Supplementary Information for
Experimental Demonstration of Quantum Digital Signatures

Patrick J. Clarke\(^1\), Robert J. Collins\(^1\), Vedran Dunjko\(^1\), Erika Andersson\(^1\), John Jeffers\(^2\),
Gerald S. Buller\(^1\)

\(^1\)SUPA, School of Engineering and Physical Sciences, David Brewster Building,
Heriot-Watt University, Edinburgh, EH14 4AS, UK.
\(^2\)SUPA, Department of Physics, John Anderson Building, University of Strathclyde,
107 Rottenrow, Glasgow, G4 0NG, UK.

Correspondence to: r.j.collins@hw.ac.uk.
Supplementary Figure S1 | An estimation of the variation of the gap with mean photon number per pulse. This estimation is based on predictions for the cost matrices and count rates that have been produced using the theory model described in the Methods section. To calculate the errors we considered that there is a square root uncertainty in count rate, while uncertainty in the mean photon number is dominated by a worst case scenario assumption than the pulse-to-pulse variance in the output power of our laser is the experimentally measured maximum of ±1.5%.
Supplementary Figure S2 | Passive and active cheating strategies in the multiport. (a) In the passive strategy, Bob’s response state is equal to Charlie’s saved state. Consequently, the probability P_0 of not detecting a photon at the multiport null-port is unity whereas the probability of detecting one or more photons $P_{>0}$ is zero. (b) In an active strategy, the probability P_0 is non-zero. It is, however, equal to the expected fidelity between the passive and active strategy signature elements.
Supplementary Table

	Charlie multiport signal (counts s\(^{-1}\))	Bob multiport signal (counts s\(^{-1}\))	Charlie multiport null-port (counts s\(^{-1}\))	Bob multiport null-port (counts s\(^{-1}\))
Multiport input to Charlie blocked	9.1×10\(^5\)	2.84×10\(^5\)	9.6×10\(^5\)	2.61×10\(^5\)
Multiport input to Bob blocked	1.01×10\(^6\)	6.25×10\(^5\)	8.5×10\(^5\)	7.17×10\(^5\)

Supplementary Table S1 | The count rate of the multiport outputs were monitored when alternatively one of the inputs to the multiport, either at Bob or at Charlie, were blocked. All values were measured using the same thick junction silicon avalanche diode.
Supplementary Discussion

In this section we provide the details of the security analysis of the three-party QDS protocol realised using coherent states. The security analysis assuming passive attacks is based on observed experimental results, whereas the preliminary analysis of security under general types of attacks is performed under certain assumptions. In particular, we calculate the probabilities of successful forging, and repudiation by malevolent parties as functions of private key lengths, and show that the presented protocol is asymptotically robust.

Protocol outline

1. To sign a single bit (message $m=0$ or 1) in the future, Alice generates two sequences $\text{PrivKey}_0 = (\theta_1^0, \ldots, \theta_L^0)$ and $\text{ PrivKey}_1 = (\theta_1^1, \ldots, \theta_L^1)$, of L randomly chosen angles from the set of N equally spaced phases, so $\theta_r^m \in \{ \frac{2r\pi}{N} | r = 0, \ldots, N - 1 \}$. The pair $(m, \text{ PrivKey}_m)$ is called a private key pair for message m.

2. Alice then generates two copies of a sequence of coherent states $\text{QuantSig}_0 = (\rho_1^0, \ldots, \rho_L^0)$ with the coherent phases matching the angles in the sequence PrivKey_0, thus $\rho_k^0 = |e^{i\theta_k^0}\alpha\rangle\langle e^{i\theta_k^0}\alpha|$ where α is a real positive amplitude. A sequence of such states is called a quantum signature. She sends a copy of the quantum signature to each of Bob and Charlie each, informing them that they correspond to message $m=0$. Alice then does analogously for the message $m=1$. The individual state ρ_k^m we refer to as the kth quantum signature element state for message m.

3. Bob and Charlie send their copies of the sequences QuantSig_0 and QuantSig_1 through the multiport, saving the output states in quantum memory, noting which quantum signature corresponds to message $m=0$ and which to $m=1$. The exit null-ports on Bob’s and Charlie’s side of the multiport are equipped with photon detectors and the total number of photon events here will serve to disable certain types of forging attacks, but are not crucial for security against message repudiation. For the simple case of passive attacks which we define and analyse first, these outcomes will be ignored.

4. To sign a single bit, say $m=0$ with Bob, Alice announces the message m and the corresponding private key to Bob (thus she sends the pair $(0, \text{ PrivKey}_0)$ over an untrusted channel). To authenticate the signature, Bob generates coherent states of amplitude α with the relative phase defined by the declared private key, and interferes them individually with the states he has in his quantum memory. He monitors the number of photodetection events on his signal null-port arm and confirms the authenticity of the message (i.e. the message passes authentication) if the number of photodetection events was below $s_A L$. The parameter s_A is called the authentication threshold.
5. To prove to Charlie that he received the message $m = 0$ from Alice, Bob forwards to Charlie the pair $(0, \text{PrivKey}_b)$ he received from Alice. Charlie then performs an analogous procedure to Bob, and he verifies the message (i.e. the message passes verification) if his number of photodetection events is below s_vL where s_v is called the verification threshold, with $0 < s_v < s_v < 1$.

If any of the thresholds are breached, the protocol is aborted.

Definitions of security

The presented Quantum Digital Signatures protocol is designed to be immune to two types of malicious activities: forging and repudiation. Immunity to forging signifies that any receiving party will reject any message which was not sent by Alice herself. Immunity to repudiation signifies that if Alice sends a message to Bob which passes authentication, afterwards the same message will pass verification with Charlie as well – i.e. Alice cannot make Bob and Charlie disagree on the authenticity (and consequently the content) of her message.

More formally we have the following:

- We say that a protocol realising QDS is secure against forging if the probability of a recipient successfully producing, without receiving it from Alice, a private key of message m which will pass verification by the other recipients is decaying exponentially quickly in terms of the quantum signature length L.

- We say that a protocol realising QDS is secure against repudiation if, for any malicious activity on the side of Alice, the probability of a message failing verification with one recipient once it has already passed authentication with the other is decaying exponentially quickly in terms of the quantum signature length L.

- We say that a protocol realising QDS is robust if in the setting where all parties are honest, a message will be authenticated and verified except with probability decaying exponentially quickly in terms of the quantum signature length L.

Throughout this document we will always consider Bob to be the forger. Note that any security can only be guaranteed if only one party is cheating - two cooperating parties can always cheat on the third. Thus, when analysing security against forging, Alice is assumed to be honest, and in the security against repudiation, Bob and Charlie are assumed to be honest. We also assume that the quantum channel from Alice to an individual recipient is under the recipient’s control during the distribution step (step 2 in the protocol outline). This means that while the quantum channel is not assumed to be private, Alice and the recipient have some means to ensure that an external party is not tampering with the states sent over this channel. Authenticity of public keys is the usual assumption in public key cryptographic schemes. The quantum signatures in QDS bare resemblance to public keys in classical cryptography however given that they are quantum states this parallel is not perfect. If one allows public keys to be quantum states then the assumption on the authenticity of the quantum channels to the multiport is simply the standard assumption in public key settings. Otherwise some method of authenticating quantum signatures has to be introduced. A generic solution to this problem would be to employ some type of quantum message authentication scheme which would have to be adapted to work for coherent states. However since the set of messages Alice sends are restricted and similar to states used in QKD it is possible that more direct approaches to resolving a man-in-the middle...

6
attack (attack by impersonation) like the ones discussed in the main paper may be employed. This could possibly be achieved through means similar to those used in quantum key distribution, noting that the security for this has only been rigorously proven in the qubit setting. That is, by Alice disclosing some of the signature states, the recipient measuring the states accordingly, and checking for discrepancies in Alice’s description of the states and the measurement results. As for quantum key distribution, the required exchange of classical information is then assumed to take place over classical authenticated channels. Since this step is intuitively analogous to the situation for quantum key distribution, we will concentrate our security analysis to aspects which are different to quantum key distribution, namely message transferability and forging by a signature recipient. Similarly, it is assumed that Alice cannot tamper with the classical channels used in the verification step (step 5 in the protocol outline). This authentication could be ensured by classical private key authentication schemes, or by employing the QDS protocol itself, which also ensures message authentication.

Related to this, an external party with access to the quantum channels during signature distribution could attempt a measure-and-resend attack. If linearly independent states are used, then both for quantum key distribution and quantum digital signatures, the success probability of unambiguously identifying the state will limit the total loss between sender and recipient that can be tolerated. In our case, however, the tolerated loss is relatively high, since the probability to unambiguously identify the correct state among the eight states used is considerably lower than for standard quantum key distribution schemes using two non-orthogonal states. The requirement stated in the main paper that the accessible information in the \(N \) signature should be much lower than \(\log N \) will also contribute to the fact that the probability to correctly identify the state must necessarily be low. We also note that we have implemented a first experimental realisation of a quantum digital signature scheme, and we do not rule out realisations of protocols employing linearly dependent states, so that this type of attack is impossible.

Security against repudiation - Cheating Alice

The formal definition of security against message repudiation is given in terms of a conditional statement: if one recipient party authenticates the message (say Bob), the other party (Charlie) will verify it as well. This definition agrees with the initial security requirements given in ref 10 and ref 16 and is interpreted as a guarantee to the recipients in the protocol.

Thus, assuming Alice wishes to cheat on Bob, Alice succeeds in cheating only if she gets Bob to accept, and Charlie to reject. This means that she sends a message, say \((0, \text{PrivKey}_0) \), to Bob, he checks it and forwards it to Charlie, who then rejects. For the remainder of this section we analyse the probability of this happening. The robustness of the protocol shall be addressed later on in this document.

The most general state Alice can prepare is \(\pi_{A,B_i,C_i} \), which is a general \(2L+1 \)-partite state. Subsystem \(A \) Alice keeps, and sends partitions \(B_1 \ldots B_L \) to Bob and \(C_1 \ldots C_L \) to Charlie. If Alice is honest there is no subsystem \(A \), and \(C_i \) and \(B_i \) are identical coherent states with a complex phase known to Alice alone, as specified by the protocol.
Cheating Alice - separable attack

We first assume that the multiport Bob and Charlie have is ideal and that the system A is disentangled from the rest of Alice’s state (or simply does not exist), and the subsystems (B_kC_k) and (B_iC_j) are not entangled with each other for $l \neq k$. However, we allow the partitions B_k and C_j to be mutually entangled. This type of an attack we refer to as a separable attack. According to the protocol specifications Charlie and Bob will individually run the pairs of states in the systems (B_kC_k) through the multiport, and commit to quantum memory whatever comes out at their signal outputs of the multiport. For the purposes of showing security against repudiation, we can assume that they ignore the measurement outcomes on the multiport null-ports.

For the kth signature element, the joint system of Charlie and Bob which they store into memory is some state $\pi_{B_kC_k}^{\text{out}}$ which is symmetric under permutations of Bob’s and Charlie’s subsystems, as we now show. Let

$$\pi_{B_kC_k}^{\text{out}} = \int_{C_k} P(\alpha, \beta) |\alpha\rangle \langle \alpha| \otimes |\beta\rangle \langle \beta| d^2 \alpha d^2 \beta$$

be any general two mode state given in the P representation. Then the stored output state (when the null-port subsystems have been traced out) is

$$\pi_{B_kC_k}^{\text{out}} = \int_{C_k} P(\alpha, \beta) \left((\alpha + \beta)/\sqrt{2} \right) \left((\alpha + \beta)/\sqrt{2} \right) \otimes \left((\alpha + \beta)/\sqrt{2} \right) \left((\alpha + \beta)/\sqrt{2} \right) d^2 \alpha d^2 \beta,$$

which is symmetric in the sense given above. In the process of checking Alice’s message, Bob and Charlie will perform a sequence of measurements on their subsystems, and the measurements will be identical as they are prescribed by the (same) private key Alice had sent. Since the systems Bob and Charlie have are symmetric under the swap of their subsystems, the a priori probability matrix of their respective outcomes will be symmetric as well.

To explain this let us focus on the kth subsystem $\pi_{B_kC_k}^{\text{out}}$ given above. Let Bob be the first to check this subsystem, by preparing some coherent state prescribed by the (common) private key Alice declared, and interfering that state with his corresponding element of the quantum signature, namely $T_{C_k} \left(\pi_{B_kC_k}^{\text{out}} \right)$, checking whether he gets a photodetection event on his signal null-port. This constitutes a two-outcome measurement characterised by POVM elements Π_0 and Π_1 corresponding to registering a photodetection event or not, applied on the state $T_{C_k} \left(\pi_{B_kC_k}^{\text{out}} \right)$. If Charlie was the first to check, he would have done the same measurement on the subsystem $T_{C_k} \left(\pi_{B_kC_k}^{\text{out}} \right)$. But, since $\pi_{B_kC_k}^{\text{out}}$ is symmetric under subsystem swap, the probability matrix of the joint four outcome measurement $\Pi_{i,j} = \Pi_i \otimes \Pi_j$, for $i, j = 0, 1$, is symmetric as well, so for every possible state $\pi_{B_kC_k}^{\text{out}}$ the probability of getting event outcomes $(0,1)$ (only Charlie registers a photodetection event) and $(1,0)$ (only Bob registers a photodetection event) is the same. Assume Alice wishes Bob to accept and Charlie to reject. Alice requires Charlie to accumulate more photodetection events than Bob. Then the a priori probability of Bob not detecting any photons, and Charlie detecting one or more photons, is no higher than $1/2$ (as the opposite event must be equally likely). According to the protocol specifications, Bob accepts if
he gets less than $s_v L$ photodetection events. Charlie accepts at less than $s_v L$ photodetection events. Thus, Charlie needs to accumulate $(s_v - s_x) L$ photodetection events more than Bob in order for Alice’s cheating to succeed. The choice of values of s_x and s_v come from the security analysis against forging and will be calculated later. The probability of Alice achieving her goal of getting, say Bob to accept, and Charlie to reject is then $d^{(s_v - s_x) L}$, as was shown in ref 16, where d is the probability of getting the outcome $(0,1)$ and equally $(1,0)$. This is maximised for the highest allowable $d = 1/2$ yielding an overall probability of Alice cheating successfully as

$$e_{\text{repudiate}} = \left(\frac{1}{2} \right)^{(s_v - s_x) L}. \quad (S3)$$

Security against repudiation – coherent attacks

In a coherent attack, the entanglement of the states Alice may use is unrestricted. The probability of Alice cheating, in the case where the entanglement of the states she uses to cheat is restricted as described in the previous section, does not change if we slightly modify the protocol: Alice first sends the elements of the quantum signatures, Bob and Charlie run them through the multiport, Alice sends the corresponding angle to both Charlie and Bob, they immediately measure, and at each step Alice learns the outcomes of Bob’s and Charlie’s measurements. This modification does not increase a malevolent Alice’s cheating probability. Thus we have

$$P(\text{Alice Cheats | original protocol, separable attack}) = \quad (S4)$$

$$P(\text{Alice Cheats | modified protocol, separable attack}),$$

and we will next prove

$$P(\text{Alice Cheats | modified protocol, separable attack}) = \quad (S5)$$

$$P(\text{Alice Cheats | modified protocol, coherent attack}).$$

Finally, we will show that the modified protocol can only help Alice in the coherent attack, leading to

$$P(\text{Alice Cheats | modified protocol, coherent attack}) \geq \quad (S6)$$

$$P(\text{Alice Cheats | original protocol, coherent attack}).$$

This proves that coherent attacks cannot help Alice.

As noted, the most general state Alice could use in her attempt to cheat is $\pi_{\bar{A},B_1,C_1,B_2,C_2,\ldots,B_n,C_n}$. The subsystem A remains with Alice, and the rest is sent to Bob and Charlie and will traverse the multiport. First of all, note that in the original protocol, there is no interaction between Alice on one side and Bob and Charlie on the other, once she has declared her private key. If Alice had a system A which is still entangled with whatever Bob and Charlie save after the multiport action, the action of measurement by Bob and Charlie in the verification part cannot convey any information to Alice through the system A, since she does not learn the outcomes of Bob’s and Charlie’s measurements. Hence, she cannot gain anything by manipulating system A, and in the original protocol we may assume that Alice simply uses the state
We will now show that if she uses a separable strategy in the modified protocol, Alice can achieve the same measurement statistics during verification and authentication as by using a coherent attack. Initially, we assume an ideal multiport. The first state Bob and Charlie may measure is $Tr_{B_1...B_M,C_1...C_M}(M(\pi_{B_1,C_1} B_2,C_2,...,B_L,C_L))$ where M denotes the global action of the multiport. Alice could simply have sent this state to Charlie and Bob and achieved the same measurement statistics as for this state (any state she sends which is already symmetric will not be changed by the multiport). However, the measurement outcome may influence the rest of the system, which Alice has not yet sent to Bob and Charlie. However, if the authentication and verification measurement outcomes are revealed to Alice at each step then the state of the rest of her system is also known to her at each step. Then in the sequential setting, she can prepare the corresponding signature state for the second measurement and attain the same measurement statistics. This continues inductively.

Thus we have shown the following: any measurement statistics achieved using a globally entangled cheating state can be achieved using a separable attack, if Alice is allowed to learn the measurement outcomes before sending the next pair of states. This proves the required claim

$$P(\text{Alice Cheats} | \text{modified protocol, individual attack}) = \quad (S8)$$

$$P(\text{Alice Cheats} | \text{modified protocol, coherent attack}).$$

To finalise our proof we need to show that

$$P(\text{Alice Cheats} | \text{modified protocol, coherent attack}) \geq \quad (S9)$$

$$P(\text{Alice Cheats} | \text{original protocol, coherent attack}).$$

This is easy to see as by simply ignoring the information Alice additionally gets in the modified protocol, what Alice runs is effectively the original protocol, barring the timing of the measurements. However, the timing cannot influence the measurement statistics, and hence cannot influence Alice’s cheating probability. So our claim holds and using globally entangled states cannot help Alice repudiate her signed messages.

To summarise, as long as the properties of robustness and security against forging can be maintained for some s_v strictly greater than s_a, then security against repudiation can be guaranteed as well.

Security against repudiation with realistic devices

In the security analysis against repudiation for the ideal case the crux of the argument is that the states Bob and Charlie share are symmetric under swap of their respective subsystems, as this guarantees that for a single pair of states, the probabilities of the outcomes $(0,1)$ and $(1,0)$ of joint measurements made by Bob and Charlie are equal. Since these are equal, each is at most $1/2$, and this value is raised to the exponent $(s_v - s_a) L$ to obtain the upper bound on the probability of Alice successfully cheating. Here we briefly address the effects imperfect realisation may have on the security of our system. Note that the multiport acts as a CPTP map (completely positive trace preserving map, quantum channel) on the input state, where the output state is the joint state of the Bob’s and Charlie’s multiport signal outputs, i.e. elements of the
quantum signature. Let M_{ideal} and M_{real} be the corresponding CPTP maps of the ideal and real multiport. For any input state in we have that $M_{\text{ideal}}(\text{in})$ produces a symmetric probability matrix with respect to outcomes of (identical) measurements done by Charlie and Bob. Assume now that Alice wishes Bob to not register a photodetection event while Charlie does so. This probability for the state $M_{\text{ideal}}(\text{in})$ is at most $1/2$. Let the probability of the same event for the state $M_{\text{real}}(\text{in})$ be d. In this case, the probability of Alice cheating is $d^{L/\pi}$. By the properties of the trace distance (see the “Trace distance and effects (induced probability distributions)” section) we have that $T_d(M_{\text{real}}(\text{in}),M_{\text{ideal}}(\text{in})) \geq |1/2 - d|$, where $T_d(\rho, \eta)$ denotes the trace distance between the states ρ, η. Thus, as long as $D(M_{\text{real}}(\text{in}),M_{\text{ideal}}(\text{in})) < 1/2$ the probability of Alice cheating will diminish exponentially quickly in terms of L.

One way to conclusively show that $T_d(M_{\text{real}}(\text{in}),M_{\text{ideal}}(\text{in})) < 1/2$ holds for our system would be to use full process tomography, which was not performed for our system. (Full process tomography for CV systems is not as well investigated as for qubits, and even qubit process tomography is experimentally demanding.) To evaluate where the actual worst case value d may lie for our implementation we instead analyse how different types of possible imperfections influence this parameter. The imperfections may in general occur within the multiport, but also during the processes leading to Bob and Charlie finally detecting or failing to detect photons, that is, the events of interest (0,1) and (1,0).

In principle M_{real} can be written as a composition of M_{ideal} with an additional noise/loss CPTP map collecting all the effects caused by the imperfections in our system. The imperfections characterising the noise/loss map are brought about by the imperfections within the multiport itself. Additionally we also consider the imperfections caused by the realistic authentication/verification process and their effect on the security against repudiation.

If identical sets of equipment are used in Charlie and Bob for the purposes of authentication/verification then the losses and noise induced in the individual arms act as identical and uncorrelated (separable) CPTP maps on the states exiting the multiport. This process can only reduce the trace distance between the reduced states of Bob’s and Charlie’s systems, thus such noise can only reduce a malevolent Alice’s success probabilities.

For the purposes of upper bounding the repudiation probability (i.e. worst-case scenario) we may ignore uncorrelated imperfections associated with authentication and verification, and the only imperfections which may help Alice have to lie within the multiport itself. Here, again, any imperfection causing identical uncorrelated noise/loss cannot help Alice, by the arguments above. Hence, we only need to focus on correlated, or differential imperfections inducing correlated or unequal CPTP maps contributing to the cumulative noise/loss map on Bob’s and Charlie’s reduced states. In our implementation of the multiport, the most likely culprit of differential imperfections comes from the variable air gaps and attenuators placed into the arms of the interferometers. The optical attenuators compensate for different losses in the optical components ensuring the equal intensity of interfering beams. The air gaps compensate for variations in the optical path length in the interferometers which arise from environmental fluctuations. These technical necessities primarily induce an uneven loss in both signal and
reference pulses with Bob and Charlie and Bob respectively, and this is the effect we now focus on. This differential loss was studied by the experiment explained in Supplementary Table S1.

We can see in Supplementary Table S1 that differential loss causes Bob to receive on average no less than $1/4$ of the photons compared to Charlie. Since both the signal and the reference pulse are identically attenuated this can, in the worst case scenario, cause the event (0,1) to be ten times more likely than (1,0). If Alice wishes to repudiate her message with the party with the lower loss (Charlie), this induces the worst case value of $d = 4/5$. Even if Bob’s and Charlie’s output losses were a thousand-fold different (inducing the value $d = 1000/1001$), the forging probability as a function of the signature length L is significantly higher than the refutation probability, which will become clear from the computations to follow. Thus if one is interested in probability of the protocol failing in any way, security against forging (and likewise the required robustness) will constitute the dominant factor in the overall failure probability of the protocol. Forging is therefore the focus of the remainder of this document.

Security against forgery

We identify two types of cheating strategies for forger Bob:

- **Passive strategy**: Bob does not interfere during distribution of the quantum signatures, but tries to cheat by inspecting his copy of the quantum signature. These types of attacks are somewhat analogous to individual and collective attacks in quantum key distribution (QKD).

- **Active strategy**: Bob is malevolent throughout the distribution of the quantum signatures - this constitutes the most general type of attacks. These attacks are somewhat analogous to coherent attacks in QKD.

We begin with analysis of the passive attack, the results of which will be the crux of the security analysis for active attacks.

Passive forging - separable attacks

In this attack, Bob does not interfere throughout the quantum signature distribution phase. To forge a message, he applies one (optimal) measurement to estimate the phase of each of his elements of the quantum signature and sends his best guess to Charlie. To calculate Bob’s cheating probability we focus on calculating the probability of Bob not generating a photodetection event with Charlie, per individual quantum signature element. This probability is given by

$$P_{\text{forgery}} = \min_{\{n_p\}} \frac{1}{N} \sum_\phi \sum_\theta Tr(\Pi_\phi \rho^\theta) c_{\phi,\theta}$$ \hspace{1cm} (S10)

where

- $Tr(\Pi_\phi \rho^\theta)$ is the probability of Bob measuring (and thus declaring) the angle ϕ if the state he measured was encoded with the angle θ.

- $c_{\phi,\theta}$ is the probability of Charlie registering a photodetection event in his signal null-port if the state he had in his memory was encoded with θ and Bob declared ϕ.

12
The expression for \(p_{\text{forgery}} \) above is minimised over all possible POVMs. The minimum constitutes the cost of a minimum cost measurement, and the criteria for the minimum are given by\(^{18}\)

1. \[\Gamma = \sum_{i} \Pi_i W_i = \sum_{i} W_i \Pi_i \text{ for } W_i = 1/N \sum_{j} C_{ij}, p_j \] (S11)
2. \[\Pi_I \Pi_i (W_i - \Gamma) = (W_i - \Gamma) \Pi_i = 0 \text{ for all } i \] (S12)
3. \((W_i - \Gamma) \) is positive-semidefinite for all \(i \) (S13)

We refer to the set of conditions above (equations S11 to S14) as Helstrom criteria 1-4, respectively. The cost matrix \(C \) with elements \(c_{\phi,\theta} \) is obtained from experimental results. For clarity, the cost matrix is indexed according to encoding angles. However, to remain compatible with the indexing tradition for minimum cost measurements, in the abstract formulation of the problem the indexing is performed across integers, so that the index angle \(\theta = 2k\pi/N \) corresponds to the integer index \(k \).

In the most general case for an arbitrary cost matrix, the computation of the optimal measurement is difficult. However note that if the cost matrix \(C \) is replaced by a cost matrix where each entry is less than or equal to the entries of the original cost matrix (an element dominated matrix), the overall cost of the optimal transform can only decrease. In the ideal case, where the experiment is completely symmetric, the cost matrix \(C \) is circulant and symmetric. However, in reality it is just close to a symmetric and circulant matrix. If we now substitute the cost matrix with the closest element dominated (element-wise smaller than the cost matrix) symmetric and circulant matrix, and compute the cost for this matrix, by the remark above we have found a lower bound for \(p_{\text{forgery}} \). In a similar fashion, we can compute the upper bound for the same expression by considering the symmetric and circulant cost matrix which upper bounds the elements of the actual cost matrix \(C \). As we will see, these two values are very close, so the lower bound we will compute is very close to the actual value. This reduction simplifies the computation as for circulant and symmetric positive cost matrices the first, second and third Helstrom criteria are satisfied for the so-called minimum-error or square-root measurement\(^{18}\). This statement is proven in the “Statements about minimum cost measurements” section, where the square-root measurement is also given. The conditions on the cost matrix for the fourth Helstrom criterion to be satisfied with the square-root measurement are more involved, and for our experimental results we have verified this criterion numerically.

If Bob were honest, the probability of him triggering a photodetection event with Charlie, per quantum signature element state, in Charlie’s signal null-port, is given by the average of the diagonal of the cost matrix \(C \). Let this value be \(p_{\text{original}} \), and let the corresponding value if Bob is forging be \(p_{\text{forgery}} \). We define the gap between these two values as \(g = p_{\text{forgery}} - p_{\text{original}} \). If we now set the authentication and verification thresholds at

\[s_a = p_{\text{original}} + 1/3g \] (S15)

and

\[s_v = p_{\text{forgery}} - 1/3g = p_{\text{original}} + 2/3g \] (S16)
then the probability of Bob successfully forging the signature is equal to the probability that the fraction of photodetection events is less than \(s \), where the expected fraction is \(p_{\text{forgery}} \). Note that the value \((s_v - s_a) \), appearing in the analysis of security against refutation, equals \(1/3 \)g. \(p_{\text{forgery}} \) is then the probability that in a repeated experiment \((M \) times) with a binary outcome with mean \(p_{\text{forgery}} \), the normalised measured outcome diverges from the expectancy by more than \(p_{\text{forgery}} - s_v = 1/3 \)g and this is bounded using Hoeffding’s inequalities as follows:

\[
\epsilon_{\text{forging}} = P(\text{Bob cheats}) \leq 2 \exp\left(-\frac{2}{9} g^2 L\right). \tag{S17}
\]

A similar analysis gives us the robustness as well:

\[
\epsilon_{\text{robustness}} = P(\text{Honest setting abort}) \leq \exp\left(-\frac{2}{9} g^2 L\right) + \exp\left(-\frac{4}{9} g^2 L\right) \tag{S18}
\]

which is bounded above by \(\epsilon_{\text{forging}} \).

Estimation of forging probabilities for the passive attack based on experimental data

The cost matrix realised by our experimental set-up using 8 differing phase states and with average photon number of \(|\alpha|^2 = 0.16 \) per pulse is given by

\[
C = \begin{pmatrix}
3.89 & 4.40 & 5.24 & 5.95 & 6.35 & 6.00 & 5.29 & 4.39 \\
4.56 & 3.88 & 4.43 & 5.29 & 6.04 & 6.39 & 6.02 & 5.20 \\
5.28 & 4.60 & 3.89 & 4.42 & 5.29 & 6.02 & 6.37 & 5.95 \\
5.68 & 5.22 & 4.58 & 3.90 & 4.40 & 5.24 & 5.91 & 6.30 \\
6.36 & 5.68 & 5.27 & 4.59 & 3.89 & 4.43 & 5.54 & 6.01 \\
5.62 & 6.36 & 5.66 & 5.23 & 4.57 & 3.89 & 4.41 & 5.30 \\
5.26 & 5.68 & 6.40 & 5.70 & 5.22 & 4.60 & 3.88 & 4.40 \\
4.61 & 5.24 & 5.65 & 6.36 & 5.68 & 5.22 & 4.56 & 3.88
\end{pmatrix} \times 10^{-3}. \tag{S19}
\]

The cost matrix is related to the values presented in Figure 4. Whereas in Figure 4, the values presented are the encoding errors, the cost matrix values are calculated by dividing the total number of signal null-port counts by the total number of pulses (including vacuum) emitted by Alice during the duration of the measurement (or equivalently clock frequency multiplied by measurement duration). As in Figure 4, the diagonal elements represent the cases when receiver measures using the same phase as set by Alice, the off-diagonal elements represent the cases where a different phase is employed. The number of pulses reaching a receiver’s signal null-port is, roughly speaking, proportional to the intensity of the incident light, and the cost matrix elements will therefore scale linearly with \(|\alpha|^2 \). The uncertainties in the cost matrix values are element dependent but are of the order of \(7 \times 10^{-6} \).

The symmetrised and circularised cost matrix which lower bounds the original cost matrix is characterised by its first row which is given by

\[
C'_{\text{row}} = (3.88, 4.39, 5.22, 5.91, 6.30, 5.91, 5.22, 4.39) \times 10^{-3} \tag{S20}
\]

and the upper bounding symmetrised and circularised matrix is characterised by the row

\[
C''_{\text{row}} = (3.90, 4.43, 5.30, 6.04, 6.39, 6.04, 5.30, 4.43) \times 10^{-3}. \tag{S21}
\]
For both lower and upper bounding cost matrices we have numerically checked that the fourth Helstrom criterion is satisfied, so in both cases, the minimum cost measurement is realised by the square-root measurement, and the costs are given by $\text{cost}_{\text{lower}} = 4.70 \times 10^{-3}$ and $\text{cost}_{\text{upper}} = 4.76 \times 10^{-3}$. As noted, for the worst case scenario, we need to take the largest diagonal element of the actual cost matrix as p_{honest}, which is 3.9×10^{-3}, and the lower and upper bounds on the gap g are $g_{\text{lower}} = 8.03 \times 10^{-4} \pm 0.3 \times 10^{-4}$ and $g_{\text{upper}} = 8.64 \times 10^{-4} \pm 0.6 \times 10^{-4}$. This demonstrates that the bounding technique yields a useful bound. Thus the security of our system is characterised by the lower bound on the gap $g_{\text{lower}} = 8.03 \times 10^{-4} \pm 0.3 \times 10^{-4}$.

We predicted the cost matrices for a range of different $|\alpha|^2$ values using the theoretical model presented in the Methods section and used these to estimate the gap g for each $|\alpha|^2$ value. A graph of these estimations is presented in Supplementary Figure S1. The values of the diagonal elements of the cost matrix were found to range from a minimum of $3.83 \times 10^{-3} \pm 6 \times 10^{-6}$ (occurring at an $|\alpha|^2$ value of 0.04 and a phase encoding of $\pi/8$) to a maximum of $3.97 \times 10^{-3} \pm 6 \times 10^{-6}$ (occurring at an $|\alpha|^2$ value of 0.28 and a phase encoding of $3\pi/8$). As expected the elements of the cost matrix show a strong linear dependence on the value of $|\alpha|^2$. Calculation of the entries of the cost matrix as the function of the coherent state in the quantum signature and the one which we generate to compare it against is straightforward in the ideal case with perfect detectors. It is given by

$$c_{\text{ideal}}^{\text{eff}} = 1 - \exp\left\{-|\alpha|^2 \sin^2\left[\left(\phi - \theta\right)/2\right]\right\}$$ (S22)

Passive attacks with collective measurements

In the security analysis for the passive attack above we have assumed that the malevolent Bob performs individual identical measurements on his quantum signature states in order to produce a ‘best guess’ sequence of phase angles to use when forging a message. A collective measurement may in principle yield a higher probability of forging a message, but here we prove this is not the case. This is not a surprising result as the quantum signature element states are not mutually correlated. Recall, the pivotal value which we used to characterise the security of our system was p_{forgery} - the probability of a cheating Bob not causing a photodetection event during Charlie’s verification phase, per individual quantum signature element state. We now show that any average probability of a cheating Bob not causing a photodetection event during Charlie’s verification phase, per individual quantum signature state, if Bob uses a global measurement, can be achieved by measurements of individual signature states. This shows that collective measurement strategies cannot help a malevolent Bob.

Let $\{\Pi_{\phi}\}, \phi = (\phi_1, \ldots, \phi_L)$ be the POVM elements of any global measurement Bob may employ, where the index is a sequence of angles corresponding to Bob’s estimate of the angles. Then the average probability of Bob not causing a photodetection event with Charlie is
where \(P_{\text{forgery}} = \frac{1}{N} \sum_{\theta} \sum_{\phi} Tr(\Pi_{\theta} \rho^{\theta}) c_{\phi, \theta} \) (S23) with \(\rho^{\theta} = \bigotimes_{k=1}^{L} e^{i \theta_k} \alpha |e^{i \theta_k} \alpha \rangle \langle e^{i \theta_k} \alpha| \) and \(c_{\phi, \theta} = \frac{1}{L} \sum_{k=1}^{L} c_{\phi_k} / L \). Then we have the following derivation:

\[
P_{\text{forgery}} = \frac{1}{N L} \sum_{\theta} \sum_{\phi} Tr(\Pi_{\theta} \rho^{\theta}) c_{\phi, \theta} =
\]

\[
\frac{1}{N L} \sum_{k=1}^{L} \sum_{\theta_k} \sum_{\phi_k} \sum_{\phi_{k-1}} \ldots \sum_{\phi_1} \left(\sum_{(\theta_{k-1}, \ldots, \phi_{k-1}, \ldots, \phi_1)} \sum_{(\theta_{k-2}, \ldots, \phi_{k-2}, \ldots, \phi_1)} \ldots \sum_{(\theta_1, \phi_1)} Tr(\Pi_{\theta} \rho^{\theta}) \right) c_{\phi_k, \theta_k} =
\]

\[
\frac{1}{N L} \sum_{k=1}^{L} \sum_{\theta_k} \sum_{\phi_k} \sum_{\phi_{k-1}} \ldots \sum_{\phi_1} \left[\left(\sum_{(\theta_{k-1}, \ldots, \phi_{k-1}, \ldots, \phi_1)} \sum_{(\theta_{k-2}, \ldots, \phi_{k-2}, \ldots, \phi_1)} \ldots \sum_{(\theta_1, \phi_1)} \frac{1}{N L} \rho^{\theta} \right) \right] c_{\phi_k, \theta_k}. \quad \text{(S24)}
\]

Note that the operator

\[
\Pi^k_{\theta_k} = \left(\sum_{(\theta_{k-1}, \ldots, \phi_{k-1}, \ldots, \phi_1)} \rho^{\theta} \right) \quad \text{(S25)}
\]
is a positive operator, and that

\[
\left(\sum_{(\theta_{k-1}, \ldots, \phi_{k-1}, \ldots, \phi_1)} \frac{1}{N L} \rho^{\theta} \right) = \Phi^{(N-k-1)} \otimes \rho^k \otimes \Phi^{(N-k)} \quad \text{(S26)}
\]

where \(\Phi = 1 / N \sum_{\theta} \rho^\theta \) is the average quantum signature element state. Thus we have

\[
P_{\text{forgery}} = \frac{1}{N L} \sum_{k=1}^{L} \sum_{\theta_k} \sum_{\phi_k} Tr\left(\Pi^k_{\theta_k} \Phi^{(N-k-1)} \otimes \rho^k \otimes \Phi^{(N-k)} \right) c_{\phi_k, \theta_k} =
\]

\[
\frac{1}{N L} \sum_{k=1}^{L} \sum_{\theta_k} \sum_{\phi_k} \sum_{\phi_{k-1}} \ldots \sum_{\phi_1} \left[Tr\left(\Pi^k_{\theta_k} \right) \Phi^{(N-k-1)} \otimes \rho^k \otimes \Phi^{(N-k)} \right] c_{\phi_k, \theta_k}. \quad \text{(S27)}
\]

where \(1 \) is the identity operator acting on signature element state space. The trace superoperator above can be decomposed into the partial trace over the \(k \)th subsystem and the partial trace over every subsystem except the \(k \)th subsystem, which we will denote \(Tr_k \):

\[
P_{\text{forgery}} = \frac{1}{N L} \sum_{k=1}^{L} \sum_{\theta_k} \sum_{\phi_k} \sum_{\phi_{k-1}} \ldots \sum_{\phi_1} Tr_k \left[\Pi^k_{\theta_k} \left(\Phi^{(N-k-1)} \otimes 1 \otimes \Phi^{(N-k)} \right) \right] c_{\phi_k, \theta_k} =
\]

\[
\frac{1}{N L} \sum_{k=1}^{L} \sum_{\theta_k} \sum_{\phi_k} Tr_k \left[\Pi^k_{\theta_k} \left(\Phi^{(N-k-1)} \otimes 1 \otimes \Phi^{(N-k)} \right) \right] c_{\phi_k, \theta_k} =
\]

\[
\frac{1}{N L} \sum_{k=1}^{L} \sum_{\theta_k} \sum_{\phi_k} Tr_k \left[\rho^k Tr_k \left[\Pi^k_{\theta_k} \left(\Phi^{(N-k-1)} \otimes 1 \otimes \Phi^{(N-k)} \right) \right] \right] c_{\phi_k, \theta_k}. \quad \text{(S28)}
\]

Since the partial trace is a positive trace preserving superoperator, the operator

\[
\Pi^k_{\theta_k} = Tr_k \left[\Pi^k_{\theta_k} \left(\Phi^{(N-k-1)} \otimes 1 \otimes \Phi^{(N-k)} \right) \right] \quad \text{(S29)}
\]

16
is a positive operator. Moreover, it is easy to verify that $\sum_\sigma \Pi_{\phi_\sigma}^k = 1$ so the operators $\{\Pi_{\phi_\sigma}^k\}_\sigma$ comprise a complete set of POVM elements acting on the k^{th} subsystem. Thus we have

$$P_{\text{average}} = \frac{1}{L} \sum_{k=1}^L \frac{1}{N} \sum_{\phi_\theta} \sum_{\phi_\eta} \text{Tr}(\rho^\theta \Pi_{\phi_\theta}^k) c_{\phi_\theta, \phi_\eta}$$

and we have expressed the average probability of a cheating Bob causing a photodetection event with Charlie in terms of individual measurements on quantum signature states, without any assumption on the choice of the global measurement. This concludes our analysis which implies that any cheating probability achieved by a global measurement can be realised by independent single system measurements.

Security against forging - active attack

In this section we analyse Bob’s forging probabilities in the case he employs an active, separable strategy. In active separable strategies, Bob is allowed to alter the states he sends to Charlie during the quantum signature distribution phase, but his malevolent activity is assumed to be equal for each quantum signature element state, and he also acts individually and identically on each element state. By altering the states he sends to Charlie, Bob can try to increase the probability to successfully forge a message later on. We will call the states Bob sends to Charlie the “response states”. Here, to guarantee security, we must take into account Charlie’s multiport null-port photodetection events.

For the k^{th} element of the quantum signature, which has a phase of θ_k, Bob has access to his copy of the quantum signature, along with the “half pulse” he received from Charlie. This can be represented by the state $|e^{i\phi_\theta} \sqrt{3/2} \alpha\rangle$ in total. In order to forge a message in the future, Bob will at some stage have to commit to an angle ϕ_k which will comprise the forged private key. To select the best angle to commit to for the private key, Bob makes a generalised measurement on a fraction of the state $|e^{i\phi_\theta} \sqrt{3/2} \alpha\rangle$, and we allow this fraction to be anything between zero and unity. Without the loss of generality, we may assume that the measurement takes place before Bob sends a response state to Charlie within the multiport, since knowing the result of the measurement can only improve Bob’s ability to select a response state that would increase his probability of successfully forging a message. The response state $\eta_{\phi_\theta}^{k,\phi_\theta}$ may in general depend on both the actual phase value of the k^{th} quantum signature state and on Bob’s measurement outcome. We note that in the case of a passive strategy, the response state will be $|e^{i\phi_\theta} \alpha / \sqrt{2}\rangle$. The forwarded, possibly altered response state is then interfered on Charlie’s final multiport beamsplitter with Charlie’s half of the k^{th} quantum signature state, and one output arm (the multiport null-port) is measured for a photon count, and the output state of the other arm is stored by Charlie as the k^{th} quantum signature state. Please see Supplementary Figure S2 for an illustration.

The response state can be written, in the most general P-representation form, as

$$\eta_{\phi_\theta}^{k,\phi_\theta} = \int_\mathbb{C} P(\beta) |\beta\rangle \langle \beta| d^2 \beta$$

and the joint state of Charlie’s final beamsplitter is then
The probability of detecting no photons at the null-port arm is then

\[\text{Tr} \left(0 \right) = \left| 0 \right\rangle \langle 0 | \left(\left| \psi \right\rangle \langle \psi | \left| \eta' \right\rangle \langle \eta' | \right) \]

where \(\eta' = \left| P(\beta) \right| \left\langle \beta | \sqrt{2} \right\rangle d^2 \beta \). The state which Charlie will store as the quantum signature element is given by \(D(e^{i \theta} \alpha/2) \eta D^\dagger(e^{i \theta} \alpha/2) \), where \(D(\cdot) \) denotes the displacement operator. The expression on the right hand side of the equality (S32) is sometimes referred to as the expected fidelity between the states \(\left| e^{i \theta} \alpha/2 \right\rangle \langle e^{i \theta} \alpha/2 \mid \eta' \rangle \) and \(\eta' \). Recall that, in the case of a passive strategy, the state \(\eta' \) would be exactly \(\left| e^{i \theta} \alpha/2 \right\rangle \langle e^{i \theta} \alpha/2 \mid \eta \rangle \). From this, it is easy to see that the probability of not detecting a photon at Charlie’s multiport null-port is equal to the expected fidelity between the quantum signature elements Charlie will store in the active and passive attack settings, respectively, as illustrated in Supplementary Figure S2.

The process of signature verification for each quantum signature element is a two-outcome measurement the outcomes of which correspond to the detector either registering a photon or not. If a bound of the trace distance between the average stored signature elements in the passive and active attacks can be guaranteed, then we can bound the difference of causing a photon detection event during signature verification for the active and the passive strategies. This is ensured by setting a rejection threshold on the multiport null-port photon event count.

Let \(r \) be the fraction of the quantum signature states which have caused a photon event during signature distribution, where the quantum signature is of length \(L \). Recall, we are assuming that Bob is acting independently and identically for each signature element state so this fraction can be used to bound the value of \(\text{Tr} \left(\left| e^{i \theta} \alpha/2 \right\rangle \langle e^{i \theta} \alpha/2 \mid \eta' \rangle \right) \) for an average signature element state. Let \(x = 1 - \text{Tr} \left(\left| e^{i \theta} \alpha/2 \right\rangle \langle e^{i \theta} \alpha/2 \mid \eta' \rangle \right) \). Then, by the Hoeffding inequality we have that \(P \left(| x - r | \geq \epsilon \right) \leq 2 \exp(-2 \epsilon^2 L) \). Thus we have that \(1 - \text{Tr} \left(\left| e^{i \theta} \alpha/2 \right\rangle \langle e^{i \theta} \alpha/2 \mid \eta' \rangle \right) \leq r + \epsilon \) except with probability \(2 \exp(-2 \epsilon^2 L) \). The expected fidelity has a well-known relationship with the trace distance

\[T_\text{d} \left(\left| e^{i \theta} \alpha/2 \right\rangle \langle e^{i \theta} \alpha/2 \mid \eta' \rangle \right) \leq \sqrt{1 - \text{Tr} \left(\left| e^{i \theta} \alpha/2 \right\rangle \langle e^{i \theta} \alpha/2 \mid \eta' \rangle \right)} = \sqrt{r + \epsilon}. \] (S33)

So, we have that the trace distance between the average stored signature elements in the passive and active attacks is less than \(\sqrt{r + \epsilon} \) if the fraction of photodetection events was \(r \), except with probability \(2 \exp(-2 \epsilon^2 L) \). With probability \(2 \exp(-2 \epsilon^2 L) \) this trace may be above \(\sqrt{r + \epsilon} \) but is always below or equal to unity, due to the properties of the trace distance. Consequently, we can bound the trace distance as follows:

\[T_\text{d} \left(\left| e^{i \theta} \alpha/2 \right\rangle \langle e^{i \theta} \alpha/2 \mid \eta' \rangle \right) \leq (1 - 2 \exp(-2 \epsilon^2 L)) \sqrt{r + \epsilon} + 2 \exp(-2 \epsilon^2 L). \] (S34)

Thus one can ensure that the trace distance between the average stored signature elements in the passive and active attacks is arbitrarily small, by selecting an appropriate rejection threshold \(r \) and a value \(\epsilon \) for the signature distribution step. Then the trace distance approaches
\[\sqrt{r + \epsilon} \] exponentially quickly in the quantum signature length \(L \). Let us denote the upper bound on the trace distance by
\[\delta = (1 - 2\exp(-2\epsilon^2 L))\sqrt{r + \epsilon} + 2\exp(-2\epsilon^2 L). \] (S35)

Recall, in the passive attack the probability of not causing a photodetection event per quantum signature state was given by
\[P_{\text{ forgery}} = \frac{1}{N} \sum_{\phi} \sum_{\theta} Tr(\Pi_{\phi}\rho^\theta) c_{\phi,\theta}. \] (S36)

For our cost matrix, Bob’s optimal measurement was shown to be the square-root measurement, and this was dependant on the structure of the cost matrix \(c \). In the active attack, Bob has access to a larger amplitude coherent pulse then in the passive setting, as in principle he can measure Charlie’s fraction of the signature states as well. Since we impose a restriction on Bob’s activities by checking the multiport null-port count, in practice Bob will not be able to measure out all of the systems he receives, as he is forced to return a perhaps slightly modified variant of half of Alice’s signature element, or Charlie’s half of the coherent pulse, in order to pass Charlie’s null-port test during signature distribution. To lower bound Bob’s cheating probabilities we however assume that he can indeed use the entirety of the state he has received from both Alice and Charlie for the measurement. This is equivalent to giving Bob amplified versions of the quantum signatures. We will denote the probability of Bob not causing a photodetection event in a passive strategy with amplified pulses by
\[p_{\text{ forgery}}^{\text{ amplified, passive}} = \frac{1}{N} \sum_{\phi} \sum_{\theta} Tr(\Pi_{\phi}\rho^\theta_{\text{ amplified}}) c_{\phi,\theta}. \] (S37)

where
\[\rho^\theta_{\text{ amplified}} = |e^{i\theta}\sqrt{3/2\alpha}||\rho^\theta|e^{i\theta}\sqrt{3/2\alpha}|. \] (S38)

The values \(c_{\phi,\theta} \) above correspond to the entries of the experimentally obtained cost matrix given explicitly in equation S19.

The induced value \(p_{\text{ forgery}}^{\text{ active}} \) is lower-bounded by the optimisation of the minimum cost problem related to the one above, but where the entries of the cost matrix have been decreased by \(\delta \). The following derivation shows that the induced value \(p_{\text{ forgery}}^{\text{ active}} \) deviates from \(p_{\text{ forgery}}^{\text{ amplified, passive}} \) by no more than delta:
\[
1/N \sum_{\phi} \sum_{\theta} Tr(\Pi_{\phi}\rho^\theta)([C]_{\phi,\theta} - \delta) =
1/N \sum_{\phi} \sum_{\theta} Tr(\Pi_{\phi}\rho^\theta)([C]_{\phi,\theta}) - 1/N \sum_{\phi} \sum_{\theta} Tr(\Pi_{\phi}\rho^\theta)(\delta) =
1/N \sum_{\phi} \sum_{\theta} Tr(\Pi_{\phi}\rho^\theta)([C]_{\phi,\theta}) - 1/N \sum_{\phi} \sum_{\theta} (\delta) =
1/N \sum_{\phi} \sum_{\theta} Tr(\Pi_{\phi}\rho^\theta)([C]_{\phi,\theta}) - \delta.
\] (S39)

Thus we have the bound
\[p_{\text{ forgery}}^{\text{ active}} \geq p_{\text{ forgery}}^{\text{ amplified, passive}} - \delta. \] (S40)
For illustration purposes, for our experimental set-up, the ‘amplified’ value is $p_{\text{forgery}}^{\text{amplified, passive}} = 4.61 \times 10^{-3} \pm 7 \times 10^{-6}$, inducing a slightly reduced gap of $g^{\text{amplified}} = 7.13 \times 10^{-3} \pm 3 \times 10^{-5}$ when Bob employs an active forging strategy. Then the overall probability of Bob forging is again given by Hoeffding’s inequality as

$$\varepsilon_{\text{forging}} \leq 2 \exp\left(-\frac{2}{9} (g^{\text{amplified}} - \delta)^2 L \right)$$

(S41)

which again approaches zero exponentially quickly in the signature length L, as long as we ensure that $\delta < g^{\text{amplified}}$. For robustness when allowing for active attacks we obtain an analogous bound for robustness

$$\varepsilon_{\text{robustness}} \leq \exp\left(-\frac{2}{9} (g^{\text{amplified}} - \delta)^2 L \right) + \exp\left(-\frac{4}{9} (g^{\text{amplified}} - \delta)^2 L \right),$$

(S42)

which is less than or equal to $\varepsilon_{\text{forging}}$.

In this analysis we assumed that the detectors at the multiport null-port were perfect. Here we briefly consider the effects of imperfect devices on the security parameters. First, taking into account the known detector losses one can still work out the required rejection threshold r and the required signature length L to ensure $\delta < g^{\text{amplified}}$. The losses will make the required threshold lower, and the accompanying signature length L longer compared to the values obtained in the ideal case previously. Nonetheless, arbitrarily small values of δ can still be obtained efficiently in the signature length. Additionally, the differential losses occurring within the multiport would also cause Bob and Charlie to have differential sensitivities to cheating. If the polarisation of the light in the polarisation maintaining fibre were to degrade this would result in a decreased interferometric visibility which would have the effect of routing a greater number of pulses to the multiport null-ports (if the degradation occurred in the multiport) and a greater number of pulses to the signal null-ports (if the degradation occurred in a receiver’s interferometer). In our experiment, the measurements of the cost matrix given in C in the “Estimation of forging probabilities for the passive attack based on experimental data” section from which the gap g is calculated were performed on the party with the lower overall losses. The party with the losses lowered by a multiplicative constant c would realise a guaranteed value of the gap $g^* = cg$. In our case $c > 1/4$, see Supplementary Table S1. Finally, we briefly address the question of the protocol’s robustness with respect to the rejection threshold r which limits the acceptable multiport null-port photon counts. In the presence of dark counts this threshold may be breached, even when all parties are honest. In our system the raw dark count probability per emitted pulse per detector stands at approximately $p(\text{dark}) = 3.2 \times 10^{-6}$. To take this into account, the baseline threshold r (chosen to achieve the required levels of security against active strategy forging) should simply be increased by the value of $p(\text{dark})$. The realised security levels are not jeopardised as no cheating response state Bob may send can reduce the dark count rate. The dark count rate is limited by the detector and can only possibly increase from the baseline level realised with a passive strategy. Analogous arguments hold if additional causes for a photon detection event not due to a cheating response state, such as interferometric visibility and background count rate, are considered.

The honest setting rejection probability for such a setting can be again shown to vanish exponentially quickly in terms of the signature length L as
Coherent strategies for active attacks

Here, we give a plausible argument that coherent, or any type of general strategy Bob may employ does not improve Bob’s forging probabilities when compared to the separable cheating strategy, discussed in the previous section. The technique we suggest to show this is analogous, albeit more involved, to the one used in the proof of security against refutation for the coherent attacks. We shall consider two types of fictitious protocols, games, which are obtained by modifying the original protocol, and two types of strategies by Bob: individual and coherent. We will denote the original protocol by “O”. A modified original protocol, which we call a “sequential, delayed, with disclosure protocol”, we will denote “SDwD”. Finally, we will use a modified protocol called a delayed protocol, denoted “D”.

In the SDwD protocol, the states sent by Alice are accumulated halfway within the multiport: Bob receives all the original quantum signature element states, along with the ‘half’ of the pulse from Charlie, and Charlie accumulates all his ‘half’ pulses. This constitutes the ‘delay’ in the designation of this modified protocol. From here the protocol continues sequentially: at the \(k \)th step, Bob sends the \(k \)th response state, Charlie interferes it with his corresponding ‘half’ pulse and obtains the corresponding null-port measurement outcome. At this point, Bob chooses (commits to) a private key element (phase angle) based upon the measurement of whatever system he may have. Without the loss of generality this commitment/measurement could have taken place at the instance of Bob generating the response state. Bob then declares his guess of the private key element, and Charlie proceeds to perform the verification for this signature element. This constitutes the ‘sequential’ attribute in the protocol designation. Finally, Alice, who is an honest player in this modified game, at this point reveals the actual angle which she encoded in the \(k \)th pulse to the cheater Bob. Note that this happens after the verification for this pulse has been carried out. This procedure is sequentially repeated for all signature elements, and Bob wins the game, an event we shall designate “Bob cheats”, if he managed to pass both the null-port and the verification thresholds.

The modified protocol D just introduces the change of first accumulating the states within the multiport (the ‘delay’ explained above), before continuing, and is otherwise identical to the original protocol O.

Concerning Bob’s activities, we distinguish a separable strategy corresponding to individual identical activities, denoted “S”, and a coherent strategy “C”. In a separable strategy S, Bob chooses a response state, and commits to a to-be-declared private key element (‘best guess’ phase) by measuring the quantum signature states individually, and an identical strategy is applied for each signature element. Also, the response states are not entangled with each other. The probability \(P(\text{Bob cheats} \mid O,S) \), i.e. the probability of Bob successfully forging using a separable attack in the original protocol, is the value computed in the previous section. In a coherent strategy C, Bob is not restricted in any way, aside from the protocol specifications, which would otherwise cause an implicit protocol abort. An example of this would be Bob’s failure to choose a phase angle and declare it to Charlie at any step of the SDwD protocol.

Our goal is to prove the following sequence of (in)equalities:

\[
P(\text{Bob cheats} \mid O,S) \leq P(\text{Bob cheats} \mid O,C) \quad (a) \quad \text{(S44)}
\]

\[
P(\text{Bob cheats} \mid O,S) = P(\text{Bob cheats} \mid \text{SDwD},S) \quad (b) \quad \text{(S45)}
\]
\[P(\text{Bob cheats} \mid \text{SDwD}, S) = P(\text{Bob cheats} \mid \text{SDwD}, C), \]
\[P(\text{Bob cheats} \mid \text{SDwD}, C) \geq P(\text{Bob cheats} \mid D, C), \]
and finally
\[P(\text{Bob cheats} \mid D, C) \geq P(\text{Bob cheats} \mid O, C). \]

The sequence of inequalities (b) – (e) (equations S45 to S48) then shows \(P(\text{Bob cheats} \mid O, S) \geq P(\text{Bob cheats} \mid O, C), \) which combined with the inequality (a) (equation S44) yields the desired claim,
\[P(\text{Bob cheats} \mid O, S) = P(\text{Bob cheats} \mid O, C). \]

The first claim (a) (equation S44) is trivial, as a separable strategy is a special case of coherent strategies. The claim (b) (equation S45) is relatively easy as well: due to the separable nature of Bob’s attack, neither having all the states at his disposal simultaneously, nor the ‘sequential’ modification play a role. Since the disclosure of the outcomes and the angles comes after Bob’s activity per element state, and since the phases in the quantum signature states are independently and uniformly chosen at random, this information cannot help Bob either. To first sort out the obvious claims, we note that the claim (e) (equation S48) is trivial as well. As Bob can run whatever strategy he would run in the original setting in the delayed setting as well, thus delay can only help, which confirms our claim. For the remainder of this section we will thus be focusing on claims (c) and (d) (equations S46 and S47). We start with the claim (c),
\[P(\text{Bob cheats} \mid \text{SDwD}, S) = P(\text{Bob cheats} \mid \text{SDwD}, C), \]
for which we give a plausible motivation, but strictly speaking not a proof.

In the (SDwD, S) setting, Bob accumulates the states he receives within the multiport (from both Alice and Charlie) and then individually acts identically, using a most general physical procedure allowable by quantum mechanics, on each individual state, sequentially producing a response state along with private key element. At each step, this is followed by two measurements by Charlie (null-port and the verification-constituting measurement) and a total disclosure of the originally encoded angle and the measurement outcomes. In contrast, in the (SDwD, C) setting, Bob is allowed to perform any global operation on the states he has, and any ancillary system he may wish to use, but again he has to, at each step, choose a response state and an angle - the private key element. As every response state is processed in run-time, Bob has nothing to gain by using response states which are entangled with his remaining subsystem – since he gets the disclosure information, whatever system he would have following Charlie’s measurements, Bob can simply reproduce post disclosure at each step.

We now focus on the first response state and angle Bob will generate, and see whether Bob can increase his probabilities of favourable outcomes of Charlie’s measurements by using global operations. Note that the measurement Charlie performs for the first state depends only on the angle encoded within the first quantum signature element sent by Alice. This is independent of all subsequent signature states. Thus no response state, generated based on information Bob may gain by globally measuring the entirety of his system (which includes the entire amplified quantum signature, can influence the outcomes of Charlie’s measurements for the first system in a way that benefits Bob, when compared to the separable strategy.

Next, we check whether a coherent strategy starting at the first step can augment his probabilities at later stages. As noted, since all is disclosed post Charlie’s measurement at each step, whatever state Bob remains with using the coherent strategy post measurement, Bob can generate using the disclosed information also if using a separable strategy. Thus, at each step,
his strategy for that particular step may as well be a separable one, as the full disclosure at each step nullifies any advantage he might have gained by using a coherent strategy. Thus, coherent strategies seem to give Bob no advantage in this setting and claim (c) (equation S46) seems plausible.

To finalise our argument we analyse claim (d) (equation S47) $P(\text{Bob cheats} | \text{SDwD,C}) \geq P(\text{Bob cheats} | \text{D,C})$. The only advantage the protocol variant D may hold for Bob is that he need not commit to a particular private key element angle in run-time, but rather can do a global measurement on his system later. Note that if we assume that there exists no communication between Bob and other parties until Bob wins or loses the game (i.e. cheats or get caught) in the D variant of the protocol then delaying the measurement cannot increase his cheating probability.

In the D protocol Bob does obtain the information whether the multiport null-port threshold has been breached. However, since both the verification and the multiport null-port thresholds violations constitute Bob losing, his measurement strategy should not be conditional on whether he passed the multiport threshold.

Assuming this holds, then in the D protocol, we may assume that Bob measures his system at any point up to the moment when he sends away his last response state. Any measurement Bob may perform in the D protocol can be realised by a large unitary acting on the entirety of his system and a sufficient amount of ancillary systems, followed by single system measurements. This can be seen as a consequence of the Naimark dilation theorem. The single system measurement outcomes will give Bob’s choices of private key elements. However, Bob, if he employs a coherent strategy, may perform the same map in the SDwD setting as well, and measure the angle-carrying subsystems sequentially as he is required by the protocol. Bob can thus obtain the same cheating success probability in the SDwD setting as in the D setting by simply ignoring the information he gets from the disclosure in the SDwD setting. But then clearly, gaining additional information can only help Bob, and we have our inequality (d) (equation S47). More formal variants of the proof of claims (c) and (d) (equations S46 and S47) we leave for further research. This concludes our argument.
Supplementary Methods

In this section we consider the lemmas and related statements required to analyze the security of the system.

Hoeffding’s inequalities

Here we briefly state Hoeffding’s inequalities and explain how they are used in the security analysis. We are presenting a special version of these inequalities, which is more directly applicable to our setting.

Lemma 1. Let \(X_1, \ldots, X_L\) be independent random variables each attaining values 0 or 1. Let \(\bar{X} = \frac{1}{L} \sum X_i\) be the empirical mean of the variables, and let \(E(X)\) be the expectancy of the empirical mean. Then we have

\[
P(\bar{X} - E(\bar{X}) \geq t) \leq \exp(-2t^2L) \quad (S51)
\]

\[
P(\bar{X} - E(\bar{X}) \leq -t) \leq 2\exp(-2t^2L). \quad (S52)
\]

In the case when we analyse Bob’s forgery probabilities, we compute the minimal probability of obtaining a photodetection event on the multiport \(p_{\text{cheat}}\) which defines a sequence of \(L\) random variables as in the statement of the theorem above. Then we set a threshold at \(s_L\), and calculate the probability of an empirical mean of the random variables above diverging from the expectancy by more than \(p_{\text{cheat}} - s\), as this is the requirement for the forgery to be accepted. This corresponds to the second inequality (as the empirical value needs to be below the mean/expectancy. Robustness is calculated similarly, however we need to take into account that both Bob and Charlie could reject if all parties are honest. So to upper bound the probability of abort in the honest setting (using the union bound) we add the two probabilities. In the case of coherent cheating we can compute the average probability of getting a photodetection event, and use the Hoeffding theorem for the induced ‘averaged’ random variables.

Trace distance and effects (induced probability distributions)

For the trace distance between two states \(T_d(\sigma, \rho)\) we have the property

\[
T_d(\sigma, \rho) \geq \frac{1}{2} \sum_{x} |Tr(\Pi_x \rho) - Tr(\Pi_x \sigma)| \quad (S53)
\]

for any set of POVM elements \(\{\Pi_x\}\). In our case \(\rho\) is the perfectly symmetric subsystem, \(\sigma\) represents the physical state attainable in the lab, and the POVM is the four-outcome POVM giving the possible outcomes of photodetection on their individual subsystems. Assume that a malevolent Alice’s target result is that Bob accepts and Charlie rejects, hence she wishes to maximise the probability of the outcome \((0,1)\). Let \(p_x := Tr(\Pi_x \rho)\), and \(q_x := Tr(\Pi_x \sigma)\) for \(x \in \{(0,0), \ldots, (1,1)\}\). So we have

\[
T_d(\sigma, \rho) \geq \frac{1}{2} \sum_x |p_x - q_x| = \frac{1}{2} |p_{(0,1)} - q_{(0,1)}| + \frac{1}{2} \sum_{\text{all but } (0,1)} |p_x - q_x|. \quad (S54)
\]

Note that if \(|p_{(0,1)} - q_{(0,1)}| = \epsilon\) then \(\sum_{\text{all but } (0,1)} |p_x - q_x| \geq \epsilon\), leading to
From this we have the claim referred to in the section “Security against repudiation with realistic devices”.

Statements about minimum cost measurements

Here we prove the technical statements from the “Passive forging - separable attacks” section. First we standardise the notation.

- Received states: These are the states Bob receives from Alice and Charlie jointly, so if the amplitude of the individual states of the unperturbed states is \(a \), Bob will in total receive the states
 \[|v_k\rangle = \left| e^{2k\pi i/N} \sqrt{3/2a} \right| . \]

- Standard basis: For the states
 \[|v_k\rangle = \left| e^{2k\pi i/N} \sqrt{3/2a} \right| \]
 one can show that the states
 \[|b_k\rangle = 1/\sqrt{\lambda_k} N \sum_{l=0}^{N-1} \exp(-2kl\pi I / N) |v_l\rangle \]
 form an orthonormal basis, where \(\lambda_k \) are the eigenvalues of the Gram matrix of the states \(|v_k\rangle \). The values \(\lambda_k \) are also the diagonal elements (of the diagonal matrix) representing the operator \(\sum_{k=0}^{N-1} |v_k\rangle \langle v_k| \) in the orthonormal basis above. The symbol \(I \) here denotes the imaginary unit. In this basis the states \(|v_k\rangle \) have the \(f \) expansion
 \[|v_k\rangle = 1/\sqrt{N} \sum_{l=0}^{N-1} \exp(2kl\pi i / N) \sqrt{\lambda_k} |b_l\rangle \]
 and, in particular, in this basis all entries for the vector \(|v_0\rangle \) are positive.

- The unitary characterising the symmetry of the system is \(U \), such that
 \[|v_k\rangle = U^k |v_0\rangle . \]
 In the standard basis this unitary is diagonal:
 \[U = \sum_{k=0}^{N-1} \exp(2\pi ik / N) |b_k\rangle \langle b_k| . \]

- With DFT we denote the discrete Fourier transform matrix of (implicit) size \(N \), defined element-wise by
 \[[DFT]_{p,q} = \exp(-2\pi Ipq / N) \] for \(p = 0,...,N-1, q = 0,...,N-1 . \)

Lemma 2 If the input states are symmetric, and the cost matrix is circulant, then Helstrom condition 3. holds for the square-root measurement.

Proof: We have the risk operators defined as
 \[W_k = \frac{1}{N} \sum_{j} c_{i,j} |v_j\rangle \langle v_j| = \frac{1}{N} \sum_{j} c_{i,j} U^j |v_0\rangle \langle v_0| U^{-j} . \] (S56)

If the cost matrix \(C = [c_{i,j}]_{i,j} \) is circulant we have that
 \[U^k W_0 U^{-k} = W_k . \] (S57)

The Lagrangian operator is defined as
\[\Gamma = \sum_i \Pi_i W_i \]
(S58)

The square-root measurement is defined by the operators
\[\Pi_i = \Phi^{-1/2} |v_i\rangle\langle v_i| \Phi^{-1/2} \]
(S59)
where
\[\Phi = \sum_i |v_i\rangle\langle v_i| = \sum_i U^i |v_0\rangle\langle v_0| U^{-i}. \]
(S60)

We will often use the following property:

Lemma 2.a For any square matrix \(A \) we have that
\[\sum_i U^i A U^{-i} = \tilde{\Lambda} \]
where \(\tilde{\Lambda} \) is the diagonal matrix containing the main diagonal of \(A \), and \(N \) is the size of the matrices \(U \) and \(A \).

Proof: Let \(|\omega\rangle = \sum_l \exp(2\pi ilk / N) |b_k\rangle \). The ket \(|\omega\rangle \) in the standard basis contains the main diagonal of the matrix \(U^i \). Then it is easy to see that for all square matrices \(A \) we have that \(U^i A U^{-i} = A \circ |\omega\rangle\langle \omega| \), where \(\circ \) denotes the Hadamard (Shur, point-wise) matrix product, which is distributive with respect to matrix addition. Then we have
\[\sum_i U^i A U^{-i} = \sum_i A \circ |\omega\rangle\langle \omega| = A \circ \sum_i |\omega\rangle\langle \omega|. \]
(S62)

Using the properties of the sums of roots of unity we have that \(\sum_i |\omega\rangle\langle \omega| = N \mathbf{1} \) where \(\mathbf{1} \) is the identity matrix. Hence we have proven Lemma 3, as Hadamard-multiplying any matrix with the identity simply eliminates all off-diagonal elements. □

So we have that \(\Phi = \sum_i U^i |v_0\rangle\langle v_0| U^{-i} = N |v_0\rangle\langle v_0| \circ \mathbf{1} \). Thus \(\Phi \) is diagonal, and by the form of the ket \(|v_0\rangle \), it simply collects the eigenvalues of the Gram matrix of the input states across the diagonal. But then \(\Phi^{-1/2} \) contains the inverses of the roots of the eigenvalues \(\lambda_k \) across the diagonal. Since \(U \) is also diagonal, \(U \) and \(\Phi \) and \(\Phi^{-1/2} \) commute, so we have that \(\Pi_k = U^k \Pi_0 U^{-k} \), and for the Lagrangian we have that \(U^k \Gamma U^{-k} = \Gamma \).

We will also use a slightly more involved lemma, which generalises lemma 2.a:

Lemma 2.b. For any square matrix \(A \), and a sequence of \(N \) complex numbers \((c_i)_{i=0}^{N-1} \) we have that
\[\sum_i c_i U^i A U^{-i} = A \circ B \]
(S63)
where \(B \) is a circulant matrix, and its first row is given with \(\text{DFT} \left[c_0, \ldots, c_{N-1}\right]^T \), i.e. the discrete Fourier transform of the vector with entries \(c_i \).
Proof: Similar to the proof of the simpler lemma 2.a, with realisation that \(\sum_i |c_i \rangle \langle c_i | \) is a circulant matrix, and its first row is given with \(DFT \{c_0, \ldots, c_{N-1}\}^T \).

Lemma 2.b is applied to the risk operator \(W_0 \) to obtain that
\[
W_0 = |v_0 \rangle \langle v_0 | \circ B \quad \text{(S64)}
\]
where \(B \) is a circulant matrix where the first row comprises the eigenvalues of the cost matrix. To see this simply note that the cost matrix is circulant, and the eigenvalues of a circulant matrix are given by the DFT of the first row of the matrix. We need to show that
\[
(W_i - \Gamma)\Pi_i = 0 = 0 = \Pi_i (W_i - \Gamma) \quad \text{(eq1)}
\]
and
\[
(W_i - \Gamma)\Pi_i = 0 = 0 = \Pi_i (W_i - \Gamma) \quad \text{(eq2)}
\]
only if \((W_0 - \Gamma)\Pi_0 = 0 \) and the analogous holds for the second equality above.

To prove lemma 2 one shows that the following equalities hold
\[
W_i \Pi_0 = \Gamma \Pi_0 \quad \text{(S65)}
\]
\[
\Pi_0 W_0 = \Pi_0 \Gamma \quad \text{(S66)}
\]
using the lemmas 2.a, 2.b and the properties listed at the beginning of this section. We omit this derivation as it is a simple yet space consuming.

Lemma 3. If the cost matrix is positive, symmetric and circulant then the first and second Helstrom criteria are satisfied for the minimum error (square-root) measurement for our problem.

Proof: Since \(W_i \) is a sum of positive operators with positive weights it is positive, and in particular Hermitian. The operators \(\Pi_i \) are positive as they are POVM elements, hence positive and Hermitian as well. Thus we have
\[
\Gamma = (\Gamma^\dagger)^\dagger = ((\sum_i \Pi_i W_i)^\dagger)^\dagger = (\sum_i W_i^\dagger \Pi_i^\dagger)^\dagger = (\sum_i W_i^\dagger \Pi_i)^\dagger = \sum_i \Pi_i W_i^\dagger \quad \text{(S67)}
\]
and so the first and second Helstrom conditions given in the “Passive forging - separable attacks” section are equivalent. Thus it suffices to show that
\[
\sum_i W_i \Pi_i = \sum_i \Pi_i W_i. \quad \text{(S68)}
\]
We have that
\[
\sum_i W_i \Pi_i = \sum_i U^i W_i^i \Pi_i (U^{-i})^* = N(W_0^* \Pi_0) \circ 1 \quad \text{(S69)}
\]
\[
\sum_i \Pi_i W_i = \sum_i U^i \Pi_i W_i (U^{-i})^* = N(\Pi_0 W_0^*) \circ 1. \quad \text{(S70)}
\]
So lemma 3 holds if and only if \((W_0^* \Pi_0) \) and \((\Pi_0 W_0^*) \) have equal diagonal elements. We have shown that
\[
W_0 = |v_0 \rangle \langle v_0 | \circ B \quad \text{(S71)}
\]
where \(B \) is a circulant matrix where the first row comprises the eigenvalues of the cost matrix. Note that for the square root measurement we have the following property:
\[
\Phi^{-1/2} |v_0 \rangle \langle v_0 | \Phi^{-1/2} = 1 / \sqrt{N} \sum_i |b_i \rangle \langle b_i |. \quad \text{(S72)}
\]
Thus we have for the k^{th} diagonal element of $(W_0 \Pi_0)$ that

$$1/\sqrt{N} \langle b_k | (v_0 \otimes B) (\sum_i b_i) \rangle$$

which is the sum of the elements of the representation of the bra $\langle b_k | (v_0 \otimes B) \rangle$ in the standard basis scaled by $1/\sqrt{N}$. For the k^{th} diagonal element of $(\Pi_0 W_0)$ we get

$$1/\sqrt{N} \sum_i \langle b_i | (v_0 \otimes B) | b_i \rangle.$$

(S73)

(S74)

Since the matrix $|v_0 \rangle \langle v_0|$ is real in the standard basis, these two expressions are equal if B is real and symmetric. Recall, the matrix B is the circulant matrix comprising the eigenvalues of the cost matrix. These are real if and only if the cost matrix is symmetric which we have by the assumption of the lemma. The symmetricity of B is a consequence of the cost matrix comprising real elements. Thus lemma 3 holds.
Supplementary References

39. Barnum, H., Crépeau, C., Gottesman, D., Smith, A. & Tapp, A. Authentication of quantum messages. Preprint at http://arxiv.org/abs/quant-ph/0205128 (2002).

40. Fuchs, C. A. & Van De Graaf, J. Cryptographic distinguishability measures for quantum-mechanical states. IEEE Trans. Inf. Theory 45, 1216-1227 (1999).

41. Naimark, M. A. Spectral functions of a symmetric operator. Izv. Akad. Nauk. SSSR Ser. Mat. 4, 277-318 (1940).

42. Horn, R. A. & Johnson, C. R. Matrix analysis. (Cambridge Univ. Press, Cambridge, 1990).