Fibroblast growth factor 2 (FGF-2) has been detected in the nuclei of many tissues and cell lines. Here we demonstrate that FGF-2 added exogenously to NIH3T3 cells enters the nucleus and interacts with the nuclear active 90-kDa ribosomal S6 kinase (RSK2) in a cell cycle-dependent manner. By using purified proteins, FGF-2 is shown to directly interact through two separate domains with two RSK2 domains on both sides of the hydrophobic motif, namely the NH₂-terminal kinase domain (residues 360–381) by amino acid Ser-117 and the COOH-terminal kinase domain (residues 388–400) by amino acids Leu-127 and Lys-128. Moreover, this interaction leads to maintenance of the sustained activation of RSK2 in G₁ phase of the cell cycle. FGF-2 mutants (FGF-2 S117A, FGF-2 L127A, and FGF-2 K128A) that fail to interact in vitro with RSK2 fail to maintain a sustained RSK2 activity in vivo.

Most secreted proteins via the endoplasmic reticulum and the Golgi apparatus (4). The pleiotropic effects exhibited by 18-kDa FGF-2 reflect an intricate combinatorial process involving interactions between the growth factor, any of four closely related high affinity transmembrane tyrosine kinase receptors (FGFR1–4), and low affinity binding sites corresponding to the naturally heterogeneous glycosaminoglycan chains of heparan sulfate proteoglycans. The interaction of FGF-2 with its receptor induces a phosphorylation cascade that results in the activation of signalization pathways.

Received for publication, January 7, 2005, and in revised form, May 4, 2005
Published, JBC Papers in Press, May 6, 2005, DOI 10.1074/jbc.M500232200

Fabienne Soulet, Karine Bailly, Stéphane Roga, Anne-Claire Lavigne, François Amalric, and Gérard Bouche‡

From the Laboratoire de Biologie Vasculaire, Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche 5089, 205 Route de Narbonne, 31077 Toulouse, France

Exogenously Added Fibroblast Growth Factor 2 (FGF-2) to NIH3T3 Cells Interacts with Nuclear Ribosomal S6 Kinase 2 (RSK2) in a Cell Cycle-dependent Manner

Fibroblast growth factor 2 (FGF-2) is a member of the large FGF family consisting of 30 members in humans (1). It is involved in various cellular processes such as stimulation of DNA synthesis and cell proliferation, as well as differentiation and cell migration. In vitro, numerous cell types synthesize FGF-2 in five molecular isoforms. Four of these isoforms have high molecular masses (21.5, 22, 24, and 34 kDa) and are initiated at alternative CUG codons. The main form (18 kDa) is initiated at a regular AUG codon. The high molecular mass forms localize exclusively in the nucleus, their NH₂-terminal extension containing a nuclear localization sequence (2, 3). The 18-kDa isoform is primarily cytoplasmic and, despite the lack of a classical signal peptide, is released by a mechanism bypassing the classical export route taken by most secreted proteins via the endoplasmic reticulum and the Golgi apparatus (4).

The pleiotropic effects exhibited by 18-kDa FGF-2 reflect an intricate combinatorial process involving interactions between the growth factor, any of four closely related high affinity transmembrane tyrosine kinase receptors (FGFR1–4), and low affinity binding sites corresponding to the naturally heterogeneous glycosaminoglycan chains of heparan sulfate proteoglycans. The interaction of FGF-2 with its receptor induces a phosphorylation cascade that results in the activation of signalization pathways. Furthermore, in addition to interactions with cell surface receptors, several growth factors enter the nucleus of target cells, either alone or associated with their receptors (5–9). Nuclear translocation of internalized FGF-1 and FGF-2 is an essential step in their mitogenic activity (10–12). FGF-2 signaling through both FGF receptors and nuclear targets is required for the stimulation of cell proliferation (13, 14). These data show that nuclear localization is a general phenomenon for some growth factors, suggesting nuclear functions independent of the functions as extracellular factors.

For the understanding of the nuclear functions of FGF-2, identification of interacting proteins is a crucial step. Here, we report that the exogenously added FGF-2 transiently interacts with nuclear active protein kinase RSK2. Using purified proteins, we show that FGF-2 interacts directly through two separate domains with two RSK2 domains. This interaction is cell cycle-dependent and furthermore maintains the RSK2 activity in NIH3T3 cells undergoing G₀/S transition. The interaction of nuclear FGF-2 with pluripotent RSK2 offers a new mechanism through which FGF-2 may control fundamental cellular processes.

MATERIALS AND METHODS

Reagents and Antibodies—All protein kinase inhibitors used were from Calbiochem. The monoclonal anti-RSK antibody was provided by BD Transduction Laboratories. The polyclonal anti-RSK1, anti-RSK2, phospho-specific antibodies, anti-phospho-histone H3 antibodies, and purified RSK2 were from Upstate Biotechnology. The monoclonal 1C1 anti-phospho-Ser-227 (NH₂ terminus RSK2 domain) monoclonal antibody was a gift of P. Sassone-Corsi (Institut de Genetique et de Biologie Cellulaire et Strasbourg, France). The polyclonal anti-histone H3 antibody was a gift of D. Trouche (Institut de Biologie Cellulaire et Généétique, Toulouse, France). Anti-HA monoclonal and anti-FGF-2 polyclonal antibodies were provided by Babco and Chemicon, respectively. Control mouse IgGs were from Sigma. Histones H1 and H3 were from Roche Diagnostics. M-280 streptavidin beads were provided by Dynal.

The HA-tagged FGF-2 expressing vector was described previously (16).

Plasmid Constructs—NH₂-terminally HA-tagged mouse RSK2 and HA-RSK2 deletion mutants cloned in pMT2 were provided by Morten Frodin (Department of Clinical Biochemistry, Glostrup Hospital, Glostrup, Denmark). The human FGF-2 cDNA was subcloned into the

This paper is available on line at http://www.jbc.org
Small/XbaI sites of pGEX-KG. The XbaI/Xmal fragment FGF-2 (Δ115–129), FGF-2 (Δ115–119), and FGF-2 (Δ124–129) DNAs were prepared by PCR mutagenesis of the parental plasmid pGEX-KG. The glutathione S-transferase fusion proteins were expressed and purified as described by the manufacturer's instructions (Amersham Biosciences), except that they were further purified using a heparin-Sepharose CL6-B column (Amersham Biosciences).

Cell Culture and Nuclear Fractionation—NIH3T3 cells were grown in Dulbecco's modified Eagle's medium with 10% fetal calf serum (FCS). To obtain G0-arrested cells, cells were preincubated for 48 h in Dulbecco's modified Eagle's medium with 0.5% FCS. Then the NIH3T3 cells were collected, resuspended in Buffer A without NaCl, and lysed cells were extracted for 30 min at 4 °C in a rotating wheel. Cell extracts were clarified by centrifugation (14,000 g for 10 min) at 4 °C.

Immunoprecipitation and Western Blotting—Nuclear extract and cytoplasm corresponding to 10^7 NIH3T3 cells were used in each immunoprecipitation assay carried out in Buffer A with 0.4 M NaCl. The subcellular fractions were preincubated at 4 °C for 1 h in a rotating wheel with 20 μl of protein G-Sepharose beads (Amersham Biosciences). Protein G-Sepharose beads were washed by centrifugation, and the supernatants were incubated overnight at 4 °C with 4 μg of each antibody or control IgG. The immunocomplexes were then captured with 10 μl of 50% protein G-Sepharose at 4 °C for 1 h. Sepharose bead immunocomplexes were precipitated by centrifugation and washed five times with Buffer A and 0.4 M NaCl in the presence of 0.5 M NaCl and eluted bound proteins at 0.4 M NaCl. The 0.5 M NaCl fraction was unable to phosphorylate histone H3, we incubated a nuclear extract in its active form in 0.4 and 0.5 M NaCl fractions (Fig. 1C, top right). Because the protein kinases C are also sensitive to staurosporine, we deduced that the kinase activity/activities of the 0.5 M fraction corresponded to RSK1 and/or RSK2 and/or MSK1 kinases. However, H-89, an inhibitor of MSK1 (24), did not affect the kinase activity/activities of the 0.5 M fraction (Fig. 1B, bottom right). Furthermore, although RSK1 and RSK2 were detected in the nuclear extract (Fig. 1C, top left), only RSK2 bound to FGF-2 and was present in 0.4 and 0.5 M fractions (Figs. 1C, top right). Next, we sought to determine whether RSK2 is in its active form in 0.4 and 0.5 M fractions.

RSK2, a Nuclear Target of FGF-2

RSK2 has been shown to phosphorylate histone H3 on the serine 10 in epidermal growth factor-stimulated human fibroblasts (25). To determine whether the FGF-2 bound RSK2, in which Ser-227 is phosphorylated, is able to phosphorylate histone H3 on Ser-10, we immunoprecipitated RSK2 from the 0.5 M fraction and performed a kinase assay with histone H3 as a substrate. As shown in Fig. 1D, histone H3 was specifically phosphorylated on Ser-10 by immunocomplexes obtained with anti-RSK and anti-RSK2 antibodies, respectively. In control experiments using unrelated IgG, we did not detect kinase activity toward histone H3 phosphorylation (Fig. 1D, left lane). In addition, RSK1 activity was not detected in the 0.5 M fraction (Fig. 1D, lane marked Anti-RSK1). We concluded that RSK2 molecules bound to FGF-2 are able to phosphorylate Ser-10 of histone H3.

To ascertain that the FGF-2/RSK2 interaction was direct and specific, we incubated immobilized B-FGF-2 with purified RSK2 (26). As shown in Fig. 1E, RSK2 bound directly to FGF-2 (lane 2). Furthermore, the addition of an excess of unbiotinylated FGF-2 completely prevented the interaction of RSK2 with FGF-2 (Fig. 1E, lanes 3 and 4), whereas the addition of cytochrome c, a protein similar in molecular mass and isoelectric point to FGF-2, had no effect (Fig. 1E, lanes 5 and 6). Taken together, these data demonstrate a direct in vitro interaction between FGF-2 and RSK2.

Two Domains of FGF-2 Interact with Two Domains of RSK2—Like the other four members of its family, RSK2 has...
two kinase domains (NTK and CTK domains) connected by a regulatory linker region (Fig. 2A, top). To map the FGF-2 interacting domain in RSK2, immobilized B-FGF-2 was incubated with cellular extracts of COS7 expressing HA-tagged full-length RSK2 or deletion mutants (Fig. 2A, middle). FGF-2 interacts with RSK2-(1–389)-NTK, encompassing the hydrophobic motif (HM) (1–389 NTK), and with RSK2-(388–740)-CTK, excluding the HM (HM CTK). The RSK2-(1–360)-NTK and RSK2-(401–740)-CTK mutants do not interact with B-FGF-2 (Fig. 2A, bottom). This finding suggests that the RSK2 sequences between residues 361–381 and residues 388–400 correspond to the domains interacting with the FGF-2. It is noteworthy that the sequence between the residues 390–400 is highly divergent, and the sequence between the residues 361–381 is conserved in the RSK and MSK families (Fig. 2D, bottom). These two FGF-2-recognized RSK2 domains are not homologous to each other. We thus hypothesize that FGF-2 interacts with RSK2 through two different domains.

To delineate the FGF-2 domains interacting with RSK2, we constructed a series of FGF-2 deletion mutants. Their ability to bind RSK2, RSK2-(1–389)-NTK, and RSK2-(388–740)-CTK (HM CTK) was determined by coimmunoprecipitation (Fig. 2B). We used the FGF-2(1–131), in which the last 24 residues in the carboxyl end of the molecule were deleted, and the FGF-2-(Δ115–129), which lacks the residues 115–129. The FGF-2-(1–131) interacts with RSK2 as well as the FGF-2 wild type does, in contrast to the FGF-2-(Δ115–129) mutant, which interacts neither with the full-length RSK2 (Fig. 2B, top) nor with the 1–389 NTK or HM CTK RSK2 mutants (Fig. 2B, bottom). To better characterize the RSK2 interaction domain of FGF-2, we constructed two FGF-2 mutants, FGF-2-(Δ115–119) and the FGF-2-(Δ124–129), lacking, respectively, the residues 115–119 and 124–129. FGF-2-(Δ115–119) fails to interact with RSK2-(1–389)-NTK, and neither does FGF-2-(Δ124–129) interact with RSK2-(388–740)-CTK (HM CTK). In addition, like FGF-2-(Δ115–129), FGF-2-(Δ115–119) and FGF-2-(Δ124–129) fail to interact with full-length RSK2 (Fig. 2B, top).

Next, we wished to identify amino acids in these two FGF-2 domains that could account for recognition of the two FGF-2-recognized RSK2 domains. With this aim in view, we constructed several FGF-2 proteins with single point mutation in the two RSK2 interacting domains and tested their capacity to coimmunoprecipitate with HA-RSK2. As shown in Fig. 2C, the substitution of serine 117, leucine 127, or lysine 128 by alanine (S117A, L127A, and K128A respectively) is sufficient to lose the interaction with full-length RSK2 (supplemental Fig. S1, available in the on-line version of this article).

We conclude that FGF-2 interacts with RSK2 through two separate domains, and our results suggest that these two domains together are required to maintain the interaction with full-length RSK2. FGF-2 interacts through the serine 117 with the NTK of RSK2 at the site delineated by the residues 361–381 before the HM, through the leucine 127 and the lysine 128 with the CTK at the site delineated by the residues 388–400 after the HM (Fig. 2D).

FGF-2-RSK2 Complexes Were Detected in Vivo and FGF-2/RSK2 Interaction Is Cell Cycle-Dependent—We then sought to determine the existence of FGF-2-RSK2 complexes in vivo. First, using streptavidin beads, we isolated these complexes from nuclear and cytoplasm extracts of asynchronous growing NIH3T3 cells that underwent a 4 h stimulation by B-FGF-2 (Fig. 3A, top). RSK2 was found to be associated to B-FGF-2 only in the nuclear extract from stimulated cells. However, B-FGF-2 accumulated both in the nucleus and in the cytoplasm (Fig. 3A, bottom). To confirm the existence of FGF-2-RSK2 complexes in an independent experiment, asynchronous NIH3T3 cells were

FIG. 1. FGF-2 interacts directly with active RSK2. A, a nuclear extract (2 μg) from growing NIH3T3 cells was incubated with biotinylated FGF-2 (B-FGF-2) loaded on streptavidin beads (5 μl) or with unloaded beads (5 μl). Bound proteins were eluted with 50 μl of 0.4 and 0.5 M NaCl successively. An aliquot of nuclear extract (0.1 μg) lanes 1 and 2, unloaded beads (lanes 3 and 4), FGF-2-bound proteins (lanes 5 and 6), and 0.4 and 0.5 M NaCl fractions (lanes 7–10), respectively, were incubated in the kinase assay buffer with (+) or without (−) histone H3 (H3-P) as an exogenous substrate. Proteins were resolved by SDS-PAGE, electrotransferred to nitrocellulose, and autoradiographed. Molecular mass markers are shown on the right in kilodaltons. B, FGF-2 associates with Ro 318220-sensitive and H89-insensitive protein kinase associates with Ro 318220-sensitive and H89-insensitive protein kinase activity. Aliquots of the 0.5 M NaCl fraction were incubated in the kinase assay buffer with 0.1 μg of H3 (H3-P) as substrate without (lanes 1, 8, and 12) or with 25 and 250 μl omolomucine (lanes 2 and 3, respectively), 10 and 100 μl staurosporine (lanes 4 and 5, respectively), 25 and 100 μl staurosporine (lanes 6 and 7), 0.05, 0.5, and 5 μl Ro 318220 (lanes 9–11 respectively), and 0.1 and 10 μl H3 (lanes 12–14, respectively) inhibitors on the kinase activity contained in the 0.5 M NaCl fraction. Kinase assay products were processed as for panel A. C, immunodetection of RSK2 among the FGF-2 bound proteins. Left, immunoblot of nuclear extract (0.1 μg) probed with antibodies raised against RSK1 and RSK2. Right, immunoblot using anti-RSK2 (top) or anti-Ser-227 antibody (Anti-Ser227-P; bottom) lane 1, proteins bound to FGF-2 loaded beads; lanes 2 and 3, 0.4 and 0.5 M NaCl fraction, respectively; lane 4, unloaded beads, WB, Western blot. D, 0.5 M fraction contains active RSK2. Immunoprecipitation (IP) from 0.5 M fraction (10 μl) with 0.1 μg of IgG control or anti-RSK, anti-RSK1, and anti-RSK2 antibodies. Kinase assays with immunocomplexes as the kinase supply were carried out, and kinase assay products were processed as for panel A. Top, autoradiography (H3-P); middle and bottom, immunoblot using the anti-phospho-Ser10-histone H3 (Anti-Ser10-P; middle) and the anti-histone H3 (Anti-H3). E, RSK2 interacts directly with FGF-2. Streptavidin beads were first loaded with an excess of B-FGF-2 and washed extensively. These beads were incubated with purified recombinant RSK2 with or without large amounts FGF-2 or cytochrome c. After 1 h at 4 °C, unbound proteins were removed by extensive washing, and the bound complexes were processed for immunoblotting with an anti-RSK2 polyclonal antibody. Lane 1, unloaded beads; lanes 2–6, loaded beads; lane 2, without competitor; lanes 3 and 4, with 1 and 5 μg of native FGF-2 as a competitor, respectively; lanes 5 and 6, with 1 and 5 μg of cytochrome c as a competitor, respectively.
cultured in the presence of HA-FGF-2 for 4 h, and FGF-2-RSK2 complexes were immunoprecipitated by anti-RSK2 antibodies or unrelated IgG as control (Fig. 3B). FGF-2-RSK2 complexes were only detected in nuclear extracts immunoblotted with anti-HA and never in control experiments. Thus, isolation of the complexes with FGF-2 or RSK2 antibodies resulted in the background signal, whereas FGF-2-RSK2 complexes were not detected with unrelated antibodies. In Fig. 3C, FGF-2 recognizes RSK2 through three amino acids, serine 117, leucine 127, and lysine 128. Wild type (WT) or FGF-2 deletion mutants (10 pmol) were incubated with cellular extract of COS7 cells expressing HA-RSK2, and immunoprecipitations (IP) were processed as for panel B. WB, Western blot.

Fig. 2. Two FGF-2 separate domains interact with two RSK2 separate domains. A, top, structure of RSK2. RSK2 is composed of two kinase domains, NTK and CTK, connected by a regulatory linker region. The carboxyl-terminal tail contains a docking site for extracellular signal-regulated kinase (ERK), and the linker contains the HM. Arrows below the scheme indicate the position and the length of RSK2-deletion mutants (mouse RSK2 numbering). Middle, FGF-2 interacts with two RSK2 domains. B-FGF-2-loaded streptavidin beads (+) or unloaded beads (−) were incubated with cellular extract of COS7 cells expressing the empty vector as control or with cellular extract of COS7 cells expressing HA-tagged full-length RSK2 or deletion mutants. The bound complexes were immunoblotted with an anti-HA monoclonal antibody. Bottom, before the interaction, assay aliquots were processed as described above with an anti-HA monoclonal antibody. WB, Western blot. B, RSK2 interacts with two FGF-2 separate domains. Wild type (WT) or FGF-2 deletion mutants (10 pmol) were incubated with cellular extract of COS7 cells expressing HA-RSK2 (top) or HA-RSK2 deletion mutants (bottom; left, HA-(1–389)-NTK, right, −HM CTK). Immunoprecipitations (IP) were carried out as described under “Materials and Methods,” and immunocomplexes were immunoblotted with an anti-FGF-2 polyclonal antibody. Control corresponds to immunoprecipitation performed with unrelated IgG. C, FGF-2 recognizes RSK2 through three amino acids, serine 117, leucine 127, and lysine 128. Wild type (WT) or FGF-2 deletion mutants (10 pmol) were incubated with cellular extract of COS7 cells expressing HA-RSK2, and immunoprecipitations (IP) were processed as for panel B. WB, Western blot. D, top, FGF-2 sequence between the residues 113–131. A and B correspond to the two separate domains interacting with RSK2. The location and the length of the β-strands are shown above the sequence. The secondary structure assignment is in accordance with the published nomenclature, with the β-strands labeled from 1 through 12. The deletion mutants used to map the RSK2-recognized FGF-2 domains are boxed, and the FGF-2 residues interacting with RSK2 are denoted by asterisks. Bottom, amino acid alignment of RSK and MSK kinases encompassing FGF-2 interacting domains A′ and B′ on both sides of the HM, recognized by FGF-2 domains A and B, respectively.

Having established the existence of FGF-2-RSK2 complexes essentially in the nucleus of asynchronous growing cells, we postulated that this interaction could be cell cycle-dependent because cellular FGF-2 uptake occurred continuously through the cell cycle, whereas FGF-2 entered the nucleus of target cells during the G1 phase (16). Quiescent (G0) NIH3T3 cells were triggered to re-enter the cell cycle by the addition of HA-FGF-2. The transition between early and late G1 occurred 10 h after stimulation (27). We have focused our study on two periods of time after FGF-2 addition, namely during early G1 (2–4 h) after the first transient activation of the MAP kinase signaling pathway, and at the vicinity of the restriction point in late G1 (10 h) (27).

Immunoprecipitations with anti-RSK2 antibodies were carried out at these different time points after the stimulation of cells. RSK2 was not detected in nuclear extracts of G0-arrested cells (Fig. 3F, section N, top). FGF-2-RSK2 complexes were detected in nuclear extracts in early G1 (2–4 h) with a maximum at 4 h after stimulation of the cells and not in late G1 (Fig. 3F, section N, top). Yet, the amounts of nuclear HA-FGF-2 during early and late G1 were not significantly different (Fig.
RSK2, a Nuclear Target of FGF-2

In this report, we identified RSK2 as a nuclear target of FGF-2. Exogenously added FGF-2 to G_{0}-arrested NIH3T3 cells binds to nuclear RSK2 in a cell cycle-dependent manner. The FGF-2-RSK2 complexes in the nucleus of cells undergoing G_{0}/G_{1} transition contain the active form of RSK2. The important consequence of RSK2/FGF-2 interaction is the maintenance of RSK2 in active form when the cells were stimulated to grow by FGF-2.

In these complexes, FGF-2 recognizes two domains of RSK2 located on both sides of the HM. These two FGF-2-recognized RSK2 domains are divergent from each other. The domain located upstream of HM is conserved in the RSK and MSK families, but the one downstream of HM is highly divergent. For FGF-2/RSK2 complexes in the nucleus of cells undergoing G_{0}/G_{1} transition contain the active form of RSK2. The important consequence of RSK2/FGF-2 interaction is the maintenance of RSK2 in active form when the cells were stimulated to grow by FGF-2.

In these complexes, FGF-2 recognizes two domains of RSK2 located on both sides of the HM. These two FGF-2-recognized RSK2 domains are divergent from each other. The domain located upstream of HM is conserved in the RSK and MSK families, but the one downstream of HM is highly divergent. For FGF-2/RSK2 complexes in the nucleus of cells undergoing G_{0}/G_{1} transition contain the active form of RSK2. The important consequence of RSK2/FGF-2 interaction is the maintenance of RSK2 in active form when the cells were stimulated to grow by FGF-2.

In these complexes, FGF-2 recognizes two domains of RSK2 located on both sides of the HM. These two FGF-2-recognized RSK2 domains are divergent from each other. The domain located upstream of HM is conserved in the RSK and MSK families, but the one downstream of HM is highly divergent. For FGF-2/RSK2 complexes in the nucleus of cells undergoing G_{0}/G_{1} transition contain the active form of RSK2. The important consequence of RSK2/FGF-2 interaction is the maintenance of RSK2 in active form when the cells were stimulated to grow by FGF-2.

In these complexes, FGF-2 recognizes two domains of RSK2 located on both sides of the HM. These two FGF-2-recognized RSK2 domains are divergent from each other. The domain located upstream of HM is conserved in the RSK and MSK families, but the one downstream of HM is highly divergent. For FGF-2/RSK2 complexes in the nucleus of cells undergoing G_{0}/G_{1} transition contain the active form of RSK2. The important consequence of RSK2/FGF-2 interaction is the maintenance of RSK2 in active form when the cells were stimulated to grow by FGF-2.
155 residues organized into 12 antiparallel β-strands connected by tight turns and loop regions arranged in three β-sheets composed of four β-strands (28). The Ser-117 residue corresponds to the carboxyl terminal residue of the ninth β-strand (113NTYRS117), and Leu-127 and Lys-128 corresponds to the two last residues of the 10th β-strand (126ALK128). The motif harboring the RSK2 interacting domain of FGF-2 (116RSRKYTSWYVALKR129) overlaps with the FGF-2 bipartite nuclear localization signal (116RSRK119 and 128KR129) and the binding site of CK2 (13, 29).

In vivo, the nuclear FGF-2-RSK2 complexes were isolated in a segment of G1 (4 h) following the stimulation of the MAP kinase signaling pathway (27). The RSK2/FGF-2 interaction correlated perfectly with the maintenance of the high level of active RSK2 in cells stimulated by FGF-2 wild type. However, RSK2 reached a maximum of activity in cells stimulated by FGF-2 wild type as well as by FGF-2 K128A or FCS at the beginning of the G1 phase (30 min) during the transient stimulation of the MAP kinase signaling pathway (13, 27). FGF-2/RSK2 complexes were never detected at this time. Indeed, we propose that the externally added FGF-2 acts through a dual mode of signal transduction. First, FGF-2, as well as FGF-2 mutants, activates through cell surface receptors the MAP kinase signaling pathway that, in turn, activates RSK2. Secondly, FGF-2 as well as FGF-2 mutants accumulated in the nucleus, but only FGF-2 wild type, interacts with and maintains RSK2 in active form. At this time, we do not know if the interaction between FGF-2 and RSK2 results in an activation of RSK2 and/or in an increase of the half-life of RSK2 active form by inhibiting its deactivation. Indeed, FGF-2 mutants that fail to interact with RSK2 fail to maintain a sustained RSK2 activity. In line with this observation, the RSK2-interacting FGF-2 residues are not involved in binding to heparin and high affinity receptors, and the corresponding FGF-2 mu-
A new nuclear target of FGF-2

In a recent study, we have isolated RSK2 from the nucleus and cytoplasm of NIH3T3 cells in late G1 (12 h) at the transition G0/S. The serine 117 plays a pivotal role in FGF-2/CK2 interaction (13). It is remarkable to note that the FGF-2 S117A, which does not interact in the core of multiprotein complexes in the nucleus of target cells.

Recently, Hu et al., have isolated RSK1-FGF1 complexes from the nuclei of the prenatal rat brain (33). RSK1 and FGF1 were never detected in FGF-2/RSK2 complexes in vitro (data not shown), and in vitro RSK1 does not interact with FGF-2.

The transient nuclear accumulation of FGF-2/RSK2 complexes associated with the maintenance of a high level of RSK2 activity toward the Ser-1 phosphorylation of histone H3 could represent a mechanism of direct signaling to chromatin through histone modification, which may cause a sustained chromatin remodeling (34) and/or facilitate transcription of genes related to cellular response induced by FGF-2 (35–37).

Taken together, all of these findings strengthen the concept that a growing number of growth factors elicit their mitogenic effects through histone modification, which may cause a sustained chromatin remodeling (34) and/or facilitate transcription of genes related to cellular response induced by FGF-2 (35–37).

Acknowledgments—We thank Morten Frodin and Thomas Sturgill for generously providing wild type and deletion mutants of RSK2. Paulo Sassone-Corsi for anti-phosphorylated Ser-227, and Didier Trouche for anti-H3 antibody. We thank Drs. Jean-Baptiste Vincourt, Philippe Girard for critical reading of the manuscript, and Franc oise Trouche for generously providing wild type and deletion mutants of RSK2.

REFERENCES

1. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., LeVine, R., McLean, P., McKernan, K., Mikkelsen, T., Oke, B., Plumb, R., Postel, K., McPherson, J., Marra, M. A., Mardis, E. R., Fulton, L. A., Chinwalla, A. T., Phipps, K. H., Seab, W., Shi, X., Skolnick, S., Sung, R., Winokur, L.,Szymanski, J., Richards, J., Searle, S., Moret, M., Hsu, N., Risler, T., Berger, M., Blumenthal, J., Groth, D., Haines, J., Hall, J., Haber, J., Himmel, L., Smutny, J., Stojanov, P., Stojan, J., Sun, J., Sulewski, R., Tse, D., Tse, L., Wang, S., Wu, Y., Xie, X., Yiu, S., Zhang, L., Zhang, S., Zhao, H., Zhou, H., Zhu, J., Ziskin, J., and Mardis, E. R. (2001) Science 291, 2193–2199.

2. Frodin, M. (1999) J. Biol. Chem. 274, 544–551.

3. Charbonneau, S., Martin, N., Morin, M., and Sauveur, A. (2000) Mol. Cell. Biol. 20, 1234–1244.

4. Charbonneau, S., Martin, N., Morin, M., and Sauveur, A. (2000) Mol. Cell. Biol. 20, 1234–1244.

5. Charbonneau, S., Martin, N., Morin, M., and Sauveur, A. (2000) Mol. Cell. Biol. 20, 1234–1244.

6. Charbonneau, S., Martin, N., Morin, M., and Sauveur, A. (2000) Mol. Cell. Biol. 20, 1234–1244.

7. Charbonneau, S., Martin, N., Morin, M., and Sauveur, A. (2000) Mol. Cell. Biol. 20, 1234–1244.

8. Charbonneau, S., Martin, N., Morin, M., and Sauveur, A. (2000) Mol. Cell. Biol. 20, 1234–1244.

9. Charbonneau, S., Martin, N., Morin, M., and Sauveur, A. (2000) Mol. Cell. Biol. 20, 1234–1244.

10. Charbonneau, S., Martin, N., Morin, M., and Sauveur, A. (2000) Mol. Cell. Biol. 20, 1234–1244.

11. Charbonneau, S., Martin, N., Morin, M., and Sauveur, A. (2000) Mol. Cell. Biol. 20, 1234–1244.

12. Charbonneau, S., Martin, N., Morin, M., and Sauveur, A. (2000) Mol. Cell. Biol. 20, 1234–1244.

13. Charbonneau, S., Martin, N., Morin, M., and Sauveur, A. (2000) Mol. Cell. Biol. 20, 1234–1244.

14. Charbonneau, S., Martin, N., Morin, M., and Sauveur, A. (2000) Mol. Cell. Biol. 20, 1234–1244.
Exogenously Added Fibroblast Growth Factor 2 (FGF-2) to NIH3T3 Cells Interacts with Nuclear Ribosomal S6 Kinase 2 (RSK2) in a Cell Cycle-dependent Manner
Fabienne Soulet, Karine Bailly, Stéphane Roga, Anne-Claire Lavigne, François Amalric and Gérard Bouche

J. Biol. Chem. 2005, 280:25604-25610.
doi: 10.1074/jbc.M500232200 originally published online May 6, 2005

Access the most updated version of this article at doi: 10.1074/jbc.M500232200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2005/05/12/M500232200.DC1

This article cites 37 references, 17 of which can be accessed free at
http://www.jbc.org/content/280/27/25604.full.html#ref-list-1