Validating the properties of *Ranunculus sceleratus* Linn. by performing spectroscopic techniques and modern chromatography

Madhulika*1, Dwivedi KN2, Sangeeta Gehlot1

1Department of Kriya Sharir, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
2Department of Dravyaguna, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India

Article History:

Received on: 16 Apr 2020
Revised on: 17 May 2020
Accepted on: 19 May 2020

Keywords:
Carbohydrate, Kandira, Pharmacognostic studies, Phytochemical screening, Thin layer chromatography

ABSTRACT

Ranunculus sceleratus Linn. is one of the well-known medicinal plants, being used from the ancient time in India and commonly called as “Jal dhaniya”. It belongs to Ranunculaceae family derived from two Latin Words “Rana” means frog and “uncia” means little and referred together as “little frog” and also species sceleratus for cursed. It is an aquatic perennial herb. It consists of a herbaceous hollow stem, firm tap root, branched rhizome and leaves having a smooth upper side. The green plant is toxic for livestock and uncomfortable to human skin. This plant can grow up to 0.60 m tall, and also used as a food, medicine and possess other uses. *Ranunculus sceleratus* Linn. is commonly spread in the temperate and cold region in Global distribution (Indonesia, Malaysia, Nepal, Sri Lanka and India). According to Bentham and Hooker classification *“Genera Plantarum”*, this plant belongs to the division Polypetalae of Dicotyledones which processes more than 600 species. The Phytochemical screening was performed according to API norms, in addition to this UV VIS, FTIR, TLC and HPLC test were also carried out for further validation. The spectroscopy and chromatography examination revealed the presence of flavonoids, phenols and various other Phytoconstituents in *Ranunculus sceleratus* Linn. The spectroscopy and chromatography validation can help us it for medicinal and commercial purposes.

Corresponding Author

Name: Madhulika
Phone: +91-9532854116
Email: madhulikaindia8@gmail.com

ISSN: 0975-7538
DOI: https://doi.org/10.26452/ijrps.v11i3.2756

© 2020 | All rights reserved.

INTRODUCTION

Ranunculus sceleratus Linn. is also known as Kandira (*Lucas*, 2008), it is grown in ponds, lakes and water bodies, having modified Root, Stem and coriander leaf type leaves, branched rhizome, striated seed and globular fruit (*Das*, 2012). The whole plant is used as a medicine in Plague disease (*Sharma*, 2004).

Ranunculus sceleratus such as it is a virulent poisonous plant, producing violent effect if taken internally and the bruised leaves applied to the skin act very efficaciously as a vesicant, it is used by beggars to keep open sores once caused by vesication or other means. In traditional medicine, *Ranunculus sceleratus* is used in malaria, scorpion bite, blood stasis, acute icteric hepatitis and internal abscess, *Ranunculus sceleratus* Linn. showed pharmacological effect such as antibiosis and relief of articular effusion.

Although it is one of the primitive types of species a very brief illustration is found in different botanical
and Ayurvedic treatises. The scarcity over the information regarding the characteristics and its uses motivates the author to review it extensively in various research journals and other related literature. And to standardized the parameter after performing phytochemical, physiochemical, TLC, FTIR studies. Such exploration and validation help the society in the treatment of various disease and for medicinal and commercial purpose.

MATERIALS AND METHODS

Collection

Ranunculus sceleratus Linn. was collected from its natural habitat near Banaras Hindu University, Varanasi, in February 2018.

Authentication of plants

Sample (Voucher specimen no. Ranunculus 2018/3) was authenticated by the experts from the Department of Botany, Institute of Science, Banaras Hindu University, Varanasi. Plant specimen was deposited in the museum of Department of Dravyaguna, Faculty of Ayurveda, for future reference.

Chemicals

All analytical grade chemicals used in the study were purchased through Advanced Quality traders, E. Merk, Germany.

Phytochemical screening

Plant was extracted in seven solvents (Petroleum ether, chloroform, Acetone, Benzene, Ethanol, Methanol and Distilled water) are determined by their relevant chemical test with appropriate testing agents or reagents.

Spectroscopic techniques

UV-VIS (ultraviolet, visible spectroscopy)

One gram of plant extracts was added in 10 ml of distilled water then filtered with the help of cartilage (0.2 µm). Afterwards, it was scanned under ultraviolet, visible spectrophotometer (λ 25 Perkin Elmer) at a range of 200-900 nm to measure the size of biomolecules and uncertainty source that may arise from nature of the compound of plant extract.

FTIR (Fourier-transform infrared spectroscopy)

A pinch of powder drug was taken and placed over the crystal present on stage. The IR spectrum (Perkin Elmer, Spectrum-2) was scanned between 4000 to 400-1 and transmittance was recorded. Before scanning the sample, the background signal was also recorded. The peaks thus obtained were matched against IR interpretation chart, and the functional groups were noted.

Modern chromatography

TLC (Thin layer Chromatography)

The extract was applied 2 cm on the lower edge of the plate by the help of a microcapillary tube. And then extracts were loaded in small-volume spot on each plate, the plate was taken out, the solvent front was marked, and the plate was dried at room temperature. Thin-layer chromatography was detected by observation of spots for identical Rf value and to determine the purity of a sample.

HPLC (High-performance liquid chromatography)

1g of plant extract was added in 10ml of methanol then sonicated in the sonicator machine (Labman), afterwards filtered with the help of cartilage (0.2 µm) and injected with a microsyringe (20 µl) and finally scanned with HPLC machine to detect the flavonoids and Phenolic. Standard- (flavonoids and Phenolic) Catechin hydrate, Myricetin, Rutin, Quercetin, Caffeic acid, Kaempferol and Gallic acid, all solutions are prepared in methanol (1 mg/ml). Mobile phase A- methanol: acetonitrile: water: acetic acid (50 ml: 25 ml: 425 ml: 5 ml) For 0-20 min and mobile phase B- methanol: acetonitrile: acetic acid (300 ml: 200 ml: 5 ml) for 20-25 min.

RESULTS AND DISCUSSION

Directly or indirectly, herbal plants are used upon their characteristics, and their character features are detected through different parameters like spectroscopy and chromatography.

Phytochemical screening

Phytochemical Screening of *Ranunculus sceleratus Linn.* in a different solvent. According to Table 1, Some more phytoconstituents are found, i.e. Amino acid, Proteins, Alkaloids, Phytosterols, Flavonoids, Steroids, Fatty acid, Terpenoids, Phenols and Saponin, but in the previous study, terpenoids, tannins, flavonoids, saponins, alkaloids, Protein and resins have been reported (Zayat et al., 2015).

Spectroscopic techniques

UV-VIS (Ultraviolet, visible spectroscopy)

The Ultraviolet-visible spectroscopy profile of Figure 1 of the extract was observed at 200-900 nm wavelength range and 265 nm recorded band. In the previous study, Phenolic and flavonoids components generally absorb at 230-290 nm (Mishra et al., 2015). Hence, it confirms the presence of pheno and flavonoids in the extract of *Ranunculus sceleratus.*

© International Journal of Research in Pharmaceutical Sciences
Table 1: Phytochemical screening of *R. sceleratus* Linn

Phytoconstituents	Petroleum ether	Chloroform	Acetone	Benzene	Ethanol	Methanol	Distil water
Amino acid	+	+	+	-	+	+	
Proteins	-	+	-	-	-	-	-
Carbohydrate	-	-	-	-	-	-	-
Alkaloid	-	-	+	-	+	-	-
Phytosterol	+	+	+	+	+	+	+
Tannin	-	-	-	-	-	-	-
Flavonoid	-	-	+	-	+	+	+
Steroids	-	+	+	-	+	+	-
Fatty acid	+	+	-	+	-	-	-
Terpenoid	-	-	+	-	+	+	-
Coumarin	-	-	-	-	-	-	-
Emodin	-	-	-	-	-	-	-
Phenol	-	-	-	-	-	+	-
Phlobatannin	-	-	-	-	-	-	+

Table 2: *R. sceleratus* was evaluated by the help of FTIR profile

FTIR PROFILE	Peak Number	Peak	Group	Compound Class
	1	3288	O-H Stretching	Alcohol, Carboxylic acid
			C-H Stretching	Alkyne
	2	2920	O-H Stretching	Alcohol, Carboxylic acid
			N-H Stretching	Amine salt
			C-H Stretching	Alkane
	3	1594	N-H Bending	Amine
			C=C Stretching	Cyclic alkene
	4	1403	O-H Bending	Alcohol, Carboxylic acid
			S=O Stretching	Sulfate, Sulfonyl Chloride
	5	1314	C-F Stretching	Fluro compound
			O-H Bending	Phenol
			S=O Stretching	Sulfone
			C-N Stretching	Aromatic Amine
	6	1237	C-F Stretching	Fluro compound
			C-O Stretching	Alkyle arile ether
			C-N Stretching	Amine
	7	1026	C-N Stretching	Amine
	8	631-509	C-X (X=Cl or Br)	Halo compound
Table 3: Ranunculus sceleratus was evaluated by the help of TLC

Extract	Solvent Front (cm)	Peaks Obtained (cm)	R_f Value (cm)	Mean Rf Value
Petroleum Ether	6.5	S1 2.7	0.41	0.617
		S2 3.3	0.50	
		S3 4	0.61	
		S4 6.2	0.95	
Chloroform	6.5	S1 2.1	0.32	0.641
		S2 3.4	0.52	
		S3 3.8	0.58	
		S4 4.2	0.64	
		S5 5.5	0.84	
		S6 6.2	0.95	
Acetone	6.8	S1 0.8	0.11	0.53
		S2 2.9	0.42	
		S3 4.4	0.64	
		S4 6.5	0.95	
Benzene	6.8	S1 2.5	0.36	0.636
		S2 4	0.58	
		S3 6.6	0.97	
Ethanol	6.8	S1 0.6	0.11	0.475
		S2 1.3	0.19	
		S3 2.1	0.30	
		S4 3.5	0.51	
		S5 5.6	0.80	
		S6 6.4	0.94	
Methanol	6.9	S1 0.4	0.5	0.575
		S2 0.9	0.9	
		S3 2.3	0.33	
		S4 4	0.57	
Distil Water	6.8	-	-	0

Table 4: Analytical condition

Analytical Condition
Column
Mobile Phase
Time Program
Flow rate
Column Temp.
Injection Vol.
Detection
Table 5: Retention time (RT), wavelength (nm), Area and Height of Methanol and distil water extract of R. scelerates and standard of Phenolic acid and flavonoids for HPLC method validation

Name of Extract and Standard	λ_{max} (nm)	RT (min)	Area %	Height %
Extract of R. sceleratus in Methanol	254	3.572	51.073	45.458
Extract of R. sceleratus in distil water	254	3.431	99.601	99.767
Caffeic acid	254	3.536	85.449	86.704
Kaempferol	254	4.971	34.333	22.269
Gallic acid	254	3.575	34.899	35.153
Catechin hydrate	254	4.944	88.978	91.905
Quercetin	254	4.218	90.996	86.989
Rutin	254	3.567	99.536	99.837
Myricetin	254	3.946	99.024	99.333

Figure 1: UV-VIS of distil water extract of Ranunculus sceleratus Linn
Figure 2: Ranunculus sceleratus was evaluated by the help of FTIR

Figure 3: HPLC Chromatogram of standard phenolic acid (Ca=Caffeic acid, K=Kaempferol, Ga=Gallic acid), Flavonoids (Ch=Catechinhydrate, Q=Quercetin, R=Rutin and M=Myricetin), Rs=methanol extract of Ranunculus sceleratus and Di Rs=Extract of R. sceleratus in distil water
FTIR (Fourier-transform infrared spectroscopy)

FTIR is a characterisation method which gives the vibration energy based on peak value (Kumar and Ramaswamy, 2014; Mishra et al., 2015). The compressing act of the functional group that are available on the extract of *Ranunculus sceleratus*. The major bands were observed at 3288, 2920, 1594, 1403, 1314, 1237 and 1026 cm⁻¹ in Figure 2.

According to Table 2, The peak indicates OH stretching might be alcohol, carboxylic acid. OH bending show phenol. CH stretching is alkylene and alkane. NH stretching is amine salt, and NH bending is an amine. C=C Stretching is Cyclic alkene. S=O Stretching is Sulfone, Sulfate and Sulfonyl Chloride. C-F Stretching is Fluro compound. C-N Stretching is Amine and Aromatic Amine. C-O Stretching is Alkyle arile ether, and C-X (X=Cl or Br) is halo compound.

Modern chromatography

TLC (Thin layer Chromatography)

According to the Table 3, Chloroform extract showed maximum mean R_f value which is 0.641 and Distil Water could not detect any peak that’s, why the mean R_f value is 0. In the previous study, Maximum R_f value shows highly pure compound and less R_f value indicates impurity of the compound (Kanoujiya et al., 2016).

HPLC (High-performance liquid chromatography)

A typical HPLC chromatogram of all standard recorded at 368 nm is present in different figure (Figure 3), and a brief summary of HPLC instrument working is shown in analytical condition (Table 4).

According to Table 5, The plant extract was evaluated with seven standards (gallic acid, quereotin, catechin, rutin, caffiec acid, myricetin) of phenolic and flavonoids phytoconstituents to detect there capability. Caffeic acid (3.536 RT), Gallic acid (3.575) and Rutin (3.567) are present in both extract of methanol and distilled water of *R. sceleratus*.

In the previous study, Rutin and Caffeic acid both were present in another species of *R. arvensis* (Bhatti et al., 2015).

CONCLUSION

The present study evaluates phytochemical, spectroscopy and chromatography of the whole plant of *Ranunculus sceleratus Linn.* for correct identification and standardisation and also indirect developing for further research. In Phytochemical study, found three new phytochemicals, i.e. Amino acid, Phytosterol & fatty acid and carbohydrates result is differing from the previous study. The TLC result indicates that the Chloroform extract successfully separates the compound and the Rf value (0.641) shows the purity of *Ranunculus sceleratus Linn*. FTIR shows the presence of different functional groups such as Carboxylic acid, Alcohol, Alkene, Amine, Sulfone, Aromatic Amine, Alkyl aryl ether, Fluoro compound and Halo compound. UV VIS and HPLC indicate the presence of phenolic and flavonoids in the extract. According to all above parameters *Ranunculus sceleratus Linn.* possesses a large number of Phytoconstituents. That’s why they have a tremendous medicinal impact on herbal drugs.

ACKNOWLEDGEMENT

The corresponding author expresses her sincere gratitude to her supervisor and co-supervisor for their guidance.

Thanks, to the Head of the department of zoology and interdisciplinary school of life science for providing basic facilities during this study, Dr Jasmeet Singh, Arun Srivastava, Shalvi Agrawal, Suraj and to providing support. Also, thankful to Dr Anurag Mishra for the valuable advice and Veena for the required editing in the manuscript.

I acknowledge sincere thanks to DST for providing support to my studies done in Department of Kriya Sharir and Dravyaguna Laboratory.

Funding support

None.

Conflict of Interest

The corresponding author declare no conflict of interest.

REFERENCES

Bhatti, M. Z., Ali, A., Ahmad, A., Saeed, A., Malik, S. A. 2015. Antioxidant and phytochemical analysis of *Ranunculus arvensis* L. extracts. *BMC Research Notes*, 8(1):1–8.

Das, N. R. 2012. Introduction to aquatic and semi-aquatic plants of India. volume 132, New Delhi. Kalyani Publishers. ISBN-9789327222227. Pages 320.

Kanoujiya, S., Chaudhary, S., Kumar, N. 2016. Physico-chemical study of shilajit with arjuna kwath bhvita & khadir kwath bhavita. *World Journal of Pharmaceutical Research*, 5(7):1271–1280.

Kumar, A. R. A., Ramaswamy, M. 2014. FTIR analysis of leaf extracts of Indian Medical plants. *International Journal of Research in Pharmaceutical Sciences*, 5(3), 4682-4689.
tional journal of current Microbiology and applied Science, (1):395–406.

Lucas, D. S. K. 2008. Dravyaguna Vijnana. Varanasi. Chaukhambha bharati academy. First Edition. Pages 720.

Mishra, A., Mishra, V. K., Dwivedi, D., Dwivedi, K. N. 2015. A FT-IR spectroscopic study of phyto-constituents of Asparagus Racemosus willd root tuber. World Journal of Pharmaceutical research, 4(10):2754–2763.

Sharma, P. V. 2004. Priya Nighantu. Varanasi. Chaukamba Surbharati Prakashan. Page No. 130.

Zayat, M. M. E., Ghada, A. E., Massuod, A. A. 2015. Nutritional and Phytochemical screening of Ranunculus sceleratus L. Journal of environmental sciences, 4(4):693–700.