A modular approach to the kinematics of the vehicle axle suspension linkages

C Alexandru
Transilvania University of Braşov, Romania
E-mail: calex@unitbv.ro

Abstract. The work deals with a modular approach on the kinematics of the suspension linkages used for the rear axle of motor vehicles. The multi-body systems theory/method was used to formulate the motion equations for the kinematic analysis, by individually considering the basic binary connections (which are defined by considering the types geometric constraints between the guiding arms/links and the adjacent bodies - car body and axle, respectively) that constitutes the suspension mechanism. Subsequently, by combining these binary connections in various combinations, the kinematic analysis of any type of axle suspension linkage (at least those commonly used) can be easily performed.

1. Introduction
Relative to car body (chassis), the vehicle wheels can be guided independently - by means of a guiding mechanism for each wheel (independent suspension), or dependent - by a guiding mechanism of the rigid axle (dependent suspension). The first solution is frequently used for passenger cars (for both front and rear wheel suspensions), while the second one (which is addressed in this paper) is mainly used for the rear axles of larger gauge cars (e.g. commercial or off-road vehicles).

This paper deals with a study on the kinematics of the multi-link axle suspension linkages, which is a continuous research concern and challenge, the literature revealing various methods, more or less complex, and with a wider or narrower applicability [1-5]. A modular approach based on the multi-body systems (MBS) theory is proposed by decomposing the guiding mechanisms in the basic binary links by which is axle is guided in the relative movement to the vehicle chassis. Subsequently, by combining the binary links, the kinematics can be carried out for most types of axle guiding linkages.

2. The kinematics of the axle suspension linkages
The guiding links from the axle suspension linkages are hinged to axle and chassis by bushings (flexiblocks), which are compliant joints of rubber with 6 elastic restricted degrees of mobility. For the kinematic study, the bushings are frequently modeled by spherical joints, thus ignoring the linear deformations, which are generally insignificant [1, 3, 5-8]. In the case of the triangular guiding arms, which are double hinged to the vehicle chassis, the two corresponding spherical joints determine a rotational (revolute) joint, whose axis is defined by the centers of the spherical joints. A comprehensive systematization of the vehicle axle suspension linkages was carried out in [1].

From multiple possible variants of beam axle guiding, the guidance on circle (spherical - revolute binary connection between axle and chassis - Figure 1,a) and respectively the guidance on sphere (spherical - spherical binary connection between axle and chassis - Figure 1,b) are frequently used/implemented.
One of the most used and performing methods for the kinematic, static and dynamic analysis of the mechanical systems is the one called in short MBS (the acronym stands from Multi-Body Systems), which treats the mechanical system as a set of bodies, connected by geometrical constraints (joints), elastic and damping elements, on which a varied system of external and reaction forces/torques can act. The MBS method underlies several powerful commercial software solutions, such as ADAMS or DYMES, which are used in a large variety of applications [9-14]. In the MBS concept, the spatial movement of a part is defined by 6 generalized coordinates: the coordinates of the origin of the local coordinate system attached to the part, and the orientation of the axes of this frame relative to the ones of the global (inertial) coordinate system.

The kinematic model of the axle suspension linkage contains several moving bodies (the axle and the guiding links/arms). For each moving body, there is defined a local coordinate system, namely $MX_1 Y_1 Z_1$ for the guiding arm "1" and $PX_2 Y_2 Z_2$ for the rear axle "2", in the case of the basic binary connections shown in Figure 1. In the kinematic study, the car body (chassis) is considered to be rigidly connected to ground, so it is the reference part to which the global coordinate system $OX_0 Y_0 Z_0$ is attached, where X_0, Y_0 and Z_0 are the longitudinal, transversal and vertical axes of the vehicle.

Each geometric restriction (joint) in the axle suspension linkage replaces a number of degrees of freedom, by adding algebraic constraint equations of the following form (the first three equations constrain translational movements, while the last three restrict rotational movements):

- $X_i - X_j = 0$ - the global coordinate X (which is the longitudinal axis in Figure 1) of the "i"-body reference frame equals the corresponding coordinate of the "j"-body reference frame,
- $Y_i - Y_j = 0$ - the global coordinate Y (the transversal axis in Figure 1) of the "i"-body reference frame equals the corresponding coordinate of the "j"-body reference frame,
- $Z_i - Z_j = 0$ - the global coordinate Z (the vertical axis in Figure 1) of the "i"-body reference frame equals the corresponding coordinate of the "j"-body reference frame,
- $Z_i \cdot X_j = 0$ - the global coordinate Z of the "i"-body reference frame remains normal (perpendicular) on the X axis of the "j"-body reference frame,
- $Z_i \cdot Y_j = 0$ - the global coordinate Z of the "i"-body reference frame remains normal (perpendicular) on the Y axis of the "j"-body reference frame,
- $X_i \cdot Y_j = 0$ - the global coordinate X of the "i"-body reference frame remains normal (perpendicular) on the Y axis of the "j"-body reference frame.

In the following, for the main types of joints (connections) from the axle suspension linkages, the geometric constraint equations will be defined. For the spherical - revolute binary connection (see Figure 1.a) the corresponding equations are the ones shown in Table 1, while Table 2 corresponds to the spherical - spherical binary connection (see Figure 1.b). In these tables, in the constraint equations area, T stands from translational and R from rotational (the movements canceled by the binary links/connections).
Table 1. The constraint equations for the spherical - revolute binary connection.

Element / part	Car body (0)	Guiding bar (1)	Axle (2)
Joint	X XA, XA'	XA(M), XA'(M)	XB(M)
Local	Y YA, YA'	YA(M), YA'(M)	YB(M)
	Z ZA, ZA'	ZA(M), ZA'(M)	ZB(M)

Coordinates

Element / part	Car body (0)	Guiding bar (1)	Axle (2)
Joint	X XA, XA'	XA(M) + m11 \cdot XA(M) + m12 \cdot YA(M) + m13 \cdot ZA(M)	XB(M) + m11 \cdot XB(M) + m12 \cdot YB(M) + m13 \cdot ZB(M)
	Y YA, YA'	YA(M) + m21 \cdot XA(M) + m22 \cdot YA(M) + m23 \cdot ZA(M)	YB(M) + m21 \cdot YB(M) + m22 \cdot YB(M) + m23 \cdot ZB(M)
	Z ZA, ZA'	ZA(M) + m31 \cdot XA(M) + m32 \cdot YA(M) + m33 \cdot ZA(M)	ZB(M) + m31 \cdot ZB(M) + m32 \cdot ZB(M) + m33 \cdot ZB(M)

Constraint equations

\[
\begin{align*}
(Y_A - Y_A') \cdot \sum_{i=1, K=X}^{3, Z} m_3 i \cdot (K_A'(M) - K_A(M)) &= 0 \\
(Z_A - Z_A') \cdot \sum_{i=1, K=X}^{3, Z} m_2 i \cdot (K_A'(M) - K_A(M)) &= 0 \\
(X_A - X_A') \cdot \sum_{i=1, K=X}^{3, Z} m_1 i \cdot (K_A'(M) - K_A(M)) &= 0
\end{align*}
\]

Kinematic parameters

Element / part	Car body (0)	Guiding bar (1)	Axle (2)
XA, YA, ZA	XA, YA, ZA	XA(M), YA(M), ZA(M)	XB(M), YB(M), ZB(M)

Geometrical parameters (input data)

Element / part	Car body (0)	Guiding bar (1)	Axle (2)
XA, YA, ZA	XA, YA, ZA	XA(M), YA(M), ZA(M)	XB(M), YB(M), ZB(M)

\[\phi \text{ax}, \phi \text{ay}, \phi \text{az}\]
Table 2. The constraint equations for the spherical-spherical binary connection.

Element / part	Car body (0)	Guiding bar (1)	Axle (2)
Joint	A	A	B
Local	X X		
Coordinates	X X A X(A(M)) X(M) + m_11 X(A(M)) + m_12 Y(A(M)) + m_13 Z(A(M)) X(M) + m_11 X(B(M)) + m_12 Y(B(M)) + m_13 Z(B(M)) X(M) + w_11 X(B(P)) + w_12 Y(B(P)) + w_13 Z(B(P))		
Constraint	Y Y A Y(A(M)) Y(M) + m_21 X(A(M)) + m_22 Y(A(M)) + m_23 Z(A(M)) Y(M) + m_21 X(B(M)) + m_22 Y(B(M)) + m_23 Z(B(M)) Y(M) + w_21 X(B(P)) + w_22 Y(B(P)) + w_23 Z(B(P))		
equations	Z Z Z(A(M)) Z(M) + m_31 X(A(M)) + m_32 Y(A(M)) + m_33 Z(A(M)) Z(M) + m_31 X(B(M)) + m_32 Y(B(M)) + m_33 Z(B(M)) Z(M) + w_31 X(B(P)) + w_32 Y(B(P)) + w_33 Z(B(P))		
Kinematic	– X X M, Y, Z M X P, Y P, Z P		
parameters	– Φ(X), Φ(Y), Φ(Z) Φ(X), Φ(Y), Φ(Z)		
Geometrical	X A Y A, A Z A X A(M), Y A(M), Z A(M) X B(P), Y B(P), Z B(P)		
parameters	input data Φ(X), Φ(Y), Φ(Z) Φ(X), Φ(Y), Φ(Z)		

The connection matrix M_{10} between the local (X_i, Y_i, Z_i) and global (X, Y, Z) coordinate systems has the following form:

$$
M_{10} = \begin{bmatrix}
 m_{11} & m_{12} & m_{13} \\
 m_{21} & m_{22} & m_{23} \\
 m_{31} & m_{32} & m_{33}
\end{bmatrix}
\begin{bmatrix}
 \hat{i} \cdot \hat{i}_1 \\
 \hat{j} \cdot \hat{j}_2 \\
 \hat{k} \cdot \hat{k}_3
\end{bmatrix}
= \begin{bmatrix}
 \cos(X, X_1) & \cos(X, Y_1) & \cos(X, Z_1) \\
 \cos(Y, X_1) & \cos(Y, Y_1) & \cos(Y, Z_1) \\
 \cos(Z, X_1) & \cos(Z, Y_1) & \cos(Z, Z_1)
\end{bmatrix}.
$$

3. Results and conclusions

By linking in parallel the above presented guidance cases, a large variety of axle suspension linkages can be obtained, as they are systematized in [1], in which the geometric constraints equations have the form of those shown in Tables 1 and 2. For example, by interposing between axle and chassis two spherical-spherical connections and one spherical-revolute connection, the so-called 2S1C (where S means guidance on sphere, while C - guidance on circle) suspension mechanism is obtained, which is shown in Figure 2 (as structural model and semi-constructive solution).

This mechanism has two mobilities, which correspond to the left and right wheels vertical movements, which can be transposed into the vertical displacement of the axle center (Z_P) and the axle roll rotation around the longitudinal axis (ϕ_{ZX}).

By transposing the general forms of the constraint equations from Tables 1 and 2 for this particular type of axle suspension linkage, the following equations are obtained:

- for the joints of the guiding bars "1-3" to axle "4":

\[
F_{14} = \begin{bmatrix}
X_P \\
Y_P \\
Z_P
\end{bmatrix} + M_{40} \begin{bmatrix}
X_{Ms} \\
Y_{Ms} \\
Z_{Ms}
\end{bmatrix} - \begin{bmatrix}
X_{Ms} \\
Y_{Ms} \\
Z_{Ms}
\end{bmatrix} - M_{10} \begin{bmatrix}
X_{Ms} \\
Y_{Ms} \\
Z_{Ms}
\end{bmatrix} = 0, \\
F_{34} = \begin{bmatrix}
X_P \\
Y_P \\
Z_P
\end{bmatrix} + M_{40} \begin{bmatrix}
X_{N} \\
Y_{N} \\
Z_{N}
\end{bmatrix} - \begin{bmatrix}
X_{N} \\
Y_{N} \\
Z_{N}
\end{bmatrix} - M_{30} \begin{bmatrix}
X_{N} \\
Y_{N} \\
Z_{N}
\end{bmatrix} = 0; \\
(2)
\]

- for the joints of the guiding bars "1-3" to car body "0":

\[
F_{10} = \begin{bmatrix}
X_{Ms} \\
Y_{Ms} \\
Z_{Ms}
\end{bmatrix} - \begin{bmatrix}
X_0 \\
Y_0 \\
Z_0
\end{bmatrix}, \\
F_{20} = \begin{bmatrix}
X_{Mod} \\
Y_{Mod} \\
Z_{Mod}
\end{bmatrix} - \begin{bmatrix}
X_0 \\
Y_0 \\
Z_0
\end{bmatrix}, \\
F_{30} = \begin{bmatrix}
X_{N} \\
Y_{N} \\
Z_{N}
\end{bmatrix} - \begin{bmatrix}
X_0 \\
Y_0 \\
Z_0
\end{bmatrix}, \\
\begin{bmatrix}
X_0 \\
Y_0 \\
Z_0
\end{bmatrix} = 0, \\
(3)
\]

The matrices M_{ij} ($i=1...4$) have similar forms with the one in equation (1). The geometric constants a_i, b_i, c_j ($i=1...3$, $j=1...5$) can be obtained from the initial configuration of the suspension system. The equations (2) and (3) define a system of 20 scalar equations, with 24 generalized coordinates (6 per moving body). As mentioned, the independent parameters are Z_0 and q_{x0}, while the rotations of the guiding bars "1" (ϕ_{1x}) and "2" (ϕ_{2x}) around their own axes are kinematically passive. Therefore, 20 unknown kinematic parameters will be established by processing the system of equations (2) and (3), thus determining the kinematic behavior of the axle suspension linkage, as it is defined in [1].

The global coordinates (X, Y, Z) of the joints in the initial position of the guiding mechanism/vehicle are input parameters for the kinematic study, as follows (in correlation with the notations in Figure 2): M_{bosd} (2014.5, ± 536.0, 40.0), M_{sid} (2523.5, ± 536.0, 40.0), N_{0} (2362.0, ± 100.0, 168.0), N (2629.0, 0.0, 168.0). In the same position, the axle center has the global coordinates P (2596.0, 0, 111.0).

To exemplify, it was considered the case where the wheels move vertically from the initial position with the same rate, but in opposite directions (up/down to the altitude of ± 80mm), and then in reverse, until the wheels perform a full up-down / down-up race, with a return to the starting (initial) position.
These vertical displacements of the wheels are equivalent with the following variations of the two independent kinematic parameters: \(Z_P = 111.0 \text{ mm} \) (it remains constant during the analysis, so \(\Delta Z_P = 0 \)), and \(\varphi_{4X} \in [-6.676^\circ, 6.676^\circ] \). From the results of the analysis thus carried out, Figure 3 shows the variation diagrams for the displacements of the axle centre along the longitudinal (\(\Delta X_P \)) and transversal (\(\Delta Y_P \)) axes, as well as the twisting angle of the axle (\(\varphi_{4Y} \)) and the pivoting angle around the vertical axis (\(\varphi_{4Z} \)), depending on the roll angle of the axle (\(\varphi_{4X} \)).

The kinematic analysis method can be implemented for most types of axle guiding linkages, and it avoids the disadvantages of the numerical methods based on nonlinear equation systems. At the same time, the method is easy to implement for the independent wheel suspension mechanisms.

References
[1] Alexandru C 2009 The kinematic optimization of the multi-link suspension mechanism used for rear axle of the motor vehicle Proceedings of the Romanian Academy - A 10(3) pp 244-253
[2] Attia HA 2003 Kinematic analysis of the multi-link five-point suspension system in point coordinates Journal of Mechanical Science and Technology 17(8) pp 1133-1139
[3] Balike KP, Rakheja S and Stiharu I 2008 Kinematic analysis and parameter sensitivity to hard points of five-link rear suspension mechanism of passenger car Proceedings of the Design Engineering Technical Conference pp 755-764
[4] Hiller M and Woernle C 1985 Kinematical analysis of a five point wheel suspension ATZ 87 pp 59-64
[5] Simionescu PA and Beale D 2002 Synthesis and analysis of the five-link rear suspension system used in automobile Mechanism and Machine Theory 37(9) pp 815-832
[6] Knapczyk J and Maniowski M 2002 Selected effects of bushings characteristics on five-link suspension elastokinematics Mobility and Vehicle Mechanics 3(2) pp 107-121
[7] Knapczyk J and Maniowski M 2006 Elastokinematic modeling and study of five-rod suspension with subframe Mechanism and Machine Theory 41(9) pp 1031-1047
[8] Tică M, Dobre G and Mateescu V 2014 Influence of compliance for an elastokinematic model of a proposed rear suspension International Journal of Automotive Technology 15(6) pp 885-891
[9] Alexandru C and Comșit M 2007 Virtual prototyping of the solar tracking systems Renewable Energy and Power Quality Journal 1(5) pp 105-110
[10] Alexandru C and Pozna C 2008 Virtual prototype of a dual-axis tracking system used for photovoltaic panels Proceedings of the IEEE International Symposium on Industrial Electronics - ISIE pp 1598-1603
[11] Alexandru P, Macaveiu D and Alexandru C 2012 Design and simulation of a steering gearbox with variable transmission ratio Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 226 pp 2538-2548
[12] Geonea ID, Alexandru C, Margine A and Ungureanu A 2013 Design and simulation of a single DOF human-like leg mechanism Applied Mechanics and Materials 332 pp 491-496
[13] Ioniță M and Alexandru C 2012 Dynamic optimization of the tracking system for a pseudo-azimuthal photovoltaic platform Journal of Renewable and Sustainable Energy 4 pp 053117
[14] Tarniță D, Catană M and Tarniță DN 2016 Design and simulation of an orthotic device for patients with osteoarthritis Mechanisms and Machine Science 38 pp 61-77