Platinum-Doped Dendritic Structure as a Phosphorescent Label for Bacteria in Two-Photon Excitation Microscopy

Noemi Molina,*† Marco Cnudde,*§ Juan A. Guadix,**† Jose M. Perez-Pomares,**† Cristian A. Strassert,**⁺ Yolanda Vida,**⁺ and Ezequiel Perez-Inestrosa,*†‡

*Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga—IBIMA, Campus de Teatinos s/n, 29071 Málaga, Spain
†Centro Andaluz de Nanomedicina y Biotecnología (BIONAND), Junta de Andalucía, Universidad de Málaga, C/ Severo Ochoa 35, 29590 Campanillas (Málaga), Spain
‡CeNTech—CiMIC—Institut für Anorganische und Analytische Chemie, W. W.-Universität Münster, Heisenbergstr. 11, D-48149 Münster, Germany
§Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga—IBIMA, Campus de Teatinos s/n, 29071 Málaga, Spain

Supporting Information

ABSTRACT: Herein, we present a water-soluble dendritic Pt(II) complex as a phosphorescent label for bacterial cells. The dendritic moiety endows the Pt(II) complex with unique properties such as water solubility, shielding from quenching by dioxygen, and binding to bacterial surfaces. The new biosensor was employed for two-photon excitation microscopy, and the binding was confirmed by electron microscopy, which demonstrates that such hybrid arrays can provide orthogonal yet complementary readouts.

INTRODUCTION

The luminescence properties of platinum(II) complexes have attracted considerable attention in the last decade, due to their potential application in the field of bioimaging.1 The versatility of Pt(II) complexes lies in the tunability of their luminescence to blue, green, red, or white by tailored ligand design,2–5 their photostability, and their significant Stokes shift. Moreover, the ability of Pt(II) complexes to emit upon two-photon excitation (TPE) affords the possibility of in vivo imaging in tissues.7 However, despite these qualities, their application in the field of bioimaging is still limited due to solubility and quenching phenomena in aqueous environments.

Pt(II) complexes possess square-planar coordination geometries that favor strong axial interactions. Therefore, most of them interact face-to-face, stacking into aggregates. This in turn leads to broad red-shifted emission bands. The excimeric luminescence from aggregates is attributed to metal-metal-to-ligand charge transfer states (3MMLCT), whereas monomeric species emit from triplet ligand-centered (3LC) excited states with sizeable metal-to-ligand charge transfer (3MLCT) character.8 This metal-perturbed ligand-centered (3MP-LC) luminescence is usually quenched by triplet dioxygen in solution (3O2), leading to shortened emission lifetimes, reduced luminescence intensities and reactive oxygen species (ROS) such as singlet dioxygen (1O2).9 Even if useful for photodynamic therapy (PDT), the photoproduction of ROS can be detrimental for optical imaging, where high luminescence intensities are necessitated and cytotoxicity is to be avoided.10 Thus, it is necessary to suppress diffusional quenching by shielding the luminophoric complex. Adequate ligands surrounding the metal center can control the alignment of the core and tune π−π stacking in solution or in solid media, where the formation of aggregates can be favored or hindered on demand.11–12

We have recently reported on compact clusters of Pt(II) complexes adsorbed at the interface of bovine serum albumin, which are intrinsically shielded from molecular oxygen that allows a time-gated separation of their phosphorescence from background autofluorescence. While these clusters can even act as donors in energy transfer processes, the free monomeric species in solution are nonemissive.13 Moreover, we have shown that self-assembled micelles based on tailored copolymers doped with Pt(II) complexes can be tracked by optical and electron microscopy, due to their oxygen-sensitive luminescence and contrast enabled by the high atomic number. The resulting dual readout was employed to...
track their uptake and localization in eukaryotic cells with high spatiotemporal resolution.14 Solubility in aqueous media and shielding of the luminophores from diffusional quenching are two key aspects to be tackled. In this sense, dendrimers (dendrons) constitute appealing tools. They are highly branched, three-dimensional macromolecules, where the size, structure, and surface functionality are controllable. A few dendritic structures have been able to encapsulate and to isolate the emitting core Pt(II) complexes, thus decreasing intermolecular interaction in organic solvents.15−17

We reasoned that the use of alkyl chain-based dendritic structures to protect the emitting core of a Pt(II) complex should not affect its photophysical properties, due to the nonconjugated nature of the encapsulating array, while the functional groups at the periphery would control the solubility. In this work, we present a concept combining the unique excited-state characteristics of Pt(II) complexes with the features of water-soluble dendrimers. We demonstrate that an amino-terminated amide−alkyl dendritic structure can effectively avoid aggregation while protecting the emitting core from quenching by molecular oxygen. Additionally, as a proof of concept, we demonstrate the ability of such a luminophore to act as a biosensor, labeling the cells with a green phosphorescence that can be used for two-photon excitation microscopy.

RESULTS AND DISCUSSION

Synthesis and Characterization. In the design of the amino-terminal amide−alkyl dendritic-Pt, we chose a BAPAD type structure as a template,18 and a 3,4-disubstituted pyridine as an anchoring point for the Pt(II) complex.11 For the synthesis of the dendritic structure (DG2, Scheme 1, Supporting Information (SI)), a Boc-protected generation 2 dendron with an alkyne moiety in the focal point (i, Scheme 1, SI) was prepared and coupled with 3,5-bis(azidomethyl)-pyridine via a copper-catalyzed azide−alkyne “click” cycloaddition (CuAAC).59 Complex 2 (Scheme 1) was synthesized as previously described.11 The Pt-containing dendritic structure was obtained by a convenient exchange reaction of the chlorido ligand. After deprotection of the terminal amino groups, Pt-DG2 was obtained with a 13% yield. The resulting complex is soluble in aqueous media, due to the eight amino groups of the structure. These amino groups not only ensure solubility in aqueous media, but also modulate the biological activity of the molecule (such as promoting the adhesion to bacteria) and can be conjugated to a variety of structures with relevant biological properties.20

Characterization by NMR spectroscopy (in D2O) confirmed the presence of the dendritic complex (see the SI); broad signals between 0 and 4 ppm are characteristic of the dendritic moiety together with two singlets at 4.44 and 5.69 ppm, corresponding to the methylene groups adjacent to the triazole ring. The presence of the Pt core is confirmed by the signal between 7.5 and 9 ppm. However, no mass spectrum was obtained, probably due to the lability of the Pt−N bond of the ancillary ligand.

Diffusion-ordered spectroscopy (DOSY) experiments were carried out observing a monoexponential decay of the signal (at a concentration of 10⁻³ M, Figure 1). This results in a linear Stejskal−Tanner plot, showing that diffusion of a monodisperse molecule is monitored, which excludes any aggregation (Figure 1).21,22

Photophysical Characterization. The steady-state and time-resolved luminescence spectroscopy studies of Pt-DG2 in...
water showed an absorption band at around 250 nm, which can be assigned to \(\pi-\pi^* \) excitations, as well as a broad band around 350 nm that can be ascribed to a transition with mixed MLCT/LC character (Figure S45, SI). In agreement with the results observed in the DOSY experiments, no significant evidence for ground state aggregation is observed.

The green luminescence exhibited by the complex (Figure 2, Table 1) is partially quenched by molecular oxygen. In fact, both the photoluminescence quantum yields and the amplitude-weighted average lifetimes are enhanced by a factor of roughly 3 in deoxygenated samples (Table 1). The amplitude-weighted average lifetimes in brackets).

Table 1. Photophysical Data of Pt-DG2

	air-equilibrated	deoxygenated	
\(\phi_L \pm 0.02 \)	\(r \pm 0.01/\mu s \)	\(\phi_L \pm 0.02 \)	\(r \pm 0.01/\mu s \)
0.05	9.8 (28%); 3.1 (78%); [5.0]	0.12	19.0 (57%); 11.1 (43%); [15.5]

\(\phi_L \) quantum yield and lifetime (\(\lambda_{em} = 500 \) nm) of aqueous solutions of Pt-DG2, \(10^{-5} \) M (fractional amplitudes in parentheses, amplitude-weighted average lifetimes in brackets).
seen in the optical micrographs (Figures 3, S54, and S55 in the SI).

An intense green luminescence can be observed from the outer surface of the bacteria, confirming the adhesion of the complex to the bacterial wall. This characteristic emission can be observed under both OPE and TPE conditions. This is a key point when performing imaging experiments of biological samples, which is relevant to distinguish the intrinsic emission of the luminescent probe from sample autofluorescence and background noise. In untreated bacteria, an extremely weak autofluorescence is observed under OPE. However, no autofluorescence is observed under TPE conditions (capture settings and image processing are identical). Moreover, the emission and excitation spectra of the stained bacteria resemble those of Pt-DG2 in both OPE and TPE conditions (Figures 2, 3a and S52, SI). The longer excited-state lifetime observed for stained bacteria (10 μs) also indicates the presence of the monomeric species and the protection of the Pt(II) core from quenching processes.

The dynamics of bacterial growth was monitored in liquid LB medium originally inoculated with 4 × 10^6 E. coli and P. subtilis and incubated in the presence (10 or 100 μM) or absence of Pt-DG2. No significant E. coli growth delay was recorded with increasing Pt-DG2 concentration from 10 to 100 μM, but P. subtilis growth was significantly reduced at 100 μM Pt-DG2. (Figure S56 in the SI).

Transmission electron microscopy (TEM) images were also acquired, where energy dispersive X-ray (EDX) analysis confirms the presence of platinum (Figures 4 and S57 SI). Although no measurable interaction between the metal centers is observed in solution, TEM images of incubated cells show high contrast clusters that are not observed in untreated bacteria (red arrow in Figure 4b,c). Such Pt clusters provide a possibility of tracking heavy atoms by means of electron microscopy.

■ CONCLUSIONS

By combining the characteristics of dendritic structures with the photophysical properties of Pt(II) complexes, we obtained a unique luminescent marker soluble in aqueous media. The dendritic moiety, with well-defined structure and three-dimensional geometry, possesses the ability to encapsulate the emitting core and create a specific site-shielded nanoenvironment. In this way, the complex constitutes a triplet emitter whose photophysical properties are perfectly stable in biological media without the need for a carrier. The approach to exploiting the luminescence properties of Pt(II) complexes in bioimaging has been demonstrated using both OPE and TPE conditions. Additionally, the array has proven to be traceable by electron microscopy and acts as a probe providing dual orthogonal readouts.

■ EXPERIMENTAL SECTION

Chemicals and Materials. All reactions were performed using commercially available reagents and solvents as received from the manufacturer, without further purification. Unless otherwise stated, all reactions were performed in air. Column chromatography and thin layer chromatography (TLC) were performed on silica gel 60 (0.040−0.063 mm) using UV light and/or stains to visualize the products. Sephadex™ G-10 prepacked columns were used to purify the final compound.

Instruments and Characterization. 1H and 13C NMR spectra were measured in the indicated deuterated solvent at 25 °C on a Bruker Ascend 400 MHz spectrometer and on a Bruker Ascend 600 MHz spectrometer. Chemical shifts (δ) are given in parts per million with respect to the residual protonated solvent employed as the internal standard (CDCl3 δ 7.26, DMSO-d6 δ 2.50, D2O δ 4.79, MeOD-d4 δ 3.31). Data are reported as follows: chemical shift, multiplicity,
coupling constants (Hz), and integration. Infrared (IR) spectra were recorded using a Jasco FT/IR-4100 spectrophotometer. IR spectra were obtained at ambient temperature. HRMS (electrospray ionization time-of-flight (ESI-TOF) mass spectra (MS)) were performed on a High-Resolution Mass Spectrometer Orbitrap, Q-Exactive (Thermo Fisher Scientific, Waltham, MA). Hydrogenolysis reactions were carried out under a hydrogen atmosphere (50 bar) using a Mini-Reactor from Erie-Autoclave Engineers. Luminescence measurements were performed using an Edinburgh Instruments FLS920 spectrometer equipped with a 300 W ozone-free Xe lamp (250 nm), a 10 W Xe arc lamp (900 nm), and a R928P photomultiplier-based delay generator. Lifetime analysis was also performed using the commercial FluoFit software. The quality of the fit was assessed by minimizing the reduced chi-squared function (χ²) and visual inspection of the weighted residuals and their autocorrelation. Luminescence lifetimes were recorded in TCSPC mode by a PicoHarp 300 (minimum base resolution 4 ps) on a FluorTime300 spectrometer from PicoQuant equipped with a 300 W ozone-free Xe lamp (250–900 nm), a 10 W Xe flash-lamp (250–900 nm, pulse width <10 μs) with repetition rates of 0.1–300 Hz, an excitation monochromator (Czerny-Turner 2.7 mm/mm dispersion, 1200 grooves/mm, blazed at 300 nm), diode lasers (pulse width <80 ps) operated by a computer-controlled laser driver PDL-820 (repetition rate up to 80 MHz, burst mode for slow and weak decays), two emission monochromators (Czerny-Turner 2.7 nm/mm dispersion, 1200 grooves/mm), and a Peltier-thermostatted sample holder from Quantum Northwest (−40 to 105 °C), and two detectors, namely a PMA Hybrid 40 (transit time spread FWHM <120 ps, 300–720 nm) and a R5509-42 NIR-photomultiplier tube (transit time spread FWHM 1.5 ns, 300–1400 nm) with external cooling (−80 °C) from Hamamatsu.

Synthetic Methods. Experimental procedures for the synthesis of compound 1 and 3,5-bis(azidomethyl)pyridine can be found in the Supporting Information (Scheme S1).

Synthesis of DG2. 3,5-Bis(azidomethyl)pyridine (30 mg, 0.16 mmol, see S1), compound 1 (250 mg, 0.31 mmol), copper(II) sulfate 5-hydrate (4 mg, 0.016 mmol), and (−)-ascorbic acid sodium salt (13 mg, 0.064 mmol) were dissolved in tert-butanol/water 1:2 (9 mL). The mixture was stirred at room temperature for one week. Afterward, the solvent was removed using rotary evaporation. NH4OH (50 mL) and dichloromethane (50 mL) were added and the phases were separated. The aqueous phase was extracted with CH2Cl2 (3 × 30 mL). The combined organic layers were washed with NH4OH/brine 1:1 (3 × 80 mL). The organic layer was dried over MgSO4 and the solvent was removed by rotary evaporation. The product was purified by precipitation in hexane to obtain DG2 (234 mg, 83%) as a white solid. 1H NMR (400 MHz, DMSO-d6) δ: 8.54–7.97 (m, 5 H), 5.61 (s, 4 H), 4.33–4.25 (m, 4 H), 3.61–3.45 (m, 4 H), 3.20–2.83 (m, 20 H), 1.35 (s, 72 H), 1.09–0.91 (m, 18 H). 13C NMR (100 MHz, DMSO-d6) δ: 174.8, 174.6, 156.1, 149.0, 145.5, 135.6, 131.7, 123.1, 77.9, 50.0, 47.9, 46.7, 44.6, 42.4, 34.8, 28.1, 19.2, 18.5. HRMS calc'd for C83H141N21O22 Na+ 1807.0474 [M + Na]⁺, found 1807.0452.

Synthesis of Pt-DG2. DG2 (50 mg, 0.028 mmol) and Pt(II) complex 2 (16 mg, 0.028 mmol) were dissolved in THF (10 mL) and heated at reflux overnight. The solvent was removed under vacuum, and the residue was dissolved in ethyl acetate (30 mL) and washed with water (3 × 30 mL). The organic phase was dried over MgSO4 and the solvent was removed. The obtained compound was dissolved in dry THF (5 mL) and the solution was cooled in an ice-water bath. TFA (2 mL) was added dropwise, and the mixture was stirred overnight. Afterward, the solvent was evaporated under vacuum. The residue was dissolved in ethyl acetate (10 mL) and extracted with water (3 × 10 mL). The aqueous phase was lyophilized, and the remains were purified by a sephadex column to obtain Pt-DG2 as ammonium salt (9 mg, 13%). 1H NMR (600 MHz, D2O) δ: 9.00–7.68 (m, 10 H), 5.69 (s, 4 H), 4.44 (s, 4 H), 3.80–2.95 (m, 24 H), 1.65–0.99 (m, 27 H). 13C NMR (100 MHz, D2O) δ: 175.3, 174.4, 162.3, 161.9, 150.1, 148.4, 147.4, 144.04, 143.97, 136.1, 130.8, 123.57, 123.55, 119.9, 117.0, 114.1, 111.2, 107.9, 50.1, 43.6, 43.4, 43.3, 42.8, 42.7, 33.8, 28.3, 16.8, 16.4.

DOSY Nuclear Magnetic Resonance (NMR) Experiment for Pt-DG2. The sample was prepared in deuterium oxide at a concentration of 1 mM. The experiments have been performed on a Bruker Ascend 400 MHz spectrometer, equipped with a 5 mm BBFOPLUS probe with a 2H “lock” channel and z gradient. The spectrometer is also equipped with a control temperature unit prepared to work at temperatures ranging from 0 to +50 °C. Gradient strength was calibrated by measuring the diffusion rate of pure water of residual protons in D2O. Experiments were conducted at 300 K. The samples were equilibrated for no fewer than 15 min. To determine the...
diffusion rates, a two-dimensional sequence using double stimulated echo for convection compensation and a LED using bipolar gradient pulses for diffusion were used. A diffusion constant of 2.1×10^{-10} m2/s was observed.

Two-Photon Excitation Experiments. Excitation and emission scans were performed using a Leica SPM MP confocal microscope equipped with a Spectroscopy MaiTai HP pulse IR laser for multiphoton excitation and an HCX PL APO lambda blue 63× NA 1.40 oil immersion objective lens. For excitation scans, fluorescence was measured between 500 and 600 nm using an internal PMT detector with excitation varying from 700 to 1040 nm at 10 nm intervals. For emission scans, samples were excited at 720 nm and emissions were measured using internal spectral PMT detectors as a 30 nm window moving from 400 to 700 nm in 15 nm intervals (20 measurements). TPA cross-sections were determined by the TPEF method. It is assumed that the quantum efficiencies after two-photon excitation are the same as those after one-photon excitation. The TPA cross-section (δ) were obtained by calibration against rhodamine B with a known value in MeOH solution. Then, the TPA cross-section δ values were calculated on the basis of the following expression:

$$\delta_g = \delta_R \frac{C_0 \eta \phi_F}{C_0 \eta \phi_F}$$

where δ is the TPA cross-section, C and η are the concentration and refractive index of the sample solution, and F is the integrated area under the TPEF spectrum. Pt-DG2 shows TPA cross-sections δ of about 3.90 GM (Goeppert–Mayer unit) = 10^{-50} cm2 molecule$^{-1}$ photon$^{-1}$ (710 nm).

Luminescence Microscopy Experiments with E. coli (Gram-Negative) and P. subtilis (Gram-Positive) Bacteria Incubated with Pt-DG2. Both bacteria ($E. coli$ and $P. subtilis$) were grown in 10 mL of LB Broth at 37 °C in a rocking incubator (18 h). Then, culture contents were split into four 15 mL vials, centrifuged (5000g, 5 min), and washed again in 5 mL of PBS. After an additional centrifugation (5000g, 5 min), bacterial pellets were either resuspended in 3 mL of PBS with Pt-DG2 (10$^{-4}$ M dilution) or resuspended in 3 mL of PBS alone, followed by a 2 h incubation step in a rocking incubator (37 °C). Then, both samples were centrifuged (5000g, 5 min) and washed twice in 3 mL of PBS. Finally, each bacterial sample was resuspended in 100 μL of PBS. Bacterial cultures were analyzed using a Leica SPM MP confocal microscope equipped with Spectroscopy MaiTai HP pulse IR laser for multiphoton excitation and an HCX PL APO lambda blue 63× NA 1.40 oil immersion objective lens was used. Bright-field and confocal images were acquired using 405 nm excitation with emissions detected with a spectral PMT detector set to 500–600 nm. Multiphoton images were acquired sequentially with excitation at 720 nm and detection between 500 and 550 nm with an external HyD nondescanned detector.

Bactericidal Test. To examine the bactericidal effect of Pt-DG2 on Gram-negative and Gram-positive bacteria, approximately 4×10^8 colony-forming units of $E. coli$ and $P. subtilis$ were cultured on LB agar plates supplemented with 10 or 100 μM Pt-DG2. Pt-DG2-free LB plates cultured under the same conditions were used as controls. The plates were incubated for 24 h at 37 °C, and the number of colonies was recorded. Counts on the three plates corresponding to a particular sample were averaged. To examine the bacterial growth rate as well as to determine the growth curve in the presence of Pt-DG2, $E. coli$ and $P. subtilis$ were grown in liquid LB medium supplemented with 10 or 100 μM. Growth rates and bacterial concentrations were determined by measuring the optical density (OD) at 600 nm every 1 h (OD of 0.1 corresponds to a concentration of 10^8 cells per cm3) in a FLUOstar Omega de BMG Labtech device.

Transmission Electron Microscopy (TEM) Experiments. TEM and EDX measurements of bacteria were performed using a Thermo Fisher Tecnai G2 20 Twin microscope. For TEM measurements, a drop of a solution of bacteria in PBS was placed in a copper grid covered with a Formvar-Carbon film and was left to dry overnight. No contrast agent was used for these samples. The voltage used was 120 kV, and the beam of electrons was between 6.94 and 8.80 μA. The exposure time for image capture was 1 s. To obtain EDX data, a magnification between 200 and 240 kX was used, focusing the beam on the center of the bacteria. The spectral measurement was carried out in such a way that the death time (waiting time for the acquisition between counts) was around 10–15%, with a total counting duration of 50 s.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsomega.9b00639.

Experimental procedures and data for related compounds, NMR spectra, infrared (IR) spectra, time-resolved luminescence decay of Pt-DG2, and two-photon excitation experiments (PDF)

AUTHOR INFORMATION

Corresponding Authors
*E-mail: c.as@wwu.de (C.A.S.).
E-mail: yolvida@uma.es (Y.V.).
E-mail: inestrosa@uma.es (E.P.-I.).

ORCID
Cristian A. Strassert: 0000-0002-1964-0169
Yolanda Vida: 0000-0002-7004-4629
Ezequiel Perez-Inestrosa: 0000-0001-7546-5273

Author Contributions
The manuscript was written through contributions of all authors.

Funding
Spanish Ministerio de Economía, Industria y Competitividad (CTQ2016-75870-P), Consejería de Salud, Junta de Andalucía (PI0250-2016), Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía-PAIDI-FQM-017, FEDER founds Deutsche Forschungsgemeinschaft (DFG, EXC1003 and Project STR1186/3-1) and partially supported by Open Access Funds from "Universidad de Málaga"-Andalucia Tech.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
This work was supported by the Spanish Ministerio de Economía, Industria y Competitividad (CTQ2016-75870-P), Consejería de Salud, Junta de Andalucía (PI0250-2016), Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía-PAIDI-FQM-017, and FEDER founds. N.M. holds a FPU grant of MEC (FPUG15/00641). J.A.G. acknowledges financial support from Plan Propio-Universidad de Málaga.
C.A.S. gratefully acknowledges financial support from the Deutsche Forschungsgemeinschaft (DFG, EXC1003 and Project STR1186/3-1). We are indebted to Dr Luis Díaz-Martínez and Dr Diego Romero from Departamento de Microbiologia, Facultad de Ciencias, Universidad de Málaga (Spain) for their excellent technical assistance and help with the bacterial assays. We also thank Dr John Pearson (BIONAND) for help with laser multiphoton microscopy analysis.

ABBREVIATIONS

PDT, photodynamic therapy; TLC, thin layer chromatography; UV, ultraviolet; HRMS, high-resolution mass spectrometry; TPA, two-photon absorption; TPEF, two-photon excitation fluorescence; PBS, phosphate-buffered saline; EDX, energy dispersive X-ray analysis.

REFERENCES

(1) Ma, D.-L.; Ma, V. P.-Y.; Chan, D. S.-H.; Leung, K.-H.; He, H.-Z.; Leung, C.-H. Recent Advances in Luminescent Heavy Metal Complexes for Sensing. Coord. Chem. Rev. 2012, 256, 3087–3113.

(2) Yang, X.; Wang, Z.; Madakuni, S.; Li, J.; Jabbour, G. E. Efficient Blue- and White-Emitting Electrophosphorescent Devices Based on Platinum(II) 1,3-Difluoro-4,6-Di(2-Pyridinyl)Benzene Chloride. Adv. Mater. 2008, 20, 2405–2409.

(3) Sotoyama, W.; Satoh, T.; Sawatari, N.; Inoue, H. Efficient Organic Light-Emitting Diodes with Phosphorescent Platinum Complexes Containing N,N'-Coordinating Tridentate Ligand. Appl. Phys. Lett. 2005, 86, No. 153005.

(4) Turner, E.; Bakken, N.; Li, J. Cyclometalated Platinum Complexes with Luminescent Quantum Yields Approaching 100%. Inorg. Chem. 2013, 52, 7344–7351.

(5) Graham, K. R.; Yang, Y.; Sommer, J. R.; Shelton, A. H.; Schanze, K. S.; Xue, J.; Reynolds, J. R. Extended Conjugation Platinum(II) Porphyryns for Use in Near-Infrared Emitting Organic Light Emitting Diodes. Chem. Mater. 2011, 23, 5305–5312.

(6) Baggaley, E.; Weinstein, J. A.; Williams, J. A. G. Lighting the Way to See inside the Live Cell with Luminescent Transition Metal Complexes. Coord. Chem. Rev. 2012, 256, 1762–1785.

(7) Baggaley, E.; Suzanovich, I. V.; Williams, J. A. G.; Haycock, J. W.; Botwhey, S. W.; Weinstein, J. A. Two-Photon Phosphorescence Lifetime Imaging of Cells and Tissues Using a Long-Lived Cyclometalated N,N′-Phenyl-N′-Pyridyl Pt(II) Complex. RSC Adv. 2014, 4, 35003–35008.

(8) Zhong, J.-J.; Yang, C.; Chang, X.-Y.; Zou, C.; Lu, W.; Che, C.-M. Platinum(II) Photo-Catalysis for Highly Selective Difluoroalkylation Reactions. Chem. Commun. 2017, 53, 8948–8951.

(9) Ma, B.; Djurovich, P. I.; Thompson, M. E. Excimer and Electron Transfer Quenching Studies of a Cyclometalated Platinum Complex. Coord. Chem. Rev. 2005, 249, 1501–1510.

(10) Lo, K. K.-W. Luminescent Rhenium(I) and Iridium(III) Polypyridine Complexes as Biological Probes, Imaging Reagents, and Photocytotoxic Agents. Acc. Chem. Res. 2015, 48, 2985–2995.

(11) Sanning, J.; Stegemann, L.; Ewen, P. R.; Schwermann, C.; Daniluc, C. G.; Zhang, D.; Lin, N.; Duan, L.; Wegner, D.; Doltsinis, N. L.; et al. Colour-Tunable Asymmetric Cyclometalated Pt(II) Complexes and STM-Assisted Stability Assessment of Ancillary Ligands for OLEDs. J. Mater. Chem. C 2016, 4, 2560–2565.

(12) Mydlak, M.; Mauro, M.; Polo, F.; Felicetti, M.; Leonhardt, J.; Dierer, G.; De Cola, L.; Strassert, C. A. Controlling Aggregation in Highly Emissive Pt(II) Complexes Bearing Tridentate Dianionic N,N,N,Ligands. Synthesis, Photophysics, and Electroluminescence. Chem. Mater. 2011, 23, 3659–3667.

(13) Delcanale, P.; Galstyan, A.; Daniluc, C. G.; Grecco, H. E.; Abbuzzetti, S.; Faust, A.; Viapiani, C.; Strassert, C. A. Oxygen-Insensitive Aggregates of Pt(II) Complexes as Phosphorescent Labels of Proteins with Luminescence Lifetime-Based Readouts. ACS Appl. Mater. Interfaces 2018, 10, 24361–24369.

(14) Proetto, M. T.; Sanning, J.; Peterlechner, M.; Thunemann, M.; Stegemann, L.; Sadegh, S.; Devor, A.; Giannessi, N. C.; Strassert, C. A. Phosphorescent Pt(II) Complexes Spatially Arrayed in Micellar Polymeric Nanoparticles Providing Dual Readout for Multimodal Imaging. Chem. Commun. 2019, 55, 4031–4032.

(15) Vestberg, R.; Westlund, R.; Eriksson, A.; Lopes, C.; Carlsson, M.; Eliasson, B.; Glmsdal, E.; Mikael Lindgren, A.; Malmström, E. Dendron Decorated Platinum(II) Acetylides for Optical Power Limiting. Macromolecules 2006, 39, 2238–2246.

(16) Lindgren, M.; Minaev, B.; Glmsdal, E.; Vestberg, R.; Westlund, R.; Malmström, E. Electronic States and Phosphorescence of Dendron Functionalized Platinum(II) Acetylides. J. Lumin. 2007, 124, 302–310.

(17) Li, H.; Yuan, W.; Wang, X.; Zhan, H.; Xie, Z.; Cheng, Y. Enhancement of Luminescence Performance from the Alteration of Stacking Patterns of Pt(II) Dendrimers. J. Mater. Chem. C 2015, 3, 2744–2750.

(18) Ruiz-Sanchez, A. J.; Mesa-Antunez, P.; Barbero, N.; Collado, D.; Vida, Y.; Najera, F.; Perez-Inestrosa, E. Synthesis of All-Aliphatic Polymamide Dendrimers Based on a 3,3’-Diaminoipivalic Acid Scaffold. Polym. Chem. 2015, 6, 3031–3038.

(19) Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; Fréchet, J. M. J.; Sharpless, K. B.; Fokin, V. V. Efficiency and Fidelity in a Click-Chemistry Route to Triazole Dendrimers by the Copper(I)-Catalyzed Ligation of Azides and Alkynes. J. Am. Chem. Soc. 2010, 132, 1713–1720.

(20) Strassert, C. A.; Otter, M.; Albuquerque, R. Q.; Höne, A.; Vida, Y.; Maier, B.; De Cola, L. Photoactive Hybrid Nanomaterial for Targeting, Labeling, and Killing Antibiotic-Resistant Bacteria. Angew. Chem., Int. Ed. 2009, 48, 7928–7931.

(21) Sommerfeld, N. S.; Hejl, M.; Klose, M. H. M.; Schreiber-Brynnak, E.; Bieleck, A.; Meier, S. M.; Gerner, C.; Jakupec, M. A.; Galanski, M.; Keppler, B. K. Low-Generation Polyamidoamine Dendrimers as Drug Carriers for Platinum(IV) Complexes. Eur. J. Inorg. Chem. 2017, 2017, 1713–1720.

(22) Jiménez, V. A.; Gavin, J. A.; Alderete, J. B. Scaling Trend in Diffusion Coefficients of Low Generation G0–G3 PAMAM Dendrimers in Aqueous Solution at High and Neutral PH. Struct. Chem. 2012, 23, 123–128.

(23) Sillen, A.; Engelborghs, Y. The Correct Use of “Average” Fluorescence Parameters. Photochem. Photobiol. 1998, 67, 475–486.

(24) Allampally, N. K.; Bredol, M.; Strassert, C. A.; De Cola, L. Highly Phosphorescent Supramolecular Hydrogels Based on Platinum Emitter. Chem. - Eur. J. 2014, 20, 16863–16868.

(25) Levenson, R. M.; Lynch, D. T.; Kobayashi, H.; Backer, J. M.; Backer, M. V. Multiplexing with Multispectral Imaging: From Mice to Microscopy. ILAR J. 2008, 49, 78–88.

(26) Terenzi, F.; Katán, C.; Badaeva, E.; Tretiak, S.; Blanchard-Desce, M. Enhanced Two-Photon Absorption of Organic Chromophores: Theoretical and Experimental Assessments. Adv. Mater. 2008, 20, 4641–4678.