INTRODUCTION

Acetaminophen (APAP) is a widely used drug for the alleviation of pain and fever, which is also a dose-dependent toxin. APAP-induced acute liver injury has become one of the primary causes of liver failure which is an increasingly serious threat to human health. Neutrophils are the major immune cells in human serving as the first barrier against the invasion of pathogen. It has been reported that neutrophils participate in the occurrence and development of APAP-induced liver injury. However, evolving evidences suggest that neutrophils also contribute to tissue repair and actively orchestrate resolution of inflammation. Here, we addressed the complex roles in APAP-induced liver injury on the basis of brief introduction of neutrophil's activation, recruitment and migration.

Abstract

Acetaminophen (APAP) is a widely applied drug for the alleviation of pain and fever, which is also a dose-dependent toxin. APAP-induced acute liver injury has become one of the primary causes of liver failure which is an increasingly serious threat to human health. Neutrophils are the major immune cells in human serving as the first barrier against the invasion of pathogen. It has been reported that neutrophils participate in the occurrence and development of APAP-induced liver injury. However, evolving evidences suggest that neutrophils also contribute to tissue repair and actively orchestrate resolution of inflammation. Here, we addressed the complex roles in APAP-induced liver injury on the basis of brief introduction of neutrophil's activation, recruitment and migration.
complex roles in APAP-induced ALI, focusing on its activation, recruitment and migration.

2 | NEUTROPHIL’S ACTIVATION, RECRUITMENT AND MIGRATION IN APAP-INDUCED LIVER INJURY

2.1 | DAMPs

DAMPs are key signals which induce cell death in sterile inflammation including high-mobility group box 1 (HMGB1), ATP, ADP, IL-1, IL-33, heat shock proteins (HSPs) and so on. Epithelial HMGB1 triggered recruitment of neutrophils but not macrophages through its receptor RAGE, finally inducing necrosis after APAP treatment\(^{16}\) (Figure 1). In addition, HMGB1 could also mediate neutrophil infiltration via HMGB1-TLR4-IL-23-IL-17A axis\(^{17}\) (Figure 1). After the administration of APAP, wild-type C57BL/6 mice released abundant ATP and following increased the expression of P2Y2 receptors, which was required for the liver infiltration of neutrophils and subsequent liver injury\(^ {18}\) (Figure 1). Mitochondrial DNA (mtDNA) released by damaged hepatocytes is another important stimulus which activates neutrophils via binding of Toll-like receptor 9 (TLR9). However, mtDNA/TLR9 could also limit neutrophil overactivation through the negative feedback pathway of microRNA-223 (miR-223)\(^ {19}\) (Figure 1).

2.2 | Interplay with other immune cells

2.2.1 | Macrophages

Numerous pro-inflammatory factors such as chemokines, IL-1\(\beta\) and TNF-\(\alpha\) are released by activated liver macrophages, thus further aggravating inflammation and increasing neutrophils inflow.\(^ {20}\) In addition, osteopontin (OPN), another pro-inflammatory cytokine related to liver cell necrosis, was rarely expressed in Kupffer cells normally, but its expression increased significantly in hepatic macrophages at 6 hours after APAP administration, which attracted neutrophils to hepatic injury sites and caused massive liver necrosis (Figure 1).\(^ {21}\) This result was further demonstrated in OPN\(-/-\) mice model, which exhibited less neutrophil infiltration and reduced expression of pro-inflammatory cytokines in liver, such as IL-1\(\alpha\) and TNF-\(\alpha\).\(^ {22}\) Macrophages could also induce the generation of IL-17-producing...
γδ T cells via the HMGB1-TLR4-IL-23 pathway, enhancing the neutrophil infiltration and liver injury (Figure 1). However, some studies showed opposite results that macrophages could also inhibit the activation and recruitment of neutrophils. In APAP-induced ALI mice model, injection of bone marrow-derived macrophages significantly reduced HMGB1 translocation, infiltrating neutrophils and hepatocyte necrosis. It was also reported that increased MerTK+ macrophages could inhibit the continuous necrosis in APAP-induced ALI by suppressing the activation of neutrophils and accelerating their clearance (Figure 1).

2.2.2 Monocytes

Ly6C+ monocytes controlled the activation and recruitment of neutrophils via CCR2(C-C motif chemokine receptor 2) and M-CSF pathways. In the livers of CCR2−/− mice, a significant increase in neutrophils could be observed at 24 hours following APAP administration. Moreover, the ablation of Ly6C+ monocytes and their MoMF (monocyte-derived macrophages) descendants led to a profound increase in neutrophil levels (Figure 1).

2.2.3 Myeloid-derived suppressor cells (MDSCs)

Myeloid-derived suppressor cells (MDSCs), a heterogenous population of immune cells from myeloid lineage, can be enlarged during various pathological conditions, such as cancer and inflammatory diseases. Treated with various cytokines, bone marrow-derived MDSCs can be differentiated to various types of cells with different functions. With APAP administration, tumour necrosis factor alpha/LPS-primed MDSCs (TNF-α/LPS MDSCs) could express iNOS to decrease the excessive intrahepatic neutrophil infiltration and induce the apoptosis of activated neutrophils, showing the strongest hepatic protective effect (Figure 1).

2.3 Chemokines and Cytokines

In addition to the interaction between immune cells contributes a lot in APAP-induced hepatitis, some chemokines and cytokines also play an indispensable role. It was demonstrated that chemokines and mitochondria-derived formyl peptides collaborated to recruit neutrophils to sites of liver necrosis via CXC chemokine receptor 2 (CXCR2) and formyl peptide receptor 1 (FPR1), respectively (Figure 2). As an important inhibitor of CXCL1, SOCS2 is able to control the activation and recruitment of neutrophils. In SOCS2−/− mice treated with APAP, the expression of the neutrophil-active chemokine CXCL1 increased significantly, inducing more neutrophil recruitment and liver necrosis (Figure 2). Besides, in vivo, gastrin-releasing peptide receptor (GRPR) antagonist inhibited both CXCL2-induced neutrophil migration and activation through the downregulation of CD11b and CD62L. GRPR could also induce activation of MAPKs (p38 and ERK1/2) and downregulation expression of CD11b and CD66b, which significantly inhibited the adhesion and migration of neutrophils. In vitro, it decreased CXCL8-driven neutrophil recruitment independently of CXCR2 (Figure 2).

Some researchers believed that the cytokines released through inflammasome pathway also affected neutrophil’s activation and recruitment. Imaeda et al mentioned that inhibition of the Nalp3 pathway with Aspirin and the knockout of Nalp3 in mice could decrease the infiltration of neutrophils and thus alleviate APAP-induced liver injury. However, C David Williams et al put forward the opposite results that after APAP treatment, mice deficient for each component of the Nalp3 inflammasome (caspase-1, ASC and Nalp3) had similar neutrophil recruitment and
liver injury when compared with that of WT mice, which appeared the limit effect of Nalp3 inflammasome. It is notable that these two studies all showed that plasma levels of IL-1β protein are very minor even after APAP overdose. Moreover, Williams et al treated animals with pharmacological levels of murine recombinant IL-1β and found that it had no effect on liver injury, which is consistent with IL-1R−/− mice were not protected against APAP hepatotoxicity. These data together indicate that this minor increase in IL-1β induced by APAP overdose did not aggravate liver injury. In addition, no increase expression of IL-18 was observed in APAP-induced liver injury. Furthermore, Williams et al repeat the aspirin pre-treatment experiment and revealed that like many other interventions against neutrophils, Aspirin cannot protect liver from APAP-induced injury through detecting HMGB1, K-18 and other APAP metabolism bookmarks, which were absent in Imaeda study. As for the time point, Williams et al took their experiments at 24 hours instead of 12h in the Imaeda study, which should be taken into consideration when comparing their results. Above all, Nalp3 inflammasome signalling might not be a major pathway involved in APAP hepatotoxicity.

Other interleukins also play important roles in the activation and recruitment of neutrophils. The deficiency of IL-13 aggravated liver damage due to the neutrophils infiltration induced by injurious downstream events whereas absence of IL-17 significantly attenuated APAP-induced liver injury via decreasing neutrophils recruitment (Figure 2). Acetaminophen overdose caused massive release of IL-33 which can activate and recruit neutrophils, inducing liver injury by IL-33/ST2 signalling pathway. In APAP-induced ALI, activated IL-1β with anti-CD18 monoclonal antibody had no protective effects on liver damage, whereas activation of CD11b or reactive oxygen was not observed on neutrophils isolated from the liver after APAP administration. Moreover, hepatic neutrophils accumulation and activation caused by high pharmacological doses of IL-1beta do not worsen APAP-induced ALI.44-46 Other researchers showed that β2 integrins(CD11/CD18) is essential for neutrophils in the transmigration and adherence steps in mice liver. But treatment with anti-CD18 monoclonal antibody had no protective effects on liver damage after APAP administration during the 24h time period, suggesting that neutrophils do not contribute to the initiation or progression of APAP-induced ALI.41 Clapperton et al further showed a neutrophil deficient in ALF due to overdose of paracetamol, which is complement-dependent, but has nothing to do with serum complement, and may be related to complement receptors.

In addition, with the growing evidence that neutrophils actively control the regression of inflammation and contribute to tissue repair, the perception of the indiscriminate killers of neutrophils seems to be changed. Some researchers have also proposed the repair role of neutrophils in APAP-induce ALI. Researchers found evidence that APAP treatment could lead to the delay of previously activated neutrophil apoptosis, which is beneficial to the repair of injured liver tissue. Freitas, M. et al also confirmed this view for the longevity of neutrophils was found to be prolonged after APAP administration, which helps tissues heal and resolve inflammation. Mechanically, neutrophils play a pivotal role in liver repair by promoting the conversion of pro-inflammatory Ly6C^{hi}CX_CCR₁ monocyte/macrophage phenotype into pro-degradable Ly6C^{hi}CX_CCR₁ macrophages. Furthermore, reactive oxygen species (ROS), mainly expressed by neutrophils in APAP-induced liver injury, are important mediators that trigger

3 | COMPLEX ROLES OF NEUTROPHILS

Abundant researches uncovered the pivotal roles of neutrophils in APAP-induced liver injury, a few researchers believe that neutrophils contribute a lot in aggravating APAP-induced liver damage. It was reported that neutrophils depletion by RB6-8C5 (an anti-Gr-1 antibody) moderated APAP-induced ALI, which indicated neutrophils induced liver injury. Yoko Ishida et al also confirmed this result. In vivo, they found improved survival rate in neutropenic WT mice and CXCR2-deficient mice when compared with WT mice under the same dose of APAP treatment. In vitro, isolated human neutrophils were toxic to HepG2 cells when cocultured via direct contact with HepG2 cells and the CXCR2-FPR1-signalling pathway. Researchers further confirmed that neutrophil activation occurred secondary to the initial liver injury induced by APAP. They found that resolvins which can prevent and reduce the infiltration of neutrophils in the inflammation site could extend the therapeutic window after APAP administration. Collectively, these results indicate that neutrophils mediate (at least partially) the hepatotoxic effects of oral acetaminophen.44,45

However, some researchers hold different views. Lawson et al reported that neutrophils participate in necrotic debris removal instead of affecting the pathogenesis of APAP-induced ALI directly. It was further proved by Williams, C. D et al that upregulation of CD11b or reactive oxygen was not observed on neutrophils isolated from the liver after APAP administration. Moreover, hepatic neutrophils accumulation and activation caused by high pharmacological doses of IL-1beta do not worsen APAP-induced ALI. Other researchers showed that β2 integrins(CD11/CD18) is essential for neutrophils in the transmigration and adherence steps in mice liver. But treatment with anti-CD18 monoclonal antibody had no protective effects on liver damage after APAP administration during the 24h time period, suggesting that neutrophils do not contribute to the initiation or progression of APAP-induced ALI. Clapperton et al further showed a neutrophil deficient in ALF due to overdose of paracetamol, which is complement-dependent, but has nothing to do with serum complement, and may be related to complement receptors.

2.4 | Time points of APAP overdose treatment

Neutrophils migrate into liver tissue in mice in the early stage of APAP-induced liver injury occurrence(6,12 hours), and most were located at the healthy part of liver. Then, the injury began to aggravate until it reached the peak at 24 hours with most of neutrophils migrated into the necrosis area. Subsequently, in the recovery phase of liver injury, neutrophils also began to decrease.

Some human’s data showed that the phagocytic capacity and ROS production of neutrophils in patients with APAP-induced liver injury were all increased during the recovery period (day 1-4 day) which indicated that activation of neutrophils occurred after injury peaks. But there were also differences between human and mouse data. The difference was that the expression of CD11b is increased in peripheral blood neutrophils of mice, but not in humans, which may be caused by species variation and injury time.
ACKNOWLEDGEMENTS

The study was supported by Grants from the National Nature Science Foundation of China, No. U20A20348; the National Nature Science Foundation of China, No. 81871646; the Self-Topic Science Foundation of State Key Laboratory for Diagnosis and Treatment of Infectious Diseases.

CONFLICTS OF INTEREST

The authors declare no financial conflicts of interests.

AUTHOR CONTRIBUTIONS

Huiting Guo wrote the manuscript and prepared figures; Min Zheng, Cheng Zhou, Shiwei Chen and Mingjie Xie provided expert comments and edits. All authors reviewed the manuscript.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Min Zheng https://orcid.org/0000-0001-6159-9879

REFERENCES

1. Barbier-Torres L, Iruzubieta P, Fernández-Ramos D, et al. The mitochondrial negative regulator MCJ is a therapeutic target for acetaminophen-induced liver injury. Nat Commun. 2017;8:2068. https://doi.org/10.1038/s41467-017-01970-x
2. Bernal W, Auzinger G, Dhawan A, Wendon J. Acute liver failure. Lancet. 2010;376:190-201. https://doi.org/10.1016/S0140-6736(10)60274-7
3. Laskin DL, Pendino KJ. Macrophages and inflammatory mediators in tissue injury. Annu Rev Pharmacol Toxicol. 1995;35:655-677. https://doi.org/10.1146/annurev.pa.35.040195.003255
4. Wang X, Sun R, Chen Y, Lian ZX, Wei H, Tian Z. Regulatory T cells ameliorate acetaminophen-induced immune-mediated liver injury. Int Immunopharmacol. 2015;25:293-301. https://doi.org/10.1016/j.intimp.2015.02.008
5. Casanova-Acebes M, Nicolás-Ávila JA, Li Jackson LY, et al. Neutrophils instruct homeostatic and pathological states in naive tissues. J Exp Med. 2018;215:2778-2795. https://doi.org/10.1084/jem.20181468
6. Puga I,Cols M, Barra CM, et al. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat Immunol. 2011;12:144-150. https://doi.org/10.1038/ni.2194
7. Yan M, Huo Y, Yin S, Hu H. Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biol. 2018;17:274-283. https://doi.org/10.1016/j.redox.2018.04.019
8. Chen D, Ni HM, Wang L, et al. p53 up-regulated modulator of apoptosis induction mediates acetaminophen-induced necrosis and liver injury in mice. Hepatology. 2019;69:2164-2179. https://doi.org/10.1002/hep.30422
9. Hsu LC, Enzler T, Seita J, et al. IL-1beta-driven neutrophilia preserves antibacterial defense in the absence of the kinase IKKbeta. Nat Immunol. 2011;12:144-150. https://doi.org/10.1038/ni.1976
10. Oliveira C, Navarro-Xavier R, Anjos-Vallota E, et al. Effect of plant neutrophil elastase inhibitor on leucocyte migration, adhesion and cytokine release in inflammatory conditions. Br J Pharmacol.
11. Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. *Nat Rev Immunol*. 2011;11:519-531. https://doi.org/10.1038/nri3024

12. Segel GB, Halterman MW, Lichtman MA. The paradox of the neutrophil's role in tissue injury. *J Leukoc Biol*. 2011;89:359-372. https://doi.org/10.1189/jlb.0910538

13. Kobayashi SD, Voyich JM, Burlak C, DeLeo FR. Neutrophils in the innate immune response. *Arch Immunol Ther Exp (Warsz)*. 2005;53:505-517.

14. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. *Nat Rev Immunol*. 2013;13:159-175. https://doi.org/10.1038/nri3399

15. Mishalian I, Granot Z, Fridlender ZG. The diversity of circulating neutrophils in cancer. *Immunobiology*. 2017;222:82-88. https://doi.org/10.1016/j.imbio.2016.02.001

16. Huebener P, Pradere JP, Hernandez C, et al. The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. *J Clin Invest*. 2019;130:1802. https://doi.org/10.1172/JCI126975

17. Wang X, Sun R, Wei H, Tian Z. High-mobility group box 1 (HMGB1)-Toll-like receptor (TLR)4-interleukin (IL)-17A axis in drug-induced damage-associated lethal hepatitis: interaction of gammadelta T cells with macrophages. *Hepatology*. 2013;57:373-384. https://doi.org/10.1002/hep.25982

18. Ayata CK, Ganal SC, Hockenjos B, et al. Purinergic P2Y(2) receptors promote neutrophil infiltration and hepatocyte death in mice with acute liver injury. *Gastroenterology*. 2012;143:1620-1629.e1624. https://doi.org/10.1053/j.gastro.2012.08.049

19. He Y, Feng D, Li M, et al. Hepatic mitochondrial DNA/Toll-like receptor 9/MicroRNA-223 forms a negative feedback loop to limit neutrophil overactivation and acetaminophen hepatotoxicity in mice. *Hepatology*. 2017;66:220-234. https://doi.org/10.1002/hep.29153

20. Krenkel O, Mossanen JC, Tacke F. Immune mechanisms in acetaminophen-induced acute liver failure. *Hepatobiliary Surg Nutr*. 2014;3:331-343. https://doi.org/10.3978/j.issn.2304-3881.2014.11.01

21. Srungaram P, Rule JA, Yuan HJ, et al. Plasma osteopontin in acute acetaminophen-induced liver injury and acute liver failure. *Eur J Immunol*. 2016;7:e153. https://doi.org/10.1002/eji.20164394

22. Woolbright BL, Jaeschke H. Role of the inflammasome in acetaminophen-induced liver injury and acute liver failure. *J Hepatol*. 2017;66:836-848. https://doi.org/10.1016/j.jhep.2016.11.017

23. Imaeda AB, Watanabe A, Sohail MA, et al. Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. *J Clin Invest*. 2009;119:305-314. https://doi.org/10.1172/JCI35958

24. Baeuerle PA, Raamsma-Grinberg S, Pasmanik-Chor M, et al. Alternative activation of resting Kupffer cells limits from drug-induced liver injury by impairing neutrophil chemotaxis and motility. *Eur J Immunol*. 2017;47:646-657. https://doi.org/10.1002/eji.201644394

25. Williams CD, Antoine DJ, Shaw PJ, et al. Role of the Nalp3 inflammasome in acetaminophen-induced sterile inflammation and liver injury. *Toxicol Appl Pharmacol*. 2011;252:289-297. https://doi.org/10.1016/j.taap.2011.03.001

26. Czerwielewski RS, Jaeger N, Marques PE, et al. GRPR antagonist protects from drug-induced liver injury by impairing neutrophil chemotaxis and motility. *Eur J Immunol*. 2018;47:523-533. https://doi.org/10.1002/eji.201743957

27. Monti-Rocha R, Cramer A, Gaio Leite P, et al. SOCS2 Is critical for neutrophil overactivation and acetaminophen hepatotoxicity in mice. *Chem Res Toxicol*. 2015;28:300-309. https://doi.org/10.1021/tx600349f

28. Williams PE, Amaral SS, Pires DA, et al. Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure. *Hepatology*. 2012;56:1971-1982. https://doi.org/10.1002/hep.25801

29. Williams CD, Bajt ML, Sharpe MR, McGill MR, Farhood A, Jaeschke H. Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans. *Toxicol Appl Pharmacol*. 2014;275:122-133. https://doi.org/10.1016/j.taap.2014.01.004

30. Ishida Y, Kondo T, Kimura A, et al. Opposite roles of neutrophils and macrophages in the pathogenesis of acetaminophen-induced acute liver injury. *Eur J Immunol*. 2006;36:1028-1038. https://doi.org/10.1002/eji.200535261

31. Patel SJ, Luther J, Bohr S, et al. A novel resolvin-based strategy for limiting acetaminophen hepatotoxicity. *Clin Transl Gastroenterol*. 2016;7:e153. https://doi.org/10.1038/ctg.2016.13
50. Freitas M, Costa V, Ribeiro D, et al. Acetaminophen prevents oxidative burst and delays apoptosis in human neutrophils. Toxicol Lett. 2013;219:170-177. https://doi.org/10.1016/j.toxlet.2013.03.007

51. Yang W, Tao Y, Wu Y, et al. Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair. Nat Commun. 2019;10:1076. https://doi.org/10.1038/s41467-019-09046-8

52. Takada H, Mawet E, Shiratori Y, et al. Chemotactic factors released from hepatocytes exposed to acetaminophen. Dig Dis Sci. 1995;40:1831-1836. https://doi.org/10.1007/BF02212709

53. Chauhan A, Sheriff L, Hussain M, et al. The platelet receptor CLEC-2 blocks neutrophil mediated hepatic recovery in acetaminophen induced acute liver failure. Nat Commun. 2020;11:1939. https://doi.org/10.1038/s41467-020-15584-3

54. Jaeschke H, Ramachandran A. Mechanisms and pathophysiological significance of sterile inflammation during acetaminophen hepatotoxicity. Food Chem Toxicol. 2020;138:111240. https://doi.org/10.1016/j.fct.2020.111240

55. Harrill AH, Ross PK, Gatti DM, Threadgill DW, Rusyn I. Population-based discovery of toxicogenomics biomarkers for hepatotoxicity using a laboratory strain diversity panel. Toxicol Sci. 2009;110:235-243. https://doi.org/10.1093/toxsci/kfp096

56. Jaeschke H, Liu J. Neutrophil depletion protects against murine acetaminophen hepatotoxicity: another perspective. Hepatology. 2007;45:1588-1589. https://doi.org/10.1002/hep.21549

57. Raevens S, Van Campenhout S, Debacker PJ, et al. Combination of sivelestat and N-acetylcysteine alleviates the inflammatory response and exceeds standard treatment for acetaminophen-induced liver injury. J Leukoc Biol. 2020:107:341-355. https://doi.org/10.1002/jlb.5a1119-279R

58. Zhao Z, Wei Q, Hua W, Liu Y, Liu X, Zhu Y. Hepatoprotective effects of berberine on acetaminophen-induced hepatotoxicity in mice. Biomed Pharmacother. 2018;103:1319-1326. https://doi.org/10.1016/j.biopharmas.2018.04.175

59. Yang S, Kuang G, Jiang R, et al. Geniposide protected hepatocytes from acetaminophen hepatotoxicity by down-regulating CYP2E1 expression and inhibiting TLR4/NF-kappaB signaling pathway. Int Immunopharmacol. 2019;74:105625. https://doi.org/10.1016/j.intimp.2019.05.010

60. Kojo K, Ito Y, Eshima K., et al. BLT1 signalling protects the liver against acetaminophen hepatotoxicity by preventing excessive accumulation of hepatic neutrophils. Sci Rep. 2016;6:29650. https://doi.org/10.1038/srep29650

61. Yang G, Zhang L, Ma L, et al. Glycyrrhetinic acid prevents acetaminophen-induced acute liver injury via the inhibition of CYP2E1 expression and HMGB1-TLR4 signal activation in mice. Int Immunopharmacol. 2017;50:186-193. https://doi.org/10.1016/j.intimp.2017.06.027

62. Uchida NS, Silva-Filho SE, Cardia GFE, et al. Hepatoprotective effect of citral on acetaminophen-induced liver toxicity in mice. Evid Based Complement Alternat Med. 2017;2017:1796209. https://doi.org/10.1155/2017/1796209

63. Uchida NS, Silva-Filho SE, Aguiar RP, et al. Protective effect of Cymbopogon citratus essential oil in experimental model of acetaminophen-induced liver injury. Am J Chin Med. 2017;45:515-532. https://doi.org/10.1142/S0192415X17500318

64. Morais SB, Figueiredo BC, Assis NRG, et al. Schistosoma mansoni SmKl-1 serine protease inhibitor binds to elastase and impairs neutrophil function and inflammation. PLoS Pathog. 2018;14:e1006870. https://doi.org/10.1371/journal.ppat.1006870

65. Toklu HZ, Sehirli AO, Velioglu-Ogunc A, Cetinel S, Sener G. Acetaminophen-induced toxicity is prevented by beta-D-glucan treatment in mice. Eur J Pharmacol. 2006;543:133-140. https://doi.org/10.1016/j.ejphar.2006.05.033

How to cite this article: Guo H, Chen S, Xie M, Zhou C, Zheng M. The complex roles of neutrophils in APAP-induced liver injury. Cell Prolif. 2021;54:e13040. https://doi.org/10.1111/cpr.13040