Primary Intraosseous Carcinoma in the Pediatric Mandible

Hyun Jun Oh
Seoul National University School of Dentistry

Dong Whan Shin
Seoul National University School of Dentistry

Hoon Myoung
Seoul National University School of Dentistry

Hye-Jung Yoon
Seoul National University School of Dentistry

Soung Min Kim (✉ smin5@snu.ac.kr)
Seoul National University College of Agriculture and Life Sciences https://orcid.org/0000-0002-6916-0489

Case report

Keywords: odontogenic cyst, primary intraosseous carcinoma, pediatric mandible

DOI: https://doi.org/10.21203/rs.3.rs-195662/v1

License: © ⑥ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Primary intraosseous carcinoma (PIOC) is a rare malignant odontogenic tumor that predominantly occurs in males older than 50 years. PIOC can be misdiagnosed as odontogenic cyst because it occasionally shows well-defined border on radiography. In this study, a case of a 14-year-old female with PIOC who was misdiagnosed with odontogenic cyst clinically is reported along with a literature review of pediatric PIOC cases.

Case Presentation: A 14-year-old female patient presented with painful swelling on the mandibular right premolar area. There was a radiolucent lesion with a well-defined border in panoramic view. She was diagnosed with odontogenic cyst, and the cystic mass was enucleated with extraction. However, the biopsy result was consistent with PIOC. After cancer work-up, she underwent partial mandibulectomy, selective neck dissection, and reconstruction with a fibular free flap. Although the surgical resection margins were clear, local recurrence and lung metastasis occurred four months after surgery. She underwent concurrent chemo-radiation therapy, but the prognosis was poor.

Conclusions: PIOC should be diagnosed differentially from odontogenic cyst even in pediatric populations.

Background

Primary intraosseous carcinoma (PIOC) is a rare and infrequently reported malignant odontogenic tumor. In 2005, the World health organization (WHO) divided PIOC into three subcategories according to histogenesis [1]. However, in 2017, WHO reclassified it as a single entity after leaving out unsubstantiated references to histogenesis in 2017 [2]. Approximately 260 cases have been reported [3, 4]. PIOC is more common in males and usually occurs in people 50 years and older [3, 5-11]. PIOC has occurred extremely rarely in pediatric populations: prior to this case, only nine cases had been reported in the English literature [12-20]. PIOC is misdiagnosed frequently as odontogenic cyst because it occasionally shows well-defined borders in panoramic view or on computed tomography (CT) [21-24]. In this study, a PIOC case of a 14-year-old female patient who was misdiagnosed with odontogenic cyst is discussed along with a literature review of pediatric PIOC cases.

Case Presentation

A 14-year-old female patient was referred from a local dental clinic to the Department of Oral and Maxillofacial Surgery at Seoul National University Dental Hospital, Seoul, Korea. She presented with painful swelling on the mandibular right premolar area and complained of intermittent bleeding when she brushed her teeth. A panoramic view showed a radiolucent lesion with a well-defined border (Fig 1a). Adjacent tooth displacement and external root resorption were noted. There was a radiopaque focus in the upper area of the lesion. The patient was diagnosed with odontogenic cyst, and the cystic mass was enucleated with extraction of the right first premolar under local anesthesia.

Histopathology of the surgical specimen revealed high cellularity and a sheet-like growth pattern with epithelial islands (Figs. 2a,2b). Microscopic examination showed round monotonous shaped tumor cells with high nucleus-cytoplasm ratio and bizarre mitosis (Figs. 2c,2d). On immunohistochemical staining, CK-7 and CK-14 showed focal positive. CK-18, CK-PAN, and Vimentin were positive. Moreover, cells were 40-60% positive for Ki-67. However, CD99, Desmin, S-100 protein, and NSE were negative. A final diagnosis was consistent with PIOC.

Enhanced CT, magnetic resonance imaging (MRI), positron emission tomography-CT (PET-CT), bone scintigraphy and neck ultrasonography were performed. In enhanced CT, a periosteal reaction was observed on the buccal side (Fig. 3a). In MRI, diffuse enhancement of the soft tissue was observed at the adjacent buccal area (Fig. 3b). There were no significant lymph nodes. In PET-CT, a soft tissue lesion on the right premolar area and a borderline-sized lymph node at the right level IB were observed (Fig. 3c). There was no distant metastasis. In bone scintigraphy, increased uptake in the right mandible was observed (Fig. 3d). In neck ultrasonography, no significant cervical lymph node enlargement was observed. Hand-wrist radiograph and lower extremity angiography were performed for reconstruction surgery with the fibular free flap. In hand-wrist radiograph, that patient’s skeletal maturation was estimated as 15-16 years old. On leg angiography, anterior tibial, posterior tibial, and peroneal arteries were intact.

One month after enucleation surgery, the patient showed abnormal healing (Fig. 4a). Surgical resection and reconstruction with a fibula free flap were prepared. The required bone length was 73 mm, and a resin stent was prepared (Fig. 4b). She underwent partial mandibulectomy from the right retromolar area to the left central incisor and selective neck dissection (right levels I, II, III) under general anesthesia. The mandibular and neck masses were removed en bloc (Fig. 4c) with simultaneous reconstruction using the microvascular fibula free flap (Fig. 4d).

The surgical resection margin was clear, and no metastatic cervical lymph nodes were found in the dissected mass. Perineural or vascular invasion was not seen. However, there was involvement of the underlying bone. The patient’s healing was uneventful. However, local recurrence and lung metastasis occurred four months after surgery. She underwent concurrent chemo-radiation therapy (CCRT) for one month; however, a recurred lesion on the right mandibular ramus did not decrease (Fig. 1b). She was lost to follow-up after her visit one month after the end of CCRT.

Discussion

According to the previous case studies, nine PIOCs have been reported in pediatric populations [12-20]. A summary of all 10 pediatric cases, including this case, is provided in Table 1 and 2. PIOC is more common in adult males [3,5-11]; however, seven of the total 10 pediatric cases were female. PIOC occurs more often in the mandible than maxilla [3,5-11], seen in seven of the pediatric patients. The most common symptom was swelling, followed by pain [3,5,7]. The symptoms of the pediatric patients were consistent.

PIOC can be misdiagnosed as odontogenic cyst because it occasionally presents with a well-defined border in panoramic view or CT [21-24]. Differential diagnosis of PIOC from odontogenic cyst is important because the surgical approach is different. Kaffe et al. [21] reported that 61% of PIOC cases presented...
as a unilocular radiolucent lesion. In our review of pediatric cases, six of 10 cases showed unilocular radiolucency. Radiologic borders that were defined but non-corticated were reported to occur in 57% of the PIOC cases and the remaining 43% had diffuse borders. In cases with poorly defined borders, such as those with diffuse margins, the lesions could be unambiguously distinguished from odontogenic cyst. However, since cases with well-defined borders can be misdiagnosed as odontogenic cyst, a differential diagnosis should be thoroughly considered. According to Kaffe et al. [21], a defined but non-corticated border could be a useful feature for differential diagnosis. A well-defined but non-corticated border was observed in five of the 10 pediatric PIOC patients (Table 1). Moreover, tooth displacement and root resorption should be considered as other radiologic features as PIOC tends to grow too rapidly to produce such features [7,19,21,25]. However, four of the pediatric cases in our review showed tooth displacement and five showed root resorption. It was peculiar that these features occurred in the pediatric patients. Although tooth displacement and root resorption are features for slowly growing lesions such as odontogenic cysts, these features should be considered for differential diagnosis of PIOC in pediatric populations. As a rare finding, radiopaque foci were observed in this case and in Punnya et al.’s pediatric case [15]. Although PIOC usually presents as an osteolytic lesion, small radiopaque foci due to calcification or periosteal reaction can be observed, albeit rarely [10,26-28].

Among the 10 pediatric cases we reviewed, the initial diagnosis for five was odontogenic cyst. Huang et al. [7] reported that this diagnostic delay did not show any statistically significant prognostic difference. However, Naruse et al. [25] reported that preoperative dental procedures might be potential prognostic factors and suggested that no intervention before definitive diagnosis could achieve a better prognosis. Therefore, incisional biopsy with obtaining multiple specimens is necessary to rule out an underlying carcinoma [8,9,14,17]. Regardless of patient age, biopsy should be considered for any lesion with any of the unusual radiographic presentations mentioned above. The pediatric patient reported by Charles et al. [17] was accurately diagnosed by biopsy and had the longest follow-up period without recurrence. A biopsy was not considered for definitive diagnosis in the present case although there were atypical radiographic findings. Local recurrence occurred five months after the initial operation, that is, four months after the definitive surgery.

The primary treatment for PIOC is surgical resection [3,8,11,29]. In the present case, because simultaneous reconstruction was necessary, hand-wrist radiography was analyzed for assessment of growth potential. Her skeletal age was assessed as 15-16 years old. Previous research has concluded that the face matures between 12 and 15 years in males and two years earlier in females [30,31]. The vascularized fibular free flap is a reliable option for mandibular reconstruction, even in pediatric patients [32,33]. Therefore, the fibular free flap was employed for this 14-year-old female patient.

Recent reviews reported the rate of cervical lymph node metastasis to be 12.8% [3] and 70.1% [11]. In our case review, three of the 10 pediatric cases showed cervical metastasis. Wenguang et al. [11] reported nodal status to be a significantly poor prognostic factor for survival. However, de Morais et al. [3] reported that lymph node metastasis was not statistically associated with survival. Although these outcomes conflict, it seems reasonable that neck dissection be considered among the surgical procedures for PIOC. In the present case, there were no metastatic lymph nodes on enhanced CT or MRI. However, because there were borderline-sized lymph nodes at the right level IB, selective neck dissection was performed.

In recent literature, de Morais et al. [3] reported a local recurrence rate of 22.1% and Ye et al. [4] reported a local recurrence rate of 24.1%. In this study, local recurrence occurred in three pediatric patients, including the present case, a rate of 30% although the total cases were only 10. In one report, a four-year-old female patient suffered recurrence five months after excision and underwent additional radical excision [3]. However, 10 months later, recurrence recurred, the lesion was removed, and the area was irradiated. She was alive after one year of follow-up. In another case, a 16-year-old male patient suffered recurrence two months after excision and underwent total mandibulectomy after one month. However, he died two months after the surgery [13]. The 14-year-old female patient in the present study suffered recurrence four months after definitive surgery. She underwent CCRT for one month, but the recurred lesion did not decrease. According to de Morais et al. [3] and Ye et al. [4], local recurrence is a significant prognostic factor for survival. Likewise, pediatric PIOC cases with local recurrence showed poor prognosis. The five-year survival rate has been reported as 44.6% [3] and 53.2% [4]. However, the five-year survival rate of the pediatric patients could not be evaluated because of the rarity of the cases and relatively short follow-up periods.

Because PIOC has a poor prognosis, accurate diagnosis and adequate surgical procedures are important. Continuous updates are required to analyze the pathophysiologic mechanism of PIOC, and a recent approach such as genetic analysis [34] could contribute to understanding the pathophysiology of PIOC.

Conclusion

PIOC is a rare malignant odontogenic tumor that can be misdiagnosed as odontogenic cyst because it occasionally presents with a well-defined border on radiography. According to the literature review, 10 pediatric PIOC cases have been reported, five of which were initially diagnosed as odontogenic cyst. PIOC with a well-defined border usually has non-corticated border. Atypically, tooth displacement and root resorption were observed in approximately half of the pediatric cases. Incisional biopsy with multiple specimens is necessary to rule out PIOC in cases with atypical radiographic findings. PIOC should be differentially diagnosed from odontogenic cyst even in pediatric populations.

Abbreviations

PIOC: Primary intraosseous carcinoma; WHO: World health organization; CT: computed cosmography; MRI: Magnetic resonance imaging; PET-CT: Positron emission tomography-computed cosmography; CCRT: concurrent chemo-radiation therapy

Declarations

Ethics approval and consent to participate
This article was approved by the Institutional Review Board of Seoul National University (S-D20200010).

Consent for publication

Written informed consent was obtained from the patient for publication of this manuscript and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

Not applicable.

Authors' contributions

All authors read and approved the final manuscript. HJO read and wrote the manuscript, DHS collected the literature data, HM designed the article, HJY prepared the histopathologic data, and SMK prepared the figures and wrote the manuscript.

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education(No. 2017R1D1A1B04029339).

References

1. Eversole LR, Siar CH, van der Waal I. Primary intraosseous squamous cell carcinomas. In: Barnes L, Eveson JW, Reichart P, Sidransky D, editors. Pathology and genetics of head and neck tumours. Lyon, France: IARC Press; 2005. p. 290-291.
2. Wright JM, Vered M. Update from the 4th Edition of the World Health Organization Classification of Head and Neck Tumours: Odontogenic and Maxillofacial Bone Tumors. Head Neck Pathol. 2017;11(1):68-77.
3. de Morais EF, Carlan LM, de Farias Morais HG, Pinheiro JC, Martins HDD, Barboza CAG, et al. Primary Intraosseous Squamous Cell Carcinoma Involving the Jaw Bones: A Systematic Review and Update. Head Neck Pathol. 2020.
4. Ye P, Wei T, Gao Y, Zhang W, Peng X. Primary intraosseous squamous cell carcinoma arising from an odontogenic keratocyst: case series and literature review. Med Oral Patol Oral Cir Bucal. 2021;26(1):e49-e55.
5. Thomas G, Pandey M, Mathew A, Abraham EK, Francis A, Somanathan T, et al. Primary intraosseous carcinoma of the jaw: pooled analysis of world literature and report of two new cases. Int J Oral Maxillofac Surg. 2001;30(4):349-355.
6. Zwetyenga N, Pinsolle J, Rivel J, Majoufre-Lefebvre C, Faucher A, Pinsolle V. Primary intraosseous carcinoma of the jaws. Arch Otolaryngol Head Neck Surg. 2001;127(7):799-797.
7. Huang JW, Luo HY, Li Q, Li TJ. Primary intraosseous squamous cell carcinoma of the jaws. Clinicopathologic presentation and prognostic factors. Arch Pathol Lab Med. 2009;133(11):1834-1840.
8. Lugakingira M, Pytynia K, Kolokythas A, Miloro M. Primary intraosseous carcinoma of the mandible: case report and review of the literature. J Oral Maxillofac Surg. 2010;68(10):2623-2629.
9. Bodner L, Manor E, Shear M, van der Waal I. Primary intraosseous squamous cell carcinoma arising in an odontogenic cyst: a clinicopathologic analysis of 116 reported cases. J Oral Pathol Med. 2011;40(10):733-738.
10. Matsuizaki H, Katase N, Matsumura T, Hara M, Yanagi Y, Nagatsuka H, et al. Solid-type primary intraosseous squamous cell carcinoma of the mandible: a case report with histopathological and imaging features. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114(5):e71-77.
11. Wenguang X, Hao S, XiaoFeng Q, Zhiyong W, Yufeng W, Qingang H, et al. Prognostic Factors of Primary Intraosseous Squamous Cell Carcinoma (PIOSCC): A Retrospective Review. PLoS One. 2016;11(4):e0153646.
12. Jones JH. Soft tissue oral tumours in children: their structure, histogenesis and behaviour. Proc R Soc Med. 1966;59(7):673-680.
13. Sirsat MV, Sampat MB, Shrikhande SS. Primary intra-alveolar squamous-cell carcinoma of the mandible. Report of a case. Oral Surg Oral Med Oral Pathol. 1973;35(3):366-371.
14. Gulbranson SH, Wolfray JD, Raines JM, McNally BP. Squamous cell carcinoma arising in a dentigerous cyst in a 16-month-old girl. Otolaryngol Head Neck Surg. 2002;127(5):463-464.
15. Punnya A, Kumar GS, Rekha K, Vandana R. Primary intraosseous odontogenic carcinoma with osteoid/dentinoid formation. J Oral Pathol Med. 2004;33(2):121-124.
16. Chaisuparat R, Coletti D, Kolokythas A, Ord RA, Nikitakis NG. Primary intraosseous odontogenic carcinoma arising in an odontogenic cyst or de novo: a clinicopathologic study of six new cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(2):194-200.
17. Charles M, Barr T, Leong I, Ngan BY, Forte V, Sandor GK. Primary intraosseous malignancy originating in an odontogenic cyst in a young child. J Oral Maxillofac Surg. 2008;66(4):813-819.

18. Sengupta S, Vij H, Vij R. Primary intraosseous carcinoma of the mandible: A report of two cases. J Oral Maxillofac Pathol. 2010;14(2):69-72.

19. Boni R Sozzi D, Novelli G, Pagni F, Valente G, Bozzetti A. Primary Intraosseous Squamous Cell Carcinoma of the Jaws: 6 New Cases, Experience, and Literature Comparison. J Oral Maxillofac Surg. 2016;74(3):541-546.

20. Nokovitch L, Bodard AG, Corradini N, Crozes C, Guyennon A, Deneuve S. Pediatric case of squamous cell carcinoma arising from a keratocystic odontogenic tumor. Int J Pediatr Otorhinolaryngol. 2018;112:121-125.

21. Kaffe I, Ardekian L, Peled M, Machtey E, Laufer D. Radiological features of primary intra-osseous carcinoma of the jaws. Analysis of the literature and report of a new case. Dentomaxillofac Radiol. 1998;27(4):209-214.

22. Scheer M, Koch AM, Drebbert U, Kubler AC. Primary intraosseous carcinoma of the jaws arising from an odontogenic cyst—a case report. J Craniomaxillofac Surg. 2004;32(3):166-169.

23. Choi YJ, Oh SH, Kang JH, Choi HY, Kim GT, Yu JJ, et al. Primary intraosseous squamous cell carcinoma mimicking periapical disease: a case report. Imaging Sci Dent. 2012;42(4):265-270.

24. Abdelkarim AZ, Elzayat AM, Syed AZ, Lozanoff S. Delayed diagnosis of a primary intraosseous squamous cell carcinoma: A case report. Imaging Sci Dent. 2019;49(1):71-77.

25. Naruse T, Yanamoto S, Sakamoto Y, Ikeda T, Yamada SI, Umeda M. Clinicopathological Study of Primary Intraosseous Squamous Cell Carcinoma of the Jaw and a Review of the Literature. J Oral Maxillofac Surg. 2016;74(12):2420-2427.

26. Bennett JH, Jones J, Speight PM. Odontogenic squamous cell carcinoma with osseous metaplasia. J Oral Pathol Med. 1993;22(6):286-288.

27. Ide F, Shimoyama T, Horie N, Kaneko T. Primary intraosseous carcinoma of the mandible with probable origin from reduced enamel epithelium. J Oral Pathol Med. 1999;28(9):420-422.

28. Lopes Dias J, Borges A, Lima Rego R. Primary intraosseous squamous cell carcinoma of the mandible: a case with atypical imaging features. BJR Case Rep. 2016;2(4):20150276.

29. Woolgar JA, Triantafyllou A, Ferlito A, Devaney KO, Lewis JS, Jr., Rinaldo A, et al. Intraosseous carcinoma of the jaws: a clinicopathologic review. Part III: Primary intraosseous squamous cell carcinoma. Head Neck. 2013;35(6):906-909.

30. Farkas LG, Posnick JC, Hreczko TM. Growth patterns of the face: a morphometric study. Cleft Palate Craniofac J. 1992;29(4):308-315.

31. Li JS, Chen WL, Huang ZQ, Zhang DM. Pediatric mandibular reconstruction after benign tumor ablation using a vascularized fibular flap. J Craniofac Surg. 2009;20(2):431-434.

32. Guo L, Ferraro NF, Padwa BL, Kaban LB, Upton J. Vascularized fibular graft for pediatric mandibular reconstruction. Plast Reconstr Surg. 2008;121(6):2095-2105.

33. Benoit MM, Vargas SO, Bhattacharyya N, McGill TA, Robson CD, Ferraro N, et al. The presentation and management of mandibular tumors in the pediatric population. Laryngoscope. 2013;123(8):2035-2042.

34. Yukimori A, Tsuchiya M, Wada A, Michi Y, Kayamori K, Sakamoto K, et al. Genetic and histopathological analysis of a case of primary intraosseous carcinoma, NOS with features of both ameloblastic carcinoma and squamous cell carcinoma. World J Surg Oncol. 2020;18(1):45.

Tables

Table 1. Clinical and radiological characteristics of 10 pediatric patients with primary intraosseous carcinoma in jaw.
Case	Year	Author	Country	Age	Sex	Location	Symptom	Locularity	Density	Border	Tooth displacement	Root resorption
1	1966	Jones [12]	Ireland	4	F	Mandible	Swelling	N/S	N/S	Yes	N/S	N/S
2	1973	Sirsat et al. [13]	India	16	M	Mandible	Swelling	Not loculated	Mixed	Yes	N/S	N/S
3	2002	Gulbranson et al. [14]	America	16	F	Mandible	Swelling	Unilocular	Radiolucency	Cortical thinning	N/S	
4	2004	Punnya et al. [15]	India	18	F	Maxilla	Swelling	N/S	Radiolucency, multiple radiopaque foci	Well defined, non-corticated	N/S	
5	2006	Chaisuparat et al. [16]	America	18	F	Maxilla	Swelling	Unilocular	Radiolucency, enlarged crypt,	Well defined, non-corticated	N/S	
6	2008	Charles et al. [17]	Canada	5	F	Mandible	Swelling	Unilocular	Radiolucency,	Well defined, non-corticated	Yes	
7	2010	Sengupta et al. [18]	India	16	M	Mandible	Swelling, pain	Unilocular		Well defined, non-corticated	Yes	
8	2016	Boni et al. [19]	Italy	14	M	Maxilla	Swelling	N/S	N/S	No	No	No
9	2018	Nokovitch et al. [20]	France	15	F	Mandible	Swelling, pain, intermittent bleeding	Unilocular	Radiolucency, supernumerary tooth	Lingual cortex lysis	N/S	
10	2020	Present study	Korea	14	F	Mandible	Swelling, pain, intermittent bleeding	Unilocular	Radiolucency, a radiopaque focus	Well defined, non-corticated	Yes	

N/S not specified

Table 2. Treatment outcomes of 10 pediatric patients with primary intraosseous carcinoma in jaw.

Case	Initial diagnosis	Initial treatment	Confirmed diagnosis	Definitive treatment	Cervical metastasis	Local recurrence	Salvage treatment	Follow-up duration	Survival status at the last F/U
1	N/S	N/S	N/S	Excision	Yes	Yes	Radical Excision / SND, RT	27 months	alive
2	N/S	N/S	N/S	Excision	Yes	Yes	Mandibulectomy, SND	8 months	dead
3	Dentigerous cyst	Incisional biopsy	Carcinoma	Mandibulectomy, SND	No	No	No	8 months	alive
4	Odontogenic cyst	FNAC	Odontogenic cyst	Enucleation	N/S	No	No	16 months	alive
5	N/S	N/S	N/S	Maxillectomy, RT	No	No	No	44 months	alive
6	More aggressive lesion than odontogenic cyst	Incisional biopsy with extraction	PIOC	Mandibulectomy, mRND, Reconstruction with plate, RT	Yes	No	No	7 years	alive
7	OKC	Enucleation with extraction	PIOC	Refer	N/S	N/S	N/S	N/S	N/S
8	N/S	N/S	N/S	Maxillectomy	N/S	No	No	5 years	alive
9	OKC	Incisional biopsy	OKC	Enucleation with extraction	No	No	No	18 months	alive
10	Odontogenic cyst	Enucleation with extraction	PIOC	Mandibulectomy, SND, Reconstruction with FFF	No	Yes	CCRT	9 months	alive
F/U follow-up, N/S not specified, OKC odontogenic keratocyst, FNAC fine needle aspiration cytology, PIOC primary intraosseous carcinoma, SND selective neck dissection, mRND modified radical neck dissection, RT radiation therapy, CCRT concurrent chemo-radiation therapy, FFF fibular free flap

a at second recurrence
b at recurrence
c recurred but lost to follow-up.