UNIQUENESS THEOREMS FOR CAUCHY INTEGRALS

MARK MELNIKOV, ALEXEI POLTORATSKI, AND
ALEXANDER VOLBERG

Abstract

If \(\mu \) is a finite complex measure in the complex plane \(\mathbb{C} \) we denote by \(C^\mu \) its Cauchy integral defined in the sense of principal value. The measure \(\mu \) is called reflectionless if it is continuous (has no atoms) and \(C^\mu = 0 \) \(\mu \)-almost every point. We show that if \(\mu \) is reflectionless and its Cauchy maximal function \(C^\mu_* \) is summable with respect to \(|\mu| \) then \(\mu \) is trivial. An example of a reflectionless measure whose maximal function belongs to the “weak” \(L^1 \) is also constructed, proving that the above result is sharp in its scale. We also give a partial geometric description of the set of reflectionless measures on the line and discuss connections of our results with the notion of sets of finite perimeter in the sense of De Giorgi.

2000 Mathematics Subject Classification. 30E20, 31A15, 42B20.
Key words. Cauchy integral, reflectionless measure.

The first author is supported by grants No. MTM2004-00519 and 2001SGR00431.
The second author is supported by N.S.F. Grant No. 0500852.
The third author is supported by N.S.F. Grant No. 0501067.