Novel Trifluoromethyl Pyrimidinone Compounds With Activity Against Mycobacterium tuberculosis

Erik Hembre 1, Julie V. Early 2, Joshua Odingo 2, Catherine Shelton 2, Olena Anoshchenko 2, Junitta Guzman 2, Lindsay Flint 2, Devon Dennison 2, Matthew B. McNeil 2, Aaron Korkegian 2, Yulia Ovechkina 2,3, Paul Ornstein 4, Thierry Masquelin 1, Philip A. Hipskind 1 and Tanya Parish 2,3*

1 Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States, 2 TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, United States, 3 Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States, 4 Apollo Drug Discovery Consulting, LLC, Northbrook, IL, United States

The identification and development of new anti-tubercular agents are a priority research area. We identified the trifluoromethyl pyrimidinone series of compounds in a whole-cell screen against Mycobacterium tuberculosis. Fifteen primary hits had minimum inhibitory concentrations (MICs) with good potency IC₉₀ is the concentration at which M. tuberculosis growth is inhibited by 90% (IC₉₀ < 5 µM). We conducted a structure–activity relationship investigation for this series. We designed and synthesized an additional 44 molecules and tested all analogs for activity against M. tuberculosis and cytotoxicity against the HepG2 cell line. Substitution at the 5-position of the pyrimidinone with a wide range of groups, including branched and straight chain alkyl and benzyl groups, resulted in active molecules. Trifluoromethyl was the preferred group at the 6-position, but phenyl and benzyl groups were tolerated. The 2-pyridyl group was required for activity; substitution on the 5-position of the pyridyl ring was tolerated but not on the 6-position. Active molecules from the series demonstrated low selectivity, with cytotoxicity against eukaryotic cells being an issue. However, there were active and non-cytotoxic molecules; the most promising molecule had an MIC (IC₉₀) of 4.9 µM with no cytotoxicity (IC₅₀ > 100 µM). The series was inactive against Gram-negative bacteria but showed good activity against Gram-positive bacteria and yeast. A representative molecule from this series showed rapid concentration-dependent bactericidal activity against replicating M. tuberculosis bacilli with ~4 log kill in <7 days. Overall the biological properties were promising, if cytotoxicity could be reduced. There is scope for further medicinal chemistry optimization to improve the properties without major change in structural features.

Keywords: tuberculosis, anti-tubercular, bactericidal ability, whole cell activity, pyrimidinones

INTRODUCTION

Tuberculosis remains a major global health killer with >1.5 million deaths and 10 million new cases in 2018 (World Health Organization, 2020). The current drug treatment regimen involves multiple antibiotics over a lengthy period of at least 6 months. In addition, there are multidrug-resistant and extremely drug-resistant strains circulating, making the current drugs ineffective. Thus, there is an urgent need for new drugs active against the causative pathogen Mycobacterium tuberculosis (Gordon and Parish, 2018).
The identification and development of anti-tubercular agents has been an increasing priority in the research community; target-based and whole-cell screens have been developed, which enable the screening of large libraries to find novel scaffolds with desirable biological activities (Parish, 2020). Phenotypic screening in which compounds are tested directly against the virulent organism in order to find novel matter has been widely utilized in the last decade or so (Parish, 2020). From these screens, a large number of compounds series that inhibit the growth of M. tuberculosis have been identified and explored (Gold and Nathan, 2017; Grzelak et al., 2019; Parish, 2020). However, given the high attrition rate in drug discovery, the difficulty of killing virulent organism in order to find novel matter has been widely recognized (Nathan, 2017; Grzelak et al., 2019; Parish, 2020). A large number of compounds series that inhibit the growth of M. tuberculosis has been an increasing priority in the research community; target-based and whole-cell screens have been developed, which enable the screening of large libraries to find novel scaffolds with desirable biological activities (Parish, 2020). Phenotypic screening in which compounds are tested directly against the virulent organism in order to find novel matter has been widely utilized in the last decade or so (Parish, 2020). From these screens, a large number of compounds series that inhibit the growth of M. tuberculosis have been identified and explored (Gold and Nathan, 2017; Grzelak et al., 2019; Parish, 2020). However, given the high attrition rate in drug discovery, the difficulty of killing virulent organism in order to find novel matter has been widely recognized (Nathan, 2017; Grzelak et al., 2019; Parish, 2020).

We have previously developed high-throughput screening using fluorescent strains of M. tuberculosis, which enabled us to screen compound libraries (Ollinger et al., 2018). We identified several series with anti-tubercular activity; among these is the trifluoromethyl pyrimidinone series, which has potent activity in vitro. Pyrimidinones are an important class of heterocycles containing heteroatoms that are broadly useful in medicinal chemistry (Fruit and Besson, 2018). This scaffold contains a range of drug molecules in the disease areas of cancer (5-fluorouracil and tegafur) (Papanastasopoulos and Stebbing, 2014) and HIV such as raltegravir (MK0518) (Payne et al., 2007; Keiser and Purdy, 2017; Mandal et al., 2019).

We have previously developed high-throughput screening using fluorescent strains of M. tuberculosis, which enabled us to screen compound libraries (Ollinger et al., 2018). We identified several series with anti-tubercular activity; among these is the trifluoromethyl pyrimidinone series, which has potent activity in vitro. Pyrimidinones are an important class of heterocycles containing heteroatoms that are broadly useful in medicinal chemistry (Fruit and Besson, 2018). This scaffold contains a range of drug molecules in the disease areas of cancer (5-fluorouracil and tegafur) (Papanastasopoulos and Stebbing, 2014) and HIV such as raltegravir (MK0518) (Payne et al., 2007; Keiser and Purdy, 2017; Mandal et al., 2019).

MATERIALS AND METHODS

General Chemistry Methods

Chemicals and solvents were purchased from commercial vendors. Analytical thin-layer chromatography (TLC) was performed with precoated TLC plates, air dried, and analyzed using a UV lamp (UV254/365 nm) and/or an aqueous solution of potassium permanganate for visualization. Flash chromatography was performed using a CombiFlash Companion R2 (Teledyne ISCO) and prepacked silica gel columns. Mass-directed preparative high-performance liquid chromatography (HPLC) separations were performed using a Waters HPLC (2,545 binary gradient pumps, 515 HPLC makeup pump, 2,767 detector. HPLC chromatographic separations were performed with a Gilson HPLC connected to a Gilson 215 UV/vis detector. HPLC chromatographic separations were performed with a Waters XBridge C18 columns 19×210 mm, 3.5 µm particle size, and the compounds were eluted with a gradient from 5 to 95% using acetonitrile in water with 0.1% ammonia. All final compounds had a purity of ≥95% as determined by the UV chromatogram (190–450 nm) obtained by LC-MS analysis. High-resolution ES measurements performed on a Bruker MicroT of mass spectrometer.

Synthesis of 5-(4-Fluorobenzyl)-2-(Pyridin-2-yl)-6-(Trifluoromethyl)Pyrimidin-4(3H)-One (5, 0066241)

(i) Synthesis of ethyl 4,4,4-trifluoro-2-(4-fluorobenzyl)-3-oxobutanoate: 3-(4-Fluorophenyl)propanoyl chloride 86 (2.5 g, 13.4 mmol) was taken in dichloromethane (DCM) (20 mL) in a 250 mL round-bottom flask under N2. TFAA (2.8 mL, 20.1 mmol) and pyridine (2.1 mL, 26.8 mmol) were sequentially added to it. The reaction mixture was stirred at room temperature (RT) for 3 h. EtOH (4 mL) was added to the reaction mixture and kept stirring for another 12 h. The reaction mixture was concentrated under reduced pressure and triturated with hexane. This afforded ethyl 4,4,4-trifluoro-2-(4-fluorobenzyl)-3-oxobutanoate as a brown oil (2.25 g, crude) that was used as such for the next step without any further purification. MS: 291.0 (M-H)+. (ii) Et3N (5.4 mL, 37.5 mmol) was added to a solution of ethyl 4,4,4-trifluoro-2-(4-fluorobenzyl)-3-oxobutanoate (2.2 g, 7.5 mmol) and picolinimidamide hydrochloride 3 (1.18 g, 7.5 mmol) in EtOH (15 mL) at RT. The reaction mixture was then heated at 100°C and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was then poured into ice water (20 g) and extracted with EtOAc (3×30 mL). The combined organic layer was dried over anhydrous Na2SO4 and concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel (100–200 mesh) using 5% EtOAc-hexane as eluent to afford 5 as a white solid (500 mg, 19.0%). M.P. 183–185°C. 1H NMR (400 MHz, DMSO-d6): δ 13.01 (s, 1H), 8.77 (d, J = 4.0 Hz, 1H), 8.31 (d, J = 7.9 Hz, 1H), 8.06–8.10 (m, 1H), 7.67–7.70 (m, 1H), 7.23–7.26 (m, 2H), 7.01–7.12 (m, 2H), 6.92–7.00 (m, 2H), 3.98 (s, 2H). 13C NMR (100 MHz, DMSO-d6): δ 162.1, 160.8 (d, J = 248 Hz), 153.9, 149.3, 147.8, 146.9 (q, J = 32 Hz), 138.1, 134.3 (d, J = 2.8 Hz), 129.8 (d, J = 8.0 Hz), 127.0, 126.8, 122.7, 121.6 (q, J = 274 Hz), 115.0 (q, J = 21 Hz), 29.2. LCMS (ESI) m/z calculated for [C17H11F4N3O + H]+, 350.09; found 350.78.
Synthesis of 2-(Pyridin-2-yl)-6-(Trifluoromethyl)Pyrimidin-4(3H)-One (16, 0496338)

Et$_3$N (2.2 mL, 16.0 mmol) was added to a solution of ethyl 4,4,4-trifluoro-3-oxobutanoate (700 mg, 3.8 mmol) and picolinimidamide hydrochloride (500 mg, 3.2 mmol) in EtOH (10 mL) at RT. The reaction mixture was then heated at 110°C and monitored by TLC analysis (EtOAc) until completion. The reaction mixture was evaporated to dryness and poured to ice cooled water (20 mL). It was extracted with DCM (3 × 20 mL). The combined organic layer was dried over anhydrous Na$_2$SO$_4$ and concentrated under reduced pressure. The crude was further purified by column chromatography on silica gel (60–120 mesh) using 25% EtOAc-hexane as eluent to afford 16 as a white solid (365 mg, 47%). M.P. 136–137°C. 1H NMR (400 MHz, DMSO-d$_6$): δ 12.91 (s, 1H), 8.78–8.79 (m, 1H), 8.31 (d, $J = 7.9$ Hz, 1H), 8.06–8.10 (m, 1H), 7.68–7.72 (m, 1H), 6.96 (s, 1H); 13C NMR (100 MHz, DMSO-d$_6$): δ 169.0, 157.0, 151.1 (q, $J = 35$ Hz), 149.3, 147.6, 138.2, 127.3, 122.9, 120.7 (q, $J = 273$ Hz), 113.5. LCMS (ESI) m/z calculated for [C$_{10}$H$_6$F$_3$N$_3$O$_2$ + H]$,^+$ 242.07; found 242.07.

Synthesis of 2-(3-Hydroxypyrindin-2-yl)-6-(Trifluoromethyl)Pyrimidin-4(3H)-One (17, 0504065)

(i) Synthesis of isoxazolo[5,4-b]pyridin-3-amine: Potassium tert-butoxide (2.7 g, 24.6 mmol) was taken in anhydrous DMF (20 mL) in a 100-mL round-bottom flask under N$_2$ and cooled it down to 0°C. 3-Fluoropicolinonitrile (2.0 g, 16.4 mmol) and N-hydroxyacetamide (1.7 g, 22.9 mmol) were sequentially added to it. The reaction mixture was stirred at 60°C and monitored by TLC analysis (50% EtOAc-hexane) until completion. Ice cold water (40 mL) was added to the reaction mixture and the reaction mixture was extracted with EtOAc (3 × 20 mL). The combined organic layer was dried over anhydrous Na$_2$SO$_4$ and concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel (60–120 mesh) using 30% EtOAc-hexane as eluent to afford isoxazolo[5,4-b]pyridin-3-amine as a gray solid (1.5 g, 68%). 1H NMR (400 MHz, DMSO-d$_6$): δ 8.80 (s, 1H), 7.92 (d, $J = 7.9$ Hz, 1H), 7.55–7.59 (m, 1H), 6.55 (bs, 2H). (ii) Synthesis of 3-hydroxypicolinimidamide: A par flask was charged with isoxazolo[5,4-b]pyridin-3-amine (1.5 g, 11.1 mmol) and MeOH (20 mL) followed by addition of Pd-C (20% wt/wt, 0.6 g). The flask was evacuated to dryness and purged with hydrogen. The reaction was stirred under hydrogen atmosphere (60 psi) for 24 h. The reaction was monitored by TLC. It was then filtered through sintered funnel with a pad of celite, washed with MeOH (30 mL) and concentrated under reduced pressure. It was recrystallized from diethyl ether-pentane to afford pyrimidine-2-carboximidamide as a pale yellow solid (420 mg, 72%). 1H NMR (400 MHz, DMSO-d$_6$): δ 8.95 (d, $J = 4.8$ Hz, 2H), 7.62–7.67 (m, 1H), 7.14 (bs, 1H), 7.08 (s, 1H); 13C NMR (100 MHz, DMSO-d$_6$): δ 156.3, 151.4 (q, $J = 274$ Hz), 123.4, 120.7 (q, $J = 274$ Hz), 114.5. LCMS (ESI) m/z calculated for [C$_9$H$_3$F$_3$N$_3$O$_2$ + H]$,^+$ 243.17; found 243.8.

Synthesis of 6-(Trifluoromethyl)-[2,2′-Bipyrimidin]-4(3H)-One (18, 0504070)

(i) Synthesis of pyrimidine-2-carboximidamide: Pyrimidine-2-carbonitrile (500 mg, 4.7 mmol) was taken in anhydrous THF (10 mL) in a 50-mL round bottom flask under N$_2$ and cooled it down to −20°C. Dropwise lithium bis(trimethylsilyl)amide (1.06 M in THF) (5.3 mL, 5.7 mmol) was added to it. The reaction mixture was stirred at RT for 18 h and monitored by TLC analysis (50% EtOAc-hexane). 6N HCl (10 mL) was added to the reaction mixture and kept it stirring at for 30 min. The reaction mixture was then extracted with EtOAc (2 × 20 mL). The combined organic layer was rejected and the aqueous layer was basified by NaOH solution to pH 13–14. The aqueous layer was extracted with EtOAc (2 × 30 mL). The combined organic layer dried over anhydrous Na$_2$SO$_4$ and concentrated under reduced pressure. It was further recrystallized from diethyl ether-pentane to afford pyrimidine-2-carboximidamide as a pale yellow solid (420 mg, 72%). 1H NMR (400 MHz, DMSO-d$_6$): δ 8.31 (d, $J = 8.8$ Hz, 1H), 7.00 (s, 1H); 13C NMR (100 MHz, DMSO-d$_6$): δ 156.3, 151.4 (q, $J = 274$ Hz), 123.4, 120.7 (q, $J = 274$ Hz), 114.5. LCMS (ESI) m/z calculated for [C$_9$H$_3$F$_3$N$_3$O$_2$ + H]$,^+$ 243.17; found 243.8.
completion. 6N HCl (20 mL) was added to the reaction mixture and kept it stirring at for 30 min. The reaction mixture was then extracted with EtOAc (2 × 20 mL). The combined organic layer was washed with water and the aqueous layer was basified by NaOH solution to pH 13–14. The aqueous layer was extracted with EtOAc (2 × 30 mL). The combined organic layer dried over anhydrous Na2SO4 and concentrated under reduced pressure. It was further recrystallized from ether-pentane to afford 3-methoxypicoliminidamide as a pale brown solid (700 mg, 62%).

Synthesis of 2-(3-Chloropyridin-2-yl)-6-(Trifluoromethyl)Pyrimidin-4(3H)-One (22, 0497401)

Et3N (0.9 mL, 6.5 mmol) was added to a solution of ethyl 4,4,4-trifluoro-2-methyl-3-oxobutanoate (250 mg, 1.3 mmol) and nicotinimidamide hydrochloride (198 mg, 1.3 mmol) in EtOH (10 mL) at RT. The reaction mixture was then heated at 110°C for 5 h and monitored by TLC analysis (5% MeOH–DCM) until completion. The reaction mixture was evaporated to dryness and poured to ice cooled water (20 mL). It was extracted with DCM (3 × 20 mL). The combined organic layer was washed over anhydrous Na2SO4 and concentrated under reduced pressure. The crude was further purified by flash chromatography on silica gel (60–120 mesh) using 9% EtOAc–hexane as eluent to afford 23 as a white solid (150 mg, 58%). The crude was purified by flash chromatography on silica gel (60–120 mesh) using 19% EtOAc–hexane as eluent to afford 24 as a white solid (140 mg, 43%). M.P. 213–215°C. 1H NMR (400 MHz, DMSO-d6): δ 13.48 (s, 1H), 9.22 (d, J = 1.4 Hz, 1H), 8.74–8.76 (m, 1H), 8.42 (d, J = 8.0 Hz, 1H), 7.56–7.60 (m, 1H), 2.16 (d, J = 2.2 Hz, 3H). 13C NMR (100 MHz, DMSO-d6): δ 164.1, 153.9, 152.2, 148.7, 146.8 (q, J = 24.8 Hz), 135.4, 128.0, 123.9 (q, J = 275 Hz), 123.6, 122.6, 10.1. LCMS (ESI) m/z calculated for [C10H8ClF2N3O+H]+, 256.07; found 256.28.

Synthesis of 5-Methyl-2-(Pyridin-4-yl)-6-(Trifluoromethyl)Pyrimidin-4(3H)-One (23, 0497305)

Na2CO3 (210 mg, 2.0 mmol mmol) was added to a solution of ethyl 4,4,4-trifluoro-2-methyl-3-oxobutanoate (400 mg, 2.0 mmol) and isonicotimidamide hydrochloride (310 mg, 2.0 mmol) in EtOH (4 mL) at RT. The reaction mixture was then extracted with EtOAc (2 × 20 mL). The combined organic layer was washed over anhydrous Na2SO4 and concentrated under reduced pressure to afford 3-chloropicolinimidamide as a brown-colored solid (350 mg, 62%). 1H NMR (400 MHz, DMSO-d6): δ 8.50 (d, J = 4.6 Hz, 1H), 7.97 (d, J = 8.1 Hz, 1H), 7.45 (q, J = 4.6 Hz, 1H), 6.50 (bs, 3H). (ii) Et3N (0.3 mL, 1.9 mmol) was added to a solution of ethyl 4,4,4-trifluoro-3-oxobutanoate (210 mg, 1.1 mmol) and 3-chloropicolinimidamide (100 mg, 0.9 mmol) in EtOH (5 mL) at RT. The reaction mixture was then heated at 80°C and monitored by TLC analysis (70% EtOAc-hexane) until completion. The reaction mixture was evaporated to dryness. The crude was purified by flash chromatography on silica gel (60–120 mesh) using 30% EtOAc–hexane as eluent to afford 21 as an off-white solid (80 mg, 30%). M.P. 163–164°C. 1H NMR (400 MHz, DMSO-d6): δ 13.62 (s, 1H), 8.69 (q, J = 4.6 Hz, 1H), 8.19 (q, J = 8.0 Hz, 1H), 7.67–7.70 (m, 1H), 7.04 (s, 1H). 13C NMR (400 MHz, DMSO-d6): δ 161.5, 157.6, 151.1 (q, J = 43 Hz), 147.8, 138.9, 129.8, 127.3, 120.6 (q, J = 274 Hz), 113.6. LCMS (ESI) m/z calculated for [C10H8ClF2N3O+H]+, 276.02; found 276.23.
then heated at 80°C for 18 h and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was evaporated to dryness. The crude was purified by column chromatography on silica gel (60–120 mesh) using 25% EtOAc-hexane as eluent to afford 23 as a white solid (200 mg, 39%). M.P. 228–230°C. 1H NMR (400 MHz, DMSO-d6): δ 13.53 (s, 1H), 8.79 (d, J = 5.4 Hz, 2H), 8.03 (d, J = 5.4 Hz, 2H), 2.18 (d, J = 1.4 Hz, 3H); 13C NMR (100 MHz, DMSO-d6): δ 164.3, 153.9, 150.4, 146.9 (q, J = 32 Hz), 139.2, 123.4, 121.3, 121.7 (q, J = 274.6 Hz), 10.2 (q, J = 3.0 Hz). LCMS (ESI) m/z calculated for [C11H8F3N3O + H]+, 256.07; found 256.46.

Synthesis of 2-Phenyl-6-(Trifluoromethyl)Pyrimidin-4(3H)-One (24, 0143990)

Et3N (0.1 mL, 0.9 mmol) was added to a solution of ethyl 4,4,4-trifluoro-3-oxobutanoate (211 mg, 1.1 mmol) and benzimidamide hydrochloride (150 mg, 0.9 mmol) in EtOH (4 mL) at RT. The reaction mixture was then heated at 80°C and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was evaporated to dryness. The crude was purified by flash chromatography on silica gel (60–120 mesh) using 25% EtOAc-hexane as eluent to afford 24 as a white solid (90 mg, 39%). M.P. 225–227°C. 1H NMR (400 MHz, DMSO-d6): δ 13.32 (s, 1H), 8.13 (d, J = 6.9 Hz, 2H), 7.62–7.66 (m, 1H), 7.55–7.58 (m, 2H), 6.87 (s, 1H); 13C NMR (100 MHz, DMSO-d6): δ 162.4, 159.7, 151.8, 132.4, 131.4, 128.8, 128.1, 120.7 (q, J = 273 Hz), 111.2. LCMS (ESI) m/z calculated for [C11H7F3N3O + H]+, 241.06; found 241.34.

Synthesis of 2-(3-Fluoropyridin-2-yl)-6-(Trifluoromethyl)Pyrimidin-4(3H)-One (26, 0499232)

(i) Synthesis of 3-fluoropicolinimidamide: 3-Fluoropicolinilonitrile (2.0 g, 18.3 mmol) and EtOAc (20 mL). The combined organic layer dried over anhydrous Na2SO4 and concentrated under reduced pressure. It was further recrystallized from ether-pentane to afford 3-fluoropicolinimidamide as a colorless solid (900 mg, 40%). MS: m/z 139.91 [M+(H)+]. (ii) Et3N (3.2 mL, 22.8 mmol) was added to a solution of ethyl 4,4,4-trifluoro-3-oxobutanoate (1.0 g, 5.7 mmol) and 3-fluoropicolinimidamide (800 mg, 5.7 mmol) in EtOH (20 mL) at RT. The reaction mixture was then heated at 80°C and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was evaporated to dryness. The crude was purified by flash chromatography on silica gel (60–120 mesh) using 24% EtOAc-hexane as eluent to afford 26 as a white solid (150 mg, 10%). M.P. 178–179°C. 1H NMR (400 MHz, DMSO-d6): δ 13.29 (s, 1H), 8.62 (d, J = 4.3 Hz, 1H), 8.06 (t, J = 9.5 Hz, 1H), 7.76–7.80 (m, 1H), 7.01 (s, 1H); 13C NMR (100 MHz, DMSO-d6): δ 161.2, 157.9 (d, J = 266 Hz), 155.5, 150.6 (q, J = 35 Hz), 145.5 (d, J = 5 Hz), 137.1, 128.9 (d, J = 4.6 Hz), 121.1 (d, J = 19 Hz), 120.6 (q, J = 273 Hz), 113.5. LCMS (ESI) m/z calculated for [C19H13F3N3O + H]+, 260.04; found 260.11.

Synthesis of 2-Cyclohexyl-6-(Trifluoromethyl)Pyrimidin-4(3H)-One (27, 0504071)

(i) Synthesis of N′-hydroxycyclohexanecarboximidamide (116): Hydroxylamine (1.9 g, 27.5 mmol) was taken in EtOH (20 mL) in a 100-mL round-bottom flask under N2. Cyclohexanecarbonitrile (2.0 g, 18.3 mmol) and Et3N (3.3 mL, 22.9 mmol) were sequentially added to it. The reaction mixture was refluxed and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was concentrated under reduced pressure and the crude was purified by flash chromatography on silica gel (60–120 mesh) using 20% EtOAc-hexane as eluent to afford N′-hydroxycyclohexanecarboximidamide as a gray solid (820 mg, 31%). 1H NMR (400 MHz, DMSO-d6): δ 8.67 (s, 1H), 5.21 (bs, 2H), 1.92–1.98 (m, 1H), 1.62–1.80 (m, 4H), 1.50–1.59 (m, 1H), 1.35–1.38 (m, 2H), 1.13–1.24 (m, 3H). (ii) Synthesis of cyclohexanecarboximidamide: A par flask was charged with N′-hydroxycyclohexanecarboximidamide (1.5 g, 11.1 mmol) and MeOH (20 mL) followed by addition of Pd-C (20 wt/wt, 0.6 g). The flask was evacuated under vacuum and then purged with hydrogen. The reaction was stirred under hydrogen atmosphere (60 psi) for 24 h. The reaction was monitored by TLC. It was then filtered through sintered funnel with a pad of celite, washed with MeOH (30 mL) and concentrated under reduced pressure. It was recrystallized from diethyl ether/pentane to afford cyclohexanecarboximidamide as a pale brown solid (0.56 g, 77%). MS m/z 127.2 [M + H]+. (iii) Et3N (0.4 mL, 3.0 mmol) was added to a solution of ethyl 4,4,4-trifluoro-3-oxobutanoate (337 mg, 1.7 mmol) and cyclohexanecarboximidamide (200 mg, 1.4 mmol) in EtOH (5 mL) at RT. The reaction mixture was then heated at 80°C and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was evaporated to dryness. The crude was purified by flash chromatography on silica gel (60–120 mesh) using 30% EtOAc-hexane as eluent to afford 27 as a white solid (150 mg, 38%). M.P. 198–199°C. 1H NMR (400 MHz, DMSO-d6): δ 12.92 (s, 1H), 6.68 (s, 1H), 2.56–2.62 (m, 1H), 1.82–1.85 (m, 2H), 1.75–1.78 (m, 2H), 1.64–1.66 (m, 1H), 1.44–1.53 (m, 2H), 1.18–1.31 (m, 3H); 13C NMR (100 MHz, DMSO-d6): δ 168.9, 162.2, 151.9 (d, J = 35 Hz), 121.2 (q, J = 273 Hz), 111.4, 43.0, 30.4, 25.7, 25.5. LCMS (ESI) m/z calculated for [C19H13F3N3O + H]+, 245.09; found 245.01.
in EtOH (5 mL) at RT. The reaction mixture was then heated at 110°C for 12 h and monitored by TLC analysis (30% EtOAc-hexane). The reaction mixture was evaporated to dryness and poured to ice cooled water (20 mL). It was extracted with DCM (3 × 20 mL). The combined organic layer was dried over anhydrous Na2SO4 and concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel (60–120 mesh) using 18% EtOAc-hexane as eluent to afford 28 as a white solid (65 mg, 31%). M.P. 168–169°C. 1H NMR (400 MHz, DMSO-d6): δ 13.42 (s, 1H), 7.75 (t, J = 7.3 Hz, 1H), 7.64–7.69 (m, 1H), 7.36–7.43 (m, 2H), 6.92 (s, 1H); 13C NMR (100 MHz, DMSO-d6): δ 161.8, 160.7, 158.2, 157.0, 151.5 (q, J = 35 Hz), 133.8 (d, J = 8.5 Hz), 131.1, 124.7 (d, J = 3.3 Hz), 120.9, 117.7 (q, J = 273 Hz), 116.3 (d, J = 21 Hz). LCMS (ESI) m/z calculated for [C11H6F3N2O þ]+, 259.05; found 259.34.

Synthesis of 2-[(2,6-Dimethylphenyl)-6-(Trifluoromethyl)Pyrimidin-4(3H)-One (29, 0504068)

(i) Synthesis of N-hydroxy-2,6-dimethylbenzimidamide: Hydroxylamine (1.59 g, 22.9 mmol) was taken in EtOH (20 mL) in a 100-mL round-bottom flask under N2. 2,6-Dimethylbenzonitrile (2.0 g, 15.2 mmol) and Et3N (3.3 mL, 22.9 mmol) were sequentially added to it. The reaction mixture was refluxed and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was concentrated under reduced pressure and the crude was purified by flash chromatography on silica gel (60–120 mesh) using 20% EtOAc-hexane as eluent to afford N-hydroxy-2,6-dimethylbenzimidamide as a gray solid (800 mg, 31%). M.S: 151.13 (M+H)+. (ii) Synthesis of 2-methylbenzimidamide: A par flask was charged with N-hydroxy-2,6-dimethylbenzimidamide (800 mg, 5.3 mmol) and MeOH (20 mL) followed by addition of Pd-C (10% wt/wt, 200 mg). The flask was evacuated under vacuum and then purged with hydrogen. The reaction was stirred under hydrogen atmosphere (60 psi) at RT for 8 h. The reaction was monitored by TLC. It was then filtered through sintered funnel with a pad of celite, washed with MeOH (30 mL) and concentrated under reduced pressure to afford 2-methylbenzimidamide: as a brown solid (280 mg, crude). This was then used in the next step without further purification. 1H NMR (400 MHz, DMSO-d6): δ 7.68 (bs, 1H), 7.28–7.38 (m, 4H), 7.18–7.26 (m, 2H), 2.36 (s, 3H). (iii) Synthesis of N-hydroxy-2-methylbenzimidamide: Hydroxylamine (2.37 g, 34.2 mmol) was taken in EtOH (20 mL) in a 100-mL round-bottom flask under N2. 2-Methylbenzonitrile (2.0 g, 17.1 mmol) and sodium carbonate (2.2 g, 20.5 mmol) were sequentially added to it. The reaction mixture was refluxed and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was concentrated under reduced pressure and the crude was purified by flash chromatography on silica gel (60–120 mesh) using 20% EtOAc-hexane as eluent to afford N-hydroxy-2-methylbenzimidamide as a gray solid (800 mg, 31%). M.S: 151.13 (M+H)+. (iv) Synthesis of 2-(o-Tolyl)-6-(Trifluoromethyl)Pyrimidin-4(3H)-One (30, 0499224)

(i) Synthesis of N-hydroxy-2-methylbenzimidamide: Hydroxylamine (2.37 g, 34.2 mmol) was taken in EtOH (20 mL) in a 100-mL round-bottom flask under N2. 2-Methylbenzonitrile (2.0 g, 17.1 mmol) and sodium carbonate (2.2 g, 20.5 mmol) were sequentially added to it. The reaction mixture was refluxed and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was concentrated under reduced pressure and the crude was purified by flash chromatography on silica gel (60–120 mesh) using 20% EtOAc-hexane as eluent to afford N-hydroxy-2-methylbenzimidamide as a gray solid (800 mg, 31%). M.S: 151.13 (M+H)+.
RT. The reaction mixture was then heated at 80°C and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was evaporated to dryness. The crude was purified by flash chromatography on silica gel (60–120 mesh) using 25% EtOAc-hexane as eluent to afford 30 as a white solid (70 mg, 18%). M.P. 155–156°C. 1H NMR (400 MHz, DMSO-d6): δ 13.28 (s, 1H), 7.45–7.51 (m, 2H), 7.32–7.37 (m, 2H), 6.86 (s, 1H), 2.37 (s, 3H). 13C NMR (100 MHz, DMSO-d6): δ 161.8, 151.2, 148.3, 136.4, 132.5, 130.8, 130.7, 129.4, 125.8, 120.7 (q, J = 273 Hz), 111.5, 19.4. LCMS (ESI) m/z calculated for [C12H5F3N2O + H]⁺, 255.07; found 255.25.

Synthesis of 2-(2-Hydroxyphenyl)-6-(Trifluoromethyl)Pyrimidin-4(3H)-One (31, 0498338)

(i) Synthesis of benzo[d]isoxazol-3-amine: Potassium tert-butoxide (1.38 g, 12.3 mmol) was taken in anhydrous DMF (20 mL) in a 100-mL round-bottom flask under N₂ and cooled it down to 0°C. 2-Fluorobenzonitrile (1.0 g, 8.2 mmol) and N-hydroxycetamide (867 mg, 11.5 mmol) were sequentially added to it. The reaction mixture was stirred at 50°C and monitored by TLC analysis (50% EtOAc-hexane) until completion. Ice cold water (40 mL) was added to the reaction mixture and the reaction mixture was extracted with EtOAc (3 × 20 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford benzo[d]isoxazol-3-amine as a brown-colored solid (900 mg, crude). 1H NMR (400 MHz, DMSO-d6): δ 7.82 (d, J = 7.9 Hz, 1H), 7.54–7.56 (m, 1H), 7.43–7.45 (m, 1H), 7.24 (t, J = 7.2 Hz, 1H), 6.40 (bs, 2H). (ii) Synthesis of 2-hydroxybenzimidamide: A par flask was charged with benzo[d]isoxazol-3-amine 55 (0.15 g, 0.73 mmol) and MeOH (10 mL) followed by addition of Pd-C (10 wt/wt, 0.1 g). The flask was evacuated under vacuum and then purged with hydrogen. The reaction was stirred under hydrogen atmosphere (30 psi) for 18 h. The reaction was monitored by TLC. It was then filtered through sintered funnel with a pad of celite, washed with MeOH (30 mL) and concentrated under reduced pressure. It was recrystallized from diethyl ether/pentane to afford 2-hydroxybenzimidamide as a pale brown solid (6.6 g, 65%). MS: 136.93 (M+H)⁺. (iii) Et₃N (0.4 mL, 3.0 mmol) was added to a solution of ethyl 4,4,4-trifluoro-3-oxobutanatoate (324 mg, 1.8 mmol) and 2-hydroxybenzimidamide (200 mg, 1.5 mmol) in EtOH (5 mL) at RT. The reaction mixture was then heated at 80°C and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was evaporated to dryness. The crude was purified by flash chromatography on silica gel (60–120 mesh) using 40% EtOAc-hexane as eluent to afford 31 as an off-white solid (100 mg, 27%). M.P. 236–238°C. 1H NMR (400 MHz, DMSO-d6): δ 12.39 (s, 1H), 8.06 (d, J = 7.6 Hz, 1H), 7.47 (t, J = 7.5 Hz, 1H), 6.97–7.03 (m, 2H), 6.88 (s, 1H). 13C NMR (100 MHz, DMSO-d6): δ 162.5, 160.0, 158.2, 151.2 (q, J = 42 Hz), 134.3, 129.3, 120.6 (q, J = 273 Hz), 119.5, 117.5, 115.8, 109.7. LCMS (ESI) m/z calculated for [C₁₁H₁₁F₃N₂O₂ + H]⁺, 257.05; found 257.26.

Synthesis of 5-Methyl-6-(Trifluoromethyl)Pyrimidin-4(3H)-One (32, 0496404)

Et₃N (1.8 mL, 13.0 mmol) was added to a solution of ethyl 4,4,4-trifluoro-2-methyl-3-oxobutanatoe (250 mg, 1.3 mmol) and formimidamide hydrochloride (101 mg, 1.3 mmol) in EtOH (3 mL) at RT. The reaction mixture was then heated at 80°C and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was evaporated to dryness. The crude was purified by column chromatography on silica gel (60–120 mesh) using 25% EtOAc-hexane as eluent to afford 32 as a white solid (190 mg, 84%). M.P. 183–185°C. 1H NMR (400 MHz, DMSO-d6): δ 13.05 (s, 1H), 8.22 (s, 1H), 2.08 (s, 3H). 13C NMR (100 MHz, DMSO-d6): δ 161.9, 147.9, 146.3 (q, J = 32 Hz), 125.3, 121.8 (q, J = 275 Hz), 10.1 (q, J = 3 Hz). LCMS (ESI) m/z calculated for [C₅H₅F₃N₂O + H]⁺, 179.12; found 179.35.

Synthesis of 2-(3-Hydroxypyridin-2-yl)-5-Methyl-6-(Trifluoromethyl)Pyrimidin-4(3H)-One (33, 0504069)

(i) Synthesis of Isoxazolo[5,4-b]Pyridin-3-Amine: Potassium tert-butoxide (2.7 g, 24.6 mmol) was taken in anhydrous DMF (20 mL) in a 100-mL round-bottom flask under N₂ and cooled it down to 0°C. 3-Fluoropicolinonitrile (2.0 g, 16.4 mmol) and N-hydroxycetamide (1.7 g, 22.9 mmol) were sequentially added to it. The reaction mixture was stirred at 60°C and monitored by TLC analysis (50% EtOAc-hexane) until completion. Ice cold water (40 mL) was added to the reaction mixture and the reaction mixture was extracted with EtOAc (3 × 20 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel (60–120 mesh) using 30% EtOAc-hexane as eluent to afford isoxazolo[5,4-b]pyridin-3-amine as a gray solid (1.5 g, 68%). 1H NMR (400 MHz, DMSO-d6): δ 8.80 (s, 1H), 7.92 (d, J = 7.9 Hz, 1H), 7.55–7.59 (m, 1H), 6.55 (bs, 2H). (ii) Synthesis of 3-hydroxypicolinimidamide: A par flask was charged with isoxazolo[5,4-b]pyridin-3-amine (1.5 g, 11.1 mmol) and MeOH (20 mL) followed by addition of Pd-C (20% wt/wt, 0.6 g). The flask was evacuated under vacuum and then purged with hydrogen. The reaction was stirred under hydrogen atmosphere (60 psi) for 24 h. The reaction was monitored by TLC. It was then filtered through sintered funnel with a pad of celite, washed with MeOH (30 mL) and concentrated under reduced pressure. It was recrystallized from diethyl ether/pentane to afford 33 as a pale brown solid (0.8 g, 65%). LC-MS: 137.99 (M+H)⁺; 78% (purity). (iii) Et₃N (0.4 mL, 3.0 mmol) was added to a solution of ethyl 4,4,4-trifluoro-2-methyl-3-oxobutanatoe (337 mg, 1.7 mmol) and 3-hydroxypicolinimidamide (200 mg, 1.4 mmol) in EtOH (5 mL) at RT. The reaction mixture was then heated at 80°C and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was evaporated to dryness. The crude was purified by flash chromatography on silica gel (60–120 mesh) using 30% EtOAc-hexane as eluent to afford 33 as a white solid (150 mg, 38%). M.P. 176–178°C. 1H NMR (400 MHz,
DMSO-d_6: δ 12.97 (bs, 1H), 12.36 (bs, 1H), 8.29 (d, $J = 4.0$ Hz, 1H), 7.57–7.60 (m, 1H), 7.52 (d, $J = 8.4$ Hz, 1H), 2.16 (d, $J = 2.1$ Hz, 3H); 13C NMR (100 MHz, DMSO-d_6): δ 161.4, 156.7, 154.7, 142.9 (q, $J = 35$ Hz), 140.7, 129.5, 129.1, 126.2, 125.2, 121.4 (q, $J = 274$ Hz), 10.4 (d, $J = 2.0$ Hz). LCMS (ESI) m/z calculated for [C$_{11}$H$_9$F$_3$N$_2$O$_2$ + H]$^+$, 272.06; found 272.18.

Synthesis of 2-(2-Methoxyphenyl)-5-Methyl-6-(Trifluoromethyl)Pyrimidin-4(3H)-One (34, 0497565)

(i) Synthesis of 2-methoxybenzimidamide: 2-Methoxybenzonitrile (1.0 g, 7.5 mmol) was taken in anhydrous THF (20 mL) in a 50-mL round-bottom flask under N$_2$ and cooled it down to -20°C. Dropwise lithium bis(trimethylsilyl)amide (1.06 M in THF) (8.5 mL, 9.0 mmol) was added to it. The reaction mixture was stirred at RT and monitored by TLC analysis (50% EtOAc-hexane) until completion. 6N HCl (10 mL) was added to the reaction mixture and kept it stirring for 30 min. The reaction mixture was then extracted with EtOAc (2 × 20 mL). The combined organic layer was rejected and the aqueous layer was basified by NaOH solution to pH 13–14. The aqueous layer was extracted with EtOAc (2 × 30 mL). The combined organic layer dried over anhydrous Na$_2$SO$_4$ and concentrated under reduced pressure to afford 2-methoxybenzimidamide as an off-white solid (350 mg, 52%). M.P. 158–160$^\circ$C. 1H NMR (400 MHz, DMSO-d_6): δ 7.44–7.47 (m, 1H), 7.32–7.39 (m, 3H), 6.33 (bs, 3H). 13C NMR (100 MHz, DMSO-d_6): δ 162.4, 157.1, 154.5, 146.6 (q, $J = 12.88$ Hz, 3H); δ 13.29 (s, 1H), 8.10 (d, $J = 8.3$ Hz, 1H), 6.95 (t, $J = 7.4$ Hz, 1H), 6.36 (bs, 3H), 3.80 (s, 3H). LCMS (ESI) m/z calculated for [C$_{11}$H$_9$N$_2$O + H]$^+$, 151.09; found 151.07. (ii) Et$_3$N (0.1 mL, 0.8 mmol) was added to a solution of 2-(2-chlorophenyl)-5-methyl-N,N-bis(trimethylsilyl)acetamide (1.06 M in THF) (8.2 mL, 8.8 mmol) was added to it. The reaction mixture was then heated at 80$^\circ$C and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was then extracted with EtOAc (2 × 20 mL). The combined organic layer was concentrated under reduced pressure. The crude was further purified by column chromatography on silica gel (60–120 mesh) using 15% EtOAc-hexane as eluent to afford 35 as a white solid (135 mg, 52%). M.P. 256–259$^\circ$C. 1H NMR (400 MHz, DMSO-d_6): δ 13.29 (s, 1H), 8.10 (d, $J = 6.1$ Hz, 2H), 7.53–7.61 (m, 3H), 2.15 (s, 3H); 13C NMR (100 MHz, DMSO-d_6): δ 163.5, 154.8, 146.5, 131.9, 131.4, 128.7, 127.7, 122.6, 121.8 (d, $J = 274.5$ Hz), 10.1. LCMS (ESI) m/z calculated for [C$_{12}$H$_9$F$_3$N$_2$O + H]$^+$, 255.07; found 255.35.

Synthesis of 2-(2-Chlorophenyl)-5-Methyl-6-(Trifluoromethyl)pyrimidin-4(3H)-One (37, 0496405)

Et$_3$N (0.1 mL, 1.0 mmol) was added to a solution of 4,4,4-trifluoro-2-methyl-3-oxobutanoate (200 mg, 1.0 mmol) and 2-fluorobenzimidamide hydrochloride (170 mg, 1.0 mmol) in EtOH (3 mL) at RT. The reaction mixture was then heated at 80$^\circ$C and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was then evaporated to dryness. The crude was purified by column chromatography on silica gel (60–120 mesh) using 25% EtOAc-hexane as eluent to afford 36 as a white solid (110 mg, 40%). M.P. 139–141$^\circ$C. 1H NMR (400 MHz, DMSO-d_6): δ 13.35 (s, 1H), 7.63–7.71 (m, 2H), 7.35–7.42 (m, 2H), 2.15 (s, 3H); 13C NMR (100 MHz, DMSO-d_6): δ 162.8, 160.6, 158.2, 152.4, 146.4 (q, $J = 37$ Hz), 133.5 (d, $J = 8.5$ Hz), 124.7 (d, $J = 3.5$ Hz), 123.6, 121.7 (q, $J = 274$ Hz), 120.1 (d, $J = 11.8$ Hz), 116.3 (d, $J = 21$ Hz), 10.1 (q, $J = 2.5$ Hz). LCMS (ESI) m/z calculated for [C$_{12}$H$_8$F$_3$N$_2$O + H]$^+$, 273.07; found 273.41.

Synthesis of 5-Methyl-2-Phenyl-6-(Trifluoromethyl)Pyrimidin-4(3H)-One (35, 0496408)

Et$_3$N (0.7 mL, 5.0 mmol) was added to a solution of ethyl 4,4,4-trifluoro-2-methyl-3-oxobutanoate 10 (200 mg, 1.0 mmol) and benzimidamide hydrochloride (120 mg, 1.0 mmol) in EtOH (6 mL) at RT. The reaction mixture was then heated at 80°C and monitored by TLC analysis (40% EtOAc-hexane) until completion. The reaction mixture was evaporated to dryness and poured to ice cooled water (20 mL). It was extracted with DCM (3 × 20 mL). The combined organic layer was dried over anhydrous Na$_2$SO$_4$ and concentrated under reduced pressure. The crude was further purified by column chromatography on silica gel (60–120 mesh) using 15% EtOAc-hexane as eluent to afford 35 as a white solid (135 mg, 52%). M.P. 256–259°C. 1H NMR (400 MHz, DMSO-d_6): δ 7.44–7.47 (m, 1H), 7.32–7.39 (m, 3H), 6.33 (bs, 3H). LCMS (ESI) m/z calculated for [C$_{13}$H$_{11}$F$_3$N$_2$O$_2$ + H]$^+$, 284.09; found 285.30.
and monitored by TLC analysis (50% EtOAc-hexane) until completion. 6N HCl (20 mL) was added to the reaction mixture and kept it stirring at for 30 min. The reaction mixture was then extracted with EtOAc (2 × 20 mL). The combined organic layer was rejected and the aqueous layer was basified by NaOH solution to pH 13–14. The aqueous layer was extracted with EtOAc (2 × 30 mL). The combined organic layer dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. It was further recrystallized from ether-pentane to afford 3-methoxypicolinimidamide as a pale brown solid (700 mg, 62%). ¹H NMR (400 MHz, DMSO-d₆): δ 8.21 (d, J = 3.7 Hz, 1H), 7.69 (d, J = 8.1 Hz, 1H), 7.58–7.61 (m, 1H), 3.85 (s, 3H); 13C NMR (100 MHz, DMSO-d₆): δ 162.4, 154.2, 153.5, 146.4 (q, J = 34 Hz), 140.8, 139.5, 126.9, 124.3, 121.8 (q, J = 275 Hz), 120.5, 56.1, 10.2 (q, J = 2.4 Hz). LCMS (ESI) m/z calculated for [C13H10F3N2O2 + H]⁺, 286.08; found 286.29.

Synthesis of 2-Cyclohexyl-5-Methyl-6-(Trifluoromethyl)Pyrimidin-4(3H)-One (40, 0504095)

(i) Synthesis of N'-hydroxy cyclohexanecarboximidamide: Hydroxylamine (1.9 g, 27.5 mmol) was taken in EtOH (20 mL) in a 100-mL round-bottom flask under N₂. Cyclohexanecarbonitrile (2.0 g, 18.3 mmol) and Et₃N (3.3 mL, 22.9 mmol) were sequentially added to it. The reaction mixture was refluxed and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was concentrated under reduced pressure and the crude was purified by flash chromatography on silica gel (60–120 mesh) using 20% EtOAc-hexane as eluent to afford 38 as a white solid (100 mg, 35%). M.P. 152–153°C. ¹H NMR (400 MHz, DMSO-d₆): δ 8.67 (d, J = 4.5 Hz, 1H), 8.17 (d, J = 8.2 Hz, 1H), 7.66 (t, J = 4.6 Hz, 1H), 2.18 (bs, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 162.5, 153.1, 147.7, 147.6, 145.8 (q, J = 33 Hz), 138.8, 129.9, 127.0, 125.2, 121.7 (q, J = 274 Hz), 10.2 (q, J = 2.2 Hz). LCMS (ESI) m/z calculated for [C₁₁H₁₂F₃N₃O + H]⁺, 290.03; found 290.25.
Et$_3$N (0.6 mL, 4.4 mmol) was added to a solution of ethyl 4,4,4-trifluoro-2-methyl-3-oxobutanoate (520 mg, 2.6 mmol) and cyclohexanecarboximidamide (280 mg, 2.2 mmol) in EtOH (5 mL) at RT. The reaction mixture was then heated at 80° C and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was evaporated to dryness. The crude was purified by flash chromatography on silica gel (60–120 mesh) using 25% EtOAc-hexane as eluent to afford 40 as a white solid (120 mg, 21%). M.P. 169–170°C. 1H NMR (400 MHz, DMSO-d$_6$): ð 12.84 (s, 1 H), 3.22 (s, 3 H), 2.54–2.57 (m, 1 H), 1.74–1.83 (m, 4 H), 1.63–1.66 (m, 1 H), 1.43–1.52 (m, 2 H), 1.17–1.31 (m, 3 H); 13C NMR (100 MHz, DMSO-d$_6$): ð 163.6, 163.0, 146.3 (d, 3 J = 13 Hz, 1 H), 121.9, 42.3, 29.9, 25.2, 25.1, 9.8. LCMS (ESI) m/z calculated for [C$_{12}$H$_{15}$F$_3$N$_2$O + H]$^+$, 261.12; found 261.07.

Synthesis of 5-Methyl-6-(Trifluoromethyl)-[2,2'-Bipyrimidin]-4(3H)-One (41, 0504071)

(i) Synthesis of pyrimidin-2-carboximidamide: Pyrimidine-2-carbonitride (500 mg, 4.7 mmol) was taken in anhydrous THF (10 mL) in a 50-mL round-bottom flask under N$_2$ and cooled it down to −20°C. Dropwise lithium bis(trimethylsilyl)amide (1.06 M in THF) (5.3 mL, 5.7 mmol) was added to it. The reaction mixture was stirred at RT for 18 h and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was evaporated to dryness. The crude was stirred at RT for 30 min. The reaction mixture was then heated at 80°C and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was evaporated to dryness. The crude was purified by flash chromatography on silica gel (60–120 mesh) using 30% EtOAc-hexane as eluent to afford 42 as an off-white solid (130 mg, 50%). M.P. 168–170°C. 1H NMR (400 MHz, DMSO-d$_6$): ð 8.95 (d, J = 4.8 Hz, 2 H), 7.62–7.67 (m, 1 H), 7.14 (bs, 3 H). (ii) Et$_3$N (0.2 mL, 1.6 mmol) was added to a solution of ethyl 4,4,4-trifluoro-2-methyl-3-oxobutanoate (189 mg, 0.9 mmol) and 2-(trifluoromethyl)benzimidamide (150 mg, 0.8 mmol) in EtOH (5 mL) at RT. The reaction mixture was then heated at 80°C and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was evaporated to dryness. The crude was purified by flash chromatography on silica gel (60–120 mesh) using 30% EtOAc-hexane as eluent to afford 42 as an off-white solid (130 mg, 50%). M.P. 168–170°C. 1H NMR (400 MHz, DMSO-d$_6$): ð 13.16 (s, 1 H), 9.06 (d, J = 4.9 Hz, 2 H), 7.75 (t, J = 4.9 Hz, 1 H), 2.19 (bs, 3 H); 13C NMR (100 MHz, DMSO-d$_6$): ð 162.5, 158.1, 156.8, 151.9, 146.2 (q, 3 J = 274 Hz), 126.4, 123.1, 121.8 (q, J = 275 Hz), 10.5 (q, J = 2.0 Hz). LCMS (ESI) m/z calculated for [C$_{13}$H$_{15}$F$_3$N$_2$O + H]$^+$, 261.07; found 257.2.

Synthesis of 5-Methyl-6-(Trifluoromethyl)-2-(2-(Trifluoromethyl)Phenyl)pyrimidin-4(3H)-One (42, 0498344)

(i) Synthesis of 2-(trifluoromethyl)benzimidamide: 2-(trifluoromethyl)benzonitrile 61 (500 mg, 2.9 mmol) was taken in anhydrous THF (10 mL) in a 50-mL round-bottom flask under N$_2$ and cooled it down to −20°C. Dropwise lithium bis(trimethylsilyl)amide (1.06 M in THF) (2.7 mL, 2.9 mmol) was added to it. The reaction mixture was stirred at RT and monitored by TLC analysis (50% EtOAc-hexane) until completion. 6N HCl (10 mL) was added to the reaction mixture and kept it stirring at for 30 min. The reaction mixture was then extracted with EtOAc (2 × 20 mL). The combined organic layer was rejected and the aqueous layer was basified by NaOH solution to pH 13–14. The aqueous layer was extracted with EtOAc (2 × 30 mL). The combined organic layer dried over anhydrous Na$_2$SO$_4$ and concentrated under reduced pressure to afford (trifluoromethyl)benzimidamide as a pale brown solid (300 mg, 54%). 1H NMR (400 MHz, DMSO-d$_6$): ð 7.73 (d, J = 7.8 Hz, 1 H), 7.67 (t, J = 7.5 Hz, 1 H), 7.57 (t, J = 7.6 Hz, 1 H), 7.46 (d, J = 7.2 Hz, 1 H), 6.38 (bs, 3 H). (ii) Et$_3$N (0.2 mL, 1.6 mmol) was added to a solution of ethyl 4,4,4-trifluoro-2-methyl-3-oxobutanoate (189 mg, 0.9 mmol) and 2-(trifluoromethyl)benzimidamide (150 mg, 0.8 mmol) in EtOH (5 mL) at RT. The reaction mixture was then heated at 80°C and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was evaporated to dryness. The crude was purified by flash chromatography on silica gel (60–120 mesh) using 30% EtOAc-hexane as eluent to afford 42 as an off-white solid (130 mg, 50%). M.P. 168–170°C. 1H NMR (400 MHz, DMSO-d$_6$): ð 13.16 (s, 1 H), 9.06 (d, J = 4.9 Hz, 2 H), 7.75 (t, J = 4.9 Hz, 1 H), 2.19 (bs, 3 H); 13C NMR (100 MHz, DMSO-d$_6$): ð 162.5, 158.1, 156.8, 151.9, 146.2 (q, J = 36 Hz), 126.4, 123.1, 121.8 (q, J = 275 Hz), 10.5 (q, J = 2.0 Hz). LCMS (ESI) m/z calculated for [C$_{13}$H$_{15}$F$_3$N$_2$O + H]$^+$, 261.07; found 257.2.
reduced pressure to afford 2,6-dimethylbenzimidamide as an off-white solid (550 mg, crude). This was then used in the next step without further purification. 1H NMR (400 MHz, DMSO-$_d_6$): δ 7.83 (s, 1H), 7.46 (s, 1H), 7.11–7.15 (m, 2H), 7.01–7.03 (m, 2H), 2.24 (s, 6H). (ii) Et$_3$N (0.6 mL, 4.0 mmol) was added to a solution of ethyl 4,4,4-trifluoro-2-methyl-3-oxobutanoate (480 mg, 2.4 mmol) and 2,6-dimethylbenzimidamide (300 mg, 2.0 mmol) in EtOH (10 mL) at RT. The reaction mixture was then heated at 80°C for 18 h and monitored by TLC analysis (50% EtOAc-hexane). The reaction mixture was evaporated to dryness. The crude was purified by flash chromatography on silica gel (60–120 mesh) using 20% EtOAc-hexane as eluent to afford 43 as a white solid (50 mg, 9%). M.P. 174–175°C. 1H NMR (400 MHz, DMSO-$_d_6$): δ 1H NMR (400 MHz, DMSO-$_d_6$): δ 13.24 (s, 1H), 7.31 (t. J = 7.6 Hz, 1H), 7.16 (d. J = 7.6 Hz, 2H), 2.15 (s, 3H), 2.13 (s, 6H); 13C NMR (100 MHz, DMSO-$_d_6$): δ 162.8, 156.5, 146.1 (q, J = 32 Hz), 135.6, 133.1, 129.6, 127.4, 121.8 (q, J = 274 Hz), 18.9, 10.0 (q, J = 3.0 Hz). LCMS (ESI) m/z calculated for [C$_{11}$H$_{12}$F$_3$N$_2$O + H]$^+$, 283.11; found 283.26.

Synthesis of 5-Methyl-2-(2-(Trifluoromethoxy)Phenyl)-6-(Trifluoromethyl)Pyrimidin-4(3H)-One (44, 0504066)

(i) Synthesis of 2-(trifluoromethoxy)benzimidamide: 2-(Trifluoromethoxy)benzonitrile (500 mg, 2.7 mmol) was taken in anhydrous THF (10 mL) in a 50-mL round-bottom flask under N$_2$ and cooled it down to −20°C. Dropwise lithium bis(trimethylsilyl)amide (1.06 M in THF) (5.1 mL, 5.4 mmol) was added to it. The reaction mixture was stirred at RT for 18 h and monitored by TLC analysis (50% EtOAc-hexane). 6N HCl (20 mL) was added to the reaction mixture and kept it stirring at for 30 min. The reaction mixture was then extracted with EtOAc (2 × 20 mL). The combined organic layer was rejected and the aqueous layer was basified by NaOH solution to pH 13–14. The aqueous layer was extracted with EtOAc (2 × 30 mL). The combined organic layer dried over anhydrous Na$_2$SO$_4$ and concentrated under reduced pressure. It was further recrystallized from ether-pentane to afford 2-(trifluoromethoxy)benzimidamide as a white solid (349 mg, 1.8 mmol) in EtOH (5 mL) at RT. The reaction mixture was then heated at 80°C and monitored by TLC analysis (50% EtOAc-hexane). The reaction mixture was evaporated to dryness. The crude was purified by flash chromatography on silica gel (60–120 mesh) using 24% EtOAc-hexane as eluent to afford 45 as a white solid (200 mg, 11%). M.P. 173–175°C. 1H NMR (400 MHz, DMSO-$_d_6$): δ 13.19 (s, 1H), 8.60 (d, J = 4.5 Hz, 1H), 7.98 (t, J = 8.9 Hz, 1H), 7.73–7.77 (m, 1H), 2.17 (bs, 3H); 13C NMR (100 MHz, DMSO-$_d_6$): δ 162.4, 157.7 (d, J = 265 Hz), 151.2, 145.9 (q, J = 33 Hz), 145.4, 137.2 (d, J = 8.7 Hz), 128.5 (d, J = 4.9 Hz), 126.0 (d, J = 19 Hz), 125.3, 121.7 (q, J = 275 Hz), 10.3 (q, J = 2.5 Hz). LCMS (ESI) m/z calculated for [C$_{11}$H$_{14}$F$_3$N$_2$O + H]$^+$, 274.06; found 274.14.

Synthesis of 2-(2-Hydroxyphenyl)-5-Methyl-6-(Trifluoromethyl)Pyrimidin-4(3H)-One (46, 0499007)

Et$_3$N (0.4 mL, 3.0 mmol) was added to a solution of ethyl 4,4,4-trifluoro-2-methyl-3-oxobutanoate (230 mg, 1.2 mmol) and 2-(trifluoromethyl)benzimidamide (200 mg, 0.9 mmol) in EtOH (5 mL) at RT. The reaction mixture was then heated at 80°C for 18 h and monitored by TLC analysis (50% EtOAc-hexane). The reaction mixture was evaporated to dryness. The crude was purified by flash chromatography on silica gel (60–120 mesh) using 30% EtOAc-hexane as eluent to afford 46 as a pale yellow solid (120 mg, 30%). M.P. 270–271°C. 1H NMR (400 MHz, DMSO-$_d_6$): δ 12.91–12.27 (bs, 2H), 8.08 (d, J = 7.8 Hz, 1H), 7.45 (t, J = 8.4 Hz, 1H), 7.01–6.96 (m, 2H), 2.15 (bs, 3H); 13C NMR (100 MHz, DMSO-$_d_6$): δ 163.2, 158.6, 155.7, 145.2, 133.9, 128.5,
121.6 (q, J = 276 Hz), 119.3, 117.6, 114.8, 10.1 (q, J = 1.7 Hz). LCMS (ESI) m/z calculated for \([\text{C}_{12}\text{H}_{3}\text{F}_3\text{N}_2\text{O}_2 + \text{H}]^+\), 271.07; found 271.03.

Synthesis of 6-Benzyl-5-Methyl-2-(Pyridin-2-yl)Pyrimidin-4(3H)-One (47, 0497408)

(i) Synthesis of ethyl 2-methyl-3-oxo-4-phenylbutanoate: Ethyl 3-oxo-4-phenylbutanoate (450 mg, 2.2 mmol) was taken in DMF (10 mL) in a 50-mL round-bottom flask under N₂. Iodomethane (0.1 mL, 1.5 mmol) and \(\text{K}_2\text{CO}_3\) (300 mg, 2.2 mmol) were sequentially added to it. The reaction mixture was stirred at RT for 2 h. The reaction mixture was then poured into ice water (20 g) and extracted with EtOAc (2 × 20 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to generate a colorless liquid (0.1 g, crude) which was then used as such for the next step without further purification. LC-MS: 219.17 [M-H⁺]; 50.74% (purity). (ii) \(\text{Na}_2\text{CO}_3\) (40 mg, 0.4 mmol) was added to ethyl 2-methyl-3-oxo-4-phenylbutanoate (100 mg, 0.4 mmol) and picolinimidamide hydrochloride (70 mg, 0.4 mmol) in EtOH (3 mL) at RT. The reaction mixture was then heated at 80°C for 4 h and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was evaporated to dryness. The crude was purified by flash chromatography on silica gel (60–120 mesh) using 30% EtOAc-hexane as eluent to afford 47 as a white solid (230 mg, 30%). M.P. 140–141°C. ¹H NMR (400 MHz, DMSO-d₆): δ 11.95 (s, 1H), 8.71 (d, J = 4.4 Hz, 1H), 8.26 (d, J = 7.9 Hz, 1H), 8.00–8.04 (m, 1H), 7.61 (q, J = 5.1 Hz, 1H), 7.28–7.34 (m, 4H), 7.20 (t, J = 6.8 Hz, 1H), 3.99 (s, 2H), 2.06 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 162.1, 160.4, 150.9, 149.1, 148.5, 138.2, 137.9, 128.7, 128.4, 126.4, 126.3, 121.9, 120.8, 40.3, 11.0. LCMS (ESI) m/z calculated for \([\text{C}_{17}\text{H}_{15}\text{N}_3\text{O} + \text{H}]^+\), 278.13; found 278.32.

Synthesis of 5-Methyl-6-Phenyl-2-(Pyridin-2-yl)Pyrimidin-4(3H)-One (48, 0496303)

Synthesis of ethyl 2-methyl-3-oxo-3-phenylpropanoate: Ethyl 3-oxo-3-phenylpropanoate (1.0 g, 5.2 mmol) was taken in DMF (3 mL) at RT. The reaction mixture was then heated at 90°C for 1 h. The reaction mixture was then poured into ice water (20 g) and extracted with EtOAc (2 × 20 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude was purified by column chromatography on silica gel (60–120 mesh) using 20% hexane-EtOAc as eluent to afford 48 as a white solid (230 mg, 30%). M.P. 140–141°C. ¹H NMR (400 MHz, DMSO-d₆): δ 12.15 (s, 1H), 8.74 (d, J = 4.5 Hz, 1H), 8.32 (d, J = 7.9 Hz, 1H), 8.02 (t, J = 7.6 & 6.7 Hz, 1H), 7.62–7.67 (m, 3H), 7.46–7.53 (m, 3H), 2.08 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 162.5, 158.4, 151.0, 149.0, 148.6, 138.3, 137.9, 128.9, 128.8, 128.1, 126.4, 122.1, 120.7, 12.9. LCMS (ESI) m/z calculated for \([\text{C}_{16}\text{H}_{13}\text{N}_3\text{O} + \text{H}]^+\), 264.11; found 264.33.

Synthesis of 5,6-Dimethyl-2-(Pyridin-2-yl)Pyrimidin-4(3H)-One (49, 0496407)

Et₃N (2.4 mL, 17.5 mmol) was added to a solution of ethyl 2-methyl-3-oxoobutanoate (500 mg, 3.5 mmol) and picolinimidamide hydrochloride (462 mg, 3.8 mmol) in EtOH (10 mL) at RT. The reaction mixture was then heated at 120°C and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was evaporated to dryness. The crude was further purified by column chromatography on silica gel (60–120 mesh) using 15% EtOAc-hexane as eluent to afford 49 as an off-white solid (80 mg, 11%). M.P. 146°C. ¹H NMR (400 MHz, DMSO-d₆): δ 11.88 (s, 1H), 8.71 (d, J = 4.3 Hz, 1H), 8.28 (d, J = 7.9 Hz, 1H), 8.02 (t, J = 7.7 Hz, 1H), 7.60–7.63 (m, 3H), 2.32 (s, 3H), 1.99 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 161.6, 158.8, 150.5, 149.0, 148.5, 137.9, 126.3, 121.8, 120.3, 21.6, 11.0. LCMS (ESI) m/z calculated for \([\text{C}_{11}\text{H}_{11}\text{N}_3\text{O} + \text{H}]^+\), 202.10; found 202.42.

Synthesis of 5-Methyl-2-(Pyridin-2-yl)Pyrimidin-4(3H)-One (50, 0496336)

(i) Synthesis of ethyl 2-methyl-3-oxopropanoate: Ethyl 3-oxopropanoate (1.0 g, 8.6 mmol) was taken in DMF (15 mL) in a 50-mL round-bottom flask under N₂. Iodomethane (0.8 mL, 12.9 mmol) and \(\text{K}_2\text{CO}_3\) (2.4 g, 17.2 mmol) were sequentially added to it. The reaction mixture was stirred at 60°C for 5 h. The reaction mixture was then poured into ice water (20 g) and extracted with EtOAc (2 × 20 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude was purified by column chromatography on silica gel (100–200 mesh) using 5% EtOAc-hexane as eluent to afford ethyl 2-methyl-3-oxo-propanoate as a brown liquid (0.61 g, 54%). MS m/z 131.1 [M + H⁺]. (ii) \(\text{Na}_2\text{CO}_3\) (330 mg, 3.2 mmol) was added to a solution of ethyl 2-methyl-3-oxo-propanoate (220 mg, 1.7 mmol) and picolinimidamide hydrochloride (250 mg, 1.6 mmol) in EtOH (5 mL) at RT. The reaction mixture was then heated at 90°C and monitored by TLC analysis (Hexane/EtOAc = 1:1) until completion. The reaction mixture was evaporated to dryness and poured to ice cooled water (20 mL). It was
extracted with EtOAc (2 × 20 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude was further purified by column chromatography on silica gel (60–120 mesh) using 2% MeOH–DCM as eluent to afford 50 as an off-white solid (110 mg, 38%). M.P. 148–149°C. 1H NMR (400 MHz, DMSO-d₆): δ 11.04 (s, 1H), 8.64 (d, J = 4.7 Hz, 1H), 8.37 (d, J = 7.9 Hz, 1H), 7.86–7.92 (m, 2H), 7.44–7.47 (m, 1H), 2.15 (s, 3H). 13C NMR (100 MHz, DMSO-d₆): δ 162.2, 152.2, 151.3, 148.9, 147.9, 137.7, 126.3, 126.1, 121.7, 13.4. LCMS (ESI) m/z calculated for [C₁₀H₆N₃O + H]⁺, 188.07; found 188.08.

Synthesis of 5-Methyl-2-(Pyridin-2-yl)-6-(Trifluoromethyl)Pyrimidin-4(3H)-One (51, 0340734)

Et₃N (0.7 mL, 5.0 mmol) was added to a solution of ethyl 4,4,4-trifluoro-2-methyl-3-oxobutoxanate (200 mg, 1.0 mmol) and picolinimidamide hydrochloride (160 mg, 1.0 mmol) in EtOH (5 mL) at RT. The reaction mixture was then poured into ice cooled water (20 mL). It was extracted with DCM (3 × 20 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude was further purified by column chromatography on silica gel (60–120 mesh) using 20% EtOAc-hexane as eluent to afford 51 as a white solid (150 mg, 58%). M.P. 153–155°C. 1H NMR (400 MHz, DMSO-d₆): δ 11.82 (s, 1H), 8.76 (d, J = 4.3 Hz, 1H), 8.28 (d, J = 7.9 Hz, 1H), 8.07 (t, J = 7.7 Hz, 1H), 7.65–7.68 (m, 1H), 2.17 (d, J = 2.2 Hz, 3H); 13C NMR (100 MHz, DMSO-d₆): δ 162.2, 152.7, 149.2, 147.8, 145.9 (q, J = 32 Hz), 138.0, 126.9, 125.0, 122.4, 121.8 (q, J = 274 Hz), 10.3 (q, J = 2.3 Hz). LCMS (ESI) m/z calculated for [C₁₁H₄F₃N₃O + H]⁺, 256.07; found 256.32.

Synthesis of 5-Benzyl-2-(Pyridin-2-yl)-6-(Trifluoromethyl)Pyrimidin-4(3H)-One (52, 0504059)

(i) Synthesis of ethyl 2-benzyl-4,4,4-trifluoro-3-oxobutoxanate: 3-Phenylpropanoyl chloride (1.0 g, 5.9 mmol) was taken in DCM (10 mL) in a 100-mL round-bottom flask under N₂. TFAA (1.3 mL, 10.5 mmol) was added to a solution of ethyl 4,4,4-trifluoro-2-(4-fluorophenyl)-3-oxobutoxanate (2.0 g, 7.2 mmol) and picolinimidamide hydrochloride (1.0 mmol) in EtOH (10 mL) at RT. The reaction mixture was then poured into ice water (20 g) and extracted with EtOAc (3 × 30 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel (100–200 mesh) using 8% EtOAc-hexane as eluent to afford 52 as a white solid (100 mg, 11.0%). M.P. 173–174°C. 1H NMR (400 MHz, DMSO-d₆): δ 12.99 (s, 1H), 8.77 (d, J = 4.2 Hz, 1H), 8.31 (d, J = 7.9 Hz, 1H), 8.06–8.10 (m, 1H), 7.67–7.70 (m, 1H), 7.25–7.29 (m, 2H), 7.17–7.21 (m, 3H), 4.01 (s, 2H); 13C NMR (100 MHz, DMSO-d₆): δ 162.1, 153.8, 149.2, 147.8, 146.9 (d, J = 35 Hz), 138.2, 138.1, 128.3, 127.9, 127.1, 126.9, 126.2, 122.7, 121.6 (d, J = 274 Hz), 29.9. LCMS (ESI) m/z calculated for [C₁₇H₁₂F₃N₃O + H]⁺, 332.10; found 332.95.

Synthesis of 5-(4-Fluorophenyl)-2-(Pyridin-2-yl)-6-(Trifluoromethyl)Pyrimidin-4(3H)-One (53, 0504061)

(ii) Synthesis of ethyl 4,4,4-trifluoro-2-(4-fluorophenyl)-3-oxobutoxanate: 2-(4-Fluorophenyl)acetyl chloride (1.0 g, 5.8 mmol) was taken in DCM (10 mL) in a 100-mL round-bottom flask under N₂. TFAA (1.2 mL, 8.7 mmol) and pyridine (1.0 mL, 11.6 mmol) were sequentially added to it. The reaction mixture was stirred at RT for 3 h. EtOH (4.0 mL) was added to the reaction mixture and kept it stirring for another 12 h. The reaction mixture was concentrated under reduced pressure and triturated with hexane. This afforded ethyl 4,4,4-trifluoro-2-(4-fluorophenyl)-3-oxobutoxanate as a brown oil (1.0 g, crude) that was used as such for the next step without any further purification. MS: 276.8 (M-H)⁻. (ii) Et₃N (5.2 mL, 36.0 mmol) was added to a solution of ethyl 4,4,4-trifluoro-2-(4-fluorophenyl)-3-oxobutoxanate (2.0 g, 7.2 mmol) and picolinimidamide hydrochloride (1.1 g, 7.2 mmol) in EtOH (20 mL) at RT. The reaction mixture was then heated at 100°C for 12 h and monitored by TLC analysis (50% EtOAc-hexane). The reaction mixture was then poured into ice water (20 g) and extracted with EtOAc (3 × 30 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel (100–200 mesh) using 25% EtOAc-hexane as eluent to afford 53 as a white solid (115 mg, 5.0%). M.P. 217–220°C. 1H NMR (400 MHz, DMSO-d₆): δ 13.08 (s, 1H), 8.79 (d, J = 4.2 Hz, 1H), 8.35 (d, J = 7.9 Hz, 1H), 8.08–8.12 (m, 1H), 7.69–7.72 (m, 1H), 7.34–7.38 (m, 2H), 7.27–7.31 (m, 2H); 13C NMR (100 MHz, DMSO-d₆): δ 162.1 (d, J = 244 Hz), 161.5, 154.7, 149.4, 147.8, 146.3 (q, J = 32 Hz), 138.2, 131.7 (d, J = 8.0 Hz), 127.4, 127.2, 122.8, 121.2 (q, J = 275 Hz), 114.9 (d, J = 21 Hz). LCMS (ESI) m/z calculated for [C₁₈H₁₄F₃N₂O + H]⁺, 336.08; found 335.91.

Synthesis of 5-Phenyl-2-(Pyridin-2-yl)-6-(Trifluoromethyl)Pyrimidin-4(3H)-One (54, 0504060)

(i) Synthesis of ethyl 4,4,4-trifluoro-3-oxo-2-phenylbutanoate (93): 2-Phenylacetyl chloride (2.0 g, 12.9 mmol) was taken in DCM (20 mL) in a 250-mL round-bottom flask under N₂. TFAA (2.7 mL, 19.4 mmol) and pyridine (2.1 mL, 25.8 mmol) were sequentially added to it. The reaction mixture was stirred at
RT for 3 h. EtOH (4.0 mL) was added to the reaction mixture and kept it stirring for another 12 h. The reaction mixture was concentrated under reduced pressure and triturated with hexane. This afforded ethyl 4,4,4-trifluoro-3-oxo-2-phenylbutanoate as a brown oil (2.0 g, crude) that was used for the next step without any further purification. MS: 258.8 (M-H\(^+\)). (ii) Et\(_3\)N (5.5 mL, 38.5 mmol) was added to a solution of ethyl 4,4,4-trifluoro-3-oxo-2-phenylbutanoate (2.0 g, 7.7 mmol) and picolinimidamide hydrochloride (1.2 g, 7.7 mmol) in EtOH (10 mL) at RT. The reaction mixture was then heated at 100°C for 12 h and monitored by TLC analysis (50% EtOAc-hexane). The reaction mixture was then poured into ice water (20 g) and extracted with EtOAc (3 × 30 mL). The combined organic layer was dried over anhydrous Na\(_2\)SO\(_4\) and concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel (100–200 mesh) using 24% EtOAc-hexane as eluent to afford 54 as a white solid (70 mg, 3.0%). M.P. 258–259°C. \(^1\)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta\) 13.04 (s, 1H), 8.79 (d, \(J = 4.2\) Hz, 1H), 8.35 (d, \(J = 7.8\) Hz, 1H), 8.08–8.12 (m, 1H), 7.69–7.72 (m, 1H), 7.41–7.48 (m, 3H), 7.29–7.31 (m, 2H); \(^13\)C NMR (100 MHz, DMSO-d\(_6\)): \(\delta\) 161.5, 154.6, 149.4, 147.8, 146.5 (d, \(J = 32\) Hz), 138.2, 131.2, 129.4, 128.4, 127.8, 127.2, 122.8, 121.3 (q, \(J = 274\) Hz). LCMS (ESI) m/z calculated for \([C\(_{16}\)H\(_{10}\)F\(_3\)N\(_2\)O + H\(^+\)]\(^+\)) = 318.09; found 317.94.

Synthesis of 5-Methoxy-2-(Pyridin-2-yl)-6-(Trifluoromethyl)Pyrimidin-4(3H)-One (56, 0498336)

(i) Synthesis of ethyl 4,4,4-trifluoro-2-methoxy-3-oxobutanoate: 2-Methoxycetyl chloride (5 g, 46.1 mmol) was taken in DCM (30 mL) in a 250-mL round-bottom flask under N\(_2\). TFAA (9.8 mL, 69.1 mmol) and pyridine (7.4 mL, 92.2 mmol) were sequentially added to it. The reaction mixture was stirred at RT for 3 h. EtOH (8 mL) was added to the reaction mixture and kept it stirring for another 12 h. The reaction mixture was concentrated under reduced pressure. It was diluted with water and extracted with EtOAc (3 × 30 mL). The combined extract was washed with 10% HCl (3 × 20 mL) followed by water (3 × 20 mL). The combined organic layer was dried over anhydrous Na\(_2\)SO\(_4\) and concentrated under reduced pressure. This afforded ethyl 4,4,4-trifluoro-2-methoxy-3-oxobutanoate as a brown oil (3.5 g, 35%) that was used as such for the next step without any further purification. (ii) Et\(_3\)N (7.0 mL, 48.9 mmol) was added to a solution of ethyl 4,4,4-trifluoro-2-methoxy-3-oxobutanoate (3.5 g, 16.3 mmol) and picolinimidamide hydrochloride (2.5 g, 16.3 mmol) in EtOH (20 mL) at RT. The reaction mixture was then heated at 100°C and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was then poured into ice water (20 g) and extracted with EtOAc (3 × 30 mL). The combined organic layer was dried over anhydrous Na\(_2\)SO\(_4\) and concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel (100–200 mesh) using 20% EtOAc-hexane as eluent to afford 56 as a white solid (35 mg, 0.8%). M.P. 175–176°C. \(^1\)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta\) 13.04 (s, 1H), 8.24 (d, \(J = 4.2\) Hz, 1H), 8.24 (d, \(J = 7.8\) Hz, 1H), 8.05 (t, \(J = 7.3\) Hz, 1H), 7.63–7.65 (m, 1H), 3.99 (s, 3H); \(^13\)C NMR (100 MHz, DMSO-d\(_6\)): \(\delta\) 158.4, 149.6, 149.1, 147.8, 145.9, 138.3, 137.6 (q, \(J = 33\) Hz), 126.6, 122.3, 121.3 (q, \(J = 274\) Hz), 60.2. LCMS (ESI) m/z calculated for \([C\(_{11}\)H\(_8\)F\(_3\)N\(_2\)O + H\(^+\)]\(^+\)) = 272.06; found 272.30.

Synthesis of 5-Cyclopentyl-2-(Pyridin-2-yl)-6-(Trifluoromethyl)Pyrimidin-4(3H)-One (57, 0498342)

(i) Synthesis of ethyl 2-cyclopentyl-4,4,4-trifluoro-3-oxobutanoate: 2-Cyclopentylacetyl chloride (3.0 g, 20.5 mmol) was taken in DCM (25 mL) in a 250-mL round-bottom flask under N\(_2\). Et\(_3\)N (7.0 mL, 48.9 mmol) and picolinimidamide hydrochloride (2.5 g, 16.3 mmol) in EtOH (20 mL) at RT. The reaction mixture was then heated at 100°C and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was then poured into ice water (20 g) and extracted with EtOAc (3 × 30 mL). The combined organic layer was dried over anhydrous Na\(_2\)SO\(_4\) and concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel (100–200 mesh) using 20% EtOAc-hexane as eluent to afford 57 as a white solid (17 mg, 0.5%). M.P. 122–124°C. \(^1\)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta\) 12.85 (s, 1H), 8.76 (d, \(J = 4.6\) Hz, 1H), 8.28 (d, \(J = 7.9\) Hz, 1H), 8.07 (t, \(J = 7.8\) Hz, 1H), 7.65–7.69 (m, 1H), 2.61 (q, \(J = 6.0\) Hz, 2H), 1.11 (t, \(J = 7.3\) Hz, 3H); \(^13\)C NMR (100 MHz, DMSO-d\(_6\)): \(\delta\) 161.7, 153.0, 149.2, 147.8, 145.7 (q, \(J = 32\) Hz), 138.1, 130.4, 126.9, 122.5, 121.8 (q, \(J = 275\) Hz), 18.4, 12.9. LCMS (ESI) m/z calculated for \([C\(_{12}\)H\(_{10}\)F\(_3\)N\(_2\)O + H\(^+\)]\(^+\)) = 270.09; found 270.43.
in EtOH (20 mL) at RT. The reaction mixture was then heated at 110°C and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was then poured into ice water (20 g) and extracted with EtOAc (3 × 30 mL). The combined organic layer was dried over anhydrous Na2SO4 and concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 20% EtOAc-hexane as eluent to afford as a white solid (200 mg, 8.0%). M.P. 150-151°C. 1H NMR (400 MHz, DMSO-d6): δ 12.72 (s, 1H), 8.75 (d, J = 4.6 Hz, 1H), 8.27 (d, J = 7.9 Hz, 1H), 8.06 (t, J = 7.8 Hz, 1H), 7.67 (q, J = 4.9 Hz, 1H), 3.12-3.19 (m, 1H), 2.03-2.09 (m, 2H), 1.87 (m, 2H), 1.62-1.69 (m, 4H); 13C NMR (100 MHz, DMSO-d6): δ 160.6, 150.9, 149.2, 147.8, 146.5 (q, J = 33 Hz), 138.1, 131.5, 126.9, 122.5, 121.8 (q, J = 275 Hz), 37.6, 29.6, 26.6. LCMS (ESI) m/z calculated for [C15H14F3N3O + H]⁺, 310.12; found 310.39.

Synthesis of 5-Cyclohexyl-2-(Pyridin-2-yl)-6-(Trifluoromethyl)Pyrimidin-4(3H)-One (58, 0499233)

(i) Synthesis of ethyl 2-cyclohexyl-4,4,4-trifluoro-3-oxobutanoate: 2-Cyclohexylacetyl chloride (2.0 g, 12.5 mmol) was taken in DCM (20 mL) in a 250-mL round-bottom flask under N2. TFAA (2.6 mL, 18.7 mmol) and pyridine (2.0 mL, 25.0 mmol) were sequentially added to it. The reaction mixture was stirred at RT for 3 h. EtOH (4 mL) was added to the reaction mixture and kept it stirring for another 12 h. The reaction mixture was concentrated under reduced pressure and kept standing at 37°C until completion. The reaction mixture was then poured into ice water (20 g) and extracted with EtOAc (3 × 20 mL) until completion. The reaction mixture was concentrated under reduced pressure and triturated with hexane. This afforded ethyl 2-cyclohexyl-4,4,4-trifluoro-3-oxobutanoate: 2-Cyclohexylacetyl chloride (2.0 g, 12.5 mmol) were sequentially added to it. The reaction mixture was stirred at RT for 3 h. EtOH (4 mL) was added to the reaction mixture and kept it stirring for another 12 h. The reaction mixture was concentrated under reduced pressure and triturated with hexane. This afforded ethyl 2-cyclohexyl-4,4,4-trifluoro-3-oxobutanoate (2.5 g, crude) and triturated with hexane. This afforded ethyl 2-cyclohexyl-4,4,4-trifluoro-3-oxobutanoate (2.5 g, crude) and triturated with hexane.

(ii) Et3N (6.8 mL, 47.0 mmol) was added to a solution of ethyl 2-cyclohexyl-4,4,4-trifluoro-3-oxobutanoate (2.5 g, 9.4 mmol) and picolinimidamide (1.1 g, 9.4 mmol) in EtOH (25 mL) at RT. The reaction mixture was then heated at 100°C and monitored by TLC analysis (50% EtOAc-hexane) until completion. The reaction mixture was then poured into ice water (20 g) and extracted with EtOAc (3 × 30 mL). The combined organic layer was dried over anhydrous Na2SO4 and concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 12% EtOAc-hexane as eluent to afford 58 as a white solid (125 mg, 4.0%). M.P. 220-221°C. 1H NMR (400 MHz, CDCl3): δ 10.79 (s, 1H), 8.66 (d, J = 4.0 Hz, 1H), 8.45 (d, J = 8.0 Hz, 1H), 7.91 (t, J = 8.0 Hz, 1H), 7.50 (q, J = 7.3 Hz, 1H), 2.83-2.89 (m, 1H), 2.26-2.32 (m, 2H), 1.82-1.85 (m, 2H), 1.70 (m, 1H), 1.56 (m, 2H), 1.28-1.42 (m, 3H); 13C NMR (100 MHz, CDCl3): δ 161.2, 151.4, 149.1, 148.2 (q, J = 32 Hz), 147.2, 137.9, 134.4, 126.9, 122.4, 121.9 (q, J = 278 Hz), 39.1, 29.5, 26.6, 25.7. LCMS (ESI) m/z calculated for [C16H16F3N3O + H]⁺, 324.13; found 324.66.

Bacterial Culture

M. tuberculosis H37Rv was grown on Middlebrook 7H10 agar (Becton Dickinson) supplemented with 10% vol/vol oleic acid, albumin, dextrose, and catalase (OADC) (Becton Dickinson) or Middlebrook 7H9 with (Becton Dickinson) OADC and 0.05% wt/vol Tween 80 (7H9-OADC-Tw). M. tuberculosis H37Rv constitutively expressing a red fluorescent protein (DsRed) (Carroll et al., 2018) was grown with 50 µg/mL hygromycin B. Staphylococcus aureus RN4220 and Escherichia coli DH5α were grown on LB agar. Mycobacterium smegmatis mc²155 was grown on 7H10 with 10% OADC. Pseudomonas aeruginosa BAA 47 was grown on tryptic soy agar, Saccharomyces cerevisiae Y187 was grown on YPD agar, and Bacillus subtilis Marburg was grown on nutrient agar.

Minimum Inhibitory Concentration

The compound concentration required to inhibit growth of M. tuberculosis was determined by testing compounds as 2-fold serial dilutions, typically starting at 20 µM. Growth inhibition was measured after 5 days using a fluorescent strain of M. tuberculosis in 7H9-OADC-Tw, according to previously published methods (Ollinger et al., 2013, 2018). Each 96-well plate contained positive and negative controls, as well as a standard curve for rifampicin.

Cytotoxicity

The compound concentration that resulted in 50% growth inhibition of HepG2 human liver cells (ATCC) was determined by testing compounds as 3-fold serial dilutions, typically starting at 100 µM. Cytotoxicity was measured after 72 h of compound exposure at 37°C and 5% CO2 using CellTiter-Glo (Promega). Each 384-well plate contained positive and negative controls, as well as a standard curve for staurosporine.

Spectrum

Minimum inhibitory concentration to inhibit growth of 99% (MIC99) on solid medium was determined using the agar serial dilution method. Late log phase cultures were plated at ~10⁵ colony-forming units (CFU)/mL onto solid medium containing 2-fold serial dilutions of compounds. The MIC99 is defined as the lowest concentration with ≤1% growth.

Kill Kinetics

M. tuberculosis was cultured to late log phase. Compound was added (final concentration 2% DMSO), and cultures were incubated standing at 37°C. Viable bacteria were determined by serial dilutions and plating on Middlebrook 7H10 plus 10% vol/vol OADC. CFUs were counted after 3–4 weeks. The untreated control was 2% DMSO.

RESULTS AND DISCUSSION

Chemistry

We developed and conducted a whole-cell screen that identified the trifluoromethyl pyrimidinone series as having good growth inhibitory activity against virulent M. tuberculosis. We identified 15 compounds with activity in the primary screen. We determined the MIC for each. The primary hits are shown in Figure 1 with MICs. Among the initial set of 15 analogs, several compounds displayed good activity with an IC₉₀ of <5.0 (Figure 1). In general, the series had low molecular weight (<500), relatively low hydrophobicity (clogP < 5) and complied

Frontiers in Chemistry | www.frontiersin.org 15 April 2021 | Volume 9 | Article 613349

Hembre et al.

Trifluoromethyl Pyrimidinones With Anti-Tubercular Activity
Cpd ID	Molecule Name	Structure	MIC (µM)	Cpd ID	Molecule Name	Structure	MIC (µM)
1	0042712	![Structure Image](image1)	3.1 ± 0.49	9	0340398	![Structure Image](image2)	3.7 ± 0.85
2	0051315	![Structure Image](image3)	6.8 ± 2.0	10	0340734	![Structure Image](image4)	2.9 ± 0.47
3	0051559	![Structure Image](image5)	7.6 ± 0.85	11	0341083	![Structure Image](image6)	7.9 ± 2.1
4	0065350	![Structure Image](image7)	4.2 ± 2.1	12	0341198	![Structure Image](image8)	3.1 ± 0.57
5	0066241	![Structure Image](image9)	1.7 ± 0.41	13	0341386	![Structure Image](image10)	10 ± 1.3
6	0088947	![Structure Image](image11)	1.3 ± 0.21	14	0341388	![Structure Image](image12)	5.8 ± 1.3
7	0339627	![Structure Image](image13)	3.3 ± 0.71	15	0341702	![Structure Image](image14)	5.3 ± 1.3
8	0340328	![Structure Image](image15)	1.5 ± 0.14				

FIGURE 1 | Primary hits. MTB IC₉₀ is the concentration required to inhibit *M. tuberculosis* growth by 90%. Data are the average of a minimum of two independent experiments ± standard deviation.
with Lipinski’s Rule of 5, making this an attractive series for assessment. The ease of synthesis was another attractive feature.

Based on the attractive properties of this series, we expanded our studies to investigate the SAR of the series. Our objective was to explore the limits of the chemical space making structurally diverse molecules to determine if the series had dynamic SAR (>50-fold changes in MIC) and/or if we could improve the anti-tubercular potency (to <1 µM) and reduce cytotoxicity (selectivity index >10). We synthesized a series of substituted pyrimidinone to establish SAR. A small number of publications describe the synthesis of substituted trifluoromethyl pyrimidinones (Fruit and Besson, 2018). We used a procedure similar to those of Tice and Bryman to obtain substituted trifluoromethyl pyrimidinones (Tice and Bryman, 2001); we introduced trifluoromethyl substituents by the condensation of a variety of amidines with substituted ethyl 4,4,4-trifluoro-3-oxobutanoate.

We used amidine as the starting material for the synthesis of trifluoromethyl pyrimidinones. Treatment of the substituted aryl or pyridine nitrile, such as a picolinonitrile, with lithium bis(trimethylsilyl)amide in tetrahydrofuran at −30°C and warming the reaction mixture to an ambient temperature afforded the amidine in moderate to high yield. Reaction of the amidine with ethyl 4,4,4-trifluoro-3-oxobutanoate in the presence of a base in ethanol under refluxing conditions furnished the trifluoromethyl pyrimidinone compound 16 with a high yield (Scheme 1). Following this synthetic pathway, all compounds were prepared in two or three steps from commercially available and inexpensive starting materials.

Biological Testing

We tested all compounds for activity against *M. tuberculosis* in aerobic culture, as well as for cytotoxicity using the HepG2 cell line.

We first looked at substitutions on the 2-position of the pyrimidinone. The initial SAR is summarized in **Table 1**. In this set, the most attractive molecule was compound 16, which had good activity (IC₉₀ = 4.9) and a lack of cytotoxicity (IC₉₀ >100), as well as good physicochemical properties with clogP of 0.63 and topological polar surface area of 53.8. It was interesting that this compound had good activity, even though it had a low clogP; as the activity of molecules against *M. tuberculosis* is often limited by their ability to penetrate the waxy cell wall (Machado et al., 2018). Compounds 7 and 8 with substitution of the 2-pyridine rings showed slightly improved potency (IC₉₀ = 3.3 and 1.5 µM, respectively), as compared to compound 16. Inclusion of a polar hydroxyl group at the 3-position of the pyridine ring was tolerated (compound 17, IC₉₀ = 3.3 µM). However, all of these substitutions increased cytotoxicity with IC₅₀ < 20 µM against HepG2 cells. Addition of a benzyl group at the 4-position of pyridyl ring retained potency (compound 6, IC₉₀ = 1.3 µM) but did not improve cytotoxicity (IC₅₀ = 2.5 µM). Incorporating a nitrile on the benzylxoy group (compound 9) or the reverse benzyloxy group (15) similarly retained activity (IC₉₀ = 3.7 and 5.3 µM, respectively), but with no improvement on cytotoxicity (IC₅₀ = 6.1 and 7.4 µM, respectively). Replacing the oxygen atom linker on the pyridine ring with a carbon chain such as 2-(4-(4-hydroxyphenethyl)pyridin-2-yl in compound 4 decreased potency (IC₉₀ = 7.8 µM). However, replacing the 2-pyridyl ring with a 2-pyrimidine ring in 18 abolished activity and cytotoxicity.

In order to rationalize SAR and obtain additional information on cytotoxicity liability, we designed a small set of library analogs around compound 16. Compounds with phenyl rings were prepared using cyclocondensation conditions using a variety of amidines as described in Scheme 1. Interestingly, moving the nitrogen around the pyridyl ring and substitution around the pyridyl ring led to loss of anti-tubercular activity (IC₉₀ >20 µM) as shown in **Table 2**. We replaced the pyridyl ring with a substituted phenyl ring in 24–31. As we had seen a trend toward increased potency with a 2-pyridine ring and any substitution at the C-4 position, we used this strategy to increase potency. However, we did not see improved potency with either unsubstituted or substituted phenyl groups (24–31), where all compounds were inactive (IC₉₀ >20 µM).

We next explored substitution on the pyrimidinone ring at C-5 using a methyl moiety as R1 (32–46, **Table 2**) and varying substitution at C-2 as R2 (47–50, **Table 3**). Several compounds were synthesized following the same cyclocondensation conditions with a variety of amidines and substituted ethyl 4,4,4-trifluoro-3-oxobutanoate as depicted in Scheme 1 to obtain 32–46. Compound 32 without substitution at C-3 on the pyrimidinone core had no antibacterial activity. Similarly, loss of potency was observed for compounds 34–46 (Table 2) with trifluoromethyl and methyl groups at C-5 and C-6, respectively, and different substitutions at C-3. The methyl group did not appear to affect potency, as the matched pair of compounds with 3 and 4 had similar potency and cytotoxicity (within 2-fold). Similar to the SAR observed for the 2-pyridine with hydrogen as R1, we found a trend toward increased potency with 2-pyridine analogs; compounds 10 and 34 had similar potency (IC₉₀ = 2.9 and 2.5 µM, respectively) as 16 and 17. However, both 10 and 33 were cytotoxic with IC₅₀ of 5.4 and 3.2 µM, respectively. As with compound 18, compound 43 containing a pyrimidine group showed no cytotoxicity, but no antibacterial activity either.

The SAR clearly shows a preference for a 2-pyridine substitution on the pyrimidinone core at C-2 position and the tolerance for a methyl group at the C-5 position of the pyrimidinone moiety. We used this information to design compounds to investigate the role of trifluoromethyl group at the C-6 position. We prepared several compounds (47–50) containing a 2-pyridine at C-2 and various group at C-6 position of the pyrimidinone ring (**Table 3**). Compounds were synthesized using the same scheme as for compound 16. Compound 47 containing benzyl group at C-6 position was slightly less active, then the matched pair compound with the trifluoromethyl group (10), with an IC₉₀ = 5.7 µM compared to IC₉₀ = 2.9 µM. Similarly, shortening the linker of the benzyl group to phenyl afforded 48, which was 3-fold less active (IC₉₀ = 9.4 µM). Neither modification improved cytotoxicity (IC₅₀ of 9.8 and 9.7 µM, respectively). Another set of matched pairs demonstrated the importance of the trifluoromethyl at C-5 vs. an electron-rich methyl group at the same position (compounds 49 and 51):
compound 49 did not have any anti-tubercular activity (IC$_{50}$ > 20 µM) compared to compound 51 with an IC$_{50}$ = 2.9 µM. Similarly, compound 50 with a hydrogen atom replacing the trifluoromethyl at the C-5 position of the pyrimidinone ring was inactive (IC$_{50}$ > 20 µM).

Based on the initial SAR interrogation, we determined that the 2-pyridine ring at C-2 position and the trifluoromethyl group at C-4 are critical for activity. Therefore, we focused on the synthesis of substituted pyrimidinone keeping pyridine at C-2 and trifluoromethyl moiety at C-4 and varying the R$_1$ group. Following the same synthetic strategies as outlined in Scheme 1, we synthesized a small set of compounds with substitution at C-5 of the pyrimidinone ring (51–58). The potency of 51 with a simple methyl group at the C-4 position was comparable to 16 (IC$_{50}$ of 2.9 and 4.9 µM, respectively) (Table 4). Unfortunately, 51 picked up cytotoxicity against HepG2 cell with an IC$_{50}$ of 7.3 µM, whereas 16 lacked cytotoxicity. Addition of a benzyl group at the C-4 position of the pyrimidinone (52) did not affect either potency or reduce cytotoxicity. Similarly, analog 5 with a 4-fluorobenzyl group had good potency (IC$_{50}$ = 1.7 µM) but...
was also cytotoxic (IC$_{50} = 3.2 \mu M$). Removal of the methylene linker as in 53 and 54 resulted in a small loss of potency (IC$_{50} = 3.8 \mu M$) and a small reduction in cytotoxicity (IC$_{50} = 11 \mu M$). We tested additional compounds with a lipophilic R1 group on the pyrimidinone ring to eliminate cytotoxicity. Unfortunately, lipophilicity (2, 11, 13, 14, 55, 57–58) or polarity like methoxy and ester groups (12 and 56) did not improve potency or eliminate cytotoxicity (Table 4). A small change of substitution pattern from simple methyl (51) to ethyl (55) group at C-4 of the pyrimidinone ring showed comparable anti-tubercular activity (IC$_{50}$ of 2.9 and 3.7 \mu M, respectively) (Table 4) but retained cytotoxicity. Further addition of the lipophilic groups cyclopropylmethyl (57), cyclopropyl (11), and cyclohexyl (58) did not improve potency or cytotoxicity.

We tested a set of five compounds against a range of bacterial species and yeast (Table 5). Compounds were inactive against the Gram-negative species (E. coli, P. aeruginosa, and K. pneumoniae), but demonstrated good activity against the
TABLE 4 | Activity of compounds with 5/6-position substitutions of the 2-(pyridin-2-yl)pyrimidin-4(3H)-one.

Compound	Molecule identifier	R1	R2	MTB IC₉₀ (µM)	HepG2 IC₅₀ (µM)
2[*]	0051315	Butyl	CF₃	9.4 ± 3.6 (n = 4)	5.3 ± 1.2 (n = 2)
5[*]	0066241	4-Fluorobenzyl	CF₃	1.7 ± 0.41 (n = 7)	3.2 ± 1.5 (n = 5)
11[*]	0341083	Cyclopentane	CF₃	7.9 ± 2.1 (n = 2)	11 ± 4.7 (n = 2)
12[*]	0341198	Ethyl butanoate	CF₃	3.1 ± 0.57 (n = 5)	10 ± 4.3 (n = 6)
13[*]	0341386	Propyl	CF₃	10 ± 1.3 (n = 2)	12 ± 1.4 (n = 2)
14[*]	0341388	Isobutyl	CF₃	5.8 ± 1.3 (n = 2)	7.5 ± 1.3 (n = 2)
16[*]	0496338	H	CF₃	4.9 ± 0.79 (n = 6)	>100 (n = 3)
51	0340734	Me	CF₃	2.9 ± 0.47 (n = 5)	5.7 ± 3.2 (n = 8)
52	0504069	Bn	CF₃	2.8 ± 0.78 (n = 2)	7.3 ± 4.2 (n = 5)
53	0504061	4-Fluorophenyl	CF₃	3.8 ± 1.6 (n = 3)	11 ± 6.9 (n = 2)
54	0504060	Pheny1	CF₃	4.5 ± 0.14 (n = 2)	10 ± 6.4 (n = 3)
55	0497747	Et	CF₃	3.7 ± 0.26 (n = 5)	6.1 ± 1.3 (n = 5)
56	0498336	OMe	CF₃	6.1 ± 0.26 (n = 3)	5 ± 0.82 (n = 4)
57	0498342	Cyclopropylmethy1	CF₃	10 ± 2.6 (n = 2)	5.9 ± 0.57 (n = 2)
58	0499233	Cyclohexyl	CF₃	4.1 ± 0.28 (n = 2)	2.9 ± 0.28 (n = 2)

[*]MTB IC₉₀ is the concentration required to inhibit M. tuberculosis growth by 90%. ^{**}HepG2 IC₅₀ is the concentration required to inhibit growth of HepG2 cells by 50%. Data are the average of two independent experiments ± standard deviation. *Compounds identified in the primary screen.

TABLE 5 | Spectrum of activity.

Compound	M. smegmatis	E. coli	P. aeruginos	K. pneumoniae	S. aureus	B. subtilis	S. cerevisiae
5	>100	>100	>100	>100	1.6, 1.6	12.5, 6.3	3.1, 3.1
10	25	>100	>100	>100	12.5, 12.5	12.5, 12.5	6.3, 12.5
33	25	>100	>100	>100	3.1, 3.1	3.1, 6.3	3.1, 3.1
53	>100	>100	>100	>100	3.1, 3.1	6.3, 6.3	3.1, 6.3
55	100	>100	>100	>100	6.3, 5.0	6.3, 5.0	3.1, 5.0

MIC₉₀s were measured on solid medium and are reported as the minimum concentration required to reduce CFUs by 99%. Data are from two independent runs (where compounds were inactive in both runs, >100 is shown once for clarity).

We identified the trifluoropyrimidinone pharmacophore as active against M. tuberculosis in aerobic culture with rapid bactericidal activity and have determined SAR. This series has not been previously tested against M. tuberculosis. The series shows a good dynamic range of activity, with the most active being 5 (4-fluorobenzyl), 6 (2-(4-(benzyloxy)pyridin-2-yl), and 8 (methyl 3-((2-(6-oxo-4-(trifluoromethyl)-1,6-dihydropyrimidin-2-yl)pyridin-4-yl) methoxy) benzoate) with IC₉₀s of 1.6, 1.3, and 1.5 µM, respectively. The molecules have good calculated properties with low molecular weight, clogP < 5, and drug-likeness features of pyrimidinone. Cytotoxicity was an issue with the series, but there is significant scope for further

CONCLUSION

Gram-positive species (S. aureus and B. subtilis), as well as the representative yeast S. cerevisiae. Interestingly, compounds were only weakly active against the related non-pathogenic species M. smegmatis. This suggests the compounds have broad activity and a common target and/or mode of action against a range of organisms.

We selected one representative compound (55) and determined kill kinetics against replicating M. tuberculosis. We conducted the experiment twice using independent cultures. The compound was rapidly bactericidal leading to ~4 logs reduction in viable bacteria in 7 days (limit of detection) at concentrations as low as 5 µM (Figure 2). Bactericidal activity was concentration dependent with higher kill rates apparent at higher concentrations.
medicinal chemistry optimization to explore SAR and improve in cytotoxicity without any major change in structural features.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

EH, JE, JO, MM, TM, PH, and TP contributed to conception and design of the study. CS, OA, JG, LF, DD, MM, AK, and YO designed and conducted the experimental work. TP wrote the first draft of the manuscript. All authors contributed to data analysis, manuscript revision, read, and approved the submitted version.

FUNDING

This work was funded in part by Eli Lilly and Company in support of the mission of the Lilly TB Drug Discovery Initiative and by funding from the Bill and Melinda Gates Foundation, under grant OPP1024038.

ACKNOWLEDGMENTS

We thank Anu Kumar, David Roberts, Dean Thompson, Douglas Joerss, James Johnson, Bjorn Sunde, and James Vela for discussion and technical assistance.

REFERENCES

Carroll, P., Muwanguzi-Karugaba, J., and Parish, T. (2018). Codon-optimized DsRed fluorescent protein for use in *Mycobacterium tuberculosis*. BMC Res. Notes 11:685. doi: 10.1186/s13104-018-3798-3

Fruit, C., and Besson, T. (2018). Recent advances in metal-catalyzed C-H functionalization of pyrimidinones, quinazolinones and fused quinazolinones. *Targets Heterocycl Syst.* 22, 56–81. doi: 10.17374/targets.2019.22.56f

Gold, B., and Nathan, C. (2017). Targeting phenotypically tolerant *Mycobacterium tuberculosis*. *Microbiol. Spectr.* 5:TBTB2-0031-2016. doi: 10.1128/microbiolspec.TBTB2-0031-2016

Gordon, S. V., and Parish, T. (2018). Microbe profile: *Mycobacterium tuberculosis*: humanity’s deadly microbial foe. *Microbiology* 164, 437–439. doi: 10.1099/mic.0.006601

Grzelak, E. M., Choules, M. P., Gao, W., Cai, G., Wan, B., Wang, Y., et al. (2019). Strategies in anti-*Mycobacterium tuberculosis* drug discovery based on phenotypic screening. *J. Antibiot.* 72, 719–728. doi: 10.1038/s41429-019-0205-9

Keiser, T. L., and Purdy, G. E. (2017). Killing *Mycobacterium tuberculosis* in vitro: what model systems can teach us. *Microbiol. Spectr.* 5, 1–15. doi: 10.1128/microbiolspec.TBTB2-0028-2016

Machado, D., Girardini, M., Viveiros, M., and Pieroni, M. (2018). Challenging the drug-likeness dogma for new drug discovery in Tuberculosis. *Front. Microbiol.* 9:1367. doi: 10.3389/fmicb.2018.01367

Mandal, S., Njikan, S., Kumar, A., Early, J. V. J. V., and Parish, T. (2019). The relevance of persisters in tuberculosis drug discovery. *Microbiology* 165, 492–499. doi: 10.1099/mic.0.007760

Marinello, J., Marchand, C., Mott, B. T., Bain, A., Thomas, C. J., and Pommier, Y. (2008). Comparison of raltegravir and elvitegravir on HIV-1 integrase catalytic reactions and on a series of drug-resistant integrase mutants. *Biochemistry* 47, 9345–9354. doi: 10.1021/bi800791q

Ollinger, J., Bailey, M. A., Moraski, G. C., Casey, A., Florio, S., Alling, T., et al. (2013). A dual read-out assay to evaluate the potency of compounds active against *Mycobacterium tuberculosis*. *PLoS ONE* 8:e60531. doi: 10.1371/journal.pone.0060531

FIGURE 2 | Kill kinetics for a representative compound. *M. tuberculosis* was cultured aerobically and exposed to compound 55. Viable bacteria were determined by serial dilution and plating onto agar plates for 3 to 4 weeks. Independent experiments are shown. The control was 2% DMSO. The upper and lower limits of detection are indicated.
Ollinger, J., Kumar, A., Roberts, D. M., Bailey, M. A., Casey, A., and Parish, T. (2018). A high-throughput whole cell screen to identify inhibitors of Mycobacterium tuberculosis. *PLoS ONE* 14:e0205479. doi: 10.1101/429423

Papanastassopoulos, P., and Stebbing, J. (2014). Molecular basis of 5-fluorouracil-related toxicity: lessons from clinical practice. *Anticancer Res.* 34, 1531–1536. Available online at: https://ar.iiarjournals.org/content/34/4/1531

Parish, T. (2020). *In vitro* drug discovery models for *Mycobacterium tuberculosis* relevant for host infection. *Expert Opin. Drug Discov.* 15, 349–358. doi: 10.1080/17460441.2020.1707801

Payne, D. J., Gwynn, M. N., Holmes, D. J., and Pompliano, D. L. (2007). Drugs for bad bugs: confronting the challenges of antibacterial discovery. *Nat. Rev. Drug Discov.* 6, 29–40. doi: 10.1038/nrd2201

Tice, C. M., and Bryman, L. M. (2001). Regiocontrolled synthesis of 3-substituted-6-trifluoromethyl-4(3H)-pyrimidinones. *Tetrahedron* 57, 2689–2700. doi: 10.1016/S0040-4020(01)00042-4

World Health Organization (2020). *Global Tuberculosis Report 2019.*

Conflict of Interest: EH, TM, and PH were employed by Eli Lilly and Company. PO was employed by company Apollo Drug Discovery Consulting, LLC. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.