R-GAP: RECURSIVE GRADIENT ATTACK ON PRIVACY

A PREPRINT

Junyi Zhu
Center for Processing Speech and Images
Department of Electrical Engineering
KU Leuven
junyi.zhu@esat.kuleuven.be

Matthew Blaschko
Center for Processing Speech and Images
Department of Electrical Engineering
KU Leuven
matthew.blaschko@esat.kuleuven.be

ABSTRACT

Federated learning frameworks have been regarded as a promising approach to break the dilemma between demands on privacy and the promise of learning from large collections of distributed data. Many such frameworks only ask collaborators to share their local update of a common model, i.e. gradients with respect to locally stored data, instead of exposing their raw data to other collaborators. However, recent optimization-based gradient attacks show that raw data can often be accurately recovered from gradients. It has been shown that minimizing the Euclidean distance between true gradients and those calculated from estimated data is often effective in fully recovering private data. However, there is a fundamental lack of theoretical understanding of how and when gradients can lead to unique recovery of original data. Our research fills this gap by providing a closed-form recursive procedure to recover data from gradients in deep neural networks. We demonstrate that gradient attacks consist of recursively solving a sequence of systems of linear equations. Furthermore, our closed-form approach works as well as or even better than optimization-based approaches at a fraction of the computation, we name it Recursive Gradient Attack on Privacy (R-GAP). Additionally, we propose a rank analysis method, which can be used to estimate a network architecture’s risk of a gradient attack. Experimental results demonstrate the validity of the closed-form attack and rank analysis, while demonstrating its superior computational properties and lack of susceptibility to local optima vis a vis optimization-based attacks. Source code is available for download from https://github.com/JunyiZhu-AI/R-GAP.

Keywords Privacy leakage · Gradient attack · Federated learning

1 Introduction

Distributed and federated learning have become common strategies for training neural networks without transferring data [Jochems et al., 2016, 2017; Konečný et al., 2016; McMahan et al., 2017]. Instead, model updates, often in the form of gradients, are exchanged between participating nodes. These are then used to update at each node a copy of the model. This has been widely applied for privacy purposes [Rigaki and Garcia, 2020; Cristofaro, 2020], including with medical data [Jochems et al., 2016, 2017]. Recently, it has been demonstrated that this family of approaches is susceptible to attacks that can in some circumstances recover the training data from the gradient information exchanged in such federated learning approaches, calling into question their suitability for privacy preserving distributed machine learning [Phong et al., 2018; Wang et al., 2019; Zhu et al., 2019; Zhao et al., 2020; Geiping et al., 2020; Wei et al., 2020; Fan et al., 2020]. To date these attack strategies have broadly fallen into two groups: (i) an analytical attack based on the use of gradients with respect to a bias term [Phong et al., 2018], and (ii) an optimization-based attack [Wang et al., 2019; Zhu et al., 2019] that can in some circumstances recover individual training samples in a batch, but that involves a difficult non-convex optimization that doesn’t always converge to a correct solution [Geiping et al., 2020], and that provides comparatively little insights into the information that is being exploited in the attack.

The development of privacy attacks is most important because they inform strategies for protecting against them. This is achieved by perturbations to the transferred gradients, and the form of the attack can give insights into the type of perturbation that can effectively protect the data [Fan et al., 2020]. As such, the development of novel closed-form
attacks is essential to the analysis of privacy in federated learning. More broadly, the existence of model inversion attacks [He et al., 2019] [Wang et al., 2019] [Yang et al., 2019] [Zhang et al., 2020] calls into question whether transferring a fully trained model can be considered privacy preserving. As the weights of a model trained by (stochastic) gradient descent are the summation of individual gradients, understanding gradient attacks can assist in the analysis of and protection against model inversion attacks in and outside of a federated learning setting.

In this work, we develop a novel third family of attacks, recursive gradient attack on privacy (R-GAP), that is based on a recursive, depth-wise algorithm for recovering training data from gradient information. Like the analytical attack using the bias term, it can be written in closed form, but works even if the network architecture does not include a bias term. Furthermore, R-GAP is applicable to convolutional networks, while the bias attack is not. Compared to optimization-based attacks, it is not susceptible to local optima, and is orders of magnitude faster to run with a deterministic running time. Furthermore, the insights gained from the closed form of our recursive attack have lead to a refined rank analysis that predicts which network architectures enable full recovery, and which lead to noisy recovery due to rank deficiency. This explains well the performance of both closed-form and optimization-based attacks.

Empirically, we demonstrate that our recursive attack can fully recover training data in cases where optimization attacks fail, while requiring only a small fraction of the computational resources. In experiments on image data, we show that a simple image quality model can be employed to select among competing methods, resulting in a hybrid attack that dominates all methods.

1.1 Related Work

Bias attacks: The original discovery of the existence of an analytical attack based on gradients with respect to the bias term is due to [Phong et al., 2018]. Fan et al. [2020] also analyzed the bias attack as a system of linear equations, and proposed a method of perturbing the gradients to protect against it. Their work considers convolutional and fully-connected networks as equivalent, but this ignores the aggregation of gradients in convolutional networks. Similar to our work, they also perform a rank analysis, but it considers fewer constraints than is included in our analysis (Section 4).

Optimization attacks: The first attack that utilized an optimization approach to minimize the distance between gradients appears to be due to [Wang et al., 2019]. In this work, optimization is adopted as a submodule in their GAN-style framework. Subsequently, Zhu et al. [2019] proposed a method called deep leakage from gradients (DLG) which relies entirely on minimization of the difference of gradients (Section 2). They propose the use of L-BFGS [Liu and Nocedal, 1989] to perform the optimization. Zhao et al. [2020] further analyzed label inference in this setting, proposing an analytic way to reconstruct the one-hot label of multi-class classification in terms of a single input. Wei et al. [2020] show that DLG is sensitive to initialization and proposed that the same class image is an optimal initialization. They proposed to use SSIM as image similarity metric, which can then be used to guide optimization by DLG. Geiping et al. [2020] point out that as DLG requires second-order derivatives, L-BFGS actually requires third-order derivatives, which leads to challenging optimization for networks with activation functions such as ReLU and LeakyReLU. They therefore propose to replace L-BFGS with Adam [Kingma and Ba, 2015]. Similar to the work of [Wei et al., 2020], Geiping et al. [2020] propose to incorporate an image prior, in this case total variation, while using PSNR as a quality measurement.

2 Optimization-Based Gradient Attacks on Privacy (O-GAP)

Optimization-based gradient attacks on privacy (O-GAP) take the real gradients as its ground-truth label and utilizes optimization to decrease the distance between the real gradients \(\nabla W \) and the dummy gradients \(\nabla W' \) generated by a pair of initialized dummy data and dummy label. The objective function of O-GAP can be generally expressed as:

\[
\arg \min_{x', y'} \| \nabla W - \nabla W' \|^2 = \arg \min_{x', y'} \sum_{i=1}^{d} \| \nabla W_i - \nabla W'_i \|^2,
\]

where the summation is taken over the layers of a network of depth \(d \), and \((x', y')\) is the estimated training data and label used to generate \(\nabla W' \). The idea of O-GAP was proposed by [Wang et al., 2019]. However, they have adopted it as a part of their GAN-style framework and did not realize that O-GAP is able to perform a more accurate attack by itself. Later in the work of [Zhu et al., 2019], O-GAP has been proposed as a stand alone approach, the framework has been named as Deep Leakage from Gradients (DLG).

The approach is intuitively simple, and in practice has been shown to give surprisingly good results [Zhu et al., 2019]. However, it is sensitive to initialization and prone to fail [Zhao et al., 2020]. The choice of optimizer is therefore important, and convergence can be very slow [Geiping et al., 2020]. Perhaps most importantly, (1) gives
little insight into what information in the gradients is being exploited to recover the data. Analysis in [Zhu et al., 2019] is limited to empirical insights, and fundamental open questions remain: What are sufficient conditions for \(\arg \min_{x',y'} \sum_{i=1}^{d} \| \nabla W_i - \nabla W'_i \|_2^2 \) to have a unique minimizer? We address this question in Section 4 and subsequently validate our findings empirically.

3 Closed-Form Gradient Attacks on Privacy

The first attempt of closed-form GAP was proposed in a research of privacy-preserving deep learning by [Phong et al., 2018].

Theorem 1 (Phong et al. [2018]). Assume a layer of a fully connected network with a bias term, expressed as:

\[
Wx + b = z, \tag{2}
\]

where \(W, b \) denote the weight matrix and bias vector, and \(x, z \) denote the input vector and output vector of this layer. If the loss function \(\ell \) of the network can be expressed as:

\[
\ell = \ell(f(x), y) \tag{5}
\]

where \(f \) indicates a nested function of \(x \) including activation function and all subsequent layers, \(y \) is the ground-truth label. Then \(x \) can be derived from gradients w.r.t. \(W \) and gradients w.r.t. \(b \), i.e.:

\[
\frac{\partial \ell}{\partial W} = \frac{\partial \ell}{\partial z} x^\top, \quad \frac{\partial \ell}{\partial b} = \frac{\partial \ell}{\partial z} \tag{3}
\]

where \(j \) denotes the \(j \)-th row, note that in fact from each row we can compute a copy of \(x^\top \).

When this layer is the first layer of a network, it is possible to reconstruct the data, i.e. \(x \), using this approach. In the case of noisy gradients, we can make use of the redundancy in estimating \(x \) by averaging over noisy estimates:

\[
\hat{x}^\top = \sum_j \frac{\partial \ell}{\partial W_j} / \frac{\partial \ell}{\partial b_j}.
\]

However, simply removing bias term can disable this attack. Besides, this approach does not work on convolutional neural networks as there is a dimension mismatch in (3). Both of these two problems have been resolved in our approach.

3.1 Recursive gradient attack on privacy (R-GAP)

For simplicity we derive the R-GAP in terms of binary classification with a single image as input. In this setting we can generally describe the network and loss function as:

\[
\mu = y w_d \sigma_{d-1} \left(W_{d-1} \sigma_{d-2} \left(W_{d-2} \phi(x) \right) \right), \quad \ell = \log(1 + e^{-\mu}) \tag{4}
\]

where \(y \in \{-1, 1\} \), \(d \) denotes the \(d \)-th layer, \(\phi \) represents all layers previous to \(d - 2 \), and \(\sigma \) denotes the activation function. Note that, although our notation omits the bias term in our approach, with an augmented matrix and augmented vector it is able to represent both of the linear map and the translation, e.g. [2], using matrix multiplication as shown in [4]. So our formulation also includes the approach proposed by [Phong et al., 2018]. Moreover, if the \(i \)-th layer is a convolutional layer, then \(W_i \) is an extended circulant matrix representing the convolutional kernel [Golub and Van Loan, 1996], and data \(x \) as well as input of each layer are represented by a flattened vector in [4].

3.1.1 Recovering data from gradients

From (4) and (5) we can derive following gradients:

\[
\frac{\partial \ell}{\partial w_d} = y \frac{\partial \ell}{\partial \mu} f^\top_{d-1} \tag{6}
\]

\[
\frac{\partial \ell}{\partial W_{d-1}} = \left(\left(W_d \left(y \frac{\partial \ell}{\partial \mu} \right) \circ \sigma'_{d-1} \right) \right) f^\top_{d-2} \tag{7}
\]

\[
\frac{\partial \ell}{\partial W_{d-2}} = \left(\left(W^\top_{d-1} \left(W_d \left(y \frac{\partial \ell}{\partial \mu} \right) \circ \sigma'_{d-1} \right) \right) \circ \sigma'_{d-2} \right) \phi^\top \tag{8}
\]
Figure 1: In consideration of logistic loss, exponential loss and hinge loss, $\frac{\partial \ell}{\partial \mu}$ is not monotonic w.r.t. μ. It is equal to 0 at $\mu = 0$, after that it either approximates 0^-, or equals to 0 after decreasing to $\mu = 1$.

where σ' denotes the derivative of σ, for more details refer to Appendix E. The first observation of these gradients is that:

$$ \frac{\partial \ell}{\partial w_d} \cdot w_d = \frac{\partial \ell}{\partial \mu}. $$

(9)

Additionally, if $\sigma_1, ..., \sigma_{d-1}$ are ReLU or LeakyRelu, the dot product of the gradients and weights of each layer will be the same, i.e.:

$$ \frac{\partial \ell}{\partial w_d} \cdot w_d = \frac{\partial \ell}{\partial W_{d-1}} \cdot W_{d-1} = \cdots = \frac{\partial \ell}{\partial W_1} = \frac{\partial \ell}{\partial \mu}. $$

(10)

Since gradients and weights of each layer are known, we can obtain $\frac{\partial \ell}{\partial \mu}$. If loss function ℓ is logistic loss ℓ, we obtain:

$$ \frac{\partial \ell}{\partial \mu} = \frac{-\mu}{1 + e^\mu}. $$

(11)

As we can see, $\frac{\partial \ell}{\partial \mu}$ is non-monotonic, which means knowing $\frac{\partial \ell}{\partial \mu}$ does not always allow us to uniquely recover μ. Figure 1 illustrates $\frac{\partial \ell}{\partial \mu}$ of logistic, exponential, and hinge losses, showing when we can uniquely recover μ. The non-uniqueness of μ inspires us to find a sort of data that can trigger exactly the same gradients as the real data, which we name twin data, denoted by \tilde{x}, for more information about the twin data refer to Appendix B. The existence of twin data is important because, that means the gradients will not allow us to uniquely recover data. The objective function of DLG could have more than one global minimum.

The second observation on Equations 6-8 is that the gradients of each layer have a repeated format:

$$ \frac{\partial \ell}{\partial W_{d-1}} = \mathbf{k}_{d-1}^T \mathbf{f}_{d-1}; \quad \mathbf{k}_{d-1} := y \frac{\partial \ell}{\partial \mu}. $$

(12)

$$ \frac{\partial \ell}{\partial W_{d-2}} = \mathbf{k}_{d-2} \mathbf{f}_{d-2}; \quad \mathbf{k}_{d-2} := (\mathbf{W}_{d-1}^T \mathbf{k}_d) \odot \sigma'_{d-1}. $$

(13)

$$ \frac{\partial \ell}{\partial W_{d-2}} = \mathbf{k}_{d-2} \mathbf{f}_{d-2}; \quad \mathbf{k}_{d-2} := (\mathbf{W}_{d-1}^T \mathbf{k}_{d-1}) \odot \sigma'_{d-2}. $$

(14)

In (12), the value of y can be derived from the sign of the gradients at this layer if the activation function of previous layer is ReLU or Sigmoid, i.e. $f_{d-1} > 0$. For multi-class classification, y can always be analytically derived as proved by [Zhao et al. 2020]. From Equations 12-14 we can see that gradients are actually linear constraints on the output of the previous layer, also the input of the current layer. We name these gradient constraints, which can be generally described as:

$$ \mathbf{K}_i \mathbf{x}_i = \frac{\partial \ell}{\partial W_i} $$

(15)

where i denotes i-th layer, \mathbf{K}_i is a recursive coefficient matrix containing all gradient constraints at the i-th layer, which could also be a group of coefficient matrices. Note that the recursive coefficient matrix \mathbf{K}_i and coefficient vector \mathbf{k}_i can be equally transformed.
3.1.2 Implementation of R-GAP

In order to reconstruct the input from gradients at each layer, the coefficient vector k solely relies on the reconstruction of the subsequent layer. For example in (13), k_{d-1} consists of w_d, k_d, σ_{d-1}, where w_d is known and k_d comes from previous layer. σ_{d-1}^\prime can be derived from f_{d-1}, which can be reconstructed through (12). Since k_d can be derived as described above, we can recursively derive k_{d-1} if the rank of the coefficient matrix is equal to the number of entries of the input, i.e. $\text{rank}(K_i) = |x_i|: i = 1,\ldots,d$. We are therefore able to reconstruct the input at each layer and do this recursively back to the input of the first layer, i.e. x_1 or x for short.

The number of gradient constraints is the same as the number of weights, i.e. $\text{rows}(K_i) = |W_i|: i = 1,\ldots,d$, so in the case of a fully connected layer $\text{rank}(K_i) = |x_i|$. However in the case of a convolutional layer the matrix could possibly be rank-deficient to resolve x. Fortunately, from the view of recursive reconstruction and assuming we know the input of the subsequent layer, i.e. the output of the current layer, there is a new group of linear constraints which we name weight constraints:

$$W_i x_i = z_i; \quad z_i \leftarrow f_i$$

(16)

For a convolution layer, the W_i we use in this paper is the corresponding circulant matrix representing the convolutional kernel [Golub and Van Loan 1996], so we can express the convolution in the form of (16). In order to derive z_i from f_i, the activation function σ_i should be monotonic. Commonly used activation functions satisfy this requirement. Note that for the ReLU activation function, a 0 value in f_i will remove a constraint in W_i. Otherwise, the number of weights constraints is equal to the number of entries in output, i.e. $\text{rows}(W_i) = |z_i|: i = 1,\ldots,d$. In CNNs the number of weight constraints $|z_i|$ is usually much larger than the number of gradient constraints $|W_i|$, therefore weights constraints compensate for the lack of gradient constraints in input reconstruction. Now that we can see that gradients and weights represent constraints in reconstruction, in the sequel we will use constraints interchangeably with gradients and weights. It is worth noting that, due to the transformation from a CNN to a FCN using the circulant matrix, a CNN has been regarded equivalent to a FCN in the parallel work of Fan et al. [2020]. However, we would like to point out that in consideration of the gradients w.r.t. the circulant matrix, what we obtain from a CNN are the aggregated gradients. Therefore, the number of valid gradient constraints in a CNN are much smaller than its corresponding FCN. Therefore, the conclusion of a rank analysis derived from a FCN cannot be applied to a CNN.

Moreover, padding in the i-th convolutional layer increases $|x_i|$, but also involves the same number of constraints. In other words, it does not effect the reconstruction process, so we omit this detail in the subsequent discussion. However, we have incorporated the corresponding constraints in our approach. Based on gradient constraints and weight constraints, we break the GAP down to a recursive process of solving systems of linear equations, which we name R-GAP. The approach is detailed in Algorithm 1.

Algorithm 1: Recursive gradient attack on Privacy (R-GAP)

Data: i: i-th layer; W_i: weights; ∇W_i: gradients;

Result: x_1

for $i \leftarrow d$ to 1 do

if $i = d$ then

$$\frac{\partial y}{\partial \mu} = \nabla W_i \cdot W_i;$$

$$\mu \leftarrow \frac{\partial y}{\partial \mu}; k_i := y \frac{\partial y}{\partial \mu}; z_i := \mu;$$

else

/* Derive σ_i^\prime and z_i from f_i. Note that $x_{i+1} = f_i$. */

$$\sigma_i^\prime \leftarrow x_{i+1}; z_i \leftarrow x_{i+1};$$

$$k_i := (W_{i+1}^\top k_{i+1}) \odot \sigma_i^\prime;$$

end

$K_i \leftarrow k_i; \nabla w_i := \text{flatten}(\nabla W_i);$

$A_i := \begin{bmatrix} W_i \\ K_i \end{bmatrix}; b_i := \begin{bmatrix} z_i \\ \nabla w_i \end{bmatrix};$

$x_i := A_i^\dagger b_i \quad // A_i^\dagger: \text{Moore-Penrose pseudoinverse}$

end
4 Rank analysis

For optimization-based gradient attacks such as DLG, it is hard to estimate whether it will converge to a unique solution given a network’s architecture other than performing an empirical test. An intuitive assumption would be that the more parameters in the model, the greater the chance of unique recovery, since there will be more terms in the objective function constraining the solution. We provide here an analytic approach, with which it is easy to estimate the feasibility of performing the recursive gradient attack, which in turn is a good proxy to estimate when DLG converges to a good solution (see Section 5). Since R-GAP solves systems of linear equations, it is infeasible when the number of unknown parameters is less than the number of constraints, i.e. \(|x_i| - |W_i| - |z_i| < 0 \). More precisely, we require that the rank of \(A \), which consists of \(W_i \) and \(K \), as shown in Algorithm 1, is equal to the number of input entries \(|x_i| \). We find that the rank analysis of R-GAP can be in turn applied to O-GAP. In principle, the optimization-based attack intrinsically encompasses a recursive process. However, in order to fully perform a rank analysis on O-GAP we need to incorporate a third type of constraint. Using only gradient constraints and weight constraints to estimate whether a layer is rank-deficient, i.e. through \(|x_i| - |W_i| - |z_i| > 0 \), is only sufficient for the first layer. The intermediate layers can inherit weight constraints from a previous overdetermined layer, which we name virtual constraints, denoted by \(V \). For example, the weight constraints of a previous layer can be expressed as:

\[
Wx = z: \begin{bmatrix} W_+ \\ W_- \end{bmatrix} x = \begin{bmatrix} z_+ \\ z_- \end{bmatrix}.
\]

Assume the upper part of the weights \(W_+ \) is already full-rank, therefore:

\[
x = W_+^{-1} z_+; \quad z_- = W_- x; \quad I_z = z_-. \tag{17}
\]

We can then derive the following constraints over \(z \):

\[
(W_- W_+^{-1} z_+ - I_z)z = 0 \tag{19}
\]

If the activation function is the identity function, i.e. \(z_i = x_i \), then the virtual constraints that the \(i \)-th layer has inherited from the weight constraints of \(i - 1 \) layer are:

\[
\forall x_i = 0: \quad V = W_- W_+^{-1} z_+ - I_z. \tag{20}
\]

Therefore, if an intermediate layer is rank-deficient (e.g. a bottle-neck layer), GAP still has a chance to fully recover the data. Note that in terms of a non-linear activation function, \(V \) also becomes a set of non-linear constraints. For the ReLU activation function, a 0 value in the output will remove a constraint. As such, extensive bookkeeping would be required to incorporate virtual constraints into R-GAP. However, optimization-based GAP inherently involves virtual constraints, as it decreases the difference in gradients for all layers at the same time. Next, we will informally use \(V \) to denote the number of virtual constraints at the \(i \)-th layer, which can be approximated by \(\sum_{n=1}^{i} \max(|x_n| - |z_n|, 0) - \max(|x_n| - |z_n| - |W_n|, 0) \) (in practice, the real number of such constraints is dependent on the data, current weights, and choice of activation function).

These three types of constraints, gradient, weight and virtual constraints, are effective for predicting the success of reconstruction of optimization and closed-form attacks. To conclude, we propose that \(|x_i| - |W_i| - |z_i| - |V_i| \) is a good index to estimate the feasibility of fully recovering data using a GAP at the \(i \)-th layer. We denote this value rank analysis index (RA-i). Particularly, \(|x_i| - |W_i| - |z_i| - |V_i| < 0 \) implies the ability to fully recover the input, while \(|x_i| - |W_i| - |z_i| - |V_i| > 0 \) indicates it is not possible to perform complete reconstruction, and the larger this index is, the poorer the quality of reconstruction will be. The quality of reconstruction of data is well estimated by the maximal rank analysis index of all layers, as shown in Figure 2 while the layers close to the data usually have smaller rank analysis index due to fewer virtual constraints.

It is worth noticing that from the perspective of rank analysis, a large network could be infeasible to attack if the constraints gather at the layers close to output, while the layer close to data is rank-deficient. And a small network could be feasible to attack if every layer is not rank-deficient. In other words, a large network is not necessarily prone to privacy leakage, as shown in Figure 2. This observation is not obvious from simply specifying the DLG optimization problem \([1]\).

5 Results

Our novel approach R-GAP successfully extends the analytic gradient attack \([\text{Phong et al. 2018}]\) from attacking a FCN with bias terms to attacking FCNs and CNN\(^6\) with or without bias terms. To test its performance, we use a CNN\(^6\)}
Table 1: Comparison of the performance of R-GAP, DLG and H-GAP. MSE has been used to measure the quality of the reconstruction.

Architecture	Image	Image	Image	Image
CNN6-d**	4x4 conv1, 4	4x4 conv1, 3	4x4 conv1, 3	5x5 conv1, 4
3364x1 fc	2523x1 fc	2523x500 fc	500x1 fc	2500x1 fc

Figure 2: Estimating the privacy leakage of network through rank analysis. The critical layer for reconstruction has been red colored. First three columns show that even though bigger network has much more parameters, which means we can collect more gradients to reconstruct the data, but if the layer close to data is rank-deficient, we are not able to fully recover the data. Despite that in the objective function of DLG, distance between all gradients will be reduced at the same time, redundant constraints in subsequent layer certainly cannot compensate the lack of constraints in previous layer. The fourth column shows that if rank-deficiency happens at the intermediate layer, redundant weight constraints in previous layer, i.e. virtual constraints, is able to compensate the deficiency at the intermediate layer. If a layer is rank-deficient after taking virtual constraints into account, it is again not possible to fully recover the data as shown in the fifth column. However, as the rank analysis index of last column is smaller than the one of the second and third column, the reconstruction at the fifth column has a better quality. This figure demonstrates that rank analysis can correctly estimate the feasibility of performing DLG.

network as shown in Fig. 3, which is full-rank considering gradient constraints and weight constraints. Additionally, we report results using a CNN6-d network, which is rank-deficient without consideration of virtual constraints, in order to fairly compare the performance of DLG and R-GAP. CNN6-d has a CNN6 backbone and just decreases the output channel of the second convolutional layer to 20. The activation function is a LeakyReLU except the last layer, which is a sigmoid. We have randomly initialized the network, as DLG is prone to fail if the network is at a late stage of training [Geiping et al. 2020]. The experimental results show that, due to an analytic one-shot process, R-GAP can recover the data more accurately and efficiently, while DLG is much more computationally costly, and recovers the data with artifacts, as shown in Fig. 3. The statistical results in Table 1 also show that the reconstruction of R-GAP has a much lower MSE than DLG on the CNN6 network. However, as R-GAP only considers gradient constraints and weight constraints in the current implementation, it does not work well on the CNN6-d network. Nonetheless, we find that it is easy to assess the quality of reconstruction of gradient attack without knowing the original image. As the better reconstruction has less noise, we use a 3×3 average pooling to smooth the image, and return the reconstruction with less MSE to its smoothed image. This hybrid approach which we name H-GAP combines the strengths of R-GAP and DLG, and obtains the best results as shown in Table 1.

Architecture	CNN6*	CNN6-d*	CNN6**	CNN6-d**
R-GAP	0.010 ± 0.017	1.39 ± 0.75	1.9 x 10^-4 ± 7.0 x 10^-4	9.0 x 10^-5 ± 9.3 x 10^-3
DLG	0.050 ± 1.1	0.053 ± 0.013	4.2 x 10^-4 ± 4.8 x 10^-4	1.2 x 10^-3 ± 1.5 x 10^-3
R-GAP	6.9 x 10^-3 ± 7.9 x 10^-3	0.053 ± 0.013	4.1 x 10^-4 ± 1.9 x 10^-4	1.2 x 10^-3 ± 1.5 x 10^-3

Table 1: Comparison of the performance of R-GAP, DLG and H-GAP. MSE has been used to measure the quality of the reconstruction.

Due to space constraints, we have included the analysis of twin data, the effect of adding noise to the gradients, and the performance of R-GAP in the batch setting in the Appendices.
6 Discussion and conclusions

R-GAP makes the first step towards a general analytic gradient attack and provides a framework to answer questions about the functioning of optimization-based attacks. It also opens new questions, such as how to analytically reconstruct a minibatch of images, especially considering non-uniqueness due to permutation of the image indices. Further analysis is needed to extend R-GAP to other network topologies, such as skip connections. Nonetheless, we believe that by studying these questions, we can gain deeper insights into gradient attacks and privacy secure federated learning.

In this paper, we propose a novel approach R-GAP, which has achieved an analytic gradient attack for CNNs for the first time. Additionally, we propose a hybrid approach, which has combined the strengths of R-GAP and DLG, and is robust across different network architectures and optimization errors. Through analysing the recursive reconstruction process, we propose a novel rank analysis to estimate the feasibility of performing gradient based privacy attacks given a network architecture. Our rank analysis can be applied to the analysis of both closed-form and optimization-based attacks such as DLG. Furthermore, we have analyzed the existence of twin data using R-GAP, which can explain at least in part why DLG is sensitive to initialization and what type of initialization is optimal. In summary, our work proposes a novel type of gradient attack and advances the understanding of optimization-based gradient attacks.

Acknowledgements

We acknowledge funding from the Flemish Government under the Onderzoeksprogramma Artifici¨ele Intelligentie (AI) Vlaanderen programme.

References

Peter L Bartlett, Michael I Jordan, and Jon D McAuliffe. Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101(473):138–156, 2006.

Emiliano De Cristofaro. An overview of privacy in machine learning. arXiv:2005.08679, 2020.

Lixin Fan, Kam Woh Ng, Ce Ju, Tianyu Zhang, Chang Liu, Chee Seng Chan, and Qiang Yang. Rethinking privacy preserving deep learning: How to evaluate and thwart privacy attacks. arXiv:2006.11601, 2020.

Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients – how easy is it to break privacy in federated learning? arXiv:2003.14053, 2020.

Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University Press, 1996.

Chaoyang He, Songze Li, Jinhyun So, Mi Zhang, Hongyi Wang, Xiaoyang Wang, Praneeth Vepakomma, Abhishek Singh, Hang Qiu, Li Shen, et al. Fedml: A research library and benchmark for federated machine learning. arXiv preprint arXiv:2007.13518, 2020.

Zecheng He, Tianwei Zhang, and Ruby B. Lee. Model inversion attacks against collaborative inference. In Proceedings of the 35th Annual Computer Security Applications Conference, ACSAC ’19, page 148–162, 2019.

Arthur Jochems, Timo M. Deist, Johan van Soest, Michael Eble, Paul Bulens, Philippe Coucke, Wim Dries, Philippe Lambin, and Andre Dekker. Distributed learning: Developing a predictive model based on data from multiple
hospitals without data leaving the hospital – a real life proof of concept. *Radiotherapy and Oncology*, 121(3):459 – 467, 2016.

Arthur Jochems, Timo Deist, Issam El Naqa, Marc Kessler, Chuck Mayo, Jackson Reeves, Shruti Jolly, Martha Matthews, Randall Ten Haken, Johan Soest, Cary Oberije, Corinne Faivre-Finn, Gareth Price, Dirk Ruysscher, Philippe Lambin, and André Dekker. Developing and validating a survival prediction model for nsclc patients through distributed learning across three countries. *International Journal of Radiation Oncology*Biology*Physics*, 99, 04 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and Yann LeCun, editors, *3rd International Conference on Learning Representations*, 2015.

Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtarik, Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strategies for improving communication efficiency. In *NIPS Workshop on Private Multi-Party Machine Learning*, 2016.

Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimization. *Math. Program.*, 45(1–3):503–528, August 1989.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-efficient learning of deep networks from decentralized data. In Aarti Singh and Jerry Zhu, editors, *Proceedings of the 20th International Conference on Artificial Intelligence and Statistics*, volume 54 of *Proceedings of Machine Learning Research*, pages 1273–1282, 2017.

L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai. Privacy-preserving deep learning via additively homomorphic encryption. *IEEE Transactions on Information Forensics and Security*, 13(5):1333–1345, 2018.

Maria Rigaki and Sebastian Garcia. A survey of privacy attacks in machine learning. *CoRR*, abs/2007.07646, 2020.

Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi. Beyond inferring class representatives: User-level privacy leakage from federated learning. In *IEEE INFOCOM 2019 - IEEE Conference on Computer Communications*, pages 2512–2520, 2019.

Wenqi Wei, Ling Liu, Margaret Loper, Ka-Ho Chow, Mehmet Emre Gursoy, Stacey Truex, and Yanzhao Wu. A framework for evaluating gradient leakage attacks in federated learning. arXiv:2004.10397, 2020.

Ziqi Yang, Jiyi Zhang, Ee-Chien Chang, and Zhenkai Liang. Neural network inversion in adversarial setting via background knowledge alignment. In *Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security*, page 225–240, 2019.

Yuheng Zhang, Ruoxi Jia, Hengzhi Pei, Wenxiao Wang, Bo Li, and Dawn Song. The secret revealer: Generative model-inversion attacks against deep neural networks. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 250–258, 2020.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, editors, *Advances in Neural Information Processing Systems 32*, pages 14774–14784, 2019.

A Quantitative results of rank analysis

A quantitative analysis of the predictive performance of the rank analysis index for the mean squared error of reconstruction is shown in Table 2.

B Twin data

As we know $\frac{\partial \ell}{\partial \mu}$ is non-monotonic as shown in Figure 1, which means knowing $\frac{\partial \ell}{\partial \mu}$ does not always allow us to uniquely recover μ. It is relatively straightforward to show that for monotonic convex losses [Bartlett et al., 2006], $\frac{\partial \ell}{\partial \mu}$ is invertible for $\mu < 0$, $\frac{\partial \ell}{\partial \mu} \leq 0$ for $\mu \geq 0$, and $\lim_{\mu \to \infty} \frac{\partial \ell}{\partial \mu} = 0$. Due to the non-uniqueness of μ w.r.t to $\frac{\partial \ell}{\partial \mu}$, we have:

$$\exists x, \tilde{x} \text{ s.t. } \mu \neq \tilde{\mu}; \quad \frac{\partial \ell}{\partial \mu} = \frac{\partial \ell}{\partial \tilde{\mu}}$$

(21)
Table 2: Mean square error of the reconstruction over test set of CIFAR10. The corresponding network architecture has been shown in Fig. 2 in the same order. Rank analysis index (RA-i) clearly predicts the reconstruction error. We can also regard RA-i as the security level of a network. A negative value indicates that the gradients of the network are able to fully expose the data, i.e. insecure, while a positive value indicates that completely recover the data from gradients is not possible. On top of that, higher RA-i indicate higher reconstruction error, therefore the network is more secure. According to our experiment, if the order of magnitude of MSE is equal to or less than 10^{-4}, we could barely visually distinguish the recovered and real data, as shown in the fourth column of Fig. 2. Note that, as the network gets deeper, DLG will become vulnerable [Geiping et al., 2020]. R-GAP will also be effected by numerical error. Besides that, as we will show later, DLG is sensitive to the initialization of dummy data, while R-GAP also needs to confirm the μ if it is not unique. Therefore, RA-i provides a reasonable upper bound of the privacy risk rather than quality prediction of one reconstruction.

where x is the real data.

Taking the common setting that activation functions are ReLU or LeakyReLU, we can derive from Eq. 10 that:

$$\frac{\partial \ell}{\partial W_i} \cdot W_i = \frac{\partial \ell}{\partial \tilde{W}_i} \cdot \tilde{W}_i; \quad i = 1, \ldots, d$$

(22)

if there is a \tilde{W}_i is equal to W_i, while the corresponding \tilde{x} is not same as x since $\mu \neq \tilde{\mu}$, we can find a data point that differs from the true data but leads to the same gradients. We name such data twin data, denoted by \tilde{x}. As we know the gradients and μ of the twin data \tilde{x}, by just giving them to R-GAP, we are able to easily find out the twin data, the results has been shown in in Fig. 4. Since the twin data and the real data trigger the same gradients, by decreasing the distance of gradients as Eq. 1, DLG will converge to either of these data. As shown in Fig. 4, we initialize DLG with a data close to the twin data \tilde{x}, DLG converges to the twin data. In the work of [He et al., 2020], the authors argue that using an image from the same class would be the optimal initialization and empirically prove that. We want to point out that twin data is one important factor why DLG is so sensitive to the initialization and prone to fail with random initialization of dummy data particularly after some training steps. Since DLG converges either to the twin data or the real data depends on the distance between these two data and the initialization, an image of the same class is usually close to the real data, therefore, DLG works better with that. While, in terms of μ or the prediction of the network, a random initialization is close to the twin data, so DLG converges to the twin data. However, the twin data has extremely small value, so any noise that comes up with optimization process will become dominant in the last
result as shown in Fig. 4. It is worth noticing that the twin data is actually proportional to the real data which can be straightforward derived from Eq. 6 to Eq. 8.

C Adding noise to the gradients

The effect on reconstruction of adding noise to the gradients is illustrated in Figure 5.

![Image](image.png)

Figure 5: In terms of least square as what we have used for R-GAP, overall increasing the width of the network will involve more constraints and hence enhance the denoising ability of the gradient attack. For O-GAP this also means a more stable optimization process and less noise in the reconstructed image, which has been empirically proven by Geiping et al. [2020]. Increasing the width of every layer will definitely decrease the RA-i, so the quality of reconstruction has been improved. Whereas, increasing the width of some layers may not change RA-i of a network, since the RA-i of a network is equal to the largest RA-i among all the layers, i.e., the reconstruction will not get better. However, it is widely believed that more parameter means less secure.

D R-GAP in the batch setting returns a linear combination of training images

It can be verified straightforwardly that R-GAP in the batch setting will return a linear combination of the training data. This is due to the fact that in the batch setting the gradients are simply accumulated. The weighting coefficients of the data in this linear mixture are dependent on the various values of \(\mu \) for the different training data (see Figure 1). Figures 6 and 7 illustrate the results vs. batch DLG [Zhu et al., 2019] on examples from MNIST.
Figure 6: Reconstruction over a FCN3 network with batch-size equal to 2. For FCN network, R-GAP is able to reconstruct sort of a linear combination of the input images. DLG will also works perfectly on such architecture.

Figure 7: Reconstruction over a FCN3 network with batch-size equal to 5. Sometimes DLG will converge to a image similar to the one reconstructed by the R-GAP.
E Deriving gradients

\[
\mu = y w_d \sigma_{d-1} \left(W_{d-1} \sigma_{d-2} (W_{d-2} \phi (x)) \right) = f_{d-1}(x)
\] \hspace{1cm} (23)

\[
\ell = \log(1 + e^{-\mu})
\] \hspace{1cm} (24)

\[
d\ell = -\mu \frac{d\mu}{1 + e^{\mu}}
\] \hspace{1cm} (25)

\[
d\ell = \frac{\partial \ell}{\partial \mu} y f_{d-1}^T \cdot d \sigma_{d-1} + (w_d^T \left(\frac{\partial \ell}{\partial \mu} \right)) \cdot d f_{d-1}(x)
\] \hspace{1cm} (26)

\[
d\ell = \frac{\partial \ell}{\partial \mu} y f_{d-1}^T \cdot d \sigma_{d-1} + (w_d^T \left(\frac{\partial \ell}{\partial \mu} \right)) \cdot d f_{d-1}(x)
\] \hspace{1cm} (27)

\[
d\ell = \frac{\partial \ell}{\partial \mu} y f_{d-1}^T \cdot d \sigma_{d-1} + (w_d^T \left(\frac{\partial \ell}{\partial \mu} \right)) \cdot d f_{d-1}(x)
\] \hspace{1cm} (28)

\[
\frac{\partial \ell}{\partial W_{d-1}} = \left(\left(w_d^T \left(\frac{\partial \ell}{\partial \mu} \right) \right) \cdot \sigma_{d-1} \right) f_{d-2}^T
\] \hspace{1cm} (29)

\[
d\ell = \frac{\partial \ell}{\partial \mu} y f_{d-1}^T \cdot d \sigma_{d-1} + (w_d^T \left(\frac{\partial \ell}{\partial \mu} \right)) \cdot d f_{d-1}(x)
\] \hspace{1cm} (30)

\[
d\ell = \frac{\partial \ell}{\partial \mu} y f_{d-1}^T \cdot d \sigma_{d-1} + (w_d^T \left(\frac{\partial \ell}{\partial \mu} \right)) \cdot d f_{d-1}(x)
\] \hspace{1cm} (31)

\[
d\ell = \frac{\partial \ell}{\partial \mu} y f_{d-1}^T \cdot d \sigma_{d-1} + (w_d^T \left(\frac{\partial \ell}{\partial \mu} \right)) \cdot d f_{d-1}(x)
\] \hspace{1cm} (32)

\[
\frac{\partial \ell}{\partial W_{d-1}} = \left(\left(w_d^T \left(\frac{\partial \ell}{\partial \mu} \right) \right) \cdot \sigma_{d-1} \right) f_{d-2}^T
\] \hspace{1cm} (33)

\[
\frac{\partial \ell}{\partial \mu} y f_{d-1}^T \cdot d \sigma_{d-1} + (w_d^T \left(\frac{\partial \ell}{\partial \mu} \right)) \cdot d f_{d-1}(x)
\] \hspace{1cm} (34)

...