Genotypes of *Giardia duodenalis* in Household Dogs and Cats from Poland

Agnieszka Piekara-Stępińska1 · Jolanta Piekarska1 · Michał Gorczykowski1 · Jacek Bania2

Received: 17 June 2020 / Accepted: 28 September 2020 / Published online: 11 October 2020
© The Author(s) 2020

Abstract

Background *Giardia duodenalis* is a widespread protozoan parasite affecting humans and many species of animals, including dogs and cats. Due to its zoonotic potential, it is important to know the frequency of this parasite in companion animals. The aim of this study was to determine current epidemiological status of *G. duodenalis* in household dogs and cats.

Methods In this study, 293 fecal samples from pet dogs and cats were collected from January 2017 to July 2019 and tested for *G. duodenalis* by PCR (using β-giardin gene). The animals were divided into groups depending on their age, breed and fecal consistency.

Results The examination allowed for detection of *G. duodenalis* in 6.0% of canine and 3.9% of feline fecal samples. The highest frequency was revealed in young (under one-year old) dogs. Sequencing confirmed the presence of assemblages C and D in dogs and A and F in cats.

Conclusion The study showed current frequency of *G. duodenalis* in dogs and cats and also revealed the occurrence of host-specific assemblages as well as zoonotic assemblage A.

Keywords Nested PCR · β-Giardin · Protozoa · Zoonosis

Introduction

Dogs and cats are intimate companion animals of humans. According to data from 2019, there are over seven million dogs and over six million cats in Poland [40]. Despite numerous advantages of having a pet, close contact between humans and dogs or cats can result in zoonotic diseases. Important factors causing zoonotic diseases are parasites, such as *Giardia duodenalis*, *Cryptosporidium* spp., *Echinococcus* spp., *Dipylidium caninum* or *Toxocara* spp.

Giardia duodenalis (also known as *Giardia intestinalis* or *Giardia lamblia*) is a unicellular protozoan parasite affecting humans and many animal species. There are two morphological stages of *G. duodenalis*: a trophozoite and a cyst (infective stage). The parasite can colonize the upper small intestine but it was also found in the lower small intestine, stomach, colon and biliary tract [3, 7]. *G. duodenalis* transmission occurs via fecal–oral route (from contaminated water or food and directly from infected individuals) [5]. Giardiasis in dogs and cats can include diarrhea and weight loss or the disease can be asymptomatic.

In recent years, the infection rate of *G. duodenalis* in Europe ranged from 0.8% (Switzerland) to 42% (Germany) and from 5.9% (Spain) to 20.5% (Greece) in dogs and cats, respectively [11, 21, 31, 42].

Studies conducted in Poland between 2006 and 2017 revealed the frequency of *G. duodenalis* to range from 2 to 36% in dogs and from 3.2 to 15.1% in cats, depending on the examined population, geographical origin of the animal, and diagnostic methods (Table 1). The assemblages detected so far in Poland are B, C, D in dogs and A, B, D, F in cats. However, due to small areas covered by the previous studies, their outcomes did not reflect epidemiological situation for the entire area of Poland [4, 19, 29, 34, 43].

Since 2004 giardiasis has been considered by WHO a neglected disease [32]. Human giardiasis can be
asymptomatic or can cause persistent diarrhea or malabsorption associated with body weight loss [13].

G. duodenalis includes eight morphologically indistinguishable assemblages (A–H). The assemblages A and B are further divided into sub-genotypes AI, AII, AIII, BIII and BIV. Typical genotypes in dogs are C and D, but A and B can also be found, and exceptionally even E and F ones [6, 9, 12, 14, 20]. Genotype F is common in cats, which can be infected also by genotype A, E and rarely C [6, 21, 24]. Humans are almost exclusively infected by assemblages A and B but genotypes C, D, E and F were also found in rare cases [1, 6, 14, 30, 37].

Microscopic studies using fecal flotation enable detection of the cysts [35]. Other diagnostic methods involve detection of coproantigen, usually by ELISA. PCR techniques, based on the amplification of gene fragments encoding SSU rRNA, glutamate dehydrogenase (*gdh*), triosephosphate isomerase (*tpi*) or *β*-giardin (*bg*), allow for detection of *Giardia* DNA and also for genotyping [15, 26]. Although the multilocus genotyping is considered the most useful, genotyping based on single locus with high sequence heterogeneity (such as *bg* or *tpi*) is commonly accepted, especially where the diagnosis is extended to the sequencing of the obtained PCR products [23, 36]. One of the most commonly used markers is *β*-giardin, which allows for a successful detection of the parasite by PCR and also enables genotyping and subgenotyping of assemblage A [5, 23]. *β*-giardin allows also for identification of mixed invasions, especially in the case of two-way analysis of the obtained sequences [31]. Moreover, one of the most sensitive and specific methods for detection of *Giardia* spp. is immunofluorescence and it is considered a reference standard assay for the detection of this parasite in dogs and cats feces [16, 38].

Due to the zoonotic potential of *G. duodenalis*, it is particularly important to determine its current infection rate in domestic animals. The overall prevalence and frequency of *G. duodenalis* genotypes in dogs and cats can indicate the potential risk of invasion in humans. The aim of this study was to run a molecular detection of *G. duodenalis* in fecal samples and to assess its overall frequency broken into frequency of each genotype in household dogs and cats from Poland.

Methods

Study area and sample collection

A total of 293 fresh fecal samples were obtained between January 2017 and July 2019 from individual, randomly chosen household dogs (217 samples) and cats (76 samples) living in different regions of Poland. The area of Polish territory is over 312,000 square kilometers divided into 16 provinces. The examined samples came from nine provinces (Pomerania, Greater Poland, Lower Silesia, Opolskie Voivodship, Silesia, Lodzkie Voivodship, Holy Cross, Lesser Poland, Subcarpathian), which account for nearly 153,000 square kilometers (about 50% of the country area) (Fig. 1). The samples, collected by pet owners, were placed individually into disposable plastic bags. The age of the animals ranged from nine weeks to eleven years. They were grouped based on the age (under one-year old, over one-year old), breed and feces consistency (formed, unformed). About 1 g of each sample was frozen at -80°C for further analysis.

Table 1 *Giardia duodenalis* in dogs and cats in Poland, 2006–2017

Area of Poland	Populations	No. of examined samples	No. of positive samples	Infection rate (%)	Method	Assemblages (if examined)	References
Dogs							
Warsaw	Owned	350	18	5.14	Microscopy	A-I, C, D	[43]
Unknown	Sled	64	–	35.9	IFA		[4]
West-central region of Poland	Sheltered	88	2	2.3	Microscopy	C, D	[34]
Wrocław	Owned	128	27	21.1	PCR (bg)	B, C, D	[29]
Cats							
Warsaw	Household	160	6	3.75	Microscopy	A, B, D	[19]
Wrocław	Owned	33	5	15.1	PCR (bg)	F, A	[29]
Unknown	Pet	31	1	–	PCR	F	[22]
strays		33	2	–	–	F	

*DNA was isolated from microscopy-positive samples only
DNA extraction

DNA was isolated from 100 mg of each fecal sample using Genomic Mini AX Stool (A&A Biotechnology, Poland) as per the manufacturer's instruction. The DNA samples were stored at –80 °C until further use.

PCR amplification

To identify *G. duodenalis* in the stool samples, fragments covering β-giardin gene were amplified by nested PCR. The amplification of a 763 bp region was carried out using a forward primer G7 (5′ AAG CCC GAC GAC CTC ACC CGC AGT GC3′) and a reverse primer G759 (5′ GAG GCC GCC CTG GAT CTT CGA GAC GAC3′). For secondary PCR, 587 bp fragment was amplified using 1 µl of the first PCR product. The secondary PCR was carried out using nested forward 511 (5′ GAA CGA ACG AGA TCG AGG TCCG′3) and nested reverse 511 (5′ CTC GAC GAG CTT CGT GTT 3′). The mixture composition and PCR conditions were described by Lalle et al. (2005) [23]. PCR mix consisted of a buffer containing 1.5 mM MgCl2, 200 mM of each dNTP (dNTP mix 10, A&A Biotechnology, Gdynia, Poland) 10 pmol of each primer, 2.5 units of RUN DNA polymerase (A&A Biotechnology, Gdynia, Poland) and 3 µl (1 µl in secondary PCR) of purified DNA in a final volume of 25 µl. PCR was performed using a thermocycler BioRad T100™ Thermal Cycler. Primary PCR conditions were as follows: 95 °C for 5 min for 1 cycle, 96 °C for 45 s, 55 °C for 30 s and 72 °C for 45 s for 35 cycles followed by 72 °C for 7 min. The secondary PCR products were examined electrophoretically in 2% agarose gels and visualized after staining with Midori Green Advance DNA Stain (Genetics, Germany).

DNA sequencing and data analysis

PCR products purification and sequencing was performed by Genomed (Poland) in both directions. The resulting chromatograms were visually assessed to exclude the presence of double peaks. The obtained sequences were compared by a blast search (https://blast.ncbi.nlm.nih.gov/Blast.cgi) with sequences deposited in GenBank. Phylogenetic analysis was performed using neighbor-joining method with MEGA 4 free software. Evaluation of the reliability of the clusters was confirmed using Bootstrap values (1000 replicates). Reference sequences used in the phylogenetic tree were: AB508814.1 for assemblage A; MN270296.1, KX757753.1 for assemblage C; JN416550.1, JN416548.1, JN416559.1 and LC316659.1 for assemblage D and LC341557.1 for assemblage F.

Statistical analysis

The frequency of *G. duodenalis* infections presented in the tables shows the percentage of positive samples in the studied population. We also provided confidence intervals (CI) at the level of 95% (p = 0.05), calculated according to the Wilson method. The chi-square test (χ^2) with Yates correction implemented in STATISTICA ver. 12.0 software package was used to compare the differences in *Giardia* infection rates among the investigated groups. Differences were considered significant at $p \leq 0.05$.

Results

The presence of *G. duodenalis* DNA was detected in 13/217 (6.0%) canine and in 3/76 (3.9%) feline fecal samples. Higher frequency of the infection was observed in dogs under 1 year old (13/107, 12.2%) ($p < 0.05$). Among the dog breeds, *Giardia* infections were most frequently observed in French bulldogs (4 out of 16; 25%), and the infection rate was significantly higher than in other breeds ($p < 0.05$). There were no statistically significant differences connected with age and breed in cats or fecal consistency in both species (Table 2). All 16 PCR-positive samples were successfully sequenced. In dogs, 10 isolates were the closest to assemblage D (77%) and 3 to assemblage C (23%). In cats, two were the closest to assemblage F (67%), and one to assemblage A (33%). Detailed data
are included in Table 3. The phylogenetic relationship of Giardia isolates and reference sequences for A, C, D and F assemblages are showed in Fig. 2.

Table 2 Occurrence of *Giardia duodenalis* in dogs and cats in relation to clinical symptoms

Animal species (n)	Feces condition (n)	No. of positive animals	Infection frequency (CI^a)	Sample symbol	Animal age (months)	Animal breed	Giardia genotype
Dog (217)	Formed (64)	3	4.7 (1.6–12.9)	DV80	3	West Highland White Terrier	D
				G32	2	American Staffordshire Terrier	D
				D99	9	Greater Swiss Mountain Dog	D
	Unformed (153)	10	6.5 (3.6–11.6)	G67	2	French bulldog	D
				D124	5	French bulldog	D
				DV67	9	Siberian Husky	D
				G30	6	Dachshund	D
				G102	2	German Shepherd	D
				G127	3	Siberian Husky	D
				G203	2	French bulldog	D
				G198	3	French bulldog	C
				G205	2	German Shepherd	C
				G15	2	Berger Blanc Suisse	C
Cat (76)	Formed (34)	2	5.9% (0.7–19.7)	DV74	4	Exotic Shorthair	A
				G217	6	Mixed breed	F
	Unformed (42)	1	2.4% (0.1–12.6)	G87	13	Mixed breed	F

^aCI=95% confidence interval according to the modified (adjusted) Wald method

Discussion

The occurrence of *G. duodenalis* in dogs and cats depends mainly on the examined area but also on the diagnostic methods or examined groups (different living condition or age). In this study, the frequency of *G. duodenalis* found

Table 3 Comparison of *Giardia duodenalis* isolates (genotyping β-giardin gene) in dogs and cats in Poland

Host	Assemblage	Sample	Reference sequence	Stretch	SNPs
Dog	D	G67 JN416559.1	45–471	None	
Dog	D	G203 JN416559.1	45–471	None	
Dog	D	D124 JN416559.1	45–471	T115C	
Dog	D	G32 JN416559.1	45–471	T115C	
Dog	D	DV67 JN416559.1	45–471	T115C	
Dog	D	DV80 JN416559.1	45–471	A67T, G109A, T115C	
Dog	D	G30 JN416559.1	45–471	T115C	
Dog	D	G102 JN416559.1	45–471	T115C	
Dog	D	G127 JN416559.1	45–471	G109A, T115C	
Dog	D	D99 JN416559.1	45–471	G109A, T115C	
Dog	C	G205 KX757753.1	64–410	None	
Dog	C	D198 KX757753.1	64–410	G175C, T207C	
Dog	C	G15 KX757753.1	64–410	T207C	
Cat	A	DV74 AB508814.1	97–559	T419C	
Cat	F	G217 LC341557.1	20–452	T100C, T268C	
Cat	F	G87 LC341557.1	20–452	T49G, T100C	
in fecal samples of dogs from different regions of Poland was 6.0% and this result fell within the lower limit of previous results from Poland [4, 29, 34, 43]. Assessment of this frequency was based on amplification of bg locus, a highly sensitive and widely recommended marker [9, 23]. However, some authors reported that DNA amplification can be difficult due to PCR inhibitors in feces [38]. Our study showed lower percentage of positive samples (6%) than some other recent publications on household dogs in Europe involving molecular methods (29% in Spain, 12.9% in Greece, 42% in Germany) [11, 21, 31]. High frequency of Giardia noted in Germany can be connected with lower number of examined samples and this result cannot be representative for the entire country. In our study, significantly higher frequency of the parasite was noted in young dogs, under one-year old (14%). The age of the dogs seems to be an important risk factor for G. duodenalis, as previously described. A recent study conducted by Pan et al. (2018), based on amplification of bg and tpi genes, showed significantly higher detection rate of Giardia in young (16.1%) than in adult dogs (7.6%) [28]. Shin et al. (2015) also used bg gene as a molecular marker and confirmed significantly higher prevalence in young, sheltered dogs [33]. We found no cases of G. duodenalis in the dogs over one-year old, however, many studies detected the presence of this parasite also in adult dogs [21, 28]. Among the examined breeds, French bulldogs were the most often affected by the parasite. This breed is commonly considered to be predisposed to many diseases, especially connected with respiratory and reproductive systems [27]. There are many opinions about pathogenicity of giardiasis in both humans and animals. Mochizuky et al. (2001) noticed almost equal frequency of G. duodenalis in symptomatic and asymptomatic dogs [25]. We found no statistically significant differences connected with fecal consistency in the examined groups, however, some authors showed higher prevalence of the parasite in diarrheic dogs. For example, higher prevalence of G.
References

1. Abd El-Latif NF, El-Taweel HA, Gaballah A, Salem AI, Abd El-Malek AHM (2020) Molecular characterization of *Giardia intestinalis* detected in humans and water samples in Egypt. Acta Parasitol 65(2):482–489. https://doi.org/10.1186/s11686-020-00176-4
2. Adell-Aledón M, Köster PC, de Lucio A et al (2018) Occurrence and molecular epidemiology of *Giardia duodenalis* infection in dog populations in eastern Spain. BMC Vet Res 14(1):26. https://doi.org/10.1186/s12917-018-1353-z
3. Araki H, Shimizu S, Hayashi K et al (2017) Acute acalculous cholecystitis caused by *Giardia lamblia*. Intern Med 56(13):1657–1662. https://doi.org/10.2169/internalmedicine.56.8087
4. Bajer A, Bednarska M (2007) Cryptosporidium spp. and *Giardia* spp. infections in sled dogs, Medycyna Weterynaryjna, 63 (6) (in Polish)
5. Ballweber LR, Xiao L, Bowman DD, Kahn G, Cama VA (2010) Giardiasis in dogs and cats: update on epidemiology and public health significance. Trends Parasitol 26(4):180–189. https://doi.org/10.1016/j.pt.2010.02.005
6. Caccio SM, De Giacomo M, Pozio E (2002) Sequence analysis of the b-giardin gene and development of a polymerase chain reaction–restriction fragment length polymorphism assay to genotype *Giardia duodenalis* cysts from human faecal samples. Int J Parasitol 32(8):1023–1030. https://doi.org/10.1016/s0020-7519(02)00068-1
7. Certad G, Viscogliosi E, Chabé M, Cacciò SM (2017) Pathogenic mechanisms of *Cryptosporidium* and *Giardia*. Trends Parasitol 33(7):561–576. https://doi.org/10.1016/j.pt.2017.02.006
8. Costa VAN, Brener B, Fonseca ABM, Surdé AP (2018) Modification of the Alere GIARDIA Ag TEST immunochromatography KIT methodology for its use in frozen fecal sediment of...
24. Lebbad M, Mattsson JG, Christensson B et al (2010) From mouse to mouse: multilocus genotyping of Giardia isolates from various animal species. Vet Parasitol 168(3–4):231–239. https://doi.org/10.1016/j.vetpar.2009.11.003
25. Mochizuky M, Hashimoto M, Ishida T (2001) Recent epidemiological status of canine viral enteric infections and Giardia infections in Japan. J Vet Med Sci 63(5):573–575. https://doi.org/10.1292/jvms.63.573
26. Monis PT, Mayrhofer G, Andrews RH, Homan WL, Limper L, Ey PL (1996) Molecular genetic analysis of Giardia intestinalis isolates at the glutamate dehydrogenase locus. Parasitology 112(1):1–12. https://doi.org/10.1017/S0031182000006521
27. O’Neill DG, Baral L, Church DB, Broudbelt DC, Packer RMA (2018) Demography and disorders of the French Bulldog population under primary veterinary care in the UK in 2013. Canine Genet Epidemiol 5:3. https://doi.org/10.1186/s40578-018-0057-9
28. Pan W, Wang M, Abdullahi AY et al (2018) Prevalence and genotypes of Giardia lamblia from stray dogs and cats in Guangdong, China. Vet Parasitol Reg Stud Rep 13:30–34. https://doi.org/10.1016/j.vprsr.2018.03.012
29. Pietraksa B, Jazert J, Gorczykowski M et al (2016) Molecular identification of Giardia duodenalis isolates from domestic dogs and cats in Wrocław Poland. Ann Agric Environ Med 23(3):410–415. https://doi.org/10.5007/12321966.1219178
30. Pipková J, Papajová I, Majlathova V et al (2018) First report on Giardia duodenalis assemblage F in Slovakian children living in poor environmental conditions. J Microbiol Immunol Infect 53(1):148–156. https://doi.org/10.1016/j.jmii.2018.04.007
31. Rehbein S, Klotz C, Ignatius R et al (2018) Giardia duodenalis in small animals and their owners in Germany: a pilot study. Zoonoses Public Health 65(1):117–124. https://doi.org/10.1111/zph.12541
32. Savioli L, Smith H, Thompson A (2006) Giardia and Cryptosporidium join the ‘neglected diseases initiative’. Trends Parasitol 22(5):203–208. https://doi.org/10.1016/j.pt.2006.02.015
33. Shin JC, Reyes AW, Kim SH et al (2015) Molecular detection of Giardia intestinalis from stray dogs in animal shelters of Gyeongsangbuk-do (Province) and Daejeon Korea. Korean J Parasitol 53(4):477–481. https://doi.org/10.3347/kjp.2015.53.4.477
34. Solarczyk P, Majewska AC (2010) A survey of the prevalence and genotypes of Giardia duodenalis infecting household and sheltered dogs. Parasitol Res 106(5):1015–1019. https://doi.org/10.1007/s00436-010-1766-5
35. Sommer MF, Rupp P, Pietsch M, Kaspar A, Beelitz P (2018) Giardia in a selected population of dogs and cats in Germany – diagnostics, coinfections and assemblages. Vet Parasitol 249:49–56. https://doi.org/10.1016/j.vetpar.2017.11.006
36. Sulaiman IM, Fayer R, Bern C et al (2003) Triosephosphate isomerase gene characterization and potential zoonotic transmission of Giardia duodenalis. Emerg Infect Dis 11:1444–1452. https://doi.org/10.3201/eid0911.030084
37. Štrkolcová G, Maďar M, Hinney B, Goldová M, Možíšová J, Halánová M (2015) Dog’s genotype of Giardia duodenalis in human: first evidence in Europe. Acta Parasitol 60(4):796–799. https://doi.org/10.1515/ap-2015-0113
38. Tangtrongsup S, Scorza V (2010) Update on the diagnosis and management of Giardia spp. infections in dogs and cats. Top Companion Anim Med 25(3):155–162. https://doi.org/10.1053/j.tcam.2010.07.003
39. Traub RJ, Monis PT, Robertson L, Irwin P, Mencke N, Thompson RC (2004) Epidemiological and molecular evidence supports the zoonotic transmission of Giardia among humans and dogs living in the same community. Parasitology 128(Pt 3):253–262. https://doi.org/10.1017/s0031182003004505
40. The European Pet Food Industry (2019) European Fact and Figures 2019. https://www.lediaf.org
41. Uiterwijk M, Nijssse R, Kooyman FNJ (2019) Host factors associated with Giardia duodenalis infection in dogs across multiple
diagnostic tests. Parasit Vect 12(1):556. https://doi.org/10.1186/s13071-019-3810-3

42. Zotter EM, Bieri M, Basso W, Schnyder M (2019) Intestinal parasites and lungworms in stray, shelter and privately owned cats of Switzerland. Parasitol Int 69:75–81. https://doi.org/10.1016/j.parint.2018.12.005

43. Zygner W, Jaros D, Skowrońska M et al (2006) Prevalence of *Giardia intestinalis* in domestic dogs in Warsaw. Wiadomości Parazytologiczne 52(4):311–315 (in Polish)