A grand unified model for liganded gold clusters

Wen Wu Xu1,2, Beien Zhu1, Xiao Cheng Zeng2,3 & Yi Gao1,4

A grand unified model (GUM) is developed to achieve fundamental understanding of rich structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by which composite particles (for example, protons and neutrons) are formed by combining three quarks (or flavours), here gold atoms are assigned three ‘flavours’ (namely, bottom, middle and top) to represent three possible valence states. The ‘composite particles’ in GUM are categorized into two groups: variants of triangular elementary block $\text{Au}_3(2e)$ and tetrahedral elementary block $\text{Au}_4(2e)$, all satisfying the duet rule ($2e$) of the valence shell, akin to the octet rule in general chemistry. The elementary blocks, when packed together, form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold clusters and their growth mechanism can be deciphered altogether. Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, several highly stable liganded gold clusters are predicted, thereby offering GUM-guided synthesis of liganded gold clusters by design.

1 Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China. 2 Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA. 3 Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, Anhui 230026, China. 4 Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China. Correspondence and requests for materials should be addressed to X.C.Z. (email: xzeng1@unl.edu) or to Y.G. (email: gaoyi@sinap.ac.cn).
Liganded gold clusters have attracted intensive interest over the past 10 years owing to their broad and practical applications in catalysis\(^1\), electrochemistry\(^2\), quantum electronics\(^3\) and biomedicine\(^4\). A grand challenge to scientists in this field, however, is the precise determination of atomic structures of liganded gold clusters. To date, atomic structures of tens of liganded gold clusters have been determined via X-ray crystallography\(^5\)–\(^8\). Nevertheless, these revelations appear serendipitous as the structural determination largely hinges on availability of single crystals for the liganded gold clusters. Although density-functional theory computation has been widely applied to predict the structures of many gold clusters\(^9\)–\(^18\), ultimate confirmation still requires X-ray crystallography measurements. Theoretical efforts have also been made in the past for more general unification models to comprehend stabilities of liganded gold clusters with apparently very different and seemingly unrelated complex structures. For example, Wade–Mingos counting rules\(^19\)–\(^21\) can provide a simple rationale of various shapes of ‘electron-deficient’ polyhedral clusters in terms of the number of skeletal electron pairs, particularly for borane and carborane clusters. However, few gold clusters can be rationalized by the Wade–Mingos counting rule\(^8\), especially for the gold clusters with a high number of interstitial atoms, whose structures have been precisely resolved\(^22\)–\(^25\). The superatom complex (SAC) model proposed by Walter et al.\(^22\) suggests that the high stability of several spherical-like ligand-protected gold clusters\(^26\)–\(^28\) is due largely to the strong electron shell closures, an important concept that stems from the jellium model\(^23\). The total 16 electronic shell-closing ligand-protected gold clusters (all from previous experiments) are summarized in Supplementary Table 1. Cheng et al.\(^29\) developed the super valence bond (SVB) model\(^30\) to explain the electronic stability of non-spherical shells of Au\(_{38}\)(SR)\(_{24}\) (ref. 53). They suggest that the bi-icosahedral Au\(_{15}^+(9)\) core of Au\(_{38}\)(SR)\(_{24}\) can be viewed as a superatomic molecule. Later, the superatom network (SAN) model\(^66\) coupled with the adaptive natural density partitioning analysis\(^65\) have been also invoked by Cheng et al.\(^31\) to explain the high stability of certain low-symmetry ligand-protected gold clusters. A key notion in the SAN model is that the core of Au nanocontainers can be viewed as a network of n-centered two-electron (\(n=2–6\)) superatoms. A tetrahedral unit with two valence electrons has also been identified by Lin and co-workers\(^8\) through an account of the number of valence electrons and tetrahedral units in a serial of structurally resolved double-helical gold clusters (Au\(_{34}\)(SR)\(_{20}\), Au\(_{36}\)(SR)\(_{24}\), Au\(_{38}\)(SR)\(_{28}\) and Au\(_{42}\)(SR)\(_{32}\))\(^32\),\(^33\),\(^34\). Recently, the Borromean-ring diagrams for the Au\(_{23}\)(SR)\(_{18}\) (refs 42,43), Au\(_{36}\)(SR)\(_{24}\) (ref. 53) and Au\(_{42}\)(SR)\(_{32}\) (ref. 60) clusters have been proposed by Pradeep, Whetten and co-workers\(^31\) to explain high stabilities of these clusters. All the theoretical models developed thus far are mainly to address stabilities of a subset of gold nanoclusters, rather than the entire set of 71 reported liganded gold clusters either determined from previous experiments (54 crystallized structures) or predicted from density-functional theory computation (17 structures) over the past three decades. The scheme of grand conceptual unification of the diverse structures of these liganded gold clusters is motivated from the quark model in particle physics wherein six types of quarks, known as flavours, are conceptualized as a unification scheme for composite particles, such as protons and neutrons, and exotic hadrons, in terms of their valence quarks. For instance, it is known that protons, neutrons alike are not elementary but are viewed as bound states of the elementary valence quarks and antiquarks. All quarks are characterized by a set of quantum numbers, such as fractional electric charge of \(\pm 2/3\) or \(\pm 1/3\). In an analogous fashion, here, we assign a gold atom as the ‘elementary particle’ but with one of three ‘flavours’ due to its three possible valence states, that is, \(1e\), \(0.5e\) and \(0e\). The three flavours are named as bottom, middle and top, respectively. Through close inspection of the 71 known clusters, we identify two ‘composite particles’, namely, the triangular Au\(_3\) and tetrahedral Au\(_4\) elementary blocks, in analogy to the protons and tetrquarks, respectively. We find that both elementary blocks satisfy the duet rule, that is, the high tendency of having two electrons in the valence shell. As a result, depending on the flavour of each constituent gold atom, the triangular elementary block can exhibit in total 10 variants of valence states (named as \(\Delta_1\)-\(\Delta_5\)), whereas the tetrahedral elementary block can exhibit in total 15 variants of valence states (named as \(T_1\)-\(T_{15}\)) (Fig. 1). We show that for all 71 liganded gold clusters, once the outer ligands are effectively detached from the inner Au cores (see below), the resulting Au cores are universally packed by the elementary blocks. Hence, the stabilities of the liganded gold clusters are due to the high stability of each individual elementary block.

**Duet rule.** Note that the duet rule elucidated here is akin to the textbook octet rule, a well-known and the first chemical rule of thumb in general chemistry. The octet rule is a valence-electron counting rule for the explanation or prediction of electronic structure and chemical bonding of molecules made of main-group elements. The other two valence-electron counting rules that is, the second and third rules of thumb, namely, the 18-electron rule and Wade’s rule, are newer chemical rules of thumb for understanding chemical structures of organometallics and polyhedral cluster compounds, respectively. Below, we report that in conjunction with the GUM, the duet rule of the valence shell for the elementary blocks can be treated as the fourth rule of thumb for understanding diverse liganded gold clusters.

**Evidences on stabilities of the elementary blocks.** In GUM, both elementary blocks triangular Au\(_3\) and tetrahedral Au\(_4\) entail only two valence electrons [Au\(_3\)(2e) \& Au\(_4\)(2e)], thereby both having strong electron shell closures. As shown in Fig. 2, the two valence electrons are delocalized in the shell-closing elementary blocks [Au\(_3\)(2e) and Au\(_4\)(2e)], consistent with the SAC model\(^30\). Moreover, from an experimental perspective, the Au\(_3\) core of crystallized [Au\(_3\)(IDipp)]\(_{1}^{1+}\) [IDipp = 1,3-bis(2,6-diisopropylphenylimidazol-2-ylidene)] (ref. 5) and the Au\(_4\) core of [Au\(_4\)(PR\(_3\))\(_4\)]\(_{2}^{2+}\) (ref. 6) (Supplementary Table 2) are essentially...
Elementary block Au₄ due to constituent Au atoms having three possible flavours (b for bottom flavour, m for middle flavour and t for top flavour), and the requirement of duet rule (that is, having 2 flavours (b for bottom flavour, m for middle flavour and t for top flavour), respectively, supporting the high stabilities of the Au₃(2e) and Au₄(2e) structures. The high stabilities of Au₃(2e) and Au₄(2e) structures can be also shown from ab initio computation. In Supplementary Table 3, the formation energies of five isoelectronic species, Au₃(2e), Au₄(2e), Au₃(2e), Au₄(2e) and Au₄(2e), are listed. Only the triangular Au₃(2e) and tetrahedral Au₄(2e) exhibit highly negative formation energies, which provides another piece of strong evidence of their high stabilities. In addition, both elementary blocks exhibit larger highest/lowest occupied/unoccupied molecular orbital (HOMO/LUMO) gaps than their isoelectronic counterparts (Supplementary Table 3).

Electron counting protocols for effective detachment of ligands. All ligand-protected Au clusters are composed of an inner Au core and a number of outer ligands. The first step toward developing the GUM is to find effective protocols to detach the protection ligands from the Au core so that the vast complex factors of the outer ligands can be removed while all ligand-protected Au clusters can be reduced to bare Au cores for structural analysis. Note that different elements or functional groups that are directly bonded with an Au atom at the core surface are in different valence-electron states. As such, if one is to focus on the valence state of the inner Au core, equivalent electron counting is required to effectively detach all protection ligands from the Au core. The following electron-counting protocols for effective detachment of different types of ligands can be undertaken (see Fig. 3 for graphical illustrations):

First, each SR group and Au atom embedded in the gold–thiolate staple motifs possess −1e and 1e valence electron, respectively. To effectively detach the smallest staple motif from the Au core, the net number of valence electrons of the staple motif should be converted to zero. To this end, each of the two Au atoms (on the Au core) bonded with SR is considered to transfer 0.5e valence electron to the staple motif. As such, equivalent electron counting for effective detachment of the staple motif is achieved (Fig. 3a). Second, for SR group bonded with two Au atoms on the Au core, again, each of the two Au atoms (on the core) is considered to transfer 0.5e valence electron to the X atom so that equivalent electron counting for effective detachment of the X atom is achieved (Fig. 3b). Third, for halogen ligand X (X = F, Cl, Br and I) bonded with a single Au atom on the Au core, each Au atom is considered to transfer 1e valence electron to the X atom so that equivalent electron counting for effective detachment of the X atom is achieved (Fig. 3c). Fourth, the phosphine group is known as a weak ligand, thereby possessing 0e valence electron. As such, each Au atom bonded with the phosphine group still maintain its original 1e valence electron upon detachment with the phosphine group (Fig. 3d).

In summary, depending on the ligands, for example, PR₃, X, SR or gold–thiolate staple motifs, Au atoms on the Au core can exhibit one of the three valences: bottom (1e), middle (0.5e) and top (0e) after effective detachment of the protection ligands from the Au core. Note also that when two elementary blocks are fused together via sharing a single Au atom, the shared Au atom contributes 0.5e valence electron to each elementary block. As such, the fused elementary blocks can be effectively separated via the protocol shown in Fig. 3e.

Prototypical liganded clusters. As shown in Supplementary Table 2, once the ligands are effectively detached from the Au cores, the Au cores of all 71 ligand-protected gold clusters can be universally decomposed into a number of the triangular Au₃ (Δ₁–Δ₁₀) and/or tetrahedral Au₄ (T₁–T₁₅) elementary blocks. Two prototypical structures are analysed here as two examples while other eight representative structures are either briefly
The remaining cases can be analysed in similar fashion. The first prototype structure we consider is \([\text{Au}_6(\text{dppp})_4]^{2+}\) (ref. 9), which is composed of four dppp ligands (each with 0 e\text{valence} \text{electron}) and an \(\text{Au}^{2+}\) core (Fig. 4a). The \(\text{Au}_6\) core consists of two triangular \(\text{Au}_3\) blocks. According to the electron-counting protocol, the six \text{Au} atoms of the \text{Au}_6 core are all bonded with the inner \text{Au} core.

The second prototype structure we consider is \([\text{Au}_{20}(\text{SR})_{24}]^{2+}\) (ref. 56). The \(\text{Au}\) core of \(\text{Au}_{20}(\text{SR})_{24}\) can be viewed as a combination of an \(\text{Au}_7\) and a Kekulé-like \(\text{Au}_{18}\) structure (Fig. 5a). The \(\text{Au}_7\) core is composed of two tetrahedral \(\text{Au}_4\) blocks, fused together by sharing an \(\text{Au}\) atom. The latter contributes 0.5 e\text{valence} \text{electron} to each tetrahedral \(\text{Au}_4\) block. Other six vertex \text{Au} atoms are bonded with the SR group and each contributes 0.5 e\text{valence} \text{electron} to the resident tetrahedral \(\text{Au}_4\) block. Thus, each of the four vertex \text{Au} atoms in the tetrahedral \(\text{Au}_4\) block has the middle \text{valence} state so that each tetrahedral \(\text{Au}_4\) elementary block is in the \(T_9\) \text{valence} state (Fig. 5b). Moreover, the Kekulé-like \(\text{Au}_{18}\) structure can be viewed as six tetrahedral \(\text{Au}_4\) blocks fused together in a loop with six sharing \text{Au} atoms (Fig. 5c). Again, each of the six tetrahedral \(\text{Au}_4\) elementary blocks is in the \(T_9\) \text{valence} state.

Finally, eight other representative clusters are considered. The structure decompositions of eight other representative clusters in terms of elementary blocks as well as their corresponding \text{valence} states are shown in Supplementary Figs 1–8. Specifically, the structure decomposition of three largest ligand-protected gold clusters, \(\text{Au}_{102}(\text{SR})_{44}\) (ref. 60), \(\text{Au}_{130}(\text{SR})_{50}\) (ref. 61) and \(\text{Au}_{144}(\text{SR})_{60}\) (ref. 78), are given below. According to the “divide-and-protect” formulation \(87,88\), the \(\text{Au}_{102}(\text{SR})_{44}\) can be written as \(\text{Au}_{102}(\text{RS-Au-SR})_{24}\). Each of the two \text{Au} atoms in the \(\text{Au}_{102}(\text{SR})_{44}\) shared by two [-RS-Au-SR-] staple motifs can be viewed as the \text{Au} atom with 0 e\text{valence} \text{electron} (that is, top \text{flavour}). As such, the \(\text{Au}_{102}\) core of \(\text{Au}_{102}(\text{SR})_{44}\) is composed of 29 elementary blocks and their corresponding \text{valence} states can be described by \(5\Delta_1, 3\Delta_3, 16\Delta_5, 2T_1, 27T_2, T_7\) and \(2T_8\) (Supplementary Fig. 9), giving rise to 58 \text{valence} electrons in total (corresponding to the strong electron transfer).
shell closure, according to SAC model\(^{82}\)) for Au\(_{105}(\text{SR})_{42}\). The Au\(_{105}\) core of Au\(_{130}(\text{SR})_{50}\) is composed of 40 elementary blocks and their corresponding valence states include 5\(\Delta_s\), 11\(\Delta_5\), 4\(T_4\), 3\(T_5\) and 17\(T_9\) (Supplementary Fig. 10), giving rise to 80 valence electrons in total for Au\(_{130}(\text{SR})_{50}\). The Au\(_{114}\) core of Au\(_{144}(\text{SR})_{60}\) is composed of 42 elementary blocks and their corresponding valence states include 20\(\Delta_s\), 13\(\Delta_5\), 3\(T_5\) and 6\(T_9\) (Supplementary Fig. 11), giving rise to 84 valence electrons in total in Au\(_{144}(\text{SR})_{60}\).

Discussion

In general, the inner Au cores of all the ligand-protected gold clusters are composed of elementary blocks (Supplementary Table 2 and Fig. 6), each having two valence electrons (Fig. 1), whereas the outer ligands with \(\delta\) valence electron provide the geometry constraint and arrangement of valence electrons in each elementary block to satisfy the duet rule. In Supplementary Fig. 12, we show several possible valence states for two fused tetrahedral Au\(_4\) blocks (Au\(_4\)) protected by either SR or PR\(_3\) groups in various liganded gold clusters. Our analysis indicates that the fused tetrahedral Au\(_4\) elementary blocks in the four predicted stable clusters, Au\(_{10}(\text{SR})_{6}\), [Au\(_{8}(\text{SR})_{2}(\text{PR})_{3}\)]\(^{1+}\), [Au\(_{10}(\text{SR})_{2}(\text{PR})_{3}\)]\(^{2+}\) and [Au\(_{12}(\text{PR})_{3}\)]\(^{3+}\), are in the 2\(T_9\), 2\(T_5\), 2\(T_4\) and 2\(T_2\) valence states, respectively, whereas the constructed Au\(_{8}(\text{SR})_{3}(\text{PR})_{2}\) and Au\(_{10}(\text{PR})_{6}\) clusters are expected to be less stable due to their violation of the duet rule. Note that a recent experimental investigation of Au\(_{27}(\text{SR})_{15}\) in its three oxidation states, that is, Au\(_{27}(\text{SR})_{15}^{1/0+1}\), provides more compelling evidence on the effect of violation of the duet rule (or deviation from the strong electron shell closure) to the symmetry of the Au\(_{13}\) core and stability of the cluster\(^{89}\). The obtained three crystalline structures in the related three oxidation states demonstrate that the structural distortion (in the Au core in particular) increases with the decreased superatomic valence from 1\(S^11\text{P}^6\) to 1\(S^11\text{P}^4\) as the Au\(_{27}(\text{SR})_{15}\) cluster has the eight-electron shell-closing configuration\(^{82}\) 1\(S^21\text{P}^8\), and thus the highest thermal stability. The other two oxidation states, Au\(_{27}(\text{SR})_{15}^{0+1}\), are less stable due to the incomplete 1\(\text{P}\) superatomic orbital. Likewise, the structural distortion observed in the two oxidation states, Au\(_{27}(\text{SR})_{15}^{0+1}\), can be understood based on GUM. The Au\(_{13}\) core of Au\(_{27}(\text{SR})_{15}^-\) can be decomposed into four elementary blocks and their corresponding valence states can be described as [2\(\Delta_s\) and 2\(T_9\)] (Supplementary Table 2). Clearly, the number of valence electrons in both oxidation states, Au\(_{27}(\text{SR})_{15}^{0+1}\), dissatisfies the duet rule. As a consequence, lower thermal stability and larger structural distortion in the highly symmetric Au\(_{13}\) core are expected, consistent with the experimental evidence\(^{89}\).

The GUM does not only offer a universal structural characterization of all 71 liganded Au\(_{4}\) core with increasing number of elementary blocks is presented. Indeed, the structure evolution of the Au cores can be understood through various routes of packing the elementary blocks. For example, two elementary blocks with \(T_4\) valence state can yield either the Au\(_8\) core of Au\(_{27}(\text{SR})_{15}\) (ref. 39) via direct packing or the Au\(_8\) core of Au\(_{34}(\text{SR})_{16}\) (ref. 33) via sharing a vertex Au atom. Two elementary blocks with \(T_4\) valence states can give rise to the

Figure 6 | Structure evolution of the Au cores (large magenta spheres) with increasing number of elementary blocks. Colour code: Au—magenta; S—dark green; X—light green; P—wine; C—black; N—blue. The R groups are omitted for clarity. The dotted and solid squares denote the newly and previously predicted structures, respectively. Others are crystallized structures.
blocks all at the $T_9$ valence state. The computed HOMO–LUMO gap of Au$_{42}$(SR)$_{14}$ is 2.00 eV, suggesting high chemical stability. Interestingly, the Au$_{36}$(SR)$_{12}$ and Au$_{42}$(SR)$_{14}$ can be rewritten as Au$_{36}$[Au(SR)$_2$]$_{16}$ and Au$_{35}$[Au(SR)$_2$]$_{17}$, respectively, consistent with the ‘divide-and-protect’ formulation.$^{2,88}$

In conclusion, a grand unified model that can incorporate previously developed independent models (SAC, SVB, SAN and so on.) is developed to address stabilities of all ligand-protected gold clusters. On the basis of the GUM, all 71 liganded gold nanoclusters can be decomposed into several elementary blocks of triangular Au$_5$(2e) and tetrahedral Au$_6$(2e). Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, a series of highly stable liganded gold clusters are predicted, which provides a guide to synthesizing new ligand-protected gold clusters. Hence, the GUM can offer not only new insights into the packing and structure evolution of the 71 liganded gold clusters known as of today, but also a systematic route toward rational design and characterization of liganded metal clusters to inspire future experimental synthesis.

**Data availability.** The authors declare that the data supporting the findings of this study are available within the article and its Supplementary Information files, and all relevant data are available from the authors.

**References.**

1. Turner, M. et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. *Nature* **454**, 981–984 (2008).

2. Chen, S. et al. Gold nanoclusters of varied size: transition to molecule-like charging. *Science* **280**, 2098–2101 (1998).

3. Daniel, M. C. & Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. *Chem. Rev.* **104**, 293–346 (2004).

4. Rosi, N. L. et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. *Science* **312**, 1027–1030 (2006).

5. Robolito, T. J., Bacs, J., Gray, T. G. & Sadighi, J. P. Synthesis of a trigold monocation: an isolobal analogue of [H$^+$. ]$^+$. *Angew. Chem. Int. Ed.* **124**, 12243–12246 (2012).

6. Zeller, E., Beruda, H. & Schmidbaur, H. Tetrahedral gold cluster [Au$_3$]$^+$: crystal structure of [(Bu$_2$P)Au]($^2$BF$_4$)$_2$. *Z. Chem.* **32**, 3203–3204 (1993).

7. Briant, C. E., Hall, K. P., Mingos, D. M. P. & Wheeler, A. C. Synthesis and structural characterisation of hexakis (triphenyl phosphine)-hexagonal (2+) nitrate, [Au$_6$(PPh$_3$)$_6$][NO$_3$]$_2$, and related clusters with edge-sharing btetrahedral geometries. *J. Chem. Soc. Dalton Trans.* **687–692** (1986).

8. Bellon, P., Manassero, M. & Sansoni, M. An octahedral gold cluster: crystal and molecular structure of hexakis[(p-tolylyphosphate)-octahedro-hexagold bis(tetraphenylborate)]. *J. Chem. Soc. Dalton Trans.* **2423–2427** (1973).

9. Van Der Velden, J. W. A. et al. Gold clusters. Tetraakis(1,3-bis(diphenylphosphino)propane)hexagold dinitrate: preparation, x-ray analysis, and gold-197 Moessbauer and phosphorus-31(poron) NMR spectra. *Inorg. Chem.* **21**, 4321–4324 (1982).

10. Van Der Velden, J. W. A. et al. Intermediates in the formation of gold clusters. Preparation and x-ray analysis of [Au$_5$(PPh$_3$)$_3$]$^+$ and synthesis and characterization of [Au$_6$(PPh$_3$)$_6$]PF$_6$. *Inorg. Chem.* **23**, 146–151 (1984).

11. Shichibu, Y., Zhang, M., Kamei, Y. & Konishi, K. [Au$_3$]$^+$: a missing link in the four-electron gold cluster family. *J. Am. Chem. Soc.* **136**, 12892–12895 (2014).

12. Kobayashi, N., Kamei, Y., Shichibu, Y. & Konishi, K. Protonation-induced chromism of pyridylethynyl-appended [core + exo]-type Au$_6$ clusters. Resonance-coupled electronic perturbation through π-conjugated group. *J. Am. Chem. Soc.* **135**, 16078–16081 (2013).

13. Konishi, Y., Shichibu, Y. & Konishi, K. Generation of small gold clusters with unique geometries through cluster-to-cluster transformations: Octanuclear clusters with edgesharing gold tetrahedron motifs. *Angew. Chem. Int. Ed.* **50**, 7442–7445 (2011).

14. Manassero, M., Naldini, L. & Sansoni, M. A new class of gold cluster syntheses. *Science* **312**, 687–692 (1986).

15. Kamei, Y., Shichibu, Y. & Konishi, K. Polyrotaxane core with dibenzylhexaphosphate: a new class of gold cluster compounds. *Science* **312**, 687–692 (1986).

16. Van Der Velden, J. W. A., Bour, J. J., Bosman, W. P. & Noordik, J. H. Synthesis and X-ray crystal structure determination of the cationic gold cluster...
1. McKenzie, L. C., Zaikova, T. O. & Hutchison, J. E. Structurally similar...
2. Briant, C. E., Hall, K. P., Wheeler, A. C. & Mingos, D. M. P. Structural...
3. Chao, S. & Cai, X. Crystal and molecular structure of...
4. Nuñokawa, K. et al. Synthesis, single crystal X-ray analysis, and TEM for a...
5. Smiths, J. M. M., Bour, J. J., Vollenbroek, F. A. & Beurskens, P. T. Preparation...
6. McKenzie, L. C., Zaidi, O. A. & Hutchison, J. E. Structurally similar triphenylphosphine-stabilized undecagolds, Au11(PPh3)7Cl3 and...
7. Bellon, P., Manassero, M. & Sansoni, M. Crystal and molecular structure of...
8. Van Der Velden, J. W. A., Bour, J. J., Bosman, W. P., Noordik, J. H. &...
9. Wan, X., Yuan, S., Lin, Z. & Wang, Q. M. A chiral gold nanocluster Au20...
10. Wang, X., Yuan, S., Lin, Z. & Wang, Q. M. Alkynyl-protected Au20 nanocluster...
11. Zhao, Y., Liu, X., Song, L., Wei, S. & Jiang, D. Crystal structure and theoretical analysis of the chiral Au30S(S-t-Bu)18 cluster. J. Am. Chem. Soc. 136, 5050–5054 (2014).
12. Zeng, C., Liu, Q. et al. Tri-icosahedral gold nanocluster [Au8(PPh3)7(SCnH2n+1)]+. J. Am. Chem. Soc. 138, 13114–13118 (2016).
13. Yang, S. et al. A new crystal structure of Au68 with a Au44 kernel capped by thiolate and chloride. J. Am. Chem. Soc. 137, 10033–10035 (2015).
14. Jin, R. et al. Tri-icosahedral gold nanocluster [Au8(PPh3)7(SC2H4Ph)X2]+: linear assembly of icosahedral building blocks. ACS Nano 9, 8530–8536 (2015).
15. Liu, C. et al. Observation of body-centered cubic gold nanocluster. Angew. Chem. Int. Ed. 54, 8926–8929 (2015).
16. Qian, H., Eckenhoff, W. T., Zhu, Y., Pintauer, T. & Jin, R. Total structure determination of thiolate-protected Au68 nanoparticless. J. Am. Chem. Soc. 132, 8279–8281 (2010).
17. Tian, S. et al. Structural isomerism in gold nanoparticles revealed by X-ray crystallography. Nat. Commun. 6, 8667 (2015).
18. Teo, B. K., Shi, X. & Zhang, H. Pure gold cluster of 1:9:9:9:1:1 layer structure: a novel 39-metal-atom cluster ([PF6]3[Au25(PPh3)10]). Angew. Chem. Int. Ed. 49, 1–2 (2010).
19. Zeng, C. et al. Gold tetrahedra coil up: Kekulé-like and double helical superstructures. Sci. Adv. 1, e1500425 (2015).
20. Liao, L. et al. Structure of chiral Au133(SR)52 nanoparticle. J. Phys. Chem. C 120, 6265–6268 (2016).
21. Zeng, C. et al. Gold quantum boxes: on the periodicities and the quantum confinement in the Au25, Au38, Au42, and Au52 magic series. J. Am. Chem. Soc. 138, 3950–3953 (2016).
22. Zeng, C., Liu, C., Chen, Y., Rosi, N. L. & Jin, R. Atomic structure of self-assembled monolayer of thiolates on a tetragonal Au25 nanocrystal. J. Am. Chem. Soc. 138, 8710–8713 (2016).
23. Juddinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318, 430–433 (2007).
24. Chen, Y. et al. Crystal structure of barrel-shaped chiral Au133(p-MBT)50 nanoparticle. J. Am. Chem. Soc. 137, 10425–10428 (2015).
25. Zeng, C., Liu, H., Jia, Y., Cao, X. & Tian, S. Structural patterns at all scales in a nonmetallic chiral Au133(SR)52 nanoparticle. Sci. Adv. 1, e1500045 (2015).
26. Liu, C., Pei, Y., Sun, H. & Ma, J. The nucleation and growth mechanism of thiolate-protected Au nanocrystals. J. Am. Chem. Soc. 137, 15899–15916 (2015).
27. Jiang, D., Overbury, S. H. & Dai, S. Structure of Au39(SR)3 and its implication for the origin of the nucleus in thiolated gold nanoclusters. J. Am. Chem. Soc. 135, 8786–8789 (2013).
28. Cheng, L., Yuan, Y., Zhang, X. & Yang, J. Superatom networks in thiolate-protected gold nanoparticles. Angew. Chem. Int. Ed. 52, 9035–9039 (2013).
29. Pei, Y., Gao, Y., Shao, N. & Zeng, X. C. Thiolate-protected Au25(SR)18 cluster: Prolate Au16 core with new [Au(SR)4]2+ staple motif. J. Am. Chem. Soc. 131, 13619–13621 (2009).
84. Cheng, L., Ren, C., Zhang, X. & Yang, J. New insight into the electronic shell of \( \text{Au}_{60}(\text{SR})_{30} \): biterahedron golden kernel enclosed by \( \text{Au}(\text{I}) \) complex. J. Phys. Chem. Lett. 6, 1390–1395 (2015).

83. Ekardt, W. Dynamical polarizability of small metal particles: self-consistent \( \text{Au}_{60}(\text{SR})_{30} \) implication to structural evolution of thiolated gold clusters from homoleptic gold(i) thioclates to core-stacked nanoparticles. J. Am. Chem. Soc. 134, 3015–3024 (2012).

82. Walter, M.

81. Mingos, D. M. P. Molecular-orbital calculations on cluster compounds of gold. Proc. Natl Acad. Sci. U.S.A. 74, 8927–8931 (2006).

80. Akola, J., Walter, M., Whetten, R. L., Häkkinen, H. & Grönbeck, H. On the structure of thiolate-protected \( \text{Au}_{60} \): \( \text{J. Am. Chem. Soc.} \) 130, 3756–3757 (2008).

79. Tian, Z. & Cheng, L. Electronic and geometric structures of \( \text{Au}_{60}(\text{SR})_{30} \): a network of 2e-superatom Au cores protected by tridentate protecting motifs with u3-S. Nanoscale 8, 826–834 (2016).

78. Pei, Y., Gao, Y. & Zeng, X. C. Unraveling the atomic structures of the \( \text{Au}_{60}(\text{SR})_{30} \) superatom cluster. Nat. Commun. 7, 1882–1890 (2016).

77. Xu, W. W. & Gao, Y. Unraveling the atomic structures of the \( \text{Au}_{60}(\text{SR})_{30} \) superatom cluster. J. Phys. Chem. C 119, 14224–14229 (2015).

76. Xu, W. W., Li, Y., Gao, Y. & Zeng, X. C. Unraveling a generic growth pattern in structure evolution of thiolate-protected gold nanoparticles. Nanoscale 8, 7396–7401 (2016).

75. Xu, W. W., Gao, Y. & Zeng, X. C. Unraveling structures of protection ligands \( \text{Au}_{60}(\text{SR})_{30} \). J. Phys. Chem. C 113, 5035–5038 (2009).

74. Malola, S. et al. \( \text{Au}_{60}(\text{SR})_{30} \) cluster as a chiral dimer of 8-electron superatoms: Structure and optical properties. J. Am. Chem. Soc. 134, 19560–19563 (2012).

73. Malola, S. et al. \( \text{Au}_{60}(\text{SR})_{30} \) as a superatom cluster. J. Am. Chem. Soc. 135, 19060–19063 (2013).

72. Pei, Y., Gao, Y. & Zeng, X. C. Unraveling structures of protection ligands on gold nanoparticle \( \text{Au}_{60}(\text{SH})_{32} \). Sci. Adv. 1, e1400211 (2015).

71. Tian, Z. & Cheng, L. Electronic and geometric structures of \( \text{Au}_{60}(\text{SR})_{30} \): a network of 2e-superatom Au cores protected by tridentate protecting motifs with u3-S. Nanoscale 8, 826–834 (2016).

70. Akola, J., Walter, M., Whetten, R. L., Häkkinen, H. & Grönbeck, H. On the structure of thiolate-protected \( \text{Au}_{60} \): \( \text{J. Am. Chem. Soc.} \) 130, 3756–3757 (2008).

69. Pei, Y.

68. Pei, Y., Tang, J., Tang, X., Huang, Y. & Zeng, X. C. New structure model of \( \text{Au}_{60}(\text{SR})_{30} \): biterahedron golden kernel enclosed by \( \text{Au}(\text{I}) \) complex. J. Phys. Chem. Lett. 6, 1390–1395 (2015).

67. Pei, Y. et al. Interlocked catenane-like structure predicted in \( \text{Au}_{60}(\text{SR})_{30} \) implication to structural evolution of thiolated gold clusters from homoleptic gold(i) thioclates to core-stacked nanoparticles. J. Am. Chem. Soc. 134, 3015–3024 (2012).

66. Pei, Y., Gao, Y. & Zeng, X. C. Structural prediction of thiolate-protected \( \text{Au}_{60} \): a face-fused bi-icosahedral Au core. J. Am. Chem. Soc. 130, 7830–7832 (2008).

65. Zubarev, D. Y. & Boldyrev, A. I. Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys. Chem. Chem. Phys. 10, 5207–5217 (2008).

64. Tofanelli, M. A. et al. Jahn–Teller effects in \( \text{Au}_{15}(\text{SR})_{15} \). Chem. Sci. 7, 1388–1390 (2016).

Acknowledgements

W.W.X. is supported by National Natural Science Foundation of China (11504396). Y.G. is supported by the start-up funding from Shanghai Institute of Applied Physics, Chinese Academy of Sciences (Y290011101), National Natural Science Foundation of China (21273268, 11574340), ‘Hundred People Project’ from Chinese Academy of Sciences and CAS-Shanghai Science Research Center (CAS-SSRC-V)-2015-01). R.Z. is supported by the development fund for Shanghai talents, National Natural Science Foundation of China (16ZR44200) and National Natural science foundation of China (11604357). X.C.Z. is supported by a grant from Nebraska Center for Energy Sciences Research and a Qian-ren B (One Thousand Talent Plan B) summer research fund from USTC, and by a State Key R&D Fund of China (2016YFA0200604) to USTC. The computational resources utilized in this research were provided by Shanghai Supercomputer Center, National Supercomputing Center in Tianjin and Shenzhen, special programme for applied research on super computation of the NSFC-Guangdong joint fund (the second phase) and NC3 computer facility in University of Nebraska-Lincoln.

Author contributions

Y.G. created the idea and initiated the model. Y.G. and X.C.Z. designed the whole project. W.W.X., R.Z., X.C.Z. and Y.G. developed the model. X.C.Z. introduced flavour concept. Y.G. created the idea and initiated the model. Y.G. and X.C.Z. designed the whole project. W.W.X., R.Z., X.C.Z. and Y.G. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Xu, W. W. et al. A grand unified model for liganded gold clusters. Nat. Commun. 7, 13574 doi: 10.1038/ncomms13574 (2016).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/