The scattering phase shifts of the Hulthén-type potential plus Yukawa potential

Oyewumi*1, K. J. and Oluwadare+2, O. J

1Department of Physics, Federal University of Technology, Minna, Niger State, Nigeria.
2Department of Physics, Federal University Oye-Ekiti, Ekiti State, Nigeria.

Abstract
The Hulthén- type potential is perturbed by adding Yukawa potential. By applying a short-range approximation to the Schrödinger equation containing this model via standard method, the scattering state solutions and the corresponding phase shifts were obtained. Our numerical calculations and graphical solutions show the dependencies of scattering phase shifts on Yukawa potential constant \(A\), asymptotic wave number \(k\), screening parameter \(\alpha\) and angular momentum quantum number \(l\).

PACS number: 03.65.-w; 03.65.Nk

Keywords: Schrödinger equation; Hulthén- type potential plus Yukawa potential; short-range approximation; scattering states; scattering phase shifts.

1. Introduction
The Hulthén type potential plus Yukawa potential defined in this work [1-4] is given by

\[
V(r) = -\left[V_o + \frac{A(1-e^{-\alpha r})}{r} \right] \frac{1}{(e^{\alpha r} - 1)},
\]

where \(\alpha\) is the screening parameter, \(V_o\) is the coupling potential strength and \(A\) is a constant parameter related to Yukawa potential. The perturbation here is necessary since two models have a wide range of applications in various aspects of physics. The Yukawa potential has previously been used to calculate the energy levels of neutral atoms (see Yahya et al. 2013 [5] and references therein). The Hulthén potential is a useful model that are always attract attentions of researchers in many fields of physics including nuclear and high energy physics (Hulthén & Sugawara 1957), atomic physics [7,8], solid state physics [9]) and chemical physics [10].

The applicability of Hulthén potential led to its modifications by various researchers in relativistic and non-relativistic quantum mechanics [11-19] while different approaches have been employed in studying the above mentioned cases.

*On Sabbatical Leave from: Theoretical Physics Section, Department of Physics, University of Ilorin, Ilorin, Nigeria. kjoyewumi66@unilorin.edu.ng *oluwatimilehin.oluwadare@fuoye.edu.ng
To mention a few, Wei et al. [20] obtained the approximate analytical scattering state solutions of the Schrödinger equation with the generalized Hulthén potential for any \(\ell \)-state. Saad [11] studied the bound states of a spinless particle in D-dimensions and found the normalization constant in terms of incomplete Beta function. Also, the scattering state solutions of the Klein-Gordon equation for the Hulthén potential and transmission resonances have been studied by Guo & Fang [21] while the transmission resonances for a Dirac particle in a one dimensional Hulthén potential was presented by Guo et al. [22]. In their work, they presented the reflection and transmission coefficients and the dependency of transmission resonance on the shape of the potential.

However, the scattering state solutions of the Schrödinger equations with Hulthén type potential plus Yukawa potential have not been studied. Therefore, in our own case, we are applying a fundamental idea to obtain the approximate scattering phase shifts and the corresponding bound state energy levels at the real poles S-matrix for the Hulthén-type potential plus Yukawa potential within context of a short range approximation.

Our work is structured as follows: Section 2 contains the basic equations of Schrödinger equation together with the potential and a short range approximation of interest. In section 3, we obtain the scattering state solutions of the Schrödinger equation with Hulthén type potential plus Yukawa potential by applying a short range approximation via standard method. The numerical results and graphical solutions of the wave number dependent-scattering phase shifts are presented in Section 4, while the conclusion is given in Section 5.

2. The Basic equations

The Time-independent Schrödinger equation for describing the dynamics of nonrelativistic particles within a physically solvable potential is written as [23]:

\[
\left[-\frac{\hbar^2}{2\mu}\nabla^2 + V(r)\right]\Psi(r, \theta, \varphi) = E_{nl}\Psi(r, \theta, \varphi)
\]

(2)

and defining the wave function \(\Psi(r, \theta, \varphi) = r^{-1}R(r)Y(\theta, \varphi) \), the radial part of the Schrödinger equation takes the following form [23]

\[
\frac{d^2 R_{nl}(r)}{dr^2} + \frac{2\mu}{\hbar^2}
\left[E_{nl} - V(r) - \frac{l(l+1)\hbar^2}{2\mu r^2}\right]R_{nl} = 0,
\]

(3)

where \(l \) is the angular momentum quantum number, \(\mu \) is the reduced mass of the particles interacting with the potential field \(V(r) \) and \(E_{nl} \) is the nonrelativistic energy of the particles.

By substituting Eq. (1) into Eq. (3), we can simply obtain
\[
\frac{d^2 R_{nl}(r)}{dr^2} + \left\{ \frac{2\mu E_{nl}}{\hbar^2} + \frac{2\mu}{\hbar^2} \left[V_0 + \frac{A(1-e^{-ar})}{r} \right] - \frac{1}{(e^{ar}-1)} - \frac{l(l+1)}{r^2} \right\} R_{nl} = 0. \tag{4}
\]

To find an approximate solution, we apply short-range approximation of the type [5, 24, 25, 27-29]

\[
\frac{1}{r^2} \approx \frac{\alpha^2}{(1-e^{-ar})^2} \tag{5}
\]

to remove the effect of the centrifugal term. This approximation is valid only for small values of screening parameter \(\alpha\) and fail for large \(\alpha\). The effects of a similar short range approximation on the scattering phase shifts have been explained by Oluwadare et al. [24].

3. Scattering state solutions

In order to solve for the scattering state solutions, the Schrödinger equation with the Hulthén type potential plus Yukawa potential is then transformed by the variable \(z = 1 - e^{-ar}\), which yields

\[
(1 - z)^2 R_{nl}(z)'' - (1 - z)R_{nl}(z)' + z^{-2}[\zeta_1 z^2 + \zeta_2 z - \zeta_3] R_{nl} = 0, \tag{6}
\]

where

\[
\zeta_1 = \frac{2\mu}{a^2\hbar^2} [V_0 + \alpha A] - l(l + 1) - \frac{k^2}{a^2}, \quad \zeta_2 = \frac{2\mu}{a^2\hbar^2} [V_0 + \alpha A], \quad \zeta_3 = l(l + 1). \tag{7}
\]

and the propagation constant or the asymptotic wave number \((k)\) of the particles interacting in this potentials equals \(\sqrt{\frac{2\mu E_{nl}}{\hbar^2} - \alpha^2 l(l + 1)}\). For zero angular momentum quantum number \((l = 0)\) in the natural units \((\hbar = \mu = c = 1)\) implies that the momentum \(k = \sqrt{2E_{nl}}\).

Assuming a useful trial wave function of the form:

\[
U(z) = z^{\sigma} (1 - z)^{-ik/\alpha} f(z), \tag{8}
\]

with

\[
\sigma = \frac{1}{2} + \frac{1}{\sqrt{4 + l(l + 1)}}. \tag{9}
\]

Then, by substituting this into Eq. (6), we have

\[
z(1 - z)f''(z) + \left[2\sigma - \left(2\sigma - \frac{2ik}{\alpha} + 1 \right) z \right] f'(z) + \left[\left(\sigma - \frac{ik}{\alpha} \right)^2 + \zeta_1 \right] f(z) = 0. \tag{10}
\]

By applying the boundary condition that \(f(z)\) tends to a finite as \(z \to 0\), the solution [26] is

\[
R_{nl}(r) = N_{nl}(1 - e^{-ar})^{\sigma} e^{ikr} F_1(a; b; c; 1 - e^{-ar}), \tag{11}
\]

where
\[a = \sigma - \frac{ik}{\alpha} - \sqrt{\xi_1}, \quad (12a) \]
\[b = \sigma - \frac{ik}{\alpha} + \sqrt{\xi_1}, \quad (12b) \]
\[c = 2\sigma \quad (12c) \]

and \(N_{nl} \) is the normalization constant.

3.1. Scattering Phase shifts

The scattering phase shifts \(\delta_l \) can be obtained by analyzing the asymptotic behaviour of the wave function. Therefore, we consider a recurrence relation of hypergeometric function, which is given by:

\[
\begin{align*}
{2F}_1(a; b; c; z) &= \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}{2F}_1(a, b; 1 + a + b - c; 1 - z) \\
&+ (1 - z)^{c-a-b}\frac{\Gamma(c)\Gamma(a+b-c)}{\Gamma(a)\Gamma(b)}{2F}_1(c - a, c - b; c - a - b + 1; 1 - z).\quad (13)
\end{align*}
\]

Using Eq. (13) and the property \(zF_1(a, b; c; 0) = 1 \), as \(r \to \infty \), we have

\[
\lim_{r \to \infty} 2F_1(a, b; c; 1 - e^{-ar}) \sim \left\{ \frac{\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} + e^{-2ikr} \left[\frac{\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} \right]^* \right\}, \quad (14)
\]

where we have used the following conjugate relations in the process:

\[
(a + b - c)^* = c - a - b = \frac{2ik}{a}, \quad (15a) \]
\[
a^* = c - a = \sigma + \frac{ik}{\alpha} + \sqrt{\xi_1}, \quad (15b) \]
\[
b^* = c - b = \sigma + \frac{ik}{\alpha} - \sqrt{\xi_1}. \quad (15c) \]

A phase parameter \(\theta_i \) related to the scattering phase shift is defined by \([20, 24]\)

\[
\frac{\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} = \left| \frac{\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} \right| e^{i\theta_i}, \quad (16)
\]

which is substituted into Eq. (14), leading to

\[
\lim_{r \to \infty} 2F_1(a, b; c; 1 - e^{-ar}) \sim e^{-ikr}[e^{i(kr+\theta_i)} + e^{-i(kr+\theta_i)}]. \quad (17)
\]

Thus, the solution \(R(r) \) in Eq. (11) has the asymptotic behaviour of the form;

\[
R(r) \sim \cos(kr + \theta_i)r \to \infty, \quad (18)
\]

with

\[
\theta_i = \text{arg} \Gamma\left(\frac{2ik}{\alpha} \right) - \text{arg} \Gamma(a^*) - \text{arg} \Gamma(b^*) \quad (19)
\]

The approximate phase shift \(\Delta_l^{(0)} \) without the Hulthén potential plus Yukawa potential is obtained as
\[\theta_l^{(0)} = \arg \Gamma \left(\frac{2ik}{a} \right) - \arg \Gamma (\eta_1^*) - \arg \Gamma (\eta_2^*), \]

(20)

where

\[\eta_1^* = \sigma + \frac{ik}{a} + i \sqrt{l(l+1) + \frac{k^2}{a^2}} \quad \text{and} \quad \eta_2^* = \sigma + \frac{ik}{a} - i \sqrt{l(l+1) + \frac{k^2}{a^2}}. \]

(21)

A more 'physical' definition of the scattering phase shift \(\delta_l \) when applying some short-range type approximations for the angular motions is recently suggested by Oluwadare et al. [24] as

\[\delta_l = \theta_l - \theta_l^{(0)} = \arg \Gamma (\eta_1^*) + \arg \Gamma (\eta_2^*) - \arg \Gamma (a^*) - \arg \Gamma (b^*). \]

(22)

4.0. Numerical Results

Table 1: The wave number-dependent scattering phase shifts \(\delta_l \) for a Hulthén type potential plus Yukawa potential in atomic units (\(\hbar = \mu = 1 \)) for \(l = 0 \) & \(V_0 = 1 \)

\(k \)	\(\alpha \)	\(\delta_l \) for \(A = 0 \)	\(\delta_l \) for \(A = 5 \)
0.01	0.050	85.99747	96.02187
	0.075	56.30153	67.31205
	0.100	42.77292	52.53402
0.03	0.050	83.01168	93.33025
	0.075	54.93278	65.15410
	0.100	41.11436	50.98069
0.05	0.050	80.67924	90.94696
	0.075	53.47469	63.51416
	0.100	39.91334	49.70670
0.07	0.050	78.66066	88.84724
	0.075	52.15129	62.09286
	0.100	38.90094	48.61442
0.09	0.050	76.85325	86.95779
	0.075	50.95406	60.81440
	0.100	38.00155	47.63832
0.11	0.050	75.20635	85.23028
	0.075	49.86018	59.64271
	0.100	37.18307	46.74557
0.13	0.050	73.68827	83.63312
	0.075	48.85074	58.55770
	0.100	36.42819	45.91819
0.15	0.050	72.27707	82.14437
	0.075	47.91182	57.54473
	0.100	35.72587	45.14486
Table 2: The wave number-dependent scattering phase shifts δ_l for a Hulthén type potential plus Yukawa potential in atomic units ($\hbar = \mu = 1$) for $l = 1$ & $V_0 = 1$

k	α	δ_l for $A = 0$	δ_l for $A = 5$
0.01	0.050	83.26582	93.32007
	0.075	53.32553	64.25479
	0.100	39.52724	49.56731
0.03	0.050	80.94760	91.28052
	0.075	52.51662	62.75149
	0.100	38.41452	48.39482
0.05	0.050	78.95579	89.23458
	0.075	51.43166	61.49191
	0.100	37.59783	47.44867
0.07	0.050	77.10688	87.30387
	0.075	50.33598	60.29911
	0.100	36.84001	46.59532
0.09	0.050	75.38692	85.05047
	0.075	49.28127	59.16223
	0.100	36.11447	45.78786
0.11	0.050	73.78686	83.19616
	0.075	48.27840	58.08115
	0.100	35.41759	45.01435
0.13	0.050	72.29206	82.24618
	0.075	47.32822	57.05467
	0.100	34.74937	44.27207
0.15	0.050	70.89283	80.76903
	0.075	46.42846	56.08011
	0.100	34.10972	43.56011

Table 3: The wave number-dependent scattering phase shifts δ_l for a Hulthén type potential plus Yukawa potential in atomic units ($\hbar = \mu = 1$) for $l = 2$ & $V_0 = 1$

k	α	δ_l for $A = 0$	δ_l for $A = 5$
0.01	0.050	80.11795	90.27644
	0.075	50.09431	60.57175
	0.100	35.20799	46.25664
0.03	0.050	78.18973	88.55603
	0.075	49.46769	59.69517
	0.100	34.99714	45.19103
0.05	0.050	76.53055	86.83194
	0.075	48.63354	58.72984
	0.100	34.49899	44.45637
0.07	0.050	74.93659	85.15450
	0.075	47.76903	57.76613
	0.100	33.95912	43.79587
0.09	0.050	73.40527	83.53989
	0.075	46.89550	56.81843
	0.100	33.41263	43.15913
0.11	0.050	71.94191	81.99477
	0.075	46.04966	55.89310
	0.100	32.86989	42.53562
0.13	0.050	70.54801	80.52068
	0.075	45.22816	54.99380
	0.100	32.33533	41.92400
0.15	0.050	69.22205	79.11607
	0.075	44.43324	54.12254
	0.100	31.81139	41.32505
4.1. Graphical Results

Fig. 1: The asymptotic wave number dependent scattering phase shifts (blue solid line) $l = 1, A = 0, \alpha = 0.050, V_0 = 1$ is compared to that with $l = 1, A = 5, \alpha = 0.050, V_0 = 1$ (red dashed line).

Fig. 2: The asymptotic wave number dependent scattering phase shifts (blue solid line) $l = 1, A = 0, \alpha = 0.100, V_0 = 1$ is compared to that with $l = 1, A = 5, \alpha = 0.100, V_0 = 1$ (red dashed line).
Fig. 3: The asymptotic wave number dependent scattering phase shifts (blue solid line) $l = 2, A = 0, \alpha = 0.050, V_0 = 1$ is compared to that with $l = 2, A = 5, \alpha = 0.050, V_0 = 1$ (red dashed line).

Fig. 4: The asymptotic wave number dependent scattering phase shifts (blue solid line) $l = 2, A = 0, \alpha = 0.100, V_0 = 1$ is compared to that with $l = 2, A = 5, \alpha = 0.100, V_0 = 1$ (red dashed line).
4.2. Discussion

In order to show the regularity and consistency of our results, we obtained the asymptotic wave number dependent-phase shifts for various values of screening parameter $\alpha = 0.050, 0.075, 0.100$ and Yukawa potential constant A.

Table 1, Table 2 & Table 3 show the numerical wave number-dependent phase shifts for $l = 0, 1 & 2$, respectively. The scattering phase shifts reduce with increasing values of the asymptotic wave number k, angular momentum quantum number l and screening parameter α but increase with increasing values of Yukawa potential constant A. The results for which the Yukawa potential constant varnishes ($A = 0$) correspond to that of Hulthén-type potential.

The Fig. 1-4 shows the linearity between the phase shifts and asymptotic wave number k, angular momentum quantum number l and screening parameter α for the Hulthén potential plus Yukawa potential. Fig. 1-4 also show the effects of Yukawa potential constant A on the asymptotic wave number dependent-scattering phase shifts as the angular momentum quantum number l increases. For $k > 0.03$, the scattering phase shifts reduce linearly.

5. Conclusion

When a short range approximation is applied to the Hulthén–type potential plus Yukawa potential with the Schrödinger equation the scattering state solutions of nonrelativistic particles interacting radially with the Hulthén potential plus Yukawa potential were also investigated. The radial scattering wave functions and wave number–dependent phase shifts are presented.

The numerical values of wave number-dependent scattering phase shifts for the Hulthén type potential plus Yukawa potential were displayed in Table 1, Table 2 & Table 3 for $l = 0, 1 & 2$, respectively. The presence of Yukawa potential increases the values of scattering phase shifts for any arbitrary values of angular momentum quantum number l and the screening parameter α. The scattering phase shifts reduces with increasing values of the asymptotic wave number k, angular momentum quantum number l and screening parameter while the Fig. 1-4 show the effects of Yukawa potential constant A on the phase shifts and the dependencies of phase shifts on the asymptotic wave number k, angular momentum quantum number l and screening parameter α.
References

1. Hulthén, L. (1942): Über die Eigenlösungen der Schrödingergleichung des Deuterons. Ark. Mat. Astron. Fys, Band 28A, 1.
2. Bayrak, O., G Kocak, G. & I Boztosun, I. (2006): Any l-state solutions of the Hulthén potential by the asymptotic iteration method. J. Phys. A: Math. Gen. 39, 11521.
3. Bayrak, O. & Boztosun, I. (2007a): Bound state solutions of the Hulthén potential by using the asymptotic iteration method. Phys. Scr. 76, 92.
4. Bayrak, O. & Boztosun, I. (2007b): Analytical solutions to the Hulthén and the Morse potentials by using the asymptotic iteration method. J. Mol. Struc: THEOCHEM 802 (1), 17.
5. Yahya, W.A. Falaye, B.J., Oluwadare, O.J. & Oyewumi, K.J. (2013): Solutions of Dirac equation with the shifted Deng-Fan potential including Yukawa-like tensor interaction. Int. J. Mod. Phys. E, 22, 1350062.
6. Hulthén, L. & Sugawara. M. (1957): The two-nucleon problem, Flügge, S. (ed.) Encyclopedia of Physics 39, 1 (Berlin: Springer).
7. Tietz, T. (1961): Negative Hydrogen Ion. J. Chem. Phys. 35, 1917.
8. Lam, C.S. & Varshni, Y.P. (1971): Energies of Eigen states in static Screened Coulomb potential. Phys. Rev A4, 1875.
9. Berezin, A.A. (1972): Theory of positron trapping by F- and F'-colour centres in alkali halides. Phys. Status. Solidi (b), 50, 71.
10. Pyykkö, P & Jokisaari, J. (1975): A Hulthén Potential LCAO model for JX-H in hydrides XH4. Chem. Phys. 10, 293.
11. Saad, N (2007): The Klein–Gordon equation with a generalized Hulthén potential in D -dimensions. Phys. Scr. 76, 623-627.
12. Ikhdair, S.M. & Sever, R. (2007): Approximate Eigenvalue and Eigen function Solutions for the Generalized Hulthén Potential with any Angular Momentum. J. Math. Chem. 42, 461-471.
13. Olğar, E., Koç., R. & Tütüncüler, H. (2008): The exact solution of the s-wave Klein–Gordon equation for the generalized Hulthén potential by the asymptotic iteration method. Phys. Scr. 78, 015011.
14. Haouat, S & Chetouani, L. (2008): Approximate solutions of Klein–Gordon and Dirac equations in the presence of the Hulthén potential. Phys. Scr. 77, 025005.

15. Ikhdair, S.M. & Sever, R. (2009): Any l -state improved quasi-exact analytical solutions of the spatially dependent mass Klein–Gordon equation for the scalar and vector Hulthén potentials. Phys. Scr. 79, 035002.

16. Ikhdair, S.M & Jamal, A.H. (2011): Quantization rule solution to the Hulthén potential in arbitrary dimension with a new approximate scheme for the centrifugal term. Phys. Scr. 83 025002.

17. Arda, A., Aydoğdu, O. & Sever R. (2011): Scattering and bound state solutions of Asymmetric Hulthén Potential, Phys. Scr. 84, 025004.

18. Hassanabadi, H., Maghsoodi, E. Ikot, A. N. & Zarrinkamar, S. (2013): Dirac equation under Manning-Rosen potential and Hulthén tensor interaction. Euro. Phys. J. Plus 128, 79.

19. Hassanabadi, S., Ghominejad, M. & Thylwe, K.E. (2015): Two-Body Scattering in (1 + 1) Dimensions by a Semi-relativistic Formalism and a Hulthén Interaction Potential. Comm. Theor. Phys. 63, 423-426.

20. Wei, G.F., Liu, X.Y. & Chen, W.L. (2009): The Relativistic Scattering States of the Hulthén Potential with an Improved New Approximate Scheme to the Centrifugal Term. Int. J. Theor. Phys. 48, 1649-1658.

21. Guo, J.Y & Fang, X.Z. (2009): Scattering of a Klein–Gordon particle by a Hulthén potential. Can. J. Phys. 87, 1021-1024.

22. Guo, J.Y., Yu, Y. & Jin, S.W. (2009): Transmission resonances for a Dirac particle in the presence in a one dimensional Hulthén potential. Cent. Eur. J. Phys. 7, 168-174.

23. Landau, L. D & Lifshitz, E.M. (1977): Quantum Mechanics, Non-Relativistic Theory (3rd ed., Pergamon, New York).

24. Oluwadare, O. J., Thylwe, K. E. & Oyewumi, K. J. (2016): Non-relativistic phase shifts for scattering on generalized radial Yukawa potentials. Commun. Theor. Phys. 65, 434-440.

25. Oluwadare, O. J., Oyewumi, K.J., Akoshile, C.O. & Babalola, O.A. (2012): Approximate analytical solutions of the relativistic equations with the Deng-Fan molecular potential including a Pekeris-type approximation to the (pseudo or) centrifugal term. Phys. Scr. 86, 035002.
26. Abramowitz, M & Stegun, I.A. (1965): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, eds., U.S. Department of Commerce, National Bureau of Standards, New York.

27. Oyewumi, K. J. Oluwadare, O. J. Sen, K. D & Babalola. O. A. (2013a): Bound state solutions of the Deng–Fan molecular potential with the Pekeris-type approximation using the Nikiforov–Uvarov (N–U) method. J. Math. Chem. 51, 976–991.

28. Oyewumi, K.J., Falaye, B. J., Onate, C.A., Oluwadare, O.J. & Yahya, W.A. (2013b): Thermodynamic properties and the approximate solutions of the Schrödinger equation with the shifted Deng–Fan potential model. Mol. Phys. 112, 127-141.

29. Oyewumi, K.J., Falaye, B. J., Onate, C.A., Oluwadare, O.J. & Yahya, W.A. (2014): κ state solutions for the fermionic massive spin- 1/2 particles interacting with double ring-shaped Kratzer and oscillator potentials. Int. J. Mod. Phys. E 23, 2 1450005.