Synthesis of New Pro-PYE Ligands as Co-Catalysts toward Pd-Catalyzed Heck-Mizoroki Cross Coupling Reactions

Naima Munir¹, Muhammad Naveed Zafar¹*, Sara Masood¹, Faroha Liaqat¹, Muhammad Tahir², Sammer Yousf³, Saima Kalsoom⁴, Ehsan Ullah Mughal⁵, Sajjad Sumra⁵, Aneela Maalik⁶*

¹Department of Chemistry, Quaid-i-Azam University, Islamabad-45320, Pakistan.
²Department of Physics, University of Sargodha, Sargodha-40100, Pakistan
³H. E. J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi-75270, Pakistan.
⁴Centre for Interdisciplinary Research in Basic Sciences (CIRBS), International Islamic University, Islamabad, Pakistan.
⁵Department of Chemistry, University of Gujrat, Gujrat-50700, Pakistan.
⁶Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Islamabad-45550, Pakistan.

*Correspondence: Aneela Maalik, aneela.maalik@comsats.edu.pk, Tel.: +923335490834; Muhammad Naveed Zafar, mnzafar@qau.edu.pk, Tel.: +923314503061
Figure S1: 1H, 13CNMR, IR spectra of [H$_2$L]1][OTf]$_2$
Figure S2: 1H, 13CNMR, IR spectra and HOMO-LUMO of [H$_2$L2][OTf]$_2$
Bond angles

Concerned Atoms	Experimental	Calculated	Concerned Atoms	Experimental	Calculated
C1-N1-C2	123.0	124.9	O1-S1-O3	114.8	113.2
N1-C2-C3	123.6	122.9	O2-S1-O1	114.3	113.8
C2-C3-C4	120.6	121.4	O3-S1-O2	115.3	105.1
C3-C4-C5	119.8	119.5	O1-S1-C8	103.7	106.2
C4-C5-C6	119.0	118.7	O3-S1-C8	103.8	106.5
C5-C6-N2	121.7	122.0	O2-S1-C8	102.7	106.4
C6-N2-C7	119.4	117.2	F3-C8-F1	107.1	110.1
C6-N2-C2	120.8	121.5	F2-C8-F3	106.0	111.3
N2-C2-C3	118.0	117.0	F1-C8-F2	105.1	109.5
C7-N2-C2	119.7	121.2	F2-C8-S1	112.0	106.0
N2-C2-N1	118.4	120.1	F3-C8-S1	111.8	108.5

Figure S3: 1H, 13CNMR, IR spectra, HOMO-LUMO and bond angles of [H$_2$L$_3$][OTf]$_2$
HOMO (Gaussian) LUMO (Gaussian)

Bond angles

Atom no's	Experimental	Calculated	Atom no's	Experimental	Calculated
C1-N1	1.46	1.49	O1-S1	1.43	1.47
N1-C2	1.34	1.39	O2-S1	1.43	1.39
C2-C3	1.40	1.41	S1-C8	1.82	1.82
C3-C4	1.36	1.39	F3-C8	1.31	1.37
C4-C5	1.39	1.38	F1-C8	1.33	1.36
C5-C6	1.34	1.38	F2-C8	1.32	1.36
C6-N2	1.36	1.35	C1-C1	1.51	2.19
N2-C7	1.46	1.48	N2-C2	1.36	1.38
N2-C2	1.36	1.38	O3-S1	1.42	1.47
O3-S1	1.42	1.47	O1-S1	1.43	1.47

Figure S4: 1H, 13CNMR, IR spectra, HOMO-LUMO & bond angles of [H$_2$L$_4$][OTf]$_2$
Bond angles

Concerned Atoms	Experimental	Calculated
C1-N1-C2	123.7	122.9
N1-C2-C3	123.5	121.7
C2-C3-C4	121.2	121.4
C3-C4-C5	119.6	119.3
C4-C5-C6	119.0	118.8
C5-C6-N2	122.7	122.1
C6-N2-C2	120.0	121.2
N2-C2-C3	117.4	117.3
N2-C2-N1	119.1	121.0
C6-N2-C7	120.1	116.9
N2-C7-C8	110.0	109.5

Figure S5: 1H, 13CNMR, IR spectra, HOMO-LUMO and bond angles of [H$_2$L$_5$][I]$_2$
Bond angles

Concerned Atoms	Experimental	Calculated	Concerned Atoms	Experimental	Calculated
Cl₁-C₁-N₁	117.5	117.4	H6B-C₆-H₆C	109.5	109.5
C₆-N₁-C₅	118.7	118.8	H6B-C₆-H₆A	109.5	109.5
C₁-N₁-C₆	119.3	120.3	H₆A-C₆-H₆C	109.5	109.5
C₆-C₅-N₁	121.9	120.6	H₆C-C₆-N₁	109.5	109.5
N₁-C₁-C₂	121.2	119.6	H₆A-C₆-N₁	109.5	109.5
C₅-C₄-C₃	119.4	119.0	F₁-C₇-S₁	112.0	111.9
C₄-C₃-C₂	119.7	119.5	F₃-C₇-S₁	111.4	111.6
C₃-C₂-C₁	119.0	119.0	O₂-S₁-O₁	114.0	113.9

![Infrared spectra](image_url)
Concerned Atoms	Experimental	Calculated
Cl1-C1-C2	121.3	118.1
C7-S1-O2	103.3	106.4
C7-S1-O3	103.4	106.5
C7-S1-O1	103.1	106.4
F1-C7-F3	108.4	112.5
F3-C7-F2	109.6	113.4
F1-C7-F2	106.5	105.7
F2-C7-S1	112.6	107.6
O2-S1-O3	115.6	114.5

Bond lengths

Figure S6: ¹H, ¹³C NMR, IR, bond lengths and bond angles of [P₂Me₂][CF₃SO₃]
Bond angles

Concerned Atoms	Experimental	Calculated	Concerned Atoms	Experimental	Calculated
C5-C4-C3	114.5	119.2	C4-C5-H5	114.2	114.1
C4-C3-C2	113.7	119.2	N1-C6-H6A	110.0	109.1
C3-C2-C1	130.6	120.3	N1-C6-H6B	109.9	108.7
I1-C1-N1	117.7	125.5	N1-C6-C7	109.1	108.3
N1-C5-C4	131.5	121.6	H6A-C6-H6B	108.2	107.8
I1-C1-C2	127.7	115.1	H6A-C6-C7	109.9	108.9
N1-C6-C7	109.1	109.8	H6B-C6-C7	109.8	108.9
C1-N1-C6	114.7	115.4	C6-C7-H7A	109.5	108.7
C5-N1-C6	130.1	131.0	C6-C7-H7B	109.5	108.7
Concerned Atoms	Experimental values	Computed values	Concerned Atoms	Experimental values	Computed values
----------------	---------------------	----------------	----------------	---------------------	----------------
C1-I1-I2	177.5	178.4	C6-C7-H7C	109.5	108.7
C1-C2-H2	114.6	114.5	H7A-C7-H7B	109.5	108.7
H2-C2-C3	114.8	113.9	N1-C1-C2	114.6	114.4
C2-C3-H3	123.1	122.4	H7A-C7-H7C	109.5	108.9
H3-C3-C4	123.2	122.5	H7B-C7-H7C	109.4	108.9

Bond lengths

Figure S7: 1H, 13CNMR, IR spectra, HOMO LUMO, bond lengths and bond angles of $[P_{3}^{3}E_{3}][I]$.

Table 1: Crystal structure Data of S3

Table 1: Crystal data and structure refinement for a.

- **Identification code**: 8A
- **Empirical formula**: C10 H13 F3 N2 O3 S
- **Formula weight**: 298.28
- **Temperature**: 100(2) K
- **Wavelength**: 1.54178 Å
Crystal system Orthorhombic

Space group Pbcn

Unit cell dimensions
\[a = 15.5634(3) \text{ Å} \quad \alpha = 90^\circ. \]
\[b = 12.4382(2) \text{ Å} \quad \beta = 90^\circ. \]
\[c = 12.8282(3) \text{ Å} \quad \gamma = 90^\circ. \]

Volume 2483.29(9) Å³

Z 8

Density (calculated) 1.596 Mg/m³

Absorption coefficient 2.780 mm⁻¹

F(000) 1232

Crystal size 0.170 x 0.050 x 0.040 mm³

Theta range for data collection 4.551 to 68.305°.

Index ranges
\[-18 \leq h \leq 18, \quad -14 \leq k \leq 14, \quad -15 \leq l \leq 15 \]

Reflections collected 36806

Independent reflections 2282 [R(int) = 0.0771]

Completeness to theta = 67.679° 100.0 %

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 2282 / 0 / 177

Goodness-of-fit on F² 1.049

Final R indices [I>2sigma(I)]
R1 = 0.0580, wR2 = 0.1377

R indices (all data)
R1 = 0.0684, wR2 = 0.1446

Extinction coefficient n/a

Largest diff. peak and hole 1.159 and -0.746 e.Å⁻³

Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10⁴)

for a. U(eq) is defined as one third of the trace of the orthogonalized Uᵢⱼ tensor.
	x	y	z	U(eq)
S(1)	2443(1)	6040(1)	5767(1)	17(1)
F(1)	894(2)	5291(2)	5554(4)	104(2)
F(2)	1788(1)	4081(2)	5875(2)	32(1)
F(3)	1746(3)	4798(3)	4369(2)	99(2)
O(1)	2345(2)	6101(2)	6870(2)	50(1)
O(2)	3253(2)	5576(2)	5474(3)	46(1)
O(3)	2196(2)	6945(2)	5156(2)	32(1)
N(1)	4128(2)	4665(2)	2998(2)	14(1)
N(2)	3768(2)	6459(2)	3240(2)	16(1)
C(1)	3932(2)	7474(3)	3596(3)	23(1)
C(2)	4672(2)	7707(3)	4100(3)	27(1)
C(3)	5262(2)	6879(3)	4275(2)	21(1)
C(4)	5089(2)	5857(3)	3949(2)	16(1)
C(5)	4325(2)	5635(2)	3398(2)	13(1)
C(6)	2971(2)	6281(3)	2649(3)	22(1)
C(7)	4699(2)	3727(2)	2979(2)	13(1)
C(8)	4142(2)	2714(2)	2962(3)	17(1)
C(9)	4689(2)	1693(3)	2960(3)	21(1)
C(10)	1688(2)	4992(3)	5367(3)	28(1)

Bond lengths [Å] and angles [Å°] for a.

S(1)-O(3) 1.425(3)
Bond	Length
S(1)-O(1)	1.426(3)
S(1)-O(2)	1.437(3)
S(1)-C(10)	1.828(4)
F(1)-C(10)	1.313(5)
F(2)-C(10)	1.315(4)
F(3)-C(10)	1.306(5)
N(1)-C(5)	1.346(4)
N(1)-C(7)	1.468(4)
N(1)-H(5)	0.84(4)
N(2)-C(5)	1.358(4)
N(2)-C(1)	1.367(4)
N(2)-C(6)	1.470(4)
C(1)-C(2)	1.352(5)
C(1)-H(1)	0.9500
C(2)-C(3)	1.398(5)
C(2)-H(2)	0.9500
C(3)-C(4)	1.366(5)
C(3)-H(3)	0.9500
C(4)-C(5)	1.412(4)
C(4)-H(4)	0.9500
C(6)-H(6A)	0.9800
C(6)-H(6B)	0.9800
C(6)-H(6C)	0.9800
C(7)-C(8)	1.529(4)
C(7)-C(7)#1	1.546(6)
Bond/Angle	Distance/Value
--	----------------
C(7)-H(7)	1.0000
C(8)-C(9)	1.528(4)
C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900
C(9)-C(9)#1	1.526(7)
C(9)-H(9A)	0.9900
C(9)-H(9B)	0.9900
O(3)-S(1)-O(1)	118.35(19)
O(3)-S(1)-O(2)	114.25(18)
O(1)-S(1)-O(2)	112.0(2)
O(3)-S(1)-C(10)	103.68(16)
O(1)-S(1)-C(10)	104.37(18)
O(2)-S(1)-C(10)	101.78(18)
C(5)-N(1)-C(7)	125.5(3)
C(5)-N(1)-H(5)	121(3)
C(7)-N(1)-H(5)	113(3)
C(5)-N(2)-C(1)	121.9(3)
C(5)-N(2)-C(6)	120.1(3)
C(1)-N(2)-C(6)	118.0(3)
C(2)-C(1)-N(2)	121.2(3)
C(2)-C(1)-H(1)	119.4
N(2)-C(1)-H(1)	119.4
C(1)-C(2)-C(3)	118.6(3)
C(1)-C(2)-H(2)	120.7
C(3)-C(2)-H(2) 120.7
C(4)-C(3)-C(2) 120.5(3)
C(4)-C(3)-H(3) 119.8
C(2)-C(3)-H(3) 119.8
C(3)-C(4)-C(5) 120.1(3)
C(3)-C(4)-H(4) 119.9
C(5)-C(4)-H(4) 119.9
N(1)-C(5)-N(2) 118.3(3)
N(1)-C(5)-C(4) 123.9(3)
N(2)-C(5)-C(4) 117.7(3)
N(2)-C(6)-H(6A) 109.5
N(2)-C(6)-H(6B) 109.5
H(6A)-C(6)-H(6B) 109.5
N(2)-C(6)-H(6C) 109.5
H(6A)-C(6)-H(6C) 109.5
H(6B)-C(6)-H(6C) 109.5
N(1)-C(7)-C(8) 108.2(2)
N(1)-C(7)-C(7)#1 112.4(2)
C(8)-C(7)-C(7)#1 109.4(2)
N(1)-C(7)-H(7) 109.0
C(8)-C(7)-H(7) 109.0
C(7)#1-C(7)-H(7) 109.0
C(9)-C(8)-C(7) 111.7(3)
C(9)-C(8)-H(8A) 109.3
C(7)-C(8)-H(8A) 109.3
C(9)-C(8)-H(8B) 109.3
C(7)-C(8)-H(8B) 109.3
H(8A)-C(8)-H(8B) 107.9
C(9)#1-C(9)-C(8) 110.8(2)
C(9)#1-C(9)-H(9A) 109.5
C(8)-C(9)-H(9A) 109.5
C(9)#1-C(9)-H(9B) 109.5
C(8)-C(9)-H(9B) 109.5
H(9A)-C(9)-H(9B) 108.1
F(3)-C(10)-F(1) 107.2(4)
F(3)-C(10)-F(2) 108.6(3)
F(1)-C(10)-F(2) 105.4(3)
F(3)-C(10)-S(1) 111.3(3)
F(1)-C(10)-S(1) 110.6(3)
F(2)-C(10)-S(1) 113.5(2)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,-z+1/2

Anisotropic displacement parameters (Å² x 10⁹) for a. The anisotropic displacement factor exponent takes the form: -2π²[h²a*²U¹¹ + ... + 2 h k a* b* U¹²]

	U¹¹	U²²	U³³	U¹²	U¹³	U¹²
S(1)	16(1)	15(1)	21(1)	0(1)	-3(1)	-1(1)
F(1)	19(1)	34(2)	257(6)	23(2)	-33(2)	-4(1)
Atom	x	y	z	U(eq)		
------	-----	-----	-----	-------		
F(2)	33(1)	20(1)	42(1)	9(1)	-14(1)	-6(1)
F(3)	32(2)	30(2)	27(2)	2(1)	-28(2)	-83(3)
O(1)	11(1)	11(2)	11(1)	11(2)	-22(2)	
O(2)	11(1)	11(2)	11(1)	11(2)	-22(2)	
O(3)	11(1)	11(2)	11(1)	11(2)	-22(2)	
N(1)	11(1)	11(2)	11(1)	11(2)	-22(2)	
N(2)	11(1)	11(2)	11(1)	11(2)	-22(2)	
C(1)	11(1)	11(2)	11(1)	11(2)	-22(2)	
C(2)	11(1)	11(2)	11(1)	11(2)	-22(2)	
C(3)	11(1)	11(2)	11(1)	11(2)	-22(2)	
C(4)	11(1)	11(2)	11(1)	11(2)	-22(2)	
C(5)	11(1)	11(2)	11(1)	11(2)	-22(2)	
C(6)	11(1)	11(2)	11(1)	11(2)	-22(2)	
C(7)	11(1)	11(2)	11(1)	11(2)	-22(2)	
C(8)	11(1)	11(2)	11(1)	11(2)	-22(2)	
C(9)	11(1)	11(2)	11(1)	11(2)	-22(2)	
C(10)	11(1)	11(2)	11(1)	11(2)	-22(2)	

Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^3) for a.
H(3)	5787	7029	4623	25
H(4)	5484	5294	4094	19
H(6A)	3111	6002	1955	32
H(6B)	2660	6962	2580	32
H(6C)	2611	5759	3019	32
H(7)	5056	3725	3628	15
H(8A)	3762	2710	3581	20
H(8B)	3774	2723	2333	20
H(9A)	5016	1646	3620	25
H(9B)	4309	1056	2915	25
H(5)	3670	4570	2660	24(10)

Torsion angles [Å°] for a.

Torsion Angle	Value
C(5)-N(2)-C(1)-C(2)	1.8(5)
C(6)-N(2)-C(1)-C(2)	-176.7(3)
N(2)-C(1)-C(2)-C(3)	-1.6(5)
C(1)-C(2)-C(3)-C(4)	-0.5(5)
C(2)-C(3)-C(4)-C(5)	2.3(5)
C(7)-N(1)-C(5)-N(2)	171.9(3)
C(7)-N(1)-C(5)-C(4)	-6.3(5)
C(1)-N(2)-C(5)-N(1)	-178.2(3)
C(6)-N(2)-C(5)-N(1)	0.3(4)
C(1)-N(2)-C(5)-C(4)	0.0(4)
C(6)-N(2)-C(5)-C(4)	178.6(3)
C(3)-C(4)-C(5)-N(1)	176.1(3)
C(3)-C(4)-C(5)-N(2) -2.1(4)
C(5)-N(1)-C(7)-C(8) 153.4(3)
C(5)-N(1)-C(7)-C(7)#1 85.7(4)
N(1)-C(7)-C(8)-C(9) -179.1(3)
C(7)#1-C(7)-C(8)-C(9) 58.3(4)
C(7)-C(8)-C(9)-C(9)#1 -56.5(4)
O(3)-S(1)-C(10)-F(3) 59.4(4)
O(1)-S(1)-C(10)-F(3) -176.1(3)
O(2)-S(1)-C(10)-F(3) -59.5(4)
O(3)-S(1)-C(10)-F(1) -59.6(4)
O(1)-S(1)-C(10)-F(1) 64.9(4)
O(2)-S(1)-C(10)-F(1) -178.4(3)
O(3)-S(1)-C(10)-F(2) -177.8(3)
O(1)-S(1)-C(10)-F(2) -53.2(3)
O(2)-S(1)-C(10)-F(2) 63.4(3)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,-z+1/2

Hydrogen bonds for a [Å and °].

D-H...A	d(D-H)	d(H...A)	d(D...A)	<(DHA)
C(1)-H(1)...F(3)#2	0.95	2.51	3.233(4)	132.7
C(2)-H(2)...F(1)#3	0.95	2.36	3.165(5)	142.4
C(4)-H(4)...O(2)#4	0.95	2.31	3.221(4)	160.4
	d	r	D(μm)	ϕ
------------------	-----	-----	-----------	-----
C(6)-H(6B)...O(1)	0.98	2.58	3.442(5)	147.4
C(6)-H(6C)...F(3)	0.98	2.50	3.450(5)	163.9
N(1)-H(5)...O(1)	0.84(4)	2.45(4)	3.271(5)	167(4)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,-z+1/2
#2 -x+1/2,y+1/2,z
#3 x+1/2,-y+3/2,-z+1
#4 -x+1,-y+1,-z+1
#5 -x+1/2,-y+3/2,z-1/2
#6 x,-y+1,z-1/2