Quantum cryptography with and without entanglement

N. Gisin and N. Brunner
Group of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland
(February 25, 2022)

Quantum cryptography is reviewed, first using entanglement both for the intuition and for the experimental realizations. Next, the implementation is simplified in several steps until it becomes practical. At this point entanglement has disappeared. This method can be seen as a lesson of Applied Physics. Finally, security issues, e.g. photon number splitting attacks, and counter-measures are discussed.

I. INTRODUCTION

Quantum cryptography is a beautiful idea! It covers aspects from fundamental quantum physics to Applied Physics via classical and quantum information theories [1]. During the last ten years, quantum cryptography progressed tremendously, in all directions: from mathematical security proofs of idealized scenarii to commercial prototypes. In these proceedings we review the intuition, the experimental progress in optical fibers implementations and some security aspects, each viewed first with entanglement, and then without. Undoubtedly, quantum cryptography is intellectually more fascinating and conceptually easier with entanglement, but much more practical without it. Hence both aspects, with and without entanglement, are equally beautiful!

The next section presents the intuition behind quantum cryptography. Section III can be seen as a lesson in Applied Physics: how to simplify a theorist’s implementation of a nice idea until it is practical, while keeping the essential. This shows that Applied Physics requires a lot of imagination and a deep understanding of the essential physical ingredients. Finally, section IV reviews some security issues: coherent and individual eavesdropping, Trojan horse attacks, photon number splitting attacks and means to limit their efficiency.

II. INTUITIONS

A. Key distribution

The general scenario for key distribution, whether classical or quantum, goes as follows. Alice and Bob, the honest parties, hold many realizations of random variables X and Y respectively. The adversary, Eve, holds realizations of a third random variable Z. Hence the scenario is described by a joint probability distribution P(X, Y, Z) [2]. Intuitively it is clear that if X and Y are strongly correlated (e.g. almost identical) and furthermore, if Z is essentially uncorrelated, then Alice and Bob can use a public communication channel to distil secret bits. This intuition is made precise in the following theorem. The useful measure of correlation here is the mutual Shannon information.

Theorem [3] For a given P(X, Y, Z), Alice and Bob can establish a secret key (using only error correction and classical privacy amplification) if and only if I(X, Y) ≥ min{I(X, Z), I(Y, Z)}, where I(X, Y) = H(X) − H(X|Y) denotes the mutual information and H is the Shannon entropy.

Note that by definition privacy amplification uses only 1-way communication. If Alice and Bob use 2-way communication, the situation is more complex [4–6]. But these 2-way protocols are so inefficient that in practice they are always ignored.

B. Quantum key distribution with entanglement

Let us assume that the random variables X, Y and Z introduced above result from quantum measurements that Alice, Bob and Eve perform on a quantum state \(\psi_{ABE}\). It is clear for the quantum physicists, that if the partial state \(\rho_{AB}\) shared by Alice and Bob is close to maximally entangled, then Eve is “factorized out”, i.e. is uncorrelated. This is because a maximally entangled state is a pure state \(\psi_{ABE}\) \(\approx\) \(\psi_{AB}\otimes\psi_{E}\), hence the global state has to be close to a product state: \(\psi_{ABE}\approx\psi_{AB}\otimes\psi_{E}\). If one understands entanglement, more precisely, if one is familiar with the algebra of tensor products, then the reason why quantum key distribution with entanglement is secure becomes very intuitive!

C. Quantum key distribution without entanglement

Assume now that Alice and Bob do not share an entangled state, but - following the original idea [7] - that Alice sends individual quanta to Bob (when the quanta are described by a 2-dimensional Hilbert space, one speaks of qubits). Alice and Bob use two (or more) incompatible bases to prepare and measure each quanta. Because of the use of incompatible bases, there is no way for Eve to make copies of the flying quanta. Indeed, the no-cloning theorem guarantees that there is no way to copy an unknown quanta without perturbing its state [8]. Thus Alice and Bob can check for the presence of an adversary, Eve, by comparing a sample of their data: if the data is perfectly correlated, then Eve did not try to copy it and the remaining data is safe. Each time Alice and Bob
happen to have used the same basis, their data provides them with a secret bit.

This view of QKD without entanglement can be based on different aspects of quantum physics, like Heisenberg’s uncertainty relation or that quantum measurements perturb the system. But in the end all these are based on the linearities of quantum kinematics (the Hilbert space) and dynamics (Schrödinger’s equation). And this linearity is also the basis for entanglement, which appears when one introduces linear combinations of product states. Hence, intuitively one feels that both QKD schemes are closely related.

III. EXPERIMENTS: A LESSON IN APPLIED PHYSICS

The first choice when thinking about an experimental realization of QKD concerns the degree of freedom used for encoding the qubit. Indeed, if one goes for optical fibers, then the system is imposed: telecom photons. A first possible choice would be polarization. Unfortunately this is a quite unstable degree of freedom: actual fibers have some birefringence (different polarization modes travel at different speeds), moreover the polarization modes suffer from random polarization mode coupling [9]. And if the fiber is hanging between posts, the situation is even worse: Berry phase would be random, leading to fast (ms) random polarization fluctuations [10]. Hence, better choices should be envisaged. In Geneva, we chose time-bin qubits [11]. The idea is depicted in Fig. 1. Each photon is brought into a superposition of two time-bins, an early and a delayed one. The probability amplitudes of each time-bin and their relative phase allow one to prepare any possible qubit state. Also any possible projective measurement can be realized using a similar interferometer shown on the right hand side of Fig 1.

In the following sub-sections we review step by step simplifications of the theorist’s implementation of QKD.

A. Basic experiment with entangled time-bin qubits

The configuration presented in Fig. 2 is close to Ekert’s original proposal [12], but uses time-bin qubits instead of polarization. The source at the center contains a non-linear crystal in which a pump photon spontaneously splits into two twin photons. Energy conservation guarantees that the twins’ energies (i.e. the optical frequencies) add up to the well defined energy of the pump photon, although each of the twin photon has itself an uncertain energy, uncertain in the usual quantum mechanical sense. The pump photon is part of a large classical pulse, about 500 ps long. Since the probability of ”splitting”, i.e. of spontaneous parametric downconversion, is low (typically 10^{-10}, up to 10^{-6} in PPLN waveguides [13]), the pulse energy can be adjusted such that the probability that a pair of twin photons is generated is around 10%. In order to produce entangled time-bin qubits, the pump pulse passes through an unbalanced interferometer, where the imbalance is much longer than the pulse duration. Alice and Bob both use the standard time-bin qubit analyzer presented in Fig. 1. They fix the phases (relative to the pump interferometer) of their interferometers such that the two twin photons always emerge at the same output port, hence their detectors clicks are perfectly correlated. For a second, incompatible, basis
Alice and Bob could use different phase settings. But a first simplification can immediately be implemented. They replace the switch of their measuring interferometer by a much simpler and less lossy fiber optical coupler. Hence, Alice and Bob can also detect photons at an earlier or at a later time: earlier if the pump and their twin photons passed through the short arms of the interferometers, later if they both travelled the long way. Consequently, whenever Alice and Bob both detect their twin photon in the lateral peaks (i.e. early or late), then they both definitely have the same detection time: either both early or both late. And if Alice and Bob both detect their twin photon in the central time-bin, then they definitely have a click in the same detector (assuming their phases are fixed at $\alpha = \beta = 0$). The first case uses the time-basis, the second the frequency-basis (see Fig. 3).

A first simplification of the previous scheme consists in suppressing the pump interferometer and replacing the pulsed laser by a continuous pump laser, see Fig. 4. If the coherence length of this cw pump laser is larger than the imbalance of Alice and Bob’s interferometers, then 2-photon interference can still be observed. Indeed, when Alice and Bob post-select coincidence detections, then there are two possibilities: either both photons passed through the short arm of both interferometers, or both passed through the long arm. Since the pump laser’s coherence is large, these two possibilities are indistinguishable. Hence, according to quantum mechanics, one should add the probability amplitudes and observe interference. In this configuration Alice and Bob need to randomly choose the settings of their phase modulators: 0, 90, 180 and 270 degrees, let’s say. Whenever they happen to use settings corresponding to a phase difference multiple of 180°, then their detectors always fire together.

This is a nice configuration, but admittedly more suited for tests of Bell inequality (i.e. of quantum non-locality) than for a practical quantum cryptography setup. Actually, this configuration has been proposed in 1989 by J. Franson on the context of quantum nonlocality and is called a Franson interferometer [15]. This is the configuration we used in 1997 for our long distance Bell test over 18km in optical fibers (10km in straight line) [16].

C. Somewhat simpler

The next step notices that there is no need to put the source at the middle, half-way between Alice and Bob. The middle position is merely elegant. But it is more practical to put the source on one side, let’s say Alice’s side. Notice that Alice doesn’t become the sender of the quantum key: the key results eventually from independent random choices made by both partners and by Nature, there is nothing like a quantum key sender. But now, only one photon must travel a long distance. Hence, the photon that stays on Alice’s side can be chosen at a more convenient wavelength for efficient detection, that is at a wavelength where silicium APDs are available, i.e. below 1 μ, around 800 nm. This configuration, with some additional nice tricks, was demonstrated in 2001 by G. Ribordy [17], who founded id Quantique a few years later, the first company to propose a quantum cryptography setup [18]. His experiment was the first one targeting primarily quantum cryptography with entangled photons - all other experiments, including ours, where tailored for Bell tests and merely adapted to fashion. Ribordy’s experiment still holds the distance record of QKD using entangled photons. But admittedly, is not yet that practical since two photons must be detected. Hence, let’s make it simpler!
D. The first main step towards a practical system

The first step towards a really practical system consists in moving the photon source to the other side of Alice’s interferometer. At first this may look like a complete change, but it really isn’t! Let’s first use formulas. Whenever a unitary operator U acts on one subsystem of a maximally entangled pair state $\Phi^{(+)}$, then the same effect can be obtained by acting with a related unitary operator on the other subsystems:

$$U \otimes 1 \Phi^{(+)} = 1 \otimes U^t \Phi^{(+)}$$

where U^t denotes the transpose.

This formula applied to our case simply tells us that for Alice’s interferometer, the long arm with a central source is equivalent to the short arm with a source moved to the left of the interferometer, as shown in Fig. 5. Now the interference results from the indistinguishability of the following two paths: short-long and long-short, where the first term applies to the path in Alice’s interferometer and the second to the path in Bob’s interferometer. The significant simplification follows quite naturally. Since the photon travelling to the left on Fig. 5 is actually not used, or only as a trigger, one may as well use a single photon source. Well, that is even less practical, at least as long as single photon sources at telecom wavelength do not exist. But now one can also use the much more practical pseudo-single photon sources. These sources are simply very attenuated telecom laser pulses, such that the mean photon number per pulse is only of the order of 0.1. Hence the probability that a pulse contains two photons is almost negligible (in section III we come back to the issue of multi-photon pulses). Attenuating a laser pulse that low is not trivial, but still much simpler and much more stable, which is very important, than twin-photon sources.

This configuration presented in Fig. 5 was first used by Paul Townsend, then at BT, and John Rarity, then at DERA [19], and is still developed at Los Alamos National Laboratories, USA, in the group of Richard Hughes [20]. But looking at Fig. 5 one still sees two interferometers that need to be stabilized: the difference long-short has to be the same for both interferometers. And since this scheme relies on interferences, the polarization of the pseudo-single photons must be controlled. All this requires active feedback, which is not impossible to achieve, but not yet entirely practical. So let’s simplify it further!

E. A practical setup: the Plug & Play configuration

The next step realizes that there is no need for two interferometers, one is enough (see Fig. 6). But then the pulse must travel go-&-return, using a mirror as indicated on the figure. The indistinguishable paths are still short-long and long-short, but now referring to the paths during the go and the return propagations. Notice that in this scheme the role of Alice and Bob are inverted: Bob chooses one among four phase settings and Alice chooses a measurement basis. A serious drawback is that the photons must travel twice the distance, hence suffer from twice the loss. But this can be circumvented. Actually it is only on the return flight that the pulse has to be attenuated down to the pseudo-single photon level. Consequently, a bright pulse is sent out, attenuated by Bob and reflected to Alice. Notice that since there is now only a single interferometer, there is no longer any need to align it! All that is needed is that it remains stable during the time of a go-&-return, i.e. a few microseconds. But there remains the polarization. Here again there is an elegant solution, first suggested in a different context by Martinelli [21]. It consists of using a Faraday mirror. The details can be found in [21,1]. Essentially such mirrors act on polarization like a phase conjugating mirror acts on phase. The net result is that when a light pulse arrives back on Alice’s side, it is in a fixed polarization state, independent of all the polarization fluctuation light underwent during propagation: all the fluctuations were undone during the return journey. Faraday mirrors use the non-reciprocal Faraday effect, the same effect used in isolators and in circulators. Hence the telecom industry has developed this technology to a remarkable point and Faraday mirrors can readily be bought [22].

A further simplification comes from the fact that a Faraday mirror exchanges vertical and horizontal polarization. Hence, replacing the output coupler of Alice’s interferometer by a polarization beam splitter guarantees that a photon that passed through the long arm when emitted, will return via the short arm, and vice-versa. Consequently, Alice doesn’t need to post-select the cases
where the photon arrives in the correct time-bin since all detected photons arrive at the correct time.

When this setup was first tested using classical light (i.e. without the attenuator), experimentalists in Geneva were very pleased to measure visibilities up to $V = 99.8\%$, without much effort, even over tens of km! Accordingly this configuration was named Plug-&-Play [23]. Using this setup for QKD, the noise (QBER) is largely dominated by the detector noise: $QBER_{\text{optical}} = \frac{1+V^2}{1+2V} << 1\%$.

The Plug & Play configuration has been demonstrated in a QKD experiment between Geneva and Lausanne over a distance of 67km using the swiss telecom network, with terrestrial and with a cable under lake Geneva [24] (see also [25]). This experiment received quite a lot of attention. But actually, another experiment presented in the same paper deserves probably more attention. It used aerial cables and was done in mountains near Geneva. This clearly demonstrated the very high stability of the Plug & Play configuration. Indeed, it would be almost impossible to demonstrate QKD with any of the previously discussed configurations using aerial cables!

IV. SECURITY

A. Security proofs based on entanglement

The most general proofs of security, often termed à la Shor-Preskill, are quite surprising [26]. Following ideas by Mayer [27], Lo and Chau [28] and the development of quantum error codes, these proofs essentially show that from Alice and Bob’s points of view everything is as if they had used close to maximally entangled states, although they actually did use a scheme without entanglement. More details can be found in I. Chuang’s contribution to these proceedings. Let us simply emphasize that it is still not known whether Eve can in principle reach these bounds, or whether these bounds are sub-optimal. From a practical point of view this is a pity, since we do not now whether we do really need to sacrifice qubits to these bounds or could use the more optimistic bound summarized in the next sub-section.

B. Security proofs without entanglement

The proofs in this subsection do not consider the most general attack, but only what is called the individual, or incoherent attack. Actually, these proofs also treat the case of finite-coherent attacks, hence let us concentrate on the later. All the security proofs are valid only in the limit of arbitrarily long keys. If not, the statistical arguments wouldn’t apply. Now, let’s assume that Eve can attack several qubits in a coherent way, i.e. she can coherently let auxiliary systems under her control interact (unitarily of course) with the flying qubits. Assume that Eve can do this up to a maximum number of N qubits. We call this finite-coherent attacks. If Alice and Bob use key lengths much longer than N, then Eve is in the same situation as if she would be limited to individual attacks (one auxiliary system per qubit). Hence, the proofs “without entanglement” are valid for all senarii except if Eve can attack coherently an unlimited number of qubits - a conceptually interesting scenario, but hard to take seriously for the practical physicist.

In 1997 Fuchs et al. [31] presented the optimal individual attack, see also [32]. Since then it has been generalized to more than two bases [33] and to higher dimensions [34]. By now, the BB84 case is well known. The main results are summarized in Fig. 7.

![Fig. 7](image.png)

FIG. 7. The Shannon mutual information as a function of the QBER for the BB84 protocol. It is still not known if the Shor-Preskill bound (QBER≈11 %) can be saturated or not. The bound for invidual attacks (QBER≈15%) is known to be optimal.

C. Trojan horse attacks and technological loopholes

As shown in Fig. 6 the configuration opens a new possible attack for Eve, the so-called Trojan horse attack. Eve could send into Bob’s apparatus a bright laser pulse to sense the phase modulator’s setting. This illustrates that for every simplification step one has to carefully check the security of the configuration. In the present case there is a simple way to avoid Trojan horse attacks. Bob adds a coupler taking out a large fraction (typically 90%) of the light at his apparatus input. This coupler can be considered as part of the attenuator shown in Fig. 6. The extracted light is directed onto a standard detector that monitors the energy of each incoming pulse. Additionlly this detector is very useful for the synchronization of the phase modulator. Eve could now use a different wavelength at which either the coupler or the detector is inefficient. To avoid this Bob has to use a filter which blocks all unwanted wavelengths. This discussion could be extended more or less for ever. Let us emphasize two important points. First, this is not specific to the Plug-&-Play configuration, every real optical component has some imperfection, in particular they do all reflect
some light. Hence Eve could always try to send a sensing pulse and Alice and Bob should always have warning detectors and protecting filters. The second point is that this brief discussion illustrates the limit of mathematical proofs of security. Indeed, such proofs have either to assume perfect components, or components with precisely defined defects. In practice a central issue is how to make sure that an actual prototype satisfies the assumptions of a mathematical theorem? In this respect, it should be mentioned that when we made the simplification from a 2-photon to a 1-photon configurations, we lost the possibility of using the violation of Bell’s inequality as a signature of quantumness (i.e. if the correlation measured by Alice and Bob violate some Bell inequality, then they definitely share an entanglement preserving quantum channel). Using Bell inequalities in this sense is a very nice idea [29]. However the detection efficiency loophole that affects all optical tests of Bell inequality renders this kind of control infeasible with near future technology [30]. Note also that a violation of a Bell inequality could not detect a Trojan horse type of attack.

D. What is secure?

Since there is some controversy on this, let us ask "what is secure in QKD?". It is clear that Eve should not have access to Alice nor to Bob’s electronics. Indeed, there the information is classical and Eve could merely copy it. On the contrary, the quantum channel, i.e. the optical fiber, is secure thanks to quantum physics. But now comes an old question in a new context: where does the quantum/classical transition happen? As long as the information is quantum, the no-cloning theorem applies. As soon as it is classical, security is lost (i.e. must be guaranteed by other means). Surprisingly to us, many physicists (mainly theorists) consider the detector on the quantum side. This is of course a simple way to be on the safe side [35]. But it implies a very significant waste of qubits. It seems really hard to imagine Eve modifying Bob’s detector’s dark count probability from a distance. And if we give her this capability, why not also give her the power to change Alice’s source from a distance? Let’s say that quantum cryptography offers ”only” secure key distribution over a quantum channel, assuming the hardware on both sides are secured by classical means.

There remains though an issue. Eve could modify the apparent detection efficiency of Bob’s detector by sending brighter pulses. This is clearly feasible and Bob thus has to continuously monitor the coincidence rate between his detectors. If this coincidence rate exceeds the threshold corresponding to accidentals (due mainly to dark counts), then he should interrupt the protocol.

E. Multi-photon pulses: problem and solutions

Another potential security loophole comes from the cases where the pseudo-single photon source actually produces more than one photon. These events being rare one may think that they are negligible. However, if the losses on the quantum channel are high, e.g. the fiber is long, then the cases where the desired photon makes it to Bob are also rare. Hence Eve could perform the following attack [36]. Directly at the exit of Alice’s office, Eve counts the number of photons in each pulse, without perturbing the degree of freedom used to encode the qubit, i.e. Eve performs quantum nondemolition measurements on each pulse (this is total science fiction with today’s technology, but if one assumes that Eve is limited only by the laws of physics, she could do so). Next, Eve blocks all single-photon pulses. Whenever a pulse contains 2 or more photons, she keeps one and sends the others to Bob through a perfect channel, or even better she teleports them to Bob. If the fraction of pulses Eve blocks balanced the fraction of pulses that would have got lost in normal operation, then Bob notices no difference. But now Eve holds a copy of the qubits. The main point is that she didn’t need to make any copy, Alice unwillingly offered her some.

Of course, once the attack was performed, Eve has to conserve her photons, waiting for the basis reconciliation, when Alice publicly announces which basis she used to encode each qubit. Thus Eve clearly needs a quantum memory, which again is far from today’s technology but could in principle be designed.

A first way around such PNS (Photon Number Splitting) attack consists of using sources producing subpoissonian light. Indeed in such sources, the probability of 2-photon pulses is reduced compared to a poissonian light source like a laser, for the same probability of a 1-photon pulse. Such sources are often named single-photon sources and are an active field of research [37].

Another approach realizes that the weakness of the BB84 protocol against PNS attacks is that whenever Eve holds a copy, she has full information about the quantum state. But then, why not replace in the protocol the bases by sets of non-orthogonal states [39]. Remember that unambiguous discrimination of non orthogonal states is possible, but at the cost of some inconclusive results [38]. So even when Eve has a perfect copy of the state she cannot find out what the bit is with certainty. A particularly simple example of such new protocols uses precisely the same states and measurements as in the BB84 protocol, but the sifting procedure differs [40]. This protocol is called SARG and is described in Fig.8.
FIG. 8. The SARG protocol. The hardware is exactly the same as for the well known BB84 protocol. The only difference is in the sifting procedure. To exchange a secret bit Alice and Bob proceed as follows. Alice prepares one of the 4 states shown above, say $|+x\rangle$. Then she announces to Bob a set of two non-orthogonal states containing the state she actually prepared, for example $\{|+x\rangle, |+y\rangle\}$. Whenever Bob measures in the x basis (the correct basis), he always finds $|+x\rangle$ and cannot conclude anything. But when Bob measures in the y (the wrong basis) he finds $|-y\rangle$ half of the time. In these cases he concludes that Alice prepared the state $|+x\rangle$. The PNS attack is much less effective for this protocol than for the BB84, since Eve has to distinguish between two non-orthogonal states. The probability of success of such a measurement is $p = 1 - \gamma \approx 0.29$, where $\gamma = \langle \pm x | \pm y \rangle = \frac{1}{\sqrt{2}}$ since we used two maximally conjugated basis.

Though PNS attacks seem completely unrealistic with today’s technology, it is nice to see that new protocols can still be devised, inspired by practical considerations. In this respect, see also Ph. Grangier’s contribution to these proceedings.

V. CONCLUSION

Quantum cryptography is a beautiful idea! It is also an excellent teaching tool, encompassing basic quantum physics (no-cloning theorem, entanglement) and Applied Physics (telecom engineering). It also involves a significant part of classical and of quantum information theory.

ACKNOWLEDGEMENTS

Financial support by the Swiss OFES within the European project RESQ and the NCCR Quantum Photonics are acknowledged. Many thanks to Rob Thew for careful reading of the manuscript.

[1] For a recent review see N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, “Quantum Cryptography”, Rev. Modern Phys. (2002), 74, 145-195.
[2] U.M. Maurer, “Secret key agreement by public discussion from common information”, IEEE Transactions on Information Theory 39 (1993), 733-742.
[3] I. Csizár and J. Körner, “Broadcast channels with confidential messages”, IEEE Transactions on Information Theory, Vol. IT-24 (1978), 339-348.
[4] U.M. Maurer and S. Wolf, “Unconditionally secure key agreement and intrinsic information”, IEEE Transactions on Information Theory, 45 (1999), 499-514.
[5] N. Gisin and S. Wolf, “Quantum cryptography on noisy channels: quantum versus classical key-agreement protocols”, Phys. Rev. Lett. 83 (1999), 4200-4203; N. Gisin and S. Wolf, “Linking Classical and Quantum Key Agreement: Is There “Bound Information”? ”, Advances in cryptography - Proceedings of Crypto 2000, Lecture Notes in Computer Science (2000), Vol. 1880, 482-500.
[6] T. Acín, N. Gisin and L. Massanes, “Equivalence between two-qubit entanglement and secure key distribution”, Phys. Rev. Lett. 91 (2003), 167901, also quant-ph/0303053.
[7] Ch.H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing”, Int. conf. Computers, Systems & Signal Processing, Bangalore, India, 1984, 175-179.
[8] W.K. Wootters and W.H. Zurek, “A single quanta cannot be cloned”, Nature 299 (1982), 802-803; P.W. Milonni and M.L. Hardies, “Photons cannot always be replicated”, Phys. Lett. A 92 (1982), 321-322; D. Dieks, “Communication by EPR devices”, Phys. Lett. A 92 (1982), 271-272; E.P. Wigner, 1961, “The probability of the existence of a self-reproducing unit”, in “The logic of personal knowledge” Essays presented to Michael Polanyi in his Seventieth birthday, 11 March 1961 Routledge & Kegan Paul, London, pp 231-238.
[9] N. Gisin and J.P. Pellaux, “Polarization mode dispersion: Time versus frequency domain”, Optics Commun. 89 (1992), 316-323; N. Gisin, J.P. Von Der Weid and J.P. Pellaux, “Polarization mode dispersion of short and long single mode fibers”, IEEE J. Lightwave Technology (1991), 9, 821-827.
[10] A. Tomita and R. Y. Chiao, “Observation of Berry’s topological phase by use of an optical fiber”, Phys. Rev. Lett. 57 (1986), 937-940.
[11] J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, ”Pulsed energy-time entangled twin-photon source for quantum communication”, Phys. Rev. Lett. 82 (12) (1999), 2594-2597; W. Tittel and G. Weihs, ”Photonic Entanglement for Fundamental Tests and Quantum Communication”, QIC, Vol. 1, No. 2 (2001) 3-56, Rinton Press.
[12] A.K. Ekert, “Quantum cryptography based on Bell’s theorem”, Phys. Rev. Lett. 67 (1991), 661-663.
[13] S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, ”Highly efficient photon-pair source using a Periodically Poled Lithium Niobate waveguide”, Electr. Lett. 37 (2001), 26-28.
[14] W. Tittel, J. Brendel, H. Zbinden and N. Gisin, “Quantum Cryptography Using Entangled Photons in Energy-
D. Bethune and W. Risk, “An Autocompensating Fiber-Optic Quantum Cryptography System Based on Polarization Splitting of Light”, IEEE J. Quantum Electron. 36 (2000), 340-347; M. Bourennane, F. Gibson, A. Karlsson, A. Hening, P. Jonsson, T. Tsegaye, D. Ljunggren and E. Sundberg, “Experiments on long wavelength (1550nm) ‘plug and play’ quantum cryptography systems”, Opt. Express 4 (1999), 383-387.

P.W. Shor and J. Preskill, “Simple proof of security of the BB84 Quantum key distribution protocol”, Phys. Rev. Lett. 85 (2000), 441-444.

D. Mayers, 1998, “Unconditional security in quantum cryptography”, Journal for the Association of Computing Machinery (to be published); also quant-ph/9802025.

H.-K. Lo and H.F. Chau, “Unconditional security of quantum key distribution over arbitrary long distances” Science 283 (1999), 2050-2056; also quant-ph/9803006.

D. Mayers and A. Yao, “Quantum Cryptography with Imperfect Apparatus”, Proceedings of the 39th IEEE Conference on Foundations of Computer Science (1998).

B. Gisin and N. Gisin, “ ‘Plug and play’ systems for quantum cryptography protocols resistant to photon number splitting attacks”, quant-ph/0302037, accepted in Phys. Rev. A.

V. Scarani, A. Acin, G. Ribordy and N. Gisin, ”Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulses implementations”, quant-ph/0211131 , submitted to Phys. Rev. Lett.

A. Peres, Quantum Theory: Concepts and Methods (Kluwer, Dordrecht, 1998), section 9-5

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat and P. Grangier, "Single photon quantum cryptography", Phys. Rev. Lett. 89 (2002), 187901; E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon and Y. Yamamoto, "Secure communication: Quantum cryptography with a photon turnstile", Nature 420 (2002), 762.

A. Peres, Quantum Theory: Concepts and Methods (Kluwer, Dordrecht, 1998), section 9-5

A. Acin, V. Scarani and N. Gisin, "Coherent pulse implementations of quantum cryptography protocols resistant to photon number splitting attacks", quant-ph/0302037, accepted in Phys. Rev. A.

V. Scarani, A. Acin, G. Ribordy and N. Gisin, ”Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulses implementations”, quant-ph/0211131 , submitted to Phys. Rev. Lett.