Capsazepine prolongation of the duration of lidocaine block of sensory transmission in mice may be mediated by modulation of HCN channel currents

Wenling Zhao, Peng Liang, Jin Liu, Huan Li, Daqing Liao, Xiangdong Chen, Qian Li, Cheng Zhou

1 Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
2 Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
3 Department of Anesthesiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China

Corresponding Authors: Qian Li, Cheng Zhou
Email address: hxliqian@foxmail.com, zhouc@163.com

Background and Objectives: Hyperpolarization-activation cyclic nucleotide-gated (HCN) channels contribute to the effects of lidocaine. Capsazepine (CPZ), a competitive inhibitor of capsaicin of transient receptor potential vanilloid-1 (TRPV-1) channel, has also been found to inhibit HCN channel currents (I_h). This study was designed to investigate whether CPZ could prolong durations of lidocaine in regional anesthesia.

Methods: Mouse HCN1 and HCN2 channels were expressed in HEK 293 cells. The effect of CPZ on I_h was measured by whole-cell patch-clamping recording. Sciatic nerve block model in mice was used for the study in vivo. The mice were randomly divided into 7 groups, respectively receiving lidocaine, CPZ, ZD7288 (HCN channel blocker), CPZ + lidocaine, ZD7288 + lidocaine, ZD7288 + CPZ + lidocaine, forskolin (an activator of adenylyl cyclase) + CPZ + lidocaine. Regional anesthetic durations of lidocaine were determined. Voltage-gated sodium channel currents (I_{Na}) and I_h were recorded in dorsal root ganglion (DRG) neurons of mice. The effects of CPZ on I_{Na} and I_h with or without cAMP were assessed. Isolated mice sciatic nerve was prepared to evaluate the effect of CPZ on the compound action potentials (CAP).

Results: CPZ non-selectively inhibited transfected mHCN1 and mHCN2 channel currents in HEK 293 cells. In sciatic nerve block in vivo, compared to lidocaine alone, adding CPZ extended the durations of lidocaine for noxious sensory block (35.1 ± 3.3 vs. 20.3 ± 1.7 min), tactile sensory block (25.5 ± 4.4 vs. 20.0 ± 3.7 min), thermal sensory block (39.6 ± 6.6 vs. 26.8 ± 5.5 min), and motor function block (28.6 ± 4.1 vs. 20.9 ± 4.2 min). Duration of thermal sensory block was longer in CPZ + lidocaine group than that of ZD7288 + lidocaine group (39.6 ± 6.6 vs. 33.4 ± 4.5 min). Forskolin reversed the prolongation by CPZ on lidocaine durations. CPZ or ZD7288 alone did not produce typical regional anesthetic effects. Increased intracellular concentration of cAMP reversed the inhibition of CPZ on I_h. Although CPZ alone inhibited I_{Na} at the concentration more than 30 µM, it did not inhibit the CAP amplitudes in isolated sciatic nerves. CPZ dose-dependently enhanced the inhibitory effect of 1% lidocaine on the CAP amplitudes.

Conclusions: CPZ may prolong durations of lidocaine in peripheral nerve block by modulation of HCN channel currents.
Title: Capsazepine prolongation of the duration of lidocaine block of sensory transmission in mice may be mediated by modulation of HCN channel currents

Running title: Capsazepine prolongs regional anesthesia

Wenling Zhao1, 2\#, Peng Liang1, 2\#, Jin Liu1, 2, Huan Li1, Daqing Liao1, Xiangdong Chen3, Qian Li1, 2*, Cheng Zhou1, 2*

1Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China;

2Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China;

3Department of Anesthesiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.

\#These authors contributed equally.

*Address correspondence to:

Dr. Cheng Zhou and Dr. Qian Li

Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center and Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China

E-mail to: zhouc@163.com; hxliqian@foxmail.com
ABSTRACT

Background and Objectives: Hyperpolarization-activation cyclic nucleotide-gated (HCN) channels contribute to the effects of lidocaine. Capsazepine (CPZ), a competitive inhibitor of capsaicin of transient receptor potential vanilloid-1 (TRPV-1) channel, has also been found to inhibit HCN channel currents (I_h). This study was designed to investigate whether CPZ could prolong durations of lidocaine in regional anesthesia.

Methods: Mouse HCN1 and HCN2 channels were expressed in HEK 293 cells. The effect of CPZ on I_h was measured by whole-cell patch-clamping recording. Sciatic nerve block model in mice was used for the study in vivo. The mice were randomly divided into 7 groups, respectively receiving lidocaine, CPZ, ZD7288 (HCN channel blocker), CPZ + lidocaine, ZD7288 + lidocaine, ZD7288 + CPZ + lidocaine, forskolin (an activator of adenyl cyclase) + CPZ + lidocaine. Regional anesthetic durations of lidocaine were determined. Voltage-gated sodium channel currents (I_{Na}) and I_h were recorded in dorsal root ganglion (DRG) neurons of mice. The effects of CPZ on I_{Na} and I_h with or without cAMP were assessed. Isolated mice sciatic nerve was prepared to evaluate the effect of CPZ on the compound action potentials (CAP).

Results: CPZ non-selectively inhibited transfected mHCN1 and mHCN2 channel currents in HEK 293 cells. In sciatic nerve block in vivo, compared to lidocaine alone, adding CPZ extended the durations of lidocaine for noxious sensory block (35.1 ± 3.3 vs. 20.3 ± 1.7 min), tactile sensory block (25.5 ± 4.4 vs. 20.0 ± 3.7 min), thermal sensory block (39.6 ± 6.6 vs. 26.8 ± 5.5 min), and motor function block (28.6 ± 4.1 vs. 20.9 ± 4.2 min).
Duration of thermal sensory block was longer in CPZ + lidocaine group than that of ZD7288 + lidocaine group (39.6 ± 6.6 vs. 33.4 ± 4.5 min). Forskolin reversed the prolongation by CPZ on lidocaine durations. CPZ or ZD7288 alone did not produce typical regional anesthetic effects. Increased intracellular concentration of cAMP reversed the inhibition of CPZ on I_h. Although CPZ alone inhibited I_{Na} at the concentration more than 30 µM, it did not inhibit the CAP amplitudes in isolated sciatic nerves. CPZ dose-dependently enhanced the inhibitory effect of 1% lidocaine on the CAP amplitudes.

Conclusions: CPZ may prolong durations of lidocaine in peripheral nerve block by modulation of HCN channel currents.
INTRODUCTION

Although local anesthetics such as lidocaine have been widely used in clinic for over decades, there are still many disadvantages for currently used local anesthetics including toxicities and unsatisfied durations (Mather, 2010). To prolong the duration of local anesthetics, many adjuvants have been added in clinical regional anesthesia (Kirksey et al., 2015). However, the enhancement of most adjuvants are unsatisfied and some of the adjuvants can even induce unacceptable complications (Lundblad & Lonnqvist, 2016).

Voltage-gated sodium channel is the principal molecular target for local anesthetics (Becker & Reed, 2012). Recent studies have identified that hyperpolarization-activation cyclic nucleotide-gated (HCN) channel might also contribute to the effects of local anesthetics in regional anesthesia (Meng et al., 2011; Zhou et al., 2015). HCN channel is a non-selective cation channel activated by hyperpolarization of membrane potential (Benarroch, 2013). HCN channel is the principal pacemaker for rhythmical regulator and determinant for resting membrane potential in nervous system and sinoatrial node for its distinct electrophysiological properties (Benarroch, 2013; Biel et al., 2009). HCN channel also plays an important role in neuropathic pain (Cao et al., 2016). Our previous study indicates that the duration of lidocaine is significantly shortened in HCN1 knockout mice (Zhou et al., 2015). Cyclic adenosine monophosphate (cAMP) is the enhancer for HCN channel currents (I_h) (Wainger et al. 2001). Increased level of cAMP by activator of adenyl cyclase (e.g. forskolin) can shorten the durations of lidocaine in vivo (Kroin et al.,...
By previous study, maximal inhibition of lidocaine on I_h is ~50\% \cite{Meng et al., 2011}. Therefore, adding more potent HCN channel modulators (e.g. ZD7288, clonidine, and dexmedetomidine) to local anesthetics have been found to extend the durations of lidocaine and ropivacaine in vivo \cite{Brummett et al., 2011; Harris & Constanti, 1995; Kroin et al., 2004).

Capsazepine (CPZ) is a competitive inhibitor of capsaicin activation of transient receptor potential vanilloid-1 (TRPV-1) channel and has been reported as an emerging class of novel analgesic \cite{Menendez et al., 2006}. TRPV-1 channel is mainly expressed on nociceptor and involved in sensory processing \cite{Cui et al., 2006}. TRPV-1 channel can be activated by high temperature, acid, capsaicin and other chemicals \cite{Szallasi et al., 2007}, by which to trigger action potentials and release of neuropeptides and/or transmitters \cite{Cui et al., 2006; Peters et al., 2010}. Therefore, TRPV-1 channel blocker might be potent in the therapy of pain. CPZ has also been found to inhibit HCN channel currents (I_h) \cite{Zuo et al., 2013}.

In the present study, we hypothesized that CPZ, a potential adjuvant for local anesthetics, might extend the durations of lidocaine by modulation of HCN channels. This study was designed to test this hypothesis.
METHODS

Animals

Following the ARRIVE Guidelines and with the approval of the Institutional Animal Experimental Ethics Committee of Sichuan University (Chengdu, Sichuan, China, protocol 2015014A), sixty-three adult male C57BL/6J mice (20-30 g) for experiments of sciatic nerve block *in vivo* and *in vitro* and seven C57BL/6J mice at age of postnatal eight days for experiment of isolated DRG neurons were included. All the study mice were housed in standard condition with free access to food and water. All the mice were placed in the experimental environment for 1-2 hours per day for consecutive three days before the formal experiments. The observers of the behavioral test were blinded to the group assignment of the study mice.

Chemicals

Lidocaine solution was diluted from 2% (w/v) lidocaine (Shanghai Fortune Zhaohui Pharmaceutical Co., Ltd., Shanghai, China) with normal saline to the final concentration of 1% (w/v, ~35 mM). ZD7288 (Tocris Bioscience, Bristol, UK), the non-selective HCN channel blocker, and forskolin (Sigma-Aldrich, Co., St. Louis, MO, US), the activator of adenyl cyclase, were dissolved with normal saline. CPZ (Sigma-Aldrich, Co., St. Louis, MO, US) was dissolved with DMSO (Sigma-Aldrich, Co., St. Louis, MO, US) to a 2.5 mg/mL stock solution and then diluted with normal saline (for animal study *in vivo*) or bath solution (for electrophysiological recordings) to the final concentrations. For
electrophysiological recordings, the final concentration of DMSO was 0.05% (v/v), which produces minimal effect in electrophysiological recordings (Liu et al., 2016; Wang et al., 2016).

Patch clamping recordings

The vectors of pcDNA3-HE3 with mHCN1 (Mouse HCN1) and mHCN2 (Mouse HCN2) were expressed in HEK 293 (human embryonic kidney 293) cells as previously described (Gill et al., 2004). HEK 293 cells were cultured under standard procedures (Meng et al., 2011). The mHCN channel constructs were co-transfected with a green fluorescent protein plasmid (pEGFP; Clontech Laboratories, Mountain View, CA) by Lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA). Recordings were performed 36-48 hours after transfection. Whole-cell patch clamping recordings were performed at room temperature (~24-25 °C). Patch pipettes (with resistance of 3-5 MΩ) were made from the fire-polished borosilicate glass capillaries (Sutter Instrument Co., Novato, Calif). I_h were sampled using an Axon 200B amplifier, digitized via a Digidata 1440A interface. Standard bath solution contained (mM) 118 NaCl, 25 KCl, 2 MgCl$_2$, 2 CaCl$_2$, 10 HEPES, and 10 glucose, pH = 7.4 adjusted by NaOH. Bath solution was continuously perfused at speed of ~2 mL/min. Pipette solution contained (mM) 120 KCH$_4$SO$_3$, 4 NaCl, 1 MgCl$_2$, 0.5 CaCl$_2$, 10 HEPES, 10 EGTA, 3 Mg-ATP, and 0.3 GTP-Tris, pH = 7.3 adjusted by KOH (Meng et al., 2011).
Hyperpolarization-activated currents (I_h) were evoked by hyperpolarized pulses (4 s) from −40 mV to −130 mV with interval of −10 mV (Gill et al., 2004). Amplitudes of steady-state currents were produced at the end of hyperpolarizing voltage steps as tail currents, which used for the analysis of voltage dependence of channel gating. Tail currents were acquired at a fixed potential of −90 mV immediately after hyperpolarized pulses and were normalized and fitted with Boltzmann curves as: $G/G_{\text{max}} = 1/(1 + e(V_{1/2a} - V)/k)$, where $G/G_{\text{max}} = \text{normalized conductance}; G_{\text{max}} = \text{maximum conductance}; V_{1/2a} = \text{voltage of half-maximum activation}; k = \text{slope factor}$. Concentration-response of CPZ on the I_h was fitted to the Hill equation: $Y = 1/ [1 + 10(\log I_{C50} - X)*h]$, where $Y = \text{inhibitory ratio}; X = \text{concentration of CPZ}; h = \text{Hill coefficient}$.

Acute isolated dorsal root ganglion (DRG) neurons were prepared for recordings of sodium channel currents (I_{Na}) and I_h. Briefly, mice were anesthetized by ketamine/xylazine (40/15 mg/kg). Then the DRGs of mice were removed and digested respectively in 1% papain for 45 min and in 1% collagenase I for 30 min. DRG neurons were recorded after 2-h cell attachment to the coverslip. I_h was evoked by hyperpolarized pulse (4 s) to −120 mV with the same solutions used for recordings on HEK 293 cells. To test the effect of intracellular cAMP, 200 µM cAMP was added to the patch pipette. I_{Na} was recorded by depolarized pulse (20 ms) to 10 mV. Bath solution contained (in mM): 125 NaCl, 25 NaHCO$_3$, 1.25 NaH$_2$PO$_4$, 2.5 KCl, 1 MgCl$_2$, 2 CaCl$_2$, 15 glucose, 25 TEA-Cl. Internal solution contained (in mM): 110 CsF, 9 NaCl, 1.8 MgCl$_2$, 4 Mg-ATP, 0.3 Na-
GTP, 0.09 EGTA, 0.018 CaCl$_2$, 9 HEPES, 10 TEA-Cl. CsOH was used to adjust to pH = 7.35 (290-310 mOsm).

Sciatic nerve block model

Anesthetized with 2% isoflurane (Abbott Pharmaceutical Co. Ltd. Shanghai, China), total volume of 50 µL study solution was injected into the popliteal fossa of the mice and the needle was removed 5 s after injection. The injected site was then pressed for at least 5 s to prevent exudation of study solution. Fifty-six mice were randomly divided into 7 groups (n = 8/group): respectively receiving lidocaine alone, CPZ alone, ZD7288 (HCN channel blocker) alone, CPZ + lidocaine, ZD7288 + lidocaine, ZD7288 + CPZ + lidocaine, forskolin (an activator of adenylyl cyclase) + CPZ + lidocaine. The concentrations of lidocaine, ZD7288, CPZ and forskolin were 1% (w/v, ~35 mM), 5 mM, 53 µM and 153 µM, respectively ([Kroin et al., 2004; Zuo et al., 2013](#)). For the groups that received two or three drugs, ZD7288 and/or forskolin were injected 20 min before lidocaine and CPZ was injected 10 min before lidocaine ([Ando et al., 2004; Kroin et al., 2004](#)). After the mice recovered to consciousness (~5 min after injection), a 25-G needle (Terumo Medical Corp., Tokyo, Japan) tied to a plastic fiber (~3 g equivalent to the von-frey fiber) was used to evaluate noxious sensory function of the injected limb. Noxious sensory block was defined as no purposeful aversive movements to the pinprick stimulus. Von-frey filaments (37450-277; Ugo Basile, Comerio, Italy) was used to test tactile sensation of the injected limb and tactile sensory block was defined as no purposeful
reactions to increased von-frey fibers more than 2 g compared to baselines. The specific
site for application of pinprick and von-frey fiber was lateral plantar surfaces innervated
by sciatic nerve. Thermal sensory function was determined by heat stimulus (Plantar test
37370; Ugo Basile, intensity of infrared radiation set at 60) applied to the injected limb.
Thermal sensory block was defined as the withdraw latency of the mice increased more
than 50% of the baseline latency (Becker & Reed, 2012). Cut-off time of thermal stimulus
was 10 s to avoid injury. Motor function of mice was evaluated by the ability of hanging
upside down with the injected paws (Yamada et al., 2016). Before injection, baselines of
each function were measured. Because TRPV-1 channel blockers have been reported to
induce dysregulation of body temperature (Yang et al., 2015), rectal temperature of the
study mice was observed. For all the studied mice, rectal temperatures were normal (36-
38°C) during the regional anesthesia. All the mice completely recovered from regional
anesthesia without any adverse events.

Compound action potential (CAP) recording on isolated sciatic nerves
Adult C57BL/6J mice were used. Bilateral sciatic nerves were obtained from the lumbar
plexus to the knee. Then the sciatic nerves were put into a Ringer’s solution (115.5 mM
NaCl, 2 mM KCl, 1.8 mM CaCl₂, 1.3 mM Na₂HPO₄ and 0.7 mM NaH₂PO₄, pH = 7.35) for
20 min. BL-420N biological signal acquisition and analysis system (Techman Software
Co. LTD, Chengdu, China) was used. Baseline values of CAPs were recorded every 5
min until 20 min to obtain a stable baseline. Then, the CAPs of each group were
obtained after the sciatic nerve incubating into the drug solutions for 5 min. The parameters of the system were set as: voltage = 1 V; frequency = 100 Hz; duration of rectangular pulse = 0.1 ms (Li et al., 2010).

Statistical analysis

SPSS 22.0 (SPSS Inc., Chicago, IL, US) was used to analyze the data. The sample size (n = 8/group) of the animal study in vivo was based on our preliminary test (n = 4, not included in formal data). The duration of lidocaine for noxious sensory block was compared between the groups of lidocaine alone and lidocaine + CPZ (20.5 vs. 30.5 min). Then the sample size was calculated as 5.0 (α = 0.05; β = 0.20). Duration data were calculated by averaging the duration of each mouse in the same group and expressed as mean ± SEM. The homogeneity of variance tests indicated that the duration data were normal distributed. One-way analysis of variance (ANOVA) followed by post hoc of Bonferroni was applied to compare the durations between groups. Kaplan-Meier followed by pair-wise over strata of Log-rank was applied to compare the recovery curves of motor function block and noxious sensory block. For the results of electrophysiological recordings, all the data were presented as mean ± SEM. Voltage-dependent activation curves of I_h were fit to the Boltzmann equation. Two-way ANOVA or student’s t-test was applied to compare I_h and channel gating as indicated. In all cases, $P < .05$ was considered as statistically significant.
RESULTS

CPZ inhibited transfected mHCN channel currents and hyperpolarized voltage-dependent activation

CPZ at concentration of 10 µM potently inhibited I-V curves of both mHCN1 and mHCN2 channels (Fig. 1). IC$_{50}$ (median inhibitory concentration) of CPZ on peak I_h were 8.2 ± 0.3 µM and 9.6 ± 0.4 µM, respectively for mHCN1 and mHCN2 ($P > .05$, Fig. 2). CPZ at concentration of 10 µM significantly caused a hyperpolarizing shift in voltage-dependence of channel activation for both mHCN1 ($V_{1/2a}$ of $-98.4 ± 3.8$ vs. $-88.6 ± 3.6$ mV, $P < .01$, Fig. 3) and mHCN2 ($V_{1/2a}$ of $-102.7 ± 13.5$ mV vs. $-114.6 ± 12.9$ mV, $P < .01$, Fig. 3).

CPZ prolonged duration of lidocaine in sciatic nerve block model in vivo

ZD7288 alone (5 mM) did not produce any sciatic nerve block in vivo. CPZ alone (53 µM) produced thermal sensory block with duration of 24.6 ± 2.7 min (Table 1). Compared with lidocaine alone, adding ZD7288 prolonged durations of lidocaine including noxious sensory block (34.3 ± 5.2 vs. 20.3 ± 1.7 min, $P < .001$, Fig. 4a), tactile sensory block (25.0 ± 4.3 vs. 20.0 ± 3.7 min, $P = .036$, Fig. 4b), thermal sensory block (33.4 ± 4.5 vs. 26.8 ± 5.5 min, $P = .027$, Fig. 4c) and motor function block (27.9 ± 4.3 vs. 20.9 ± 4.2 min, $P = .008$, Fig. 4d). Compared with ZD7288 + lidocaine group, CPZ similarly extended the durations of lidocaine including noxious sensory block, tactile sensory block and motor block. For noxious sensory block, CPZ prolonged the duration from 20.3 ± 1.7 to 35.1 ±
3.3 min \((P < 0.001 \text{ vs. lidocaine alone, Fig. 4a}) \). For tactile sensory block, CPZ prolonged the duration from 20.0 ± 3.7 to 25.5 ± 4.4 min \((P = 0.025 \text{ vs. lidocaine alone, Fig. 4b}) \). For motor function block, CPZ prolonged the duration from 20.9 ± 4.2 to 28.6 ± 4.1 min \((P = 0.003 \text{ vs. lidocaine alone, Fig. 4d}) \). For thermal sensory block, CPZ + lidocaine group was significantly longer than that of ZD7288 + lidocaine group (39.6 ± 6.6 vs. 33.4 ± 4.5 min, \(P = 0.017, \text{ Fig. 4c}) \). Adding ZD7288 and CPZ to lidocaine (ZD7288 + CPZ + Lido group) did not further prolong the duration of lidocaine for noxious sensory block compared to ZD7288 + Lido group or CPZ + Lido group (Fig. 4a). Of note, the durations of tactile sensory block, thermal sensory block and motor block in ZD7288 + CPZ + Lido group were not determined because slight sedation was found in some mice, which might affect accuracy of the results. The pinprick stimulus (puncturing the skin by a 25-G needle) was much stronger than other stimulus like von-frey and in the manner of "all or none" compared with other quantitative measurements (e.g. von-frey and heat). No redness or swelling was found in the test limb during the whole experiment. All mice recovered completely after regional anesthesia. The time courses of all the regional anesthetic effects were shown in Fig. 5.

Pre-injection of forskolin reversed the prolongation of CPZ in regional anesthesia

Pre-injection of forskolin (153 µM) diminished the prolongation of CPZ on durations of lidocaine (Fig. 4 and Fig. 5). The anesthetic durations were shorter in Forskolin + CPZ + Lido group than that in CPZ + Lido group including noxious sensory block (35.1 ± 3.3 vs.
18.9 ± 3.0 min, \(P < .001 \), Fig. 4a), tactile sensory block (25.5 ± 4.4 vs. 18.5 ± 5.0 min, \(P = .015 \), Fig. 4b), thermal sensory blockade (39.6 ± 6.6 vs. 24.8 ± 5.2 min, \(P < .001 \), Fig. 4c) and motor blockade (28.6 ± 4.1 vs. 19.5 ± 3.0 min, \(P = .001 \), Fig. 4d). All the data were shown in Table 1. Of note, pre-injection of forskolin was prone to shorten the durations of lidocaine compared with lidocaine alone group, indicating the contribution of HCN channels in the effects of lidocaine (Fig. 5a, b, d).

cAMP reversed the inhibitory effect of CPZ on \(I_h \) in DRG neurons

The average current density of \(I_h \) was 2.3 ± 0.4 pA/pF in control condition, while intracellular cAMP at 200 µM significantly increased the current density of \(I_h \) to 7.6 ± 2.3 pA/pF (\(P < .05 \), Fig. 6b). CPZ at concentration of 10 µM inhibited \(I_h \) density to 1.9 ± 0.7 pA/pF. Intracellular cAMP at 200 µM reversed \(I_h \) density to 7.1 ± 1.6 pA/pF even with perfusion of 10 µM CPZ (\(P < .05 \), Fig. 6d).

CPZ enhanced inhibition of lidocaine on action potential in sciatic nerves

CPZ at concentration of 10 µM did not inhibit \(I_{Na} \) in isolated mice DRG neurons (Fig. 7a), while 30 µM CPZ significantly inhibited the current density of \(I_{Na} \) from 105.9 ± 23.3 pA/pF to 68.2 ± 20.3 pA/pF (\(P < .05 \), Fig. 7c). However, neither 10 µM nor 30 µM CPZ inhibited the CAP amplitudes in isolated sciatic nerves compared to baseline (Fig. 7e-h). The CAP amplitudes were inhibited by 43.3% ± 1.5% after incubation in 1% lidocaine for 5 min. CPZ dose-dependently enhanced the inhibitory effect of 1% lidocaine on the CAP. For 1%
lidocaine + 10 µM CPZ group and/or 1% lidocaine + 30 µM CPZ group, the CAP amplitudes were decreased to 20.5% ± 3.0% and/or 12.6% ± 0.8% compared to baseline, respectively ($P < .01$ vs. 1% lidocaine, Fig. 7i).
DISCUSSION

Long-lasting local anesthetics are demanded in clinic especially for post-operative analgesia and treatment of chronic pain. To prolong duration of local anesthetics and reduce their toxicities, many adjuvants have been added to local anesthetics (Yilmaz-Rastoder et al., 2012). The adjuvants for local anesthetics mainly include epinephrine, ketamine, opioids and NSAIDs (Bailard et al., 2014). However, the enhancement of most adjuvants are unsatisfied and some adjuvants can even induce unacceptable side effects themselves, such as poor selectivity, undesired systematic sedation or thermal irritation (Brummett & Williams, 2011). In the present study, CPZ significantly extended the durations of lidocaine for sciatic nerve block without obvious complications. Therefore, CPZ may be a potential adjuvant for local anesthetics.

CPZ is a competitive inhibitor of capsaicin activation of TRPV-1 channel (Yang et al., 2015). At micromolar concentrations, CPZ can also block voltage-dependent potassium channel, calcium channel and sodium channel (Kuenzi et al., 1996; Yamamura et al., 2004; Lundbaek et al., 2005). In the present study, to test whether voltage-gated sodium channels are involved in the enhancement of CPZ on regional anesthesia of lidocaine in vivo, acute DRG neurons and isolated sciatic nerves were used for recordings of I_{Na} and CAP, respectively. CPZ alone at concentration of 30 µM indeed inhibited I_{Na} in DRG neurons. However, CPZ did not affect amplitudes and/or conductions of CAP in isolated sciatic nerves at concentration of 30 µM. Previous study indicates that inhibition of CPZ on I_{Na} is possibly by altering lipid bilayer elasticity of the cellular membrane (Lundbaek et
Therefore, the differential results of CPZ between voltage-gated I_{Na} and action potential might result from the myelin sheath around nerves that preventing direct exposure of CPZ to cellular membrane. In spite of no effect was found for CPZ alone on CAP, it can enhance the inhibitory effect of lidocaine on CAP amplitudes since the concentration of 10 µM. Consistent with the observation in vivo, CPZ alone did not produce typical sciatic nerve block, but prolonged the durations of lidocaine. Although CPZ may not inhibit action potential alone by inhibition to sodium channels, it cannot completely exclude the possible contribution of sodium channel block by CPZ for its enhancement in regional anesthesia. Even a small additional inhibition of sodium channel might prolong the effects of lidocaine.

CPZ can inhibit transfected human HCN channel currents (Zuo et al., 2013). HCN channel is widely expressed in peripheral nervous system (Acosta et al., 2012; Cao et al., 2016). HCN channels may contribute to the regional anesthetic effects of lidocaine in vivo, both for the sensory and motor function block (Zhou et al., 2015). By electrophysiological recordings, lidocaine was found to inhibit I_h (Meng et al., 2011). However, lidocaine at clinical concentrations only inhibits I_h by ~30%-50% (Meng et al., 2011). Thus potent HCN channel blocker might enhance effects of local anaesthetics (Brummett et al., 2011). HCN channel modulators (e.g. ZD7288, clonidine and dexmedetomidine) have been found to enhance regional anesthetic effects of lidocaine and/or ropivacaine in vivo (Brummett et al., 2011; Harris & Constanti, 1995; Kroin et al., 2004). Although CPZ can inhibit transfected human HCN channel currents (Zuo et al., 2013).
it is unclear whether CPZ can enhance regional anesthesia in vivo. In the present study, CPZ inhibits transfected mice HCN channel currents without selectivity between HCN1 and HCN2. The IC$_{50}$ of CPZ measured in this study (~10 µM) is similar to the potency on human I_h (Gill et al., 2004; Zuo et al., 2013), indicating the enhancement of CPZ for regional anesthesia might be conserved between species.

ZD7288 and CPZ similarly prolong the durations of lidocaine. Adding both ZD7288 and CPZ to lidocaine did not further prolong the duration of noxious sensory block compared with ZD7288 + Lido or CPZ + Lido group. Therefore, enhancement of ZD7288 and CPZ in regional anesthesia might be both mediated through modulation of I_h. For DRG neurons, intracellular cAMP reversed the inhibitory effect of CPZ on I_h. The enhancement by CPZ for lidocaine in sciatic nerve block was eliminated by pre-injection of forskolin. Forskolin can increase the intracellular level of cAMP (Brummett et al., 2011) and is widely used to enhance I_h (Wainger et al., 2001; Kroin et al., 2004). These results provide better evidence to support the hypothesis that modulation of CPZ on I_h may contribute to its enhancement in regional anesthesia. Forskolin will also likely increase local blood flow and enhance drug clearance. However, the concentration of forskolin used in this study was 153 µM, which is lower than the blood concentration (~400 µM) to influence the blood flow (Wysham et al., 1986). Forskolin reversed the prolongation of capsazepine most potently in von-frey test than pin-prick test, foot-thermal test and motor function evaluation (Figure 5); thus the selective effect of forskolin might not be explained by increasing the blood flow (no selectivity). Interestingly, the enhancement of
cAMP between HCN1 and HCN2 is different (Wainger et al., 2001), which might contribute to the differential reversion by forskolin between different functions.

CPZ alone can produce thermal sensory block without lidocaine. The thermal sensory block duration in CPZ + lidocaine group is longer than that of ZD7288 + lidocaine group. The selective enhancement of CPZ for thermal sensory might result from the inhibition of TRPV-1 channels. TRPV-1 channel blocker is potential treatment for various types of pain (Walker et al., 2003). However, because of the role of TRPV-1 channel as temperature sensor, systemic administration of TRPV-1 channel blocker can induce serious hyperpyrexia (Menendez et al., 2006), which limits the clinical application of TRPV-1 channel blocker. The systemic dosage of CPZ to induce hyperpyrexia is unknown, but other TRPV-1 antagonists such as AMG517, GRC6211 and NGD8243 have been dropped out of clinical trials due to hyperpyrexia (Pareek et al., 2007). In this study, CPZ is perineurally injected and no obvious change was found for mice body temperature.

There are some limitations in the present study: Firstly, forskolin, an activator of adenylyl cyclase, is not a selective agonist of HCN channels. Forskolin can increase the level of cAMP, which is an enhancer of HCN channels (Wainger et al., 2001; Kroin et al., 2004). Secondly, ZD7288 and CPZ are non-selective blocker between HCN1 and HCN2 subtypes. Thus, we cannot evaluate the specific role of HCN1 and HCN2. Further studies with HCN selective blockers such as MEL57A and/or EC18 might shed light on this question (DelLunugo et al., 2012). In addition, potential effect of CPZ on HCN4...
(cardiac subtype) should be tested further to explore potential influence of CPZ on heart. Co-injection of vasoconstrictor and CPZ may not only prolong the durations of local anesthetics, but also reduce the systemic impact of CPZ in regional anesthesia.

CONCLUSIONS

In summary, CPZ, a widely known competitive inhibitor of capsaicin activation of TRPV-1 channel, can inhibit I_h and prolong durations of lidocaine in vivo. The enhancement of CPZ in regional anesthesia may be mediated by modulation of I_h. Therefore, CPZ is a potential regional anesthetic adjuvant in clinic.
Acosta C, McMullan S, Djouhri L, Gao L, Watkins R, Berry C, Dempsey K, and Lawson SN. 2012. HCN1 and HCN2 in Rat DRG neurons: levels in nociceptors and non-nociceptors, NT3-dependence and influence of CFA-induced skin inflammation on HCN2 and NT3 expression. *PLoS One* 7:e50442. DOI 10.1371/journal.pone.0050442

Ando R, Yonezawa A, Watanabe C, and Kawamura S. 2004. An assessment of vascular pain using the flexor reflex in anesthetized rats. *Methods Find Exp Clin Pharmacol* 26:109-115.

Bailard NS, Ortiz J, and Flores RA. 2014. Additives to local anesthetics for peripheral nerve blocks: Evidence, limitations, and recommendations. *Am J Health Syst Pharm* 71:373-385. DOI 10.2146/ajhp130336

Becker DE, and Reed KL. 2012. Local anesthetics: review of pharmacological considerations. *Anesth Prog* 59:90-101; quiz 102-103. DOI 10.2344/0003-3006-59.2.90

Benarroch EE. 2013. HCN channels: function and clinical implications. *Neurology* 80:304-310. DOI 10.1212/WNL.0b013e31827dec42

Biel M, Wahl-Schott C, Michalakis S, and Zong X. 2009. Hyperpolarization-activated cation channels: from genes to function. *Physiol Rev* 89:847-885. DOI 10.1152/physrev.00029.2008

Brummett CM, Hong EK, Janda AM, Amodeo FS, and Lydic R. 2011. Perineural
dexmedetomidine added to ropivacaine for sciatic nerve block in rats prolongs the
duration of analgesia by blocking the hyperpolarization-activated cation current.

Anesthesiology **115**:836-843. DOI 10.1097/ALN.0b013e318221fccc9

Brummett CM, and Williams BA. 2011. Additives to local anesthetics for peripheral
nerve blockade. *Int Anesthesiol Clin* **49**:104-116. DOI 10.1097/AIA.0b013e31820e4a49

Cao Y, Pang J, and Zhou P. 2016. HCN Channel as Therapeutic Targets for Heart
Failure and Pain. *Curr Top Med Chem* **16**:1855-1861.

**Cui M, Honore P, Zhong C, Gauvin D, Mikusa J, Hernandez G, Chandran P,
Gomtsyan A, Brown B, Bayburt EK, Marsh K, Bianchi B, McDonald H,
Niforatos W, Neelands TR, Moreland RB, Decker MW, Lee CH, Sullivan JP,
and Faltynek CR. 2006.** TRPV1 receptors in the CNS play a key role in broad-
spectrum analgesia of TRPV1 antagonists. *J Neurosci* **26**:9385-9393. DOI 10.1523/jneurosci.1246-06.2006

**Del Lungo M, Melchiorre M, Guandalini L, Sartiani L, Mugelli A, Koncz I, Szel T,
Varro A, Romanelli MN, and Cerbai E. 2012.** Novel blockers of
hyperpolarization-activated current with isoform selectivity in recombinant cells
and native tissue. *Br J Pharmacol* **166**:602-616. DOI 10.1111/j.1476-5381.2011.01782.x

**Gill CH, Randall A, Bates SA, Hill K, Owen D, Larkman PM, Cairns W, Yusaf SP,
Murdock PR, Strijbos PJ, Powell AJ, Benham CD, and Davies CH. 2004.**
Characterization of the human HCN1 channel and its inhibition by capsazepine.

Br J Pharmacol **143**:411-421. DOI 10.1038/sj.bjp.0705945

Harris NC, and Constanti A. 1995. Mechanism of block by ZD 7288 of the hyperpolarization-activated inward rectifying current in guinea pig substantianigra neurons in vitro. *J Neurophysiol* **74**:2366-2378. DOI 10.1152/jn.1995.74.6.2366

Kirksey MA, Haskins SC, Cheng J, and Liu SS. 2015. Local Anesthetic Peripheral Nerve Block Adjuvants for Prolongation of Analgesia: A Systematic Qualitative Review. *PLoS One* **10**:e0137312. DOI 10.1371/journal.pone.0137312

Kroin JS, Buvanendran A, Beck DR, Topic JE, Watts DE, and Tuman KJ. 2004. Clonidine prolongation of lidocaine analgesia after sciatic nerve block in rats is mediated via the hyperpolarization-activated cation current, not by alpha-adrenoreceptors. *Anesthesiology* **101**:488-494.

Kuenzi FM and Dale N. 1996. Effect of capsaicin and analogues on potassium and calcium currents and vanilloid receptors in Xenopus embryo spinal neurones. *Br J Pharmacol* **119**:81-90

Li Z, Yang J, Liu J, Gong CY, Gan J, Zhang X, Luo WJ and Li GH. 2010. Reversible conduction block in isolated toad sciatic nerve by emulsified isoflurane. *Anesth Analg* **110**:1024-1029. DOI:10.1213/ANE.0b013e3181d2732f

Liu H, Yang L, Chen KH, Sun HY, Jin MW, Xiao GS, Wang Y and Li GR. 2016. SKF-96365 blocks human ether-a-go-go-related gene potassium channels stably expressed in HEK 293 cells. *Pharmacol Res* **104**:61-69.
Lundbaek JA, Birn P, Tape SE, Toombes GE, Søgaard R, Koepppe RE 2nd, Gruner SM, Hansen AJ and Andersen OS. 2005. Capsaicin regulates voltage-dependent sodium channels by altering lipid bilayer elasticity. *Mol Pharmacol* 68:680-689.

Lundblad M, and Lonnqvist PA. 2016. Adjunct analgesic drugs to local anaesthetics for neuroaxial blocks in children. *Curr Opin Anaesthesiol* 29:626-631. DOI 10.1097/aco.0000000000000372

Mather LE. 2010. The acute toxicity of local anesthetics. *Expert Opin Drug Metab Toxicol* 6:1313-1332. DOI 10.1517/17425255.2010.514265

Menendez L, Juarez L, Garcia E, Garcia-Suarez O, Hidalgo A, and Baamonde A. 2006. Analgesic effects of capsazepine and resiniferatoxin on bone cancer pain in mice. *Neurosci Lett* 393:70-73. DOI 10.1016/j.neulet.2005.09.046

Meng QT, Xia ZY, Liu J, Bayliss DA, and Chen X. 2011. Local anesthetic inhibits hyperpolarization-activated cationic currents. *Mol Pharmacol* 79:866-873. DOI 10.1124/mol.110.070227

Pareek TK, Keller J, Kesavapany S, Agarwal N, Kuner R, Pant HC, Iadarola MJ, Brady RO, and Kulkarni AB. 2007. Cyclin-dependent kinase 5 modulates nociceptive signaling through direct phosphorylation of transient receptor potential vanilloid 1. *Proc Natl Acad Sci U S A* 104:660-665. DOI 10.1073/pnas.0609916104
Peters JH, McDougall SJ, Fawley JA, Smith SM, and Andresen MC. 2010. Primary afferent activation of thermosensitive TRPV1 triggers asynchronous glutamate release at central neurons. *Neuron* 65:657-669. DOI 10.1016/j.neuron.2010.02.017

Szallasi A, Cortright DN, Blum CA, and Eid SR. 2007. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. *Nat Rev Drug Discov* 6:357-372. DOI 10.1038/nrd2280

Wainger BJ, DeGennaro M, Santoro B, Siegelbaum SA and Tibbs GR. 2001. Molecular mechanism of cAMP modulation of HCN pacemaker channels. *Nature* 411:805-10. DOI 10.1038/35081088

Walker KM, Urban L, Medhurst SJ, Patel S, Panesar M, Fox AJ, and McIntyre P. 2003. The VR1 antagonist capsazepine reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. *J Pharmacol Exp Ther* 304:56-62. DOI 10.1124/jpet.102.042010

Wang H, Wang HF, Wang C, Chen YF, Ma R, Xiang JZ, Du XL and Tang Q. 2016. Inhibitory effects of hesperetin on Kv1.5 potassium channels stably expressed in HEK 293 cells and ultra-rapid delayed rectifier K(+) current in human atrial myocytes. *Eur J Pharmacol* 789:98-108. DOI 10.1016/j.ejphar.2016.07.015

Wysham DG, Brotherton AF and Heistad DD. 1986. Effects of forskolin on cerebral blood flow: implications for a role of adenylate cyclase. *Stroke* 17:1299-303.

Yamada T, Hasegawa-Moriyama M, Kurimoto T, Saito T, Kuwaki T, and Kanmura Y.
2016. Peripheral Nerve Block Facilitates Acute Inflammatory Responses Induced by Surgical Incision in Mice. *Reg Anesth Pain Med* 41:593-600. DOI 10.1097/aap.0000000000000458

Yamamura H, Ugawa S, Ueda T, Nagao M and Shimada S. 2004. Capsazepine is a novel activator of the delta subunit of the human epithelial Na+ channel. *J Biol Chem* 279:44483-9. DOI 10.1074/jbc.M408929200

Yang S, Yang F, Wei N, Hong J, Li B, Luo L, Rong M, Yarov-Yarovoy V, Zheng J, Wang K, and Lai R. 2015. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1. *Nat Commun* 6:8297. DOI 10.1038/ncomms9297

Yilmaz-Rastoder E, Gold MS, Hough KA, Gebhart GF, and Williams BA. 2012. Effect of adjuvant drugs on the action of local anesthetics in isolated rat sciatic nerves. *Reg Anesth Pain Med* 37:403-409. DOI 10.1097/AAP.0b013e3182485965

Zhou C, Ke B, Zhao Y, Liang P, Liao D, Li T, Liu J, and Chen X. 2015. Hyperpolarization-activated cyclic nucleotide-gated channels may contribute to regional anesthetic effects of lidocaine. *Anesthesiology* 122:606-618. DOI 10.1097/alan.0000000000000557

Zuo GF, Li MH, Zhang JX, Li B, Wang ZM, Wang Q, Xiao H, and Chen SL. 2013. Capsazepine concentration dependently inhibits currents in HEK 293 cells mediated by human hyperpolarization-activated cyclic nucleotide-gated 2 and 4 channels. *Exp Biol Med* (Maywood) 238:1055-1061. DOI
Table 1 (on next page)

Durations of sciatic nerve block for each group.
TABLE 1. Durations of sciatic nerve block for each group

Groups	Durations (min)			
	Pin-Prick	Von-frey	Thermal	Motor
ZD7288	N/A	N/A	N/A	N/A
CPZ	N/A	N/A	24.6±2.7	N/A
Lido	20.3 ± 1.7	20.0 ± 3.7	26.8 ± 5.5	20.9 ± 4.2
ZD7288 + Lido	34.3 ± 5.2*	25.0 ± 4.3*	33.4 ± 4.5*	27.9 ± 4.3*
CPZ + Lido	35.1 ± 3.3*	25.5 ± 4.4*	39.6 ± 6.6**†	28.6 ± 4.1*
Forskolin + CPZ + Lido	18.9 ± 3.0#	18.5 ± 5.0#	24.8 ± 5.2#	19.5 ± 3.0#
ZD7288 + CPZ + Lido	32.5 ± 7.9	N/D	N/D	N/D

Data were expressed as mean ± SEM (n = 8/group).

*: P < .05 vs. Lido group; †: P < .05 vs. ZD7288 + Lido group; #: P < .05 vs. CPZ + Lido group; Lido: 1% lidocaine; CPZ: capsazepine; N/A: no action; N/D: not determined.
Figure 1

CPZ inhibited HCN channel currents expressed on HEK 293 cells.

a: CPZ inhibited HCN1 and HCN2 channel currents. b: Effect of CPZ on I-V curves of HCN1 and HCN2 channels. Hyperpolarizing voltage steps from −40 to −130 mV evoked the currents of mHCN1 and mHCN2 channels. CPZ at 10 µM depressed the currents. Voltage steps were followed by a step to −90 mV for tail current analysis. CPZ effectively shifted voltage-dependent activation of HCN1 and HCN2 channels in a hyperpolarized direction. CPZ: capsazepine; *: $P < .05$ vs. control group. Sample size = 5~6.
Figure 2

CPZ concentration-dependently inhibited HCN1 (●) and HCN2 (■) channel currents.

The inhibitory potency of CPZ on HCN channel currents is similar between HCN1 and HCN2 channels, with IC$_{50}$ of 9.6 ± 0.4 and 8.2 ± 0.3 µM for HCN1 and HCN2, respectively. CPZ: capsazepine. Sample size = 6.
Figure 3

Voltage-dependent activation curves of HCN1 and HCN2 channels.

a: Voltage-dependent activation curve of HCN1 channel. b: Voltage-dependent activation curve of HCN2 channel. CPZ significantly hyperpolarized the voltage-dependent activation of HCN1 and HCN2 channels. CPZ (10 μM) caused a hyperpolarizing shift in voltage-dependence of $V_{1/2\text{act}}$ from -89.8 ± 2.6 to -99.2 ± 3.6 mV (*$P < .01$) and from -103.8 ± 2.9 to -114.1 ± 4.8 mV (*$P < .01$), respectively for HCN1 and HCN2 channel. The voltage-dependent activation curves were based on tail currents. CPZ: capsazepine. Sample size = 7.
Figure 4

Durations of sciatic nerve block produced by different drug combinations.

a: Pin-prick test; b: Von-frey test; c: Foot-thermal test; d: Motor function evaluation. Regional anesthetic durations of CPZ + Lido group and ZD7288 + Lido group were significantly longer than lido alone group, while forskolin reversed the prolongation by CPZ. In pin-prick test (a), ZD7288 + CPZ + Lido group did not produce any longer block than neither CPZ + Lido group nor ZD7288 + Lido group. For foot-thermal test (c), block duration of CPZ + Lido group was significantly longer than ZD7288 + Lido group. CPZ: capsazepine; Lido: lidocaine; *: $P < .05$ vs. Lido alone group; **: $P < .01$ vs. Lido alone group; ***: $P < .01$ vs. CPZ + Lido group. Sample size = 8.
Figure 5

Onset and recovery of regional anesthetic effects by different tests.

a: Pin-prick test; b: Von-frey test; c: Foot-thermal test; d: Motor function evaluation. For pin-prick test (a) and motor function evaluation (d), the time-dependent curves indicate block percentage at each time point. For von-frey test (b) and foot-thermal test (c), the time-dependent curves were calculated by averaging the results at each time point. CPZ: capsazepine; Lido: lidocaine; *: $P < .05$ vs. Lido alone group. Sample size = 8.
Figure 6

Increased intracellular cAMP reversed the inhibitory effect of CPZ on HCN channel currents (I_h) in mice DRG neurons.

a: Representative traces of the I_h activated by 200 μM cAMP. b: Current density of I_h in DRG neurons of mice significantly increased from 2.3 ± 0.4 pA/pF to 7.6 ± 2.3 pA/pF when cAMP (200 μM) was introduced to the cytoplasm from the patch pipette. c: Representative I_h traces when CPZ (10 μM) added with and without cAMP. d: CPZ inhibited I_h density in mice DRG neurons to 1.9 ± 0.7 pA/pF, while cAMP reversed to 7.1 ± 1.6 pA/pF. CPZ: capsazepine; DRG: dorsal root ganglion; *: $P < .05$. Sample size = 8-12.
Manuscript to be reviewed
Figure 7

The effects of CPZ on voltage-gated sodium channel current (I_{Na}) in DRG neurons and compound action potentials (CAP) amplitudes in sciatic nerves of mice.

a-d: CPZ at 10 μM showed no influence on I_{Na} (a), while 30 μM CPZ significantly inhibited current density of I_{Na} (c). The rightmost traces (b, d) show samples of I_{Na} after perfusion of 10 μM and 30 μM CPZ, respectively. e-h: CPZ at 10 μM or 30 μM did not inhibit CAP amplitudes in mice sciatic nerves. Samples (f, h) are shown in the right. i: CPZ at 10 μM and/or 30 μM enhanced the inhibitory effect of 1% lidocaine on CAP amplitudes. j are the representative traces. CPZ: capsazepine; DRG: dorsal root ganglion; CAP: compound action potentials; *: $P < .05$ vs. control group; **: $P < .01$ vs. 1%lidocaine group; ###: $P < .01$ vs. 1%lidocaine + 10 μM CPZ group. Sample size = 3-5.
