Current update on herbal sources of antithrombotic activity—a comprehensive review

Bhavani Subramani* and P. Sathiyarajeswaran

Abstract

Background: Herbs are commonly used to treat cardiovascular diseases in various traditional medicine. On the other hand, herb-drug interactions are most commonly encountered with conventional antiplatelet and anticoagulant drug prescriptions. This review presents a compilation of plants investigated for antiplatelet and anticoagulation recently and enumerates their possible lead compounds responsible for its action for paving further drug discovery and knowledge update.

Main body of the abstract: Information about the herbs was withdrawn from the PubMed database of the previous 5 years. We also hand-searched the bibliography of relevant articles for the acquisition of additional information. About 72 herbal sources were identified with the effect of antiplatelet activity, antithrombotic activity, and anticoagulant activity. Bioactive compounds and various secondary metabolites responsible for it, such as alkaloids, saponins, flavonoids, coumarins, polyphenols, furan derivatives, iridoid glycosides, sesquiterpenes, aporphine compounds, were reported.

Conclusion: Newer pharmacological moieties are needed to prevent or reduce the adverse effects of current antithrombotic agents and to improve the safety of patients and cost-effectiveness.

Keywords: Antiplatelet, Antithrombotic, Anticoagulant, Herbal medicine, Phytochemicals, Secondary metabolites, Alkaloids, Saponins, Flavonoids, Coumarins

Background

Cardiovascular disease (CVD) due to thrombosis comprises coronary artery disease (CAD), stroke, hypertension, peripheral arterial disease (PAD), venous-thrombo-embolic disease (VTE) [1]. As per the National Health and Nutrition Examination Survey (NHANES) 2013–2016, the prevalence of Coronary heart disease (CHD) in the USA was estimated as 18.2 million in > 20 years of age with more risk among males than females, whereas the prevalence of ischaemic stroke was 67.6 million and that of hemorrhagic stroke was 15.3 million [2]. CVD and stroke accounted for 14% of the total expenditure in 2014–2015, more than any diagnostic group results in immense health and economic burden in the USA globally. The AHA’s 2020 Impact Goals are to improve the cardiovascular health of all Americans by 20% while reducing deaths attributable to CVD and stroke by 20% [1].

Currently, witnessing an unprecedented pandemic, the coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS Co-V-2), associated with a significant risk of thromboembolic complications due to hypercoagulability state of blood which is called as Covid-19 associated coagulopathy (CAC) [3]. Though prophylaxis anti-coagulants were administered, the incidence of VTE complications was reported in two-thirds of ICU cases [4] and developed life-threatening thrombotic complications followed by Acute respiratory distress syndrome (ARDS) [5]. Venous thromboembolism
coagulants and anti-thrombotic medications remains the mainstay of treatment in cardiovascular and cerebrovascular disorders. Aspirin and clopidogrel were the commonly administered antiplatelet drugs to reduce recurrent ischaemic events in CAD and ischaemic stroke. Oral anticoagulants are prescribed for primary prevention and secondary prevention of venous thromboembolic disease [11] and as the best option in the prevention of stroke due to cardio-embolism in atrial fibrillation [12].

Adverse drug reaction due to conventional antithrombotic drug regimen

Aspirin is prone to cause gastrointestinal side effects, hypersensitivity, hypo-responsiveness in some, and bleeding episodes [13]. Low-dose aspirin is commonly used as primary and secondary prevention of cardiovascular disease, which is associated with the risk of upper and lower gastro-intestinal tract lesions, particularly in the upper gastro-intestinal tract which may cause asymptomatic lesions to peptic ulcer bleeding and/or even death Li et al. [14].

Until recently, the vitamin K antagonists were the only oral anticoagulant agents available and warfarin remains the most commonly prescribed oral anticoagulation worldwide [15]. Warfarin has significant variability in dose-response across individuals and a narrow therapeutic window and intensive therapeutic monitoring are essential. When combined with low-dose aspirin, NSAIDs, or clopidogrel, warfarin acts cumulatively and the risk of bleeding is significantly increased [16] The risk of major bleeding associated with oral anti-coagulants ranges from 3.26 to 7.2% annually [11]. Both oral anticoagulation and antiplatelet therapies are essential in 20–30% of patients with co-existing atrial fibrillation (AF) and CAD, together posing a major risk of thrombotic complications [17]. Currently, in the management of patients with IHD and AF, include triple therapy TT (an anticoagulant plus 2 antiplatelet drugs) and two types of dual therapy, DAPT (2 antiplatelet drugs) or DT (an anticoagulant plus a single antiplatelet drug) [18].

Herbal resources and secondary metabolites

Herbs play an indispensable role in natural product discovery to meet the growing healthcare needs. Researchers screen herbal sources through reverse pharmacology and observational therapeutics to find novel compounds and harness the potential for future drug discovery. According to WHO (World Health Organization), about 80% of the World's population depends on medicinal plants or herbs to fulfill their medicinal needs. Herbal medicines are a maximum part of complementary and alternative medicine and preferred treatment of people for various reasons such as ethnicity of use, family traditions, and past good experiences [19]. In this review, we have covered 72 herbs, their extracts, their secondary metabolites, and their pharmacological activities studied in both in vivo, ex vivo, and in vitro investigations. Acknowledging the growing significance of traditional medicine and usage, the WHO global report on traditional and complementary medicine 2019 states about the steps taken to promote the safety, quality, and effectiveness of traditional medicine by developing the WHO Traditional Medicine Strategy 2014–2023, in line with WHO Traditional Medicine Strategy (2002–2005). Healthcare professionals need to be aware of and monitor possible risks of concomitant medications of herbs with conventional medicine prescriptions if any [20].

Methods

We conducted a PubMed search for the in-vitro and in vivo studies published between 2016 and 2020 till December using multiple combinations of keywords, including the following: “anti-thrombotic activity”, “antiplatelet activity”, “anti-coagulant”, “antiplatelet aggregation”, “anti-hyper-viscosemia”, “anti-aggregant”, “platelet aggregation inhibitor”, “platelet aggregation inhibitor”, “platelet targeted pharmacologic agents”, “antiplatelet adhesion”, “medicinal plants”, and “herbal sources”. We found 296 publications that were reviewed by two authors. The retrieved articles were examined...
Table 1 List of herbal sources of antithrombotic and its phytoconstituents

Family	Botanical name	Parts used	Effect/activity	Phytochemicals	References
Apiaceae	Angelica keiskei (Miq.) Koidz	Stem	Antithrombotic-anti-coagulant	Xanthoangelol B	[21]
Apiaceae	Angelica sinensis (Oliv.) Diels	Aerial parts	Anti-coagulant, antiplatelet	Z-Ligustilide	[22]
Malvaceae	Abelmoschus manihot (J. Med.) Med.	Plant	Antiplatelet	Total flavone	[23]
Acanthaceae	Andrographis paniculata (Burm.f.)	Plant	Antiplatelet	Diterpenoids	[24]
Liliaceae	Anemarrhena asphodeloides Bunge	Rhizomes	Antiplatelet, antithrombotic	Timosaponin A-II, timosaponin B-II, anemarsaponin B, steroidal glycosides	[25]
Apiaceae	Apium graveolens Linn	Seeds	Antithrombotic, antiplatelet	3-N-Butylphthalide (NBPI)-3-n-Butylphthalide (NBP)	[26]
Acanthaceae	Achyranthes bidentata Blume	Plant	Anti-coagulant	Polysaccharides	[27]
Liliaceae	Allium sativum L.	Cloves	Antiplatelet	Aescin, adenosine,paraffinic polysulfides	[28]
Sapindaceae	Aesculus hippocastanum L.	Bark	Anti-coagulant	Aescin (coumarin)	[29]
Berberidaceae	Berberis vulgaris L.	Plant	Antiplatelet	Berberine	[30]
Myrtaceae	Campononsea xanthocarpa (Mart.) Díberg	Leaf	Antithrombotic,antiplatelet	Flavonoids	[31]
Apiaceae	Cyperus rotundus L.	Tuber	Antiplatelet	(+)-nootkatone(isoquertoperoxid)	[32]
Compositae	Corasus mar. L.	Dried fruits	Anti-coagulant	Anthocyanins, polyphenols	[33]
Berberidaceae	Cassia filiformis L.	Fresh herb	Antiplatelet	Aporphinoid alkaloids	[34]
Zingiberaceae	Curcuma aromatica Salis.	Rhizome	Antiplatelet	Curcumin	[35]
Asteraceae	Chrysanthemum indicum L.	Flowers	Antiplatelet	CHNorogenic acid	[36]
Lauraceae	Cinnamomum cassia Nees.	Bark and twigs	Antiplatelet	Eugenol, amygdalactone, cinnamic alcohol, 2-hydroxycinnamaldehyde, 2-methoxyxincinaldehyde, coniferaldehyde	[37]
Rutaceae	Citrus hassaku Yu.Tanaka	Fruits	Antiplatelet	Rutin	[38]
Ranunculaceae	Capsis chinensis Franch.	Rhizome	Antiplatelet	Berberine	[39]
Compositae	Centaurea cyanus L.	Plant	Antithrombotic	Hydroxyisoflavon yellow A	[40]
Leguminosae	Caesalpinia sappan L.	Heartwood	Antiplatelet	Brevin	[41]
Zingiberaceae	Cimicifuga racemosa L.	Rhizome	Antiplatelet, anticoagulant, antithrombotic	Ar-turmerone, curcumin	[41, 42]
Monocotae	Cudrania tricuspisdata Bureau	Roots	Antiplatelet	Cudraticusxanthone A (CTXA)	[43]
Compositae	Cirsium oleraceum Hook. & Arn.	Leaves	Antiplatelet	Triterpenoids	[44]
Apiaceae	Centella asiatica L. (Lith.)	Herb	Antiplatelet	Caffeoyl quinic acid compounds	[45]
Fabaceae (Leguminosae)	Dalbergia odorifera T. Chen	Heartwood	Antiplatelet	Sesquiterpenes	[46]
Dioscoraceae	Dioscorea zingiberensis C.H. Wright	Rhizome	Antithrombotic, antiplatelet	Dioscin-steroidal saponins	[47, 48]
Ebenaceae	Diospyros kaki Thunb.	Leaves, fruits	Antiplatelet, antithrombotic	Diosmin (diosimin 7-O-rutinoside), a disaccharide derivative	[49]
Euphorbiaceae	Euphorbia neriifolia L.	Leaves	Antithrombotic	Polyphenols, polyphenols	[50]
Rutaceae	Evodia rutacarpus A.Juss.	Dried unripe fruit	Antiplatelet	Rutacearpine	[51]
Acanthaceae	Evonon canadensis L.	Whole plant	Antiplatelet	Polyphenolic polysaccharide	[52]
Ginkgoacae	Ginkgo biloba L.	Leaf	Antiplatelet, anticoagulant activity	Ginkgolides A, B, and C	[53]
Leguminosae	Glycyrrhiza uralensis	Rhizome	Antithrombotic	Isotrofolol	[54]
Himantandraceae	Galbulimima baccata F.M.Bailey	Bark	Antithrombotic	Gallulimima alkaloids-himbacine	[55]
Saururaceae	Houttuynia cordata	Plant	Antiplatelet	Alkaldoids	[56]
Euphorbiaceae	Polygonum multiflorum	Roots, leaves	Antithrombotic	Protocatechic acid	[57]
Rutaceae	Evodia rutaacarpus A.Juss.	Dried unripe fruit	Antiplatelet	Rutacearpine	[58]
Asteraeae	Euphorbia neriifolia L.	Whole plant	Antiplatelet	Polyphenolic polysaccharide	[59]
Ginkgoacae	Ginkgo biloba L.	Leaf	Antiplatelet, anticoagulant activity	Ginkgolides A, B, and C	[60]
Leguminosae	Glycyrrhiza uralensis	Rhizome	Antithrombotic	Isotrofolol	[61]
Himantandraceae	Galbulimima baccata F.M.Bailey	Bark	Antithrombotic	Gallulimima alkaloids-himbacine	[62]
Saururaceae	Houttuynia cordata	Plant	Antiplatelet	Aporphine compounds	[63]
Euphorbiaceae	Polygonum multiflorum	Roots	Antiplatelet	Aporphine alkaldoids	[64]
Rutaceae	Evodia rutaacarpus A.Juss.	Dried unripe fruit	Antiplatelet	-	[65]
Aquifoliaceous	Ilex paraguariensis A.St.	Fruits	Antithrombotic	Chikusetsusaponin IVA	[66]
Lamiaceae	Leonurus sibiricus	aerial parts	Antiplatelet	Leonurine	[67]
Caprifoliaceae	Lonicera japonica Thunb.	Plant	Antiplatelet	Protocatechic acid	[68]
Lamiaceae	Lycopus lucidus Turcz.	plant	Antiplatelet	-	[69]
Asparagaceae	Linope mucron L.H. Bailey.	plant	Anti-thrombotic	D39, a natural saponin	[70]
Lauraceae	Lindera obtusiloba Blume	Leaf	Antiplatelet, antithrombotic	quecitrin and alfelin	[71]
Rutaceae	Melochia semecarpifolia Merr.	root bark	Antiplatelet	quinoline alkaldoids	[72]
Magnoliaceae	Magnolia officinalis	Bark	Antiplatelet	Magnololhonokiol	[73]
to eliminate potential duplicates or overlapping data. We also hand-searched the references of relevant articles for the acquisition of additional information. We included only those studies published in peer-reviewed journals in the English language only. Finally, 26 manuscripts were considered for this review. The botanical names of all the plants enumerated below (Table 1) were verified referring to www.theplantlist.org.

Family	Botanical name	Parts used	Effect/activity	Phytochemicals	References
Nelumbonaceae	Nelumbo nucifera Gaertn.	fruits, whole plant	anti-coagulant, antithrombotic	neferine, alkaloid, flavonoids in hydroalcoholic extract respectively	[68]
Lamiaceae	Driganum majonana L.	plant	antiplatelet	hydroquinone-D-glucopyranoside (Coomarin)	[69]
Oleaceae	Osmanthus fragrans Loure.	seeds	antiplatelet	secoiridoid glucoside	[70]
Araliaceae	Panax ginseng Meyer	root	antiplatelet	Ginsenoside Rg1, Ginsenoside Rg3, Ginsenoside Rp4, Ginsenoside Rf (oleanane-type saponin)	
Piperaeae	Piper longum L.	Dried fruits	antiplatelet	piperlongumine, a pyridone alkaloid	[71]
Paeoniaceae	Peonia suffruticosia	dried root bark	antiplatelet	Paeoniflorin, Benzoyl-paeoniflorin, Benzoyl-xylopaeoniflorin, Methyl gallate, Catechin, Paeoniflorigenone, Galloylpaeoniflorin, Daucosterol	[72]
Araliaceae	Panax bipinnatifidus Seem.	Roots	antithrombotic, antiplatelet	saponins	[73]
Annonaceae	Rollinia mucosa Jacq.	stems	antiplatelet	N-methoxycarbonyl aporphine alkaloid, romucosine A (1), romucosine B (2), romucosine C (3), andromucosine D (4)	[74]
Apocynaceae	Rauwolfia serpentina Benth.	roots	antiplatelet	Ajmaline	[75]
Rutaceae	Ruta graveolens L.	root and aerial parts	antiplatelet	The quinoline alkaloid graveoline	[76]
Anacardiaceae	Rhus verniciflua (Syn. Taxocoden-drax verniciflorum)	herb	antiplatelet	Isomaltol, Pentagalloyl glucose	[77]
Polygonaceae	Rheum palmatum L.	aerial parts	antiplatelet	Two stilbenes-trans-resveratrol-3-O-β-D-glucopyranosyl (I) and rhaponticin (II)	[78]
Scrophulariaceae	Rehmannia glutinosa (Gaertn.)	dried roots	antiplatelet	furan derivatives	[79]
Rosaceae	Spiraea japonica L.	roots	antiplatelet	atisine-type diterpenoid alkaloids	[80]
Lamiaeae	Scutellaria baicalensis Georgi.	root	anti-platelet, anticoagulant	Bicalin	[81]
Leguminosae	Spatholobus subreectus Dunn.	stem	antiplatelet	daidzein and genistein	[82]
Fabaceae	Sophora japonica L.	plant	antiplatelet	flavonoids	[83]
Selaginellaceae	Selaginella tamariscina (P. Beauv.) Spring	herb	anti-coagulant	dihydrocaffeic acid & amentoflavone	[84]
Typhaceae	Sparganium stoloniferum Buch.	plant	antiplatelet, antithrombotic	flavonoids	[85]
Labiateae	Salvia miltiorrhiza	Root	antiplatelet	15,16-dihydrotanshinone, Tanshinone IA, Cryptotanshinone, Danshensu, Salviannic acid B	[86]
Sapindaceae	Sapindus mukorossi Gaertn.	Galls	antiplatelet	Sapinmusaponins F-I, Sapinmusaponins Q and R (1–50 µM) respectively	[86]
Asteraceae	Silybum marianum (L.) Gaertn.	Seeds/fruits	antiplatelet activity	Silymarin, flavonoids	[87]
Rosaceae	Spiraea japonica L.	roots	antiplatelet	spiramine C1	[88]
Violaceae	Viol a yedoensis Makino	whole plants	anticoagulant	dicoumarin: dimeresuclein, euphorbitin, esculetin	[88]
Melanthaceae	Veratrum dahuricum (Turcz.) O.Loes.	rhizomes	antiplatelet	Veratrofagmin-steroidal alkaloid	[89]
Zingiberaceae	Zingiber officinale Roscoe	rhizome	antiplatelet	Gingerol, paradol	[90]
Mechanism of antiplatelet and anticoagulant activity of herbs

Plant-derived compounds such as alkaloids, anthraquinones, coumarins, flavonoids, xanthones, lignans, saponins, stilbenes, etc. were found to affect platelet aggregation activity Werner Cordier et al. [91]. Inhibition of platelet adhesion or chemical mediators for activation of platelet function is the common potential of herbs for its antiplatelet activity. Various mechanisms had been postulated such as inhibition of ADP-induced platelet aggregation, inhibition of the arachidonic acid pathway, thereby inhibiting biosynthesis of thromboxane A2; plants containing lignans, xanthones, sesquiterpenes, flavonoids affect coagulation by inhibiting platelet-activating factor (PAF), or PAF receptor antagonists, inhibiting the factor X on the coagulation cascade. Plants containing the coumarin class of compounds antagonise vitamin K and
Botanical name	Mechanism of action
Angelica keiskei (Miq.) Koidz.	Inhibit platelet aggregation
Angelica sinensis (Oliv.) Diels	Inhibit platelet aggregation
Abelm tesus manihot (L.) Medik	Inhibit platelet aggregation
Andrographis paniculata (Burm.f) Nees	Inhibit platelet aggregation
Anemarhena asphodeloides Bunge	Inhibit ADP-induced platelet aggregation
Apium graveolens Linn	Inhibit platelet aggregation
Achyranthes bidentatata Blume	Prolonged coagulation time
Allium sativum L.	Inhibit platelet aggregation
Aesculus hippocastanum L.	Preventing oxidative damage of fibrinogen & moderate antiplatelet aggregation activity
Berberis vulgaris L.	Inhibit platelet aggregation
Campomanesia xanthocarpa (Mart) O. Berg	Inhibit platelet aggregation, fibrinolytic activity
Cyperus rotundus L.	Inhibit collagen-, thrombin-, and AA-induced platelet aggregation
Cornus mas L.	Inhibit platelet aggregation
Cassytha filiformis L.	Inhibit platelet aggregation
Curcuma aromatica Salisb.	Inhibit AA-, collagen-, & ADP-induced platelet aggregation
Chrysanthemum indicum L.	Inhibit platelet aggregation
Cinnamomum cassia Nees.	Inhibit platelet aggregation
Citrus hassaku Yu. Tanaka	Inhibit platelet aggregation
Coptis chinensis Franch.	Inhibited thromboxane synthesis
Carthamus tinctorius L.	Inhibited thromboxane synthesis
Caesalpinia sappan L.	Inhibited collagen-induced platelet aggregation
Curcuma longa L.	Inhibit platelet aggregation
Cudrania tricuspida Bureu	Inhibit platelet aggregation, inhibited thrombin production
Callicarpa nudiflora Hook. & Am.	Antiplatelet aggregation
Centella asiatica L. (Urb).	Inhibition of platelet activation and coagulation
Dalber gia odorifera T. Chen	Inhibit platelet aggregation
Dioscorea zingiberensis C.H. Wright	Antithrombotic
Diospyros kaki Thunb.	Inhibited thrombin-catalysed fibrin formation
Euphorbia neriifolia L.	Prolonged bleeding time & clotting time
Evodia rutaecarpa A. Juss.	Prolonged bleeding time, antiplatelet aggregation
Erigeron canadensis L.	Inhibited thrombin
Ginkgo biloba L.	Inhibit platelet aggregation
Glycyrrhiza uralensis	Antithrombotic
Galbulimima baccata F.M. Bailey	Inhibit platelet aggregation
Houttuynia cordata	Antiplatelet aggregation
Hernandia nymphaefolia J. Presl.	Antiplatelet aggregation
Illigera luzonensis Merr.	Antiplatelet aggregation
Illex paraguariensis A. St.	Inhibits fibrinogen & platelet aggregation
Leonurus sibiricus	Antiplatelet aggregation
Lonicera japonica Thunb.	Antiplatelet aggregation
Lycopus lucidus Turcz.	Inhibit aggregation of red blood cells
Linhaope muscari L.H. Bailey	Inhibit thrombosis
Lindera obtusiloba Blume	Inhibit platelet aggregation & collagen-induced thromboxane production
Melicope semecarpifolia Merr.	Antiplatelet aggregation
Magnolia officinalis	Antiplatelet aggregation
Nelumbo nucifera Gaertn.	Inhibitory effect on platelet activation, adhesion & aggregation, and thromboxane A2 formation
Origanum majorana L.	Inhibition of platelet adhesion & aggregation
Osmnthus fragrans Loure	Inhibit platelet aggregation
Panax ginseng Meyer	Antiplatelet aggregation
prevent coagulation. Few naturally occurring compounds contain fibrinolytics which may activate plasminogen and affect coagulation. Phytochemicals that inhibit the CYP3A4, CYP2C9, and CYP1A2 metabolism were potent to affect coagulation Leite et al. [92]. Herbs identified in this review were listed with possible mechanisms of action responsible for their pharmacological activity in Table 2.

Table 2 (continued)

Botanical name	Mechanism of action
Piper longum L.	Inhibit AA-, collagen-, & PAF-induced platelet aggregation
Paeonia suffruticosa	Inhibit platelet aggregation & blood coagulation
Paeonia lactiflora Paill.	Inhibit platelet aggregation & blood coagulation
Panax bipinnatifidus Seem.	Inhibit platelet aggregation & prolonged aPTT
Rollinia mucosa Jacq.	Inhibit platelet aggregation
Rauwolfia serpentina Benth.	Inhibition of platelet-activating factor
Ruta graveolens L.	Antiplatelet aggregation
Rhus verniciflua (Syn. *Taxodium vernicifluum*)	Antiplatelet aggregation
Rheum palmatum L.	Antiplatelet aggregation
Rehmannia glutinosa (Gaertn.)	Antiplatelet aggregation
Spirea japonica L.	Antiplatelet aggregation
Scutellaria baicalensis Georgi.	Inhibited fibrin polymerization and platelet function, prolonged aPTT, PT, and production of thrombin
Spatholobus suberectus Dunn.	Inhibition of fibrinogen binding
Sophora japonica L.	Antiplatelet aggregation
Selaginella tamariscina (P. Beaux.) *Spring*	Antiplatelet aggregation & increased fibrinogen content
Sparganium stoloniferum Buch.	Antiplatelet aggregation
Salvia miltiorrhiza	Inhibit platelet aggregation
Sapindus mukorossi Gaertn.	Antiplatelet aggregation
Silybum marianum (L.) Gaertn.	Antiplatelet aggregation
Viola yedoensis Makino	Antiplatelet aggregation
Veratrum dahuricum (Turcz.) O. Loes.	Antiplatelet aggregation

ADP adenosine di-phosphate, AA arachidonic acid, PAF platelet-activating factor, aPTT activated partial thromboplastin time, PT prothrombin time

Table 3 Common therapeutic indication of herbs

Herbs	Main uses of herb	Reference
Angelica sinensis (Oliv.) Diels	Promoting circulation	Lu et al. [97]
Andrographis paniculata (Burm.f.) Nees	Myocardial ischaemia, fever, respiratory infections	Zhang et al. [6]
Apium graveolens Linn	Hepatic and spleen disorders, brain disorders, sleep disturbances	Al-Asmari et al. [98]
Allium sativum L.	Hypercholesterolaemia	Izzo et al. [96]
Aesculus hippocastanum L.	Anti-inflammatory, venotonic	Sparg et al. [29]
Carthamus tinctorius L.	Chest pain, traumatic injuries	Lim et al. [99]
Curcuma longa L.	Chest pain, amenorrhoea	Lim et al. [99]
Centella asiatica (L. (Urb).	Improving memory	Satake et al. [46]
Ginkgo biloba L.	CVD, angina, cerebral vasospasm, hypertension	Lim et al. [99]
Panax ginseng Meyer	Enhancing immunity, cognitive impairment	Kim et al. [100]; Lim et al. [99]
Salvia miltiorrhiza	Cardiovascular and cerebrovascular symptoms	Kim et al. [100]
Silybum marianum (L.) Gaertn.	Liver and gallbladder disorders	Gurley et al. [101]
Zingiber officinale Roscoe	Anti-bacterial, anti-ulcer	Mohd Nor et al. [102]

Herb-drug interaction types and mechanism

Among older adults, concomitant herbal medicine use along with prescription drugs had been reported as 5.3
to 88.3% in a systematic review as potential cause of herbal-drug interaction Agbabiaka et al. [93]. Herb-drug interactions (HDI) may be either due to pharmacokinetic or pharmacodynamic interactions which affects the safety and efficacy of the treatment. Pharmacokinetic interactions affect the absorption, distribution, metabolism, and excretion of drugs which in turn results in a change in drug concentration in body fluids Lee et al. [94]. Various mechanism has been postulated for the altered drug concentration such as induction or inhibition of hepatic and intestinal drug-metabolizing enzymes such as cytochrome P450, UDP-glucorynyl transferase, and carrier proteins such as P-glycoprotein was suggested Kahrman et al. [95]. While pharmacodynamic interactions are related to the pharmacological activity of the interacting agents which may be synergistic or additive resulting in toxicities or antagonistic causing treatment failure Izzo [96].

Herbal drug interaction with aspirin, clopidogrel, and warfarin

Few frequently reported herbs, with its commonly used therapeutic indications (Table 3), and drug interactions with conventional anti-thrombotic medicines were enumerated with increased risk of bleeding as per current evidence (Tables 4, 5, and 6) and types of herb-drug interaction of few herbs are summarised (Table 7).

Safety profile

Salvia miltiorrhiza, Angelica sinensis (Oliv.) Diels and Zingiber officinale Roscoe were identified to cause major interactions with anticoagulant or antiplatelet drugs may lead to life-threatening complications or serious adverse events (Tsai et al. [110]).

Conclusions

In this review, extensive search has been done on herbal sources investigated for anti-thrombotic activity recently were highlighted. Adverse haemorrhagic complications

Table 4 List of herb-aspirin interaction causing increased risk of bleeding

Botanical name	Herb-aspirin interaction (references)
Angelica sinensis (Oliv.) Diels	Xiao et al. [103]
Carthamus tinctorius L.	Lim et al. [99]
Curcuma longa L.	Hu and Wang [104]
Ginkgo biloba L.	Hu and Wang [104]
Panax ginseng Meyer	Hu and Wang [104]
Salvia miltiorrhiza	Hu and Wang [104]; Xiao et al. [103]

Table 5 List of herb-clopidogrel interaction causing increased risk of bleeding

Botanical name	Herb-clopidogrel interaction (references)
Angelica sinensis (Oliv.) Diels	Xiao et al. [103]
Carthamus tinctorius L.	Lim et al. [99]
Curcuma longa L.	Lim et al. [99]
Ginkgo biloba L.	Lim et al. [99]
Panax ginseng Meyer	Lim et al. [99]
Salvia miltiorrhiza	Lim et al. [99]; Xiao et al. [103]

Table 6 List of herb-warfarin interaction causing increased risk of bleeding

Botanical name	Herb-warfarin interaction (references)
Angelica sinensis (Oliv.) Diels	Leite et al. [92]; Ge et al. [105]; Akram and Rashid [106]; Leite et al. [107]
Andrographis paniculata (Burm.f) Nees	Leite et al. [107]
Apium graveolens Linn	Akram and Rashid [106]
Allium sativum L.	Leite et al. [92]; Leite et al. [107]
Aesculus hippocastanum L.	Leite et al. [107]
Carthamus tinctorius L.	Leite et al. [107]
Curcuma longa L.	Leite et al. [92]; Ge et al. [105]; Akram and Rashid [106]; Shaikh et al. [108]; Leite et al. [107]
Centella asiatica L. (Urb.)	Leite et al. [107]
Ginkgo biloba L.	Leite et al. [92]; Ge et al. [105]; Akram and Rashid [106]; Shaikh et al. [108]; Leite et al. [107]
Panax ginseng Meyer	Akram and Rashid [106]; Shaikh et al. [108]
Salvia miltiorrhiza	Akram and Rashid [106]; Shaikh et al. [108]
Silybum marianum (L.) Gaertn.	Leite et al. [107]
Zingiber officinale Roscoe	Leite et al. [92]; Ge et al. [105]; Leite et al. [107]
due to current conventional medicines, patient safety, huge economic burden on healthcare, cognisance of herbal drug interaction, and complications due to recently emerged pandemic due to SARS Co-V2 virus, etc. all pose a need to search for newer pharmacological moieties for drug discovery.

Table 7 Types of herb-drug interaction in herbs

Herb	Warfarin	Aspirin	Clopidogrel
Angelica sinensis (Oliv.) Diels	(A) COX-inhibitor [Hu et al. 2005]; Inhibits CYP1A2 & CYP3A4 Leite et al. [92]	(A) Inhibition of rCyp2c11 & carboxylesterase activities Xiao et al. [103]	(A) Inhibition of rCyp2c11 & carboxylesterase activities Xiao et al. [103]
Allium sativum L.	(A) Interferes with metabolizing enzymes Ge et al. [105]; (B) additive effect [Hu et al. 2005]; (B) PAF inhibitor Ge et al. [105]; (A) inhibits CYP3A4 Leite et al. [92]	–	–
Aesculus hippocastanum L.	(A) Increased bleeding [Hu et al. 2005]	–	(B) Potentiates its activity Lim et al. [99]
Carthamus tinctorius L.	(B) PAF inhibitor Leite et al. [92]	–	(B) Potentiates its activity Lim et al. [99]
Curcuma longa L.	(A) Inhibiting CYP2C9/C19, CYP3A4, CYP1A2 Costache et al. [109]; (B) Additive effect [Hu et al. 2005]; (B) PAF receptor antagonist Leite et al. [92]	(A) COX-inhibitor Lim et al. [99]	–
Ginkgo biloba L.	(B) Additive effect [Hu et al. 2005]	(B) Inhibited platelet aggregation Lim et al. [99]	–
Panax ginseng Meyer	(A) Increased bleeding; (B) additive effect [Hu et al. 2005]	(B) Additive or synergistic effect Lim et al. [99]	–
Salvia miltiorrhiza	(A) Increased bleeding; (B) additive effect [Hu et al. 2005]	–	–
Zingiber officinale Roscoe	(B) PAF inhibitor Leite et al. [92]	–	–

(A) pharmacokinetic interaction, (B) pharmacodynamic interaction

the Assistant Director & Incharge, Scientist III, Siddha Central Research Institute (SCRI), Central Council for research in Siddha (CCRS), Arumbakkam, Chennai.

Funding
No funding.

Availability of data and materials
Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Authors have no conflict of interest.

Received: 25 August 2021 Accepted: 1 December 2021
Published online: 07 March 2022

References
1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP et al (2019) Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 139(10):e56–e528 Available from: http://ahajournals.org [cited 10 Apr 2021]
2. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP et al (2020) Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation 141:139–ES96 Available from: http://ahajournals.org Lippincott Williams and Wilkins; [cited 10 Apr 2021]
38. Itcho K, Masuda M, Naruto S, Murata K, Matsuda H (2010) Effects of
unripe Citrus hassaku fruits extract and its flavanone glycosides on
blood fluidity. Biol Pharm Bull. 33(4):659–664
39. Xia L-M, Luo M-H (2015) Study progress of berberine for treating cardio-
vascular disease. Chronic Dis Trans Med. 11(4):231–235. https://doi.org/
10.1016/j.cdtm.2015.11.006
40. Wu SH, Zheng GP, Chen SY, Cai XP, Shi YJ, Liu Z et al (2014) Anti-throm-
botic effect of Carthamus tinctorius linn extracts in rats. Trop J Pharm
Res. 13(10):1637–1640
41. Chang Y, Huang SHK, Lu WJ, Chung CL, Chen WL, Lu SH et al (2013)
Brazilian isolated from Caesalpinia sappan L. acts as a novel collagen
receptor agonist in human platelets. J Biomed Sci. 20:4
42. Kim DC, Ku SK, Bae JS (2012a) Anticoagulant activities of curcumin and
its derivative. BMC Rep. 45(4):211–226
43. Srivastava KC, Bordia A, Verma SK (1995) Curcumin, a major component
of food spice turmeric (Curcuma longa) inhibits aggregation and alters
eicosanoid metabolism in human blood platelets. Prostaglandins
Leukot Essent Fatty Acids 52(4):223–227
44. Yoo H, Ku SK, Lee W, Kwak S, Baek YD, Min BW et al (2014) Antiplatelet,
antithrombotic and profibrinolytic activities of cudratricusxanthone A.
Arch Pharm Res. 37(8):1069–1078. https://doi.org/10.1007/s12272-013-
0290-4 [cited 11 Apr 2021]
45. Zhou Z, Wei X, Fu H, Luo Y (2013) Chemical constituents of Callicarpa
nudiflora and their anti-platelet aggregation activity. Fitoterapia.
88(1):91–95
46. Satake T, Kamiya K, A N, Oshinée Taka T, Yamamoto J (2007) The anti-
thrombotic active constituents from Centella asiatica. Biol Pharm Bull.
30(5):935–940 Available from: http://www.jsage.jst.go.jp/article/bpb/
30/5/5_50_s_9355_article [cited 11 Apr 2021]
47. Tao Y, Wang Y (2010) Bioactive sesquiterpenes isolated from the essen-
tial oil of Dalbergia odorifera T. Chen. Fitoterapia. 81(S):393–396. https://
doi.org/10.1016/j.fitote.2009.11.012
48. Zhang X, Jin M, Tadesse N, Dang J, Zhou T, Zhang H et al (2018a)
Dioscorea zingiberensis C.H. Wright: an overview on its traditional use,
pharmacy, pharmacology, clinical applications, quality control, and
toxicity. J Ethnopharmacol. 220:263–293 Elsevier Ireland Ltd
49. Li H, Huang W, Wen Y, Gong G, Zhao Q, Yu G (2010) Anti-thrombotic
activity and chemical characterization of steroidal saponins from
Dioscorea zingiberensis C.H. Wright. Fitoterapia. 81(8):1147–1156. https:
//doi.org/10.1016/j.fitote.2010.07.016
50. You SS, Kim SJ, Choi HS (2005) The antiaggregatory fraction from the
leaves of Diospyros kaki L. has an antiaggregatory activity. Arch Pharm
Res. 28(6):667–674. https://doi.org/10.1007/BF02969356 [cited 11 Apr 2021]
51. Ganeshpurkar A, Hasan M, Bansal D, Dubey N (2014) Protective effect of
Euphorbia neriifolia extract on experimentally induced thrombosis
in murine model. Niger J Exp Clin Bioi. 22(2):86 Available from: http://
www.njebonline.org/text.asp?2014/2/2/86/144482 [cited 11 Apr 2021]
52. Sheu JR, Hung WC, Wu CH, Lee YM, Yen MH (2000) Antithrombotic
effect of rutaceanone, an alkaloid isolated from Evodia rutaecarpa, on
platelet plug formation in in vivo experiments. Br J Haematol.
110(1):110–115
53. Pawlaczuk I, Czerchawski L, Kuliczkowski W, Karolko B, Pilecki W,
Pawlaczyk I, Czerchawski L, Kuliczkowski W, Karolko B, Pilecki W,
Zuo W, Yan F, Zhang B, Li J, Mei D (2017) Advances in the studies of
thrombotic active constituents from Centella asiatica. Biol Pharm Bull.
30(1):481–485. https://doi.org/10.1248/jbp.16-00023 [cited 11 Apr 2021]
54. Tao WW, Duan JA, Yang NY, Tang YP, Liu MZ, Qian YF (2012) Antithrom-
botic effect of chikusetsusaponin IVa isolated from Ilex
pharmacology. Asian Pac. J Trop Biomed. 6(12):1076–1080. https://
doi.org/10.1016/S1354-3776(16)30023-X [cited 11 Apr 2021]
55. Chen IS, Chen HF, Cheng MJ, Chang YL, Teng CM, Tsutomu I et al (2001)
Pharmacological activities of steroidal saponins from
Pausax bipinnatifidus Seem. growing in Vietnam. Pharmacognosy Res.
14(12):853–855
56. Yen Kyoung Koo, JoMKJY5SKKBVS/KHCVS/C et al. (2010) Platelet
anti-aggregatory and blood anti-coagulant effects of compounds
isolated from Paonia lactiflora and Paonia suffruticosa - PubMed
[Internet]. Pharmacoe. p. 624–8. Available from: https://pubmed.ncbi.
nlm.nih.gov/20824965/ [cited 11 Apr 2021]
57. Thom V, Tung N, Van Diep D, Thuy D, Hue N, Long D et al (2018)
Antithrombotic activity and saponin composition of the roots of Panax
parnassifolius Seem. growing in Vietnam. Pharmacognosy Res. 10(4):333
Available from: http://www.phcogres.com/text.aspx?2018/10/4/333/
244092 [cited 11 Apr 2021]
58. Kuo RY, Chang FR, Chen CY, Teng CM, Yen HF, Wu YC (2001) Antiplatelet
activity of N-methoxy carbonyl aporphines from Rollinia mucosa. Phyto-
chemistry. 57(3):421–425
59. Rahman NN, Sinjee R, Fazi S, Atta-ur-Rahman ASS, Mahmood F et al (1991)
Inhibition of platelet activating factor by ajmaline in platelets;
in vitro and in vivo studies. Pak J Pharm Sci. 4(1):35–42 Available from:
http://www.ncbi.nlm.nih.gov/pubmed/16414679 [cited 11 Apr 2021]
60. Wu T-S, Shi L-S, Wang J-I, Jou S-C, Chang H-C, Chen Y-P et al (2003)
Cytotoxic and antiplatelet aggregation principles of Ruta Gravolens. J
Chinese Chem Soc. 50(1):171–178. https://doi.org/10.1002/jcs.20030
0024 [cited 11 Apr 2021]
61. Jeon WK, Lee JH, Kim HK, Lee AY, Lee SO, Kim YS et al (2006) Anti-
platelet effects of bioactive compounds isolated from the bark of Rhus
verniciflua Stokes. J Ethnopharmacol. 106(1):62–69
