Inhibitory Power Test of Two *Trichoderma* Isolates in In Vitro Way Againts *Fusarium oxysporum* The Cause of Red Chilli Stem Rot

A Wachid* and Sutarman

Departement of Agrotechnology, Faculty of Agriculture, Universitas Muhammadiyah Sidaorjo, Sidoarjo, Indonesia

*awachid@umsida.ac.id

Abstract. This study aims to determine the control power of two isolates of *Trichoderma* obtained from the forest floor soil to the activity of *Fusarium oxysporum* pathogen causing stem rotation of red chili plant in vitro. The experiment was arranged in complete randomized design using 3 kinds of treatment of *Trichoderma* sp., *T. harzianum* isolate and control (without *Trichoderma* fungi isolate) tested for its antagonistic ability against pathogen; each treatment was repeated 4 times. The observed variable is pathogen inhibition (%). The observational data were analyzed by using variance followed by 5% HSD test to know the difference between treatments. The results showed that *T. harzianum* (Tc-Jjr-02 isolate) and *Trichoderma* sp. (Tc-Pjn-01 isolate) were able to inhibit *F. oxysporum* pathogens respectively 76.9% and 77.1% at 108 hours after inoculation. Both of these *Trichoderma* fungal isolates can be developed into biocontrol agents for *F. oxysporum*.

1. Introduction

Red Chili is one of strategic horticulture commodities in Indonesia. There are varies disturbance on its production. One of them is disease attack, which caused the most losses. Therefore, there were many studies that provided protection technology for plant healthiness against pathogen disturbance. Climate change, on the other hand, can lead to co-evolution between pathogens and plants [1]. The process of co-evolution can lead to new diseases [2]. *Fusarium oxysporum* isolate collection of the Mycology Laboratory (Bogor Agricultural University or IPB) which isolated from red pepper plant showed symptoms of stem rot and potentially born dangerous disease in Indonesia. *F. oxysporum* fungi has been widely recognized as a dangerous pathogen of important crops in different parts of the world.

Various studies have shown that *Trichoderma* fungi are potentially utilized as control agents of various cultivated plants. Important *Trichoderma* fungi characters are: capable of producing secondary metabolites that can induce plant pathogen resistance, produce plant hormones, and nutrients to increase growth of plants and crops [10-13]. Currently the Microbiology Laboratory of the Faculty of Agriculture Universitas Muhamamdiyah Sidoarjo has collected at least 30 *Trichoderma* isolates. Four of the 30 isolates were selected because of their potential as biocontrol agents and...
biofertilizer agents [2]. The test results are an opportunity to prepare potential isolates as biocontrol agents against *F. oxysporum* as an effort of support to the production of red chillies for both consumption purposes and for producing seeds.

This study aims to explore the inhibitory power of *Trichoderma* sp. isolate Tc-Clkt-01 and *T. harzianum* isolate Tc_Jjr-02 against *F. Oxysporum* which isolated from red chilli.

2. Materials and methods

Study held in Microbiology Laboratory of Agriculture Faculty of Universitas Muhammadiyah Sidoarjo, Candi-Sidoarjo.

Fungi *F. oxysporum* (collection of Microbiology Laboratory, IPB) and *Trichoderma* sp isolates Tc-Clkt-01 and *T. harzianum* isolates Tc-Jjr-02 (collection of Microbiology Laboratory of Faculty of Agriculture, Universitas Muhammadiyah Sidoarjo) were grown on PDA media given chloramphenicol to prevent bacterial contaminants [14]. After culture was incubated for 8 days, we taken a round shot by 5 mm diameter from one type of *Trichoderma* culture and one from pathogen culture using a *cook borer*. Both samples were taken using an ose needle and placed face to face on the surface of PDA-chloramphenicol medium in a petri dish with a distance of 5 cm. Meanwhile, in parallel way, a footage of a 5 mm diameter pathogen culture was placed in the center of the media surface. Furthermore the edge of the cup after being heated over a bunsen flame is coated with plastic tape to prevent contamination. Each of these experimental units is repeated four times. All petri dishes in this experiment were incubated for 108 hours at 28 ± 2 ° C. The observations were performed every 12 hours by measuring the diameter of *F. oxysporum* isolate colony to *Trichoderma* fungi isolate and compared to cultured *F. oxysporum* diameter without biocontrol agents as controls. The comparison between the colony diameter of the control pathogen and diameter of pathogen colony which inhibited by *Trichoderma* against the diameter of control pathogen colony is the pathogen inhibitory power that expressed in the percentage [15, 16]. The experiments were arranged in a complete randomized design and the data were analysed by 5% ANOVA followed by 5% HSD test.

3. Results and discussion

Variance analysis result showed a significant difference on treatments effect which at once showed inhibition against pathogen by both *Trichoderma* isolates. The inhibitory power growth pattern of biocontrol agent from 24 HAI to 108 HAI is shown in Figure 1.
The inhibitory growth of the two pathogens varied slightly to 48 HAI, but from 60 to 108 HAI became the same. From 36 HAI, it appears that both \textit{Trichoderma} biological agents have inhibition of pathogens. The mean inhibitory power of both \textit{Trichoderma} isolates was not significantly different as shown in Table 1.

Table 1: Mean percentage of inhibition against pathogen 36-108 HAI*

Treatment	36 HAI	60 HAI	84 HAI	108 HAI
Tc-Clkt-01	6.60 b	26.43 b	71.90 b	76.85 b
Tc-Jjjr-02	7.85 b	25.48 b	72.23 b	77.15 b
Control	0.00 a	0.00 a	0.00 a	0.00 a
BNT 5%	6.09	12.66	4.10	3.37

*) HAI is hour after inoculation
** Numbers followed by the same letter in the same column show no significant difference in 5% HSD test.

The pattern of inhibitory growth was relatively similar between the two \textit{Trichoderma} isolates tested primarily from 60 to 108 HAI. This indicates that both isolates have the same ability to produce inhibitory performance against pathogens. This pathogen inhibiting ability is supported by \textit{Trichoderma}'s ability to produce secondary metabolites [17, 7] so as to have the ability to suppress pathogens [18, 8] with considerable inhibitory power of 76.9% and 77.1%, produced by isolates \textit{Trichoderma sp.} Tc-Clkt-01 and \textit{T. harzianum} Tc-Jjjr-02 respectively.

4. Conclusion
Fungi \textit{Trichoderma sp.} isolate Tc-Clkt-01 and \textit{T. harzianum} isolate Tc-Jjjr-02 have high in vitro inhibitory power and have potential as biocontrol agent for \textit{Fusarium oxysporum} which causing red
stem rot disease. The implication of the research is the Trichoderma fungi isolates can be developed to become the biocontrol agents.

Acknowledgements
We would like to thanks the Universitas Muhammadiyah Sidoarjo for the support provided in the form of funds and laboratory facilities.

References
[1] Anderson RM, May RM 1982 Coevolution of hosts and parasites, J Parasitology 85, 411-426.
[2] Sutarman 2016 Selection of Trichoderma spp. from under the pine stands and test the carrying capacity of the selected isolates on the growth of tomato and mustard, In TM Prihtanti, MM Herathi (eds.), Communication on research, community service, and superior products competitive, Scientific Work Nasional Concert 2016 proceedings. SatyaWacana Christian University, Salatiga, Indonesia, Auguts 4, 2016, pp. 125-133.
[3] Dubey SC, Suresha M, Singha B 2007 Evaluation of Trichoderma species against Fusariumoxysporum f. sp. ciceris for integrated management of chickpea wilt, Biol. Control 40,118-127.
[4] Al Askarand AA, Rashad YM 2010 Arbuscular mycorrhizal fungi: a biocontrol agent against common bean Fusarium root rot disease, J Plant Pathol 9, 31-38.
[5] Prukskorona P, Araia M, Kotokua N, Vilchese C, Baughn AD, Moodley P, Jacobs WR Jr., Kobayashia M 2010 Trichodermins, novel aminolipeptides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria, Bioorganic Medicinal Chemistry Letters 20, 3658-3663.
[6] Hu X, Roberts DP, Xie L, Maul JE, Yu C, Li Y, Zhang Y, Qin L, Liao X 2015 Components of a rice-oilseed rape production system augmented with Trichoderma sp. Tri-I control Sclerotiniassclerotiorum on oilseed rape, Phytopathology 105, 1325-1333.
[7] Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL, Lorito M 2008 A novel role for Trichoderma secondary metabolites in the interactions with plants, Physiol. Mol. Plant Pathol. 72, 80-86.
[8] Legaya N, Grassein F, Binet MN, Arnoldi C, Personeni E, Perigon S, Polyd F, Pommier T, Puissant J, Clément JC, Lavorel S, Mouhamadou B 2016 Plant species identities and fertilization influence on arbuscular mycorrhizal fungal colonisation and soil bacterial activities, Applied Soil Ecology 98, 132–139.
[9] Gravel V, Antoun H, Tweddell RJ 2007 Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA, Soil Biol. Biochem. 39, 1968–1977.
[10] Harman GE, Howell CR, Viterbo A, Chet I, Lorito M 2004 Trichoderma species – opportunistic, avirulent plant symbionts, Nat. Rev. Microbiol. 2, 43-56.
[11] Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Kohl J, Marrone P, Morin L, Stewart A 2012 Have biopesticides come of age?, Trends Biotechnol 30, 250-258.
[12] Buyssens C, César V, Ferrais F, De Boulois HD, Declerck S 2016 Inoculation of Medicago sativa cover crop with Rhizophagus irregularis and Trichoderma harzianum increases the yield of subsequently-grown potato under low nutrient conditions, Applied Soil Ecology 105,137–143.
[13] Youssef SA, Tartoura KA, Abdelraouf GA 2016 Evaluation of Trichoderma harzianum and Serratia proteamaculans effect on disease suppression, stimulation of ROS-scavenging enzymes and improving tomato growth infected by Rhizoctonia solani, Biological Control 100,79–86.
[14] Vargas Gil S, Pastorb S, Marcha GJ 2009 Quantitative isolation of biocontrol agents Trichoderma spp. Gliocladium spp. and Actinomycetes from soil with culture media, Microbiol. Res. 164, 196-205.
[15] Matarese F, Sarrocco S, Gruber S, Seidl-Seiboth V, Vannacci G 2012 Biocontrol of Fusarium head blight: interactions between Trichoderma and mycotoxigenic Fusarium, Microbiol. 158, 98-106.

[16] Saravanakumar K, Yu C, Dou K, Wang M, Li Y, Chen J 2016 Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp. Cucumerinum, Biological Control 94, 37-46.

[17] Harman GE 2006 Overview of mechanisms and uses of Trichoderma spp., Phytopathology 96, 190-194.

[18] Srivastava R, Khalid A, Singh US, Sharma AK 2010 Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt, Biological Control 55, 24-31.