Classification of the tight oil reservoir storage space in the Raoyang Sag of the Jizhong Depression in the Bohai Bay Basin, China

Fangwen Chen1,2 | Qiang Zheng1,2 | Shuangfang Lu1,2 | Xue Ding1,2 | Yiwen Ju3 | Hongqin Zhao1,2

1Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao, China
2School of Geosciences, China University of Petroleum (East China), Qingdao, China
3College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

Abstract

To improve the precision of predicting sweet spots in tight oil reservoirs, the classification of tight oil reservoir storage space is necessary. The tight oil reservoir in the lower submember of the first member of Shahejie Formation (Es1L) of the Raoyang Sag of the Jizhong Depression in the Bohai Bay Basin was selected as a case study for testing a new method of classifying tight oil reservoir storage space based on the results of porosity, permeability, and mercury intrusion porosimetry measurements. The pore-throat size ranges were classified according to pore-throat fractal characteristics and were divided into three groups: <100 nm, 100–1000 nm, and >1000 nm. The oil-bearing property of tight oil reservoir samples is closely related to the median and maximum pore-throat radii. The inflection and intersection points in the trend lines of the pore volume percentages connected by different pore-throat widths (<100 nm, 100–1000 nm, and >1000 nm) vs the porosity and permeability values (which represent the relationship between the pore volume connectivity characteristics and porosity/permeability) were used as the basis for classifying the tight oil reservoir storage space. The tight oil reservoir storage space in the Es1L formation of the Raoyang Sag was divided into three categories, namely classes of III, II, and I. The porosity ranges of the three tight reservoir storage space classes are <5%, 5%–8%, and 8%–11%, respectively, and their permeability ranges are <0.04 mD, 0.04–0.15 mD, and 0.15–0.8 mD, respectively.

Key Words

classification, connected pore volume, fractal, pore-throat size, tight oil reservoir

1 | INTRODUCTION

Tight oil reservoirs exist widely in oil- and gas-bearing basins of the world and have recently been one focus of unconventional oil and gas (including coalbed methane, tight oil, tight gas, shale oil, and shale gas) exploration in many countries.
source rocks, large-scale reservoirs with nanoscale pore systems and local sweet spots. The sweet spot area evaluation of tight oil reservoirs focuses on six features, namely the source property, lithology, reservoir quality, brittleness (closely related to Young’s modulus and Poisson’s ratio), oil-bearing property, and stress anisotropy. The source property includes the abundance, type and maturity of organic matter and characteristics of source rock distribution. The lithology of tight oil reservoirs includes the tight sandstone, tight sandy gravel, tight carbonate, tight peperite, and tight sedimentary tuff. The reservoir quality mainly contains the parameters of porosity and permeability, which largely reflect storage space and fluid seepage of tight oil reservoirs. Brittleness is an important parameter used to characterize the fracturing behavior of a rock mass. One of the most important parameters for evaluating a tight oil reservoir is the oil-bearing property, which largely reflects the resources and productivity level of a tight oil reservoir. The stress anisotropy mainly contains and involves the four important research aspects during the development of tight oil: (a) the varying of stress in the reservoir; (b) the deformation and fracturing mechanisms of the rock; (c) the optimization of the horizontal well trajectory; and (d) the hydraulic fracturing design. The oil-bearing property of a tight oil reservoir has strong heterogeneity. How to improve the efficiency of selecting sweet spots in tight oil reservoirs has become a key research area in the exploration and development of tight oil.

Many scholars have been conducting research on the six features of tight oil reservoirs to predict sweet spots. The source rocks for tight oil reservoirs are classified using the relationship between the total organic carbon content and residual oil content. They are categorized into three classes of resource enrichment, namely scattered (ineffective), low effective, and enriched resources. The relationships between the source rocks and the tight oil reservoirs were determined, classified, and compared. The relationships of between-source, interbedded-source, and in-source mud-subordinated rocks are major targets for tight oil development with high production. The classes of source rocks and the matching relation of source and reservoir rocks were used as evidence to optimize the sweet spots of tight oil reservoirs. There are four main lithologic types of tight oil reservoirs based on the sedimentary environment: salty lacustrine carbonate, shallow lake beach-bar sandstone, delta-front-sandstone, and deep lake gravity-flow-sandstone. Tight oil reservoirs were classified according to the empirical statistics between flow characteristics and porosity values and divided into three classes using porosity ranges of <4%, 4%-7%, and 7%-10%, which is very useful at the early stage of tight oil exploration. The brittleness sensitivity of the elastic parameters in an anisotropic medium was analyzed, and a new brittleness index was established to evaluate the brittleness of tight oil reservoirs. The geologic resources and recoverable reserves of tight oil reservoirs were calculated using the resource abundance analogy. The classification of tight oil reservoir storage space is one of the key indicators for forecasting and evaluating sweet spots in tight oil reservoirs. Pore volumes connected by pore throats with different sizes (or fractal characteristics) have significant effects on oil-bearing properties and fluid flow characteristics. However, these characteristics have rarely been used in the classification of tight oil reservoir storage space. In addition, the previous classification of tight oil reservoir storage space is lacking.

For the purpose of improving the precision of predicting sweet spots in tight oil reservoirs, a new method for classifying tight oil reservoir storage space is introduced. This study uses the tight oil reservoir from the lower submember of the First Member of the Shahejie Formation (EsIL) in the Raoyang Sag as an example. The pore-throat size ranges are classified according to pore-throat fractal characteristics, and then, the tight oil reservoir storage space is classified according to the relationships between the reservoir quality and the pore volume percentage connected by pore throats with different fractal characteristics.

2 | GEOLOGICAL SETTING

The Raoyang Sag is a secondary tectonic unit located in the southwest of the Jizhong Depression in the Bohai Bay Basin, China (Figure 1A). The Raoyang Sag, which is a hydrocarbon-rich sag, has an area of approximately 5300 km² and consists of the Lixian Slope, Hejian subbasin, Renxi subbasin, Renqiu buried buried-hill and Maxi subbasin (Figure 1B). The Raoyang Sag is filled mainly with thick Paleogene sediments comprising the Kongdian Formation (Ek), Shahejie Formation (Es), and Dongying Formation (Ed). The Shahejie Formation includes four members named E1, E2, E3, and E4, from bottom to top (Figure 2). E1 is further divided into a lower submember (EsIL) and an upper submember (EsILU). The lower part of EsIL is derived from sedimentary environments of littoral lakes and river deltas with shallow lake beach-bar sandstone-type tight oil reservoirs. The upper part of EsIL is derived from sedimentary environments of deep lakes and semi-deep lakes with organic-rich muddy shale as the source rock and regional cap rock (Figure 2). The lower and upper parts of EsIL form a good association of reservoir and cap rock. From the center sag to the edge, as well as from the bottom to the top, the reservoir quality gradually worsens and transitions from a conventional reservoir to a tight reservoir, which is one of the key targets of tight oil exploration in recent years. Therefore, the EsIL formation of the Raoyang Sag was selected as a case study to introduce the new method for classifying tight oil reservoir storage space.
3 | SAMPLES AND EXPERIMENTS

3.1| Samples

A total of 30 sandstone reservoir samples from the Es₁L were selected from 14 wells located in the Lixian Slope of the Raoyang Sag. The source rock (including abundance, type, and maturity of organic matter) and stress anisotropy (containing directions and magnitudes of the minimum and maximum principal stresses) conditions of the samples are the same or similar, and the source-reservoir configuration of the samples is “upper generation and lower storage.” In addition, these samples belong to the shallow lake beach-bar sandstone. All samples were cylindrical core plug samples with a diameter of 25 mm and a length of approximately 40 mm; they were collected from core material, and the plug samples were drilled parallel to the bedding.

The lithology and the main minerals of the samples are listed in Table 1. Before the experiments, the cylindrical core plug samples were cleaned using the distillation extraction method. Hot dichloromethane solvents were evaporated and flowed through the core plug samples for at least 60 hours, removing oil in the pores. Then, the solvents condensed and evaporated again in a continuous closed system. After cleaning with hot solvents, the core plug samples were dried in a vacuum drying oven at 90°C for 10 hours to drive off physically absorbed fluid.

3.2| Porosity and permeability

After the pretreatment, the porosity values of the cylindrical core plug samples were measured at laboratory temperature and without overburden pressure conditions based on the bulk and grain volumes. The bulk volumes were measured with a caliper, and the grain volumes were measured by a gas (He) porosity test instrument (KX-90F) according to Boyle’s law. Then, the permeability value of each sample was measured by a gas permeation test instrument (GDS-90F) using the helium pressure drop method at laboratory temperature. The detailed operations for measuring the porosity and permeability were introduced in the practices for core analysis of the oil and gas industry standards, China (SY/T 5336-2006).

3.3| Mercury intrusion porosimetry

The mercury intrusion porosimetry (MIP) experiments were performed using a Micromeritics’ AutoPore IV 9505. The
cumulative intrusion and extrusion mercury volumes were recorded under related pressures during the process of increasing the pressure up to approximately 120 MPa and decreasing the pressure stepwise. The pressures were converted to the equivalent pore radii by Equation (1). The pore volume percentages connected by pore throats of different sizes were obtained from the incremental intrusion mercury saturations under different pressures using Equation (2). At the same time, the median and maximum pore‐throat radii of the samples were acquired. The median pore‐throat radius corresponds to the median pressure when the cumulative intrusion mercury saturation is equal to 50%. The maximum pore‐throat radius corresponds to the displacement pressure when the incremental intrusion mercury saturation is 1%.

\[P_c = \frac{2\sigma \cos \theta}{r} \]
\[S_{Hg-i} = \frac{V_{Hg-i}}{V \cdot \Phi} \times 100\% \]

where \(r \) is the pore radius (μm); \(P_c \) is the capillary pressure (MPa); \(\sigma \) is the interfacial tension of mercury, which is 0.48 J/m²; \(\theta \) is the contact angle between the mercury and pore surface, which is 140° in the MIP experiment; \(S_{Hg-i} \) is the incremental intrusion mercury saturation under the \(i \)th pressure range (%); \(V_{Hg-i} \) is the incremental intrusion mercury volume under the \(i \)th pressure range (cm³); \(V \) is the bulk volume of the sample (cm³); and \(\Phi \) is the porosity value of the sample (%).

METHODS

4.1 Method for classifying pore‐throat sizes

According to the pore classification of IUPAC, the pore widths of <2 nm, 2-50 nm, and >50 nm are defined as micropore, mesopore, and macropore, respectively. This classification has been widely used in materials science field, as well as in the microscopic pore structure evaluation of...
unconventional tight reservoirs such as coalbed gas, shale gas, and shale oil. For coalbed methane and shale gas reservoirs, a considerable proportion of natural gas exists as adsorbed state in micropores, mesopores, and small macropores, and can be mined under the existing technical conditions. However, the fluidity of crude oil in tight oil reservoirs (containing shale oil and tight sandstone oil) is much lower than that of natural gas in shale gas and coalbed reservoirs. Due to the effect of water film bound at pore throat, the tight oil in the pores connected by pore-throat widths <100 nm can hardly be mined under existing technical conditions. Many scholars believe that pore-throat width of 100 nm is the significant boundary where the characteristics of fluid flowing obviously change. Therefore, the pore classification of IUPAC has some limitations in classification and optimization of tight oil reservoirs storage space.

Pore throats of different sizes have unique self-affinities, which can be quantitatively evaluated by a power-law function (Equation 3).

\[N(r) \propto r^{-D_f} \]

where \(r \) is the radius of a unit chosen to fill the fractal object; \(D_f \) is the fractal dimension; and \(N(r) \) is the number of units required to fill the entire fractal object, which can be expressed as Equation (4) according to the capillary tube model.

\[N(r) = \frac{V_{Hg}}{\pi r^2 l} \]

TABLE 1 The lithology and the main minerals of the samples from Es1L in the Raoyang Sag

Sample no.	Well	Depth (m)	Lithology	Quartz	Feldspar	Calcite	Dolomite	Clay
1	Gao105	2448.80	Calcareous argillaceous siltstone	38.9	14.2	5.8	1.9	39.2
2	Gao45	2939.30	Calcareous argillaceous siltstone	39.6	13.5	6.2	1.8	38.9
3	Rao2	3263.85	Calcareous argillaceous siltstone	40.3	14.4	5.7	2.1	37.5
4	Gao37	2575.10	Calcareous argillaceous siltstone	40.7	16.3	5.3	2.6	25.1
5	Xiliu102	3390.32	Muddy calcareous siltstone	37.3	27.4	17.8	3.3	14.2
6	Ning55	3473.10	Muddy calcareous siltstone	42.5	29.3	12.7	3.2	12.3
7	Xiliu102	3378.90	Muddy calcareous siltstone	49.6	28.1	13.2	1.3	7.8
8	Gao104	2617.50	Calcareous muddy siltstone	51.7	29.6	8.4	0	10.3
9	Gao44	2382.44	Calcareous muddy siltstone	49.2	23.7	11.4	1.1	14.6
10	Gao118	2337.15	Calcareous muddy siltstone	58.6	24.4	5.4	1.7	9.9
11	Gao118	2338.05	Calcareous muddy siltstone	61.1	21.6	6.6	1.4	9.3
12	Gao64	2343.85	Calcareous muddy siltstone	45.3	25.5	9.8	2.1	17.3
13	Gao44	2379.64	Muddy calcareous siltstone	49.6	24.7	15.1	1.3	9.3
14	Gao105	2447.50	Calcareous muddy siltstone	66.4	19.6	5.7	0	8.3
15	Gao105	2456.26	Calcareous muddy siltstone	57.5	24.3	5.3	0	12.9
16	Gao37	2570.10	Calcareous muddy siltstone	55.2	25.6	8.8	1.3	9.1
17	Gao37	2570.90	Calcareous muddy siltstone	58.5	24.1	6.3	1.2	9.9
18	Gao26	2572.05	Muddy calcareous siltstone	70.7	18.3	5.7	0	5.3
19	Gao26	2572.80	Calcareous muddy siltstone	62.4	22.6	6.8	0	8.2
20	Gao26	2573.55	Calcareous muddy siltstone	61.8	21.2	6.7	1.2	9.1
21	Gao104	2613.09	Calcareous muddy siltstone	54.4	20.1	9.9	2.4	13.2
22	Gao104	2615.19	Calcareous siltstone	71.6	17.2	6.4	0	4.8
23	Gao45	2944.30	Calcareous muddy siltstone	47.4	26.4	10.4	0	15.8
24	Xiliu5	3275.88	Calcareous muddy siltstone	50.1	25.7	8.3	1.8	14.1
25	Xiliu5	3282.57	Calcareous muddy siltstone	49.6	26.9	6.4	2.6	14.5
26	Xiliu5	3362.00	Calcareous muddy siltstone	42.4	33.3	5.3	3.2	15.8
27	Xiliu102	3378.20	Calcareous muddy siltstone	55.7	27.8	5.4	1.4	9.7
28	Xiliu102	3359.82	Calcareous muddy siltstone	56.4	24.2	6.1	1.5	11.8
29	Xiliu8	3483.64	Calcareous muddy siltstone	49.4	27.7	6.9	2.3	13.7
30	Xiliu8	3483.85	Calcareous muddy siltstone	47.6	24.3	7.8	2.7	17.6
where l is the length of a capillary tube and V_{Hg} is the stage cumulative mercury volume intruded in or extruded from the sample according to the pore throat of r during the MIP experiment. By combining Equation (3) and Equation (4), Equation (5) is obtained.

$$V_{Hg} \propto r^{2-D_f} \tag{5}$$

Substituting Equation (1) and Equation (2) into Equation (5) gives:

$$S_{Hg} = aP_c^{-(2-D_f)} \tag{6}$$

where a is a constant in a similar equation. Equation (6) shows that there is a linear relationship between the mercury saturation (S_{Hg}) vs capillary pressure (P_c) on a log-log plot for each self-affinity pore-throat range. Namely, each self-affinity pore-throat range has its own fractal dimension. In this paper, the pore-throat sizes were classified according to the relationship between $Lg(S_{Hg})$ and $Lg(P_c)$ based on the results of the MIP experiment.

4.2 Method for classifying the tight oil reservoir storage space

The pore volumes connected by pore throats with different fractal dimensions control the permeability of a tight oil reservoir. For tight oil reservoirs, a larger pore volume percentage connected by large pore throats corresponds to a higher permeability value. However, a larger pore volume percentage connected by small pore throats corresponds to a lower permeability value. There are inflection and intersection points between the trend lines of the pore volume percentages connected by pore throats with different size ranges vs permeability values, which represent the relationship between the pore volume connected characteristics and permeability. The inflection points indicate that the pore volume proportion connected by the pore-throat range will change. The intersection points suggest that the pore volume proportions connected by the two corresponding pore-throat ranges are the same, namely the contributions of the two pore-throat ranges on the connected pore volume are equal. Therefore, the permeability values corresponding to the inflection and intersection points are the permeability boundaries that classify the tight oil reservoir storage space. Because there is a good relationship between porosity and permeability values of tight oil reservoirs, the porosity boundaries of different classes of tight oil reservoir storage space can also be determined. The key issue is how to obtain the trend lines of the pore volume percentages connected by pore throats of different size ranges vs porosity/permeability values. The values of the trend lines were calculated by the sliding average method according to Equation (7).

$$V_{i-1} = \left(\sum_{k=i-4/2}^{i+1/2} V_{ik} \right) / x \tag{7}$$

where V_{ik} is the pore volume percentage connected by the pore throats of the ith width range in the sample with the ith porosity/permeability value (%); V_{i-1} is the sliding average value that corresponds to V_i (%); x is the step size of the sliding average method, which is 5 in this study; $i = 1, 2, \ldots, m$, which represents the tag number of the pore-throat range; and $j = 1, 2, \ldots$, which represents the tag number of tight oil samples according to the ascending order of the porosity/permeability value.

5 RESULTS

5.1 Porosity and permeability

The porosity and permeability values of the samples, as well as the oil-bearing characteristics, are listed in Table 2. The porosity and permeability values ranged from 3.66%-33.90% and 0.02-450 mD, with average values of 14.06% and 26.49 mD, respectively.

5.2 MIP

The intruded and extruded mercury saturation curves of the nine samples (samples 1-9), including the low, medium, and high porosity samples, are shown in Figure 3. The relationships between the maximum volume of mercury intruded and the reservoir quality are shown in Figure 4. The maximum volumes of mercury intruded increased with increasing porosity and permeability values, and the mercury was more easily intruded into the samples with higher porosity and permeability values. The median and maximum pore-throat radii of these samples from the MIP method are also listed in Table 2 and Figure 5. The median and maximum pore-throat radii of these samples were in the ranges of 20-60 700 nm and 110-735 000 nm, with average values of 690 nm and 66 000 nm, respectively. Both the median and maximum pore-throat radii of the samples increased with increasing porosity and permeability values. These results indicate that there is a close relationship between the microscopic pore structure and the reservoir quality (porosity and permeability). If the relationship between the pore volumes connected by different pore-throat sizes and the reservoir quality can be determined, the classification standard of tight oil reservoir storage space may be established.

5.3 Classification of the pore-throat size ranges

The pore-throat fractal characteristics of the nine samples from the intruded mercury saturation experiments are listed in Figure 6. For the low porosity samples (samples 1, 2, and 3), there was an obvious pore-throat width boundary of approximately 100 nm dividing the pore-throat width...
ranges into <100 nm and >100 nm according to the pore-throat fractal characteristics (Figure 6A-C). For the medium and high porosity samples (samples 4-9), there were two pore-throat width boundaries of approximately 100 nm and 1000 nm dividing the pore-throat width ranges into <100 nm, 100-1000 nm, and >1000 nm according to the pore-throat fractal characteristics (Figure 6D-I). The boundary of 100 nm was more obvious in the medium porosity samples, whereas the boundary of 1000 nm was more obvious in the high porosity samples.

For all of the samples, the pore-throat size ranges were divided into <100 nm, 100-1000 nm, and >1000 nm according to the pore-throat fractal characteristics based on the relationship between \(\log(S_{He}) \) and \(\log(P_c) \) from the MIP experiments. The three size ranges of pore throats had their self-affinities and controlled the fluid flow characteristics. In oil and gas fields, the pore-throat widths of <100 nm, 100-1000 nm, and >1000 nm relate to microtransition pores, mesopores, and macropores, respectively, which are different from the definitions supplied by the International Union of Pure and Applied Chemistry (IUPAC). The pore volumes connected by pore-throat widths of <100 nm, 100-1000 nm, and >1000 nm represent the adsorbed, seeped, and well-seeped channels, respectively.

Table 2

The characteristics of the samples from Es1L in the Raoyang Sag

Sample no.	Well	Depth (m)	Oil-bearing status	Porosity (%)	Permeability (mD)	Median pore-throat radius (nm)	Maximum pore-throat radius (nm)	Pore volume connected by pore throats (%)	<100 nm	100-1000 nm	>1000 nm
1	Gao105	2448.80	Oil-free	3.66	0.04	40	370	21.26	0.36		
2	Gao45	2939.30	Oil-free	3.91	0.02	20	180	36.57	30.31	1.37	
3	Rao2	3263.85	Oil-free	4.20	0.03	5.92	40	2450	30.34	1.64	
4	Gao37	2575.10	Oil-free	5.92	0.04	8.04	770	46.44	23.91		
5	Xiliu102	3390.32	Oil immersion	5.84	0.09	100	770	14.67	23.91		
6	Ning55	3473.10	Oil-free	7.09	0.08	20	1230	23.02	40.41	2.61	
7	Xiliu102	3738.90	Oil immersion	13.09	1.03	240	3680	14.67	46.44	23.91	
8	Gao104	2617.50	Oil-free	15.21	1.22	170	1230	23.02	40.41	2.61	
9	Gao44	2382.44	Oil-free	3.48	3.60	80	3680	14.67	46.44	23.91	
10	Gao118	2337.15	Oil patch	26.00	120.00	2660	7500	2.91	27.83	40.28	
11	Gao118	2338.05	Oil-free	26.22	57.63	110	1470	9.66	25.31	39.02	
12	Gao64	2343.85	Oil-free	7.90	0.99	130	490	12.52	48.04	16.81	
13	Gao44	2379.64	Oil-free	13.21	0.84	50	490	13.81	42.49	12.34	
14	Gao105	2447.50	Oil patch	24.60	8.73	280	4680	6.91	26.95	37.12	
15	Gao105	2456.26	Oil-free	9.65	0.19	30	490	16.68	44.79	4.34	
16	Gao37	2570.10	Oil-free	15.59	1.94	470	6190	9.50	33.32	41.75	
17	Gao37	2570.90	Oil-free	17.79	4.90	310	3680	5.55	25.92	42.50	
18	Gao26	2572.05	Oil patch	32.69	123.00	300	5700	6.40	28.24	41.24	
19	Gao26	2572.80	Oil-free	20.68	2.54	240	2450	5.91	25.82	37.85	
20	Gao26	2573.55	Oil-free	19.43	3.26	170	920	3.71	37.80	39.46	
21	Gao104	2613.09	Oil patch	16.04	3.52	1050	5500	6.35	25.02	42.11	
22	Gao104	2615.19	Oil-rich	33.90	450.00	6070	73 500	4.95	27.50	42.22	
23	Gao45	2944.30	Oil immersion	9.31	0.38	370	1470	12.90	57.48	9.19	
24	Xiliu3	3275.88	Oil immersion	11.59	0.48	1120	7350	10.19	51.59	10.23	
25	Xiliu3	3282.57	Oil-free	10.05	0.29	90	490	13.04	48.11	10.65	
26	Xiliu5	3362.00	Oil-free	7.78	0.13	/	120	19.69	47.04	2.27	
27	Xiliu102	3378.20	Oil-rich	16.94	4.83	3230	10 500	2.36	29.85	43.85	
28	Xiliu102	3359.82	Oil immersion	15.10	3.80	1500	7350	10.86	25.82	46.25	
29	Xiliu8	3483.64	Oil immersion	8.37	0.15	170	36 750	12.65	58.75	3.72	
30	Xiliu8	3483.85	Oil-free	6.51	0.11	20	490	26.25	44.99	1.46	

The symbol ‘/’ represents without data.
5.4 Classification of the sandstone oil reservoir storage space

5.4.1 Trend lines of the connected pore volumes vs the porosity and permeability

The trend lines of the pore volume percentages connected by pore-throat widths of <100 nm, 100-1000 nm, and >1000 nm vs the porosity and permeability values are shown in Figure 7. The trend lines of the pore volume percentages connected by pore-throat widths of <100 nm decreased with increasing porosity and permeability values and tended to be stable when the porosity and permeability values were larger than 18% and 5 mD, respectively. There were two inflection points in the trend lines, and the porosity and permeability values related to the two inflection points were 11% and 0.15 mD and 18% and 5 mD, respectively. The trend lines of the pore volume percentages connected by pore-throat widths of 100-1000 nm initially increased with increasing porosity and permeability values, then decreased, and finally tended to remain stable. The porosity and permeability values related to the three intersection points were 5%, 11%, and 15%, and their permeability values were 0.04 mD, 0.8 mD, and 18% and 5 mD, respectively. The trend lines of the pore volume percentages connected by pore-throat widths >1000 nm initially tended to be stable with increasing porosity and permeability values, then increased, and finally tended to remain stable again. The porosity and permeability values related to the two inflection points were 8% and 0.15 mD and 18% and 5 mD, respectively.

The three trend lines of the pore volume percentages connected by pore-throat widths of <100 nm, 100-1000 nm, and >1000 nm vs the porosity and permeability values exhibited three intersection points, which indicated that the pore volumes connected by the corresponding pore throats had the same contribution to the porosity/permeability of the samples. The porosity values of the three intersection points were 5%, 11%, and 15%, and their permeability values were 0.04 mD, 0.8 mD, and 2 mD, respectively.

5.4.2 Classification standard of the tight oil reservoir storage space

The sandstone reservoirs were classified according to the inflection and intersection points of the trend lines of the pore volumes.
volume percentages connected by pore throats with different sizes vs the porosity and permeability values as introduced in Sections 3.2 and 5.4.1. As shown in Figure 7, the plateau of the trend lines found toward the right of the graphs corresponded to the conventional sandstone reservoir class I. The intersection point in the trend lines of the pore volume percentages connected by pore-throat widths of 100-1000 nm and >1000 nm vs the porosity and permeability values corresponded to the lower limit of the conventional sandstone reservoir class II. The intersection point in the trend lines of the pore volume percentages connected by pore-throat widths of <100 nm and >1000 nm corresponded to the lower limit of the conventional sandstone reservoir class III. In addition, this latter intersection point is also the boundary between tight and conventional sandstone reservoirs. The first inflection point in the trend lines of the pore volume percentages connected by pore-throat widths of 100-1000 nm and >1000 nm corresponded to the lower limit of tight reservoir class I. The intersection point in the trend lines of the pore volume percentages connected by pore-throat widths of <100 nm and 100-1000 nm corresponded to the lower limit of tight reservoir class II and the upper limit of tight reservoir class III.

The porosity and permeability values related to the classification of sandstone reservoir storage space from the Es1L formation in the Raoyang Sag are listed in Table 3. The porosity ranges of the tight oil reservoir classes III, II, and I are <5%, 5%-8%, and 8%-11%, respectively, and the permeability ranges of the three classes are <0.04 mD, 0.04-0.15 mD, and 0.15-0.8 mD, respectively.

![Figure 4](image1.png)
Figure 4 The relationship between the maximum volume of mercury intruded and the reservoir quality. A, Maximum volume of mercury intruded vs porosity. B, Maximum volume of mercury intruded vs permeability.

![Figure 5](image2.png)
Figure 5 The relationship between the reservoir quality and the pore-throat size. A, Porosity vs throat radius. B, Permeability vs throat radius.
6 | DISCUSSION

6.1 | Relationship between the pore-throat and oil-bearing properties

The relationship between the reservoir quality and pore-throat size (including the median and maximum pore-throat radius) for sandstone samples of different oil-bearing characteristics showed that there were both oily and nonoily samples that belonged to high porosity-high permeability and low porosity-low permeability sandstone classes. The porosity and permeability were not particularly significant in affecting the oil-bearing property of reservoirs. In the case of porosity and permeability values that were the same or similar, the sample with a larger pore-throat size (both the median and maximum pore-throat radius) had better oil-bearing properties (Figure 4). Compared with the porosity and permeability, the pore-throat size, namely the median and maximum pore-throat radii of the sample, played a more significant role in the oil-bearing characteristics of the reservoir samples. The tight reservoirs with larger pore-throat sizes were filled by oil to a greater extent during the process of secondary hydrocarbon migration and were the sweet spots in tight oil reservoirs. Therefore, the classification of tight oil reservoirs according to the relationships between the reservoir quality and the pore volume percentage connected by pore throats with different fractal characteristics not only reflects the reservoir space level but also the oil-bearing property to a certain extent.

6.2 | Pore connectivity controls the classes of reservoir storage space

The percentages of pore volumes connected by pore throats with different fractal characteristics controlled the classes
of sandstone oil reservoir storage space. From tight reservoir class III to conventional sandstone reservoir class I (which equates to the values of porosity and permeability increasing), the percentages of pore volumes connected by pore-throat widths of <100 nm decreased, and the percentages of pore volumes connected by pore-throat widths of >1000 nm increased (Figure 8). At the same time, the percentages of pore volumes connected by pore-throat widths of 100-1000 nm first increased and then decreased. The maximum value of the latter pore-throat width range was found in tight reservoir class I (Figure 8). The larger the percentages of pore volumes connected by large pore throats, the higher the porosity and permeability values of the reservoir, and vice versa. Therefore, the classification of the tight oil reservoir storage space was based on the variation in characteristics of the pore volume percentages connected by pore throats of different fractal dimensions vs the porosity and permeability values.

6.3 Relationship between reservoir storage space class and test oil production

Figure 9 shows the relationship between test oil production (without fracturing) and per unit length of reservoir from different classifications of reservoir storage space. Although there are many factors that influence oil production, such as source rock, source-storage configuration, reservoir pressure, ground stress, data of test oil production were selected from three adjacent wells to evaluate the effect of reservoir storage space on test oil production. The test oil productions from various reservoir storage space classes have obvious discrepancy, which increase from tight reservoir class III to conventional sandstone reservoir class I. As discussed in Section 5.2, the percentages of pore volume connected by large pore throats increase from tight reservoir class III to conventional sandstone reservoir class I, and the capacity of reservoir storage gradually gets better. The crude oil accumulated in the
better reservoir flows easier into the wellbore and forms a higher oil flow. Therefore, it is necessary to classify the reservoir storage space for the purpose of predicting and optimizing sweet spots of tight oil reservoirs.

6.4 Comparison with the classification of other methods

Compared with the previous classification for tight oil reservoirs, the porosity ranges of tight oil reservoir classes III, II, and I from the Raoyang Sag were similar to the results from previous studies (Table 3). Jia et al (2012) proposed a classification for tight oil reservoirs, which defined the porosity ranges of tight oil reservoir classes III, II, and I as <4%, 4%-7%, and 8%-10%, respectively, and defined the upper limit permeability value of a tight oil reservoir (without overburden pressure conditions) as 1 mD. The previous classification of tight oil reservoir storage space was based on empirical statistics from several basins. It was proposed that when the porosity value of an oil reservoir
was larger than 7%, the light crude oil flowed according to Darcy’s law in the oil reservoir without water. Otherwise, the light crude oil did not flow according to Darcy’s law in the actual oil reservoir with water. The nanoscale pores make up the majority of pores in a tight reservoir with a porosity value smaller than 4%. The previous classification is very useful at the early stage of tight oil exploration. However, almost all tight oil reservoirs contain pore water, and the flow characteristics are different for tight oil reservoirs in different basins, specifically a tight oil reservoir with microfractures. In addition, using one standard to classify different tight reservoirs in multiple basins is not ideal, because each tight reservoir has its own characteristics. Moreover, the previous studies provided porosity boundaries to classify tight reservoirs without permeability boundaries. Compared with the previous classification method, the method introduced in this paper has the following advantages: (a) the classification of tight oil reservoirs is based on pore-throat fractal characteristics and levels of connectivity, which is credible and practical; (b) the method is more targeted because it uses formation samples from a specific study area rather than data from several formations or several study areas; and (c) the classification results not only contain porosity boundaries but also include permeability boundaries. The classification of tight oil reservoir storage space used in this study is useful to improve the precision of predicting sweet spots in tight oil reservoirs.

7 | CONCLUSIONS

For the sandstone oil reservoir samples from the Es1L formation of the Raoyang Sag, the pore-throat size ranges were divided into <100 nm, 100-1000 nm, and >1000 nm according to the pore-throat fractal characteristics based on the relationship between Lg\(S_{Hg}\) and Lg\(P_{t}\) from the MIP experiments.

Compared with the porosity and permeability, the pore-throat size, namely the median and maximum pore-throat radii, plays a more significant role in affecting the oil-bearing property of the reservoir samples. In the case of the porosity and permeability values that are the same or similar, the sample with a larger throat size (both in terms of the median and maximum pore-throat radius) has better oil-bearing properties.

The inflection and intersection points in the trend lines of the pore volume percentages connected by pore-throat widths of <100 nm, 100-1000 nm and >1000 nm vs porosity and permeability values can be used to classify the tight oil reservoir storage space. The tight oil reservoir of the Es1L formation in the Raoyang Sag is divided into three categories, namely tight reservoir classes III, II, and I. The porosity ranges of the three tight reservoir classes are <5%, 5%–8%, and 8%–11%, respectively, and their permeability ranges are <0.04 mD, 0.04–0.15 mD, and 0.15–0.8 mD, respectively. It is useful to classify the reservoir storage space for the purpose of predicting and optimizing sweet spots of tight oil reservoirs.

ACKNOWLEDGMENTS

We would like to thank the Natural Science Foundation of China (41972136, 41530315 and 41922015), the Natural Science Foundation of Shandong Province (ZR2019MD003) and the Fundamental Research Funds for the Central Universities (18CX02071A) for financially supporting this project.

ORCID

Fangwen Chen https://orcid.org/0000-0002-6200-1506
Qiang Zheng https://orcid.org/0000-0003-1489-3412
Shuangfang Lu https://orcid.org/0000-0002-5555-8170
Xue Ding https://orcid.org/0000-0003-1648-1817
Yiwen Ju https://orcid.org/0000-0001-5534-7392
Hongqin Zhao https://orcid.org/0000-0002-9785-2888

REFERENCES

1. Jia CZ, Zou CN, Li JZ, Li DH, Zheng M. Assessment criteria, main types, basic features and resource prospects of the tight oil in China. Acta Petrolei Sinica. 2012;33(3):343-350.
2. Yao JL, Deng XQ, Zhao YD, Han TY, Chu MJ, Pang JL. Characteristics of tight oil in Triassic Yanchang Formation, Ordos Basin. Petrol Explor Dev. 2013;40(2):161-169.
3. Zhang XS, Wang HJ, Ma F, Sun XC, Zhang Y, Song ZH. Classification and characteristics of tight oil plays. Petrol Sci. 2016;13(1):18-33.
4. Zou CN, Zhu RK, Wu ST, et al. Types, characteristics, genesis and prospect of conventional and unconventional hydrocarbon accumulations: taking tight oil and tight gas in China as an instance. Acta Petrolei Sinica. 2012;33(2):173-187.
5. Zou CN, Zhang GS, Yang Z, et al. Concepts, characteristics, potential and technology of unconventional hydrocarbons: on unconventional petroleum geology. Petrol Explor Dev. 2013;40(4):413-428.
6. Zou CN, Yang Z, Hou LH, et al. Geological characteristics and "sweet area" evaluation for tight oil. Petrol Sci. 2015;12(4):606-617.
7. Lu SF, Huang WB, Chen FW, et al. Classification and evaluation criteria of shale oil and gas resources: discussion and application. Petrol Explor Dev. 2012;39(2):268-276.
8. Lu SF, Huang WB, Li WH, et al. Lower limits and grading evaluation criteria of source rocks and reservoirs of tight oil and gas. Acta Geol Sin. 2015;89(S1):67-70.
9. Chen SJ, Lei JJ, Liu C, et al. Factors controlling the reservoir accumulation of Triassic Chang 6 Member in Jiayuan-Wuqi area, Ordos Basin, NW China. Petrol Explor Dev. 2019;46(2):253-264.
10. Wu ST, Zhu RK, Yang Z, Mao ZG, Cui JW, Zhang XX. Distribution and characteristics of lacustrine tight oil reservoirs in China. *J Asian Earth Sci*. 2019;178:20-36.
11. Du SH. Prediction of permeability and its anisotropy of tight oil reservoir via precise pore-throat tortuosity characterization and “umbrella deconstruction” method. *J Petrol Sci Eng*. 2019;178:1018-1028.
12. Zeng D, Ranjith PG, Perera M. The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing: a review. *J Pet Sci Eng*. 2016;143:158-170.
13. Shimizu H, Ito T, Tamagawa T, Tezuk K. A study of the effect of brittleness on hydraulic fracture complexity using a flow-coupled discrete element method. *J Pet Sci Eng*. 2018;160:372-383.
14. Yin S, Ding WL, Zhou W, et al. In situ stress field evaluation of deep marine tight sandstone oil reservoir: a case study of Silurian strata in northern Tazhong area, Tarim Basin, NW China. *Mar Petrol Geol*. 2017;80:49-69.
15. He SM, Wang W, Shen H, Tang M, Liang HJ, Lu JA. Factors influencing wellbore stability during under balanced drilling of horizontal wells: when fluid seepage is considered. *J Nat Gas Sci Eng*. 2015;23:80-89.
16. Hoda D, Morteza NT, Amin S, Afshin T. Geo-mechanical modeling and selection of suitable layer for hydraulic fracturing operation in an oil reservoir (south west of Iran). *J Afr Earth Sci*. 2015;111:409-420.
17. Du Y, Zhang JL, Zheng SF, Xin J, Chen J, Li YZ. The rudist buildup depositional model, reservoir architecture and development strategy of the cretaceous Sarvak formation of Southwest Iran. *Petroleum*. 2015;1(1):16-26.
18. Ma J, Huang ZL, Gao XY, Chen CC. Oil-source rock correlation for tight oil in tuffaceous reservoirs in the Permian Tiaohu Formation, Santanghu Basin, northwest China. *Can J Earth Sci*. 2015;52(11):1014-1026.
19. Yu CQ, Guan P, Zou CN, et al. Formation conditions and distribution patterns of N1 tight oil in Zhahaquan Area, Qaidam Basin, China. *Energ Exploil*. 2016;34(3):339-359.
20. Tian ZP, Song XM, Wang YJ, et al. Classification of lacustrine tight limestone considering matrix pores or fractures: a case study of Da’anzhai Member of Jurassic Ziliujing Formation in central Sichuan Basin, SW China. *Petrol Explor Dev*. 2017;44(2):234-246.
21. Liu ZG, Zhu C, Li SM, et al. Geological features and exploration fields of tight oil in the Cenozoic of western Qaidam Basin, NW China. *Petrol Explor Dev*. 2017;44(2):217-225.
22. Huang XR, Huang JP, Li ZC, Yang QY, Sun QX, Cui W. Brittleness index and seismic rock physics model for anisotropic tight-oil sandstone reservoirs. *Appl Geophys*. 2015;12(1):11-22.
23. Wang DB, Ge HK, Wang XQ, et al. A novel experimental approach for fracability evaluation in tight-gas reservoirs. *J Nat Gas Sci Eng*. 2015;23:239-249.
24. Shi X, Wang J, Ge XM, Han ZY, Qu GZ, Jiang S. A new method for rock brittleness evaluation in tight oil formation from conventional logs and petrophysical data. *J Petrol Sci Eng*. 2017;151:169-182.
25. McGlade CE. A review of the uncertainties in estimates of global oil resources. *Energy*. 2012;47(1):262-270.
26. Zeng HL, Zhao XZ, Zhu XM, et al. Seismic sedimentology of sub-clinoformal shallow-water meandering river delta: a case from the Suning area of Raoyang sag in Jizhong depression, Bohai Bay Basin, NE China. *Petrol Explor Dev*. 2015;42(5):621-632.
27. Mao LG, Xiao AC, Zhang HW, et al. Structural patterns of the late Mesozoic crustal detachment system in the Raoyang Sag, Bohai Bay Basin, eastern China: new insights from 3D seismic data. *Mar Petrol Geol*. 2017;84:215-224.
28. Chen FW, Zhao HQ, Lu SF, Ding X, Ju YW. The effects of composition, laminar structure and burial depth on connected pore characteristics in a shale oil reservoir, the Raoyang Sag of the Bohai Bay Basin, China. *Mar Petrol Geol*. 2019;101:290-302.
29. Chen FW, Lu SF, Ding X. Pore types and quantitative evaluation of pore volumes in the Longmaxi Shale of Southeast Chongqing, China. *Acta Geol Sin-Engl*. 2018;92(1):342-353.
30. Gao ZY, Hu QH. Estimating permeability using median pore-throat radius obtained from mercury intrusion porosimetry. *J Geophys Eng*. 2013;10(2):025014.
31. Cao Z, Liu GD, Zhan HB, et al. Pore structure characterization of Chang-7 tight sandstone using MICP combined with N2GA techniques and its geological control factors. *Sci Rep-UK*. 2016;6:36919.
32. Chen FW, Lu SF, Ding X, He XP, Xing HL. The splicing of backscattered scanning electron microscopy method used on evaluation of microscopic pore characteristics in shale sample and compared with results from other methods. *J Petrol Sci Eng*. 2018;160:207-218.
33. Cerepi A, Durand C, Brosse E. Pore microgeometry analysis in low-resistivity sandstone reservoirs. *J Petrol Sci Eng*. 2002;35(3-4):205-232.
34. Matthews GP, Canoville CF, Moss AK. Use of a void network model to correlate porosity, mercury porosimetry, thin section, absolute permeability, and NMR relaxation time data for sandstone rocks. *Phys Rev E*. 2006;73(3):031307.
35. Cai YD, Liu DM, Pan ZJ, Che Y, Liu ZH. Investigating the effects of seepage-pores and fractures on coal permeability by fractal analysis. *Transport Porous Med*. 2016;111(2):479-497.
36. Yang H, Li SX, Liu XY. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin. *Acta Petrolei Sinica*. 2013;34(1):1-11.
37. Luo S, Nasrabadi H, Lutkenhaus JL. Effect of confinement on the bubble points of hydrocarbons in nanoporous media. *AIChE J*. 2016;62:1772-1780.
38. Alfi M, Nasrabadi H, Banerjee D. Experimental investigation of confinement effect on phase behavior of hexane, heptane and octane using lab-on-a-chip technology. *Fluid Phase Equil*. 2016;423:25-33.
39. Salahshoor S, Fahes M, Teodorici C. A review on the effect of confinement on phase behavior in tight formations. *J Nat Gas Sci Eng*. 2018;51:89-103.
40. Lu SF, Li QJ, Zhang PF, et al. Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs. *Petrol Explor Dev*. 2018;45(3):452-460.
41. Li KW. Analytical derivation of Brooks-Corey type capillary pressure models using fractal geometry and evaluation of rock heterogeneity. *J Petrol Sci Eng*. 2010;73(1–2):20-26.
42. Bu HL, Ju YW, Tan JQ, Wang GC, Li XS. Fractal characteristics of pores in non-marine shales from the Huainan coalfield, eastern China. *J Nat Gas Sci Eng*. 2015;24:166-177.
43. Zhang K, Pang XQ, Zhao ZF, et al. Pore structure and fractal analysis of Lower Carboniferous carbonate reservoirs in the Marseis area, Chu-Sarysu basin. *Mar Petrol Geol*. 2018;93:451-467.
44. Broseta D, Barré L, Vizoka I. Capillary condensation in a fractal porous medium. *Phys Rev Lett*. 2001;86:5313-5316.
45. Angulo RF, Gonzalez H. Fractal dimensions from mercury intrusion capillary tests. SPE. 1992;23695.
46. Mahamud MM. Textural characterization of active carbons using fractal analysis. Fuel Process Technol. 2006;87(10):907-917.
47. Cai YD, Liu DM, Yao YB, Li JQ, Qiu YK. Geological controls on prediction of coalbed methane of no. 3 coal seam in southern Qinshui Basin, North China. Int J Coal Geol. 2011;88(2):101-112.
48. Fu HJ, Tang DZ, Xu T, et al. Characteristics of pore structure and fractal dimension of low-rank coal: a case study of Lower Jurassic Xishanyao coal in the southern Junggar Basin, NW China. Fuel. 2017;193:254-264.
49. Li Z, Feng GR, Luo Y, et al. Multi-tests for pore structure characterization—a case study using lamprophyre. AIP Adv. 2017;7:085204.
50. Zhu HJ, Ju YW, Qi Y, Huang C, Zhang L. Impact of tectonism on pore type and pore structure evolution in organic rich shale: implications for gas storage and migration pathways in naturally deformed rocks. Fuel. 2018;228:272-289.
51. Wang GC, Ju YW. Organic shale micropore and mesopore structure characterization by ultra-low pressure N₂ physisorption: experimental procedure and interpretation model. J Nat Gas Sci Eng. 2015;27:452-465.
52. Wang GC, Ju YW, Yan ZF, Li QG. Pore structure characteristics of coal-bearing shale using fluid invasion methods: a case study in the Huainan-Huaibei Coalfield in China. Mar Petrol Geol. 2015;62:1-13.
53. Ju Y, Sun Y, Tan J, et al. The composition, pore structure characterization and deformation mechanism of coal-bearing shales from tectonically altered coalfields in eastern China. Fuel. 2018;234:626-642.
54. Chen FW, Lu SF, Ding X, Ju YW. Evaluation of the density and thickness of adsorbed methane in differently sized pores contributed by various components in a shale gas reservoir: a case study of the Longmaxi Shale in Southeast Chongqing, China. Chem Eng J. 2019;367:123-138.
55. Zhu H, Ju Y, Huang C, et al. Pore structure variations across structural deformation of Silurian Longmaxi Shale: an example from the Chuandong Thrust-Fold Belt. Fuel. 2019;241:914-932.

How to cite this article: Chen F, Zheng Q, Lu S, Ding X, Ju Y, Zhao H. Classification of the tight oil reservoir storage space in the Raoyang Sag of the Jizhong Depression in the Bohai Bay Basin, China. Energy Sci Eng. 2020;8:74–88. https://doi.org/10.1002/ese3.510