A High-Performance Rectangular Gate U Channel FETs with Only 2-nm Distance between Source and Drain Contacts

Xi Liu 1*, Zhengliang Xia 1, Xiaoshi Jin 1 and Jong-Ho Lee 2

Abstract
A novel high-performance rectangular gate U channel FET (RGUC FET) for extreme integrated distance between source and drain contacts is proposed in this paper. The RGUC FET represents nearly ideal subthreshold characteristics till the distance between source/drain (S/D) contacts reduced to 2 nm. Different from the other recessed or U-shaped channel-based FETs, the gate contacts do not need to be formed in the recessed region but only in a layer of spacer for the insulation between the two vertical parts on both sides of the U channel. Its structural advantages make it possible to be applied to manufacture integrated circuits with higher integration for extreme integrated distance between source and drain contacts. The electrical properties of the RGUC FET were scrupulously investigated by studying the influence of design parameters including the horizontal distance between S/D contacts, the extension height of S/D region, and the thickness and material of the gate oxide layer. The electrical properties of the RGUC FET are verified by quantum simulation. Compared to the other non-planner channel multi-gate FETs, the novel RGUC FET is suitable for higher integration.

Keywords: Rectangular gate U channel, Extreme integration, Quantum simulation

Introduction
As one of the most promising device used in nano-scale integrated circuits (IC), the junctionless field-effect transistor (JL FET) which presents remarkable electrical characteristics compared to conventional junction-based metal oxide semiconductor (MOS) FETs, in addition to its simplicity of fabrication, has been deeply studied in recent years [1–4]. While increasing the gate voltage forms the accumulation region in the channel, resulting to greater on current [5], the introduction of the multiple-gate (MG) FET strengthened the controllability of the source-to-drain current from the gate voltage, resulting to much better subthreshold properties of the device. The junctionless multiple-gate (JL MG) FETs also have been widely studied for years [6–8]. Although the vertical channel gate-all-around MOSFET shows a nearly ideal I-V performance with radius only several nanometers, the vertical channel of it makes the source and drain contact could not be manufactured in the same layer, which makes the layout of ICs incompatible with the planner technology. Moreover, as the semiconductor fabrication has been forced to scale down the channel length to be less than 10 nm, the MG FETs face the short-channel effect again [9–11]. In order to overcome the short-channel effect, recessed channel MOSFETs become a hot topic in recent years [12–16]. The modeling and simulation work of recessed channel MOSFETs is also comprehensively carried out [17–20].

A recessed channel MOSFET has both planner vertical channel parts under both source and drain contacts and a horizontal planar channel part. It actually prolonged the effective channel length compared to conventional MOSFETs with only the horizontal planar channel. For the device with the same distance between source and drain contacts, it can be more immune to the short-channel effect compared to conventional MOSFETs with planar channel; however, the experimental data shows that the subthreshold swing of MOSFETs with recess channel can not realize an ideal subthreshold swing with sub-100-nm effective channel length. That is because...
although the channel length is prolonged, the gate controllability is not strengthened as MG FETs. It should be noted that, it is better to define a new key geometrical parameter related to the description of integration, instead of the channel length. The distance between source and drain contacts is more realistic and effective because the final goal of the design of the nano-scale device is the realization of the best performance in a limited given chip area, and the actual device size is related to the channel width and the distance between source and drain contacts. In order to combine the advantages of both the MG FETs and recessed channel MOSFETs, in our previous work, we proposed saddle-shaped gate FETs with a U-shaped channel [21–23], which promotes the gate controllability to the horizontal channel part of the recessed channel from a planar single-gate type to a 3-D triple-gate type. After that, we upgrade this 3-D triple-gate feature formed not only in the horizontal channel part but also in both vertical channel parts. This device is named as H gate U channel FETs, and the recessed channel is correspondingly upgraded to a 3-D U-shaped tube channel too [24]. As mentioned above, the final goal of the design of the nano-scale device is the realization of the best performance in a limited given chip area through optimization. To realize an optimized high-performance device, both gate structure and the corresponding channel structure should be well considered and designed. Also the fabrication complexity should be considered well. The devices mentioned above such as

![Fig. 1 a 3D schematic view of the RGUC FET. b Profiles of the device cut through plane A of a. c Profiles of the device cut through plane B of a. d Profiles of the device cut through plane C of a.](image-url)
the recessed channel device, the previously proposed saddle FETs, and HGUC FETs have a common ground, a sandwich structure of gate oxide/gate/gate oxide should be well formed in the small recessed region. This structural feature limits its further promotion of integration. It seems that a good way to promote the integration is to simplify the structural feature in the recessed region and maintain the gate control ability to the vertical channel part and horizontal channel part of the U-shaped channel at the same time. In order to realize these device features and functions, in this paper, we proposed a novel rectangular gate U channel FET (RGUC FET) for extreme integrated distance between source and drain contacts. It has a U-shaped channel which can prolong the effect channel length without increasing the distance between source and drain contacts. Compared to the other U-shaped channel FETs, the RGUC FET is with a simpler inner structure in the recessed region of the U-shaped channel; thereafter, it can realize simpler manufacture in the inner part of the recessed region and smaller distance between source and drain contacts (higher integration). The proposed structure has better gate controllability and smaller reverse leakage current accompanied with higher I_{ON}/I_{OFF} ratio. The distance between source contact and drain contact can be scaled down to less than 2 nm. The whole electric properties are analyzed by quantum simulations.

Methods

Figure 1a presents the 3D schematic view of the RGUC FET, and Fig. 1b to d are profiles of the device cut through planes A, B, C, and D shown in Fig. 1a. W is the body width of the silicon, t_b is the body thickness of the silicon, h_{rs} is the inner height of the spacer in the recessed region, h_{ex} is the height of the extension source/drain region, t_{ox} is the thickness of the gate oxide around the silicon body, and t_{sp} is the spacer thickness of the insulator layer deposited in the recessed region of the U-shaped channel which equals to the distance between source contact and drain contact.

Since the silicon body thickness is less than 6 nm, quantum simulations are introduced in this paper instead of classical simulations to obtain more precise simulation results. All simulations are performed using the TCAD of SILVACO Atlas 3D device simulation, using the concentration-dependent mobility model, concentration-dependent Shockley-Read-Hall model, Auger recombination model, bandgap narrowing model, standard band-to-band tunneling model, and Bohm quantum potential model [25]. The simulation parameters are listed in Table 1. The two vertical body parts are actually cubes with four sides, the top surfaces of which are covered with the source or drain region and the bottom surface are both connected to the horizontal body part. The outer triple sides of the vertical body parts are surrounded by the gate oxide and rectangular gate contact, and the other inner side is connected to the inner spacer in the recessed region. The four sides of the horizontal body are all surrounded by the gate oxide and the rectangular gate contact. It is conjecturable that the rectangular gate has a strong field-effect control ability to both the horizontal body and the two vertical parts due to the structure features mentioned above. And, the inner spacer actually prolonged the distance of the shortest path between source and drain contacts in the silicon which could eliminate the short channel effect that can not be avoided for multi-gate devices with planar channel features. Compared to other 3-D channel devices [21–24], the proposed structure needs no gate formation in the recessed region, which largely reduces the complexity of the inner structure of the recessed region.

Results and Discussions

The Bohm quantum potential (BQP) model calculates a position-dependent potential energy term using an auxiliary equation derived from the Bohm interpretation of quantum mechanics. This model is derived from pure physics and allows the model to approximate the quantum behavior of different classes of devices as well as a range of materials. The effects of quantum confinement on the device performance, including $I-V$ characteristics, will then be calculated to a good approximation. Previous studies show that the gate leakage current is negligible for cases of oxide thickness larger than 0.5 nm [7, 26].

Figure 2a shows the comparisons of the drain-source current gate-source voltage (I_{DS}-V_{GS}) characteristics of the RGUC FET with different h_{ox}s on both logarithmic and linear scales. Figure 2b shows the comparisons of subthreshold swings (SS) and I_{ON}/I_{OFF} ratio of the

Table 1 Parameter selection for RGUC FET in TCAD simulation
Parameters
Body width (W)
Vertical body thickness (t_{bV})
Horizontal body thickness (t_{bH})
Spacer thickness between S/D region (t_{sp})
Vertical length of the gate (t_{gate})
Gate oxide layer thickness (t_{ox})
Extension height of spacer between S/D region (h_{ex})
Inner height of spacer in the recessed region (h_{rs})
Doping concentration (N_D)
Drain-source voltage (V_{DS})
Gate-source voltage (V_{GS})
RGUC FET with different h_{in}s. With the increase of h_{in}, the vertical path of the whole channel from source to drain is continuously increased, then the shortest effective channel length increases gradually, and the short-channel effect gradually weakens and is finally eliminated. The SS can realize a nearly ideal value of 65 mV/dec for h_{in} reaches 10 nm. The I_{ON}/I_{OFF} ratio also increases about 35 times for h_{in} increases from 2 to 10 nm due to the continuously decreased SS. The prolonged h_{in} makes the distance of the shortest path from source to drain increases from 6 to 22 nm, which equals to $2h_{in} + t_{sp}$ and is equivalent to the effective channel length of the proposed structure. Figure 2c and d show a 2-D electron concentration distribution in the silicon body in off state for the device with 2 nm and 10 nm h_{in}, respectively. For the case of 2 nm, the highest electron concentration in the horizontal body region is about $10^{12} \, \text{cm}^{-3}$ and the distance between source/drain contact and the horizontal body region is very short. Thereafter, the source/drain bias seriously affect the electron distribution in the horizontal body region; the solution is to prolong the vertical channel which keeps the source/drain away from the horizontal body region. For the case of 10 nm, in Fig. 2d, we can see that the highest electron concentration in the horizontal body region is decreased down to $10^9 \, \text{cm}^{-3}$, and it makes a more ideal fully depleted region for the off state which brings much lower level of leakage current.

Figure 3a shows the comparisons of the $I_{DS^+}V_{GS}$ characteristics of the RGUC FET with different t_{sp}s on both logarithmic and linear scales. Figure 3b shows the comparisons of subthreshold swings (SS) and I_{ON}/I_{OFF}.
Fig. 3 (See legend on next page.)

a

- $L = 0.5\text{nm}$
- $L = 1\text{nm}$
- $L = 2\text{nm}$
- $L = 4\text{nm}$

V_d = 0.5V

$V = 0.5V$

$V_{GSS} = 0.5V$

$t_d = 6\text{nm}$

$N_d = 2 \times 10^{18}\text{cm}^{-3}$

$W = 6\text{nm}$

b

- I_{ON}/I_{OFF}
- $V_{GSS} = 1.2V$
- $V_{GSOFF} = -0.2V$

$W = 6\text{nm}$

$t_d = 6\text{nm}$

$t_w = 2\text{nm}$

$t_{ox} = 1\text{nm}$

$h_{ex} = 5\text{nm}$

$N_d = 2 \times 10^{18}\text{cm}^{-3}$

$V_{GSOFF} = 0.5V$

c

- Electric Field (V/cm)

- $E = 10^{6.25}$
- $E = 10^{6}$
- $E = 10^{5.75}$
- $E = 10^{5.5}$
- $E = 10^{5.25}$
- $E = 10^{5}$
- $E = 10^{4.75}$
- $E = 10^{4.5}$
- $E = 10^{4.25}$
- $E = 10^{4}$

$h_{in} = 10\text{nm}$

$W = 6\text{nm}$

$t_{bv} = t_{bn} = 6\text{nm}$

$t_{sp} = 2\text{nm}$

$t_{ox} = 1\text{nm}$

$h_{ex} = 5\text{nm}$

$N_d = 2 \times 10^{18}\text{cm}^{-3}$

$V_{DS} = 0.5V$

$V_{GS} = 0V$

d

- Electric Field (V/cm)

- $E = 10^{6.25}$
- $E = 10^{6}$
- $E = 10^{5.75}$
- $E = 10^{5.5}$
- $E = 10^{5.25}$
- $E = 10^{5}$
- $E = 10^{4.75}$
- $E = 10^{4.5}$
- $E = 10^{4.25}$

$h_{in} = 10\text{nm}$

$W = 6\text{nm}$

$t_{bv} = t_{bn} = 6\text{nm}$

$t_{sp} = 0.5\text{nm}$

$t_{ox} = 1\text{nm}$

$h_{ex} = 5\text{nm}$

$N_d = 2 \times 10^{18}\text{cm}^{-3}$

$V_{DS} = 0.5V$

$V_{GS} = 0V$

e

- Electron Concentration (cm$^{-3}$)

- $n = 10^{17}$
- $n = 10^{16}$
- $n = 10^{15}$
- $n = 10^{14}$
- $n = 10^{13}$
- $n = 10^{12}$
- $n = 10^{11}$
- $n = 10^{10}$
- $n = 10^{9}$

$h_{in} = 10\text{nm}$

$W = 6\text{nm}$

$t_{bv} = t_{bn} = 6\text{nm}$

$t_{sp} = 0.5\text{nm}$

$t_{ox} = 1\text{nm}$

$h_{ex} = 5\text{nm}$

$N_d = 2 \times 10^{18}\text{cm}^{-3}$

$V_{DS} = 0.5V$

$V_{GS} = 0V$
ratio of the RGUC FET with different \(t_{sp} \). With the decrease of \(t_{sp} \), the distance between source and drain contacts are continuously decreased too. The leakage current is mainly induced by band-to-band tunneling current. The tunneling probability is proportional to the band bending which can be equivalent to the electric field intensity in a certain point. The total tunneling current is the sum of the tunneling current generated in each point of the body region.

Figure 3c and Fig. 2d show a 2-D electric field distribution in the silicon body in off state for the device with 2 nm and 0.5 nm \(t_{sp} \), respectively. For a larger spacer thickness or a smaller drain-source voltage (V_{DS}) bias, the electric field intensity on the interface between the spacer in the recessed region is not strong enough to produce a large amount of leakage current. The strongest electric field intensity appears near the interface between the gate oxide and the vertical body part, which is decided by \(V_{GD} \). However, if the source-to-drain distance is decreased to less than 1 nm (less than the gate oxide thickness), the strongest field intensity appears near the interface between the spacer in the recessed region and the two vertical body parts. It can be seen that when \(t_{sp} \) is less than 1 nm, for a larger \(V_{DS} \) (0.5 V for example), the leakage current is almost independent with the gate bias and mainly decided by the \(V_{DS} \). The SS is almost independent with \(t_{sp} \) and maintains a nearly ideal value of 65 mV/dec for a \(h_{ex} \) = 10 nm case until \(t_{sp} \) is less than 2 nm. The \(I_{ON}/I_{OFF} \) ratio maintains \(10^{8} \) till \(t_{sp} = 2 \) nm and is seriously degraded for \(t_{sp} \) less than 2 nm due to the leakage current increase induced by the strong electric field appears near the interface between the spacer in the recessed region and the two vertical body parts. The electric field intensity of the silicon body in the body region is comprehensively enhanced for the 0.5 nm \(t_{sp} \) case. Figure 3e shows 2-D electron concentration distribution in the silicon body in off state for the device with 0.5 nm \(t_{sp} \). Compared with Fig. 2d, it is clearly seen that the electron concentration in the horizontal body region is enlarged from \(10^{9} \) to \(10^{10} \) cm\(^{-3} \). Besides, the dimension of 0.5 nm spacer thickness is very close to a single-molecule layer, which may cause damage of the insulation property of the spacer layer to some degree. Due to the reason mentioned above, the \(t_{sp} \) is suggested to be 2 nm for high-integration and low-leakage low-power consumption design.

Figure 4 shows the \(I_{DS}-V_{DS} \) of the proposed RGUC FET with optimized structure under different \(V_{GS} \) values. The SS of which is about 63 mV/dec, and the \(I_{ON}/I_{OFF} \) is \(10^{8} \sim 10^{10} \). The saturated current increases as \(V_{GS} \) increases.

Conclusions

A novel RGUC FET with high integration and high performance is proposed in this paper, which presents low-subthreshold swings and higher \(I_{ON}/I_{OFF} \) ratio. The distance between source/drain (S/D) contacts can be reduced to 2 nm, with almost ideal characteristics such as SS, reverse leakage current, and \(I_{ON}/I_{OFF} \) ratio. All the electrical properties are simulated with quantum models to ensure more precise results.

Abbreviations

BQP: Bohm quantum potential; FET: Field-effect transistor; \(h_{ex} \): Extension height of spacer between S/D region; \(h_{sp} \): Inner height of spacer in recessed region; \(t_{sp} \): Off current; \(V_{GS} \): On current; JL: Junctionless; MOS: Metal oxide semiconductor; \(N_{S} \): Doping concentration; RGUC: Rectangular gate U channel; S/D: Source/drain; SS: Subthreshold swing; \(t_{bh} \): Horizontal body thickness; \(t_{ox} \): Vertical body thickness; \(t_{gate} \): Vertical length of the gate; \(t_{ox} \): Gate oxide layer thickness; \(t_{sp} \): Spacer thickness between S/D region; \(V_{DS} \): Drain-source voltage; \(V_{GS} \): Gate-source voltage; \(W \): Body width.

Acknowledgements

This work is supported by the Natural Science Foundation of Liaoning Province No.201602541, No.201602546.

Funding

This work is supported by the Natural Science Foundation of Liaoning Province No.201602541, No.201602546.

Availability of Data and Materials

We included a statement of availability of data and material for ourselves and on behalf of our co-authors under the ‘Competing interests’. All availability of data and material are original work.
Declarations
We have read Springer Open’s guidance on competing interests and included a statement of all financial and non-financial competing interests for ourselves and on behalf of our co-authors under the ‘Competing interests’.

Authors’ Contributions
All the sections of the manuscript are contributed by all the authors. All authors read and approved the final manuscript.

Authors’ Information
Xi Liu received the B.S. and M.S. degrees in applied mathematics from Dalian University of Technology, Dalian, China, in 2004 and 2006, respectively. She received the Ph.D. degree in semiconductor and display engineering from Kyungpook National University, Daegu, Korea, in 2010. She works in the School of Information Science and Engineering, Shenyang University of Technology as an associate professor. Her research interests include design and optimization of advanced integrated circuits and semiconductor devices. Zhengliang Xia is currently working toward the M.S. degree in the School of Information Science and Engineering, Shenyang University of Technology, Shenyang, China. His research interests include design and optimization of MOSFETs and tunneling FETs. Xiaoshi Jin received the B.S. degree in physics from Dalian University of Technology, Dalian, China, in 2004, the M.S. degree in physics from Gyeongang National University, Jinju, Korea, in 2006 and the Ph.D. degree in semiconductor and display engineering from Kyungpook National University, Daegu, Korea, in 2010. He works in the School of Information Science and Engineering, Shenyang University of Technology as an associate professor. He has authored or coauthored more than 30 papers published in refereed journals and has been granted more than 20 patents in this area. His research interests include semiconductor physics and device modeling, design of advanced semiconductor devices and ICs. Jong-Ho Lee received the Ph.D. degree from Seoul National University, Seoul, in 1993, in electronic engineering. In 1994, he was with the School of Electrical Engineering, Wonkwang University, Iksan, Chonbuk, Korea. In 2002, he moved to Kyungpook National University, Daegu, Korea, as a Professor of the School of Electrical Engineering and Computer Science. Since September 2009, he has been a Professor in the School of Electrical Engineering, Seoul National University, Seoul, Korea. From August 1998 to July 1999, he was with Massachusetts Institute of Technology, Cambridge, as a postdoctoral fellow. He has authored or coauthored more than 200 papers published in refereed journals and over 280 conference papers related to his research and has been granted more than 100 patents in this area. His research interests include CMOS technology, non-volatile memory devices, thin film transistors, sensors, bio interface, and neuromorphic technology. He has served as an associate professor. Her research interests include design and optimization of advanced integrated circuits and semiconductor devices.

Competing Interests
All authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China. 2School of ECES Eng. and ISRC (Inter-University Semiconductor Research Center), Seoul National University, Shinlim-Dong, Kwanak-Gu, Seoul 151-742, Korea.

Received: 15 October 2018 Accepted: 27 January 2019
Published online: 04 February 2019

References
1. Zhang Q, Zhao W, Seabbaugh A (2006) Low-subthreshold swing tunnel transistor. IEEE Electron Device Lett 27(4):297–300
2. Gundapaneni S, Ganguly S, Kottantharayil A (2011) Bulk planar (junctionless transistor (BPILT): an attractive device alternative for scaling. IEEE Electron Device Lett 32(3):261–263
3. Cho S, Kim KR, Park BG et al (2011) RF performance and small-signal parameter extraction of junctionless silicon nanowire MOSFETs. IEEE Trans Electron Devices 58(5):1388–1396
4. Collinge JP, Lee CW, Afzalian A et al (2010) Nanowire transistors without junctions. Nat Nanotechnol 5(3):225–229
5. Gundapaneni S, Bajaj M, Pandey RK et al (2012) Effect of band-to-band tunneling on junctionless transistors. IEEE Trans Electron Devices 59(4):1023–1029
6. Rissner W, Landgraf E, Kretz J et al (2004) Nanoscale FinFETs for low power applications. Solid-State Electron 48(10–11):1819–1823
7. Liu X, Wu M, Jin X et al (2014) Simulation study on deep nanoscale short channel junctionless SOI FinFETs with triple-gate or double-gate structures. J Comput Electron 13(2):509–514
8. Barraud S, Berthome M, Coquand R et al (2012) Scaling of trigate junctionless nanowire MOSFET with gate length down to 13 nm. IEEE Electron Device Lett 33(9):1225–1227
9. Jin X, Liu X, Lee JH et al (2014) Modeling of subthreshold characteristics of short channel junctionless cylindrical surrounding-gate nanowire metal-oxide-silicon field effect transistors. Phys Scr 89(1):169–174
10. Hu G, Xiang P, Ding Z et al (2014) Analytical models for electric potential, threshold voltage, and subthreshold swing of junctionless surrounding-gate transistors. IEEE Electron Devices 61(3):688–695
11. Dutta P, Syamal B, Mohankumar N et al (2014) A 2-D surface-potential-based threshold voltage model for short channel asymmetric heavily doped DG MOSFETs. Int J Numer Modell Electron Networks Devices Fields 27(4):682–690
12. Park S, Son Y, Han S, Kim J, Roh Y (2015) Asymmetrical formation of etching residues and their roles in inner-gate-recessed-channel-array-transistor. J Vac Sci Technol 33(2):21209
13. Kumar A, Gupta N, Chaujar R (2016) TCAD RF performance investigation of transparent gate recessed channel MOSFET. Microelectron J 49:36–42
14. Kumar A, Gupta N, Chaujar R (2016) Power gain assessment of ITO based transparent gate recessed channel (TGRC) MOSFET for RF/wireless applications. Superlattice Microst 91:290–301
15. Kumar A, Tripathi M, Chaujar R (2018) Comprehensive analysis of sub-20 nm black phosphorus based junctionless-recessed channel MOSFET for analog/RF applications. Superlattice Microst 116:171–180
16. Kumar A, Tripathi M, Chaujar R (2018) Reliability issues of In2O5Sn gate electrode recessed channel MOSFET: impact of interface trap charges and temperature. IEEE Trans Electron Devices 65(3):860–866
17. Kang Y, Kim H, Lee J, Son Y, Park B, Lee J, Shin H (2009) Modeling of polysilicon depletion effect in recessed-channel MOSFETs. IEEE Electron Device Lett 30(12):1373–1377
18. Kwon Y, Kang Y, Lee S, Park B, Shin H (2010) Analytic threshold voltage model of recessed channel MOSFETs. J Semicond Sci Technol 5(1):161–65
19. Lenka A, Mishra S, Mishra S, Bhardwaj U, Mishra G (2017) An extensive investigation of work function modulated trapezoidal recessed channel MOSFET. Superlattice Microst 111:878–888
20. Singh M, Mishra S, Mohanty S, Mishra G (2016) Performance analysis of SOI MOSFET with rectangular channel. Adv Nat Sci Nanosci Nanotechnol 7:051010
21. Jin X, Wu M, Liu X, Chauri K, Kwon H-K, Lee J-H, Lee J-H (2015) A novel high performance junctionless FETs with sadder-gate. J Comput Electron 14(6):661–668
22. Jin X, Wu M, Liu X, Lee J-H, Lee J-H (2016) Optimization of saddle junctionless FETs for extreme high integration. J Comput Electron 15:801–808
23. Jin X, Gao Y, Yang G, Xia Z, Liu X, Lee J-H (2019) A novel low leakage saddle junctionless FET with assistant gate. Int J Numer Model 32:e2465
24. Jin X, Yang G, Liu X, Lee J-H, Lee J-H (2017) A novel high-performance H-gate U-channel junctionless FET. J Comput Electron 16:287–295
25. SILVACO International 2018 ATLAS User’s Manual. 2018.