RESEARCH ARTICLE

PHYTOCHEMICAL SCREENING AND ANTIBACTERIAL ACTIVITY OF CYNODON DACTYLON AGAINST HUMAN PATHOGENS.

Arthur Robin Raj V. N1, Mohammed A. Almalki2, Rakesh Varghese3 and *Ponnuswamy Vijayaraghavan4.

1. The Salvation Army Catherine Booth Hospital, Nagercoil, Kanyakumari District, Tamilnadu, India.
2. Biological Sciences Department, College of Science, King Faisal University, Saudi Arabia.
3. Department of Industrial Biotechnology, Bharath University, Selaizur, Chennai 73, India
4. Bioprocess Engineering Division, Smykon Biotech Pvt Ltd, Nagercoil, Kanyakumari District, Tamil Nadu, India.

Abstract

Cynodon dactylon is a medicinally essential plant used for the treatment of various infectious diseases. The study of phytochemical and antibacterial activities of the extract of *Cynodon dactylon* showed potent activity against human pathogens. Four different solvents such as acetone, ethanol, methanol, chloroform and water were used to extract the compounds from the leaves of *C. dactylon* to evaluate the phytochemical components and antibacterial activity. The phytochemicals such as proteins, carbohydrate, flavonoids and alkaloids were detected in this study. The extracts showed 4 mm to 15 mm zone against the tested bacteria. Ethanol and methanol extract showed considerable activity than other solvents and hot water. The methanol extract of *C. dactylon* showed high activity against *S. aerus* and *P. aeruginosa*. However, ethanol extract was highly active against *E. coli* and *B. subtilis*. *C. dactylon* extracted with water, ethanol and methanol showed significant activity against *Enterobacter* sp. This study concluded that extracts of *Cynodon dactylon* have potent phytochemicals and significant activities against various human pathogens.

Corresponding Author: - Ponnuswamy Vijayaraghavan.
Address: - Bioprocess Engineering Division, Smykon Biotech Pvt Ltd, Nagercoil, Kanyakumari District,
Cynodon is Bermuda grass and belongs to the family, Poaceae. It is native to East Asia, Africa, Southern Europe and Australia. *Cynodon* is generally considered as a weed and has been found to possess various potential medicinal properties (Singh et al., 2009). The plant is widely used in India as a potential agent to control diabetes. The extract of *C. dactylon* has been widely reported to be anti-diabetic, hypolipidemic and antioxidant efficacy, healing of minor injuries (Oudhia, 1999), hepatic antioxidant and immunomodulatory activities. The aqueous extract of *C. dactylon* rhizome was used for diuretic, purifying agent and dysentery (Sadki et al., 2010). This plant extract has also potent application in secondary syphilis and dropsy (Kesari et al., 2006), cardio protect (Garjani et al., 2009) and wound healing properties (Oudhia and Pal, 2000). The extracts of *C. dactylon* had been reported to be effective for antimicrobial activity against fungal pathogens and bacterial pathogens (Kanimozhi and Rathbai, 2012). In this study, *Cynodon dactylon* was screened for its potential antibacterial activity.

Materials and methods:

Plant material:

Fresh shoots of *C. dactylon* was collected locally. The collected shoots were cleaned, washed with double distilled water and dried for 10 days (air drying) at room temperature (30 ± 2 °C). Then the plant material was powdered using a mixer grinder and stored in a clean plastic containers to protect from heat, light and moisture until further use.

Solvent extraction of antibacterial substances:

Plant material was extracted with various solvents such as acetone, ethanol, methanol, chloroform and water. About 5 gm of dried powder was weighed and suspended in 50 ml of solvent separately. After 24 h, the suspension was filtered using Whatman No.1 filter paper. Then it was centrifuged for 5 min at 5000 rpm. This extraction procedure was repeated three times and pooled. The residual plant material was air dried completely to remove the respective solvents and the phytochemical components were analyzed.

Preparation of hot water extract from *C. dactylon*:—

About 5 gm of powdered plant material was weighed and suspended in 200 ml of double distilled water. Then, this mixture was heated continuously with stirring at 35 °C to 45 °C for 30 min. Further, the water extract was filtered using Whatman No.1 filter paper. Then it was centrifuged for 5 min at 5000 rpm and used for the analysis of antibacterial properties.

Qualitative analysis of phytochemicals from *C. dactylon*:—

Phytochemical test for the presence of bioactive chemical constituents in *C. dactylon* was carried out using various solvent using the standard procedures. All extracts were subject to phytochemical analysis.

Analysis of total protein:

The presence of protein content in the shoot of *C. dactylon* was carried out by using standard method.
Analysis of carbohydrate:-
The presence of carbohydrates in the extract of *C. dactylon* was evaluated as suggested by Fehling’s test. In this method, 1.0 ml of Fehling’s reagent A was mixed with 1.0 ml of Fehling’s reagent B and crude plant extract was added. Followed by gentle heating, the reagent mixture showed brick (Fehling, 1984).

Analysis of Flavonoids:-
To quantify flavonoids, 2 ml of 2% NaOH were added in 0.10 ml plant extract, which showed intense yellow colour and the colour disappeared for few min. Then addition of four drops of 1% aluminum solution added in each filtrate. Reappearance of yellow colour indicated the presence of flavonoids in the sample (Edeoga *et al.*, 2005).

Analysis of Steroids:-
The plant extracts mixed with 2 ml of chloroform and Conc. H$_2$SO$_4$. Development of red color in the chloroform layer indicated the presence of steroids. Then few drops of acetic acid was added. Development of greenish colour indicated steroids positive.

Antibacterial test:-
Microorganisms used in the present study mainly represent pathogenic species commonly associated with human infections.

Test microorganisms:-
The following pathogenic strains were used for the antibacterial studies. The bacteria such as, *Staphylococcus aureus*, *E. coli*, *Bacillus subtilis*, *Pseudomonas aeruginosa*, and *Enterobacter* sp. were used.

Preparation of inoculum:-
Active cultures for experiments were prepared by transferring a loop full of cells from the stock cultures to the nutrient broth (g/l) (peptic digest of animal tissue, 5.0; beef extract, 1.5; yeast extract and 1.5; sodium chloride, 5.0). The Erlenmeyer flasks were incubated at 37 °C for 18 h and were used as the inoculum.

Antimicrobial susceptibility tests:-
Antimicrobial susceptibility testing of the crude plant extracts using well diffusion method. In this method, the antibacterial substances diffuse from the well through a solidified agar layer in a Petri plate to an extent so that the growth of added micro organisms is inhibited entirely in a circular area or zone. The antibacterial activity is expressed as the zone of inhibition in millimeters, which is measured with a zone reader. The presence of definite zone of inhibition of any size around the well indicated antibacterial activity and the zone of inhibition was measured.

Results and discussion:-
In the present study, proteins, carbohydrate, flavonoids and alkaloids were detected from *Cynodon dactylon* (Table 1). This result was in accordance with observations made previously by various research groups. In *C. dactylon* various compounds have been extracted and quantified from different parts. It contains carbohydrates, minerals, proteins, and other compounds like palmitic acid, vitamin C, terpenoids and alkaloids. It was reported that the green grass contains 11.75% of total ash, 28.17% fiber and 10.47% crude protein (Paranjpe, 2001). The important phytochemical constituents such as, flavonoids, luteolin carotenoids, glycosides, phytoesters, saponins and volatile oils were reported from *C. dactylon* (Annapurna *et al.*, 2013). The phytochemical analysis in *C. dactylon* showed that the plant contained flavanoids, alkaloids, glycosides, terpenoides, triterpenoids, steroids, saponins, tannins, resins, phytoesters, reducing sugars, carbohydrates, proteins, volatile oils and fixed oils (Dande and Khan, 2012).

Table 1: Qualitative analysis of crude ethanolic extract of *Cynodon dactylon*

Sl No.	Experiment	Acetone extract	Ethanol extract	Methanol extract	Chloroform extract	Water extract
1	Total protein	---	++	++	---	++
2	Carbohydrate test	---	++	++	---	++
3	Flavanoids test	++	++	---	---	++
4	Steroids	---	---	---	---	++

++Present; -- Absent
The phytochemicals such as quinines, tannin and phenols are mainly responsible for antimicrobial properties. The alkaloids of *C. dactylon* exhibit antimicrobial activity against human pathogens. It was previously reported that the solvent extract of *C. dactylon* exhibited antimicrobial activity because of the presence of gramine, tyramine, tryptamine and alkaloids (Raman et al., 2002). The aerial parts of *C. dactylon* contain cyanodin, triticin, hydrocyanic acid and beta carotene (Kirtikar and Basu, 1980). In the present study, well diffusion method was followed to elucidate antibacterial activity. The extracts showed 4 mm to 15 mm zone against the tested bacteria. Ethanol and methanol extract showed considerable activity than other solvents and hot water. The methanol extract of *C. dactylon* showed high activity against *S. aureus* and *P. aeruginosa*. However, ethanol extract was highly active against *E. coli* and *B. subtilis*. *C. dactylon* extracted with water, ethanol and methanol showed significant activity against *Enterobacter* sp. (Table 2). This result was in accordance the observations made previously with other medicinal plants. Likewise, the methanolic extract of *Solanum palinacanthum* was observed the zone of inhibition on *B. subtilis*, *A. hydrophila* and *S. aureus* (Aline et al., 2008). The petroleum ether extract of the medicinal plant, *Capparis zeylanica* showed more activity against *K. pneumonia*, *P. vulgaris*, *S. aureus* and *B. subtilis*. The inhibitory zone ranged from 10 to 16 mm at a concentration of 10 μg/ml (Chopade et al., 2008). Chloroform extracts of the medicinal plant exhibited least antibacterial activity against the selected bacterial pathogens. In the present study also, chloroform extract showed very less activity than other solvents and hot water extract. It was also observed that selected gram negative bacteria were more sensitive to most of the extracts tested compared to gram-positive bacteria. The gram-negative bacteria were highly resistant to antibiotics than that of gram positive bacteria. And, this resistance is mainly due to the variations in their cell wall composition (Paz et al., 1995).

Table 2: Antibacterial activity of *Cynodon dactylon* against various human pathogens

Extract	Zone of inhibition (mm)				
	Bacillus subtilis	Staphylococcus aureus	Escherichia coli	Pseudomonas aeruginosa	Enterobacter sp.
Acetone	12	9	11	13	9
Ethanol	13	16	7	12	8
Methanol	12	11	10	8	7
Chloroform	6	-----	7	4	7
Water	5	-----	9	----	11

In an another study six various organic solvents were employed to extract the antibacterial compounds from the leaves of *C. dactylon* against the pathogenic stain such as *Streptococcus pyogenes*, *Bacillus subtilis*, *Klebsiella pneumoniae*, *Escherichia coli*, *Staphylococcus aureus*, *Proteus mirabilis* and *Pseudomonas aeruginosa*. Among the solvents tested butanolic extract of *Cynodon dactylon* was found to be good than other tested solvents (Chaudhari et al., 2011). The present work revealed that the solvent and water extract of *C. dactylon* was found to be effective against various human pathogens. From this study we draw a conclusion that the traditional use of plant *C. dactylon* for the infectious disease is promising against bacteria.

Reference:

1. Aline C, Pereira, Oliveira DF, Silva DH, Figueiredo HCP, Cavalheiro AJ, Carvalho DJ, Souza LP, Chalfoun SM (2008). Identification of the antimicrobial substances produced by *Solanum palinacanthum* (Solanaceae). Ann Brazil Acad Sci. 80(3):427 – 432.
2. Annapurana HV, Apoorva B, Ravichandran N, Arun KP, Brindha P, Swaminathan S, Vijayakalshmi M, Nagarajan A (2013). Isolation and in silico evaluation of antidiabetic molecules of *Cynodon dactylon* (L.). J Mol Graphics Model. 39:87-97.
3. Beegum NR, Devi T (2003). Antibacterial activity of selected seaweeds from ovalam south west coast of India. Asian J Microbiol Biotech Env. 5(3): 319-322.
4. Chaudhari Y, Mody HR, Acharya VB (2011). Antibacterial activity of *Cynodon dactylon* on different bacterial pathogens isolated from clinical samples. Int J Pharmaceut Stud and Res. 16-20.
5. Chopade VV, Tankar AN, Ganjiwale RO, Yeole PG (2008). Antimicrobial activity of *Capparis zeylanica* Linn. roots. Int J Green Pharm, 28 – 30.
6. Dande P, Khan A (2012). Evaluation of wound healing potential of *Cynodon dactylon*. Asian J Pharm Clin Res. 5(3):161-164.
7. Edeoga HO, Okwund DE, Mbaebie BO (2005). Phytochemical constituents of some Nigerian medicinal plants. Afr J Biotechnol. 4 (1):685-688.
8. Fehling H (1984). The quantitative determination of sugar and starch-by means of vitriol. J Chemie and Pharmacia. 72(8):106-113.
9. Garjani A, Afrooziyan A, Nazemiyeh H, Najafi M, Kharaezmkia A, Maleki-Dizaji N (2009). Protective effects of hydroalcoholic extract from rhizomes of *Cynodon dactylon* (L.) Pers. on compensated right heart failure in rats. BMC Complement Altern Med. 9:28.
10. Kanimozhi D, Ratha BV (2012). Evaluation of Anti-Microbial Activity of *Cynodon dactylon*. Int J Res Pharm Sci. 2(2):34-43.
11. Kesari AN, Gupta RK, Singh SK, Diwakar S, Watal G (2006). Hypoglycemic and antihyperglycemic activity of Aegle marmelos seed extract in normal and diabetic rats. J Ethnopharmacol. 107:374-379.
12. Kirtikar KK, Basu BD (1980). Indian Medicinal Plants, second ed. Lalit Mohan Publication, India, 2650.
13. Oudhia P (1999). Medicinal weeds in rice fields of Chhattisgarh (India). Int Rice Res. 24(1):40-41.
14. Oudhia P, Pal AR (2000). Rainy season medicinal weed flora in wastelands of Champaran nullah watershed area at Bagbahera. J Med Aromat Plant Sci. 22/4A & 23/1A:44-449.
15. Paranjpe P (2001). Durva. In: Indian Medicinal Plants: Forgotten Healers. 1st Edn, Chaukhamba Sanskrit Pratishthan, Delhi. pp. 75-76.
16. Patwardhan S, Bodas KS, Gundewar S (2010). Coping with arthritis using safer herbal options. Int J Pharm Pharmcol Sci. 2(1):1-11.
17. Paz EA, Lacy RN, Bakhtiar M (1997). The betalactum antibiotics penicillin and Cephalosporin in Prespective Hodder Stongton, London, 1995, 227.
18. Rai PK, Jaiswal D, Rai DK, Sharma B, Watal G (2010). Antioxidant potential of oral feeding of *cynodon dactylon* extract on diabetes-induced oxidative stress. J. Food Biochem. 34:78-92.
19. Raman, Nanjian, Radha A,Balasubramanian K, Raghunathan R, Priyadarshini R (2002). Biodiversity: Biomolecular aspects of Biodiversity and Innovative Utilization, Proceedings of the IUPAC International Conference on Biodiversity, Kluwer academic/Plenum Publishers, New York, 253-256.
20. Sadki C, Hacht B, Souliman A, Atmani F (2010). Acute diuretic activity of aqueous *Erica multiflora* flowers and *Cynodon dactylon* rhizomes extracts in rats. J Ethnopharmacol. 128:352-356.
21. Shah BN, Seth AK, Maheshwari KM (2011). A review on medicinal plants as sources of anti-inflammatory agents. Res J Med Plant. 5:101-115.
22. Singh SK, Rai PK, Mehta S, Gupta RK, Watal G (2009). Curative effect of *Cynodon dactylon* against STZ induced hepatic injury in diabetic rats. Ind J Clin Biochem. 24:410-413.