SPECTROPHOTOMETRIC DETERMINATION OF CEFPIROME IN PHARMACEUTICAL PREPARATION

DILIP M CHAFLE*
Department of Chemistry, Faculty of Science, Taywade College, Koradi, Nagpur, India. Email: dmchafle@gmail.com

ABSTRACT

Objective: A simple, sensitive and precise visible spectrophotometric method has been proposed for the determination of cefpirome (CFM) in pure and oral injectable dosage form.

Methods: A spectrophotometric method is based on the formation of stable red color product by oxidation of drugs by ferric nitrate and subsequent complexation with 1, 10 – phenanthroline with maximum absorption at 515 nm.

Result: The red color complex was formed between Fe (II) and 1, 10 – phenanthroline after reduction of Fe (III) to Fe (II) in the presence of CFM drug. The phosphoric acid solution was used only for quenching the complex formation reaction. Several parameters such as the maximum wavelength of absorption, the volume of reagents, sequence of addition and effect of temperature and time of heating were optimized to achieve high sensitivity, stability and reproducible results. Under the optimum conditions, linear relationship with good correlation coefficient (0.994) was found over the concentration range from 0.20 to 6.00 µg/mL with a molar extinction coefficient 7.7813×10^4 L/mol/cm, limit of detection 0.2026 and limit of quantification 0.6141 µg/mL, respectively.

Conclusion: The proposed method was evaluated statistically for linearity, accuracy, and precision in terms of standard deviation, percentage recovery, error and relative standard deviation. The proposed method can be applied for the routine estimation of CFM in the laboratory.

Keywords: Cefpirome, Spectrophotometric, 1, 10-Phenanthroline, Ferric Nitrate.

INTRODUCTION

Cephalosporins are of first, second, third, fourth, and fifth-generation cephalosporins. It is a broad-spectrum oral antibiotic available in vial form in the pharmaceutical market. It shows antimicrobial and bactericidal characteristics. It binds to plasma proteins and disrupts the synthesis of the main cell wall polymer, peptidoglycan. It penetrates the cell wall of bacteria extremely rapidly and binds to the target enzymes with high affinity. It is sensitive at low concentration among the extremely broad spectrum of Gram-negative pathogens such as Citrobacter spp., E.coli, Salmonella spp., Shigella spp, Klebsiella spp., and Enterobacter spp. and Gram-positive pathogens such as Staphylococcus aureus, Streptococcus sanguis, Streptococcus viridans, and Streptococcus pneumoniae. Therefore, it is recommended in the treatment of complicated respiratory tract infection, skin and soft tissue infections and bacteremia[1-5].

CFM is official in Martindale the extra pharmacopeia [6]. It is chemically [[[6R-7R]-7-[2-[(2-aminothiazol-4-yl)-2-methoxyminosuccinyl] amino]-3-[6,7-dihydro-5H-cyclopenta [f]pyridinium]-1-azabicyclo[4.2.0]-oct-2-ene-2-carboxylate monosulfate. (Fig. 1).

The literature survey reveals that Micellar Electro Kinetic Chromatography (MEKC) [7,8] was described in the quantification of CFM in human plasma as well. It was introduced to determine the partitioning behavior of various cephalosporins in microemulsions. High-performance liquid chromatography (HPLC) technique was applied using ultrafiltration [9] to determine CFM in serum. Some physical aspects such as stability study [10], dissociation constants of CFM were studied by HPLC and potentiometric method [11] and metal drug interaction study by reverse-phase high-performance liquid chromatography (RP-HPLC) [12]. The quantitative determination of CFM in raw material and pharmaceutical dosage was reported by microbiological assay method [13], liquid chromatography (LC), and ultraviolet-visible (UV)-spectrophotometry [14]. UPLC [15] and HPLC [16]. Very few spectrophotometric methods for CFM and other cephalosporins are reported using 3-methyl-2-benzothiazolinone hydrazone hydrochloride (MBTH) [17] and ferricyanide [18] as chromogenic reagents.

Spectrophotometric methods are so popular for their sensitivity and simplicity. Henceforth, these methods have offered considerable attention for the quantitative determination of pharmaceutical compounds. This method shows good sensitivity and specificity and permits discrimination in the face of the broadband interference arising from non-specific matrix absorption. However, some reported spectrophotometric methods are sensitive at comparatively higher concentration of drug, some of it requires specific structural requirement such as intact amino thiazole ring and alkoxy imino substituent while other have maximum absorption toward either end of the visible spectrum.

The aim of the present work is to develop an analytical method which will be simple, sensitive, rapid and sensible at the mid of the visible spectra even at low concentration of drug in pharmaceutical preparations. The proposed method is based on the ability of CFM to form a stable red-colored product with 1, 10 – phenanthroline after heating with ferric nitrate.

METHODS

Instrument
An equitronic EQ 882 visible spectrophotometer (India) with a bandwidth of 1.0 nm, equipped with 1.0 cm matched quartz cells were used for all spectral measurements.
Reagents
All the chemicals used were of analytical grade and all solutions were prepared in double-distilled water. Oral pharmaceutical preparation of CFM in the form of vials, namely, Baciram injection (Aristo Pharmaceutical Pvt. Ltd., Bhopal, India), Forgen injection (Alkem Laboratories Ltd., Ankaleshwar, India) and Gefrom injection (Aventis Pharma Ltd., Mumbai, India) was procured from the local market.

Ferric nitrate (0.0033 mol/L), 1, 10-phenanthroline (0.01 mol/L) and phosphoric acid (0.2 mol/L) were prepared by dissolving the appropriate amount in 100 mL water.

Preparation of standard stock solution (40 µg/mL) – standard stock solution of CFM (40 µg/mL) was prepared by dissolving 100 mg of pure CFM drug in 100 mL water. It further diluted to get a working standard stock solution of 40 µg/mL.

Preparation of sample solution of drug (40 µg/mL) – an accurate amount of sample powder from vial of Baciram, Forgen, and Gefrom injections were weighed equivalent to 100 mg and dissolved in 100 mL water and filter the solution with Whatman filter paper. Finally, a sample solution of 40 µg/mL was obtained by appropriate dilution.

General recommended procedure
An aliquot ranging from 0.2 to 4.0 mL of working standard solution of CFM was transferred into 25 mL volumetric flask. A volume of 2.5 mL of ferric nitrate solution, 4.0 mL of 1, 10-phenanthroline solution was added sequentially. The flasks were heated on a circulating water bath at 60 ± 2°C for 15 min. Then, 3.0 mL of phosphoric acid solution was added and cooled to room temperature. Finally, the volume was made to 25 mL by water. Similarly, a blank was prepared without drug. The resulted red-colored solution was scanned for absorbance at 515 nm on Equiptronic EQ 882 spectrophotometer against reagent blank. A standard calibration curve was prepared by plotting absorbance against the concentration of CFM in the form of vials, namely, Bacirom injection (Aristo Pharmaceutical Pvt. Ltd., Bhopal, India), Forgen injection (Alkem Laboratories Ltd., Ankaleshwar, India) and Gefrom injection (Aventis Pharma Ltd., Mumbai, India), was procured from the local market.

Effect of reagent concentration
The optimum concentration of reagents was estimated by keeping the concentration of CFM and other reagents constant, except one of the reagents under consideration was varied. The volume required for the development of maximum color intensity was investigated from subsequent absorbance measurement at λmax. The results showed that the absorbance of the colored species increased with the increase in the volume of ferric nitrate and phenanthroline. However, absorbance was found to be decreased with an increase in volume of phosphoric acid. The maximum volume of ferric nitrate, phenanthroline and phosphoric acid found were 2.5 mL, 4.0 mL and 3.0 mL, respectively (Fig. 3). Hence, an excess volume of reagents has no effect on the determination of drug.

Effect of temperature and time of heating
The optimum temperature was investigated by recording color intensity at an increasing temperature above room temperature. The maximum and constant absorbance was obtained at 60 ± 2°C temperature. Similarly, optimum reaction time was investigated by quenching the reaction intermittently on a heating water bath at different time intervals. The reaction intermittently on a heating water bath at different time intervals. The reaction was kept at an increasing temperature above room temperature. The maximum and constant absorbance was obtained at 60 ± 2°C temperature. Similarly, optimum reaction time was investigated by quenching the reaction intermittently on a heating water bath at different time intervals.

RESULTS AND DISCUSSION

Reaction mechanism
The cephalosporin antibiotics are susceptible to redox reactions. CFM reduces Fe (III) to Fe (II) in an aqueous medium at elevated temperature 60 ± 2°C. Fe (II) then forms in situ a red color complex with complexing agent 1, 10-phenanthroline in the 1:3 molar ratios. The formation of complex between Fe (II) and 1, 10 phenanthroline can be quenched instantly in the presence of phosphate ions, provided by phosphoric acid. The possible mechanism of complex formation can be shown as follows

\[
\text{Fe}^{2+} + \text{CFM} \rightarrow \text{Fe}^{2+} + \text{CFM}^{-}
\]

\[
\text{Fe}^{2+} + 3(1,10-\text{Phenanthroline}) \rightarrow \text{Fe}^{2+} (1,10-\text{Phenanthroline})_3
\]

The resultant red color complex was Ferroin which shows the maximum wavelength of absorbance (λmax) at 515 nm in the visible spectrum. This colored complex formed was stable for more than 24 hours.

Optimization of reaction conditions
Maximum wavelength of absorption (λmax)
An aliquot of 4.0 mL of working standard solution of CFM, 2.5 mL of ferric nitrate solution and 4.0 mL of phenanthroline solution was transferred to a 25 mL flask. The reaction mixture was heated on a circulating water bath for 15 minutes at 60 ± 2°C. Immediately, 3.0 mL of phosphoric acid was added and mixture was cooled to room temperature. Finally, the volume was made to 25 mL by water. Similarly, blank was prepared without drug. The resulted red-colored solution was scanned over the visible range of spectrum of Equiptronic EQ 882 spectrophotometer against reagent blank. The visible spectra obtained are as shown in Fig. 2.

Fig. 2: Absorption spectra of red-colored complex with (6 µg/mL) of cefpirome between Fe (II) and phenanthroline (1.0 × 10^-2 mol/L) in the visible range (n = 1)
Method of validation

Linearity
A standard calibration curve was constructed by plotting the absorbance against the concentration of CFM. The statistical parameters were given in the regression equation calculated from the calibration curve $Y = a + mx$, where Y is the absorbance, x is a concentration of CFM in µg/mL, m is slope and a is intercept on y-axis. The linearity of calibration graph was proved by a high value of correlation coefficient (R^2) and small value of y-intercept of the regression equation. The linearity range of calibration curve was found to be limiting in the range 0.2–6.0 µg/mL concentration of CFM (Fig. 6). The molar absorptivity and Sandell’s sensitivity of the resulting red color complex were calculated and found to be 7.7813×10^4 L/mol/cm and 0.003469 µg/cm2, respectively (Table 1). High value of molar absorptivity indicates that the method is sensitive.

Sensitivity
The limits of detection (LOD) and limits of quantification (LOQ) were calculate for the proposed method using the following equation

$$LOD = \frac{3.3 \times \delta}{m}$$
$$LOQ = \frac{10 \times \delta}{m}$$

Where δ is the standard deviation from the intercept of ten replicate determinations values of the reagent blank and m is the slope of the Beer’s calibration curve.

According to these equations, the limits of detection (LOD) and limits of quantification (LOQ) were found to be 0.2026 and 0.6141 µg/mL.

Application to pharmaceutical preparation
The proposed method has been successfully applied for the determination of CFM in pharmaceutical preparations. A suitable aliquot of sample solutions of Bacirom, Forgen, and Cefrom injection was taken in linearity range and similarly treated as described in general recommended procedure. The accuracy, precision and repeatability of the proposed method were tested by means of recovery study for five replicate determinations for label claims in the samples. The percentage recovery of drug in sample was above 99.9%, the percentage error ranging from 0.016 to 0.123, the standard deviation (SD) was between ± 0.1396 and ± 1.1284, and relative standard deviation (RSD) was from 0.06 to 0.11 (Table 2). It shows that the proposed method has good accuracy, precision and repeatability. The result of the estimation of

![Fig. 4: Effect of temperature on complex formation reaction with (2, 4, and 6 µg/mL) cefpirome, ferric nitrate (3.3 \times 10^{-3} \text{ mol/L}), phenanthroline (1.0 \times 10^{-2} \text{ mol/L}), and phosphoric acid (0.2 \text{ mol/L}) (n = 3)](image)

![Fig. 5: Effect of heating time on complex formation reaction with (2, 4, and 6 µg/mL) cefpirome, ferric nitrate (3.3 \times 10^{-3} \text{ mol/L}), phenanthroline (1.0 \times 10^{-2} \text{ mol/L}), and phosphoric acid (0.2 \text{ mol/L}) (n = 3)](image)

![Fig. 6: Beer’s calibration curve of cefpirome at optimized condition](image)

Table 1: The analytical data and spectral characteristics in the determination of cefpirome by the proposed method

Parameters	Result
Maximum wavelength of absorbance λ_{max} (nm)	515
Color of the complex	Red
Beer’s law limit (µg/mL)	0.2–6.0
Molar absorptivity (L/mol/cm) $\times 10^4$	7.7813
Sandell’s sensitivity (µg/cm2)	0.003469
Regression equation*	
Intercept (a)	0.234
Slope (m)	0.127
Standard deviation of intercept (S_a)	0.0078
Regression coefficient (R^2)	0.994
LOD (µg/mL)	0.2026
LOQ (µg/mL)	0.6141

*Y = a + mx, where X is the concentration of CFM in µg/mL, Y is the absorbance units, LOD is limits of detection and LOQ is limits of quantification

Table 2: Result of recovery study, accuracy and precision for the determination of cefpirome in pharmaceutical preparations using the proposed method

Brand name of preparation	Make	Labeled claim (mg)	Amount found (mg)	Mean recovery % \pm SD*	Error %	RSD*
Bacirom injection	Aristo	250	249.960	99.984 \pm 0.1396	0.016	0.0559
Forgen injection	Alkem	1000	998.776	99.877 \pm 1.1840	0.123	0.1130
Cefrom injection	Aventis	1000	999.364	99.936 \pm 0.7391	0.064	0.0740

*For five determinations, SD – Standard deviation, RSD – Relative standard deviation
drug in the sample was found to be in good agreement with label claim which indicates the absence of interference of excipients.

CONCLUSION
This paper describes the application of a simple visible spectrophotometric technique using oxidation-reduction reaction between drug and metal ion for the quantification of CFM in bulk and pharmaceutical preparations. The proposed method is simple, sensitive, with reasonable precision and accuracy in the visible range. It is further found that the percentage recovery is good enough so that the proposed method is free from the excipient interference. It is applicable to detect CFM even at a very low concentration level. Therefore, the proposed method can be recommended for the routine estimation of CFM in bulk as well as pharmaceutical preparations.

ACKNOWLEDGMENT
The author is thankful to the Principal of Taywade College, Koradi, for providing infrastructure facilities to carry this research work.

AUTHOR'S CONTRIBUTIONS
The author Dr. Dilip M. Chafle has himself generated the idea and carried out the experiment. He himself interpreted the data and drafted the manuscript. He has also checked spelling, plagiarism, and finally submitted the manuscript.

CONFLICTS OF INTEREST
The author confirms that this article content has no conflicts of interest.

AUTHOR'S FUNDING
The author is grateful to the University Grants Commission, Western Region, Pune, India, for financial assistance to carry research work under a minor research project.

REFERENCES
1. Tumah HN. In vitro activity of cefepime and cefpirome compared to other third generation cepham antibiotics against gram-negative nosocomial pathogens. Pharmazie 2004;59:854-8.
2. Roos JF, Lipman J, Kirkpatrick CM. Population pharmacokinetics and pharmacodynamics of cefpirome in critically ill patients against gram-negative Bacteria. Intensive Care Med 2007;33:781-8.
3. Hollenstein U, Brunner M, Mayer BX, Delacher S, Erovic B, Eichler HG, et al. Target site concentrations after continuous infusion and bolus injection of cefpirome to healthy volunteers. Clin Pharmacol Ther 2000;67:229-36.
4. Joukhadar C, Klein N, Mayer BX, Kreischnitz N, Dellekarth G, Palkovits P, et al. Plasma and tissue pharmacokinetics of cefpirome in patients with sepsis. Crit Care Med 2002;30:1478-82.
5. Ali MD, Shanim MD, Alam S, Ali S, Ahmad S, Ansari S. Drug utilization based ADRs detection of antibiotics prescribed for LRTI in a tertiary care teaching hospital, New Delhi. Int J Pharm Pharm Sci 2018;10:7-14.
6. Reynolds JE: Martindale: The Extra Pharmacopoeia. 30ªed. London: The Pharmaceutical Press; 1993. p.133.
7. Mayer BX, Hollenstein U, Brunner M, Eichler HG, Muller M. Micellar electro kinetic chromatography for the analysis of cefpirome in microdialysis and plasma samples obtained in vivo from human volunteers. Electrophoresis 2000;21:1558-64.
8. Mrestani Y, El-Mokdad N, Ruttinger HH, Neubert R. Characterization of partitioning behavior of cephalosporins using microemulsion and micellar electro kinetic chromatography. Electrophoresis 2005;19:2895-9.
9. Breilh D, Lavallee C, Fratia A, Ducint D, Cony-Makhoud P, Saux MC. Determination of cefpirome and cefpirome in human serum by HPLC using an ultrafiltration for antibiotics serum extraction. J Chromatogr B Biomed Sci Appl 1999;734:121-7.
10. Rasool MD, Gopinath H, Asma SK, Marey P, Rao KS. Stability studies of cefpirome sulphate I.V. with metronidazole I.V. admixture. J Chem Pharm Sci 2012;5:165-72.
11. Evagelou V, Tsantili-Kakoulidoli A, Koupparis M. Determination of the dissociation constant of the cephalosporins cefepime and cefpirome using UV-spectrophotometry and pH-potentiometry. J Pharm Biomed Anal 2003;31:1119-28.
12. Saeed AM, Sultana N, Nawaz M. A RP-HPLC method for the assay of cefpirome and its application in drug metal interaction studies. Pak J Pharm Sci 2006;19:38-43.
13. Oppe TP, Menegola J, Schapovale EE. Microbiological assay for the determination of cefpirome in raw material and injectable preparation. Drug Anal Res 2018;2:29-35.
14. Oppe TP, Menegola J, Schapovale EE. Development and validation of UV-spectrophotometry and liquid chromatography methods for determination of cefpirome in raw material and pharmaceutical dosage. Drug Anal Res 2019;3:42-50.
15. Pavuluri S, Siddiraju S. UPLC method development and validation for the determination of cefpirome sulphate in pharmaceutical dosage form. Int J Pharm 2016;6:168-73.
16. Nawaz M, Saeed AM, Sultana N. Simultaneous determination of cefpirome, cefaclor, ceftezidine and cephalaxin in pharmaceutical formulations by reverse phase HPLC. Acta Chromatogr 2011;23:205-13.
17. Rao JV, Kumar DA, Rao DM, Nayan A, Silpa D. Spectrophotometric assay of cefpirome sulphate. Ind J Pharm Sci 2005;67:747-8.
18. Hosny MM. Development of simple green spectrophotometric method for determination of cefoperazone sodium and cefpirome hydrochloride in bulk, pharmaceutical dosage forms and human urine. Asian J Pharm Clin Res 2014;7:145-50.