Idiopathic and Radiation-Induced Myxofibrosarcoma In Head And Neck-Case Report And Literature Review

Bin Zhang
Capital Medical University

Miao Bai
Air Force Medical University

Runfa Tian
Capital Medical University

shuyu hao (shuyuhao@hotmail.com)
Capital Medical University https://orcid.org/0000-0002-4224-9424

Case report

Keywords: Myxofibrosarcoma, Head and neck, Planned surgery, Gross total resection

DOI: https://doi.org/10.21203/rs.3.rs-538444/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Myxofibrosarcoma (MFS) is a rare malignant fibroblastic tumor that primarily occurred in proximal extremities of older people. However, MFS, especially radiation-induced MFS is extremely rare in the head and neck. Local recurrence is very common, the diagnosis and treatment of MFS is always a great challenge. We presented one case of radiation-induced MFS, combined with previous literature, the clinical features, essentials of diagnosis and treatment modalities of MFS in head and neck were reviewed to better understand this rare entity.

Case presentation

Here, we reported a case of radiation-induced MFS under left occipital scalp in a 20-year-old girl with a history of medulloblastoma surgery and radiotherapy in 2006. A total tumor resection was performed with preservation of the overlying scalp the underlying bone, and no adjuvant therapy was administered after surgery. Post-operative pathological diagnosis was high-grade MFS. Unfortunately, the tumor relapsed six month later. Then a planned extensive resection was carried out, followed by radiotherapy. In addition, intra-operative frozen section was sent to confirm negative surgical margin. No relapse occurred in 12-month postoperative follow-up.

Conclusions

Planned gross total resection (GTR) with negative margins is the reasonable choice and footstone of other treatments for MFS. Ill-defined infiltrated borders and the complicated structures make it a great trouble to achieve total resection of MFS in the head and neck. Therefore, adjuvant radiotherapy and chemotherapy seem more necessary for these lesions. Further studies are needed to confirm the efficacy of radio-chemotherapy for head and neck MFS.

Background

Myxofibrosarcoma (MFS) is a rare soft tissue sarcoma that can arise sporadically or be induced by radiation, representing approximately 5% of all sarcomas. MFS is one of the common soft tissue tumors in the extremities of elderly patients, It can also be located on the trunk (12%), retroperitoneum or mediastinum (8%). However, MFS, especially radiation-induced MFS in the head and neck is extremely rare.

MFS normally appears as painless and slow-growing dermal or subcutaneous masses. Clinically, it is characterized by tumor progression with increased metastases after local recurrences. MRI is the most common pre-operative diagnostic modality. Histological grading of primary MFS was determined according to the updated French Federation of Cancer Centers (FNCLCC) scheme. Due to the high rate of recurrence, planned, gross total resection (GTR) with clear margins is essential and adjuvant treatment involving radiotherapy and chemotherapy is advised. However, due to ill-defined infiltrated borders and complex anatomical structures in the head and neck region it is technically harder to achieve gross total resection. Therefore, radiotherapy as well as chemotherapy looks more necessary for MFS in head and neck than in the extremity.

To the best of our knowledge, only 28 cases have been reported in the head and neck so far, 3 of them was induced by radiation (Table 1). Our case is the first case of scalp MFS following radiation exposure in a young female. Given its relatively recent recognition and the low incidence, only single cases or very small series have been reported, there are no randomized trials to guide treatment protocols. Without standard treatment protocols, it appears challenging to precisely predict prognosis for primary MFS by evaluating clinicopathological factors. Herein, we reported a case of radiation-induced scalp MFS in a 20-year-old girl with a history of medulloblastoma surgery and radiotherapy in 2006. Based on case report and literature review, we discussed clinical, histopathological features, treatment strategies and prognostic factors of MFS in the head and neck, in order to contribute to a better understanding of this potentially fatal malignancy.
Case Number	Author/Year	Sex/Age (Year)	Radiation-Induced (YES/NO)	Location	Image	Biopsy (YES/NO)	Treatment	Tumor Margin	LR (YES/NO)	Metastasis (YES/NO)	Follow-Up (Month)
1	Lam PK et al., 2002	M/55 NO	Sphenoid Sinus	CT, MRI	YES	S	NE	NO	NO	NO	8
2	Udaka T et al., 2002	M/55 NO	Neck	CT, MRI	NO	S	NE	NO	NO	NO	27
3	Nishimura G et al., 2006	M/69 NO	Hypopharynx	CT, MRI	YES	S	PO	NO	NO	NO	16
4	Kuo J et al., 2007	M/28 YES	Brain	CT, MRI	NO	S + RT	N/A	N/A	N/A	N/A	N/A
5	Wang M et al., 2008	F/63 NO	Orbit	CT, MRI	NO	S	PO	YES	NO	2	
6	Enomoto K et al., 2008	M/68 YES	Sphenoid Sinus	CT, PET	N/A	N/A	N/A	N/A	N/A	N/A	N/A
7	Gugatschka M et al., 2010	M/79 NO	Hypopharynx	Endoscopy CT	NO	S	NE	NO	NO	N/A	
8	Li X et al., 2010	F/37 NO	Parotid	CT	NO	S + RT	NE	NO	NO	8	
9	Buccoliero AM et al., 2011	M/9 NO	Brain	CT, MRI	NO	S + RT + C	PO	YES	NO	15	
10	Srinivasan B et al., 2011	F/78 NO	Parotid	MRI	YES	S + RT + C	NE	NO	NO	18	
11	Norval EJG et al., 2011	M/69 NO	Maxillary Sinus	CT, MRI	YES	RT + C	N/A	N/A	N/A	12	
12	Gire J et al., 2011	M/17 NO	Orbit	CT, MRI	NO	S	PO	NO	NO	24	
13	Qiubei Z et al., 2012	M/42 NO	Hypopharynx	CT	YES	S	NE	NO	NO	36	
14	Nakahara S et al., 2012	M/52 NO	Maxillary Sinus	MRI, Fdg-PET	YES	S + RT	NE	NO	NO	17	
15	Wemhart S et al., 2013	M/73 NO	Brain	MRI	NO	S + RT + C	N/A	N/A	YES	2	
16	Cante D et al., 2013	M/66 NO	Maxillary Sinus	CT, MRI	YES	RT + C	N/A	N/A	YES	18	
17	Majumdar K et al., 2013	F/21 NO	Brain	CT, MRI	NO	S + RT	PO	YES	NO	30	
18	Darouassi Y et al., 2014	F/74 NO	Thyroid	CT	NO	S + RT + C	N/A	YES	NO	N/A	
19	Dell'Aversana OG et al., 2014	M/35 NO	Maxillary Sinus	CT, MRI	YES	RT	N/A	NO	NO	27	
20	Shimoda H et al., 2016	M/67 NO	Pterygopalatine Fossa	CT	YES	S + RT	PO	YES	NO	32	
21	Costa DA et al., 2016	M/10 NO	Brain	CT, MRI	N/A	S + RT	PO	YES	YES	N/A	

Abbreviations: C, chemotherapy; F, female; LR, local recurrence; M, male; NE, negative; PO, positive; RT, radiotherapy; S, surgery.
Tumors in the extremities usually present as a slowly enlarging, painless mass which can be located subcutaneously, presenting as a multinodular form, or appears to be the most frequent site, especially the maxillary sinus, followed by brain. Similar to MFS in other regions, MFS in the head and neck mainly affects the older male patients (M/F = 19:11), although the age range is broad, most patients are in their fifth to seventh decades of life, with a mean age of 40.9 years. However, the onset age of radiation-induced myxoblastoma seems to be associated with the time of receiving radiotherapy.

Given the use of modern methods including immunohistochemistry and molecular studies, MFS was proved to be not of true histiocytic origin and the high-grade end of MFS was considered as a part of the myxoid variant of Malignant fibrous histiocytoma (MFH). It was until late 1990s that the poorly recognized low-grade variant was construed as a part of the morphological continuum of MFS by Mentzel et al. Given the use of modern methods including immunohistochemistry and molecular studies, MFS was proved to be not of true histiocytic origin but of fibroblastic origin. MFS was defined as a distinct type of fibroblastic sarcoma by the WHO in 2002, and MFH was renamed undifferentiated pleomorphic sarcoma.

MFS usually develops in proximal extremities of older people with a mean age of 65 years, men are usually affected slightly more often than women. MFS in the head and neck is extremely rare, representing approximately 3% of MFS. To the best of our knowledge, only 28 cases have been previously elaborately described in the head and neck regions so far, including brain (5, 17.9%), maxillary sinus (5, 17.9%), scalp (4, 14.2%), orbit (3, 10.7%), hypopharynx (3, 10.7%), sphenoid sinus (2, 7.2%), parotid (2, 7.2%), infratemporal space (2, 7.2%), thyroid gland (1, 3.5%), and multiple lesions (1, 3.5%) (Table 1). Paranasal sinus appears to be the most frequent site, especially the maxillary sinus, followed by brain. Similar to MFS in other regions, MFS in the head and neck mainly affects the older male patients (M/F = 19:11). Although the age range is broad, most patients are in their fifth to seventh decades of life, with a mean age of 40.9 years. However, the onset age of radiation-induced myxofibrosarcoma seem to be associated with the time of receiving radiotherapy.

Tumors in the extremities usually present as a slowly enlarging, painless mass which can be located subcutaneously, presenting as a multinodular form, or deeply as a single mass between the muscle masses underneath the superficial fascia. Because of the complexity of the anatomical structure of the head...
and neck, MFS in this region illustrates a wide variety of presentations of primary tumor ranging from an exophytic mass to subcutaneous nodules within the paranasal sinus, infratemporal fossa, pterygopalatine fossa, or intracranial, so it can cause focal neurological deficit and symptoms of intracranial hypertension, such as headache and vomiting, focal neurological deficits.5–30 In our case, the tumor presented as rapidly progressive enlarging, painless mass, which was a superficial type and didn't infiltrate the skull. Clinically, MFS is characterized by its unusual infiltrative growth pattern, significant propensity for local recurrence and tumor progression with increased metastases after relentless local recurrences. Mentzel et al. classified MFS into superficial and deep groups.1

Radiation-induced sarcomas (RIS) are increasingly seen in long-term survivors of head and neck cancers, with an estimated risk of up to 0.3%. Common histologic subtypes of RIS parallel their idiopathic counterparts and mainly include osteosarcoma, chondrosarcoma, malignant fibrous histiocytoma and fibrosarcoma.34 Radiation-induced MFS is very rare, only 3 cases were reported until now. The diagnosis of RIS requires the following criteria: 35 (1) history of radiotherapy; (2) asymptomatic latency period of several years (conventionally, > 4 years); (3) occurrence of sarcoma within a previously irradiated field; and (4) histological confirmation of the sarcomatous nature of the post-irradiated lesion. In our patient, the secondary myxofibrosarcoma met all the criteria for a RIS, including development of myxofibrosarcoma within the radiation field, 11 years’ latent period, and a different histopathological type.

MRI is the most common diagnostic modality. Computed tomography (CT) is also effective in soft tissue tumor diagnosis, especially for those located near the presence of air and bone. MFS has low attenuation on CT and shows low-to-intermediate signal on T1-weighted MRI. The solid and myxomatous components both show high signal on T2-weighted MRI. MFS often show abnormal signal infiltration along the facial plan on MRI that correspond to an infiltrative growth pattern histologically, named "tail sign". Post-contrast images can better display tail sign than T2-weighted image.36,37 Thus, in order to define the boundaries of the tumor before operation, it is critical that patients presenting with a diagnosis of MFS undergo high-quality T1- and T2-weighted MRI with pre-and post-gadolinium imaging. However, due to lack of typical MRI features, it is always a great challenge to differentiate MFS from other tumors in the head and neck.

The definitive diagnosis of MFS depends on pathological examination. Histologically, in order to diagnose MFS, a series of general parameters must be present like spindled shaped cells, elongated, pleomorphic nuclei, abundance of curvilinear vessels with thin walls and myxoid matrix.38 Low-grade tumors are associated with small amount of myxoid tissue, low mitotic activity and no necrosis; while high-grade tumors present with large population of cells, less myxoid matrix, multinucleated giant cells, increased mitotic index and important areas of necrotic tissue. The intermediate-grade tumors lend particularities of the other two but in smaller amount, without well-developed solid and necrotic areas or significant pleomorphic cells.38,39

Currently, no specific immunohistochemical markers are available to definitely diagnose MFS. However, positive for vimentin and, some-times positive for CD-34 and negative for S-100 protein. muscle-specific actin, desmin, myogenin can support the diagnosis. Ki-67 is able to reflect tumor aggression when it is intensely expressed, while high expression of minichromosome maintenance protein 2 may be correlated with a short period until first recurrence.39

Similar to other sarcomas, GTR (including nerves, vessels, and any involved bone) with negative margins remains the primary treatment for MFS.40 In order to fulfill a total resection, a planned operation based on biopsy and a high-quality MRI imaging are necessary. Biopsy is necessary to orientate the diagnosis or even establish the type of soft tissue sarcoma. Unfortunately, in many cases, the actual tumor boundary was usually underestimated on MRI sequences due to infiltrative grown along the facial planes. Thus, an extended resection is necessary for these individuals, while the extent of the resection is controversial, various surgical margins from 1cm to 5 cm were reported previously.40–48 In order to confirm that the surgical margin was microscopically free of tumor, frozen section in operation and postoperative histological assessment are recommended. In MFS patients who undergo primary unplanned resection and are thus at high risk of local recurrence, it is thought necessary to consider additional resections. Merck et al. reported that if non-radical excisions preceded a radical resection, the local failure rate was up to 33%, in comparison to 17% for primary wide resection because of the unusual infiltrative growth of MFS.49 However, it is more technically difficult to achieve radical resection in the head and neck region, especially in the deep area, for example tumors in paranasal sinus, orbit, and intracranial where vital structures can limit the extent of resection. In the reviewed 28 cases, only 7 cases were reported to be totally resected and free of tumor in the margin (Table 1). The total resection rate is far more lower than other part of the body. For these patients it is necessary to consider additional therapeutic approaches such as radiotherapy or chemotherapy. Based on randomized trials including a multitude of sarcoma subtypes, radiotherapy can significantly reduce local recurrence.50 Unfortunately, the role of adjuvant radiotherapy and chemotherapy in the treatment of MFS is less clear due to the rarity of this tumor. Only several small studies reported the efficacy of chemotherapy in myxofibrosarcoma.51,52 Additionally, RIS is always insensitive to radiotherapy since they are induced by radiation. Therefore, the impact of radiotherapy and chemotherapy on relapse-free survival of MFS patients remains to be proven.

MFS is a locally aggressive tumor that have a propensity for local recurrence (LR), even after complete resection, the risk of recurrence is high, ranging from 16–57% (Table 2), usually associated with histologically higher grade, thereby conferring a metastatic propensity. In contrast, the metastatic rate of MFS is low, between 20% and 25%, the most common site is the lung, followed by the pleura, lymph nodes and bones.40–48 LR is more common for MFS in the head and neck region. In the reviewed 28 cases, LR rate was 43% (9/21), all the RIS cases developed tumor relapse. But only 6 (25%, 6/24) cases developed tumor metastasis. Additionally, The prognosis of patients with RIS is generally is generally worse than that with primary sarcomas of a similar stage.34 Up to now, the prognostic parameters for MFS are still controversial, previous studies provided inconsistent or even contradictory conclusions. The reasons for these variances among previous series were mostly attributed to varying diagnostic and grading criteria, lacks of critical evaluation of margins and appropriate multivariate survival analyses, small sample size and obscure definition of wide resection, which precluded drawing firm conclusions by meaningful comparisons. Despite controversies, in most studies, margin status is the most important predictor of LR, negative margin and wide resection is positively related to low LR.40–48 Therefore, margin-negative surgical resection is the cornerstone of treatment for MFS. Unfortunately, it is really a great challenge to obtain radical resection for MFS in head and neck region especially in the deep areas. There is a lot of things to learn about surgical technique and effects of adjuvant therapy on MFS.
Table 2

Author/Year	No. Of Cases	Sex (M/F)	Age (Year)	Treatment (No.)	Tumor Margin Status (No.)	LR (%)	Metastasis (%)		
Ghazala CG et al., 2016⁵³	50	35/15	68.4 (median)	49	37	21	28	14	28
Daniels J et al., 2014⁴⁰	30	13/17	65.8 (mean)	30	23	N/A	N/A	26.7	5
Look Hong NJ et al., 2013⁴¹	69	38/31	62 (median)	69	53	14	55	16	16
Riouallon G et al., 2013⁴²	21	10/11	67 (mean)	21	21	17	4	57	9.5
Kikuta K et al., 2013⁴³	100	61/39	64 (mean)	100	16	28	72	21	11
Dewan V et al., 2012⁴⁴	172	N/A	67 (mean)	166	N/A	45	127	17	20
Haglund KE et al., 2012⁴⁵	36	21/15	72.5 (median)	36	28	9	27	31	17
Sanfilippo R et al., 2011⁴⁶	158	89/69	64 (mean)	158	81	28	130	18.2	14.6
Lin C et al., 2006⁴⁷	70	38/32	64 (median)	61	28	26	43	44	23
Huang H et al., 2004⁴⁸	49	26/23	60.5 (median)	49	9	19	28	57	16.3
Mentzel T et al., 1996¹	75	N/A	66 (median)	74	13	N/A	N/A	54	22

Abbreviations: F, female; LR, local recurrence; M, male; NE, negative; PO, positive; RT, radiotherapy; S, surgery.

Conclusions

MFS are locally aggressive tumors that have a propensity for local recurrence. Effective education about MFS, high-quality MRI imaging, biopsy, correct early diagnosis, planned and wide surgical excision with safety margins are mandatory in order to provide the best results for the MFS patient. Unfortunately, the complex anatomical structure and the extent in mid cheek region, make MFS in the head and neck a hard “challenge” for the surgeon to obtain wide surgical margins of resection. Therefore, in order to avoid local and distant recurrences of MFS in this region, combined surgical and adjuvant chemoradiotherapy is absolutely recommended, although the role of chemoradiotherapy in the treatment of MFS is unclear and debated. Further randomized double-blind controlled clinical trials are needed to confirm the efficacy of combined chemoradiotherapy for MSF in head and neck.

Abbreviations

CT: Computed Tomography; GTR: Gross Total Resection; LR: Local Recurrence; MFS: Myxofibrosarcoma; MRI: Magnetic Resonance Imaging; RIS: Radiation-Induced Sarcoma; MFH: Malignant Fibrous Histiocytoma

Declarations

Authors' contributions

All authors had full access to the data, contributed to the study, approved the final version for publication, and take responsibility for its accuracy and integrity.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Availability of data and materials

Not applicable.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Written informed consent was obtained from the patients.

Competing interests

The authors declare that they have no competing interests
References

1. Mentzel T, Calonje E, Wadden C, et al. Myxofibrosarcoma: Clinicopathologic analysis of 75 cases with emphasis on the low-grade variant. Am J Surg Pathol. 1996;20:391–405.

2. Huang H, Lai P, Qin J, Brennan MF, Antonescu CR: Low-grade myxofibrosarcoma: a clinicopathologic analysis of 49 cases treated at a single institution with simultaneous assessment of the efficacy of 3-tier and 4-tier grading systems. Human Pathology. 2004;35:612-621.

3. Stefan M Willems, Maria Debiec-Rychter, Karoly Szuhai, et al. Local recurrence of myxofibrosarcoma is associated with increase in tumour grade and cytogenetic aberrations, suggesting a multistep tumour progression model. Modern Pathology. 2006;19:407–416

4. Neuville A, Chibon F, Coindre JM. Grading of soft tissue sarcomas: from histological to molecular assessment. Pathology 2014;46(2):113–120 .

5. Ghazala CG, Agni NR, Ragbir M, Dilday P, Lee D, Rankin KS, et al: Myxofibrosarcoma of the extremity and trunk: a multidisciplinary approach leads to good local rates of LOCAL control. Bone Joint. 2016;98-B:1682-1688.

6. Lam PK, Trendell-Smith N, Li JH, Fan YW, Yuen AP: Myxofibrosarcoma of the sphenoid sinus. J Laryngol Otol. 2002;116:464-466, 116:422-422.

7. Udaka T, Yamamoto H, Shiomori T, Fujimura T, Suzuki H: Myxofibrosarcoma of the neck. The Journal of Laryngology & Otolology. 2006;120: 872–874.

8. Nishimura G, Sano D, Hanashi M, Yamanaka S, Tanigaki Y, Taguchi T, et al: Myxofibrosarcoma of the hypopharynx. Auris Nasus Larynx. 2006;33:93-96.

9. Kuo J, Chio C, Wang C, Chu Y, Lin K, Chuang S: Radiation-induced intra- and extra-cranial high-grade myxofibrosarcoma with tumor bleeding. Journal of Clinical Neuroscience. 2007;15:1151-1154.

10. Wang M, Khurana RN, Parikh JG, Hidayat AA, Rao NA: Myxofibrosarcoma of the Orbit: An Underrecognized Entity? 2008;115:1237-1240.

11. Enomoto K, Inohara H, Hamada K, Tamura M, Tomita Y, Kubo T, et al: FDG PET Imaging of Myxofibrosarcoma on the Sphenoid Sinus. Clinical Nuclear Medicine. 2008;33:421-422.

12. Gugatschka M, Beham A, Stammberger H, Schmid C, Friedrich G: First Case of a Myxofibrosarcoma of the Vocal Folds: Case Report and Review of the Literature. Journal of Voice. 2010 24:374-376.

13. Li X, Chen X, Shi ZH, Chen Y, Ye J, Qiao L, et al: Primary myxofibrosarcoma of the parotid: case report. BMC Cancer. 2010;10:

14. Zhang Q, Wojno TH, Yaffe BM, Grossniklaus HE: Myxofibrosarcoma of the Orbit: A Clinicopathologic Case Report. Ophthalmic Plastic & Reconstructive Surgery. 2010;26:129-131,

15. Buccoliero AM, Castiglione F, Garbini F, Rossi Degl’Innocenti D, Moncini D, Franchi A, et al: Primary cerebral myxofibrosarcoma: clinical, morphologic, immunohistochemical, molecular, and ultrastructural study of an infrequent tumor in an extraordinary localization. Journal of pediatric hematology/oncology. 2011;33:e279-e283.

16. Srinivasan B, Ethunandan M, Hussain K, Ilankovan V: Epithelioid myxofibrosarcoma of the parotid gland. Case reports in pathology 2011:641621-641623.

17. Norval EJG, Raubenheimer EJ: Myxofibrosarcoma Arising in the Maxillary Sinus: A Case Report with a Review of the Ultrastructural Findings and Differential Diagnoses. Journal of Maxillofacial and Oral Surgery. 2011;10:334-339.

18. Gire J, Weinbreck N, Labrousse F, Denis D, Adenis J, Robert P: Myxofibrosarcoma of the Orbit. Ophthalmic Plastic & Reconstructive Surgery. 2012;28:e9-e11.

19. Qiubei Z, Cheng L, Yaping X, Shunzhang L, Jingping F: Myxofibrosarcoma of the sinus piriformis: case report and literature review. World journal of surgical oncology. 2012;10:

20. Nakahara S, Uemura H, Kurita T, Suzuki M, Fujii T, Tomita Y, et al: A case of myxofibrosarcoma of the maxilla with difficulty in preoperative diagnosis. International Journal of Clinical Oncology. 2012;17:390-394.

21. Wembhart S, Woernle CM, Neidert MC, Bode B, Rushing EJ, Studer G, et al: A deeply seated brain metastasis from a primary myxofibrosarcoma: Case report. Clinical Neurology and Neurosurgery. 2013;115:2296-2298.

22. Cante D, Franco P, Sciacero P, Girelli GF, Borca VC, Pasquino M, et al: Combined chemoradiation for head and neck region myxofibrosarcoma of the maxillary sinus. Tumori Journal. 2013;99:80-83.

23. Majumdar K, Mandal S, Saran RK, Gupta R: Recurrent intracranial myxofibrosarcoma presenting as an extensive fronto-parieto-occipital SOL: An unusual sarcoma of meningeal origin. Clinical Neurology and Neurosurgery. 2013;115:354-358.

24. Darouassi Y, Attifi H, Zalagh M, Rharrassi I, Benariba F: Myxofibrosarcoma of the thyroid gland. European Annals of Otorhinolaryngology, Head and Neck Diseases. 2014;131:385-387.

25. Dell'Aversana OG, Iaconetta G, Abbate V, Piombino P, Romano A, Maglitto F, et al: Head and neck myxofibrosarcoma: a case report and review of the literature. J Med Case Rep. 2014;8:68.

26. Shimoda H, Yonezawa K, Shinomiya H, Otsuki N, Hashikawa K, Sasaki R, et al: Modified partial maxillary swing approach for myxofibrosarcoma in pterygopalatine fossa. Head Neck. 2016;38:E2519-E2522.

27. Costa DA, Barata P, Gouveia E, Mafra M: Right cardiac intracavitary metastases from a primary intracranial myxofibrosarcoma. BMJ Case Rep 2016

28. Wong A, Chan WPR, Mirani NM, Eloy JA: Myxofibrosarcoma of the maxillary sinus. Allergy Rhinol (Providence). 2017;7:2701-2709.

29. Qiubei Z, Cheng L, Yaping X, Shunzhang L, Jingping F: Myxofibrosarcoma of the sinus piriformis: case report and literature review. World journal of surgical oncology. 2012;10:

30. Tjarks BJ, Ko JS, Billings SD: Myxofibrosarcoma of unusual sites. J Cutan Pathol. 2018;45:104-110.

31. Weiss SW, Enzinger FM. Myxoid variant of malignant fibrous histiocytoma. Cancer. 1977;39(4):1672–1685.
32. Fletcher C, Unni K, Mertens F. Pathology and genetics of tumours of soft tissue and bone. 3rd ed. Lyon (France): IARC Press; 2002.

1. Ghazala CG, Agni NR, Ragbir M, Dilday P, Lee D, Rankin KS, et al: Myxofibrosarcoma of the extremity and trunk: a multidisciplinary approach leads to good local rates of local control. Bone Joint J. 2016;98-B:1682-1688.

2. Rosko AJ, Birkeland AC, Chinn SB, Shuman AG, Prince ME, Patel RM, et al: Survival and Margin Status in Head and Neck Radiation-Induced Sarcomas and De Novo Sarcomas. Otolaryngol Head Neck Surg. 2017;157:252-259.

3. Dickson MA: Systemic treatment options for radiation-associated sarcomas. Curr Treat Options Oncol. 2014;15:476-481.

4. Yoo HJ, Hong SH, Kang Y, Choi J, Moon KC, Kim H, et al: MR imaging of myxofibrosarcoma and undifferentiated sarcoma with emphasis on tail sign; diagnostic and prognostic value. European Radiology. 2014;24:1749-1757.

5. Lefkowitz RA, Landa J, Hwang S, Zabor EC, Moskowitz CS, Agaram NP, et al: Myxofibrosarcoma: prevalence and diagnostic value of the “tail sign” on magnetic resonance imaging. Skeletal Radiol. 2013;42:809-818.

6. Mansoor A, White CR Jr. Myxofibrosarcoma presenting in the skin: clinicopathological features and differential diagnosis with cutaneous myxoid neoplasms. Am J Dermatopathol. 2003;25(4):281–286.

7. Wincewicz A, Lewitowicz P, Matykiewicz J, Gluszek S, Sułkowski S. Intramuscular high-grade myxofibrosarcoma of left buttock of 66-year-old male patient – approach to systematic histopathological reporting. Rom J Morphol Embryol. 2015;56(4):1523–1528.

8. Daniels J, Green CM, Freemont A, Paul A: The management of myxofibrosarcoma - a ten-year experience in a single specialist centre. Acta Orthopaedica Belgica. 2014;80:436.

9. Look Hong NJ, Raskin KA, Yoon SS, Szymonifka J, Yeap B, et al: Prognostic Factors and Outcomes of Patients with Myxofibrosarcoma. Annals of Surgical Oncology. 2013;20:80-86.

10. Riouallon G, Larousserie F, Pirot E, Anract P: Superficial myxofibrosarcoma: Assessment of recurrence risk according to the surgical margin following resection. A series of 21 patients. Orthopaedics & Traumatology: Surgery & Research. 2013;99:473-477.

11. Kikuta K, Kubota D, Yoshiida A, Suzuki Y, Morioka H, Toyama Y, et al: An Analysis of Factors Related to Recurrence of Myxofibrosarcoma. Japanese Journal of Clinical Oncology. 2013;43:1093-1104.

12. Dewan V, Darbyshire A, Sumathi V, Jeys L, Grimer R: Prognostic and Survival Factors in Myxofibrosarcomas. Sarcoma. 2012:1-5.

13. Haglund KE, Raut CP, Nascimento AF, Wang Q, George S, Baldini EH: Recurrence Patterns and Survival for Patients With Intermediate- and High-Grade Myxofibrosarcoma. International Journal of Radiation Oncology*Biology* Physics. 2012;82:361-367.

14. Sanfilippo R, Miceli R, Grosso F, Fiore M, Puma E, Pennacchioli E, et al: Myxofibrosarcoma: Prognostic Factors and Survival in a Series of Patients Treated at a Single Institution. Annals of Surgical Oncology. 2011;18:720-725.

15. Lin C, Chou S, Li C, Tsai K, Chen W, Hsiung C, et al: Prognostic factors of myxofibrosarcomas: Implications of margin status, tumor necrosis, and mitotic rate on survival. Journal of Surgical Oncology. 2006;93:294-303.

16. Huang H: Low-grade myxofibrosarcoma: a clinicopathologic analysis of 49 cases treated at a single institution with simultaneous assessment of the efficacy of 3-tier and 4-tier grading systems. Human Pathology. 2004;35:612-621.

17. Merck C, Angervall L, Kindblom LG, et al. Myxofibrosarcoma. A malignant soft tissue tumor of fibroblastic-histiocytic origin. A clinicopathologic and prognostic study of 110 cases using multivariate analysis. Acta Pathol Microbiol Immunol Scand Suppl. 1983;282:1-40.

18. Beane JD, Yang JC, White D, et al. Efficacy of adjuvant radiation therapy in the treatment of soft tissue sarcoma of the extremity: 20-year follow-up of a randomized prospective trial. Ann Surg Oncol. 2014;21(8):2484–2489.

19. Nabeel Pervaiz, Nigel Colterjohn, Forough Farrokhyar, MPhil, et al. A Systematic Meta-Analysis of Randomized Controlled Trials of Adjuvant Chemotherapy for Localized Recectable Soft-Tissue Sarcoma. Cancer. 2008;113:573–581.

20. Colia V, Fiore M, Provenzano S, Fumagalli E, Bertulli R, Morosi C, et al. Activity of anthracycline- and ifosfamide-based chemotherapy in a series of patients affected by advanced myxofibrosarcoma. Clin Sarcoma Res. 2017(7)16:1-7.

Figures
Figure 1

T1-weighted image (A), T2-weighted image (B) and contrast-enhanced MRI scans (C) reveals a lesion with well-defined borders under the left occipital scalp. It exhibits hypointensity on the T1-W sequence image (A), slightly hyperintensity on the T2-W axial image (B) and mild peripheral enhancement after contrast administration (C). "Tail sign" is found on T2-W axial image (B, red arrows), and is more obvious in the Post-contrast images (C, red arrows); Intraoperative photographs show the skull was compressed and deformed by the tumor (E). The tumor is grayish and about 35×25 cm in size (F).
Figure 2

Histopathological examination. Hematoxylin and eosin [H&E] showing (A, ×100) alternating hypocellular (red arrow) and hypercellular (black arrow) areas, (B, ×200) spindle (red arrow) and stellate cells (black arrow), (C, ×200) tumor cells with pleomorphic (black arrow) and mitotic (thick black arrow) nuclei in the prominent myxoid matrix (red arrow); immunohistochemistry demonstrating positive staining for (D, ×200) vimentin and (E, ×200) SMA with a high (F, ×200) Ki-67 index (more than 50% of tumor cells).