The association between changes in lifestyle behaviors and the incidence of chronic kidney disease (CKD) in middle-aged and older men

Ryoma Michishita a, b, *, Takuro Matsuda b, c, Shotaro Kawakami d, Satoshi Tanaka d, Akira Kiyonaga b, Hiroaki Tanaka b, d, Natsumi Moritoe e, f, Yasuki Higaki b, d

a Department of Health Development, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
b The Fukuoka University Institute for Physical Activity, Fukuoka, Japan
c Department of Rehabilitation, Fukuoka University Hospital, Fukuoka, Japan
d Laboratory of Exercise Physiology, Faculty of Health and Sports Science, Fukuoka University, Fukuoka, Japan
e Fukuoka University Health Care Center, Fukuoka, Japan
f Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan

Abstract

Background: This study was designed to evaluate whether changes in lifestyle behaviors are correlated with the incidence of chronic kidney disease (CKD).

Methods: The subjects consisted of 316 men without a history of cardiovascular disease, stroke, or renal dysfunction or dialysis treatment. The following lifestyle behaviors were evaluated using a standardized self-administered questionnaire: habitual moderate exercise, daily physical activity, walking speed, eating speed, late-night dinner, bedtime snacking, skipping breakfast, and drinking and smoking habits. The subjects were divided into four categories according to the change in each lifestyle behavior from baseline to the end of follow-up (healthy−healthy, unhealthy−healthy, healthy−unhealthy and unhealthy−unhealthy).

Results: A multivariate analysis showed that, with respect to habitual moderate exercise and late-night dinner, maintaining an unhealthy lifestyle resulted in a significantly higher odds ratio (OR) for the incidence of CKD than maintaining a lifestyle (OR 8.94; 95% confidence interval [CI], 1.10−15.40 for habitual moderate exercise and OR 4.00; 95% CI, 1.38−11.57 for late-night dinner). In addition, with respect to bedtime snacking, the change from a healthy to an unhealthy lifestyle and maintaining an unhealthy lifestyle resulted in significantly higher OR for incidence of CKD than maintaining a healthy lifestyle (OR 4.44; 95% CI, 1.05−13.93 for healthy−unhealthy group and OR 11.02; 95% CI, 2.83−26.69 for unhealthy−unhealthy group).

Conclusions: The results of the present study suggest that the lack of habitual moderate exercise, late-night dinner, and bedtime snacking may increase the risk of CKD.

© 2017 The Authors. Publishing services by Elsevier B.V. on behalf of The Japan Epidemiological Association. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

The number of patients with end-stage renal disease (ESRD) in Japan is continuously increasing. Chronic kidney disease (CKD) has been related to the development of ESRD and cardiovascular disease (CVD) morbidity and mortality. The large number of ESRD patients at present is believed to be associated with the increase in number of patients with CKD. It is well known that aging, hypertension, diabetes mellitus, and metabolic syndrome are risk factors for CKD. In addition to the above factors, the incidence of CKD is also closely related to unhealthy lifestyle behaviors, such as smoking, heavy alcohol intake, obesity, lack of exercise habit, and unhealthy eating styles. In our previous cross-sectional and longitudinal studies, we observed that reduced incidence of CKD correlated with an increase in the number of healthy lifestyle behaviors. Adherence to healthy lifestyle behaviors is therefore thought to be...
important to prevent the incidence of CKD. However, no study has that evaluated the effect of lifestyle behaviors changes on preventing the onset of CKD through long-term follow-up.

The purpose of lifestyle modification in improving CKD is not only to increase renal function, but also to prevent the development of ESRD and CVD. Clarification of the association between the changes in lifestyle behaviors and the incidence of CKD may contribute to understanding the importance of lifestyle modification in CVD and ESRD prevention. We therefore hypothesized that maintaining or improving healthy lifestyle behaviors may help reduce the development of CKD, as the accumulation of healthy lifestyle behaviors has been demonstrated to be associated with prevention of the development of CKD. This study retrospectively investigated the influence of changes in lifestyle behaviors on the incidence of CKD in middle-aged and older men.

Methods

Subjects

A total of 773 middle-aged and older adults received their periodic health check-up at a health care center in Fukuoka University in 2008. The flow of participants through the study is shown in Fig. 1. The method for this health check-up has already been described in a previous study. Of the 434 subjects who provided informed consent, 178 women were excluded to remove the influence of gender. Subjects with a previous history of CVD (n = 4), stroke (n = 2), renal dysfunction (estimated glomerular filtration rate [eGFR] using the Japanese coefficient-modified CKD-Epidemiology Collaboration [EPI] equation <60 mL/min/1.73 m²), or proteinuria, or both15), and/or dialysis treatment (n = 45), were also excluded from the analysis. A total of 316 men (mean age: 52.5 ± 8.5 years; mean body mass index [BMI]: 23.3 ± 3.0 kg/m²; mean serum creatinine [Cr]: 0.84 ± 0.10 mg/dL; and mean eGFR: 81.2 ± 18.4 mL/min/1.73 m²) with no missing information during the follow-up were deemed eligible for the present study.

Blood sampling, blood pressure, and anthropometry measurements

Blood samples were collected early in the morning via venipuncture from an antecubital vein after at least 12 h of fasting. The blood samples were analyzed by Special Reference Laboratories (SRL Inc., Tokyo, Japan). The serum Cr, high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) levels were measured using the direct method. The triglyceride level was measured using the enzymatic method. The plasma glucose level was measured using an ultraviolet/hexokinase method and hemoglobin A1c (HbA1c) was measured via high-performance liquid chromatography. HbA1c is presented as the National Glycohemoglobin Standardization Program (NGSP) value, which was calculated using the conversion equation for HbA1c derived from the Japan Diabetes Society (JDS): HbA1c (NGSP value; %) = 1.02 × JDS value (%) + 0.25%. The eGFR was calculated using the CKD-EPI equations modified by a Japanese coefficient: eGFR (mL/min/1.73 m²) = Cr × 0.9 mg/dL, 141 × Cr(0.9) × 0.99321 × 0.813; Cr > 0.9 mg/dL, 141 × Cr(0.9) × 0.99321 × 0.813. The eGFR is a more accurate measure of the renal function than serum Cr16 and identifies patients who have mild renal impairment despite having normal or nearly normal Cr levels. Furthermore, the eGFR is a strong predictor of cardiovascular events and is more useful for this purpose than serum Cr. A urinalysis for assessment of the proteinuria and hematuria were performed using a dipstick, and the urine test results were classified as (−), (+), (1+), (2+), or (3+). In this study, CKD was defined according to definition of the Japanese Society of Nephrology (eGFR < 60 mL/min/1.73 m², proteinuria positive [1+ or greater], or both). The breakdown of subjects’ CKD grade at baseline16 was as follows: G1 (eGFR ≥ 90 mL/min/1.73 m²), n = 21 (6.6%); and G2 (eGFR 60–89 mL/min/1.73 m²), n = 295 (93.4%). Blood pressure was measured in the right arm with the subject sitting in a chair, after more than 5 min of rest, and was expressed as an average of duplicate measurements. The height and body weight were measured, and the BMI was calculated as the ratio of body weight (kg) to height squared (m²). The waist circumference was measured at the level of the umbilicus.

Assessment of lifestyle behaviors

The subjects’ lifestyle behaviors regarding exercise, physical activity, eating style, and drinking and smoking habits were evaluated using the standardized self-administered questionnaire of the National Health Promotion Program. The contents for this questionnaire were described in a previous study. The subjects’ lifestyle behaviors regarding physical activity, exercise, eating style, and drinking and smoking habits were determined based on their responses to the following questionnaire items: habitual moderate exercise, >30 min at a time and ≥2 times per week (yes or no); physical activity, equal to walking at least 1 h per day (yes or no); walking speed, compared with people of the same sex and age group (fast or slow); eating speed, compared with people of the same sex and age group (fast or slow); late-night dinner, ≥3 times per week (yes or no); bedtime snacking, ≥3 times per week (yes or no); and skipping breakfast, ≥3 times per week (yes or no). The subjects’ drinking and smoking habits were assessed using the following questionnaire items (with “yes” or “no” responses): drinking habit (not drinking everyday);
and smoking habit (recently not smoking). In this study, the lack of exercise habit (less than 30 min at a time and 2 times per week), low-physical activity level (less than 1 h per day), slow-walking speed (compared with people of the same sex and age group), high eating speed (compared with others), late-night dinner (more than 3 times per week), bedtime snacking (more than 3 times per week), and skipping breakfast (more than 3 times per week) were defined as unhealthy lifestyle behaviors. The subjects were divided into four categories according to the change in each of the above lifestyle behaviors from baseline to end-point year, as follows: healthy—healthy, unhealthy—healthy, healthy—unhealthy, and unhealthy—unhealthy. Because no subjects stared smoking again after they quit smoking, subjects’ smoking habit was classified into only three categories: healthy—healthy, unhealthy—healthy, and unhealthy—unhealthy.

Statistical analysis

In this study, the subjects’ end-point of follow-up was the onset year of CKD, and the biochemical analysis, blood pressure, and anthropometry measurements and assessment of lifestyle behaviors were conducted at baseline (2008) and the end-point year (maximal 5 years [until 2013]). As a result, the present study only analyzed data from subjects who had undergone a periodic health check-up at baseline and the end-point year. The data were expressed as the mean value with the SD. Statistical analyses were performed using the StatView 5.0 software package (SAS Institute, Cary, NC, USA). In this study, the subjects’ lifestyle behaviors were expressed as categorical variables, while other coronary risk factors were shown as continuous variables. The inter-group comparisons were performed using Welch’s t-test for continuous variables and the chi-square test for categorical variables. The differences in the eGFR and other coronary risk factors at baseline and after follow-up were determined using a two-way repeated-measures analysis of variance and Tukey–Kramer method for the follow-up and groups × time interactions. Comparisons of the data at the baseline and after the follow-up were performed using a Wilcoxon signed-ranks test for continuous variables. Pearson’s simple regression and the stepwise multivariate regression analyses were performed in order to determine the associations of the change in eGFR with the changes in other coronary risk factors. A multiple logistic regression analysis was performed to investigate the relationships between the changes in lifestyle behaviors and the incidence of CKD. In this multiple logistic regression analysis, age, BMI, waist circumference, SBP, DBP, LDL-C, HbA1C, and eGFR levels at baseline were entered as adjusted factors. A probability value <0.05 was considered to be statistically significant.

Results

After the follow-up, incident CKD (eGFR < 60 mL/min/1.73 m² and/or proteinuria) was observed in 21 subjects (6.6%). The mean follow-up period was 4.9 (SD, 0.6) years. The breakdown of the subjects by CKD grade at baseline was as follows: G1 (eGFR ≥ 90 mL/min/1.73 m²), n = 20 (6.3%); G2 (eGFR 60–89 mL/min/1.73 m²), n = 296 (93.7%), while that after the follow-up was as follows: G1, n = 9 (2.8%); G2, n = 286 (90.5%); and G3a (eGFR 45–59 mL/min/1.73 m²), n = 21 (6.6%; including 2 with proteinuria and 2 with microalbuminuria [urinary proteinuria ≥]). In this study, hematuria (1+ or greater) was not observed. Table 1 compares the lifestyle characteristics in subjects who did and did not develop CKD. The serum Cr, systolic blood pressure, and HbA1c level were significantly higher (all p < 0.05) and eGFR was significantly lower (p < 0.0001) in the CKD group than in the non-CKD group. No significant differences between these groups were noted in the classifications of CKD grade and other coronary risk factors.

Table 2 compares the lifestyle behaviors in subjects who did and did not develop CKD. The rates of healthy lifestyle behaviors of habitual moderate exercise (14.3% vs. 39.0%; p = 0.024), no late-night dinner (47.6% vs. 69.8%; p = 0.035), and no bedtime snacking (61.9% vs. 90.2%; p = 0.001) were significantly lower in the CKD group than in the non-CKD group. However, no significant differences were noted between these groups in the other lifestyle behaviors, including daily physical activity equal to walking, walking speed, eating speed, and skipping breakfast.

Tables 3 and 4 shows the differences in the changes in the coronary risk factors among the four categories of changes in lifestyle behaviors. No significant differences among these groups

Table 1

Classification of CKD grade	All (n = 316)	Developed CKD (n = 21)	Did not develop CKD (n = 295)	p value
eGFR, mL/min/1.73 m²				
G1, eGFR ≥ 90 mL/min/1.73 m², n (%)	81.2 (6.1)	76.1 (5.8)	81.6 (6.0)	<0.0001
G2, eGFR 60–89 mL/min/1.73 m², n (%)	79.6 (3.7)	79.5 (3.7)	79.7 (3.7)	<0.0001
Serum creatinine, mg/dL				
	0.84 (0.09)	0.92 (0.08)	0.83 (0.09)	<0.0001
Body weight, kg				
	52.5 (6.7)	52.0 (6.4)	52.5 (6.8)	0.741
Waist circumference, cm				
	83.4 (7.4)	84.8 (8.1)	83.3 (7.4)	0.372
SBP, mm Hg				
	126.4 (14.3)	133.4 (9.1)	125.9 (14.5)	0.020
DBP, mm Hg				
	82.2 (10.1)	85.5 (8.9)	82.0 (10.1)	0.125
LDL-C, mg/dL				
	118.6 (27.0)	111.7 (29.0)	119.1 (26.9)	0.226
HbA1c, NGSP %, mean (SD)				
	58.1 (13.6)	57.0 (12.7)	58.2 (13.6)	0.818
Triglyceride, mg/dL				
	61.4 (77.0)	138.5 (126.2)	116.7 (78.0)	0.114
Fasting glucose, mg/dL				
	99.9 (16.4)	99.3 (18.3)	99.9 (16.3)	0.873
HbA1c, NGSP %, mean (SD)				
	4.4 (9.3)	5.8 (0.6)	5.6 (0.6)	0.045

CKD, chronic kidney disease; eGFR, estimated-glomerular filtration rate; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; LDL-C, low-density lipoprotein cholesterol; HbA1C, hemoglobin A1C; NGSP, national glycohemoglobin standardization program.

Data are expressed as mean (standard deviation) or number of subjects (%).

The classifications of CKD grade was defined according to definition of the Japanese Society of Nephrology.15
were noted in age, eGFR, and other coronary risk factors at baseline. After the follow-up, the eGFR level decreased in all groups. A significant interaction effect for group × time was observed in the eGFR level between maintaining a healthy lifestyle and maintaining a healthy lifestyle with respect to habitual moderate exercise, daily physical activity equal to walking, and bedtime snacking (all p < 0.05). Similarly, a significant interaction effect for group × time was observed in the waist circumference, systolic blood pressure (SBP), diastolic blood pressure (DBP), LDL-C, and HbA1c levels among all four lifestyle groups with respect to habitual moderate exercise, daily physical activity equal to walking, walking speed, and bedtime snacking (all p < 0.05).

Table 5 shows that the association between the change in eGFR level and the changes in other coronary risk factors from baseline to follow-up, determined using a simple regression analysis. The change in eGFR level negatively correlated with the changes in BMI (r = −0.120, p = 0.033), waist circumference (r = −0.121, p = 0.032), SBP (r = −0.261, p < 0.0001), DBP (r = −0.223, p < 0.0001), LDL-C (r = −0.155, p = 0.006), and HbA1c levels (r = −0.188, p = 0.0008). In a stepwise multiple regression analysis, the change in eGFR level was entered as a dependent variable, while the changes in BMI, waist circumference, SBP, DBP, LDL-C, and HbA1c levels were entered as independent variables. The change in eGFR level was independently associated with the changes in SBP and HbA1c level (r² = 0.083, p < 0.0001) (Table 6).

Table 7 shows the differences in the odds ratio (OR) for the incidence of CKD among the four categories of changes in lifestyle behaviors. In this multiple logistic regression analysis, the category of changes in lifestyle behaviors (healthy—healthy, unhealthy—unhealthy, and unhealthy—unhealthy) was a dependent variable, and the incidence of CKD was an independent variable. The association between lifestyle behaviors and the incidence of CKD was continuously increasing according to an increase in the type 2 diabetes. Thus, our current findings suggest that an increasing in SBP and HbA1c level were associated with the reduction in renal function, and we consider that early lifestyle intervention is required, especially focusing on blood pressure and glycemic controls for preventing the development of CKD.

Discussion

The major finding of the present study was that maintaining an unhealthy lifestyle with respect to habitual moderate exercise and late-night dinner significantly increased the incidence of CKD versus maintaining a healthy lifestyle. In addition, changing from a healthy to an unhealthy lifestyle and maintaining an unhealthy lifestyle with respect to bedtime snacking also significantly increased the incidence of CKD versus maintaining a healthy lifestyle. Furthermore, a stepwise multiple regression analysis demonstrated that the change in eGFR level was dependently associated with changes in SBP and HbA1c level. It is well known that elevations of blood pressure and blood glucose levels are the important independent risk factors for development of renal dysfunction. Moreover, the number of patients with ESRD in Japan is continuously increasing according to an increase in the type 2 diabetes. Thus, our current findings suggest that an increasing in SBP and HbA1c level were associated with the reduction in renal function, and we consider that early lifestyle intervention is required, especially focusing on blood pressure and glycemic controls for preventing the development of CKD.

Adherence to a healthy lifestyle is well known to be related to a decreased incidence of metabolic syndrome, type 2 diabetes, hypertension, and dyslipidemia. We think that a similar mechanism underlies the relationship between healthy lifestyle behaviors and reduced risk of CKD, and maintaining a healthy lifestyle or improving an unhealthy one therefore plays an important role in the preventing these diseases. However, despite our promising findings, the association between any changes in lifestyle behaviors and the prevention of CKD remains unclear at present. Ricardo et al. evaluated the influence of four health lifestyle factors (regular physical activity, maintaining a reasonable body weight, not smoking, and enjoying a healthy eating style) on the incidence of CKD progression, atherosclerotic events, and all-cause mortality. Those authors showed that the incidence of CKD, atherosclerotic events, and all-cause mortality was significantly reduced with increasing healthy lifestyle scores. Our recent cross-sectional and longitudinal studies also found that the accumulation of healthy lifestyle behaviors, especially those related to habitual moderate exercise and no bedtime snacking, may be
Physical activity equal to	Walking speed: compared with	Eating speed: compared with	Late-night dinners: ≥3 times/week	Bedtime snacking: ≥3 times/week	Skipping breakfast: ≥3 times/week	Smoking habit	Drinking habit	
Healthy–healthy 52.6 (6.8)	Healthy–healthy 52.4 (7.3) 51.5 (6.1)	Healthy–healthy 52.6 (6.8)	Healthy–healthy 52.5 (6.8) 50.9 (5.9)	Healthy–healthy 52.6 (6.9) 50.9 (5.9)	Healthy–healthy 52.5 (6.8)	Healthy–healthy 52.4 (6.8)	Healthy–healthy 52.9 (6.8)	Healthy–healthy 52.6 (6.8) 50.9 (5.9)
Unhealthy–healthy 52.6 (6.8)	Healthy–healthy 52.6 (6.8) 51.5 (6.1)	Healthy–healthy 52.6 (6.8)	Healthy–healthy 52.6 (6.8) 50.9 (5.9)	Healthy–healthy 52.6 (6.9) 50.9 (5.9)	Healthy–healthy 52.5 (6.8)	Healthy–healthy 52.4 (6.8)	Healthy–healthy 52.9 (6.8)	Healthy–healthy 52.6 (6.8) 50.9 (5.9)
Healthy–unhealthy 52.6 (6.8)	Healthy–healthy 52.6 (6.8) 51.5 (6.1)	Healthy–healthy 52.6 (6.8)	Healthy–healthy 52.6 (6.8) 50.9 (5.9)	Healthy–healthy 52.6 (6.9) 50.9 (5.9)	Healthy–healthy 52.5 (6.8)	Healthy–healthy 52.4 (6.8)	Healthy–healthy 52.9 (6.8)	Healthy–healthy 52.6 (6.8) 50.9 (5.9)
Unhealthy–unhealthy 52.6 (6.8)	Healthy–healthy 52.6 (6.8) 51.5 (6.1)	Healthy–healthy 52.6 (6.8)	Healthy–healthy 52.6 (6.8) 50.9 (5.9)	Healthy–healthy 52.6 (6.9) 50.9 (5.9)	Healthy–healthy 52.5 (6.8)	Healthy–healthy 52.4 (6.8)	Healthy–healthy 52.9 (6.8)	Healthy–healthy 52.6 (6.8) 50.9 (5.9)

BMI, body mass index; eGFR, estimated-glomerular filtration rate; DPB, diastolic blood pressure; SBP, systolic blood pressure.

Data are expressed as mean (standard deviation).

* p < 0.05, compared to the values at baseline in each group.

1p < 0.05, compared to the healthy–healthy group.

2p < 0.05, compared to the unhealthy–unhealthy group.
Table 4
The influence of the changes in lifestyle behaviors on the blood lipid and glucose tolerance indices.

	LDL-C, mg/dL	HDL-C, mg/dL	Triglyceride, mg/dL	Fasting glucose, mg/dL	HbA1c, NGSP %
	Baseline	After	Baseline	After	Baseline
Habitual moderate exercise: ≥30 min/session and ≥2 times/week					
Healthy–healthy	116.3 (26.3)	116.9 (25.8)	60.9 (14.1)	62.5 (14.4)	104.9 (54.0)
Unhealthy–healthy	120.6 (25.0)	115.8 (26.6)	55.3 (13.4)	56.9 (15.3)	126.4 (122.1)
Healthy–unhealthy	118.6 (29.3)	115.9 (29.3)	58.7 (15.1)	59.8 (16.8)	113.3 (64.8)
Unhealthy–unhealthy	119.2 (27.5)	122.6 (26.8)	57.2 (12.8)	58.3 (14.4)	117.4 (76.0)
Physical activity equal to walking at least 1 h/day					
Healthy–healthy	115.6 (28.5)	114.6 (24.4)	61.1 (13.5)	61.8 (14.7)	110.5 (102.5)
Unhealthy–healthy	117.2 (26.5)	114.4 (23.5)	58.2 (12.6)	60.0 (14.4)	110.0 (57.0)
Healthy–unhealthy	123.3 (26.4)	121.7 (28.0)	55.7 (12.0)	56.0 (13.2)	123.0 (95.4)
Unhealthy–unhealthy	119.3 (26.6)	123.3 (28.3)	57.1 (14.1)	59.0 (15.4)	116.4 (58.3)
Walking speed: compared with people of the same sex and age group					
Healthy–healthy	120.8 (30.6)	120.0 (28.8)	58.8 (13.9)	60.0 (15.3)	112.9 (63.5)
Unhealthy–healthy	114.4 (21.6)	116.6 (24.4)	58.3 (13.4)	61.6 (15.6)	118.1 (86.2)
Healthy–unhealthy	120.9 (24.9)	120.2 (29.5)	54.8 (10.9)	55.8 (12.7)	128.7 (114.4)
Unhealthy–unhealthy	115.5 (23.2)	119.8 (23.0)	56.6 (14.3)	59.4 (14.7)	108.9 (69.5)
Eating speed: compared with others					
Healthy–healthy	116.2 (24.6)	116.0 (25.6)	59.6 (14.4)	60.2 (15.8)	111.6 (64.2)
Unhealthy–healthy	120.4 (27.3)	124.8 (29.5)	57.2 (12.1)	59.3 (12.8)	109.7 (51.2)
Healthy–unhealthy	123.3 (27.8)	131.3 (26.5)	54.6 (12.6)	54.1 (10.7)	127.2 (125.8)
Unhealthy–unhealthy	121.8 (29.7)	121.8 (27.0)	56.3 (12.5)	57.1 (14.1)	115.3 (59.7)
Late-night dinners: ≥3 times/week					
Healthy–healthy	120.6 (28.4)	119.1 (25.1)	58.3 (13.4)	59.7 (14.9)	111.1 (81.3)
Unhealthy–healthy	118.2 (25.4)	122.2 (34.0)	56.4 (14.3)	56.7 (15.3)	120.6 (60.7)
Healthy–unhealthy	115.7 (27.7)	122.4 (28.1)	57.6 (12.8)	58.5 (14.0)	124.3 (66.7)
Unhealthy–unhealthy	114.2 (23.3)	117.1 (26.0)	59.1 (13.6)	60.4 (15.1)	116.9 (60.4)
Bedtime snacking: ≥3 times/week					
Healthy–healthy	118.7 (27.5)	117.8 (25.8)	58.7 (13.2)	60.1 (14.2)	109.1 (67.3)
Unhealthy–healthy	123.6 (26.9)	126.4 (26.8)	57.4 (13.5)	60.4 (16.1)	111.5 (56.0)
Healthy–unhealthy	119.3 (25.2)	131.8 (32.6)**	55.6 (13.0)	57.9 (17.3)	123.4 (89.3)
Unhealthy–unhealthy	114.2 (23.4)	128.7 (313.3)**	53.2 (17.8)	52.1 (16.3)	128.5 (123.3)
Skipping breakfast: ≥3 times/week					
Healthy–healthy	118.6 (27.2)	119.2 (27.0)	58.0 (13.5)	59.4 (14.9)	113.2 (78.2)
Unhealthy–healthy	115.0 (24.4)	109.4 (23.5)	61.9 (16.2)	63.3 (16.3)	131.0 (87.3)
Healthy–unhealthy	121.0 (28.5)	124.9 (25.0)	57.1 (13.4)	58.9 (15.5)	119.1 (54.8)
Unhealthy–unhealthy	119.2 (27.4)	131.3 (27.4)	57.2 (10.9)	57.3 (12.1)	120.0 (74.2)
Smoking habit	119.4 (27.4)	121.5 (26.8)	58.2 (13.3)	59.3 (14.7)	120.7 (73.8)
Drinking habit	118.7 (23.9)	123.0 (27.7)	55.0 (12.8)	55.3 (13.3)	111.6 (84.2)

Data are expressed as mean (standard deviation).
*p < 0.05, compared to the values at baseline in each group.
*p < 0.05, compared to the healthy–healthy group.
predictive factors for the incidence of CKD. In our results, the incidence of CKD was reduced among subjects who maintained a healthy lifestyle or improved an unhealthy one compared to maintaining an unhealthy lifestyle, findings which are consistent with those of prior research. Thus, our current findings support the possibility that maintaining a healthy lifestyle or improving an unhealthy one is important to prevent the development of CKD, ESRD, and CVD.

In the present study, maintaining a healthy lifestyle or improving an unhealthy one with respect to habitual moderate exercise, late-night dinner, and bedtime snacking was correlated with the incidence of CKD. However, no significant associations were noted between the changes in other lifestyle behaviors and the development of CKD. A few studies recently demonstrated that individual lifestyle behaviors relating to exercise, physical activity, and eating styles related to the development of renal dysfunction. For example, Robinson-Cohen et al.32 reported that each 60-and eating styles related to the development of renal dysfunction. were noted between the changes in other lifestyle behaviors and the incidence of CKD. However, no significant associations were noted between the changes in other lifestyle behaviors and the development of CKD. A few studies recently demonstrated that individual lifestyle behaviors relating to exercise, physical activity, and eating styles related to the development of renal dysfunction. For example, Robinson-Cohen et al.32 reported that each 60-

Study limitations and clinical implications

There are several limitations in this study. First, the limited study population resulted in a small number of subjects, who were predominantly middle-aged and older men and did not have any health complications. Therefore, there is potential selection bias in this study, as study subjects may have included more CKD subjects with slowly declining renal function than CKD subjects with rapid deterioration. As such, whether or not our results are generalizable to women, patients with ESRD, or subjects with other complications remains unclear. Second, unfortunately, in this study, the causality of proteinuria or microalbuminuria and the changes in other cardiovascular risk factors could not be clarified because the number of subjects with proteinuria was small. Finally, we assessed the eGFR as calculated using the CKD-EPI equations (modified by a Japanese coefficient17) and proteinuria as markers of the renal function. To fully clarify the influence of changes in lifestyle behaviors on the renal dysfunction, other markers of renal function, such as urinary protein excretion, microalbuminuria, or cystatin C, should be concurrently evaluated. However, we were unable to measure any additional indices of renal function because current research was evaluated within the constraints of the health check-up.

However, despite these limitations, the present study is the first to elucidate the relationship with the changes in lifestyle behaviors and the incidence of CKD in a long-term follow-up study. We believe that our results support the notion that maintaining a healthy lifestyle or improving an unhealthy one can prevent the incidence of CKD. Furthermore, although the serum Cr level can be easily measured as part of a routine clinical evaluation, the eGFR is a strong predictive factor of future incidence of CVD and ESRD and is more useful for this purpose than the serum Cr level.39,40 On the basis of recent several studies, it has been observed that the development of CKD is also closely related to unhealthy lifestyles, behaviors, such as smoking, heavy alcohol intake, obesity, lack of exercise habit, and an unhealthy eating styles.41-42 Therefore, our results suggest a clear link between maintaining a healthy lifestyle or improving an unhealthy one and the development of CKD and support the hypothesis that maintaining a healthy lifestyle or improving an unhealthy one helps to prevent the development of CVD and ESRD. Given the present findings, we consider that lifestyle intervention should be provided, particularly with a focus on regular exercise habit and healthy eating styles, such as avoiding late-night dinner and no bedtime snacking, to reduce the development of CKD. Further investigation in a larger population, including subjects with other complications, is required to more precisely clarify the mechanisms underlying this association and the clinical implications of long-term intervention.
Acknowledgments

We thank Drs. Masaki Munekiyo, Kazunori Mine, Tatsuhiko Kawarabayashi, Eiichi Yoshimura, Noriko Takeda, Tomoe Horita and the members of the Laboratory of Exercise Physiology and Health Care Center of Fukuoka University for their help with the data evaluation. We are grateful to the participants of this study. This work was performed with the support of the Fukuoka University Institute for Physical Activity via a Technology Scientific Research Budget Basic Research Grant (No. A19200049, Strategic Research Infrastructure) from the Japanese Government’s Ministry of Education, Culture, Sports, Science and Technology.

References

1. The Japanese Society for Dialysis Therapy. Current Status of Dialysis Therapy in Japan. http://docs.jsdt.or.jp/overview/pdf2014/p003.pdf. Accessed 2 December 2015 [in Japanese].

2. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–1305.

3. Keith DS, Nichols GA, Gullion CM, Brown JB, Smith DH. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch Intern Med. 2004;164:659–663.

4. Imai E, Horio M, Iseki K, et al. Prevalence of chronic kidney disease (CKD) in the Japanese general population predicted by the NDRD equation modified by Japanese coefficients. Clin Exp Nephrol. 2007;11:156–163.

5. Bakris GL, Williams M, Dworkin L, et al. Preserving renal function in adults with hypertension and diabetes: a consensus approach. National Kidney Foundation Hypertension and Diabetes Executive Committees Working Group. Am J Kidney Dis. 2000;36:646–661.

Table 7

The influence of the changes in lifestyle behaviors on the incidence of CKD.

Habitual moderate	Total Developed CKD, n (%)	Univariate model	Multivariate model	
Physical activity equal to walking at least 1 h/day	Healthy–healthy 82 2 (2.4)	1.00 (Ref.)	1.00 (Ref.)	1.00 (Ref.)
Healthy–unhealthy 46 3 (6.5)	1.97 (0.24–6.38)	0.532	2.29 (0.45–7.34)	0.271
Healthy–unhealthy 42 3 (7.1)	2.19 (0.53–9.19)	0.179	2.07 (0.49–9.18)	0.229
Unhealthy–unhealthy 146 13 (8.9)	4.16 (1.13–11.95)	0.032	2.91 (0.89–12.78)	0.078
Walking speed: compared with people of the same sex and age group	Healthy–healthy 148 5 (3.4)	1.00 (Ref.)	1.00 (Ref.)	1.00 (Ref.)
Unhealthy–healthy 41 3 (7.3)	1.47 (0.45–8.54)	0.298	1.17 (0.52–8.87)	0.279
Healthy–unhealthy 45 5 (11.1)	3.69 (0.63–13.32)	0.190	3.57 (0.69–12.97)	0.109
Unhealthy–unhealthy 82 8 (9.8)	2.48 (0.56–11.96)	0.263	3.09 (0.77–9.79)	0.114
Eating speed: compared with others	Healthy–healthy 174 7 (4.0)	1.00 (Ref.)	1.00 (Ref.)	1.00 (Ref.)
Unhealthy–healthy 46 3 (6.5)	2.46 (0.51–9.02)	0.264	1.66 (0.61–6.71)	0.474
Healthy–unhealthy 20 3 (15.0)	3.37 (0.82–11.47)	0.117	3.20 (0.92–12.80)	0.094
Unhealthy–unhealthy 76 8 (10.5)	2.74 (0.79–8.75)	0.231	2.81 (0.89–8.04)	0.097
Late-night dinners: ≥3 times/week	Healthy–healthy 182 7 (3.8)	1.00 (Ref.)	1.00 (Ref.)	1.00 (Ref.)
Unhealthy–healthy 43 3 (7.0)	1.57 (0.30–6.29)	0.591	1.88 (0.46–7.57)	0.377
Healthy–unhealthy 33 3 (9.1)	2.17 (0.66–11.52)	0.236	2.50 (0.61–10.21)	0.202
Unhealthy–unhealthy 58 8 (13.8)	5.89 (1.16–13.64)	0.006	4.00 (1.38–11.57)	0.011
Bedtime snacking: ≥3 times/week	Healthy–healthy 257 9 (3.5)	1.00 (Ref.)	1.00 (Ref.)	1.00 (Ref.)
Unhealthy–healthy 17 1 (5.9)	1.51 (0.21–5.40)	0.540	1.74 (0.21–9.63)	0.609
Healthy–unhealthy 21 4 (19.0)	6.05 (2.45–12.27)	0.002	4.44 (1.05–13.96)	0.003
Unhealthy–unhealthy 21 7 (33.3)	13.93 (2.97–21.89)	0.0001	11.02 (2.83–26.69)	0.0001
Skipping breakfast: ≥3 times/week	Healthy–healthy 266 18 (6.8)	1.00 (Ref.)	1.00 (Ref.)	1.00 (Ref.)
Unhealthy–healthy 17 1 (5.9)	0.17 (0.01–2.42)	0.190	0.86 (0.11–6.87)	0.888
Healthy–unhealthy 21 1 (4.8)	0.63 (0.06–5.69)	0.705	0.69 (0.09–5.43)	0.724
Unhealthy–unhealthy 12 1 (8.3)	3.13 (0.33–10.11)	0.323	1.25 (0.15–10.25)	0.833
Smoking habit	Healthy–healthy 250 18 (7.2)	1.00 (Ref.)	1.00 (Ref.)	1.00 (Ref.)
Unhealthy–healthy 25 0 (4.0)	0.60 (0.06–6.03)	0.660	0.54 (0.07–4.20)	0.554
Unhealthy–unhealthy 41 3 (4.9)	0.77 (0.14–4.14)	0.764	0.66 (0.15–2.96)	0.588
Drinking habit	Healthy–healthy 52 6 (11.5)	1.00 (Ref.)	1.00 (Ref.)	1.00 (Ref.)
Unhealthy–healthy 40 3 (7.5)	0.99 (0.17–5.84)	0.994	0.62 (0.15–2.66)	0.521
Healthy–unhealthy 18 1 (5.6)	0.33 (0.03–4.10)	0.388	0.45 (0.05–4.03)	0.476
Unhealthy–unhealthy 206 11 (5.3)	0.51 (0.15–1.78)	0.290	0.43 (0.15–1.23)	0.116

BMI, body mass index; CI, confidence interval; CKD, chronic kidney disease; DBP, diastolic blood pressure; eGFR, estimated-glomerular filtration rate; HbA1c, hemoglobin A1c; LDL-C, low-density lipoprotein cholesterol; SBP, systolic blood pressure.

In this analysis, the changes in lifestyle behaviors were dependent variables, and the incidence of CKD was an independent variable. In the multivariate model, age, BMI, waist circumference, SBP, DBP, LDL-C, HbA1c, and eGFR levels at baseline were entered as adjusted factors.

Conclusions

This retrospective study assessed the relationship between changes in lifestyle behaviors and the incidence of CKD in middle-aged and older men. We observed that maintaining an unhealthy lifestyle with respect to habitual moderate exercise, late-night dinner, and bedtime snacking resulted in significantly higher OR of incident CKD compared to maintaining a healthy lifestyle. These results suggest that the lack of habitual moderate exercise, eating late-night dinner, and bedtime snacking may increase the risk of CKD. Therefore, it is important for middle-aged and older Japanese men to engage in habitual moderate exercise and to avoid late-night dinner or bedtime snacking, so that they may reduce the risk of dialysis therapy.

Conflicts of interest

None declared.

Acknowledgments

The in...
6. Ninomiya T, Kiyohara Y, Kubo M, et al. Metabolic syndrome and CKD in a general Japanese population: the Hisayama study. Am J Kidney Dis. 2006;48:383–391.
7. Nagasawa Y, Yamamoto R, Rakugi H, Isaka Y. Cigarette smoking and chronic kidney diseases. Hypertens Res. 2012;35:261–265.
8. White SL, Polkinghorne KR, Cass A, Shaw JE, Atkins RC, Chadban SJ. Alcohol consumption and 5-year onset of chronic kidney disease: the AusDiab study. Nephrol Dial Transplant. 2009;24:2464–2472.
9. Iseki K, Ikemiya Y, Kinjo K, Inoue T, Iseki C, Takishita S. Body mass index and the risk of development of end-stage renal disease in a screened cohort. Kidney Int. 2004;65:1870–1876.
10. Heise S, Jacobson SH. Exercise training in adults with CKD: a systematic review and meta-analysis. Am J Kidney Dis. 2014;64:383–393.
11. Gutiérrez OM, Mustnig P, Rizk DV, et al. Dietary patterns and risk of death and progression to ESRD in individuals with CKD: a cohort study. J Am Soc Nephrol. 2014;64:204–213.
12. Yu W, Luying S, Haiyan W, Xiaomei L. Importance and benefits of dietary sodium restriction in the management of chronic kidney disease patients: experience from a single Chinese center. Int Urol Nephrol. 2012;44:549–556.
13. Michishita R, Matsuda T, Kawakami S, et al. The association between unhealthy lifestyle behaviors and the prevalence of chronic kidney disease (CKD) in middle-aged and older men. J Epidemiol. 2016;26:378–385.
14. Michishita R, Matsuda T, Kawakami S, et al. The accumulation of healthy lifestyle behaviors prevents the incidence of chronic kidney disease (CKD) in middle-aged and older males. Environ Health Prev Med. 2016;32:129–137.
15. Japanese Society of Nephrology. Evidence-based clinical practice guideline for CKD in middle-aged and older men: Environ Health Prev Med. 2016;32:129–137.
16. Kashiwagi A, Kasuga M, Araki E, et al. Committee on the standardization of national glycohemoglobin standardization program values. National clinical harmonization of glycated hemoglobin in Japan: from Japan Diabetes Society to national glycohemoglobin standardization program values. J Diabetes Investig. 2012;3:39–40.
17. Horio M, Imai E, Yasuda Y, Watanabe T, Matsuo S. Modification of the CKD epidemiology collaboration (CKD-EPI) equation for Japanese: accuracy and use for population estimates. Am J Kidney Dis. 2010;56:32–38.
18. Coresh J, Turin CT, Matsushita K, et al. Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality. JAMA. 2014;311:2516–2531.
19. Anavekar NS, McMurray JJ, Velazquez EJ, et al. Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N Engl J Med. 2004;351:1285–1295.
20. Matsuo K, Inoue T, Node K. Estimated glomerular filtration rate as a predictor of secondary outcomes in Japanese patients with coronary artery disease. J Cardiol. 2009;53:232–239.
21. Harrison NA, Rainford DJ, White GA, Cullen SA, Strike PW. Proteinuria—what value is the dipstick? Br J Urol. 1985;63:202–208.
22. Ministry of Health, Labour and Welfare. Standardized health check-up and intervention program; 2007. http://www.mhlw.go.jp/bunya/kenkou/seikatsu/pdf/02.pdf. Accessed 23 December 2014 (in Japanese).
23. Kohro T, Furui Y, Mitsutake N, et al. The Japanese national health screening and intervention program aimed at preventing worsening of the metabolic syndrome. Int Heart J. 2008;49:193–203.
24. Ogawa S, Mori T, Nako K, Kato T, Takeuchi K, Ito S. Angiotensin II type 1 receptor blockers reduce urinary oxidative stress markers in hypertensive diabetic nephropathy. Hypertension. 2006;47:699–705.
25. Ishizaka N, Ishizaka Y, Toda E, et al. Association between chronic kidney disease and carotid intima-media thickening in individuals with hypertension and impaired glucose metabolism. Hypertens Res. 2007;30:1035–1041.
26. Fox CS, Larson MG, Leip EP, Meigs JB, Wilson PW, Levy D. Glycemic status and development of kidney disease: the Framingham Heart Study. Diabetes Care. 2005;28:2436–2440.
27. Tajima M, Lee JS, Watanabe E, et al. Association between changes in 12 lifestyle behaviors and the development of metabolic syndrome during 1 year among workers in the Tokyo metropolitan area. Circ. J. 2014;78:1152–1159.
28. Li Y, Yatsuya H, Iso H, Tamakoshi K, Toyoshima H. Incidence of metabolic syndrome according to combinations of lifestyle factors among middle-aged Japanese male workers. Prev Med. 2010;51:118–122.
29. Eguchi E, Iso H, Tanabe N, et al. Japan Collaborative Cohort Study Group. Healthy lifestyle behaviours and cardiovascular mortality among Japanese men and women: the Japan collaborative cohort study. Eur Heart J. 2012;33:467–477.
30. Eguchi E, Iso H, Wada Y, Kikuchi S, Watanabe Y, Tamakoshi A. Japanese Collaborative Cohort Study Group. Parental history and lifestyle behaviors in relation to mortality from stroke among Japanese men and women: the Japan collaborative cohort study. J Epidemiol. 2012;22:331–339.
31. Ricardo AC, Anderson CA, Yang W, et al. Healthy lifestyle and risk of kidney disease progression, atherosclerotic events, and death in CKD: findings from the Chronic Renal Insufficiency Cohort (CRIC) study. Am J Kidney Dis. 2015;65:412–424.
32. Robinson-Cohen C, Littman AJ, Duncan GE, et al. Physical activity and change in estimated GFR among persons with CKD. J Am Soc Nephrol. 2014;25:399–406.
33. Bharakhda N, Yates T, Davies MJ, et al. Association of sitting time and physical activity with CKD: a cross-sectional study in family practices. Am J Kidney Dis. 2012;59:583–590.
34. Lin J, Hu FB, Curhan GC. Associations of diet with albuminuria and kidney function decline. Clin J Am Soc Nephrol. 2010;5:836–843.
35. Yu HC, Burrell LM, Black MJ, et al. Salt reduces myocardial and renal fibrosis in normotensive and hypertensive rats. Circulation. 1998;98:2621–2628.
36. Lin J, Curhan GC. Associations of sugar and artificially sweetened soda with albuminuria and kidney function decline in women. Clin J Am Soc Nephrol. 2013;8:160–166.
37. Foster MC, Hwang SJ, Massaro JM, Jacques PF, Fox CS, Chyu AY. Lifestyle factors and indices of kidney function in the Framingham heart study. Am J Nephrol. 2015;41:267–274.
38. Mekary RA, Giovannucci E, Willett WC, van Dam RM, Hu FB. Eating patterns and type 2 diabetes risk in men: breakfast omission, eating frequency, and snacking. Am J Clin Nutr. 2012;95:1182–1189.
39. Leitzmann MF, Park Y, Blair A, et al. Physical activity recommendations and decreased risk of mortality. Arch Intern Med. 2007;167:2453–2460.