Crystal structure of ethidium heptafluorobutyrate

Runa Shimazaki and Masaaki Sadakiyo*

Department of Applied Chemistry, Faculty of Science Division I, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan. *Correspondence e-mail: sadakiyo@rs.tus.ac.jp

In the title compound (systematic name: 3,8-diamino-5-ethyl-6-phenylphenanthridin-5-ium 2,2,3,3,4,4,4-heptafluorobutyrate), C_{21}H_{20}N_{3}^{+}/C_{1}C_{4}F_{7}O_{2}^{-}, two ethidium ions, C_{21}H_{20}N_{3}^{+} form a dimerized structure due to π–π interactions, even though they are positively charged. The heptafluorobutyrate anions are connected to neighbouring cation dimers via hydrogen-bonding interactions, the hydrogen-bonding donor sites of the –NH_{2} groups of the ethidium ions connecting to the hydrogen-bonding acceptor sites of the –COO^{-} groups of the heptafluorobutyrate anions.

Structure description

Ethidium salts are widely used in scientific research as a result of their important applications, including as intercalators for DNA (Chen et al., 2000) and as building units for covalent organic frameworks (Ma et al., 2016). In this study, the structure of an ethidium salt with a heptafluorobutyrate anion is reported (Fig. 1). Two ethidium cations form a dimerised structure (Fig. 2) via π–π stacking and four dimeric pairs are located in the unit cell. There are two ethidium cations and two heptafluorobutyrate anions as the crystallographically independent components. The ethidium cations do not exhibit a completely planar structure but instead show a slightly bent shape (C_{19}⋯C_{11}:C_{24} = 170.82°, C_{12}⋯C_{3}:C_{25} = 165.57°). The closest Cg⋯Cg separation between the ethidium cations is 3.7502 (3) Å, indicating the presence of a π–π interaction. Some hydrogen bonds with relatively short distances are observed between the ethidium cation and heptafluorobutyrate anion (e.g., N_{3}⋯H_{3}A⋯O_{1} = 2.899 Å, N_{3}⋯H_{3}⋯O_{4} = 2.909 Å, N_{5}⋯H_{5}A⋯O_{4} = 2.935 Å, N_{4}⋯H_{4}A⋯O_{2} = 2.990 Å, N_{6}⋯H_{6}A⋯O_{3} = 2.939 Å; Table 1), which would be related to the formation of this packing structure (Fig. 3).

Synthesis and crystallization

A methanol solution (1 ml) of silver(I) heptafluorobutyrate (64.2 mg, 0.20 mmol) was mixed with a methanol solution (30 ml) of ethidium bromide (78.9 mg, 0.20 mmol) and
then the mixture was stirred for 30 minutes at room temperature. The insoluble precipitate was removed by centrifugation. The remaining solution was evaporated to obtain a crude powder. The crude powder was dissolved in a mixed solvent (methanol:water = 1:1) and red crystals of the target compound were obtained by slow evaporation of the solution after 9 d at room temperature.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information
Funding for this research was provided by: Japan Society for the Promotion of Science (grant No. 21K05089).

References
Brandenburg, K. (2014). DIAMOND, Crystal Impact GbR, Bonn, Germany.

Brucker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuoci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.

Chen, W., Turro, N. J. & Tomalia, D. A. (2000). Langmuir, 16, 15–19.

Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Japan, 51, 218–224.

Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.

Ma, H., Liu, B., Li, B., Zhang, L., Li, Y.-G., Tan, H.-Q., Zang, H.-Y. & Zhu, G. (2016). J. Am. Chem. Soc. 138, 5897–5903.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
full crystallographic data

IUCrData (2022). 7, x220884 [https://doi.org/10.1107/S2414314622008847]

Ethidium heptafluorobutyrate

Runa Shimazaki and Masaaki Sadakiyo

3,8-Diamino-5-ethyl-6-phenylphenanthridin-5-iium 2,2,3,3,4,4,4-heptafluorobutyrate

Crystal data

C21H20N3+·C4F7O2−
Mr = 527.44
Monoclinic, P21/n
a = 12.1592 (8) Å
b = 18.9260 (14) Å
c = 20.3097 (17) Å
β = 91.474 (3)°
V = 4672.2 (6) Å³
Z = 8

F(000) = 2160
Dm = 1.500 Mg m⁻³
Mo Kα radiation, λ = 0.71069 Å
Cell parameters from 7105 reflections
θ = 2.2–27.2°
μ = 0.13 mm⁻¹
T = 100 K
Block, red
0.25 × 0.20 × 0.15 mm

Data collection

Bruker PHOTON II CPAD
diffractometer
Radiation source: fine-focus sealed tube
φ and θ scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
Tmin = 0.605, Tmax = 0.711
58553 measured reflections

Refinement

Refinement on F²
Least-squares matrix: full
R[F² > 2σ(F²)] = 0.089
wR(F²) = 0.218
S = 1.11
12404 reflections
669 parameters
0 restraints

Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
w = 1/[σ²(FO²) + (0.0532P)² + 9.0949P]
where P = (FO² + 2FC²)/3
(Δ/σ)max < 0.001
Δρmax = 0.47 e Å⁻³
Δρmin = −0.45 e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of F² > 2σ(F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

All of hydrogen atoms are geometrically fixed using a riding-model approximation with C–H = 0.95 (for phenyl), 0.98 (for methyl), 0.99 (for methylene), and N–H = 0.88 Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

x	y	z	Uiso*/Ueq			
F1	1.10423 (16)	0.34876 (11)	0.57616 (10)	0.0348 (5)		
O1	0.81718 (17)	−0.14092 (12)	0.72561 (11)	0.0272 (5)		
F2	0.69849 (17)	0.00943 (11)	0.65047 (11)	0.0416 (5)		
N1	0.64572 (19)	0.32175 (13)	0.36249 (12)	0.0194 (5)		
N2	0.60689 (19)	0.18575 (12)	0.61439 (12)	0.0190 (5)		
F3	0.96344 (17)	−0.02675 (11)	0.71179 (12)	0.0432 (6)		
F4	1.27314 (17)	0.37587 (12)	0.55497 (10)	0.0396 (5)		
F5	0.91654 (18)	−0.09184 (11)	0.59264 (11)	0.0419 (5)		
F6	1.25336 (18)	0.50412 (11)	0.60348 (12)	0.0447 (6)		
F7	0.8910 (2)	0.07025 (11)	0.67357 (12)	0.0483 (6)		
C1	0.6334 (2)	0.35297 (14)	0.47691 (14)	0.0179 (5)		
F8	0.7581 (2)	−0.00011 (11)	0.75221 (11)	0.0463 (6)		
N3	0.9615 (2)	0.19489 (14)	0.28830 (13)	0.0263 (5)		
H3	0.923744	0.181066	0.253059	0.032*		
H3A	1.029377	0.179993	0.295114	0.032*		
O2	1.15659 (18)	0.33758 (13)	0.70389 (12)	0.0324 (5)		
F9	1.12268 (19)	0.47801 (13)	0.53262 (11)	0.0480 (6)		
O3	0.66684 (18)	−0.12731 (13)	0.66078 (13)	0.0346 (5)		
C2	0.5845 (2)	0.34299 (14)	0.41299 (14)	0.0179 (5)		
F10	0.8540 (2)	0.00707 (14)	0.55507 (12)	0.0572 (7)		
F11	0.98781 (18)	0.45093 (13)	0.64091 (14)	0.0536 (6)		
C3	0.7493 (2)	0.34630 (14)	0.48463 (14)	0.0169 (5)		
C4	0.8107 (2)	0.31722 (14)	0.43182 (14)	0.0176 (5)		
C5	0.7883 (2)	0.13477 (14)	0.44688 (15)	0.0203 (6)		
H5	0.866288	0.137570	0.447140	0.024*		
N4	0.9273 (2)	0.28652 (14)	0.72447 (13)	0.0272 (6)		
H4	0.887391	0.301183	0.757333	0.033*		
H4A	0.997967	0.296386	0.723928	0.033*		
C6	0.5683 (2)	0.37085 (14)	0.53133 (14)	0.0183 (5)		
H6	0.490632	0.374111	0.525647	0.022*		
C7	0.7207 (2)	0.19843 (14)	0.61789 (14)	0.0185 (5)		
C8	0.7560 (2)	0.30125 (14)	0.37144 (14)	0.0179 (5)		
C9	0.5560 (2)	0.16008 (14)	0.56038 (14)	0.0189 (5)		
C10	0.6156 (2)	0.14439 (14)	0.50267 (14)	0.0188 (5)		
C11	0.7837 (2)	0.17952 (14)	0.56289 (14)	0.0181 (5)		
C12	0.6164 (2)	0.38361 (14)	0.59262 (14)	0.0192 (5)		
C13	0.5596 (2)	0.12177 (15)	0.44471 (14)	0.0208 (6)		
Atom	x	y	z	Uiso		
------	-------	-------	-------	-------		
H13	0.482034	0.115938	0.444544	0.025*		
C14	0.7315 (2)	0.15223 (14)	0.50495 (14)	0.0178 (5)		
C15	0.7690 (2)	0.23179 (15)	0.67315 (14)	0.0207 (6)		
H15	0.725365	0.242914	0.709883	0.025*		
F12	1.1169 (2)	0.49419 (13)	0.70211 (12)	0.0530 (6)		
C16	0.4646 (2)	0.35300 (15)	0.40168 (14)	0.0194 (5)		
C17	0.8079 (2)	0.26311 (15)	0.32207 (14)	0.0207 (6)		
H17	0.769895	0.253550	0.281587	0.025*		
C18	0.8990 (2)	0.19243 (15)	0.56844 (15)	0.0208 (6)		
H18	0.944662	0.177669	0.533780	0.025*		
C19	0.8796 (2)	0.24854 (15)	0.67443 (15)	0.0215 (6)		
C20	0.9232 (2)	0.29873 (15)	0.43770 (14)	0.0200 (5)		
H20	0.964477	0.312917	0.475781	0.024*		
N5	0.5568 (2)	0.39977 (14)	0.64670 (12)	0.0252 (5)		
H5A	0.484588	0.402420	0.643371	0.030*		
H5B	0.590542	0.407535	0.684857	0.030*		
C21	0.7971 (2)	0.36382 (15)	0.54669 (14)	0.0192 (5)		
H21	0.874886	0.363064	0.552401	0.023*		
C22	0.7334 (2)	0.38185 (15)	0.59871 (14)	0.0202 (6)		
H22	0.768009	0.393437	0.639774	0.024*		
F13	1.0447 (2)	0.55673 (12)	0.62469 (15)	0.0620 (8)		
C23	0.7332 (2)	0.11406 (15)	0.39074 (15)	0.0226 (6)		
H23	0.773730	0.103458	0.352614	0.027*		
C24	0.6170 (2)	0.10799 (15)	0.38796 (14)	0.0212 (6)		
C25	0.9149 (2)	0.23925 (15)	0.33223 (14)	0.0205 (6)		
C26	0.9456 (2)	0.22516 (15)	0.62169 (15)	0.0223 (6)		
H26	1.022906	0.232539	0.623817	0.027*		
N6	0.5651 (2)	0.08560 (15)	0.33075 (13)	0.0296 (6)		
H6A	0.493293	0.079612	0.329379	0.035*		
H6B	0.603644	0.077263	0.295503	0.035*		
C27	0.9738 (2)	0.26090 (16)	0.38982 (15)	0.0218 (6)		
H27	1.049400	0.248987	0.395220	0.026*		
C28	0.4343 (2)	0.14853 (15)	0.56064 (14)	0.0205 (6)		
O4	1.3299 (2)	0.36498 (19)	0.68042 (15)	0.0545 (9)		
C29	1.2309 (2)	0.35991 (17)	0.66902 (16)	0.0260 (6)		
C30	0.4161 (2)	0.41967 (16)	0.40651 (15)	0.0239 (6)		
H30	0.460104	0.460049	0.415984	0.029*		
C31	0.3991 (2)	0.29412 (16)	0.38733 (15)	0.0230 (6)		
H31	0.431873	0.248751	0.383922	0.028*		
C32	0.3920 (3)	0.08359 (16)	0.57879 (18)	0.0290 (7)		
H32	0.440069	0.046024	0.591124	0.035*		
C33	0.5421 (2)	0.19980 (16)	0.67456 (14)	0.0223 (6)		
H33	0.463424	0.205209	0.661902	0.027*		
H33A	0.567472	0.244567	0.695105	0.027*		
C34	0.2383 (2)	0.36769 (18)	0.38333 (16)	0.0278 (7)		
H34	0.160998	0.372794	0.377353	0.033*		
C35	0.7493 (2)	−0.10657 (17)	0.69107 (15)	0.0244 (6)		
C36	0.2866 (2)	0.30157 (17)	0.37806 (16)	0.0266 (6)		
------	--------	--------	--------	--------	--------	--------
H36	0.242373	0.261402	0.368075	0.032*		
C37	0.6013 (2)	0.32601 (18)	0.29317 (15)	0.0259 (6)		
H37	0.520477	0.332442	0.293546	0.031*		
H37A	0.616777	0.281270	0.269924	0.031*		
C38	0.8860 (3)	−0.00120 (17)	0.66979 (17)	0.0303 (7)		
C39	0.3034 (3)	0.42642 (17)	0.39738 (16)	0.0284 (7)		
H39	0.270132	0.471666	0.400746	0.034*		
C40	0.2508 (3)	0.19222 (18)	0.54011 (17)	0.0299 (7)		
H40	0.202339	0.229124	0.526610	0.036*		
C41	1.1930 (2)	0.38599 (17)	0.59907 (16)	0.0262 (6)		
C42	0.5551 (3)	0.14010 (18)	0.72407 (16)	0.0303 (7)		
H42	0.525777	0.096331	0.704727	0.046*		
H42A	0.514629	0.151654	0.763772	0.046*		
H42B	0.633197	0.133786	0.735664	0.046*		
C43	1.1618 (3)	0.46488 (18)	0.59370 (17)	0.0303 (7)		
C44	0.3635 (2)	0.20300 (17)	0.54076 (16)	0.0254 (6)		
H44	0.392532	0.247307	0.527260	0.030*		
C45	0.7712 (3)	−0.02542 (17)	0.69042 (16)	0.0270 (6)		
F14	1.0221 (2)	−0.00067 (16)	0.59017 (17)	0.0744 (9)		
C46	0.2090 (3)	0.12757 (19)	0.55915 (19)	0.0349 (8)		
H46	0.131748	0.120142	0.558691	0.042*		
C47	0.2793 (3)	0.07386 (18)	0.5788 (2)	0.0378 (8)		
H47	0.249992	0.029861	0.592485	0.045*		
C48	0.6529 (3)	0.3871 (2)	0.25683 (17)	0.0380 (8)		
H48	0.636602	0.431470	0.279466	0.057*		
C48A	0.622816	0.38958	0.211641	0.057*		
H48B	0.732801	0.380377	0.255904	0.057*		
C49	1.0752 (3)	0.49156 (19)	0.6410 (2)	0.0380 (8)		
C50	0.9189 (3)	−0.0216 (2)	0.6003 (2)	0.0398 (9)		

Atomic displacement parameters (Å²)

	\(U_1^{11} \)	\(U_2^{22} \)	\(U_3^{33} \)	\(U_1^{12} \)	\(U_1^{13} \)	\(U_2^{23} \)
F1	0.0375 (11)	0.0321 (10)	0.0343 (11)	−0.0072 (8)	−0.0076 (8)	−0.0019 (8)
O1	0.0229 (10)	0.0265 (11)	0.0321 (12)	−0.0015 (8)	0.0014 (9)	0.0064 (9)
F2	0.0363 (11)	0.0372 (12)	0.0511 (13)	0.0142 (9)	−0.0055 (9)	0.0075 (10)
N1	0.0186 (11)	0.0224 (12)	0.0172 (12)	−0.0015 (9)	0.0004 (9)	−0.0017 (9)
N2	0.0182 (11)	0.0184 (11)	0.0208 (12)	0.0014 (9)	0.0052 (9)	−0.0012 (9)
F3	0.0340 (11)	0.0366 (12)	0.0578 (14)	−0.0118 (9)	−0.0205 (10)	0.0162 (10)
F4	0.0418 (11)	0.0466 (12)	0.0312 (11)	0.0077 (9)	0.0151 (9)	0.0037 (9)
F5	0.0514 (13)	0.0348 (11)	0.0401 (12)	0.0074 (9)	0.0159 (10)	0.0062 (9)
F6	0.0497 (12)	0.0328 (11)	0.0590 (15)	−0.0151 (9)	0.0084 (10)	0.0105 (10)
F7	0.0676 (15)	0.0212 (10)	0.0555 (15)	−0.0098 (10)	−0.0093 (12)	0.0071 (9)
C1	0.0197 (13)	0.0133 (12)	0.0207 (14)	−0.0029 (9)	0.0005 (10)	0.0000 (10)
F8	0.0762 (16)	0.0325 (11)	0.0308 (11)	0.0037 (10)	0.0115 (10)	−0.0092 (9)
N3	0.0231 (12)	0.0319 (14)	0.0239 (13)	0.0063 (10)	0.0040 (10)	−0.0028 (11)
O2	0.0248 (11)	0.0415 (14)	0.0310 (12)	−0.0027 (10)	0.0021 (9)	0.0082 (10)
F9	0.0575 (14)	0.0498 (14)	0.0365 (12)	0.0109 (11)	−0.0017 (10)	0.0192 (10)

IUCrData (2022). 7, x220884
Atoms	U^21 (Å^2)	U^22 (Å^2)	U^23 (Å^2)	U^31 (Å^2)	U^32 (Å^2)	U^33 (Å^2)
O3	0.0241	0.0366	0.0427	-0.0017	-0.0050	-0.0055
C2	0.0181	0.0151	0.0204	-0.0012	0.0007	0.0008
F10	0.0867	0.0517	0.0334	0.0229	0.0070	0.0139
F11	0.0338	0.0446	0.0832	-0.0017	0.0185	0.0066
C3	0.0190	0.0128	0.0189	-0.0022	0.0002	0.0020
C4	0.0179	0.0145	0.0205	-0.0038	-0.0004	0.0021
C5	0.0194	0.0152	0.0265	-0.0003	0.0046	0.0019
C6	0.0213	0.0302	0.0297	0.0004	-0.0042	-0.0048
C7	0.0216	0.0176	0.0203	-0.0014	0.0001	0.0003
C8	0.0213	0.0150	0.0196	0.0014	0.0033	0.0028
C9	0.0190	0.0150	0.0192	0.0021	0.0040	0.0039
C10	0.0204	0.0150	0.0192	0.0021	0.0040	0.0039
C11	0.0217	0.0150	0.0211	-0.0017	0.0025	0.0013
C12	0.0193	0.0205	0.0229	0.0020	0.0011	0.0026
C13	0.0189	0.0145	0.0202	0.0016	0.0046	0.0041
C14	0.0215	0.0199	0.0208	0.0033	0.0029	0.0016
C15	0.0209	0.0210	0.0223	-0.0028	0.0008	0.0022
N5	0.0215	0.0357	0.0184	0.0031	0.0100	0.0024
C17	0.0202	0.0186	0.0199	0.0002	0.0029	0.0020
C18	0.0177	0.0196	0.0254	0.0031	0.0051	0.0037
C19	0.0243	0.0172	0.0230	0.0008	-0.0021	0.0023
C20	0.0217	0.0210	0.0223	-0.0028	0.0008	0.0022
N6	0.0261	0.0400	0.0225	0.0026	0.0012	-0.0031
C27	0.0162	0.0235	0.0259	-0.0008	0.0021	0.0051
C28	0.0218	0.0202	0.0199	-0.0012	0.0047	-0.0007
C4	0.0221	0.093	0.0479	-0.0125	-0.0055	0.0342
C29	0.0220	0.0268	0.0293	-0.0008	-0.0066	0.0077
C30	0.0271	0.0204	0.0240	0.0000	-0.0030	0.0018
C31	0.0214	0.0216	0.0259	-0.0011	0.0003	-0.0020
C32	0.0234	0.0194	0.045	0.0017	0.0037	0.0027
C33	0.0196	0.0270	0.0207	0.0022	0.0077	-0.0030
C34	0.0168	0.0363	0.0302	0.0034	-0.0005	0.0008
C35	0.0202	0.0287	0.0244	0.0024	0.0045	0.0002
C36	0.0193	0.0304	0.0300	-0.0032	0.0007	-0.0028
C37	0.0199	0.0395	0.0182	0.0009	-0.0030	-0.0041
C38	0.0333	0.0211	0.0361	-0.0038	-0.0069	0.0067
C39	0.0305	0.0220	0.0324	0.0082	-0.0027	0.0024
C40	0.0223	0.0293	0.0381	0.0070	0.0024	0.0008
Atom	U1	U2	U3	U12	U13	U23
-------	-----	-----	-----	-----	-----	-----
C41	0.0236 (14)	0.0300 (16)	0.0252 (16)	-0.0015 (12)	0.0030 (12)	0.0020 (12)
C42	0.0347 (17)	0.0319 (17)	0.0249 (16)	0.0002 (13)	0.0108 (13)	-0.0008 (13)
C43	0.0310 (16)	0.0307 (17)	0.0292 (17)	-0.0023 (13)	0.0011 (13)	0.0073 (13)
C44	0.0230 (14)	0.0221 (14)	0.0312 (16)	0.0007 (11)	0.0031 (12)	0.0042 (12)
C45	0.0307 (16)	0.0248 (15)	0.0254 (16)	0.0078 (12)	-0.0009 (12)	-0.0005 (12)
F14	0.0552 (16)	0.0700 (19)	0.100 (2)	-0.0157 (14)	0.0377 (16)	0.0174 (17)
C46	0.0200 (14)	0.0347 (18)	0.050 (2)	-0.0007 (13)	0.0045 (14)	-0.0023 (16)
C47	0.0261 (16)	0.0257 (17)	0.062 (2)	-0.0063 (13)	0.0062 (16)	0.0044 (16)
C48	0.0379 (19)	0.051 (2)	0.0247 (17)	0.0022 (16)	-0.0039 (14)	0.0114 (15)
C49	0.043 (2)	0.0252 (17)	0.047 (2)	0.0019 (14)	0.0104 (16)	0.0055 (15)
C50	0.0394 (19)	0.036 (2)	0.045 (2)	0.0013 (15)	0.0103 (16)	0.0153 (16)

Geometric parameters (Å, °)

Bond/Angle	Length/Distance	Angle
F1—C41	1.361 (4)	
O1—C35	1.252 (4)	
F2—C45	1.356 (4)	
N1—C2	1.344 (4)	
N1—C8	1.403 (3)	
N1—C37	1.497 (4)	
N2—C7	1.405 (3)	
N2—C32	1.494 (3)	
F3—C38	1.344 (4)	
F4—C41	1.354 (4)	
F5—C50	1.338 (4)	
F6—C43	1.349 (4)	
F7—C38	1.356 (4)	
C1—C6	1.417 (4)	
C1—C3	1.419 (4)	
C1—C2	1.427 (4)	
F8—C45	1.356 (4)	
N3—C25	1.359 (4)	
N3—H3	0.8800	
O2—C29	1.237 (4)	
F9—C43	1.340 (4)	
O3—C35	1.227 (4)	
C2—C16	1.482 (4)	
F10—C50	1.313 (4)	
F11—C49	1.312 (4)	
C3—C21	1.414 (4)	
C3—C4	1.432 (4)	
C4—C8	1.413 (4)	
C4—C20	1.414 (4)	
C5—C23	1.365 (4)	
C5—C14	1.421 (4)	
C5—H5	0.9500	

IUCrData (2022). 7, x220884
N4—C19 1.362 (4) C34—H34 0.9500
N4—H4 0.8800 C35—C45 1.559 (4)
N4—H4A 0.8800 C36—H36 0.9500
C6—C12 1.383 (4) C37—C48 1.517 (5)
C6—H6 0.9500 C37—H37 0.9900
C7—C15 1.403 (4) C37—H37A 0.9900
C7—C11 1.416 (4) C38—C50 1.526 (5)
C8—C17 1.399 (4) C38—C45 1.538 (5)
C9—C10 1.425 (4) C39—H39 0.9500
C9—C28 1.496 (4) C40—C46 1.384 (5)
C10—C13 1.411 (4) C40—C44 1.385 (4)
C10—C14 1.416 (4) C40—H40 0.9500
C11—C14 1.420 (4) C41—C43 1.544 (5)
C11—C18 1.424 (4) C42—H42 0.9800
C12—N5 1.366 (4) C42—H42A 0.9800
C12—C22 1.425 (4) C42—H42B 0.9800
C13—C24 1.387 (4) C43—C49 1.529 (5)
C13—H13 0.9500 C44—H44 0.9500
C15—C19 1.381 (4) F14—C50 1.337 (4)
C15—H15 0.9500 O4—C29—O2 115.2 (3)
F12—C49 1.330 (5) O4—C29—C41 114.4 (3)
C16—C31 1.397 (4) O2—C29—C41 115.2 (3)
C16—C30 1.397 (4) C32—C28—C9 119.6 (3)
C17—C25 1.387 (4) C32—C28—C14 120.1 (3)
C17—H17 0.9500 C32—C28—C4 120.3 (3)
C2—N1—C8 122.0 (2) C32—C28—C37 119.9 (3)
C2—N1—C37 120.5 (2) C32—C28—C30 119.2 (3)
C8—N1—C37 117.2 (2) C44—C29—O2 133.4 (3)
C9—N2—C7 122.5 (2) O4—C29—C41 114.4 (3)
C9—N2—C33 119.6 (2) O2—C29—C41 115.2 (3)
C7—N2—C33 117.9 (2) C39—C30—C16 119.5 (3)
C6—C1—C3 120.5 (3) C39—C30—H30 120.2
C6—C1—C2 120.9 (2) C39—C30—H30 120.2
C3—C1—C2 118.6 (2) C16—C31—C14 120.3 (3)
C25—N3—H3 120.0 C36—C31—C14 119.9
C25—N3—H3A 120.0 C16—C31—H31 119.9
H3—N3—H3A 120.0 C16—C31—H31 119.9
N1—C2—C1 120.5 (2) C47—C32—C28 119.5 (3)
N1—C2—C16 118.8 (2) C47—C32—H32 120.2
C1—C2—C16 120.6 (2) C28—C32—H32 120.2
C21—C3—C1 117.5 (2) C28—C32—C21 120.2
C21—C3—C4 123.2 (2) N2—C33—H33 111.2 (2)
C1—C3—C4 119.1 (2) N2—C33—H33A 109.4
C8—C4—C20 117.0 (3) C42—C33—H33A 109.4
C8—C4—C3 119.3 (2) H33—C33—H33A 108.0
C20—C4—C3 123.6 (3) H33—C33—H33A 108.0
C23—C5—C14 121.4 (3) C36—C34—C39 119.9 (3)
Bond	Angle (°)	Bond	Angle (°)
C23—C5—H5	119.3	C36—C34—H34	120.1
C14—C5—H5	119.3	C39—C34—H34	120.1
C19—N4—H4	120.0	O3—C35—O1	129.3 (3)
C19—N4—H4A	120.0	O3—C35—C45	116.7 (3)
C12—C6—C1	120.8 (2)	O1—C35—C45	113.9 (3)
C12—C6—H6	119.6	C31—C36—C34	120.0 (3)
C1—C6—H6	119.6	C31—C36—H36	120.0
C15—C7—N2	120.6 (2)	N1—C37—C48	110.8 (3)
C15—C7—C11	121.4 (2)	N1—C37—H37	109.5
N2—C7—C11	118.0 (3)	C48—C37—H37	109.5
C17—C8—N1	119.8 (2)	N1—C37—H37A	109.5
C17—C8—C4	121.4 (2)	C48—C37—H37A	109.5
N1—C8—C4	118.7 (2)	H37—C37—H37A	108.1
N2—C9—C10	121.1 (2)	F3—C38—F7	107.0 (3)
N2—C9—C28	119.1 (2)	F3—C38—C50	107.4 (3)
C10—C9—C28	119.7 (3)	F7—C38—C50	107.0 (3)
C13—C10—C14	121.1 (2)	F3—C38—C45	110.2 (3)
C13—C10—C9	120.3 (2)	F7—C38—C45	108.8 (3)
C14—C10—C9	118.5 (3)	C50—C38—C45	116.0 (3)
C7—C11—C14	120.4 (2)	C30—C39—C34	120.7 (3)
C7—C11—C18	116.4 (3)	C30—C39—H39	119.7
C14—C11—C18	123.1 (3)	C34—C39—H39	119.7
N5—C12—C6	122.8 (3)	C46—C40—C44	119.9 (3)
N5—C12—C22	119.0 (3)	C46—C40—H40	120.1
C6—C12—C22	118.2 (3)	C44—C40—H40	120.1
C24—C13—C10	120.5 (3)	F4—C41—F1	106.2 (3)
C24—C13—H13	119.7	F4—C41—C43	105.7 (3)
C10—C13—H13	119.7	F1—C41—C43	106.5 (2)
C10—C14—C11	119.2 (2)	F4—C41—C29	110.9 (2)
C10—C14—C5	116.9 (3)	F1—C41—C29	111.1 (2)
C11—C14—C5	123.8 (2)	C43—C41—C29	115.9 (3)
C19—C15—C7	120.3 (3)	C33—C42—H42	109.5
C19—C15—H15	119.8	C33—C42—H42A	109.5
C7—C15—H15	119.8	H42—C42—H42A	109.5
C31—C16—C30	119.7 (3)	C33—C42—H42B	109.5
C31—C16—C2	119.0 (3)	H42—C42—H42B	109.5
C30—C16—C2	121.3 (3)	H42A—C42—H42B	109.5
C25—C17—C8	120.0 (3)	F9—C43—F6	107.8 (3)
C25—C17—H17	120.0	F9—C43—C49	106.7 (3)
C8—C17—H17	120.0	F6—C43—C49	107.7 (3)
C26—C18—C11	122.1 (3)	F9—C43—C41	109.0 (3)
C26—C18—H18	118.9	F6—C43—C41	108.7 (3)
C11—C18—H18	118.9	C49—C43—C41	116.6 (3)
N4—C19—C15	122.1 (3)	C40—C44—C28	119.8 (3)
N4—C19—C26	119.2 (3)	C40—C44—H44	120.1
C15—C19—C26	118.8 (3)	C28—C44—H44	120.1
C27—C20—C4	121.5 (3)	F2—C45—F8	107.0 (3)
C27—C20—H20 119.3 F2—C45—C38 105.9 (3)
C4—C20—H20 119.3 F8—C45—C38 106.0 (3)
C12—N5—H5A 120.0 F2—C45—C35 112.1 (3)
C12—N5—H5B 120.0 F8—C45—C35 108.4 (3)
H5A—N5—H5B 120.0 C38—C45—C35 116.9 (2)
C22—C21—C3 121.2 (3) C47—C46—C40 120.2 (3)
C22—C21—H21 119.4 C47—C46—H46 119.9
C3—C21—H21 119.4 C40—C46—H46 119.9
C21—C22—C12 121.5 (3) C46—C47—C32 120.5 (3)
C21—C22—H22 119.3 C46—C47—H47 119.7
C12—C22—H22 119.3 C32—C47—H47 119.7
C5—C23—C24 121.6 (3) C37—C48—H48 109.5
C5—C23—H23 119.2 C37—C48—H48A 109.5
C24—C23—H23 119.2 H48—C48—H48A 109.5
N6—C24—C13 122.0 (3) C37—C48—H48B 109.5
N6—C24—C23 119.6 (3) H48—C48—H48B 109.5
C13—C24—C23 118.3 (3) H48A—C48—H48B 109.5
N3—C25—C17 120.6 (3) F11—C49—F13 108.8 (3)
N3—C25—C27 120.7 (3) F11—C49—F12 108.2 (3)
C17—C25—C27 118.8 (3) F13—C49—F12 107.2 (3)
C18—C26—C19 120.5 (3) F11—C49—C43 112.1 (3)
C18—C26—H26 119.7 F13—C49—C43 110.1 (3)
C19—C26—H26 119.7 F12—C49—C43 110.3 (3)
C24—N6—H6A 120.0 F10—C50—F14 108.6 (3)
C24—N6—H6B 120.0 F10—C50—F5 108.6 (3)
H6A—N6—H6B 120.0 F14—C50—F5 107.1 (3)
C20—C27—C25 120.8 (3) F10—C50—C38 112.0 (3)
C20—C27—H27 119.6 F14—C50—C38 109.7 (3)
C25—C27—H27 119.6 F5—C50—C38 110.7 (3)
C8—N1—C2—C1 7.0 (4) C8—C17—C25—N3 171.8 (3)
C37—N1—C2—C1 −166.9 (3) C8—C17—C25—C27 −7.0 (4)
C8—N1—C2—C16 −170.5 (2) C11—C18—C26—C19 −0.5 (4)
C37—N1—C2—C16 15.6 (4) N4—C19—C26—C18 −174.4 (3)
C6—C1—C2—N1 −175.8 (3) C15—C19—C26—C18 5.7 (4)
C3—C1—C2—N1 5.7 (4) C4—C20—C27—C25 0.4 (4)
C6—C1—C2—C16 1.7 (4) N3—C25—C27—C20 −172.4 (3)
C3—C1—C2—C16 −176.8 (2) C17—C25—C27—C20 6.4 (4)
C6—C1—C3—C21 −5.1 (4) N2—C9—C28—C32 −9.1 (4)
C2—C1—C3—C21 173.4 (2) C10—C9—C28—C32 88.8 (4)
C6—C1—C3—C4 170.0 (2) N2—C9—C28—C44 89.8 (3)
C2—C1—C3—C4 −11.5 (4) C10—C9—C28—C44 −89.5 (3)
C21—C3—C4—C8 180.0 (3) C31—C16—C30—C39 0.4 (4)
C1—C3—C4—C8 5.1 (4) C2—C16—C30—C39 −178.2 (3)
C21—C3—C4—C20 4.4 (4) C30—C16—C31—C36 −0.1 (4)
C1—C3—C4—C20 −170.4 (3) C2—C16—C31—C36 178.5 (3)
C3—C1—C6—C12 1.4 (4) C44—C28—C32—C47 −1.8 (5)
C2—C1—C6—C12 −177.1 (3) C9—C28—C32—C47 179.9 (3)
C9—N2—C7—C15 173.7 (3) C9—N2—C33—C42 99.4 (3)
C33—N2—C7—C15 −8.1 (4) C7—N2—C33—C42 −78.8 (3)
C9—N2—C7—C11 −3.4 (4) C16—C31—C36—C34 −0.3 (5)
C33—N2—C7—C11 174.7 (2) C39—C34—C36—C31 0.6 (5)
C7—N2—C33—C42 −13.5 (4) C2—N1—C37—C48 105.0 (3)
C33—N2—C33—C42 99.4 (3) C8—N1—C37—C48 −69.2 (3)
C9—N2—C33—C42 −8.1 (4) C16—C30—C39—C34 −0.2 (5)
C7—N2—C33—C42 −178.4 (2) C36—C34—C39—C30 −0.3 (5)
C20—C4—C8—C17 5.7 (4) C36—C34—C39—F9 61.8 (3)
C3—C4—C8—C17 −170.1 (3) C39—C34—C39—F9 −50.9 (3)
C20—C4—C8—N1 −177.0 (2) C46—C40—C44—C28 0.0 (5)
C3—C4—C8—N1 7.1 (4) C1—C6—C12—N5 −178.8 (3)
C9—C2—C16—C31 66.4 (4) C1—C6—C12—C22 3.2 (4)
C9—C2—C16—C31 −111.1 (3) N1—C2—C16—C31 66.4 (4)
C1—C2—C16—C31 −115.0 (3) C1—C2—C16—C30 67.5 (4)
C1—C2—C16—C30 66.4 (4) N1—C2—C16—C30 −115.0 (3)
C1—C2—C16—C30 −111.1 (3) C1—C2—C16—C30 67.5 (4)
C1—C2—C16—C30 −175.5 (3) N2—C7—C15—C19 −175.5 (3)
C9—C2—C16—C30 −175.5 (3) C16—C31—C36—C34 −0.3 (5)
C7—C15—C19 −175.5 (3) C15—C19—C35—C36 −1.0 (6)
C11—C7—C15—C19 1.5 (4) N1—C2—C16—C30 −115.0 (3)
C11—C7—C15—C19 −175.5 (3) C1—C2—C16—C30 67.5 (4)
C11—C7—C15—C19 1.5 (4) N1—C2—C16—C30 −176.3 (3)
C9—C2—C16—C30 −176.3 (3) N1—C2—C16—C30 67.5 (4)
C1—C2—C16—C30 −176.3 (3) C1—C2—C16—C30 −111.1 (3)
C2—C1—C6—C12 7.1 (4) C1—C2—C16—C31 66.4 (4)
C2—C1—C6—C12 −111.1 (3) C1—C2—C16—C31 −111.1 (3)
C1—C2—C16—C31 66.4 (4) C1—C2—C16—C31 −111.1 (3)
C1—C2—C16—C31 −115.0 (3) C1—C2—C16—C31 67.5 (4)
C1—C2—C16—C31 67.5 (4) C1—C2—C16—C30 −115.0 (3)
C1—C2—C16—C30 67.5 (4) C1—C2—C16—C30 −176.3 (3)
C1—C2—C16—C30 −176.3 (3) C1—C2—C16—C30 67.5 (4)
C1—C2—C16—C30 67.5 (4) C1—C2—C16—C30 −111.1 (3)
C1—C2—C16—C30 −111.1 (3) C1—C2—C16—C30 67.5 (4)
C7—C15—C19—N4 174.0 (3) F6—C43—C49—F13 66.7 (4)
C7—C15—C19—C26 −6.1 (4) C41—C43—C49—F13 −170.9 (3)
C8—C4—C20—C27 −6.3 (4) F9—C43—C49—F12 −166.9 (3)
C3—C4—C20—C27 169.3 (3) F6—C43—C49—F12 −51.4 (4)
C1—C3—C21—C22 4.4 (4) C41—C43—C49—F12 71.1 (4)
C4—C3—C21—C22 −170.5 (3) C4—C38—C50—F10 −173.6 (3)
C3—C21—C22—C12 0.1 (4) F7—C38—C50—F10 −59.0 (4)
N5—C12—C22—C21 177.9 (3) C45—C38—C50—F10 62.6 (4)
C6—C12—C22—C21 −4.0 (4) F3—C38—C50—F10 −52.9 (4)
C14—C5—C23—C24 −0.9 (4) F7—C38—C50—F10 61.7 (4)
C10—C13—C24—N6 179.7 (3) C45—C38—C50—F14 −176.7 (3)
C10—C13—C24—C23 2.9 (4) F3—C38—C50—F5 65.1 (4)
C5—C23—C24—N6 −178.7 (3) F7—C38—C50—F5 179.7 (3)
C5—C23—C24—C23 −1.8 (4) C45—C38—C50—F5 −58.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N3—H3···O4	0.88	2.04	2.909 (4)	171
N3—H3···O1	0.88	2.06	2.899 (3)	159
N4—H4···O3	0.88	2.26	3.088 (4)	158
N4—H4···O2	0.88	2.13	2.991 (3)	166
C15—H15···O1	0.95	2.62	3.353 (4)	135
N5—H5···O4	0.88	2.16	2.934 (3)	146
N5—H5···O1	0.88	2.30	3.076 (3)	147
N5—H5···F3	0.88	2.54	3.208 (3)	133
C26—H26···F1	0.95	2.61	3.184 (3)	119
N6—H6···O3	0.88	2.16	2.938 (3)	147
N6—H6···O2	0.88	2.56	3.184 (4)	129
N6—H6···F1	0.88	2.34	3.097 (4)	144
C33—H33···N3	0.99	2.59	3.223 (4)	122

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+2, −y, −z+1; (iii) −x+3/2, y+1/2, −z+3/2; (iv) x−1, y, z; (v) −x+1, −y, −z+1; (vi) x−1/2, −y+1/2, z+1/2.