World Journal of Hepatology

Basic Study

Anti-CD163-dexamethasone conjugate inhibits the acute phase response to lipopolysaccharide in rats

Karen Louise Thomsen, Holger Jon Møller, Jonas Heilskov Graversen, Nils E Magnusson, Søren K Moestrup, Hendrik Vilstrup, Henning Grønbæk

Data sharing statement: Dataset is available from the corresponding author at karethom@rm.dk.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Karen Louise Thomsen, MD, PhD, Department of Hepatology and Gastroenterology, Aarhus University Hospital, 44 Nørrebrogade, DK-8000 Aarhus C, Denmark. karethom@rm.dk

Received: February 22, 2016
Peer-review started: February 22, 2016
First decision: March 24, 2016
Revised: May 4, 2016
Accepted: May 31, 2016
Article in press: June 2, 2016
Published online: June 18, 2016

Abstract

AIM: To study the effect of a new anti-CD163-dexamethasone conjugate targeting activated macrophages on the hepatic acute phase response in rats.

METHODS: Wistar rats were injected intravenously with either the CD163 targeted dexamethasone-conjugate (0.02 mg/kg) or free dexamethasone (0.02 or 1 mg/kg) 24 h prior to lipopolysaccharide (LPS) (2.5 mg/kg intraperitoneal). We measured plasma concentrations of...
INTRODUCTION

In conditions with macrophage proliferation and activation, CD163, a haemoglobin-haptoglobin scavenger receptor expressed exclusively on monocytes and macrophages, is up-regulated. Following toll-like receptor activation by inflammatory stimuli like lipopolysaccharide (LPS), receptor shedding to circulation as soluble CD163 (sCD163) is increased, and within hours upregulated on the cell surface. As an example, hepatic macrophages (Kupffer cells) are activated and sCD163 is increased in patients with liver cirrhosis who chronically experience some degree of endotoxaemia and acute phase response and this may be involved in the development of the serious cirrhosis complications.

We have recently constructed a conjugate of CD163 antibody and the potent corticosteroid dexamethasone (anti-CD163mAb-dexa) specifically targeting dexamethasone to activated macrophages. The conjugate reduces the LPS-stimulated cytokine release from activated macrophages in vitro and in vivo in rats and pigs. The effect is obtained with very low concentration of dexamethasone, thereby minimizing steroid-induced systemic effects. A fifty-fold higher concentration of non-conjugated dexamethasone is needed to obtain the same anti-inflammatory response.

Exposure to LPS is a standard method to induce an acute phase response with a large increase in pro-inflammatory cytokines and hepatic synthesis and release of acute phase proteins. While the conjugate reduces the LPS-mediated cytokine response in rats it remains unknown whether it also inhibits the hepatic acute phase protein synthesis response.

To approach this issue we measured the gene expression in liver tissue and serum concentrations of the prevailing acute phase protein α-2-macroglobulin (α-2-M) 24 h post-LPS exposure in rats. α-2-M is a hepatocyte-derived inhibitor of a wide range of proteinases that can be activated during inflammation. Further, we compared plasma concentrations of tumour necrosis factor-α (TNF-α) and interleukin 6 (IL-6) 2 h post-LPS exposure. Spleen weight served as an indicator of systemic steroid effects.

MATERIALS AND METHODS

Animals

The animal protocol was designed to minimize pain or discomfort to the animals. Female Wistar rats (body weight 190-210 g; Taconic M and B, Ejby, Denmark) were housed at 21 ± 2 °C with a 12-h artificial light cycle. Two or three animals were housed in each cage, with free access to tap water and standard food (Altromin, Lage, Germany) and acclimatized for one week. Food intake and body weight were registered at the beginning and at the end of the experimental procedures. The study was performed in accordance with local and national guidelines for animal welfare and approved by the national Animal Ethics Committee, protocol No. 2010/561-1918.

Design

Forty animals were allocated in 5 groups of 8: One...
control group receiving only vehicle (PBS pH 7.4) intravenously and four groups injected intravenously with either vehicle, anti-CD163mAb-dexa (0.02 mg/kg dexamethasone), high dose free dexamethasone (1 mg/kg) (Sigma-Aldrich, Brøndby, Denmark), or low dose free dexamethasone (0.02 mg/kg). The low (“therapeutic”) dose gives maximal steroid efficacy in other rat studies[14,15] and the low dose was the same as in the anti-CD163mAb-dexa. After 24 h, 0.5 mL of saline (controls) or LPS dissolved in 0.5 mL saline (2.5 mg/kg) (from *Escherichia coli* 0111:B4 obtained from Sigma-Aldrich, Brøndby, Denmark; product No. L2630) was injected intraperitoneally. Two hours later and following anaesthesia with inhalation of isofluran 2%-3% (Forenea, Abbott Laboratories, Gentofte, Denmark), a blood sample for determination of plasma TNF-\(\alpha\) and IL-6 was drawn from a retrobulbar venous plexus using heparinised micropipettes. After an overnight 12-h fast the animals were anesthetised with a subcutaneous injection of fentanyl/alfaniosone (Hypnorma, Jansen Pharmacia, Birkerød, Denmark) 0.5 mL/kg and midazolam (Dormicuma, La Roche, Basel, Switzerland) 2.5 mg/kg. All blood was collected for blood analyses and approximately 200 mg of liver tissue was snap-frozen in liquid N\(\textsubscript{2}\), and stored at -80 \(\textdegree\)C. Finally, the spleen was weighed. In all animals we measured liver mRNA levels at termination of the study. Liver tissue mRNA levels of \(\alpha\)-2-M were determined by slot blot hybridization as previously described[16].

Blood analyses

The concentrations of \(\alpha\)-2-M in serum were evaluated by rat ELISA (Immunology Consultants Laboratory, Newberg, OR, United States). The plasma concentrations of TNF-\(\alpha\) and IL-6 were determined by immunooassay (R and D Systems, Minneapolis, MN, United States, both). Samples were analysed in duplicate and all assays had intra- and inter-assay coefficients of variance below 5\% and 10\%, respectively. Plasma concentrations of alanine aminotransferase and bilirubin were determined by standard clinical biochemical analytical methods.

Statistical analysis

Data were analysed using the Kruskal-Wallis One Way Analysis of Variance on Ranks; when significant, post-hoc tests were performed among groups by the Mann-Whitney rank sum test. Data are presented as the mean ± SEM. Differences were considered significant with \(P\)-values < 0.05. A statistical review of the study was performed by a biomedical statistician.

RESULTS

Body and spleen weight

LPS induced a body weight loss in all the intervention groups (\(P < 0.05\)) (Table 1) and there was no difference among these groups. The high dose dexamethasone dose decreased the spleen weight (\(P < 0.05\)), an effect not seen in any other group (Table 1).

Acute phase protein liver mRNA and serum levels

LPS increased the liver mRNA and serum levels of \(\alpha\)-2-M several fold in all groups (\(P < 0.01\)) (Figure 1). Anti-CD163mAb-dexa approximately halved the \(\alpha\)-2-M liver mRNA (\(P < 0.01\)) and serum response (\(P = 0.04\)) compared to low dose dexamethasone treated animals, while no free dexamethasone dose had any effect on liver mRNA or serum levels of \(\alpha\)-2-M compared to vehicle (Figure 1).

TNF-\(\alpha\) and IL-6

LPS markedly increased plasma TNF-\(\alpha\) and IL-6 in all groups (\(P < 0.001\)). There was a trend for reduced TNF-\(\alpha\) (\(P = 0.08\)) after anti-CD163mAb-dexa compared to vehicle and significantly so vs the low dose dexamethasone (\(P = 0.03\)). Also, the anti-CD163mAb-dexa decreased IL-6 compared to both dexamethasone doses (\(P < 0.05\)). None of the free dexamethasone doses had

Table 1 Weights, liver function tests, and cytokines.

	Controls	LPS	Anti-CD163-dexa plus LPS	High dexa plus LPS	Low dexa plus LPS
Body weight (g)	199 ± 1	196 ± 2	207 ± 2\(^a\)	204 ± 3	206 ± 3\(^b\)
Weight loss (g)	11 ± 5	14 ± 3	22 ± 2\(^a\)	23 ± 2\(^a\)	21 ± 1\(^a\)
Spleen weight (mg)	465 ± 12	512 ± 31	492 ± 23	421 ± 11\(^c\)	483 ± 23
ALT (U/L)	42 ± 3	61 ± 16	57 ± 20	48 ± 9	77 ± 31
Bilirubin (mg/dL)	3.0 ± 0.0	3.3 ± 0.3	3.1 ± 0.1	3.6 ± 0.4	4.0 ± 0.4
TNF-\(\alpha\) (pg/mL)	0 ± 0	26817 ± 9789\(^e\)	204 ± 3	204 ± 3	206 ± 3
IL-6 (pg/mL)	0 ± 0	23075 ± 6758\(^e\)	204 ± 3	204 ± 3	206 ± 3

Body weight (g), body weight loss (g), spleen weight (mg), plasma alanine aminotransferase (U/L), and bilirubin (\(\mu\)mol/L) in controls (\(n = 8\)) and in animals injected with LPS 24 h after vehicle (\(n = 8\)), anti-CD163mAb-dexa (\(n = 8\)), high dose (\(n = 8\)) and low dose (\(n = 8\)) dexamethasone at termination of study. Plasma TNF-\(\alpha\) (pg/mL) and IL-6 (pg/mL) are measured 2 h after saline (controls) or LPS injection. \(^a\)\(P < 0.05\) vs controls; \(^b\)\(P < 0.05\) vs low dose free dexamethasone group; \(^c\)\(P < 0.05\) vs high dose free dexamethasone group; \(^d\)\(P < 0.05\) vs vehicle. ALT: Alanine aminotransferase; TNF-\(\alpha\): Tumor necrosis factor-\(\alpha\); IL-6: Interleukin-6; LPS: Lipopolysaccharide.
Anti-CD163-dexamethasone efficiently suppressed this response. The anti-inflammatory effects of glucocorticoids bind to the ubiquitous intracellular glucocorticoid steroid receptor present in most cell types they also exert serious systemic metabolic side effects. Thus dexamethasone causes the spleen to undergo a corticosteroid-induced weight reduction due to lymphocyte depletion\(^{[20]}\). Accordingly, the high dose dexamethasone in our study decreased the spleen weight as compared with the other groups reflecting systemic non-macrophages effects. In contrast, the conjugate did not affect spleen weight and was still found to exert a potent anti-inflammatory effect.

In our animal model, the conjugate was given as a pre-emptive dose prior to the induction of the acute phase response as we aimed at establishing a proof-of-concept position of the conjugate’s effects. We believe our findings support further studies on interference with on-going inflammation in relevant experimental models. Such studies are also essential for monitoring of long term effects of the conjugate.

In conclusion, the anti-CD163-dexa conjugate demonstrated potent effects in reducing the acute phase proteins without evident systemic side effects during an endotoxin-induced acute phase response in rats. The effect much exceeded that of a therapeutic dose of dexamethasone. Thus, the antibody conjugate may be a potential candidate in future anti-inflammatory macrophage-directed therapy, e.g., in liver diseases with Kupffer cells activation\(^{[7]}\). However, as glucocorticoids bind to the ubiquitous intracellular glucocorticoid steroid receptor present in most cell types they also exert serious systemic metabolic side effects. Thus dexamethasone causes the spleen to undergo a corticosteroid-induced weight reduction due to lymphocyte depletion\(^{[20]}\). Accordingly, the high dose dexamethasone in our study decreased the spleen weight as compared with the other groups reflecting systemic non-macrophages effects. In contrast, the conjugate did not affect spleen weight and was still found to exert a potent anti-inflammatory effect.

In our animal model, the conjugate was given as a pre-emptive dose prior to the induction of the acute phase response as we aimed at establishing a proof-of-concept position of the conjugate’s effects. We believe our findings support further studies on interference with on-going inflammation in relevant experimental models. Such studies are also essential for monitoring of long term effects of the conjugate.

In conclusion, the anti-CD163-dexa conjugate demonstrated potent effects in reducing the acute phase proteins without evident systemic side effects during an endotoxin-induced acute phase response in rats. The effect much exceeded that of a therapeutic dose of dexamethasone. Thus, the antibody conjugate may be a potential candidate in future anti-inflammatory macrophage-directed therapy, e.g., in liver diseases with Kupffer cells activation\(^{[7]}\).

ACKNOWLEDGMENTS

We are indebted to Rikke Andersen, Birgitte Nielsen, and Kirsten Priisholm for their skilled technical assistance.

COMMENTS

Background

In conditions with macrophage proliferation and activation, CD163, a scavenger
Thomsen KL et al. Anti-CD163-dexamethasone inhibits the acute phase response

receptor expressed exclusively on monocytes and macrophages, is upregulated. As an example, hepatic macrophages (Kupffer cells) are activated and CD163 is increased in patients with liver cirrhosis who chronically experience some degree of endotoxemia and acute phase response.

Research frontiers

The authors have recently constructed a conjugate of CD163 antibody and the potent corticosteroid dexamethasone (anti-CD163ImmAb-dexa) specifically targeting dexamethasone to activated macrophages.

Innovations and breakthroughs

The anti-CD163-dexa conjugate exerts an anti-inflammatory effect, which is obtained with very low concentration of dexamethasone, thereby minimizing steroid-induced systemic effects.

Applications

The antibody conjugate may be a potential candidate in future anti-inflammatory macrophage-directed therapy, e.g., in liver diseases with Kupffer cells activation.

Peer-review

This is an experimental report written by Thomsen et al, which indicates an efficacy of dexamethasone-conjugated anti-CD163 against lipopolysaccharide-induced acute inflammatory reaction. The well-designed study was carried out using firm methods.

REFERENCES

1. Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ, Law SK, Moestrup SK. Identification of the haemoglobin scavenger receptor. Nature 2001; 409: 198-201 [PMID: 11966440 DOI: 10.1038/35051594]
2. Moestrup SK, Møller HJ. CD163: a regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response. Ann Med 2004; 36: 347-354 [PMID: 15478309 DOI: 10.1080/078538904100033171]
3. Møller HJ, de Fost M, Aerts H, Hollak C, Moestrup SK. Plasma level of the macrophage-derived soluble CD163 is increased and positively correlates with severity in Gaucher’s disease. Eur J Haematol 2004; 72: 135-139 [PMID: 14962251 DOI: 10.1046/j.0910-1849.2003.00193.x]
4. Schaar DJ, Schleifenbaum B, Kurrer M, Imhof A, Bächli E, Fehr J, Møller HJ, Moestrup SK, Schaffner A. Soluble hemoglobin-haptoglobin scavenger receptor CD163 as a lineage-specific marker in the reactive hemophagocytic syndrome. Eur J Haematol 2005; 74: 6-10 [PMID: 15613100 DOI: 10.1111/j.1600-0699.2004.00318.x]
5. Hintz KA, Rassias AJ, Wardwell K, Moss ML, Morganelli PM, Pioli PA, Iwannikawa K, Wallace PK, Yeager MP, Guerre MP. Endotoxin induces rapid metalloprotease-mediated shedding followed by up-regulation of the monocyte hemoglobin scavenger receptor CD163. J Leukoc Biol 2002; 72: 711-717 [PMID: 12377940]
6. Gronbaek H, Sandahl TD, Mortensen C, Vilstrup H, Møller HJ, Møller S. Soluble CD163, a marker of Kupffer cell activation, is related to portal hypertension in patients with liver cirrhosis. Aliment Pharmacol Ther 2012; 36: 173-180 [PMID: 22591184 DOI: 10.1111/j.1365-2036.2012.05134.x]
7. Sandahl TD, Grønbaek H, Møller HJ, Stoy S, Thomsen KL, Dige AK, Aghajani J, Hamilton-Dutoit S, Thiel S, Vilstrup H. Hepatic macrophage activation and the LPS pathway in patients with alcoholic hepatitis: a prospective cohort study. Am J Gastroenterol 2014; 109: 1749-1756 [PMID: 25155228 DOI: 10.1038/ajg.2014.262]
8. Mookerjee RP, Sen S, Davies NA, Hodges SJ, Williams R, Jalan R. Tumour necrosis factor alpha is an important mediator of portal and systemic haemodynamic derangements in alcoholic hepatitis. Gut 2003; 52: 1182-1187 [PMID: 12865279 DOI: 10.1136/gut.52.8.1182]
9. Graversen JH, Svendsen P, Dagnæs-Hansen F, Dal J, Anton G, Ejerodt A, Petersen MD, Christensen PA, Møller HJ, Moestrup SK. Targeting the hemoglobin scavenger receptor CD163 in macrophages greatly increases the anti-inflammatory potency of dexamethasone. Mol Ther 2012; 20: 1550-1558 [PMID: 22643864 DOI: 10.1038/mt.2012.103]
10. Granfeldt A, Hvas CL, Graversen JH, Christensen PA, Petersen MD, Anton G, Svendsen P, Solling C, Ejerodt A, Tønnesen E, Moestrup SK, Møller HJ. Targeting dexamethasone to macrophages in a porcine endotoxin model. Crit Care Med 2013; 41: e309-e318 [PMID: 23928834 DOI: 10.1097/CCM.0b013e31828a45ef]
11. Milland J, Tyskin A, Thomas T, Aldred AR, Cole T, Schreiber G. Gene expression in regenerating and acute-phase rat liver. Am J Physiol 1990; 259: G340-G347 [PMID: 1698035]
12. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 1999; 340: 448-454 [PMID: 9971870 DOI: 10.1056/NEJM199902113400607]
13. Rehman AA, Ahsan H, Khan FH. α-2-Macroglobulin: a physiological guardian. J Cell Physiol 2013; 228: 1665-1675 [PMID: 23086799 DOI: 10.1002/jcp.24266]
14. Li L, Whiteman M, Moore PK. Dexamethasone inhibits lipopolysaccharide-induced hydrogen sulphide biosynthesis in intact cells and in an animal model of endotoxic shock. J Cell Mol Med 2009; 13: 2684-2692 [PMID: 19120693 DOI: 10.1111/j.1582-4934.2008.00610.x]
15. Hattori Y, Murakami Y, Atsuta H, Minamino N, Kagawa K, Kasai K. Glucocorticoid regulation of adrenomedullin in a rat model of endotoxic shock. Life Sci 1998; 62: PL181-PL189 [PMID: 9519804 DOI: 10.1016/S0024-3205(98)00049-6]
16. Nielsen SS, Grefste T, Tysgstrup N, Vilstrup H. Synthesis of acute phase proteins in rats with cirrhosis exposed to lipopolysaccharide. Comp Hepatol 2006; 5: 3 [PMID: 16968543 DOI: 10.1186/1476-5926-5-3]
17. Geiger T, Andus T, Klapproth J, Hirano T, Kishimoto T, Heinrich PC. Induction of rat acute-phase proteins by interleukin 6 in vivo. Eur J Immunol 1988; 18: 717-721 [PMID: 2454191 DOI: 10.1002/eji.1830180510]
18. Naveau S, Poynard T, Benattar C, Bedossa P, Chaput JC. Alpha-2-macroglobulin and hepatic fibrosis. Diagnostic interest. Dig Dis Sci 1994; 39: 2426-2432 [PMID: 7525168 DOI: 10.1007/BF02087661]
19. McColl A, Michlewski S, Dransfield I, Rossi AG. Effects of glucocorticoids on apoptosis and clearance of apoptotic cells. ScientificWorldJournal 2007; 7: 1165-1181 [PMID: 17704849 DOI: 10.1101/tsw.2007.224]
20. Rungruang T, Chaweeworfiresit P, Klosek SK. Effect of malaria infection and dexamethasone on spleen morphology and histology. Southeast Asian J Trop Med Public Health 2010; 41: 1290-1296 [PMID: 21329300]

P- Reviewer: Ikuya Y, Liu ZH, Pan JJ, Tsoulfas G, Zhu X
S- Editor: Ji FF
E- Editor: Liu SQ
