How well a chaotic quantum system can retain memory of its initial state?

V. V. Sokolov\(^1,2\)\(^{(a)}\) and O. V. Zhirov\(^1\)

\(^1\)Budker Institute of Nuclear Physics - Novosibirsk, Russia
\(^2\)CNISM, CNR-INFM, and Center for Nonlinear and Complex Systems, Università degli Studi dell’Insubria Via Valleggio 11, 22100 Como, Italy, EU

received 22 August 2008; accepted 16 September 2008
published online 2 October 2008

PACS 05.45.Mt – Quantum chaos; semiclassical methods
PACS 03.65.Sq – Semiclassical theories and applications
PACS 05.45.Pq – Numerical simulations of chaotic systems

Abstract – In classical mechanics the local exponential instability effaces the memory of initial conditions and leads to practical irreversibility. In striking contrast, quantum mechanics appears to exhibit strong memory of the initial state. We relate the latter fact to the slow (at most linear) rate with which the system’s Wigner function gets during the evolution a more and more complicated structure and we establish the existence of a critical strength of external influence below which such a memory still survives.

Copyright © EPLA, 2008

Strong numerical evidence has been obtained [1] that the quantum evolution of classically chaotic systems is quite stable, in sharp contrast to the extreme sensitivity of classical dynamics to initial conditions and weak external perturbations. Being the very essence of classical dynamical chaos, this sensitivity results in rapid loss of memory and practical irreversibility of the classical motion. Qualitatively, this crucial difference is explained by a much simpler structure of quantum states as compared to the extraordinary complexity of random and unpredictable classical trajectories [2,3]. In more rigorous terms, chaotic classical systems are characterized by a positive algorithmic complexity described by the Lyapunov exponent. Unfortunately, being formulated in such a way the concept of complexity cannot be transferred, sic et simpliciter, to quantum mechanics, where the very notion of trajectory is irrelevant and there is no quantum analogue to the Lyapunov exponent. Therefore, at first glance, there exists no quantitative measure of the comparative complexity of classical and quantum states of motion [4].

However, individual classical trajectories are, in essence, of minor interest if the motion is chaotic. They all are alike in this case and rather the behavior of manifolds of them carries really valuable information. Therefore the methods of the phase space and the Liouville form of the classical mechanics become the most adequate. It is very important that, opposite to the classical trajectories, the classical phase space distribution and the Liouville equation have direct quantum analogs. Hence, a comparison between classical and quantum dynamics can be made by studying the evolutions in time of the classical and quantum phase space distributions expressed in similar canonical variables and both ruled by linear equations.

The paramount property of the classical dynamical chaos is the exponentially fast structuring of the system’s phase space on finer and finer scales. On the contrary, the degree of structuring of the corresponding quantum “distribution” is restricted by the quantization of the phase space. This makes the Wigner function relatively “simple” as compared to its classical counterpart. The great advantage of the phase space approach is also that one operates with distributions which can be presented in both classical as well as quantum cases in identical action – angle \((I, \theta)\) variables.

In practice, to explore stability or reversibility of motion one computes the fidelity [5,6] which characterizes the weighted-mean distance between two distributions evolving, for example, under two slightly different Hamiltonians. In this paper, we exploit a somewhat different aspect of the Peres fidelity. Namely, we use it to establish a quantitative relation between the degree of loss of memory on the one hand and the complexity of the corresponding phase space distribution on the other hand. In particular, we show how the number \(\mathcal{M}(t)\) of \(\theta\)-Fourier
harmonics (see below eqs. (7), (8)) can be used as a suitable measure of the complexity of a distribution at a given time t. In the case of classical chaotic dynamics, this number grows exponentially in time with the rate related to the rate of local exponential instability [7]. At the same time, this number increases only power-like if the motion is regular. Thus the rate of growth of the number of harmonics is, similar to the Lyapunov exponent, a characteristic measure of classical complexity. In the framework of the phase space approach, the number of harmonics of the Wigner function appears, contrary to the Lyapunov exponent, to be a relevant measure of complexity also in the quantum case. In what follows, we examine the time behavior of this quantity and its relation to fidelity and reversibility properties. A detailed derivation of the results reported in this paper can be found in ref. [8].

Let $\hat{H} \equiv H(\hat{a}^\dagger, \hat{a}; t) = H^{(0)}(\hat{a} = \hat{a}^\dagger) + H^{(1)}(\hat{a}^\dagger, \hat{a}; t)$ be the Hamiltonian of a generic nonlinear system with a bounded-below discrete energy spectrum $E^{(0)}_n \geq 0$, which is driven by a time-dependent force of such a kind that the classical motion exhibits a transition from integrable to chaotic behavior when the strength of the driving force is increased. Here \hat{a}^\dagger, \hat{a} are the bosonic, creation-annihilation operators: $[\hat{a}, \hat{a}^\dagger] = 1$. We use the method of c-number α-phase space borrowed from the quantum optics (see for example [9,10]). It is basically built upon the basis of the coherent states $|\alpha\rangle = \hat{D} \left(\frac{\alpha}{\sqrt{\eta}}\right) |0\rangle$ obtained from the ground state $|0\rangle$ of the unperturbed Hamiltonian with the help of the unitary displacement operator $\hat{D}(\lambda) = \exp(\lambda \hat{a}^\dagger - \lambda^* \hat{a})$. Here α is a complex phase space variable independent of the effective Planck’s constant \hbar.

The Wigner function W in the α-phase plane is defined by the following Fourier transformation:

$$W(\alpha^*, \alpha; t) = \frac{1}{\pi \hbar} \int d^2 \eta e^{i (\eta^* \alpha^* - \eta \alpha)} \text{Tr} \left[\hat{\rho}(t) \hat{D}(\eta) \right], \quad (1)$$

where $\hat{\rho}$ is the density operator and the integration runs over the complex η-plane. The Wigner function is normalized to unity, $\int d^2 \alpha W(\alpha^*, \alpha; t) = 1$ and is real though, in general, not positive definite. It satisfies the evolution equation

$$i \frac{\partial}{\partial t} W(\alpha^*, \alpha; t) = \hat{L}_Q W(\alpha^*, \alpha; t), \quad (2)$$
with the Hermitian “quantum Liouville operator” \hat{L}_Q. This equation reduces in the case $\hbar = 0$ to the classical Liouville equation with respect to the canonical pair $\alpha, i\alpha^*$ with the classical Hamiltonian function being given by the diagonal matrix elements $H_c(\alpha^*, \alpha; t) = \langle \alpha | H^{(0)}(\hat{a}^\dagger, \hat{a}) | \alpha \rangle$ of the normal form $\hat{H}^{(N)}$ of the quantum Hamiltonian operator.

In other words, this function is obtained from the quantum Hamiltonian by substituting $\hat{a} \rightarrow \alpha / \sqrt{\hbar}, \hat{a}^\dagger \rightarrow \alpha^* / \sqrt{\hbar}$.

We define the harmonic’s amplitudes $W_m(I)$ as the Fourier components of the Wigner function with respect to the angle variable θ introduced by the canonical transformation $\alpha = \sqrt{T} e^{-i\theta}$. The normalization condition reduces then to $\int^\infty_0 dI W_0(I; t) = 1$, whereas the amplitudes of other harmonics are expressed in terms of the matrix elements $\langle n + m | \hat{\rho}(t) | n \rangle$ of the density operator along the m-th collateral diagonal as

$$W_m(I; t) = \frac{2}{\hbar} e^{-\frac{2i}{\hbar^2} I} \sum_{n=0}^\infty (-1)^n \sqrt{n! \over (n+m)!} \times (4I/\hbar)^{n/2} L_m^m (4I/\hbar) \langle n + m | \hat{\rho}(t) | n \rangle, \quad m \geq 0,$$

with L_m^m Laguerre polynomials and $W_{-m} = W_m^*$. The inverted relation reads

$$\langle n + m | \hat{\rho}(t) | n \rangle = (-1)^m 2 \sqrt{n! \over (n+m)!} \times \int_0^\infty dI e^{-2\frac{I}{\hbar}} (4I/\hbar)^{n/2} W_m(I; t). \quad (3)$$

Aiming to connect the reversibility of the motion with the complexity of the Wigner function, we follow the approach developed in ref. [11]. We consider first the forward evolution $\hat{\rho}(t) = \hat{U}(t) \hat{\rho}(0) \hat{U}^\dagger(t)$ of a simple initial (generally mixed) state $\hat{\rho}(0)$ up to some time $t = T$. An instantaneous Hermitian perturbation $\hat{\nu}(\theta - T)$ with the intensity ξ is then applied which transforms the state $\hat{\rho}(T)$ into $\hat{\nu}(T, \xi) = \hat{P}(\xi) \hat{\rho}(T) \hat{P}^\dagger(\xi)$. The resulting transformation $\hat{P}(\xi) = e^{-i\xi \hat{V}}$ is unitary. For example this transformation is equivalent to the global rotation $W(I, \theta; T) \rightarrow W(I, \theta + \xi; T)$ by the angle ξ in the phase plane if the operator $\hat{V} = \hat{h}$. In particular, we use below an infinitesimal perturbation of such a kind to reveal the complexity of the Wigner function at the instant T.

The new state $\hat{\rho}(T; \xi)$ serves as the initial condition for the backward evolution $\hat{U}(-T) = \hat{U}^\dagger(T)$ during the same time T, after which the reversed state

$$\hat{\rho}(0) | T, \xi \rangle = \hat{U}^\dagger(T) \hat{\rho}(T; \xi) \hat{U}(T) = \hat{P}(\xi) \hat{\rho}(0) \hat{P}^\dagger(\xi, T) \quad (5)$$

is finally obtained. Here $\hat{P}(\xi, T) \equiv e^{-i\xi \hat{V}} (T)$, with $\hat{V}(T) \equiv \hat{U}(T)^\dagger \hat{V} \hat{U}(T)$ being the Heisenberg evolution of the perturbation during the perturbation time T. At last, we consider the distance between the reversed $\hat{\rho}(0) | T, \xi \rangle$ and the initial $\hat{\rho}(0)$ states, as measured by the Peres fidelity $F_{\text{rev}}(\xi; T) = | \text{Tr}[\hat{\rho}(0) | T, \xi \rangle \hat{\rho}(0) / \sqrt{\text{Tr}[\hat{\rho}^2(0)]} |$ [5] which can be also expressed with the help of eq. (4) in terms of the Wigner function as [6,8]

$$F_{\text{rev}}(\xi; T) = \int d^2 \alpha W(\alpha^*, \alpha; 0) \hat{W}(\alpha^*, \alpha; 0 | T, \xi) = \int d^2 \alpha W^2(\alpha^*, \alpha; 0) \left[\int d^2 \alpha W(\alpha^*, \alpha; T) \hat{W}(\alpha^*, \alpha; T, \xi) \right] \int d^2 \alpha W^2(\alpha^*, \alpha; T) \equiv F(\xi; T). \quad (6)$$

1We note that, similarly to ref. [12] and in contrast to other previous studies of the fidelity [6], the backward evolution proceeds with the same Hamiltonian as the forward evolution and the perturbation acts instantaneously only at the reversal time T.

30001-p2
The fidelity is bounded in the interval [0,1] and is the closer to unity the more similar are the initial and reversed states. In the second line, which is a consequence of the unitary time evolution, the fidelity $F(\xi;T)$ measures the complexity of the Wigner function at the moment $t=T$ (see below). Both the functions $F_{\text{rev}}(\xi;T)$ and $F(\xi;T)$ are numerically identical. The relation (6) plays the key role in our analyses. It allows us not only to relate the degree of reversibility to the complexity of the state at the reversal time T but also to establish a strong restriction on the upgrowth of the number $M(t)$ of harmonics of the Wigner function. The crucial point is that while in classical mechanics the number of Fourier components has no direct physical meaning, in quantum mechanics the number of the components of the Wigner function at any given time is related to the degree of excitation of the system (see for example eq. (12) below) and therefore the unrestricted exponential growth of this number is not allowed [7,13,14].

It is important that the representation (6) is valid not for example eq. (12) below) and therefore the unrestricted exponential growth of this number is not allowed [7,13,14].

As an illustrative example we consider further the kicked quartic oscillator defined by the Hamiltonian [13,15–17]
\[\hat{H}(\hat{a}^\dagger, \hat{a}) = \hbar \omega_0 \hat{n} + \hbar^2 \hat{n}^2 - \sqrt{\hbar} g(t)(\hat{a} + \hat{a}^\dagger), \]
(10)
where $g(t) = g_0 \sum \delta(t-s)$. In our units, the time and parameters \hbar, ω_0 as well as the strength of the driving force are dimensionless. The period of the driving force is set to one. The classical dynamics of such an oscillator becomes chaotic when the kicking strength g_0 exceeds a critical value $g_{0,c} \approx 1$. The angular phase correlations decay in this case exponentially and the mean action grows diffusively with the diffusion coefficient $D \approx g_0^2$.

In the chosen model, the only difference between the classical and corresponding quantum Liouville operators consists in the substitution ($\omega_0 + 2|\alpha|^2 \Rightarrow \omega_0 - \hbar^2 \delta(t-s) + 2|\alpha|^2 (\alpha^* \partial/\partial \alpha - \alpha^* \partial/\partial \alpha)$ in the unperturbed ($g(t) = 0$) part $\mathcal{L}(0)$. Opposite to the continuous function $2|\alpha|^2$, the spectrum of the operator $\hat{K} = -\hbar^2 \delta(t-s) + 2|\alpha|^2$, which coincides formally with the Hamiltonian of a two-dimensional linear oscillator, is discrete. This reflects the quantization of the phase space which stays ultima analyti behind the much slower growth of the number of harmonics of the Wigner function than that of the corresponding classical phase space distribution.

A numerical illustration of this statement is given in fig. 1. The initial state is chosen to be a pure ground state $\hat{\rho}(0) = |0\rangle \langle 0|$ which corresponds to the isotropic Wigner function $W(\alpha^*, \alpha^*;0) = 2 e^{-2|\alpha|^2}$ with the size 1/2. This size is kept constant throughout all calculations whereas the quantum Liouville equation is solved for a number of decreasing values of the effective Planck’s constant \hbar thus approaching the classical dynamics. Let us notice that for $h < 1$ our initial condition corresponds to an incoherent mixture of eigenstates of the operator $\hat{H}(0)$. It is clearly seen that the exponential increase of $\langle m^2 \rangle_t$ takes place only up to the Ehrenfest time scale $t_E \propto \ln \hbar$ [15],

![Fig. 1: (Color online) Root-mean-square $\langle m^2 \rangle_t$ vs. time t at $g_0 = 1.5$. Squares, diamonds and triangles correspond to $h = 0.01$, 0.1 and 1, respectively. Empty circles refer to classical dynamics and the dashed line fits these data.](image)

How well a chaotic quantum system can retain memory of its initial state?
The straight lines show the classical diffusion law \(\langle F \rangle = g_0 t \).

Using this representation we find in this case that also arbitrary incoherent initial mixtures are presented in the initial state. More general consideration which includes also arbitrary incoherent initial mixtures is presented in eq. (6). Using this representation we find in this case that consistency with the findings reported in refs. [7,14].

To explain such a behavior we turn to the equivalent representation of fidelity given in the first line of eq. (6). We restrict ourselves to the case of the pure ground state. Then, a much slower power law increase follows.

\[
\langle \hat{F} \rangle = \langle \hat{F} \rangle \text{ vs.} \langle I \rangle,
\]

Fig. 2: Mean value $\langle I \rangle / g_0$ as a function of time t. Squares and triangles correspond to $(h, g_0) = (1, 2)$ and $(2, 3)$, respectively. The straight line shows the classical diffusion law $\langle I \rangle = g_0 t$.

In such a way we relate the behavior of fidelity to the evolution of the action variable. Comparing now the ξ^2 terms in the expansions of the both possible representations (17 and 21) of fidelity, we arrive at the following *significant exact relation* between the number of harmonics and the root-mean-square deviation of the number of harmonics.

\[
\langle m^2 \rangle = 2 \chi_2(t), \quad \chi_2(t) \equiv \frac{1}{\hbar^2} \left(\langle I^2 \rangle - \langle I \rangle^2 \right). \tag{12}
\]

A thorough numerical study [8] convinces us that after proper averaging over strong irregular fluctuations (coarse graining) the zero harmonic amplitude decays exponentially with the action I at any given time $t > t_E$,

\[
W_0(I; t) = \frac{1}{\langle I \rangle t + \frac{\hbar}{2}} \exp \left(-\frac{I}{\langle I \rangle t + \frac{\hbar}{2}} \right). \tag{13}
\]

It follows from eq. (13) that $\chi_2(t) \approx \langle I \rangle / \hbar \left(\langle I \rangle / \hbar + 1 \right)$ and, therefore, $M(t) \approx \sqrt{2 \langle I \rangle / \hbar}$. The time dependence of the mean action $\langle I \rangle$ (the deterministic quantum diffusion) is shown in fig. 2 whereas the validity of the stated connection between the number of the harmonics and the excitation of the system is illustrated in fig. 3. Thus the number of harmonics grows after the Ehrenfest time not faster than linearly.

It can be readily shown now that for any finite $\xi \ll 1$ fidelity equals in the approximation (13)

\[
F_{rev}(\xi; T) = F(\xi; t = T) = \frac{1}{1 + \frac{\xi^2}{\hbar^2} \langle m^2 \rangle}. \tag{14}
\]

More than that, this formula is valid for any time including the times $T < T_E$ [8]. The found result shows that a crossover takes place near the critical value $\xi(T) \equiv \sqrt{2/M(T)}$, from good, $F(\xi; T) \approx 1$, to broken, $F(\xi; t) \approx (\xi/\xi_c(T))^2 \ll 1$, reversibility. Our numerical simulations (see fig. 4) nicely confirm the formula (14).

The dependence of $\xi_c(T)$ on the reversal time T is strikingly different within and outside the Ehrenfest time scale. When in the former case it drops exponentially in accordance with the classical exponential proliferation of the number of harmonics, in the latter case it decreases with the time T at most linearly. This explains the numerically discovered [1] much weaker sensitivity of quantum dynamics to perturbations as compared to classical dynamics.
To summarize, we have established a quantitative relation between the complexity of the Wigner function and the degree of reversibility of motion of a classically chaotic quantum system. We have analytically proved that the number of harmonics $M(t)$ of this function, which can serve as a natural measure of the complexity, increases after the Ehrenfest time not faster than linearly in striking contrast with classical dynamics, where the number of harmonics of phase space distribution grows exponentially. We have shown that if a quantum motion has been perturbed at some moment T by an external force with intensity ξ and then reversed, its initial state is recovered with the accuracy $\sim (\xi/\xi_c)^2$ as long as the strength is restricted to the interval $0 < \xi < \xi_c(T) = \sqrt{2/M(T)}$. This interval decreases at most linearly beyond the semi-classical domain but shrinks exponentially due to the classical exponential instability when this domain is approached.

The above-outlined phase space approach is quite general and can be readily extended to systems with an arbitrary number of degrees of freedom, including qubit systems, whose Hamiltonian can be expressed in terms of a set of bosonic creation-annihilation operators. Therefore, this approach could shed some light on the connection between complexity and entanglement, a fundamental issue of great relevance for the prospects of quantum information science [18].

It is our pleasure to thank G. BENENTI for fruitful collaboration and illuminating discussions. We also are very indebted to G. CASATI for drawing our attention to the problem of quantum reversibility. We acknowledge support by the Cariplo Foundation, INFN and by the RAS Joint scientific program “Nonlinear dynamics and Solitons”.

REFERENCES

[1] SHEPELYANSKY D. L., Physica D, 8 (1983) 208; CASATI G., CHIRIKOV B. V., GUARNIERI I. and SHEPELYANSKY D. L., Phys. Rev. Lett., 56 (1986) 2437.
[2] FORD J., Phys. Today, April issue (1983) 40.
[3] ALEKSEEV V. M. and JACOBSON M. V., Phys. Rep., 75 (1982) 287.
[4] PROSEN T., J. Phys. A, 40 (2007) 7881 and references therein.
[5] PERES A., Phys. Rev. A, 30 (1984) 1610.
[6] GORIN T., PROSEN T., SELIGMAN T. H. and Žnidarič M., Phys. Rep., 435 (2006) 33.
[7] PATTANAYAK A. K. and BRUMER P., Phys. Rev. E, 56 (1997) 5174; GONG J. and BRUMER P., Phys. Rev. A, 68 (2003) 062103.
[8] SOKOLOV V. V., ZHIROV O. V., BENENTI G. and CASATI G., arXiv:0807.2902v1 [nlin.CD] 18 Jul 2008.
[9] GLAUBER R. J., Phys. Rev., 131 (1963) 2766.
[10] AGARWAL G. S. and WOLF E., Phys. Rev. D, 2 (1970) 2161; 2187.
[11] IKEDA K. S., in Quantum Chaos: between Order and Disorder, edited by CASATI G. and CHIRIKOV B. V. (Cambridge University Press) 1995.
[12] PETITJEAN C., BEVILACQUA D. V., HELLER E. J. and JACQUOD PH., Phys. Rev. Lett., 98 (2007) 164101.
[13] CHIRIKOV B. V., IZRAILEV F. M. and SHEPELYANSKY D. L., Sov. Sci. Rev. C, 2 (1981) 209.
[14] GU Y., Phys. Lett. A, 149 (1990) 95.
[15] BERMAN G. P. and ZASLAVSKY G. M., Physica A, 91 (1978) 450; 97 (1979) 367.
[16] SOKOLOV V. V., Nonlinear Resonance of a Quantum oscillator preprint 78-50, Inst. Nucl. Phys. Siberia Div. Acad. Sci USSR (1978); Teor. Mat. Fiz., 61 (1984) 128 (Sov. J. Theor. Math., 61 (1985) 104).
[17] SOKOLOV V. V., BENENTI G. and CASATI G., Phys. Rev. E, 75 (2007) 026213.
[18] BENENTI G., preprint arXiv:0807.4364v1 [quant-ph] 28 Jul 2008.