Predictive Model of Adaptive Cruise Control Speed to Enhance Engine Operating Conditions

Srikanth Kolachalama * and Hafiz Malik

Abstract: This article presents a novel methodology to predict the optimal adaptive cruise control set speed profile (ACCSSP) by optimizing the engine operating conditions (EOC) considering vehicle level vectors (VLV) (body parameter, environment, driver behaviour) as the affecting parameters. This paper investigates engine operating conditions (EOC) criteria to develop a predictive model of ACCSSP in real-time. We developed a deep learning (DL) model using the NARX method to predict engine operating point (EOP) mapping the VLV. We used real-world field data obtained from Cadillac test vehicles driven by activating the ACC feature for developing the DL model. We used a realistic set of assumptions to estimate the VLV for the future time steps for the range of allowable speed values and applied them at the input of the developed DL model to generate multiple sets of EOP's. We imposed the defined EOC criteria on these EOPs, and the top three modes of speeds satisfying all the requirements are derived at each second. Thus, three eligible speed values are estimated for each second, and an additional criterion is defined to generate a unique ACCSSP for future time steps. A performance comparison between predicted and constant ACCSSP's indicates that the predictive model outperforms constant ACCSSP.

Keywords: adaptive cruise control; driver behaviour; deep learning; engine operating point

1. Introduction

The introduction of automobiles into the world inculcated innovation in many aspects of engineering, including design and manufacturing (Townsend and Calantone, 2014) [1]. Engineers worldwide continuously strive to develop cutting-edge technologies to augment the riders’ comfort, traffic behaviour, enhance safety and fuel economy (Katzenbach, 2015) [2]. In the current scenario, advanced features which include forward collision, traction control, and lane change, augment the safety, whereas the fuel economy drive mode reduces the fuel consumption. Among the features integrated into the vehicle, the ACC system developed by Labuhn and Chundrlik, 1995 played a vital dual role, in affecting safety and EOC [3]. The intricate concept of the ACC system is to produce controlled acceleration without disengaging the cruise in the user-defined proximity and strictly follow the user command of set speed (Marsden et al., 2001) [4]. Additionally, we could conclude from the existing literature (Mahdinia et al., 2020) that the activation of ACC results in lower IFCR [5]. Therefore, activating the ACC feature for traversing long trips would augment EOC.

However, identifying the optimal ACCSSP by considering the dynamic state of the vehicle for a definite coordinate on the terrain is an unsolved, challenging task for engineers. Researchers have performed the parametric optimisation of ACC output in the existing literature by analysing the real-time data of behaviour, traffic congestion, terrain data, and environmental factors. Stanton et al., 2005, Hoedemaeker et al., 1998, Kesting et al., 2007, Rudin-Brown et al., 2004, Moon et al., 2008, and Rosenfeld et al., 2015 considered driver behaviour as the key input to develop the control algorithm using analytical techniques and to tune the outputs of the ACC system [6–11]. The enhancements of vehicle connectivity...
opened doors to obtain real-time traffic congestion information. Milanés et al., 2013:2014, Kesting et al., 2008:2007, and Ploeg et al., 2011, adopted the DL models to estimate the ACCSSP and desired acceleration based on the traffic congestion data retrieved in real-time [12–15]. Li et al., 2017, Lu et al., 2019, Vedam, 2015, Kolmanovsky and Filev, 2010, Gáspár and Németh, 2014:2011:2013, and Ma et al., 2019, adopted the terrain data to estimate the ACC control parameters to reduce IFCR using the known mathematical models [16–23].

Existing techniques rely on either one or two affecting factors as inputs to predict ACCSSP considered, but none of the researchers included all the factors in conjunction to the best of our knowledge. Recently, we developed a DL model mapping all the VLV and EOP (Kolachalama et al., 2021) [24]. This DL model produced the best results for the ACC activated test case and included all the factors mentioned above, excluding traffic congestion information. This paper applied predefined EOC criteria to the predicted EOP, and the optimal ACCSSP is estimated corresponding to augmented EOC. We validated the proposed model using the real-time test vehicle data-driven road segments that included arterial, state ways, and freeways. The below sections show the detailed procedure adopted.

The rest of the article is organised as follows: Sections 2 and 4 propose predicting EOP and ACCSSP, whereas Section 3 defines the EOC criteria applied to the EOP to estimate ACCSSP. In Section 5, the detailed results of the predictive model and experimental techniques are presented.

2. Predictive Model for EOP

We adopted the commonly available DL methods, NARX and LSTM, to develop predictive models involving time-sensitive data (Diaconescu, 2008) [25]. Kolachalama et al., 2021, compared NARX and LSTM methods using the real-time test case (2019 Cadillac XT6) and proved that the NARX method outperforms the LSTM model [24]. Hence, in this research, a similar NARX DL model is used with default training options to predict EOP, as shown in Table 1.

As mentioned in the previous section, Figure 1 depicts the DL model to predict the EOP mapping VLV. The outputs of the DL model consist of the elements IET, IES, and IFCR, and the VLV, which embed with driver behaviour, body module parameters, environmental factors, and terrain data. The DBV consists of three elements speeding (Speed, LOT), steering (YAR, LAT) and CAT (Kolachalama et al., 2021) [24,26]. The parameters odometer, tire pressure, curvature, and gradient affect the vehicle traction, whereas CAT and EAT influence thermal stress on the engine (Kolachalama et al., 2008) [27]. Additionally, there is no loss of generality in replacing the gradient with the vehicle posture’s Euler angles, which affect the traction under no-slip (Eathakota et al., 2010) [28,29].
3. Metric for Optimal EOC

In this section, we defined the metrics for EOC criteria, which reflect optimal EOP.

3.1. Generic Criteria

The predicted EOP for the vehicles traversing the speeds ranging [25, 45] MPH (arterial roads) have a closer proximity to the ideal EOP. In this scenario, the IET has a higher magnitude; on the contrary, for the speeds ranging [65, 85], MPH (freeways) have higher IES recorded.

Additionally, the allowable speeds for the state ways range between [45, 65] MPH are considered the green zone with maximum fuel economy (low IFCR). Hence, the generic criteria for augmented EOC would include higher IET, higher IES, and lower IFCR, along with the maximum distance traversed for the trip.

3.2. Euclidean Distance—Ideal EOP

An engine map calibrated at the manufacturing plant for every model by all automotive OEM’s represents the engine’s performance. In general, the ideal EOP for any vehicle represents the coordinate (centroid) on the map with the lowest IFCR. An example of the engine map for the vehicle 2014 Chevrolet 4.3L EcoTec3 LV3 Engine is shown in Figure 2A. The ideal EOP for this vehicle was estimated to be the coordinate [285 Nm, 2250 RPM, 225 g/kwh]. Similarly, the ideal EOPs for the three test vehicles are empirically estimated, as shown in section A: Table 2.

Hence, we defined the line segment conjoining the predicted and ideal EOP as the EOC vector, represented by the IEM shown in Figure 2B. The magnitude of the EOC vector represents the ED_i shown in Equation (1). In the 2D plane, there is no loss of generality in ignoring the parameter IES, as it is proportional to the vehicle speed. Therefore, lower ED represents increased EOC.

$$ED_i = \sqrt{(IET_i - IET_k)^2 + (IFCR_i - IFCR_k)^2}$$ (1)
3.3. Engine Caliber—Speed and Torque

The engine’s capability is measured by two standard parameters [ESC, ETC]. These parameters are the ratios that define the torque produced per unit of fuel consumption and the speed produced per unit of torque. Higher ETC and ESC are the desired criteria for every vehicle’s trip.

\[
ETC = \frac{IET}{IFCR} \quad (2)
\]

\[
ESC = \frac{IES}{IET} \quad (3)
\]

3.4. Smoothness Measure—EOC Parameters

The combustion of fuel in the engine produces torque with fluctuating magnitudes. However, all the elements of EOP should have smooth behaviour (Tanaka et al., 1987, Li et al., 2017) [30,31]. Hence, as an additional optimal EOC metric, we defined the smoothness measure for all the six parameters—IET, IES, IFCR, ED, ETC, ESC. We used the spline to fit the data points of EOC parameters by normalising the data. The optimal fit criteria were measured by traditional statistical techniques \(R^2/\text{Adjusted } R^2\), RMSE, and SSE, using the built-in toolboxes of MATLAB as shown in section B: Table 2.

4. Prediction of ACCSSP

The prediction of ACCSSP was categorised into four steps, as described in the following sections.
4.1. Estimation of Future Input States—DL Model

Step 1: Relative to the current state of the vehicle (VLV_k), the future input values (VLV_{k+1}) of the DL model (Figure 3) are estimated using the relations shown in Table 3. The parameter odometer (O_{k+1}) was calculated using the speed (S_k) with the constant time step by basic linear interpolation. The LOT ($L_{u(k+1)}$) is estimated based on the vehicle resistance shown in the equation set in Table 3, and the parameters YAR ($Y_{a(k+1)}$) and LAT ($L_{u(k+1)}$) are calculated assuming ISB (Kolachalama et al., 2018) [25]. The environmental parameters EAT_{k+1}, terrain data, [RRC_{k+1}, $\theta_g(k+1)$], are retrieved using the GPS location and the infotainment maps. The magnitudes of the tire pressure (TP_{k+1}) and CAT_{k+1} are assumed to be equal to the previous time step (Table 4).

![Figure 3. Process—Prediction of optimal ACCSSP.](image)

Table 3. Equation set—prediction of future input states.

| RRC_{k+1}, $\theta_g(k+1)$ | $2RRC_{k+1} = \frac{S_{k+1}}{L_{u(k+1)}} + \frac{S_{k+1}}{Y_{a(k+1)}}$, $\min \left| \frac{\theta_g(k+1)}{\theta_g(k+1)} \right|$ | $\rho = 1.225 \text{ kg} \cdot \text{m}^{-3}$ |
|---|---|---|
| $T_{k+1} = T_k + dT$ | $L_{u(k+1)} = g \mu_r + g \sin(\theta_g(k+1)) + \frac{\rho g A}{\Sigma(M_0 + M_g)} S_{k+1}^2$ | $S_{k+1} = [SL - 10, SL]$ |
| $O_{k+1} = O_k + S_k dT$ | $2020 \text{ Cadillac CT5} : M_e = 1769.69 \text{ kg}, M_I = 76.8 \text{ kg}, C_d = 0.31, A = 1.71 \text{ m}^2$ | $CAT_{k+1} = CAT_k$ |
| $EAT_{k+1} = EAT_k$ | $2019 \text{ Cadillac XT6} : M_e = 2050.278 \text{ kg}, M_I = 76.8 \text{ kg}, C_d = 0.35, A = 1.88 \text{ m}^2$ | $g = 9.81 \text{ m} \cdot \text{s}^{-2}$ |
| $TP_{k+1} = TP_k$ | $2021 \text{ Cadillac CT4} : M_e = 1626.94 \text{ kg}, M_I = 76.8 \text{ kg}, C_d = 0.30, A = 1.70 \text{ m}^2$ | $\mu_r = 0.013$ |

4.2. Prediction of Outputs—DL Model

Step 2: We estimated the input sets for future time steps (1 s—[T0, T1]) for the AVS range (e.g., [SL-10, SL]). Thus, we generated eleven sets of inputs, and fed them into the DL model, and predicted a corresponding eleven sets of outputs (EOP’s) (Table 5).
Table 4. Predicted inputs—DL model, 2019 Cadillac XT6 (100 time steps = 1 s).

Time Step	Odometer (Miles)	Speed (MPH)	RRC (m)	YAR (deg/s)	LAT (m·s⁻²)	LOT (m·s⁻²)
T₀	15,000	70	8304.140	0.216	0.117	0.437
dT₁₀	15,000.001	70	8304.140	0.216	0.117	0.375
dT₂₀	15,000.003	70	8304.140	0.216	0.117	0.312
dT₃₀	15,000.005	70	9342.157	0.192	0.104	−0.125
dT₄₀	15,000.007	70	24,912.42	0.072	0.039	−0.187
dT₅₀	15,000.009	70	74,737.261	0.024	0.013	−0.062
dT₆₀	15,000.011	70	74,737.261	0.024	0.013	0.25
dT₇₀	15,000.013	70	37,368.630	0.048	0.026	0.25
dT₈₀	15,000.015	70	24,912.420	0.072	0.039	0.187
dT₉₀	15,000.017	70	24,912.420	0.072	0.039	0.187
T₁	15,000.019	70	9342.157	0.192	0.104	0.312

4.3. Estimation of ACC Speed Values—EOC Criteria

Step 3: We applied the EOC criteria defined in section III for the eleven predicted EOP’s (Table 5). The top six performing speed values are selected for each EOC parameter, and hence, the top three modes of speeds (EVS) are calculated for each time step (Table 6). We incorporated a similar procedure for the next ten seconds, and the ACC Matrix (3X10) was developed (Table 7).

4.4. Algorithm to Predict ACCSSP

Step 4: Every second has three EVS, resulting in a maximum of 3^{10} possible ACCSSP’s for 10 s. The following conditions are defined to identify a unique ACCSSP inspired by the Dubin path traverse problem (La Valle, 2011) [32].

1. Assuming the ACCSSP at T_k is S_k, if the EVS is either $S_k + 1$, S_k, or $S_k - 1$, the highest magnitude among the three is selected as S_{k+1};
2. S_1 is chosen closer to S_0 (IAS). If this results in two values, then the higher value is considered as S_1;
3. If the eligible speeds at T_{k+1} are neither $S_k + 1$, S_k, nor $S_k - 1$, then $S_{k+1} = S_k$;
4. If $S_{k+1} = S_k$ for more than 10 s, $S_{k+1} = S_k + 1$ if $S_k + 1 \leq SL$ or $S_k - 1$ if $S_k = SL$.

EOP	Speed	65	66	67	68	69	70	71	72	73	74	75	
		Area	1.6 × 10^4	3.1 × 10^4	4.7 × 10^4	6.2 × 10^4	7.8 × 10^4	9.4 × 10^4	1.1 × 10^5	1.2 × 10^5	1.4 × 10^5	1.6 × 10^5	1.7 × 10^5
IET		Area	1.8 × 10^4	3.5 × 10^4	5.3 × 10^4	7.1 × 10^4	8.9 × 10^4	1.1 × 10^5	1.2 × 10^5	1.4 × 10^5	1.6 × 10^5	1.8 × 10^5	2.0 × 10^5
		R^2	0.76	0.83	0.77	0.74	0.77	0.77	0.75	0.77	0.75	0.78	0.76
		Adj R^2	0.4	0.57	0.43	0.36	0.44	0.43	0.39	0.44	0.37	0.44	0.4
		SSE	6.26	4.47	5.94	6.69	5.82	5.94	6.34	5.76	6.49	5.72	6.16
		RMS	0.4	0.33	0.39	0.41	0.38	0.38	0.4	0.38	0.4	0.38	0.39
IES		Area	2.8 × 10^4	5.6 × 10^4	8.4 × 10^4	1.1 × 10^5	1.4 × 10^5	1.7 × 10^5	1.9 × 10^5	2.2 × 10^5	2.5 × 10^5	2.7 × 10^5	3.0 × 10^5
		R^2	0.78	0.78	0.72	0.74	0.8	0.75	0.81	0.74	0.76	0.68	0.67
		Adj R^2	0.46	0.45	0.31	0.35	0.5	0.37	0.53	0.36	0.4	0.22	0.17
		SSE	4913.31	4737.99	5613.29	4967.08	3726.95	4633.05	3429.65	4679.59	4418.54	5766.31	6140.52
		RMS	11.19	10.99	11.97	11.26	9.75	10.85	9.35	10.92	10.62	12.13	12.52
IFCR		Area	5.4 × 10^4	1.1 × 10^2	1.6 × 10^2	2.2 × 10^2	2.8 × 10^2	3.3 × 10^2	3.9 × 10^2	4.5 × 10^2	5.0 × 10^2	5.6 × 10^2	6.2 × 10^2
		R^2	0.788	0.781	0.724	0.739	0.802	0.826	0.814	0.745	0.759	0.689	0.671
		Adj R^2	0.469	0.452	0.309	0.348	0.504	0.377	0.535	0.362	0.398	0.222	0.176
		SSE	0.02	0.02	0.025	0.023	0.017	0.022	0.016	0.023	0.024	0.024	0.028
		RMS	0.022	0.023	0.025	0.024	0.021	0.023	0.02	0.024	0.024	0.028	0.029
ETC		Area	1.1 × 10^2	2.2 × 10^2	3.3 × 10^2	4.5 × 10^2	5.6 × 10^2	6.7 × 10^2	7.8 × 10^2	9.0 × 10^2	1.0 × 10^3	1.1 × 10^3	1.2 × 10^3
		R^2	0.822	0.869	0.824	0.801	0.826	0.817	0.799	0.812	0.783	0.807	0.792
		Adj R^2	0.554	0.672	0.56	0.503	0.565	0.542	0.497	0.529	0.457	0.517	0.479
		SSE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		RMS	0.003	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
ESC		Area	1.9 × 10^4	3.7 × 10^4	5.5 × 10^4	7.2 × 10^4	9.0 × 10^4	1.1 × 10^5	1.2 × 10^5	1.4 × 10^5	1.6 × 10^5	1.7 × 10^5	1.9 × 10^5
		R^2	0.787	0.783	0.725	0.743	0.802	0.751	0.815	0.747	0.761	0.689	0.671
		Adj R^2	0.467	0.457	0.311	0.358	0.504	0.378	0.538	0.368	0.402	0.222	0.176
		SSE	4896.87	4721.42	5595.32	4950.75	3716.68	4620.39	3421.22	4665.06	4404.92	5749.95	6123.26
		RMS	11.18	10.978	11.951	11.241	9.74	10.86	9.345	10.912	10.604	12.115	12.502
5. Experimental Results

A series of experiments are designed, analysed and evaluated on a real-time dataset to evaluate the performance of the proposed framework.

5.1. Dataset Retrieval

We conducted this research using three test vehicles, a 2019 Cadillac XT6, a 2020 Cadillac CT5, and a 2021 Cadillac CT4, obtained from GMC. A two-step procedure was employed to retrieve the data from the vehicle CAN bus (Li et al., 2008) [33]. We connected the hardware neoVI to the vehicle and retrieved the data retrieval using the software Vehicle Spy. This tool records data in real-time (Gallardo, 2018) and allows the user to selectively retrieve the signal data required for analysis [34]. We performed the real-time test procedure by activating the ACC feature, and time-step snippets of data were collected for each vehicle at a frequency of 10 Hz, i.e., 100 data points are recorded for 1s assuming a no-slip (Eathakota et al., 2008) [28,29].

The test cases are developed by driving the vehicles on selected road segments covering all the arterial, state ways, and freeways scenarios. Shown in Figure 4 are the paths traversed by the Cadillac test vehicles. The properties of the six datasets used for this analysis, including the input and output parameters of the DL model, are shown in Tables 8–10. Please find the details of the predictive model in the following sections.

5.2. Prediction of EOP

The properties of the NARX model and the test cases used for training are shown in Table 1. We developed individual training networks with default properties using the DL toolbox of MATLAB for the three vehicles’ test data and the predicted EOP’s, as shown in the Supplementary Materials, Figures S1–S6. Each figure consists of three parts: IET (left), IES (middle), and IFCR (right). Furthermore, each plot compares the measured data (blue) with the predicted values (orange). We validated the performance of the NARX DL model prediction using traditional statistical techniques (RMSE, FOD, SNR) to compare the
actual and predicted values of EOP, as reported in Table 11. We conclude that IES follows a smooth curve, whereas IFCR and IET oscillate.

Table 8. Data Set 1: 2020 Cadillac CT5—arterial roads.

Parameters	ACC Speed [25 35] MPH	ACC Speed [35 45] MPH				
Absolute time (s)	Mean 2468.020	StdDev 1655.047	Variance 0.671	Mean 4584.239	StdDev 2453.828	Variance 0.535
Odometer (km)	Mean 11,721.440	StdDev 41.765	Variance 0.004	Mean 11,596.730	StdDev 56.886	Variance 0.005
Speed (MPH)	Mean 30.831	StdDev 2.859	Variance 0.093	Mean 40.634	StdDev 2.768	Variance 0.068
Acceleration (m·s⁻²)	Mean 1.090	StdDev 0.652	Variance 0.598	Mean 0.808	StdDev 0.449	Variance 0.556
LOT (m·s⁻²)	Mean 0.933	StdDev 0.633	Variance 0.678	Mean 0.670	StdDev 0.411	Variance 0.614
LAT (m·s⁻²)	Mean 0.318	StdDev 0.637	Variance 2.002	Mean 0.362	StdDev 0.335	Variance 0.924
YAR (deg/s)	Mean 0.098	StdDev 2.633	Variance 26.944	Mean 0.179	StdDev 1.056	Variance 5.914
EAT (°F)	Mean 12.964	StdDev 0.688	Variance 0.053	Mean 14.727	StdDev 1.742	Variance 0.118
CAT (°F)	Mean 66.141	StdDev 0.348	Variance 0.005	Mean 68.895	StdDev 1.069	Variance 0.016
TPFL (kPa)	Mean 225.908	StdDev 2.915	Variance 0.013	Mean 226.990	StdDev 3.243	Variance 0.014
TPRl (kPa)	Mean 235.773	StdDev 4.640	Variance 0.020	Mean 239.900	StdDev 4.259	Variance 0.018
TPFr (kPa)	Mean 235.115	StdDev 4.834	Variance 0.021	Mean 235.575	StdDev 3.706	Variance 0.016
TPrr (kPa)	Mean 234.132	StdDev 5.742	Variance 0.025	Mean 237.544	StdDev 4.270	Variance 0.018

5.3. Estimation of Optimal ACCSSP

The developed DL model and the steps defined in Section 4 are used to estimate the optimal ACCSSP for each test case. An example, for the test case of the vehicle 2019 Cadillac XT6, is selected with the AVS = [65 75] MPH, and the corresponding results are shown in Tables 4–6. The IAS (S₀) is varied in the range [65 75] MPH for the ACC Matrix (Table 7), and Step 4 is applied to the EVS, which results in eight ACCSSP’s shown in Figure 5. Thus for S₀ = 70 MPH, the predicted ACCSSP is the row vector ((71, 71, 71, 71, 72, 72, 73, 73, 74, 74) MPH) as shown in Figure S8. We adopted a similar procedure for multiple data sets and plotted the predicted ACCSSP’s are presented in the Supplementary Materials, Figures S7–S12. Please find the performance of EOC parameters for the predicted ACCSSP’s in Section B: Table 12.
Table 9. Data Set 2: 2020 Cadillac CT5—state ways roads.

Parameters	ACC Speed [45 55] MPH	ACC Speed [55 65] MPH
Absolute time (s)	3701.490	2993.845
Odometer (km)	11,410.820	11,894.840
Speed (MPH)	51.354	60.707
Acceleration (m·s⁻²)	0.500	0.415
LOT (m·s⁻²)	0.336	0.257
LAT (m·s⁻²)	0.256	0.305
YAR (deg/s)	-0.190	-0.030
EAT (°F)	12.889	15.083
CAT (°F)	69.726	66.000
Pitch angle (deg)	-0.262	-0.003
TPFL (kPa)	235.424	239.108
TPRL (kPa)	233.685	237.436
TPFR (kPa)	226.567	228.252
TPRR (kPa)	233.767	238.294

Table 10. Data Set 3: 2019 Cadillac XT6, 2021 Cadillac CT4—freeways roads.

Parameters	Cadillac XT6, ACC Speed [65 75] MPH	Cadillac CT4, ACC Speed [75 85] MPH
Absolute time (s)	387.430	31.709
Odometer (km)	12,723.040	30,298.330
Speed (MPH)	70.121	77.905
Acceleration (m·s⁻²)	0.004	-0.091
LOT (m·s⁻²)	-0.091	-0.149
LAT (m·s⁻²)	0.132	-0.149
YAR (deg/s)	0.230	-0.003
EAT (°F)	39.225	85.039
CAT (°F)	68.785	66.502
Pitch angle (deg)	-0.262	-0.003
TPFL (kPa)	241.238	227.807
TPRL (kPa)	235.890	249.502
TPFR (kPa)	243.691	228.316
TPRR (kPa)	235.224	249.503

Table 11. NARX DL model performance—ACCSSP [30 80] MPH.

Metric	EOP	IET	IES	IFCR					
RMSE	2.761	1.911	35.003	2.367	1.541	35.417	12.911	8.717	25.499
FOD	0.750	0.418	45.362	0.845	0.484	37.442	14.122	9.477	24.438
SNR	7.105	0.039	53.762	0.228	0.169	58.007	8.335	5.877	30.369
RMSE	8.576	0.618	46.651	0.064	0.027	70.160	9.917	6.879	27.586
5.3. Estimation of Optimal ACCSSP

The developed DL model and the steps defined in Section 4.1 result in optimal EOP. Hence, for each future second, the AVS is varied in a definite range [65 75] MPH for the 2019 Cadillac XT6, and the corresponding inputs for the future states are fed into the DL model to generate multiple EOPs. We applied EOC criteria to the EOPs, and the top three EVS are estimated as [69, 71, 68] MPH.

In this work, we proposed the criteria for augmented EOC and an iterative methodology to predict ACCSSP’s, resulting in optimal EOP. Hence, for each future second, the AVS is varied in a definite range [65 75] MPH for the 2019 Cadillac XT6, and the corresponding inputs for the future states are fed into the DL model to generate multiple EOPs. We applied EOC criteria to the EOPs, and the top three EVS are estimated as [69, 71, 68] MPH.

We adopted a similar procedure for ten seconds and predicted ACCSSP for IAS = 70 MPH, SL = 75 MPH, with a minimum of 71 MPH and a maximum of 73 MPH (Figure S8). The predicted and constant ACCSSP profile (70 MPH) with corresponding inputs (Section 4.1) were fed into the DL model to obtain two different EOP’s vectors (Section 4.2) for future time steps (10 s). We applied the EOC criteria for the two EOP’s whose values are in Section A: Table 12 and thus predicted ACCSSP resulted in 934.77 m of the additional distance traversed and a reduced ED of 373.968. Additionally, the constant ACCSSP = 70 MPH consumed 379.095 \(1 \times 10^{-6}\) m3 more fuel in 10 s compared with the predicted ACCSSP.

The plots of engine performance parameters are shown in Figure 6, and the area under the curve has higher magnitudes by 1.2 (ETC) and 10.2 (ESC) for the predicted ACCSSP. Please find the smoothness measure for the conformance of the two EOP’s in Table 13, and \(R^2\)/Adjusted \(R^2\) have similar values (conformance \~ 0), whereas RMSE/SSE have lower values (conformance \~ 0).

Table 12. EOC criteria: engine parameters (predicted–constant) ACCSSP.

Metric	ACCSSP (70 MPH)	ACCSSP (Predicted)	Conformance	SL	IAS	Distance	ED	IFCR	ETC	ESC
Distance	69,930.00	72,028.00	934.77	45	40	133.44	−17.33	−21.19	0.25	−0.26
ED	17,4570.83	17,4196.86	−373.96	55	50	712.22	−366.13	−323.27	0.51	1.20
ETC	572.12	573.34	1.22	65	60	−312.11	−510.75	−540.58	0.87	0.22
ESC	1154.63	1164.83	10.20	75	70	934.77	−373.96	−379.09	1.22	10.20
IFCR	27,4182.80	27,3803.70	−379.09	85	80	801.108	−1035.28	−1029.6	2.813	−2.022

6. Discussion

The plots of predicted EOP’s for the three test vehicles Cadillac CT5, XT6, and CT4, are depicted in Figures S1–S6. The predictive model is validated by estimating the conformance between actual and predicted data’s RMSE, FOD, and SNR (Table 11). The IET RMSE values were <2.76, whereas IES FOD was <1.54 for all the datasets. We recorded the RMSE values were <2.76, whereas IES FOD was <1.54 for all the datasets. We recorded the IET RMSE between actual and predicted data’s RMSE, FOD, and SNR (Table 11). The IET RMSE has similar values (conformance \~ 0), whereas RMSE/SSE have lower values (conformance \~ 0).
values for predicted ACCSSP for most cases. Section B: Table 12 depicts the performance of EOC parameters for all the test cases, and it is easy to see that in most cases, the predicted ACCSSP has reduced ED and IFCR. Hence the proposed approach in this article is novel and better suits enhancing EOC and lowering the trip time.

Figure 6. EOC Parameters—(ETC, ESC, ED); IAS = 70 MPH, SL = 75 MPH, 2019 Cadillac XT6.

Table 13. EOC criteria: smoothness performance—(predicted–constant) ACCSSP.

EOP	IET	IES	IFCR											
	R²	Adj R²	SSE	RMS	R²	Adj R²	SSE	RMS	R²	Adj R²	SSE	RMS		
SL	IAS													
35	30	0.0	0.0	-9.415	-0.007	0.0	0.000	0.564	0.000	0.000	0.0	-103.786	-0.023	
45	40	0.0	0.0	0.326	0.001	0.0	0.000	2.582	0.013	0.000	0.0	-23.251	-0.005	
55	50	0.0	0.0	3.069	0.007	0.0	0.001	-38.090	-0.033	0.000	0.0	-570.595	-0.083	
65	60	0.0	0.0	1.307	0.005	0.0	0.000	0.431	0.002	0.000	0.0	33.212	0.004	
75	70	0.0	0.0	0.368	0.004	0.0	0.064	0.160	-2.607	-0.024	0.000	0.0	136.612	0.044
85	80	0.0	0.0	-0.312	-0.001	-0.002	-0.005	0.142	0.007	0.001	0.002	-243.889	-0.068	

7. Conclusions and Future Work

In this manuscript, we developed a novel method to predict the ACCSSP, which optimises engine performance. We considered the vector EOP and used NARX DL modelling techniques to predict the EOP by mapping the VLV. We defined EOC criteria using the elements of EOP, which reflect enhanced engine operating conditions. In this methodology, a new approach of inputing the range of allowable ACC speeds is proposed and, therefore, a unique ACCSSP for the future time-steps was generated in the defined range by utilising iterative methods and satisfying the EOC criteria. The predicted and constant ACCSSP are fed into the DL model, and the engine performance parameters are estimated based on the predicted EOP. The results depict that for predicted ACCSSP, the parameters (ETC, ESC, IET, IES), and (IFCR, ED) have higher and lower values. Additionally, the predicted ACCSSP generated smoother profiles for the engine parameters when plotted in the time domain.

The researchers have not investigated the proposed technique of predicting ACCSSP, and this new approach could also trigger a new capability in ACC controllers to deviate from the user command of unique set speed and produce enhanced vehicle performance. The computational results obtained were satisfactory, and thus, we observed augmented EOC for the predicted ACCSSP.

We did not include many critical points, including traffic congestion, in the model. Future work would involve developing the model by including all the affecting parameters and performing extensive validation using multiple vehicle lines at various locations and periods. Additionally, this research could be extended to electric vehicles by defining new criteria of battery and motor operating conditions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/vehicles3040044/s1, Figure S1: Prediction of EOP-ACCSSP = 30 MPH, 2020 Cadillac CT5;
Figure S2: Prediction of EOP-ACCSP = 40 MPH, 2020 Cadillac CT5; Figure S3: Prediction of EOP-ACCSP = 50 MPH, 2020 Cadillac CT5; Figure S4: Prediction of EOP-ACCSP = 60 MPH, 2020 Cadillac CT5; Figure S5: Prediction of EOP-ACCSP = 70 MPH, 2019 Cadillac XT6; Figure S6: Prediction of EOP-ACCSP = 80 MPH, 2021 Cadillac CT4; Figure S7: Prediction of ACCSSP-IAS = 80 MPH, SL = 85 MPH; Figure S8: Prediction of ACCSSP-IAS = 70 MPH, SL = 75 MPH; Figure S9: Prediction of ACCSSP-IAS = 60 MPH, SL = 65 MPH; Figure S10: Prediction of ACCSSP-IAS = 50 MPH, SL = 55 MPH; Figure S11: Prediction of ACCSSP-IAS = 40 MPH, SL = 45 MPH; Figure S12: Prediction of ACCSSP-IAS = 30 MPH, SL = 35 MPH.

Author Contributions: The first author (S.K.) came up with the idea, developed the concept, and performed the analysis. The second author (H.M.) is the principal investigator for this project. All authors have read and agreed to the published version of the manuscript.

Funding: The project “Predictive model of ACCSSP” was performed under the University of Michigan and GMC research collaboration, funded by William J. Clifford (Director) of the Systems Engineering department at GMC.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this work are proprietary to GMC and cannot be made publicly available. However, the modelling algorithm is available on request.

Acknowledgments: The authors would like to thank Iqbal Surti, Systems Engineer at GMC, for his assistance in real-time testing. The technical analysis was performed using the tools provided by GMC (Vehicle Spy and neoVI) and the University of Michigan (MATLAB).

Conflicts of Interest: The authors of this manuscript declare that there is no conflict of interest regarding the publication of this article.

Abbreviations

Abbreviation	Description
ACC	Adaptive cruise control
ACCSSP	Adaptive cruise control set speed profile (MPH)
Area	Area under the curve
AVS	Allowable vehicle speeds
CAN	Controller area network
CAT	Cabin air temperature (°F)
DL	Deep Learning
DBV	Driver behaviour vector
EAT	External air temperature (°F)
ED	Euclidean distance—Ideal EOP and Predicted EOP
EOC	Engine operating conditions
EOP	Engine operating point
ESC	Engine speed caliber
EVS	Eligible vehicle speeds
ETC	Engine torque caliber
FOD	First order derivative
IAS	Initial ACC speed (MPH)
IEM	Instantaneous engine map
IES	Instantaneous engine speed (rad/s)
IET	Instantaneous engine torque (Nm)
IFCR	Instantaneous fuel consumption rate (1 × 10⁻⁸ m³s⁻²)
ISB	Ideal steering behaviour
LAT	Lateral acceleration (m · s⁻²)
LOT	Longitudinal acceleration (m · s⁻²)
LSTM	Long short-term memory
GMC	General motors corporation
MPH	Miles per hour
MY Model year
NARX Autoregressive network with exogenous inputs
OEM Original equipment manufacturer
RMSE Root mean square error
RRC Radius of road curvature (m)
SL Speed limit (MPH)
SNR Signal to noise ratio
SSEStdDev Sum of squared errorsStandard deviation
TP Tire pressure (kPa)
TPFL Tire pressure front left (kPa)
TPFR Tire pressure front right (kPa)
TPRL Tire pressure rear left (kPa)
TPRR Tire pressure rear right (kPa)
VLV Vehicle level vectors
YAR Yaw rate (rad/s)

Nomenclature

\(A_c \) Area of vehicle cross-section (m\(^2\))
\(C_d \) Aerodynamic drag coefficient
\(^\circ\)F Fahrenheit
\(g \) Gravity
Hz Hertz
kPa Kilopascals
Kg Kilogram
Km Kilometres
kWh Kilowatt-hour
\(L_{a(k)} \) Lateral acceleration at time step k (m\(\cdot \)s\(^{-2}\))
\(L_{o(k)} \) Longitudinal acceleration at time step k (m\(\cdot \)s\(^{-2}\))
\(M_c \) Mass of the vehicle. (Kg)
\(M_L \) Mass of the additional load (Kg)
MPH Miles per hour
m Meters
m\(^2\) Meter square (measure of area)
m\(^3\)s\(^{-1}\) Meter cube per second (volume rate flow)
m.s\(^{-2}\) Meters per second square
ms Milli seconds
Nm Newton meter
\(\mu_r \) Rolling coefficient
rad Radians
rad/s Radians per second
RRC\(_k\) Radius of road curvature at time step k (m)
RPM Rotations per minute
\(\rho \) Density of air (kg.m\(^{-3}\))
s Seconds
\(T_k \) Timestep
\(\Delta T \) Incremental time step (~10 ms)
\(\theta_g(k) \) Gradient of the terrain at time step k (rad)
\(Y_a(k) \) Yaw rate at time step k (rad/s)
m\(^3\)s\(^{-1}\) Meter cube per second (Volume rate flow)

References

1. Townsend, J.D.; Calantone, R.J. Evolution and Transformation of Innovation in the Global Automotive Industry. J. Prod. Innov. Manag. 2014, 31, 4–7. [CrossRef]
2. Katzenbach, A. Automotive. In Concurrent Engineering in the 21st Century; Springer: Cham, Switzerland, 2015; pp. 607–638.
3. Labuhn, P.I.; Chundrlik, W.J., Jr. Adaptive Cruise Control. U.S. Patent 5,454,442, 3 October 1995.
4. Marsden, G.; McDonald, M.; Brackstone, M. Towards an understanding of adaptive cruise control. *Transp. Res. Part C Emerg. Technol.* 2001, 9, 33–51. [CrossRef]

5. Mahdinia, I.; Arvin, R.; Khattak, A.J.; Ghiasi, A. Safety, Energy, and Emissions Impacts of Adaptive Cruise Control and Cooperative Adaptive Cruise Control. *Transp. Res. Rec. J. Transp. Res. Board* 2020, 2674, 253–267. [CrossRef]

6. Stanton, N.A.; Young, M.S. Driver behaviour with adaptive cruise control. *Ergonomics* 2005, 48, 1294–1313. [CrossRef]

7. Hoedemaeker, M.; Brookhuis, K. Behavioural adaptation to driving with an adaptive cruise control (ACC). *Transp. Res. Part F Traffic Psychol. Behav.* 1998, 1, 95–106. [CrossRef]

8. Kesting, A.; Treiber, M.; Schönhof, M.; Kranke, F.; Helbing, D. Jam-avoiding adaptive cruise control (ACC) and its impact on traffic dynamics. In *Traffic and Granular Flow’05*; Springer: Berlin, Heidelberg, 2007; pp. 633–643.

9. Rudin-Brown, C.M.; Parker, H.A. Behavioural adaptation to adaptive cruise control (ACC): Implications for preventive strategies. *Transp. Res. Part F Traffic Psychol. Behav.* 2004, 7, 59–76. [CrossRef]

10. Moon, S.; Yi, K. Human driving data-based design of a vehicle adaptive cruise control algorithm. *Veh. Syst. Dyn.* 2008, 46, 661–690. [CrossRef]

11. Rosenfeld, A.; Bareket, Z.; Goldman, C.V.; Leblanc, D.J.; Tsimhoni, O. Learning Drivers’ Behavior to Improve Adaptive Cruise Control. *J. Intell. Transp. Syst.* 2015, 19, 18–31. [CrossRef]

12. Milanes, V.; Shladover, S.E.; Spring, J.; Nowakowski, C.; Kawazoe, H.; Nakamura, M. Cooperative Adaptive Cruise Control in Real Traffic Situations. *IEEE Trans. Intell. Transp. Syst.* 2013, 15, 296–305. [CrossRef]

13. Milanes, V.; Shladover, S.E. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data. *Transp. Res. Part C Emerg. Technol.* 2014, 48, 285–300. [CrossRef]

14. Kesting, A.; Treiber, M.; Schönhof, M.; Helbing, D. Adaptive cruise control design for active congestion avoidance. *Transp. Res. Part C Emerg. Technol.* 2008, 16, 668–683. [CrossRef]

15. Ploeg, J.; Serrarens, A.F.A.; Heijenk, G.J. Connect & Drive: Design and evaluation of cooperative adaptive cruise control for congestion reduction. *J. Mod. Transp.* 2011, 19, 207–213. [CrossRef]

16. Lin, D.-Y.; Hou, B.-J.; Lan, C.-C. A balancing cam mechanism for minimizing the torque fluctuation of engine camshafts. *Mech. Mach. Theory* 2017, 108, 160–175. [CrossRef]

17. Lu, C.; Dong, J.; Hu, L. Energy-Efficient Adaptive Cruise Control for Electric Connected and Autonomous Vehicles. *IEEE Intell. Transp. Syst. Mag.* 2019, 11, 42–55. [CrossRef]

18. Vedam, N. Terrain-Adaptive Cruise Control: A Human-Like Approach. Ph.D. Thesis, Texan A&M University, Collage Station, TX, USA, 2015.

19. Kolmanovsky, I.V.; Fielev, D.P. Terrain and Traffic Optimized Vehicle Speed Control. *IFAC Proc. Vol.* 2010, 43, 378–383. [CrossRef]

20. Gaspar, P.; Németh, B. Design of adaptive cruise control for road vehicles using topographic and traffic information. *IFAC Proc. Vol.* 2014, 47, 4184–4189. [CrossRef]

21. Németh, B.; Gáspár, P. Road inclinations in the design of LPV-based adaptive cruise control. *IFAC Proc. Vol.* 2011, 44, 2202–2207. [CrossRef]

22. Németh, B.; Gaspar, P. Design of vehicle cruise control using road inclinations. *Int. J. Veh. Auton. Syst.* 2013, 11, 313. [CrossRef]

23. Ma, J.; Hu, J.; Leslie, E.; Zhou, F.; Huang, P.; Bared, J. An eco-drive experiment on rolling terrains for fuel consumption optimization with connected automated vehicles. *Transp. Res. Part C Emerg. Technol.* 2019, 100, 125–141. [CrossRef]

24. Kolachalama, S.; Lakshmanan, S. Using Deep Learning to Predict the Engine Operating Point in Real-Time; SAE Technical Paper; General Motors LLC: Detroit, MI, USA, 2021.

25. Dianoconesu, E. The use of NARX neural networks to predict chaotic time series. *Wseas Trans. Comput. Res.* 2008, 3, 182–191.

26. Kolachalama, S.; Hay, C.L.; Mushtarin, T.; Todd, N.; Heitman, J.; Hermiz, S. An Algorithm to Estimate Steering Behavior Using Vehicle Radius of Curvature; Research Disclosure, Questel Ireland Ltd.: Paris, France, 2018; p. 647068.

27. Kolachalama, S.; Kuppa, K.; Mattam, D.; Shukla, M. Thermal Analysis of Radiator Core in Heavy Duty Automobile. In Proceedings of the Heat Transfer Summer Conference, Jacksonville, FL, USA, 10–14 August 2008; Volume 48487, pp. 123–127.

28. Eathakota, V.P.; Kolachalama, S.; Krishna, K.M.; Sanan, S. Optimal posture control for force actuator based articulated suspension vehicle for rough terrain mobility. In *Advances in Mobile Robotics*; World Scientific: Coimbra, Portugal, 2008; pp. 760–767.

29. Eathakota, V.; Singh, A.K.; Kolachalama, S.; Madhava Krishna, K. Determination of Optimally Stable Posture for Force Actuator Based Articulated Suspension for Rough Terrain Mobility. In *Trends in Intelligent Robotics*; FIRA 2010; Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 103.

30. Tanaka, H.; Tokushima, T.; Higashi, H.; Hamada, S. Means for Suppressing Engine Output Torque Fluctuations. U.S. Patent 4,699,097, 13 October 1987.

31. Li, S.E.; Guo, Q.; Xu, S.; Duan, J.; Li, S.; Li, C.; Su, K. Performance Enhanced Predictive Control for Adaptive Cruise Control System Considering Road Elevation Information. *IEEE Trans. Intell. Veh.* 2017, 2, 150–160. [CrossRef]

32. La Valle, S.M. Motion planning. *IEEE Robot. Autom. Mag.* 2011, 18, 108–118. [CrossRef]

33. Li, R.; Liu, C.; Luo, F. A design for automotive CAN bus monitoring system. In Proceedings of the 2008 IEEE Vehicle Power and Propulsion Conference, Harbin, China, 3–5 September 2008; pp. 1–5.

34. Gallardo, F.B. Extraction and Analysis of Car Driving Data via Obd-II. Ph.D. Thesis, Universidad Miguel Hernández de Elche, Alicante, Spain, 2018.