Letter to the Editor

Herschel/HIFI discovery of interstellar chloronium (H\(_2\)Cl\(^+\))

D. C. Lis\(^1\), J. C. Pearson\(^13\), D. A. Neufeld\(^3\), P. Schilke\(^8,12\), H. S. P. Müller\(^12\), H. Gupta\(^13\), T. A. Bell\(^1\), C. Comito\(^8\), T. G. Phillips\(^1\), E. A. Bergin\(^2\), C. Ceccarelli\(^19\), P. F. Goldsmith\(^13\), G. A. Blake\(^1\), A. Bacmann\(^6,23\), A. Baudry\(^23\), M. Benedettini\(^24\), A. Benz\(^27\), J. Black\(^36\), A. Boogert\(^16\), S. Bottinelli\(^4,5\), S. Cabrit\(^25\), P. Caselli\(^26\), A. Castets\(^6\), E. Caux\(^4,5\), J. Cernicharo\(^7\), C. Codella\(^27\), A. Coutens\(^4,5\), N. Crimier\(^6,7\), N. R. Crockett\(^2\), F. Daniel\(^7,9\), K. Demyk\(^4,5\), C. Dominik\(^28,29\), M.-L. Dubernet\(^10,11\), M. Emprechtinger\(^1\), P. Encrenaz\(^25\), E. Falgarone\(^9\), A. Fuente\(^30\), M. Gerin\(^9\), T. F. Giesen\(^12\), J. R. Goicoechea\(^7\), F. Helmich\(^20\), P. Hennebelle\(^9\), Th. Henning\(^15\), E. Herbst\(^14\), P. Hily-Blant\(^6\), Å. Hjalmarson\(^38\), D. Hollenbach\(^39\), T. Jack\(^23\), C. Joblin\(^4\), W. D. Langer\(^13\), B. Larsson\(^41\), J. Le Bourlot\(^42\), F. Le Petit\(^42\), D. Li\(^13\), R. Liseau\(^36\), S. D. Lord\(^16\), A. Lorenzani\(^24\), S. Mare\(^6\), P. G. Martin\(^17\), G. J. Melnick\(^18\), K. M. Menten\(^8\), P. Morris\(^13\), J. A. Murphy\(^19\), Z. Nagy\(^21\), B. Nisini\(^3\), V. Ossenkopf\(^12,20\), S. Pacheco\(^6\), L. Pagani\(^25\), B. Parise\(^8\), M. Périalta\(^8\), R. Plume\(^21\), S.-L. Qin\(^12\), E. Roueff\(^42\), M. Salez\(^25,44\), A. Sandqvist\(^33\), P. Saracco\(^32\), S. Schlemmer\(^12\), K. Schuster\(^13\), R. Snell\(^22\), J. Stutzki\(^12\), A. Tielens\(^34\), N. Trappe\(^19\), F. S. van der Tak\(^21,46\), M. H. D. van der Veld\(^21,46\), E. van Dishoeck\(^34\), C. Vastel\(^35\), S. Viti\(^35\), V. Wakelam\(^23\), A. Walters\(^4,5\), S. Wang\(^2\), F. Wyrowski\(^8\), H. W. Yorke\(^13\), S. Yu\(^13\), J. Zmuidzinas\(^1\), Y. Delorme\(^44\), J.-P. Desbat\(^35\), R. Güsten\(^8\), J.-M. Krieger\(^44\), and B. Delforge\(^44\)

(Affiliations are available on page 5 of the online edition)

Received 9 May 2010 / Accepted 14 June 2010

Abstract

We report the first detection of chloronium, H\(_2\)Cl\(^+\), in the interstellar medium, using the HIFI instrument aboard the Herschel Space Observatory. The 2\(_{12}-1\(_{01}\) lines of ortho-H\(_3\)Cl\(^+\) and ortho-H\(_3\)Cl\(^3\) are detected in absorption towards NGC 6334I, and the 1\(_{11}-0\(_{00}\) transition of para-H\(_3\)Cl\(^+\) is detected in absorption towards NGC 6334I and Sgr B2(S). The H\(_2\)Cl\(^+\) column densities are compared to those of the chemically-related species HCl. The derived HCl/H\(_2\)Cl\(^+\) column density ratios, \~1–10, are within the range predicted by models of diffuse and dense photon dominated regions (PDRs). However, the observed H\(_2\)Cl\(^+\) column densities, in excess of 10\(^4\) cm\(^{-2}\), are significantly higher than the model predictions. Our observations demonstrate the outstanding spectroscopic capabilities of HIFI for detecting new interstellar molecules and providing key constraints for astrochemical models.

Key words. astrochemistry – line: identification – ISM: abundances – ISM: molecules – molecular processes – submillimetre: ISM

1. Introduction

The halogen elements, fluorine and chlorine, form hydrides that are very strongly bound: hydrogen fluoride is the only diatomic hydride, and HCl is the only diatomic hydride cation, with a dissociation energy exceeding that of molecular hydrogen. Drawing upon earlier work by Jura (1974), Dalgarno et al. (1974), van Dishoeck & Black (1986), Blake et al. (1986), Schilke et al. (1995), Federman et al. (1995), and Amin (1996), Neufeld & Wolfire (2009; hereafter NW09) have recently carried out a theoretical study of the chemistry of chlorine-bearing molecules, in both diffuse and dense molecular clouds. In diffuse interstellar gas clouds, the dominant ionization state of every element is determined by its ionization potential. Chlorine, with an ionization potential slightly lower than that of hydrogen, is predominantly singly-ionized. The Cl\(^+\) ion can react exothermically with H\(_2\), the dominant molecular constituent of the interstellar medium (ISM):

\[
\text{Cl}^+ + \text{H}_2 \rightarrow \text{HCl}^+ + \text{H}. \tag{1}
\]

The product of this reaction is the reactive HCl\(^+\) ion, which undergoes further reaction with H\(_2\) to form H\(_2\)Cl\(^+\):

\[
\text{HCl}^+ + \text{H}_2 \rightarrow \text{H}_2\text{Cl}^+ + \text{H}. \tag{2}
\]

The H\(_2\)Cl\(^+\) molecule does not react with H\(_2\), and is destroyed by dissociative recombination and proton transfer to CO, both of which are sources of hydrogen chloride, HCl.

Prior to the launch of Herschel, the H\(_3\)Cl\(^+\) and H\(_3\)Cl isotopologues were the only chlorine-containing molecules to have been detected in the ISM (e.g., Blake et al. 1985; Zmuidzinas et al. 1995; Schilke et al. 1995; Salez et al. 1996; see also recent HIFI observations of Cernicharo et al. 2010). However, predictions for the chemistry of Cl-bearing interstellar molecules

\footnote{1 The metal halides NaCl, KCl, and AlCl have been detected in the circumstellar envelope of the evolved star IRC+10216, with abundances that reflect the thermochemical equilibrium established within the stellar photosphere (Cernicharo & Guélin 1987).}
(NW09) have identified chloronium, \(\text{H}_2\text{Cl}^+ \), as a relatively abundant species that is potentially detectable. \(\text{H}_2\text{Cl}^+ \) is predicted to be most abundant in those environments where the ultraviolet radiation is strong: in diffuse clouds, or near the surfaces of dense clouds that are illuminated by nearby O and B stars. In such environments, the photoionization of atomic chlorine leads to a large abundance of Cl\(^+\) ions that can form \(\text{HCl}^+ \) and \(\text{H}_2\text{Cl}^+ \) through reactions (1) and (2). A secondary abundance peak occurs in dense, shielded regions; here HCl becomes a significant reservoir of gas-phase chlorine, and can produce \(\text{H}_2\text{Cl}^+ \) through reaction with \(\text{H}^+ \):

\[
\text{HCl} + \text{H}_2^+ \rightarrow \text{H}_2\text{Cl}^+ + \text{H}_2. \tag{3}
\]

However, the chlorine depletion is typically large within such regions (Schilke et al. 1995) and thus the overall \(\text{H}_2\text{Cl}^+ \) abundance is rather small.

In diffuse molecular clouds of density \(n_H = 10^{2.5} \text{ cm}^{-3} \), \(\text{H}_2 \) column density \(\gtrsim 10^{20} \text{ cm}^{-2} \), and \(\chi_{\text{UV}} \) in the range 1–10 (where \(\chi_{\text{UV}} \) is the UV radiation field normalized with respect to the mean interstellar value, Draine 1978), the NW09 model predicts \(\text{H}_2\text{Cl}^+ \) column densities \(\lesssim 3 \times 10^{14} \text{ cm}^{-2} \). In dense PDRs (\(n_H = 10^5 \text{ cm}^{-3} \)) illuminated by strong radiation fields (\(\chi_{\text{UV}} > 10^2 \)), the predicted \(\text{H}_2\text{Cl}^+ \) column densities are \(\sim 10^{15} \text{ cm}^{-2} \).

In this Letter, we report the first detection of chloronium towards NGC 6334I and Sgr B2(S), obtained using the HIFI instrument (de Graauw et al. 2010) aboard the Herschel Space Observatory (Pilbratt et al. 2010). NGC 6334 is a luminous and relatively nearby (1.7 kpc) molecular cloud/Hi region complex containing several concentrations of massive stars at various stages of evolution. The far-infrared source “I”, located at the northeastern end of the complex, is associated with a NIR cluster of bolometric luminosity of \(2 \times 10^5 \text{ L}_\odot \) (Sandell 2000), with four embedded compact millimeter continuum sources (Hunter et al. 2006). Sgr B2(S) is a strong millimeter continuum source with a much less complex hot core emission spectrum, as compared to its better known neighbor Sgr B2(M). This makes it a prime candidate for absorption studies, probing the entire sight-line between the Sun and the Galactic center, with clouds in the Orion, Sagittarius, and Scutum spiral arms easily identified at separate velocities (e.g., Greaves & Nyman 1996).

2. Observations

HIFI observations presented here were carried out between 2010 March 1 and March 23, using the dual beam switch (DBS) observing mode, as part of guaranteed and open time key programs CHESS: Chemical Herschel Spectral Surveys, HEXOS: Herschel/HIFI observations of EXtra-Ordinary Sources: The Orion and Sagittarius B2 starforming regions, and HOP: Herschel oxygen program. The source coordinates are: \(\alpha_{2000} = 17^h20^m53.32^s \) and \(\delta_{2000} = -35^\circ 46' 58.5'' \) for NGC 6334I, and \(\alpha_{2000} = 17^h47^m20.3^s \) and \(\delta_{2000} = -28^\circ23'43.0'' \) for Sgr B2(S). The DBS reference beam positions lie approximately 3' east and west (i.e. perpendicular to the roughly north-south elongation of the two sources). Because the DBS mode alternates between two reference positions, separated by 6' on the sky, we used the Level 1 data to compute a difference spectrum between the two reference positions to check for possible contamination in the reference beams; we see no evidence for emission or absorption in such a difference spectrum. We used the HIFI wide band spectrometer (WBS) providing a spectral resolution of 1.1 MHz (\(\sim 0.4 \text{ km s}^{-1} \) at 780 GHz) over a 4 GHz IF bandwidth. The spectra presented here are averages of the H and V polarizations, with equal weighting, reduced using HIPE (Ott 2010) with pipeline version 2.6. The resulting Level 2 DSB spectra were exported to the FITS format for a subsequent data reduction and analysis using the IRAM GILDAS package (http://iram.fr/IRAMFR/GILDAS).

The band 2b, 1b and 1a spectral scans of NGC 6334I consist of double sideband spectra (DSB) with a redundancy of 8, which gives observations of a lower or upper sideband frequency with 8 different settings of the local oscillator (LO). The Sgr B2(S) data consist of 8 LO settings with a high redundancy of 12, centered near the frequency of the 487.2 GHz line of \(\text{O}_2 \). The observations were fine-tuned so that 4 of the 8 LO settings cover the frequency of the p-\(\text{H}_2\text{Cl}^+ \) line. These observing modes allow for the deconvolution and isolation of a single sideband spectrum (Comito & Schilke 2002). We applied the standard deconvolution routine within CLASS. All NGC 6334I data presented here are deconvolved single sideband spectra, including the continuum. The HCl data in Sgr B2(S) were obtained using the DBS single point observing mode with 3 shifted LO settings that were averaged to produce the final spectrum. The HIFI beam size at 485 GHz and 780 GHz is 44'' and 30'', respectively, with main beam efficiency of \(\sim 0.68 \).

3. Spectroscopy of \(\text{H}_2\text{Cl}^+ \)

The \(\text{H}_2\text{Cl}^+ \) ion is a closed-shell molecule, iso-electronic with \(\text{H}_2\text{S} \). Like \(\text{H}_2\text{S} \) and water, \(\text{H}_2\text{Cl}^+ \) is a highly asymmetric top, exhibiting a b-type rotational spectrum. Its fairly large dipole moment, calculated ab initio to be 1.89 D (Müller et al. 2005), about 70% larger than that of HCl (1.109 D; de Leluw & Dymanson 1973), results in strong lines in the THz range. Araki et al. (2001) measured rotational spectra of \(\text{H}_3\text{Cl}^+ \), \(\text{H}_3\text{Cl}^+ \), and HDCI\(^+ \) below 500 GHz. The accurate spectroscopic constants derived from these measurements, including electric quadrupole coupling parameters, yield a central bond angle in \(\text{H}_2\text{Cl}^+ \) of \(\sim 94.2^\circ \) (similar to that of \(\text{H}_2\text{S} \)), \(92.2^\circ \) (Burrus & Gordy 1953), and permit the prediction of the ground state ortho transitions of \(\text{H}_2\text{Cl}^+ \) and \(\text{H}_3\text{Cl}^+ \) near 780 GHz to well within 1 MHz (see Table 1).

4. Results

4.1. NGC 6334I

Strong absorption at the frequency of the \(2_12-1_01 \) transition of o-\(\text{H}_2\text{S} \) at 781.6 GHz in NGC 6334I (Fig. 1a) has provided the initial identification. Fitting the o-\(\text{H}_2\text{Cl}^+ \) \(2_12-1_01 \) hyperfine structure (HFS) gives a line velocity of \(-1.7 \text{ km s}^{-1} \) for the strongest hyperfine component and a line width of 11.6 km s\(^{-1} \). The OH absorption profiles (Brooks & Whiteoak 2001) reveal two molecular clouds located along the line of sight to NGC 6334, one with velocities extending from \(-15 \) to \(2 \text{ km s}^{-1} \), and one with a well-defined velocity near 6 km s\(^{-1} \). The hot core emission lines peak at about \(-6.5 \text{ km s}^{-1} \) (e.g., Cl\(^18 \) 7–6 in the same band; HCl, Sect. 4.1). Water and CH spectra towards NGC 6334I show multiple velocity components, including absorption near 0 km s\(^{-1} \), close to the \(\text{H}_3\text{Cl}^+ \) velocity (Emprechtinger et al. 2010; van der Wiel et al. 2010). The chloronium line velocity in NGC 6334I is in good agreement with the \(\text{H}_2\text{O}^+ \) absorption velocity, also a tracer of diffuse gas, when \(\text{H}_2\text{O}^+ \) frequencies of Mürtz et al. (1998) are used (see Schilke et al. 2010 for a discussion of the \(\text{H}_2\text{O}^+ \) line frequencies). The large \(\text{H}_2\text{Cl}^+ \) line width may be due to blending of multiple absorption components. However, the \(\text{H}_2\text{O}^+ \) line width is also quite large, about 8 km s\(^{-1} \).

The corresponding line of o-\(\text{H}_2\text{Cl}^+ \) is also detected (Fig. 1b). However, the spectrum is contaminated by interfering emission of dimethyl ether (light-blue line in Fig. 1b), one of
The most abundant “weeds” in NGC 6334I. The contamination is subtracted by using an LTE model that fits profiles of nearby dimethyl ether lines with similar upper level energies (Endres et al. 2009). The resulting o-H$_3$Cl$^+$ column density is thus 1.7 \times 1013 cm$^{-2}$ and the ortho-to-para ratio is 3.2, consistent with the statistical weight ratio. For an excitation temperature of 2.7 K, the ortho and para H$_3$Cl$^+$ column densities are approximately 10% and 20% lower, respectively. The H$_3$Cl$^+$ spectra are all optically thin (line center optical depth of \sim0.2 for the ortho line). We derive an H$_3^2$Cl$^+$/H$_3^3$Cl$^+$ ratio of 3, close to the terrestrial ratio of 3.1.

We have modelled the H$_3^5$Cl and H$_3^7$Cl emission spectra assuming a source size of 10$''$ (approximate size of the cluster of compact continuum sources seen in the SMA image of Hunter et al. 2006). Under this assumption, a least squares fit to the H$_3^5$Cl spectrum gives an excitation temperature of 31 K and a column density of 4.0 \times 1014 cm$^{-2}$. For H$_3^7$Cl, we derive an excitation temperature of 21 K and a column density of 1.5 \times 1014 cm$^{-2}$; the resulting H$_3^5$Cl/H$_3^7$Cl ratio is 2.7. However, HCl column densities and the isotopic ratio depend strongly on the assumed source size (for a source size of 5$''$, the derived isotopic ratio is 4.1). The 350 μm continuum flux density toward NGC 6334I is 1430 Jy in a 9$''$ beam (CSO/SHARC II; Dowell et al., private comm.) Assuming a dust temperature of 100 K (Sandell 2000) and a grain emissivity $\kappa_{350} = 0.1$ cm2 g$^{-1}$, we derive an H$_2$ column density of 1.2 \times 1015 cm$^{-2}$, which implies an H$_3^5$Cl abundance of \sim1.7 \times 10$^{-10}$ with respect to H nuclei. The lines of both HCl isotopologues are optically thick, with line center optical depths of \sim0.2 \times 1014 cm$^{-2}$, respectively. The HCl HFS is resolved spectrally using HIFI WBS, allowing for the determination of the line opacity.

4.2. Sgr B2(S)

The p-H$_3^5$Cl$^+$ spectrum towards Sgr B2(S) (Fig. 2, upper panel) shows strong absorption near the systemic velocity of the Sgr B2 envelope (\sim62 km s$^{-1}$) and two additional deep absorption components between 0 and 20 km s$^{-1}$. In addition, shallow absorption is seen over a broad range of velocities down to \sim100 km s$^{-1}$, in agreement with the H I absorption spectrum towards the nearby source Sgr B2(M) (magenta line in Fig. 2). Both H$_3^5$Cl and H$_3^7$Cl (Fig. 2, lower panel) show deep absorption at the envelope velocity and a shallow absorption between 0 and 20 km s$^{-1}$.

H$_3^7$Cl$^+$ spectra in NGC 6334I can be compared to those of the chemically related species HCl (Fig. 1d and 1e). The lines of H$_3^5$Cl and H$_3^7$Cl are detected in emission at the hot core velocity (\sim6.3 km s$^{-1}$), with narrow line widths of 4.1 and 3.3 km s$^{-1}$, respectively. The HCl HFS is resolved spectrally using HIFI WBS, allowing for the determination of the line opacity.

We have modelled the H$_3^5$Cl$^+$ spectra assuming the same excitation temperature of 5 K for all hyperfine components. A low value of the excitation temperature is justified given the high spontaneous emission rates and critical densities of the transitions considered here and it provides a lower limit for the molecular column densities derived from absorption measurements. An HFS fit to the $2_{12} - 1_{01}$ transition of o-H$_3^5$Cl$^+$ (green line in Fig. 1a) gives an o-H$_3^5$Cl$^+$ column density of 1.3 \times 1013 cm$^{-2}$, under the assumption that the absorption completely covers the continuum and is not concentrated in small clumps. A fit to the 1_{11}–0_{00} spectrum of p-H$_3^5$Cl$^+$, with all parameters other than the column density fixed, gives a p-H$_3^5$Cl$^+$ column density of 4.0 \times 1013 cm$^{-2}$. The total H$_3^5$Cl$^+$ column density is thus \sim1013 cm$^{-2}$ and the ortho-to-para ratio is 3.2, consistent with the statistical weight ratio. For an excitation temperature of 2.7 K, the ortho and para H$_3$Cl$^+$ column densities are approximately 10% and 20% lower, respectively. The H$_3$Cl$^+$ spectra are all optically thin (line center optical depth of \sim0.2 for the ortho line). We derive an H$_3^2$Cl$^+$/H$_3^3$Cl$^+$ ratio of 3, close to the terrestrial ratio of 3.1.
and 20 km s$^{-1}$. Similarly to NGC 6334I, we see velocity offsets of order a few km s$^{-1}$ between HCl and H$_2$Cl$^+$ components.

Assuming a 5 K excitation temperature (the same as for NGC 6334I) and an ortho/para ratio of 3, we derive H$_2$Cl$^+$ column densities of 3.4 \times 1013 and 2.2 \times 1013 cm$^{-2}$ for the 0 and 62 km s$^{-1}$ components, with corresponding H35Cl column densities of 4 \times 1013 and 2 \times 1013 cm$^{-2}$. The H35Cl/H37Cl ratio is \sim3.3 in both components. We estimate the uncertainties in our molecular column density estimates to be of order a factor of 2.

To derive the hydrogen column density in the foreground gas towards Sgr B2(S), we use the method employed in Lis et al. (2001) to analyze the O I absorption towards Sgr B2(M), based on H I and 13CO absorption data. We assume that the foreground absorption is extended and column densities are the same towards Sgr B2(M) and (S). We derive a total hydrogen nuclei column density of \sim2 \times 1022 cm$^{-2}$ in the atomic and molecular components in the velocity range \sim10 to 20 km s$^{-1}$ (with a factor of 2 uncertainty). The corresponding chlorine content, in the form of H$_2$Cl$^+$ and HCl, is 7 \times 1013 cm$^{-2}$, implying a Cl/H ratio of \sim4\times10$^{-7}$. This can be compared to the values measured in the UV in diffuse clouds (e.g., Sonnentrucker et al. 2006), which are in the range 3 \times 10$^{-8}$ to \sim4\times10$^{-7}$. Therefore the high H$_2$Cl$^+$ column densities we derive here are consistent with the overall chlorine budget, leaving plenty of room for atomic Cl and depletion on dust grains.

5. Discussion
Our estimates of the H$_2$Cl$^+$ column densities towards NGC 6334I and Sgr B2(S), in excess of 1013 cm$^{-2}$, are significantly higher than those expected for a single dense or diffuse PDR viewed at normal incidence. This might point to some deficiency in the models. Alternatively, a significant enhancement in the absorbing column density could result if the normal to the irradiated surface were inclined relative to the sight-line, or indeed if multiple PDRs were present along the sight-line, particularly if the radiation field is enhanced, as may be likely for the multiple absorption components seen towards Sgr B2. Similar discrepancies between models and observations are seen for other reactive ions in massive starforming regions (e.g., CO$^+$ toward AFGL 2591; Bruderer et al. 2009).

We derive an HCl/H$_2$Cl$^+$ ratio of \sim10 in NGC 6334I and the Sgr B2 envelope (assuming that in the case of NGC 6334I the H$_2$Cl$^+$ column density on the back side is the same as that derived in front of the continuum source from our absorption measurements). This is well within the range predicted for dense PDRs (up to \sim100 for densities above 1010 cm$^{-3}$). The HCl/H$_2$Cl$^+$ ratio derived in the foreground gas towards Sgr B2(S) at velocities 0–20 km s$^{-1}$, \sim1, is also consistent with predictions of diffuse cloud models.

While a detailed analysis of chlorine chemistry in these and other sources that have been or will be observed using HIFI will be presented in a forthcoming paper, this work clearly demonstrates the outstanding spectroscopic capabilities of HIFI in the search for new interstellar molecules, particularly hydrides, and in providing robust constraints for astrochemical models of the interstellar medium.

References
Amin, M. Y. 1996, EMP, 73, 133
Araki, M., Furuya, T., & Saito, S. 2001, J. Mol. Spec., 210, 132
Blake, G. A., Keene, J., & Phillips, T. G. 1985, ApJ, 295, 501
Blake, G. A., Anachich, V. G., & Huntress, W. T. 1986, ApJ, 300, 415
Brooks, J. K., & Whiteoak, J. B. 2001, MNras, 320, 465
Bruderer, S., Benz, O. A., Doty, S. D., et al. 2009, ApJ, 700, 872
Burrus, Jr., C. A., Daniel, F., & Gordy, W. 1953, Phys. Rev., 92, 274
Cernicharo, J., & Guélin, M. 1987, A&A, 183, L10
Cernicharo, J., Gouchoechea, J. R., Daniel, F., et al. 2010, A&A, 518, L115
Comito, C., & Schilke, P. 2002, A&A, 395, 357
Dalgarno, A., de Jong, T., Oppenheimer, M., & Black, J. 1974, ApJ, 192, L37
de Graauw, Th., Helmich F. P., Phillips, T. G., et al. 2010, A&A, 518, L6
de Leluw, F. H., & Dymanus, A. 1973, J. Mol. Spec., 48, 22
Draine, B. T. 1978, ApJS, 36, 595
Emprechtinger, M., Lis, D. C., Bell, T. et al. 2010, A&A, 521, L28
Endres, C. P., Drouin, B. J., Pearson, J. C., et al. 2009, A&A, 504, 635
Federman, S. R., Cardell, Jason A., van Dishoeck, E. F., et al. 1995, ApJ, 445, 92
Federman, S. R., Cardell, Jason A., van Dishoeck, E. F., et al. 1995, ApJ, 445, 325
Garwood, R. W., & Dickey, J. M. 1989, ApJ, 338, 841
Greaves, J. S., & Nyman, L.-A. 1996, A&A, 305, 950
Hunter, T. R., Brogan, C. L., Megeath, S. T., et al. 2006, ApJ, 649, 888
Jura, M. 1974, ApJ, 190, L33
Lis, D. C., Keene, J., Phillips, T. G., et al. 2001, ApJ, 561, 823
Müller, H. S. P., Thorwirth, S., Roth, D. A., & Winnewisser, G. 2001, A&A, 370, L49
Müller, H. S. P., Schlöder, F., Stutzki, J., & Winnewisser, G. 2005, J. Mol. Struct., 742, 215
Müritz, P., Zink, L. R., Evison, K. M., & Brown, J. M. 1998, J. Chem. Phys., 109, 9744
Neufeld, D. A., & Wolfire, M. G. 2000, ApJ, 706, 1594 (NW09)
Ott, S. 2010, in Astronomical Data Analysis Software and Systems XIX, ed. Y. Mizumoto, K.-I. Morita, & M. Oishi, ASP Conf. Ser., in press
Pickett, H. M., Poynter, R. L., Cohen, E. A., et al. 1998, J. Quant. Spectrosc. Radiat. Transf., 60, 883
Pilbratt, G. L., Riedinger, J. R., Passvogel, T., et al. 2010, A&A, 518, L1
Salez, M., Ferking, M. A., & Langer, W. D. 1996, ApJ, 467, 708
Sandell, G. 2000, A&A, 358, 242
Schilke, P., Phillips, T. G., & Wang, N. 1995, ApJ, 441, 334
Schilke, P., Comito, C., Müller, H. S. P., et al. 2010, A&A, 521, L11
Sonnentrucker, P., Friedman, S. D., & York, D. O. 2006, ApJ, 650, L115
van der Wiel, M. H. D., van der Tak, F. F. S., Lis, D. C., et al. 2010, A&A, 521, L43
van Dishoeck, E. F., & Black, J. H. 1986, ApJS, 62, 109
Zmuidzinas, J., Blake, G. A., Carlstrom, J., et al. 1995, ApJ, 447, L125

Fig. 2. Spectra of p-H35Cl$^+$ 1l_1–0 (upper panel), and H35Cl and H37Cl 1–0 (lower panel) towards Sgr B2(S). The H35Cl spectrum has been shifted up by 0.5 K. The magenta line in the upper panel shows the H I absorption spectrum towards Sgr B2(M) (from Garwood & Dickey 1989).
Table 1. Frequencies of the H_2Cl^+ transitions observed.

Transition	Frequency (MHz)	Error (MHz)	A_i (s$^{-1}$)	E_i (cm$^{-1}$)
$1_{11} - 0_{00}$	485413.427	0.029	0.00159	0
5/2 \rightarrow 3/2	485417.670	0.015	0.00159	0
1/2 \rightarrow 3/2	485420.796	0.057	0.00159	0
$2_{12} - 1_{01}$	781609.303	0.063	0.00179	14.1
3/2 \rightarrow 1/2	781611.062	0.062	0.00248	14.1
5/2 \rightarrow 3/2	781622.721	0.063	0.00417	14.1
7/2 \rightarrow 5/2	781626.794	0.060	0.00596	14.1
1/2 \rightarrow 3/2	781628.554	0.061	0.00496	14.1
3/2 \rightarrow 1/2	781635.214	0.062	0.00318	14.1

$H^3\text{Cl}^+$

Transition	Frequency (MHz)	Error (MHz)	A_i (s$^{-1}$)	E_i (cm$^{-1}$)
$2_{12} - 1_{01}$	780037.315	0.069	0.00178	14.1
3/2 \rightarrow 1/2	780038.760	0.066	0.00247	14.1
5/2 \rightarrow 3/2	780047.903	0.066	0.00414	14.1
7/2 \rightarrow 5/2	780051.197	0.062	0.00596	14.1
1/2 \rightarrow 3/2	780052.642	0.065	0.00493	14.1
3/2 \rightarrow 1/2	780057.820	0.068	0.00316	14.1

Notes. Frequencies and spontaneous emission coefficients have been calculated from the constants derived by Araki et al. (2001), see also CDMS.

Acknowledgements. HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from United States under the leadership of SRON Netherlands Institute for Space Research, Caltech, Pasadena, CA 91109, USA. Research, Groningen, The Netherlands and with major contributions from United States under the leadership of SRON Netherlands Institute for Space Research, Caltech, Pasadena, CA 91109, USA. According to the United States under the leadership of SRON Netherlands Institute for Space Research, Caltech, Pasadena, CA 91109, USA. Research, Groningen, The Netherlands and with major contributions from United States under the leadership of SRON Netherlands Institute for Space Research, Caltech, Pasadena, CA 91109, USA. According to the United States under the leadership of SRON Netherlands Institute for Space Research, Caltech, Pasadena, CA 91109, USA. Research, Groningen, The Netherlands and with major contributions from United States under the leadership of SRON Netherlands Institute for Space Research, Caltech, Pasadena, CA 91109, USA.