Retechnologization of biological sewage water treatment facilities using mathematical modelling

Liliya Khisameeva 1*[0000-0001-9873-4886], Runar Abitov1[0000-0001-6138-6419], and Ramis Alimov1[0000-0003-0474-3488]

1Kazan State University of Architecture and Engineering, 420043, Zelenaya st., Kazan, Russia

Abstract. The efficiency of sewage treatment plants is an urgent problem of the designed and operating stations. In modern conditions, efficiency is understood as the operation of facilities in which operating costs are minimized, facilities provide standard cleaning, and the company implements measures to modernize and improve energy efficiency and trouble-free operation. The article deals with the comparative analysis and selection of the most optimal scheme of biological sewage water treatment of existing sewage water treatment plants. The indicators of the efficiency of functioning and permissible loads on treatment facilities in the design of aeration tanks for biological sewage water treatment are determined. The results served as the basis for the creation of a mathematical model, with the help of which it is possible to calculate the parameters of the biological treatment system and optimize the process of biological sewage water treatment at existing treatment facilities. Mathematical modeling allows you to reduce the cost of designing and operating treatment facilities, to guarantee the degree of treatment in accordance with the requirements and standards for the discharge of treated sewage water into a reservoir for fisheries purposes.

Keywords: sewage water, eutrophication, biological treatment, biogenic elements, modeling, aeration tank, technological scheme.

1 Introduction

The main cause of pollution of water bodies with biogenic elements that violate the stability of the biosystem is the discharge of urban and industrial sewage water. Scientists from different countries of the world have been solving the problems of high-quality sewage water treatment to prevent eutrophication of water bodies for many years [1-4]. At the end of the twentieth century, our country tightened the standards for the discharge of pollutants into water bodies, introduced technologies for deep removal of nitrogen and phosphorus compounds from sewage water based on the recommendations of research organizations. Since 2012, the updated Construction Norms and Regulations (SNiP) (SP 32.13330.2012 «Sewerage. External networks and structures») allowed for the calculation of structures

* Corresponding author: khisameeva_liliya@mail.ru
with biological removal of nitrogen and phosphorus to use any, including foreign calculation methods. The degree of treatment of sewage water discharged into water bodies must meet the requirements of the current legislation in the field of environmental protection [5].

Traditional biological sewage water treatment allows to remove the bulk of organic pollutants, to oxidize ammonium nitrogen to nitrate, but cannot provide a sufficient depth of removal of nitrogen and phosphorus compounds [6-8]. The issue of removal of nutrients is a priority in improving the quality of treated sewage water before discharge into fisheries reservoirs. Biogenic elements – elements that are constantly included in the composition of organisms and perform certain biological functions. The most important biogenic elements are oxygen, carbon, hydrogen, nitrogen, phosphorus, sulfur, calcium, potassium, sodium, and chlorine. Nitrogen and phosphorus are one of the main components of sewage water, the presence of which in municipal or close to them in the composition of household water is constantly recorded. Nitrogen in sewage water can be represented by several compounds: ammonium nitrogen (NH₄⁺), nitrite nitrogen (NO₂⁻), nitrate nitrogen (NO₃⁻), organic nitrogen (as part of organic compounds). Phosphorus in sewage water is found in organic compounds (organic phosphorus), polyphosphates (P₂O₅), and orthophosphates (PO₄³⁻).

The biological method of deep removal of biogenic substances from sewage water makes it possible to achieve the total phosphorus content in treated waters of 1.0...1.5 mg/dm³, and the total nitrogen content of 8...10 mg/dm³ (including protein, ammonium, nitrite and nitrate) in real biological treatment facilities. The biological method of phosphorus removal makes it possible to achieve a high quality of phosphorus treatment, but this process is very sensitive to the current quality of sewage water received for treatment and requires highly qualified technologists-operators [6-10].

Biological removal of nitrogen from sewage water consists in the following processes: ammonification, in the decomposition of organic nitrogen-containing compounds to non-organic ammonium; nitrification, in the two-stage oxidation of ammonium nitrogen compounds first to nitrites, then to nitrates; denitrification - in the bacterial reduction of nitrate nitrogen to molecular, accompanied by the oxidation of organic substances. At the same time, oxygen is saved, since some organic substances are not oxidized by dissolved oxygen, but by the oxygen of nitrates. To ensure the intensive course of nitrification, denitrification and biological dephosphatation processes, biological treatment facilities are divided into zones with different levels of aeration - aerobic, anoxic and aerobic. Biological treatment of sewage water from nitrogen and phosphorus, based on the processes of ammonification, nitri-denitrification and dephosphatation, is currently recognized as the most economical and environmentally friendly, due to its high efficiency and low consumption [11].

The complexity of the implementation of the developed methods of urban sewage water treatment is that most of the treatment facilities were built in the 80-90s of the last century and currently need reconstruction, as they are morally and physically outdated and do not meet modern requirements. The amount of financial resources required for reconstruction is considerable, and the possibilities are limited. Therefore, there is always a question of the need for reconstruction of sewage water treatment facilities, with minimal financial investments, maximum use of existing facilities and obtaining the required standard quality of sewage water treatment [12, 13].

The aim of this study is to define ways to improve the efficiency of nitrogen removal and phosphorus in biological processes of denitrification and deflation. At the same time, the tasks of minimizing capital investment in facilities and the use of modern technologies of sewage water treatment for nitrogen and phosphorus removal using mathematical modelling techniques in the design of new and reconstruction of existing sewage treatment plants are being solved. The interest in modeling sewage water treatment facilities is explained by the fact that the design, implementation and debugging of new technological solutions is impossible without careful preliminary technological and engineering
calculations. The use of mathematical models makes it possible to significantly reduce the time in the design and operation of sewage water treatment facilities. The software provides a fairly complete picture of the object's behavior under dynamic conditions, i.e., over time. At the same time, it is possible to consider the state of objects in static conditions, taking into account the analysis of other variables, such as the length or depth of structures, which allows us to take into account the hydrodynamic parameters of structures [14].

2 Methods

The biological treatment facilities of Almetyevsk were built in 1967. The design capacity is 40 thousand m3 / day, the actual capacity is 38 thousand m3/day. The sewage water received for treatment is a mixture of industrial and domestic sewage water. The amount of industrial sewage water in the total volume of sewage water inflow is not significant. Sewage water is treated mechanically and biologically. Mechanical cleaning is carried out in the grate building, in horizontal sand traps and primary sedimentation tanks of the radial type. Further, the sewage water enters the aeration tanks, where organic matter is oxidized and settled in secondary sedimentation tanks. The clarified water is chlorinated in the contact tank and discharged into the Stepnoy Zai River via a scattering outlet. Sludge from secondary sedimentation tanks enters the sludge beds.

The flow of sewage water to the treatment facilities is characterized by unevenness during the day and seasonal fluctuations [8, 15].

During the operation of the treatment facilities, laboratory tests revealed that the quality of sewage water treatment does not meet the regulatory values, exceeds the maximum permissible concentrations (MPC) for a fishing reservoir (Table 1).

Table 1a. Data on the composition of incoming sewage water.

Name	Unit of measurement	2014	2015	2015			
	min	med	min	med	min	med	
Ammonium ion	mg/l	73.5	77.8	80.0	59.2	68.4	75.0
BOD$_5$	mgO$_2$/l	204.0	206.2	210.0	196.0	249.0	320.0
Suspended solids	mg/l	280.0	302.8	320.0	332.0	364.0	386.5
Hydrogen index	unit	7.7	7.7	7.8	7.8	7.8	
Total iron	mg/l	1.1	1.71	2	1.039	2.39	3.95
Cadmium	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Manganese	mg/l	0.15	0.263	0.4	0.204	0.252	0.303
Copper	mg/l	0.01	0.012	0.03	0.017	0.021	0.027
petroleum products	mg/l	0.7	1.56	2.1	1.4	1.67	2.02
Nickel	mg/l	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Nitrate ion	mg/l	<0.1	0.35	0.5	<0.1	<0.1	<0.1
Nitrite ion	mg/l	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Anionic surfactants	mg/l	2	3.91	5.59	2	2.68	3.4
Sulfate ion	mg/l	55.2	74.8	100	87.7	108.2	121.4
Dry residue	mg/l	584	701	875	729	816.3	121.4
Phosphorus ion	mg/l	6.15	11.93	19	14.3	28.8	47.68
Fluoride ion	mg/l	0.166	0.229	0.3	0.212	0.233	0.252
Chloride ion	mg/l	73	141	197	138.3	181.2	229.7
COD	mgO$_2$/l	434	466	516	284	397	456
Chrome 3+	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrome 6+	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	mg/l	0.02	0.0218	0.028	0.019	0.028	0.044
The analysis of the qualitative composition of the incoming sewage water showed that (Table 2.):

- the organic load in the incoming sewage water is moderately polluted;
- biogenic load in incoming sewage water: for ammonium nitrogen-highly polluted, for total phosphorus-medium polluted;
- there is an imbalance between nitrogen and phosphorus in the ratio of organic and biogenic substances;
- the average value of the suspended matter concentration is high enough to avoid primary sedimentation.

Name	Unit of measurement	2016	For the first half of 2016				
		min	med	min	med	min	med
Ammonium ion	mg/l	54.3	79.1	54.3	79.1	54.3	79.1
BOD₅	mgO₂/l	188.0	263.7	188.0	263.7	188.0	263.7
Suspended solids	mg/l	130.0	292.0	130.0	292.0	130.0	292.0
Hydrogen index	unit.	7.8	7.8	7.8	7.8	7.8	7.8
Total iron	mg/l	1.17	2.04	1.17	2.04	1.17	2.04
Cadmium	mg/l	0.0046	0.0048	0.004	0.004	0.004	0.004
Manganese	mg/l	0.162	0.181	0.162	0.181	0.162	0.181
Copper	mg/l	0.0157	0.0212	0.015	0.021	0.015	0.021
petroleum products	mg/l	1.14	1.88	1.14	1.88	1.14	1.88
Nickel	mg/l	0.0073	0.0083	0.007	0.008	0.007	0.008
Nitrate ion	mg/l	<0.1	0.214	<0.1	0.214	<0.1	0.214
Nitrite ion	mg/l	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Anionic surfactants	mg/l	1.3	1.94	1.3	1.94	1.3	1.94
Sulfate ion	mg/l	79.4	113.5	79.4	113.5	79.4	113.5
Dry residue	mg/l	79.4	113.5	79.4	113.5	79.4	113.5
Phosphate ion	mg/l	4.88	16.46	4.88	16.46	4.88	16.46
Fluoride ion	mg/l	0.183	0.398	0.183	0.398	0.183	0.398
Chloride ion	mg/l	116.2	210.3	116.2	210.3	116.2	210.3
COD	mgO₂/l	294.4	353.1	294.4	353.1	294.4	353.1
Chrome 3+	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrome 6+	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	mg/l	0.02	0.0252	0.02	0.025	0.02	0.025

A survey of sewage facilities and analysis of laboratory data of sewage water after secondary biological treatment tanks (Table 3) and comparison with the current discharge requirements (Table 4) showed:

- nitrates do not exceed the current regulatory requirements, but this is not a result of complete oxidation of ammonium nitrogen, but is caused by the small capacity of biological treatment facilities;
ammonium nitrogen exceeds the discharge standard by more than $e = 89$ times, caused by a high load on the ingredient in the incoming water (including with return flows), and a short residence time of sewage water in biological treatment facilities;

– The BOD$_n$ exceeds the discharge standard by more than $e=20$ times, caused by the small capacity of the aeration tanks and the removal of colloidal under-oxidized substances;

– suspended substances exceed the discharge standard by more than $e=7.1$ times, the removal of suspended substances is associated with the removal of colloidal under-oxidized substances;

– iron (ion) belongs to the group of heavy metals, is toxic and inert to biochemical oxidation, and its removal is carried out by precipitation and biosorption;

– petroleum products that exceed the permissible discharge by $e=4$ times, which indicates insufficient technological efficiency of cleaning, removal is carried out due to chemical and biodegradation during biological cleaning, and to a lesser extent when surfacing at the stage of mechanical cleaning;

– nitrogen and phosphorus are biogenic elements, the purification efficiency is as follows:
 – ammonium ion - excess of MPC in $e=89$ times;
 – nitrate ion-MPC excess in $e=16$ times;
 – phosphates (ion) - excess of MPC in $e=30$ times.

Methods of sewage water treatment from petroleum products and heavy metals are presented in the works [16, 17]. The main technologies developed for the removal of phosphorus from sewage water can be classified into biological and chemical methods. The biological method often does not provide complete removal of phosphorus [6, 8]. The authors also noted the disadvantages of biological sewage water treatment [7, 8], that the use of activated sludge gives high sediment production and low efficiency of removal of many organic and inorganic pollutants. In the article [8, 18], studies have been conducted that indicate that during biological sewage water treatment, phosphorus remains intact and needs further treatment. In [8, 19], a comparative evaluation of the reagents currently used for the extraction of phosphorus is given. Analysis of methods for the removal of phosphorus from sewage water has shown that the use of bioreagent sewage water treatment, in comparison with non-reagent methods of sewage water treatment, has advantages: the specific cost of treatment is lower to the standard indicators, the volume of tank facilities is significantly reduced during new construction, and it allows to achieve deep cleaning without reconstruction of existing treatment facilities [8].

Taking into account the strict requirements for the discharge of phosphates, a combined bio-reagent removal method should be provided, and the chemical stage of phosphorus removal should be provided at the post-treatment stage.
Table 3a. Data on the composition of sewage water after treatment.

Indicator name	Unit of measurement	2014	2015				
		min	med	min	med	min	med
Ammonium ion	mg/l	42	52.1	58.1	14.1	40.2	64
BOD₅	mgO₂/l	8.1	40.5	71	31	76.1	120
Suspended solids	mg/l	13.6	215	410	21.5	60	96.5
Hydrogen index	unit.	7.3	7.6	7.9	7.5	7.7	7.8
Total iron	mg/l	0.227	1	1.72	0.38	0.96	1.5
Cadmium	mg/l	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Manganese	mg/l	0.168	0.228	0.288	0.114	0.156	0.197
Copper	mg/l	<0.001	0.0125	0.025	0.023	0.012	0.020
Petroleum products	mg/l	0.115	0.4	0.683	0.055	0.248	0.439
Nickel	mg/l	<0.005	<0.005	<0.00	<0.00	<0.00	<0.00
Nitrate ion	mg/l	<0.1	3.6	7.02	0.304	0.2	< 0.1
Nitrite ion	mg/l	<0.02	1.5	2.9	<	0.48	0.92
Anionic surfactants	mg/l	0.219	2.1	4	0.108	0.9	1.68
Sulfate ion	mg/l	58	83	107.9	73	117.5	160.3
Dry residue	mg/l	704	758	811	596	721	843
Phosphate ion	mg/l	1.54	9.3	17.04	0.25	6.7	13.1
Fluoride ion	mg/l	0.022	0.138	0.253	<0.01	0.038	0.065
Chloride ion	mg/l	79	169	257.4	111.1	148.5	183.8
COD	mgO₂/l	24.3	59.1	92	31	107	183
Chrome 3+	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrome 6+	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	mg/l	0.0114	0.015	0.018	0.009	0.016	0.022

Table 3b. Data on the composition of sewage water after treatment.

Indicator name	Unit of measurement	2016 г.:	For the first half of				
		min	med	min	med	min	med
Ammonium ion	mg/l	23.4	45	23.4	45	23.4	45
BOD₅	mgO₂/l	9	38.1	9	38.1	9	38.1
Suspended solids	mg/l	12.5	65	12.5	65	12.5	65
Hydrogen index	unit.	7.5	7.7	7.5	7.7	7.5	7.7
Total iron	mg/l	0.178	1.3	0.178	1.3	0.178	1.3
Cadmium	mg/l	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Manganese	mg/l	0.11	0.17	0.11	0.17	0.11	0.17
Copper	mg/l	<0.001	0.022	<	0.022	<	0.02
Petroleum products	mg/l	0.031	0.51	0.031	0.51	0.031	0.51
Nickel	mg/l	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nitrate ion	mg/l	0.94	19.7	0.94	19.7	0.94	19.7
Nitrite ion	mg/l	0.059	3.13	0.059	3.13	0.059	3.13
Anionic surfactants	mg/l	0.095	3.7	0.095	3.7	0.095	3.7
Sulfate ion	mg/l	82.5	134	82.5	134	82.5	134
Dry residue	mg/l	639	760	639	760	639	760
Phosphate ion	mg/l	0.146	7.2	0.146	7.2	0.146	7.2
Fluoride ion	mg/l	0.032	0.11	0.032	0.11	0.032	0.11
Chloride ion	mg/l	57	125	57	125	57	125
COD	mgO₂/l	42	81	42	81	42	81
Chrome 3+	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrome 6+	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	mg/l	0.0076	0.016	0.007	0.016	0.007	0.01

For the first half of 2016, the data shows a significant reduction in the concentrations of most pollutants, indicating effective treatment processes. Additionally, the simulation of the operation of biological treatment facilities was carried out using a computer program, which allowed us to calculate processes that are described by the balance equations.
Table 4. Standard of permissible reset.

Indicator name	Unit of measurement	Current discharge requirements
Ammonium ion	mg/l	0.50
BOD₅	mgO₂/l	2.05
Suspended solids	mg/l	13.0
Total iron	mg/l	0.11
Petroleum products	mg/l	0.08
Nitrate ion	mg/l	40.00
Nitrite ion	mg/l	0.10
Anionic surfactants	mg/l	0.99
Phosphate ion (on P)	mg/l	0.22
COD	mgO₂/l	30.0

In the current situation, with the «traditional» scheme, the low efficiency of biological treatment processes, namely in the operation of aeration tanks, is revealed, and achieving the requirements for the discharge of pollutants is impossible without the use of special technologies that require the reconstruction of treatment facilities and the re-technology of biological treatment facilities.

The simulation of the operation of biological treatment facilities was carried out using a computer program based on the mathematical models ASM (ASM2d, ASM3), EAWAG, which were first published in 2000-2003 [14, 20, 21]. The developer of the models is a special group for mathematical modeling of the International Water Association [22]. The simulation allows us to calculate biological sewage water treatment facilities that operate according to various technological schemes. Currently, the modeling of cleaning processes using such models is a mandatory attribute of international design requirements.

In the program, the ASM and EAWAG models are supplemented with a hydraulic model, where the aeration tank is presented in the form of several full mixing reactors, to which any amount of liquid can be added or removed from them. The processes of secondary sedimentation tanks are described by the balance equations.

To perform calculations in a computer program, the aeration tanks were conditionally divided into equal sections, taking into account the existing layout of aeration elements, taking into account the presence of primary sedimentation tanks and the joint removal of sediment. In addition, to refine the initial data for calibration of the models, additional studies of the qualitative composition of incoming sewage water were conducted during a 24-hour period of two separately selected days (Table 5).
Each of these types of substances, including those containing nitrogen and phosphorus, is divided into dissolved (indicated by the letter S with indexes) and undissolved (indicated by the letter X with indexes) substances [14]. In turn, substances in the sewage liquid are divided into dissolved (indicated by the letter S with indexes) and suspended (indicated by the letter X with indexes) substances. In addition, sewage water contains mineral forms of biogenic elements.

All organic substances containing biogenic elements were represented as biologically degradable and biologically non-degradable [23]. Each substance from these groups can be decomposed according to the above characteristics in units of COD (Figure 1) [14, 22]. All biologically degradable substances, COD is used, which is possessed by biologically degradable and biologically non-degradable substances.

For calculations based on a computer model, carbon-containing substances are decomposed according to the above characteristics in units of COD (Figure 1) [14, 22]. All substances in the sewage liquid are divided into dissolved (indicated by the letter S with indexes) and undissolved (indicated by the letter X with indexes) substances [14]. In turn, each of these types of substances, including those containing nitrogen and phosphorus, is divided into biologically non-degradable (hereinafter referred to as the lower index I-inert) and biologically degradable (other indices). As a generalized characteristic of carbon-containing substances, COD is used, which is possessed by biologically degradable and biologically non-degradable substances.

Table 5. Qualitative composition for model calibration.

Indicator name	Unit of measurement	00-00	3-00	6-00	9-00	12-00	15-00	18-00	21-00
COD shaken up	mgO₂/l	560	380	320	720	980	700	340	300
COD filtered	mgO₂/l	280	210	240	340	300	340	210	200
BOD₅ shaken up	mgO₂/l	216	297	224	270	199	300	280	333
BOD₅ filtered	mgO₂/l	100	180	116	147	143	187	155	108
Suspended solids	mg/l	547	207	148	534	467	222	249	295
Ammonium ion	mg/l	40.5	41.7	47.6	74.0	58.5	46.4	45.7	40.3
Total phosphorus	mg/l	2.43	2.25	2.28	4.76	3.40	3.07	3.00	2.39
Phosphate ion	mg/l	7.36	6.82	6.90	14.4	10.3	9.3	9.1	7.24

All organic substances containing biogenic elements were represented as biologically degradable and biologically non-degradable [23]. Each substance from these groups can be decomposed according to the above characteristics in units of COD (Figure 1) [14, 22]. All biologically degradable substances, COD is used, which is possessed by biologically degradable and biologically non-degradable substances.

For calculations based on a computer model, carbon-containing substances are decomposed according to the above characteristics in units of COD (Figure 1) [14, 22]. All substances in the sewage liquid are divided into dissolved (indicated by the letter S with indexes) and undissolved (indicated by the letter X with indexes) substances [14]. In turn, each of these types of substances, including those containing nitrogen and phosphorus, is divided into biologically non-degradable (hereinafter referred to as the lower index I-inert) and biologically degradable (other indices). As a generalized characteristic of carbon-containing substances, COD is used, which is possessed by biologically degradable and biologically non-degradable substances.

Table 6. Fractionation of COD and BOD₅ for sewage treatment plants.

Indicator name	Unit of measurement	00-00	3-00	6-00	9-00	12-00	15-00	18-00	21-00
COD shaken up	mgO₂/l	620	480	340	980	680	760	760	980
COD filtered	mgO₂/l	320	300	210	210	370	200	260	360
BOD₅ shaken up	mgO₂/l	348	229	180	345	341	364	400	385
BOD₅ filtered	mgO₂/l	201	94	81	156	180	148	171	170
Suspended solids	mg/l	358	232	183	494	214	505	469	564
Ammonium ion	mg/l	46.1	50.8	51.9	70.7	53.1	55.6	46.2	55
Total phosphorus	mg/l	2.60	2.97	2.60	3.68	3.38	2.04	2.60	3.20
Phosphate ion	mg/l	8.80	9.00	7.90	11.2	10.2	6.20	7.90	9.70

All organic substances containing biogenic elements were represented as biologically degradable and biologically non-degradable [23]. Each substance from these groups can be decomposed according to the above characteristics in units of COD (Figure 1) [14, 22]. All substances in the sewage liquid are divided into dissolved (indicated by the letter S with indexes) and undissolved (indicated by the letter X with indexes) substances [14]. In turn, each of these types of substances, including those containing nitrogen and phosphorus, is divided into biologically non-degradable (hereinafter referred to as the lower index I-inert) and biologically degradable (other indices).

The choice of a scheme for the reconstruction of biological treatment facilities is the main stage that determines the concept of the development of sewage treatment facilities. The initial stage for designing the technological scheme and predicting the quality of the operational data. The results of the fractional distribution of the main organic indicators were used as a source for creating a mathematical model and obtaining cleaning results similar to the operational data for the distribution of fractional indicators. Subsequently, the fractionation data was used as initial data for the mathematical description of this process.

Fig 1. Division of carbon-containing components.

8
It is obvious that biologically decomposable substances, dissolved and undissolved and evaluated by the indicators of BOD and COD, can not represent a single compound [24]. An accurate description of the kinetics of their use in the processes of assimilation and dissimilation of microorganisms is currently impossible. However, the division into two groups – fast decomposable and slow decomposable, allowed us to create a satisfactory mathematical description of this process.

The values of COD and BOD₅ samples obtained in the laboratory were used as initial data for the distribution of fractional indicators. Subsequently, the fractionation data was used as a source for creating a mathematical model and obtaining cleaning results similar to the operational data. The results of the fractional distribution of the main organic indicators are shown in Table 6 and in Figure 2 and Figure 3.

Table 6. Fractionation of COD and BOD₅ for sewage treatment plants.

Indicator name	Dissolved inert gases (Si)	Colloidal Substrate (Scol)	Oxidizable (Sₕ)	Suspended inert (Xi)	Slowly oxidized (Xₕ)
COD, mgO₂/l	31.9	59.4	127.8	83	336.6
BOD₅, mgO₂/l	0	59.4	127.8	0	142.3

Fig 2. Fractional distribution of COD: 1-slowly oxidizable (Xₕ), 2-inert (Si), 3 – colloidal substrate (Scol), 4-oxidizable (Sₕ), 5-inert (Xi)

Fig 3. Fractional distribution of BOD₅: 1-slowly oxidizable (Xₕ), 2-inert (Si), 3 – colloidal substrate (Scol), 4-oxidizable (Sₕ), 5-inert (Xi)

It should be noted that the presented values of the fractional distribution of COD show that the latter in the incoming sewage water is largely represented by suspended slowly oxidized substances, which causes a low efficiency of sewage water treatment in aeration tanks at present. In the case of BOD, slowly oxidized substances also predominate.

After mathematical processing, the results obtained were comparable to the operational values. Accordingly, the separation into fractions of organic compounds represented by COD is made accurately, and the obtained values will be used to adjust the mathematical model.

3 Results and discussion

The choice of a scheme for the reconstruction of biological treatment facilities is the main stage that determines the concept of the development of sewage treatment facilities. The technological efficiency of biological treatment facilities at the modeling stage is determined depending on the loads on the facilities for organic and biogenic elements.

The first stage for designing the technological scheme and predicting the quality of sewage water treatment is the modeling of the initial quality of treatment (calibration of the
model) [14, 25-27]. The model was adapted to the actual composition and consumption of sewage water, as well as the actual air consumption for aeration.

The calculations showed that the calculated and actual values have a sufficiently high degree of convergence, and are the basis for further research by mathematical modeling of biological purification processes using the program. The initial data for the simulation is taken from Table 1, with the refinement of the additional fractional coefficients noted in the additional analyses in Table 3.

The following parameters were studied: the concentration of ammonium nitrogen, nitrite nitrogen, nitrates, phosphate phosphorus, and sludge growth.

The real volume mass transfer coefficient of oxygen (K_La) is taken into account according to the model as follows [21, 27]:

$$\frac{d SO_2}{dt} = CR_{SO_2} \cdot SO_2 \cdot CRT + K_La \cdot (C_{aSO_2} + V_{SO_2})$$

$$K_La = SOTE \cdot \frac{Q_{air}}{I_{air}} \cdot \frac{24 \cdot K_3 \cdot K_y \cdot p}{V_{su} \cdot I_{air}} \cdot 10 \cdot 0.232$$

where SOTE (q_{air,h}) – is the mass transfer coefficient of oxygen; K_3 (a) – a-factor, sewage water quality coefficient; K_L – temperature coefficient of sewage water; p – air density at normal pressure; C_{ast} – oxygen solubility at 20°C at a depth of h; V_{uch} – specific volume of air per 1 p.m. of the aerator; 0.232 – mass fraction of oxygen in the air; 10 – conversion factor.

The required number of aerators is determined by the formula [21, 27]:

$$n = \frac{Q_{air}}{q_{dif}} = \frac{1}{q_{dif}} \times \frac{OU_k \cdot C_{st,h} \cdot 100}{0.232 \cdot 1.2 \cdot SOTE_{h,qdif} \cdot k_1 \cdot \alpha \cdot (\beta \cdot C_{st,h} + C_I)}$$

where Q_{air} – is the calculated air flow rate under normal conditions, m^3/h; q_{dif} – nominal value of specific air flow, m^3/m (pcs.)*h, Table measurement; C_{st,h} – the average value of the saturation concentration of dissolved oxygen at the depth of the aeration tank h (m), mg/dm^3, at a temperature of 20°C; SOTE_{h,qdif} – value of the standard efficiency of air oxygen use during aeration; a = 0.8 – water quality coefficient; β = 1 – the coefficient of influence of the sewage liquid on the solubility of oxygen.

The throughput capacity of the «aeration tank-secondary sedimentation tank» system according to the calculation of the ATV standard with the actual quality composition of incoming sewage water is given in Table 7.

Source data	Data	
Name		
Sewage water consumption: daily	40000 m³/day	
maximum hourly	2515 m³/h	
Kgen max	1.509 SNiP	
Movement of water in secondary sedimentation tanks	horizontal	
Activated sludge consumption (in fractions)	0.57	
Sludge index	100 ml/g	
Average winter water temperature	12°C	
Quality of drains with primary sedimentation		
Sewage water parameters	Supplied	Required purified
COD	584	30 mg/l
BOD_5	345	2 mg/l
Characteristics of Structures

Parameter	Value
Surface area of secondary sedimentation tanks	1985 m²
Depth of secondary sedimentation tanks	3.7 m
Secondary sedimentation tank capacity	7360 m³

Calculation of the Work

Parameter	Value
Load BOD₅	13800 kg/day
Stock ratio	1.45
Estimated aerobic age of sludge	6.62 days
Updated age of sludge	13.14 days

Calculation of secondary sedimentation tanks:

Parameter	Value
Duration of settling of the sludge mixture	2.926 h
Bottom sludge concentration in secondary sedimentation tanks	14.3 g/l
Return sludge concentration	8.58 g/l
The dose of sludge in the aeration tank	3.065 g/l
Removal of sewage water from secondary sedimentation tanks	18.66 mg/l
Load on the volume of sludge in secondary sedimentation tanks	388.4 l/m²*h
Maximum surface load secondary sedimentation tanks	1.267 m³/m²*h
Organic nitrogen at the inlet	18.55 mg/l
Total incoming nitrogen	78.4 mg/l
Organic nitrogen output	2.0 mg/l
Nitrogen included in the biomass	15.53 mg/l
Nitrogen removed	51.4 mg/l
Percentage of denitrification zones	0.497
Phosphorus concentration in treated waters	8.19 mg/l
Phosphorus accumulated in biomass	3.45 mg/l
Phosphorus required for biomass growth	4.31 mg/l
Total phosphorus of incoming sewage water	15.96 mg/l
Daily increase in sludge when organic matter is removed	13139 kg/day
Daily increase in sludge when phosphorus is removed	518 kg/day
Sludge growth	13657 kg/day
Weight of suspended substances in aeration tanks	179500 kg
Required capacity of aeration tanks	58565 m³
Internal recycling (in fractions)	5.03
Consumption of activated sludge by calculation (in fractions)	0.556
Volume load by BOD₅	0.236
Load on sludge by BOD₅	0.077
Average aeration period	35.14 h
Minimum aeration period	23.28 h
Oxygen consumption for organic oxidation	649 kg/h
Oxygen consumption for nitrification	431.0 kg/h
Oxygen release during denitrification	248.5 kg/h
Total oxygen consumption taking into account unevenness	1095 kg/h
Estimated sewage water consumption: daily	9697 m³/day
Maximum hourly	1214 m³/h
Kgen max	1.458 SNiP

The result of the simulation protocol according to the ATV standard (Table 7), showed that the throughput capacity of treatment facilities when operating under the existing sewage...
water treatment scheme was $Q=9,697\ \text{m}^3/\text{day}$. The limiting factor is the capacity of the aeration tanks and the significant introduction of pollutants in the inefficient primary sedimentation of sewage water. The limitation in the throughput capacity of biological sewage water treatment is due to high concentrations of organic substances and nitrogen compounds, as well as limited routine recycling for their disposal.

The result of the simulation protocol according to the ATV standard of the «aeration tank-secondary sedimentation tank» system with a qualitative composition of incoming sewage water after primary sedimentation tanks without co-deposition of raw sludge and excess sludge, showed that the throughput capacity of treatment facilities was $Q=19,997\ \text{m}^3/\text{day}$, the limiting factor is also the capacity of the aeration tanks.

The variants of reconstruction of aeration tanks, arrangement and modification of recycles for deeper biological treatment according to the following schemes are considered:

– option 1 - scheme without supplying excess activated sludge into the primary sedimentation tank;

– option 2 - scheme with the supply of excess activated sludge to the primary sedimentation tank and the specified concentration of suspended substances at the entrance to the aeration tank (automated removal of sediment from the sedimentation tank);

– option 3 - scheme involving the use of existing primary sedimentation tanks, their conversion to anoxic and anaerobic zones with the installation of mechanical agitators.

Table 8 presents the data of the cleaning scheme for option 1.

Table 8a. Scheme of biological sewage water treatment in aeration tanks-Option 1.

Aeration tank section N	1	2	3	4	
Section length, m	-	30	30	30	
Sewage water discharge, m3/day	-	8163	-	-	-
Recirculation flow inlet from the secondary sedimentation tank, m3/day	-	4898	-	-	-
Recirculation flow inlet: from the end of 4 section, m3/day	-	200000	-	-	-
COD of spare substances, mg/l	0	145.8	145.7	145.9	145.8
Inert part of BB, mg/l	28.5	2850	2850	2850	2850
Oxidizable part of BB, mg/l of XS	85.6	20.74	20.23	19.73	19.25
Phosphates-accumulating organisms, mg/l XRAO	0	0.0057	0.0057	0.0057	0.0057
Phosphorus-accumulating organic products, mg/l XPHA	0	0.00009	0.0001	0.00009	0.00009
Polyphosphates, mg/l XRP	0	0.00072	0.00072	0.00072	0.00072
Biodegradable part of dissolved organic matter, mg BOD/l SS	111.5	1.619	0.674	0.3216	0.2458
Inert organic matter, mg/l	33.7	33.7	33.7	33.7	33.7
Ammonium nitrogen, mg/l SNH	57.1	14.03	14.05	13.17	13.12
Nitrogen of nitrates+ nitrites, mg/l SNO	78	8.55	8.2	8.97	8.78
Molecular nitrogen, mg/l	0	37.98	38.3	38.44	38.67
Phosphorous of phosphates, mg/l	5.8	5.717	5.71	5.71	5.709
The variants of reconstruction of aeration tanks, arrangement and modification of the biological treatment process are as follows:

1. Scheme without supplying excess activated sludge into the primary sedimentation tanks (option 1).
2. Scheme involving the use of existing primary sedimentation tanks, their modification and installation of mechanical agitators (option 2).
3. Scheme involving the use of existing primary sedimentation tanks, their modification and installation of mechanical agitators, with automated removal of sediment from the sedimentation tank (option 3).

The result of the simulation protocol according to the ATV standard of the «aeration tank-secondary sedimentation tank» system is shown in Table 8 below.

Table 8b. Scheme of biological sewage water treatment in aeration tanks-Option 1.

Aeration tank section N	5	6	7	8
Section length, m	30	30	30	30
Heterotrophic biomass, mg/l XH	827	825	822.9	818
Autotrophic biomass, mg/l XA	145.4	145.9	146.4	146.4
COD of spare substances, mg/l XSTO	6.48	4.44	3.18	2.466
Inert part of BB, mg/l XI	2851	2852	2853	2854
Oxidizable part of BB, mg/l XS	15.2	12	9.48	7.48
Phosphates-accumulating organisms, mg/l XPAO	0.0057	0	0.00568	0.00566
Products of phosphorus-accumulating organic matter, mg/l XPHA	0.00008	0.00006	0.00005	0.00004
Polyphosphates, mg / l XPP	0.00072	0.00073	0.00073	0.00074
Biodegradable part of dissolved organic matter, mg COD/l SS	0.1755	0.1208	0.0928	0.0656
Inert organic matter, mg / l SI	33.7	33.7	33.7	33.7
Ammonium nitrogen, mg/l SNH	13.14	8.38	3.765	0.2996
Nitrogen of nitrates+ nitrites, mg/l SNO	6.81	10.67	14.67	18.43
Molecular nitrogen, mg/l	40.64	41.66	42.44	42.5
Phosphorous of phosphates, mg/l SPO4	5.707	5.72	5.75	5.82
Oxygen, mg / l SO	0.00004	0.1250	0.1645	2.84
Alkalinity, mmol/l SHCO	2 383	1 767	1.15	0.6310
Suspended solids, mg / l	3012.8	3009.3	3305.6	3000.0
Oxygen consumption, kgO2/h	0	21.69	21.6	23.44
Number of rows of aerators	2	2	3	0
Total length of aerators, m	56	56	84	0
Air consumption for oxidation, m³/h	560.0	560.0	840.0	0
for mixing ATV, m³/h	394	394	394	0
Specific air consumption, m³/h*m	10.00	10.00	10.00	0
SOTE, %	16.6	16.6	16.6	0

Required air flow per section Qa = 3080 m³/h.

Due to the lack of organic pollutants at very high concentrations of ammonium nitrogen compounds, it is possible to reduce the nitrogen of nitrates to only 18 – 19 mg/l. Thus, the...
imbalance of organic and nitrogen compounds noted in Table 2 ultimately affects the efficiency of biological purification, with low denitrification.

Table 9 presents the data of the purification scheme with effective denitrification according to option 2. The scheme of biological sewage water treatment according to option 2 is shown in Figure 4.

Table 9a. Scheme of biological treatment in aeration tanks-Option 2.

Aeration tank section N	1	2	3	4	
Plot length, m	30	30	30	30	
Sewage discharge, m³/day	8966	-	-	-	
Recirculation flow inlet	7173	-	-	-	
Recirculation flow inlet	300000	-	-	-	
Heterotrophic biomass, mg/l XH	1711	1712	1712	1712	
Autotrophic biomass, mg/l XA	123.4	123.5	123.5	123.5	
COD of spare substances, mg/l XSTO	34	34.5	34.19	33.60	
Inert part of BB, mg/l XI	55.48	1725	1725	1725	
Oxidizable part of BB, mg/l XSTO	8966	-	-	-	
Phosphates-accumulating organisms, mg/l XPAO	1711	1712	1712	1712	
Products of phosphorus-accumulating organic matter, mg/l XPHA	0.5670	0.5598	0.5559	0.5557	
Polyphosphates, mg/l XPP	1.303	1.305	1.306	1.306	
Biodegradable part of dissolved organic matter, mg COD/l SS	180.2	2.297	1.378	0.5566	488
Inert organic matter, mg/l SI	35.6	35.6	35.6	35.6	35.6
Ammonium nitrogen, mg/l SNH	59.5	8.99	8.03	7.868	
Nitrogen of nitrates+ nitrites, mg/l SNO	0.32	579	1.48	1.336	
Molecular nitrogen, mg/l	55.8	55.87	56.16		
Phosphorous of phosphates, mg/l SPO4	14.1	13.79	13.78	13.78	
Oxygen, mg/l SO	0.00953	0.00038	1.088	0.05886	
Alkalinity, mmol/l SHCO	3.25	2.390	2.257	2.256	
Suspended solids, mg/l	3036.9	3036.7	3036.3	3035.7	
Oxygen consumption, kgO2/h	0.00001	0.0001	91.6	0.00001	
Total oxygen consumption	185 kgO2/h	-	-	-	
Total Nitrogen	8.33 mg/l	-	-	-	
Total phosphorus	13.86 mg/l	-	-	-	
Number of rows of aerators	0	0	6	0	
Total length of aerators, m	0	0	168	0	
Air consumption for oxidation, m³ / h	0	0	2688	0	
for mixing ATV, m³ / h	0	0	394	0	
SOTE, %	0	0	16.2	0	

Fig 4. Scheme of biological treatment in aeration tanks according to Option 2: 1-active sludge supply, 2-sewage water supply, 3-mixing zone, 4-aeration zone, 5-sludge mixture recycling, 6-sludge mixture output.
imbalance of organic and nitrogen compounds noted in Table 2 ultimately affects the efficiency of biological purification, with low denitrification.

Table 9 presents the data of the purification scheme with effective denitrification according to option 2. The scheme of biological sewage water treatment according to option 2 is shown in Figure 4.

Table 9a. Scheme of biological treatment in aeration tanks-Option 2.

Aeration tank section N	5	6	7	8
Plot length, m	30	30	30	30
Heterotrophic biomass, mg/l XH	1713	1718	1717	1712
Autotrophic biomass, mg / l XA	123.5	124.6	124.2	123.7
COD of spare substances, mg/l XSTO	38.29	28.57	20.97	16.48
Inert part of BB, mg/l XI	1725	1727	1730	1733
Oxidizable part of BB, mg/l XS	62.9	51.4	42.06	34.36
Phosphates-accumulating organisms, mg/l XPAO	8469	8.51	8.52	8.51
Polyphosphates, mg / l XPP	1208	1259	1305	1346
Biodegradable part of dissolved organic matter, mg COD/l SS	4.6	0.2954	0.1749	0.1416
Inert organic matter, mg / l SI	35.6	35.6	35.6	35.6
Ammonium nitrogen, mg/l SNH	8.09	947	0.0799	0.13457
Nitrogen of nitrates+ nitrites, mg/l SNO	0.0354	6.64	7.54	7.93
Molecular nitrogen, mg/l	7.46	58.0	58.20	58.3
Phosphorous of phosphates, mg/l SPO4	13.93	13.83	13.82	13.86
Oxygen, mg / l SO	0.00014	1.845	2.96	4.115
Alkalinity, mmol/l SHCO	2.354	1.379	1.254	1.222
Suspended solids, mg / l	3028.8	3021.6	3010.9	2999.9
Oxygen consumption, kgO2/h	0	52.29	22.49	18.7
Number of rows of aerators	0	4	2	2
Total length of aerators, m	0	112	56	56
Air consumption for oxidation, m³ / h	0	1680	840	840
for mixing ATV, m³ / h	0	394	394	394
SOTE, %	0	16.2	16.2	16.2

Required air flow per section Qa = 6048 m³/h.

Table 9b. Scheme of biological treatment in aeration tanks-Option 2.

Aeration tank section N	5	6	7	8
Plot length, m	30	30	30	30
Heterotrophic biomass, mg/l XH	1713	1718	1717	1712
Autotrophic biomass, mg / l XA	123.5	124.6	124.2	123.7
COD of spare substances, mg/l XSTO	38.29	28.57	20.97	16.48
Inert part of BB, mg/l XI	1725	1727	1730	1733
Oxidizable part of BB, mg/l XS	62.9	51.4	42.06	34.36
Phosphates-accumulating organisms, mg/l XPAO	8469	8.51	8.52	8.51
Polyphosphates, mg / l XPP	1208	1259	1305	1346
Biodegradable part of dissolved organic matter, mg COD/l SS	4.6	0.2954	0.1749	0.1416
Inert organic matter, mg / l SI	35.6	35.6	35.6	35.6
Ammonium nitrogen, mg/l SNH	8.09	947	0.0799	0.13457
Nitrogen of nitrates+ nitrites, mg/l SNO	0.0354	6.64	7.54	7.93
Molecular nitrogen, mg/l	7.46	58.0	58.20	58.3
Phosphorous of phosphates, mg/l SPO4	13.93	13.83	13.82	13.86
Oxygen, mg / l SO	0.00014	1.845	2.96	4.115
Alkalinity, mmol/l SHCO	2.354	1.379	1.254	1.222
Suspended solids, mg / l	3028.8	3021.6	3010.9	2999.9
Oxygen consumption, kgO2/h	0	52.29	22.49	18.7
Number of rows of aerators	0	4	2	2
Total length of aerators, m	0	112	56	56
Air consumption for oxidation, m³ / h	0	1680	840	840
for mixing ATV, m³ / h	0	394	394	394
SOTE, %	0	16.2	16.2	16.2

Fig 4. Scheme of biological treatment in aeration tanks according to Option 2: 1-active sludge supply, 2-sewage water supply, 3-mixing zone, 4-aeration zone, 5-sludge mixture recycling, 6-sludge mixture output.

As can be seen from the ATV simulation protocol, in order to reconstruct structures using niti-denitrification technology, it is necessary to increase the capacity of aeration tanks. However, the circulation of excess activated sludge and its co-deposition with the sediment...
of primary sedimentation tanks increases the load on the biological treatment of phosphates and produces problems in operation with inefficient sediment removal, as well as increases the operating costs of chemical reagent dephosphotation.

In the scheme according to option 3, the formation of raw sludge is excluded, the return activated sludge is fed to the mixing zone (repurposed primary sedimentation tanks), and a «nitrate recycle» is also sent to this zone from the end of the aeration tank (Table 10).

Table 10a. Scheme of biological treatment in aeration tanks-Option 3.

Aeration tank section N	1	2	3	4		
Plot length, m	-	34	34	30		
Sewage water discharge, m³/day	-	13330	-	-		
Recirculation flow inlet from the secondary sedimentation tank, m³/day	-	11000	-	-		
Recirculation flow inlet: from the end of the 10 section, m³/day	-	100000	-	-		
Heterotrophic biomass, mg/l	XH	0	1089	1091	1092	1093
Autotrophic biomass, mg/l	XA	0	125	124.9	124.9	124.8
COD of spare substances, mg/l	XSTO	0	18.16	1.36	17.25	16.04
Inert part of BB, mg/l	XI	42.5	1304	1304	1304	1304
Oxidized part of BB, mg/l	XS	127.7	35.17	33.47	32.03	30.66
Phosphates-accumulating organisms, mg/l	XPAO	0	0.0036 25	0.0036 27	0.0036 29	0.0036 3
Products of phosphorus-accumulating organic matter, mg/l	XPHA	0	0.0000 89	0.0000 91	0.0000 9	0.0000 88
Polyphosphates, mg/l	XPP	0	0.0004 81	0.0004 80	0.0048 1	0.0004 81
Biodegradable part of dissolved organic matter, mg COD/l	SS	166.4	3.709	0.854	0.394	0.3094
Inert organic matter, mg/l	SI	50.3	50.3	50.3	50.3	50.3
Ammonium nitrogen, mg/l	SNH	57.1	6.59	6.628	6.609	6.59
Nitrogen of nitrates+nitrates, mg/l	SNO	0.1	4.968	3.94	3.287	2.707
Molecular nitrogen, mg/l	0	49.46	50.49	51.1	51.7	
Phosphorous of phosphates, mg/l	SPO4	3.92	3.556	3.545	3.536	3.530
Alkalinity, mmol/l	SHCO	7	3.06	3.139	3.184	3.224
Ash-free part of BB, mg/l, MLVSS	XTSS	-	2108.1	2108.1	2107.3	2106.4
Oxygen consumption, kg O₂/h	-	0	0	0	0	
Total oxygen consumption	204 kgO₂/h	-	-	-	-	
Total nitrogen	22.95 mg/l	-	-	-	-	
Total phosphorus	6.649 mg/l	-	-	-	-	
Sludge growth	95.9 mg/l	-	-	-	-	
Number of rows of aerators	-	0	0	0	0	
Total quantity of aerators	-	0	0	0	0	
Air consumption for oxidation, m³/h	-	0	0	0	0	
for mixing ATV, m³/h	-	0	0	0	0	
Specific air consumption, m³/h*mm	-	0	0	0	0	
SOTE, %	-	0	0	0	0	
Table 10b. Scheme of biological treatment in aeration tanks-Option 3.

Aeration tank section N	5	6	7	8	9	10
Plot length, m	30	30	30	30	30	34
Heterotrophic biomass, mg/l XH	1094	1094	1094	1094	1094	1093
Autotrophic biomass, mg/l XA	124.8	124.7	125.3	125.6	125.8	125.7
COD of spare substances, mg/l XSTO	14.96	14.03	12.88	11.8	10.86	10.01
Inert part of BB, mg/l XI	1304	1304	1305	1305	1305	1306
Oxidized part of BB, mg/l XS	29.34	28.08	26.87	25.7	24.60	23.40
Phosphates-accumulating organisms, mg/l XPAO	0.0036	0.0036	0.0036	0.0036	0.0036	0.0036
Products of phosphorus-accumulating organic matter, mg/l XPHA	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Polyphosphates, mg/l XPP	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004
Biodegradable part of dissolved organic matter, mg COD/l SS	0.2929	0.2924	0.189	0.1693	0.16	0.152
Inert organic matter, mg/l SI	50.3	50.3	50.3	50.3	50.3	50.3
Ammonium nitrogen, mg/l SNH	6.57	6.55	3.67	1.513	0.4330	0.1032
Nitrogen of nitrates+nitrites, mg/l SNO	2.172	1.678	45	6.62	7.7	8.06
Molecular nitrogen, mg/l	52.25	52.7	52.79	52.8	52.9	52.88
Phosphorous of phosphates, mg/l SPO₄	3.524	3.53	3.514	3.51	3.515	3.524
Alkalinity, mmol/l SHCO	3.26	3.296	2.889	2.583	2.429	2.380
Ash-free part of BB, mg/l, MLVSS XTSS	2105.5	2104.7	2103.8	2102.8	2101.6	2100.0
Oxygen consumption, kg O₂/h	0	0	87.8	58.78	37.59	19.9
Number of rows of aerators	0	0	5	4	3	2
Total quantity of aerators	0	0	215	172	129	98
Air consumption for oxidation, m³/h	0	0	3511	1978	1290	529.5
for mixing ATV, m³/h	0	0	394	394	394	446.8
Specific air consumption, m³/h* m	0	0	16.33	11.50	9.38	5.4
SOTE, %	0	0	14.18	16.86	18.9	22.89

Required air flow per section Qa = 7228 m³/h.
As can be seen from the protocol for modeling processes according to option 3-reformatting part of the primary sedimentation tanks under the mixing zone, and using the remaining sedimentation tanks for their intended purpose, allows for high-quality cleaning according to organic indicators and the nitrogen group (nitri-denitrification). However, the biological removal of phosphorus is carried out with a low degree of removal. The advantage of this scheme is lower loads for phosphates and, accordingly, lower operating costs for its chemical reagent removal compared to option 2. The scheme of biological treatment for option 3 is shown in Figure 5.

Fig 5. Scheme of biological treatment in aeration tanks according to Option 3: 1-sewage water supply, 2-anaerobic reactor, 3-sludge mixture, 4-aeration tank, 5-mixing zone, 6-aeration zone, 7-sludge mixture recycling, 8-secondary sedimentation tank, 9-activated sludge supply.

4 Conclusions

Calculations have shown that the existing technological scheme of sewage treatment facilities in Almetyevsk does not allow to achieve the quality of treated sewage water at the level of the MPC for fisheries reservoirs.

The obtained calculation data made it possible to make a variant study of the technological schemes of reconstruction for the design capacity of 40 thousand m³/day. Modeling of nitri-denitrification and biological phosphorus removal schemes showed that the quality of purification is affected by the ratio of the size of mixing zones (anaerobic and anoxic), the size and location of the sludge mixture recycle. When performing the calculations, the concentrated and dispersed sewage water supply to the aeration tanks was considered.

The most effective option 3 of biological purification in aeration tanks with the use of nitri-denitrification technology was selected, which allows removing not only organic substances, but also nitrogen and partially phosphorus compounds.

The low efficiency of the transport of dissolved oxygen into the sludge mixture contributes to the minimum number of rows of aerators and their wall-mounted arrangement in the aeration tanks. The reconstruction of the existing aeration tanks with the replacement of the aeration system and the introduction of an automatic air supply control system, will ensure the effective removal of organic compounds and ammonium nitrogen, and will also reduce energy consumption.

The achievable quality of sewage water treatment after the reconstruction of sewage treatment plants is presented in Table 11.

Table 11.

Name of indicators	Value in incoming water	Effect BT, %	Value After BT, mg/l	Effect PT, %	Value After PT, mg/l
COD	387	88	46.4	35	30
BOD	245.55	99.9	2.82	30	202.5
Ammonium ion	73.425	99.4	0.44	0	0.44
Nitrite anion	0.007	0	0.08	0	0.08
Nitrate anion	0.3	0	40	0	40
Suspended solids	310.1	96	12.4	0	60
Petroleum products	1.9	95	0.10	45	0.05
Active surfactants	2.49	93	0.17	45	0.1
Phosphate ion	15.6	5.0	95.9	0	0.61/0.2
Total iron	2.07	94.5	0.11	10	0.1

As can be seen from Table 11, as a result of the reconstruction, the estimated quality of cleaning will meet the standard of permissible discharge in all indicators. The cost of sewage water treatment in accordance with the cost of implementing technological solutions (CAPEX) and operating costs (OPEX) for option 3 is shown in Table 12.

Table 12.

Type of deduction	Cost name, RUB/ year	% of costs	
Depreciation charges for buildings and structures	9 600 000.0	8.16	
Depreciation on equipment	11 721 278.0	9.96	
Major repairs, current repairs, other expenses	14 214 185.0	12.08	
Reagent costs (without transportation)	3626.3 kg/day	24 658 502.0	20.95
- iron sulfate			
- flocculant	17 492 625.0	14.86	
Electric power	750 kW / h	28 607 094.0	24.31
Salary	21 h	6 804 000.0	5.78
Water for process requirements	965.1 m³/day	1 461 864.0	1.15
Removal of sludge to the landfill	98.6 m³/day	2 159 248.0	1.83
Placement of sludge at the landfill	98.6 m³/day	1 079 624.0	0.92
Total	117 689 114.0	100.0	

Cost of cleaning 1 m³: 8.06
As can be seen from the protocol for modeling processes according to option 3—reformatting part of the primary sedimentation tanks under the mixing zone, and using the remaining sedimentation tanks for their intended purpose, allows for high-quality cleaning according to organic indicators and the nitrogen group (nitri-denitrification). However, the biological removal of phosphorus is carried out with a low degree of removal. The advantage of this scheme is lower loads for phosphates and, accordingly, lower operating costs for its chemical reagent removal compared to option 2. The scheme of biological treatment for option 3 is shown in Figure 5.

Fig 5. Scheme of biological treatment in aeration tanks according to Option 3: 1-sewage water supply, 2-anaerobic reactor, 3-sludge mixture, 4-aeration tank, 5-mixing zone, 6-aeration zone, 7-sludge mixture recycling, 8-secondary sedimentation tank, 9-activated sludge supply.

4 Conclusions

Calculations have shown that the existing technological scheme of sewage treatment facilities in Almetyevsk does not allow to achieve the quality of treated sewage water at the level of the MPC for fisheries reservoirs. The obtained calculation data made it possible to make a variant study of the technological schemes of reconstruction for the design capacity of 40 thousand m³/day. Modeling of nitri-denitrification and biological phosphorus removal schemes showed that the quality of purification is affected by the ratio of the size of mixing zones (anaerobic and anoxic), the size and location of the sludge mixture recycle. When performing the calculations, the concentrated and dispersed sewage water supply to the aeration tanks was considered.

The most effective option 3 of biological purification in aeration tanks with the use of nitri-denitrification technology was selected, which allows removing not only organic substances, but also nitrogen and partially phosphorus compounds.

The low efficiency of the transport of dissolved oxygen into the sludge mixture contributes to the minimum number of rows of aerators and their wall-mounted arrangement in the aeration tanks. The reconstruction of the existing aeration tanks with the replacement of the aeration system and the introduction of an automatic air supply control system, will ensure the effective removal of organic compounds and ammonium nitrogen, and will also reduce energy consumption.

The achievable quality of sewage water treatment after the reconstruction of sewage treatment plants is presented in Table 11.

Table 11. Stage-by-stage cleaning efficiency and VAT requirements.

N	Name of indicators	Value in incoming water	Effect BT, %	After BT, mg/l	Effect PT, %	After PT, mg/l	MPC f
1	COD	387	88	46.4/4	35	30.2	35
2	BOD₃	245.55	98.9	2.82	30	202	2
3	Ammonium ion	73.425	99.4	0.44	0	0.44	0.5
4	Nitrite anion	0.007	0	0.08	0	0.08	0.08
5	Nitrate anion	0.3	0	40	0	40.0	40
6	Suspended solids	310.1	96	12.4/0	60	4.96	5
7	Petroleum products	1.9	95	0.10	45	0.05	0.05
8	Active surfactants	2.49	93	0.17	45	0.1	0.1
9	Phosphate ion	15.6	5.0	14.7/9	95.9	0.61/0.61	0.61/0.2
10	Total iron	2.07	94.5	0.11	10	0.1	0.1

As can be seen from Table 11, as a result of the reconstruction, the estimated quality of cleaning will meet the standard of permissible discharge in all indicators. The cost of sewage water treatment in accordance with the cost of implementing technological solutions (CAPEX) and operating costs (OPEX) for option 3 is shown in Table 12.

Table 12. Cost indicators.

N	Type of deduction	Cost name, RUB/year	% of costs	
1	Depreciation charges for buildings and structures	9 600 000.0	8.16	
2	Depreciation on equipment	11 721 278.0	9.96	
3	Major repairs, current repairs, other expenses	14 214 185.0	12.08	
4	Reagent costs (without transportation)			
	- iron sulfate	3626.3 kg/day	24 658 502.0	20.95
	- flocculant	106.5 kg/day	17 492 625.0	14.86
5	Electric power	750 kW / h	28 607 094.0	24.31
6	Salary	21 h	6 804 000.0	5.78
7	Water for process requirements	965.1 m³/day	1 461 864.0	1.15
8	Removal of sludge to the landfill	98.6 m³/day	2 159 248.0	1.83
9	Placement of sludge at the landfill	98.6 m³/day	1 079 624.0	0.92
	Total	117 689 114.0	100.0	
	Cost of cleaning 1 m³		8.06	
References

1. J. Mathieu, P. Yu, P. Zu, M. L. B. Da Silva, P. J. J. Alvarez, Acc. Chem. Res. 52, 849 (2019) DOI: 10.1021/acs.accounts.8b00576
2. L. Sabliy, Y. Kuzminskiy, V. Zhukova, M. Kozar, H. Sobczuk, Ecol. Chem. Eng. S 26, 331 (2019) DOI: 10.1515/eces-2019-0023
3. A. W. Alattabi, C. Harris, R. Alkhaddar, A. Alzeyadi, M. Abdulreahda, Procedia Eng. (2017), pp. 800–807 DOI: 10.1016/j.proeng.2017.08.010
4. D. F. Boesch, Front. Mar. Sci. 6, (2019) DOI: 10.3389/fmars.2019.0123
5. A. Ilinykh, O. Naschetsnikova, E. Migalatiy, Int. Multidiscip. Sci. GeoConference Surv. Geol. Min. Ecol. Manag. SGEM (2018), pp. 609–616 DOI: 10.5593/sgem2018/3.1/S12.079
6. K. A.G., I. Zafiriadis, A. Aivasidis, Compr. Biotechnol. 297 (2019) DOI: 10.1016/B978-0-444-64046-8.00361-
7. Y. Zhao, D. Liu, W. Huang, Y. Yang, M. Ji, L. D. Nghiem, Q. T. Trinh, N. H. Tran, Bioresour. Technol. 288, (2019) DOI: 10.1016/j.biortech.2019.121619
8. T. Kedrova, L. Khisameeva, R. Abitov, IOP Conf. Ser. Mater. Sci. Eng. (2020) DOI: 10.1088/1757-899X/890/1/012152
9. J. T. Bunce, E. Ndam, I. D. Ofiteru, A. Moore, D. W. Graham, Front. Environ. Sci. 6, (2018) DOI: 10.3389/fenvs.2018.00008
10. T. T. Gorbacheva, P. N. Evshin, A. A. Gorbachev, N. A. Artemkina, Water Ecol. 24, 9 (2019) DOI: 10.23968/2305–3488.2019.24.2.9-16
11. X. Xu, S. Ma, H. Jiang, F. Yang, Chemosphere 275, (2021) DOI: 10.1016/j.chemosphere.2021.130094
12. I. Sarbu and A. Filip, Int. Multidiscip. Sci. GeoConference Surv. Geol. Min. Ecol. Manag. SGEM (2017), pp. 277–284 DOI: 10.5593/sgem2017/51/S20.074
13. E. Neverova-Dziopak, E3S Web Conf. (2018) DOI: 10.1051/e3sconf/20184500056
14. V. I. BAZHENOV, A. N. EPOV, I. A. NOSKOVA, WATER SUPPLY Sanit. Tech. 62 (2014)
15. K. Józwiakowski, P. Bugajski, K. Kurek, M. de Fátima Nunes de Carvalho, M. A. A. Almeida, T. Siwiec, G. Borowski, W. Czekala, J. Dach, M. Gajewska, Sep. Purif. Technol. 202, 216 (2018) DOI: 10.1016/j.seppur.2018.03.058
16. A. Busarev, R. Abitov, A. Selyugin, IOP Conf. Ser. Mater. Sci. Eng. (2020) DOI: 10.1088/1757-899X/890/1/012149
17. I. Sheshegov and A. Busarev, IOP Conf. Ser. Mater. Sci. Eng. (2020) DOI: 10.1088/1757-899X/890/1/012155
18. H. Ma, Y. Xue, Y. Zhang, T. Kobayashi, K. Kubota, Y.-Y. Li, Water Res. 172, (2020) DOI: 10.1016/j.watres.2020.115510
19. G. T. Ambrosova, E. N. Matyushenko, N. V. Sineeva, Water Ecol. 2017, 13 (2017) DOI: 10.23968/2305–3488.2017.22.4.13–25
20. G. Sin and R. Al, Npj Clean Water 4, (2021) DOI: 10.1038/s41545-021-00106-5
21. Standard ATV-DVWK-A 131E, Dimensions of Single-Stage Activated Sludge Plants (2000)
22. J. Drewnowski, B. Szeląg, L. Xie, X. Lu, M. Ganesapillai, C. K. Deb, J. Szulzyk-Cieplak, G. Łagód, Molecules 25, (2020) DOI: 10.3390/molecules25040929
23. M. Makowska and A. Sowinska, Desalin. Water Treat. 206, 22 (2020) DOI: 10.5004/dwt.2020.26158
24. E. Płuciennik-Koropczuk and S. Myszograj, Desalin. Water Treat. 186, 334 (2020) DOI: 10.5004/dwt.2020.25383
25. J. Drewnowski, A. Remiszewska-Skwarek, S. Fudala-Ksiazek, A. Laczkiewicz, S. Kumari, F. Bux, J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng.
54, 736 (2019) DOI: 10.1080/10934529.2019.159253
26. O. V. Kharkina, Efficient Operation and Calculation of Biological Wastewater Treatment Plants (2015)
27. Y. M. Meshangisser, Retechnologization of Wastewater Treatment Plants (2012)