The Complete Mitochondrial Genomes of Six Species of *Tetranychus* Provide Insights into the Phylogeny and Evolution of Spider Mites

Da-Song Chen¹, Peng-Yu Jin¹, Kai-Jun Zhang², Xiu-Lei Ding¹, Si-Xia Yang¹, Jia-Fei Ju¹, Jing-Yu Zhao¹, Xiao-Yue Hong¹*

¹Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China, ²Department of Entomology, College of Plant Protection, Southwest University, Chongqing, China

Abstract

Many spider mites belonging to the genus *Tetranychus* are of agronomical importance. With limited morphological characteristics, *Tetranychus* mites are usually identified by a combination of morphological characteristics and molecular diagnostics. To clarify their molecular evolution and phylogeny, the mitochondrial genomes of the green and red forms of *Tetranychus urticae* as well as *T. kanzawai*, *T. ludeni*, *T. malaysiensis*, *T. phaseolus*, *T. pueraricola* were sequenced and compared. The seven mitochondrial genomes are typical circular molecules of about 13,000 bp encoding and they are composed of the complete set of 37 genes that are usually found in metazoans. The order of the mitochondrial (mt) genes is the same as that in the mt genomes of *Panonychus citri* and *P. ulmi*, but very different from that in other Acari. The J-strands of the mitochondrial genomes have high (~84%) A+T contents, negative GC-skews and positive AT-skews. The nucleotide sequence of the *cox1* gene, which is commonly used as a taxon barcode and molecular marker, is more highly conserved than the nucleotide sequences of other mitochondrial genes in these seven species. Most tRNA genes in the seven genomes lose the D-arm and/or the T-arm. The functions of these tRNAs need to be evaluated. The mitochondrial genome of *T. malaysiensis* differs from the other six genomes in having a slightly smaller genome size, a slight difference in codon usage, and a variable loop in place of the T-arm of some tRNAs by a variable loop. A phylogenetic analysis shows that *T. malaysiensis* first split from other *Tetranychus* species and that the clade of the family Tetranychidae occupies a basal position in the Trombidiformes. The mt genomes of the green and red forms of *T. urticae* have limited divergence and short evolutionary distance.

Citation: Chen D-S, Jin P-Y, Zhang K-J, Ding X-L, Yang S-X, et al. (2014) The Complete Mitochondrial Genomes of Six Species of *Tetranychus* Provide Insights into the Phylogeny and Evolution of Spider Mites. PLoS ONE 9(10): e110625. doi:10.1371/journal.pone.0110625

Editor: Hector Escriva, Laboratoire Arago, France

Received June 24, 2014; Accepted September 15, 2014; Published October 16, 2014

Copyright: © 2014 Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

Funding: This study was supported in part by a grant-in-aid from the Science and Technology Program of the National Public Welfare Professional Fund (no. 201103020) from the Ministry of Agriculture of China (www.moa.gov.cn), and a grant-in-aid for Scientific Research (nos. 31172131 and 31371944) from the National Natural Science Foundation of China (www.nsfc.gov.cn). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: xyhong@njau.edu.cn

Background

The spider mite genus *Tetranychus* includes 149 species [1], some of which are of cosmopolitan agronomical pests, such as *Tetranychus urticae*. With expanded gene families for ABC genes [2], detoxification and digestion [3] in the genome, *T. urticae* represents one of the most polyphagous arthropod herbivores [1]. The genes of detoxification families have also been reported to transcriptionally respond to the defense chemistry of plants after *T. urticae* adapts to a challenging host (tomato) [4]. *T. urticae* and other tetranychid species feed on apples, citrus, cottons, cucumbers, cucurbits, eggplants, grapes, maize, papayas, peppers, soy, strawberries and tomatoes both in the field and in greenhouses. However, it is difficult to identify the tetranychid species by morphological characters because the potential diagnostic morphological characters are limited and often exhibit great phenotypic flexibility. Classification of the green and red forms of *T. urticae* is also a source of debate. These problems demonstrate the need for combining morphological and molecular approaches to identifying the species [5].

The second internal transcribed spacer (ITS2) of ribosomal DNA can be used as a barcode for distinguishing tetranychid species. For example, the ITS2 sequences of *T. kanzawai* and *T. hydrangea* indicate that they are synonymous species, which was confirmed by cross-breeding experiments [6]. One molecular diagnostic tool that has been developed to overcome the difficulty of morphological identification by the ITS2 sequence is restriction fragment length polymorphism (RFLP) [7,8]. The PCR-RFLP approach has been used to identify the *Tetranychus* species and has the ability to distinguish more species. The *S*’ end of the mitochondrial COI gene is extensively used as a barcode to identify *Tetranychus* species and to analyze their phylogenetic evolution. Its higher divergence makes COI suitable for investigating intraspecific variation, but its usefulness for resolving
phylogenetic species relationships remains limited [9,10]. The lack and occasional unreliability of sequences in public databases restricts their use as molecular diagnostic tools [5].

Thus, to clarify the molecular phylogeny of *Tetranychus* species, as well as to provide new DNA barcodes, we decided to compare the whole mitochondrial genomes of the green and red forms of *T. urticae* as well as five other major spider mite pests in China. Most mtDNA mitochondrial genomes are circular, have a length of approximately 16 kb and encode 37 genes including 13 protein-coding genes (PCGs), two rRNA genes (rRNAs), and 22 tRNA genes (tRNAs) [11]. The databases presently include the mitochondrial genomes of 37 acarids, including 12 of the superorder Acariformes and 25 of the superorder Parasitiformes (Table S1). Several aspects of the mt-genomes of Acari have been examined, including gene rearrangement [12–16], tRNA gene loss [17] and atypical short tRNA [13,14]. Sequencing these genomes will have other benefits. For example it should provide insights into the molecular evolution of acaricide-resistance genes. The rapid development of acaricide resistance of spider mites is a long-standing problem [18,19]. Several acaricides have been identified as mitochondrial respiration inhibitors [19–21]. Resistance to the acaricide bifenazate has been correlated with mutations in the mitochondrial cytochrome b (cbb) gene [22,23]. The genomes will also provide information on gene rearrangements [24–30], evolutionary pattern and structure of the control region [31,32], strand asymmetry in nucleotide composition [33] and RNA secondary structure [34].

**Materials and Methods**

**Sample origin and identification**

Ethics Statement: No specific permits were required for the collection of spider mites because the spider mite is a pest in agriculture and the location is not privately-owned in any way. The field study did not involve endangered or protected species. Strains of *T. kanzawai*, *T. ludeni*, *T. malaysiensis*, *T. phalaeus*, *T. puerariae* and the green and red forms of *T. urticae* were collected in the field, separately (Table S2). Mites were reared on a leaf of the common bean (*Phaseolus vulgaris* L.) at 25 ± 1°C, 60% r.h. and under a 16/8 h (light/dark) photoperiod. All the species were classified by morphological characteristics [35] and RFLP analyses [7,8]. For the RFLP analyses, the ITS2 fragment was amplified by PCR using the *Tetranychus* universal primers, rD02 and HC2 (Table S3) and genomic DNA as template, and digested by five restriction endonucleases (DraI, RsaI, MboII, DdeI and HinfI) (Fig. S1).

**DNA processing**

DNA was extracted from individual mites with a Wizard Genomic DNA Purification Kit (Promega) according to the manufacturer’s protocol. A fragment of the COI gene was amplified by standard PCR using the *Tetranychus* universal primers, T-CO1-F and T-CO2-R (Table S3). PCR fragments were ligated into pEASY-T3 cloning vector (Beijing TransGen Biotech) and the resulting plasmid DNAs were transformed into competent *Escherichia coli* Trans1-T1 cells provided in the cloning kit. The inserted fragments were sequenced with M13f and M13r primers. Long PCR primers for each species were designed according to the COI fragment sequences (Table S3). The mitochondrial genome was amplified by long PCR in one single fragment according to the manufacturer’s rapid PCR protocol. The reaction mixture contained 2 μl PrimeSTAR GXL DNA Polymerase (Takara), 10 μl buffer, 4 μl dNTP mixture (2.5 mM each), 1 μl of each primer (10 μM), 1 μl of DNA and water added to total volume of 50 μl. The cycling conditions were 30 cycles of 96°C for 10 s and 68°C for 3 min. Sequencing libraries for the long PCR fragments were prepared by using a TruSeq DNA Sample Prep Kit (Illumina) following the manufacturer’s instructions. Each individual library was tagged for a different multiplexing identifier (MID). The libraries were purified with Certified Low Range Ultra Agarose (Bio-Rad), quantified with a TBS360 fluorometer (Invitrogen), pooled and sequenced using a MiSeq V2 Reagent kit to generate pair-end reads (read length: 250 bp). The reads for each sample were sorted by tag sequences and assembled into one contig after trimming the tag adapter sequences. The contigs were assembled with COI sequences respectively to obtain integral genome sequences (NCBI GenBank accession numbers: KJ729017–KJ729023).

**Annotation and analysis**

Protein-coding genes (PCGs) were identified by ORF Finder implemented at the NCBI website using the invertebrate mitochondrial genetic code. The sequences of PCGs that matched *T. urticae* mitochondrial genes submitted previously to NCBI [22] were accepted. The tRNA genes were identified using ARWEN with default parameters [36] and the tRNAscan-SE [37] with a cove cutoff score of 0.1, the tRNA-model set to “Easinf1dRNA-Cove” and source set to “Mixed”. Other tRNA genes and two rRNA genes (rrnL and rrnS) were determined by sequence similarity to genes in *Panonychus citri* [13,23], *P. ulmi* and *T. urticae*. The secondary structure models for tRNA and rRNA genes were constructed with the published secondary structures for *Dermatophagoides pteronyssinus* [16], *Leptotrombidium pallidum* [38], *Panonychus citri* [13], *Stegana-carus magnus* [17] and *Palmaea palmate* [39]. The Map, GC content and GC skew of the mitochondrial genome were drawn with the CGView [40]. The base composition, codon usage, Relative Synonymous Codon Usage (RSCU) values and nucleotide substitution were analyzed with Mega ver. 6 [41]. The secondary structure of the A+T-rich regions (putative control region) were constructed with Mfold Server [42] and RnaViz ver. 2 software [43]. The evolutionary pairwise divergence was estimated with Mega ver. 6 with Kimura 2-parameter model [44]. Multiple alignments of 13 PCGs’ amino acid sequences were performed with ClustalW [45] as implemented in Mega ver. 6 and then corrected by eye to ensure that alignment was in agreement with protein coding genes and to minimize the number of uninformative gaps (Appendix S1). The order of the PCGs is atp6, atp8, Cox1-3, cob, nad1-4, nad4l and nad5–6. The length of the alignment was 2974 amino acids in the final dataset. ProtTest (http://darwin.uvi.gbs/software/prottest2/server.html) [46] was used to select the best model of protein evolution. It selected mtREV+G+F+ as the most appropriate model for the combined amino acid dataset under the Bayesian Information Criterion (BIC) [47]. Maximum-likelihood (ML) analysis of the amino-acid dataset was performed with PhyML ver. 3.1 [48] under the mtREV+G+F+ model, and Maximum-parsimony (MP) analysis was performed with Mega ver. 6. Bootstrap percentages (BPs) were calculated with 1000 replications. MrBayes ver. 3.2.2 was used for Bayesian analysis under the mtREV + model of amino acid substitution with the nst = 6 rates = invgamma command. Two runs were performed simultaneously, each with four Markov chains (one cold, three heated). The analyses were run for 1,000,000 generations and the trees were sampled every 100 generations. The Markov chain stationarity and run parameter convergence were evaluated with TRACER ver. 1.6. The first 25 percent of the trees were discarded as burn-in with the relburnin = yes burninfrac = 0.25 command. Multiple alignments
of whole genomic DNA sequences of the Tetranychoida were performed with ClustalW as implemented in Mega ver. 6 (Appendix S1). jModelTest Ver. 2.1.4 [49] selected the GTR + I + G model as the best model for the nucleotide sequences of the mt genome. The ML analysis was performed and bootstrapped with 1000 replications with PhyML v. 3.1 with the GTR + I + G model, and MP analysis was performed by using Mega ver. 6. The Markov chains were run for 10,000,000 generations with sampling every 1000 generations for the Bayesian analysis. The first 25 percent of the trees were discarded and the remaining trees were used to calculate Bayesian posterior probabilities.

Results and Discussion

General features of mitochondrial genome organization

The mitochondrial genomes of the seven common tetranychid mites in China are typical circular DNAs (Fig. 1) with lengths of about 13,000 bp (Table S2). To our knowledge, the mitochondrial genome of T. malaysiensis is the smallest within all Acari genomes accessible in the GenBank (status March 17, 2014). The mitochondrial genome sizes of the red and green forms of T. urticae differ by 4 bp. Thirty-seven genes (13 PCGs, two rRNA genes, and 22 tRNA genes) were identified in each genome (Table S4), which is typical of presently available in metazoan mitochondrial genomes [11]. Twenty genes are encoded on the majority strand (J-strand), whereas the others are encoded on the minority strand (N-strand). The gene order is the same in all seven genomes and the same as that in Panonychus citri and P. ulmi which are in the same family as Tetranychus. However, this gene order is very different from that in other Acari and chelicerates as Yuan’s [13] and Van Leeuwen’s [23] reports. This suggests that the mitochondrial genome rearrangement event occurred before the divergence of Panonychus and Tetranychus.

Base content

The J-strands of the seven mitochondrial DNAs have high A+T contents (83.4–84.5%) which are higher than those for Acariformes (about 74% without the Tetranychidae family) and Parasitiformes (about 77%) (Fig. 2). In Acari, the AT-skew of the mitochondrial genome (average 0.009±0.013) ranges from 0.279 in Unionicola parkeri to 0.253 in Dermatophagoides farina. Within the genus Tetranychus, the species with the highest AT skews in the mitochondrial DNAs are T. malaysiensis (0.056), T. phaselus (0.050) and T. ludeni (0.041). The average GC-skew of Acari mitochondrial genomes is 0.130±0.024, ranging from −0.379 in Ornithodoros moubata to 0.231 in Dermatophagoides farina. Most Acari have negative mitochondrial genome GC-skews. The exceptions are Varroa destructor (0.178), Dermatophagoides pteronyssinus (0.194), D. farinae (0.231), Phytoseiulus persimilis (0.222), P. citri (0.033) and P. ulmi (0.005). The Tetranychus species with the lowest mitochondrial DNA skews are T. ludeni (−0.072), T. phaselus (−0.072) and T. malaysiensis (−0.070). The AT- and GC-skews are quite similar in the mitochondrial genomes of the two T. urticae forms. Most metazoan species present a clear strand asymmetry, in which the J-strand is biased in favor of A and C and the N-strand is biased in favor of T and G [50]. The J-strands of the seven mitochondrial DNAs exhibit typical GC-skews, but two completed mitochondrial
genomes from the genus *Panonychus* have positive GC-skews. It has been suggested that such reversals are caused by inversions of the A+T-rich regions and replication origin [33].

**Putative control region**

The longest non-coding region, which presumably functions as the mitochondrial control region, is 44–48 bp in length and is flanked by the *cox1* and *nad3* genes. Among Acari, the genus *Tetranychus* has the smallest mitochondrial control region. The A+T-rich region is believed to be characterized by a poly-T stretch at the 5′ end, a poly[TA(A)]n stretch close to the poly-T stretch, a stem and loop structure flanked by a TATA motif and a G (A)n T motif [31,32]. The A+T-rich region in the seven *Tetranychus* genomes can be folded into one stem-loop secondary structure and associated with a poly-T stretch or flanked by a TATA or G (A)n T motif. The loops in the secondary structures of *T. malaysiensis* are not present.

The evolutionary patterns of the PCGs are different (Fig. 5). The *cox1* gene is commonly used as a taxon barcode because of its high rates of interspecific sequence change and constraints on intraspecific divergence [52,53]. But this gene exhibits the lowest substitution rate per site (0.208±0.014) and lowest value of nonsynonymous substitutions per nonsynonymous site (Ka) (0.04±0.004) compared to the other genes. The nucleotide substitution rate per site (0.553±0.097) and the number of synonymous substitutions per synonymous site (Ks) (1.098±0.143) of *nad3* gene are highest, while the Ka number of *atp6* is highest (0.315±0.062). In addition, the GC content was found to be negatively correlated with both the nucleotide substitution rate per site (R = −0.637, P = 0.019) and Ka (R = −0.715, P = 0.006), while the nucleotide substitution rate per site was found to be positively correlated with Ka (R = 0.825, P = 0.001). Ks was not found to be associated with Ka, GC content or nucleotide substitution rate per site.

**Ribosomal and transfer RNAs**

Among the seven *Tetranychus* mitochondrial genomes, the large subunits of rRNA (*rrnL*) are from 982 bp (*T. ludeni*) to 998 bp (*T. urticae* and *T. kansawai*) in length. The first nucleotide downstream of *trnE* was annotated as the 5′ end of *rrnL*, and the first nucleotide upstream of *trnR* was annotated as the 3′ end of *rrnL*. The genes for the small subunit of the rRNA (*rrnS*) are 629 bp (*T. ludeni* and *T. phaselinus*) to 645 bp (*T. pueraricola*) in length and are located between *trnY* and *trnG*. Both ribosomal subunits are encoded on the J-strand as is the case in *Metaseiulus occidentalis* [54], *Dermatophagoides farinae* [14], *D. pteronyssinus* [16], *Leptotrombidium pallidum* [55], *P. citri* [13] and *P. ulmi*.
Figure 3. Putative stem-loop secondary structure of A+T-rich regions. The structures were constructed by using Mfold and Watson-Crick bonds are illustrated by black dots. The free energy values (kcal/mol) and the species names are shown below each structure.

doi:10.1371/journal.pone.0110625.g003
Figure 4. Relative synonymous codon usage (RSCU) for the mitochondrial proteins. The X-axis shows the codon families, while the Y-axis shows RSCU values. Absent codons are shown at the top of the columns.

doi:10.1371/journal.pone.0110625.g004

whereas the rRNA genes in most species of Acari, arthropods and chelicerates are located on the N-strand [12,14,15,17,56,57].

We predicted the \( \text{rrnL} \) and \( \text{rrnS} \) secondary structures of \( T. \text{urticae} \) (Fig S4 and S5). Nucleotides that are identical among the seven \( T. \text{urticae} \) mitochondrial DNAs are shown in bold in Figures S4 and S5. In contrast, most of the helices found in Acari \( \text{rrnL} \) and \( \text{rrnS} \) genes are present in \( T. \text{urticae} \). However, four helices (D10, D14, G9 and H3) of \( \text{rrnL} \) and one helix (33) of \( \text{rrnS} \) found in \( P. \text{citri} \) and \( L. \text{pallidum} \) are not present, while \( T. \text{urticae} \) has one more helix (D8) in \( \text{rrnL} \) and three more helices (4, 10 and 22) in \( \text{rrnS} \). Most ribosomal subunit sequences, especially the 3’-end of both \( \text{rrnL} \) and \( \text{rrnS} \), are conserved among the seven mitochondrial genomes. The helices D2, D4, D7, D9, and D17 could be identified in all the mitochondrial \( \text{rrnL} \) genes with slight variations, whereas their sequences are not conserved. The sequences of helices 24/25/26 as depicted in \( \text{rrnS} \) are weakly conserved among the genus \( T. \text{urticae} \), and the stem-loops in the deduced secondary structures vary in size.

Eleven of the 22 tRNA genes are encoded on the J-strand and the other 11 are encoded on the N-strand. The secondary structures for all tRNAs of the seven mitochondrial genomes were predicted (Table S5). The aminoacyl acceptor stem (AA-arm) and anticodon arm (AC-arm) in the tRNAs are highly conserved among the seven genomes. With a few exceptions among the seven genomes, only seven of the tRNAs (\( \text{trnL1}, \text{trnK}, \text{trnL2}, \text{trnM}, \text{trnN}, \text{trnR} \) and \( \text{trnW} \)) can be potentially folded into a classical cloverleaf structure, whereas four tRNAs (\( \text{trnP}, \text{trnE}, \text{trnS1} \) and \( \text{trnS2} \)) lose the DHU stem (D-arm), eight (\( \text{trnA}, \text{trnC}, \text{trnF}, \text{trnG}, \text{trnL1}, \text{trnT}, \text{trnV} \) and \( \text{trnY} \)) lack the TψC stem (T-arm) and 3 (\( \text{trnI}, \text{trnP} \) and \( \text{trnQ} \)) appear to lack both the D- and the T-arm. \( T. \text{ludeni} \) differs from the other species in that the D-arm of \( \text{trnL} \) was substituted by a D-replacement loop, and \( T. \text{malaysiensis} \) differs from the others in that the T-arms of \( \text{trnM}, \text{trnR} \) and \( \text{trnS1} \) were replaced by a variable loop. \( \text{trnP} \) of \( T. \text{malaysiensis} \) and \( \text{trnQ} \) of \( T. \text{kanzawai} \) still have T-arms while the \( \text{trnP} \)s and \( \text{trnQ} \)s in the other species have lost them. The \( \text{trnD} \) has only a 4 bp well-paired anticodon stem. And the \( \text{trnP} \) of \( T. \text{ludeni}, \text{trnQ} \) of \( T. \text{kanzawai} \) and \( T. \text{phaselus} \) and \( \text{trnV} \) of \( T. \text{malaysiensis} \) also have one mismatch. Commonly, the 3 bp anticodon of the tRNAs was flanked by 2 bp up-stream and 2 bp down-stream, but \( \text{trnL} \) of \( T. \text{urticae} \) mitochondria has 3 bp down-stream. These aberrant anticodon loops have been reported for the same tRNA of \( P. \text{citri} \) [13] and \( P. \text{ulmi} \), which implies that this anticodon loop pattern is universal among \( \text{trnL} \) genes of the Tetranychidae mitochondria. Noncanonical anticodon loop structures are also present in \( \text{trnL2} \) (3 bp down-stream) of \( D. \text{pteronyssinus} \) [16], \( \text{trnS2} \) (3 bp up-stream) of \( Camelus \text{bactrianus ferus} \) [58] and \( \text{trnH} \) (3 bp up-stream) and \( \text{trnN} \) (6 bp down-stream) of \( Mesobuthus \text{gibbosus} \) [59].

Phylogenetic analysis

Maximum-parsimony (MP), Maximum-Likelihood (ML) and Bayesian inference (BI) phylogenetic trees were constructed based on the concatenated amino acid sequences of the 13 PCGs of the seven \( T. \text{urticae} \) species and other Acariformes. The three trees had identical topologies (Fig. 6). Almost all nodes were well supported, whereas the split between \( T. \text{phaselus} \) and the other \( T. \text{urticae} \) species was not supported by the MP tree. The three species of Sarcoptiformes were monophyletic and clustered as a sister group to other species of Trombidiformes. The superfamily Tetranychioidea, which is considered as a member of Trombidiformes, split as a single clade and formed a sister group to other species of Trombidiformes. Another study [16] obtained a similar topology, except that the bootstrap values and BI posterior probabilities for the Tetranychioidea were low. Mitochondrial genomes evolve at high rates. It has been suggested that the three most important factors are rearrangements in the mitochondrial genome, a parasitic lifestyle and small body size [60]. Most species of Acariformes exhibit all three factors and the great variability in branch lengths suggest a high
heterogeneous substitution rate among the mt genomes. These problems led to markedly long branches, and the superabundant phylogenetic signals probably led to the distant phylogenetic position of the Tetranychoidae. Identical topologies were constructed by the three approaches with high bootstrap values and high Bayesian posterior probabilities for the position of Tetranychoidae. However, additional mt genome data or trees based on more conserved sequences are needed to improve the phylogeny of Acrariformes.

The seven Tetranychus species clustered monophyletically. T. malaysiensis was allocated to the basal position of the genus Tetranychus. The position of T. phaselus was supported by the BI and ML trees, whereas the bootstrapping for MP questioned this node. A phylogenetic tree was constructed based on the mitochondrial genomic sequences of Tetranychoidae (Fig. S6). The topologies of the trees constructed with the three approaches were consistent. Furthermore, a phylogenetic analysis based on nuclear gene sequences of rRNA and ITS supported this analysis (data not shown). However, the position of T. phaselus was not supported well by three trees. Some other mitochondrial genomic sequences are needed to improve the phylogenetic analysis for the genus Tetranychus. Especially the species has close relationship with T. phaselus.

The green and red forms of T. urticae

The green and red forms of T. urticae clustered together in the phylogenetic trees and the evolutionary divergence between their mitochondrial genomes was low (0.027 ± 0.002) (Table S6).
Pairwise distances among the *Tetranychus* mt genomes except for the value between the two forms of *T. urticae* were 0.089 to 0.211 which is much higher than the distance between the two forms of *T. urticae*. Some slight divergences between two forms are found in the length of 4 bp difference, an AGG codon found in the PCGs of green form, a different start codon in *nad3* gene and a different stop codon in *cox1* gene. However, these limited differences can not be classified as interspecies divergences. Consequently, the close evolutionary distance and limited mitochondrial genome divergence do not support the red forms of *T. urticae* as a new species or subspecies. Between the two forms of *T. urticae*, partial hybrid infertility was discovered [61] and hybrid affinity strongly restricted the gene flow [62]. However, the harboring of *Wolbachia* and *Cardinium* by the two forms [63–65] confounds the origin of reproductive abnormality in the hybrid analyses. *Wolbachia* is considered to induce cytoplasmic incompatibility (CI) in *T. urticae*, whereas the levels of CI in different populations varied greatly [66,67]. Although *Cardinium* did not appear to distort reproduction in *T. urticae* [63], it is still necessary to investigate the CI level between *Wolbachia* and *Cardinium* in *T. urticae*. In conclusion, intracellular bacteria with the ability to manipulate reproduction complicate investigations of the ability of the two forms to interbreed. Further studies are needed to analyze the hybridization in *T. urticae* without the influence of *Wolbachia*, *Cardinium* and other bacteria that can manipulate reproduction.

**Supporting Information**

**Appendix S1** Multiple alignments of Acari 13 PCGs’ amino acid sequences (13PCGs.meg). The order of the PCGs is *atp6, atp8, cox1-3, cob, nad1-4, nad4l and nad5-6*. The alignments were performed with ClustalW as implemented in Mega and require the Mega software version 6 to examine it (http://www.megasoftware.net/).

**Appendix S2** Multiple alignments of Tetranychidae mitochondrial genomic sequence (Tetranychidae.meg). The alignments were performed with ClustalW as implemented in Mega and require the Mega software version 6 to examine it (http://www.megasoftware.net/).

**Figure S1** Species identification by PCR-restriction fragment-length polymorphism. PCR products were digested by 5 restriction endonucleases (MboII, HinfI, RsaI, DraI, and DdeI). The white arrowheads indicate interspecific variation. M, 100-bp ladder DNA size marker.

**Figure S2** Base composition at each codon position of the 13 PCGs. Y-axis shows the percentage of each nucleotide.

**Figure S3** Codon usage pattern of each mitochondrial genome. Numbers to the left refer to the percentage of each codon. Codon families are shown on the X-axis.

**Table S1** GenBank accession numbers of mitochondrial genomes for other Acari.

**Table S2** Date and location of mite collections and GenBank accession numbers of mitochondrial genomes.

**Table S3** Initial primers and their sequences for PCR amplifications in this study.

**Table S4** Summary of mitochondrial genome organization of *T. urticae* (green and red forms), *T. phaselus* and *T. puerarica*. (DOC)

**Table S5** Comparison of inferred secondary structures of mitochondrial tRNA genes.

**Table S6** Pairwise distance between mitochondrial genomes.

**Acknowledgments**

We thank Hao-Sen Li for technical assistance for phylogenetic analysis in the lab. Chao Guo and Xiu-Ting Zhao provided important DNA samples of red form of *T. urticae*.

**Author Contributions**

Conceived and designed the experiments: DSC PJ KJZ XLD SXY JFJ JYZ XYH. Performed the experiments: DSC PJ XLD SXY JJF. Analyzed the data: DSC PJ XLD JFJ. Contributed reagents/materials/analysis tools: DSC PJ KJZ XLD SXY JJF JYZ. Wrote the paper: DSC PJ KJZ XLD XYH.

1. Migeon A, Nouguier E, Donkeld F (2010) Spider Mites Web: a comprehensive database for the Tetranychidae. Trends in Acarology: 557–560. http://www.montpellier.inra.fr/CBGP/spmweb/.

2. Dermauw W, Osborne EJ, Clark RM, Grbic M, Tirry L, et al. (2013) A burst of ABC genes in the genome of the polyphagous spider mite *Tetranychus urticae*. BMC Genomics 14: 317.

3. Grbic M, Van Leeuwen T, Clark RM, Rombouts S, Rouze P, et al. (2011) The genome of *Tetranychus urticae* reveals herbivorous pest adaptations. Nature 479: 487–492.

4. Dermauw W, Wybouw N, Rombouts S, Menten B, Vontas J, et al. (2013) A link between host plant adaptation and pesticide resistance in the polyphagous spider mite *Tetranychus urticae*. Proc Natl Acad Sci USA 110: E113–E122.

5. de Mendonça RS, Navia D, Díaz IR, Auger P, Navajas M (2011) A critical review on some closely related species of *Tetranychus* sensu stricto (Acari: *T. urticae*).
Tetranychidae) in the public DNA sequences databases. Exp Appl Acarol 55: 1–23.

6. Navajas M, Gutierrez J, Williams M, Gotth T (2001) Synonymy between two spider mite species, Tetranychus kurahamae and T hyangae (Acari: Tetranychidae), based on mitochondrial 16S rRNA sequences and cross-breeding experiments. B Entomol Res 91: 117–123.

7. Arimoto M, Satoh M, Uesugi R, Osakabe M (2013) PCR-RFLP analysis for identification of Tetranychus spider mite species (Acari: Tetranychidae). J Econ Entomol 106: 861–868.

8. Osakabe M, Kotsubo Y, Tajima R, Hinomoto N (2008) Restriction fragment length polymorphism catalog for molecular identification of Japanese Tetranychus spider mites (Acari: Tetranychidae). J Econ Entomol 101: 1167–1175.

9. Navajas M, Lagad J, Gutierrez J, Boursier P (1998) Species diversity of camel mites (Sternostoma truncatum (Trouessart): a novel gene arrangement among arthropods. BMC Genomics 10: 105–117.

10. Yuan ML, Wei DD, Wang BJ, Dou W, Wang JJ (2010) The complete mitochondrial genome of the citrus red mite Panonychus citri (Acari: Tetranychidae): high genome rearrangement and extremely truncated rRNAs. BMC Genomics 11: 2. 305–316.

11. Domes K, Maraun M, Scheu S, Cameron SL (2008) The complete mitochondrial genome of the sexual oribatid mite Stenotarsus magnus: genome rearrangements and loss of rRNAs. BMC Genomics 9: 532.

12. Ozaka M, Uesugi R, Goka K (2010) Evolutionary aspects of acaricide resistance development in spider mites. Psyche 2009: 1–11.

13. Van Leeuwen T, Van Holme B, Tirry L, Dermauw W, Tirry L (2010) Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect Biochem Mol Biol 40: 563–572.

14. Hayashi N, Sasaya Y, Takahashi N, Ikemi N (2013) Cyflutenotefolin, a novel acaricide - its mode of action and selectivity. Pest Manag Sci 69: 1080–1084.

15. Dekeyser MA (2005) Acaricide mode of action. Pest Manag Sci 61: 103–110.

16. Van Leeuwen T, Van Holme B, Potafelberger S, Van Nieuwenhuyse P, Nauen R, et al. (2008) Mitochondrial heteroplasmy and the evolution of insecticide resistance: Non-Mendelian inheritance in action. Proc Natl Acad Sci USA 105: 5980–5985.

17. Van Leeuwen T, Van Nieuwenhuyse P, Van Holme B, Dermauw W, Nauen R, et al. (2010) Evolution of cytochrome c oxidase subunit 2 resistance in the citrus red mite Panonychus citri. Insect Mol Biol 20: 135–140.

18. Boore JL, Fuerstenberg SI (2008) Beyond linear sequence comparisons: the use of genome-level characters for phylogenetic reconstruction. Philos T R Soc B 363: 1445–1451.

19. Boore JL (2006) The use of genome-level characters for phylogenetic reconstruction. Trends Ecol Evol 21: 439–446.

20. Dowton M, Castro LR, Austin AD (2002) Mitochondrial gene rearrangements as phylogenetic characters in the invertebrates: the examination of genome 'morphology'. Invertebr Syst 16: 345–356.

21. Dowton M, Austin AD (1999) Evolutionary dynamics of a mitochondrial rearrangement “hot spot” in the Hymenoptera. Mol Biol Evol 16: 298–309.

22. Boore JL, Lavin DV, Brown WM (1990) Gene translocation links insects and crustaceans. Nature 309: 667–668.

23. Boore JL, Brown WM (1998) Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr Opin Genet Dev 8: 668–674.

24. Dermauw W, Van Holme B, Tirry L, Van Leeuwen T (2010) Mitochondrial genome analysis of the predatory mite Phytoseiulus persimilis and a revist of the Metaseiulus occidentalis mitochondrial genome. Genome 53: 285–301.

25. Zhang DX, Hewitt GM (1997) Insect mitochondrial control region: a review of its evolution and usefulness in evolutionary studies. Biochim Biophys Acta 1325: 29–60.

26. Zhang DX, Szymura JM, Hewitt GM (1995) Evolution and structural conservation of the control region of insect mitochondrial DNA. J Mol Evol 40: 333–341.

27. Wei SJ, Shi M, Chen XX, Shaiky MJ, van Achterberg C, et al. (2010) New views on strand asymmetry in insect mitochondrial genomes. PLoS One 5: e12708.

28. Boore JL, Sogawa J, Kitashima Y, Gotoh T (2002) Hybrid affinities between the green and the red forms of the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae) under laboratory and semi-natural conditions. Appl Entomol Zool 37: 127–139.

29. Grant JR, Stothard P (2008) The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res 36: W811–W814.

30. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30: 2725–2729.

31. Zhang DX, Hewitt GM (1997) Mitochondrial rRNA secondary structures and genome arrangements distinguish chelicerates: comparisons with a harvestman (Arachnida: Opilionidae: Phalangida: Phalangidae). Gene 449: 9–21.

32. Elara S (1999) Revision of the spider mite family Tetranychidae of Japan (Acari, Tetranychidae). Species diversity and systematics. In: Sato K, editors. Tetranychidae of Japan. Tokyo: Toyo Zensho Company Ltd. p 143–141.

33. Laslett D, Canback B (2008) ARWEN: a program to detect rRNA genes in metazoa mitochondrial nucleotide sequences. Bioinformatics 24: 172–175.

34. Lowe TM, Eddy SR (1997) Rfam: a seed for phylogenetic reconstruction of the invertebrates: the examination of genome 'morphology'. Invertebr Syst 16: 345–356.

35. Dowton M, Austin AD (1999) Evolutionary dynamics of a mitochondrial rearrangement “hot spot” in the Hymenoptera. Mol Biol Evol 16: 298–309.

36. Dermauw W, Van Holme B, Tirry L, Van Leeuwen T (2010) Mitochondrial genome analysis of the predatory mite Phytoseiulus persimilis and a revist of the Metaseiulus occidentalis mitochondrial genome. Genome 53: 285–301.

37. Lowe TM, Eddy SR (1997) Rfam: a seed for phylogenetic reconstruction of the invertebrates: the examination of genome 'morphology'. Invertebr Syst 16: 345–356.
63. Gotoh T, Noda H, Ito S (2007) Cardinium symbionts cause cytoplasmic incompatibility in spider mites. Heredity (Edinb) 98: 13–20.
64. Vala F, Breeuwer JA, Sabelis MW (2000) Wolbachia-induced ‘hybrid breakdown’ in the two-spotted spider mite Tetranychus urticae Koch. Proc Biol Sci 267: 1933–1937.
65. Breeuwer JAJ (1997) Wolbachia and cytoplasmic incompatibility in the spider mites Tetranychus urticae and T. turkestani. Heredity 79: 41–47.
66. Xie RR, Chen XL, Hong XY (2011) Variable fitness and reproductive effects of Wolbachia infection in populations of the two-spotted spider mite Tetranychus urticae Koch in China. Appl Entomol Zool 46: 95–102.
67. Gotoh T, Sugasawa J, Noda H, Kitashima Y (2007) Wolbachia-induced cytoplasmic incompatibility in Japanese populations of Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 42: 1–16.
68. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. New York: Oxford University Press.
69. De Rijk P, Robbrecht E, de Hoog S, Caers A, Van de Peer Y, et al. (1999) Database on the structure of large subunit ribosomal RNA. Nucleic Acids Res 27: 174–178.
70. Van de Peer Y, Robbrecht E, de Hoog S, Caers A, De Rijk P, et al. (1999) Database on the structure of small subunit ribosomal RNA. Nucleic Acids Res 27: 179–183.