State Space Formulas for a Suboptimal Rational Leech Problem I: Maximum Entropy Solution

A. E. Frazho, S. ter Horst and M. A. Kaashoek

Abstract. For the strictly positive case (the suboptimal case) the maximum entropy solution \(X \) to the Leech problem \(G(z)X(z) = K(z) \) and \(\|X\|_\infty = \sup_{|z| \leq 1} \|X(z)\| \leq 1 \), with \(G \) and \(K \) stable rational matrix functions, is proved to be a stable rational matrix function. An explicit state space realization for \(X \) is given, and \(\|X\|_\infty \) turns out to be strictly less than one. The matrices involved in this realization are computed from the matrices appearing in a state space realization of the data functions \(G \) and \(K \). A formula for the entropy of \(X \) is also given.

Mathematics Subject Classification (2010). Primary 47A57; Secondary 47A68, 93B15, 47A56.

Keywords. Leech problem, stable rational matrix functions, commutant lifting theorem, state space representations, algebraic Riccati equation.

1. Introduction

Let \(G \) and \(K \) be matrix-valued \(H^\infty \) functions on the open unit disc \(\mathbb{D} \) of sizes \(m \times p \) and \(m \times q \), respectively, and let \(T_G \) and \(T_K \) denote the corresponding block lower triangular Toeplitz operators,

\[
T_G : \ell^2_+ (\mathbb{C}^p) \to \ell^2_+ (\mathbb{C}^m), \quad T_K : \ell^2_+ (\mathbb{C}^q) \to \ell^2_+ (\mathbb{C}^m).
\]

A \(p \times q \) matrix-valued \(H^\infty \) function \(X \) is called a solution to the Leech problem associated with \(G \) and \(K \) whenever

\[
G(z)X(z) = K(z) \quad (z \in \mathbb{D}) \quad \text{and} \quad \|X\|_\infty = \sup_{z \in \mathbb{D}} \|X(z)\| \leq 1.
\]

The Leech problem is an example of a metric constrained interpolation problem, the first part of (1.1) is the interpolation condition, and the second part is the metric constraint. In a note dating from 1971/1972, only published recently [18], see also [17], Leech proved that the problem is solvable if and only if the operator \(T_GT_G^* - T_KT_K^* \) is nonnegative. Later the Leech theorem
was derived as a corollary of more general results; see, e.g., [19, page 107], [8, Section VIII.6]), and [2, Section 4.7].

Now assume in addition that G and K are rational. In other words, assume that G and K are stable rational matrix functions. In that case, if the Leech problem associated with G and K is solvable, one expects the problem to have a stable rational matrix solution as well. However, a priori this is not clear, and the existence of rational solutions was proved only recently in [20] by reducing the problem to polynomials, in [16] by adapting the lurking isometry method used in [3], and in [11] by using a state space approach.

In the present paper G and K are also stable rational matrix functions. We assume additionally that the operator $T_G T_G^* - T_K T_K^*$ is strictly positive. It is then known from commutant lifting theory that the Leech problem has a unique maximum entropy solution, that is, the (unique) solution X to the Leech problem associated with G and K for which the quantity

$$
\mathcal{E}(X) = \frac{1}{2\pi} \int_0^{2\pi} \ln \det[I_q - X(e^{i\omega})^* X(e^{i\omega})]d\omega
$$

(1.2)

is maximal. In this paper we show that this maximum entropy solution is a stable rational matrix function, we derive an explicit formula for this solution and a formula for its entropy $\mathcal{E}(X)$; see Theorem 1.2 below. When $T_G T_G^* - T_K T_K^*$ is only non-negative, the maximum entropy solution still exists but the problem whether or not it is rational remains open.

To prove the above mentioned results, we use the fact, well-known from mathematical systems theory (see, e.g., Chapter 1 of [7] or Chapter 4 in [4]), that rational matrix functions admit state space realizations. For our G and K this means that the matrix function $[G \ K]$ admits a representation of the following form:

$$
[G(z) \ K(z)] = [D_1 \ D_2] + zC(I_n - zA)^{-1} [B_1 \ B_2].
$$

(1.3)

Here I_n is the $n \times n$ identity matrix, A is an $n \times n$ matrix, and B_1, B_2, C, D_1 and D_2 are matrices of appropriate sizes. Moreover, since G and K are stable rational matrix functions, G and K have no pole in the closed unit disc, and therefore we may assume that matrix A is stable, that is, A has all its eigenvalues in the open unit disc. The realization (1.3) is called minimal if there exists no realization of $[G \ K]$ as in (1.3) with ‘state matrix’ A of smaller size than the one in the given realization. In that case the order n of A is called the McMillan degree of $[G \ K]$. If the realization (1.3) is minimal, then the matrix A is automatically stable and the observability operator W_{obs}, which is defined by

$$
W_{obs} = \begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \end{bmatrix} : \mathbb{C}^n \to \ell_+^2(\mathbb{C}^m),
$$

(1.4)