Discovery of new quinolines as potent colchicine binding site inhibitors: Design, synthesis, docking studies, and anti-proliferative evaluation

Mohamed Hagras*a, Moshira A. El Deebb, Heba S. A. Elzahabi*c, Eslam B. Elkaeedd,a, Ahmed B.M. Mehanyn, Ibrahim H. Eissa*f

a Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
b Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
c Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
d Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
e Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
f Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt

* Corresponding authors:

Ibrahim H. Eissa
Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
Email: Ibrahimeissa@azhar.edu.eg

Mohamed Hagras
Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
E-mail: m.hagrs@azhar.edu.eg
3D structure of compound 21 docked into the colchicine binding site
2D structure of compound 21 docked into the colchicine binding site
Mapping surface showing compound 21 occupying the active pocket of colchicine binding site
3D structure of compound 32 docked into the colchicine binding site
2D structure of compound 32 docked into the colchicine binding site
Mapping surface showing compound 32 occupying the active pocket of colchicine binding site
Mapping surface showing compound 19 occupying the active pocket of colchicine binding site
Mapping surface showing compound 25 occupying the active pocket of colchicine binding site
Mapping surface showing compound **32** occupying the active pocket of colchicine binding site
HepG-2 cells distribution upon treatment with compound 25

Induced apoptosis on HepG-2 cells by compound 25
The proposed mechanism of reaction to form compound 5
The proposed mechanism of reaction to form compound 8
The proposed mechanism of reaction to form compound 11
H₂-proton
