Generation of Megakaryocytic Progenitors from Human Embryonic Stem Cells in a Feeder- and Serum-Free Medium

Marjorie Pick, Lisa Azzola, Elissa Osborne, Edouard G. Stanley, Andrew G. Elefanty

1 Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
2 Monash Reproductive Pathology and Genetics, Monash IVF, Clayton, Victoria, Australia

Abstract

Background: The production of human platelets from embryonic stem cells in a defined culture system is a prerequisite for the generation of platelets for therapeutic use. As an important step towards this goal, we report the differentiation of human embryonic stem cells (hESCs) towards the megakaryocyte (Mk) lineage using a ‘spin embryoid body’ method in serum-free differentiation medium.

Methodology and Principal Findings: Immunophenotypic analyses of differentiating hESC identified a subpopulation of cells expressing high levels of CD41a that expressed other markers associated with the Mk lineage, including CD110, CD42b and CD61. Differentiated cells were sorted on the basis of their expression of CD41a, CD34 and CD45 and assessed for Mk colony formation, expression of myeloid and Mk genes and ability to endoreplicate DNA. In a collagen-based colony assay, the CD41a+ cells sorted from these differentiation cultures produced 100–800 Mk progenitors at day 13 and 25–160 Mk progenitors at day 20 of differentiation per 100,000 cells assayed. Differentiated Mk cells produced platelet-like particles which expressed CD42b and were activated by ADP, similar to platelets generated from precursors in cord blood. These studies were complemented by real time PCR analyses showing that subsets of cells enriched for CD41a+ Mk precursors expressed high levels of Mk associated genes such as PF4 and MPL. Conversely, high levels of myeloid and erythroid related transcripts, such as GATA1, TAL1/SCL and PU.1, were detected in sorted fractions containing CD34+ and CD45+ cells.

Conclusions: We describe a serum- and feeder-free culture system that enabled the generation of Mk progenitors from human embryonic stem cells. These cells formed colonies that included differentiated Mks that fragmented to form platelet-like particles. This protocol represents an important step towards the generation of human platelets for therapeutic use.

Introduction

Pancytopenia and thrombocytopenia remain significant clinical problems for patients with a range of medical conditions, especially those undergoing repeated cycles of chemotherapy as treatment for cancer. Since finding suitable HLA-matched volunteers to donate platelets for these patients can be difficult, it is prudent to explore alternative sources for such blood products. The ability to differentiate hematopoietic lineages from human embryonic stem cells (hESCs) or induced pluripotent stem cells represents a potential alternate supply of megakaryocytes (Mks) and platelets for research and eventually for the treatment of thrombocytopenia. Whilst Mks have been generated from mouse ESCs [1–3] and hESCs [4–8], many of the prior differentiation protocols have included co-culture with stromal cells which makes it difficult to delineate the exact requirements needed for direct differentiation of Mks. We have established a two step serum-free and stromal cell-free differentiation protocol, initially generating hematopoietic progenitor cells that express CD34, CD41a (hereafter abbreviated to CD41) and CD45 and subsequently differentiating these progenitors towards CD41-positive Mks.

Our laboratory has established protocols whereby homogenous ‘spin embryoid bodies (EBs)’ generated from hESCs [9] were supplemented with bone morphogenetic protein (BMP4), stem cell factor (SCF), vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF2) for 10 days (d) to produce hematopoietic progenitors [10]. In our current studies we
differentiated hESCs in serum-free medium supplemented with growth factor combinations designed to support the generation of Mks from hematopoietic mesoderm. We showed that the Mk progenitors were found in CD41\(^+\) and CD34\(^+\) cell fractions when assayed at d13 and d20 of differentiation. In collagen-based assays, differentiated progeny of CD41\(^+\) Mk colony forming cells appeared to shed pro-platelets. Real time PCR analyses showed that these subsets of cells expressed high levels of Mk associated genes such as PF4 and MPL, whilst other cell fractions were enriched for cells expressing myeloid or endothelial-associated genes. Finally, ploidy analyses suggested that d20 CD41\(^+\)CD34\(^{lo}\)CD45\(^+\) cells contained a higher proportion of polyploid cells than CD41\(^{lo/−}\)CD34\(^{lo}\)CD45\(^+\) counterparts.

Materials and Methods

hESC Culture and Differentiation

Human embryonic stem cells (HES3 [11], Envy [12] and MEL1 (Millipore, Billerica, MA, USA) were maintained on irradiated mouse embryonic fibroblast (MEF) feeder cells in DMEM/Hams F12 medium supplemented with 20% knockout serum replacer (Invitrogen) and 4 ng/ml recombinant human (rh)FGF2 (Peprotech, Rocky Hill, NJ) by mechanical passaging [10]. In order to generate cells for differentiation experiments, colonies were expanded onto tissue culture flasks pre-seeded with irradiated MEFs and adapted to enzymatic passaging with TrypLE Select (Invitrogen) as previously described [10,13].

On the day prior to differentiation, hESCs were passaged onto tissue culture flasks seeded with irradiated (30 Gy) MEFs and the cultures were harvested with TrypLE Select (Invitrogen). Single cells were resuspended in serum-free BPEL medium [14] supplemented with 5–15 ng/ml rhBMP4 (R&D systems, Inc., Mn), 10–15 ng/ml rhVEGF (Peprotech), 10 ng/ml rhFGF2 (Peprotech) and 25 ng/ml rhSCF (Peprotech) as described previously [10]. One hundred microlitres of cell suspension containing 2,500 hESCs was deposited into each well of round bottomed low adherence 96 well plates.

Within 24 hours, single embryoid bodies (EBs) formed in each well. After 10 days, 72 EBs were transferred to each well of a 6 well flat-bottom tissue culture plate containing 7.2 ml of BPEL supplemented with 20 ng/ml rh thrombopoietin (TPO), 25 ng/ml rhSCF and 25 ng/ml rh interleukin (IL)-3 (Peprotech). Cells were cultured for a total of 13 or 20 days after which time the EBs were disaggregated, stained with the appropriate antibodies and analyzed or sorted by flow cytometry. The hESC lines used in this experiment were monitored for retention of a normal karyotype.

![Figure 1. Immunophenotype of CD41 positive cells in human embryonic stem cell differentiation cultures.](https://www.plosone.org/figure1.png)
Flow Cytometric Analysis and Sorting of Differentiated hESCs

EBs generated from differentiated hESCs were harvested, disaggregated and stained at d13 with anti-CD34-PE (BD Biosciences) and anti-CD41-APC (BD Biosciences) monoclonal antibodies. At d20 of differentiation hESCs were stained with CD34-FITC (BD Biosciences), CD45-PE (BD Biosciences) and CD41-APC while the GFP expressing Envy cells were stained with CD45-PE, CD34-PerCP (BD Biosciences) and CD41-APC. All antibody concentrations were titrated to give optimal specific staining and incubated with cells for 30 minutes at 4°C. Cells were washed in phosphate buffered saline (PBS), centrifuged at 480 g for 5 minutes at 4°C and cell pellets were resuspended in PBS containing propidium iodide (PI) to exclude dead cells and analyzed on a FACSCalibur using CellQuest Pro software (BD Biosciences). For cell sorting experiments, 4', 6-diamidino-2-phenylindole (DAPI) exclusion was used to identify viable cells. Multi-color cell sorting (FITC, PE, PerCP, APC, DAPI) using three separate lasers (488 nm, 630 nm and UV) was used to gate and sort cells into four or five populations using a FACSVantage flow cytometer (BD Bioscience).

Hematopoietic Colony Forming Assays

Methylcellulose-based myeloid colony forming assay. Triplicate assays were performed in 24 well tissue culture treated plates (Nunc) with 10,000 cells added per well in 0.5 mL of Methocult™ (Stem Cell Technologies, Canada) supplemented with 20 ng/ml rh granulocyte-macrophage-colony stimulating factor (GM-CSF), 50 ng/ml rhSCF, 20 ng/ml rhIL-3, 3 U/ml rh erythropoietin (EPO) and 20 ng/ml rhIL-6 (all from Peprotech). Cultures were incubated at 37°C in 5% CO₂ and scored for colony formation after 14 days.

Collagen-based megakaryocyte colony forming assay. Duplicate assays were performed in 24 well tissue culture treated plates into which 10,000 cells were mixed with a collagen based medium (MegaCult™, Stem Cell Technologies) supplemented with 50 ng/ml rhTPO, 25 ng/ml rhSCF and 10 ng/ml rhIL-3 to stimulate colony formation. After 14 days plates were dried and stained with anti-CD41 antibody. Positive cells were detected using an alkaline phosphatase colorimetric assay (Stem Cell Technologies).

Quantification of Nuclei in Megakaryocytes

Cytospin preparations of day 13 and day 20 cultures of differentiated cells were analyzed for the number of nuclei present.

Figure 2. Flow sorting strategy for the day 13 and day 20 differentiated human embryonic stem cells. Cells were sorted according to their expression of CD41 and CD34 on day (d) 13 and CD41, CD34 and CD45 on d20. (A) Gating strategy used to sort 4 fractions on d 13 and (B) 5 fractions on d20. Cells that were CD34⁺ CD45⁺ at d 20 were also CD41⁻. The percent distribution (mean±SD) for each sorted fraction is shown (n=5). doi:10.1371/journal.pone.0055530.g002
in the megakaryocytes generated. Staining with May Grunwald- Giemsa allowed easy identification of the megakaryocytes and quantitation of nuclei per megakaryocyte within each sorted fraction.

Quantification of Platelet Production from CFU-Mk Colonies

After staining the CFU-Mk colonies using the MegaCult™ kit, the percentage of CD41^+ colonies producing CD41^+ platelet-like particles was calculated. Each colony was also scored for the number of CD41^+ cells within the colony that generated CD41^+ platelet-like particles.

Flow Cytometric Analysis of Platelet-like Particles

To harvest platelet-like particles from cultures, the supernatants from day 20 differentiated hESCs were centrifuged at 480 g from 5 min at 4°C and the pelleted particles were resuspended in PBS. These were incubated with the directly conjugated antibodies CD41a-FITC and CD42b-PE. Flow cytometry data was gated using log amplification of forward and side scatter to include the small platelet-like particles, using platelets generated from umbilical cord blood as a positive control [15]. Isotype controls for the antibody stains were included. Data was acquired on a FACSCalibur (BD Biosciences). Cord blood samples, received from a private source with appropriate ethics approval, were used as normal controls.

Quantitative Real Time PCR

Total RNA from undifferentiated and differentiated hESCs was prepared using RNEasy reagents according to the manufacturer’s instructions (Qiagen). First-strand cDNA was reverse transcribed with random hexamer priming using Superscript III reagents (Invitrogen). Real-time PCR was performed using Taqman gene expression probes (Applied Bioscience), the 7500 Fast Real-time PCR system absolute thermal cycler and software (Applied Bioscience). The comparative cycle threshold (CT) method was used to analyze data, with gene expression levels compared to GAPDH expression as previously described [10]. In brief, the CT for expression was calculated for each gene and for GAPDH. Since gene expression is inversely proportional to the CT, the expression for a given target gene relative to GAPDH may be given by the formula:

\[\frac{\text{GeneExpression}}{\text{GAPDH}} \times 1000 \]

In this paper, this calculated value was multiplied by 1000 for the purposes of presentation.

Analysis of Cell Ploidy

Cell ploidy in sorted fractions was analyzed by staining cellular DNA with PI. Prior to analysis, flow sorted cells were fixed in cold ethanol at 4°C overnight. Cells were pelleted and resuspended in PBS containing RNase A (Sigma) and incubated for 30 minutes at 37°C. Prior to analysis, PI (Sigma) was added. Samples were analyzed on a FACSCalibur using CellQuest Pro software (Becton Dickinson).

Fluorescence in situ Hybridization (FISH)

To detect cells with ≥4 N DNA, sorted cell fractions were analysed using fluorescence in situ hybridization (FISH). Sorted
cells were resuspended in fixative (3:1 methanol:glacial acetic acid) and an aliquot of the cell suspension was dropped onto a glass slide and left to dry. Samples were dehydrated through a series of ethanol solutions (75%, 90%, 100%), dried and stored at −20°C. Three FISH probes were used for analysis, namely CEP15 (aqua) detecting chromosome 15, CEP16 (orange) detecting chromosome 16 and LSI22 (q11.2) (green) detecting chromosome 22 (Vysis, Immunodiagnostics, Victoria, Australia). Probe mixture (1.5 µl) was applied to each slide and coverslipped. Slides were denatured at 73°C for 5 minutes and incubated at 37°C for a further 3 hours. The coverslip was removed and the slides were washed in 0.4× Sodium Chloride Sodium Citrate (SSC) at 71°C for 30 seconds then for a further 2 minutes at room temperature. Slides were air-dried and counterstained with DAPI (Vysis). Slides were analyzed under 400× and 1000× magnification using an Olympus BX51 fluorescent microscope (Olympus) and imaged using Quips Imaging Software, version 3.1.2 (Vysis).

Results

Expression Profile of CD41 on Hematopoietic Cells Generated from Differentiated hESCs

As a first step in the identification of a cell population enriched for Mk progenitors, we surveyed the expression of CD41 (GpIIb), a surface molecule expressed on most early hematopoietic progenitor cells [16–19], on differentiating hESCs. hESCs were cultured for 10 d in serum free medium supplemented with BMP4, VEGF, SCF and FGFl2 to induce mesoderm and commit cells to hematopoiesis and then for a further 3 d or 10 d in medium containing TPO, SCF and IL-3 in order to promote megakaryopoiesis.

After 13 and 20 days of differentiation, the expression of CD41 was examined in combination with the expression of a panel of cell surface markers associated with hematopoietic and endothelial cells (Figure 1 and Figure S1). At d13, a bright population of CD41+ cells was observed (6±2.1%, Figure 1A), while at d20 the CD41 expression could be subdivided into CD41+ (6±0.9%) and a CD41lo (33±6.3%) populations (Figure 1B). The majority (~70%) of CD41+ cells at d13 expressed markers of immature hematopoietic cells and their progenitors (CD34, CD43 and CD33), ~20% expressed hematopoietic and Mk markers (CD45, CD110 [MPL], CD42b and CD61), and less than 10% expressed CD117 (KIT) or KDR, molecules observed on both hematopoietic progenitor cells and endothelium (Figure 1C). Analysis of CD41 expression at d20 revealed that over 50% of the CD41+ cells retained expression of CD34 and a higher proportion now expressed CD45 and CD61, consistent with ongoing Mk maturation. In contrast, very few of the CD41lo cells continued to express CD34 but an increase in CD43, CD45 and CD33 expressing cells was observed suggesting differentiation to non-megakaryocytic myeloid lineages (Figure 1C).

Embryoid bodies from differentiating hESC lines were harvested at d13 and d20 and sorted by flow cytometry based on their expression of CD41, CD45 and CD34 (Figure 2). Most experiments were performed with HES3 cells but similar results were obtained with Envy and MEL1 lines (Table S1 and data not shown). At d13, four fractions were analyzed: CD41+CD34+, CD41+CD34+, CD41+CD34+, and CD41+CD34+ (Figure 2A); while d20 differentiated cells were sorted into five fractions: CD41+ CD34lo CD45+, CD41+ CD34lo CD45+, CD41+ CD34lo CD45+, CD41+CD34+ and CD41+CD34+ (Figure 2B).

Megakaryocytic Colonies Generated in Collagen-based Cultures

To determine the capacity of the sorted fractions to generate Mk colonies, cells were plated in a collagen-based semi-solid culture medium. After 14 days, the cultures were fixed and Mk detected by staining with anti-human CD41a. Colony-forming cells (CFCs) at d13 of differentiation were confined to the CD41+ and CD34+ fractions (Figure 3A) with the majority of colonies containing CD41+ Mk cells (Figure 3B). The Mk colonies generated from the CD41+CD34+ sorted fraction were larger than those generated from the CD41+CD34− sorted fractions (Figure 3C).

MK-CFCs at d20 of differentiation were enriched in two sorted fractions, CD41+CD34+CD45− and the CD41lo− CD34+CD45− (Figure 3D), with the highest proportion of Mk colonies generated in the sorted fractions that contained CD41+ cells (Figure 3E). Similar to observations in d13 colonies, the fraction containing CD34+ cells tended to generate the largest Mk colonies, although the differences between fractions did not reach statistical significance in these experiments (Figure 3F).

Single CD41-positive cells were seen dispersed throughout the cultures and, in a number of cases, these were surrounded by platelet-like CD41+ cellular fragments of variable size (Figure 4B–E). Indeed, some polyploid cells appeared to be producing thousands of platelet-like fragments (Figure 4I). Depending on the population of sorted cells, myeloid colonies were evident that contained few or no CD41+ cells (Figure 3B, 3E and Figure 4K–L).

Sorted cells from each fraction were also plated in methylcellulose cultures supplemented with cytokines to stimulate myeloid and erythroid colony growth. It was noteworthy that the highest frequencies of erythroid CFCs in cells sorted from differentiation cultures at d13 were in the CD41+ fractions that also generated the highest proportion of Mk colonies. Similarly, the CD41+CD34+CD45− fraction that yielded the highest number of Mk colonies from d20 differentiated cultures, also generated erythroid colonies with the greatest frequency (Figure 4K). These data are consistent with the finding that Mk and erythroid colonies generated from hESCs may share a common precursor [7,20]. Colony forming activity was always confined to cells expressing either CD41 and/or CD34, with the frequency of CFCs higher at d13 (142±162 CFU/10^5 cells plated) than at d20 (65±56 CFU/10^5 cells plated) (Figure S2).

Platelet-like Particles Produced by Megakaryocytes

Express CD42b and Respond to ADP

Polyploid nuclei arising as a result of endomitosis are a unique characteristic of maturing Mks and a higher number of nuclei is predictive for greater platelet production. Polyploid megakaryocytes with membrane blebbing or fragmentation, suggests platelet
Figure 5. Platelet-like particles generated from human embryonic stem cells (hESCs). A) May-Grunwald-Giemsa staining of megakaryocytes (Mks) showing endoreplication and membrane blebbing after 13 and 20 days of differentiation of hESCs. The frequency of cells containing 1, 2 or ≥ 4 nuclei was quantified from stained preparations of single cells at day 13 and 20 of differentiation and results are shown as mean \pm SEM of $n=4–8$ experiments. B) Mks colonies (CFU-Mk) were generated after 13 and 20 days of differentiation by placing differentiated cells in Megacult. The numbers of platelet-like particles were quantitated per CD41$^+$ Mks colony. The upper histogram shows the percentage of CFU-Mks that produced platelet-like particles whilst the lower histogram depicts the percentage of Mks generating platelet-like particles per CD41$^+$ colony. Results shown represent the mean \pm SEM of $n=4–8$ experiments. *, $p<0.05$ between the CD41$^+$ sorted fractions and CD41$^{lo/2}$ sorted fractions generated in the day 20 differentiated cells. C) Flow cytometric analysis of platelet-like particles generated from cord blood and hESCs gated on forward scatter and side scatter, showing that the platelet-like particles expressed both CD41a and CD42b, similar to cord blood derived platelets. The lower histogram shows increased expression of the activation marker CD62p in response to incubation with 20 uM of ADP (data from one of two similar experiments is shown).

doi:10.1371/journal.pone.0055530.g005
formation, were observed in cytospins of CD41+ sorted fractions from day 13 and 20 differentiation cultures (Figure 5A). Consistent with this, approximately 50% of Mk colonies derived from day 13 progenitors produced platelet-like particles (Figure 5B). A greater percentage of the Mk colonies generated from CD41+ sorted fractions at day 20 were associated with platelet-like particles than was seen in Mk colonies generated from the CD41^{lo}/2 sorted fractions (84.7±15.2% versus 58.6±41.2%) (Figure 5B). Furthermore, the percentage of Mks in each colony generating platelet-like particles was significantly higher in colonies generated from the CD41+ than from the CD41^{lo}/2 sorted fractions (80.3±4.4% versus 46.8±8.1%) (Figure 5B).

The platelet-like particles were harvested from the supernatants of the differentiating hESCs at day 20 and analyzed by flow cytometry. Their forward and side scatter profiles were generally similar to platelets generated from cord blood, although the hESC-derived platelet-like particles appeared to encompass a greater range of particle sizes (Figure 5C). However, particles from hESCs and cord blood derived platelets expressed both CD41a and CD42b and upregulated the expression of CD62P, a marker for platelet activation, in response to incubations with ADP (Figure 5C).

Increased Expression of Megakaryocytic Marker Genes in CD41+ Sorted Fractions

Real time PCR analysis was used to quantify gene expression in fractions sorted from d13 and d20 cultures (Figure 6). Both CD34 and CD41 were more highly transcribed in fractions sorted on those surface proteins, although there were large variations in expression level between fractions that generally mirrored the differences in protein expression observed by flow cytometry. Expression of Mk markers such as PFL [21] and the thrombopoietin receptor, MPL, was significantly enhanced in fractions containing CD41+ cells, as was expression of GATA1 and TAL1 (SCL), transcription factors that are co-expressed in Mk and erythroid lineages [22]. KDR, encoding the receptor for VEGF, was highly expressed on CD34⁺CD41⁻ and CD41^{lo}/2CD34⁺CD45⁺ fractions. We have shown that cells co-expressing high levels of KDR and CD34 are enriched for endothelial progenitor cells [23]. Expression of the myeloid lymphoid regulator PU.1 was highest in CD41⁻CD43⁺ and CD41^{lo}/2CD34⁺CD45⁻ fractions. In these fractions, levels of GATA1 were correspondingly lower, consistent with the known mutual inhibition and cross regulation of the two transcription factors [24,25]. Higher expression of PU.1 correlated with a reduction in erythroid CFCs (Figure S2) and a reduced proportion of Mk CFCs (Figure 3). High levels of RUNX1 expression were observed in all fractions with hematopoietic colony forming capacity.

CD41+ Sorted Fractions Contain Cells with High Ploidy

Megakaryocytes display the ability to replicate DNA without corresponding cell division, in a process called endoreplication, whereby mature cells can reach up to 128N DNA content. Since we were unable to extract live cells in sufficient numbers from the collagen based Mk colony assays, we compared the ploidy between two fractions of sorted cells at d20, CD41⁺CD45⁻/CD45⁺ and
CD41^{lo}/CD34^{lo}CD45⁺, that differed primarily in their expression of CD41. The CD41⁺ cells had displayed a tendency to generate greater numbers of colonies in the collagen based assay than the CD41^{lo/2} cells (163 ± 121 compared with 32 ± 25 Mk colonies per 10⁵ cells, Figure 3), although variability between experiments precluded the results achieving statistical significance. Similarly, a greater proportion of the colonies from CD41⁺ fraction contained Mk cells (100% compared with 34%) (Figure 3).

Flow cytometric analysis of DNA content comparing CD41⁺CD34^{lo}CD45⁺ cells with CD41^{lo/2}CD34^{lo}CD45⁺ cells, demonstrated that a greater proportion of the CD41⁺ fraction contained Mk cells (100% compared with 34%) (Figure 3). Flow cytometric analysis of DNA content comparing CD41⁺CD34^{lo}CD45⁺ cells with CD41^{lo/2}CD34^{lo}CD45⁺ cells, demonstrated that a greater proportion of the CD41⁺ fraction contained 8N (4.8 ± 1.9% compared with 2.9 ± 1.9%, p < 0.01) or 16N (0.6 ± 0.3% compared with 0.2 ± 0.2%, p < 0.05) DNA (Figure 7). Corroborating this finding, FISH analysis using three chromosome probes suggested that a small proportion of cells analyzed from the CD41⁺ fraction contained ≥6N DNA, whilst cells from the CD41^{lo/2} fraction only contained 2N and 4N DNA (Figure 7). These experiments suggested that, prior to expansion and maturation of clonogenic precursors in vitro, the CD41⁺CD34^{lo}CD45⁺ fraction contained a small proportion of cells already undergoing endoreplication/endomitosis, consistent with maturation of some Mk precursors in culture.

Discussion

In these studies we have differentiated human embryonic stem cells towards hematopoietic lineages using our ‘spin EB’ protocol in a serum-free medium [10,14]. Compared with previously published protocols [26–28], we find that the forced aggregation of hESCs generated EBs more uniform in size that differentiated with greater efficiency and synchrony, resulting in the formation of blood cells in over 90% of EBs [9]. The culture medium was supplemented with growth factors that induced and patterned mesoderm to a hematopoietic fate for the first 10 days, followed by a cytokine cocktail designed to bias further differentiation towards the Mk lineage. After 13 and 20 days of differentiation,
characterisation of cell populations isolated on the basis of their expression of CD34, CD41 and CD45 on the cell surface enabled us to correlate immunophenotype, Mk clonogenic activity and hematopoietic gene expression. At both time points, we found that Mk colonies were confined to cells that expressed either or both CD41 and CD34, with the highest frequency observed in cells that also expressed both surface markers. There was evidence of ongoing maturation of Mk in the collagen based clonal assays, with polyploidization and shedding of platelet-like particles. The platelet-like particles generated in these cultures displayed characteristics similar to platelets derived from cord blood platelets, including responsiveness to ADP.

CD41 (GpIbß) is expressed on a range of hematopoietic precursors during early hematopoietic development in the embryo, from ES cells and in the adult [16-19]. However, in the cytokine milieu present in our studies, after 13 days of differentiation, most of the clonogenic cells in the CD41+ fractions formed Mks. These observations are reminiscent of the findings in adult mouse and human bone marrow and cytokine-mobilized peripheral blood. Differentiating hESC cultures were more similar in their behavior as compared to staining with isotype control antibodies.

We observed a tendency for larger Mk colonies to be formed by d13 CD41+CD34+ and d20 CD41+/−CD34+CD45− cells (Figure 3C, 3F). The fact that we observed Mk progenitors in CD41+CD34+ populations and no clonogenic activity in CD41−CD34− cells suggests that our differentiating hESC cultures were more similar in their behavior to cytokine-mobilized peripheral blood.

Generation of Mks and their precursors from hESCs has been demonstrated in several studies in which co-culture of differentiating hESC with OP9 stromal cells in medium supplemented with TPO, SCF and IL-11 [8]. However, the progenitor population that developed into CD41a+CD42b+ Mks after a few days was not identified. Interestingly, only ~5% of the hESC-derived platelets generated under these feeder- and serum-free conditions co-expressed CD41a and CD42b. Colony of Mk with OP9 stromal cells in medium supplemented with TPO, SCF and sodium heparin increased the proportion of CD41a−CD42b− cells to ~40%. These hESC-derived Mk produced platelets that were activated by thrombin, spread on fibrinogen and that transfused platelets adhered to thrombus in vivo. However, this form of platelet production might not be available to most patients needing platelets.

Table S1 Distribution of CD34, CD41 and CD45 expressing cells sorted from differentiated hESCs HES

Supporting Information

Figure S1 Staining patterns of CD41 on cultures of differentiating hESCs. Dot plots showing SSC and CD41 expression on day 13 and 20 cultures of differentiating hESC.

(DOCX)

Figure S2 Hematopoietic colonies generated in methylcellulose from day 13 and 20 differentiated hESCs sorted on CD34, CD41 and CD45. Histograms show myeloid and erythroid colony frequency displayed as mean±SD, from n=5 independent experiments.

(DOCX)
3 and cell lines. Table represent the average distribution from five experiments of the percent CD34+ hematopoietic “stem” cells, CD41+ megakaryocytes and CD43+ total white blood cells generated in the differentiation of hESCs cells at both day 13 and day 20 of differentiation.

Author Contributions
Conceived and designed the experiments: MP AGE. Performed the experiments: MP LA EO. Analyzed the data: MP EGS AGE. Wrote the paper: MP EGS AGE. Contributed reagents/materials/analysis tools: EO.

References
1. Berthier R, Prandini M, Schweitzer A, Thevenon D (1997) The MS-5 murine stromal cell line and hematopoietic growth factors synergize to support the megakaryocytic differentiation of embryonic stem cells. Experimental Hematology 23: 481–490.
2. Eto K, Murphy R, Kerrigan SW, Bertoni A, Stuhlmann H, et al. (2002) Megakaryocytes derived from embryonic stem cells implicate CalDAG-GEFI in integrin signaling. Proc Natl Acad Sci U S A 99: 12813–12818.
3. Uzan G, Prandini MH, Rosa JP, Berthier R (1996) Hematopoietic differentiation of embryonic stem cells: an in vitro model to study gene regulation during megakaryocytogenesis. Stem Cells 14 Suppl 1: 194–199.

2. Mikkola HK, Fujiwara Y, Schlaeger TM, Traver D, Orkin SH (2003) Platelet production from ES cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohemopoietic potential. Blood 103: 617–626.
5. Fujimoto TT, Kohata S, Suzuki H, Miyazaki H, Fujimura K (2003) Production of functional platelets by differentiated embryonic stem (ES) cells in vitro. Blood 102: 4844–4851.
6. Takayama N, Nishikii H, Usui J, Tsukui H, Sawaguchi A, et al. (2008) Generation of functional platelets from human embryonic stem cells in vitro via EV-sacs. VEGF-promoted structures that concentrate hematopoietic progenitors. Blood 111: 5298–5306.
7. Klimchenko O, Mori M, Distefano A, Langlois T, Larbret F, et al. (2009) A common bipotent progenitor generates the erythroid and megakaryocytic lineages in embryonic stem cell-derived primitive hematopoiesis. Blood 114: 1506–1517.
8. Le SJ, Li F, Yin H, Feng Q, Kimble MA, et al. (2011) Platelets generated from human embryonic stem cells are functional in vitro and in the microcirculation of living mice. Cell Res 21: 330–343.
9. Ng ES, Davis RP, Azzola L, Stanley EG, Elefanty AG (2005) Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood 106: 1601–1603.
10. Pick M, Azzola L, Mossman A, Stanley EG, Elefanty AG (2007) Differentiation of human embryonic stem cells in serum-free medium reveals distinct roles for BMP4, VEGF, SCF and FG2 in hematopoiesis. Stem Cells 25: 2206–2214.
11. Richards M, Fong CY, Chan WK, Wong PC, Bongso A (2002) Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 20: 933–936.
12. Costa M, Dottori M, Ng E, Hawes SM, Sourris K, et al. (2005) A novel strategy reveals the complexity of GATA and Ets factor involvement in megakaryocyte progenitors. Blood 111: 5298–5306.
13. Dumon S, Heath VL, Tomlinson MG, Gottgens B, Brampton J (2006) Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematopoieto-endothelial, primitive, and definitive stages resembling human yolk sac development. Blood 106: 860–870.
14. Debiti N, Wendling F, Katz A, Guichard J, Breton-Gorius J, et al. (1995) The Mpl-ligand or thrombopoietin or megakaryocyte growth and differentiative factor has both direct proliferative and differentiative activities on human megakaryocytic progenitors. Blood 86: 2516–2525.
15. Feng R, Shimazaki C, Inaba T, Takahashi R, Hirai H, et al. (1998) CD34+ mobilized peripheral blood. Exp Hematol 31: 324–330.
16. Basch RS, Zhang XM, Dolzhansky A, Karpatkin S (1999) Expression of CD41 and c-mlp does not indicate commitment to the megakaryocyte lineage during haemopoietic development. British Journal of Haematology 103: 1044–1054.
17. Vodyanik MA, Thomson JA, Slukvin II (2006) Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures. Blood 108: 2095–2105.
18. Rys R, Proffin RT, Proger ME, O’Rear R, Dean TF (1980) Platelet factor 4 antigen in megakaryocytes. Thromb Res 17: 645–652.
19. Elefanty AG, Begley CG, Hartley L, Papaevangelou B, Robb I, et al. (1999) SCL expression in the mouse embryo detected with a targeted lasZ reporter gene demonstrates its localization to hematopoietic, vascular, and neural tissues. Blood 94: 3754–3763.
20. Yu QC, Hirst CE, Costa M, Ng ES, Schiesser JV, et al. (2012) APELIN promotes hematopoiesis from human embryonic stem cells. Blood 119: 6243–6254.
21. De Vries JP, Brunkow ME, De Beer T, De Vries N, et al. (2003) Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood 109: 2679–2687.
22. Elefanty AG, Peault B, Park TS, Yu W, Tam A, Levine M, et al. (2008) Expression of angiotensin-converting enzyme (CD143) identifies and regulates primitive hemangioblasts derived from human pluripotent stem cells. Blood 112: 3601–3614.
23. Vodyanik MA, Thomson JA, Slukvin II (2006) Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures. Blood 109: 2679–2687.
24. De Vries JP, Brunkow ME, De Beer T, De Vries N, et al. (2003) Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood 109: 2679–2687.
25. Elefanty AG, Peault B, Park TS, Buma F, Cevin CI (2005) Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematopoieto-endothelial, primitive, and definitive stages resembling human yolk sac development. Blood 106: 860–870.
26. Debiati N, Wendling F, Katz A, Guichard J, Breton-Gorius J, et al. (1995) The Mpl-ligand or thrombopoietin or megakaryocyte growth and differentiative factor has both direct proliferative and differentiative activities on human megakaryocytic progenitors. Blood 86: 2516–2525.
27. Feng R, Shimazaki C, Inaba T, Takahashi R, Hirai H, et al. (1998) CD34+ mobilized peripheral blood. Exp Hematol 31: 324–330.
28. Chipper LF, Brand A, Reniers N, Melief CJ, Willems R, et al. (2003) Differential maturation of megakaryocyte progenitor cells from cord blood and mobilized peripheral blood. Exp Hematol 31: 324–330.
29. Chipper LF, Brand A, Fibbe WE, Van Hensbergen J (2012) Functional characterization of TPO-expanded CD34+ cord blood cells identifies CD34+–CD61+ cells as platelet-producing cells early after transplantation in NOD/ SCID mice and CD34+ cells as CAFC colony-forming cells. Stem Cells 30: 981–996.
30. Gaur M, Kamata T, Wang S, Moran B, Shattil SJ, et al. (2006) Megakaryocytes derived from human embryonic stem cells: a genetically tractable system to study megakaryocytogenesis and integrin function. J Thromb Haemost 4: 436–442.
31. Takayama N, Nishimura S, Nakamura S, Shimizu T, Ohnishi R, et al. (2010) Transient activation of c-Myc expression is critical for efficient platelet generation from human induced pluripotent stem cells. J Exp Med 207: 2817–2830.
Author/s:
Pick, M; Azzola, L; Osborne, E; Stanley, EG; Elefanty, AG

Title:
Generation of Megakaryocytic Progenitors from Human Embryonic Stem Cells in a Feeder- and Serum-Free Medium

Date:
2013-02-12

Citation:
Pick, M., Azzola, L., Osborne, E., Stanley, E. G. & Elefanty, A. G. (2013). Generation of Megakaryocytic Progenitors from Human Embryonic Stem Cells in a Feeder- and Serum-Free Medium. PLOS ONE, 8 (2), https://doi.org/10.1371/journal.pone.0055530.

Persistent Link:
http://hdl.handle.net/11343/256753

File Description:
published version

License:
CC BY