Bifurcations, chaos, and sensitivity to parameter variations in the Sato cardiac cell model

Stefan Ottea,b, Sebastian Berga,b, Stefan Luthera,b,c, Ulrich Parlitza,b,c,∗

a Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
b Institute for Nonlinear Dynamics, Georg-August-Universität Göttingen, Am Faßberg 17, 37077 Göttingen, Germany
c German Centre for Cardiovascular Research, Partner Site Göttingen, 37077 Göttingen, Germany

A R T I C L E I N F O
Article history:
Received 7 August 2015
Revised 4 January 2016
Accepted 13 January 2016
Available online 28 January 2016

Keywords:
Cardiac cell model
Early after depolarisations
Nonlinear dynamics
Bifurcation analysis

A B S T R A C T
The dynamics of a detailed ionic cardiac cell model proposed by Sato et al. (2009) is investigated in terms of periodic and chaotic action potentials, bifurcation scenarios, and coexistence of attractors. Starting from the model’s standard parameter values bifurcation diagrams are computed to evaluate the model’s robustness with respect to (small) parameter changes. While for some parameters the dynamics turns out to be practically independent from their values, even minor changes of other parameters have a very strong impact and cause qualitative changes due to bifurcations or transitions to coexisting attractors. Implications of this lack of robustness are discussed.

© 2016 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Mathematical modelling has become an important tool in the life sciences to address problems that are not approachable experimentally. For example, to investigate cardiac arrhythmias or sudden cardiac death, models have been developed to describe cardiac dynamics from gene to organ level [2,3]. Therefore, many models exist to describe the action potentials (AP) of single ventricular cells. For better comparison with experimental results, these models are often developed to represent dynamics of specific mammals: For example, the well-known Luo–Rudy model [4] can be used to model guinea pig ventricular cells, while the model used by Wang and Sobie [5] describes mouse ventricular action potentials, and the one used by Sato et al. [1] (first AP model, in the following referred to as the Sato model) models ventricular rabbit myocytes.

However, many of these models share the feature of consisting of a great number of equations and parameters. For example, the Sato model uses 27 variables whose calculation requires 118 equations and 177 parameters. Therefore, the exact implementation of these models as given in the original publications is quite error-prone, and since changes in parameters can dramatically alter the dynamics of the model, reproducing results from former studies can be a challenging task.

Studies analysing the parameter sensitivity of electrophysiological models are still rare [6,7]. Therefore, in this paper we use the Sato model to investigate the sensitivity of the dynamics to parameter variations. This cardiac cell model was used to provide an explanation for ventricular tachycardia and ventricular fibrillation originating from early afterdepolarisations at the cellular level by a chaos synchronization mechanism [1,8]. As will be shown in the following sections this model...
exhibits chaotic action potentials as well as coexistence of different types of periodic and chaotic attractors. To investigate the robustness of the dynamics given by the standard parameter set of this model [1], bifurcation diagrams are computed showing dynamical changes when going below or above the standard parameter values and it turns out that for some parameters already minor deviations from the standard value lead to qualitatively different dynamics.

2. Methods

The Sato model, which is given in detail in Appendix A, describes the action potentials in the membrane voltage \(V(t) \) of ventricular rabbit myocytes. It uses 27 variables that can be described by 118 equations involving 177 parameters. Besides ion concentrations, channel conductances or physical constants, many of these parameters are coefficients, obtained from fitting mathematical models to experimental data. Since the sensitivity of the model dynamics to changes of these fitted parameters is to be examined as well, all fit coefficients were labelled (see Tables A.3–A.6) and included in the total list of model parameters.

The cardiac cell model is given as a set of ordinary differential equations (ODE’s)

\[
\begin{align*}
\frac{dV(t)}{dt} &= -\frac{l_{\text{ion}}(h, t) + I_{\text{stim}}(t)}{C_m} \\
\frac{dh(t)}{dt} &= F(h, V, t)
\end{align*}
\]

where \(C_m \) is the membrane capacity and \(I_{\text{stim}} \) the external stimulation current with pulses of 1 ms duration and amplitudes of \(-40 \mu\text{A/cm}^2\). \(l_{\text{ion}} \) is the sum of all considered transmembrane or intracellular ionic currents. The state vector \(h \) includes all additionally needed, time dependent variables like gating variables or ionic concentrations. The ODE system (1) was solved in C++, using the Nordsieck BDF method with adaptive time steps implemented in the GNU Scientific Library [9]. The maximum absolute and relative error tolerances were set to \(10^{-8}\) with a maximum allowed time step of 0.5 s. Since this ODE solver requires the Jacobian matrix of the ODE system (1), the symbolic Jacobian was calculated using the GiNaC framework [10].

For the Sato model, no initial conditions were given in the original publications [1,11]. We obtained steady state initial conditions by setting all 27 variables to 0.1 prior to pacing the system with a constant PCL of 0.8 s until a steady state was reached, which took about 300 s of simulated cell activity. The initial conditions obtained by this procedure are given in Table A.2.

The model was originally designed to reproduce cardiac dynamics at fast pacing [11] and includes modifications to be capable of generating early afterdepolarisations (EADs) [1], which are known to be potential triggers of lethal cardiac arrhythmias [12,13]. A detailed description of EADs and the underlying ionic mechanisms can, for example, be found in Ref. [14]. Briefly, an EAD is an abnormal depolarisation during the plateau phase of an AP, which essentially prolongs the action potential duration (APD). The APD for each AP is defined here as the time duration where the shape and duration of the action potential are PCL-dependent, we defined the phase space point \(v_n^0 \) of the \(n \)th action potential of variable \(v \) as

\[
v_n^0 := v(t_0 + (n + 0.3)\Delta t)
\]

where \(t_0 \) is the time of the depolarisation of the first AP considered. Thus, the phase increases linearly with PCL. Furthermore, for calculating Lyapunov exponents, a discrete QR decomposition based method as described in [15] was implemented.

3. Results

3.1. Periodic and chaotic action potentials

Fig. 1 shows the temporal evolution of the membrane voltage \(V(t) \) for three different PCLs: For \(\text{PCL} = 1.100 \) s and \(\text{PCL} = 1.370 \) s, the APD is in each case constant for every AP. While for \(\text{PCL} = 1.100 \) s no EADs occur at all, however, for \(\text{PCL} = 1.370 \) s EADs occur at each beat. For intermediate PCLs, in this case \(\text{PCL} = 1.282 \) s, EADs occur irregularly on some beats.

Fig. 2 shows a three dimensional projection of the chaotic attractor underlying the time series shown in the middle panel of Fig. 1. Colours indicate the average concentration \(c_j \) of free \(\text{Ca}^{2+} \) in the sarcoplasmic reticulum (SR).

To investigate the occurrence of EADs for a larger PCL range, we calculated the APD for 200 APs for \(1.1 \text{s} < \text{PCL} < 1.4 \text{s} \) with a step size of \(\Delta \text{PCL} = 0.5 \) ms. Prior to the APD calculation, we paced the system for 500 s of cell activity and for the \(n \)th PCL, we used the final state vector of the previous \(\text{PCL}_{n-1} = PCL_n - \Delta \text{PCL} \) as initial condition. The resulting bifurcation diagram in Fig. 3A shows that for a certain PCL range, the APD takes many different values, which shows the irregular behaviour in the appearance of EADs. Note that an APD value larger than about 0.5 s represents an EAD. For smaller and larger PCL values the APD does not vary, which indicates periodic behaviour. Furthermore, the irregular behaviour in the intermediate PCL range is interrupted by periodic windows. Fig. 3B shows a bifurcation diagram where instead of APDs
Membrane voltage V for different PCLs: for small and large PCL, the shape and duration of the APs do not change, while for small PCLs no EADs occur at all and for large PCLs, EADs occur at every beat. For intermediate PCLs, EADs occur irregularly with some APs.

Chaotic attractor occurring for PCL $= 1.282$ s (see action potentials in the middle panel in Fig. 1). Plotted is a three dimensional projection into a subspace of the state space spanned by the membrane voltage V, the intracellular Na$^+$ concentration $[Na^+]$, and the average concentration c_i of free Ca$^{2+}$ in the cytosol. The colour encodes the average concentration c_j of free Ca$^{2+}$ in the sarcoplasmic reticulum (SR).

Values of the membrane voltage V_p in the Poincaré section are plotted which are calculated according to Eq. (2). Note that a V_p value larger than about -30 mV represents an EAD. While the shape of the two bifurcation diagrams shown in Fig. 3A and B differ due to the different quantities used, the same irregular behaviour in the intermediate PCL range is visible. Furthermore, in the bifurcation diagram using the membrane voltages V_p in the Poincaré section the periodic windows are more clearly visible: a period-2, 3, 4 and 5 window can easily be identified, which is not the case in the APD bifurcation diagram. Since the latter contains no further information that the V_p bifurcation diagram lacks, we will use the values V_p in the Poincaré section for further analysis. We found that for $0.3 \text{s} < \text{PCL} < 4.0 \text{s}$, there is no other PCL range exhibiting irregular V_p behaviour except for the one described above.

To test whether the irregular appearance of EADs is due to dynamical chaos, the three largest Lyapunov exponents λ were calculated and are shown for $1.1 \text{s} < \text{PCLs} < 1.4 \text{s}$ in Fig. 3C: The PCL values where APD and V_p show irregular behaviour correspond to a positive largest Lyapunov exponent λ_{max}, which shows that the irregularity is dynamical chaos.

All of the results above are similar to the results by Sato et al. [1] but the chaotic PCL ranges differ quantitatively. To the best of knowledge, the model was implemented exactly as described in [1,11]. Due to the number of equations and
parameters, the possibility of errors while transferring the equations from paper to computer or vice versa cannot fully be excluded. In the following, we therefore analyse the sensitivity of the model dynamics to parameter changes.

3.2. Bifurcations

A simple, but insightful approach to qualitatively analyse the parameter sensitivity of the model is to vary every model parameter independently and to examine and compare the resulting bifurcation diagrams. For our purposes, a variation for each parameter P by up to 100 % around its standard value \bar{P} as given in Tables A.3–A.6 is considered to be sufficient. More precisely, for every P, we calculated the membrane voltages V^p for 200 APs for $(\bar{P}/100) < P < 2 \cdot \bar{P}$ with a step size of $\Delta P = (\bar{P}/100)$. Prior to the V^p calculation, we paced the system for at least 300 APs and for the nth parameter value P_n, we used the final state vector of the previous $P_{n-1} = P_n - \Delta P$ as initial condition. For P_0 we used the initial conditions as given in Table A.2. This “upward” calculation for every P (i.e. from small to large parameter values) was followed by an analogous “downward” calculation (i.e. from large to small parameter values) where again we used the final state vector of the nth parameter value calculation P_n as initial condition for the following parameter value P_{n+1}. This calculation was carried out for PCL = 1.282 s such that the model should yield chaotic dynamics if $P = \bar{P}$ according to Figs. 2 and 3C.

In Fig. 4, a selection of the bifurcation diagrams is shown. The standard value \bar{P} for each parameter is represented by a vertical line, and the differently coloured points representing the membrane voltage V^p in the Poincaré section reflect the previously explained “upward” (light blue) and “downward” (dark red) calculation. Note that the “downward” calculation is plotted on top of the “upward” calculation, such that the dark red points can essentially hide the light blue points, meaning that the dynamics in the affected parts of the bifurcation diagram are equal for both calculations. The bifurcation diagrams show that a wide range of different behaviour can be observed under individual variation of different parameters:

- Fig. 4A shows that the chaotic dynamics, which is expected for PCL = 1.282 s according to Figs. 2 and 3, is stable under parameter variation of parameter eq48P1, independent of whether the variation occurs from small to large values or vice versa.
- Fig. 4B: For small values of the parameter eq92P1, the points indicate a period-6 orbit (with three nearby points at $V^p \approx -3$ mV) which for increasing values of eq92P1 undergoes period doubling bifurcations and subsequently shows chaotic dynamics for the standard value of eq92P1 = 20. The chaotic dynamics becomes unstable and changes over to a
Fig. 4. \(V_p\) over \(P\) for selected parameters \(P\) with PCL = 1.282 s and 200 APs per parameter value: the “upward” (from small to large \(P\); light) and “downward” (from large to small \(P\); dark) calculations as described in Section 3.2 are shown, as well as the standard parameter value (vertical line). For different \(P\), the diagrams reveal qualitatively very different behaviour under parameter variation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
period-5 orbit (with two nearby points at $V^P \approx -3$ mV) for a critical value of $eq92P1 \approx 33$. If now decreased again, the period-5 orbit does not become unstable at $eq92P1 \approx 33$ but remains stable up to $eq92P1 \approx 12.4$: In this parameter range, at least two attractors coexist with periodic and chaotic behaviour, respectively. Note that this range also includes the standard value of $eq92P1 = 20$. At $eq92P1 \approx 12.4$, the period-5 orbit becomes unstable and the dynamics of “upward” and “downward” calculation equal.

- **Fig. 4C:** The variation of $eq73P2$ shows that the “upward” variation of this parameter yields chaotic dynamics for almost all parameter values (with two exceptions for $eq73P2 \approx 3$ and $eq73P2 \approx 13$), while the “downward” variation yields periodic dynamics with period 5 (with two nearby points at $V^P \approx -3$ mV) except for very large values of $eq73P2$: Therefore, once the trajectory is bound to one of these attractors, both are relatively stable to parameter variations of $eq73P2$.

- **Fig. 4D:** Except for very small values of the dissociation constant K_{mem}, the dynamics is bound for both “upward” and “downward” calculation to the already mentioned periodic attractor with period 5: Once bound to this attractor, the dynamics is very stable to variations in K_{mem} and chaotic motion is never observed in this case. For decreasing values of K_{mem}, the period-5 orbit becomes unstable and changes over to a period-3 orbit, while the “upward” calculation exhibited different behaviour in this regime.

- **Fig. 4E** shows that for increasing values of $eq89P1$ the dynamics follows periodic orbits of different periods and subsequently shows chaos for a fairly narrow parameter range around the standard value of $eq89P1 = 3$. This chaotic behaviour becomes unstable if $eq89P1$ is further increased and eventually leads to a period-2 orbit. Note that the chaotic behaviour does not occur for parameter values smaller than the standard value, meaning that the motion is highly sensitive to slightly decreased values of $eq89P1$. In this bifurcation diagram both “upward” and “downward” calculation yield the same dynamics for all parameter values larger than the standard value. However, for smaller parameter values it is clearly visible how the dynamics depends on the “direction” of parameter variation: For decreasing parameter values, the motion is bound to the respective periodic attractor longer than for the “upward” calculation before it becomes unstable and goes over to a different periodic attractor.

- **Fig. 4F:** The bifurcation diagram for $K_{mem,Na}$ shows that if this parameter is only slightly varied to either side around its standard value of $K_{mem,Na} = 87.5$, the dynamics becomes periodic. Several more chaotic regions exist for larger and smaller parameter values, respectively. Also, in the “downward” calculation, the motion is periodic even for the standard value. Therefore, the dynamics is highly sensitive to changes in $K_{mem,Na}$.

- **Fig. 4G:** For small values of the threshold for leak onset k_j, the motion exhibits chaotic behaviour which is interrupted by periodic windows for increasing values of k_j. Period doubling bifurcations are clearly visible within these periodic windows. Subsequently, chaotic motion also appears around the standard value of $k_j = 50$, but quickly becomes periodic on either side of this value. For even larger values of k_j, the motion goes over to the already mentioned period-5 attractor which is stable over a fairly broad parameter range. If decreased again, the dynamical behaviour is nearly identical with the exception that the period-5 attractor remains stable for values of k_j even smaller than the standard value.

- **Fig. 4H** shows that the variation of $eq57P3$ yields a bifurcation diagram very similar to one of k_j: Although these parameters appear in equations describing different aspects of the cell dynamics, both have qualitatively very similar influence on the dynamics of the system. Also note that while k_j can be interpreted biologically, $eq57P3$ was obtained by fitting a model equation to experimental data.

These examples illustrate that the model parameters can strongly influence the dynamics of the system and even small deviations from the given standard parameter values can lead to very different dynamical behaviour. In addition, for the standard parameter values a periodic attractor with period-5 coexists to the chaotic attractor which occurred for PCL = 1.282 s in Fig. 3. The possibility of more coexisting attractors cannot be excluded.

As can be seen from the bifurcation diagrams, some parameters influence the dynamics of the system while others do not. Also, the sensitivity of the dynamics to changes in the parameters varies from parameter to parameter. We therefore heuristically defined five parameter classes in order to group parameters with similar influence on the dynamics: The first class contains parameters which do not alter the dynamics of the system if varied by up to 100%, as $eq48P1$ in Fig. 4A. The second and third class contain parameters which qualitatively influence the dynamics if varied by more (as $eq92P1$ in Fig. 4B) or less (as $eq89P1$ in Fig. 4E) than 10 %, respectively. All parameters of Table A.7 are excluded from this grouping as they consist of physical constants or other physical parameters like the cell volume or the temperature. These parameters form the fourth class. The fifth class contains all those parameters where numerical difficulties (e.g., divergence of solutions) occurred for parameter values P_i far from P and the “upward” or “downward” calculation of the bifurcation diagrams failed at some point.1 The parameter classes, together with a short description and the number of parameters per class are shown in Table 1. Here, three PCLs (PCL = 1.1 s, PCL = 1.282 s, and PCL = 1.37 s) are considered and the corresponding parameter bifurcation diagrams (similar to Fig. 4) are used to classify the model parameters. Furthermore, we grouped the parameters into different categories: Ca^{2+}, Na^+, K^+, and the rest. This categorisation was motivated by the hypothesis that the impact of each parameter may depend on the ion dynamics it is involved in.

1 As an alternative for those parameter values that lead to numerical difficulties if they become too small or too large one can compute bifurcation diagrams where the respective parameter is not varied from small to large values, but is being increased or decreased from the standard value.
Table 1
Parameter classes and number of parameters per class. For each PCL, the number of parameters in class 0 is the number of parameters needed to give a grand total of 177 parameters (including the constants).

Class	Definition
0: not grouped	Parameters that caused numerical difficulties and were not grouped with this procedure
1: non sensitive	Parameters whose variation up to 100 % does not effect the qualitative dynamics (periodic, chaotic,...) of the system
2: mildly sensitive	Parameters whose variation of more than 10 % and less than 100 % does effect the dynamics of the system qualitatively
3: highly sensitive	Parameters whose variation of less or equal than 10 % does effect the dynamics of the system qualitatively
4: constants	Physical constants and ionic concentrations (11 parameters)

PCL	1.1 s	1.282 s	1.37 s
Parameter group/class	1 2 3	1 2 3	1 2 3
Ca²⁺-related	23 18 6	0 7 44	3 9 37
Na⁺-related	15 11 0	5 7 14	9 11 6
K⁺-related	28 22 5	5 12 38	11 14 30
Others	5 7 3	0 0 15	0 1 14
Total	71 58 14	10 26 111	23 35 87

Fig. 5. Class membership of all parameters for different PCLs (the parameters corresponding to each number are given in Tables A.3–A.6). Parameters are grouped according to the ion dynamics they are involved in.

For PCL = 1.1 s 72 parameters belong to classes 2 or 3 and therefore qualitatively alter the dynamics if varied by less than 100 %. From these, 14 are “highly sensitive” parameters, i.e. a variation of less than 10 % of their values changes the dynamics qualitatively. For PCLs 1.282 s, resulting in chaotic dynamics, and 1.37 s the number of sensitive parameters is even larger (137 and 122, respectively). To address the question whether particular parameters exhibit for all three PCLs (high) sensitivity and a major impact on the dynamics of the model Fig. 5 shows the class membership of all parameters and all three PCLs (differently coloured symbols). There are only 23 parameters in classes 1, 2, or 3 which belong for all three PCLs to the same group (see parameters marked with an asterisk in Tables A.3–A.6). In most cases, the class membership changes with the PCL and physiological factors determining the class membership (for arbitrary PCLs) are very difficult to identify. Even when grouping the parameters according to their role in modelling the dynamics of different ions (see Fig. 5) no direct relation between ion type and sensitivity class is visible. Therefore, we conclude that the observed bifurcation scenarios and the impact of parameter variations are not governed by biophysical or physiological effects but mainly due to the very large number of parameters (and model terms). From Statistical Learning Theory [16] it is known that overly detailed models (“overfitting”) may suffer from adverse features like low generalisation ability and poor prediction properties. This is a general phenomenon that does not rely on the particular (physical) context of the model and appears to be relevant for cardiac cell modelling, too.

4. Conclusion

Many ionic cardiac cell models aim at detailed “realistic” modelling taking into account any known biophysical detail. As a consequence these models consist of a large number of variables and an even larger number of parameters. A large number of variables implies a large dimension of the state space. This is a priori not a problem but perhaps not necessary, because even the chaotic attractors of such cell models are usually quite low dimensional and therefore, a four or five dimensional state space, for example, would be sufficient to “host” the relevant attractors. Much more problematic is the very large number of parameters. The values of some parameters can be precisely measured but others are difficult to determine or are just imported from previous research (under partly different conditions or with different species). In any case, there may be limited information about the true and proper values of parameters and this raises the question of what happens if these
parameters vary within a small interval (enclosing the conjectured but unknown “true” value)? The bifurcation diagrams obtained for the parameters of the Sato model clearly demonstrate that this is a severe issue. While some parameters have practically no influence on the dynamics others have to be known very precisely to achieve the expected or desired dynamics. This (extreme) sensitivity reduces the robustness of the model and its ability to generalise. These findings are in good agreement with results from statistical learning theory and machine learning where overfitting leads to strong degradation of regression and classification results [16]. Our attempt to interpret the class membership of each parameter in a physiologically meaningful sense failed, because most parameters occur in different classes depending on the PCL applied. There is also no evidence that parameters determining a specific ion dynamics are more (or less) sensitive than others. We conjecture that this feature of low robustness is a general “overfitting effect” and not due to some physiological or biophysical processes. In this sense we expect that it is shared by many (if not all) high dimensional ionic cell models and has to be taken into account when using these models for simulating or even predicting dynamical events like the onset of arrhythmias.

Acknowledgements

S.L. and U.P. acknowledge support from the BMBF (FKZ031A147, GO-Bio), the DFG (SFB 1002, project C03), and the German Center for Cardiovascular Research (DZHK e.V., FKZ 81Z4300441).

Appendix A. The Sato model

The following section contains the equations, parameters and initial conditions of the cardiac myocyte model investigated in this article. It is based on a model developed and described by Mahajan et al. [11], which is also available online as a cellML implementation [17]. As these versions differ slightly, the equations from [17] were adopted. Furthermore, the model is modified as described by Sato et al. [1] (first AP model), and further ambiguities where eliminated after correspondence with the authors. Thus, some of the following model equations contain terms that are not given or differ from the ones in the original publications. In the following, these terms are boxed. Furthermore, for parameter eq6P2 a value of 0.5 was used instead of 0.05 [1], to avoid very large derivatives dP_r/dV when computing and applying the Jacobian matrix of the model.

A.1. Variables and initial conditions of the model

Variable	Definition	Initial value
c_i	Average concentration of free Ca$^{2+}$ in the submembrane space	0.137483 μM
c_l	Average concentration of free Ca$^{2+}$ in the cytosol	0.130489 μM
c_s	Average concentration of free Ca$^{2+}$ in the SR	127.498 μM/1 cytosol
c_j	Average free Ca$^{2+}$ concentration available for release in the JSR	125.711 μM/1 cytosol
I_{rel}	Total release flux out of the SR via RyR channels	0.0046091 μM/ms
C_{L}	L-type Ca$^{2+}$ channel state	0.991324
C_{j}	L-type Ca$^{2+}$ channel state	1.63521 10^{-6}
I_{CaL}	L-type Ca$^{2+}$ channel state	3.32817 10^{-7}
I_{CaA}	L-type Ca$^{2+}$ channel state	1.43069 10^{-5}
I_{Na}	L-type Ca$^{2+}$ channel state	5.28378 10^{-7}
I_{to}	L-type Ca$^{2+}$ channel state	0.00865914
$[\text{CaT}]_i$	Concentration of Troponin C binding sites	12.7657 μM/1 cytosol
$[\text{CaT}]_s$	Concentration of Troponin C binding sites	13.2176 μM/1 cytosol
c_p	Average Ca$^{2+}$ concentration in active dyadic clefts	0.597462 μM
V	Membrane potential	−87.4094 mV
h	Gating variable for I_{to}	0.991187
j	Gating variable for I_{to}	0.994210
m	Gating variable for I_{to}	0.00103212
s_0	Gating variable for I_{to}	0.00677880
s_1	Gating variable for I_{to}	0.019339
s_2	Gating variable for I_{to}	0.0664083
X_{to}, f	Gating variable for I_{to}	0.00358546
Y_{to}, f	Gating variable for I_{to}	0.00358546
X_{to}, s	Gating variable for I_{to}	0.297391
Y_{to}, s	Gating variable for I_{to}	0.417681
R_s	Variable needed for I_{to}	0.00358546
A.2. Model equations

Model of the L-type Ca\(^{2+}\) current

\[p_0^\infty = (1 + \exp((-V + \text{eq1P1})/\text{eq1P2}))^{-1} \] (A.1)

\[\alpha = \frac{p_0^\infty}{\tau_{po}} \] (A.2)

\[\beta = \frac{1 - p_0^\infty}{\tau_{po}} \] (A.3)

\[f = (1 + (k_p^0/c_p)^3)^{-1} \] (A.4)

\[R_1 = \text{eq5P1} + \text{eq5P2} \cdot \exp(V/\text{eq5P3}) \] (A.5)

\[P_t = (\exp((V + \text{eq6P1})/\text{eq6P2}) + 1)^{-1} \] (A.6)

\[P_3 = (1 + \exp(-(V + \text{eq7P1})/\text{eq7P2}))^{-1} \] (A.7)

\[T_{Ca} = \frac{\text{eq8P1}}{1 + (c_p/c_p)^4} + \text{eq8P2} \] (A.8)

\[\tau_{Ca} = (R_1 - T_{Ca}) \cdot P_t + T_{Ca} \] (A.9)

\[\tau_{Ba} = (R_1 - T_{Ba}) \cdot P_t + T_{Ba} \] (A.10)

\[k_5 = \frac{1 - P_t}{\tau_{Ca}} \] (A.11)

\[k_6 = \frac{f \cdot P_t}{\tau_{Ca}} \] (A.12)

\[k'_6 = \frac{1 - P_t}{\tau_{Ba}} \] (A.13)

\[k'_6 = \frac{P_t}{\tau_{Ba}} \] (A.14)

\[s_1 = \text{eq15} \cdot f \] (A.15)

\[k_1 = \text{eq16} \cdot f \] (A.16)

\[k_2 = k_1 \cdot \frac{s_2}{s_1} \cdot \frac{r_2}{r_1} \] (A.17)

\[k'_2 = k'_1 \cdot \frac{s'_2}{s'_1} \cdot \frac{r_2}{r_1} \] (A.18)

\[k_3 = \frac{\exp(-(V + \text{eq19P1})/\text{eq19P2})}{\text{eq19P3} \cdot (1 + \exp(-(V + \text{eq19P1})/\text{eq19P2}))} \] (A.19)

\[k'_3 = k_3 \] (A.20)

\[k_4 = k_3 \cdot \frac{\alpha}{\beta} \cdot \frac{k_1}{k_2} \cdot \frac{k_5}{k_6} \] (A.21)

\[k'_4 = k'_3 \cdot \frac{\alpha}{\beta} \cdot \frac{k'_1}{k'_2} \cdot \frac{k'_5}{k'_6} \] (A.22)

\[p_0 = 1 - (C_1 + C_2 + I_{1Ca} + I_{2Ca} + I_{1Ba} + I_{2Ba}) \] (A.23)

\[\frac{dC_2}{dt} = \beta \cdot C_1 + k_5 \cdot I_{2Ca} + k'_5 \cdot I_{2Ba} - (k_6 + k_6 + \alpha) \cdot C_2 \] (A.24)

\[\frac{dC_1}{dt} = \alpha \cdot C_2 + k_2 \cdot I_{1Ca} + k'_2 \cdot I_{1Ba} + r_2 \cdot P_t - (r_1 + \beta + k_1 + k'_1) \cdot C_1 \] (A.25)

\[\frac{di_{1Ca}}{dt} = k_1 \cdot C_1 + k_4 \cdot I_{2Ca} + s_1 \cdot P_t - (k_2 + k_3 + s_2) \cdot I_{1Ca} \] (A.26)

\[\frac{di_{2Ca}}{dt} = k_3 \cdot I_{1Ca} + k_6 \cdot C_2 - (k_4 + k_5) \cdot I_{2Ca} \] (A.27)

\[\frac{di_{1Ba}}{dt} = k'_1 \cdot C_1 + k'_4 \cdot I_{2Ba} + s'_1 \cdot P_t - (k'_2 + k'_3 + s'_2) \cdot I_{1Ba} \] (A.28)

\[\frac{di_{2Ba}}{dt} = k'_3 \cdot I_{1Ba} + k'_6 \cdot C_2 - (k'_4 + k'_5) \cdot I_{2Ba} \] (A.29)
The SERCA (uptake) pump

\[J_{\text{up}} = \frac{v_{\text{up}} \cdot C^2_l}{C^2_l + C^2_{\text{up}}} \]
(A.30)

Diffusive flux

\[J_d = \frac{C_s - C_i}{\tau_d} \]
(A.31)

The L-type Ca\(^{2+}\) current

\[a = \frac{V \cdot F}{RT} \]
(A.32)

\[c_{s,mM} = \frac{C_s}{1000} \]
(A.33)

\[J_{\text{L}} = \frac{4P_{\text{Ca}} \cdot (c_{s,mM} \cdot \exp(2a)) - eq34 \cdot [\text{Ca}^{2+}]_o}{RT \cdot (\exp(a) - 1)} \]

if \[|a| < 0.001 \]

\[J_{\text{Ca}} = g_{\text{Ca}} \cdot p_0 \cdot i_{\text{Ca}} \]
(A.35)

Nonlinear buffering

\[\beta_s = \left(1 + \frac{B_{\text{SR}} \cdot K_{\text{SR}}}{(C_s + K_{\text{SR}})^2} + \frac{B_{\text{Cd}} \cdot K_{\text{Cd}}}{(C_s + K_{\text{Cd}})^2} + \frac{B_{\text{mem}} \cdot K_{\text{mem}}}{(C_s + K_{\text{mem}})^2} + \frac{B_{\text{sat}} \cdot K_{\text{sat}}}{(C_s + K_{\text{sat}})^2} + \frac{B_{\text{ATP}} \cdot K_{\text{ATP}}}{(C_s + K_{\text{ATP}})^2} \right)^{-1} \]
(A.36)

\[\beta_i = \left(1 + \frac{B_{\text{SR}} \cdot K_{\text{SR}}}{(C_i + K_{\text{SR}})^2} + \frac{B_{\text{Cd}} \cdot K_{\text{Cd}}}{(C_i + K_{\text{Cd}})^2} + \frac{B_{\text{mem}} \cdot K_{\text{mem}}}{(C_i + K_{\text{mem}})^2} + \frac{B_{\text{sat}} \cdot K_{\text{sat}}}{(C_i + K_{\text{sat}})^2} + \frac{B_{\text{ATP}} \cdot K_{\text{ATP}}}{(C_i + K_{\text{ATP}})^2} \right)^{-1} \]
(A.37)

\[j_{\text{trpn}} = k_{\text{on}} \cdot C_i \cdot (B_T - [\text{CaT}]_i) - k_{\text{off}} \cdot [\text{CaT}]_i \]
(A.38)

\[\frac{d[\text{CaT}]_i}{dt} = j_{\text{trpn}} \]
(A.40)

\[\frac{d[\text{CaT}]_s}{dt} = f_{\text{trpn}} \]
(A.41)

Na\(^{+}/\text{Ca}^{2+}\) exchange flux

\[K_o = \left(1 + \frac{c_{\text{NaCa}}}{c_s} \right)^{-3} \]
(A.42)

\[H = K_{\text{mCaO}} \cdot [\text{Na}^+]^3 + K_{\text{mNaO}}^3 \cdot C_{s,mM} + K_{\text{mNaCa}} \cdot [\text{Ca}^{2+}]_o \cdot \left(C_s + C_{s,mM} \right) \]
(A.43)

\[+ K_{\text{mCa}} \cdot [\text{Na}^+]^3 \cdot \left(1 + \frac{[\text{Na}^+]_o}{K_{\text{mNaO}}} \right)^3 + \frac{[\text{Na}^+]_o^3 \cdot [\text{Ca}^{2+}]_o}{K_{\text{mNaCa}}^3} + [\text{Na}^+]_o^3 \cdot C_{s,mM} \]
(A.44)

\[J_{\text{NaCa}} = g_{\text{NaCa}} \cdot K_o \cdot \exp(\xi - a) \cdot [\text{Na}^+] \cdot [\text{Ca}^{2+}]_o - \exp((\xi - 1) \cdot a) \cdot [\text{Na}^+]_o^3 \cdot C_{s,mM} \]
(A.45)

The SR leak flux

\[L = \frac{C^2_j}{C^2_j + C^2_j} \]
(A.46)

\[J_{\text{leak}} = g_1 \cdot L \cdot (v_t / v_{\text{leak}}) \cdot (C_j - C_i) \]
(A.47)

The fast sodium current \((I_{\text{Na}})\)

\[\alpha_m = \frac{eq48P1}{eq48P2} \cdot \frac{V + eq48P3}{1 - \exp(-0.1 \cdot (V + eq48P3))} \]
if \[|V + eq48P3| > 0.001 \]

\[\beta_m = eq49P1 \cdot \exp(-V/eq49P2) \]
(A.49)

\[E_{\text{Na}} = \frac{RT}{F} \cdot \log \left(\frac{[\text{Na}^+]_o}{[\text{Na}^+]_i} \right) \]
(A.50)

\[I_{\text{Na}} = g_{\text{Na}} \cdot m^3 \cdot h \cdot j \cdot (V - E_{\text{Na}}) \]
(A.51)

\[\frac{dh}{dt} = \alpha_h \cdot (1 - h) - \beta_h \cdot h \]
(A.52)
\[\frac{dj}{dt} = \alpha_j \cdot (1 - j) - \beta_j \cdot j \quad (A.53) \]
\[\frac{dm}{dt} = \alpha_m \cdot (1 - m) - \beta_m \cdot m \quad (A.54) \]

For \(V \leq -40 \text{ mV} \):
\[\alpha_h = 0 \quad (A.55) \]
\[\alpha_j = 0 \quad (A.56) \]
\[\beta_h = (1 + \exp((V + eq57P2)/-eq57P3))^{-1} \quad (A.57) \]
\[\beta_j = \frac{eq58P1 \cdot \exp(eq58P2 \cdot 10^{-7} \cdot V)}{1 + \exp(-0,1 \cdot (V + eq58P3))} \quad (A.58) \]

For \(V < -40 \text{ mV} \):
\[\alpha_h = eq59P1 \cdot \exp((V + eq59P2)/-eq59P3) \quad (A.59) \]
\[\beta_h = eq60P1 \cdot \exp(eq60P2 \cdot V) + eq60P3 \cdot 10^5 \cdot \exp(eq60P4 \cdot V) \quad (A.60) \]
\[\alpha_j = -eq61P1 \cdot 10^5 \cdot \exp(eq61P2 \cdot V) - eq61P3 \cdot 10^{-5} \cdot \exp(-eq61P4 \cdot V) \]
\[\times \frac{(V + eq61P5)}{1 + \exp(eq61P6 \cdot (V + eq61P7))} \exp(-eq62P2 \cdot V) \quad (A.61) \]
\[\beta_j = eq62P1 \frac{eq62P2}{1 + \exp(-eq62P3 \cdot (V + eq62P4))} \quad (A.62) \]

Na⁺ dynamics
\[\alpha' = \frac{1000 \cdot F \cdot v_i}{C_m} \quad (A.63) \]
\[\frac{d[Na^+]i}{dt} = -\left(\frac{hNa + 3 \cdot hNCa + 3 \cdot hNAK}{\alpha'} \right) \quad (A.64) \]

Averaged Ca²⁺ dynamics in the dyadic space
\[Q = \begin{cases} 0 & \text{if } 0 < \tau_f' < 50 \\ \tau_f' - 50 & \text{if } 50 \leq \tau_f' \leq c_{sr} \\ u \cdot \tau_f' + s & \text{if } \tau_f' > c_{sr} \end{cases} \quad (A.65) \]
\[g_{SR} = g_{SR} \cdot \frac{\exp(-eq66P1 \cdot (V + eq66P2))}{1 + \exp(-eq66P1 \cdot (V + eq66P2))} \quad (A.66) \]
\[f_{SR} = g_{SR} \cdot Q \cdot P_0 \cdot |i_{Ca}| \quad (A.67) \]
\[f_{Ca} = g_{Ca} \cdot P_0 \cdot |i_{Ca}| \quad (A.68) \]

Inward rectifier K⁺ current (\(I_K1 \))
\[E_K = \frac{RT}{F} \log \left(\frac{[K^+]_{lo}}{[K^+]_{hi}} \right) \quad (A.69) \]
\[B_{K1} = \frac{eq70P1 \cdot \exp(eq70P2 \cdot (V - E_K + eq70P3)) + \exp(eq70P4 \cdot (V - E_K - eq70P5))}{1 + \exp(-eq70P6 \cdot (V - E_K + eq70P7))} \quad (A.70) \]
\[A_{K1} = \frac{1 + \exp(eq71P1 \cdot (V - E_K - eq71P3))}{eq71P1} \quad (A.71) \]
\[I_{K1} = g_{K1} \cdot \sqrt{[K^+]_{lo} \cdot A_{K1} \cdot V - E_K} \frac{eq72}{A_{K1} + B_{K1}} \quad (A.72) \]

The rapid component of the delayed rectifier K⁺ current (\(I_{Kr} \))
\[\tau_{Kr} = \left(\frac{eq73P1 \cdot (V + eq73P2)}{1 - \exp(-eq73P3 \cdot (V + eq73P2))} + \frac{eq73P4 \cdot (V + eq73P5)}{-1 + \exp(eq73P6 \cdot (V + eq73P5))} \right)^{-1} \quad (A.73) \]
\[x_{Kr} = (1 + \exp((-V + eq74P1)/eq74P2))^{-1} \quad (A.74) \]
\[R_2 = (1 + \exp((V + eq75P1)/eq75P2))^{-1} \quad (A.75) \]
\[I_{Kr} = g_{Kr} \cdot \sqrt{[K^+]_{lo} \cdot x_{Kr} \cdot R_2 \cdot (V - E_K)} \quad (A.76) \]
\[
\frac{dx_{Kr}}{dt} = \frac{x_{Kr}^\infty - x_{Kr}}{\tau_{Kr}} \tag{A.77}
\]

The slow component of the delayed rectifier K⁺ current \((I_{Ks})\)

\[
E_{Ks} = \frac{RT}{F} \log \left(\frac{[K^+]_o + eq78 \cdot [Na^+]_o}{[K^+]_r + eq78 \cdot [Na]_r} \right) \tag{A.78}
\]

\[
\tau_{s1} = \left(\frac{1}{1 - \exp(-(eq79P1 \cdot (V + eq79P2)) + eq79P4 \cdot (V + eq79P5))} \right) \tag{A.79}
\]

\[
\tau_{s2} = 4 \cdot \tau_{s1} \tag{A.80}
\]

\[
x_{s1}^\infty = (1 + \exp(-(V - eq81P1)/eq81P2))^{-1} \tag{A.81}
\]

\[
q_{Ks} = 1 + \frac{eq82P1}{1 + (eq82P2/eq3)} \tag{A.82}
\]

\[
I_{Ks} = g_{Ks} \cdot x_{s1} \cdot x_{s2} \cdot q_{Ks} \cdot (V - E_{Ks}) \tag{A.83}
\]

\[
\frac{dx_{s1}}{dt} = \frac{x_{s1}^\infty - x_{s1}}{\tau_{s1}} \tag{A.84}
\]

\[
\frac{dx_{s2}}{dt} = \frac{x_{s2}^\infty - x_{s2}}{\tau_{s2}} \tag{A.85}
\]

The Na⁺/K⁺ pump current \((I_{Nak})\)

\[
\sigma = \frac{\exp([Na^+]_o/eq86P1) - 1}{eq86P2} \tag{A.86}
\]

\[
f_{Nak} = (1 + eq87P1 \cdot \exp(-0.1 \cdot VF/(RT))) + eq87P2 \cdot \sigma \cdot \exp(-(VF/(RT)))^{-1} \tag{A.87}
\]

\[
I_{Nak} = g_{Nak} \cdot f_{Nak} \cdot \frac{1}{1 + (eq88P1/[Na]_o))} \cdot \frac{[K^+]_o + eq88P2}{[K^+]_r + eq88P2} \tag{A.88}
\]

The fast component of the rapid inward K⁺ current \((I_{to,f})\)

\[
X_{to,f}^\infty = (1 + \exp(-(V + eq89P1)/eq89P2))^{-1} \tag{A.89}
\]

\[
Y_{to,f}^\infty = (1 + \exp((V + eq90P1)/eq90P2))^{-1} \tag{A.90}
\]

\[
\tau_{Xtof} = eq91P1 \cdot \exp(-(V/eq91P2)^2) + eq91P3 \tag{A.91}
\]

\[
\tau_{Ytof} = \frac{eq92P1}{1 + \exp((V + eq92P2)/eq92P3)} + eq92P4 \tag{A.92}
\]

\[
I_{to,f} = g_{tof} \cdot X_{to,f} \cdot Y_{to,f} \cdot (V - E_K) \tag{A.93}
\]

\[
\frac{dX_{to,f}}{dt} = \frac{X_{to,f}^\infty - X_{to,f}}{\tau_{Xtof}} \tag{A.94}
\]

\[
\frac{dY_{to,f}}{dt} = \frac{Y_{to,f}^\infty - Y_{to,f}}{\tau_{Ytof}} \tag{A.95}
\]

The slow component of the rapid outward K⁺ current \((I_{to,s})\)

\[
R_{s}^\infty = Y_{to,f}^\infty \tag{A.96}
\]

\[
X_{to,s}^\infty = X_{to,f}^\infty \tag{A.97}
\]

\[
Y_{to,s}^\infty = R_{s}^\infty \tag{A.98}
\]

\[
\tau_{Xtos} = \frac{eq99P1}{1 + \exp((V + eq99P2)/eq99P3)} + eq99P4 \tag{A.99}
\]

\[
\tau_{Ytos} = \frac{eq100P1}{1 + \exp((V + eq100P2)/eq100P3)} + eq100P4 \tag{A.100}
\]

\[
\tau_{Rs} = \frac{eq101P1}{1 + \exp((V + eq101P2)/eq101P3)} + eq101P4 \tag{A.101}
\]

\[
I_{to,s} = g_{tos} \cdot X_{to,s} \cdot (Y_{to,s} + 0.5 \cdot R_{s}) \cdot (V - E_K) \tag{A.102}
\]

\[
\frac{dX_{to,s}}{dt} = \frac{X_{to,s}^\infty - X_{to,s}}{\tau_{Xtos}} \tag{A.103}
\]
\[
\frac{dY_{10.5}}{dt} = \frac{Y_{10.5}^\infty - Y_{10.5}}{\tau_{Y10.5}} \\
\frac{dR_s}{dr} = \frac{R_s^\infty - R_s}{\tau_{Rs}}
\]

(A.104) (A.105)

Equations for Ca\(^{2+}\) cycling

\[
I_{Ca} = \frac{2 \cdot F \cdot v_i \cdot J_{Ca}}{C_m}
\]

(A.106)

\[
l_{NaCa} = \frac{F \cdot v_i \cdot J_{NaCa}}{C_m}
\]

(A.107)

\[
g_{RyR} = \frac{g_{RyR} \cdot \exp(-eq108P1 \cdot (V + eq108P2))}{1 + \exp(-eq108P1 \cdot (V + eq108P2))}
\]

(A.108)

\[
N_s' = g_{RyR} \cdot P_0 \cdot |I_{Ca}|
\]

(A.109)

\[
\bar{T} = \frac{\tau_r}{1 - \tau_r \cdot \frac{dc}{dr} / c_j}
\]

(A.110)

\[
\frac{dc_s}{dr} = \beta_s \cdot ((v_i/v_s) \cdot (J_{rel} - J_d - J_{Ca} + J_{NaCa}) - J_{trpn}^i)
\]

(A.111)

\[
\frac{dc_i}{dr} = \beta_i \cdot (J_d - J_{up} + J_{leak} - J_{trpn})
\]

(A.112)

\[
\frac{dc_j}{dr} = -J_{rel} + J_{up} - J_{leak}
\]

(A.113)

\[
\frac{dc_j'}{dr} = \frac{c_j - c_j'}{\tau_a}
\]

(A.114)

\[
\frac{dl_{rel}}{dt} = \frac{N_s' \cdot c_j \cdot Q_{csr}}{c_{sr}} - \frac{J_{rel}}{\bar{T}}
\]

(A.115)

\[
\frac{dc_p}{dt} = \frac{f_{SR} + f_{Ca} - (c_p - c_j)}{\tau_s}
\]

(A.116)

Ionic currents

\[
I_{ion} = I_{Na} + I_{NaK} + I_{Ca} + I_{NaCa} + I_{K1}
\]

(A.117)

\[
\frac{dV}{dt} = -(I_{ion} + I_{stim})
\]

(A.118)
A.3. Model parameters

Table A.3

Ca\(^{2+}\)-related parameters, including class memberships (Table 1) for three PCLs.

#	Name	Definition	Value 1.1 s	Value 1.282 s	Value 1.37 s	
SR release parameters						
1	\(\tau_s \)	Spark lifetime	30 ms	2	3	3
2	\(\tau_a \)	NSR-JSR relaxation time	100 ms	3	3	3*
3	\(\text{Ryr} \)	Release current strength	3.0 sparks cm\(^2\)/mA	0	3	3
4	\(u \)	Release slope	11.3 ms\(^{-1}\)	3	3	3*
5	\(c_{sr} \)	Threshold for steep release function	90 \(\mu \)M/1 cytosol	0	0	0
6	\(s \)	Release function parameter	\((1 - u)c_{sr} - 50 = -977 \mu \text{M}/\text{ms}\)	3	3	3*
7	\(\tau_d \)	Submembrane-myoplasm diffusion time constant	4 ms	2	3	2
8	\(\tau_s \)	Dyadic junction-submembrane diffusion time constant	0.5 ms	1	3	3
Cytosolic buffering parameters						
9	\(B_T \)	Total conc. of Troponin C	70.0 \(\mu \)mol/1 cytosol	1	3	3
10	\(B_{SR} \)	Total conc. of SR binding sites	47.0 \(\mu \)mol/1 cytosol	1	3	3
11	\(B_{CG} \)	Total conc. of calmodulin binding sites	24.0 \(\mu \)mol/1 cytosol	1	3	2
12	\(B_{mem} \)	Total conc. of membrane binding sites	15.0 \(\mu \)mol/1 cytosol	1	3	3
13	\(B_{sar} \)	Total conc. of sarcolemma binding sites	42.0 \(\mu \)mol/1 cytosol	1	3	2
14	\(B_{ATP} \)	Total conc. of ATP binding sites	500.0 \(\mu \)mol/1 cytosol	1	3	3
15	\(k_f \)	On rate for Troponin C binding	0.0327 (\(\mu \)M ms\(^{-1}\))	1	3	3
16	\(k_{off} \)	Off rate for Troponin C binding	0.0196 ms\(^{-1}\)	0	3	3
17	\(K_{SR} \)	Dissociation constant for SR binding sites	0.6 \(\mu \)M	1	3	3
18	\(K_{CG} \)	Dissoc. const. for Calmodulin binding sites	7.0 \(\mu \)M	0	2	0
19	\(K_{mem} \)	Dissoc. const. for membrane binding sites	0.3 \(\mu \)M	0	2	0
20	\(K_{sar} \)	Dissoc. const. for sarcolemma binding sites	13.0 \(\mu \)M	1	3	2
21	\(K_{ATP} \)	Dissoc. const. for ATP binding sites	200.0 \(\mu \)M	2	3	3
Uptake and SR leak parameters						
22	\(c_{up} \)	Uptake threshold	0.5 \(\mu \)M	2	3	3
23	\(v_{up} \)	Strength of uptake	0.8 \(\mu \)M/ms	2	3	3
24	\(g_s \)	Strength of leak current	2.07 \(\times 10^{-6} \) ms\(^{-1}\)	2	3	2
25	\(k_l \)	Threshold for leak onset	50 \(\mu \)M	1	3	2
L-type \Ca^{2+}\ current parameters						
26	\(P_{Ca} \)	Constant	0.00054 cm/s	2	3	3
27	\(g_{Ca} \)	Strength of \Ca^{2+}\ current flux	546 mmol/(cm C)	3	3	3*
28	\(g_{Ca} \)	Strength of local \Ca^{2+}\ flux due to L-type \Ca^{2+}\ channels	9998.6 mmol/(cm C)	1	3	3
29	\(g_{Ca} \)	Strength of local \Ca^{2+}\ flux due to RyR channels	23692 mmol/(cm C)	1	3	2
30	\(k_{in} \)	Threshold for \Ca^{2+}\-induced inactivation	5.0117 \(\mu \)M	1	3	3
31	\(\tau_{Ca} \)	Time constant of \Ca^{2+}\ dependence of transition rate \(k_{Ca} \)	4 \(\mu \)M	2	3	3
32	\(\tau_{in} \)	Time constant of activation	0.35 ms	1	3	3
33	\(r_{in} \)	Opening rate	0.41 ms\(^{-1}\)	2	3	3
34	\(r_{out} \)	Closing rate	2.7 ms\(^{-1}\)	2	0	3
35	\(s_{in} \)	Inactivation rate	0.00175 ms\(^{-1}\)	0	0	0
36	\(k_{in} \)	Inactivation rate	0.00413 ms\(^{-1}\)	0	0	0
37	\(s_{out} \)	Inactivation rate	0.000377 ms\(^{-1}\)	2	3	3
38	\(s_{out} \)	Inactivation rate	0.000687 ms\(^{-1}\)	0	0	0
39	\(\tau_{Ca} \)	Time constant	671.082 ms	1	3	3
Fit constants						
40	eqP1	for L-type \Ca^{2+}\ current	4.36	2	3	3
41	eqP2	for L-type \Ca^{2+}\ current	6.8	0	0	0
42	eqP1	for L-type \Ca^{2+}\ current	10	1	2	1
43	eqP2	for L-type \Ca^{2+}\ current	10	1	2	1
44	eqP3	for L-type \Ca^{2+}\ current	4954	1	2	2
45	eqP2	for L-type \Ca^{2+}\ current	15.6	1	3	3
46	eqP2	for L-type \Ca^{2+}\ current	50	2	3	3
47	eqP1	for L-type \Ca^{2+}\ current	40	2	3	3
48	eqP2	for L-type \Ca^{2+}\ current	10	0	0	0
49	eqP1	for L-type \Ca^{2+}\ current	190	2	2	1
50	eqP2	for L-type \Ca^{2+}\ current	10	1	2	1
51	eqP1	for L-type \Ca^{2+}\ current	0.367	1	3	3
52	eqP2	for L-type \Ca^{2+}\ current	0.0298	2	3	3
53	eqP1	for L-type \Ca^{2+}\ current	50	2	3	3
54	eqP2	for L-type \Ca^{2+}\ current	10	0	0	0
55	eqP3	for L-type \Ca^{2+}\ current	3	0	0	0
56	eqP3	for L-type \Ca^{2+}\ current	0.341	2	3	3
57	eqP1	for averaged \Ca^{2+}\ dynamics in dyadic space	0.346	1	3	3
58	eqP2	for averaged \Ca^{2+}\ dynamics in dyadic space	30	1	3	3
59	eqP1	for \Ca^{2+}\-cycling	0.05	3	3	3*
60	eqP2	for \Ca^{2+}\-cycling	30	3	3	3*
#	Name	Definition	Value	1.1 s	1.282 s	1.37 s
----	-----------------------	-----------------------------------	-----------	-------	---------	--------
61	g_{sa}	Peak h_{sa} conductance	12.0 mS/μF			
62	g_{48}	for fast Sodium current h_{sa}	3.2	2	1	1
63	g_{48}	for fast Sodium current h_{sa}	0.32	2	3	3
64	g_{48}	for fast Sodium current h_{sa}	47.13	2	3	3
65	g_{49}	for fast Sodium current h_{sa}	0.08	2	3	3
66	g_{49}	for fast Sodium current h_{sa}	11	0	0	0
67	g_{57}	for fast Sodium current h_{sa}	0.13	2	3	3
68	g_{57}	for fast Sodium current h_{sa}	10.66	1	3	3
69	g_{57}	for fast Sodium current h_{sa}	11.1	1	3	2
70	g_{58}	for fast Sodium current h_{sa}	0.3	1	3	2
71	g_{58}	for fast Sodium current h_{sa}	2.535	1	1	1*
72	g_{58}	for fast Sodium current h_{sa}	32	2	3	3
73	g_{59}	for fast Sodium current h_{sa}	0.135	1	2	1
74	g_{59}	for fast Sodium current h_{sa}	80	2	3	2
75	g_{60}	for fast Sodium current h_{sa}	6.8	0	0	0
76	g_{60}	for fast Sodium current h_{sa}	3.56	1	3	2
77	g_{60}	for fast Sodium current h_{sa}	0.079	2	3	2
78	g_{60}	for fast Sodium current h_{sa}	3.1	1	2	1
79	g_{60}	for fast Sodium current h_{sa}	0.35	2	3	2
80	g_{61}	for fast Sodium current h_{sa}	1.2714	1	1	1*
81	g_{61}	for fast Sodium current h_{sa}	0.2444	1	1	1*
82	g_{61}	for fast Sodium current h_{sa}	3.474	2	2	1
83	g_{61}	for fast Sodium current h_{sa}	0.04391	0	0	0
84	g_{61}	for fast Sodium current h_{sa}	37.78	1	2	1
85	g_{61}	for fast Sodium current h_{sa}	0.311	1	1	1*
86	g_{61}	for fast Sodium current h_{sa}	79.23	1	2	2
87	g_{62}	for fast Sodium current h_{sa}	0.1212	1	2	2
88	g_{62}	for fast Sodium current h_{sa}	0.01052	0	0	0
89	g_{62}	for fast Sodium current h_{sa}	0.1378	2	3	2
90	g_{62}	for fast Sodium current h_{sa}	40.14	2	3	2

#	Name	Definition	Value	1.1 s	1.282 s	1.37 s
91	g_{ks}	Peak h_{ks} conductance	0.055 mS/μF			
92	g_{ks}	Peak h_{ks} conductance	0.08 mS/μF			
93	g_{ks}	Peak h_{ks} conductance	0.36 mS/μF			
94	g_{ks}	Peak h_{ks} conductance	0.006 mS/μF			
95	g_{ks}	Peak h_{ks} conductance	0.153 mS/μF			

#	Name	Definition	Value	1.1 s	1.282 s	1.37 s
96	g_{70}	for Inward rectifier K^+ current h_{ks}	0.49124			
97	g_{70}	for Inward rectifier K^+ current h_{ks}	0.08032			
98	g_{70}	for Inward rectifier K^+ current h_{ks}	5476			
99	g_{70}	for Inward rectifier K^+ current h_{ks}	0.06175			
100	g_{70}	for Inward rectifier K^+ current h_{ks}	594.31			
101	g_{70}	for Inward rectifier K^+ current h_{ks}	0.5143			
102	g_{70}	for Inward rectifier K^+ current h_{ks}	4.753			
103	g_{71}	for Inward rectifier K^+ current h_{ks}	1.02			
104	g_{71}	for Inward rectifier K^+ current h_{ks}	0.2385			
105	g_{71}	for Inward rectifier K^+ current h_{ks}	59.215			
106	g_{72}	for Inward rectifier K^+ current h_{ks}	5.4			
107	g_{72}	for fast comp. of delayed rectifier current h_{ks}	0.01381			
108	g_{72}	for fast comp. of delayed rectifier current h_{ks}	7			
109	g_{72}	for fast comp. of delayed rectifier current h_{ks}	123			
110	g_{72}	for fast comp. of delayed rectifier current h_{ks}	0.000611			
111	g_{72}	for fast comp. of delayed rectifier current h_{ks}	10			
112	g_{72}	for fast comp. of delayed rectifier current h_{ks}	0.145			
Table A.5 (continued)

#	Name	Definition	Value	1.1 s	1.282 s	1.37 s
113	eq74P1	for rapid comp. of delayed rectifier current I_K	50	1	2	1
114	eq74P2	for rapid comp. of delayed rectifier current I_K	7.5	1	2	1
115	eq75P1	for rapid comp. of delayed rectifier current I_K	33	2	3	3
116	eq75P2	for rapid comp. of delayed rectifier current I_K	22.4	2	3	3
117	eq76	for rapid comp. of delayed rectifier current I_K	5.4	1	3	3
118	eq78	for slow comp. of delayed rectifier K⁺ current $I_{i,(f)}$	0.01833	2	3	3
119	eq79P1	for slow comp. of delayed rectifier K⁺ current $I_{i,(f)}$	0.0000719	0	0	0
120	eq79P2	for slow comp. of delayed rectifier K⁺ current $I_{i,(f)}$	30	3	3	3*
121	eq79P3	for slow comp. of delayed rectifier K⁺ current $I_{i,(f)}$	0.148	2	3	3
122	eq79P4	for slow comp. of delayed rectifier K⁺ current $I_{i,(f)}$	0.000131	0	0	0
123	eq79P5	for slow comp. of delayed rectifier K⁺ current $I_{i,(f)}$	30	1	3	3
124	eq79P6	for slow comp. of delayed rectifier K⁺ current $I_{i,(f)}$	0.0687	2	3	3
125	eq81P1	for slow comp. of delayed rectifier K⁺ current $I_{i,(f)}$	1.5	1	3	3
126	eq81P2	for slow comp. of delayed rectifier K⁺ current $I_{i,(f)}$	16.7	2	3	3
127	eq82P1	for slow comp. of delayed rectifier K⁺ current $I_{i,(f)}$	0.8	2	3	3
128	eq82P2	for slow comp. of delayed rectifier K⁺ current $I_{i,(f)}$	0.5	2	3	3
129	eq95P1	for fast comp. of rapid inward K⁺ current $I_{i,(f)}$	3	2	3	3
130	eq95P2	for fast comp. of rapid inward K⁺ current $I_{i,(f)}$	15.2	2	3	3
131	eq90P1	for fast comp. of rapid inward K⁺ current $I_{i,(f)}$	33.5	3	3	3*
132	eq90P2	for fast comp. of rapid inward K⁺ current $I_{i,(f)}$	10	3	3	3*
133	eq91P1	for fast comp. of rapid inward K⁺ current $I_{i,(f)}$	3.5	1	3	2
134	eq91P2	for fast comp. of rapid inward K⁺ current $I_{i,(f)}$	30	1	3	3
135	eq91P3	for fast comp. of rapid inward K⁺ current $I_{i,(f)}$	1.5	1	3	3
136	eq92P1	for fast comp. of rapid inward K⁺ current $I_{i,(f)}$	20	1	2	2
137	eq92P2	for fast comp. of rapid inward K⁺ current $I_{i,(f)}$	33.5	1	2	1
138	eq92P3	for fast comp. of rapid inward K⁺ current $I_{i,(f)}$	10	1	2	1
139	eq92P4	for fast comp. of rapid inward K⁺ current $I_{i,(f)}$	20	2	3	3
140	eq99P1	for slow comp. of rapid out. K⁺ current $I_{o,(s)}$	9	1	2	2
141	eq99P2	for slow comp. of rapid out. K⁺ current $I_{o,(s)}$	3	1	2	1
142	eq99P3	for slow comp. of rapid out. K⁺ current $I_{o,(s)}$	15	1	3	2
143	eq99P4	for slow comp. of rapid out. K⁺ current $I_{o,(s)}$	0.5	1	3	2
144	eq100P1	for fast comp. of rapid out. K⁺ current $I_{o,(s)}$	3000	2	3	3
145	eq100P2	for slow comp. of rapid out. K⁺ current $I_{o,(s)}$	60	2	3	3
146	eq100P3	for slow comp. of rapid out. K⁺ current $I_{o,(s)}$	10	2	3	2
147	eq100P4	for slow comp. of rapid out. K⁺ current $I_{o,(s)}$	30	2	3	3
148	eq101P1	for slow comp. of rapid out. K⁺ current $I_{o,(s)}$	2300	2	3	3
149	eq101P2	for slow comp. of rapid out. K⁺ current $I_{o,(s)}$	60	2	3	3
150	eq101P3	for slow comp. of rapid out. K⁺ current $I_{o,(s)}$	10	1	3	3
151	eq101P4	for slow comp. of rapid out. K⁺ current $I_{o,(s)}$	720	2	3	3

Table A.6
Other parameters, including class memberships (Table 1) for three PCLs.

#	Name	Definition	Value	1.1 s	1.282 s	1.37 s
152	g_{NaCx}	Strength of exchange current	0.84 μM/ms	2	3	3
153	k_{sat}	Constant	0.2	1	3	3
154	ξ	Constant	0.35	1	3	3
155	K_{NaCa}	Constant	12.3 mM	1	3	3
156	K_{NaCl}	Constant	87.5 mM	2	3	3
157	K_{CaCx}	Constant	0.0036 mM	2	3	3
158	K_{CaCl}	Constant	1.3 mM	1	3	2
159	c_{NaCa}	Constant	0.3 μM	1	3	3
160	g_{NaK}	Peak I_{NaK} conduction	1.5 mS/μF	3	3	3*

Fit constants

#	Name	Definition	Value	1.1 s	1.282 s	1.37 s
161	eq86P1	for Na⁺/K⁺ pump current I_{NaK}	67.3	3	3	3*
162	eq86P2	for Na⁺/K⁺ pump current I_{NaK}	7	2	3	3
163	eq87P1	for Na⁺/K⁺ pump current I_{NaK}	0.1245	2	3	3
164	eq87P2	for Na⁺/K⁺ pump current I_{NaK}	0.0365	2	3	3
165	eq88P1	for Na⁺/K⁺ pump current I_{NaK}	12	3	3	3*
166	eq88P2	for Na⁺/K⁺ pump current I_{NaK}	1.5	2	3	3
Table A.7
Physical constants and ionic concentrations, including class memberships (Table 1) for three PCLs.

#	Name	Definition	Value	1.1 s	1.282 s	1.37 s
167	C_m	Cell capacitance	3.1×10^{-4} μF	4	4	4
168	v_i	Cell volume	2.58×10^{-5} μl	4	4	4
169	v_s	Submembrane volume	$0.02 \, v_i$	4	4	4
170	v_{SR}	SR volume	$0.06 \, v_i$	4	4	4
171	F	Faraday constant	96.5 C/mmol	4	4	4
172	R	Universal gas constant	$8.315 \, \text{J mol}^{-1}\text{K}^{-1}$	4	4	4
173	T	Temperature	308 K	4	4	4
174	$\left[\text{Na}^+\right]_o$	External sodium concentration	136 mM	4	4	4
175	$\left[\text{K}^+\right]_i$	Internal potassium concentration	140 mM	4	4	4
176	$\left[\text{K}^+\right]_o$	External potassium concentration	5.4 mM	4	4	4
177	$\left[\text{Ca}^{2+}\right]_o$	External calcium concentration	1.8 mM	4	4	4

References

[1] Sato D, et al. Synchronization of chaotic early after depolarizations in the genesis of cardiac arrhythmias. PNAS 2009;106(9):2983–8.
[2] Noble D. Modeling the heart–from genes to cells to the whole organ. Science 2002;295(5560):1678–82.
[3] Clayton R, Bernus O, Cherry E, Dierckx H, Fenton F, Mirabella L, et al. Models of cardiac tissue electrophysiology: progress, challenges and open questions. Prog Biophys Mol Biol 2011;104(1):22–48.
[4] Luo CH, Rudy Y. A model of the ventricular cardiac action potential, depolarization, repolarization, and their interaction.. Circ Res 1991;68(6):1501–26.
[5] Wang LJ, Sobie EA. Mathematical model of the neonatal mouse ventricular action potential. Am J Physiol Heart Circ Physiol 2008;294(6):2565–75.
[6] Sobie EA. Parameter sensitivity analysis in electrophysiological models using multivariable regression. Biophys J 2009;96(4):1264–74.
[7] Sarkar AX, Sobie EA. Regression analysis for constraining free parameters in electrophysiological models of cardiac cells. PLoS Comput Biol 2010;6(9):e1000914.
[8] Sato D, et al. Irregularly appearing early after depolarizations in cardiac myocytes: Random fluctuations or dynamical chaos? Biophys J 2010;99:765–73.
[9] Galassi M, et al. GNU scientific library reference manual. 3rd. GNU General Public License; 2011.
[10] Bauer C, Frink A, Kreckel R. Introduction to the Ginac framework for symbolic computation within the C++ programming language. J Symb Comput 2002;33(1):1–12.
[11] Mahajan A, et al. A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates. Biophys J 2008;94:392–410.
[12] Clusin WT. Calcium and cardiac arrhythmias: Dads, eads, and alternans. Crit Rev Clin Lab Sci 2003;40(3):337–75.
[13] Volders PG, et al. Progress in the understanding of cardiac early after depolarizations and torsades de pointes: Time to revise current concepts. Cardiovasc Res 2000;46:376–92.
[14] Weiss JN, et al. Early afterdepolarizations and cardiac arrhythmias. Heart Rhythm 2010;7(12):1891–9.
[15] Geist K, Parliiz U, Lauterborn W. Comparison of different methods for computing Lyapunov exponents. Prog Theor Phys 1990;83(5):875–93.
[16] Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: Data mining, inference, and prediction. 3rd. New York: Springer; 2001.
[17] Mahajan A, Noble P, et al. A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates, http://models.cellml.org/exposure/e55986b72d07ce03fc40669e94ed7a5/[; 2008 [accessed 13.06.21].