Structure–function analysis of the RNA polymerase cleft loops elucidates initial transcription, DNA unwinding and RNA displacement

Souad Naji¹, Michela G. Bertero², Patrizia Spitalny¹, Patrick Cramer² and Michael Thomm¹,*

¹Lehrstuhl für Mikrobiologie und Archaeenzentrum, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg and ²Gene Center Munich and Center for integrated Protein Science CiPSM, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 München, Germany

Received September 14, 2007; Revised November 14, 2007; Accepted November 19, 2007

ABSTRACT

The active center clefts of RNA polymerase (RNAP) from the archaeon Pyrococcus furiosus (Pfu) and of yeast RNAP II are nearly identical, including four protruding loops, the lid, rudder, fork 1 and fork 2. Here we present a structure–function analysis of recombinant Pfu RNAP variants lacking these cleft loops, and analyze the function of each loop at different stages of the transcription cycle. All cleft loops except fork 1 were required for promoter-directed transcription and efficient elongation. Unprimed de novo transcription required fork 2, the lid was necessary for primed initial transcription. Analysis of templates containing a pre-melted bubble showed that rewinding of upstream DNA drives RNA separation from the template. During elongation, downstream DNA strand separation required template strand binding to an invariant arginine in switch 2, and apparently interaction of an invariant arginine in fork 2 with the non-template strand.

INTRODUCTION

Multi-subunit RNA polymerases (RNAPs) catalyze RNA synthesis from a DNA template during gene transcription. The eukaryotic nucleus contains three RNA polymerases, called RNAP I, II and III, whereas bacterial and archaeal cells contain only one RNAP. Analysis of gene regulation requires a detailed structure-based understanding of the transcription mechanism. During the transcription cycle, the polymerases first assemble with initiation factors on promoter DNA (closed complex formation). The complex then unwinds the DNA double helix (open complex formation). The polymerase begins to synthesize short RNA oligonucleotides that are often released (abortive transcription). When the RNA product reaches a certain length, the enzyme enters the elongation phase, characterized by a stable, processive elongation complex. The polymerase then elongates the RNA chain, unwinds downstream DNA and rewinds upstream DNA. Finally, the RNA transcript and the DNA are released during termination.

Detailed crystallographic structures are available for yeast RNAP II and bacterial RNAPs (1–5) and enable mechanistic studies of the transcription cycle by designing mutations. Four prominent loops were revealed above the active site in the polymerase cleft, named the rudder, lid, fork loop 1 and fork loop 2 (2,6). Whereas the rudder and lid protrude from the mobile clamp of the polymerase, the two fork loops are located on the opposite side of the cleft (Figure 1).

The rudder and lid were suggested to maintain the upstream end of the hybrid and the bubble (2,6–8). Functional roles of the rudder and lid were analyzed in the bacterial enzyme (9–11). Mutagenesis of the rudder showed that this element stabilizes the elongation complex but that it is not involved in maintaining the hybrid length (9). The lid was suggested to help separate RNA from DNA at the upstream end of the hybrid (2,3,6,7) but a mutant bacterial RNA polymerase lacking the lid could displace RNA normally (10). It was suggested that fork loop 2 blocks the path of the non-template strand before the active site, and thereby helps to separate the DNA strands at the downstream edge of the bubble (6,8).

In yeast RNAP II, mutations in the proximity to fork loop 2 have been shown to lower the polymerization rate but no mutational in vitro studies on the rudder, lid or fork loop 1 (12) have been reported.

Recently, recombinant forms of archaeal RNAPs became available, which enable rapid site-directed mutagenesis. The active center clefts of RNAP from the archaeon Pyrococcus furiosus (Pfu) and of yeast RNAP II are nearly identical, including four protruding loops, the lid, rudder, fork 1 and fork 2. Here we present a structure–function analysis of recombinant Pfu RNAP variants lacking these cleft loops, and analyze the function of each loop at different stages of the transcription cycle. All cleft loops except fork 1 were required for promoter-directed transcription and efficient elongation. Unprimed de novo transcription required fork 2, the lid was necessary for primed initial transcription. Analysis of templates containing a pre-melted bubble showed that rewinding of upstream DNA drives RNA separation from the template. During elongation, downstream DNA strand separation required template strand binding to an invariant arginine in switch 2, and apparently interaction of an invariant arginine in fork 2 with the non-template strand.

INTRODUCTION

Multi-subunit RNA polymerases (RNAPs) catalyze RNA synthesis from a DNA template during gene transcription. The eukaryotic nucleus contains three RNA polymerases, called RNAP I, II and III, whereas bacterial and archaeal cells contain only one RNAP. Analysis of gene regulation requires a detailed structure-based understanding of the transcription mechanism. During the transcription cycle, the polymerases first assemble with initiation factors on promoter DNA (closed complex formation). The complex then unwinds the DNA double helix (open complex formation). The polymerase begins to synthesize short RNA oligonucleotides that are often released (abortive transcription). When the RNA product reaches a certain length, the enzyme enters the elongation phase, characterized by a stable, processive elongation complex. The polymerase then elongates the RNA chain, unwinds downstream DNA and rewinds upstream DNA. Finally, the RNA transcript and the DNA are released during termination.

Detailed crystallographic structures are available for yeast RNAP II and bacterial RNAPs (1–5) and enable mechanistic studies of the transcription cycle by designing mutations. Four prominent loops were revealed above the active site in the polymerase cleft, named the rudder, lid, fork loop 1 and fork loop 2 (2,6). Whereas the rudder and lid protrude from the mobile clamp of the polymerase, the two fork loops are located on the opposite side of the cleft (Figure 1).

The rudder and lid were suggested to maintain the upstream end of the hybrid and the bubble (2,6–8). Functional roles of the rudder and lid were analyzed in the bacterial enzyme (9–11). Mutagenesis of the rudder showed that this element stabilizes the elongation complex but that it is not involved in maintaining the hybrid length (9). The lid was suggested to help separate RNA from DNA at the upstream end of the hybrid (2,3,6,7) but a mutant bacterial RNA polymerase lacking the lid could displace RNA normally (10). It was suggested that fork loop 2 blocks the path of the non-template strand before the active site, and thereby helps to separate the DNA strands at the downstream edge of the bubble (6,8).

In yeast RNAP II, mutations in the proximity to fork loop 2 have been shown to lower the polymerization rate but no mutational in vitro studies on the rudder, lid or fork loop 1 (12) have been reported.

Recently, recombinant forms of archaeal RNAPs became available, which enable rapid site-directed mutagenesis.
Figure 1. Design of the loop deletions and single-point mutations. (A) Internal deletion of B and A’ subunits. Primary sequence alignment between the four loops fork1, fork 2, rudder and lid from *P. furiosus*, *S. cerevisiae* and *E. coli* (CULSTAL W). Invariant, conserved and weakly conserved residues are colored in red, blue and yellow, respectively. The extent of deletions and the single-point mutations introduced in fork loop 2 and switch 2 are indicated and highlighted by asterisks. (B) Surface representation of the *S. cerevisiae* RNAP II elongation complex (8). Template DNA, non-template DNA, RNA, Mg\(^{2+}\) and Zn\(^{2+}\) ions are shown in blue, cyan, red, magenta and light blue, respectively. Lid, rudder, fork 1 and fork 2 are represented in yellow, magenta, green and ochre, respectively. (C) Close up view of the RNAP II active site. Single-point mutations are shown. The same color code as in (B) was used. The residues corresponding in the archaeal enzyme to the mutated putative Rpb1 and Rpb2 key residues are indicated. (D) Close-up view of nucleic acids in the yeast RNAP II active center highlighting the position of single-point mutations analyzed in this study, the color code is like in (B).
The archael enzymes are closely related in sequence to eukaryotic RNAP II (15). All yeast RNAP II subunits have counterparts in the archael enzyme, except the small peripheral subunit Rpb8. In the Pyrococcus furiosus (Pfu) enzyme, 38% of the amino acid residues are identical with yeast RNAP II (16,17). The similarity of the archael and eukaryotic transcription machineries extends to protein–protein interactions of the polymerase subunits (13,16) and initiation factors that are required for promoter binding (18). The archael initiation factors TBP, TFB and TFE have homologs in the eukaryotic RNAP II apparatus, named TBP, TFIIB and TFIIE, respectively. Whereas the factors TBP and TFB are sufficient to bind and open promoter DNA in the Pyrococcus system at 70°C (19,14) the eukaryotic machinery requires in addition TFIIF to bind the promoter, and TFIIE/TFIIB to open DNA. Despite these differences, the recent success in obtaining highly active recombinant Pfu RNAP opens up the possibility to rapidly prepare and functionally analyze mutant RNAP II-like enzymes (14).

Here, we analyzed the function of four recombinant archael RNA polymerase deletion mutant enzymes, each lacking one of the four cleft loops. Together with an analysis of three additional mutant enzymes carrying selected point mutations in fork loop 2 and switch region 2, another active center element that was thus far not studied by mutagenesis, our results unravel the functional significance of these elements at various stages of the transcription cycle. In addition, we have used different nucleic acid scaffolds to elucidate the initiation–elongation transition, one of the most dynamic and least understood aspects of the transcription cycle.

MATERIALS AND METHODS

Primer sequences

The sequence of primers used for mutagenesis and PCR are provided in the Supplementary Data.

Construction of subunit B (rpb2) and subunit A’ mutants by site-directed mutagenesis

The rudder and lid domains of subunit A’ and fork loop 1 and fork loop 2 of subunit B were deleted using a two-round, four-primer technique. In round 1, two PCR products were generated containing the DNA region upstream and downstream from the deletion in separate reactions. Each PCR was performed using genomic DNA as template, end primers (FwdA and RevD) and a pair of primers flanking the internal sequence to be deleted (RevB and FwdC). The sequences of all primers are provided in the Supplementary Data. The resulting products were analyzed by agarose gel electrophoresis, and the sequences of all PCR products were determined. The products were digested with restriction enzymes and ligated by T4 DNA ligase, and the correct size of the intermediate was confirmed by digestion with the restriction enzymes. The plasmids containing the correct intermediate were transformed into E. coli, and colonies were analyzed by restriction enzyme digestion and Southern blotting.

Overexpression of recombinant subunits

The subunits were expressed in BL21(DE3) Codon Plus TM by inducing exponentially growing cultures over night at 20°C with IPTG. The his6-tagged mutated subunits B and A’ were highly insoluble and expressed as inclusion bodies in E. coli cells. They were solubilized in 6 M guanidine HCl and immobilized on a NiNTA column. The proteins were refolded on column by washing with a decreasing gradient of urea. The renatured subunits were eluted with imidazole and used for reconstitution of the RNAP as described previously (14).

Reconstitution of mutant and wild-type Pyrococcus RNAP

The RNAPs containing mutated and wild-type components were reconstituted from 11 bacterially produced subunits after denaturation in TB buffer containing 6 M urea and stepwise dialysis against TB buffer containing 3 M urea and no urea. The renatured RNAP assemblies were purified by Superdex 200 chromatography as described previously (14). The protein eluting as a homogenous peak from the Superdex 200 column was analyzed by SDS PAGE and in specific run-off transcription assays using the Pyrococcus gdh promoter as template. Fractions containing active RNAP were combined and used for transcriptional analyses.

Cell-free transcription reactions

Promoter-independent assay. Reactions were performed in a total volume of 100 μl containing 9 nM RNAP (or mutant derivative) 900 μM ATP, 90 μM UTP, 0.15 MBq(α-32P)-UTP (110 TBq/mmol) and 3 μg of poly [(dA-dT)] as template. Reactions were incubated for 30 min at 70°C and counts insoluble in 5% TCA (w/v) were determined.

Promoter-directed assays. Specific in vitro transcription reactions were essentially conducted as described by (20). XbaI-digested plasmid pUC19 containing the gdh promoter region from −95 to +163 was incubated with 35 nM TBP, 30 nM TFB and 9 nM endogenous RNAP, recombinant RNAP or mutant derivative in 25 μl TB (40 mM Na-HEPES, pH 7.3, 250 mM NaCl, 2.5 mM MgCl2, 0.1 mM EDTA, 5 mM -mercaptoethanol, 0.1 mg/ml BSA). NTPs were added to 500 μM ATP, GTP, CTP and 10 μM UTP and 0.15 MBq(α-32P)UTP (110 TBq/mmol). The reactions were assembled at 4°C and started by transfer to 70°C unless otherwise indicated. The 172 nt run-off transcripts and various abortive transcripts were analyzed in 6, 28 or 20–28% denaturing polyacrylamide gels.
gels as indicated and visualized by phosphoimaging. To construct the pre-opened bubble (Figure 5) the template and non-template strand (10 μM each) were incubated for 2 min at 92°C and cooled down slowly overnight to room temperature. This hybrid (10 μM) was used as template in cell-free transcription reactions. The RNA–DNA template strand hybrid (1a; Figure 6A) mimicking an elongation complex was assembled by heating 10 μM RNA and 5 μM template strand in a volume of 100 μl for 2 min at 92°C and cooled down slowly overnight to room temperature. A 0.5 μl of this mixture was used as template in the transcription assays shown in Figure 6C. Template ECR3 (Figure 6A) was assembled by the same procedure and contained in addition to the hybrid RNA–DNA template strand 5 μM of the corresponding non-template strand.

Abortive transcription reactions

300 ng double stranded template gdh-C15 (21); sequence of the promoter region (shown in Figure 4A) was incubated with transcription factors and Pyrococcus RNAP as described under cell-free transcription reactions. In the dinucleotide primed reactions shown in Figure 4 the reaction was started with 40 μM GpU and 10 μM UTP and 0.15 MBq(α-32P)UTP (110 TBq/mmol).

Electrophoretic mobility shift assays

DNA fragments spanning the gdh promoter region from −60 to +37 were used as probes in assays with mutated and wild type RNAP as described previously (16). Binding reactions with the gdh promoter contained in addition TBP and TFB. The binding reactions (25 μl) contained 9 nM endogenous or 27 nM recombinant RNAP (or mutant derivatives), 100 nM TBP, 100 nM TFB, 0.5 nM gdh promoter and 1 μg of poly[dI-dC)] as non-specific competitor DNA.

Permanganate footprinting

Thymidine residues in the open complexes formed by wild-type and mutant forms of RNAP in pre-initiation complexes of the gdh promoter containing TBP and TFB were detected by treatment with potassium permanganate (KMnO4) as described in the legend of Figure 3.

RESULTS

Design and preparation of Pfu RNA polymerase variants

Due to the high sequence conservation between the Pfu polymerase and yeast RNAP II, the Pfu lid, rudder, fork loop 1 and fork loop 2 were easily identified in a sequence alignment of the largest subunits (Figure 1). Whereas the loops themselves are not well conserved, the regions immediately preceding and following the exposed loops are highly conserved, enabling unambiguous definition of the loop borders. The complete RNAP II elongation complex structure (8) guided the design of four Pfu RNAP deletion mutants that lack the lid (residues 224–236 in subunit A’), rudder (residues 281–300 in subunit A’), fork loop 1 (residues 413–420 in subunit B) and fork loop 2 (residues 442–452 in subunit B). The deletions were designed such that small stretches of amino acids were left intact and the ends resulting from truncation were connected without perturbation of the structure in the surrounding protein region (non-disruptive mutations).

In addition, we prepared three enzyme variants carrying alanine point mutations. One mutant modifies a conserved basic residue in fork loop 2, R445 in the B subunit, corresponding to Rpb2 residue R504 in RNAP II, and two mutants target basic residues in switch 2, K306 and R313 in the A′ subunit, which correspond to Rpb1 residues K330 and R337, respectively, in RNAP II. These two residues are highly conserved in the switch 2 element across the three domains of life (Figure 1A, lower panel). Structural analyses of a yeast RNAP II elongation complex suggested that the basic amino acids R337 and K330 might be involved in pulling the template strand upwards in the active site and could be therefore critical for DNA strand separation in the active center (8).

To analyze if the variants have an overall defect in promoter-dependent transcription, we subjected them to a promoter-specific transcription assay that uses as a template the strong Pfu glutamate dehydrogenase (gdh) promoter (20). The variants were incubated with DNA, TFB and TBP, and reactions were initiated by addition of nucleoside triphosphates (NTPs). The run-off RNA product was efficiently synthesized by the endogenous and wild-type recombinant RNAPs, providing a positive control (Figure 2). The Δfork1 RNAP was highly active, showing that fork loop 1 does not have an essential role in transcription. In contrast, Δlid, Δrudder and Δfork2 showed no transcription activity (Figure 2), pointing to an essential function of the lid, rudder and fork 2. Of the single-point mutants, B-R445A and A’-K306A showed reduced but still significant activity, whereas A’-R313A was totally inactive. Taken together, our results confirm
In the presence of TBP and TFB, endogenous and recombinant Pfu RNAPs, the Δfork1 variant and variants R445A and K306A readily synthesized the trinucleotide product (Figure 4B). The Δrudder, Δfork2 and R313A variants were highly defective, Δrudder and Δfork2 synthesized a product of different mobility indicating that they were also unable to perform the primed reaction. The Δlid enzyme, however, was totally inactive (Figure 4B, lane 3), suggesting that the lid plays an essential role in stabilizing the initially transcribing complex. To investigate whether increasing primer lengths would support abortive transcription by the Δlid enzyme, the reactions were performed in the presence of a tri-, tetra- or a pentanucleotide RNA primer. In contrast to the bacterial Δlid enzyme that can synthesize longer transcripts in the presence of longer priming RNAs (11) the archaeal Δlid enzyme was unable to elongate tetra- and pentanucleotide RNAs (data not shown).

**Fork 2 is essential for unprimed de novo transcription**

In a second approach to study initial RNA synthesis, we used a gdh template with a ‘pre-melted’ mismatch bubble (bubble1) at positions −10 to +3, mimicking DNA in the open complex (Figure 5A). In the absence of transcription factors, the endogenous polymerase, the recombinant enzyme, the Δfork1 mutant, and the single-point mutants R445A and K306A produced an 18 nt transcript as the major RNA product, compared to a full-length run-off product of 20 nt length (Figure 5B). This indicates that a pre-melted bubble can be bound by the polymerase and direct de novo RNA synthesis. It is not surprising that the lid is inactive in this unprimed transcription assay, as it also fails to elongate RNA primers. In addition, the rudder, fork 2 and the arginine in switch 2 are essential for unprimed de novo transcription.

To investigate whether defects in de novo transcription may be compensated by initiation factors, we repeated the experiment in the presence of TBP and TFB. This showed that the lid, rudder and the invariant arginine in switch 2 were not strictly required for de novo RNA synthesis in the context of an initiation complex. However, the Δfork2 variant remained totally inactive, showing that this loop is essential for de novo transcription even within the initiation complex. The structural basis for this observation remains unknown.

**DNA rewinding drives RNA displacement**

A surprising result from the de novo transcription assays was that inclusion of TFB and TBP induced the accumulation of shorter, 11- and 12-mer RNA products, and strongly reduced the amount of 18-mer product (Figure 5B). The shorter products resulted from the use of the TBP–TFB complex (Figure 5A), which apparently formed a barrier to further progression of the early transcribing complex. To investigate the nature of this barrier, we tested whether the RNA product was properly separated from the DNA template strand by treating the reaction products with RNase H that specifically degrades RNA in a DNA–RNA hybrid. Indeed, the products were RNase H sensitive (Figure 5D),...
Figure 3. The cleft loops fork 1, fork 2 and lid and R-313 in switch 2 are not essential for the formation of open complexes. The various RNAP preparations and RNAP mutants as indicated in the figure were incubated with the *gdh* promoter containing a 5′ end-labeled template strand in the presence of TBP and TFB for 10 min at 70°C to allow bubble opening and were probed with KMnO$_4$ for 5 min at 70°C (21). Modified thymine residues in single-stranded DNA were resolved after piperidine cleavage by electrophoresis in 6% sequencing gels. Phosphoimager traces of the KMnO$_4$ footprinting profiles of the endogenous recombinant and cleft loop polymerase mutants are shown. The dotted line represents the modification pattern in control reactions without RNAP, the red line the permanganate footprint. The blue line represents the signal obtained with WT enzyme in a control reaction on the same gel. The footprint of the endogenous enzyme extends from −6 to +3. This enzyme contains, in contrast to the reconstituted polymerase, nearly stoichiometric amounts of the subunits E’ and F (the archaeal Rpb7/Rpb4 homologs). The presence of the E’ subunit in the endogenous enzyme is responsible for the extension of the permanganate footprint to the upstream end (14). The footprints of the reconstituted and mutant enzymes ∆lid, ∆fork 2 and ∆fork 1 extend from +3 to −4. Note that formation of the footprint by the ∆rudder enzyme is impaired, in particular at the downstream end.
promoter reactions. Abortive RNA products were separated in a 28% 
by bold letters and the transcription start site is indicated by +1.

The TATA box is underlined, the BRE element is indicated 
duplex is required for efficient displacement of TFB/
indicates that a certain length of DNA downstream 
+11/12 less pronounced (Figure 5F). This finding 
WT enzyme was greatly increased and the arrest at
suggesting that RNA strand separation did not occur.
To show that the failure of RNA displacement was due to
mismatch bubble design, we repeated the assay
with a closed DNA. In this case, the longer RNA product
was RNase H resistant, showing that it was properly
displaced from the template (Figure 5E). However, short
RNAs were formed also on the not displaced closed
template (Figure 5E, lane 4) indicating that the barrier
is caused by the TBP/TFB complex independent of the
presence of the mismatch bubble. The 1 nt upstream
shift of the block in the closed template (Figure 5E)
suggests an altered TBP/TFB interaction with the pre-
melted bubble (unpublished data of Christine Richter
and Winfried Hausner suggest that transcription initiates
at the bubble template at +2 and at the closed template
at +1).

Our finding that the full-length transcript is RNase H
sensitive on the mismatch bubble indicates that
the mismatch bubble template prevents RNA displacement
from the DNA template strand, and indicate that RNA
displacement requires upstream rewinding of the DNA
duplex, which cannot occur when the DNA strands are
non-complementary, as in the mismatch bubble. Since
the lid is located at the upstream end of the DNA–RNA
hybrid, one may imagine that deletion of the lid would
allow for continued growth of a persistent hybrid.
However, the Δlid enzyme produced 11- and 12-mer
and shorter RNA products but no full-length transcripts
(Figure 5B), showing that the lid was not the cause of
the observed elongation barrier. Taken together, these
data are consistent with the idea that DNA–RNA strand
separation is driven by successful competition of the
DNA non-template strand with the RNA for the DNA
template strand. When we used the mismatch bubble
containing longer segments (e.g. 10 nt in Figure 5F)
of downstream duplex DNA, the processivity of the
WT enzyme was greatly increased and the arrest at
+11/12 less pronounced (Figure 5F). This finding
indicates that a certain length of DNA downstream
duplex is required for efficient displacement of TFB/

In Figure 4, the loops rudder, lid and fork 2 and the conserved arginine
residue 313 in switch 2 are required for synthesis of short abortive
transcripts. (A) A template containing a modified sequence of the gdh
promoter gdh-C15(−165 to +108; 21) was used to detect initial RNA
synthesis. The TATA box is underlined, the BRE element is indicated
with a closed DNA. In this case, the longer RNA product
was RNase H resistant, showing that it was properly
displaced from the template (Figure 5E). However, short
RNAs were formed also on the not displaced closed template
(Figure 5E, lane 4) indicating that the barrier
is caused by the TBP/TFB complex independent of the
presence of the mismatch bubble. The 1 nt upstream
shift of the block in the closed template (Figure 5E)
suggests an altered TBP/TFB interaction with the pre-
melted bubble (unpublished data of Christine Richter
and Winfried Hausner suggest that transcription initiates
at the bubble template at +2 and at the closed template
at +1).

Our finding that the full-length transcript is RNase H
sensitive on the mismatch bubble indicates that
the mismatch bubble template prevents RNA displacement
from the DNA template strand, and indicate that RNA
displacement requires upstream rewinding of the DNA
duplex, which cannot occur when the DNA strands are
non-complementary, as in the mismatch bubble. Since
the lid is located at the upstream end of the DNA–RNA
hybrid, one may imagine that deletion of the lid would
allow for continued growth of a persistent hybrid.
However, the Δlid enzyme produced 11- and 12-mer
and shorter RNA products but no full-length transcripts
(Figure 5B), showing that the lid was not the cause of
the observed elongation barrier. Taken together, these
data are consistent with the idea that DNA–RNA strand
separation is driven by successful competition of the
DNA non-template strand with the RNA for the DNA
template strand. When we used the mismatch bubble
containing longer segments (e.g. 10 nt in Figure 5F)
of downstream duplex DNA, the processivity of the
WT enzyme was greatly increased and the arrest at
+11/12 less pronounced (Figure 5F). This finding
indicates that a certain length of DNA downstream
duplex is required for efficient displacement of TFB/
TBP, at least in our system.
Figure 5. Initiation from a pre-melted mismatch bubble. (A) Template of the gdh promoter containing a mismatch in the region from −10 to +3 (bubble 1). The TATA box sequence is underlined and the the BRE sequence is shown in bold letters. (B) Three loops lid, rudder and fork 2 and the conserved arginine residue 313 in switch 2 are required for the synthesis of full-length transcripts. The various RNAP fractions and mutants were pre-incubated in transcription reactions with the template shown in (A) for 30 min at 70°C shown in the absence (left panel) and presence of TBP (35 nM) and TFB (30 nM) (right panel). Transcription was started by the addition of NTPs and the reactions were incubated for further 30 min at 70°C. RNA products were analyzed on a 28% polyacrylamide gel. The lane labeled M indicates RNA markers. (C) The +11 to +12 transcripts are induced by the TBP–TFB complex. Transcripts from bubble 1 formed in the presence of the individual components indicated on top of the lanes were analyzed as in (B) Note that a weak barrier is also imposed in the presence of TBP alone (lane 3) and that TFB has an inhibitory effect on the synthesis of the full-length transcript (compare lanes 1 and 4) most likely by binding to free RNAP. (D) The 11- to 12-mer and full length transcripts are RNase H sensitive. Transcripts formed on bubble 1 were digested for 15 min at 37°C with RNase H and analyzed as in (B). (E) RNA displacement requires upstream rewinding of the template strand. The double-stranded closed template containing no mismatch (upper panel) and bubble 1 were transcribed in the presence of transcription factors and treated for 15 min at 37°C with 5 units of RNase H as indicated. (F) The length of downstream duplex DNA affects promoter escape. Transcripts from bubble 1 and from a template with the same mismatch region but extended at the downstream end by 10 nt of duplex DNA were analyzed as in (B).
The ability of the archaeal RNAP to synthesize >40 nt transcripts on a single-stranded template (1a) was surprising since the bacterial enzyme forms only ~20 nt transcripts on similar templates (11,12). To investigate whether the archaeal RNAP forms extended DNA–RNA hybrids on a single stranded template the products of reactions with template 1a were digested with RNase H (Figure 6C). To preclude post-transcriptional hybridization of RNA to the template during cooling down to 37 °C, the transcription reaction carried out at 60 °C were incubated at 70 °C with a thermostable RNase H. This revealed that transcripts from template 1a were generally RNase H sensitive, indicating the formation of extended DNA–RNA hybrids. The shorter RNA products synthesized by *E. coli* polymerase on similar single-stranded templates are also RNase H sensitive (9,11).

**DISCUSSION**

Structural studies of RNAP II resulted in proposals for the functional roles of various polymerase elements that must be tested by mutational analysis. While such studies are now conveniently carried out in the bacterial system, only very few and non-lethal RNAP II mutations were so far introduced, because a reconstituted eukaryotic RNAP is not available (12). Thus, a detailed structure–function
analysis of the RNAP II system is lacking. Here we used variants of a recombinant RNAP II-like archaeal RNA polymerase to investigate the functional role of the cleft loops rudder, lid, fork 1, fork 2 and the switch 2 element during various stages of transcription. We tested the polymerase variants in several assays, including promoter-dependent transcription (Figure 2), open complex formation (Figure 3), elongation of short RNA primers (Figure 4), *de novo* transcription from a pre-opened bubble (Figure 5) and transcription elongation with various nucleic acid scaffolds (Figure 6). The results of this study are summarized in Table 1. All mutants were impaired in these assays to various degrees, with the exception of fork 1 that is the only loop not present in the bacterial enzyme.

Our analysis revealed that the rudder is important for stabilizing melted DNA in the open complex (Figure 3), consistent with formation of an inactive open complex by a bacterial rudder mutant (9). Initial transcription required the lid, rudder, fork 2 and switch 2 residue R313. The corresponding mutants were defective in extension of short RNA primers (Figure 4), *de novo* transcription from a pre-opened bubble (Figure 5) and transcription elongation with various nucleic acid scaffolds (Figure 6). The results of this study are summarized in Table 1. All mutants were impaired in these assays to various degrees, with the exception of fork 1 that is the only loop not present in the bacterial enzyme.

|                  | Run off transcription | Open complex | Abortive transcription (Figure 4) | Full-length transcript from open bubble (Figure 5B) | Elongation on double-stranded scaffold (EC3) (Figure 6B) |
|------------------|-----------------------|--------------|----------------------------------|-----------------------------------------------------|-------------------------------------------------------|
|                  |                       |              |                                  | ≤40 nt                                              | >40 nt                                               |
| Δ lid            | –                     | –            | –                                | –                                                   | –                                                    |
| Δ rudder         | –                     | +            | –                                | –                                                   | –                                                    |
| Δ fork2          | –                     | +            | –                                | +                                                   | –                                                    |
| Δ fork1          | +                     | +            | +                                | +                                                   | +                                                    |
| B -R445A         | +                     | +            | +                                | (+)                                                 | +                                                   |
| A’-R313A         | –                     | +            | (+)                              | –                                                   | –                                                    |
| A’-K306A         | +                     | +            | +                                | +                                                   | (data not shown)                                     |

(+) indicates strong impairment of activity, + good and – no activity.

separation (8,25). Several replacements in the eukaryotic fork 2, and mutations of sites interacting with fork 2 influence the elongation rate (12). Our data are consistent with an essential role of fork 2 in downstream DNA unwinding during elongation, most likely by interference with the path of the non-template strand as suggested by structural studies. However, the function of fork 2 is not restricted to downstream DNA unwinding. *De novo* RNA synthesis from a pre-melted bubble was totally impaired in the Δfork 2 variant (Figure 5B), suggesting that this loop is involved in stabilizing the NTPs during initial phosphodiester bond formation.

Unexpected insights into the transition from transcription initiation to elongation were obtained by the transcription assays with a pre-melted bubble (Figure 5). In the absence of initiation factors, run-off transcripts were synthesized in unprimed, *de novo* transcription. However, in the presence of initiation factors, RNA transcripts were generally limited to a length of 11–12 nt that were not displaced independent of the presence of a pre-formed bubble (Figure 5E). RNase H probing revealed that persistent DNA–RNA hybrids were formed under these conditions, and that the mismatch bubble prevented RNA displacement of the full-length transcript from the DNA template strand. Consistent with our findings, upstream re-closure of the transcription bubble begins when RNA has reached a length of 10–11 nt (21). The shorter RNA transcripts, however, were not induced by failure to extend the DNA–RNA hybrid past the lid, which normally stacks on the upstream end of the hybrid. Instead, they were due to the presence of the TBP–TFB complex. Synthesis of 11–12 nt RNAs in our assay must involve displacement of the TFB finger domain located in the hybrid site (26) but does apparently not entirely release TFB. TFB may remain bound to the dock with its N-terminal ribbon domain (26,27) but this alone cannot explain why RNA synthesis stops prematurely, since the ribbon domain would not interfere with the DNA–RNA hybrid emerging from the cleft between the polymerase protrusion, wall and clamp domains. Instead RNA synthesis may stop since the growing hybrid encounters the complex of TBP and the TFB core domain, situated above the cleft (27) when a length of 12–13 bp is reached. The existence of the 12–14 nt barrier on the duplex template (Figure 5E) that allows proper rewinding of
upstream DNA indicates that the mismatch bubble is not the major cause of the first barrier. Furthermore, the ratio full-length to 11,12 nt transcripts is greatly increased when the length of duplex DNA downstream of the mismatch bubble was extended by 10 nt (Figure 5F). Taken together these results suggest that a minimal length of 27 nt of downstream duplex DNA are required for effective elongation past the barrier. Bubble reclosure at the upstream end of the open complex has been proposed as a key event in the promoter clearance transition and suggested to cause TFB-displacement (28) in the human RNAP II system, but is apparently not required for promoter escape and processive RNA synthesis in our system. The results with the preformed bubble described here are not specific for the archaeal enzyme. RNAP II from yeast shows similar properties on the pre-melted template analyzed in this study (C. Reich, S. Naji, J. Gerber, A. Küßer, H. Tschochner, P. Cramer, M. Thomm, manuscript in preparation) and both RNAP II (29) and the archaeal enzyme can transcribe ~100 nt runoff transcripts with high effectiveness when the pre-melted template contains longer segments of downstream duplex DNA (Figure 5F and Spitalny, P., Naji, S., Thomm, M. unpublished data).

Finally, we have uncovered the essential role of switch 2, and, in particular, an invariant arginine in switch 2, R313, at various points during transcription. This arginine was required for chain elongation from the minimal nucleic acid scaffolds (Figure 6), for transcription from a pre-melted bubble (Figure 5) and for primed transcription (Figure 4). Thus, the interaction of this arginine with the DNA template strand backbone at position +2 is essential for correct template positioning in the active site. Further, these results provide insights into the structure of the open complex, since open complex formation apparently involves binding of the template in the active site at the location normally adopted during elongation, and thus leads to a complex prone to RNA chain initiation. Since mutation of R313 completely disabled RNA synthesis on templates containing downstream duplex DNA (Figure 6C), binding of the template strand to switch 2 is essential for DNA separation during elongation, most likely due to distortion of the incoming B-DNA duplex as suggested (8). Given the invariant nature of R313 in switch 2 in all three kingdoms of life, the same mechanisms and structural transitions will likely occur in all cellular RNA polymerases. The mutation of R313 directly reports on the function of this residue, and not on the function of switch 2 in general, since mutation of another switch 2 residue, K306, which is not conserved and more distant from the template and active site, has essentially no effects in most assays.

More generally, our analysis showed that the recombinant archaeal RNA polymerase can be used for a structure–function analysis of aspects of a eukaryote-like transcription mechanism, including initiation and the initiation–elongation transition. Many more mutant polymerases and different nucleic acid scaffolds, however, must be analyzed before a satisfactory mechanistic understanding of the dynamic transcription cycle will emerge.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS
This work was supported by grants of the Deutsche Forschungsgemeinschaft to Michael Thomm and Patrick Cramer and the Leibniz award of the DFG to Patrick Cramer. We thank Bernd Goede for bioinformatic work. Funding to pay the Open Access publication charges for this article was provided by the University of Regensburg.

Conflict of interest statement. None declared.

REFERENCES
1. Cramer, P. et al. (2000) Architecture of RNA polymerase II and implications for the transcription mechanism. Science, 288, 640–649.
2. Cramer, P., Bushnell, D.A. and Kornberg, R.D. (2001) Structural basis of transcription: RNA polymerase II at 2.8 Ångstrom resolution. Science, 292, 1863–1876.
3. Zhang, G., Campbell, E.A., Minakhtin, L., Richter, C., Severinov, K. and Dursö, S. (1999) Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. Cell, 98, 811–824.
4. Vassylyev, D.G., Vassylyeva, M.N., Pereverzina, A., Tahirov, T.H. and Artsimovich, I. (2002) Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution. Nature, 417, 712–719.
5. Armache, K.-J., Mitterweger, S., Meinhart, A. and Cramer, P. (2005) Structures of complete RNA polymerase II and its subcomplex, Rpb4/7. J. Biol. Chem., 280, 7131–7134.
6. Gnaat, A.L., Cramer, P., Fu, J., Bushnell, D.A. and Kornberg, R.D. (2001) Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution. Science, 292, 1876–1882.
7. Westover, K.D., Bushnell, D.A. and Kornberg, R.D. (2004) Structural basis of transcription: separation of RNA from DNA by RNA polymerase II. Science, 303, 1014–1016.
8. Kettenberger, H., Armache, K.-J. and Cramer, P. (2004) Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIH. Mol. Cell, 16, 955–965.
9. Kuznedelov, K., Korzhevra, N., Mustaev, A. and Severinov, K. (2002) Structure-based analysis of RNA polymerase function: the largest subunit’s rudder contributes critically to elongation complex stability and is not involved in the maintenance of RNA-DNA hybrid length. EMBO J., 21, 1369–1378.
10. Toulokhonov, I. and Landick, R. (2006) The role of the lid element in transcription by E. coli RNA polymerase. J. Mol. Biol., 361, 644–658.
11. Naryshkina, T., Kuznedelov, K. and Severinov, K. (2006) The role of the largest RNA polymerase subunit lid element in preventing the formation of extended RNA-DNA hybrid. J. Mol. Biol., 361, 634–643.
12. Trinh, V., Langelier, M.-F., Archambault, J. and Coulombe, B. (2006) Structural perspective on mutations affecting the function of multisubunit RNA polymerases. Microbiol. Mol. Biol. Rev., 70, 12–36.
13. Werner, F. and Weinzierl, R.O. (2002) A recombinant RNA polymerase II-like enzyme capable of promoter-specific transcription. Mol. Cell, 10, 635–646.
14. Naji, S., Grünberg, S. and Thomm, M. (2007) The RPβ orthologue E is required for transcriptional activity of a reconstituted archaeal core enzyme at low temperatures and stimulates open complex formation. J. Biol. Chem., 282, 11047–11057.
15. Pühler, G., Befers, H., Gropf, F., Palm, P., Klenk, H.P., Lottspeich, F., Garrett, R.A. and Zillig, W. (1989) Archaeabacterial DNA-dependent RNA polymerases testify to the evolution of the eukaryotic nuclear genome. Proc. Natl Acad. Sci. USA, 86, 4569–4573.
16. Goede, B., Naji, S., von Kampen, O., Ilg, K. and Thomm, M. (2006) Protein-protein interactions in the archaeal transcriptional
machinery: binding studies of isolated RNA polymerase subunits and transcription factors. *J. Biol. Chem.*, 281, 30581–30591.

17. Kusser, A.G., Bertero, M.G., Naji, S., Becker, T., Thomm, M., Beckmann, R., and Cramer, P. (2007) Structure of an archaeal RNA polymerase. *J. Mol. Biol.* [doi:10.1016/j.jmb.2007.08.066].

18. Bell, S.D. and Jackson, S.P. (2001) Mechanism and regulation of transcription in archaea. *Curr. Opin. Microbiol.*, 4, 208–213.

19. Thomm, M. and Hausner, W. (2006) Transcriptional Mechanisms. In Garrett, R. and Klenk, H.-P. (eds), *Archaea: Evolution, Physiology and Molecular Biology*, Blackwell Publishing, Oxford, UK, pp. 185–198.

20. Hethke, C., Geerling, A.C.M., Hausner, W., de Vos, W. and Thomm, M. (1996) A cell-free transcription system for the hyperthermophilic Archaeon *Pyrococcus furiosus*. *Nucleic Acids Res.*, 24, 2369–2376.

21. Spitalny, P. and Thomm, M. (2003) Analysis of the open region and of DNA-protein contacts of archaeal RNA polymerase transcription complexes during transition from initiation to elongation. *J. Biol. Chem.*, 278, 30497–30505.

22. Kireeva, M.L., Komissarova, N. and Kashlev, M. (2000) Overextended RNA:DNA hybrid as a negative regulator of RNA polymerase II processivity. *J. Mol. Biol.*, 299, 325–335.

23. Kireeva, M.L., Komissarova, N., Waugh, D.S. and Kashlev, M. (2000) The 8-nucleotide-long RNA:DNA hybrid is a primary stability determinant of the RNA polymerase II elongation complex. *J. Biol. Chem.*, 275, 6530–6536.

24. Daube, S.S. and von Hippel, P.H. (1992) Functional transcription elongation complexes from synthetic RNA-DNA bubble duplexes. *Science*, 258, 1320–1324.

25. Vassylyev, D.G., Vassylyeva, M.N., Perederina, A., Tahirov, T.H. and Artsimovich, I. (2007) Structural basis for transcription elongation by bacterial RNA polymerase. *Nature*, 448, 157–162.

26. Bushnell, D.A., Westover, K.D., Davis, R.E. and Kornberg, R.D. (2004) Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4.5 Ångstroms. *Science*, 303, 983–988.

27. Chen, H.-T. and Hahn, S. (2003) Binding of TFIIB to RNA polymerase II: mapping the binding site for the TFIIB zinc ribbon domain within the preinitiation complex. *Mol. Cell*, 12, 437–447.

28. Pal, M., Ponticelli, A.S. and Luse, D.S. (2005) The role of the transcription bubble and TFIIB in promoter clearance by RNA polymerase II. *Mol. Cell*, 19, 101–110.

29. Holstege, F.C.D., Tantin, D., Carey, M., van der Vliet, P.C. and Timmers, H.Th.M. (1995) The requirement for the basal transcription factor IIE is determined by the helical stability of promoter DNA. *EMBO J.*, 14, 810–819.