ASYMPTOTIC PROPERTIES OF GROUPS ACTING ON COMPLEXES

GREGORY C. BELL

ABSTRACT. We examine asymptotic dimension and property A for groups acting on complexes. In particular, we prove that the fundamental group of a finite, developable complex of groups will have finite asymptotic dimension provided the geometric realization of the development has finite asymptotic dimension and the vertex groups are finitely generated and have finite asymptotic dimension. We also prove that property A is preserved by this construction provided the geometric realization of the development has finite asymptotic dimension and the vertex groups all have property A. These results naturally extend the corresponding results on preservation of these large-scale properties for fundamental groups of graphs of groups. We also use an example to show that the requirement that the development have finite asymptotic dimension cannot be relaxed.

1. INTRODUCTION

The asymptotic approach to finitely generated groups became popular following the work of Gromov [9]. In his study of asymptotic invariants of finitely generated groups, Gromov defined asymptotic dimension (asdim), the large-scale analog of Lebesgue covering dimension. G. Yu [16] applied asymptotic dimension to the Novikov higher signature conjecture for groups, showing that the conjecture holds for groups with finite asymptotic dimension. Later, Yu [17] defined another asymptotic invariant for discrete metric spaces and finitely generated groups called property A. This is a weak form of amenability which also implies the Novikov conjecture for groups. (For an introduction to the Novikov and related conjectures, see [8].)

We wish to consider finitely generated groups as metric spaces. Let Γ be a finitely generated group with generating set $S = S^{-1}$. The S-norm on Γ is the norm given by setting $\|\gamma\|_S = 0$ precisely when γ is the group identity and otherwise taking $\|\gamma\|_S$ to be the minimal length of any S-word presenting the element γ. Then, one can define the (left-invariant) word metric associated to S by $\dist_S(g, h) = \|g^{-1}h\|_S$. The metrics corresponding to two finite generating sets S and S' are Lipschitz equivalent. Asymptotic dimension and property A are invariants of Lipschitz equivalent metric spaces, so these properties are intrinsic to the group Γ and not the metric space associated to a specific generating set.

In view of Yu’s results, [16, 15], it is important to know which groups have finite asdim or property A. Gromov [9] showed that hyperbolic groups have finite asdim. Dranishnikov and Januszkiewicz proved in [3] that Coxeter groups have

\begin{flushleft}
\emph{Date:} November 26, 2002. \\
\emph{Key words and phrases.} complexes of groups, asymptotic dimension, property A. \\
\emph{2000 Mathematics Subject Classification.} Primary: 20F69, Secondary: 20E08, 20E06.
\end{flushleft}
finite asdim. Dranishnikov and the author proved that the finiteness of asdim is preserved by the amalgamated free product and HNN extension, and more generally any fundamental group of a finite graph of groups with vertex groups having finite asdim, see [2], [3]. Higson and Roe [12] showed that finitely generated groups with finite asymptotic dimension have property A. In [15], J.-L. Tu proved that property A is preserved by the fundamental group of a finite graph of groups where the vertex groups all have property A. At first it was not known whether there could be a finitely generated group with infinite asdim or which does not have property A. A recent example of such a group due to Gromov [10] and Dranishnikov, Gong, Lafforgue and Yu [7], have made determining precisely which groups have these properties interesting.

The Bass-Serre theory of graphs of groups generalizes the constructions of amalgamated free products and HNN extensions (see [14]). There is a direct correspondence between groups acting without inversion on trees and fundamental groups of graphs of groups. Complexes of groups were introduced by Haefliger [11] in order to describe actions of groups on simply connected simplicial complexes in the same way that graphs of groups describe the action of groups on trees. The problem that arises is that the quotient of a simplicial complex by a simplicial action may identify faces of simplices. So it may not be the case that the quotient is a simplicial complex. This problem is avoided by introducing combinatorial substitutes for simplicial complexes called small categories without loops (scwols).

In the second section we develop the necessary theory of complexes of groups following [4]. We define scwols, group actions on scwols, complexes of groups, developability of complexes of groups, and the associated fundamental group of a complex of groups.

In the third section, we define the R-stabilizer which plays the role of the stabilizer in the study of the large-scale properties of groups acting on metric spaces. We also characterize the R-stabilizers for groups acting on scwols.

In the fourth section, we define asdim and obtain our main result on asymptotic dimension:

Theorem. Let $G(\mathcal{Y})$ be a developable complex of groups over a finite scwol \mathcal{Y} with development \mathcal{X} such that $\text{asdim } \mathcal{X} < \infty$, and such that every local group G_σ has $\text{asdim } G_\sigma < \infty$. If π_1 denotes the fundamental group of the complex of groups, we have $\text{asdim } \pi_1 < \infty$.

In the fifth section, we define property A and prove an analogous result for property A:

Theorem. Let $G(\mathcal{Y})$ be a developable complex of groups over a finite scwol \mathcal{Y} with development \mathcal{X} such that $\text{asdim } \mathcal{X} < \infty$, and such that every local group G_σ has property A. If π_1 denotes the fundamental group of the complex of groups, then π_1 has property A.

In the final section, we use an example of a finitely generated group which does not have either property A or finite asdim to show that the results we obtain here cannot be improved by relaxing the condition that the development have finite asdim.

2. Complexes of Groups

Our notation and development will follow Bridson-Haefliger [4].
Definition. A small category without loops (abbreviated scwol) is a set \mathcal{X} which is the disjoint union of a vertex set $V(\mathcal{X})$ and an edge set $E(\mathcal{X})$. There are maps
\[i : E(\mathcal{X}) \to V(\mathcal{X}) \]
and
\[t : E(\mathcal{X}) \to V(\mathcal{X}) \]
which assign to each edge a the initial vertex of a and the terminal vertex of a, respectively. Let $E^{(2)}(\mathcal{X}) = \{(a, b) \in E(\mathcal{X}) \times E(\mathcal{X}) \mid i(a) = t(b)\}$ denote the pairs of composable edges. There is also a map
\[E^{(2)}(\mathcal{X}) \to E(\mathcal{X}) \]
which assigns to each pair (a, b) an edge (ab) called the composition of a and b. These maps are required to satisfy:

1. $i(ab) = i(b)$, and $t(ab) = t(a)$ for all $(a, b) \in E^{(2)}(\mathcal{X})$;
2. $a(bc) = (ab)c$ for all edges a, b and c with $i(a) = t(b)$ and $i(b) = t(c)$; and
3. $i(a) \neq t(a)$, (the no loops condition)

Let $E^{(k)}(\mathcal{X})$ denote the composable sequences of edges of length k, i.e., $E^{(k)}(\mathcal{X}) = \{(a_1, \ldots, a_k) \in (E(\mathcal{X}))^k \mid i(a_i) = t(a_{i+1})\}$, for $i = 1, \ldots, k - 1$. By convention, $E^{(0)}(\mathcal{X}) = V(\mathcal{X})$. We define the dimension of the scwol \mathcal{X} to be the maximum k such that $E^{(k)}(\mathcal{X})$ is not empty.

Definition. The geometric realization $|\mathcal{X}|$ is a piecewise Euclidean polyhedral complex, with each k-cell isometric to the standard simplex Δ^k. There is one such k-simplex A for each $A \in E^{(k)}(\mathcal{X})$. The identifications are the obvious ones, induced by the face relation among simplices.

Observe that the geometric realization need not be a simplicial complex, since it may be the case that the intersection of two simplices is a union of faces. One can eliminate this problem by taking the barycentric subdivision, if one requires simplicial complexes. The geometric dimension of $|\mathcal{X}|$ is the same as the dimension of the combinatorial object \mathcal{X}.

Definition. A group action on a scwol is a homomorphism $G \to \text{Aut}(\mathcal{X})$ satisfying

1. for every $g \in G$, and for all $a \in E(\mathcal{X})$ $g, i(a) \neq t(a)$.
2. for every $g \in G$, and for all $a \in E(\mathcal{X})$ if $g, i(a) = i(a)$, then $g, a = a$.

Notice that a group action on a scwol induces an isometric action of the group on the geometric realization $|\mathcal{X}|$. Since we are primarily concerned with isometric actions on metric spaces, this is the action that we consider.

One forms the quotient $\mathcal{Y} = G\backslash\mathcal{X}$ of the scwol \mathcal{X} by the action of G by taking $V(\mathcal{Y}) = G \backslash V(\mathcal{X})$, and $E(\mathcal{Y}) = G \backslash E(\mathcal{X})$. One can verify that \mathcal{Y} has the structure of a scwol.

Definition. A complex of groups $G(\mathcal{Y})$ over a scwol \mathcal{Y} is a collection $G(\mathcal{Y}) = (G_\sigma, \psi_a, g_{a,b})$ satisfying

1. to each $\sigma \in V(\mathcal{Y})$, there corresponds a group G_σ called the local group at σ;
2. for each $a \in E(\mathcal{Y})$ there exists an injective homomorphism $\psi_a : G_{i(a)} \to G_{t(a)}$; and
(3) For each \((a, b) \in E^{(2)}(\mathcal{Y})\), there is a \(g_{a,b} \in G_{t(a)}\) such that

\[
\text{(i) } \text{Ad}(g_{a,b})\psi_{ab} = \psi_a\psi_b, \quad \text{where } \text{Ad}(g_{a,b}) \text{ denotes conjugation by } g_{a,b},
\]

and

\[
\text{(ii) } \psi_a(g_{b,c})g_{a,bc} = g_{a,b}g_{ab,vc} \quad \text{for all } (a, b, c) \in E^{(3)}(\mathcal{Y}).
\]

Given a group \(G\) and an action of \(G\) on the scwol \(\mathcal{X}\), there is an explicit construction of the complex of groups over the quotient scwol which we do not describe here. However, on the other hand, it is not always the case that an arbitrary complex of groups can be associated to a group action on some scwol \(\mathcal{X}\). When this occurs, we say that the complex of groups is developable and we refer to the associated scwol \(\mathcal{X}\) as the development of \(G(\mathcal{Y})\).

It is clear that scwols of dimension 1 must have precisely two types of vertices: sources and sinks. A source is an initial vertex of every edge it is contained in and a sink is a terminal vertex of every edge it is contained in. Every one-dimensional simplicial complex (graph) can be given the structure of a one-dimensional scwol by phrasing in terms of the language of complexes of groups, the Bass–Serre structure theorem for groups acting without inversion on graphs says that if \(\dim(\mathcal{Y}) = 1\), then \(G(\mathcal{Y})\) is always developable.

When a complex of groups is developable, there is an explicit method of constructing both the scwol \(\mathcal{X}\) and the group \(G\) which acts on the scwol. The scwol \(\mathcal{X}\) on which the group acts is simply connected and has an explicit description in a similar way to the construction of the tree \(\tilde{X}\) in the theory of graphs of groups (see [4]).

Indeed, if \(G(\mathcal{Y})\) is a developable complex of groups, then we can define the development \(D(\mathcal{Y})\) to be the scwol whose vertices and edges are given by \(V(D(\mathcal{Y})) = \{(gG_\sigma, \sigma) \mid \sigma \in V(\mathcal{Y})\}\), and \(E(D(\mathcal{Y})) = \{(gG_{t(a)}, a) \mid a \in E(\mathcal{Y})\}\). Then the group \(G\) acts on the development \(D(\mathcal{Y})\) by left multiplication. The development is isomorphic to the scwol \(\mathcal{X}\), mentioned above. (See [4] for more details.)

We describe the fundamental group of the complex of groups \(\pi_1(G(\mathcal{Y}))\) which is the group \(G\), up to isomorphism. As in the theory of graphs of groups, there are two equivalent descriptions of the fundamental group. Both rely on the construction of the auxiliary group \(FG(\mathcal{Y})\). Let \(E^\pm(\mathcal{Y})\) denote the collection of symbols \(\{a^+, a^-\}\) where \(a \in E(\mathcal{Y})\). The elements of \(E^\pm(\mathcal{Y})\) can be thought of as oriented edges. If \(e = a^+\), then define \(i(e) = t(a)\) and \(t(e) = i(a)\). Accordingly, if \(e = a^-\), define \(t(e) = t(a)\) and \(i(e) = i(a)\). Then, define \(FG(\mathcal{Y})\) to be the free product of the local groups \(G_\sigma\) and the free group generated by the collection \(E^\pm(\mathcal{Y})\) subject to the additional relations:

\[
\begin{align*}
\text{(1)} & \quad (a^+)^{-1} = a^- \quad \text{and} \quad (a^-)^{-1} = a^+; \\
\text{(2)} & \quad a^+b^+ = g_{a,b}(ab)^+; \\
\text{(3)} & \quad \psi_a(g) = a^+ga^- \quad \text{for all } g \in G_{t(a)}.
\end{align*}
\]

The first description of the fundamental group is in terms of \(G(\mathcal{Y})\)-loops based at some fixed vertex \(\sigma_0\). An edge path in \(\mathcal{Y}\) is a sequence \((e_1, \ldots, e_k)\) with \(t(e_i) = i(e_{i+1})\), for all \(i = 1, \ldots, k - 1\). By a \(G(\mathcal{Y})\)-path issuing from \(\sigma_0\) we mean a sequence \((g_0, e_1, g_1, \ldots, e_k, g_k)\), where \((e_1, \ldots, e_k)\) is an edge path in \(\mathcal{Y}\), and \(g_0 \in G_{\sigma_0}\), and \(g_i \in G_{t(e_i)}\) for \(i > 0\). We associate the word \(g_0e_1 \ldots e_kg_k \in FG(\mathcal{Y})\) to the path described above. A \(G(\mathcal{Y})\)-loop based at \(\sigma_0\) is a \(G(\mathcal{Y})\) path with \(t(e_k) = \sigma_0\). There
is an obvious notion of homotopy on $G(\mathcal{Y})$-paths, i.e., the notion of homotopy on the geometric realization. The fundamental group $\pi_1(G(\mathcal{Y}), \sigma_0)$ is the collection of all words associated to $G(\mathcal{Y})$-loops based at σ_0, up to homotopy equivalence.

The second description is much simpler. Let T be a maximal tree in $|\mathcal{Y}|$. Then, $\pi_1(G(\mathcal{Y}), T)$ is $FG(\mathcal{Y})$ subject to the additional relation $a^+ = 1$, for all $a \in T$. For a connected scwol, there is an isomorphism $\pi_1(G(\mathcal{Y}), \sigma_0) \to \pi_1(G(\mathcal{Y}), T)$.

3. Groups Acting on Metric Spaces

For group actions considered on a local scale, the stabilizer plays a key rôle. The corresponding notion for group actions considered in the global sense is that of the R-stabilizer which we define presently.

Definition. Let Γ be a group acting on the pointed metric space (X, x_0) by isometries. For every $R > 0$ define the R-stabilizer of the point x_0, denoted $W_R(x_0)$, by

$$W_R(x_0) = \{ \gamma \in \Gamma \mid d(\gamma x_0, x_0) \leq R \}.$$

In [3], Dranishnikov and the author characterized the R-stabilizers of the action of a fundamental group of a graph of groups on the tree corresponding to its development. The following proposition is a natural generalization of that result.

Proposition 1. Let $G(\mathcal{Y})$ be a developable complex of groups. Fix a vertex $\sigma_0 \in \mathcal{Y}$, and consider the action of $\pi_1(G(\mathcal{Y}), \sigma_0)$ on the simply connected scwol X induced by the complex of groups. Then the R-stabilizer $W_R(\sigma_0)$ is the set of all elements of $\pi_1(G(\mathcal{Y}), \sigma_0)$ with associated path c of length not exceeding R.

Proof. Let γ be a word in π which is reduced and for which the path length is R. Then consider $d_X(\gamma G_{\sigma_0}, G_{\sigma_0})$. The path corresponding to γ lifts to a path in X, so this distance is at most R.

Thus, it remains to show that no element of γG_{σ_0} has length less than R if γ has length R in its most reduced form.

To this end, let $xg = g_0e_1 \cdots e_ngNg_n$ be a reduced word in xG_{σ_0}.

Two of the relations on $FG(\mathcal{Y})$ can affect the path length of a word. In order for the relation $(e_i^+ e_{i+1}^+) = g_i e_i e_{i+1}^+$ to occur in this word, we would need two composable edges, in the sense that $t(e_{i+1}) = i(e_i)$, but since by definition, we have $i(e_i) = i(e_{i+1})$ for all edges, we conclude that $e_i^{-1} = e_{i+1}$. Thus, the only relation that can occur is the type $\psi_\alpha (g) = a^+ ga^-$.

Suppose that a sequence of this type of relation occurs which transform the word xg into $g_0e_1 \cdots g_{k-1}e_kg_k g' e_{k+1}g'_k \cdots g'_N$. Here two cases can occur. In the first case, edge e_k has positive orientation. Then, $e_k g' e_{k+1} = \psi e_k(g_k g')$. But, in this case, we can obtain a reduction of the original path x since $e_k g e_{k+1} = \psi e_k(g_k)$. As the original path was reduced, this cannot occur. The other case is when e_{k+1} has positive orientation. Then, $g_k g' = \psi e_{k+1}(h)$ for some h. But, it must be the case that g' was generated by this type of relation, as this is the only type that can occur and involves edges. Thus, g' is itself $\psi e_{k+1}(h')$, for some h'. Thus, $g = \psi e_{k+1}(h(h')^{-1})$. This enables a reduction of the original word. Thus, the length of any representative of xG_{σ_0} has length no less than R as desired.

4. Asymptotic Dimension

Asymptotic dimension was introduced by Gromov [1]. It is the coarse analog of Ostrand’s characterization of covering dimension for metric spaces, [13].
Consider the case K.

Definition. Let X be a metric space. We define the asymptotic dimension (asdim) of X by the following inequality: $\text{asdim} X \leq n$ if for every $R > 0$ there exist $n + 1$ families of sets U_0, \ldots, U_n which are uniformly bounded, which cover X and which are R-disjoint in the sense that any two distinct sets from the same family are at a distance greater than R from each other. We define $\text{asdim} X = n$ if it is the case that $\text{asdim} X \leq n$, but it is not the case that $\text{asdim} X \leq n - 1$.

The goal of this section is to see that the finiteness of asdim is preserved by the construction of the fundamental group of a developable complex of groups. This is a natural generalization of the main theorem in [3].

Definition. Let X_α be a family of subsets of the metric space X. We say that the family satisfies the inequality $\text{asdim} X_\alpha \leq n$ uniformly if for every $R > 0$ there is a number $R > 0$ and a collection of D-bounded, R-disjoint families $\{U^\alpha_i\}$ so that for each α, $\{U^\alpha_i\}$ covers X_α.

A common example of a family satisfying $\text{asdim} X_\alpha \leq n$ uniformly is a family of isometric metric spaces.

The following union theorem appears as Theorem 1 in [2].

Theorem (Union Theorem). Let $X = \cup_\alpha F_\alpha$ and $\text{asdim} F_\alpha$ uniformly. Suppose that for any r there exists a set $Y_r \subset X$ such that $\text{asdim} Y_r \leq n$ and the family $\{F_\alpha \setminus Y_r\}$ is r-disjoint. Then, $\text{asdim} X \leq n$.

As a corollary, we have the following finite union theorem.

Theorem (Finite Union Theorem). Let $X = \cup_{i=1}^k X_i$ be a metric space. Then, $\text{asdim} X \leq \max\{\text{asdim} X_i \mid i = 1, \ldots, k\}$.

Let $G(\mathcal{Y})$ be a developable complex of groups, with \mathcal{Y} finite and $\text{asdim} |\mathcal{X}| \leq k$. Suppose further that the local groups are finitely generated. Then, the finiteness of \mathcal{Y} implies that the fundamental group π is finitely generated. Indeed, if S_σ denotes a finite generating set for each local group G_σ, then we can consider $FG(\mathcal{Y})$ in the metric obtained from the disjoint union of all the S_σ and the set $E^\pm(\mathcal{Y})$. Thus, the notion of asdim is well-defined for the fundamental group of a complex of groups.

Lemma 2. Let π be the fundamental group of a complex of groups $G(\mathcal{Y})$ where \mathcal{Y} is finite, the local groups are finitely generated, and the local groups satisfy $\text{asdim} G_\sigma \leq n$, then for every $R > 0$, $\text{asdim} W_R(\mathcal{G}_{\sigma_0}) \leq n$.

Proof. In Proposition 1 we characterized $W_R(\mathcal{G}_{\sigma_0})$ as the set of all elements in π with length at most R. Let X denote the development of $FG(\mathcal{Y})$.

In order to apply an inductive argument, we consider a larger set, $K \subset FG(\mathcal{Y})$ which is the set of all words in $FG(\mathcal{Y})$ issuing from σ_0. The group π is a subset of K and the set K acts on X by left multiplication. We show that the R-stabilizer of an action has asdim at most n. It follows then that the R-stabilizer of the action of π on X will also have asdim at most n.

In light of the finite union theorem, in order to show $\text{asdim} W_R(\mathcal{G}_{\sigma_0}) \leq n$, it suffices to show that the subset $K_j \subset K$ of reduced words in K with length equal to j has asdim $K_j \leq n$. Indeed, $W_R(\mathcal{G}_{\sigma_0}) \subset \cup_{j=0}^n K_j$, which is a finite union.

We proceed by induction. The case $j = 0$ is true by assumption since $K_0 = G_{\sigma_0}$. Consider the case K_{j+1} with $j \geq 0$. Observe that $K_{j+1} \subset \cup_{a \in E^\pm(\mathcal{Y})} K_j a G_{t(a)}$.

The orientation of the edge a is an issue, as it determines whether the group $G_{t(a)}$ is a domain or codomain of the function ψ_a. Thus, it is necessary to consider two cases separately.

Suppose first that a has negative orientation. So, we are considering $K_ja^-G_{t(a)}$. For every $r > 0$ let $Y_r = K_ja^-N_r(\psi_a(G_{t(a)}))$, where the r-neighborhood is taken in the group $FG(Y)$. Then Y_r is coarsely equivalent to $K_ja^-\psi_a(G_{t(a)})$. Now we have $K_ja^-\psi_a(G_{t(a)}) = K_jG_{t(a)}a^-$, which is just K_ja^-. Finally, as K_ja^- is coarsely equivalent to K_j, we have $\text{asdim } Y_r = \text{asdim } K_j$, which by the inductive hypothesis does not exceed n.

Next, decompose the set $K_ja^-G_{t(a)}$ into families $\{xa^-G_{t(a)}\}$, where the index runs over all $x \in K_j$ which do not end with an element $g \in G_{t(a)}$. One can still obtain these elements through the relations of $FG(Y)$. For instance, to obtain xga^-g', with x of the required form, $g \in G_{t(a)}$ and g' in $G_{t(a)}$, simply take the word $xa^-\psi_a(g)g'$, which is of the required form. Next, observe that the map $G_{t(a)} \mapsto xa^-G_{t(a)}$ is an isometry in the (left-invariant) word metric, so the family $\{xa^-G_{t(a)}\}$ has $\text{asdim } \leq n$, uniformly.

In order to apply the union theorem to this family, it remains to show only that the family $\{xa^-G_{t(a)} \setminus \{G_{t(a)}\}\}$ is r-disjoint. To this end, let xa^-z and $x'a^-z'$ be given in different families. Then we compute $d(xa^-z, x'a^-z') = \|z^{-1}a^+x^{-1}x'a^-z'\|$. Since z and z' lie outside of $N_r(\psi_a(G_{t(a)}))$, take $z = s\psi_a(g)$ and $z' = s'\psi_a(g')$, where $\|s\| > r$, $\|s'\| > r$, and $\psi_a(g)$ and $\psi_a(g')$ are in $\psi_a(G_{t(a)})$. Then,

$$\|z^{-1}a^+x^{-1}x'a^-z'\| = \|s^{-1}a^+g^{-1}x^{-1}x'g'a^-z'\|.$$

Now, in order for this length to be less than r, a reduction must occur in the middle, so that a^+ and a^- annihilate each other. In order for this to occur, we must have $g^{-1}x^{-1}x'g' \in G_{t(a)}$. Thus, $x^{-1}x' \in G_{t(a)}$. But, this means that $xa^-G_{t(a)}$ and $x'a^-G_{t(a)}$ define the same family. Thus, in the case that the edge has negative orientation, we have $\text{asdim } K_ja^-G_{t(a)} \leq n$.

Next, we consider the case where the edge a has positive orientation. In this case, $K_ja^+G_{t(a)} = K_j\psi_a(G_{t(a)})a^+$, which is coarsely equivalent to K_j. We conclude that $\text{asdim } K_ja^+G_{t(a)} = \text{asdim } K_j \leq n$.

The following result appears as Theorem 2 from [2].

Theorem. Assume that a finitely generated group Γ acts by isometries on a metric space X with a base point x_0 and with $\text{asdim } X \leq k$. Suppose that $\text{asdim } W_R(x_0) \leq n$ for all R. Then $\text{asdim } \Gamma \leq (n + 1)(k + 1) - 1$.

This estimate on the dimension is far from sharp. It is useful only as a means to prove that $\text{asdim } \Gamma < \infty$. The exact estimate should be $n + k$. (See [3] for the proof of the exact formula in the case of groups acting on trees by isometries.)

As a consequence of the preceding theorem, we have our main result on asdim.

Theorem 3. Let Γ be the fundamental group of a finite developable complex of groups $G(Y)$ corresponding to an action by isometries on the geometric realization of the scvoi X. Suppose that the local groups are finitely generated and that $\text{asdim } G_{t(a)} \leq n$. Assume additionally that $\text{asdim } |X| \leq k$. Then $\text{asdim } \Gamma \leq (n + 1)(k + 1) - 1$.

The important result is summarized as a corollary:
Corollary. Let \(\Gamma \) be the fundamental group of a finite developable complex of groups \(G(Y) \) such that the development \(X \) has asdim \(|X| < \infty \), and such that every base group \(G_\sigma \) has asdim \(G_\sigma < \infty \). Then, asdim \(\Gamma < \infty \).

5. Property A

Property A was introduced by G. Yu, \([17]\). It is a weak form of amenability which, for groups, implies the existence of a uniform embedding into Hilbert space. Thus, the coarse Baum-Connes conjecture and the Novikov conjecture hold for this group.

Definition. Let \(X \) be a metric space. Let \(P(X) \) denote the set of probability measures on \(X \) in the \(l_1 \) metric. The metric space \(X \) has property A if there exists a sequence of maps \(a^n : X \to P(X) \) satisfying the following two conditions:

1. for every \(n \) there is an \(R \) so that for every \(x \), \(\text{supp} \ a^n_x \subset B_R(x) \), and
2. for every \(K > 0 \), \(\lim_{n \to \infty} \sup_{d(x,y) < K} \|a^n_x - a^n_y\|_1 = 0 \).

As mentioned in the introduction finitely generated groups with finite asdim have property A, \([12]\). Tu proved, \([15]\), that the fundamental group of a finite graph of groups in which each vertex group has property A will have property A. In \([1]\), the author generalized Tu’s results to groups acting by isometries on metric spaces with finite asdim.

In particular, the theorem proved in \([1]\) is the following:

Theorem. Assume that the finitely generated group \(\Gamma \) acts on the metric space \(X \) by isometries. Assume that asdim \(X \leq n \), and that for every \(R \), the \(R \)-stabilizer of a basepoint \(x_0 \in X \) has property A. Then \(\Gamma \) has property A.

In \([1]\) the author proves a union theorem which is analogous to the union theorem for asdim from §4.

Theorem (Union Theorem). Let \(X = \bigcup_\alpha X_\alpha \) where the \(X_\alpha \) are pairwise isometric and have property A. Suppose further that for every \(r > 0 \) there is a set \(Y_r \) so that \(\{X_\alpha \setminus Y_r\} \) is \(r \)-disjoint. Then, \(X \) has property A.

As a consequence we obtain the finite union theorem.

Theorem (Finite Union Theorem). Let \(X = \bigcup_{i=1}^n X_i \) where the \(X_i \) all have property A. Then, \(X \) has property A.

The analog of Lemma 2 for Property A is the following. The proof follows from the proof of Lemma 2.

Lemma 4. Let \(G(Y) \) be a developable complex of groups. Suppose that \(Y \) a finite, connected scwol, that the local groups are finitely generated, and that the local groups have property A. Then, the \(R \)-stabilizer \(W_R(\sigma_0) \) for some base vertex \(\sigma_0 \) also has property A.

Applying the theorem from \([1]\) cited above, on groups acting on metric spaces with finite asdim, we obtain the following generalization of Tu’s theorem.

Theorem 5. Let \(G(Y) \) be a developable complex of groups with corresponding development \(X \) and fundamental group \(\pi \). Suppose that asdim \(|X| \) is finite and that the stabilizers of the action have property A. Then, \(\pi \) has property A.
6. Example

The following example illustrates that one must consider the large-scale structure of the development.

Consider a finitely presented group Γ which does not have finite asdim or property A, see \[10\], \[7\]. Since the group is finitely presented, there is a finite complex K so that $\pi_1(K) = \Gamma$. Thus, by taking the complex of groups with each vertex trivial and the scwol whose geometric realization is equal to the complex K, one obtains the fundamental group of the complex of groups equal to the group Γ. The vertex groups have finite asdim and the group acts on the universal cover, so the complex of groups is developable. The complex K is finite, yet the group Γ does not have finite asdim and does not have property A.

References

[1] G. Bell, Property A for groups acting on metric spaces, to appear in Topology Appl., 2002.
[2] G. Bell and A. Dranishnikov, On asymptotic dimension of groups, Algebr. Geom. Topol. 1, 2001, pp.57–71.
[3] G. Bell and A. Dranishnikov, On asymptotic dimension of groups acting on trees (Submitted), 2002.
[4] M. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, 1999.
[5] A. Dranishnikov, Asymptotic topology, Russian Math. Surveys, 55, 2000, No 6, pp.71-116.
[6] A. Dranishnikov and T. Januszkiewicz, Every Coxeter group acts amenably on a compact space, Topology Proc. 24, 1999, pp.135–141.
[7] A. Dranishnikov, G. Gong, V. Lafforgue, and G. Yu, Uniform embeddings into Hilbert space and a question of Gromov, Canad. Math. Bull. 45, 2002, No. 1, pp.60–70.
[8] S. Ferry, A. Ranicki, and J. Rosenberg, A history and survey of the Novikov conjecture in Novikov conjectures, index theorems and rigidity, vol. 1, S. Ferry, A. Ranicki, and J. Rosenberg, eds.,
[9] M. Gromov, Asymptotic invariants of infinite groups, in Geometric Group Theory, vol. 2, G. Niblo and M. Roller, eds., Cambridge University Press, 1993.
[10] M. Gromov, Spaces and questions, Geom. Funct. Anal., Special Volume, Part I, 2000, pp.118–161.
[11] A. Haefliger, Complexes of groups and orbihedra, Group Theory from a Geometrical Viewpoint (E. Ghys, A. Haefliger, A. Verjovsky, ed), Proc. ICTP Trieste 1990, World Scientific, Singapore, 1991, pp.504–540.
[12] N. Higson and J. Roe, Amenable group actions and the Novikov conjecture J. Reine Angew. Math. 519, 2000, pp.143–153.
[13] P. Ostrand, Covering dimension in general spaces, General Topology Appl. 1, 1971, pp.209–221.
[14] J.-P. Serre, Trees, Springer-Verlag, 1980, Translation of “Arbres, Amalgames et SL_2”, Asterisque, 1977.
[15] J.-L. Tu, Remarks on Yu’s property A for discrete metric spaces and groups, Bull. Soc. Math. France 129, 2001, pp.115–139.
[16] G. Yu, The Novikov conjecture for groups with finite asymptotic dimension, Ann. of Math. 147, no. 2, 1998, pp.325–355.
[17] G. Yu, The coarse Baum-Connes conjecture for groups which admit a uniform embedding into Hilbert space, Inv. Math. 139, 2000, pp.201–240.