Abstract
The mesenteric lymph node cavitation syndrome consists of central necrosis of mesenteric lymph nodes and may occur with either celiac disease or a sprue-like intestinal disease that fails to respond to a gluten-free diet. Splenic hypofunction may also be present. The cause is not known but its development during the clinical course of celiac disease is usually indicative of a poor prognosis for the intestinal disorder, a potential for significant complications including sepsis and malignancy, particularly T-cell lymphoma, and significant mortality. Modern abdominal imaging modalities may permit earlier detection in celiac disease so that earlier diagnosis and improved understanding of its pathogenesis may result.

Mesenteric lymph node cavitation syndrome

Hugh James Freeman

OBSERVATION

INTRODUCTION
Over 50 years ago, mesenteric lymph node changes were described in celiac disease[^1-3]. At that time, definition of most changes in abdominal lymphoreticular structures relied largely on surgical observation or postmortem evaluation. In addition, altered abdominal lymphoreticular function was also evident, reflected in reduced splenic function[^4-6]. In recent years, refinements in abdominal imaging, i.e. ultrasound, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography, have led to improved and earlier documentation of lymphoreticular changes in celiac disease. Neoplastic (i.e. lymphoma) and non-neoplastic changes, including mesenteric lymph node cavitation, have been recorded.

MESENTERIC LYMPH NODE CAVITATION SYNDROME
Detailed descriptions of this entity appeared largely in the French literature[^7-9]. These reports described an unusual syndrome that seemed to complicate the clinical course of adult celiac disease. While typical small intestinal mucosal biopsy changes of celiac disease were present, the most intriguing observation was the definition of cavitated mesenteric lymph nodes. In addition, splenic atrophy or splenic hypofunction appeared to be present, raising the spectra of impaired immune function and a specific infectious cause.

Matuchansky and colleagues[^10], in a seminal report, noted details of 6 cases that included 4 females and 2 males. Within the jejunoileal mesenteric nodes, pseudocystic lesions were detected that consisted histologically of a large central cavity occupied by hyaline-type material surrounded by fibrous tissue and lymph node remnants. Evidence of mesenteric panniculitis or malignant lymphoma was not detected. Persistent diarrhea or childhood diarrhea along with malabsorption accompanied the small intestinal changes. An unequivocal mucosal response to a gluten-free diet was shown in some cases confirming that celiac disease was present. In others, a definitive response to a gluten-free diet could not be documented suggesting
that either a resistant form of celiac disease or sprue-like intestinal disease was present. Similar features have been noted with other complicating disorders (e.g. lymphoma) in both adult celiac disease or sprue-like intestinal disease. Microscopic examination of the lymph nodes in these cases usually shows some common features. Atrophic cavitary lymph nodes are usually present without evidence of infection or malignancy in the lymph nodes. Central acidophilic lipid-containing fluid is usually present surrounded by a rim of residual lymph node tissue that includes follicles, sinus and capsular components. The changes historically have appeared to be confined to the mesenteric lymph node chain.

HYPOSPLENISM

Another important, although not essential, component of this clinical syndrome appears to be splenic atrophy or splenic hypofunction. While splenic changes have been previously noted in other intestinal disorders (e.g. inflammatory bowel disease), mesenteric lymph node cavitary was seen only in those with pathological changes of celiac disease or sprue-like small intestinal disease, and not with inflammatory bowel disease. In early studies, splenic atrophy was often defined structurally during postmortem evaluation or abdominal surgery. More recently, these changes tended to be defined with modern imaging methods. Hyposplenism, indicative of reduced splenic function, appeared to reflect this structural change in the spleen, and depending on its mode of measurement, seemed to be quite common in celiac disease. The latter disorder may be suspected from a peripheral blood smear with Howell-Jolly bodies, monocytosis, lymphocytosis and increased platelet counts, and confirmed with pitted red blood cells counts or radiolabeled colloid scanning of the spleen. In celiac disease, for example, 76.2% of patients were found to have pitted red blood cells. These may also occur during the clinical course of many other disorders, apart from celiac disease or sprue-like intestinal disease.

These disorders include dermatitis herpetiformis, collagenous sprue, collagenous colitis and abdominal lymphoma, all disorders intimately linked to celiac disease. Hyposplenic patients have been reported to be at increased risk for bacterial sepsis, especially with encapsulated organisms such as pneumococcus, sometimes with a fatal outcome, so vaccination using the pneumococcal conjugate has been recommended. The risk of sepsis appears to be more significant if a diagnosis of celiac disease is established during adult years rather than in childhood. There may also be a higher risk for vascular, autoimmune and thrombotic disorders along with solid tumors. In celiac disease with associated autoimmune or malignant complications, IgM memory B-cells were reduced suggesting a possible mechanism leading to infections by encapsulated bacteria. Resolution of reduced splenic function appears to be possible, but only after improvement of small intestinal mucosal changes has occurred.

LONG-TERM NATURAL HISTORY AND COMPLICATIONS

Most early reports indicated that cavitary of mesenteric lymph nodes was associated with a very poor prognosis with a mortality of about 50%. Nevertheless, dramatic improvement has also been recorded with complete normalization of the mesenteric lymph nodes.

In celiac disease with associated dermatitis herpetiformis, recurrent diarrhea, steatorrhea and protein-losing enteropathy were defined followed later by hyposplenism, mesenteric lymph node cavitary and malignant lymphoma of the small intestine. In another case of mesenteric lymph node cavitary, lymphoma also developed with a sprue-like intestinal lesion that did not respond to a gluten-free diet. Cavitation of mesenteric lymph nodes may also occur without celiac or other small bowel disease.

Bacterial infections may be associated with necrosis of lymph nodes (e.g. mycobacteria, Viridinis) and lymph node cavitary has been reported with Whipple’s disease. Necrotizing lymphadenitis may also occur with systemic lupus erythematosus, and this appears to be pathologically similar to Kikuchi-Fujimoto disease, a self-limited form reported in young Asian adults. In celiac disease, however, malignant lymphoma may also be the cause of necrotic mesenteric lymph node changes. In one report, these necrotic lesions were seen in the liver and spleen due to hepatosplenic type lymphoma, a rare type of peripheral T-cell lymphoma with T-cell receptor rearrangement.

In a more recent case report, progressive encephalopathy and focal lesions of the cerebellum and brainstem were associated with abnormal T-cell clones in a sprue-like disorder with mesenteric and mediastinal lymph node cavitation. Finally, a case of necrotizing hepatitis with celiac disease and mesenteric lymph node cavitary was recently described, but lymphoma was not detected.

CONCLUSION

This syndrome is an intriguing entity or group of entities frequently associated with celiac disease or sprue-like intestinal disease consisting of cavitated mesenteric lymph nodes and, often, splenic hypofunction. Cavitared mesenteric nodes should be differentiated from other causes of mesenteric cystic lesions, including lymphatic cysts or cystic lymphangioma. These have also been recorded with celiac disease and hyposplenism. Although diagnosis is usually confirmed by pathological evaluation of mesenteric lymph nodes, imaging studies may be very helpful. Ultrasound may show anechoic cysts up to 8 cm in size. CT may reveal low attenuation (fluid or fat) lymphadenopathy suggesting celiac disease, Whipple’s disease, infections such as tuberculosis, lymphoma or necrotic metastases, including germ cell tumors. Occasionally, fluid-fat levels are appreciated in the lymph node, reported only in celiac disease. MRI may be useful as the fluid and fat layer may be appreciated in T2- and T1-weighted axial images, even if fluid-fat levels are not seen on CT. In some cases, image-guided fine-needle aspiration of the...
cyst may be performed[30]. The cause of cavitation syn-
drome is usually not defined. The mesenteric lymph node
cavitation changes have been hypothesized to represent
excess antigen exposure via damaged small bowel mucosa
causing lymphoid cell depletion in the lymph nodes and
spleen. Alternatively, changes may reflect necrosis in the
mesenteric nodes triggered by localized immune-mediated
complement activation and intravascular coagulation[30].
Specific infections and malignant lymphoma may compi-
late its natural history and clinical course and contribute
to its poor prognosis.

REFERENCES
1 Pauley JW. Observation on the aetiology of idiopathic ste-
atorrhoea, jejunal and lymph-node biopsies. Br Med J 1954; 2:
1318-1321
2 Faber M, Meulengracht E, Vimpert B. A rapidly progressing
sprue-like syndrome with hitherto undescibed pathological
changes. Acta Med Scand Suppl 1952; 266: 381-392
3 Gallas P, Dustin P Jr. [Anatomoclinical study of a case of
idiopathic sprue. Significance of intestinal and mesenteric
lymph node lesions.] Acta Gastroenterol Belg 1960; 23: 170-187
4 Marsh GW, Stewart JS. Splenic function in adult coeliac
disease. Br J Haematol 1970; 19: 445-457
5 Ferguson A, Hutton MM, Maxwell JD, Murray D. Adult coe-
celiac disease in hypoplastic patients. Lancet 1970; 1: 163-164
6 O'Grady JG, Stevens FM, Harding B, O'Gorman TA, Mc-
Nicholl B, McCarthy CF. Hypoplasia and gluten-sensitive
enteropathy. Natural history, incidence, and relationship
to diet and small bowel morphology. Gastroentrology 1984; 87:
1526-1531
7 Colin R, Hemet J, Geffroy Y. [Primary villous atrophy. Mes-
enteric lymph node cavitation. Splenic atrophy. Apropos of a
case.] Arch Fr Mal Dig App Dig 1972; 61: 451-462
8 Marche B, Bocquet L, Mignon M, Pree JL. [Malabsorption
syndrome with mesenteric lymph node cavitation and splen-
ic atrophy. Apropos of a new anatomoclinical case.] Sem Hop
1974; 50: 879-886
9 Hoang C, Galian A, Maitre F, Degois T, Celerier M, Modigli-
ani R. [Total villous atrophy, mesenteric lymph-node cavita-
tion, splenic atrophy. An unusual form of celiac disease in
adults, apropos of a new case.] Ann Pathol 1983; 3: 251-256
10 Matuchansky C, Colin R, Hemet J, Touchard G, Babin P,
Eugene C, Berge A, Zeitoun P, Barboteau MA. Cavitation of the
mesenteric lymph nodes, splenic atrophy, and a flat small
intestinal mucosa. Report of six cases. Gastroenterology 1984;
87: 606-614
11 Freeman HJ. Free perforation due to intestinal lymphoma in
biopsy-defined or suspected celiac disease. J Clin Gastroen-
terol 2003; 37: 299-302
12 Palmer KR, Sherriff SB, Holdsworth CD, Ryan FP. Further
experience of hypoplasia in inflammatory bowel disease.
Q J Med 1981; 50: 463-471
13 Di Sabatino A, Rosado MM, Cazzola P, Riboni R, Biagi F,
Carsotti R, Corazza GR. Splenic hypofunction and the spec-
trum of autoimmune and malignant complications in celiac
disease. Clin Gastroenterol Hepatol 2006; 4: 179-186
14 William BM, Corazza GR. Hypoplasia: a comprehensive
review. Part I: basic concepts and causes. Hematolology 2007;
12: 1-13
15 William BM, Thavani N, Sae-Tia S, Corazza GR. Hypoplas-
ism: a comprehensive review. Part II: clinical manifestations,
diagnosis, and management. Hematology 2007; 12: 89-98
16 Corazza GR, Bullen AW, Hall R, Robinson PJ, Losowsky
MS. Simple method of assessing splenic function in coeliac
disease. Clin Sci (Lond) 1981; 60: 109-113
17 Freeman HJ. Hypoplasia, antiendomysial antibodies and
lymphocytic colitis in collagenous sprue. Can J Gastroenterol
1999; 13: 347-350
18 Freeman HJ. Functional asplenia and microscopic (collag-
enous) colitis. Can J Gastroenterol 1996; 10: 443-446
19 Freeman HJ, Weinstein WM, Shnitka TK, Piercey JR, Wensel
RH. Primary abdominal lymphoma. Presenting manifesta-
tion of celiac sprue or complicating dermatitis herpetiformis.
Am J Med 1977; 63: 585-594
20 Weinstein WM, Saunders DR, Trittig GN, Rubin CE. Col-
genous sprue—an unrecognized type of malabsorbtion. N
Engl J Med 1970; 283: 1297-1301
21 Freeman HJ. Collagenous colitis as the presenting feature
of biopsy-defined celiac disease. J Clin Gastroenterol 2004; 38:
664-668
22 O'Donoghue DJ. Fatal pneumococcal septicaemia in coeliac
disease. Postgrad Med J 1986; 62: 229-230
23 Ludvigsson JF, Olén O, Bell M, Ekborn A, Montgomery SM.
Coeliac disease and risk of sepsis. Gut 2008; 57: 1074-1080
24 Howat AJ, McPhie JL, Smith DA, Aqel NM, Taylor AK,
Cairns SA, Thomas WE, Underwood JC. Cavitation of mesen-
teric lymph nodes: a rare complication of coeliac disease,
associated with a poor outcome. Histopathology 1995; 27:
349-354
25 Arotarena R, Hammel P, Terris B, Guth A, Bernades P,
Rusznievski P. [Regression of mesenteric lymph node cavi-
tation syndrome complicating celiac disease after a gluten
free diet] Gastroenterol Clin Biol 2000; 24: 579-581
26 Bardella MT, Trovato C, Quatrini M, Conte D. Mesenteric
lymph node cavitation: a rare hallmark of celiac disease.
Scand J Gastroenterol 1999; 34: 1257-1259
27 Freeman HJ, Chiu BK. Small bowel malignant lymphoma
complicating celiac sprue and the mesenteric lymph node
cavitation syndrome. Gastroenterology 1986; 90: 2008-2012
28 Bulger K, Griffin M, O'Brien M, Crowe J. Lymphoma in the
mesenteric lymph node cavitation syndrome. Gastroenterol-
yogy 1988; 94: 553
29 Tellisi N, Al-Omishy H. Cavitation of mesenteric lymph
nodes without celiac disease. J Clin Gastroenterol 2004; 25:
1277
30 de Wazieres B, Fest T, Litzler JF, Simon G, Rohmer P,
Dupa
JL. [Mesenteric lymph node cavitations in Whipple's
disease. Apropos of a case.] J Radiol 1993; 74: 661-663
31 Eiser MD, Amory J, Mullaney B, Tierney L Jr, Browner WS.
Necrotizing lymphadenitis associated with systemic lupus
erythematosus. Semin Arthritis Rheum 1996; 26: 477-482
32 Hutchinson CB, Wang E. Kikuchi-Fujimoto disease. Arch
Pathol Lab Med 2010; 134: 289-293
33 Freeman HJ. Fulminant liver failure with necrotizing foci in
the liver, spleen and lymph nodes in celiac disease due to
malignant lymphoma. Can J Gastroenterol 1996; 10: 225-229
34 Keller CE, Gamboa ET, Hays AP, Karlitz J, Lowe G, Green
PH, Bhagat G. Fatal CNS vasculopathy in a patient with re-
fractory celiac disease and lymph node cavitation. Virchows
Arch 2006; 459: 209-213
35 Cornelis T, Hiele M, Vermeire S, Libbrecht L, Verslype C.
A unique combination of celiac disease, mesenteric lymph
cavity, splenic cavitation and necrotizing hepatitis. Acta
Gastroenterol Belg 2008; 71: 267-270
36 Miele L, Pierconti F, Forgione A, Vero V, Cammarota G,
Molini F, Masselli G, Capristo E, Martinelli M, Larocca LM,
Civello IM, Gashbarrini G, Grieco A. Cystic lymphangiomata
of the mesentery and hypoplasia in celiac disease. Eur J
Gastroenterol Hepatol 2007; 19: 1026-1030
37 Reddy D, Salomon C, Demos TC, Cesar E. Mesenteric lymph
node cavitation in celiac disease. AJR Am J Roentgenol 2002;
178: 247
38 Huppert BJ, Farrell MA, Kawashima A, Murray JA. Diagno-
sis of cavitating mesenteric lymph node syndrome in celiac
disease using MRI. AJR Am J Roentgenol 2004; 183:
1375-1377
S-Editor Wang JL L-Editor Cant MR E-Editor Lin YP

Freeman HJ. Lymph node cavitation