Abstract

Purpose: Tracheo esophageal fistula repair are usually complicated by the development of anastomotic leaks and strictures. The technique of anastomosis has long been a matter of debate. The most common method has been transverse circular esophageal anastomosis. We aim to bring down the frequency of early complications associated with conventional technique of esophageal repair by introduction of a modified repair method.

Methods: Twenty patients of congenital tracheo esophageal fistula underwent modified oblique esophago esophageal anastomosis with pleural patch. The patients were followed up for immediate complications of anastomotic leaks and strictures. Results: Contrast esophagogram showed no incidence of anastomotic leak and strictures in all the twenty patients.

Conclusion: The oblique esophageal anastomosis with pleural patch serves as a wide bore anastomosis compared to the classical circular anastomosis, hence explaining the reduced incidence of decreased leaks and strictures associated with this method.

Introduction

Congenital tracheo esophageal fistula is a not so rare neonatal surgical emergency. Immediate thoracotomy with ligation of the fistula and end to end esophageal anastomosis is the management of choice [1,2]. Even following a proper anastomosis, the condition is often complicated by anastomotic leaks and strictures [3]. These complications mandate either re exploration or a gastrostomy as a life saving maneuver [3-5]. Various factors have been implicated in diminishing the complications rate. The type of anastomosis to be done has been a subject of debate [1,2,6,7]. Classically a transverse circular anastomosis has been the teaching with proper mobilization of both the upper and lower esophageal pouches [7,8]. We have attempted to modify the technique of anastomosis to reduce the complication rate, thereby reducing patient morbidities.

Materials and Methods

Twenty neonates presenting with an antenatal or postnatal diagnosis of congenital tracheo esophageal fistula to the pediatric surgical emergency of SMS medical college Jaipur were selected. The patients underwent surgical repair under similar conditions. The birth weight and mean gestational age were not significantly different. The same surgical team operated all patients. Fourteen boys and six girls were operated on the first day of life. The mean operating time was 90.5 minutes. All the patients were kept nil per mouth post operatively for a period of at least seven days. Total parenteral nutrition was given. A contrast esophagogram was performed on the eighth day. There was no leak or stricture detected in the contrast study. No recurrence of the fistula was identified. It is interesting that the same results were obtained for all the twenty patients. The caliber of the anastomosis as visible in the contrast study was also wide. Following this, the patients underwent repeat contrast esophagogram on the sixteenth day post surgery. This study also did not document any anastomotic leak, stricture or recurrence of fistulous tract.

Results

All the patients of this study were operated under similar conditions. The mean birth weight was 2.1Kg and mean gestational age was 34.2 months. The same surgical team operated all the cases. Fourteen boys and six girls were operated on the first day of life. The mean operating time was 90.5 minutes. All the patients were kept nil per mouth post operatively for a period of at least seven days. Total parenteral nutrition was given. A contrast esophagogram was performed on the eighth day. There was no leak or stricture detected in the contrast study. No recurrence of the fistula was identified. It is interesting that the same results were obtained for all the twenty patients. The caliber of the anastomosis as visible in the contrast study was also wide. Following this, the patients underwent repeat contrast esophagogram on the sixteenth day post surgery. This study also did not document any anastomotic leak, stricture or recurrence of fistulous tract.
Discussion

Tracheo esophageal fistula repair has been a relatively common performed neonatal surgery. However, the morbidities following the surgery have acted as a deterrent in the long-term follow-up of these patients. The complication rates vary from 18 to 50% in various studies [9,10]. The chief complications include a narrow anastomosis, anastomotic strictures, leaks, and recurrent fistula formation. Different factors were responsible for these poor outcomes [9,11,12]. The general condition of the patient, the amount of gap between the segments, the kind of fistula, the nature of suture materials used, and the type of anastomosis performed have been implicated [10,13].

The nature of anastomosis has been controversial and different approaches have been suggested in literature [2,8,9,14]. The earliest teaching still used in the majority of centers worldwide has been a circular anastomosis in a single transverse plane [10,15-17]. This creates a watertight anastomosis but all the sutures are in a single plane. This narrows the caliber and makes the anastomosis more prone to strictures. Different other methods have been reported to make the anastomosis large, non-tense and unrestricted to a single plane.

Sulamaa et al gave the earliest description of such a technique describing an end to side anastomosis [18,19]. Sharma et al. gave a method of suturing the upper pouch to the anti spatulated end of the lower pouch in 1994. This was followed by circular myotomy which created a large anastomosis [8]. Melek et al gave a plus shaped incision over the upper pouch creating a zigzag anastomosis [2,9,10]. The suture lines were in different planes giving better results. Singh et al reported suturing an upper flap pouch to the spatulated end of the lower pouch [9]. The basic idea of all the above methods was to avoid anastomotic site narrowing [9,20,21].

Our procedure avoids any tissue loss by giving an oblique incision on the upper pouch and incising the lateral aspect of the lower pouch (Figure 1). A proper single layer anastomosis following this incision ensures that the suture line lies in a different plane (Figure 2). This creates a less tension, widened suture line that is believed to lessen the complication rates. The plane of the sutures tied lies in different planes and does not cause pressure effect to cause any stenosis as happens if the sutures lie in same plane. Further, the use of a rectangular part of pleura as a patch over the site of anastomosis adds to the strength and supposedly prevents ischemia (Figure 3). The pleural flap has earlier been noted in case reports, but no particular study has been carried out. The beneficial effect of pleural flap is believed to occur in the same way as an omental patch following bowel anastomosis. This novel alteration in the technique serves as a strong buttress preventing anastomotic leaks. The procedure is also simple and involves incision of a small rectangular part of pleura and suturing it to the anastomosis site (Figure 4). As seen in our study, there were no reports of anastomotic leaks, strictures or fistula recurrence in the early and delayed contrast esophagograms obtained.

In conclusion, we describe a technique of anastomosis that is safe, effective and better for reducing complications and thereby morbidities in operated tracheo esophageal fistula patients. In patients where the gap between the two segments is not too long, the current procedure should prove better than the conventional circular anastomosis technique.

Figure 1: Operative photograph showing lateral incision of the lower esophageal pouch.

Figure 2: Operative photograph showing completed oblique esophageal anastomosis.
Congenital Tracheo Esophageal Fistula Repair, a Modified Technique of Anastomosis Using Pleural Flap

Figure 3: Operative photograph showing rectangular pleural flap before placement.

Figure 4: Schematic representation of the procedure of anastomosis.

References

1. Catalano P, Di Pace MR, Caruso AM, Salerno S, Cimador M, et al. (2012) A simple technique of oblique anastomosis can prevent stricture formation in primary repair of esophageal atresia. J Pediatr Surg 47(9): 1767-1771.

2. Melek M, Cobanoglu U (2011) A New Technique in Primary Repair of Congenital Esophageal Atresia Preventing Anastomotic Stricture Formation and Describing the Opening Condition of Blind Pouch: Plus (“+”) incision. Gastroenterology research and practice. 2011(2011): 1-4.

3. Gross RE, Scott HW (1946) Correction of esophageal atresia and tracheo-esophageal fistula by closure of fistula and oblique anastomosis of esophageal segments. Surg Gynecol Obstet 82: 518-527.

4. Touloukian RJ, Pickett JK, Spackman T, Biancani P (1974) Repair of esophageal atresia by end-to-side anastomosis and ligation of the tracheoesophageal fistula: A critical review of 18 cases. J Pediatr Surg 9(3): 305-310.

5. Touloukian RJ (1981) Long-term results following repair of esophageal atresia by end-to-side anastomosis and ligation of the tracheoesophageal fistula. J Pediatr Surg 16(6): 983-988.

6. Upadhyaya VD, Gangopadhyaya AN, Gupta DK, Sharma SP, Kumar V, et al. (2007) Prognosis of congenital tracheoesophageal fistula with esophageal atresia on the basis of gap length. Pediatr Surg Int 23(8): 767-771.

7. McKinnon LJ, Kosloske M (1990) Prediction and prevention of anastomotic complications of esophageal atresia and tracheo-esophageal fistula. J Pediatr Surg 25(7): 778-781.

8. Sharma AK, Shekhawat NS, Agrawal LD, Chaturvedi V, Kothari SK, et al. (2000) Esophageal atresia and tracheoesophageal fistula: a review of 25 years’ experience. Pediatr Surg Int 16(7): 478-482.

9. Singh SJ, Shun A (2001) A new technique of anastomosis to avoid stricture formation in oesophageal atresia. Pediatr Surg Int 17(7): 575-577.

10. Sharma AK, Shukla AK, Pnibhakar GL, Sarin YK, Sharma CS (1993) Esophageal atresia: tragedies and triumphs over two decades in a developing country. Int Surg 78(4): 311-314.

11. Lilja HE, Wester T (2008) Outcome in neonates with esophageal atresia treated over the last 20 years. Pediatr Surg Int 24(5): 531-536.

12. Schultz LR, Clatworthy HW (1963) Esophageal strictures after anastomosis in oesophageal atresia. Archives of Surgery 87(1): 120-124.

13. Tandon RK, Khan TR, Maletha M, Rawat JD, Wakhlu A, et al. (2009) Modified method of primary esophageal anastomosis with improved outcome in cases of esophageal atresia with tracheoesophageal fistula. Pediatr Surg Int 25(4): 369-372.

14. Kullendorff CM, Jonsson N (1981) Two Anastomotic Widening Procedures for the Repair of Oesophageal Atresia: An Experimental Evaluation. Scand J Thorac Cardiovasc Surg 15(3): 329-335.

15. Davenport M, Bianchi A (1990) Early experience with oesophageal flap oesophagoplasty for repair of oesophageal atresia. Pediatric surgery international 5(5): 332-335.

16. Goodwin CD, Ashcraft KW, Holder TM, Johnson FR, Amoury RA (1978) Esophageal atresia with double tracheoesophageal fistula. J Pediatr Surg 13(3): 269-273.
17. Ty TC, Brunet C, Beardmore HE (1967) A variation in the operative technic for the treatment of esophageal atresia with tracheoesophageal fistula. Journal of Pediatric Surgery 2(2): 118-126.

18. Ein SH, Themaj TE (1973) A comparison of the results of primary repair of esophageal atresia with tracheoesophageal fistulas using end-to-side and end-to-end anastomoses. J Pediatr Surg 8(5): 641-645.

19. Sillen U, Hagberg S, Rubenson A, Werkmäster K (1988) Management of esophageal atresia: review of 16 years’ experience. J Pediatr Surg 23(9): 805-809.

20. Louhimo I, Lindahl H (1983) Esophageal atresia: primary results of 500 consecutively treated patients. J Pediatr Surg 18(3): 217-229.

21. Ogita S, Tokiwa K, Takahashi T (1986) Transabdominal closure of tracheoesophageal fistula: A new procedure for the management of poor-risk esophageal atresia with tracheoesophageal fistula. J Pediatr Surg 21(9): 812-814.