STABLE CATEGORIES OF SPHERICAL MODULES AND TORSIONFREE MODULES

YUYA OTAKE

Abstract. Auslander and Bridger introduced the notions of \(n \)-spherical modules and \(n \)-torsionfree modules. In this paper, we construct an equivalence between the stable category of \(n \)-spherical modules and the category of modules of grade at least \(n \), and provide its Gorenstein analogue. As an application, we prove that if \(R \) is a Gorenstein local ring of Krull dimension \(d > 0 \), then there exists a stable equivalence between the category of \((d−1)\)-torsionfree \(R \)-modules and the category of \(d \)-spherical modules relative to the local cohomology functor.

1. Introduction

Throughout this paper, let \(R \) be a two-sided noetherian ring. All subcategories are assumed to be strictly full. Denote by \(\mod R \) the category of finitely generated (right) \(R \)-modules.

Auslander and Bridger \cite{1} introduced the notion of \(n \)-spherical modules for each positive integer \(n \): a finitely generated \(R \)-module \(M \) is called \(n \)-spherical if \(\text{Ext}^i_R(M, R) = 0 \) for all \(1 \leq i \leq n−1 \) and \(M \) has projective dimension at most \(n \). Note that when this is the case, \(\text{Ext}^i_R(M, R) = 0 \) for all \(i \neq 0, n \). Auslander and Bridger found various important properties related to \(n \)-spherical modules. For example, the spherical filtration theorem they proved asserts that any finitely generated module \(M \) satisfying a certain grade condition has a filtration

\[
M_m \subset M_{m-1} \subset \cdots \subset M_1 \subset M_0 = M \oplus P,
\]

where \(P \) is projective, such that \(M_{j-1}/M_j \) is \(j \)-spherical for all \(1 \leq j \leq m \). Recently, Huang \cite{6} proved the dual version of the spherical filtration theorem.

In this paper, we study the stable category of \(n \)-spherical modules. Moreover, we introduce the notion of \(n \)-G-spherical modules by replacing projective dimension in the definition of \(n \)-spherical modules with Gorenstein dimension, and give similar results for the stable category of \(n \)-G-spherical modules. These are related to the category of modules with high grade and the category of totally reflexive modules. To be precise, the following theorem holds.

Theorem 1.1. Let \(n \) be a positive integer. Consider the following subcategories of \(\mod R \).

\[
\begin{align*}
\text{Sph}_n(R) &= \{ M \in \mod R \mid M \text{ is } n\text{-spherical} \}, \\
\text{Grd}_n(R) &= \{ M \in \mod R \mid \text{grade}_R M \geq n \}, \\
\text{Sph}^G_n(R) &= \{ M \in \mod R \mid M \text{ is } n\text{-G-spherical} \}, \\
\text{Ref}^T(R) &= \{ M \in \mod R \mid M \text{ is totally reflexive} \}.
\end{align*}
\]

One then has the equivalences

\[
\begin{align*}
\text{Sph}_n(R) &\overset{\text{Ext}^n(\cdot, R)}{\cong} \text{Grd}_n(R^{op}), \\
\text{Sph}^G_n(R) &\overset{\text{Tr} \Omega^{n-1}}{\cong} \text{Grd}_n(R^{op}) \ast \text{Ref}^T(R^{op}).
\end{align*}
\]

Here, \(\Omega(\cdot) \) and \(\text{Tr}(\cdot) \) respectively stand for the syzygy and the (Auslander) transpose, while the stable category of a subcategory \(\mathcal{X} \) of \(\mod R \) is denoted by \(\mathcal{X}^{s} \). For two subcategories \(\mathcal{X} \) and \(\mathcal{Y} \) of \(\mod R \), we
denote by $\mathcal{X} = \mathcal{Y}$ the subcategory of mod R consisting of modules M such that there is an exact sequence $0 \to L \to M \to N \to 0$ with $L \in \mathcal{X}$ and $N \in \mathcal{Y}$.

The notion of n-torsionfree modules was also introduced by Auslander and Bridger \cite{1}, and played a central role in the stable module theory they developed. The structure of n-torsionfree modules has been well-studied; see \cite{1, 4, 5, 8}. In the following, applying Theorem \ref{thm:1.1} to the case where (R, \mathfrak{m}) is a commutative local ring, we describe the structure of n-torsionfree modules. Denote by FL(R) the subcategory of mod R consisting of modules of finite length, and by $H^n_m(\mathfrak{r})$ the i-th local cohomology functor with respect to \mathfrak{m}. Also, we say that a finitely generated R-module M is n-H-spherical if $H^n_m(M) = 0$ for all $i \neq 0, n$.

Corollary 1.2. Suppose that R is commutative, local and with Krull dimension $d > 0$. Let \mathfrak{m} be the maximal ideal of R. For a nonnegative integer n, consider the following subcategories of mod R.

$$\text{TF}_n(R) = \{ M \in \text{mod } R \mid M \text{ is } n\text{-torsionfree } \},$$
$$\text{Sph}_n^R(R) = \{ M \in \text{mod } R \mid M \text{ is } n\text{-H-spherical } \}.$$

1. If R is regular, then one has the equivalence
 $$\text{TF}_{d-1}(R) \cong \frac{\text{Ext}^d(\text{Tr}(-), R)}{\Omega^{d-1}} = \text{FL}(R).$$
2. If R is Gorenstein, then one has the equivalence
 $$\text{TF}_{d-1}(R) \cong \frac{\text{Tr} \Omega^{d-1} \text{Tr}}{\Omega^{d-1}} = \text{Sph}_n^R(R).$$

It may be well-known to experts that when R is a three dimensional regular local ring, there is an equivalence
$$\text{Ref}(R) \cong \frac{\text{Ext}^1((-)^*, R)}{\Omega^2} = \text{FL}(R),$$
where $\text{Ref}(R)$ stands for the subcategory of mod R consisting of reflexive R-modules, while $(-)^*$ denotes the R-dual. The above corollary gives a higher dimensional version of this result.

2. **Our results and proofs**

In this section we give several definitions, and state and prove our results. We also give proofs of Theorem \ref{thm:1.1} and Corollary \ref{cor:1.2} which are displayed in the previous section. We begin with recalling fundamental notions.

Definition 2.1. (1) Let \mathcal{X} be a subcategory of mod R. The **stable category** \mathcal{X} of \mathcal{X} is defined as follows:

The objects of \mathcal{X} are the same as those of \mathcal{X}. The morphism set of objects X, Y of \mathcal{X} is the quotient of the additive group $\text{Hom}_R(X, Y)$ by the subgroup consisting of R-homomorphisms factoring through some finitely generated projective R-modules. Note that \mathcal{X} is none other than the subcategory of mod R consisting of objects M such that $M \in \mathcal{X}$, that is,

$$\mathcal{X} = \{ M \in \text{mod } R \mid M \in \mathcal{X} \}.$$

2. Let M be a finitely generated R-module and $P_1 \overset{d_1}{\to} P_0 \overset{d_0}{\to} M \to 0$ a finite projective presentation of M. The **syzygy** ΩM of M is defined as $\text{Im} d_1$. Note that ΩM is uniquely determined by M up to projective summands. Taking the syzygy induces an additive functor $\Omega : \text{mod } R \to \text{mod } R$. Inductively, we define $\Omega^n = \Omega \circ \Omega^{n-1}$ for an integer $n > 0$. The (Auslander) transpose $\text{Tr} M$ of M is defined as $\text{Coker} d_1^*$. Note that $\text{Tr} M$ is uniquely determined by M up to projective summands. Taking the transpose induces an additive functor $\text{Tr} : \text{mod } R \to \text{mod } R^{\text{op}}$.

3. Let $m, n \in \mathbb{Z}_{\geq 0} \cup \{ \infty \}$. We denote by $\mathcal{G}_{m,n}(R)$, or simply $\mathcal{G}_{m,n}$, the subcategory of mod R consisting of R-modules M such that $\text{Ext}^i_m(R, M) = 0$ for all $1 \leq i \leq m$ and $\text{Ext}^j_{\text{proj}}(\text{Tr} M, R) = 0$ for all $1 \leq j \leq n$. We denote by $\text{proj}(R)$ (resp. $\text{GP}(R)$) the subcategory of mod R consisting of finitely generated projective (resp. Gorenstein projective) R-modules. Note that $\text{GP}(R) = \mathcal{G}_{\infty, \infty}$. A finitely generated R-module M is called n-torsionfree if M belongs to $\mathcal{G}_{0,n}$. We denote by $\text{TF}_n(R)$ the subcategory of mod R consisting of n-torsionfree modules, that is, we set $\text{TF}_n(R) = \mathcal{G}_{0,n}$.

(4) The **projective dimension** (resp. **Gorenstein dimension**) of a finitely generated R-module M is defined to be the infimum of integers n such that there exists an exact sequence

$$0 \to X_n \to X_{n-1} \to \cdots \to X_1 \to X_0 \to M \to 0$$

of finitely generated R-modules with X_i projective (resp. Gorenstein projective).

(5) The **grade** of a finitely generated R-module M is defined to be the infimum of integers i such that $\text{Ext}_R^i(M, R) = 0$, and denoted by $\text{grade}_R M$. For an integer n, we denote by $\text{Grd}_n(R)$ the subcategory of $\text{mod } R$ consisting of R-modules M satisfying that $\text{grade}_R M \geq n$.

(6) Let M, N be finitely generated R-modules. We say that M and N are **stably isomorphic** if there are finitely generated projective modules P, Q such that $M \oplus P \cong N \oplus Q$, and then write $M \approx N$. Note that $M \approx N$ if and only if M and N are isomorphic as objects of $\text{mod } R$.

(7) Let \mathcal{X} be a subcategory of $\text{mod } R$. We say that \mathcal{X} is **closed under stable isomorphism** if for finitely generated modules M, N with $M \in \mathcal{X}$ and $M \approx N$, it holds that $N \in \mathcal{X}$.

We extend the definition of n-spherical modules due to Auslander and Bridger. Namely, for any subcategory \mathcal{X} of $\text{mod } R$ closed under stable isomorphism, we introduce the concept of n-\mathcal{X}-spherical modules as follows.

Definition 2.2. Let \mathcal{X} be a subcategory of $\text{mod } R$. Suppose that \mathcal{X} is closed under stable isomorphism. Let $n \geq 1$ be an integer and M a finitely generated R-module. We say that M is n-\mathcal{X}-spherical if $\text{Ext}_R^n(M, R) = 0$ for all $1 \leq i \leq n-1$ and $\Omega^i M \in \mathcal{X}$. We denote by $\text{Sph}_n^\mathcal{X}(R)$ the subcategory of $\text{mod } R$ consisting of n-\mathcal{X}-spherical R-modules. We call $n\text{-proj}(R)$-spherical (resp. $n\text{-GP}(R)$-spherical) simply n-spherical (resp. n-\mathcal{G}-spherical). We denote by $\text{Sph}_n(R)$ (resp. $\text{Sph}_n^\mathcal{G}(R)$) the subcategory of $\text{mod } R$ consisting of n-spherical (resp. n-\mathcal{G}-spherical) modules.

Remark 2.3. Let $n \geq 1$ be an integer and M a finitely generated R-module. Then M is n-spherical if and only if $\text{Ext}_R^n(M, R) = 0$ for all $1 \leq i \leq n-1$ and M has projective dimension at most n. Hence our convention is consistent with the original definition by Auslander and Bridger. Similarly, M is n-\mathcal{G}-spherical if and only if $\text{Ext}_R^n(M, R) = 0$ for all $1 \leq i \leq n-1$ and M has Gorenstein dimension at most n.

For a finitely generated R-module M, we denote by $D(M)$ the image of the canonical map $\sigma_M : M \to M^{**}$ given by $\sigma_M(m)(f) = f(m)$ for $m \in M$ and $f \in M^*$. This correspondence induces an additive functor $D : \text{mod } R \to \text{mod } R$. Note that $D(M) \approx \Omega \text{Tr} \Omega \text{Tr} M$; see [1, Appendix]. The following proposition is an essential part of the proof of the main theorem.

Proposition 2.4. Let $n \geq 1$ be an integer and M a finitely generated R-module. Let \mathcal{X} be a subcategory of $\text{mod } R$. Assume that \mathcal{X} satisfies the following conditions.

(i) The subcategory \mathcal{X} is closed under stable isomorphism.

(ii) One has $D(\mathcal{X}) \subseteq \mathcal{X}$.

(iii) One has $\mathcal{X} \subseteq \text{Grd}_{n,0}$.

Then the following are equivalent.

1. There exists an exact sequence $0 \to L \to M \to N \to 0$ with $\text{grade}_R L \geq n$ and $N \in \mathcal{X}$.

2. The module M belongs to $\mathcal{G}_{n-1,0}$ and the module $D(M)$ belongs to \mathcal{X}.

In other words, one has $\text{Grd}_n(R) * \mathcal{X} = D^{-1}(\mathcal{X}) \cap \mathcal{G}_{n-1,0}$.

Proof. Suppose that there is an exact sequence $0 \to L \to M \to N \to 0$ with $L \in \text{Grd}_n(R)$ and $N \in \mathcal{X}$. Then M is in $\mathcal{G}_{n-1,0}$ as $\text{Grd}_n(R)$ and \mathcal{X} are contained in $\mathcal{G}_{n-1,0}$. Since $L^* = 0$, by [1, Lemma 3.9], there is an exact sequence $0 \to A \to B \to C \to 0$ such that $A \approx \text{Tr} N$, $B \approx \text{Tr} M$ and $C \approx \text{Tr} L$. As $\Omega \text{Tr} L$ is projective, we have $\Omega \text{Tr} M \approx \Omega \text{Tr} N$. Hence $D(M) \approx D(N)$. We get $D(N) \in \mathcal{X}$ by the assumption (ii), and we obtain $D(M) \in \mathcal{X}$ by the assumption (i). The implication $(1) \Rightarrow (2)$ holds.

Conversely, assume that $M \in \mathcal{G}_{n-1,0}$ and $D(M) \in \mathcal{X}$. We consider the exact sequence $0 \to \text{Ext}^1(\text{Tr} M, R) \to M \to \text{ext}^1(\text{Tr} M, R) \to D(M) \to 0$; see [1, Proposition 2.6]. Set $L = \text{Ext}^1(\text{Tr} M, R)$ and $N = D(M)$. As σ_M^* is surjective, so is σ_M^*. We obtain a long exact sequence

$$0 \to L^* \to \text{Ext}^1(N, R) \to \text{Ext}^1(M, R) \to \text{Ext}^1(L, R) \to \cdots$$

Now M belongs to $\mathcal{G}_{n-1,0}$, and N belongs to $\mathcal{G}_{n,0}$ by the assumption (iii). Thus L has grade at least n, and the implication $(2) \Rightarrow (1)$ holds. \(\blacksquare\)
Here are some comments about Proposition 2.4.

Remark 2.5. Let \(m \geq n \) be integers.

1. The subcategory \(\text{proj}(R) \) satisfies the three assumptions (i), (ii) and (iii) of Proposition 2.4 and so do the subcategories \(\text{GP}(R) \) and \(\mathcal{G}_{m,m+1}(R) \); see [7, Proposition 1.1.1].
2. Let \(\mathcal{X} \) be a subcategory of \(\text{mod} R \) satisfying the three assumptions (i), (ii) and (iii) of Proposition 2.4. By Proposition 2.4, if \(\mathcal{X} \) is closed under direct summands, then so is \(\text{Grd}_n(R) * \mathcal{X} \). Hence \(\text{Grd}_n(R) * \text{GP}(R) \) and \(\mathcal{G}_{m,m+1}(R) \) are closed under direct summands.

The following lemma connects Proposition 2.4 to the notion of \(n \times \)-spherical modules.

Lemma 2.6. Let \(n \geq 1 \) be an integer.

1. Let \(\mathcal{X} \) be a subcategory of \(\text{mod} R \). Assume that \(\mathcal{X} \) is closed under stable isomorphism. One then has the duality
 \[
 [D^{-1}(\mathcal{X}) \cap \mathcal{G}_{n-1,0}(R) \xrightarrow{\text{Tr} \Omega^{n-1}} \{ M' \in \mathcal{G}_{n-1,0}(R^{\text{op}}) | \text{Tr} \Omega \Omega^n M' \in \mathcal{X} \}].
 \]
2. Let \(M' \) be a finitely generated \(R^{\text{op}} \)-module and \(m \geq 0 \) an integer. Let \(\mathcal{X}(R) \) be any of the subcategories \(\text{proj}(R), \text{GP}(R) \) and \(\mathcal{G}_{m,m+1}(R) \). Then \(\Omega \text{Tr} \Omega^n M' \) belongs to \(\mathcal{X}(R) \) if and only if \(\Omega^n M' \) belongs to \(\mathcal{X}(R^{\text{op}}) \).

Proof. (1) By [7, Proposition 1.1.1], the functor \(\text{Tr} \Omega^{n-1} : \text{mod} R \leftrightarrow \text{mod} R^{\text{op}} \) gives a duality \(\mathcal{G}_{n-1,0}(R) \leftrightarrow \mathcal{G}_{n-1,0}(R^{\text{op}}) \). Hence it is enough to show that both of the above restricted correspondences are well-defined.

Let \(M \) be a finitely generated \(R \)-module satisfying that \(M \in \mathcal{G}_{n-1,0}(R) \) and \(D(M) \in \mathcal{X} \). Set \(M' = \text{Tr} \Omega^{n-1} M \).

Thus the functor from the left hand side is well-defined. The converse is proved similarly.

(2) Since \(\Omega^n M' \) is in \(\mathcal{G}_{n-1,0}(R^{\text{op}}) \), one has \(\Omega \text{Tr} \Omega^n M' \approx \Omega^n M' \). Moreover, the inclusion \(\Omega \text{Tr}(\mathcal{X}(R)) \subset \mathcal{X}(R^{\text{op}}) \) holds now. Hence the assertion follows.

The following theorem is the main result of this paper.

Theorem 2.7. Let \(n \geq 1 \) be an integer.

1. One has the equivalence
 \[
 \text{Sph}_n(R) \xrightarrow{\text{Ext}^n(-,R)} \mathcal{G}_{m,m+1}(R^{\text{op}}).
 \]
2. Let \(m \in \mathbb{Z}_{\geq n} \cup \{ \infty \} \). One then has the equivalence
 \[
 \text{Sph}_n^{\mathcal{G}_{m,m+1}}(R) \xrightarrow{\text{Tr} \Omega^{n-1}} \mathcal{G}_{m,m+1}(R^{\text{op}}) \ast \mathcal{G}_{m,m+1}(R^{\text{op}}).
 \]

Proof. The assertion (2) follows from Proposition 2.4 Remark 2.5(1) and Lemma 2.6. It is easily seen that the category \(\mathcal{G}_{m,m+1}(R) \ast \text{proj}(R) \) is naturally equivalent to the category \(\mathcal{G}_{m,m+1}(R) \ast \text{Grd}_n(R) \). Moreover, since \(n \)-spherical modules have projective dimension at most \(n \), taking \(\text{Tr} \Omega^{n-1} \) on \(\text{Sph}_n(R) \) is the same as taking \(\text{Ext}^n(-,R) \). Hence the assertion (1) is seen similarly.

Proof of Theorem 1.1. The first assertion of Theorem 1.1 is the same as Theorem 2.7(1). The second assertion follows by letting \(m = \infty \) in Theorem 2.7(2).

Remark 2.8. In general, the grade of a non-zero finitely generated module is less than or equal to its projective dimension. A finitely generated \(R \)-module \(M \) is said to be \(\text{perfect} \) if \(M = 0 \) or the grade of \(M \) equals its projective dimension. For a positive integer \(n \), we denote by \(\text{Perf}_n(R) \) the subcategory of \(\text{mod} R \) consisting of \(n \)-perfect \(R \)-modules with grade \(n \) or infinity. Then the equality \(\mathcal{G}_{m,m+1}(R) \cap \text{Sph}_n(R) = \text{Perf}_n(R) \) holds. By restricting the correspondence of Theorem 2.7(1), we obtain the duality \(\text{Ext}^n(-,R) : \text{Perf}_n(R) \to \text{Perf}_n(R^{\text{op}}) \). Theorem 2.7(1) can be regarded as a generalization of this classical result.
In the rest of this paper, we assume that \(R \) is commutative and local, and denote by \(m \) the maximal ideal of \(R \). Let \(\Gamma_m(\cdot) \) be the \(m \)-torsion functor; recall that \(\Gamma_m(M) = \{ x \in M \mid m^r x = 0 \text{ for some } r > 0 \} \) for an \(R \)-module \(M \). Let \(H^i_m(\cdot) \) be the \(i \)-th local cohomology functor, that is, the \(i \)-th right derived functor of \(\Gamma_m(\cdot) \).

A finitely generated \(R \)-module \(M \) is said to be maximal Cohen–Macaulay if the depth of \(M \) is greater than or equal to the (Krull) dimension of the ring \(R \); see [3] Chapter 2 for details. We denote by \(\text{CM}(R) \) the subcategory of \(\text{mod} \ R \) consisting of maximal Cohen–Macaulay \(R \)-modules. By Grothendieck’s vanishing theorem [3] Theorem 3.5.7, a finitely generated \(R \)-module \(M \) is maximal Cohen–Macaulay if and only if \(H^i_m(M) = 0 \) for all \(i < d \), where \(d \) is the dimension of \(R \). The following proposition provides various equivalent conditions for a finitely generated module \(M \) to be spherical relative to the local cohomology functor \(H_m \). Here, we say that a finitely generated \(R \)-module \(M \) is \(n \)-H-spherical if \(H^i_m(M) = 0 \) for all \(i \neq n \).

Proposition 2.9. Suppose that \(R \) is Cohen–Macaulay and with dimension \(d > 0 \). Let \(M \) be a finitely generated \(R \)-module. Consider the following four conditions.

(a) There exists an exact sequence \(0 \to L \to M \to N \to 0 \) of \(R \)-modules such that \(L \) has finite length and \(N \) is maximal Cohen–Macaulay.

(b) The module \(M/\Gamma_m(M) \) is maximal Cohen–Macaulay.

(c) The module \(M \) is \(d \)-H-spherical.

(d) The module \(M \) is locally maximal Cohen–Macaulay on the punctured spectrum of \(R \).

Then the following hold.

1. The implications (a) \(\iff \) (b) \(\iff \) (c) \(\Rightarrow \) (d) hold.
2. If \(d = 1 \), then the implication (d) \(\Rightarrow \) (c) holds.
3. If \(d > 2 \), then the implication (d) \(\Rightarrow \) (c) never holds.

Proof. (1) Suppose that (a) holds. Since \(\Gamma_m(L) = L \) and \(\Gamma_m(N) = 0 \), the short exact sequence \(0 \to L \to M \to N \to 0 \) yields an isomorphism \(\Gamma_m(f) : L \xrightarrow{\sim} \Gamma_m(M) \). Hence an isomorphism \(N \xrightarrow{\sim} M/\Gamma_m(M) \) is induced, and (b) holds. Conversely, since the module \(\Gamma_m(M) \) has finite length, if (b) holds, then the short exact sequence \(0 \to \Gamma_m(M) \to M \to M/\Gamma_m(M) \to 0 \) satisfies the required condition in (a). We get the equivalence (a) \(\iff \) (b). Next, we note that \(\Gamma_m(M/\Gamma_m(M)) = 0 \) and \(H^i_m(M) \cong H^i_m(M/\Gamma_m(M)) \) for all \(i > 0 \); see [2] Chapter 2 for instance. The equivalence (b) \(\iff \) (c) follows from these and Grothendieck’s vanishing theorem. As \(M \) and \(M/\Gamma_m(M) \) are locally isomorphic on the punctured spectrum of \(R \), the implication (b) \(\Rightarrow \) (d) clearly holds.

(2) When \(d = 1 \), the module \(M/\Gamma_m(M) \) is maximal Cohen–Macaulay for all finitely generated \(R \)-modules \(M \) as \(\Gamma_m(M/\Gamma_m(M)) = 0 \), and therefore the assertion follows.

(3) The maximal ideal \(m \) of \(R \) is locally isomorphic to \(R \) on the punctured spectrum of \(R \). However, one has \(\Gamma_m(R) = H^1_m(R) = 0 \) by the assumption. The long exact sequence

\[
0 \to \Gamma_m(m) \to \Gamma_m(R) \to \Gamma_m(R/m) \to H^1_m(m) \to H^1_m(R) \to \cdots
\]

indicates that \(H^1_m(m) \cong \Gamma_m(R/m) = R/m \neq 0 \). Hence the implication (d) \(\Rightarrow \) (c) never holds. \(\blacksquare \)

Applying Theorem 2.7 to the stable category \(\text{TF}_n(R) \) gives rise to the following theorem. Here, \(\text{FL}(R) \) and \(\text{Sph}^H_d(R) \) respectively stand for the subcategory of \(\text{mod} \ R \) consisting of \(R \)-modules of finite length, and the subcategory of \(\text{mod} \ R \) consisting of \(n \)-H-spherical \(R \)-modules.

Theorem 2.10. Suppose that \(R \) is Cohen–Macaulay and with dimension \(d > 0 \).

1. If \(R \) is regular, then one has the equivalence

\[
\text{TF}_{d-1}(R) \xrightarrow{\text{Ext}^d_{T(R)}(\cdot,R)} \text{FL}(R).
\]

2. If \(R \) is Gorenstein, then the following equalities hold.

\[
\text{Sph}^H_d(R) = \text{FL}(R) \ast \text{CM}(R) = \{ M \in \text{mod} R \mid M/\Gamma_m(M) \text{ is maximal Cohen–Macaulay} \}.
\]
Moreover, one then has the equivalence
\[
\frac{\text{TF}_{d-1}(R)}{\Omega^{d-1}} \xrightarrow{\text{Tr} \Omega^{d-1}} \frac{\text{Sph}_{d}^{H}(R)}{\Omega^{d-1}}.
\]

Proof. Note that the equality $\text{Grd}_{d}(R) = \text{FL}(R)$ holds; see [3, Proposition 1.2.10]. By [3, Theorem 2.2.7] and [1, Theorem 4.20], if R is regular (resp. Gorenstein), then any finitely generated R-module has projective (resp. Gorenstein) dimension at most d. When this is the case, $\text{Sph}_{d}(R)$ (resp. $\text{Sph}_{G}^{d}(R)$) is equal to $G_{d-1,0}$. Moreover, if R is Gorenstein, then maximal Cohen–Macaulay modules are totally reflexive, and the converse is also true; see [3, Theorem 3.3.10] for instance. Since one has the duality $G_{d-1,0} \xrightarrow{\text{Tr}} \text{TF}_{d-1}(R)$ by [7, Proposition 1.1.1], the assertion follows from Theorem 2.7 and Proposition 2.9.

Proof of Corollary 1.2. The assertion of Corollary 1.2 is included in Theorem 2.10.

We denote by $\text{Ref}(R)$ the subcategory of $\text{mod} R$ consisting of reflexive R-modules. The exact sequence
\[
0 \to \text{Ext}^{1}_{R^{op}}(\text{Tr} M, R) \to M \xrightarrow{\text{Tr} M^{\ast}} M^{\ast} \to \text{Ext}^{2}_{R^{op}}(\text{Tr} M, R) \to 0
\]
for each finitely generated R-module M shows that M is reflexive if and only if it is 2-torsionfree. In other words, the equality $\text{Ref}(R) = \text{TF}_{2}(R)$ holds. The following corollary is a special case of Theorem 2.10.

Corollary 2.11. Let R be a three dimensional regular local ring. One then has the equivalence
\[
\text{Ref}(R) \xrightarrow{\text{Ext}^{1}((-)^{\ast}, R)} \frac{\text{Ext}^{1}(\cdot, R)}{\Omega^{2}} \xrightarrow{\text{FL}(R)}.
\]

Proof. Since $(-)^{\ast} \approx \Omega^{2} \text{Tr}(-)$, the assertion is none other than the case $d = 3$ of Theorem 2.10(1).

Acknowledgments. The author would like to thank his supervisor Ryo Takahashi for a lot of valuable discussions and advice.

References

[1] M. Auslander; M. Bridger, Stable module theory, Memoirs of the American Mathematical Society 94, American Mathematical Society, Providence, R.I., 1969.
[2] M. P. Brodmann; R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge, 1998.
[3] W. Bruns; J. Herzog, Cohen–Macaulay rings, revised edition, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge, 1998.
[4] S. Dey; R. Takahashi, On the subcategories of n-torsionfree modules and related modules, Collect. Math. (to appear), arXiv:2101.04469.
[5] E. G. Evans; P. Griffith, Syzygies, London Mathematical Society Lecture Note Series 106, Cambridge University Press, Cambridge, 1985.
[6] Z. Y. Huang, Syzygy modules for quasi k-Gorenstein rings, J. Algebra 299 (2006), no. 1, 21–32.
[7] O. Iyama, Higher-dimensional Auslander–Reiten theory on maximal orthogonal subcategories, Adv. Math. 210 (2007), no. 1, 22–50.
[8] H. Matsui; R. Takahashi; Y. Tsuchiya, When are n-syzygy modules n-torsionfree?, Arch. Math. (Basel) 108 (2017), no. 4, 351–355.

Graduate School of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya 464-8602, Japan
Email address: m21012v@math.nagoya-u.ac.jp