REVIEW

Novel biomarkers and endoscopic techniques for diagnosing pancreaticobiliary malignancy [version 1; referees: 2 approved]

Margaret G Keane¹, Amar Shah¹, Stephen P Pereira², Deepak Joshi¹

¹Institute of Liver Studies, King’s College Hospital, London, UK
²UCL Institute for Liver and Digestive Health, Royal Free Campus, London, UK

Abstract
The UK incidence of pancreatic ductal adenocarcinoma is 9 per 100,000 population, and biliary tract cancer occurs at a rate of 1–2 per 100,000. The incidence of both cancers is increasing annually and these tumours continue to be diagnosed late and at an advanced stage, limiting options for curative treatment. Population-based screening programmes do not exist for these cancers, and diagnosis currently is dependent on symptom recognition, but often symptoms are not present until the disease is advanced. Recently, a number of promising blood and urine biomarkers have been described for pancreaticobiliary malignancy and are summarised in this review. Novel endoscopic techniques such as single-operator cholangioscopy and confocal endomicroscopy have been used in some centres to enhance standard endoscopic diagnostic techniques and are also evaluated in this review.
Corresponding author: Deepak Joshi (d.joshi@nhs.net)

Competing interests: The authors declare that they have no competing interests.

How to cite this article: Keane MG, Shah A, Pereira SP and Joshi D. Novel biomarkers and endoscopic techniques for diagnosing pancreaticobiliary malignancy [version 1; referees: 2 approved] F1000Research 2017, 6(F1000 Faculty Rev):1643 (doi: 10.12688/f1000research.11371.1)

Copyright: © 2017 Keane MG et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Grant information: SPP is supported in part by National Institutes of Health grant P01CA8420. Part of the work was undertaken at University College London Hospitals/University College London, which received a portion of funding from the Department of Health’s National Institute for Health Research Biomedical Research Centres funding scheme. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

First published: 05 Sep 2017, 6(F1000 Faculty Rev):1643 (doi: 10.12688/f1000research.11371.1)
Introduction
In the UK, pancreatic ductal adenocarcinoma (PDAC) is the 10th commonest cancer and has an incidence of 9 per 100,000 population, and biliary tract cancer (BTC) (including intra- and extra-hepatic cholangiocarcinoma and gallbladder cancer) has an incidence of 1–2 cases per 100,000 population. Long-term survival is poor; 5-year survival is less than 4% for both tumours. Often these tumours are diagnosed late, when patients have advanced disease and curative surgical resection is no longer possible.

Globally the highest incidence of PDAC is seen in Northern Europe and North America, where the rates are 3 to 4 times higher than in tropical countries. Overall incidence is increasing, and as most tumours are sporadic, this rising incidence is attributed to differences in lifestyles and exposure to environmental risk factors, such as smoking, diabetes mellitus, chronic pancreatitis and obesity.

In BTC, the variations in incidence seen globally are even more pronounced; and the highest incidence is in northeastern Thailand (96 per 100,000 men), which has a population with high levels of chronic typhoid and infestation of liver fluke (Clonorchis sinensis and Opisthorchis viverrini). Other BTC risk factors seen in all populations include age, primary sclerosing cholangitis, intraductal stones and rare biliary cystic diseases. Inflammatory bowel disease, chronic viral hepatitis, cirrhosis, smoking, diabetes, obesity and excess alcohol consumption may also increase the risk of BTC.

Despite improved diagnostic techniques, detecting pancreaticobiliary malignancy remains a significant clinical challenge. A common presentation of these tumours is a biliary stricture with or without a mass lesion. The differential of an indeterminate biliary stricture is broad, and often the associated symptoms and radiological findings overlap between benign and malignant conditions, often making differentiation—particularly between cancer, primary sclerosing cholangitis and IgG4-related disease—impossible without further investigations, typically by endoscopic retrograde cholangiopancreatography (ERCP) or endoscopic ultrasound (EUS). However, biliary brush cytology is also an imperfect test, although specificity is high (96–100%) and sensitivity remains low (9–57%) in early disease when tumours are small, sensitivities are even lower. Therefore, patients frequently require multiple procedures to obtain a final diagnosis.

So there has been growing interest in the development of simple tests to streamline the diagnosis to pancreaticobiliary malignancy and guide appropriate and timely therapy for patients. Identifying better diagnostic tools for PDAC and BTC would also make screening and surveillance possible, particularly in high-risk populations. This would enable the detection of tumours at an earlier stage when curative resection is possible, leading to substantial improvements in survival. This review provides an overview of the latest innovations in diagnostic biomarkers and endoscopic techniques for pancreaticobiliary malignancy.

Methods
We performed a systematic review of the literature by using PubMed, EMBASE and the Cochrane Library. The search was limited to studies published in the English language between January 2013 and March 2017. Medical Subject Headings (MeSH) terms were decided by a consensus of the authors and included “pancreatic cancer” or “cholangiocarcinoma” and “biomarker”. The search was restricted to title, abstract and keywords. Articles that described outcomes for fewer than five patients were excluded. Case reports, abstracts and reviews were excluded. All references were screened for potentially relevant studies not identified in the initial literature search.

The following variables were extracted for each report when available: number of malignant and benign cases, sensitivity, specificity and area under the curve (AUC). One hundred ten articles were included in the final review.

Biomarkers
1. Serum biomarkers and blood tests
Carbohydrate antigen (CA) 19-9 is the most widely used tumour marker in pancreaticobiliary malignancy. Overall sensitivity (78–89%) and specificity (67–87%) are low, and in around 7% of the population who lack the Lewis (a) antigen, CA19-9 will remain negative. In small tumours, sensitivity decreases further. The marker can also be elevated in a number of other malignant diseases (for example, gastric adenocarcinoma) and benign diseases, particularly those causing jaundice (for example, primary biliary cirrhosis, cholestasis and cholangitis), and in smokers. In addition, variation has been reported among commercially available assays, which may impact on interpretation. Therefore, to improve the sensitivity of the marker in current clinical practice, it is always interpreted in the context of cross-sectional imaging findings.

Other commercially available tumour markers that have a role in diagnosing pancreaticobiliary cancer include carcinoembryonic antigen (CEA) and CA125. CEA is a glycosyl phosphatidyl inositol cell surface-anchored glycoprotein that is involved in cell adhesion. When elevated, it is highly suggestive of colorectal cancer, but it is also increased in about a third of patients with BTC. CA125 is a protein encoded by the MUC16 gene and is a large membrane-associated glycoprotein with a single transmembrane domain. When elevated, it is suggestive of ovarian cancer, but it is also increased in about 40–50% of patients with pancreaticobiliary malignancy, particularly when there is peritoneal involvement.

Owing to the limitations of existing biomarkers, over the last few years several studies have evaluated various combinations of biomarkers to supplement or ultimately replace existing biomarkers. Biomarker panels using combinations of markers, often including CA19-9, have been particularly successful in detecting small tumours and early disease. Validation studies have also shown that these markers can differentiate PDAC from relevant benign conditions and in some cases detect tumours up to 1 year prior to diagnosis with a specificity of 95% and a sensitivity of 68% (Table 1 and Table 2).
In pancreaticobiliary malignancy and PDAC in particular, metastatic disease occurs at a very early stage in tumour development. This is demonstrated by the fact that patients who underwent resection of small primary tumours (<2 cm) with no clinical evidence of metastatic disease had a 5-year survival after pancreatectomy of less than 18% owing to recurrent metastatic disease\(^\text{39}\). Tumour development is driven by a series of cumulative genetic abnormalities; therefore, genetic and epigenetic changes have been explored as diagnostic targets in circulating tumour cells, cell-free DNA (cfDNA) and non-coding RNA (Table 3–Table 5). Owing to the position and composition of pancreaticobiliary tumours, tissue samples are frequently acellular, making diagnostics challenging. Recently, the utility of next-generation sequencing was explored as a technique that allows the detection of low-abundance mutations and abnormalities in small amounts of material\(^\text{40}\). Changes in the metabolome are also being explored as a potential diagnostic tool in pancreaticobiliary malignancy\(^\text{41}\).

Table 1. Serum protein biomarkers for biliary tract cancer, 2013–2017.

Author (year)	Biomarker/Combination (serum)	Biliary tract cancer, number	Benign lesion/cholangitis, number	Healthy volunteers, number	Sensitivity	Specificity	Area under the curve
Single biomarkers							
Han et al. (2013)\(^\text{94}\)	HDGF	83	-	51	66%	88%	0.81
Ruzzente et al. (2014)\(^\text{95}\)	MUC5AC	49	23	16	-	-	0.91
Voigtlander et al. (2014)\(^\text{96}\)	Angpt-2	56	111	-	74%	94%	0.85
Lumachi et al. (2014)\(^\text{97}\)	CA 19-9	24	25	-	74%	82%	-
Wang et al. (2014)\(^\text{98}\)	CA 19-9	78	78	78	72%	96%	-
Lumachi et al. (2014)\(^\text{97}\)	CEA	24	25	-	52%	55%	-
Wang et al. (2014)\(^\text{98}\)	CEA	78	78	78	11%	97%	-
Wang et al. (2014)\(^\text{98}\)	CA 125	78	78	78	45%	96%	-
Lumachi et al. (2014)\(^\text{97}\)	CYFRA 21-1	24	25	-	76%	79%	-
Liu et al. (2015)\(^\text{99}\)	VEGF-C	31	10	10	71%	80%	0.79
Liu et al. (2015)\(^\text{99}\)	VEGF-D	31	10	10	74%	85%	0.84
Huang et al. (2015)\(^\text{90}\)	CYFRA 21-1	134	52	-	75%	85%	-
Lumachi et al. (2014)\(^\text{97}\)	MMP7	24	25	-	78%	77%	-
Nigam et al. (2014)\(^\text{101}\)	Survivin	39 (gallbladder cancer)	30	25	81%	80%	-
Rucksaken et al. (2014)\(^\text{102}\)	HSP70	31	12	23	94%	74%	0.92
Rucksaken et al. (2014)\(^\text{102}\)	ENO1	31	-	23	81%	78%	0.86
Rucksaken et al. (2014)\(^\text{102}\)	RNH1	31	-	23	94%	67%	0.84
Wang et al. (2014)\(^\text{103}\)	CA242	78	78	78	64%	99%	-
Ince et al. (2014)\(^\text{104}\)	VEGFR3	96	129	-	48%	82%	0.62
Ince et al. (2014)\(^\text{104}\)	TAC	96	129	-	61%	60%	0.60
Rucksaken et al. (2017)\(^\text{105}\)	ORM2	70	46	20	92%	74%	-
Rose et al. (2016)\(^\text{106}\)	CEACAM6	41	42	-	87.5%	69%	0.74
Jiao et al. (2014)\(^\text{107}\)	Nucleosides	202 (gallbladder cancer)	203	205	91%	96%	-
Biomarker combinations							
Lumachi et al. (2014)\(^\text{107}\)	CEA + CA19-9 + CYFRA 21-1 + MMP7	24	25	-	92%	96%	-
Table 2. Serum protein biomarkers for pancreatic cancer, 2012–2017.

Author (year)	Biomarker/Combination (serum)	PDAC, number	Benign controls, number	Healthy volunteers, number	Sensitivity	Specificity	Area under the curve
Single biomarkers							
Sogawa et al. (2016)	C4BPA	52	20	40	67%	95%	0.860
Rychlikova et al. (2016)	Osteopontin	64	71	48	-	-	-
Lin et al. (2016)	APOA-I	78	-	36	96%	72.2%	0.880
Lin et al. (2016)	TF	78	-	36	75%	72.8%	0.760
Guo et al. (2016)	Dysbindin	250	80	150	81.9%	84.7%	0.849
Han et al. (2015)	Dickkopf-1	140	-	92	89.3%	79.3%	0.919
Qu et al. (2015)	DCLK1	74	74	-	-	-	0.740
Dong et al. (2015)	Survivin	80	-	80	-	-	-
Gebauer et al. (2014)	EpCAM	66	43	104	66.7%	77.5%	-
Wang et al. (2014)	MIC-1	807	165	500	65.8%	96.4%	0.935
Kendrick et al. (2014)	IGFBP2	84	40	84	22%	95%	0.655
Kendrick et al. (2014)	MSLN	84	40	84	17%	95%	0.668
Kang et al. (2014)	COL6A3	44	46	30	-	-	0.975
Willumsen et al. (2013)	C1M	15	-	33	-	-	0.830
Willumsen et al. (2013)	C3M	15	-	33	-	-	0.880
Willumsen et al. (2013)	C4M	15	-	33	-	-	0.940
Willumsen et al. (2013)	C4M12a1	15	-	33	-	-	0.890
Falco et al. (2013)	BAG3	52	-	44	75%	75%	0.770
Falco et al. (2013)	BAG3	52	17 (chronic pancreatitis)	-	81%	77%	0.810
Chen et al. (2013)	TTR	40	-	40	91%	47%	0.730
Gold et al. (2013)	PAM4	298	-	79	76%	96%	-
Gold et al. (2013)	PAM4	298	120	-	-	-	0.890
Poruk et al. (2013)	OPN	86	48	86	-	-	0.720
Poruk et al. (2013)	TIMP-1	86	48	86	-	-	0.770
Lee et al. (2014)	CA 19-9	41	12	44	80.4%	70%	0.833
Lee et al. (2014)	Human complement factor B (CFB)	41	12	44	73.1%	97.9%	0.958
Mixed cohorts							
Ince et al. (2014)	CEA	96 (41 PDAC +25 BTC)	129	-	42.7%	89.9%	0.713
Ince et al. (2014)	CA19-9	96 (41 PDAC +25 BTC)	129	-	49%	84.5%	0.701
Ince et al. (2014)	VEGFR3	96 (41 PDAC +25 BTC)	129	-	48.4%	82.9%	0.622
Ince et al. (2014)	Total antioxidant capacity	96 (41 PDAC +25 BTC)	129	-	61.1%	60.5%	0.602
Abdel-Razik et al. (2016)	IGF-1	47 (25 PDAC + 18 BTC)	62	-	62%	51%	0.605
Abdel-Razik et al. (2016)	VEGF	47 (25 PDAC + 18 BTC)	62	-	58.3%	57.3%	0.544
Biomarker combinations							
Chen et al. (2013)	TTR + CA19-9	40	-	40	81%	85%	0.910
Lee et al. (2014)	CA19-9 + CFB	41	12	44	90.1%	97.2%	0.986
Author (year)	Biomarker/ Combination (serum)	PDAC, number	Benign controls, number	Healthy volunteers, number	Sensitivity	Specificity	Area under the curve
---------------	--------------------------------	--------------	-------------------------	---------------------------	-------------	------------	---------------------
Sogawa et al. (2016)	C4BPA + CA19-9	52	20	40	86%	80%	0.930
Makawita et al. (2013)	CA19-9 + REG1B	100	-	92	-	-	0.880
Makawita et al. (2013)	CA19-9 + SYCN + REG1B	100	-	92	-	-	0.870
Willumsen et al. (2013)	C1M + C3M + C4M + C4M12a1	15	-	33	-	-	0.990
Shaw et al. (2014)	IL10 + IL6 + PDGF + Ca19-9	84	45 (benign)	-	93%	58%	0.840
Shaw et al. (2014)	IL8 + IL6 + IL-10 + Ca19-9	84	32 (chronic pancreatitis)	-	75%	91%	0.880
Shaw et al. (2014)	IL8 + IL1b + Ca 19-9	127	-	45	94%	100%	0.857
Brand et al. (2011)	Ca-19 + CEA + TIMP-1	173	70	120	71%	89%	-
Capello et al. (2017)	TIMP1 + LG1 + Ca19-9	73	-	60	0.849%	0.633%	0.949
Capello et al. (2017)	TIMP1 + LG1 + Ca19-9	73	74	-	0.452%	0.541%	0.890
Chan et al. (2014)	Ca19-9 + Ca125 + LAMC2	139	65	10	82%	74%	0.870
Makawita et al. (2013)	CA19-9 + REG1B	82	41	92	-	-	0.875
Makawita et al. (2013)	CA19-9 + SYCN + REG1B	82	41	92	-	-	0.873
Makawita et al. (2013)	CA19-9 + AGR2 + REG1B	82	41	92	-	-	0.869

BTC, biliary tract cancer; PDAC, pancreatic ductal adenocarcinoma.

2. Bile and biliary brush biomarkers
Patients with an indeterminate stricture on cross-sectional imaging are typically referred for an ERCP and biliary brushing with or without endobiliary biopsy to obtain tissue for diagnosis, with or without therapeutic stenting. Although these techniques do not compromise resection margins in potentially resectable cases, sensitivity remains low (9–57%) and patients frequently have to undergo multiple procedures to obtain a diagnosis. Bile can be easily obtained at the time of ERCP and, owing to its proximity to the tumour, is a potentially important source of diagnostic biomarkers in these cancers (Table 6). Unfortunately, owing to the invasiveness of ERCP, the role of these biomarkers is limited to diagnosis rather than screening or surveillance in these tumours.

3. Urinary biomarkers
Urine provides a very easy and acceptable source for biomarker analysis. In BTC, a 42-peptide panel (consisting mostly of fragments of interstitial collagens) correctly identified 35 of 42 BTC patients with a sensitivity of 83% and a specificity of 79%. In PDAC, the three-biomarker panel (LYVE-1, REG1A and TFF1) has been validated in a multi-centre cohort of 371 samples. When comparing PDAC stage I–IIA (resectable disease) with healthy urines, the panel achieved AUCs of 0.97 (95% confidence interval of 0.93–1.00). The performance of the urine biomarker panel in discriminating PDAC stage I–IIA was superior to the performance of serum CA19-9 ($P=0.006$) (Table 7).

4. Symptoms and cancer decision support tools
Recently, pre-diagnostic symptom profiles have been investigated as an alternative way of detecting hepato-pancreato-biliary (HPB) cancers at an early stage. It is now recognised that the onset of PDAC and BTC is heralded by a collection of gastrointestinal and constitutional symptoms. Although overlap occurs with other benign and malignant conditions, certain symptoms such as back pain, lethargy and new-onset diabetes have been identified as particularly suggestive of PDAC. Commonly performed blood tests such as liver function tests, glucose and haemoglobin also typically become abnormal in the months preceding diagnosis. Therefore, cancer decision support tools...
Table 3. Genetic and epigenetic alterations in circulating tumour cells in pancreatic ductal adenocarcinoma and biliary tract cancer, 2013–2017.

Author (year)	Target	Biliary tract cancer, number	Pancreatic ductal adenocarcinoma, number	Benign lesions, number	Healthy volunteers, number	Detected	Sensitivity	Specificity	Area under the curve
Ankeny et al. (2016)	K-ras	72	28	-	-	-	75%	96.4%	0.867
Kulemann et al. (2016)	cDNA, K-ras	121	21	-	-	-	-	-	-
Singh et al. (2016)	cDNA, K-ras	141	141	-	-	-	65.3%	61.5%	0.6681
Kinugasa et al. (2015)	K-ras	141	20	-	-	-	62.6%	-	-
Kulemann et al. (2015)	K-ras	11	9	-	-	-	75%	-	-
Zhang et al. (2015)	cDNA, CD45, CK1-₀, CEP8 ₂	22	11	6	30	Validation cohort:	71%	68.2%	-
Wu et al. (2014)	K-ras	36	-	-	-	-	0	0	-
Bidard et al. (2013)	CD45, CTC	79	-	-	-	-	11%	-	-
Bobek et al. (2015)	DAPI, CD45	24	-	-	-	-	-	-	-
Rhim et al. (2014)	DAPI, CD45, CEA, Vimentin	21	19	11	8	Validation cohort:	78%	-	-
Ivanović-Caron et al. (2013)	CTC	40	-	-	-	-	-	-	-
Catebacci et al. (2015)	CTC (in portal venous blood at EUS)	14	-	-	-	-	-	-	-
Earl et al. (2015)	Circulating epithelial cells	35	-	-	-	-	100%	-	0.94
Cauley et al. (2015)	DAPI, CD45	-	-	-	-	-	-	-	-
Kamande et al. (2013)	CK	-	-	-	-	-	-	-	-
Table 4. Genetic and epigenetic alterations in circulating cell-free DNA pancreatic ductal adenocarcinoma and biliary tract cancer, 2013–2017.

Author (year)	Target	PDAC or BTC	Cancer, number	Benign lesions, number	Healthy volunteers, number	Detected	Sensitivity	Specificity
Takai et al. (2016)	K-ras	PDAC	107 (non-operable)	-	-	59%	-	-
Takai et al. (2015)	cfDNA	PDAC	48	-	-	29%	-	-
Hadano et al. (2016)	K-ras	PDAC	105	-	20	31%	-	-
Zill et al. (2015)	K-ras, TP53, APC, FBXW7, SMAD4	PDAC	26	-	-	92.3%	100%	
Earl et al. (2015)	K-ras	PDAC	31	-	-	26%	-	-
Kinusaga et al. (2015)	G12V, G12D, and G12R in codon 12 of K-ras gene	PDAC	141	20	20	62%	-	-
Sausen et al. (2015)	cfDNA	PDAC	77	-	-	43%	-	-
Wu et al. (2014)	K-ras	PDAC	24	-	25	72%	-	-

BTC, biliary tract cancer; PDAC, pancreatic ductal adenocarcinoma.

Table 5. Epigenetics: circulating non-coding RNA and DNA methylation markers in pancreatic ductal adenocarcinoma/biliary tract cancer, 2013–2017.

Author (year)	MicroRNA	Biliary tract cancer, number	Pancreatic ductal adenocarcinoma, number	Benign lesions, number	Healthy volunteers, number	Sensitivity	Specificity	Area under the curve												
Kishimoto et al. (2013)	MiR-21 (†)	94	94	-	23	50	85%	72.3%	100%	91.3%	0.93	0.83								
Wang et al. (2013)	miR-27a-3p + CA19-9(†)	-	129	103	60	85.3%	81.6%	0.886												
Kawaguchi et al. (2013)	miR-221 (†), miR-375 (†)	-	47	-	30	-	-	0.762												
Zhao et al. (2013)	miR-192 (†)	-	70	-	40	76%	55%	0.63												
Carleson et al. (2013)	MiR-375 (†)	-	48	47	-	-	-	0.72												
Que et al. (2013)	miR-17-5p (†), miR-21 (†)	-	22	12	8	-	-	0.887	0.897											
Schultz et al. (2014)	Index I + CA19-9, Index II + CA19-9	-	409	25	312	85%	85%	88%	93%	92%										
Silakot et al. (2014)	MiR-192 (†)	11	-	-	9	74%	72%	0.803												
Lin et al. (2015)	MiR-492 (†), MiR-663a (†)	-	49	-	27	75%	85%	70%	0.787	0.870										
Chen et al. (2014)	miR-182 (†)	109	38	50	64.1%	82.6%	0.775													
Wang et al. (2015)	MiR-150 (†)	15	-	-	15	80%	58%	0.764												
Ganepola et al. (2015)	miR-22 (†), miR-642b (†), miR-885-5p (†)	-	11	-	11	91%	91%	0.970												
Author (year)	MicroRNA	Biliary tract cancer, number	Pancreatic ductal adenocarcinoma, number	Benign lesions, number	Healthy volunteers, number	Sensitivity	Specificity	Area under the curve												
---------------	----------	-----------------------------	--	-----------------------	----------------------------	-------------	-------------	----------------------												
Voigtlander et al. (2015) (serum)	MiR-1281 (↑), MiR-126 (↑), MiR-26a (↑), MiR-30b (↑), MiR-122 (↑)	31	-	40	-	55%	68%	52%	52%	32%	90%	93%	93%	88%	90%	0.83	0.87	0.78	0.78	0.65
Voigtlander et al. (2015) (bile)	miR-412 (↑), miR-640 (↑), miR-1537 (↑), miR-3189 (↑)	31	-	53	-	50%	50%	67%	67%	-	89%	92%	90%	89%	-	0.81	0.81	0.78	0.78	0.80
Abue et al. (2015)	miR-21 (↑), miR-483-3p (↑)	-	32	12	30	-	-	-	-	-	0.790	0.754								
Salter et al. (2015)	miR-196a (↑), miR-196b (↑)	-	19	10	10	100%	90%	-	-	0.99										
Kojima et al. (2015)	miR-6075, miR-4294, miR-8880-5p, miR-6799-5p, miR-125a-3p, miR-4530, miR-6836-3p, miR-4476	98	100	21	150	80.3%	97.6%	0.953												
Xu et al. (2015)	miR-486-5p (↑), miR-938 (↑)	-	156	142	65	-	-	-	-	0.861	0.693									
Madhaven et al. (2015)	PaCIC + miRNA serum-exosome marker panel	-	-	-	-	100%	80%	-	-	-										
Komatsu et al. (2015)	miR-223 (↑)	-	71	-	67	62%	94.1%	0.834												
Alemar et al. (2016)	MiR-21 (↑), MiR-34a (↑)	-	24	-	10	-	-	-	-	0.889	0.865									
Wu et al. (2016)	MiR-150 (↓)	30	30	28	50	-	-	-	-	-										
Bernuzzi et al. (2016)	MiR-483-5p (↑), MiR-194 (↑)	40	40	70	40	-	-	-	-	0.77	0.74									
Kim et al. (2016)	mRNA – CDH3 (↑), mRNA – IGF2BP3 (↑), mRNA – HOXB7 (↑), mRNA – BIRC5 (↑)	-	21	14	-	57.1%	76.2%	71.4%	76.2%	64.3%	100%	57.1%	64.3%	0.776	0.476	0.898	0.818			
Duell et al. (2017)	MiR-10a (↑), MiR-10b (↑), MiR-21-5p (↑), MiR-30c (↑), MiR-155 (↑), MiR-212 (↑)	-	225	-	225	-	-	-	-	0.66	0.68	0.64	0.71	0.64	0.64					
DNA hypermethylation	Branchi et al. (2016)	SHOX2/SEPT9	20	-	-	100	0.45%	0.99%	0.752											
Table 6. Bile and biliary brush biomarkers for pancreatic and biliary tract cancer.

Author (year)	Biomarker	Pancreatic ductal adenocarcinoma, number	Biliary tract cancer, number	Benign lesions, number	Healthy controls, number	Bile or biliary brush	Sensitivity	Specificity	Area under the curve
Single biomarkers									
Dhar et al. (2013)	M2-PK	-	88	79	17	Bile	90.3%	84.3%	-
Navaneethan et al. (2015)	M2-PK	-	-	-	-	Bile	52.9%	94.1%	0.77
Keane (2017)	MCM5	24	17	47		Biliary brush	55.6%	77.8%	0.79
Danese et al. (2014)	MUC5AC	-	20	20	-	Serum, Bile	-	-	0.94 / 0.99
Farina et al. (2014)	CEAM6	23	6	12	-	Bile	93%	83%	0.92
Budzynska et al. (2013)	NGAL	6	16	18	-	Bile	77%	72%	0.74
Jiao et al. (2014)	Nucleosides	202 (gallbladder cancer)	203	205	Bile	95.3%	96.4%	-	
Ince et al. (2014)	CE	41	25	129	-	Bile	57.3%	68.2%	0.516
Ince et al. (2014)	CA 19-9	41	25	129	-	Bile	74.0%	34.1%	0.616
Ince et al. (2014)	VEGFR3	41	25	129	-	Bile	56.2%	79.1%	0.663
Ince et al. (2014)	Total antioxidant capacity	41	25	129	-	Bile	65.6%	50.4%	0.581
Abdel-Razik et al. (2016)	IGF-1	25	18	62	-	Bile	91.4%	89.5%	0.943
Abdel-Razik et al. (2016)	VEGF	25	18	62	-	Bile	90.3%	84.9%	0.915
Kim et al. (2016)	mRNA – CDH3 (†), mRNA – IGF2BP3 (†), mRNA – HOXB7 (†), mRNA – BIRC5 (†)	-	21	14	-	Biliary brush	57.1%	76.2%	0.776

Table 7. Summary of urine protein biomarkers for pancreatic and biliary tract cancer, 2013–2017.

Author (year)	Biomarker/Combination (urine)	Pancreatic ductal adenocarcinoma, number	Biliary tract cancer, number	Benign cancer/Chronic pancreatitis, number	Healthy volunteers, number	Sensitivity	Specificity	Area under the curve
Single biomarker								
Roy et al. (2014)	MMP2	51	-	-	60	70%	85%	-
Roy et al. (2014)	TIMP-1	51	-	-	60	90%	70%	-
Jiao et al. (2014)	Nucleosides	-	202 (gallbladder cancer)	203	205	89.4%	97.1%	-
Metzger et al. (2013)	Urine Proteomic analysis	-	42	81	-	83%	79%	0.87
Biomarker combinations								
Radon et al. (2015)	LYVE-1 + REG1A + TFF1	192	-	-	87	-	-	0.89
have been produced from combinations of symptoms and risk factors. In the UK, they have been introduced into general practices in 15 cancer networks to date, and their utility is currently being audited. Modification to existing tools to enhance their diagnostic accuracy can be expected in the future.

Endoscopy

1. **Endoscopic ultrasonography**

 If there is a mass lesion on cross-sectional imaging, endoscopic ultrasonography with fine-needle aspiration (EUS-FNA) provides an alternative method for visualising and sampling the extra-hepatic biliary tree, pancreas, gallbladder or peri-hilar lymph nodes. EUS-FNA has a diagnostic accuracy for PDAC of between 65% and 96%. In BTC, a single-centre study reported a sensitivity of 73%, which was significantly better in distal compared with proximal tumours (81% versus 59% respectively, \(P=0.04\)). Recently, developed fine core biopsy needles appear to have improved diagnostic accuracy over traditional FNA needles, but randomised trials are awaited. Rapid onsite examination by a cytopathologist is used in some centres, particularly in North America, and has been shown to improve the yield of EUS-FNA in individual centres but this trend has not been borne out in recent randomised controlled trials.

 To improve the diagnostic accuracy of EUS, it can also be combined with novel adjuncts such as contrast agents (SonoVue®), transient elastography (TE) or confocal laser endomicroscopy (CLE). TE allows the measurement of the tissue firmness, which tends to be increased in malignant tissue. In a recent single-centre study from the UK, quantitative strain measurements were found to have high sensitivity but low specificity for the detection of PDAC. The technology to perform the techniques is available on most modern EUS machines and adds little time to the overall procedure time. The technique can be performed equally well by endosonographers with limited experience and is particularly advantageous in cases where the diagnosis remains uncertain after standard EUS has been performed. Contrast-enhanced EUS is performed with agents such as SonoVue and allows visualisation of the early arterial phase and late parenchymal phase enhancement of the pancreas. Pancreatic tumours are generally hypovascular compared with the surrounding parenchyma. Dynamic contrast EUS is a relatively novel method that allows the non-invasive quantification of the tumour perfusion compared with the pancreatic parenchyma by using software that is now built into a number of EUS scanners. The use of this technology is evolving but is expected to be most applicable when predicting tumour response to chemotherapeutic agents, particularly new drugs against vascular angioneogenesis.

 Recently, a needle-based confocal endomicroscope has also been developed which can be passed through a 19G FNA needle to assess indeterminate masses, cysts or lymph nodes. Malignancy in the hepatobiliary tract is identified by the presence of irregular vessels, vascular leakage and large dark clumps (Figure 1). In a recent study of 25 patients with indeterminate pancreatic masses referred for EUS-FNA, needle-based CLE was shown to be a safe and feasible technique.

2. **Endoscopic retrograde cholangiopancreatography**

 ERCP is typically undertaken when imaging demonstrates an indeterminate biliary stricture and tissue acquisition is required for cytological or histological assessment. Biliary brush cytology and endobiliary biopsy have a sensitivity for malignancy of 9–57% and have been superseded by the SpyGlass DS system enables intrabiliary biopsies under direct vision via small disposable forceps. In a recent systematic review, the sensitivity and specificity of cholangioscopy-guided biopsies in the diagnosis of malignant biliary strictures were 60.1% and 98.0%, respectively. Higher sensitivities are observed for intrinsic biliary malignancy compared with extrinsic compressing tumours. Several techniques have been employed to augment the visualised mucosa during cholangioscopy, including chromendoscopy with methylene blue, narrow-band imaging and autofluorescence.

 Poor diagnostic accuracy in biliary brush and endobiliary samples has been attributed to their being non-targeted samples obtained with only fluoroscopic guidance. The single-operator cholangioscopy system (SpyGlass, Boston Scientific Corporation, Natick, MA, USA) introduced in 2006 and now superseded by the SpyGlass DS system enables intrabiliary biopsies under direct vision via small disposable forceps. During ERCP, a “CholangioFlex” confocal probe (Mauna Kea Technologies, Paris, France) can be placed down the working channel of a cholangioscope or duodenoscope to obtain real-time CLE images, which are akin to standard histology. If the images obtained from a point on the biliary mucosa contain dark areas, this is highly suggestive of malignancy. The diagnostic accuracy of probe-based CLE was recently validated in
a prospective multi-centre international study with 112 patients (71 with malignant lesions). Tissue sampling alone had a sensitivity, specificity and diagnostic accuracy of 56%, 100% and 72%, respectively. In comparison, ERCP with probe-based CLE had a sensitivity, specificity and diagnostic accuracy of 89%, 71% and 82%, respectively. Diagnostic accuracy increased to 88% when probe-based CLE and tissue sampling results were combined\(^\text{36}\). CLE is also feasible in the pancreatic duct during pancreate- coscopy but, owing to concerns over pancreatitis, is rarely used. In a case report by Meining et al., the presence of a main duct-intraductal papillary mucinous neoplasia was confirmed by clear views of typical finger-like projections\(^\text{62}\). Intraductal ultrasound in small studies has also been shown to have a diagnostic accuracy of up to 90%\(^\text{31}\).

Conclusions

Currently, the most widely used tumour marker in pancreato-ciliary malignancy is CA19-9. However, its use is limited by its elevation in a number of other benign and malignant conditions. Furthermore, it is not produced in approximately 7% of the population who are Lewis antigen–negative and is often undetectable when tumours are small. Over the last few years, a number of very promising biomarker panels have been identified which can detect tumours at an early stage when curative intervention could be possible. These markers are subject to ongoing validation studies but appear likely to be implemented into screening programmes, particularly for high-risk groups, in the near future.

Novel endoscopic techniques such as per-oral cholangioscopy and confocal endomicroscopy can enhance the diagnostic accuracy of standard techniques and are increasingly available in large-volume centres worldwide.

Abbreviations

AUC, area under the curve; BTC, biliary tract cancer; CA, carbohydrate antigen; CEA, carcinoembryonic antigen; CLE, confocal laser endomicroscopy; ERCP, endoscopic retrograde cholangiopancreatography; EUS, endoscopic ultrasound; FNA, fine-needle aspiration; HPB, hepatopancreato-biliary; PDAC, pancreatic ductal adenocarcinoma; TE, transient elastography.

Competing interests

The authors declare that they have no competing interests.

Grant information

SPP is supported in part by National Institutes of Health grant P01CA8420. Part of the work was undertaken at University College London Hospitals/University College London, which received a portion of funding from the Department of Health’s National Institute for Health Research Biomedical Research Centres funding scheme.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

1. CRUK: Pancreatic cancer statistics. 2013. Reference Source
2. Khan SA, Toleada MR, Taylor-Robinson SD: Epidemiology, risk factors, and pathogenesis of cholangiocarcinoma. NPB (Oxford). 2008; 10(2): 77–82. PubMed Abstract | Publisher Full Text | Free Full Text
3. CRUK: Cancer Research UK Cancer Stats Incidence 2008. 2011. Reference Source
4. Coupland VH, Kocher HM, Berry DP, et al.: Incidence and survival for hepatic, pancreatic and biliary cancers in England between 1998 and 2007. Cancer Epidemiol. 2012; 36(4): e230–14. PubMed Abstract | Publisher Full Text
5. Altekruse SF, Kosary CL, Krapcho M, et al.: SEER Cancer Statistics, Review, 1975–2007. National Cancer Institute Bethesda, MD based on National 2009 SEER data submission, posted to the SEER web site, 2010. 2010. Reference Source
6. Curado MP, Edwards B, Shin HR, et al.: Cancer Incidence in Five Continents. IARC Scientific Publications No 160, 2007. 9. Reference Source
7. Lichtenstein P, Holm NV, Verkasalo PK, et al.: Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000; 343(2): 78–85. PubMed Abstract | Publisher Full Text
8. Hippsley-Cox J, Coupland C: Identifying patients with suspected pancreatic cancer in primary care: derivation and validation of an algorithm. Br J Gen Pract. 2012; 62(594): e38–40. PubMed Abstract | Publisher Full Text | Free Full Text
9. Stapley S, Peters TJ, Neal RD, et al.: The risk of pancreatic cancer in symptomatic patients in primary care: a large case-control study using electronic records. Br J Cancer. 2012; 106(12): 1940–4. PubMed Abstract | Publisher Full Text | Free Full Text
10. Silverman DT, Dunn JA, Hoover RN, et al.: Cigarette smoking and pancreas cancer: a case-control study based on direct interviews. J Natl Cancer Inst. 1994; 86(20): 1510–6. PubMed Abstract | Publisher Full Text
11. Fuchs CS, Colditz GA, Stampfer MJ, et al.: A prospective study of cigarette smoking and the risk of pancreatic cancer. Arch Intern Med. 1996; 156(19): 2255–60. PubMed Abstract | Publisher Full Text
12. Muscat JE, Stellman SD, Hoffmann D, et al.: Smoking and pancreatic cancer in men and women. Cancer Epidemiol Biomarkers Prev. 1997; 6(1): 15–9. PubMed Abstract
13. Bonelli L, Aste H, Bovo P, et al.: Exocrine pancreatic cancer, cigarette smoking, and diabetes mellitus: a case-control study in northern Italy. Pancreas. 2003; 27(2): 143–9. PubMed Abstract | Publisher Full Text
14. Larsson SC, Perment J, Håkansson N, et al.: Overall obesity, abdominal adiposity, diabetes and cigarette smoking in relation to the risk of pancreatic cancer in two Swedish population-based cohorts. Br J Cancer. 2005; 93(11): 1319–5. PubMed Abstract | Publisher Full Text | Free Full Text
15. Hassan MM, Bondy ML, Wolff RA, et al.: Risk factors for pancreatic cancer: case-control study. Am J Gastroenterol. 2007; 102(12): 2696–707. PubMed Abstract | Publisher Full Text | Free Full Text
16. Gullo L, Tomassetti P, Miglioli M, et al.: Do early symptoms of pancreatic cancer exist that can allow an earlier diagnosis? Pancreas. 2001; 22(2): 210–3. PubMed Abstract | Publisher Full Text
17. Ferlay JS, Bray F, Forman D, et al.: GLOBOCAN 2008 v2.0. Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10. Lyon, France: International Agency for Research on Cancer; 2010. accessed on 03/08/2013. 2008. Reference Source
18. Shalib Y, El-Senag HB: The epidemiology of cholangiocarcinoma. Semin Liver Dis. 2004; 24(2): 115–25. PubMed Abstract | Publisher Full Text
19. Claessen MM, Vleggaar FP, Tylgat KM, et al.: High lifetime risk of cancer in...
primary sclerosing cholangitis. J Hepatol. 2009; 50(1): 158–64.
Published Abstract | Publisher Full Text | Free Full Text

20. Tyson GL, El-Serag HB: Risk factors for cholangiocarcinoma. Hepatology. 2011; 54(1): 173–84.
Published Abstract | Publisher Full Text | Free Full Text

21. Chapman RW: Risk factors for biliary tract carcinogenesis. Ann Oncol. 1999; 10(Suppl 4): 308–11.
Published Abstract | Publisher Full Text

22. de Groen PC, Gores GJ, LaRusso NF, et al.: Biliary tract cancers. N Engl J Med. 1999; 341(18): 1368–78.
Published Abstract | Publisher Full Text

23. Saluja SS, Sharma R, Pal S, et al.: Differentiation between benign and malignant hilar obstructions using laboratory and radiological investigations: a prospective study. HPB (Oxford). 2007; 9(5): 373–82.
Published Abstract | Publisher Full Text | Free Full Text

24. Fernandez-Esparrrach G, Gine A, Sanchez M, et al.: Comparison of endoscopic ultrasonography and magnetic resonance cholangiopancreatography in the diagnosis of pancreatobiliary diseases: a prospective study. Am J Gastroenterol. 2007; 102(6): 1632–9.
Published Abstract | Publisher Full Text

25. Sai JK, Suyama M, Kubokawa Y, et al.: Early detection of extrapancreatic bile duct carcinomas in the noncirrhotic stage by using MRCP followed by EUS. Gastrointest Endosc. 2009; 70(1): 29–36.
Published Abstract | Publisher Full Text

26. Lee JY: Multidetector-row CT of malignant biliary obstruction. Korean J Gastroenterol. 2006; 44(4): 247–55.
Published Abstract | Publisher Full Text

27. Kalaitzakis E, Levy M, Kamisawa T, et al.: Endoscopic retrograde cholangiopancreatography does not reliably distinguish IgG4-associated cholangitis from primary sclerosing cholangitis or cholangiocarcinoma. Clin Gastroenterol Hepatol. 2011; 9(9): 800–803.e2.
Published Abstract | Publisher Full Text | Free Full Text

28. De Bello M, Sherman S, Fogel EL, et al.: Tissue sampling at ERCP in suspected malignant biliary strictures (Part 1). Gastrointest Endosc. 2002; 56(4): 552–61.
Published Abstract | Publisher Full Text

29. Harewood GC, Baron TH, Stadlin LM, et al.: Prospective, blinded assessment of factors influencing the accuracy of biliary cytology Interpretation. Am J Gastroenterol. 2004; 99(9): 1464–9.
Published Abstract | Publisher Full Text

30. Moreno Luna LE, Kipp B, Halling KC, et al.: Advanced cytologic techniques for the detection of malignant pancreatobiliary strictures. Gastroenterol. 2006; 131(4): 1064–72.
Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

31. Klein AP, Lindstrom S, Mendelsohn JB, et al.: An absolute risk model to identify individuals at elevated risk for pancreatic cancer in the general population. PLoS One. 2013; 8(9): e72311.
Published Abstract | Publisher Full Text

32. Ariyama J, Suyama M, Ogawa K, et al.: [Screening of pancreatic neoplasms and the diagnostic rate of small pancreatic neoplasms]. Nippon Rinsho. 1986; 44(8): 1729–34.
Published Abstract

33. Locker GY, Hamilton S, Harris J, et al.: ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol. 2006; 24(33): 5313–27.
Published Abstract | Publisher Full Text

34. Bonney GK, Craven RA, Prasad R, et al.: Circulating markers of biliary malignancy: opportunities or protest? Lancet Oncol. 2008; 9(8): 149–58.
Published Abstract | Publisher Full Text

35. Hotai Khan K, Tanner P, Alhath L, et al.: Comparison of three immunoassays for CA 19-9. Clin Chim Acta. 2009; 400(1–2): 123–7.
Published Abstract | Publisher Full Text

36. Abi-Rached B, Neugut AI: Diagnostic and management issues in gallbladder carcinoma. Oncolology (Williston Park). 1995; 9(1): 19–24; discussion 24, 27, 30.
Published Abstract

37. Lazarids KN, Gores GJ: Primary sclerosing cholangitis and cholangiocarcinoma. Semin Liver Dis. 2006; 26(1): 42–51.
Published Abstract | Publisher Full Text

38. Khan SA, Davidson BR, Goldin RD, et al.: Guidelines for the diagnosis and treatment of cholangiocarcinoma: an update. Gut. 2012; 61(12): 1657–69.
Published Abstract | Publisher Full Text

39. Agarwal B, Correa AM, Ho L: Survival in pancreatic carcinoma based on tumor size. Pancreas. 2008; 36(1): e15–20.
Published Abstract | Publisher Full Text

40. Malgerud L, Lindberg J, Wirta V, et al.: Bioinformatory-assisted analysis of next-generation sequencing data for precision medicine in pancreatic cancer. Mol Oncol. 2017.
Published Abstract | Publisher Full Text | F1000 Recommendation

41. Lindahl A, Heuchel R, Forsheid J, et al.: Discrimination of pancreatic cancer and pancreatitis by LC-MS metabolomics. Metabolomics. 2017; 13(5): 61.
Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

42. Metzger J, Niem AA, Plentz RR, et al.: Urine proteomic analysis differentiates cholangiocarcinoma from primary sclerosing cholangitis and other benign biliary disorders. Gut. 2018; 67(3): 593–603.
Published Abstract | Publisher Full Text | Free Full Text

43. Radon TP, Massat NJ, Jones R, et al.: Identification of a Three-Biomarker Panel in Urine for Early Detection of Pancreatic Adenocarcinoma. Clin Cancer Res. 2015; 21(15): 3613–21.
Published Abstract | Publisher Full Text | Free Full Text

44. Holly EA, Challa I, Bracci PM, et al.: Signs and symptoms of pancreatic cancer: a population-based case-control study in the San Francisco Bay area. Clin Gastroenterol Hepatol. 2004; 2(6): 510–7.
Published Abstract | Publisher Full Text

45. Keane MG, Bramis K, Penzars SP, et al.: Systematic review of novel ablative methods in locally advanced pancreatic cancer. World J Gastroenterol. 2014; 20(9): 2267–78.
Published Abstract | Publisher Full Text | Free Full Text

46. Keane MG, Horstall L, Rait G, et al.: A case-control study comparing the incidence of early symptoms in pancreatic and biliary tract cancer. BMJ Open. 2014; 4(11): e005720.
Published Abstract | Publisher Full Text | Free Full Text

47. Fuccio L, Hassan C, Laterza L, et al.: The role of K-ras gene mutation analysis in EUS-guided FNA cytology specimens for the differential diagnosis of pancreatic solid masses: a meta-analysis of prospective studies. Gastroenterology. 2013; 145(1): 596–608.
Published Abstract | Publisher Full Text

48. Wang J, Wu X, Yin P, et al.: Comparing endoscopic ultrasound (EUS)-guided fine needle aspiration (FNA) versus fine needle biopsy (FNB) in the diagnosis of solid lesions: study protocol for a randomized controlled trial. Trials. 2016; 17: 198.
Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

49. Klapman JB, Logroño R, Dye CE, et al.: Clinical impact of on-site cytopathology interpretation on endoscopic ultrasound-guided fine needle aspiration. Am J Gastroenterol. 2003; 98(6): 1289–94.
Published Abstract | Publisher Full Text

50. van Riet PA, Cahan OL, Poole JW, et al.: Mapping international practice patterns in EUS-guided tissue sampling: outcome of a global survey. Endosc Int Open. 2016; 4(3): E360–70.
Published Abstract | Publisher Full Text | Free Full Text

51. Wei S, Mullady D, Early DG, et al.: The clinical impact of immediate on-site cytology evaluation during endoscopic ultrasound-guided fine needle aspiration of pancreatic masses: a prospective multicenter randomized controlled trial. Am J Gastroenterol. 2015; 110(10): 1429–39.
Published Abstract | Publisher Full Text

52. Dawas MF, Taha H, Leeds JS, et al.: Diagnostic accuracy of quantitative EUS elastography for discriminating malignant from benign solid pancreatic masses: a prospective, single-center study. Gastrointest Endosc. 2012; 76(6): 953–61.
Published Abstract | Publisher Full Text

53. Soares JB, Iglesias-Garcia J, Goncalves B, et al.: Interobserver agreement of EUS elastography in the evaluation of solid pancreatic lesions. Endosc Ultrasound. 2015; 4(3): 244–9.
Published Abstract | Publisher Full Text | Free Full Text

54. Fusario P, Kypraisos D, Mancino MG, et al.: Interobserver agreement in contrast harmonic endoscopic ultrasound. J Gastroenterol Hepatol. 2012; 27(6): 1063–9.
Published Abstract | Publisher Full Text

55. Iglesias-Garcia J, Lindkvist B, Larino-Noia J, et al.: Differential diagnosis of solid pancreatic masses: contrast-enhanced harmonic (CEH-EUS), quantitative-elastography (QE-EUS), or both? A United European Gastroenterol J. 2017; 8(2): 236–46.
Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

56. Carpentier CF: Contrast-enhanced low mechanical index endoscopic ultrasound (CELMH-EUS). Endoscopy. 2009; 41(Suppl 2): E43–4.
Published Abstract | Publisher Full Text | Free Full Text

57. Dietrich CF, Braden B, Hocke M, et al.: Improved characterisation of solitary solid pancreatic tumours using contrast enhanced transabdominal ultrasound. J Cancer Res Clin Oncol. 2008; 134(6): 635–43.
Published Abstract | Publisher Full Text
71. Navaneethan U, Hasan MK, Lourdusamy V, et al. Diagnosis of bile duct strictures by using narrow-band imaging (with videos). Gastrointest Endosc. 2014; 79(4): 805–14. PubMed Abstract | Publisher Full Text | F1000 Recommendation
72. Chen YK, Parsi MA, Binnemeyer KF, et al. Single-operator cholangioscopy in patients requiring evaluation of bile duct disease or therapy of bile stones (with videos). Gastrointest Endosc. 2011; 74(4): 605–14. PubMed Abstract | Publisher Full Text | F1000 Recommendation
73. Langhi A, Winman I. Endoscopic direct cholangioscopy by using an ultra-slim upper endoscope: a feasibility study. Gastrointest Endosc. 2006; 63(6): 853–7. PubMed Abstract | Publisher Full Text | F1000 Recommendation
74. Hoffman A, Kiesslich R, Bitterli E, et al. Methylene blue-augmented cholangioscopy in patients with biliary strictures: feasibility and outcome analysis. Endoscopy. 2008; 40(7): 563–71. PubMed Abstract | Publisher Full Text
75. Hoffmann A, Kiesslich R, Moench C, et al. Methylene blue-augmented cholangioscopy unveils the endoscopic features of ischemic-type biliary lesions after liver transplantation. Gastrointest Endosc. 2007; 66(6): 1052–8. PubMed Abstract | Publisher Full Text
76. Ito T, Solari A, Itoke A, et al. Peroral cholangioscopic diagnosis of biliary-tract diseases by using narrow-band imaging (with videos). Gastrointest Endosc. 2007; 66(4): 730–6. PubMed Abstract | Publisher Full Text
77. Lu X, Ito T, Kubota K. Cholangioscopy by using narrow-band imaging and transpapillary therapy for mucin-producing bile duct tumor. Clin Gastroenterol Hepatol. 2009; 7(6): e34–5. PubMed Abstract | Publisher Full Text
78. Miering A, Frimerger E, Becker V, et al. Detection of cholangiocarcinoma in vivo using miniprobe-based confocal fluorescence microscopy. Clin Gastroenterol Hepatol. 2009; 7(6): 1057–60. PubMed Abstract | Publisher Full Text
79. Giovannini M, Bories E, Monges G, et al. Results of a phase I/I study on intraductal confocal microscopy (IDCM) in patients with common bile duct (CBD) stenosis. Surg Endosc. 2011; 25(7): 2247–53. PubMed Abstract | Publisher Full Text
80. Silvka A, Gan I, Jamadar P, et al. Validation of the diagnostic accuracy of probe-based confocal laser endomicroscopy for the characterization of indeterminate biliary strictures: results of a prospective multicenter international study. Gastrointest Endosc. 2015; 81(2): 282–90. PubMed Abstract | Publisher Full Text
81. Meiring A, Phillips V, Gaa J, et al. Pancreaticobiliary compartmentalisation by confocal laser endomicroscopy: a prospective single-center study. Gastrointest Endosc. 2009; 69(6): 1178–80. PubMed Abstract | Publisher Full Text
82. Meiring A, Phillips V, Gaa J, et al. Pancreaticobiliary compartmentalisation by confocal laser endomicroscopy: a prospective single-center study. Gastrointest Endosc. 2009; 69(6): 1178–80. PubMed Abstract | Publisher Full Text
103. Dong H, Chum D, Wang Y, et al.: Survivin expression and serum levels in pancreatic cancer. World J Surg Oncol. 2015; 13: 189. PubMed Abstract | Publisher Full Text | Free Full Text

104. Geurtskl F, Struck T, Tachefy M, et al.: Serum EpCAM expression in pancreatic cancer. Anticancer Res. 2014; 34(9): 4741-6. PubMed Abstract

105. Wang X, Li Y, Tian H, et al.: Macrophage inhibitory cytokine 1 (MIC-1/GDF15) as a novel diagnostic serum biomarker in pancreatic ductal adenocarcinoma. BMC Cancer. 2014; 14: 578. PubMed Abstract | Publisher Full Text | Free Full Text

106. Kendrick ZW, Firpo RC, et al.: Serum GTF2P2 and MSLN as diagnostic and prognostic biomarkers for pancreatic cancer. HPB (Oxford). 2014; 16(7): 670-6. PubMed Abstract | Publisher Full Text | Free Full Text

107. Kang CY, Wang J, Axel-House D, et al.: Clinical significance of serum COL6A3 in pancreatic ductal adenocarcinoma. J Gastrointest Surg. 2014; 18(1): 7-15. PubMed Abstract | Publisher Full Text | Free Full Text

108. Wiklund S, Bager CL, Leeming DJ, et al.: Extracellular matrix specific protein fingerprints measured in serum can separate cancer patients from healthy controls. BMC Cancer. 2013; 13: 554. PubMed Abstract | Publisher Full Text | Free Full Text

109. Falco A, Rosati A, Festa M, et al.: Identification and verification of transthyretin as a novel diagnostic serum biomarker for pancreatic adenocarcinomam. Am J Gastroenterol. 2013; 108(7): 1178-80. PubMed Abstract | Publisher Full Text | Free Full Text

110. Chen J, Chen L, Xia YL, et al.: Identification and verification of transhyretin as a potential biomarker for pancreatic ductal adenocarcinoma. J Cancer Res Clin Oncol. 2013; 139(7): 1117-27. PubMed Abstract | Publisher Full Text | Free Full Text

111. Gold DV, Gaedcke J, Ghadimi BM, et al.: PAM4 enzyme immunoassay alone and in combination with CA 19-9 for the detection of pancreatic adenocarcinoma. Cancer. 2013; 119(3): 522-8. PubMed Abstract | Publisher Full Text | Free Full Text

112. Poruk KE, Firpo MA, Scale CL, et al.: Serum osteopontin and tissue inhibitor of metalloproteinase 1 as diagnostic and prognostic biomarkers for pancreatic adenocarcinoma. Pancreas. 2013; 42(2): 193-7. PubMed Abstract | Publisher Full Text | Free Full Text

113. Lee MJ, Na K, Jeong SK, et al.: Serum levels of human serum haptoglobin as diagnostic and prognostic biomarkers for pancreatic cancer. J Proteome Res. 2014; 13(11): 4878-88. PubMed Abstract | Publisher Full Text

114. Abdel-Razik A, ElEmary Y, Hanany EE, et al.: Insulin-Like Growth Factor-1 and Vascular Endothelial Growth Factor in Malignant and Benign Biliary Obstructions. Am J Med Sci. 2016; 351(3): 259-64. PubMed Abstract | Publisher Full Text | F1000 Recommendation

115. Makweita S, Dimitromanolakis A, Soosapalin A, et al.: Validation of four candidate tumor markers that improve the performance of CA19.9. BMC Cancer. 2013; 13: 404. PubMed Abstract | Publisher Full Text | Free Full Text

116. Shaw VE, Lane B, Jenkinson C, et al.: Serum cytokine biomarker panels for discriminating pancreatic cancer from benign pancreatic disease. Mol Cancer. 2014; 13: 114. PubMed Abstract | Publisher Full Text | Free Full Text

117. Brandt RE, Nolen BM, Zah HJ, et al.: Serum biomarker panels for the detection of pancreatic cancer. Clin Cancer Res. 2011; 17(4): 805-16. PubMed Abstract | Publisher Full Text | Free Full Text

118. Capello M, Bantis LE, Scalo G, et al.: Sequential Validation of Blood-Based Protein Biomarker Candidates for Early-Stage Pancreatic Cancer. J Natl Cancer Inst. 2017; 109(4): dzw066. PubMed Abstract | Publisher Full Text | Free Full Text

119. Chan A, Prassas I, Dimitromanolakis A, et al.: Validation of biomarkers that complement CA19.9 in detecting early pancreatic cancer. Clin Cancer Res. 2014; 20(22): 5787-95. PubMed Abstract | Publisher Full Text | Free Full Text

120. Anker JS, Court CM, Hou S, et al.: Circulating tumour cells as a biomarker for diagnosis and staging in pancreatic cancer. Br J Cancer. 2016; 114(12): 1716-7. PubMed Abstract | Publisher Full Text | Free Full Text

121. Kulemann B, Pitman MB, Liss AS, et al.: Circulating tumor cells found in patients with localized and advanced pancreatic cancer. Pancreas. 2015; 44(4): 547-50. PubMed Abstract | Publisher Full Text | Free Full Text

122. Yang Y, Wang F, Ning N, et al.: Patterns of circulating tumor cells identified by CEP8, CK and CD45 in pancreatic cancer. Int J Cancer. 2015; 136(5): 1228-33. PubMed Abstract | Publisher Full Text

123. Wu J, Zhou Y, Zhang Y, et al.: Co-amplification at lower denaturation-temperature PCR combined with unlabeled-probe high-resolution melting to detect KRAS codon 12 and 13 mutations in plasma-circulating DNA of pancreatic adenocarcinoma cases. Asian Pac J Cancer Prev. 2014; 15(24): 10647-52. PubMed Abstract | Publisher Full Text

124. Bidard FC, Huguet F, Louvet C, et al.: Circulating tumor cells in locally advanced pancreatic adenocarcinoma: the ancillary CirCe 07 study to the LAP 07 trial. Ann Surg. 2013; 258(4): 671-7. PubMed Abstract | Publisher Full Text | Free Full Text

125. Bobek V, Gurich R, Elaisova P, et al.: Circulating tumor cells in pancreatic cancer patients: enrichment and cultivation. World J Gastroenterol. 2014; 20(45): 17163-70. PubMed Abstract | Publisher Full Text | Free Full Text

126. Rhim AD, Thege FI, Santana SM, et al.: Detection of circulating pancreas epithelial cells in patients with pancreatic cystic lesions. Gastroenterology. 2014; 146(3): 647-51. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

127. Iwanicki-Caron I, Basile P, Tourre E, et al.: Usefulness of circulating tumor cell detection in pancreatic adenocarcinoma diagnosis. Am J Gastroenterol. 2013; 108(1): 152-5. PubMed Abstract | Publisher Full Text | Free Full Text

128. Sheng W, Oganovtio OO, Chen T, et al.: Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip. Lab Chip. 2014; 14(1): 89-98. PubMed Abstract | Publisher Full Text | Free Full Text

129. Earl J, Garcia-Nieto S, Martinez-Avila JC, et al.: Circulating tumor cells (CTCs) and krant mutant circulating free DNA (cfDNA) detection in peripheral blood as biomarkers in patients diagnosed with exocrine pancreatic cancer. BMC Cancer. 2015; 15: 797. PubMed Abstract | Publisher Full Text | Free Full Text

130. Catenacci DV, Chapman CG, Xu P, et al.: Acquisition of Portal Venous Circulating Tumor Cells From Patients With Pancreaticobiliary Cancers by Endoscopic Ultrasound. Gastroenterology. 2015; 149(7): 1794–1803.e4. PubMed Abstract | Publisher Full Text | Free Full Text

131. Kamande JW, Hupert ML, Witek MA, et al.: Diagnostic and biological significance of circulating tumor DNA for molecular assessment and precision Medicine in Pancreatic Cancer. Adv Exp Med Biol. 2016; 924: 123–7. PubMed Abstract | Publisher Full Text | F1000 Recommendation

132. Hadano N, Murakami Y, Umemura K, et al.: Prognostic value of circulating tumor DNA in patients undergoing curative resection for pancreatic cancer. Br J Cancer. 2016; 115(1): 59-65. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

133. Zhit OA, Greene C, Beisnadinovic D, et al.: Cell-Free DNA Next-Generation Sequencing in Pancreatobiliary Carcinomas. Cancer Discov. 2015; 5(10): 1040-8. PubMed Abstract | Publisher Full Text | Free Full Text

134. Kishimoto T, Eguchi H, Nagano H, et al.: Plasma miR-21 is a novel diagnostic biomarker for biliary tract cancer. Cancer Sci. 2013; 104(12): 1626-31. PubMed Abstract | Publisher Full Text | Free Full Text

135. Wang WS, Liu LX, Li GP, et al.: Combined serum CA19-9 and miR-27a-3p in peripheral blood mononuclear cells to diagnose pancreatic cancer. Cancer Prev Res (Phila). 2013; 6(4): 331-8. PubMed Abstract | Publisher Full Text | Free Full Text

136. Kawaguchi T, Komatsu S, Ishikawa D, et al.: Clinical impact of circulating miR-221 in plasma of patients with pancreatic cancer. Br J Cancer. 2013; 108(2): 361-9. PubMed Abstract | Publisher Full Text | Free Full Text

137. Zhao C, Zhang J, Zhang S, et al.: Diagnostic and biological significance of microRNA-192 in pancreatic ductal adenocarcinoma. Oncol Rep. 2013; 30(1): 427-33. PubMed Abstract | Publisher Full Text | Free Full Text

138. Carlsen AL, Johansen NT, Knudsen S, et al.: Cell-free plasma microRNA in pancreatic ductal adenocarcinoma and disease controls. Pancreas. 2013; 42(7): 1107–13. PubMed Abstract | Publisher Full Text | Free Full Text

F1000Research 2017, 6(F1000 Faculty Rev):1643 Last updated: 05 SEP 2017

Page 15 of 17
Open Peer Review

Current Referee Status: ✔️ ✔️

Editorial Note on the Review Process
F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

Version 1

1. Peter Vilmann, Pia Helene Klausen, Vangelis Kalaitzakis Gastro Unit, Department of Surgery, Herlev Hospital, University of Copenhagen, Herlev, Denmark
 Competing Interests: No competing interests were disclosed.

1. Pietro Fusaroli Gastroenterology Unit, Department of Medical and Surgical Science, Hospital of Imola, University of Bologna, Imola, BO, Italy
 Competing Interests: No competing interests were disclosed.