Research Article

Ayhan Etyemez*

Structural, physical, and mechanical properties of the TiO₂ added hydroxyapatite composites

https://doi.org/10.1515/chem-2022-0140
received January 22, 2022; accepted February 23, 2022

Abstract: Composites are important as they have been used in a variety of different fields. Therefore, production and testing of composites have become one of the most popular topics for researchers. In this work, the physical, structural, and mechanical properties such as packing density (Vₚ), bond dissociation energy (Gᵢ), Young’s (E), bulk (B), shear (S), longitudinal (L), and indentation (E*) moduli, and Poisson’s ratio (ν) were obtained for (100 − x) HAP + xTiO₂ composite, where x = 0, 3, 7.5, and 10 wt%.

The variations in those properties with TiO₂ rate in HAP composites were tested.

Keywords: mechanical properties, hydroxyapatite composite, analytical method

1 Introduction

The composite materials which are composed of different components are recently the most popular materials and may be an effective material for many different purposes. Therefore, structural, physical, and mechanical properties of composites should be known as those parameters are vital in order to use these composites. It is also important to improve these properties by reinforcement of some other materials into composite [1–5]. Besides the other parameters, the physical parameters, dissociation energy, packing density and mechanical properties which are Young’s (E) modulus, bulk (B) modulus, shear (S) modulus, longitudinal (L) modulus, indentation (E*) modulus, and Poisson’s (ν) ratio are also important. There have been many different works done for this kind of purposes using different methods [6–35].

The main goal of this work is obtaining different types of materials by reinforcing different rates of TiO₂ into hydroxyapatite (HAP)-based composite materials and calculating some important physical and mechanical properties of these composites. This will also provide to test TiO₂ effect on these parameters. The calculations are done using Makishima and Mackenzie Model (MMM) via the analytical method.

2 Materials and methods

The physical, structural, and mechanical properties of four different types of HAP composite and the effect of TiO₂ on the properties of these composites have been investigated. HAP is one of the main inorganic components of bones and teeth which are important to human health. It is also utilized as an implant for bone substitute due to its excellent biocompatible properties [1–3]. Thus, HAP-based composite materials show significant properties in the field of biomedical applications. The chemical composition and also density of composite formulated as (100 − x)HAP + xTiO₂ is given in Table 1.

The mechanical properties of composites have been obtained using a model developed by Makishima and Mackenzie [39]. The model estimates the values of Young’s modulus (E, GPa), the bulk modulus (B, GPa), shear modulus (S, GPa), longitudinal modulus (L, GPa) Poisson’s ratio (ν), and indentation modulus (E*, GPa). In this model, with the help of the bond dissociation energy, Gᵢ (kJ cm⁻³) and the packing density (Vₚ, cm³ mol⁻¹) of the investigated materials, other structural and mechanical features are obtained. These characteristics are extracted through equations (1)–(9) [36–39]:

\[
G_i (kJ cm^{-3}) = \sum_i G_i x_i, \quad (1)
\]

\[
V_p (cm^3 mol^{-1}) = \frac{4\pi}{3} N_0 (XR_i^3 + YR_i^3), \quad (2)
\]

\[
V_f (cm^3 mol^{-1}) = \frac{\rho}{M} \sum_i V_i x_i, \quad (3)
\]

\[
E (GPa) = 2V_f G, \quad (4)
\]

* Corresponding author: Ayhan Etyemez, Nikken Turkey, Istanbul, Turkey, e-mail: ayhan@nikken.com.tr

© 2022 Ayhan Etyemez, published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.
Table 1: The chemical components of (100 – x) HAP + xTiO2 composite

Composite code	Chemical composition (wt%)	Density (g cm⁻³)		
	HAP	TiO₂		
S1	100	0	3.140	
S2	97	3	3.192	
S3	92.5	7.5	3.27	
S4	90	10	3.3133	

(1) B (GPa) = $1.2V\sigma$,
(2) S (GPa) = $\frac{3EB}{9B - E}$,
(3) L (GPa) = $B + \frac{3}{4}S$,
(4) $\sigma = 0.5 - \frac{1}{7.2}V_t$,
(5) E^* (GPa) = $\frac{E}{1 - \sigma^2}$,

where N_A, R_A, R_O, X, and Y represent Avogadro’s number, ionic radius of the metal, ionic radius of oxygen, the number of metal atoms, and the number of oxygen atoms, respectively.

3 Results and discussions

Using MMM, the structural and mechanical features of the composite samples are extracted and the results were discussed. These parameters are obtained based on some mechanical components like packing density (V_t, cm³ mol⁻¹) and bond dissociation energy (G_t, kJ cm⁻³) which are listed in Table 2 for S1–S4 samples. The obtained structural, physical, and mechanical properties of the chosen samples are represented graphically in Figures 1–3.

Table 2: Some of the mechanical components of HAP + TiO₂ samples

Sample code	V_t (cm³ mol⁻¹)	G_t (kJ cm⁻³)
S1	0.755173	256.988
S2	1.065676	190.000
S3	1.51004	164.0664
S4	1.748149	162.0022

Figure 1: Bond dissociation energy and packing density vs TiO₂ ratio for chosen HAP samples.

Figure 2: Mechanical moduli vs TiO₂ ratio for chosen HAP samples.
The obtained bond dissociation energy \((G_t, \text{kJ cm}^{-3}) \) and packing density \((V_t, \text{cm}^3\text{mol}^{-1}) \) vs TiO\(_2\) ratio are plotted in Figure 1. As it is seen from this figure that on increasing the rate of TiO\(_2\) from 0 to 10\%, a sharp reduction is reported for \(G_t \) from 256.988 (kJ cm\(^{-3}\)) to 162.0022 (kJ cm\(^{-3}\)). This may be due to replacing low \(G_t \) materials like TiO\(_2\) with high \(G_t \) materials. But a different trend is observed for \(V_t \) vs TiO\(_2\) ratio, which shows the strong linearity between TiO\(_2\) concentration and packing factor \((V_t) \). In other words, increasing the rate of TiO\(_2\) causes an increase in the \(V_t \) values from 0.755173 (cm\(^3\) mol\(^{-1}\)) to 1.748149 (cm\(^3\) mol\(^{-1}\)) for S1–S4 samples.

The mechanical moduli such as \(E, B, S, L, E^*, \) and \(\sigma \) vs TiO\(_2\) ratio are represented in Figures 2 and 3. As expected, increasing the TiO\(_2\) concentration from 0–10\% causes an increase in the values of the \(E, B, S, L, E^*, \) and \(\sigma \) from 388.1408, 388.1408, 147.4606, 462.3315, 0.604885, and 612.0994 to 566.4078, 1188.198, 199.362, 199.362, 0.742798, and 1263.595, respectively. This means TiO\(_2\) is a positive material to enhance the shielding capacity of the studied HAP samples. Figure 4 shows the mechanical moduli vs density. From the obtained results it can be understood that by increasing the TiO\(_2\) concentration from S1 to S4 samples, the samples’ density
increases from 3.140 to 3.3133 g cm$^{-3}$. Any increase in the density value accounts for improvement in the stiffness of the S samples. Consequently, the mechanical moduli which is our main concern in this study.

4 Conclusion

The present study aims to investigate the physical, structural, and mechanical characteristics of the HAP + TiO$_2$ samples. These bio-composites are widely used in the human body as bone and teeth tissues. In order to enhance mechanical features, TiO$_2$ of different rates is inserted into HAP bio-composites. Outcomes show that TiO$_2$ is a positive material to improve the mechanical features of the S sample. This behavior may be due to the increase in the density of the S samples from S1 to S4, which improves the stiffness of the HAP samples, and consequently the mechanical moduli will enhance.

Funding information: There are no funding sources for this study.

Author contributions: All data were obtained by author himself.

Conflict of interest: The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Ethical approval: The conducted research is not related to either human or animal use.

Data availability statement: All data generated or analyzed during this study are included in this published article.

References

[1] Qiu H, Yang J, Kodali P, Koh J, Ameer GA. A citric acid-based hydroxyapatite composite for orthopedic implants. Biomaterials. 2006 Dec;27(34):5845–54. doi: 10.1016/j.biomaterials.2006.07.042.

[2] Htun ZL, Ahmad N, Thant AA, Noor AF. Characterization of CaO-ZrO2 reinforced HAP biocomposite for strength and toughness improvement. Procedia Chem. 2016;19:510–6. doi: 10.1016/j.proche.2016.03.046.

[3] Boodaghi MR, Akkurt I. A Monte Carlo study on attenuation characteristics of Colemanite- and barite-containing resources irradiated by 252Cf source against neutron–gamma photon. Polym Bull. 2021. doi: 10.1007/s00289-021-03883-8.

[4] Akkurt I, Malidarre RB, Kantal I, Gunoglu K. Monte Carlo simulations study on gamma-ray–neutron shielding characteristics for vinyl ester composites. Polym Compos. 2021 Sep;42(9):4764–74. doi: 10.1002/pc.26185.

[5] Akkurt I, Malidarreh PB, Malidarre RB. Simulation and prediction the attenuation behavior of the KNN-LMN based lead free ceramics by FLUKA code and artificial neural network (ANN) – based algorithm. Environ Technol. 2021 Nov;1–15. doi: 10.1080/09593330.2021.2008017.

[6] Boodaghi Malidarre R, Akkurt I. Monte Carlo simulation study on TeO2–Bi2O3–PbO–MgO–B2O3 glass for neutron-gamma 252Cf source. J Mater Sci Mater Electron. 2021;32(9):11666–82. doi: 10.1007/s10854-021-05776-y.

[7] Çelen YY, Akkurt I, Ceylan Y, Ateşken H. Application of experiment and simulation to estimate radiation shielding capacity of various rocks. Arab J Geosci. 2021;14(15):1471. doi: 10.1007/s12517-021-08000-7.

[8] Yongca YC. Atilla Evcin. Emerging Mater Res. 2020;9(3):770–5. doi: 10.1680/jemmr.20.00098.

[9] Almuqrin AH, Sayyed MI, Kumar A, El-bashir BO, Akkurt I. Optical, mechanical properties and gamma ray shielding behavior of TeO2-Bi2O3-PbO-MgO-B2O3 glasses using FLUKA simulation code. Opt Mater. 2021;113:110900. doi: 10.1016/j.optmat.2021.110900.

[10] Al-Obaidi S, Akylirdim H, Gunoglu K, Akkurt I. Neutron shielding calculation for barite-boron-water. Acta Phys Pol A. 2020;137(4):551–3. doi: 10.12693/APhysPolA.137.551.

[11] Akkurt I, Akylirdim H, Mavi B, Kılıncarslan S, Basyigit C. Photon attenuation coefficients of concrete includes barite in different rate. Ann Nucl Energy. 2010;37(7):910–4. doi: 10.1016/j.anucene.2010.04.001.

[12] Malidarrea RB, Kulali F, Inal A, Oz A. Monte Carlo simulation of a waste soda–lime–silica glass system containing Sb$_2$O$_3$ for gamma-ray shielding. Emerging Mater Res. 2020;9(4):1334–40. doi: 10.1680/jemmr.20.00202.

[13] Akkurt I, Basyigit C, Kılıncarslan S, Mavi B, Akkurt A. Radiation shielding of concretes containing different aggregates. Cement Concr Compos. 2006;28(2):153–7. doi: 10.1016/j.cemconcomp.2005.09.006.

[14] El-Khayatt AM, Akkurt I. Photon interaction, energy absorption and neutron removal cross section of concrete including marble. Ann Nucl Energy. 2013;60:68–14. doi: 10.1016/j.anucene.2013.04.021.

[15] Tekin HO, Abouhaswa AS, Kilicoglu O, Issa SAM, Akkurt I, Rammah YS. Fabrication, physical characteristic, and gamma-photon attenuation parameters of newly developed molybdenum reinforced bismuth borate glasses. Phys Scr. 2020;95:115703. doi: 10.1088/1402-4896/abbf6e.

[16] Rammah YS, Kumar A, Mahmoud KA, El-Mallaway R, El-Agawany FI, Susoy G, et al. SnO-reinforced silicate glasses and utilization in gamma-radiation-shielding applications. Emerging Mater Res. 2020;9(3):1000–8. doi: 10.1680/jemmr.20.00150.
[17] Günday O, Sarıhan M, Yarar O, Akkurt İ, Demir M. Measurement of radiation dose in thyroid scintigraphy. Acta Phys Pol A. 2020;137(4):569–73. doi: 10.12693/APhysPolA.137.569.

[18] Çelen YY, Akkurt İ, Kayran HF. Gamma ray shielding parameters of barium tetra titanate (BaTi4O9) ceramic. J Mater Sci Mater Electron. 2021;32(13):18351–62. doi: 10.1007/s10854-021-06376-6.

[19] Akkurt I, Malidarre RB, Karlalı I, Gunoglu K. Monte Carlo simulations study on gamma ray–neutron shielding characteristics for vinyl ester composites. Polym Compos. 2021;42(9):4764–74. doi: 10.1002/polc.26185.

[20] Tekin HO, Cavlı B, Altunsoy EE, Manicci T, Ozturk C, Karakas HM. An investigation on radiation protection and shielding properties of 16 slice computed tomography (CT) facilities. Int J Comp Exp Sci Eng. 2018;4(2):37–40. doi: 10.22399/ijcesen.408231.

[21] Akkurt I, El-Khayatt AM. The effect of barite proportion on neutron and gamma-ray shielding. Ann Nucl Energy. 2013;51:5–9. doi: 10.1016/j.anucene.2012.08.026.

[22] Kulali F. Simulation studies on the radiological parameters of marble concrete. Emerg Mat Res. 2020;9(4):1341–7. doi: 10.1680/jemmr.20.00307.

[23] Akkurt I, Tekin HO. Radiological parameters of bismuth oxide glasses using the Phy-X/PSD software. Emerging Mater Res. 2020;9(3):1020–7. doi: 10.1680/jemmr.20.00209.

[24] Boodaghi Malidarre R, Akkurt İ, Gunoglu K, Akylidarım H. Fast neutrons shielding properties for HAP–Fe2O3 composite materials. Int J Comp Exp Sci Eng. 2021;7(3):143–5. doi: 10.22399/ijcesen.1012039.

[25] Boodaghi Malidarre R, Akkurt İ, Gunoglu K, Akylidarım H. Fast neutrons shielding properties for HAP–Fe2O3 composite materials. Int J Comp Exp Sci Eng. 2021;7(3):143–5. doi: 10.22399/ijcesen.1012039.

[26] El-Agawany FI, Mahmoud KA, Akylidarım H, Youssef E, Tekin HO, Ramahm YS. Physical, neutron, and gamma-rays shielding parameters for Na2O–SiO2–PbO glasses. Emerg Mat Res. 2021;10(2):227–37. doi: 10.1680/jemmr.20.00297.

[27] Arslankaya S, Çelik MT. Green supplier selection in steel door industry using fuzzy AHP and fuzzy Moora methods. Emerg Mater Res. 2021;10(4):357–69. doi: 10.1680/jemmr.21.00011.

[28] Arslankaya S, Çelik MT. Green supplier selection in steel door industry using fuzzy AHP and fuzzy Moora methods. Emerg Mater Res. 2021;10(4):357–69. doi: 10.1680/jemmr.21.00011.

[29] Arslankaya S. Estimation of hanging and removal times in eloxal with artificial neural networks. Emerg Mater Res. 2020;9(2):366–74. doi: 10.1680/jemmr.19.00191.

[30] Tekin HO, Issa SAM, Mahmoud KA, El-Agawany FI, Rammah YS, Susoy G, et al. Nuclear radiation shielding competences of barium (Ba) reinforced borosilicate glasses. Emerg Mater Res. 2020;9(4):91131–44. doi: 10.1680/jemmr.20.00185.

[31] Çelen YY. Gamma ray shielding parameters of some phantom fabrication materials for medical dosimetry. Emerg Mater Res. 2021;10(3):307–13. doi: 10.1680/jemmr.21.00043.

[32] Arslankaya S. Estimating the effects of heat treatment on aluminum alloy with artificial neural networks. Emerg Mater Res. 2020;9(2):540–9. doi: 10.1680/jemmr.20.00059.

[33] Akkurt I. Effective atomic and electron numbers of some steels at different energies. Ann Nucl Energy. 2009;36(11–12):1702–5. doi: 10.1016/j.anucene.2009.09.005.

[34] Waheed F, İmamoğlu M, Karpuz N, Ovaloğlu H. Simulation of neutrons shielding properties for some medical materials. Int J Comp Exp Sci Eng. 2022;8(1):6–9. doi: 10.22399/ijcesen.1032359.

[35] Akkurt I, Akylidarım H. Radiation transmission of concrete including pumice for 662, 1173 and 1332keV gamma rays. Nucl Eng Des. 2012;252:163–71. doi: 10.1016/j.nuclengdes.2012.07.008.

[36] Luo JP, Jia X, Zheng DL, Wang G, Sun JF, Yan M. A novel approach to achieving a low Young’s modulus in titanium-based metallic glasses. Emerg Mater Res. 2019;8(1):22–8. doi: 10.1680/jemmr.16.00098.

[37] Inaba S, Fujino S, Morinaga K. Young’s modulus and compositional parameters of oxide glasses. J Am Cer Soc. 1999;82:3501–7. doi: 10.1111/j.1151-2916.1999.tb02272.x.

[38] Mezrag F, Bouarissa N, Fares NE. The elastic constants and related mechanical properties of AlxIn1–xP. Emerg Mater Res. 2020;9(4):1060–5. doi: 10.1680/jemmr.20.00013.

[39] Akkurt I, Malidarre RB. Physical, structural, and mechanical properties of the concrete by FLUKA code and Phy-X/PSD software. Radiat Phys Chem. 2022;193:109958. doi: 10.1016/j.radphyschem.2021.109958.