Characterization of Branched Covers with Simplicial Branch Sets

Eden Prywes
Princeton University

Differential Geometry & Geometric Analysis Seminar
May 27th, 2020

Joint work with Rami Luisto
Definition

A branded cover is a continuous map $f: \Omega \rightarrow \mathbb{R}^n$, where Ω is a domain in \mathbb{R}^n, that is discrete and open.
A \textit{branched cover} is a continuous map $f : \Omega \to \mathbb{R}^n$, where Ω is a domain in \mathbb{R}^n, that is discrete and open.

At most points f is a local homeomorphism. The \textit{branch set} of f, denoted B_f, is the set of points where f fails to be a local homeomorphism.
Definition

A branched cover is a continuous map $f: \Omega \rightarrow \mathbb{R}^n$, where Ω is a domain in \mathbb{R}^n, that is discrete and open.

- At most points f is a local homeomorphism. The branch set of f, denoted B_f, is the set of points where f fails to be a local homeomorphism.
- Branched covers are topological generalization of quasiregular maps.
In two dimensions the typical example of a branched cover is a rational map $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$.

- The branch set is the finite set of critical points of f.
- Near the branch points, f behaves like the map z^d, where d is the degree of the map.
In two dimensions the typical example of a branched cover is a rational map $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$.

- The branch set is the finite set of critical points of f.
- Near the branch points, f behaves like the map z^d, where d is the degree of the map.
- Topologically, this map is equivalent to a winding map: $(r, \theta) \mapsto (r, d\theta)$.
Define \(f : \mathbb{C}/\mathbb{Z}^2 \to \hat{\mathbb{C}} \) as:

\[
\begin{array}{|c|c|}
\hline
A & B \\
\hline
B & A \\
\hline
\end{array}
\]

This is topologically the same as the Weierstrass \(p \)-function. Locally near the branch point the maps behaves like a winding map. Can extend this to a PL-map \(F : \mathbb{R}^2 \to S^2 \times \cdots \times S^2 \).
Define $f : \mathbb{C}/\mathbb{Z}^2 \to \hat{\mathbb{C}}$ as:

- This is topologically the same as the Weierstrass p-function.
- Locally near the branch point the maps behaves like a winding map.
- Can extend this to a PL-map $F : \mathbb{R}^{2n} \to S^2 \times \cdots \times S^2$.
Up to homeomorphism, rational maps characterize every branched cover.

Theorem (Stoïlow)

Let \(f : S^2 \to \hat{\mathbb{C}} \) be a branched cover. Then there exists a homeomorphism \(h : \hat{\mathbb{C}} \to S^2 \) so that \(f \circ h \) is a rational map.
Up to homeomorphism, rational maps characterize every branched cover.

Theorem (Stoïlow)

Let \(f : S^2 \to \mathbb{C} \) be a branched cover. Then there exists a homeomorphism \(h : \mathbb{C} \to S^2 \) so that \(f \circ h \) is a rational map.

Corollary

Every branched cover from \(S^2 \to S^2 \) is equivalent up to a homeomorphism to a piecewise linear (PL) map.
A map \(f : \Omega \rightarrow \mathbb{R}^n \) is \(K \)-quasiregular if \(f \in W^{1,n}_{\text{loc}}(\Omega) \) and for almost every \(x \in \Omega \),

\[
\|Df\|^n \leq KJ_f,
\]

where \(Df \) is the derivative of \(f \) and \(J_f = \det(Df) \).
A map \(f : \Omega \to \mathbb{R}^n \) is \(K \)-quasiregular if \(f \in W^{1,n}_{\text{loc}}(\Omega) \) and for almost every \(x \in \Omega \),

\[
\|Df\|^n \leq KJ_f,
\]

where \(Df \) is the derivative of \(f \) and \(J_f = \det(Df) \).

- By a theorem due to Reshetnyak, quasiregular maps are branched covers.
A map $f : \Omega \rightarrow \mathbb{R}^n$ is K-quasiregular if $f \in W^{1,n}_{\text{loc}}(\Omega)$ and for almost every $x \in \Omega$,

$$\|Df\|^n \leq KJ_f,$$

where Df is the derivative of f and $J_f = \det(Df)$.

- By a theorem due to Reshetnyak, quasiregular maps are branched covers.
- The converse is false in general and it is difficult to construct quasiregular maps.
- PL maps are typically quasiregular.
An \(n \)-dimensional manifold \(M \) is \textit{Quasiregularly Elliptic} if there exists a quasiregular map \(f : \mathbb{R}^n \to M \).

In dimension 2, \(M \) is homeomorphic to \(\mathbb{C}, \mathbb{C} \hat{\mathbb{C}}, S^1 \times \mathbb{R} \) or \(S^1 \times S^1 \).

In dimension 3, closed quasiregularly elliptic manifolds are quotients of either \(S^3, S^1 \times S^1 \times S^1 \) or \(S^2 \times S^1 \).
An n-dimensional manifold M is **Quasiregularly Elliptic** if there exists a quasiregular map $f : \mathbb{R}^n \to M$.

In dimension 2, M is homeomorphic to $\mathbb{C}, \mathbb{C}, S^1 \times \mathbb{R}$ or $S^1 \times S^1$.

In dimension 3, closed quasiregularly elliptic manifolds are quotients of either $S^3, S^1 \times S^1 \times S^1$ or $S^2 \times S^1$.

Theorem (P., ’19)

If M is a closed, orientable Riemannian manifold of dimension d that admits a quasiregular map from \mathbb{R}^d, then $\dim H^\ell(M) \leq \binom{d}{\ell}$.

If $\ell = d/2$, then $b^+_{d/2}(M), b^-_{d/2}(M) \leq \frac{1}{2}\binom{d}{d/2}$.

Eden Prywes

Branched Covers
The geometry of the branch set can give information on the behavior of the map.

Theorem (Church and Hemmingsen, '60)

Let $f : \Omega \to \mathbb{R}^n$ be a branched cover, where Ω is a domain in \mathbb{R}^n. If $f(B_f)$ can be embedded into a codimension 2 subspace, then f is topologically equivalent to a winding map.
The geometry of the branch set can give information on the behavior of the map.

Theorem (Church and Hemmingsen, '60)

Let $f : \Omega \to \mathbb{R}^n$ be a branched cover, where Ω is a domain in \mathbb{R}^n. If $f(B_f)$ can be embedded into a codimension 2 subspace, then f is topologically equivalent to a winding map.

- The k-winding map for $k \in \mathbb{N}$ is $w_k(r, \theta, x_2, \ldots, x_n) := (r, k\theta, x_2, \ldots, x_n)$.
- By a theorem due to Černavskiǐ and Väisälä, B_f and $f(B_f)$ have topological dimension less than or equal to $n - 2$.
- In dimension 2 this hypothesis is always satisfied, but it is not always satisfied in higher dimensions.
Counterexample to Church and Hemmingsen

Let \(P \) be the Poincaré homology sphere.
Let P be the Poincaré homology sphere.

- S^3 is the universal covering space of P.

ΣP is not a topological manifold, but $\Sigma \Sigma P \simeq S^5$. So $\Sigma \pi : S^5 \to S^5$ is a branched cover with branch set $B \Sigma \pi$, $\Sigma \pi (B \Sigma \pi) \simeq S^1$.

Note that $\pi_1 (S^5 \setminus \Sigma \pi (B \Sigma \pi))$ has order 120.
Let P be the Poincaré homology sphere.

- S^3 is the universal covering space of P.
- If $\pi: S^3 \to P$ is the covering map, then we can take the suspension of both sides to get a map

$$\Sigma \pi: S^4 \to \Sigma P.$$
Let \(P \) be the Poincaré homology sphere.

- \(S^3 \) is the universal covering space of \(P \).
- If \(\pi: S^3 \to P \) is the covering map, then we can take the suspension of both sides to get a map

\[
\Sigma \pi: S^4 \to \Sigma P.
\]

- \(\Sigma P \) is not a topological manifold, but \(\Sigma \Sigma P \simeq S^5 \). So

\[
\Sigma \Sigma \pi: S^5 \to S^5
\]

is a branched cover with branch set \(B_{\Sigma \Sigma \pi}, \Sigma \pi(B_{\Sigma \Sigma \pi}) \simeq S^1 \).
Let \(P \) be the Poincaré homology sphere.

- \(S^3 \) is the universal covering space of \(P \).
- If \(\pi: S^3 \to P \) is the covering map, then we can take the suspension of both sides to get a map
 \[
 \Sigma \pi: S^4 \to \Sigma P.
 \]

- \(\Sigma P \) is not a topological manifold, but \(\Sigma \Sigma P \cong S^5 \). So
 \[
 \Sigma \Sigma \pi: S^5 \to S^5
 \]
 is a branched cover with branch set \(B_{\Sigma \Sigma \pi}, \Sigma \Sigma \pi(B_{\Sigma \Sigma \pi}) \cong S^1 \).
- Note that \(\pi_1(S^5 \setminus \Sigma \Sigma \pi(B_{\Sigma \Sigma \pi})) \) has order 120.

The natural choice for an open neighborhood of a point in \(\Sigma \Sigma \pi(B_{\Sigma \Sigma \pi}) \) has boundary that is homeomorphic to \(\Sigma P \) not \(S^4 \).
Generalizing Church and Hemmingsen

Theorem (Martio and Srebro, '79)

Let \(f : \Omega \rightarrow \mathbb{R}^3 \) be a branched cover and \(x_0 \in B_f \). If there exists an open neighborhood \(V \) of \(x_0 \) so that the image of the branch set \(f(B_f \cap V) \) can be embedded into a union of finitely many line segments originating from \(f(x_0) \), then \(f \) is topologically equivalent on \(V \) to a cone of a rational map \(g : \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}} \).

- A cone of a map \(g \) is the map

\[
g \times \text{id} : \text{cone}(\hat{\mathbb{C}}) \rightarrow \text{cone}(\hat{\mathbb{C}}),
\]

\[
\text{cone}(\hat{\mathbb{C}}) = \frac{\hat{\mathbb{C}} \times [0, 1]}{\{(z, 0) \sim (w, 0)\}}
\]

(\(\hat{\mathbb{C}} \times [0, 1] \) with this identification is homeomorphic to \(B^3 \)).
Theorem (Martio and Srebro, ’79)

Let $f : \Omega \rightarrow \mathbb{R}^3$ be a branched cover and $x_0 \in B_f$. If there exists an open neighborhood V of x_0 so that the image of the branch set $f(B_f \cap V)$ can be embedded into a union of finitely many line segments originating from $f(x_0)$, then f is topologically equivalent on V to a cone of a rational map $g : \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$.

- A cone of a map g is the map

$$g \times \text{id} : \text{cone}(\hat{\mathbb{C}}) \rightarrow \text{cone}(\hat{\mathbb{C}}),$$

$$\text{cone}(\hat{\mathbb{C}}) = \frac{\hat{\mathbb{C}} \times [0, 1]}{\{(z, 0) \sim (w, 0)\}}$$

($\hat{\mathbb{C}} \times [0, 1]$ with this identification is homeomorphic to B^3).
- This implies that f is topologically equivalent to a PL map.
Theorem (Luisto and P., '19)

Let $f : \Omega \to \mathbb{R}^n$ be a branched cover and $x_0 \in B_f$. If there exists an open neighborhood V of x_0 so that the image of the branch set $f(B_f \cap V)$ can be embedded into an $(n - 2)$-simplicial complex, then f is topologically equivalent on V to a cone of a PL map $g : S^{n-1} \to S^{n-1}$. This implies that f is topologically equivalent to a PL map. This theorem also extends to a global result for $f : S^n \to S^n$.
Main Result

Theorem (Luisto and P., ’19)

Let $f : \Omega \to \mathbb{R}^n$ be a branched cover and $x_0 \in B_f$. If there exists an open neighborhood V of x_0 so that the image of the branch set $f(B_f \cap V)$ can be embedded into an $(n - 2)$-simplicial complex, then f is topologically equivalent on V to a cone of a PL map $g : S^{n-1} \to S^{n-1}$.

This implies that f is topologically equivalent to a PL map.
Main Result

Theorem (Luisto and P., ’19)

Let \(f : \Omega \to \mathbb{R}^n \) be a branched cover and \(x_0 \in B_f \). If there exists an open neighborhood \(V \) of \(x_0 \) so that the image of the branch set \(f(B_f \cap V) \) can be embedded into an \((n - 2)\)-simplicial complex, then \(f \) is topologically equivalent on \(V \) to a cone of a PL map \(g : S^{n-1} \to S^{n-1} \).

- This implies that \(f \) is topologically equivalent to a PL map.
- This theorem also extends to a global result for \(f : S^n \to S^n \).
We can use this result to construct quasiregular maps.

Corollary

For each $n \in \mathbb{N}$ there exists a quasiregular map $f : \mathbb{R}^{2n} \to \mathbb{C}P^n$.
We can use this result to construct quasiregular maps.

Corollary

For each $n \in \mathbb{N}$ there exists a quasiregular map $f : \mathbb{R}^{2n} \to \mathbb{C}P^n$.

- There exists a quasiregular map from $\mathbb{R}^{2n} \to (\mathbb{C}P^1)^n$.
- The map

\[
([z_1 : w_1], \ldots, [z_n : w_n]) \mapsto \left[z_1 \cdots z_n : \sum_{i=1}^n z_1 \cdots \hat{z_i} \cdots z_n w_i : \cdots : w_1 \cdots w_n \right]
\]

is a branched cover from $\mathbb{C}P^1 \times \cdots \times \mathbb{C}P^1 \to \mathbb{C}P^n$.
The map can be thought of as the coefficients of the polynomial

\[p(u, v) = (z_1 u + w_1 v) \cdots (z_n u + w_n v). \]

So the branch set is

\[\{ ([z_1 : w_1], \ldots, [z_n : w_n]) \in (\mathbb{CP}^1)^n : [z_i : w_i] = [z_j : w_j] \text{ for some } i \ne j \}. \]

The image of this can be given a simplicial structure and so there is a PL version of the map.
For dimension 4:

Theorem (Piergallini and Zuddas, ’18)

If M is of the form $\#_m \mathbb{C}P^2 \#_n \overline{\mathbb{C}P^2}$ or $\#_n (S^2 \times S^2)$, then N admits a PL (and quasiregular) map from \mathbb{R}^4 when $b_2^+(M), b_2^-(M) \leq 3$.

If M is quasiregularly elliptic, then $b_2^+(M), b_2^-(M) \leq \frac{1}{2} (\binom{n}{n/2})$.
For dimension 4:

Theorem (Piergallini and Zuddas, ’18)

If M is of the form $\#_m\mathbb{C}P^2 \#_n\overline{\mathbb{C}P^2}$ or $\#_n(S^2 \times S^2)$, then N admits a PL (and quasiregular) map from \mathbb{R}^4 when $b_2^+(M), b_2^-(M) \leq 3$.

If M is quasiregularly elliptic, then $b_2^+(M), b_2^-(M) \leq \frac{1}{2}\left(\binom{n}{n/2}\right)$.

- Is there a manifold that admits a quasiregular (PL) map from \mathbb{R}^d, but does not admit a quasiregular (PL) map from T^d?

- All the above examples factor through the torus.
Theorem (Luisto and P., '19)

Let $f : \Omega \to \mathbb{R}^n$ be a branched cover and $x_0 \in B_f$. If there exists an open neighborhood V of x_0 so that the image of the branch set $f(B_f \cap V)$ can be embedded into an $(n-2)$-simplicial complex, then f is topologically equivalent on V to a cone of a PL map $g : S^{n-1} \to S^{n-1}$.

Let $f : \Omega \to \mathbb{R}^n$ be a branched cover and $x_0 \in \Omega$ be a point. There exists a radius $r_0 > 0$ and a family of neighborhoods, denoted $U(x_0, r)$, such that for $0 < r \leq r_0$

- $x_0 \in U(x_0, r)$
- $f(U(x_0, r)) = B(f(x_0), r)$
- $f(\partial U(x_0, r)) = \partial B(f(x_0), r)$
- $f^{-1}\{f(x_0)\} \cap U(x_0, r) = \{x_0\}$
Suppose that near x_0, $\partial U(x_0, r)$ is homeomorphic to S^{n-1}.

It is a fact that restricted to $\partial U(x_0, r)$, f is still a branched cover. So if we induct on the dimension, $f: \partial U(x_0, r) \to S^{n-1}$ is equivalent to a PL map.
Outline of Proof

- Suppose that near x_0, $\partial U(x_0, r)$ is homeomorphic to S^{n-1}.
- It is a fact that restricted to $\partial U(x_0, r)$, f is still a branched cover. So if we induct on the dimension, $f : \partial U(x_0, r) \to S^{n-1}$ is equivalent to a PL map.
- By a path lifting argument we show that f behaves the same way topologically on the boundaries of $U(x_0, r)$ for all sufficiently small r.
Suppose that near x_0, $\partial U(x_0, r)$ is homeomorphic to S^{n-1}.

It is a fact that restricted to $\partial U(x_0, r)$, f is still a branched cover. So if we induct on the dimension, $f : \partial U(x_0, r) \to S^{n-1}$ is equivalent to a PL map.

By a path lifting argument we show that f behaves the same way topologically on the boundaries of $U(x_0, r)$ for all sufficiently small r.

So f is equivalent to a cone of a PL map.
Suppose that near x_0, $\partial U(x_0, r)$ is homeomorphic to S^{n-1}.

It is a fact that restricted to $\partial U(x_0, r)$, f is still a branched cover. So if we induct on the dimension, $f : \partial U(x_0, r) \to S^{n-1}$ is equivalent to a PL map.

By a path lifting argument we show that f behaves the same way topologically on the boundaries of $U(x_0, r)$ for all sufficiently small r.

So f is equivalent to a cone of a PL map.

It is not clear that $\partial U(x_0, r) \simeq S^{n-1}$, in fact it may not even be a manifold.
Path Lifting

\[U(z_0, f, R) \]

\[f(x_0) \]

\[\beta \]

\[f(z_0) \]

\[z_0 \]

\[x_0 \]

\[r \]

\[\alpha_1 \]

\[\alpha_2 \]

\[U(x_0, f, r) \]

\[\alpha_1(s_0) \]

\[\alpha_2(s_0) \]

\[f \]

\[f \circ \gamma_3 \]

\[f(z_0) \]

\[S \]

\[U_1 \]

\[U_2 \]

\[f(x_0) \]

\[f(z_0) \]

\[\beta(s_0) \]

\[U(z_0, f, R) \]

\[f \]

\[f \circ \gamma_3 \]

\[f(z_0) \]

\[S \]
In dimensions two and three the proof simplifies.

- In dimension two, f is locally injective on $\partial U(x_0, r)$ and so $\partial U(x_0, r)$ is a manifold and is homeomorphic to S^1.

- In dimension three, Martio and Srebro first show that $\partial U(x_0, r)$ is a manifold. Like in dimension 2, $\partial U(x_0, r)$ is a manifold away from the branch set of f. The image of the branch set is "ray-like" by assumption and so intersects $B(f(x_0), r)$ at a discrete set of points. Topologically f behaves like the power map $z \mapsto z^d$ on $\partial U(x_0, r)$ near the intersection by Church and Hemmingsen's theorem and so still can be used to define a chart for $\partial U(x_0, r)$. $\partial U(x_0, r)$ is homeomorphic to S^2 if it is simply connected. This follows because $U(x_0, r)$ is contractible.
In dimensions two and three the proof simplifies.

- In dimension two, f is locally injective on $\partial U(x_0, r)$ and so $\partial U(x_0, r)$ is a manifold and is homeomorphic to S^1.
- In dimension three Martio and Srebro first show that $\partial U(x_0, r)$ is a manifold.
 - Like in dimension 2, $\partial U(x_0, r)$ is a manifold away from the branch set of f.
 - The image of the branch set is "ray-like" by assumption and so intersects $B(f(x_0), r)$ at a discrete set of points.
 - Topologically f behaves like the power map $z \mapsto z^d$ on $\partial U(x_0, r)$ near the intersection by Church and Hemmingsen’s theorem and so still can be used to define a chart for $\partial U(x_0, r)$.
In dimensions two and three the proof simplifies.

- In dimension two, f is locally injective on $\partial U(x_0, r)$ and so $\partial U(x_0, r)$ is a manifold and is homeomorphic to S^1.
- In dimension three Martio and Srebro first show that $\partial U(x_0, r)$ is a manifold.
 - Like in dimension 2, $\partial U(x_0, r)$ is a manifold away from the branch set of f.
 - The image of the branch set is “ray-like” by assumption and so intersects $B(f(x_0), r)$ at a discrete set of points.
 - Topologically f behaves like the power map $z \mapsto z^d$ on $\partial U(x_0, r)$ near the intersection by Church and Hemmingsen’s theorem and so still can be used to define a chart for $\partial U(x_0, r)$.
- $\partial U(x_0, r)$ is homeomorphic to S^2 if it is simply connected. This follows because $U(x_0, r)$ is contractible.
\(\partial U(x_0, r) \) is a Manifold

In the general case when \(f : \Omega \to \mathbb{R}^n \),

- \(f \) restricted to \(\partial U(x_0, r) \) is a branched cover and away from the branch set is a covering map. So \(\partial U(x_0, r) \setminus B_f \) is a manifold.

- As in dimension 3, if \(x \in \partial U(x_0, r) \cap B_f \), then we consider the map \(f \) restricted to a normal neighborhood of \(x \) in \(\partial U(x_0, r) \).

- We continue to go down in dimension considering more and more nested normal neighborhoods.
We show a stronger fact that for any point x, if we consider normal neighborhoods of dimension $k + 1$, then their boundaries will be homeomorphic to S^k when taken sufficiently close to x.

- By the path lifting argument, normal neighborhoods will have a cone structure. So if U is a normal neighborhood of a point x, then $U \simeq \text{cone}(\partial U)$.
\(\partial U(x_0, r) \) is homeomorphic to a sphere

We show a stronger fact that for any point \(x \), if we consider normal neighborhoods of dimension \(k + 1 \), then their boundaries will be homeomorphic to \(S^k \) when taken sufficiently close to \(x \).

- By the path lifting argument, normal neighborhoods will have a cone structure. So if \(U \) is a normal neighborhood of a point \(x \), then \(U \cong \text{cone}(\partial U) \).
- Let \(\gamma : S^\ell \to \partial U \cong U \setminus \{x_0\} \). There is a homotopy sending \(\gamma \) to a point in \(U \times (0, 1)^{n-k-1} \). It can be chosen to avoid \(\{x_0\} \times (0, 1)^{n-k-1} \) when \(1 \leq \ell < k \). So \(\pi_\ell(V) = 0 \).
There is a partial converse to the Martio-Srebro result.

Theorem (Martio and Srebro, '79)

Let \(f : \Omega \rightarrow \mathbb{R}^3 \) be a branched cover so that at \(x \in \Omega \) there exists an \(r_0 > 0 \) with the property that for all \(r \leq r_0 \), \(\partial U(x_0, r) \) is a manifold. Then at \(x_0 \), \(f \) is equivalent to a path of rational maps.
There is a partial converse to the Martio-Srebro result.

Theorem (Martio and Srebro, '79)

Let $f : \Omega \rightarrow \mathbb{R}^3$ be a branched cover so that at $x \in \Omega$ there exists an $r_0 > 0$ with the property that for all $r \leq r_0$, $\partial U(x_0, r)$ is a manifold. Then at x_0, f is equivalent to a path of rational maps.

We show a corresponding result:

Theorem (Luisto and P, '19)

Let $f : \Omega \rightarrow \mathbb{R}^n$ be a branched cover so that at $x \in \Omega$ there exists an $r_0 > 0$ with the property that for all $r \leq r_0$, $U(x_0, r)$ is a manifold with boundary. Then at x_0, f is equivalent to a path of branched covers.
We can iterate the previous result to get a lower bound on the topological dimension of B_f.

Corollary (Luisto and P, ’19)

Let $f : \Omega \to \mathbb{R}^n$ be a branched cover so that for some k, $2 \leq k \leq n - 2$, all the normal domains of dimension less than k are manifolds with boundary, then $\dim_{\text{top}}(B_f) \geq n - k$.
We can iterate the previous result to get a lower bound on the topological dimension of B_f.

Corollary (Luisto and P, ’19)

Let $f : \Omega \to \mathbb{R}^n$ be a branched cover so that for some k, $2 \leq k \leq n - 2$, all the normal domains of dimension less than k are manifolds with boundary, then $\dim_{\text{top}}(B_f) \geq n - k$.

It is not possible to show that if all the normal domains are manifolds, then f is equivalent to a PL-map. Let $w : \mathbb{R}^3 \to \mathbb{R}^3$ be a winding map and let $h : \mathbb{R}^3 \to \mathbb{R}^3$ be a homeomorphism that takes the set $B = \{(0, t^2 \cos(1/t), t), t \in \mathbb{R}\}$ to the z-axis near 0. Define $f := w \circ h \circ w$. The branch set is a union of the z-axis and B.
Thank you!