A DICHOTOMY BETWEEN UNIFORM DISTRIBUTIONS OF THE STERN-BROCOT AND THE FAREY SEQUENCE

MARC KESSEBÖHMER AND BERND O. STRATMANN

Abstract. We employ infinite ergodic theory to show that the even Stern-Brocot sequence and the Farey sequence are uniformly distributed mod 1 with respect to certain canonical weightings. As a corollary we derive the precise asymptotic for the Lebesgue measure of continued fraction sum-level sets as well as connections to asymptotic behaviours of geometrically and arithmetically restricted Poincaré series. Moreover, we give relations of our main results to elementary observations for the Stern-Brocot tree.

1. Introduction and statements of result

In this paper we consider weighted uniform distributions (mod 1) for the following two canonical sequences: the Farey sequence $(F_n)_{n \in \mathbb{N}}$ which is given by

$$F_n := \{ p/q : 0 < p \leq q \leq n, \gcd(p, q) = 1 \},$$

and the even Stern-Brocot sequence $(S_n)_{n \in \mathbb{N}}$ which is given by

$$S_n := \{ s_{n, 2k}/t_{n, 2k} : k = 1, \ldots, 2^{n-1} \},$$

where the integers $s_{n, k}$ and $t_{n, k}$ are defined recursively by

- $s_{0, 1} := 0$ and $s_{0, 2} := t_{0, 1} := t_{0, 2} := 1$;
- $s_{n+1, 2k-1} := s_{n, k}$ and $t_{n+1, 2k-1} := t_{n, k}$, for $k = 1, \ldots, 2^n + 1$;
- $s_{n+1, 2k} := s_{n, k} + s_{n, k+1}$ and $t_{n+1, 2k} := t_{n, k} + t_{n, k+1}$, for $k = 1, \ldots, 2^n$.

The following theorem states the main results of this paper, where δ_x denotes the Dirac distribution at $x \in [0, 1]$, \ast-lim the weak limit of measures, and λ the Lebesgue measure on $[0, 1]$. Note that, throughout, all appearing fractions will always be assumed to be reduced.

Theorem 1.1. For the even Stern-Brocot sequence we have that

$$\ast \lim_{n \to \infty} \log(n^2) \sum_{p/q \in S_n} q^{-2} \delta_{p/q} = \lambda,$$

and for the Farey sequence we have that

$$\ast \lim_{n \to \infty} \frac{\zeta(2)}{\log n} \sum_{p/q \in F_n} q^{-2} \delta_{p/q} = \lambda.$$
In fact, for the derivation of the assertion in (1) we will show that the following more general measure theoretical result holds. In here, \(T : [0, 1] \to [0, 1] \) denotes the Farey map defined by
\[
T(x) := \begin{cases}
\frac{x}{1-x} & \text{for } x \in [0, 1/2] \\
\frac{1-x}{x} & \text{for } x \in (1/2, 1].
\end{cases}
\]

Theorem 1.2. For each rational number \(v/w \in (0, 1] \) we have that
\[
\mathop{\ast\lim}_{n \to \infty} \log(n^{vw}) \sum_{p/q \in T^{-n}(v/w)} q^{-2} \delta_{p/q} = \lambda.
\]

In a nutshell, the proofs of these results are obtained as follows. The convergence in (2) is derived from combining Toeplitz’s Lemma and a classical result by Landau [Lan24] and Mikolás [M48] with a well-know estimate for the Euler totient function \(\varphi(n) := \text{card}\{1 \leq m \leq n : \gcd(m, n) = 1\} \). Whereas, the proof of Theorem 1.2, and consequently the proof of (1), is obtained from the following slightly more technical result, which will be derived by employing some recent progress in infinite ergodic theory.

Proposition 1.3. For each interval \([\alpha, \beta] \subset (0, 1]\) we have that
\[
\mathop{\ast\lim}_{n \to \infty} \left(\log \left(\frac{n}{\log (\beta/\alpha)} \cdot \lambda \right) \right) = \lambda.
\]

The result in Proposition 1.3 has the following immediate elementary number theoretical implication, which has been the main result of [KS10] and which there led to the confirmation of a conjecture by Fiala and Kleban [FK06] (see also Remark 2.1 following the proof of Proposition 1.3). In particular, Proposition 1.3 hence gives rise to an alternative proof of this conjecture. But let us first recall that the regular continued fraction expansion of a number \(x \in (0, 1] \) is given by
\[
x =: [x_1, x_2, \ldots] := \frac{1}{x_1 + \frac{1}{x_2 + \ldots}},
\]
where all the \(x_i \) are positive integers. Also, we write \(a_n \sim b_n \) if \(\lim_{n \to \infty} a_n/b_n = 1 \).

Corollary 1.4. We have that
\[
\lambda \left(\left\{ [x_1, x_2, \ldots] : \sum_{i=1}^{k} x_i = n, k \in \mathbb{N} \right\} \right) \sim \frac{1}{\log_2 n}.
\]

Further immediate consequences of the results in Theorem 1.1 and Theorem 1.2 are given in the following two corollaries.

Corollary 1.5. We have that
\[
\mathop{\ast\lim}_{n \to \infty} \frac{\zeta(2)}{n} \sum_{p/q \in [0, 1] \setminus \log q \leq n} q^{-2} \delta_{p/q} = \lambda \quad \text{and} \quad \mathop{\ast\lim}_{n \to \infty} \frac{\log(n^2)}{n} \sum_{p/q \in [0, 1] \setminus \sum_{i=1}^{k} x_i \leq n} q^{-2} \delta_{p/q} = \lambda.
\]

The latter dichotomy can also be expressed in more down-to-earth terms as a dichotomy between partial geometric Poincaré sums and partial algebraic Poincaré sums for the modular group \(\Gamma := \text{PSL}_2(\mathbb{Z}) \). For results of this type on the algebraic growth rates of Poincaré series for more general Kleinian groups we refer to [KS09]. In the following, \(d \) refers to the hyperbolic metric in the upper plane model of hyperbolic space and \(| \cdot | \) denotes the word length in \(\Gamma \) with respect to the two generators \(z \mapsto z + 1 \) and \(z \mapsto -1/z \) of the modular group \(\Gamma \). Also, we write \(a_n \asymp b_n \) if \(a_n/b_n \) is uniformly bounded away from zero and infinity.
Corollary 1.6. We have that
\[\sum_{\gamma \in \Gamma} e^{-d(0,\gamma(0))} \prec n \quad \text{and} \quad \sum_{\gamma \in \Gamma} e^{-d(0,\gamma(0))} \succ \frac{n}{\log n}. \]

Remark 1.7. (i) Note that the results in Theorem 1.1 complement well-known results on weak convergence of empirical measures with constant weight 1 for the sequences \((\mathcal{F}_n) \) and \((\mathcal{S}_n) \). More precisely, in [Y18] (see also [CPSS, D90, KS, K54, Lan24]) it was shown that \((\mathcal{F}_n) \) is uniformly distributed, that is,
\[(4) \quad \ast \lim_{n \to \infty} \frac{1}{\text{card}(\mathcal{F}_n)} \sum_{p/q \in \mathcal{F}_n} \delta_{p/q} = \lambda. \]

On the other hand, it is known that the Stern-Brocot sequence is not uniformly distributed. In fact, an immediate consequence of the results in [KS08] is that
\[\ast \lim_{n \to \infty} \frac{1}{\text{card}(\mathcal{S}_n)} \sum_{p/q \in \mathcal{S}_n} \delta_{p/q} = m_T, \]
where \(m_T \) refers to the measure of maximal entropy for the Farey map \(T \). Here, the reader might like to recall that the distribution function of the Farey map \(T \) is equal to the Minkowski question mark function (see e.g. [KS08]) and hence, the two measures \(m_T \) and \(\lambda \) are mutually singular. In fact, a numerical calculation has shown that the Hausdorff dimension \(\dim_H(m_T) := \inf \{ \dim_H(X) : m_T(X) = 1 \} \) of the measure \(m_T \) is approximable equal to 0.875 (see e.g. [KS08, Lag92, TU95]).

(ii) In order to tie the results in Theorem 1.1 (1) and Theorem 1.2 to elementary number theory and, in particular, to give a clarification of the factor \(vw \) in Theorem 1.2, we mention the following observation for the even Stern-Brocot tree. For each reduced fraction \(v/w \in (0,1) \) and for all \(n \in \mathbb{N}_0 \), we have
\[(5) \quad \sum_{p/q \in T^{-n}(v/w)} \frac{1}{pq} = \frac{1}{vw}. \]

To see this first in an elementary way, note that we have \(p/q \in \mathcal{S}_n \) if and only if \(T^{-1}(p/q) = \{ p/(p + q), q/(p + q) \} \subset \mathcal{S}_{n+1} \). Furthermore, with \(\kappa : \bigcup_{n \in \mathbb{N}} \mathcal{S}_n \to \mathbb{R} \) given by \(\kappa(p/q) := 1/(pq) \), one immediately verifies that
\[\kappa(p/(p + q)) + \kappa(q/(p + q)) = \kappa(p/q). \]
The proof now follows by induction. Note that for the special case \(v/w = 1/2 \) one immediately verifies that \(\mathcal{S}_n = T^{-(n-1)}(1/2) \), and then (5) becomes
\[\sum_{p/q \in \mathcal{S}_n} \frac{2}{pq} = 1, \quad \text{for all } n \in \mathbb{N}, \]
which has also been observed by the Canadian music theorist Pierre Lamothe (see the reference by Bogomolny in [B10]).

Alternatively, the equality in (5) can also be deduced immediately from the well-known fixed point equation for the Perron-Frobenius operator \(\mathcal{L} \) associated with the Farey map \(T \) (see Section 2.1 for the definition). For this let \(h \) denote the eigenfunction of \(\mathcal{L} \) associated with the eigenvalue 1. It is well known that \(h \) is given by \(h(x) := 1/x \), which consequently gives that
\[\sum_{y \in T^{-n}(x)} \frac{|(T^n)'(y)|^{-1} h(y)} = h(x), \quad \text{for all } x \in (0,1) \text{ and } n \in \mathbb{N}_0. \]

Since \(|(T^n)'(p/q)| = q^2/w^2 \) for all \(p/q \in T^{-n}(v/w) \), the statement in (5) follows.

Finally, let us apply Theorem 1.2 to obtain yet another proof of the statement in (4), and this proof will then implicitly use dual aspects of the Perron-Frobenius
operator. More precisely, by applying Theorem [12] twice, we obtain the following, which immediately implies [3]. For each \(n \in \mathbb{N} \) and for every reduced fraction \(v/w \in (0, 1) \), we have

\[
\sum_{p/q \in T^{-n}(v/w)} \frac{1}{pq} \lambda = \sum_{p/q \in T^{-n}(v/w)} \ast \lim_{k \to \infty} \log k \sum_{r/s \in T^{-n}(p/q)} q^{-2} \delta_{p/q} = \frac{1}{vw} \ast \lim_{k \to \infty} \log (k^{vw}) \sum_{p/q \in T^{-n}(v/w)} q^{-2} \delta_{p/q} = \frac{1}{vw} \lambda.
\]

2. Proofs of Theorem [1-1, 1-2] and Proposition [1-3]

2.1. Proof of Proposition [1-3] As already mentioned in the introduction, the proof of the Proposition [1-3] will make use of some results from infinite ergodic theory. Therefore, let us first recall a few basic facts and results from infinite ergodic theory for the Farey map. (For an overview, further definitions and details concerning infinite ergodic theory in general, the reader is referred to [A97].) It is well known that the Farey system \([0, 1], T, \mathcal{A}, \mu\) is a conservative ergodic measure preserving dynamical systems. Here, \(\mathcal{A} \) refers to the Borel \(\sigma \)-algebra of \([0, 1]\) and the measure \(\mu \) is the infinite \(\sigma \)-finite \(T \)-invariant measure absolutely continuous with respect to the Lebesgue measure \(\lambda \). (Recall that conservative and ergodic means that for all \(f \in L^1_+ (\mu) := \{ f \in L_1 (\mu) : f \geq 0 \) and \(\mu (f \cdot 1_{[0,1]}) > 0 \} \) we have \(\mu \)-almost everywhere \(\sum_{n \geq 0} \hat{T}^n (f) = \infty \), where \(1_{[0,1]} \) refers to the characteristic function of \([0,1]\); also, invariance of \(\mu \) under \(T \) means \(\hat{T} (1_{[0,1]}) = 1_{[0,1]} \), where \(\hat{T} \) denotes the transfer operator defined below.) In fact, with \(\varphi_0 : [0, 1] \to [0, 1] \) defined by \(\varphi_0 (x) := x \), the measure \(\mu \) is explicitly given by

\[
d\lambda = \varphi_0 \, d\mu.
\]

Moreover, recall that the transfer operator \(\hat{T} : L_1 (\mu) \to L_1 (\mu) \) associated with the Farey system is the positive linear operator which is given by

\[
\mu \left(1_C \cdot \hat{T} (f) \right) = \mu \left(1_{T^{-1}(C)} \cdot f \right), \text{ for all } f \in L_1 (\mu), C \in \mathcal{A}.
\]

Finally, note that the Perron-Frobenius operator \(\mathcal{L} : L_1 (\mu) \to L_1 (\mu) \) of the Farey system is given by

\[
\mathcal{L} (f) = |u_0'| \cdot (f \circ u_0) + |u_1'| \cdot (f \circ u_1), \text{ for all } f \in L_1 (\mu),
\]

where \(u_0 \) and \(u_1 \) refer to the inverse branches of \(T \), which are given for \(x \in [0,1] \) by

\[
u_0 (x) = x/(1 + x) \text{ and } u_1 (x) = 1/(1 + x).
\]

One then immediately verifies that the two operators \(\hat{T} \) and \(\mathcal{L} \) are related through

\[
\hat{T} (f) = \varphi_0 \cdot \mathcal{L} (f/\varphi_0), \text{ for all } f \in L_1 (\mu).
\]

Now, the crucial notion for proving Proposition [1-3] is provided by the following concept of a uniformly returning set which was introduced in [KS07].

A set \(C \in \mathcal{A} \) with \(0 < \mu (C) < \infty \) is called uniformly returning for \(f \in L^+ (\mu) \) if there exists a positive increasing sequence \((w_n)_{n \in \mathbb{N}} \) of positive reals such that \(\mu \)-almost everywhere and uniformly in \(C \) we have

\[
\lim_{n \to \infty} w_n \hat{T}^n (f) = \mu(f).
\]
In [KS07] Lemma 3.3 it was shown that for the Farey system we have that every interval contained in $[1/2, 1]$ is uniformly returning, for each function f which has the property that
\[\hat{T}^n(f) \in D := \{ g \in C^2([0, 1]) : g' \geq 0, g'' \leq 0 \} . \]
Moreover, in [KS07] Section 3.1 it was shown that in the situation of the Farey system the sequence $(w_n)_{n \in \mathbb{N}}$ can be chosen to be equal to $(\log n)_{n \in \mathbb{N}}$. (For further examples of one dimensional dynamical systems which allow uniformly returning sets for some appropriate functions we refer to [F00].) We are now in the position to give the proof of Proposition 1.3.

Proof of Proposition 1.3. Consider the function φ_t given by $\varphi_t : x \mapsto x \cdot \exp(tx)$. The first aim is to show that for each $t \in [-1, 1]$ we have
\[\hat{T}\varphi_t \in D. \]
Indeed, for $t \in [-1, 0]$ this is an immediate consequence of the facts that φ_t is increasing and concave and that $\hat{T}(D) \subset D$. For $t \in (0, 1]$, a straightforward computation shows that the first derivative at $x \in [0, 1]$ is given by
\[
\left(\hat{T}\varphi_t \right)'(x) = \frac{\varphi_t' \left(\frac{x}{x+t} \right) - x\varphi_t' \left(\frac{x}{x+t} \right)}{(x+1)^3} + \frac{\varphi_t \left(\frac{x}{x+t} \right) - \varphi_t \left(\frac{x}{x+t} \right)}{(x+1)^2}.
\]
For the second derivative we then obtain
\[
\left(\hat{T}\varphi_t \right)''(x) = \frac{(-2tx - 6x + 2t + xt^2 + 2x^3 - 4tx^2 - 4) \exp \left(\frac{x}{x+t} \right)}{(x+1)^6} \\
+ \frac{(2tx - 6x - 2t + xt^2 + 2x^3 + 4tx^2 - 4) \exp \left(\frac{x}{x+t} \right)}{(x+1)^6}.
\]
This immediately implies that $\left(\hat{T}\varphi_t \right)'' \leq 0$, for all $t \in (0, 1]$. Therefore, $\left(\hat{T}\varphi_t \right)'$ is decreasing on $[0, 1]$ with $\left(\hat{T}\varphi_t \right)'(1) = 0$, which shows that on $[0, 1]$ we have that $\left(\hat{T}\varphi_t \right)' \geq 0$. Hence, we can apply [KS08] Lemma 3.2, which then implies that $\hat{T}\varphi_t \in D$, for all $t \in [-1, 1]$.
We proceed by noting that [KS08] Lemma 3.3 guarantees that every interval contained in $[1/2, 1]$ is a uniformly returning set for φ_t, for each $t \in [-1, 1]$. In order to complete the proof of the proposition, we employ the method of moments as follows. The aim is to show that for each $\alpha, \beta \subset (0, 1]$ and for each $t \in [-1, 1]$ we have for the moment generating function at t that
\[
\lim_{n \to \infty} \int \exp(tx) \cdot \frac{\log n}{\mu([\alpha, \beta])} \cdot \mathbb{I}_{T^{-n}([\alpha, \beta])} \, d\lambda(x) = \int \exp(tx) \, d\lambda(x).
\]
To see this, we argue by induction as follows. For $[\alpha, \beta] \subset [1/2, 1]$, we have that
\[
\lim_{n \to \infty} \int \exp(tx) \cdot \frac{\log n}{\mu([\alpha, \beta])} \cdot \mathbb{I}_{T^{-n}([\alpha, \beta])} \, d\lambda(x) = \lim_{n \to \infty} \frac{\log n}{\mu([\alpha, \beta])} \cdot \mu \left(\hat{T}^n\varphi_t \cdot \mathbb{I}_{[\alpha, \beta]} \right) = \mu(\varphi_t) = \int \exp(tx) \, d\lambda(x).
\]
Next, suppose that the assertion holds for any interval which is contained in the set $E_n := \bigcup_{k=0}^{n-1} T^{-k}([1/2, 1])$, and consider an interval $[\alpha, \beta] \subset T^{-n}([1/2, 1]) \setminus E_n$. Since $T([\alpha, \beta]) \subset E_n$, we then have

$$\lim_{m \to \infty} \int \exp (tx) \cdot \frac{\log m}{\mu([\alpha, \beta])} \cdot \mathbb{1}_{T^{-m}([\alpha, \beta])}(x) \, d\lambda(x)$$

$$= \lim_{m \to \infty} \frac{\log m}{\mu([\alpha, \beta])} \cdot \mu \left(\hat{T}^m \varphi_t \cdot \left(\mathbb{1}_{T^{-1}(T([\alpha, \beta]))} - \mathbb{1}_{T^{-1}(T([\alpha, \beta]) \cap E_n)} \right) \right)$$

$$= \lim_{m \to \infty} \frac{\log m}{\mu([\alpha, \beta])} \cdot \left(\mu \left(\hat{T}^m \varphi_t \cdot \mathbb{1}_{T([\alpha, \beta])} \right) - \mu \left(\hat{T}^m \varphi_t \cdot \mathbb{1}_{T^{-1}(T([\alpha, \beta]) \cap E_n)} \right) \right)$$

$$= \frac{\mu(\varphi_t)}{\mu([\alpha, \beta])} \left(\mu(T([\alpha, \beta])) - \mu(T^{-1}(T([\alpha, \beta]) \cap E_n)) \right) = \int \exp (tx) \, d\lambda(x).$$

This finishes the proof of Proposition 1.3.

\[\square\]

Remark 2.1. We remark that the assertion in Corollary 1.2 is an immediate consequence of Proposition 1.3. Indeed, by choosing $[\alpha, \beta] = [1/2, 1]$ and observing that (see [KS10, Lemma 2.1])

$$T^{-(n-1)}([1/2, 1]) = \left\{ [x_1, x_2, \ldots] : \sum_{i=1}^{k} x_i = n, k \in \mathbb{N} \right\},$$

it follows that

$$\lambda \left(\left\{ [x_1, x_2, \ldots] : \sum_{i=1}^{k} x_i = n, k \in \mathbb{N} \right\} \right) \sim \frac{\log 2}{\log n}$$

2.2. Proof of Theorem 1.2. The following two lemmata will be required in the proof of Theorem 1.2. Note that the first lemma of these has already been obtained in [KS10]. However, in order to keep the paper as self contained as possible, we include a proof here.

Lemma 2.2.

$$\sum_{p/q \in S_n} q^{-2} \leq \frac{1}{\log n}$$

Proof. First note that there is a 1–1 correspondence between the sequence (S_n) and the set of connected components of $T^{-(n-1)}([1/2, 1])$. That is, if $p/q = [a_1, \ldots, a_n] \in S_n$, where $a_n > 1$, then one of these connected components is given by $C_n(p/q) := \{[x_1, x_2, \ldots] : x_i = a_i \text{ for } 1 \leq i \leq n\}$

$$\cup \{[x_1, x_2, \ldots] : x_i = a_i \text{ for } 1 \leq i \leq n-1, x_n = a_n-1, x_{n+1} = 1\}.$$

Using standard Diophantine estimates we find that $\lambda(C_n(p/q)) \approx 1/q^2$. Hence, an application of Corollary 1.4 finishes the proof of the lemma. \[\square\]

For the next lemma note that the sequence (S_n) can also be expressed in terms of the inverse branches u_1 and u_2 of the Farey map T. Namely, one immediately verifies that the orbit of the unit interval under the free semi-group Φ generated by u_1 and u_2 is in 1–1 correspondence to the set of all Stern-Brocot intervals

$$\left\{ \left[\frac{s_{n,k}}{t_{n,k}}, \frac{s_{n,k+1}}{t_{n,k+1}} \right] : n \in \mathbb{N}; k = 1, \ldots, 2^n \right\}.$$

Note that for each rational number $v/w \in (0, 1]$ we have that

$$\{ T^{-n} \{v/w\} : n \in \mathbb{N} \} = \{ \gamma(v/w) : \gamma \in \Phi \}.$$
Moreover, note that the \(\Phi \)-orbit of 1 is equal to the set of rational numbers in \((0,1)\). More precisely, we have that if \(\gamma \in \Phi \) then \(\gamma(1) = v/w \), for some \(v, w \in \mathbb{N} \) such that \(v < w \) and \(\gcd(v, w) = 1 \), and for the modulus of the derivative of \(\gamma \) at 1 we then have that \(|\gamma'(1)| = w^{-2} \).

In the following we let \(U(x) \) denote the interval centred at \(x \in \mathbb{R} \) of Euclidean diameter \(\text{diam}(U(x)) \) equal to \(\varepsilon > 0 \).

Lemma 2.3. For each \(g \in \Phi \) there exists \(\Delta : (0,1] \to \mathbb{R}_+ \) with \(\lim_{s \to 0} \Delta(s) = 0 \) such that for each \(h \in \Phi \) and \(\varepsilon > 0 \) sufficiently small, we have

\[
|\text{diam}(h(U(g(1)))) - \varepsilon |(h(g(1)))|| < \varepsilon |(hg)'(1)| \Delta(\varepsilon).
\]

Proof. By the bounded distortion property, we have for each \(z \in (0,1) \) that there exists \(\Delta_z : (0,1] \to \mathbb{R}_+ \) with \(\lim_{z \to 0} \Delta_z(s) = 0 \) such that, for each \(\varepsilon > 0 \) sufficiently small,

\[
\sup_{x, y \in U(z)} \frac{|\gamma'(x)|}{|\gamma'(y)|} - 1 < \Delta_z(\varepsilon).
\]

This implies that for fixed \(g \in \Phi \) we have, for each \(h \in \Phi \) and \(\varepsilon > 0 \) sufficiently small,

\[
\left| \text{diam}(h(U(g(1)))) - \varepsilon |h'(g(1))| \right| - 1 < \Delta_{g(1)}(\varepsilon).
\]

From this we deduce that

\[
\left| \text{diam}(h(U(g(1)))) - \varepsilon |h'(g(1))| \right| < \varepsilon \frac{|(hg)'(1)|}{|g'(1)|} \Delta_{g(1)}(\varepsilon) = \varepsilon |(hg)'(1)| \Delta(\varepsilon).
\]

This finishes the proof. \(\square \)

Proof of Theorem 1.2. Let \(g \in \Phi \) be given and define, for \(\varepsilon > 0 \) sufficiently small,

\[U_{g,\varepsilon, n} := T^{-(n-1)}(U_g(1)) . \]

Let \(u_{g,\varepsilon} := 1/\mu(U_g(1)) = 1/\log((g(1) + \varepsilon/2)/(g(1) - \varepsilon/2)) \), and consider the measure \(\nu_{g,\varepsilon, n} \) which is given, for each \(n \in \mathbb{N} \), by

\[\nu_{g,\varepsilon, n} = u_{g,\varepsilon} \log n \cdot \lambda|_{U_{g,\varepsilon, n}}. \]

By Proposition 1.3 we then have that \(\ast \lim_{n \to \infty} \nu_{g,\varepsilon, n} = \lambda \). Also, consider the atomic measure \(\rho_{g,\varepsilon, n} \) which is given, for each \(n \in \mathbb{N} \), by

\[\rho_{g,\varepsilon, n} := u_{g,\varepsilon} \log n \sum_{f(1) \in T^{-(n-1)}(g(1))} \varepsilon \frac{|f'(1)|}{|g'(1)|} : \delta_{f(1)}. \]

Now, observe that

\[\lim_{\varepsilon \to 0} \varepsilon u_{g,\varepsilon} = \lim_{\varepsilon \to 0} \frac{\varepsilon}{\log \frac{g(1) + \varepsilon/2}{g(1) - \varepsilon/2}} = \lim_{\varepsilon \to 0} \frac{\varepsilon}{(g(1) - \varepsilon/2)} = g(1), \]

and let the measures \(\rho_{g, n} \) be defined by

\[\rho_{g, n} := g(1) \log n \sum_{f(1) \in T^{-(n-1)}(g(1))} \frac{|f'(1)|}{|g'(1)|} : \delta_{f(1)}. \]

Using Lemma 2.2 and Lemma 2.3 we now obtain the following for all \(x \in [0,1] \), where \(F_{g,\varepsilon, n}^{(0)}, F_{g,\varepsilon, n}^{(p)} \) and \(F_{g, n}^{(p)} \) denote the distribution functions of the measures
\[\nu_{g,\varepsilon,n}, \rho_{g,\varepsilon,n} \] and \(\rho_{g,n} \), and where we write \(a_n \ll b_n \) if \(a_n/b_n \) is uniformly bounded from above,

\[
|F^{(\nu)}_{g,\varepsilon,n}(x) - F^{(\rho)}_{g,\varepsilon,n}(x)| \leq |F^{(\nu)}_{g,\varepsilon,n}(x) - F^{(\rho)}_{g,\varepsilon,n}(x)| + |F^{(\rho)}_{g,\varepsilon,n}(x) - F^{(\rho)}_{g,\varepsilon,n}(x)|
\]

\[
\ll u_{g,\varepsilon} \log n \sum_{h \in T^{-n}(g)} \left| \text{diam}(h(U_\varepsilon(g))) - \varepsilon \frac{|(hg)'/1|}{|g'|1} \right|
\]

\[
+ \frac{\varepsilon u_{g,\varepsilon} \log n}{n^2} + |g(1) - \varepsilon u_{g,\varepsilon}| \log n \sum_{f \in T^{-n}(g)} |f'(1)|
\]

\[
\ll (\varepsilon u_{g,\varepsilon} \Delta(\varepsilon) + |g(1) - \varepsilon u_{g,\varepsilon}|) \log n \sum_{f \in T^{-n}(g)} |f'(1)|
\]

\[
\ll |g(1) - \varepsilon u_{g,\varepsilon}| + g(1) \Delta(\varepsilon).
\]

This holds for \(\varepsilon > 0 \) arbitrary small and hence, we obtain that

\[
\lim_{n \to \infty} \rho_{g,n} = \lambda.
\]

The proof of Theorem 1.2 now follows, if we insert in the definition of \(\rho_{g,n} \) the fact that \(g(1) \) can be written in form of a reduced fraction \(v/w \) and then \(|g'(1)| = w^{-2} \), as well as similarly, that \(f(1) \) can be written in form of a reduced fraction \(p/q \) and that then \(|f'(1)| = q^{-2} \).

2.3. Proof of Theorem 1.1 (2).

Proof. Define \(F^*_n := \{p/n : 0 < p \leq n, \gcd(p,n) = 1\} \) and \(\psi(n) := \text{card}(F^*_n) \). We then clearly have that \(\varphi(n) = \text{card}(F_n) \) and that \(\psi(n) \sim n^2/(2 \zeta(2)) \). Next, observe that the statement in (1) implies that we have, for each continuous function \(f : [0,1] \to \mathbb{R}_{\geq 0} \),

\[
\chi_n := \frac{2\zeta(2)}{n^2} \sum_{r \in F_n} f(r) \to \lambda(f), \text{ for } n \text{ tending to infinity}.
\]

An application of Toeplitz’s Lemma then gives that

\[
\lim_{n \to \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \chi_k = \lambda(f).
\]

By setting \(f_n := \sum_{p/n \in F^*_n} f(p/n) \), we next observe that, for \(n \geq 2 \),

\[
\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \chi_k = \frac{2\zeta(2)}{\log n} \sum_{k=1}^{n} \frac{1}{k^2} \sum_{m=1}^{k} f_m = \frac{2\zeta(2)}{\log n} \sum_{m=1}^{n} \frac{1}{k^2} f_m.
\]

By comparing the sum \(\sum_{k=1}^{n} \frac{k}{k^3} \) with the corresponding integral \(\int_{m}^{n} x^{-3} \, dx \), we obtain

\[
\frac{\zeta(2)}{\log n} \sum_{q=1}^{n} \frac{f_q}{q^2} - \frac{\zeta(2)}{n^2 \log n} \sum_{q=1}^{n} f_q \leq \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \chi_k
\]

\[
\leq \frac{\zeta(2)}{\log n} \sum_{q=1}^{n} \frac{f_q}{q^2} - \frac{\zeta(2)}{n^2 \log n} \sum_{q=1}^{n} f_q + \frac{\zeta(2)}{\log n} \sum_{q=1}^{n} \frac{f_q}{q^3}.
\]

Finally, note that we clearly have that

\[
\frac{\zeta(2)}{n^2 \log n} \sum_{q=1}^{n} f_q \sim \frac{\lambda(f)}{2 \log n}
\]
and that
\[
\frac{\zeta(2)}{\log n} \sum_{q=1}^{n} \frac{\varphi(q)}{q^2} \sum_{p/q \in \mathcal{F}} f_{q} \left(\frac{p}{q}\right) \leq \|f\|_{\infty} \left(\frac{\zeta(2)}{\zeta(3)} \log n\right)^{2}.
\]

Hence, it now follows that
\[
\lim_{n \to \infty} \frac{\zeta(2)}{\log n} \sum_{q=1}^{n} \frac{1}{q^3} \sum_{p/q \in \mathcal{F}} f\left(\frac{p}{q}\right) = \lim_{n \to \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{\lambda_k} = \lambda(f).
\]

This finishes the proof of the assertion in Theorem 1.1 (2). \qed

REFERENCES

[A97] AARONSON, J.: An introduction to infinite ergodic theory, volume 50 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997.

[B10] BOGOMOLNY, A.: Stern-Brocot Tree. Introduction from Interactive Mathematics Miscellany and Puzzles, http://www.cut-the-knot.org/blue/Stern.shtml, Accessed September 2010.

[CP88] CODEC, P. – PERELLI, A.: On the Uniform Distribution (mod 1) of the Farey Fractions and \(l^{p}\) Spaces, Math. Ann. 279 (1988) 413–422.

[D90] DUFNER, G.: Eine Bemerkung zur Franelsumme von Folgen, Arch. Math. Vol. 54 (1990) 45–51.

[FK06] FIALA, J. – KLEBAN, P.: Intervals between Farey fractions in the limit of infinite intervals, Preprint, arXiv:math-ph/0505053v2, 2006.

[KS10] KESSEBÖHMER, M. – STRATMANN, B.O.: On the Lebesgue measure of sum-level sets for continued fractions, Preprint: arXiv:0901.1787v2. To appear in Discr. and Cont. Dyn. Syst., 14 (2010).

[KSS09] KESSEBÖHMER, M. – STRATMANN, B.O.: A note on algebraic growth rates for Poincaré series of Kleinian groups, Preprint: arXiv:0910.5560 2009.

[K53] KOPRIVA, J. On a relation of the Farey series to the Riemann hypothesis on the zeros of the \(\zeta\) function, (Czech) Cas. Pestovani Mat. 78 (1953) 4–55.

[K54] KOPRIVA, J.: Contribution to the relation of the Farey series to the Riemann hypothesis, (Czech) Cas. Pestovani Mat. 79 (1954) 77–82.

[Lag92] LAGARIAS, J.C.: Number theory and dynamical systems, Proc. of Symp. in Appl. Math., 46 (1992) 35–72.

[Lan24] LANDAU, E.: Bemerkungen zu der vorstehenden Abhandlung von Herr Franel, Nachr. Ges. Wiss. Göttingen, Math.-phys. K1 (1924) 202–206.

[M48] MIKOLÁS, M.: On a theorem of J. Franel, Kgl. Norske Videnskabers Selskabs Forhandlinger 21 (1948) 98–101.

[T00] THALER, M.: The asymptotics of the Perron-Frobenius operator of a class of interval maps preserving infinite measures, Studia Math., 143 (2) (2000) 103–119.

[TU95] TICHY, R.F. – UITZ, J.: An extension of Minkowski’s singular function, Appl. Math. Lett., 8 (1995) 39–46.