Drift-induced Benjamin-Feir instabilities

F. Di Patti1,2,3, D. Fanelli1,2,3 and T. Carletti4

1 Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze - via G. Sansone 1, 50019 Sesto Fiorentino, Italia
2 CSDC - via G. Sansone 1, 50019 Sesto Fiorentino, Italia
3 INFN, Sezione di Firenze - via G. Sansone 1, 50019 Sesto Fiorentino, Italia
4 Department of Mathematics and Namur Center for Complex Systems-naXys, University of Namur rempart de la Vierge 8, B 5000 Namur, Belgium

received 16 May 2016; accepted in final form 24 June 2016
published online 21 July 2016

PACS 82.40.Ck – Pattern formation in reactions with diffusion, flow and heat transfer
PACS 05.45.Xt – Synchronization; coupled oscillators
PACS 89.75.Kd – Patterns

Abstract – A modified version of the Ginzburg-Landau equation is introduced which accounts for asymmetric couplings between neighbors sites on a one-dimensional lattice, with periodic boundary conditions. The drift term which reflects the imposed microscopic asymmetry seeds a generalized class of instabilities, reminiscent of the Benjamin-Feir type. The uniformly synchronized solution is spontaneously destabilized outside the region of parameters classically associated to the Benjamin-Feir instability, upon injection of a nonhomogeneous perturbation. The ensuing patterns can be of the traveling wave type or display a patchy, colorful mosaic for the modulus of the complex oscillators amplitude.

The spontaneous ability of spatially extended systems to self-organize in space and time is proverbial and has been raised to paradigm in modern science [1,2]. Collective behaviors are widespread in Nature and mirror, at the macroscopic level, the microscopic interactions at play among elementary constituents. Convection instabilities in fluid dynamics, weak turbulences and defects are representative examples that emblatize the remarkable capacity of assorted physical systems to yield coherent dynamics [3]. Rhythms production and the brain functions are prototypical illustrations drawn from biology [4,5], insect swarms and fish schools refer instead to ecological applications [6]. The degree of instinctive and unsupervised coordination which instigates the bottom-up cascade towards self-regulated patterns is however universal and, as such, has been invoked in many other fields [7–13], ranging from chemistry [14,15] to economy, and technology [16]. Instabilities triggered by random fluctuations are often patterns precursors. The imposed perturbation shakes, e.g. a homogeneous equilibrium, seeding a resonant amplification mechanism that eventually materializes in magnificent patchy motifs, characterized by a vast gallery of shapes and geometries. Exploring possible routes to pattern formation, and unraveling novel avenues to symmetry breaking instability, is hence a challenge of both fundamental and applied importance.

In the so-called modulational instability deviations from a periodic waveform are reinforced by nonlinearity, leading to spectral-sidebands and the breakup of the waveform into a train of pulses [17,18]. The phenomenon was first conceptualized for periodic surface gravity waves (Stokes waves) on deep water by Benjamin and Feir, in 1967 [19], and for this reason is customarily referred to as the Benjamin-Feir (BF) instability. The BF instability has been later on discussed [20,21] in the context of the Complex Ginzburg Landau equation (CGLE), a quintessential model for nonlinear physics, whose applications range from superconductivity, superfluidity and Bose-Einstein condensation to liquid crystals and strings in field theory [22]. In this letter, we will revisit the BF instability in the framework of the CGLE, modified with the inclusion of a drift term. This latter is rigorously derived from a stochastic description of the microscopic coupling between adjacent oscillators. As we shall prove in the following, generalized BF instabilities occur, stimulated by the drift, outside the region of parameters for which the classical BF instability is manifested. This observation, grounded on a detailed mathematical theory, contributes
to considerably enrich the landscape of known instabilities, along a direction of investigation that can be experimentally substantiated.

Let us start by considering an ensemble made of N nonlinear oscillators and label with W_i their associated complex amplitude, where $i = 1, \ldots, N$. We shall hereafter assume that each individual oscillator obeys to a CGLE. Moreover, the oscillators are mutually coupled via a diffusive-like interaction that is mathematically epitomized in terms of a discrete Laplacian operator. Concretely, imagine that oscillators are coupled to nearest neighbors only, on a one-dimensional lattice with periodic boundaries. The connection can be made directed by assigning different probabilities of pair interactions between adjacent sites: a refers to the probability that links i to $i+1$, while b stands for the probability of nodes i and $i-1$ to communicate. The obvious constraint $a + b = 1$ holds true. Under these premises, the discrete Laplacian operator Δ results in a circulant matrix with three nontrivial entries per row, namely $\Delta_{ii} = -(a+b) = -1$, $\Delta_{i,i+1} = b$ and $\Delta_{i,i-1} = a$. The action of the operator Δ on the complex amplitude value W_i is explicitly given by

$$\sum_{k=1}^{N} \Delta_{ik} W_j = \frac{(a+b)(\delta x)^2}{2} W_{j-1} + W_{j+1} - 2W_j + \frac{(b-a)(\delta x)^2}{2} \frac{W_{j-1} - W_{j+1}}{\delta x},$$

where an artificial rescaling with δx, the lattice spacing, has been introduced. As expected, two contributions can be highlighted: a symmetric diffusion part and a drift term. This latter vanishes when $a = b = 1/2$, i.e. when the probability of interactions of i with, respectively, $i+1$ and $i-1$ is assumed identical. Performing the thermodynamic limit $N \to \infty$ is equivalent to operating in the continuum limit $\delta x \to 0$. The discrete variable $W_i(t)$ is hence mapped onto $W(x,t)$, a time-dependent complex function defined on a continuum, one-dimensional, spatial support x. The above reasoning yields the following complex Ginzburg-Landau equation with drift (CGLED) for the evolution of the complex amplitude $W(x,t)$:

$$\partial_t W = W - (1 + ic_2)|W|^2 W + K(1 + ic_1)(D\partial_x^2 W + v\partial_x W),$$

where $D = \lim_{\delta x \to 0}(a+b)/2(\delta x)^2$ and $v = \lim_{\delta x \to 0}(b-a)(\delta x)$ are the diffusion constant and the velocity, as usually defined. Here, K is a constant parameter which modulates the strength of the coupling. In the following, and without losing generality, K is set equal one. A comment is mandatory at this point. Moving from a self-consistent microscopic description of the inspected processes, one ends up with a standard CGLE modified by the inclusion of an additional drift operator, multiplied by the effective (complex) velocity $v' = (1 + ic_1)v$. This is at variance with other models investigated in the literature [23], which assumed dealing with an isolated heuristic term $v\partial_x W$, on the right hand side of the CGLE. This latter modification proves unessential, as concerns the onset of the instability. In fact, the term $v\partial_x W$ can be formally removed by performing a change of variable to the comoving reference frame. At odds with this conclusion, the complex coefficient $(1 + ic_1)$, multiplying the scalar velocity v in eq. (2), mixes the real and imaginary components of W, an apparently innocent step which however significantly alters the emerging dynamics for the modified CGLE. As a matter of fact, the inherited degree of complexity is ultimately responsible for the generalized instability that we shall henceforth report.

The CGLED (2) admits a family of traveling wave (TW) solutions of the type

$$W_{TW} = Re^{i\omega t + ikx},$$

where $R^2 = 1 - k^2D - kv_c^2$ and $\omega = -R^2c_2 + kv - k^2Dc_1$. Particularly interesting is the choice $k = 0$, which returns $R = 1$ and $\omega = -c_2$. Hence, e^{-ic_2t} is a homogenous solution of the CGLED. The latter is here termed the limit cycle (LC) solution, as it results from a uniform, fully synchronized, replica of the periodic orbit displayed by the system in its a-spatial ($K = 0$) version.

To shed light onto the dynamics of the Ginzburg-Landau equation, modified with the inclusion of a complex drift term, we begin by determining the stability of the TW solutions (3). To this end we set

$$W = W_{TW}(1 + a_+(t)e^{Qx} + a_-(t)e^{-Qx}),$$

and substitute eq. (3) and eq. (4) into eq. (2). At the linear order of approximation in a_+ and a_- one obtains the following system of differential equations:

$$\frac{d}{dt} \begin{pmatrix} a_+ \\ a_- \end{pmatrix} = J \begin{pmatrix} a_+ \\ a_- \end{pmatrix},$$

where the bar stands for the complex conjugate and the entries of matrix J read

$$J_{11} = -QD(Q + 2k)(1 + ic_1) - (1 + ic_2)R^2 + iQ(1 + ic_1),$$

$$J_{12} = J_{21} = -(1 + ic_2)R^2,$$

$$J_{22} = +QD(2k - Q)(1 - ic_1) - (1 - ic_2)R^2 + iQ(1 - ic_1).$$

The eigenvalues λ of matrix J determine the asymptotic fate of the perturbation: if the real part of λ is positive, the perturbation grows exponentially, otherwise it fades away. To proceed in the analysis we selected the eigenvalue with largest real part, denoted λ^\ast, and Taylor expand it for small Q to eventually get

$$\lambda^\ast \simeq q_1Q + q_2Q^2 + O(Q^3),$$

where

$$q_1 = \left[-2c_1Dk + v - (2c_2Dk^2 - c_1c_2v + (3c_1c_2D^2k^3 - c_1c_2v + c_1^2c_2kv^2)/R^2(i)^3 \right]$$

68003-p2
is imaginary, while \(q_2 \) is real and reads

\[
q_2 = a_2 k^2 + a_1 k + a_0
\]

with

\[
\begin{align*}
 a_2 &= D^2 (3 + c_1 c_2 + 2 c_2^2) / R^2, \\
 a_1 &= D v (3 c_1 + c_1^2 c_2 + 2 c_1 c_2^2) / R^2, \\
 a_0 &= \left[c_1^2 (1 + c_2^2) v^2 - 2 D (1 + c_1 c_2) \right] / (2 R^2).
\end{align*}
\]

As already mentioned, the imposed perturbation gets magnified when the real part of \(\lambda^+ \) is positive or, stated differently, when \(q_2 > 0 \). Consider first the synchronized LC solution, which corresponds to setting \(k = 0 \). If the drift is silenced, i.e. \(v = 0 \), requiring \(q_2(k = 0) > 0 \) yields \((1 + c_1 c_2) < 0 \): this is the classical condition for the BF instability to hold true. The synchronous LC homogeneous configuration gets thus spoiled by any externally enforced perturbation, provided \(c_1 \) and \(c_2 \) match the prescribed condition. The nonlinear evolution of the perturbation materializes in beautiful and uneven patterns for the modulus of the complex amplitude \(W \). If \((1 + c_1 c_2) > 0 \) and \(v = 0 \), no patterns can develop from a local perturbation materialized in beautiful and uneven patterns for the modulus of the complex amplitude \(W \). The sought instability can hence be realized provided a sufficient degree of coupling asymmetry is enforced into the model. Since \(a, b \in [0, 1] \), then \(\gamma_c \in [0, 1] \), a constraint that limits the portion of the parameter plane \((c_1, c_2)\) where the drift-induced Benjamin-Feir instability can possibly materialize. The condition \(\gamma_c > 0 \) is automatically satisfied since we are focusing on the restricted region of interest \(1 + c_1 c_2 > 0 \). The upper bound \(\gamma_c = 1 \) is reached when

\[
c_2 = \frac{1}{2 c_1} \left[1 \pm \sqrt{5 - 4 c_1^2} \right].
\]

In fig. 1, the critical value of \(\gamma \) is reported, with an apt color code, when scanning the plane \((c_1, c_2)\). The solid lines mark the region of interest, as outlined above. As expected, \(\gamma_c \) tends to zero when one approaches the boundary for the outbreak of the standard BF instability.

Summing up the system can turn unstable outside the region classically deputed to the BF instability, a phenomenon instigated by drift, the macroscopic imprint of the endowed spatial asymmetry. To make this point transparent we go back to considering the exact expression for \(\lambda^+ \), as it emanates from matrix (6). For \(k = 0 \) (and recalling that, consequently, \(\omega = -c_2 \) and \(R = 1 \)) one obtains

\[
\lambda^+ = -1 - Q^2 D + i Q v + \sqrt{1 + 2 c_1 c_2 (-Q^2 D + i Q v) - c_1^2 (-Q^2 D + i Q v)^2}.
\]
In fig. 2 the real part of the above dispersion relation \(\lambda_{Re}^+ \) is plotted vs. \(Q \), the wavenumber which characterizes the perturbation, acting on the uniform LC solution \((k = 0) \). The values of \(c_1 \) and \(c_2 \) are set so that \(1 + c_1 c_2 > 0 \). When \(v = 0 \) (green solid line) \(\lambda_{Re}^+ \) is always smaller (or equal for \(Q = 0 \)) than zero: no modes can be excited, and the LC keeps thus stable. The orange curve refers instead to the situation where \(a \neq b \). The parameters \(a \) and \(b \) have been chosen so to have \(\gamma > \gamma_0(c_1, c_2) \); as predicted by the analysis carried out above, the dispersion relation lifts above zero, signaling an instability over a finite windows of \(Q \). The maximum of \(\lambda_{Re}^+ \) vs. \(Q \) identifies the most unstable mode \(Q^* \), as illustrated in fig. 2.

A question then arises concerning the final patterns attained by the CGLED, as follows the generalized instability illustrated above and beyond the linear regime of evolution. To formulate an answer we take advantage from the observation that the dispersion relation \(\lambda_{Re}^+ \) displays an isolated maximum at \(Q = Q^* \). The perturbation at \(Q^* \) will stand comparison with other and emerge from the sea of, self-consistently activated, modes. Imagine that solution (3) with \(k = Q^* \) proves stable, as classified by the sign of \(q_2(k = Q^*) \) in eq. (9). Then, one can plausibly expect that the system will asymptotically organize in a steady traveling wave, in the late nonlinear regime of the evolution. Contrariwise, the mutually exclusive competition between linearly unstable modes, on the one side, and the stability conditions of traveling wave solutions, on the other, prompts more intricate, spatially inhomogeneous equilibria, for the complex amplitude \(W \), when \(q_2(k = Q^*) > 0 \).

To further develop this argument we swept through the plane \((c_1, c_2) \), by setting \(\gamma = \gamma_0 + \Delta \gamma \) (being \(\Delta \gamma \) constant). For each pair \((c_1, c_2) \), identified the corresponding \(Q^\ast \) and measured the associated \(q_2(k = Q^\ast) \). The colored region in fig. 3, panels (a) and (b), refers to \(q_2(k = Q^\ast) < 0 \): colors reflect the measured value of \(q_2 \) and assume an appropriate code, as indicated in the annexed colorbar. The white regions that fall outside the domain of classical BF instability are characterized by \(q_2(k = Q^\ast) > 0 \). Patchy inhomogeneous patterns are expected when the system is initialized in such regions, based on the reasoning developed above. In light of the similarities that the generated patterns bear with the original BF motifs (as demonstrated below in fig. 3, panels (d) and (e)), we term this regions with the acronym EBF, from Extended Benjamin-Feir instability.
In fig. 3 we report the results of direct integration of the CGLED, for different choice of the parameters and starting with a random (uniformly distributed) perturbation of the homogeneous LC solution. When c_1 and c_2 are selected from the colored region of panel (a) of fig. 3, the system stabilizes on a traveling wave (see fig. 3(c)). When the parameters are instead chosen from the EBF regions, the amplitude of the complex amplitude W displays a complicated mosaic of beautiful patterns in the plane (x, t) (see fig. 3(d)).

In conclusion, we have here introduced a modified version of the celebrated Ginzburg-Landau equation which accounts for asymmetric couplings between neighbors sites. The drift term that descends from the imposed degree of unevenness, seeds the emergence of a generalized class of instabilities reminiscent of the Benjamin-Feir type. The uniformly synchronized solution is spontaneously destabilized, upon injection of a nonhomogeneous perturbation. The ensuing patterns can be of the traveling wave type or display a colorful textures in the space and time. The conditions that discriminate between these alternatives are worked out in a rigorous mathematical framework. As a final remark, we emphasize that the theory here developed can be extended to describe the dynamics of an ensemble made of oscillators, coupled via a direct and heterogeneous network [8,24,25], as we shall report elsewhere.

This work has been supported by the program PRIN 2012 founded by the Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR). DF acknowledges financial support from H2020-MSCA-ITN-2015 project COSMOS 642563. The work of TC presents research results of the Belgian Network DYSCO (Dynamical Systems, Control, and Optimization), funded by the Interuniversity Attraction Poles Programme, initiated by the Belgian State, Science Policy Office.

REFERENCES

[1] Pikovsky A., Rosenblum M. and Kurths J., *Synchronization* (Cambridge University Press, Cambridge) 2001.

[2] Turing A. M., *Philos. Trans. R. Soc. London, Ser. B*, **237** (1952) 37.

[3] Drazin P. G. and Reid W. H., *Hydrodynamic Stability* (Cambridge University Press, Cambridge) 2004.

[4] Goldbeter A., *Biochemical Oscillations and Cellular Rhythms* (Cambridge University Press, Cambridge) 1997.

[5] Wyller J., Blochquist P. and Eisenblö T., *Physica D*, **225** (2007) 75.

[6] Murray J. D., *Mathematical Biology II: Spatial Models and Biomedical Applications*, 3rd edition (Springer-Verlag) 2003.

[7] Nakao H. and Mikhailov A. S., *Nat. Phys.*, **6** (2010) 544.

[8] Nakao H., *Eur. Phys. J. S. T.*, **223** (2014) 2411.

[9] Asllani M., Biancalani T., Fanelli D. and McKane A. J., *Eur. Phys. J. B*, **86** (2013) 1.

[10] Asllani M., Di Patti F. and Fanelli D., *Phys. Rev. E*, **86** (2012) 046105.

[11] Hata S., Nakao H. and Mikhailov A. S., *Sci. Rep.*, **4** (2014) 3585.

[12] Nakao H. and Mikhailov A. S., *Phys. Rev. E*, **79** (2009) 036214.

[13] Kouvaris N. E., Isele T., Mikhailov A. S. and Schöll E., *EPL*, **106** (2016) 68001.

[14] Belousov B. P., *Collection of Short Papers on Radiation Medicine for 1958* (Medical Publication, Moscow) 1959.

[15] Zhabotinsky A. M., *Biofizika*, **9** (1964) 306.

[16] Strogatz S., *Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering* (Perseus Book Group, Cambridge, Mass.) 2001.

[17] Benjamin T. B. and Hasselmann K., *Proc. R. Soc. Lond. A*, **299** (1967) 59.

[18] Agrawal G., *Nonlinear Fiber Optics* (Academic Press, San Diego, Cal.) 1995.

[19] Benjamin T. B. and Feir J. E., *J. Fluid Mech.*, **27** (1967) 417.

[20] Stuart J. T. and DiPrima R. C., *Proc. R. Soc. Lond. A*, **362** (1978) 27.

[21] Kuramoto Y., *Chemical Oscillations, Waves and Turbulence* (Springer-Verlag, New York) 1984.

[22] Aranson I. S. and Kramer L., *Rev. Mod. Phys.*, **74** (2002) 99.

[23] Cross M. C. and Hohenberg P. C., *Rev. Mod. Phys.*, **65** (1993) 851.

[24] Asllani M., Challenger J. D., Pavone F. S., Sacconi L. and Fanelli D., *Nat. Commun.*, **5** (2014) 4517.

[25] Contemorini S., Di Patti F., Fanelli D. and Miele F., *Phys. Rev. E*, **93** (2016) 032317.