E-cadherin expression in renal cell cancer and its significance in metastasis and survival

A Katagiri, R Watanabe and Y Tomita

Department of Urology, Niigata University School of Medicine, Asahimachi 1 Niigata 951 Japan.

Summary. Decreased expression of E-cadherin (E-CD), a homotypic intercellular adhesion molecule, is considered to elicit detachment of tumour cells from primary lesions, which is the first stage of metastasis. Since renal cell cancer (RCC) shows a relatively high frequency of metastasis, we focused our interest on E-CD expression in RCC and its clinicopathological implications. We examined E-CD expression in normal kidney and RCC by immunohistochemical staining. In normal kidney, E-CD expression was localised in distal tubules and collecting ducts. In RCC, 20 of 106 primary lesions (18.9%) expressed E-CD, whereas none showed positive staining for eight metastatic lesions. There was a statistically significant correlation between loss of E-CD expression and advanced stages of RCC. Kaplan-Meier analysis showed better prognosis in the group with preserved E-CD expression than without E-CD expression (Cox–Mantel test, P = 0.022; the average follow-up was 32 months or until death). This study suggests that the patients with decreased E-CD expression may be associated with metastasis, resulting in poor prognosis. However, frequency of E-CD expression in RCC is lower than in other cancers, which may be derived from the localised distribution of E-CD expression in normal kidney.

Keywords: E-cadherin, renal cell cancer, metastasis

It is well known that cadherins, a family of Ca$^{2+}$-dependent intercellular adhesion molecules, play essential roles in organogenesis and in the maintenance of normal structure and function (Behrens et al., 1985; Eidelberg et al., 1989; Takeichi, 1991). Recently, E-cadherin (E-CD), a subclass of cadherins, has come to be considered to be important as an inhibitory factor in metastasis (Behrens et al., 1985; Frixen et al., 1991; Takeichi, 1991). The first stage of metastasis is detachment of tumour cells from the primary lesion, which is induced by an alteration of intercellular adhesion. Behrens et al. (1985) demonstrated that Madin–Darby canine kidney epithelial cells have invasive properties when intercellular adhesion is inhibited by anti-E-CD antibodies. In a report on various human cell lines, Frixen et al. (1991) showed that loss of E-CD can generate an invasive phenotype, which can be prevented by transfection with E-CD cDNA. Clinically, the correlation between decreased E-CD expression and advanced stages of dedifferentiation was also reported in a variety of tumours (Frixen et al., 1991; Shiozaki et al., 1991; Oka et al., 1992; Umbas et al., 1992; Bringuier et al., 1993; Oka et al., 1993; Terpe et al., 1993). However, reports in relation to the prognosis of malignant tumours have been rare until now (Bringuier et al., 1993).

The clinical course of renal cell cancer (RCC) is characterised by the appearance of metastases even after a long period with no evidence of disease. This results from micrometastases that are not recognised at the time of nephrectomy. However, at present, there are no effective methods to predict the occurrence of metastasis. E-CD expression in RCC has been rarely reported (Eidelberg et al., 1989; Terpe et al., 1993), and has not been reported at all in relation to prognosis. Therefore, to clarify the significance of E-CD in metastasis and prognosis of RCC, we detected E-CD expression in RCC by immunohistochemical staining and investigated the relationship between E-CD expression and clinicopathological features including prognosis. In addition, we also examined E-CD expression in metastatic lesions to confirm the correlation between loss of E-CD expression and metastasis.

Materials and methods

Patients and specimens

A total of 106 patients with RCC who underwent radical nephrectomy at the Urological Department of Niigata University Hospital or related hospitals were included in this study. The average patient age at the time of operation was 57.9 years, ranging from 34 to 84 years. Eight metastatic lesions (four brain, one bone, one lung, one lymph node and one subcutaneous skin tissue) were also examined. Nine specimens of normal renal tissues were obtained from an unaffected portion of the removed kidney. None of the patients investigated in this study was treated before surgery. Surgically obtained specimens were snap frozen in isopentane precooled in dry ice-acetone. Serial cryostat sections at 5 mm were stored at −20°C until use. Histological examination was performed on haematoxylin and eosin (H&E)-stained sections. Pathological staging was determined according to the TNM classification of malignant tumours (UICC, 1989). The 106 specimens included nine stage 1, 58 stage 2, 21 stage 3 and 18 stage 4: 53 grade 1, 41 grade 2 and 4 grade 3.

Immunohistochemical staining

Anti-E-CD monoclonal antibody (HECD-1, Takara Biomedicals, Tokyo, Japan) was used in this study, and immunoperoxidase staining was performed by modifying the streptavidin–biotin bridge technique described previously (Katagiri et al., 1993). Briefly, serial sections were air dried for 30 min and fixed in cold 4% paraformaldehyde with 1 mM 1:1 Ca$^{2+}$ for 30 min. After rehydration with 0.01 M pH 7.2 Tris-buffered saline containing 1 mM Ca$^{2+}$ (TBS$^+$), the sections were incubated in TBS$^+$ containing 20% normal sheep serum (Antibodies, Davis, CA, USA) for 30 min. Endogenous biotin was blocked using an Endogenous Biotin Blocking Kit (Vector Laboratories, Burlingame, CA, USA). The sections were then incubated with primary antibody diluted 1:500 overnight followed by incubation with biotinylated anti-mouse immunoglobulin (Amersham International, Amersham, Bucks, UK) diluted 1:50 in TBS$^+$ containing 20% human type AB serum (Biological Speciality, Landscape, PA, USA) for 15 min. Subsequently, they were incubated with streptavidin peroxidase (Amersham) diluted 1:50 in TBS$^+$ for 15 min. Each step was followed by washing.
in TBS* with three changes of the buffer. The sections were immersed in 0.05% diaminobenzidine (Sigma, St Louis, MO, USA) and 0.01% hydrogen peroxide in 0.05 mol l-1 Tris HCl buffer for 3–5 min to visualise the reaction products. After washing in tap water, the specimens were counterstained with Mayer's haematoxylin (E. Kulder, Freiburg, Germany) after dehydration in a graded ethanol series and xylene. We evaluated E-CD expression in RCCs using normal renal tissues as a positive control. As a negative control, the monoclonal antibody, HECD-1, was replaced by anti-Leu12 (Becton Dickinson, Mountain View, CA, USA), a mouse monoclonal antibody of the same subclass (IgG1).

Evaluation of the staining

When reacted with HECD-1, most of tumours showed membranous staining except for one case which showed cytoplasmic staining with membranous expression and was evaluated as positive. In this study, almost all of reacted specimens showed diffuse staining pattern in tumours. Although a range of staining intensity was observed in this study, specimens with diffuse and definite staining as compared with the negative control were designated as positive.

Results

E-CD expression in normal kidney and RCC

Normal distal tubules and collecting ducts showed a uniform expression of E-CD mainly on their cell surfaces, whereas E-CD expression on proximal tubules was scattered and doubtful (Figure 1). In RCC, 20 of 106 primary lesions (18.9%) showed E-CD expression (Table I and Figure 1). None of eight metastatic lesions in brain, bone, lung, lymph node and subcutaneous skin tissue expressed E-CD. In cases where specimens of primary and metastatic lesions were obtained, E-CD expression was lost at both sites (Table II and Figure 1).

Correlation between E-CD expression and clinicopathological features

Absence of E-CD expression was correlated with the advanced stages (stage 3 or 4, *P* < 0.01 in chi-square test, Table I). All grade 3 tumours and most grade 2 tumours lost E-CD expression (not significant in chi-square test, Table I). There was no difference in adjuvant therapy among the groups.

Correlation between E-CD expression and prognosis

Kaplan–Meier actual statistics were used to evaluate the relationship between E-CD expression and disease outcome. Figure 2 is the Kaplan–Meier curve comparing survival of patients based on E-CD expression, and demonstrates a statistically significant difference between the group with E-CD expression and the group without E-CD expression (*P* = 0.022 in Cox–Mantel test). An apparent difference in disease-free survival fell short of statistical significance (*P* = 0.078 in Cox–Mantel test, Figure 3). Only 1 of 20 patients with preserved E-CD expression had metastasis within 14 months, dying within 44 months after nephrectomy.

Discussion

In this study, we examined the expression of E-CD in normal kidney and RCC. In previous studies by Eidelman et al.
Table I Relationship between E-CD expression and clinicopathological characteristics

E-CD/ (+)	E-CD/ (-)	
No. (%)	20 (18.9)	86 (81.1)
Mean age (range)	58.3 (34–84)	57.8 (34–78)
Stage		
1	1	8
2	18	40
3	1	20
4	0	18
Grade		
1	14	39
2	5	36
3	0	3
Unknown	1	7

Table II E-CD expression in primary and metastatic lesions

Case no.	Cell type	Grade	INF	Primary lesion	Metastatic lesion
81	c2g	3	β	Brain	
104	c2g	1	β	Brain	
120	b	b	b	Brain	
116	c	2	α	Brain	
112	b	b	b	Bone	
76	c	2	α	Lymph node	Skin

Figure 2 Kaplan–Meier survival curve of the patients with or without E-CD expression. Statistical difference by Cox–Mantel test, P = 0.022.

Figure 3 Kaplan–Meier tumour-free survival curve of the patients with or without E-CD expression. Statistical difference by Cox–Mantel test. P = 0.078.

Concerning the expression of cadherins in other types, it has been reported that a member of N-cadherin family, A-CAM, shows expression in the proximal tubule of human adult kidney (Nouwen et al., 1993).

Recently, the significance of E-CD expression in acquisition of invasive properties has been reported in relation to the transformation of malignancy. In previous studies of various human cell lines, it was found that the loss of E-CD or inhibition of E-CD function by anti-E-CD monoclonal antibody could generate the invasive phenotype (Behrens et al., 1985; Frixen et al., 1991). In clinical specimens, correlation between E-CD expression and differentiation has been reported in human cancers of bladder, breast, head and neck, lung, pancreas, prostate, stomach and also in RCC (Frixen et al., 1991; Shiozaki et al., 1991; Umbas et al., 1992; Oka et al., 1992, 1993; Bringuier et al., 1993; Terpe et al., 1993). In this study, E-CD expression seemed likely to be lost in tumours with a higher grade, invasive growth pattern and of an advanced stage. In addition, preserved E-CD expression was associated with better survival than reduced E-CD expression. These results are compatible with the idea that the detachment of tumour cells as a result of decreased E-CD expression elicits the invasive phenotype and leads to metastasis.

In this study, none of the metastatic lesions showed E-CD expression, which supports the correlation between the loss of E-CD and metastasis in RCC. In an immunohistochemical study of gastric cancer, Oka et al. (1992) demonstrated that E-CD expression in distant metastatic lesions was not necessarily reduced in some target organs. They speculated that E-CD expression at the site where tumour cells come into contact might contribute to metastasis, and that instability of E-CD expression or impaired function might induce metastasis. According to the immunohistochemical studies by Eidelman et al. (1989) and Shimoyama et al. (1989), the metastatic sites evaluated in this study, i.e. bone, brain, lung and skin, did not show E-CD expression except for the epidermis and alveolar lining of the lung. From our results, therefore, it is unclear whether RCC cells with positive E-CD could metastasise to an organ composed of E-CD-positive normal cells. Umbas et al. (1992) also reported on heterogeneous E-CD expression in metastatic lesions of prostate cancer and suggested temporal down-regulation of E-CD expression or other factors that could overcome the E-CD function.
In recent years, it has become apparent that cadherin functions as a complex called adherens junction that includes several other proteins such as catenins and links to actin filaments (Takeichi, 1991). Hirano et al. (1992) demonstrated that transfection of α-catenin cDNA to cells which do not show the homotypic adhesion, in spite of preserved E-CD expression, can bring about aggregation and the arrangement of the cells. It has also been found that tyrosine phosphorylation of cadherin and catenins inhibits the cadherin-associated functions (Behrens et al., 1993), which suggests the possibility of transient modification of the intercellular adhesion.

In conclusion, we demonstrated the clinical value of E-CD expression in RCC as a good prognostic factor. Examination of E-CD in RCC might be beneficial to the evaluation of the metastatic potential of RCC cells resulting in the patient’s prognosis. However, as mentioned above, other important molecules or factors which play with E-CD in cell to cell adhesion, including A-CAM, catenins and tyrosine phosphorylation of adherens junction, should be taken into account.

Acknowledgements
We are very grateful to Drs S Nakamura, T Osawa, M Takano, Y Sakata, S Komatsubara, Y Kitamura, M Watanabe, R Takaki, M Hiraiwa, H Morishita, Y Nakajima, T Ando, T Watanabe, T Sasagawa and S Hanyu for the supply of surgical materials. We also thank Dr T Tanikawa (Niigata University) for his pathological advice and the staff of the Urological Department of Niigata University School of Medicine for their support.

References

BEHRENS J, BIRCHMEIER W, GOODMAN SL AND IMHOF BA. (1985). Dissociation of Madin-Darby canine kidney epithelial cells by the monoclonal antibody anti-Arc-1: mechanistic aspects and identification of the antigen as a component related to uvomorulin. J. Cell. Biol., 101, 1307–1315.

BEHRENS J, VAKAET L, FRIIS R, WINTERHAGER E, ROY FY, MARIEL MM AND BIRCHMEIER W. (1993). Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin β-catenin complex in cells transformed with a temperature-sensitive v-SRC gene. J. Cell. Biol., 120, 757–766.

BRINGLIER PP, UMBAS R, SCHAAF SMA HE, KARTHAUS HF, DEBRUYNE FM AND SCHALKEN JA. (1993). Decreased E-cadherin immunoreactivity correlates with poor survival in patients with bladder tumors. Cancer Res., 53, 3241–3245.

EIDELMAN S, DAMSKY CH, WHEELock MJ AND DAMJANOV I. (1989). Expression of the cell–cell adhesion glycoprotein cell-CAM 120 80 in normal human tissues and tumors. Am. J. Pathol., 135, 101–110.

FRI Xen UH, BEHRENS J, SACHS M, EBERLE G, VOSS B, WARDA A, LOCHNER D AND BIRCHMEIER W. (1991). E-cadherin-mediated cell–cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol., 113, 173–185.

HIRANO S, KINOTO N, SHIMOYAMA Y, HIROHASHI S AND TAKEI CHI M. (1992). Identification of a neural α-catenin as a key regulator of cadherin function and multicellular organization. Cell, 70, 293–301.

JAPANESE UROLOGICAL ASSOCIATION. THE JAPANESE SOCIETY OF PATHOLOGY & JAPAN RADIOLOGICAL SOCIETY. (1992). General Rule for Clinical and Pathological Studies on Renal Cell Carcinoma, 2nd edn. Kinbara Press: Tokyo.

KATAGIRI A, TOMITA Y, NISHIYAMA T, KIMURA M AND SATO S. (1993). Immunohistochemical detection of P-glycoprotein and GSTP1-1 in testis cancer. Br J Cancer, 68, 125–129.

KIKUCHI Y, AIZAWA S, NIKAI DO T, IMURA Y, FURUSATO M, OHNISHI T AND MACHIDA T. (1987). Lectin histochemical and immunohistochemical studies on normal kidneys and renal cell carcinomas. Jpn J Clin. Urol., 41, 951–955.

NOUWEN EJ, DAUWE S, VAN DER BIEST I AND DE BROE ME. (1993). Stage- and segment-specific expression of cell–adhesion molecules N-CAM, A-CAM, and L-CAM in the kidney. Kidney Int., 44, 147–158.

OKA H, SHIOZAKI H, KOBAYASHI K, TAHARA H, TAMURA S, MIYATA M, DOKI Y, IHIKARA K, MATSUYOSHI N, HIRANO S, TAKEI CHI M AND MORI T. (1992). Immunohistochemical evaluation of E-cadherin adhesion molecule expression in human gastric cancer. Virchows Archiv. A. Pathol. Anat., 421, 149–156.

OKA H, SHIOZAKI H, KOBAYASHI K, INOUE M, TAHARA H, KOBAYASHI T, TAKATSUKA Y, MATSUYOSHI N, HIRANO S, TAKEI CHI M AND MORI T. (1993). Expression of E-cadherin cell adhesion molecules in human breast cancer tissues and its relationship to metastasis. Cancer Res., 53, 1696–1701.

SHIMOYAMA Y, HIROHASHI S, HIRANO S, NOGUCHI M, SHIMO SATO Y, TAKEI CHI M AND ABE O. (1989). Cadherin cell adhesion molecules in human epithelial tissues and carcinomas. Cancer Res., 49, 2128–2133.

SHIOZAKI H, TAHARA H, OKA H, MIYATA M, KOBAYASHI K, TAMURA S, IHIKARA K, DOKI Y, HIRANO S, TAKEI CHI M AND MORI T. (1991). Expression of immunoreactive E-cadherin adhesion molecules in human cancers. Am. J. Pathol., 139, 17–23.

TAKEI CHI M. (1991). Cadherin cell adhesion receptors as a morphogenetic regulator. Science, 251, 1451–1455.

TERPE FJ, TAIROBEHKAR K, GUNTHERT U AND ALT MANNSBERGER M. (1993). Expression of cell adhesion molecules alpha-2, alpha-5 and alpha-6 integrin, E-cadherin, N-CAM and CD-44 in renal cell carcinomas. Virchows Arch. A. Pathol. Anat. Histopathol., 422, 219–224.

UMBAS R, SCHALKEN JA, AALDERS TW, CARTER BS, KARTHAUS HF, SCHAAF SMA HE, DEBRuyNE FM AND ISAACS WB. (1992). Expression of the cellular adhesion molecule E-cadherin is reduced or absent in high-grade prostate cancer. Cancer Res., 52, 5104–5108.