Differential genome evolution and speciation of *Coix lacryma-jobi* L. and *Coix aquatica* Roxb. hybrid guangxi revealed by repetitive sequence analysis and fine karyotyping

Zexi Cai¹, Huijun Liu¹, Qunyan He¹², Mingwei Pu¹, Jian Chen³, Jinsheng Lai³, Xuexian Li⁴ and Weiwei Jin¹*

Abstract

Background: Coix, Sorghum and Zea are closely related plant genera in the subtribe Maydeae. Coix comprises 9–11 species with different ploidy levels (2n = 10, 20, 30, and 40). The exclusively cultivated *C. lacryma-jobi* L. (2n = 20) is widely used in East and Southeast Asia for food and medicinal applications. Three fertile cytotypes (2n = 10, 20, and 40) have been reported for *C. aquatica* Roxb. One sterile cytotype (2n = 30) closely related to *C. aquatica* has been recently found in Guangxi of China. This putative hybrid has been named *C. aquatica* HG (Hybrid Guangxi). The genome composition and the evolutionary history of *C. lacryma-jobi* and *C. aquatica* HG are largely unclear.

Results: About 76% of the genome of *C. lacryma-jobi* and 73% of the genome of *C. aquatica* HG are repetitive DNA sequences as shown by low coverage genome sequencing followed by similarity-based cluster analysis. In addition, long terminal repeat (LTR) retrotransposable elements are dominant repetitive sequences in these two genomes, and the proportions of many repetitive sequences in whole genome varied greatly between the two species, indicating evolutionary divergence of them. We also found that a novel 102 bp variant of centromeric satellite repeat CentX and two other satellites only appeared in *C. aquatica* HG. The results from FISH analysis with repeat probe cocktails and the data from chromosomes pairing in meiosis metaphase showed that *C. lacryma-jobi* is likely a diploidized paleotetraploid species and *C. aquatica* HG is possibly a recently formed hybrid. Furthermore, *C. lacryma-jobi* and *C. aquatica* HG shared more co-existing repeat families and higher sequence similarity with Sorghum than with Zea.

Conclusions: The composition and abundance of repetitive sequences are divergent between the genomes of *C. lacryma-jobi* and *C. aquatica* HG. The results from fine karyotyping analysis and chromosome pairing suggested diploidization of *C. lacryma-jobi* during evolution and *C. aquatica* HG is a recently formed hybrid. The genome-wide comparison of repetitive sequences indicated that the repeats in Coix were more similar to those in Sorghum than to those in Zea, which is consistent with the phylogenetic relationship reported by previous work.

Keywords: Coix, Next-generation sequencing, Repeat element, Genome structure, Karyotyping, Polyploidy, Evolution

* Correspondence: weiweijin@cau.edu.cn
† Equal contributors
¹ National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Coordinated Research Center for Crop Biology, China Agricultural University, Beijing 100193, China
Full list of author information is available at the end of the article

© 2014 Cai et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background

Coix lacryma-jobi L. (2n = 20), also commonly called adlay (Job’s tears), is widely cultivated as a food and medicine plant in East and Southeast Asian countries [1]. Its grain has the highest protein content among cereal crops [2], and its seed extracts are used to treat several diseases [3,4]. Previous research on *Coix* has focused mainly on its medicinal components and their efficacy [5,6]. Genetic and genomic studies on *Coix* are sparse, although there are some reports on cytogenetic analysis [7-9], genetic linkage map development [10], construction of BAC libraries [11], and isolation of prolamin gene families [12,13].

The genus *Coix* belongs to Maydeae of Poaceae family and is the closest group to the genera *Zea*, *Tripsacum*, and *Sorghum* [14]. The places of the origin of the three genera are very different. *Zea* originates from America, and *Sorghum* originates from Africa, while the genus *Coix* is indigenous to Southeast Asia [1]. Previous studies have shown that *Coix* comprises of 9–11 species with different levels of ploidy. Tetraploids (2n = 20) predominate, including the exclusively cultivated *Coix lacryma-jobi* L., while diploids (2n =10), hexaploids (2n = 30), and octoploids (2n = 40) with a basic chromosome number of x = 5 are less frequent [15]. *Coix aquatica* Roxb. has been reported to have three sterile cytotypes (2n = 10, 20 and 40). A sterile cytotype (2n = 30) of very close botanical relationship to *C. aquatica* was found in southwest China [16]. The results from genomic *in situ* hybridization (GISH) demonstrated that 20 out of its 30 chromosomes are highly homologous to the chromosomes of *C. lacryma-jobi* [7]. The genomic and evolutionary information of *C. lacryma-jobi* and this sterile *C. aquatica* remains elusive. Furthermore, the phylogenetic relationship between *Coix* and *Zea/Sorghum* is still unclear. Comparative analysis of genomic DNA sequences may contribute to answer those questions.

The majority of the genomic sequences in higher eukaryotes are repetitive elements including transposable elements and satellite repeats [17]. Large-scale accumulation of satellites and transposable elements serves as a major driving force for genome expansion [18,19]. Most long terminal repeat (LTR) retrotransposable elements disperse throughout plant chromosomes, while some elements locate in specific regions of chromosomes [20]. Satellite DNA sequences, consisting of short tandem repeats, share a common structural feature [21]. They are usually located in specific chromosomal regions and may be broadly classified as centromeric, subtelomeric, or intercalary repetitive sequences [22]. Satellite repeats are very powerful tools for chromosome identification, chromosome karyotyping, and comparative genome analysis [23,24]. Because of similar chromosome lengths and/or arm ratios and lack of sufficient landmarks, adequate identification of *Coix* chromosome pairs remains challenging. Therefore, identification and characterization of major repetitive sequences are essential for understanding the organization and structure of *Coix* genomes.

In this study, we sequenced ~6 Gb genomic sequences of *C. lacryma-jobi* and 12 Gb genomic sequences of *C. aquatica* HG, and found highly dynamic nature of these two genomes during evolution. Our karyotyping analysis revealed that *C. lacryma-jobi* is a diploidized paleotetraploid species, and *C. aquatica* HG is recently formed hybrid between *C. lacryma-jobi* and a distantly related species. Comparative repeat sequence analysis supported that *Coix* is closer to *Sorghum* than to *Zea*. The findings in this study advance our understanding of *Coix* genome evolution and shed new light on the genomics of the Poaceae family.

Results

Low-coverage sequencing of *C. lacryma-jobi* and *C. aquatica* HG genomes and repetitive sequence analysis

To better understand the *Coix* genus at the genome level, we determined the genome size of the two *Coix* species using flow cytometry with the maize inbred line B73 (approximately 2,300 Mb) as a reference genome (Additional file 1: Figure S1). The genome size of *C. lacryma-jobi* was approximately 1,684 Mb (Table 1), similar to the previous report [25]. *C. aquatica* HG had a genome of approximately 2,335 Mb (Table 1), about 1.4-fold of the *C. lacryma-jobi* genome.

We sequenced (Table 1) and used cluster-based repeat identification and classification method [26] to analyze the data. Except Penelope retrotransposon and P transposon superfamilies [27], all other plant transposable elements and repetitive DNA were detected in these two species, including LTR and LINE/SINE retrotransposons, Mutator and En-Spm transposons, satellites, and rDNA. The proportion of total repetitive sequences in whole genome is 75.54% in *C. lacryma-jobi* and 72.88% in *C. aquatica* HG. The proportion of different types of repetitive DNA was displayed in Table 2.

We found that retroelements occupied 69.08% of the *C. lacryma-jobi* genome and 63.83% of the *C. aquatica* HG genome (Table 2). The two dominant families of retroelements are Ty1/Copia and Ty3/Gypsy retrotransposons. The Ty1/Copia occupied 39.57% of the *C. lacryma-jobi* genome and 31.12% of the *C. aquatica* HG genome, while the Ty3/Gypsy occupied 29.11% and 32.56%, respectively. The most abundant type I transposon was the Spm class of transposons, and the Mutator was also enriched in *Coix*.

We believed that the abundance of many repeats varied greatly between these two species. To test this hypothesis, we conducted a comparative analysis by combining reads of these two species and performing cluster-based repeat
identification and classification on the combined reads [28,29]. In spite of lacking statistical examination on these data, we found that CL1, a Ty1/Copia member, occupied 3.44% of the *C. lacryma-jobi* genome but only 1.16% of the *C. aquatica* HG genome, and other Ty1/Copia elements including CL4, CL8, CL9, CL11, and CL27 all displayed a similar pattern (Supplemental Data 2). Together, Ty1/Copia retroelements have a higher percentage in *C. lacryma-jobi* than in *C. aquatica* HG. Similarly, some clusters of Ty3/Gypsy also showed genome proportion change, for example, CL2 and CL414 occupies 1.7% and 0.000134% of the *C. lacryma-jobi* genome respectively, while 1.07% and 0.00707% of the *C. aquatica* HG genome respectively. To further verify these results, we conducted FISH on the chromosomes of the two species using CL2 and CL414 as probes (Additional file 1: Figure S2). CL2 probe exhibited intense signal in both species. In *C. aquatica* HG, 20 out of 30 chromosomes showed stronger signals than the other 10 chromosomes. CL414 probe only showed faint signal in *C. lacryma-jobi*, while intense signal was observed on *C. aquatica* HG chromosomes. Similar to the signal of CL2 probe, 20 out of the 30 chromosomes in *C. aquatica* HG showed stronger signal of CL414 probe than the other 10 chromosomes. The distribution and proportion of Ty1/Copia and Ty3/Gypsy family members were illustrated in Figure 1. Our sequencing results revealed that four families (CL286, CL411, CL429, and CL472) were present only in one species but absent in the other species. We further confirmed the results of CL411 and CL429 by FISH (Additional file 1: Figure S3). This varied abundance of the LTR retroelements in the two species may result from sweep or accumulation of the same families, or the rapid change during polyploidization [30].

Our results showed that the satellite DNA made up only 0.60% of the *C. lacryma-jobi* genome in contrast to 4.89% of the *C. aquatica* HG genome. We also found that the most abundant repeats in these two species were completely different, and the proportion of the co-existing satellite repeats varied greatly in these two genomes (Table 3), indicating rapid evolution of satellite repeats in *Coix*. In particular, two distinct satellite repeats (SatS1 and SatS2) made up approximately 2.17% of the *C. aquatica* HG genome (Table 3). The rDNA proportion was similar in the two genomes. The information of other repeat families was presented in the Additional file 2.

Table 1 Size estimation and sequencing of *C. lacryma-jobi* and *C. aquatica* HG genomes

Species	Chromosome number (2n)	Genome size (Gb)	Number of reads	Total read length (Mb)	Genome coverage
C. lacryma-jobi	20	1.684	61,869,688	6186.97	1.84x
C. aquatica	30	2.335	128,853,294	12885.33	2.76x

Table 2 Repetitive sequences and their proportions in *C. lacryma-jobi* and *C. aquatica* HG

Repeat family	*C. lacryma-jobi* (%)	*C. aquatica* (%)
Retrotransposon	69.08	63.83
Ty1/Copia	39.57	31.12
Ty3/Gypsy	29.11	32.56
Unclassified LTR	0.28	0.12
LINE/SINE	0.12	0.03
Transposon	4.38	3.30
hAT	0.03	0.06
Mutator	0.57	0.37
RC/Helitron	0.02	0.04
En-Spm	3.64	2.42
PIF-Harbinger	0.09	0.24
Tc1-Mariner	0.01	0.14
Other	0.02	0.03
rDNA	0.43	0.56
snRNA	ND	ND
Satellite	0.60	4.89
Unclassified	1.05	0.30
Total	75.54	72.88

Note: snRNA, small noncoding RNA; ND, not detected.

Figure 1 Ty1/Copia and Ty3/Gypsy cluster distribution in *C. lacryma-jobi* and *C. aquatica* HG. (a) *C. lacryma-jobi* and *C. aquatica* HG had 115 Ty1/Copia clusters in common, and only one distinct cluster was detected only in *C. lacryma-jobi*. (b) *C. lacryma-jobi* and *C. aquatica* HG shared 159 common Ty3/Gypsy clusters, and 3 clusters were detected only in *C. aquatica* HG. The percentage represents the proportion of corresponding clusters in the genome.
A novel centromeric satellite repeat was identified in *C. aquatica* HG

It has been demonstrated that ten chromosomes in *C. aquatica* HG with less homology to *C. lacryma-jobi* harbor low copy number of centromeric repeat CentX and a large amount of centromeric retrotransposon CRC [7]. To identify possible new centromeric repeats in these ten chromosomes, we used an OsCenH3 antibody specific for the 30 centromeres in *C. aquatica* HG to perform ChIP-seq assay (Additional file 1: Figure S4). Quantitative ChIP PCR showed significant relative enrichment of CentX and CRC in the ChIPed DNA (Figure 2), suggesting that CentX and CRC might be associated with CenH3, the functional centromere marker. In the absence of a reference genome, we mapped ChIP-seq data to the clusters of the *C. aquatica* HG genome for cluster-based repeat identification. The result also showed the significant relative enrichment of CentX and CRC. Besides, we identified a novel CentX variant in *C. aquatica* HG. In contrast to the typical size of 153 bp for CentX, the monomer of this CentX variant had 102 bp and accounted for 1.21% of the total CentX in the ChIPed DNA. According to our whole genome sequencing data, this variant made up 0.45% of the total CentX and 0.003% of the *C. aquatica* HG genome. To test whether this variant is specifically located on the 10 chromosomes less homologous to the *C. lacryma-jobi* chromosomes, we conducted FISH using the sequence of the 102 bp CentX variant and the sequence of the 51 bp missing from the CentX variant but in the typical CentX as separate probes (Figure 3). Both of the 102 bp variant and the 51 bp fragment did not show a different distribution pattern compared with the typical CentX. The extremely faint signals from the two probes showed a similar intensity on the 10 chromosomes less homologous to *C. lacryma-jobi* chromosomes. These results indicate that the 102 bp variant may not be specific to the 10 chromosomes.

The karyotype of *C. lacryma-jobi* and *C. aquatica* HG

We performed karyotyping analysis on *C. lacryma-jobi* and *C. aquatica* HG using the satellite repeats, 5S rDNA and 45S rDNA as probes (Figure 4). The signal of the centromeric satellite repeat CentX was large on the Chromosomes pair 2, strong on the chromosomes pairs 4, 5, 8 and 9, weak on the chromosomes pairs 1, 3, 7 and 10, and faint on the chromosomes pair 6. The 45S rDNA probe appeared as one large signal at the end of the short arm of the chromosome pair 1. The signal from the 5S rDNA was located at the peri-centromeric region of the long arm of the chromosome pair 4. It is generally agreed that, SatS3, SatS4 and SatS5 signals sequentially approach the telomere at the subtelomeric region. Thus, using these five repeat probes, we expected to identify the individual somatic chromosome in *C. lacryma-jobi*. The signal patterns on *C. lacryma-jobi* chromosomes were shown in Figure 4e. We prepared an ideogram displaying the position and fluorescence intensity of satellite repeats on *C. lacryma-jobi* chromosomes (Figure 4f). The relative length of each chromosome pair was listed in Additional file 1: Table S1.

We used a similar approach to determine the karyotype of *C. aquatica* HG (Figure 5). By using the CentX and *C. lacryma-jobi* genomic DNA probes, we found that 20 out of the 30 chromosomes of *C. aquatica* HG were highly homologous to the chromosomes of *C. lacryma-jobi*. We then further karyotyped these 20 chromosomes by sequential FISH using the following three probe cocktails: 1) 45S rDNA and 5S rDNA; 2) co-existing satellites SatS3, SatS4 and SatS5; 3) SatS1 and SatS2. Signals from the co-existing satellite probe cocktail showed not only different distribution patterns in *C. aquatica* HG compared with *C. lacryma-jobi*, but also a pronounced asymmetric distribution on each chromosome pair (SatS3, SatS4 and SatS5.

Satellite	*C. lacryma-jobi*	*C. aquatica*	Length (bp)	Location	
SatS1	—	1	1.34	Subtelomere	
SatS2	—	2	0.83	Subtelomere	
45S rDNA	1	0.32	6	0.55	Chr 1 S
SatS3	2	0.29	5	0.57	187 Subtelomere
CentX*	3	0.16	4	0.67	153 Centromere
5S rDNA	4	0.11	9	0.05	Chr 4 L
SatS4	5	0.07	7	0.46	184 Subtelomere
SatS5	6	0.06	3	0.79	185 Subtelomere
Telomere	7	0.02	8	0.23	7 Telomere

CentX is the 153 bp centromere satellite [7]; GP, genome proportion.

Figure 2 Relative fold enrichment of centromeric sequences CentX and CRC by the ChIP assay. Relative fold enrichment of centromeric sequences CentX and CRC by the ChIP assay. SatS4 and 45S rDNA were used as negative controls.

Table 3 The proportion, length, and location of satellite repeats in *C. lacryma-jobi* and *C. aquatica* HG

Cai et al. BMC Genomics 2014, 15:1025
http://www.biomedcentral.com/1471-2164/15/1025

Page 4 of 16
signals were on Chr. 1, 1’ and 4, 4’). We confirmed this observation by FISH on pachytene chromosomes (Figure 6). Under the condition of enhanced visualization of chromosome pairing, SatS3 and SatS5 signals on the homologous chromosome pairs appeared as a pattern of contrasting presence on one chromosome and absence on the paired one, or large amount on one chromosome and small amount on the paired one (Figure 6).

Next, we numbered the remaining 10 chromosomes as A1 to A10 and stained them with the probe cocktails. The signal distribution patterns of the probes on A1-A10 chromosomes were quite different from the patterns on the other 20 chromosomes. A faint 5S rDNA signal appeared near the end of the long arm of Chr. A7. SatS5 was absent on chromosomes A5 and A6, and 45S rDNA signal was absent on all the 10 chromosomes, indicating a different origin of this set of chromosomes compared with the other 20 chromosomes. We made a putative ideograph displaying the position and fluorescence intensity of satellites on C. aquatica HG chromosomes (Figure 7). The relative length of chromosome pairs was listed in Additional file 1: Table S2.

Determination of the ploidy level of C. lacryma-jobi and C. aquatica HG

Because certain Coix species have ten chromosomes [31], it is possible that C. lacryma-jobi is a tetraploid and C. aquatica HG is a hexaploid. According to previous reports, C. aquatica should be fertile and able to propagate by fertilization [32]. However, our karyotyping analysis revealed 10 chromosome pairs in C. lacryma-jobi and 10 paired plus 10 unpaired chromosomes in C. aquatica HG, implying the absence of any typical characteristics of a tetraploid or hexaploid genome (Figures 4 and 5). We then determined chromosome pairing during metaphase I in C. lacryma-jobi and C. aquatica HG using CentX and CRC probes. Consistent with the previous report [8], our cytogenetic analysis showed that all the examined C. lacryma-jobi meiotic cells had 10 bivalents, while except one cell with an ambiguous trivalent, the rest of the examined C. aquatica HG meiotic cells had 10 bivalents and 10 univalents (Table 4). We also analyzed pollen viability of the C. aquatica HG using I$_2$-KI dying method, and found that the pollen grains were sterile (Additional file 1: Table S3). Thus, based on the fact that C. aquatica HG is reproduced by vegetative propagation [8] and our findings, we believed that the C. aquatica HG might be recently formed hybrid and C. lacryma-jobi is a diploidized paleotetraploid species.

Comparative analysis on the repeat sequence in Coix, Zea and Sorghum

We performed classification analysis of LTR for the C. lacryma-jobi and C. aquatica HG using plant Ty1/Copia clades including Tos17, SIRE1/Maximus, Tnt1, Angela, Tont1, Reina and Bianca [33]. As illustrated in Figure 8a, Coix Ty1/Copia elements were distributed in six clades except the Tos17 clade. The most abundant retroelements in Coix is the SIRE1/Maximus family members, which is also abundant in maize genome [34]. Our results show that all abundant Ty1/Copia families in Sorghum and Zea were also present in Coix, indicating a close relationship of these three genera.

Additionally, we analyzed seven well characterized Ty3/Gypsy clades including CRM, Hopscotch, Tekay, Galadriel, Athila, Ogre and Tat [33]. We found Tekay, CRM, Reina, Athila, and Tat in Coix (Figure 8b). Huck in Tekay has been shown to be one of the four most dominant retroelements in Zea mays, and a moderately repetitive DNA in Sorghum bicolor [35]. Leviathan in Tat was found to be abundant in Sorghum bicolor, and moderately abundant in Zea mays with no recent activities [35]. We found that Huck shared one node with coix_CL100 (0.238%) and caqu_CL82 (0.361%), and Leviathan also shared one node with coix_CL18 (0.864%).

Figure 3 FISH with the 102 bp and 51 bp fragments of CentX oligonucleotide as probes. (a) The mitotic metaphase chromosomes of C. aquatica HG. The arrowhead pointed the 10 chromosomes less homologues to C. lacryma-jobi chromosomes; (b) The FISH signals from the 102 bp CentX fragment (green); (c) The FISH signals from the 51 bp CentX fragment (red); (d) The merged imagine, bar = 5 μm.
and caqu_CL8 (1.11%), indicating that the divergence of Coix and Sorghum might be later than that of Sorghum and Zea.

We downloaded paired-end sequences of Zea mays (the inbred line B73), Zea luxurians, and Sorghum bicolor (the inbred line Tx378) from http://sra.dnanexus.com/, and combined all the sequences. We found that repetitive sequences account for 79% of the maize genome and 59.4% of the sorghum genome which is very similar to the previous reports [18,19]. Distribution of major repeat families in the five species showed that the species-specific clusters occupied 2.18% of the C. aquatica HG genome and 8.62% of the sorghum genome, but were not detected in the other three species (Figure 9a). The co-existing clusters made up 22.98% of the C. aquatica HG genome, 26.16% of the Coix lacryma-jobi genome, 19.33% of the Zea mays genome, 21.22% in the Zea luxurians genome, and 13.58% of the Sorghum bicolor genome. Coix-Sorghum co-existing clusters accounted for 12.42% of the C. aquatica HG genome, 19.16% of the Coix lacryma-jobi genome, and 21.34% of the Sorghum bicolor genome. Only a few co-existing clusters were found in Zea and
Figure 5 The karyotype for *C. aquatica* HG mitotic metaphase chromosomes. The karyotype for *C. aquatica* HG mitotic metaphase chromosomes. (a) The mitotic metaphase chromosomes (numbered from 1 to 10) were counterstained with DAPI and pseudocolored in red; (b) FISH with the probe cocktail of SatS3 (green) and SatS2 (red); (c) A merged image with CentX in green and SatS2 in red; (d) The same spread was re-probed with the probe cocktail of SatS5 (green), 5S (red) and 45S (yellow); (e) The same spread was re-probed with the probe cocktails of SatS1 (green) and SatS2 (red); (f) The same spread was re-probed with the probe cocktail of CentX (green) and *C. lacryma-jobi* gDNA (red); (g) The twenty chromosomes closely homologous to *C. lacryma-jobi* were separated from figure (a-g) and listed in numerical order; (h) Ten chromosomes distant to *C. lacryma-jobi* were separated from figure (a-g) and listed in numerical order, bar = 5 μm.
Sorghum, C. lacryma-jobi and Zea shared 43 clusters, however, these clusters only made up 0.04% of the C. lacryma-jobi genome. Thus, C. lacryma-jobi and C. aquatica HG shared more co-existing repeat families with Sorghum than with Zea. To confirm that Coix shared more repeat sequences with Sorghum than with Zea, we analyzed repeat sequences in C. lacryma-jobi, C. aquatica HG, maize, and sorghum using the RepeatMasker program (RepBase 20130422) and found that repeat sequences in Coix were more similar to those in sorghum than to those in maize (Figure 8b). Therefore, our results corroborate the previous phylogenetic speculation, which shows that Coix might be closer to Sorghum than to Zea [14,36,37].
Discussion

The dynamic nature of the repetitive sequences in Coix

Repetitive sequences play essential roles in genome structuring and evolution, and they usually expand disproportionally to genome enlargement [38]. In the grass family, repetitive DNA accounts for 40% of 466 Mb rice genome [39], 62% of 740 Mb sorghum genome [19], and 82% of 2300 Mb maize genome [18]. In general, the larger a genome size is, the larger is the portion of repeats in the genome. In this study, flow cytometry analysis showed that the genome size of \textit{C. lacryma-jobi} and \textit{C. aquatica HG}, were approximately 1665 Mb and 2335 Mb, respectively (Table 1). By using “cluster-based repeat identification” approach, we reanalyzed the repetitive DNA proportion in \textit{Zea mays} and \textit{Sorghum bicolor} genome as 79% and 59.4%, respectively, which is consistent with the previous reports [18,19]. We found that \textit{Coix} had a quite high percentage of repetitive DNA: 75.54% for \textit{C. lacryma-jobi} and 72.88% for \textit{C. aquatica HG} (Table 2). Notably, our results showed that \textit{C. aquatica HG} with a larger genome than \textit{C. lacryma-jobi} harbored less abundant repetitive DNA compared with \textit{C. lacryma-jobi}. One possibility might be that \textit{C. aquatica HG} may arise from the hybridization of \textit{C. lacryma-jobi} with another relative with less repetitive DNA, indicating a more recent origin of this species. The genome size of \textit{C. aquatica HG} is 1.4-fold of the \textit{C. lacryma-jobi} genome (Table 2). We suspected that the \textit{C. aquatica HG} genome might be still in the process of expanding after original genome fusion. The loss of two tandem repeats (SatS1 and SatS2) and the lower percentage of the co-existing satellites in \textit{C. lacryma-jobi} suggested rapid evolution of this genome (Table 3, Figures 4 and 5). The second interpretation might be that the absence of chromosome recombination and rearrangement during meiosis decelerate genome reshuffling in the sterile \textit{C. aquatica HG}. Thirdly, the extent and speed of transposable element expansion may somehow vary in these two species, resulting in the compositional differences of repetitive sequences in the two species [38].

Transposable elements are a major class of repetitive DNA driving genome expansion and speciation [40]. Many families or genera have specific types of transposable elements interspersed in heterochromatic and euchromatic regions [41]. \textit{C. lacryma-jobi} and \textit{C. aquatica HG} consist of typical repetitive DNA in Poaceae family

	\textit{C. lacryma-jobi}	\textit{C. aquatica HG}	
10 bivalents	354	10 bivalents with 10 univalents	31
–	–	One ambiguous trivalent	1
Multivalents	0	Multivalents	0
Total	354	Total	32

Table 4 Statistical summary of bivalents examined in meiotic metaphase I cells of \textit{C. lacryma-jobi} and \textit{C. aquatica HG}

Figure 8 Phylogenetic relationships of LTR-retrotransposon elements from \textit{C. lacryma-jobi} and \textit{C. aquatica HG}. Phylogenetic relationships of LTR-retrotransposon elements from \textit{C. lacryma-jobi} and \textit{C. aquatica HG}, inferred from Neighbor-joining analysis of the reverse transcriptase encoding domain with bootstrap of 100 replicates. (a) The Ty1/Copia families from \textit{C. lacryma-jobi} and \textit{C. aquatica HG}. The elements from \textit{C. lacryma-jobi} and \textit{C. aquatica HG} were in red and blue separately; (b) The Ty3/Gypsy families from \textit{C. lacryma-jobi} and \textit{C. aquatica HG}. The elements from \textit{C. lacryma-jobi} and \textit{C. aquatica HG} were in red and blue separately.
In this study, the most abundant repetitive elements were Ty1/Copia and Ty3/Gypsy, comprising 68.68% of the *C. lacryma-jobi* genome and 63.68% of the *C. aquatica* HG genome (Table 2). Similar to differential enrichment of Ty1/Copia and Ty3/Gypsy retroelements in *Musa acuminate* genome [43], we found the proportion of Ty1/Copia was moderately higher than that of Ty3/Gypsy in *C. lacryma-jobi* (Table 2). However, Ty3/Gypsy retroelements were more abundant than Ty1/Copia retroelements in *C. aquatica* HG in our study, which is similar to *Zea* and *Sorghum*, *Oryza sativa*, *Spirodela polyrhiza*, *Brachypodium distachyon*, and *Arabidopsis thaliana* [44]. Inspection of Ty1/Copia and Ty3/Gypsy content of plant genomes in a phylogenetic context reveals no congruence in their content even in closely related species and highlights differences in success of genome occupation [45]. This obvious difference between these two species may be caused by differential amplification or removal of Ty1/Copia and Ty3/Gypsy elements in *C. lacryma-jobi* and *C. aquatica* HG.

Satellite repeats are also a critical class of repetitive DNA in higher eukaryotes [46]. Long stretches of satellite repeats may reside in a special chromosomal locus as a hallmark, functional unit, or a driving force for genome revolution [47]. The centromere specific satellite repeats are particularly important for centromere formation, expansion, and function [48-50]. Consistent with their functional conservation, centromeric satellite repeats are broadly conserved in length, in spite of large variation in their DNA sequences [51]. The size of individual centromeric satellite repeat is 155, 165, 176, and 171 bp in maize, rice, *Brassica*, and human, respectively [52-55]. Very interestingly, we found 153 and 102 bp centromeric satellite repeats in *Coix*. The 153 bp satellite repeat is within the normal range of the length of centromeric satellite repeats, while the 102 bp repeat is the shortest

Figure 9 Comparative analysis of repeat sequences in *Zea*, *Sorghum* and *Coix*. (a) Distribution of repetitive DNA clusters in five species of *Zea*, *Sorghum*, and *Coix*, focusing on the 9 major distribution patterns and the corresponding numbers of clusters. (b) The RepeatMasker annotation by using *Zea mays* and *Sorghum bicolor* as the reference database.
centromeric satellite repeat reported in Poaceae thus far. Similarly, different satellite repeats are also detected in potato [56]. In-depth comparative sequence analysis of five homologous centromeres in two *Solamum* species indicates that centromeric satellite repeats may undergo boom-bust cycles before a favorable repeat is fixed in a population [57]. This may explain why the 153 bp and 102 bp repeats co-exist in the *Coi* centromere. Megabase-sized centromeric satellite repeats in large genomes may trace back to LTR retrotransposon [58,59], although neo-centered may function properly without satellite repeats during early stages of centromere evolution [60]. Given that *C. aquatica* HG is sterile and spreads by vegetative propagation, we believe that the evolution of its centromere may be reproductively suppressed. Therefore, the 102 bp variant may represent an evolutionary intermediate of centromeric repeat in *Coi*.

Ploidy level of *C. lacryma-jobi* and *C. aquatica* HG

C. lacryma-jobi (2n = 20) and *C. aquatica* HG (2n = 30) are generally known as tetraploid and hexaploid species, respectively, because the diploid species within the *Coi* genus has been reported to contain 10 chromosomes in its somatic cells [31]. The genus *Sorghum* has 25 species with 10, 20, 30, or 40 chromosomes, and these species are classified as diploid plants [61]. Ploidy level of *C. lacryma-jobi* and *C. aquatica* HG remains inconclusive. Karyotyping analysis has been shown to be able to provide direct evidence for homologous chromosome identification in polyploid species by visualizing characteristic chromosomal structures [62]. Taking advantage of a set of powerful satellite repeat markers, we found clear SatS3, SatS4 and SatS5 signal pairs on metaphase chromosomes in the *C. lacryma-jobi* karyotype, which represent the typical feature of diploid karyotypes. Furthermore, we found that 20 chromosomes displayed 10 perfect pairs in pachytene, which was consistent with the 10 bivalents during the meiosis I. Therefore, we speculated that *C. lacryma-jobi* might behave as a diploid species. However, our observation could not rule out the possibility that *C. lacryma-jobi* might be an ancient tetraploid species. During the evolution of many ancient tetraploid species, diploidization often occurs to restructure the genome [63,64]. Thus, we suspected that the *C. lacryma-jobi* genome, as a tetraploid during its early evolution, might go through subsequent diploidization, similar to what has happened to maize.

In *C. aquatica* HG, GISH with *C. lacryma-jobi* genomic DNA has been shown to identify 20 homologous chromosomes [7]. In this study, the 20 chromosomes also had bright centromeric satellite (CentX) signals (Figure 4). Additionally, some chromosome pairs, such as chromosome 1 and 1’, and chromosomes 4 and 4’, showed asymmetric repeat signals of SatS1, SatS2, SatS3, SatS4 and SatS5 (Figure 4), suggesting that the 20 paired chromosomes may be derived from a recent hybridization of two dissimilar parents and that repeat sequence homogenization may be still an ongoing process [65]. We also found that the other 10 chromosomes have extremely faint signals of centromeric satellite repeats (Figure 5h) compared with the 20 paired chromosomes, and the signal patterns of other satellites on these 10 chromosomes were also different from those on the 20 paired chromosomes in *C. aquatica* HG or in the *L. lacryma-jobi* chromosomes (Figures 4,5,6,7). We found that during meiosis I, 30 chromosomes of *C. aquatica* HG formed ten bivalents and ten univalents (Table 4). In addition, pollen of *C. aquatica* HG was almost completely sterile (Additional file 1: Table S3). All these data suggested that the *C. aquatica* HG could be a recently formed hybrid between an octoploid cytotype (2n = 40) related to *L. lacryma-jobi* and a tetraploid cytotype (2n = 20) of a more distantly related *Coi* species (Additional file 1: Figure S5). Another possibility is that the hybrid plant might be formed by a diploid (2n = 20) and a different diploid (2n = 20) parent, consequently resulting in a numerically unreduced gamete, hence mimicking a partial autopolyploidization of the second nonhomologous genome.

The phylogenetic relationship of *Zea*, *Sorghum* and *Coi* was corroborated by comparative repeat sequence analysis

Zea, *Sorghum*, and *Coi* are close relatives in Poaceae family, although they independently originated in Central America, Africa, and Southeast Asia, respectively [1]. Previous studies using chloroplast sequences indicate that *Coi* is evolutionarily closer to *Sorghum* than to *Zea* [14,36], which has been further confirmed by comparative analysis of the *bz* orthologous region [37]. This argument, however, is still questionable due to the absence of evidence from nuclear genome. In our study, we compared all repeat elements of five species from *Zea*, *Sorghum*, and *Coi*. We found that the co-existing repeat families in *Zea* and *Coi* comprised only 16 clusters. However, the *Sorghum* and *Coi* shared 68 clusters. *Zea* and *Sorghum* only had 1 cluster in common (Figure 9a). These lines of evidence from nuclear DNA sequences also support a close evolutionary relationship between *Coi* and *Sorghum* and a relative distant evolutionary relationship between *Zea* and *Sorghum*.

We also identified the most abundant families of LTR-retrotransposon of *Zea* and *Sorghum* in the *Coi* genome, indicating that *Coi*, *Zea* and *Sorghum* may be closely related to one another. It has been shown that *Ji* and *Opie* are the most abundant Ty1/Copia-type retroelements in *Zea mays*, and their copies decrease in *Sorghum bicolor* and *Coi* [35]. *Huck* is an abundant Ty3/Gypsy type retroelement in *Zea mays* [66], but just a moderately repetitive element in *Sorghum bicolor* and *Coi* [35]. Additionally,
Leviathan is moderately abundant in Coix and Sorghum bicolor genomes [35]. These results, together with those from repeat sequence comparison, suggest that the dynamics of the genome-wide repeat elements in Coix, Zea and Sorghum, to certain extent, might facilitate the clarification of the evolution relationship of these close species.

Conclusions

In this study, we used low-coverage sequencing on Coix lacryma-jobi L. (2n = 20) and Coix aquatica Roxb. HG (2n = 30) to analyze repeat elements. We revealed the genome structure of these two species and large proportional difference of the same repetitive element between two genomes, indicating evolutionary divergence of these two species. The fine karyotyping analysis using satellites as markers and the chromosome pairing of meiotic metaphase I of these two species suggests that C. lacryma-jobi is likely a diploidized paleotetraploid species, and C. aquatica HG might be an early generation hybrid between Coix lacryma-jobi L. and a distantly related species. In addition, the genome-wide repeat sequence comparative analysis of Zea Mays, Zea luxurians, Sorghum bicolor, and Coix indicated that Coix seem to be closer to Sorghum than to Zea, which is consistent to previous report. Our results shed new light on the evolution and species differentiation in the Poaceae family.

Methods

Plant materials

C. lacryma-jobi cultivar BJ and C. aquatica HG were used in this study. The chromosome number and genomic features of C. lacryma-jobi and C. aquatica HG were listed in Table 1. BJ is the most important cultivar in north China, it is dry habitat, its leaf blades and sheaths are broad and glabrous, it’s false fruits is soft and pyriform. This phenotype is consistent to C. lacryma-jobi [15]. The 2n = 30 C. aquatica HG is the only C. aquatica in China, it was found in northwest of China [16]. It is perennial, aquatic, stoloniferous and rooting from the stolon node, but when grown under field conditions it becomes erect; It’s leaf blades and sheaths are narrow and glabrous, the false fruits is hard and pyriform. This phenotype is consistent to C. aquatica [15].

Genome size estimation

The 1C value of C. lacryma-jobi and C. aquatica HG was measured by flow cytometry with propidium iodide (PI) to stain DNA and Zea mays inbred line B73 as the reference plant. Fresh leaves were quickly cut with a sharp knife and treated with the lysis buffer (0.18% Tris, 0.74% Na2EDTA, 0.01% spermine, 5.8% KCl, 1.1% β-mercaptoethanol and 0.1% Triton X-100) for 10 minutes. The suspension was filtered with 30 μm nylon mesh, centrifuged at 800 rpm for 5 min. The supernatant was discarded and the pellet was then resuspended in PI (Propidium Iodide, 50 μg·mL⁻¹). A flow cytometer (BD, FACSCalibur, USA) was used for the fluorescence measurement, with 10,000 particles measured per run and three runs performed per plant preparation. The genome size was calculated according to the formula: Genome size Object = (mean G1 nuclei fluorescence intensity Object/mean G1 nuclei fluorescence intensity Standard) Genome size Standard. The peak coefficient of variation percentages were all <5.5%.

DNA extraction and Solexa sequencing

DNA isolation was followed a standard cetyl trimethyl ammonium bromide (CTAB) extraction protocol [67]. DNA was diluted to a final concentration of 200–300 ng/μl for Illumina sequencing. One hundred bp paired-end reads were obtained from HiSeq2000 platform (BerryGenomics).

The sequences for Zea mays inbred line B73 SRR088692, Zea luxurians accession PI441933 SRR088692, and Sorghum bicolor inbred line Tx378 SRR561245 were downloaded from DNAnexus (http://sra.dnanexus.com/).

Data access

The genome sequencing data files associated with this study have been submitted to NCBI SRA with accession number SRP049558.

Data analysis

Sequencing data were preprocessed to remove low-quality reads, and then the unpaired reads were discarded. Repeat sequence assembly was performed using a graph-based clustering approach as described by Novak et al. [26] with the cluster size threshold for detailed analysis as 0.005%. Repeat type identification was done by sequence-similarity searches of assembled contigs against Repbase repeatmaskerlibrary using RepeatMasker [68], and by detection of conserved protein domains using RPS-Blast (Reversed Position Specific-Blast) [69]. Satellite monomer within contig sequences were identified using Tandem Repeats Finder [70]. Contigs corresponding to putative mitochondrial and plastid sequences were identified by NCBI blastn and the clusters were eliminated. The genome proportion of each cluster was calculated as the percentage of reads. To determine the distribution of different repeats between C. lacryma-jobi and C. aquatica HG, a combined dataset comprising 68,187,510 reads and labeled reads with sample codes were built and the graph-based clustering analysis was performed as previous mentioned. To further analyze the pattern of repeats evolution between subtribe Maydæae and Sorghum, Sorghum bicolor inbred line BTX623, Zea mays inbred line B73 and Zea luxurians paired-end data were added to build another combined dataset comprising 15,000,000 reads with sample codes. Both datasets were analyzed as described above.
The whole raw data of *C. lacryma-jobi* and *C. aquatica* HG was masked with RepeatMasker [68] using maize and sorghum as reference genomes. The threshold of identity >70% and coverage >50% were used to screen the output. Then the total read number for each annotation was calculated. By comparing the whole and individual repeat family between these two annotations, the relationship of these genera was analyzed.

ChIP, ChIP-seq, and quantitative ChIP-PCR

Nuclei isolation was performed according to the published protocol [71]. ChIP was performed following standard protocols [72]. Both ChIPed DNA and mock DNA were used for Solexa sequencing (BerryGenomics). ChIP-qPCR was performed to confirm relative enrichment of specific sequences within anti-OsCENH3 precipitated DNA relative to the DNA sample prepared from pre-blood immunoprecipitation 45S rDNA and SatS3, localized at chromosome ends, were used as negative controls to normalize enrichment of each positive amplicon. Quantitative PCR data were analyzed as described previously [73].

Repeat Identification from the ChIP-seq dataset

To identify repeats associated with CenH3, a set of 2.5 M 100 bp paired-end ChIP-seq reads were mapped to the genomic Graph-based clusters using PatMan program [74], allowing for maximum of three mismatches including two gaps. Based on its best similarity detected among the genomic sequencing reads, each ChIP-seq read was mapped to a maximum of one cluster.

FISH, GISH, and immunostaining

Mitotic and meiotic chromosome preparation and FISH were performed following published protocols [75] with a minor modification. Root tips of *C. lacryma-jobi* and *C. aquatica* HG were harvested and immediately exposed to nitrous oxide at 2 atm for 2 hours, then fixed in a 3:1 solution of ethanol: glacial acetic acid. DNA probes for each chromosome were counterstained with 4',6-diamidino-2-phenylindole (DAPI) in Vectashield antifade solution (Vector Laboratories).

Images were captured digitally using a Sensys CCD camera (QIMAGING, RETIGA-SRV, FAST 1394) attached to an Olympus BX61 epifluorescence microscope (Tokyo, Japan). Image-Pro plus 6.5 software (Media Cybernetics) was used to measure FISH signals and chromosome parameters. Images were adjusted with Adobe Photoshop 7.0. For karyotype construction, chromosomes in five metaphase cells in each species were measured. Sequential FISH was conducted following published protocol [76]. After first round of FISH and image capture, the slides were washed through a set of PBS (phosphate buffer saline) buffer and ethanol series before hybridized by the second set of probes.

Immunostaining was performed following published protocols [7]. Root tips harvested from plants were fixed in 4% (w/v) paraformaldehyde for 15 min at room temperature. The root tips were squashed on glass slides. The slides were incubated in a humid chamber at 37°C for overnight with primary antibodies against OsCENH3 diluted 1:500 in TNB buffer (0.1 M Tris–HCl, pH 7.5, 0.15 M NaCl, and 0.5% blocking reagent). The slides were incubated with Cy3-conjugated goat anti-rabbit antibody (1:1000) at 37°C for 1 h.

Pollen viability

To examine pollen viability, fresh pre-flowering panicles from *C. aquatica* HG were collected and stained with 1% iodine-potassium iodide and 1% aceticarmine solutions. More than 400 pollen grains were examined under the Olympus CX41 microscope. Stained pollen grains with a normal size were considered fertile. Small pollen grains with faint staining and empty pollen grains were considered sterile [77].

LTR retrotransposon family classification

Phylogenetic trees including representative Ty1/Copia and Ty3/Gypsy clades were reconstructed with reference sequences from the previously reported matrices [33]. For each LTR retrotransposon family, one contig covering the RT (reverse transcriptase) domain was used to represent the entire family for phylogenetic analysis. The representative contigs were selected as the most conserved considering their similarity scores with known elements obtained using RPS-BLAST and three alignment profiles: pfam07727, pfam00078 and cd01650. The amino acid sequence within the RT domain was extracted from alignment results of RT boundaries using a custom Python script. Phylogenetic trees were constructed using the Neighbor-joining method and bootstrapped with 100 replicates using the MEGA5.
Additional files

Additional file 1: Includes Table S1-S3 and the figure legends for Figure S1-S5.

Additional file 2: List of the annotation and genome proportion of the cluster of the comparative analysis.

Abbreviations

FISH: Fluorescent in situ hybridization; GISH: Genomic in situ hybridization; Gb: Giga base pairs; Mb: Mega base pairs; bp: Base pair; RT: Reverse transcriptase; ChiP: Chromatin immunoprecipitation.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

ZC carried out molecular, cytogenetic and bioinformatic studies and drafted the manuscript. XL performed the Quantitative ChiP-PCR, participated in the cytogenetic studies and provided helpful discussions. QH participated in the ChiP assay and provided helpful discussions. MP helped to maintain the experiment materials. JC prepared the sequencing library for ChiP-DNA. XL and JL helped to draft the manuscript and provided critical comments. WJ designed the experiment and revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We thank Professor Jiming Jiang in the Department of Horticulture of University of Wisconsin for his critical read of the manuscript. We also thank Dr. Yingping Jiao for her help on bioinformatics analysis. This work was supported by grants from the Ministry of Science and Technology of China. 4Department of Plant Nutrition, China Agricultural University, Beijing. 3State Key Laboratory of Crop Genetic Improvement, Coordinated Research Center for Crop Biology, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China. 2Zhejiang Academy of Agricultural Science, Hangzhou (31171563). 1National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Coordinated Research Center for Crop Biology, China Agricultural University, Beijing 100193, China. 3State Key Laboratory of Agro-biotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China. 4Department of Plant Nutrition, China Agricultural University, Beijing 100193, China.

Received: 11 June 2014 Accepted: 19 November 2014 Published: 25 November 2014

References

1. Arora R: Job’s-tears (Coix lacryma-jobi)—a minor food and fodder crop of northeastern India. Econ Bot 1977, 31(3):358–366.

2. Ottoboni LM, Leite A, Tongar ML, Crozier A, Arruda P: Characterization of the storage protein in seed of Coix lacryma-jobi var. Adlay. J Agric Food Chem 1990, 38(3):631–635.

3. Woo J-H, Dapeng L, Orita H, Coulter J, Tully E, Kwon TK, Xu S, Gabrielson E: Phylogenetic studies of a large data set. I. Bambusoideae, Andropogonodae, and Pooideae (Gramineae). Bot Rev 1993, 59(4):273–343.

4. Kellogg EA, Watson L: Phylogenetic studies of a large data set. II. The cluster of the comparative analysis.

5. Chung CP, Hsia SM, Lee MY, Chen HJ, Cheng F, Chan LC, Kuo YH, Lin YL, Wu LY, Lin JH, Hsia SM, Lee MY, Chen HJ, Cheng F, Chan LC, Kuo YH, Lin YL, Wu LY, Lin JH: Hypolipidemic, anti-inflammatory and anti-oxidative effects of Coix lacryma-jobi seeds. J Ethnopharmacol 1997, 58(1):1–7.

6. Lu Y, Zhang B, Jia Z, Wu W, Lu Z: Hepatocellular carcinoma HepG2 cell apoptosis and caspase-8 and Bcl-2 expression induced by injectable seed extract of Coix lacryma-jobi. Hepatobiliary Pancreat Dis Int 2011, 10(3):303–307.

7. Han Y, Wang G, Liu Z, Liu J, Yue W, Song R, Zhang X, Jin W: Divergence in centromere structure distinguishes related genomes in Coix lacryma-jobi and its wild relative. Chromosoma 2010, 119(1):89–98.

8. Han Y, Li D, Li Y, Xue Y, Hu Z, Song Y: Cytogenetic identification of a new hexaploid Coix aquatica Cyto-type. Acta Bot Sin 2004, 46(8):724–729.

9. Venketasubramian J, Rao PN: Apmotic maternal diploids in tetraploid Job’s tears. Theor Appl Genet 1975, 48(6):274–278.

10. Qin F, Li J, Li X, Corke H: Analysis of low- and high-copy sequences. J Agric Food Chem 2013, 61(11):2994–2999.

11. Meng X, Huang B, Zhou L, He Y, Chen Q, Yuan Y, Xu Z, Song R: Construction of a Coix BAC library and isolation of the 22 Kd α-coxins gene cluster. Genome 2010, 53(9):667–674.

12. Ottoboni LM, Leite A, Junes JA, Tongar ML, de Souza Filho GA, Arruda P: Sequence analysis of 22 Kd-like alpha-coxins genes and their comparison with homologous zein and kafirin genes reveals highly conserved protein structure and regulatory elements. Plant Mol Biol 1993, 21(5):765–778.

13. Song R, Messing J: Contiguous genomic DNA sequence comprising the 19-kD zein gene family from maize. Plant Physiol 2002, 130(4):1626–1635.

14. Kellogg EA, Watson L: Phylogenetic studies of a large data set. II. The cluster of the comparative analysis.

15. Lu P, Luo Z: Detection and identification of Coix aquatic species in Guangji. Guangxi Sci 1996, 11:18–20.

16. Kumar A, Benneken JL: Plant retrotransposons. Annu Rev Genet 1999, 33(1):479–532.

17. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Patenek M, Liang C, Zhang L, Carpita NC, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Lesy A, Marchetto P, Ochoa K, Jackson SM, Gilling B, et al: The B73 maize genome: complexity, diversity, and dynamics. Science 2009, 326(5956):1112–1115.

18. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Goodstein D, Kubista J, Skillman J, Draper J, et al: The BAC maize genome: complexity, diversity, and dynamics. Science 2009, 326(5956):1112–1115.

19. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Pollakov A, Schmuh J, Spanyan M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martsis M, Narechania A, Ottilar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Capita NC, et al: The Sorghum bicolor genome and the diversification of grasses. Nature 2005, 437(7059):551–556.

20. Wolfgruber TK, Sharma A, Schneider KL, Albert PS, Koo DH, Shi J, Gao Z, Han F, Lee H, Xu R: Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals dynamic loci shaped primarily by retrotransposons. Proc Natl Acad Sci USA 2009, 106(11):4007–4012.

21. Ganot M, Redde I, Hemleben V: Organization and sequence analysis of two related satellite DNAs in cucumber (Cucumis sativus L). J Mol Evol 1986, 23(1):23–30.

22. Sharma S, Raina SN: Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes. Cytogenet Genome Res 2005, 109(1):3–15.

23. Albert PS, Gao Z, Daniellova TV, Birchler JA: Diversity of chromosomal karyotypes in maize and its relatives. Cytogenet Genome Res 2010, 129(1):36–16.

24. Kato A, Lamb JC, Birchler JA: Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA 2004, 101(13):4354–4359.

25. Bennett MD, Leitch I: Nuclear DNA Amounts in Angiosperms. Ann Bot 1995, 76(2):113–176.

26. Novak P, Neumann P, Macas J: Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 2011, 13:378.

27. Wicker T, Sabot F, Hua-Van A, Benetzen JL, Capy P, Chalhoub B, Flavell A, Maydeau E, Birnstiel ML: Theor Appl Genet 2011, 123(1):23–30.

28. Sharma S, Raina SN: Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes. Cytogenet Genome Res 2005, 109(1):3–15.

29. Albert PS, Gao Z, Daniellova TV, Birchler JA: Diversity of chromosomal karyotypes in maize and its relatives. Cytogenet Genome Res 2010, 129(1):36–16.

30. Kato A, Lamb JC, Birchler JA: Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA 2004, 101(13):4354–4359.

31. Bennett MD, Leitch I: Nuclear DNA Amounts in Angiosperms. Ann Bot 1995, 76(2):113–176.

32. Novak P, Neumann P, Macas J: Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 2011, 13:378.
Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol 2011, 28(10):2841–2854.

30. Ozkan H, Levy AA, Feldman M: Allopolyplody-induced rapid genome evolution in the wheat (Aegilops–Triticum) group. Plant Cell 2001, 13(8):1735–1747.

31. Koul A: Heterochromatin and non-homologous chromosome associations in Coix aquatica. Chromosoma 1964, 15(3):243–245.

32. Sapre A, Deshpande D: Isolation of a series of chromosomal variants (2n = 10 to 21) from an open-pollinated population of interspecific hybrids between Coix gigantea and Coix aquatica (Poaceae). Genetica 1987, 74(1):61–68.

33. Pielmoel M, Carreño-Vega G, Renner SS: Characterization of the LTR retrotransposon repertoire of a plant clan of diploid and one tetraploid species. Plant J 2013, 75(4):699–709.

34. Boulos A, Kourmpetis YA, Pavlidis P, Minga E, Triaparis A, Darzenas N: The turbid life of Sirexus retrotransposons and the evolution of the maize genome: more than ten thousand elements tell the story. Plant J 2012, 69(3):475–488.

35. Estep MC, Stine JD, Bennett JE: The dynamics of LTR retrotransposon accumulation across 25 million years of panicoid grass evolution. Hereditas (Edinb) 2013, 110(2):194–204.

36. Leseberg CH, Duvall MR: The complete chloroplast genome of Coix lacryma-jobi and a comparative molecular evolutionary analysis of plastomes in J. Mol Biol 2009, 394(3):311–318.

37. Wang Q, Dooner HK: Why repetitive DNA is essential to genome reduction fast growth and aquatic lifestyle. Plant Cell 2010, 22(2):121–237.

38. Kidwell MG: Genomic effects of transposable elements and genome evolution in plants. Phil Trans R Soc B 2008, 363(1546):117–128.

39. Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, et al: A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 2002, 296(5567):79–82.

40. Fedoroff N: Transposons and genome evolution in plants. Proc Natl Acad Sci U S A 2000, 97(13):7002–7007.

41. Baucum RS, Estill JC, Chaponaro C, Upshaw N, Jogi A, Deragon JM, Westerman RP, Sanmiguel PJ, Benetzen JL: Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet 2009, 5(11):1000732.

42. Ouyang S, Buell CR: Transposons and genome evolution in plants. Mol Biol Evol 2013, 30(1):241–252.

43. Zhang W, Novak P, Buell CR, Macas J, Jiang J: Boom-Bust Turnovers of Megabase-Sized Centromeric DNA in Solanum Species: Rapid Evolution of DNA Sequences Associated with Centromeres. Plant Cell 2014, 26(4):1436–1447.

44. Tek AL, Song J, Macas J, Jiang J: A recently amplified satellite repeat in potato, and its implications for the origin of tandemly repeated sequences. Genetics 2005, 170(3):1231–1238.

45. Sharma A, Wolfgruber TK, Presting GG: Tandem repeats derived from centromeric retrotransposons. BMC Genomics 2013, 14(1):142.

46. Wang Q, Lv Z, Pang J, Liu Y, Guo X, Fu S, Li J, Dong Q, Wu H, Gao Z, Wang X: Functional centromeres of maize after loss of centromeric sequences and gain of ectopic sequences. Plant Cell 2013, 25(6):1979–1989.

47. Price HI, Dillon SL, Hodnett G, Rooney WL, Ross L, Johnston JS: Genome evolution in the genus Sorghum (Poaceae). Am J Bot 2005, 92(1):219–227.

48. Xiong Z, Pires J: Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genetics 2011, 187(1):37–49.

49. Clarkson JJ, Lim KY, Kovarik A, Chase MW, Knapp S, Leitch AR: Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytol 2005, 168(1):241–252.

50. Mandakova T, Joly S, Kawaijski M, Munnenhoff K, Lysak MA: Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 2010, 22(7):2277–2290.

51. Lim KY, Solits DE, Solits PS, Tate J, Matyszek R, Sruubarova H, Kovarik A, Pires JC, Xiong Z, Leitch AR: Rapid chromosome evolution in recently formed polyploids in Tragopogon (Asteraceae). Proc Natl Acad Sci U S A 2008, 105(8):3353–3358.

52. Meyers BC, Tingey SV, Morgante M: Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 2001, 11(1):1660–1676.

53. Doyle JJ: A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem bull 1987, 19:11–15.

54. Smit AF, Hubley R, Green P: RepeatMasker Open-3.0. 1999–2010. http://www.repeatmasker.org.

55. Autschul SF, Madden TL, Schaller AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25(17):3389–3402.

56. Benson G: Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 1999, 27(12):573.

57. Zhang W, Wu Y, Schnable JC, Zeng Z, Freeling M, Crawford GE, Jiang J: High-resolution mapping of open centromin in the rice genome. Genome Res 2012, 22(11):1511–162.

58. Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang J: Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics 2003, 163(3):1221–1225.

59. Wang G, He Q, Liu F, Cheng Z, Talbert PB, Jin W: Characterization of CENH3 proteins and centromeric DNA sequences in diploid and allotetraploid Brassica species. Chromosome Sci 2011, 120(6):353–365.

60. Prufer K, Stenzel U, Dannemann M, Green RE, Lachmann M, Kelso J: PatMaR: rapid alignment of short sequences to large databases. Bioinformatics 2008, 24(13):1530–1531.

61. Zhao X, Lu J, Zhang Z, Hu J, Huang S, Jin W: Comparison of the distribution of the repetitive DNA sequences in three variants of
Cucumis sativus reveals their phylogenetic relationships. J Genet Genomics 2011, 38(1):39–45.

76. Liu C, Liu J, Li H, Zhang Z, Han Y, Huang S, Jin W: Karyotyping in melon (Cucumis melo L.) by cross-species fosmid fluorescence in situ hybridization. Cytogenet Genome Res 2010, 129(1–3):241–249.

77. Kubo T, Yoshimura A, Kurata N: Hybrid male sterility in rice is due to epistatic interactions with a pollen killer locus. Genetics 2011, 189(3):1083–1092.

doi:10.1186/1471-2164-15-1025

Cite this article as: Cai et al: Differential genome evolution and speciation of Coix lacryma-jobi L. and Coix aquatica Roxb. hybrid guangxi revealed by repetitive sequence analysis and fine karyotyping. BMC Genomics 2014 15:1025.