RESEARCH ARTICLE

Genome-wide association analyses of quantitative disease resistance in diverse sets of soybean \([\textit{Glycine max} \text{ (L.) Merr.}]\) plant introductions

William Rolling\(^1\), Rhiannon Lake\(^2\)*, Anne E. Dorrance\(^1,3\), Leah K. McHale\(^{1,2} \text{*}\)

\(1\) Center for Applied Plant Science and Center for Soybean Research, The Ohio State University, Columbus, Ohio, United States of America, \(2\) Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America, \(3\) Department of Plant Pathology, The Ohio State University, Wooster, Ohio, United States of America

Current address: Corteva Agriscience, Napoleon, Ohio, United States of America

* mchale.21@osu.edu

Abstract

\textit{Phytophthora sojae} is one of the costliest soybean pathogens in the US. Quantitative disease resistance (QDR) is a vital part of Phytophthora disease management. In this study, QDR was measured in 478 and 495 plant introductions (PIs) towards \(P. \textit{sojae}\) isolates OH.121 and C2.S1, respectively, in genome-wide association (GWA) analyses to identify genetic markers linked to QDR loci (QDRL). Populations were generated by sampling PIs from the US, the Republic of Korea, and the full collection of PIs maintained by the USDA. Additionally, a meta-analysis of QDRL reported from bi-parental studies was done to compare past and present findings. Twenty-four significant marker-trait associations were identified from the 478 PIs phenotyped with OH.121, and an additional 24 marker-trait associations were identified from the 495 PIs phenotyped with C2.S1. In total, 48 significant markers were distributed across 16 chromosomes and based on linkage analysis, represent a total of 44 QDRL. The majority of QDRL were identified with only one of the two isolates, and only a region on chromosome 13 was consistently identified. Regions on chromosomes 3, 13, and 17 were identified in previous GWA-analyses and were re-identified in this study. Five QDRL co-localized with \(P. \textit{sojae}\) meta-QDRL identified from QDRL reported in previous biparental mapping studies. The remaining regions represent novel QDRL, in the soybean-\(P. \textit{sojae}\) pathosystem and were primarily identified in germplasm from the Republic of Korea. Overall, the number of loci identified in this study highlights the complexity of QDR to \(P. \textit{sojae}\).

Introduction

Phytophthora root and stem rot \([1]\) is an economically significant disease of soybean \([\textit{Glycine max} \text{ (L.) Merr.}]\). Infection occurs under favorable environmental conditions for disease...
development, including saturated soils and temperatures around 25 °C [2–4]. Under these conditions, zoospores of *P. sojae* chemotactically swim towards soybean roots [5,6]. Successful infection of susceptible plants results in seed rot and damping off at early growth stages, and wilting, stem lesions, and plant death at later growth stages. Genetic resistance is considered the most effective strategy for preventing or reducing the impact of Phytophthora diseases [4,7].

Soybean-breeding programs have relied on resistance conferred by single, dominantly inherited Resistance to *Phytophthora sojae* (*Rps*)-genes. More than 30 *Rps*-genes/alleles have been mapped (S1 Table) [8–25]. The effectiveness of *Rps*-mediated resistance is limited as these genes only confer immunity towards specific races of *P. sojae*. Over time this results in selection within pathogen populations, leading to adaptation [3,4] and limited *Rps*-gene life-spans of 8–20 years [26]. A recent survey completed in the North Central region of the US demonstrated that none of the deployed *Rps*-genes confer resistance to all *P. sojae* isolates, with field populations having complex virulence patterns [27].

Quantitative disease resistance (QDR) is an additional form of genetic resistance, functioning through the action of multiple genes each conferring a portion of the overall phenotype [28–30]. Though QDR does not confer complete immunity, the lack of race-specificity is predicted to place less selection on pathogen populations; thus, QDR is expected to be more durable than race-specific resistance [31–33]. For example, wheat growers have used QDR for stripe and leaf rust resistance since the early 20th century, with no observed increase in pathogen virulence [34]. Similarly, QDR for the rice pathogen *Magnaporthe oryzae* contributed by *Pi21* has conferred effective resistance for over a century [35]. Used in combination, QDR can also increase the durability of *Resistance*-gene (*R*-gene) mediated resistance as highlighted by examples of pepper-potato virus Y [36] and root-knot nematode pathosystems of potato [3,37].

In the soybean-*P. sojae* pathosystem, QDR has also played an important role in disease resistance breeding [3]. QDR protects soybean yields when *Rps*-gene(s) are ineffective and the environment is conducive to disease [7,38]. Breeding efforts to introduce QDR (and other traits) for cultivar development involve large populations. Field testing can be misleading as the pathotypes of *P. sojae* populations within fields are highly variable, the presence of an *Rps*-gene could mask the effects of QDR [39], and QDR is not expressed within the first five days following germination [40]. Marker-assisted selection (MAS) can provide an alternative method for selecting cultivars with higher levels of QDR. Thus, studies to map the genetic positions of QDR can be applied to increase the efficiency of selection for these traits via MAS [41].

Numerous biparental mapping studies identified QDR loci (QDRL) towards *P. sojae* in US cultivars Conrad, Sloan, and V71-370 [42–48]. Recently, the soybean nested associated mapping populations were used to study *P. sojae* resistance, identifying four QDRL [49]. In addition to US cultivars, QDRL have been mapped in landraces originating from China and the Republic of Korea (South Korea, SK) using biparental mapping populations derived from crosses with eight accessions [50–54]. The majority of these mapping studies identify several QDRL within each population; most were small-effect loci explaining less than 10% of the variation (S2 Table).

Mapping studies have also been completed using genome-wide association (GWA) analyses. This includes a study of 797 plant introductions (PIs) from SK [55] which had previously been shown to be a source of *Rps*-genes and high levels of QDR against *P. sojae* [56], 175 Chinese soybean breeding lines [57], and 279 breeding lines from the Yangtze-Huai Chinese breeding program [58]. Recently, a collection of 169 Brazilian cultivars was used to identify QDRL in regional germplasm [59]. Similar to loci identified by biparental mapping, these GWA studies identified small-effect QDRL.
Although soybean growers deploy QDR to *P. sojae* in the US [3], US germplasm has never been evaluated in a GWA analysis for QDR to *P. sojae*. A population derived from US germplasm could be useful in identifying alleles in germplasm most adapted for the region. Though alleles from adapted germplasm may be easier to introgress or maintain in elite cultivars, identifying novel QDRL from diverse germplasm remains a crucial aspect of resistance breeding. Thus, the objective of the current research was to complete genome-wide association (GWA) analyses by sampling US, SK, and the full diversity of the USDA soybean PI collection. Two isolates were used to assay QDR because *P. sojae* is diverse [27] and previous studies have mapped different QDRL depending on the isolate [47,48].

We phenotyped 547 (495 used in GWA analysis) PIs for QDR using isolate C2.S1 of *P. sojae* and also measured QDR in a different set of 549 PIs (478 used in GWA analysis) with the second isolate OH.12108.6.3 (OH.121) of *P. sojae*. In total, 48 SNPs associated with QDR to *P. sojae* were identified and consolidated into 44 QDRL, with 21 QDRL identified with OH.121 and 23 QDRL identified with C2.S1. In addition to GWA analyses, we completed a meta-QDRL analysis to consolidate previous results and identify any colocalization between the loci identified in this study by GWA analysis and those QDR previously identified from biparental mapping studies. The 44 QDRL reported here represent a mixture of both novel QDRL and those that confirm results of previous mapping studies of this complex pathosystem.

Materials and methods

Genotypic data

We used publically available genotypic data from the SoySNP50K iSelect BeadChip [60] downloaded from Soybase [61] (www.soybase.org/snps). In total, 42,509 SNP data were available for 20,087 PIs. Monomorphic markers, markers with > 5% missing data, and markers with a minor allele frequency of < 5% were removed prior to analyses. For the remaining SNPs, missing marker data was imputed with fastPHASE [62]. Using the 1096 PIs phenotyped in this study, genome-wide linkage disequilibrium (LD) decay was estimated for both euchromatic and heterochromatic regions by plotting physical distance vs. linkage (r^2).

Germplasm diversity and selection

FastStructure [63] population analysis using default settings was used to identify related populations. PIs were assigned to populations using a membership coefficient threshold (Q-value) of \(\geq 0.7 \). We sampled the USDA collection to create two distinct sets of PIs, phenotyped with either *P. sojae* isolate OH.121 (OH set) or C2.S1 (C2 set). PIs were represented once and were phenotyped with only C2.S1 or OH.121, not both isolates of *P. sojae* because a limited number of seeds were provided by the germplasm center, limiting the assays to one isolate per PI.

Three populations were represented within the C2 set of PIs (consisting of the C2-US, C2-SK, and C2-GRIN populations), 547 PIs were phenotyped, and 495 PIs used for GWA analysis (S3 Table). The three populations had samplings of 180 PIs for the US population, 162 PIs for the SK population, and 153 PIs sampled from the GRIN population. The OH set of PIs (consisting of the OH-US, OH-SK, and OH-GRIN populations) had 549 PIs, which were unique from those included in the C2 set.
The OH set included 478 PIs (S4 Table) in GWA analysis composed of 170 US PIs, 158 SK PIs, and 150 PIs sampled from the GRIN population.

In addition to the PIs, cultivars with characterized QDR against *P. sojae* (‘L83-570—Rps3a’, ‘Williams 79—Rps1c’, ‘Conrad—rps’, ‘Sloan—rps’, ‘Resnik—Rps1k’, ‘OX20-8—Rps1a’), were included as checks. The *P. sojae* isolates were expected to be virulent on these lines despite the presence of *Rps*-genes, with the exception of OH.121 on ‘Williams 79—Rps1c’. Before disease assays, all seeds were surface sterilized using chlorine gas [64].

Quantitative disease resistance assays

Phenotyping of QDR was completed using the layer test [65] between February and April 2018 with 16 hrs of supplemental lighting and temperatures maintained between 18˚C and 26˚C. Briefly, a 950mL Styrofoam cup was filled from bottom to top with: (1) 2.5 cm layer of coarse vermiculite, (2) 7.6 cm of fine vermiculite, (3) a two-week-old culture of *P. sojae* grown on dilute lima bean agar in a 100 mm x 15 mm Petri dish or for non-inoculated treatments 0.6 cm of fine vermiculite, (4) 3.8 cm of fine vermiculite, (5) 8 seeds, and (6) a final layer of coarse vermiculite to cover the seeds. Each block of the experiment was maintained over a three-week period during which the cups were watered twice a day.

The data collected for GWA analyses included an Inoculated Root Rot Score (IRRS), Inoculated Root Weight (IRW), Inoculated Shoot Weight (ISW), Inoculated Plant Height (IPH), Non-inoculated Root Weight, Shoot Weight and Plant Height (NRW, NSW, NPH). The plant heights (IPH, NPH) were collected from three representative plants and averaged. The IRRS score was scored on a scale of 1–9 [65]. Change in root and shoot weight (ΔRW, ΔSW) were calculated by subtracting non-inoculated weights from inoculated weights for each PI line.

We used an incomplete block design with PIs randomized with restriction so that each block contained an inoculated and non-inoculated experimental unit (Styrofoam cup) for each PI represented in a block. Each block consisted of ~183 PIs, with 8 seeds per experimental unit. Check cultivars were included in all blocks. Two replicates were completed for each PI resulting in six blocks for both the C2 set and OH set, or 12 blocks total.

Best Linear Unbiased Predictor (BLUP) values and Best Linear Unbiased Estimators (BLUEs) were calculated for PIs and checks, respectively, for each trait measured in the experiment using the R package [66] nlme [67]. The equation used for each trait was $Y_{hi} = \mu + C_h + L(C)_{hi} + B(R)_{jk} + \varepsilon_{hijk}$, where μ is the grand mean, C_h is the effect of the hth class representing one of the six checks or an experimental PI, $L(C)_{hi}$ is the genotypic effect of each line, $B(R)_{jk}$ is the jth block effect within kth rep, and ε represents the residual. Broad-sense heritability (H^2) was calculated for each trait $H^2 = \frac{\sigma_g^2}{\sigma_g^2 + \sigma_e^2 + \frac{1}{r}}$, where σ_g^2 (genetic variance), σ_e^2 (error variance), and r (number of replicates).

Phytophthora isolates and Rps-gene assays

The focus of this study was on QDR, therefore isolates with complex virulence pathotypes were used to limit *Rps*-gene responses masking QDR. The Ohio isolates OH.12108.6.3 (OH.121) ('vir 1a, 1b, 1d, 1k, 2, 3a, 3c, 4, 5, 6, 7, 8) and C2.S1 ('vir 1a, 1b, 1c, 1d, 1k, 2, 3a, 3c, 4, 5, 6, 7, 8) were used in the QDR assays. The virulence of these isolates had previously been assessed [55], but to ensure the pathotypes were consistent after storage, virulence was reassessed here.

To ensure that we were evaluating QDR and not *Rps*-mediated resistance, we evaluated the 547 lines in the C2 set and the 549 lines from the OH set with the hypocotyl test. Due to limited seed number, eight seedlings were grown and two replicates completed. Scoring thresholds of 70% and 30% were applied. When no lesion developed on 70% of the plants, it was considered...
a *Rps*-gene response and removed from GWA analyses. PIs that developed a lesion 70–90% of the time were further scrutinized by checking the scores in the layer test to ensure a lack of an *Rps*-gene response, and PIs with IRRS scores less than 1.5 were removed from the GWA analyses.

GWA analyses

The C2 set and the OH set were each analyzed separately; four GWA analyses were completed for C2 and OH set, for a total of 8. An analysis was completed using all PIs for a set as well as the three populations (C2-US, C2-SK, C2-GRIN, OH-US, OH-SK, and OH-GRIN) that comprise each set. GWA analyses were implemented using the R [66] package GAPIT [68] using a multiple locus mixed model (MLMM). General linear model, mixed linear model, compressed mixed linear model, and FarmCPU were also tested, but did not yield appropriate Q-Q plots or were not as able to resolve significant associations (S1 Fig). When implemented in GAPIT, MLMM does not readily provide an estimate of percent variation explained. Instead, PVE was estimated using CMLM. The Q-matrix resulting from fastStructure analyses was used as a covariate. The significance threshold was determined using a modified Bonferroni adjustment by calculating the M_{eff} using SimpleM [69]. Genome-wide significance thresholds were determined by α / M_{eff} where $\alpha = 0.05$.

Haploview [70] was used for haplotype block assembly using the four-gamete rule [71]. A haplotype block possessing a marker(s) with a significant marker-trait association was considered a single QDRL. Haplotype blocks for markers that were unlinked to other markers were delimited according to the positions of the flanking markers.

Meta-QDRL analysis

We collected pertinent information for reported QDRL towards *P. sojae* identified prior to Jan 1, 2019. Collected data included (1) linkage maps, (2) R^2 of genetic effect, (3) significance (LOD), (4) linkage group, (5) confidence interval (CI), (6) predicted position of QDRL, (7) generation and (8) size of populations from 16 biparental mapping studies (S2 Table). Due to inconsistent reporting of these values, estimates were made for LOD values and confidence intervals (CIs) when not provided. LOD values were calculated using the formula $LOD = R^2 / 1.5$. If the CI was not provided it was calculated using the equation $CI = 163/(N \times R^2)$ where N is the population size [72].

Meta-analysis was completed using the software BioMercator V3.1 [73,74]. The initial step was to create a project-specific consensus map from genetic maps found in the biparental studies; this was aided by the inclusion of the consensus map [75] downloaded from Soybase [61]. QDRL were projected onto the project-specific consensus map. Studies prior to 2010 were removed and only one mapping study per generation of each biparental cross was included. The projected QDRL were used to identify position and CI based on Akaike-type criteria values. The physical positions of meta-QDRL were determined by selecting the markers flanking the meta-QDRL and locating the positions of these markers in the Wms.82 genome (Wms.82.a2.v1) [76].

Results

Population structure analysis and linkage disequilibrium

The population structure of the USDA germplasm collection was analyzed in order to generate population-groups from which our GWA populations would be sampled. Population structure analyses of the 20,087 PIs with SoySNP50K genotypic data resulted in marginal likelihood
estimations increasing with model complexities (number of population-groups) from 1 to 20 (S5 Table). A local maximum was present at $k = 12$, describing twelve major population-groups of soybean PIs (Fig 1A).

Two population-groups were identified that primarily consisted of PIs originating from the North Central US and SK, these were specifically sampled. PIs originating from SK have previously been shown to be a rich source of QDR alleles [55,56], providing novel QDR alleles to breeders that can greatly benefit resistance breeding [30]. The US population-group is a potential source of QDR alleles in genetic backgrounds adapted to the North Central regions of the US or alleles already deployed in US cultivars. To generate the six populations for our GWA analyses, we sampled the SK population-group to create the C2-SK and OH-SK populations and sampled the US population-group to create the C2-US and OH-US populations. Finally, the full USDA germplasm collection was sampled to generate the C2-GRIN and OH-GRIN populations to access a broader diversity, potentially providing novel, under-utilized QDR alleles.

The combination of the C2-SK, C2-US, and C2-GRIN populations were referred to as the C2 set. Likewise, the OH set was comprised of the OH-SK, OH-US, and OH-GRIN populations. Eleven of the 12 population-groups identified by the fastStructure analysis of the 20,087

Fig 1. Estimated population structure of soybean plant introductions (PIs) genotyped with the SoySNP50K iSelect BeadChip. (A) Population structure analysis of the 20,087 genotyped PIs maintained by the USDA Soybean Germplasm Center (Urbana, IL) was carried out at $k = 12$. (B) The C2 set consists of 495 PIs phenotyped with $P. sojae$ isolate C2.S1. (C) The OH set consists of 478 PIs phenotyped with $P. sojae$ isolate OH.121. The 12 population-groups identified by fastStructure are indicated by lower case letters. The United States (US) and South Korean (SK) population-groups of interest are indicated with labels "b" and "j", respectively. To create C2-US, C2-SK, OH-US, and OH-SK, the US and SK populations-groups (b,j) were sampled.

https://doi.org/10.1371/journal.pone.0227710.g001
PIs in the germplasm collection were represented in both the C2 set and OH set (Fig 1B and 1C). Additional population structure analyses were completed to identify subpopulations in the PIs comprising C2-US and OH-US as well as the C2-SK and OH-SK populations. These analyses identified six and nine subpopulations within the US and SK populations, respectively (S2 and S3 Figs). The majority of the subpopulations are present in the respective C2-US and OH-US populations and C2-SK and OH-SK populations, with only slightly different proportions of each subpopulation represented (S2 and S3 Figs).

A total of 33,234 (C2 set) and 34,248 (OH set) SNP-markers were used in GWA analyses. There was an average density of one marker every 29 kb for both the C2 and OH sets. Due to linkage disequilibrium (LD), SNP-markers could be consolidated to an effective marker number [69] of approximately 11,000 in the OH set and C2 set, as well as the OH-GRIN and C2-GRIN populations. The effective marker numbers were nearly 5,000 for the C2-SK and OH-SK populations, 4,051 in C2-US population, and 3,291 in the OH-US population (S4 Fig).

In the combined 974 individuals from the C2 and OH sets, where LD is expected to be lower than the less diverse populations (i.e., C2-US, C2-SK, OH-US, and OH-SK) [77], LD decayed to an r^2 of 0.2, a common threshold of significant LD [78], at an approximate distance of 350kb in euchromatic regions and greater than 500kb in heterochromatic regions (S4 Fig). Given that each population has an estimated marker density < 300 kb/marker, we anticipate that the majority of the soybean genome was captured in each GWA analysis (S4 Fig).

Quantitative disease resistance of PIs in the C2 set

A total of 547 PIs were phenotyped with isolate C2.S1, of which 52 were subsequently removed from analyses due to an Rps-gene response or missing data. For the remaining 495 PIs that comprised the C2 set, best linear unbiased predictor (BLUP) values were calculated from the raw measurements of inoculated and non-inoculated traits. The BLUP values for NRW, NSW, and NPH had normal distributions, while IRRS, IRW, and ISW had nearly normal distributions with a slight positive skew and ΔRW, ΔSW and NPH had nearly normal distributions with a slight negative skew (S5 Fig). For the C2 set, all of the inoculated traits had significant genetic variance and moderate to moderately high broad-sense heritability, ranging from 0.52 for ΔRW to 0.78 in IRW (Table 1).

Within the C2 set, the C2-US, C2-SK, and C2-GRIN populations had comparable average BLUP scores for each trait (S6 Fig). Despite similar means, subtle trends in the distributions of BLUP values were present; the US population had significantly higher BLUP values for NRW and NSW, indicating that these PIs were larger (S6 Fig). Consistent with previous studies, the C2-SK population had the lowest BLUP values for IRRS (most resistant) and highest BLUP values for IRW, ISW, and IPH of the three populations, once again demonstrating the high resistance levels found in SK germplasm. The SK and GRIN populations had greater genetic variance and a larger standard deviation around the means for all traits (S6 Fig). The C2-US population had the lowest average heritability ($H^2 = 0.39$) and genetic variance, though still significant for all traits except ΔRW and ΔSW. Both the C2-SK and C2-GRIN populations also had significant genetic variance for all traits and higher average broad-sense heritability between 0.73 and 0.66, respectively (S6 Table).

In the C2 set, there was significant correlation between nearly all traits (Table 2). Correlations were strongest among traits of the same type (inoculated, non-inoculated, or combined). Correlations among inoculated traits were moderate to high, ranging from -0.53 for IRRS (lower score is more resistant) and IPH to 0.87 for ISW and IRW. The correlation between the combined traits ΔSW and ΔRW was also high at 0.79, and correlations among non-inoculated traits were moderate to high, ranging from 0.59 for NPH and NRW to 0.83 for NSW and
NRW. For the most part, correlations between different types of traits were low to moderate, ranging from -0.21 for ΔRW and NPH to 0.56 for ISW and NSW. However, IRRS was not significantly correlated to the non-inoculated traits, indicating that IRRS is independent of non-inoculated plant size and weights.

Quantitative disease resistance of PIs in the OH set
A total of 549 PIs were phenotyped with isolate OH.121, and 71 PIs were removed from subsequent analyses due an Rps-gene response or missing data. Thus, the final OH set consisted of

Table 1. Heritability and genetic variance for layer test traits with *Phytophthora sojae* isolates C.2.S.1 and OH.121 for the C2 and OH sets of plant introductions, respectively.

Trait*	H^b	σ_g^2c	H^2	σ_g^2d
IRRS	0.58	0.94***d	0.65	1.98'
IRW	0.78	0.19***	0.45	0.10'
ISW	0.65	0.23***	0.68	0.27***
IPH	0.58	7.70***	0.77	14.00***
ΔRW	0.52	0.11***	0.38	0.09***
ΔSW	0.56	0.12***	0.43	0.16***
NRW	0.75	0.23***	0.39	0.14'
NSW	0.66	0.25***	0.65	0.30***
NPH	0.55	6.57***	0.63	8.12***

* IRRS, inoculated root rot score; IRW, inoculated root weight; ISW, inoculated shoot weight; IPH, inoculated plant height; ΔRW, change in root weight; ΔSW, change in shoot weight; NRW, non-inoculated root weight; NSW, non-inoculated shoot weight; NPH, non-inoculated plant height

b, H^2, broad-sense heritability
c, σ_g^2, genetic variance;
d, *, significant at P value < 0.05;
***, significant at P value < 0.001.

https://doi.org/10.1371/journal.pone.0227710.t001

Table 2. Significant correlations between layer test traits assessed within the C2 set (unshaded) and OH sets (shaded) of plant introductions.

Trait*	IRRS	IRW	ISW	IPH	ΔRW	ΔSW	NRW	NSW	NPH
IRRS	0.63	-0.54	-0.53	-0.57	-0.59	-			
IRW	-0.71	0.87	0.73	0.38	0.37	0.48	0.51	0.38	
ISW	-0.65	0.83	0.75	0.30	0.43	0.45	0.56	0.36	
IPH	-0.77	0.76	0.72	0.23	0.31	0.37	0.41	0.43	
ΔRW	-0.38	0.38	0.26	0.25	0.79	-0.43	-0.31	-0.21	
ΔSW	-0.51	0.44	0.48	0.39	0.58	-0.27	-0.35	-0.24	
NRW	--	0.41	0.36	0.36	-0.45	-0.43	0.83	0.59	
NSW	--	0.40	0.51	0.34	-0.30	-0.49	0.78	0.69	
NPH	--	0.33	0.3	0.43	-0.19	-0.35	0.63	0.65	

All displayed correlations were significant at a P value of < 0.001

* IRRS, inoculated root rot score; IRW, inoculated root weight; ISW, inoculated shoot weight; IPH, inoculated plant height; ΔRW, change in root weight; ΔSW, change in shoot weight; NRW, non-inoculated root weight; NSW, non-inoculated shoot weight; NPH, non-inoculated plant height

b, no significant correlation.

https://doi.org/10.1371/journal.pone.0227710.t002

Quantitative disease resistance of PIs in the OH set
A total of 549 PIs were phenotyped with isolate OH.121, and 71 PIs were removed from subsequent analyses due an Rps-gene response or missing data. Thus, the final OH set consisted of

https://doi.org/10.1371/journal.pone.0227710.t002
478 PIs. The BLUP values for NRW and NSW had normal distributions (S7 Fig). The other traits had nearly normal distributions with a slight positive skew to IRRS, IRW, and ISW; a slight negative skew for IPH and NPH; and heavy tailing in the ΔRW and ΔSW traits (S7 Fig). All nine traits had significant genetic variance (Table 1) with moderate to high heritability, ranging from 0.38 for ΔRW to 0.77 for IPH. Both the heritability and genetic variance were comparable between isolates, with OH.121 traits on average having slightly higher genetic variance, higher residual variance, and marginally lower heritability (Table 1).

The average BLUP values of the three populations comprising the OH set (OH-GRIN, OH-SK, OH-US) were very similar for each trait, with a greater standard deviation of BLUP values in the OH-GRIN and OH-SK populations relative to the OH-US population (S7 Fig). Genetic variance was lowest in the US population, and heritability was highest in the SK population. The US and SK populations had similar BLUP values for IRRS, IRW, ISW, and IPH and were significantly more resistant than the GRIN population. The US population had significantly higher BLUP values for the non-inoculated traits (sans NSW compared to SK) indicating, once again, that the US population averaged larger plants than the SK and GRIN populations.

There were significant correlations among nearly all traits in the OH set (Table 2). Correlations were strongest among traits of the same type (inoculated, non-inoculated, or combined). Correlations among inoculated traits were moderate to high, ranging from -0.65 for IRRS and ISW to 0.83 for ISW and IRW. The correlation between the combined traits ΔSW and ΔRW was moderate at 0.58, and correlations among non-inoculated traits were moderate to high, ranging from 0.63 for NPH and NRW to 0.78 for NSW and NRW. For the most part, correlations between different types of traits were low to moderate, ranging from -0.19 for ΔRW and NPH to -0.51 for ISW and NPH. However, similar to data from the C2 set, IRRS was not significantly correlated to the non-inoculated traits, indicating that IRRS is independent of non-inoculated plant size and weights.

Genome-wide association analyses

A total of 48 significant marker-trait associations were identified on 16 chromosomes (Tables 3 and 4; Figs 2 and 3). Markers in LD with significant markers were considered the region most likely to contain the allele contributing to QDR and were used to delimit QDRL. Some markers were associated with more than one trait or were within the same haplotype block; therefore, the 48 marker-trait associations were consolidated into 44 QDRL.

GWA analyses of the C2 set, as well as C2-SK, C2-US, and C2-GRIN populations resulted in a total of 24 significant marker-trait associations, representing 23 QDRL as defined by haplotype blocks. These 23 QDRL were comprised of 12 QDRL identified from the C2-SK population and distributed to ten chromosomes, three QDRL on Chr13 identified in the C2-US population, one QDRL on Chr13 identified in the C2-GRIN population, and seven QDRL identified from the C2 set and distributed to five chromosomes (Table 3, Fig 2). Three quantitative trait loci (QTL) associated with non-inoculated traits were identified from the GRIN population and located on Chr02. None of the QTL coincided with the identified QDRL (S7 Table, S9 Fig).

GWA analyses in the OH set, as well as OH-SK, OH-US, and OH-GRIN populations resulted in a total of 24 marker-trait associations, representing 21 QDRL as defined by haplotype blocks. These 21 QDRL were comprised of seven QDRL identified from the OH-SK population distributed to four chromosomes; three QDRL identified from the OH-US population and distributed to three chromosomes; six QDRL identified in the OH-GRIN population distributed to four chromosomes; and five QDRL identified using the OH set distributed three
chromosomes. GWA analyses for non-inoculated traits identified 13 QTL distributed on 12 chromosomes (S10 Fig, S7 Table). On Chr05, a QTL for NPH was coincident with QDRL OH-5-1 for IPH, indicating that this locus may control plant architecture rather than a QDRL, per se.

Comparisons of GWA analyses between the C2 and OH sets

GWA analyses in the C2 and OH sets and the populations derived from these sets resulted in the identification of 44 QDRL on 16 chromosomes; with 23 QDRL distributed to 12 chromosomes identified in the C2 set and 21 QDRL distributed to 10 chromosomes identified in OH sets.
set. Little overlap was observed between the results of the OH set and C2 set. Only QDRL C13-5, C13-6, C13-7, O13-4, and O13-5 (Tables 3 and 4; Figs 2 and 3) were identified in similar regions (<500 kb apart) between OH and C2 sets.

Within a given set (C2 or OH), different QDRL were detected depending on the population. For example, the C2-SK population identified different QDRL than the C2-US and C2-GRIN. Similar differences were also observed among the QDRL identified from the populations within the OH set. In this case, the populations within a given set are structured and allele frequencies are expected to contribute to the differences in the QDRL that were detected. Indeed, there were significant differences in allele frequencies between populations (P value < 0.01) at all identified QDRL (Fig 4).

Table 4. Quantitative disease resistance loci (QDRL) mapped in the OH set.

Name*	Popb	Traite	$-\log_{10}(p)$	PVEd	Marker*	Flanking positionsf
OH-02-1	OH set	ΔSW	5.58	2.69	ss715582345	38935468–39002760
OH-02-2	OH-SK	IRRS	5.95	6.36	ss715582359	39090899–39126047
OH-03-1	OH-SK	IRW	8.36	4.76	ss715586915	6074620–6378997
	ISW		5.46	4.67		
OH-03-2	OH-SK	IRRS	6.63	8.47	ss715586985	7872384–8252615
OH-03-3	OH-SK	ΔSW	10.04	8.58	ss715586306	4250684–42517511
OH-05-1	OH-GRIN	IPH	7.08	7.43	ss715591382	36972839–37035513
OH-06-1	OH-US	IPH	5.48	7.79	ss715592238	50603738–50852296
	IRW		5.91	8.71	ss715592238	
OH-10-1	OH-SK	IRW	5.32	4.19	ss71605487	998272–1022198
OH-10-2	OH-SK	ISW	6.13	4.45	ss71606258	33174697–33499135
OH-11-1	OH-GRIN	IRW	6.61	8.88	ss71610747	4563815–4586936
OH-11-2	OH-GRIN	ΔSW	5.47	12.1	ss71610923	5898743–5962759
OH-12-1	OH-SK	ΔRW	5.94	10.73	ss71611695	1804514–1844191
OH-13-1g	OH-GRIN	IRRS	5.62	6.75	ss71614516	27873465–27896769
OH-13-2h	OH set	IRW	8.06	2.61	ss71614895	29971253–30065880
OH-13-3h	OH-US	IRW	5.87	8.02	ss71614914	30086805–30144416
OH-13-4hi	OH set	IRRS	5.98	2.57	ss71614952	30291695–30301385
	IRW		7.44	2.28	ss71614952	
OH-13-5hi	OH set	ΔRW	5.75	3.06	ss71615020	30667266–30700217
OH-18-1	OH-US	ISW	4.83	7.19	ss71629906	2128180–2155661
OH-18-2	OH set	IRRS	5.91	2.93	ss71632090	54737619–54774006
OH-20-1	OH-GRIN	IPH	5.41	8.89	ss71636836	1724545–1897580
OH-20-2	OH-GRIN	IPH	5.55	7.72	ss71638609	45279755–45458003

* Name of the QDRL in which “OH” that indicates where the trait was mapped in the assay with isolate OH.121, is followed by “-##” in which the two digit number represents the chromosome to which the QDRL is located, and “-#” in which the number represents the order the QDRL are found on the chromosome.

b, SK, South Korea; US, North Central US; GRIN, full diversity of germplasm collection.

c, IRRS, inoculated root rot score; IRW, inoculated root weight; ISW, inoculated shoot weight; IPH, inoculated plant height; ΔRW, change in root weight; ΔSW, change in shoot weight; NRW, non-inoculated root weight; NSW, non-inoculated shoot weight; NPH, non-inoculated plant height

d, PVE, prevent variation explained.

e, Marker identified as associated with trait in GWA analysis

f, Basepair position flanking QDRL determined by linkage.

g, QDRL within 500kb of C2-13-5.

h, QDRL within 500kb of C2-13-6.

i, QDRL within 500kb of C2-13-7.

https://doi.org/10.1371/journal.pone.0227710.t004
There were also some differences in allele frequencies from the corresponding populations within the C2 and OH sets (i.e., C2-US vs. OH-US, C2-SK vs. OH-SK and C2-GRIN vs. OH-GRIN), despite sampling the same population-groups from the population structure analysis (Fig 1). While the majority of allele frequencies were very similar and not significantly different, eight alleles were significantly different between populations (Fig 5) with five significant differences in allele frequencies between the US populations and three significant differences between the C2 set and OH set. The ability to detect QDRL is affected by allele frequency [79] and could contribute to the differences in identified QDRL.

Corroboration of the identified QDRL and direction of allelic effects

There was little overlap in the QDRL identified in the C2 set and OH sets. However, single marker analyses, comparing the phenotypic means of PIs with the resistant or susceptible allele at the identified QDRL, verified the direction and allelic effect in relevant traits (Figs 5 and 6). At 43 of 44 QDRL, PIs with the resistance allele had BLUP values indicating a higher level of resistance than PIs with a susceptible allele in both the population in which the QDRL was identified and the corresponding population assayed with the alternative isolate (Figs 5 and 6). The only exception was the significant marker for OH-11-2, which was not polymorphic in the C2 set.
The QDRL markers were often significantly associated with QDR towards either OH.121 or C2.S1 in their respective populations. Using single marker analyses, most markers (37 of 44) had a significant marker effect for the isolate, population, and trait in which the association was originally identified by GWA analysis. More surprising is that a large number (26 of 44) of the single marker tests also had significant effects for QDR to the alternate isolate in the corresponding population. Thus, in addition to the direction of allelic effects being the same between the two isolates and their corresponding populations, these allelic effects were often significant based on single marker analyses.

For most of the corresponding populations, the significant markers had a similar allele frequency in both populations (e.g. C2-GRIN and OH-GRIN) (Figs 5 and 6). However, for nine QDRL, the allele frequency was significantly different between populations or monomorphic in one population. Of the 18 QDRL that were not confirmed in the relevant population for resistance to the alternate isolate, one was monomorphic and three had significantly different allele frequencies in the relevant population corresponding to the alternative isolate. In these instances, differences in the marker effect may be due to population sampling rather than isolate or environment.

For most of the corresponding populations, the significant markers had a similar allele frequency in both populations (e.g. C2-GRIN and OH-GRIN) (Figs 5 and 6). However, for nine QDRL, the allele frequency was significantly different between populations or monomorphic in one population. Of the 18 QDRL that were not confirmed in the relevant population for resistance to the alternate isolate, one was monomorphic and three had significantly different allele frequencies in the relevant population corresponding to the alternative isolate. In these instances, differences in the marker effect may be due to population sampling rather than isolate or environment.

In both the C2 and OH sets, there was a significant correlation (P value <0.001) between the number of resistant alleles and an overall resistance rank (Fig 7a and 7c). In the C2 set, the most resistant quintile averaged 25.2 resistance alleles (of 44), significantly higher than the other quantiles (Fig 7b). The OH set displayed a similar trend with the most resistant quintile
averaging 25.8 resistance alleles, significantly more resistance alleles than the other quintiles (Fig 7d).

Meta-QDRL analysis

Comparison to previously identified QDRL would provide further evidence to validate our findings as well as distinguish the novel QDRL identified in this study. While over a hundred QDRL for resistance to *P. sojae* have been previously identified from bi-parental mapping studies, many were identified in only a single study. Thus, in order to focus on the robust QDRL, we completed a meta-analysis of QDRL.

In addition to four GWA studies (S8 Table), 16 biparental mapping studies have also been completed (S2 Table), identifying 143 QDRL positions (77 positions on Soybase) [61]. The studies were filtered such that only a single mapping study from the same biparental cross and generation is represented and studies prior to 2010 were removed. The remaining 11 studies describe 114 QDRL and were included in this meta-analysis. The meta-analysis of the QDRL...
Fig 5. Allele frequencies and average BLUP values of PIs with resistant and susceptible alleles at QDRL identified in GWA analyses in the US, GRIN, and set populations. The frequency of the resistant allele is indicated in the "Freq" column. Significantly different allele frequencies (χ^2 test, $\alpha = 0.05$) and instances where one population is monomorphic were indicated with grey shading. For resistant (red) and susceptible (black) alleles of each QDRL, means and standard errors were calculated from the population in which the significant association was identified and are indicated with points and bars, respectively. P values from t-test are presented in the "Pheno" column with P value <0.05 indicated with *, <0.01 indicated with ** and <0.001 indicated with ***. In order to consistently have the resistance indicated as a higher BLUP value, BLUP values for inoculated root rot score (IRRS) were multiplied by “-1”. Eight QDRL had a greater distribution of BLUP values and were displayed on a separate chart to aid readability. (A) US population allele frequency and average BLUP values. (B) GRIN population allele frequency and average BLUP values. (C) Set population allele frequency and average BLUP values.

https://doi.org/10.1371/journal.pone.0227710.g005

Fig 6. Allele frequencies and average BLUP values of PIs with resistant and susceptible alleles at QDRL identified in GWA analyses in the C2-SK and OH-SK populations. The frequency of the resistant allele is indicated in the "Freq" column, none were significantly different (χ^2 test, $\alpha = 0.05$). For resistant (red) and susceptible (black) alleles of each QDRL, means and standard errors were calculated from the population in which the significant association was identified and is indicated with points and bars, respectively. P values from t-test are presented in the "Pheno" column with P value <0.05 indicated with *, <0.01 indicated with ** and <0.001 indicated with ***. In order to consistently have the resistance indicated as a higher BLUP value, BLUP values for inoculated root rot score (IRRS) were multiplied by “-1”. Eight QDRL had a greater distribution of BLUP values and were displayed on a separate chart to aid readability. Significantly different allele frequencies were identified with a χ^2 test and are indicated with grey shading.

https://doi.org/10.1371/journal.pone.0227710.g006
consolidated these results into 22 robust meta-QDRL distributed across ten chromosomes (Table 5). Based on the reference genome (Wms.82.a2), the meta-QDRL are associated with an average physical region spanning 5547kb (Table 5).

Colocalization between previous research and current results

We identified regions most often associated with resistance by comparing current results with the four previous GWA analyses for QDR to *P. sojae* [55–59], as well as the meta-QDRL (Table 5). QDRL C2-02-1, C2-03-3, C2-13-7, and C2-17-2 were <500kb from regions identified in previous GWA analyses, adding evidence to these regions being important in QDR. No such colocalizations were identified for QDRL from the OH set or populations (Table 6).

Five QDRL from our GWA analyses are near (within 500kb) or overlap with meta-QDRL; m08-1 near C2-08-02 (C2-SK), C2-13-4 (C2-US) near m13-1, C2-15-1 (C2-SK) near m15-1, C2-16-1 (C2-SK) near m16-2, and OH-18-1 (OH-US) near both m18-1 and m18-2 (Figs 2 and 3). Because specific criteria were used to determine which QDRL mapping studies to include in the meta-analysis, a number of previously reported QDRL were not included. The QDRL C2-04-1, C2-13-2, and C2-13-3 co-localized with previously reported “non”-meta-QDRL because these QDRL were either not included in the meta-analysis or the QDRL were merged into meta-QDRL at a slightly different genetic position (Table 6).

In addition to the 12 QDRL from our GWA analyses which overlapped with previously identified QDRL, fourteen of the QDRL identified in the present study were within or <500kb from reported *Rps*-gene locations. QDRL C2-02-1 co-localized with *RpsZS18*. C2-03-1 and C2-03-2 were near the *Rps1* region. We identified QDRL C2-13-5, C2-13-6, and C2-13-7 within the *Rps3* region, and the two QDRL identified on Chr17, C2-17-1 and C2-17-2, were within the *Rps10* region. In the PI’s phenotyped with OH.121, OH-18-2 was near *Rps6*; OH-13-1, OH-13-2, OH-13-3, OH-13-4, and O13-5 were all near *Rps3* on Chr13 (Table 6).
Some QDRL identified in this study were novel in their association towards *P. sojae* disease resistance, but were in regions previously associated with resistance to other soybean pathogens and pests. QDRL OH-03-3 is in a region associated with resistance to whiteflies and soybean cyst nematode (SCN) [80]. QDRL OH-05-1 is in a region associated with resistance to the toxins produced by *Fusarium virguliforme* [81,82]. QDRL OH-06-1 is near the position of a QDRL associated with resistance to sudden death syndrome (SDS) [83–85]. QDRL C2-08-3 was within regions associated with Sclerotinia and SDS resistance [86,87]. QDRL C2-11-1 is near QDRL for SCN [88]. QDRL OH-20-1 is in a region associated with QDR to SDS [82]. OH-20-2 in a region associated with QDR to SCN [80] (Table 6). Finally, the remaining 14 QDRL are in regions not previously associated with resistance to fungal, viral, or nematode pathogens based on information available in Soybase [61] (March 1st, 2019).

Discussion

A large and diverse population of soybean accessions led to the identification of 44 QDRL

In this study, six traits for QDR were measured for PIs sampled from the USDA collection, representing germplasm from the US, the Republic of Korea, as well as PIs that were sampled without geographic consideration. PIs were phenotyped following inoculation with either *P.
sojae isolate C2.S1 or OH.121, forming the two sets of 495 PIs in the C2 set and 478 PIs in the OH set, respectively. Identification and comparison of QDRL for multiple isolates of *P. sojae* can be informative for making breeding decisions, as it is genetically complex [89], likely contributing to not only diverse virulence patterns but also other aspects of pathogenesis. Though it would have been interesting to phenotype all PIs with both isolates, a limited number of seeds were available from the USDA collection.

GWA analyses were completed separately depending on the aforementioned experimental design, and though the traits were significantly correlated, unique QDRL were identified for each measurement. Though correlated, it remains pertinent to evaluate multiple traits, as each QDRL could be functioning through different molecular mechanisms or different tissues and may only be detected by measuring a specific trait [90]. Overall, 44 QDRL were identified, and

QDRL	Other QDRL	Rps-genes	Other Pathogensa	Citation(s)
C2-02-1	Satt634b	RpsZS18		[57]/S1 Table
C2-03-1		Rps1		S1 Table
C2-03-2		Rps1		S1 Table
C2-03-3	ss715585728			[55]
OH-03-3		SCN		[80]
C2-04-1	14–7c			S2 Table
OH-05-1		SDS		[81,82]
OH-06-1		SDS		[83–85]
C2-08-2	m08-1			Table 5
C2-08-3		Sclerotinia & SDS		[86,87]
C2-11-1		SCN		[82]
C2-13-2	1–1, 2–1, 4–1, 3–1, 9–2c	Rps3		S2 Table
C2-13-3	1–1, 2–1, 4–1, 3–1, 9–2c	Rps3		S2 Table
C2-13-4	m13-1			Table 5
C2-13-5		Rps3		S1 Table
C2-13-6		Rps3		S1 Table
C2-13-7	ss715615031b	Rps3		[55]
OH-13-1		Rps3		S1 Table
OH-13-2		Rps3		S1 Table
OH-13-3		Rps3		S1 Table
OH-13-4		Rps3		S1 Table
OH-13-5		Rps3		S1 Table
C2-15-1	m15-1			Table 5
C2-16-1	m16-2			Table 5
C2-17-1		Rps10		S1 Table
C2-17-2	Satt301b	Rps10		[57]/S1 Table
OH-18-1	m18-1			Table 5
OH-18-2		Rps6		S1 Table
OH-20-1		SDS		[82]
OH-20-2		SCN		[80]

a, identified resistance loci to other pathogens when no *P. sojae* resistance colocalized with identified QDRL. Colocalization with other pathosystems was not searched if colocalization was identified with other *P. sojae* resistance.

b, Significant marker referenced in GWA analysis.

c, Name of QDRL as stored in Soybase.

https://doi.org/10.1371/journal.pone.0227710.t006
though GWA analyses are expected to identify large-effect and common alleles [91], here we identified 44 small-effect QDRL explaining less than 14% of the variation, consistent with results from previous mapping studies (S2 Table).

Superficially, the GWA analyses here appear to have identified many more QDRL than previous studies. For example, GWA analyses for QDR towards P. sojae have been completed in more specific samples of germplasm and individually have identified a maximum of 16 markers associated with resistance [55]. Biparental mapping studies have also identified similar numbers of QDRL [42–48]. For example, a cross of Conrad x Hefeng 25 identified eight QDRL [44]; the cross of Conrad x Sloan identified 10 QDRL [48]; and crosses of PI 3998841 or PI 407861A with OX20-8, identified 3 and 7 QDRL, respectively [51–53]. There were a total of 16 genetic regions associated with QDR to P. sojae identified using six nested populations in a joint linkage mapping study with an average of 1.5 QDRL identified in individual populations and 6 additional QDRL detected with joint linkage analyses [53].

However, both the diversity of PIs and the completion of analyses in multiple populations likely contributed to the large number QDRL identified. Though the total number of QDRL exceeded previous GWA results, analyses within individual population are comparable to previous research. For example, 11 QDRL were identified in the C2-SK population, and seven QDRL in the OH-SK population. These results are similar to the seven QDRL identified in the study completed in SK germplasm by Schneider et al. (2016) [55]. GWA analyses in Chinese breeding lines have resulted in identifying three or one QDRLs [57,58], likewise the C2-US and OH-US populations, consisting primarily of US cultivars, resulted in the identification of 3 QDRL.

The high level of soybean diversity in the full C2 set or OH set, may allow for the detection of novel QDRL, but it also increases the population structure, and, therefore, the risk of false positives [92]. However, efforts to reduce false positives in GWA analyses were applied by using models that incorporated population structure and kinship among PIs [93].

Many QDRL co-localize with previously identified loci for P. sojae resistance, as well as represent novel loci for this pathosystem

Prior to this study, 21 biparental or GWA mapping studies for QDR towards P. sojae have been completed (S2 Table). Additionally more than 30 Rps-genes/alleles have been identified for race-specific resistance (S1 Table). Twenty-one of the QDRL reported in this study were novel loci for this pathosystem, adding significantly to our knowledge of the genetic architecture of QDR to P. sojae. The remaining 23 QDRL colocalize with previously identified QDRL and/or Rps-genes. Depending on whether these co-localized resistances are in cis, in trans, or controlled by the same gene(s), the colocalization of these QDRL could have significant breeding implications.

Colocalization was identified by comparing the QDRL identified here with the 143 QDRL reported from 16 biparental mapping studies positions (S2 Table). Though the expression of QDR towards P. sojae can be dependent on environmental, methodological, and assay
conditions [47], in this study we consolidated these QDRL into 22 robust meta-QDRL distributed across 10 chromosomes. In total, twelve QDRL, or 27%, colocalized with previously identified loci from GWA analyses, non-meta-QDRL for *P. sojae* resistance or meta-QDRL. This is similar to previous GWA studies where approximately 33% of QDRL co-localized with results from other studies [55,57,59]. Five of the 22 meta-QDRL colocalized with QDRL we identified in this study, strongly supporting the involvement of these regions in QDR to *P. sojae*. Though only 5 QDRL colocalized with meta-QDRL, this analysis greatly facilitated the consolidation of the growing number of identified QDRL for resistance towards *P. sojae*.

Rps-gene regions often overlap with QDRL regions [53,55]. In this study, 14 QDRL overlapped with or were within 500kb of previously reported *Rps*-gene regions. Though phenotypically distinct, the colocalization of *Rps*-genes is conspicuous, coaxing the research question: Are canonical *R*-genes functioning in a QDR? Indeed, researchers have previously proposed that QDR may be an *R*-gene-mediated response that does not confer complete resistance, resulting in race-specific QDRL [95]. While studies have previously identified QDRL that have been significant for one isolate and not other isolates [48], at this time, no significant race or isolate × QDRL interaction has been reported, which would be the hallmark of a *bona fide* race-specific QDRL. Few studies on QDR to *P. sojae* have specifically addressed race-specificity of QDRL, and those that have tested for race-specific QDRL did not identify any significant isolate × QDRL interaction [96]. In this study, isolate, population, as well as environment, were all confounded. Thus, we were unable to test the race or isolate-specificity of the QDRL.

There was little overlap in QDRL identified between the C2 set and OH set

The C2 set and OH set were both comprised of US, SK and GRIN populations sampled from the USDA germplasm collection. Though the germplasm was similar, the two sets varied for isolate and the greenhouse environment, and while similar numbers of QDRL were identified in both the C2 set and OH set, there was little overlap between the QDRL identified with each isolate, among populations, or for each trait. With the exception of a region on Chr13, the QDRL identified in either the C2 set or OH set were unique to the set.

As in other host-pathosystems, QDR is often a complex trait [28]. This type of genetic complexity can be observed in the foliar disease of maize, Southern Corn Leaf Blight, where GWA analysis for resistance in the maize NAM population resulted in the identification of 32 QDRL [97]. Similarly, over 100 QDRL have been identified for the well-studied Fusarium head blight resistance in wheat [98]. Based on current and previous mapping studies for resistance to *P. sojae*, we can estimate that greater than 60 loci are contributing to QDR. The majority of identified QDRL toward *P. sojae* in soybean explain less than 15% of the variation in the population in which they were mapped. The small individual effect of each allele contributes to the complexity of the resistance phenotype itself, as well as to the genetic analysis of the trait. In fact, while many QDRL have been reported as isolate-specific or specific to an individual resistance trait or assay [47,48,53,55], it is unclear whether these specific QDRL are due to the marginal significance of small effect loci, or the functional complexity of the QDR. Interestingly, though QDRL were only identified with one isolate of *P. sojae*, there were significant differences in the response trait between the resistant and susceptible alleles both within the populations in which the QDRL were identified as well as within the corresponding population assayed with the alternate isolate. This provides independent corroboration for these QDRL and indicates that many, if not all, of the 44 QDRL are valid.

Among the populations that made up each isolate set, we observed unique QDRL, with no overlap in the genetic positions of QDRL identified among populations within each isolate set.
As expected, we also observed unique alleles and genetic structure for each population within an isolate set. Populations were sampled from specific groups, which were determined by a population structure analysis, and possessed differences in the number of segregating markers as well as significantly different allele frequencies at QDRL. Thus, the lack of overlap between QDRL identified in each population is likely a result of some combination of differences in resistance allele polymorphism, allele frequency, and/or LD.

Targeting multiple QDRL for different traits may provide improvement of QDR in elite cultivars

QDR towards \textit{P. sojae} is thought to consist of multiple mechanisms that interact to produce a defense response \cite{99}; as such, combining QDRL involved with different aspects of resistance could produce the highest levels of resistance. However, the question remains: How applicable are individual minor effect QDRLs, possibly only contributing to one isolate or trait, for the improvement of elite cultivars? Indeed, these are small effect QDRL, however one of the proposed benefits of QDR is durability, and minor effect QDRL are predicted to be more durable than large-effect QDRL with wide-spread deployment \cite{91}.

Specifically for US germplasm, there has been an improvement in QDR over time, but this began to plateau in the 1980s \cite{100}. Indeed, US populations in this study had lower levels of QDR than the SK and GRIN populations. In the C2 set, only 10 of the top 50 most resistant PIs are from the C2-US population. The OH set is similar, with 11 US PIs in the top 50 most resistant PIs.

Among the most resistant PIs from the C2-US population are four Clark isolines (PI547538, PI547583, PI547476, PI547528) and one Williams isolate (PI591509) \cite{101}. Both Clark and Williams have been reported to have moderate to high levels of QDR against \textit{P. sojae} \cite{55}. Likewise in the OH set, the most resistant lines were also from Clark (PI547496) and Williams (PI547852, PI547496, and PI634758) derivatives \cite{105,106}. In addition, among the 11 resistant US PIs were cultivars OH FG2 (PI584470), Lonoke (P633609), and Athow (PI595926), all of which had been previously reported as moderate to highly resistant \cite{38,102–105}. Thus, disease assays in each of the US populations have repeatedly identified known and often well utilized sources of partial resistance to \textit{P. sojae}. At a minimum, Clark and Williams have been widely incorporated into breeding programs \cite{106}; therefore, it is possible many of the QDR alleles identified in the US populations have already been deployed in US germplasm.

Overall, there was a correlation between the number of resistant alleles and the overall resistance levels, indicating the value of stacking QDR alleles. In other pathosystems, such as rice-\textit{Magnaporthe oryzae}, pyramiding of QDRL increased resistance \cite{107}. Similarly, pyramiding QDR alleles for resistance to Fusarium head blight in wheat increased resistance. Interestingly, among the top 50 most resistant PIs, PIs from the US populations averaged fewer QDR alleles than the PIs from the GRIN and SK populations. Thus, there may be room for continued improvement by incorporating additional QDR alleles.

Based on this study, valuable and previously untested QDR alleles are available to soybean breeders to increase the diversity in their genetic base as they attempt to improve elite cultivars, notably from PIs originating from SK, which had high levels of QDR in this study and previous research \cite{55,56}. The complex genetic architecture of QDR towards \textit{P. sojae} indicates the importance of stacking multiple QDR alleles or a potential role for tools such as genomic selection. Efforts to introduce alleles contributing to a number of QDR traits are expected to provide the most durable and highest levels of QDR.
Supporting information

S1 Table. Positions of Rps-genes/alleles in the soybean genome.
(XLSX)

S2 Table. Published quantitative disease resistance towards Phytophthora sojae mapping studies.
(XLSX)

S3 Table. Overall ranking of resistance for plant introductions in the C2 set. PIs were ranked from most resistance to least resistant for the four inoculated traits, ΔCRW and ΔCSW, ranks were summed and re-ranked.
(XLSX)

S4 Table. Overall ranking of resistance for plant introductions in the OH set. PIs were ranked from most resistance to least resistant for the four inoculated traits, ΔCRW and ΔCSW, ranks were summed and re-ranked.
(XLSX)

S5 Table. FastStructure population number selection.
(XLSX)

S6 Table. Genetic variance and heritability in each population.
(XLSX)

S7 Table. Significant marker-trait associations identified for non-inoculated traits.
(XLSX)

S8 Table. Results of previously completed GWA analyses for P. sojae quantitative disease resistance.
(XLSX)

S1 Fig. Comparison of QQ-plots of different genome-wide association analysis models implemented in GAPIT. Models represented (1) GLM; general linear model, (2) MLM; mixed linear model, (3) CMLM; compressed mixed linear model, (4) MLMM; multiple linear mixed model.
(TIFF)

S2 Fig. Population clustering using fastStructure indicated nine subpopulations within the SK populations. (A) Nine subpopulations identified in the C2-SK PIs. (B) Nine subpopulations identified in the OH-SK PIs. (C) Model complexities from one to ten were tested identifying a plateauing marginal likelihood value at k = 9.
(TIFF)

S3 Fig. Population clustering using fastStructure indicated six subpopulations within the US populations. (A) Six subpopulations identified in the C2-US population. (B) Six subpopulations identified in the OH-US population. (C) Model complexities from one to eight were tested identifying a plateauing marginal likelihood at k = 6.
(TIFF)

S4 Fig. Linkage disequilibrium decay in heterochromatic and euchromatic regions and significance thresholds calculated using Meff. Linkage between markers (r²) as a function of physical distance (base pair) calculated in the 974 plant introductions used in GWA analyses. Significance thresholds include: a, effective marker number; b, calculated significance threshold [-log10(0.05/effective marker number)]; c, estimated effective marker density in markers per...
kilobases.

S5 Fig. Histogram distribution and qq-normality plots of the 495 PIs in C2 set used for GWA mapping. IRRS, inoculated root rot score; IRW, inoculated root weight; ISW, inoculated shoot weight; IPH, inoculated plant height; ΔRW, change in root weight; ΔSW, change in shoot weight; NRW, non-inoculated root weight; NSW, non-inoculated shoot weight; NPH, non-inoculated plant height.

S6 Fig. Comparison of BLUP values between the US, SK, and GRIN populations in the C2 set. The GRIN population (red) the SK population (white) boxplots, and the US population (grey) populations are represented for all nine traits: IRRS, inoculated root rot score; IRW, inoculated root weight; ISW, inoculated shoot weight; IPH, inoculated plant height; ΔRW, change in root weight; ΔSW, change in shoot weight; NRW, non-inoculated root weight; NSW, non-inoculated shoot weight; NPH, non-inoculated plant height. Significantly differences in population determined using Fisher’s protected LSDs (P value < 0.05) are indicated with letters.

S7 Fig. Histogram distribution and qq-normality plots of the 478 PIs in OH set used for GWA mapping. IRRS, inoculated root rot score; IRW, inoculated root weight; ISW, inoculated shoot weight; IPH, inoculated plant height; ΔRW, change in root weight; ΔSW, change in shoot weight; NRW, non-inoculated root weight; NSW, non-inoculated shoot weight; NPH, non-inoculated plant height.

S8 Fig. Comparison of BLUP values between the US, SK, and GRIN populations in the OH set. The GRIN population (red) the SK population (white) boxplots, and the US population (grey) populations are represented for all nine traits: IRRS, inoculated root rot score; IRW, inoculated root weight; ISW, inoculated shoot weight; IPH, inoculated plant height; ΔRW, change in root weight; ΔSW, change in shoot weight; NRW, non-inoculated root weight; NSW, non-inoculated shoot weight; NPH, non-inoculated plant height. Significantly differences in population were tested using Fisher’s protected LSDs (P value < 0.05) are indicated with letters.

S9 Fig. Manhattan plot results of non-inoculated traits in the C2 set. Population the marker-trait association was identified in via the shape of the significant marker. The specific trait is identified by the color of the marker. Significance thresholds calculated using SimpleM are displayed for the C2 set, and the C2-US Population.

S10 Fig. Manhattan plot results of non-inoculated traits in the OH set. The figure shows which population the marker-trait association was identified in via the shape of the significant marker. The specific trait is identified by the color of the marker. Significance thresholds calculated using SimpleM are displayed for the OH set, and the OH-US Population.

Acknowledgments

The authors thank Dr. Colin Davis, Dr. Stephanie Karhoff, Dr. Kyujung Van, Aliya Ansari, Lily Thompson, Emma Kline, Brandon Bowers, and Hunter Jarosz for technical assistance in...
greenhouse assays. The authors also thank the Ornamental Plant Germplasm Center for their generous provision of greenhouse space.

Author Contributions

Conceptualization: William Rolling, Leah K. McHale.

Investigation: William Rolling, Rhiannon Lake.

Writing – original draft: William Rolling, Anne E. Dorrance, Leah K. McHale.

Writing – review & editing: William Rolling, Rhiannon Lake, Anne E. Dorrance, Leah K. McHale.

References

1. Kaufmann MJ, Gardemann J. Root and stem rot of soybean caused by Phytophthora sojae n. sp. Phytopathology. 1958; 48: 201–208.
2. Dorrance AE, Lipps P, Mills D. Phytophthora damping off and root rot of soybean. Columbus: Ohio State University Extension Fact Sheet. 2000. www.soybeanresearchinfo.com/pdf_docs/PRR_Ohio_09.pdf
3. Schmitthenner A. Problems and progress in control of Phytophthora root rot of soybean. Plant Dis. 1985; 69: 362–368.
4. Dorrance AE. Management of Phytophthora sojae of soybean: a review and future perspectives. Can J Plant Pathol. 2018; 40:210–219.
5. Morris PF, Ward E. Chemotaxis of zoospores of the soybean pathogen, Phytophthora sojae, by isoflavones. Physiol Mol Plant Pathol. 1992; 40: 17–22.
6. Morris PF, Bone E, Tyler BM. Chemotropic and contact responses of phytophthora sojae hyphae to soybean isoflavonoids and artificial substrates. Plant Physiol. 1998; 117: 1171–1178. https://doi.org/10.1104/pp.117.4.1171 PMID: 9701573
7. Dorrance AE, Robertson A, Cianzo S, Giesler L, Grau C, Draper M, et al. Integrated management strategies for Phytophthora sojae combining host resistance and seed treatments. Plant Dis. 2009; 93: 875–882. https://doi.org/10.1094/PDIS-93-9-0875 PMID: 30754536
8. Zhang J, Changjian X, Xiaoming W, Duan C, Sun S, Wu X, et al. Genetic characterization and fine mapping of the novel Phytophthora resistance gene in a Chinese soybean cultivar. Theor Appl Genet. 2013; 126: 1555–1561. https://doi.org/10.1007/s00122-013-2073-1 PMID: 23467992
9. Cheng Y, Ma Q, Ren H, Xia Q, Song E, Tan Z, et al. Fine mapping of a Phytophthora-resistance gene RpsWY in soybean (Glycine max L.) by high-throughput genome-wide sequencing. Theor Appl Genet. 2017; 130: 1041–1051. https://doi.org/10.1007/s00122-017-2869-5 PMID: 28246754
10. Lohnes D, Schmitthenner A. Position of the Phytophthora resistance gene Rps7 on the soybean molecular map. Crop Sci. 1997; 37: 555–556.
11. Demirbas A, Reber C, Lohnes D, Fioritto R, Graef G, Cregan P, et al. Simple sequence repeat markers linked to the soybean genes for Phytophthora resistance. Crop Sci. 2001; 41: 1220–1227.
12. Weng C, Yu K, Anderson TR, Poya V. Mapping genes conferring resistance to Phytophthora root rot of soybean, Rps1a and Rps7. J Hered. 2001; 92: 442–446. https://doi.org/10.1093/jhered/92.5.442 PMID: 11773256
13. Sun S, Wu XL, Zhao JM, Wang YC, Tang QH, Yu DY, et al. Characterization and mapping of RpsYU25, a novel resistance gene to Phytophthora sojae. Plant Breed. 2011; 130: 139–143.
14. Gordon SG, St Martin SK, Dorrance AE. 8 Maps to a resistance gene rich region on Soybean Molecular Linkage Group F. Crop Sci. 2006; 46: 168–173.
15. Fan AY, Wang XM, Fang XP, Wu XF, Zhu ZD. Molecular identification of Phytophthora resistance gene in soybean cultivar Yudou 25. Acta Agron Sinica. 2009; 35: 1844–1850.
16. Yu A, Xu P, Wang J, Zhang S, Wu J, Li W, et al. Genetic analysis and SSR mapping of gene resistance to Phytophthora sojae race 1 in soybean cv Suinong 10. Chinese Journal of Oil Crop Sciences. 2010; 32: 462–466.
17. Wu X, Zhang B, Shi S, Zhao J, Feng Y, Na G, et al. Identification, genetic analysis and mapping of resistance to Phytophthora sojae of Pm28 in soybean. Agricultural Sciences in China. 2011; 10: 1506–1511.
Lin F, Zhao M, Ping J, Johnson A, Zhang B, Abney TS, et al. Molecular mapping of two genes conferring resistance to Phytophthora sojae in a soybean landrace PI 567139B. Theor Appl Genet. 2013; 126: 2177–2185. https://doi.org/10.1007/s00122-013-2127-4 PMID: 23689748

Sun J, Li L, Zhao J, Yuan Q, Xing H, et al. Genetic analysis and fine mapping of RpsJS, a novel resistance gene to Phytophthora sojae in soybean [Glycine max (L.) Merr.]. Theor Appl Genet. 2014; 127: 913–919. https://doi.org/10.1007/s00122-014-2268-2 PMID: 24419901

Zhang J, Xia C, Duan C, Sun S, Wang X, Wu X, et al. Identification and candidate gene analysis of a novel Phytophthora resistance gene Rps10 in a Chinese soybean cultivar. PloS one. 2013; 8: e69799. https://doi.org/10.1371/journal.pone.0069799 PMID: 23936102

Ping J, Fitzgerald JC, Zhang C, Lin F, Bai Y, Wang D, et al. Identification and molecular mapping of Rps11, a novel gene conferring resistance to Phytophthora sojae in soybean. Theor Appl Genet. 2016; 129: 445–451. https://doi.org/10.1007/s00122-015-2638-2 PMID: 26660465

Niu J, Guo N, Sun J, Li L, Cao Y, Li S, et al. Fine mapping of a resistance gene RpsHN that controls Phytophthora sojae using recombinant inbred lines and secondary populations. Front Plant Sci. 2017; 8: 538. https://doi.org/10.3389/fpls.2017.00538 PMID: 28443124

Sahoo DK, Abeysekara NS, Cianzio SR, Robertson AE, Bhattacharyya MK. A novel Phytophthora sojae resistance Rps12 gene mapped to a genomic Region that contains several Rps Genes. PloS one. 2017; 12: e0169950. https://doi.org/10.1371/journal.pone.0169950 PMID: 28081566

Zhong C, Sun S, Yao L, Ding J, Duan C, Zhu Z. Fine mapping and identification of a novel Phytophthora Root Rot resistance locus RpsZS18 on chromosome 2 in Soybean. Front Plant Sci. 2018; 9: 44. https://doi.org/10.3389/fpls.2018.00044 PMID: 29441079

Zhong C, Li Y, Sun S, Duan C, Zhu Z. Genetic mapping and molecular characterization of a broad-spectrum Phytophthora sojae resistance gene in Chinese soybean. Int J Mol Sci. 2019; 20: 1809.

Grau, CR, Dorrance AE, Bond J, Russin JS. Fungal Diseases. Pages 679–763 In: editors. Soybeans: Improvement, Production and Uses. 3rd ed. Agronomy Monograph no 16. Boerma HR, Specht JE eds

Dorrance A, Kurle J, Robertson A, Bradley C, Giesler L, Wise K, et al. Pathotype diversity of Phytophthora sojae in eleven states in the United States. Plant Dis. 2016; 100: 1429–1437. https://doi.org/10.1094/PDIS-08-15-0879-RE PMID: 30686193

Kou Y, Wang S. Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol. 2010; 13: 181–185. https://doi.org/10.1016/j.pbi.2009.12.010 PMID: 20097118

Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ. Shades of gray: the world of quantitative disease resistance. Trends Plant Sci. 2009; 14: 21–29. https://doi.org/10.1016/j.tplants.2008.10.006 PMID: 19062327

Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P. Navigating complexity to breed disease-resistant crops. Nature Rev Genet. 2018; 19: 21. https://doi.org/10.1038/nrg.2017.82 PMID: 29109524

McDonald BA, Linde C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol. 2002; 40: 349–379. https://doi.org/10.1146/annurev.phytop.40.120501.101443 PMID: 12147764

St Clair DA. Quantitative disease resistance and quantitative resistance loci in breeding. Annu Rev Phytopathol. 2010; 48: 247–268. https://doi.org/10.1146/annurev-phyto-080508-081904 PMID: 19400646

Mundt CC. Durable resistance: a key to sustainable management of pathogens and pests. Infect Genet Evol. 2014; 27: 446–455. https://doi.org/10.1016/j.meegid.2014.01.011 PMID: 24486735

Krattinger SG, Laguadah ES, Spielemeyer W, Singh RP, Huerta-Espino J, McFadden H, et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science. 2009; 323: 1360–1363. https://doi.org/10.1126/science.1166453 PMID: 19299000

Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, et al. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science. 2009; 325: 998–1001. https://doi.org/10.1126/science.1175550 PMID: 19698351

Palloix A, Ayme V, Moursy B. Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. New Phytol. 2009; 183: 190–199. https://doi.org/10.1111/j.1469-8137.2009.02827.x PMID: 19344475

Fournet S, Kerlan M, Renault L, Dantec J, Rouaux C, Montarry J. Selection of nematodes by resistant plants has implications for local adaptation and cross-virulence. Plant Pathol. 2013; 62: 184–193.

Dorrance A, McClure S, St. Martin S. Effect of partial resistance on Phytophthora stem rot incidence and yield of soybean in Ohio. Plant Dis. 2003; 87: 306–312. https://doi.org/10.1094/PDIS.2003.87.3.308 PMID: 30812766

Dorrance A, McClure S, DeSilva A. Pathogenic diversity of Phytophthora sojae in Ohio soybean fields. Plant Dis. 2003; 87: 139–146. https://doi.org/10.1094/PDIS.2003.87.2.139 PMID: 30812918
40. Dorrance A, McClure S. Beneficial effects of fungicide seed treatments for soybean cultivars with partial resistance to Phytophthora sojae. Plant Dis. 2001; 85: 1063–1068. https://doi.org/10.1094/PDIS.2001.85.10.1063 PMID: 30823277

41. Xu Y, Crouch JH. Marker-assisted selection in plant breeding: from publications to practice. Crop Sci. 2008; 48: 391–407.

42. Burnham K, Dorrance A, VanToai T, St Martin S. Quantitative trait loci for partial resistance to Phytophthora sojae in soybean. Crop Sci. 2003; 43: 1610–1617.

43. Han Y, Teng W, Yu K, Poysa V, Anderson T, Qiu L, et al. Mapping QTL tolerance to Phytophthora root rot in soybean using microsatellite and RAPD/SCAR derived markers. Euphytica. 2008; 162: 231–239.

44. Li X, Han Y, Teng W, Zhang S, Yu K, Poysa V, et al. Pyramided QTL underlying tolerance to Phytophthora root rot in mega-environments from soybean cultivars ‘Conrad’ and ‘Hefeng 25’. Theor Appl Genet. 2010; 121: 651–658. https://doi.org/10.1007/s00122-010-1337-2 PMID: 20390244

45. Tucker D, Maroof S, Mideros S, Skoneczka J, Nabati D, Buss G, et al. Mapping quantitative trait loci for partial resistance to Phytophthora sojae in a soybean inter-specific cross. Crop Sci. 2010; 50: 628–635.

46. Wang H, Waller L, Tripathy S, St Martin SK, Zhou L, Krampis K, et al. Analysis of genes underlying soybean quantitative trait loci conferring partial resistance to Phytophthora sojae. Plant Gen. 2010; 3: 23–40.

47. Wang H, St Martin SK, Dorrance AE. Comparison of phenotypic methods and yield contributions of quantitative trait loci for partial resistance to in soybean. Crop Sci. 2012; 52: 690–692.

48. Stasko AK, Wickramasinghe D, Nauth BJ, Acharya B, Ellis ML, Taylor CG, et al. High-density mapping of resistance QTL toward Phytophthora sojae, Pythium irregulare, and Fusarium graminearum in the same soybean population. Crop Sci. 2016; 56: 2476–2492.

49. Scott K, Balc C, Veney D, McHale LK, Dorrance AE. Quantitative disease resistance loci towards Phytophthora sojae and three species of Pythium in six soybean nested association mapping populations. Crop Sci. 2019; 59: 605–623.

50. Nguyen V, Vuong T, VanToai T, Lee J, Wu X, Mian M, et al. Mapping of quantitative trait loci associated with resistance to and flooding tolerance in soybean. Crop Sci. 2012; 52: 2481–2493.

51. Lee S, Mian MR, McHale LK, Wang H, Wijeratne AJ, Sneller CH, et al. Novel quantitative trait loci for partial resistance to Phytophthora sojae in soybean PI 398841. Theor Appl Genet. 2013; 126: 1121–1132. https://doi.org/10.1007/s00122-013-2040-x PMID: 23354974

52. Lee S, Mian R, McHale LK, Sneller CH, Dorrance AE. Identification of Quantitative Trait Loci Conditioning Partial Resistance to Phytophthora sojae in Soybean PI 407861 A. Crop Sci. 2013; 53: 1022–1031.

53. Lee S, Mian MR, Sneller CH, Wang H, Dorrance AE, McHale LK. Joint linkage QTL analyses for partial resistance to Phytophthora sojae in soybean using six nested inbred populations with heterogeneous conditions. Theor Appl Genet. 2014; 127: 429–444. https://doi.org/10.1007/s00122-013-2229-z PMID: 24247235

54. Abeysekara NS, Matthiesen RL, Cianzio SR, Bhattacharyya MK, Robertson AE. Novel sources of partial resistance against Phytophthora sojae in soybean PI 399036. Crop Sci. 2016; 56: 2322–2335.

55. Schneider R, Rogling W, Song Q, Cregan P, Dorrance AE, McHale LK. Genome-wide association mapping of partial resistance to Phytophthora sojae in soybean plant introductions from the Republic of Korea. BMC Genomics. 2016; 17: 607. https://doi.org/10.1186/s12864-016-2918-5 PMID: 27515508

56. Dorrance A, Schmitthenner A. New sources of resistance to Phytophthora sojae in the soybean plant introductions. Plant Dis. 2000; 84: 1303–1308. https://doi.org/10.1094/PDIS.2000.84.12.1303 PMID: 30831872

57. Sun J, Guo N, Lei J, Li L, Hu G, Xing H. Association mapping for partial resistance to Phytophthora sojae in soybean (Glycine max (L.) Merr.). J Genet. 2014; 93: 355–363. https://doi.org/10.1007/s12041-014-0383-y PMID: 25189230

58. Li L, Guo N, Liu J, Wang Z, Cui X, Sun J, et al. Loci and candidate gene identification for resistance to Phytophthora sojae via association analysis in soybean [Glycine max (L.) Merr.]. Mol Gen Genomics. 2016; 291: 1095–1103

59. Ludke WH, Schuster I, Silva FLd, Montecelli TDN, Soares BdA, Oliveira Abd, et al. SNP markers associated with soybean partial resistance to Phytophthora sojae. Crop Breed Appl Biotechnol. 2019; 19: 31–39.

60. Song O, Hyten DL, Jia G, Ougley CV, Fickus EW, Nelson RL, et al. Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PloS one. 2013; 8: e54985. https://doi.org/10.1371/journal.pone.0054985 PMID: 23372807
61. Grant D, Nelson RT, Cannon SB, Shoemaker RC. SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res. 2010; 38: D843–6. https://doi.org/10.1093/nar/gkp798 PMID: 20008513

62. Scheet P, Stephens M. A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotype phase. Am J Hum Genet. 2006; 78: 629–644. https://doi.org/10.1086/502802 PMID: 16532393

63. Raj A, Stephens M, Pritchard JK. fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics. 2014; 197: 573–589. https://doi.org/10.1534/genetics.114.164350 PMID: 24700103

64. Olhoft PM, Donovan CM, Somers DA. Soybean (Glycine max) transformation using mature cotyledonary node explants. Agrobacterium Protoc. 2006; 34: 395–396

65. Dorrance AE, Berry SA, Anderson TR, Meharg C. Isolation, storage, pathotype characterization, and evaluation of resistance for Phytophthora sojae in soybean. Plant Health Progress. 2008; 10: 1094.

66. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015; 67: https://doi.org/10.18637/jss.v067.i01

67. Zhang Z, Ersoz E, Lai C, Todhunter RJ, Gore MA, et al. Mixed linear model approach adapted for genome-wide association studies. Nat Genet. 2010; 42: 355–360. https://doi.org/10.1038/ng.546 PMID: 20208535

68. Darvasi A, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, et al. The structure of haplotype blocks in the human genome. Science. 2002; 296: 2225–2229. https://doi.org/10.1126/science.1069424 PMID: 12029063

69. Slatkin M. Linkage disequilibrium–understanding the evolutionary past and mapping the medical future. Nat Rev Genet. 2008; 9: 477–485. https://doi.org/10.1038/nrg2361 PMID: 18427557

70. Rosenberg NA, Huang L, Jewett EM, Szpiech ZA, Jankovic I, Boehnke M. Genome-wide association studies in diverse populations. Nat Rev Genet. 2010; 11: 353–366.

71. Jiao Y, Vuong TD, Lark K, Conciondo V, Delannay X, et al. Identification and evaluation of quantitative trait loci underlying resistance to multiple HG types of soybean cyst nematode in soybean PI 437655. Theor Appl Genet. 2015; 128: 122–128. https://doi.org/10.1007/s00122-014-2409-5 PMID: 25316311

72. Arahana VS, Graef GL, Specht JE, Steadman JR, Eskridge KM. Identification of QTLs for resistance to Sclerotinia sclerotiorum in soybean. Crop Sci. 2001; 41: 180–188.

73. Swaminathan S, Abeysekara NS, Liu M, Cianzio SR, Bhattacharyya MK. Quantitative trait loci underlying host responses of soybean to Fusarium virguliforme toxins that cause foliar sudden death syndrome. Theor Appl Genet. 2016; 129: 495–506. https://doi.org/10.1007/s00122-015-2643-5 PMID: 26678962

74. Moellers TC, Singh A, Zhang J, Brungardt J, Kabbage M, Mueller DS, et al. Main and epistatic loci studies in soybean for Sclerotinia sclerotiorum resistance reveal multiple modes of resistance in multi-
environments. Scientific reports. 2017; 7: 3554. https://doi.org/10.1038/s41598-017-03695-9 PMID: 28620159

84. Hnetkovsky N, Chang S, Doubler T, Gibson P, Lightfott D. Genetic mapping of loci underlying field resistance to soybean sudden death syndrome (SDS). Crop Sci. 1996; 36: 393–400.

85. Chang S, Doubler T, Kilo V, Suttner R, Klein J, Schmidt M, et al. Two additional loci underlying durable field resistance to soybean sudden death syndrome (SDS). Crop Sci. 1996; 36: 1684–1688.

86. Guo X, Wang D, Gordon SG, Helliwell E, Smith T, Berry SA, et al. Genetic mapping of QTLs underlying partial resistance to in soybean PI 391589A and PI 391589B. Crop Sci. 2008; 48: 1129–1139.

87. Vuong T, Sleper D, Shannon J, Wu X, Nguyen H. Confirmation of quantitative trait loci for resistance to multiple-HG types of soybean cyst nematode (Heterodera glycines Ichinohe). Euphytica. 2011; 181: 101–113.

88. Yue P, Arelli P, Sleper D. Molecular characterization of resistance to Heterodera glycines in soybean PI 438489B. Theor Appl Genet. 2001; 102: 921–928.

89. Stewart S, Roberston AE, Wickramsinghe D, Draper MA, Michel A, Dorrance AE. Population structure among and within Iowa, Missouri, Ohio, and South Dakota populations of Phytophthora sojae. Plant Disease. 2016; 100: 367–379. https://doi.org/10.1094/PDIS-04-15-0437-RE PMID: 30694137

90. Niks RE, Xiaoguan Q, Thierry MC. Quantitative resistance to biotrophic filamentous plant pathogens: concepts, misconceptions, and mechanisms. An Rev Phytopathol. 2015; 53: 445–470.

91. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet. 2017; 101: 5–22. https://doi.org/10.1016/j.ajhg.2017.06.005 PMID: 28686856

92. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P. Association mapping in structured populations. Am J Hum Genet. 2000; 67: 170–181. https://doi.org/10.1086/302959 PMID: 10827107

93. Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, et al. GAPIT: genome association and prediction integrated tool. Bioinformatics. 2012; 28: 2397–2399. https://doi.org/10.1093/bioinformatics/bts444 PMID: 22796860

94. Bandillo N, Jarquin D, Song Q, Nelson R, Cregan P, Specht J, et al. A population structure and genome-wide association analysis on the USDA soybean germplasm collection. Plant Genome. 2015; 8: 1–13

95. Li ZK, Arif M, Zhong DB, Fu BY, Xu JL, Domingo-Rey J, et al. Complex genetic networks underlying the defensive system of rice (Oryza sativa L.) to Xanthomonas oryzae pv. oryzae. PNAS USA. 2006; 103: 7994–7999. https://doi.org/10.1073/pnas.0507492103 PMID: 16702555

96. Karhoff S, Lee S, Mian M, Ralston TI, Niblack TL, Dorrance AE, et al. Phenotypic characterization of a major quantitative disease resistance locus for partial resistance to Phytophthora sojae. Crop Sci. 2019; 59: 968–980.

97. Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oroppeza-Rosas MA, et al. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet. 2011; 43: 163. https://doi.org/10.1038/ng.747 PMID: 21217757

98. Kugler KG, Siegwart G, Nussbaumer T, Ametz C, Spannagl M, Steiner B, et al. Quantitative trait loci-dependent analysis of a gene co-expression network associated with Fusarium head blight resistance in bread wheat (Triticum aestivum L.). BMC Genomics. 2013; 14: 728. https://doi.org/10.1186/1471-2164-14-728 PMID: 24152241

99. Mideros S, Nita M, Dorrance AE. Characterization of components of partial resistance, Rps 2, and root resistance to Phytophthora sojae in soybean. Phytopathol 2007; 97: 655–662.

100. Schneider RN. Genome-Wide Analyses for Partial Resistance to Phytophthora sojae Kaufmann and Gerdemann in Soybean (Glycine max L.Merr.) populations from North America and the Republic of Korea. 2015.

101. Bernard R. USDA soybean genetic collection: isolate collection. Soybean Genet Newsl. 1991; 18: 27–57.

102. Esgar R. Performance of commercial soybeans in Illinois, 1987. Circular (University of Illinois at Urbana-Champaign. Cooperative Extension Service) 1280. 1987.

103. St Martin S, Calip-DuBois A, Fioritto R, Schmittenner A, Min D, Yang T, et al. Registration of ‘Ohio FG2’ soybean. Crop Sci. 1996; 36: 814–814.

104. Sneller C, Chen P, Rupe J, Riggs R. Registration of ‘Lonoke’ soybean. Crop Sci. 2004; 44: 689–691.

105. Wilcox JR, Abney TS. Registration of ‘Athow’soybean. Crop Sci. 1997; 37: 1981–1982.

106. Soybean Parentage Information.: 1. https://www.soyscience.org/uniformtrial/index.php?page=lines.

107. Fukuoka S, Saka N, Mizukami Y, Koga H, Yamanouchi U, Yoshioka Y, et al. Gene pyramiding enhances durable blast disease resistance in rice. Scientific reports. 2015; 5: 7773. https://doi.org/10.1038/srep07773 PMID: 25586962