Mass production of re-entrant cubic auxetic structure

Balaji B¹, Ramesh Gupta Burela² and Ganeshthangaraj Ponniyah¹*

¹Mechatronics Laboratory, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India.
²Multi-Functional Composites Laboratory, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India.

*ganeshthangaraj@hotmail.com (Dr. Ganeshthangaraj Ponniyah)

Abstract. The unique characteristics of auxetic materials has attracted significant attention in the research domain. Its distinguishing negative Poisson’s ratio has found its way to targeted applications where normal materials fail to deliver the expected results. The manufacturing of macro sized auxetic structures has always been a challenge. This paper proposes the possibility for mass production of auxetic structures. Materials available in standard shapes are utilized to manufacture the auxetic structure. A new re-entrant cubic auxetic structure is developed, analysed and fabricated. This auxetic structure provides a better scope for mass production.

Keywords: Auxetic structure, Negative Poisson’s ratio, Impact absorption, Re-entrant unit cell, Repeating units.

1. Introduction

Auxetic materials have shown significant advantages over conventional materials in certain applications. Even though there is a substantial demand for auxetic materials[1,2] the limitations in manufacturing them has been a bottle neck. The trend has slowly shifted from manufacturing, auxetic materials [3–8] to auxetic structures[9–16]. A wide range of auxetic structures have been identified and studied[8,17]. Due to the negative Poisson’s ratio of the auxetic structure they thicken laterally when stretched axially and become thinner in the lateral direction when compressed axially. This peculiar nature makes it suitable for blast resistant structures with better force distribution[18]. Numerous attempts have been made to produce auxetic structures using non-conventional techniques. Auxetic structures are produced using additive manufacturing techniques [9,10,12,19–23] while few attempts were made to fabricate it as composite structures [11,24–26]. The adoption of direct laser writing [20,22,27,28] and metal deposition techniques [19,29] proved to provide better surface finish compared to the traditional manufacturing process. Selective laser melting is found to have better control over the geometry of the structure[16,21].

Auxetic structures are better suited for low velocity impact applications[7] and double arrowhead structures showed to follow the same characteristics[30]. Under such loads the deformation sequence of the structure is uncertain. This can be overcome by selectively strengthening the parts of the structure[31]. Though few materials were tested to exhibit auxetic properties, Magalhaes et al [32] found that the geometry of the auxetic structure has more influence than its material properties. With maximum energy absorption as the prime motive, optimal cell geometries were developed [13,15] but,
they still lack the feasibility of mass production. Non-conventional manufacturing techniques require specialised equipment and a controlled environment. Designing an auxetic structure that has a simple geometry with a unit cell that provides room to be easily scaled without compromising its auxetic nature is a challenging task. This paper has addressed this my modifying the idealised unit cell derived from an auxetic foam [5] to make it more suitable for mass production.

2. Selection Criteria
The auxetic structure is selected and modified based on four key factors. The structure should have less repeating units, better scalability, use standardised raw materials and mainly the feasibility for mass production. A new re-entrant cubic auxetic structure Figure 1 is developed based on these key factors. A repeating unit shown in Figure 2 is a sub unit that constitute a unit cell (Figure 3). This unit cell exhibits auxetic properties. The lesser the repeating units the easier would be the assembly of the unit cell. These unit cells must have the provision to link with other such unit cells so it can be scaled with minimal effort. The materials used to fabricate the auxetic structure must be available in standard dimensions. This eliminates the additional step of in house fabrication. Finally the shape of the structure must be simple and cost effective to be assembled.

3. Optimizing the re-entrant cubic cell geometry
The cubic unit cell (Figure 1) that resembles a systematically collapsed cube is re-entrant in nature. This cell can be divided into repeating units that can be further subdivided into standard geometric shapes. Based on the availability of standard sized raw materials aluminium cubes (6.1 mm) and steel links (Ø 1.3 mm) are selected. These are fixed parameters in the unit cell. The repeating unit (Figure 2) consists of 5 steel links assembled in a particular formation to facilitate assembly with other repeating units. The re-entrant cubic unit is an assembly of 6 repeating units (Figure 4). The dimensions of the unit cell assembly can be controlled with two parameters, length of the steel link (l) and angle (θ) between the steel links (Figure 2).

Table 1. Factors and levels
Factors
Link length, l (mm)
Link angle, θ (deg)
Figure 4. Assembled re-entrant cubic unit cell. a) Front view, b) Isometric view.

Figure 5. Boundary conditions for analysis.

Table 2. Orthogonal array

Test case	Factor 1	Factor 2	Stress (MPa)	Poisson’s ratio
1	1	1	a	a
2	1	2	a	a
3	1	3	186	-0.483
4	2	1	a	a
5	2	2	228.99	-0.576
6	2	3	260.86	-0.388
7	3	1	a	a
8	3	2	301.89	-0.539
9	3	3	335.08	-0.404

*a Infeasible assembly

These parameters are assigned 3 levels to determine the optimum combination (Table 1). The desired functionality of the unit cell is to provide the maximum negative Poisson’s ratio with minimal induced stress, while subjected to an external force. L9 orthogonal array is used to analyse feasible test cases (Table 2). A compressive load of 25 N is applied in the axial direction of the cubic unit cell with its bottom link fixed (Figure 5). Tests are conducted with the combinations shown in the orthogonal array to identify the combination that provides the desired output.

4. Results and discussions
The optimal combination of the factors and levels were determined through analysis. Not all test cases could be analysed, as test cases 1, 2, 4 and 7 rendered an infeasible assembly for the combination of link length and link angle. A link length of 25mm and a link angle of 70° provides the favorable output with a Poisson ratio of -0.576 and an induced stress of 228.99 MPa. Based on the findings the first prototype is fabricated (Figure 6). The proposed model has good scope to be scaled. This is possible by connecting just one link in the direction to be scaled as shown in Figure 6.
5. Conclusion
Designing an auxetic structure that provides the maximum negative Poisson’s ratio is always desired. But, fabricating such a complex geometry may at times be infeasible. Both, auxetic nature with manufacturing feasibility needs to be considered while designing the auxetic geometry. This article has proposed a new re-entrant cubic unit cell that has potential for mass production using conventional machines. The newly designed auxetic structure is analysed to determine the optimal geometry while retaining its auxetic nature. The repeating units in this auxetic structure is designed to be easily fabricated using standard raw materials. This new re-entrant cubic auxetic structure can also be scaled without compromising its functionality.

References
[1] D’Alessandro L, Zega V, Ardito R and Corigliano A 2018 3D auxetic single material periodic structure with ultra-wide tunable bandgap Sci. Rep. 8 2262
[2] Yang C, Vora H D and Chang Y B 2016 Application of Auxetic Polymeric Structures for Body Protection Conference on Smart Materials, Adaptive Structures and Intelligent Systems (American Society of Mechanical Engineers) pp 1–7
[3] Phan-Thien N and Karihaloo B L 1994 Materials With Negative Poisson’s Ratio: A Qualitative Microstructural Model J. Appl. Mech. 61 1001–4
[4] Ma Z, Arbor A and Hulbert G M 2010 Functionally-Graded Npr (Negative Poisson’s Ratio) Material for a Blast-Protective Deflector Eng. Technol.
[5] Lakes R S 1993 Design Considerations for Materials with Negative Poisson’s Ratios J. Mech. Des. 115 696–700
[6] Grima J N, Gatt R, Farrugaia P-S, Alderson A and Evans K E 2005 Auxetic Cellular Materials and Structures Aerospace vol 70 AD (ASMEDC) pp 489–95
[7] Lim T C, Alderson A and Alderson K L 2014 Experimental studies on the impact properties of auxetic materials Phys. status solidi 251 307–13
[8] Liu Y and Hu H 2010 A review on auxetic structures and polymeric materials Sci. Res. Essays 5 1052–63
[9] Mehta V, Frecker M and Lesieutre G A 2009 Stress Relief in Contact-Aided Compliant Cellular Mechanisms J. Mech. Des. 131 1–11
[10] Helou M and Kara S 2018 Design, analysis and manufacturing of lattice structures: an overview Int. J. Comput. Integr. Manuf. 31 243–61
[11] Alderson K L, Simkins V R, Coenen V L, Davies P J, Alderson A and Evans K E 2005 How to make auxetic fibre reinforced composites Phys. status solidi 242 509–18
[12] Santulli C and Langella C 2016 Study and development of concepts of auxetic structures in bio-inspired design Int. J. Sustain. Des. 3 20
[13] Imbalzano G, Linforth S, Ngo T D, Lee P V S and Tran P 2018 Blast resistance of auxetic and
honeycomb sandwich panels: Comparisons and parametric designs Compos. Struct. \textbf{183} 242–61
[14] Wang Y, Zhao W, Zhou G and Wang C 2018 Analysis and parametric optimization of a novel sandwich panel with double-V auxetic structure core under air blast loading Int. J. Mech. Sci. \textbf{142–143} 245–54
[15] Schultz J, Griese D, Ju J, Shankar P, Summers J D and Thompson L 2012 Design of Honeycomb Mesostuctures for Crushing Energy Absorption J. Mech. Des. \textbf{134} 071004
[16] Yang L, Harrysson O, West H and Cormier D 2013 Modeling of uniaxial compression in a 3D periodic re-entrant lattice structure J. Mater. Sci. \textbf{48} 1413–22
[17] Saxena K K, Das R and Calius E P 2016 Three Decades of Auxetics Research – Materials with Negative Poisson’s Ratio: A Review Adv. Eng. Mater. \textbf{18} 1847–70
[18] Qi C, Remennikov A, Pei L, Yang S, Yu Z and Ngo T D 2017 Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: Experimental tests and numerical simulations Compos. Struct. \textbf{180} 161–78
[19] Yilmaz O and Ugla A A 2016 Shaped metal deposition technique in additive manufacturing: A review Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. \textbf{230} 1781–98
[20] Yang L, Harrysson O, Cormier D, West H, Gong H and Stucker B 2015 Additive Manufacturing of Metal Cellular Structures: Design and Fabrication JOM \textbf{67} 608–15
[21] Meena K, Calius E P and Singamaneni S 2019 An enhanced square-grid structure for additive manufacturing and improved auxetic responses Int. J. Mech. Mater. Des. \textbf{15} 413–26
[22] Muslila A and Diaz Lantada A 2014 Deep reactive ion etching of auxetic structures: present capabilities and challenges Smart Mater. Struct. \textbf{23} 087001
[23] Yang Z Y, Chen Y G and Sze W S 2002 Layer-based machining: Recent development and support structure design Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. \textbf{216} 979–91
[24] Yang L, Harrysson O, Cormier D, West H, Park C and Peters K 2013 Design of auxetic sandwich panels for structural applications Solid Freeform Fabrication Proceedings pp 929–38
[25] Ge Z and Hu H 2013 Innovative three-dimensional fabric structure with negative Poisson’s ratio for composite reinforcement Text. Res. J. \textbf{83} 543–50
[26] Magalhaes R, Subramani P, Lisner T, Rana S, Ghiassi B, Fangueiro R, Oliveira D V and Lourenco P B 2016 Development, characterization and analysis of auxetic structures from braided composites and study the influence of material and structural parameters Compos. Part A Appl. Sci. Manuf. \textbf{87} 86–97
[27] Yang L, Harrysson O, West H and Cormier D 2015 Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing Int. J. Solids Struct. \textbf{69–70} 475–90
[28] Yang Y, Su X, Wang D and Chen Y 2011 Rapid fabrication of metallic mechanism joints by selective laser melting Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. \textbf{225} 2249–56
[29] Niu J, Choo H L, Sun W and Mok S H 2018 Numerical study on load-bearing capabilities of beam-like lattice structures with three different unit cells Int. J. Mech. Mater. Des. \textbf{14} 443–60
[30] Qiao J and Chen C Q 2015 Analyses on the In-Plane Impact Resistance of Auxetic Double Arrowhead Honeycombs J. Appl. Mech. \textbf{82} 51007–9
[31] Imbalzano G, Tran P, Ngo T D and Lee P V 2017 Three-dimensional modelling of auxetic sandwich panels for localised impact resistance J. Sandw. Struct. Mater. \textbf{19} 291–316
[32] Magalhaes R, Subramani P, Lisner T, Rana S, Ghiassi B, Fangueiro R, Oliveira D V. and Lourenco P B 2016 Development, characterization and analysis of auxetic structures from braided composites and study the influence of material and structural parameters Compos. Part A Appl. Sci. Manuf. \textbf{87} 86–97