The Bethe lattice spin glass revisited

Marc Mézard
Laboratoire de Physique Théorique et Modèles Statistiques
Université Paris Sud, Bat. 100, 91405 Orsay CEDEX, France
mezard@ipno.in2p3.fr

Giorgio Parisi
Dipartimento di Fisica, Sezione INFN and Unità INFM,
Università di Roma “La Sapienza”,
Piazzale Aldo Moro 2, I-00185 Rome (Italy)
giorgio.parisi@roma1.infn.it
(March 21, 2022)

So far the problem of a spin glass on a Bethe lattice has been solved only at the replica symmetric level, which is wrong in the spin glass phase. Because of some technical difficulties, attempts at deriving a replica symmetry breaking solution have been confined to some perturbative regimes, high connectivity lattices or temperature close to the critical temperature. Using the cavity method, we propose a general non perturbative solution of the Bethe lattice spin glass problem at a level of approximation which is equivalent to a one step replica symmetry breaking solution. The results compare well with numerical simulations. The method can be used for many finite connectivity problems appearing in combinatorial optimization.

I. INTRODUCTION

The spin glass problem has been around for twenty five years, but its understanding has turned out to be remarkably complicated. It is generally considered as solved only in its fully connected version introduced by Sherrington and Kirkpatrick [1]. The first consistent solution was derived with the replica method [2,3] and it was then confirmed using a probabilistic approach, the cavity method, which avoids the strange (and powerful) mathematical subtleties of the replica approach [4,5]. A rigorous proof of the validity of the solution is still lacking, in spite of recent progress [6–7].

A slightly more realistic theory of spin glasses, still of the mean field type, deals with the situation in which each spin interacts only with a finite number of neighbours. Models of this type include the spin glass on a Cayley tree, a Bethe lattice and a disordered random lattice with fixed or with fluctuating connectivity. There are many motivations for studying such problems. On one hand one may hope to get a better knowledge on the finite dimensional problem, since these models include a notion of neighborhood which is absent in the infinite range case. But another motivation is the possibility to solve these problems using different methods, like iterative methods which are typical of statistical mechanics on tree-like structures. In fact the cavity method is a generalization of the Bethe Peierls iterative method to the case in which there may exist several pure states, and it is therefore very natural to work out the details of this generalisation, and to test its validity. Another important aspect comes from the connection between the statistical mechanics of disordered systems and the optimization problems: many of the interesting random optimization problems turn out to have a finite connectivity structure. This is the case for instance of the travelling salesman problem, the matching, the graph partitioning or the K-satisfiability problem.

While the problems of a spin-glass on tree-like lattices were naturally studied very soon after the discovery of spin glasses, the present status of the knowledge on these systems is still rather poor compared to that on the SK model. A lot of efforts have been devoted to the simple Bethe Peiers method which builds up a solution in terms of the distribution of local magnetic fields. However this simple iterative solution, which may be relevant for a Cayley tree with a certain type of boundary conditions is wrong for the Bethe lattice spin-glass. When the replica formalism is used, this simple iterative solution turns out to be equivalent to the replica symmetric (RS) solution. However one knows that there exists a replica symmetry breaking (RSB) instability similar to the one found in the SK model. Unfortunately, in the replica formalism, the RSB solution could be found only in some rather limited regimes: expansion around the high connectivity (SK-like) limit, or close to the critical temperature. The main problem encountered in all these attempts is a very general one, common to all disordered
problems with a finite connectivity. Roughly speaking it can be summarized as follows: the distribution of local fields, even within one pure state, is not a simple Gaussian as in the infinite range problems, but a more complicated function. When one takes into account the existence of several pure states, the natural order parameter, even within the simplest “one step” replica symmetry breaking solution, becomes the probability distribution of those local field probabilities. This is a functional order parameter which is difficult to handle. Several interesting attempts at solving the one step RSB equations have been done in the past, but they all restricted this functional order parameter to some particular subspace, within which a variational approach was used.

In this paper we present an improved solution of the Bethe lattice spin glass. This solution is nothing but the application to this problem of the cavity method, treated at a level which is equivalent to the one step RSB solution. It is valid for any connectivity and any temperature. In the next section we discuss the various tree-like lattices which are usually studied and precise our definition of the Bethe lattice problem. In sect. II we recall the basic steps of the simple Bethe-Peierls approach, and we discuss its instability in sect. IV where we discuss the formalism of the cavity approach at the one step RSB level. Sect. V describes the algorithm used to determine the distribution of local fields within this approach. The implementation of the algorithm is discussed in sect. VII where we derive explicit results for a lattice with six neighbours per point and compare the analytic prediction to those of numerical simulations. Finally, sect. VIII contains a brief discussion and mentions the perspectives.

II. THE BETHE LATTICE

We consider a system of N Ising spins, $\sigma_i = \pm 1$, $i \in \{1, ..., N\}$, interacting with random couplings, the energy being:

$$E = - \sum_{\langle ij \rangle} J_{ij} \sigma_i \sigma_j .$$

The sum is over all links of a lattice. For each link $\langle ij \rangle$ the coupling J_{ij} is an independent random variable chosen with the same probability distribution $P(J)$. The various types of tree-like lattices which have been considered are:

- A) The Cayley tree: starting from a central site $i = 0$, one builds a first shell of $k + 1$ neighbours. Then each of the first shell spins is connected to k new neighbours in the second shell etc... until one reaches the L'th shell which is the boundary. There is no overlap among the new neighbours, so that the graph is a tree.

- B) The random graph with fluctuating connectivity: for each pair of indices (ij), a link is present with probability c/N and absent with probability $1 - c/N$. The number of links connected to a point is a random variable with a Poisson distribution, its mean being equal to c.

- C) The random graph with fixed connectivity, equal to $k + 1$. The space of allowed graphs are all graphs such that the number of links connected to each point is equal to $k + 1$. The simplest choice, which we adopt here, is the case where every such graph has the same probability.

On a Cayley tree a finite fraction of the total number of spins lie on the boundary. The Cayley tree is thus a strongly inhomogeneous system, the properties of which are often remote from those of a usual finite dimensional problem. For this reason people generally consider instead a Bethe lattice, which consists of a subset of the Cayley tree containing the first L' shells. Taking the limits $L \to \infty$, $L' \to \infty$ with $L/L' \to \infty$ allows to isolate the central part of the tree, away from the boundary. This procedure is OK when one considers a ferromagnetic problem. In the case of a spin glass this definition of the Bethe lattice is not free from ambiguities: one can not totally forget the boundary conditions which are imposed on the boundary of the Cayley tree, since they are fixing the degree of frustration. For this reason we prefer to define the Bethe lattice as the random lattice with fixed connectivity (lattice C defined above). Clearly on such a graph the local structure is that of a tree with a fixed branching ratio. Small loops are rare, the typical size of a loop is of order $\log N$. Therefore in the large N limit the random graph with fixed connectivity provides a well defined realisation of a Bethe lattice, i.e. a statistically homogeneous, locally tree-like structure. This is the lattice which we study in this paper (the case of fluctuating connectivities will be studied in a forthcoming work). Numerical simulations of this system can be found in [11,22,28,29].
Historically, spin glasses on the Bethe lattice and on diluted lattices with a fixed finite connectivity (type C) were often discussed as a separate issue. The reason for these separate discussions of the same problem is the type of techniques which are used. Generally speaking the Bethe lattice papers rely on the Bethe Peierls method while the random lattice papers use the replica method. One exception is the use of the cavity method for the random lattice case \[25,26\]. Hereafter we shall basically develop the iterative/cavity approach, but we shall also mention at each step its connexions to the replica approach.

III. THE SIMPLE BETHE-PEIERLS 'SOLUTION'

This section will give a brief review to the standard approach to the spin glass on the Bethe lattice, defined as lattice C in the above classification. This solution is wrong, because, as we shall see later, it does not consider the phenomenon of replica symmetry breaking, however it sets the stage for the correct solution that will be presented in the next section.

A. The iterative approach

As is well known, on tree-like structures the problem can be solved by iteration. Let us consider in general the merging of \(k\) branches of a tree onto one site \(\sigma_0\) as in fig. 1. The partition function can be computed exactly if one introduces, for each of the outside spins \(\sigma_i, i \in \{1, ..., k\}\), the effective "cavity" field \(h_i\) representing the action onto the spin \(\sigma_i\) of all the other spins, in the absence of the central spin \(\sigma_0\). In other words the magnetization of the \(i\)-th spin in absence of the central spin is given by \(m_i = \tanh(\beta h_i)\). The variables \(h_i\) (and consequently the variables \(m_i\)) are uncorrelated in the limit \(N \to \infty\). It is crucial to consider the magnetization before the introduction of the spin \(\sigma_0\), because after its introduction all the spins that are coupled to the spin \(\sigma_0\) become correlated.

Calling \(J_i\) the coupling between spins \(\sigma_0\) and \(\sigma_i\), the partition function of the spin \(\sigma_0\) is expressed as

\[
\sum_{\sigma_0, \sigma_1, ..., \sigma_k} \exp \left(\beta \sigma_0 \sum_{i=1}^{k} J_i \sigma_i + \beta \sum_{i=1}^{k} h_i \sigma_i \right).
\]

Let us recall here the basic identity which allows to forward the effect of the fields \(h_i\) onto spin \(\sigma_0\), and which is used repeatedly in this work. For an Ising spin \(\sigma_0 = \pm 1\), one has:

![Diagram](image-url)
\[
\sum_{\sigma=\pm 1} \exp(\beta \sigma_0 J \sigma + \beta h \sigma) = c(J,h) \exp(\beta u(J,h) \sigma_0)
\]

where we define the two functions \(u \) and \(c \) as:

\[
u(J,h) = \frac{1}{\beta} \text{atanh} \left[\tanh(\beta J) \tanh(\beta h) \right]; \quad c(J,h) = \frac{2 \cosh(\beta J) \cosh(\beta h)}{\cosh(\beta u(J,h))}
\]

The magnetization on site 0 is thus \(m_0 = \langle \sigma_0 \rangle = \tanh(\beta h_0) \), where

\[
h_0 = \sum_{i=1}^{k} u(J_i, h_i)
\]

From this equation one gets the basic recursion relation for the probability density \(Q(h) \) of local fields:

\[
Q(h) = E_J \int \prod_{i=1}^{k} [dh_i Q(h_i)] \delta \left(h - \sum_{i=1}^{k} u(J_i, h_i) \right).
\]

Here and throughout the paper, we denote by \(E_J \) the expectation value with respect to all the exchange coupling constants \(J_i \): \(E_J = \int \prod_i [dh_i P(J_i)] \).

It will be useful for future use to introduce the probability distribution \(R(u) \) of the propagated field variable \(u(J,h) \):

\[
R(u) = E_J \int Q(h) dh \delta(u - u(J,h))
\]

The field distribution is nothing but the convolution: \(Q(h) = \int du_1 \ldots du_k \ R(u_1) \ldots R(u_k) \delta(u_1 + \ldots + u_k - h) \).

In order to relate the true distribution of local fields, \(Q_t(H) \), to the distribution \(Q(h) \) of local fields on one branch \(\text{[branch]} \), one needs to consider the merging of \(k + 1 \) branches onto one site. The true local field \(H_0 \) on a given site 0 is simply given by a sum of contributions from each of its \(k + 1 \) neighbours,

\[
H_0 = \sum_{j=1}^{k+1} u(J_j, h_j)
\]

where as before \(h_j \) is the local field on \(j \) in the absence of the spin \(s_0 \). This gives the distribution of true local fields \(Q_t(H) \) as the convolution:

\[
Q_t(H) = \int \prod_{i=1}^{k+1} [du_i R(u_i)] \delta \left(H - \sum_{i=1}^{k+1} u_i \right).
\]

Let us now compute the internal energy with this method. We add a new link \(\text{[link]} \) with a coupling constant \(J_{ij} \) between two spins \(\sigma_i \) and \(\sigma_j \), where the local fields in the absence of the new link are respectively \(h_i^{(j)} \) and \(h_j^{(i)} \). Then the energy of this link is:

\[
E_{ij} = -J_{ij} \langle \sigma_i \sigma_j \rangle,
\]

where the expectation value is computed using the Hamiltonian \(H_{ij}(\sigma_i, \sigma_j) \), which is given by

\[
H_{ij}(\sigma_i, \sigma_j) = -\left(J_{ij} \sigma_i \sigma_j + h_i^{(j)} \sigma_i + h_j^{(i)} \sigma_j \right).
\]

A simple computation shows that

\footnote{We denote by upper case letters the true local fields and by small case letters the local fields on one branch.}
\[
E_{ij} = -J_{ij} \frac{\tanh(\beta J_{ij}) + \tanh(\beta h_i^{(j)}) \tanh(\beta h_j^{(i)})}{1 + \tanh(\beta J_{ij}) \tanh(\beta h_i^{(j)}) \tanh(\beta h_j^{(i)})}.
\] (12)

Computing the total free energy of the system is slightly more involved. Using the fact that the Bethe-Peierls approximation is exact on the tree-like lattices one can write the free energy as the sum of site and bond contributions [14–16]:

\[
F = -k \sum_i F^{(1)}_i + \sum_{<ij>} F^{(2)}_{<ij>},
\] (13)

where the contribution from the bond \(ij\) is
\[
-\beta F^{(2)}_{<ij>} = \ln \sum_{\sigma_i,\sigma_j} \exp (-\beta H_{ij}(\sigma_i, \sigma_j))
\] (14)

and that from the site \(i\) is:
\[
-\beta F^{(1)}_i = \ln \sum_{\sigma_i} \exp (\beta H_i \sigma_i),
\] (15)

where \(H_i\) is the total spin acting on spin \(\sigma_i\). One can prove the validity of the expression (13) by the following two steps: 1) it clearly gives the correct free energy at high temperature; 2) using the fact that \(\sum_j h_i^{(j)} = kH_i\), where the sum is over all the neighbours \(j\) of site \(i\), one finds that \(\partial (\beta F) / \partial \beta\) gives back the correct expression for the internal energy obtained in (12). We notice en passant that this free energy is nothing but the generalization to a finite coordination number of the TAP free energy (and reduces to the usual TAP free energy in the limit of infinite coordination number) [15,16].

The Edwards-Anderson order parameter [34], \(q = (1/N) \sum_i <\sigma_i^2>\), can be written as the magnetization squared of a spin coupled to \(k + 1\) neighbours and is given by
\[
q = \int dHQ_i(H) [\tanh^2(\beta H)].
\] (16)

We shall also compute the link overlap, \(q^{(l)} = (2/(N(k + 1))) \sum_{<ij>} <\sigma_i \sigma_j^2>\), which is deduced from the \(Q(h)\) distribution as:
\[
q^{(l)} = E J \int dh dh' Q(h)Q(h') \left(\tanh(\beta J) + \tanh(\beta h) \tanh(\beta h') \right)^2
\] (17)

B. A variational formulation

We have just seen in the previous section that, if one neglects the possibility of RSB, all the thermodynamic quantities of the Bethe lattice spin glass can be computed in terms of the probability distribution \(Q(h)\) of the effective field \(h\). This probability distribution is obtained by solving the self-consistency equation (6).

It is interesting for many reasons, some of which will become clear later, to reformulate this problem in a variational way. One can write a free energy \(F[Q]\), which is a functional of the probability distribution \(Q(h)\), such that:

1. The equation \(\delta F / \delta Q(h) = 0\) is equivalent to the self-consistency equation (6) for \(Q(h)\).
2. Calling \(Q^*\) the solution of the previous equation, the equilibrium free energy (13) is equal to \(F[Q^*]\).

This free energy functional is given by:
\[
\frac{F[Q]}{N} = \frac{k + 1}{2} \int \prod_{i=1}^k [dh_i dg_i Q(h_i)Q(g_i)] F^{(2)}(h_1 \ldots h_k, g_1 \ldots g_k)
- k \int \prod_{i=1}^{k+1} [dh_i Q(h_i)] F^{(1)}(h_1 \ldots h_{k+1})
\] (18)
where

\[-\beta F^{(1)}(h_1 \ldots h_{k+1}) = E_J \ln \left(\prod_{i=1}^{k+1} \frac{1}{d(J_i, h_i)} \right) \sum_{\sigma_0, \sigma_1 \ldots \sigma_{k+1}} \exp \left[\beta \sigma_0 \sum_{i=1}^{k+1} J_i \sigma_i + \beta \sum_{i=1}^{k+1} h_i \sigma_i \right], \]

\[-\beta F^{(2)}(h_1 \ldots h_k, g_1 \ldots g_k) = E_J E_K \ln \left(\prod_{i=1}^{k} \frac{1}{d(J_i, h_i)d(K_i, g_i)} \right) \sum_{\sigma_0, \sigma_1 \ldots \sigma_k} \sum_{\tau_0, \tau_1 \ldots \tau_k} \exp \left[\beta J_0 \sigma_0 \tau_0 + \beta \sigma_0 \sum_{i} J_i \sigma_i + \beta \sum_{i} h_i \sigma_i + \beta \tau_0 \sum_{i} K_i \tau_i + \beta \sum_{i} g_i \tau_i \right]. \] (19)

These two expressions are represented pictorially in fig. 2. In this formula the function \(d(J, h) \) is an arbitrary positive function, since its contributions to the two pieces \(F^{(1)} \) and \(F^{(2)} \) cancel. We shall mainly use it with \(d(J, h) = c(J, h) \), which allows an easy connection with the expression (13), but some other choice will also be useful in order to make contact with the result of the replica method, as we shall see below.

FIG. 2. A pictorial representation of the two contributions (19) to the free energy. The 'site' contribution on the top is obtained by merging \(k + 1 \) lines onto one site (here \(k = 3 \)), and the 'bond' contribution pictured on the bottom figure is obtained by adding one new link \(J_0 \), and two new spins \(\sigma_0 \) and \(\tau_0 \), to the lattice, together with the other \(k \) branches arriving onto each of these spins.

Let us now show that this free energy has the desired properties. In order to check that \(Q^*(h) \) is a stationarity point of the free energy in the space of normalized probability distributions \(Q(h) \) (such that \(\int dh Q(h) = 1 \)), we need to show that \(\delta F/\delta Q(h) = constant \) when \(Q = Q^* \). This functional derivative is equal to

\[\frac{1}{N} \frac{\delta F(Q)}{\delta Q(h)} = k(k+1) \int dh_2 \ldots dh_k Q(h_2) \ldots Q(h_k) \]

\[\left(\int dg_1 \ldots dg_k Q(g_1) \ldots Q(g_k) F^{(2)}(h_1 \ldots h_k, g_1 \ldots g_k) - \int dh_{k+1} Q(h_{k+1}) F^{(1)}(h, h_2 \ldots h_{k+1}) \right). \] (20)

Using (13), one easily sees that, if \(Q(h) = Q^*(h) \) satisfies the self consistency equation (13), one has, for any \(h_1 \ldots h_k \):

\[\int dg_1 \ldots dg_k Q^*(g_1) \ldots Q^*(g_k) F^{(2)}(h_1 \ldots h_k, g_1 \ldots g_k) = A + \int dh_{k+1} Q^*(h_{k+1}) F^{(1)}(h_1 \ldots h_{k+1}), \] (21)

where \(A \) is a constant (independent of \(h_1 \ldots h_k \), given by

\[A = (-1/\beta) \int dg_0 Q^*(g_0) E_J \ln [d(J_0, g_0)] + k \ln [c(J_0, g_0)/d(J_0, g_0)] \]. (22)

This shows that the functional derivative (20) is a constant. The repeated use of (13) allows to show similarly that the saddle point free energy \(F^*(Q^*(h)) \) is indeed equal to the free energy (13) (the factor \((k+1)/2\) in (13) is nothing but the number of links per site).
As an extra check, one can see that the derivative of $\beta F[Q]$ with respect to β gives the internal energy of the previous section (the derivative is quite simple if we absorb most of the βs redefining the h and notice that the only explicit dependence on β comes from the term βJ).

It is interesting to note that, using the basic recursion relation (3), and the special choice $d(J,h) = 2 \cosh(\beta h)$, we can write the free energy under the simple form:

$$\frac{F[Q]}{N} = \frac{k + 1}{2} \int \prod_{i=1}^{k} [dh_i Q(h_i)] \, F^{(1)}(h_1 \ldots h_k) - \frac{k - 1}{2} \int \prod_{i=1}^{k+1} [dh_i Q(h_i)] \, F^{(1)}(h_1 \ldots h_{k+1})$$ \tag{23}

where

$$-\beta F^{(1)}(h_1 \ldots h_k) = E_J \ln \left(\prod_{i=1}^{k} \frac{1}{2 \cosh(\beta h_i)} \right) \sum_{\sigma_0,\sigma_1,\ldots,\sigma_k} \exp \left[\beta \sigma_0 \sum_{i=1}^{k} J_i \sigma_i + \beta \sum_{i=1}^{k} h_i \sigma_i \right]$$ \tag{24}

One must keep in mind that this expression for the free energy is correct only if Q satisfies eq. (3) and should not be used as a variational free energy (see also next section).

C. Equivalence with the replica formalism

We shall not present here the details of the replica approach to this problem, for which we refer the reader to [1], [24], [25], [27]. Let us recall the main results of [23]. In the replica approach one introduces a probability distribution $\rho(\sigma)$, where the variables σ are Ising variables (n eventually goes to zero). One can introduce a free energy functional $F_{rep}[\rho(\sigma)]$. The equilibrium free energy is given by $F(\beta) = F_{rep}[\rho^*]$, where ρ^* is the solution of the stationarity equation $\delta F_{rep}/\delta \rho = 0$.

The expression of the free energy functional in replica space can be derived following exactly the same steps as in the previous section. The final result is [23]

$$-\beta n \frac{F_{rep}[\rho]}{N} = \frac{k + 1}{2} \ln \left(\text{Tr}_{\sigma,\tau} \left[\rho(\sigma)^k \rho(\tau)^k \exp \left(\sum_{a=1}^{n} \beta J \sigma_a \tau_a \right) \right] \right) - \ln \left(\text{Tr}_{\sigma} \left[\rho(\sigma)^{k+1} \right] \right)$$ \tag{25}

where Tr_{σ} denotes the average over the 2^n configurations of the variables σ or τ, and the correct result is obtained in the $n \to 0$ limit. The same value for the free energy is obtained if we multiply the function ρ by a constant, so that the ρ does not need to be normalized, although it is more convenient to work with a normalized ρ. The advantage of the replica approach is that the system is homogeneous and the distribution $\rho(\sigma)$ is the same in all the points. This advantage is partially compensated by the fact the the number of variables n is going to zero.

As can be readily checked, ρ satisfies a very simple equation:

$$\rho(\sigma) = \frac{E_J \text{Tr}_{\tau} \left[\rho(\tau)^k \exp \left(\sum_{a=1}^{n} \beta J \sigma_a \tau_a \right) \right]}{\text{Tr}_{\tau} \left[\rho(\tau)^k \right]}.$$ \tag{26}

Using this equation the free energy [23] can be simplified to [23]:

$$-\beta n \frac{F_{rep}[\rho]}{N} = \frac{k + 1}{2} \ln \left(\text{Tr}_{\sigma} \left[\rho(\sigma)^k \right] \right) - \frac{k - 1}{2} \ln \left(\text{Tr}_{\sigma} \left[\rho(\sigma)^{k+1} \right] \right)$$ \tag{27}

where as before this new form of the free energy cannot be used in a variational formulation. The result [23] for the replicated free energy is correct in general, whether the replica symmetry is broken or not. The problem is to find the solution $\rho^*(\sigma)$. In the replica symmetric situation this task is easy: the $\rho(\sigma)$ is a function of only $\Sigma = \sum_a \sigma_a$. We can thus write in general:

$$\rho(\sigma) = \int du R(u) \exp(\beta u \Sigma),$$ \tag{28}

where the normalization condition of $\rho(\sigma)$ imposes:

$$\int du R(u) (2 \cosh(\beta u))^n = 1.$$ \tag{29}
Using this expression for ρ, we obtain in the small n limit:

$$\ln \left(\text{Tr}_\sigma \left[\rho(\sigma)^{k+1} \right] \right) = n \int \frac{du_i R(u_i)}{\cosh(\beta u_i)} \ln \left(\prod_{i=1}^{k+1} \frac{1}{2 \cosh(\beta u_i)} \sum_{\sigma_0} \exp \left(\beta \sigma_0 \sum_{i} u_i \right) \right)$$

and:

$$\ln \left(\text{Tr}_{\sigma,\tau} \left[\rho(\sigma)^k \rho(\tau)^k \exp \left(\sum_{a=1,n} \beta J a \tau_i \right) \right] \right) = n \int \frac{du_i dv_i R(u_i)R(v_i)}{4 \cosh(\beta u_i) \cosh(\beta v_i)} \sum_{\sigma_0,\tau_0} \exp \left(\beta \sigma_0 \sum_{i=1}^{k} u_i + \beta \tau_0 \sum_{i=1}^{k} v_i + \beta J_0 \sigma_0 \tau_0 \right) .$$

Putting these expressions back into the replica free energy (25), one gets exactly the functional $F[Q]$ which we had written previously in (18), provided we identify the n free energy shifts obtained when adding a new site or a new bond to the lattice.

In other words we have seen three equivalent ways to solve the Bethe lattice spin glass in the replica symmetric approximation:

- One can derive the recursion equations (30) for the probability distribution $Q^*(h)$ of the local 'cavity' field h, and evaluate the free energy and the internal energy using this distribution.
- Alternatively one can introduce the free energy functional (13), which depends on the probability distribution $Q(h)$ and satisfies a variational principle: the distribution $Q^*(h)$ is obtained as the one which makes the functional stationary.
- One can obtain the same functional starting from the replica approach (25), making explicitly an assumption of replica symmetry, and doing some simple algebra. It is typical of the replica approach that a probability distribution is traded with a function of n variables, in the $n \to 0$ limit.

D. Free energy shifts

It may be instructive to compare this approach with the more usual cavity method and to check that we obtain the same results. In the cavity method, one computes the free energy by averaging the various free energy shifts obtained when adding a new site or a new bond to the lattice.

The first quantity which we compute is the free energy shift ΔF_{iter} obtained my adding a new spin σ_0 connected to k branches, as we do in the iterative procedure. Using the same notations as in (30), this free energy shift is:

$$- \beta \Delta F_{\text{iter}}(J_1 \ldots J_k, h_1 \ldots h_k) = \ln \left[2 \cosh \left(\beta \sum_{i=1}^{k} u(J_i, h_i) \right) \right] + \sum_{i=1}^{k} \ln \left[\frac{\cosh(\beta J_i)}{\cosh(\beta u(J_i, h_i))} \right] .$$

In order to compute the total free energy, we also need the free energy shift when adding the new spin σ_0, onto which merge $k+1$ branches (see fig. 2). This free energy shift is equal to the same quantity with k changed into $k + 1$:

$$- \beta \Delta F^{(1)}(J_1 \ldots J_{k+1}, h_1 \ldots h_{k+1}) = - \beta F^{(1)}(h_1 \ldots h_{k+1}) + \beta \sum_{i=1}^{k+1} \ln[2 \cosh(\beta h_i)]$$

$$= \ln \left[2 \cosh \left(\beta \sum_{i=1}^{k+1} u(J_i, h_i) \right) \right] + \sum_{i=1}^{k+1} \ln \left[\frac{\cosh(\beta J_i)}{\cosh(\beta u(J_i, h_i))} \right] .$$

The free energy shift (see fig. 3) is equal to:

$$\Delta F^{(2)}(J_1 \ldots J_k, K_1 \ldots K_k, h_1 \ldots h_k, g_1 \ldots g_k) = F^{(2)}(h_1 \ldots h_k, g_1 \ldots g_k) - \sum_{i=1}^{k} \ln[4 \cosh(\beta h_i) \cosh(\beta g_i)]$$
and is given by:

\[- \beta \Delta F^{(2)}(J_0, J_1 \ldots J_k, K_1 \ldots K_k, h_1 \ldots h_k, g_1 \ldots g_k) = \sum_{i=1}^{k} \ln \left(\frac{\cosh(\beta J_i)}{\cosh(\beta u(J_i, h_i))} \frac{\cosh(\beta K_i)}{\cosh(\beta u(K_i, g_i))} \right) + \ln \left(\sum_{\sigma_0, \tau_0} \exp \left(\beta J_0 \sigma_0 \tau_0 + \beta \sigma_0 \sum_{i=1}^{k} u(J_i, h_i) + \beta \tau_0 \sum_{i=1}^{k} u(K_i, g_i) \right) \right) \] (35)

In the process of adding new sites or new bonds randomly, one can thus compute the total free energy as the average over the distribution of fields and couplings of \([\frac{(k+1)}{2}] \Delta F^{(2)} - k \Delta F^{(1)}\). It is a simple exercise to check that this indeed gives back the free energy \((18)\).

IV. THE RSB INSTABILITY

The recursion relation of the local fields \((5)\) has been the subject of a lot of studies in the past twenty years \([13–18,25]\). The distribution \(Q(h)\) is a simple \(\delta\) function at the origin, indicating a paramagnetic phase, at high temperatures \(\beta < \beta_c\), where the critical inverse temperature \(\beta_c\) is the solution of \((17)\):

\[E_J \tanh^2(\beta_c J) = 1/k .\] (36)

In the low temperature phase the specific heat becomes negative at low enough temperatures at least for some distributions of couplings \([16]\), and the solution for \(Q(h)\) becomes identical to the replica symmetric field distribution of the SK model in the large \(k\) limit \([14,16,18]\), which is known to be wrong. Another indication that the above procedure gives a wrong result for the Bethe lattice (while it might be correct for the Cayley tree with some sets of boundary conditions \([18,21]\)) is the fact that it fails to identify a transition in a magnetic field \(H\). This transition exists though, on a line in the \(H - T\) plane similar to the A-T line, and can be identified by considering the onset of correlations between two replicas of the system \([17]\).

One can investigate the instability of the previous solution using the replica method. Writing the recursion relations for the replicated system, Mottishaw has shown that the replica symmetric solution, which coincides with the simple Bethe-Peierls iteration described above, is unstable at \(\beta > \beta_c\) (or, in a field, beyond the A-T line) \([19]\). Unfortunately, getting the replica symmetry broken solution in the low temperature phase is difficult. In general the problem involves an infinity of order parameters which are multi-spin overlaps \([24,9,19,20,23]\). As we saw, the replica symmetric solution already involves an order parameter which is a whole function (the distribution of local fields); going to a ‘one step RSB’ solution \([3]\), the replica order parameter becomes now a functional, the probability distribution over the space of local field distributions \([27]\) (the reason will be discussed in details in the next section). While one can write formally some integral equations satisfied by this order parameter, solving them is in general a formidable task. The solution is known only in the neighborhood of the critical temperature \([20]\), or in the limit of large connectivities \([23]\), where the overlaps involving three spins or more are small and can be treated perturbatively, allowing for some expansion around the SK solution. In the general case, the only tractable method so far has been an approximation which parametrizes the functional by a small enough number of parameters and optimizes the one step RSB free energy inside this subspace \([24,25]\). We shall develop in the next two sections a solution to this problem.

V. THE FORMULATION OF THE ‘ONE STEP RSB’ SOLUTION

A. The iterative approach

In this section we shall explain the physical nature of the RSB instability and work out the equivalent of the ‘one step RSB solution’ using the cavity method \([4]\), i.e. the same type of iterative approach which was used in sect. \([III.A]\).

The reason for the failure of the simple iterative solution is that it neglects the possibility of the existence of several pure states \([8]\). We shall proceed by first assuming some properties of the states on one branch, and then imposing the self-consistency of these hypotheses when one joins \(k\) branches to a new site. Let
us assume that there exist many pure states, labelled by an index α going from 1 to ∞, with the following properties: Looking at one branch of the tree as in fig.1, the total local field seen by the site $i = 0$ at the extremity of this branch depends on the state α and is denoted by h_0^α; the free energies of the states on one branch, F^α, are independent identically distributed (iid) random variables, with an exponential density behaving as

$$\rho(F) = \exp(\beta x(F - F^R)),$$

(37)

where F^R is a reference free energy. The differences between the free energies remain finite when the volume goes to infinity, which means that the various states have non-zero statistical weights:

$$W^\alpha = \frac{\exp(-\beta F^\alpha)}{\sum_\gamma \exp(-\beta F^\gamma)},$$

(38)

The fact that the W can be normalized in this way is possible only if $x < 1$.

Let us consider as before a point i on one branch of the Bethe lattice, i.e. a point connected to k other points. In each phase α of the system the magnetization m^α_i will be different and therefore the effective fields h^α_i depend on α. The description of the properties of this point will include the list of fields h^α_i and the free energies of the branch F^α, for all states α. Here we shall assume a relatively simple situation namely that the free energies and the magnetic fields are not correlated, and the distribution of free energies is the one described above, leading to the density (37). It is convenient (to avoid possible difficulties in dealing with measures in infinite dimensional spaces) to order the states in an increasing order of free energy, and to consider only the set of the first M states with lowest free energies (in the end M will be sent to infinity). Let us introduce the set of the local fields in all the M states, $h = \{h^\alpha_i\}$. When changing the sample (or equivalently changing the site i), these fields fluctuate and our task is to compute the corresponding probability distribution $Q_i(h)$, which is a function of the M effective magnetic fields which is left invariant by the permutations of these fields. This task is simplified if we assume that the M fields h^α_i on one point can be characterized as independent random variables. We thus assume that there exists a probability function $Q_i(h)$ which can be written in a factorized form:

$$Q_i(h) = \prod_{\alpha=1}^{M} Q_i(h^\alpha) .$$

(39)

The total probability function $Q(h)$ is thus given by

$$Q(h) = N^{-1} \sum_{i=1}^{N} \left[\prod_{\alpha=1}^{M} Q_i(h^\alpha) \right] .$$

(40)

In other words on any given point the fields are independent variables, which become correlated on the global level after we average over the samples. More generally one can assume that the total probability function $Q(h)$ is of the form:

$$Q(h) = \int d\lambda \, m(\lambda) \prod_{\alpha=1}^{M} q(h^\alpha | \lambda) ,$$

(41)

where λ is an appropriate set, $m(\lambda)$ is a probability distribution, and $q(h|\lambda)$ is a probability distribution on h, conditioned to a given value of λ. A possible representation of the distribution (41) is given by (40), where each point i is characterized by a parameter λ (extracted with the measure $m(\lambda)$).

We shall now check that this hypothesis is self consistent, i.e. that it is reproduced when one iterates the construction of the tree by merging k lines to a new spin σ_0 [35]. For each state α, the local field on this site h_0^α is expressed in terms of those on the branches, h^α_i by (35), giving:

$$h_0^\alpha = \sum_{i=1}^{k} u(J_i, h_i^\alpha) .$$

(42)

The free energy shift ΔF^α for the state α during this process is given by the function ΔF_{iter} defined in [33].
\[\Delta F^\alpha = \Delta F_{\text{iter}}(J_1 \ldots J_k, h_0^\alpha, \ldots, h_k^\alpha). \] (43)

We must be careful at this stage because the free energy shifts and the local fields on the new spin \(\sigma_0 \) are correlated. More precisely, for a given state \(\alpha \), \(h_0^\alpha \) and \(\Delta F^\alpha \) are two correlated variables, but they are not correlated with the local fields or free-energy shifts in the other states. Because of our ordering process of the free energies, we need to compute and order the new free energies \(G^\alpha = F^\alpha + \Delta F^\alpha \). \(G^\alpha \) and \(G^\gamma \) in two different states are obviously independent random variables. Furthermore, a standard argument of the cavity method \([3,3]\), relying on the exponential distribution of the free energies, allows to show that the new free energy \(G^\alpha \) is in fact uncorrelated with the local field \(h_0^\alpha \). To show this, let us introduce the joint distribution \(P_0(h_0, \Delta F) \) of \(h_0^\alpha \) and \(\Delta F^\alpha \). The joint distribution \(R_0(h_0, G) \) of the local field and the new free energy is given by:

\[R_0(h_0, G) \propto \int dF d(\Delta F) \exp(\beta x(F - F^R))P_0(h_0, \Delta F)\delta(G - F - \Delta F) \propto \exp(\beta x(G - F^R))Q_0(h_0), \] (44)

where

\[Q_0(h_0) = C \int d(\Delta F) P_0(h_0, \Delta F) \exp(-\beta x\Delta F) \] (45)

the constant \(C \) being fixed in such a way that \(Q_0(h_0) \) is a normalized probability distribution.

In our ordering process of the new free energies \(G^\alpha \), we pick up the \(M \) lowest ones, sending in the end \(M \) to infinity. This ordering process thus gives rise to a probability distribution for the \(h_0^\alpha \) in which the fields for different \(\alpha \) are not correlated and have the distribution \(Q_0(h_0) \). The reader should notice that this distribution is in general different from the naïve result \(\int d\Delta F_0 \int d\Delta F_0 \). In this way we have constructed, for one given new spin \(\sigma_0 \) with a fixed environment of coupling constants, the new distribution of all local fields: \(\prod_\alpha Q_0(h_0^\alpha) \). By averaging over the coupling constants, one thus generates the probability distribution \(Q_0(h) \) which is a functional of the probability distribution \(Q(h) \) of the other \(k \) sites. Imposing that

\[Q_0(h) = Q(h) \] (46)

gives a self-consistency equation for the probability distribution \(Q(h) \). We shall see in sect. \([6]\) how one can actually find a solution to this self-consistency equation with a good accuracy.

Let us suppose for the time being that we know the self-consistent distribution \(Q(h) \) and let us evaluate the free energy and the internal energy. The computation is quite similar to the one in the replica symmetric case. There are two contributions to the free energy: the site contribution and the bond contribution.

The local site contribution to the free energy is evaluated as a weighted average of the free energy shift when adding one new spin:

\[F^{(1)} = -\frac{1}{\beta} E_J \langle \ln \left(\sum_{\alpha=1}^{M} W^\alpha \exp[-\beta \Delta F^{(1)}(J_1 \ldots J_{k+1}, h_1^\alpha \ldots h_{k+1}^\alpha)] \right) \rangle, \] (47)

where \(\Delta F^{(1)} \) is the site free-energy-shift function defined in \([3]\), and the bracket denotes an average over the distribution of weights \(W^\alpha \) derived from \([3,3,37]\), and over the fields (with distribution \(\prod_{i=1}^{k+1} Q(h_i) \)).

The local bond contribution to the free energy is evaluated as a weighted average of the free energy shift when adding a new bond and the corresponding two spins:

\[F^{(2)} = -\frac{1}{\beta} E_J E_K \langle \ln \left(\sum_{\alpha=1}^{M} W^\alpha \exp[-\beta \Delta F^{(2)}(J_0, J_1 \ldots J_k, K_1 \ldots K_k, h_1^\alpha \ldots h_k^\alpha, g_1^\alpha \ldots g_k^\alpha)] \right) \rangle, \] (48)

where \(\Delta F^{(2)} \) is the bond free-energy-shift function defined in \([38]\), and the bracket denotes an average over the weights, and over the fields (with distribution \(\prod_{i=1}^{k+1} [Q(h_i)Q(g_i)] \)).

The total free energy is given, according to \([13,15,14]\), by:

\[F = \frac{k + 1}{2} F^{(2)} - k F^{(1)}. \] (49)
Similarly to what happened in the RS case \[23\], one can also write here a simplified form of the free energy, valid only on the saddle point:

\[
F = \frac{k + 1}{2} F^{(1)} - \frac{k - 1}{2} F^{(1)}
\]

where

\[
F^{(1)} = -\frac{1}{\beta} E_F \ln \left(\sum_{\alpha=1}^{M} W^\alpha \exp[-\beta \Delta F^{(1)} (J_1 \ldots J_k, h_1^\alpha \ldots h_k^\alpha)] \right).
\]

(51)

For reasons which are beyond our control this second form of the free energy has empirically smaller errors (about by a factor 3) and less systematic errors (at finite \(M \)) than the first one.

The computation of the internal energy is done by considering what happens when we couple two sites which where previously connected each to \(k \) branches of the tree. We obtain, with the same notations as in \[13\] and in fig. 3:

\[
U = -\left(\sum_{\alpha=1}^{M} \bar{W}_2^\alpha \sum_{i=1}^{k} u(J_i, h_i^\alpha) \right),
\]

where \(h_0^\alpha = \sum_{i=1}^{k} u(J_i, h_i^\alpha) \) and \(g_0^\alpha = \sum_{i=1}^{k} u(K_i, g_i^\alpha) \). We have introduced the shorthand notation:

\[
\bar{W}_2^\alpha \equiv \frac{W^\alpha \exp[-\beta \Delta F^{(2)} (J_0, J_1 \ldots J_k, K_1 \ldots K_k, h_1^\alpha \ldots h_k^\alpha, g_1^\alpha \ldots g_k^\alpha)]}{\sum_{\gamma=1}^{M} W^\gamma \exp[-\beta \Delta F^{(2)} (J_0, J_1 \ldots J_k, K_1 \ldots K_k, h_1^\alpha \ldots h_k^\alpha, g_1^\alpha \ldots g_k^\alpha)]}.
\]

(53)

The various overlaps can be obtained in the same way. There are now two site overlaps, the self-overlap \(q_1 \) and the inter-state-overlap \(q_0 \), which are given by:

\[
q_1 = E_F \left(\sum_{\alpha=1}^{M} \bar{W}_2^\alpha \tanh[\beta \sum_{i=1}^{k+1} u(J_i, h_i^\alpha)] \right)
\]

\[
q_0 = E_F \left(\sum_{\alpha \neq \beta} \bar{W}_1^\alpha \bar{W}_1^\beta \tanh[\beta \sum_{i=1}^{k+1} u(J_i, h_i^\alpha)] \tanh[\beta \sum_{i=1}^{k+1} u(J_i, h_i^\beta)] \right)
\]

(54)

where we have kept the same notations as in \[17\] but we have introduced \(\bar{W}_1^\alpha \) which is a notation for:

\[
\bar{W}_1^\alpha \equiv \frac{\exp[-\beta F_\alpha - \beta \Delta F^{(1)} (J_1 \ldots J_{k+1}, h_1^\alpha \ldots h_{k+1}^\alpha)]}{\sum_{\gamma} \exp[-\beta F_\gamma - \beta \Delta F^{(1)} (J_1 \ldots J_{k+1}, h_1^\gamma \ldots h_{k+1}^\gamma)]}.
\]

(55)

Similarly, we have two link overlaps \(q_1^{(l)} \) and \(q_0^{(l)} \) which are given by:

\[
q_1^{(l)} = E_F \left(\sum_{\alpha=1}^{M} \bar{W}_2^\alpha \left(\frac{\tanh(\beta J_0) + \tanh(\beta h_0^\alpha) \tanh(\beta g_0^\alpha)}{1 + \tanh(\beta J_0) \tanh(\beta h_0^\alpha) \tanh(\beta g_0^\alpha)} \right)^2 \right)
\]

(56)

and

\[
q_0^{(l)} = E_F \left(\sum_{\alpha \neq \beta} \bar{W}_2^\alpha \bar{W}_2^\beta \left(\frac{\tanh(\beta J_0) + \tanh(\beta h_0^\alpha) \tanh(\beta g_0^\alpha)}{1 + \tanh(\beta J_0) \tanh(\beta h_0^\alpha) \tanh(\beta g_0^\alpha)} \right) \right)
\]

(57)

where we keep the same notations as in \[52,53\].

At this stage we have written the hole formalism of the cavity method at the level of one step RSB. The self-consistency equation \[40\] fixes the distribution \(Q(h) \), from which one can deduce the free energy and internal energy through \[19\] and \[22\]. One can actually find a self-consistent solution for any value
of the parameter $x \in [0,1]$, and the free energy depends on x through the distribution of free energies. It is well known that, in order to describe the thermal equilibrium, one must fix x by maximising the free energy with respect to x. (Actually the whole dependance on x carries some information [36, 39], particularly interesting for optimization problems, which we shall not try to study here since this paper is restricted to the study of equilibrium thermodynamics). As we shall see, the variation of free energy with respect to x is small and one needs a better computation of the derivative than just a naive difference.

We have improved the precision on the computation of the free energy and its x derivative by using the theorem of appendix 1, which allows to compute explicitly the derivative of the free energy with respect to x. From the structure of eq. (49) one finds that the total derivative $d = dF/dx$ takes the form:

$$d(x) = -\frac{1}{x}F - k d^{(1)} + \frac{k + 1}{2} d^{(2)},$$

where

$$d^{(1)} = -\frac{1}{x}E_J \langle \ln \left(\sum_{\alpha=1}^{M} W^\alpha \exp[-\beta \Delta F^{(1)}(J_1 \ldots J_{k+1}, h_1^\alpha \ldots h_{k+1}^\alpha)] \right) \rangle,$$

using the notations of (47), and

$$d^{(2)} = -\frac{1}{x}E_J E_K \langle \ln \left(\sum_{\alpha=1}^{M} W^\alpha \exp[-\beta \Delta F^{(2)}(J_0, J_1 \ldots J_K, K_1 \ldots K_k, h_1^\alpha \ldots h_k^\alpha, g_1^\alpha \ldots g_k^\alpha)] \right) \rangle,$$

using the notations of (48).

B. A variational formulation

As in the case where no replica symmetry breaking is present we can write a free energy functional of the field distribution $Q(h)$ such that the self-consistency equations for Q are equivalent to the stationnarity condition of this functional.

This free energy functional is a simple generalisation of the replica symmetric one, given by:

$$\frac{F[Q]}{N} = \frac{k + 1}{2} \int \prod_{i=1}^{k+1} \left[dh_i dg_i Q(h_i) Q(g_i) \right] F^{(2)}(h_1 \ldots h_k, g_1 \ldots g_k)$$

$$- k \int \prod_{i=1}^{k+1} \left[dh_i Q(h_i) \right] F^{(1)}(h_1 \ldots h_{k+1}),$$

where

$$-\beta F^{(1)}(h_1 \ldots h_{k+1}) = E_J \langle \ln \left(\sum_{\alpha} W^\alpha \left[\prod_{i=1}^{k+1} \frac{1}{2 \cosh(\beta h_i^\alpha)} \right] \sum_{\sigma_0, \sigma_1, \ldots, \sigma_{k+1}} \exp \left(\beta \sigma_0 \sum_{i=1}^{k+1} J_i \sigma_i + \beta \sum_{i=1}^{k+1} h_i^\alpha \sigma_i \right) \right) \rangle,$$

$$-\beta F^{(2)}(h_1 \ldots h_k, g_1 \ldots g_k) = E_J E_K \langle \ln \left(\sum_{\alpha} W^\alpha \left[\prod_{i=1}^{k} \frac{1}{4 \cosh(\beta h_i^\alpha) \cosh(\beta g_i^\alpha)} \right] \sum_{\sigma_0, \sigma_1, \ldots, \tau_0, \tau_1, \ldots, \tau_k} \sum_{\sigma_0, \sigma_1, \ldots, \tau_0, \tau_1, \ldots, \tau_k} \exp \left(\beta J_0 \sigma_0 \tau_0 + \beta \sigma_0 \sum_{i} J_i \sigma_i + \beta \sum_{i} h_i^\alpha \sigma_i + \beta \tau_0 \sum_{i} K_i \tau_i + \beta \sum_{i} g_i^\alpha \tau_i \right) \right) \rangle.$$

The weights W^α are given by (38), and the brackets stand for an average over the distribution of free energies (37).
The proof of the equivalence of the stationarity equation of this functional with the self-consistency condition of the iterative procedure can be done exactly as in the replica symmetric case. The advantage of this variational formulation is that we can compute directly the various derivatives of the free energy (e.g. with respect to \(x\) and with respect to \(\beta\)) by taking into account only the explicit dependence.

C. Equivalence with the replica formalism

We can compare what we have obtained in the previous sections with the results from the replica formalism. In the one step RSB formalism the \(n\) replicas are divided into \(n/x\) groups (labeled by \(C\)) of \(x\) replicas each, and the function \(\rho(\sigma)\) depends on the \(n/x\) ‘block’ variables

\[
\Sigma_C = \sum_{a \in C} \sigma_a ,
\]

(64)
each sum containing \(x\) terms.

In this case we face the problem that \(\rho(\sigma)\) may depend on the \(n/x\) variables \(\Sigma_C\) in a rather complex way. Similarly to what we have done in the iterative approach, we shall not try to describe the most general dependence, but we restrict to the class of probability distributions \(\rho(\sigma)\) which can be written as:

\[
\rho(\sigma) = \int d\lambda \mu(\lambda) \prod_{C=1}^{n/x} [du_C \phi(u_C|\lambda)] \exp \left(\frac{n/x}{\beta} \sum_{C=1}^{n/x} u_C \Sigma_C \right) .
\]

(65)

with a positive probability distribution \(\mu(\lambda)\) \[62\] and a positive function \(\phi(u|\lambda)\). The normalisation condition on \(\rho(\sigma)\) is implemented by imposing that:

\[
\forall \lambda : \int du \phi(u|\lambda)(2 \cosh(\beta u))^x = 1 ,
\]

(66)

so that the function

\[
\Phi(u|\lambda) = \phi(u|\lambda)(2 \cosh(\beta u))^x
\]

(67)
is a probability distribution on the \(u\) variable, for any value of \(\lambda\).

It is easy to check that this form for the function is consistent with the stationarity equations for the free energy \[24\] by proving that, if \(\rho(\sigma)\) has the form \[65\], so does

\[
E_J \text{Tr} \left(\rho(\tau)^k \exp[\sum_{a=1}^n \beta J a a_a] \right) .
\]

(68)

Using the Ansatz \[65\] for \(\rho\), one can write the ‘site’ term in the replica free energy \[25\] as:

\[
\text{Tr}_\tau \left(\rho(\sigma)^{k+1} \right) = \int \prod_{i=1}^{k+1} d\lambda_i \mu(\lambda_i) A(\lambda_1, \ldots, \lambda_{k+1})^{n/x} ,
\]

(69)
where:

\[
A(\lambda_1, \ldots, \lambda_{k+1}) = \int \prod_{i=1}^{k+1} [du_i \Phi(u_i|\lambda_i)] \left[\frac{2 \cosh(\beta \sum_{i=1}^{k+1} u_i)}{\prod_i [2 \cosh(\beta u_i)]} \right]^x .
\]

(70)

Using the small theorem proven in appendix I, the previous expression can be written as

\[
\ln A(\lambda_1, \ldots, \lambda_{k+1}) = x \int \prod_{i=1}^{k+1} \prod_\alpha [du_i^\alpha \Phi(u_i^\alpha|\lambda_i)] \left[\ln \left(\sum_\alpha W_\alpha \frac{2 \cosh(\beta \sum_{i=1}^{k+1} u_i^\alpha)}{\prod_i [2 \cosh(\beta u_i^\alpha)]} \right) \right] ,
\]

(71)

where the bracket means an average over the distribution of the weights \(W_\alpha\) have the usual distribution of the weights over states, parametrized by the parameter \(x\) (see appendix I). One gets in the end:
\[\ln \text{Tr}_\sigma (\sigma^{k+1}) = n \int \prod_{i=1}^{k+1} [d\lambda_i \mu(\lambda_i)] \]
\[\int \prod_{i=1}^{k+1} \prod_{\alpha} [du_i^\alpha \Phi(u_i^\alpha | \lambda_i)] \left(\ln \left(\sum_{\alpha} W_\alpha \frac{2 \cosh(\beta \sum_{i=1}^{k+1} u_i^\alpha)}{[2 \cosh \beta u_i^\alpha]} \right) \right) \]

(72)

The previous quantity is exactly the expression of the ‘site contribution’ to the variational free energy found in [32], provided we identify the probability distributions defined in the iterative approach [31] and in the replica approach [33]:

\[\mu(\lambda) = m(\lambda) \quad \Phi(u|\lambda) = E_J \int dh \ q(h|\lambda) \delta(u - u(J,h)) . \]

(73)

A similar computation shows that the ‘bond’ term in the free energy, calculated either through the iterative procedure or through the replica method also coincide.

We have thus derived the variational equations for the probability distribution of local fields in the one step RSB case using two different methods, the cavity iterative approach on the one hand, and the algebraic replica formalism on the other hand.

VI. SOLVING THE ONE STEP RSB EQUATIONS

Our method consists in following the population of local fields \(h_i^\alpha \) when one iterates the merging process of \(k \) branches onto one site. In some sense it thus amounts to solving the complicated equation for the functional order parameter by a method of population dynamics. In other words we parametrize the probability distribution by presenting a large number of instances of variables distributed according to this probability distribution. A similar method has been first used in the context of mean field equations in [34].

To explain it in more details, let us first state how the procedure works in the case of the ‘replica symmetric’ approximation of sect. IV. There, one just chooses a population of \(\mathcal{N} \) local fields \(h_i \). At each iteration, one picks up \(k \) such fields at random among the \(\mathcal{N} \), and computes the new field \(h_0 \) according to (1). Then one field is removed at random from the population and is substituted by \(h_0 \).

In this way one defines a Markov chain on the space of the \(\mathcal{N} \) magnetic fields. This chain has a stationary distribution which is reached after some transient time. In the \(\mathcal{N} \to \infty \) limit, the stationary distribution satisfies the self-consistency equation (6). It is possible to argue that the corrections to this limit are proportional to \(\mathcal{N}^{-1} \) and could also be computed analytically. Our procedure consists in fixing the value of \(\mathcal{N} \), iterating the merging transformation many times in such a way as to obtain the average over the asymptotic distribution at fixed \(\mathcal{N} \) with a high precision, and finally extrapolating the results to \(\mathcal{N} \to \infty \).

If we consider the case where there exist many states, we have the same problem as before, with the only difference that at each point we have a probability distribution \(Q_i(h) \). We must therefore consider a population dynamics in which the elements of the population are probability distributions. We use the population method to represent the probability distribution in each point \(i \) by a populations of fields. In this way we have a population of \(\mathcal{N} \) populations of \(\mathcal{M} \) fields (a total of \(\mathcal{N} \mathcal{M} \) fields \(h_i^\alpha \), \(i \in \{1, ..., \mathcal{N}\} \), \(\alpha \in \{1, ..., \mathcal{M}\} \)), where both \(\mathcal{N} \) and \(\mathcal{M} \) have to go to infinity.

The basic step of the algorithm is the merging of \(k \) branches. One chooses \(k \) sites \(i_1, ..., i_k \) in \(\{1, ..., \mathcal{N}\} \), and one generates, for each of the \(\mathcal{M} \) states, a new local field \(h_0^\alpha \) obtained by merging \(k \) branches, using (1), as well as the corresponding free-energy shift \(\Delta F^\alpha \) calculated using (22). But the field \(h_0^\alpha \) is not the one which will enter the population of fields. The reason is that one needs to reweigh the various states by a factor which depends on their free energy shifts: as seen in (9), the field distribution, at a fixed new free energy, is modified by a factor \(\exp(-\beta \Delta F^\alpha) \). From the knowledge of the \(h_0^\alpha \) one can infer an approximate form of the distribution \(P_0(h_0) \) from which they are extracted. For instance a simple form for \(P_0 \) is a smoothly interpolated version of the identity

\[\int_{-\infty}^{h} P_0(h_0)dh_0 = (1/\mathcal{M}) \sum_{\alpha} \theta(h_0 - h_0^\alpha) \]

(74)
where \(\theta(x) \) is Heaviside’s function (in practice we smooth this staircase function by a linear interpolation procedure). According to [13], the real field distribution \(Q_0(h) \) is well approximated by a smoothly interpolated version of the identity

\[
\int_{-\infty}^{h} Q_0(h) dh = (1/M) \sum_{\alpha} \exp(-\beta x \Delta F^\alpha) \theta(h - h_0^\alpha) .
\]

(75)

We can use two different methods in order to achieve the reweighing, which will lead to two different algorithms.

- **Method A**: The idea is to generate, from the set of \(M \) fields \(h_{i_1}^\alpha, \ldots, h_{i_k}^\alpha \), on each of the sites \(i_1, \ldots, i_k \) which is used in the merging, a *larger* population, of \(rM \) local fields \(h_{i_l}^\alpha, \alpha' = 1, \ldots, rM \), taken from the same distribution. This will be realised by having

\[
(1/M) \sum_{\alpha=1}^{M} \theta(h - h_{i_l}^\alpha) \simeq (1/(rM)) \sum_{\alpha'=1}^{rM} \theta(h - h_{i_l}^\alpha) ,
\]

(76)

at the level of linearly interpolated functions. Simultaneously one generates \(rM \) independent random free energies \(F_{\alpha'} \), \(\alpha' = 1, \ldots, rM \), with the exponential density [17]. For each of the \(rM \) states, one then compute the local field \(h_0^\alpha \) and the free energy shift \(\Delta F^\alpha \). The correct reweighing is obtained by the selection of low lying states: one computes the new \(rM \) free energies \(F_{\alpha'} + \Delta F_{\alpha'} \), orders them, and keeps only the \(M \) states with the lowest new free energies. Their local fields, called \(h^\gamma \), with \(\alpha \in \{1, \ldots, M\} \), have the correctly reweighed distribution provided that \(r \) is large enough so that there is a zero probability for the states \(\alpha' \) with the highest free energy \(F_{\alpha'} \) to enter the list of the \(M \) selected states after reweighing.

- **Method B**: The idea is to generate directly the fields with the reweighed distribution (75). Knowing the \(M \) local fields \(h_0^\alpha \) and their free-energy shifts \(\Delta F^\alpha \), we generate \(M \) new local fields \(h^\alpha \) in such a way that the following identity holds at the level of linear interpolation:

\[
\frac{1}{\sum_{\alpha} \exp(-\beta x \Delta F^\alpha)} \sum_{\alpha} \exp(-\beta x \Delta F^\alpha) \theta(h - h_0^\alpha) \simeq \frac{1}{M} \sum_{\alpha} \theta(h - h^\alpha) .
\]

(77)

Having generated the new fields \(h^\alpha \) which are typical of the properly reweighed distribution, we then substitute in the population the set of \(M \) local fields \(h_{i_l}^\alpha, \alpha = 1, \ldots, M \) by the set of new fields \(h^\alpha \). The site index \(i \) on which this substitution is performed is chosen sequentially.

While the merging of \(k \) lines is enough to build up the Markov chain which generates the population of local fields, one also needs to consider some different merging processes in order to compute the various observables, free energy, energy, local overlap and link overlap.

By merging \(k + 1 \) lines instead of \(k \), one generates with exactly the same procedure as above the three sets of \(M \) local fields \(h_0^\alpha \), free-energy shifts \(\Delta F^\alpha \) and new fields \(h^\alpha \) (we call new fields the fields which are typical of the reweighted distribution, obtained either through procedure A or B). Using the little theorem of Appendix I, the site contribution [17] to the free energy is computed as

\[
F^{(1)} = - (1/(\beta x)) \ln \left((1/M) \sum_{\alpha} \exp(-\beta x \Delta F^\alpha) \right) ,
\]

(78)

and the site overlaps receive a contribution

\[
q_1 = \sum_{\alpha} \tanh^2(\beta h^\alpha) ; \quad q_0 = \sum_{\alpha \neq \gamma} \tanh(\beta h^\alpha) \tanh(\beta h^\gamma) .
\]

(79)

The \(x \)- derivative of the free energy [59] receives a site contribution equal to:

\[
d^{(1)} = - (1/(\beta x)) \ln \left((1/M) \sum_{\alpha} \exp(-\beta x \Delta F^\alpha) \ln[\Delta F^\alpha] \right) .
\]

(80)
These contributions are then averaged over many iterations.

One can also add a new link to the system. This is done by merging \(k \) lines on the left side of the new link, generating the local fields \(h_0^\alpha \), and similarly merging \(k \) lines on the right side of the new link, generating the local fields \(g_0^\alpha \). The corresponding free energy shift \(\Delta F^\alpha \) is now computed using (52).

The bond contribution (48) to the free energy is computed by the same expression as (78), but using this free energy shift \(\Delta F^\alpha \) corresponding to a bond-addition.

The \(x- \) derivative of the free energy (61) receives a bond contribution (60) equal to:

\[
d^{(2)} = -(1/(\beta x)) \ln \left((1/\mathcal{M}) \sum_{\alpha} \exp(-\beta x \Delta F^\alpha) \ln[\Delta F^\alpha] \right) .
\] (81)

In order to compute the internal energy and the link overlaps, it is useful to introduce the local fields \(v_0^\alpha \) defined by

\[
v_0^\alpha = \frac{1}{\beta} \arctan \left(\frac{\tanh(\beta J_0) + \tanh(\beta g_0^\alpha)}{1 + \tanh(\beta J_0) \tanh(\beta h_0^\alpha)} \right).
\] (82)

From this population one generates a population of new fields \(v^\alpha \) which takes into account the appropriate weights of the fields with one of the two procedures A or B, similarly to what was done in (76) or in (77) for going from the fields \(h_0^\alpha \) to \(h^\alpha \). From (72,76,77), the contributions to the internal energy and link overlaps are given by:

\[
U = -J_0 \sum_{\alpha} \tanh(\beta v^\alpha),
\] (83)

\[
q_1^{(l)} = \sum_{\alpha} \tanh^2(\beta v^\alpha), \quad q_0^{(l)} = \sum_{\alpha \neq \gamma} \tanh(\beta v^\alpha) \tanh(\beta v^\gamma).
\] (84)

In order to compute the free energy with the simplified formula (50), one also needs the contribution \(F^{(1')} \) to the free energy, which is obtained by the same expression as (78), but using the free energy shift \(\Delta F^\alpha \) obtained by merging \(k \) lines.

Let us therefore summarize the main lines of our population dynamics algorithms for solving the Bethe lattice spin-glass problem at the level of one-step RSB. We have used two algorithms, A and B, which differ in the reweighing procedure used, but have otherwise the same skeleton:

1. Start from the population of \(N \times \mathcal{M} \) local fields \(h_0^\alpha \).
2. Merge \(k + 1 \) lines and compute the site observables:
 a) Choose at random \(k + 1 \) sites \(i_1, ..., i_{k+1} \) in \(\{1, ..., N\} \).
 b) For each of these \(k + 1 \) sites, say on site \(j \in \{i_1, ..., i_{k+1}\} \), one has a population of \(\mathcal{M} \) local fields \(h_0^\alpha \), \(\alpha = 1, ..., \mathcal{M} \). For each of the \(\mathcal{M} \) states, compute the new local field \(H_0^\alpha \) obtained by merging \(k + 1 \) branches, using (8). Compute the corresponding free energy shift \(\Delta F^\alpha \) using (33).
 c) Knowing the sets of fields \(H_0^\alpha \) and free energy shift \(\Delta F^\alpha \), generate a new set of fields \(H^\alpha \) according to (74) in algorithm A (resp.(77) if one uses algorithm B).
 d) Compute the site contribution to the free energy using (74), its \(x- \) derivative using (81) and the contribution to the site overlaps (73).
3. Merge \(2k \) lines onto a new bond and compute the bond overlaps:
 a) Choose at random \(2k \) sites \(i_1, ..., i_k, j_1, ..., j_k \) in \(\{1, ..., N\} \).
 b) From the sites \(i_1, ..., i_k \), compute the \(\mathcal{M} \) local fields \(h_0^\alpha \) obtained by merging the \(k \) branches, using (8). From the sites \(j_1, ..., j_k \), compute the \(\mathcal{M} \) local fields \(g_0^\alpha \) obtained by merging the \(k \) branches, using (8). Deduce the \(\mathcal{M} \) local fields \(v_0^\alpha \) using (82).
 c) Compute the free energy shifts \(\Delta F^\alpha \) using (33).
 d) Knowing the sets of fields \(v_0^\alpha \) and free energy shifts \(\Delta F^\alpha \), generate a new set of fields \(v^\alpha \) according to (74) in algorithm A (resp.(77) if one uses algorithm B).
 e) Compute the bond contribution to the free energy using (74), its \(x- \) derivative using (81) and the contribution to the internal energy (83) and link overlaps (84).
4. Merge k lines and update the population of fields:

 a) Choose at random k sites $i_1, ..., i_k$ in $\{1, ..., \mathcal{N}\}$.

 b) For each of these k sites, say on site $j \in \{i_1, ..., i_k\}$, one has a population of \mathcal{M} local fields h^α_j, $\alpha = 1, ..., \mathcal{M}$. For each of the \mathcal{M} states, compute the new local field h^α_j obtained by merging k branches, using (32). Compute the corresponding free energy shift ΔF^α using (32).

 c) Knowing the sets of fields h^α_j and free energy shift ΔF^α, generate a new set of fields h^α according to (76) in algorithm A (resp.(77) if one uses algorithm B).

 d) Compute the contribution $F(1')$ to the simple form (50) of the free energy using (78).

 e) Pick up the site $i \in \{1, ..., \mathcal{N}\}$ sequentially, and substitute the local fields $h^1_i, ..., h^\mathcal{M}_i$ by the new local fields h^α.

5. Start again the iteration from 2).

Obviously one needs not really perform the above three merging procedures sequentially. In our actual algorithm, we select $2k+2$ random points, merge two groups of $k+1$ to compute site observable, two groups of k to compute bond observables and to update two new sets of \mathcal{M} fields.

A word about the difference between the two algorithms. In algorithm A, the value of r must be chosen large enough so that the probability of a state with the highest old free energy F^α to enter the set of selected \mathcal{M} states be negligible. Both \mathcal{M} and r must go to infinity and in the numerical computations we have taken $r = \mathcal{M}$. Algorithm B is faster than algorithm (A) by a factor that is asymptotically proportional to r for large r. In algorithm B there is no need of introducing $r\mathcal{M}$ fields at an intermediate stage: it corresponds to the discretization of eq. 45 and we care take of the effects of the reshuffling by explicitly reweighing the fields. Unfortunately, as we shall see in the next section, the finite \mathcal{M} corrections are empirically larger in algorithm B that in algorithm A. In our case algorithm B turned out to be faster by a factor about 10, but we mentioned both algorithms because algorithm A is somewhat simpler conceptually (and closer to the original discussion of the cavity method), and also because in different situations (e.g.depending on the value of x) the relative advantages may be reversed.

VII. NUMERICAL RESULTS

Here we present the numerical results for one case in order to study the dependence of the algorithm on the various parameters involved in the numerical computation.

We consider the Ising spin glasses with binary couplings $(J = \pm 1)$ on a random lattice of fixed coordination 6 ($k=5$). High precisions measurements [29] of the internal energy are available at temperatures greater or equal to .8 for different values of the number of spins N (up to $N = 4096$). The data of the energy at $T = .8$ versus size can be very well fitted by a power law correction:

$$U(N) = U + AN^{-\omega}$$

with a quite reasonable value of $\omega \sim .767 \pm .008$ and $A \sim 2.59 \pm .02$. The value of the internal energy at infinite size is estimated to be

$$U = -1.799 \pm .001.$$ \hspace{1cm} (86)

We have done a replica symmetric computation for different values of the population size \mathcal{N}. For large \mathcal{N} there are corrections proportional to $1/\mathcal{N}$ (as expected) and for $\mathcal{N} > 10^3$ the $1/\mathcal{N}$ corrections are negligible within our accuracy. With $I = 100$, $S = 1000$, $\mathcal{N} = 4000$, we obtain the following replica symmetric results for the free energy, internal energy, entropy, site and link Edwards-Anderson parameters:

$$F = -1.863 \pm 0.002 \ , \ U = -1.8160 \pm 0.001 \ , \ S = .058 \pm .004$$

$$q = 0.6863 \pm 0.0002 \ , \ q_{\text{link}} = 0.6385 \pm 0.0003.$$ \hspace{1cm} (87)

Notice that the value of the internal energy totally disagrees with the one found in the simulations [88].
We have done a computation at the one step RSB level using the two algorithms described in the previous section, always at temperature $T = .8$.

The crucial point is to find the value of the parameter x such that the derivative of the free energy with respect to x vanishes. In fig.3 we show our results for the derivative $d(x)$ at $x = .21$, plotted versus different values of M. We have used both algorithms A and B. With algorithm B we have used $M = 2^l, l = 3...12$ and we plot the results obtained for $l \leq 10$ for a clearer figure. With algorithm A we have used $r = M \leq 400$. Unfortunately the finite M corrections are empirically much larger in the a-priori-faster algorithm B. Moreover, in this case although the finite M corrections seem to be asymptotically proportional to $1/M$, high order corrections cannot be neglected unless M is very large. In the end both algorithms give compatible asymptotic results at large M as seen on fig.3 with similar computer efforts (for this temperature and the values of x which are relevant).

In fig.4 we plot the extrapolated result at $M = \infty$ for the free energy derivative $d(x)$, obtained using algorithm B. The data has been extrapolated with a second order polynomial of M^{-1} in the interval $M = [256 - 4096]$.

Replica symmetry breaking is clearly present. The value of x where the free energy is maximum, which can be obtained by estimating the zero of the function $d(x)$, is given by $x^* = .24 \pm .02$. We use a similar procedure for all other observables: we extrapolate the x dependent results at $M = \infty$ and evaluate the errors due to the imprecise location of x^* (which is by far the largest source of error). This gives the following values of the free energy, internal energy, entropy, site and link overlaps:
\[F = -1.858 \pm 0.002 \quad , \quad U = -1.799 \pm 0.001 \quad , \quad S = 0.074 \pm 0.004 \]
\[q_1 = 0.779 \pm 0.006 \quad , \quad q_0 = 0.30 \pm 0.02 \quad (88) \]
\[q_1^{(l)} = 0.706 \pm 0.007 \quad , \quad q_0^{(l)} = 0.408 \pm 0.01 \quad (89) \]

The energy is in very good agreement with the results from simulations. In order to compare the values of the overlaps, one can study the quantity \(\langle q^2 \rangle = \int dq P(q) q^2 \). In our RSB theory we find \(\langle q^2 \rangle = (1 - x^*) q_1^2 + x^* q_0^2 = 0.485 \pm 0.015 \) which agrees well with the numerical value \(\langle q^2 \rangle = 0.49 \pm 0.02 \). In order to perform a finer comparison it is useful to consider a quantity which is sensitive to replica symmetry breaking. A natural choice is

\[R = \int dq P(q) q^4 - \left(\int dq P(q) q^2 \right)^2 \quad (90) \]

We find in our RSB theory \(R = 0.046 \pm 0.002 \) which is again in good agreement with the result of the simulations extrapolated at infinite volume: \(R = 0.051 \pm 0.002 \). The agreement is remarkable if we recall that in the replica symmetric case \(R = 0 \). The possible small difference between our value and the simulation data is likely due to the approximation of one step replica symmetry breaking (it is quite likely that replica symmetry should be broken in a continuous way, as happens in the limit of infinite coordination number). One should notice that the order parameter \(q_0 \) is non zero, which explains why some previous attempts at solving the one step RSB problem within a restricted subspace with \(q_0 = 0 \) did not improve much on the RS solution \[22\] (the necessity of having a non vanishing \(q_0 \) was already noticed in \[24\]).

Finally let us point out the crucial effect of the reweighing of the states which modifies the local fields as in \[24\]. In fig. (5) we plot the probability distribution of the field \(H_0 \) before and after the reweighing, at \(x = 1 \).

![Probability distribution of the field H0](image)

FIG. 5. The probability distribution of the field \(H_0 \) at \(x = 1 \) before (full curve) and after the reweighing (dashed curve).

VIII. CONCLUSION

We have presented a general solution of finite connectivity spin glass problems at the level of one step RSB. This solution uses the cavity method, together with a kind of population dynamic algorithm to solve the complicated functional equations. As exemplified by a detailed numerical study of the spin glass on a random lattice with fixed connectivity, this method allows to obtain good agreement with numerical simulations. It should be rather easily extendable to many other disordered systems with a finite connectivity, including the fluctuating valence spin glass and various optimization problems such as the K-satisfiability problem.

The possibility to go to higher order of RSB should be explored. In principle the method we have presented can be extended to higher order. At second order one will need a population of \(M_s \) states
within a given cluster, and a population of \(\mathcal{M}_c \) clusters of states. Therefore the algorithm must follow a total population of \(N \mathcal{M}_c \mathcal{M}_s \) states. The problem will be to see if the resulting algorithm reaches accurate results within the numerically accessible values of \(N, \mathcal{M}_c, \mathcal{M}_s \).

Some variants of the method should also be explored. In particular we have not exploited the variational formulation in the computation of the probability \(Q(h) \). One could also study in details the shape of the probability distributions of local fields in order to understand how they could be parametrized in a simple but efficient way so that the free energy to be minimized does not involve a too large number of parameters.

We thank Giulio Biroli, Cristiana Carrus, Enzo Marinari, Rémi Monasson, Riccardo Zecchina and Francesco Zuliani for useful discussions and comments.

APPENDIX I: WEIGHTED SUMS OF UNCORRELATED VARIABLES

In this appendix we want to prove a useful little theorem, which applies to the computation of \(F^{(1)} \) given in [13] and \(F^{(2)} \) in [18].

Theorem: consider a set of \(M(\gg 1) \) iid random energies \(f_\alpha, (\alpha \in \{1 \ldots M\}) \) distributed with the exponential density eq. (37), and a set of \(M \) positive numbers \(a_\alpha \). Then, neglecting terms which go to zero when \(M \) goes to infinity, the following relation holds:

\[
\langle \ln \left(\frac{\sum_\alpha a_\alpha \exp(-\beta f_\alpha)}{\sum_\alpha \exp(-\beta f_\alpha)} \right) \rangle_f = \langle \ln \left(\sum_\alpha w_\alpha a_\alpha \right) \rangle_f = \frac{1}{x} \ln \left(\frac{1}{M} \sum_\alpha a_\alpha^x \right)
\]

where \(\langle \cdot \rangle_f \) denotes an average over the distribution of \(f \).

Corollary 1: In the same conditions as the theorem, for any set of \(M \) real numbers \(b_\alpha \), one has:

\[
\langle \sum_\alpha a_\alpha b_\alpha \exp(-\beta f_\alpha) \rangle_f = \sum_\alpha \frac{a_\alpha^x b_\alpha}{\sum_\alpha a_\alpha^x}
\]

Corollary 2: In the same conditions as the theorem, for any set of \(M \) real numbers \(b_\alpha \), one has:

\[
\langle \sum_\alpha a_\alpha b_\alpha^2 \exp(-\beta f_\alpha) \rangle_f - \langle \left(\sum_\alpha a_\alpha b_\alpha \exp(-\beta f_\alpha) \right)^2 \rangle_f = x \left[\sum_\alpha \frac{a_\alpha^x b_\alpha^2}{\sum_\alpha a_\alpha^x} - \left(\sum_\alpha \frac{a_\alpha^x b_\alpha}{\sum_\alpha a_\alpha^x} \right)^2 \right]
\]

Corollary 3: If the numbers \(a_\alpha \) are \(M \) iid positive random variables, such that the average of \(a_\alpha^x \) exists, which are uncorrelated with the \(f_\alpha \), then one has:

\[
\langle \ln \left(\frac{\sum_\alpha a_\alpha \exp(-\beta f_\alpha)}{\sum_\alpha \exp(-\beta f_\alpha)} \right) \rangle_f = \langle \ln \left(\sum_\alpha w_\alpha a_\alpha \right) \rangle_f = \frac{1}{x} \ln \langle (a_\alpha^x) \rangle_a
\]

where \(\langle \cdot \rangle_a \) denotes an average over the distribution of \(a \).

Proof: we follow some of the techniques exposed in [3]. We start from the identity

\[
\ln \left(\sum_\alpha \exp(-\beta f_\alpha) a_\alpha \right) = \int \frac{dt}{t} \left[\exp(-t) - \exp \left(-t \sum_\alpha \exp(-\beta f_\alpha) a_\alpha \right) \right].
\]

We choose to work with a regularised distribution of the \(M \) iid random variables \(f_\alpha \):

\[
P(f_\alpha) = \beta x \exp(\beta x (f_\alpha - f_c)) \theta(f_c - f),
\]

where in the end we shall send \(M \to \infty, f_c \to \infty \), with \(r = M \exp(-\beta f_c) \) fixed (the value of \(r \) is irrelevant). In this limit one has:

\[
\langle \exp(-t \exp(-\beta f_\alpha) a_\alpha) \rangle_f \sim 1 - (ta_\alpha)^x \exp(-\beta xf_c) \Gamma(1 - x),
\]

from which one deduces:
\[\langle \ln \left(\sum_\alpha \exp(-\beta f_\alpha a_\alpha) \right) \rangle_f = \int \frac{dt}{t} \left[\exp(-t) - \exp(-\Gamma(1-x)t^x \exp(-\beta x f_c) \sum_\alpha a_\alpha^x) \right] \]
\[= \frac{1}{x} \ln \left(\Gamma(1-x)t^x M \exp(-\beta x f_c) \sum_\alpha a_\alpha^x \right) + \frac{1-x}{x} C, \quad (98) \]

where \(C \) is Euler’s constant. The quantity we need to compute involves subtracting the same expression with \(a_\alpha \) substituted by one, which gives the desired result:

\[\langle \ln \left(\sum_\alpha \exp(-\beta f_\alpha a_\alpha) \right) - \ln \left(\sum_\alpha \exp(-\beta f_\alpha) \right) \rangle_f = \frac{1}{x} \ln \left(\frac{1}{M} \sum_\alpha a_\alpha^x \right) \quad (99) \]

The proof of corollary 1 is easily obtained by applying the theorem to the set of numbers \(a_\alpha \exp(\lambda b_\alpha) \), and taking the derivative with respect to \(\lambda \) at \(\lambda = 0 \). Similar generalised formulas can be obtained by taking higher order derivatives. The second derivative gives corollary 2. Corollary 3 is trivial.

Remark: We notice that in the two limits \(x \to 0 \) and \(x \to 1 \) the equations can be simply understood:

- In the limit \(x = 0 \), in a typical realization of the random free energies, only one weight \(w \) is equal to one and all the others are zero. Averaging over the realizations of free energies amounts to spanning uniformly the set of indices of this special non zero weight.
- In the limit \(x = 1 \) the number of relevant \(w \) goes to infinity and each individual contribution goes to zero. An infinite number of term is present in the l.h.s. of eq. (91) and the r.h.s. of the eq. (91) becomes \(\ln \left(1/M \sum_\alpha a_\alpha \right) \), as it should.
[27] R. Monasson, J. Phys. A 31 (1998) 513; Phil. Mag. B 77 (1998) 1515.
[28] G. Parisi and F. Ritort J. Physique I, 3 (1993) 969.
[29] C. Carrus, E. Marinari and F. Zuliani (in preparation).
[30] One could develop a similar discussion by removing a link at random.
[31] I. Kanter and H. Sompolinsky, Phys. Rev. Lett. 58 (1987) 164.
[32] K.Y. Wong and D. Sherrington, J. Phys. A 21 (1988) L459.
[33] a detailed such investigation was carried out in the K-sat problem by G. Biroli, R. Monasson and M. Weigt,

cond-mat/9907343.
[34] S.F. Edwards and P.W. Anderson, J. Phys. F5 (1975) 965.
[35] We believe that assumption eq. [11] is not only consistent in the present model, but that its consistency is a
general feature of one step replica symmetry breaking.
[36] R. Monasson, Phys. Rev. Lett. 75 (1995) 2847.
[37] S. Franz, G. Parisi, J. Physique I 5 (1995) 1401.
[38] R. Baviera and M.A. Virasoro, Physica D 107 (1997) 151.
[39] R. Abou-Chacra, P.W. Anderson and D.J. Thouless, J. Phys C 6 (1973) 1734, R. Abou-Chacra, and D.J.

Thouless, J. Phys C 7 (1974) 65.