Relation of retinal blood flow and retinal oxygen extraction during stimulation with diffuse luminance flicker

Stefan Palkovits1, Michael Lasta3, Reinhard Told1, Doreen Schmid1, René Werkmeister1,2, Alina Popa Cherecheanu3, Gerhard Garhöfer1 & Leopold Schmetterer1,2

Cerebral and retinal blood flow are dependent on local neuronal activity. Several studies quantified the increase in cerebral blood flow and oxygen consumption during activity. In the present study we investigated the relation between changes in retinal blood flow and oxygen extraction during stimulation with diffuse luminance flicker and the influence of breathing gas mixtures with different fractions of O2 (FiO2; 100% 15% and 12%). Twenty-four healthy subjects were included. Retinal blood flow was studied by combining measurement of vessel diameters using the Dynamic Vessel Analyser with measurements of blood velocity using laser Doppler velocimetry. Oxygen saturation was measured using spectroscopic reflectometry and oxygen extraction was calculated. Flicker stimulation increased retinal blood flow (57.7 ± 17.8%) and oxygen extraction (34.6 ± 24.1%; p < 0.001 each). During 100% oxygen breathing the response of retinal blood flow and oxygen extraction was increased (p < 0.01 each). By contrast, breathing gas mixtures with 12% and 15% FiO2 did not alter flicker–induced retinal haemodynamic changes. The present study indicates that at a comparable increase in blood flow the increase in oxygen extraction in the retina is larger than in the brain. During systemic hyperoxia the blood flow and oxygen extraction responses to neural stimulation are augmented. The underlying mechanism is unknown.

Functional hyperaemia in the brain was described in a landmark paper more than 100 years ago1. It refers to increased blood flow during neural stimulation to fulfil the metabolic demands of the tissue1. This hyperaemic response, also known as neurovascular coupling, exists in the retina as well14, but is a lot less studied. In healthy humans the increase in retinal blood flow during stimulation with pure luminance flicker appears to be as large as 50–60%5,6. A variety of studies have shown that flicker-induced changes in retinal and optic nerve head hemodynamics are reduced in ocular disease such as glaucoma7–9 or diabetic retinopathy10,11.

In the human brain, studies were published quantifying the relative magnitudes of stimulus-induced changes in blood flow, oxygen consumption and ATP14. Cerebral blood flow increased by the order of 60%, whereas oxygen consumption only changed by 15%. This is in good agreement with data in the rat showing that only approximately 1/3 of the cerebral blood flow response is required to support the increase in oxygen demand15. In addition, pharmacologically blocking the largest part of the hyperaemic response has little impact on the increase in oxygen consumption indicating that the pronounced vasodilatation is not required to maintain energy supply. In the human retina it has been shown that stimulation with diffuse luminance flicker increases oxygen saturation in retinal veins, but leaves oxygen saturation in retinal arteries constant16. Without concomitant quantitative measurements of retinal blood flow, it is, however, difficult to estimate the effect on the absolute amount of oxygen taken out of the retinal circulation, the oxygen extraction. In the present paper we refer to oxygen extraction instead of oxygen consumption of the retina, because there are two sources of oxygen in the retina, the retinal vessels and the choroidal vessels. Hence, retinal oxygen extraction refers to the oxygen consumed by retinal tissue delivered

1Department of Clinical Pharmacology Medical University of Vienna Waehringer Guertel 18-20, 1090 Vienna, Austria. 2Center for Medical Physics and Biomedical Engineering Medical University of Vienna Waehringer Guertel 18-20, 1090 Vienna, Austria. 3Department of Ophthalmology, Emergency University Hospital 169, Splaiul Independentei St., District 5, Bucharest, Romania. Correspondence and requests for materials should be addressed to L.S. (email: leopold.schmetterer@meduniwien.ac.at)
through the retinal circulation. To the best of our knowledge no previous study has characterized the effects of retinal stimulation with diffuse luminance flicker on retinal oxygen extraction in humans. There is a long-standing discussion on whether neurovascular coupling is dependent on tissue oxygen levels. When oxygen is delivered directly to tissue, thereby increasing tissue pO2 levels, a modulatory role was observed and the hyperaemic response decreased with increasing oxygen levels17. When oxygen is, however, delivered via inhalation the rat retina reacts with pronounced vasoconstriction and the response to flicker light stimulation is fully preserved17. We have recently investigated the effect of diffuse luminance flicker on blood flow under FiO2 of 100% and found an augmented blood flow increase during 100% oxygen breathing due to a so far unknown mechanism18.

In the present study we investigated the response of retinal blood flow and retinal oxygen extraction to diffuse luminance flicker in healthy subjects. In addition, we investigated whether these responses are modified by inhaling gases with different FiO2 inducing either systemic hyperoxia or hypoxia.

Materials and Methods

Subjects. The study was performed in adherence to the Good Clinical Practice guidelines and to the Declaration of Helsinki including current revisions. Approval of the study protocol by the Ethics Committee of the Medical University of Vienna was obtained and all participating subjects provided written informed consent. Twenty-four healthy male (n = 12) and female (n = 12) non-smoking subjects aged 25.9 ± 3.7 years were included in this double-masked randomized three-way cross over study. A screening examination was scheduled for all participating subjects in the four weeks before the study day consisting of a physical examination including medical history, a blood draw to assess the haematological status and urinalysis. In addition, a full ophthalmological examination was performed. Subjects were excluded if any ophthalmological or general disease was diagnosed, in case of ametropia of more than 3 dioptres or if they used any medication or food supplements.

Description of the study day. One study day was scheduled for each subject. A study schedule is provided in Fig. 1. Topical tropicamid (Agepha®, Vienna, Austria) was administered for pupil dilatation into the study eye. After a resting period of at least 20 minutes, to ensure stable hemodynamic conditions, baseline measurements of retinal arterial and venous diameters, retinal blood velocity and retinal arterial as well as venous oxygen saturation were performed and the retinal flicker response was determined. Oxygen partial pressure was measured using capillary blood drawn from the arterialized ear lobe. Thereafter, a sequence of three breathing periods was scheduled, each consisting of a 30 minutes period of inhalation of gas mixtures containing FiO2 of 12%, 15% and 100%, respectively (Messer Group GmbH, Vienna, Austria). The sequence of these breathing periods was randomized and double-masked. During the last 15 minutes of each breathing period measurements were repeated. After each breathing period a resting period of 120 minutes was scheduled. During the breathing periods systolic and diastolic blood pressure as well as heart rate and peripheral oxygen saturation were measured at 5 minutes intervals.

Measurement of hemodynamic parameters. Systolic, diastolic and mean arterial blood pressure (SBP, DBP, MAP) were measured on the upper arm using an automated oscillometric device (Infinity Delta, Dräger, Vienna, Austria). The same device was used to continuously measure pulse rate and systemic oxygen saturation by finger pulse oximetry.

Measurement of blood gases. Arterialized capillary blood from the ear lobe was collected from a lancet incision into a thin glass capillary tube after topical administration of nicotinate plus nonylvanillamid ointment (Finalgon®, Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim am Rhein, Germany). Arterial pH, PCO2, and PO2 were determined using an automatic blood gas analysis system (ABL 800 Flex; Drott Medizintechnik GmbH, Wiener Neustadt, Austria).

Measurement of retinal vessel diameter and retinal oxygen saturation. Retinal vessel diameters were measured using the Dynamic Vessel Analyser (DVA, IMEDOS Systems UG, Jena, Germany) described previously. It is a commercially available system which comprises a fundus camera (Zeiss FF 450, Jena, Germany), a video camera, a high resolution video recorder, a real time monitor and a personal computer with a vessel diameter analyzing software. The DVA allows the precise determination of retinal vessels’ diameter with a time resolution of 25 readings/s. Retinal irradiance was approximately 220μW·cm⁻², which is approximately 50 times lower than the maximum level allowed for constant illumination of the retina. The system provides excellent reproducibility.
Table 1. Systemic hemodynamic parameters during breathing of the different gas mixtures (n = 24) SBP – systolic blood pressure; DBP – diastolic blood pressure; MAP – mean arterial pressure; PR – pulse rate; SpO₂ – peripheral oxygen saturation (pulse oximetric module).

Parameter	Baseline	12% O₂	15% O₂	100% O₂	p-value
SBP (mmHg)	119 ± 8	120 ± 9	120 ± 8	119 ± 10	P = 0.40
DBP (mmHg)	68 ± 8	67 ± 8	69 ± 8	68 ± 8	P = 0.20
MAP (mmHg)	85 ± 8	84 ± 8	86 ± 8	85 ± 7	P = 0.11
PR (beats per minute)	63 ± 7	63 ± 6	63 ± 7	63 ± 8	P = 0.79
SpO₂ (%)	98.5 ± 1	98 ± 2	98 ± 2	99.8 ± 0.1	P < 0.001

Results

Breathing of gas mixtures. Systemic hemodynamic parameters as obtained during the study are shown in Table 1. None of the gas mixtures induced any significant effect on systemic hemodynamic parameters, except for peripheral oxygen saturation (p < 0.001). Breathing gas mixtures with reduced FiO₂ induced vasodilation in retinal arteries and veins (Fig. 2). This effect was significant versus baseline (p < 0.001) and more pronounced to 12% FiO₂ as compared with 15% FiO₂ (p = 0.002). By contrast, Dₜₐrt (p < 0.001) and Dₜₑₜ (p < 0.001) decreased during 100% oxygen breathing. During systemic hypoxia vel (p < 0.001) as well as flow (p < 0.001) increased. Again, the effect was more pronounced during 12% oxygen breathing than during 15% oxygen breathing (vel: p = 0.002, flow: p < 0.001). Figure 3 shows the effects of different breathing conditions on oxygen content. cO₂,art was reduced versus baseline during both 12% and 15% oxygen breathing (p < 0.001). This effect was more pronounced at the

Calculation of oxygen extraction. Oxygen content (cO₂) in the retinal arteries and veins was estimated using Henry’s law:

\[cO₂ = 1.34 \cdot Hb \cdot SaO₂ + 0.003 \cdot PO₂ \]

In this equation Hb is the haemoglobin concentration, and SaO₂ is the retinal oxygen saturation in arteries and veins as measured with the DVA. Arterial PO₂ was measured photometrically from the blood sample (Sysmex XE 500, Kobe, Japan) and venous PO₂ from the oxygen-binding curve at a PCO₂ level of 37 mmHg and a temperature of 37 degrees.

The retinal oxygen extraction was calculated as:

\[extO₂ = (cO₂,art - cO₂,vein) \cdot Q \]
lower FiO₂ (12%, p < 0.001). Both, 12% (p < 0.001) and 15% (p < 0.001) oxygen breathing also reduced cO₂vein, to a comparable degree (p = 0.38). During 100% oxygen breathing cO₂art increased by 1.7 ± 0.4% and cO₂vein increased by 3.8 ± 1.1% (p < 0.001). All gas mixtures reduced cO₂diff versus baseline (p < 0.001).
comparable at FiO\textsubscript{2} of 12% and 100% and less pronounced at 15% (p < 0.001). Retinal oxygen extraction was comparable between baseline, 12% and 15% oxygen extraction (p = 0.33), but was strongly reduced during 100% oxygen breathing (p < 0.001, Fig. 4).

Effects of diffuse luminance flicker. The effect of diffuse luminance flicker on retinal hemodynamic parameters is presented in Fig. 5. During all conditions stimulation with diffuse luminance flicker caused retinal arterial and venous vasodilation (p < 0.001 each). This effect was comparable between baseline conditions, 12% and 15% oxygen breathing, but was augmented during 100% oxygen breathing (p = 0.003). Retinal blood velocity showed a pronounced flicker induced increase, which was comparable between all breathing conditions (p = 0.12). Retinal blood flow increased during diffuse luminance flicker by approximately 55% during baseline, 12% oxygen breathing and 15% oxygen breathing (p = 0.67). The increase in retinal blood flow in response to diffuse luminance flicker was more pronounced during systemic hyperoxia (p = 0.017).

Figure 6 illustrates effects of flicker light stimulation on oxygen content variables during each breathing period. Diffuse luminance flicker did not change \(cO_{2\text{art}} \) during any of the flicker stimulation periods (p = 0.34). Venous oxygen content increased during flicker stimulation (p < 0.001), an effect that was less pronounced during inhalation of 100% oxygen (p = 0.23). Hence, \(cO_{2\text{diff}} \) decreased in response to diffuse luminance flicker during all
breathing conditions \((p < 0.001) \), but less so during systemic hyperoxia \((p = 0.009) \). Retinal oxygen extraction during flicker light exposure increased by approximately 35\% during baseline conditions, 12\% and 15\% oxygen breathing \((p < 0.001, \text{Fig. 7}) \). The increase in retinal oxygen extraction was significantly larger during 100\% oxygen breathing as compared to breathing room air \((p = 0.002) \). As shown in Fig. 8 the flicker-induced increase in retinal blood flow was positively correlated with the change in \(cO_{2,\text{diff}} \) during all breathing conditions.

Discussion

To the best of our knowledge this is the first study in humans to quantify retinal oxygen extraction in response to stimulation with diffuse luminance flicker. Our data indicate that an increase in retinal blood flow of approximately 55\% is associated with an increase in retinal oxygen extraction of approximately 35\%. In addition, our data indicate that during systemic hyperoxia as induced by 100\% oxygen breathing the flicker response of retinal blood flow and retinal oxygen extraction is augmented.

In the brain the relation between cerebral blood flow, oxygen consumption, and lactate production in the human visual cortex was studied using MR technology. The increase in cerebral blood flow was comparable to the data in the present study (52–65\%), but the increase in oxygen consumption (12–17\%) was much smaller than in the retina\(^{14,15}\). In addition, the percent change in cerebral blood flow was negatively associated with the percent change in oxygen consumption, which is in contrast to our correlation analysis presented in Fig. 8. One previous study quantified retinal oxygen consumption during stimulation with diffuse luminance flicker in the rabbit’s retina by cannulating an artery and a vortex vein\(^{23}\). Using this technique an increase of 15\% was seen in response to diffuse
luminance flicker. Comparison with the present study is difficult, because the rabbit retina is entirely nourished by the choroidal circulation, blood flow was not quantified and the stimulus was applied at 4 Hz, which may induce less vasodilation than the 12.5 Hz employed in the present study24,25.

In the brain it was thought that the large increase in blood flow induced by activity is required to ensure the relatively small increase in oxygen consumption based on mathematical modeling26. When, the large increase in activity-induced cerebral blood flow is partially blocked pharmacologically, the increase in oxygen consumption is unaffected arguing against this hypothesis15. Whether this also holds true for the retina is unknown. Several studies reported that flicker-induced vasodilatation can be blocked27–29 but none of these studies quantified oxygen consumption or extraction. In the brain it has been hypothesized that the large increase in blood flow during activity is required to maintain blood flow during conditions of greater energy need that can occur pathologically2. Whether our results indicate that this reserve is lower in the retina than in the brain remains to be proven. Recent data in the rat retina indicate that flicker stimulation evoked more pronounced dilations in the intermediate layer capillaries than in the superficial and deep layer30. This suggests that most of the increase in retinal oxygen consumption occurs in the neuronal somata and synapses of the inner retina.

The present study indicates that during systemic hypoxia inner retinal oxygen tension is well regulated due to the increase in retinal blood flow. This is in keeping with several previous studies in animals and humans21,31–33. During this condition neither the hyperaemic response to diffuse luminance flicker nor the response in oxygen extraction is altered. By contrast, breathing 100% oxygen augmented the flicker-induced increase in retinal blood flow and retinal oxygen extraction in the present study. The former result is in keeping with our recent observation in healthy subjects18, but was not observed in rat experiments17.

During systemic hyperoxia the retinal hemodynamic response is complex. In keeping with a large variety of previous studies 100% oxygen breathing causes a pronounced decrease in retinal blood flow34–36. This is associated with a reduction in arterio-venous oxygen saturation and a decrease in retinal oxygen extraction that has again been reported previously37. The most likely explanation for this result is that during systemic hyperoxia excess oxygen is diffusing from the choroid towards the inner retina. This hypothesis is supported by the absence of a choroidal blood flow response to 100% oxygen breathing38,39 as well as the form of oxygen profiles in different retinal depths using microelectrodes40–42.

The mechanism underlying increased hyperaemic response to stimulation with diffuse luminance flicker during 100% oxygen breathing is unknown. One potential explanation is that retinal vessels are constricted and hence the activity dependent vasodilator stimulus starts at a different vascular tone. Alternatively the very low retinal oxygen extraction itself may contribute. During 100% oxygen breathing inner retinal oxygen gradients will change potentially also affecting oxygen transport during neuronal activity. Finally, it may well be that the activity of enzymes that are involved in the production of mediators of the hyperaemic response such as arachidonic acid
metabolites may be dependent on the level of oxygen. Little is, however, known about the mechanisms mediating activity-induced vasodilation in the human retina.

The present study has several limitations that need to be considered. The 2-wavelength spectroscopic approach for measuring oxygen saturation in retinal vessels critically depends on the calibration process. For the present device this was done by comparison with retinal vessel reflectance spectra with a 2 nm resolution. Any mistake in this calibration process will lead to errors in absolute SO2 levels, but will not affect changes induced by flicker-stimulation of breathing of gas mixtures with different FiO2. The present study estimated local retinal arterial PO2 and Hb from systemic measurements and venous PO2 from previously published curves, but the error introduced by these assumptions is less than 1%. Finally the values for oxygen extraction as presented in this report cannot be considered absolute, because it is unknown whether the blood supplied by a specific artery is fully drained by the adjacent vein in the human retina. This does, however, not affect the conclusion on relative changes during hypoxia, hyperoxia or flicker stimulation.

In conclusion, the hyperaemic response seems to be required to fulfill the oxygen demand in the human retina. In addition, our results indicate that increasing systemic PO2 by breathing pure oxygen alters the hyperaemic response of retinal vessels to stimulation with flicker light. Although the exact reason for this altered flicker response is unclear, our data support the hypothesis that neuro-vascular coupling in the retina is modulated by oxygen.

References

1. Roy, C. S. & Sherrington, C. S. On the Regulation of the Blood-supply of the Brain. J. Physiol. 11, 85–158 117 (1890).
2. Attwell, D. et al. Glial and neuronal control of brain blood flow. Nature 468, 232–243 (2010).
3. Newman, E. A. Functional hyperemia and mechanisms of neurovascular coupling in the retinal vasculature. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 33, 1685–1695 (2013).
4. Riva, C. E., Logean, E. & Falsini, B. Visually evoked hemodynamical response and assessment of neurovascular coupling in the optic nerve and retina. Prog Retin Eye Res 24, 183–215 (2005).
5. Michelson, G., Patetz, A. & Harazny, J. Flickering light increases retinal blood flow. Retina 22, 336–343 (2002).
6. Garhofer, G. et al. Diffuse luminescence flicker increases blood flow in major retinal arteries and veins. Vision Res 44, 833–838 (2004).
7. Riva, C. E. et al. Flicker-evoked response measured at the optic disc rim is reduced in ocular hypertension and early glaucoma. Invest Ophthalmol Vis Sci 45, 3662–3668 (2004).
8. Garhofer, G. et al. Response of retinal vessel diameters to flicker stimulation in patients with early open angle glaucoma. Journal of glaucoma 13, 340–344 (2004).
9. Gugleta, K. et al. Dynamics of retinal vessel response to flicker light in glaucoma patients and ocular hypertensives. Griefes Arch Clin Exp Ophthalmol 250, 589–594 (2012).
10. Garhofer, G. et al. Reduced response of retinal vessel diameters to flicker stimulation in patients with diabetes. Br J Ophthalmol 88, 887–891 (2004).
11. Dawczynski, J. et al. [Endothelial dysfunction of central retinal vessels: a prognostic parameter for diabetic retinopathy?]. Klin Monbl Augenheilkd 224, 827–831 (2007).
12. Pemp, B. et al. Reduced retinal vessel response to flicker stimulation but not to exogenous nitric oxide in type 1 diabetes. Invest Ophthalmol Vis Sci 50, 4029–4032 (2009).
13. Pemp, B. et al. Correlation of flicker-induced and flow-mediated vasodilatation in patients with endothelial dysfunction and healthy volunteers. Diabetes Care 32, 1536–1541 (2009).
14. Lin, A. L., Fox, P. T., Hardies, J., Duong, T. Q. & Gao, J. H. Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex. Proc Natl Acad Sci USA 107, 8446–8451 (2010).
15. Leitner, C. et al. Pharmacological uncoupling of activation induced increases in CBF and CMRO2. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 30, 311–322 (2010).
16. Hammer, M. et al. Retinal Venous Oxygen Saturation Increases by Flicker Light Stimulation. Invest Ophthl Vis Sci 52, 274–277 (2011).
17. Mishra, A., Hamid, A. & Newman, E. A. Oxygen modulation of neurovascular coupling in the retina. Proc Natl Acad Sci USA 108, 17827–17831 (2011).
18. Palkovits, S. et al. Effect of increased oxygen tension on flicker-induced vasodilatation in the human retina. Journal of the International Society of Cerebral Blood Flow and Metabolism 34, 1914–1918 (2014).
19. Hammer, M., Väser, W., Riemer, T. & Schweitzer, D. Retinal vessel controversy-calibration, compensation for vessel diameter and fundus pigmentation, and reproducibility. J Biomed Opt 13, 054015 (2008).
20. Riva, C. E., Grunwald, J. E., Sinclair, S. H. & O’Keefe, K. Fundus camera based retinal LDV. 22, 887–891 (1991).
21. Palkovits, S. et al. Regulation of retinal oxygen metabolism in humans during graded hypoxia. Med Biol Eng Comput 26, 272–276 (2012).
22. Werkmester, R. M. et al. Response of retinal blood flow to systemic hypoxia as measured with dual-beam bidirectional Doppler Fourier-domain optical coherence tomography. PLoS One 7, e45876 (2012).
23. Wang, L. & Bill, A. Effects of constant and flickering light on retinal metabolism in rabbits. Acta ophthalmologica Scandinavica 25, 227–231 (1997).
24. Vo Van, T. & Riva, C. E. Variations of blood flow at optic nerve head induced by sinusoidal flicker stimulation in cats. J Physiol 482 (Pt 1), 189–202 (1995).
25. Polak, K., Schmetterer, L. & Riva, C. E. Influence of flicker frequency on flicker-induced changes of retinal vessel diameter. Invest Ophthalmol Vis Sci 43, 2721–2726 (2002).
26. Buxton, R. B. & Frank, L. R. A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 17, 64–72 (1997).
27. Dornier, G. T. et al. Hyperglycemia affects flicker-induced vasodilation in the retina of healthy subjects. Vision Res 43, 1495–1500 (2003).
28. Newman, E. A. Calcium increases in retinal glial cells evoked by light-induced neuronal activity. J Neurosci 25, 5502–5510 (2005).
29. Mehta, M. K. & Newman, E. A. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci 26, 2862–2870 (2006).
30. Kornfield, T. E. & Newman, E. A. Regulation of blood flow in the retinal trilaminar vascular network. J Neurosci 34, 11504–11513 (2014).
31. Alm, A. & Bill, A. The oxygen supply to the retina. I. Effects of changes in intraocular and arterial blood pressures, and in arterial PO2 and PCO2 on the oxygen tension in the vitreous body of the cat. Acta Physiol Scand 84, 261–274 (1972).
32. Enroth-Cugell, C., Goldstick, T. K. & Linsenmeier, R. A. The contrast sensitivity of cat retinal ganglion cells at reduced oxygen tensions. J Physiol 304, 59–81 (1980).
33. Wanek, J., Teng, P. Y., Blair, N. P. & Shahidi, M. Inner retinal oxygen delivery and metabolism under normoxia and hypoxia in rat. Invest Ophthol Vis Sci 54, 5012–5019 (2013).
34. Grunwald, J. E., Riva, C. E., Petrig, B. L., Sinclair, S. H. & Brucker, A. J. Effect of pure O2-breathing on retinal blood flow in normals and in patients with background diabetic retinopathy. *Curr Eye Res* 3, 239–241 (1984).
35. Kiss, B. *et al.* Retinal blood flow during hyperoxia in humans revisited: concerted results using different measurement techniques. *Microvasc Res* 64, 75–85 (2002).
36. Gilmour, E. D., Hudson, C., Venkataraman, S. T., Preiss, D. & Fisher, J. Comparison of different hyperoxic paradigms to induce vasoconstriction: implications for the investigation of retinal vascular reactivity. *Invest Ophthalmol Vis Sci* 45, 3207–3212 (2004).
37. Palkovits, S. *et al.* Retinal oxygen metabolism during normoxia and hyperoxia in healthy subjects. *Invest Ophthalmol Vis Sci* 55, 4707–4713 (2014).
38. Schmetterer, L. *et al.* The effect of inhalation of different mixtures of O2 and CO2 on ocular fundus pulsations. *Exp Eye Res* 63, 351–355 (1996).
39. Friedman, E. & Chandra, S. R. Choroidal blood flow. 3. Effects of oxygen and carbon dioxide. *Arch Ophthalmol* 87, 70–71 (1972).
40. Pournaras, C. J., Riva, C. E., Tsacopoulos, M. & Strommer, K. Diffusion of O2 in the retina of anesthetized miniature pigs in normoxia and hyperoxia. *Exp Eye Res* 49, 347–360 (1989).
41. Cringle, S. J., Yu, D. Y., Alder, V. & Su, E. N. Light and choroidal PO2 modulation of intraretinal oxygen levels in an avascular retina. *Invest Ophthalmol Vis Sci* 40, 2307–2313 (1999).
42. Chung, C. K. & Linsenmeier, R. A. Effect of carbogen (95% O2/5% CO2) on retinal oxygenation in dark-adapted anesthetized cats. *Curr Eye Res* 32, 699–707 (2007).

Acknowledgements

Financial support of the Austrian Science Fund (FWF projects P 26157, KLI 250) is gratefully acknowledged.

Author Contributions

L.S. and S.P. wrote the main manuscript and prepared the figures. S.P., L.S. and G.G. created the concept for the study and designed the experiments. S.P., R.T., M.L., D.S. and R.W. performed the study relevant measurements. S.P., M.L., R.T., D.S., R.W., A.P., G.G. and L.S. reviewed the manuscript and revised it critically.

Additional Information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Palkovits, S. *et al.* Relation of retinal blood flow and retinal oxygen extraction during stimulation with diffuse luminance flicker. *Sci. Rep.* 5, 18291; doi: 10.1038/srep18291 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/