The seahorse genome and the evolution of its specialized morphology

Qiang Lin1*, Shaohua Fan2*, Yanhong Zhang1*, Meng Xu3*, Huixian Zhang1,4*, Yulan Yang3*, Alison P. Lee4*, Joost M. Woltering5, Vydhianathan Ravì6, Helen M. Gunter45, Wei Luo1, Zexia Gao6, Zhi Wei Lim14*, Geng Qin1,6, Ralf F. Schneider2, Xin Wang1,4, Peiwen Xiong2, Gang Li1, Kai Wang3, Jumeng Min1, Chil Zhang3, Ying Qiu8, Jie Bai8, Weiming He3, Chao Bian8, Xinhui Zhang8, Dal Shan2, Hongyue Qu1,5, Ying Sun6, Qiang Gao6, Liangmin Huang3, Qiong Shi18, §§ & Byrappa Venkatesh1,4,5§

Seahorses have a specialized morphology that includes a toothless tubular mouth, a body covered with bony plates, a male brood pouch, and the absence of caudal and pelvic fins. Here we report the sequencing and de novo assembly of the genome of the tiger tail seahorse, Hippocampus comes. Comparative genomic analysis identifies higher protein and nucleotide evolutionary rates in H. comes compared with other teleost fish genomes. We identified an astatin metallopeptase gene family that has undergone expansion and is highly expressed in the male brood pouch. We also find that the H. comes genome lacks enamel matrix protein-coding proline/glutamine-rich secretory calcium-binding phosphoprotein genes, which might have led to the loss of mineralized teeth. tbx4, a regulator of hindlimb development, is also not found in H. comes genome. Knockout of tbx4 in zebrafish showed a ‘pelvic fin-loss’ phenotype similar to that of seahorses.

Members of the teleost family Syngnathidae (seahorses, pipefishes and seadragons) (Extended Data Fig. 1), comprising approximately 300 species, display a complex array of morphological innovations and reproductive behaviours. This includes specialized morphological phenotypes such as an elongated snout with a small terminal mouth, fused jaws, absent pelvic and caudal fins, and an extended body covered with an armour of bony plates instead of scales† (Fig. 1a). Syngnathids are also unique among vertebrates due to their ‘male pregnancy’, whereby males nourish developing embryos in a brood pouch until hatching and parturition occurs‡,3. In addition, members of the subfamily Hippocampinae (seahorses) exhibit other derived features such as the lack of a caudal fin, a characteristic prehensile tail, and a vertical body axis§ (Fig. 1a). To understand the genetic basis of the specialized morphology and reproductive system of seahorses, we sequenced the genome of the tiger tail seahorse, H. comes, and carried out comparative genomics analyses with the genome sequences of other ray-finned fishes (Actinopterygii).

Genome assembly and annotation

The genome of a male H. comes individual was sequenced using the Illumina HiSeq 2000 platform. After filtering low-quality and duplicate reads, 132.13 Gb (approximately 190-fold coverage of the estimated 695 Mb genome) of reads from libraries with insert sizes ranging from 170 bp to 20 kb were retained for assembly. The filtered reads were assembled using SOAPdenovo (version 2.04) to yield a 501.6 Mb assembly with an N50 contig size and N50 scaffold size of 34.7 kb and 1.8 Mb, respectively. Total RNA from combined soft tissues of H. comes was sequenced using RNA-sequencing (RNA-seq) and assembled de novo. The H. comes genome assembly is of high quality, as >99% of the de novo assembled transcripts (76,757 out of 77,840) could be mapped to the assembly; and 243 out of 248 core eukaryotic genes mapping approach (CEGMA) genes are complete in the assembly.

We predicted 23,458 genes in the genome of H. comes based on homology and by mapping the RNA-seq data of H. comes and a closely related species, the lined seahorse, Hippocampus erectus, to the genome assembly (see Methods and Supplementary Information). More than 97% of the predicted genes (22,941 genes) either have homologues in public databases (Swissprot, Trembl and the Kyoto Encyclopedia of Genes and Genomes (KEGG)) or are supported by assembled RNA-seq transcripts. Analysis of gene family evolution using a maximum likelihood framework identified an expansion of 25 gene families (261 genes; 1.11%) and contraction of 54 families (96 genes; 0.41%) in the H. comes lineage (Extended Data Fig. 2 and Supplementary Tables 4.1, 4.2). Transposable elements comprise around 24.8% (124.5 Mb) of the H. comes genome, with class II DNA transposons being the most abundant class (9%; 45 Mb). Only one wave of transposable element expansion was identified, with no evidence for a recent transposable element burst (Kimura divergence ≤ 5) (Extended Data Fig. 3).

Phylogenomics and evolutionary rate

The phylogenetic relationships between H. comes and other teleosts were determined using a genome-wide set of 4,122 one-to-one orthologous genes (Supplementary Note 4.2). The phylogenetic analysis (Fig. 1b) showed that H. comes is a sister group to other percomorph fishes analysed (stickleback, Gasterosteus aculeatus; medaka, Oryzias latipes; Nile tilapia, Oreochromis niloticus; fugu, Takifugu rubripes; and
platyfish, *Xiphophorus maculatus*) with the exception of blue-spotted mudskippers (*Boleophthalmus pectinirostris*), a member of the family Gobiidae. Our inference, which placed the mudskipper as the outgroup, differs from that of a previous phylogenetic analysis based on fewer protein-coding genes that had placed syngnathids as an outgroup. Estimated divergence times of *H. comes* and other teleosts calculated using MCMLTree suggest that *H. comes* diverged from the other percomorphs approximately 103.8 million years ago, during the Cretaceous period (Extended Data Fig. 2). Interestingly, the branch length of *H. comes* is longer than that of other teleosts, suggesting a higher protein evolutionary rate compared to other teleosts analysed in this study (Fig. 1b). This result was found to be statistically significant by both relative rate test and two cluster analysis (Supplementary Tables 4.3 and 4.4). To determine whether the neutral nucleotide substitution rate of *H. comes* is also higher, we generated a neutral tree on the basis of fourfold degenerate sites and calculated the pairwise distance of each teleost to the spotted gar (an outgroup) (Supplementary Fig. 4.4). The pairwise distance of *H. comes* was again higher compared with other teleosts, indicating that the neutral evolutionary rate of *H. comes* is also higher than that of other teleosts. The reasons for this higher molecular evolutionary rate in *H. comes* are unclear.

Gene loss

Gene loss or loss of function can contribute to evolutionary novelties and can be positively selected for. We identified several genes that are not found in the *H. comes* genome but are found in other sequenced teleost genomes.

Secretory calcium-binding phosphoprotein (SCPP) genes encode extracellular matrix proteins that are involved in the formation of mineralized tissues such as bone, dentin, enamel and cementum. Bony vertebrate genomes encode multiple SCPP genes that can be divided into two groups, the acidic and the proline/glutamine (P/Q)-rich SCPP genes. Acidic SCPPs regulate the mineralization of collagen whilst the P/Q-rich SCPPs are primarily rich SCPP genes. Acidic SCPPs regulate the mineralization of collagen divided into two groups, the acidic and the proline/glutamine (P/Q)-rich SCPP genes. Acidic SCPPs regulate the mineralization of collagen.

Bony vertebrate genomes encode multiple SCPP genes that can be positively selected for evolution in mammals such as baleen whales, pangolins and anteaters. The loss of teeth in birds, turtles and mammals has been attributed to inactivating mutations in one or more P/Q-rich enamel-specific SCPP genes such as *Enam*, *Amel*, *Amn* and *Amtn*, and the dentin-specific gene, *Dsp*.

In the case of *H. comes*, the complete loss of functional P/Q-rich SCPP genes may explain the loss of mineralized teeth.

Animals use their sense of smell, or olfaction, for finding food, mates and avoiding predators. Olfaction is mediated by olfactory receptors (ORs), which constitute the largest family of G-protein-coupled receptors. We were able to identify in the *H. comes* genome a significantly smaller repertoire of OR genes than in other teleosts (P value < 0.05, Wilcoxon rank-sum test). Our sensitive search pipeline (based on TblastN and Genewise) and manual inspection identified only 26 OR genes in the *H. comes* genome—the smallest OR repertoire identified in any ray-finned fish genome analysed so far (60 to 169 OR genes) (Fig. 2 and Extended Data Fig. 5).

A derived phenotype of seahorse and other syngnathids is the complete lack of pelvic fins. Pelvic fins are homologous to tetrapod hindlimbs and primarily serve a role in body trim and subtle swimming manoeuvres during teleost locomotion. In addition, pelvic spines have an important role in protection against predators. Pelvic fin loss has occurred independently in several teleost lineages, including Tetraodontidae (for example, pufferfishes), Anguillidae (eels) and Gasterosteidae (some populations of sticklebacks), and is frequently associated with a reduced pressure from predators and/or the evolution of an elongated body plan. In pufferfish (fugu), pelvic fin loss is associated with a change in the expression pattern of *hoxd9a*. Pelvic fin loss is associated with a change in the expression pattern of *hoxd9a*. In freshwater populations of stickleback, the loss of pelvic fins has been demonstrated to be due to deletions in the pelvic fin–specific enhancer of *pitx1* (ref. 21).

Analysis of the *H. comes* genome and the transcriptomes of *H. comes* and *H. erectus* (see Supplementary Information, section 2), suggested that *tbx4*, a transcription factor conserved in jawed vertebrates, is not present in the seahorse genome (Fig. 3a) (Supplementary Information, section 9). To verify this, we carried out degenerate polymerase chain reaction (PCR) using genomic DNA from *H. comes* and several other species of syngnathids and some non-syngnathids. While the degenerate primers amplified a fragment of *tbx4* from non-syngnathids, they failed to amplify a *tbx4* fragment from syngnathid fishes (see Supplementary Information, section 9). *Tbx4* is a T-box DNA-binding domain-containing transcription factor that acts as a regulator of hindlimb formation in mammals. Loss of function of this gene in mice leads to a failure of hindlimb formation as well as strong pleiotropic defects in lung and placental development. Expression of zebrafish *tbx4* specifically in pelvic fins suggests a similar role in appendage patterning in fishes. Given the major role of *tbx4* in...
hindlimb formation in mammals, we hypothesized that its absence in *H. comes* might be associated with the loss of pelvic fins. To test this hypothesis, we generated a CRISPR–Cas9 *tbx4* knockout mutant zebrafish line. Interestingly, unlike homologous mouse *Tbx4* mutants, which fail to develop a functional allantois, the homologous zebrafish mutants are viable but completely lack pelvic fins without exhibiting any other gross morphological abnormalities in pectoral or median fins (Fig. 3c and Extended Data Fig. 6; see also Supplementary Information, section 9.3). This finding is consistent with the results of a recent study that showed that mutations in *tbx4* are associated with the loss of pelvic fins in a naturally occurring zebrafish strain called *pelvic finless* (see also Supplementary Information, section 9.3). These results show that *tbx4* has a role in pelvic fin formation in teleosts and suggests that the loss of pelvic fins in *H. comes* may be related to the loss of *tbx4*.

Expansion of the *patristacin* gene family

Male pregnancy is an evolutionary innovation unique to syngnathids. In teleosts, the C6AST subfamily of astacin metalloproteases—such as high choriotytic enzyme (HCE) and low choriotytic enzyme (LCE)—are involved in lysing the chorion surrounding the egg, leading to hatching of embryos. A member of this subfamily, *patristacin* (*pastn*), was found to be highly expressed in the brood pouch of pregnant males of the Gulf pipefish, *Syngnathus scovelli*, leading to the suggestion that this gene may have a role in the evolution of male pregnancy. *A pastn* gene was also found to be highly expressed in the brood pouch of the male big belly seahorse, *H. abdimalis*, during mid- and late pregnancy, suggesting a shared role for this gene in male pregnancy in syngnathids.

The *H. comes* genome contains six *pastn* genes (*pastn1* to *pastn6*; Fig. 4a) organized in a cluster. To examine their expression patterns in the brood pouch, we carried out RNA-seq analysis at different stages of brood pouch development (see Supplementary Information, section 2) in *H. erectus*, as this species is easy to obtain and breed in the laboratory. *H. comes* and *H. erectus* exhibit very similar reproductive cycles and their coding sequences are highly similar (average identity of 93.3%; determined by aligning *H. erectus* RNA-seq transcripts to the *H. comes* genome assembly). We identified orthologues for five of the *H. comes pastn* genes (*pastn1*, *pastn2*, *pastn3*, *pastn5* and *pastn6*) in the RNA-seq transcripts of *H. erectus* (Supplementary Fig. 2). Quantitative reverse transcription PCR (qRT–PCR) analysis of these genes showed that some of them are expressed at significantly higher levels in early- and late-pregnant stages (Fig. 4c). For example, *pastn2* is expressed at significantly higher levels in early- and late-pregnant stages compared to the non-pregnant stage, whereas *pastn1* and *pastn3* are expressed at significantly higher levels during the late-pregnant stage compared to non-pregnant stage (Fig. 4c). This expression pattern suggests a role for these *pastn* genes in brood pouch development and/or hatching of embryos within the brood pouch prior to parturition.

Interestingly, the platyfish (*X. maculatus*), in which fertilization and hatching of eggs occur within the maternal body (ovoviviparity), contains a cluster of six *c6ast* genes (Fig. 4a), with potential hatching enzyme-like activity. Phylogenetic analysis of *c6ast* family genes in *H. comes*, platyfish and other fishes showed that *H. comes pastn* genes and platyfish *c6ast* genes form separate clades (Fig. 4b), indicating that they have expanded independently in the two lineages. Thus, this is an interesting instance of a gene family (C6AST subfamily of astacin metalloproteases) that has undergone expansion independently in different teleost lineages and shows new expression patterns and functions associated with similar evolutionary innovations (that is, ovoviviparity in female platyfish and male pregnancy in seahorse).

Loss of conserved noncoding elements

Vertebrate genomes contain thousands of noncoding elements that are under purifying selection. Many of these conserved noncoding elements (CNEs) function as cis-regulatory elements such as enhancers, repressors and insulators. Evolutionary loss of CNEs has important roles in phenotypic differences and morphological innovations. To determine the extent of loss of CNEs in seahorse, we predicted genome-wide CNEs in *H. comes* and four other percomorph fishes (stickleback, fugu, medaka and Nile tilapia) using zebrafish as the reference genome (see Supplementary Information). We identified 239,976 CNEs (average size of 168 bp) that are conserved in zebrafish and at least one of the five percomorph fishes (Supplementary Table 6.1). To determine the extent to which CNEs are lost in *H. comes*, we searched for CNEs that are uniquely lost in each of the percomorph fishes. We restricted our analyses to a high-confidence set of CNEs situated in gap-free syntenic intervals (Supplementary Table 6.5). Interestingly, *H. comes* was found to have lost a substantially higher number of CNEs (1,612 CNEs) compared to other percomorphs (fugu, 1,050 CNEs; stickleback, 843 CNEs; medaka, 335 CNEs; Nile tilapia, 281 CNEs) (Supplementary Table 6.6).
Analysis of zebrafish CNEs that are lost in *H. comes* indicated that they are present in the neighbourhood of 728 genes enriched in functions such as regulation of transcription, regulation of the fibroblast growth factor receptor signalling pathway, embryonic pectoral fin morphogenesis, steroid hormone receptor activity and O-acetyltransferase activity (Supplementary Tables 6.8 and 6.9). The top 20 genes adjacent to regions with the highest number of CNEs lost in *H. comes* include *sall1a*, *shox* and *irx5a* (Supplementary Tables 6.10 and 6.11), which are involved in the development of the limbs, nervous system, kidney, heart and skeletal system. Altered expression patterns of these genes can potentially lead to altered morphological phenotypes. For example, loss of regulatory regions of the human *SHOX* gene is the cause of Leri–Weill dyschondrodystosis, a dominantly inherited skeletal dysplasia that is characterized by moderate short stature caused by short mesomelic limb segments.38-39

To verify the potential *cis*-regulatory functions of CNEs that were absent in *H. comes* but present in other teleost genomes, we assayed the function of seven selected zebrafish CNEs that were uniquely absent in *H. comes*. Of the seven CNEs assayed in transgenic zebrafish, four CNEs drove reproducible patterns of reporter gene expression in F1 embryos (Extended Data Fig. 7 and Supplementary Table 6.12). Thus, our transgenic assay indicates that some of the CNEs absent in *H. comes* may function as *cis*-regulatory elements in other teleosts. Further studies are required to examine whether the loss of CNEs may have played a role in the evolution of seahorse morphology.

Summary

Seahorses possess one of the most highly specialized morphologies and reproductive behaviours. We sequenced the genome of the tiger tail seahorse and performed comparative analysis with other teleost fishes. Our genome-wide analysis highlights several aspects that may have contributed to the highly specialized body plan and male pregnancy of seahorses. These include a higher protein and nucleotide evolutionary rate, loss of genes and expansion of gene families, with duplicated genes exhibiting new expression patterns, and loss of a selection of potential *cis*-regulatory elements. It is becoming recognized that evolutionary changes in *cis*-regulatory elements, particularly the loss and gain of enhancers, might play a major part in the evolution of morphological innovations and phenotypic changes across species.31-36,37,40

Male pregnancy is a unique developmental feature of seahorses and pipefishes (family Syngnathidae, comprising 57 genera and approximately 300 species). In the seahorse genome, the astacin subfamily of *c6ast* metalloprotease genes has undergone tandem duplications giving rise to six genes. This subfamily of metalloprotease includes the hatching enzyme (also known as choriolysin), HCE-like and HCE2-like enzymes that are responsible for hatching of embryos in fishes.37 Of the six duplicated genes in seahorse, five are highly expressed in the male brood pouch, suggesting that they may be involved in male pregnancy, possibly through rewiring of their regulatory network. The loss of pelvic fins in seahorse is associated with the evolution of an armour-like covering of its body and gain of an
elongated, flexible, substrate-gripping tail. By combining comparative genomics and gene-knockout experiments in zebrafish, we suggest that loss of tbx4 may have a role in this phenotype in seahorse. The loss of mineralized teeth in seahorse is associated with the fusion of the jaws into a tube-like snout and a small mouth, which is extremely efficient in sucking small food items that are abundant in the benthic environment. In teleosts, P/Q-rich SCPP genes are involved in the mineralization of enameloid, which is the equivalent of enamel in tetrapods.10 The seahorse genome does not contain any intact P/Q-rich SCPP genes that code for enamel matrix proteins, suggesting that the loss of these genes could have played a part in the loss of its mineralized teeth. Our analyses of the H. comes genome sequence and comparative genomics with other teleosts highlighted several genetic changes that may be involved in the evolution of the unique morphology of seahorses.

Supplementary Information

Online Content Methods, along with any additional Extended Data display items and Source Data, are available in the online version of the paper; references unique to these sections appear only in the online paper.

Received 18 March; accepted 2 November 2016.

1. Leysen, H. et al. Musculoskeletal structure of the feeding system and implications of snout elongation in Hippocampus reidi and Dussumiercerus dacyrophyllus. *J. Fish Biol.* 78, 1799–1823 (2011).

2. Stöltig, K. N. & Wilson, A. B. Male pregnancy in seahorses and pipefish: beyond the mammalian model. *BioEssays* 29, 884–896 (2007).

3. Williams, A. B., Vinebrooke, R. D. & Meyers, J. M. Male pregnancy in seahorses and pipefishes (family Syngnathidae): rapid diversification of paternal brood pouch morphology inferred from a molecular phylogeny. *J. Hered.* 92, 159–166 (2001).

4. Teske, P. R., Cherry, M. I. & Matlfee, C. A. The evolutionary history of seahorses (Syngnathidae: Hippocampus); molecular data suggest a West Pacific origin and two invasions of the Atlantic Ocean. *Mol. Phylogenet. Evol.* 30, 273–286 (2004).

5. Near, T. J. et al. Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes. *Proc. Natl Acad. Sci. USA* 110, 12738–12743 (2013).

6. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. *Genetics* 123, 585–595 (1989).

7. Nei, M. & Kumar, S. *Molecular Evolution and Phylogenetics* (Oxford Univ. Press, 2000).

8. Baillie, X. et al. The loss of the hemoglobin H2S-binding function in annelids from sulfide-free habitats reveals molecular adaptation driven by Darwinian selection. *Proc. Natl Acad. Sci. USA* 100, 5885–5890 (2003).

9. MacArthur, D. G. et al. Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. *Nature Genet.* 47, 216–219 (2015).

10. Sabherwal, N. et al. Long-range conserved non-coding SHOX sequences regulate expression in developing chicken limb and are associated with short stature phenotypes in human patients. *Hum. Mol. Genet.* 16, 210–222 (2007).

11. Shears, D. J. et al. Mutations and deletion of the human SHOX gene cause Leri–Weill dyschondrosteosis. *Nature Genet.* 19, 70–73 (1998).

12. Indejean, V. et al. Emerging new skeletal traits by cis-regulatory changes in bone morphogenetic proteins. *Cell* 164, 45–56 (2016).

13. Lin, Q. et al. Marginal change in the soc2 gene is required for the lenti-eyed culture of the lined seahorse, Hippocampus erectus Perry, 1810. *Aquaculture* 277, 287–292 (2008).

Supplementary Information is available in the online version of the paper.

Author Contributions

We thank the Laboratory Animal Center of Sun Yat-Sen University for providing experimental facilities and the Agency for Science, Technology and Research (A*STAR) Computational Resource Centre for use of its high-performance computing facilities. This research was supported by the National Science Young Fund for Excellence in Research (B.V.) and the Strategic Prioritity Research Program of the Chinese Academy of Sciences (XDA13020103), the Youth Foundation of National High Technology Research and Development Program (863 Program) (2015AA020909), the Outstanding Young Foundation in Guangdong Province (2015A0303070490), the National Natural Science Foundation of China (41576145), the National Key Basic Research Program of China (2015CB452904), the Special Project on the Integration of Industry, Education and Research of Guangdong Province (no. 2015B090000001), and the Biomedical Research Council of A*STAR, Singapore.

Acknowledgements

We thank the Laboratory Animal Center of Sun Yat-Sen University for providing experimental facilities and the Agency for Science, Technology and Research (A*STAR) Computational Resource Centre for use of its high-performance computing facilities. This research was supported by the National Science Young Fund for Excellence in Research (B.V.) and the Strategic Prioritity Research Program of the Chinese Academy of Sciences (XDA13020103), the Youth Foundation of National High Technology Research and Development Program (863 Program) (2015AA020909), the Outstanding Young Foundation in Guangdong Province (2015A0303070490), the National Natural Science Foundation of China (41576145), the National Key Basic Research Program of China (2015CB452904), the Special Project on the Integration of Industry, Education and Research of Guangdong Province (no. 2015B090000001), and the Biomedical Research Council of A*STAR, Singapore.

Author Contributions

Q.L., A.M. and B.V. designed the scientific objectives. Q.L., B.V., A.M., S.Z. and Y.S. oversaw the project. H.Z., G.Q., B.V. and Y.Z. collected samples for sequencing DNA, tRNA and RNA. M.Y. and G.Q. performed genome sequencing, assembly and annotation. S.F., J.M. and Y.Y. performed phylogenomic analysis and molecular evolutionary rate analysis. S.F. and M.Y. characterized repetitive sequences and QC content. S.F., R.F.S., P.X., V.R. and A.M. performed real-time PCR-based functional analysis and analysed SCPP genes. A.P.L., V.R., Z.W.L. and B.V. performed CNE analysis and functional assay of zebrafish CNVs. Y.Z., M.Y. and D.S. performed functional assay of RNA-seq data. H.M.G. and S.F. interpreted RNA-seq results and designed the qRT-PCR experiment. Y.Z., H.Z. and X.W. performed qRT-PCR to validate the expression levels of transcripts. Y.Z., M.Y. and V.R. analysed the patristacn family gene family. Y.Z., Q.L., J.M.W., R.S.F. and A.M. performed tbx4 knockout analysis. Y.J.B., C.B., Y.S. and X.Z. were involved in data analysis. L.G., W.L., Z.G., K.W. and H.Q. participated in the discussions related to data analysis. Q.L., Y.Z., H.M.G., A.M. and B.V. wrote the manuscript with input from all other authors.

Data availability

This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. The images or other third-party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons licence, users will need to obtain permission from the licence holder to reproduce the material. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reviewer Information

Nature thanks C. Arnemiyu, S. Burgess, K. Worley and the other anonymous reviewer(s) for their contribution to the peer review of this work.
METHODS

Genome sequencing and assembly. Genomic DNA of a single male *H. comes* was used to construct eleven libraries including short-insert (170 bp, 500 bp, 800 bp) and mate-paired (2 kb, 5 kb, 10 kb, 20 kb) libraries and sequenced on the Illumina HiSeq 2000 sequencing platform. In total, we obtained around 218 Gb of raw sequence data (Supplementary Table 1.1). The genome was assembled using SOAPdenovo2.04 (ref. 42) with default parameters. No statistical methods were used to predetermine sample size. The experiments were not randomized. The investigators were not blinded to allocation during experiments and outcomes assessment.

RNA sequencing and analysis. In total, 19 RNA-seq libraries were constructed, including two libraries from combined soft tissues (brain, gills, intestine, liver and muscle) from a male and a female *H. comes* (Supplementary Table 2.1); and 17 libraries of five developmental stages of embryos and different stages of brood pouch development such as the juvenile stage, rudimentary stage, pre-pregnancy stage, pregnancy stage, and post pregnancy stage, using RNA from the lined seahorse (*Hippocampus erectus*) (Supplementary Information, section 2). All libraries were prepared using Illumina TruSeq RNA sample preparation kit according to the manufacturer’s instructions (Illumina, San Diego, CA, USA) and sequenced using Illumina HiSeq 2000 platform. The RNA-seq reads were either de novo assembled using Trinity41 or mapped to the *H. comes* genome using TopHat44 with default parameters, and subsequently analysed using in-house Perl scripts. The differential expression of genes at different stages of brood pouch development was determined using the method developed previously45. The RNA-seq results were validated using qRT–PCR, with five biological replicates for each stage. All data were expressed as mean ± standard error of mean and were evaluated by one-way ANOVA followed by Tukey’s honestly significant difference test for adjusting P values from multiple comparisons. Results were considered to be statistically significant for P-values < 0.05.

Genome annotation. Annotation of the *H. comes* genome was carried out using the Ensemble gene annotation pipeline which integrated *ab initio* gene predictions and evidence-based gene models. Briefly, protein sequences of *D. rerio*, *G. aculeatus*, *O. latipes*, *T. rubripes* and *T. nigroviridis* were downloaded from Ensembl (release 75) and mapped to the genome using TblastN46 with the parameter “-evalue 1E-5” and “alignment rate ≥ 0.5”. Solar (in-house software, version 0.9.6) was used to join high-scoring segment pairs (HSPs) between each pair of protein mapping results. We retained alignments with an alignment rate of more than 70% and a mapping identity of more than 40%. Subsequently, the protein sequences were mapped to the genome using GeneWise and extended 280 bp upstream and downstream to define integrated gene models. For phylogenetic analysis, protein sequences were aligned using MUSCLE and a FTT-gamma model was used in a maximum-likelihood analysis using PhyML to construct a phylogenetic tree.

Evidence for loss of *tbx4* in *H. comes*. The synteny analysis of *tbx2b-tbx4-brip1* region of *H. comes*, stickleback, fugu and zebrfish using Vista shows that *tbx4* was lost in *H. comes* (Fig. 3). To exclude the scenario that the absence of *tbx4* in the *H. comes* genome sequence is due to an assembly error, we first validated the micro-synteny region of *tbx2b-tbx4-brip1* region in *H. comes* using a PCR-based genomic walk strategy. Briefly, 28 primer pairs (Supplementary Table 9.1) were designed for overlapping amplicons to ‘walk’ from the end of *tbx2b* to the start of *brip1*. Amplicon size and partial end sequencing of these products did not indicate any anomalies in the assembly of the *H. comes* *tbx4* ‘ghost locus’.

In addition, we carried out the following analyses: (1) searched the *H. comes* genome (TblastN) using *Tbx4* protein from zebrafish and Nile tilapia and were unable to find a *tbx4* gene; (2) searched the *H. comes* genome using only the domain sequence of *Tbx4* protein but were unable to find a *tbx4* gene; (3) searched *H. comes* and *H. erectus* transcriptome data for *tbx4* (TblastN) using *Tbx4* protein from zebrafish and Nile tilapia but were unable to find any matching transcript; (4) searched *H. comes* and *H. erectus* transcriptome data with the domain sequence as well and did not find any remnant of a *tbx4* gene; and (5) predicted CNEs in the ‘ghost’ locus of *H. comes* using the fugu *tbx4* locus as the reference (base) (Supplementary Fig. 9.3). We used the CNEs present in the other fish genome loci (that were absent in *H. comes*) to search the *H. comes* genome to rule out the possibility that they may be present elsewhere in the genome. We were unable to find any of these CNEs in the *H. comes* genome. Finally, we conducted degenerate PCR experiments to ascertain if the *tbx4* gene is missing in *H. comes*. Using a combination of four forward and two reverse primers (Supplementary Table 9.1), we checked for the presence of *tbx4* in seven species of *Hippocampus* (including *H. comes* and *H. erectus*), five species of pipefish (four from the genus *Syngnathus* and one species of *Corythoichthys*) (all from the family Syngnathidae that lack pelvic fins); ghost pipefish (*Solenostomus*) and the trumpetfish (*Aulostomidae*) which are closely related to the Syngnathidae but possess pelvic fins; and five other teleost species that possess pelvic fins (Supplementary Figs 9.1 and 9.2).

Generation of mutant *tbx4* zebrfish. We used a CRISPR–Cas9 strategy to generate a *tbx4* mutant zebrfish line. Two guide RNAs (gRNAs) were designed targeting zebrfish *tbx4* in the 3’ end of the sequence that is upstream of or within the DNA-binding TBOX domain (Supplementary Fig. 9.4). gRNAs were cloned using T7 RNA polymerase and purified using MirVana miRNA isolation kit (Ambion). The gRNA was ligated into the targeting plasmid (pSPCas9-BB-2A-Puro) (a gift from Dr. Hao Feng; Addgene plasmid #13697). The T7 transcriptional unit was amplified using PCR with the proper primers. The purified PCR product was treated with T4 DNA ligase and cloned into the pSPCas9-BB-2A-Puro vector. The gRNA was confirmed by sequencing.

Zebrafish from a wild caught strain were injected at the one-cell stage with ~50 ng gRNA and ~90 ng Cas9 RNA. These F0 fish were raised to maturity and genotyped by PCR and genotyping primers given in Supplementary Table 9.2). PCR products were analysed for mutations as described previously44 using T7 endonuclease (NEB M0302L). Mosaic mutant F0 fish were outcrossed to AB wild-type fish and embryos were batch genotyped for transmission of the mutation using PCR and T7 endonuclease. Mutant PCR products were cloned into the pGEM-T vector.
Pairwise alignments were carried out using Lastz v.1.03.54 (ref. 55) with the genomic regions (false discovery rate (FDR) q significantly enriched functional categories identified based on a hypergeometric test carried out using the GREAT software 58 with each CNE assigned to the genes with a high-confidence set of CNEs missing in the percomorph fishes and thus were accounted for CNEs that might have been missed due to sequencing gaps, we identified CNEs that could have been missed in the Multiz alignments due to rearrangements in the coverage 10%), indicating that the identification method was fairly sensitive.

PhyloBoot. Subsequently, conserved elements were predicted in the multiple alignments extracted from the multiple alignments. These 4D sites were used to build a reduced to single coverage with respect to the reference genome using UCSC Genome Browser tools "aXtChain" and "chainNet". Multiple alignments were generated using Multiz v1.12/roast.v3 (ref. 56) with the tree topology ("Zv9 (hipCom0) (fr3 gasAcul) (oryLat2 oneNI2))"

Fourfold degenerate (4D) sites of zebrafish genes (Ensembl release-75) were extracted from the multiple alignments. These 4D sites were used to build a neutral model using PhyloP in the raph v1.5 package (general reversible "REV" substitution model). PhastCons was then run in rho estimation mode on each of the zebrafish chromosomal alignments to obtain a conserved model for each chromosome. These conserved models were averaged into one model using Phylomaps. Subsequently, conserved elements were predicted in the multiple alignments using PhastCons with the following inputs and parameters: the neutral and conserved models, target coverage of input alignments = 0.3 and average length of conserved sequence = 45 bp. To assess the sensitivity of this approach in identifying functional elements, the PhastCons elements were compared against zebrafish protein-coding genes. Eighty per cent of protein-coding exons (197,508/245,556 exons) were overlapped by a conserved element (minimum coverage 10%), indicating that the identification method was fairly sensitive.

A CNE was considered present in a percomorph genome if it showed coverage of at least 30% with a zebrafish CNE in Multiz alignment. To identify CNEs that were conserved between the Multiz alignments due to redundancy of the same CNE in the genomes, or due to partitioning of the CNEs among teleost fish duplicate genes, we searched the zebrafish CNEs against the genome of the percomorph using BLASTN (E < 1 × 10−10; ≥80% identity; ≥70% coverage). Those CNEs that had no significant match in a percomorph genome were considered as missing in that genome. To account for CNEs that might have been missed due to sequencing gaps, we identified gap-free syntenic intervals in zebrafish and the percomorph genomes, and generated a set of CNEs that were missing from these intervals. These CNEs represent a high-confidence set of CNEs missing in the percomorph fishes and thus were used for further analysis. Functional enrichment of genes associated with CNEs was carried out using the GREAT software with the CNEs assigned in the mouse with the nearest transcription start site and within 1 Mb in the zebrafish genome, and significantly enriched functional categories identified based on a hypergeometric test of genomic regions (false discovery rate (FDR) q value < 0.05). We identified the statistically significant gene ontology biological process terms, molecular function terms and zebrafish phenotype descriptions of the genes that are associated with CNEs.

We also predicted CNEs in the Hox clusters of H. comes and other representative teleost fishes using the global alignment program MLAGAN. Orthologous Hox clusters were aligned using MLAGAN with zebrafish as the reference sequence and CNEs were predicted using VISTA.

Functional assay of CNEs. Seven representative zebrafish CNEs that have been lost in H. comes (the largest among the lost CNEs) were assayed for enhancer activity in transgenic zebrafish using GFP as the reporter gene. The CNEs were amplified by PCR using zebrafish genomic DNA as template. The products were cloned into a miniTol2 transposon donor plasmid linked to the mouse cFos (McFos) basal promoter and the coding sequence of GFP. Transposase mRNA was generated by transcribing cDNA in vitro using the mMESSAGE mMACHINE T7 kit (Ambion; Life Technologies). The CNE-containing McFos-miniTol2 construct and transposase mRNA were co-injected into the yolk of zebrafish embryos at the one to two-cell stage. Each CNE construct was injected into 250–350 embryos and the injections were repeated on two days. The embryos were reared at 28°C, and GFP was observed at 24, 48 and 72 h post-fertilization (hpf). The survival rate of the embryos post-injection was 70–80%. Consistent GFP expression in at least 20% of F0 embryos was considered as specific expression driven by a CNE. Such embryos were reared to maturity and mated with wild type zebrafish to produce F1 lines. The expression of GFP in F1 embryos was observed under a compound microscope fitted for epifluorescence (Axio imager M2; Carl Zeiss, Germany) and photographed using an attached digital microscope camera (AxioCam; Carl Zeiss, Germany). Pigmentation was inhibited by maintaining zebrafish embryos in 0.003% N-phenylthiourea (Sigma-Aldrich, Sweden) from 8 hpf onwards. Consistent GFP expression observed in at least three lines of F1 fishes was considered as the specific expression driven by a CNE.

All animals were cared for in strict accordance with National Institutes of Health (USA) guidelines. The zebrafish gene knockout protocol was approved by the Institutional Animal Care and Use Committee of the University of Minnesota and by the Institutional Animal Care and Use Committee of Biological Resource Centre, A*STAR, Singapore.

Data availability statement. The tiger tail seahorse (H. comes) whole-genome sequence has been deposited in the DDBJ/EMBL/GenBank database under accession number LVH00000000. RNA-seq reads for H. erectus and H. comes have been deposited in the NCBI Sequence Read Archive under accession numbers SRA392578 and SRA392580, respectively.

42. Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 (2012).
43. Grabherr, M. G. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nature Biotechnol. 29, 644–652 (2011).
44. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-seq. Bioinformatics 25, 1105–1111 (2009).
45. Xu, X.; Lin, J.; Zack, D. J. & Pinchera, A. Analysis of tissue-specific combinatorial gene regulation: predicting interaction between transcription factors in human tissues. Nucleic Acids Res. 34, 4925–4936 (2006).
46. Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–666 (2002).
47. Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. Genome Res. 14, 988–995 (2004).
48. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
49. Grippaola-Guzmán, S., Silva, M. M. & Gálvez, P. T. aAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
50. Stamatakis, A. ARAWL-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).
51. Hubisz, M. J., Pollard, K. S. & Siepel, A. PHAST and PHAST: phylogenetic analysis with space/time models. Brief. Bioinform. 12, 41–51 (2011).
52. McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Mol. Syst. Biol. 7, 505, doi:10.1038/msb.2011.34 (2011).
53. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 21, 1586–1591 (2004).
54. Jao, L. E., Wente, S. R. & Chen, W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl Acad. Sci. USA 110, 13904–13909 (2013).
55. Harris, R. S. Improved Pairwise Alignment of Genomic DNA, PhD thesis, Pennsylvania State Univ. (2007).
56. Blanchette, M. et al. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 14, 708–715 (2004).
57. Hubisz, M. J., Pollard, K. S. & Siepel, A. PHAST and PHAST: phylogenetic analysis with space/time models. Brief. Bioinform. 12, 41–51 (2011).
58. McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Mol. Syst. Biol. 7, 505, doi:10.1038/msb.2011.34 (2011).
59. Bian, C. et al. The Asian arowana (Scleropages formosus) genome provides new insights into the evolution of an early lineage of teleosts. Sci. Rep. 6, 24501 (2016).
60. Kawasaki, K. & Ameryka, M. T. SCFP genes in the coelacanth: tissue mineralization genes. J. Exp. Zool. B Mol. Dev. Evol. 322, 390–402 (2014).
61. Venkatesh, B. et al. Elephant shark genome provides unique insights into gnathostome evolution. Nature 505, 174–179 (2014).
Extended Data Figure 1 | Phylogenetic relationships of ray-finned fishes discussed in this study. Phylogenetic relationships of ray-finned fishes depicted here are based on the current study and ref. 59. Ray-finned fishes (Actinopterygii) are divided into basal ray-finned fishes (Polypteriformes, Acipenseriformes and Holostei) and teleosts. The latter comprise ~99% of the extant ray-finned fishes. The star represents the teleost-specific genome duplication (TGD) event that occurred in the common ancestor of all teleost fishes. Syngnathids (seahorse and pipefish) display the unique phenomenon of ‘male pregnancy’.
Extended Data Figure 2 | Number of gene families in various teleosts and the spotted gar.

a, Venn diagram of shared orthologous gene families in seahorse (*H. comes*), fugu, zebrafish and stickleback.
b, The phylogeny and divergence times of seahorse and other teleost fishes based on analysis of genome-wide one-to-one orthologous protein sequences. The numbers at nodes indicate the number of gene families expanded and contracted at different evolutionary time points.
Extended Data Figure 3 | Divergence distribution of transposable elements compared to consensus in the transposable element library.
The divergence rate was calculated between the identified transposable elements (TEs) in the *H. comes* genome and the consensus sequence in the transposable element library.
Extended Data Figure 4 | SCPP genes in *H. comes* and other jawed vertebrates. Gene loci for human, coelacanth and zebrafish were adapted from other publications\(^6\). *sparcI*, which is the ancestral gene that gave rise to SCPP genes is shown in grey; P/Q-rich SCPP genes are shown in red; acidic SCPP genes are shown in blue. In seahorse, *scpp5* is a pseudogene and is denoted by \(\psi\). Owing to space constraints, the P/Q-rich SCPP genes encoding milk casein and salivary proteins in human have been omitted. Black circles mark the ends of scaffolds.
Extended Data Figure 5 | Maximum-likelihood phylogenetic tree of OR genes in *H. comes* and other ray-finned fishes.
Extended Data Figure 6 | CRISPR–Cas9 mediated knockdown of tbx4 in zebrafish. a, CRISPR–Cas9 mutagenesis strategy. b, CRISPR–Cas9 sites targeted in zebrafish tbx4 gene. c, Loss of function tbx4 phenotypes in F0 mosaic mutants. Pelvic fin loss was observed with low frequency in F0 mosaic mutant fish. Frequency of animals with either single- or double-sided loss of pelvic fins was 3/42 for gRNA#1 and 1/34 for gRNA#2. d, Identification of zebrafish tbx4 mutant line. Top shows sequencing chromatograms of wild-type (left) and mutant (right) alleles. Bottom shows alignment of tbx4 exon 2 from wild-type and mutant. The region for which the chromatograms are shown is indicated with a box. In the mutant a deletion (indicated in blue in the wild-type sequence)/substitution (indicated in lilac in the mutant sequence) was identified. The deletion/substitution area is indicated with a grey box in the chromatograms.
Extended Data Figure 7 | Reporter gene expression pattern driven by zebrafish CNEs that are lost in *H. comes*. Lateral and dorsal views of 72 h post-fertilization F1 transgenic zebrafish embryos. The lost CNEs (#6500, #6560, #hoxc-1 and #hoxd-1) were assayed for their reporter gene expression potential in transgenic zebrafish. FB, forebrain; FP, floor plate; H, heart; HB, hindbrain; L, lens; M, melanocytes; MB, midbrain; O, otic vesicle; SC, spinal cord.