Observations of fast radio bursts at frequencies down to 400 megahertz

The CHIME/FRB Collaboration*

Fast radio bursts (FRBs) are highly dispersed millisecond-duration radio flashes probably arriving from far outside the Milky Way\(^1,2\). This phenomenon was discovered at radio frequencies near 1.4 gigahertz and so far has been observed in one case\(^3\) at as high as 8 gigahertz, but not at below 700 megahertz in spite of substantial searches at low frequencies\(^4-7\). Here we report detections of 13 FRBs at radio frequencies as low as 400 megahertz, on the Canadian Hydrogen Intensity Mapping Experiment (CHIME) using the CHIME/FRB instrument\(^8\). They were detected during a telescope pre-commissioning phase, when the sensitivity and field of view were not yet at design specifications. Emission in multiple events is seen down to 400 megahertz, the lowest radio frequency to which the telescope is sensitive. The FRBs show various temporal scattering behaviours, with the majority detectably scattered, and some apparently unscattered to within measurement uncertainty even at our lowest frequencies. Of the 13 reported here, one event has the lowest dispersion measure yet reported, implying that it is among the closest yet known, and another has shown multiple repeat bursts, as described in a companion paper\(^9\). The overall scattering properties of our sample suggest that FRBs as a class are preferentially located in environments that scatter radio waves more strongly than in the diffuse interstellar medium in the Milky Way.

The CHIME telescope is located at the Dominion Radio Astrophysical Observatory (DRAO) near Penticton, British Columbia, Canada, and consists of four north–south (N–S)-oriented, fixed 20 m × 100 m cylindrical reflectors each with a focal line populated with 256 equispaced antenna feeds digitized across 400–800 MHz. An on-site correlator\(^10,11\) processes the 2,048 dual-polarization signals in real time, forming 1,024 independent intensity beams on the sky near transit. The input data from each beam consist of 16,384 frequency channels sampled at 1-ms cadence, which are searched by the CHIME/FRB instrument for dispersed, transient events. Only a small and variable number of beams were being searched during the pre-commissioning phase on which we report here. Full details on the CHIME/FRB system are provided elsewhere\(^8\).

The data reported here were obtained in July and August 2018, a period during which the CHIME/FRB instrument was not yet at final design specification. New racks of compute nodes were being installed and the number of nodes operating, and hence beams on sky, varied from day to day. Additionally, the number of compute nodes operating in the correlator, and hence the frequency coverage, also varied daily. Finally, calibration strategies, data pipeline configurations and data metric collection methods were also being tested.

In spite of the system’s pre-commissioning status, we detected 13 FRBs during this period. Dynamic spectra for these events are shown in Fig. 1. At least seven events are detected down to the lowest frequency of the CHIME band, some with no evidence for scatter-broadening within the time resolution of the instrument. However, eight of our sources show scattering. Detailed properties of these FRBs, measured as described in the Methods section, are shown in Table 1. Our events are broadband, with some spanning the entire 400 MHz of bandwidth, but others spanning a more limited range. Note that the observed spectrum is the convolution of the source’s intrinsic spectrum with the highly frequency-dependent instrument response that has yet to be calibrated and which has structure on a wide variety of frequency scales. Moreover, the observed spectrum is also affected by the unknown location of the source in our primary beam (or possibly in a sidelobe). For these reasons, apart from asserting there is emission present where it is observed, currently we can say little more regarding the intrinsic source spectra, with one exception\(^7\).

The burst widths reported in Table 1 were determined using our combination least-squares and Markov chain Monte Carlo (MCMC) fitting routine (see Methods) and accounting for intra-channel dispersion smearing and scattering of the burst, both of which broaden the pulse with well-defined (but different) frequency dependencies. No attempt has been made to correct for bandpass non-uniformity or beam effects for this fit. We assume the pulse is a frequency-independent Gaussian convolved with a scattering-induced exponential tail, modelled at 1/16 of our instrumental resolution and boxcar-convolved. The widths are generally narrow compared to previously reported FRB widths. We attribute this to the well determined dispersion and scattering properties enabled by our large fractional observing bandwidth. This, and the assumed scattering index of −4, enable us to disentangle scattering, dispersion and intrinsic width, although in a model-dependent way. We warn that FRB pulses can show complex underlying structure\(^3,12\), as discussed in our companion Letter\(^9\).

That we have detected events having little to no apparent scattering throughout our band suggests that FRBs are detectable at radio frequencies well below 400 MHz, in spite of the lack of discoveries in this regime so far\(^4-5,7\). An event that is unscattered to within 1 ms at 400 MHz has at most 256 ms of scattering at 100 MHz, a regime which has been well-searched, but unsuccessfully, to date\(^13\). Although the redshift of each FRB determines how the emitted frequency compares to the observed frequency, the presence of 400-MHz emission in bursts with low excess dispersion measure (DM) and correspondingly low redshifts demonstrates that FRB environments can be optically thin to this emission, though a lower frequency cutoff is still possible. The event with the highest DM in our sample (1,007 pc cm\(^-3\) for FRB 180817.J1533+42) also has the longest scattering time, and the three events with the lowest DMs have no measurable scattering. This hints at a possible DM–scattering correlation, however, there could be subtle selection biases in our detection pipeline. This is under study and will be discussed elsewhere. Little to no correlation is expected if the DMs of FRBs have a large contribution due to the intergalactic medium (IGM), where scattering is expected to be small\(^14,15\). We note that at least 6 FRBs are detected at the 800-MHz top of our band, while 8 are detected at the 400-MHz bottom of our band. Though our effective FOV is larger at the lower radio frequencies (an effect yet to be fully quantified), the prevalence of observable low-frequency emission in spite of the greatly enhanced scattering time does not support proposed low-frequency cutoffs due to free–free absorption or other physical mechanisms\(^16\), at least within the CHIME band.

One of our events, FRB 180814.J0422+73, at DM 187 pc cm\(^-3\) and high declination (+73°), shows repeat bursts, as detailed in an

*A list of participants and their affiliations appears at the end of the paper.
accompanying Letter9. It also has the widest burst of our sample, and some of its repeat bursts show complex structure9.

Another of our events, FRB 180729.J1316+55, has a DM of only 109 pc cm$^{-3}$, the lowest yet observed for any FRB. The source was detected in three adjacent beams when our on-sky beam configuration had a single beam column in the N–S direction. We have made use of the three-beam detection, together with studies of radio pulsar analogues, to improve the nominal localization of this source (see Methods), constraining the position to be (J2000) right ascension (RA) 13 h 16 min with uncertainty \pm28', declination (dec.) $+55^\circ36'$ with uncertainty $\pm8'$ (99%), where the RA uncertainty has been scaled by $\cos(\text{dec.})$ to reflect angular size. The maximum Galactic free electron column density in this direction is estimated17 to be about 30 pc cm$^{-3}$, or18 approximately 23 pc cm$^{-3}$, depending on the assumed model. Thus, the excess DM is in the range 80–90 pc cm$^{-3}$, though this may be further reduced due to the free electron content of the Galactic halo, which is estimated19,20 to be about 30 pc cm$^{-3}$. Although the excess DM is not large, we believe this source is extragalactic as there is no evidence for any Galactic sources of foreground DM such as H ii regions21 or star-formation regions22.

For bursts detected in more than one beam, we show data from the beam with the highest SNR. We warn that the spectra shown here have not been calibrated for the effective bandpass, because this is strongly dependent on beam calibration (which is in progress) and on the unknown location of the source in our primary beam or possibly in a sidelobe. Note that in nearly all cases radio frequencies in the 729–756 MHz band have been removed owing to the presence of radio frequency interference from cell phone communication, as have narrower bands corresponding to television and other interfering signals (the bandwidth used for these plots ranges from 246 MHz to 299 MHz).

Fig. 1 | Dynamic spectrum (‘waterfall’) and time profile plots for our sample of pre-commissioning CHIME/FRB events. Data are shown for all 13 events: the FRB names are shown in the upper subpanels, along with the derived DM in pc cm$^{-3}$. Lower subpanels, dynamic spectrum plots of observing frequency versus time; the colour-scale intensity is proportional to SNR, with all dynamic spectra using the same boundary values of intensity for colour mapping. The upper value of the boundary was chosen such that low-SNR signals are visible in their dynamic spectra, while saturating the spectra for high-SNR events. Upper subpanels, frequency-summed burst intensity profiles (blue lines) shown with full time resolution. Properties of individual events are provided in Table 1. For bursts detected in more than one beam, we show data from the beam with the highest SNR. We warn that the spectra shown here have not been calibrated for the effective bandpass, because this is strongly dependent on beam calibration (which is in progress) and on the unknown location of the source in our primary beam or possibly in a sidelobe. Note that in nearly all cases radio frequencies in the 729–756 MHz band have been removed owing to the presence of radio frequency interference from cell phone communication, as have narrower bands corresponding to television and other interfering signals (the bandwidth used for these plots ranges from 246 MHz to 299 MHz).
We examined galaxies and radio sources in the localization box of FRB 180729.J1316+55 from the Sloan Digital Sky Survey, the NRAO VLA Sky Survey, and the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) survey. There are 78 galaxies with photometric redshifts $z < 0.1$ in the 99% confidence region. However, this number is limited by completeness of the surveys to low-mass galaxies. The persistent radio source associated with the repeating FRB 121102 would have had a flux density of 0.9 mJy at a redshift of 0.1, detectable in the FIRST survey. We find 31 radio sources from the FIRST catalogue (150 μJy r.m.s.) that lie in the 99% localization region. None of these can be confidently associated with FRB 180729.J1316+55 (see Methods).

Figure 2 shows scattering times referred to 1 GHz for our events compared to those of Galactic radio pulsars and previously detected FRBs. As previously noted, known FRBs are generally under-scattered relative to Galactic radio pulsars of the same DM, which probably reflects the low scattering in the IGM where it has been proposed that a dominant portion of the observed FRB DM arises, as well as the fact that the signals from most Galactic pulsars must pass through the Milky Way disk to reach the Earth. The CHIME/FRB events are even less scattered than the FRBs detected at higher frequencies, with one exception. This is unsurprising given the steep power-law dependence of scattering time on radio frequency together with the bias our pipeline has against detection of highly scattered pulses, as demonstrated by our simulations (see Methods).

Even with this bias, it is clear that a majority of our events are scattered. We have performed an initial population synthesis analysis (see Methods) with a focus on scattering behaviour. The disks and spiral arms of large, Milky-Way-type galaxies are possible homes for FRBs if they originate from young stars, as is suggested by some models. Our simulations (see Methods) of an FRB population in the disks of spiral galaxies having interstellar medium (ISM) and structure similar to that of the Milky Way show that this cannot reproduce the high observed scattering fraction in our CHIME/FRB events, even if the sources are located preferentially in a thin disk, the spiral arms, or concentrated within about 30 pc of the galactic centre. Our results therefore suggest that FRBs are preferentially located in environments with stronger scattering properties than the quiescent diffuse ISM, although we cannot as yet distinguish between typical Galactic plane environments such as near H II regions and star-formation complexes, versus more extreme environments such as inside a very young supernova remnant or in the close vicinity of a supermassive black hole.

During pre-commissioning, we can only derive a ‘floor’ event rate in the CHIME frequency band based on the projected design sensitivity (though, as described above, the instrument was substantially less sensitive during this phase) and the number of beam-hours in the search. We refer to this as a floor because it is an approximate minimum for the observed all-sky event rate, but cannot be quantified with a statistically meaningful probability distribution. Our event rate floor (see Methods)
1. Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J. & Crawford, F. A bright millisecond radio burst of extragalactic origin. Science 318, 777–780 (2007).

2. Thornton, D. et al. A population of fast radio bursts at cosmological distances. Science 341, 53–56 (2013).

3. Gajjar, V. et al. Highest frequency detection of FRB 121102 at 4–8 GHz using the breakthrough listen digital backend at the Green Bank Telescope. Astrophys. J. 863, 2 (2018).

4. Karastergiou, A. et al. Limits on fast radio bursts at 145 MHz with ARTEMIS, a real-time software backend. Mon. Not. R. Astron. Soc. 452, 1254–1262 (2015).

5. Rowlinson, A. et al. Limits on fast radio bursts and other transient sources at 182 MHz using the Murchison Widefield Array. Mon. Not. R. Astron. Soc. 458, 3506–3522 (2016).

6. Amiri, M. et al. Limits on the ultra-bright fast radio burst population from the CHIME pathfinder. Astrophys. J. 844, 161 (2017).

7. Chawla, P. et al. A search for fast radio bursts with the GBNCC pulsar survey. Astrophys. J. 844, 140 (2017).

8. The CHIME/FRB Collaboration et al. The CHIME fast radio burst project: system overview. Astrophys. J. 863, 48 (2018).

9. The CHIME/FRB Collaboration. A second source of repeating fast radio bursts. Nature 566, https://doi.org/10.1038/s41586-018-0864-x (2019).

10. Bandura, K. et al. ICE: A scalable, low-cost FPGA-based telescope signal processing and networking system. J. Astron. Instrum. 05, 1640009 (2016).

11. Denman, N. et al. A GPU-based correlator X-engine implemented on the CHIME pathfinder. Preprint at http://arxiv.org/abs/1503.06202 (2015).

12. Champion, D. J. et al. Five new fast radio bursts from the HTRU high-latitude survey at Parkes: first evidence for two-component bursts. Mon. Not. R. Astron. Soc. 460, L30–L34 (2016).

13. Sokolowski, M. et al. No low-frequency emission from extremely bright fast radio bursts. Astrophys. J. Lett. 867, L12 (2016).

14. Macquart, J.-P. & Koay, J. Y. Temporal smearing of transient radio sources by the intergalactic medium. Astrophys. J. 776, 125 (2013).

15. Zhu, W., Feng, L.-L. & Zhang, F. The scattering of FRBs by the intergalactic sheets in the interstellar medium. Mon. Not. R. Astron. Soc. 399, 999–1008 (2009).

16. Ravi, V. The observed properties of fast radio bursts. Mon. Not. R. Astron. Soc. 482, 1966–1978 (2019).

17. Cordes, J. M., Wharton, R. S., Splinter, L. G., Chatterjee, S. & Wasserman, I. Radio wave propagation and the provenance of fast radio bursts. Preprint at http://ArXiv.org/abs/1605.05890 (2016).

18. McQuinn, M. Locating the “missing” baryons with extragalactic dispersion measure estimates. Astrophys. J. 780, L33 (2013).

19. Dolag, K., Gneisler, B. M., Beck, A. M. & Beck, M. C. Constraints on the distribution of energetic fast radio bursts using cosmological hydrodynamic simulations. Mon. Not. R. Astron. Soc. 451, 4277–4289 (2015).

20. Andersen, L. D. et al. The WISE catalog of galactic H II regions. Astrophys. J. Suppl. Ser. 212, 1 (2014).

21. Inoue, S. Probing the cosmic reionization history and local environment of gamma-ray bursts through radio dispersion. Mon. Not. R. Astron. Soc. 348, 999–1008 (2004).

22. Xu, S., Zhang, B. On the origin of the scatter broadening of fast radio burst pulses and astrophysical implications. Astrophys. J. 832, 199 (2016).

23. Cordes, J. M., Wharton, R. S., Splinter, L. G., Chatterjee, S. & Wasserman, I. Radio wave propagation and the provenance of fast radio bursts. Preprint at http://ArXiv.org/abs/1605.05890 (2016).

24. Farah, W. et al. FRB microstructure revealed by the real-time detection of FRB170827. Mon. Not. R. Astron. Soc. 478, 1209–1217 (2018).

25. Kumar, P., Lu, W. & Bhattacharya, M. Fast radio burst source properties and curvature radiation model. Mon. Not. R. Astron. Soc. 468, 2726–2739 (2018).

26. Cordes, J. M., Wharton, R. S., Splinter, L. G., Chatterjee, S. & Wasserman, I. Radio wave propagation and the provenance of fast radio bursts. Preprint at http://ArXiv.org/abs/1605.05890 (2016).

Acknowledgements We are grateful for the help we received from the Dominion Radio Astrophysical Observatory, operated by the National Research Council Canada. The CHIME/FRB Project is funded by a grant from the Canada Foundation for Innovation 2015 Innovation Fund (Project 33213), as well as by the Provinces of British Columbia and Québec, and by the Dunlap Institute for Astronomy and Astrophysics at the University of Toronto. Additional support was provided by the Canadian Institute for Advanced Research (CIFAR), McGill University and the McGill Space Institute via the Trottier Family Foundation, and the University of British Columbia. The Dunlap Institute is funded by an endowment established by the David Dunlap family and the University of Toronto. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research & Innovation. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. P.C. is supported by an FRQNT Doctoral Research Award and a Mitacs Globalink Graduate Fellowship. M.D. acknowledges support from CIFAR, Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery and Accelerator Grant, and from FRQNT Centre de Recherche en Astrophysique du Québec (CRAQ). B.M.G. acknowledges the support of the NSERC through grant RGPIN-2015-05948, and the Canada Research Chairs program. A.S. is partly supported by the Dunlap Institute, V.M.K. holds the Lorne Trottier Chair in Astrophysics & Cosmology and a Canada Research Chair and receives support from an NSERC Discovery Grant and Herzberg Award, from an R. Howard Webster Foundation Fellowship from CIFAR, and CRAQ. C.M. is supported by a NSERC Undergraduate Research Award. J.M.-P. is supported by the MIT Kavli Foundation in Astrophysics and a FRQNT postdoctoral research scholarship. M.P. is supported by a NSERC Canada Graduate Scholarship, Z.P. is supported by a Schulich Graduate Fellowship, S.M.R. is a CIFAR Senior Fellow and is supported by the NSF Physics Frontiers Center award 1430284, P.C. is supported by a DRAO Conviction Fellowship from the National Research Council Canada. FRB research at UBC is supported by an NSERC Discovery Grant and by CIFAR.

Author contributions All authors on this paper played either leadership or significant supporting roles in one or more of the following: the management, development and construction of the CHIME telescope, the CHIME/FRB instrument and the CHIME/FRB software data pipeline, the commissioning and operations of the CHIME/FRB instrument, the data analysis and preparation of this manuscript.

Competing interests The authors declare no competing interests.

Additional information Extended data is available for this paper at https://doi.org/10.1038/s41586-018-0867-7. Reprints and permissions information is available at http://www.nature.com/reprints. Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019
1Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada. 2CSEE, West Virginia University, Morgantown, WV, USA. 3Center for Gravitational Waves and Cosmology, West Virginia University, Morgantown, WV, USA. 4Department of Physics, McGill University, Montréal, Québec, Canada. 5McGill Space Institute, McGill University, Montréal, Québec, Canada. 6Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada. 7Harvard University, Cambridge, MA, USA. 8Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, Ontario, Canada. 9Department of Astronomy and Astrophysics, University of Toronto, Toronto, Ontario, Canada. 10Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada. 11Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada. 12Dominion Radio Astrophysical Observatory, Herzberg Astronomy and Astrophysics Research Centre, National Research Council Canada, Penticton, British Columbia, Canada. 13Space Science Institute, Boulder, CO, USA. 14MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA, USA. 15Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA. 16Department of Physics, Yale University, New Haven, CT, USA. 17Canadian Institute for Theoretical Astrophysics, Toronto, Ontario, Canada. 18National Radio Astronomy Observatory, Charlottesville, VA, USA. 19Department of Physics, University of Toronto, Toronto, Ontario, Canada. *E-mail: shriharsh@physics.mcgill.ca
CHIME telescope status. As noted in the main text, the CHIME telescope was being commissioned during the period covered by this Letter. There were several activities during this period that affected both the analogue front-end of CHIME and the digital back-end, including repairing a handful of analogue signal inputs and upgrading the F-engine firmware and X-engine software. In addition, the DRAO staff schedule occasional maintenance days during which time locally produced radio frequency interference (RFI) might be expected to occur. Rather than detail all the telescope activities that occurred during the period covered by this Letter, we annotate Extended Data Table 1 with a column of notes about activities that were taking place at the time each burst was detected.

One activity of note during this period was the initial deployment of a site survey radiometer for the Canadian Galactic Emission Mapper (CGEM) experiment: a 10 GHz survey project being developed at DRAO. On 2018 July 25, the radiometer was situated within the CHIME site and it was first powered on 20 min after the first CHIME FRB was detected (during a DRAO maintenance window). The team was concerned about the proximity of these events in time, but follow-up tests on the next day confirmed that this radiometer was not inducing any detectable RFI in the CHIME band. This equipment was permanently powered off after 26 July 2018.

CHIME/FRB phase calibration and beamforming system. The CHIME correlator digitally forms 1,024 intensity beams,tiling the large (~250 deg²) field of view (FOV) of the CHIME telescope. Details of the beamforming scheme can be found elsewhere³⁻⁴ but are summarized briefly below.

The 256 inputs corresponding to a single polarization along the focus of each cylinder are formed via fast Fourier transform (FFT) into 256 beams distributed north–south (N–S), regularly spaced in sin θ, where θ is the position of the antennas along the east–west (E–W) sub-beams with the polarizations combined to measure intensity only. This results in a total of 1,024 beam pointings, which are static and do not track the moving sky. The polarization–summed intensity data stream from each beam is subdivided into 16,384 frequency bins with a resolution of 24 kHz each, and downsampled to 0.983 ms. During this pre-commissioning stage, only one of the four N–S columns of beams was processed further.

The N–S (and, when available, E–W) beam locations are software configurable at run time. During pre-commissioning, they were configured to cover ±90° (that is, horizon to horizon N–S).

CHIME/FRB calibration. The FFT beamforming scheme employed in CHIME/FRB requires complex gain calibration⁵⁻⁶ to be applied to the time stream from each feed before combining the signals into formed beams. During pre-commissioning, complex gain calibration was conducted using a simple scheme, using relative phase measurements between feeds derived from observations of Cygnus A on July 25 and 31, and August 3 and 12, 2018. During pre-commissioning, no attempt was made to correct for amplitude differences in feed response, time variations on scales faster than a few hours, or the relative phase difference in phase due to feed-to-feed beam variations along different lines of sight.

To remove the phase contribution due to the analogue system, we obtained a full set of 2^N visibilities for a transit of Cygnus A at the native 1,024 frequency-channel resolution used in the CHIME correlator. We eigen-decomposed the visibility matrix and extracted the eigenvectors corresponding to the two largest eigenvalues. We assume that the sky as seen in the 2^N visibilities is dominated by Cygnus A, and therefore the visibility matrix is rank 2, which allows us to interpret these eigenvectors as containing the complex gain for each input in the system, split by polarization⁷⁻⁸. This process is done for each frequency channel independently.

The phase contribution from interferometric spacing is described by a phase factor $e^{2 \pi i u \theta}$, which depends only on the sky direction θ and the physical position of the antennas in ν–ν space, u (see ref. 31). For our phase calibration, we calculate this factor relative to a single feed to generate a relative phase over the entire telescope. We then apply this factor to our vector of complex gains, fixing the amplitude of this vector at a constant value, and update it every few days. This equipment was permanently powered off after 26 July 2018.

To mitigate spurious RFI signals that survive intensity cleaning and produce candidates, we employ two stages of machine learning classification (Support Vector Machines⁹). In both cases, the classifier predictions are expressed as a probability of astrophysical origin, which is interpreted as a grade. The first classifier operates after a per-beam basis and aims to capture SNR behaviour in the DM–time plane using two features. The first measures the SNR fall-off in the neighbour- hood of a candidate’s optimal parameters. The second counts the number of candidates with unique DMs in the previous 10 s. The second classifier operates after candidates from all beams have been collated and grouped in time, DM and sky location. Each group is classified with the following features: the group’s highest grade from the upstream classifier, the maximum SNR in the group, the ratio of the maximum SNR to the second highest value (if any), the total number of beams that harboured detections in the last 10 s, and the N–S extent of the group. Each classified candidate is validated by hand, or else identified as RFI or as known FRBs, pulsars, rotating radio transients, and FRBs. Unknown sources are labelled as ‘Galactic’, ‘Ambiguous’ or ‘Extragalactic’ on the basis of their DM and the maximum expected DM along their line-of-sight according to the NE2001¹⁷ and YMW16¹⁸ models of Galactic free-electron density. We used a statistical criterion for classification in real time, in which a measured DM that exceeds the predicted Galactic values by 5σ is classified as extragalactic. In this context, σ is uncertainty and incorporates the systematic uncertainty of the Galactic models; for simplicity, we consider this uncertainty as a constant for all models (and for 25% of the measured value, whichever is largest.) A source with a DM that is greater than 2σ and less than 5σ is deemed Ambiguous; and all sources with excess DM less than 2σ are classified as Galactic. Finally, post-processing actions are triggered on the basis of a set of rules. At the epochs of the detections of the FRBs presented here, the pipeline was saving metadata (header) information for all detected events, including those labelled as RFI. Buffered full-resolution intensity data were saved to disk for beams in which an event was detected for all those associated with a known FRB or labelled Extragalactic or Ambiguous and which had SNR > 10.

 Localization uncertainty of FRB 180729. J1316+55. Because FRB 180729. J1316+55 was detected in three adjacent beams, the position can be improved using techniques similar to those presented³⁸ and applied⁵⁹ elsewhere. During pre-commissioning, there was only a single N–S column of beams active in the vicinity of the burst so improved localization using the multi-beam detection is possible only in declination. To constrain the burst’s RA, we selected 14 pulsars with declinations within 2° of the beam centre for the strongest detection. For the time span in which our reported FRBs were detected, 12,455 single pulses were recorded. By assigning the RA of these events according to the beam centre position at their time of arrival, we find 68% have values within 0.2° of their true RA, and 99% within 0.8°. After scaling by cos(dec.) to reflect angular extent on the sky, the 99% uncertainty is ±28′. For declination, we employ a frequency-dependent sensitivity model of our primary and formed beams. This model allows the ratios among recovered SNR values in adjacent beams to be compared against predicted ratios for a grid of positions and spectral indices. This comparison yields a narrow band of allowable declinations. When applying these methods to analogous detection patterns from pulsars, we find a subset that have large residuals which we interpret as systematic uncertainties of unknown (at present) origin. After quantifying these systematic uncertainties from these analogues, we constrain the 99% declination range to be ±12′.

FRB characterization. Here we explain the provenance of the parameters in Table 1 for each reported FRB.
Using the time and DM from the real-time search as our initial guess, we start by simultaneously fitting a Gaussian pulse profile to the data using 16 frequency sub-bands across our 400-MHz bandwidth, which quickly locates the burst and refines its time and DM and assigns an initial width. Next we use a frequency-independent Gaussian convolved with a frequency-dependent one-side exponential as our model for the pulse. We fix the dispersion index to -2 and scattering index to -4, both of which are well motivated. This was done to simplify fitting for this Letter; a more detailed analysis with these values fitted for will be presented elsewhere. We compose the model pulse at an upsampled factor of 16 and in time and frequency which we then boxcar-convolve to get the predicted pulse at our instrumental resolution. The likelihood function under this model is then optimized using least-squares fitting to get the best-fit model parameters. We further explore the parameter space around our best-fit values using MCMC sampling of our likelihood function. We use the Goodman-Weare algorithm implemented in the public library emcee to achieve this. After an initial burn-in phase, 500,000 samples are generated for each event. Our samples satisfy the commonly recommended convergence criteria based on integrated autocorrelation time and acceptance ratio. For low SNR events, we found that fitting in 4 sub-bands instead of 16 worked better.

We verified the accuracy of our fitting code using simulations that independently implement the same pulse model. In fitting to these simulations, we successfully recover the input parameters to within expectations based on statistical uncertainty. The exception is DM, which has an excess error of 0.0017 pc cm$^{-3}$, which we attribute to differences in how the pulses are modelled below the time resolution. We add this error in quadrature to the statistical uncertainties. We also found that our ability to recover scattering, width and DM are robust to changing the input spectrum, and hence issues such as the bandpass calibration do not bias our reported parameters.

The following describes specific individual source fits that are worthy of note. FRB 180727.J1311+26. This event has signal in the bottom three-quarters of our band but low overall SNR, so its fit was done using only 4 frequency sub-bands. FRB 180729.J1316+55. This event has the smallest DM of any currently known FRB and showed emission in the lower three-quarters of our band. Though there may be scattering, it is small and not well constrained. We report only an upper limit on the scattering time.

FRB 180729.J0558+56. This event shows emission in the upper half of the band, and is narrow. We report only upper limits on both width and scattering time.

FRB 180810.J1159+83. This event has a slightly asymmetric profile, but our fits do not demonstrate conclusively that there was scattering. We report an upper bound on scattering time.

FRB 180812.J0112+80. This event has most of its signal confined within the 400–500 MHz band. We fit the event using 4 sub-bands. FRB 180814.J0422+73. This event has shown repeat bursts and is discussed in detail in a forthcoming Letter.

FRB 180817.J1533+42. This event is observed throughout the band and has scattering time (at 600 MHz) >8 ms, the largest among the 13 events reported here. Estimation of burst fluences. An accurate determination of burst fluence for the events reported here is complicated by the pre-commissioning status of the telescope wherein the system was changed faster than it could be characterized, by the non-traditional cylindrical design requiring the development of new calibration strategies, and because we have only begun the process of measuring the spatial and frequency response of our primary and synthesized beams. Beam measurements are much more challenging for a drift-scan telescope that cannot be scanned in elevation and azimuth across known calibration sources.

To simplify the fluence estimate, we assume all bursts were detected in the centre of the FFT-formed beams. For each event, we used bright sources with well known fluxes (such as Cygnus A, Cassiopeia A, Tau A, 3C 133, and others) located within 5° declination of the event for calibration. We assume N−S beam symmetry, so that sources on both sides of zenith can be used for each event. Since we did not record intensity data with the CHIME/FRB instrument for any of these point sources on the days the candidates were observed, we instead recorded data for the sources on a later date and for each frequency channel. We used this to obtain an estimate of the flux conversion as a function of frequency in the approximate direction of each candidate. The resulting calibration was applied to the spectrum of the FRBs and fluences were calculated (see Table 1), integrating over the usable bandwidth. We find that there are beam variations even within a 5° declination range of the event, leading to a substantial systematic error on the fluence measurements. In cases where we had multiple point sources near an event, we used these to assess fluence error by applying the calibration of one of the point sources to estimate the flux of the other. The typical error on the reconstructed flux is assessed as 44% and has been included in the fluence measurement error.

To account for the time variation of the system calibration, we derived flux calibrations for each of these sources over several days, and included this r.m.s. variation in the reported fluence error. We also assessed the error associated with having used phase-only calibration, by reprocessing the point-source data with and without amplitude calibration, and included this in the error.

Extended Data Table 2 shows the fluence estimates and associated errors, as well as the bandwidth used therein. For these pre-commissioning events, typically half of the total bandwidth is unavailable because some of the correlator processing nodes were offline or data transport from the F-engine to X-engine was corrupted, some of the frequency channels were contaminated with persistent RFI (about 20–25%), or the calibration solution failed for certain frequency channels. The fraction of usable bandwidth is expected to increase substantially during the commissioning phase.

Simulations of detection pipeline. To verify that the large fraction of our events showing scattering was not due to pipeline software detection bias, we used a pulse simulator to inject Gaussian pulses of width 1 ms but of various DMs and scattering times into our pipeline. First, for each value in a set of 8 logarithmically spaced scattering times ranging from 2 to 256 ms (referred to 1 GHz), 100 simulated pulses were superimposed on white noise and injected. This was done for intrinsic SNRs 12 and 50 to simulate faint and bright pulses and for 3 DMs (600, 900 and 1,200 pc cm$^{-3}$). The average fraction of the pulse signal recovered by our detection code was compared for the various scattering times at fixed SNR and DM. As pulse scattering increased, less signal was recovered, with >30% decrease for scattering times above 32 ms at 1 GHz, and over a factor of 2 loss above 128 ms. This injection analysis was repeated for pulses with no scattering using the same SNR values but with DMs that spanned the range thus far observed (up to 2,500 pc cm$^{-3}$). We found less than 25% decrease in sensitivity in this range. Even out to DMs of 4,800 pc cm$^{-3}$ the drop was at most 30%. Thus, we conclude that the true fraction of CHIME/FRBs that exhibit scattering is likely to be at least as high as the fraction we have measured for our pre-commissioning events.

FRB population simulations. We performed simulations to determine whether FRBs in the diffuse ISM of Milky Way-like host galaxies can reproduce the observation that 7 of our 13 events have scattering timescales at 600 MHz of >1 ms. In our simulations, we assume all FRBs originate from Milky Way type spirals, which we assume are viewed at random inclination angles. Prescriptions from the NE2001 model of Galactic electron density21 are used to simulate the electron densities in the thick disk, thin disk, spiral arms and galactic centre of the host galaxies. In each simulation run, we generate 13 events, integrating over the simulated electron density distribution from the event location to the near edge of the host galaxy. For a chosen galaxy distance, this allows estimation of dispersion measure, DM$_{host}$ and scattering measure, SM$_{host}$, for each event.

Initially, we assume all simulated events are located at 100 Mpc, approximately the distance estimated for the event with the lowest excess DM in our sample, FRB 180729.J1316+55. This assumption maximizes SM$_{host}$ as it is calculated by weighting the contribution of scattering material based on its location along the line of sight17. Additionally, we increase SM$_{host}$ by a factor of 3 (and by a factor of 6 in the case of local scattering calibration) since plane waves from extragalactic sources exhibit greater pulse broadening per unit SM as compared to spherical waves from galactic sources25,44. We also account for the redshift, z, of the host galaxy by reducing DM$_{host}$ and SM$_{host}$ by $(1+z)$ and $(1+z)^3$, respectively14,45. To these, we add the Galactic DM and SM contribution by querying the NE2001 model for a random sky position sampled in a region which is centred on the corresponding CHIME/FRB event location and extends 2° in RA and 0.5° in dec. We also add the IGM contribution to the DM by estimating it using the DM-redshift relation46,47. However, we do not simulate IGM scattering as it is estimated to be <1 ms at 600 MHz, given a turbulence injection scale determined by AGN feedback48,49. We use the total simulated SM to compute a scattering timescale for each event under the assumption of a Kolmogorov spectrum and for a diffractive length scale smaller than the inner scale of turbulence27,44.

We run the simulations until at least 50,000 runs have all 13 simulated scattering times <128 ms (thus detectable with the CHIME/FRB pipeline) and simulated DM for each of the 13 events is less than the DM observed by CHIME/FRB for that event. Using statistics of runs that pass the selection criteria, we estimate the likelihood of obtaining scattering times at 600 MHz >1 ms for at least 7 of the 13 events. We find at 95% confidence that a population of isolated FRBs cannot explain our observations, implying that FRBs must have a circumburst environment with strong scattering properties. We run the simulations with the local environment of FRBs having scattering properties similar to Galactic H I regions and SNRs46 and find that the fraction of CHIME FRBs with scattering times >1 ms at 600 MHz can be reproduced, provided these FRBs have a scale height similar to that of the pulsar population46(~300 pc) or are preferentially distributed along the spiral arms48. Although we do not model scattering properties of more extreme environments such as very young SNRs or regions close to the Galactic Centre, we note that similar properties of FRB progenitors in such environments could also be consistent with our observations.

We repeat the simulations for a distribution of redshifts for the host galaxies, determined by subtracting the simulated DM$_{host}$ and DM$_{SM}$ for each event from
the observed DM of the corresponding CHIME/FRB event, assigning the remaining DM to the IGM and using the DM–redshift relation. We find that the simulated FRB distribution has a large fraction of events at distances >100 Mpc, thereby strengthening our conclusions since SM_{sim} is further reduced due to the line-of-sight weighting. We note that ionized circumbulacrum clumps have been recently proposed as an alternative to strong scattering in the circumburst environment. However, we do not attempt to simulate their contribution to scattering as it is strongly dependent on redshifts of the host galaxies and the composition of the circumbulacrum media (CGM), both of which are not well constrained. Additionally, observation of scintillation in FRB 110523 constrained the scattering material to be within 44 kpc of the source, suggesting that the CGM might not be the dominant contributor to scattering of all known FRBs.

Multi-wavelength analysis of the FRB 180729.1J1316+55 field. The field of FRB 180729.1J1316+55 is in the coverage area for Sloan Digital Sky Survey (SDSS), NRAO VLA Sky Survey, and Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) survey. We selected 6,026 objects identified as galaxies from the SDSS DR14 catalogue. Based on r-band magnitude, every detected galaxy has a chance coincidence probability of >50% of being in the 99% localization region of 0.37 deg^2. Of the 6,026 galaxies, 8% had photometric redshift fits that failed and 44% had photometric redshift errors >0.1. The SDSS survey has a depth of m_r < 22.7 mag, limiting the completeness of the survey to galaxies fainter than M_r > −15.7 mag. Thus, the sample of 78 host galaxies with z < 0.1 is expected to be significantly incomplete. Future deep imaging and multi-object spectroscopy of faint sources in this field is necessary.

The FIRST catalogue has 31 detected sources that lie in the 99% confidence region. 17 of these have no associated counterparts in optical images. 8 of these first sources are associated with SDSS galaxies. In particular, one object, FIRST J131849.6+553227, is co-located with the bright centre of a M_{r} = −20.7 mag galaxy at z = 0.09, but we find that the chance coincidence of such an object being in this localization region is high. The remaining 7 FIRST sources show faint optical emission in SDSS images upon visual inspection, but are not catalogued in the SDSS galaxy catalogues.

Event rate. During pre-commissioning, the configuration of the telescope changed frequently and performance metric reporting was not fully implemented or debugged. Measurements of the instrument sensitivity and beams are not yet mature. This makes it impossible to quantify an event rate with statistically meaningful confidence intervals. Nevertheless, we can calculate a ‘floor’ on the event rate using the projected design sensitivity of the instrument, and the number of beam-hours over which the pre-commissioning search operated.

The approximate design sensitivity is estimated as follows. CHIME has 80 m × 80 m of instrumented collecting area and, approximating its aperture efficiency to be 50%, a formed beam thus has a forward gain of 1.16 K Jy^{-1}. Assuming the design system temperature of 50 K and 200 MHz of currently usable bandwidth, the 10σ detection threshold is 1.0 (Δσ)^{-1/2} Jy, where Δσ is the pulse width in ms including the intrinsic width, scattering, and intra-channel dispersion smearing. Several factors that have not been accounted for are expected to result in a substantially higher average detection threshold during the pre-commissioning period, including: the spatial and frequency response of the primary and formed beams, the reduction in primary beam response with increasing zenith angle, a system temperature that may be higher than the assumed value of 50 K, a lack of daily complex gain and amplitude calibration of the feed response, frequent changes in discarded bandwidth due to RFI and X-engine node up-time, and inefficiencies in our search pipeline.

We consider the sky rate at which we observed bursts above this threshold. Following Connor et al. 31, our 13 observed bursts imply a lower limit on the mean rate for repeat trials of identical surveys of 8.5 bursts at 95% confidence. An accounting of the fraction of FRB search nodes that were operational over the survey indicates that our exposure did not exceed 4,600 beam-days, although it could have been substantially lower due to contamination by persistent sources of RFI and a smaller beam solid angle than the fiducial value of 0.256 deg^2. This number includes corrections for beams whose sky locations partially overlapped, an exclusion of observing time for which intensity data was not being saved to disk, and an exclusion of beams pointed more than 60° from zenith which were deemed to be too insensitive for inclusion. Using the assumed telescope collecting area, the beam solid angle for a single beam is 0.256 deg^2 at 600 MHz. We put a floor on the all-sky burst rate of 3 × 10^{-15} day^{-1} for a flux density threshold of 1.0 (Δσ)^{-1/2} Jy where Δσ is the pulse width in ms.

Code availability. The code used to characterize the discovered FRBs is available at https://chime-frb-open-data.github.io/.

Data availability

The raw data used in this publication are available at https://chime-frb-open-data.github.io/.

33. Ng, C. et al. CHIME FRB: An application of FFT beamforming for a radio telescope. Preprint at http://ArXiv.org/abs/1702.04728 (2017).
34. Newburgh, L. B. et al. Calibrating CHIME: A new radio interferometer to probe dark energy. Proc. SPIE 9145, 9145V (2014).
35. Thompson, A. R., Moran, J. M. & Swenson, G. W. Jr. Interferometry and Synthesis in Radio Astronomy 3rd edn (Springer, Cham, 2017).
36. Taylor, J. H. A sensitive method for detecting dispersed radio emission. Astron. Astrophys. Suppl. 15, 367–369 (1974).
37. Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).
38. Obroca, M., Stappers, B. & Wilkinson, P. Localising fast radio bursts and other transients using interferometric arrays. Astron. Astrophys. 579, A69 (2015).
39. Petroff, E. et al. A fast radio burst with a low dispersion measure. Mon. Not. R. Astron. Soc. 482, 3109–3115 (2018).
40. Lorimer, D. R. & Kramer, M. Handbook of Pulsar Astronomy (Cambridge Univ. Press, Cambridge, 2012).
41. Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 5, 65–80 (2010).
42. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).
43. Bhandari, S. et al. The SÚREvey for Pulsars and Extragalactic Radio Bursts – II. New FRB discoveries and their follow-up. Mon. Not. R. Astron. Soc. 475, 1427–1446 (2018).
44. Cordes, J. M. & McLaughlin, M. A. Searches for fast radio transients. Astrophys. J. 596, 1142–1154 (2003).
45. Ioka, K. The cosmic dispersion measure from gamma-ray burst afterglows: probing the reionization history and the burst environment. Astrophys. J. 598, L79–L82 (2003).
46. Cordes, J. M. & Lazio. T. J. W. NE2001: II. Using radio propagation data to construct a model for the galactic distribution of free electrons. http://xxx.lanl.gov/abs/astro-ph/0301598 (2003).
47. Lorimer, D. R. et al. The Parkes Multibeam Pulsar Survey – VI. Discovery and timing of 142 pulsars and a Galactic population analysis. Mon. Not. R. Astron. Soc. 372, 777–800 (2006).
48. Faucher-Giguère, C.-A. & Kaspi, V. M. Birth and evolution of isolated radio pulsars. Astrophys. J. 643, 332–355 (2006).
49. Vedantham, H. K. & Phinney, E. S. Radio wave scattering by circumbulacrum cold gas clumps. Mon. Not. R. Astron. Soc. 483, 971–984 (2019).
50. Masui, K. et al. Dense magnetized plasma associated with a fast radio burst. Nature 528, 523–525 (2015).
Extended Data Table 1 | Notes regarding CHIME site activity near epochs (which are referred to 600 MHz) of reported FRBs

FRB	MJD (topocentric)	MJD (barycentric)	Notes
180725.J0613+67	58324.74968534	58324.74686773	a,b
180727.J1311+26	58326.03616289	58326.03454033	c
180729.J1316+55	58328.03355599	58328.03178423	-
180729.J0558+56	58328.72798910	58328.72487751	-
180730.J0353+87	58329.15099464	58329.14985535	d
180801.J2130+72	58331.36614344	58331.36684263	-
180806.J1151+75	58336.59239707	58336.59163871	-
180810.J0646+34	58340.72840988	58340.72474620	e
180810.J1159+83	58340.94493626	58340.94368162	e
180812.J0112+80	58342.48996380	58342.48979586	-
180814.J1554+74	58344.59738935	58344.59692877	-
180814.J0422+73	58344.61791692	58344.61702927	-
180817.J1533+42	58347.07592826	58347.07557125	-

The topocentric and barycentric arrival times are reported in modified Julian date (MJD). The correction of the arrival time to the Solar System barycentre is based on the observed position of the FRB. Additional arrival times for repeat bursts are reported in our companion Letter9. Notes: a, maintenance window at DRAO, but no site maintenance activity reported; b, a prototype CGEM radiometer was powered on for the first time 20 min after this event was detected (see text for details); c, to test RFI, the CGEM radiometer was powered on 5 min before this event and was running until 42 min after (it was permanently powered off thereafter); d, correlator GPU nodes were restarted 67 min before this event, system performance should be nominal; e, several tests for human-induced RFI (from cell phones, key fobs, RF test equipment) took place on site for a few hours this day, this testing concluded 75 min before 180810.J0646+34.
Extended Data Table 2 | Fluence estimates and associated errors of the pre-commissioning sample of CHIME/FRB events

FRB	Fluence (Jy ms)	Integration Bandwidth (MHz)
180725.J0613+67	12 ± 7	223
180727.J1311+26	14 ± 10	224
180729.J1316+55	34 ± 18	228
180729.J0558+56	9 ± 5	235
180730.J0353+87	50 ± 32	228
180801.J2130+72	28 ± 20	226
180806.J1515+75	24 ± 17	210
180810.J0646+34	11 ± 7	206
180810.J1159+83	17 ± 11	209
180812.J0112+80	18 ± 12	214
180814.J1554+74	25 ± 17	215
180814.J0422+73	**21 ± 15**	**216**
180817.J1533+42	26 ± 15	212

The reported uncertainties are derived from measurements of reconstructed flux variation with persistent point sources. They include the effects of the uncharacterized primary beam, the phase-only calibration, and time variation. The integration bandwidth is that used for the fluence calculation of each event. Frequency channels are excluded from the fluence calculation due to hardware issues, persistent RFI in some channels, or failure to obtain calibration solutions in some channels. The fraction of available bandwidth is expected to increase as commissioning work progresses. The fluence estimate reported for the repeater FRB 180814.J0422 + 73 (bold font) is for its discovery observation. Additional fluences for repeat bursts are reported in our companion Letter."