PROFINITE MV-ALGEBRAS

JEAN B NGANOU

Abstract. We characterize all profinite MV-algebras, these are MV-algebras that are limits of finite MV-algebras. It is shown that these are exactly direct product of finite /suppress Lukasiewicz's chains. We also prove that the category \(M \) of multisets is dually equivalent to the category \(P \) of profinite MV-algebras and homomorphisms that reflect principal maximal ideals. Thus generalizing the corresponding result for finite MV-algebras, and finite multisets.

Key words: MV-algebra, profinite, multiset, dually equivalent, maximal ideal, finitely approximable.

1. Introduction

MV-algebras were introduced by Chang in order to provide an algebraic proof of the completeness theorem of Lukasiewicz many-valued logic [3]. An MV-algebra is an Abelian monoid \((A, \oplus, 0)\) with an involution \(\neg : A \to A\) (i. e.; \(\neg\neg x = x\) for all \(x \in A\)) satisfying the following axioms for all \(x, y \in A\):

\[-0 \oplus x = -0; \neg(-x \oplus y) \oplus y = \neg(-y \oplus x) \oplus x.\]

For any \(x, y \in A\), we write \(x \leq y\) if \(\neg x \oplus y = -0 := 1\). Then, \(\leq\) induces a partial order on \(A\), which is in fact a lattice order where \(x \vee y = \neg(\neg x \oplus y) \oplus y\) and \(x \wedge y = \neg(\neg x \vee \neg y)\). An ideal of an MV-algebra is a nonempty subset \(I\) of \(A\) such that (i) for all \(x, y \in I\), \(x \oplus y \in I\) and (ii) for all \(x \in A\) and \(y \in I\) with \(x \leq y\), then \(x \in I\). A prime ideal of \(A\) is proper ideal \(P\) such that \(x \wedge y \in P\), then \(x \in P\) or \(y \in P\). Maximal ideal has the usual meaning.

The prototype of MV-algebra is the unit real interval \([0, 1]\) equipped with the operation of truncated addition \(x \oplus y = \max\{x + y, 1\}\), negation \(\neg x = 1 - x\), and the identity element 0. For each integer \(n \geq 2\), \(L_n = \left\{0, \frac{1}{n-1}, \ldots, \frac{n-2}{n-1}, 1\right\}\) is a sub-MV-algebra of \([01]\) (the Lukasiewicz’s chain with \(n\) elements), and up to isomorphism every finite MV-chain is of this form.

The concept of profiniteness has been investigated on several classes of algebras of logic. It is well known (see, e.g., [10] Sec.VI.2 and VI.3) that a Boolean algebra is profinite if and only if it is complete and atomic, that a distributive lattice is profinite if and only if it is complete and completely join-prime generated [11] Thm.
and that a Heyting algebra is profinite if and only if it is finitely approximable, complete and completely join-prime generated \[\text{Thm. 3.6}. \] Some other notable works on profinite algebras include: profinite topological orthomodular lattices \[4\], profinite completions of Heyting algebras \[2\], and profinite MV-spaces \[8, 9\].

There is no known simple description of the dual space of MV-algebras comparable to Esakia space for Heyting algebras, or Priestley spaces for distributive lattices. For this reason, we carry a completely algebraic analysis of profinite MV-algebras. We obtain that an MV-algebra is profinite if and only if it is isomorphic to a direct product of finite MV-chains. It follows that an MV-chain is profinite if and only if it is finite.

It is well known that the category \(\mathbf{FMV} \) of finite MV-algebras is dually equivalent to the category of finite multisets. Among the categories that contain \(\mathbf{FMV} \) as a full subcategory, one has the category \(\mathbf{LFMV} \) of locally finite MV-algebras, and the category \(\mathbb{P} \) of profinite MV-algebras. The duality was extended to locally finite MV-algebras in \[6\], yielding an equivalence between generalized multisets and \(\mathbf{LMV}^{\text{op}} \). Very recently, the later duality was extended further to locally weakly finite MV-algebras \[7\]. In the last section of the paper, we extend the duality to profinite MV-algebras, and obtain that the category \(\mathbb{M} \) of multisets is dually equivalent to the category \(\mathbb{P} \) of profinite MV-algebras and homomorphisms that reflect principal maximal ideals.

2. Profinite MV-algebras

Recall that an inverse system in a category \(\mathcal{C} \) is a family \(\{ A_i, \varphi_{ij} \}_{i \in I} \) of objects, indexed by a directed poset \(I \) (for every \(i, j \in I \), there exists \(k \in I \) such that \(i \leq k \) and \(j \leq k \)), together with a family of morphisms \(\varphi_{ij} : A_j \to A_i \), for each \(i \leq j \), satisfying the following conditions.

(i) \(\varphi_{kj} = \varphi_{ki} \circ \varphi_{ij} \) for all \(k \leq i \leq j \);

(ii) \(\varphi_{ii} = 1_{A_i} \) for all \(i \in I \).

Given an inverse system \(\{ A_i, \varphi_{ij} \}_{i \in I} \), an inverse limit of this system is an object \(A \) together with a family of morphisms \(\varphi_i : A \to A_i \) satisfying the condition \(\varphi_i \circ \varphi_{ij} = \varphi_i \) when \(i \leq j \) and having the following universal property: for every object \(B \) of \(\mathcal{C} \) together with a family \(\psi_i : B \to A_i \) if \(\varphi_{ij} \circ \psi_j = \psi_i \) for \(i \leq j \), then there exists a unique morphism \(\psi : B \to A \) such that \(\varphi_i \circ \psi = \psi_i \) for all \(i \in I \).

The inverse limit of an inverse system \(\{ A_i, \varphi_{ij} \}_{i \in I} \), when it exists, is unique up to isomorphism and often denoted by \(\varinjlim \{ A_i, \varphi_{ij} \}_{i \in I} \), or simply by \(\varinjlim \{ A_i \}_{i \in I} \) if the transition maps \(\varphi_{ij} \) are understood.

Using the terminology of \[10\], we call an algebra profinite if is isomorphic to the inverse limit of finite algebras of the same type. Let \(\{ \{ A_i, \varphi_{ij} \} \}_{i \in I} \) be an inverse system of MV-algebras. As in many varieties of
algebras, it is easy to see that
\[
\lim_{\leftarrow} \{ A_i \}_{i \in I} \cong \left\{ (a_i) \in \prod_I A_i : \varphi_{ij}(a_j) = a_i \text{ whenever } i \leq j \right\}
\]

Let A be an algebra and I is the set of all congruences θ of A such that A/θ is finite. If the class of an element $a \in A$ modulo θ is denoted by $[a]_\theta$, then for $\phi \subseteq \theta$, there is a canonical projection $\varphi_{\phi\theta} : A/\phi \rightarrow A/\theta$ given by $\varphi_{\phi\theta}([a]_\phi) = [a]_\theta$. It follows easily that $(\{A/\theta, \varphi_{\phi\theta}\})_I$ is an inverse system. Let \hat{A} be the inverse limit of this system. Then, it is well-known that \hat{A} is called the profinite completion of the algebra A. Note that there is a canonical homomorphism $e : A \rightarrow \hat{A}$ given by $e(a) = ([a]_\theta)_{\theta \in I}$.

To start our algebraic analysis of profinite MV-algebras, we find necessary conditions to profiniteness. One clear such condition is finite approximability. Recall that an algebra is called finitely approximable if it is (isomorphic) to a sub-algebra of a direct product of finite algebras of the same type. It is known (see, e.g., [1, Prop. 3.2]) that an algebra is finitely approximable if and only if the morphism $e : A \rightarrow \hat{A}$ above is injective. For MV-algebras, given that every finite MV-algebras is the direct product of finite MV-chains, finite approximability means isomorphic to a sub-MV-algebra of a direct product of finite MV-chains.

Proposition 2.1. Let A be a profinite MV-algebra. Then,

1. A is complete and finitely approximable.
2. A is simple if and only if A a finite MV-chain.

Proof. Suppose $A = \lim_{\leftarrow} A_i \cong \{ (a_i) \in \prod_I A_i : \varphi_{ij}(a_j) = a_i \text{ whenever } i \leq j \}$, where each A_i is a finite MV-algebra.

(1) Let S be a nonempty subset of A, then S is a subset of $\prod_I A_i$, which is complete as each of the A_i is. For each $i \in I$, let S_i denotes the projection of S onto A_i. Then each S_i is finite and in $\prod_I A_i$, $\forall S = (\forall S_i)_{i \in I}$. Since the transition morphisms preserve finite suprema, then it is readily verified that $\forall S \in A$. On the other hand, it is clear from the definitions that any profinite MV-algebra is finitely approximable.

(2) If A is simple, every homomorphism with domain A is injective. For each i, there is a projection $p_i : A \rightarrow A_i$ that must be one-to-one, and forcing A to be finite since A_i is. But, finite simple MV-algebras are MV-chains. It is also known that finite MV-chains are simple. \[\square\]

The following result can be derived from the theory of vector lattices, but for the convenience of the reader, we give a direct self-contained proof here.
Lemma 2.2. Let A be a direct product of copies of $[0, 1]$, that is $A = [0, 1]^X$ for some nonempty set X, and M be a maximal ideal of A. Then,

$$A/M \cong [0, 1]$$

Proof. For any MV-algebra A, let $\mathcal{H}(A)$ denotes the set of MV-algebra homomorphisms from A into $[0, 1]$ and $Max(A)$ denotes the set of maximal ideals of A. It is well known [6] that $\chi \mapsto \ker \chi$ defines a one-to-one correspondence between $\mathcal{H}(A)$ and $Max(A)$, where $\ker \chi = \{a \in A : \chi(a) = 0\}$. As a consequence, if A is simple, there is a unique (injective) homomorphism from $A \to [0, 1]$; in particular $\mathcal{H}([0, 1]) = \{Id\}$. Now, suppose $A = [0, 1]^X$ and $M \in Max(A)$, then $M = \ker \chi$ for some $\chi \in \mathcal{H}(A)$. We need to justify that $A/\ker \chi$ is isomorphic to $[0, 1]$. Consider the map $\tau : [0, 1] \to A$ defined by $\tau(t)(x) = t$ for all $t \in [0, 1]$ and $x \in X$, then τ is clearly a homomorphism. Thus, $\chi \circ \tau$ is a homomorphism $[0, 1] \to [0, 1]$ and it follows from $\mathcal{H}([0, 1]) = \{Id\}$ that $\chi \circ \tau = Id$. Now, consider the map $\theta : [0, 1] \to A/\ker \chi$ defined by $\theta(t) = \tau(t)/\ker \chi$, in other words θ is the composition of τ followed by the natural projection $A \to A/\ker \chi$. Then θ is a homomorphism, and we claim that θ is an isomorphism. Since $[0, 1]$ is simple, then θ is injective. For the surjectivity, let $f \in A$ and $t = \chi(f)$. Then, since $\chi \circ \tau = Id$, $(\chi \circ \tau)(t) = t$. So, $-((\chi \circ \tau)(t)) \otimes \chi(f) = 0$ and $-(\chi(f)) \otimes (\chi \circ \tau)(t) = 0$. Therefore, $-f \otimes \tau(t), -(\tau(t)) \otimes f \in \ker \chi$ and $f/\ker \chi = \tau(t)/\ker \chi = \theta(t)$. Hence, θ is an isomorphism as claimed. □

Proposition 2.3. For every non-empty set X, the MV-algebra $[0, 1]^X$ is not finitely approximable.

Proof. Let $A = [0, 1]^X$ and suppose by contradiction that A is finitely approximable, then there is a homomorphism from A into a finite MV-algebra (any of the projections). Since every finite MV-algebra is a product of finite MV-chains [5, Prop. 3.6.5], then there exists an integer $n \geq 2$ and a homomorphism $p : A \to L_n$. Thus, $A/\ker p$ is isomorphic to a subalgebra of L_n and therefore by [5, Thm. 3.5.1], $A/\ker p$ is simple, from which it follows that $\ker p$ is a maximal ideal of A. But, $A/\ker p$ is infinite by Lemma 2.2, which contradicts the fact that $A/\ker p$ is isomorphic to a subalgebra of L_n. □

Proposition 2.4. The MV-algebra $[0, 1] \times 2$ (where 2 is the 2-element Boolean algebra) is not finitely approximable.

Proof. By contradiction suppose that $[0, 1] \times 2$ is finitely approximable. Then there exists finite MV-chains $L_{n_i}; i \in I$ and a one-to-one homomorphism $\tau : [0, 1] \times 2 \to \prod_{i \in I} L_{n_i}$. For each $i \in I$, let p_i denotes the natural projection $\prod_{i \in I} L_{n_i} \to L_{n_i}$, and consider $\phi_i = p_i \circ \tau$. Then each ϕ_i is a homomorphism from $[0, 1] \times 2 \to [0, 1]$ and it follows that $\ker \phi_i$ is a maximal ideal of $[0, 1] \times 2$. But, $[0, 1] \times 2$ has exactly two maximal ideals: $[0, 1] \times \{0\}$ and $\{0\} \times 2$. Note that it is not possible to have $\ker \phi_i = \{0\} \times 2$, for this would imply by the homomorphism theorem that $Im \phi_i \cong$
And this would contradict the fact that $Im\phi_i$ is finite as it is a sub-MV-algebra of L_{n_i}. Therefore, $ker\phi_i = [0,1] \times \{0\}$ for all $i \in I$. Thus, for every $t \in [0,1]$, and every $i \in I$, $\phi_i(t,0) = 0$, that is $p_i(\tau(t,0)) = 0$. Hence, $\tau(t,0) = 0$ and $t = 0$, which is contradiction. Hence, $[0,1] \times 2$ is not finitely approximable as claimed.

Corollary 2.5. If A is the direct product of MV-chains, among which $[0,1]$, then A is not finitely approximable.

Proof. Every such MV-algebra contains a sub-MV-algebra isomorphic to $[0,1] \times 2$. In fact, suppose that $A = \prod_{i \in I} C_i$, where $C_{i_0} = [0,1]$ for some $i_0 \in I$. Let $S_{i_0} = \{f \in A : f(i) = 0, \text{ for all } i \neq i_0\} \cup \{f \in A : f(i) = 1, \text{ for all } i \neq i_0\}$. Then S_{i_0} is a sub-MV-algebra of A, that is clearly isomorphic to $[0,1] \times 2$.

The next result offers a simple algebraic characterizations of profinite MV-algebras.

Theorem 2.6. For every non-trivial MV-algebra A, the following assertions are equivalent:

1. A is profinite
2. A is complete and finitely approximable
3. A is isomorphic to the direct product of finite MV-chains.

Proof. (1)⇒(2): Obvious.
(2)⇒(3): Suppose that A is a sub-MV-algebra of $\prod I A_i$, where A_i is a finite MV-algebra. Since each A_i is a finite MV-algebra, then it is isomorphic to a (finite) product of finite MV-chains. So, $\prod I A_i$ is isomorphic to a direct product of finite MV-chains, and by [3] Thm. 6.8.1, $\prod I A_i$ is complete and completely distributive. Since A is a complete sub-MV-algebra of $\prod I A_i$, then A is completely distributive. Therefore, by [3] Thm. 6.8.1 again, A is a direct product of complete MV-chains.
But, every complete MV-chain is isomorphic to a finite MV-chain, or to $[0,1]$. Moreover, since A is finitely approximable, it follows from Corollary 2.5 that A is a direct product of finite MV-chains.
(3)⇒(1): Is clear.

It follows that profinite MV-chains are finite.

Corollary 2.7. A (non-trivial) MV-chain A is profinite if and only if A is isomorphic to L_n for some $n \geq 2$.

3. Maximal ideals of profinite MV-algebras

For any MV-algebra A, let $\mathcal{H}(A)$ denotes the set of MV-algebra homomorphisms from A into $[0,1]$ and $Max(A)$ denotes the set of maximal ideals of A. It is well known [3] that $\chi \mapsto ker\chi$ defines a one-to-one correspondence between $\mathcal{H}(A)$ and $Max(A)$, where $ker\chi = \{a \in A : \chi(a) = 0\}$. We will use the following notations
through out the paper. For $A := \prod_{x \in X} L_{n_x}$ a profinite MV-algebra, and each $x \in X$, $p_x : A \to L_{n_x}$ denotes the natural projection. In addition M_x will denote $\ker p_x$, it follows that each M_x is a maximal ideal of A. It is easy to see that $\oplus_{x \in X} L_{n_x} := \{ f \in A : f(x) = 0 \text{ for all, but finitely many } x \in X \}$ is an ideal of A. Recall that a principal ideal of an MV-algebra A is any ideal I that is generated by a single element, that is there exists $a \in A$, such that $I = \langle a \rangle$. It is well known that $x \in \langle a \rangle$ if and only if $x \leq na$ for some integer $n \geq 1$.

Lemma 3.1. Let $A := \prod_{x \in X} L_{n_x}$ be a profinite MV-algebra. For any maximal ideal M of A, the following conditions are equivalent.

(i) M is principal;
(ii) There exists a unique $x_0 \in I$, such that $M = \ker p_{x_0}$;
(iii) M does not contain $\oplus_{x \in X} L_{n_x}$.

Proof. (i) \Rightarrow (ii): Suppose that M is principal, then $M = \langle a \rangle$ for some $a \in A$. We claim that there exists $x_0 \in X$ with $a(x_0) = 0$. By contradiction suppose that $a(x) \neq 0$ for all $x \in X$, then for each $x \in X$, $a(x) = \frac{k_{n_x}}{n_x - 1}$ for some $1 \leq k_{n_x} \leq n_x - 1$.

We consider two cases:

(a) $\left\{ \frac{n_x - 1}{k_{n_x}} \right\}_{x \in X}$ is bounded, then there exists an integer $m \geq 1$ such that $\frac{n_x - 1}{k_{n_x}} \leq m$ for all $x \in X$. It follows that $ma = 1$, and so $M = A$, which is a contradiction.

(b) $\left\{ \frac{n_x - 1}{k_{n_x}} \right\}_{x \in X}$ is unbounded. Then $\{n_x\}_{x \in X}$ is unbounded. We can write X as the disjoint union of of two sets X' and X'' such that $\{n_x\}_{x \in X'}$, and $\{n_x\}_{x \in X''}$ are unbounded. Define $f, g \in A$ by:

$$f(x) = \begin{cases} 1 & \text{if } x \in X' \\ a(x) & \text{if } x \in X'' \end{cases} \quad \text{and} \quad g(x) = \begin{cases} a(x) & \text{if } x \in X' \\ 1 & \text{if } x \in X'' \end{cases}$$

Then $f \wedge g = a$, in particular $f \wedge g \in M$. Since M is prime, as every maximal ideal is, then $f \in M$ or $g \in M$. Assume $f \in M = \langle a \rangle$, then there exists an integer $r \geq 1$ such that $f \leq ra$. Therefore, $1 \leq \frac{rk_{n_x}}{n_x - 1}$ for all $x \in X''$, and so $\frac{n_x - 1}{k_{n_x}} \leq r$ for all $x \in X''$. This contradicts the fact that $\{n_x\}_{x \in X''}$ is unbounded. In a similar argument, $g \in M$ would contradict the fact that $\{n_x\}_{x \in X'}$ is unbounded.

Thus $a(x_0) = 0$ for some $x_0 \in X$. For every $f \in M = \langle a \rangle$, there exists $k \geq 1$ such that $f \leq ka$, and it follows that $f(x_0) = 0$ for all $f \in M$. Hence, $M \subseteq M_{x_0}$. Since M and M_{x_0} are maximal, then $M = M_{x_0} = \ker p_{x_0}$. The uniqueness is clear.

(ii) \Rightarrow (i) This is clear as each M_{x_0} is principal as it is generated by $f(x) = \begin{cases} 0 & \text{if } x = x_0 \\ 1 & \text{if } x \neq x_0 \end{cases}$.
(ii) ⇒ (iii): Suppose that there exists a unique $x_0 \in I$, such that $M = \ker p_{x_0}$. Consider $f \in A$ defined by $f(x) = \begin{cases} 1 & \text{if } x = x_0 \\ 0 & \text{if } x \neq x_0 \end{cases}$ Then $f \in \bigoplus_{x \in X} L_{n_x}$ and $f \notin M$.

(iii) ⇒ (ii): Suppose that for all $x \in X$, $M \neq M_x$. For each $x \in X$, let $b_x \in A$ defined by $b_x(t) = \begin{cases} 0 & \text{if } t = x \\ 1 & \text{if } t \neq x \end{cases}$ Then for every $x \in X$, since $M_x = \langle b_x \rangle$, then $b_x \notin M$ and since M is maximal, by [5 Prop.1.2.2] there exists an integer $k_x \geq 1$ such that $-k_x b_x = -b_x \in M$. It follows that M contains $\bigoplus_{x \in X} L_{n_x}$.

\begin{proof}
Corollary 3.2. Let $A := \prod_{x \in X} L_{n_x}$ be a profinite MV-algebra. A maximal ideal M of A is not principal if and only if $\bigoplus_{x \in X} L_{n_x} \subseteq M$.

4. A Stone type duality

We say that a homomorphism $\varphi : A \to B$ of MV-algebras reflect principal ideals if for every principal ideal J of B, $\varphi^{-1}(J)$ is a principal ideal of A. It is clear that the identity reflects principal maximal ideals, and that the composition of two homomorphisms that reflect principal maximal ideals also reflects principal maximal ideals. Let \mathbb{P} denotes the category of profinite MV-algebras and homomorphisms that reflect principal maximal ideals. We recall the definition of the category \mathcal{M} of multisets. A multiset is a pair $\langle X, \sigma : X \to \mathbb{N} \rangle$, where X is a set and σ is a map. Given two multisets $\langle X, \sigma \rangle$ and $\langle Y, \mu \rangle$, a morphism from $\langle X, \sigma \rangle$ to $\langle Y, \mu \rangle$ is a map $\varphi : X \to Y$ such that $\mu(\varphi(x))$ divides $\sigma(x)$ for all $x \in X$.

We shall define two functors $\mathcal{H} : \mathbb{P}^{\text{op}} \to \mathcal{M}$ and $\mathcal{F} : \mathcal{M} \to \mathbb{P}^{\text{op}}$

(1) $\mathcal{H} : \mathbb{P}^{\text{op}} \to \mathcal{M}$. For any profinite MV-algebra A, set

$\mathcal{H}_F(A) := \{ \chi : A \to [0,1] : \chi \text{ is a homomorphism and } \ker \chi \text{ is principal (maximal) ideal} \}$

and $\sigma_A : \mathcal{H}_F(A) \to \mathbb{N}$ defined by $\sigma_A(\chi) = \#(\chi(A)) - 1$.

Note that σ_A is well-defined because as $\ker \chi$ is principal, by Lemma 3.1 and the homomorphism theorem, $\chi(A)$ is finite.

- On objects: Given a profinite MV-algebra A, define $\mathcal{H}(A) = \langle \mathcal{H}_F(A), \sigma_A \rangle$.
- On morphisms: let φ be a homomorphism in \mathbb{P}^{op} from $A \to B$, that is $\varphi : B \to A$ is an MV-algebra homomorphism that reflects principal ideals. Define $\mathcal{H}(\varphi) : \mathcal{H}_F(A) \to \mathcal{H}_F(B)$ by $\mathcal{H}(\varphi)(\chi) = \chi \circ \varphi$. Note that since $\ker \chi(A)$ is a principal maximal ideal of A, $\ker(\chi \circ \varphi) = \varphi^{-1}(\ker \chi)$, and φ reflects principal maximal ideals, then $\ker(\chi \circ \varphi)$ is principal maximal. So, $\chi \circ \varphi \in \mathcal{H}_F(B)$ and $\mathcal{H}(\varphi)$ is well-defined.

On the other hand, note by [5 Cor. 3.5.4, Cor. 7.2.6] that for each $\chi \in \mathcal{H}_F(A)$, $\chi(A) = L_{\#(\chi(A))}$. Thus, $L_{\#(\chi(\varphi))(A)} \subseteq L_{\#(\chi(A))}$; and it follows that $\#(\chi \circ \varphi)(A) - 1$ divides $\#(\chi(A)) - 1$. Thus, $\sigma_B(\mathcal{H}(\varphi)(\chi))$ divides $\sigma_A(\chi)$ for all $\chi \in \mathcal{H}_F(A)$. Therefore, $\mathcal{H}(\varphi)$ is a morphism in \mathcal{M} from
\[\mathcal{H}_F(A) \to \mathcal{H}_F(B). \]

(2) \(\mathcal{F} : \mathbb{M} \to \mathbb{P}^{\text{op}}. \) For any multiset \(\langle X, \sigma \rangle, \prod_{x \in X} L_{\sigma(x)+1} \) is clearly a profinite MV-algebra, that shall be denoted by \(A_{X,\sigma} \).

- On objects: Given a multiset \(\langle X, \sigma \rangle \), define \(\mathcal{F}(\langle X, \sigma \rangle) := A_{X,\sigma} \).
- On morphisms: Let \(\varphi : \langle X, \sigma \rangle \to \langle Y, \mu \rangle \) be a morphism in \(\mathbb{M} \). Define \(\mathcal{F}(\varphi) : A_{Y,\mu} \to A_{X,\sigma} \) by \(\mathcal{F}(\varphi)(f)(x) = f(\varphi(x)) \) for all \(f \in A_{Y,\mu} \) and all \(x \in X \). To see that \(\mathcal{F}(\varphi) \) is well-defined, first note that for all \(f \in A_{Y,\mu} \) and all \(x \in X \), \(f(\varphi(x)) \in L_{\mu(\varphi(x))+1} \). On the other hand, \(\mu(\varphi(x)) \) divides \(\sigma(x) \), hence \(L_{\mu(\varphi(x))+1} \subseteq L_{\sigma x+1} \). Thus, \(f(\varphi(x)) \in L_{\sigma x+1} \). In addition, let \(M \) be a principal maximal ideal of \(A_{X,\sigma} \), then by Lemma 3.1 there exists \(x_0 \in X \) such that \(M = M_{x_0} \). It is easy to see that \(\mathcal{H}(\varphi)^{-1}(M_{x_0}) = M_{\varphi(x_0)} \), which is a principal maximal ideal of \(A_{Y,\mu} \). Finally, it is easy to see that \(\mathcal{H}(\varphi) \) is a MV-homomorphism from \(A_{Y,\mu} \to A_{X,\sigma} \).

The only missing aspects of the proof of the following results are simple computations, which we shall omit.

Proposition 4.1. \(\mathcal{H} : \mathbb{P}^{\text{op}} \to \mathbb{M} \) and \(\mathcal{F} : \mathbb{M} \to \mathbb{P}^{\text{op}} \) are functors.

Proposition 4.2. Let \(\langle X, \sigma \rangle \) be a multiset, define \(\eta_X : \langle X, \sigma \rangle \to \langle \mathcal{H}_F(A_{X,\sigma}), \sigma_{A_{X,\sigma}} \rangle \) by \(\eta_X(x)(f) = f(x) \), for all \(x \in X \) and all \(f \in A_{X,\sigma} \). Then \(\eta_X \) is an isomorphism in \(\mathbb{M} \).

Proof. Note that for each \(x \in X \), \(\eta_X(x) \) is a homomorphism from \(A_{X,\sigma} \to L_{\sigma(x)+1} \), in particular \(\eta_X(x) \in \mathcal{H}_F(A_{X,\sigma}) \) and \(\eta_X \) is well-defined. To see that \(\eta_X \) is a morphism, let \(x \in X \), then \(\eta_X(x)(A_{X,\sigma}) \subseteq L_{\sigma(x)+1} \). Thus, \(L_{\#\eta_X(x)(A_{X,\sigma})} \subseteq L_{\sigma(x)+1} \), hence \(\#\eta_X(x)(A_{X,\sigma}) - 1 \) divides \(\sigma(x) \). Whence, \(\sigma_{A_{X,\sigma}}(\eta_X(x)) \) divides \(\sigma(x) \) for all \(x \in X \). It remains to prove that \(\eta_X \) is bijective. Injectivity: Let \(x_1, x_2 \in X \) such that \(x_1 \neq x_2 \). Define \(f \in A_{X,\sigma} \) by \(f(x_1) = 0 \) and \(f(x) = 1 \) for \(x \neq x_1 \). Then \(\eta_X(x_1)(f) = 0 \), while \(\eta_X(x_2)(f) = 1 \). Therefore \(\eta_X(x_1) \neq \eta_X(x_2) \) and \(\eta_X \) is injective. Surjectivity: Let \(\chi \in \mathcal{H}_F(A_{X,\sigma}) \), then \(ker\chi \) is a principal maximal ideal of \(A_{X,\sigma} \). By Lemma 3.1 there exists \(x \in X \) such that \(ker\chi = M_x = ker p_x \). Hence, \(\chi = p_x \), and it follows that \(\eta_X(x) = \chi \). Thus, \(\eta_X \) is an isomorphism in \(\mathbb{M} \).

Proposition 4.3. Let \(A \) be a profinite MV-algebra. Define \(\varepsilon_A : A \to \prod_{\chi \in \mathcal{H}_F(A)} L_{\#\chi(A)} \) by \(\varepsilon_A(f)(\chi) = \chi(f) \) for all \(f \in A \) and all \(\chi \in \mathcal{H}_F(A) \).

Then \(\varepsilon_A \) is an isomorphism in \(\mathbb{P}^{\text{op}} \).
Proof. Since $\chi(A) = L_{#\chi(A)}$ for all $\in H_F(A)$, it follows that ε_A is well-defined. In addition, let M be a principal maximal ideal of $\prod_{\chi \in H_F(A)} \varepsilon_A$, then by Lemma 3.1 there exists $\chi_0 \in H_F(A)$ such that $M = M_{\chi_0}$. But, it is clear that $\varepsilon_A^{-1}(M_{\chi_0}) = ker\chi_0$, which is principal maximal ideal of A. Thus, ε_A reflects principal maximal ideals. It is straightforward to verify that ε_A is a homomorphism of MV-algebras. It remains to prove that ε_A is bijective.

Injectivity: Let $f, g \in A$ such that $\varepsilon_A(f) = \varepsilon_A(g)$, then for all $\chi \in H_F(A)$, $\chi(f) = \chi(g)$. Since A is profinite, by Theorem 2.6 there exists a set X and a sequence of integers $\{n_x\}_{x \in X}$ such that $A = \prod_{x \in X} L_{n_x}$. We have $p_x(f) = p_x(g)$ for all $x \in X$, hence $f(x) = g(x)$ for all $x \in X$ and $f = g$.

Surjectivity: Let $g \in \prod_{\chi \in H_F(A)} \varepsilon_A$. Since A is profinite, by Theorem 2.6 there exists a set X and a sequence of integers $\{n_x\}_{x \in X}$ such that $A = \prod_{x \in X} L_{n_x}$. Then, by Lemma 3.1 $x \mapsto p_x$ is a one-to-one correspondence between X and $H_F(A)$. Now define $f \in A$ by $f(x) = g(p_x)$. Then, it follows clearly that $\varepsilon_A(f) = g$.

Thus, ε_A is an isomorphism in \mathbb{P}^{op}.

Theorem 4.4. The composite $H \circ F$ is naturally equivalent to the identity functor of exists a natural isomorphism M. In other words, for all multisets (X, σ), (Y, μ) and $\varphi: (X, \sigma) \to (Y, \mu)$ a morphism in M, we have a commutative diagram

$$
\begin{array}{ccc}
\langle X, \sigma \rangle & \xrightarrow{\varphi} & \langle Y, \mu \rangle \\
\eta_X & & \eta_Y \\
H(F((X, \sigma))) & \xrightarrow{H(F(\varphi))} & H(F((Y, \mu)))
\end{array}
$$

in the sense that, for each $x \in X$, $H(F(\varphi)(\eta_X(x)) = \eta_Y(\varphi(x))$.

Proof. Let $x \in X$, then $H(F(\varphi))(\eta_X(x)) = \eta_X(x) \circ F(\varphi)$. For every $g \in A_{Y, \mu}$,

$$(\eta_X(x) \circ F(\varphi))(g) = \eta_X(x)(F(\varphi)(g))$$

$$= F(\varphi)(g)(x)$$

$$= g(\varphi(x))$$

$$= \eta_Y(\varphi(x))(g)$$

Hence $H(F(\varphi)(\eta_X(x)) = \eta_Y(\varphi(x))$ for all $x \in X$ as claimed.

Theorem 4.5. The composite $F \circ H$ is naturally equivalent to the identity functor of exists a natural isomorphism \mathbb{P}^{op}. In other words, for all all profinite MV-algebras.
A, B and \(\varphi : A \rightarrow B \) a homomorphism in \(\mathcal{P}^{\text{op}} \), we have a commutative diagram

\[
\begin{array}{ccc}
B & \xrightarrow{\varphi} & A \\
\varepsilon_B & & \downarrow \varepsilon_A \\
\mathcal{F}(\mathcal{H}(B)) & \xrightarrow{\mathcal{F}(\mathcal{H}(\varphi))} & \mathcal{F}(\mathcal{H}(A))
\end{array}
\]

in the sense that, for each \(f \in B \), \(\mathcal{F}(\mathcal{H}(\varphi))(\varepsilon_B(f)) = \varepsilon_A(\varphi(f)) \)

Proof. Let \(f \in B \) and \(\chi \in \mathcal{H}_F(A) \), then

\[
\mathcal{F}(\mathcal{H}(\varphi))(\varepsilon_B(f))(\chi) = \varepsilon_B(f)(\mathcal{H}(\varphi)(\chi)) = \varepsilon_B(f)(\chi \circ \varphi) = (\chi \circ \varphi)(f) = \chi(\varphi(f)) = \varepsilon_A(\varphi(f))(\chi)
\]

Hence, \(\mathcal{F}(\mathcal{H}(\varphi))(\varepsilon_B(f)) = \varepsilon_A(\varphi(f)) \) for all \(f \in B \), as desired.

Combining Theorem 4.4 and Theorem 4.5, we obtain the long sought duality.

Corollary 4.6. The category \(\mathcal{M} \) of multisets is dually equivalent to the category \(\mathcal{P} \) of profinite MV-algebras and homomorphisms that reflect principal maximal ideals.

Remark 4.7. While every MV-homomorphism reflects maximal ideals [5, Prop. 1.2.16], MV-homomorphism may not reflect principal maximal ideals. For instance, consider the simplest infinite profinite MV-algebra, namely \(A = 2^X \) for some fixed infinite set \(X \). Then \(\bigoplus_X 2 \) is an ideal of \(A \), and is contained in a maximal ideal \(M \) of \(A \), which is not principal by Lemma 3.1. But, \(A/M \) is a Boolean algebra that is isomorphic to a Boolean subalgebra of \([0, 1]\). Hence, \(A/M \cong 2 \). Now consider the natural projection \(p : A \rightarrow 2 \), then \(p^{-1}(0) = M \), which is not principal.

Remark 4.8. The category \(\mathcal{FMV} \) of finite MV-algebras is a full subcategory of \(\mathcal{P} \) and when restricted \(\mathcal{FMV} \), the equivalence yields the well known duality between finite MV-algebras and finite multisets.

References

[1] G. Bezhanishvili, N. Bezhanishvili, Profinite Heyting algebras, *Order* **25**(2008) 211-227.
[2] G. Bezhanishvili, M. Gehrke, R. Mines, P. J. Morandi, Profinite completions and canonical extensions of Heyting algebras, *Order* **23**(2006) 143-161.
[3] C. C. Chang, Algebraic analysis of many-valued logics, *Trans. of AMS* **88**(1958) 467-490
[4] T. H. Choe, R. J. Greechie, Profinite orthomodular lattices, *Proceedings of AMS* **118**(1993)
[5] R. Cignoli, I. D’Ottaviano, D. Mundici, Algebraic foundations of many-valued reasoning, *Kluwer Academic, Dordrecht*(2000).
[6] R. Cignoli, E. J. Dubuc, D. Mundici, Extending Stone Duality to multisets and locally finite MV-algebras, *J. pure. Appl. Alg* **189**(2004)37-59.
[7] R. Cignoli, V. Marra, Stone duality for real-valued multisets, *Forum Math.* **24**(2012)1317-1331.
[8] A. DI Nola, G. Georgescu, Projective limits of MV-spaces, *Order* **13**(1996)391-398.
[9] A. DI Nola, R. Grigolia, Pro-finite MV-spaces, *Discrete Math.* **283**(2004)61-69.
[10] P. T. Johnstone, Stone spaces, Cambridge University Press, Cambridge (1982).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OR 97403

E-mail address: nganou@uoregon.edu