AUSLANDER-REITEN SEQUENCES FOR GORENSTEIN RINGS OF DIMENSION ONE

ROBERT ROY

ABSTRACT. Let R be a complete local Gorenstein ring of dimension one, with maximal ideal m. We show that if M is a Cohen-Macaulay R-module which begins an AR-sequence, then this sequence is produced by a particular endomorphism of m corresponding to a minimal prime ideal of R. We apply this result to determining the shape of some components of stable Auslander-Reiten quivers, which in the considered examples are shown to be tubes.

1. INTRODUCTION

The theory of Auslander-Reiten (AR) quivers is central in the study of artin algebras. Regarding AR theory for maximal Cohen-Macaulay modules over a complete Cohen-Macaulay local ring, the cases of finite AR quivers have been studied thoroughly (see [17]), but in the more common case of infinite type, shapes of AR quivers seem to be largely unknown.

The paper [1] agrees with this assessment (cf. its introduction), and begins to bridge this gap. It establishes a variety of lemmas in the context of symmetric orders over a DVR, \mathcal{O}, and applies these lemmas to proving the shape (namely, a tube) of some components of the AR quiver of a truncated polynomial ring $\mathcal{O}[X]/(X^n)$. The work of the latter calculation consisted largely in proving that a module is indecomposable, but also in proving that a sequence is an AR sequence. Our main result, Theorem 4.8, makes the latter task much easier, in the setting of a complete local Gorenstein ring R of dimension one, with maximal ideal m. Namely it shows that there exists a set of elements of $\text{End}_R m$, corresponding to the minimal primes of R, which produce the AR sequences in a concrete way. We apply the theorem in Section 6, where we establish the shapes of AR components (again, tubes) over a graded hypersurface of the form $k[x,y]/((bx^p + y^q)f)$ where $f \in k[x,y]$ is an arbitrary homogeneous polynomial.

Regarding the structure of this paper, Sections 2 and 3, as well as the Appendix, consist of supporting material for the proof of our main result in Section 4. In Section 5 we give background concerning the abstract notion of stable translation quivers, and in Section 6 we record lemmas concerning the AR quiver of R. Specifically, Proposition 6.23 establishes a criterion, based on material in [1], for proving that an AR component is a tube. In Section 7 we apply this proposition and our main result, to an example.

We would like to thank the developers of Singular [7]; we used it to compute many examples testing Theorem 4.8 and Proposition 8.7 before proving them.

2. PRELIMINARIES

Notation 2.1. Throughout this paper, all rings are assumed noetherian. A ring which is described with any subset of the words {reduced, Cohen-Macaulay, Gorenstein, regular} is implicitly commutative. By a graded ring we will mean a \mathbb{Z}-graded ring, that is, a ring $A = \bigoplus_{i \in \mathbb{Z}} A_i$ satisfying $A_i A_j \subseteq A_{i+j}$. If A has not been referred to as a graded ring, $\mathcal{J}(A)$ will denote the Jacobson radical of A, whereas if A is explicitly graded, $\mathcal{J}(A)$ will denote
the intersection of all maximal graded left ideals of \(A \) (in our situations this will always coincide with the intersection of all maximal graded right ideals). Similarly, but when \(A \) is commutative, if \(A \) is not given a grading then \(Q(A) = A[\text{nonzerodivisors}]^{-1} \) (the total quotient ring of \(A \)), whereas if \(A \) is graded then \(Q(A) = A[\text{homogeneous nonzerodivisors}]^{-1} \).

A (graded) ring \(A \) is said to be (graded-) local if \(A/J(A) \) is a division ring. By a connected graded ring we shall mean a commutative \(\mathbb{N} \)-graded ring \(R = \bigoplus_{i \geq 0} R_i \) such that \(R_0 \) is a field. In this case \(\hat{R} \) will denote the \(m \)-adic completion of \(R \), where \(m = \bigoplus_{i \geq 1} R_i \). If \(R \) is any commutative ring, \(\text{min} R \) will denote its set of minimal primes. If \(R \) is furthermore local or graded-local, we usually write \(m_R \) instead of \(J(R) \).

We will say that an \(R \)-module \(M \) has rank (specifically, rank \(n \)), if \(M \otimes_R Q(R) \) is a free \(Q(R) \)-module (of rank \(n \)). If \(R \) is reduced, then \(\overline{R} \) will denote the integral closure of \(R \) in \(Q(R) \).

2.1. Trace lemmas

We establish some preliminary lemmas regarding trace. Observations of this general type have certainly been made before; see [2, proposition 5.4]. First, we define the trace of an endomorphism of an arbitrary finitely generated projective module, as in [10].

Definition 2.2. Let \(A \) be a commutative ring, and let \(P \) be a finitely generated projective \(A \)-module. Then the map \(\mu_P : \text{Hom}_A(P, A) \otimes_A P \rightarrow \text{End}_A P \) given by \(f \otimes x \mapsto (y \mapsto f(y)x) \) is an isomorphism, by Lemma 2.14. Let \(\varepsilon : \text{Hom}_A(P, A) \otimes_A P \rightarrow A \) denote the map given by \(f \otimes x \mapsto f(x) \). For \(h \in \text{End}_A P \), we define \(\text{trace}(h) = \varepsilon(\mu_P^{-1}(h)) \). If \(e_1, \ldots, e_n \) and \(\varphi_1, \ldots, \varphi_n \in \text{Hom}_A(P, A) \) are such that \(\mu_P(\sum_{i=1}^n \varphi_i \otimes e_i) = \text{id}_P \), then \(\text{trace}(h) \) furthermore equals \(\sum_{i=1}^n \varphi_i(h(e_i)) \). From this, and using that \(P = \sum_i A e_i \), it follows that trace is symmetric, in the sense that \(\text{trace}(gh) = \text{trace}(hg) \) for all \(g, h \in \text{End}_A P \).

Remark 2.3. We can see that the above definition of trace specializes to the usual one when \(P \) is free, by taking the aforementioned \(\{e_i, \varphi_i\}_i \) to be a free basis and the corresponding projection maps. If \(A = k_1 \times \cdots \times k_s \) is a product of fields \(k_i \), then by a similar argument we see that for any \(h \in \text{End}_A P \), we have \(\text{trace}(h) = (\text{trace}(h \otimes_A k_1), \ldots, \text{trace}(h \otimes_A k_s)) \).

Let \(R \) be a commutative ring and set \(Q = Q(R) \). Recall that if \(R \) is an ungraded reduced ring, then \(Q \) is the product of fields \(R_p = Q(R/p) \) where \(p \) ranges over \(\text{min} R \). In particular, each \(R_p \) is an ideal of \(Q \), and a \(Q \)-algebra.

Lemma 2.4. Let \(R \) be a reduced ring (possibly graded), let \(M \) be a finitely generated \(R \)-module such that \(M \otimes_R Q \) is \(Q \)-projective, and let \(h \in \text{End}_R M \). Then \(\text{trace}(h \otimes_R Q) \in \overline{R} \). (In the ungraded case, the condition that \(M \otimes_R Q \) is \(Q \)-projective is automatically satisfied, since \(Q \) is semisimple.)

Proof. First suppose the graded case. Let \(Q' = R[\text{nonzerodivisors}]^{-1} \); thus \(Q' \) is a localization of \(Q \) is a localization of \(R \). and \(R \subseteq Q \subseteq Q' \). As \(M \otimes_R Q \) is \(Q \)-projective, there exists a finite set \(\{e_i \in M \otimes_R Q\} \) and corresponding \(\{\varphi_i : M \otimes_R Q \rightarrow Q\} \) such that \(y = \sum_i \varphi_i(y)e_i \) for all \(y \in M \otimes_R Q \). Then the images of the \(e_i \) in \(M \otimes_R Q' \) have the property that \(y = \sum_i (\varphi_i \otimes_Q Q')(y)e_i \) for all \(y \in M \otimes_R Q' \). Therefore \(\text{trace}(h \otimes_R Q) = \sum_i \varphi_i((h \otimes_R Q)(e_i)) = \sum_i (\varphi_i \otimes_Q Q')(h \otimes_R Q'(e_i)) \). Since \(\overline{R} \) is equal to the integral closure of \(R \) in \(Q' \) by [11, Corollary 2.3.6], we are thus reduced to the ungraded case.

Since \(\overline{R} = \prod_{p \in \text{min} R} \overline{R}/p \), we see by Remark 2.3 that it suffices to show \(\text{trace}(h \otimes_R R_p) \in \overline{R}/p \), for each \(p \in \text{min} R \). As \(h \otimes_R R_p = (h \otimes_R R/p) \otimes_R R_p \), we may assume \(R \) is a domain. By [15, Theorem 2.1], \(h \) satisfies a monic polynomial with coefficients in \(R \), say \(f(X) \in R[X] \). Let
\(H = h \otimes_R Q \), and let \(\mu(X) \in Q[X] \) be the minimal polynomial of \(H \). Let \(\chi(X) \in Q[X] \) be the characteristic polynomial of \(H \), and take a field extension \(L \supseteq Q \) over which \(\chi(X) \) splits, say \(\chi(X) = (X - \alpha_1)(X - \alpha_2) \cdots (X - \alpha_s) \), \(\alpha_i \in L \). Each \(\alpha_i \) is also a root of \(\mu(X) \), and therefore of \(f(X) \). Therefore \(R[\alpha_1, \ldots, \alpha_s] \) is an integral extension of \(R \). Thus \(\overline{R} \supseteq Q \cap R[\alpha_1, \ldots, \alpha_s] \), which contains the coefficients of \(\chi(X) \). Finally, recall that \(\text{trace}(H) \) is the degree-\((s-1)\) coefficient of \(\chi \).

Lemma 2.5. In the situation of Lemma 2.4, assume that \(\dim R = 1 \) and that \(R \) is either a complete local ring or a connected graded ring. If some power of \(h \) lies in \(m_R \text{End}_R M \), then \(\text{trace}(h \otimes_R Q) \in \mathcal{J}(\overline{R}) \).

Proof: As \(\mathcal{J}(\overline{R}) = \prod_{p \in \min_R} \mathcal{J}(\overline{R}/p) \), we may again assume \(R \) is a domain. In the connected graded case, we have \(\mathcal{J}(\overline{R}) \cap \overline{R} = \mathcal{J}(\overline{R}) \) by Lemma 9.4, and we can therefore assume the complete local case. We can also assume \(M \subseteq M \otimes_R Q \), i.e., replace \(M \) by its image in \(M \otimes_R Q \).

Now let \(M\overline{R} \) denote the \(\overline{R} \)-module of \(M \otimes_R Q \) generated by \(M \). Note that \(M\overline{R} \) is a free \(\overline{R} \)-module, since all torsion-free \(\overline{R} \)-modules are free. Since \(\overline{R} \) is local, we can choose a basis for \(M\overline{R} \) which consists of elements of \(M \), say \(e_1, \ldots, e_n \). (Indeed, setting \(n = \text{rank}(M\overline{R}) \), Nakayama’s lemma allows us to find a set \(\{e_1, \ldots, e_n\} \subseteq M \) such that \(M\overline{R} = \sum_i \overline{R} e_i \). Then we have a surjective endomorphism of \(M\overline{R} \), equivalently an automorphism, mapping a basis onto \(\{e_1, \ldots, e_n\} \).

By fixing this basis, we can identify \(\text{End}_R M \) as an \(R \)-subalgebra of the ring of \(n \times n \) matrices \(\text{Mat}_{n \times n}(\overline{R}) \), in the obvious way. By assumption on \(h \), some power of \(h \) lies in \(m_R \text{Mat}_{n \times n}(\overline{R}) \subseteq \mathcal{J}(\overline{R})\text{Mat}_{n \times n}(\overline{R}) \). Thus the image of \(h \) in \(\text{Mat}_{n \times n}(\overline{R}/\mathcal{J}(\overline{R})) \) is nilpotent. The lemma now follows from the fact that over a field, any nilpotent matrix has zero trace.

2.2. Cohen-Macaulay Modules and Gorenstein Rings

For the remainder of this section, assume \(R \) is a Cohen-Macaulay ring which is either a complete local ring or a connected graded ring. Let \(m = m_R \).

Notation 2.6. In the complete local case, let \(\text{CM}(R) \) denote the category of finitely generated maximal Cohen-Macaulay \(R \)-modules, and (following [3]) let \(L_p(R) \) denote the full subcategory of \(\text{CM}(R) \) whose objects have the property that \(M_p \) is \(R_p \)-free for all nonmaximal prime ideals \(p \). If \(R \) is instead a Cohen-Macaulay connected graded ring, we define \(\text{CM}(R) \) and \(L_p(R) \) in the same way but restricted to graded modules (keeping the full Hom sets).

Let \(k = R/m_R \). Then \(R \) is Gorenstein if and only if it is Cohen-Macaulay and \(\dim_k(\text{Ext}^{\dim_R(k,R)}_{R}(k,R)) = 1 \). If \(R \) is Gorenstein, and \(M \in \text{CM}(R) \), then ([6, Theorem 3.3.10]): \(\text{Ext}^{i}_{R}(M,R) = 0 \) for all \(i \geq 1 \), and the map \(M \rightarrow \text{Hom}_R(\text{Hom}_R(M,R),R) \) given by \(m \mapsto (f \mapsto f(m)) \) is an isomorphism. We denote \(\text{Hom}_R(M,R) \) by \(M^* \).

2.3. Auslander-Reiten Sequences

Definition 2.7. Let \(N \) be an indecomposable in \(\text{CM}(R) \). Then (cf. [17] Lemma 2.9') we may define an Auslander-Reiten (AR) sequence starting from \(N \) to be a short exact sequence

\[
(2.1) \quad 0 \longrightarrow N \overset{p}{\longrightarrow} E \overset{q}{\longrightarrow} M \longrightarrow 0
\]

in \(\text{CM}(R) \) such that \(M \) is indecomposable and the following property is satisfied: Any map \(N \rightarrow L \) in \(\text{CM}(R) \) which is not a split monomorphism factors through \(p \). Equivalently, \(N \)
is indecomposable and any map \(L \rightarrow M \) in \(\text{CM}(R) \) which is not a split epimorphism factors through \(q \). The sequence (2.1) is unique if it exists, and is also called the AR sequence ending in \(M \). Given an AR sequence (2.1), \(N \) is called the Auslander-Reiten translate of \(M \), written \(\tau(M) \); and \(\tau^{-1}(N) \) denotes \(M \).

Definition 2.8. A morphism \(f : X \rightarrow Y \) in \(\text{CM}(R) \) is called an irreducible morphism if (1) \(f \) is neither a split monomorphism nor a split epimorphism, and (2) Given any pair of morphisms \(g \) and \(h \) in \(\text{CM}(R) \) satisfying \(f = gh \), either \(g \) is a split epimorphism or \(h \) is a split monomorphism.

2.9. Let \(L \) be an indecomposable in \(\text{CM}(R) \), and assume we have the AR sequence (2.1). Then the following are equivalent (cf. [17, 2.12 and 2.1'-]):

- (a) \(L \) is isomorphic to a direct summand of \(E \).
- (b) There exists an irreducible morphism \(N \rightarrow L \).
- (c) There exists an irreducible morphism \(L \rightarrow M \).

Theorem 2.10. (cf. [17, Theorem 3.4], and [3, Theorem 3]) Let \(M \not\cong R \) be an indecomposable in \(\text{CM}(R) \). Then \(M \in L_p(R) \) if and only if there exists an AR sequence ending in \(M \).

Notice also that if \(R \) is Gorenstein, applying \((_)^\ast\) shows that there exists an AR sequence ending in \(M \) if and only if there exists an AR sequence starting from \(M \). The appendix of [11] contains a nice proof of Theorem 2.10 in a setting which includes Gorenstein rings of dimension one.

Lemma 2.11. Assume \(\dim R = 1 \), and let \(N \in \text{CM}(R) \). Then \(N \in L_p(R) \) if and only if \(N \otimes_R Q \) is a projective \(Q \)-module.

Proof. The prime ideals of \(Q \) correspond to \(\text{min}R \). Now use the fact that, since \(Q \) is noetherian, a \(Q \)-module is projective precisely when it is free at all maximal ideals of \(Q \) (cf. [8, Exercise 4.11]).

2.12. For the remainder of this section assume furthermore that \(R \) is Gorenstein of dimension one, and \(M \not\cong R \) is an indecomposable in \(L_p(R) \). Then (ignoring a graded shift, in the graded case; it will not concern us) \(\tau(M) = \text{syz}_R(M) \) (cf. [17, 3.11]), where \(\text{syz}_R(M) \) denotes the syzygy module of \(M \), which is defined to be the kernel of a minimal surjection onto \(M \) by a free \(R \)-module. The module \(\tau^{-1}(M) = \text{syz}_{R}^{-1}(M) \in L_p(R) \) is determined by \(\text{syz}_R(\text{syz}_{R}^{-1}(M)) \cong M \), and can be computed via \(\text{syz}_R^{-1} \equiv (\text{syz}_{R}(M^\ast))^\ast \).

Definition 2.13. Given a ring \(A \), and \(A \)-modules \(X \) and \(Y \), \(\text{Hom}_A(X,Y) \) denotes \(\text{Hom}_A(X,Y)/(\text{maps factoring through projective } A \text{-modules}) \); and \(\text{End}_A(X) \) denotes \(\text{Hom}_A(X,X) \). An \(A \)-homomorphism is said to be stably zero if it factors through a projective \(A \)-module.

Lemma 2.14. ([17, Lemma 3.8]) Let \(A \) be a commutative ring, and let \(X \) and \(Y \) be finitely generated \(A \)-modules. The sequence

\[
\text{Hom}_A(X,A) \otimes_A Y \xrightarrow{\mu} \text{Hom}_A(X,Y) \longrightarrow \text{Hom}_A(X,Y) \longrightarrow 0
\]

is exact, where \(\mu : \text{Hom}_A(X,A) \otimes_A Y \rightarrow \text{Hom}_A(X,Y) \) is given by \(f \otimes y \mapsto (x \mapsto f(x)y) \).

Lemma 2.15. \(\text{End}_R(M) \cong \text{Ext}_R^1(\text{syz}_{R}^{-1}(M),M) \) as left \(\text{End}_R(M) \)-modules.
Remark 2.16. Let \(M \in L_p(R) \) be a nonfree indecomposable. Then \(\text{End}_R M \) is a (graded-)local ring (cf. [3] proposition 8), and therefore so is \(\overline{\text{End}}_R M \). It follows from Lemma 2.15 and Theorem 2.10 that the ring \(\text{End}_R(M) \) has a simple socle when considered as a left module over itself, and that if \(h : M \to M \) generates this socle then the AR sequence starting from \(M \) equals the pushout via \(h \) of the short exact sequence \(0 \to M \to F \to \text{syz}_R^1(M) \to 0 \) where \(F \) is free. In particular, if \(i \) denotes the given injective map \(M \to F \), and \(0 \to M \to X \to N \to 0 \) is the AR sequence starting from \(M \), then \(X \cong (M \oplus F)/((-h(m),i(m)))m \in M \).

3. Testing stable-vanishing with trace.

In this section, let \(R \) simply be a commutative ring, let \(Q = Q(R) \), and let \(M \) be a finitely generated \(R \)-module such that \(M \otimes_R Q \) is a projective \(Q \)-module. Let \((_,^*) \) denote \(\text{Hom}_R(_,R) \).

Notation 3.1. Given an \(R \)-algebra \(B \), let \(D_B(_,) \) denote \(\text{Hom}_R(_,B) \). Let \(v_B \) denote \(D_B(_,^*) = D_B \circ D_R(_,) \), and let \(\lambda_B \) denote the Hom-Tensor adjoint isomorphism \(\lambda_B : D_B(M^* \otimes_R _,-) \to \text{Hom}_R(_,B_M) \). We also let \(\mu_M \) denote the natural transformation \(\mu_M : M^* \otimes_R _,- \to \text{Hom}_R(_,M) \) given by \(f \otimes x \mapsto (m \mapsto f(m) x) \). For future reference, we note that for a given \(R \)-module \(X \), the map \(\lambda_B \circ (D_B \mu_M) : D_B \text{Hom}_R(M,X) \to \text{Hom}_R(X,v_B M) \) is given by the rule

\[
\lambda_B \circ (D_B \mu_M)(\sigma)(x)(f) = \sigma(\mu_M(f \otimes x)), \text{ for all } \sigma \in D_B \text{Hom}_R(M,X), x \in X, f \in M^*.
\]

Let \(E = Q/R \). The exact sequence \(0 \longrightarrow R \xrightarrow{i} Q \xrightarrow{q} E \longrightarrow 0 \) induces the exact commutative diagram

\[
\begin{array}{ccc}
0 & \longrightarrow & D_R \text{Hom}_R(M,_) \\
\downarrow \lambda_B \circ D_B \mu_M & & \downarrow \lambda_B \circ D_Q \mu_M \\
0 & \longrightarrow & \text{Hom}_R(_,v_R M) \\
\end{array}
\]

We now show that \(D_Q \mu_M \) is an isomorphism on the category of finitely generated \(R \)-modules, so that the second map in the composable pair

\[
D_R \text{Hom}_R(M,_) \xrightarrow{\lambda_B \circ D_R \mu_M} \text{Hom}_R(_,v_R M) \xrightarrow{q_*(\lambda_B \circ D_Q \mu_M)^{-1} i_*} D_E \text{Hom}_R(M,_)\]

is well-defined.

Lemma 3.2. [1] Appendix]

1. The map \(D_Q \mu_M \) is an isomorphism on finitely generated \(R \)-modules, and the sequence is exact.

2. If \(R \) is Gorenstein of dimension one, and both \(M \) and the input module \(X \) lie in \(\text{CM}(R) \), then the image of \(\lambda_R \circ D_R \mu_M \) consists of the stably zero maps \(X \longrightarrow v_R M \).

Proof. We can identify \(\mu_M \otimes_R Q \) with \(\mu_{M \otimes Q} : \text{Hom}_Q(M \otimes_R Q,Q) \otimes_Q (_,\otimes_R Q) \to \text{Hom}_Q(M \otimes_R Q,Q) \), which is an isomorphism because \(M \otimes_R Q \) is a projective \(Q \)-module. Thus \(D_Q \mu_M \)
is an isomorphism, since it can be viewed as $D_Q(\mu_M \otimes_R Q)$. The exactness of (3.3) is seen by chasing the diagram (3.2).

Now we assume the hypotheses of (2). Let $0 \rightarrow \text{syz}_R(M) \rightarrow F \overset{p}{\rightarrow} M \rightarrow 0$ be a short exact sequence, where F is a free R-module. Consider the commutative diagram

\[
\begin{array}{cccccc}
H \otimes_R M, & H \otimes_R M, \\
\downarrow \lambda & \downarrow \lambda,
\end{array}
\]

where the vertical maps are induced by $p: F \rightarrow M$, and the horizontal maps on the right are the isomorphisms induced by $M \cong M^{**}$ and $F \cong F^{**}$. It is easy to see that the image of the rightmost vertical map consists of the stably zero maps $X \rightarrow M$, and it follows that the third vertical map consists of the stably zero maps $X \rightarrow M^{**}$. Let H denote the map $\text{Hom}_R(M,X) \rightarrow \text{Hom}_R(F,X)$ induced by p. Since the top row of diagram (3.4) consists of isomorphisms, establishing surjectivity of the leftmost vertical map, namely D_RH, is sufficient for proving (2). Let $N = \text{cok}H$. By left-exactness of Hom, we have a left-exact sequence

\[
0 \rightarrow \text{Hom}_R(M,X) \xrightarrow{H} \text{Hom}_R(F,X) \rightarrow \text{Hom}_R(\text{syz}_R(M),X),
\]

and therefore N embeds into $\text{Hom}_R(\text{syz}_R(M),X)$. Thus $N \in \text{CM}(R)$, so $\text{Ext}_1^R(N,R) = 0$.

Therefore the sequence $0 \rightarrow N^* \rightarrow \text{Hom}_R(F,X)^* \xrightarrow{D_RH} \text{Hom}_R(M,X)^* \rightarrow 0$ is exact, so (2) is proved.

Lemma 3.3. Assume R is Gorenstein of dimension one, and let $M \in \text{CM}(R)$ and $h \in \text{End}_R M$. Then h is stably zero if and only if trace($gh \otimes Q$) $\in R$ for all $g \in \text{End}_R M$. (Recall the definition of trace, Definition 2.2)

Proof. Let η denote the isomorphism $\text{End}_R M \rightarrow \text{Hom}_R(M,M^{**})$ induced by $M \cong M^{**}$, and let θ denote $(\lambda_Q \circ D_Q\mu_M)^{-1}_{\text{tr}} : \text{Hom}_R(M,M^{**}) \rightarrow \text{Hom}_R(\text{End}_R M, Q)$. It follows from Lemma 3.2 that h is stably zero if and only if $[\theta(\eta h)](g) \in R$ for all $g : M \rightarrow M$. Thus, by the symmetry of trace, it suffices to show that $[\theta(\eta h)](g) = \text{trace}(hg \otimes Q)$. Let $\sigma : \text{End}_R M \rightarrow Q$ denote the map sending $g \in \text{End}_R M$ to trace($hg \otimes Q$). Thus, we wish to show $\theta(\eta h) = \sigma$; equivalently, $\iota_*(\eta h) = (\lambda_Q \circ D_Q\mu_M)(\sigma)$.

Take a finite collection of maps $\{\phi_i : M \otimes_R Q \rightarrow Q\}_i$ and elements $\{e_i\}_i \in M \otimes_R Q$, such that $w = \sum_i \phi_i(w)e_i$ for all $w \in M \otimes_R Q$; thus trace($hg \otimes Q$) $= \sum_i \phi_i((h \otimes Q)(e_i))$, as we mentioned in Definition 2.2. Given $m \in M$, and $f \in M^*$, let g denote the endomorphism $\mu_M(f \otimes m)$. By equation 3.1 $(\lambda_Q \circ D_Q\mu_M)(\sigma)(m)(f) = \sigma(g) = \text{trace}(hg \otimes Q) = \sum_i \phi_i((h \otimes Q)(g \otimes Q)(e_i)))$. Now using firstly that $g \otimes Q$ is given by $w \rightarrow (f \otimes Q)(w)m$, and then that $f \otimes Q$ and the ϕ_i’s have output in Q, we have

\[
(\lambda_Q \circ D_Q\mu_M)(\sigma)(m)(f) = \sum_i \phi_i((h \otimes Q)(f \otimes Q)(e_i)m)) = \sum_i (f \otimes Q)(e_i)\phi_i(h(m))
\]

\[
= (f \otimes Q)(\sum_i \phi_i(h(m))e_i) = f(h(m)) = \iota_*(\eta h)(m)(f).
\]

□
4. Our main result.

Our goal now is to prove Theorem 4.8, which is really a formula for the AR sequence beginning at M. For this section, let R be a one-dimensional Gorenstein ring which is either a complete local ring or a connected graded ring. Let \mathfrak{p} be a minimal prime of R and let $R' = R/\mathfrak{p}$. Set $Q = Q(R)$, $Q' = Q(R')$, and $m = m_R$.

Recall that for a commutative ring A, if M and N are finitely generated A-submodules of $Q(A)$, and M contains a faithful element w, i.e. $\text{Ann}_A(w) = 0$, then $\text{Hom}_A(M,N)$ is naturally identified with $(N : qQ(A))M = \{ q \in Q(A) | qM \subseteq N \}$. Essentially Theorem 4.8 will assert that the AR sequence beginning at any M supported at \mathfrak{p} is induced by an element $\gamma \in \text{End}_RF_m$ which may be found by the following recipe: Pick $\gamma' \in (R' : qQ \mathcal{J}(\overline{R'})) \setminus R'$, lift γ' from Q' to $\tilde{\gamma}' \in Q$, and find $z \in R$ such that $\mathfrak{p} = \text{Ann}_R(z)$ and $z\gamma' \notin R$; finally, set $\gamma = z\tilde{\gamma}'$. We first show that these steps for finding γ are well-defined.

Notation 4.1. Let $\mathfrak{J}(R')$ denote $(R' : qQ \mathcal{J}(\overline{R'}))$.

Lemma 4.2. We have $\mathfrak{J}(R') \subseteq \text{Hom}_R(m_{R'}, R')$, while $\mathfrak{J}(R') \not\subseteq R'$.

Proof. Let $D = R'$. As $m_D \subseteq \mathcal{J}(\overline{D})$, we have $\mathfrak{J}(D) \subseteq \text{Hom}_D(m_D, D)$. In the complete local case \overline{D} is a DVR, while in the connected graded case \overline{D} is a polynomial ring over a field by Lemma 9.5. Let π denote a generator for m_D, and let n be the positive integer such that the conductor ideal $(D : \pi \overline{D})$ equals $\pi^n\overline{D}$. It is clear that $\pi^{n-1}\overline{D} \subseteq \mathfrak{J}(D)$ and $\pi^{n-1}\overline{D} \not\subseteq D$. \hfill \square \hfill \square

Lemma 4.3. We have an R-algebra isomorphism $Q/\mathfrak{p}Q \cong Q'$.

Proof. If $x \in R$ is a (homogeneous) nonzerodivisor, we have $R_x = Q$. To see this, it suffices to check that a given (homogeneous) nonzerodivisor $y \in R$ becomes a unit in R_x. As Ry is m-primary, we have $x^l = ry$ for some $i \geq 1$ and some $r \in R$. Therefore y is a unit in R_x; hence $R_x = Q$. Now $Q/\mathfrak{p}Q = Q \otimes_R R' = R_x \otimes_R R' = R'_x$, which equals Q' by the same argument as above. \hfill \square \hfill \square

Lemma 4.4. Let γ' be a (homogeneous) element of $\mathfrak{J}(R') \setminus R'$ (which exists by Lemma 4.2) and let $\tilde{\gamma}'$ be a lift of γ' to Q (see Lemma 4.3). Then there exists (homogeneous) $z \in R$ such that $\mathfrak{p} = \text{Ann}_R(z)$ and $z\gamma' \notin R$.

Proof. Let ω denote the ideal $\text{Ann}_R(\mathfrak{p})$. Now $\omega \subseteq \text{Hom}_R(R', R)$ is, up to a graded shift, a canonical module for R' (cf. [6, Theorem 3.3.7] and [6, proposition 3.6.12]), and therefore we have $\text{End}_R\omega \cong R'$ (cf. [6, Theorem 3.3.4] and the proof of [6, proposition 3.6.9b]). We will also use that $\mathfrak{p} = \text{Ann}_R(\omega) = \text{Ann}_R(z)$ for each nonzero $z \in \omega$, which is true because all associated primes of R are minimal, so that any ideal strictly larger than \mathfrak{p} contains a nonzerodivisor.

Regarding ω as a subset of Q via $\omega \subseteq R \subseteq Q$, suppose that $\gamma'\omega \subseteq \omega$. Then the action of γ' on ω agrees with the multiplication on ω by some $r \in R$, so $\gamma' - r \in \text{Ann}_Q(\omega) = \mathfrak{p}Q$. But then $\gamma' \in R'$ is a contradiction. So there must exist $z \in \omega$ such that $\gamma'z \notin \omega$. As $\text{Ann}_Q(\mathfrak{p}) \cap R = \omega$, we thus have $z\gamma' \notin R$. \hfill \square \hfill \square

Lemma 4.5. For $\tilde{\gamma}' \in Q$ and $z \in R$ as in Lemma 4.4 we have $z\tilde{\gamma}' \in \text{End}_R m$.

Proof. From Lemma 4.2 we have $\gamma'mR' \subseteq R'$. Since $zR \supseteq R'$, it follows that $\tilde{\gamma}'zM \subseteq zR$, thus $z\tilde{\gamma}' \in m^*$. It remains to observe that m has no free direct summand. But any proper direct summand of an ideal has nonzero annihilator; and if m were free R would be regular. \hfill \square \hfill \square
We have now shown that the steps for for finding γ, given in the introduction of this section, are well-defined. We need one more preliminary lemma.

Lemma 4.6. Let $M \in L_p(R)$, and $h \in \text{End}_R M$. Then $\text{trace}(h \otimes Q') = \text{trace}(h \otimes Q) + pQ$.

Proof. Take $\{\phi_i : M \otimes_R Q \rightarrow Q\}_i$ and $\{\epsilon_i : M \otimes_R Q\}_i$ such that $w = \sum_i \phi_i(w)e_i$ for all $w \in M \otimes_R Q$. If $\phi'_i = \phi \otimes_R R' : M \otimes_R Q' \rightarrow Q'$ and ϵ'_i denotes the image of ϵ_i in $M \otimes_R Q'$, then $w' = \sum_i \phi'_i(w')e'_i$ for all $w' \in M \otimes_R Q'$. Now $\text{trace}(h \otimes Q') = \sum_i \phi'((h \otimes Q)(e'_i)) = \sum_i \phi(h \otimes Q(e_i)) + pQ = \text{trace}(h \otimes Q) + pQ$. □ □

Notation 4.7. Let γ' be a (homogeneous) element of $\mathfrak{g}(R') \setminus R'$, let $\tilde{\gamma}'$ be a lift of γ' to Q and let $z \in R$ (homogeneous) such that $p = \text{Ann}_R(z)$ and $\tilde{\gamma}'z \notin R$. (Those steps are well-defined by the above lemmas.) Let $\gamma = z\tilde{\gamma}'$. Assume $M \in L_p(R)$ has no free direct summands. Then there exists no surjection $M \rightarrow R$, so $M^* = \text{Hom}_R(M, m)$, hence $M \cong \text{Hom}_R(M, m)^*$ is a module over the ring $\text{End}_R m$. Therefore γ induces an endomorphism of M, by Lemma 4.5. Denote it by γ_M. Denote by $[\gamma_M]$ the class of γ_M in $\text{End}_R M$.

Theorem 4.8. Assume $M \in L_p(R)$ is a nonfree indecomposable. Then, using Notation 4.7 we have $[\gamma_M] \in \text{soc}(\text{End}_R M)$. Moreover, $[\gamma_M] \neq 0$ provided $\dim_{R_p}(M \otimes_R R'_1)$ is a unit in R. Thus in this case γ_M induces the AR sequence beginning at M (see Remark 2.16).

Proof. First we show $[\gamma_M] \in \text{soc}(\text{End}_R M)$, which by Lemma 3.3 is equivalent to having $\text{trace}(\gamma h \otimes Q) \in R$ for an arbitrary nonisomorphism $h : M \rightarrow M$. As $\text{End}_R M/(\text{mEnd}_R M)$ is an artinian local ring, there exists some $i \geq 1$ such that $h^i \in \text{mEnd}_R M$, and thus $h^i \otimes_R R' \in \text{mEnd}_R(M')$. So $\text{trace}(h \otimes Q') \in \mathfrak{j}(R')$, by Lemma 2.5. Now using Lemma 4.6, $\tilde{\gamma}' \text{trace}(h \otimes Q) + pQ \in \gamma' \mathfrak{j}(R') \subset R + pQ$, whence $\gamma \text{trace}(h \otimes Q) \in zR + zpQ = zR \subset R$.

Now suppose $n := \dim_{R'_p}(M \otimes_R R'_1)$ is a unit in R. We have $\text{trace}(\gamma_M \otimes Q) = \gamma \text{trace}(1_{M \otimes Q}) \in \gamma(n + pQ)$ by Lemma 4.6, while $\gamma(n + pQ) = n\gamma$, since $\gamma p = \gamma' zp = 0$. Since $\gamma \notin R$ by definition, we have $n\gamma \notin R$, and thus $[\gamma_M] \neq 0$ by Lemma 3.3. □ □

The following lemma, which we use in Section 6, is for locating γ' when R' is Gorenstein.

Lemma 4.9. Assume R' is Gorenstein and connected graded, and let $g \in \text{Hom}_R(m_{R'}, R')$ be a homogeneous element, and $a = \text{deg} g$. If $R'_0 = 0$, then $g \in \mathfrak{g}(R') \setminus R'$.

Proof. Let $D = R'$. Since $D_a = 0$, g is not an element of D, and it remains to show that $g \in \mathfrak{g}(D)$. As D is Gorenstein, $\dim_k \text{Ext}_D^1(k, D) = 1$, where $k = D_0$. Then applying $(\cdot)^* = \text{Hom}_D((\cdot), D)$ to the short exact sequence $0 \rightarrow m_D \rightarrow D \rightarrow k \rightarrow 0$ yields $\dim_k (m_D^*(D)/D) = 1$. By Lemma 4.2, there exists some homogeneous $\gamma' \in \mathfrak{g}(D) \setminus D$. Then $\gamma' \in m_D^* \setminus D$, so $m_D^* = D + k \gamma'$. Therefore $g = d + d'\gamma'$ for some $d \in D_a$ and $d' \in D$. But $d = 0$ since $D_a = 0$. Thus $g \in d' \mathfrak{g}(D) \subset \mathfrak{g}(D)$. □ □

5. **Stable AR Quivers.**

In this section we provide the background for those unfamiliar with stable translation quivers and their tree classes. Confer, e.g., [1] and [5], although the meaning of “valued” is different in [5].

Definition 5.1. A quiver is a directed graph $\Gamma = (\Gamma_0, \Gamma_1)$, where Γ_0 is the set of vertices and Γ_1 is the set of arrows. A morphism of quivers $\phi : \Gamma \rightarrow \Gamma'$ is a pair $(\phi_0 : \Gamma_0 \rightarrow \Gamma'_0, \phi_1 : \Gamma_1 \rightarrow \Gamma'_1)$ such that ϕ_1 applied to an arrow $x \rightarrow y$ is an arrow $\phi(x) \rightarrow \phi(y)$. For $x \in \Gamma_0$, x^- denotes the
set \(\{ y \in \Gamma_0 \mid \exists \text{arrow } y \rightarrow x \text{ in } \Gamma_1 \} \); and \(x^+ = \{ y \in \Gamma_0 \mid \exists \text{arrow } x \rightarrow y \text{ in } \Gamma_1 \} \). \(\Gamma \) is \textit{locally finite} if \(x^+ \) and \(x^- \) are finite sets for each \(x \in \Gamma_0 \). A \textit{loop} is an arrow from a vertex to itself. A \textit{multiple arrow} is a set of at least two arrows from a given vertex to another given vertex.

A \textit{valued quiver} is a quiver \(\Gamma \) together with a map \(v : \Gamma_1 \rightarrow \mathbb{Z}_{\geq 1} \times \mathbb{Z}_{\geq 1} \). By a \textit{graph} we mean an undirected graph. A \textit{valued graph} is a graph \(G \) together with specified integers \(d_{xy} \geq 1 \) and \(d_{yx} \geq 1 \) for each edge \(x \rightarrow y \).

Definition 5.2. A \textit{stable translation quiver} is a locally finite quiver together with a quiver automorphism \(\tau \) called the \textit{translation}, such that:

- \(\Gamma \) has no loops and no multiple arrows.
- \(\text{For } x \in \Gamma_0, \ x^- = \tau(x)^+ \).

Given a stable translation quiver \((\Gamma, \tau)\) and a map \(v : \Gamma_1 \rightarrow \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \), the triple \((\Gamma, v, \tau)\) is called a \textit{valued stable translation quiver} if \(v(x \rightarrow y) = (a, b) \Leftrightarrow v(\tau(y) \rightarrow x) = (b, a) \). A stable translation quiver is \textit{connected} if it is non-empty and cannot be written as disjoint union of two subquivers each stable under the translation.

Definition 5.3. Let \(C \) be a full subquiver of a quiver \(\Gamma \) which satisfies Definition 5.2 except possibly for the no-loop condition. We call \(C \) a \textit{component} of \(\Gamma \) if:

1. For all vertices \(x \in C \), we have \(\tau x \in C \) and \(\tau^{-1} x \in C \).
2. \(C \) is a union of connected components of the underlying undirected graph of \(\Gamma \).
3. There is no proper subquiver of \(C \) that satisfies (1) and (2).

Definition 5.4. By a \textit{directed tree} we shall mean a quiver \(T \), with no loops or multiple arrows, such that the underlying undirected graph of \(T \) is a tree, and for each \(x \in T \), the set \(x^- \) has at most one element.

Given a directed tree \(T \), there is an associated stable translation quiver \(\mathbb{Z}T \) defined as follows. The vertices of \(\mathbb{Z}T \) are the pairs \((n, x)\) with \(n \in \mathbb{Z} \) and \(x \) a vertex of \(T \). The arrows of \(\mathbb{Z}T \) are determined by the following rules: Given vertices \(x, y \in T \), and \(n \in \mathbb{Z} \),

- \((n, x) \rightarrow (n, y) \in \mathbb{Z}T \Leftrightarrow x \rightarrow y \in T \Leftrightarrow (n, y) \rightarrow (n-1, x) \in \mathbb{Z}T \);
- If \(n' \notin [n, n-1] \), there is no arrow \((n, x) \rightarrow (n', y)\).

Remark 5.5. Let \(T \) be a valued quiver which is also a directed tree. Then there is a unique extension of \(v \) to \(\mathbb{Z}T \) such that the latter becomes a valued stable translation quiver. Namely, if \(v(x \rightarrow y) = (a, b) \), then \(v((n, x) \rightarrow (n, y)) = (a, b) \), and \(v((n, y) \rightarrow (n-1, x)) = (b, a) \).

Lemma 5.6. Let \(T \) and \(T' \) be (valued) directed trees. Then \(\mathbb{Z}T \cong \mathbb{Z}T' \) as (valued) stable translation quivers if and only \(T \cong T' \) as (valued) graphs.

Proof. See [5, proposition 4.15.3].

A group \(\Pi \) of automorphisms (commuting with the translation) of a stable translation quiver \(\Gamma \) is said to be \textit{admissible} if no orbit of \(\Pi \) on the vertices of \(\Gamma \) intersects a set of the form \(\{ x \} \cup x^+ \) or \(\{ x \} \cup x^- \) in more than one point. The quotient quiver \(\Gamma / \Pi \), with vertices the \(\Pi \)-orbits of \(\Gamma_0 \), and with the induced arrows and translation, is also a stable translation quiver. A surjective morphism of stable translation quivers \(\phi : \Gamma \rightarrow \Gamma' \) is called a \textit{covering} if, for each \(x \in \Gamma_0 \), the induced maps \(x^- \rightarrow \phi(x)^- \) and \(x^+ \rightarrow \phi(x)^+ \) are bijective. Note that if \(\Pi \) is an admissible group of automorphisms of \(\Gamma \),

\[
\text{(5.1) the canonical projection } \Gamma \rightarrow \Gamma / \Pi \text{ is a covering.}
\]
Theorem 5.7. (Riedtmann Structure Theorem; see [5, Theorem 4.15.6]) Given a connected stable translation quiver Γ, there is a directed tree T and an admissible group of automorphisms $\Pi \subseteq \text{Aut}(\mathbb{Z}T)$ such that $\Gamma \cong \mathbb{Z}T/\Pi$. In particular, we have a covering $\mathbb{Z}T \rightarrow \Gamma$. The underlying undirected graph of T is uniquely determined by Γ, up to isomorphism.

The underlying undirected graph of T is called the tree class of Γ.

Remark 5.8. Formally, the tree class T of Γ is constructed as follows (as in the proof of Theorem 5.7, which we will not reproduce here). Choose any vertex $x \in \Gamma$, and define the vertices of T to be the set of paths

$$(x = y_0 \rightarrow y_1 \rightarrow \cdots \rightarrow y_n) \quad (n \geq 0)$$

for which no $y_i = \tau(y_{i+2})$. The arrows of T are

$$(x = y_0 \rightarrow y_1 \rightarrow \cdots \rightarrow y_{n-1}) \rightarrow (x = y_0 \rightarrow y_1 \rightarrow \cdots \rightarrow y_n).$$

Remark 5.9. Suppose Γ is a valued stable translation quiver, and let $\phi : \mathbb{Z}T \rightarrow \Gamma$ be a covering, which exists by the Theorem. Now $\mathbb{Z}T$ becomes a valued stable translation quiver, by setting $v(x \rightarrow y) = v(\phi(x \rightarrow y))$. In particular, T becomes a valued quiver.

Definition 5.10. The valued tree class of a stable translation quiver Γ is a valued graph (T, v) where T denotes the tree class of Γ, and v : (edges of T) $\rightarrow \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}$ is given as in Remark 5.9.

Definition 5.11. Let (Γ, v) be a valued, locally finite quiver without multiple arrows. For $x \rightarrow y$ in Γ, we write $v(x \rightarrow y) = (d_{xy}, d_{yx})$. If there is no arrow between x and y, we set $d_{xy} = d_{yx} = 0$. Let $Q_{>0}$ be the set of positive rational numbers.

(i) A subadditive function on (Γ, v) is a $Q_{>0}$-valued function f on the set of vertices of Γ such that $2f(x) \geq \sum_{y \in \Gamma} d_{xy}f(y)$, for each vertex x.

(ii) An additive function on (Γ, v) is a $Q_{>0}$-valued function f on the set of vertices of Γ such that $2f(x) = \sum_{y \in \Gamma} d_{xy}f(y)$, for each vertex x.

Lemma 5.12. [5, Theorem 4.5.8] Let (Γ, v) be a connected valued quiver without loops or multiple arrows. Suppose f is a subadditive function on Γ, and assume Γ has infinitely many vertices. Then:

1. The underlying valued graph of Γ is an infinite Dynkin diagram.
2. If f is unbounded, or if f is not additive, then the underlying valued graph of Γ is A_{∞}.

6. THE COHEN-MACAULAY SETTING

The over-arching ideas of this section are largely from [1], which in turn is based partly on [9]. Since we confine our arguments to the commutative setting, they are sometimes slightly easier. Also, the proof of [1, Lemma 1.23] is flawed, since its penultimate sentence is false, and we give a correct version as Lemma 5.14. A principal goal of this section is to provide some sufficient conditions for guaranteeing that a given component of the stable AR quiver of a hypersurface is a tube; see Proposition 5.23.

Assume R is a Cohen-Macaulay complete local ring, with maximal ideal $m = m_R$. (But the same results hold when R is connected graded instead of complete local.)

Definition 6.1. If M and N are indecomposables in $\text{CM}(R)$, let $\text{Irr}(M, N)$ denote the module of nonisomorphisms $M \rightarrow N$ modulo those which are not irreducible. Let k_M denote the division ring $(\text{End}_R M)/\mathcal{J}(\text{End}_R M)$. Thus $\text{Irr}(M, N)$ is a right k_M-space, and a left k_N-space.
Definition 6.2. The Auslander-Reiten quiver of R is the valued quiver defined as follows:
- Vertices are isoclasses of indecomposables in $\text{CM}(R)$.
- There is an arrow $M \rightarrow N$ if and only if there exists an irreducible morphism $M \rightarrow N$, i.e. $\text{Irr}(M, N) \neq 0$. The value $\nu(M \rightarrow N)$ of the arrow $M \rightarrow N$ is (a, b) where a is the dimension of $\text{Irr}(M, N)$ as a right k_M-space, and b is the dimension of $\text{Irr}(M, N)$ as a left k_N-space.

Recall that we use τ to denote the AR-translate (defined at the end of Definition 2.7).

Lemma 6.3. Let M and N be indecomposables in $L_p(R)$.

1. If $0 \rightarrow \tau N \rightarrow E \rightarrow N \rightarrow 0$ is an AR sequence, the number of copies of M appearing in a direct sum decomposition of E equals the dimension of $\text{Irr}(M, N)$ as a right k_M-space.
2. If $0 \rightarrow M \rightarrow E' \rightarrow \tau^{-1}M \rightarrow 0$ is an AR sequence, then the number of copies of N appearing in a direct sum decomposition of E' equals the dimension of $\text{Irr}(M, N)$ as a left k_N-space.

Proof. See [17, Lemmas 5.5 and 5.6].

Remark 6.4. Suppose that $k = R/m$ is algebraically closed. Then in the notation of Lemma 6.3 we have $k = k_M = k_N$, and it therefore follows from Lemma 6.3 that the number of copies of N appearing in a decomposition of E' equals the number of copies of M appearing in a decomposition of E.

Notationally, we allow τ to be a partially-defined morphism on the AR quiver of R; τx is defined precisely when the vertex x corresponds to a non-projective module in $L_p(R)$, by [17, Theorem 3.4]. The following fact is used in [1], and the proof essentially follows that of [4, VII 1.4].

Lemma 6.5. Let $x \rightarrow y$ be an arrow in the AR quiver of R, and let $(a, b) = \nu(x \rightarrow y)$. If νy is defined, then $\nu(\tau y \rightarrow x) = (b, a)$. If νx and νy are both defined, then $\nu(\tau x \rightarrow \tau y) = \nu(x \rightarrow y)$.

Proof. We need not prove the last sentence, as it follows from the previous. Let M and $N \in \text{CM}(R)$ be the modules corresponding to x and y respectively. We first show k_N and $k_{\tau N}$ are isomorphic k-algebras, where $k = R/m$. Let $0 \rightarrow \tau N \overset{p}{\rightarrow} E \overset{q}{\rightarrow} N \rightarrow 0$ be an AR sequence. Given $h \in \text{End}_R N$, there exists a commutative diagram

\[
\begin{array}{ccccccccc}
0 & \rightarrow & \tau N & \overset{p}{\rightarrow} & E & \overset{q}{\rightarrow} & N & \rightarrow & 0 \\
& & \uparrow h' & & \uparrow h & & \downarrow h & & \\
0 & \rightarrow & \tau N & \overset{p}{\rightarrow} & E & \overset{q}{\rightarrow} & N & \rightarrow & 0
\end{array}
\]

Indeed, note that hq is not a split epimorphism, because if h is surjective, then h is an isomorphism, and thus hq is not a split epimorphism because q is not. Therefore, by Definition 2.7 there exists $u : E \rightarrow E$ such that $hq = qu$, and the existence of h' follows.

By the dual argument, any given $h' \in \text{End}_R(\tau N)$ can be fit into a similar commutative diagram.

We wish to show that $h \mapsto h'$ induces a well-defined map $k_N \rightarrow k_{\tau N}$. If so then it is a surjective ring map from a division ring, hence an isomorphism, so we will be done. It suffices to show that, given any commutative diagram (6.1) such that h is a nonisomorphism, it follows that h' is also a nonisomorphism. Suppose, to the contrary, that h is an nonisomorphism.
and \(h' \) is an isomorphism. We may assume \(h' \) is the identity map, since we could certainly compose the diagram \((6.1)\) with a similar diagram which has \((h')^{-1}\) on the left. As \(h \) is not a split epimorphism, it factors through \(q \). But then the top sequence in \((6.1)\) splits, cf. [13] Ch. III, Lemma 3.3; and this of course is a contradiction. Thus \(k_N \cong k_{\tau N} \) as \(k \)-algebras.

In particular, \(\dim_k(k_N) = \dim_k(k_{\tau N}) \). As \(\dim_k \text{Irr}(M,N) = \dim_{k_N} \text{Irr}(\tau N,M) \) is an immediate consequence of Lemma 6.3, our aim is to show \(\dim_{k_N} \text{Irr}(M,N) = \dim_{k_{\tau N}} \text{Irr}(\tau N,M) \). By the former, we have \(\dim_k \text{Irr}(M,N) = \dim_k \text{Irr}(\tau M,N) \). Thus, \(\dim_{k_N} \text{Irr}(M,N) = \dim_k \text{Irr}(M,N)/\dim_{k_N} = \dim_k \text{Irr}(\tau N,M)/\dim_{k_{\tau N}} = \dim_{k_{\tau N}} \text{Irr}(\tau N,M) \).

Definition 6.6. If \(R \) is Gorenstein, the *stable Auslander-Reiten (AR) quiver* of \(R \) is the valued quiver defined as in Definition [6.2] except that the vertices are only the isoclasses of nonfree indecomposable modules \(M \in L_p(R) \). By a *stable AR component*, we shall mean a component (Definition 5.3) of the stable AR quiver.

Definition 6.7. Let \((\Gamma, \tau) \) be a translation quiver, and \(x \) a vertex of \(\Gamma \). If \(x = \tau^n x \) for some \(n > 0 \), we say that \(x \) is \(\tau \)-periodic. A module \(M \in \text{CM}(R) \) is said to be \(\tau \)-periodic if it corresponds to a \(\tau \)-periodic vertex in the AR quiver of \(R \), i.e., \(M \cong \tau^n M \). When \(R \) is Gorenstein of dimension one, we will omit the prefix “\(\tau \)-” and just say \(M \) is periodic.

The following is well-known.

Lemma 6.8. If \((\Gamma, \tau) \) is a connected translation quiver containing a \(\tau \)-periodic vertex, then all of its vertices are \(\tau \)-periodic.

Proof. If \(x \) is a vertex in \(\Gamma \) and \(\tau^n x = x \), then \(\tau^n \) induces a permutation on the finite set \(x^- \), and so some power of \(\tau^n \) stabilizes \(x^- \) pointwise. Thus each vertex in \(x^- \) is \(\tau \)-periodic; likewise for \(x^+ \), so every vertex in \(\Gamma \) is \(\tau \)-periodic by induction.

Definition 6.9. We say that a connected translation quiver is periodic if one, equivalently all, of its vertices is \(\tau \)-periodic.

Definition 6.10. A valued stable translation quiver \(\Gamma \) is called a tube if \(\Gamma \cong ZA_{\infty}/\langle \tau^n \rangle \) for some \(n \geq 1 \). If \(n = 1 \), \(\Gamma \) is called a homogeneous tube.

Remark 6.11. Let \(\Gamma \) be a connected periodic stable translation quiver, and suppose the valued tree class of \(\Gamma \) is \(A_{\infty} \). Then \(\Gamma \) is a tube. To see this, let \(\Pi \) be an admissible group of automorphisms of \(ZA_{\infty} \) such that \(\Gamma \cong ZA_{\infty}/\Pi \). Note that every automorphism of the stable translation quiver \(ZA_{\infty} \) is of the form \(\tau^n \) for some \(n \geq 0 \). Thus \(\Pi = \langle \tau^n \rangle \) for some \(n \geq 0 \); and the periodicity implies \(n \geq 1 \).

Notation 6.12. If \(R \) is Gorenstein of dimension one, and \(M \) is an indecomposable in \(L_p(R) \), define an \(R \)-module \(\text{push}(M) \) as follows. If \(M \) is free, let \(\text{push}(M) = 0 \). Otherwise let \(\text{push}(M) \) denote the unique module (up to isomorphism) such that there exists an AR sequence \(0 \rightarrow M \rightarrow \text{push}(M) \rightarrow \text{syz}_{R}^{-1}(M) \rightarrow 0 \). More generally, if \(M = \bigoplus_{i=1}^{n} M_i \) with each \(M_i \) in \(L_p(R) \), then we set \(\text{push}(M) = \bigoplus_{i=1}^{n} \text{push}(M_i) \).

Notation 6.13. (See, e.g., [15] 14.1-14.6.) For an \(R \)-module \(M \), let \(e(M) \) denote the multiplicity of \(M \). This can be defined as \(e(M) = \lim_{n \rightarrow \infty} \frac{d}{n^d} \text{length}(M/m^n M) \), where \(d = \dim R \), but the reader may ignore this definition; we use only the following properties:

- If \(0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0 \) is exact, then \(e(M) = e(M') + e(M'') \).
- For all \(M \in \text{CM}(R) \), \(e(M) \) is a positive integer.
Notation 6.14. Define a function e_{avg} from τ-periodic maximal Cohen-Macaulay R-modules to $\mathbb{Q}_{>0}$ as follows: If M is τ-periodic of period n, let $e_{\text{avg}}(M) = \frac{1}{n} \sum_{i=0}^{n-1} e(\tau^i(M))$.

Lemma 6.15. Assume R is Gorenstein of dimension one, and $M \in L_p(R)$ is indecomposable and periodic. If $\text{push} M = X \oplus F$ where X has no free direct summands and F is a (possibly zero) free module, then X is periodic, and $e_{\text{avg}}(\text{push} M) \leq 2 e_{\text{avg}}(M)$.

Proof. We know X is periodic from Lemma 6.8. Note that if $N \in \text{CM}(R)$ is periodic, then for any $j \in \mathbb{Z}$, and $n \in \mathbb{N}$ a multiple of the period of N, $\sum_{i=j}^{n+j-1} e(\tau^i N) = ne_{\text{avg}}(N)$. For each integer i, we have by Lemma 6.5 an AR sequence $0 \rightarrow \tau^{i+1} M \rightarrow F_i \oplus \tau^i X \rightarrow \tau^i M \rightarrow 0$, where F_i is a (possibly zero) free module. So $e(\tau^i X) \leq e(\tau^{i+1} M) + e(\tau^i M)$, hence $\sum_{i=1}^{n} e(\tau^i X) \leq \sum_{i=1}^{n} e(\tau^{i+1} M) + \sum_{i=1}^{n} e(\tau^i M)$ for each $n \in \mathbb{N}$. This inequality gives the desired result by taking n to be a common multiple of the periods of M and X, and dividing both sides by n. \qed

The following goes back at least to [9] (in a slightly different setting).

Lemma 6.16. Let C be a connected τ-periodic valued stable translation quiver which is a subquiver of the stable AR quiver of R. Then the valued tree class of C admits a subadditive function (Definition 5.11).

Proof. Let T denote the valued tree class (Definition 5.10) of C. By definition of T, we have a value-preserving covering $\phi: \mathbb{Z}T \rightarrow C$. Define a function $f: \mathbb{Z}T \rightarrow \mathbb{Q}_{>0}$ by the rule $f(x) = e_{\text{avg}}(\phi(x))$. We claim that the restriction of f to T is a subadditive function. That is, $2f(x) \geq \sum_{y \in T} d_{yx} f(y)$, for each vertex x of T. By Lemma 6.5, $d_{yx} = d_{(\tau^{-1} y)x}$ for all $x, y \in C$, hence for all $x, y \in \mathbb{Z}T$. In what follows, for any $x \in T$, the sets x^{-} and x^{+} will always be taken with respect to $\mathbb{Z}T$; to signify the predecessors of x with respect to T we can use $x^{-} \cap T$. If $x \in T$, then x^{+} equals the disjoint union of $x^{+} \cap T$ and $\tau^{-1}(x^{-} \cap T)$. Now, we have

$$
\sum_{y \in T} d_{yx} f(y) = \sum_{y \in x^{-} \cap T} d_{yx} f(y) + \sum_{y \in x^{+} \cap T} d_{yx} f(y) = \sum_{y \in x^{-}} d_{(\tau^{-1} y)x} f(\tau^{-1} y) + \sum_{y \in x^{+}} d_{yx} f(y) = \sum_{y \in x^{+}} d_{yx} f(y).
$$

So subadditivity of f is equivalent to $2f(x) \geq \sum_{y \in x^{+}} d_{yx} f(y)$. Since ϕ is a covering, $\sum_{y \in x^{+}} d_{yx} f(y) = \sum_{y \in \phi(x)^{+}} d_{\phi(y)x} e_{\text{avg}}(y)$, which is bounded by $2 e_{\text{avg}}(\phi(x))$ by Lemma 6.15. So f is subadditive. \qed

Lemma 6.17. Assume R is Gorenstein, let $M \in L_p(R)$ be a nonfree indecomposable, and suppose there exists an irreducible map from M to itself. Let C denote the component of the stable AR quiver containing M, and assume C is infinite. Then C is a homogeneous tube with a loop at the end:

$$
\underbrace{M = X_0 \hspace{1cm} X_1 \hspace{1cm} X_2 \hspace{1cm} X_3 \hspace{1cm} \ldots}
$$

In particular, $\tau X_i \cong X_i$ for all $X_i \in C$.

Proof. First we show that $M \cong \tau M$. If not, then the AR sequence ending in M is $0 \rightarrow \tau M \rightarrow M \oplus \tau M \oplus N \rightarrow M \rightarrow 0$ for some $N \in \text{CM}(R)$. Then $e(N) = 0$, hence $N = 0$. Now Miyata’s Theorem [16, Theorem 1] says that the given AR sequence splits, which is a contradiction. So $\tau M \cong M$.

13
Since \(C \) has a loop, it does not satisfy the definition of stable translation quiver (Definition 5.2). But removing the loops in \(C \) (and keeping all vertices and all non-loop arrows), we get a \(\tau \)-periodic connected stable translation quiver; call it \(\Gamma \), and let \(T \) denote valued tree class of \(\Gamma \). Now \(T \) admits a subadditive function given by \(e_{\text{avg}} \), as in the proof of 6.16 From the fact that \(\Gamma \) is not a full subquiver of the AR quiver of \(R \), it follows that \(e_{\text{avg}} \) is strictly subadditive (i.e., not additive). As \(\Gamma \) is infinite and \(\tau \)-periodic, \(T \) must be infinite. Therefore \(T \cong A_\infty \) by Lemma 5.12 and \(\Gamma \cong A_\infty/(\tau) \), by Remark 6.11 So \(\Gamma \) has the form

\[
X_0 \longrightarrow X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow \ldots
\]

Suppose \(M = X_i \) for some \(i > 0 \). Then we have an AR sequence \(0 \rightarrow X_i \rightarrow X_i \oplus X_{i-1} \oplus X_{i+1} \oplus F \rightarrow X_i \rightarrow 0 \), for some free module \(F \), so \(e(X_i) \geq e(X_{i-1}) + e(X_{i+1}) \). But the AR sequences ending in \(X_{i-1} \) and \(X_{i+1} \) give us \(2e(X_{i+1}) > e(X_i) \) and \(2e(X_{i-1}) \geq e(X_i) \). These inequalities contradict the previous one, so \(M = X_0 \).

The following “Maranda-type result” corresponds to Lemma 1.24 in [1]. In our setting, namely that of a Cohen-Macaulay complete local ring, this result is well-known (but possibly has only been stated for the case when the ring is an isolated singularity). The following proof can be found, for example, in [12, proposition 15.8] and its corollaries.

Lemma 6.18. Let \(M \) and \(N \) be nonisomorphic indecomposables in \(L_p(R) \), and let \(x \in m \) be a nonzerodivisor. Then there exists \(i \geq 1 \) such that \(M/x^iM \) and \(N/x^iN \) are nonisomorphic indecomposable modules.

Proof. Since \(M \) lies in \(L_p(R) \), \(\text{Ext}_R^1(M,N) \) has finite length (since for any nonmaximal prime \(p \), we have \(0 = \text{Ext}_R^1(M_p,N_p) = \text{Ext}_R^1(M,N)_p \)). Therefore we may assume, after replacing \(x \) by a suitable power of itself, that \(x \text{Ext}_R^1(M,N) = 0 \). By applying \(\text{Hom}_R(M,-) \) to the commutative exact diagram

\[
\begin{array}{ccc}
0 & \rightarrow & N \\
\downarrow x & \downarrow & \downarrow x^2 N \\
0 & \rightarrow & N/x^2 N
\end{array}
\]

we obtain a commutative exact diagram

\[
\begin{array}{ccc}
\text{Hom}_R(M,N) & \rightarrow & \text{Hom}_R(M,N/x^2 N) \\
\downarrow & & \downarrow x \\
\text{Hom}_R(M,N) & \rightarrow & \text{Ext}_R^1(M,N)
\end{array}
\]

Consider the maps \(\theta : \text{Hom}_R(M,N) \rightarrow \text{Hom}_R(M/x^2 M,N/x^2 N) \) and \(\theta_2 : \text{Hom}_R(M/x^2 M,N/x^2 N) \rightarrow \text{Hom}_R(M/x^2 M,N/x^2 N) \) given by tensoring all maps with \(R/(x) \). Notice that in diagram (6.2), the horizontal and vertical maps into \(\text{Hom}_R(M,N/x^2 M) \) can be identified with \(\theta \) and \(\theta_2 \) respectively, while the rightmost vertical map is zero. Therefore a diagram chase yields

\[
\text{im}(\theta) = \text{im}(\theta_2).
\]

We claim \(i = 2 \) will suffice. Suppose \(M/x^2 M \) is not indecomposable. Then there exists a nontrivial idempotent \(e \in \text{End}_R(M/x^2 M) \). Consider the equation (6.3) in the case \(M = N; \)
now \(\theta \) and \(\theta_2 \) are of course ring homomorphisms. Since \(\text{End}_R M \) is (noncommutative-) local, so is \(\text{im} \theta \), and therefore \(\theta_2(e) \) is either 0 or 1. Since \(1-e \in \text{End}_R (M/x^2 M) \) is also a nontrivial idempotent, we may assume \(\theta_2(e) = 0 \), i.e. \(\text{im} e \subseteq xM/x^2 M \). But then \(e^2 = 0 \) is a contradiction.

Now suppose \(\varphi: M/x^2 M \to N/x^2 N \) is an isomorphism, with inverse \(\psi: N/x^2 N \to M/x^2 M \). By (6.3), there exist \(\tilde{\varphi}: M \to N \) such that \(\tilde{\varphi} \circ_R (R/x) = \varphi \circ_R (R/x) \), and \(\tilde{\psi}: M \to N \) such that \(\tilde{\psi} \circ_R (R/x) = \psi \circ_R (R/x) \). By Nakayama’s Lemma, \(\tilde{\varphi} \) and \(\tilde{\psi} \) are surjective. Thus \(\tilde{\psi} \tilde{\varphi} \) is a surjective endomorphism, equivalently, an isomorphism; and thus \(\tilde{\varphi} \) is an isomorphism. \(\square \)

Lemma 6.19. Assume \(\text{dim} R = 1 \), and let \(M \) be an indecomposable in \(\text{CM}(R) \). Then there exists an irreducible morphism \(M \to R \) if and only if \(M \) is isomorphic to a direct summand of \(m \). If \(R \) is Gorenstein, there exists an irreducible morphism \(R \to M \) if and only if \(M \) is isomorphic to a direct summand of \(m^* \).

Proof. Write \(m \) as a direct sum of indecomposables, \(m = \bigoplus_i m_i \). Let \(i_i \) denote the inclusion map \(m_i \to R \). To see that \(i_i \) is irreducible, take a factorization \(i_i = h g \) in \(\text{CM}(R) \), where \(h \) is not a split epimorphism. Then \(h \) is not onto, so \(\text{im} h \subseteq m \). If \(h' \) denotes the map into \(m \) given by \(x \to h(x) \), and \(p_i \) denotes the projection \(m \to m_i \), we have that \(p_i h' g = 1_{m_i} \), so \(g \) is a split monomorphism; hence \(i_i \) is irreducible. Now let \(M \) be an indecomposable in \(\text{CM}(R) \) and let \(f: M \to R \) be an irreducible morphism. Let \(i \) denote the inclusion map \(m \to R \). Since \(f \) is not a split epimorphism, \(\text{im} f \subseteq m \), hence \(f = ig \) for some \(g: M \to m \). As \(i \) is certainly not a split epimorphism, \(g \) is a split monomorphism.

For the last sentence of the statement, note that the irreducible maps from \(R \) are obtained by dualizing the irreducible maps into \(R \). \(\square \)

We recall the Harada-Sai Lemma:

Lemma 6.20. If \(\Lambda \) be an artin algebra (e.g. a commutative artinian ring). If \(f_i: M_i \to M_{i+1} \) are nonisomorphisms between indecomposable modules \(M_i \) for \(i = 1, \ldots, 2^n - 1 \) and \(\text{length} (M_i) \leq n \) for all \(i \), then \(f_{2^n-1} \cdots f_1 = 0 \).

Lemma 6.21. Assume \(R \) is Gorenstein of dimension one, and \(m \) is indecomposable; and suppose \(R \) has a stable AR component \(C \) which is finite. Then \(C \) consists of all isoclasses of non-projective indecomposables in \(\text{CM}(R) \).

Proof. As \(C \) is finite, Lemma 6.18 implies that we can take \(x \in m \) such that for each pair \(M \not\cong N \in C \), \(M/xM \) and \(N/xN \) are nonisomorphic indecomposable modules.

We may assume \(R \) is not regular, and therefore \(m \) is not free. Now first we show \(m \in C \). Suppose not; then there are no irreducible maps to \(R \) from any module in \(C \) (Lemma 6.19). Therefore if \(N \in C \) and \(N \to N' \) is any irreducible map in \(\text{CM}(R) \), \(N' \) must lie in \(C \) (since \(L_p(R) \) is closed under \(\text{syz} \), and therefore under irreducible maps by consideration of AR sequences). Pick a module \(M \in C \). By replacing \(x \) by a power of itself if necessary, we can choose \(f: M \to R \) such that \(f(M) \not\subseteq xR \), i.e. \(f \circ_R (R/x) \neq 0 \). Since \(f \) is not a split monomorphism, and there exists an AR sequence beginning in \(M \), \(f \) equals a sum of maps of the form \(gh \), where \(h \) is an irreducible map between modules in \(C \). Since \(g \in \text{Hom}_R (N, R) \) for some \(N \in C \), \(g \) is not a split monomorphism, and can in turn be written as a sum of maps of the form \(kl \) where \(l \) is an irreducible map in \(C \); now \(f = \sum klh \). Continue this process until we have written \(f \) as a sum \(\sum_i g_i h_{2^{n-1}, i} \cdots h_{1,i} \) where each \(h_{j,i} \) is an irreducible map in \(C \), and \(n = \max(\text{length}(N/xN)/N \in C) \). Note that each \(h_{j,i} \circ_R (R/x) \) is a nonisomorphism by our
assumption on \(x \) together with Lemma 6.17. Therefore, Lemma 6.20 implies \(f \otimes_R (R/x) = 0 \), contradiction. Thus \(m \in C \).

Now just suppose \(C \) omits some indecomposable nonfree \(M \in \text{CM}(R) \). Again choose \(f : M \to R \) such that \(f \otimes_R (R/x) \neq 0 \). Note that any map to \(R \) which is not a split epimorphism factors through \(m \). Whereas in the previous paragraph we reached a contradiction via Lemma 6.20, by “stacking irreducible maps while moving forwards through \(C \)”, we now obtain a contradiction by “stacking irreducible maps while moving backwards through \(C \cup \{ R \} \). □ □

Remark 6.22. Assume \(R \) is Gorenstein and let \(C \) be a stable AR component without loops. Then \(C \) is a valued stable translation quiver (by Lemma 6.5) and therefore has a valued tree class \(T \) (Definition 5.10). Then \(T \) carries the information of how many nonfree direct summands \(\text{push}(M) \) and \(\text{push}(\text{push}(M)) \) (in general, \(\text{push}^i(M) \)) have for modules \(M \in C \). Let us explain further. Let \(x \) be the vertex in \(C \) corresponding to \(M \), and let \(n = \sum_{(x,y) \in C} d_{yx} \).

Then \(n \) is the number of nonfree summands in \(\text{push}(M) \); that is, \(\text{push}(M) = F \oplus \bigoplus_{i=1}^n X_i \) where \(F \) is a (possibly zero) free module, and the \(X_i \) are (not necessarily nonisomorphic) nonfree indecomposables in \(L_R(R) \). We have a value-preserving covering \(\phi : ZT \to C \), and after possibly composing \(\phi \) with a power of \(r \), we have \(x \in \phi(T) \), say \(x = \phi(u) \). Since \(\phi : ZT \to C \) is a covering, \(\sum_{(x,y) \in C} d_{yx} = \sum_{(u,w) \in ZT} d_{wu} \), and by definition of \(ZT \) this equals \(\sum_{w \in T} d_{wu} \).

Thus \(n = \sum_{w \in T} d_{wu} \). Likewise, \(\sum_{w,z \in T} d_{zw}d_{wu} \) is the number of nonfree direct summands in \(\text{push}(\text{push}(M)) \).

Proposition 6.23. (cf. [11] Lemma 1.23 and Theorem 1.27) Assume \(R \) is Gorenstein of dimension one, \(m \) is indecomposable, and \(\text{CM}(R) \) has infinitely many isoclasses of indecomposables. Let \(C \) be a periodic component of the stable AR quiver of \(R \), and suppose that either \(R \) is a reduced hypersurface and \(C \) has no loops, or that there exists some \(M \in C \) such that \(\text{push}(\text{push}(M)) = X \oplus Y \oplus F \) for some indecomposables \(X \) and \(Y \), and some possibly-zero free module \(F \). Then, \(C \) is a tube.

Proof. If \(C \) has a loop, then by Lemma 6.17 for every \(M \in C \), the module \(\text{push}M \) has two nonfree indecomposable summands, and therefore \(\text{push}(\text{push}(M)) \) has four. So we may assume \(C \) has no loops. Thus \(C \) is a valued stable translation quiver, and we have a valued directed tree \(T \) and a value-preserving covering \(\phi : ZT \to C \). Let the function \(f : ZT \to \mathbb{Q}_{>0} \) be given by \(f(x) = e_{\text{avg}}(\phi(x)) \). As seen in Lemma 6.16 \(f \) restricts to a subadditive function on \(T \). Since \(\phi \) is surjective, every vertex of \(C \) lies in the \(r \)-orbit of a vertex in \(\phi(T) \). Note also that \(C \) has infinitely many vertices, by Lemma 6.21. Therefore \(T \) is infinite, so it is an infinite Dynkin diagram by Lemma 5.12. If \(R \) is a reduced then \(\{e(M) | M \in C\} \) is unbounded (see [17] Theorem 6.2)); and so if \(R \) is a reduced hypersurface (and thus all modules in \(C \) have period 2) then \(f \) is unbounded. Then \(T \cong A_\infty \), by Lemma 5.12. If the alternate condition holds, we get \(T \cong A_\infty \) by eliminating the other infinite Dynkin diagrams, in light of Remark 6.22. Thus \(C \) is a tube, by Remark 6.11. □ □

7. AN EXAMPLE.

In this section, we apply the results of the previous sections to determine the shape (namely, a tube) of some components of the Auslander-Reiten quiver of the ring \(\bar{R} \) defined
in [7.4] below. Recall that a hypersurface, i.e. a regular (graded-) local ring modulo a nonzerodivisor, is always Gorenstein.

7.1. Let \(S \) be a regular (graded-) local ring, and \(f \in S \) a nonzero element. Let \(R = S/fS \). A matrix factorization of \(f \) is a pair of matrices \((\varphi, \psi)\), with entries in \(S \), such that \(\varphi \psi = \psi \varphi = f \text{id}_{1 \times 1} \) for some \(l > 0 \). As consequences of the definition, we have \(\text{cok} \varphi \cong \text{cok}(\varphi \otimes_S R) \), and ([17] 7.2.2))

\[
\text{im}(\varphi \otimes_S R) = \ker(\psi \otimes_S R) \quad \text{and} \quad \text{im}(\psi \otimes_S R) = \ker(\varphi \otimes_S R).
\]

In particular, \(\text{cok} \varphi \) and \(\text{cok} \psi \) are periodic \(R \)-modules, of period two.

Remark 7.2. Let \((\varphi, \psi)\) and \((\varphi', \psi')\) be matrix factorizations of \(f \). Let \(n_1 \) and \(n_2 \) be the integers such that \(\varphi \) is \(n_1 \)-by-\(n_1 \) and \(\varphi' \) is \(n_2 \)-by-\(n_2 \). Given \(h : \text{cok} \varphi \to \text{cok} \varphi' \), there of course exist \(\alpha : S^{(n_1)} \to S^{(n_2)} \) and \(\beta : S^{(n_1)} \to S^{(n_2)} \) making the diagram

\[
\begin{array}{ccc}
S^{(n_1)} & \xrightarrow{\varphi} & S^{(n_1)} \\
\beta \downarrow & & \alpha \downarrow \\
S^{(n_2)} & \xrightarrow{\varphi'} & S^{(n_2)}
\end{array}
\]

commute. Now it is easy to see that \(\left(\begin{pmatrix} \varphi' & -\alpha \\ 0 & \psi \end{pmatrix}, \begin{pmatrix} \psi' & \beta \\ 0 & \varphi \end{pmatrix} \right) \) is a matrix factorization of \(f \).

If \((\varphi, \psi)\) is a matrix factorization such that \(\varphi \) and \(\psi \) each contains no unit entry, then it is called a reduced matrix factorization. If \((\varphi, \psi)\) is a reduced matrix factorization, then neither \(\text{im} \varphi \) nor \(\text{im} \psi \) contains a free summand (cf. [17] 7.5.1)).

7.3. Let \((\varphi, \psi)\) be a reduced matrix factorization, let \(M = \text{cok} \varphi \), and assume that \(R, M \) and \(\gamma \) satisfy the hypotheses of Theorem [4.8]. Pick \(\alpha \) and \(\beta \) lifting \(\gamma_M \in \text{End}_R M \) in the sense of Remark 7.2. One may check that the valid choices for \(\alpha \) are precisely those choices such that \(\psi \alpha = \gamma \psi \) after passing to \(\hat{R} \). By Remark 2.16 \(\text{push}(M) \cong (\text{im}(\psi \otimes_S R) \oplus R^{(n)})/((-\gamma c, c) \in \text{im}(\psi \otimes_S R)) \), where \(n \) denotes the side length of the matrices \(\varphi \) and \(\psi \). Then we see that \(\text{push}(M) = \text{cok} \begin{pmatrix} \varphi & -\alpha \\ 0 & \psi \end{pmatrix} \).

7.4. Let \(k \) be a field, of characteristic not equal to 2, and let us set up a connected graded hypersurface \(R \) as follows. Let \(p \) and \(q \) be relatively prime integers \(\geq 3 \), and let \(S = k[x, y] \) be the graded polynomial ring such that \(S_0 = k, \deg x = q, \) and \(\deg y = p \). Let \(f \in S \) be a homogeneous polynomial which is not divisible by \(x \). Let \(g = (bx^p + y^q)f \), where \(b \in k \), and \(b \) is allowed to be zero. Now, let \(R = k[x, y] \langle g \rangle \). The \(m \)-adic completion of \(R \) is \(\hat{R} = k[[x, y]] \langle g \rangle \). Let \(v = \deg(f)/p \), which is an integer because \(x \nmid f \). We assume that \(f - y^v \in xS \). Lastly, assume that there are infinitely many isoclasses of indecomposables in \(\text{CM}(R) \).

Now fix an ideal of \(R \) of the form \(I = (x^m, y^n) \), where \(1 \leq m < p - 1 \) and \(2 \leq n < q \). We will show that the component of \(\Gamma_R \) containing \(I \) is a tube, by showing that \(\text{push}(\text{push}(I)) \) has only two indecomposable summands, and applying Proposition 6.23. However, we will work over \(R \):

Remark 7.5. Let \(C \) be a component of \(\Gamma_R \). Now consider the valued translation quiver \(C' \) obtained from \(C \) by identifying vertices \(x \) and \(y \) when they correspond to modules which are merely graded-shifts of one another, where a “graded-shift” of a module \(M \) means a module
$M(i)$ defined by $M(i)_j = M_{i+j}$. By [3] Theorem 3], C' is naturally identified with a component of $\Gamma_{\mathfrak{R}}$. Therefore we might as well work over R, and just try not to keep track of the grading on \bar{M} and the grading on $\text{push}(M)$ simultaneously.

Notation 7.6. Let $\gamma = y^{q-1}/f \in Q(R)$. If $b \neq 0$, set $R' = S/(bx^p + y^q)S$; if $b = 0$, set $R' = S/yS \cong k[x]$. In either case, R' is a domain:

Lemma 7.7. If $b \neq 0$, then $S/(bx^p + y^q)S$ is a domain.

Proof. As S is factorial, it suffices to show $bx^p + y^q$ is irreducible. Since a product ss' fails to be homogeneous when either s or s' does, $bx^p + y^q$ is either irreducible or equal to a product of homogeneous nonunits. Let s and s' be homogeneous elements satisfying $ss' = bx^p + y^q$, and assume s is a nonunit. Then s has a term of the form ax^i for $a \in k \setminus \{0\}$, so that $q \text{deg} s$. Likewise $p \text{deg} s$, and thus $\text{deg} s = \text{deg}(bx^p + y^q)$, hence $\text{deg} s' = 0$, so s' is a unit. \qed \qed

We will use the following piece of arithmetic several times. We omit the easy proof.

Lemma 7.8. If $b_1 < q$ and $b_2 < 0$, or if $b_1 < 0$ and $b_2 < p$, then $b_1 p + b_2 q \notin p\mathbb{N} + q\mathbb{N}$.

Lemma 7.9. Let (φ, ψ) be a reduced matrix factorization of g and such that each indecomposable direct summand of $\text{cok}\varphi$ has rank, and char k does not divide any of these ranks. Let a be a matrix such that $\psi a = \gamma \varphi$ after passing to R. Then, $\text{push}(\text{cok}\varphi) = \text{cok} \begin{pmatrix} \varphi & -a \\ 0 & \psi \end{pmatrix}$.

Proof. By [7,3] we only need to check that γ agrees with Notation 4.7 and the indecomposable summands of $\text{cok}\varphi$ satisfy the hypotheses in Theorem 4.8. If $b \neq 0$ then $R' = S/(bx^p + y^q)S$ and we take $\gamma' = y^{q-1}/x \in \text{Hom}_{R'}(m_{R'}, R')$, and set $z = f$. Let $Q = Q(R)$ and $Q' = Q(R')$. As $\text{deg}(y^{q-1}x) = p(q-1) - q \notin p\mathbb{N} + q\mathbb{N}$ by Lemma 7.8 we have $\gamma' \in (R'/Q' \cdot J(R')) \setminus R'$ by Lemma 4.9. So $\gamma = y^{q-1}f/x$ agrees with Notation 4.7. If $b = 0$, then $R' = S/YS$ and we take $\gamma' = 1/x \in (R'/Q' \cdot J(R')) \setminus R'$ and set $z = y^{q-1}f$. Again $\gamma = y^{q-1}f/x$ agrees with Notation 4.7. It only remains to note that $M \otimes_R Q'$ is a free Q'-module of rank equal to that of $M \otimes_R Q$, by Lemma 4.3. \qed

In preparation for what immediately follows, let us observe that $g - y^{q+v} \in x^m S$. Indeed, we have by assumption $f - y^v \in xS$, and $\text{deg} f = \text{deg}(y^v) = pv$. So if $x^i y^j$ is a monomial occurring in $f - y^v$, then we have $i > 0$, and $qi + pj = pv$. Since $\gcd(p, q) = 1$, i is therefore a positive multiple of p; in particular, $i > m$. Thus, if \equiv denotes congruence modulo x^m, we have $f - y^v \equiv 0$, and $g - y^{q+v} = (bx^p + y^q)f - y^{q+v} \equiv y^q(f - y^v) \equiv 0$.

Let

\begin{equation}
\varphi = \begin{pmatrix} (g - y^{q+v})/x^m & -y^n \\ y^{q+v-n} & x^m \end{pmatrix}, \quad \psi = \begin{pmatrix} x^m & -yq+v-n \\ -y^{q+v-n} & (g - y^{q+v})/x^m \end{pmatrix},
\end{equation}

then $I \equiv \text{cok}\varphi$, and (φ, ψ) is a matrix factorization of g. Let

\begin{equation}
\alpha = \begin{pmatrix} -bx^{p-m-1}y^{n-1}f & 0 \\ x^{m-1}y^{q-n-1}f & 0 \end{pmatrix},
\end{equation}

and note that $\psi \alpha = \gamma \psi$ after passing to R. Therefore if we let $\xi = \begin{pmatrix} \varphi & -a \\ 0 & \psi \end{pmatrix}$, it follows from Lemma 7.9 that $\text{cok}\xi = \text{push}(I)$.

By Remark 7.2 we can pick a matrix β, with entries in S, such that

\begin{equation}
\alpha \varphi = \varphi \beta.
\end{equation}
In fact
\[\beta = \begin{pmatrix} y^{-1} (f - y^v)/x & -x^{m-1} y^{n-1} \\ y^{q-1} (b x^{p-m-1} y^v f + (f - y^v)(g - y^{q+v+1})/x^{m+1}) & -y^{q-1} (f - y^v)/x \end{pmatrix}. \]

We will never need to refer to the actual entries of \(\beta \), though we will use that \(\beta \) has no unit entries. By equation (7.5), the pair

\[(\xi, \eta) \]

forms a matrix factorization of \(g \), where \(\xi = \begin{pmatrix} \psi & -\alpha \\ 0 & \psi \end{pmatrix} \), and \(\eta = \begin{pmatrix} \psi & \beta \\ 0 & \psi \end{pmatrix} \).

Furthermore, \((\xi, \eta) \) is a reduced matrix factorization.

To avoid extreme clutter, we will henceforth abuse notation!

Caveat 7.10. Regarding all matrices in this section, we from now on always take the entries as living in \(\mathbb{R} \) rather than \(\mathbb{S} \), unless stated otherwise.

The reader can check directly that \(\alpha \psi = -\gamma \psi \). In other words,

\[\phi \beta = -\gamma \psi. \]

Definition 7.11. We choose a matrix \(W \) such that \(\eta W = \gamma \eta \). Such \(W \) exists by (7.3) Let \(Z \) and \(Z' \) be 2-by-2 matrices such that \(W = \begin{pmatrix} \alpha & Z' \\ 0 & -\beta + \psi Z \end{pmatrix} \).

We explain why \(W \) can be chosen to be of this form. To begin with, let \(W \) be an arbitrary matrix such that \(\eta W = \gamma \eta \), and let \(A, B, C \) and \(D \) be 2-by-2 matrices such that

\[W = \begin{pmatrix} A & B \\ C & D \end{pmatrix}. \]

The equation \(\begin{pmatrix} \psi & \beta \\ 0 & \phi \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} \gamma \psi & \gamma \beta \\ 0 & \gamma \phi \end{pmatrix} \) implies \(\phi D = \gamma \phi \), which equals \(-\phi \beta \) (equation (7.7)). Therefore \(\phi (D + \beta) = 0 \), and this implies \(D + \beta = \psi Z \) for some matrix \(Z \). That we may choose \(\begin{pmatrix} A \\ C \end{pmatrix} \) to be \(\begin{pmatrix} \alpha \\ 0 \end{pmatrix} \) follows from the equation \(\psi \alpha = \gamma \psi \).

Now, let \(\theta \) denote the 8-by-8 matrix \(\theta = \begin{pmatrix} \xi & -W \\ 0 & \eta \end{pmatrix} \). As \(\text{rank}(\text{cok} \eta) = \text{rank}(\text{cok} \xi) = \text{rank}(\text{push}(I)) = 2 \), Lemma (7.9) gives \(\text{cok} \theta = \text{push}(\text{cok} \xi) = \text{push}(\text{push}(I)) \). By Proposition (6.28), in order to show the component of \(\Gamma \) containing \(I \) is a tube, it suffices to show that \(\text{cok} \theta = X \oplus Y \oplus F \), for some indecomposables \(X \) and \(Y \) and some possibly-zero free module \(F \). It suffices to do this for \(\text{im} \theta \) instead of \(\text{cok} \theta \). We clarify that the term the term “indecomposable” is unambiguous:

Lemma 7.12. [3, Lemma 1] Given an indecomposable \(N \) in \(L_p(R) \) (i.e., \(N \) has no proper graded direct summand), we have that \(\hat{N} \) is indecomposable in \(L_p(\hat{R}) \). In particular, \(\hat{N} \) is indecomposable as an \(R \)-module.

We state the above discussion as a lemma.

Lemma 7.13. In order to establish that the component of the AR quiver containing \(\hat{I} \) is a tube, it suffices to show that \(\text{im} \theta = X \oplus Y \) for some graded modules \(X \) and \(Y \) each having no proper graded direct summand.

We begin by multiplying \(\theta \) on the left and on the right by invertible matrices. Let \(\text{id} \) denote the 2-by-2 identity matrix, and let \(H = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \). Let \(P' \) denote the 8-by-8 matrix
the goal of showing that S to j all
Therefore, since $\xi \neq \eta$, we know that $\tilde{\theta}$ is part of a matrix factorization $(\tilde{\theta}, \tilde{\theta}')$ where
Let $\tilde{\theta}$ be the lift of θ, $\tilde{\theta} = \begin{pmatrix} \xi & -\tilde{W} \\ 0 & \eta \end{pmatrix}$. By the same reasoning used for the matrix factorization (ξ, η), we know that $\tilde{\theta}$ is part of a matrix factorization $(\tilde{\theta}, \tilde{\theta}')$ where
Let $r_3, \ldots, r_8 \in R$ be homogeneous elements such that $\sum_{j=3}^8 r_j c_j = \pi(c_5)$ and $\deg(r_j) = \deg(c_5) - \deg(c_j)$. Then each of $\deg(r_6) = -np + mq$, $\deg(r_7) = -(v+1)p + (m+1-p)q$, and $\deg(r_8) = -(n+1)p + q$ does not lie in $\mathbb{N}p + \mathbb{N}q$ by Lemma 7.8 and so $r_6 = r_7 = r_8 = 0$.
For a brief moment let us consider matrices with entries in S. Namely let \tilde{W} denote a “lift to S” of the matrix W, and let $\tilde{\theta}$ be the lift of θ, $\tilde{\theta} = \begin{pmatrix} \xi & -\tilde{W} \\ 0 & \eta \end{pmatrix}$. By the same reasoning used for the matrix factorization (ξ, η), we know that $\tilde{\theta}$ is part of a matrix factorization $(\tilde{\theta}, \tilde{\theta}')$ where
$\tilde{\theta}' = \begin{pmatrix} \eta & \tilde{W}' \\ 0 & \xi \end{pmatrix}$ for some 4-by-4 matrix \tilde{W}'. Let $\theta' = \tilde{\theta}' \otimes S$. R.
As $\theta \theta' = 0$, each column of matrix $P^{-1} \theta'$ is a syzygy relation for the columns of $P \theta P$. We can compute that the last four entries of the column $P^{-1} \theta'_{(4)}$ are, in order, $-\frac{1}{2}y^n, \frac{1}{2}x^m, 0, 0$. Therefore $\frac{1}{2}x^m c_6 \in \frac{1}{2}y^n c_5 + \sum_{j=3}^4 R c_j$. Then, $\pi(c_6) = \frac{\chi^n}{\chi^m} \pi(c_5) = \sum_{j=3}^5 \chi^n \pi(c_j)$, and in particular R must contain the fourth entry of this column: $\frac{\chi^n}{\chi^m}(r_3 y^{q+v-n} - r_4 x^m - 2 r_5 x^{m-1} y^{q-n-1} f) \in R$. Therefore, since $y^{q+v} / x^n \in R$, we have $2 r_5 y^{q-1} f / x \in R$. Since $r_5 \in k$ and char $k \neq 2$, this implies that either $r_5 = 0$ or $y^{q-1} f / x \in R$. If the latter were true, then $r x = y^{q-1} f$ for some $r \in R$, and lifting r to a preimage $s \in S$ we would have $sx - y^{q-1} f \in gS$. But $sx - y^{q-1} f$
has nonzero y^{q+v-1}-term, whereas $\deg g = \deg y^{q+v} > \deg y^{q+v-1}$, so this is a contradiction. Hence $r_5 = 0$. Therefore $\pi(c_5) = r_3c_3 + r_4c_4 \in \ker(\pi)$, hence $\pi(c_5) = 0$ as π is idempotent, and $\pi(c_6) = (y^n/x^m)\pi(c_5) = 0$.

Now we simply repeat the argument in order to show that $\pi(c_8) = \pi(c_7) = 0$. For $r_3', ..., r_8' \in R$ homogeneous such that $\Sigma_{j=3}^8 r_j'c_j = \pi(c_8)$ and $\deg(r_j') = \deg(c_8) - \deg(c_j)$, each of $\deg(r_5') = (n-1)p - q$, $\deg(r_6') = -p + (m-1)q$, and $\deg(r_7') = (-v+n)p + (m-p)q$ does not lie in $\mathbb{N}p + \mathbb{N}q$ by Lemma 7.8, so $r_5' = r_6' = r_7' = 0$. The last two entries of $P^{-1} \theta_{1,7}'$ are x^m and $-y^{q+v-n}$, so we obtain $x^m c_7 \in y^{q+v-n}c_8 + \sum_{j \leq 8} Rc_j$, and therefore $\pi(c_7) = (y^{q+v-n}/x^m)\pi(c_8) = (y^{q+v-n}/x^m)(r_5'c_3 + r_6'c_4 + r_7'c_8)$, whose fifth entry is $-r_5'(y^{q+v-n}/x^m)W_{34}$. If $r_5' = 0$ then $\pi(c_7) \in \ker(\pi)$ whence 0 = $\pi(c_7) = \pi(c_8)$, so, showing $r_5' = 0$ is the last step. If $r_5' \neq 0$ then it is a unit, and therefore $(y^{q+v-n}/x^m)W_{34} \in R$. Then the lemma below would imply $y^{q+v-1}/x \in R$, and the reader can check that this is false.

Lemma 7.14. W_{34}, the $(3,4)$-th entry of the matrix W, lies in $kx^{m-1}y^{n-1} \setminus \{0\}$.

Proof. Recall that $\eta W = \gamma \eta$ by definition of W. As $\eta_{4,4} = x^m$, we get $\gamma x^m = \eta_{4,4}, W_{4,4} = y^{q+v-n}W_{34} + x^mW_{44}$. As x is a nonzerodivisor and $\gamma \notin R$, we have $W_{34} \neq 0$. We naturally choose W so that $\deg(\eta_{ij}) + \deg(W_{jj}) = \deg(\gamma_{ij})$ for each i, j, j'. Setting $i = 4$, $j = 3$, $j' = 4$, we have $\deg(W_{34}) = \deg(\gamma_{4,4}) - \deg(\eta_{4,3}) = \deg(\gamma x^m) - \deg(y^{q+v-n}) = \deg(y^{q-1}f x^{m-1}) - \deg(y^{q+v-n}) = (n-1)p + (m-1)q$. Since p and q are coprime, it follows that $W_{34} \in kx^{m-1}y^{n-1}$.□□

8. Another Observation: $\text{soc}([\gamma_M])$.

In this section, assume R is a reduced complete local Gorenstein (but not regular) ring of dimension one, let $m = m_R$, $Q = Q(R)$, and fix some indecomposable nonfree $M \in L_p(R)$. We aim to prove Proposition 8.7, which (after some additional assumptions) states the relationship between the socle elements $[\gamma_M]$ and $[\gamma_{\text{soc}(M)}]$ with respect to the R-algebra isomorphism $\text{soc}_R : \mathbf{End}_R M \rightarrow \mathbf{End}_R (\text{soc}_R(M))$. Let $M\overline{R}$ denote the \overline{R}-submodule of $M \otimes_R Q$ generated by M, and assume the following: $M\overline{R}$ is a free \overline{R}-module which possesses a basis consisting of elements in M. This is true if R is a domain, since \overline{R} is in that case a DVR.

Notation 8.1. Fix $\gamma \in J(\overline{R}) \setminus R$, and fix elements $e_1, ..., e_n \in M$ forming a free \overline{R}-basis for $M\overline{R}$. Given $h \in \text{End}_R M$, let \overline{h} denote the unique \overline{R}-linear endomorphism of $M\overline{R}$ extending h. We regard \overline{h} is an n-by-n matrix with entries in \overline{R}. Let $I^{cd} = (R :_R \overline{R})$, the conductor ideal.

Lemma 8.2. We have $\gamma M\overline{R} \subseteq M$, and $I^{cd}(M\overline{R}) \subseteq \bigoplus_i Re_i$.

Proof. As $(R :_R J(\overline{R})) = (I^{cd} :_R J(\overline{R}))$, we have $\gamma J(\overline{R}) \subseteq I^{cd}$. Therefore $(\overline{R} \gamma)m \subseteq (\overline{R} \gamma)J(\overline{R}) \subseteq I^{cd} \subseteq m$, which says that $\overline{R} \gamma \subseteq \text{End}_R m$. Since $M \cong \text{Hom}(M, m)^*$ is an $\text{End}_R m$-module, we obtain $(\overline{R} \gamma)M \subseteq M$, equivalently $\gamma M\overline{R} \subseteq M$. That $I^{cd}(M\overline{R}) \subseteq \bigoplus_i Re_i$ is obvious.□□

We have the following immediate consequence.

Lemma 8.3. Let $A \in \text{End}_R(M\overline{R})$, i.e. A is an $n \times n$ matrix with entries in \overline{R} (recall that we have a fixed basis, $\{e_1, ..., e_n\}$). If each entry of A lies in $\gamma \overline{R}$, then A sends M into M. If each entry of A lies in I^{cd}, then $A|_M : M \rightarrow M$ is stably zero.

Lemma 8.4. There exists $f \in \text{End}_R M$ satisfying the following conditions:

(i) $[f]$ generates $\text{soc}(\text{End}_R M)$;
(ii) all nonzero entries of \bar{f} lie in \overline{Ry}.
(iii) the first column of \bar{f} is its only nonzero column.
(iv) $\bar{f}_{1,1} = \gamma$.

Proof. If we take an $n \times n$ matrix A with $A_{1,1} = \gamma$ and all other entries zero, then by Lemma 8.3, $A = \overline{h}$ for some endomorphism $h \in \text{End}_R M$. As $\text{trace}(h \otimes Q) = \text{trace}(\overline{h}) = \gamma \in R$, h is stably nonzero by Lemma 8.3. Therefore by essentiality of the socle of $\text{End}_R M$, there exists $g \in \text{End}_R M$ such that $[gh]$ generates $\text{soc}(\text{End}_R M)$. By Lemma 8.3, there exists $h' \in \text{End}_R M$ such that $\text{trace}(ghh' \otimes_R Q) \in R$, i.e. $\text{trace}(h'gh \otimes_R Q) \in R$. As $h'gh$ is stably nonzero by Lemma 8.3 once more, $[h'gh]$ generates $\text{soc}(\text{End}_R M)$. Let $f = h'gh$. Now trace($f \otimes_R Q$) = trace(\bar{f}) = $\bar{f}_{1,1} \in (\gamma R) \setminus R$. Therefore $\bar{f}_{1,1} = u\gamma$ for some unit $u \in R$. Finally, replacing \bar{f} by $u^{-1}\bar{f}$, the result still sends M into M, by Lemma 8.3. □ □

Note that syz_R is in general a well-defined functor on the stable category. In particular it gives an isomorphism of R-algebras $\text{End}_R M \to \text{End}_R(\text{syz}_R(M))$.

For the remainder, assume R is a domain, and assume $k = R/m$ is algebraically closed.

Proposition 8.5. If $f \in \text{End}_R M$ and $g \in \text{End}_R(\text{syz}_R M)$ are given such that $[f] \in \text{soc}(\text{End}_R M)$ and $[g] = \text{syz}_R([f])$, then $\text{trace}(f + \text{trace} \overline{f})$.

Proof. By Lemma 8.3 trace induces well-defined maps $\text{End}_R M \to \overline{R}/R$ and $\text{End}_R(\text{syz}_R M) \to \overline{R}/R$. As syz_R gives an isomorphism of R-algebras $\text{End}_R M \to \text{End}_R(\text{syz}_R M)$, it restricts to an isomorphism on socles, which are R-simple due to k being algebraically closed. Because of these remarks, we can take our pick of f and g, as long as $[f] \neq 0$ and $[g] = \text{syz}_R([f])$; we will choose f as in Proposition 8.4. Let $n = \text{rank}(M)$, and $v > n$ be the minimal number of generators of M. Let $\xi_1, ..., \xi_v$ be a set of generators for M, such that $\{e_1 = \xi_1, ..., e_n = \xi_n \}$ is an \overline{R}-basis for \overline{M}. For each ξ_j we have an equation $\xi_j = \sum_{i=1}^{n} w_{i,j} e_i$, for $w_{i,j} \in R$. Since $\overline{R} = R + J(\overline{R})$ (due to k being algebraically closed), we may assume that for each $j > n$, and for each i, we have $w_{i,j} \in J(\overline{R})$ and therefore $w_{i,j} \gamma \in I^{cd}$.

Take a free cover $\pi : F \to M$ sending i-th basis element to ξ_i. Since $f \in \text{End}_R M$ is as in Proposition 8.4, there is a $v \times v$ matrix $A : F \to F$ such that $\pi A = \overline{f} \pi$, with the following properties. Columns 2 through n of A are zero. In addition, $A_{ij} = w_{i,j} f_{i,1}$ for $(i, j) \in \{1, ..., n \} \times \{n+1, ..., v \}$, and $A_{ij} = 0$ for $(i, j) \in \{n+1, ..., v \} \times \{n+1, ..., v \}$. Set $N = \ker(\pi)$, and let $\overline{f} = [r_1, ..., r_v]^T \in N$, that is, $\sum_{j=1}^{v} r_j \xi_j = 0$. Recalling that $M \overline{R}$ is free, and projecting onto the basis element e_1, we get $r_1 + \sum_{j=n+1}^{v} r_j w_{1,j} = 0$. If we set $\overline{f}_{i,1} = 0$ for $i > n$, then by definition of A we have that the i-th entry of $A \overline{f}$ is $A_{i1} r_1 + \sum_{j=n+1}^{v} w_{i,j} \overline{f}_{i,1} r_j = A_{i1} r_1 + \overline{f}_{i,1} \sum_{j=n+1}^{v} r_j w_{1,j}$, and by the above equation this equals $(A_{i1} - \overline{f}_{i,1}) r_1$. In other words, $A \overline{f} = r_1 \overline{v}$ where $\overline{v} = [v_1, ..., v_v]^T \in F$ is given by $v_i = A_{i1} - \overline{f}_{i,1}$. So if we let $g \in \text{End}_R N$ be the restriction of A, we see that the image of g has rank 1. We also see that the $A^2 \overline{v} = A(r_1 \overline{v}) = r_1 v_1 \overline{v}$, so that v_1, which equals $A_{1,1} - \gamma$, is an eigenvalue for g. Our goal is to show that trace($\overline{g} + \gamma \in R$). Since trace($\overline{g}$) = trace($g \otimes_R Q$) and $\text{im}(g \otimes_R Q) \subseteq Q$, the following lemma finishes the proof. □ □

Lemma 8.6. If $\phi : F \to F$ is an endomorphism of a free module over a domain D, with $\text{im}(\phi) \subseteq D$, and λ is an eigenvalue for ϕ, then $\lambda = \text{trace}(\phi)$.
Proof. Let \(\bar{x} = [x_1, ..., x_s]^T \in F \) generate the image of \(\phi \). It is easily checked that \(\phi(\bar{x}) = \lambda \bar{x} \). Let \(y_1, ..., y_s \in D \) such that \(\phi \cdot j = y_j \bar{x} \). Then \(\lambda \bar{x} = \phi(\bar{x}) = \sum_{j=1}^{s} x_j \phi \cdot j = \sum_{j=1}^{s} x_j y_j \). So \(\lambda = \sum_{j=1}^{s} x_j y_j = \sum_j \phi \cdot j = \text{trace}(\phi) \).

\[\text{Theorem 9.1.} \quad \text{The following theorem is well-known.} \]

\[\text{Lemma 9.3.} \quad \text{Let} \quad R \quad \text{be a connected graded ring, let} \quad \hat{R} \quad \text{denote the completion of} \quad R \quad \text{with respect to its graded maximal ideal,} \quad m. \]

\[\text{Notation 9.2.} \quad \text{If} \quad R \quad \text{is a connected graded ring, let} \quad \hat{R} \quad \text{denote the completion of} \quad R \quad \text{with respect to its graded maximal ideal,} \quad m. \]

\[\text{Lemma 9.3.} \quad \text{Let} \quad R \quad \text{be a reduced connected graded ring. Then:} \]

\[\begin{align*}
(1) & \quad \text{The integral closure of} \quad R \quad \text{in} \quad R[\text{nonzerodivisors}]^{-1} \quad \text{coincides with the integral closure of} \quad R \quad \text{in} \quad Q = R[\text{graded nonzerodivisors}]^{-1}, \quad \text{our definition of} \quad \hat{R}. \quad \text{Moreover,} \quad \hat{R} = \bigoplus_{i \geq 0} \hat{R}_i \\
(2) & \quad \text{We have} \quad \hat{R} = \prod_{i \geq 0} R_i. \\
(3) & \quad \text{The completion,} \quad \hat{R}, \quad \text{is also reduced. If} \quad R \quad \text{is a domain, then} \quad \hat{R} \quad \text{is a domain.} \\
(4) & \quad \text{The integral closure,} \quad \hat{R}, \quad \text{is finitely generated as an} \quad R \quad \text{-module.} \\
(5) & \quad \text{The integral closure of the completion,} \quad \hat{R}, \quad \text{is finitely generated as an} \quad \hat{R} \quad \text{-module.}
\end{align*} \]

\[\text{Proof.} \quad \text{Statement (1) is [11, Corollary 2.3.6]. Statement (2) can be checked by noting that} \quad \{m^i\}_i \quad \text{is cofinal with} \quad \{\bigoplus_{j \geq i} R_j\}_i, \quad \text{and checking that the completion of} \quad R \quad \text{with respect to the latter filtration is isomorphic to} \quad \prod_{i \geq 0} R_i. \quad \text{From (2) we see that} \quad \hat{R} \quad \text{is reduced, resp. a domain, if} \quad R \quad \text{is such. As} \quad R \quad \text{is a finitely generated algebra over the field} \quad R_0, \quad (4) \quad \text{is a consequence of [14, Theorem 72]. The last assertion is a consequence of Theorem 9.1 (alternatively, it follows from (4)).} \]

\[\text{Lemma 9.4.} \quad \text{Let} \quad D \quad \text{be a connected graded domain of dimension one, and let} \quad q = \bigoplus_{i \geq 1} D_i, \quad \text{and} \quad n = \bigoplus_{i \geq 1} D_i. \quad \text{Then} \]

\[\begin{align*}
(a) & \quad \hat{D}_0 \quad \text{is a field, and} \\
(b) & \quad \prod_{i \geq 0} D_i = \hat{D} = \hat{D}^n = \hat{D}.
\end{align*} \]

\[\text{Proof.} \quad \text{The notation} \quad \hat{D}_i \quad \text{means} \quad \langle D \rangle_i, \quad \text{and makes sense due to Lemma 9.3 as does} \quad \hat{D}. \quad \text{Since} \quad \hat{D} \quad \text{is an} \quad \mathbb{N} \text{-graded domain,} \quad n \quad \text{is a prime ideal, and is thus maximal since} \quad \dim \hat{D} = \dim D = 1. \]
Remark 9.6. If $X \neq 0$ for all graded \overline{D}-modules $X \neq 0$. Now $\overline{D}_n/(q\overline{D})_n$ is an artinian local ring, so there exists $i \geq 1$ such that $((n^i + q\overline{D})/q\overline{D})_n = 0$, hence $(n^i + q\overline{D})/q\overline{D} = 0$. Thus $\{n^i\}_i$ and $\{q^n\}_i$ are cofinal, so $\overline{D}_n^n = \overline{D}_n^n$.

Lastly we show $\overline{D_0}$ is a DVR; let $\pi \in D$ be a uniformizing parameter. So $\pi D = \prod_{i \geq 0} D_i$. Then $\pi t = u\pi^i$ for some unit $u \in \prod_{i \geq 0} D_i$, and it follows that $i = 1$, hence t is a uniformizing parameter for \overline{D}. It follows that $D_i = 0$ for $i \notin N\ell$, and $D_i = D_0^{(\ell)}$ for $i \in N\ell$. The lemma follows.

Lemma 9.5. Let D be a connected graded domain of dimension one, and let $l = \min(i > 0) \overline{D}_i \neq 0$. Let t be any nonzero element of \overline{D}_1. Then $\overline{D} = \bigoplus_{i \geq 0} \overline{D}_0 t^i$ is the polynomial ring over the field \overline{D}_0 in the variable t; and $\overline{D} = \prod_{i \geq 0} \overline{D}_0 t^i$ is the power series ring.

Proof. By the previous lemmas, \overline{D} is connected graded, so we may assume $D = \overline{D}$ to improve notation. Then the previous lemma also shows that $\overline{D} = \prod_{i \geq 0} D_i$ is a normal domain. Thus it is a DVR, let $\pi \in \overline{D}$ be a uniformizing parameter. So $\pi D = \prod_{i \geq 1} D_i$. Then $t = u\pi^i$ for some unit $u \in \prod_{i \geq 0} D_i$, and it follows that $i = 1$, hence t is a uniformizing parameter for \overline{D}. It follows that $D_i = 0$ for $i \notin N\ell$, and $D_i = D_0^{(\ell)}$ for $i \in N\ell$. The lemma follows.

Remark 9.6. If D_0 is algebraically closed, Lemmas 9.4 and 9.5 show that D has the form $k[t^i, ..., t^n]$.

REFERENCES

1. Ariki, S., Kase, R., Miyamoto, K.: On components of stable Auslander-Reiten quivers that contain Heller lattices: the case of truncated polynomial rings. Nagoya Mathematical Journal pp. 1–42 (2016). DOI 10.1017/nmj.2016.53
2. Auslander, M.: Rational singularities and almost split sequences. Trans. Amer. Math. Soc. 293(2), 511–531 (1986)
3. Auslander, M., Reiten, I.: Cohen-Macaulay modules for graded Cohen-Macaulay rings and their completions. Commutative algebra (1987)
4. Auslander, M., Reiten, I., Smalø, S.O.: Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36. Cambridge University Press, Cambridge (1997). Corrected reprint of the 1995 original
5. Benson, D.J.: Representations and Cohomology, Cambridge Studies in Advanced Mathematics, vol. 1. Cambridge University Press (1991). DOI 10.1017/CBO9780511623615
6. Bruns, W., Herzog, J.: Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press, Cambridge (1993)
7. Decker, W., Greuel, G.M., Pfister, G., Schönemann, H.: SINGULAR 4-1-0 — A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2016)
8. Eisenbud, D.: Commutative algebra, Graduate Texts in Mathematics, vol. 150. Springer-Verlag, New York (1995). With a view toward algebraic geometry
9. Happel, D., Preiser, U., Ringel, C.M.: Vinberg’s characterization of Dynkin diagrams using subadditive functions with application to DTr-periodic modules, pp. 280–294. Springer Berlin Heidelberg, Berlin, Heidelberg (1980). DOI 10.1007/BFb0088469. URL https://doi.org/10.1007/BFb0088469
10. Hattori, A.: Rank element of a projective module. Nagoya Math. J. 25, 113–120 (1965). URL https://projecteuclid.org/euclid.nmj/1118801428
11. Huneke, C., Swanson, I.: Integral closure of ideals, rings, and modules, London Mathematical Society Lecture Note Series, vol. 336. Cambridge University Press, Cambridge (2006)
12. Leuschke, G.J., Wiegand, R.: Cohen-Macaulay representations, Mathematical Surveys and Monographs, vol. 181. American Mathematical Society, Providence, RI (2012). URL http://www.leuschke.org/research/MCMBook
13. Mac Lane, S.: Homology. Die Grundlehren der mathematischen Wissenschaften, Bd. 114. Springer-Verlag, Berlin-Heidelberg-New York (1963)
14. Matsumura, H.: Commutative Algebra. W.A. Benjamin, New York (1970)
15. Matsumura, H.: Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, second edn. Cambridge University Press, Cambridge (1989). Translated from the Japanese by M. Reid
16. Miyata, T.: Note on direct summands of modules. J. Math. Kyoto Univ. 7, 65–69 (1967)
17. Yoshino, Y.: Cohen-Macaulay modules over Cohen-Macaulay rings, *London Mathematical Society Lecture Note Series*, vol. 146. Cambridge University Press, Cambridge (1990)