A worldwide systematic review and meta-analysis of bacteria related to antibiotic-associated diarrhea in hospitalized patients

Hamid Motamedi¹,², Matin Fathollahi¹,², Ramin Abiri³, Sepide Kadivarian¹,², Mosayeb Rostamian⁴*, Amirhooshang Alvandi⁵*

¹ Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran, ² Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran, ³ Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran, ⁴ Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran, ⁵ Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran

* ah_alvandi@kums.ac.ir (AA); mosayeb.rostamian@gmail.com (MR)

Abstract

Introduction

Antibiotic-associated diarrhea (AAD) is a major hospital problem and a common adverse effect of antibiotic treatment. The aim of this study was to investigate the prevalence of the most important bacteria that cause AAD in hospitalized patients.

Materials and methods

PubMed, Web of Science and Scopus databases were searched using multiple relevant keywords and screening carried out based on inclusion/exclusion criteria from March 2001 to October 2021. The random-effects model was used to conduct the meta-analysis.

Results

Of the 7,377 identified articles, 56 met the inclusion criteria. Pooling all studies, the prevalence of Clostridioides (Clostridium) difficile, Clostridium perfringens, Klebsiella oxytoca, and Staphylococcus aureus as AAD-related bacteria among hospitalized patients were 19.6%, 14.9%, 27%, and 5.2%, respectively. The prevalence of all four bacteria was higher in Europe compared to other continents. The highest resistance of C. difficile was estimated to ciprofloxacin and the lowest resistances were reported to chloramphenicol, vancomycin, and metronidazole. There was no or little data on antibiotic resistance of other bacteria.

Conclusions

The results of this study emphasize the need for a surveillance program, as well as timely public and hospital health measures in order to control and treat AAD infections.
Antibiotic-associated diarrhea (AAD) is a relatively common complication that often occurs during or after antibiotic treatment. The incidence of AAD varies by 5 to 25% depending on the type of antibiotic used [1]. It has been reported that Clostridioides (Clostridium) difficile, Staphylococcus aureus, Clostridium perfringens, and Klebsiella oxytoca as opportunistic pathogens are the predominantly bacterial agents associated with AAD [2].

C. difficile is a ubiquitous, spore-forming and gram-positive rod-shaped bacterium that produces two toxins, enterotoxin A (TcdA) and cytotoxin B (TcdB) [3, 4]. *C. difficile* is associated with AAD and pseudomembranous colitis (PMC) [5]. PMC is one of the most common causes of bacterial diarrhea in hospitalized patients that its incidence and mortality rate are exponentially increasing with the use of antibiotics [6]. Although this pathogen is thought to be confined to the hospitalized patients, it may be transmitted to symptomatic and asymptomatic outpatients.

Approximately 25% of AAD cases are caused by *C. difficile*, but it is difficult to estimate the prevalence in developing countries where knowledge, diagnostic resources and monitoring protocols are limited [7, 8]. Asymptomatic *C. difficile*-carriers reach 14% among hospitalized elderly patients, and 14% to 30% among antibiotic-treated individuals [9, 10]. Mortality rate associated with *C. difficile* antibiotic diarrhea (CDAD) are high, especially in patients above 65 years old with concomitant conditions, severe underlying disease or hypertension [11]. Other risk factors that affect the rate of mortality include the use of proton pump inhibitors, immunocompromising conditions, and prior hospitalization [7, 12, 13]. The most frequent antibiotics causing *C. difficile* AAD are clindamycin, fluoroquinolones, and cephalosporins, while parenteral aminoglycosides, vancomycin, and metronidazole are less frequently antibiotics involved in *C. difficile* infections [14].

In 1984, *Clostridium perfringens* was first reported as the cause of AAD in patients with nosocomial diarrhea. Unlike *C. difficile* infection, *C. perfringens* AAD does not result in the formation of pseudomembranes [15]. *C. perfringens* species are classified into seven types of A to G based on their ability to produce six major toxins [16]. It has been estimated that up to 2−15% of all AAD patients were infected with enterotoxigenic *C. perfringens* [17, 18]. *C. perfringens* enterotoxin (CPE)-positive toxino type A (currently called *C. perfringens* type F strain) is considered as the most important causative agent of AAD [7, 16]. CPE is a ~35 kDa protein binds to the gut epithelial cells and, by entering the cell membrane, changes the permeability of the membrane and the loss of fluids and ions, which eventually leads to diarrhea [19, 20].

Klebsiella oxytoca is a gram-negative rod-shaped bacterium and an opportunistic intestinal pathogen cause of antibiotic-associated hemorrhagic colitis (AAHC). The particular form of AAHC induced by *K. oxytoca* performed by Koch’s postulates has received much more attention [21, 22]. This form of colitis was first described in 1978 but recently it has been shown that a cytotoxin is responsible for pathologic features of AAHC [22]. Experimentally, this cytotoxin has been shown to cause cell death of many cell lines [23]. The clinical features of AAHC differ mainly from diarrhea associated with AAD colitis. In contrast to the colitis caused by *C. difficile*, colitis caused by *K. oxytoca* is usually fragmentary and is mainly found in the right colon. The hemorrhagic diarrhea caused by *K. oxytoca* was mainly observed in young and outpatient individuals after short treatment with antibiotics such as amoxicillin–clavulanate, amoxicillin, penicillins and ampicillin [24]. However, *C. difficile*-associated diarrhea occurs mainly in elderly hospitalized patients. AAHC is characterized by sudden onset of bloody diarrhea during antibiotic treatment, usually associated with severe abdominal cramps [25, 26]. Key macroscopic feature of the AAHC is the definitive distribution of mucosal bleeding at endoscopy and mucosal examination [27]. Today, the prevalence of high-level resistance
among clinical isolates of Klebsiella species is increasing. AAHC has also been reported after antibiotic therapy with quinolones and cephalosporins [21].

Staphylococcus aureus is also a less-known agent for AAD, often referred to as large-scale enterocolitis of watery diarrhea. From 1955 to 1970, *S. aureus* was suspected as the cause of AAD [28, 29]. Increase in the prevalence of *C. difficile* in recent years has led to a lack of recognition of *S. aureus* as a cause of nosocomial infections and AAD [30]. In contrast to food poisoning, *S. aureus* AAD is a gastrointestinal infection that often occurs following antibiotic-induced dysbiosis of the gut microbiota [7]. Evidence demonstrates that enterotoxin-producing strains of methicillin-resistant *S. aureus* may cause diarrhea associated with nosocomial antibiotics [31]. AAD-associated methicillin-resistant *S. aureus* strains have been reported in the blood of some patients, causing colitis to be a probable source of septicemia [32].

In early 1983, Holmberg et al. reported 18 patients with diarrhea due to multidrug-resistant Salmonella newport strains that were resistant to ampicillin, carbenicillin, and tetracycline. The source of infection was a hamburger eaten from an infected beef from cattle fed with subtherapeutic doses of chlortetracycline. Twelve of these patients had taken penicillin derivatives for medical complications other than diarrhea. According to reports, seems likely that these patients had an asymptomatic infection with drug-resistant *S. newport* before taking antibiotics for *C. difficile* and its toxins. Given the rarity of the disease, this is the only report in which *Salmonella* has been identified as an AAD agent [33].

In spite of the diagnosis importance of AAD-causing bacteria, it seems that less attention has been paid to these bacteria, in particular to *Clostridium perfringens*, *S. aureus* and *Klebsiella oxytoca*. Also, a few number comprehensive reviews have been published in this field. Therefore, here we systematically reviewed all published articles on bacteria related to AAD in hospitalized patients from March 2001 to October 2021.

Materials and methods

Search strategy

Three literature databases, PubMed, Web of Science, and Scopus were used to systematically identify studies of bacterial AAD. All studies that have been published from March 2001 to October 2021 were covered. The search terms were (Antibiotic associated diarrhea OR AAD) AND (diarrhea) OR (diarrhoea) AND (Antibiotic) AND (“Clostridioides difficile” OR Clostridium difficile OR C. difficile) AND (Clostridioides difficile associated diarrhea OR Clostridium difficile associated diarrhea) AND, (“Clostridium perfringens” OR C. perfringens) AND (Clostridium perfringens antibiotic-associated diarrhea), (“Staphylococcus aureus” OR S. aureus) AND (Staphylococcus aureus antibiotic-associated diarrhea), (“Klebsiella oxytoca” OR K. oxytoca) AND (Klebsiella oxytoca antibiotic-associated diarrhea). Manual searches were performed in the reference list of retrieved articles to identify more relevant papers. Duplicates were removed using EndNote X7 (Thomson Reuters, New York, NY, USA). The PRISMA guidelines were followed to perform the study [34].

Ethical statement

This systematic review and meta-analysis study was carried out with the Code of Ethics Committee No. IR.KUMS.REC.1398.017 adopted by Kermanshah University of Medical Sciences.

Inclusion/Exclusion criteria and data extraction

Any cross-sectional study was included in the analysis and clinical trials, case reports, narrative and systematic reviews and meta-analysis papers were excluded. The cross sectional articles were included if they met all the following criteria: hospital related studies, frequency or
prevalence of *C. difficile*, *C. perfringens*, *K. oxytoca*, and *S. aureus* among AAD, published study based on English language only, reporting laboratory-confirmed bacterial AAD. Laboratory test included: Culture, Polymerase Chain Reaction (PCR), Enzyme immunoassay (EIA), reversed passive latex agglutination test (RPLA) and enzyme-linked immunofluorescent assay (ELFA). The exclusion criteria were: 1) insufficient information on bacterial AAD, 2) articles with similar titles published in different journals. The following information were extracted from included studies: observed study, publication year, sampling year, study country, sample size, antibiotics used, history of antibiotic, prevalence /frequency of AAD, diagnostic test, and antibiotic resistance. The antibiotics that had been used in studies were applied for a random-effects model subgroup analysis. The Critical Appraisal tools of Joanna Briggs Institute (JBI) were used to perform the quality assessment (risk of bias) of each study [35].

Bacterial prevalence in AAD patients

In each study the number of bacterial isolates has been found by culturing, toxin detection (by immunoassay or molecular methods), or both approaches. Therefore, the pooled prevalence of *C. difficile*, *C. perfringens*, *K. oxytoca*, and *S. aureus* in AAD patients was assessed based on the detection method (culturing or toxin detection) or regardless the method (total). For all meta-analyses on bacteria prevalence, the random-effects model was applied and the proportion of bacteria cases over sample size was used as effect size. In the tables and text, the proportions were multiplied by 100 to present the results by percentages.

Limitations of study

Some limitations of this meta-analysis must be considered here. First, the distribution of studies on AAD related to bacteria is not uniform in continents and countries, and there was no published data from many countries. Second, the data concerning the age and sex of the patients as well as the exact antibiotics used or caused AAD were missing in many papers and could not be addressed or analyzed. Finally, just like many systematic review and meta-analysis papers, potential bias should be considered as a limitation.

Statistical analysis

All analyses were performed using of version 2.2.064 of Comprehensive Meta-Analysis software. The prevalence of *C. difficile*, *C. perfringens*, *K. oxytoca*, and *S. aureus* in AAD patients, and the proportion of antibiotic resistance of each bacterium were presented with 95% confidence intervals (CIs). The random-effects model was used to conduct the meta-analysis. Based on the sampling years and the region of each study, several subgroup analyses were performed to assess the source of heterogeneity. Cochrane Q and I² statistics were used to measure between studies heterogeneity. Considering the potential asymmetrical data distribution, Egger’s linear regression test was used to evaluate any publication bias. The p-value <0.05 was accepted as the statistically significance threshold.

Results

Study selection

A total of 7,377 articles were found. After applying screening and eligibility approaches, finally, 56 full-text articles were included on basis of our criteria (Fig 1). Continental distribution of the studies was as follow: 26 studies from Asia, 15 studies from Europe, 10 studies from South America, three studies from North America and two studies from Africa. The characteristics of the final included studies are represented in Table 1.
Fig 1. Systematic literature review flow diagram.
https://doi.org/10.1371/journal.pone.0260667.g001
Table 1. The characteristics of the studies.

Study	Published year	Sampling year	Country	Detection method	AAD No.	C. difficile	C. perfringens	K. oxytoca	S. aureus	C. difficile	C. perfringens	K. oxytoca	S. aureus	Antibiotic resistance (No.)	Reference
Abrahamo et al.	2001	1998	Germany	ELISA, Culture	156	10	10	10	10	10	10	10	10	[40]	
Ackermann et al.	2005	2002–2003	Germany	ELISA, Culture, PCR	89	39	5	25	26	40	40	40	40	[37]	
Alikhani et al.	2016	2011–2013	Iran	Culture, PCR	331	57						40	40	[41]	
Alinejad et al.	2015	2013–2014	Iran	EIA	37	8							8	[42]	
Al-Tawfiq et al.	2010	2007–2008	Saudi Arabia	ELISA	913	42						42	42	[43]	
Asha et al.-1	2002		UK	ELISA, Culture, PCR	200	74		32	16					[44]	
Asha et al.-2	2006	2001–2002	UK	ELISA, Culture, PCR	735	10	591	153	8					MET (10)	[17]
Azimnia et al.	2019	2011–2017	Iran	ELISA, Culture, PCR	303	68						38	38	[38]	
Balassiano et al.	2010	2006–2009	Brazil	ELISA, Culture, PCR	218	43							43	[45]	
Bishara et al.	2008	1999–2000	Israel	EIA	217	52							52	[46]	
Cancado et al.	2018	2011–2015	Brazil	EIA, Culture, PCR	154	44		34					34	[47]	
Chaudhry et al.	2008	2001–2005	India	ELISA, Culture, PCR	524	1	37						37	CHL(0), CLI(0), ERY(0), MTZ(0), PEN(0), TET(10), VAN(0)	[48]
Dai et al.	2020	2014–2016	China	ELFA, Culture, PCR	122	55		38					38	CLI(34), ERY(48), LVX(8), MTZ(0), RIF(7), TGC(0), VAN(0)	[49]
Djebbar et al.	2018	2013–2015	Algeria	Culture, PCR	159	11	7						7	AMK(0), CIP(11), CLI(2), ERY(2), MTZ(0), MFX(0), VAN(0)	[50]
Elseviers et al.	2015		Belgium	Culture	71	4							4	[51]	
Ergen et al.	2009	2004–2005	Turkey	EIA, Culture, PCR	44	19							19	CIP(19), CLI(0), ERY(0), MTZ(0), MFX(0), TET(0), VAN(0)	[52]
Farshad et al.	2013	2012	Iran	EIA, Culture, PCR	122	9							9	[53]	
Ferreira et al.	2003	2000–2001	Brazil	Culture, PCR	18	5							5	[54]	
Haran et al.-1	2014	2012–2013	USA	EIA	45	2							2	[55]	
Haran et al.-2	2016	2013	USA	ELISA	273	52							52	[56]	
Hassan et al.	2012	2008	Malaysia	EIA	105	24							24	[57]	
Heimesaat et al.	2005	2003	Germany	ELISA, Culture, PCR	693	83	147	79	1				1	[58]	

(Continued)
Study	Published year	Sampling year	Country	Detection method	AAD No.	Isolate No. (culturing)	Isolate No. (toxin detection)	Antibiotic resistance (No.)	Reference
Hogenauer et al.	2006	2001–2004	Austria	Culture	6	5			[21]
Ingle et al.	2013	2009–2010	India	ELFA	150	12			[59]
Kim et al.	2017		Korea	ELFA, PCR	135	26	14		[60]
Kumar et al.	2014		India	ELFA, Culture	273	9			[61]
Lee et al.	2012	2009–2010	Taiwan	ELFA, Culture	80		8		[62]
Legaria et al.	2003	2000–2001	Argentina	ELFA, Culture	87	32			[63]
Li et al.	2016	2008–2010	China	ELFA, Culture	470		93		[64]
Le et al.	2014	2008–2010	China	ELFA	130		45		[65]
Maestri et al.	2020	2017–2019	Brazil	ELFA, PCR	351	62			[66]
Mane et al.-1	2021	2017–2019	India	Culture, ELISA	222	20	70		[67]
Mane et al.-2	2020		India	PCR	222	18			[68]
Martirosian et al.	2005	2001–2002	Poland	ELISA, Culture, PCR	56	18	12	CLI(4), ERY(4)	[69]
Mirzaei et al.	2018		Iran	Culture, PCR	100	8	2		[70]
Naaber et al.	2011		Norway	Culture, PCR	74	42	59		[71]
Naqvi et al.	2012	2002–2009	Pakistan	Culture	473	191			[72]
Pinto et al.	2003		Brazil	Culture	210	14	16		[73]
Pituch et al.	2007	2004–2005	Poland	ELISA, Culture, PCR	52		39	21	[74]
Plaza-Garrido et al.	2016	2011–2012	Chile	Culture, PCR	392	81			[75]
Rodriguez-Varon et al.	2017	2014–2015	Colombia	PCR	43	6		VAN(0)	[76]
Sachu et al.	2018	2014–2017	India	ELFA	660		64		[77]
Sadeghifard et al.	2010	2002–2006	Iran	Culture	942	57			[78]
Secco et al.	2014	2009–2010	Brazil	ELISA, Culture, PCR	74	3		CIP(4), LYE(4), MTZ(0), MXF(1), VAN(0)	[79]
Shaheen et al.	2007		Egypt	ELISA, Culture, PCR	150		36	18	[80]
Song et al.	2008	2005	Korea	ELISA, Culture	38	4	1	5	[81]
Spadao et al.	2014	2007–2011	Brazil	Culture	64		9		[82]
Vaisnavi et al.	2005	2000–2002	India	ELISA, RPLA, Culture	239	47	23		[83]
Wistrom et al.	2001	1995–1996	Sweden	ELISA	83		46		[84]

(Continued)
Bacterial prevalence in AAD patients

C. difficile prevalence in AAD patients. Regardless the detection method, 52 studies were applied for meta-analysis, in which the pooled prevalence of *C. difficile* in AAD patients was 19.6% (CI 95%: 15.1–25.1). Considering culturing method, 24 studies were applied for meta-analysis, in which the pooled prevalence of *C. difficile* in AAD patients was 17.4% (CI 95%: 12.6–23.7). Based on toxin detection methods, 42 studies were applied for meta-analysis, in which the pooled prevalence of *C. difficile* in AAD patients was 17.6% (CI 95%: 12.7–23.9) (Fig 2).

In all three meta-analyses on *C. difficile* prevalence in AAD patients the confidence intervals of summary effect did not include zero and the null hypothesis was rejected, meaning that there was a positive prevalence of *C. difficile* in AAD patients. Also, in all analyses, the Q-values were much more than the number of studies minus 1 (degrees of freedom) indicating a significant heterogeneity between studies. The I² statistics showed that a range of 95.5 to 97.4% of the variances in the observed effects is because of variances in the true effects (Fig 2).

C. perfringens prevalence in AAD patients. Eleven studies were used for meta-analysis regardless the detection method, in which the pooled prevalence of *C. perfringens* in AAD patients was 14.9% (CI 95%: 10.6–20.6). Five studies were applied for meta-analysis based on culturing method in which the pooled prevalence of *C. perfringens* in AAD patients was 17.9% (CI 95%: 11.3–27.1). Considering toxin detection methods, eight studies were applied for meta-analysis, in which the pooled prevalence of *C. perfringens* in AAD patients was 10.5% (CI 95%: 6.1–17.5) (Fig 3).
The confidence intervals of summary effect in all analyses did not include zero, hence rejecting the null hypothesis and showing that there was a positive prevalence of \textit{C. perfringens} in AAD patients. The Q-values in all analyses were much more than degrees of freedom showing a significant heterogeneity between studies. The I-square statistics showed that a range of 92.0 to 92.9\% of the variances in the observed effects is because of variances in the true effects (Fig 3).

\textbf{\textit{K. oxytoca} prevalence in AAD patients.} The pooled prevalence of \textit{K. oxytoca} in AAD patients was 27.0\% (CI 95\%: 8.2–60.3) in four studies included, regardless the detection method. Based on culturing method, three studies were applied for meta-analysis, in which the pooled prevalence of \textit{K. oxytoca} in AAD patients was 20.2\% (CI 95\%: 4.3–59.1). Regarding toxin detection methods, two studies were used for meta-analysis, in which the pooled prevalence of \textit{K. oxytoca} in AAD patients was 27.2\% (CI 95\%: 4.7–74.1) (Fig 4).

Similar to other bacteria, there was a positive prevalence of \textit{K. oxytoca} in AAD patients since the confidence intervals of summary effect did not include zero in all three meta-analyses. Also, the Q-values indicated a significant heterogeneity between studies. The I-square statistics showed that a range of 89.5 to 94.9\% of the variances in the observed effects is because of variances in the true effects (Fig 4).

\textbf{\textit{S. aureus} prevalence in AAD patients.} In another meta-analysis using three studies and regardless the detection method, the pooled prevalence of \textit{S. aureus} in AAD patients was 5.2\% (CI 95\%: 0.4–43.1). Considering culturing method, three studies were applied for meta-analysis, in which the pooled prevalence of \textit{S. aureus} in AAD patients was 5.2\% (CI 95\%: 0.4–43.1). Regarding toxin detection methods, one study was applied for meta-analysis, in which the pooled prevalence of \textit{S. aureus} in AAD patients was 1.1\% (CI 95\%: 0.5–2.2) (Fig 5).

The null hypothesis was rejected in all meta-analyses on \textit{S. aureus} prevalence in AAD patients meaning that there was a positive prevalence of \textit{S. aureus} in AAD patients. Also, in analyses regardless methods and that based on culturing, the Q-values were more than the degrees of freedom indicating a significant heterogeneity between studies. Only one study included in analysis based on toxin detection, thus the heterogeneity test was not applicable for it. Based on I-square statistics, 97.3\% of the variances in the observed effects based on culturing and regardless the detection method is because of variances in the true effects (Fig 5).
Subgroup analysis of bacterial prevalence in AAD patients based on the sampling year

To subgroup analysis of the bacterial prevalence in AAD patients based on the sampling year, the studies were divided into three groups as follow: D1 (<2000), D2 (2001–2005), D3 (2006–2010), D4 (2011–2015), and D5 (2016 ≤). Based on these times, 38, 7, 4, and 3 studies were used for subgroup analysis on the prevalence of *C. difficile*, *C. perfringens*, *K. oxytoca*, and *S. aureus* in AAD patients, respectively. Subgroup analyses were done through the random-effects model on the total prevalence of bacteria (regardless the detection methods). For *C. perfringens*, *K. oxytoca*, and *S. aureus* the studies were divided into only one group and other groups included no or only one study. Therefore the statistical comparison of the bacterial prevalence between time subgroups was not accurately applicable for these three bacteria. The prevalence of *C. difficile* was decreased after 2006 onward, although there was not significant heterogeneity between subgroups (Q-value: 4.808, p-value: 0.308) (Table 2).

Subgroup analysis of bacterial prevalence in AAD patients based on the region. To subgroup analysis of the bacterial prevalence in AAD patients based on the region, the studies were divided into five groups as follow: Africa, Asia, Europe, North America, and South America. Based on these regions, 52, 11, 4, and 3 studies were used for subgroup analysis on the prevalence of *C. difficile*, *C. perfringens*, *K. oxytoca*, and *S. aureus* in AAD patients, respectively. The prevalence of all four bacteria was higher in Europe compared to other continents, although there was not significant heterogeneity between subgroups (Table 3).

The bacteria antibiotics susceptibility in AAD patients

A few number of studies were on *C. perfringens*, *K. oxytoca*, and *S. aureus* antibiotics susceptibility in AAD patients (Table 1). Therefore, the meta-analysis on antibiotics susceptibility was only done for *C. difficile*. The antibiotic susceptibility have been reported in at least two articles. These antibiotics included chloramphenicol (CHL), ciprofloxacin (CIP), clindamycin (CLI), erythromycin (ERY), levofloxacin (LVX), metronidazole (MTZ), moxifloxacin (MXF), tetracycline (TET), and vancomycin (VAN) (Table 4).

The highest resistance of *C. difficile* were estimated to CIP (88.4%, CI 95%: 57.6–97.7) and the lowest resistances were reported to CHL (1.6%, CI 95%: 0.1–2.0), VAN (2.6%, CI 95%: 0.7–9.5), and MTZ (3.6%, CI 95%: 0.9–12.8) (Table 4). There was a significant heterogeneity between subgroups (Q-value: 38.37, p-value: 0.000) (Table 4).

Publication bias

To assess the publication bias, the prevalence of *C. difficile* in AAD patients regardless the detection methods was applied. The Egger’s test showed a significant publication bias in the reports of *C. difficile* prevalence in AAD patients (p-value = 0.03).

Discussion

The studies on bacteria associated with AAD are limited. Therefore, here we collected all published data on bacteria associated with AAD including *C. difficile*, *C. perfringens*, *K. oxytoca*, and *S. aureus*.

https://doi.org/10.1371/journal.pone.0260667.g003

Fig 3. The forest plots of prevalence of *C. perfringens* in AAD patients. The plots show the estimated pooled prevalence of *C. perfringens* in AAD patient based on culturing, toxin detection or regardless the detection method (total). The heterogeneity test results are shown below each plot.

https://doi.org/10.1371/journal.pone.0260667.g003
K. oxytoca prevalence (by culturing)

Study name	Event rate	Lower limit	Upper limit	Z-Value	p-Value
Alkhani et al.	0.172	0.135	0.217	10.785	<0.000
Hogenauer et al.	0.833	0.369	0.977	1.469	0.142
Zollner-Schweitz et al	0.037	0.014	0.095	6.374	<0.000
	0.202	0.043	0.591	1.546	0.122

Q-value: 19.0 P-value: 0.000 I-squared: 89.5

Favours A Favours B

K. oxytoca prevalence (by toxin detection)

Study name	Event rate	Lower limit	Upper limit	Z-Value	p-Value
Alkhani et al.	0.121	0.090	0.161	11.768	<0.000
Yilmaz et al.	0.524	0.318	0.721	0.218	0.827
	0.272	0.047	0.741	0.947	0.344

Q-value: 19.7 P-value: 0.000 I-squared: 94.9

Favours A Favours B

K. oxytoca prevalence (total)

Study name	Event rate	Lower limit	Upper limit	Z-Value	p-Value
Alkhani et al.	0.172	0.135	0.217	10.785	<0.000
Hogenauer et al.	0.833	0.369	0.977	1.469	0.142
Yilmaz et al.	0.524	0.318	0.721	0.218	0.827
Zollner-Schweitz et al	0.037	0.014	0.095	6.374	<0.000
	0.270	0.062	0.603	1.379	0.168

Q-value: 33.4 P-value: 0.000 I-squared: 91.0

Favours A Favours B
"C. difficile" is known to be the most important cause of AAD in the world. Using various databases, we found 52 articles about the "C. difficile" AAD data. The pooled prevalence of "C. difficile" among hospitalized patients with AAD was 19.6%. These prevalence is similar to that was previously published in a systematic review and meta-analysis by Nasiri et al. (20%) [36], but it was a little different from study by Curcio et al. about "C. difficile" AAD in developing countries (15%) [8]. The prevalence of "C. difficile" AAD varies in different continents so that the highest prevalence of "C. difficile" AAD was in Europe (32.5%) and the lowest frequency was in Africa (13.5%). This difference can be attributed to various factors including large population migrations, and appropriate program monitoring about "C. difficile" AAD in Europe than other countries.

The prevalence of "C. difficile" has decreased after 2006 onward, which could be due to increasing in world health state, more proper prescription, and increasing in general awareness of the adverse effects of antibiotic overuse. However, inappropriate use of antibiotics is constantly continued nowadays, although the emergence of drug-resistant bacteria cause real concerns in the world. In order to prevent the spread of resistant isolates and bacterial infections, continuous monitoring of how the antibiotic resistance of bacteria appears is essential.

Based on the meta-analysis, the percentages of antibiotics resistance of "C. difficile" AAD was high for CIP and low for CHL, VAN and MTZ that were in concordant with Nasiri [36] and Ackermann [37] studies. Although, the frequency of resistance to first line antibiotics to treat AAD (MTZ and VAN) is still low, there is a concern to increase this rate in the future due to overuse and inappropriate use of antibiotics.

Accurate and on-time diagnosis of AAD-related bacteria assists in controlling of "C. difficile" transmission in communities and medical centers, as well as reducing the prevalence of AAD. There are several methods for identifying "C. difficile" AAD or their toxins, among them culture and ELISA are used mostly. These techniques were also the most frequent methods used in our included studies. More studies are needed to compare different techniques of detection of AAD-causing bacteria.

Due to the limited or scattered information obtained from the included studies, variables such as age, sex, and the exact prevalence of antibiotics used before AAD incidence could not be analyzed in our systematic review.

"C. perfringens" is another bacterium that can cause disease through hospital transmission. This bacterium is a part of the gut flora in healthy humans, however its colonizing and overgrown can cause severe AAD if allowed a longer period of growth [38]. Our study seems to be the first systematic review related to "C. perfringens" AAD, in which the mean frequency of "C. perfringens" among AAD hospitalized patients was 14.9%.

Distribution of the studies in patients with "C. perfringens" AAD according to continent was as follows: 9.4% in Asia, 19.5% in Europe, and 12% in Africa. No study of "C. perfringens" AAD was found in other parts of the world, which may be due to the limited number of published articles or the lack of its correct laboratory diagnostic methods.

Like "C. difficile", culture and ELISA were the most diagnostic methods used to detect "C. perfringens" AAD or their toxins. These techniques are able to detect "C. perfringens" correctly if used appropriately by experienced technicians, although other methods may also be useful in detecting of this bacterium.
S. aureus prevalence (by culturing)

Study name	Event rate	Lower limit	Upper limit	Z-Value	p-Value
Ackermann et al.	0.281	0.197	0.383	3.986-	0.000
Asha et al.-2	0.014	0.007	0.025	13.453-	0.000
Song et al.	0.026	0.004	0.165	3.563-	0.000
	0.052	0.004	0.431	2.167-	0.030

Q-value: 73.3
P-value: 0.000
I-squared: 97.3

S. aureus prevalence (by toxin detection)

Study name	Event rate	Lower limit	Upper limit	Z-Value	p-Value
Asha et al.-2	0.011	0.005	0.022	12.685-	0.000
	0.011	0.005	0.022	12.685-	0.000

Q-value: 73.3
P-value: 0.000
I-squared: 97.3

S. aureus prevalence (total)

Study name	Event rate	Lower limit	Upper limit	Z-Value	p-Value
Ackermann et al.	0.281	0.197	0.383	3.986-	0.000
Asha et al.-2	0.014	0.007	0.025	13.453-	0.000
Song et al.	0.026	0.004	0.165	3.563-	0.000
	0.052	0.004	0.431	2.167-	0.030

Q-value: 73.3
P-value: 0.000
I-squared: 97.3
Only three studies have been reported the prevalence of *S. aureus* in AAD patients, in them the pooled prevalence of *S. aureus* was low (5.2%). This prevalence is not very reliable due to the low number of published studies in this field. Likewise, routine diagnosis of *S. aureus* in AAD cases does not seem to be justified. Therefore, more studies are needed to find the true prevalence of *S. aureus* in AAD patients.

K. oxytoca, known to cause AAHC, is a distinct form of AAD. This pathogen acts as a pathobion in the human intestinal microbiota of dysbiotic and causes AAHC [39]. Our study was the first systematic review in *K. oxytoca* AAD. Using different databases, only four articles were finally included. The pooled prevalence was 27% and Europe (35%) and Asia (14%) were the highest and the lowest prevalence continents, respectively. Due to the limited information presented in these articles, we could not provide accurate information on *K. oxytoca* frequency in AAD patients.

We detected a significant heterogeneity between studies, showing that the bacterial prevalence in AAD patients is significantly different in various countries. This difference could be attributed to the quality of the studies, the sample sizes, the efficiency of diagnosis methods, or the true different distribution of bacterial causing AAD in different parts of the world.

Table 2. Subgroup analysis of bacterial prevalence in AAD patients based on the sampling year.

Group name	Sampling year	Number of studies	Prevalence (%)	Lower limit	Upper limit	Z-value	p-value
C. difficile							
D1	≤ 2000	3	23.4	7.2	53.8	-1.70	0.082
D2	2001–2005	11	32.5	19.2	49.3	-2.04	0.042
D3	2006–2010	9	14.4	7.2	26.9	-4.47	0.000
D4	2011–2015	12	16.6	9.2	28.3	-4.62	0.000
D5	2016 ≤	3	23.9	5.9	61.2	-1.41	0.160
Overall		38	20.9	15.3	28	-6.76	0.000

Test of heterogeneity between subgroups: Q-value: 4.808, p-value: 0.308

C. perfringens							
D1	≤ 2000	1	6.4	1.8	20.0	-4.05	0.000
D2	2001–2005	6	14.1	8.8	21.8	-6.65	0.000
Overall		7	12.6	8.1	19.1	-7.69	0.000

Test of heterogeneity between subgroups: Q-value: 1.489, p-value: 0.222

K. oxytoca							
D2	2001–2005	1	83.3	3.2	99.9	0.63	0.530
D3	2006–2010	2	17.3	0.8	84.7	-0.94	0.349
D4	2011–2015	1	17.2	0.2	95.2	-0.68	0.499
Overall		4	29.5	3.8	81.4	-0.73	0.467

Test of heterogeneity between subgroups: Q-value: 1.201, p-value: 0.549

S. aureus							
D2	2001–2005	3	0.05	0.00	0.43	-2.17	0.030
Overall		3	0.05	0.00	0.43	-2.17	0.030

Test of heterogeneity between subgroups: Q-value: 0.000, p-value: 1.000

https://doi.org/10.1371/journal.pone.0260667.g005
Conclusion

Limited studies have been reported on the most important bacteria related to AAD in different countries of the world, which may be due to lack of proper laboratory diagnostic tests. The analysis of the studies indicated that \textit{K. oxytoca}, \textit{C. difficile} and \textit{C. perfringens} are the most...
prevalent among hospitalized patients with AAD in the world. The prevalence of all four bacteria was higher in Europe compared to other continents. The highest resistance of *C. difficile* was estimated to ciprofloxacin and the lowest resistances were reported to chloramphenicol, vancomycin, and metronidazole. There was a little data on antibiotic resistance of other bacteria. Therefore, the results of this study emphasize the need for a surveillance program, as well as timely public and hospital health measures in order to control and treat AAD infections.

Supporting information

S1 File.

(XLSX)

Author Contributions

Data curation: Hamid Motamedi, Matin Fathollahi, Amirhooshang Alvandi.

Formal analysis: Ramin Abiri.

Investigation: Hamid Motamedi.

Methodology: Sepide Kadivarian, Mosayeb Rostamian, Amirhooshang Alvandi.

Software: Ramin Abiri, Mosayeb Rostamian.

Supervision: Amirhooshang Alvandi.

Validation: Matin Fathollahi.

Writing – original draft: Hamid Motamedi, Sepide Kadivarian.

Writing – review & editing: Ramin Abiri, Mosayeb Rostamian, Amirhooshang Alvandi.

References

1. Eckert C, Emirian A, Le Monnier A, Cathala L, De Montclos H, et al. Prevalence and pathogenicity of binary toxin-positive Clostridium difficile strains that do not produce toxins A and B. New microbes and new infections. 2015; 3: 12–17. https://doi.org/10.1016/j.nmni.2014.10.003 PMID: 25755885

2. Nelson RL, Suda KJ, Evans CT. Antibiotic treatment for Clostridium difficile-associated diarrhoea in adults. Cochrane Database of Systematic Reviews. 2017. https://doi.org/10.1002/14651858.CD004610.pub5 PMID: 28257555

3. Deneve C, Janoir C, Poilane I, Fantinato C, Collignon A. New trends in Clostridium difficile virulence and pathogenesis. International journal of antimicrobial agents. 2009; 33: S24–S28. https://doi.org/10.1016/S0924-8579(09)70012-3 PMID: 19303565

4. Papatheodorou P, Barth H, Minton N, Aktories K. Cellular uptake and mode-of-action of Clostridium difficile toxins. Updates on Clostridium difficile in Europe. 2018: 77–96. https://doi.org/10.1007/978-3-319-72799-8_6 PMID: 29383665

5. Kheradmand M, Jalilian S, Alvandi A, Abiri R. Prevalence of Clostridium difficile and its toxigenic genotype in beef samples in west of Iran. Iranian journal of microbiology. 2017; 9: 169. PMID: 29225766

6. Chia J-H, Wu T-S, Wu T-L, Chen C-L, Chuang C-H, et al. Clostridium innocuum is a vancomycin-resistant pathogen that may cause antibiotic-associated diarrhoea. Clinical Microbiology and Infection. 2018; 24: 1195–1199. https://doi.org/10.1016/j.cmi.2018.02.015 PMID: 29458157

7. Larcombe S, Hutton ML, Lyras D. Involvement of bacteria other than Clostridium difficile in antibiotic-associated diarrhoea. Trends in microbiology. 2016; 24: 463–476. https://doi.org/10.1016/j.tim.2016.02.001 PMID: 26897710

8. Curcio D, Cané A, Fernández FA, Correa J. Clostridium difficile-associated diarrhea in developing countries: A systematic review and meta-analysis. Infectious diseases and therapy. 2019; 8: 87–103. https://doi.org/10.1007/s40121-019-0231-8 PMID: 30659481

9. Labbé A-C, Poirier L, MacCannell D, Louie T, Savoie M, et al. Clostridium difficile infections in a Canadian tertiary care hospital before and during a regional epidemic associated with the BI/NAP1/027
strain, Antimicrobial agents and chemotherapy. 2008; 52: 3180–3187. https://doi.org/10.1128/AAC.00146-08 PMID: 18573937

10. Modena S, Bearelly D, Swartz K, Friedenberg FK. Clostridium difficile Among Hospitalized Patients Receiving Antibiotics A Case-Control Study. Infection Control & Hospital Epidemiology. 2005; 26: 685–690. https://doi.org/10.1086/502603 PMID: 16156324

11. Bauer KA, Johnston JE, Wenzler E, Goff DA, Cook CH, et al. Impact of the NAP-1 strain on disease severity, mortality, and recurrence of healthcare-associated Clostridium difficile infection. Anaerobe. 2017; 48: 1–6. https://doi.org/10.1016/j.anaerobe.2017.06.009 PMID: 2864579

12. Deshpande A, Pasupuleti V, Thota P, Pant C, Rolston DD, et al. Risk factors for recurrent Clostridium difficile infection: a systematic review and meta-analysis. infection control & hospital epidemiology. 2015; 36: 452–460. https://doi.org/10.1086/502603 PMID: 16156324

13. Boccia KA, Johnston JE, Wenzler E, Goff DA, Cook CH, et al. Impact of the NAP-1 strain on disease severity, mortality, and recurrence of healthcare-associated Clostridium difficile infection. Anaerobe. 2017; 48: 1–6. https://doi.org/10.1016/j.anaerobe.2017.06.009 PMID: 2864579

14. Kwok CS, Arthur AK, Anibueze CI, Singh S, Cavallazzi R, et al. Risk of Clostridium difficile Infection With Acid Suppressing Drugs and Antibiotics: Meta-Analysis. American Journal of Gastroenterology. 2012; 107: 1011–1019.

15. Borriello S, Welch A, Larson H, Barclay F, Stringer M, et al. Enterotoxigenic Clostridium perfringens: a possible cause of antibiotic-associated diarrhoea. The Lancet. 1984; 323: 305–307. https://doi.org/10.1016/s0140-6736(84)90359-3 PMID: 6141380

16. Rood JI, Adams V, Lacey J, Lyra D, McClaane BA, et al. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe. 2018; 53: 5–10. https://doi.org/10.1016/j.anaerobe.2018.04.011 PMID: 29866424

17. Asha N, Tompkins D, Wilcox M. Comparative analysis of prevalence, risk factors, and molecular epidemiology of antibiotic-associated diarrhea due to Clostridium difficile, Clostridium perfringens, and Staphylococcus aureus. Journal of clinical microbiology. 2006; 44: 2785–2791. https://doi.org/10.1128/JCM.00165-06 PMID: 16891493

18. Li J, Adams V, Bannam TL, Miyamoto K, Garcia JP, et al. Toxic plasmids of Clostridium perfringens. Microbiology and Molecular Biology Reviews. 2013; 77: 208–233. https://doi.org/10.1128/MMBR.00062-12 PMID: 23699255

19. Freedman JC, Shrestha A, McClaane BA. Clostridium perfringens enterotoxin: action, genetics, and translational applications. Toxins. 2016; 8: 73.

20. Kokai-Kun JF, Songer JG, Czeczulin JR, Chen F, McClaane BA. Comparison of Western immunoblots and gene detection assays for identification of potentially enterotoxigenic isolates of Clostridium perfringens. Journal of Clinical Microbiology. 1994; 32: 2533–2539. https://doi.org/10.1128/jcm.32.10.2533-2539.1994 PMID: 7814493

21. Högenauer C, Langner C, Beubler E, Lippe IT, Schicho R, et al. Klebsiella oxytoca as a causative organism of antibiotic-associated hemorrhagic colitis. New England Journal of Medicine. 2006; 355: 2501–2506. https://doi.org/10.1056/NEJMoa054765 PMID: 17151365

22. Beauserie L, Metz M, Barbier F, Bellache G, Bouhnik Y, et al. Klebsiella oxytoca as an agent of antibiotic-associated hemorrhagic colitis. Clinical Gastroenterology and Hepatology. 2003; 1: 370–376. https://doi.org/10.1053/j.gastro.2002.12.008 PMID: 15017655

23. Higaki M, Chida T, Takano H, Nakaya R. Cytotoxic component (s) of Klebsiella oxytoca on HEP-2 cells. Microbiology and Immunology. 1990; 34: 147–151. https://doi.org/10.1111/j.1348-0421.1990.tb00999. x PMID: 2345532

24. Hoffmann KM, Deutschmann A, Weitzer C, Joaining M, Zechner E, et al. Antibiotic-associated hemorrhagic colitis caused by cytotoxin-producing Klebsiella oxytoca. Pediatrics. 2010; 125: e960–e963. https://doi.org/10.1542/peds.2009-1751 PMID: 20194278

25. Carpenter HA, Talley NJ. The importance of clinicopathological correlation in the diagnosis of inflammatory conditions of the colon: histological patterns with clinical implications. The American journal of gastroenterology. 2000; 95: 878–896. https://doi.org/10.1111/j.1572-0241.2000.01924.x PMID: 10763932

26. Olling S. Sensitivity of gram-negative bacilli to the serum bactericidal activity: a marker of the host-parasite relationship in acute and persisting infections. Scandinavian Journal of Infectious Diseases. 1977; 9: 1–40. https://doi.org/10.3109/inf.1977.9.issue-1.01 PMID: 320651

27. Högenauer C, Hinterleitner T. Klebsiella oxytoca as a Cause of Antibiotic-Associated Colitis. Emerging infections. 8. 2008; 293–297.

28. Altemeier WA, Hummel RP, Hill EO. Staphylococcal enterocolitis following antibiotic therapy. Annals of Surgery. 1963; 157: 847. https://doi.org/10.1097/00000658-196306000-00003 PMID: 14012299

29. KHAN MY, HALL WH. Staphylococcal enterocolitis—treatment with oral vancomycin. Annals of internal medicine. 1966; 65: 1–8. https://doi.org/10.1371/journal.pone.0260667 December 8, 2021
30. Flemming K, Ackermann G. Prevalence of enterotoxin producing Staphylococcus aureus in stools of patients with nosocomial diarrhea. Infection. 2007; 35: 356–358. https://doi.org/10.1007/s15010-007-6268-8 PMID: 17721737

31. Boyce JM, Havill NL. Nosocomial antibiotic-associated diarrhea associated with enterotoxin-producing strains of methicillin-resistant Staphylococcus aureus. American Journal of Gastroenterology. 2005; 100: 1828–1834. https://doi.org/10.1111/j.1572-0241.2005.41510.x PMID: 16086721

32. Gravel A, Rondeau M, Harf-Montel C, Grunenberger F, Monteil H, et al. Predominant Staphylococcus aureus isolated from antibiotic-associated diarrhea is clinically relevant and produces enterotoxin A and the bicomponent toxin LukE-LukD. Journal of Clinical Microbiology. 1999; 37: 4012–4019. https://doi.org/10.1128/JCM.37.12.4012-4019.1999 PMID: 10565923

33. Holmberg SD, Osterholm MT, Senger KA, Cohen ML. Drug-resistant Salmonella from animals fed antimicrobials. New England Journal of Medicine. 1984; 311: 617–622. https://doi.org/10.1056/NEJM198409063111001 PMID: 6382001

34. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Bmj. 2021; 372.

35. Joanna Briggs Institute. Joanna Briggs Institute reviewers. 2011.

36. Nasiri MJ, Goudarzi M, Hajikhani B, Ghazi M, Goudarzi H, et al. Clostridiodioides (Clostridium) difficile infection in hospitalized patients with antibiotic-associated diarrhea: A systematic review and meta-analysis. Anaerobe. 2018; 50: 32–37. https://doi.org/10.1016/j.anaerobe.2018.01.011 PMID: 2940016

37. Ackermann G, Thomalla S, Ackermann F, Schauermann R, Rodloff AC, et al. Prevalence and characteristics of bacteria and host factors in an outbreak situation of antibiotic-associated diarrhoea. Journal of medical microbiology. 2005; 54: 149–153. https://doi.org/10.1099/jmm.0.45812-0 PMID: 15673508

38. Azimirad M, Gholami F, Yadegar A, Knight DR, Shamloomi S, et al. Prevalence and characterization of Clostridium perfringens toxinotypes among patients with antibiotic-associated diarrhea in Iran. Scientific reports. 2019; 9: 1–9. https://doi.org/10.1038/s41598-018-37186-2 PMID: 30626917

39. Herzog KA, Schneditz G, Leitner E, Feierl G, Hoffmann KM, et al. Genotypes of Klebsiella oxytoca isolates from patients with nosocomial pneumonia are distinct from those of isolates from patients with antibiotic-associated hemorrhagic colitis. Journal of clinical microbiology. 2014; 52: 1607–1616. https://doi.org/10.1128/JCM.03373-13 PMID: 24599976

40. Abrahao C, Carman R, Hahn H, Liesenfeld O. Similar frequency of detection of Clostridium perfringens enterotoxin and Clostridium difficile toxin in patients with antibiotic-associated diarrhoea. European Journal of Clinical Microbiology and Infectious Diseases. 2001; 20: 676. https://doi.org/10.1007/s100960000571 PMID: 11740655

41. Alikhani MY, Shahcheraghi F, Khodaparast S, Nejad ASM, Moghadam MK, et al. Molecular characterisation of Klebsiella oxytoca strains isolated from patients with antibiotic-associated diarrhoea. Arab Journal of Gastroenterology. 2016; 17: 95–101. https://doi.org/10.1016/j.ajg.2016.03.005 PMID: 27344094

42. Alinejad F, Barati M, Tabrissi MS, Saberi M. Hospital acquired diarrhea in a burn center of Tehran. Iranian journal of microbiology. 2015; 7: 310. PMID: 26885330

43. Al-Tawfiq JA, Abed MS. Clostridium difficile-associated disease among patients in Dhahran, Saudi Arabia. Travel medicine and infectious disease. 2010; 8: 373–376. https://doi.org/10.1016/j.tmaid.2010.10.003 PMID: 21030314

44. Asha N, Wilcox M. Laboratory diagnosis of Clostridium perfringens antibiotic-associated diarrhoea. Journal of medical microbiology. 2002; 51: 891–894. https://doi.org/10.1099/0022-1317-51-10-891 PMID: 12435070

45. Balassiano IT, dos Santos-Filho J, de Oliveira MPB, Ramos MC, Japialuassu AM, et al. An outbreak case of Clostridium difficile-associated diarrhea among elderly inpatients of an intensive care unit of a tertiary hospital in Rio de Janeiro, Brazil. Diagnostic microbiology and infectious disease. 2010; 68: 449–455. https://doi.org/10.1016/j.diagmicrobio.2010.07.017 PMID: 20884155

46. Bishara J, Peled N, Pitlik S, Samra Z. Mortality of patients with antibiotic-associated diarrhoea: the impact of Clostridium difficile. Journal of Hospital Infection. 2008; 68: 308–314. https://doi.org/10.1016/j.jhin.2008.01.033 PMID: 18353491

47. Cançado GGL, Silva ROS, Nader AP, Lobato FCF, Vilela EG. Impact of simultaneous glutamate dehydrogenase and toxin A/B rapid immunoassay on Clostridium difficile diagnosis and treatment in hospitalized patients with antibiotic-associated diarrhea in a university hospital of Brazil. J Gastroenterol Hepatol. 2018; 33: 393–396. https://doi.org/10.1111/jgh.13901 PMID: 28730697

48. Chaudhry R, Joshy L, Kumar L, Dhawan B. Changing pattern of Clostridium difficile associated diarrhoea in a tertiary care hospital: a 5 year retrospective study. Indian Journal of medical research. 2008; 127.
49. Dai W, Yang T, Yan L, Niu S, Zhang C, et al. Characteristics of Clostridium difficile isolates and the burden of hospital-acquired Clostridium difficile infection in a tertiary teaching hospital in Chongqing, Southwest China. BMC Infect Dis. 2020; 20: 277. https://doi.org/10.1186/s12879-020-05014-6 PMID: 32293302

50. Djebbar A, Sebaihia M, Kuiper E, Harmanus C, Sanders I, et al. First molecular characterisation and PCR ribotyping of Clostridium difficile strains isolated in two Algerian Hospitals. J Infect Dev Ctries. 2018; 12: 15–21. https://doi.org/10.3855/jidc.9580 PMID: 31628829

51. Elseviers MM, Van Camp Y, Nayaert S, Dure K, Annemans L, et al. Prevalence and management of antibiotic associated diarrhea in general hospitals. BMC infectious diseases. 2015; 15: 129. https://doi.org/10.1186/s12879-015-0689-0 PMID: 25888351

52. Ergen E, Akalin H, Yilmaz E, Sınırtaş M, Alver O, et al. Nosocomial diarrhea and Clostridium difficile associated diarrhea in a Turkish University Hospital. Médecine et maladies infectieuses. 2009; 39: 382–387. https://doi.org/10.1016/j.medmal.2009.02.011 PMID: 19269761

53. Farshad S, Azami M, Poulladfar G, Ziyaeyan M, Aminshahidi M, et al. Prevalence and risk factors of Clostridium difficile-associated diarrhea in Iranian hospitalized patients. Annals of Tropical Medicine and Public Health. 2013; 6: 554.

54. Ferreira CE, Nakano V, Durigon EL, Avila-Campos MJ. Prevalence of Clostridium spp. and Clostridium difficile in children with acute diarrhea in Sao Paulo city, Brazil. Memorias do Instituto Oswaldo Cruz. 2003; 98: 451–454. https://doi.org/10.1590/s0074-02762003000400003 PMID: 12937752

55. Haran JP, Hayward G, Skinner S, Merritt C, Hoaglin DC, et al. Factors influencing the development of antibiotic associated diarrhea in ED patients discharged home: risk of administering IV antibiotics. The American journal of emergency medicine. 2014; 32: 1195–1199. https://doi.org/10.1016/j.ajem.2014.07.015 PMID: 25149599

56. Haran JP, Wu G, Bucci V, Fischer A, Keang L, et al. Antibiotic-associated diarrhoea in emergency department observation unit patients. Epidemiology & Infection. 2016; 144: 2176–2183. https://doi.org/10.1017/s0950268816000200 PMID: 27324463

57. Asma’Has san S, MPath FMI, MPath ZAR, MPath NM, MPath RAR, et al. Prevalence of Clostridium difficile toxin in diarrhoeal stool samples of patients from a tertiary hospital in North Eastern Peninsular Malaysia. Med J Malaysia. 2012; 67: 403.

58. Heimesaat M, Granzow K, Leidinger H, Liesenfeld O. Prevalence of Clostridium difficile Toxins A and B and Clostridium perfringens Enterotoxin A in Stool Samples of Patients with Antibiotic-Associated Diarrhea. Infection. 2005; 33: 340–344. https://doi.org/10.1007/s15010-005-5067-3 PMID: 16258864

59. Ingle M, Deshmukh A, Desai D, Abraham P, Joshi A, et al. Clostridium difficile as a cause of acute diarrhoea: a prospective study in a tertiary care center. Indian Journal of Gastroenterology. 2013; 32: 179–183. https://doi.org/10.1007/s12664-013-0303-8 PMID: 23526401

60. Kim YJ, Kim SH, Ahn J, Cho S, Kim D, et al. Prevalence of Clostridium perfringens toxin in patients suspected of having antibiotic-associated diarrhea. Anaerobe. 2017; 48: 34–36. https://doi.org/10.1016/j.anaero.2017.06.015 PMID: 28655582

61. Kumar N, Ekka M, Raghunandan P, Chaudhry R, Sharma N, et al. Clostridium difficile infections in HIV-positive patients with diarrhoea. The National medical journal of India. 2014; 27: PMID: 25668083

62. Lee Y-C, Wang J-T, Chen A-C, Sheng W-H, Chang S-C, et al. Changing incidence and clinical manifestations of Clostridium difficile-associated diarrhea detected by combination of glutamate dehydrogenase and toxin assay in Northern Taiwan. Journal of Microbiology, Immunology and Infection. 2012; 45: 287–295. https://doi.org/10.1016/j.jmii.2011.12.001 PMID: 22209696

63. Legaria M, Lumelsky G, Rosetti S. Clostridium difficile-associated diarrhea from a general hospital in Argentina. Anaerobe. 2003; 9: 113–116. https://doi.org/10.1016/s1075-9964(03)00088-x PMID: 16887697

64. Li Y, Huang Y, Li Y, Nie Y. Clinical characteristics of Clostridium difficile-associated diarrhea among patients in a tertiary care center in China. Pakistan journal of medical sciences. 2016; 32: 736. https://doi.org/10.1066/j.pjms.323.9400 PMID: 27357724

65. Lv Z, Peng G, Su J. Factors associated with Clostridium difficile diarrhea in a hospital in Beijing, China. Brazilian Journal of Medical and Biological Research. 2014; 47: 1085–1090. https://doi.org/10.1590/1414-431x20143520 PMID: 25987676

66. Maestri AC, Raboni SM, Morales HMP, Ferrari LF, Tuon FFB, et al. Multicenter study of the epidemiology of Clostridoides difficile infection and recurrence in southern Brazil. Anaerobe. 2020; 64: 102238. https://doi.org/10.1016/j.anaero.2020.102238 PMID: 32717474

67. Mane PM, Patil SR, Datkhile KD, Mane MB, Karande GS. Conventional and molecular diagnosis of clostridium difficile infections in a tertiary care hospital. Journal of Datta Meghe Institute of Medical Sciences University. 2020; 15: 432.
68. Mane PM, Patil SR, Mane MB, Dathkhile K, Karande GS. Molecular detection of toxigenic and binary toxin producing Clostridium difficile in Antibiotic associated diarrhea: Laboratory based study in rural hospital in Western Maharashtra. International Journal of Advanced Science and Technology. 2020; 29: 1232–1238.

69. Martirosian G, Szczesny A, Silva J Jr. Clostridium difficile in emergency room. Anaerobe. 2005; 11: 258–261. https://doi.org/10.1016/j.anaerobe.2005.02.003 PMID: 16701581

70. Mirzaei EZ, Rajabnia M, Sadeghi F, Ferdosi-Shahandashti E, Sadeghi-Haddad-Zavareh M, et al. Diagnosis of Clostridium difficile infection by toxigenic culture and PCR assay. Iran J Microbiol. 2018; 10: 287–293. PMID: 30675324

71. Naaber P, Štěsjetová J, Smidt I, Rátep M, Köljalg S, et al. Quantification of Clostridium difficile in antibiotic-associated-diarrhea patients. Journal of clinical microbiology. 2011; 49: 3656–3658. https://doi.org/10.1128/JCM.05115-11 PMID: 21865427

72. Naqvi SAH, Chaudhry FF. Clostridium difficile postantibiotic diarrhoea diagnosis. J Coll Physicians Surg Pak. 2012; 22: 640–643. https://doi.org/10.1012/JCPSP.640643 PMID: 23058147

73. Pinto LJ, Alcides AP, Ferreira EO, Avelar KE, Sabrá A, et al. Incidence and importance of Clostridium difficile in paediatric diarrhoea in Brazil. Journal of medical microbiology. 2003; 52: 1095–1099. https://doi.org/10.1099/jmm.0.05308-0 PMID: 14614068

74. Pituch H, Obuch-Woszczatyński P, Wultańska D, van Beikum A, Meisel-Mikołajczyk F, et al. Laboratory diagnosis of antibiotic-associated diarrheaa: a Polish pilot study into the clinical relevance of Clostridium difficile and Clostridium perfringens toxins. Diagnostic microbiology and infectious disease. 2007; 58: 71–75. https://doi.org/10.1016/j.diagmicrobio.2006.12.007 PMID: 17300901

75. Plaza-Garrido A, Barra-Carrasco J, Macías J, Carman R, Fawley W, et al. Predominance of Clostridium difficile ribotypes 012, 027 and 046 in a university hospital in Chile, 2012. Epidemiology & Infection. 2016; 144: 976–979.

76. Rodríguez-Varón A, Muñoz O, Pulido-Arenas J, Amado S, Tobón-Trujillo M. Antibiotic-associated diarrheaa: Clinical characteristics and the presence of Clostridium difficile. Revista de Gastroenterología de México (English Edition). 2017; 82: 129–133. https://doi.org/10.1016/j.rgmx.2016.10.003 PMID: 28318702

77. Sachu A, Dinesh K, Siyad I, Kumar A, Vasudevan A, et al. A prospective cross sectional study of detection of Clostridium difficile toxin in patients with antibiotic associated diarrhoea. Iranian journal of microbiology. 2018; 10: 1. PMID: 29922412

78. Sadeghfard N, Salari MH, Ghassemi MR, Eshraghi S, Harati FA. The incidence of nosocomial toxigenic Clostridium difficile associated diarrhoea in Tehran tertiary medical centers. Acta Medica Iranica. 2010: 320–325. PMID: 21287466

79. Secco DA, Balassiano IT, Boente RF, Miranda KR, Brazier J, et al. Clostridium difficile infection among immunocompromised patients in Rio de Janeiro, Brazil and detection of moxifloxacin resistance in a ribotype 014 strain. Anaerobe. 2014; 28: 85–89. https://doi.org/10.1016/j.anaerobe.2014.05.013 PMID: 24907488

80. Shaheen M, Zaki S, El-Sayed A, Sayed N, Aziz AA, et al. Molecular epidemiology of antibiotic-associated diarrheaa due to Clostridium difficile and clostridium perfringens in Ain Shams University Hospitals. Egyptian Journal of Medical Human Genetics. 2007; 8: 121–130.

81. Song HJ, Shim K-N, Jung S-A, Choi HJ, Lee MA, et al. Antibiotic-associated diarrheaa: candidate organisms other than Clostridium difficile. The Korean journal of internal medicine. 2008; 23: 9. https://doi.org/10.3904/kjim.2008.23.1.9 PMID: 18363274

82. Spadão F, Gerhardt J, Guimarães T, Dulley F, Almeida Junior JNd, et al. Incidence of diarrhea by Clostridium difficile in hematologic patients and hematopoietic stem cell transplantation patients: risk factors for severe forms and death. Revista do Instituto de Medicina Tropical de Sao Paulo. 2014; 56: 325–331. https://doi.org/10.1590/s0036-46652014000400010 PMID: 25076494

83. Vaishnawi C, Kaur S, Singh K. Clostridium perfringens type A & antibiotic associated diarrhoea. Indian Journal of Medical Research. 2005; 122: 52.

84. Wiström J, Norry SR, Myhre EB, Eriksson S, Granström G, et al. Frequency of antibiotic-associated diarrheaa in 2462 antibiotic-treated hospitalized patients: a prospective study. Journal of antimicrobial chemotherapy. 2001; 47: 43–50. https://doi.org/10.1093/jamp/003-1400-000400010 PMID: 11125232

85. Wong S, Santullio P, Hirani S, Kumar N, Chowdhury J, et al. Use of antibiotics and the prevalence of antibiotic-associated diarrheaa in patients with spinal cord injuries: an international, multi-centre study. Journal of Hospital Infection. 2017; 97: 146–152. https://doi.org/10.1016/j.jhin.2017.06.019 PMID: 28647425

86. Yilmaz M, Bilir YA, Aygün G, Erzin Y, Celik AF. Prospective observational study on antibiotic-associated bloody diarrheaa: report of 21 cases with a long-term follow-up from Turkey. European journal of
87. Zarandi ER, Mansouri S, Nakhaee N, Sarafzadeh F, Iranmanesh Z, et al. Frequency of antibiotic associated diarrhea caused by Clostridium difficile among hospitalized patients in intensive care unit, Kerman, Iran. Gastroenterology and hepatology from bed to bench. 2017; 10: 229. PMID: 29118940

88. Zhao C, Guo S, Jia X, Xu X. Distribution and risk factor analysis for Clostridium difficile-associated diarrhea among hospitalized children over one year of age. Pediatr Investig. 2020; 4: 37–42. https://doi.org/10.1002/ped4.12155 PMID: 32851340

89. Zhou F, Wu S, Klena J, Huang H. Clinical characteristics of Clostridium difficile infection in hospitalized patients with antibiotic-associated diarrhea in a university hospital in China. European journal of clinical microbiology & infectious diseases. 2014; 33: 1773–1779.

90. Zollner-Schwentz I, Högenauer C, Joainig M, Weberhofer P, Gorkiewicz G, et al. Role of Klebsiella oxytoca in antibiotic-associated diarrhea. Clinical Infectious Diseases. 2008; 47: e74–e78. https://doi.org/10.1086/592074 PMID: 18808355

91. Zumbado-Salas R, del Mar Gamboa-Coronado M, Rodríguez-Cavallini E, Chaves-Olarte E. Clostridium difficile in adult patients with nosocomial diarrhea in a Costa Rican hospital. The American journal of tropical medicine and hygiene. 2008; 79: 164–165. PMID: 18689617