Measurement of the 4ℓ Cross Section at the Z Resonance and Determination of the Branching Fraction of $Z \to 4\ell$ in pp Collisions at $\sqrt{s} = 7$ and 8 TeV with ATLAS

The ATLAS Collaboration

Abstract

Measurements of four-lepton (4ℓ, $\ell = e, \mu$) production cross sections at the Z resonance in pp collisions at the LHC with the ATLAS detector are presented. For dilepton and four-lepton invariant mass region $m_{\ell^+\ell^-} > 5$ GeV and $80 < m_{4\ell} < 100$ GeV, the measured cross sections are 76 ± 18 (stat) ± 4 (syst) ± 1.4 (lumi) fb and 107 ± 9 (stat) ± 4 (syst) ± 3.0 (lumi) fb at $\sqrt{s} = 7$ and 8 TeV, respectively. By subtracting the non-resonant 4ℓ production contributions and normalizing with $Z \to \mu^+\mu^-$ events, the branching fraction for the Z boson decay to 4ℓ is determined to be $(3.20 \pm 0.25$ (stat) ± 0.13 (syst)) $\times 10^{-6}$, consistent with the Standard Model prediction.
Measurement of the 4\ell Cross Section at the Z Resonance and Determination of the Branching Fraction of Z \to 4\ell in pp Collisions at \sqrt{s} = 7 and 8 TeV with ATLAS

G. Aad et al.
(ATLAS Collaboration)

Measurements of four-lepton (4\ell, \ell = e, \mu) production cross sections at the Z resonance in pp collisions at the LHC with the ATLAS detector are presented. For dilepton and four-lepton invariant mass region m_{\ell^+\ell^-} > 5 GeV and 80 < m_{4\ell} < 100 GeV, the measured cross sections are 76 \pm 18 (stat) \pm 4 (syst) \pm 1.4 (lumi) fb and 107 \pm 9 (stat) \pm 4 (syst) \pm 3.0 (lumi) fb at \sqrt{s} = 7 and 8 TeV, respectively. By subtracting the non-resonant 4\ell production contributions and normalizing with Z \to \mu^+\mu^- events, the branching fraction for the Z boson decay to 4\ell is determined to be (3.20 \pm 0.25 (stat) \pm 0.13 (syst)) \times 10^{-6}, consistent with the Standard Model prediction.

PACS numbers: 13.38.Dg

This Letter presents measurements of the cross sections for the inclusive production of four leptons (4\ell, \ell = e, \mu) at the Z resonance in proton-proton collisions at \sqrt{s} = 7 and 8 TeV using data recorded by the ATLAS detector [1] at the LHC [2] in 2011 and 2012. In the Standard Model (SM), 4\ell production in the Z resonance region occurs dominantly via an s-channel diagram such as shown in Fig. 1(a) where the Z boson decay to charged leptons includes the production of an additional lepton pair from the internal conversion of a virtual Z or \gamma. A small fraction of 4\ell events is also produced in a t-channel process such as shown in Fig. 1(b). The process gg \to Z(\ast)Z(\ast) \to 4\ell accounts for only about 10^{-3} of the total 4\ell event rate around the Z resonance [3]. A resonance peak around the Z mass in the 4\ell invariant mass spectrum is observed along with the nearby peak from the Higgs boson decay H \to 4\ell [4, 5]. A measurement of the 4\ell production cross section at the Z resonance provides a test of the SM and a cross-check of the detector response to the 4\ell final state from Higgs decays.

FIG. 1. Examples of (a) s-channel and (b) t-channel Feynman diagrams for 4\ell production in pp collisions.

Since the interference between the resonant and non-resonant (t-channel and gg) production mechanisms is expected to be very small around the Z resonance, the branching fraction of the rare decay Z \to 4\ell can be determined by subtracting the expected non-resonant 4\ell contributions from the measured 4\ell rate. For simplicity, inclusive 4\ell production around the Z resonance, including the non-resonant contributions, is denoted as Z \to 4\ell from here on, except that the branching fraction \Gamma_{Z \to 4\ell}/\Gamma_Z refers to the s-channel contribution alone. The CMS Collaboration has observed the Z \to 4\ell resonance in \sqrt{s} = 7 TeV data and determined a branching fraction, summed over the 4e, 4\mu and 2e2\mu final states, of \Gamma_{Z \to 4\ell}/\Gamma_Z = (4.0^{+0.9}_{-0.5} (stat) \pm 0.2 (syst)) \times 10^{-6}, where 80 < m_{4\ell} < 100 GeV and m_{4\ell} > 4 GeV for all pairs of leptons (regardless of lepton flavor or charge) [6]. The results presented here include the first cross section measurement of the 4\ell production at the Z resonance at \sqrt{s} = 8 TeV, and a determination of \Gamma_{Z \to 4\ell}/\Gamma_Z with improved statistical precision.

The inclusive 4\ell production cross section at the Z resonance is measured separately for the 4e, 4\mu and 2e2\mu final states for each of the \sqrt{s} = 7 and 8 TeV datasets in a fiducial region (defined below) corresponding closely to the experimental acceptance. The measured fiducial cross sections are then extrapolated to a final phase-space region defined by the dilepton and four-lepton invariant mass requirements m_{\ell^+\ell^-} > 5 GeV and 80 < m_{4\ell} < 100 GeV, where \ell^+\ell^- denotes all same-flavor lepton pairs with opposite charge. The branching fraction \Gamma_{Z \to 4\ell}/\Gamma_Z is determined by normalizing the resonant 4\ell production rate to the Z \to \mu^+\mu^- production rate measured in the same dataset.

The ATLAS detector has a cylindrical geometry [7] and consists of an inner tracking detector surrounded by a 2 T superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer with a toroidal magnetic field. The inner detector (ID) provides precision tracking for charged particles for |\eta| < 2.5. It consists of silicon pixel and strip detectors surrounded by a straw tube tracker that also provides transition radiation measurements for electron identification. The calorimeter system covers the pseudorapidity range |\eta| < 4.9. For |\eta| < 2.5, the liquid-argon electromagnetic calorimeter is finely segmented and plays an important role in electron identification. The muon spectrometer includes fast-
trigger chambers ($|\eta| < 2.4$) and high-precision tracking chambers covering $|\eta| < 2.7$.

The datasets for this analysis are recorded using single-lepton and dilepton triggers. The transverse momentum (p_T) thresholds of these triggers vary from 20 to 24 GeV for the single-lepton triggers and from 8 to 13 GeV for the dilepton triggers, depending on lepton flavor and data-taking period. The overall trigger efficiency for $Z \rightarrow 4\ell$ events ranges from 94 to 99%.

After removing the short data-taking periods having problems that affect the lepton reconstruction, the total integrated luminosity used in the analysis is 4.5 fb$^{-1}$ at 7 TeV and 20.3 fb$^{-1}$ at 8 TeV. The overall uncertainty on the integrated luminosity is 1.8% [8] and 2.8% [9] for the $\sqrt{s} = 7$ and 8 TeV datasets, respectively.

The POWHEG Monte Carlo (MC) program [10–12], used to calculate the signal cross sections, includes perturbative QCD corrections to next-to-leading order. The calculation also includes the interference terms between the s-channel and the t-channel as well as the interference terms between the Z and the γ^* diagrams. The CT10 [13] set of parton distribution functions (PDFs) and QCD renormalization and factorization scales of $\mu_R, \mu_F = m_{4\ell}$ are used. In the $m_{t+\ell^-} > 5$ GeV and 80 < $m_{4\ell}$ < 100 GeV phase space, the production cross sections calculated by POWHEG are 53.4 ± 1.2 fb (45.8 ± 1.1 fb) for the sum of the 4e and 4μ final states, and 51.5 ± 1.2 fb (44.2 ± 1.1 fb) for the 2e2μ final state at 8 TeV (7 TeV). The cross sections for 4e and 4μ are larger than for 2e2μ due to the interference between the two same-flavor lepton pairs. The expected fraction of 4ℓ events produced via the t-channel process, f_t, is (3.35 ± 0.02)% and (3.90 ± 0.02)% for same-flavor (4e, 4μ) and mixed-flavor (2e2μ) final states, respectively, for both 7 and 8 TeV. The $gg \rightarrow ZZ \rightarrow 4\ell$ process is modeled by GG2ZZ [14], and the 4ℓ event fraction from this process is calculated to be around 0.1%. The overall non-resonant fraction (f_m) from the t-channel and gg contributions combined is (3.45 ± 0.02)% and (4.00 ± 0.02)% for the same-flavor and mixed-flavor final states, respectively. To generate MC events with a simulation of the detector to determine the signal acceptance, POWHEG is interfaced to PYTHIA6 [15] or PYTHIA8 [16] for showering and hadronization and to PHOTOS [17] for radiated photons from charged leptons.

The MC generators used to simulate the reducible background contributions are MC@NLO [18] (to model tt and single-top production) and ALPGEN [19] (to model Z boson production in association with jets, referred to as $Z+\text{jets}$). These generators are interfaced to HERWIG [20] and JIMMY [21] for parton showering and underlying-event simulations. The diboson background processes WZ and $Z\gamma$, and $Z^\ast Z^\ast \rightarrow 4\ell$ decays involving $\tau \rightarrow e/\mu + 2\nu$, are modeled by POWHEG (interfaced to PYTHIA for parton showering) and SHERPA [22].

The detector response simulation [23] is based on the GEANT4 program [24]. Additional inelastic pp interactions (referred to as pile-up) are included in the simulation, and events are re-weighted to reproduce the observed distribution of the average number of collisions per bunch-crossing in the data.

The $Z \rightarrow 4\ell$ event selection closely follows the $H \rightarrow ZZ^\ast \rightarrow 4\ell$ analysis [25] with muon p_T and dilepton invariant mass requirements loosened to increase the acceptance for the $Z \rightarrow 4\ell$ process.

Muons are identified by tracks (or track segments) reconstructed in the muon spectrometer and are matched to tracks reconstructed in the ID. The muon momentum is calculated by combining the information from the two subsystems, correcting for the energy lost in the calorimeters. Additionally, one muon in each event is allowed to be a stand-alone muon or a calorimeter-tagged muon, where the stand-alone muon is identified by only a muon spectrometer track in 2.5 < $|\eta|$ < 2.7, and the calorimeter-tagged muon is identified by an ID track with $p_T > 15$ GeV associated with a compatible calorimeter energy deposit in $|\eta| < 0.1$. All muon candidates are required to have $p_T > 4$ GeV and $|\eta| < 2.7$.

Electrons are reconstructed from energy deposits in the electromagnetic calorimeter matched to a track in the ID [26]. Tracks associated with electromagnetic clusters are fitted using a Gaussian Sum Filter [27], which allows bremsstrahlung energy losses to be taken into account. For $\sqrt{s} = 8$ TeV data, improved electron discrimination from jets is obtained using a likelihood function formed from parameters characterizing the shower shape and track association, resulting in a reduction of the electron misidentification rate by more than a factor of two compared to that at 7 TeV. Electron candidates are required to have $p_T > 7$ GeV and $|\eta| < 2.47$.

Collision events are selected by requiring at least one reconstructed vertex with at least three charged particle tracks with $p_T > 0.4$ GeV. If more than one vertex satisfies the selection requirement, the primary vertex is chosen as the one with the highest $\sum p_T^2$, summed over all tracks associated with the vertex.

In order to reject electrons and muons from jets, only isolated leptons are selected, requiring the scalar sum of the transverse momenta, $\sum p_T$, of other tracks inside a cone size of $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.2$ around the leptons to be less than 15% of the lepton p_T. In addition, the $\sum E_T$ deposited in calorimeter cells inside a cone size of $\Delta R = 0.2$ around the lepton direction, excluding the transverse energy due to the lepton and corrected for the expected pile-up contribution, is required to be less than 30% of the lepton p_T, reduced to 20% for electrons in the 8 TeV dataset and 15% for stand-alone muons. To further reject leptons from heavy-flavor jets, the impact parameter relative to the primary vertex is required to be less than 3.5 (6.0) standard deviations for all muons (electrons), where the looser electron requirement allows for tails in the electron impact parameter distribution.
due to bremsstrahlung in the ID.

Candidate quadruplets are formed by selecting two opposite-sign, same-flavor dilepton pairs in an event. The four lepton pairs of the quadruplets are required to be well separated, $\Delta R > 0.1$ for same-flavor lepton pairs and $\Delta R > 0.2$ for $e\mu$ pairs. The two leading leptons must have $p_T > 20$ GeV and $p_T > 15$ GeV. The third lepton must have $p_T > 10$ (8) GeV if it is an electron (muon). The dilepton pair with greatest invariant mass (denoted m_{12}) is called the leading lepton pair, while the sub-leading lepton pair is chosen to have the largest invariant mass (denoted m_{34}) among the remaining possible pairs. The dilepton masses must satisfy $m_{12} > 20$ GeV and $m_{34} > 5$ GeV. In the $4e$ and 4μ channels all same-flavor, opposite-sign lepton pairs are required to have $m_{\ell+\ell^-} > 5$ GeV. This helps to reject events containing $J/\psi \rightarrow \ell^+\ell^-$ decays. The invariant mass of the lepton quadruplet is restricted to $80 < m_{4\ell} < 100$ GeV. A total of 21 and 151 $Z \rightarrow 4\ell$ candidate events are selected in the 7 and 8 TeV datasets, respectively. The distributions of m_{12}, m_{34}, and $m_{4\ell}$ are shown in Fig. 2. The number of events observed in each channel is shown in Table I. The 2$e2\mu$ channel is divided into $ee + \mu\mu$ and $\mu\mu + ee$ channels indicating the lepton flavors of the leading and sub-leading lepton pairs.

The overall signal selection efficiency is the product of efficiency and acceptance factors, $C_{4\ell}$ and $A_{4\ell}$, respectively. The efficiency factor $C_{4\ell}$ is the ratio of the number of $Z \rightarrow 4\ell$ events passing the reconstructed event selections to the number in the fiducial region, and is determined using the signal MC samples after the detector simulation. The fiducial region, defined at the MC generator level using the lepton four-momenta, requires $p_T > 20, 15, 10(8), 7(4)$ GeV and $|\eta| < 2.5(2.7)$ of the p_T-ordered $e(\mu)$, $\Delta R(\ell, \ell') > 0.1(0.2)$ for all same(different)-flavor lepton pairs, $m_{\ell+\ell^-} > 20$ GeV for at least one lepton pair, $m_{\ell+\ell^-} > 5$ GeV for all same-flavor lepton pairs, and $80 < m_{4\ell} < 100$ GeV. The four-momenta of all final state photons within $\Delta R = 0.1$ of a lepton are summed into the four-momentum of that lepton. The acceptance factor $A_{4\ell}$ is the fraction of $Z \rightarrow 4\ell$ events in the final phase space which falls into the fiducial region. The $C_{4\ell}$ uncertainty is mostly experimental and the $A_{4\ell}$ uncertainty is entirely theoretical. The $A_{4\ell}$ and $C_{4\ell}$ values are listed in Table I for each channel and dataset. The $C_{4\ell}$ values for 8 TeV are larger than for 7 TeV due to a variety of factors, including electron identification improvements with better bremsstrahlung treatment and additional muon detector coverage.

The MC lepton identification and trigger efficiencies are corrected based on studies performed in data control regions. The energy and momentum scales and resolutions of the MC events are calibrated to reproduce data from $Z \rightarrow \ell^+\ell^-$ and $J/\psi \rightarrow \ell^+\ell^-$ decays. The uncertainties on the $Z \rightarrow 4\ell$ signal detection efficiency are determined by varying the nominal calibrations (including lepton energy and momentum resolutions and scales, and the trigger, reconstruction and identification efficiencies) in the MC samples by one standard deviation. For the 8 TeV (7 TeV) analysis, the relative uncertainties on the $C_{4\ell}$ factors are 2.7% (2.7%), 3.7% (4.9%), 6.2% (9.8%), and 9.4% (14.9%) for $\mu\mu + \mu\mu$, $ee + \mu\mu$, $\mu\mu + ee$, and $ee + ee$, respectively, where the labeling $\ell\ell' + \ell\ell''$ indicates the leading and sub-leading lepton pairs. The major uncertainty contributions come from the lepton reconstruction and identification efficiencies.

The relative uncertainties on the $A_{4\ell}$ factors, evaluated using POWHEG MC samples, range from 1.3% to 1.7% depending on channel. The theoretical uncertainties reflect uncertainties from the choice of QCD scales and PDFs. The scales are varied independently from 0.5 to 2.0 times the nominal μ_F, $\mu_R = m_{4\ell}$. The PDF uncertainties are estimated by taking the sum in quadrature of the deviations of $A_{4\ell}$ for each PDF error set (52 CT10 eigenvectors varied by one standard deviation) and for an alternative PDF set, MSTW2008 [28], with respect to the nominal one.

The overall background in the selected 4ℓ event sample is estimated to be below 1%, as shown in Table I. The background contributions from diboson production are estimated, using MC simulations, to be 0.06 ± 0.01 and 0.49 ± 0.04 events in the 7 and 8 TeV datasets, respectively. Background contributions from Z+jets and top production processes are estimated from data. Such background events may contain two isolated leptons from Z decays or from W decays in top events, together with additional activity such as heavy-flavor jets or misidentified components of jets yielding reconstructed leptons. These backgrounds are estimated from data using a background-enriched control sample of $\ell\ell j j \ell$ events, selected with the standard signal requirements except that lepton-like jets, j_ℓ, are selected in place of two of the signal leptons. Electron-like jets, j_e, in the $\ell\ell j j \ell$ control sample are obtained from electromagnetic clusters matched to tracks in the ID that do not satisfy the identification criteria or isolation requirements. Muon-like jets, j_μ, are defined as muon candidates that fail the requirements on isolation. The reducible background in the signal sample is estimated by scaling each event in the $\ell\ell j j \ell$ control sample by $f_1 \times f_2$, where the factor f_i ($i = 1, 2$) for each of the two lepton-like jets depends on lepton flavor and p_T. The factor f is the ratio of the probability for a jet to satisfy the signal lepton selection criteria to the probability for the jet to satisfy the lepton-like jet criteria, and is obtained from independent jet-enriched data samples dominated by Z+jets or $t\bar{t}$ events. The uncertainties on f are determined from the variations of f in data samples obtained with alternative lepton-like jet selections and different jet compositions. The estimated background from Z+jets and top processes ranges from 0.05 to 0.20 events for the different channels and datasets; for all 4ℓ channels combined it is...
FIG. 2. Invariant mass distributions of (a) the leading lepton pair, m_{12}, (b) the subleading lepton pair, m_{34}, and (c) the four-lepton system, $m_{4\ell}$. The MC simulation expectation for a combination of all channels is compared to $\sqrt{s} = 7$ and 8 TeV data. All selections are applied except in (c) there is no $m_{4\ell}$ requirement. The background contributes < 1% of the total expected signal (invisible in the plots).

TABLE I. Summary of the observed ($N_{4\ell}^{\text{obs}}$) and expected ($N_{4\ell}^{\text{exp}}$) number of selected $Z \rightarrow 4\ell$ candidate events, and the estimated number of background events ($N_{4\ell}^{\text{bkg}}$) in each 4ℓ channel for $\sqrt{s} = 7$ and 8 TeV. The associated uncertainties are statistical and systematic combined. The central values of the acceptance and efficiency factors ($A_{4\ell}$ and $C_{4\ell}$), the measured fiducial cross sections ($\sigma_{4\ell}^{\text{fid}}$), and the total cross sections for $m_{4\ell} > 5\,	ext{GeV}$, $80 < m_{4\ell} < 100\,	ext{GeV}$ ($\sigma_{4\ell}$) are also presented. The fiducial regions are defined in the text and are different for each channel. The $\sigma_{4\ell}$ are given for same-flavor ($4e$ and 4μ), different-flavor ($2e2\mu$), and all channels combined. The uncertainties on $\sigma_{4\ell}^{\text{fid}}$ and $\sigma_{4\ell}$ are the statistical and systematic uncertainties, and the uncertainty due to the luminosity measurement.

\sqrt{s}	4ℓ state	$N_{4\ell}^{\text{obs}}$	$N_{4\ell}^{\text{exp}}$	$N_{4\ell}^{\text{bkg}}$	$C_{4\ell}$	$A_{4\ell}$	$\sigma_{4\ell}^{\text{fid}}$ [fb]	$\sigma_{4\ell}$ [fb]
7 TeV	$ee + ee$	1	1.8 ± 0.3	0.12 ± 0.04	21.5%	0.9^{+1.8}_{-0.7} ± 0.14 ± 0.02	7.5%	4e, 4\mu
	$\mu\mu + \mu\mu$	8	11.3 ± 0.5	0.08 ± 0.04	59.2%	3.0^{+1.2}_{-0.9} ± 0.07 ± 0.05	18.3%	2e2\mu
	$ee + \mu\mu$	7	7.9 ± 0.4	0.18 ± 0.09	49.0%	3.1^{+1.1}_{-0.9} ± 0.16 ± 0.05	15.8%	2e2\mu
	$\mu\mu + ee$	5	3.3 ± 0.3	0.07 ± 0.04	36.3%	3.0^{+1.6}_{-1.2} ± 0.30 ± 0.06	8.8%	
combined	21	24.2 ± 1.2	0.44 ± 0.14					
8 TeV	$ee + ee$	16	14.4 ± 1.4	0.14 ± 0.03	36.1%	2.2^{+0.8}_{-0.5} ± 0.05 ± 0.10	7.3%	4e, 4\mu
	$\mu\mu + \mu\mu$	71	68.8 ± 2.7	0.34 ± 0.05	71.1%	4.9^{+0.7}_{-0.5} ± 0.13 ± 0.14	17.8%	2e2\mu
	$ee + \mu\mu$	48	43.2 ± 2.1	0.32 ± 0.05	55.5%	4.2^{+0.7}_{-0.5} ± 0.16 ± 0.12	14.8%	
	$\mu\mu + ee$	16	19.3 ± 1.3	0.18 ± 0.04	46.2%	1.7^{+0.9}_{-0.4} ± 0.10 ± 0.04	7.9%	
combined	151	146 ± 7	1.0 ± 0.11					

estimated to be 0.38 ± 0.14 and 0.49 ± 0.10 events for the 7 and 8 TeV data, respectively.

The numbers of signal events predicted by MC simulation are 23.8 ± 1.2 and 145 ± 7 for 7 and 8 TeV, respectively. The data and MC predictions, as shown in Fig. 2, are in good agreement. Denoting the integrated luminosity by L, the measured fiducial cross sections ($\sigma_{4\ell}^{\text{fid}}$), determined by $(N_{4\ell}^{\text{obs}} - N_{4\ell}^{\text{bkg}})/(L \times C_{4\ell})$, are given in Table I.

The cross section in the final phase space for each channel is calculated by $\sigma_{4\ell}^{\text{fid}}/A_{4\ell}$. The cross sections obtained for the $ee + ee$ and $\mu\mu + \mu\mu$ channels, and for the $2e+2\mu$ and $2\mu+2e$ channels, are compatible within errors and are combined using 2×2 covariance matrices. The total inclusive 4ℓ cross section is a sum of the two combined cross sections, and the uncertainty includes correlations between the four channels. The cross sections listed in Table I are consistent with the SM predictions given earlier.

The $Z \rightarrow 4\ell$ branching fraction, $\Gamma_{Z \rightarrow 4\ell}/\Gamma_Z$, is determined by subtracting the non-resonant contributions to the selected events and normalizing the resulting yield to the observed number of $Z \rightarrow \mu^+\mu^-$ events in the same dataset,

$$\frac{\Gamma_{Z \rightarrow 4\ell}}{\Gamma_Z} = \left(\frac{\Gamma_{Z \rightarrow \mu\mu}}{\Gamma_Z} \right) \frac{N_{4\ell}^{\text{obs}} - N_{4\ell}^{\text{bkg}}}{N_{2\mu}^{\text{obs}} - N_{2\mu}^{\text{bkg}}} \left(1 - f_{\text{res}} \right) C_{2\mu} \cdot A_{2\mu},$$

where $\Gamma_{Z \rightarrow \mu\mu}/\Gamma_Z = (3.366 \pm 0.007)\%$ [29], $N_{2\mu}^{\text{obs}}$ is around 1.7 million and 8.9 million in the 7 and 8 TeV
datasets, respectively, and \((C \times A)_{2\mu}\) is \((41.4 \pm 0.6\)% and \((41.8 \pm 0.6\)%), respectively. The background \((N^{\text{bkg}}_{2\mu})\) is estimated to be around 0.3% of the selected \(Z \to \mu^+\mu^-\) events, where the multijet and \(W^+\text{jets}\) contributions are obtained using a data-driven method similar to that used for the \(Z \to 4\ell\) background estimation, and other background contributions are estimated with simulated MC samples. The branching fraction for \(Z \to 4\ell\), summed over all \(\ell = e, \mu\) final states, is determined with both the 7 and 8 TeV datasets. The measured branching fractions for each dataset are consistent within uncertainties and are combined, giving

\[
\Gamma_{Z \to 4\ell}/\Gamma_Z = (3.20 \pm 0.25 \text{ (stat)} \pm 0.13 \text{ (syst)}) \times 10^{-6}
\]

in the final phase-space region, where the systematic uncertainty includes a contribution (about 0.2%) due to the interference between the \(s\)-channel and \(t\)-channel processes, calculated using \textsc{CalcHep} [30]. The measured branching fraction is consistent with the SM prediction of \((3.33 \pm 0.01) \times 10^{-6}\), calculated using \textsc{Powheg}. For a larger final phase-space region defined by \(m_{t+\ell-} > 4\text{ GeV}\) and \(80 < m_4 < 100\text{ GeV}\), similar to that used by CMS, the acceptance factors \(A_{4\ell}\) and the non-resonant fractions \(f_{nr}\), and their uncertainties, are also evaluated (leaving the fiducial region unchanged), and the measured branching fraction becomes \(\Gamma_{Z \to 4\ell}/\Gamma_Z = (4.31 \pm 0.34 \text{ (stat)} \pm 0.17 \text{ (syst)}) \times 10^{-6}\), compared with an SM prediction of \((4.50 \pm 0.01) \times 10^{-6}\). This result is consistent with the CMS result measured with data collected from \(pp\) collisions at 7 TeV.

In summary, measurements of the cross sections of \(4\ell\) production at the \(Z\) resonance in \(pp\) collision data collected by the ATLAS detector at the LHC have been presented. The datasets analyzed correspond to an integrated luminosity of 4.5 fb\(^{-1}\) and 20.3 fb\(^{-1}\) at \(\sqrt{s} = 7\) and 8 TeV, respectively. The total \(Z \to 4\ell\) production cross sections in the phase-space region \(m_{t+\ell-} > 5\text{ GeV}\) and \(80 < m_4 < 100\text{ GeV}\) are measured to be \(\sigma_{Z \to 4\ell} = 76 \pm 18 \text{ (stat)} \pm 4 \text{ (syst)} \pm 1.4 \text{ (lumi)} \text{ fb at 7 TeV and 107 \pm 9 \text{ (stat)} \pm 4 \text{ (syst)} \pm 3.0 \text{ (lumi)} \text{ fb at 8 TeV}, consistent with the SM predictions of 90.0 \pm 2.1 \text{ fb and 104.8} \pm 2.5 \text{ fb, respectively. Normalizing to the measured } Z \to \mu^+\mu^- \text{ production, the } Z \to 4\ell \text{ branching fraction is determined to be } (3.20 \pm 0.25 \text{ (stat)} \pm 0.13 \text{ (syst)}) \times 10^{-6}, \text{ consistent with the SM prediction of } (3.33 \pm 0.01) \times 10^{-6}.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[1] ATLAS Collaboration, JINST 3, S08003 (2008).
[2] L. Evans and P. Bryant, JINST 3, S08001 (2008).
[3] J. M. Campbell, R. K. Ellis, and C. Williams, J. High Energy Phys. 07 (2011) 018, arXiv:1105.0020 [hep-ph].
[4] ATLAS Collaboration, Physics Letters B 716, 1 (2012), arXiv:1207.7214 [hep-ex].
[5] CMS Collaboration, Physics Letters B 716, 30 (2012), arXiv:1207.7235 [hep-ex].
[6] CMS Collaboration, J. High Energy Phys. 12 (2012) 034, arXiv:1210.3844 [hep-ex].
[7] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector, and the \(z\)-axis along the beam line. The \(x\)-axis points from the IP to the center of the LHC ring, and the \(y\)-axis points upwards. Cylindrical coordinates \((r, \phi)\) are used in the transverse plane, \(\phi\) being the azimuthal angle around the beam line. The pseudorapidity is defined in terms of the polar angle \(\eta = -\ln \tan(\theta/2)\). Observables labeled “transverse” are projected into the \(x-y\) plane.
[8] ATLAS Collaboration, Eur. Phys. J. C 73, 2518 (2013), arXiv:1302.4393 [hep-ex].
[9] The 2012 luminosity measurement follows the same methodology as that detailed in Ref. [8]. It is based on a preliminary calibration of the luminosity scale derived from beam-separation scans performed in November 2012.
[10] T. Melia et al., J. High Energy Phys. 11 (2011) 078, arXiv:1107.5051 [hep-ph].
[11] S. Alioli et al., J. High Energy Phys. 06 (2010) 043.
arXiv:1002.2581 [hep-ph].

[12] P. Nason, J. High Energy Phys. 11 (2004) 040, arXiv:hep-ph/0409146 [hep-ph].

[13] H. L. Lai et al., Phys. Rev. D 82, 074024 (2010), arXiv:1007.2241 [hep-ph].

[14] T. Binoth, N. Kauer, and P. Mertsch, arXiv:0807.0024 [hep-ph].

[15] T. Sjostrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026, arXiv:hep-ph/0603175.

[16] T. Sjostrand, S. Mrenna, and P. Skands, Comput. Phys. Commun. 178, 852 (2008), arXiv:0710.3820 [hep-ph].

[17] P. Golonka and Z. Was, Eur. Phys. J. C 45, 97–107 (2006), arXiv:hep-ph/0506026.

[18] S. Frixione and B. R. Webber, J. High Energy Phys. 06 (2002) 029, arXiv:hep-ph/0204244.

[19] M. L. Mangano et al., J. High Energy Phys. 07 (2003) 001, arXiv:hep-ph/0206293.

[20] G. Corcella et al., J. High Energy Phys. 01 (2001) 010, arXiv:hep-ph/0011363 [hep-ph].

[21] J. M. Butterworth, J. R. Forshaw, and M. H. Seymour, Z. Phys. C 72, 637–646 (1996), arXiv:hep-ph/9601371 [hep-ph].

[22] T. Gleisberg et al., J. High Energy Phys. 02 (2009) 007, arXiv:0811.4622 [hep-ph].

[23] ATLAS Collaboration, Eur. Phys. J. C 70, 823–874 (2010), arXiv:1005.4568 [physics.ins-det].

[24] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[25] ATLAS Collaboration, Physics Letters B 726, 88 (2013), arXiv:1307.1427 [hep-ex].

[26] ATLAS Collaboration, Eur. Phys. J. C 72, 1909 (2012), arXiv:1110.3174 [hep-ex].

[27] ATLAS Collaboration, ATLAS-CONF-2012-047. https://cds.cern.ch/record/1449796.

[28] A. D. Martin et al., Eur. Phys. J. C 63, 189 (2009), arXiv:0901.0002 [hep-ph].

[29] K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010).

[30] A. Belyaev, N. D. Christensen, and A. Pukhov, Comput. Phys. Commun. 184, 1729–1769 (2013), arXiv:1207.6082 [hep-ph].
G. Zurzolo

A. Zibell

F. Zhang

S. Youssef

K. Yamauchi

M. Xiao

Y. Yamaguchi

M. Wright

M.W. Wolter

I. Wingerter-Seez

F. Winklmeier

J.Z. Will

C. Wiglesworth

P. Werner

P.S. Wells

I.J. Watson

K. Wang

P. Wagner

V. Vorobel

C. Wasicki

B. Washbrook

I. Watanabe

P.M. Watkins

A.T. Watson

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33a

33b

33c

33d

34

35

36

37

38a

38b

38c

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58a

58b

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103a

103b

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123a

123b

124

125

126

127

128

129

130

131

132

133a

133b

134

135

136

137

138

139

140

141

142

143

144

145a

145b

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306
20 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston MA, United States of America
23 Department of Physics, Brandeis University, Waltham MA, United States of America
24 (a) Universidade Federal do Rio de Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (c) University Politehnica Bucharest, Bucharest; (d) West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Physics Department, Shanghai Jiao Tong University, Shanghai, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington NY, United States of America
36 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
37 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
38 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas TX, United States of America
41 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham NC, United States of America
46 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
56 Department of Physics, Hampton University, Hampton VA, United States of America
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
60 Department of Physics, Indiana University, Bloomington IN, United States of America
Institution
Graduate School of Science and Technology, Tokyo Metropolitan University,
Tokyo, Japan
Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
Department of Physics, University of Toronto, Toronto ON, Canada
(a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York
University, Toronto ON, Canada
Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
Department of Physics and Astronomy, Tufts University, Medford MA, United
States of America
Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
Department of Physics and Astronomy, University of California Irvine,
Irvine CA, United States of America
(a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP,
Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di
Udine, Udine, Italy
Department of Physics, University of Illinois, Urbana IL, United States
of America
Department of Physics and Astronomy, University of Uppsala, Uppsala,
Sweden
Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica,
Molecular y Nuclear and Departamento de Ingeniería Electrónica and
Instituto de Microelectrónica de Barcelona (IMB-CNM), University of
Valencia and CSC, Valencia, Spain
Department of Physics, University of British Columbia, Vancouver BC,
Canada
Department of Physics and Astronomy, University of Victoria, Victoria BC,
Canada
Department of Physics, University of Warwick, Coventry, United Kingdom
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science,
Rehovot, Israel
Department of Physics, University of Wisconsin, Madison WI, United States
of America
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität,
Würzburg, Germany
Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven CT, United States of
America
Yerevan Physics Institute, Yerevan, Armenia
Centre de Calcul de l’Institut National de Physique Nucléaire et de
Physique des Particules (IN2P3), Villeurbanne, France

* Also at Department of Physics, King’s College London, London, United Kingdom*
* Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan*
* Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom*
* Also at TRIUMF, Vancouver BC, Canada*
* Also at Department of Physics, California State University, Fresno CA, United States of America*
* Also at Novosibirsk State University, Novosibirsk, Russia*
* Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France*
* Also at Università di Napoli Parthenope, Napoli, Italy*
* Also at Institute of Particle Physics (IPP), Canada*
* Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia*
* Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece*
* Also at Louisiana Tech University, Ruston LA, United States of America*
* Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain*
* Also at CERN, Geneva, Switzerland*
* Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan*
* Also at Manhattan College, New York NY, United States of America*
* Also at Institute of Physics, Academia Sinica, Taipei, Taiwan*
* Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France*
* Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan*
* Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France*
* Also at School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar, India*
* Also at Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy*
* Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia*
* Also at Section de Physique, Université de Genève, Geneva, Switzerland*
* Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America*
* Also at International School for Advanced Studies (SISSA), Trieste, Italy*
* Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America*
Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
Also at Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
Also at Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
Also at Department of Physics, Oxford University, Oxford, United Kingdom
Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa
* Deceased