An update on non-invasive urine diagnostics for human-infecting parasitic helminths: what more could be done and how?

John Archer1,2, James E. LaCourse2, Bonnie L. Webster1 and J. Russell. Stothard2

Abstract

Reliable diagnosis of human helminth infection(s) is essential for ongoing disease surveillance and disease elimination. Current WHO-recommended diagnostic assays are unreliable in low-endemic near-elimination settings and typically involve the invasive, onerous and potentially hazardous sampling of bodily fluids such as stool and blood, as well as tissue via biopsy. In contrast, diagnosis by use of non-invasive urine sampling is generally painless, more convenient and low risk. It negates the need for specialist staff, can usually be obtained immediately upon request and is better accepted by patients. In some instances, urine-based diagnostic assays have also been shown to provide a more reliable diagnosis of infection when compared to traditional methods that require alternative and more invasive bodily samples, particularly in low-endemicity settings. Given these relative benefits, we identify and review current research literature to evaluate whether non-invasive urine sampling is currently exploited to its full potential in the development of diagnostic tools for human helminthiases. Though further development, assessment and validation are needed before their routine use in control programmes, low-cost, rapid and reliable assays capable of detecting transrenal helminth-derived antigens and cell-free DNA show excellent promise for future use at the point-of-care in high-, medium- and even low-endemicity elimination settings.

Introduction

Parasitic worms, often referred to as helminths, form the most common human infectious parasites in low- and middle-income countries (LMICs), causing a global burden of disease exceeding that of both malaria and tuberculosis (Hotez et al., 2008; Lustigman et al., 2012). The rapid, straightforward and reliable diagnosis of helminthiases is essential for ongoing disease surveillance and successful disease control, particularly as control programmes advance towards disease elimination within endemic areas (Fig. 1), (Bergquist et al., 2009; Gordon et al., 2011; McCarthy et al., 2012; Rollinson et al., 2013; Werkman et al., 2018).

Current ‘gold standard’ diagnostic assays for the majority of these diseases typically involve the invasive and cumbersome sampling of bodily fluids such as stool and blood, as well as tissue via biopsy (Table 1), (WHO, 2012). Not only are these procedures often painful, onerous and carry a risk of infection (with, for example, HIV), but they also require specific equipment and specialist health workers seldom available in endemic areas. A reliable assessment of disease prevalence within a given community can therefore often prove challenging as a result of patient aversions to being assessed, as well as through a lack of resources (Iloh et al., 2011). Although widely considered low-cost, when taking into consideration the cumulative costs of equipment, number of personnel needed and remuneration of specialist staff, the true costs of gold standard assays are also being realized now and may likely be far more expensive than previously assumed (Turner et al., 2017). In addition, whilst these techniques may be sufficiently sensitive to confirm or refute individual infection status in areas of high disease endemicity or when assessing patients burdened with a high degree of infection, in areas of low-endemicity, for example during control programme near-elimination settings, sensitivity of these techniques can seriously wane (Appendix Fig. A1), (Bergquist et al., 2009; Klepac et al., 2013; Hawkins et al., 2016).

In contrast, diagnosis by use of non-invasive urine sampling is generally painless, more convenient, less expensive and low risk. It negates the need for specialist staff, can usually be obtained immediately upon request and is better accepted by patients (Castillo et al., 2009). Further to these clear practical advantages, some urine-based diagnostic assays have also been shown to provide a more sensitive diagnosis of infection when compared to traditional methods that require alternative and more invasive bodily samples, particularly in low-endemicity settings (Sousa-Figueiredo et al., 2013; Adriko et al., 2014). Given these relative benefits in ease of collection, greater patient acceptability and possible improved diagnostic performance, the following review aims to evaluate whether urine is currently being exploited...
to its full potential with regards to the diagnosis of the major human helminth infections and highlight future research needed to further advance helminth urine-diagnostics.

Literature search strategy

A systematic online literature search was conducted, beginning in October of 2018 and ending in October of 2019. The PubMed, Cochrane Library, Google Scholar and Web of Science databases were used, following stipulated database guidelines, to search for any literature published between 1919 and 2019 within peer-reviewed journals relevant to inputted search terms (National Center for Biotechnology Information,, 2019; Cochrane Library,, 2019; Google Scholar,, 2019; Web of Science,, 2019).

Three focal search terms, ‘diagnosis’, ‘diagnostic’ and ‘detection’, were used in conjunction with either disease name(s) (e.g. ‘schistosomiasis’, ‘Bilharzia’ and ‘snail fever’ or ‘lymphatic filariasis’ and ‘elephantiasis’), or pathogen species (e.g. ‘Schistosoma haematobium’ or ‘Wuchereria bancrofti’) and ‘urine’ or ‘transrenal’. Following this initial search, additional terms were included, such as diagnostic marker (e.g. ‘antigen’) and/or assay method (e.g. ‘enzyme-linked immunosorbent assay’), to potentially uncover additional literature. The abstracts of all publication hits were read and assessed for their relevance to review. Irrelevant articles were not included in the review, whereas all relevant articles were read in full. Publications deemed relevant were those that highlighted any primary research concerning the detection of any human-infecting parasitic helminth outlined in Table 1, or closely related non-human animal-infecting species, within urine samples taken from humans or non-human animals. Any secondary research, for example, systematic reviews or meta-analyses that met these criteria were also included. All literature cited within relevant articles was also screened, again to potentially uncover additional literature not provided by initial database searches.

Macroscopic changes to urine as a means of diagnosing urogenital schistosomiasis

Visible haematuria is often indicative of active urogenital schistosomiasis, caused by infection with *Schistosoma haematobium* (Colley et al., 2014). As such, cost-effective questionnaires involving either the self-reporting of blood in the urine by patients or the observation of blood in the urine by health workers have been used in an attempt to rapidly identify infected individuals and disease prevalence within endemic areas (Lengeler et al., 2002a,b; Okeke and Ubachukwu, 2014; Atalabi et al., 2017).

The sensitivity of self-reporting the presence of blood in the urine for diagnosis of *S. haematobium* infection has been extensively assessed (Bogoch et al., 2012; Bassiouny et al., 2014). Comparing patient questionnaire responses to the diagnostic gold standard (identification of ova in concentrated urine samples via microscopy), it has been concluded that despite the method’s practical advantages and relatively low cost, self-reported macrohaematuria alone is unreliable at the individual level primarily because visible haematuria typically only presents in individuals burdened with particularly heavy infections (Bogoch et al., 2012). In addition, macrohaematuria is also often a symptom of common urinary tract infections and bladder stones (Appendix Fig. A1), (Le and Hsieh, 2017). It has also been highlighted that the self-reporting of blood in the urine by school-aged children, the demographic customarily selected for helminth surveillance within a given community, can be unreliable due to either a young girl’s reluctance to admit the onset of menses, or a young boy’s eagerness to proclaim his ‘coming of age’ as a result of gross haematuria often being considered a natural sign of the onset of puberty (Montresor et al., 2002; Colley et al., 2014).

For these reasons, the diagnostic reliability of having trained and experienced personnel to identify the presence of macroscopic blood in the urine has also been assessed, again, comparing the method to urine-egg detection by microscopy (Okeke and Ubachukwu, 2014). Once more it was concluded that, unless used in conjunction with more taxing and costly methods, macrohaematuria does not provide adequate sensitivity when compared to egg microscopy, and in using only this method low-, or even moderate-intensity, infections would likely be missed.

It is generally accepted that although a useful and easily implemented tool in initial baseline observations to confirm *S. haematobium* presence in highly-endemic populations, in areas of low-endemicity, or when evaluating programmatic intervention

Fig. 1. Schematic outlining changes in diagnostic priorities as control programmes progress (adapted from Bergquist et al., 2009).
success in reducing disease prevalence and transmission, alternative and more accurate diagnostic approaches should be used (Utzinger et al., 2015; Mutapi et al., 2017).

Microscopic changes to urine as a means of diagnosing urogenital schistosomiasis

The current gold standard of S. haematobium diagnosis involves the filtering, staining and observation of morphologically distinct eggs excreted in urine (Le and Hsieh, 2017). Using a syringe and polycarbonate filters with a pore size of 8–30 μm, eggs from 10 mL of a well-shaken urine sample can be isolated, stained and examined under a microscope (Peters et al., 1976; Colley et al., 2014; Utzinger et al., 2015). This has long been the preferred method of S. haematobium diagnosis as it allows for a straightforward and reasonably inexpensive means of confirming infection within an individual or presence within a community (through sample pooling), using relatively unsophisticated and somewhat field-appropriate equipment. Additionally, and importantly, eggs can be quantified; providing a moderately accurate assessment of infection intensity within an individual that can then be used to estimate the degree of clinical morbidity (Colley et al., 2014; Utzinger et al., 2015; Corsjtens et al., 2017).

The many shortcomings of urine-egg microscopy, however, are well understood (Braun-Munzinger and Southgate, 1992; Le and Hsieh, 2017; Ajibola et al., 2018). Owing to heterogeneities in egg output occurring between different periods of the same day, between different days and even between different seasons, accurate diagnosis and morbidity assessment of any given individual using just one urine sample is unlikely (Braun-Munzinger and Southgate, 1992; Le and Hsieh, 2017; Christensen et al., 2018). To mitigate this, multiple urine samples from the same individual can be taken over consecutive days, ideally between the hours of 10:00am and 2:00pm to coincide with optimum egg passage (Le and Hsieh, 2017). Repeated bouts of urine filtration and microscopy is, however, taxing work; a reasonable balance between diagnostic accuracy, time spent and financial cost must be met and even then, overt improvements in diagnostic

Table 1. WHO-recommended diagnostic techniques for major human helminth infections and how technique invasiveness compares to that of urine sampling.

Disease (also known as)	Infectious agent (helminth species)	WHO-recommended diagnostic technique (WHO, 2012)	Degree of sample invasiveness relative to urine sampling*
Urogenital Schistosomiasis (Bilharzia/ Snail Fever)	Schistosoma haematobium	Identification of ova in concentrated urine sample via microscopy	±
Ascariasis (Roundworm)	Ascaris lumbricoides	Identification of ova in concentrated faecal smear via microscopy	+
Trichuriasis (Whipworm)	Trichuris trichiura	+	
Hookworm Infection	Ancylostoma duodanale	Necator americanus	+
Gastrointestinal Schistosomiasis (Bilharzia/ Snail Fever)	Schistosoma mansoni	+	
Schistosoma japonicum	+		
Schistosoma mekongi	+		
Schistosoma guineensis	+		
Schistosoma intercalatum	+		
Liver Fluke Infection	Fasciola hepatica	+	
Fasciola gigantica	+		
Opisthorchis viverrini	+		
Taeniasis (Tapeworm infection)	Taenia solium (adult stage)	+	
Taenia saginata (adult stage)	+		
Strongyloides (Threadworm infection)	Strongyloides stercoralis	Identification of larvae in concentrated faecal smear via microscopy	+
Strongyloides stercoralis	+		
Lymphatic Filariasis (Elephantiasis)	Wuchereria bancrofti	Identification of microfilariae in blood smear (taken to coincide with blood-circulating periodicity behaviour) via microscopy	++
Brugia malayi	++		
Brugia timori	++		
Loiasis (Loa)	Loa loa	Identification of microfilariae in blood smear via microscopy	++
Cysticercosis/ neurocysticercosis	Taenia solium (larval cysts)	MRI or CT brain scan	++
Onchocerciasis (River Blindness)	Onchocerca volvulus	Identification of microfilariae in multiple skin snips via microscopy	+++

*Positive/negative symbols denote degree of increase in sample invasiveness when compared to urine sampling where: ‘x’ indicates relative comparable invasiveness; ‘+’ indicates a moderate increase in sample invasiveness; ‘++’ indicates a considerable increase in sample invasiveness and; ‘+++’ indicates a major increase in sample invasiveness.
sensitivity are rarely seen (Stothard et al., 2014). Differences in diagnostic sensitivity between more and lesser-experienced technicians are also often found, further complicating matters when large quantities of urine samples require assessment (Knopp et al., 2015).

Of more urgent concern is urine-egg microscopy’s poor sensitivity when used in areas of low- or even moderate-prevalence settings (WHO, 2013; Le and Hsieh, 2017). As egg output declines, the sensitivity of urine-egg microscopy is significantly reduced resulting in a variety of challenges beyond just reliably identifying individuals burdened with low-intensity infections. Some of these challenges include accurately estimating clinical morbidity, evaluating the impact of programmatic interventions, diagnosing preschool aged children and assessing new diagnostic tools (Stete et al., 2012; Knopp et al., 2013, 2018; Le and Hsieh, 2017). Recent concern has also been raised about urine-egg microscopy’s poor sensitivity when attempting to detect ‘ultra-light’ infections, regarded as those that result in the expulsion of between only one and five eggs per 10 mL of urine (Knopp et al., 2018). Given the reproductive biology of schistosomes, just one infected individual excreting such minute numbers of eggs that may go on to infect and asexually reproduce within the appropriate intermediate freshwater snail host, potentially producing hundreds of cercariae per day, can cause the re-infection of an entire community (Colley et al., 2014). As such, in elimination settings or where treatment is targeted only to infected individuals that may be tracked, reassessed and retreated, any infected individuals must be quickly identified to ensure prompt treatment and total interruption of transmission; highlighting the urgent need for rapid, simple-to-use diagnostic tools deployable at the point-of-care (POC) and able to detect ultra-light infections (Hawkins et al., 2016; Knopp et al., 2018).

Although macrohematuria is typically present only in those harbouring heavy S. haematobium infections, microhaematuria, i.e. trace amounts of blood in the urine not visible to the naked-eye, can occur even in moderate- and low-intensity infections and can be detected using rapid, simple-to-use and relatively inexpensive reagent-strips that can be used at the point-of-care (Ochodo et al., 2015; Le and Hsieh, 2017; Knopp et al., 2018).

The accuracy of urine-heme reagent-strips, or ‘dipsticks’ for the indirect diagnosis of urogenital schistosomiasis have also been extensively assessed (Robinson et al., 2009; Krauth et al., 2015; Hassan et al., 2018; Musa and Dadah, 2018; Knopp et al., 2018). Recent reviews and meta-analyses have been undertaken to evaluate their diagnostic accuracy with a specific focus on high-, medium- and low-prevalence settings and in populations that have previously undergone repeated mass drug administration (MDA) treatment with praziquantel (King and Bertsch, 2013; Ochodo et al., 2015). In most cases, it has been concluded that although the diagnostic performance of urine-heme dipsticks is reduced in low-transmission areas and despite a range of possible confounding reasons for the presence of blood in the urine (such as urinary tract infections, bladder stones and menstrual blood), at the population level, urine-heme dipsticks should be considered more accurate than urine-egg microscopy (Ochodo et al., 2015). In addition, urine-heme dipsticks do not require specially trained microscopists, are less influenced by daily fluctuations in egg passage and take far less time to carry out (Krauth et al., 2015). It has also been concluded, however, that whilst urine-heme dipsticks should continue to be used to monitor the early-stage population-level impact of schistosomiasis control programmes (i.e. when assessing the initial baseline prevalence or when evaluating changes in overall prevalence after early intervention implementation), in elimination settings, or again when treatment is targeted only to infected individuals, neither the urine-heme dipstick or urine-egg microscopy can reliably identify individuals burdened with low- or ultra-light-intensity infections still capable of maintaining disease transmission (King and Bertsch, 2013; Ochodo et al., 2015; Knopp et al., 2018). Further assessment of urine-heme dipstick diagnostic performance using more sophisticated and sensitive methods such as Schistosoma antigen or DNA detection, rather than egg microscopy, has been encouraged (King and Bertsch, 2013).

As well as microhaematuria, leukocyturia (the abnormal presence of white blood cells in the urine) and proteinuria (the abnormal presence of proteins in the urine) may also be used as proxy to diagnose urogenital schistosomiasis, though both methods been found to be significantly less sensitive and specific than urine-heme dipsticks (Ochodo et al., 2015). It has been suggested, however, that the use of urine-heme dipsticks in conjunction with low-cost and field-deployable assays capable of detecting albuminuria (urine-albumin concentrations of >40 mg L$^{-1}$), may provide a reliable diagnosis of infection in high-endemicity settings whilst also allowing assessment of kidney and urinary tract morbidity associated with chronic disease (Rollinson et al., 2005; Sousa-Figueiredo et al., 2009).

Like macroscopic changes, microscopic changes to urine are also considered now insufficiently sensitive to detect S. haematobium infection in low-prevalence settings or within individuals harbouring low-level infections. In addition, these changes only occur as a result of infection with S. haematobium. In endemic areas, co-infection with multiple helminth species is commonplace, highlighting the need for multiplex assays capable of reliably detecting multiple helminth species using just one bodily sample.

Detection of anti-helminth urine-antibodies

Immunodiagnostic assays for the detection of blood-circulating anti-helminth antibodies have been used to diagnose infection with many human-infecting helminthiases (Rebollo and Bockarie, 2014; Kemal et al., 2015; Vlaminck et al., 2015; Akue et al., 2018). Of all antibody-targeting immunological assays, the most frequently employed is some form of the enzyme-linked immunosorbent assay (ELISA), the diagnostic functionality of which relies on the highly specific antigen-antibody binding that occurs during the body’s immune response to invading foreign pathogens (Lazcka et al., 2007).

Due to ease of sample procurement relative to blood sampling, the diagnostic potential of targeting anti-helminth antibodies expelled within the urine using immunodiagnostic assays has also been assessed; targeting and successfully detecting urine-based antibodies formulated against a range of helminth species (Table 2). Of those studies comparing the diagnostic accuracy between targeting urine- and serum-based antibodies, all reported good association in diagnostic performance whilst no additional effort in urine-sample preparation was required, presenting a compelling argument for moving beyond invasive blood-based diagnostics (Elhag et al., 2011; Nagaoka et al., 2013; Eamudomkam et al., 2018).

Although highly specific even in low-endemicity settings, antibody detection using the ELISA requires sophisticated equipment, specially trained health workers and expensive reagents that require cold chain typically unavailable to those in disease-endemic regions, particularly when hoping to obtain a quantitative diagnosis that indicates degree of infection within an individual (Bergquist et al., 2009; Tchuem Tchuente, 2011). As such, regardless of the bodily sample taken, these requirements make it difficult to envisage the future scale-up and field-deployment of the ELISA at the point-of-care, where the simple-to-use, rapid and sensitive diagnosis is needed. It is for this reason that much attention has been given to the
development of simple-to-use point-of-care rapid diagnostic test (POC-RDT) devices capable of rapidly detecting blood-circulating anti-helminth antibodies (Weil et al., 2000; Coulibaly et al., 2013; Steel et al., 2013). Further development of these for use with urine samples, however, is lacking. Two novel transrenal antibody-detecting RDTs that have been developed and assessed involve the use of antigen-coated coloured latex beads for the detection of filaria-specific IgG4 (Nagaoka et al., 2013), and the filtering of urine to isolate human IgG bound to S. haematobium ova, both requiring significantly less equipment, reagents and technical expertise than conventional immunodiagnostic assays (Sheele et al., 2013). Although promising, further evaluation for reliability, field-applicability, upscale and deployment is needed.

Another principal concern when targeting antibodies to determine infection status is the inability to distinguish between active and past infections owing to high antibody titres remaining within the body long after treatment success and infection clearance (Rollinson et al., 2013; Utzinger et al., 2015). This becomes particularly problematic when attempting to evaluate the impact of programmatic control strategies in areas that have undergone control intervention. As an example, individuals within areas having undergone mass administration with albendazole for the treatment of ascariasis may have indeed cleared any infection, however, any diagnostic assay targeting anti-Ascaris antibodies used to assess these individuals may remain positive (Jourdan et al., 2018). In areas where disease elimination is sought, it has been suggested that antibody-targeting assays may be appropriate for use with young children who have not yet received treatment as a means of assessing whether the transmission is still taking place (Jourdan et al., 2018; Takagi et al., 2019). In doing so, seroconversion rate, typically somewhere between at least 4 and 8 weeks after initial exposure, must be taken into consideration (van Grootveld et al., 2018; Vlamink et al., 2019).

Persistent post-infection circulating antibodies also cause difficulty when attempting to evaluate the true accuracy of antibody-targeting diagnostic assays; typically performed via comparison to gold standard assays that may themselves have poor-sensitivity. In doing this, antibody assays will consistently appear highly-sensitive with likely concurrent low positive predictive values (PPV), (Appendix Figure A1), whereas individuals testing negative by gold standard methods but positive by antibody-detecting methods may plausibly be harbouring active but low-level infections, or may indeed be currently uninfected after having cleared a previous infection (Doenhoff et al., 2004).

Cross-reactivity of antibodies between different helminth genera is also an issue (Genta, 1988; Lammie et al., 2004; Weerakoon et al., 2015; Lamberton and Jourdan, 2015; Garcia et al., 2018; Song et al., 2018). In some cases, genera-, or even species-specific identification of infecting helminths is essential for safe treatment strategies, for example when providing ivermectin to treat oncho-cerciasis in loiasis-endemic areas (Gardon et al., 1997), or for diagnosis of species-specific pathologies such as female and male genital schistosomiasis (Itoh et al., 2011; Vlamink et al., 2016; Kayuni et al., 2019; Kukula et al., 2019). In circumstances such as these, diagnostic assays with a higher degree of specificity than that of antibody-targeting assays are needed.

Because of the technical, financial and logistical challenges presented by anti-helminth antibody detection and when considering the very limited resources available for the development and validation of novel diagnostic assays, perhaps focus is best placed elsewhere, on more user-friendly, cost-effective and reliable methods.

Detection of helminth-derived urine-antigens

Targeting urine-antigens has multiple advantages over targeting transrenal antibodies; detection of antigens indicates active

Table 2. Anti-helminth antibodies detected within urine and immunodiagnostic assay used.

Bodily habitat	Species (life stage)	Antibody detected	Assay used	References	
Circulatory system	*S. mansoni* (adult stage)	IgG against soluble worm antigen (SWA)	ELISA	(Elhag et al., 2011)	
	S. haematobium (adult stage)	IgG against soluble worm antigen (SWA)	ELISA	(Elhag et al., 2011)	
	S. haematobium (ova)	IgG against *S. haematobium* soluble egg antigen (SEA)	RDT-sh	(Sheele et al., 2013)	
	S. japonicum (ova)	IgG against *S. japonicum* soluble egg antigen (SEA)	ELISA	(Itoh et al., 2003a)	
Lymphatic system (adult stage)/L3 larval stage) and/or circulatory system (microfilariae larval stage)	*W. bancrofti* (life-stage not specified)	Urinary IgG4 against *Brugia pahangi* crude soluble antigen	Modified ELISA: high-density latex bead assay	(Nagaoka et al., 2013)	
			ELISA	(Itoh et al., 2003b; Weerasooriya et al., 2008)	
			Filaria-specific IgG4	ELISA	(Rattanaxay et al., 2001; Itoh et al., 2007; Samad et al., 2013)
Gastrointestinal tract (adult stage) and/or circulatory system (larval stage)	*S. stercoralis* (life-stage not specified)	IgG against *S. stercoralis* crude soluble antigen	ELISA	(Eamudomkarn et al., 2018)	
Liver	*O. viverrini* (adult stage)	IgG, IgA, IgG4 against *O. viverrini* crude somatic antigen	ELISA	(Sawangsoda et al., 2012)	
		IgG, IgG4 against *O. viverrini* crude somatic antigen	ELISA	(Tesana et al., 2007)	
infection; diagnostic assays that target antigens can, therefore, be
used to evaluate disease intervention strategies such as MDA and
vector control; invading parasites may be detected soon after
infection and antigen levels generally correlate well with parasite
load (Corstjens et al., 2014; Worasith et al., 2015; Ochodo et al.,
2015; Kamel et al., 2019; Sousa et al., 2019). As with antibody
detection, good association between urine- and serum-based anti-
genesis detection has been found in high-, medium- and low-
endemicity settings, further strengthening the argument for mov-
ing towards non-invasive urine sampling (van Dam et al., 2004;
Kamel et al., 2019; Sousa et al., 2019).

Again, most immunodiagnostic assays used to detect helminth-derived urine-antigens, such as conventional ELISAs, are currently unsuited for point-of-care use (Table 3). At present, efforts to develop simple-to-use POC-RDTs for the detection of helminth urine-antigens have focused primarily on test devices capable of diagnosing urogenital and intestinal schistosomiasis, though a point-of-care lateral-flow dipstick to detect *O. volvulus*-derived urine-antigens has also been developed (Ayong et al., 2005).

The reliability of urine-antigen POC-RDTs when used in low-
endemicity settings or when assessing individuals with low-
intensity infections that may give unclear ‘trace’ results is, how-
ever, disputed (Coelho et al., 2016; Peralta and Cavalcanti,
2018). Recent meta-analyses suggest that, although more rapid
and sensitive than stool-microscopy, under these circumstances’
targeting the schistosome urine circulating cathodic antigen
(CCA) by use of the CCA-POC-RDT is not sufficiently sensitive
to reliably detect *S. mansoni* infection at the individual level (Danso-Appiah et al., 2016). It has been concluded that because of their low-cost, ease of use and patient-compliance, the CCA-POC-RDT may serve as a useful tool for disease-prevalence mapping and monitoring of control programmes relative to *S. mansoni* in high- and medium-endemicity settings. In low-
endemicity settings, however, when highly sensitive diagnostics
are capable of detecting low-intensity infections with a range of hel-
minth species at the individual level are required, alternative and
more sensitive assays are needed.

Revisions in assay protocols can improve the sensitivity and
specificity of RDT’s capable of detecting schistosome-urine-antigens beyond that of even lab-based ELISA assays, even in light-infections (Coelho et al., 2016; Kamel et al., 2019). Recently, the development of an up-converting phosphor lateral-flow (UCP-LF) assay targeting transrenal circulating anodic antigens (CAA) has shown that diagnosis of ultra-light schistosome infections through urine-CAA detection is possible (Corstjens et al., 2014; van Dam et al., 2015a,b). The genus-specific assay has shown extremely high sensitivity for the detection of *S. haematobium*, *S. mansoni*, *S. japonicum* and *S. mekongi* urine-CAA, even in low-endemicity settings (Corstjens et al., 2014; van Dam et al., 2015a,b; Knopp et al., 2015; de Doed et al., 2018; Sousa et al., 2019). Further to its high-specificity, the UCP-LF CAA assay offers additional advantages over urine- and stool-microscopy in that the UCP-LF CAA is much higher-throughput and that only urine sampling is required to diagnose both urogenital and intestinal schistosomiasis (Knopp et al., 2015; Corstjens et al., 2014).

Though treatment of both forms of schistosomiasis is identical,
(40 mg praziquantel per kg body weight), if using this assay in areas co-endemic for both *S. haematobium* and *S. mansoni*, additional steps would be required to diagnose species-specific infection, associated pathologies, cure rates and drug efficacies. Although not yet fully suited for point-of-care use, the UCP-LF CAA assay requires only a reliable source of electricity, simple centrifugation facilities and pipetting capacities; offering a high-throughput and highly-sensitive means of diagnosing schistosomiasis through urine sampling whilst requiring lesser-equipped laboratory infrastructure than conventional immunodiagnostic assays (Knopp et al., 2015; Sousa et al., 2019). As the assay is also currently too expensive for commercial and routine use in schistosomiasis control programmes, efforts to develop a less expensive, rapid and simple-to-use CAA-POC-RDT that retains the UCP-LF CAA’s high-sensitivity have begun (Knopp et al., 2015). Until then, it has been suggested that the existing assay could be used as a robust means of confirming or refuting indiscive test results at the individual level given by alternative, less sensitive but more field-appropriate, methods (de Doed et al., 2018).

Additional advancements in antigen-detecting immunodiag-
nostic POC-RDTs include the development of a lateral flow immunochromatographic test strip capable of detecting circulat-
ing *S. mansoni* antigen (CSA) within the urine using colloidal gold and mesoporous silica nanoparticles (Kamel et al., 2019). Though currently adapted only for diagnosis of infection with *S. mansoni*, these rapid and field-applicable test strips showed extremely high sensitivity when used to assess patients burdened with light infections and were even found to provide a more sen-
sitive diagnosis than the conventional lab-based sandwich ELISA. Further assessment and validation of these RDT test strips, as well as adaptation for detection of other helminth-species urine-antigens, is encouraged.

It should be noted that the diagnostic potential of targeting any helminth-derived antigen through urine sampling will greatly depend on whether or not that antigen is expelled in the urine. Blood-circulating antigens with a high molecular mass may be too large to pass from the glomerular capillaries into the glomeru-
lar capsule and onto the bladder, and even of those that do, some will undoubtedly degrade into smaller products not recognised by monoclonal antibodies prior to diagnosis (Chanteau et al., 1994). Moreover, some helminth antigens may not be expelled in the urine because of that helminth species’ bodily habitat. The adult form of *Ascaris lumbricoides* and various species of cestode, for example, reside within the gastrointestinal lumen and so do not directly interact with circulating blood (Lamberton and Jourdan, 2015).

Additionally, as with antibodies, any transrenal antigens tar-
gated for diagnostic purposes will require assessment as to
whether or not and to the degree with which they may cross-react with other antigens and/or other proteins expelled in the urine. Helminth-derived blood-circulating antigens from various genera of filarial nematode, for example, are known to cross-react in co-endemic areas; severely hampering the diagnostic efficacy of assays needed to identify infected individuals and provide safe treatment (Hertz et al., 2018). In addition, the *Schistosoma* CCA assay has been found to cross-react with antigens from other parasites, general inflammatory biomarkers and even meta-
bolites expelled in the urine of pregnant women; also hampering diagnostic efficacy (van Dam et al., 1996; Utzinger et al., 2016).

Detection of helminth-derived transrenal nucleic acid

Diagnosis via detection of helminth DNA expelled in the urine has many advantages beyond ease of sample procurement; it
can be highly sensitive (trace levels of DNA can be detected),
highly specific, parasite load can be quantified, assays can be high through-put and multiple species of parasitic helminth can be identified within one multiplex assay (Gordon et al., 2011; Phuphisut et al., 2014; Melchers et al., 2014). Possible further benefits include the early detection of anthelmintic drug resis-
tance development, the ability to monitor helminth population genetic variation over time, relatively less arduous sample prepara-
tion when compared to blood, stool or tissue samples and the

https://doi.org/10.1017/S0031182019001732 Published online by Cambridge University Press
Bodily habitat	Species (life stage)	Antigen detected	Assay used	References
Circulatory system	*S. mansoni*	Circulating cathodic antigen (CCA)	ELISA	(Ochodo et al., 2015; Peralta and Cavalcanti, 2018)
	(adult stage)		CCA lateral-flow strip POC-RDT	(Stothard et al., 2006; Ochodo et al., 2015; Peralta and Cavalcanti, 2018)
		Circulating anodic antigen (CAA)	ELISA	(Peralta and Cavalcanti, 2018)
			Up converted phosphor-lateral flow CAA assay	(Sousa et al., 2019)
		Circulating *Schistosoma mansoni* antigen (CSA)	Lateral-flow immunochromatographic test/ELISA	(Kamel et al., 2019)
	S. haematobium	Circulating cathodic antigen (CCA)	ELISA	(Stothard et al., 2006; Ochodo et al., 2015; Peralta and Cavalcanti, 2018)
	(adult stage)		CCA lateral-flow strip POC-RDT	(Peralta and Cavalcanti, 2018)
		Circulating anodic antigen (CAA)	ELISA	(Peralta and Cavalcanti, 2018)
			Up converted phosphor-lateral flow CAA assay	(Corstjens et al., 2014; Knopp et al., 2015; de Dood et al., 2018)
	S. japonicum	Circulating cathodic antigen (CCA)	ELISA	(van Dam et al., 2015a,b)
	(adult stage)		CCA lateral-flow strip POC-RDT	(van Dam et al., 2015a,b)
		Circulating anodic antigen (CAA)	Up converted phosphor-lateral flow CAA assay	(van Dam et al., 2015a,b)
	S. mekongi	Circulating cathodic antigen (CCA)	ELISA	(van Dam et al., 2015a,b; Vonghachack et al, 2017)
	(adult stage)		CCA lateral-flow strip POC-RDT	(van Dam et al., 2015a,b; Vonghachack et al, 2017)
		Circulating anodic antigen (CAA)	Up converted phosphor-lateral flow CAA assay	(van Dam et al., 2015a,b; Vonghachack et al, 2017)
	L. loa	LOAG_16297 protein	Nanobore reversed-phased liquid chromatography-tandem mass spectrometry (RPLC-MS/MS)	(Drame et al., 2016)
	(microfilariae larval stage)		POCA-RDT dipstick assay	(Ayong et al., 2005)
	O. volvulus	Unspecified filarial larval antigen	POC-RDT dipstick assay	
	(microfilariae larval stage)			
Lymphatic system (adult stage/L3 larval stage) and/or circulatory system (microfilariae larval stage)	*W. bancrofti*	Unspecified filarial antigen	Inhibition ELISA	(Chenthamarakshan et al., 1996)
	(life-stage not specified)		Sandwich ELISA	(Huijun et al., 1987)
			Double antibody sandwich ELISA	(Ramaprasad et al., 1988)
			Two-site immunoradiometric assay	(Henry et al., 1987)
			Counterimmuno-electrophoresis (CIEP)	(Wei et al., 1986)
			Urinary filarial antigen UFAC2	(Chenthamarakshan et al., 1993)
			SDS-PAGE and immunoblotting	(Chenthamarakshan et al., 1993)
	B. malayi	Unspecified filarial antigen	Sandwich ELISA	(Huijun et al., 1987)
	(life-stage not specified)			

(Continued)
ability to detect pre-patent infections (Enk et al., 2010, 2012; Lamberton and Jourdan, 2015; Minetti et al., 2016).

Cell-Free DNA (cfDNA) has been defined as extracellular fragments of DNA found in bodily fluids or tissues, including the urine (Weerakoon et al., 2015, 2018; Weerakoon and McManus, 2016). It can be detected through use of nucleic acid amplification tests (NAATs), the more common of which include conventional polymerase chain reaction (PCR), nested PCR (nPCR) and quantitative or real-time PCR (qPCR/rtPCR) (Gordon et al., 2011; Verweij and Stensvold, 2014). Praised for their high sensitivity and specificity, NAATs are now becoming recognised as a more reliable means of helminth diagnosis than current gold standard and immunodiagnostic assays, particularly in low-intensity infections and even when targeting cfDNA expelled in the urine (Enk et al., 2012; Ibironke et al., 2012; Melchers et al., 2014; Lodh et al., 2016; Krolewieski et al., 2018).

To date, using NAATs, numerous studies have evaluated the diagnostic efficacy of targeting transrenal cfDNA from helminths known to reside within a range of bodily habitats, all of which have reported higher sensitivity when compared to gold standard techniques (Table 4). Although the detectible presence of transrenal cfDNA has not yet been confirmed for all human-infecting parasitic helminths, as validated assays do currently exist for the detection of many helminth species’ cfDNA in other bodily samples, adaptation of these to assess presence and diagnostic efficacy of helminth-derived cfDNA within the urine should be straightforward (Gordon et al., 2011; Minetti et al., 2016; Weerakoon and McManus, 2016). Of particular interest would be to determine the presence of transrenal Onchocerca volvulus and Loa loa cfDNA, given their subcutaneous and deep tissue habitats and understandable patient aversions to invasive skin-snip biopsies currently used to confirm onchocerciasis infection (Knopp et al., 2012). Of additional interest would be to determine the presence of transrenal cfDNA from Trichuris trichiura and hookworm parasites as, despite sharing their gastrointestinal tract habitat with Ascaris lumbricoides and cestodes, adult forms do interact with circulating blood (Jourdan et al., 2018). As with A. lumbricoides and cestode urine-antigen detection, detection of transrenal cfDNA from these helminths may be unlikely. Cell-free DNA from Strongyloides stercoralis, another gut-dwelling helminth, has been successfully detected in urine, though it is speculated this is due to tissue dissemination during larval-form autoinfection (Lodh et al., 2016).

Although clearly a highly sensitive method of confirming or refuting infection, many financial, logistical and methodological challenges must be overcome if NAATs are to replace current diagnostic standards, regardless of the bodily sample taken. Perhaps of primary concern are the high costs associated with NAATs, such as PCR and qPCR, when compared to current, less costly, gold standard assays. Expensive reagents, sophisticated equipment and remuneration of specialist technical staff all contribute to overall expenditure, again resulting in a diagnostic assay likely unaffordable to most health workers in resource-poor settings (Minetti et al., 2016). Another major challenge is the upscale and field-applicability of assays targeting cfDNA. In programmatic elimination settings where rapid and reliable detection of few infected individuals is crucial for disease elimination, diagnostic assays must be deployable at the point-of-care. Not only are conventional NAATs themselves currently unsuited for point-of-care use, but essential sample preparation steps, such as DNA extraction, that also require specific laboratory equipment and reagents, prevent the use of conventional NAATs anywhere lacking sophisticated laboratory infrastructure. In addition, to what extent helminth-derived cfDNA continues to be expelled in the urine after infection clearance is largely unknown and likely varies between parasite species’ bodily habitat and degree of the previous infection.

Table 3. (Continued.)

Species	Life stage	Bodily habitat	Antigen detected	Assay used
O. volvulus	Adult stage	Subcutaneous tissue	Unspecified filarial antigen	Lateral-flow strip POC-RDT (Ayong et al., 2005)
T. solium	Larval stage	Central nervous system	Cysticercal antigen	B158/B60 Urine Ag-ELISA (Mwape et al., 2011)
			Secretory-excretory antigen	Monoclonal antibody Ag-ELISA (Castillo et al., 2009)
			Unspecified T. solium antigen	Capture ELISA (Paredes et al., 2016)
O. viverrini	Adult stage	Liver	Excretory-secretory antigen	Modified ELISA (Urine OV-ES) Assay (Worasith et al., 2015)

References:
- Ayong et al. (2005)
- Mwape et al. (2011)
- Castillo et al. (2009)
- Paredes et al. (2016)
- Worasith et al. (2015)
The recently developed loop-mediated isothermal amplification (LAMP) assay shows promise for future point-of-care use; DNA fragments are amplified under isothermal conditions, negating the need for thermocycling equipment essential for PCR-based diagnostics, the point-of-care challenges presented by PCR-based diagnostics, the point-of-care LAMP sensitivity when compared to alternative recombinase DNA-polymerase amplification (RPA) assay has also recently been developed and has been used to successfully detect and amplify helminth DNA from other bodily samples; cfDNA of recombinant DNA in human stool samples, as well as S. haematobium DNA in human urine samples (Takagi et al., 2014, 2016, 2019; Shirahito et al., 2016; Bayoumi et al., 2014, 2016; Minetti et al., 2016). Despite these advantages, however, the LAMP assay does still require heat-blocks or waterbaths to heat reactions for long periods; often up to 2 hours. A reliable source of electricity is therefore still essential. Furthermore, unlike qPCR/rtPCR, LAMP assays are only semi-quantitative, meaning estimates of infection intensity are subjective and may vary between personnel; individual assays are low-throughput; amplified fragments cannot be sequenced, preventing the monitoring of genetic variation in populations over time and ambiguity exists between personnel; individual assays are low-throughput; amplified fragments cannot be sequenced, preventing the monitoring of genetic variation in populations over time and ambiguity exists between personnel; individual assays are low-throughput; amplified fragments cannot be sequenced, preventing the monitoring of genetic variation in populations over time and ambiguity exists between personnel; individual assays are low-throughput; amplified fragments cannot be sequenced, preventing the monitoring of genetic variation in populations over time and ambiguity exists between personnel; individual assays are low-throughput; amplified fragments cannot be sequenced, preventing the monitoring of genetic variation in populations over time and ambiguity exists between personnel; individual assays are low-throughput; amplified fragments cannot be sequenced, preventing the monitoring of genetic variation in populations over time and ambiguity exists between personnel; individual assays are low-throughput; amplified fragments cannot be sequenced, preventing the monitoring of genetic variation in populations over time and ambiguity exists between personnel; individual assays are low-throughput; amplified fragments cannot be sequenced, preventing the monitoring of genetic variation in populations over time and ambiguity exists between personnel; individual assays are low-throughput; amplified fragments cannot be sequenced, preventing the monitoring of genetic variation in populations over time and ambiguity exists between personnel; individual assays are low-throughput; amplified fragments cannot be sequenced, preventing the monitoring of genetic variation in populations over time and ambiguity exists between personnel; individual assays are low-throughput; amplified fragments cannot be sequenced, preventing the monitoring of genetic variation in populations over time and ambiguity exists between personnel; individual assays are low-throughput; amplified fragments cannot be sequenced, preventing the monitoring of genetic variation in populations over time and ambiguity exists between personnel; individual assays are low-throughput; amplified fragments cannot be sequenced, preventing the monitoring of genetic variation in populations over time and ambiguity exists between personnel; individual assays are low-throughput; amplified fragments cannot be sequenced, preventing the monitoring of genetic variation in populations over time and ambiguity exists between personnel; individual assays are low-throughput; amplified fragments cannot be sequenced, preventing the monitoring of genetic variation in populations over time and ambiguity exists between personnel; individual assays are low-throughput; amplified fragments cannot be sequenced, preventing the monitoring of genetic variation in populations over time and ambiguity exists between personnel; individual assays are low-throughput; amplified fragments cannot be sequenced, preventing the monitoring of genetic variation in populations over time and ambiguity exists between personnel; individual assays are low-throughput; amplified fragments cannot be sequenced, preventing the monitoring of genetic variation in populations over time and ambiguity exists between personnel; individual assays are low-throughput; amplified fragments cannot be sequenced, preventing the monitoring of genetic variation in populations over time and ambiguity exists between personnel; individual assays are low-throughput; amplified fragments cannot be sequenced, preventing the monitoring of genetic variation in populations over time and ambiguity exists between personnel; individual assays are low-throughput; amplified fragments cannot be sequenced, preventing the monitoring of genetic variation in populations over time and ambiguity exists between personnel; individual assays are low-throughput; amplified fragments cannot be sequenced, preventing the monitoring of genetic variation in populations over time and ambiguity exists between personnel; individual assays are low-throughput; amplified fragments cannot be sequenced, preventing the monitoring of genetic variation in populations over time and ambiguity exists between personnel; individual assays are low-throughput; amplified fragments cannot be sequenced, prevent...
human urine samples (Piepenburg et al., 2006; Sun et al., 2016; Xing et al., 2017; Cabada et al., 2017; Li et al., 2019; Rostron et al., 2019). Assays to detect S. mansoni DNA by the use of the RPA have also recently been developed, though these have not yet been tested on clinical samples (Poultion and Webster, 2018).

Capable of detecting even trace levels of DNA, the RPA provides a promising means of reliably detecting ultra-light levels of infection in low-endemic areas (Rosser et al., 2015; Lai et al., 2017; Poultion and Webster, 2018; Rostron et al., 2019). In addition, the assay itself offers many advantages over PCR and qPCR in terms of its methodology and potential use at the point-of-care (Areyete et al., 2013; Lodh et al., 2014; Sady et al., 2015; Minetti et al., 2016).

Firstly, assay reactions take place within a robust, hand-held, easily programmed, portable and battery-powered device, omitting the need for specialist technical personnel and sophisticated laboratory infrastructure. Moreover, assay results can be easily interpreted using the same device or, alternatively, via simple-to-use and low-cost lateral-flow immunoassay strips; both omitting the need for sophisticated and delicate readout equipment (Rosser et al., 2015; Xing et al., 2017; Poultion and Webster, 2018; Rostron et al., 2019).

Assay reactions are also isothermal; optimal amplification occurs within 25°C – 42°C with use of the device’s battery-powered heater, though testing can take place at ambient temperature in some endemic areas, or even at body temperature (Crannell et al., 2014; Kersting et al., 2014; Minetti et al., 2016). Reaction time at reduced temperatures is, however, prolonged. Isothermal reactions not only negate the need for thermocycling equipment that may only amplify specific DNA strands based on cycle conditions within one cycle run but also allow for the detection and amplification of DNA from multiple helminth species or even other pathogens, e.g. malaria or intestinal protozoa, using only different primer combinations, within the same assay run (Crannell et al., 2016). Additionally, and unlike LAMP amplions, RPA amplicons can be sequenced, allowing the monitoring of genetic variation in populations over time (Oyola et al., 2012).

Another advantage of RPA over PCR-based techniques is assay runtime; results can often be seen within 30 min of urine sample procurement as purification of total DNA from urine is not required (Kersting et al., 2014; Krölov et al., 2014; Rosser et al., 2015; Rostron et al., 2019). Therefore, sample preparation is also less laborious and more field-applicable than these alternative DNA amplification methods as only crude preparations are needed. In addition, assay reagents can be lyophilised for easy transportation and can be stored without refrigeration even in tropical ambient temperatures for several weeks (Crannell et al., 2014; Oriero et al., 2015).

The RPA assay is, however, much higher in cost when compared to alternative DNA amplification approaches. Estimated to cost between 4 USD$ and 5 USD$ per sample, the assay is currently too expensive for routine use in population-level control programmes within endemic areas (Minetti et al., 2016). With further development, adaptation and uptake of the assay, however, the cost per assay sample is very likely to decrease in the near future (Rosser et al., 2015).

Further drawbacks to RPA include, like LAMP, the assay’s low throughput when compared to alternative PCR-based methods, though this can be resolved through manufacture of larger-capacity devices. In addition, again like LAMP results, RPA results are only semi-quantitative, making estimations of infection intensity less reliable. As such, the assay in its current form may be best suited for small sample sizes and individual test-and-treat scenarios in low-endemicity settings.

Despite these disadvantages, the RPA is an extremely promising means of rapid, straightforward and sensitive diagnosis at the point-of-care in low-endemicity settings. Further development and validation of the RPA assay for use in diagnosing helminthiases using non-invasive urine sampling, is therefore recommended.

Novel biomarkers
Proteomic and metabolomic technologies can be used to screen bodily samples, including urine, to identify novel biomarkers that may potentially be used for diagnostic purposes. Using liquid chromatography and mass spectrometry, for example, it was recently reported that as many as 31 Schistosoma-derived proteins were differently abundant within the urine of patients infected with S. haematobium when compared to an uninfected control group and so may be used to detect active infection (Onile et al., 2017). Here, it was also suggested that the presence and abundance of some transrenal host-derived proteins such as human growth/differentiation factor 15 (GDF15), upregulated in response to organ damage, may even provide a reliable means of determining disease severity and infection intensity, and so should be further evaluated.

Eosinophil cationic protein (ECP), involved in the body’s immune response to foreign pathogens, has also been found to be significantly elevated in the urine of individuals infected with a variety of helminth species including S. haematobium, S. mansoni, O. volvulus, W. bancrofti, and hookworm (Tischendorf et al., 1999; Tischendorf et al., 2000; Klion and Nutman, 2004; Fayez et al., 2010; Asming-Brempong et al., 2015). In addition to GDF15, when assessing the use of transrenal ECP as a biomarker for infection with S. haematobium, a positive correlation between expelled ECP and urine egg count was found, suggesting urinal ECP may too increase with infection intensity and may therefore potentially be used to assess disease severity and worm burden (Leutscher et al., 2008; Leutscher et al., 2000). These findings have since been replicated not only in S. haematobium, but also in S. mansoni infections (Asming-Brempong et al., 2015). More recently, ECP levels in serum samples taken from individuals infected with hookworm have also been shown to positively correlate with infection intensity (Amoani et al., 2019). Repeated assessment using lesser-invasive urine samples was recommended.

Liquid chromatography has also been used in conjunction with infrared spectrophotometry to screen urine for expelled metabolites associated with helminth infections. Using this approach, it was reported that two metabolites, 2-methylbutyramide and 2-methyl-valeramide, can be detected within the urine of individuals infected with Ascaris (Hall and Romanova, 1990). These findings have, however, recently been contested after neither of metabolite was detected in Indonesian individuals harbouring active Ascaris infections (Lagatite et al., 2017). In addition to liquid chromatography, nuclear magnetic resonance (NMR) spectroscopy has been used to screen urine samples taken from mice experimentally infected with S. mansoni for expelled metabolites (Wang et al., 2004). A range of transrenal metabolites was associated with active infection and so warrant further exploration in human urine samples and in other helminth species infections.

Newly discovered transrenal biomarkers with the potential to indicate active infection, parasite burden and morbidity status may help to inform and shape future point-of-care diagnostic tools. The continued use of proteomic and metabolomic technologies for biomarker discovery is therefore strongly encouraged.

Discussion
Rapid, simple-to-use and low-cost diagnostic tools, deployable at the point-of-care and reliable in low-endemicity near-elimination
settings, are urgently needed to help facilitate the elimination of debilitating parasitic helminth diseases. Current WHO-recommended gold standard assays do not meet these criteria and typically require invasive and potentially hazardous bodily samples. Many of these criteria are, however, met by non-invasive urine-based diagnostic assays capable of detecting a range of parasitic helminth species.

Macroscopic and microscopic changes to urine are not adequately sensitive to detect urogenital schistosomiasis in light-infected individuals. As outlined above, many other helminth species can be detected within the urine with high sensitivity, technical, financial and logistical challenges impede the reliability and routine use of urine-antibody diagnostic assays in helminth control programmes.

POC-RDT devices capable of detecting transrenal helminth-derived antigens may offer a simple, rapid, sensitive and low-cost diagnostic format at the point-of-care in high- and medium-prevalence settings. Although not currently adequately sensitive in low-endemicity settings or at the individual-level in patients burdened with light-infections, technological advancements and protocol revisions show promise for future improvements in POC-RDT diagnostic sensitivity that may facilitate their use in low-endemicity near-elimination settings.

Targeting transrenal helminth cfDNA is extremely sensitive and specific even in low-endemicity settings. The majority of assays capable of detecting urine-cfDNA are, however, both unsuited for point-of-care use and unaffordable to most control programmes in disease-endemic areas. The recently developed LAMP and RPA assays may offer a promising, reliable and field-deployable means of detecting helminth-derived urine-cfDNA and, through further research, development and validation is needed before their routine application in disease-endemic areas, these assays have the potential for reliable test-and-treat use in low-endemicity near-elimination settings.

The majority of current literature concerned with diagnosing helminthiases through urine sampling focuses primarily on the diagnosis of urogenital and intestinal schistosomiasis. As outlined here, many other helminth species, from a range of boldy infecting species capable of maintaining disease transmission.

Concluding remarks

Sensitive and specific diagnosis of many major parasitic helminthiases at the point-of-care is likely possible through non-invasive urine sampling. Though further development, assessment and validation are needed before their routine use in control programmes, low-cost and rapid assays capable of detecting transrenal helminth-derived antigens and cell-free DNA show promise for future use at the point-of-care in high-, medium- and even low-endemicity elimination settings. Ultimately, however, until these techniques are more affordable and easily implemented, less-reliable assays that require more invasive bodily samples will remain the diagnostic standard.

Financial support.

Conflict of interest.

Ethical standards.

References

Adriko M, Standley CJ, Tinkitina B, Tukahbewa EM, Fenwick A, Fleming FM, Sousa-Figueiredo JC, Stothard JR and Kabatereine NB (2014) Evaluation of circulating cathodic antigen (CCA) urine-cassette assay as a survey tool for Schistosoma mansoni in different transmission settings within Bugiri district, Uganda. Acta Tropica 136, 50–57.

Ajibola O, Gulumbe BH, Eze AA and Obishakin E (2018) Tools for detection of Schistosomiasis in resource limited settings. Medical Sciences 6, 1–12. doi: 10.3390/medscis0600039.

Akobeng AK (2007) Understanding diagnostic tests 1: sensitivity, specificity and predictive values. Acta. Paediatricia 96, 333–341. doi. 10.1111/j.1651-2227.2006.00180.

Akue JP, Eyang-Assengene E-R and Dieki R (2018) Loa loa infection detection using biomarkers: current perspectives. Research and Reports in Tropical Medicine 9, 43–48.

Amoani B, Adu B, Frempong MT, Sarkodie-Addo T, Nuvor SV, Wilson MD and Gyan B (2019) Levels of serum eosinophil cationic protein are associated with hookworm infection and intensity in endemic communities in Ghana. PLoS ONE 14, e0222382.

Aryeetey YA, Essien-Baldoo S, Larbi IA, Ahmed K, Amoah AS, Obeng BB, van Lieshout I, Yazdanbakhsh M, Boakye DA and Verweij JF (2013) Molecular diagnosis of Schistosoma infections in urine samples of school children in Ghana. The American Journal of Tropical Medicine and Hygiene 88, 1028–1031.

Asuming-Brempong E, Gyan B, Amoah A, van der Puije W, Bimi I, Boakye D and Ayi I (2015) Relationship between eosinophil cationic protein and infection intensity in a schistosomiasis endemic community in Ghana. Research and Reports in Tropical Medicine 1, 1–10. doi: 10.2147/RRTM.S51713.

Atalabi TE, Adubi TO and Lawal U (2017) Rapid mapping of urinary schistosomiasis: an appraisal of the diagnostic efficacy of some questionnaire-based indices among high school students in Katsina state, northwestern Nigeria. PLOS Neglected Tropical Diseases 11, e0055158.

Ayong LS, Tume CB, Wembe FE, Simo G, Asonganyi T, Lando G and Ngu JL (2005) Development and evaluation of an antigen detection dipstick assay for the diagnosis of human onchocerciasis. Tropical Medicine & International Health: TM & IH 10, 228–233.

Bassiony HK, Hasab AA, El-Nimra NA, Al-Shibani LA and Al-Waleed AA (2014) Rapid diagnosis of schistosomiasis in Yemen using a simple questionnaire and urine reagent strips. Eastern Mediterranean Health Journal = La Revue De Sante De La Mediterranee Orientale = Al-Majallah Al-Sihhia Li-Sharq Al-Mutawassit 20, 242–249.
Braun-Munzinger RA and Southgate BA
Castillo Y, Rodriguez S, García HH, Brandt J, Van Hul A, Silva M, Bayoumi A, Al-Refai SA and Badr MS
884 John Archer
Chenthamarakshan V, Reddy MVR and Harinath BC
Colley DG, Bustinduy AL, Secor WE and King CH
Corstjens PLAM, Hoekstra PT, de Dood CJ and van Dam GJ (2017)
Crannell ZA, Rohrman B and Richards-Kortum R
cibility of egg counts of (GTZ)
Journal of Infectious Diseases
infection and adult worm burden in Wuchereria bancrofti filariasis. Journal of Tropical Medicine and Hygiene
test for the detection of polymerase amplification compared to real-time polymerase chain reaction
The American Journal of Tropical Medicine and Hygiene
Rodriguez-Hidalgo R, Portocarrero M, Melendez DP, Gonzalez AE, and applicability of a PCR system for the detection of Schistosoma mansoni DNA in human urine samples from an endemic area. PLoS ONE 7 e012538.
Elhag SM, Abdelkareem EA, Yousif AS, Frah EA and Mohamed AB (2011) Detection of schistosomiasis antibodies in urine patients as a promising diagnostic maker. Asian Pacific Journal of Tropical Medicine 4, 773–777.
Enk MJ, Oliveira e Silva G and Rodrigues NB (2010) A salting out and resin procedure for extracting Schistosoma mansoni DNA from human urine samples. BMC Research Notes 3, 115.
Enk MJ, Oliveira e Silva G and Rodrigues NB (2012) Diagnostic accuracy and applicability of a PCR system for the detection of Schistosoma mansoni DNA in human urine samples from an endemic area. PLoS ONE 7 e38947.
Fayer S, Zaki MM, Elawahy AA and El-Gebaly NSM (2010) Assessment of the Role of Serum and Urine Esophagostomum Catenatum in Diagnosis of Wuchereria bancrofii Infection. 9.
Fernández-Soto P, Gandasegui Arahuete J, Sánchez Hernández A, López Abán J, Vicente Santiago B and Muro A (2014) A loop-mediated isothermal amplification (LAMP) assay for early detection of Schistosomiasis mansoni in stool samples: a diagnostic approach in a murine model. PLoS Neglected Tropical Diseases 8, e3126.
Fernández-Soto P, Sánchez-Hernández A, Gandasegui J, bajo Santos, López-Abán J, Saugr JM, Rodriguez E, Vicente B and Muro A (2016) Strong-LAMP: a assay for Strongyloides spp. Detection in stool and urine samples. Towards the diagnosis of human strongyloidiasis starting from a rodent model. PLoS Neglected Tropical Diseases 10, e0004836.
Fernández-Soto P, Gandasegui J, Carranza Rodriguez C, Perez-Arellano JL, Crego-Vicente B, Garcia-Bernalt Diego J, Lopez-Aban J, Vicente B and Muro A (2019) Strong-LAMP: a assay for Strongyloides spp. Detection in stool and urine samples. Towards the diagnosis of human strongyloidiasis starting from a rodent model. PLoS Neglected Tropical Diseases 10, e0004836.
recognised by a species-specific probe. Molecular and Biochemical Parasitology 44, 73–80. doi: 10.1016/0168-6591(91)90222-R.

Hamburger J, Abbasi I, Kariuki C, Wanjala A, Mzungu E, Mungai P, Muchiri E and King CH (2013) Evaluation of loop-mediated isothermal amplification suitable for molecular monitoring of schistosome-infected snails in field laboratories. The American Journal of Tropical Medicine and Hygiene 88, 344–351. doi: 10.4269/ajtmh.2012.12-0208.

Hassan J, Mohammed K, Opaluwa S, Badr A, Afifi A and El Hertz MI, Nana-Djeunga H, Kamgno J, Jelil Njouendou A, Chawa Chunda

Henry D, Dessaint JP, Wandji K and Centre AC Jourdan PM, Lamberton PHL, Fenwick A and Addiss DG (2012) Parasite Epidemiology and Control 4, e000777.

Huijun Z, Zhenghou T, Reddy MVR, Harinath BC and Piessens WF Itoh M, Fujimaki Y, Weerasooriya MV, Islam MZ and Qiu X-G (2003b) Sensitive enzyme-linked immunosorbent assay with filamentous-specific urinary IgG4 monoclonal antibodies. The American Journal of Tropical Medicine and Hygiene 68, 465–468.

Itoh M, Ohta N, Inazawa T, Nakajima Y, Shio M, Minai M, Daren Z, Chen Y, He H, He Y-K and Zhong Z (2003b) Prevalence and levels of filaria-specific urinary IgG4 among children less than five years of age and the association of antibody positivity between children and their mothers. The American Journal of Tropical Medicine and Hygiene 70, 206–212.

Itoh M, Wu W, Sun D, Yao L, Li Z, Islam MZ, Chen R, Zhang K, Wang F, Zhu S and Kimura E (2007) Confirmation of elimination of lymphatic filariasis by IgG4 enzyme-linked immunosorbent assay with urine samples from Montenegro, Romania and Poland. The American Journal of Tropical Medicine and Hygiene 77, 330–333.

Itoh M, Weerasooriya MV, Yahagihodzic TC, Takagi H, Samarawickrema WA, Nagooka F and Kimura E (2011) Effects of 5 rounds of mass drug administration with diethylcarbamazine and albendazole on filaria-specific IgG4 titers in urine: a 6-year follow-up study in Sri Lanka. Parasitology International 60, 393–397.

Jourdan PM, Lamberton PHL, Fenwick A and Addiss DG (2018) Soil-transmitted helminth infections. The Lancet 391, 252–265.

Kamel M, Salah F, Demerdash Z, Maher S, Atta S, Badr A, Alfi A and El Baz H (2019) Development of a novel lateral-flow immunochromatographic strip using colloidal gold and mesoporous silica nanoparticles for rapid diagnosis of schistosomiasis. Asian Pacific Journal of Tropical Biomedicine 9, 315.

Kankanavas P, Tan-ariya P, Khawkas P, Pakpithatcharoen A, Phanthana S and Chansiri K (2005) Detection of lymphatic Wuchereria bancrofti in carriers and long-term storage blood samples using semi-nested PCR. Molecular and Cellular Probes 19(3), 169–172. doi: 10.1016/j.mcp.2004.11.003.

Kato-Hayashi N, Leonardo LR, Arevalo NL, Tagum MNB, Apin J, Agolid LM, Chua JC, Villacorte EA, Kirinoki M, Kikuchi M, Ohmae H, Haruki K and Chigusa Y (2015) Detection of active schistosomiasis infection by cell-free circulating DNA of Schistosoma japonicum in highly endemic areas in Sorsogon Province, the Philippines. Acta Tropicalis 141, 178–183.

Kayuni S, Lampiao F, Makaula P, Juzwelbo L, Lacouere JE, Reinhard-Rupp J, Leutscher PDC and Stothard JR (2019) A systematic review with epidemiological update of male genital schistosomiasis (MGS): a call for integrated case management–to the health system in sub-Saharan Africa. Parasite Epidemiology and Control 4, e000777.

Kemal J, Alemu S, Yimer M and Terfere G (2015) Immunological and molecular diagnostic tests for Cestodes and metacestodes: review. World Applied Sciences Journal 33, 1867–1879.

Kersting S, Rausch V, Bier FF and von Nickisch-Rosenegk M (2014) Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malaria Journal 13, 99.

King CH and Bertiuch D (2013) Meta-analysis of urine heme dipstick diagnosis of Schistosoma haematobium infection, including low-prevalence and previously-untreated populations. PLoS Neglected Tropical Diseases 7, e2431.

Klepac P, Metcalfe CJE, McLean AR and Hampson K (2013) Towards the endgame and beyond: complexities and challenges for the elimination of infectious diseases. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 368, 20120137.

Klop AD and Nutman TB (2004) The role of eosinophils in host defense against helminth parasites. Journal of Allergy and Clinical Immunology 113, 30–37.

Knopp S, Steinmann P, Hatz C, Keiser J and Utzinger J (2012) Nematode infections: filariasis. Infectious Disease Clinics of North America 26, 359–381.

Knopp S, Becker SL, Ingram KJ, Keiser J and Utzinger J (2013) Diagnosis and treatment of schistosomiasis in children in the era of intensified control. Expert Review of Anti-Infective Therapy 11, 1257–1258.

Knopp S, Coetzee PLAM, Koukounari A, Cercamondi CI, Ame SM, Ali SM, de Dooij CJ, Mohammed KA, Utzinger J, Rollinson D and van Dam GM (2015) Sensitivity and specificity of a urine circulating anodic antigen test for the diagnosis of Schistosoma haematobium in low endemic settings. PLOS Neglected Tropical Diseases 9, e0003572.

Knopp S, Ame SM, Hattendorf J, Ali SM, Khamis IS, Bakar F, Khamis MA, Person B, Kabobo F and Rollinson D (2018) Urogenital schistosomiasis elimination in Zanzibar: accuracy of urine filtration and haematuria reagent strips for diagnosing light intensity Schistosoma haematobium infections. Parasites & Vectors 11, 552.

Krauth SJ, Greter H, Stete K, Coulbailly JT, Traore SL, Ngandolo BNR, Achi LY, Zinsstag J, N’Goran EK and Utzinger J (2015) All that is blood is not schistosomiasis: experiences with reagent strip testing for urogenital schistosomiasis with special consideration to very-low prevalence settings. Parasites & Vectors 8, 584.

Krolewiecki AJ, Koukounari A, Romano M, Caro RN, Scott AL, Fleitas P, Cimino R and Shift CJ (2018) Transrenal DNA-based detection of Strongyloides stercoralis infections: a bayesian latent class modeling of test accuracy. PLOS Neglected Tropical Diseases 12, e0006550.

Królóv K, Frolová J, Tudorán O, Suhorutkenco J, Lehto T, Sibul H, Mäger I, Laanepere M, Tulp I and Langel Ü (2014) Sensitive and rapid detection of Chlamydia trachomatis by recombinase polymerase amplification directly from urine samples. The Journal of Molecular Diagnostics 16, 127–135.

Kukula VA, MacPherson EE, Tsey IH, Stothard JR, Theobald S and Krolewiecki AJ, Koukounari A, Romano M, Caro RN, Scott AL, Fleitas P, Cimino R and Shift CJ (2018) Transrenal DNA-based detection of Strongyloides stercoralis infections: a bayesian latent class modeling of test accuracy. PLOS Neglected Tropical Diseases 12, e0006550.

Kukula VA, MacPherson EE, Tsey IH, Stothard JR, Theobald S and Goyampiong M (2019) A major hurdle in the elimination of urogenital schistosomiasis revealed: identifying key gaps in knowledge and understanding of female genital schistosomiasis within communities and local health workers. PLOS Neglected Tropical Diseases 13, e0007207.

Lagatie O, Merino M, Batsa Debrah L, Debrah AY and Stuyver LJ (2015) Human ascariasis: diagnostics and control. Current Tropical Medicine Reports 2, 129–132.

Lamberton PHL, Wandji K and Centre AC Jourdan PM, Lamberton PHL, Fenwick A and Addiss DG (2012) Parasite Epidemiology and Control 4, e000777.

Lammi PJ, Weil G, Noordin R, Kalraj P, Steel C, Goodman D, LakshmiMkanthan VB and Ottesen E (2004) Recombinant antigen-based
antibody assays for the diagnosis and surveillance of lymphatic filariasis—a multicenter trial. Filaria Journal 3, 9.

Lazcka O, Del Campo FJ and Muñoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosensors & Bioelectronics 22, 1205–1217.

Le I. and Hsieh MH (2017) Diagnosing urogenital schistosomiasis: dealing with diminishing returns. Trends in Parasitology 33, 378–387.

Lengeler C, Utzinger J and Tanner M (2002a) Questionnaires for rapid screening of schistosomiasis in sub-Saharan Africa. Bulletin of the World Health Organization 80, 235–242.

Lengeler C, Utzinger J and Tanner M (2002b) Screening for schistosomiasis with questionnaires. Trends in Parasitology 18, 375–377.

Leutscher PDC, Reimert CM, Vennervald BJ, Ravaoimalalala VE, Ramarokoto CE, Seriey J, Raobelison A, Rasendramino M, Christiaen NO and Esterre P (2000) Morbidity assessment in urinarian schistosomiasis infection through ultrasonography and measurement of eosinophil cationic protein (ECP) in urine. Tropical Medicine and International Health 5, 88–93.

Leutscher PDC, van Dam GTJ, Reimert CM, Ramarokoto CE, Deelder AM and Ornbjerg N (2008) Eosinophil Cation Protein, Soluble Egg Antigen, Circulating Anodic Antigen, and Egg Excretion in Male Urogenital Schistosomiasis. The American Journal of Tropical Medicine and Hygiene 79, 422–426. doi: 10.4269/ajtmh.2008.79.422.

Li J, Macdonald J and von Stetten F (2019) A comprehensive summary of a decade development of the recombinase polymerase amplification. The Analyst 144, 31–67.

Loth N, Mwansa JCL, Mutengo MM and Shiff CJ (2013) Diagnosis of Schistosoma mansoni without the stool: comparison of three diagnostic tests to detect Schistosoma [corrected] mansoni infection from filtered urine in Zambia. The American Journal of Tropical Medicine and Hygiene 89, 46–50.

Loth N, Naples JM, Bosompem KM, Quaerje J and Shiff CJ (2014) Detection of parasite-specific DNA in urine sediment obtained by filtration differentiates between single and mixed infections of Schistosoma mansoni and S. haematobium from endemic areas in Ghana. PLoS ONE 9, e91144.

Loth N, Caro R, Sofer S, Scott A, Krolewieski A and Shiff C (2016) Diagnosis of Strongyloides stercoralis: detection of parasite-derived DNA in urine. Acta Tropica 163, 9–13.

Loth N, Mikita K, Bosompem KM, Anyan WK, Quaerje JK, Otchere J and Shiff CJ (2017) Point of care diagnosis of multiple schistosome parasites: species-specific DNA detection in urine by loop-mediated isothermal amplification (LAMP). Acta Tropica 173, 125–129.

Lucena WA, Dhalaria R, Abath FG, Nicolas L, Regis LN and Furtado AF (1998) Diagnosis of Wuchereria bancrofti infection by the polymerase chain reaction using urine and day blood samples from amicrofilaraemic patients. Transactions of the Royal Society of Tropical Medicine and Hygiene 92, 290–293.

Lustigman S, Prichard RK, Gazzinelli A, Grant WN, Boatin BA, McCarthy JS, Lustigman S, Yang G-J, Barakat RM, García HH, Sripa B, Lengeler C, Utzinger J and Tanner M (2016) Focusing nucleic acid-based molecular diagnostics and xenomonitoring approaches for human helminthiasis amenable to preventive chemotherapy. Parasitology Open 2, 154–155.

Melmers NYSV, van Dam GJ, Shaproski D, Kahaame AJ, Brienen EAT, Lodh N, Mwansa JCL, Mutengo MM and Shiff CJ (2014) Shrinking the lymphatic filariasis map: a prospective of traditional methods and biosensors. Biosensors & Bioelectronics 62, 35–43. doi: 10.1016/j.bios.2016.03.025.

Onile OS, Calder B, Soares NC, Anumudu CI and Blackburn JM (2017) Quantitative label-free proteomic analysis of human urine to identify novel candidate protein biomarkers for schistosomiasis. PLoS Neglected Tropical Diseases 11, e0006045.

Oriero EC, Jacobs J, Van Geertruyden JP, Nwakannma D and D’Alessandro U (2015) Molecular-based isothermal tests for field diagnosis of malaria and their potential contribution to malaria elimination. Journal of Microinvasive Chemotherapy 70, 2–13.

Oyola SO, Otto TD, Gy U, Maslen G, Manske S, Campino S, Turner DJ, Maclnnis B, Kwiatkowski DP, Swerdlow HP and Quail MA (2012) Optimizing illumina next-generation sequencing library preparation for extremely at-biased genomes. BMC Genomics 13, 1.

Paredes A, Saenz P, Marzal MW, Orrego MA, Castillo Y, Rivera A, Mahanty S, Guerra-Giraldez C, Garcia HH and Nash TE (2016) Anti-Taenia solium monoclonal antibodies for the detection of parasite antigens in body fluids from patients with neurocysticercosis. Experimental Parasitology 166, 37–43. doi: 10.1016/j.exppara.2016.03.025.

Peralta JM and Cavalcanti MG (2018) Is POC-CCA a truly reliable test for schistosomiasis diagnosis in low endemic areas? The trace results controversy. PLoS Neglected Tropical Diseases 12, e0006813.

Peters PA, Warren KS and Mahmoud AA (1976) Rapid, accurate quantification of schistosome eggs Via Nucleopore filters. The Journal of Parasitology 62, 141–143.

Phuphisut O, Yoonuan T, Sanguankiat S, Chaisiri K, Maipanich W, Peters PA, Warren KS and Mahmoud AA (1976) Microfilaraemia, filarial antibody, antigen and immune complex levels in human filariasis before, during and after DEc therapy. A two-year follow-up. Acta Tropica 45, 245–255.

Rattanaxay P, Gunawarden NK, Itoh M, Fujiyaki Y, Anantapruhti MT, Weerasooriya MV, Kimura E, Tesana S and Qiu G (2001) Sensitive and specific enzyme-linked immunosorbent assay for the diagnosis of Wuchereria bancrofti infection in urine samples. The American Journal of Tropical Medicine and Hygiene 65, 362–365.

Rebollo MP and Bockarie MJ (2014) Shrinking the lymphatic filariasis map: update on diagnostic tools for mapping and transmission monitoring. Parasitology 141, 1912–1917.

Robinson E, Picon D, Sturrock HJ, Sahasio A, Lado M, Kolaczinski J and Brooker S (2009) The performance of haematuria reagent strips for the rapid mapping of urinary schistosomiasis: field experience from southern Sudan. Tropical Medicine & International Health 14, 1484–1487.
Rollinson D, Klinger EV, Mgeni AF, Khamis IS and Stothard JR (2005) Urinary schistosomiasis on Zanzibar: application of two novel assays for the detection of excreted albumin and haemoglobin in urine. Journal of Helminthology 79, 199–206.

Rollinson D, Knopp S, Levitz S, Stothard JR, Tchuen Tchuénenté L-A, Garba A, Mohammed KA, Schur N, Person B, Colley DG and Utzinger J (2013) Time to set the agenda for schistosomiasis elimination. Acta Tropica 128, 423–440.

Rosser A, Rollinson D, Forrest M and Webster BL (2015) Isothermal recombinase polymerase amplification (RPA) of Schistosoma haematobium DNA and oligonucleotomorphic lateral flow detection. Parasites & Vectors 8, 446.

Rostron P, Pennesson T, Bakar F, Rollinson D, Knopp S, Allan F, Kaboile F, Ali SM, Ame SM and Webster BL (2019) Development of a recombinase polymerase amplification (RPA) fluorescence assay for the detection of Schistosoma Haematobium. Parasites & Vectors 12, 1–7. doi: 10.1186/s13071-019-3755-6.

Sady H, Al-Mekhlafi HM, Ngui R, Atroosh WM, Al-Delaimy AK, Nasr NA, Dawaki S, Abdulsalam AM, Ithoi I, Lim YAL, Chua KH and Surin J (2015) Detection of Schistosoma mansoni and Schistosoma haematobium by real-time PCR with high resolution melting analysis. International Journal of Molecular Sciences 16, 16085–16103.

Sanmartí MS, Ithoi M, Moii K, Hossain M, Moii A, Alam MS and Kimura E (2013) Enzyme-linked immunosorbent assay for the diagnosis of Wuchereria bancrofti infection using urine samples and its application in Bangladesh. Parasitology International 62, 564–567.

Sandoval N, Siles-Lucas M, Pérez-Arellano JL, Carranza C, Puente S, López-Abáñ J and Muro A (2006) A new PCR-based approach for the specific amplification of DNA from different Schistosoma species applicable to human urine samples. Parasitology 133, 581–587.

Sawangwong P, Sithithaworn J, Tesana S, Pinlaor S, Boonmars T, Mauritj E, Yongvanit P, Duenngai K and Sithithaworn P (2012) Diagnostic values of parasite-specific antibody detections in saliva and urine in comparison with serum in ospithorchiasis. Parasitology International 61, 196–202.

Sheele JM, Kihara JH, Baddorf S, Byrne J and Ravi B (2013) Evaluation of a novel rapid diagnostic test for Schistosoma haematobium based on the detection of human immunoglobulins bound to filtered Schistosoma haematobium eggs. Tropical Medicine & International Health: TM & IH 18, 477–484.

Shiff C, Garba A, Phillips AE, Lamine SM and Iboronke OA (2011) Diagnosis of Schistosoma haematobium by detection of specific DNA fragments from filtered urine samples. The American Journal of Tropical Medicine and Hygiene 84, 998–1001.

Shiraho EA, Eric AL, Mwangi IN, Maina GM, Kinuthia JM, Mutuku MW, Mugambi RM, Mwandi JM and Mkoji GM (2016) Development of a loop mediated isothermal amplification for diagnosis of Ascaris lumbricoides in fecal samples. Journal of Parasitology Research 2016, 1–7.

Song HB, Kim J, Jin Y, Lee J, Jeong HG, Lee YH, Saeed AAW and Hong ST (2018) Comparison of ELISA and urine microscopy for diagnosis of Schistosoma haematobium infection. Journal of Korean Medical Science 33, 1–9. doi: 10.3346/jkms.2018.33.e238.

Soussa MS, van Dam GJ, Pinheiro MCC, de Dood CJ, Peralta JM, Peralta RHS, de Daher EF, Corstjens PLAM and Bezerra FSM (2015) Performance of an ultra-sensitive assay targeting the circulating anodic anti-human granulocyte surface antigen and evokes host antibodies mediating cross-reaction in pregnancy. The American Journal of Tropical Medicine and Hygiene 94, 898–905.

Toribio, L., Romano, M., Scott, A. L., Gonzales, I., Saavedra, H., Garcia, H. H. and Shiff, C. and Peru, for the C. W. G (2019). Detection of Taenia solium DNA in the urine of neurocysticercosis patients. The American Journal of Tropical Medicine and Hygiene 100, 327–329.

Turner HC, Bettis AA, Dunn JC, Whitton JM, Hollingsworth TD, Fleming FM and Anderson RM (2017) Economic considerations for moving beyond the kato-katz technique for diagnosing intestinal parasites as we move towards elimination. Trends in Parasitology 33, 435–443.

Utzinger J, Becker SL, van Lieshout L, van Dam GJ and Knopp S (2015) New diagnostic tools in schistosomiasis. Clinical Microbiology and Infection 21, 529–542.

Utzinger J, Greter H, Ngandolo BNR, Kazibwe F, Rollinson D, Kabatereine NB, Tukahebwa EM, Takagi H, Itoh M, Kasai S, Yahathugoda TC, Weerasooriya MV and Itoh M (2019) Surveillance of Wuchereria bancrofti infection by anti-filarial IgG4 in urine among schoolchildren and molecular xenomonitoring in Sri Lanka: a post mass drug administration study. Tropical Medicine and Health 47, 39.

Tchuen Tchuénenté LA (2011) Control of soil-transmitted helmints in sub-saharan Africa: diagnosis, drug efficacy concerns and challenges. Acta Tropica 120, S4–S11.

Takagi H, Itoh M, Kazai S, Yahathugoda TC, Weerasooriya MV and Kimura E (2011) Development of loop-mediated isothermal amplification method for detecting Wuchereria bancrofti DNA in human blood and vector mosquitoes. Parasitology International 60, 493–497.

Takagi H, Yahathugoda TC, Tojo B, Rathnapala UL, Nagaoka F, Weerasooriya MV and Itoh M (2019) Surveillance of Wuchereria bancrofti infection by anti-filarial IgG4 in samples of human urine and serum from an endemic area of north-eastern Thailand. Annals of Tropical Medicine and Parasitology 103, 585–591.

Tischendorf FW, Braggitt NW, Burchard GD, Kubica T, Kreuzpainer G and Lintzel M (1999) Eosinophil, eosinophil cationic protein and eosinophil-derived neurotoxin in serum and urine of patients with onchocerciasis coincident with intestinal nematodes and in urinary schistosomiasis. Acta Tropica 72, 157–173.

Tischendorf FW, Braggitt NW, Lintzel M, Buttnar DW, Burchard GD,ork B K and Muller M (2000) Eosinophil granule proteins in serum and urine of patients with helminth infections and atopic dermatitis. Tropical Medicine and International Health 5, 988–995.

van Dam GJ, Claas FH, Yazdanbakhsh M, Kruize YC, van Keulen AC, Ferreira ST, Rotmans JM and Deelder AM (1996) Schistosoma mansoni excretory circulating cathodic antigen shares Lewis-x epitopes with a human granulocyte surface antigen and evokes host antibodies mediating complement-dependent lysis of granulocytes. Blood 88, 4246–4251.

van Dam GJ, Wichers JH, Ferreira TMF, Ghati D, van Avermonen A and Deelder AM (2004) Diagnosis of schistosomiasis by reagent strip test for detection of circulating cathodic antigen. Journal of Clinical Microbiology 42, 5458–5461.

van Dam GJ, Xu J, Bergquist R, de Dood CJ, Utzinger J, Qin Z-Q, Guan W, Feng T, Yu X-L, Zhou J, Zheng M, Zhou X-N and Corstjens PLAM (2015a) An ultra-sensitive assay targeting the circulating anodic antigen for the diagnosis of Schistosoma japonicum in a low-endemic area, People’s Republic of China. Acta Tropica 141, 190–197.
van Dam GJ, Odermatt P, Acosta L, Berghquist R, de Dood CJ, Kornelis D, Muth S, Utzinger J and Corstijns PLAM (2015b) Evaluation of banked urine samples for the detection of circulating anodic and c Kaththeantigens in Schistosoma mekongi and S. japonicum infections: a proof-of-concept study. Acta Tropica 141, 198–203.

van Grootveld R, van Dam GJ, de Dood C, de Vries JJC, Visser LG, Corstijns PLAM and van Lieshout L (2018) Improved diagnosis of active Schistosoma infection in travellers and migrants using the ultra-sensitive in-house lateral flow test for detection of circulating anodic antigen (CAA) in serum. European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology 37, 1709–1716.

Verweij JJ and Stensvold CR (2014) Molecular testing for clinical diagnosis and epidemiological investigations of intestinal parasitic infections. Clinical Microbiology Reviews 27, 371–418.

Vlaminck J, Fischer PU and Weil GJ (2015) Diagnostic tools for onchocerciasis elimination programs. Trends in Parasitology 31, 571–582.

Vlaminck J, Supati T, Geldhof P, Hokke CH, Fischer PU and Weil GJ (2016) Community rates of IgG4 antibodies to Ascaris haemoglobin reflect changes in community Egg loads following mass drug administration. PLoS Neglected Tropical Diseases 10, e0004532.

Vlaminck J, Lagatie O, Verheyen A, Dana D, Van Dorst B, Mekonnen Z, Vonghachack Y, Sayasone S, Khieu V, Bergquist R, van Dam GJ, Hoekstra W, Wang Y, Holmes E, Nicholson JK, Cloarec O, Chollet J, Tanner M, Singer RM (2018) Testing for soil-transmitted helminth transmission elimination: analysing the impact of the sensitivity of different diagnostic tools. PLoS Neglected Tropical Diseases 12, e0006114.

Voraisith C, Kamamia C, Yakovleva A, Duengkai K, Wingboon C, Sithithaworn J, Watwongkam N, Namwat N, Techasen A, Loilome W, Yongvanit P, Loukas A, Sithithaworn P and Bethony JM (2015) Advances in the diagnosis of human onchocerciasis. Trends in Parasitology 31, 198–203.

Wang Y, Holmes E, Nicholson JK, Cleare O, Chollet J, Tanner M, Singer BH and Utzinger J (2004) Metabonomic investigations in mice infected with Schistosoma mansoni: an approach for biomarker identification. Proceedings of the National Academy of Sciences 101, 12676–12681.

Web of Science (2019) Friars House, Blackfriars Road, London. SE1 8EZ. Website: https://apps.webofknowledge.com (Accessed 1 September 2019).

Weerkoon K, Gordon C and McManus D (2018) DNA Diagnostics for schistosomiasis control. Tropical Medicine and Infectious Disease 3, 81.

Weerasooriya M, Itoh M, Islam M, Aoki Y, Samarawickrema W and Kimura E (2008) Presence and gradual disappearance of filaria-specific urinary IgG4 in babies born to antibody-positive mothers: a 2-year follow-up study. Parasitology International 57, 386–389.

Weil GJ, Kumar H, Santhanam S, Sethumadhavan KVP and Jain DC (1986) Detection of circulating parasite antigen in Bancroftian Filariasis by counterimmunoelectrophoresis. The American Journal of Tropical Medicine and Hygiene 35, 565–570.

Weil GJ, Steel C, Liftis F, Li BW, Mearns G, Lobos E and Nutman TB (2000) A rapid-format antibody card test for diagnosis of onchocerciasis. The Journal of Infectious Diseases 182, 1796–1799.

Werkmann M, Wright JE, Truscott JE, Easton AV, Oliveira RG, Toor J, Ower A, Åsbjörnsdóttir KH, Means AR, Farrell SH, Watson JL and Anderson RM (2018) Testing for soil-transmitted helminth transmission elimination: analysing the impact of the sensitivity of different diagnostic tools. PLoS Neglected Tropical Diseases 12, e0006114.

Ximenes C, Brandão E, Oliveira P, Rocha A, Rego T, Medeiros R, Aguiar-Santos A, Ferraz J, Reis C, Arauso P, Carvalho L and Melo FL (2014) Detection of Wuchereria bancrofti DNA in paired serum and urine samples using polymerase chain reaction-based systems. Memórias do Instituto Oswaldo Cruz 109, 978–983.

Xing W, Yu X, Feng J, Sun K, Fu W, Wang Y, Zou M, Xia W, Luo Z, He H, Li Y and Xu D (2017) Field evaluation of a recombinase polymerase amplification assay for the diagnosis of Schistosoma japonicum infection in human province of China. BMC Infectious Diseases 17, 164.

Zhang X, Lowe SB and Godding JJ (2014) Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosensors and Bioelectronics 61, 491–499.

Weerkoon K, Gordon C and McManus D (2018) DNA Diagnostics for schistosomiasis control. Tropical Medicine and Infectious Disease 3, 81.

Weerasooriya M, Itoh M, Islam M, Aoki Y, Samarawickrema W and Kimura E (2008) Presence and gradual disappearance of filaria-specific urinary IgG4 in babies born to antibody-positive mothers: a 2-year follow-up study. Parasitology International 57, 386–389.

Weil GJ, Kumar H, Santhanam S, Sethumadhavan KVP and Jain DC (1986) Detection of circulating parasite antigen in Bancroftian Filariasis by counterimmunoelectrophoresis. The American Journal of Tropical Medicine and Hygiene 35, 565–570.

Weil GJ, Steel C, Liftis F, Li BW, Mearns G, Lobos E and Nutman TB (2000) A rapid-format antibody card test for diagnosis of onchocerciasis. The Journal of Infectious Diseases 182, 1796–1799.

Werkmann M, Wright JE, Truscott JE, Easton AV, Oliveira RG, Toor J, Ower A, Åsbjörnsdóttir KH, Means AR, Farrell SH, Watson JL and Anderson RM (2018) Testing for soil-transmitted helminth transmission elimination: analysing the impact of the sensitivity of different diagnostic tools. PLoS Neglected Tropical Diseases 12, e0006114.

World Health Organisation (2012). Research Priorities for Helminth Infections. WHO. Technical Report Series No. 972. Geneva, Switzerland: World Health Organization.

World Health Organisation (2013). Schistosomiasis: Progress Report 2011 and. Strategic Plan 2012–2020. Geneva, Switzerland: World Health Organisation.

Ximenes C, Brandão E, Oliveira P, Rocha A, Rego T, Medeiros R, Aguiar-Santos A, Ferraz J, Reis C, Arauso P, Carvalho L and Melo FL (2014) Detection of Wuchereria bancrofti DNA in paired serum and urine samples using polymerase chain reaction-based systems. Memórias do Instituto Oswaldo Cruz 109, 978–983.

Xing W, Yu X, Feng J, Sun K, Fu W, Wang Y, Zou M, Xia W, Luo Z, He H, Li Y and Xu D (2017) Field evaluation of a recombinase polymerase amplification assay for the diagnosis of Schistosoma japonicum infection in human province of China. BMC Infectious Diseases 17, 164.

Zhang X, Lowe SB and Godding JJ (2014) Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosensors and Bioelectronics 61, 491–499.

Appendix

![Fig. A1. Defining sensitivity, specificity and predictive values (Akobeng, 2007; Bergquist et al., 2009).](https://doi.org/10.1017/S0031182019001732) Published online by Cambridge University Press