NONCLASSIFIABILITY OF UHF L^p-OPERATOR ALGEBRAS

EUSEBIO GARDELLA AND MARTINO LUPINI

Abstract. We prove that simple, separable, monotracial UHF L^p-operator algebras are not classifiable up to (complete) isomorphism using countable structures, such as K-theoretic data, as invariants. The same assertion holds even if one only considers UHF L^p-operator algebras of tensor product type obtained from a diagonal system of similarities. For $p = 2$, it follows that separable nonselfadjoint UHF operator algebras are not classifiable by countable structures up to (complete) isomorphism. Our results, which answer a question of N. Christopher Phillips, rely on Borel complexity theory, and particularly Hjorth’s theory of turbulence.

1. Introduction

Suppose that X is a standard Borel space and λ is a Borel probability measure on X. For $p \in [1, \infty)$, we denote by $L^p(\lambda)$ the Banach space of Borel-measurable complex-valued functions on X (modulo null sets), endowed with the L^p-norm. Let $B(L^p(\lambda))$ denote the Banach algebra of bounded linear operators on $L^p(\lambda)$ endowed with the operator norm. We will identify the Banach algebra $M_n(B(L^p(\lambda)))$ of $n \times n$ matrices with entries in $B(L^p(\lambda))$, with the algebra $B(L^p(\lambda)^{\otimes n})$ of bounded linear operators on the p-direct sum $L^p(\lambda)^{\otimes n}$ of n copies of $L^p(\lambda)$.

A (concrete) separable, unital L^p-operator algebra, is a separable, closed subalgebra of $B(L^p(\lambda))$ containing the identity operator. (Such a definition is consistent with [P2, Definition 1.1], in view of [P2, Proposition 1.25].) In the following, all L^p-operator algebras will be assumed to be separable and unital. Every unital L^p-operator algebra $A \subseteq B(L^p(\lambda))$ is in particular a p-operator space in the sense of [D, §4], with matrix norms obtained by identifying $M_n(A)$ with a subalgebra of $M_n(B(L^p(\lambda)))$. Such algebras have been introduced and studied by N. Christopher Phillips in [P1, P4, P3]. Many important classes of C*-algebras have been shown to have L^p-analogs, including Cuntz algebras [P1], UHF algebras [P3], AF algebras [PV], and more generally groupoid C*-algebras [GL].

If A is a unital complex algebra, then an L^p-representation of A on a standard Borel probability space (X, λ) is a unital algebra homomorphism $\rho: A \to B(L^p(\lambda))$. The closure inside $B(L^p(\lambda))$ of $\rho(A)$ is an L^p-operator algebra, called the L^p-operator algebra associated with ρ. It can be identified with the completion of A with respect to...
the operator seminorm structure \(\|a_{ij}\|_\rho = \|\rho(a_{ij})\|_{M_n(B(L^p(L^p(\lambda))))} \) for \([a_{ij}] \in M_n(A) \); see [BLM, 1.2.16]. If \(A \) and \(B \) are \(L^p \)-operator algebras, a unital homomorphism \(\varphi: A \to B \) is an algebra homomorphism such that \(\varphi(1) = 1 \). The \(n \)-th amplification \(\varphi^{(n)}: M_n(A) \to M_n(B) \) is defined by \([a_{ij}] \mapsto [\varphi(a_{ij})] \). A unital homomorphism \(\varphi \) is completely bounded if every amplification \(\varphi^{(n)} \) is bounded and

\[
\|\varphi\|_{cb} := \sup_{n \in \mathbb{N}} \|\varphi^{(n)}\|
\]

is finite.

Definition 1.1. Let \(A \) and \(B \) be unital \(L^p \)-operator algebras.

1. \(A \) and \(B \) are said to be (completely) isomorphic, if there is a (completely) bounded unital isomorphism \(\varphi: A \to B \) with (completely) bounded inverse \(\varphi^{-1}: B \to A \).
2. \(A \) and \(B \) are said to be (completely) commensurable if there are (completely) bounded unital homomorphisms \(\varphi: A \to B \) and \(\psi: B \to A \).

For \(d \in \mathbb{N} \), we denote by \(M_d \) the unital algebra of \(d \times d \) complex matrices, with matrix units \(\{e_{ij}\}_{1 \leq i,j \leq d} \). Let \(d = (d_n)_{n \in \mathbb{N}} \) be a sequence in \(\mathbb{N} \), and let \(\rho = (\rho_n)_{n \in \mathbb{N}} \) be a sequence of representations \(\rho_n: M_{d_n} \to B(L^p(X_n,\lambda_n)) \). Define \(M_d \) to be the algebraic infinite tensor product \(\bigotimes_{n \in \mathbb{N}} M_{d_n} \). Let \(X = \prod_{n \in \mathbb{N}} X_n \) be the product Borel space and \(\lambda = \bigotimes_{n \in \mathbb{N}} \lambda_n \) be the product measure. We naturally regard the algebraic tensor product \(\bigotimes_{n \in \mathbb{N}} B(L^p(\lambda_n)) \) as a subalgebra of \(B(L^p(\lambda)) \). The correspondence

\[
M_d \to \bigotimes_{n \in \mathbb{N}} B(L^p(\lambda_n)) \subseteq B(L^p(\lambda))
\]

\[a_1 \otimes \cdots \otimes a_k \mapsto \rho_1(a_1) \otimes \cdots \otimes \rho_k(a_k),\]

extends to a unital homomorphism \(M_d \to B(L^p(\lambda)) \).

Definition 1.2. The algebra \(A(d,\rho) \) as defined in [P1, Example 3.8], is the \(L^p \)-operator algebra associated with \(\rho \). A UHF \(L^p \)-operator algebra of tensor product type \(d \) is an algebra of the form \(A(d,\rho) \) for some sequence \(\rho \) as above; see [P1, Definition 3.9] and [P3, Definition 1.7].

A special class of UHF \(L^p \)-operator algebras of tensor product type \(d \) has been introduced in [P3, Section 5]. For \(d \in \mathbb{N} \), denote by \(c_d \) the normalized counting measure on \(d = \{0,1,2,\ldots,d-1\} \), and set \(\ell^p(d) = L^p(\{0,1,\ldots,d-1\},c_d) \). The (canonical) spatial representation \(\sigma^d \) of \(M_d \) on \(\ell^p(d) \) is defined by setting

\[
\left(\sigma^d(a) \xi \right)(j) = \sum_{i=0,\ldots,d-1} a_{ij} \xi(i)
\]

for \(a \in M_d \), for \(\xi \in \ell^p(d) \) and \(j = 0,\ldots,d-1 \); see [P1, Definition 7.1]. Observe that the corresponding matrix norms on \(M_d \) are obtained by identifying \(M_d \) with the algebra of bounded linear operators on \(\ell^p(d) \).

Fix a real number \(\gamma \) in \([1,\infty) \), and an enumeration \((w_{d,\gamma,k})_{k \in \mathbb{N}} \) of all diagonal \(d \times d \) matrices with entries in \([1,\gamma] \cap \mathbb{Q} \). Let \(X \) be the disjoint union of countably many copies of \(\{0,1,\ldots,d-1\} \), and let \(\lambda_d \) be the Borel probability measure on \(X \) that agrees with
2^{-k}c_d on the k-th copy of \{0, 1, \ldots, d - 1\}. We naturally identify the algebraic direct sum \(\bigoplus_{n \in \mathbb{N}} B(\ell^p(d)) \) with a subalgebra of \(B(L^p(\lambda_d)) \). The map

\[
M_d \to \bigoplus_{n \in \mathbb{N}} B(\ell^p(d)) \subseteq B(L^p(\lambda_d)),
\]

\[
x \mapsto \left(\sigma^d \left(w_{d,\gamma,k} x w_{d,\gamma,k}^{-1} \right) \right)_{k \in \mathbb{N}}
\]
defines a representation \(\rho^\gamma : M_d \to B(L^p(\lambda_d)) \).

For a sequence \(\gamma \) in \([1, +\infty) \), we will denote by \(\rho^{\gamma_n} \) the sequence of representations \(\rho^{\gamma_n} : M_{d_n} \to B(L^p(\lambda_{d_n})) \) described in the paragraph above. Following the terminology in [P3, Section 3 and Section 5], we say that the corresponding UHF \(L^p \)-operator algebras \(A(d, \rho^{\gamma}) \) are obtained from a diagonal system of similarities.

Definition 1.3. If \(A \) is a unital Banach algebra, a normalized trace on \(A \) is a continuous linear functional \(\tau : A \to \mathbb{C} \) with \(\tau(1) = 1 \), satisfying \(\tau(ab) = \tau(ba) \) for all \(a, b \in A \). The algebra \(A \) is said to be monotracial if \(A \) has a unique normalized trace.

Recall that a Banach algebra is said to be simple if it has no nontrivial closed two-sided ideals.

Remark 1.4. It was shown in [P4, Theorem 3.19(3)] that UHF \(L^p \)-operator algebras obtained from a diagonal system of similarities are always simple and monotracial.

Problem 5.15 of [P3] asks to provide invariants which classify, up to isomorphism, some reasonable class of UHF \(L^p \)-operator algebras, such as those constructed using diagonal similarities. The following is the main result of the present paper.

Theorem 1.5. The simple, separable, monotracial UHF \(L^p \)-operator algebras are not classifiable by countable structures up to any of the following equivalence relations:

1. complete isomorphism;
2. isomorphism;
3. complete commensurability;
4. commensurability.

The same conclusions hold even if one only considers UHF \(L^p \)-operator algebras of tensor product type \(d \) obtained from a diagonal system of similarities for a fixed sequence \(d = (d_n)_{n \in \mathbb{N}} \) of positive integers such that, for every distinct \(n, m \in \mathbb{N} \), neither \(d_n \) divides \(d_m \) nor \(d_m \) divides \(d_n \).

It follows from Theorem 1.5 that simple, separable, monotracial UHF \(L^p \)-operator algebras are not classifiable by K-theoretic data, even after adding to the K-theory a countable collection of invariants consisting of countable structures. When \(p = 2 \), Theorem 1.5 asserts that separable nonselfadjoint UHF operator algebras are not classifiable by countable structures up to isomorphism. This conclusion is in stark contrast with Glimm’s classification of UHF C*-algebras by their corresponding supernatural number [G]. (Observe that, in view of Glimm’s classification, Banach-algebraic isomorphism and *-isomorphism coincide for UHF C*-algebras.)

2. **Borel complexity theory**

In order to obtain our main result, we will work in the framework of Borel complexity theory. In such a framework, a classification problem is regarded as an equivalence
relation E on a standard Borel space X. If F is another equivalence relation on another standard Borel space Y, a Borel reduction from E to F is a Borel function $g : X \to Y$ with the property that

$$xEx' \text{ if and only if } g(x)Fg(x').$$

The map g can be seen as a classifying map for the objects of X up to E. The requirement that g is Borel captures the fact that g is explicit and constructible (and not, for example, obtained by using the Axiom of Choice). The relation E is Borel reducible to F if there is a Borel reduction from E to F. This can be interpreted as asserting that it is possible to explicitly classify the elements of X up to E using F-classes as invariants.

The notion of Borel reducibility provides a way to compare the complexity of classification problems in mathematics. Some distinguished equivalence relations are then used as benchmarks of complexity. The first such benchmark is the relation $=_{\mathbb{R}}$ of equality of real numbers. (One can replace \mathbb{R} with any other Polish space.) An equivalence relation is called smooth if it is Borel reducible to $=_{\mathbb{R}}$. Equivalently, an equivalence relation is smooth if its classes can be explicitly parametrized by the points of a Polish space. For instance, the above mentioned classification of UHF C*-algebras due to Glimm [G] shows that the classification problem of UHF C*-algebras is smooth. Smoothness is a very restrictive notion, and many natural classification problems transcend such a benchmark. For instance, the relation of isomorphism of rank 1 torsion-free abelian groups is not smooth; see [H3].

A more generous notion of classifiability is being classifiable by countable structures. Informally speaking, an equivalence relation E on a standard Borel space X is classifiable by countable structures if it is possible to explicitly assign to the elements of X complete invariants up to E that are countable structures, such as as countable (ordered) groups, countable (ordered) rings, etcetera. To formulate precisely this definition, let \mathcal{L} be a countable first order language [M, Definition 1.1.1]. The class $\text{Mod}(\mathcal{L})$ of \mathcal{L}-structures supported by the set \mathbb{N} of natural numbers can be regarded as a Borel subset of $\prod_{n \in \mathbb{N}} 2^{\mathbb{N}}$. As such, $\text{Mod}(\mathcal{L})$ inherits a Borel structure making it a standard Borel space. Let $\cong_{\mathcal{L}}$ be the relation of isomorphism of elements of $\text{Mod}(\mathcal{L})$.

Definition 2.1. An equivalence relation E on a standard Borel space is said to be classifiable by countable structures, if there exists a countable first order language \mathcal{L} such that E is Borel reducible to $\cong_{\mathcal{L}}$.

The Elliott-Bratteli classification of AF C*-algebras [E,B2] shows, in particular, that AF C*-algebras are classifiable by countable structures up to \ast-isomorphism. Any smooth equivalence relation is in particular classifiable by countable structures.

Many naturally occurring classification problems in mathematics, and particularly in functional analysis and operator algebras, have recently been shown to transcend countable structures. This has been obtained for the relation of unitary conjugacy of irreducible representations and automorphisms of non type I C*-algebras [H1,KLP1,F, L], conjugacy of ergodic measure-preserving transformations of the Lebesgue measure space [FW], conjugacy of automorphisms of \mathcal{Z}-stable C*-algebras and McDuff II_1 factors [KLP2], unitary conjugacy of unitary and self-adjoint operators [KS], and isomorphism of von Neumann factors [ST1,ST2]. The main tool involved in these results is the theory of turbulence developed by Hjorth in [H2].
Suppose that $G \curvearrowright X$ is a continuous action of a Polish group G on a Polish space X. The corresponding orbit equivalence relation E^X_G is the relation on X obtained by setting xE^X_Gx' if and only if x and x' belong to the same orbit. Hjorth’s theory of turbulence provides a dynamical condition, called (generic) turbulence, that ensures that a Polish group action $G \curvearrowright X$ yields an orbit equivalence relation E^X_G that is not classifiable by countable structures. This provides, directly or indirectly, useful criteria to prove that a given equivalence relation is not classifiable by countable structures. A prototypical example of turbulent group action is the action of ℓ^1 on \mathbb{R}^N by translation.

A standard argument allows one to deduce the following nonclassification criterion from turbulence of the action $\ell^1 \curvearrowright \mathbb{R}^N$ and Hjorth’s turbulence theorem [H2, Theorem 3.18]; see for example [L, Lemma 3.2 and Criterion 3.3].

Recall that a subspace of a topological space is meager if it is contained in the union of countably many closed nowhere dense sets.

Criterion 2.2. Suppose that E is an equivalence relation on a standard Borel space X. If there is a Borel map $f : [0, +\infty)^N \to X$ such that

1. $f(t)Ef(t')$ whenever $t, t' \in [0, +\infty)^N$ satisfy $t - t' \in \ell^1$, and
2. the preimage under f of any E-class is meager,

then E is not classifiable by countable structures.

We will apply such a criterion to establish our main result.

3. Nonclassification

Fix a sequence $d = (d_n)_{n \in \mathbb{N}}$ of integers such that for every distinct $n, m \in \mathbb{N}$, neither d_n divides d_m nor d_m divides d_n. In particular, this holds if the numbers d_n are pairwise coprime. The same argument works if one only assumes that all but finitely many values of d satisfy such an assumption. We endow $[1, +\infty)^N$ with the product topology, and regard it as the parametrizing space for UHF L^p-operator algebras of type d obtained from a diagonal system of similarities, as described in the previous section; see also [P3, Section 3 and Section 5]. We therefore regard (complete) isomorphism and (complete) commensurability of UHF L^p-operator algebras of type d, obtained from a diagonal system of similarities, as equivalence relations on $[1, +\infty)^N$.

For $\gamma \in [1, +\infty)^N$, we denote by A^γ the corresponding UHF L^p-operator algebra. In the following, we will denote by γ and γ' sequences $(\gamma_n)_{n \in \mathbb{N}}$ and $(\gamma'_n)_{n \in \mathbb{N}}$ in $[1, +\infty)^N$. For $\gamma \in [1, +\infty)$, we denote by M^γ_d the L^p-operator algebra structure on M_d induced by the representation ρ^γ defined in Section 1. The corresponding matrix norms on M^γ_d are denoted by $\| \cdot \|_\gamma$. In particular, when $\gamma = 1$ one obtains the matrix norms induced by the spatial representation σ^d of M_d. The algebra A^γ can be seen as the L^p-operator tensor product $\bigotimes_{n \in \mathbb{N}} M^\gamma_{d_n}$, as defined in [P4, Definition 1.9]. (Note that, unlike in [P4], we write the H"older exponent p as a superscript in the notation for tensor products.)

Lemma 3.1. Let $\gamma, \gamma' \in [1, +\infty)^N$ satisfy

$$L := \prod_{n \in \mathbb{N}} \frac{2n}{\gamma'_n} < +\infty.$$

Then the identity map on the algebraic tensor product $M_d = \bigotimes_{n \in \mathbb{N}} M_{d_n}$ extends to a completely bounded unital homomorphism $A^\gamma \to A^{\gamma'}$, with $\| \varphi \|_{cb} \leq L$. In other words,
the matrix norms $\| \cdot \|_\gamma$ and $\| \cdot \|_{\gamma'}$ on the algebraic tensor product $\bigotimes_{n \in \mathbb{N}} M_{d_n}$ satisfy

$$\| \cdot \|_{\gamma'} \leq L \| \cdot \|_\gamma.$$

Proof. For $j \in \mathbb{N}$, let $L_j = \frac{\gamma_j}{\epsilon}$. Fix $\epsilon > 0$. In order to prove our assertion, it is enough to show that if $k \in \mathbb{N}$ and x is an element of $M_k \left(\bigotimes_{j \in \mathbb{N}} M_{d_j} \right)$, then $\|x\|_{\gamma'} \leq (1 + \epsilon) L \|x\|_\gamma$.

Let $x \in M_k \left(\bigotimes_{j \in \mathbb{N}} M_{d_j} \right)$, and choose $n, m \in \mathbb{N}$ and $X_{i,j} \in M_k(M_{d_i})$ for $1 \leq i \leq n$ and $1 \leq j \leq m$, satisfying

$$x = \sum_{1 \leq j \leq m} X_{1,j} \otimes \cdots \otimes X_{n,j}.$$

By definition of the matrix norms on A_γ, for $1 \leq i \leq n$ there exists a diagonal matrix $w_i \in M_{d_i}$ with entries in $[1, \gamma_i]$ such that, if $W_i \in M_k(M_{d_i})$ is the diagonal matrix with entries in M_{d_i}, and nonzero entries equal to w_i (in other words, $W_i = 1_{M_k} \otimes w_i$), then

$$\|x\|_\gamma \leq (1 + \epsilon) \left\| \sum_{1 \leq j \leq m} W_i X_{1,j} W_i^{-1} \otimes \cdots \otimes W_n X_{n,j} W_n^{-1} \right\|.$$

For $1 \leq i \leq n$, we denote the diagonal entries of $w_i \in M_{d_i}$ by a_i, ℓ, for $\ell = 1, \ldots, d_i$. We will define two other diagonal matrices

$$w'_i = \text{diag}(a'_{i,1}, \ldots, a'_{i,d_i}) \quad \text{and} \quad r_i = \text{diag}(r_{i,1}, \ldots, r_{i,d_i})$$

in M_{d_i}, with entries in $[1, \gamma'_i]$ and $[1, L_i]$, respectively, as follows. For $1 \leq \ell \leq d_i$, we set

$$a'_{i,\ell} = \begin{cases} a_{i,\ell}, & \text{if } a_{i,\ell} \leq \gamma'_i; \\ \gamma'_i, & \text{if } a_{i,\ell} \geq \gamma'_i. \end{cases}$$

and

$$r_{i,\ell} = \begin{cases} 1, & \text{if } a_{i,\ell} < \gamma'_i; \\ \frac{1}{a_{i,\ell}}, & \text{if } a_{i,\ell} \geq \gamma'_i. \end{cases}$$

Observe that $r_{i,\ell}$ belongs to $[1, L_i]$ (since $a_{i,\ell} \leq \gamma_i \leq L_i \gamma'_i$), and that $a'_{i,\ell}$ belongs to $[1, \gamma'_i]$ for all $1 \leq i \leq n$ and $1 \leq \ell \leq d_i$.

Define w'_i and r_i to be the diagonal $d_i \times d_i$ matrices with diagonal entries $a'_{i,\ell}$ and $r_{i,\ell}$ for $1 \leq \ell \leq d_i$. Let $W'_i, R_i \in M_k(M_{d_i})$ be the diagonal $k \times k$ matrices with entries in M_{d_i} having diagonal entries equal to, respectively, w'_i and r_i. (In other words, $W'_i = 1_{M_k} \otimes w'_i$ and $R_i = 1_{M_k} \otimes r_i$.)

Then $W_i = R_i W'_i$ for all $1 \leq i \leq n$. Additionally,

$$\|R_i\| \leq L_i \quad \text{and} \quad \|R_i^{-1}\| \leq 1.$$
Therefore,
\[
\|x\|_\gamma \leq (1 + \varepsilon) \left\| \sum_{1 \leq j \leq m} W_1 X_{1j} W_1^{-1} \otimes \cdots \otimes W_n X_{nj} W_n^{-1} \right\|
\]
\[
= (1 + \varepsilon) \left\| \sum_{1 \leq j \leq m} R_1 W_1' X_{1j} W_1'^{-1} R_1^{-1} \otimes \cdots \otimes R_n W_n' X_{nj} W_n'^{-1} R_n^{-1} \right\|
\]
\[
\leq (1 + \varepsilon) \prod_{1 \leq j \leq m} R_1 \left\| \sum_{1 \leq j \leq m} W_1' X_{1j} W_1'^{-1} \otimes \cdots \otimes W_n' X_{nj} W_n'^{-1} \right\|
\]
\[
\leq (1 + \varepsilon) L_1 \cdots L_n \left\| \sum_{1 \leq j \leq m} W_1' X_{1j} W_1'^{-1} \otimes \cdots \otimes W_n' X_{nj} W_n'^{-1} \right\|
\]
\[
\leq (1 + \varepsilon) L \|x\|_{\gamma'}.
\]
This concludes the proof. \(\square\)

Corollary 3.2. If \(\gamma, \gamma' \in [1, +\infty)^N\) satisfy
\[
\prod_{n \in \mathbb{N}} \max \left\{ \frac{\gamma_n}{\gamma'_n}, \frac{\gamma'_n}{\gamma_n} \right\} < +\infty,
\]
then \(A^\gamma\) and \(A^{\gamma'}\) are completely isomorphic.

The following lemma can be proved in the same way as [P3, Lemma 5.11] with the extra ingredient of [P3, Lemma 5.8]. As before, we denote by \(\otimes^p\) the \(L^p\)-operator tensor product; see [P4, Definition 1.9].

Lemma 3.3. (Phillips). Let \(L > 0\) and let \(d \in \mathbb{N}\). Then there is a constant \(R(L, d) > 0\) such that the following holds. Whenever \(A\) is a unital \(L^p\)-operator algebra, whenever \(\gamma, \gamma' \in [1, +\infty)\) satisfy
\[
\gamma' \geq R(L, d) \gamma,
\]
and \(\varphi: M_d^\gamma \to M_d^{\gamma'} \otimes^p A\) is a unital homomorphism with \(\|\varphi\| \leq L\), there exists a unital homomorphism \(\psi: M_d^\gamma \to A\) with \(\|\psi\| \leq L + 1\).

Our assumption on the values of \(d\) will be used for the first time in the next lemma, where it is shown that sufficiently different sequences yield noncommensurable UHF \(L^p\)-operator algebras.

The \(K_0\)-group of a Banach algebra \(A\) is defined using idempotents in matrices over \(A\), and a suitable equivalence relation involving similarities of such idempotents. We refer the reader to [B1, Chapters 5,8,9] for the precise definition and some basic properties. What we will need here is the following:

Remark 3.4. For \(n \in \mathbb{N}\) and a unital Banach algebra \(A\), if there exists a unital, continuous homomorphism \(M_n \to A\), then the class of unit of \(A\) in \(K_0(A)\) must be divisible by \(n\).

Lemma 3.5. Suppose that \(\gamma, \gamma' \in [1, +\infty)^N\) satisfy \(\gamma_n \geq R(n, d_n) \gamma_n\) for infinitely many \(n \in \mathbb{N}\). Then there is no continuous unital homomorphism \(\varphi: A^\gamma \to A^{\gamma'}\).
Proof. Assume by contradiction that \(\varphi: A^\gamma \to A^{\gamma'} \) is a continuous unital homomorphism and set \(L = \|\varphi\| \). Pick \(n \in \mathbb{N} \) such that \(n \geq L \) and \(\gamma'_n \geq R(n, d_n) \gamma_n \). Set

\[
A = \bigotimes_{m \in \mathbb{N}, m \neq n} M_{d_m}^{\gamma_m}.
\]

Apply Lemma 3.3 to the unital homomorphism \(\varphi: M_{d_n}^{\gamma_n} \to M_{d_n}^{\gamma_n} \otimes^p A \), to get a unital homomorphism \(\psi: M_{d_n}^{\gamma_n} \to A \) with \(\|\psi\| \leq L + 1 \).

Using Remark 3.4, we conclude that the class of the unit of \(A \) in \(K_0(A) \) is divisible by \(d_n \). On the other hand, the \(K \)-theory of \(A \) is easy to compute using that \(K \)-theory for Banach algebras commutes with direct limits (with contractive maps). We get

\[
K_0(A) = \mathbb{Z} \left[\frac{1}{b} : b \neq 0 \text{ divides } d_m \text{ for some } m \neq n \right]
\]

with the unit of \(A \) corresponding to \(1 \in K_0(A) \subseteq \mathbb{Q} \).

Since there is a prime appearing in the factorization of \(d_n \) that does not divide any \(d_m \), for \(m \neq n \), we deduce that the class of the unit of \(A \) in \(K_0(A) \) cannot be divisible by \(d_n \). This contradiction shows that there is no continuous unital homomorphism \(\varphi: A^\gamma \to A^{\gamma'} \). \(\square \)

We say that a set is comeager if its complement is meager. Observe that, by definition, a nonmeager set intersects every comeager set. Recall that we regard \([1, +\infty)^\mathbb{N} \) as the parametrizing space of the UHF \(L^p \)-operator algebras of tensor product type \(d \) obtained from a diagonal system of similarities. Consistently, we regard (complete) isomorphism and commensurability of such algebras as equivalence relations on \([1, +\infty)^\mathbb{N} \).

Proof of Theorem 1.5. By [P4, Theorem 3.19(3)], every UHF \(L^p \)-operator algebra of tensor product type \(d \) obtained from a diagonal system of similarities is simple and monotracial. Therefore, it is enough to prove the second assertion of Theorem 1.5. For \(t \in [0, +\infty)^\mathbb{N} \), define \(\exp(t) \) to be the sequence \((\exp(t_n))_{n \in \mathbb{N}} \) of real numbers in \([1, \infty) \).

By Corollary 3.2, if \(t, t' \in [0, +\infty)^\mathbb{N} \) satisfy \(t - t' \in \ell^1 \), then \(A^{\exp(t)} \) and \(A^{\exp(t')} \) are completely isomorphic. We claim that for any nonmeager subset \(C \) of \([0, +\infty)^\mathbb{N} \) one can find \(t, t' \in C \) such that \(A^{\exp(t)} \) and \(A^{\exp(t')} \) are not commensurable. This fact together with Corollary 3.2 will show that the Borel function

\[
[0, +\infty)^\mathbb{N} \to [1, +\infty)^\mathbb{N} \\
\quad t \mapsto \exp(t)
\]

satisfies the hypotheses of Criterion 2.2 for any of the equivalence relations \(E \) in the statement of Theorem 1.5, yielding the desired conclusion.

Let then \(C \) be a nonmeager subset of \([0, +\infty)^\mathbb{N} \), and fix \(t \in C \). We want to find \(t' \in C \) such that \(A^{\exp(t)} \) and \(A^{\exp(t')} \) are not commensurable. The set

\[
\left\{ t' \in [0, +\infty)^\mathbb{N} : \text{ for all but finitely many } n \in \mathbb{N}, \exp(t'_n) \leq R(n, d_n) \exp(t_n) \right\}
\]

\[
= \bigcup_{k \in \mathbb{N}} \left\{ t' \in [0, +\infty)^\mathbb{N} : \forall n \geq k, \exp(t'_n) \leq R(n, d_n) \exp(t_n) \right\}
\]

is a countable union of closed nowhere dense sets, hence meager. Therefore, its complement
\[\left\{ t' \in [0, +\infty)^\mathbb{N} : \text{for infinitely many } n \in \mathbb{N}, \exp(t'_n) > R(n, d_n) \exp(t_n) \right\}, \]

is comeager. In particular, since \(C \) is nonmeager, there is \(t' \in C \) such that \(\exp(t'_n) \geq R(n, d_n) \exp(t_n) \) for infinitely many \(n \in \mathbb{N} \). By Lemma 3.3, there is no continuous unital homomorphism from \(A^{\exp(t)} \) to \(A^{\exp(t')} \). Therefore \(A^{\exp(t)} \) and \(A^{\exp(t')} \) are not commensurable. This concludes the proof of the above claim. \(\square \)

References

[B1] B. Blackadar, K-theory for operator algebras, Second, Mathematical Sciences Research Institute Publications, vol. 5, Cambridge University Press, Cambridge, 1998.

[B2] O. Bratteli, Inductive limits of finite dimensional C*-algebras, Transactions of the American Mathematical Society 171 (1972), 195–234.

[BLM] D. P. Blecher and C. Le Merdy, Operator algebras and their modules—an operator space approach, London Mathematical Society Monographs. New Series, vol. 30, Oxford University Press, Oxford, 2004.

[D] M. Daws, p-operator spaces and Figà-Talamanca-Herz algebras, Journal of Operator Theory 63 (2010), no. 1, 47–83.

[E] G. A. Elliott, On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, Journal of Algebra 38 (1976), no. 1, 29–44.

[F] I. Farah, A dichotomy for the Mackey Borel structure, Proceedings of the 11th asian logic conference, 2012, pp. 86–93.

[FW] M. Foreman and B. Weiss, An anti-classification theorem for ergodic measure preserving transformations, Journal of the European Mathematical Society 6 (2004), no. 3, 277–292.

[G] J. G. Glimm, On a certain class of operator algebras, Transactions of the American Mathematical Society 95 (1960), no. 2, 318–340.

[GL] E. Gardella and M. Lupini, Representations of étale groupoids on \(L^p \)-spaces, arXiv:1408.3752 (2014).

[H1] G. Hjorth, Non-smooth infinite-dimensional group representations, 1997. Preprint.

[H2] ________, Classification and orbit equivalence relations, Mathematical Surveys and Monographs, vol. 75, American Mathematical Society, Providence, RI, 2000.

[H3] ________, Measuring the classification difficulty of countable torsion-free abelian groups, Rocky Mountain Journal of Mathematics 32 (2002), no. 4, 1267–1280.

[KLP1] D. Kerr, H. Li, and M. Pichot, Turbulence, representations, and trace-preserving actions, Proceedings of the London Mathematical Society 100 (2010), no. 2, 459–484.

[KLP2] D. Kerr, M. Lupini, and N. C. Phillips, Borel complexity and automorphisms of C*-algebras, Journal of Functional Analysis. To appear.

[KS] A. S. Kechris and N. E. Sofronidis, A strong generic ergodicity property of unitary and self-adjoint operators, Ergodic Theory and Dynamical Systems 21 (2001), no. 5, 1459–1479.

[L] M. Lupini, Unitary equivalence of automorphisms of separable C*-algebras, Advances in Mathematics 262 (2014), 1002–1034.

[M] D. Marker, Model theory, Graduate Texts in Mathematics, vol. 217, Springer-Verlag, New York, 2002.

[P1] N. C. Phillips, Analogs of Cuntz algebras on \(L^p \) spaces, arXiv:1201.4196 (2012).

[P2] ________, Crossed products of \(L^p \) operator algebras and the K-theory of Cuntz algebras on \(L^p \) spaces, arXiv:1309.6406 (2013).

[P3] ________, Isomorphism, nonisomorphism, and amenability of \(L^p \) UHF algebras, arXiv:1309.3694 (2013).

[P4] ________, Simplicity of UHF and Cuntz algebras on \(L^p \)-spaces, arXiv:1309.0115 (2013).

[PV] N. C. Phillips and M. G. Viola, \(L^p \) analogs of AF algebras. In preparation.

[ST1] R. Sasyk and A. Törnquist, The classification problem for von Neumann factors, Journal of Functional Analysis 256 (April 2009), no. 8, 2710–2724.

[ST2] R. Sasyk and A. Törnquist, Turbulence and Araki-Woods factors, Journal of Functional Analysis 259 (2010), no. 9, 2238–2252.
Eusebio Gardella, Department of Mathematics, Deady Hall, University of Oregon, Eugene OR 97403-1222, USA, and Fields Institute for Research in Mathematical Sciences, 222 College Street, Toronto ON M5T 3J1, Canada.
E-mail address: gardella@uoregon.edu
URL: http://pages.uoregon.edu/gardella/

Martino Lupini, Department of Mathematics and Statistics, N520 Ross, 4700 Keele Street, Toronto Ontario M3J 1P3, Canada, and Fields Institute for Research in Mathematical Sciences, 222 College Street, Toronto ON M5T 3J1, Canada.
E-mail address: mlupini@mathstat.yorku.ca
URL: http://www.lupini.org/