A Case of Hepatitis B Virus-related Vasculitic Neuropathy in an Inactive Virus Carrier Treated with Intravenous Immunoglobulin

Kaori Kusama, Yoshiharu Nakae, Mikiko Tada, Yuichi Higashiyama, Yosuke Miyaji, Genpei Yamaura, Misako Kunii, Kenichi Tanaka, Ken Ohyama, Haruki Koike, Hideto Joki, Hiroshi Doi, Shigeru Koyano and Fumiaki Tanaka

Abstract:
We herein report a 33-year-old woman who was an asymptomatic hepatitis B virus (HBV) carrier and presented with distal muscle weakness in the legs and asymmetrical paresthesia in the distal extremities. A nerve biopsy specimen revealed fibrinoid necrosis associated with inflammatory infiltration in the perineural space, and deposition of hepatitis B core antigen and C4d complement was detected in the vascular endothelial cells as well as around the vessels. She was diagnosed with HBV-related vasculitic neuropathy and treated with intravenous immunoglobulin (IVIG). Her symptoms completely subsided after eight weeks. Vasculitic neuropathy rarely develops in the chronic inactive stages of HBV infection. This is the first report of an HBV-inactive carrier with vasculitic neuropathy successfully treated with IVIG.

Key words: hepatitis B virus (HBV), vasculitic neuropathy, intravenous immunoglobulin (IVIG)

(Intern Med Advance Publication)
(DOI: 10.2169/internalmedicine.4498-20)

Introduction
Hepatitis B virus (HBV) infection affects more than 400 million people worldwide and is an important cause of infectious liver disease (1). The risk rate of chronicity is about 90% among those who acquire HBV infection under 1 year old (1). Extrahepatic manifestations are also sometimes observed, including serum sickness-like syndrome, glomerulonephritis, polyarthritis, polyarteritis nodosa (PAN), cryoglobulinemia, and various neurological, psychiatric, and dermatological disorders (2).

We herein report a rare case of HBV-related vasculitic neuropathy in an HBV-inactive carrier, which was successfully treated with intravenous immunoglobulin (IVIG).

Case Report
A 33-year-old woman initially noticed numbness in the lower legs. As the numbness worsened, she became unable to walk in high-heeled shoes. Eighteen days after the onset, she also felt numbness in her right hand. By 27 days after onset, the leg numbness had ascended to her knees, and she was hospitalized on day 31. She had a history of appendicitis, an ovarian tumor, and an ectopic pregnancy but no diabetes mellitus. Her mother had also been diagnosed with HBV infection. She was a medical council on 31. She had a history of appendicitis, an ovarian tumor, and an ectopic pregnancy but no diabetes mellitus. Her mother had also been diagnosed with HBV infection. A physical examination was unremarkable, and a neurological examination revealed distal muscle weakness in the legs (a Medical Research Council score of 3/5). Asymmetric paresthesia was present in the distal extremities.

Laboratory findings revealed normal counts of platelets and red and white blood cells. A lipid panel, liver function tests, glucose level, and renal profile were all normal. The

1Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Japan and 2Department of Neurology, Nagoya University Graduate School of Medicine, Japan
Received: January 17, 2020; Accepted: June 11, 2020; Advance Publication by J-STAGE: August 4, 2020
Correspondence to Dr. Fumiaki Tanaka, ftanaka@yokohama-cu.ac.jp
Approximately 20% of HBV-infected patients exhibit extrahepatic manifestations, and 5% have neurological disorders, including peripheral neuropathy and myopathy (4). Various types of HBV-related peripheral neuropathy have been reported, including Guillain-Barré syndrome, PAN, non-PAN vasculitic neuropathy, and chronic neuropathy syndromes, such as chronic polyneuropathy/polyradiculoneuropathy, mononeuritis multiplex, and chronic relapsing demyelinating polyneuropathy (4). Vasculitis is the major pathology in HBV-related neuropathy as well as in neuropathies due to other viral infections, such as hepatitis C virus, human immunodeficiency virus, cytomegalovirus, and parvovirus B19 (5, 6). The vasculitic neuropathy caused by HBV is characterized by the deposition of immune complexes containing HBV-related antigen in nerves or blood vessel walls, as well as by perivascular lymphocytic infiltrates (7). In the present case, immunostaining was positive for HBcAg in vascular endothelial cells as well as around the vessels in the epineurium, confirming the diagnosis of HBV-related vasculitic neuropathy. In addition, complement immunostaining revealed positive staining of whole vessels, including vascular endothelial cells, observed by immunostaining with an antibody against C4d, indicating an immune response (Figure F). Based on these findings, subacute HBV-related vasculitic neuropathy was diagnosed.

Because treatment with corticosteroids may promote viral persistence and replication, IVIG was administered at a dose of 400 mg/kg for 5 days. The patient’s bilateral leg weakness and the numbness in her right arm and both legs improved three weeks after treatment. She became able to walk unaided eight weeks after treatment.

Discussion

Median nerve	Normal value	Right	Left
MCV (m/s)	≥48	58.2	57.4
Distal CMAP (mV)	≥4.9	10.39	9.21
DML (ms)	≤3.7	3.39	3.18
SCV (m/s)	≥47	60.7	54.5
SNAP (μV)	≥29.4	44.4	49.00

Ulnar nerve

MCV (m/s)	≥49	62.1	56.0
Distal CMAP (mV)	≥5.5	8.10	7.82
DML (ms)	≤2.9	2.58	2.49
SCV (m/s)	≥44	52.9	51.5
SNAP (μV)	≥35.6	18.1	35.7

Tibial nerve

MCV (m/s)	≥41	42.9	40.2
Distal CMAP (mV)	≥3	1.8	1.03
DML (ms)	≤4	3.63	3.54

Peroneal nerve

| MCV (m/s) | ≥40 | 57.1 | 46.2 |
| Distal CMAP (mV) | ≥0.6 | ND | ND |

Sural nerve

| SCV (m/s) | ≥46.9 | 46.4 | 46.4 |
| SNAP (μV) | ≥5 | 4.3 | 3.00 |

MCV: motor conduction velocity, CMAP: compound muscle action potential, DML: distal motor latency, SCV: sensory conduction velocity, SNAP: sensory nerve action potential. ND: not detected. Abnormal values are expressed in bold or underlined. Amplitude was measured from baseline to peak.
creased rates of HBV replication and enhanced infectiousidly followed by the appearance of HBeAg, leading to in-
possible etiology, Hepatitis B virus-associated vasculi-
tations for the aetiopathogenesis of vasculitis, our case was
the Chapel Hill Consensus Conference (CHCC2012) defini-
tions for the aetiopathogenesis of vasculitis, our case was
considered to be consistent with “Vasculitis associated with
possible etiology, Hepatitis B virus-associated vasculi-
tis” (8).

In acute HBV infections, the emergence of HBsAg is rap-
idly followed by the appearance of HBeAg, leading to in-
creased rates of HBV replication and enhanced infectious-
ness. Accordingly, in most cases HBV-related vasculitis has
been reported to develop in the acute stage of HBV infec-
tion (9). In contrast, individuals who remain HBsAg-positive
for at least six months are considered to be hepatitis B carri-
ers, and those with chronic HBV infection may also develop
neuropathy during viral relapse. However, carriers who have
seroconverted to HBeAg-negative status with positivity for
HBeAb, as in our case, have very little viral multiplication
and rarely develop HBV-related neuropathy. Several cases of
vasculitic neuropathy in HBV-inactive carriers have been re-
ported, but only in the 1980s, and those patients were
mainly treated with corticosteroids (7, 10) since the use of

Figure. Pathological findings in a sural nerve biopsy specimen. A: Right sural nerve biopsy sample
stained with Hematoxylin and Eosin staining. An intense lymphocyte-predominant inflammatory in-
filtrate with fibrinoid necrosis is observed within a transverse section of the epineurium (×100, scale
bar=50 μm). B: Right sural nerve biopsy specimen stained with toluidine blue. The endoneurium is
edematous, but there is no thinning, demyelination, or onion-bulb appearance (×400, scale bar=50
μm). C: A teased-fiber analysis revealed axonal neuropathy: 64.2% of fibers were type E according
to Dyck’s classification (×100, scale bar=50 μm). D: Right sural nerve biopsy specimen immuno-
stained with anti-hepatitis B core antigen (HBcAg) (anti-HBcAg antibody: rabbit polyclonal, 1: 200, #
ab115992; Abcam, Cambridge, UK). The arrowhead indicates HBcAg deposition around the small
vessel (×40, scale bar=50 μm). E: The arrow indicates the deposition of HBcAg in vascular endothe-

tial cells (×40, scale bar=50 μm). F: Right sural nerve biopsy specimen immunostained with C4d
complement (anti-human C4d antibody: rabbit polyclonal, 1: 30, #B1-RC4D; Biomedica, Vienna,
Austria). C4d immunoreactivity is observed in the whole vessel (arrowhead), including the vascular
endothelial cells (arrow) (×40, scale bar=50 μm).
IVIG in autoimmune neuropathy was not common at that time.

It would be interesting to learn the differences in the clinical and pathological phenotypes of HBV-related neuropathy between HBV-inactive carriers and patients with acute HBV infection. HBV-related PAN usually occurs within six months of virus infection but is very rare in chronic HBV-infected patients (4, 10). Characteristics of PAN include systemic necrotizing vasculitis targeting medium-sized arteries along with neutrophil-predominant infiltration. Unlike PAN, most previous cases of HBV-inactive carriers were pathologically characterized by necrotizing vasculitis associated with lymphocyte-predominant infiltration in small blood vessels in the epineurium (7), as in our case. In addition, patients with HBV-related neuropathy in the acute stage of infection were reported to show a protracted course (3-24 months) (11), which contrasts with the fact that complete recovery was achieved after 2 months in our case, although IVIG treatment might have modified the disease duration.

The main limitation of this report is the lack of evidence for HBsAg deposition in the sural nerve specimen despite several trials of orcein staining and immunostaining using anti-HBsAg antibody (data not shown). This might be due to poor sensitivity of these staining techniques or to an actual lack of HBsAg deposition. In fact, a discrepant deposition pattern has been reported between HBsAg and HBcAg in the glomeruli of patients with HBV-related renal disease (12). Although existing studies have not applied HBcAg staining to HBV-related neuropathy, the presence of this HBV-related antigen in vascular endothelial cells and around the nerve vessels in our case seems to be strong evidence for the role of HBV in neuropathy.

Future analyses of the relationships between the clinical or pathological phenotypes and different expression patterns of HBV antigens (HBs, HBc, and HBe) on nerve biopsy specimens may reveal new aspects of the pathogenesis of HBV-related neuropathy.

Conclusion

The present case provides the first evidence of the effectiveness of IVIG in an HBV-inactive carrier with vasculitic neuropathy. IVIG may be a more effective option for preventing HBV activation than corticosteroids.

The authors state that they have no Conflict of Interest (COI).

References

1. Lai CL, Ratziu V, Yuen MF, Poyard T. Viral hepatitis B. Lancet 362: 2089-2094, 2003.
2. Kappas MR, Sterling RK. Extrahepatic manifestations of acute hepatitis B virus infection. Gastroenterol Hepatol 9: 123-126, 2013.
3. Dyck PJ. Pathologic alterations of the peripheral nervous system of humans. In: Peripheral Neuropathy. Dyck PJ, Thomas PK, Lambert E.H, Eds. 1985: 818.
4. Stühlen JP. Neuromuscular disorders associated with hepatitis B virus infection. Journal of Clinical Neuromuscular Disease 13: 26-37, 2011.
5. Finsterer J. Systemic and non-systemic vasculitis affecting the peripheral nerves. Acta Neurol Belg 109: 100-113, 2009.
6. Sampaio L, Silva LG, Terroso G, Nadais G, Mariz E, Ventura F. Vasculitic neuropathy. Acta Reumatol Reumatólogica Portuguesa 36: 102-109, 2011.
7. Tsukada N, Koh CS, Owa M, Yanagisawa N. Chronic neuropathy associated with immune complexes of hepatitis B virus. J Neurol Sci 61: 193-210, 1983.
8. . 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum 65: 1-11, 2013.
9. Sharma A, Sharma K. Hepatotropic viral infection associated systemic vasculitides-hepatitis B virus associated polyarteritis nodosa and hepatitis C virus associated cryoglobulinemic vasculitis. J Clin Exp Hepatol 3: 204-212, 2013.
10. Drüeke T, Barbanel C, Jengers P, et al. Hepatitis B antigen-associated periarteritis nodosa in patients undergoing long-term hemodialysis. Am J Med 68: 86-90, 1980.
11. Pelletier G, Elghozzi D, Trépo C, Laverdant C, Benhamou JP. Mononeuritis in acute viral hepatitis. Digestion 32: 53-56, 1985.
12. Zhang L, Meng H, Han X, et al. The relationship between HBV serum markers and the clinicopathological characteristics of hepatitis B virus-associated glomerulonephritis (HBV-GN) in the northeastern Chinese population. Virol J 9: 200, 2012.

The Internal Medicine is an Open Access journal distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view the details of this license, please visit (https://creativecommons.org/licenses/by-nc-nd/4.0/).