Research Article

Multiple Positive Solutions for a Class of Boundary Value Problem of Fractional \((p, q)\)-Difference Equations under \((p, q)\)-Integral Boundary Conditions

Yongyang Liu and Yansheng Liu

School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, China

Correspondence should be addressed to Yansheng Liu; yanshliu@gmail.com

Received 21 July 2021; Accepted 29 September 2021; Published 18 October 2021

Academic Editor: José Francisco Gómez Aguilar

Copyright © 2021 Yongyang Liu and Yansheng Liu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper is mainly concerned with a class of fractional \((p, q)\)-difference equations under \((p, q)\)-integral boundary conditions. Multiple positive solutions are established by using the topological degree theory and Krein–Rutman theorem. Finally, two examples are worked out to illustrate the main results.

1. Introduction

The \(q\)-difference operator was first systematically studied by Jackson [1]. Then, \(q\)-calculus has been studied extensively. See [2–4] and references therein. \(q\)-calculus and \(q\)-difference equations have been used by many researchers to solve physical problems such as molecular problems and chemical physics [1, 5–7]. For example, in 1967, Floreanini and Vinet [3] studied the behaviors of hydrogen atoms by using Schrödinger equation and \(q\)-calculus. Diaz and Osler [8] investigated the \(q\)-field theory.

In the last decades, the theory of quantum calculus based on two-parameter \((p, q)\)-integer has been studied since it can be used efficiently in many fields such as difference equations, Lie group, hypergeometric series, and physical sciences. The \((p, q)\)-calculus was first studied by Chakrabarti and Jagannathan [2] in the field of quantum algebra in 1991. Nzouonou Sadjang [9] systematically established the basic theory of \((p, q)\)-calculus and some \((p, q)\)-Taylor formula. Milovanovic and Gupta [10] developed the concept of \((p, q)\)-beta and \((p, q)\)-gamma functions. These basic concepts and theories promote the development of \((p, q)\)-calculus. For detailed results on \((p, q)\)-calculus, please see [9–13] and references therein.

On the contrary, the research of fractional calculus in discrete settings was initiated in [8, 11, 14]. In 2020, Soontharanonl and Sitthiwirattham [15] introduced the fractional \((p, q)\)-calculus, which has been found in a wide range of applications in many fields such as concrete mathematical models of quantum mechanics and fluid mechanics [7, 13, 15].

As we all know, in recent decades, more and more researchers pay much attention to the fractional differential equations and have obtained substantial achievements, we refer the readers to see [16–34] and references therein. Although the results of discrete fractional calculus are similar to those of continuous fractional calculus, the theory of discrete fractional calculus remains much less developed than that of continuous fractional calculus [35, 36]. Therefore, it is very important to develop discrete calculus. In particular, the fractional \((p, q)\)-difference equations involving \((p, q)\)-integral boundary conditions have rarely been studied. In order to make up for this gap, the paper mainly studies the following boundary value problem of fractional...
\((p, q) \)-difference equations under \((p, q)\)-integral boundary conditions:
\[
\begin{cases}
D^\alpha_{p,q}x(t) + f(t, x) = 0, t \in (0, 1), \\
x(0) = D^\alpha_{p,q}x(0) = 0, D^\alpha_{p,q}x(1) = \int_0^1 h(t)D^\alpha_{p,q}x(t)dt,
\end{cases}
\]
where \(2 < \alpha < 3, 0 < q < p \leq 1, \ f \in C([0, 1] \times R^*, R^*) \), and \(D^\alpha_{p,q} \) is fractional \((p, q)\)-difference operator.

It should be pointed out that the boundary conditions of BVP equation (1) are more extensive. Furthermore, two parameters in the discrete environment makes the boundary value problem more complex. In order to overcome these difficulties, we constructed a special cone. The existence and multiplicity of the positive solution for the BVPequation (1) are obtained by using the topological degree theory, Krein–Rutman theorem.

This paper is structured as follows. In Section 2, we introduce some definitions of \((p, q)\)-fractional integral and differential operator together with some basic properties and lemmas. The main results are given and proved in Section 3. Finally, in Section 4, two examples are given to show the applicability of our main results.

\[(a - b)^\alpha_{p,q} = p^{(a/2)} (a - b)^{a}_{q,p} = a^\alpha \prod_{i=0}^{\infty} \frac{1 - b/a (q/p)^i}{1 - b/a (q/p)^{a+i}}, \quad a \neq 0. \]

Note that \(a^a = a^a_{p,q} \) and \((0)^a_{q,p} = 0\) for \(a > 0 \). The \((p, q)\)-gamma and \((p, q)\)-beta functions are defined by
\[\Gamma_{p,q}(x) = \begin{cases}
\frac{(p - q)^{x-1}}{(p - q)^{x-1}} = \frac{(1 - q/p)^{x-1}}{(1 - q/p)^{x-1}}, & \ x \in R \setminus \{0, -1, -2, \ldots\}, \\
[x - 1]_{p,q}, & \ x \in N,
\end{cases} \]
\[B_{p,q}(x, y) = \int_0^1 t^{x-1}(1 - qt)^{y-1}_{p,q}dt = p^2 \frac{(y - 1)(2x + y - 2)\Gamma_{p,q}(x)\Gamma_{p,q}(y)}{\Gamma_{p,q}(x + y)}, \]
respectively.

Definition 1 (see [15]). For \(0 < q < p \leq 1 \) and \(f: [0, T] \rightarrow R \), we define the \((p, q)\)-difference of \(f \) as
\[D^\alpha_{p,q}f(t) = \frac{f(pt) - f(qt)}{(p - q)(t)}, \quad t \neq 0, \]
\[(8) \]

2. Preliminaries

In this section, we list some basic definitions and lemmas that will be used in this paper. For \(0 < q < p \leq 1 \), we let
\[[k]_{p,q} = \begin{cases}
\frac{p^k - q^k}{p - q} = p^{k-1} [k]_{q/p}, & k \in N, \\
1, & k = 0.
\end{cases} \]

The \((p, q)\)-analogue of the power function \((a - b)^n_{p,q}\) with \(n \in N_0 \setminus \{0\}, 1, 2, \ldots, \) is given by
\[(a - b)_p^n = \prod_{k=0}^{n-1} (ap^k - bq^k), \quad a, b \in R. \]

For \(a \in R \),
\[(a - b)_p^a = a^a \prod_{i=0}^{\infty} \frac{1 - b/a (q/p)^i}{1 - b/a (q/p)^{a+i}}, \quad a \neq 0. \]

By [15], we obtain
\[(a - b)_p^a = a^a_{p,q} \]

Definition 2 (see [15]). For \(N - 1 < \alpha < N, 0 < q < p \leq 1 \), and \(f: I^\alpha_{p,q} \rightarrow R \), the fractional \((p, q)\)-difference is defined by
\[D^\alpha_{p,q}f(t) = \frac{(p - q)^{N-\alpha}}{\Gamma_{p,q}(N-\alpha)} \sum_{k=0}^{\infty} q^k p^{k+1} \left(1 - \left(\frac{q}{p} \right)^{k+1} \right)^{N-\alpha-1} p_{p,q}^k \frac{q^k}{p^{k+N-\alpha}} f(t), \]
\[(9) \]
where \(I^T_{p,q} = \{(q^d/p^{d+1})T; \ k \in \mathbb{N}_0\} \cup \{0\} \).

Definition 3 (see [15]). Let \(I \) be any closed interval of \(R \) containing \(a, b, \) and \(0 \). Assuming that \(f: I \rightarrow R \) is a given function, we define \((p, q)\)-integral of \(f \) from \(a \) to \(b \) by

\[
\int_a^b f(t) d_{p,q}t = \int_0^b f(t) d_{p,q}t - \int_0^a f(t) d_{p,q}t,
\]

where

\[
I_{p,q}f(x) = \int_a^x f(t) d_{p,q}t
\]

\[
= (p - q)x \sum_{k=0}^\infty q^{k-1} f\left(\frac{q^k}{p^{k+1}} x\right), \ x \in I,
\]

provided that the series converges at \(x = a \) and \(x = b \). \(f \) is called \((p, q)\)-integrable on \([a, b] \).

Definition 4 (see [15]). For \(\alpha > 0, 0 < \eta < p \leq 1, \) and \(f: [0, T] \rightarrow R \), the fractional \((p, q)\)-integral is defined by

\[
I^\alpha_{p,q} f(t) = \frac{1}{\Gamma_p(\alpha)} \int_0^t (t - s)^{\alpha - 1} f\left(\frac{s}{p^{\alpha-1}}\right) d_{p,q}s,
\]

and \((I^0_{p,q} f)(t) = f(t)\).

Lemma 1 (see [15]). Let \(f, g \) be \((p, q)\)-differentiable. The properties of \((p, q)\)-difference operators are as follows:

(i) \(D_{p,q} [f(t) + g(t)] = D_{p,q} f(t) + D_{p,q} g(t) \)

(ii) \(D_{p,q} [\alpha f(t)] = \alpha D_{p,q} f(t) \), for \(\alpha \in R \)

Lemma 2 (see [15]). For \(0 < q < p \leq 1, \) \(\alpha \geq 1, \) and \(a \in R, \) we have

(i) \(D_{p,q} (t - a)^\alpha_{p,q} = [\alpha]_{p,q} (pt - a)^{\alpha - 1}_{p,q} \)

(ii) \(D_{p,q} (a - t)^\alpha_{p,q} = -[\alpha]_{p,q} (a - qt)^{\alpha - 1}_{p,q} \)

Lemma 3 (see [15]). For \(\alpha, \beta \geq 0 \) and \(0 < q < p \leq 1, \)

\((p, q)\)-integral and \((p, q)\)-difference operators have the following properties:

(i) \(I^\beta_{p,q} I^\alpha_{p,q} f(x) = I^\beta_{p,q} I^\alpha_{p,q} f(x) = I^{\alpha+\beta}_{p,q} f(x) \)

(ii) \(D_{p,q} I^\alpha_{p,q} f(x) = f(x) \) and \(I^\alpha_{p,q} D_{p,q} f(x) = f(x) - f(0) \)

Lemma 4. Assume \(h \geq 0, \) \(A = 1 - \int_0^1 h(t) t^{a-2} d_{p,q}s > 0, \)

and \(\alpha \in (2, 3) \). If \(g \in C[0, 1], \) then the following boundary value problem,

\[
\begin{align*}
D^\alpha_{p,q} x(t) + g(t) &= 0, \quad t \in (0, 1), \\
x(0) &= D_{p,q} x(0) = 0, \quad D_{p,q} x(1) = \int_0^1 h(t) D_{p,q} x(t) d_{p,q}s,
\end{align*}
\]

has a unique solution

\[
x(t) = \int_0^t G(t, qs) g\left(\frac{s}{p^{\alpha-2}}\right) d_{p,q}s,
\]

where

\[
G(t, qs) = G_0(t, qs) + \frac{t^{a-1}}{A} \int_0^1 h(t) G_1(t, qs) d_{p,q}t,
\]

\[
G_0(t, qs) = \frac{1}{p^{(a-1)/2} \Gamma_p(a)} \left\{ \begin{array}{ll}
\frac{1}{p^{a-2}a^{-1}} (1 - qs)^{(a-2)} - (t - qs)^{(a-1)}, & 0 \leq s \leq t \leq 1, \\
0 & \text{otherwise},
\end{array} \right.
\]

\[
G_1(t, qs) = \frac{1}{p^{(a-1)/2} \Gamma_p(a)} \left\{ \begin{array}{ll}
\frac{1}{p^{a-2}a^{-1}} (1 - qs)^{(a-2)} - (t - qs)^{(a-2)}, & 0 \leq t \leq s \leq 1, \\
0 & \text{otherwise},
\end{array} \right.
\]

Proof. According to \(D^\alpha_{p,q} x(t) = -g(t) \), we have

\[
x(t) = C_1 t^{a-1} + C_2 t^{a-2} + C_3 t^{a-3} - t^{a-1}_{p,q} g(t).
\]
From \(x(0) = D_{pq} x(0) = 0 \), one can easily obtain \(C_2 = C_3 = 0 \). Hence,

\[
x(t) = C_1 t^{u-1} - \frac{I^u_{pq} g(t)}{p^{(u-1)/2} \Gamma_p(a-1)} \int_{0}^{1} (1 - qs)^{(a-2)} g \left(\frac{s}{p^{u-2}} \right) d_{pq}s
\]

\[
D_{pq} x(t) = \frac{C_1}{p^{(u-1)/2} \Gamma_p(a-1)} \int_{0}^{1} 1 \cdot \left((1 - qs)^{(a-2)} g \left(\frac{s}{p^{u-2}} \right) d_{pq}s \right)
\]

\[
= \int_{0}^{1} h(t) D_{pq} x(t) d_{pq} t
\]

\[
= \int_{0}^{1} h(t) \Gamma_p(a) \int_{0}^{1} (1 - qs)^{(a-2)} g \left(\frac{s}{p^{u-2}} \right) d_{pq}s
\]

\[
- \frac{1}{p^{(u-1)/2} \Gamma_p(a-1)} \int_{0}^{1} (t - qs)^{(a-2)} g \left(\frac{s}{p^{u-2}} \right) d_{pq}s.
\]

Based on the hypothesis in Lemma 4, we can deduce that

\[
C_1 = \frac{1}{A p^{(u-1)/2} \Gamma_p(a)} \int_{0}^{1} (1 - qs)^{(a-2)} g \left(\frac{s}{p^{u-2}} \right) d_{pq}s
\]

\[
- \frac{1}{A p^{(u-1)/2} \Gamma_p(a)} \int_{0}^{1} h(t) d_{pq} t \int_{0}^{1} t^{u-1} (1 - qs)^{(a-2)} g \left(\frac{s}{p^{u-2}} \right) d_{pq}s
\]

\[
- \frac{1}{p^{(u-1)/2} \Gamma_p(a-1)} \int_{0}^{1} (t - qs)^{(a-2)} g \left(\frac{s}{p^{u-2}} \right) d_{pq}s
\]

\[
= \frac{1}{A p^{(u-1)/2} \Gamma_p(a)} \int_{0}^{1} t^{u-2} (1 - qs)^{(a-2)} g \left(\frac{s}{p^{u-2}} \right) d_{pq}s
\]

\[
- \frac{1}{A p^{(u-1)/2} \Gamma_p(a)} \int_{0}^{1} h(t) d_{pq} t
\]

\[
- \frac{1}{p^{(u-1)/2} \Gamma_p(a-1)} \int_{0}^{1} (t - qs)^{(a-2)} g \left(\frac{s}{p^{u-2}} \right) d_{pq}s
\]

\[
= \int_{0}^{1} G(t, qs) g \left(\frac{s}{p^{u-2}} \right) d_{pq}s.
\]
This completes the proof. □

Lemma 5. The functions \(G_i (i = 0, 1) \) have the following properties:

1. \(G_i (t, qs) \geq 0 \), for \(t, s \in [0, 1] \)

\[G_0 (t, qs) = \frac{1}{p^{(a-1)/2} \Gamma_{p,q} (a)} \left[\frac{1}{p^{2a-2a/2} t^{a-1} (1 - qs)^{(a-2)} - (t - qs)^{(a-1)}} \right]. \] (19)

Thus, for \(t \neq 0 \), it is easy to see that

\[G_0 (t, qs) = \frac{1}{p^{(a-1)/2} \Gamma_{p,q} (a)} \left[\frac{1}{p^{2a-2a/2} t^{a-1} (1 - qs)^{(a-2)} - (t - qs)^{(a-1)}} \right] \]
\[= \frac{1}{p^{(a-1)/2} \Gamma_{p,q} (a)} \left[\frac{1}{p^{2a-2a/2} t^{a-1} (1 - qs)^{(a-2)} - t^{a-1} \left(1 - q^{S(t)} \right)^{(a-1)}} \right] \]
\[\geq \frac{t^{a-1}}{p^{(a-1)/2} \Gamma_{p,q} (a)} \left[(1 - qs)^{(a-2)} - (1 - q^{S(t)})^{(a-1)} \right] \]
\[\geq 0. \] (20)

Similarly, for \(0 \leq s \leq t \leq 1 \), we know

\[G_1 (t, qs) = \frac{1}{p^{(a-1)/2} \Gamma_{p,q} (a)} \left[\frac{1}{p^{2a-2a/2} t^{a-2} (1 - qs)^{(a-2)} - (t - qs)^{(a-2)}} \right]. \] (21)

Thus, for \(t \neq 0 \), it is also easy to see that

\[G_1 (t, qs) = \frac{1}{p^{(a-1)/2} \Gamma_{p,q} (a)} \left[\frac{1}{p^{2a-2a/2} t^{a-2} (1 - qs)^{(a-2)} - (t - qs)^{(a-2)}} \right] \]
\[= \frac{1}{p^{(a-1)/2} \Gamma_{p,q} (a)} \left[\frac{1}{p^{2a-2a/2} t^{a-2} (1 - qs)^{(a-2)} - t^{a-2} \left(1 - q^{S(t)} \right)^{(a-2)}} \right] \]
\[\geq \frac{t^{a-1}}{p^{(a-1)/2} \Gamma_{p,q} (a)} \left[(1 - qs)^{(a-2)} - (1 - q^{S(t)})^{(a-2)} \right] \]
\[= 0. \] (22)
On the other hand, for $0 \leq t \leq s \leq 1$, it is easy to see that, from Lemma 4, the conclusion is obviously established. Therefore, $G_{t}(t,qs) \geq 0$, for $t, s \in [0, 1]$.

(2) Firstly, for $0 \leq s \leq t \leq 1$, one can easily obtain that

$$\gamma_{1}(s):=G_{0}(1,s)+\frac{1}{A}\int_{0}^{1}h(t)G_{1}(t,s)d_{p,q}s,$$

$$\gamma_{2}(s):=\frac{1}{\Gamma_{p,q}(\alpha)}(1-s^{(a-2)})^{1/2}+\frac{1}{A}\int_{0}^{1}h(t)G_{1}(t,s)d_{p,q}s.$$

Lemma 7 (see [37]). Let Ω be a bounded open set in a Banach space E, and $T: \Omega \longrightarrow E$ is a continuous compact operator. If there exists $x_{0} \in E \setminus \{0\}$ such that

$$x - Tx \neq \mu x_{0}, \forall x \in \partial \Omega, \mu \geq 0,$$

then the topological degree $\deg(I - T, \Omega, 0) = 0.$

Lemma 8 (see [37]). Let Ω be a bounded open set in a Banach space E with $0 \in \Omega$, and $T: \Omega \longrightarrow E$ is a continuous compact operator. If

$$Tx \neq \mu x, \forall x \in \partial \Omega, \mu \geq 1,$$

then the topological degree $\deg(I - T, \Omega, 0) = 1.$

Let $E := C[0, 1], \|x\| := \max_{t \in [0,1]}|x(t)|$, and $P := \{x \in E: x(t) \geq t^{a-1}\|x\|, \forall t \in [0, 1]\}$. Then, $(E, \|\cdot\|)$ is a real Banach space and P is a cone on E. From Lemma 4, we can define operator $T: E \longrightarrow E$ as follows:

$$(Tx)(t) := \int_{0}^{1}G(t,qs)f\left(\frac{s}{p^{a-2}t},y\left(\frac{s}{p^{a-2}t}\right)\right)d_{p,q}s, \quad x \in E,$$

where G is determined in Lemma 4. Obviously, T is a completely continuous operator.

In addition, from Lemma 4, we can obtain that the solution of BVP equation (12) is equivalent to
\[x(t) = \lambda \int_0^1 G(t, qs) g \left(\frac{s}{p^{a-2}} \right) d_{p,q} s, \quad t \in [0, 1]. \]

(31)

For our purposes, we need to define the operator \(L \) by

\[(Lx)(t) = \int_0^1 G(t, qs)x \left(\frac{s}{p^{a-2}} \right) d_{p,q} s, \quad t \in [0, 1], x \in E. \]

(32)

It is easy to prove that \(L: E \rightarrow E \) is a linear completely continuous operator and \(L(P) \subset P \). Obviously, we know that \(L \) has a spectral radius, denoted by \(r(L) \), which is not equal to 0. From Krein–Rutman theorem, we know that \(L \) has a positive eigenfunction \(\varphi_1 \) corresponding to its first eigenvalue \(\lambda_1 = (r(L))^{-1} \), i.e., \(\varphi_1 = \lambda_1 L \varphi_1 \).

3. Main Results

In this section, we shall establish the existence and multiplicity results of BVP equation (1), which is based on the topological degree theory. For convenience, let \(\lambda_1 \) be the first eigenvalue of the following eigenvalue problem:

\[
\begin{cases}
D^{a}_{p,q,x}x(t) + \lambda x(t) = 0, & t \in (0, 1), \\
x(0) = D^{a}_{p,q,x}x(0) = 0, & \int_0^1 h(t)D^{a}_{p,q,x}x(t)dt = 0.
\end{cases}
\]

(33)

Now, let us list the following assumptions satisfied throughout the paper:

\begin{itemize}
 \item [(H1)] \(\liminf_{t \to 0} f(t, x)/x > \lambda_1 \) uniformly with respect to \(t \in [0, 1] \).
 \item [(H2)] \(\limsup_{t \to 1} f(t, x)/x < \lambda_1 \) uniformly with respect to \(t \in [0, 1] \).
 \item [(H3)] \(\limsup_{x \to 0} f(t, x)/x < \lambda_1 \) uniformly with respect to \(t \in [0, 1] \).
 \item [(H4)] \(\liminf_{x \to \infty} f(t, x)/x > \lambda_1 \) uniformly with respect to \(t \in [0, 1] \).
 \item [(H5)] There exist \(r^* > 0 \) and a continuous function \(\phi_{r^*} \) such that
 \[f(t, x) \geq \phi_{r^*}(t), \forall t \in [0, 1], x \in \left[t^{a-1}r^*, r^* \right], \]
 \[\max_{t \in [0, 1]} \int_0^1 t^{a-1} G(1, qs) \phi_{r^*} \left(\frac{s}{p^{a-2}} \right) d_{p,q} s > r^*. \]
 (34)
 \item [(H6)] There exist \(r_* > 0 \) and a continuous function \(\psi_{r_*} \) such that
 \[f(t, x) \leq \psi_{r_*}(t), \quad \forall t \in [0, 1], \]
 \[\int_0^1 G(1, qs) \psi_{r_*} \left(\frac{s}{p^{a-2}} \right) d_{p,q} s < r_*. \]
 (35)
\end{itemize}

Now, we are in a position to give our main results.

Theorem 1. Under assumptions (H1) and (H2), BVP equation (1) admits at least one positive solution.

Proof. First, assumption (H1) implies that there exists \(r > 0 \) such that

\[f(t, x) > \lambda_1 x, \quad \forall x \in [0, r], t \in [0, 1]. \]

(36)

We claim that, for \(\mu \geq 0 \),

\[x(t) - Tx(t) \neq \mu \varphi_1(t), \forall x \in \partial B_r \cap P, t \in [0, 1]. \]

(37)

Suppose, on the contrary, that there exist \(x_1 \in \partial B_r \cap P, \mu_1 > 0 \) such that

\[x_1(t) - Tx_1(t) = \mu_1 \varphi_1(t), \quad t \in [0, 1]. \]

(38)

Without loss of generality, suppose \(\mu_1 > 0 \). Then, \(x_1(t) \geq \mu_1 \varphi_1(t) \), for \(t \in [0, 1] \).

Let

\[\mu^* = \sup \{ \mu: x_1(t) \geq \mu \varphi_1(t), t \in [0, 1] \}. \]

(39)

Obviously, \(0 < \mu_1 \leq \mu^* < + \infty \) and \(x_1(t) \geq \mu^* \varphi_1(t) \), for \(t \in [0, 1] \).

Thus,

\[x_1(t) = Tx_1(t) + \mu_1 \varphi_1(t) \]

\[= \int_0^1 G(t, qs)f \left(\frac{s}{p^{a-2}} \right) x_1 \left(\frac{s}{p^{a-2}} \right) d_{p,q} s + \mu_1 \varphi_1(t) \]

\[\geq \lambda_1 \int_0^1 G(t, qs)x_1 \left(\frac{s}{p^{a-2}} \right) d_{p,q} s + \mu_1 \varphi_1(t) \]

\[\geq \lambda_1 \mu^* \int_0^1 G(t, qs) \varphi_1 \left(\frac{s}{p^{a-2}} \right) d_{p,q} s + \mu_1 \varphi_1(t) \]

\[= (\mu^* + \mu_1) \varphi_1(t). \]

(40)

It is a contradiction with the definition of \(\mu^* \). According to Lemma 7, one obtains

\[\deg (T, B_r \cap P, P) = 0. \]

(41)

On the contrary, we can choose \(\varepsilon_0 > 0 \) such that \(0 < (\lambda_1 - \varepsilon_0) \|L\| < 1 \). Then, from (H2), there exists \(R > 0 \) such that

\[f(t, x) \leq (\lambda_1 - \varepsilon_0) x, \quad x \geq R, t \in [0, 1]. \]

(42)

Let \(m = \max_{(t, x) \in [0, 1] \times [0, R]} f(t, x) \). Thus, one can easily find that

\[f(t, x) \leq (\lambda_1 - \varepsilon_0) x + m, \quad \forall x \geq 0, t \in [0, 1]. \]

(43)

Choose \(R_0 = \max \{ R, r, m \} \int_0^1 \theta_1(qs) d_{p,q} s/1 - (\lambda_1 - \varepsilon_0) \|L\| \). We claim that, for \(\mu \geq 1 \),

\[Tx(t) \neq \mu x(t), \quad \forall x \in \partial B_{R_0} \cap P, t \in [0, 1]. \]

(44)

Suppose, on the contrary, that there exist \(x_2 \in \partial B_{R_0} \cap P \) and \(\mu_2 \geq 1 \) such that

\[Tx_2(t) = \mu_2 x_2(t), \quad t \in [0, 1]. \]

\[x_2(t) \leq \mu_2 x(t) = Tx_2(t) = \int_0^1 G(t, qs) \left(\frac{s}{p^{\alpha-2}} x_2 \left(\frac{s}{p^{\alpha-2}} \right) \right) d_{\rho,q}s \]

\[\leq \int_0^1 G(t, qs) \left((\lambda_1 - \epsilon_0) x_2 \left(\frac{s}{p^{\alpha-2}} \right) + m \right) d_{\rho,q}s, \]

noticing that \(0 < (\lambda_1 - \epsilon_0)\|L\| < 1 \). We know that the inverse operator of \(I - (\lambda_1 - \epsilon_0)L \) exists, and

\[[I - (\lambda_1 - \epsilon_0)L]^{-1} = \sum_{n=0}^{\infty} (\lambda_1 - \epsilon_0)^n L^n, \]

which shows that \([I - (\lambda_1 - \epsilon_0)L]^{-1}(P) \subseteq P \).

Thus,

\[x_2(t) \leq [I - (\lambda_1 - \epsilon_0)L]^{-1} \int_0^1 G(t, qs) d_{\rho,q}s. \]

In addition, by \(\|I - (\lambda_1 - \epsilon_0)L]^{-1} \| \leq 1 / (1 - (\lambda_1 - \epsilon_0)\|L\|) \) and Lemma 6, one can obtain

\[\deg(T, B_{R_0} \cap P, P) = \deg(T, B_{R_0} \cap P, P) - \deg(T, B_r \cap P, P) = 1 - 0 = 1. \]

which means that BVP equation (1) has at least one positive solution. \(\square \)

Theorem 2. Under assumptions (H3) and (H4), BVP equation (1) admits at least one positive solution.

Proof. On the other hand, assumption (H3) implies that there exist \(\epsilon \in (0, \lambda_1) \) and \(r_1 > 0 \) such that

\[f(t, x) < (\lambda_1 - \epsilon), |x| < r_1. \]

The \(n \)th iteration of this inequality shows that

\[x_1(t) < (\lambda_1 - \epsilon)^n (L^n x_1)(t)(n = 1, 2, \ldots). \]

Then,

\[\|x_1\| < (\lambda_1 - \epsilon)^n L^n \|x_1\|, \text{i.e., } 1 < (\lambda_1 - \epsilon)^n \|L^n\|. \]

It means that

\[x_1(t) = \mu_1 Tx_1(t) < (\lambda_1 - \epsilon) \int_0^1 G(t, qs)x_1 \left(\frac{s}{p^{\alpha-2}} \right) d_{\rho,q}s = (\lambda_1 - \epsilon)(Lx_1)(t). \]

We claim that, for \(\mu \in [0, 1] \),

\[x(t) \neq \mu Tx(t), \quad \forall x \in \partial B_{r_1} \cap P, t \in [0, 1]. \]

Suppose, on the contrary, that there exist \(x_1 \in \partial B_{r_1} \cap P \) and \(\mu \in [0, 1] \) such that

\[x_1(t) = \mu_1 Tx_1(t), \quad t \in [0, 1]. \]

Consequently, we have

\[1 \leq (\lambda_1 - \epsilon) \lim_{n \to \infty} \sqrt[n]{\|L^n\|} = (\lambda_1 - \epsilon) r(L) = \frac{(\lambda_1 - \epsilon)}{\lambda_1} < 1, \]

which is a contradiction. It follows from Lemma 8 that

\[\deg(T, B_{R_0} \cap P, P) = 1. \]

On the other hand, let

\[L_n x(t) = \int_0^1 G(t, qs)x \left(\frac{s}{p^{\alpha-2}} \right) d_{\rho,q}s, \quad t \in [0, 1]. \]
where \(n > 1 \). It is easy to see that \(L_n : P \rightarrow P \) is a continuous operator and spectral radius \(r(L_n) > 0 \), denoted by \(\lambda_n = r^{-1}(L_n) \). We know \(\lim_{n \to \infty} \lambda_n = \lambda_1 \).

It follows that there exist \(N_0, \varepsilon_0 \) such that \(\lambda_{N_0} < \lambda_1 + \varepsilon_0 \), namely, \(r(L_{N_0}) > 1/r^{-1}(L) + \varepsilon_0 \). From the Krein–Rutman theorem, there exists a \(\varphi_{N_0} \in E \setminus \{0\} \) such that

\[
\varphi_{N_0}(t) = r^{-1}(L_{N_0}) \int_{1/N_0}^{1} G(t, qs) \varphi_{N_0}(\frac{s}{p^{1-\alpha}}) d\rho ds, \quad t \in [0, 1].
\]

(61)

which means that \(\varphi_{N_0}(t) \geq r^{-1} \|\varphi_{N_0}\|_{L^\infty} \), namely,

\[
\varphi_{N_0}(t) \in P, \quad t \in [0, 1].
\]

Thus, from (H4), there exists \(R_1 > 0 \) such that

\[
f(t, x) > (\lambda_1 + \varepsilon)x, \quad t \in [0, 1], \forall x \geq R_1.
\]

(64)

Choose \(R_0 > \max\{r_1, N_0^{-1} R_1\} \). Thus,

\[
x(t) \geq t^{\alpha - 1} \|x\| = t^{\alpha - 1} R_0 > R_1, \quad t \in \left[\frac{1}{N_0}, 1\right], x \in \partial B_{R_0} \cap P.
\]

(65)

By the proof of Lemma 5, we know

\[
G(t, qs) \geq t^{\alpha - 1} G(t, qs).
\]

Hence,

\[
\deg(T, B_{R_0} \cap P, P) = 0.
\]

(66)

Now, we prove that, for \(\mu \geq 0 \),

\[
x(t) - T x(t) \neq \mu \varphi_{N_0}(t), \quad \forall t \in [0, 1], x \in \partial B_{R_1} \cap P.
\]

(67)

Similar to the proof of Theorem 1, this conclusion is clearly established. So, according to Lemma 7,

\[
\|T x\| \geq \max_{t \in [0, 1]} \int_{0}^{1} t^{\alpha - 2} G(1, qs) \varphi_{r} \left(\frac{s}{p^{1-\alpha}}\right) d\rho ds > r^* = \|x\|.
\]

(70)

So, similar to the previous proof of Theorem 1, it is easy to know, for \(\mu > 0 \),

\[
x(t) - T x(t) \neq \mu \varphi_{r}(t), \quad \forall t \in [0, 1], x \in \partial B_{r} \cap P.
\]

By Lemma 7, one can immediately obtain that

\[
\deg(T, B_{r} \cap P, P) = 0.
\]

(72)

By the proof of Theorems 1 and 2, we know that there exist \(r_1 \in (0, r^*) \) and \(R_1 \geq \max\{r^*, R_0\} \) such that

\[
\deg(T, B_{r_1} \cap P, P) = 1,
\]

(73)

Consequently,

\[
\|T x\| \geq \max_{t \in [0, 1]} \int_{0}^{1} t^{\alpha - 2} G(1, qs) \varphi_{r} \left(\frac{s}{p^{1-\alpha}}\right) d\rho ds > r^* = \|x\|.
\]

(74)

Theorem 3. Suppose that (H2), (H3), and (H5) are satisfied. Then, BVP equation (1) has at least two positive solutions.

Proof. By (H5), we know

\[
(T x)(t) = \int_{0}^{1} G(t, qs) f \left(\frac{s}{p^{1-\alpha}}, x \left(\frac{s}{p^{1-\alpha}}\right)\right) d\rho ds \geq \int_{0}^{1} t^{\alpha - 1} G(1, qs) \varphi_{r} \left(\frac{s}{p^{1-\alpha}}\right) d\rho ds, \quad x \in \partial B_{r} \cap P.
\]

(69)

Consequently,

\[
\deg(T, (B_{r} \setminus \overline{B}_{r_1}) \cap P, P) = \deg(T, B_{r} \cap P, P) - \deg(T, B_{r_1} \cap P, P) = 0 - 1 = -1,
\]

\[
\deg(T, (B_{R} \setminus \overline{B}_{R_1}) \cap P, P) = \deg(T, B_{R} \cap P, P) - \deg(T, B_{R_1} \cap P, P) = 1 - 0 = 1,
\]

(74)
which means that BVP equation (1) has at least two positive solutions. □

Theorem 4. Suppose that (H1), (H4), and (H6) are satisfied. Then, BVP equation (1) has at least two positive solutions.

Proof. By (H6), we know

\[
(Tx)(t) = \int_0^1 G(t,qs) f\left(\frac{s}{p^{\alpha-2}}, x\left(\frac{s}{p^{\alpha-2}}\right)\right) d_{p,q}s
\]

\[
\leq \int_0^1 G(1,qs) \psi_r\left(\frac{s}{p^{\alpha-2}}\right) d_{p,q}s, \quad x \in \partial B_r \cap P.
\]

Therefore,

\[
\|Tx\| \leq \int_0^1 G(1,qs) \psi_r\left(\frac{s}{p^{\alpha-2}}\right) d_{p,q}s < r^* = \|x\|.
\]

So, similar to the previous proof of Theorem 1, it is easy to know, for \(\mu \geq 1\),

\[
Tx(t) \neq \mu x(t), \quad \forall x \in \partial B_r \cap P, t \in [0, 1].
\]

By Lemma 8, one can immediately obtain that

\[
\text{deg}(T, B_r \cap P, P) = 1.
\]

By the proof of Theorems 1 and 2, we know that there exist \(r_1 \in (0, r^*)\) and \(R_i \geq \max\{r_*, R_0\}\) such that

\[
\text{deg}(T, B_{r_1} \cap P, P) = 0,
\]

\[
\text{deg}(T, B_{R_i} \cap P, P) = 0.
\]

Consequently,

\[
de(T, (B_r \setminus \overline{B}_r) \cap P, P) = \text{deg}(T, B_r \cap P, P) - \text{deg}(T, B_{r_1} \cap P, P) = 1 - 0 = 1,
\]

\[
de(T, (B_{R_i} \setminus \overline{B}_{R_i}) \cap P, P) = \text{deg}(T, B_{R_i} \cap P, P) - \text{deg}(T, B_r \cap P, P) = 0 - 1 = -1,
\]

which means that BVP equation (1) has at least two positive solutions. □

4. Examples

Example 1. Consider the following boundary value problem:

\[
\begin{cases}
(D^{3/2}_{(1,1/2)}x)(t) + \frac{28x^2 t}{x^2 + 1} = 0, & 0 < t < 1, \\
x(0) = D_{(1,1/2)}x(0) = 0, D_{(1,1/2)}x(1) = \int_0^1 t^{(1/2)}D_{(1,1/2)}x(t)dt_{1/1/2}.
\end{cases}
\]

Consequently,

\[
\lim_{x \to 0^+} \sup_{t \in [0,1]} \frac{f(t,x)}{x} = \frac{28x^2 t}{x(x^2 + 1)} = 0 < \lambda_1,
\]

\[
\lim_{x \to +\infty} \sup_{t \in [0,1]} \frac{f(t,x)}{x} = \frac{28x^2 t}{x(x^2 + 1)} = 0 < \lambda_1.
\]

From the definition of function \(G\), one can obtain that

\[
G\left(t, \frac{s}{2}\right) = G_0\left(t, \frac{s}{2}\right) + \frac{t^{\alpha-1}}{A} \int_0^1 h(t)g_1\left(t, \frac{s}{2}\right)dt_{1/1/2},
\]

where \(p = 1, q = 1/2, \alpha = 5/2, \) and \(h(t) = t^{1/2}.\) Choose \(\phi_r(t) = t^2 + 2\) and \(r^* = 1/5.\) Obviously, \(f: [0, 1] \times [1/5^{3/2}, 1/5] \rightarrow [0, +\infty)\) is continuous and \(f(t,x) \geq \phi_r(t)\) for \((t,x) \in [0, 1] \times [1/5^{3/2}, 1/5].\)
where

\[
G_0\left(t, \frac{s}{2}\right) = \frac{1}{\Gamma\left(\frac{1}{2}\right)} \frac{1}{1^{(a/2)}t^{(a/2)}/(5/2)} \begin{cases}
\sqrt{5/2} \left(1 - \frac{s}{2}\right)^{1/2} - \left(t - \frac{s}{2}\right)^{1/2}, & 0 \leq s \leq t \leq 1, \\
\sqrt{5/2} \left(1 - \frac{s}{2}\right)^{1/2}, & 0 \leq t \leq s \leq 1,
\end{cases}
\]

\[
G_1\left(t, \frac{s}{2}\right) = \frac{1}{\Gamma\left(\frac{1}{2}\right)} \frac{1}{1^{(a/2)}t^{(a/2)}/(5/2)} \begin{cases}
\sqrt{5/2} \left(1 - \frac{s}{2}\right)^{1/2} - \left(t - \frac{s}{2}\right)^{1/2}, & 0 \leq s \leq t \leq 1, \\
\sqrt{5/2} \left(1 - \frac{s}{2}\right)^{1/2}, & 0 \leq t \leq s \leq 1.
\end{cases}
\]

Consequently,

\[
\max_{t \in [0, 1]} \int_0^1 s^{-1} G\left(1, \frac{s}{2}\right) \phi_x(s) d\mu q^s \approx 0.235 > \frac{1}{5} = r^*.
\] (86)

Therefore, by Theorem 3, BVP equation (81) has at least two positive solutions. \qed

Example 2. Consider the following boundary value problem:

\[
\begin{align*}
(D_{(1/(1/2))} x)(t) + (3x^{3/2} + 2t) &= 0, & 0 < t < 1, \\
x(0) &= D_{(1/(1/2))} x(0) = 0, & D_{(1/(1/2))} x(1) = t^{(1/2)} D_{(1/(1/2))} x(t) d_{1/(1/2)} t.
\end{align*}
\] (87)

Conclusion: BVP equation (87) has at least two positive solutions.

Proof. BVP equation (87) can be regarded as a BVP of the form of equation (1), where \(f(t, x) = 3x^{3/2} + 2t, \) \(p = 1, \) \(q = (1/2), \) \(\alpha = (5/2), \) and \(h(t) = t^{(1/2)}. \) Choose \(\psi_{r^*}(t) = 2t + 9, \) \(r^* = 3\sqrt{3}. \) Obviously, \(f: [0, 1] \times [0, 3\sqrt{3}] \rightarrow [0, +\infty) \) is continuous and \(f(t, x) \leq \psi_{r^*}(t) \) for \((t, x) \in [0, 1] \times [0, 3\sqrt{3}] \).

Consequently,

\[
\lim_{t \rightarrow 0} \inf_{x \in [0, 1]} \frac{f(t, x)}{x} = \frac{3x^{3/2} + 2t}{x} = +\infty > \lambda_1,
\]

\[
\lim_{t \rightarrow +\infty} \inf_{x \in [0, 1]} \frac{f(t, x)}{x} = \frac{3x^{3/2} + 2t}{x} = +\infty > \lambda_1.
\]

From the definition of function \(G, \) one can obtain that

\[
G\left(t, \frac{s}{2}\right) = G_0\left(t, \frac{s}{2}\right) + \frac{t^{a-1}}{A} \int_0^1 h(t) G_1\left(t, \frac{s}{2}\right) d_{1/(1/2)} t,
\] (90)

where
Thus,
\[
\int_0^1 G\left(\frac{1}{2}, \frac{1}{2}\right) \psi_r(s) ds \approx 1.324 < 3 \sqrt{3} = r_*. \tag{92}
\]

Therefore, by Theorem 4, BVP equation (87) has at least two positive solutions. □

5. Conclusions

This paper is mainly concerned with a class of fractional (p,q)-difference equations with (p,q)-integral boundary conditions. We first give the definition of fractional (p,q)-difference operator and fractional (p,q)-integral operator. Then, the existence and multiplicity of positive solutions for boundary value problems are obtained by using topological degree theory and Krein–Rutman theorem. Finally, two illustrative examples are given to show the practical usefulness of the analytical results.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was funded by NNSF of P.R. China (62073202) and Natural Science Foundation of Shandong Province (ZR2020MA007).

References

[1] F. H. Jackson, “q-difference equations,” American Journal of Mathematics, vol. 32, no. 4, pp. 305–314, 1910.

[2] R. Chakrabarti and R. Jagannathan, “On the representations of $GL_p,q(2)$, $GL_p,q(1 \mod 1)$ and non-commutative spaces,” Journal of Physics A: Mathematical and General, vol. 24, no. 4, pp. 5683–5703, 1991.

[3] R. Floreanini and L. Vinet, “q-gamma and q-beta functions in quantum algebra representation theory,” Journal of Computational and Applied Mathematics, vol. 68, no. 1-2, pp. 57–68, 1996.

[4] V. Kac and P. Cheung, Quantum Calculus, Springer, New York, NY, USA, 2002.

[5] H. Cheng, Canonical Quantization of Yang-Mills Theories, Perspectives in Mathematical Physics, International Press, Somerville, MA, USA, 1996.

[6] G. Kaniadakis, A. Lavagno, and P. Quarati, “Kinetic model for q-deformed bosons and fermions,” Physics Letters A, vol. 227, no. 3, pp. 227–231, 1997.

[7] W. J. Tritjnszky, “Analytic theory of linear q-difference equations,” Acta Mathematica, vol. 62, no. 1, pp. 167–226, 1933.

[8] J. B. Diaz and T. J. Osler, “Differences of fractional order,” Mathematics of Computation, vol. 28, no. 125, pp. 185–202, 1974.

[9] P. Njionou Sadjang, “On the fundamental theorem of \mathbb{S}-valvec$(p,q)$$\mathbb{S}$ (p,q)-calculus and some \mathbb{S}-valvec$(p,q)$$\mathbb{S}$-Taylor formulas,” Results in Mathematics, vol. 73, no. 1, p. 39, 2018.

[10] M. Mursaleen, K. J. Ansari, and A. Khan, “On (p,q)-analogue of Bernstein operators,” Applied Mathematics and Computation, vol. 266, pp. 874–882, 2015.

[11] W. A. Al-Salam, “Some fractional q-integrals and q-derivatives,” Proceedings of the Edinburgh Mathematical Society, vol. 15, no. 2, pp. 135–140, 1966.

[12] M. N. Hounkonnou and J. D. Kyemba, “(p,q)-calculus: differentiation and integration,” SUT Journal of Mathematics, vol. 49, no. 2, pp. 145–167, 2013.

[13] M. Mimura, Y. Yamada, and S. Yotsutani, “Stability analysis for free boundary problems in ecology,” Hiroshima Mathematical Journal, vol. 16, pp. 477–498, 1986.

[14] T. Brikshavana and T. Sithiwirathatham, “On fractional Hahn calculus,” Advances in Difference Equations, vol. 2017, no. 1, p. 354, 2017.

[15] J. Soontharanon and T. Sithiwirathatham, “On fractional (p,q)-\mathbb{S}-calculus,” Advances in Difference Equations, vol. 2020, no. 1, p. 35, 2020.

[16] H. Cheng and R. Yuan, “The stability of the equilibria of the Allen-Cahn equation with fractional diffusion,” Applicable Analysis, vol. 98, no. 3, pp. 600–610, 2019.

[17] W. Cheng, J. Xu, and D. O’Regan, “Positive solutions for a nonlinear discrete fractional boundary value problem with a p-laplacian operator,” Journal of Applied Analysis and Computation, vol. 9, no. 5, pp. 1595–1612, 2019.

[18] J. Jia and H. Wang, “A fast finite volume method for conservative space-time fractional diffusion equations discretized on space-time locally refined meshes,” Computers & Mathematics with Applications, vol. 78, no. 5, pp. 1345–1356, 2019.

[19] Y. Liu, “Positive solutions using bifurcation techniques for boundary value problems of fractional differential equations,” Abstract and Applied Analysis, vol. 2013, Article ID 162418, 7 pages, 2013.

[20] Y. Liu, “Bifurcation techniques for a class of boundary value problems of fractional impulsive differential equations,” The Journal of Nonlinear Science and Applications, vol. 09, no. 4, pp. 340–353, 2015.

[21] Y. Liu and H. Yu, “Bifurcation of positive solutions for a class of boundary value problems of fractional differential inclusions,” Abstract and Applied Analysis, vol. 2013, Article ID 942831, 2013.

[22] T. Ma and B. Yan, “The multiplicity solutions for nonlinear fractional differential equations of Riemann-Liouville type,” Fractional Calculus and Applied Analysis, vol. 21, no. 3, pp. 730–741, 2018.

[23] J. Mao and D. Zhao, “Multiple positive solutions for nonlinear fractional differential equations with integral boundary conditions and a parameter,” Journal of Function Spaces, vol. 2019, Article ID 2787569, 11 pages, 2019.

[24] T. Qi, Y. Liu, and Y. Cui, “Existence of solutions for a class of coupled fractional differential systems with nonlocal boundary conditions,” Journal of Function Spaces, vol. 2017, Article ID 6703860, 9 pages, 2017.

[25] T. Qi, Y. Liu, and Y. Zou, “Existence result for a class of coupled fractional differential systems with integral boundary value conditions,” The Journal of Nonlinear Science and Applications, vol. 10, no. 7, pp. 4034–4045, 2017.

[26] Y. Wang, Y. Liu, and Y. Cui, “Multiple solutions for a nonlinear fractional boundary value problem via critical point theory,” Journal of Function Spaces, vol. 2017, pp. 8548975–8, 2017.
[27] Y. Wang, Y. Liu, and Y. Cui, “Infinitely many solutions for impulsive fractional boundary value problem with \(p \)-Laplace,” *Boundary Value Problems*, vol. 2018, no. 1, p. 94, 2018.

[28] Y. Wang, Y. Liu, and Y. Cui, “Multiple sign-changing solutions for nonlinear fractional Kirchhoff equations,” *Boundary Value Problems*, vol. 2018, no. 1, p. 193, 2018.

[29] M. Wang, X. Qu, X. Qu, and H. Lu, “Ground state sign-changing solutions for fractional Laplacian equations with critical nonlinearity,” *AIMS Mathematics*, vol. 6, no. 5, pp. 5028–5039, 2021.

[30] J. Xu, Z. Wei, Z. Wei, D. O’Regan, and Y. Cui, “Infinitely many solutions for fractional schrödinger-maxwell equations,” *Journal of Applied Analysis & Computation*, vol. 9, no. 3, pp. 1165–1182, 2019.

[31] D. Zhao and Y. Liu, “Positive solutions for a class of fractional differential coupled system with integral boundary value conditions,” *The Journal of Nonlinear Science and Applications*, vol. 9, no. 5, pp. 2922–2942, 2016.

[32] D. Zhao and J. Mao, “New controllability results of fractional nonlocal semilinear evolution systems with finite delay,” *Complexity*, vol. 2020, Article ID 7652648, 13 pages, 2020.

[33] D. Zhao, Y. Liu, Y. Liu, and X. Li, “Controllability for a class of semilinear fractional evolution systems via resolvent operators,” *Communications on Pure and Applied Analysis*, vol. 18, no. 1, pp. 455–478, 2019.

[34] Z. Zhou and W. Gong, “Finite element approximation of optimal control problems governed by time fractional diffusion equation,” *Computers & Mathematics with Applications*, vol. 71, no. 1, pp. 301–318, 2016.

[35] F. Chen and X. Luo, “Existence results for nonlinear fractional difference equation,” *Advances in Differential Equations*, vol. 12, Article ID 713201, 2011.

[36] M. Jagan and G. V. Deekshitulu, “Fractional order difference equations,” *International Journal of Differential Equations*, vol. 2012, Article ID 780619, 11 pages, 2012.

[37] D. Guo and V. Lakshmikantham, *Nonlinear Problems in Abstract Cones*, Academic Press, New York, NY, USA, 1988.