ALPHA-CONSTRAINED QSE NUCLEOSYNTHESIS IN HIGH-ENTROPY AND FAST-EXPANDING MATERIAL

SHO FUJIBAYASHI, TAKASHI YOSHIDA, AND YUICHIRO SEKIUCHI

1 Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan; fujibayashi@tap.scphys.kyoto-u.ac.jp
2 Department of Astronomy, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
3 Department of Physics, Toho University, Funabashi, Chiba 274-8510, Japan

Received 2015 October 29; accepted 2016 January 5; published 2016 February 10

ABSTRACT

We investigate the nucleosynthesis process in high-entropy ($s/k_B \gtrsim 100$) and very fast expanding ($\tau_{\text{exp}} \sim 10^{-3}$ s) materials. In such a material with the electron fraction near 0.5, an interesting nucleosynthesis process occurs. In this process, the abundance distribution of heavy nuclei of $A > 100$ achieves quasi-statistical equilibrium (QSE) at high temperature and the abundances are frozen at the end of the nucleosynthesis. We explain this abundance distribution using the “alpha-constrained QSE” abundances formulated in this paper. We demonstrate that this nucleosynthesis would occur in neutrino-driven winds from massive proto-neutron stars in hypernovae, where $A \sim 140$ p-nuclei are synthesized.

Key words: nuclear reactions, nucleosynthesis, abundances – supernovae: general

1. INTRODUCTION

The origins of the proton-rich (p-) nuclei have been under debate for a long time. They are not synthesized by neutron-capture reactions because unstable neutron-rich nuclei are prevented from decaying into p-nuclei by underlying stable nuclei. There are some sites proposed for this p-nuclei synthesis. The most successful process that makes these p-nuclei would be the γ-process in core-collapse supernovae (CCSNe) or their progenitors, in which p-nuclei are produced by photodisintegration of the preexisting heavy nuclei. However, heavy p-nuclei of $110 < A < 125$ are underproduced in this process (Rayet et al. 1995; Rauscher et al. 2002; Arnould & Goriely 2003). The νp-process in the proton-rich material in the neutrino-driven wind (NDW) in SNe would produce these p-nuclei (Fröhlich et al. 2006; Pruet et al. 2006; Wanajo 2006; Wanajo et al. 2011). In the νp-process, the heavy nuclei are produced through (ν, γ) and successive (n, p) reactions (neutrons are supplied via $p + \nu_e \rightarrow n + e^+$ reactions).

Jordan & Meyer (2004) suggested that these light p-nuclei could be produced in a fast-expanding, high-entropy, and slightly proton-rich material. They argued that this is due to the lack of the alpha particle abundance, because the reactions that produce alpha particles from nucleons proceed slower than the expansion of the material (see also Meyer 2002). However, a short expansion timescale of $\sim 10^{-4}$ s has to be realized for the occurrence of such a nucleosynthesis, and whether it would occur in some real astronomical phenomena has been unclear.

Fujibayashi et al. (2015) suggested that an NDW from a temporarily formed massive proto-neutron star (PNS) in a hypernova (HN) would be a possible site for such a nucleosynthesis. They showed that the HN wind has much faster expansion velocity than that of an NDW in an ordinary SN because the massive PNS has very high neutrino luminosity. As a result, light p-nuclei production indeed occurs in the HN wind with realistic parameters. Therefore, it is worth closely investigating the synthesis process of these heavy-element and p-nuclei.

In the materials in the NDW, owing to the high entropy and the high expansion velocity, the triple-alpha reaction does not proceed sufficiently so that alpha particles remain even when the temperature decreases to $\sim 6 \times 10^9$ K. (This is called “alpha-rich freeze-out.”) Meyer et al. (1998) showed that the abundances in such materials are well described by the quasi-statistical equilibrium (QSE) abundances, which minimize the free energy in the system under the constraint that the total number of heavy nuclei (the nuclei except neutron, proton, and alpha-particle) is fixed.

Taking the study into account, we set our goal in this paper as formulating the nucleosynthesis in high-entropy and fast-expanding materials using the abundance in a special case of QSE where alpha particles and nucleons are not in equilibrium. We call the special QSE the alpha-constrained QSE (α QSE).

In the following, we call the abundance in the α QSE abundance, and the nucleosynthesis via the α QSE abundance α QSE nucleosynthesis. In Section 2, we formulate the α QSE abundance and show distributions in some cases. In Section 3, we compare the α QSE abundance and the abundance dynamically calculated with the nuclear reaction network and discuss the condition for the α QSE nucleosynthesis. Then, in Section 4, we show that the α QSE nucleosynthesis indeed occurs in the HN wind, and we discuss the points different from the nucleosynthesis in the NDW in the ordinary SNe. Finally, discussion and conclusion are given in Sections 5 and 6, respectively.

2. THEORY OF α QSE

In this section we derive the abundance distribution where the alpha particle abundance deviates from its equilibrium value and the abundance distribution of heavy nuclei is still under the reaction equilibrium. We call the abundance “α QSE abundance” and compare to the results of network calculations in the following section.

2.1. Framework

We consider a system in equilibrium at a temperature T, a density ρ, and an electron fraction Y_e. The abundance distribution in equilibrium under such a condition is determined so that the free energy of the system, f, is minimized under the abundance. Thus, we solve the abundances of the nuclei such that the free energy is stationary under any infinitesimal
deviations of the abundance Y_i of the nuclear species i, or

$$d_f = \sum_i \mu_i dY_i = 0,$$ \hspace{1cm} (1)

where μ_i is the chemical potential of the ith nucleus. Under the nonrelativistic and nondegenerate situation, we can write μ_i as

$$\mu_i = m_i c^2 + k_B T \ln \left(\frac{\rho Y_i}{m_i g_i} \left(\frac{m_i k_B T}{m_n g_n} \right)^{3/2} \right),$$ \hspace{1cm} (2)

where m_i and $g_i = g_i(T)$ are the mass and the partition function of the nuclear species i, respectively, m_i is the atomic mass unit, h is the reduced Planck constant, and k_B is the Boltzmann constant.

In solving the “normal” QSE abundances formulated in Meyer et al. (1998), we impose three constraints on the condition of the minimum free energy, i.e., the conservation of mass, the charge neutrality, and the fixed abundances of heavy nuclei Y_h. In order to obtain the α QSE abundances, we must add the fourth constraint, that the alpha particle abundance Y_α is fixed. Using the fourth constraint, the above constraints can be reduced to three equations as

$$\sum_{i=\alpha} Z_i Y_i = Y_e - 2 Y_\alpha,$$ \hspace{1cm} (3)

$$\sum_{i=\alpha} N_i Y_i = 1 - Y_e - 2 Y_\alpha,$$ \hspace{1cm} (4)

$$\sum_{i=p,n,\alpha} Y_i = Y_h,$$ \hspace{1cm} (5)

where Z_i and N_i are proton and neutron numbers of the ith nucleus, respectively. Using Equation (3), we rearrange the equation of mass conservation to Equation (4), i.e., the condition for constant neutron number in the system. Note that Y_h is now one of the parameters that control the abundance distribution. In order to solve Equation (1) under the constraints (3)–(5), we use the Lagrange multiplier method. As a result, the abundance of the nuclear species i is written as

$$Y_i \approx g_i A_i^{3/2} \left(\frac{\rho / m_a}{\theta} \right)^{A_i^{-1}} \lambda Y_n N_i Y_p e^{B_i / k_B T} \left(i = n, p, \alpha \right),$$ \hspace{1cm} (6)

where A_i and $B_i = (N m_n + Z m_p - m_i) c^2$ are the mass number and the binding energy of the ith nucleus, $\theta = (m_i k_B T / 2 \pi h^2)^{3/2}$, $\lambda = \lambda_h / \lambda_0$, and λ_h is a Lagrange multiplier defined in Appendix A. Here we use the approximation $m_i \approx A_i m_a$. We obtain the α QSE abundance solving for A, Y_n, and Y_p so that they satisfy Equations (3)–(5). Thus, they are the functions of the parameters in the system, i.e., ρ, T, Y_e, Y_h, and Y_α. Details for the derivation of the α QSE abundance are given in Appendix A.

2.2. The α QSE Abundance Distribution

Here we show the α QSE abundance distribution in some cases. In Figure 1, we show the abundance as a function of the mass number in the nuclear statistical equilibrium (NSE), the normal QSE (formulated in Meyer et al. 1998), and the α QSE of $T_\alpha = T / (10^6 K) = 5$, $\rho_\alpha = \rho / (10^5 g \text{ cm}^{-3}) \approx 2$ (corresponding to the situation of the entropy per baryon $s / k_B = 140$), and $Y_e = 0.50$. We see that the NSE abundance (the green dashed line) peaks at iron-group nuclei. In calculating the normal QSE abundance, we set the heavy-element abundance $Y_h = 0.1 Y_{h,\text{NSE}}$, where $Y_{h,\text{NSE}}$ is the heavy-element abundance in the NSE of the same T, ρ, and Y_e. We see that the abundance pattern does not change drastically.

Regarding the α QSE abundance (the red solid line), we use the values $Y_h = 0.1 Y_{h,\text{NSE}}$ and $Y_\alpha = 0.98 Y_{\alpha,\text{NSE}}$, where $Y_{\alpha,\text{NSE}}$ is the alpha particle abundance in the normal QSE. The abundance pattern drastically changes from the NSE and the normal QSE, and another peak appears at higher mass number ($A \approx 90$, the $N = 50$ magic nuclei). The only 2% lack of Y_e for its normal QSE value also raises the abundances of protons and neutrons to $Y_p^{\alpha,\text{QSE}} \approx 6.9 \times 10^{-3}$ and $Y_n^{\alpha,\text{QSE}} \approx 1.4 \times 10^{-2}$, which is 2.4 and 2.6 times larger than those of the normal QSE. The increase of free nucleons makes the abundance distribution in the reaction equilibrium shift to higher mass number.

In Figure 2, we show the α QSE abundances for six cases: $Y_e / Y_{\alpha,\text{QSE}} = 1.00$ (a), 0.98 (b), 0.94 (c), 0.85 (d), 0.70 (e), and 0.30 (f). Note that case (a) corresponds to the normal QSE. The peaks in cases (a), (b), and (c) correspond to the iron-peak nuclei, $N = 50$ magic nuclei, and $Z = 50$ magic nuclei, respectively. The peaks for cases (d), (e), and (f) indicate the locations of the $N = 82$ magic number, stable nuclei due to small deformation, and $Z = 82$, $N = 126$ magic numbers. We see that, with sufficiently low Y_e, the nuclei of $A \sim 200$ can be produced in the α QSE.

Briefly, we discuss the dependence of the α QSE abundance on the other parameters. If we set lower Y_e fixing the other parameters, the abundance peak shifts to the higher mass number. This is because the number of nucleons per heavy nucleus gets larger. If we set higher entropy, the abundance peak appears at smaller mass number since, at the same
temperature, the density and nucleon-capture reaction rates get smaller. Normally, the larger Ye is, the smaller the peak mass number becomes, because adding a proton to a nucleus releases less energy than adding a neutron. The responses of the average mass number of the distribution to the change of parameters are given in Appendix B.

3. CONDITIONS FOR α QSE NUCLEOSYNTHESIS

In the previous section, we see that, if the alpha particle abundance Y_α lacks the value in equilibrium with nucleons, large-mass-number nuclei can be produced in the α QSE distribution.

There are two causes by which the alpha particle abundance deviates from its equilibrium value. One is high entropy. The high entropy decreases the abundances of light nuclei such as 2H, 3H, and 3He, which are well in equilibrium with free nucleons (as mentioned in Meyer 2002). At a high temperature ($T_0 > 5$), alpha particles are produced mainly from these light nuclei, so in the high-entropy environment, the reaction flow to alpha particles cannot get large enough to maintain the alpha particles in equilibrium with the nucleons. The other is fast expansion. At a low temperature, the production of alpha particles occurs via catalysis of heavy nuclei (Meyer 2002), and the fast expansion (with high entropy) prevents the production of heavy nuclei via triple-alpha reactions.

Therefore, the α QSE abundance would appear in a high-entropy and fast-expanding material. In this section we compare the network calculation on a simple model of expanding material to the α QSE abundances and discuss the condition for the α QSE nucleosynthesis.

3.1. The Expansion Model and Nucleosynthesis Calculation

In order to investigate the α QSE condition, we employ the simple model of spherically symmetric, homogeneous, and adiabatic expansion with a constant velocity. The time evolution of the density is

$$\rho(t) = \rho_0 (1 + t/\tau_{\text{exp}})^{-3},$$

where $\rho_0 = \rho(t = 0)$ is the initial mass density and $\tau_{\text{exp}} = r_0/v_0$ is the expansion timescale (r_0 and v_0 are the initial radius of the material and the expansion velocity, respectively).

We use the equation of state by Timmes & Swesty (2000) to obtain the entropy as a function of ρ, T, and Y_e, which includes the entropy of nucleons, electrons, positrons, and photons. The temperature at a time t is obtained using $\rho(t)$ with the condition for the constant entropy.

Using the above expansion model, we perform the nucleosynthesis calculation. We use the same nuclear reaction network and reaction rates in Fujibayashi et al. (2015) (see this paper for details). However, we do not consider the interactions of neutrinos, e.g., $p + \nu_e \rightarrow n + e^+$ reactions, the effects of which will be discussed in the following section.

Parameters that determine the final abundance pattern are the entropy s, the expansion timescale τ_{exp}, and the electron fraction Y_e of the material at the beginning of the calculation, where $T_0 = 9$.

3.2. The Dependence on the Entropy and the Expansion Timescale

We calculate the nucleosynthesis on trajectories of each parameter set in the $s-\tau_{\text{exp}}$ plane, in Figure 3, where we set $Y_e = 0.5$. In this figure, we show the contours of the average mass number of the heavy nuclei (black solid line),

$$\langle A \rangle = \frac{1}{Y_{A>48}} \sum_{A>48} A Y_i,$$

where we define the abundance of the heavy nuclei $Y_{A>48}$ as $Y_{A>48} = \sum_{A>48} Y_i$, the contours of which (red dashed line) are also shown in the same figure. We see that the average mass number gets larger than 60 in the expansion where $Y_{A>48} \lesssim 10^{-5}-10^{-4}$.

We closely investigate nucleosynthesis of some expansions in Figure 3. First, we focus on the low-entropy expansion with $s = 153$ and $\tau_{\text{exp}} = 4.07$ ms (case A in this figure), in which $\langle A \rangle < 60$. We show two snapshots of the abundance distribution (hereafter called “the network abundance distribution”) in the nuclear chart at $T_0 \approx 5.5$ (top) and 5.4 (bottom) in Figure 4. At $T_0 \approx 6.1$, the abundance of alpha particles becomes smaller than its equilibrium value. Then, the abundance distribution starts to shift from the normal QSE to the α QSE one. Therefore, the distribution concentrates around $N = 50$ magic nuclei in the top panel of Figure 4.

In the top panel of Figure 5, we show the α QSE abundance in the same environment, i.e., at the same T, ρ, Y_e, Y_α, and Y_ν, as the top panel of Figure 4. The α QSE abundance distribution is the distribution to which the abundance tends to evolve, because the α QSE abundance distribution is the one that minimizes the free energy under the given constraints. We see that the network distribution, especially in the large-A region, is well described by the α QSE distribution.
In order to see the extent of the α QSE cluster in the network calculation, we define a combination

$$r(Z,A) = \frac{Y_{\text{network}}(Z,A)}{Y_{\text{network}}(Z_{\text{peak}}, A_{\text{peak}})} \frac{Y_{0,\text{QSE}}(Z,A)}{Y_{0,\text{QSE}}(Z_{\text{peak}}, A_{\text{peak}})},$$

(9)

where $(Z_{\text{peak}}, A_{\text{peak}})$ indicates the most abundant nucleus in the α QSE abundance distribution. If the value of $r(Z,A)$ is near unity, it can be said that the nucleus (Z,A) and $(Z_{\text{peak}}, A_{\text{peak}})$ are in the same α QSE cluster. In the bottom panel of Figure 5, we show the extent of the α QSE cluster at $T_0 \approx 5.5$, where the nuclei whose values of r are in the range 0.1–10 are shown in yellow, indicating that they are nearly in α QSE with the nucleus $(Z_{\text{peak}}, A_{\text{peak}})$. From this figure, we see that the nuclei around $N = 50$ magic nuclei are indeed in the α QSE.

However, at $T_0 \approx 5.4$, in the network calculation, the heavy nuclei of $A \sim 90$ are all photodisintegrated. This is because, in this expansion, a lot of iron-group nuclei are supplied via triple-alpha reactions. Then the reaction cycles, $^{58}\text{Fe}(n, \gamma)^{59}\text{Fe}(p,n)^{60}\text{Co}(n, \gamma)^{60}\text{Ni}$ for example, supply alpha particles and bring Y_α to its equilibrium value. Therefore, the heavy nuclei ($A \sim 90$) in the α QSE are photodisintegrated, and finally, the normal QSE, where iron-group nuclei are most abundant for $Y_\alpha = 0.5$, is achieved. As a result, the final abundance peaks at iron-group nuclei as shown in Figure 6.

From the above discussion, we conclude that the condition for the α QSE nucleosynthesis, i.e., the freeze-out of the α QSE abundance, is the production of less heavy nuclei so as not to produce alpha particles sufficiently.

Next, we focus on the high-entropy expansion with $s = 254$ and $\tau_{\text{exp}} = 4.07$ ms (“case B” in Figure 3), in which $(A) = 159$. In Figure 7, we show two snapshots of the abundance distributions at $T_0 \approx 4.9$ (top) and 3.1 (bottom) in the expansion. In this case, the abundance of alpha particles starts to deviate from its normal QSE value at $T_0 \approx 6.5$ and the abundance distribution starts to evolve to the α QSE one. At $T_0 \approx 4.9$ (top panel of Figure 7), the nuclei around $N = 82$ magic nuclei are indeed in the α QSE. Below this temperature,
the abundance distribution concentrates in the neutron-rich region, as we see in the bottom panel of Figure 7, where the distribution of the network calculation at $T_0 \approx 3.1$ is shown. In Figure 8, we show the α QSE abundance in the same environment as the bottom panel of Figure 7. We see that the α QSE abundance, to which the network abundance tends to evolve, is concentrated in very large mass number nuclei (around double magic nucleus of $(Z, N) = (82, 126)$ and even larger). Therefore, the neutron-rich network abundance is the transitional abundance toward the α QSE one. Since they cannot catch up with the α QSE distribution to the end, after the phase, the distribution freezes out. The final abundance is shown in Figure 6. We see that the elements of $A \sim 200$ are synthesized in this nucleosynthesis process.

Meyer (2002) first pointed out that this nucleosynthesis occurs in the fast-expanding material. We make it clear that, although it does not proceed via the α QSE abundance, the nucleosynthesis process can be understood as the transient phase toward the α QSE abundance.

We show the case where the initial electron fraction is $Y_e = 0.53$ in the nucleosynthesis calculations in Figure 9. We see that the parameter region where the α QSE nucleosynthesis occurs becomes smaller than that in the case $Y_e = 0.50$. In the case of higher electron fraction, the abundance distribution of the iron group is concentrated in the more proton-rich region.

In expansions with the same s and τ_{exp}, increasing Y_e from 0.50 to 0.53 increases the average proton number in the iron-group nuclei by 0.5–1 at the same temperature. Then the reaction cycle that mainly supplies alpha particles changes to the more proton-rich side, e.g., 56Fe(p, γ)57Co(p, γ)58Ni(n, γ)59Ni(n, α)56Fe. In general, the cross sections of (n, α) reactions, which supply alpha particles, are large for proton-rich nuclei. On the other hand, in this high temperature ($T_0 \sim 5–6$), the increasing Y_e at the beginning of the calculation changes the neutron abundance only by a factor. Therefore, increasing Y_e enhances the alpha particle production via (n, α) reactions of proton-rich iron-group nuclei. Thus, satisfying the condition for the α QSE nucleosynthesis becomes more difficult in the proton-rich material.

4. α QSE NUCLEOSYNTHESIS IN HN WIND

4.1. Comparison of the Network Abundance in HN Wind to the α QSE Abundance

Here we compare the results of the nucleosynthesis calculation of the HN wind with the α QSE abundance. We construct the spherically symmetric, steady solution of the NDW using the parameter set in the first line of Table 1. These are the parameters of the HN wind used in Fujibayashi et al. (2015). Then, we perform the nucleosynthesis calculation on the constructed wind solution. Now we include the (anti) neutrino-absorption reactions of nucleons. The methods of construction of the wind and the nucleosynthesis calculation are summarized in Fujibayashi et al. (2015).

We compare the network abundance in the HN wind and the α QSE abundance in the same environment in Figure 10. From the snapshot of the abundance distribution at $T_0 \approx 5.4$ in our network calculation (top panel), we see that heavy nuclei are concentrated in the region near the stable line and $N = 50–82$ and $Z = 35–55$. This trend is well described by the α QSE abundance distribution with the same parameter set of Y_e, Y_h, and Y_α (middle panel). In the bottom panel, we show the extent of the α QSE cluster. We see that most nuclei in the region of $N = 50–82$ and $Z = 35–55$ are indeed in the α QSE cluster.

We show the snapshot at $T_0 \approx 2.8$ in Figure 11. At this temperature, the network result shows a proton-rich distribution in the $N = 50–82$ region (see top panel). The α QSE abundance distribution (middle panel) shows the same trend. Therefore, the trends of the network abundance can be expressed by the α QSE abundance distribution in the same environment. After this, the reaction rates of heavy nuclei decrease and the nuclear abundance freezes out.

The top panel of Figure 12 shows the final abundance distribution of the HN wind. We see that the nuclei of $A \sim 110–140$ are mainly produced by α QSE nucleosynthesis. The bottom panel shows the production factors of the final products. The p-nuclei of $A \sim 110–140$ are the main products.

4.2. The Effects of Neutrinos

Here we discuss the effects of neutrinos on the α QSE nucleosynthesis. In the proton-rich condition, anti-electron neutrinos supply neutrons via $p + \bar{\nu}_e \rightarrow n + e^+$ reactions. Neutrinos are easily absorbed by heavy nuclei. Therefore, the α QSE abundance distribution is maintained for a longer time because photodisintegrations are prevented by neutron-absorption reactions.
In the top panel of Figure 12, we also show the result for the nucleosynthesis calculation without neutrino interactions on the same background as the HN wind model (thin dashed line). We see that the nuclei of $A > 120$ are photodisintegrated to the nuclei of $A = 100–120$. In the absence of neutrons, these heavy nuclei cannot exist against photodisintegrations. Therefore, the neutrino interactions indeed maintain the α QSE abundance.

4.3. Differences between the NDW in SNe and HNe

Here we discuss the differences of the nucleosynthesis between the ordinary SN wind and the HN wind. We construct the solution of the NDW in the ordinary SN in the same way as the HN, but we use the parameter set in the second line of Table 1.

In the top panel of Figure 12, we show the final abundance distribution of the ordinary SN wind (blue line). From this figure, we see that only nuclei up to the iron group are produced in the ordinary SN wind.

Table 1

Model	M (M_\odot)	R_\odot (km)	ρ_0 (g cm$^{-3}$)	L_{ν_e} (10^{51} erg s$^{-1}$)	L_{ν_x} (10^{51} erg s$^{-1}$)	e_{ν_e} (MeV)	e_{ν_x} (MeV)		
HN	3.0	15	10^{11}	150	165	15	9.00	11.3	25.0
Ordinary SN	1.4	10	10^{10}	1	1	1	12.0	16.0	14.0

Figure 10. Top: snapshot of the abundance distribution at $T_0 \approx 5.4$ in our network calculation. Middle: α QSE abundance distribution at the same temperature, density, electron fraction, number of heavy nuclei Y_h, and number of alpha particles Y_α. Bottom: extent of the α QSE. The color representation is the same as the bottom panel of Figure 5.

Figure 11. Same as Figure 10, but at $T_0 \approx 2.8$.

Figure 12. Top: final abundance distributions of the HN wind (red solid line) and the ordinary SN wind (blue dashed line). The thin dashed line indicates the result of the HN wind without neutrino interactions. Bottom: production factors of the HN wind.
The Astrophysical Journal, 818:96 (9pp), 2016 February 10

Fujibayashi, Yoshida, & Sekiguchi

5. DISCUSSION

5.1. Production of p-nuclei

As shown in Section 3, the α QSE abundance is concentrated in the proton-rich region at low temperature. As a result, as seen in the bottom panel of Figure 12, p-nuclei of \(A = 110–140\) are mainly produced. Heavy \(p\)-nuclei of \(A = 110–125\) are underproduced in the \(\gamma\)-process, so if the electron fraction of the wind is near 0.5, this HN wind model may be a possible site for the production of these \(p\)-nuclei.

Such an investigation with a smaller parameter range was performed in Jordan & Meyer (2004). They pointed out that free neutrons are important for this \(\alpha\) QSE nucleosynthesis because they keep the abundance distribution in a high-mass one. As mentioned in the previous section, because of the large neutrino luminosities, a lot of neutrons are supplied by \(p + n \rightarrow n + e^+\) reactions in the HN wind. Thus, the \(p\)-nuclei production through the \(\alpha\) QSE nucleosynthesis would indeed occur in the HN wind.

5.2. Application to Other Astrophysical Phenomena

In the previous sections, we show that the \(\alpha\) QSE nucleosynthesis occurs in the sufficiently high entropy and sufficiently fast expanding material. Therefore, the \(\alpha\) QSE nucleosynthesis would occur not only in HN winds but also in some other phenomena that eject the material in such an environment.

A high entropy would be achieved in the material in the jet in gamma-ray bursts (GRBs), but when we consider a fireball, the entropy per baryon required for the terminal Lorentz factor to be \(\sim 100\) is \(\sim 10^7\)\(\text{erg} \cdot \text{g}^{-1}\). This is too large to make heavy elements during the expansion, like big bang nucleosynthesis (Beloborodov 2003).

However, as mentioned in Inoue et al. (2003), in connection with GRBs, moderately baryon-rich material would be ejected as “circum-jet outflow” around the collimated jet. There would be the outflows of “failed-GRB” events, when the activity of the central engine is weak or the baryon-loading process occurs more efficiently. If the outflows are proton-rich, as we show in this paper, the \(\alpha\) QSE nucleosynthesis would occur in the material.

In the center of a supermassive star (SMS), the mass of which is \(\sim 10^5\)\(M_\odot\), the entropy would be 100–200. One example is a 55,500\(M_\odot\) star in Chen et al. (2014). Although this star explodes as a thermonuclear SN by the explosive He burning, the central entropy becomes \(\sim 200\) at the maximum central temperature. Therefore, if the explosion occurs when the SMS collapses and the temperature of the ejecta rapidly decreases from \(\sim 10^{10}\) K, the \(\alpha\) QSE nucleosynthesis would occur in the material.

5.3. Electron Fraction in the Material

The \(\alpha\) QSE nucleosynthesis, proposed in this paper, occurs in slightly proton-rich \(Y_e \gtrsim 0.5\) material. In the material of \(Y_e < 0.5\), with such a high entropy and a high expansion velocity, the \(\tau\)-process will occur and the \(\alpha\) QSE abundance distribution will not be achieved. If the elemental abundance pattern of \(\alpha\) QSE is discovered in some metal-poor stars, it would constrain the electron fraction of the ejecta of HNe and GRBs, which reflects the circumstance and mechanism of them.

![Figure 13](image-url)

Figure 13. Top: time evolution of the average reaction rates per nucleus in the heavy nuclei of \(A \gtrsim 12\) in the trajectory of the ordinary SN wind. Bottom: same as the top panel, but in the case of the HN wind. The rates of \((n, \gamma)\), \((p, \gamma)\), and \((n, p)\) reactions are shown in green, red, and blue solid lines, respectively, and their inverse reaction rates are shown in dashed lines. The temperature-decreasing rate \(\tau_{\text{r}}^{-1}\) is shown in the black dashed line.
6. CONCLUSIONS

In this work, we investigate the nucleosynthesis in a high-entropy and fast-expanding material where the alpha particle abundance becomes below the value in equilibrium with nucleons. We construct the equilibrium abundance distribution in such an expansion, "α QSE," which minimizes the free energy under four constraints: the charge neutrality, the numbers of baryons, heavy nuclei, and alpha particles. We show that the nucleosynthesis of the NDWs in HNe can be understood as the freeze-out of the α QSE abundances. We also investigate the dependence of the entropy s and the expansion timescale τ_{exp} on the α QSE nucleosynthesis, using a simple expansion model. We show that the α QSE nucleosynthesis would occur not only in the NDW in HNe but also in the material with such high entropy and high expansion velocity. We conclude that the condition for α QSE nucleosynthesis is less production of heavy nuclei, which are catalysts for the supply of alpha particles.

We thank Takashi Nakamura, Takahiro Tanaka, and Masaru Shibata for fruitful discussions. S.F. is supported by the Research Fellowship of Japan Society for the Promotion of Science (JSPS) for Young Scientists (No.26-1329). This work has been supported by Grant-in-Aid for Scientific Research (No. 23740160, No. 24244028, and No. 25103512) and by the HPCI Strategic Program of Japanese MEXT. Numerical data in this paper is adopted from numerical simulations carried out on Cray X7T4 and SX9 at the Center for Computational Astrophysics, National Astronomical Observatory of Japan.

APPENDIX A

DERIVATION OF THE α QSE ABUNDANCE

Here we explain details of the formulation of the α QSE abundance. The α QSE abundance minimizes the free energy (i.e., Equation (1)) under the constraints of Equations (3)–(5). We obtain such an abundance using the Lagrange multiplier method. We find the abundance for which the function

$$f + \lambda_{\alpha} \left(1 - Y_{\alpha} - \sum_{i=n} N_{i} Y_{i} \right) + \lambda_{p} \left(Y_{p} - \sum_{i=p} Z_{i} Y_{i} \right) + \lambda_{h} \left(Y_{h} - \sum_{i=h} Y_{i} \right)$$

is stationary and that satisfies Equations (3)–(5). Then we find the condition that the function (10) is stationary under any infinitesimal change of the abundance as

$$(\mu_{n} - \lambda_{n}) dY_{n} + (\mu_{p} - \lambda_{p}) dY_{p} + \sum_{i=n, p, \alpha} (\mu_{i} - N_{i} \lambda_{n} - Z_{i} \lambda_{p} - \lambda_{h}) Y_{i} = 0. \quad (11)$$

Note that we now consider the abundance of alpha particles Y_{α} as one of the parameters in the system. Therefore, we do not consider the infinitesimal change of alpha particles (i.e., $dY_{\alpha} = 0$) when we take the derivative of Equation (10). From Equation (11), we obtain the relations

$$\mu_{i} = \begin{cases} \lambda_{i} & (i = n, p), \\ N_{i} \mu_{n} + Z_{i} \mu_{p} + \lambda_{h} & (i = n, p, \alpha). \end{cases} \quad (12)$$

Solving for Y_{i} from Equations (2) and (12), we finally obtain Equation (6).

APPENDIX B

THE RESPONSE OF THE AVERAGE MASS NUMBER OF α QSE ABUNDANCE TO THE CHANGE OF PARAMETERS

Here we discuss the dependence of the α QSE abundance on the parameters in the system. The following formulae are convenient for investigating the dependence of the average mass number of heavy elements on the parameters. First, we consider the response to the change of Y_{α}. Taking the derivative of the constraints (3)–(5) with respect to Y_{α}, we obtain

$$-2 = Y_{p} \frac{\partial \ln Y_{p}}{\partial Y_{\alpha}} + \sum_{i=n, p, \alpha} Z_{i} \frac{\partial Y_{i}}{\partial Y_{\alpha}}, \quad (13)$$

$$-2 = Y_{p} \frac{\partial \ln Y_{p}}{\partial Y_{\alpha}} + \sum_{i=n, p, \alpha} N_{i} \frac{\partial Y_{i}}{\partial Y_{\alpha}}, \quad (14)$$

$$0 = \sum_{i=n, p, \alpha} \frac{\partial Y_{i}}{\partial Y_{\alpha}}. \quad (15)$$

From relation (6), we find

$$\frac{\partial Y_{i}}{\partial Y_{\alpha}} = Y_{i} \left(Z_{i} \frac{\partial \ln Y_{p}}{\partial Y_{\alpha}} + N_{i} \frac{\partial \ln Y_{p}}{\partial Y_{\alpha}} + \frac{\partial \ln \Lambda}{\partial Y_{\alpha}} \right). \quad (16)$$

and using this, Equations (13)–(15) become

$$-2 = (Y_{p} + (2Z_{h})_{\alpha} Y_{h} \frac{\partial \ln Y_{p}}{\partial Y_{\alpha}} + (ZN)_{h} Y_{h} \frac{\partial \ln Y_{p}}{\partial Y_{\alpha}} + (N)_{h} Y_{h} \frac{\partial \ln \Lambda}{\partial Y_{\alpha}}), \quad (17)$$

$$-2 = (ZN)_{h} Y_{h} \frac{\partial \ln Y_{p}}{\partial Y_{\alpha}} + (N)_{h} Y_{h} \frac{\partial \ln \Lambda}{\partial Y_{\alpha}} \quad (18)$$

$$0 = (Z_{h})_{h} Y_{h} \frac{\partial \ln Y_{p}}{\partial Y_{\alpha}} + (N)_{h} Y_{h} \frac{\partial \ln \Lambda}{\partial Y_{\alpha}} \quad (19)$$

where $\langle \cdot \rangle_{h}$ denotes the average taken using the nuclei except n, p, α, for example,

$$\langle Z_{h} \rangle_{h} = \frac{1}{Y_{h}} \sum_{i=n, p, \alpha} Z_{i} Y_{i}. \quad (20)$$

The derivative of $\langle A \rangle_{h}$ is

$$\frac{\partial \langle A \rangle_{h}}{\partial Y_{\alpha}} = \langle ZA \rangle_{h} \frac{\partial \ln Y_{p}}{\partial Y_{\alpha}} + \langle N \rangle_{h} \frac{\partial \ln Y_{p}}{\partial Y_{\alpha}} + \langle A \rangle_{h} \frac{\partial \ln \Lambda}{\partial Y_{\alpha}}. \quad (21)$$

Solving Equations (17)–(19) for $\partial \ln Y_{p}/\partial Y_{\alpha}$, $\partial \ln Y_{p}/\partial Y_{\alpha}$, and $\partial \ln \Lambda/\partial Y_{\alpha}$, and substituting these into Equation (21), we
obtain the response of $\langle A \rangle_h$ to the change of Y_h as

$$
\frac{\partial \langle A \rangle_h}{\partial Y_h} = -\frac{4}{D Y_h} \left\{ (\sigma_{Z \bar{Z}}^2 \sigma_{N \bar{N}}^2 - \sigma_{Z \bar{N}}^2) + (\sigma_{Z \bar{Z}}^2 + \sigma_{Z \bar{N}}^2) \frac{Y_p}{2 Y_h} + (\sigma_{N \bar{N}}^2 + \sigma_{Z \bar{N}}^2) \frac{Y_n}{2 Y_h} \right\},
$$

(22)

where we define the variances of Z and N of heavy nuclei and the quantity D as

$$
\sigma_{Z \bar{Z}}^2 = \langle Z^2 \rangle_h - \langle Z \rangle_h^2,
$$

(23)

$$
\sigma_{N \bar{N}}^2 = \langle N^2 \rangle_h - \langle N \rangle_h^2,
$$

(24)

$$
\sigma_{Z \bar{N}}^2 = \langle Z N \rangle_h - \langle Z \rangle_h \langle N \rangle_h,
$$

(25)

$$
D = \left(\sigma_{Z \bar{Z}}^2 + \frac{Y_p}{Y_h} \right) \left(\sigma_{N \bar{N}}^2 + \frac{Y_n}{Y_h} \right) - \sigma_{Z \bar{N}}^2.
$$

(26)

Note that the variance $\sigma_{Z \bar{N}}^2$ is large when the abundance distribution spreads in Z (N) space. On the other hand, the covariance $\sigma_{Z \bar{N}}^2$ is large when the distribution tightly correlates in the N–Z plane. In our case, $\sigma_{Z \bar{N}}^2$ is positive because the abundance distribution generally shows a positive correlation on the chart of nuclides. These variants satisfy the relation $|\sigma_{Z \bar{N}}^2| \lesssim \sigma_{Z \bar{Z}} \sigma_{N \bar{N}}$, so that we have $D > 0$ and thus $\partial \langle A \rangle_h/\partial Y_h < 0$.

In the case where the abundance distribution spreads enough so that $\sigma \gg Y_{\text{mac}}/Y_h$, where Y_{mac} is the abundance of the nuclides, the first term in the square brackets in Equation (22) dominates other terms and $D \approx \sigma_{Z \bar{Z}}^2 \sigma_{N \bar{N}}^2 - \sigma_{Z \bar{N}}^2$. Therefore, in this case, $\partial \langle A \rangle_h/\partial Y_h \approx -4/Y_h$, which indicates that the nuclides supplied by the decrease of Y_h are all consumed by heavy nuclei. In this case, the small change $dY_h \sim Y_h$ is enough to increase $\langle A \rangle_h$.

On the other hand, when the nuclear distribution concentrates near some magic nuclei, the values of $\sigma \sim 1$ are usually smaller than Y_{mac}/Y_h, and the last two terms in the square brackets dominate. At the same time, $D \approx Y_p Y_n / Y_h^2$, and we find $\partial \langle A \rangle_h/\partial Y_h \sim -\sigma^2 / Y_{\text{mac}}$, which indicates that the supplied nuclides are not used to increase $\langle A \rangle_h$ and remain free. In this case, $\langle A \rangle_h$ gets large only for the change of the abundance of alpha particles $dY_h \gg Y_{\text{mac}} \gg Y_h$.

In the same way, we derive the dependence of $\langle A \rangle_h$ on the other parameters. The responses to the changes of ρ, Y_e, and Y_h are as follows:

$$
\frac{\partial \langle A \rangle_h}{\partial \ln \rho} = \frac{1}{D Y_h} \left\{ (\sigma_{Z \bar{Z}}^2 \sigma_{N \bar{N}}^2 - \sigma_{Z \bar{N}}^2)(Y_p + Y_n) + \sigma_{AA}^2 \frac{Y_p Y_n}{Y_h} \right\},
$$

(27)

$$
\frac{\partial \langle A \rangle_h}{\partial Y_e} = \frac{1}{D Y_h} \left\{ (\sigma_{Z \bar{Z}}^2 + \sigma_{Z \bar{N}}^2) \frac{Y_p}{Y_h} - (\sigma_{N \bar{N}}^2 + \sigma_{Z \bar{N}}^2) \frac{Y_n}{Y_h} \right\},
$$

(28)

$$
\frac{\partial \langle A \rangle_h}{\partial Y_h} = \frac{1}{D Y_h} \left\{ - (\sigma_{Z \bar{Z}}^2 \sigma_{N \bar{N}}^2 - \sigma_{Z \bar{N}}^2) \langle A \rangle_h \right. \\
+ (\sigma_{Z \bar{Z}}^2 + \sigma_{Z \bar{N}}^2) \frac{Y_p}{Y_h} (Z)_h + (\sigma_{N \bar{N}}^2 + \sigma_{Z \bar{N}}^2) \frac{Y_n}{Y_h} \langle N \rangle_h \right\},
$$

(29)

where D is defined in Equation (26).

REFERENCES
Arnould, M., & Goriely, S. 2003, PhR, 384, 1
Beloborodov, A. M. 2003, ApJ, 588, 931
Chen, K.-J., Heger, A., Woosley, S., et al. 2014, ApJ, 790, 162
Fröhlich, C., Martínez-Pinedo, G., Liebendörfer, M., et al. 2006, PhRvL, 96, 142502
Fujibayashi, S., Yoshida, T., & Sekiguchi, Y. 2015, ApJ, 810, 115
Inoue, S., Iwamoto, N., Orito, M., & Terasawa, M. 2003, ApJ, 595, 294
Jordan, G. C., IV, & Meyer, B. S. 2004, ApJL, 617, L131
Meyer, B. S. 2002, PhRvL, 89, 231101
Meyer, B. S., Krishnan, T. D., & Clayton, D. D. 1998, ApJ, 498, 808
Pruet, J., Hoffman, R. D., Woosley, S. E., Janka, H.-T., & Buras, R. 2006, ApJ, 644, 1028
Rauscher, T., Heger, A., Hoffman, R. D., & Woosley, S. E. 2002, ApJ, 576, 323
Rayet, M., Arnould, M., Hashimoto, M., Prantzos, N., & Nomoto, K. 1995, A&A, 298, 517
Timmes, F. X., & Swesty, F. D. 2000, ApJS, 126, 501
Wanajo, S. 2006, ApJ, 647, 1323
Wanajo, S., Janka, H.-T., & Kubono, S. 2011, ApJ, 729, 46