New conceptions of transitivity and minimal mappings

Mohammed Nokhas Murad Kaki

Mathematics Department, School of Science, Faculty of Science & Science Education, University of Sulaimani, Kurdistan Region-Iraq

Email address: muradkakaee@yahoo.com

To cite this article:
Mohammed Nokhas Murad Kaki, New Conceptions of Transitivity and Minimal Mappings. Science Research. Vol. 2, No.1, 2014, pp.1-6. doi: 10.11648/j.sr.20140201.11

Abstract: The concepts of topological δ-transitive maps, α-type transitive maps, δ-minimal and α-minimal mappings were introduced by M. Nokhas Murad Kaki. In this paper, the relationship between two different notions of transitive maps, namely topological δ-type transitive maps and topological α-type transitive maps has been studied and some of their properties in two topological spaces (X, τδ) and (X, τα), τδ denotes the δ-topology (resp. τα denotes the α-topology) of a given topological space (X, τ) has been investigated. Also, we have proved that there exists a dense orbit in X, where X is locally compact Hausdorff space and τ has a countable basis. The main results are the following propositions: Every topologically α-type transitive map is a topologically transitive map which implies topologically δ-transitive map, but the converse not necessarily true., and every α-minimal map is a minimal map which implies δ-minimal map in topological spaces, but the converse not necessarily true. Finally, we have proved that a map which is γr-conjugated to γ-transitive (resp. γ-minimal, γ-mixing) map is γ-transitive (resp. γ-minimal, γ-mixing).

Keywords: Topologically δ-Transitive, δ-Irresolute, δ-Type Transitive, δ-Dense, γ-Dense, γ Transitive

1. Introduction

Let A be a subset of a topological space (X, τ). The closure and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A of a topological space (X, τ) is said to be regular open [1] (resp. preopen [2]) if A = Int(Cl(A)) (resp. A ⊂ Int(Cl(A))). A set A ⊂ X is said to be δ-open [3] if it is the union of regular open sets of a space X. The complement of a regular open (resp. δ-open) set is called regular closed (resp. δ-closed). The intersection of all δ-closed sets of (X, τ) containing A is called the δ-closure [3] of A and is denoted by Clδ(A). .. Recall that a set S is called regular closed if S = Cl(Int(S)). A point x ε X is called a δ-cluster point [3] of S if S ∩ U ≠ ∅ for each regular open set U containing x. The set of all δ-cluster points of S is called the δ-closure of S and is denoted by Clδ(S). A subset S is called δ-closed if Clδ(S) = S. The complement of a δ-closed set is called δ-open. The family of all δ-open sets of a space X is denoted by δ(X, τ). The δ-interior of S is denoted by Intδ(S) and it is defined as follows Intδ(S) = {x ∈ X : x ∈ U ⊆ Int(Cl(U)) ⊆ S} for some open set U of X.

The area of Dynamical Systems where one investigates dynamical properties that can be described in topological terms is called Topological Dynamics. Let X be a compact topological space and let f : X → X be continuous. The pair (X, f) is so called topological system. The topological system (X, f) is called topologically δ-type transitive (or just δ-type transitive [4]) if for every pair of nonempty δ-open sets U and V in X there is a nonnegative integer n such that f^n(U) ∩ V ≠ ∅. If the space X has no isolated points, this is equivalent to the existence of a point x ∈ X whose orbit O_f(x) = {x, f(x), f^2(x), ..., f^n(x), ...,} is δ-dense in X. Consequently, a topologically δ-type transitive topological system cannot be decomposed into two disjoint sets with nonempty δ-interiors. For more information on topological δ-type transitivity see, e.g. [4] and references there.

In this paper, we will study some new class of topological transitive maps called topological δ-type transitive [4], also, we will study the relationship between two types of minimal mappings, namely, δ-minimal mapping and α-minimal mapping, and we will prove that the properties of δ-type transitive, δ-mixing and δ-minimal maps are preserved under δr-conjugacy and study some of its properties.
2. Preliminaries and Definitions

In this section, we recall some of the basic definitions. Let X be a space and $A \subseteq X$. The intersection (resp. closure) of A is denoted by $\text{Int}(A)$ (resp. $\text{Cl}(A)$).

Definition 2.1 Let (X, τ) be a space. A subset A of X is called dense in X if $\text{Cl}(A) = X$.

Definition 2.2 (i) A space X is said to be 2nd countable if it has a countable basis.

(ii) X is said to be of First Category if it is a countable union of nowhere dense subsets of X. It is of second Category if it is not of First Category.

Theorem 2.3 Let X be a non-empty locally compact Hausdorff space. Then the intersection of a countable collection of open dense subsets of X is dense in X. Moreover, X is of second Category.

Definition 2.4 Let (X, τ) be a topological space. X is second countable if and only if the topology of X has a countable basis.

Theorem 2.5 Recall that a space X is said to be separable if X contains a countable dense subset.

Corollary 2.6 A subset A of a space (X, τ) is dense if and only if $A \cap U \neq \phi$ for all $U \in \tau$ other than $U = \phi$.

Definition 2.7 Let (X, τ) be a topological space, $f: X \to X$ be a continuous map then f is said to be topologically transitive if every pair of non-empty open sets U and V in X there is a positive integer n such that $f^n(U) \cap V \neq \phi$.

The purpose of the following theorem is to prove that topological transitivity implies dense orbits in a space X where X is a non-empty locally compact Hausdorff topological space.

Theorem 2.8 Let (X, f) be a topological system where X is a non-empty locally compact Hausdorff topological space and $f: X \to X$ is a continuous map and that X is separable. Suppose that f is topologically transitive. Then there is $x \in X$ such that the orbit $O_f(x) = \{x, f(x), f^2(x), \ldots, f^n(x), \ldots\}$ is dense in X.

Proof: Let $B = \{A_i\}$, $i = 1, 2, 3, \ldots$ be a countable basis for the topology of X. For each i, let $O_i = \{x \in X : f^n(x) \in U_i$ for some $n \geq 0\}$

Then, clearly O_i is open and dense. It is open since f is continuous, so, $O_i = \bigcup_{n=0}^{\infty} f^{-n}(U_i)$ is open and dense since f is topological transitive map. Further, for every open set V, there is a positive integer n such that $f^n(V) \cap U_j \neq \phi$.

Now, apply theorem 2.3 to the countable dense sets $\{O_i\}$ to say that $\cap_{i=0}^{\infty} O_i$ is dense and so non-empty. Let $y \in \cap_{i=0}^{\infty} O_i$.

This means that, for each i, there is a positive integer n such that $f^n(y) \in U_i$ for every i. By corollary 2.6 this implies that $O_f(x)$ is dense in X.

Definition 2.9 If for $x \in X$ the set $\{f^n(x) : n \in \mathbb{N}\}$ is dense in X then x is said to have a dense orbit. If there exists such an $x \in X$, then f is said to have a dense orbit.

Definition 2.10 A function $f: X \to X$ is called γ-homeomorphism if f is γ-irresolute bijective and $f^{-1}: X \to X$ is γ-irresolute.

Definition 2.11 [19] Two topological systems $f: X \to X$ and $g: Y \to Y$ are said to be topologically $\gamma\phi$-conjugate if there is a $\gamma\phi$-homeomorphism $h: X \to Y$ such that $h \circ f = g \circ h$ (i.e. $h(f(x)) = g(h(x))$). We will call h a topological $\gamma\phi$-conjugacy.

Remark 2.12 [19] If $\{x_0, x_1, x_2, \ldots\}$ denotes an orbit of $x_{n+1} = f(x_n)$ then $\{y_0 = h(x_0), y_1 = h(x_1), y_2 = h(x_2), \ldots\}$ yields an orbit of g since $y_{n+1} = h(x_{n+1}) = h(f(x_n)) = g(h(x_n)) = g(y_n)$. In particular, h maps periodic orbits of f onto periodic orbits of g.

In [19], we introduced and defined the new type of transitivity called $\gamma\phi$-transitive in such a way that it is preserved under topologically $\gamma\phi$-conjugation. It means; we have proved that a map which is $\gamma\phi$- conjugated to $\gamma\phi$- transitive (resp. $\gamma\phi$-minimal, $\gamma\phi$-mixing) map is $\gamma\phi$-transitive (resp.$\gamma\phi$-minimal, $\gamma\phi$-mixing).

We proceed to prove the following important proposition:

Proposition 2.13 [19] Let (X, f) and (Y, g) be two topological systems, if $f: X \to X$ and $g: Y \to Y$ are topologically $\gamma\phi$-conjugate. Then

(1) f is topologically $\gamma\phi$-transitive if and only if g is topologically $\gamma\phi$-transitive;

(2) f is $\gamma\phi$-minimal if and only if g is $\gamma\phi$-minimal;

(3) f is topologically $\gamma\phi$-mixing if and only if g is topologically $\gamma\phi$-mixing.

Proof (1) Assume that $f: X \to X$ and $g: Y \to Y$ are topologically $\gamma\phi$-conjugated by $h: X \to Y$. Suppose f is $\gamma\phi$-type transitive. Let A, B be $\gamma\phi$-open subsets of Y (to show $g^n(A) \cap B \neq \phi$ for some $n > 0$).

$U = h^{-1}(A)$ and $V = h^{-1}(B)$ are $\gamma\phi$-open subsets of X since h is an $\gamma\phi$- irresolute

Then there exists some $n > 0$ such that $f^n(U) \cap V \neq \phi$ since f is $\gamma\phi$-type transitive. Thus (as $f \circ h^{-1} = h^{-1} \circ g$ implies $f^n \circ h^{-1} = h^{-1} \circ g^n$),

$\phi \neq f^n(h^{-1}(A)) \cap h^{-1}(B) = h^{-1}(g^n(A)) \cap h^{-1}(B)$

Therefore, $h^{-1}(g^n(A) \cap B) \neq \phi$ implies $g^n(A) \cap B \neq \phi$ since h^{-1} is invertible.
Proof (2)
Assume that \(f : X \rightarrow X \) and \(g : Y \rightarrow Y \) are topological systems, which are topologically \(\gamma \)-conjugated by \(h : Y \rightarrow X \). Thus, \(h \) is \(\gamma \)-homeomorphism (that is, \(h \) is bijective and thus invertible and both \(h \) and \(h^{-1} \) are \(\gamma \)-irresolute) and \(h \circ g = f \circ h \), that is, the following diagram commutes:

\[
\begin{array}{ccc}
Y & \xrightarrow{g} & Y \\
\downarrow{h} & & \downarrow{h} \\
X & \xrightarrow{f} & X
\end{array}
\]

We show that if \(g \) is \(\gamma \)-minimal, then \(f \) is \(\gamma \)-minimal. We want to show that for any \(x \in X \), \(O_f(x) \) is \(\gamma \)-dense. Since \(h \) is surjective, there exists \(x \in X \) such that \(y = h^{-1}(x) \). Since \(g \) is \(\gamma \)-minimal, \(O_g(y) \) is \(\gamma \)-dense. For any non-empty \(\gamma \)-open subset \(U \) of \(X \), \(h^{-1}(U) \) is an \(\gamma \)-open subset of \(Y \) since \(h^{-1} \) is \(\gamma \)-irresolute because the map \(h \) is \(\gamma \)-homeomorphism and it is non-empty since \(h \) is invertible map. By \(\gamma \)-density of \(O_g(y) \) there exist \(k \) in \(N \) such that \(g^k(y) \in h^{-1}(U) \iff h(g^k(y)) \in U \)

Since \(h \) is \(\gamma \)-conjugacy; as \(f \circ h = h \circ g \) implies \(f^k \circ h = h \circ g^k \) so \(f^k(h(y)) = h(g^k(y)) \in U \) thus \(O_f(h(y)) \) intersects \(U \). This holds for any non-empty \(\gamma \)-open set \(U \) and thus shows that \(O_f(x) = O_f(h(y)) \) is \(\gamma \)-dense.

Proof (3)
We only prove that if \(g \) is topologically \(\gamma \)-mixing then \(f \) is also topologically \(\gamma \)-mixing. Let \(U, V \) be two \(\gamma \)-open subsets of \(X \). We have to show that there is \(N > 0 \) such that for any \(n > N \), \(f^n(U) \cap V \neq \emptyset \).

\(h^{-1}(U) \) and \(h^{-1}(V) \) are two \(\gamma \)-open sets since the map \(h \) is \(\gamma \)-irresolute. If \(g \) is topologically \(\gamma \)-conjugacy then there is \(N > 0 \) such that for any \(n > M \), \(g^n(h^{-1}(U)) \cap h^{-1}(V) \neq \emptyset \). Therefore there exists \(x \in g^n(h^{-1}(U)) \cap h^{-1}(V) \). That is, \(x \in g^n(h^{-1}(U)) \) and \(x \in h^{-1}(V) \) if and only if \(x = g^n(y) \) for \(y \in h^{-1}(U) \) and \(h(x) \in V \).

Thus, since \(h \circ g^n = f^n \circ h \), so that, \(h(x) = h(g^n(y) = f^n(h(y)) \in f^n(U) \) and we have \(h(x) \in V \) that is \(f^n(U) \cap V \neq \emptyset \).

So, \(f \) is \(\gamma \)-mixing.

3. Transitive and Minimal Systems

Topological transitivity is a global characteristic of dynamical systems. By a dynamical system \((X, f) \) [15] we mean a topological space \(X \) together with a continuous map \(f : X \rightarrow X \). The space \(X \) is sometimes called the phase space of the system. A set \(A \subseteq X \) is called \(\gamma \)-invariant if \(f(A) \subseteq A \).

A topological system \((X, f) \) is called minimal if \(X \) does not contain any non-empty, proper, closed \(\gamma \)-invariant subset. In such a case we also say that the map \(f \) itself is minimal. Thus, one cannot simplify the study of the dynamics of a minimal system by finding its nontrivial closed subsystems and studying first the dynamics restricted to them. Given a point \(x \) in \(X \), \(O_f(x) = \{x, f(x), f^2(x), ...\} \) denotes its orbit (by an orbit we mean a forward orbit even if \(f \) is a homeomorphism) and \(o_f(x) \) denotes its \(\omega \)-limit set, i.e. the set of limit points of the sequence \(x, f(x), f^2(x), ... \). The following conditions are equivalent:

- \((X, f) \) is \(\alpha \)-minimal (resp. \(\theta \)-minimal),
- every orbit is \(\alpha \)-dense (resp. \(\theta \)-dense) in \(X \),
- \(\omega_f(x) = X \) for every \(x \in X \).

A minimal map \(f \) is necessarily surjective if \(X \) is assumed to be Hausdorff and compact.

Now, we will study the Existence of minimal sets. Given a dynamical system \((X, f) \), a set \(A \subseteq X \) is called a minimal set if it is non-empty, closed and invariant and if no proper subset of \(A \) has these three properties. So, \(A \subseteq X \) is a minimal set if and only if \((A, f|_A) \) is a minimal system. A system \((X, f) \) is minimal if and only if \(X \) is a minimal set in \((X, f) \).

Let \((X, f) \) be a topological system, and \(f : X \rightarrow X \) \(\alpha \)-homeomorphism of \(X \) onto itself. For \(A \) and \(B \) subsets of \(X \), we let \(N(A, B) = \{n \in \mathbb{Z} : f^n(A) \cap B \neq \emptyset \} \) and \(N(x, B) = \{n \in \mathbb{Z} : f^n(x) \in B \} \).

We write \(N(A, B) = N(x, B) = \{n \in \mathbb{Z} : f^n(x) \in B \} \). For a point \(x \in X \) we write \(O_f(x) = \{f^n(x) : n \in \mathbb{Z}\} \) for the orbit of \(x \) and \(Cl_\alpha(O_f(x)) \) for the \(\alpha \)-closure of \(O_f(x) \).

We say that the topological system \((X, f) \) is \(\alpha \)-type point transitive if there is a point \(x \in X \) with \(O_f(x) \) \(\alpha \)-dense. Such a point is called \(\alpha \)-type transitive. We say that the topological systems \((X, f) \) is topologically \(\alpha \)-transitive (or just \(\alpha \)-type transitive) if the set \(N(U, V) \) is nonempty for every pair \(U \) and \(V \) of nonempty \(\alpha \)-open subsets of \(X \).

3.1. Topologically \(\alpha \)-Transitive Maps

In [11], we introduced and defined a new class of transitive maps that are called topologically \(\alpha \)-transitive maps on a topological space \((X, \tau) \), and we studied some of their properties and proved some results associated with...
these new definitions. We also defined and introduced a new class of α-minimal maps. In this paper we discuss the relationship between topologically α-transitive maps and θ-transitive maps. On the other hand, we discuss the relationship between α-minimal and θ-minimal in topological systems.

Definition 3.1.1 Let (X, τ) be a topological space. A subset A of X is called α-dense in X if $\text{Cl}_\alpha(A) = X$.

Note that, in general topology, for any subset A of the space X, $A \subset \text{Cl}_\alpha(A) \subset \text{Cl}(A)$, therefore if A is α-dense, in X, then A is dense in X.

Remark 3.1.2 Any α-dense subset in X intersects any α-open set in X.

Proof: Let A be an α-dense subset in X, then by definition, $\text{Cl}_\alpha(A) = X$, and let U be a non-empty α-open set in X. Suppose that $A \cap U = \emptyset$. Therefore $B = U^c$ is α-closed and $A \subset U^c = B$. So $\text{Cl}_\alpha(A) \subset \text{Cl}_\alpha(B)$, i.e., $\text{Cl}_\alpha(A) \subset B$, but $\text{Cl}_\alpha(A) = X$, so $X \subset B$, this contradicts that $U = \emptyset$.

Definition 3.1.3 [12] A map $f : X \to Y$ is called α-irresolute if for every α-open set H of X, $f^{-1}(H)$ is α-open in X.

Example 3.1.4 [11] Let (X, τ) be a topological space such that $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a, b\}, \{b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{a, c, d\}\}$ and the set of all α-closed sets is $\alpha C(X, \tau) = \{\phi, X, \{c, d\}, \{a, c, d\}, \{a, d\}\}$. Then define the map $f : X \to X$ as follows $f(a) = a$, $f(b) = b$, $f(c) = d$, $f(d) = c$, we have f is α-irresolute because $\{b\}$ is α-open and $f^{-1}(\{b\}) = \{a, b\}$ is α-open; $\{a, b\}$ is α-open and $f^{-1}(\{a, b\}) = \{a, b\}$ is α-open; $\{b, c\}$ is α-open and $f^{-1}(\{b, c\}) = \{b, d\}$. Since $\{a, b, c\}$ is α-open and $f^{-1}(\{a, b, c\}) = \{a, b, d\}$ is α-open; $\{a, b, d\}$ is α-open and $f^{-1}(\{a, b, d\}) = \{a, c, d\}$ is α-open.

Definition 3.1.5 A subset A of a topological space (X, τ) is said to be nowhere θ-dense, if its θ-closure has an empty θ-interior, that is, $\text{int}_\theta(\text{Cl}_\theta(A)) = \emptyset$.

Definition 3.1.6 [11] Let (X, τ) be a topological space, $f : X \to X$ be a α-irresolute map then f is said to be topological α-transitive if every pair of non-empty α-open sets U and V in X there is a positive integer n such that $f^n(U) \cap V \neq \emptyset$. In the foregoing example 3.1.4: we have f is α-transitive because b belongs to any non-empty α-open set V and also belongs to $f(U)$ for any α-open set it means that $f(U) \cap V \neq \emptyset$ for f is a α-transitive.

Example 3.1.7[11] Let (X, τ) be a topological space such that $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{X\}\}$. Then the set of all α-open sets is $\alpha \tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}$. Define $f : X \to X$ as follows $f(a) = b$, $f(b) = b$, $f(c) = c$. Clearly f is continuous because $\{a\}$ is open and $f(\{a\}) = \emptyset$ is open. Note that f is transitive because $f(\{a\}) = \{b\}$ implies that $f(\{a\}) \cap \{b\} \neq \emptyset$. But f is not α-transitive because for each $n \in N$, $f^n(\{a\}) \cap \{a, c\} = \emptyset$; since $f^0(\{a\}) = \{b\}$ for every $n \in N$, and $\{b\} \cap \{a, c\} = \emptyset$. So we have f is not α-transitive, so we show that transitivity not implies α-transitivity.

Definition 3.1.8 Let (X, τ) be a topological space. A subset A of X is called θ-dense in X if $\text{Cl}_\theta(A) = X$.

Remark 3.1.9 Any θ-dense subset in X intersects any θ-open set in X.

Proof: Let A be a θ-dense subset in X, then by definition, $\text{Cl}_\theta(A) = X$, and let U be a non-empty θ-open set in X. Suppose that $A \cap U = \emptyset$. Therefore $B = U^c$ is θ-closed because B is the complement of θ-open and $A \subset U^c = B$. So $\text{Cl}_\theta(A) \subset \text{Cl}_\theta(B)$, i.e., $\text{Cl}_\theta(A) \subset B$, but $\text{Cl}_\theta(A) = X$, so $X \subset B$, this contradicts that $U = \emptyset$.

Definition 3.1.10[14] A function $f : X \to X$ is called θ-irresolute if the inverse image of each θ-open set is a θ-open set in X.

Definition 3.1.11 A subset A of a topological space (X, τ) is said to be nowhere θ-dense, if its θ-closure has an empty θ-interior, that is, $\text{int}_\theta(\text{Cl}_\theta(A)) = \emptyset$.

Definition 3.1.12 [15] Let (X, τ) be a topological space, and $f : X \to X$ be a α-irresolute map, then f is said to be topologically θ-type transitive map if for every pair of θ-open sets U and V in X there is a positive integer n such that $f^n(U) \cap V \neq \emptyset$.

Associated with this new definition we can prove the following new theorem.

Theorem 3.1.13 [11]: Let (X, τ) be a topological space and $f : X \to X$ be a α-irresolute map. Then the following statements are equivalent:

1. f is topological α-transitive map
2. For every nonempty α-open set U in X, $\bigcap_{\alpha} f^n(U)$ is α-dense in X
3. For every nonempty α-open set U in X, $\bigcap_{n=0} f^n(U)$ is α-dense in X
4. If $B \subset X$ is α-closed and B is f-invariant i.e. $f(B) \subset B$, then $B = X$ or B is nowhere α-dense.
5. If U is α-open and $f^{-1}(U) \subset U$ then U is either empty set or α-dense in X.

Theorem 3.1.14: [4] Let (X, τ) be a topological space and $f : X \to X$ be θ-irresolute map. Then the following statements are equivalent:

1. f is θ-type transitive map
2. $\bigcap_{\alpha} f^n(D)$ is θ-dense in X, with D is θ-open set in X.
3. $\bigcup_{n=0} f^n(D)$ is θ-dense in X with D is θ-open set in X
4. If $B \subset X$ is θ-closed and $f(B) \subset B$, then $B = X$ or B is nowhere θ-dense.
5. If $f^{-1}(D) \subset D$ and D is θ-open in X then $D = \emptyset$ or D is θ-dense in X.

Mohammed Nokhas Murad Kaki: New Conceptions of Transitivity and Minimal Mappings
4. Minimal Functions

We introduced a new definition on α-minimal[11] (resp. δ-minimal[4]) maps and studied some new theorems associated with these definitions.

Given a topological space X, we ask whether there exists α-irresolute (resp. δ-irresolute) map on X such that the set \(\{ f^n(x) : n \geq 0 \} \) called the orbit of x and denoted by \(O_f(x) \), is α-dense(resp. δ-dense) in X for each x є X. A partial answer will be given in this section. Let us begin with a new definition.

Definition 4.1 (α-minimal) Let X be a topological space and f be α-irresolute map on X with α-regular operator associated with the topology on X. Then the dynamical system (X, f) is called α-minimal system (or f is called α-minimal map on X) if one of the three equivalent conditions hold[11]:

1) The orbit of each point of X is α-dense in X.
2) \(Cl_\alpha(O_f(x)) = X \) for each x є X
3) Given x є X and a nonempty α-open U in X, there exists n є N such that \(f^n(x) \in U \)

A system \((X, f) \) is called δ-minimal if X does not contain any non-empty, proper, δ - closed f-invariant subset. In such a case we also say that the map f itself is δ-minimal. Another definition of minimal function is that if the orbit of every point in X is dense in X then the map f said to be minimal.

Theorem 4.2[4] For \((X, f) \) the following statements are equivalent:

1) f is an δ-minimal map.
2) If E is an δ-closed subset of X with \(f(E) \subseteq E \), we say E is invariant. Then E = ∅ or E = X.
3) If U is a nonempty δ-open subset of X, then \(\bigcup_{n=0}^{\infty} f^n(U) = X \).

5. Topological Systems and Conjugacy

Definition 5.1[4] A map \(h:Y \rightarrow X \) is said to be δr-homeomorphism if h is bijective and thus invertible and both h and \(h^{-1} \) are δr-irresolute.

Definition 5.2 Let \((X, f) \) and \((Y, g) \) be topological systems, then \(f: X \rightarrow X \) and \(g: Y \rightarrow Y \) are said to be topologically δr-conjugate if there is δr-homeomorphism \(h: X \rightarrow Y \) such that \(h \circ f = g \circ h \). We will call h a topological δr-conjugacy. Thus, the two topological systems with their respective function acting on them share the same dynamics.

Associated with these definitions we have the following theorem:

Theorem 5.3[4] Let \((X, f) \) and \((Y, g) \) be two systems, if \(f: X \rightarrow X \) and \(g: Y \rightarrow Y \) are topologically δr-conjugate. Then

1) f is topologically δ-transitive if and only if g is topologically δ-transitive;
2) f is δ-minimal if and only if g is δ-minimal;
3) f is topologically δ-mixing if and only if g is topologically δ-mixing.

6. Conclusion

The main results are the following:

Proposition 6.1 Every topologically α-type transitive map is a topologically transitive map which implies topologically δ- transitive map, but the converse not necessarily true.

Proposition 6.2 Every α-minimal map is a minimal map which implies δ- minimal map in topological spaces, but the converse not necessarily true.

Theorem 6.3 Let \((X, f) \) be a topological system where X is a non-empty locally compact Hausdorff topological space and X is separable. Suppose that f is topologically transitive. Then there is \(x \in X \) such that the orbit \(O_f(x) = \{ x, f(x), f^2(x), ... f^n(x), ... \} \) is dense in X.

References

[1] M. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 1934, Vol. 41, p374-381
[2] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deep, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 1982, Vol. 78, p47-53.
[3] N. V. Velicko, H-closed topological spaces. Amer. Math. Soc. Transl. 1968, Vol. 78, p102-118.
[4] Mohammed Nokhas Murad, New Types of δ-Transitive Maps, International Journal of Engineering & Technology IJET-IJENS Vol:12 No:06, pp.134-136.
[5] Levine N., Semi open sets and semi continuity in topological spaces. Amer. Math. Monthly.1963, Vol.70, p 36-41.
[6] Bhattacharya P., and Lahiri K.B., Semi-generalized closed sets in topology. Indian J. Math., 1987, Vol. 29, p376-382.
[7] Rosas E.,Vielina J., Operator-compact and Operator-connected spaces. Scientific Math. 1998, Vol. 2, No. 1, p203-208.
[8] Kasahara S., Operation-compact spaces. Mathematica Japonica, 1979, Vol. 24, p97-105.
[9] M. Caldas, S. Jafari and M. M. Kovar, Some properties of α-open sets, Divulge. Mat. 12(2)(2004), p 161-169.
[10] Caldas M., A note on some applications of α-open sets, UMMS, 2003, Vol. 2, p125-130.
[11] Mohammed Nokhas Murad, Topologically α - Transitive Maps and Minimal Systems Gen. Math. Notes, 2012, Vol. 10, No. 2, pp. 43-53 ISSN 2219-7184; Copyright © ICSRS
[12] Maheshwari N. S., and Thakur S. S., *On α-irresolute mappings*, Tamkang J. Math, 1980, Vol. 11, p209-214.

[13] Ogata N., *On some classes of nearly open sets*, Pacific J. Math, 1965, Vol. 15, p 961-970.

[14] F.H. Khedr and T. Noiri, *On ϑ-irresolute functions*. Indian J. Math., 1986, Vol. 3, No:28, p 211-217.

[15] M. Nokhas Murad Kaki, *Introduction to θ-Type Transitive Maps on Topological spaces*. International Journal of Basic & Applied Sciences IJBAS-IJENS 2012, Vol:12, No:06 p 104-108

[16] Andrijevic D., *Some properties of the topology of α-sets*. Math. Vesnik, 1994, p 1-10

[17] Arenas G. F., Dontchev J. and Puertas L.M. *Some covering properties of the α-topology*, 1998.

[18] Caldas M. and Dontchev J., *On space with hereditarily compact α-topologies*, Acta. Math. Hung, 1999. Vol. 82, p121-129.

[19] M. Nokhas Murad Kaki, *ON SOME NEW γ-TYPE MAPS ON TOPOLOGICAL SPACES*. Journal of Mathematical Sciences: Advances and Applications), 2013, Vol. 20 p. 45-60

[20] M. Nokhas Murad Kaki, *Relationship between New Types of Transitive Maps and Minimal Systems*. International Journal of Electronics Communication and Computer Engineering, 2013, Volume 4, Issue 6, p. 2278–4209