Ambipolar Black Phosphorus MOSFETs with Record n-Channel Transconductance

Nazila Haratipour and Steven J. Koester

Abstract—Ambipolar black phosphorus MOSFETs with record n-channel extrinsic transconductance are reported. The devices consist of multi-layer black phosphorus aligned to a local back-gate electrode with 10-nm-thick HfO$_2$ gate dielectric. Before passivation, devices with 0.3-μm gate length behaved as p-MOSFETs with peak extrinsic transconductance, g_{m}, of 282 μS/μm at $V_{GS} = -2$ V. After passivation, the same devices displayed ambipolar behavior, and when tested as n-MOSFETs, had peak $g_{m} = 66$ μS/μm at $V_{GS} = +2$ V, and similar devices on the same wafer had g_{m} as high as 80 μS/μm. These results are an important step toward realization of high-performance black phosphorus complementary logic circuits.

I. INTRODUCTION

Black phosphorus (BP) is a promising material for high-performance transistor applications due to its high mobility and layered crystal structure which could potentially allow sub-1-nm-thick channel layers to be realized [1]. Room-temperature hole mobility as high as 1000 cm2/Vs [2, 3], have been reported in few-layer BP films, and BP also has a tunable band gap which ranges from 0.3 eV in bulk to 1.0-1.5 eV for monolayers [4-6]. These properties make it an attractive alternative to other 2D materials such as graphene, which has high mobility but zero band gap [7] and transition metal dichalcogenides, which have large band gaps (1-2 eV), but low mobilities (\sim 10-250 cm2/Vs) [8-10]. BP also has a number of unusual properties that arise from its puckered honeycomb crystal structure including highly anisotropic electrical [4] and optical conductivity [11].

While a number of recent publications have reported high-performance BP MOSFETs [2,4,12-16], these reports have primarily involved p-channel MOSFETs (p-MOSFETs). In particular, recent papers have shown BP p-MOSFETs with transconductance of 180 μS/μm using a top-gated configuration [15], while in [16], BP p-MOSFETs using 7-nm HfO$_2$ gate dielectrics displayed transconductance as high as 250 μS/μm, drive current \sim 300 μA/μm and low contact resistance. However, despite this success, very few results on the n-channel properties of BP MOSFETs have been reported [12-14,17,18]. Since the capability to produce a complementary logic technology is critical for practical applications, development of techniques to realize high-performance BP n-MOSFETs is urgently needed.

It has previously been reported that, while unpassivated BP p-MOSFETs tend to be p-type, Al$_2$O$_3$ surface passivation produces a negative threshold shift [17], suggesting it could be used to produce high-performance n-MOSFETs. Similar effects of Al$_2$O$_3$ passivation have been observed for graphene and MoS$_2$ [19, 20]. In this letter, we report results on Al$_2$O$_3$-passivated BP MOSFETs fabricated using a local back-gate geometry with 10-nm HfO$_2$ gate dielectric. These devices, which have gate lengths down to 0.2 μm, show ambipolar behavior with record n-channel transconductance up to 80 μS/μm at a drain-to-source voltage, V_{DS}, of 2 V.

II. DEVICE FABRICATION

The device fabrication sequence is shown in Fig. 1 and started by growing a 110-nm-thick SiO$_2$ layer on a Si substrate using dry oxidation in O$_2$. Local back gates were formed by first using electron beam lithography (EBL) to create openings in PMMA, followed by recess etching a 50-nm slot using a combination of dry and wet etching. Next, Ti (10 nm) and Pd (40 nm) were evaporated and lifted off using standard solvent processing. The gate dielectric (10 nm of HfO$_2$) was then deposited at 300 °C using atomic layer deposition (ALD). Then, black phosphorous flakes were exfoliated from the bulk

![Fabrication sequence for locally-backgated black phosphorus MOSFETs with Al$_2$O$_3$ surface passivation.](image-url)
crystal and transferred onto the local back gates by using a PDMS stamp. Next, source and drain contact openings were patterned by EBL, followed by evaporation and lift off of Ti (10 nm) and Au (90 nm). Finally, the device was passivated by depositing 30 nm of Al₂O₃ at 200°C using ALD. The thickness of the BP flakes was determined using atomic force microscopy (AFM) on the devices after fabrication and the thicknesses were in the range of 6.4 to 13.8 nm.

III. RESULTS

All electrical measurements were performed in vacuum at room temperature using an Agilent B1500A semiconductor parameter analyzer, and all devices were measured both before and after passivation. Before the deposition of the Al₂O₃ passivation layer, all of the BP MOSFETs showed strong p-type behavior. The output and transfer characteristics of one particular p-MOSFET with flake thickness of 6.4 nm and effective gate length, L\text{eff}, of 0.3 μm before passivation are shown in Fig. 2. Here, L\text{eff} is defined as the spacing between the source and drain electrodes. The ON current, I\text{ON}, is 225 μA/μm at V\text{DS} = −2 V and V\text{GS} = −2.5 V and the peak extrinsic transconductance, g\text{m}, is 282 μS/μm for V\text{DS} = −2 V. The latter value is actually higher than the value reported in [16], despite having a thicker gate dielectric, and to our knowledge is the highest transconductance reported for any solid-dielectric BP MOSFET.

It has been previously reported that the Al₂O₃ capping layer converts BP MOSFET behavior from p-type to ambipolar [17]. This shift has been attributed to the positive fixed charges in the dielectric layer [17], however further studies are needed to understand the origin of this doping mechanism. We utilized this effect and passivated the BP MOSFETs in order to analyze the electron transport in black phosphorus.

Fig. 3 shows the output and transfer characteristics of the same device as in Fig. 2 after passivation. The device shows strong ambipolar behavior so that electron transport can be probed. I\text{ON} reached −35 μA/μm at V\text{DS} = 2 V and V\text{GS} = 4 V (Fig. 3(a)) and the peak g\text{m} is 66 μS/μm at V\text{DS} = 2 V (Fig. 3(b)). The inset of Fig. 3(b) also shows a plot of I\text{D} vs. V\text{GS} for the passivated MOSFET. The ratio of the ON-current to the minimum current, I\text{ON}/I\text{MIN}, for this device is −1.6 x 10⁴ at V\text{DS} = 0.1 V, where the ON-current is defined as the current at V\text{GS} = V\text{GS,MIN} + 2.5 V, and V\text{GS,MIN} is the gate voltage where the current minimum occurs. It has been previously shown that the Ti work function lines up nearer to the BP valence band edge [13]. Therefore, at high drain bias the tunneling at the drain side can become significant, to the point where the OFF current actually exceeds I\text{ON}. It will be important for future optimization of BP n-MOSFETs to identify lower work function metals that can produce lower Schottky barrier heights for electron injection.

Similar n-channel performance was observed in several BP
MOSFETs, and Fig. 4(a) shows the g_m vs. V_{GS} characteristics for four devices fabricated on the same wafer. The best device had peak n-channel g_m of 80 μS/\mu m which is the highest value reported to date for n-type conduction in a BP MOSFET.

![Transconductance vs. Gate-to-Source Voltage](image1)

FIG. 4. (a) N-channel extrinsic transconductance, g_m, for different BP MOSFETs at $V_{DS} = 2.0$ V. The maximum g_m is 80 μS/\mu m for device #3. The effective channel length, $L_{eff} = 300$ nm (200 nm) for devices #1, 3 (devices #2, 4). (b) I_D vs. V_{GS} at $V_{DS} = 0.1$ V for the same devices as in (a). The characteristic for device #3 is shown at $V_{DS} = 2.0$ V.

The effect of passivation on the subthreshold slope was also characterized before and after passivation. When the devices were measured as p-MOSFETs, the passivation dramatically improved the subthreshold slope from 740 mV/dec to 300 mV/dec (averaged over one decade of current for all four devices in Fig. 4). However, the subthreshold slope was degraded to 570 mV/dec for the same passivated devices when measured as n-MOSFETs. We believe the initial improvement after passivation is due to the high temperature bake-out provided by the ALD system that desorbs water from beneath the BP. However, the degraded subthreshold slope for passivated n-MOSFETs compared to p-MOSFETs could indicate that the Al$_2$O$_3$ passivation produces interface traps near the conduction-band side of the band gap. This hypothesis is supported by the prominent “kink” in the subthreshold behavior for three of the devices, as shown in Fig. 4(b).

Finally, a summary of the performance characteristics for the devices is compiled in Table 1. First of all, we note that the I_{DSs}/I_{MIN} ratio (defined at $|V_{DS}| = 0.1$ V) scales with BP thickness, as expected based upon the thickness-dependent band gap of BP. In addition, one of the devices had substantially lower g_m than the others, for both when measured as a p- and n-MOSFET. While the precise origin of this behavior is not entirely understood, we note that the crystal direction of the BP was not controlled in these experiments and that large spread in the g_m values could be due to the random rotational orientation of the devices. To explore this behavior further, the effective field effect mobility, μ_{FE}, was extracted using

$$\mu_{FE} = \frac{g_m L_{eff}}{W C_{ox} V_{DS}},$$

where g_m is the peak transconductance at $|V_{DS}| = 0.1$ V, L_{eff} is the effective gate length, W is the channel width, and C_{ox} is the estimated gate capacitance per unit area for 10 nm of HfO$_2$ with relative permittivity of 16.6. The highest hole mobility for device #1 is roughly consistent with our prior results on HfO$_2$-gated BP p-MOSFETs [16]. In addition, the large mobility variations between devices and between electrons and holes are roughly consistent with expectations based upon crystal asymmetries [11]. Finally, we note that the contact resistance was not extracted in our mobility calculation, which can lead to significant degradation of the effective mobility, particularly given the short gate length of our devices [5].

IV. CONCLUSION

In summary, we have demonstrated locally back-gated black phosphorus MOSFETs with 10 nm HfO$_2$ gate dielectric and Al$_2$O$_3$ capping layer. These devices produce record n-channel extrinsic transconductance as high as 80 μS/\mu m. Further performance enhancements could be obtained by improving the contact and dielectric quality. These results are encouraging for using BP MOSFET for CMOS logic circuit applications.

REFERENCES

[1] K. T. Lam, Z. Dong, and J. Guo, “Performance limits projection of black phosphorous field-effect transistors,” IEEE Elect. Dev. Lett., vol. 35, no. 9, pp. 963-965, July 2014. doi: [10.1109/LED.2014.2333368].
[2] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechn., vol.9, no. 5, pp. 372–377, March 2014. doi: [10.1038/nnano.2014.35].
[3] F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun., vol. 5, pp. 4458–4464, July 2014. doi: [10.1038/ncomms5458].
[4] H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and P. D. Ye, “Phosphorene: an unexplored 2D semiconductor with a high hole mobility,” ACS Nano, vol. 8, no. 4, pp. 4033–4041, March 2014. doi: [10.1021/nn405122z].
[5] A. Castellanos-Gomez, L. Vicarelli1, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema1, G. A.
Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and H. S. J. van der Zant, “Isolation and characterization of few-layer black phosphorus,” 2D Materials, vol. 1, no. 2, pp. 025001-1-18, June 2014. doi: [10.1088/2053-1583/1/2/025001].

[6] S. Das, W. Zhang, M. Demarteau, A. Hoffmann, M. Dubey, and A. Roelofs, “Tunable transport gap in phosphorene,” Nano Lett., vol. 14, no. 14, pp. 5733–5739, August 2014. doi: [10.1021/nl5025535].

[7] F. Schwierz, “Graphene transistors,” Nat. Nanotechnol., vol. 5, pp. 487–496, May 2010. doi: [10.1038/nnano.2010.89].

[8] C. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, and K. Cho, “Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors,” Appl. Phys. Lett., vol. 103, no. 5, pp. 053513-1–4, August 2013. doi: [10.1063/1.4817409].

[9] H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, “High-performance single layered WSe2 p-FETs with chemically doped contacts,” Nano Lett., vol. 12, no. 7, pp. 3788–3792, June 2012. doi: [10.1021/nl301702m].

[10] N. R. Pradhan, D. Rhodes, S. Feng, Y. Xin, S. Memaran, B. H. Moon, H. Terrones, M. Terrones, and L. Balicas, “Field-effect transistors based on few-layered α-MoTe2,” ACS Nano, vol. 8, no. 6, pp. 5911-5920, May 2014. doi: [10.1021/nn501013c].

[11] J. Quao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun., vol. 5, pp. 4475-1–7, July 2014. doi: [10.1038/ncomms5475].

[12] Y. Du, H. Liu, Y. Deng, and P. D. Ye, “Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling,” ACS Nano, vol. 8, no. 10, pp. 10035–10042, October 2014. doi: [10.1021/nn505868h].

[13] S. Das, M. Demarteau, and A. Roelofs, “Ambipolar phosphorene field effect transistor,” ACS Nano, vol. 8, no. 11, pp. 11730–11738, October 2014. doi: [10.1021/nn500101c].

[14] W. Zhu, M. N. Yogeesh, S. Yang, S. H. Aldave, J. Kim, S. Sonde, L. Tao, N. Lu, and D. Akinwande, “Flexible black phosphorus ambipolar transistors, circuits and AM demodulator,” Nano Lett., vol. 15, no. 3, pp. 1883–1890, February 2015. doi: [10.1021/nl5047329].

[15] H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S. Han, “Black phosphorus radio-frequency transistors,” Nano Lett., vol. 14, pp. 6424–6429, October 2014. doi: [10.1021/nl5029717].

[16] N. Haratipour, M. C. Robbins, and S. J. Koester, “Black phosphorus p-MOSFETs with 7-nm HfO2 gate dielectric and low contact resistance,” IEEE Elect. Dev. Lett., vol. 36, no. 4, pp. 411-413, February 2015. doi: [10.1109/LED.2015.2407195].

[17] H. Liu, A.T. Neal, M. Si ; Y. Du, and P. D. Ye, “The effect of dielectric capping on few-layer phosphorene transistors: tuning the Schottky barrier heights,” IEEE Elect. Dev. Lett., vol. 35, no. 7, pp. 795-797, May 2014. doi: [10.1109/LED.2014.2323951].

[18] N. Haratipour, M. C. Robbins, and S. J. Koester, “Black phosphorus n-MOSFETs with record transconductance,” 73rd Annual Device Research Conference (DRC), Columbus, OH, Jun. 21-24, 2015. doi: [10.1109/DRC.2015.7175659].

[19] G. Kang, Y. G. Lee, S. K. Lee, E. Park, C. Cho, S. K. Lim, H. J. Hwang, B. H. Lee, “Mechanism of the effects of low temperature Al2O3 passivation on graphene field effect transistors,” Carbon, vol. 53, pp. 182-187, March 2013. doi: [10.1016/j.carbon.2012.10.046].

[20] J. Na, M. Joo, M. Shin, J. Huh, J. Kim, M. Piao, J. Jin, H. Jang, H. J. Choi, J. H. Shim, and G. Kim, “Low-frequency noise in multilayer MoS2 field-effect transistors: the effect of high-k passivation,” Nanoscale, vol. 6, pp. 433-441, October 2014. doi: [10.1039/C3NR04218A].