Antioxidant Activity of Selected Medicinal Plants of Nepal

Grinsun Sharma1, Biswash Sapkota2, Gopal Lamichhane1, Mahendra Adhikari1 and Paridhi Kunwar1
1School of Health and Allied Sciences, Department of Pharmaceutical Science, Pokhara University, Nepal
2 Department of Pharmacology, Sri Adichunchanagiri College of Pharmacy, India.

ABSTRACT

Method
Collected plant species were subjected to maceration in methanol for 72 hrs. Antioxidant activity of plant extracts was assessed by using DPPH free radical scavenging method in different concentrations (1 µg/ml, 3 µg/ml, 5 µg/ml, 7 µg/ml and 10 µg/ml) and percentage inhibition and effective concentration (EC50) was calculated.

Result
Result indicates that EC50 of D. boryanum (3.75 µg/ml) and P. guajava (3.89 µg/ml) was less, EC50 of R. nepalensis (5.03 µg/ml) and S. japonica (6.75 µg/ml) was comparable and EC50 of M. macrophylla (7.86 µg/ml), B. asiatica (9.14 µg/ml), E. adenophorum (7.78 µg/ml), E. crassipes (8.21 µg/ml) and N. arbortritis (8.16 µg/ml) was higher than ascorbic acid (4.73 µg/ml).

Conclusion
Our result shows that D. boryanum and P. guajava possess higher antioxidant activity than the ascorbic acid implying that, they could be potential free radical scavenging agents and could be developed as pharmaceutical agents.

Keywords: Antioxidant, DPPH, Maceration, Methanol

INTRODUCTION

Many natural products are the source of therapeutic agents having potential pharmacological activity. Traditional medicinal practices have long history for serving human kind [1]. The knowledge of ethnobotany offers diverse natural products that have potential for therapeutic use. More than fifty percent of modern drugs are from natural products [2]. Nepal is a Himalayan country rich in plant diversity. The climatic zones, ranging from sub tropic to arctic region, have supported the variation in plant species [3, 4]. Nepal is home to more than 1600 species of medicinal and aromatic plants including 1515 species of angiosperms, 19 species of gymnosperms, 56 species of pteridophytes, 5 species of bryophytes, 18 species of lichens and 1 species of fungi [5]. Free radicals, also known as reactive oxygen species (ROS), are basic to biological process such as aerobic metabolism [6]. When generation of ROS is more than the detoxification ability of cells, undue ROS causes harm to DNA, enzymes, proteins, lipids and may become mediator of inflammation, cancer and cardiovascular diseases [7]. To tackle such disorder, antioxidants have been in use. Antioxidants impede oxidative course by countering with

*Corresponding author: Grinsun Sharma
School of Health and Allied Science, Department of Pharmaceutical Science, Pokhara University
Email: grinsun58@gmail.com
free radicals, chelating metal ions and behaving as oxygen scavengers [8]. Natural antioxidants have gained a lot of curiosity in modern age due to good antioxidant activity, less side effects and low production cost [9]. Various dietary antioxidants like ascorbic acid, vitamin E, carotenoids have been isolated from natural source to defend cells damage due to oxidative stress [10]. There is an inverse relationship between morbidity and mortality from oxidative stress and intake of natural antioxidants [11, 12, 13]. The exploration of antioxidants is increasing every year, however, the understanding of main component from medicinal plants is vague that are related in dropping the risk of chronic illness, diabetes, cancer and cardiovascular disease [9, 13, 15]. The present study was designed to collect, identify, prepare herbarium and to evaluate the antioxidant activity of selected medicinal plants.

Table 1: List of collected medicinal plants

S.N.	Scientific name/ Family	Local name (Parts used)	Pharmacological use	Isolated Compounds
1	Mussaenda macrophylla/ Rubiaceae	Dhobini (Roots)	It is used in Snake bite and active against oral pathogen. It shows antibacterial, anticoagulant, anti-inflammatory and hepatoprotective activity [3, 16].	3-O acetyloleandic acid, 3-O acetylduradical, rotundic acid and 16 α-hydroxyprotobassic acid [17].
2	Rumex nepalensis/ Polygonaceae	Halhale (Roots)	It is used in body ache, headache, wound, diarrhea, dysentery, scabies, cold and cough [18].	Torachrysone, epicatechin gallate, orcinol glucoside, aloesin, epicatechin and lyoniresinol 3 α-O-β-D-glucopyranoside [19].
3	Dryoathyrium boryanum/ Aspidiaceae	Kalo neuro (Roots)	It is used as laxative, demulcent and stomachic [20].	3-hydroxyphloretin 6-O-hexoside, quercetin-7-hexoside, apigenin7-O-glucoside, luteolin 7-O-glucoside, apigenin 7-O-galactoside, 3-hydroxyphloretin 6-O-hexoside, luteolin-6-C-glucoside [21].
No.	Plant Name	Part Used	Uses	Identified Compounds
-----	------------------------------------	-----------	--	---
4	*Berberis asiatica* / Berberidaceae	Chutro (Leaves)	It is used in eye and skin disease, jaundice, rheumatism and diabetes [22, 23].	Berberine, palmmitine, jatrorrhizine, columbamine, tetrahydropalmmitine, berbamine, oxyberberine and oxyacanthine were identified from *B. Asiatica* [24].
5	*Psidium guajava* / Mystraeace	Amba (Fruits)	It is used in wounds, gastrointestinal disorder, lesions, ulcers, diarrhea, cholera, hypertension, obesity and diabetes mellitus [25].	Myricetin, quercetin, nerolidiol, aromadendrene, 1,8-cineol, oleanic acid, ursolic acid, catecolic acid, guayavolic acid, maslinic acid, ellagic acid and β-sitosterol [26, 27].
6	*Eupatorium adenophorum* / Asteraceae	Banmara (Leaves)	It is used in dysentery and stomachache. Decoction of this plant is used in jaundice. It also possesses pneumotoxic and hepatotoxic effects [28].	Coumarin, 5-exo-hydroxy-borneol, O-hydroxyl cinnamic acid, 9β-hydroxy-ageraphorone and 9-oxo-10, 11-dehydroageraphorone [29].
7	*Eichhornia crassipes* / Pontederiaceae	Jalkumbi (Leaves)	It possess antiinflammatory, anticancer and antibacterial activities. Anabolic steroid supports nitrogen maintenance in osteoporosis in animals with wasting illness [30, 31, 32].	2-methylresorcinol, catechol, pyrogallol, genitcic, salicylic acid, kaempferol, orientin quercetin, pipradrol [33].
8	*Nyctanthes arbor-tristis* / Oleaceae	Parijat (Leaves)	It possess anti-inflammatory, antipyretic, anti-noiceptive, anti-leishmanial, immuno-stimulant, antimicrobial, antiviral activities [34].	D- mannitol, sitosterone, astragaline, carotenoid, crocin-3, p-cymene [34].
9	*Stephania japonica* / Menispermaceae	Batulepati (Leaves)	It is used in tuberculosis, cancer, fever, intestinal complaints, asthma, hyperglycemia and dysentery [35].	Fangchinoline, tetrandrine [36].

Preparation of extract

Crude samples were washed with distilled water, cut into small pieces and shade dried. The dried sample were grounded and were allowed for cold maceration with methanol at room temperature for 72 h. 50 g of each plant material was macerated with 500 ml of methanol (in ratio of 1: 10) at room temperature for 24 h. The extract was filtered using Whatman No.1 filter paper to obtain methanolic extract. The residue left was again subjected to second and third successive maceration with 500 ml methanol for another 24 h under previous conditions. Methanolic extracts of sample were concentrated in rotary evaporator at 40°C and 250-175 mbar pressure at 90 rpm and 5°C chilling temperature. Further drying was done in
vacuum desiccator at pressure 60 mbar. Thus, obtained dried methanolic extract was stored at 4°C in refrigerator for further experiment.

Antioxidant activity
Antioxidant activity was tested by DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging assay [37]. This method is simple, plain, replicable and economical. DPPH is deep violet in colour due to the delocalization of the auxiliary electrons. Antioxidant compounds donate hydrogen atom to the free radicals resulting to neutral colourless compound. Ascorbic acid was used as positive control which is standard antioxidant. DPPH solution without sample extract served as negative control.

Preparation of stock solution
The stock solution of 1 mg/ml of each sample extract in methanol was prepared. Ascorbic acid solution of the same concentration was prepared using methanol.

Preparation of plant samples
Different concentrations (10, 7, 5, 3 and 1 µg/ml) were prepared by serial dilution using methanol.

Preparation of ascorbic acid solution
Ascorbic acid was taken as standard. Different concentrations (10, 7, 5, 3 and 1 µg/ml) of ascorbic acid were prepared by serial dilution using methanol.

Preparation of DPPH Solution
A 100 µM DPPH solution was prepared by dissolving 19.7 mg of DPPH in 500 ml of methanol.

DPPH radical scavenging activity
DPPH was dissolved in 500 ml of methanol to prepare 100 µM DPPH solution. Extracted solution of 1 ml of different concentrations was mixed with 1 ml of DPPH solution. Then it was incubated for 30 minutes at room temperature and then the absorbance was measured in UV spectrophotometer at 517 nm. UV spectroscopy is based on the principle that molecules having π- electrons or nonbonding electrons can absorb energy in the form of ultraviolet or visible light and excite such electrons to higher orbital [38]. Each assay was performed in triplicates and radical scavenging activity was calculated by using following equation:

\[
\% \text{ Inhibition} = \frac{A - B}{A} \times 100\%
\]

Where, A is absorbance of DPPH solution (Negative Control), B is the absorbance of DPPH solution in the presence of test sample. The scavenging activity (%) was then plotted against concentration and from the graph.

STATISTICAL ANALYSIS:
Half maximal effective concentration (EC\textsubscript{50}) value was calculated by using linear regression analysis with Microsoft office excel 2007. All the values and data were expressed as Mean ± SEM, N=3, Where, SEM= Standard error of mean and N= Number.

RESULTS
The present study was done to explore antioxidant activity of medicinal plants of traditional practice having different phytochemicals [39]. Present study reveals dose dependent activity from 1 to 10 µg/ml for all selected plants. Result indicates that EC\textsubscript{50} of D. boryanum (3.75 µg/ml) and P. guajava (3.89 µg/ml) was less than ascorbic acid (4.73 µg/ml). Also, EC\textsubscript{50} of R. nepalensis (5.03 µg/ml) and S. japonica (6.75 µg/ml) was comparable and EC\textsubscript{50} M. macrophylla (7.86 µg/ml), B. asiatica (9.14 µg/ml), E. adenophorum (7.78 µg/ml), E. crassipes (8.21 µg/ml), and N. arbor-tristis (8.16 µg/ml) was slightly higher than that of ascorbic acid. All determinations (except EC\textsubscript{50}) were carried out in triplicate and the values are expressed as mean± SEM.
Table 2: Percentage inhibition and effective concentration (EC50) of medicinal plants and Ascorbic acid.

Sample	Percentage inhibition ± SEM	EC50				
	1 µg/ml	3 µg/ml	5 µg/ml	7 µg/ml	10 µg/ml	
Ascorbic acid	24.68±1.23	39.64±0.35	52.67±0.34	65.87±2.17	81.87±0.21	4.73
M. macrophylla	5.31±2.21	19.78±0.98	32.76±0.31	44.76±0.65	62.84±0.67	7.86
R. nepalensis	25.17±0.34	35.87±2.32	49.65±0.45	61.98±0.76	82.84±0.22	5.03
D. boryanum	35.52±0.45	46.64±1.23	57.34±1.22	65.89±0.34	80.63±0.54	3.75
B. asiatica	18.66±0.87	25.67±0.34	33.54±2.39	40.65±1.17	54.11±0.32	9.14
P. guajava	33.22±0.12	45.89±0.31	56.87±2.26	66.87±2.31	82.43±1.13	3.89
E. adenophorum	23.37±2.12	32.45±1.12	39.98±1.11	46.76±1.25	58.21±2.21	7.78
E. crassipes	19.61±0.34	27.76±1.76	37.54±1.91	45.65±0.11	56.66±0.76	8.21
N. arbor-tristis	7.58±0.56	17.89±2.29	29.65±0.67	42.76±0.13	61.87±0.14	8.16
S. japonica	19.02±0.22	28.87±2.23	39.76±0.21	50.87±0.50	68.58±0.34	6.75

Figure 1: Percentage inhibition of medicinal plants and Ascorbic acid
DISCUSSION
ROS are highly unstable unit with one or more odd electrons. The movement of free radical can cause severe damage to the body. Various plants with antioxidant activity can defend themselves against ROS. They exert their action either by scavenging the reactive oxygen species or protecting the antioxidant defence mechanisms [40]. Various spectrometric methods like DPPH assay, FRAP (ferric reducing antioxidant power) assay, PFRAP (potassium ferricyanide reducing power) assay, TRAP (total peroxyl radical trapping antioxidant parameter) assay, ABTS (2,2’-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) are used to establish in vitro antioxidant activity[41]. Compounds having high in vitro antioxidant activity are likely to demonstrate high in vivo antioxidant activity [42]. In this research, antioxidant activity of nine plants was studied using DPPH free radical scavenging method. Result indicates that, extract of *D. boryanum* and *P. guajava* have good antioxidant activity than standard ascorbic acid. It implies that, plants constitute those compounds that can donate hydrogen atom to the odd electron which is responsible for radical’s reactivity [43]. The possible mechanism by which plant inhibit the free radicals would be attributed to the inhibitory effect of extract towards generation of free radicals in the *in vitro* reaction system [44].

CONCLUSION
The results in the study signify that the extract of *D. boryanum* and *P. guajava* reveals free radical scavenging activity against DPPH radical. The antioxidant activity of these extract might be due to their polyphenolic content and phytochemical constituents. This research suggested that of *D. boryanum* and *P. guajava* can be use as a source of natural antioxidants.
ACKNOWLEDGEMENT
We are very thankful to School of Health and Allied Sciences, Pokhara University for providing us an opportunity and facilities to carry out our research work successfully. We would also like to acknowledge Mr. Durga B.K., Laboratory Head, Department of Pharmaceutical Science, Pokhara University for his assistance during our research.

AUTHORS’ CONTRIBUTIONS
Mr. GS was involved with the design of the study, and wrote the first draft of the manuscript. Mr. GS, Mr. BS, Mr. MA and Mr. GL collected data and involved with data analysis. Mr. GS performed statistical analysis. Mr. GS and Ms. PK revised the manuscript for important intellectual content. All authors read, edited and approved the final manuscript.

COMPETING INTERESTS
The authors declare that they have no competing interests.

REFERENCE
1. Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA)-General Subjects. 2013 Jun 1;1830(6):3670-95.
2. Lahlou M. The success of natural products in drug discovery. Pharmacol Pharm. 2013 Jun 1;4(3A):17-31.
3. Manandhar NP. Plants and people of Nepal. Timber Press; 2002.
4. Bhattacharjee A, Anadón JD, Lohman DJ, Doleck T, Lakhankar T, Shrestha BB, Thapa P, Devkota D, Tiwari S, Jha A, Siwakoti M. The Impact of Climate Change on Biodiversity in Nepal: Current Knowledge, Lacunae, and Opportunities. Climate. 2017 Oct 11;5(4):80.
5. Sharma UR. Medicinal and Aromatic Plants: a Growing Commercial Sector of Nepal. The Initiation. 2007;1:4-8.
6. Görlach A, Bertram K, Hudecova S, Krizanova O. Calcium and ROS: a mutual interplay. Redox biology. 2015 Dec 1;6:260-71.
7. Pryianka L, Sangh P, Verma M, Jha KK. In vitro antioxidant activity of plant extract of Cressa Cretica. Pharm Lett. 2015;7:28-32.
8. Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects--A review. Journal of functional foods. 2015 Oct 31;18:820-97.
9. Auddy B, Ferreira M, Blasina F, Lafon L, Arredondo F, Dajas F, Tripathi PC, Seal T, Mukherjee B. Screening of antioxidant activity of three Indian medicinal plants, traditionally used for the management of neurodegenerative diseases. Journal of Ethnopharmacology. 2003 Feb 28;84(2):131-8.
10. Rietjens IM, Boersma MG, de Haan L, Spenkelink B, Awad HM, Cnubben NH, van Zanden JJ, van der Woude H, Alink GM, Koeman JH. The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environmental toxicology and pharmacology. 2002 Jul 1;11(3-4):321-33.
11. Ciccone MM, Cortese F, Gesualdo M, Carbonara S, Zito A, Ricci G, De Pascalis F, Sciechitano P, Riccioni G. Dietary intake of carotenoids and their antioxidant and anti-inflammatory effects in cardiovascular care. Mediators of inflammation. 2013 Dec 31;2013.
12. Urquiaga IN, Leighton F. Plant polyphenol antioxidants and oxidative stress. Biological research. 2000;33(2):55-64.
13. Ciccone MM, Cortese F, Gesualdo M, Carbonara S, Zito A, Ricci G, De Pascalis F, Sciechitano P, Riccioni G. Dietary intake of carotenoids and their antioxidant and anti-inflammatory effects in cardiovascular care. Mediators of inflammation. 2013;2013.
14. Saeed N, Khan MR, Shabbir M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant
extracts *Torilis leptophylla* L. BMC complementary and alternative medicine. 2012 Nov 16;12(1):221.

15. Siti HN, Kamisah Y, Kamsiah J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascular pharmacology. 2015 Aug 1;71:40-56.

16. Islam F, Quadery TM, Chowdhury SR, Kaisar MA, Uddin MG, Rashid MA. Antioxidant and cytotoxic activities of *Mussaenda macrophylla*. Bangladesh Pharm. J. 2012;15:69-71.

17. Kim NC, Desjardins AE, Wu CD, Kinghorn AD. Activity of Triterpenoid Glycosides from the Root Bark of *Mussaenda macrophylla* against Two Oral Pathogens. Journal of natural products. 1999 Oct 22;62(10):1379-84.

18. Devkota SR, Paudel KR, Sharma K, Baral A, Chhetri SB, Thapa PP, Baral KP. Investigation of antioxidant and anti-inflammatory activity of roots of *Rumex nepalensis*. World Journal of Pharmacy and Pharmaceutical Sciences. 2015;4(3):582-94.

19. Mei R, Liang H, Wang J, Zeng L, Lu Q, Cheng Y. New seco-anthraquinone glucosides from *Rumex nepalensis*. Planta medica. 2009 Aug;75(10):1162-4.

20. Poudel A. Antioxidative and antiobesity activity of Nepalese wild herbs. Natural Product Sciences. 2011;17(2):123-9.

21. Cao J, Xia X, Dai X, Xiao J, Wang Q, Andrae-Marobela K, Okatch H. Flavonoids profiles, antioxidant, acetylcholinesterase inhibition activities of extract from *Dryoathyrium boryanum* (Willd.) Ching. Food and chemical toxicology. 2013 May 31;55:121-8.

22. Uniyal SK, Singh KN, Jamwal P, Lal B. Traditional use of medicinal plants among the tribal communities of Chhota Bhangal, Western Himalaya. Journal of Ethnobiology and Ethnomedicine. 2006 Mar 20;2(1):14.

23. Srivastava SK, Singh Rawat AK, Mehrotra S. Pharmacognostic evaluation of the root of *Berberis asiatica*. Pharmaceutical biology. 2004 Jan 1;42(6):467-73.

24. Bhakuni DS, Shoheb A, Popali SP. Medicinal plants: chemical constituent of *Berberis aristata*. Indian journal of chemistry. 1968;6(2):123.

25. Braga TV, das Dores RG, Ramos CS, Evangelista FC, da Silva Tinoco LM, de Pilla Varotti F, das Graças Carvalho M, de Paula Sabino A. Antioxidant, antibacterial and antitumor activity of ethanolic extract of the *Psidium guajava* leaves. American Journal of Plant Sciences. 2014 Nov 26;5(23):3492.

26. Carvalho AD, Sampaio MC, Sampaio FC, Melo AF, Sena KK, Chiappeta AA, Higino JS. Atividade antimicrobiana in vitro de extratos hidroalcoólicos de *Psidium guajava* L. sobre bactérias gram-negativas. Acta Farm Bonaerense. 2002;21(4):255-8.

27. Gutiérrez RM, Mitchell S, Solis RV. *Psidium guajava*: a review of its traditional uses, phytochemistry and pharmacology. Journal of ethnopharmacology. 2008 Apr 17;117(1):1-27.

28. Oelrichs PB, Calanasan CA, Macleod JK, Seawright AA, Ng JC. Isolation of a compound from *Eupatorium adenophorum* (Spreng.)(*Ageratina adenophora* (Spreng.]) causing hepatotoxicity in mice. Natural toxins. 1995 Sep 1;3(5):350-4.

29. He L, Yang J, Cao AC, Liu YM, An Y, Shi JG. A new sequiterpenoid from *Eupatorium adenophorum* Spreng. Chinese Journal of Chemistry. 2006 Oct 1;24(10):1375-7.

30. Thamaraiselvi PL, Jayanthi P. Preliminary studies on phytochemicals and antimicrobial activity of solvent extracts of *Eichhornia crassipes* (Mart.) Solms. Asian Journal of Plant Science and Research. 2012;2(2):115-22.

31. Laped B, Gherras N, Hameurlaine S, Ladje S, Zellagui A. The antibacterial activity of water extracts of *Traganum nudatum* Del (Chenopodiaceae) growing in Algeria. Der Pharmacia Lettre. 2010;2(6):142-5.

32. Jayanthi P, Lalitha P, Shubashini KS. Phytochemical investigation of the extracts of *Eichhornia crassipes* and its solvent fractionates. J. Pharm. Res. 2011 May;4(5):1405-6.
33. Lalitha P, Sripathi SK, Jayanthi P. Secondary metabolites of *Eichhornia crassipes* (Waterhyacinth): a review (1949 to 2011). Natural product communications. 2012 Sep;7(9):1249-56.
34. Rani C, Chawla S, Mangal M, Mangal AK, Kajla S, Dhawan AK. *Nyctanthes arbor-tristis* Linn.(Night Jasmine): A sacred ornamental plant with immense medicinal potentials.2012;11(3):427-35.
35. Uddin SN, Amin MN, Shahid-Ud-Daula AF, Hossain H, Haque MM, Rahman MS, Kader MA. Phytochemical screening and study of antioxidant and analgesic potentials of ethanolic extract of *Stephania japonica* Linn. Journal of Medicinal Plants Research. 2014 Oct 3;8(37):1127-33.
36. Rahman MH, Alam MB, Hossain MS, Jha MK, Islam A. Antioxidant, analgesic and toxic potentiaility of methanolic extract of *Stephania japonica* (thunb.) miers. leaf. International Journal of Pharmaceutical Sciences and Research. 2011 Jun 1;2(6):1588.
37. Brand-Williams W, Cuvelier ME, Berset CL. Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology. 1995 Jan 1;28(1):25-30.
38. Sapkota B, Sharma G. A review on green synthesis of silver nanoparticles using fruits extract. World Journal of Pharmacy and Pharmaceutical Sciences.2017;6(11):1443-1451.
39. Sharma G, Lamichhane G. A review of plant based medicine in treatment of Urolithiatic disorder. The Pharma Innovation. 2017;6(10):08-12.
40. Umamaheswari M, Chatterjee TK. In vitro antioxidant activities of the fractions of *Coccinia grandis* L. leaf extract. African Journal of Traditional, Complementary and Alternative Medicines. 2008;5(1):61-73.
41. Pisoschi AM, Negulescu GP. Methods for total antioxidant activity determination: a review. Biochemistry and Analytical Biochemistry. 2011;1(1):1-0.
42. Nunes XP, Silva FS, Almeida JR, de Lima JT, de Araújo Ribeiro LA, Júnior LJ, Barbosa Filho JM. Biological oxidations and antioxidant activity of natural products. InPhytochemicals as nutraceuticals-Global Approaches to Their Role in Nutrition and Health 2012. InTech.
43. Quideau S, Deffieux D, Douat-Casassus C, Pouysegu L. Plant polyphenols: chemical properties, biological activities, and synthesis. Angewandte Chemie International Edition. 2011 Jan 17;50(3):586-621.
44. Bajpai VK, Agrawal P. Studies on phytochemicals, antioxidant, free radical scavenging and lipid peroxidation inhibitory effects of *Trachyspermum ammi* seeds. Pharmaceutical Research. 2015 Jan 1;49(1):58-65.