Contact between shear-deformable beams with elliptical cross sections

1 Introduction

Paper materials (wood fibres [1–5]), fabrics (yarns [6–10]), and metal foams (struts [11–15]) are examples of materials with slender components in their microstructure. Micromechanical models of such materials often represent each slender constituent as a beam, which yields a string of beam finite elements when discretized [16] (or springs [17,18]). In most cases, contact between the slender constituents is essential to be incorporated. Almost all contact frameworks have, however, focused on beams with circular cross sections. To the best of the authors’ knowledge, only two frameworks have been demonstrated to work for beams with non-circular cross sections [19,20], but they are limited by the fact that contact can only occur in a point-wise manner.

In many applications, however, the slender constituents do not come with circular cross sections and contact does not occur at a single point. This contribution therefore aims to partially fill this gap by proposing an algorithm that treats contact between shear-deformable beams with elliptical cross sections. The scheme is tailored for contact to occur at an area on the beams’ surfaces, instead of only at a pair of surface points. Consequently, it is more widely applicable and can for instance be applied to the cases of Fig. 1, which cannot be treated by point-wise contact schemes.

The proposed contact scheme seeds many quadrature points on the surface of beams and determines which points penetrate the surrounding beams. A measure of penetration is established for each penetrating surface point, which is used in a penalty potential that is incorporated in the potential energy of the system in order to repel penetrating beams.

M. Magliulo · A. Zilian · L. A. A. Beex
Faculty of Science, Technology and Communication, Institute of Computational Engineering, University of Luxembourg, Maison du Nombre, 6, Avenue de la Fonte, 4364 Esch-sur-Alzette, Luxembourg
E-mail: Lars.Beex@uni.lu
The scheme is applied to beam elements with two nodes based on the geometrically exact beam (GEB) theory. As the surfaces of strings of such beam elements are only \(C^0 \)-continuous and may even be \(C^{-1} \)-continuous, the contact scheme works on a smooth (approximated) surface. The smooth surface is obtained by smoothing the strings’ centroid lines using Bézier curves. The kinematic variables (i.e. the displacements and rotations) are also re-interpolated. The capabilities of the contact scheme are demonstrated for several numerical test cases. These include the twisting of wire ropes. We show that cross-sectional shapes may have a critical influence on the deformations. The introduced contact framework remains to converge even when the structures in contact undergo large sliding displacements and/or large rotations and/or large deformations. We also demonstrate that large sliding displacements of the contacting surfaces can occur without the chattering phenomenon [21] thanks to the artificially smoothed surface.

In the next section, we briefly discuss the kinematics of the GEB theory. Section 3 discusses the contact framework, still in the space-continuous setting. In Sect. 4, we discretize beams with beam elements with two nodes. Among other things, we discuss why the surface of connected beam elements is \(C^0 \)-continuous at best for this type of beam. The smooth approximations of the discretized beams’ surfaces are discussed next, and the proposed contact framework is adapted to them. Section 5 presents initial results. The contribution closes with some conclusions and an outlook.

2 Kinematics

The Simo–Reissner geometrically exact beam (GEB) theory [22–28] of shear-deformable beams with rigid cross sections is used in this contribution. A beam is characterized by its centroid line \(x_c(h_1) : [0, L_0] \rightarrow \mathbb{R}^3 \) (constituted from the centre of gravity of its sections) and by the orientations of the sections (see Fig. 2). \(h_1 \) is the arc-length parameter of the centroid line of the beam in the reference configuration and \(L_0 \) its reference length. Rigid cross sections are not necessarily orthogonal to \(x_c \) in the current (deformed) configuration if shear deformation is present. A field of rotation tensor \(A(h_1) : [0, L_0] \rightarrow SO(3) \) is used to orientate the sections in the current configuration.

Material points on the beam’s centroid line

The centroid line in the current configuration, \(x_c(h_1) \), is related to the centroid line in the reference configuration, \(X_c(h_1) \), by

\[
x_c(h_1) = X_c(h_1) + u_c(h_1),
\]

where \(u_c(h_1) : [0, L_0] \rightarrow \mathbb{R}^3 \) denotes the displacement field of the centroid line.

Material points in the rest of the beam

To locate material points on the beam’s centroid line (in the reference and deformed configurations), only \(h_1 \) is needed. To locate the remaining material points, however, we need to consider cross sections, which are parametrized by \(h_2 \) and \(h_3 \).

The location vector pointing towards a material point with local coordinates \(h = [h_1, h_2, h_3] \) that is not located on the centroid line can be expressed in the reference configuration as follows:
Fig. 2 A surface point \(X \) in the reference configuration (black circle) obtained by adding location vector \(X_c \) and a vector \(V \) in the plane \(\{ e_{02}, e_{03} \} \) of the section attached to \(X_c \). The same material point is represented in the deformed configuration. The global basis \(\{ a_1, a_2, a_3 \} \) as well as the local basis \(\{ e_{01}, e_{02}, e_{03} \} \) attached to the \(X_c \) in the reference configuration and the local basis \(\{ e_1, e_2, e_3 \} \) attached to the same point in the deformed configuration are also presented. These three basis are orthonormal

\[
X(h) = X_c(h_1) + V(h),
\]

and in the deformed configuration as:

\[
x(h) = x_c(h_1) + v(h),
\]

where \(V \) and \(v \) point from the centroid line to the material point and both lie in the cross-sectional plane associated with \(h_1 \). \(V \) works in the reference configuration and \(v \) in the deformed configuration. These two vectors can be written as follows:

\[
V(h) = h_2 e_{02}(h_1) + h_3 e_{03}(h_1),
\]

\[
v(h) = \Lambda(h_1)(h_2 e_{02}(h_1) + h_3 e_{03}(h_1)),
\]

where \(e_{02}(h_1) \) and \(e_{03}(h_1) \) form an orthonormal basis with \(e_{01}(h_1) \) (see Fig. 2). In Eq. (5), \(\Lambda \in SO(3) \) denotes the rotation tensor rotating the section attached to \(X_c \) in the reference configuration.

In the reference configuration, the (unit) normal vector to the section attached to \(X_c, e_{01} \), fulfills

\[
e_{01} = \frac{\partial X_c}{\partial h_1},
\]

because no shear deformation is present. As mentioned above, however, the normal to the section in the current configuration is not necessarily aligned with the tangent direction to the centroid line, which means that

\[
\Lambda e_{01} \neq \frac{\partial x_c}{\partial h_1}.
\]

3 Contact framework

The contact framework is based on the integration of a surface-specific contact potential over the surface of one of the beams. To this end, contact points are seeded on the surface of one of the two beams in contact. We check for each of these surface points if it penetrates the other beam. If a surface point is indeed penetrated, a contribution to a contact potential is added. The suggested scheme is thus a type of master-slave approach [29] which asymmetrically treats contact, in contrast to [19,20,30,31].

The surface of both beams is explicitly taken into account. This is different from the approaches in [32–34] in which the centroid lines are used to formulate contact due to the limitation of circular sections. A penalty approach is adopted here to regularize unilateral contact conditions. It allows some interpenetration between the bodies, which can be interpreted as the deformation of the rigid cross sections in case of contact.
3.1 Projection

In this subsection, we discuss for a single surface point how we determine whether it penetrates another beam. We start with the definition of a fixed surface point. We denote its local coordinates by \(h^{s1} \) which remain constant. Superscript 1 means that we refer to the first beam as the slave body, and superscript \(s \) means that the point refers to a material point on the surface (and not to a material point inside the beam). In a deformed configuration, the location of this point is expressed in the global coordinate system by \(x^{s1} = x^1(h^{s1}) \). Similarly as for the slave body (beam 1), we denote the location of a material point on the surface of the master body by \(h^{s2} \) in terms of the local coordinates of the beam and by \(x^{s2} = x^2(h^{s2}) \) in terms of the global coordinates.

It is important to note, however, that if elliptical sections are used, only two independent variables are required to locate a material point on a beam’s surface \([19]\). We therefore write \(h^{s1} = h^{s1}(h^1) \) and \(h^{s2} = h^{s2}(h^2) \) where \(h \) denotes the column with these two independent variables. One of them is \(h_1 \in [0, L] \), whilst the second one is \(\beta \in [0, 2\pi] \) such that \(h_2 \) and \(h_3 \) in Eqs. (4) and (5) are given by

\[
h_2 = a \cos(\beta),
\]

and

\[
h_3 = b \sin(\beta),
\]

respectively, where \(a \) and \(b \) denote the dimensions of the elliptical section in the two principal directions.

We define the projection based on Fig. 3 and state that vector \(x^{s1} - x^{s2} \) must point in the same direction as the vector \(x^{s2} - x^2_c \). This is verified when the following residual is zero:

\[
f(h^{s2}(h^2), g_N) = x^{s1} - g_N \frac{x^{s2} - x^2_c}{\|x^{s2} - x^2_c\|} - x^{s2},
\]

where \(g_N \) is an independent variable, which is negative in case of penetration and non-negative otherwise. Thus \(g_N \) will be used as a measure of penetration in the following. In Eq. (10) we used the vector \(\frac{x^{s2} - x^2_c}{\|x^{s2} - x^2_c\|} \) as an approximation of the normal to the master body \(n^2 \) at surface point \(x^{s2} \). This choice is justified by the fact that \(n^2 \) changes abruptly in the regions of high curvatures of the surface. This can cause convergence problems at the global level because of the direction of the contact forces may change significantly from one (global) iteration to the next. We thus want to find column \(\tilde{q} = [\tilde{h}^2, g_N]^T \) for which \(f(\tilde{q}) = 0 \). Here and in the following, a bar over a quantity indicates that this quantity is evaluated at the solution of Eq. (10).

We solve \(f(\tilde{q}) = 0 \) this by linearizing \(f \) in Eq. (10) and applying Newton’s method, which we write as follows:

\[
f(q^e) + H(q^e) \Delta q = 0,
\]

\[\text{Fig. 3} \text{ Penetrated slave surface point } x^{s1} \text{ (in red). The slave section on which } x^{s1} \text{ lies is presented in translucent blue. The centroid line of the master beam (grey) is presented by a thick dashed line. The master surface point at the solution of the projection problem is presented in blue. In this particular configuration, the vectors } x^{s2} - x^2_c \text{ and } x^{s2} - x^{s1} \text{ are collinear and Eq. (10) is verified if } g_N = -\frac{\|x^{s1} - x^{s2}\|}{\|x^{s2} - x^2_c\|} \text{ (color figure online).}\]
where \bar{q}^e denotes the previous estimate of \bar{q} and Δq denotes its update. The row of vectors H is given by:

$$H(q^e) = \frac{\partial f}{\partial \bar{q}} \bigg|_{\bar{q}^e}. \quad (12)$$

3.2 Contact potential

As mentioned before, we use a penalty potential to limit penetration of surface point x^{s1} in body B^2. We use the following penalty potential to do so:

$$\Pi_{\text{pen}}(p^1, p^2, \bar{q}(p^1, p^2)) = \begin{cases}
\epsilon \left(\bar{g}_N^2 - T \bar{g}_N + \frac{T^2}{2} \right) & \text{if } \bar{g}_N < T, \\
\frac{\epsilon T}{\bar{g}_N} \bar{g}_N^3 & \text{if } T \leq \bar{g}_N < 0, \\
0 & \text{if } \bar{g}_N \geq 0,
\end{cases} \quad (13)$$

where ϵ denotes the user-selected penalty stiffness and p^i denotes the fields of kinematic variables of the i^{th} beam that are involved in the contact. In Eq. (13), T denotes a numerical parameter used to switch between a cubic and a quadratic penalty potential. The cubic potential is effective to regularize contact for surface points with small contact forces, as their contact status (penetrated or detached) may easily change from one global iteration to the next [33] and which may cause convergence issues (at the global level). Note also that the transition between the quadratic and cubic part of the potential is smooth, and so is the transition of its derivative.

3.3 Integration of the contact potential over the slave surface.

As contact interactions arise over a finite area, the total contact potential is obtained from the following integral on the slave side:

$$\Pi_{\text{pen}}(p^1, p^2, \bar{q}(p^1, p^2)) = \int_{\partial S^1} \Pi_{\text{pen}} dS^1, \quad (14)$$

where ∂S^1 denotes the slave surface and \bar{q} denotes the entire projection of the slave surface on the master surface according to Eq. (10).

To numerically evaluate the integral in Eq. (14), numerous slave (quadrature) points are seeded on the surface of the slave body. For each one of them (that is detected as being close enough to the master surface), the projection problem in Sect. 3.1 is solved. If a surface point on the slave surface penetrates the master body, the associated contribution is added to the total contact potential:

$$\Pi_{\text{pen}}(p^1, p^2, \bar{q}(p^1, p^2)) = \sum_{k=1}^{n} w_k \Pi_{\text{pen} / k} \left\| n_k^1(h_k^1) \right\|, \quad (15)$$

where w_k denotes the weight factor and n_k^1 the non-unit normal vector to the surface (which serves as a deformation-dependent weight to the quadrature point). $\Pi_{\text{pen} / k}$ denotes the contact potential of the k^{th} slave surface point with local coordinates h_k^1 and is given by Eq. (13).

3.4 Contact potential’s contribution to the weak form

Now that the contact potential between two beams is constructed, its contribution to the weak form needs to be derived. To do so, we consider the variation of Eq. (15) with respect to the kinematic variables of both bodies in contact:

$$\delta \Pi_{\text{pen}}(p^1, p^2, \bar{q}(p^1, p^2)) = \sum_{k=1}^{n} w_k \delta \left(\Pi_{\text{pen} / k} \left\| n_k^1(h_k^1) \right\| \right). \quad (16)$$
The variation of the contact potential for a single quadrature point (from now we omit subscript k) can be expressed as follows:

$$
\delta \left(\Pi_{\text{pen}} \left\| \mathbf{n}^1(h^1) \right\| \right) = \left\| \mathbf{n}^1(h^1) \right\| \delta \Pi_{\text{pen}} + \Pi_{\text{pen}} \delta \left\| \mathbf{n}^1(h^1) \right\|. \tag{17}
$$

Now we will work out the two parts of this variation. For the ease of the notation, we collect all kinematic variables in \mathbf{p}. Π_{pen} depends explicitly on \mathbf{p}, as well as on \mathbf{q} (itself depending implicitly on \mathbf{p}, i.e., $\mathbf{q}(\mathbf{p})$). Its variation can thus be expressed as:

$$
\delta \Pi_{\text{pen}} = \frac{\partial \Pi_{\text{pen}}}{\partial \mathbf{p}} \cdot \delta \mathbf{p} + \frac{\partial \Pi_{\text{pen}}}{\partial \mathbf{q}} \cdot \delta \mathbf{q}. \tag{18}
$$

As the primary variables of the problem are the kinematic variables stored in \mathbf{p}, however, the variation must ultimately be expressed in terms of $\delta \mathbf{p}$. To establish the relationship between $\delta \mathbf{q}$ and $\delta \mathbf{p}$, we state that the local residual in Eq. (10) must remain valid for an infinitesimal change of \mathbf{p}. We express this as follows:

$$
\delta f(\bar{\mathbf{q}}) = \left. \frac{\partial f}{\partial \mathbf{p}} \right|_{\bar{\mathbf{q}}} \delta \mathbf{p} + \left. \frac{\partial f}{\partial \mathbf{q}} \right|_{\bar{\mathbf{q}}} \delta \bar{\mathbf{q}} = 0. \tag{19}
$$

We can recognize the matrix \mathbf{H} of Eq. (11) in this expression as

$$
\mathbf{H}(\bar{\mathbf{q}}) = \left. \frac{\partial f}{\partial \mathbf{q}} \right|_{\bar{\mathbf{q}}}, \tag{20}
$$

with the only difference that \mathbf{H} in Eq. (11) is evaluated at an estimate of \mathbf{q} (i.e., \mathbf{q}^e) and here it is evaluated at $\bar{\mathbf{q}}$. Based on Eq. (19), we can now write:

$$
\delta \bar{\mathbf{q}} = -\left(\mathbf{H}(\bar{\mathbf{q}})^{-1} \left. \frac{\partial f}{\partial \mathbf{p}} \right|_{\bar{\mathbf{q}}} \right) \delta \mathbf{p} = \Lambda \delta \mathbf{p}, \tag{21}
$$

such that Eq. (18) can be written as

$$
\delta \Pi_{\text{pen}} = \left(\frac{\partial \Pi_{\text{pen}}}{\partial \mathbf{p}} \right) \cdot \delta \mathbf{p} + \left(\frac{\partial \Pi_{\text{pen}}}{\partial \mathbf{q}} \right) \cdot \Lambda \delta \mathbf{p} \tag{22}
$$

$$
= \delta \mathbf{p} \cdot \left(\frac{\partial \Pi_{\text{pen}}}{\partial \mathbf{p}} + \Lambda \frac{\partial \Pi_{\text{pen}}}{\partial \mathbf{q}} \right)
$$

$$
= \delta \mathbf{p} \cdot \mathbf{r}. \tag{22}
$$

The issue with this expression is that $\frac{\partial \Pi_{\text{pen}}}{\partial \mathbf{p}}$ is significantly elaborate to derive, and hence, its derivation is prone to mistakes. We therefore do not derive \mathbf{r} analytically, but we employ the automatic differentiation technique. With the formalism introduced in [35], we equivalently obtain \mathbf{r} as follows:

$$
\mathbf{r} = \left. \frac{\delta \Pi_{\text{pen}}}{\delta \mathbf{p}} \right|_{\mathbf{q}^e} = \Lambda. \tag{23}
$$

Now that we have treated variation $\delta \Pi_{\text{pen}}$ in Eq. (17), we continue with variation $\delta \left\| \mathbf{n}^1(h^1) \right\|$ in Eq. (17). As \mathbf{n}^1 corresponds to the normal vector of a (fixed) slave surface point, it does not depend on h^2, nor on g_N, so its variation simply reads:

$$
\delta \left\| \mathbf{n}^1 \right\| = \delta \mathbf{n}^1 \frac{\mathbf{n}^1}{\left\| \mathbf{n}^1 \right\|} = \left(\frac{\partial \mathbf{n}^1}{\partial \mathbf{p}} \right)^T \delta \mathbf{p} \frac{\mathbf{n}^1}{\left\| \mathbf{n}^1 \right\|}. \tag{23}
$$
In order to compute the consistent tangent matrix of the contact scheme, we again use the automatic differentiation technique (see [35–38]), which yields:

$$K = \frac{\delta \mathbf{p}}{\delta \mathbf{p}} \cdot \mathbf{d}.$$ (24)

4 Spatial discretization with the finite element method and smoothing of the surface

4.1 Finite element discretization

Each beam is now discretized as a string of successive beam finite elements. Each beam element employed in this contribution uses two nodes. Each node comes with a reference location vector, a displacement vector and three rotations. The displacements and rotations form the six kinematic variables of each node. The elements thus use a linear interpolation of (i) X_c, the original location vector of the centroid line, (ii) u_c, the displacement vector of the centroid line, and (iii) θ, the rotation vectors. It is important to mention that, consistent with the beam kinematics in the space-continuous setting introduced in Sect. 2, the cross section does not deform (although its orientation relative to the centroid line can change). It must also be noted that the linear interpolation of the rotation vectors employed here renders the finite element model slightly strain variant (see [25] for a discussion). This is in contrast with the strains employed in the space-continuous geometrically exact beam theory (see [22,23]) that are not affected by rigid translations and rotations.

In the following, we explain how the kinematics introduced in Sect. 2 are interpolated for a single beam element of length $L_{0,i}$ in the reference configuration. The reference location of each material point of this beam element is defined by a vector in the local coordinate system attached to the beam centroid line by

$$h = \sum_{i=1}^{3} h_i e_i \left(\text{where } h_1 \in [0, L_{0,i}] \right),$$

as well as by a vector in the global coordinate system, $X = \sum_{i=1}^{3} X_i a_i$.

The interpolation of the reference location of the beam element’s centroid line can be expressed as follows:

$$X_c(h_1) = N(h_1) \cdot X,$$ (26)

where X denotes the column with the reference location vectors of the beam element’s nodes and N denotes the column with associated basis functions. The displacement field of the beam element’s centroid line can be expressed as follows:

$$u_c(h_1) = N(h_1) \cdot u,$$ (27)

where u denotes the column with the displacement vectors of the beam element’s nodes. Together, the centroid line in the deformed configuration follows:

$$x_c(h_1) = N(h_1) \cdot (X + u).$$ (28)

To locate material points that are not placed on the beam element’s centroid line, the orientation of the local basis attached to the sections is needed (see Eqs. (4) and (5)). To this end, interpolation of the field of rotation tensors Λ is required. As $\text{SO}(3)$ is a nonlinear manifold, $\Lambda(h_1)$ cannot be interpolated directly, but is obtained here by applying Rodrigues’ formula (see [27]) to the interpolated rotation vector

$$\theta(h_1) = N(h_1) \cdot \theta$$ (29)

as follows:

$$\Lambda(h_1) = I + \sin(\|\theta\|) S(\theta) + (1 - \cos(\|\theta\|)) S(\theta) S(\theta),$$ (30)
Fig. 4 The surface of a string of three beam elements and two smoothed surface

where I denotes the unit tensor, $\| \cdot \|$ denotes the L_2-norm and θ denotes the column with the nodal rotation vectors. A denotes the (unique) rotation tensor corresponding to a rotation around the axis $\frac{\theta}{\|\theta\|}$ by an angle of $\|\theta\|$.

S is skew symmetric and its matrix form can be furthermore expressed as:

$$S(\theta(h_1)) = \begin{bmatrix}
0 & -\theta_3(h_1) & \theta_2(h_1) \\
\theta_3(h_1) & 0 & -\theta_1(h_1) \\
-\theta_2(h_1) & \theta_1(h_1) & 0
\end{bmatrix}. \quad (31)$$

Equation (3) is used to locate points that are not on the beam element’s centroid line employing the interpolations of x_c and A in Eqs. (28) and (30), respectively.

4.2 Smoothing of the surface

For the type of beam element that we use, local base vector e_{01} always points in the direction of the beam axis in the initial configuration:

$$e_{01}(h_1) = \frac{\partial N}{\partial h_1} \cdot \bar{x}_0. \quad (32)$$

Thus, if a string of successive beam elements is not straight in the reference configuration, its centroid line is C^0-continuous (see Fig. 4). The vector fields of local basis vectors e_{01}, e_{02}, e_{03} are then C^{-1}-continuous. This causes a discontinuity in the orientation of the cross sections at nodes shared by two elements, meaning that the surface of the string of beams is discontinuous. Contact is then obviously hard to formulate.

To avoid this issue, we introduce a smooth surface, to which contact constraints are applied. This smooth surface also has the advantage that the C^0 or C^{-1}-continuity of the string’s surface is replaced by a C^1-continuous surface, which we believe improves the convergence properties of the framework (although we do not compare this in the results section).

In this subsection, the construction of this smooth surface is discussed. It is important to mention that contact is considered for this smooth approximation, instead of the string’s actual surface, but that the beam formulation itself remains unchanged. The smoothing approach could thus be applied to other types of beam formulation with some minor changes.

The smoothing procedure uses Bézier curves to smooth the string’s centroid line. One Bézier curve is used to smooth the centroid line of two successive beam elements. This entails that if a string consist of n beam elements, $n - 1$ Bézier curves are used to smooth the string’s centroid line, and by this, the surface. A typical result of this is shown in Fig. 4 for a string of three beams. The smoothing procedure is presented for two adjacent beam elements with indices j and $j + 1$. This entails that three nodes are involved. The indices of these nodes are $i, i + 1$ and $i + 2$.

Reference configuration

The smooth centroid line between two beams in the reference configuration is created using four Bernstein polynomials as follows:

$$\bar{X}_c(\eta_1) = B(\eta_1) \cdot \bar{x}, \quad (33)$$
Contact between shear-deformable beams with elliptical cross sections

Fig. 5 Schematic of a smooth centroid line (plain blue) constructed from the centroid lines of two beam elements (dashed lines) in the reference configuration. The nodes of the elements are indicated by circle and the control points by crosses. A (fictitious) section attached to \(\tilde{X}_c \) is indicated in black (color figure online)

where \(B \) denotes the column that includes the four cubical Bernstein polynomials and \(\tilde{X}_c \) denotes the column that contains the original location vectors of the four control points (see Fig. 5):

\[
\tilde{X}_c = \left[\tilde{X}_c^0, \tilde{X}_c^1, \tilde{X}_c^2, \tilde{X}_c^3 \right]^T
\]

(34)

with:

\[
\tilde{X}_c^0 = \frac{1}{2} \left(X^i_c + X^{i+1}_c \right),
\]

(35)

\[
\tilde{X}_c^3 = \frac{1}{2} \left(X^{i+1}_c + X^{i+2}_c \right),
\]

(36)

\[
\tilde{X}_c^1 = \tilde{X}_c^0 + \left(X^{i+2}_c - X^0_c \right) \alpha,
\]

(37)

\[
\tilde{X}_c^2 = \tilde{X}_c^2 + \left(X^i_c - X^{i+2}_c \right) \alpha,
\]

(38)

where \(\alpha \in [0, 1] \) denotes a parameter to be selected by the user [39] that dictates the location of the second and third control points in Eqs. (37) and (38). \(\eta_1 \in [0, 1] \) parameterizes the smoothed centroid line \(\tilde{X}_c \in \mathbb{R}^3 \).

The neatest would now be to define the first base vector of the local basis normal to the cross section in the smoothed reference configuration (i.e., \(\tilde{e}_{01} \)) as

\[
\tilde{e}_{01}(\eta_1) = \frac{\partial B}{\partial \eta_1} \cdot \tilde{X} \left/ \left\| \frac{\partial B}{\partial \eta_1} \cdot \tilde{X} \right\| \right.,
\]

(39)

so that cross sections of the smoothed reference configuration would be orthogonal to the smoothed centroid line. This would, however, also entail that \(\tilde{e}_{02} \) and \(\tilde{e}_{03} \) need to be set by the user, which can be significantly less straightforward for the smooth Bézier curves than setting \(e_{02} \) and \(e_{03} \) for the beam elements. We therefore determine them for the Bézier approximation of the centroid line as follows:

\[
\tilde{e}_{0i}(\eta_1) = B(\eta_1) \cdot \tilde{e}_{0i},
\]

(40)

where \(\tilde{e}_{0i} \), \(i \in \{ 1, 2, 3 \} \) denotes the column that stores \(e_{0i} \) at the four control points. For linearly interpolated beam elements, \(\tilde{e}_{0i} \) contains four times the same base vector for an initially straight string of beams, and two different base vectors otherwise.

The location vectors of the material points of the string in the smoothed reference configuration are then given by

\[
\tilde{X}(\eta) = \tilde{X}_c(\eta_1) + \tilde{V}(\eta),
\]

(41)

where

\[
\tilde{V}(\eta) = \eta_2 \tilde{e}_{02}(\eta_1) + \eta_3 \tilde{e}_{03}(\eta_1),
\]

(42)

where \(\tilde{V} \) denotes a vector connecting \(\tilde{X}_c \) to a point on the perimeter of the (fictitious) section attached to this centroid point (see Fig. 6) and \(\eta = [\eta_1, \eta_2] \in [0, 1] \times [0, 2\pi] \) denotes a column of two local variables parameterizing the smooth patch’s surface (see Fig. 6).
Deformed configuration

To determine the smoothed centroid line in the deformed configuration, we also need the smoothed displacement field of the centroid line, which is expressed as

$$\tilde{\mathbf{u}}_c(\eta_1) = B(\eta_1) \cdot \tilde{\mathbf{u}}_c,$$ \hspace{1cm} (43)

where $\tilde{\mathbf{u}}_c$ denotes the column of displacement vectors at the four control points. The smoothed centroid line in the deformed configuration can then be written as

$$\tilde{\mathbf{x}}_c(\eta_1) = \tilde{\mathbf{X}}_c(\eta_1) + \tilde{\mathbf{u}}_c(\eta_1) = B(\eta_1) \cdot (\tilde{\mathbf{X}}_c + \tilde{\mathbf{u}}_c).$$ \hspace{1cm} (44)

To locate all material points in the approximated deformed configuration, instead of just those on the centroid line, we also need to smooth the rotation vector field, for which we similarly write:

$$\tilde{\mathbf{\theta}}_c(\eta_1) = B(\eta_1) \cdot \tilde{\mathbf{\theta}},$$ \hspace{1cm} (45)

where $\tilde{\mathbf{\theta}}$ denotes the rotation vectors at the four control points. The corresponding rotation tensor $\tilde{\mathbf{A}}(\eta_1)$ can then again be determined using Rodrigues’ formula (Eq. (30)).

The location vectors of the material points of the string in the smoothed deformed configuration can now be written as (see Fig. 6)

$$\tilde{\mathbf{x}}(\text{h}) = \tilde{\mathbf{x}}_c(\eta_1) + \tilde{\mathbf{v}}(\eta),$$ \hspace{1cm} (46)

where

$$\tilde{\mathbf{v}}(\eta) = \tilde{\mathbf{A}}(\eta_1)(\eta_2 \tilde{\mathbf{e}}_{02}\(\eta_1) + \eta_3 \tilde{\mathbf{e}}_{03}(\eta_1)).$$ \hspace{1cm} (47)

Note that the vector $\tilde{\mathbf{v}}$ is generally not in the plane normal to $\tilde{\mathbf{x}}_c$, because, as stated above, the (pseudo) cross sections are in general not normal to the smoothed centroid line in the reference configuration, but also because of the relative rotation of the (pseudo) cross section around the (pseudo) centroid point $\tilde{\mathbf{x}}_c$.

To adapt the contact framework to the smoothed geometry introduced above, one needs to replace the local coordinates in h by the local coordinates of the smooth surface η. For an integration point, $\tilde{\mathbf{x}}^{s1}$, on the slave side with local coordinates η^{s1}, the procedure is as follows:

- The projection point of $\tilde{\mathbf{x}}^{s1}$ on the master surface, $\tilde{\mathbf{x}}^{s2}(\bar{\eta}^2)$, is found by solving the local problem in Eq. (10) adapted to the smoothed surfaces, i.e. the column of local parameters $\bar{\eta}^2$ to solve for is now $\bar{\eta}^2 = [\eta_1^2, \eta_2^2, g_N]$.
- If $\tilde{\mathbf{x}}^{s1}$ is penetrated, the contribution of this integration point to weak form is computed using Eq. (17). The kinematic variables involved are the nodal degrees of freedom used to construct the smooth patches that are stored in columns p_1 and p_2. Three beam nodes are necessary to construct each patch so that p_1 and p_2 have 18 components each. Consequently, contact residual r in Eq. (23) has a length of 36 and the dimensions of contact tangent matrix K are 36×36.

Fig. 6 A surface point $\tilde{\mathbf{x}}$ and its local surface basis $\{\tilde{\mathbf{x}}_{s1}, \tilde{\mathbf{x}}_{s2}, \tilde{\mathbf{\eta}}\}$. The surface of the two beams from which the smooth surface is constructed is presented in yellow (color figure online)
5 Numerical results

In this section, we present initial results that can be achieved with the contact scheme. We first focus on two strings of successive beam elements that come into contact with each other under different loading conditions. Second, we focus on the twisting of several parallel strings of successive beam elements as a simplified manufacturing process for wire ropes.

Different possibilities exist to place quadrature points. At the beginning of each time step, integration points could be placed in the region where the beams’ surfaces are close to each other. This would entail several updates of the integration points’ surface coordinates.

Another option, that is less accurate but computationally less expensive, is to compute the coordinates and weights of a grid of integration points on the entire beam surface in the undeformed configuration. This means that the number of quadrature points is constant and that their surface coordinates and weight do not need to be recomputed. This approach has been adopted in the following numerical examples.

5.1 Two orthogonal strings

In the first example, we consider two beams with elliptical cross sections denoted by A and B (see Fig. 7) discretized with strings of successive beam elements. These strings are initially orthogonal in space, and they both have the same geometrical properties (length and dimensions of the sections), mechanical properties and discretization (see ahead to the top row of Fig. 9). The aim of this numerical example is to show that the presented scheme is able to treat contact problems in which large sliding displacements occur (i.e., slave points in contact can slide from one smooth surface approximation to another), whilst the deformation of the contacting surfaces is substantial. The geometrical and material parameters are, together with the numerical parameters of the discretization and the contact scheme, presented in Tables 1 and 2. Various Dirichlet boundary conditions (BCs) are applied at the end nodes of string A during the interval of (fictitious) time $t \in [0, 6]$. The kinematic variables of the end nodes of string B are retained. We apply the following Dirichlet BCs to string A (see Fig. 8):

- $t = 0$: the strings are slightly detached; $\tilde{g}_N \approx 0$ in the middle of the strings at a single surface point.
- $0 < t \leq 1$: the end nodes are moved by 1.5 cm in the a_2-direction.
- $1 < t \leq 2$: the end nodes are moved in the $[1, 0, 1]$ direction by 1 cm.
- $2 < t \leq 3$: the centroid point in the middle of string A is used as the centre of rotation of string A around a_2 with an amplitude of $\frac{\pi}{3}$. This rotation is applied to nodes at the end string A.
- $3 < t \leq 4$: the end nodes undergo the reverse rotation around the same axis of rotation.
- $4 < t \leq 5$: the end nodes undergo the reverse displacement as the one that was performed for $1 < t \leq 2$.

![Fig. 7 Initial configuration](image)

Table 1 General properties of each beam
Beam length (cm)
Radius 1 of the elliptical cross section (cm)
Radius 2 of the elliptical cross section (cm)
Young’s modulus (GPa)
Poisson’s ratio
Beams finite elements per beam

Table 2 Contact parameters
Surface points in axial direction
Surface points in tangential direction
α
Initial ϵ (GPa)
The number of quadrature points placed on the surface of each slave patch (at fixed material coordinates) to evaluate Eq. (15) is given in Table 2. The number of surface points is important because at the beginning of the interval $0 < t \leq 1$ and at the end of the interval $5 < t \leq 6$, contact may be localized and hence, contact may be poorly approximated with a coarse grid of surface points.

Table 2 also provides the initial penalty stiffness employed. This value should be related to the mechanical parameters of the contacting bodies as well as the geometrical features of the surfaces at the contact area and the penetration [40]. (Note that a penalty stiffness directly dependent on the kinematic variables would result in more complex expressions for f_t and K_r.) Here, the penalty stiffness is adapted if the local penetration measured for one or several of the slave points is larger than a certain user-defined threshold. In the present case, we choose to increase the penalty stiffness by 10% if the penetration is larger than 5% of the smallest cross-sectional radius (see also [33] for another example of regularization of the contact constraint by increasing the penalty stiffness). The update of the penalty stiffness is performed after an increment of the global solver has converged. Directly after the update, the nodal equilibrium is again solved for, since the increase in the penalty stiffness results in a loss of equilibrium. Additional iterations are therefore needed to restore force equilibrium before moving to the next increment. If, after convergence with this new penalty stiffness, the violation of contact constraint \tilde{g}_N is still too large, the process is repeated.

The configurations after each second of the fictitious time are presented in Fig. 9. Contact tractions in the contact area are presented in Fig. 10 for $t = 1, 2$ and 3 s. The evolution of two components of the reaction forces at the end nodes of a string is presented in the top diagrams of Fig. 11. The number of active contact points is presented in the same figure. During the 1st second, contact does not change location but increases in magnitude over time. This can be observed by the substantial increase in the number of active slave points during the first half of the 1st second (bottom-left diagram in Fig. 3). Consequently, the reaction force in a_2-direction (top-right diagram in Fig. 3) increases qualitatively almost the same as the number of penetrating surface points. During the second half of the 1st second, the number of penetrating points oscillates. This is due to the adjustment of the penalty stiffness.

During the 2nd second ($1 < t \leq 2$), string A slides with respect to string B. Consequently, the number of penetrating surface points remains similar, which is to expected. The reaction force in a_2 direction reduces somewhat, whilst the reaction force in a_1 direction slightly increases. Concluding, we can state that the contact framework is able to accurately treat large sliding displacements. (Penetrating slave points can move from one surface approximation to another and new slave points become active, whilst active ones become inactive.)

In the 3rd second ($2 < t \leq 3$), the location of the contact area remains largely at the same location, but the contact area increases due to the prescribed rotation. We nevertheless see a decrease in the number of active slave points, because the employed grid of slave points has a wider spacing in the string’s longitudinal direction than in the tangential direction. The change of contact area has substantial influences on the reaction forces. The interesting issue here is that the present loading would have no influence on the reaction forces for a point-wise contact scheme (which would not work to begin with because contact does not occur at a single point), except for the trigonometric change of the reaction forces.

In the last 3 seconds, the entire loading is reversed and consequently, we see that the reaction force time diagrams are symmetrical around $t = 3$. Once again, the reason that the number of active slave points is not symmetrical is because the penalty stiffness is increased if necessary, but not reduced if possible. These results are highly satisfactory.

5.2 Twisting

In the next example, we consider two setups of several parallel beams which are twisted (see Fig. 12). For setup A, the central beam has a circular cross section and the beams around it have an elliptical cross section. In setup B, however, the central beam is elliptical and the peripheral beams have a circular section. For both setups, the central beams have the same section area. Similarly, each peripheral beam in setup A has the same cross-sectional area as the peripheral beams in setup B.

The cross sections at the two ends of the beams are rigidly rotated around the longitudinal beams’ direction in the reference configuration with an amplitude of π (see Fig. 13). The planes containing these sections are kept at a constant distance during the simulation. This problem is challenging for a contact framework as the
Fig. 8 Boundary conditions applied during the different phases of the loading. The schematics are not to scale.
contact forces increase substantially, and the contact is non-local and contacting surfaces increasingly deform and curve during time.

The employed beam properties are presented in Table 3. The initial and final configurations are shown in Fig. 13. Figure 14 shows the evolution of the total reaction force in longitudinal direction and the total torque at one of the end sections. The evolution of the number of penetrated contact points is also presented. The results clearly show that the cross-sectional shape has a major influence on the simulation results.
Fig. 10 Contact tractions acting in the direction of the normal to the slave surface at the quadrature points for different times of the simulation

6 Conclusion

Slender structural components are typically represented by beams in mechanical models, and in turn discretized with beam finite elements. They are often characterized by circular cross sections, but elliptical cross sections are regularly required instead. Contact between shear-deformable beams with elliptical cross sections cannot only be based on the centroid lines, as is most often done in contact schemes for beams with circular cross sections.
The contact framework proposed in this work therefore relies on the surface of the beams. It allows to deal with scenarios in which the distance between the contacting surfaces has no clear minimum, as is the case for parallel beams for example. Thus, this contribution is a first attempt to complete the frameworks of [19,20], which are limited by the assumption of a unique contact location.
Table 3 Properties of the beams used for the twisting

	Central Beam	Peripheral Beams
Beam length (cm)	15	15
Radius 1 of the elliptical cross-section (cm)	0.5	1 / \sqrt{200}
Radius 2 of the elliptical cross-section (cm)	0.5	1 / \sqrt{200}
Young’s modulus (GPa)	100	100
Poisson’s ratio	0.3	0.3
Beam finite elements per beam	60	60

(a) Setup A.

	Central Beam	Peripheral Beams
Beam length (cm)	15	15
Radius 1 of the elliptical cross-section (cm)	7 / 8	1 / \sqrt{200}
Radius 2 of the elliptical cross-section (cm)	7 / 8	1 / \sqrt{200}
Young’s modulus (MPa)	1000	1000
Poisson’s ratio	0.3	0.3
Beam finite elements per beam	60	60

(b) Setup B.

Surface points in axial direction	4
Surface points in tangential direction	80
\alpha	1 / \sqrt{2}
Initial \(\epsilon\) (MPa)	100

(c) Contact properties of each slave patch.

Fig. 14 Left: axial reaction forces; middle: the reaction torque around the axis of rotation; right: evolution of the number of active contact points.

Our framework places points on one of the two surfaces candidates for contact (slave) and then projects them on the other surface (the master). This projection differs from the conventional closest point projection (CPP), because the CPP is not unique and may change drastically for small variations (in case of non-circular...
cross sections). Instead, we determine the amount of beam penetration based on surface points and a point on the centroid line.

Since the employed geometrically exact beam elements furthermore use a linear interpolation of the kinematic variables, the associated surface of a string may be C^0-continuous in the deformed configuration and even C^{-1}-continuous in the reference and deformed configuration. To overcome this issue, a smoothing procedure of the strings’ surfaces is formulated that makes the surfaces C^1-continuous.

The proposed contact approach is computationally more demanding than the approaches of [19,20] due to the seeding of many points for which penetration is considered. If no unique maximum penetration occurs, as is the case for many practical applications on the other hand, a less efficient approach than [19,20] appears to be unavoidable. Future work will therefore focus on more efficient generations of surface points and the optimization of the implementation.

Acknowledgements The authors gratefully acknowledge the financial support of the University of Luxembourg for project TEXTOOL.

References

1. Beex, L.A.A., Peerlings, R.: On the influence of delamination on laminated paperboard creasing and folding. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 370(1965), 1912–1924 (2012)
2. Mäkelä, P., Östlund, S.: Orthotropic elastic-plastic material model for paper materials. Int. J. Solids Struct. 40, 5599–5620 (2003)
3. Thakkar, B., Gooren, L., Peerlings, R., Geers, M.: Experimental and numerical investigation of creasing in corrugated paperboard. Philos. Mag. 88, 3299–3310 (2008)
4. Lee, K.-Y., Aitomäki, Y., Berglund, L.A., Oksman, K., Bismarck, A.: On the use of nanocellulose as reinforcement in polymer matrix composites. Compos. Sci. Technol. 105, 15–27 (2014)
5. Kulachenko, A., Uesaka, T.: Direct simulations of fiber network deformation and failure. Mech. Mater. 51, 1–14 (2012)
6. Beex, L.A.A., Peerlings, R., van Os, K., Geers, M.: The mechanical reliability of an electronic textile investigated using the virtual-power-based quasicontinuum method. Mech. Mater. 80, 52–66 (2015)
7. Boubaker, B., Haussy, B., Ganghofer, J.: Discrete models of woven structures. Macroscopic approach. Compos. Part B Eng. 38, 498–505 (2007)
8. Boisse, P., Gasser, A., Hivet, G.: Analyses of fabric tensile behaviour: determination of the biaxial tension-strain surfaces and their use in forming simulations. Compos. Part A Appl. Sci. Manuf. 32, 1355–1414 (2001)
9. Peng, X.Q., Cao, J.: A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics. Compos. Part A Appl. Sci. Manuf. 36, 859–874 (2005)
10. Miao, Y., Zhou, E., Wang, Y., Cheeseman, B.A.: Mechanics of textile composites: micro-geometry. Compos. Sci. Technol. 68, 1671–1678 (2008)
11. Jung, A., Lach, E., Diebels, S.: New hybrid foam materials for impact protection. Int. J. Impact Eng. 64, 30–38 (2014)
12. Jung, A., Beex, L.A.A., Diebels, S., Bordas, S.P.A.: Open-cell aluminium foams with graded coatings as passively controllable energy absorbers. Mater. Des. 87, 36–41 (2015)
13. Sun, Y., Burgueño, R., Wang, W., Lee, I.: Modeling and simulation of the quasi-static compressive behavior of Al/Cu hybrid open-cell foams. Int. J. Solids Struct. 54, 135–146 (2015)
14. Onci, P.R., Van Merkerk, R., De Hosson, J.T.M., Schmidt, I.: Fracture of metal foams: In-situ testing and numerical modeling. In: Advanced Engineering Materials, vol. 6, pp. 429–431, Wiley, Hoboken (2004)
15. Ashby, M.F.: The properties of foams and lattices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364, 15–30 (2006)
16. Beex, L.A.A., Kerfriden, P., Rabczuk, T., Bordas, S.P.A.: Quasicontinuum-based multiscale approaches for plate-like beam lattices experiencing in-plane and out-of-plane deformation. Comput. Methods Appl. Mech. Eng. 279, 348–378 (2014)
17. Beex, L.A.A., Rokoš, O., Zeman, J., Bordas, S.P.A.: Higher-order quasicontinuum methods for elastic and dissipative lattice models: uniaxial deformation and pure bending. GAMM-Mitteilungen 38, 344–368 (2015)
18. Mozfary, V., Payvandy, P., Rezaeian, M.: A novel approach for simulation of the curling behavior of knitted fabric based on mass spring model. J. Text. Inst. 109, 1620–1641 (2018)
19. Neto, A.Gay, Pimenta, P.M., Wriggers, P.: A master-surface to master-surface formulation for beam to beam contact. Part I: frictionless interaction. Comput. Methods Appl. Mech. Eng. 303, 400–429 (2016)
20. Neto, A., Gay, Pimenta, P.M., Wriggers, P.: A master-surface to master-surface formulation for beam to beam contact. Part II: frictional interaction. Comput. Methods Appl. Mech. Eng. 319, 146–174 (2017)
21. Zavarise, G., De Lorenzi, L.: The node-to-segment algorithm for 2D frictionless contact: classical formulation and special cases. Comput. Methods Appl. Mech. Eng. 198, 3428–3451 (2009)
22. Simo, J.: A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49, 55–70 (1985)
23. Simo, J., Vu-Quoc, L.: A three-dimensional finite-strain rod model. Part II: computational aspects. Comput. Methods Appl. Mech. Eng. 58, 79–116 (1986)
24. Simo, J., Vu-Quoc, L.: A Geometrically-exact rod model incorporating shear and torsion-warping deformation. Int. J. Solids Struct. 27(3), 371–393 (1991)
25. Jelenić, G., Crisfield, M.: Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics. Comput. Methods Appl. Mech. Eng. 171, 141–171 (1999)
26. Ibrahimbegović, A.: On finite element implementation of geometrically nonlinear Reissner’s beam theory: three-dimensional curved beam elements. Comput. Methods Appl. Mech. Eng. 122, 11–26 (1995)
27. Romero, I.: The interpolation of rotations and its application to finite element models of geometrically exact rods. Comput. Mech. 34, 121–133 (2004)
28. Meier, C., Popp, A., Wall, W.A.: Geometrically exact finite element formulations for slender beams: Kirchhoff–Love theory versus Simo–Reissner theory. Arch. Comput. Methods Eng. 26, 163–243 (2019)
29. Wriggers, P.: Computational Contact Mechanics. Springer, Berlin, Heidelberg (2006)
30. Zavarise, G., Wriggers, P.: A segment-to-segment contact strategy. Math. Comput. Model. 28, 497–515 (1998)
31. Zavarise, G., Wriggers, P.: Contact with friction between beams in 3-D space. Int. J. Numer. Methods Eng. 49, 977–1006 (2000)
32. Konyukhov, A., Mrenes, O., Schweizerhof, K.: Consistent development of a beam-to-beam contact algorithm via the curve-to-solid beam contact: analysis for the nonfrictional case. Int. J. Numer. Methods Eng. 113, 1108–1144 (2018)
33. Durville, D.: Contact modelling in entangled fibrous materials. In: Trends in Computational Contact Mechanics, pp. 1–22, Springer, Berlin (2011)
34. Vu, T., Durville, D., Davies, P.: Finite element simulation of the mechanical behavior of synthetic braided ropes and validation on a tensile test. Int. J. Solids Struct. 58, 106–116 (2015)
35. Lengiewicz, J., Korelc, J., Stupkiewicz, S.: Automation of finite element formulations for large deformation contact problems. Int. J. Numer. Methods Eng. 85(10), 1252–1279 (2011)
36. Lengiewicz, J., Stupkiewicz, S.: Efficient model of evolution of wear in quasi-steady-state sliding contacts. Wear 303, 611–621 (2013)
37. Korelc, J.: Automation of primal and sensitivity analysis of transient coupled problems. Comput. Mech. 44, 631–649 (2009)
38. Korelc, J.: Multi-language and multi-environment generation of nonlinear finite element codes. Eng. Comput. 18(4), 312–327 (2002)
39. Wriggers, P., Krstulovic-Opara, L., Korelc, J.: Smooth C1-interpolations for two-dimensional frictional contact problems. Int. J. Numer. Methods Eng. 51, 1469–1495 (2001)
40. Popov, V.L.: Contact Mechanics and Friction, vol. 52. Springer, Berlin (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.