Research Progress of circRNAs in Glioblastoma

Xu Guo and Haozhe Piao *

Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China

Circular RNAs (circRNAs) are a class of single-stranded covalently closed non-coding RNAs without a 5′ cap structure or 3′ terminal poly (A) tail, which are expressed in a variety of tissues and cells with conserved, stable and specific characteristics. Glioblastoma (GBM) is the most aggressive and lethal tumor in the central nervous system, characterized by high recurrence and mortality rates. The specific expression of circRNAs in GBM has demonstrated their potential to become new biomarkers for the development of GBM. The specific expression of circRNAs in GBM has shown their potential as new biomarkers for GBM cell proliferation, apoptosis, migration and invasion, which provides new ideas for GBM treatment. In this paper, we will review the biological properties and functions of circRNAs and their biological roles and clinical applications in GBM.

Keywords: circRNAs, non-coding RNAs, biomarker, glioblastoma, miRNAs sponge

INTRODUCTION

Glioblastoma (GBM) is one of the most malignant primary brain tumors in adults, characterized by an expansive and infiltrative growth pattern (Jackson et al., 2019; Tan et al., 2020; McKinnon et al., 2021). According to the World Health Organization (WHO) classification for central nervous system (CNS) tumors, GBM is classified as the highest grade IV (Broekman et al., 2018; Caragher et al., 2018). Currently, the standard of therapy for GBM is surgical resection with maximum safety followed by concurrent radiotherapy and adjuvant chemotherapy (Aliferis and Trafalis, 2015; Karachi et al., 2018; Choi et al., 2019; Geraldo et al., 2019). However, the efficacy of this regimen is limited, and the median survival of patients after treatment is only 15 months (Touat et al., 2017; Lim et al., 2018; Balca-Silva et al., 2019). To better treat GBM patients and improve their survival time and quality of life remains a huge challenge. Therefore, the study of mechanisms regulating the malignant progression of GBM and the explore for early GBM biomarkers are important for the early diagnosis, treatment and prognosis of GBM.

Circular RNAs (circRNAs) are covalently contiguous closed loops without 5′ and 3′ ends, and are structurally more stable than linear RNAs and less susceptible to degradation by nucleic acid exonucleases (Jakobi and Dieterich, 2019; Huang and Zhu, 2021). Initially circRNAs were thought to be products of missplicing or intermediates escaping from the lasso structure of introns (Chen and Edited by: Jing Zhang, Shanghai Jiao Tong University, China
Reviewed by: Hernando Lopez Bertoni, Johns Hopkins Medicine, United States
Fabiana Passaro, University of Naples Federico II, Italy
*Correspondence: Haozhe Piao piaohaozhe@cancerhosp-in-cmu.com

Specialty section: This article was submitted to Epigenomics and Epigenetics, a section of the journal Frontiers in Cell and Developmental Biology

Received: 09 October 2021
Accepted: 02 November 2021
Published: 22 November 2021

Citation: Guo X and Piao H (2021) Research Progress of circRNAs in Glioblastoma. Front. Cell Dev. Biol. 9:791892. doi: 10.3389/fcell.2021.791892

Abbreviations: CircRNAs, circular RNAs; GBM, glioblastoma; CNS, central nervous system; Exonic circRNAs, E-circRNAs; ciRNAs, intron circRNAs; eicRNAs, exon-intron circRNAs; miRNAs, microRNAs; NSCLC, non-small-cell lung cancer; EMT, epithelial mesenchymal transition; PDAC, pancreatic ductal adenocarcinoma; RBP, RNA binding protein; 3′-UTR, 3′ untranslated regions; NPC, nasopharyngeal carcinoma; CRC, colorectal cancer; IRES, internal ribosome entry site; ORF, open reading frame; EIF4A3, Eukaryotic initiation factor 4A3; ceRNA, competitive endogenous RNA; EDF, epidermal growth factor; E-box binding zinc finger protein, ZEB; MUC, Mucin; VEGF, vascular endothelial growth factor; GSCs, glioma stem cells; TMZ, temozolomide; OS, overall survival; DFS, disease-free survival; PFS, progress-free survival.
Huang, 2018; Tsitsipatis and Gorospe, 2021). With the widespread use of transcriptome sequencing technologies, numerous studies have identified circRNAs as a class of endogenous, numerous molecules that are stably present in mammalian cells with certain organizational, temporal, and disease properties and are no longer considered a class of RNA molecules with no role in the human body (Han et al., 2018; Wu J. et al., 2021; Choudhary et al., 2021). CircRNAs present in mammalian cells, there are over 400 circRNAs in normal humans whose abnormal expression can induce tumorigenesis (Ebbesen et al., 2017; Zhou et al., 2020; Zhang et al., 2021a; Shao et al., 2021).

Studies have showed that circRNAs are involved in the occurrence and development of GBM due to their highly stable ring structure, high abundance in cancer tissues and relative tissue specificity, and their altered expression is expected to become a new marker for early diagnosis and prognostic assessment of GBM or a new target for effective treatment. This review summarized the research progress of circRNAs in GBM in recent years, including the mechanism of circRNAs occurrence, function and application research in GBM.

BIOGENESIS AND CLASSIFICATION OF CIRCULAR RNAs

CircRNAs were first identified in RNA viruses in 1976, and in 1979, Hsu et al. discovered a ring-like molecule with covalently linked 3 and 5’ ends in Hela cells by electron microscopy (Hsu and Coca-Prados, 1979). Because of its special structure, it was often ignored as an abnormal shear-by-product. It was not until 1993 that the existence of this structurally unique closed-loop noncoding RNA was confirmed in humans (Farooqi et al., 2021; Wang X. et al., 2021; Lauretti et al., 2021; Sempere et al., 2021). In recent years, with the widespread application of transcriptomic gene sequencing and biophysical techniques, the biological functions of circRNAs and their roles in the development of human diseases are gradually being better understood with the help of high-throughput sequencing technologies. The circRNAs are mainly formed by processing protein-coding genes by RNA polymerase II (Ashwal-Fluss et al., 2014; Li et al., 2019; Ali et al., 2021; Sinha et al., 2021). Meanwhile circRNAs biosynthesis is mediated by RNA binding proteins, intron pair driven and lasso driven, and thus has an important role in regulating adjacent splice sites and promoting circular biosynthesis (Wu et al., 2021a; van Zonneveld et al., 2021; Zhao et al., 2021). Currently circRNAs have also been shown to have many characteristics. Diversity and abundance, circRNAs are widely found in eukaryotic cells and are very diverse (Glazar et al., 2014; Liu et al., 2020; Han et al., 2021). Stability, unlike linear RNA, circRNAs is a single-stranded, covalent closed-loop structure without a 5’ cap structure and a 3’ terminal ploy(A) tail. This structure may protect it from degradation by RNA exonuclease (RNAser) and thus has higher stability than linear RNA (Suzuki and Tsukahara, 2014; Di Timoteo et al., 2020; Wang et al., 2021b). Conservative, circRNAs is highly conserved across species (AboutHaidar et al., 2014; Mao et al., 2021; Meyer et al., 2021). Specificity, mainly in terms of cell type specificity and tissue specificity (Shang et al., 2019; Gokool et al., 2020; Huang and Zhu, 2021).

CircRNAs can be divided into three categories according to the composition of splicing (Figure 1). Exonic circRNAs (E-circRNAs) are composed of backward-sheared exons, intron circRNAs (ciRNAs) are composed of introns only, exon-intron circRNAs (eicRNAs). Contains both exons and introns. Jeck et al., (Jeck et al., 2013), proposed two different exon cyclization modes, lariat-driven cyclization mode and intron pairing-driven cyclization mode.

BIOLOGICAL FUNCTIONS OF CIRCULAR RNAs

CircRNAs are functionally diverse and are often found to function as microRNAs (miRNAs) sponges because they are rich in miRNAs binding sites. In addition, circRNAs also have roles in regulating parent gene expression, regulating parent gene selective splicing, translating protein functions and participating in intercellular communication by entering exosomes (Figure 2).

MicroRNAs Sponge

Through miRNAs response elements, non-coding RNAs and coding RNAs form a large-scale regulatory network in the transcriptome. MiRNAs are negative regulators of gene expression, reducing the stability of target genes or limiting their translational function (Salmena et al., 2011; Su and Lv, 2020; Shen et al., 2021). CircRNAs are rich in miRNAs binding sites and competitively repress transcriptional regulation of miRNAs, a new class of highly expressed and stable ceRNAs (Shi et al., 2013). The cyclic RNA hsa_circ_0043280 can reduce PAQR3 levels by competitively absorbing mir-203a-3p and blocking miR-203a-3p, and can function as a tumor suppressor to inhibit tumor growth and metastasis in cervical cancer (Zhang et al., 2021b). Hsa_circ_0006349 promotes MKP1 expression through uptake of miR-98, which enhances proliferation and glycolysis of non-small-cell lung cancer (NSCLC) cells and promotes malignant progression of tumors (Qin et al., 2021). Circ-PPP1CB is downregulated in bladder cancer and negatively correlates with clinical stage and histological grade. Circ-PPP1CB regulates cell growth, metastasis and epithelial mesenchymal transition (EMT) by interacting with the miR-1307-3p/SMG1 axis (Wang F. et al., 2021).

Circ-EYA3 is an endogenous miR-1294 sponge, which in turn promotes ATP synthesis to increase energy production and promote malignant progression of PDAC (Rong et al., 2021a).

Interaction with RNA-Binding Proteins

CircRNAs can alter splicing patterns or RNA stability by binding to RNA binding protein (RBP) (Huang A. et al., 2020; Zhou et al., 2020; He A. T. et al., 2021; Li J. et al., 2021; Kim et al., 2021). Targeting circRNAs to inhibit or block their interaction with RBPs is expected to become a new direction for the development of new therapeutic strategies.
Muscleblind (MBL) is a muscleblind-like 1 (mbnl1) MBL promotes the production of circmbl, which has a specific MBL binding site, and circmbl has a strong direct interaction with MBL protein (Kristensen et al., 2019). Circ-Mbl regulates MBL protein levels and reduces its own mRNA production by promoting circmbl production when MBL is in excess. Circmbl can also eliminate excess MBL by binding to MBL (Ashwal-Fluss et al., 2014). Circrna can facilitate the interaction between DNA, RNA, and RBP to perform biological functions by binding to related proteins (Qi et al., 2021). Circ-RNF13 prolongs the half-life of SUMO2 by binding to the 3' untranslated regions (3'-UTR) of SUMO2 gene, which leads to sumoylation of GLUT1 and ubiquitination to regulate the AMPK-mtor pathway, ultimately promoting proliferation and metastasis of nasopharyngeal carcinoma (NPC) (Mo et al., 2021). Circ-RHOBTB3 expression is reduced in colorectal cancer tissues, and lower circ-RHOBTB3 levels are significantly associated with advanced clinical stage and...
greater risk of metastasis. Circ-RHOBTB3 binds to hur to promote β-Trcp1-mediated hur ubiquitination, which in turn inhibits the invasive effects of CRC (Chen J. et al., 2021).

Involved in Intercellular Communication Through Exosomes

The main function of exosomes is to mediate intercellular communication through their contents under physiological and pathological conditions (Wang J. et al., 2021; Chen Q. et al., 2021; Shahzad et al., 2021). In addition, exosomes play a role in coagulation, antigen presentation, immune regulation, and viral replication. Exosome contents, such as proteins, miRNAs, and m6a methylated mRNA, have been shown to act in receptor cells, thereby activating multiple signaling pathways (Kalluri and LeBleu, 2020; Chen et al., 2020; Wang et al., 2021a; Wang et al., 2021b; Reese and Dhayat, 2021; Tian et al., 2021). Tumor cells can secrete more exosomes than normal cells with some variation in contents, and tumor cell-derived exosomes can provide a suitable microenvironment for tumor development, such as cell proliferation, angiogenesis and metastasis, drug resistance and formation of pre-metastatic microenvironment (Li and Wang, 2017; Yan and Chen, 2020). It has been shown that circRNAs can be encapsulated into exosomes and thus participate in tumorigenesis and progression. Exosome-derived hsa_circ_0000337 accelerates Chemoresistance resistance in esophageal cancer cells by regulating the miR-377-3p/JAK2 axis (Zang et al., 2021). Plasma exosomes from colorectal cancer (CRC) patients are enriched in circ-133. Exosomes circ-133 from hypoxic cells are transmitted to normoxic cells and promote CRC metastasis by acting on the miR-133a/GEF-H1/rhoa axis (Yang H. et al., 2020).

Peptide Translation

Normally circRNAs cannot be flipped, but with deeper research, it was found that exon sequences of some circRNAs can be translated into proteins (Chen and Shan, 2021; Dodbele et al., 2021). Some circRNAs contain internal ribosome entry site (IRES) sequences and can bind directly to ribosomes and can be translated in eukaryotic cells (Abe et al., 2015; He L. et al., 2021). The 40S subunit of eukaryotic ribosomes binds to circRNAs and can directly initiate translation (Wang and Wang, 2015). CircRNAs can also be efficiently translated in an E. coli cell-free translation system with an open reading frame (ORF) (Thompson, 2012). It has also been shown that eukaryotic endogenous circRNAs can drive protein translation through m6a methylation (Yang et al., 2017; Dai et al., 2020).

Regulation of Gene Expression

CircRNAs can interact with RNA to participate in post-transcriptional regulation. CircRNAs are formed with a balance between competitive complementary pairing between introns and linear RNAs, which affects mRNA expression and translation (Shao et al., 2021). The ORF-containing circRNAs produced by COL6A3 encodes a novel 198-aa functional peptide, and hsa_circ_0006401–198-aa promotes the stability of the host gene COL6A3 mRNA, thereby facilitating CRC proliferation and translocation (Zhang et al., 2021c). Circ-PTEN can promote CRC proliferation and translocation by acting as a miR-155 Circ-PTEN can increase the expression of its host gene PTEN by acting as a sponge for miR-155 and miR-330-3p, which in turn regulates the PI3K/AKT signaling pathway (Wang et al., 2021i). Regulation of parent genes through RNA polymerase II and epigenetic modifications. Some circRNAs were also found to have m6a modifications, which affect the stability of the parent gene (Zhou et al., 2017). Thus, circRNAs can be used to regulate the transcription of disease-related parent genes, which in turn affect the expression of the parent gene and its target genes, providing new ideas for the treatment of corresponding diseases.

BIOLOGICAL FUNCTION AND MOLECULAR MECHANISM OF CIRCULAR RNAS IN GliOBLASTOMA

Studies have shown that circRNAs have important roles in a variety of tumors, and they can be involved in tumorigenesis and progression through many different mechanisms and are closely associated with the clinical features of tumors (Goodall and Wickramasinghe, 2020). Here, we briefly summarize the circRNAs involved in GBM tumorigenesis and progression and analyze their correlation with the clinical features of GBM.

Circular RNAs are associated with Proliferation in Glioblastoma

CircRNAs can regulate the cell proliferation ability of GBM by regulating gene expression or downstream signaling pathways (Table 1). A total of 417 aberrantly expressed circRNAs were found in GBM tissues compared with adjacent normal brains by second-generation sequencing, with hsa_circ_0008344 being the most differentially expressed. Overexpression of hsa_circ_0008344 significantly promoted proliferation, colony formation and decreased apoptosis in GBM cells (Zhou et al., 2018). Eukaryotic initiation factor 4A3 (EIF4A3) bound to MMP9 mRNA transcripts induced circ-MMP9 cyclization and promoted circ-MMP9 expression in GBM. MMP9 promotes the proliferative capacity of GBM cells by targeting miR-124 to regulate the expression of CDK4 and AURKA (Wang et al., 2018b). Hsa_circ_0074027 expression is significantly upregulated in GBM and is associated with clinical features. Hsa_circ_0074027 promotes IL17RD expression through sponge binding of miR-518a-5p, which in turn promotes the proliferative capacity of cells (Qian et al., 2019). Circ-PITX1 enhances MAP3K2 expression by binding miR-379-5p as a competitive endogenous RNA (ceRNA) sponge, which promotes cell proliferation and inhibits apoptosis in GBM(Lv et al., 2019). In addition, Cao et al., Also found that circ-PITX1 was significantly overexpressed in GBM tissues and cells, and
knockdown of circpitx1 inhibited cell proliferation and tumor growth. Circ-PITX1/miR-584-5p/KPNB1 axis may be a potential therapeutic target for GBM (Cao et al., 2021). Hsa_circ_0001801 upregulates HMGB3 expression in GBM through sponge binding of miR-628-5p, thereby promoting cell proliferation (Chen et al., 2019). Zhu et al., Found that circentpd7 (circbase ID: hsa_circ_0019421) was upregulated in GBM tissues, and knockdown of circentpd7 significantly inhibited GBM cell motility and proliferation (Zhu et al., 2020). Hsa_circ_0043278/miR-638/-HOXA9 regulatory axis has an important role in GBM progression by regulating miR-638/-HOXA9. Hsa_circ_0008344/miR-361-3p/miR-324-5p/BCL2 signaling pathway plays an important role in the tumor growth process of GBM (Li D. et al., 2021). Besides, hsa_circ_0001946 (Zhou et al., 2018), hsa_circ_0029426 (Zhang G. et al., 2019), hsa_circ_0067934 (Xin et al., 2019), hsa_circ_0001946 (Zhou et al., 2018), hsa_circ_0001946 (Zhou et al., 2018), hsa_circ_0043278/miR-638/-HOXA9 regulatory axis has an important role in GBM progression and can be involved in GBM tumorigenesis and progression by regulating cell proliferation (Wu et al., 2020). Circ-ABCC3 acts as a sponge for miR-770-5p and regulating the IGF1R/MAP3K2 Promote cell proliferation and inhibit cell apoptosis 33154193

circ-FLN1 Up miR-199-5p Promote cell proliferation 34498720

circ-SERPINE2 Up miR-361-3p/miR-324-5p/BCL2 Promote cell proliferation, colony formation and inhibit cell apoptotic rate 34553034

circ-LGMN Up miR-127-3p/LGMN Promote cell proliferation 34582975

circ-NF1 Up miR-340 Promote cell proliferation 34599026

circ-NT5E Down miR-422a Inhibit cell proliferation and promote cell apoptosis 30863767

circ-MTO1 Down miR-92/WWOX Inhibit cell proliferation and promote cell apoptosis 31456594

circ-AKT3 Down AKT3-174aa/PDLK/AKT Inhibit cell proliferation and promote cell apoptosis 32804726

circ-CDR1as Down p53/MDM2 Inhibit cell proliferation 32894144

TABLE 1 | The proliferation-related circular RNAs in GBM.

circRNAs Expression	Mechanism	Biological function	Ref.PMID
hsa_circ_0008344 Up	—	Promote cell proliferation, colony formation and inhibit cell apoptotic rate	29687495
circ-MMP9 Up	miR-124/CDK4	Promote cell proliferation	30470282
hsa_circ_0029426 Up	miR-197	Promote cell proliferation and inhibit cell apoptosis	30549870
hsa_circ_0074027 Up	miR-518a-5p/L17RD	Promote cell proliferation, colony formation and inhibit cell apoptotic rate	30738578
hsa_circ_0067954 Up	PDK-4/AKT	Promote cell proliferation	31081099
circ-PITX1 Up	miR-379-5p/MAP3K2	Promote cell proliferation and inhibit cell apoptosis	31483405
circ-FOXO3 Up	miR-138-5p/miR-432-5p/NFAT5	Promote cell proliferation	31504797
hsa_circ_0011801 Up	miR-628-5p/HMG3	Promote cell proliferation	31858556
circ-EFPI4L5 Up	miR-19a/EFPI4L5	Promote cell proliferation and colony formation	31905344
circ-ENTPD7 Up	miR-101-3p/ROS1	Promote cell proliferation	32308563
hsa_circ_0043278 Up	miR-638/HOX9	Promote cell proliferation	33154193
circ-SMO Up	SMO-193aa	Promote cell proliferation	33446260
circ-SKA3 Up	miR-1	Promote cell proliferation	33506664
circ-PARP4 Up	miR-125a-5p	Promote cell proliferation	33520365
circ-PITX1 Up	miR-584-5p/KPNB1	Promote cell proliferation	33763840
circ-ABCC3 Up	miR-770-5p/SOX2	Promote cell proliferation and inhibit cell apoptosis	33811842
hsa_circ_0006168 Up	miR-628-5p/IGF1R	Promote cell proliferation, colony formation and inhibit cell apoptotic rate	34024251
hsa_circ_0001588 Up	miR-211-5p/YY1	Promote cell proliferation	34105224
circ-FLN1 Up	miR-199-5p	Promote cell proliferation	34498720
circ-SERPINE2 Up	miR-361-3p/miR-324-5p/BCL2	Promote cell proliferation, colony formation and inhibit cell apoptotic rate	34553034
circ-LGMN Up	miR-127-3p/LGMN	Promote cell proliferation	34582975
circ-NF1 Up	miR-340	Promote cell proliferation	34599026
circ-NT5E Down	miR-422a	Inhibit cell proliferation	29967262
hsa_circ_0001946 Down	miR-671-5p/CDCR1	Inhibit cell proliferation and promote cell apoptosis	30863767
circ-MTO1 Down	miR-92/WWOX	Inhibit cell proliferation	31456594
circ-AKT3 Down	AKT3-174aa/PDLK/AKT	Inhibit cell proliferation	31470674
hsa_circ_01844 Down	—	Inhibit cell proliferation and promote cell apoptosis	32804726
circ-CDR1as Down	p53/MDM2	Inhibit cell proliferation	32894144
significantly reduced cell proliferation, radioresistance and tumorigenicity of GBM cells in vivo, while overexpression of circ-AKT3 suppressed the malignant phenotype of GBM (Xia et al., 2019).

Circular RNAs are associated with Invasion and Metastasis in Glioblastoma

Invasion and metastasis of tumor cells are the main cause of death in most patients with malignant tumors (Asif et al., 2021). This ability to invade and metastasize allows tumor cells to leave their primary location within tissues, enter lymphatic vessels and blood vessels, and colonize distant organs with the blood circulation. Metastasis of tumor cells is a complex, dynamic process that occurs through cytoskeletal remodeling to form leading edge protrusions, thereby generating mechanical forces that retract and separate the cell tails from the extracellular matrix. CircRNAs have vital roles in the invasion and metastasis of GBM. Hsa_circ_0008344 (Zhou et al., 2018), circ-MMP9 (Wang et al., 2018b), hsa_circ_0074027 (Qian et al., 2019), hsa_circ_0067934 (Zhang et al., 2019), hsa_circ_0001801 (Chen et al., 2019), circ-EPB41L5 (Lv et al., 2020), circ-ENTPD7 (Zhu et al., 2020), hsa_circ_0043278 (Wu et al., 2020), circ-PARP4 (Zhou et al., 2021), circ-SMARCA5 (Barbagallo et al., 2021), circ-PITX1 (Cao et al., 2021), circ-ABCC3 (Zhang and Xu, 2021), hsa_circ_0006168 (Wang et al., 2021), hsa_circ_0001588 (Wang et al., 2021), circ-MELK (Zhou et al., 2021), circ-FLN1 (Sun et al., 2021), circ-LGMN (Chen et al., 2021), circ-NT5E (Wang et al., 2021),

TABLE 2	The migration and invasion-related circular RNAs in GBM.			
CircRNAs	Expression	Mechanism	Biological function	Ref. PMID
hsa_circ_0008344	Up	—	Promote cell migration and invasion	29687495
circ-MMP9	Up	miR-124/CDK4	Promote cell migration and invasion	30470282
hsa_circ_0029426	Up	miR-197	Promote cell migration and invasion	30548670
hsa_circ_0074027	Up	miR-618a-5p/L17RD	Promote cell migration and invasion	30738578
hsa_circ_0067934	Up	PI3K-AKT	Promote cell migration and invasion	31081099
circ-FOXO3	Up	miR-138-5p/miR-432-5p/NFAT5	Promote cell migration and invasion	31504797
hsa_circ_001801	Up	miR-628-5p/HMG8B	Promote cell migration and invasion	31858556
circ-EPB41L5	Up	miR-19a/EPB41L5	Promote cell migration and invasion	31905344
circ-ENTPD7	Up	miR-101-3p/RO51	Promote cell migration and invasion	32308563
hsa_circ_0043278	Up	miR-638/NOX9	Promote cell migration and invasion	33154193
circ-PARP4	Up	miR-125a-5p	Promote cell migration and invasion	33520365
circ-SMARCA5	Up	—	Promote cell migration and invasion	33562358
circ-PITX1	Up	miR-584-5p/KPNB1	Promote cell migration and invasion	33763840
circ-ABCC3	Up	miR-770-5p/SOX2	Promote cell migration and invasion	33811842
hsa_circ_0006168	Up	miR-628-5p/GF1R	Promote cell migration and invasion	34024251
hsa_circ_0001588	Up	miR-211-5p/Y1	Promote cell migration and invasion	34105224
circ-ENTPD7	Up	miR-593/EphB2	Promote cell migration and invasion	34189916
circ-FLN1	Up	miR-199-3p	Promote cell migration and invasion	34498720
circ-LGMN	Up	miR-127-3p/LGMN	Promote cell migration and invasion	34582975
circ-MELK	Up	miR-593/EphB2	Promote cell migration and invasion	29967262
circ-FLN1	Down	miR-422a	Inhibit cell migration and invasion	30605376
hsa_circ_0001946	Down	miR-671-5p/DR1	Inhibit cell migration and invasion	31456594

TABLE 3	Utility of circRNAs for clinical of GBM.						
CircRNAs	Expression	Clinical Sample	Diagnostic	Utility	Prognostic	Predictive	Ref. PMID
has_circ_0029426	Up	Tissues	—	√	√	30548670	
has_circ_0074027	Up	Tissues	—	√	√	30738578	
has_circ_0067934	Up	Tissues	—	√	—	31081099	
circ-ENTPD7	Up	Tissues	—	√	√	32308563	
circ-SMO	Up	Tissues	—	√	—	33448260	
circ-SK3	Up	Tissues	—	√	—	33500684	
hsa_circ_0001588	Up	Tissues	—	√	—	34105224	
circ-FLNA	Up	Tissues	—	√	√	34498720	
circ-SERPINE2	Up	Tissues	—	√	√	34553034	
circ-LGMN	Up	Tissues	—	√	—	34582975	
circ-NF1	Up	Tissues	—	√	√	34589042	
circ-ASAP1	Up	Tissues	—	√	—	32,926,734	
circ-MTO1	Down	Tissues	—	√	—	31456594	
circ-EPB41L5	Down	Tissues	—	√	√	31905344	
hsa_circ_0006168	Down	Tissues	—	√	√	34024251	
Epithelial-mesenchymal transition (EMT) is mainly involved in embryogenesis, organogenesis, and tissue healing in humans, but also in tumorigenesis and metastasis, promoting tumor cell invasion and motility by altering intercellular interactions and cell-matrix interactions (Inoue et al., 2015; Wu N. et al., 2021; Satcher and Zhang, 2021; Xiong et al., 2021). About 90% of tumor patient deaths result from tumor invasion and metastasis, which suggests that regulation of the EMT process is important for tumor prevention and treatment. E-cadherin expression is suppressed upon EMT activation, resulting in the loss of the typical polygonal cobblestone morphology of epithelial cells, while cells acquire a spindle-shaped mesenchymal morphology and express markers associated with the mesenchymal cell state, particularly N-cadherin, wave proteins and fibronectin (Cristofanilli and Mendelsohn, 2006; Cai et al., 2021; Zhang N. et al., 2021), therefore, the activation status of EMT can be assessed by changes in the expression of E-cadherin and N-cadherin. It has been shown that growth factors such as epidermal growth factor (EGF), transcription factors such as Snail, Slug, Twist, E-box binding zinc finger protein (ZEB) and signaling pathways such as TGF, Wnt, Notch and Hedgehog can mediate the EMT. Mucin (MUC) acts as an inducer to activate various signaling pathways that also contribute to EMT (Ponnusamy et al., 2013). We found that among the circRNAs involved in GBM, circ-MMP9 (Wang et al., 2018b), hsa_circ_0067934 (Xin et al., 2019), hsa_circ_0001801 (Chen et al., 2019), circ-PARP4 (Zhou J. et al., 2021), circ-PITX1 (Cao et al., 2021), hsa_circ_0006168 (Wang T. et al., 2021), hsa_circ_0001588 (Wang Q. et al., 2021) and circ-MELK (Zhou F. et al., 2021) can regulate GBM invasion and metastasis by modulating the EMT process. Hsa_circ_0067934 (Xin et al., 2019), circ-EPB41L5 (Lv et al., 2020) and circ-ABCC3 (Zhang and Xu, 2021) can participate in the invasion and metastasis of GBM by regulating the PI3K/Akt/mTOR signaling pathway.

Circular RNAs are associated with angiogenesis in Glioblastoma

Tumor development, invasion and metastasis are highly dependent on neovascularization (Goncalves et al., 2021; Rimini and Casadei-Gardini, 2021). Under physiological conditions, angiogenesis is intricately and precisely regulated by multiple molecules and mechanisms that allow the formation of highly tissue-specific, structured and hierarchical vascular networks to sustain the physiological processes of embryonic development, growth and tissue repair (Lai et al., 2021; Martin and Gurevich, 2021; Narasimhan et al., 2021). However, tumor cells are able to release large amounts of vascular endothelial growth factor (VEGF) and inhibit the secretion of angiogenesis inhibitory factor, which unbalances the regulatory mechanism of angiogenesis, resulting in rapid, uncontrolled proliferation of tumor neovascularization and a large, abnormally disordered replenishment network (Liu Y. et al., 2021; Uemura et al., 2021; Zhu et al., 2021). CircRNAs can also be involved in the malignant invasion and metastasis of GBM by affecting angiogenesis (Figure 3A). Barbagallo et al., Found that circ-SMARCA5 regulates VEGFA mrna Splicing and angiogenesis through binding to SRSF1, which in turn leads to malignant progression of GBM (Barbagallo et al., 2019). In addition, they demonstrated that the GAUGAA motif is a key sequence for binding of circ-SMARCA5 to SRSF1 (Barbagallo et al., 2021). Cao et al., The circ-PITX1/miR-584-5p/KPNB1 regulatory axis was found to be an important molecular mechanism mediating GBM angiogenesis (Cao et al., 2021). Circ-ABCC3 regulates GBM angiogenesis and tumor malignancy progression through PI3K/AKT signaling pathway and miR-770-5p/SOX2 axis (Zhang and Xu, 2021).

Circular RNAs are associated with Tumor Stemness in Glioblastoma

Stem cells are widely involved in body growth and development and organ formation, and have the ability of self-renewal, infinite proliferation and multidirectional differentiation (Jing et al., 2021; Mehraj et al., 2021; Mirzadeh Azad et al., 2021; Otero-Albiol and Carnero, 2021). The strong self-renewal ability, inherent high proliferative capacity and multidirectional differentiation together constitute the basic characteristics of malignant stem cells, among which the self-renewal ability is closely related to tumorigenesis and malignancy (Ferragut et al., 2021; Mehraj et al., 2021; Yue et al., 2021). Over the past three to 4 decades, numerous studies have noted a potential link between stem cell systems and certain tumors, and a small proportion of tumor-initiating cells with stem cell properties, also known as tumor stem cells, have been identified in a variety of organs (Cermeno and Garcia, 2016; Hass et al., 2020; Pan et al., 2021; Ryskalin et al., 2021). Tumor stem cells of glioma tissue origin have the capacity for self-renewal, homotransplantation into tumors, and differentiation into neurons and glial cells; it is now thought that they may be derived from genetically mutated neural stem cells, transiently expanded cells, neural progenitor cells, and even highly differentiated astrocytes and oligodendrocytes in normal brain tissue. It has been found that circRNAs also play an important role in GBM cell stemness (Figure 3B). Zhou et al., Found that circ-MELK expression was significantly increased in GBM tissues and that circ-MELK could regulate GBM EMT progression and glioma stem cells (GSCs) maintenance by binding to miR-593 to promote ephb2 expression (Zhou F. et al., 2021). Gao et al., Demonstrated that circ-E-cadherin encodes a 14 amino acid peptide that binds to the CR2 structural domain of EGFR and activates EGFR-STAT3 signalling, thereby maintaining the tumorigenicity of glioma stem cells (Gao et al., 2021).

Circular RNAs are associated with Temozolomide Resistance in Glioblastoma

TMZ is an alkylating agent with nearly 100% oral bioavailability and easily crosses the blood-brain barrier, and is currently the first-line chemotherapeutic agent for the treatment of GBM (Al-
Toubah et al., 2021; Li F. et al., 2021; Soni et al., 2021). The breakdown products of TMZ can cause DNA methylation after entering tumor cells, which can interfere with cellular DNA replication and cause DNA damage to inhibit the proliferation of tumor cells (Tomar et al., 2021; Winkler, 2021). However, there is a strong DNA damage repair system and complex damage repair mechanisms in GBM cells, which are important in mediating the development of resistance to TMZ in GBM (Trillo Aliaga et al., 2021; Zhang X.-N. et al., 2021). It has been shown that circRNAs are also involved in TMZ resistance of GBM (Figure 3C). Lei et al., Hsa_circ_0076248 was found to be involved in the malignant progression of glioma by binding miR-181a to promote SIRT1 expression, and upregulation of hsa_circ_0076248 significantly inhibited temozolomide chemotherapy sensitivity (Lei et al., 2019). Zhao et al., The expression profiles of circRNAs in three pairs of secondary temozolomide-resistant GBM and the corresponding primary GBM tissues were examined by microarray. The high expression of hsa_circ_0043949 was found to be closely associated with tumor size and WHO classification (Zhang G. et al., 2019). The expression of hsa_circ_0074027 was found to be closely associated with larger tumor size and higher WHO grade (Qian et al., 2019). It was found that high levels of circ-ENTPD7 correlated with advanced GBM classification and tumor size (Zhu et al., 2020). Sun et al., Demonstrated that the expression level of circ-FLNA correlated significantly with the presence of necrosis in MRI scans (Sun et al., 2021) (34498720). Liu et al., A multivariate Cox regression analysis revealed that circf1 expression was an independent prognostic factor for GBM patients (Liu L. et al., 2021). Lv et al., The analysis found that the expression of circ-EPB41L5 correlated with age, number of lesions, necrotic changes, recurrence and survival in GBM patients (Lv et al., 2020). Wang et al., found that hsa_circ_0006168 expression significantly correlated with WHO classification, T-stage, N-stage and M-stage (Wang T. et al., 2021).

Circular RNAs as Prognostic Biomarkers for Glioblastoma
The expression levels of circRNAs were found to be used to predict the prognosis of tumor patients. To further analyze the prognostic value of circRNAs in GBM, we evaluated the association of circRNAs expression levels with the overall survival (OS) rate of GBM patients. Twelve upregulated circRNAs were reported to predict poorer OS in GBM patients (Zhang G. et al., 2019; Qian et al., 2019; Xin et al., 2019; Zhu et al., 2020; Chen B. et al., 2021; Li D. et al., 2021; Liu L. et al., 2021; Wang Q. et al., 2021; Wu X. et al., 2021; Zhou M. et al., 2021; Sun et al., 2021), and three downregulated circRNAs predicted poorer OS in GBM patients (Zhang X. et al., 2019; Lv et al., 2020; Wang

Relationships Between Circular RNAs Levels and Clinicopathologic Characteristics in Glioblastoma
Studies have shown that the expression levels of circRNAs significantly correlate with many clinicopathological features of GBM, including tumor size, grading, differentiation and staging, and tumor recurrence. Found that the expression of hsa_circ_0029426 was correlated with tumor size and WHO classification (Zhang G. et al., 2019). The expression of hsa_circ_0074027 was found to be closely associated with larger tumor size and higher WHO grade (Qian et al., 2019). It was found that high levels of circ-ENTPD7 correlated with advanced GBM classification and tumor size (Zhu et al., 2020). Sun et al., Demonstrated that the expression level of circ-FLNA correlated significantly with the presence of necrosis in MRI scans (Sun et al., 2021) (34498720). Liu et al., A multivariate Cox regression analysis revealed that circf1 expression was an independent prognostic factor for GBM patients (Liu L. et al., 2021). Lv et al., The analysis found that the expression of circ-EPB41L5 correlated with age, number of lesions, necrotic changes, recurrence and survival in GBM patients (Lv et al., 2020). Wang et al., found that hsa_circ_0006168 expression significantly correlated with WHO classification, T-stage, N-stage and M-stage (Wang T. et al., 2021).

Figure 3 CircRNAs associated with the angiogenesis, tumor stemness and temozolomide (TMZ) resistance of glioblastoma (GBM). (A) CircRNAs associated with the angiogenesis of GBM, including circ-SMARCA5, circ-PITX1 and circ-ABCC3. (B) CircRNAs associated with the tumor stemness of GBM, including circ-MELK and circ-E-cadherin. (C) CircRNAs associated with the temozolomide (TMZ) resistance of glioblastoma GBM, including hsa_circ_0076248, hsa_circ_0043949 and circ-ASAP1.
CONCLUSION AND FUTURE PROSPECTS

CircRNAs are highly stable, richly expressed, and functionally diverse, and have begun to attract the attention of researchers in recent years, but research on circRNAs is currently in its infancy (Ducoli and Detmar, 2021; Winkle et al., 2021). Nevertheless, the almost complete sequence overlap between circRNAs and linear RNAs makes the accurate assessment of the expression and function of circRNAs still challenging (Yang X. et al., 2020; Jusic et al., 2020). For example, if exonic circRNAs are formed by reverse splicing, how does the spliceosome specifically recognize the exons of circRNAs, but not those of linear RNAs. Recent studies have found that m6a-modified circRNAs are usually derived from exons that are not methylated in mRNAs, and circRNAs from methylated mRNA exons are less stable, and it is still unclear whether m6a modification affects the stability of circRNAs. CircRNAs are degraded, and the loop structure may confer different properties to their corresponding linear RNAs. The functional implications of circRNAs have only been tentatively explored, probably due to the limitations of the research tools.

Recent studies on circRNAs have focused on their miRNAs sponge function, researchers have verified the binding sites of circRNAs and miRNAs by luciferase reporter system, pull-down experiments using biotin-labeled probes to capture miRNAs, Ago2 immunoprecipitation can also further investigate miRNAs regulatory targets, co-localization of circRNAs and miRNAs in cells can be verified using FISH technique, and these mature experimental techniques now demonstrate the miRNAs sponge function of circRNAs, making the whole ceRNA network more complete and complex. Nowadays, there are more and more researches on the mechanism of circRNAs generation. In addition to RBP can bind to circRNAs to reduce the regulation of RBP on target genes and affect tumorigenesis (Huang C.-K. et al., 2020; Li et al., 2020; Yang J. et al., 2021; Song et al., 2021), some RBP can also regulate the generation of circRNAs, which also has an important role in tumor development (2016; Li H. et al., 2021; Liu Z. et al., 2021; Wang et al., 2021d; Wang and Lei, 2021; Yang T. et al., 2021). The translation function of circRNAs is also becoming a hot topic, and the translation initiation mechanism of circRNAs mainly includes cap-dependent, IRES-dependent, m6a-dependent and small ORF-dependent translation initiation (He L. et al., 2021; Wang X. et al., 2021), and circRNAs encode proteins with the function of suppressing tumor activity and protecting proteins from degradation (Chen C.-K. et al., 2021; Wang et al., 2021d; Ma et al., 2021; Qi et al., 2021). In summary, the interactions between circRNAs and proteins and its translation function are of great significance for the study of tumors, and more in-depth studies should be conducted in this area in the future.

CircRNAs are highly stable and widely expressed in a variety of tissues and body fluids, and thus can be used as potential diagnostic and prognostic biomarkers. Studies have shown that circRNAs are abundant and stable in exosomes, and some circRNAs are more highly expressed in blood than in tissues (D’Ambrosi et al., 2021; Reese and Dhayat, 2021; Tian et al., 2021; van Zonneveld et al., 2021). The high expression and stability of circRNAs in body fluids would be more beneficial for their clinical applications (Bu et al., 2021; Fontemaggi et al., 2021; Wang et al., 2021h; Zhao et al., 2021). However, despite the identification of thousands of tissue- and disease-specific circRNAs by RNA-seq (Kaushik et al., 2021; Tian-Zhao et al., 2021), the understanding of the mechanism of circRNAs generation and biological functions is limited at this stage. Further research is needed to explore the circRNAs associated with GBM, with the aim of being able to be used in combination with traditional biological diagnostic indicators for clinical adjuvant screening of GBM at an early stage, thus indirectly improving the survival rate of GBM patients and achieving early detection and treatment. It is believed that as more and more GBM-related and structurally diverse circRNAs are discovered, the elucidation of complex molecular regulatory mechanisms of GBM and the application of circRNAs-based GBM diagnosis and treatment will have a broad prospect.

In summary, circRNAs are important regulators of GBM genesis and can act as endogenous RNAs or miRNAs sponges competitively repressing miRNAs, thereby altering target gene expression and participating in the development of GBM. Although the exact role of circRNAs in GBM genesis and prognosis is unknown, it is speculated that aberrant expression of circRNAs and their biased distribution in tumors may be common, with different circRNAs expressed up- or down-regulated in GBM cells and tissues, acting through different mechanisms of action.

DATA AVAILABILITY STATEMENT

The data in the current study are available from the corresponding authors on reasonable request.

AUTHOR CONTRIBUTIONS

Original draft preparation, allocation, revision, supplement and edition: XG and HP. All authors have read and agreed to the published version of the manuscript.

ACKNOWLEDGMENTS

We thank the generous support by Liaoning Cancer Hospital and Institute (Shenyang).
REFERENCES

Abe, N., Matsumoto, K., Nishihara, M., Nakano, Y., Shibata, A., Maruyama, H., et al. (2015). Rolling Circle Translation of Circular RNA in Living Human Cells. Sci. Rep. 5, 16435. doi:10.1038/srep16435

AbouHaidar, M. G., Venkataraman, S., Golshani, A., Liu, B., and Ahmad, T. (2014). Novel Coding, Translation, and Gene Expression of a Replicating Covalently Closed Circular RNA of 220 Nt. Proc. Natl. Acad. Sci. USA 111 (40), 14542–14547. doi:10.1073/pnas.1402814111

Al-Toubah, T., Pelle, E., Valone, T., Haider, M., and Strosberg, J. R. (2021). Efficacy and Toxicity Analysis of Capactebine and Temozolomide in Neuroendocrine Neoplasms. J. Natl. Comp. Canc. Netw. 1, 1–8. doi:10.6004/jncn.2021.7017

Ali, S. A., Peffers, M. J., Ormeth, M. J., Jurisica, I., and Kapoor, M. (2021). The Non-coding RNA Interactome in Joint Health and Disease. Nat. Rev. Rheumatol. 17, 692–705. doi:10.1038/s41584-021-00687-y

Aliferis, C., and Trafalis, D. T. (2015). Glioblastoma Multiforme: Pathogenesis and Treatment. Pharmocoll. Ther. 152, 63–82. doi:10.1016/j.pharmthera.2015.05.005

Ashwal-Fluss, R., Meyer, M., Pamudurti, N. R., Ivanov, A., Bertok, O., Hanan, M., et al. (2014). circRNA Biogenesis Competes with Pre-mRNA Splicing. Mol. Cell 56 (1), 55–66. doi:10.1016/j.molcel.2014.08.019

Asif, P. J., Longobardi, C., Hahne, M., and Medema, J. P. (2021). The Role of Cancer-Associated Fibroblasts in Cancer Invasion and Metastasis. Cancer 13 (18), 4720. doi:10.3390/cancers13184720

Balca-Silva, J., Matias, D., Carmo, A. D., Sarmento-Ribeiro, A. B., Lopes, M. C., and Barbagallo, D., Caponnetto, A., Barbagallo, C., Battaglia, R., Mirabella, F., Brex, D., et al. (2020). Circular RNA Interactome in Joint Health and Disease. Frontiers in Cell and Developmental Biology 9, 646864. doi:10.3389/fcell.2021.646864

Chen, L., and Shan, G. (2021).Circular RNA in Cancer: Fundamental Mechanism and Clinical Potential. Cancer Lett. 505, 49–57. doi:10.1016/j.canlet.2021.02.004

Chen, Q., Li, Y., Liu, Y., Xu, W., and Zhu, X. (2021d). Exosomal Non-coding RNAs-Mediated Crosstalk in the Tumor Microenvironment. Front. Cell Dev. Biol. 9, 646864. doi:10.3389/fcell.2021.646864

Chen, W. L., Jiang, L., Wang, J. S., and Liao, C. X. (2019). CircRNA and Non-coding RNA Interactome in Joint Health and Disease. Trends Cancer Res. 25 (7), 1402–2048. doi:10.1108/1078-0432.CCR-18-1625

Choudhary, A., Maddbhagat, P., Sreepadanabhad, M., Bharadwaj, V., and Chande, A. (2021).Circular RNA and RNA Interactome in Joint Health and Disease. Frontiers in Cell and Developmental Biology 9, 646864. doi:10.3389/fcell.2021.646864

Choi, R. D., Maus, M. V., June, C. H., and Sampson, J. H. (2019). Immunotherapy for Glioblastoma: Adoptive T-Cell Strategies. Clin. Cancer Res. 25 (7), 1402–2048. doi:10.1158/1078-0432.CCR-18-1625

Cristofanilli, M., and Mendelsohn, J. (2006). Circulating Tumor Cells in Breast Cancer: Advanced Tools for ‘tailored’ Therapy? Proc. Natl. Acad. Sci. USA 103 (46), 17073–17074. doi:10.1073/pnas.0608511103

Dai, Z., Wu, X., Li, Y., An, C., Zheng, X., Dai, L., et al. (2020). Crosstalk between RNA and miRNA: Modification and Non-coding RNA Contributes to Cancer Growth and Progression. Mol. Ther. Nucleic Acids 22, 62–71. doi:10.1016/j.omtn.2020.08.004

D’Ambrosi, S., Visser, A., Antunes-Ferreira, M., Poutsma, A., Giannoulakos, S., Sol, N., et al. (2021). The Analysis of Platelet-Derived circRNA Repertoire as Potential Diagnostic Biomarker for Non-small Cell Lung Cancer. Cancers 13 (18), 4644. doi:10.3390/cancers13184644

Di Tomoteo, G., Rossi, F., and Bozzi, I. (2020). Circular RNAs in Cell Differentiation and Development. Development 147 (16). doi:10.1242/dev.182725

Dobele, S., Mutlu, N., and Wilusz, J. E. (2021). Best Practices to Ensure Robust Investigation of Circular RNAs: Pitfalls and Tips. EMBO Rep. 22 (3), e52072. doi:10.15252/embr.202025072

Ducoli, L., and Detmar, M. (2013). Beyond PROX1: Transcriptional, Epigenetic, and Noncoding RNA Regulation of Lymphatic Identity and Function. Developmental Cell 56 (4), 406–426. doi:10.1016/j.devcel.2021.01.018

Ebbesen, K. K., Hansen, T. B., and Kjems, J. (2017). Insights into Circular RNA Biology. RNA Biol. 14 (8), 1035–1045. doi:10.1080/15476286.2016.1271524

Farooqui, A. A., Attar, R., Yulaevina, I. M., and Berardi, R. (2021). Interaction of Long Non-coding RNAs and Circular RNAs with microRNAs for the Regulation of Immunological Responses in Humans. Semin. Cell Develop. Biol. 1(28), S1084-9521 (21), 00138-5. doi:10.1016/j.semcdb.2021.05.029

Ferratg, F., Vachetta, V. S., Troncoso, M. F., Rabinovich, G. A., and Elola, M. T. (2021). ALCAM/C1D166: A Pleiotropic Mediator of Cell Adhesion, Stemmness and Cancer Progression. Cytokine Growth Factor. Rev. 61, 27–37. doi:10.1016/j.jcyto.2021.07.001

Fonteraggi, G., Turco, C., Esposito, G., and Di Agostino, S. (2021). New Molecular Mechanisms and Clinical Impact of circRNAs in Human Cancer. Cancers 13 (13), 3154. doi:10.3390/cancers13133154

Gao, X., Xia, X., Li, F., Zhang, M., Zhou, H., Wu, X., et al. (2021). Circular RNA-Encoded Oncogenic E-Cadherin Variant Promotes Glioblastoma Tumorigenicity through Activation of EGFR-STAT3 Signalling. Nat. Cell Biol. 23 (3), 278–291. doi:10.1038/s41456-021-00639-4

Geraldo, L. H. M., Garcia, D., Fonseca, A. C. A., Dubois, L. G. F., De Sampaio e Spohr, T. C. L., Matias, D., et al. (2019). Glioblastoma Therapy in the Age of Molecular Medicine. Trends Cancer 5 (1), 46–65. doi:10.1016/j.trecan.2018.11.002

Glazer, P., Papavasileiou, P., and Rajewsky, N. (2014). circBase: a Database for circRNAs. PLoS ONE 9 (11), e112610. doi:10.1371/journal.pone.0112610

Gokool, A., Loy, C. T., Halliday, G. M., and Voineagu, I. (2020). Circular RNAs: A Fraudulent Translation. Trends Neurosci. 43 (10), 752–766. doi:10.1016/j.tins.2020.07.007

González, R. C., Banfi, A., Oliveira, M. B., and Mano, J. F. (2021). Strategies for Revascularization and Promotion of Angiogenesis in Trauma and Disease. Biomaterials 269, 120628. doi:10.1016/j.biomaterials.2020.120628
Goodall, G. J., and Wickramasinghe, V. O. (2020). RNA in Cancer. Nat. Rev. Cancer 21, 22–36. doi:10.1038/s41568-020-03006-0
Han, B., Chao, J., and Yao, H. (2018). Circular RNA and its Mechanisms in Disease: From the Bench to the Clinic. Pharmaco. Ther. 187, 31–44. doi:10.1016/j.pharmthera.2018.01.010
Han, Y., Zhang, H., Bian, C., Chen, C., Tu, S., Guo, J., et al. (2021). Circular RNA Expression: Its Potential Regulation and Function in Abdominal Aortic Aneurysms. Oxidative Med. Cell Longevity 2021, 1–21. doi:10.1155/2021/9934951
Hass, R., von der Ohe, J., and Ungefroren, H. (2020). Impact of the Tumor Microenvironment on Tumor Heterogeneity and Consequences for Cancer Cell Plasticity and Stemness. Cancers 12 (12), 3716. doi:10.3390/cancers12123716
He, A. T., Liu, J. L., F., and Yang, B. B. (2021a). Targeting Circular RNAs as a Therapeutic Approach: Current Strategies and Challenges. Sg Transduct Target. Ther. 6 (1), 185. doi:10.1038/s41392-021-00569-5
He, L., Man, C., Xiang, S., Yao, L., Wang, X., and Fan, Y. (2021b). Circular RNAs’ Cap-independent Translation Protein and its Roles in Carcinomas. Mol. Cancer 20 (1), 119. doi:10.1186/s12943-021-01417-4
Hsu, M.-T., and Coca-Prados, M. (1979). Electron Microscopic Evidence for the Circular Form of RNA in the Cytoplasm of Eukaryotic Cells. Nature 280 (5720), 339–340. doi:10.1038/280339a0
Huang, A., Zheng, H., Wu, Z., Chen, M., and Huang, Y. (2020a). Circular RNA-Protein Interactions: Functions, Mechanisms, and Identification. Theranostics 10 (8), 3503–3517. doi:10.7150/thno.42174
Huang, C.-K., Kafet-Kasting, S., and Thum, T. (2020b). Preclinical and Clinical Development of Noncoding RNA Therapeutics for Cardiovascular Disease. Circ. Res. 126 (5), 663–678. doi:10.1161/CIRCRESAHA.119.315856
Huang, Y., and Zhu, Q. (2021). Mechanisms Regulating Abnormal Circular RNA Biogenesis in Cancer. Cancers 13 (16), 4185. doi:10.3390/cancers13164185
Inoue, T., Umezawa, A., Takenaka, T., Suzuki, H., and Okada, H. (2015). The Circular Form of RNA in the Cytoplasm of Eukaryotic Cells. J. Cell Physiol. 230 (11), 22619–22626. doi:10.1002/jcp.28061
Li, H., Deng, Z., Yang, H., Pan, X., Wei, Z., Shen, H.-B., et al. (2021c). circRNA-binding Protein Site Prediction Based on Multi-View Deep Learning. Subspace Learning and Multi-View Classifier. Brief Bioinform, bbab394. doi:10.1093/bib/bbab394
Li, H., Ma, X. L., and Li, H. G. (2019). Intriguing Circles: Conflicts and Controversies in Circular RNA Research. WIREs RNA 10 (5), e1538. doi:10.1002/wrna.1538
Li, J., Wei, M., Liu, X., Xiao, S., Cai, Y., Li, F., et al. (2021d). The Progress, Prospects, and Challenges of the Use of Non-coding RNA for Diabetic Wounds. Mol. Ther. - Nucleic Acids 24, 554–578. doi:10.1038/s41392-021-00569-5
Li, X., and Diao, H. (2019). Circular RNA Circ_0001946 Acts as a Competing Endogenous RNA to Inhibit Glialblastoma Progression by Modulating miR-671-5p and CD1R1. J. Cell Physiol 234 (8), 13807–13819. doi:10.1002/jcp.28061
Li, X., and Wang, X. (2017). The Emerging Roles and Therapeutic Potential of Epithelial Ovarian Cancer. Mol. Cancer 16 (1), 92. doi:10.1186/s12943-017-01656-y
Li, Y., Ge, Y.-z., Xu, L., and Jia, R. (2020). Circular RNA ITCH: A Novel Tumor Suppressor in Multiple Cancers. Life Sci. 254, 117176. doi:10.1016/j.lfs.2020.117176
Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., et al. (2015). Exon-intron Circular RNAs Regulate Transcription in the Nucleus. Nat. Struct. Mol. Biol. 22 (5), 256–264. doi:10.1038/nsmb.2959
Lim, M., Xia, Y., Bettegowda, C., and Weller, M. (2018). Current State of Immunotherapy for Glioblastoma. Nat. Rev. Clin. Oncol. 15 (7), 422–442. doi:10.1038/nrclinonc.2017.304
J. Cell Biochem. 138 (19), 12643. doi:10.1002/jcb.27966
Li, D., Han, X., Yang, W., and Cao, Y. (2021a). Circular RNA SERPINE2 Promotes Development of Glioblastoma by Regulating the miR-361-3p/miR-324-5p/BCL2 Signaling Pathway. Mol. Ther. - Oncolytics 22, 483–494. doi:10.1016/j.omt.2020.07.010
Li, F., Chen, S., Yu, J., Gao, Z., Sun, Z., Yi, Y., et al. (2021b). Interplay of M 6 A and Histone Modifications Contributes to Temozolomide Resistance in Glioblastoma. Clin. Translational Med. 11 (9), 1553. doi:10.1002/crm2.553
Li, H., Deng, Z., Yang, H., Pan, X., Wei, Z., Shen, H.-B., et al. (2021c). circRNA-
Wang, J., Zhang, Y., Liu, L., Yang, T., and Song, J. (2021b). Circular RNAs: New Biomarkers of Chemoresistance in Cancer. *Cancer Biol. Med.* 18, 421–436. doi:10.20892/j.issn.2095-3941.2020.0312

Wang, Q., Zheng, D., Li, Y., Zhang, Y., Sui, R., Chen, Y., et al. (2021c). Circular RNA *Circ_0001588* Sponges miR-211-5p to Facilitate the Progression of Glioblastoma via Up-regulating YY1 Expression. *J. Gene Med.* 23 (10), e3371. doi:10.1002/jgm.3371

Wang, R., Zhang, S., Chen, X., Li, N., Li, J., Jia, R., et al. (2018a). CircNT5 Acts as a Sponge of miR-422a to Promote Glioblastoma Tumorigenesis. *Cancer Res.* 78 (17), 4812–4825. doi:10.1158/0008-5472.CAN-18-0532

Wang, R., Zhang, S., Chen, X., Li, N., Li, J., Jia, R., et al. (2018b). EIF4A3-induced Circular RNA MMP9 (circMMP9) Acts as a Sponge of miR-124 and Promotes Glioblastoma Multiforme Cell Tumorigenesis. *Mol. Cancer* 17 (1), 166. doi:10.1186/s12943-018-0911-0

Wang, S., Latallo, M. J., Zhang, Z., Huang, B., Bobrovnikov, D. G., Dong, D., et al. (2021d). Nuclear export and Translation of Circular Repeat-Containing Intronic RNA in C9ORF72-ALS/FTD. *Nat. Commun.* 12 (1), 4908. doi:10.1038/s41467-021-25082-9

Wang, S., Zhang, K., Tan, S., Xin, J., Yuan, Q., Xu, H., et al. (2021e). Circular RNAs in Body Fluids as Cancer Biomarkers: the New Frontier of Liquid Biopsies. *Mol. Cancer* 20 (1), 13. doi:10.1186/s12943-020-01298-z

Wang, T., Mao, P., Feng, Y., Cui, B., Zhang, B., Chen, C., et al. (2021f). Blocking *Hsa_circ_0006168* Suppresses Cell Proliferation and Motility of Human Glioblastoma Cells by Regulating *hsa_circ_0006168/miR-628-5p/IGF1R* Signal Transducer and Activator of Transcription 3-mediated Autophagy and Glycolysis. *Cell Death Dis.* 12 (10), 910. doi:10.1038/s41419-021-04216-3

Yang, J., Zhang, X., Cao, J., Xu, P., Chen, Z., Wang, S., et al. (2021a). Circular RNA UBE2Q2 Promotes Malignant Progression of Gastric Cancer by Regulating Signal Transducer and Activator of Transcription 3-mediated Autophagy and Glycolysis. *Cell Death Dis.* 12 (10), 910. doi:10.1038/s41419-021-04216-3

Yang, J., Zeng, B., Song, L., Cheng, X., Lin, B., et al. (2021b). Expression of Circular AKT3 RNA Inhibits Glioblastoma Tumorigenicity by Competing with Active Phosphoinositide-dependent Kinase-1. *Mol. Cancer* 20 (1), 1307–1307. doi:10.1158/0008-5472.CAN-18-0532

Yang, J., Zhang, S., Cao, J., Xu, P., Schenkel, N., et al. (2021c). Advanced Maternal Age-associated SIRT1 Deficiency Compromises Trophoblast Epithelial–Mesenchymal Transition through an Increase in Vimentin Acetylation. * Aging Cell* 20, e13491. doi:10.1111/acel.13491

Yang, L., and Chen, Y. G. (2020). Circular RNAs in Immune Response and Viral Infection. *Trends Biochem. Sci.* 45 (12), 1022–1034. doi:10.1016/j.tibs.2020.08.006

Yang, H., Zhang, H., Yang, Y., Wang, D., Deng, T., Liu, R., et al. (2020a). Hypoxia Induced Exosomal circRNA Promotes Metastasis of Colorectal Cancer via Targeting GEF-H1/Rhoa axis. *Theranostics* 10 (18), 8211–8226. doi:10.7150/thno.44419

Yang, J., Zhang, X., Cao, J., Xu, P., Chen, Z., Wang, S., et al. (2021a). Circular RNA UBE2Q2 Promotes Malignant Progression of Gastric Cancer by Regulating Signal Transducer and Activator of Transcription 3-mediated Autophagy and Glycolysis. *Cell Death Dis.* 12 (10), 910. doi:10.1038/s41419-021-04216-3

Yang, J., Shen, P., Chen, Q., Wu, P., Yuan, H., Ge, W., et al. (2021b). FUS-induced circHOXB8 Facilitates Cell Proliferation via miR-600/NACC1 Mediated Autophagy Response in Pancreatic Ductal Adenocarcinoma. *J. Exp. Clin. Cancer Res.* 40 (1), 261. doi:10.1186/s13046-021-02063-w

Yang, X., Liu, M., Li, M., Zhang, S., Hiju, H., Sun, J., et al. (2020b). Epigenetic Modifications of Noncoding RNA: a Novel Dimension of Cancer Biology. *Mol. Cancer* 19 (1), 64. doi:10.1186/s12943-020-01159-9

Yang, Y., Fan, X., Mao, M., Song, X., Wu, P., Zhang, Y., et al. (2017). Extensive Translation of Circular RNAs Driven by N6-Methyladenosine. *Cell Res.* 27 (5), 626–641. doi:10.1042/ctcr.2017.31

Yue, J., Wu, Y., Qiu, L., Zhao, R., and Zhang, M., et al. (2021). LncRNAs Link Cancer Stenosis to Therapy Resistance. *Ann. J. Cancer Res.* 11 (4), 1051–1068.

Zhang, R., Qiu, X., Song, Y., and Wang, Y. (2021). Exosomes Mediated Transfer of *Circ_000337* Contributes to Cisplatin (CDDP) Resistance of Esophageal Carcinoma. *Cell Death Dis.* 12 (8), 3447–3454. doi:10.26355/eurv_201904_1777

Zhang, R., Qiu, X., Song, Y., and Wang, Y. (2021). Exosomes Mediated Transfer of *Circ_000337* Contributes to Cisplatin (CDDP) Resistance of Esophageal Carcinoma. *Cell Death Dis.* 12 (8), 3447–3454. doi:10.26355/eurv_201904_1777

Zhang, R., Qiu, X., Song, Y., and Wang, Y. (2021). Exosomes Mediated Transfer of *Circ_000337* Contributes to Cisplatin (CDDP) Resistance of Esophageal Carcinoma. *Cell Death Dis.* 12 (8), 3447–3454. doi:10.26355/eurv_201904_1777

Zhang, R., Qiu, X., Song, Y., and Wang, Y. (2021). Exosomes Mediated Transfer of *Circ_000337* Contributes to Cisplatin (CDDP) Resistance of Esophageal Carcinoma. *Cell Death Dis.* 12 (8), 3447–3454. doi:10.26355/eurv_201904_1777
Endogenous RNA for NFAT5. *Neuro Oncol.* 21 (10), 1284–1296. doi:10.1093/neuonc/noz128

Zhang, X.-N., Yang, K.-D., Chen, C., He, Z.-C., Wang, Q.-H., Feng, H., et al. (2021c). Pericytes Augment Glioblastoma Cell Resistance to Temozolomide through CCL5-CCR5 Paracrine Signaling. *Cell Res* 31 (10), 1072–1087. doi:10.1038/s41422-021-00528-3

Zhang, X., Zhong, B., Zhang, W., Wu, J., and Wang, Y. (2019c). Circular RNA CircMTO1 Inhibits Proliferation of Glioblastoma Cells via miR-92/WWOX Signaling Pathway. *Med. Sci. Monit.* 25, 6454–6461. doi:10.12659/MSM.918676

Zhao, B., Li, Z., Qin, C., Li, T., Wang, Y., Cao, H., et al. (2021). Möbius Strip in Pancreatic Cancer: Biogenesis, Function and Clinical Significance of Circular RNAs. *Cell. Mol. Life Sci.* 78 (17-18), 6201–6213. doi:10.1007/s00018-021-03908-5

Zhao, C., Gao, Y., Guo, R., Li, H., and Yang, B. (2020). Microarray Expression Profiles and Bioinformatics Analysis of mRNAs, lncRNAs, and circRNAs in the Secondary Temozolomide-Resistant Glioblastoma. *Invest. New Drugs* 38 (5), 1227–1235. doi:10.1007/s10637-019-00884-3

Zhou, M., Li, H., Chen, K. e., Ding, W., Yang, C., and Wang, X. (2021c). CircSKA3 Downregulates miR-1 through Methylation in Glioblastoma to Promote Cancer Cell Proliferation. *Cancer* 13, 509–514. doi:10.2147/CMARS.279097

Conflct of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Guo and Piao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.