Abstract

We characterize the value function and the optimal stopping time for a large class of optimal stopping problems where the underlying process to be stopped is a fairly general Markov process. The main result is inspired by recent findings for Lévy processes obtained essentially via the Wiener-Hopf factorization. The main ingredient in our approach is the representation of the \(\beta \)-excessive functions as expected suprema. A variety of examples is given.

Keywords: optimal stopping problem, Markov processes, Hunt processes, Lévy processes, supremum representation for excessive functions

1 Introduction

Consider a real-valued strong Markov process \(X = (X_t)_{t \geq 0} \). Let \(P_x \) and \(E_x \) stand for the probability and the expectation, respectively, associated with \(X \) when initiated from \(x \). The natural filtration generated by \(X \) is denoted by \(\mathcal{F} = (\mathcal{F}_t)_{t \geq 0} \) and \(\mathcal{M} \) is the set of all stopping times with respect to \(\mathcal{F} \).

We are interested in studying the following optimal stopping problem: Find a function \(V \) (value function) and a stopping time \(\tau^* \) (optimal stopping time) such that

\[
V(x) := \sup_{\tau \in \mathcal{M}} E_x \left(e^{-\beta \tau} G(X_\tau) \right) = E_x \left(e^{-\beta \tau^*} G(X_{\tau^*}) \right),
\]

(*)
where the function G (reward function) is assumed to have some regularity properties to be specified later. On $\{\tau = \infty\}$ we define
\[
e^{-\beta \tau} G(X_\tau) = \limsup_{t \to \infty} e^{-\beta t} G(X_t).
\]
Recall that a non-negative, measurable function u is called β-excessive for X if the following two conditions hold:
\[
\mathbb{E}_x \left(e^{-\beta t} u(X_t) \right) \leq u(x) \quad \forall \ t \geq 0, \ x \in S,
\]
\[
\lim_{t \to 0} \mathbb{E}_x \left(e^{-\beta t} u(X_t) \right) = u(x) \quad \forall \ x \in S.
\]
A basic result, see Theorem 1 p. 124 in Shiryayev \[25\], is that if the reward function G is lower semicontinuous then the value function V exists and is characterized as the smallest β-excessive majorant of G.

During the last decade the theory of optimal stopping for Lévy processes has been developed strongly. This research has been focused on analyzing the validity of the smooth pasting condition, see Alili and Kyprianou \[1\], Christensen and Irle \[5\], on the one hand, and solving particular problems, see Boyarchenko and Levendorskii \[3\], Mordecki \[17\], Novikov and Shiryayev \[19\], \[20\], Kyprianou and Surya \[15\], Surya \[26\], Mordecki and Salminen \[18\], Deligiannidis, Le and Utev \[9\], on the other hand. The methodology to derive explicit solutions is in many cases based on the Wiener-Hopf factorization.

For random walks in discrete time optimal stopping problems with the reward functions $G(x) = x^+$ and $G(x) = (e^x - 1)^+$ were solved already by Darling et al. in \[8\]. In Mordecki \[17\] the results in \[8\] were lifted to the framework of Lévy processes with the focus to the reward functions $G(x) = (K - e^x)^+$ (put option) and $G(x) = (e^x - K)^+$ (call option). Furthermore, for the value function $G(x) = (x^+)^\nu$, $\nu > 0$, the problem was solved by Novikov and Shiryayev in \[19\] and \[20\] for random walks and Lévy processes using Appell polynomials and Appell functions, see also Kyprianou and Surya \[15\] and Alili and Kyprianou \[1\]. In addition to the Wiener-Hopf factorization, the fluctuation identities constitute an essential tool in these solutions.

This technique was generalized under certain conditions to be applicable for more general reward functions independently in Surya \[26\] and Deligiannidis et al. \[9\]. In particular, in \[26\] it is assumed that there exists a function Q such that the reward function has the representation
\[
G(x) = \mathbb{E}_0 \left(Q(x + M_T) \right),
\]
where T is an exponentially with parameter $\beta > 0$ distributed random variable independent of X and $M_t := \sup_{0 \leq s \leq t} X_s$ is the running maximum of
the Lévy process X. The function Q should have a unique positive root x^* such that $Q(x) < 0$ for $x < x^*$ and $Q(x) > 0$ and non-decreasing for $x > x^*$. Then the stopping problem (1) is, in fact, one-sided and the optimal stopping time is

$$\tau^* := \inf\{t : X_t \geq x^*\}.$$

Moreover, the value function is expressed in [26] as

$$V(x) = \mathbb{E}_0\left(Q(x + M_T)1_{\{x + M_T \geq x^*\}}\right).$$

In [9] the starting point is the assumption that there exists a function g such that

$$G(x) = \mathbb{E}_0\left(g(x + X_T)\right). \quad (2)$$

To see the connection between Q in (1) and g in (2) recall the Wiener-Hopf factorization

$$X_T^{(d)} = M_T + I_T,$$

where $I_T^{(d)} := \inf_{0 \leq t \leq T} X_t$ and independent of X. Consequently,

$$Q(x) = \mathbb{E}_0\left(g(x + I_T)\right). \quad (4)$$

Since in [9] the stopping problem is analyzed via the function

$$x \rightarrow \mathbb{E}_0(g(x + I_T))$$

the relationship (4) implies that the results in [26] and [9] are very close to each other.

Our main result characterizes the solution of the optimal stopping problem (1) similarly as in [19], [26] and [9] but is valid for very general strong Markov processes, e.g., for diffusions, Lévy processes and continuous time Markov chains. The main ingredient in our approach is the representation of β-excessive functions in the form

$$x \mapsto \mathbb{E}_x\left(\sup_{0 \leq t \leq T} f(X_t)\right)$$

for a function $f \geq 0$. This kind of representations have been studied in Föllmer and Knispel [11] and El Karoui and Meziou [10].

The structure of the paper is the following: In the next section we state and prove the main theorems which lead to explicit solutions to the optimal stopping problem (1) for general Hunt processes X and reward functions G with some representation properties. Depending on the form of the representing function \hat{f} the optimal stopping time is one-sided or two-sided. We furthermore present in section 2.2 a way for finding \hat{f} explicitly. In section 2.3 the connection to the representing measure approach is discussed. In Section 3 the results are illustrated with a variety of examples.
2 Main results

2.1 Verification theorems

We use the notation from the introduction and let \(X = (X_t)_{t \geq 0} \) be a Hunt process taking values in a subset \(S \) of \(\mathbb{R} \), e.g., an interval or a finite set. We refer to [18] for references and further discussions on Hunt processes. For a full account see Blumenthal and Getoor [2], Chung and Walsh [7] and Sharpe [24]. In particular, \(X \) has the strong Markov property and is quasi left continuous with right continuous sample paths with left limits. For simplicity, we suppose that the lifetime of \(X \) is a.s. infinite.

Remark 2.1. In some problems it is of interest to study \(X \), e.g., up to the passage time of a level. In such cases \(X \) is viewed as a Hunt process with lifetime equal to the passage time. For instance, a Brownian motion \(X \) killed at the first passage time

\[
\zeta_0 := \inf \{ t \geq 0 : X_t < 0 \}
\]

is a Hunt process with lifetime \(\zeta_0 \). It is not difficult to see how to refine our approach to cover these and more general lifetimes, and we leave this task to the interested reader.

Throughout the paper, the notation \(T \) is used for an exponentially distributed random variable assumed to be independent of \(X \) and having the mean \(1/\beta \) where \(\beta > 0 \) is the discounting rate introduced in (1). We remark that a function \(u \) is \(\beta \)-excessive if it is 0-excessive, i.e., excessive, for \(X \) killed at \(T \).

The following lemma is the key to our approach for the optimal stopping problem (1). It is proved similarly as Proposition 2.1 in [11]. We give a short proof for the sake of completeness.

Lemma 2.2. Let \(f : S \mapsto \mathbb{R}_+ \) be an upper semicontinuous function and define \(u(x) := \mathbb{E}_x \left(\sup_{0 \leq t \leq T} f(X_t) \right) \). Then the function \(u : S \mapsto \mathbb{R} \cup \{+\infty\} \) is \(\beta \)-excessive.

Proof. By the upper semicontinuity of \(f \) and the right continuity of the sample paths of \(X \) the function \(t \mapsto \sup_{0 \leq s \leq t} f(X_s) \) is right continuous and,
hence, measurable. It follows that u is well-defined. Consider for $t > 0$
\[
u(x) = \mathbb{E}_x \left(\sup_{0 \leq s \leq T} f(X_s) \right)
\]
\[
\geq \mathbb{E}_x \left(\sup_{t \leq s \leq T} f(X_s); t \leq T \right) = \mathbb{E}_x \left(\mathbb{E}_x (\sup_{t \leq s \leq T} f(X_s) | \mathcal{F}_t); t \leq T \right)
\]
\[
= \mathbb{E}_x \left(\mathbb{E}_x \left(\sup_{t \leq s \leq T} f(X_s) | X_t \right); t \leq T \right) = \mathbb{E}_x \left(u(X_t); t \leq T \right)
\]
\[
= \mathbb{E}_x \left(e^{-\beta u(X_t)} \right),
\]
and, therefore,
\[
\mathbb{E}_x \left(u(X_t); t \leq T \right) \leq u(x).
\]
Next,
\[
\lim_{t \to 0} \mathbb{E}_x \left(e^{-\beta u(X_t)} \right) = \lim_{t \to 0} \mathbb{E}_x \left(\sup_{t \leq s \leq T} f(X_s); t \leq T \right)
\]
\[
= \mathbb{E}_x \left(\sup_{0 \leq s \leq T} f(X_s) \right)
\]
\[
= u(x),
\]
where the second equality holds by the monotone convergence.

Example 2.3. Consider a regular linear diffusion X on \mathbb{R}. Let $x \to u_\beta(x,y)$ be the β-resolvent kernel associated with X. As is well-known, the function $x \to u_\beta(x,y)$ is β-excessive for any fixed y. We find the representation $u_\beta(\cdot, y)$ as expected supremum. Recall that
\[
\mathbb{E}_x \left(e^{-\beta H_y} \right) = \frac{u_\beta(x,y)}{u_\beta(y,y)} = \left\{ \begin{array}{ll}
\varphi_\beta(x), & \text{if } x \leq y, \\
\psi_\beta(x), & \text{if } x \geq y,
\end{array} \right.
\]
\[(5)\]
where $H_y := \inf \{ t : X_t = y \}$ and ψ_β and φ_β are the fundamental increasing and decreasing, respectively, solutions for the generalized differential operator associated with X, see [3]. Introducing
\[
x \to f_y(x) = \left\{ \begin{array}{ll}
u_\beta(y,y), & \text{if } x = y, \\
0, & \text{otherwise},
\end{array} \right.
\]
we have by (5)
\[
\mathbb{E}_x \left(\sup_{t \leq T} f_y(X_t) \right) = u_\beta(y,y) \mathbb{P}_x (H_y < T)
\]
\[
= u_\beta(y,y) \mathbb{E}_x (e^{-\beta H_y})
\]
\[
= u_\beta(x,y).
\]
For another example, consider the β-excessive function $\psi_\beta \wedge 1$. We assume that there exists a point y such that $\psi_\beta(y) = 1$. Notice that $\psi_\beta(x) \geq 1$ for all $x \geq y$ since ψ_β is non-decreasing. Define

$$x \mapsto f_y^\uparrow(x) = 1_{[y, +\infty)}(x).$$

Then, calculating as above, we have

$$\mathbb{E}_x \left(\sup_{t \leq T} f_y^\uparrow(X_t) \right) = \begin{cases} 1, & \text{if } x \geq y, \\ \psi_\beta(x), & \text{if } x \leq y. \end{cases}$$

We consider now the optimal stopping problem (*) and assume throughout the paper that the reward function G is non-negative, lower semicontinuous and satisfies

$$\mathbb{E}_x \left(\sup_{t \geq 0} e^{-\beta t} G(X_t) \right) < \infty \quad (6)$$

Our main result which characterizes solutions of (*) is as follows:

Theorem 2.4. (One-sided case). Assume that there exists an upper semi-continuous function $\hat{f} : S \mapsto \mathbb{R}$ and a point $x^* \in S$ such that

(a) (i) $\hat{f}(x) \leq 0$ for $x \leq x^*$,

(ii) $\hat{f}(x)$ is positive and non-decreasing for $x > x^*$.

(b) (i) $\mathbb{E}_x \left(\sup_{0 \leq t \leq T} \hat{f}(X_t) \right) = G(x)$ for $x \geq x^*$

(ii) $\mathbb{E}_x \left(\sup_{0 \leq t \leq T} \hat{f}(X_t) \right) \geq G(x)$ for $x \leq x^*$.

Then the value function of the optimal stopping problem (*) is given by

$$V(x) = \mathbb{E}_x \left(\sup_{0 \leq t \leq T} \hat{f}(X_t) 1_{\{X_t \geq x^*\}} \right) = \mathbb{E}_x \left(\hat{f}(M_T) 1_{\{M_T \geq x^*\}} \right) \quad (7)$$

and

$$\tau^* := \inf \{ t \geq 0 : X_t > x^* \}$$

is an optimal stopping time.

Proof. Since the function $x \mapsto \hat{f}(x) 1_{\{x \geq x^*\}}$ is non-decreasing, the second equality in (7) holds. Let \hat{V} denote the function given via these expressions, i.e.,

$$\hat{V}(x) := \mathbb{E}_x \left(\sup_{0 \leq t \leq T} \hat{f}(X_t) 1_{\{X_t \geq x^*\}} \right).$$
By Lemma 2.2 we know that \(\hat{V} \) is \(\beta \)-excessive, so that \((e^{-\beta t} \hat{V}(X_t))_{t \geq 0}\) is a non-negative càdlàg supermartingale (see [7] p. 101). Hence by optional sampling we have for all \(x \) and all stopping times \(\tau \)
\[
\hat{V}(x) \geq \mathbb{E}_x \left(e^{-\beta \tau} \hat{V}(X_{\tau}) \right).
\] (8)

By condition (a) we furthermore have \(\hat{f}(x) \mathbb{1}_{\{x \geq x^*\}} \geq \hat{f}(x) \) for all \(x \), therefore using (b) we obtain from (8)
\[
\hat{V}(x) \geq \mathbb{E}_x \left(e^{-\beta \tau} G(X_{\tau}) \right).
\]

To conclude the proof we show that
\[
\hat{V}(x) \leq \mathbb{E}_x \left(e^{-\beta \tau^*} G(X_{\tau^*}) \right).
\] (9)

The value function \(V \) being the smallest \(\beta \)-excessive majorant of \(G \) it then follows that \(\hat{V} = V \) and \(\tau^* \) is an optimal stopping time, as claimed. To prove (9) consider
\[
\hat{V}(x) = \mathbb{E}_x \left(\sup_{0 \leq t \leq T} \hat{f}(X_t) \mathbb{1}_{\{X_t \geq x^*\}} \right)
\]
\[
= \mathbb{E}_x \left(\sup_{0 \leq t \leq T} \hat{f}(X_t) \mathbb{1}_{\{X_t \geq x^*\}; \tau^* < T} \right)
\]
\[
= \mathbb{E}_x \left(\hat{f}(M_T) \mathbb{1}_{\{M_T \geq x^*\}; \tau^* < T} \right)
\]
\[
= \mathbb{E}_x \left(\hat{f}(M_T); \tau^* < T \right)
\]
\[
= \mathbb{E}_x \left(\hat{f}(\sup_{\tau^* \leq t \leq T} X_t); \tau^* < T \right)
\]
\[
= \mathbb{E}_x \left(e^{-\beta \tau^*} \mathbb{E}_{X_{\tau^*}} \left(\hat{f}(\sup_{0 \leq t \leq T} X_t) \right) \right)
\]

by the strong Markov property. For the last equality note that by the memoryless property of the exponential distribution
\[
\mathbb{E}_x \left(\hat{f}(\sup_{\tau^* \leq t \leq T} X_t); \tau^* < T \right)
\]
\[
= \int_0^\infty \mathbb{E}_x \left(\mathbb{E}_x \left(\hat{f}(\sup_{\tau^* \leq t \leq r} X_t) | \mathcal{F}_{\tau^*} \right) \mathbb{1}_{\{\tau^* \leq r\}} \right) \mathbb{P}(T \in dr)
\]
\[
= \mathbb{E}_x \left(\mathbb{E}_{X_{\tau^*}} \left(\int_0^\infty \hat{f}(\sup_{0 \leq t \leq r} X_t) \mathbb{P}(T \in dr) e^{-\beta \tau^*} \right) \right)
\]
\[
= \mathbb{E}_x \left(e^{-\beta \tau^*} \mathbb{E}_{X_{\tau^*}} \left(\hat{f}(\sup_{0 \leq t \leq T} X_t) \right) \right).
\]
Since $\hat{f}(\sup_{0 \leq t \leq T} X_t) \leq \sup_{0 \leq t \leq T} \hat{f}(X_t)$ we obtain

$$\hat{V}(x) \leq \mathbb{E}_x \left(e^{-\beta \tau^*} \mathbb{E}_{X_{\tau^*}} \left(\sup_{0 \leq t \leq T} \hat{f}(X_t) \right) \right)$$

$$= \mathbb{E}_x \left(e^{-\beta \tau^*} G(X_{\tau^*}) \right),$$

where we used (b)(ii) in the last step. This shows (9) and the claim is proved. \qed

Remark 2.5. By applying Theorem 2.4 to the process $-X$, the reward function $x \mapsto G(-x)$ and to the function $x \mapsto \hat{f}(-x)$ one obtains the analogous result for a threshold to the left applicable, e.g., to put-type options.

Although one-sided stopping rules as in the previous theorem often arise naturally in many examples (especially for monotonic reward functions and discounting, see also [6] for a general discussion), for other problems a two-sided stopping rule is needed. The following theorem gives the corresponding result for this case.

Theorem 2.6. (Two-sided case) Assume that there exists a lower semicontinuous function $\hat{f} : S \mapsto \mathbb{R}$ and points $x_*, x^* \in S$ such that

(a) (i) $\hat{f}(x) \leq 0$ for $x_* < x < x^*$,

(ii) $\hat{f}(x)$ is non-increasing for $x < x_*$ and non-decreasing for $x > x^*$,

(b) (i) $\mathbb{E}_x \left(\sup_{0 \leq t \leq T} \hat{f}(X_t) \right) = G(x)$ for $x \notin [x_*, x^*]$,

(ii) $\mathbb{E}_x \left(\sup_{0 \leq t \leq T} \hat{f}(X_t) \right) \geq G(x)$ for $x \in [x_*, x^*]$.

Then the value function V of the optimal stopping problem (7) satisfies

$$V(x) = \mathbb{E}_x \left(\sup_{0 \leq t \leq T} \hat{f}(X_t) 1_{\{X_t \notin [x_*, x^*]\}} \right)$$

$$= \mathbb{E}_x \left(\hat{f}(I_T) 1_{\{I_T \leq x_*\}} \vee \hat{f}(M_T) 1_{\{M_T \geq x^*\}} \right)$$

(10)

and

$$\tau^* := \inf\{t \geq 0 : X_t \notin [x_*, x^*]\}$$

is an optimal stopping time.
Proof. This theorem is proved similarly as Theorem 2.4. The second equality in (10) follows from the monotonic properties of \(\hat{f} \). Letting
\[
\hat{V}(x) := \mathbb{E}_x \left(\sup_{0 \leq t \leq T} \hat{f}(X_t)1_{\{X_t \notin [x^*, x]\}} \right)
\]
it is seen from Lemma 2.2 that \(\hat{V} \) is \(\beta \)-excessive and, by conditions (a) and (b),
\[
\hat{V}(x) \geq \mathbb{E}_x \left(e^{-\beta \tau^*} G(X_{\tau^*}) \right)
\]
for all stopping times \(\tau \in \mathcal{M} \). It remains to show that
\[
\hat{V}(x) \leq \mathbb{E}_x \left(e^{-\beta \tau^*} G(X_{\tau^*}) \right) \tag{11}
\]
For this, consider
\[
\hat{V}(x) = \mathbb{E}_x \left(\sup_{0 \leq t \leq T} \hat{f}(X_t)1_{\{X_t \geq x^*\}} \vee \sup_{0 \leq t \leq T} \hat{f}(X_t)1_{\{X_t \leq x_\ast\}} ; \tau^* < T \right)
\]
\[
= \mathbb{E}_x \left(\hat{f}(M_T)1_{\{M_T \geq x^*\}} \vee \hat{f}(I_T)1_{\{I_T \leq x_\ast\}} ; \tau^* < T \right)
\]
\[
= \mathbb{E}_x \left(\hat{f}(\sup_{\tau^* \leq t \leq T} X_t) \vee \hat{f}(\inf_{\tau^* \leq t \leq T} X_t) ; \tau^* < T \right)
\]
\[
= \mathbb{E}_x \left(e^{-\beta \tau^*} \mathbb{E}_{X_{\tau^*}} \left(\hat{f}(\sup_{0 \leq t \leq T} X_t) \vee (\hat{f}(\inf_{0 \leq t \leq T} X_t)) \right) \right),
\]
where the last equality is obtained by the strong Markov property. Since
\[
\hat{f}(\sup_{0 \leq t \leq T} X_t) \vee \hat{f}(\inf_{0 \leq t \leq T} X_t) \leq \sup_{0 \leq t \leq T} \hat{f}(X_t),
\]
we have
\[
\hat{V}(x) \leq \mathbb{E}_x \left(e^{-\beta \tau^*} \mathbb{E}_{X_{\tau^*}} \left(\sup_{0 \leq t \leq T} \hat{f}(X_t) \right) \right)
\]
\[
= \mathbb{E}_x \left(e^{-\beta \tau^*} G(X_{\tau^*}) \right).
\]
Thus the proof is complete. \(\square \)

Remark 2.7. The methodologies in [9] and [26] seem to be applicable only for one-sided problems (for Lévy processes). It is remarkable that the present approach provides a clean characterization also in two-sided cases (for general Hunt processes).
2.2 Computing \hat{f}

To apply Theorem 2.4 and 2.6 for a given reward function G the question arises how to find a function \hat{f} fulfilling the conditions stated therein. For the related problem for underlying Lévy processes, Surya [26] gave a general way for sufficiently regular bounded functions G using the Fourier transform, but this seems to be specific for Lévy processes and is based on a certain assumption on the zeros of the Wiener-Hopf factors of X. We now discuss a more general way.

Let G be a given reward function and assume that for all x

$$\mathbb{E}_x\left(e^{-\beta t}G(X_t)\right) \to 0 \quad \text{as } t \to \infty. \quad (12)$$

Note that, by dominated convergence, (12) is fulfilled if in addition to (6) it also holds

$$\lim_{t \to \infty} e^{-\beta t}G(X_t) = 0 \quad \mathbb{P}_x\text{-a.s.}$$

Furthermore, assume that the function G is in the domain of the extended infinitesimal generator of X killed at T (cf. [21, VII.1]). Then, by definition, there exists a function \tilde{f} such that

$$\int_0^t |\tilde{f}(X_s)|ds < \infty \quad \mathbb{P}_x\text{-a.s}$$

and the process

$$\left(e^{-\beta t}G(X_t) - G(X_0) + \int_0^t e^{-\beta s} \tilde{f}(X_s)ds\right)_{t \geq 0}$$

is a $(\mathcal{F}_t, \mathbb{P}_x)$-martingale. Consequently,

$$\mathbb{E}_x\left(e^{-\beta t}G(X_t)\right) - G(x) + \mathbb{E}_x\left(\int_0^t e^{-\beta s} \tilde{f}(X_s)ds\right) = 0,$$

and as $t \to \infty$ we obtain using (12)

$$G(x) = \lim_{t \to \infty} \mathbb{E}_x\left(\int_0^t e^{-\beta s} \tilde{f}(X_s)ds\right).$$

Hence, if, e.g.,

$$\mathbb{E}_x\left(\int_0^\infty e^{-\beta s} |\tilde{f}(X_s)|ds\right) < \infty,$$

the Lebesgue dominated convergence theorem yields

$$G(x) = \frac{1}{\beta} \mathbb{E}_x\left(\tilde{f}(X_T)\right). \quad (13)$$
Notice that for G in the domain of the infinitesimal generator A of X we have $	ilde{f} = -(A - \beta)G$. In this case equation (13) reflects one of the fundamental properties of the resolvent operator.

Remark 2.8. For optimal stopping problems for Lévy processes it was assumed in [9] that a representation of type (13) (see also (2)) holds for G. Hence, the above considerations are useful when applying the methods in [9].

Imitating the approach for optimal stopping of Lévy processes, we next express G as the expectation of a function of M_T (cf. (1) and (2)). Obviously, it holds

$$
E_x \left(\tilde{f}(X_T) \right) = E_x \left(E_x \left(\tilde{f}(X_T) | M_T \right) \right).
$$

We assume that the regular conditional probability distribution

$$
P_x(X_T \in dy | M_T = z) := P_x(X_T \in dy, M_T \in dz) / P_x(M_T \in dz) \quad (14)
$$

exists and has the needed regularity properties so that it holds

$$
\frac{1}{\beta} E_x \left(\tilde{f}(X_T) \right) = E_x \left(Q(M_T; x) \right), \quad (15)
$$

where

$$
Q(z; x) := \frac{1}{\beta} \int_{-\infty}^{z} \tilde{f}(y) P_x(X_T \in dy | M_T = z).
$$

These observations are now applied to characterize solutions for optimal stopping problems for Lévy processes and linear diffusions via Theorem 2.4. Lévy processes are discussed first. The following lemma is well known. We present a short proof for the sake of completeness.

Lemma 2.9. For a Lévy process X (which is not a subordinator or a compound Poisson process) it holds that

$$
P_x(X_T \in dy | M_T = z) = P_z(I_T \in dy). \quad (17)
$$

In particular, the conditional distribution does not depend on x.

Proof. The claim follows from the Wiener-Hopf factorization (3) and the spatial homogeneity of X. Indeed,

$$
P_x(X_T \in dy, M_T \in dz) = P_0(x + X_T \in dy, x + M_T \in dz)$$

$$
= P_0(x + M_T + I^0_T \in dy, x + M_T \in dz)$$

$$
= P_0(z + I^0_T \in dy, x + M_T \in dz)$$

$$
= P_z(I_T \in dy) P_x(M_T \in dz).
$$

\[\square\]
Proposition 2.10. Consider the optimal stopping problem (4) in case of a Lévy process X (as introduced in Lemma 2.9). Assume that there exists a function \tilde{f} such that (13) holds and define
\[
Q(z) := \frac{1}{\beta} \int_{-\infty}^{0} \tilde{f}(z+y)\mathbb{P}_0(IT \in dy).
\]

If Q fulfills (a) in Theorem 2.4 then the value function of the optimal stopping problem (4) is given as in (7) with $\hat{f} = Q \vee 0$.

Proof. Since Q is assumed to fulfill (a) in Theorem 2.4 also \hat{f} fulfills this condition. We need to verify that \hat{f} satisfies (b) in Theorem 2.4. Definition (18) of Q, Lemma 2.9 and formula (15) yield
\[
G(x) = \frac{1}{\beta} \mathbb{E}_x(\tilde{f}(X_T)) = \mathbb{E}_x(Q(M_T)).
\]

Consequently, since $Q \leq \hat{f}$ we have for all x
\[
G(x) = \mathbb{E}_x(Q(M_T)) \leq \mathbb{E}_x(\hat{f}(M_T)) \leq \mathbb{E}_x\left(\sup_{0 \leq t \leq T} \hat{f}(X_t)\right).
\]

In case $x > x^*$ - since Q satisfies (a) in Theorem 2.4 - (19) holds with equalities instead of inequalities, and this completes the proof.

Next we consider the optimal stopping problem (4) for a regular linear diffusion. For simplicity, it is assumed that X is conservative and takes values on the whole \mathbb{R}. The following result is extracted from [3, II.19]. We use the notation from Example 2.3.

Lemma 2.11. For a conservative regular linear diffusion X on \mathbb{R} it holds that
\[
\mathbb{P}_x(X_T \in dy|M_T = z) = \frac{\psi_\beta(y) m(dy)}{\int_{-\infty}^{z} \psi_\beta(u) m(du)},
\]

where m is the speed measure. In particular, the conditional distribution does not depend on x.

The next result can now be proved analogously as Proposition 2.10.

Proposition 2.12. Consider the optimal stopping problem (4) for a diffusion X as introduced above. Assume that there exists a function \tilde{f} such that (13) holds and define
\[
Q(z) := \frac{1}{\beta} \int_{-\infty}^{z} \tilde{f}(y)\psi_\beta(y) m(dy).
\]

If Q fulfills (a) in Theorem 2.4 then the value function of the optimal stopping problem (4) is given as in (7) with $\hat{f} = Q \vee 0$.

12
To apply Proposition 2.12 it is useful to have condition on hand to guarantee that Q fulfills (a) in Theorem 2.4. The following Lemma gives such a condition in terms of the function \tilde{f} which is known explicitly in many situations of interest.

Lemma 2.13. In the setting of Proposition 2.12 assume that there exists \tilde{x} such that $\tilde{f}(x) \leq 0$ for $x \leq \tilde{x}$ and $\tilde{f}(x)$ is non-decreasing for $x \geq \tilde{x}$. Then $Q \leq 0$ or there exists x^* such that Q fulfills (a) in Theorem 2.4.

Proof. For simplicity we assume that the measure m is absolutely continuous, i.e. $m(dy) = m(y)dy$, and let

$$x^* = \inf \{ z : \int_{-\infty}^{z} (\tilde{f}(y)\psi_\beta(y)m(y)dy > 0 \}.$$

If $x^* = \infty$, then the claim trivially holds. Therefore, we assume $x^* < \infty$. It remains to prove that Q is non-decreasing for $x > x^*$. Obviously $x^* > \tilde{x}$ and therefore by the assumption on \tilde{f} we get

$$\int_{-\infty}^{z} (\tilde{f}(z) - \tilde{f}(y))\psi_\beta(y)m(y)dy \geq 0.$$

Using this fact, by differentiating the function Q we immediately see that $\frac{d}{dx}Q(x) \geq 0$. \hfill \Box

Remark 2.14. It is critical that the function Q defined in (18) for Lévy processes and in (21) for diffusions does not depend on x. This clearly follows from the fact that the conditional distribution of X_T given M_T does not depend on the initial state of the process. Path decomposition theorems for strong Markov processes imply such results in general, see Millar [16]. This observation yields a method for finding \hat{f} for general underlying processes.

2.3 Connection to the representing measure approach

Another approach to the solution of optimal stopping problems is the observation that finding the solution of such problems is equivalent to finding the Choquet-type integral representation of the value function in terms of the resolvent kernel $u_\beta(x,y)$. The Radon measure σ that appears in this representation characterizes the β-excessive value function V, and furthermore, the stopping region can be described as the support of σ.

This approach was first discussed in [22] for optimal stopping problems of diffusions. In [18] a verification theorem based on this approach applicable for general Hunt processes is presented. Moreover, in [18] the appearance of a function of the maximum in the solution of optimal stopping problems for
Lévy processes is explained via this approach and the Wiener-Hopf factorization.

The critical point to utilize the approach is to find a candidate solution for the measure \(\sigma \). In [23], this was carried out explicitly for spectrally positive Lévy processes in the Novikov-Shiryaev problem in terms of the Appell polynomials of \(X_T \) using the Laplace transforms. In Proposition 2.15 we extend these results by pointing out a connection between this approach and our approach in this paper for a general Hunt process \(X \) which does not have negative jumps, that is,

\[
\mathbb{P}_x \left(\inf_{t \geq 0} (X_t - X_{t-}) \geq 0 \right) = 1 \quad \forall x \in S.
\]

We work in the setting of Hunt processes satisfying the set of assumptions as given in [18, Section 2]. In particular, it is assumed that there exists a dual resolvent with respect to a duality measure \(m \) and that Hypothesis (B) from [13] holds. Moreover, we assume that the Laplace transform of the first hitting time \(H_x := \inf \{ t : X_t = x \} \) admits for all \(x_0 < x \) the representation.

\[
\mathbb{E}_x \left(e^{-\beta H_x} \right) = \frac{u_\beta(x,x_0)}{u_\beta(x_0,x_0)} \quad \forall x_0 < x \in S,
\]

where \(T_x = \inf \{ t > 0 : X_t = x \} \). This representation is valid for a large class of processes. A sufficient condition is that (I) and (II) below hold true, see [2, Chapter V.3 and Exercise VI.4.18].

(I) The mapping \(x \mapsto \int_S u_\beta(x,y)f(y)m(dy) \) is continuous, where \(f \) is a bounded and measurable function with compact support.

(II) Every point \(x \in S \) is regular for \(\{ x \} \), that is,

\[
\mathbb{P}_x(T_x = 0) > 0,
\]

where \(T_x = \inf \{ t > 0 : X_t = x \} \).

Assumption (I) is (4.1) in [2, p. 284], and assumption (II) implies that \(X \) has a local time at every point of the state space. Condition [23] furthermore holds true whenever \(X \) is a spectrally positive Lévy process, see [14, Theorem 3.12, Corollary 8.9].

Note that, in case \(X \) have positive jumps, overshoot occurs in the problem. Nonetheless it is possible to find an explicit representation of the measure \(\sigma \).

Proposition 2.15. Let \(X \) be a Hunt process as described above with no negative jumps that fulfills condition (23). Assume that for the optimal stopping
problem there exists a function \tilde{f} such that (13) holds. Moreover, assume that the function

$$Q(z) := \frac{1}{\beta} \int_{-\infty}^{z} \tilde{f}(y)\mathbb{P}(X_T \in dy|M_T = z)$$

fulfills (a) in Theorem 2.4. Then the value function V of (3) has the representation

$$V(x) = \int_{[x^*,\infty) \cap S} u_\beta(x,y) \sigma(dy) \quad \forall \ x \in S,$$

where the measure σ is given by

$$\sigma(dy) = \begin{cases}
\tilde{f}(y)m(dy), & \text{for} \ y > x^*, \\
0, & \text{for} \ y < x^*,
\end{cases}$$

(25)

and

$$\sigma(\{x^*\}) = \frac{E_{x^*}(\tilde{f}(X_T)1_{\{X_T \leq x^*\}})}{\beta u_\beta(x^*,x^*)}. \quad (26)$$

In the particular case that X is a spectrally positive Lévy process, then $\sigma(\{x^*\}) = 0$, and

$$V(x) = E_x(\tilde{f}(X_T)1_{\{X_T > x^*\}}).$$

Proof. We remark first that similarly as in the proof of Proposition 2.10 it can be verified that the value function V of the problem satisfies the equality

$$V(x) = E_x\left(Q(M_T)1_{\{M_T \geq x^*\}}\right),$$

where x^* is the point associated with Q via (a) in Theorem 2.4. Now we have

$$V(x) = E_x\left(Q(M_T)1_{\{M_T \geq x^*\}}\right) = \frac{1}{\beta} E_x\left(E_x\left(\tilde{f}(X_T)1_{\{X_T \leq x^*\}}|M_T\right)\right)$$

$$= \frac{1}{\beta} E_x\left(E_x\left(\tilde{f}(X_T)1_{\{M_T \geq x^*\}}|M_T\right)\right) = \frac{1}{\beta} E_x\left(\tilde{f}(X_T)1_{\{M_T \geq x^*\}}\right)$$

$$= \frac{1}{\beta} E_x\left(\tilde{f}(X_T)1_{\{X_T > x^*\}}\right) + \frac{1}{\beta} E_x\left(\tilde{f}(X_T)1_{\{M_T \geq x^*,X_T \leq x^*\}}\right).$$

Since it is assumed that X moves continuously down we rewrite the second summand

$$E_x\left(\tilde{f}(X_T)1_{\{M_T \geq x^*,X_T \leq x^*\}}\right) = E_x\left(\tilde{f}(X_T)1_{\{T_T < T,X_T \leq x^*\}}\right),$$
and, by the strong Markov property,
\[
\mathbb{E}_x \left(\tilde{f}(X_T)1_{\{M_T \geq x^*, X_T \leq x^*\}} \right) = \mathbb{E}_x \left(\mathbb{E}_x \left(\tilde{f}(X_T)1_{\{X_T \leq x^*\}} \mid \mathcal{F}_{T^*} \right) 1_{\{T^* < T\}} \right) \\
= \mathbb{E}_x \left(e^{-\beta T^*} \mathbb{E}_{X_T^*} \left(\tilde{f}(X_T)1_{\{X_T \leq x^*\}} \right) \right) \\
= \mathbb{E}_{x^*} \left(\tilde{f}(X_T)1_{\{X_T \leq x^*\}} \right) \mathbb{E}_x \left(e^{-\beta T^*} \right).
\]

Letting \(c = \mathbb{E}_{x^*} \left(\tilde{f}(X_T)1_{\{X_T \leq x^*\}} \right) \) and using assumption (23) we obtain
\[
V(x) = \frac{1}{\beta} \mathbb{E}_x \left(\tilde{f}(X_T)1_{\{X_T > x^*\}} \right) + \frac{1}{\beta} \mathbb{E}_x \left(\tilde{f}(X_T)1_{\{M_T \geq x^*, X_T \leq x^*\}} \right) \\
= \int_{(x^*, \infty) \cap S} \tilde{f}(y) u_\beta(x, y) m(dy) + \frac{c}{\beta u_\beta(x^*, x^*)} u_\beta(x, x^*) \\
= \int_{[x^*, \infty) \cap S} u_\beta(x, y) \sigma(dy)
\]
with \(\sigma \) as in (25) and in (26). It remains to prove that \(\sigma \) is indeed non-negative. To this end, we use the fact that each \(\beta \)-excessive function \(u \) locally integrable with respect to the duality measure \(m \) can be decomposed uniquely in the form
\[
u(x) = \int u_\beta(x, y) \sigma_u(dy) + h_u(x), \tag{27}
\]
where \(\sigma_u \) is a non-negative Radon measure and \(h_u \) is a \(\beta \)-harmonic function, see [13, Theorem 2 p. 505 and Proposition 13.1 p. 523]. Since the value function \(V \) is \(\beta \)-excessive we may apply (27) to obtain
\[
\int u_\beta(x, y) \sigma_V(dy) + h_V(x) = V(x) = \int_{[x^*, \infty) \cap S} u_\beta(x, y) \sigma(dy),
\]
where \(\sigma_V \) is the non-negative Radon measure associated with \(V \). By the Hahn decomposition we can write \(\sigma = \sigma_V = \sigma^+ - \sigma^- \) for some non-negative measures \(\sigma^+ \) and \(\sigma^- \). Therefore,
\[
h_V(x) + \int u_\beta(x, y) \sigma^-(dy) = \int u_\beta(x, y) \sigma^+(dy).
\]
By the uniqueness of the decomposition in (27) we obtain \(h_V = 0 \) and \(\sigma^+ = \sigma^- \). Hence, \(\sigma = \sigma_V \) is indeed a non-negative measure. This proves the first claim.

For spectrally positive Lévy processes it is well known that \(-I_T = \text{Exp}(\lambda)-\text{distributed}, where \(\lambda \) is the unique positive root of the equation
\[
\mathbb{E}(e^{\lambda X_1}) = e^\beta.
\]
Therefore, by the definition of Q and Proposition 17 we see that Q is continuous. In particular, $Q(x^*) = 0$. Using the Wiener-Hopf factorization we obtain

$$
\mathbb{E}_{x^*}(\tilde{f}(X_T)1_{\{X_T \leq x^*\}}) = \mathbb{E}_0(\tilde{f}(x^* + M_T + I_T^0)1_{\{x^* + M_T + I_T^0 \leq x^*\}})
= \int_0^\infty \mathbb{E}_0(\tilde{f}(x^* + t + I_T^0)1_{\{t + I_T^0 \leq 0\}})\mathbb{P}(M_T \in dt).
$$

Therefore, $\mathbb{E}_{x^*}(\tilde{f}(X_T)1_{\{X_T < x^*\}}) = 0$, since

$$
\mathbb{E}_0(\tilde{f}(x^* + t + I_T^0)1_{\{t + I_T^0 \leq 0\}}) = \int_{-\infty}^{-t} \tilde{f}(x^* + t + s)\lambda e^{\lambda s}ds
= e^{-\lambda t} \int_{-\infty}^{0} \tilde{f}(x^* + y)\lambda e^{\lambda y}dy
= e^{-\lambda Q(x^*)} = 0.
$$

Consequently,

$$
\sigma(\{x^*\}) = \frac{\mathbb{E}_{x^*}(\tilde{f}(X_T)1_{\{X_T \leq x^*\}})}{\beta u_\beta(x^*, x^*)} = 0.
$$

Remark 2.16. By inspecting the previous proof one can see that assumption (23) can be weakened by assuming that (23) holds for $x_0 = x^*$ only.

3 Examples

In this section we demonstrate the applicability of the above theory by solving some optimal stopping problems for diffusions, Lévy processes, and continuous time Markov chains.

3.1 Ornstein-Uhlenbeck process

Let X be an Ornstein-Uhlenbeck diffusion with parameter $\gamma > 0$, i.e. the differential operator associated to X is

$$
Af = \frac{1}{2} \frac{d^2}{dx^2} f - \gamma x \frac{d}{dx} f.
$$

We consider the optimal stopping problem (*) for X with the reward function

$$
G_n(x) = (x^+)^n, \ n \in \mathbb{N}.
$$
For general Lévy-driven Ornstein-Uhlenbeck processes it was proved in [6] that the optimal stopping rule is one-sided, but no explicit way for finding the boundary explicitly in general was given there. Here we want characterize the optimal boundary for the Ornstein-Uhlenbeck diffusion using our approach.

We have

\[(\beta - A)x^n = x^{n-2} \left((\beta + \gamma n)x^2 - \frac{n(n-1)}{2} \right) =: \tilde{f}_n(x).\]

Using Itô’s lemma it is seen that \(\tilde{f}_n\) indeed has the mean value property for \(X_T\), i.e.,

\[x^n = \mathbb{E}_x \left(\tilde{f}_n(X_T) \right) \quad \forall \ x\]

Recall that for Ornstein-Uhlenbeck processes the speed measure \(m\) is given by

\[m(dx) = 2e^{-\gamma x^2}dx\]

and

\[\psi_{\beta}(x) = e^{\gamma x^2/2D_{-\beta/\gamma}(-x\sqrt{2\gamma})},\]

where \(D_{\nu}\) denotes the parabolic cylinder function, see [3, A1.24,II.7]. Defining \(Q_n = Q\) as in (21) we obtain

\[x^n = \mathbb{E}_x \left(Q_n(M_T) \right).\]

Using arguments similar to those in Lemma 2.13 it is easy to see that \(Q\) has a unique positive root \(x^*\), which is given by the positive solution of the equation

\[\int_{-\infty}^{x} \tilde{f}(y)e^{-\gamma y^2/2D_{-\beta/\gamma}(-y\sqrt{2\gamma})}dy = 0. \quad (28)\]

An approximative value of \(x^*\) can be found using numerical methods. Notice that \(Q_n\) can also attain positive values on the negative half-line. However, this problem can be dealt with by considering the function

\[\hat{f}(x) = \begin{cases} 0, & x \leq 0, \\ Q(x), & x > 0, \end{cases}\]

which obviously satisfies the requirements of Theorem 2.4. Therefore, we obtain that the stopping time

\[\tau^* = \inf \{ t : X_t \geq x^* \}\]

is optimal.
3.2 American put in a Lévy market

In this subsection we review the well known example of a perpetual American put option in a Lévy driven market in the light of our approach (cf. the solutions in [17] and [1], see also [5] for further discussions). Although the solution is well-known we want to demonstrate how to find the representing function \(\hat{f} \) systematically with the approach discussed in Subsection 2.2.

Since the reward function \(G(x) = K - e^x, K > 0 \), is non-increasing we use the modified version of Theorem 2.4, see Remark 2.5. The American call option can be handled similarly.

The generator \(A \) of \(X \) is given by

\[
Af(x) = \frac{c^2}{2} d^2 f(x) + b d f(x) + \int_{\mathbb{R}} \left(f(x + y) - f(x) - y d f(x) 1_{|y| < 1} \right) \pi(dy),
\]

where \((b, c, \pi)\) is the Lévy triple of \(X \) and \(f \) is assumed to be in the domain of \(A \).

We wish to apply \(\beta - A \) to \(G(x) = K - e^x \). For this ansatz to work we assume that

\[
\mathbb{E}_0(e^{X_1}) < e^\beta.
\]

At the end we will see that the formula obtained is a solution for general \(X \). We have

\[
(\beta - A)G(x) = \beta(K - e^x) + e^x \left(\frac{c^2}{2} + b + \int_{\mathbb{R}} (e^y - 1 - y 1_{|y| < 1}) \pi(dy) \right) = \beta K - (\beta - \psi(1)) e^x =: \hat{f}(x),
\]

where \(\psi(1) = \log \mathbb{E}_0(e^{X_1}) < \beta \). To find \(\hat{f} \) we calculate, cf. Proposition [2.10]

\[
Q(x) = \frac{1}{\beta} \mathbb{E}_0 \left(\hat{f}(x + M_T) \right) = K - \frac{\beta - \psi(1)}{\beta} \mathbb{E}_0(e^{M_T}) e^x.
\]

By noting that

\[
\frac{\beta - \psi(1)}{\beta} = \frac{1}{\mathbb{E}_0(e^{X_T})}
\]

and applying the Wiener-Hopf factorization [3] we obtain

\[
Q(x) = K - \mathbb{E}_0(e^{I_T})^{-1} e^x.
\]

Now we have a candidate for \(\hat{f} \) by our ansatz, i.e., \(\hat{f} = Q \vee 0 \), and formula (31) also makes sense for general Lévy processes without the integrability assumption (30). Indeed, one immediately sees that for general \(X \) we have

\[
K - e^x = \mathbb{E}_x \left(Q(I_T) \right).
\]
We can apply Theorem 2.4 (together with Remark 2.5) to \(\hat{f} \) and obtain that
\(x^* = \log(K\mathbb{E}_0(e^{t^*})) \) is the optimal stopping boundary and the value function is given by

\[
V(x) = \mathbb{E}_x \left(\hat{f}(I_T)1_{\{I_T < x^*\}} \right) = \mathbb{E}_x \left(\left(K - \frac{e^{t^*}}{\mathbb{E}_0(e^{t^*})} \right)^+ \right).
\]

3.3 Novikov-Shiryaev optimal stopping problem

In [19] Novikov and Shiryaev solved the optimal stopping problem (*) with
\(G_n(x) = (x^+)^n \), \(n = 1, 2, \ldots \), for random walks and in [15] Kyprianou and Surya found the solution for Lévy processes. Here we discuss shortly how the solution can be found with the methodology presented in this paper. For simplicity, we assume that \(\beta > 0 \).

Let \(X \) be a Lévy process with the generator \(A \) as given in (29). We fix the exponent \(n \in \{1, 2, \ldots\} \) for the reward function \(G_n \) and assume that the Lévy measure \(\pi \) satisfies

\[
\int_{(-\infty,-1) \cup (1,\infty)} |y|^n \pi(dy) < \infty.
\]

(32)

This condition implies that \(\mathbb{E}_x(|X_t|^k) < \infty \) for all \(x, t \geq 0 \), and \(k = 1, 2, \ldots, n \).

Using the independence of increments, it is easily seen that \(\mathbb{E}_x(X_T^n) \) is a polynomial in \(t \). Consequently, also the moments of \(X_T \) up to \(n \) exist.

Remark 3.1. In [15] the solution is found under the weaker condition that (only) the integral over \((1, +\infty)\) in (32) is finite. Under this weaker condition the moments of \(M_T \) up to \(n \) exist but the moments of \(I_T \) may not exist. Working under the stronger condition reveals the rôle of the Appell polynomials of \(X_T \) which we find interesting and important. In fact, since the function \(Q_n \), see (35), that is, the Appell polynomial associated with \(M_T \), found in this way satisfies conditions (a) and (b) in Theorem 2.4 it is clear that our solution is indeed valid under the weaker condition and, hence, coincides with the solution in by Novikov and Shiryaev.

We follow the receipt in Section 2.2 and operate with \(\beta - A \) on \(x^n \). This yields

\[
\tilde{f}_n(x) := (\beta - A)(x^n)
\]

\[
= \beta x^n - \left(\frac{c^2}{2} n(n-1)x^{n-2} + bnx^{n-1} \right)
- \int_{\mathbb{R}} \left((x+y)^n - x^n - ynx^{n-1}1_{\{|y|\leq1\}} \right) \pi(dy),
\]

20
where the integral term is well defined due to (32). Clearly, \(\tilde{f}_n \) is an \(n \)th order polynomial and satisfies the DE

\[
\frac{d}{dx} \tilde{f}_n(x) = n \tilde{f}_{n-1}(x)
\]

(33)

with \(f_0 = 1 \). We claim that

\[
\mathbb{E}_x \left(\tilde{f}_n(X_T) \right) = \mathbb{E}_0 \left(\tilde{f}_n(X_T + x) \right) = \beta x^n,
\]

(34)

which, then, together with (33) shows that \(x \mapsto \tilde{f}_n(x)/\beta \) is the \(n \)th order Appell polynomial associated with \(X_T \), (for properties of the Appell polynomials, see \([19]\) and \([23]\)). To prove (33) we use standard computations, legitimate by (32), with the Itô formula for Lévy processes, see, e.g., \([12\), p. 612], to obtain

\[
e^{-\beta t} \mathbb{E}_x \left(X_t^n - x^n \right) = \mathbb{E}_x \left(\int_0^t e^{-\beta s} \left[\frac{c^2}{2} n(n-1)X_s^{n-2} + bnX_s^{n-1} - \beta X_s^n \right] ds \right) + \mathbb{E}_x \left(\int_0^t e^{-\beta s} \int_{\mathbb{R}} [(X_s + y)^n - X_s^n - y nX_s^{n-1} 1_{|y| \leq 1}] \pi(dy) ds \right).
\]

Multiplying both sides with \(\beta \), letting \(t \to \infty \) and using that the moments of \(X_t \) are polynomials in \(t \) we obtain

\[
-\beta x^n = \mathbb{E}_x \left(\int_0^\infty e^{-\beta s} \left[\frac{c^2}{2} n(n-1)X_s^{n-2} + bnX_s^{n-1} - \beta X_s^n \right] ds \right) + \mathbb{E}_x \left(\int_0^\infty \beta e^{-\beta s} \int_{\mathbb{R}} [(X_s + y)^n - X_s^n - y nX_s^{n-1} 1_{|y| \leq 1}] \pi(dy) ds \right),
\]

which proves (34). Next we apply Proposition 2.10 to find the function \(Q_n \) and then \(\hat{f} \). We write formula (18) therein as

\[
Q_n(x) = \int_0^x Q_n(X_T)(x+y) \mathbb{P}_0(IT \in dy),
\]

(35)

where \(Q_n^{(X_T)}(x) := \tilde{f}_n(x)/\beta \). Recall from \([23]\) the identity

\[
Q_n^{(X_T)}(x+y) = \sum_{k=0}^n \binom{n}{k} Q_k^{(MT)}(x) Q_{n-k}^{(IT)}(y)
\]

(36)

where \(Q_k^{(MT)} \) and \(Q_k^{(IT)} \) denote the \(i \)th Appell polynomials of \(MT \) and \(IT \), respectively. Identity (36) follows easily from the Wiener-Hopf factorization

21
and the definition of the Appell polynomials. Substituting (36) into (35) and using the normalizations

\[Q_0^{(I_T)} \equiv 1 \quad \text{and} \quad E_0\left(Q_i^{(I_T)}(I_T)\right) = 0 \quad \text{for all} \quad i = 1, 2, \ldots, n \]

yields \(Q_n = Q_n^{(M_T)} \). Hence, our approach leads to the same characterization of the optimal stopping time in terms of \(Q_n^{(M_T)} \) as in [19]. The crucial property to be able to apply Theorem 2.4, i.e., that \(Q_n^{(M_T)} \) has a unique positive zero \(x^* \) and is non-decreasing for \(x > x^* \), is proved in [19] Lemma 5. Consequently, it now easily follows that

\[\hat{f}(x) := \begin{cases} Q_n^{(M_T)}(x), & x > 0, \\ 0, & x \leq 0 \end{cases} \]

satisfies conditions (a) and (b) in Theorem 2.4 and the solution of the optimal stopping problem results.

Note that Proposition 2.15 together with the fact that \(x \mapsto \tilde{f}_n(x)/\beta \) is the \(n \)th order Appell polynomial associated with \(X_T \) reproduces the formula of the representing measure for spectrally positive Lévy processes obtained in [23, Corollary 8].

3.4 Absorbing Brownian motion

Let \(X \) be a Brownian motion on \(\mathbb{R}_+ \) absorbed at 0, i.e., \(X_t = 0 \) for \(t \geq H_0 \). We solve the optimal stopping problem \((\text{I})\) with \(G_n(x) = x^n, \ n \geq 1 \). The first step is to find \(\tilde{f}_n \) such that (13) holds. Guided by Subsection 2.2 we set

\[\tilde{f}_n(x) = (\beta - \frac{1}{2} \frac{d^2}{dx^2})G_n(x) = x^{n-2} \left(\beta x^2 - \frac{n(n-1)}{2} \right) =: \beta P_n(x). \]

(37)

Instead of checking (13) via a direct calculation, we recall that \(P_n \) is the \(n \)th order Appell polynomial associated with a standard Brownian motion \((W_t)_{t \geq 0}\) started from 0 and evaluated at \(T \), see [23, Example 3.9]. Hence, for all \(x \)

\[x^n = E_0\left(P_n(x + W_T)\right) = E_x\left(P_n(W_T)\right) = \frac{1}{\beta} E_x\left(\tilde{f}_n(W_T)\right), \]

and, by the strong Markov property,

\[E_x\left(\tilde{f}_n(W_T)\right) = E_x\left(\tilde{f}_n(W_T)1_{\{T<H_0\}}\right) + E_x\left(\tilde{f}_n(W_T)1_{\{T>H_0\}}\right) \]

\[= E_x\left(\tilde{f}_n(X_T)1_{\{X_T>0\}}\right) + E_x\left(E_x(\tilde{f}_n(W_T) | W_{H_0})1_{\{T>H_0\}}\right) \]

\[= E_x\left(\tilde{f}_n(X_T)1_{\{X_T>0\}}\right). \]
Consequently, we have
\[G_n(x) = \frac{1}{\beta} \mathbb{E}_x \left(\hat{f}_n(X_T) 1_{\{X_T > 0\}} \right), \]
which is (13) if \(n \neq 2 \). To cover also the case \(n = 2 \) we abandon (13) and instead try to find a function \(Q_n \) such that
\[\mathbb{E}_x \left(\hat{f}_n(X_T) 1_{\{X_T > 0\}} \right) = \mathbb{E}_x \left(Q_n(M_T) \right). \]
For this, the conditional distribution of \(X_T \) given \(M_T \) is needed, see (16). Since \(X \) is not conservative, this distribution has an atom at 0 and, hence, the formula in Lemma 2.11 is not valid. However, from [3, II.19] we may deduce
\[\mathbb{P}_x(M_T \in dz)/dz = \frac{\partial}{\partial z} \left(\frac{\psi_\beta(x)}{\psi_\beta(z)} \right) \]
and
\[\mathbb{P}_x(M_T \in dz, X_T \in dy) = 2 \frac{\psi_\beta(x) \psi_\beta(y)}{\psi_\beta(z)} dz dy. \]
where \(\psi_\beta(x) = \text{sh}(x\sqrt{2\beta}) \), \(x \geq 0 \), see ibid. p. 121. Consequently, the conditional density of \(X_T \) given \(M_T \) is given by
\[f_{X_T}(y|M_T = z) = \frac{2\psi_\beta(y)}{\psi_\beta'(z)}. \]
and, therefore,
\[Q_n(z) := \frac{1}{\beta} \int_0^z \hat{f}_n(y) \frac{2\psi_\beta(y)}{\psi_\beta'(z)} dy \]
\[= \frac{2}{\beta \sqrt{2\beta} \text{ch}(z\sqrt{2\beta})} \int_0^z y^{n-2} \left(\beta y^2 - \frac{n(n-1)}{2} \right) \text{sh}(y\sqrt{2\beta}) dy. \]
Since the integrand changes its sign from − to + one can see (after some easy calculations) that \(Q_n \) satisfies (11) of Theorem 2.4. Although Proposition 2.12 is not directly applicable it can be proved analogously as therein that (11) of Theorem 2.4 holds for \(\hat{f}_n := Q_n \vee 0 \). Therefore, the optimal stopping boundary \(x^* \) is given as the unique positive solution to the equation
\[\int_0^z y^{n-2} \left(\beta y^2 - \frac{n(n-1)}{2} \right) \text{sh}(y\sqrt{2\beta}) dy = 0. \] (38)
Integrating by parts, (38) is seen to be equivalent with
\[z \text{ch}(z\sqrt{2\beta}) - \frac{n}{\sqrt{2\beta}} \text{sh}(z\sqrt{2\beta}) = 0. \] (39)
Notice that for $n = 1$ this equation does not have a positive solution and the optimal stopping rule is to stop immediately – in other words, reward $G(x) = x$ is β-excessive.

It is also interesting to observe that (39) is of the form

$$G_n(z) \frac{d\psi(z)}{dz} - \psi(z) \frac{dG_n(z)}{dz} = 0,$$

and, hence, our approach yields in this case the same characterization of the stopping point as given in Remark (ii) p. 97 in [22].

3.5 Markov chain

To see the general applicability of the theory we treat in this subsection an easy example with an underlying finite-state Markov chain. Let $(X_t)_{t \geq 0}$ be a continuous-time Markov chain with state space $E = \{1, \ldots, 4\}$ and transition rates as given in the following figure.

![Markov chain diagram]

To obtain explicit results let us assume that $\beta = 1$ and $G(1) = 3$, $G(2) = 1 = G(3)$ and $G(4) = 2$. We could use the method described in Subsection 2.2 to find \hat{f} such that $G(x) = \mathbb{E}_x(\sup_{t \leq T} \hat{f}(X_t))$ for all $x \in E$, but it may be instructive to find it directly: Since 4 is an absorbing state, we take $\hat{f}(4) = G(4) = 2$. To find $\hat{f}(3)$ we make the ansatz that $\hat{f}(3) \leq \hat{f}(4)$ and obtain

$$1 = G(3) = \mathbb{E}_3 \left(\sup_{t \leq T} \hat{f}(X_t) \right) = \hat{f}(4) \mathbb{P}_3(S_3 \leq T) + \hat{f}(3) \mathbb{P}_3(S_3 > T),$$

where the sojourn time S_3 at state 3 is exponentially distributed with parameter 2 and independent of T. Solving for $\hat{f}(3)$ yields

$$\hat{f}(3) = \frac{\lambda_3 + \beta}{\beta} \left(1 - 2 \frac{\lambda_3}{\lambda_3 + \beta} \right) = -1.$$

By a similar calculation we obtain that

$$\hat{f}(2) = \frac{(\beta + \lambda_2)^2}{\beta^2 + 2\beta \lambda_2} \left(1 - \hat{f}(4) \frac{\lambda_2^2}{(\beta + \lambda_2)^2} \right) = \frac{1}{5}.$$
Since 1 is a global maximum point of G taking
\[\hat{f}(1) = G(1) = 3 \]
yields the right representation. We see that the assumptions of Theorem 2.6 are fulfilled (with $x_\ast = 2$, $x^* = 4$). Therefore
\[\tau^* = \inf\{t \geq 0 : X_t \neq 3\} \]
is an optimal stopping time.

Acknowledgements. This paper was partly written during the first author’s stay at Åbo Akademi in the project *Applied Markov processes – fluid queues, optimal stopping and population dynamics, Project number: 127719 (Academy of Finland).* He would like to express his gratitude for the hospitality and support.
References

[1] L. Alili and A. E. Kyprianou. Some remarks on first passage of Lévy processes, the American put and pasting principles. *Ann. Appl. Probab.*, 15(3):2062–2080, 2005.

[2] R. M. Blumenthal and R. K. Getoor. *Markov processes and potential theory*. Pure and Applied Mathematics, Vol. 29. Academic Press, New York, 1968.

[3] A. N. Borodin and P. Salminen. *Handbook of Brownian motion—facts and formulae*. Probability and its Applications. Birkhäuser Verlag, Basel, second edition, 2002.

[4] S. Boyarchenko and S. Levendorski˘ı. *Irreversible decisions under uncertainty*, volume 27 of *Studies in Economic Theory*. Springer, Berlin, 2007. Optimal stopping made easy.

[5] S. Christensen and A. Irle. A note on pasting conditions for the American perpetual optimal stopping problem. *Statist. Probab. Lett.*, 79(3):349–353, 2009.

[6] S. Christensen, A. Irle, and A. Novikov. An elementary approach to optimal stopping problems for AR(1) sequences. *Sequential Analysis*, 30(1):79–93, 2011.

[7] K. L. Chung and J. B. Walsh. *Markov processes, Brownian motion, and time symmetry*, volume 249 of *Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]*. Springer, New York, second edition, 2005.

[8] D. A. Darling, T. Liggett, and H. M. Taylor. Optimal stopping for partial sums. *Ann. Math. Statist.*, 43:1363–1368, 1972.

[9] G. Deligiannidis, H. Le, and S. Utev. Optimal stopping for processes with independent increments, and applications. *J. Appl. Probab.*, 46(4):1130–1145, 2009.

[10] N. El Karoui and A. Meziou. Max-Plus decomposition of supermartingales and convex order. Application to American options and portfolio insurance. *Ann. Probab.*, 36(2):647–697, 2008.

[11] H. Föllmer and T. Knispel. A representation of excessive functions as expected suprema. *Probab. Math. Statist.*, 26(2):379–394, 2006.
[12] M. Jeanblanc, M. Yor, and M. Chesney. Mathematical methods for financial markets. Springer Finance. Springer-Verlag London Ltd., London, 2009.

[13] H. Kunita and T. Watanabe. Markov processes and Martin boundaries. I. Illinois J. Math., 9:485–526, 1965.

[14] A. E. Kyprianou. Introductory lectures on fluctuations of Lévy processes with applications. Universitext. Springer-Verlag, Berlin, 2006.

[15] A. E. Kyprianou and B. A. Surya. On the Novikov-Shiryaev optimal stopping problems in continuous time. Electron. Comm. Probab., 10:146–154 (electronic), 2005.

[16] P.W. Millar. A path decomposition for markov processes. Ann. Probab., 6(2):345–348, 1978.

[17] E. Mordecki. Optimal stopping and perpetual options for Lévy processes. Finance Stoch., 6(4):473–493, 2002.

[18] E. Mordecki and P. Salminen. Optimal stopping of Hunt and Lévy processes. Stochastics, 79(3-4):233–251, 2007.

[19] A. Novikov and A. Shiryaev. On an effective case of the solution of the optimal stopping problem for random walks. Teor. Veroyatn. Primen., 49(2):373–382, 2004.

[20] A. Novikov and A. Shiryaev. On solution of the optimal stopping problem for processes with independent increments. Stochastics, 79(3-4):393–406, 2007.

[21] D. Revuz and M. Yor. Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, third edition, 1999.

[22] P. Salminen. Optimal stopping of one-dimensional diffusions. Math. Nachr., 124:85–101, 1985.

[23] P. Salminen. Optimal stopping, Appell polynomials, and Wiener-Hopf factorization. Stochastics, 83(4-6):611–622l, 2011.

[24] M. Sharpe. General theory of Markov processes, volume 133 of Pure and Applied Mathematics. Academic Press Inc., Boston, MA, 1988.
[25] A. N. Shiryaev. *Optimal stopping rules*, volume 8 of *Stochastic Modelling and Applied Probability*. Springer-Verlag, Berlin, 2008. Translated from the 1976 Russian second edition by A. B. Aries, Reprint of the 1978 translation.

[26] B. A. Surya. An approach for solving perpetual optimal stopping problems driven by Lévy processes. *Stochastics*, 79(3-4):337–361, 2007.