Coinfection with influenza A virus enhances SARS-CoV-2 infectivity

Lei Bai1, Yongliang Zhao1, Jiazhen Dong1, Simeng Liang1, Ming Guo1, Xinjin Liu1, Xin Wang1, Zhixiang Huang1, Xiaoyi Sun1, Zhen Zhang1, Lianghui Dong1, Qianyun Liu1, Yucheng Zheng1, Danping Niu1, Min Xiang1, Kun Song1, Jiajie Ye1, Wenchao Zheng1, Zidong Tang1, Mingliang Tang1, Yu Zhou1,2, Chao Shen1, Ming Dai2, Li Zhou1,2,2, Yu Chen1, Huan Yan1, Ke Lan1,2,2,3, and Ke Xu1

The upcoming flu season in the Northern Hemisphere merging with the current COVID-19 pandemic raises a potentially severe threat to public health. Through experimental coinfection with influenza A virus (IAV) and either pseudotyped or live SARS-CoV-2 virus, we found that IAV preinfection significantly promoted the infectivity of SARS-CoV-2 in a broad range of cell types. Remarkably, in vivo, increased SARS-CoV-2 viral load and more severe lung damage were observed in mice coinfected with IAV. Moreover, such enhancement of SARS-CoV-2 infectivity was not observed with several other respiratory viruses, likely due to a unique feature of IAV to elevate ACE2 expression. This study illustrates that IAV has a unique ability to aggravate SARS-CoV-2 infection, and thus, prevention of IAV infection is of great significance during the COVID-19 pandemic.

INTRODUCTION
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the end of 2019 has led to a worldwide pandemic. Until 13 January 2021, there have been more than 90 million confirmed infection cases and 1.9 million deaths globally (https://covid19.who.int/). The ending time and the final severity of the current COVID-19 pandemic wave are still uncertain. Meanwhile, the influenza season is merging with the current pandemic, potentially bringing more challenges and posing a larger threat to public health. There are many debates on whether seasonal flu will impact the severity of the COVID-19 pandemic and whether influenza vaccination is necessary for the coming winter. However, no experimental evidence is available concerning IAV and SARS-CoV-2 coinfection.

It is well known that the disease symptoms of SARS-CoV-2 and IAV infection symptoms are quite similar, including fever, cough, pneumonia, and acute respiratory distress syndrome.1,2 Moreover, both SARS-CoV-2 and IAV are airborne transmitted pathogens that infect the same human tissues, namely, the respiratory tract and nasal, bronchial, and alveolar epithelial cultures.3,4 In addition, alveolar type II cells (AT2 pneumocytes) appear to be preferentially infected by SARS-CoV-2 and are also the primary site of IAV replication.4,5 Therefore, overlap of the COVID-19 pandemic and seasonal influenza might place a large population under high risk for concurrent infection with these two viruses.7

Unfortunately, during the last winter flu season in the southern hemisphere, little epidemiological evidence was collected regarding the interaction between COVID-19 and flu, likely due to a low IAV infection rate resulting from social distancing.8 One case report showed that three out of four SARS-CoV-2 and IAV coinfected patients rapidly develop respiratory deterioration.9 In contrast, another study only reported mild symptoms in limited coinfection outpatients.10 A retrospective study found that the coinfection rate of SARS-CoV-2 and influenza virus was as high as 57.3% (among which 49.8% was coinfected with IAV) in a single-centered study of 307 COVID-19 patients during the outbreak period in Wuhan.11 Thus, the high coinfection rate and the unpredictable clinical outcomes pose great concerns when facing the threat of both viruses.

In this study, we tested whether IAV infection could affect the subsequent SARS-CoV-2 infection in both cultured cells and mice. Our results demonstrate that preinfection with IAV strongly enhances the infectivity of SARS-CoV-2 by boosting viral entry into cells and elevating the viral load, leading to more severe lung damage in infected mice. These data suggest a clear auxo-action of IAV on SARS-CoV-2 infection, which underscores the great risk of influenza virus and SARS-CoV-2 coinfection to public health.

RESULTS
IAV promotes SARS-CoV-2 virus infectivity
To study the interaction between IAV and SARS-CoV-2, A549 (a hypotriploid alveolar basal epithelial cell line) cells that are susceptible to IAV infection but usually do not support SARS-CoV-2 infection were used to visualize the viral entry.12 The cells were first infected with IAV (A/WSN/1933(H1N1)) or mock-infected for 6 h, 12 h, or 24 h and then infected with the pseudo-SARS-CoV-2 virus for another 24 h (experimental scheme shown in Fig. 1a). The data in Fig. 1b show that A549 cells became highly sensitive (up to 10,000-fold) to the pseudo-SARS-CoV-2 virus after infection with IAV at
Fig. 1 IAV promotes SARS-CoV-2 virus infectivity. a Diagram of the experimental procedure. b AS49 cells were infected with A/WSN/33 (WSN) at the indicated MOIs. At 6, 12, and 24 h post-IAV infection, cells were infected with pseudo-SARS-CoV-2 for another 24 h. Luciferase activity was measured to reflect virus entry efficiency. P values are from unpaired one-way ANOVA. c AS49 cells were infected with WSN at an MOI of 0.1. At 12 h post-IAV infection, cells were infected with VSV-G-Luc for another 24 h. Luciferase activity was measured to reflect virus entry efficiency. d The indicated cells were infected with WSN at an MOI of 0.1. At 12 h post-IAV infection, cells were infected with pseudo-SARS-CoV-2 for another 24 h. Luciferase activity was measured to reflect virus entry efficiency. e Experimental procedure of IAV and live SARS-CoV-2 coinfection. AS49 (f), Calu-3 (g), and NHBE (h) cells were preinfected with WSN at an MOI of 0.1 for 12 h. Cells were then infected with live SARS-CoV-2 at an MOI of 0.01 for another 48 h. Total RNA in cell lysates and the supernatants was collected to detect the E and N genes via TaqMan-qRT-PCR. The data are expressed as fold changes in viral RNA levels in IAV preinfected cells relative to the non-IAV infection control. Values represent means ± SD of three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
IAV and SARS-CoV-2 coinfection induced more severe pathology in infected mice. a Diagram of the experimental procedure. K18-hACE2 transgenic mice were first intranasally infected with 2000 PFU of WSN or PBS on day 0. Two days post-IAV infection, mice were intranasally infected with 3 × 10^5 live SARS-CoV-2 or PBS. On day 4, half of the lung tissues collected from all the mice were homogenized to detect RNA or protein levels. b The body weights and survival were monitored until day 4 (non-IAV treatment group, n = 4; IAV preinfection group, n = 4). The dotted lines indicate the initial weight. The body weights are presented as the mean percentage of weight change ± SD. c The viral genome copy numbers of SARS-CoV-2 N were quantified. Values represent means ± SD of three individual mice. d The relative mRNA levels of IAV NP (d, left), SARS-CoV-2 E (d, middle) and the N gene (d, right) were measured from lung homogenates in the indicated groups and normalized to GAPDH for the individual mouse. The data are expressed as fold changes relative to the non-IAV infection control. Values represent means ± SD of three individual mice.

Moreover, there were no significant differences in SARS-CoV-2 viral loads from brains between the single-infected and coinfected mice indicating that coinfection mainly occurred in the lung of infected animals (Supplementary information, Fig. S2). The lung histological data in Fig. 2e further illustrate that IAV and SARS-CoV-2 coinfection induced more severe lung pathologic changes, with massive cell infiltration and obvious alveolar necrosis, compared to SARS-CoV-2 single infection or mock infection.

IAV specifically facilitates SARS-CoV-2 infection

We further tested whether several other respiratory-transmitted viruses had similar promotive effects on SARS-CoV-2 infection. For this, A549 cells were infected with SARS-CoV-2 with or without human respiratory syncytial virus (HRSV), human parainfluenza virus (HPIV), or human rhinovirus 3 (HRV3), respectively. To our surprise, none of HRSV (Fig. 3a), HPIV (Fig. 3b), or HRV3 (Fig. 3c) could stimulate pseudo-SARS-CoV-2 infection at neither low nor high infection dose. Quantification of viral genes from HRSV, HPIV, and HRV3 guaranteed the efficient infection of these viruses at 12 h post-infection (h.p.i.) (Fig. 3d–f). Live SARS-CoV-2 virus results also showed no induction under the preinfection of HRSV (Fig. 3g), (Fig. 3h), or HRV3 (Fig. 3i). Again, viral genes from HRSV, HPIV, and HRV3 were quantified at 60 h.p.i. to confirm the sufficient infection of these viruses (Fig. 3j–l). Taken together, these data suggest that IAV has a unique feature to promote both pseudo- and live-SARS-CoV-2 infection compared to HRSV, HPIV, and HRV3.

IAV infection induces elevated ACE2 expression

As IAV strongly increased pseudo-SARS-CoV-2 infection, we examined the viral entry process. It has been reported that the cellular receptor angiotensin-converting enzyme 2 (ACE2) together with transmembrane serine protease 2 (TMPRSS2) mediates SARS-CoV-2 viral entry. In IAV-infected cells, we found that the mRNA levels of ACE2 and TMPRSS2, but not those of Furin and CatL, were increased by approximately threefold (A549 cells in Fig. 4a). An obvious switch in intracellular ACE2 expression was triggered at 12 h post-IAV
infection (Fig. 4c). In addition, influenza NP, Mx1, and ISG54 increased accordingly, confirming successful IAV infection (Fig. 4b). Interestingly, ACE2 mRNA levels increased more dramatically in IAV and SARS-CoV-2 coinfection cells, with 28-fold increase in A549 cells (Fig. 4d), fivefold increase in Calu-3 cells (Fig. 4e), and sixfold increase in NHBE cells (Fig. 4f). The mRNA and protein levels (Fig. 4g) of ACE2 also increased accordingly in lung homogenates from coinfectected mice. We further detected the expression of ACE2,
TMPRSS2, Furin, and Cat L under infection of HRSV, HPIV, or HRV3, respectively. The data show these viruses (unable to promote SARS-CoV-2 infection) had no effects on the expression of ACE2, TMPRSS2, Furin, and Cat L (Supplementary information, Fig. S3).

When cells were transduced by lentivirus encoding ACE2-sgRNA (small-guide RNA) to knockdown ACE2 expression (Fig. 4h), the IAV-mediated enhancement of SARS-CoV-2 infection was completely abolished (Fig. 4i).

These data indicate that IAV permitted increased SARS-CoV-2 infection mainly through upregulation of ACE2 expression.

Enhanced SARS-CoV-2 infectivity is independent of interferon signaling
ACE2 has been reported to be an interferon (IFN)-stimulated gene (ISG) in human airway epithelial cells. IAV infection also stimulates type I IFN signaling. Therefore, we tested whether the augmentation of ACE2 expression is dependent on IFN. For this, cells were first pretreated with different doses of IFNα (Fig. 5) and IFNx (Supplementary information, Fig. S4a–c) and then infected with pseudo-SARS-CoV-2. The data show that IFNα did not promote pseudo-SARS-CoV-2 infectivity in A549 cells (Fig. 5a).
Fig. 4 ACE2 is essential for IAV promotion of SARS-CoV-2 infection. a, b A549 cells were mock-infected or infected with WSN at an MOI of 0.1. At 12 h.p.i., total RNA was extracted from cells, and ACE2, TMPRSS2, Furin, and CatL mRNA levels (a) or NP, Mx1, and ISG54 mRNA levels (b) were evaluated via qRT-PCR using the SYBR green method. The data are expressed as fold changes relative to the mock infections. c A549 cells were infected with WSN at an MOI of 0.1. IAV NP protein (red) and ACE2 (green) were detected with an immunofluorescence assay at 12 h.p.i. Scale bars are shown. A549 (d), Calu-3 (e), and NHBE (f) cells were preinfected with WSN at an MOI of 0.1 for 12 h. Cells were then infected with live SARS-CoV-2 at an MOI of 0.01 with or without IAV infection using the same procedure described above. The ACE2 qRT-PCR (h) and SARS-CoV-2 E gene (Tagman-qRT-PCR) (i) mRNA levels were detected. The data are expressed as the fold change relative to the non-IAV infection control. Values represent means ± SD of three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

but rather significantly inhibited pseudo-SARS-CoV-2 infectivity in Calu-3 (Fig. 5d) and Huh-7 (Fig. 5g) cells. Compared with the mRNA levels of ISG54 (Fig. 5b, e, h), the mRNA levels of ACE2 and TMPRSS2 were only mildly increased by approximately 1- to 3-fold under IFN treatment (Fig. 5c, f, i). These data indicate that ACE2 could not robustly respond to IFN in these cells, which in turn suggest that ACE2-mediated viral entry was not affected by exogenous IFN.

Moreover, in IFNAR−/− A549 cells, the enhanced infectivity of pseudo-SARS-CoV-2 under IAV coinfection was intact (Fig. 5i). In contrast to the decreased levels of ISG54 in IFNAR−/− A549 cells (Fig. 5k), the mRNA levels of ACE2 and TMPRSS2 still increased in IFNAR−/− A549 cells under IAV infection (Fig. 5i). Furthermore, in IFNAR−/− A549 cells, the infectivity of live SARS-CoV-2 under IAV coinfection was again enhanced (Fig. 5m). These results strongly suggest that SARS-CoV-2 responded to IAV infection rather than endogenous IFN signaling for favorable viral infection.

DISCUSSION

Recently, there have been many discussions about the possible impacts of the upcoming flu season on the current COVID-19 pandemic. Speculations have been made that IAV infection could induce more severe disease due to secondary SARS-CoV-2 infection or that coinfection with these two viruses causes more serious illness. However, no experimental data are yet available to show the relationship between IAV and SARS-CoV-2. In this study, we provide the first experimental evidence that IAV preinfection strongly promotes SARS-CoV-2 virus entry and infectivity in cells and animals. These data emphasize that influenza prevention during the SARS-CoV-2 pandemic season is of great importance. Coinfection of viruses frequently occurs in nature. Some studies have shown a positive interaction between dengue virus and Zika virus via antibody-dependent enhancement. Other studies have shown negative interactions between the common cold virus and SARS-CoV-2 via pre-existing immunity. Through coinfection with IAV and pseudotyped or live SARS-CoV-2, we observed a great enhancement in SARS-CoV-2 infectivity in both cell culture and mice. This enhancement was associated with an increased expression level of ACE2, which is a major receptor for SARS-CoV-2 entry into host cells. We detected a 2- to 3-fold increase in ACE2 mRNA levels post-IAV infection (A549 cells). However, a much higher increase (28-fold) in the ACE2 mRNA level was detected after IAV and SARS-CoV-2 coinfection. We suspect that IAV infection induced mild expression of ACE2, permitting SARS-CoV-2 virus entry, and then, the subsequent multiplication of SARS-CoV-2 further enhanced ACE2 expression in a positive feedback pattern.

In K18-hACE2 mice, coinfection increased ACE2 expression by 6.5-fold under the airway epithelium-expressing human K18 promoter (less than that in A549 cells (28-fold) under the native hACE2 promoter). The lower induction fold of ACE2 in K18-hACE2 mice probably due to regulations at only post-transcriptional and translational levels because IAV and SARS-CoV-2 coinfection has no effects on hK18 promoter (data not shown). Nevertheless, Fig. 4i showed that the IAV-mediated enhancement of SARS-CoV-2 infection was completely abolished when ACE2 was knocked down, which again indicated that ACE2 is a major reason for SARS-CoV-2 enhancement although other factors may also play a role. The detailed mechanism still needs further studies.

Intriguingly, among the viruses tested, only IAV, but not HRSV, HPV, H1RV3, enhanced SARS-CoV-2 infection. The three viruses HRSV, HPV, and H1RV3 are prevalent pathogens that cause the common cold in humans, but these viruses had no effects on SARS-CoV-2 infectivity. Furthermore, we confirmed the universal effects of IAV through comparison of those of natural H1N1 and H3N2 isolates (Supplementary information, Fig. S5a), and also the influenza B virus (data not shown). In addition, the infectivity of the current D614G mutant SARS-CoV-2 can also be stimulated by IAV preinfection (Supplementary information, Fig. S5b). The unique ability of IAV to augment SARS-CoV-2 infectivity indicates that the influenza virus is a key pathogen requiring prevention and control during the current coronavirus pandemic.

As our data showed that IAV could still promote SARS-CoV-2 infection in IFNAR−/− A549 cells (Fig. 5j, m), it suggests that endogenous IFN induced by IAV infection is not enough to inhibit SARS-CoV-2 infection. On the contrary, both our data with pseudo-SARS-CoV-2 (Fig. 5d, g) and others’ data with either pseudo- or live SARS-CoV-2 confirmed that endogenous IFN could strongly inhibit SARS-CoV-2 infection at least in cell cultures (probably through antiviral actions of numerous ISGs including IFMITs). Thus, we should distinguish the roles of endogenous and exogenous IFN in the coinfection model. Interestingly, the coinfection of IAV and SARS-CoV-2 mostly occurred in the same infected A549 cells (Supplementary information, Fig. S1b), further supporting that endogenous IFN plays limited role in coinfection as it must act on the adjacent non-infected cells.

We further tested whether the expression of IAV gene segments alone could stimulate SARS-CoV-2 infection. The data in Supplementary information, Fig. S5c and S5d shows that segment-2 encoding PB1 showed the greatest promotive effect on SARS-CoV-2 infectivity and ACE2 expression. The detailed molecular mechanism underlying PB1-mediated SARS-CoV-2 enhancement needs further study. Nevertheless, the IAV segment-2 encodes two other viral proteins, PB1-F2, and PB1-N40, to modulate host cells. PB1-F2 is a pro-apoptotic factor and can regulate innate immunity. PB1-N40 interacts with many host factors and contributes to viral pathogenicity. Overall, the fact that the IAV segment might promote SARS-CoV-2 infection further confirms a unique positive interaction between IAV and SARS-CoV-2.

Importantly, the enhancement phenotype in IAV and SARS-CoV-2 coinfection was independent of IFN signaling and was not observed when cells were coinfected with inactivated IAV (data not shown). Therefore, influenza vaccination (especially inactivated influenza vaccine) to inhibit influenza infection should be
recommended to people with a high risk of coinfection. Our
findings also remind that surveillance of coinfection is encouraged
in the coming winter. Moreover, social distancing and mask-
wear are beneficial to protect people from the transmission of
either or both viruses.

MATERIALS AND METHODS
Cells and viruses
The 293 T, A549, Huh-7, MDCK, Vero E6, WI-38, WI-38 VA-13, and
BEAS-2B cells were obtained from ATCC and maintained in
Dulbecco's modified Eagle's medium (DMEM; Gibco) supplemented
with 10% fetal bovine serum (FBS). The Calu-3 cells (ATCC)
were maintained in DMEM supplemented with 20% FBS. NCI-H292
cells (ATCC) were maintained in RPMI-1640 (Gibco) supplemented
with 20% FBS. Normal human bronchial epithelial cells (NHBE)
cells (ATCC) were maintained in airway epithelial cell basal
medium (ATCC PCS300030) supplemented with a Bronchial/
Tracheal Epithelial Cell Growth Kit (ATCC PCS300040). All cells
were incubated at 37 °C in 5% CO₂.

The A/WSN/33 virus was generated by reverse genetics as
previously described. A/WSN/33 virus was kindly provided by the Influenza
Center in China CDC. HRV3 and HRSV were purchased from
ATCC and stocked accordingly. HPIV was obtained from
Professor Mingzhou Chen, Wuhan University. The SARS-CoV-2

Fig. 5 Enhanced SARS-CoV-2 infection is independent of IFN signaling. A549 (a–c), Calu-3 (d–f), and Huh-7 (g–i) cells were pretreated
with the indicated doses of IFNα for 12 h. Cells were then infected with pseudo-SARS-CoV-2 for another 24 h, followed by measurement of
luciferase activity and the mRNA expression levels of the indicated genes. The mRNA levels are expressed as fold changes relative to
nontreated cells. P values are from unpaired one-way ANOVA. j–l WT A549 and IFNAR−/− A549 cells were infected with WSN at an MOI of
0.1 for 12 h, and cells were then infected with pseudo-SARS-CoV-2 for another 24 h, followed by measurement of luciferase activity and the
mRNA expression levels of the indicated genes. m WT A549 and IFNAR−/− A549 cells were infected with WSN at an MOI of 0.1 for 12 h, and the
cells were then infected with live SARS-CoV-2 for another 48 h, followed by measurement of mRNA levels for SARS-CoV-2 E gene (Taqman-
qRT-PCR). The data are expressed as fold changes relative to the nontreatment (b, c, e, f, h, i) or mock infection (k, l) or non-IAV infection (m)
controls. Values represent means ± SD of three independent experiments. *P< 0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001.
live virus (strain IVCAS 6.7512) was provided by the National Virus Resource, Wuhan Institute of Virology, Chinese Academy of Sciences.

Plasmids and transfection
The plasmid encoding SARS-CoV-2-S-Δ18 was a gift from Professor Ningshao Xia, Xiamen University. The eight WSN viral segments in the pH2W0000 plasmid were kindly provided by Professor Hans Klenk, Marburg University. The DNA transfection reagent Fugene HD was purchased from Promega, and the transfection was performed according to manuscript procedures.

Pseudotype virus production
Pseudotyped VSV-ΔG viruses expressing either a luciferase reporter or mCherry reporter were provided by Professor Ningshao Xia, Xiamen University. To produce pseudotyped VSV-ΔG-Luc/mCherry bearing SARS-CoV-2 spike protein (pseudo-SARS-CoV-2), Vero E6 cells were seeded in 10-cm dishes and transfected simultaneously with 15 μg SARS-CoV-2-S-Δ18 plasmid using Lipofectamine 3000 (Thermo). Forty-eight hours posttransfection, 150 μL pseudotyped VSV-ΔG bearing VSV-G protein was used to infect Vero E6 cells. Cell supernatants were collected after another 24 h, clearing of cell debris by centrifugation at 3000 rpm for 6 min, aliquoted, and stored at −80 °C.

Luciferase-based cell entry assay
Target cells were seeded in 48-well plates and inoculated in triplicate with equivalent volumes of pseudotyped virus stocks at a 1:5 dilution in DMEM (3% FBS) with or without IAV preinfection. At 24 h post-pseudotype infection, luciferase activities were measured with a Luciferase Assay System (Promega E4550).

Virus infection and IFN treatment
For IAV infection, cells were washed with PBS and then incubated with viruses at different MOIs (from 0.01 to 1) in infection medium (DMEM, supplemented with 2% FBS, 1% penicillin/streptomycin) at 37 °C in 5% CO2.

For SARS-CoV-2 infection, cells were incubated with SARS-CoV-2 live virus at an MOI of 0.01 in infection medium (DMEM, 1% penicillin/streptomycin) and incubated at 37 °C in 5% CO2 for 1 h with or without 12 h IAV preinfection (MOI 0.1). Cells were then washed with PBS two times and incubated in culture medium (DMEM, supplemented with 5% FBS and 1% penicillin/streptomycin) at 37 °C in 5% CO2 for 1 h.

For HRV3, HPIV or HRSV infection, cells were washed with PBS and then incubated with the indicated viruses in infection medium (DMEM, supplemented with 3% FBS, 1% penicillin/streptomycin) and incubated at 37 °C in 5% CO2 for 12 h.

For IFN treatment, recombinant human IFNa2a (Beyotime, P5646) and IFNγ (Beyotime, P5664) were dissolved in 0.1% BSA, diluted in DMEM with 10% FBS, and then incubated with cells for 12 h at the indicated doses.

Real-time reverse-transcriptase–polymerase chain reaction
The mRNA levels of the indicated genes were quantified via quantitative PCR with reverse transcription (qRT-PCR). Purified RNAs extracted with TRIzol (Invitrogen; 15596018) were subjected to reverse transcription using oligo dT or random primer (using Takara cat#:RR037A Kit), and then, the corresponding cDNAs were quantified using Hieff qPCR SYBR Green Master Mix (Yeastem). Thermal cycling was performed in a 384-well reaction plate (ThermoFisher, 4343814). Quantification of IAV replication was measured by SYBR Green qRT-PCR with primers targeting NP vRNA, and the IAV expression was measured by SYBR Green qRT-PCR with primers targeting NP mRNA. Quantification of the propagation for other respiratory viruses was measured by SYBR Green qRT-PCR with primers targeting the HRV M gene, the HPIV M gene, and the HRV3 5′UTR (position 456–569), respectively. Host receptor and cofactor genes were measured using gene-specific primers (Supplementary information, Table S1). All mRNA levels were normalized to the β-actin level in the same cell.

The relative number of SARS-CoV-2 viral genome copies was determined using a TaqMan RT-PCR Kit (Yeason). To accurately quantify the absolute number of SARS-CoV-2 genomes, a standard curve was prepared by measuring the SARS-CoV-2 N gene constructed in the pCMV-N plasmid. All SARS-CoV-2 genome copy numbers were normalized to GAPDH expression in the same cell.

All the primers and Tagman probes used in this study were listed in Supplementary information, Table S1.

Western blot analysis
For western blot analysis, cells were lysed in RIPA buffer on ice for 30 min, separated via sodium dodecy1 sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and subjected to western blot analysis. For mouse experiments, half of the lung tissue from each mouse was homogenized in PBS, followed by boiling in SDS lysis buffer (GE) at 100 °C for 30 min. Rabbit monoclonal antibody against ACE2 (Abclonal, A4612, 1:1000), mouse monoclonal antibody against SARS-CoV Nucleoprotein (Sino Biological, 40143-MM05, 1:1000), and anti-actin antibody (Abclonal, 1:1000) were purchased commercially. The anti-influenza virus-NP antibody was kindly provided by Professor Ningshao Xia. Peroxidase-conjugated secondary antibodies (Antgene, 1: 5000) were applied accordingly, followed by image development with a Chemiluminescent HRP Substrate Kit (Millipore Corporation).

Immunofluorescence
A549 cells were fixed and incubated with primary antibodies. The primary antibodies used in this study were rabbit polyclonal antibody against ACE2 for immunofluorescence (Sino Biological, 10108-T26) and anti-influenza virus-NP antibody (kindly provided by Professor Ningshao Xia). Alexa Fluor dye-conjugated secondary antibodies (Alexa Fluor R488, Invertogen; Alexa Fluor M555, Invertogen) and DAPI (Beyotime, C1002) were administered afterward according to standard protocols. Cell imaging was performed on a Leica TCS SP8 confocal laser scanning microscope (Leica).

ACE2 knockdown cells
Two sgRNAs targeting the hACE2 gene were designed under the protocol in http://chopchop.cbu.uib.no (sgRNA sequence of ACE2 are listed in Supplementary information, Table S1) and commercially synthesized to clone into the lentio-Cas9-blast vector (kindly provided by Professor Hongbing Shu). The control sgRNA lentivirus construct was also provided by Professor Hongbing Shu. In brief, A549 cells were plated in 6-well plates and transduced with lentivirus encoding the CRISPR-Cas9 system, including either ACE2 sgRNA or control sgRNA. The cell mixtures were selected with blasticidin for one week to obtain ACE2 knockdown cells. The gene knockdown efficiencies were confirmed by measuring the ACE2 mRNA level through qRT-PCR analysis.

Mice
K18-hACE2 transgenic mice, which express human ACE2 driven by the human epithelial cell cytokeratin-18 (K18) promoter used as an infection model for both SARS-CoV and SARS-CoV-2, were purchased from Genpharmatech and housed in ABSL-3 pathogen-free facilities under 12-h light-dark cycles with access to food and water. All animal experiments were approved by the Animal Care and Use Committee of Wuhan University. Mice were male, age-matched, and grouped for SARS-CoV-2 infection or IAV and SARS-CoV-2 coinfection. On day 0, mice were intranasally infected with PBS or 2000 PFU of WSN, and then, both groups were intranasally infected with 3 × 105 PFU of SARS-CoV-2 on day 2. Another two days later, mice were sacrificed to determine viral loads and for histological assays.
Histology analysis
Lung tissue from infected mice was dissected on day 2 post-SARS-CoV-2 infection, fixed, and stained using a standard Hematoxylin-Eosin staining (H&E) staining procedure. The slides were scanned and analyzed by the Wuhan Sci-Meds company. Representative images from three mice in each group are shown.

Statistical analysis
If not indicated otherwise, Student’s t-test was used for two-group comparisons. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 were considered significant. Unless otherwise noted, error bars indicate mean values and standard deviations of at least three biological experiments.

ACKNOWLEDGEMENTS
This work was supported in part by the National Key R&D Program (2018YFA0900801 to X.X. and 2016YFA0502103 to K.L.), the National Natural Science Foundation of China (grants 31922004 and 81772202 to K.X.), Application & Frontier Research Program of the Wuhan Government (2019020701011463 to K.X.), and Hubei Innovation Team Foundation (2020CFA015 to K.X. and K.L.). This work was supported in part by the National Key R&D Program (2018FYA0900801 to K.X. and 2016YFA0502103 to K.L.), the National Natural Science Foundation of China (grants 31922004 and 81772202 to K.X.), Application & Frontier Research Program of the Wuhan Government (2019020701011463 to K.X.), and Hubei Innovation Team Foundation (2020CFA015 to K.X. and K.L.). The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information accompanies this paper at https://doi.org/10.1038/s41422-021-00473-1.

COMPETING INTERESTS: The authors declare no competing interests.

REFERENCES
1. Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).
2. Wang, C., Horby, P. W., Hayden, F. G. & Gao, G. F. A novel coronavirus outbreak of global health concern. Lancet 395, 470–473 (2020).
3. Van Riel, D. et al. Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. Am. J. Pathol. 171, 1215–1223 (2007).
4. St. John, A. L. & Rathore, A. P. S. Early insights into immune responses during COVID-19. J. Immunol. 205, 555 (2020).
5. Traynor, Z. P., Aeffner, F. & Davis, I. C. Influenza A H1N1 induces declines in alveolar gas exchange in mice consistent with rapid post-infection progression from acute lung injury to ARDS. Influenza and other respiratory. Viruses 7, 472–479 (2013).
6. Hou, Y. et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182, 429–446 (2020).
7. Belongia, E. & Ostholm, M. COVID-19 and flu, a perfect storm. Science 368, 1163 (2020).
8. Olsen, S. et al. Decreased influenza activity during the COVID-19 Pandemic - United States, Australia, Chile, and South Africa, 2020. MMWR Morb. Mortal. Wkly. Rep. 69, 1305–1309 (2020).
9. Cuadrado-Payán, E. et al. SARS-CoV-2 and influenza virus co-infection. Lancet 395, e64 (2020).
10. Zheng, X. et al. Co-infection of SARS-CoV-2 and influenza virus in early stage of the COVID-19 epidemic in Wuhan, China. J. Infect. 81, e128–e129 (2020).
11. Yue, H. et al. The epidemiology and clinical characteristics of co-infection of SARS-CoV-2 and influenza viruses in patients during COVID-19 outbreak. J. Med. Virol. 92, 2870–2873 (2020).
12. Xiong, H.L. et al. Robust neutralization assay based on SARS-CoV-2 S-protein-bearing vesicular stomatitis virus (VSV) pseudovirus and ACE2-overexpressing BHCoV1 cells. Emerg. Microbes Infect. 9, 2105–2113 (2020).
13. Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).
14. Wang, Q. et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 181, 894–906.e9 (2020).
15. Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215–220 (2020).
16. Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280.e278 (2020).
17. Wu, C. et al. Furin, a potential therapeutic target for COVID-19. iScience 23, 101642 (2020).
18. Grimm, C. & Tang, R. Could an endo-lyssosomal ion channel be the achilles heel of SARS-CoV2? Cell Calcium 88, 102212 (2020).
19. Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281–292.e286 (2020).
20. Ziegler, C. G. K. et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181, 1016–1035.e1019 (2020).
21. Priyamvada, L. et al. Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus. Proc. Natl. Acad. Sci. USA 113, 7852 (2016).
22. Mateus, J. et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science 370, 89–94 (2020).
23. Shi, G. et al. Opposing activities of IFITM proteins in SARS-CoV-2 infection. EMBO J. 0, e106501 (2020).
24. Vanderheiden, A. et al. Type I and Type III interferons restrict SARS-CoV-2 infection of human airway epithelial cultures. J. Virol. 94, e00985–00920 (2020).
25. Lokugamage, K. G. et al. Type I interferon susceptibility distinguishes SARS-CoV-2 from SARS-CoV. J. Virol. 94, e01410–01420 (2020).
26. Wise, H. M. et al. A complicated message: Identification of a novel PB1-related protein translated from influenza A virus segment 2 mRNA. J. Virol. 83, 8021–8031 (2009).
27. Wang, R. et al. Influenza A virus protein PB1-F2 impairs innate immunity by inducing mitophagy. Autophagy https://doi.org/10.1080/15548627.2020.1725375 (2020).
28. Wise, H. et al. Overlapping signals for translational regulation and packaging of influenza A virus segment 2. Nucleic Acids Res. 39, 7775–7790 (2011).
29. Han, Q. et al. Sumoylation of influenza A virus nucleoprotein is essential for intracellular trafficking and virus growth. J. Virolology 88, 9379–9390 (2014).
30. McCray, P. B. Jr et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus 2. J. Virology 81, 831–821 (2007).
31. Zheng, J. et al. COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice. Nature 589, 603–607 (2021).
32. Winkler, E. S. et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat. Immunol. 21, 1327–1335 (2020).

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.