RADIUS OF INJECTIVITY FOR HARMONIC MAPPINGS WITH FIXED ANALYTIC PART

JUGAL KISHORE PRAJAPAT AND MANIVANNAN MATHI

Abstract. In this paper, we study non sense-preserving harmonic mappings \(f = h + g \) in \(\mathbb{D} \) when its analytic part \(h \) is convex and injective in \(\mathbb{D} \) and obtain radius of injectivity.

1. Introduction

A complex valued function \(f \) is said to be harmonic in a domain \(\Omega \subset \mathbb{C} \) if it satisfies \(f_{zz}(z) = 0 \) for all \(z \in \Omega \). If \(\Omega \) is simply connected then such functions can be represented as \(f = h + \overline{g} \), where \(h \) and \(g \) are analytic in \(\Omega \). Furthermore, if \(g(0) = 0 \), then this representation is unique. Let \(\text{Har}(\mathbb{D}) \) denote the class of harmonic mappings \(f \) in the open unit disk \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \) with the normalization \(h(0) = h'(0) - 1 = 0 \) and \(g(0) = 0 \). Such mappings \(f \) are uniquely determined by the coefficients of power series

\[
\begin{align*}
 h(z) &= z + \sum_{n=2}^{\infty} a_n z^n, \\
 g(z) &= \sum_{n=1}^{\infty} b_n z^n \quad (z \in \mathbb{D}).
\end{align*}
\]

Here \(h \) is analytic and \(g \) is co-analytic part of \(f \). The Jacobian \(J_f(z) \) of \(f = h + \overline{g} \in \text{Har}(\mathbb{D}) \) is \(J_f(z) = |h'(z)|^2 - |g'(z)|^2 \). A function \(f \in \text{Har}(\mathbb{D}) \) is locally injective in \(\mathbb{D} \) if and only if the Jacobian \(J_f(z) \) is non-vanishing in \(\mathbb{D} \), and sense-preserving if \(J_f(z) > 0 \) in \(\mathbb{D} \) (see [8]). A harmonic mapping \(f \) is said to be close-to-convex if \(f(\mathbb{D}) \) is close-to-convex, i.e., the complement of \(f(\mathbb{D}) \) can be written as disjoint union of non-intersecting half lines. The study of harmonic mappings have attracted the attention of complex analysts after Clunie and Sheil-Small [5]. For recent results in harmonic mappings, we refer to [1, 3, 9, 13] and the references therein.

Let \(\text{Hol}(\mathbb{D}) \) denote the class of holomorphic functions \(f \) in \(\mathbb{D} \) that are normalized by \(f(0) = f'(0) - 1 = 0 \) and \(\mathcal{S} \) denote the subclass of \(\text{Hol}(\mathbb{D}) \) of injective holomorphic functions in \(\mathbb{D} \). Note that \(\text{Hol}(\mathbb{D}) \subset \text{Har}(\mathbb{D}) \). Let \(\mathcal{K} \) denote the class of analytic functions \(f \in \text{Hol}(\mathbb{D}) \) such that \(f(\mathbb{D}) \) is convex. It is well known that, convexity of analytic functions in \(\mathbb{D} \) is a hereditary property; that is, if \(f \) is convex in \(\mathbb{D} \), then \(f(\mathbb{D}_r) \) is convex for every \(r \) \((0 < r < 1)\), where \(\mathbb{D}_r = \{ z : |z| < r, \ 0 < r < 1 \} \). An analytic function \(\text{Hol}(\mathbb{D}) \) is said to be starlike function of order \(\alpha \) \((0 \leq \alpha < 1)\), if \(\Re(zf'(z)/f(z)) > \alpha \) \((z \in \mathbb{D})\). Let

2010 Mathematics Subject Classification. 30C45, 30C20, 31A05.

Key words and phrases. Harmonic mappings, Univalent Functions, Convex functions, Radius of injectivity.
\(\mathcal{B} \) denote the set of all analytic functions \(w \) in \(\mathbb{D} \) such that \(|w(z)| \leq 1\) in \(\mathbb{D} \). A function \(w \in \mathcal{B} \) satisfies the inequality
\[
|w'(z)| \leq \frac{1 - |w(z)|^2}{1 - |z|^2}, \quad z \in \mathbb{D},
\] (see [10, p. 168]).

The analytic parts of harmonic mappings are significant in shaping their geometric properties. For example, if \(h \) is convex injective and \(f = h + g \in \mathcal{H}ar(\mathbb{D}) \) is sense-preserving, then \(f(\mathbb{D}) \) is close-to-convex [5]. In ([7, 12]) harmonic mappings \(f = h + g \in \mathcal{H}ar(\mathbb{D}) \) have been studied, where \(|g'(0)| = \alpha \in (0, 1)\), \(h \) is convex in one direction in \(\mathbb{D} \) and the dilatation \(w \) is given by \(w(z) = (z + \alpha)/(1 + \alpha z) \). In [2], Bshouty et al. proved the following result of \(f = h + g \in \mathcal{H}ar(\mathbb{D}) \) when \(h \) is convex in \(\mathbb{D} \).

Lemma 1.1. Let \(h \) be analytic and convex in \(\mathbb{D} \). Then every harmonic mapping \(f = h + g \) where \(g'(z) = w(z)h'(z); \ |w(z)| < 1 \) is close-to-convex in \(\mathbb{D} \).

Note that, the harmonic mapping in Lemma 1.1 is sense-preserving. In this article, we consider the case of Lemma 1.1 when harmonic mapping \(f = h + g \) is not necessarily sense-preserving in \(\mathbb{D} \) but satisfies \(g(z) = w(z)h(z) \ (w \in \mathcal{B}) \). We observe that such harmonic mappings are not necessarily sense-preserving and injective in \(\mathbb{D} \). For example, the harmonic mapping
\[
(1.3) \quad f_1(z) = \frac{z}{1 - z} - \frac{\bar{z}}{2}, \quad z \in \mathbb{D},
\]
is not sense-preserving in \(\mathbb{D} \) as \(|g'(-1/2)/h'(-1/2)| = 9/8 > 1 \) and not injective in \(\mathbb{D} \) (see Figure 1).

![Figure 1. The images of \(\mathbb{D} \) under \(f_1 \).](image-url)
Lemma 1.2. Suppose that \(f = h + \overline{g} \in \text{Har}(\mathbb{D}) \) is sense-preserving in \(\mathbb{D} \) such that \(h \) is injective in \(\mathbb{D} \). Then the radius of injectivity and close-to-convexity of \(f \) is \(2 - \sqrt{3} \).

In this article, we consider the case of Lemma 1.2 when harmonic mapping \(f = h + \overline{g} \) is not necessarily sense-preserving in \(\mathbb{D} \) but satisfies \(g(z) = w(z)h(z) \) (\(w \in \mathcal{B} \)). We observe that such harmonic mappings are not necessarily sense-preserving and injective in \(\mathbb{D} \). For example, the harmonic mapping

\[
(1.4) \quad f_2(z) = \frac{z}{(1-z)^2} - \frac{z}{2(1-z)}, \quad z \in \mathbb{D},
\]

is not sense-preserving as \(|g'(-1/2)/h'(-1/2)| = 3/2 > 1 \) and not injective in \(\mathbb{D} \) (see Figure 2).

2. Main Results

To prove our results, we shall use the following Lemma. This Lemma was appeared in [4] for \(\mathbb{D} \), but observing it’s proof, we see that this result is valid for all subdisk \(\mathbb{D}_r \). The proof of this special case is so short that we include it here for completeness.

Lemma 2.1. Let \(f = h + \overline{g} \) be a sense-preserving harmonic mapping in \(\mathbb{D}_r \), \(0 < r < 1 \) and \(h \) is injective convex in \(\mathbb{D} \). Then \(f \) is injective in \(\mathbb{D}_r \).

Proof. Let \(\Omega = h(\mathbb{D}_r) \), \(0 < r < 1 \). Define \(\psi : \Omega \to \mathbb{C} \) by \(\psi(w) = g \circ h^{-1}(w) \). Then \(\psi \) is analytic in convex domain \(\Omega \) and \(\psi'(w) = g'(w)/h'(w) \), where \(w = \psi^{-1}(z) \) and \(|\psi'(w)| < 1 \). Now, let \(z_1, z_2 \in \mathbb{D}_r \), \(z_1 \neq z_2 \) such that \(f(z_1) = f(z_2) \), this is equivalent to \(h(z_1) - h(z_2) = -(g(z_1) - g(z_2)) \). Set \(w_1 = h(z_1) \) and \(w_2 = h(z_2) \) so that \(w_1 - w_2 = -(g(z_1) - g(z_2)) \). As \(h^{-1}(w_1) = z_1 \) and \(h^{-1}(w_2) = z_2 \), we have

\[
w_1 - w_2 = -\left(g(h^{-1}(w_1)) \right) - \left(g(h^{-1}(w_2)) \right) = \overline{\psi(w_2)} - \overline{\psi(w_1)}.
\]
Because ψ is analytic on the convex domain Ω, we have $w_1 - w_2 = \int_{[w_1, w_2]} \psi'(w) \, dw$, which is not possible as $|\psi'(w)| < 1$ in Ω. Thus $f(z_1) \neq f(z_2)$. This shows the injectivity of f in \mathbb{D}_r. \hfill \square

First we prove the following sharp result for harmonic mappings with injective and convex analytic part.

Theorem 2.1. Let $f = h + \overline{g} \in \text{Har}(\mathbb{D})$ such that h is injective and convex in $D_{1/3}$ and $g(z) = w(z)h(z)$, where $w \in \mathcal{B}$. Then f is sense-preserving and injective in $D_{1/3}$. The results is sharp.

Proof. As convexity is hereditary property, h is injective and convex in $D_{1/3}$. Thus, in view of Lemma 2.1, it is sufficient to prove that f is sense-preserving in $D_{1/3}$. A convex function is starlike of order $1/2$ [6, Theorem 2.3.2]. Hence

$$\frac{zh'(z)}{h(z)} = \frac{1}{1 - w(z)},$$

where $w \in \mathcal{B}$. This gives $|h(z)| \leq |z|(1 + |z|)|h'(z)|$ ($z \in \mathbb{D}$). Using this inequality and (1.2), we have

$$|g'(z)| \leq |w(z)||h'(z)| + |h(z)||w'(z)|$$

$$= \left(|w(z)| + \frac{|z|(1 - |w(z)|^2)}{1 - |z|} \right)|h'(z)|.$$

If $|z| < \frac{1}{3}$, then

$$|w(z)| + \frac{|z|(1 - |w(z)|^2)}{1 - |z|} < \frac{1}{2}(2|w(z)| + 1 - |w(z)|^2)$$

$$\leq \frac{1}{2}(2|w(z)| + 2(1 - |w(z)|)) = 1.$$

Therefore $|g'| < |h'|$, hence f is sense-preserving in $\mathbb{D}_{1/3}$. To show the sharpness, let

$$h(z) = \frac{z}{1 + z} \text{ and } w(z) = \frac{z + \zeta}{1 + \zeta z}$$

where $\zeta \in [-1, 1]$. We deduce that $g'(r) = U(r, \zeta)h'(r)$, where

$$U(r, \zeta) = \frac{r + \zeta}{1 + r\zeta} + \frac{r(1 + r)(1 - \zeta^2)}{(1 + r\zeta)^2}.$$

Note that $U(r, 1) = 1$ and

$$\left. \frac{\partial}{\partial \zeta} U(r, \zeta) \right|_{\zeta=1} = \frac{1 - 3r}{1 + r}.$$
Choose r such that $r \in [1/3, 1)$, then $\frac{\partial}{\partial r} U(r, \zeta) \bigg|_{\zeta=1} \leq 0$. Hence $U(r, 1 - \varepsilon) > 1$ for each $\varepsilon > 0$. This gives $g'(r) > h'(r) > 0$, for each $r \in [1/3, 1)$. Thus f is not sense-preserving in $|z| < r$ if $r > 1/3$. This complete the proof.

If dilatation w has the form $w(z) = e^{i\theta} z^n$ ($\theta \in \mathbb{R}, n \geq 1$) and $w(z) = c$ ($c \in \mathbb{C}, |c| < 1$), then we have

\textbf{Corollary 2.1.} Let $f = h + \overline{g} \in \text{Har}(\mathbb{D})$ such that h is injective and convex in \mathbb{D} and $g(z) = e^{i\theta} z^n h(z)$ ($\theta \in \mathbb{R}, n \geq 1$), then f is injective in $\mathbb{D}_{r_{n,1}}$, where $r_{n,1}$ is the unique root of $n r^{n+1} + (n+1) r^n - 1 = 0$ in the interval $(0, 1)$. The constant $r_{n,1}$ cannot be improved. The constant $r_{n,2}$ cannot be improved.

n	1	2	3	4	5
$r_{n,1}$	≈ 0.414	0.5	≈ 0.5604	≈ 0.6058	≈ 0.6415

\textit{Proof.} From the hypothesis $g(z) = e^{i\theta} z^n h(z)$, we obtain

\[|g'(z)| = \left| n e^{i\theta} z^{n-1} \frac{h(z)}{h'(z)} + e^{i\theta} z^n \right| \leq (n|z|^{n+1} + (n+1)|z|^n)|h'(z)|. \]

Hence, $|g'(z)| < |h'(z)|$ if $n|z|^{n+1} + (n+1)|z|^n \leq 1$. Thus, f is sense-preserving in $\mathbb{D}_{r_{n,1}}$, where $r_{n,1}$ is the unique root of $n r^{n+1} + (n+1) r^n - 1 = 0$ in the interval $(0, 1)$.

\textbf{Corollary 2.2.} Let $f = h + \overline{g} \in \text{Har}(\mathbb{D})$ such that h is injective and convex in \mathbb{D} and $g(z) = c h(z)$ ($c \in \mathbb{C}, |c| < 1$), then f is sense-preserving and close-to-convex in \mathbb{D}.

\textit{Proof.} Note that f is sense-preserving in \mathbb{D}, hence in view of Lemma 1.1, f is close-to-convex in \mathbb{D}.

Now we prove the following sharp result for harmonic mappings with injective analytic part.

\textbf{Theorem 2.2.} Let $f = h + \overline{g} \in \text{Har}(\mathbb{D})$ such that h is injective in \mathbb{D} and $g(z) = w(z) h(z)$, where $w \in \mathcal{B}$. Then f is sense-preserving and injective in $\mathbb{D}_{2 - \sqrt{3}}$. The result is sharp.

\textit{Proof.} It is well known that the radius of convexity for the class \mathcal{S} is $2 - \sqrt{3}$ (see [6, Theorem 2.2.22]). Thus, in view of Lemma 2.1, it is sufficient to prove that f is sense-preserving in $\mathbb{D}_{2 - \sqrt{3}}$. For $h \in \mathcal{S}$, we have

\[|h(z)| \leq \frac{|z|(1 + |z|)}{1 - |z|} |h'(z)|, \quad z \in \mathbb{D}, \]
(see [6, Theorem 1.1.6]). Using this inequality and (1.2), we have
\begin{equation}
|g'(z)| \leq \left(|w(z)| + \frac{|z|(1 - |w(z)|^2)}{(1 - |z|)^2} \right) |h'(z)|.
\end{equation}

If $|z|^2 - 4|z| + 1 > 0$, then
$$|w(z)| + \frac{|z|(1 - |w(z)|^2)}{(1 - |z|)^2} < 1,$$

hence $|g'| < |h'|$ in D. Therefore, f is sense-preserving in a disk D_r, where r is unique root of $r^2 - 4r + 1 = 0$ in the interval $(0, 1)$. This shows that f is sense-preserving in $D_{2-\sqrt{3}}$.

To show the sharpness, let $h(z) = \frac{z}{(1 + z)^2}$ and $w(z) = \frac{z + \zeta}{1 + \zeta z}$, where $\zeta \in [-1, 1]$. A computation gives $g'(r) = V(r, \zeta)h'(r)$, where
$$V(r, \zeta) = \frac{r + \zeta}{1 + r\zeta} + \frac{1 - \zeta^2}{(1 + r\zeta)^2} \frac{r(1 + r)}{1 - r}.$$

Note that $V(r, 1) = 1$ and
$$\left. \frac{\partial}{\partial \zeta} V(r, \zeta) \right|_{\zeta=1} = \frac{1 - 4r + r^2}{1 - r^2}.$$

Choose r such that $r \in [2 - \sqrt{3}, 1)$, then $\left. \frac{\partial}{\partial \zeta} V(r, \zeta) \right|_{\zeta=1} < 0$. Therefore $V(r, 1 - \epsilon) > 1$ for $\epsilon > 0$. This shows that $g'(r) > h'(r) > 0$ for $r \in (2 - \sqrt{3}, 1)$. Thus f is not injective in $|z| < r$ if $r > 2 - \sqrt{3}$. This complete the proof. \hfill \Box

If dilatation w has the form $w(z) = e^{i\theta} z^n$ ($\theta \in \mathbb{R}, n \geq 1$), then we have

Corollary 2.3. Let $f = h + \overline{g} \in \mathcal{H}ar(\mathbb{D})$ such that h is injective in \mathbb{D} and $g(z) = e^{i\theta} z^n h(z)$ ($\theta \in \mathbb{R}, n \geq 1$), then f is injective in $D_{r_{n,2}}$, where $r_{n,2}$ is the unique root of $(n - 1)r^{n+1} + (n + 1)r^n + r - 1 = 0$ in the interval $(0, 1)$. The constant $r_{n,2}$ cannot be improved.

n	1	2	3	4	5
$r_{n,2}$	≈ 0.333	≈ 0.414	≈ 0.4738	≈ 0.5201	≈ 0.5574

Proof. We have
\begin{align*}
|g'(z)| &= \left| n e^{\theta} z^{n-1} \frac{h(z)}{h'(z)} + e^{i\theta} z^n \right| \\
&\leq \left(n |z|^{n-1} \frac{|z|(1 + |z|)}{1 - |z|} + |z|^n \right) |h'(z)|.
\end{align*}
Hence, $|g'(z)| < |h'(z)|$ if $(n - 1)|z|^{n+1} + (n + 1)|z|^n + |z| - 1 \geq 0$. Thus, f is sense-preserving in $D_{r_{n,2}}$, where $r_{n,2}$ is the unique root of $(n - 1)r^{n+1} + (n + 1)r^n + r - 1 = 0$ in the interval $(0, 1)$. □

REFERENCES

[1] Muhanna Y A, Ali R M, S. Ponnusamy S. The spherical metric and injective harmonic mappings, Monatsh Math, 2019, 188: 703–716
[2] Bshouty D, Joshi S S, Joshi S B. On close-to-convex harmonic mappings, Complex Var Elliptic Eqn, 2013, 58: 1195–1199
[3] Bshouty D, Lyzzaik A, Sakar F M. Harmonic mappings of bounded boundary rotation, Proc Amer Math Soc, 2018, 146: 1113–1121
[4] Chuaqui M, Duren P, Osgood B. Schwarzian derivatives and uniform local univalence, Comput Methods Funct Theory, 2008, 8: 21–34
[5] Clunie J, Sheil-Small T. Harmonic injective functions, Anna Acad Sci Fenn Ser A I Math, 1984, 9: 3–25
[6] Graham I, Khor G. Geometric function theory in one higher dimensions, New York: Marcel Dekker, 2003
[7] Kanas S, Maharana S, Prajapat J K. Norm of the pre-Schwarzian derivative, Bloch’s constant and coefficient bounds in some classes of harmonic mappings, J Math Anal Appl, 2019, 474: 931–943
[8] Lewy H. On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull Amer Math Soc, 1983, 42: 689–692
[9] Liu Z, Ponnusamy S. Radius of fully starlikeness and fully convexity of harmonic linear differential operator, Bull Korean Mat Soc, 2018, 55: 819–835
[10] Nehari Z. Conformal Mappings, New York: McGraw-Hill, 1952
[11] Ponnusamy S, Kaliraj A S. Constants and Characterization for certain classes of injective harmonic mappings, Mediterr J Math, 2015, 12, 647–665
[12] Prajapat J K, Manivannan M, Maharana S. Harmonic mappings with analytic part convex in one direction, J Anal, 2020, 28: 961-972
[13] Wang, Z-G, Liu Z-H, Rasila A, Sun Y. On a problem of Bharanedhar and Ponnusamy involving planar harmonic mappings, Rocky Mountain J Math, 2018, 48: 1345–1458

Manivannan Mathi, Department of Mathematics, Central University of Rajasthan, Bandarsindri, Kishangarh-305817, Dist.-Ajmer, Rajasthan, India.

Email address: manivannan.mathi91@gmail.com, jkprajapat@gmail.com