On Surjectivity of Invariant Differential Operators

Thomas Hjortgaard Danielsen

Abstract

By proving a topological Paley-Wiener Theorem for Riemannian symmetric spaces of non-compact type, we show that a non-zero invariant differential operator is a homeomorphism from the space of test functions onto its image and hence surjective when extended to the space of distributions.

1 Introduction

Let \(\mathscr{D}(\mathbb{R}^n) \) be the space of compactly supported smooth functions on \(\mathbb{R}^n \). Define the Euclidean Paley-Wiener space \(\mathcal{H}^R(\mathbb{C}^n) \) to be the space of holomorphic maps \(\varphi : \mathbb{C}^n \rightarrow \mathbb{C} \) such that

\[
|\varphi(\lambda)| \leq C_N e^{R|\text{Im}\lambda|}(1 + |\lambda|)^{-N}.
\]

This is topologized by the seminorms \(\|\varphi\|_N \) which are the smallest constants \(C_N \) for which the estimates hold. By the Paley-Wiener Theorem, the Euclidean Fourier transform

\[
\tilde{f}(\xi) := \int_{\mathbb{R}^n} f(x)e^{-ix\cdot\xi}dx
\]

is a linear homeomorphism \(\mathscr{D}(\mathbb{R}^n) \rightarrow \bigcup_{R>0} \mathcal{H}^R(\mathbb{C}^n) \) when the spaces are given the inductive limit topology.

Now let \(D \neq 0 \) be a constant coefficient differential operator on \(\mathbb{R}^n \). It is well-known that conjugation of such a differential operator with the Fourier transform is just multiplication by a (non-zero) polynomial, \(P_D \). This multiplication map turns out to be a homeomorphism onto its image, and consequently this holds also for \(D \). An immediate consequence of this is that the differential operator is surjective on the space of distributions and hence always admit weak solutions (for more on this see [4] Chapter VII).

In the article [1] it is stated that this result may be generalized to invariant differential operators on symmetric spaces of non-compact type. However the central arguments are either rather sketchy ([1], Lemma 8) or non-existing ([1], Theorem 7). In this article we remedy this by providing a different approach.

2 Notation

First we introduce some notation. Let \(X \) be a Riemannian symmetric space of non-compact type, i.e. a quotient \(G/K \) where \(G \) is a semisimple non-compact Lie-group with finite center and \(K \) is a maximal compact subgroup. The Lie algebra \(\mathfrak{g} \) has a Cartan decomposition \(\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p} \) and we pick in \(\mathfrak{p} \) a maximally abelian subalgebra \(\mathfrak{a} \). Define \(M := Z_K(\mathfrak{a}) \) and \(B := K/M \) and
let \mathfrak{a}_c^* denote the complexification of the dual of \mathfrak{a}. Let $\Sigma \subseteq \mathfrak{a}^*$ denote the set of restricted roots w.r.t. (g, \mathfrak{a}) and let Σ^+ denote the set of positive roots relative to a fixed Weyl chamber. Put $\rho := \frac{1}{2} \sum_{\lambda \in \Sigma^+} \lambda$.

We let $\mathcal{D}(X)$ denote the set of test functions (C^∞-functions with compact support) equipped with its usual inductive limit topology, and let $\mathcal{D}_R(X)$ denote the closed subspace of test functions whose support is contained in the closed R-ball $B_R(eK)$ around $eK \in X$.

The Fourier transform $\tilde{f} : \mathfrak{a}_c^* \times B \to \mathbb{C}$ of a function $f \in \mathcal{D}(X)$ is defined by (see e.g. [2], Chapter III)

$$\tilde{f}(\lambda, b) := \int_X f(x) e^{-i\lambda(x,b)} \, dx$$

where $A(gK, kM) := A(k^{-1}g)$ with $A : G \to \mathbb{R}$ being the Iwasawa projection from the NAK-decomposition of G.

Let $\mathcal{H}^R(\mathfrak{a}_c^* \times B)$ denote the space of smooth functions $\psi : \mathfrak{a}_c^* \times B \to \mathbb{C}$ which are holomorphic on \mathfrak{a}_c^* and which satisfy the following growth condition

$$\forall N \in \mathbb{Z}_{>0} \exists C_N \forall \lambda, b : |\psi(\lambda, b)| \leq C_N e^{R|\text{Im}\lambda|(1 + |\lambda|)^{-N}}. \quad (1)$$

Furthermore, we denote by $\mathcal{H}^R(\mathfrak{a}_c^* \times B)_W$ the subset of functions satisfying the following Weyl invariance for each $s \in W$:

$$\forall x \in X \forall \lambda \in \mathfrak{a}_c^* : \int_B e^{(is - \lambda)b} A(x,b) \psi(s \cdot \lambda, b) \, db = \int_B e^{(i\lambda + b)x} \psi(\lambda, b) \, db. \quad (2)$$

3 A Topological Paley-Wiener Theorem

First we need a topological Paley-Wiener Theorem and in order to do so, we have to topologize the space $\mathcal{H}^R(\mathfrak{a}_c^* \times B)_W$. For this, introduce the space $\mathcal{H}^R(\mathfrak{a}_c^*, L^2(B))$ to be the space consisting of holomorphic maps $\psi : \mathfrak{a}_c^* \to L^2(B)$ satisfying

$$||\psi(\lambda)||_{L^2(B)} \leq C_N e^{R|\text{Im}\lambda|(1 + |\lambda|)^{-N}}$$

for all N. We define $||\psi||_N$ to be the smallest such constant C_N, and we topologize $\mathcal{H}^R(\mathfrak{a}_c^*, L^2(B))$ by this family of seminorms. This turns it into a Fréchet space. The Weyl invariance (2) still makes sense in this generalized setting, and thus we define $\mathcal{H}^R(\mathfrak{a}_c^*, L^2(B))_W$ to be the subset of Weyl invariant elements. This is a closed subspace and hence a Fréchet space.

We have an obvious inclusion $\mathcal{H}^R(\mathfrak{a}_c^* \times B)_W \to \mathcal{H}^R(\mathfrak{a}_c^*, L^2(B))_W$ and this inclusion turns out to be surjective:

Lemma 3.1. It holds that $\mathcal{H}^R(\mathfrak{a}_c^*, L^2(B))_W = \mathcal{H}^R(\mathfrak{a}_c^* \times B)_W$ as vector spaces.

Proof. For $\psi \in \mathcal{H}^R(\mathfrak{a}_c^*, L^2(B))_W$ define

$$f(x) := \int_{\mathfrak{a}_c^* \times B} \psi(\lambda, b) e^{(i\lambda + b)x} \, d\lambda = \int_{\mathfrak{a}_c^*} \langle \psi(\lambda), \lambda \rangle \, d\lambda.$$

Obviously, f is a smooth function. By examining the proof of bijectivity of $F : \mathcal{D}(X) \to \mathcal{H}(\mathfrak{a}_c^* \times B)_W$ (e.g. in [2], p. 278–280), it is seen that f is supported in the closed R-ball $B_R(eK)$ and that $\tilde{f} - \tilde{\psi} = 0$ almost everywhere, and thus f is a smooth representative of ψ. Furthermore, \tilde{f} satisfies the stronger growth condition (1) and hence $f \in \mathcal{H}^R(\mathfrak{a}_c^* \times B)_W$. \(\Box\)

Now $\mathcal{H}^R(\mathfrak{a}_c^* \times B)_W$ inherits the topology from $\mathcal{H}^R(\mathfrak{a}_c^*, L^2(B))_W$ (given by the seminorms $|| \cdot ||_N$), and hence it becomes a Fréchet space. Furthermore we define

$$\mathcal{H}(\mathfrak{a}_c^* \times B)_W := \bigcup_{R \in \mathbb{Z}_{>0}} \mathcal{H}^R(\mathfrak{a}_c^* \times B)_W$$

and give it the inductive limit topology.
Theorem 3.2 (Topological Paley-Wiener). The Fourier transform $\mathcal{F} : \mathcal{D}(X) \rightarrow \mathcal{H}(a^*_C \times B)_W$ is a linear homeomorphism. Furthermore $\tilde{f} \in \mathcal{H}^R(a^*_C \times B)_W$ if and only if $f \in \mathcal{D}(X)$.

Proof. The bijectivity of \mathcal{F} as well as the last claim is stated and proved in [?] Theorem III.5.1.

Now we consider $\mathcal{F} : \mathcal{D}_R(X) \rightarrow \mathcal{H}^R(a^*_C \times B)_W$ for a given R. For $f \in \mathcal{D}_R(X)$ it is straightforward to check the inequality for each N:

$$\|\mathcal{F} f\|_N \leq C \sup_{\lambda \in a^*_C, b \in B} e^{-R|\text{Im}\lambda|} \int_{B_R(e^K)} |Df(x)||e^{(-i\lambda + \rho)A(x,b)}|dx$$

where D is the invariant differential operator (of order $2N$) on X corresponding to the invariant polynomial $(1 + |\lambda|^2)^N$ (as in \(\Box\)) and where C is a constant depending on N and R. Since $x \in B_R(e^K)$ we have by [?] p. 476 eq. (13) that $|A(x,b)| \leq R$ and hence we see that

$$e^{-R|\text{Im}\lambda|} |e^{(-i\lambda + \rho)A(x,b)}| = e^{(\text{Im}\lambda + \rho)A(x,b) - R|\text{Im}\lambda|} \leq e^{R|\rho|}.$$

Hence we get $\|\mathcal{F} f\|_N \leq C\|f\|_{2N}$, where $\| \cdot \|_{2N}$ is one of the standard seminorms on $\mathcal{D}_R(X)$, i.e. $\mathcal{F} : \mathcal{D}_R(X) \rightarrow \mathcal{H}^R(a^*_C \times B)_W$ is continuous.

Thus the Fourier transform is a homeomorphism $\mathcal{D}_R(X) \xrightarrow{\sim} \mathcal{H}^R(a^*_C \times B)_W$ since these spaces are Fréchet. Hence it is also a homeomorphism when defined on $\mathcal{D}(X)$.

4 Consequences of the Paley-Wiener Theorem

Now, let D be a non-zero invariant differential operator. There exists a W-invariant polynomial $P_D \neq 0$ on a^*_C (this is a consequence of [3] Theorem II.4.6 and Lemma II.5.14 where we identify $\mathbb{D}(A)$ with W-invariant polynomials on a) such that the following diagram commutes

\[
\begin{array}{ccc}
\mathcal{D}_R(X) & \xrightarrow{\sim} & \mathcal{H}^R(a^*_C \times B)_W \\
D \downarrow & & \downarrow M_{P_D} \\
\mathcal{D}_R(X) & \xrightarrow{\sim} & \mathcal{H}^R(a^*_C \times B)_W
\end{array}
\]

where M_{P_D} is multiplication by P_D. The first goal is to show that M_{P_D} and hence D are linear homeomorphisms onto their images. Injectivity of M_{P_D} is clear by holomorphicity since $P_D \neq 0$.

Another payoff of considering $\mathcal{H}^R(a^*_C, L^2(B))$ rather than $\mathcal{H}^R(a^*_C \times B)$, is that it admits a nice description as a tensor product. First, however, note that the spaces we defined in Section 1 actually make sense for any finite-dimensional inner product space V and its complexification V_C. Thus we can define $\mathcal{D}(V)$, $\mathcal{D}_R(V)$, $\mathcal{H}^R(V_C)$ and so on, as well as a Euclidean Fourier transform which will be a homeomorphism $\mathcal{F} : \mathcal{D}(V) \xrightarrow{\sim} \mathcal{H}(V_C)$. In the following we will take $V = a^*$ with the Killing form as inner product.

Let $\mathcal{H}^R(a^*_C) \hat{\otimes} L^2(B)$ denote the completion of the algebraic tensor product in either the projective or injective topology (they are both equal since $\mathcal{H}^R(a^*_C) \cong \mathcal{D}(a^*)$ is nuclear). Then

Lemma 4.1. There exists a natural linear homeomorphism $\mathcal{H}^R(a^*_C) \hat{\otimes} L^2(B) \xrightarrow{\sim} \mathcal{H}^R(a^*_C, L^2(B))$.

Proof. Letting $\mathcal{D}_R(a^*, L^2(B))$ denote the space of smooth $L^2(B)$-valued functions on a^* with support in the R-ball, we define a Fourier transform $\mathcal{F} : \mathcal{D}_R(a^*, L^2(B)) \rightarrow \mathcal{H}^R(a^*_C, L^2(B))$

by

$$\mathcal{F}f)(\lambda) := \int_{a^*} f(x)e^{-i(x,\lambda)}dx$$
(L^2(B)-valued integration). For all \(v \in L^2(B) \) it holds that \(\langle Ff(\lambda), v \rangle = F(\langle f, v \rangle)(\lambda) \). Since the function \(x \mapsto (f(x), v) \) is an element of \(\mathcal{D}_R(a^*) \) we see that \(\lambda \mapsto \langle Ff(\lambda), v \rangle \) is holomorphic, i.e. \(Ff \) is weakly holomorphic, hence holomorphic (as it takes values in a Hilbert space). Furthermore we note that \(F \) has an inverse:

\[
(F^{-1} \psi)(x) = \int_{a^*} \psi(\lambda) e^{i(x, \lambda)} d\lambda.
\]

Continuity of \(F \) is easily checked and since the spaces in question are both Fréchet, \(F \) is a linear homeomorphism. The lemma now follows from the fact that \(D \) is injective and continuous. We just need to show that it’s open. For this, let \(\lambda \in X \) and \(u \in H(X) \) be an invariant differential operator, then

\[
\mathcal{D}_R(a^*, L^2(B)) \cong \mathcal{D}_R(a^*) \otimes L^2(B)
\]

(which is a consequence of [5] Theorem 44.1) and that \(\mathcal{D}_R(a^*) \cong H^R(a^*_C) \) by the Euclidean Fourier transform.

Now returning to the commuting diagram \([3]\) we see that under the identification of \(H^R(a^*_C, L^2(B)) \) with \(H^R(a^*_C) \otimes L^2(B) \), the map \(M_{PD} : H^R(a^*_C, L^2(B)) \rightarrow H^R(a^*_C, L^2(B)) \) is replaced by \(M_{PD} \otimes \text{id}_{L^2(B)} \). And from the Euclidean theory we know that \(M_{PD} : H^R(a^*_C) \rightarrow H^R(a^*_C) \) is a homeomorphism onto its image, hence the same holds for \(M_{PD} \otimes \text{id}_{L^2(B)} \) (cf. [5] Proposition 43.7). By restriction to \(H^R(a^*_C \times B)_W \) we get:

Lemma 4.2. The multiplication map \(M_{PD} : H^R(a^*_C \times B)_W \rightarrow H^R(a^*_C \times B)_W \) is a homeomorphism onto its image.

Finally, we need to transfer this to the inductive limit. For this we need the following lemma which is an immediate generalization of [2] Lemma III.5.13 to functions with Hilbert space values:

Lemma 4.3. Assume \(P : a^*_C \rightarrow \mathbb{C} \) is a nonzero polynomial and that \(\psi : a^*_C \rightarrow L^2(B) \) is a holomorphic function such that \(P\psi \in H^R(a^*_C, L^2(B)) \), then \(\psi \in H^R(a^*_C, L^2(B)) \).

Restricting to \(H^R(a^*_C, L^2(B))_W = H^R(a^*_C \times B)_W \) and referring to the commutative diagram \([3]\) we get that if \(f \in \mathcal{D}(X) \) is such that \(Df \in \mathcal{D}(X) \), then \(f \in \mathcal{D}(X) \).

We now arrive at our main theorem:

Theorem 4.4. Let \(D \neq 0 \) be an invariant differential operator, then \(D : \mathcal{D}(X) \rightarrow \mathcal{D}(X) \) is a homeomorphism onto its image.

Proof. Since \(D : \mathcal{D}(X) \rightarrow \mathcal{D}(X) \) is a homeomorphism onto its image, it is clear that \(D \) is injective and continuous. We just need to show that it’s open. For this, let \(U \subseteq \mathcal{D}(X) \) be open, i.e. \(U \cap D_R(X) \) is open for all \(R \). We need to show that \(D(U) \cap \mathcal{D}(X) \) is open for all \(R \). Claim: \(D(U) \cap \mathcal{D}(X) = D(U \cap \mathcal{D}(X)) \). The inclusion “\(\supseteq \)" is clear, since \(D \) decreases support. The inclusion “\(\subseteq \)" is a consequence of Lemma 4.3. But the right hand side \(D(U \cap \mathcal{D}(X)) \) is open in \(\mathcal{D}(X) \), and thus the result follows.

Let \(\mathcal{D}'(X) \) denote the set of distributions over \(X \), i.e. the dual of \(\mathcal{D}(X) \). A simple Hahn-Banach argument (see e.g. [4] p. 236) yields

Corollary 4.5. \(D : \mathcal{D}'(X) \rightarrow \mathcal{D}'(X) \) is surjective.

References

[1] Eguchi, M. *An application of topological Paley-Wiener theorems to invariant differential equations on symmetric spaces*, Analyse Harmonique sur les Groupes de Lie II, Séminaire Nancy-Strasbourg (1976–78), 192–206.

[2] Helgason, S., “Geometric Analysis on Symmetric Spaces,” American Mathematical Society, 1994.
[3] Helgason, S., “Groups and Geometric Analysis,” Academic Press, 1984.

[4] Helgason, S., “Integral Geometry and Radon Transforms,” Springer Verlag, to appear.

[5] Treves, F., “Topological Vector Spaces, Distributions and Kernels,” Academic Press, 1967.