A Thermodynamic based and Data Driven Hybrid Network for Gas Turbine Modeling

Likun Ren, Haiqin Qin, Kejun Xu

Abstract—The on-wing engine performance is difficult to track for thermodynamic models because of its inaccurate component maps, and also difficult for data driven methods for their over-fitting to measurement errors. So, we propose a thermodynamic based and data driven hybrid network for gas turbine modeling. Different from thermodynamic models, our network reconstructs the component characteristics in a data-driven way to take component degeneration and individual difference into consideration. Moreover, different from data driven methods, in the training phase, physical based equations and the analytical mathematical description are used to ensure that the optimization converges to the gas turbine’s dynamics. A huge number of relaxed quasi steady state flight data to 26970 is used to train and test our hybrid network. The result shows that the accuracy of our hybrid network can reach about 7% measured by max T6 relative error, 5% better than map fitting based thermodynamic model and 8% better than pure data driven method with similar model volume.

Index Terms—Hybrid Model, Neural Network, Thermodynamic Model

I. INTRODUCTION

Gas turbine performance modeling has been widely used in the development cycle [1], [2]. However, it is rarely applied to the on-wing engine performance evaluation field due to the relatively low accuracy. We think the reasons for the low accuracy mainly lie in the following two points.

First, it is difficult to access accurate component characteristic maps. What is more, the maps are different from engine to engine due to manufacture and assembly tolerance.

Second, the degeneration process of components is hard to model. So it is difficult for performance models to track the gas turbine degeneration trajectory.

Large amount of flight data is the main advantage in on-wing gas turbine performance evaluation field over development cycle. The component characteristics and degeneration trend hidden behind the flight data may be extracted using proper data driven methods [3] [4] [5]. However, only data driven methods cannot evaluate gas turbine performance from a comprehensive perspective. One is because data driven models can only cover a few parameters recorded in flight data such as rotational speed and EGT. Other parameters key to performance evaluation can not be calculated using data driven methods. Moreover, data driven methods are easy to run into over-fitting under one single constrained optimization goal.

To use flight data more effectively, many researches focus on component maps fitting. Map scaling and curve fitting are first introduced. Reference [6] proposed a polynomial scaling method to correct the component maps. In [7] and [8], cubic fitting was used to directly fit mass flow and isentropic efficiency. In [9] and [10], scale factors were regressed using quadratic curve. In [11], elliptical curves fitting was used to tune component maps. In [12], scale factors of different components were regressed by various functions according to the shape of original maps. In [13], the overall performance parameters and the local performance parameters were separately adjusted in two steps by scale factors. These scaling and curve fitting methods can correct component maps toward the operating space of certain engine especially in design point. However, the number of corrected variables is too few to cover all the flight envelop.

So, to enlarge the number of corrected variables, neural network is introduced to predict component maps. In [14], a three layer BP neural network was trained to predict the compressor map using data provided by manufacturers. In [15], various neural networks were proposed to predict compressor performance using experimental data. Neural network based methods indeed increase the number of variables to be corrected. However, most neural networks take component characteristics modeling as a pure regression problem, ignoring the dynamics constrains during components working process. In this case, these methods can only fit limited data from component characteristics test rig and serve as alternative methods when component maps cannot accessed. For example, in [14], neural network is only trained by component performance data from manufacturers and in [15], only 42 experimental data of one compressor were used to train the network.

To extract more accurate component characteristics from big flight data and model gas turbine dynamics as a whole, we propose a thermodynamic based and flight data driven hybrid network for gas turbines modeling. Different from component maps based thermodynamic models, our network reconstructs the component characteristics in a data-driven way to take component degeneration and individual difference into consideration. Moreover, different from data driven methods, in the training phase, physical based equations and analytical mathematical description are used to ensure that the optimization converges to gas turbine’s dynamics process.

In our network, thermodynamic method is used as a backbone to make sure all stations can be computed and the overall flow path calculation is physically explainable. Component characteristics including LPC, HPC, burner, HPT, LPT, bypass, mixer and nozzle are modeled using the inlet-exit reflection by neural network. The inputs of the network for certain component are the state parameters of this component’s inlet
while the outputs are the state parameters of the exit. So the volume of our network is much bigger than component maps based models and the component characteristics can be real-time corrected using big flight data in the network’s training phase.

Test case is conducted with 26970 flight data acquired from a two spool mixed turbofan. The results show that the accuracy of the hybrid model measured by max T6 relative error can reach 7%, 5% better than thermodynamic model with map fitting tool [2] used in PROOSIS [16], [17] and 8% better than data driven method with similar volume.

The main contributions of our work lie in the following aspects:

- A novel gas turbine flow path analysis method from both thermodynamic and data driven perspectives is introduced.
- A flight data driven component characteristics modeling method considering component degeneration and individual difference is proposed.
- A new loss function considering the physical process of turbines and a two-phase training process are proposed to ensure the optimization converges to turbine’s dynamics process.
- Experiment is conducted on a huge number of flight data and the accuracy of our model is higher than both thermodynamic based and data driven gas turbine models.

The remaining sections are organized as follows. First, some related works about the thermodynamic model and neural network are briefly introduced. Next, the structure of our network is presented in a bottom-up view. A two phase training process is proposed to guarantee the optimization converges toward gas turbines dynamics. At last, experiments are conducted under flight data and comparisons are made between our network and other methods including map fitting based thermodynamic model and data driven neural network.

II. RELATED WORKS

In this section, a brief introduction is given about the thermodynamic model and neural network method.

A. Thermodynamic Model

Thermodynamic model [18], [19] is a physical based method where the station state parameters are calculated from the inlet of the engine to the exit (Fig. 1). Main components such as compressor, burner and turbine are modeled by their characteristic maps acquired from component rig tests, simulation tests or corrected from standard maps. In the design point calculation, the configuration such as the areas of some stations and the scale factors of component maps can be computed using the design point parameters. In the off-design point calculation, engine inlet parameters such as total temperature and pressure, the ambient pressure and some necessary engine control variables, such as N2, A8 and/or WF, are input into the model. Other parameters, such as N1, T4, beta values of component maps can be solved through thermodynamic balance equations’ iterations. Once all variables are determined, the state parameters of each stations can be inferred by interpolating the component maps and thermodynamic calculation.

In thermodynamic model, parameters of all stations can be calculated and the performance of the engine can be easily analyzed. So it is widely used in the development cycle. As to the on-wing performance evaluation of gas turbine, the accuracy reduces with component characteristics drift because of various factors such as individual differences, degeneration and inlet-engine matching. Although some correction methods such as characteristic maps fitting are applied, the number of corrected variables is too few for the corrected map to cover all the flight envelop.

B. Fully Connected Neural Network

Fully connected neural network [20] is a data driven method including an input layer, a few hidden layers and an output layer. Given a set \(\Omega = \{(x_i, y_i)\} \) of input \(x_i \) and its corresponding output \(y_i \), neural network learns a reflection from \(x_i \) to \(y_i \) using affine transformations and nonlinear activation.

The dataset \(\Omega \) is usually split into two subsets called training set \(\Omega_{tr} \) and testing set \(\Omega_{ts} \). In the training phase, a loss function \(l(\hat{y}_i, y_i) \) is defined to measure the difference between the network output \(\hat{y}_i \) and the real \(y_i \) in the training set \(\Omega_{tr} \). And the total loss in the training set is then defined:

\[
\text{loss} = \sum_{(x, y) \in \Omega_{tr}} l(\hat{y}_i, y_i) = \sum_{(x, y) \in \Omega_{tr}} l(\text{net}(x), y_i). \quad (1)
\]

Using gradient descent method, the weights and bias of the network are optimized toward the loss reduction direction. And after several iterations, the error can be tolerable if the learning rate is set reasonable.

In the testing phase, the difference between \(\hat{y}_i \) in the testing set \(\Omega_{ts} \) and its evaluation \(\hat{y}_i \) by the trained network is used to measure the performance/accuracy of the network.

Compared with thermodynamic model, neural network has the following advantages:

- Efficient. No iteration is needed during testing phase, so it is efficient in on-wing real-time calculations.
- Customized. If trained properly, the network can extract the individual characteristics and degeneration trend from the big flight data.

However, the disadvantages of the neural network are also obvious.
• Hard to explain. Only affine transformations and activation can be accessed in the structure of the neural network, so the physical process in calculating the output is unclear.
• Hard to train. The training process pays no attention to other parameters not in flight data. So, the network is easy to run into over-fitting in the training set and gets poor performance in the testing set.
• Hard to analyze. Key station parameters not recorded in the flight data but essential to performance analysis cannot be evaluated by data driven methods.

From II-A and II-B, we can conclude that thermodynamic model can calculate all parameters of key stations but can hardly model the engine’s degeneration trend and individual characteristics with on-wing flight data. Neural network methods can construct customized model using big flight data but are hard to train with few constrains. So, a hybrid model taking thermodynamic models and physical based constrains as backbone and using neural network to model component characteristics can take their advantages while get rid of their disadvantages. This is why we propose our hybrid network.

III. PROPOSED HYBRID NETWORK

In this section, we propose a hybrid network for gas turbine on wing modeling. The structure is illustrated in Fig. 2 and the station numbers in Fig. 2 are the same as Fig. 1. The input parameters are N_1, N_2, W_f, P_{amb}, T_2, P_2, M_a2, W_2 and W_{25}, the outputs are station state parameters such as total temperature and pressure. The component nets (described in Sec. III-A) take the inlet parameters as inputs and output the exit parameters. At last, the component nets are cascaded as the turbine’s gas flow process in Fig. 1.

Similar to thermodynamic model, our network is a component based model that calculates the state parameters station by station from the inlet of the engine. The main difference lies in that our network uses neural network to model every component other than component maps based thermodynamic calculation.

A. Components Modeling

The base component net is a four layers fully connected network (Fig. 3) with ReLU activation function and all component nets inherit from it. The inputs of certain component net are the state parameters of component inlet plus other variables necessary to calculate the exit parameters. The outputs are state parameters of the exit station. The following analyzes the required inputs of every component to compute the exit parameters assuming the component characteristics have been learned by network.

1) HPC Net: For HPC with one single inlet and one exit, another control variable, usually spool speed for its accessibility, is needed to calculate the exit parameters. The outputs are state parameters of the exit station. To one station, under the assumption of one dimension steady flow, only four state parameters are needed to determine the station’s other parameters. So for the convenience of calculation, total temperature T, total pressure P, mach number M_a and mass flow W are selected as the inputs of the inlet station. Because the exit mass flow can be inferred from the inlet mass flow and bleeding ratio, the outputs of the exit station are the three state parameters: total temperature T, total pressure P, mach number M_a.

\[
T_{ex}, P_{ex}, M_{aex} = net(T_{in}, P_{in}, M_{ain}, W_{in}, vars), \quad (2)
\]

where the function $net(\cdot)$ is certain component net and $vars$ are other variables needed to calculate the exit parameters. The following analyzes the required inputs of every component to compute the exit parameters assuming the component characteristics have been learned by network.

2) LPC Net: For LPC of turbofan with one inlet and two exits, there is a little difference from HPC. In HPC, the exit state is determined given the inlet parameters and spool speed. However, to LPC of turbofan, the exit state of LPC also depends on the bypass ratio. So mass flow of HPC inlet is added to inputs.

3) Burner Net: Fuel flow or one exit state parameter is needed to model burner. In most cases, fuel flow is easier to access. So in our network, fuel flow is added to the inputs of burner net.
4) **HPT and LPT nets with Cooling System:** If cooling system exists in the HPT or LPT, the simple rotor component nets such as HPC net is not sufficient. Because the cooling air from HPC to HPT and LPT can form a two inlets and one exit structure. To model turbines with cooling system, the inputs should include state parameters and mass flow of cooling air.

5) **Bypass Net:** Bypass is just a simple flow duct. Only three inlet state parameters and mass flow are required to calculate the exit parameters.

6) **Mixer Net:** To mixer, station parameters and mass flow of two inlets are all needed to determine the exit parameters.

7) **Nozzle Net:** The exit parameters of nozzle do not only depend on the inlet ones but also the ambient pressure. So, the input to nozzle net should also include the ambient pressure.

8) **Inputs and outputs of our network:** The component nets modeled above are cascaded to form our network (Fig. 2). The required inputs of our network are T2, P2, Pamb, Ma2, N1, N2, mass flow of each component inlet and WF. The outputs are state parameters of key stations. However, the mass flow of each component can be inferred only if the initial two mass flow W2 and W25 are given:

\[
W3 = W25 \times (1 - LNGV_{cl}) + WF,
\]

\[
W4 = W25 \times (1 - HPT_{cl} - LNGV_{cl} - HNGV_{cl}) + WF,
\]

\[
W41 = W4 + W25 \times HNGV_{cl},
\]

\[
W43 = W41,
\]

\[
W44 = W4 + W25 \times (HNGV_{cl} + HPT_{cl}),
\]

\[
W45 = W44 + W25 \times LNGV_{cl},
\]

\[
W5 = W45,
\]

\[
W6 = W5,
\]

\[
W13 = W2 - W25,
\]

\[
W16 = W13 + c2b \times W25,
\]

\[
W64 = W2 + WF,
\]

\[
W8 = W64,
\]

(3)

where \(HPT_{cl} \) is the HPT cooling proportion of W25 from HPC, \(LNGV_{cl} \) is the LPT NGV cooling proportion of W25 from HPC, \(HNGV_{cl} \) is the HPT NGV cooling proportion of W25 from HPC and \(c2b \) is the leakage proportion of W25 from the core to bypass. So our network inputs can be reduced to T2, P2, Ma2, Pamb, N1, N2, W2, W25 and WF. In Tab. I, we give a brief description about the inputs and outputs of every component net.

Once our network is constructed, the next issue is how to train it to model component characteristics. In the next section, a two phase training method is proposed (Fig. 4).

In the Monte Carlo pre-training phase, Monte Carlo training set is generated with inputs from Monte Carlo simulation and outputs from thermodynamic model. Our network is trained using Monte Carlo training set to model approximate component characteristics. In the flight data training phase, our network is trained with flight data to correct the component characteristics. Thermodynamic constrains are intervened during optimization to guarantee the training phase converges to the dynamics process.

![Fig. 3. The structure of base component net](image)

TABLE I

component	inputs	outputs
LPC	T2 P2 Ma2	T13 P13 Ma13
	W2 W25 N1	T25 P25 Ma25
HPC	T25 P25 Ma25 W25 N2	T3 P3 Ma3
burner	T3 P3 Ma3 W3 WF	T4 P4 Ma4
HPT	T4 P4 Ma4 W4	T44 P44 Ma44
	T3 P3 Ma3 N2	
LPT	T44 P44 Ma44 W44	T6 P6 Ma6
	T3 P3 Ma3 N1	
bypass	T13 P13 Ma13 W13	T16 P16 Ma16
mixer	T6 P6 Ma6 W6	T64 P64 Ma64
	T16 P16 Ma16 W16	
nozzle	T64 P64 Ma64	T8 P8 Ma8
	W64 Pamb	
the whole net-work	T2 P2 Ma2 Pamb	parameters above
	N1 N2 W2 W25 WF	

The station number is defined in Fig. 1.

B. Monte Carlo Pre-training Phase

Most of data driven gas turbine modeling methods define the loss function as the error between the model’s outputs and the real values collected from sensors. Subjected to the limited number of gas turbine sensors, the loss function is only the errors of a few parameters such as T6. In this condition, the optimization will try its best to regress these parameters in the loss function. But meanwhile, the measurement and random errors are also regressed. Moreover, the component nets error will transmitted to the final outputs under measurement error loss.
To avoid this phenomena, a Monte Carlo pre-training phase and thermodynamic loss are proposed. Dataset including all station parameters is first generated using Monte Carlo simulation and thermodynamic calculation. Then, our network is trained to output all these parameters in this dataset with the constrain of thermodynamic loss. When the error accumulated, the thermodynamic loss will increase and the training process will adjust the weights to decrease overall error. The schematic diagram of the Monte Carlo pre-training phase is illustrated in Fig. 4 and Fig. 5 and the bypass part is omitted in Fig. 5 for simpleness.

First, a number of inputs required by thermodynamic model, usually T2, P2, Pamb and N2 are generated randomly in a reasonable scope in a Monte Carlo simulated test way.

\[T_{2i}, P_{2i}, P_{amb}, N_{2i} = \text{random()}, i = 1, 2, \cdots, N \]

(4)

where the subscript \(i \) denotes the \(i \)th samples.

Then, these variables are input into thermodynamic model to calculate all variables and stations parameters required by our network’s inputs and outputs.

\[Mo_{2i}, N_{1i}, W_{2i}, W_{25i}, WF_i, \text{sttns}_i \]

\[= \text{thermo}(T_{2i}, P_{2i}, P_{amb}, N_{2i}), \]

(5)

where \(\text{sttns}_i \) are the stations parameters required by our network’s outputs.

When the inputs and outputs of our network are all computed, the dataset \(\Omega_m = \{ (x_i, y_i), i = 1, 2, \cdots, N \} \) can be generated. In \(\Omega_m \), \(x_i \) is the input vector of the \(i \)th samples for our network and \(y_i \) is the output vector of our network.

To decrease the influence of error transmission from each component net, we define thermodynamic loss to measure the distance between the net’s outputs and the turbine’s dynamic. Once the error accumulated, the network’s process will deviated from the turbine’s dynamics, so the thermodynamic loss calculated by the network outputs will increase. Under the constrain of thermodynamic loss, the overall error of our hybrid network will not accumulated.

Next is the pre-training process. The loss function is optimized to decrease using gradient descend method. In traditional network based modeling methods, loss function is usually defined as the error between the real values and their evaluations by network. However, to ensure the optimization converges toward the real dynamics process of gas turbines and to decrease the influence of error transmission from each component net, new loss measuring the error between our network’s calculation process and real thermodynamic process is introduced. Once the error accumulated, the network’s calculation process will deviated from the turbine’s dynamics and the thermodynamic loss calculated by the network outputs will increase. So under the constrain of thermodynamic loss, the overall error of our hybrid network will not accumulated. So, in our network, the loss function is comprised of two parts: one is stations parameters errors loss and the other one is the thermodynamic error loss.

The first loss is defined as mean square error between the outputs of our network and the corresponding stations parameters calculated by thermodynamic model:

\[\text{loss}_1 = \frac{1}{N} \sum_{(x_i, y_i) \in \Omega_m} \frac{(Net(x_i) - y_i)^2}{y_i^2}, \]

(6)

where \(N \) is the number of samples in \(\Omega_m \).

The second loss is the thermodynamic error loss measuring our network’s deviation from gas turbine’s dynamics. The loss is comprised of two parts: the mass flow loss and the power loss. The mass flow loss is the error between mass flow of all stations computed by our network and mass flow inferred from inputs \(W_2 \) and \(W_{25} \).

\[\text{loss}_2 = \frac{1}{N} \frac{1}{M} \sum_{i \in \text{sttns}} \sum_{\text{sttns}_i} \frac{(W_i - Q(T_i, P_i, M_{ai}, A_i))^2}{W_i^2}, \]

(7)

where \(M \) is the number of stations in our network, \(\text{sttns} \) denotes the stations number set accessed from our network, \((T_i, P_i, M_{ai}) \) are the total temperature, total pressure and Mach number in our network’s \(i \)th output station, \(A_i \) is the \(i \)th station area accessed in design point calculation of
thermodynamic model, \(W_i \) can be inferred from W2 and W25 using Eq. 3 and \(Q(\cdot) \) is the mass flow function:

\[
Q(T_i, P_i, Ma_i, A_i) = K \frac{P_i A_i}{\sqrt{T_i}} q(Ma_i) \tag{8}
\]

The power loss is the error between compressor power demanded and turbine power provided.

\[
loss_3 = \frac{1}{N} \sum_{\Omega_{fd}} \frac{|\eta_l \Delta H_{LPT} - \Delta H_{LPC}|^2}{\Delta H_{LPT}^2} + \frac{|\eta_h \Delta H_{HTP} - \Delta H_{HPC} - P_{ext}|^2}{\Delta H_{HTP}^2},
\]

where \(\Delta H_{LPT} \) is the enthalpy drop of LPT, \(\Delta H_{HTP} \) the enthalpy drop of HPT, \(\Delta H_{LPC} \) the enthalpy rise of LPC, \(\Delta H_{HPC} \) the enthalpy rise of HPC, \(\eta_l \) the mechanical efficiency of LPT, \(\eta_h \) the mechanical efficiency of HPT, \(Q \) the power extraction from HP spool:

\[
\begin{align*}
\Delta H_{LPT} &= H_{A4} + H_{LNGV cl} - H_6, \\
\Delta H_{HTP} &= H_4 + H_{HNGV cl} - (H_{A4} - H_{HTP cl}), \\
\Delta H_{LPC} &= H_3 + H_{LNGV cl} - H_{25}, \\
\Delta H_{HPC} &= H_{13} + H_{25} - H_2,
\end{align*}
\tag{9}
\]

These are fixed and no longer optimized. \(W_2 \) and \(W_{25} \) are the only two variables to be optimized. The optimization goal is comprised of two part: the mass flow error and the power error.

First, quasi steady state is defined where the amplitude of the fluctuation of other variables such as Mach number, altitude and inlet temperature. This is a very relaxed quasi steady state determinant conditions and poses great challenges to performance calculation.

Next, quasi steady state points are extracted from certain engine during a period to form dataset \(\Omega_{fd} = \{ (x_i, y_i), i = 1, 2, \ldots, N \} \). \(W_2 \) and \(W_{25} \) are usually not measured, so the inputs to our network are not sufficient. To remedy this, we use thermodynamic model to calculate these two variables (this two variables can also be calculated through our network’s iteration phase proposed in III-D):

\[
W_2, W_{25} = thermo(\pi_i), \tag{10}
\]

The loss function of the flight data training phase is also divided into two part as introduced in III-B. The main difference lies in the parameters errors loss. Because there are only a few stations parameters in flight data, so not all the stations parameters output by our network will contribute to the loss. The parameters errors loss is defined as:

\[
loss_1 = \frac{1}{N} \sum_{(x_i, y_i) \in \Omega_{fd}} \frac{(S(Net(x_i)) - y_i)^2}{y_i^2}, \tag{11}
\]

where \(S(Net(x_i)) \) extract network’s corresponding outputs to \(y_i \) in flight data to compute the loss.

The thermodynamic error loss is the same as Monte Carlo pre-training phase defined in Eq. 7 and 9. Then, our network is trained using gradient descend method to reduce the sum of these three losses in the flight dataset. After flight data training phase, component characteristics are corrected using the on-wing flight data. So, the modeling accuracy will be higher than our network only trained by Monte Carlo dataset as well as thermodynamic models.

D. Iterating Phase

Usually, among the inputs of our network, \(T_2, P_2, P_{amb}, Ma_2, N_1, N_2 \) and WF can be acquired from flight data. However, most flight data will not record the mass flow of LPC and HPC inlet: \(W_2 \) and \(W_{25} \). In III-C, we take a compromised way by using thermodynamic model to calculate them. In this section, an optimization method is proposed to get rid of thermodynamic model during testing phase.

In the iterating phase, the weights and bias of our network are fixed and no longer optimized. \(W_2 \) and \(W_{25} \) are the only two variables to be optimized. The optimization goal is comprised of two part: the mass flow error and the power error.

The first optimization goal is to minimize the mass flow error described in Eq. 7. The loss can be modified into:

\[
\begin{align*}
loss_1 &= f_1(W_2, W_{25}, Net(\text{vars})) \\
&= \frac{1}{N} \frac{1}{M} \sum_{(x_i, y_i) \in \Omega_{fd}} \sum_{i \in \text{vars}} \left(\frac{W_i - Q(T_i, P_i, Ma_i, A_i)}{W_i} \right)^2 \tag{12}
\end{align*}
\]

where \(Net(\cdot) \) denotes our network and \(\text{vars} \) denotes the inputs of our network.

The second optimization goal is to minimize the power error described in Eq. 9. The loss can also be modified into:

\[
\begin{align*}
loss_2 &= f_2(W_2, W_{25}, Net(\text{vars})) \\
&= \frac{1}{N} \sum_{(x_i, y_i) \in \Omega_{fd}} \frac{|\eta_l \Delta H_{LPT} - \Delta H_{LPC}|^2}{\Delta H_{LPT}^2} \tag{13}
\end{align*}
\]

Then we minimize the following goal regarding to \(W_2 \) and \(W_{25} \):

\[
\text{arg}_{W_2, W_{25}} \min f_1(W_2, W_{25}, Net(\text{vars}))+f_2(W_2, W_{25}, Net(\text{vars})). \tag{14}
\]

Given an initial value for \(W_2 \) and \(W_{25} \), we can get the optimal \(W_2 \) and \(W_{25} \) through an iteration process.
IV. Test case

In this section, the accuracy of our network is tested in flight data. Flight data are gathered from a two spool turbofan over a period. N1, N2, WF, T2, P2, Pamb are accessible for the inputs of our network. W2 and W25 can be either calculated by thermodynamic model introduced in III-C or iteration method in III-D. Because neither Ma2 nor PS2 is measured in flight data, the Ma2 input of our network cannot accessed or computed. In this case, we simply omit the Ma2 input of LPC net under the assumption that the exit parameters of LPC can be determined by other inputs as long as the inlet area keeps unchanged. There is only one station parameter T6 recorded in the flight data, so we use it to measure the accuracy of our network. Two datasets are made to the whole training and testing process: \(\Omega_{mc} \) is generated using Monte Carlo method introduced in III-B and \(\Omega_{fd} \) is gathered as introduced in III-C and III-D.

A. Monte Carlo Training Results

Our network is first trained by \(\Omega_{mc} \) generated using Monte Carlo methods. The number of samples in \(\Omega_{mc} \) is 15360 and the ratio of the training set to the test set is 0.8. The number of training epochs is 500, the learning rate is \(1e-3 \) with 10% decay every 100 epochs and the batch size is set to 256. The training loss is defined as the sum of Eq. 12, 7 and 9. The max relative errors of all stations parameters after Monte Carlo training are described in Fig. 11. We can see that the max error of station 25 (the LPC exit) is 3.2% that is lower than thermodynamic model.

B. Flight Data Training Results

After trained by Monte Carlo dataset, our network is further trained with flight dataset as introduced in III-C. The flight dataset is split into two subsets: the training set \(\Omega_{fd-tr} \) to train our network and testing set \(\Omega_{fd-tt} \) to measure the accuracy and generalization of our network. There are 6,970 samples in \(\Omega_{fd-tr} \) and 20,000 samples in \(\Omega_{fd-tt} \). Because there are only one station parameter T6 in flight data, so the parameters loss can be modified into:

\[
loss = \frac{1}{N} \sum_{i \in \omega} \frac{(\hat{T}_6_i - T6_i)^2}{T6^2},
\]

where \(\hat{T}_6_i \) is our network's evaluation for T6 of the ith sample in \(\Omega_{fd-tr} \), \(\omega \) is subscript set of training flight dataset \(\Omega_{fd-tr} \) and \(N \) is the number of samples in \(\Omega_{fd-tr} \).

To compare the performance before and after flight data training, we evaluate T6 of flight testing dataset using our network only trained by Monte Carlo dataset first. Then, T6 is evaluated using our network further trained by flight training dataset. The T6 relative errors histogram of all samples in the testing set is shown in Fig. 8.

We can see that before trained by flight data, the T6 relative errors' distribution is nearly uniformed around 6% and the max relative error can reach 13.8%. After further trained by flight data, the T6 relative errors mainly concentrated below 4% and the max error reach 7.1%. This conforms that after flight data training, our network has the ability of correcting component characteristics to get a more accurate evaluation. Another phenomena from Fig. 8 is that the error distribution forms a long tail shape. This long tail error distribution is much more suitable for gas turbine monitoring than uniform distribution.

C. Iterating Results

Our network with iteration phase proposed in III-D is also tested. The results are shown in Fig. 9. The error distributions of iteration method and no iteration method are nearly the same. This verifies the effectiveness of iteration method introduced in III-D. So our network can be independent from thermodynamic models where more iterative steps and calculation times are required. Then, our network will be more efficient and has prospects of being embedded in airborne equipment to realize real-time calculations.

D. Comparisons with Thermodynamic Model

We compare the T6 errors in flight testing dataset of our network trained only by Monte Carlo dataset with map fitting based thermodynamic model used in PROOSIS [16], [17]. The results are shown in Fig. 10. Because our network is only train by Monte Carlo dataset generated by thermodynamic model and not trained by flight dataset, the accuracy of our model cannot be better. But from Fig. 10, we can see that the error distribution of thermodynamic model and our network only trained by Monte Carlo dataset is similar. This indicates that our network pre-trained by Monte Carlo dataset has the ability to reconstruct the component characteristics with the help of thermodynamic model.

Furthermore, We compare our network further trained by flight training dataset with thermodynamic model. The results are shown in Fig. 11. We can see that the max error of our network reaches 7.1%, 5.2% lower than thermodynamic model. This indicates that our network can extract the engine's individual characteristics and degeneration trend from flight data in the flight data training phase to evaluate the stations parameters more accurately.
Fig. 6. The error trending in training process of some parameters

(a) Max error of Ma3
(b) Max error of P4
(c) Max error of T6
(d) Max error of T8

Fig. 7. The max relative errors after Monte Carlo training

Fig. 8. T6 errors comparison between our network only trained by MC dataset and further trained by FD dataset

E. Comparisons with Neural Network Model

To compare our network with pure neural network model, a neural network (denoted as TNN) of equivalent model volume is constructed to predict T6 in flight data. The neural network has 28 hidden layers with the same number of hidden dimension as our network. The inputs are the same as our network’s and the output is T6. The definition of the training loss is defined as Eq. 17. Because no other stations parameters can be evaluated by TNN, the thermodynamic error loss Eq. 7 and 9 cannot used as loss function. TNN is trained and tested using the same flight dataset under the same training configurations as our network. The comparison between our network and TNN is shown in Fig. 12. TNN’s max T6 relative error reaches 15.8%. The accuracy of TNN is too low to evaluate the performance of the engine, which verifies the rationality of our network’s thermodynamic constrains and two-phase training process from another perspective.

F. Accuracy comparisons of different methods

The comparisons of different methods are shown in Tab. II. The accuracy is measured by the relative error (RE) between T6 in flight data and its evaluation

\[\text{error} = \left| \frac{T\hat{6} - T6}{T6} \right| \]

Among the table head, 'mean' is the mean RE of all testing samples, 'std' is the standard deviation of RE, '25%' is the top '25%' of RE, and 'max' is the max RE of all testing
and constrain the error transmission between component nets in hybrid network. The experiment shows that the accuracy of our hybrid network can reach about 7% measured by max T6 relative error, 5% better than map fitting based thermodynamic model and 8% better than pure data driven method with similar model volume, verifying effectiveness of our proposed hybrid model.

V. CONCLUSION

In this paper, we propose a thermodynamic based and data driven hybrid network for gas turbine modeling. All components are modeled as neural network and their characteristics are extracted in a data driven way from Monte Carlo simulated data and flight data. Thermodynamic loss is introduced to ensure the training process converges to the turbine’s dynamics

TABLE II	ACCURACY COMPARISON OF DIFFERENT METHODS					
methods	mean	std	25%	50%	75%	max
PROOSIS	0.046	0.030	0.018	0.044	0.072	0.123
TNN	0.087	0.048	0.049	0.086	0.126	0.158
our network	0.014	0.011	0.005	0.012	0.019	0.071
our network†	0.014	0.011	0.006	0.012	0.019	0.071

† our network† is the iteration version described in III-D.

REFERENCES

[1] J. K. Lytle, “The numerical propulsion system simulation: A multidisciplinary design system for aerospace vehicles,” 1999.
[2] V. Sethi, G. Doulgeris, P. Pilidis, A. Nind, M. Doussinault, P. Cobas, and A. Rueda, “The map fitting tool methodology: gas turbine compressor off-design performance modeling,” Journal of turbomachinery, vol. 135, no. 6, 2013.
[3] H. Asgari and X. Chen, Gas turbines modeling, simulation, and control: using artificial neural networks. CRC Press, 2015.
[4] N. Chiras, C. Evans, and D. Rees, “Nonlinear gas turbine modeling using narmax structures,” IEEE Transactions on Instrumentation and Measurement, vol. 50, no. 4, pp. 893–898, 2001.
[5] Y. Wei, D. Wu, and J. Terpenny, “Robust incipient fault detection of complex systems using data fusion,” IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 12, pp. 9526–9534, 2020.
[6] C. Kong, J. Ki, and M. Kang, “A new scaling method for component maps of gas turbine using system identification,” J. Eng. Gas Turbines Power, vol. 125, no. 4, pp. 979–985, 2003.
[7] C. Kong, S. Kho, and J. Ki, “Component map generation of a gas turbine using genetic algorithms,” Journal of Engineering for Gas Turbines and Power-transactions of The Asme, vol. 128, no. 1, pp. 92–96, 2006.
[8] C. Kong and J. Ki, “Study on component map identification from gas turbine performance deck data using hybrid method,” International Journal of Turbo and Jet Engines, vol. 24, no. 3–4, pp. 171–182, 2007.
[9] Y. Li, M. Ghafrir, L. Wang, R. Singh, K. Huang, and X. Feng, “Nonlinear multiple points gas turbine off-design performance adaptation using a genetic algorithm,” Journal of Engineering for Gas Turbines and Power, vol. 133, no. 7, 2011.
[10] Y. Li, M. Abdul Ghafrir, L. Wang, R. Singh, K. Huang, X. Feng, and W. Zhang, “Improved multiple point nonlinear genetic algorithm based performance adaptation using least square method,” Journal of Engineering for Gas Turbines and Power, vol. 134, no. 3, 2012.
[11] E. Tsoutsanis, N. Meskin, M. Benammar, and K. Khorasani, “A component map tuning method for performance prediction and diagnostics of gas turbine compressors,” Applied Energy, vol. 135, pp. 572–585, 2014.
[12] ——, “Transient gas turbine performance diagnostics through nonlinear adaptation of compressor and turbine maps,” Journal of Engineering for Gas Turbines and Power, vol. 137, no. 9, 2015.
[13] S. Kim, K. Kim, and C. Son, “Adaptation method for overall and local performances of gas turbine engine model,” International Journal of Aeronautical and Space Sciences, vol. 19, no. 1, pp. 250–261, 2018.
[14] Y. Yu, L. Chen, F. Sun, and C. Wu, “Neural-network based analysis and prediction of a compressor’s characteristic performance map,” Applied energy, vol. 84, no. 1, pp. 48–55, 2007.
[15] K. Ghorbanian and M. Gholamrezaei, “An artificial neural network approach to compressor performance prediction,” Applied Energy, vol. 86, no. 7-8, pp. 1210–1221, 2009.
[16] A. Alexiou, E. Baalbergen, O. Kogenhop, K. Mathioudakis, and P. Arendsen, “Advanced capabilities for gas turbine engine performance simulations,” in Turbo Expo: Power for Land, Sea, and Air, vol. 4790, pp. 19–28.
[17] A. Bala, V. Sethi, E. L. Gatto, V. Pachidis, and P. Pilidis, “Proosis—a collaborative venture for gas turbine performance simulation using an object oriented programming schema,” in 18th ISABE Conference, ISABE-2007-1357, Beijing, China, 2007.
[18] J. F. Sellers and C. J. Daniele, DYNGEN: A program for calculating steady-state and transient performance of turbojet and turbofan engines. National Aeronautics and Space Administration, 1975, vol. 7901.
[19] P. P. Walsh and P. Fletcher, Gas turbine performance. John Wiley & Sons, 2004.
[20] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in Neural networks for perception. Elsevier, 1992, pp. 65–93.