Genetic Identification, Sequence, and Alternative Splicing
of the Caenorhabditis elegans α2(IV) Collagen Gene
Marion H. Sibley, Jeffrey J. Johnson, Craig C. Mello,* and James M. Kramer
Department of Cell, Molecular and Structural Biology, Northwestern University Medical School, Chicago, Illinois 60611; and
*Fred Hutchinson Cancer Research Center, Seattle, Washington 98104

Abstract. The nematode Caenorhabditis elegans has two type IV collagen genes homologous to the mammalian α1(IV) and α2(IV) collagen genes. We demonstrate by transgenic rescue of mutant animals that the genetic locus encoding the C. elegans α2(IV) collagen gene is let-2 on the X chromosome. The most severe effect of mutations in let-2 is temperature-sensitive embryonic lethality. The embryonic lethal phenotype is similar to that seen in animals with mutations in the α1(IV) collagen gene, emb-9. The sequence of the entire C. elegans α2(IV) collagen gene is presented. Comparisons with mammalian type IV collagen sequences show high amino acid sequence conservation in the C-terminal NC1 domain and of crosslinking residues (Cys and Lys) in the N-terminal 7S domain.

RT-PCR analysis shows that transcripts of the C. elegans α2(IV) collagen gene are alternatively spliced. Transcripts contain one of two mutually exclusive exons, exon 9 or 10. These exons encode very similar products, differing primarily in the sequence of a 9-10 amino acid Gly-X-Y interruption. The expression of these alternatively spliced α2(IV) collagen transcripts is developmentally regulated. In embryos over 90% of the α2(IV) collagen mRNA contains exon 9, while larval and adult RNAs contain 80-90% exon 10. This shift in expression of alternative α2(IV) collagen transcripts suggests that C. elegans embryos may require a different form of α2(IV) collagen than do larvae and adults.

Basement membranes are thin sheets of extracellular matrix that underlie epithelial and endothelial cells; they also surround individual muscle cells, nerve cells, and adipocytes. Basement membranes are thought to be involved in many critical biological processes, including cell adhesion, cell migration, morphogenesis, tissue regeneration and repair, and macromolecular filtration (Timpl, 1989; Farquhar, 1991). Type IV collagen is a major structural component of basement membranes (Glanville, 1987). The type IV collagen molecule is a heterotrimer of about 500 kD, most commonly composed of two α1(IV) chains and one α2(IV) chain. Three additional type IV collagen chains (α3, α4, and α5) have recently been identified (Saus et al., 1988; Morrison et al., 1991; Gunwar et al., 1990; Hostikka et al., 1990). In contrast to the ubiquitous α1(IV) and α2(IV) chains, these additional chains appear to be localized primarily, though not exclusively, in kidney glomerular basement membranes. In the type IV collagen molecule, three α chains are arranged in a collagenous (Gly-X-Y) triple helix that comprises about three-fourths of the molecule. The Gly-X-Y sequence is punctuated with numerous interruptions, ranging from 1 to 24 amino acids in length. These interruptions are thought to promote sites of flexibility in the triple helical domain, and they have also been proposed to act as binding sites for other basement membrane components (Charonis and Tsilibary 1990). Each type IV α chain has two noncollagenous domains, one at the NH2 terminus, which forms part of the 7S domain, and one at the COOH-terminus, the NCI domain.

Type IV collagen molecules aggregate to form a complex three-dimensional network of highly branched filaments, which is the major structural support of the basement membrane (Yurchenco and Furthmayr, 1984). The type IV collagen network is formed by a variety of interactions, including formation of tetramers through 7S domains, formation of dimers through NCI domains, and lateral interactions between molecules along the length of the triple-helical domain (Yurchenco and Ruben, 1987). In addition to these self-interactions, type IV collagen binds cell surface receptors, and also binds other basement membrane components, such as laminin, heparan sulfate proteoglycans, and nidogen (Charonis and Tsilibary, 1990). Any or all of these additional binding activities may be involved in basement membrane network formation, but the detailed structure of this network is as yet unknown.

In an effort to understand the role of type IV collagen in the functioning of basement membranes, we have undertaken a genetic and molecular characterization of type IV collagen in the nematode Caenorhabditis elegans. We have shown that C. elegans has two type IV collagen genes, homologous to the α1(IV) and α2(IV) genes of mammals (Guo and Kramer, 1989). The NCI domains of the α1(IV) and
α2(IV) collagen chains of *C. elegans* have 66 and 72% amino acid sequence identity, respectively, to the NCI domains of human α1(IV) and α2(IV) collagen. The two *C. elegans* type IV collagen genes are on different chromosome (Guo and Kramer, 1989). In contrast, in mouse and human, the α1(IV) and α2(IV) collagen genes are on the same chromosome about 140-bp apart, and are transcribed from a common bidirectional promoter (Burbelo et al., 1988; Kaytes et al., 1988; Poschl et al., 1988; Soininen et al., 1988). We have previously identified the genetic locus for the *C. elegans* α1(IV) collagen gene as *emb-9* on chromosome III (Guo et al., 1991). Mutations in *emb-9* cause temperature-sensitive lethality during late embryogenesis, demonstrating that defects in basement membranes can disrupt normal embryonic development.

In this work, the genetic locus for the α2(IV) collagen chain in *C. elegans* is identified as *let-2* on the X chromosome. Like the α1(IV) collagen gene in *C. elegans*, mutations in the α2(IV) collagen gene also have temperature-sensitive embryonic lethal phenotypes. The sequence of the entire *C. elegans* α2(IV) chain is reported and compared with other α2(IV) collagen chains. We also show that the *C. elegans* α2(IV) chain undergoes alternative splicing to produce two different transcripts whose relative levels change dramatically during development.

Materials and Methods

Transgenic Rescue of let-2 Mutant Animals

The phage clone CH#1, containing the entire wild-type sequence of the α2(IV) collagen gene (Guo and Kramer, 1989) was injected into let-2 mutant animals as described in Mello et al. (1991). In most cases CH#1 was co-injected with a clone (pRF4) containing a mutant rol-6 gene (Kramer et al., 1990), which acts as a dominant cotransformation marker (Mello et al., 1991). Adult let-2(g25) and let-2(g30) hermaphrodites raised at 15°C were injected once in each distal gonad arm. Injected animals were placed at 25°C, and the incidence of viable and fertile offspring produced at 25°C was observed.

DNA Sequence Analysis

Fragments of the original phage clone CH#1 (Guo and Kramer, 1989) were subcloned into Bluescribe. Nucleotide sequences were determined from both strands by the Sanger dideoxynucleotide chain-termination method (Sanger et al., 1977) using Sequenase (United States Biochemical Corporation, Cleveland, OH), using both universal and sequence-specific oligonucleotide primers. In some cases, sequences were obtained from nested deletions of larger clones made using exonuclease III and SI nuclease (Henikoff, 1984).

Determination of the Start of Transcription by Primer Extension

Primer extension and RNA sequencing were performed essentially as described by Bektash et al. (1988). An end-labeled 20-mer synthetic oligonucleotide primer located 237-bp downstream of the start codon ATG was annealed to 60 μg *C. elegans* total RNA and extended with avian myeloblastosis virus reverse transcriptase in the presence of individual ddNTPs to determine the RNA sequence, or in the absence of ddNTPs to determine the termination site.

Preparation of Total RNA from Nematodes at Different Developmental Stages

C. elegans (N2, wild-type strain) was grown and maintained on nematode growth medium plates, streaked with *Escherichia coli* strain OP50, according to the standard techniques described by Brenner (1974). For these developmental studies nematodes were grown at 25°C. Embryos at early stages of development were collected by treating gravid adults (0.1 ml buffer (10 mM PIPES pH 6.9, 60 mM NaCl, 0.1 mM EDTA, 0.5 mM 2-mercaptoethanol, 50 μg/ml actinomycin D) with alkaline hypochlorite treatment (0.1 M KOH: H2O 1:2.5). This treatment dissolved ribonucleoprotein complexes. 160 μl chloroform was added, the sonicate was incubated at room temperature for 5 min to dissolve ribonucleoprotein complexes. 160 μl chloroform was added, the sonicate incubated a further 2–3 min at room temperature, and then centrifuged at 12,000 g for 15 min at 4°C. RNA was precipitated from the upper aqueous layer by addition of 400 μl isopropanol and incubation at 4°C for 30 min. The total RNA pellet was collected by centrifugation at 10,000 g for 10 min at 4°C, washed once with 70% ethanol, and air dried. The RNA pellet was resuspended in 20 μl of diethylpyrocarbodonte-treated water and stored at −70°C. Embryos at later stages of development were collected by allowing adults to lay eggs for 2 h, washing the adults off the plate with M9 buffer, and incubating the remaining embryos for a further 4 h. These embryos were collected by alkaline hypochlorite treatment and centrifugation, and extracted immediately for total RNA as described above. Nematodes at the first larval stage (L1) were collected by allowing adults to lay eggs on a large (100 mm) plate overnight, washing off the adults, and incubating the plate for 1 h. Larvae that hatched in this time were collected by centrifugation, and either processed for RNA extraction immediately, or put on a fresh plate and incubated a further 3 h or a further 7 h before RNA extraction.

Bilateral stages (L2 through L4) and adult stage were collected by allowing adults to lay eggs for 2 h, washing off the adults with M9 buffer, and allowing the embryos to develop for a further 24 h (L2 larvae), 33 h (L3 larvae), 43 h (L4 larvae), or 67 h (adult) before RNA isolation.

RNA from sterile adults was prepared using the *C. elegans* strain BA1, which has the temperature-sensitive mutation *fer-1(hcl)* (Ward and Miwa, 1978). The phenotype of this *fer-1* allele is wild-type at 15° and 20°C, but sterile at 25°C, because of defective sperm. For production of sterile adults, a population of *fer-1* adults grown at 20°C was allowed to lay eggs for several hours at 20°C. The adults were then discarded, eggs were shifted to 25°C and allowed to complete larval development at 25°C until a population of sterile adults was obtained. Total RNA was extracted from these sterile adults as described above.

Reverse Transcriptase and Polymerase Chain Reactions for Determination of the Relative Levels of Exons 9 and 10

Synthesis of cDNA was performed by incubating 1–2 μl stage-specific RNA with 50 mM Tris·HCl, pH 8.3, 75 mM KCl, 3 mM MgCl2, 10 mM DTT, 1 mM dNTP, 20 U RNaseH (Promega Biotec, Madison, WI), 200 U MMLV reverse transcriptase (GIBCO-BRL, Gaithersburg, MD), and 0.1 pmole specific downstream primer (see Fig. 4) in a total volume of 20 μl at 37°C for 60 min, followed by 95°C for 10 min. For the PCR, 1–10 μl of this reverse transcription reaction was used, along with 200 μM each dNTP, 1 μM each specific upstream and downstream primer (Fig. 4), and 2.5 U AmpliTag (Perkin Elmer Cetus) in PCR buffer (10 mM Tris·HCl, pH 8.3, 50 mM KCl, 1.5 mM MgCl2, 0.01% gelatin) in a total volume of 100 μl. PCR samples were overlaid with mineral oil and incubated at 94°C for 1 min 15 s, at 59°C for 2 min, and at 72°C for 3 min for 30 cycles in an automated temperature cycler. This PCR reaction was then diluted 1:100 to be used in an additional PCR amplification to incorporate [32P]-labeled dATP into the PCR product. This additional amplification was performed by incubating 5 μl diluted PCR product with dDTTP, dGTP, and dCTP (200 μM each dNTP), 10 μCi α-[32P]dATP (Amersham Corp., Arlington Heights, IL), 1 μM each specific upstream and downstream primer, and 2.5 U AmpliTaq in PCR buffer in a total volume of 100 μl. The samples were overlaid with mineral oil and three to seven PCR temperature cycles were performed as described above. The amplified PCR products were digested without further purification with either or both of the restriction enzymes BglIII and DdeI. The restriction digestion products were separated on 8% acrylamide gels and the gels were dried under vacuum. The relative amounts of digestion product obtained with each restriction enzyme were quantified by exposing the dried gels to an imaging plate (Fuji) for 15 min to 1 h and scanning the imaging plate at a Fujix BAS 2000 Bioimaging Analyzer (Fuji Photo Film Co., Ltd., Tokyo, Japan).
Results

Identification of \textit{let}-2 As the Genetic Locus Encoding the \textit{\alpha}2(IV) Collagen Chain in \textit{C. elegans}

We have previously shown that the \textit{\alpha}1(IV) collagen chain of \textit{C. elegans} is encoded by the \textit{emb}-9 gene on chromosome III (Guo et al., 1991). In our search for the genetic locus of the \textit{\alpha}2(IV) collagen chain of \textit{C. elegans} we assumed that mutations in the \textit{\alpha}1(IV) and \textit{\alpha}2(IV) collagen genes should have similar phenotypes. Mutant alleles of \textit{emb}-9 display a temperature-sensitive, embryonic lethal phenotype. Lethality occurs late in the morphogenetic phase of embryogenesis, and is preceded by gross morphological abnormalities. The \textit{emb}-9 locus is highly mutable, in that random screens of the entire \textit{C. elegans} genome for temperature-sensitive embryonic lethal mutations produced five \textit{emb}-9 alleles, while most other genes were represented by only one or two alleles (Wood et al., 1980; Miwa et al., 1980; Cassada et al., 1981). High mutability has been observed in other collagen genes, including the human type I collagen gene (Kuivaniemi et al., 1991).

The \textit{C. elegans} \textit{\alpha}2(IV) gene has been mapped to the right arm of the X chromosome (Guo and Kramer, 1989). The \textit{let}-2 gene maps to this region and has properties similar to \textit{emb}-9. Embryonic lethality in \textit{let}-2 mutants occurs late in the morphogenetic phase of embryogenesis (Isnenghi et al. 1983). By Nomarski optics, arrested \textit{emb}-9 and \textit{let}-2 mutant embryos show very similar morphological abnormalities preceding lethality. The embryonic temperature-sensitive periods of \textit{let}-2 and \textit{emb}-9 are similar, occurring relatively late in embryogenesis, between the lima and pretzel stages (Isnenghi et al., 1983; Wood et al., 1980). Fig. 1 shows the similar morphological abnormalities observed in arrested \textit{let}-2 and \textit{emb}-9 mutant embryos raised at the nonpermissive temperature of 25°C. Elongation is arrested at the twofold stage, when embryos have elongated to about two times their original length. Subsequently, the arrested mutant embryos develop extensive constrictions and herniations (Fig. 1, A and B). In comparison, a wild-type (N2 strain) embryo at the twofold stage of elongation has a smooth appearance (Fig. 1 C). Like \textit{emb}-9, \textit{let}-2 is a highly mutable gene, as random screens of the entire \textit{C. elegans} genome for EMS-induced temperature-sensitive embryonic lethal mutations yielded four \textit{let}-2 alleles (Wood et al., 1980; Cassada et al., 1981).

Encouraged by these indications that \textit{let}-2 may be the gene for the \textit{\alpha}2(IV) collagen chain, we performed transgenic rescue experiments. When raised at the restrictive temperature of 25°C, 100% of \textit{let}-2(g25) and \textit{let}-2(g30) mutants die during embryogenesis. In the transgenic rescue experiments, the gonads of worms homozygous for the g25 and g30 alleles were injected with a phage clone containing the entire wild-type coding sequence of \textit{\alpha}2(IV) collagen, and the animals were raised on 25°C. Viable and fertile offspring were recovered from injected g25 and g30 animals. Several of these offspring produced transgenic lines that are continuously viable and fertile at 25°C, demonstrating that the phage DNA contains everything needed for rescue of the temperature-sensitive lethal phenotype of \textit{let}-2. These results provide convincing evidence that \textit{let}-2 is the \textit{\alpha}2(IV) collagen gene of \textit{C. elegans}. In addition, 17 \textit{let}-2 mutations have been shown to be single nucleotide alterations within the coding region of the \textit{\alpha}2(IV) collagen gene (Sibley, M., P. Graham, and J. Kramer, manuscript in preparation).

Structure of the \textit{C. elegans} \textit{\alpha}2(IV) Collagen Gene

The \textit{C. elegans} \textit{\alpha}2(IV) collagen gene is \textit{\sim}9-kb long and contains 20 exons (Fig. 2). Primer extension and direct RNA sequencing experiments confirm that the transcription start site is 510-bp upstream of the ATG start codon (Fig. 2). The \textit{C. elegans} \textit{\alpha}2(IV) collagen gene is comparable in size to the \textit{C. elegans} \textit{\alpha}1(IV) collagen gene (Guo et al., 1991), but is much smaller than the human type IV collagen genes, which are both \textit{\sim}100-kb long (Soinenen et al., 1989; Cutting et al., 1988). The deduced translation product of the \textit{C. elegans} \textit{\alpha}2(IV) gene is 1,758 amino acids long, somewhat longer than the human \textit{\alpha}2(IV) chain of 1,712 amino acids (Hostikka and Tryggvason, 1988). The coding region of the \textit{C. elegans} \textit{\alpha}2(IV) gene (Fig. 2) has a characteristic type IV collagen structure, consisting of a large (1,487 amino acids) central triple helical domain having 15 interruptions in the Gly-X-Y repeating sequence, and two smaller noncollagenous domains, one at the NH_{2}-terminus and one at the COOH-terminus (NC1). The gene has a potential AATAAA polyadenylation signal 405 bp from the end of the coding sequence.

The two \textit{C. elegans} type IV collagen genes have substantially different intron/exon structures. The \textit{\alpha}2(IV) gene has 20 exons, while the \textit{\alpha}1(IV) gene has only 12 (Guo et al., 1991). There is no conservation of exon size or intron/exon boundaries between the two \textit{C. elegans} type IV collagen genes. Despite their dissimilarity in intron/exon structure, the coding regions of the major domains (7S, triple helical, and NC1) are all nearly identical in length in the two genes. The two genes also have a considerable degree of amino acid sequence identity (50% overall). The human \textit{\alpha}1(IV) and \textit{\alpha}2(IV) collagen genes also have quite different gene structures yet highly conserved amino acid sequence (Hostikka and Tryggvason, 1987).

Amino Acid Sequence of \textit{C. elegans} \textit{\alpha}2(IV) Collagen

Fig. 3 shows the complete amino acid sequence of the \textit{C. elegans} \textit{\alpha}2(IV) collagen. The percentage of amino acid sequence identity between \textit{C. elegans} \textit{\alpha}2(IV) and other type IV chains is presented in Table I. The \textit{\alpha}2(IV) chain of the parasitic nematode \textit{Ascaris suum} (Pettitt and Kingston, 1991) has very high amino acid sequence identity with the \textit{C. elegans} \textit{\alpha}2(IV) chain in all domains, including Gly-X-Y interruption sequences. On the other hand, the human \textit{\alpha}1(IV) (Brazel et al., 1987) and \textit{\alpha}2(IV) (Hostikka and Tryggvason, 1988) chains have relatively low amino acid sequence identities with the \textit{C. elegans} \textit{\alpha}2(IV) chain, except in the COOH-terminal NC1 domain.

The primary transcript of the \textit{C. elegans} \textit{\alpha}2(IV) gene is alternatively spliced to produce two potential polypeptides, one containing exon 9 and one containing exon 10. The exon 10–containing version (residues 229 to 265) is shown in Fig. 3. The amino acid sequence of exon 9 is shown in Fig. 4. The alternative splicing of the \textit{\alpha}2(IV) transcript is described in detail below. A comparison of the \textit{C. elegans} \textit{\alpha}1(IV) and \textit{\alpha}2(IV) chains is of functional interest, since these two chains are expected to be in the same heterotrimer (\textit{\alpha}1: \textit{\alpha}2). In the \textit{C. elegans}}
Figure 1. DIC micrographs of *C. elegans* embryos grown at 25°C. (A) Arrested *emb-9(g23)* mutant embryo. (B) Arrested *let-2(b246)* mutant embryo. (C) N2 wild-type embryo at the twofold stage. Bar, 10 μm.
in the Gly-XY repeats are shown as solid vertical bars. The transcription start site determined by primer extension is indicated, as is a potential polyadenylation signal 405 bp from the end of the coding sequence. A nucleotide scale is shown in kilobases.

Table 1. Amino Acid Sequence Identity between Type IV Collagen Chains

C. elegans a2	human a2	C. elegans a1	human a1
7S domain	88%	53%	50%
NC1 domain	97%	72%	66%
GLY-X-Y	<10%	<10%	<10%
Entire sequence	74%	48%	50%

The amino acid sequences of the major domains of C. elegans a2(IV) collagen were compared with those of the C. elegans a1(IV), Ascaris suum a2(IV), and the human a1(IV) and a2(IV) chains. Alignments were performed using the PALIGN program (IntelliGenetics, Mountain View, CA). The number of identical amino acids is expressed as a percentage of the total number of amino acids compared in each domain. The human, C. elegans, and Ascaris sequences were taken from the sources referenced in the text.

Figure 2. Structure of the C. elegans a2(IV) collagen gene. Exons are indicated by boxes, introns by horizontal lines. The Gly-XY repeating triple helical domain is unshaded, the NH2-terminal noncollagenous domain is black, and the COOH-terminal NC1 domain is darkly shaded. 5'- and 3'-untranslated regions are lightly shaded. Interruptions predicted signal peptide is indicated. This predicted signal peptide of 26 residues would result in three amino acids remaining at the NH2 terminus preceding the most NH2 terminal of the conserved cysteines in the 7S domain.

Figure 3. The amino acid sequence of the C. elegans a2(IV) collagen chain encoded by let-2. Interruptions in Gly-XY repeating sequence are underlined. The sequence encoded by the alternatively spliced exon 10 is boxed. The predicted signal peptide is indicated. This predicted signal peptide of 26 residues would result in three amino acids remaining at the NH2 terminus preceding the most NH2 terminal of the conserved cysteines in the 7S domain.

Figure 4. Exon/intron structure of the exon 8 to 11 region of the C. elegans a2(IV) collagen gene. The complete sequence of exon 8 to 11 is shown. Numbering of nucleotides designates the transcription start site as +1. Exon sequences are capitalized; intron sequences are lower case. Interruptions in the Gly-XY sequence and the unusual splice donors of introns 9 and 10 are shown in bold type. Primers used in the RT-PCR are underlined. Restriction sites for BglII (exon 9) and DdeI (exon 10) are indicated. Note that for splicing to exon 11, exon 9 must use the unusual splice donor GCAAG.
or(IV) and α2(IV) chains, nearly all the interruptions in the Gly-X-Y sequence are in the same (or very close) positions, and those interruptions in the same position tend to be the same length. In both chains, most interruptions are located in the NH₂-terminal half of the Gly-X-Y repeat domain: 10/15 for the α2(IV) chain, and 12/17 for the α1(IV) chain. Despite the conservation of interruption location and length in the α1(IV) and α2(IV) collagen chains of *C. elegans*, the amino acid sequence identity between corresponding interruptions is very low (Table I).

Alternative Splicing of the *C. elegans* α2(IV) Collagen Transcript

The *C. elegans* α2(IV) gene has an unusual intron/exon structure in the region spanning exons 8 through 11 (Fig. 2). Fig. 4 shows the complete nucleotide sequence of this region of the gene. The putative exons 9 and 10 are separated by a putative intron that is only 30-bp long. This length is considered to be too short for a functional intron in *C. elegans* (Blumenthal and Thomas, 1988). The 5'-splice donor sequences of introns 9 and 10 are also unusual: the intron 9 donor has a CT in place of the consensus AG and the intron 10 donor has a C in place of the normally invariant T in the second position. Exons 9 and 10 appear to be duplicates, having the general structure (Gly-X-Y)₅₋₉ or 10 amino acid interruption-(Gly-X-Y)₄. The interruption is nine amino acids long in exon 9, and 10 amino acids long in exon 10. This unusual intron/exon structure indicated that these exons could be spliced in some unconventional manner.

To investigate the splicing of exons 9 and 10, we performed reverse transcriptase (RT)-PCR on RNA prepared from mixed populations of *C. elegans*. The primers used were located in exons 8 and 11, flanking the region of interest (Fig. 4). Fig. 5 shows the possible RT-PCR products that could be obtained using these primers. If the spliced transcript contained both exons 9 and 10, an RT-PCR product 312-bp long would be produced. On the other hand, RT-PCR products of 204 or 201 bp would be produced if either exon 9 or exon 10, respectively, were missing from the spliced transcript (Fig. 5). The resulting RT-PCR product was slightly above 200-bp long, large enough to contain either exon 9 or exon 10, but not both exons (Fig. 6, lane 2). To determine which exon(s) were present in the RT-PCR product, we used restriction sites unique to each exon, BglII in exon 9, and Ddel in exon 10. The RT-PCR product is digested to some extent by both enzymes (Fig. 6), indicating that both exons 9 and 10 are present in two separate transcripts in this mixed population RNA. To confirm these results, RT-PCR products were cloned and selected by hybridization to oligonucleotide probes specific for either exon 9 or 10. The sequence of the clones was as predicted in options B and C of Fig. 5, i.e., the clones hybridizing to the exon 9-specific probe contained exons 8, 9, and 11 (option B), while the clones hybridizing to the exon 10-specific probe contained exons 8, 10, and 11 (option C). As a result of this alternative splicing, the triple helical region of the *C. elegans* α2(IV) chain will be exactly the same size as the triple helical region of the *C. elegans* α1(IV) chain (1,487 amino acids) if exon 10 is used, or one amino acid shorter than that of the α1(IV) chain if exon 9 is used.

Developmental Regulation of Alternative Splicing of the *C. elegans* α2(IV) Collagen Transcript

The ratio of exon 9 to exon 10 in an RNA sample can be estimated by RT-PCR using the primers shown in Fig. 4. These primers flank exons 9 and 10, so both exons are amplified to...
together in the same PCR. The relative amounts of exon 9 and exon 10 in the RT-PCR product can then be determined by observing the extent of its digestion by the exon 9–specific enzyme BglII and the exon 10–specific enzyme DdeI. In an RNA sample prepared from a mixed population of animals of all developmental stages (Fig. 6), there are approximately one-half as many exon 9–containing transcripts as exon 10–containing transcripts.

To determine if the proportion of exon 9– to exon 10–containing transcripts changes during development, RNA was isolated from animals at different developmental stages and used as a template for RT-PCR. RNA was isolated from early-stage embryos (0–2-h postfertilization), later-stage embryos (6–8 h postfertilization), L1 larvae (<1-h posthatching, 3–4 h posthatching, and 7–8-h posthatching), L2, L3 and L4 larvae, and adults. Fig. 7 shows autoradiographs of the restriction digests of RT-PCR products from the various developmental stages. It is evident that there is a large change in the exon 9/exon 10 ratio during development in C. elegans. Exon 9–containing transcripts appear to predominate in RNA from embryos, while exon 10–containing transcripts predominate in adult RNA. RNA from larval stages appears to have an intermediate ratio of exon 9– to exon 10–containing transcripts. Fig. 8 shows the percentage of the RT-PCR product present in exon 9–containing transcripts at the different developmental stages. Relative levels of exon 9–containing transcripts are highest in embryonic RNA (~90% exon 9) and lowest in adult RNA (~10% exon 9). There is a steep decline in the ratio of exon 9 to exon 10 between the late stages of embryogenesis (84% exon 9) and the early part of the first larval (L1) stage (29% exon 9). This decline in the ratio of exon 9 to exon 10 continues more gradually throughout larval development to the adult stage (Fig. 8).

It is possible that adult tissues have no exon 9–containing transcripts, and that the 10% exon 9 detected in adult RNA is contributed by the embryos they contain. We investigated this possibility by extracting RNA from the temperature-sensitive fer-1 mutant strain, which at 25°C fails to produce embryos due to a sperm defect (Ward and Miwa, 1978). It would be expected that if embryos contribute substantially to the proportion of exon 9 observed in N2 adults, RNA extracted from fer-1 adults grown at 25°C would have an extremely low or undetectable proportion of exon 9–containing transcripts. However, fer-1 adults grown at 25°C have an exon 9/exon 10 ratio of ~19% (Fig. 8), as great or greater than that observed in N2 adults. This indicates that embryo RNA does not contribute significantly to the proportion of exon 9–containing transcripts detected in N2 adults, and, therefore, exon 9–containing transcripts are expressed in adult tissues.

Discussion

We have shown that the genetic locus encoding the C. elegans α2(IV) collagen chain is let-2 on the X chromosome. Mutations in let-2 and in the C. elegans α1(IV) collagen gene emb-9 cause similar phenotypes. Their most severe effect is embryonic lethality at the twofold stage of embryogenesis, with similar morphological abnormalities preceding lethality. This similarity in phenotype between let-2 and emb-9 is consistent with the interaction of their products in type IV collagen molecules and supramolecular aggregates in the basement membrane. A total of 24 mutant alleles of emb-9 and let-2 have been isolated (Wood et al., 1980; Miwa et al., 1980; Meneely and Herman, 1979; Meneely and Herman, 1981; Cassada et al., 1981), providing a foundation for genetic analysis of basement membrane function and assembly in C. elegans.

With the completion of the amino acid sequence of the C. elegans α2(IV) chain, the first non-mammalian α1/α2(IV) collagen pair can now be examined. At present, the only other α1/α2(IV) pairs that have been completely sequenced are those of human and mouse (Brazel et al., 1987; Hostikka and Tryggvason, 1988; Muthukumaran et al., 1989; Saus et al., 1980; Meneely and Herman, 1979; Meneely and Herman, 1981; Cassada et al., 1981), providing a foundation for genetic analysis of basement membrane function and assembly in C. elegans.
transcripts occurs between late embryogenesis and early in
greatest shift in the ratio of exon 9- to exon 10-containing
express predominantly exon 10-containing transcripts. The
nantly exon 9-containing transcripts while larvae and adults
region of rapid change in α_2(IV) collagen chains.
both nematode α_2(IV) chains, indicating that this may be a
linked loop that is thought to protrude out of the molecule
which is a 24-amino acid interruption having a disulfide-
gans
interruption #13 in the human and mouse α_2(IV) chain,
α_2(IV) chain. This interruption corresponds in position to
interruptions reveal regions of relatively rapid change in the
α_2(IV) chain. For example, interruption #10 in the $C. elegans$
chain has only 36% sequence identity with the $Ascaris$
α_2(IV) chain. This interruption corresponds in position to
α_2(IV) chains of species in the same phylum. These
interruptions reveal regions of relatively rapid change in the
α_2(IV) chain. For example, interruption #10 in the $C. elegans$
chain has only 36% sequence identity with the $Ascaris$
α_2(IV) chain. This interruption corresponds in position to
α_2(IV) chain, which is a 24-amino acid interruption having a disulfide-
linked loop that is thought to protrude out of the molecule
Brazel et al., 1988). Such a loop is completely absent from
both nematode α_2(IV) chains, indicating that this may be a
region of rapid change in α_2(IV) collagen chains.
We have shown that the $C. elegans$ α_2(IV) collagen mRNA
is alternatively spliced, and that embryos express predominant
ly exon 9- containing transcripts while larvae and adults
express predominantly exon 10-containing transcripts. The
greatest shift in the ratio of exon 9- to exon 10-containing
transcripts occurs between late embryogenesis and early in
the first larval (L1) stage, when the proportion of exon 9-containing transcripts drops from 84 to 29%. This shift in the exon 9/exon 10 ratio coincides with a dramatic shift in $C. elegans$ development, from a phase of rapid and extensive
morphological change (embryogenesis) to a phase that primarily entails symmetrical growth (early larval through
adult stages). During embryogenesis in $C. elegans$, the
embryo is transformed in only a 5 to 6 h period from a spherical
ball of cells to an elongated cylindrical worm, with an in-
crease in length of about fourfold. After this period of rapid
morphogenesis, the larval and adult stages of $C. elegans$
development are essentially growth stages, characterized by
metrical enlargement of tissues previously established
during embryogenesis. The morphological changes of
embryogenesis may require basement membranes with different
properties than those present in larvae or adults. In embryos,
modifications in type IV collagen cross-linking, glycosyla-
tion or in interactions with other basement membrane com-
ponents may be needed to allow rapid cell movement and
changes in cell shape. In the mouse, embryonic basement
membranes initially lack type IV collagen and have polymer-
ized laminin as their major structural component (Lievo et
al., 1980). Thus, mammals can also have embryonic base-
ment membranes that appear to be structurally and function-
ally quite different from adult basement membranes. During
the shift from embryonic to larval development in $C. eleg-
ans$, a more fluid or flexible form of α_2(IV) collagen (exon
9- containing) may be replaced by a more permanent form
(exon 10-containing).
It is possible that exons 9 and 10 contain different binding
or cross-linking sites that could change basement membrane
characteristics during development. When the EMBL pro-
tein data base was searched using the interruptions of exons
9 and 10, no significant homology to any known interruptions emerged. However, the interruption of exon 9 contains a
potential glycosaminoglycan addition site Ser-Gly (Harding-
ham and Fosang, 1992); this site is lacking in the exon 10
interruption. The sequence just NH2-terminal to the Ser-
Gly in exon 9 is Glu-Phe-Thr-Gly, which conforms to previ-
ous observations that Ser-Gly attachment sites for glycos-
aminoglycans are in close association with hydrophobic and
acidic residues (Doege et al., 1987; Noonan et al., 1988).

Figure 8. Determination of the relative amount of exon 9 in
exon 8–11 region RT-PCR products from development-
tally staged $C. elegans$ RNA. RNA isolations were gener-
ally performed twice for each developmental stage, and
these separately determined values are indicated by dots.
WT, wild-type.
Exon 10 contains a lysine residue in the central portion of its interruption which may provide an additional glycosylation site, or may be used in cross-linking.

Transcripts of the Ascaris suum α2(IV) collagen gene also appear to be alternatively spliced at exactly the same sites as C. elegans α2(IV) collagen (Pettitt and Kingston, 1991; I. B. Kingston, personal communication). An alignment of the amino acid sequences of exons 9 and 10 of these two nematodes is shown in Fig. 9. Exon 9, the embryonic exon in C. elegans, is more highly conserved between the two nematodes (81% amino acid identity) than is exon 10 (65% identity). The interruption sequence of exon 9, including the potential glycosaminoglycan attachment sequence, is 100% conserved between the two nematodes. In contrast, the interruption sequence of exon 10 is only 70% conserved. It is possible that the expression of the two exons is also developmentally regulated in Ascaris. The alternative splicing of exons 9 and 10 is yet another common feature between these highly similar nematode α2(IV) collagen chains; alternative splicing has not been observed in type IV collagen from any other organism. The fact that alternative splicing of α2(IV) collagen has been maintained between these two distantly related nematodes suggests that it may have an important role in basement membrane function.

The unusual splice donor sites seen in both exons 9 and 10 may be involved in the regulation of alternative splicing of the α2(IV) collagen transcript. It is remarkable that the same unusual GCAAG splice donor site seen at the 5′ end of intron 10 is found in the human α1(IV) collagen gene at the 5′ end of intron 34 (Soininen et al., 1989). Exon 34 is near the COOH-terminal end of the triple helix, about 700 amino acids away from the alternatively spliced region in the C. elegans α2(IV) chain. Although the locations of the GCAAG splice donors do not correspond between the human α1(IV) and the C. elegans α2(IV) chains, the occurrence of this unusual splice donor in two type IV collagen genes is, if nothing more, an extraordinary coincidence. Shapiro and Senapathy (1987) report that this sequence was seen only five times in 1,893 published non-immunoglobulin gene sequences. They propose that genes containing a GCAAG splice donor may have a role in regulating genetic pathways of cell growth and differentiation. Our observations are consistent with this proposal: we find that the transcript of a collagen gene containing this splice site is alternatively spliced in a developmentally regulated manner.

Our identification of let-2 as the genetic locus of the C. elegans α2(IV) collagen gene allows a systematic study of type IV collagen function in vivo. Through the efforts of several laboratories, 19 mutant alleles of let-2 have been isolated (Meneely and Herman, 1979; Meneely and Herman, 1981; Cassada et al., 1981). These 19 alleles display a broad range of phenotypes. The let-2 alleles with the mildest mutant phenotype are viable and fertile at 15°C and 20°C, and embryonic lethal at 25°C. There are several let-2 alleles having phenotypes of intermediate severity, including some alleles that are viable and fertile at 15°C and embryonic lethal at both 20°C and 25°C. Some let-2 alleles are only slightly fertile at 15°C, while the most severe alleles are embryonic lethal at 15°C, 20°C, and embryonic lethal at 25°C. The diversity of let-2 phenotypes contrasts with the similar phenotypes seen in mutants of emb-9, the gene encoding the C. elegans α1(IV) collagen chain. All five emb-9 alleles are wild-type at 15°C, larval lethal at 20°C, and embryonic lethal at 25°C. A broader spectrum of phenotypes may be revealed when additional alleles of emb-9 are isolated. We have identified the precise mutations in the α2(IV) collagen chain in seventeen let-2 alleles (M. Sibley, P. Graham, and J. Kramer, manuscript in preparation), and are currently examining the effects of these mutations on type IV collagen synthesis and assembly. Unfortunately, none of these mutations are within the alternatively spliced region of the gene. It will be necessary to generate specific mutations in the alternatively spliced exons to genetically analyze their function.

The sequence data reported here are available from EMBL/GenBank/DDJB under accession number Z22964.

This work was supported by a grant from the National Institutes of Health (HD27211 to J. M. K.). The fer-l strain BA1 was provided by the Caenorhabditis Genetic Center, which is supported by the NIH Division of Research Resources.

Received for publication 17 April 1993 and in revised form 16 June 1993.

References

Bektesh, S., K. Van Doren, and D. Hirsh. 1988. Presence of the Caenorhabditis elegans α2(IV) collagen spacer leader on different mRNAs and in different genera of nematodes. Genes Dev. 2:1277–1283.

Blumberg, B., A. J. MacKrell, and J. H. Fessler. 1988. Drosophila basement membrane procollagen α1(IV). II. Complete cDNA sequence, genomic structure, and general implications for supramolecular assemblies. J. Biol. Chem. 263:1832–1837.

Blumenthal, T., and J. Thomas. 1988. cis and trans splicing in C. elegans. Trends Genet. 4:305–308.

Brazel, D., I. Oberbaumer, H. Dieringer, W. Bable, R. W. Glanville, R. Blumenthal, T., and J. Thomas. 1988. Cis and trans splicing in C. elegans. Trends Genet. 4:305–308.

Brazel, D., R. Pollner, I. Oberbaumer, and K. Kuhn. 1988. Human basement membrane collagen (type IV). The amino acid sequence of the α2(IV) chain. Proc. Natl. Acad. Sci. USA. 85:9679–9682.

Charonis, A. S., and E. C. Tsilibary. 1990. Assembly of basement membrane collagen (type IV). The amino acid sequence of the α1(IV) chain and its comparison with the α1(IV) chain reveals deletions in the α1(IV) chain. Eur. J. Biochem. 180:529–536.

Doege, K., M. Sasaki, E. Horigan, J. R. Hassell, and Y. Yamada. 1987. Complete primary structure of the rat cartilage proteoglycan core protein deduced from cDNA clones. J. Biol. Chem. 262:17757–17767.

Sibley et al. Sequence and Splicing of C. elegans α2(IV) Collagen

263
the 5'-end of its gene. *J. Biol. Chem.* 268:5249–5254.

Furqahar, M. G. 1991. The glomerular basement membrane: A selective macromolecular filter. In Cell Biology of Extracellular Matrix. E. D. Hay, editor. Plenum Press, New York. 365–418.

Glanville, R. W. 1987. Type IV collagen. In Structure and function of collagen types. R. Mayne and R. E. Burgerson, editors. Academic Press, New York. 43–79.

Gunwar, S., J. Saus, M. E. Noelken, and B. G. Hudson. 1990. Glomerular basement membrane. Identification of a fourth chain, α4, of type IV collagen. *J. Biol. Chem.* 265:5466–5469.

Guo, X., and J. M. Kramer. 1989. The two Caenorhabditis elegans basement membrane (type IV) collagen genes are located on separate chromosomes. *J. Biol. Chem.* 264:17574–17582.

Gunwar, S., J. Saus, M. E. Noelken, and B. G. Hudson. 1990. Glomerular basement membrane. Identification of a fourth chain, α4, of type IV collagen. *J. Biol. Chem.* 265:5466–5469.

The Journal of Cell Biology, Volume 123, 1993 264