Cyto-Histopathological Diagnosis of the Thyroid Lesions:
A Comparative Study.

Tomna Mahdi Almontaser¹, Fatima Taleb Thabit Abadel² and Mariam Ahmed Abdulla Humam³

¹Paraclinical Department, Faculty of Medicine and Health Sciences, University of Aden.
²Morphological Sciences Department, Faculty of Medicine and Health Sciences, University of Aden.
³Histopathology, Basic Sciences Department, Faculty of Medicine and Health Sciences-University of Hadhramout.

DOI: https://doi.org/10.47372/uajnas.2020.n1.a19

Abstract

Fine-needle aspiration cytology FNAC is the single most important diagnostic test for the evaluation of patients with thyroid lesions, it has been almost universally recognized as constituting the most significant advance of the past 20 years in the diagnostic evaluation of patients who present with palpable nodules of the thyroid gland. In this study, the effectiveness of fine needle aspiration cytology was evaluated through the identification of the correlation between the cytology diagnosis of thyroid fine needle aspiration cytology and the postoperative histopathological diagnosis. This is a retrospective study was performed on 80 cases underwent to both thyroid cytological and histopathological diagnosis, reports were retrieved from pathology archive of Aden Diagnostic Center/ Aden Governorate, during the period of 2012-2013. The inclusion criteria is that all patients, irrespective of sex and age; having thyroid lesion, diagnosed cytologically and confirmed histologically. Whereas the exclusion criteria: (1) Patients having history of recurrent thyroid carcinoma after lobectomy (2) patients who underwent fine needle aspiration cytology but did not undergo subsequent histopathological diagnosis (3) patients undergoing chemotherapy. Cytological study results in (85%) benign and (15%) malignant cases, while histological examination revealed (64%) benign cases and (16%) malignant cases. The most common benign lesion diagnosed by both cytologically and histologically was colloid goiter (63.7%) and (56.2%) respectively, followed by follicular adenoma, cytologically(15%) and histologically (21.25%), while Hashimotos’ thyroditis was the less common lesion which is, by cytological diagnosis (6.25%) and by histological diagnosis (2.5%). The main malignant lesion was papillary carcinoma, (15%) of the cases were diagnosed cytologically and (20%) were diagnosed histologically. Fine needle aspiration cytology sensitivity was (62.5%), specificity (97%), Positive predictive value (83.3%), negative predictive value (91.1%), and accuracy (90%). Benign lesions were the most common than malignant, as diagnosed by both cytologically and histologically. The most common benign lesion diagnosed by both methods was colloid goiter, followed by follicular adenoma. The main malignant lesion was papillary carcinoma by methods of diagnosis. False negative cases represent 7.5% and false positive represent 2.5%. Statistical analysis for cytological diagnosis revealed that it was moderately sensitive, highly specific, and accurate. So it is recommended to be applied as routine preoperative investigation.

Keywords: Thyroid lesions, benign thyroid lesions, malignant thyroid lesions, cytological and histological diagnosis.

Introduction

Around 5% of the population have a goiter or benign thyroid lump or enlargement. Up to 50% most thyroid lesions are benign, but some may produce excess thyroid hormone and other thyroid lumps may be cancerous [5].

Despite the improvement in the diagnosis of thyroid lesions using ultrasonography and radio-nucleotide scanning, fine needle aspiration cytology (FNAC) of thyroid is still the method of choice to conclusively prove the diagnosis of cancer[2]. It is the single most important diagnostic
Cyto-Histopathological Diagnosis...........Tomna Almontaser, Fatima Abadel, Mariam Humam

test for the evaluation of patients with thyroid lesions because it is a simple and safe procedure that
has been almost universally recognized as constituting the most significant advance of the past 20
years in the diagnostic evaluation patients who present with palpable nodules of the thyroid
gland[3].

Fine needle aspiration cytology (FNAC) is a well-established technique for pre-operative
investigation of thyroid nodule(s) [22]. The technique is the most noninvasive, cost-effective and
efficient method of differentiating benign and malignant thyroid nodules [14].

The fine needle aspiration cytology (FNAC) of the thyroid is the predominant method of
preoperative tissue diagnosis of thyroid lesions. The routine use of FNAC has reduced the rate of
unnecessary surgery for thyroid nodules [8]. Early diagnosis still maintains its importance for
higher life expectancy due to the low malignant potential of thyroid nodules and slow progressing
characteristics of thyroid gland cancers [17].

Objective: The purpose of the present study is to compare the cytological diagnosis with the final
postoperative histological diagnosis in order to evaluate the effectiveness of FNAC in the diagnosis
of thyroid lesions.

Material and methods: This is a retrospective study performed on 80 patients underwent
thyroid cytological examination, compared with histopathological results for the same patients.
FNAC and histopathologic reports were retrieved from pathology archive of Aden Diagnostic
Center/ Aden Governorate, during the period of 2012-2013.

Inclusion criteria were FNAC and histopathological examination was performed for each
patient with thyroid lesion, regardless the sex and age. Exclusion criteria were: (1) Patients having
history of recurrent thyroid carcinoma after lobectomy (2) Patients who underwent FNAC but not
performed subsequent histopathological diagnosis, and (3) Patient experienced chemotherapy.

Ethical consideration: Permission of Aden Diagnostic Center authorities. The obtained data
were analyzed manually to determine the sensitivity, specificity, positive predictive value, negative
predictive value, and diagnostic accuracy of FNAC findings. The following values concerning the
diagnostic accuracy were calculated in this study.

Measurement of validity [11]:
Sensitivity: The sensitivity of a diagnostic test refers to the ability of the test to correctly identify
those patients with disease.
Specificity: The specificity of a diagnostic test refers to the ability of the test to correctly identify
those patients without disease.

Measurement of feasibility:
Positive Predictive value: The probability of having malignancy when the results of FNAC are
positive.
Negative Predictive value: the probability that a tumor is benign when the results of FNAC are
negative.
Accuracy: the proportion of true results (namely true positive - true negative) among all results.
True positive: the patients has the disease and the test is positive
False positive: the patient does not have the disease but the test is positive.
True negative: the patient does not have the disease and the test is negative.
False negative: the patient has the disease but the test is negative.

Equations of the diagnostic test [18]:
1) Sensitivity \(= \frac{\text{true positive}}{\text{true positive} + \text{false negative}} \)
Cyto-Histopathological Diagnosis

2) Specificity \[\text{Specificity} = \frac{\text{true negative}}{\text{true negative} + \text{false positive}} \]

3) Positive Predictive Value \[\text{Positive Predictive Value} = \frac{\text{true positive}}{\text{true positive} + \text{false positive}} \]

4) Negative Predictive Value \[\text{Negative Predictive Value} = \frac{\text{true negative}}{\text{true negative} + \text{false negative}} \]

5) Overall Accuracy \[\text{Overall Accuracy} = \frac{\text{true positive} + \text{true negative}}{\text{true positive} + \text{false positive} + \text{true negative} + \text{false negative}} \]

6) Unsatisfactory rate \[\text{Unsatisfactory rate} = \frac{\text{false positive} + \text{false negative}}{\text{true positive} + \text{false positive} + \text{true negative} + \text{false negative}} \]

Results

Graph 1: Total studied cases

Graph 1 shows that the total benign lesions diagnosed by cytology were 68 cases, represented (85%). While the malignant lesions were 12 cases representing (15%). On the other hand, the histological diagnosis reveals that 64 cases (80%) were benign lesions and 16 (20%) were malignant lesions.

Table 1: Thyroid lesions diagnosed by cytology and histology

Type of lesion	Cytology diagnosed cases	Histology diagnosed cases		
	No.	%	No.	%
Benign lesions				
Colloid goiter	51	63.75	45	56.25
Hashimotos’ thyroiditis	5	6.25	2	2.5
Follicular adenoma	12	15.0	17	21.25
Malignant lesions				
Papillary carcinoma	12	15.0	16	20.0
Total	80	100	80	100

Univ. Aden J. Nat. and Appl. Sc. Vol. 24 No.1 – April 2020 221
Table 1 reveals that the thyroid lesions diagnosed by both cytological and histological methods. Cytology, the colloid goiter were represent 51 cases (63.75%), Hashimoto’s thyroiditis 5 cases (6.25%), follicular adenoma 12 cases (15%), while papillary carcinoma represent 12 cases (15%). On the other hand, the histology reveals that the colloid goiter was 45 cases (56.25%), Hashimoto’s thyroiditis 2 cases (2.5%), follicular adenoma 17 cases (21.25%), while papillary carcinoma were 16 cases (20%).

Table 2: patients with thyroid lesions by cytology and histology results

Cytology	Histology	Colloid goiter	Hashimoto’s thyroiditis	Follicular adenoma	Papillary carcinoma	Total				
	No.	%	No.	%	No.	%	No.	%	No.	%
Colloid goiter	37	46.25	0	0.0	11	13.7	3*	3.75	51	63.7
Hashimoto’s thyroiditis	3	3.75	1	1.25	0	0.0	1*	1.25	5	06.3
Follicular adenoma	5	6.25	1	1.25	4	5.0	2*	2.5	12	15.0
Papillary carcinoma	0	0.0	0	0.0	2**	2.5	10	12.5	12	15.0
Total	45	56.25	2	2.5	17	21.2	16	20.0	80	100

*false negative cases (6), **false positive cases (2)

Table 2: Shows the cytological and histological diagnosis for each thyroid lesion; by cytological diagnosis, colloid goiter which are 51 cases (63.7%), 37 cases (46.25%) of them confirm histologically as colloid goiter, while 11 cases (13.7%) of colloid goiter diagnosed by histology as follicular adenoma, and 3 cases (3.75%) of colloid goiter were approved as papillary carcinoma, they are considered as false negative. By cytology, Hashimoto’s thyroiditis 5 cases (6.25%), while by histology only one case (1.25%) confirmed as Hashimoto’s thyroiditis, other 3 cases representing (3.75%) diagnosed as colloid goiter, and one case (1.25%) diagnosed as papillary carcinoma; considered as false negative. 12 cases diagnosed cytologically as follicular adenoma representing (15%), by histological diagnosis 4 cases (5%) were diagnosed as follicular adenoma, Hashimoto’s thyroiditis one case (1.25%), and papillary carcinoma two cases (2.5%) which are considered as false negative. Out of 12 patients diagnosed as positive malignancy by cytology, only 10 (12.5%) of them were proved as positive malignancy by histology and were considered as true positive (10 cases), other 2 cases were proved as benign by histology and therefore, considered as false positive.
Graph 2 Shows that the true positive were 15 %, while the true negative represented 80%. On the other hand 2.5 % and 7.5 % diagnosed as false positive and false negative respectively.

Equations of Diagnostic Test:

1- **Sensitivity =** True positive/True positive +false negative × 100
 =10/ (10 +6)× 100 = 62.5%

2- **Specificity =** True negative/True negative + False positive × 100
 = 62/62+ 2× 100 = 96.88%

3- **Positive predictive value** =True positive/ True positive +false positive×100
 =10/10 +2 × 100 =83.33%

4- **Negative predictive value =** True negative/ True negative +false negative×100
 =62/62+6 × 100 = 91.17%

5- **Accuracy =** True positive + true negative/Total number of cases × 100
 =10 + 62/80×100 = 90%

6- **Unsatisfactory rate:** is the portion of the incorrect results, false positive and false negative in relation to all cases studied =false positive + false negative/Total number of cases ×100
 = 2+6/80×100 = 10%

Table 3: Performance and predictive values of FNAC diagnosis
Values
Sensitivity
Specificity
Positive predictive value
Negative predictive value
Unsatisfactory rate
Overall accuracy of the test

Table 3 shows that the proportion of patients classified with the test, calculated the proportion of true results (Overall Accuracy) was 90% and conversely, the unsatisfactory rate was 10 %. The capacity to detect the malignancy given by the sensitivity was 62.5% and the capacity to detect benign given by the specificity was 96.8%.

The probability of being malignancy with positive test, Positive Predictive Value was 83% and the probability of being benign with negative test, Negative Predictive Value was 91%.

Discussion

The total number of studied cases were 80, the benign cases diagnosed cytologically were (85%), and malignant cases (15%), while by the histological diagnosis the benign were (80%) and malignant cases (20%). Our results were consistent with the results of a study performed by Gulia et al.,[6] who reported that the benign lesion represents (82.85%) and malignant cases (15.72%), also the study performed by Hirachand et al.,[10] showed that the benign lesions were (91.57%) and the malignant were (5.86%). In the Swamys’ et al., study[21], the cytological results showed that (83.66%) were benign and (16.66%) were malignant, histological examination showed that (81.66%) were benign, and (18.33%) were malignant.

Colloid goiter was the common benign lesion representing (85%), and (80%) by histological examination, this result is in line with the results of Gulia et al.,[6] Hirachand et al.,[10] Sinna& Ezzat,[20] Esmaili& Taghipour, [4] considered that the colloid goiter is the most common benign lesion.

Hashimotos’ thyroiditis representing the less common benign lesion was seen in (6.25%) by cytological examination and 2.5% by histological examination, this result is compatible with the
result of a study done by Esmaili & Taghibour,[4] reported that Hashimotos’ thyroiditis 5.2% by cytological examination, Gulia et al.[6] who reported that Hashimotos’ thyroiditis represents 3.51% of the total cases as diagnosed cytologically.

In our study, it is found that the second common benign lesion was follicular adenoma (by cytological diagnosis was (15%), and (21.25%) by histological diagnosis), which was in line with Sinna & Ezzat,[20] study, who reported that follicular adenoma represented 24.59% by FNAC diagnosis, while Hirachand,[10] reported that follicular adenoma which diagnosed by FNAC represent 1.10% only. Swamy et al.,[21] who reported that the common benign lesion in both cytological and histological was colloid goiter then follicular adenoma.

Papillary carcinoma was the only one type of malignant tumors in our study which represent (15%) of cases which were diagnosed cytologically, and in 20% of the cases that were diagnosed histologically, this result is in consistent with a result performed by Hajmanoochehri & Rabiee, [9] who reported that papillary carcinoma represents the major type of malignancy forming 84.6% from the total cases of malignant lesions. Gumlu et al.,[7] reported that the papillary carcinoma is the more common in the cases of thyroid swelling diagnosed by FNAC.

Out of the total, diagnosed cytologically as colloid goiter(51), there were 3 cases (3.75%) diagnosed as papillary carcinoma, which considered as false negative cases, one case (1.25%) also diagnosed histologically as papillary carcinoma from the total 5 cases diagnosed cytologically as Hashimotos’ thyroiditis, which were considered as additional false negative case, additional two cases (2.5%) of false negative cases were seen in histological diagnosis of the previously and cytologically diagnosed (12 cases) as follicular adenoma, so the total false negative cases were 6 (7.5%). This result was in line with Esmaili & Taghipour,[4] and Gulia et al.,[6] results, who reported 4 cases as false negative., while Sikder et al.,[19] reported 8 cases of false negative. Gulia et al.,[6] reported that the incidence of false negative usually attributable to overlooking of malignancy in favor of follicular adenoma, cystic lesions, and Hashimotos’ thyroiditis. The false negative rate is defined as the percentage of patients with benign cytology in whom malignant lesions are later confirmed on thyroidectomy. The false negative FNAC results may occur because of sampling error, coexistence of benign and malignant lesions, or cytomorphologic overlap between benign and low grade malignant tumors [21].

Two cases out of the total 12 cases of follicular adenoma by FNAC, were diagnosed histologically as papillary carcinoma which was considered as false positive cases. Our result is consistent with Sharma [18] and Sikder et al.,[19] who reported 2 false positive cases. Swamy et al.,[21] also reported 4 cases false positive. Gulia et al.,[6] reported that the false positive diagnosis is the result of misinterpretation of the nature of benign cell than a sampling error, false positive diagnosis are usually encountered in Hashimotos’ thyroiditis, follicular adenoma, and colloid goiter. The false positive rate indicates that a patient with malignant FNAC result was found on histological examination to have benign lesion [21].

Regarding the sensitivity, specificity, diagnostic accuracy, PPV and NPV of cytological method of diagnosis, our results showed that the sensitivity is 62.5% which was similar with the results of Afroze et al.,[1] 61.9%, and higher than Mudasal et al.,[12] 52%, it was less than Sinna & Ezzat,[20] 92.3%, and Sinna & Ezzat,[20] 94.2% and Mundasal et al.,[12] 86.6%, and similar with Sharma,[18] 98% and Rabia et al.,[16] 97.7%, and less than Esmaili & Taghipour, [4] Sikder, et al.,[19] and Bagga & Mahaian [2] all of them report 100%. Positive predictive value PPV of our study was 83.3%, it was higher than Rabia, et al.,[16] 80% and Swamy, et al.,[21] 81.8%, it is approximately near to Sharma [18] 84.6%, and less than Sinna & Ezzat [20] 95%, Gulia et al.,[6] 100%. Negative predictive value NPV of our study was 91%, it was equal to Sinna & Ezzat (91.8%) [20], near to Afroze, et al.,[1] 92.8%; & Gulia, et al.,[6] 90.5%, and higher than Sikder et al.,[19] 87.2%, and less than Sharma [18] 98.6% and Rabia, et al.,[16] 97.7%. The diagnostic accuracy was 90%, it was similar to Sikder, et al.,[19] 90%, Gulia, et al.,[6] 92.3%, and less than Sharma [18] 97%, and Swamy et al.,[21] 96.6%. We conclude that statistical analysis for cytological diagnosis reveals
Cyto-Histopathological Diagnosis………Tomna Almontaser, Fatima Abadel, Mariam Humam
moderate sensitivity, highly specificity, and accurate, which allow for early diagnosis, treatment, and management of thyroid lesions, especially malignant tumors.

Conclusion: Benign lesions were the most common thyroid lesion, as diagnosed by both cytologically and histologically. The most common benign lesion diagnosed by both methods is colloid goiter, followed by follicular adenoma. The main malignant lesion is papillary carcinoma by both methods of diagnosis.

References
1. Afroze, N., Kayani, N., Hassan, S. H. (2002). Role of fine needle aspiration cytology in the diagnosis of palpable thyroid lesions. Indian J Pathol Microbiol, 45(4), 241-6.
2. Bagga, PK., Mahaian, NC. (2010). Fine needle aspiration cytology of thyroid swellings: how useful and accurate is it? India J Cancer, 47, 437-42.
3. Cramer, H. (2000). Fine needle aspiration cytology of the thyroid. Cancer Cytopathology, (pp 330-334).
4. Esmaili, H. & Taghipour H. (2012). Fine needle aspiration in the diagnosis of thyroid diseases: an appraisal in our institution. ISRN Pathology, Vol 2012, article ID 912728
5. Gharib, H., Staus, S., & Weiss, M. (1998). Role of ultrasound guided fine needle aspiration biopsy in evaluation of nonpalpable thyroid nodules. Thyroid, 8, 989-995.
6. Gulia, S., Chaudhury, M., Sitaramam, E. & Rey, K. (2010). Diagnostic accuracy of fine needle aspiration cytology in the diagnosis of thyroid lesions. The Internet Journal of Pathology, Vol 13, no.1
7. Gumlu G, Kiyak G, Bozkurt B, Tokac, C. (2013). Correlation of thyroid fine-needle aspiration with final histopathology: a case series. Minerva Chir, 68(2), 191-7
8. Haider, AS., Rakha, EA., Dunkley, C. & Zaitoun AM. (2011). The impact of using defined criteria for adequacy of fine needle aspiration cytology of the thyroid in routine practice. Diagn Cytopathol, 39(2), 81-6
9. Hajmanoochehri, F. & Rabiee, E. (2015). FNAC accuracy in diagnosis of thyroid neoplasms considering all diagnostic categories of Bethesda reporting system; A single-institute experience. J Cytol, 32(4), 238-243
10. HirschandS, Maharjan, M. & Lakhey, M. (2013). Accuracy of fine needle aspiration cytology in diagnosis of thyroid swelling. Journal of pathology of Nepal, 3, 433-436.
11. Lalken, AG. & McCluskey, A. (2008). Clinical tests: Sensitivity and specificity. Continuing Education in Anesthesia, Critical care & pain J, 8(6)
12. Mudasal, B., Meallister, I., Causon, J. & Pyper, PC. (2006). Accuracy of fine needle aspiration cytology in diagnosis of thyroid swelling. The internet Journal of Endocrinology, 2, 1-4
13. Muratli, A., Erdogan, N., Sevim, S., Unal, I. & Serap Akyuz (2014). Diagnostic efficacy and importance of fine-needle aspiration cytology of thyroid nodules. J Cytol, 31(2), 73–78.
14. Naggada, H.A. & Khalil MIA (2003). Fine Needle Aspiration Cytology (FNAC) Technique as a diagnostic tool of tumors in the UMTH, Nigeria. Highland Medical Research Journal, 1(3), 28-30.
15. Polyzos, S.A. & Anastasilakis AD. (2009). Clinical complications following thyroid fine needle biopsy: a systemic review. Clin Endocrinol (Oxf), 71, 157-65.
16. Rabia, B., Mulazim, H., Shahzad, S. & Tahira, H. (2011). Comparison of fine needle aspiration cytology and thyroid scan in solitary thyroid nodule. Pathology Research International, article ID 754041, 9 pages.
17. Roman, S.A. (2003). Endocrine tumors: Evaluation of the thyroid nodule. Curr Opin Oncol, 15, 66–70.
18. Sharma, C. (2015). Diagnostic accuracy of fine needle aspiration cytology of thyroid and evaluation of discordant cases. Journal of the Egyptian National Cancer Institute, 3(27), 147-153
19. Skider, A., Mahfuzur, R. & Abul Khair M. (2012). Accuracy of fine needle aspiration cytology (FNAC) in the diagnosis of thyroid swellings. Journal of Dhaka National Medical College, 2(18).
20. Sinna, E. A. & Ezzat, N. (2012). Diagnostic accuracy of fine needle aspiration cytology in thyroid lesion. Journal of the Egyptian Cancer Institute, 24, 63-70.
21. Swamy, G. G., Madhuravani, S. & Swamy, G. M. (2011). Fine needle aspiration cytology- a reliable tool in the diagnosis of thyroid gland enlargements. Nepal Med Coll J, 13 (4) 289-92.
22. Tabaqchali, M. A., Hanson, J. M., Wadehra, V., Johnson, S. J. & Lennard, T. W. (2000). Thyroid aspiration cytology in Newcastle: a six year cytology/histology correlation study. Ann RCollSurgEngl, 82(3), 149-55.
تشخيص الخلايا - النسيجي لإصابات الغدة الدرقية (دراسة مقارنة)

تمنى مهدي المنتصر1 فاطمة طالب ثابت عبادل2 ومريم أحمد عبادل همام3

1. كلية الطب، قسم الباراكلينك، جامعة عدن.
2. كلية الطب، قسم العلوم المورفولوجية، جامعة عدن.
3. كلية الطب، قسم العلوم الأساسية، جامعة حضرموت.

DOI: https://doi.org/10.47372/ujnjas.2020.n1.a19

الم듭

فحص الخلايا بطريقة السحب بالإبرة يعد أهم تشخيص حالات المرضى المصابين بالعقدة الدرقية، ويشكل تقدم مهم في السنوات العشرين الأخيرة في تشخيص تقييم حالات مرضى الغدة الدرقية.

هدف الدراسة هو المقارنة بين نتائج الفحص الخلوي بالنسيج النسيجي لنسج الغدة الدرقية، وذلك لمعرفة وتحديد دقة الفحص الخلوي بالسحب بالإبرة. دراسة ارتجاعية ل80 نتيجة فحوصات لأمراض الغدة الدرقية التي تم تشخيصها بمستحق الطريقة بالفحص الخلوي بواسطة الفحص بالإبرة. فحص الأنسجة لكل حالة. جمعت الحالات من أرشيف مركز عدن التشخيصي في مدينة المنصورة بمحافظة عدن، خلال المدة 2012-2013. مواصفات حالات البحث: كل المرضى بغض النظر عن الجنس والعمر الذين يعانون مرض الغدة الدرقية وضخمو لكل الأفressive، المعايير المستجدة: 1. المرضى الذين يعانون من تكرار حدوث الورم السرطاني للعديد من الحالات أو تكرار الورم الخبيث. مرضى الخشخاش الذين خضعوا للفحص الخلوي وبعضهم نفس النسيجي. 3. المرضى الذين خضعوا للفحص النسيجي للفحص الشامل، نسبة الحالات المختارة للدراسة هي 80 حالة التي أخذت الفحص بمستحق الطريقتين، نسبة الحالات الحديقة بالفحص الخلوي 85% وحالات الأورام الخبيثة 15%. بينما بالنسبة للفحص النسيجي كانت نسبة الأمراض الحديقة 80% والخبيثة 20%. المرض الحميد الأكثر شيوعا هو تشخيم الغدة الدرقية بنسبة 63.75% بالفحص الخلوي ونسبة 56.25% بالفحص النسيجي. تليه الورم الدهني الحسي بنسبة 15% بالفحص الخلوي ونسبة 21.25% بالفحص النسيجي. بينما كان أقل شيوعا الاكتئاب المناعي للغدة الدرقية بنسبة 6.25% بالفحص الخلوي ونسبة 2.5% بالفحص النسيجي. بالنسبة للأمراض السرطانية وجدنا أن الورم الوحيد هو النسيج السكري الخبيث والورم الخبيث بنسبة 15% بالفحص الخلوي و20% بالفحص النسيجي. ملاحظة الإحصائيات أظهر أن حساسية الفحص الخلوي 96.9% والخصوصية 96.9% والقيمة التنبؤية الإيجابية 83.8% والقيمة التنبؤية السلبية 69% ودقة الفحص الخلوي 90.9%

من خلال دراستنا، نوصي أن استخدام الفحص الخلوي لإصابات الغدة الدرقية أظهر حساسيتهم المرتفعة وخصوصيتهم ودقة عالية في التشخيص وقد أنجبت نتائج فحص الخلايا قريبة جداً من نتائج فحص الأنسجة التأكيدية النهائية. نوصي أنه لابد من تطبيق التشخيص الخلوي كفحص روتيني قبل إجراء العمليات الجراحية.

الكلمات المفتاحية: إصابات الغدة الدرقية الحميدة، إصابات الغدة الدرقية الخبيثة، التشخيص الخلوي، التشخيص النسيجي.