and acetylation activities induces Golgi fragmentation. Nat. Microbiol. 3, 1377–1384

23. Pruneda, J. N., Durkin, C. H., Geurink, P. P., Ovaa, H., Santhanam, B., Holden, D. W., et al. (2016) The molecular basis for ubiquitin and ubiquitin-like specificities in bacterial effector proteases. Mol. Cell 63, 261–276

24. Rytkonen, A., Poh, J., Garmendia, J., Boyle, C., Thompson, A., Liu, M., et al. (2007) SseL, a Salmonella deubiquitinate required for macrophage killing and virulence. Proc. Natl. Acad. Sci. U. S. A. 104, 3502–3507

25. Schubert, A. F., Nguyen, J. V., Franklin, T. G., Geurink, P. P., Roberts, C. G., Sanderson, D. I., et al. (2020) Identification and characterization of diverse OTU deubiquitinates in bacteria. EMBO J. 39, e105127

26. Shin, D., Bhattacharya, A., Cheng, Y. L., Alonso, M. C., Mehdipour, A. R., van der Heden van Noort, G. J., et al. (2020) Bacterial OTU deubiquitinates regulate substrate ubiquitination upon Legionella infection. Elife 9, e58277

27. Wan, M., Wang, X., Huang, C., Xu, D., Wang, Z., Zhou, Y., et al. (2019) A bacterial effector deubiquitinate specifically hydrolyses linear ubiquitin chains to inhibit host inflammatory signalling. Nat. Microbiol. 4, 1282–1293

28. Wang, Y., Zhan, Q., Wang, X., Li, P., Liu, S., Gao, G., et al. (2020) Insights into catalysis and regulation of non-canonical ubiquitination and deubiquitination by bacterial deamidase effectors. Nat. Commun. 11, 2751

29. Jiang, X., and Chen, Z. I. (2011) The role of ubiquitylation in immune defence and pathogen evasion. Nat. Rev. Immunol. 12, 35–48

30. Schluter, D., Schulze-Niemand, E., Stein, M., and Naumann, M. (2021) Ovarian tumor domain proteases in pathogen infection. Trends Microbiol. 30, 22–33

31. Affar, E. B., and Carbone, M. (2018) BAP1 regulates different mechanisms of cell death. Cell Death Dis. 9, 1151

32. Masclef, L., Ahmed, O., Estavoyer, B., Larrivee, B., Labrecque, N., Nijman, A., et al. (2021) Roles and mechanisms of BAP1 deubiquitinate in tumor suppression. Cell Death Differ. 28, 606–625

33. Carbone, M., Harbour, J. W., Brugarolas, J., Bononi, A., Pagano, I., Dey, A., et al. (2020) Biological mechanisms and clinical significance of BAP1 mutations in human cancer. Cancer Discov. 10, 1103–1120

34. Nijman, S. M., Luna-Vargas, M. P., Velds, A., Brummelkamp, T. R., Dirac, A. M., Sixma, T. K., et al. (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773–786
JBC REVIEWS: Quality control and regulation of deubiquitinases

75. Niu, J., Shi, Y., Iwai, K., and Wu, Z. H. (2011) LUBAC regulates NF-kappaB activation upon genotoxic stress by promoting linear ubiquitination of NEMO. EMBO J. 30, 3741–3753

76. Bazzan, E., Oliaro, M. C., and Moreau, L. A., Xia, B., et al. (2007) RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 316, 1198–1202

77. Wang, B., Matsuoka, S., Ballif, B. A., Zhang, D., Smogorzewska, A., Gygi, S. P., et al. (2007) Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science 316, 1194–1198

78. Xu, X., Kim, J. A., Castillo, A., Huang, M., Liu, J., and Wang, B. (2011) NBA1/MERIT40 and BRE interaction is required for the integrity of two distinct deubiquitinating enzyme BRCC36-containing complexes. J. Biol. Chem. 286, 11734–11745

79. Dong, Y., Hakimi, M. A., Chen, X., Kumaraswamy, E., Godow, A. K., et al. (2003) Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalsome-like subunit and its role in DNA repair. Mol. Cell 12, 1087–1099

80. Wu, J., Liu, C., Chen, J., and Yu, X. (2012) RAP80 protein is important for genomic stability and is required for stabilizing BRCA1-A complex at DNA damage sites in vivo. J. Biol. Chem. 287, 22919–22926

81. Yin, Z., Menendez, D., Resnick, M. A., French, J. E., Janardhan, K. S., and Jetten, A. M. (2012) RAP80 is critical in maintaining genomic stability and suppressing tumor development. Cancer Res. 72, 5080–5090

82. Zuo, Y., Feng, Q., Jin, L., Huang, F., Miao, Y., Liu, J., et al. (2021) The deubiquitinating enzyme complex BRISC regulates metazoan stem cell expansion by regulating Jak2K63-ubiquitination. Blood 133, 1560–1571

83. Yan, K., Li, L., Wang, X., Hong, R., Zhang, Y., Yang, H., et al. (2015) The deubiquitinating enzyme complex BRISC is required for proper mitotic spindle assembly in mammalian cells. J. Cell Biol. 210, 209–224

84. Wang, B., Zhang, Q., Xiao, Y., Zhang, W., Yang, W., Ma, W., et al. (2019) ABRO1 promotes NLRP3 inflammasome activation through regulation of NLRP3 deubiquitination. EMBO J. 38, e100376

85. Weinelt, N., and van Wijk, S. J. (2019) Structural basis of BRCC36 function in DNA repair and immune regulation. Mol. Cell 75, 970–983

86. Rabl, J., Bunker, R. D., Schenk, A. D., Cavadini, S., Gill, M. E., Abdulrahman, W., et al. (2019) Higher-order assembly of BRCC36-KIAA0157 is required for DUB activity and biological function. Mol. Cell 59, 983–997

87. Rabl, J. (2020) BRCA1-A and BRISC: multifunctional molecular machines for ubiquitin signaling. Biomolecules 10, 1503

88. Qiu, X. B., Ouyang, S. Y., Li, C. J., Miao, S., Wang, L., and Goldberg, A. L. (2006) Hrrp31/ADRMI/SP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37. EMBO J. 25, 5742–5753

89. Liu, J., Xu, J., Cao, L., and Wang, H. (2019) Functional dissection of 26S proteasome subunits. J. Biol. Chem. 294, 4065–4078

90. Randle, L., Anchoori, R. K., Roden, R. B., and Walters, K. J. (2016) The proteasome ubiquitin receptor hRpn13 and its interacting deubiquitinating enzyme Uch37 are required for proper cell cycle progression. J. Biol. Chem. 291, 8773–8783

91. Cohn, M. A., Kowal, P., Yang, K., Haas, W., Huang, T.-T., Gygi, S. P., et al. (2007) A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway. Mol. Cell 28, 786–797

92. Cohn, M. A., Kee, Y., Haas, W., Gygi, S. P., and D’Andrea, A. D. (2009) UAF1 is a subunit of multiple deubiquitinating enzyme complexes. J. Biol. Chem. 284, 5343–5351

93. Dharadhur, S., Clerici, M., van Dijk, W. J., Fish, A., and Sixma, T. K. (2016) A conserved two-step binding for the UAF1 regulator to the USP12 deubiquitinating enzyme. J. Struct. Biol. 196, 437–447
118. Yin, J., Schofield, A. J., Wickliffe, K., Newton, K., Starosvansk, M. A., Dueber, E. C., et al. (2015) Structural insights into WRD-repeat 48 activation of ubiquitin-specific protease 46. *Structure* 23, 2043–2054

119. Li, H., Lim, K. S., Kim, H., Hinds, T. R., Jo, U., Mao, H., et al. (2016) Allosteric activation of ubiquitin-specific proteases by beta-propeller proteins UAF1 and WDR20. *Mol. Cell* 63, 249–260

120. Zhu, H., Zhang, T., Wang, F., Yang, J., and Ding, J. (2019) Structural insights into the activation of USP46 by WDR48 and WDR20. *Cell Discov.* 5, 34

121. Kee, Y., Yang, K., Cohn, M. A., Haas, W., Gygi, S. P., and D’Andrea, A. D. (2010) WDR20 regulates activity of the USP12 x UAF1 deubiquitinating enzyme complex. *J. Biol. Chem.* 285, 11252–11257

122. Dahlberg, C. L., and Joo, P. (2014) The WD40-repeats proteins WDR-20 and WDR-48 bind and activate the deubiquitinating enzyme USP-46 to promote the abundance of the glutamate receptor GLR-1 in the ventral nerve cord of Caenorhabditis elegans. *J. Biol. Chem.* 289, 3444–3456

123. Hornbeck, P. V., Kornhauser, J. M., Latham, V., Murray, B., Nandhi-konda, V., Nord, A., et al. (2019) 15 years of PhosphoSitePlus(R): integrating post-translationally modified sites, disease variants and isoforms. *Nucl. Acids Res.* 47, D433–D441

124. Soffers, J. H. M., and Workman, J. L. (2020) The SAGA chromatin-modifying complex: the sum of its parts is greater than the whole. *Nat. Rev. Mol. Cell Biol.*

125. Morgan, M. T., Haj-Yahya, M., Ringel, A. E., Bandi, P., Brik, A., and Soffers, J. H. M., and Workman, J. L. (2020) The SAGA chromatin-modifying enzyme complex. *Nat. Struct. Mol. Biol.* 27, 579–585

126. Wu, Y., Lu, G., Mari, A., and Cramer, P. (2020) Structure of the transcription coactivator SAGA. *Nat. Commun.* 11, 5071–5085

127. Okino, Y., Machida, Y., Frankland-Searby, S., and Machida, Y. J. (2015) BRCA1-associated protein 1 (BAP1) deubiquitinase antagonizes the ubiquitin-mediated activation of FoxK2 target genes. *J. Biol. Chem.* 290, 1580–1591

128. Meray, R. K., and Lansbury, P. T., Jr. (2007) Reversible mono-ubiquitination regulates the Parkinson disease-associated ubiquitin hydrolase UCH-L1. *J. Biol. Chem.* 282, 10567–10575

129. Chai, Y., Berke, S. S., Cohen, R. E., and Paulson, H. L. (2004) Poly-ubiquitin binding by the polyglutamine disease protein ataxin-3 links its normal function to protein surveillance pathways. *J. Biol. Chem.* 279, 3605–3611

130. Burnett, B. G., and Pittman, R. N. (2005) The polyglutamine neurodegenerative protein ataxin 3 regulates aggresome formation. *Proc. Natl. Acad. Sci. U. S. A.* 102, 4330–4335

131. Zhong, X., and Pittman, R. N. (2006) Ataxin-3 binds VCP/p97 and regulates retrotranslocation of ERAD substrates. *Hum. Mol. Genet.* 15, 2409–2420

132. Todi, S. V., Winborn, B. J., Scaglione, K. M., Blount, J. R., Travis, S. M., and Paulson, H. L. (2009) Ubiquitination directly enhances activity of the deubiquitinating enzyme ataxin-3. *EMBO J.* 28, 372–382

133. Todi, S. V., Scaglione, K. M., Blount, J. R., Basrur, V., Conlon, K. P., Pastore, A., et al. (2010) Activity and cellular functions of the deubiquitinating enzyme and polyglutamine disease protein ataxin-3 are regulated by ubiquitination at lysine 117. *J. Biol. Chem.* 285, 39303–39313

134. Herbst, D. A., Eshin, M. N., Louder, R. K., Dugast-Darzacq, C., Dailey, G. M., Fang, Q., et al. (2021) Structure of the human SAGA coactivator complex. *Nat. Struct. Mol. Biol.* 28, 989–996

135. Grant, P. A., Winston, F., and Berger, S. L. (2021) The biochemical and genetic discovery of the SAGA complex. *Biochim. Biophys. Acta Gen. Rev.* 1864, 194669

136. Machida, Y. J., Machida, Y., Vashisht, A. A., Wohlschlegel, J. A., and Dutta, A. (2009) The deubiquitinating enzyme BAP1 regulates cell growth via interaction with HCF-1. *J. Biol. Chem.* 284, 34179–34188

137. Yu, H., Mashtalir, N., Daou, S., Hammond-Martel, I., Ross, J., Sui, G., et al. (2010) The ubiquitin carboxyl hydrolase BAP1 forms a ternary complex with YY1 and HCF-1 and is a critical regulator of gene expression. *Mol. Cell. Biol.* 30, 5071–5085

138. Hart, G. W., Sloawan, C., Ramírez-Correa, G., and Lagerlof, O. (2011) Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. *Annu. Rev. Biochem.* 80, 825–858

139. Fang, R., Barbera, A. J., Xu, Y., Rutenberg, M., Leonor, T., Bi, Q., et al. (2010) Human LSD2/KDM1b/AOF1 regulates gene transcription by modulating intragenic H3K4me2 methylation. *Mol. Cell. Biol.* 39, 222–233

140. Vogel, J. L., and Kristie, T. M. (2000) The novel coactivator C1 (HCF) coordinates multiprotein enhancer formation and mediates transcription activation by GABP. *EMBO J.* 19, 683–690

141. Wysocka, J., Myers, M. P., Laherty, C. D., Eisenman, R. N., and Herr, W. (2003) Human Sin3 deacetylase and trithorax-related Set1/Ash2 histone H3-K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF-1. *Genes Dev.* 17, 896–911

142. Narayanan, A., Nogueira, M. L. R., Ruyechan, W. T., and Kristie, T. M. (2005) Combinatorial transcription of herpes simplex virus and varicella zoster virus immediate early genes is strictly determined by the cellular coactivator HCF-1. *J. Biol. Chem.* 280, 1369–1375

143. Tyagi, S., Chabes, A. L., Wysocka, J., and Herr, W. (2007) E2F activation of S phase promoters via association with HCF-1 and the MLL family of histone H3K4 methyltransferases. *Mol. Cell.* 27, 107–119

144. Misaghi, S., Ottosen, S., Izraeli, I., and Grady, J. T., Min, M., et al. (2019) Association of C-terminal ubiquitin hydrolase BRCA1-associated protein 1 with cell cycle regulator host cell factor 1. *Mol. Cell. Biol.* 29, 2181–2192

145. Ruan, H. B., Han, X., Li, M. D., Singh, J. P., Qian, K., Azarhoush, S., et al. (2012) O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1alpha stability. *Cell Metab.* 16, 226–237

146. Okino, Y., Machida, Y., Frankland-Searby, S., and Machida, Y. J. (2015) BRCA1-associated protein 1 (BAP1) deubiquitinase antagonizes the ubiquitin-mediated activation of FoxK2 target genes. *J. Biol. Chem.* 290, 1580–1591

147. Yu, H., Mashtalir, N., Daou, S., Hammond-Martel, I., Ross, J., Sui, G., et al. (2010) The ubiquitin carboxyl hydrolase BAP1 forms a ternary complex with YY1 and HCF-1 and is a critical regulator of gene expression. *Mol. Cell. Biol.* 30, 5071–5085

148. Zhang, L., Zhou, F., Drabsch, Y., Gao, R., Snaar-Jagalska, B. E., Mickanin, C., and Arthur, A. J., et al. (2012) USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-beta type I receptor. *Nat. Cell. Biol.* 14, 717–726

149. Khoronenkova, S. V., Dianova, I., Ternette, N., Kessler, B. M., Parsons, J. L., and Dianov, G. L. (2012) Phosphorylation-dependent activity of the deubiquitinase USP7/HAUSP by PPM1G activates p53 response to DNA damage. *Mol. Cell* 45, 801–813

150. Huang, O. W., Ma, X., Yin, J., Flinders, J., Maurer, T., Kayagaki, N., et al. (2012) Phosphorylation-dependent activity of the deubiquinase DUBA. *Nat. Struct. Mol. Biol.* 19, 171–175
JBC REVIEWS: Quality control and regulation of deubiquitinases

157. Zhao, Y., Mudge, M. C., Soll, J. M., Rodrigues, R. B., Byrum, A. K., Schwarzkopf, E. A., et al. (2018) OTUD4 is a Phospho-activated K63 deubiquitinase that regulates MyD88-dependent signaling. Mol. Cell 69, 505–516.e5

158. Wang, W., Li, M., Ponnusamy, S., Chi, Y., Xue, I., Fahmy, B., et al. (2020) ABL1-dependent OTULIN phosphorylation promotes genotoxic Wt/p53/4E-5 localization to enhance drug resistance in breast cancers. Nat. Commun. 11, 3965

159. Yu, H., Pak, H., Hammond-Martel, I., Ghram, M., Rodrigue, A., Daou, J., et al. (2020) Stem cell-specific BAP1 deubiquitinase regulates myeloid differentiation and T cell development. Nat. Immunol. 21, 341–352

160. Udeshi, N. D., Mani, D. C., Satpathy, S., Fereshetian, S., Gasser, J. A., et al. (2020) Photocrosslinking reveals detailed conformational dynamics of UCH-L1. Nat. Commun. 11, 3199

161. Liu, B., Zhang, M., Chu, H., Zhang, H., Wu, H., Song, G., et al. (2011) The point mutation UCH-L1 C152A protects primary neurons from apoptosis by DUB autodiubiquitination. J. Biol. Chem. 286, 2844–2849

162. Zhao, Z., Fang, X., Wu, X., Ling, L., Chu, F., Li, I., et al. (2020) Acetylation-dependent deubiquitinase OTUD3 controls MAVS activation in innate antiviral immunity. Mol. Cell 79, 304–319.e7

163. Cai, X., Chen, J., Xu, H., Liu, S., Jiang, Z., et al. (2020) Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammation. J. Biol. Chem. 295, 339–347

164. Liu, B., Zhang, M., Chu, H., Zhang, H., Wu, H., Song, G., et al. (2017) The ubiquitin E3 ligase TRIM31 promotes aggregation and activation of the signaling adaptor MAVS through Lys63-linked polyubiquitination. Nat. Immunol. 18, 214–224

165. Albrecht, M., Golatta, M., Wullner, U., and Lengauer, T. (2004) Rapid and deep-scale ubiquitylation profiles for biology and translational research. J. Biol. Chem. 279, 3155–3170

166. Liu, H., Pak, H., Hammond-Martel, I., Ghram, M., Rodrigue, A., Daou, J., et al. (2020) Stem cell-specific BAP1 deubiquitinase regulates myeloid differentiation and T cell development. Nat. Immunol. 21, 341–352

167. Palazon-Riquelme, P., Worboys, J. D., Green, J., Valera, A., Martin-Martinez, M., et al. (2020) S-nitrosylation of UCHL1 induces its structural instability and promotes alpha-synuclein aggregation. Sci. Rep. 7, 44558

168. Puri, S., and Hsu, S. D. (2021) Cross-over loop cysteine C152 acts as an antioxidant to maintain the folding stability and deubiquitinase activity of UCH-L1 under oxidative stress. J. Mol. Biol. 433, 166879

169. Koharudin, I. M., Liu, H., DiMaio, R., Kodali, R. B., Graham, S. H., and Gronenborn, A. M. (2010) Cyclopentenone prostaglandin-induced unfolding and aggregation of the Parkinson disease-associated UCH-L1. Proc. Natl. Acad. Sci. U. S. A. 107, 6835–6840

170. Liu, H., Li, W., Rose, M. E., Hickey, R. W., Chen, J., Uechi, G. T., et al. (2014) Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair. Proc. Natl. Acad. Sci. U. S. A. 111, 285–290

171. Ismail, I. H., Davidson, R., Gagne, J. P., Xu, Z. Z., Poirier, G., and Hendzel, M. J. (2014) Germ-line mutations in BAP1 impair its function in DNA double-strand break repair. Cancer Res. 74, 4282–4294

172. Udeshi, N. D., Svinkina, T., Mertins, P., Kuhn, E., Mani, D. R., Qiao, J. et al. (2014) MicroRNA-922 promotes tau phosphorylation by down-regulating ubiquitin carboxy-terminal hydrolase L1 (UCHL1) expression in the pathogenesis of Alzheimer’s disease. Neuroscience 275, 232–237

173. Udeshi, N. D., Mani, D. C., Satpathy, S., Fereshetian, S., Gasser, J. A., et al. (2020) Photocrosslinking reveals detailed conformational dynamics of UCH-L1. Nat. Commun. 11, 3199

174. Li, X., Stevens, P. D., Yang, H., Gulhati, P., Wang, W., Evers, B. M., et al. (2013) The deubiquitination enzyme USP46 functions as a tumor suppressor by controlling PHLP-dependent attenuation of Akt signaling in colon cancer. Oncogene 32, 471–478

175. Bott, M., Brevet, M., Taylor, B. S., Shimizu, S., Ito, T., Wang, L., et al. (2011) The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat. Genet. 43, 668–672

176. Strobelt, P., Zettl, A., Ren, Z., Starostik, P., Riedmiller, H., Storkel, S., et al. (2002) Spiradenocystinoma of the kidney: clinical and genetic findings suggesting a role of somatic mutation of the CYLD1 gene in the oncogenesis of an unusual renal neoplasm. Am. J. Surg. Pathol. 26, 119–124

177. Moll, H. P., Lee, A., Peterson, C. R., Revuelta Cervantes, J., Wojcik, B. M., Parulkar, A., et al. (2016) A20 haploinsufficiency aggravates plantar arteriosclerosis in mouse vascular allografts: implications for clinical transplantation. Transplantation 100, e106–e116

178. Patel, V. I., Daniel, S., Longo, C. R., Shrikhande, G. V., Scali, S. T., Czismadia, E., et al. (2006) A20, a modulator of smooth muscle cell proliferation and apoptosis, prevents and induces regression of neointimal hyperplasia. FASEB J. 20, 1418–1430

179. Palazon-Riquelme, P., Worboys, J. D., Green, J., Valera, A., Martin-Sanchez, F., Pellegrini, C., et al. (2014) USP7 and USP47 deubiquitinases regulate NLRP3 inflammasome activation. EMBO Rep. 19, e47666

180. Zhao, Z., Wu, L., Xiong, R., Wang, L. L., Zhang, B., Wang, C., et al. (2014) The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat. Genet. 43, 668–672

181. Albrecht, M., Golatta, M., Wullner, U., and Lengauer, T. (2004) Rapid and deep-scale ubiquitylation profiles for biology and translational research. J. Biol. Chem. 279, 3155–3170

182. Strobelt, P., Zettl, A., Ren, Z., Starostik, P., Riedmiller, H., Storkel, S., et al. (2002) Spiradenocystinoma of the kidney: clinical and genetic findings suggesting a role of somatic mutation of the CYLD1 gene in the oncogenesis of an unusual renal neoplasm. Am. J. Surg. Pathol. 26, 119–124

183. Palazon-Riquelme, P., Worboys, J. D., Green, J., Valera, A., Martin-Sanchez, F., Pellegrini, C., et al. (2014) USP7 and USP47 deubiquitinases regulate NLRP3 inflammasome activation. EMBO Rep. 19, e47666

184. Zhou, J. I., Li, H., Li, L., Li, Y., Wang, P. H., Meng, X. M., et al. (2021) CYLD mediates human pulmonary artery smooth muscle cell dysfunction in congenital heart disease-associated pulmonary arterial hypertension. J. Cell Physiol. 236, 6297–6311

185. Palagon-Riquelme, P., Worboys, J. D., Green, J., Valera, A., Martin-Sanchez, F., Pellegrini, C., et al. (2014) USP7 and USP47 deubiquitinases regulate NLRP3 inflammasome activation. EMBO Rep. 19, e47666

186. Kadariya, Y., Cheung, M., Xu, J., Pei, J., Sementino, E., Menges, C. W., et al. (2016) BAP1 is a bona fide tumor suppressor: genetic evidence from mouse models carrying heterozygous germline Bap1 mutations. Cancer Res. 76, 2836–2844

187. Guzzo, C. M., Berndsen, C. E., Zhu, J., Gupta, V., Datta, A., Greenberg, R. A., et al. (2012) RNF4-dependent hybrid SUMO-ubiquitin chains are signals for RAP80 and thereby mediate the recruitment of BRCA1 to sites of DNA damage. Sci. Signal. 5, ra88
194. Liu, J., Wang, Y., Gong, Y., Fu, T., Hu, S., Zhou, Z., et al. (2017) Structural insights into SHARPIN-mediated activation of HOIP for the linear ubiquitin chain assembly. Cell Rep. 21, 27–36

195. Hrdinka, M., Fil, B. K., Zucre, M., Leske, D., Bagola, K., Yabal, M., et al. (2016) CYLD limits Lys63- and met1-linked ubiquitin at receptor complexes to regulate innate immune signaling. Cell Rep. 14, 2846–2858

196. Xu, D., Liu, J., Fu, T., Shan, B., Qian, L., Pan, L., et al. (2017) USP25 regulates Wnt signaling by controlling the stability of tankyrases. Genes Dev. 31, 1024–1035

197. Goldbraikh, D., Neufeld, D., Eid-Mutlak, Y., Lasry, I., Parnis, A., et al. (2020) USP1 deubiquitinates Akt to inhibit PI3K-Akt-FoxO signaling in muscle during prolonged starvation. EMBO Rep. 21, e48791

198. Song, H., Zhao, C., Yu, Z., Li, Q., Yan, R., Qin, Y., et al. (2020) UAF1 deubiquitinase complexes facilitate NLRP3 inflammasome activation by promoting NLRP3 expression. Nat. Commun. 11, 6042

199. McClurg, U. L., Summerscales, E. E., Harle, V. J., Gaughan, L., and Cookson, M. R., Liu, Y., et al. (2019) CK2-dependent phosphorylation determines the ubiquitination state and modulate substrate recognition. J. Biol. Chem. 288, 34545–34554

200. Xiong, Z., Xia, P., Zhu, X., Geng, J., Wang, S., Ye, B., et al. (2020) Glutamylation of deubiquitinase BAP1 controls self-renewal of hematopoietic stem cells and hematopoiesis. J. Exp. Med. 217

201. Liu, Z., Meray, R. K., Grammatopoulos, T. N., Fredenburg, R. A., Cookson, M. R., Liu, Y., et al. (2009) Membrane-associated farnesylated UCH-L1 promotes alpha-synuclein neurotoxicity and is a therapeutic target for Parkinson’s disease. Proc. Natl. Acad. Sci. U. S. A. 106, 4635–4640

202. Denuc, A., Bosch-Comas, A., Gonzalez-Duarte, R., and Marfany, G. (2009) The UBA-UIM domains of the USP25 regulate the enzyme ubiquitination state and modulate substrate recognition. PLoS One 4, e5571

203. Kim, S., Lee, D., Lee, J., Song, H., Kim, H. J., and Kim, K. T. (2015) Vaccinia-related kinase 2 controls the stability of the eukaryotic chaperon TRC/CCT by inhibiting the deubiquitinating enzyme USP25. Mol. Cell Biol. 35, 1754–1762

204. Cholay, M., Reverdy, C., Benarous, R., Collard, F., and Daviet, L. (2010) Functional interaction between the ubiquitin-specific protease 25 and the SYK tyrosine kinase. Exp. Cell Res. 316, 667–675

205. Kulathu, Y., Garcia, F. I., Mevissen, T. E., Busch, M., Arnaudo, N., Carroll, K. S., et al. (2013) Regulation of A20 and other OTU deubiquitinases by reversible oxidation. Nat. Commun. 4, 1569

206. Hutt, T. E., Turk, B. E., Asara, J. M., Ma, A., Cantley, L. C., and Abbott, D. W. (2007) I kappaB kinase beta phosphorylates the K63 deubiquitanase A20 to cause feedback inhibition of the NF-kappaB pathway. Mol. Cell Biol. 27, 7451–7461

207. Coomeraert, B., Baens, M., Heyninck, K., Bekerta, T., Haegman, M., Staal, J., et al. (2008) T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-kappaB inhibitor A20. Nat. Immunol. 9, 263–271

208. Mauri, P. L., Riva, M., Ambu, D., De Palma, A., Secundo, F., Benazzi, L., et al. (2006) Ataxin-3 is subject to autolytic cleavage. FEBS J. 273, 4277–4286

209. Pozzi, C., Valtorta, M., Tedeschi, G., Galbusera, E., Pastori, V., Bigi, A., et al. (2008) Study of subcellular localization and proteolysis of ataxin-3. Neurobiol. Dis. 30, 190–200

210. Matos, C. A., Nobrega, C., Louros, S. R., Almeida, B., Ferreiro, E., Valero, J., et al. (2016) Ataxin-3 phosphorylation decreases neuronal defects in spinocerebellar ataxia type 3 models. J. Cell Biol 212, 465–480

211. Almeida, B., Abreu, I. A., Matos, C. A., Fraga, J. S., Fernandes, S., Macedo, M. G., et al. (2015) SUMOylation of the brain-predominant Ataxin-3 isoform modulates its interaction with p97. Biochim. Biophys. Acta 1825, 1950–1959

212. Mao, Y., Senic-Matuglia, F., Di Fiore, P. P., Polo, S., Hodsdon, M. E., and Cookson, M. R. (2007) SUMOylation of the brain-predominant Ataxin-3 isoform modulates its interaction with p97. Biochim. Biophys. Acta 1825, 1950–1959

213. Busch, M., Arnaudo, N., Carroll, K. S., et al. (2017) USP25 regulates Wnt signaling by controlling the stability of tankyrases. Genes Dev. 31, 1024–1035

214. Kulathu, Y., Garcia, F. I., Mevissen, T. E., Busch, M., Arnaudo, N., Carroll, K. S., et al. (2013) Regulation of A20 and other OTU deubiquitinases by reversible oxidation. Nat. Commun. 4, 1569

215. Hutt, T. E., Turk, B. E., Asara, J. M., Ma, A., Cantley, L. C., and Abbott, D. W. (2007) I kappaB kinase beta phosphorylates the K63 deubiquitanase A20 to cause feedback inhibition of the NF-kappaB pathway. Mol. Cell Biol. 27, 7451–7461

216. Coomeraert, B., Baens, M., Heyninck, K., Bekerta, T., Haegman, M., Staal, J., et al. (2008) T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-kappaB inhibitor A20. Nat. Immunol. 9, 263–271

217. Mauri, P. L., Riva, M., Ambu, D., De Palma, A., Secundo, F., Benazzi, L., et al. (2006) Ataxin-3 is subject to autolytic cleavage. FEBS J. 273, 4277–4286

218. Pozzi, C., Valtorta, M., Tedeschi, G., Galbusera, E., Pastori, V., Bigi, A., et al. (2008) Study of subcellular localization and proteolysis of ataxin-3. Neurobiol. Dis. 30, 190–200

219. Matos, C. A., Nobrega, C., Louros, S. R., Almeida, B., Ferreiro, E., Valero, J., et al. (2016) Ataxin-3 phosphorylation decreases neuronal defects in spinocerebellar ataxia type 3 models. J. Cell Biol 212, 465–480