Original Article

2-(4-Fluorophenyl)-N-phenylacetamide Derivatives as Anticancer Agents: Synthesis and In-vitro Cytotoxicity Evaluation

Alireza Aliabadi*, Sajad Andisheh*a,b, Zahra Tayarani-Najaranc and Mona Tayarani-Najaran d

aDepartment of Medicinal Chemistry, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran. bStudents Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran. cDepartment of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. dDepartment of Chemistry, Alzahra University, Tehran, Iran.

Abstract

Cancer is a major global problem and is the second leading cause of mortality in the developed countries. Resistance to current chemotherapeutics and high incidence of adverse effects are the two principal reasons for developing new anticancer agents. Phenylacetamide derivatives can act as potential anticancer agents. Synthesis and screening of 2-(4-Fluorophenyl)-N-phenylacetamide derivatives in present study showed that these compounds act as potent anticancer agents especially against PC3 (prostate carcinoma) cell line. Compounds 2a-2c with nitro moiety demonstrated a higher cytotoxic effect than compounds 2d-2f with methoxy moiety. All compounds in this series exhibited lower activity than imatinib as reference drug. Compounds 2b (IC50 = 52 µM) and 2c (IC50 = 80 µM) were the most active compounds against PC3 cell line in comparison with imatinib (IC50 = 40 µM). Compound 2c (IC50 = 100 µM) with p-nitro substituent was the most active compound compared to imatinib (IC50 = 98 µM) in MCF-7 cell line.

Keywords: Synthesis; Phenylacetamide derivatives; Anticancer; Cytotoxicity; MTS assay.

Introduction

Cancer is a major global problem and is the second leading cause of mortality in the developed countries. Since many of the current pharmacotherapeutic methods have problems with toxicity and drug-resistance, there is a strong demand for the discovery and development of effective, safer and novel cancer therapies (1).

Since it is known that the anti-tumor efficacy of many chemotherapeutic agents is correlated with their ability to induce apoptosis, novel approaches to promote apoptosis in cancer cells via targeting regulators of apoptosis could lead to the development of new anticancer treatments. In addition, these new agents may overcome tumor resistance to the conventional anti-cancer drugs (2-9).

Phenylacetate (PA) and related aromatic fatty acids have been shown to possess anti-proliferative and differentiating effects on various human cancer cell lines such as glioblastomas, leukemias, prostate carcinomas, and breast carcinomas. A Phase I clinical trial with PA has also proved in-vivo anti-tumor activity in humans. Moreover, it has been reported that PA induces the differentiation process together with apoptosis in-vitro and in-vivo. The ability of PA to induce tumor growth inhibition, differentiation,
Compound 2c (IC$_{50}$ = 100 µM) with p-nitro substituent was the most active compound compared to imatinib (IC$_{50}$ = 98 µM) in MCF-7 cell line.

Experimental

General procedure for the synthesis of compounds 2a-2g

According to the Figure 3, for the preparation of compounds 2a-2g, equimolar quantities of 4-fluorophenyl acetic acid, EDC and HOBt were mixed and stirred in acetonitrile for 30 min. Then, the appropriate aniline derivatives were added and stirring was continued for 24 h. The completion of the reaction was checked by thin layer chromatography. The acetonitrile was evaporated and water/ethyl acetate was added. Ethyl acetate phase was separated and washed two times by sodium bicarbonate, diluted sulfuric acid and brine. The organic layer was dried by anhydrous sodium sulfate and filtered. The ethyl acetate was evaporated under reduced pressure using rotary evaporator (14).

2-(4-Fluorophenyl)-N-(2-nitrophenyl) acetamide (2a)

mp: 122-129 ºC, Yield: 65%, 1H NMR (CDCl$_3$, 400 MHz) δ: 3.63 (s, 2H, -CH$_2$-), 6.69 (t, 1H, J = 8Hz, H$_4$-2-Nitrophenyl), 6.8 (d, 1H, J = 8Hz, H$_6$-2-Nitrophenyl), 7.2 (t, 1H, J = 8Hz, H$_3$-2-Nitrophenyl), 7.54 (t, 2H, J = 8Hz, H$_2$$_{6,8}$, 4-Fluorophenyl), 7.89 (t, 2H, J = 8Hz, H$_3$$_{3,5}$, 4-Fluorophenyl), 8.11 (d, 1H, J = 8Hz, H$_1$-2-Nitrophenyl), 10.15 (bs, 1H, NH). IR(KBr, cm$^{-1}$): 3475, 3344, 1624, 1494, 1431, 1342, 1220, 1157, 720. MS(m/z, %): 274(M$^+$, 25), 136(75),
2-(4-Fluorophenyl)-N-(3-nitrophenyl) acetamide (2b)
mp: 138 °C, Yield: 57%, 1H NMR (CDCl$_3$, 400 MHz) δ: 3.76 (s, 2H, -CH$_2$), 6.65 (d, 2H, $J = 8$ Hz, 4-Fluorophenyl), 6.85 (d, 2H, $J = 8$ Hz, 4-Fluorophenyl), 7.07 (t, 1H, $J = 8$ Hz, -H$_5$-3-Nitrorophenyl), 7.15 (d, 1H, -H$_6$-3-Nitrophenyl), 7.26 (d, 1H, -H$_4$-3-Nitrophenyl), 7.29 (s, 1H, -H$_2$-3-Nitrophenyl), 10.15 (brs, 1H, NH). IR(KBr, cm$^{-1}$) δ: 2922, 1624, 1523, 1508, 1344, 1259, 731. MS(m/z, %): 274(M$^+$, 20), 136(85), 109(100), 83(20), 63(10).

2-(4-Fluorophenyl)-N-(4-nitrophenyl) acetamide (2c)
mp: 123 °C, Yield: 72%, 1H NMR (CDCl$_3$, 400 MHz) δ: 3.72 (s, 2H, -CH$_2$), 3.76 (s, 3H, -OCH$_3$), 6.81 (d, 1H, $J = 8$ Hz, -H$_3$-3-Nitrorophenyl), 7.15 (d, 1H, -H$_5$-3-Nitrophenyl), 7.29 (s, 1H, -H$_2$-3-Nitrophenyl), 10.15 (brs, 1H, NH). IR(KBr, cm$^{-1}$) δ: 2922, 1624, 1523, 1508, 1344, 1259, 731. MS(m/z, %): 274(M$^+$, 20), 136(85), 109(100), 83(22), 63(8).

2-(4-Fluorophenyl)-N-(2-methoxyphenyl) acetamide (2d)
mp: 98 °C, Yield: 61%, 1H NMR (CDCl$_3$, 400 MHz) δ: 3.76 (s, 2H, -CH$_2$), 3.76 (s, 3H, -OCH$_3$), 6.81 (d, 1H, $J = 8$ Hz, -H$_2$-2-Methoxyphenyl), 6.94 (t, 1H, $J = 8$ Hz, -H$_6$-2-Methoxyphenyl), 7.01 (t, 1H, $J = 8$ Hz, -H$_2$-2-Methoxyphenyl), 7.06 (t, 2H, $J = 8$ Hz, -H$_3$-4-Fluorophenyl), 7.30 (t, 2H, $J = 8$ Hz, -H$_3$-4-Fluorophenyl), 7.76 (brs, 1H, NH), 8.33 (d, 1H, $J = 8$ Hz, -H$_6$-2-Methoxyphenyl). IR (KBr, cm$^{-1}$) δ: 3282, 2900, 2860, 1662, 1596, 1537, 1510, 1500, 1460, 1436, 1409, 1342, 1259, 1232, 1215, 1182, 1114, 1031, 950, 752. MS(m/z, %): 259(M$^+$, 35), 123(65), 109(100), 83(30).

2-(4-Fluorophenyl)-N-(3-methoxyphenyl) acetamide (2e)
mp: 108-110 °C, Yield: 56 %, 1H NMR

Figure 3. Design of 2-(4-Fluorophenyl)-N-phenylacetamide derivatives.

Figure 4. Synthesis of compounds 2a-2g.
Table 1. Cytotoxicity results (IC$_{50}$, µM) of compounds 2a-2g in comparison with imatinib.

	2a	2b	2c	2d	2e	2f	2g	Imatinib
PC3	196	52	80	158	156	168	250<	40
MCF-7	250<	191	250<	250<	247	250<	250<	79
HL-60	208	178	100	218	206	243	250<	98

(CDCl$_3$, 400 MHz) δ: 3.69 (s, 2H, -CH$_2$), 3.77 (s, 3H, -OCH$_3$), 6.64 (d, 1H, J = 8 Hz, H$_4$-3-Methoxyphenyl), 7.08 (m, 3H, aromatic), 6.84 (d, 1H, J = 8 Hz, 4-Methoxyphenyl), 7.25 (t, 2H, J = 8 Hz, 4-Fluorophenyl), 7.8 (brs, 1H, NH). IR(KBr, cm$^{-1}$) δ: 3260, 1664, 1597, 1533, 1510, 1452, 1429, 1288, 1219, 1155, 1035, 779. MS(m/z, %): 259(M$^+$, 20), 150(90), 123(85), 109(100), 92(40), 83(30), 77(40), 52(30).

2-(4-Fluorophenyl)-N-(4-methoxyphenyl) acetamide(2f)

mp: 142-148 °C, Yield: 78%, H NMR (DMSO-d$_6$, 400 MHz) δ: 3.68 (s, 2H, -CH$_2$), 3.77 (s, 3H, -OCH$_3$), 6.82 (d, 2H, J = 8 Hz, H$_3$-4-Methoxyphenyl), 7.30 (t, 2H, J = 8 Hz, 4-Fluorophenyl), 7.36 (d, 2H, J = 8 Hz, H$_2$-4-Methoxyphenyl), 7.55 (brs, 1H, NH). IR(KBr, cm$^{-1}$) δ: 3260, 1664, 1597, 1533, 1452, 1429, 1288, 1219, 1155, 1035, 779. MS(m/z, %): 259(M$^+$, 20), 150(90), 123(85), 109(100), 92(40), 83(30), 77(40), 52(30).

Acknowledgement

The authors are grateful to research council of Kermanshah University of medical sciences for financial support. The present report was extracted from the Pharm. D thesis of Mr. Sajjad Andisheh.

References

(1) Kemnitzer W, Kuenmerle J, Jiang S, Zhang HZ, Sirisoma N, Kasibhatla S, Crogan-Grundy B, Tseng J, Drews S and Cai X. Discovery of 1-benzoyl-3-cyanopyrrolo[1,2-a]quinolines as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. Part 1: Structure–activity relationships of the 1- and 3-positions. *Bioorg. Med. Chem. Lett.* (2008) 18: 6259-6264.

(2) Kemnitzer W, Kuenmerle J, Zhang HZ, Kasibhatla S, Tseng B, Drewes J and Cai SX. Discovery of 3-aryl-5-aryl-1,2,4-oxadiazoles as a new series of apoptosis inducers. 2. Identification of more aqueous soluble analogs as potential anticancer agents. *Bioorg. Med. Chem. Lett.* (2009) 15: 4410-4415.

(3) Earnshaw WC, Martins LM and Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. *Annu. Rev. Biochem.*
2-(4-Fluorophenyl)-N-phenylacetamide Derivatives as Anticancer Agents:

(1) Bratton SB, MacFarlane M, Cain K, Cohen GM. Protein complexes activate distinct caspase cascades in death receptor and stress-activated apoptosis. Exp. Cell Res. (2000) 256: 27-33.

(2) Hirata H, Takahasahi A, Kobayashi S, Yonehara S, Sunai H, Okazaki T, Yamamoto K and Sasada M. Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis. J. Exp. Med. (1998) 187: 587-600.

(3) Jiang S, Crogan-Grundy C, Drew J, Tseng B and Cai SX. Discovery of (naphthalen-4-yl) (phenyl) methanones and N-methyl-N-phenylnaphthalen-1-amines as new apoptosis inducers using a cell- and caspase-based HTS assay. Bioorg. Med. Chem. Lett. (2008) 18: 5725-5728.

(4) Bortner CD and Cidlowski JA. A necessary role for cell shrinkage in apoptosis. Biochem. Pharmacol. (1998) 56: 1549-1559.

(5) Mirian M, Zarghi A, Sadeghi S, Tabaraki P, Tavallaee M, Dadras O and Sadeghi-aliabadi H. Synthesis and cytotoxic evaluation of some novel sulfonamide derivatives against a few human cancer cells. Iran. J. Pharm. Res. (2011) 10: 741-748.

(6) Mohitani S, Mosaddegh M, Hamzeloo Moghadam M, Soleymani Z, Ghafari S and Kobarfard F. Synthesis and cytotoxic evaluation of novel 3-substituted derivatives of 2-indolinone. Iran. J. Pharm. Res. (2011) 11: 411-421.

(7) Chan HC, Kuo SC, Liu SC, Liu CH and Hsu SL. 4-Fluoro-N-butylphenylacetamide: a synthetic phenylacetate derivative that upregulates Bcl-XS, activates caspase cascade and induces apoptosis in human squamous lung cancer CH27 cells. Cancer Lett. (2002) 186: 211-221.

(8) Li HC, Huang LJ, Kuo SC, Lee TH, Kan-Jen Tsai c and Hsu-Chin Chan. 4-Fluoro-N-butylphenylacetamide (H6) inhibits cell growth via cell-cycle arrest and apoptosis in human cervical cancer cells. Bioorg. Med. Chem. Lett. (2009) 17: 42-48.

(9) Wan-Ping H, Hsin-Su Y, Yan-Ren C, Yi-Min T, Yin-Kai C, Chao-Cheng L, Long-Sen C and Jeh-Jeng W. Synthesis and biological evaluation of thiobenzanilides as anticancer agents. Bioorg. Med. Chem. (2008) 9: 5295-5302.

(10) Xiong Cai S, Nguyen B, Jia S, Herich J, Guastella J, Reddy S, Tseng B, Drew J and Kasibhatla S. Discovery of substituted N-phenyl nicotinamide as potent inducer of apoptosis using a cell- and caspase-based high throughput screening assay. J. Med. Chem. (2003) 46: 2474-2481.

(11) Aliabadi A, Shamsa F, Ostad SN, Emami S, Shafiee A, Davoodi J and Foroumadi A. Synthesis and biological evaluation of 2-phenylthiazole-4-carboxamide derivatives as anticancer agents. Eur. J. Med. Chem. (2010) 11: 5384-5389.

(12) Malich G, Markovic B and Winder C. The sensitivity and specificity of the MTS tetrazolium assay for detecting the in-vitro cytotoxicity of 20 chemicals using human cell lines. Toxicol. (1997) 124: 179-192.

This article is available online at http://www.ijpr.ir