Monitoramento da sobrecarga fisiológica por calor com base na frequência cardíaca

Heat stress monitoring based on heart rate measurements

Alvaro Cesar Ruas1, Paulo Alves Maia1, Rodrigo Cauduro Roscani1, Daniel Pires Bitencourt1, Fabiano Trigueiro Amorim2

RESUMO | Atualmente, o monitoramento de trabalhadores expostos ao calor é baseado em parâmetros ambientais com o uso do índice de bulbo úmido – termômetro de globo. Os custos para fazê-lo envolvem a aquisição de equipamento específico e contratação de pessoal técnico capacitado. Ressalta-se a necessidade de avaliações diárias quando o ambiente está sujeito a variações, como ocorre nas atividades a céu aberto. Há também de se considerar as críticas ao uso do índice de bulbo úmido – termômetro de globo como índice de exposição ao calor, pois ele não leva em conta diferenças individuais como suscetibilidade, idade, gênero, índice de massa corporal, condicionamento físico, vestimentas, doenças e uso de bebidas alcoólicas e drogas. O objetivo deste estudo foi avaliar a relação entre a frequência cardíaca e a temperatura do corpo em trabalhadores expostos ao calor como subsídio para o uso da frequência cardíaca como um índice para controle e prevenção da sobrecarga térmica e fisiológica. Neste trabalho, foram utilizados literatura específica e dados fisiológicos e ambientais coletados enquanto 10 trabalhadores realizavam atividades pesadas em área rural. A frequência cardíaca, já adotada pela American Conference of Governmental Industrial Hygienists como um dos possíveis parâmetros para monitoramento do estresse térmico, acompanha o comportamento da temperatura interna do corpo, mas apresenta uma defasagem de tempo entre os picos. É possível desenvolver frequencímetros com alarmes para indicar ao trabalhador o momento de diminuir o esforço ou até mesmo parar a tarefa para a sua recuperação térmica, prevenindo doenças do calor.

Palavras-chave | exposição ao calor; frequência cardíaca; sobrecarga por calor.

ABSTRACT | Currently, occupational heat exposure is usually measured using environmental variables such as the wet bulb globe temperature index. The costs of heat stress monitoring include the acquisition of specialized equipment and the recruitment of trained personnel. In rapidly changing environments, such as outdoor settings, these assessments must be conducted on a daily basis. The wet bulb globe temperature index has been criticized as a measure of heat stress for its failure to account for individual differences in susceptibility to heat stress, age, body mass index, physical fitness, clothing, illnesses and use of alcohol or drugs. The objective of this study was to assess the relationship between heart rate and body temperature in heat-exposed workers to determine whether heart rate can be used to monitor and prevent heat stress and physiological strain. This study was based on previous literature as well as physiological and environmental data collected from 10 individuals engaged in heavy physical labor. Heart rate, which has been recommended by the American Conference of Governmental Industrial Hygienists (ACGIH) as a possible measure of heat stress, follows a similar trend to body temperature with a slight temporal delay. Heart rate monitors with alarm systems could be developed to notify workers when to slow down their activities or take a break for thermal recovery, thereby contributing to the prevention of heat-related illness.

Keywords | heat exposure; heart rate; heat stress.
INTRODUÇÃO

A exposição ao calor intenso é um problema de saúde pública e ocupacional. O número de pessoas que adoecem e morrem na estação do verão aumenta a cada ano. Mesmo em outras estações, muitas mortes ocorrem durante ondas de calor, que atualmente estão mais frequentes, duradouras e abrangendo maior extensão territorial¹. O problema tem se agravado com o aquecimento global, que está tornando o meio ambiente mais agressivo à saúde humana e animal².

A exposição ao calor em ambientes de trabalho afeta a saúde e a produtividade do trabalhador e pode aumentar sua suscetibilidade a acidentes de trabalho³‑⁵. O impacto negativo desses efeitos se revela na diminuição do consumo das famílias, no aumento das desigualdades sociais e na queda do produto interno bruto (PIB) do país⁶. Para evitar exposições perigosas, várias medidas de prevenção são necessárias, em especial o seu monitoramento. Atualmente, o principal método de monitoramento é baseado em medidas de parâmetros ambientais, como temperatura de bulbo úmido natural, temperatura de globo e temperatura de bulbo seco, que compõem o índice de bulbo úmido – termômetro de globo (IBUTG). O IBUTG é o índice mais conhecido internacionalmente, sendo utilizado para expressar a exposição de grupos de trabalhadores, independentemente da suscetibilidade pessoal⁷.

Além da suscetibilidade, as avaliações também levam em consideração as características dos indivíduos expostos, como idade; gênero; índice de massa corporal (IMC); condicionamento físico; vestimentas; doenças; uso de bebida, cigarro, drogas etc. Ressalta-se que as normas que regem o assunto⁸ classificam as atividades em amplos intervalos de taxa de metabolismo e, assim, especificam a mesma quantidade de calor gerado pelo esforço físico para grupos de atividade similar. Salienta-se, ainda, a importância dos custos envolvidos no processo de avaliação para a aquisição de equipamentos específicos e contratação de pessoal capacitado, como engenheiros, médicos e técnicos, que são exigidos por legislação de saúde e segurança do trabalho⁹.

Em ambientes externos, onde ocorrem grandes variações de temperatura, umidade, radiação e velocidade de vento, há necessidade de monitoramento durante a jornada de trabalho, especialmente em atividades que demandam muito esforço físico. No entanto, devido ao alto custo, esse monitoramento é raramente realizado, mesmo nos períodos mais quentes do ano. Essa é uma das razões pelas quais doenças do calor e mortes devido à isolação ocorrem em vários empreendimentos rurais⁹,¹⁰. No sentido de minimizar as incertezas sobre a exposição ao calor em ambientes de trabalho, um método de monitoramento laboral baseado em parâmetros fisiológicos deveria ser adotado, como temperatura central (TC) do corpo, temperatura da pele, frequência cardíaca (FC), taxa de suor ou algoritmos com dois ou três desses parâmetros¹¹‑¹⁵. Há também trabalhos que relacionam as duas abordagens, ambiental e fisiológica¹⁶‑²⁰.

A American Conference of Governmental Industrial Hygienists (ACGIH) caracteriza a sobrecarga fisiológica quando ocorre qualquer uma das seguintes condições¹⁵: a FC, medida em batimentos por minuto (bpm), mantém‑se por vários minutos acima de um valor obtido, subtraindo‑se a idade do indivíduo (em anos) de 180 bpm; a TC é maior que 38,5 °C para pessoas aclimatadas e selecionadas clinicamente ou maior que 38 °C para trabalhadores não aclimatados e não selecionados; a recuperação da FC, após 1 minuto do pico do esforço físico, é maior que 120 bpm; há sintomas de fadiga severa e repentina, náusea, vertigens ou tonturas. Moran¹², quando desenvolveu o índice de avaliação da sobrecarga fisiológica [physiological strain index (PSI)], que relaciona a temperatura retal e a FC, mostrou que o comportamento da temperatura retal segue o do batimento cardíaco. Em seus experimentos com 100 indivíduos jovens, a temperatura retal de 38,0 °C foi relacionada à FC de 140 bpm, enquanto a temperatura de 38,6 °C foi relacionada com a FC de 159 bpm.

O objetivo deste artigo foi avaliar a relação entre a FC e a temperatura do corpo em condições normais de trabalho a céu aberto em trabalhadores aptos para exercer a atividade de corte de cana‑de‑açúcar, conforme os exames clínicos realizados. Pretendeu‑se, com isso, levantar subsídios que fundamentem o uso da FC como um índice para o controle da sobrecarga térmica e fisiológica. Se confirmada a adequação da FC para estimar a sobrecarga fisiológica ao calor, o trabalhador poderia ser monitorado e alertado para que tome medidas para o arrefecimento do seu corpo, a fim de evitar risco acentuado à sua saúde.
MÉTODO

Para consecução do objetivo proposto, foram utilizados achados oriundos da literatura citada e dados ambientais e fisiológicos coletados durante a execução de atividades pesadas em área rural. Participaram deste estudo 10 voluntários de uma empresa do agronegócio localizada no estado de São Paulo, com idade de 20 a 40 anos. Os voluntários possuiam mais de 1 ano de experiência no corte manual de cana-de-açúcar e cumpriam jornada de trabalho das 8 às 15 horas, de 7 horas por dia e 42 horas semanais. Todos permaneceram no campo durante o período da colheita, onde faziam suas refeições e o repouso noturno. Os participantes assinaram um termo de consentimento livre e esclarecido após receberem todas as informações sobre o objetivo, os testes e os cuidados éticos da pesquisa. Todos os procedimentos foram aprovados pelo Comitê de Ética em Pesquisa (Certificado de Apresentação para Apreciação Ética nº 27690014.0.0000.5108). Os dados foram coletados no período de 17 a 29 de outubro de 2015 em dois canaviais localizados no estado de São Paulo.

Os voluntários foram previamente submetidos a avaliação clínica feita por médicos da Santa Casa de Misericórdia da cidade de São Paulo. Em seguida, após 2 dias de descanso de trabalho para assegurar condições de repouso, todos passaram por avaliação antropométrica e teste ergométrico com carga progressiva. O peso e a altura foram medidos através de uma balança analógica Welmy, modelo 110 (Brasil), com precisão de 0,1 kg e com estadiômetro acoplado de precisão de 0,5 cm. A FC foi medida com cardiofrequencímetros da marca Polar, modelo RS800 (Polar Electro, Finlândia). Testes preliminares foram realizados para obter a FC máxima de cada voluntário. Todos os testes foram encerrados por fadiga voluntária sem a ocorrência de tontura, náuseas, vista turva, dispneia ou dor precordial. O resultado do teste foi considerado máximo quando pelo menos três dos seguintes parâmetros foram atingidos: quociente respiratório superior a 1,15; percepção subjetiva de esforço, conforme escala de Borg21, superior a 18; FC > 90% da máxima prevista para a idade (FCmax = 220 - idade) e fadiga voluntária22.

A TC do corpo foi obtida por radiotelemetria na região gastrointestinal através de pílulas Vitasense Model VSM100M (Mini-mitter Company, Inc., Bend, OR), por ser essa a medida mais representativa da temperatura interna23. Na avaliação da exposição ao calor, utilizou-se o software Sobreposição Térmica desenvolvido pela Fundacentro24. Esse software, alimentado automaticamente com dados meteorológicos do Instituto Nacional de Meteorologia (INMET), fornece o IBUTG ao usuário de hora em hora em todo o território nacional. O IBUTG é o índice adotado pela International Organization Standardization (ISO) e pelo Brasil8 para avaliação da exposição ao calor intenso. Para ambientes externos com carga solar, o IBUTG é dado pela equação25:

\[\text{IBUTG} = 0,7 \, \text{tbn} + 0,2 \, \text{tg} + 0,1 \, \text{tbs} \]

Em que tg é a temperatura de globo, tbn é a temperatura de bulbo úmido natural e tbs é a temperatura do ar.

Na coleta dos dados de campo, cada voluntário usou um frequencímetro durante toda a jornada de trabalho e em 2 dias consecutivos; no período do almoço, os equipamentos foram desligados. No 1º dia, foi solicitado que o trabalho fosse executado em ritmo normal e, no 2º, que o ritmo fosse de, aproximadamente, 75% do normal. Essa porcentagem foi controlada pelo número de metros de cana cortada — para tanto, um pesquisador pediu que o trabalhador aumentasse ou reduzisse o ritmo de corte, a fim de obter, no fim do dia, a quantidade estipulada.

A Tabela 1 mostra as idades e as informações antropométricas do grupo que participou da pesquisa. Nela, observa-se que a faixa etária é ampla, média de 26,6 anos, com desvio padrão (DP) de 6,7 e diferença entre a máxima e a mínima de 21 anos. O grupo de trabalhadores estudado estava na fase adulta jovem, enquanto as médias do peso e da altura se aproximaram da média do homem padrão (70 kg e 1,70 m), especificada na norma ISO 899626, que trata do cálculo do calor metabólico em função das tarefas executadas.

As Tabelas 2 e 3 apresentam, para os 2 dias de coleta de dados de cada trabalhador, os valores máximos encontrados para TC do corpo (TC1 e TC2), FC (F1 e F2) e exposição ao calor representada pelo IBUTG. A esses valores, foram relacionados: a idade; a produção dos trabalhadores (Prod1, Prod2 e Prod2/Prod1), contabilizada em metros de cana cortada; e a FC máxima permitida (Fmax). A Fmax foi calculada conforme a seguinte equação, proposta pela ACGIH15:

\[\text{Fmax} = 180 - \text{idade} \]
A exposição ao calor e a frequência cardíaca

Tabela 1. Informações antropométricas e idade dos voluntários

Idade (anos)	Peso (kg)	Estatura (m)
40	71,0	1,70
24	68,0	1,62
34	57,8	1,72
31	72,5	1,73
19	66,4	1,52
20	55,3	1,60
22	85,9	1,79
24	85,5	1,65
24	72,8	1,69
28	76,0	1,69
Desvio padrão	6,7	10,1

Tabela 2. Dados fisiológicos e ambientais e produção diária de cana cortada (Prod2/Prod1 > 75%)

Trab	Idade (anos)	TC1 (°C)	TC2 (°C)	F1 (bpm)	F2 (bpm)	Fmax (bpm)	IBUTG1 (°C)	IBUTG2 (°C)	Prod1 (m)	Prod2 (m)	Prod2/Prod1 (%)
1	40	39,0	38,7	161	170	140	27,5	28,6	136	125	92
3	34	38,1	38,0	145	125	146	28,5	27,9	90	87	97
4	31	38,8	38,1	160	128	149	28,5	27,9	77	70	91
7	22	38,8	38,3	158	138	158	29,0	28,2	121	106	98
10	28		38,4	149	125	152	28,3	25,3	130	142	109
Média	31,0	38,7	38,3	155	139	149	28,4	27,6	111	106	95
DP	6,7	0,4	0,3	7,2	18,0	6,7	0,5	1,3	25,9	28,8	8,3

Tabela 3. Dados fisiológicos e ambientais e produção diária de cana cortada (Prod2/Prod1 ≤ 75%)

Trab	Idade (anos)	TC1 (°C)	TC2 (°C)	F1 (bpm)	F2 (bpm)	Fmax (bpm)	IBUTG1 (°C)	IBUTG2 (°C)	Prod1 (m)	Prod2 (m)	Prod2/Prod1 (%)
2	24	39,2	38,2	156	152	156	28,6	27,5	201	100	50
5	19	38,1	38,0	-	125	161	28,4	27,5	76	57	75
6	20	38,5	38,2	172	150	160	27,5	28,5	95	56	59
8	24	38,6	38,6	161	160	156	27,0	29,0	166	94	57
9	24	38,3		140	148	156	25,2	28,2	177	112	63
Média	22,2	38,5	38,3	157	147	158	27,3	28,1	143	84	61
DP	2,5	0,4	0,3	13,3	13,1	2,5	1,4	0,7	54,4	55,8	9,2

bpm: batidas por minuto; DP: desvio padrão; F1: frequência cardíaca máxima no 1º dia; F2: frequência cardíaca máxima no 2º dia; Fmax: frequência cardíaca máxima recomendada; IBUTG1: índice de bulbo úmido – termômetro de globo máximo no 1º dia; IBUTG2: índice de bulbo úmido – termômetro de globo máximo no 2º dia; Média: média aritmética; Prod1: produção no 1º dia; Prod2: produção no 2º dia; TC1: temperatura central máxima no 1º dia; TC2: temperatura central máxima no 2º dia; Trab: identificação do trabalhador.
Nessas tabelas, relacionando-se a produção do 2º e do 1º dia de cada participante (Prod2/Prod1), observou-se que cinco dos 10 trabalhadores não diminuíram o ritmo no 2º dia em aproximadamente 25%, conforme pedido pelos pesquisadores (Trab 1, 3, 4, 7 e 10), e que alguns dos outros diminuíram até mais do que o solicitado (Trab 2, 6, 8 e 9). Assim, para a análise, optou-se em separar esses dois grupos nas Tabelas 2 e 3, respectivamente. Ao analisar essas tabelas, verifica-se que os IBUTGs variaram de 25,2 a 29,0 °C, revelando que, em todos os dias de estudo, houve potencial de danos à saúde e medidas de controle deveriam ter sido aplicadas, inclusive pausas para recuperação térmica do corpo. Nessas condições ambientais, os seis trabalhadores que apresentaram FC igual ou maior à Fmax (Trab 1, 2, 4, 6, 7 e 8) também registraram TC maior ou igual a 38,5 °C, que é o limite recomendado pela ACGIH15. Assim, esses resultados sinalizam que há coerência entre essas duas variáveis (FC e TC), pois ambas indicaram a existência de sobrecarga fisiológica. Consta-se, também, que essa situação ocorreu principalmente nos dias em que o ritmo de trabalho foi normal, exceto para o caso do Trab 8, em que ocorreu também no dia de Prod2/Prod1 = 57%, TC1 = TC2 e F2 = F1-1. Isso pode ser devido ao IBUTG2 = 29 °C, enquanto o IBUTG1 = 27 °C, caracterizando maior carga térmica no 2º dia, que foi o de menor produção. Sucedeu-se fato similar com o Trab 1, só que Prod2/Prod1 = 92%, TC2 = TC1-0,3 e F2 = F1+9.

A Tabela 4 mostra que a produção no período da manhã dos 2 dias de testes (P1manhã e P2manhã) foi em média maior que a da tarde (P1tarde e P2tarde). A média no 1º dia (P1manhã/Prod1dia) foi de 64,5% e, no 2º (P2manhã/Prod2dia), alcançou 69,5%. Isso indica um maior desgaste físico devido ao trabalho da manhã, conjuntamente com o efeito do aumento da temperatura ambiente no período da tarde. Embora não mostrado na tabela, observou-se que metade dos voluntários imprimiu ritmo no 1º dia de trabalho, obtendo um pico de produção, e posteriormente mantiveram um ritmo de trabalho elevado, o rendimento da tarefa depende da condição climática, da técnica de corte e dos equipamentos disponíveis.

Nesse cenário, como no estudo realizado pelo National Institute for Occupational Safety and Health (NIOSH)27, a realização de pausas a partir do monitoramento instantâneo de variáveis fisiológicas poderia evitar os picos de FC e de TC e ajudar o trabalhador a manter uma produção mais uniforme durante toda a jornada de trabalho. Embora não tratado neste estudo, um dos benefícios associados a essa

Tabela 4. Dados de produção dos trabalhadores em metros de cana-de-açúcar cortados, nos períodos da manhã e da tarde, nos 2 dias avaliados

Trab	Prod1dia	P1manhã	P1tarde	Prod2dia	P2manhã	P2tarde
1	136	104	32	125	73	52
2	201	126	75	100	58	42
3	90	50	42	87,3	-	-
4	77	-	-	70	40	30
5	76	46	30	57	37	20
6	95	52	43	56	41	15
7	121	90	31	106	70	36
8	166	96	70	94	71	23
9	177	96	81	112	92	20
10	130	76	54	142	112	30
Média	126,9	81,8	50,9	94,9	66	29,8
DP	41,4	261	18,8	26,8	23,8	11,2

DP: desvio padrão; Média: média aritmética; P0manhã: produção na manhã do 1º dia; P0tarde: produção na tarde do 1º dia; P2manhã: produção na manhã do 2º dia; P2tarde: produção na tarde do 2º dia; Trab: identificação do trabalhador.
sistemática de trabalho baseada no monitoramento seria a preservação do sistema osteomuscular.

As Figuras 1 e 2 apresentam as curvas obtidas com dados de campo correspondentes à FC e à TC de dois cortadores de cana. As curvas apresentam picos com posterior decréscimo acentuado, o que demonstra que o ritmo de trabalho não é constante, mas determinado pela resistência física. Nas curvas correspondentes à FC, notam-se marcantes quedas seguidas por rápidas elevações que se referem a breves paralisações, por exemplo, para tomar água. Neste experimento, os cardiofrequencímetros foram desligados no intervalo de almoço, das 11 às 12 horas, o que justifica a interrupção nas curvas dos gráficos nesse período. Verifica-se que, embora as curvas correspondentes

Figura 1. Frequência cardíaca, índice de bulbo úmido – termômetro de globo e temperatura central do corpo de um dos voluntários. BPM: batimentos por minuto; IBUTG: índice de bulbo úmido – termômetro de globo; Temperatura: temperatura central do corpo.

Figura 2. Frequência cardíaca, índice de bulbo úmido – termômetro de globo e temperatura central do corpo de um dos voluntários. BPM: batimentos por minuto (frequência cardíaca); IBUTG: Índice de bulbo úmido-termômetro de globo; Temperatura: temperatura central do corpo.
à FC e à TC tenham comportamento similar, a da FC responde mais rapidamente ao esforço físico e à exposição ao calor, de tal forma que elas apresentam uma defasagem temporal. Gotshall et al.\(^5\) encontraram resultados semelhantes, embora eles tenham realizado experimentos em laboratório com uma solicitação física muito inferior à deste trabalho.

A defasagem encontrada neste trabalho variou de 5 a 15 minutos e sua ocorrência é importante, pois, considerando a proposição da ACGIH\(^15\), quando a FC alcança o limite, a TC ainda se encontra abaixo do valor recomendado (38,5 °C). Dessa forma, é possível estabelecer, individualmente, valores de FC relacionados à Fmax a partir dos quais ações para arrefecimento do corpo devem ser iniciadas, a fim de manter a TC dentro dos limites aceitáveis. Um monitor personalizado que emita um sinal sonoro poderia informar ao trabalhador a necessidade de diminuir o ritmo de trabalho, realizar pausas, afastar-se de fontes de calor e ingerir água fresca e sais em áreas sombreadas. Esse procedimento, além de prevenir a sobrecarga térmica e as doenças decorrentes dela, permitiria otimizar a produção nos ambientes quentes, compatibilizando a atividade executada com a capacidade física e a suscetibilidade do trabalhador ao calor.

Em um experimento realizado pela NIOSH\(^27\), a FC e a TC foram utilizadas para estudar a sobrecarga fisiológica em dois grupos de pessoas que realizavam salvamento em minas. Os dois grupos tiveram 1 hora para percorrer um determinado percurso; o primeiro executou-o em 45 minutos e depois descansou 15 minutos. O segundo efetuou pausas intermediárias quando a FC de algum integrante do grupo atingiu a Fmax recomendada pela ACGIH\(^15\). As pausas duravam até a FC cair para um valor que superava em 10% a TC medida antes do início do experimento. O resultado mostrou que a TC foi muito menor no grupo que efetuou as pausas intermediárias. Assim, a FC de recuperação mostrou-se uma boa ferramenta para limitar o trabalho, a fim de evitar o aumento da TC.

Bernard & Kenney\(^11\) propuseram um índice de sobrecarga fisiológica baseado na FC do trabalhador para lhe permitir avaliar e controlar sua sobrecarga térmica antes da ocorrência de sintomas indesejados significativos. Os autores imaginaram um monitor pessoal com dois estágios de alerta. O primeiro indicaria que a sobrecarga fisiológica está aumentando e que há um tempo limitado em que aquela condição de trabalho pode ser mantida; assim, o trabalhador poderia tomar medidas adequadas para diminuí-la e continuar o trabalho. O segundo estágio alertaria para que ele interrompesse o trabalho, saisse da área de exposição ao calor e executasse procedimentos de recuperação térmica. Os autores estabeleceram limites de FC para cada estágio, em função da idade do trabalhador e do tempo de exposição. O monitoramento é contínuo, e a exposição contabilizada como a média da FC em sete intervalos: 5, 10, 15, 30, 45, 60 e 90 minutos.

CONCLUSÕES

Conclui-se que há subsídios técnicos suficientes para a adoção da FC como indicador de sobrecarga fisiológica devido à exposição ao calor, principalmente para atividades pesadas e muito pesadas, nos termos da ISO 7243. Para isso, é preciso o monitoramento fisiológico do trabalhador e a sua seleção, levando em consideração a idade, o IMC, a aclimatização, o estado geral de saúde e os seus hábitos cotidianos.

O monitoramento em ambientes quentes deve contemplar sistema que alerte o trabalhador quando houver risco de a TC atingir um valor perigoso. Essa condição pode ser verificada de uma forma indireta, mas com precisão, quando a FC permanecer acima de um valor igual a 180 - idade, já que o aumento da FC prevê o da TC. Contudo, é necessário definir o tempo de tolerância para que a FC fique acima desse valor, pois, durante o trabalho, podem ocorrer picos que, se forem de curta duração, não causarão danos para as pessoas com condição cardiovascular normal. Em ACGIH\(^15\), isso não está quantitativamente definido; a especificação é de que uma das condições para caracterizar a sobrecarga fisiológica é a manutenção, por vários minutos, da situação mencionada. Os dados colhidos neste estudo também não permitiram fazer uma afirmação precisa, e não se encontrou esse parâmetro na literatura, indicando a necessidade de pesquisas sobre esse tema.

O monitoramento fisiológico torna-se essencial quando a remuneração do trabalho é por produção, principalmente na indústria canavieira, devido ao maior risco de o trabalhador exceder o seu limite físico. Nesses casos, um sistema de alarme deve indicar o momento no qual ele
A exposição ao calor e a frequência cardíaca obrigatoriamente deve diminuir o ritmo do trabalho e seguir os procedimentos para arrefecimento do seu corpo. É importante considerar que o trabalhador capacitado e treinado dentro de um programa de monitoramento que não lhe permita excessos necessitará, durante a jornada de trabalho, de um tempo total de paradas para recuperação física inferior ao prescrito pela legislação. É de se esperar que a simples diminuição do ritmo de trabalho possibilite ao trabalhador manter as suas tarefas continuamente por mais tempo sem se expor a riscos desnecessários.

A adoção da monitoração fisiológica do modo como proposto neste trabalho poderá evitar doenças e perdas de produtividade, mas um programa de prevenção de doenças do calor deve ser iniciado já na seleção dos trabalhadores, levando em consideração a idade, o IMC, o estado de saúde geral e os hábitos cotidianos saudáveis. Além disso, é necessário informar e capacitar o trabalhador quanto às condições ambientais, especialmente sobre a temperatura e umidade; quanto à técnica de trabalho e às condições do ferramental; quanto a sua condição física, vestimentas e uso de equipamentos de proteção individual (EPIs); e quanto à ingestão de água e sais durante a realização das atividades.

A proposta do uso da FC para monitorar a sobrecarga fisiológica, embora possível, pode enfrentar barreiras tecnológicas, já que os monitores existentes no mercado não foram testados em rígidas condições de trabalho, como submissão diária a movimentos abruptos, batidas e exposição a elevada umidade e poeiras. O desafio é o desenvolvimento de um equipamento que seja confiável nessas condições de trabalho e que tenha um custo que estimule a sua adoção.

REFERÊNCIAS

1. Bitencourt DP, Fuentes MV, Maia PA, Amorim FT. Freqüência, duração, abrangência espacial e intensidade das ondas de calor no Brasil. Rev Bras Meteorol. 2016;31(4):506-17.
2. Holmér I. Climate change and occupational heat stress: methods for assessment. Glob Health Action. 2010;3(1):5719.
3. Soares AL. Análise do efeito do estresse térmico por calor na produtividade de operadores em uma fundição [Dissertação de Mestrado]. Ponta Grossa: Universidade Tecnológica Federal do Paraná; 2014 [citado em 2 set. 2019]. Disponível em: http://repositorio.utfpr.edu.br/jspui/bitstream/1/935/1/PG_PPGEP_M_Soares%2C%20Andr%C3%A9%20Luiz%202014.pdf
4. Yi W, Chan APC. Optimizing work-rest schedule for construction rebar workers in hot and humid environment. Build Environ. 2013;61:104-13.
5. Gotshall RW, Dahl DJ, Marcus NJ. Evaluation of a physiological strain index for use during intermittent exercise in the heat. J Exerc Physiol Online. 2001;4(3):22-9.
6. Haddad EA, Domingues EP, Perobelli FS, Almeida ES, Azzoni CR, Guilhoto JMJ, et al. Impactos econômicos das mudanças climáticas no Brasil [internet]. 2010 [citado em 14 set. 2020]. Disponível em: http://www.cedeplar.ufmg.br/seminarios/seminario_diamantina/2010/D10A047.pdf
7. International Organization Standardization. ISO 7243:2017 Ergonomics of the thermal environment - Assessment of heat stress using the WBGT (wet bulb globe temperature) index. ISO: Geneva; 2017 [citado 2020 Set. 14]. Available from: https://www.iso.org/standard/67188.html
8. Brasil. Ministério do Trabalho. Portaria 3.214, de 08 de junho de 1978. Brasília (DF): Diário Oficial da União; 1978 [citado em 14 set. 2020]. Disponível em: https://www.camara.leg.br/proposicoesWeb/prop_mostrarintegra;jsessionid=9CFA236F73433A3AA3082052EF011F8.proposicoesWebExterno1?codteor=309173&fileinordenLegislaaoCitada+JNC+5298/2005
9. Bitencourt DP, Ruas AC, Maia PA. Análise da contribuição das variáveis meteorológicas no estresse térmico associada à morte de cortadores de cana-de-açúcar. Cad Saúde Públ. 2012;28(1):65-74.
10. Vilela RAG, Laat EF, Luz VG, Silva AJN, Takahashi MAC. Pressão por produção e produção de riscos: a “maratona” perigosa do corte manual da cana-de-açúcar. Rev Bras Saúde Ocup. 2015;40(131):30-48.
11. Bernard TE, Kenney WL. Rationale for a personal monitor for heat strain. Am Ind Hyg Assoc J. 1994;55(6):505-14.
12. Moran DS, Shitzer A, Pandolf KB. A physiological strain index to evaluate heat stress. Am J Physiol. 1998;275(1):R129-34.
13. Meyer J-P, Martinet C, Payot L. Heart rate as an index of thermal stress. Proc Hum Factors Ergon Soc Annu Meet. 2000;44(29):359-62.
14. Cuddy JS, Buller M, Hailes WS, Ruby BC. Skin temperature and heart rate can be used to estimate physiological strain during exercise in the heat in a cohort of fit and unfit males. Mil Med. 2013;178(7):e841-7.
15. American Conference of Governmental Industrial Hygienists Worldwide (ACGIH). TLVs® and BEIs® based on the documentation of the threshold limit values for chemical substances and physical agents & biological exposure indices. Cincinnati: ACGIH; 2015. p. 218-27.
16. American Conference of Governmental Industrial Hygienists Worldwide (ACGIH). TLVs® and BEIs® based on the documentation of the threshold limit values for chemical substances and physical agents & biological exposure indices. Cincinnati: ACGIH; 2015. p. 218-27.
17. American Conference of Governmental Industrial Hygienists Worldwide (ACGIH). TLVs® and BEIs® based on the documentation of the threshold limit values for chemical substances and physical agents & biological exposure indices. Cincinnati: ACGIH; 2015. p. 218-27.
18. American Conference of Governmental Industrial Hygienists Worldwide (ACGIH). TLVs® and BEIs® based on the documentation of the threshold limit values for chemical substances and physical agents & biological exposure indices. Cincinnati: ACGIH; 2015. p. 218-27.
17. Minard D, Goldsmith R, Farrier Jr PH, Lambiotte Jr BJ. Physiological evaluation of industrial heat stress. Am Ind Hyg Assoc J. 1971;32(1):17-28.
18. Kim S, Lee J-Y. Evaluation of firefighters’ heat strain using heart rate during breaks at work. Extrem Physiol Med. 2015;4(Suppl 1):A52.
19. Habibi P, Dehghan H, Rezaei S, Mghsoudi K. Physiological and perceptual heat strain responses in Iranian veiled women under laboratory thermal conditions. Iran J Health Saf Environ. 2014;14(4):172-6.
20. Pancardo P, Acosta FD, Hernández-Nolasco JA, Wister MA, López-de-Ipíña D. Real-Time Personalized Monitoring to Estimate Occupational Heat Stress in Ambient Assisted Working. Sensors (Basel). 2015;15(7):16956-80.
21. Borg G. Borg’s Perceived Exertion And Pain Scales. Champaign: Human Kinetics; 1998.
22. Yoon B-K, Kravitz L, Robergs R. VO2max, protocol duration, and the VO2 plateau. Med Sci Sports Exerc. 2007;39(7):1186-92.
23. Towey C, Easton C, Simpson R, Pedlar C. Conventional and novel body temperature measurement during rest and exercise induced hyperthermia. J Therm Biol. 2017;63:124-30.
24. Fundacentro. Sobrecarga Térmica [Internet]. 2014 [citado em 2 set. 2019]. Disponível em: http://antigo.fundacentro.gov.br/sobrecarga-termica/sobrecarga-termicaaviso
25. Fundacentro. NHO 06 - Avaliação da exposição ocupacional ao calor. São Paulo: Fundacentro; 2017 [citado 2 de setembro de 2019]. 48 p. Disponível em: http://www.norminha.net.br/Arquivos/Arquivos/NHO-06.pdf
26. International Organization Standardization. ISO 8996:2004 Ergonomics of the thermal environment — Determination of metabolic rate. Geneva: ISO; 2004 [cited 2020 Set. 14]. Available from: https://www.iso.org/standard/34251.html#:~:text=The%20metabolic%20rate%2C%20as%20a%20numerical%20index%20of%20activity.&text=ISO%208996%3A2004%20specifies%20different%20climatic%20working%20environment.
27. Varley F. A Study of heat-stress exposures and interventions for mine rescue workers [internet]. 2004 [cited 2020 Set. 14]. Available from: https://stacks.cdc.gov/view/cdc/8571

Endereço para correspondência: Alvaro Cesar Ruas, Rua Marcelino Velez, 43 – Bairro Botafogo – CEP: 13020-200 – Campinas (SP), Brasil – E-mail: palvesmaia@gmail.com

© 2020 Associação Nacional de Medicina do Trabalho
Este é um artigo de acesso aberto distribuído nos termos de licença Creative Commons