Tick-borne Encephalitis from Eating Goat Cheese in a Mountain Region of Austria

Heidemarie Holzmann, Stephan W. Aberle, Karin Stiasny, Philipp Werner, Andreas Mischak, Bernhard Zainer, Markus Netzer, Stefan Koppi, Elmar Bechter, and Franz X. Heinz

We report transmission of tick-borne encephalitis virus (TBEV) in July 2008 through nonpasteurized goat milk to 6 humans and 4 domestic pigs in an alpine pasture 1,500 m above sea level. This outbreak indicates the emergence of ticks and TBEV at increasing altitudes in central Europe and the efficiency of oral transmission of TBEV.

Tick-borne encephalitis virus (TBEV) is a human pathogenic flavivirus that is endemic to many European countries and to parts of central and eastern Asia (1). Even though vaccination can effectively prevent TBE (2), >10,000 cases are reported annually for hospitalized persons in areas of Europe and Asia to which TBE is endemic. TBEV occurs in natural foci characterized by ecologic habitats favorable for ticks, especially in wooded areas within the 7°C isotherm (3). The major route of virus transmission is tick bites, but TBEV can also be transmitted during consumption of nonpasteurized milk and milk products from infected animals, primarily goats (3). Outbreaks resulting from oral virus transmission are rare in central Europe but more common in eastern Europe and the Baltic states (3). Our investigation of TBEV transmitted by milk from a goat in an alpine pasture in a mountainous region provides evidence for a changing TBEV epidemiology in central Europe and the expansion of ticks and TBEV to higher regions.

The Study

We investigated a TBE outbreak, comprising 6 cases, in a mountain region in western Austria in July 2008. The index case occurred in a 43-year-old shepherd who had stayed for 24 days at his alpine pasture (1,564 m above sea level) before he was hospitalized for nonbacterial urethritis and nonspecific influenza-like symptoms (including pain in the lower abdomen and legs), followed by clinical signs of meningitis. TBEV infection was confirmed serologically by ELISA demonstration of specific immunoglobulin (Ig) M and IgG in serum and cerebrospinal fluid. The patient did not remember a tick bite but had eaten self-made cheese prepared from a mixture of nonpasteurized goat milk and cow milk 8–11 days before illness onset; further investigation found 6 additional persons who had eaten the same cheese (Figure). For 5 of them, recent TBEV infection was serologically proven (Table). For 3 of these persons (2 men, 44 and 65 years of age; and 1 woman, 60 years of age), similar to the index patient, a typical biphasic course and symptoms of TBE (nonspecific flu-like symptoms followed by fever, cephalgia, meningism, and ataxia after 4–10 days) developed and they were hospitalized. The 2 other persons who had eaten the cheese (female, 37 and 7 years of age) were clinically asymptomatic. The noninfected person had vomited shortly after eating the cheese because of a gastric banding. None of the infected persons had been vaccinated against TBEV.

The cheese was prepared from a mixture of fresh milk from 1 goat and 3 cows and was eaten shortly after production. Detection of TBEV-specific hemagglutination inhibiting (HI) and neutralizing antibodies in the goat’s serum proved infection in the goat; the 3 cows were seronegative for TBEV. At the time of this investigation (1 month after cheese production), TBEV was already undetectable by PCR in serum and milk of the goat. Cheese from the 3 batches produced after the contaminated batch was TBEV negative by PCR. The original cheese was no longer available for testing.
is found in the Czech Republic gradually moved upward

demonstrated that the maximum altitude at which TBEV
was collected from cows that had stayed at this altitude
alpine pasture at an altitude of 1,564 m. Indeed, some ticks
were infected through the milk of 1 goat, which had been
transported by car from a TBE–nonendemic valley to the
were infected through the milk of 1 goat, which had been
probably could have prevented all 6 human cases. Infection with TBEV has been reported in wild
boars (4,5). Serum samples from 105 goats from pastures
in the neighborhood also were investigated for TBEV-spe
cific antibodies; all goats were seronegative.

Conclusions
Our analyses showed that the 6 humans and the 4 pigs
were infected through the milk of 1 goat, which had been
transported by car from a TBE–nonendemic valley to the
alp 12 days before production of the TBEV-contaminated
cheese. Experiments have demonstrated that infected
domestic animals (i.e., goats, sheep, and cows) can excrete
TBEV into milk for ≈3–7 days, beginning as early as the
second or third day postinfection (6–9). In addition, al
though cheese was produced once or twice each week, only
this ≈1-kg batch of cheese transmitted TBEV. Therefore,
all the evidence indicates that the goat was infected at the
alpine pasture at an altitude of 1,564 m. Indeed, some ticks
were collected from cows that had stayed at this altitude
during the entire summer. Analyses of these ticks for TBEV
by PCR, however, yielded only negative results.

Our findings provide further evidence for the expan
sion of TBEV-endemic regions to higher altitudes in cen
tral Europe. For example, longitudinal studies in the Czech
Republic, a country with similar climatic and ecologic con
ditions to those of Austria, showed a shift in *I. ricinus*
ticks and TBEV, from 700 m in 1981–1983 to 1,100 m al
titude in 2001–2005 (10,11). Likewise, Zeman and Beneš
demonstrated that the maximum altitude at which TBEV
is found in the Czech Republic gradually moved upward
during 1970–2000, corresponding to the rise in tempera
ture during the same period (12). In Scandinavia, a north
ward extension of the geographic range of *I. ricinus* ticks and TBEV since the mid-1980s has also been recognized
(1,13–15). Climatic changes most likely are the major driv
ing forces for the geographic changes in the distribution of
TBEV and its main vector, *I. ricinus*, in Europe.

This report also emphasizes the efficiency of oral
transmission of TBEV to humans and to pigs. Six of the 7
persons who ate the cheese and all 4 pigs fed residual milk
or whey from the same cheese became infected. Given the
excellent effectiveness of the TBE vaccine (2), vaccination
probably could have prevented all 6 human cases.

Acknowledgments
We thank Jutta Hutecek and Cornelia Stöckl for expert tech
ical assistance and Gabriel O’Riordain for critical reading of the
manuscript.

Dr Holzmann is a virologist at the Clinical Institute of Virol
ogy, Medical University of Vienna, Austria. Her research interests
focus on flaviviruses, hepatitis C virus, and antiviral vaccines.

References
1. Lindquist L, Vapalahi O. Tick-borne encephalitis. Lancet.
2008;371:1861–71. DOI: 10.1016/S0140-6736(08)60800-4
2. Heinz FX, Holzmann H, Essl A, Kundi M. Field effectiveness of
vaccination against tick-borne encephalitis. Vaccine. 2007;25:7559–
67. DOI: 10.1016/j.vaccine.2007.08.024
3. Süss J. Epidemiology and ecology of TBE relevant to the produc
tion of effective vaccines. Vaccine. 2003;21(Suppl 1):S19–35. DOI:
10.1016/S0264-410X(02)00812-5
4. Borčić B, Raos B, Kranželč D, Abu Eldan J, Filipović V. The role of
large wildlife in the maintenance of natural foci of tick-borne menin
goencephalitis in northern Croatia. Acta Med Iugosl. 1990;44:399–
406.

Table. Infection parameters of 7 persons exposed to TBEV by eating nonpasteurized goat cheese, Austria, 2008*

Sex/age, y	Incubation, d	Symptoms/signs	Diagnosis	Hospitalized, d	Virologic parameters
					Material IgM IgG NT
M/43	11	Fever, cephalia, meningism, aseptic urethritis; CSF: pleocytosis	ME	18	Serum CSF Pos Pos Pos Yes
M/65	10	Fever, cephalia, meningism, vertigo, cerebellar ataxia; CSF: pleocytosis	ME	30	Serum CSF Pos Pos Pos Pos Yes
F/60	14	Fever, cephalia, meningism, vertigo, cerebellar ataxia; CSF: pleocytosis	ME	25	Serum CSF Pos Pos Pos Pos Yes
M/44	9	Fever, cephalia, meningism, vertigo, cerebellar ataxia; CSF: pleocytosis	ME	9	Serum CSF Pos Pos Bor Pos Yes
F/37	NA	None	NA	0	Serum Pos Pos Pos Pos Yes
F/7	NA	None	NA	0	Serum Pos Pos Pos Pos Yes
F/45	NA	None	NA	0	Serum Neg Neg Neg No

* TBEV, tick-borne encephalitis virus; NT, neutralization test; CSF, cerebrospinal fluid; Ig, immunoglobulin; ME, meningoencephalitis; pos, positive; bor, borderline; NA, not applicable; neg, negative.

Table. Infection parameters of 7 persons exposed to TBEV by eating nonpasteurized goat cheese, Austria, 2008*

Sex/age, y	Incubation, d	Symptoms/signs	Diagnosis	Hospitalized, d	Virologic parameters
					Material IgM IgG NT
					Serum CSF Pos Pos Pos

The 4 domestic pigs kept at the alpine pasture and fed
with the whey and goat milk, however, were seropositive
(TBEV HI- and neutralizing antibodies detected), which
indicated TBEV infection, but no clinical signs were ob
served. Infection with TBEV has been reported in wild
boars (4,5). Serum samples from 105 goats from pastures
in the neighborhood also were investigated for TBEV-spe
specific antibodies; all goats were seronegative.
11. Danielová V, Klíergrová S, Daniel M, Benes C. Influence of climate warming on tickborne encephalitis expansion to higher altitudes over the last decade (1997–2006) in the Highland Region (Czech Republic). Cent Eur J Public Health. 2008;16:4–11.

12. Zeman P, Beneš C. A tick-borne encephalitis ceiling in central Europe has moved upwards during the last 30 years: possible impact of global warming? Int J Med Microbiol. 2004;293(Suppl 37):48–54.

13. Lindgren E, Gustafson R. Tick-borne encephalitis in Sweden and climate change. Lancet. 2001;358:16–8. DOI: 10.1016/S0140-6736(00)05250-8

14. Skarpaas T, Ljøstad U, Søndal A. First human cases of tickborne encephalitis, Norway. Emerg Infect Dis. 2004;10:2241–3.

15. Stjernberg L, Holmkrivist K, Berglund J. A newly detected tick-borne encephalitis (TBE) focus in south-east Sweden: a follow-up study of TBE virus (TBEV) seroprevalence. Scand J Infect Dis. 2008;40:4–10. DOI: 10.1080/00365540701522934

Address for correspondence: Heidemarie Holzmann, Clinical Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A-1095, Vienna, Austria; email: heidemarie.holzmann@meduniwien.ac.at