Asymptotic model for conical breakdown of inertial waves

Oleg G Derzho
Kutateladze Institute of Thermophysics of SB RAS, Novosibirsk, Russia

E-mail: oleg_derzho@yahoo.com.au

Abstract. A theoretical asymptotic model for large amplitude stationary axisymmetric inertial waves in an axially symmetric swirling flow of an ideal fluid in a circular infinite tube with variable cross-section is described. Calculations are presented for the special, but important case when the upstream flow is uniform and always supercritical. It is found that the breakdown of inertial waves in divergent tubes is extremely sensitive to the variations of the cross-section. The breakdown bubble is generally asymmetric and it may turn into the diverging tail, especially in a convergent part of the tube. Possible relevance of the calculated structures to the experimentally observed types of the breakdown is discussed.

1. Introduction
There have been numerous studies of inertial waves in axisymmetric swirling flows in tubes, largely motivated by the possible relationship between such waves and the phenomenon of vortex breakdown [1,2]. This highly non-linear phenomenon exhibits the extreme sensitivity to a wide range of external influences, and to date there is no uniformly accepted model for this phenomenon. The main problem noticed in the early studies in the straight tubes is the upstream influence leading to the formation of the separation zone at the upstream boundary. One way to resolve this difficulty is to induce the breakdown by a local contraction of the tube, so that the separation zone is observed in the lee past that contraction [3]. Another includes introduction of specific inlet conditions preventing upstream propagation of disturbances [4]. Sophisticated calculations including the vortex shedding from the vane generator and a careful modeling of the geometry of the experimental set up were reported in [5]. In all mentioned studies the specific geometry of the tube was fixed and the influence of its variations on the flow patterns was not fully examined. In this study we are going to develop an asymptotic model for the stationary axisymmetric patterns which may contain breakdown (separation zones). The model is not restricted to weakly non-linear amplitude models [2,6]. We consider the special, but important case when the upstream flow is nearly uniform with the aim of emphasizing the effects associated with the influence of the variation of the cross-section of the tube. Amplitude of inertial wave is not supposed to be small.

In the next sections we will formulate the mathematical model and describe the asymptotic development. Then, several calculations will be presented for the case of a solid body rotation. Finally, we speculate about the possible relevance of our calculations to the experimentally observed features.

2. Formulation
We consider the axisymmetric, steady flow of an inviscid, non-diffusive swirling fluid of constant density. The equation for the stream function is the Bragg-Hawthorne equation.
Here the axial and radial velocity components are given by
\[u = \frac{\psi_r}{r}, \quad v = -\frac{\psi_x}{r}, \tag{2} \]
and the swirl velocity \(w \) is given by
\[rw = C(\psi). \tag{3} \]

Next, as in [7] we introduce dimensionless variables, based on a typical axial velocity \(U_0 \) and the upstream tube radius \(a \). Thus,
\[\psi' = \frac{\psi}{U_0 a^2}, \quad r' = \frac{r}{a}, \quad x' = \frac{x}{a} \tag{4} \]

Henceforth we shall omit the prime superscripts. This study is aimed to address the case when both inflow angular and axial velocities are uniform. Thus,
\[u \to u_\infty = 1, \quad w \to w_\infty = r\Omega_0 \text{ as } x \to -\infty \tag{5} \]

It follows that we may write
\[\psi = \xi + \phi, \quad \xi = r^2, \tag{6} \]
where \(\phi \) is thus the perturbed streamfunction relative to the upstream value of \(\psi \). After some algebra, we find that
\[\varphi_{xx} + 4\xi \varphi_{\xi \xi} + \lambda^2 \varphi = 0. \tag{7} \]

Here
\[\lambda = |\Omega_0| \tag{8} \]
is the swirl number which measures the ratio of the swirl velocity at the tube wall to the axial velocity.

The boundary conditions at the tube axis and wall are that \(\phi = 0 \) at \(r = 0 \), and that
\[\phi + \xi = 1 \text{ at } r = 1 + Hq(x), \tag{9} \]
another small parameter \(H \) measuring the radial extent of the topographic wall perturbation is introduced.

Then, again as in [7], we allow for the possibility that there may be a recirculation zone located on the axis of the tube. This occurs when
\[1 + \phi_\xi = 0 \text{ at } \xi = 0, \tag{10} \]
which defines a critical wave amplitude. For waves with larger amplitudes, we suppose that there is a separation zone whose boundary is given by
\[r = \eta(x), \tag{11} \]
where \(\eta = 0 \) outside the domain \(x_- < x < x_+ \), say. Inside the separation zone, the governing equation is again (1) but the circulation function \(C(\psi) \) and the vorticity function \(G(\psi) \) must be determined anew. On the boundary (11) of the separation zone, \(\psi = 0 \) as it is a streamline, and continuity of pressure leads to continuity of \(\psi_\xi \).
3. Asymptotic model

The x-domain is divided into two parts, an outer zone where we seek solutions whose axial length scale is ε^{-1}, where $0 < \varepsilon \ll 1$, and an inner zone $x_- < x < x_+$, which includes the separation zone and where the axial length scale is β^{-1}, where $\beta = \varepsilon^{1/2}$. In the outer zone,

$$X = \varepsilon x$$

is the long scale variable and then, as in [7], seek an asymptotic expansion of the form

$$\phi = \phi^{(0)}(X, \xi) + \varepsilon^2 \phi^{(1)}(X, \xi) + \cdots$$

$$\lambda = \lambda^{(0)} + \varepsilon^2 \lambda^{(1)} + \cdots$$

Here we assume that $H = h \varepsilon^2$. Note that here, in contrast to [3], we expand the swirl number (i.e. $\lambda/2$) directly. The analysis now proceeds as in [7], the only essential new feature being the inclusion of the topographic perturbation in the tube wall boundary condition. Hence, at the lowest order, we get

$$\phi^{(0)} = A(X) r f_1(\lambda^{(0)} r), \quad f_1(\lambda^{(0)}) = 0.$$

For the lowest mode $\lambda^{(0)} = 3.83$, and we shall consider only this mode henceforth. At the next order, a compatibility condition is applied to the equation for $\phi^{(1)}$ which yields the required amplitude equation

$$-A_{XX} + \Delta A + H \eta(X)(Q_1 - AQ_2) = 0,$$

where $\Delta = 2\lambda^{(0)}\lambda^{(1)}$. Thus $\Delta > 0$ (< 0) corresponds to an increase (decrease) in the swirl number respectively. The constants $Q_1 \approx 38.1$ and $Q_2 \approx -29.4$ are calculated using the zeroth order solution (15).

In the inner zone, the analysis again follows that of [7] very closely. Thus, we suppose that the inner length scale is β^{-1} where $\beta = \varepsilon^{1/2}$, and that the size of the separation zone is ε^0. Hence we put

$$z = \beta x,$$

where the domain of the inner zone is defined by $z_- < z < z_+$, noting that $f(z) = 0$ outside this domain. The location of the inner zone boundary is determined by the criterion that at $z = z_+$, or equivalently, at $X = X_+$ where $X_+ = \beta z_+$, the wave amplitude A reaches the critical value A_*, where there is incipient flow reversal, that is (10) is satisfied. Using the leading order expression $\phi^{(0)}$ (15) for ϕ, we find that

$$A_* = -2/\lambda^{(0)},$$

and that, as already anticipated, the flow reversal occurs on the tube axis. Note that $A_* \approx -0.52 < 0$, and so waves with separation zones are waves of “elevation”, i.e. the streamlines are displaced in the direction of r increasing. In the inner zone, $A(z)$ is close to this critical amplitude, and so we put

$$A(z) = A_* - \mu B(z),$$

where an optimal balance of small parameters requires that $\mu = \varepsilon$ and $\delta = \varepsilon^{1/2}$. However, we find it convenient to retain μ and ε as independent small parameters, albeit of the same order, as the ratio measures the magnitude of the separation zone versus the magnitude of the outer length scale. Proceeding as in [7] we find that B satisfies the equation

$$B_{zz} + \Delta A_* - \nu B^2 + h \eta(Q_1 - A_* Q_2) = 0,$$

where

$$\nu = \frac{\lambda^{(0)} \mu^2}{f_1'^2(\lambda^{(0)}) \varepsilon^2}.$$
Here, we define the small parameter μ as a measure of the maximum size, A_m, of the wave amplitude, that is $A_m = A - \mu$. Thus, we must have $0 \leq B \leq 1$. Then the amplitude equation (20) is to be solved subject to the matching conditions,

$$B = 0 \text{ and } A_x = \mu^{3/2}B_z \text{ at } z = z_\pm$$

Finally, the analysis inside the separation zone proceeds as in [7], and hence we can conclude that the separation zone is nearly stagnant.

4. Conical breakdown of inertia waves

In this section we consider the result of calculations based on the asymptotic model presented in the previous section. We anticipate that the model is not limited to the case of both uniform axial and angular velocities but we aimed to consider this important special case to show the crucial effect of the nonlinearity associated with the breakdown bubble and the interaction of the inertial wave with the varied cross section of the tube. The only nonlinearity in the problem arises due to the flow over the separation zone. We shall examine the case when $A = 0$, $A_x = 0$, and $q = 0$ for $x \leq 0$. When dealing with a divergent tube, the typical observation is that the separation zone moves upstream and its size increases as swirl Ω_0 increases (Δ increases).

It is pertinent to note that the flow is supercritical at the beginning of divergence for all presented Δ as solutions of (15) are exponential functions there, but at some cross-section solutions turns to be subcritical. Leibovich discussed similar behaviour in [2]. In the case of diverging tube our calculations show that the streamlines significantly contract just several bubble diameters downstream of the back side of the separation zone. It may lead to instabilities in a newly formed jet-like vortex or even to the onset of another separation zone near the boundary of the tube. As these instabilities may violate our initial assumption that the flow is axisymmetric, our model is not applicable far downstream the separation zone. When the divergence occurs only at a finite interval, the convergence of the streamlines past the separation is relatively mild (see figure 1). In this figure the divergence mainly affect the flow before the stagnation occurs, thus separation zone is fairly symmetric.

![Figure 1](image1.png)

Figure 1. Profile of the tube and the corresponding flow pattern in the tube with a finite interval of mild divergence. $\Delta = -0.1025$.

![Figure 2](image2.png)

Figure 2. Profile of the tube and the corresponding flow pattern in the tube with finite intervals of divergent and convergent sections. $\Delta = -0.1025$.
When the divergent section of the tube is followed by the interval of convergence, we found that the separation zone may consist of the bubble-like part, which finally joins the divergent tail. The flow pattern for this case is shown in figure 2. Note that swirls in the approaching vortex are the same in figures 1 and 2. The flow structure changes entirely just due to the slight convergence of the tube. The shape of the separation zone analogous to that presented in figure 2 was observed by Sarpkaya [8] for the case of turbulent regime in the divergent tube.

A possible explanation of this coincidence may be the following. For the turbulent regimes studied by Sarpkaya [8], the turbulent boundary layer develops much more rapidly than in the classical works on the laminar breakdown [2]. Finally, in a certain cross-section, the convergence of the duct due to the growing turbulent boundary layer may compete and even prevail the actual divergence of the tube thus effectively creating the profile of the confining boundary with both of divergent (initial) and convergent sections similar to that presented in figure 2. Sarpkaya [8] reported that the bubble structure first rejoins the tail when the value of the fluctuation velocity relative to the axial velocity in the approaching vortex is 2.3 %. Therefore, the tangent of the angle of convergence due to the growing boundary layer is of the order of 0.023 which is close to the actual tangent 0.025 of the divergence of the tube itself.

5. Conclusions
In this paper a new asymptotic theory for the inertial waves in swirling axisymmetric flows is presented. The model is set to account the effects due to the separation zones appeared in a flow. Calculations are presented for the special, but important case when the upstream flow is uniform. Breakdown of inertial waves in divergent tubes is extremely sensitive to the variations of the cross-section of the tube. The breakdown bubble is generally asymmetric and it may turn into the diverging tail, especially in a convergent part of the tube.

Acknowledgements
This study was partly supported by FASO III.22.7.

References
[1] Lucca-Negro O, O’Doherty T 2001 Vortex breakdown: a review Prog. Energy Combust. Sci. 27 431–481
[2] Leibovich S 1991 Vortex breakdown: a coherent transition trigger in concentrated vortices, in Turbulence and Coherent Structures eds O Metais and M Lesieur, Kluwer 285–302
[3] Beran P 1994 The time asymptotic behaviour of vortex breakdown in tubes Computers Fluids 23 917–937
[4] Rusak Z, Wang S, Whiting C 1998 The evolution of a perturbed vortex in a pipe to axisymmetric vortex breakdown J. Fluid Mech. 366 211–237
[5] Snyder D, Spall R 2000 Numerical simulation of bubble type vortex breakdown within a tube-and-vane apparatus Phys. Fluids 12 (3) 603–608
[6] Meliga P, Gallaire F, Chomaz J-M 2012 A weakly nonlinear mechanism for mode selection in swirling jets J. Fluid Mech. 699 216–262
[7] Derzho O, Grimshaw R 2000 Solitary waves with recirculation zones in axisymmetric swirling flows J. Fluid Mech. 464 217–250
[8] Sarpkaya T 1995 Turbulent vortex breakdown Phys. Fluids 7(10) 2301–2303