Bacterial partition complexes segregate within the volume of the nucleoid

Antoine Le Gall, Diego I. Cattoni, Baptiste Guilhas, Céline Mathieu-Demazière, Laura Oudjedi, Jean-Bernard Fiche, Jérôme Rech, Sara Abrahamsson, Heath Murray, Jean-Yves Bouet & Marcelo Nollmann

Precise and rapid DNA segregation is required for proper inheritance of genetic material. In most bacteria and archaea, this process is assured by a broadly conserved mitotic-like apparatus in which a NTPase (ParA) displaces the partition complex. Competing observations and models imply starkly different 3D localization patterns of the components of the partition machinery during segregation. Here we use super-resolution microscopies to localize in 3D each component of the segregation apparatus with respect to the bacterial chromosome. We show that Par proteins locate within the nucleoid volume and reveal that proper volumetric localization and segregation of partition complexes requires ATPase and DNA-binding activities of ParA. Finally, we find that the localization patterns of the different components of the partition system highly correlate with dense chromosomal regions. We propose a new mechanism in which the nucleoid provides a scaffold to guide the proper segregation of partition complexes.
he preservation of all living forms relies on the faithful segregation of their duplicated genetic material upon cell division. To assure the relocalization of replicated DNA, prokaryotic organisms have evolved dedicated apparatuses, namely partition systems (Par), that are classified according to the nature of the ATPase providing the energy to displace DNA.<ref>1,2</ref> In particular, Type I Par systems are the most prevalent in low copy-number plasmids and the only type known to be present on bacterial chromosomes<ref>3</ref>. It contains three essential elements: a repeat of centromere-like DNA sequences (parS), a DNA-binding protein (ParB) and a deviant Walker A-type ATPase (ParA)<ref>4</ref>. ParB specifically recognizes parS and, upon binding, forms the partition complex (ParBS)<ref>5-8</ref> that will be displaced by the action of ParA. The partition systems of plasmids F and P1 in Escherichia coli, and of the chromosome of Bacillus subtilis<ref>9</ref>, are among the best characterized.<ref>9</ref>

Different models have been proposed to account for the assembly of partition complexes and for the role of ParA in their segregation. At physiological levels, ParB binds over a large genomic region flanking parS (10–12 kb). This extended binding pattern has been interpreted as resulting from the onedimensional spreading of ParB from parS<ref>10-12</ref> and more recently because of the dynamic stochastic binding and unbinding of ParB around parS<ref>13</ref>. Partition complexes are initially positioned at midcell and segregate to their new subcellular locations after or concomitantly with replication<ref>1</ref>. Importantly, proper segregation of partition complexes requires the ParB-stimulated ATPase activity of ParA as well as ParA’s ability to bind nonspecific DNA (ns-DNA). Altering these activities leads to different degrees of plasmid instability and chromosome segregation defects<ref>14-18</ref>.

Two families of models have been developed to explain the mechanism by which ParA segregates partition complexes. The first class of models (‘filament’ models) proposes that dynamic ParA filaments pull partition complexes to their resting positions, either around or straight through the nucleoid (Fig. 1a, upper panel)<ref>19,20</ref>. The second class of models (‘non-filament’ models) involves a diffusion-ratchet mechanism (‘brownian-ratchet’ model) in which ParA dimers or short filaments push–pull partition complexes on the surface of the nucleoid (Fig. 1a, lower panel)<ref>21-24</ref>. A variation of this mechanism (‘DNA relay’ model) was recently proposed in which chromosome elasticity also plays a role by partly powering movement of the partition complex<ref>25</ref> (Fig. 1a, lower panel). All these models were largely based on biochemical assays (for example, polymerization, DNA binding and ATPase activity assays), two-dimensional (2D) imaging and in vitro microscopy assays monitoring the dynamics of ParB-bound plasmids on a 2D ParA-bound DNA carpet, and proposed that partition components segregate through the space between the nucleoid surface and the membrane. In brief, these various models proposed distinct localization patterns of Par components within or around the nucleoid. Importantly, these patterns constitute essential ingredients of the proposed mechanisms. Discerning between these models requires the knowledge, in vivo, of the precise three-dimensional (3D) localization of the machinery components, yet so far this has been limited by the optical resolution of conventional microscopy methods.

Here we combine whole-chromosome labelling strategies with multicolour 3D super-resolution technologies to investigate the segregation machineries of plasmid F and the B. subtilis chromosome. Our strategy allowed us to reveal that partition complexes as well as the ParA ATPase reside within the nucleoid interior. By functional studies, we determine that both Walker-type ATPase and dynamic DNA-binding activities of ParA are necessary for proper volumetric relocalization of partition complexes during segregation. Finally, we unveil that both partition complexes and ParA tend to colocalize with high-density chromosomal regions (HDRs), suggesting a new mechanism by which chromosomal DNA may play a role by locally enriching components of the segregation apparatus to promote proper segregation.

Results

Partition complexes reside inside the bacterial nucleoid. We first implemented an experimental strategy to directly detect the 3D localization of partition complexes within the volume of the nucleoid. To this end, we combined high-density whole-chromosome labelling with high-throughput, 3D structured illumination microscopy (3D-SIM)<ref>26</ref>, a super-resolution method that provides a twofold increase in both lateral and axial resolution as compared with diffraction-limited microscopies. DNA was either fluorescently labelled by the ns-DNA-binding protein histone-like U93 (HU) tagged with monomeric fluorescent protein mCherry (nucleoids in E. coli strains) or by the intercalating agent 4,6-diamidino-2-phenylindole (nucleoids in B. subtilis strains), while localization of partition complexes was detected by tagging ParB with a fluorescent tag. ParB from the F-plasmid (ParBF or SopB) was tagged with monomeric Venus (mVenus) at the locus under the control of the endogenous autoregulated promoter, while B. subtilis ParB (ParB_{Bsu} or Sop01) was tagged using monomeric green fluorescent protein (GFP) also at its natural locus (see Supplementary Methods).

We simultaneously imaged the bacterial chromosome and plasmidic/chromosomal ParB by 3D-SIM. E. coli nucleoids displayed a range of sizes between 800 and 4,000 nm in length and 530 ± 50 nm in width (full-width at half-maximum (FWHM); Supplementary Fig. 1A,B). ParB foci were observed in a large proportion of cells (~98%; Fig. 1b,c, and pie charts therein), consistent with the fluorescent tag not affecting plasmid stability<ref>13</ref> or chromosome segregation<ref>26</ref>. The number of partition complexes per nucleoid (2.2 ± 0.8, mean ± s.d., Supplementary Fig. 1C) agreed well with the distributions observed using widefield microscopy or photo-activated localization microscopy (PALM)<ref>13</ref>. Partition complexes had a typical size of 140 ± 35 nm (Supplementary Fig. 2), consistent with the sizes of partition complexes recently reported using PALM (~150 nm)<ref>13</ref>.

Importantly, partition complexes were confined within the bacterial nucleoid for both plasmidic and chromosomal systems (Fig. 1b,c), consistent with preliminary observations from B. subtilis ParB<ref>26</ref>. Single projections of isolevel representations of 3D densities can often be misleading. Thus, we developed an algorithm to simultaneously visualize both colours (that is, nucleoid and ParB) in 3D as well as the three orthogonal 2D projections at the single-cell level. This visualization clearly reveals that ParB is localized within the bacterial nucleoid, and is particularly close to the centre of the nucleoid long axis (Fig. 1d,e, Supplementary Movies 1 and 2 and Supplementary Fig. 3). To determine whether this localization pattern was observed at the population level, we built localization density histograms of the positions of partition complexes within nucleoids from thousands of cells (see Methods for details). Figure 1f,g displays the projection of the cumulated localization of partition complexes for nucleoids of similar sizes (<1,500 nm in length) in 2D representations (xy and yz planes). Lateral histograms (xy plane) revealed that both plasmidic and chromosomal partition complexes are positioned along the longitudinal axis (Fig. 1f,g). ParBS_{Bsu} partition complexes localized to the quarter nucleoid positions, while ParBS_{Bsu} complexes were positioned close to the nucleoid edges, as recently described<ref>26,27</ref>. Importantly, axial histograms (yz plane) revealed that ParBF and ParBS_{Bsu} complexes were also radially confined to the centre of the nucleoid axis (Fig. 1f,g, lower panels) but with a larger spread with respect to the nucleoid volume because of the lower axial resolution of 3D-SIM.
Acquisition of a single two-colour volume in 3D-SIM requires ~20–50 s and involves complex image-reconstruction algorithms. Thus, we used a second advanced microscopy method to discard any potential image-blurring effects caused by the movement of the nucleoid and partition complexes during the acquisition time or any image-reconstruction artefact. Multifocus microscopy (MFM)28 allows for multicolour, near-instantaneous volumetric acquisitions (~25 ms per channel) of biological specimens. Particularly, MFM permits the simultaneous acquisition of nine imaging planes and thus the volumetric acquisitions of entire nucleoids and partition complexes in a single snapshot without resorting to complex image-reconstruction algorithms (Fig. 1h, left and middle panels and Supplementary Fig. 4). Simultaneous MFM imaging of nucleoids and ParB resulted in equivalent results to those obtained by 3D-SIM (Fig. 1h, right panel).

Overall, these results demonstrate that the localization of partition complexes does not require interactions with the bacterial nucleoid surface. However, in that case, how can the ParA ATPase interact with ParB nucleoprotein complexes positioned inside the nucleoid?

ParA displaces ParB within the bacterial nucleoid. Previous *in vitro* and 2D microscopy studies have led to a model in which ParA forms filaments (Fig. 1a)19,20,29. To test this model, we imaged ParA-mVenus using 3D-SIM. We observed that ParA spreads into gradient-like, asymmetric structures with higher density of protein at one nucleoid pole (Fig. 2 and Supplementary Movie 3). The lateral and axial projections of the 3D volume of ParA revealed smaller and dimmer fluorescent patches distributed along the ParA density (Fig. 2a). To determine whether these asymmetric, discontinuous ParA structures distributed over the membrane/nucleoid surface or rather penetrated the nucleoid volume, we imaged ParA-mVenus and nucleoid simultaneously by multicolour 3D-SIM (Fig. 2b and Supplementary Movie 4). Strikingly, ParA was distributed within the interior of the nucleoid extending asymmetrically along the long cell axis. 2D lateral histograms of ParA localization (xy plane) were constructed as previously described but aligning...
evaluated the subnucleoid localization of partition complexes in absence of ParAF and for specific ParAF mutants known to affect DNA binding and ATP hydrolysis activities. First, *E. coli* cells carrying the ParBS system but not ParAF were grown with antibiotics to maintain the F-plasmid. In absence of ParAF, partition complexes displayed a very dynamic behaviour that could not be captured using 3D-SIM. As the localization of partition complexes in wild-type cells is equivalent when imaged either by 3D-SIM or widefield deconvolution microscopy (Supplementary Fig. 5), we turned to the latter technique to facilitate the detection of partition complexes in mutant strains. About 55% of cells showed distinct bright ParB foci compared with >98% of cells carrying the wild-type ParAB partition system (Figs 1b and 3a). This finding is expected from the plasmid loss rate observed without ParAF (Supplementary Table 1). Volumetric views of single nucleoids reveal that most ParB foci were now located outside the nucleoid (Fig. 3b and Supplementary Movies 5–6). These single-cell observations were recapitulated at the population level by calculating the lateral and axial histograms of ParB localization. ParB was preferentially located at the nucleoid periphery, while the nucleoid interior was mostly devoid of ParB density (Fig. 3c). These results indicate a key role of ParAF in the localization of the partition complex within the nucleoid volume.

We next investigated how two key activities of ParAF—ATPase stimulation by ParB and ns-DNA binding—regulate the localization of partition complexes by employing ParAF mutants. ParAFK120Q retains wild-type basal ATPase hydrolysis rate; however, its ATPase activity is no longer stimulated by ParB [30]. In contrast, ParAFK340A retains its ability to interact with ParB but is partially impaired at ns-DNA-binding [14,18]. The percentage of cells displaying ParB foci was reduced from 98% (wild type) to 41% and 21% in the mutants (ParAFK120Q and ParAFK340A, respectively, pie charts in Fig. 3d–g, and Supplementary Table 1). Partition complexes localized outside the nucleoid volume for both ParAF mutants (Fig. 3e–h and Supplementary Movies 7–9) and tended to localize to regions displaying less spatial confinement (that is, near cell poles and at the locations of future division septa), as previously shown for large protein complexes or plasmids without partitioning systems [31,32]. To validate these results at the population level, we calculated the mean localization of partition complexes within nucleoids (Fig. 3f–i). For ParAFK120Q, lateral (XY) ParB density histograms (Fig. 3f) displayed a similar pattern of localization than that of cells lacking ParAF (Fig. 3c), with partition complexes clearly locating at the exterior of the nucleoid. ParAFK340A also exhibited abnormal distributions of ParB but with a more heterogeneous distribution (Fig. 3i) likely because of residual interactions between ParAFK340A and ParB as well as with ns-DNA. Interestingly, axial ParB density histograms (yz) for both mutants showed a disturbed radial profile in which ParB localized mostly to the edges of nucleoids (Fig. 3f–i, right panels). These results indicate that proper volumetric localization of partition complexes requires ns-DNA binding by ParA as well as the stimulation of ParA’s ATPase activity by ParB.

The partition machinery localizes to high-density regions. We recently described the existence of a new structural feature of the bacterial nucleoid of *B. subtilis*: HDRs [26]. HDRs represent regions of the nucleoid with denser DNA content and only resolvable by super-resolution microscopies. As both ParB and ParA distributed within the nucleoid volume, we evaluated whether HDRs played a role in their localization.

Using two-colour 3D-SIM, we simultaneously imaged the nucleoid using HU-mCherry labelling and ParB-mVenus. Volumetric images of the nucleoid revealed that HDRs are also

ParA regulates the volumetric localization of ParBS. These results suggest that the nucleoid scaffold itself or the interaction between partition complexes and ParA could be responsible for the intranucleoid localization of the components of the segregation machinery. To functionally test these hypotheses, we...
Figure 3 | ParAF determines the 3D localization of partition complexes within bacterial nucleoids. (a-g) Widefield deconvolution imaging of E. coli cells harbouring F-plasmid (a) lacking ParAF (DLT3053/pJYB263; d) with ParAF^Δ(QLQ) (DLT3053/pJYB277) and (g) with ParAF^Δ(K340A) an allele with reduced ns-DNA-binding capacity (DLT3053/pJYB279). Representative fields of view of two-colour widefield deconvolution imaging of HU-mCherry-labelled nucleoids (red) and ParB_f-mVenus (green) are shown for each of the mutants. Pie charts represent the percentage of nucleoids with (green) and without (red) ParB_f foci, reflecting the frequency of plasmid loss in these mutants. (b-h) Characteristic 3D volume of single nucleoids (solid red) and ParB_f foci (green) with orthogonal 2D projections of nucleoid (red contours) and ParB_f densities (green spots) for the three mutants shown in a-g. (c-i) 2D density distributions of ParB_f intensity signal along the xy (lateral) and yz (axial) planes for mutants displayed in a-g. Solid black lines represent nucleoid periphery. See legend of Fig. 1f,g and Methods for more details. Residual ParB_f density at midcell in h,i arises from ParB_f at the centre of nucleoids about to split (see examples in e,f). N represents number of cells. All panels of the figure depict one representative experiment of at least two biological replicates.

a common feature of E. coli chromosomes (Fig. 4a and Supplementary Movie 10). HDR positions in E. coli were detected as previously described²⁶ (see Methods for details). Interestingly, HDRs and ParB_f displayed a degree of colocalization (63 ± 36%, N = 4,744) larger than random (20%, Fig. 4b and Supplementary Figs 6A and 7A), suggesting that partition complexes may interact with high-density chromosomal DNA regions during segregation and persist throughout the cell cycle (Supplementary Fig. 7C). Next, we simultaneously imaged ParAF-GFP and HU-labelled nucleoids at super resolution. Interestingly, overlays of HDRs with ParAF exhibited a large degree of positional correlation, even higher than that observed for partition complexes (82 ± 24%, N = 9,553; Fig. 4c and Supplementary Figs 6B and 7B). ParA and ParB_f form dynamic complexes; thus, slight differences in position between HDRs/ParA-ParB_f complexes may arise from movement of complexes between acquisitions (~20 s).

To investigate whether localization of ParAF to HDRs influenced the process of segregation, we followed the dynamic movement of single ParAF molecules in live cells using single-particle tracking PALM (spt-PALM)^{33,34}. Wild-type and ParAF mutants were labelled with the photo-activatable fluorescent protein mEos2. Histograms of the mean-squared displacement from individual trajectories of wild-type ParAF revealed two distinct species: a dynamic population that explored large regions of the nucleoid and a static species that localized to discrete patches (Fig. 4d,e). The diffusion coefficients of these species were consistent with previous observations of DNA-associated proteins and free proteins.³⁵ The number of static ParA patches was similar to the number of ParA patches colocalizing with HDRs observed by 3D-SIM (compare panels c and e of Fig. 4). Strikingly, for the ParA mutant with reduced ns-DNA-binding capacity (ParAF^Δ(K340A)), the static population became negligible and the localization of ParA was homogeneous over the entire nucleoid (Fig. 4f,g). Importantly, this ParA mutation leads to abnormal positioning of partition complexes and to segregation defects (Fig. 3g-i), indicating ParA localization to HDRs is important for the volumetric localization and proper segregation of partition complexes.

Our results show that there is an apparent correlation between the 3D positions of HDRs and ParA/ParB_f complexes. To determine whether this positional correlation is conserved during the cell cycle, we analysed the localizations of ParA and ParB_f complexes together with those of HDRs as a function of nucleoid size, which directly correlate with the cell cycle stage³⁶. First, we computed the probability density of localization of HDR as a function of nucleoid length and longitudinal position. Maxima in the HDR probability density represent regions where HDRs display a conserved or enriched subcellular localization (Fig. 4h). HDR maxima were localized at midcell for nascent nucleoids, and...
moved to quarter positions where they remained until the next cycle of cell division. By two-colour 3-D SIM, we simultaneously localized the positions of ParB and calculated their probability density of localization as a function of cell cycle progression. Strikingly, we observed that the segregation pattern of ParBS complexes followed closely that of HDR maxima (Fig. 4i, see overlayed dashed line for density of HDR maxima), consistent with our previous studies of B. subtilis ParB30. Both HDR and ParBS maxima in the localization density maps forked at a nucleoid size of ~2,300 nm (Fig. 4h,i, horizontal grey lines). Finally, we performed a similar experiment to detect the mean DNA density of HDRs/ParA and ParA-mVenus as a function of the cell cycle. Dashed purple lines in Fig. 4h,i provide a guide to the eye for the localization pattern of HDR maxima from Fig. 4h. Colour-coded scale (a.u.) represents HDR/ParB F/ParAF density. N depicts the number of nucleoids analysed. All panels depict one representative experiment of at least five biological replicates.

Discussion

In this study, we investigated the mechanism of segregation of two model partition systems in bacteria by combining 3-D SIM, MFM, spt-PALM and widefield deconvolution microscopy with quantitative high-throughput analysis. Our experiments demonstrate that all components of the partition machinery are localized within the nucleoid interior during segregation, and that the DNA-binding and ATPase activity of the ParA transport protein are essential for this localization. These results call for a re-evaluation of several aspects of previously proposed models.

Two main mechanisms were proposed to account for the segregation of bacterial partition complexes: filament and brownian-ratchet-like models37 (Fig. 1a). Filament models proposed that ParA functions as a nucleoid-spanning filament that either pushes or pulls partition complexes19,20. In contrast, we failed to observe extended ParA filaments using either 3-D SIM or spt-PALM. These results are compatible with recent
observations in which it was shown by 2D sub-diffraction imaging that *Caulobacter crescentus* ParA does not form continuous filaments. Overall, these results are inconsistent with extended ParA filaments or helical structures driving segregation of partition complexes. Importantly, our ability to detect the 3D localization of ParA within the nucleoid allowed us to determine that ParA localizes specifically within the volume of the nucleoid. This volumetric localization of ParA is consistent with previous reports in other model systems, suggesting that it may constitute a universal property of partition complexes. In addition, we observed by both 3D-SIM and Spt-PALM that ParA forms small patches extending between nucleoid poles through the interior of the nucleoid (see model below).

On the basis of the observation of 2D diffusion of partition complexes on DNA-coated surfaces *in vitro*, most recent models postulated that partition complexes are segregated over the nucleoid surface via interactions with ns-DNA-bound ParA dimers or oligomers. This model attributed a function to the nucleoid surface via interactions with ns-DNA-bound ParA postulated that partition complexes are segregated over the continuous filaments. Overall, these results are inconsistent with previous observations of the localization of HDRs. Our findings are consistent with previous reports in other model systems, suggesting that the altered localization of HDRs (Supplementary Fig. 8), consistent with ParBS complexes being constitutively located close to regions of high chromosomal DNA density. Remarkably, segregation patterns of HDR maxima and ParB are also highly correlated in *B. subtilis*, despite the different cell cycle localization patterns of ParB in these species (Supplementary Fig. 9). However, in *B. subtilis*, ParB patterns do not follow HDR maxima as closely as those reported in *E. coli*, which could be explained by important differences in the genomic and spatial sizes of partition complexes of Par systems from these two species. In *E. coli*, replication origins are located at the centre of new cells and segregate to quarter positions concomitantly with replication. This precise choreography closely resembles that of HDR maxima, and suggests that they may correspond to replication origin regions as in *B. subtilis*. Overall, these observations suggest that the subcellular localization of partition complexes may also be influenced by the host replication/segregation machinery.

In *E. coli*, HDRs occupy the nucleoid volume and are more likely found close to the longitudinal nucleoid axis (Fig. 4a–c and Supplementary Fig. 9). ATP-bound ParA interacts with ns-DNA and with itself. Thus, these two activities and the volumetric localization of HDRs are consistent with the observation that ParA forms patches localizing at a discrete number of positions within the nucleoid volume. This may serve for the spatial concentration of the cellular pool of ParA into a small number of locations distributed inside the nucleoid, as suggested by the high degree of ParA colocalization with HDRs (>80%; Fig. 4c and Supplementary Fig. 7B) and the absence of ParA patches when its nonspecific interaction with DNA is impaired (Fig. 4f,g). In contrast to ParB, ParA maxima are located at the edges of the nucleoid, and split when chromosomal DNA density at the centre of the nucleoid begins to dwindle (Fig. 4j), consistent with the oscillatory behaviour of ParA (ref. 45). Thus, the segregation pattern of ParA maxima seems in part to define the subcellular localization of ParBS complexes, and conversely ParA appears depleted in regions of high ParBS density. These observations are consistent with partition complexes dynamically following ParA concentration gradients, triggering ParA dissociation by direct interaction with ParB.

In absence of ParA, partition complexes displayed a very dynamic behaviour and lost their volumetric localization pattern. These results indicate that ParA directly participates in the

Figure 5 | Hitch-hiking model for bacterial chromosome segregation. The Hitch-hiking model for bacterial chromosome segregation. See text for description. Cell outline is shown as a grey mesh, nucleoid as a red cylinder, ParBS partition complexes in green, static DNA-bound ParA in cyan, free ParA-ADP in blue and HDRs as red diffuse circles.
tethering of partition complexes to the nucleoid interior. Importantly, the ability of ParA to bind ns-DNA and to hydrolyse ATP through ParB, stimulation were the key for the maintenance of partition complexes within the nucleoid volume (Fig. 3). In these mutants, partition complexes were excluded from the nucleoid volume, likely because of impaired formation of ParA concentration gradients and localized to the space between nucleoid and cell membrane mostly at cell poles. These findings are in good agreement with previous observations of higher intracellular mobility of par minus plasmids and with nucleotide-bound state of ParA and ns-DNA binding playing a role in the longitudinal positioning of partition complexes.

Thus, we favour a mechanism (‘hitch-hiking’ model) in which partition complexes are segregated by being recruited to high-density regions within the nucleoid by interactions mediated by the ParA ATPase. In this model (Fig. 5),

1. ParA assembles in small patches at regions of high DNA density. This could arise by the ns-DNA-binding activity of ParA and the local high concentration of DNA within HDRs. Dissociation of ParA from ns-DNA requires either ATP hydrolysis or direct interaction with ParB, thus, dissociation of short ParA oligomers is prevented when ParA is at HDRs. Without the presence in the close proximity of ParB or partition complexes, these ParA oligomers are relatively stable.

2. Partition complexes are most likely formed by nucleation and caging of hundreds of ParB dimers around a cluster of parS sites into small complexes (<150 nm, Supplementary Fig. 2) ParB and parS-bound ParB strongly stimulate the ATPase activity of ns-DNA-bound ParA complexes (40- and 120 fold, respectively), leading to their dissociation from DNA. Thus, interactions of ParB with HDR-bound ParA patches may trigger their progressive dissociation from HDRs, and subsequently release partition complexes from HDRs (Fig. 5, left panel). Unbound/ADP-bound ParA dimers can then rapidly diffuse, reload ATP to become competent for ns-DNA binding (after a time delay and preferentially oligomerize at new HDRs (Fig. 5, right panel).

3. This ‘scanning’ allows ParA oligomers to be up to date with changes in the configuration of the nucleoid, and to hitch-hike on HDRs.

4. Interactions of ParB with ns-DNA-bound ParA are dynamic and could lead to a bias in the diffusion of partition complexes towards HDR-bound ParA patches. The radial concentration of ParA from the cytoplasm towards the longitudinal axis of the nucleoid, where DNA/ParA is more concentrated, could drive the partition complex within the nucleoid volume, where local gradients in ParA along the longitudinal axis of the nucleoid temporarily hold it in place. Once ParB has depleted local ParA in its vicinity, it can diffuse to the most proximal HDR enriched in ParA, hence moving along the heterogeneous distribution of ParA. The confinement diameter of ~200 nm of ParB foci obtained from tracking experiments indicates that the area explored by partition complexes is comparable to the distance between ParA patches (248 ± 74 nm, see Supplementary Fig. 10). Thus, diffusion should allow partition complexes to bridge two ParA patches without stalling. In brief, partition complex movement is composed of a brownian diffusion component and a directional bias, the essential constituents of a brownian-ratchet (Fig. 5).

Recently, we observed that the B. subtilis chromosome dynamically condenses/de-condenses during its replication cycle. Decondensation of the origin domain (containing most chromosomal parS sites) seems to occur concomitantly with replication initiation and with the relocalization of the origin from nucleoid pole to the middle of the new nucleoid. This relocalization is accompanied by a global change in replichore organization from a longitudinal to a transverse orientation. Interestingly, a similar change in replichore organization was recently proposed for E. coli. Thus, origin decondensation upon replication may lead to the preferential relocalization of ParA at HDRs other than the origin. We hypothesize that newly replicated origin regions may thus follow the bias in ParA localization to move away towards their new subcellular localizations. Future experiments will need to be performed to test these hypotheses.

Members of the ParA/MinD family are involved in the subcellular positioning of a large number of protein machineries with a diverse variety of functions, including the conjugal transfer and type IV pilus apparatus, cell-base synthesis devices and cytoplasmic chemotaxis clusters. Presumably, because of the nucleoid acting as a diffusion barrier and/or because of nucleoid exclusion forces, large complexes have been assumed to occupy the cytosolic space or to use the inner bacterial membrane as a scaffold. Our findings reinforce the need of volumetric super-resolution imaging of subcellular structures and machineries on the cellular context to determine the role of subcellular ultrastructures, such as the nucleoid or the cell membrane, in the process of transport. It remains to be demonstrated whether, as it occurs for the F-plasmid and B. subtilis chromosome, such transport systems employ the scaffold of the nucleoid and may thus co-opt other cellular machineries for the intracellular transport of large cargoes. We speculate that volumetric patterning of ParAs may have been evolutionarily advantageous in bacteria and archaea for a variety of biological functions to serve as molecular beacons for positioning and/or segregating all kinds of cargoes.

Methods

Bacterial strain and plasmids and growth conditions. Strains, plasmids and growth conditions are described in Supplementary Methods. For microscopy and plasmid stability assays, cultures were grown at 30 °C with aeration in a supplemented M9 minimal medium (MGC, Supplementary Methods). A full list of strains employed in this work is given in Supplementary Methods.

Fluorescence microscopy. 3D-SIM imaging was performed on an OMX V3 microscope (Applied Precision), using 405, 488 and 568 nm laser lines to excite DAPI, mVenus and mCherry respectively. To perform dual colour volumetric imaging, 15-17 slices were acquired sequentially for each colour with a Z step of 125 nm between each slice. Reconstruction and alignment of 3D-SIM images was performed using softWoRx v5.0 (Applied Precision). Widefield deconvolution imaging was conducted on the same experimental set-up and used the same channel alignment procedure and algorithm. Refer to Supplementary Methods for more details.

Data analysis. Data analysis was performed as described in Supplementary Methods and elsewhere. Briefly, cells and nucleoids were automatically segmented using a 3D maximum entropy thresholding algorithm for binary segmentation. The same methods were used to detect minimum and maximum surface/volume values for cells and nucleoids, respectively. Analysis of nucleoid length, width and height used the FWHM of the nucleoid long and short axes. Nucleoid dimensions were then used to draw the nucleoid contour in density histogram representations. ParB foci in each cell were detected as 3D local maxima, using a multidirectional derivation of the intensity scalar vector, and their positions were normalized by the nucleoid dimensions. Nucleoids depicted in figures were segmented by visual impression for 3D rendering of nucleoid surfaces (Figs 1d,e,2a,b,3b,e,h and 4a). 2D histograms of the positions of the ParB foci in the nucleoid were constructed with nucleoids of length <1,500 nm. The selected nucleoids were resampled 100 times using a bootstrapping method, and foci position orientations were randomized along the long, short and vertical axes of the nucleoids before computing 2D.
histograms. 2D histograms were generated by computing the 2D spatial distribution of number of local maxima weighted by their corresponding local voxel intensity in the 3D-SIM stack. The mean histogram was then calculated from the 100 smoothed histograms built from the 100 bootstrapped samples. Note that for YZ histogram construction, solely ParB foci whose longitudinal coordinates lie within 60% of the nucleoid length were considered in order to avoid the contribution from ParB foci at the nucleoid poles. Histograms of ParA distribution within the nucleoid were computed the same way but ParA foci/patch orientation along the nucleoid long axis was set to keep the brightest patches on one side. spt-PALM data analysis is described in Supplementary Methods.

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

1. Gerdes, K., Howard, M. & Stardenings, F. Pushing and pulling in prokaryotic DNA segregation. *Cell* **141**, 927–942 (2010).

2. Lutkenhaus, J. The ParA/MinD family puts things in their place. *Cell* **20**, 41–43 (2012).

3. Salje, J. Plasmid segregation: how to survive as an extra piece of DNA. *Crit. Rev. Biochem. Mol. Biol.* **45**, 296–317 (2010).

4. Ebersbach, G. & Gerdes, K. Plasmid segregation mechanisms. *Annu. Rev. Genet.* **39**, 453–479 (2005).

5. Funnell, B. E. The P1 plasmid partition complex at parS. The influence of Escherichia coli integration host factor and of substrate topology. *J. Biol. Chem.* **266**, 14328–14337 (1991).

6. Lin, D. C. & Grossman, A. D. Identification and characterization of a bacterial origin of DNA replication. *Science* **314**, 1352–1361 (2006).

7. Schumacher, M. A. & Funnell, B. E. Structures of ParB bound to DNA reveal interaction of SopA with non-specific DNA. *Mol. Microbiol.* **114**, 501–513 (2015).

8. Bouet, J. Y., Surtees, J. A. & Funnell, B. E. Stoichiometry of P1 plasmid partition complexes. *J. Biol. Chem.* **275**, 8213–8219 (2000).

9. Pinto, U. M., Pappas, K. M. & Winans, S. C. The ABCs of plasmid replication and segregation. *Nat. Rev. Microbiol.* **10**, 755–765 (2012).

10. Rodionov, O., Lobocka, M. & Yarmolinsky, M. Silencing of genes flanking the P1 plasmid centromere. *Science* **283**, 546–549 (1999).

11. Breier, A. M. & Grossman, A. D. Whole-genome analysis of the chromosome partitioning and segregation protein SpoIIIE (ParB) reveals spreading and origin-distal sites on the *Bacillus subtilis* chromosome. *Mol. Microbiol.* **64**, 703–718 (2007).

12. Murray, H., Ferreira, H. & Errington, J. The bacterial chromosome segregation protein SpoIIE spreads along DNA from parS nucleation sites. *Mol. Microbiol.* **61**, 1352–1361 (2006).

13. Sanchez, A. et al. Stochastic self-assembly of ParB proteins builds the bacterial DNA segregation apparatus. *Cell Syst.* **1**, 163–173 (2015).

14. Castaing, J.-P., Bouet, J.-Y. & Lane, D. F. Plasmid partition depends on interaction of SopA with non-specific DNA. *Mol. Microbiol.* **70**, 1000–1011 (2008).

15. Hester, C. M. & Lutkenhaus, J. Soj (ParA) DNA binding is mediated by conserved arginines and is essential for plasmid segregation. *Proc. Natl Acad. Sci. USA* **104**, 20326–20331 (2007).

16. Marston, A. L. & Errington, J. Dynamic movement of the ParA-like Soj protein of *B. subtilis* and its dual role in nucleoid organization and developmental regulation. *Mol. Cell* **4**, 673–682 (1999).

17. Autret, S., Nair, R. & Errington, J. Genetic analysis of the chromosome segregation protein SpoIIIE of *Bacillus subtilis*: evidence for separate domains involved in DNA binding and interactions with Soj protein. *Mol. Microbiol.* **41**, 743–755 (2001).

18. Ah-Seng, Y., Lopez, F., Pasta, F., Lane, D. & Bouet, J.-Y. Dual role of DNA in regulating ATP hydrolysis by the SopA partition protein. *J. Biol. Chem.* **284**, 30067–30073 (2009).

19. Ebersbach, G. & Gerdes, K. Bacterial mitosis: partitioning protein ParA oscillates in spiral-shaped structures and positions plasmids at mid-cell. *Mol. Microbiol.* **52**, 385–398 (2004).

20. Ptacin, J. L. et al. A spindelike apparatus guides bacterial chromosome segregation. *Nat. Cell Biol.* **12**, 791–798 (2010).

21. Vecchiaroli, A. G., Geol, Y., Neuman, K. C. & Mizuuchi, K. A moving ParA gradient drives transport of surface-confined cellular cargo. *Proc. Natl Acad. Sci. USA* **111**, 4880–4885 (2014).

22. Vecchiaroli, A. G. et al. ATP control of dynamic P1 ParA-DNA interactions: a key role for the nucleoid in plasmid partition. *Mol. Microbiol.* **78**, 78–91 (2010).

23. Vecchiaroli, A. G. et al. ATP control of dynamic P1 ParA-DNA interactions: a key role for the nucleoid in plasmid partition. *Mol. Microbiol.* **78**, 78–91 (2010).

24. Lim, H. C. et al. Evidence for a DNA-relay mechanism in ParABS-mediated chromosome segregation. *Elife* **3**, e02758 (2014).

25. Marbouty, M. et al. Condensin- and replication-mediated bacterial chromosome folding and origin condensation revealed by Hi-C and superresolution Imaging. *Mol. Cell* **59**, 1–15 (2015).

26. Sanchez, A. & Bouet, J. Y. Llopis, P. & Rudner, D. Z. *Bacillus subtilis* chromosome organization oscillates between two distinct patterns. *Proc. Natl Acad. Sci. USA* **111**, 12778–12882 (2014).

27. Abrahamsson, S. et al. Fast multicolor 3D imaging using aberration-corrected multifocus microscopy. *Nat. Methods* **10**, 60–63 (2013).

28. Ringgaard, S., van Zon, J., Howard, M. & Gerdes, K. Movement and equipping of plasmids by ParA filament disassembly. *Proc. Natl Acad. Sci. USA* **106**, 19369–19374 (2009).

29. Manley, S. et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. *Nat. Methods* **5**, 155–157 (2008).

30. Schumacher, M. A. & Grossman, A. D. Identification and characterization of a bacterial chromosome partitioning site. *Cell* **92**, 675–685 (1998).

31. Bouet, J. Y., Surtees, J. A. & Funnell, B. E. Stoichiometry of P1 plasmid partition complexes. *J. Biol. Chem.* **275**, 8213–8219 (2000).

32. Stylianidou, S., Kuwada, N. J. & Wiggins, P. A. Cytoplasmic dynamics of sister chromosomes. *Proc. Natl Acad. Sci. USA* **106**, 9063–9068 (2009).

33. Fisher, J. K. et al. Four-dimensional imaging of E. coli nucleoid organization and dynamics in living cells. *Cell* **153**, 882–893 (2013).

34. Vecchiaroli, A. G., Mizuuchi, K. & Bouet, B. E. Surfing biological surfaces: exploiting the nucleoid for partition and transport in bacteria. *Mol. Microbiol.* **86**, 513–523 (2012).

35. Niki, H., Yamauchi, Y. & Hiraga, S. Dynamic organization of chromosomal DNA in *Escherichia coli*. *Genes Dev.* **14**, 212–223 (2000).

36. Wang, X., Liu, X., Possoz, C. & Serratt, D. J. The two *Escherichia coli* chromosome arms locate to separate cell halves. *Genes Dev.* **20**, 1727–1731 (2006).

37. Nielsen, H. J., Li, Y., Youngren, B., Hansen, F. G. & Austin, S. Progressive segregation of the *Escherichia coli* chromosome. *Mol. Microbiol.* **61**, 383–393 (2006).

38. Bates, D. & Kleckner, N. Chromosome and replisome dynamics in *E. coli*: loss of sister cohesion triggers global chromosome movement and mediates chromosome segregation. *Cell* **121**, 899–911 (2005).

39. Vecchiaroli, A. G., Neuman, K. C. & Mizuuchi, K. A moving ParA gradient drives transport of surface-confined cellular cargo. *Proc. Natl Acad. Sci. USA* **111**, 4880–4885 (2014).

40. Vecchiaroli, A. G. et al. ATP control of dynamic P1 ParA-DNA interactions: a key role for the nucleoid in plasmid partition. *Mol. Microbiol.* **78**, 78–91 (2010).
were performed at the Montpellier Resource Imaging Facility. We acknowledge support from France-BioImaging (ANR-10-INBS-04).

Author contributions
A.L.G., D.I.C., J.-Y.B. and M.N. conceived the idea, designed the research and discussed the data; A.L.G., D.I.C., J.-Y.B. and M.N. wrote the paper; A.L.G. and D.I.C. performed the experiments, A.L.G. wrote analysis routines and analysed the data; L.O., J.-B.F., S.A., A.L.G. and M.N. designed and performed MFM experiments; B.G., J.B.F. and M.N. designed and performed spt-PALM experiments and analysis; J.R., C.M.-D., H.M. and J.Y.B. constructed cell lines.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Le Gall, A. *et al.* Bacterial partition complexes segregate within the volume of the nucleoid. *Nat. Commun.* 7:12107 doi: 10.1038/ncomms12107 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016