Supplementary materials

Title: Improvement of cis,cis-muconic acid production in *Saccharomyces cerevisiae* through biosensor-aided genome engineering

Authors: Guokun Wang¹, Süleyman Özmerih¹, Rogério Guerreiro², Ana C. Meireles², Ana Carolas², Nicholas Milne¹, Michael K. Jensen¹, Bruno S. Ferreira², Irina Borodina¹.*

Affiliation and address of authors:

¹ The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

² Biotrend-Inovação e Engenharia em Biotecnologia SA, 3060-197 Cantanhede, Portugal

*Correspondence:

Dr. Irina Borodina,

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark,

Kemitorvet Building 220, 2800 Kongens Lyngby, Denmark.

irbo@biosustain.dtu.dk
Figure S1. Fluorescence of yeast cells selected via biosensor-aided FACS. Individual ST8424 mutant cells sorted for the maximum (Max, a) or minimum (Min, b) fluorescence output were subjected to the fluorescence measurement on the overnight pre-culture of single colonies (a, b). The fluorescence of 109 out of 270 individual isolates from Mut_max (a) was higher than the control ST8424, of which 55 Mut_max isolates showed 20% higher fluorescence (a). Whereas, 81 out of 90 isolates from Mut_min was lower (b), of which 69 Mut_min isolates showed 60% lower fluorescence (b). The pre-culture of all the 55 Mut_max isolates and 10 randomly selected strains from the 69 Mut_min isolates were inoculated into fresh YPD medium for 24 h cultivation for the fluorescence measurement (c). 50/55 Mut_max isolates (c) showed higher fluorescence than the control strain ST8424 and 10/10 Mut_min isolates (c) showed lower fluorescence than the control strain ST8424. 42 Mut_max strains out of the 50 isolates showing 25% higher fluorescence and 4 Mut_min strains out of the 10 isolates showing 70% lower fluorescence were selected for the subsequent cis,cis-muconic acid (CCM) production test. Data shown are mean values ± SDs of triplicates for control strains (ST8424, ST8425) or single replicates for individual mutant strains.
Figure S2. Concentrations of CCM and protocatechuic acid (PCA) in the fermentation broth of control strain ST8424 and its mutants after 72 hours in YPD medium.
Forty-two mutant strains with the highest fluorescence output from the 24 h culture were evaluated for CCM production with 72h culture on YPD medium. Data shown are mean values ± SDs of triplicates for control strains (ST8424, ST8425) or single replicate for individual mutant strains. Arrows indicate the mutant strains with improved CCM production which we have further validated by cultivation on two other types of media.
Figure S3. Concentrations of CCM and PCA in the fermentation broth of control strain ST8424 and its mutants after 72 hours in mineral medium (MM) and mimicked fed-batch/feed-in-time medium (FIT).

Eight mutant strains, which showed significantly improved CCM production in YPD medium, were evaluated on the CCM production in MM and FIT media. Data shown are mean values ± SDs of triplicates.
Figure S4. Characterization of duplication of engineered genes in Mut131
Duplication of the engineered genes was analyzed by comparing the read coverage of heterologous genes. The artificial reference sequence used in this analysis contains all heterologous genes in STB424 as well as native *S. cerevisiae* TKL1 which serves as an indicator for two-copy genes.
Figure S5. Effect of uracil supplementation on CCM production by *S. cerevisiae*
The two URA3-deficient *S. cerevisiae* strains, ST8424 and ST8920, were cultivated on mineral medium with uracil supplementation at various levels for 72 h. The 72 h cell culture was then subjected to the quantification of Optical density at 600 nm (OD$_{600}$), CCM production and specific CCM production.
Data shown are mean values ± SDs of triplicates.
Figure S6. Optical density of engineered strains cultivated on FIT medium for 72 hours. Data shown are mean values ± SDs of triplicates.
Figure S7. CCM toxicity to *S. cerevisiae* under different pH.

Cell growth of CEN.PK113-7D strain was monitored over 72 h on mineral medium supplemented with CCM at various levels, under the conditions that initial pH was unadjusted (a) or adjusted (to 6.0, b). In tests with ≥ 5 g/L CCM supplementation and initial pH unadjusted, CCM is largely in the insoluble form, whereas, it is all soluble in the rest tests. pH of mixed culture of biological triplicates (c) was measured after 72 h cultivation.

WO: without; W: with. Media without cells were used as the control for calibration.

Data shown in panel a and b are mean values ± SDs of triplicates.

MM with muconic acid supplement (g/L)	pH unadjusted initially	pH adjusted initially to 6.0	WO cells	W cells	WO cells	W cells
0.1	5.91	3.69	5.94	2.98		
0.5	5.82	3.06	5.77	2.68		
1	5.58	2.88	5.83	3.38		
5	5.31	3.43	5.98	4.95		
10	NA*	NA	5.88	5.01		
50	NA	NA	5.78	5.42		

*: NA: not applied as no cell growth in these cases.
Figure S8. Intracellular CCM concentrations from 72h cultivation of CEN.PK 113-7D fed with CCM, and strains engineered to produce CCM.

Yeast strains are cultured on mineral medium (initial pH 6.0) with (CEN.PK 113-7D) or without (ST8424 and ST8920) CCM supplementation. Data shown are mean values ± SDs of triplicates.
Figure S9. Controlled fed-batch fermentation for CCM production. Fermentation BD1 (a) and BD2 (b) of ST8943 strain was performed by feeding different feeding solution into 1.3 L starting fermentation broth. BD1 was fed with 289 mL of 800 g/L glucose (a) and BD2 was fed with 285 mL of 800 g/L glucose and 4 g/L KH$_2$PO$_4$ (b). Data shown are from single replicate.
Figure S10. Salt concentration and fermentation parameters during the controlled fed-batch fermentations BD1 and BD2.
Figure S11. Salt concentration and fermentation parameters during the controlled fed-batch fermentations BD3, BD4 and BD5.
Figure S12. Salt concentration and fermentation parameters during the controlled fed-batch fermentation BD6.
Table S1. Mutation in the intergenic region in Mut131

Mutations*	Intergenic location	Detail
SNP_chr01_176020	YAR019W-A-ARS10	G->A
SNP_chr02_728740	RIB5-POP4	C->T
SNP_chr02_728769	RIB5-POP4	A->T
SNP_chr04_1337854	GPI19-THI74	C->T
SNP_chr04_1521095	YDR514C-PAU10	C->T
SNP_chr04_790149	TAF10-CDC37	G->A
SNP_chr07_848453	ERG1-YGR176W	T->C
SNP_chr07_875775	YGRWdelta31	C->A
SNP_chr14_552680	COG6-YNL040W	C->T

*: genomic location is based on the S288C genome.
Table S2. The concentrations of PCA and CCM in the fermentation broth of engineered *S. cerevisiae* strains after 72-hour cultivation in FIT medium

Strains	PCA+CCM (mg/L)	PCA+CCM (mg/OD$_{600}$/L)
ST8424	501.84±8.67	105.71±1.88
ST8918	1027.53±34.07	184.19±6.10
ST8919	1020.46±6.59	193.90±3.25
ST8920	1047.66±11.08	257.92±3.24
ST8942	1759.07±5.01	270.66±5.77
ST8943	1934.86±51.62	303.10±14.29
Table S3. Strains used in this study

Strains	Genotype	Reference/source			
CEN.PK113-7D	MAT a URA3 HIS3 LEU2 TRP1	1			
CEN.PK102-5B	MATa ura3-52 his3Δ1 leu2-3/112 MAL2-8c SUC2 CEN.PK102-5B X-4-HIS5-ScTKL1-KpAroY.D-XI-1-KILEU2-PaAroZ-CaCatA	1			
ST2377		2			
ST8420	ST2377-XII-2-amdSYM-Cas9	This study			
ST8421	ST8420-X-2-KpAroY.B-KpAroY.Ciso	This study			
ST8422	ST8420-X-2-KpAroY.B-KpAroY.Ciso-XI-5-KpAroY.B-KpAroY.Ciso	This study			
ST8423	ST8420-X-2-KpAroY.B-KpAroY.Ciso-XI-5-KpAroY.B-KpAroY.Ciso	This study			
ST8424	ST8421-X-3-REV1p-BenM variant MP02_D04-XI-2-CYC1p-yEGFP	This study			
ST8425	ST8422-X-3-REV1p-BenM variant MP02_D04-XI-2-CYC1p-yEGFP	This study			
ST8426	ST8423-X-3-REV1p-BenM variant MP02_D04-XI-2-CYC1p-yEGFP	This study			
ST8918/Mut131	ST8424 UV_mutations	This study			
ST9124	ST8424 MNE1_Lys450Glu	This study			
ST9286	ST8424 MNE1_Lys450Glu CDC15_Pro429Phe	This study			
ST9288	ST8424 MNE1_Lys450Glu DIT1_Glu526Gly	This study			
ST9657/RC1	ST8424 XII-5_60bp-PaAroZ-CaCatA	This study			
ST9658/RC2	ST9286 XII-5_60bp-PaAroZ-CaCatA	This study			
ST9659/RC3	ST9288 XII-5_60bp-PaAroZ-CaCatA	This study			
ST8919	ST8918-XI-5-KpAroY.B-KpAroY.Ciso	This study			
ST8920	ST8918-XI-5-KpAroY.B-KpAroY.Ciso-XII-4-KpAroY.B-KpAroY.Ciso	This study			
ST8942	ST8920-XI-3-KIURA3	This study			
ST8943	ST8920-XI-3-ScARO4-ScARO1deltaAroE-KIURA3	This study			
Plasmid	Feature	Parental plasmid	DNA insert	Note	Construction approaches/reference
--------------	---	------------------	---	--	-----------------------------------
pCFB2314	XII-2-TEF1p-CAS9-amdSYM 2µ ori, AMPPr, gRNA X-2	NA	NA	Genome integration of Cas9	3
pCFB3020	NatMXsyn gRNA X-2	NA	NA	gRNA plasmid for X-2 integration	4
pCFB3046	NatMXsyn gRNA XI-5	NA	NA	gRNA plasmid for XI-5 integration	4
pCFB3053	NatMXsyn gRNA X-2 XI-5 XII-4	NA	NA	gRNA plasmid for simultaneous integration into X-2, XI-5 and XII-4 sites	4
pCFB3051	gRNA X-3, XI-2, XII-2 XII-4-CYC1p (BenM Binding Sits)-yEGFP-loxP-Hph	NA	NA	Template for integrative cassette (XI-2-CYC1p-yEGFP) construction	2
pCFB2696	XI-3-KlURA3-KpAroY.B-KpAroY.Ciso	NA	NA	Template for integrative cassettes (X-2-AroY.B-Ciso, XI-5-AroY.B-Ciso, XII-4-AroY.B-Ciso) construction	2
pCFB7731	MP2_D04 isolated from yeast (BenM variant MP02_D04)	NA	NA	Template for integrative cassette (X-3-REV1p-BenM variant MP02_D04) construction	5
pCFB390	ori, AMP, XI-3-LoxP-KlURA3	NA	NA	Template for backbone (ori-AMPPr-XI-3-KlURA3) for pCFB8808	6
pCFB2899	ori, AMP, X-2	NA	NA	Backbone for pCFB8084	4
pCFB8084	ori, AMP, X-2-TEF1p-ScARO4-PGK1-ScARO1deltaAroE	pCFB2899 ScARO4, ScARO1deltaAroE, TEF1p-PGK1p	Template for insert (TEF1p-ScARO4-PGK1-ScARO1deltaAroE) for pCFB8808	USER Cloning	
pCFB8808 ori, AMP, XI-3- TEF1p-ScARO4- PGK1- ScARO1deltaAroE-KIURA3

pCFB390 TEF1p- ScARO4- PGK1p- ScARO1deltaAroE- KIURA3

Genome integration of ScARO4- ScARO1deltaAroE- KIURA3

p0029(pSP- GM1) 2µ ori, URA3, Amp NA NA Control plasmid for effect evaluation of point mutation pME10 derived plasmid, used as template for backbone preparation for the plasmid via PCR, for the mutation introduction

pQC003/pCFB8904 2µ ori, KIURA3, Amp, GAL80 gRNA NA NA Requested from Chalmers University of Technology

pCFB8898 2µ ori, KIURA3, Amp, PWP2 gRNA-165 bp disrupt pCFB8904 PWP2-dis Point mutation introduction into PWP2

pCFB8886 2µ ori, KIURA3, Amp, ATG1 gRNA-165 bp disrupt pCFB8904 ATG1-dis Point mutation introduction into ATG1

pCFB8896 2µ ori, KIURA3, Amp, PET54 gRNA-165 bp disrupt pCFB8904 PET54-dis Point mutation introduction into PET54

pCFB8900 2µ ori, KIURA3, Amp, SAP1 gRNA-165 bp disrupt pCFB8904 SAP1-dis Point mutation introduction into SAP1

pCFB8897 2µ ori, KIURA3, Amp, PUT3 gRNA-165 bp disrupt pCFB8904 PUT3-dis Point mutation introduction into PUT3

pCFB8893 2µ ori, KIURA3, Amp, NUD1 gRNA-165 bp disrupt pCFB8904 NUD1-dis Point mutation introduction into NUD1

pCFB8891 2µ ori, KIURA3, Amp, KNS1 gRNA-165 bp disrupt pCFB8904 KNS1-dis Point mutation introduction into KNS1

pCFB8887 2µ ori, KIURA3, Amp, CDC15 gRNA-165 bp disrupt pCFB8904 CDC15-dis Point mutation introduction into CDC15

pCFB8892 2µ ori, KIURA3, Amp, MNE1 pCFB8904 MNE1-dis Point mutation introduction into MNE1

pCFB8898 2µ ori, KIURA3, Amp, PWP2 gRNA-165 bp disrupt Gibson assembly

pCFB8886 2µ ori, KIURA3, Amp, ATG1 gRNA-165 bp disrupt Gibson assembly

pCFB8896 2µ ori, KIURA3, Amp, PET54 gRNA-165 bp disrupt Gibson assembly

pCFB8900 2µ ori, KIURA3, Amp, SAP1 gRNA-165 bp disrupt Gibson assembly

pCFB8897 2µ ori, KIURA3, Amp, PUT3 gRNA-165 bp disrupt Gibson assembly

pCFB8893 2µ ori, KIURA3, Amp, NUD1 gRNA-165 bp disrupt Gibson assembly

pCFB8891 2µ ori, KIURA3, Amp, KNS1 gRNA-165 bp disrupt Gibson assembly

pCFB8887 2µ ori, KIURA3, Amp, CDC15 gRNA-165 bp disrupt Gibson assembly

pCFB8892 2µ ori, KIURA3, Amp, MNE1 Gibson assembly

Requested from Chalmers University of Technology
Vector	Constructs	gRNA-165 bp disrupt	Disrupted Gene	Point mutation introduction into	Assembly Method
pCFB8894	pCFB88904	2µ ori, KIURA3, Amp, NUP53	NUP53-dis	NUP53	Gibson assembly
pCFB8890	pCFB88904	2µ ori, KIURA3, Amp, EST2	EST2-dis	EST2	Gibson assembly
pCFB8899	pCFB88904	2µ ori, KIURA3, Amp, RET2	RET2-dis	RET2	Gibson assembly
pCFB8895	pCFB88904	Amp, OCA5	OCA5-dis	OCA5	Gibson assembly
pCFB8889	pCFB88904	2µ ori, KIURA3, Amp, DIT1	DIT1-dis	DIT1	Gibson assembly
pCFB8888	pCFB88904	2µ ori, KIURA3, Amp, CTS2	CTS2-dis	CTS2	Gibson assembly
pCFB1239	NA	XI-1-LoxP-KLEU2-PaAroZ-PTDH3-PTEF1->CaCatA	NA	Template for integrative cassette	(Skjoedt et al., 2016)
Table S5. Synthetic DNA fragment sequences

Name	Sequence
PWP2-dis	CTGTACAGCTAACTGAAGGtttttagctagaataatagcaagtttaaatagctagttcctgcttcactatggaa
	aagttgccgaaggactggctgttcctttttatatctgtCTAGTGACAGCATCCGAAGATGGGAAAATCA
	AAGTTTGGGAAGTGAAGATGTGTTGTTCTCACTCATCGTTAGATGTGAGGTGAGCTGCTGAGCCTGCTGAGCCTG
	ATGGGAAAATCA
ATG1-dis	ATCAATGGCAGATAATCCCGgttttagagctagaataatagcctagttcctgcttcactatggaa
	aagttgccgaaggactggctgttcctttttatatctgtCTAGTGACAGCATCCGAAGATGGGAAAATCA
	AAGTTTGGGAAGTGAAGATGTGTTGTTCTCACTCATCGTTAGATGTGAGGTGAGCTGCTGAGCCTGCTGAGCCTG
	ATGGGAAAATCA
PET54-dis	CAGTCATCTCAGTCAACTGGCCACgttttagagctagaataatagcctagttcctgcttcactatggaa
	aagttgccgaaggactggctgttcctttttatatctgtCTAGTGACAGCATCCGAAGATGGGAAAATCA
	AAGTTTGGGAAGTGAAGATGTGTTGTTCTCACTCATCGTTAGATGTGAGGTGAGCTGCTGAGCCTGCTGAGCCTG
	ATGGGAAAATCA
SAP1-dis	CAGTACAGCTAACTGAAGGtttttagctagaataatagcaagtttaaatagctagttcctgcttcactatggaa
	aagttgccgaaggactggctgttcctttttatatctgtCTAGTGACAGCATCCGAAGATGGGAAAATCA
	AAGTTTGGGAAGTGAAGATGTGTTGTTCTCACTCATCGTTAGATGTGAGGTGAGCTGCTGAGCCTGCTGAGCCTG
	ATGGGAAAATCA
PUT3-dis	CAATGTTCCGATTTTACTTTACTTTcttttagagctagaataatagcctagttcctgcttcactatggaa
	aagttgccgaaggactggctgttcctttttatatctgtCTAGTGACAGCATCCGAAGATGGGAAAATCA
	AAGTTTGGGAAGTGAAGATGTGTTGTTCTCACTCATCGTTAGATGTGAGGTGAGCTGCTGAGCCTGCTGAGCCTG
	ATGGGAAAATCA
NUD1-dis	CAGGACGACGCAATGCAACTGGCCACgttttagagctagaataatagcctagttcctgcttcactatggaa
	aagttgccgaaggactggctgttcctttttatatctgtCTAGTGACAGCATCCGAAGATGGGAAAATCA
	AAGTTTGGGAAGTGAAGATGTGTTGTTCTCACTCATCGTTAGATGTGAGGTGAGCTGCTGAGCCTGCTGAGCCTG
	ATGGGAAAATCA
KNS1-dis	GCGGCATGGATTTACTTTACTTTACTTTcttttagagctagaataatagcctagttcctgcttcactatggaa
	aagttgccgaaggactggctgttcctttttatatctgtCTAGTGACAGCATCCGAAGATGGGAAAATCA
	AAGTTTGGGAAGTGAAGATGTGTTGTTCTCACTCATCGTTAGATGTGAGGTGAGCTGCTGAGCCTGCTGAGCCTG
	ATGGGAAAATCA
CDC15-dis	CAGACCAAAATATGCTGATTTACTTTACTTTACTTTcttttagagctagaataatagcctagttcctgcttcactatggaa
	aagttgccgaaggactggctgttcctttttatatctgtCTAGTGACAGCATCCGAAGATGGGAAAATCA
	AAGTTTGGGAAGTGAAGATGTGTTGTTCTCACTCATCGTTAGATGTGAGGTGAGCTGCTGAGCCTGCTGAGCCTG
	ATGGGAAAATCA
MNE1-dis	ATATGTTGCTGCTACGATTTTTTTTTTTTTacttttagagctagaataatagcctagttcctgcttcactatggaa
	aagttgccgaaggactggctgttcctttttatatctgtCTAGTGACAGCATCCGAAGATGGGAAAATCA
	AAGTTTGGGAAGTGAAGATGTGTTGTTCTCACTCATCGTTAGATGTGAGGTGAGCTGCTGAGCCTGCTGAGCCTG
	ATGGGAAAATCA

Page 20
attccacGGGCAGCTCTCAAGATTTTCTACCAAACCTACTCTACTGCGATTTGATAACCCAGGTGAA
TGAATTCGGCCTATC

NUP3-dis

GATCCGCCTCTACTGTGCTGTTTtagagctagaatagaagtttaaataaagctagtccgttatcaactttga
agttggcaccagctgcgtgtctttttttttttttttgtcAGCAAGGACGCAAAAGAGCCAAACGGGACTG
TTAAAGGTTTAAACCGGTTTCCAGCTGACCAAAACCGCCTTCTTATTGGAaatcaccacaagttaca
/gttaaacGAACCTGAATGATAATCCAGCGTGGTTCAATAATCCAAGGAAAAGAGCCATCTCAAAT
CACAATAAAGGAGATTA

EST2-dis

TTTGATTTGCGCAGCAGTTGgttttagagctagaaatagcaagttaaaataaggctagtccgttatcaactttga
agttggcaccagctgcgtgtctttttttttttttttgtcATTTGAGTAGCTATTATAGCTCCATCAAAAGAAATA
CACAAGTTGTTGTTTGCTGCTTCTTATCTACGCGTCAGGGGAAAAtctttgcttagtcgacagggtaa
GGAGGACATTTCGTTATCAAGAAAATCTCTTAATAAAGTAAGAGCGCTACATTGGTCTACCTTT
TTTGTTCTTTTACTTAAA

RET2-dis

CGAAGTCGGTAATGATGCTAgttttagagctagaatagaagtttaaataaagctagtccgttatcaactttga
agttggcaccagctgcgtgtctttttttttttttttgtcACGAACTTACCTGCGACCAAAATGGGCTCAA
GCTGACCATCCTCATCAagcgctacagcagcacagata

OCA5-dis

ACTCGTTTCGATATTGGAGAgttttagagctagaatagaagtttaaataaagctagtccgttatcaactttga
agttggcaccagctgcgtgtctttttttttttttttgtcACGAACTTACCTGCGACCAAAATGGGCTCAA
GCTGACCATCCTCATCAagcgctacagcagcacagata

DIT1-dis

TTGAATAAAATGGGCATGGGgttttagagctagaatagaagtttaaataaagctagtccgttatcaactttga
agttggcaccagctgcgtgtctttttttttttttttgtcACGAACTTACCTGCGACCAAAATGGGCTCAA
GCTGACCATCCTCATCAagcgctacagcagcacagata

Note: The fragments synthesized by Twist Bioscience contain two adaptor at 5' (GAAGTGCCATTCCGCCTGACCT) and 3' (CCTGACATTCCACCTAGGCCT) ends respectively, which were used for the plasmid cloning through Gibson assembly
Primers	Sequence	Note	Purpose
22744	cgtctatgaggagacctgttagttgg	Flanking region for homologous recombination	Construction of X-2-AroY.B-Ciso via overlapping PCR
22745	caagttgcctgcaagtttctctg		
22746	cagagaaactgcagggcaacttggttagttgcatctctag	Fragment of AroY.B-Ciso expression cassette	
22747	cccctctgagggcaggtcattccatcaagctacagtata		
22748	cctgcataatcggcctcacag	Fragment of AroY.B-Ciso expression cassette	
22749	cccgtgtgaggccgattatgcaggttctcaagcaaggtttacctgata		
22750	ggcggagaagttggtagatagcattcc	Flanking region for homologous recombination	
22751	tgtgtcagggagtttagctgcacca		
22752	tgtgcataaatcggcctcacag	Fragment of AroY.B-Ciso expression cassette	
22753	gggagtactatgaagccagccaatattctcaagcaaggtttacctgata		
22754	tatgggtctctcatagtcacc	Flanking region for homologous recombination	
22755	gatcatagatccggcacttagagaga		
22756	gatccggctgtttccattagcc	Flanking region for homologous recombination	
22757	tgcctagatagtgtgtgtagggaaatttccatcacatacatatggcagcagctacctgcatctctactgaggttctcaagcaaggtttacctgata	Fragment of AroY.B-Ciso expression cassette	
22758	ttctttatttgactctaatggggaatttctcaagcaaggtttacctgata		
22759	ATTCGCCATTTAGAGTCAAATAAAG	Flanking region for homologous recombination	
22760	TTTCCTGCTGTACCTGGATGGTGC		
22761	cgcagatccttgggttccgattacc	Flanking region for homologous recombination	
22762	agtctctgtatgcgctccgtcgc		
22763	ggcagagcgcagcagactttttagtgcagcaacattttcatattcttcat	Fragment of REV1p-BenM variant MP02_D04 expression cassette	
22764	caatatcgtttcattgaaagttggttcctttcaagcaaggtttccagtataaa		
22765	cccttttcatgaagccagctatttg	Flanking region for homologous recombination	
22766	gaggtggttagattgatcaccggaa		
22767	ggggagctttcgtgaggagcagagtag	Flanking region for homologous	
22768	tggagactttcgtgaggtggttgtgcttcggattacc		
22769	ATTCGCCATTTAGAGTCAAATAAAG		
22770	TTTCCTGCTGTACCTGGATGGTGC		
22771	cgcagatccttgggttccgattacc	Flanking region for homologous recombination	
22772	agtctctgtatgcgctccgtcgc		
22773	ggcagagcgcagcagactttttagtgcagcaacattttcatattcttcat	Fragment of REV1p-BenM variant MP02_D04 expression cassette	
22774	caatatcgtttcattgaaagttggttcctttcaagcaaggtttccagtataaa		
22775	cccttttcatgaagccagctatttg	Flanking region for homologous recombination	
22776	gaggtggttagattgatcaccggaa		
22777	ggggagctttcgtgaggagcagagtag	Flanking region for homologous	
22778	tggagactttcgtgaggtggttgtgcttcggattacc		

Table S6. Primers used in this study
Sequence	Description
gagcgtttgccatgaacctccaacaggcaacttttag tctgacaca aatatctgaaacgctagtctgctgtttgcagctcaca aacctttccaa cacagactagcgtttcagatatt	Fragment of CYC1p-yEGFP expression cassette
gtgggaagattccgctctc	Flanking region for homologous recombination

Sequence	Description
AGTGCAGGUAAAAAACATGGAATCTCC AATGTTCG CGTGCGAUTCATTCTTTGTAACCTTCTTCTTTG	ScARO4 amplified from pCFB775
ATCTGTCAUUAAAAACATGGAATCTTCTTTGAAAG	ScARO1deltaAroE amplified from genome
CACGCGAUTCATTCTTTGTAACCTTCTTCTTCTTTG	pCFB8804 construction
acgtgcacutttataaaacttag atgacagautttatatattgttg	TEF1p-PGK1p amplified from p0029

Sequence	Description
ATCGCGTGCAUTCATTGCTACTGTCAATTGG	Aro4-TEF1p-PGK1p-Aro1deltaAroE

Sequence	Description
ATCGCGTGCAUTCATTGCTACTGTCAATTGG	Backbone with elements of Amp-XI-3-KlURA3
acgtgcacutttataaaacttag atgacagautttatatattgttg	Aro4-TEF1p-PGK1p-Aro1deltaAroE

Sequence	Description
AGGTCAAGGGGAATGGCAGCTTCgatcattttactttcactgcggagaag	Plasmid construction for mutation introduction
AGGTCAAGGGGAATGGCAGCTTCgatcattttactttcactgcggagaag	Backbone of plasmid for mutation introduction

Sequence	Description
GACTACGTTATGGGTCGTTCTTCA	PCR product from transformants for PWP2 mutation
GACTACGTTATGGGTCGTTCTTCA	Transformant validation for mutation introduction via sequencing of the
CCATGATGACAGAAGCTAAGACAC	Sequencing primer of PWP2 PCR fragment
TTCCAGCAAACTTGGGCAATAG	PCR product from transformants for ATG1 mutation

Sequence	Description
TACCCTCCACGGAGTGAAGACC	PCR product from transformants for ATG1 mutation

Sequence	Description
7171	pCFB8808 construction

Sequence	Description
23260	Plasmid construction for mutation introduction
23261	Backbone of plasmid for mutation introduction

Sequence	Description	
24309 GACTACGTTATGGGTCGTTCTTCA	Transformant validation for mutation introduction via sequencing of the	
24310 CCATGATGACAGAAGCTAAG	Sequencing primer of PWP2 PCR fragment	
24311 TTCCAGCAAACTTGGGCAATAG	PCR product from transformants for ATG1 mutation	
Line	Sequence	Description
------	----------	-------------
24314	TGTGGCACCCCAACGTTTAG	Sequencing primer of ATG1 PCR fragment
24315	CCTGTTTCTATGGAGACACACCC	PCR product from transformants for PET54 mutation
24316	CGTGCAGCCTAATTAGTGG	Sequencing primer of PET54 PCR fragment
24317	ATACTAACACGCACTCAATAG	PCR product from transformants for PET54 mutation
24318	CCAAGAAGTACTACATACGCGTCG	Sequencing primer of PET54 PCR fragment
24319	CTACGTCGACTTCGGAGAAATTATCA	PCR product from transformants for SAP1 mutation
24320	CTTTACCTCGTTGTTTACC	Sequencing primer of SAP1 PCR fragment
24321	GTAGTGGCAGGAAGAGGTATACATACA	PCR product from transformants for PUT3 mutation
24322	GACGAAAGTATGTCTGTTGAACC	Sequencing primer of PUT3 PCR fragment
24323	ATGAAATCGAGCATCATAGGAGAC	PCR product from transformants for PUT3 mutation
24324	ATGGCAGACCTACAAAAACAGGAG	Sequencing primer of PUT3 PCR fragment
24325	GTCAACTTGACCATCCATCTCC	PCR product from transformants for NUP53 mutation
24326	CGAATCACAGGGACAACATGAA	Sequencing primer of NUP53 PCR fragment
24327	AGGTATACCTCGAACGTTGTACA	PCR product from transformants for NUD1 mutation
24328	TTACAGATTGCCAGTGGG	Sequencing primer of NUD1 PCR fragment
24329	GAGACTTCACACACTTACCAGTG	PCR product from transformants for NUD1 mutation
24330	GGAACAGTGCTAGACCTGAATCAAGC	Sequencing primer of NUD1 PCR fragment
24331	GCAATGGCCTGAATATGAGAGCC	PCR product from transformants for KNS1 mutation
24332	GCAGCCAATTCAATTTTCGTC	Sequencing primer of KNS1 PCR fragment
24333	TCAGCGACATTGCTCTAGGTTG	PCR product from transformants for CDC15 mutation
24334	AAGAAGGAATAGCGGACTTGTGT	Sequencing primer of CDC15 PCR fragment
24335	ATCAAGAAGTATTTATGCC	PCR product from transformants for CDC15 mutation
24336	GGAGCTTGCTGAATGGAACCTTTCA	PCR product from transformants for MNE1 mutation
24337	CTCTCTTGCATAGGATACATCCGC	Sequencing primer of MNE1 PCR fragment
24338	AAGTGATTTGCCTCTGAACCTAGAA	
24339	CGAGTTCCATTCAAGACAACGGCTTCGAC	PCR product from transformants for EST2 mutation
24340	CAGAAATGAACACACCCAGAAAATC	Sequencing primer of EST2 PCR fragment
24341	ATTCTGCAAATGTTACGTTACGT	
24342	CAGGGCAAGTAAAGTGGATTGCGG	PCR product from transformants for RET2 mutation
24343	CTAGCAATTTTCTTAGCACGCGC	Sequencing primer of RET2 PCR fragment
24344	CATTTTGGATCTTGACGTTTCC	
24345	GACTAGCTTTGCTATTCTCACATTG	PCR product from transformants for OCA5 mutation
24346	TCAAGAGAGCTTTCTCTAATCTT	Sequencing primer of OCA5 PCR fragment
24347	TGATAAGTCAGAATTTGAAACTACG	
24348	AGAATTGAATGCATTTGCCAGC	PCR product from transformants for DIT1 mutation
24349	CTTAGACAATGGCCATTGCA	Sequencing primer of DIT1 PCR fragment
24350	GCGTATTCGAACCTTAGTGAAT	
24351	GCAATCTATTCAGTGAGACGGAATT	PCR product from transformants for CST2 mutation
24352	GTGGATCATATGGGGCAACGTAT	Sequencing primer of CST2 PCR fragment
24353	GGTACAATAGAACACATAACGATCCAA	

Construction of XII-5_60bp-PaAroZ-CaCatA via PCR

| 23820 | CCGGTACCGGAGGACCGGCTATAACCCGGTTGAATTTATTGTCAACAGTGCAATCCACGCGAGGACCTCATGCTATACCTGAGACTAAAACAATAAGGCTAGTTCGAATGATGAACTTGCTTGCTGTCAAACTTCTGAGTTGCCAATCTGATTTGCTCAAATCTCTGAGTTGCC | Fragment of PaAroZ-CaCatA expression cassette with two 60 bp homology arms for genome integration into XII-5 site |
Primer sets for genomic validation for gene integration can be found in (4)
Supplementary materials and methods

Medium

In the test of the uracil effect on CCM production, mineral media (pH 6.0) supplemented with 20, 50 or 100 mg/L uracil were used for the strain cultivation.

pH measurement

The pH of the 72 h culture cultivated using growth profiler was measured using the pH meter (Metrohm 827 pH lab). The replicate samples for each CCM treatment group were mixed together and the supernatant was used for the measurement.

Quantification of the intracellular CCM and PCA

Intracellular CCM and PCA was extracted from 500 μL of 72 h culture. The cell culture was first washed with 1 mL water and resuspended in 400 μL water for heating at 95 °C for 1 h and vortexing for 30 min. The supernatant was then obtained by centrifugation at 13,000 rpm for 3 min. The supernatant was analyzed using HPLC and CCM and PCA were quantified as described in ‘Metabolite quantification’ section in the main text.
References

1. Entian, K. D., and Kotter, P. (2007) Yeast genetic strain and plasmid collections, *Method Microbiol* 36, 629-666.

2. Skjoedt, M. L., Snoek, T., Kildegaard, K. R., Arsovska, D., Eichenberger, M., Goedecke, T. J., Rajkumar, A. S., Zhang, J., Kristensen, M., Lehka, B. J., Siedler, S., Borodina, I., Jensen, M. K., and Keasling, J. D. (2016) Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast, *Nat Chem Biol* 12, 951-958.

3. Stovicek, V., Borodina, I., and Forster, J. (2015) CRISPR–Cas system enables fast and simple genome editing of industrial *Saccharomyces cerevisiae* strains, *Metab Eng Commun* 2, 13-22.

4. Jessop-Fabre, M. M., Jakociunas, T., Stovicek, V., Dai, Z., Jensen, M. K., Keasling, J. D., and Borodina, I. (2016) EasyClone-MarkerFree: A vector toolkit for marker-less integration of genes into *Saccharomyces cerevisiae* via CRISPR-Cas9, *Biotechnol J* 11, 1110-1117.

5. Snoek, T., Chaberski, E. K., Ambri, F., Kol, S., Bjorn, S. P., Pang, B., Barajas, J. F., Welner, D. H., Jensen, M. K., and Keasling, J. D. (2020) Evolution-guided engineering of small-molecule biosensors, *Nucleic Acids Res* 48, e3.

6. Jensen, N. B., Strucko, T., Kildegaard, K. R., David, F., Maury, J., Mortensen, U. H., Forster, J., Nielsen, J., and Borodina, I. (2014) EasyClone: method for iterative chromosomal integration of multiple genes in *Saccharomyces cerevisiae*, *FEMS Yeast Res* 14, 238-248.

7. Partow, S., Siewers, V., Daviet, L., Schalk, M., and Nielsen, J. (2012) Reconstruction and Evaluation of the Synthetic Bacterial MEP Pathway in *Saccharomyces cerevisiae*, *PloS One* 7.