Viability of Fat Cells in Frozen Fat Tissue in Relation to Thawing Technique

Riham Lashin, MD*
Fatma A. Abu Zahra, PhD†
Ahmed Elshahat, MD*
Khaled Elgazzar, MD*

Background: Damage of frozen fat, which will be used for retransplantation, is inevitable. Reuse of frozen fat requires a thawing process. No standardized method has yet been established for thawing frozen fat.

Methods: Microscopic analysis of count and viability of frozen fat of 21 patients. Two fat samples from each patient were harvested and frozen at –20°C in a common commercial refrigerator for different freezing durations. Thawing of fat samples was done. There was one (3mL) sample for each thawing technique; technique A included natural thawing at 25°C for 15 minutes, while rapid thawing at 37°C for 10 minutes in a water bath was included in technique B. Survival rates of adipocytes were assessed with trypan blue staining. Culturing of adipose-derived stem cells to assess their ability to divide was done. Relating survival rate of frozen fat to patients’ age and duration of freezing was done. Results were statistically analyzed.

Results: The count of viable adipocytes is higher in technique A. Adipose-derived stem cells of frozen fat do not have the ability to divide in culture media. Viable adipocytes were higher in younger ages and in shorter freezing duration.

Conclusion: Natural thawing is better in maintaining frozen adipocyte viability. Younger patients will benefit from frozen fat more than older ones. Duration of freezing should not exceed 7 months. (Plast Reconstr Surg Glob Open 2022;10:e4505; doi: 10.1097/GOX.0000000000004505; Published online 14 September 2022.)

INTRODUCTION

Autogenous fat graft is a simple procedure that is used as soft tissue augmentation in the field of aesthetic and reconstructive plastic surgery, and it does not show foreign body or immune reactions and has abundant donor sites. Therefore, it is used widely in the scope of plastic and reconstructive surgery, and its clinical application is continuously expanding. However, its main disadvantage is that it is difficult to predict the survival rates of transplanted fat due to absorption or necrosis of a variable portion of the transplanted adipose tissue after autogenous fat transfer.

The viability of grafted fat has been reported to be very variable, in the range of 30%–80%, and is the subject of continuous debate. The reasons for this variability include different donor site preparation techniques, harvesting methods, instruments used, fat grafting and injection techniques, grafting interval, and methods of analysis. All of these variations have made it difficult to compare studies. Overcorrection or retransplantation has been implemented to address the high absorption rates of adipose tissue. However, since overcorrection leads to unnatural cosmetic outcomes and retransplantation brings with it the burden of resurgery, some recent studies aimed to freeze or cryopreserve residual adipose tissue after a fat transfer to be reused in case that retransplantation is needed.

Significant amounts of adipose-derived stem cells (ADSCs) have been found in aspirated fat tissues. These stem cells are known to differentiate into fat, cartilage, bone, muscle, and nerve. ADSCs have become a focus of attention in regenerative medicine. When frozen or cryopreserved fat is used after storage, the survival rate of the adipocytes is important since they have a great impact on the engraftment of adipose tissue after the reinjection. Liu et al reported that cells maintain some degree of metabolic activity because they are only partially frozen at –20°C, which is the typical storage temperature provided by commercial freezers. The glass-transition temperature of water that completely stops a
cell’s metabolic activity is −130°C. Therefore, many laboratories use −70°C as the appropriate temperature for their “deep freezer” to store cells and tissues. Fat that has been stored for 3–12 months has been successfully used for regrafting. However, there is limited information on the clinical outcome of regrafting using stored fat tissues.

Although a number of studies have examined the fat sampling and freezing processes, relatively less analysis of the thawing process has been performed. Because the thawing process is essential for the reuse of the frozen autologous fat, appropriate thawing methods need to be studied to minimize cell damage. Therefore, this study aimed to objectively analyze the difference in the survival rates of adipocytes depending on the thawing technique, and it also assessed the late decline of viability in fat cells, over time, for fat tissue stored at −20°C in a common commercial refrigerator that is used by many aesthetic surgeons.

MATERIALS AND METHODS

A total of 19 female patients and two male patients, who had no concomitant medical conditions, were included in the current study. The patients’ age ranged between 28 and 57 years; the mean age of patients was 43.3 years ± 9.0, while the median age was 43 years. This study was approved by the research ethics committee. After obtaining approval from the patients and written consent to participate, patients were given an adequate explanation of the research on human-derived material, and they gave their consent before the experiment. The study was done in the period between May 2020 and September 2021.

Fat Harvest and Freezing

The area of fat harvest from the central inframammary area of the donor’s abdomen was first infiltrated with tumescent solution (500-mL saline and 1 ampule of 1-mg/mL epinephrine). After 20 minutes, the fat was harvested using a blunt-tipped suction cannula measuring 4.0mm in diameter connected to a 60-mL wide-pore Ryle syringe. Liposapirate was harvested by one surgeon. The liposapirates (approximately 300–500mL) were collected in multiple wide-pore Ryle syringes at the time of liposuction, and left in the standing position for at least 30 minutes; the liposapirates were then separated spontaneously into fat and fluids. The supernatant lipid layer and the bottom plasma and aqueous layer were removed, and only the middle layer, which contained the fat cells, was saved. Autologous fat transfer was carried out with these fats, while 6mL of the residual adipose tissues per patient, which divided into two 3-mL samples in two 3-mL syringes, were placed directly into the commercial refrigerator freezer at −20°C to be used for microscopic analysis. The frozen samples were then retrieved and thawed. Samples were evaluated after different durations of freezing.

Fat Harvest and Freezing

The used protocol was a modification of Lu et al.20 The lipoaspirate was washed extensively (4–6 times) with phosphate buffer saline. The minced adipose tissue was collected in a Falcon tube 15mL (Nalge Nunc International, Rochester, N.Y.). The minced fat was digested in the Falcon tube by 0.2% collagenase type I solution (Collagenase NB4 Standard; SERVA Electrophoresis, Heidelberg, Germany) at 37°C under constant shaking in a water bath shaker (Water Bath Incubator BT 25 Yamato Scientific, Tokyo, Japan) for 50 minutes. At the end of this procedure, the fat was completely digested and the solution became homogenous. The number of live adipocytes in each sample was counted by staining a 50 μL from the sample with 50 μL trypan blue dye (Sigma-Aldrich, St. Louis, Mo.), placed on a hemocytometer, and examined under an inverted microscope (200; Zeiss, Mount Vernon, Wash.); the dead cells will take on the stain, whereas the viable cells will not take on the stain.

The collagenase was neutralized by adding an equal volume of Dulbecco’s Modified Eagle’s medium (Lanza, Verviers, Belgium) with 13% fetal bovine serum (Lanza, Verviers, Belgium) to the solution. The minced fat was digested in the Falcon tube at 37°C for 10 minutes. The supernatant was carefully removed by pipette leaving the pellet SVF. The supernatant was cultured in a culture flask 25cm² (Easy Flask; Nalge Nunc International, Rochester, N.Y.) and incubated in a CO₂ incubator (NU 4950E, Autoflow Water Jacketed CO₂ incubator; NuAire, Plymouth, MN) at 37°C and 5% CO₂. The medium was replaced every 2

Takeaways

Question: Is frozen fat effective in lipo-filling?

Findings: The count of viable adipocytes is higher in technique A. Adipose-derived stem cells of frozen fat do not have the ability to divide in culture media. Viable adipocytes were higher in younger ages and in shorter freezing duration.

Meaning: Natural thawing is better in maintaining frozen adipocyte viability.

Isolation, Counting, and Culturing of Adipose-derived Stem Cells

The used protocol was a modification of Lu et al.20 The lipoaspirate was washed extensively (4–6 times) with phosphate buffer saline. The minced adipose tissue was collected in a Falcon tube 15mL (Nalge Nunc International, Rochester, N.Y.). The minced fat was digested in the Falcon tube by 0.2% collagenase type I solution (Collagenase NB4 Standard; SERVA Electrophoresis, Heidelberg, Germany) at 37°C under constant shaking in a water bath shaker (Water Bath Incubator BT 25 Yamato Scientific, Tokyo, Japan) for 50 minutes. At the end of this procedure, the fat was completely digested and the solution became homogenous. The number of live adipocytes in each sample was counted by staining a 50 μL from the sample with 50 μL trypan blue dye (Sigma-Aldrich, St. Louis, Mo.), placed on a hemocytometer, and examined under an inverted microscope (200; Zeiss, Mount Vernon, Wash.); the dead cells will take on the stain, whereas the viable cells will not take on the stain.

The collagenase was neutralized by adding an equal volume of Dulbecco’s Modified Eagle’s medium (Lanza, Verviers, Belgium) with 13% fetal bovine serum (Lanza, Verviers, Belgium) to the solution. The minced fat was digested in the Falcon tube at 37°C for 10 minutes. The supernatant was carefully removed by pipette leaving the pellet SVF. The supernatant was cultured in a culture flask 25cm² (Easy Flask; Nalge Nunc International, Rochester, N.Y.) and incubated in a CO₂ incubator (NU 4950E, Autoflow Water Jacketed CO₂ incubator; NuAire, Plymouth, MN) at 37°C and 5% CO₂. The medium was replaced every

Thawing Techniques

The current methods of thawing frozen fats in clinical use were used and compared in this study. Two 3-mL samples per patient were examined, one 3-mL sample for each thawing technique. In thawing technique A, natural thawing at room temperature at 25°C for 15 minutes was used, while rapid thawing in a warm water bath at 37°C for 10 minutes was used in thawing technique B. The thawing time was set on the basis of the time needed for samples to reach the thawing temperature in each experimental technique in a preliminary study.

Isolation, Counting, and Culturing of Adipose-derived Stem Cells

The used protocol was a modification of Lu et al.20 The lipoaspirate was washed extensively (4–6 times) with phosphate buffer saline. The minced adipose tissue was collected in a Falcon tube 15mL (Nalge Nunc International, Rochester, N.Y.). The minced fat was digested in the Falcon tube by 0.2% collagenase type I solution (Collagenase NB4 Standard; SERVA Electrophoresis, Heidelberg, Germany) at 37°C under constant shaking in a water bath shaker (Water Bath Incubator BT 25 Yamato Scientific, Tokyo, Japan) for 50 minutes. At the end of this procedure, the fat was completely digested and the solution became homogenous. The number of live adipocytes in each sample was counted by staining a 50 μL from the sample with 50 μL trypan blue dye (Sigma-Aldrich, St. Louis, Mo.), placed on a hemocytometer, and examined under an inverted microscope (200; Zeiss, Mount Vernon, Wash.); the dead cells will take on the stain, whereas the viable cells will not take on the stain.

The collagenase was neutralized by adding an equal volume of Dulbecco’s Modified Eagle’s medium (Lanza, Verviers, Belgium) with 13% fetal bovine serum (Lanza, Verviers, Belgium) to the solution. The minced fat was digested in the Falcon tube at 37°C for 10 minutes. The supernatant was carefully removed by pipette leaving the pellet SVF. The supernatant was cultured in a culture flask 25cm² (Easy Flask; Nalge Nunc International, Rochester, N.Y.) and incubated in a CO₂ incubator (NU 4950E, Autoflow Water Jacketed CO₂ incubator; NuAire, Plymouth, MN) at 37°C and 5% CO₂. The medium was replaced every

Thawing Techniques

The current methods of thawing frozen fats in clinical use were used and compared in this study. Two 3-mL samples per patient were examined, one 3-mL sample for
3 days, the nonadherent cells were discarded while the attached cells were washed with phosphate buffer saline, and the ASCs expansion was followed up by examination with inverted microscope (Axiovert 100, Zeiss-Germany). Cultured ASCs of passage were used without subculture.

We confirmed that ADSC expressed characteristic mesenchymal stem cell surface markers CD44 (91.8%) and CD90 (95.5%) by using flow cytometry analysis, while CD 34% absence was 7.1%, and CD 45% absence was 3.9%. Upon tissue culturing of ADSC, the fixed adherent ADSCs were stained with Giemsa stain, and examination under inverted microscopy was done to test for confluence.

Statistical Methods

Data were revised for completeness and consistency. Data entry was done on Microsoft Excel workbook. Quantitative data were summarized by mean and standard deviation, while qualitative data were summarized by frequencies and percentages. The program used for data analysis is IBM SPSS statistics for windows version 23 (IBM Corp., Armonk, N.Y.). Student t test, Pearson correlation coefficient, and multiple linear regression were used in the analysis of this study. A P value of less than 0.05 was considered statistically significant.

RESULTS

Among the live cells observed in the 1-μL samples in the hemocytometer, only the cells whose diameter was greater than 50 μm were counted (the average diameter of the fresh live cells was 12–15 μm; after 1 week, it enlarged to 16–17.5 μm; and after 14 days, it was 20–22 μm) (Fig. 1). It was found that 10–127 cells/μL (mean, 45.9 cells/μL) were counted in the samples naturally thawed at room temperature, while 3–54 cells/μL (mean, 18.1 cells/μL) were counted in the samples thawed rapidly. Results show that a higher mean number of viable fat cells were counted in technique A compared with technique B, and the difference is highly significant statistically. Results also show that the mean difference of the number of viable fat cells in the two techniques is 60%. Meaning that technique B reduces the fat cells by around 60% compared with technique A, as shown in Table 1. Figure 2 represents the fully confluent state upon tissue culturing of ADSCs in a fresh sample under inverted microscope (Axiovert 100, Zeiss-Germany), 200×.

Table 1. Comparison between Both Techniques as regards the Mean Number of Viable Fat Cells

Number of Viable Fat Cells	Technique A	Technique B
Mean	45.9	18.1
SD	28.7	11.6
t	4.1	
P	0.000a	

*a P < 0.01 highly significant.

Correlation coefficient study between the age of patients and the number of viable fat cells in both thawing techniques showed a significant negative correlation between age of patients and the number of viable fat cells in the normal thawing technique (technique A), meaning that the higher the age, the lower the number of viable fat cells, as shown in Table 2 and Figure 5. Table 2 and Figure 5 also show a border line significant negative correlation between age of patients and the number of viable fat cells in the rapid thawing technique (technique B).

Correlation coefficient study between the duration of freezing (freezing interval) and the number of viable fat cells in both techniques showed a highly significant negative correlation between duration of freezing and the number of viable fat cells in thawing technique A, as shown in Table 3 and Figures 6, 7. Table 3 and Figures 6, 7 also show a highly significant negative correlation between duration of freezing and the number of viable fat cells in thawing technique B.

Comparison between the mean number of viable fat cells in each technique and the duration of freezing showed a higher mean number of viable fat cells in technique A among those samples frozen for less than 8 months duration with a mean number of 68.7, compared with those frozen for more than 8 months duration with a mean number of 25.2, and the difference was highly significant statistically. The mean difference was lower by 63% when frozen more than 8 months duration. Results
also showed a higher mean number of viable fat cells in technique B among those samples frozen for less than 8 months duration with a mean number of 26.5 compared with those frozen for more than 8 months duration with a mean number of 10.5, and the difference was also highly significant statistically. The mean difference was lower by 60% when frozen for more than 8 months duration, as shown in Table 4.

DISCUSSION

Because the thawing process is essential for the reuse of frozen autologous fat, appropriate thawing methods need to be studied to minimize cell damage. Few studies for the analysis of thawing process of frozen fat have been performed. To find a better thawing method among those commonly used in clinic, previous studies were performed, such as Pu et al, who suggested that outcomes were better when cryopreserved fat was thawed at 37°C. A study on the survival rates of adipocytes is normally performed by many techniques, such as live cell counting through trypan blue staining, the measurement of enzyme activity using glycerol-3-phosphate dehydrogenase analysis, the measurement of mitochondrial activity using XTT assay or MTT assay, and the observation of cell morphology through hematoxylin and eosin staining.

The survival rates of adipocytes were assessed by measuring the volume of the fat layer in the top layers separated after centrifugation, counting the number of live adipocytes after staining with trypan blue, and measuring the activity of mitochondria in the adipocytes in the previous study by Hwang et al. Eto et al observed that living and dead adipocytes can be differentiated not only with hematoxylin and eosin staining but also with immunohistochemistry for perilipin. In the current study, the survival rate was assessed by counting the number of viable adipocytes after staining with trypan blue, and then stem cell isolation, and culturing of ADSC of frozen fat tissue.

In the current study, it was found that 10–127 cells/μL (mean, 45.9 cells/μL) were counted in the samples naturally thawed at room temperature, while 3–54 cells/μL (mean, 18.1 cells/μL) were counted in the samples thawed rapidly (Table 1). Our results show that a higher mean number of viable fat cells were counted in thawing technique A compared with thawing technique B, and the difference was highly significant statistically. Our results are contrary to previous results by Hwang et al, who found that 3–37 cells/μL (mean, 19.2 cells/μL) were counted in the group naturally thawed at room temperature, and

Number of Viable Fat Cells	Age
No. viable fat cells in technique A	\(r = -0.551 \)
No. viable fat cells in technique B	\(r = -0.410 \)

\(P < 0.05 \) significant
8–60 cells/μL (mean, 27.9 cells/μL) in the group thawed rapidly.

Results of the Hwang et al study showed that in the group with rapid thawing for 10 minutes in a water bath, it was observed that the cell count of live adipocytes was significantly higher. This showed a similar pattern to that observed in experiments involving the thawing of other cryopreserved human tissues or cells, such as sperm in a study by Martinez-Soto et al or fibroblasts, in which the experimental group that was thawed rapidly at 37°C showed higher cell viability. However, this was in contrast to our study results in which we observed that natural thawing of frozen fat at room temperature will keep a higher number of viable cells and minimize adipocyte damage during thawing, and accordingly considered that injection of fat that has undergone natural thawing at room temperature should yield better outcomes.

The degree of adipocyte damage during the harvesting and storage process will be variable in each sample. In addition, the variability in adipocyte viability according to the age of the person whose fat was sampled should be taken into account, as should the duration of freezing. In the current study when correlating the age of patients and duration of freezing to the survival rate of frozen fat cells, we found a significant negative correlation between the age of patients, the duration of freezing, and the survival rate of the frozen fat cells.

Previous studies on the time-dependant viability of cryopreserved fat tissues have shown a wide range of results. Schuller-Petrovic reported that slow freezing of the tissue to –20°C, shortly after harvesting had no harmful effect on the adipocytes. Sommer and Sattler reported that live adipocytes were found after cryopreservation at –20°C for 3 years. However, Wolter et al reported that the adipocytes were destroyed after 48 hours of freezing at –20°C and that reuse of adipose tissues cryopreserved at –20°C provides an injection of mostly dead cells. These contradicting results have led to confusion about the effect of cryopreservation on adipose tissues. Results of the current study showed a higher mean number of viable fat cells in both thawing techniques among those samples frozen for less than 8 months duration, compared with those frozen for more than 8 months duration, and the difference was highly significant statistically.

Number of Viable Fat Cells	Duration of Freezing
No. viable fat cells in technique A	\(R = -0.990 \)
No. viable fat cells in technique B	\(R = -0.845 \)

\(P < 0.01 \) highly significant.
Correlation coefficient between duration of freezing and number of fat cells in technique A (normal) highly significant negative correlation (Table 3).

Fig. 6.

Correlation coefficient between duration of freezing and number of fat cells in technique B (rapid) highly significant negative correlation (Table 3).

Fig. 7.
CONCLUSIONS

The current study concluded and recommended that, the higher the age, the lower the mean number of viable fat cells in frozen fat transfer. The duration of freezing should not exceed 7 months, as the mean number of viable fat cells is affected by the duration of freezing (8 months is the median time of freezing in the current study). Technique A, or natural thawing at room temperature, will lead to much higher viable fat cells compared with rapid thawing at 37°C for 10 minutes in technique B, as proved by the higher mean number of viable fat cells thawed by this technique.

Riham Lashin, MD
Department of Plastic, Burn and Maxillofacial Surgery
Faculty of Medicine
Ain Shams University
Eldemerdash Hospital
56 Ramsis Street, Abbassia
11566 Cairo, Egypt
E-mail: riham_lashin@yahoo.com

REFERENCES

1. Piasecki JH, Gutowski KA, Lahvis GP, et al. An experimental model for improving fat graft viability and purity. Plast Reconstr Surg. 2007;119:1571–1583.
2. Rohrich RJ, Sorokin ES, Brown SA. In search of improved fat transfer viability: a quantitative analysis of the role of centrifugation and harvest site. Plast Reconstr Surg. 2004;113:391–395.
3. Scarborough DA, Schuen W, Biascica E. Fat transfer for aging skin: technique for rhytids. J Dermatol Surg Oncol. 1990;16:651–655.
4. Pereira LH, Radwanski HN. Fat grafting of the buttocks and lower limbs. Aesthetic Plast Surg. 1996;20:409–416.
5. Guerrerosantos J, Gonzalez-Mendoza A, Masmela Y, et al. Long-term survival of free fat grafts in muscle: an experimental study in rats. Aesthetic Plast Surg. 1996;20:403–408.
6. Carpaneda CA, Ribeiro MT. Study of the histologic alterations and viability of the adipose graft in humans. Aesthetic Plast Surg. 1995;17:43–47.
7. Baran M, Çelikkalkan K, Çağan Appak Y, et al. Body fat mass is better indicator than indirect measurement methods in obese children for fatty liver and metabolic syndrome. SciMedicine J. 2019;1:168–175.
8. Manikandan G, Yuvashree M, Sangeetha A, et al. Liver tissue regeneration using nano silver impregnated sodium alginate/PVA composite nanofibres. SciMedicine J. 2020;2:16–21.
9. Moore JH Jr, Kolaczynski JW, Morales LM, et al. Viability of fat obtained by syringe suction lipectomy: effects of local anesthesia with lidocaine. Aesthetic Plast Surg. 1995;19:355–359.
10. Shiffman MA, Mirrafati S. Fat transfer techniques: the effect of harvest and transfer methods on adipocyte viability and review of the literature. Dermatol Surg. 2001;27:819–826.
11. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–228.
12. Leong DT, Hutmacher DW, Chew FT, et al. Viability and adipogenic potential of human adipose tissue processed cell population obtained from pump-assisted and syringe-assisted liposuction. J Dermaotol Surg. 2003;37:169–176.
13. Tholpady SS, Llull R, Ogle RC, et al. Adipose tissue: stem cells and beyond. Clin Plast Surg. 2006;33:55–62.
14. Liu J, Woods EJ, Ager Y, et al. Cryobiology of rat embryos II: a theoretical model for the development of interrupted slow freezing procedures. Biol Reprod. 2000;63:1303–1312.
15. Son D, Oh J, Choi T, et al. Viability of fat cells over time after syringe suction lipectomy: the effects of cryopreservation. Ann Plast Surg. 2010;65:345–360.
16. Son D, Oh J, Choi T, et al. Viability of cells in aspirated fat tissue after 1 year cryopreservation. J Korean Soc Plast Reconstr Surg. 2009;36:135–139.
17. Kim YK, Park HS, Lee HJ. Studies on the proper storage period and change of -20 degrees c cryopreserved adipocyte. J Korean Soc Aesthetic Plast Surg. 2006;12:33–42.
18. Macrae JW, Tholpady SS, Katz AJ, et al. Human adipocyte viability testing: a new assay. Aesthet Surg J. 2003;23:265–269.
19. Hwang SM, Lee JS, Kim HD, et al. Comparison of the viability of cryopreserved fat tissue in accordance with the thawing temperature. Arch Plast Surg. 2015;42:143–149.
20. Lu F, Mizuno H, Uysal CA, et al. Improved viability of random pattern skin flaps through the use of adipose-derived stem cells. Plast Reconstr Surg. 2008;121:50–58.
21. Pu LI, Cui X, Fink BF, et al. The viability of fatty tissues within adipose aspirates after conventional liposuction: a comprehensive study. Ann Plast Surg. 2005;54:288–292.
22. Sommer B, Sattler G. Current concepts of fat graft survival: histology of aspirated adipose tissue and review of the literature. Dermatol Surg. 2000;26:1159–1166.
23. Lalikos JF, Li YQ, Roth TP, et al. Biochemical assessment of cellular damage after adipocyte harvest. J Surg Res. 1997;70:95–100.
24. MacRae JW, Tholpady SS, Ogle RC, et al. Ex vivo fat graft preservation: effects and implications of cryopreservation. *Ann Plast Surg*. 2004;52:281–283.

25. Eto H, Kato H, Suga H, et al. The fate of adipocytes after nonvascularized fat grafting: evidence of early death and replacement of adipocytes. *Plast Reconstr Surg*. 2012;129:1081–1092.

26. Martínez-Soto JC, García-Vazquez FA, Gumbao D, et al. Assessment of two thawing processes of cryopreserved human sperm in pellets. *Cryobiology*. 2011;63:131–136.

27. Verheyen G, Pletinck I, Van Steirteghem A. Effect of freezing method, thawing temperature and post-thaw dilution/washing on motility (CASA) and morphology characteristics of high-quality human sperm. *Hum Reprod*. 1993;8:1678–1684.

28. Mazur P, Koshimoto C. Is intracellular ice formation the cause of death of mouse sperm frozen at high cooling rates? *Biol Reprod*. 2002;66:1485–1490.

29. Guan H, Zhao Z, He F, et al. The effects of different thawing temperatures on morphology and collagen metabolism of -20 degrees C dealt normal human fibroblast. *Cryobiology*. 2007;55:52–59.

30. Schuller-Petrovic S. Improving the aesthetic aspect of soft tissue defects on the face using autologous fat transplantation. *Facial Plast Surg*. 1997;13:119–124.

31. Wolter TP, von Heimburg D, Stoffels I, et al. Cryopreservation of mature human adipocytes: in vitro measurement of viability. *Ann Plast Surg*. 2005;55:408–413.