Gain of function in somatic TP53 mutations is associated with immune-rich breast tumors and changes in tumor-associated macrophages

Michael Behring, University of Alabama Birmingham
Ana I. Vazquez, Michigan State University
Xiangqin Cui, Emory University
Marguerite R. Irvin, University of Alabama Birmingham
Akinyemi I. Ojesina, University of Alabama Birmingham
Sumit Agarwal, University of Alabama Birmingham
Upender Manne, University of Alabama Birmingham
Sadeep Shrestha, University of Alabama Birmingham

Journal Title: Molecular Genetics & Genomic Medicine
Volume: Volume 7, Number 12
Publisher: Wiley Periodicals Inc. | 2019-12-01, Pages 1-9
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1002/mgg3.1001
Permanent URL: https://pid.emory.edu/ark:/25593/vm9r2

Final published version: http://dx.doi.org/10.1002/mgg3.1001

Copyright information:
© 2019 The Authors.

This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

Accessed September 25, 2023 6:44 PM EDT
Gain of function in somatic TP53 mutations is associated with immune-rich breast tumors and changes in tumor-associated macrophages

Michael Behring1,2 | Ana I. Vazquez3,4 | Xiangqin Cui5 | Marguerite R. Irvin1 | Akinyemi I. Ojesina1,6,7 | Sumit Agarwal2 | Upender Manne2,7 | Sadeep Shrestha1,7

1Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
2Department of Pathology and Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
3Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
4Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
5Department of Epidemiology and Biostatistics, Emory University, Atlanta, GA, USA
6HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
7Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA

Correspondence
Sadeep Shrestha and Michael Behring, Department of Epidemiology, University of Alabama at Birmingham; 1665 University Boulevard, Birmingham, AL 35294, USA. Email: sshrestha@uab.edu (S. S.) and behringm@uab.edu (M. B.)

Funding information
NIH U54-CA118948 (Manne), Cancer Research Experiences for Students (CaRES) Program at UAB; 5R25CA76023 (Behring), NIH T32-CA04788 (Behring).

Abstract

Background: Somatic mutations in TP53 are present in 20%–30% of all breast tumors. While there are numerous population-based analyses of TP53, yet none have examined the relationship between somatic mutations in TP53 and tumor invasive immune cells.

Methods: Clinical and genetic data from 601 women drawn from The Cancer Genome Atlas (TCGA) were used to test the association between somatic TP53 mutation and immune-rich or immune-poor tumor status; determined using the CIBERSORT-based gene expression signature of 22 immune cell types. Our validation dataset, the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), used a pathologist-determined measure of lymphocyte infiltration.

Results: Within TP53-mutated samples, a mutation at codon p.R175H was shown to be present at higher frequency in immune-rich tumors. In validation analysis, any somatic mutation in TP53 was associated with immune-rich status, and the mutation at p.R175H had a significant association with tumor-invasive lymphocytes. TCGA-only analysis of invasive immune cell type identified an increase in M0 macrophages associated with p.R175H.

Conclusions: These findings suggest that TP53 somatic mutations, particularly at codon p.R175H, are enriched in tumors with infiltrating immune cells. Our results confirm recent research showing inflammation-related gain of function in specific TP53 mutations.

KEYWORDS
breast cancer, TP53 gain of function, tumor-associated macrophages, tumor-invasive lymphocytes
INTRODUCTION

TP53 (OMIM:191170) encoding tumor protein p53 functions primarily as a transcription factor to regulate cellular homeostasis. Somatic mutations in TP53 are frequent in breast cancer. According to the type of stress as well as cellular environment, the function of TP53 can vary from cell death, DNA repair, halting or terminating cell cycle, and maintenance of metabolic equilibrium (Muller & Vousden, 2014; Robles & Harris, 2009). The effects of somatic alterations in TP53 have been linked to all stages along the oncogenic timeline of breast tumors; from early tumorigenesis, through growth and development, to distant metastasis (Walerych, Napoli, Collavin, & Del Sal, 2012). In population-based research, molecular subtypes of breast cancer were shown to have TP53 mutants differing in frequency, type, and function (Dumay et al., 2013). Specific mutations in the L2 (codons 164–194) and L3 motifs (codons 237–250) in TP53 are independently associated with poor survival (Olivier et al., 2006). Gain of function (GOF) in specific TP53 mutations, observable through alterations in the inflammatory response, can alter further mutation through inflammation-activated factors in a cyclical manner (Rahnamoun et al., 2017). In breast cancer, mutated TP53 can cause loss of ability to regulate TNF signaling, followed by NF-kB activation and a perpetuated inflammatory cycle, linked to recruitment of immune cells within the tumor (Di Minin et al., 2014).

Along with the identification of individual genomic markers of immune-rich tumors, total mutational burden as well as clonal populations have been shown as important factors in immune response. Both characteristics are measures of tumor heterogeneity. While somatic mutations are a marker of genetic damage, it is the very damage that can result in the creation of tumor-specific neoantigens, which facilitate recognition by the immune system (Schumacher & Schreiber, 2015). The greater the somatic mutational burden, the more neoantigens are created, and the more likely a T-cell immune response is to occur. Previous research has shown a link between somatic mutation, neoantigens, and immune cell infiltration in multiple types of tumors, including those of the breast (Brown et al., 2014; Heemskerk, Kvistborg, & Schumacher, 2013). The clonal consistency of mutations across the cells of a tumor is another measure of heterogeneity which affects immunogenicity. Measures of clonal heterogeneity vary from tumor-wide, to the estimates of single nucleotide variant in each cancer cell (Mroz & Rocco, 2013). In breast cancer, lower overall clonal heterogeneity has been associated with immune-rich status across all subtypes (Karn et al., 2017a; Safonov et al., 2017).

The aim of this analysis was to investigate the association between TP53 somatic mutations and immune cell infiltration in breast tumors. We used an established immune gene expression signature to characterize all tumors as immune-rich or immune-poor, and compared differences across the spectrum of TP53 somatic mutations. An important part of this analysis was the validation of our results in another set of data which used pathologist-derived measures of tumor lymphocytic invasion.

METHODS

Clinical and genetic data from 601 women with invasive ductal carcinoma and no history of other malignancy or therapy were drawn from The Cancer Genome Atlas (TCGA) (TCGA Research Network: http://cancergenome.nih.gov). Molecular subtype of the tumors was based on immunohistochemistry (IHC) measurements. Estrogen receptor-positive (ER+) or progesterone receptor-positive (PR+) and Her2 ± were grouped together in a luminal category. Women with negative ER, PR, and Her2 IHC were considered triple-negative (TNBC) and women who were Her2 + only were considered Her2 type. Tumor stage followed the AJCC 7th edition guideline and was recorded as reported from the participating institutions for TCGA. Lymph node metastasis was used as a yes/no variable based on TCGA clinical data and AJCC staging TNM (tumor, lymph node, metastasis) criteria (Edge & Compton, 2010).

RNA-Seq data and TP53 sequence data were obtained from the GDC Data Portal (https://portal.gdc.cancer.gov). Using the MuSE pipeline from Baylor College (Fan et al., 2016), somatic variants were identified by comparing normal to tumor sequence data, in binary alignment map (BAM) files for each sample. Somatic DNA sequence variations were compared against GenBank reference sequence NM_000546.5, and classified using the Human Genome Variation Society (HGVS) short nomenclature (http://www.hgvs.org/mutnomen/recs-DNA.html). TCGA Level 3 RNAseqV2 expression data files (collected using Illumina HiSeq 2000 platform) provided normalized mRNA expression counts. CIBERSORT, a machine-learning method that estimates the proportion of specific cell types using mRNA data, has been shown to be a reliable marker for tumor immune cell deconvolution across multiple cancer types (Gentles et al., 2015). The LM22 reference profile (based on patterns from 527 signature genes in 22 immune cell types) verified by Gentles et al. (Gentles et al., 2015) was used to define immune cell infiltrating and noninfiltrating tumors. Similarity of the real gene expression of 527 signature genes in a patient was compared to the reference RNA-signature profile of 22 immune cell types and was then compared to randomly chosen genes tested 1,000 times. For each tumor, the real genes were then tested against a null distribution of permutations to define immune-rich and immune-poor status using a significance threshold of 0.05. In addition, the calculated proportion of immune cell...
type per sample was used to represent the composition of immune cells in immune-rich tumors.

Total mutations per tumor sample were calculated from this data with the inclusion of silent mutations. This was a measure of genome-wide somatic mutation in an effort to indicate mutational burden. While the consequence of synonymous/silent mutations upon immune response is unclear (Gotea, Gartner, Qutob, Elnitski, & Samuels, 2015; Rooney, Shukla, Wu, Getz, & Hacohen, 2014), they were included to account for any indirect connection to the mutational process in each patient (Chalmers et al., 2017). Since overall, genome-wide, clonal heterogeneity has been shown as different by molecular subtype (Karn et al., 2017b; Safonov et al., 2017), the estimated variant allele proportion of total reads for TP53 was used as a measure of clonality of TP53 mutations throughout the tumor sample.

A second set of data from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) (Curtis et al., 2012) was used to validate our initial findings. In a subset of 1,105 METABRIC samples of frozen tissue sections, hematoxylin and eosin (H&E) staining was performed to determine the level lymphocytic infiltration, as previously described (Silwal-Pandit et al., 2014). In order to better match our TCGA data variable of immune-rich/immune-poor, the original categories of absent, mild, and severe lymphocytic infiltration were combined to a dichotomous measure of absent or present for this study. In TCGA data, immune-rich indicates tumors with an RNA expression signature significantly matching that of 22 leukocyte immune cell type signature matrix. In METABRIC, tumors were evaluated specifically for lymphocytes, morphologically, by pathologists. TP53 nucleic acid sequence was manually curated by previous authors for the coding region from exons 2–11 (Silwal-Pandit et al., 2014). In this study, molecular subtypes were based on IHC and expression of ER, PR, and Her2 receptors to create similar categories as TCGA; Her2, Luminal, and TNBC. Expression-based (PAM50) categories of molecular subtype signatures were also available from METABRIC data (Silwal-Pandit et al., 2014), and were used in qualitative review of results.

In both sets of data, the connection between somatic, immune, and clinical variables across immune signature/lymphocytic infiltration status was assessed using chi square tests.

TABLE 1 Characteristics of study participants in The Cancer Genome Atlas (TCGA) and The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)

Clinical and molecular variables	TCGA		METABRIC			
	Immune-rich (n = 299)	Immune-poor (n = 302)	p-value	lymphocytic invasion present (n = 713)	lymphocytic invasion absent (n = 392)	p-value
Age at diagnosis (mean, IQR)	56 (47, 65)	57 (47, 65)	.781	60 (50, 72)	62 (53, 71)	.192
TP53 somatic mutation (any codon)				212 (30)	86 (22)	.006
Yes	127 (43)	68 (22)	<.001			
Lymph node metastasis				299 (56)	122 (40)	<.001
Yes	152 (51)	183 (61)	.016			
Race^a						
Asian	22 (8)	23 (8)	.696	8 (2)	12 (5)	.206
African American/African European	40 (15)	34 (12)	1 (0.3)	0 (0)		
Caucasian/European	210 (77)	221 (80)	355 (95)	205 (91)		
European/Asian	–	–	3 (0.8)	2 (0.9)		
Receptor subtype^b						
Her2	18 (7)	9 (3)	<.001	43 (8)	18 (6)	<.001
Luminal	198 (74)	257 (90)	382 (71)	255 (84)		
TNBC	51 (19)	20 (7)	112 (21)	30 (10)		
Total mutations per bulk tumor (median, IQR)	36 (21, 66)	26 (18, 42)	<.001			
TP53 variant allele percent (median, IQR)^c	44 (33, 55)	61 (51, 76)	<.001			

^aApproximately 9% of race for TCGA and ~ 50% for METABRIC were missing; however, the relationship of missing race across both TP53 and immune status was determined to be random for TCGA.

^bIn METABRIC, approximately 25% of receptor subtype data were missing in both groups of lymphocytic invasion.

^cFor TP53 mutant-only analysis (n = 195).
FIGURE 1 Frequency of mutations in *TP53* by codon in tumors by immune signature status in The Cancer Genome Atlas (TCGA) or determined to have lymphocytic invasion in The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) data

TABLE 2 Adjusted odds of tumor immune infiltration for TCGA and METABRIC

	Odds of immune-rich tumor signature	95% LL	95% UL	p-value
TCGA data				
TP53 (any somatic mutation vs. wild type)	2.64	1.84	3.81	1.47E−07
Age at diagnosis (per year increase)	1.00	0.99	1.01	.852
Tumor stage (III & IV vs. I & II)	0.56	0.37	0.84	.006
METABRIC data				
TP53 (any somatic mutation vs. wild type)	1.43	1.01	2.03	.044
Age at diagnosis (per year increase)	1.00	0.98	1.01	.392
Tumor size (per mm increase)	0.99	0.98	1.00	.039
Lymph node metastasis (any vs. none)	2.01	1.48	2.73	.00000856
Grade (one unit increase 1–3)	1.31	1.00	1.72	.048
3 | RESULTS

The average age of the participants was 56 years, with approximately 75% of women being White, early (I or II) stage, or Luminal. Of the 601 TCGA participants, 299 had the tumors characterized as immune-rich. Occurrence of at least one somatic mutation in the TP53 was noted in 32% of patients. Median count of genome-wide somatic mutation (mutational burden) per bulk tumor was 29 mutations. Women with any mutation in TP53 had 2.37 times higher odds of also having immune-rich tumors (95% CI 1.76–3.68, p < .001). Consistent with previous research findings, immune-rich tumors had a higher total relative mutational burden and lower clonality as measured by variant allele percent of total reads (p < .001 for Poisson and Wilcoxon, respectively) (Table 1). Patient age at diagnosis and race had no influence on immune signature status. Logistic regression models adjusted for age, and pathologic stage showed that any TP53 mutation was independently associated with odds of tumors having immune-rich signature (2.64, 95% CI 1.84–3.81, p < .001, Table 3). Interaction terms for TP53 mutational status and receptor subtype were all found to be nonsignificant. In TP53 mutation codon-level analysis, the most common TP53 somatic mutant was p.R175H, found in 8% (16/195) of all women. The majority of p.R175H somatic mutants (14/16) was found in immune-rich tumors (Fisher’s p-value .058, Table 3 and Figure 1). Furthermore, most (63%) were from the combined Luminal (A and B) subtypes (not shown). Compared against all other TP53 mutations, in Luminal type tumors, p.R175H had a significant association with immune-rich status (Fisher’s p-value .041).

In validation analysis using METABRIC data, 27% of all patients (298/1105) had at least one somatic mutation in TP53. Women with TP53 mutation had 1.51 times the odds of also having tumors with lymphocytic infiltration (95% CI 1.42–1.89, p-value .005). Adjusted models in METABRIC validated our original TCGA findings that women with any mutation in TP53 had higher odds of lymphocytic invasion in tumors (1.43, 95% CI 1.01–2.03, 2019).
No significant effect modification was found between TP53 mutation status and receptor subtype. In codon-specific analysis of women with TP53 mutations only, the most frequently mutated codon locations in TP53 were at p.R248Q (12/298) and p.R175H (11/298) (Fisher’s p-values of .022 and .032, respectively). All of the mutations at codon p.R175H were also in tumors with lymphocytic invasion (11/11), see Table 3. Interestingly, in a subset of only women with TP53 somatic mutations, both Luminal B (4/11) and Basal (5/11) subtypes exhibited codon p.R175H mutations most often.

DISCUSSION

This study is one of the first to evaluate the relationship between the codon-level TP53 somatic mutations and RNA-signature/pathologist-confirmed markers of tumor immune cell infiltration on a population level. We observed that somatic TP53 mutation in both cohorts of women with breast cancer was consistently associated with tumors having immune cell infiltration, and this relationship was not modified by receptor subtype. The p.R175H mutation in TP53 could be involved in GOF through the immune response or transcription mechanism as the mutation is located in L2 motif.
Part of the evidence for TP53 somatic mutations and immune modulation in breast cancer comes from research using p.R175H cell lines (Di Minin et al., 2014; Lu, Liu, & Xu, 2013; Weisz et al., 2007). Our validated results suggest that the tumor immune infiltrating status of codon p.R175H of TP53 may be a marker of GOF and the chronic immune signaling cycle. Previous research using the same dataset has shown wild-type TP53 and basal-like breast tumors to be associated with cytotoxic T-cell signatures, and that basal-like tumors had a high frequency of p.R175H mutations (Lu et al., 2013). While we observed no overall effect of receptor subtype on the association between TP53 mutations and tumor immune status, codon-specific analysis showed that p.R175H was most frequent in luminal and basal subtypes.

Our findings of increased M0 (not activated) and decreased classically activated M1 macrophages in tumors with p.R175H

FIGURE 3 Proportion of immune cell type in immune-rich tumors by wild-type TP53 (invasive_WT), Gain of Function hotspot mutations (GOF_hotspot) and somatic mutations in all other TP53 codons (p53_other). (a) Proportion of M0 macrophage; (b) proportion of M1 macrophages; (c) Proportion of follicular helper T cells; (d) proportion CD4 memory activated T cells. For (a)-(d) statistical test p-values are shown for pairwise and overall
mutations are consistent with previous literature. Studies have shown not only an increase of M0 and M2 macrophages in TP53-mutated tumors, but also a reprogramming of these cells associated with decreased phagocytic capacity, enhanced ECM degradation, higher invasiveness, and worse survival (Cooks et al., 2018). When compared to all other TP53 mutations and wild-type tumors, p.R175H tumors had a higher proportion of inactive M0 macrophages (p-value .06), as well as decreased activated M1 macrophages (p-value .03). The proportion of M0 macrophages was found to be inversely correlated with the presence of M1 macrophages in patients with mutations at p.R175H. Follicular helper T cells were found in a higher proportion in all other TP53 somatic mutations compared to TP53 wild-type tumors (Figure 2). Additional analysis comparing all other TP53 mutations, wild-type tumors and TP53 hotspot mutations (p.R175H, p.R248Q, p.R273H, p.R273C, and p.R282W) found that M0 and M1 immune cell proportions did not differ across the hotspot groups versus others, suggesting that the relationship between M0 and M1 macrophages is unique to p.R175H (Figure 3).

We were limited by the insufficient size of the Her2 group for our analysis, and were not able to include an investigation of the suggested interaction between ERBB2 and TP53. Additionally, while we controlled for other genomic factors confounding the relationship between TP53 somatic mutation and immune signature status, it is possible that unaccounted for confounding occurred. Also, our study design was cross-sectional, and lacked the ability to evaluate a temporal relationship between TP53 somatic mutation and immune-rich status. The exclusion of tumors in TCGA with pathologist-determined cellularity of less than 60% (http://cancer.genome.nih.gov/cancersselected/biosepcriteria) is a concern for selection bias and possible underrepresentation of immune-rich, low cellularity tumors. In comparing immune measures to cellularity, we found no association between degree of correlation with immune signature and tumor cellularity in TCGA (Kruskal–Wallis, p-value .45), or in METABRIC when comparing tumor cellularity and lymphocytic invasion status (chi square p-value .08).

Use of separate measures for tumor immune invasiveness represented a trade-off. We chose not to apply CIBERSORT to array data because it was developed for RNA-Seq. Secondly, we wanted to confirm the relationship between TP53 and immune invasion using pathologist-confirmed, non in silico methods. Thus we chose to use METABRIC-based measure of lymphocytic invasion. However, the incongruity between leukocyte (TCGA data) and lymphocyte (METABRIC data) cell types may present a possible concern for bias. In order to check the similarity between CIBERSORT and lymphocyte-only measure, we compared previous measures of effector T cell and natural killer cell (NK) cytolytic activity for the same TCGA data (Rooney et al., 2014). Using a Kruskal–Wallis test, we found TCGA immune-rich status to be strongly associated with increased cytolytic activity (p < 2.2e−16, data not shown). In addition, CIBERSORT is well documented as being able to identify tissue samples which were positive for at least one cell type with ≥ 94% sensitivity and 95% specificity (Rooney et al., 2014).

In general, TP53-mutated tumors are significantly more immunogenic and have higher mutational burden, and lower overall variant allele frequency (more clonal heterogeneity). The relationship between clonal heterogeneity of tumor cells with TP53 somatic mutations across the bulk tumor sample and tumor immune status suggests that tumors with a more homogenous population of cancer cells, have less overall mutations, and are also more immune-poor. This is further supported through the observed median decrease in total burden of somatic mutations per immune-poor tumor. Previous research using variant allele measures for clonal heterogeneity in breast cancer has used an overall, genome-wide score (Quigley et al., 2015). We are the first to examine measures of clonal heterogeneity for a single gene (TP53) as they relate to somatic mutation and tumor immune status. Our results suggest that while immune-rich tumors have high frequency of specific codons, differences in immune infiltration status were not due to clonal heterogeneity for individual codons. Specifically for p.R175H, we found that the median variant allele frequency for TP53 did not differ significantly by immune signature group. This suggests that the mechanism for immunogenicity is independent of tumor clonal heterogeneity and due an unknown biologic mechanism of the mutation.

ACKNOWLEDGMENTS

We would like to thank: The Cancer Research Experiences for Students (CaRES) Program at UAB; 5R25CA76023 (Behring) and U54-CA118948 (Dr. U. Manne), funded by the National Cancer Institute; and a UAB Comprehensive Cancer Center Young Investigator Grant (Dr. Vazquez). Funding entities had no role in the design of the study, in collection, analysis, and interpretation of data or in writing the manuscript.

CONFLICT OF INTEREST

The authors declare no potential conflict of interest.

ORCID

Michael Behring @ https://orcid.org/0000-0002-5162-322X
Sadeep Shrestha @ https://orcid.org/0000-0002-7002-357X

REFERENCES

Brown, S. D., Warren, R. L., Gibb, E. A., Martin, S. D., Spinelli, J. J., Nelson, B. H., & Holt, R. A. (2014). Neo-antigens predicted by tumor genome
meta-analysis correlate with increased patient survival. Genome Research, 24(5), 743–750. https://doi.org/10.1101/gr.165985.113

Chambers, Z. R., Connelly, C. F., Fabrizio, D., Gay, L., Ali, S. M., Ennis, R., … Frampton, G. M. (2017). Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Medicine, 9(1), 1–14. https://doi.org/10.1186/s13073-017-0424-2

Cook, T., Patera, I. S., Jenkins, L. M., Patel, K. M., Robles, A. I., Morris, J., … Harris, C. C. (2018). Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nature Communications, 9(1), https://doi.org/10.1038/s41467-018-03224-w

Curtis, C., Shah, S. P., Chin, S.-F., Tarushvili, G., Rueda, O. M., Dunning, M. J., … Aparicio, S. (2012). The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 486(7403), 346–352. https://doi.org/10.1038/nature10983

Di Minin, G., Bellazzo, A., Dalferro, M., Chiaruttini, G., Nuzzo, S., Bicciato, S., … Collavin, L. (2014). Mutant p53 reprograms TNF signaling in cancer cells through interaction with the tumor suppressor DAB2IP. Molecular Cell, 56(5), 617–629. https://doi.org/10.1016/j.molcel.2014.10.013

Dumay, A., Feugeas, J. P., Wittmer, E., Lehmann-Che, J., Bertheau, P., Espié, M., … De Thé, H. (2013). Distinct tumor protein p53 mutations in breast cancer subgroups. International Journal of Cancer, 132(5), 1227–1231. https://doi.org/10.1002/ijc.27767

Edge, S. B., & Compton, C. C. (2010). The american joint committee on cancer: The 7th edition of the AJCC cancer staging manual and the future of TNM. Annals of Surgical Oncology, 17, 1471–1474.

Fan, Y., Xi, L., Hughes, D. S. T., Zhang, J., Zhang, J., Futreal, P. A., … Wang, W. (2016). MuSE: Accounting for tumor heterogeneity using a sample-specific error model improves sensitivity and specificity in mutation calling from sequencing data. Genome Biology, 17(1), 178. https://doi.org/10.1186/s13059-016-1029-6

Gentles, A. J., Newman, A. M., Liu, C. L., Bratman, S. V., Feng, W., Kim, D., … Alizadeh, A. A. (2015). The prognostic landscape of genes and infiltrating immune cells across human cancers. Nature Medicine, 21(8), 938–945. https://doi.org/10.1038/nm.3909

Goea, V., Gartner, J. J., Qutob, N., Elnitski, L., & Samuels, Y. (2015). The functional relevance of somatic synonymous mutations in melanoma and other cancers. Pigment Cell & Melanoma Research, 28(6), 673–684. https://doi.org/10.1111 pcmr.12413

Heemskerk, B., Kvistborg, P., & Schumacher, T. N. M. (2013). The cancer antigenome. EMBO Journal, 32, 194–203. https://doi.org/10.1038/emboj.2012.333

Karn, T., Jiang, T., Hatzis, C., Sänger, N., El-Balat, A., Rody, A., … PusztaI, L. (2017a). Association between genomic metrics and immune infiltration in triple-negative breast cancer. JAMA Oncology, 1–5, https://doi.org/10.1001/jamaoncol.2017.2140

Karn, T., Jiang, T., Hatzis, C., Sänger, N., El-Balat, A., Rody, A., … PusztaI, L. (2017b). Association between genomic metrics and immune infiltration in triple-negative breast cancer. JAMA Oncology, https://doi.org/10.1001/jamaoncol.2017.2140

Lu, X., Liu, D. P., & Xu, Y. (2013). The gain of function of p53 cancer mutant in promoting mammary tumorigenesis. Oncogene, 32(23), 2900–2906. https://doi.org/10.1038/onc.2012.299

Mroz, E. A., & Rocco, J. W. (2013). MATH, a novel measure of intratumor genetic heterogeneity, is high in poor-outcome classes of head and neck squamous cell carcinoma. Oral Oncology, 49(3), 211–215. https://doi.org/10.1016/j.oraloncology.2012.09.007

Muller, P. A. J., & Vosden, K. H. (2014). Mutant p53 in cancer: New functions and therapeutic opportunities. Cancer Cell, 25, 304–317. https://doi.org/10.1016/j.ccr.2014.01.021

Olivier, M., Langerød, A., Carrieri, P., Bergh, J., Klaar, S., Eyfjord, J., … Østensen-Dale, A.-L. (2006). The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 12(4), 1157–1167. https://doi.org/10.1158/1078-0432.CCR-05-1029

Quigley, D., Silwal-Pandit, L., Dannenfelser, R., Langerød, A., Vollan, H. K. M., Vaske, C., … Kristensen, V. (2015). Lymphocyte invasion in IC10/basal-like breast tumours is associated with wild-type TP53. Molecular Cancer Research: MCR, 13(3), 493–501. https://doi.org/10.1158/1541-7786.MCR-14-0387

Rahnamoun, H., Lu, H., Duttke, S. H., Benner, C., Glass, C. K., & Lauberth, S. M. (2017). Mutant p53 shapes the enhancer landscape of cancer cells in response to chronic immune signaling. Nature Communications, 8(1), https://doi.org/10.1038/s41467-017-01117-y

Robles, A. I., & Harris, C. C. (2009). Clinical outcomes and correlates of TP53 mutations and cancer. Cold Spring Harbor Perspectives in Biology, 2(3), a001016. https://doi.org/10.1011/cshperspect.a001016

Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G., & Hacohen, N. (2014). Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell, 160(1–2), 48–61. https://doi.org/10.1016/j.cell.2014.12.033

Safonov, A., Jiang, T., Bianchini, G., Györfi, B., Karn, T., Hatzis, C., & PusztaI, L. (2017). Immune gene expression is associated with genomic aberrations in breast cancer. Cancer Research, 77(12), 3317–3324. https://doi.org/10.1158/0008-5472.CAN-16-3478

Schumacher, T. N., & Schreiber, R. D. (2015). Neoantigens in cancer immunotherapy. Science, 348, 69–74. https://doi.org/10.1126/science.aac4971

Silwal-Pandit, L., Vollan, H. K. M., Chin, S. F., Rueda, O. M., McKinney, S., Osaka, T., … Langerød, A. (2014). TP53 mutation spectrum in breast cancer is subtype specific and has distinct prognostic relevance. Clinical Cancer Research, 20(13), 3569–3580. https://doi.org/10.1158/1078-0432.CCR-13-2943

Walerych, D., Napoli, M., Collavin, L., & Del Sal, G. (2012). The rebel angel: Mutant p53 as the driving oncogene in breast cancer. Carcinogenesis, 33, 2007–2017. https://doi.org/10.1039/carcin/bgs232

Weisz, L., Damalas, A., Liontos, M., Karakaidos, P., Fontemaggi, G., Maor-Aloni, R., … Oren, M. (2007). Mutant p53 enhances nuclear factor kappaB activation by tumor necrosis factor alpha in cancer cells. Cancer Research, 67(6), 2396–2401. https://doi.org/10.1158/0008-5472.CAN-06-2425

How to cite this article: Behring M, Vazquez AI, Cui X, et al. Gain of function in somatic TP53 mutations is associated with immune-rich breast tumors and changes in tumor-associated macrophages. Mol Genet Genomic Med. 2019;7:e1001. https://doi.org/10.1002/mgg3.1001