Influence of Rhizobacteria on Soil Ion Concentration under Paddy Cultivation
Elmi Junita Tarigan1,2, Cahyo Prayogo3, Yu-Ting Weng4, Chesly Kit Kobua5, Ying-Tzy Jou6 and Yu-Min Wang7

\textsuperscript{1) International Master Program in Soil and Water Engineering, National Pingtung University of Science and Technology, Taiwan
\textsuperscript{2) Department of Soil and Water Management, Faculty of Agriculture, Universitas Brawijaya, Malang, East Java, Indonesia
\textsuperscript{3) Department of Soil Science, Faculty of Agriculture, Universitas Brawijaya, Malang, East Java, Indonesia
\textsuperscript{4) Department of Biological Science, National Pingtung University of Science and Technology, Taiwan
\textsuperscript{5) Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Taiwan
\textsuperscript{6) Department of Biological Science and Technology, National Pingtung University of Science and Technology, Taiwan
\textsuperscript{7) General Research Service Center, National Pingtung University of Science and Technology, Taiwan

ARTICLE INFO

\textbf{Keywords:} Bacteria, Fertilizer, Nitrogen, Sustainable Agriculture

\textbf{Article History:} Received: February 12, 2021
Accepted: April 24, 2021

\textsuperscript{*) Corresponding author: E-mail: ytjou@mail.npust.edu.tw

\textbf{ABSTRACT}

Sustainable agriculture requires nutrient management options that can increase crop yields that are profitable for N nutrient availability and are environmentally friendly. However, N nutrient is dynamic and easy to lose, and excessive use of chemical N fertilizers has a negative impact on the environment. Biofertilizer by rhizobacteria is an effective way to maintain a reliable N-supply for rice growth. This study investigates the effect of a different combination of rhizobacterial fertilizers on nitrogen ion concentration in the soil and total rice production. The field experiment was conducted in two seasons. There were three treatments, including PGPR with 25\% CF, PGPR with 50\% CF, and 100\% CF. The soil sample was taken from each treatment in six growth stages of rice i.e. 15, 36, 50, 72, 100, and 118 days after transplanting. Soil chemicals NH\textsubscript{4}+ and NO\textsubscript{3}- were analyzed by Ion Chromatography. The results showed that the uniformity of NH\textsubscript{4}+ and NO\textsubscript{3}- in the soil were the highest in fertilizer application with PGPR. The application of PGPR with 50\% CF confirms that it can increase rice yields by 25.5\% and 12.9\%, respectively. The application of rhizobacteria can reduce the use of chemical fertilizers.

\section*{INTRODUCTION}

Sustainable agriculture is one of the most critical efforts globally because it has a sustainable role in providing for agricultural needs. Some of the essential functions of sustainable agriculture are maintaining the environment, maintaining food security globally, and achieving a sustainable part. One of the main challenges of agriculture (Rouphael & Colla, 2020). The increasing population has led to a tendency to use chemical fertilizers to increase crop production (Savci, 2012). Intensive use of chemical fertilizers can negatively impact the environment, especially soil degradation, microorganisms in the soil, and plants. Chemical fertilizers will also change fertile soil to acid soil (Slepetiene et al., 2020).

The status of nutrient availability is significant for plants, one of which is nitrogen ions in the soil. In general, plants can absorb nitrogen in Ammonium (NH\textsubscript{4}+) and Nitrate (NO\textsubscript{3}-). Nitrogen is one of the plant

\textbf{ISSN: 0126-0537 Accredited First Grade} by Ministry of Research, Technology and Higher Education of The Republic of Indonesia, Decree No: 30/E/KPT/2018

\textit{Cite this as:} Tarigan, E. J., Prayogo, C., Weng, Y.-T., Kobua, C. K., Jou, Y.-T., & Wang, Y.-M. (2021). Influence of rhizobacteria on soil ion concentration under paddy cultivation. \textit{AGRIVITA Journal of Agricultural Science}, 43(2), 430–439. https://doi.org/10.17503/agrivita.v43i2.2934
nutrients which is very important to increase crop yield, but the nitrogen has natural dynamics and is easily lost due to several factors. The use of intensive chemical fertilizers, especially nitrogen, makes it one of the biggest challenges in rice cultivation. One of the efforts to support the sustainability of agriculture is the use of biological fertilizers to increase soil fertility; utilizing renewable inputs can maximize ecological benefits and reduce environmental hazards. The plant rhizosphere is an ecological soil environment important for plant-microbial interactions and nutrients in the soil. It includes the colonization of various microorganisms in the soil, which can lead to associative, neutral, or parasitic symbiotic relationships in the soil and nutrient status. Rhizobacteria are bacteria that have many benefits for plant growth directly or indirectly which produce growth regulators that can be used successfully to increase plant growth (Konkolewska et al., 2020; Liu et al., 2021; Yagmur & Gunes, 2021; & Zhou, Song, Li, & Kuipers, 2021). PGPR is widely recognized as one of the best alternatives that can reduce chemical fertilizers, increase growth, and increase crop yields in a sustainable way (Basu et al., 2021). PGPR has many roles in encouraging plant growth, including dissolving phosphorus, nitrogen fixation, phyto-remediation, producing siderophore and also producing plant phytohormones such as indole acetic acid (IAA), antibiotics, and making plants resistant to disease and environmental stress (Sukul et al., 2021). The application of PGRP as biological fertilizer can increase plant roots which can increase root growth thereby increasing water and nutrient uptake (Goswami & Deka, 2020; Nawaz et al., 2020).

Maintenance of soil properties is essential in sustainable agriculture. Increasing crop production while maintaining soil quality and not damaging the environment will support sustainable agricultural systems worldwide (Kumar & Ashraf, 2017). The use of biological fertilizers can dissolve and mobilize nutrients (Sattar et al., 2019) to reduce costs and the use of ordinary fertilizers (Singh & Gupta, 2018). It is crucial to determine the constant availability of nutrients in the soil. In rice cultivation, the availability of nutrients that are not uniform in the land will result in not uniform growth of rice plants, so it is essential to have uniformity of nutrients in the soil. This limitation can be overcome by using modern approaches and techniques for soil analysis with Ion Chromatography (IC). This method can provide fertilization reference by simpler and easier cultivation guidelines, which can be used to understand the availability of nutrients in the soil accurately. This study examined the effect of differences in doses of rhizobacteria and chemical fertilizers on the availability of ionic concentrations (NH$_4^+$ and NO$_3^-$) in the soil. Moreover, the study aimed to observe the relationship between rhizobacteria, soil ion concentration, and total rice production. The results may provide new insight into rhizobacteria in increasing the effect of N and reducing the use of chemical fertilizers.

MATERIALS AND METHODS

Experimental Site and Design

This experiment was conducted from March to November 2019 in the Paddy Field Guanshan Township of Taitung County, Taiwan (GPS location 23°06′24.0″ 121°12′10″36.8′′E). Analysis of soil nutrients was done at the Laboratory Biotechnology Department, National Pingtung University of Science and Technology (NPUST). The research experiment was carried out in two seasons; the first rice cultivated was sown at the end of March and harvested in June. The second rice produced was planted in the second week of August and harvested in November. There were three treatments: PGPR with 25 % CF (Chemical Fertilizer), PGPR with 50% CF, and 100% CF as control. The type of rice used in this experiment was Kaohsiung 147; Chemical fertilizer including Urea, Potassium, and Phosphate for probiotics, was enriched with plant growth rhizobacteria (PGPR). Chemical fertilizer was applied as basal during panicle initiation, flowering stage, and followed by probiotics. During the growing season, hand weeding was done to control weeds.

Soil Samples Collection

Soil samples in the three fields were collected at every growth stage of the rice crop at 15, 36, 50, 72, 100, and 118 days after transplanting. In each field, soil samples were taken from 0–20 cm depth at six points. Soil samples were collected after separating from plant debris, then the soil samples were put in plastic and brought to the laboratory for soil analysis using Ion Chromatography.

Ion Chromatography

Soil analysis was determined using Ion Chromatography (IC) by placing 20 g of soil samples, adding 80 ml Milli-Q in Erlenmeyer flash, and put in an ultrasonic oscillator for 90 minutes. The supernatant was decanted and filtered through Whatman filter paper by 1 µm and put sample into the
new Falcon tube, and centrifuged supernatant with 12,000 rpm for 10 minutes. Filter the supernatant using a membrane filter 0.22 µm and placed the supernatant in a conical tube and store it in the freezer at 20°C. In this research, the analysis of soil ion concentration through Ion Chromatography was carried out using standard ion solutions (0.1, 0.5, 1.0, 5.0, and 10.0 ppm).

Statistical Analysis
The data from various treatments were statistically analyzed with SPSS (version 20: IBM, Armonk, New York, USA). The treatment means were compared with ANOVA using the Least Significant Difference Test (LSD) at the 5% significance level.

RESULTS AND DISCUSSION
Effect of Rhizobacteria on NH₄⁺ and NO₃⁻ Concentration
One of the main benefits of rhizobacteria is to provide plant nutrition. Some rhizobacteria species can release nitrogen and other nutrients from organic matter. PGPR acts as a direct growth promoter in plants because it can increase the availability of plant nutrients by tying up the supply for plant growth (Kumar, 2016). Several types of nitrogen-fixing bacteria that interact with plant roots can convert nitrogen from the ammonium form to the nitrate form and back again under certain soil conditions. The use of PGPR as a biofertilizer can increase plant growth, crop yields, increase soil fertility and also as a biocontrol (Soumare et al., 2020). Bacteria are essential in water dynamics, nutrient cycling, and pathogen suppression. One of the causes of decreased crop yields is the unavailability of N in the soil. Haghsheenas & Malidarreh (2021) reported that one way to increase grain yield in rice cultivation can be done by increasing nitrogen fertilization. Most of the nitrogen in the soil comes from free nitrogen from the air, and a small part comes from organic matter. The free nitrogen from the air can enter the soil in various ways, including anchoring by microorganisms, both symbiotic and non-symbiotic, through rainwater and fertilizers applied to the soil. Plants can absorb nitrogen in the form of NH₄⁺ and NO₃⁻ (Tegeder & Masclaux-Daubresse, 2018). The ions come from the transformation process of organic form and fertilizer. This transformation goes through stages, namely mineralization, nitrification, denitrification. Organic nitrogen mineralization occurs through the process of degradation of proteins, amino sugars, nucleic acids into NH₄⁺ in the form of nitrogen minerals. Ammonium is immobilized or accumulated in the soil depending on the nitrogen needs of microorganisms to grow. The formation of NH₄⁺ is caused by several possible pathways to break down ions, including the ions taken up by plants, used by microorganisms when there is an excess of carbon sources, bound in exchange complexes, or can be exchanged with cations in soil solution, react with humus, experience volatility, undergoing a nitrification process. Another form of nitrogen that can be used by plants is NO₃⁻. This ion comes from the nitrification process by microorganisms by utilizing NH₄⁺ as a substrate. Nitrate is easily lost in the soil through washing and reduction. The role of microorganisms in plant nutrition is enormous because microorganisms are always present and live in soil and plant interactions in the soil.

NH₄⁺ and NO₃⁻ concentration during the first season
Ion concentration of NH₄⁺ on days 72, 100, and 118 (Fig. 1) confirmed that there was a significant difference (p<0.05) between each treatment. The Duncan test shows that the highest concentration value on day 72 was found on PGPR with 50% CF and followed by control, and the lowest was on PGPR with 25% CF. On days 100 and 118, the highest significant data was found in the control treatment, followed by PGPR with 50% CF, and the lowest was in the PGPR treatment with 25% CF. On days 15 to 36, the concentration of NH₄⁺ decreased because the plants could cause it had absorbed NH₄⁺. The ion concentration in the soil is unstable because N in the soil is mobile and dynamic. It can easily change from one form to another, from NH₄⁺ to NO₃⁻ (Cao et al., 2016). Fig. 2 shows the concentration of NO₃⁻ in all treatments and days after plantation is not significantly different.

However, the results of the analysis show a relationship between NO₃⁻ and NH₄⁺, the NO₃⁻ concentration. The graph (Fig. 2) shows the difference with the NH₄⁺ concentration. On the 15 to 36 days after plantation, the NH₄⁺ concentration decreased (Fig. 1), but the NO₃⁻ concentration showed an increasing value. It is presumably because of the nitrifying bacteria transform of NH₄⁺ into NO₃⁻, which rice plants can use. The nitrification process occurs in the soil, where ammonium is transformed into nitrate as the main form of nitrogen that is easily absorbed by plants (Xu, Fan, & Miller, 2012). Decreasing the concentration
of NH_4^+ will increase the NO_3^- concentration. The process of transforming nitrogen forms occurs through a biochemical cycle. According to Norton & Stark (2011), environmental factors such as oxygen/carbon dioxide concentration, temperature, humidity, organic matter, and clay content strongly influence nitrification. Increasing the availability of NO_3^- on the 15 to 36 days is very important because on the 15 days is the tillering stage and the 30 days is the panicle initiation. After that, it will be continued at the booting stage. The availability of nitrogen in this period is essential. In this period of rice growth, plants need sufficient nutrients to support vegetative and productive change. The availability of nitrogen for plants will support growth and result in high production (Haghshenas & Malidarreh, 2021).

Fig. 1. The NH_4^+ concentration for the three treatments determined using Ion Chromatography beginning from day 15 to 118 during the first growing season.

Fig. 2. The NO_3^- concentration for the three treatments determined using Ion Chromatography beginning from day 15 to 118 during the first growing season.
\(\text{NH}_4^+ \) and \(\text{NO}_3^- \) Concentration during the Second Season

\(\text{NH}_4^+ \) concentration in the second season showed the days 36, 50, and 100 significant differences between each treatment. On the 36 days after transplanting, the concentration of \(\text{NH}_4^+ \) was the highest in the control treatment, followed by PGPR with 25% CF and PGPR with 50% CF. Likewise, on the 50 days, the Duncan test showed a significant difference, the highest concentration was found in PGPR with 25% CF followed by PGPR 50%, and the lowest was in the control treatment. On day 100 the \(\text{NH}_4^+ \) was the highest in PGPR treatment with 50% CF and followed by PGPR with 25% and the lowest in control. Of the three essential data, on the 36 day, the control has the highest availability among others. It is suspected that the application of chemical fertilizers has a fast reaction in plants, but it is likely that they will quickly disappear due to environmental conditions, while the nitrogen content in the PGPR application is thought to have not been dissolved. However, on days 50 and 100, the application with the addition of PGPR had the highest \(\text{NH}_4^+ \) availability compared to control. It is assumed that the nitrogen content has dissolved, and the presence of PGPR in the soil has helped increase nitrogen availability due to interactions in the soil. The availability of nitrogen on days 50 to 100 is very important in the 50 day period, which is the booting stage towards flowering. If nitrogen nutrients are available to plants, it will help increase flowering in rice plants and increase the grain yield. PGPR is thought to help provide nitrogen in the soil that can be absorbed by plants.

The \(\text{NO}_3^- \) concentration in the second season was significantly different between each treatment on day 50. The highest \(\text{NO}_3^- \) concentration was found in the PGPR application with 25% CF, followed by control and PGPR with 50% CF. The PGPR application with 25% CF has higher availability among others. It is suspected that the existence of PGPR increases the availability of \(\text{NO}_3^- \) because only this application has the highest amount of PGPR and the least chemical fertilizers, among others. In this study, PGPR was thought to work effectively on day 50.

Meanwhile, on other days there was no significant difference between each treatment. The graphs in Fig. 3 and Fig. 4 show that at 15 days, the control treatment had the highest concentration compared to the PGPR treatment. This is also presumed due to the fast chemical fertilizer reaction while PGPR has not reacted. On the other hand, on day 50, the PGPR treatment worked effectively. Treatment using chemical fertilizers can rapidly lose N fertilizer due to several environmental factors that affect it. The loss of N fertilizer is mainly in the form of \(\text{NH}_4^+ \), not \(\text{NO}_3^- \). It was similar to the studies reported by Cao & Yin (2015) and Cao et al. (2017).

Fig. 3. The \(\text{NH}_4^+ \) concentration for the three treatments determined using Ion Chromatography beginning from day 15 to 118 during the second growing season.
Fig. 4. The concentration NO_3^- for the three treatments determined using Ion Chromatography beginning from day 15 to 118 during the second season.

Fig. 5. The total production of rice for the three treatments during two seasons.
Effect of Different Fertilizer Dosages on Rice Grain Yield

The research results in Fig. 5 show the total yield of rice production in the first season and the second season. The production yields in the first and second seasons had the same highest yields in the PGPR with 50% CF treatment. In the first season, rice production PGPR with 50% CF treatment produced the highest yield (5.99 t/ha), followed by 100% CF and PGPR with 25% CF respectively (4.78 t/ha) and (4.74 t/ha). PGPR with 50% confirms that it can increase rice yields by 25.5%. In the second season, the highest production of yield was (7.19 t/ha) on the application PGPR with 50% CF, followed by 100% CF (6.37 t/ha) and application PGPR with 25% CF (5.93 t/ha). The application of PGPR with 50% CF can increase the percentage of production by (12.9%). However, in the second season, rice yields were higher than the first season for each treatment. The yields on the PGPR application with 25% CF and PGPR with 50% CF increased in the second season 80% and 83%, respectively. It assumed that the application of PGPR in the first season had affected the second season.

PGPR in the soil rhizosphere will associate with plant roots to support the availability of nutrients in the soil, increasing plant growth and development. PGPR treatment with 25% CF confirmed a decrease in crop yields. The decline in yield in this treatment might be caused by the concentration of fertilizer applied that did not meet the nutritional needs of the plant. One of the nutrients that is thought to be insufficient is the nutrient N. Following previous researchers, the unavailable N would cause no beneficial effect produced by PGPR (Paungfoo-Lonhienne et al., 2016). The unavailability of N was due to the unsuitable fertilizer concentration for supporting N in the soil. So it is necessary to have a combination with chemical fertilizers. The increase in rice production on treatment PGPR with 50% bacteria is suspected because rhizobacteria in the soil can increase soil fertility. The increase in production in this study confirms that PGPR with 50% CF is the appropriate fertilizer concentration in this study.

In addition, the results of the study were also confirmed by Kumar & Verma (2019), reporting that the interaction between PGPR and plant roots increases soil fertility from the synthesis of various biomolecules produced. The existence of Rhizobacteria plays a vital role in supporting plant yields. This is because PGPR can play a direct or indirect role. The natural part produced by Rhizobacteria includes changes, namely to assist the absorption and increase of nutrients through the production of regulating substances or phytohormones (Gouda et al., 2018). While the indirect role is that PGPR can induce plants to become resistant to pathogens so that plants can reduce the impact of disease and can support plants to grow under environmental stress (Goswami, Thakker, & Dhandhukia, 2016).

The appropriate application of PGPR will produce optimal results in providing the nutrients needed by plants and maximizing their activity in the rhizosphere. A mixture of chemical fertilizers with PGPR has benefits for plant growth. Remarkably, treatments containing PGPR resulted in higher yields than controls without rhizobacteria. These results indicate that PGPR plays a role in the efficient absorption of plant nutrients to reduce the risk of nutrient loss. Therefore, this study plays a vital role in increasing the efficiency of the use of nutrients. Previous research that reported the use of PGPR as biological fertilizer can be a biological control that can reduce the use of chemical fertilizers in crop production (Anli et al., 2020; Atieno et al., 2020). At this time, the use of intensive chemical fertilizers is one of the challenges in agriculture, reducing the application of nitrogen fertilizers without losing their performance (Bordoloi et al., 2019). Therefore, the use of microorganisms combined with chemical fertilizers will be a suitable strategy for plants (Sahu et al., 2018), especially for rice plants with a high need for nutrient amounts. This study confirms that the presence of rhizobacteria in the soil can reduce the use of intensive chemical fertilizers, provide soil ion concentrations of NH$_4^+$ and NO$_3^-$ needed by plants, and maintain environmental health. Thus, this strategy will support sustainable agriculture to increase crop yields with negative impacts on the environment, increase crop yields and provide stable food needs at present and in the future (Santoyo, Hernández-Pacheco, Hernández-Salmerón, & Hernández-León, 2017).

CONCLUSION AND SUGGESTION

The results showed that the availability of NH$_4^+$ and NO$_3^-$ in the soil was the highest when
fertilizing with PGPR. The application of PGPR with CF of 50% confirms that it can increase yields of 25.5%, 12.9%, respectively, in two seasons. The application of PGPR can increase the efficiency of N fertilizer and reduce the use of excessive chemical fertilizers to protect the environment and become a sustainable agricultural system.

ACKNOWLEDGEMENT

The author would like to thank the Double Degree Master NPUST and the Universitas Brawijaya to provide the studying opportunity. Also, staff and colleagues from the International Master Program in Soil and Water Engineering (IMPSWE), Department of Biological Science and Technology, National Pingtung University of Science and Technology, and Department of Soil and Water Management Faculty of Agriculture Universitas Brawijaya.

REFERENCES

Anli, M., Baslam, M., Tahiri, A., Ralkami, A., Symanczik, S., Boutasknit, A., ... Meddich, A. (2020). Biofertilizers as strategies to improve photosynthetic apparatus, growth, and drought stress tolerance in the date palm. *Frontiers in Plant Science, 11*, 516818. https://doi.org/10.3389/fpls.2020.516818

Atieno, M., Herrmann, L., Nguyen, H. T., Phan, H. T., Nguyen, N. K., Srean, P., ... Lesueura, D. (2020). Assessment of biofertilizer use for sustainable agriculture in the Great Mekong Region. *Journal of Environmental Management, 275*, 111300. https://doi.org/10.1016/j.jenvman.2020.111300

Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S., & El Enshasy, H. (2021). Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. *Sustainability, 13*(3), 1140. https://doi.org/10.3390/su13031140

Bordoloi, N., Baruah, K. K., Bhattacharyya, P., & Gupta, P. K. (2019). Impact of nitrogen fertilization and tillage practices on nitrous oxide emission from a summer rice ecosystem. *Archives of Agronomy and Soil Science, 65*(11), 1493-1506. https://doi.org/10.1080/03650340.2019.1566716

Cao, X. C., Li, X. Y., Zhu, L. F., Zhang, J. H., Yu, S. M., Wu, L. H., & Jin, Q. Y. (2016). Effects of water management on rice nitrogen utilization: A review. *Acta Ecologica Sinica, 36*(13), 3882-3890. https://doi.org/10.5846/stxb201411202298

Cao, Y., & Yin, B. (2015). Effects of integrated high-efficiency practice versus conventional practice on rice yield and N fate. *Agriculture, Ecosystems & Environment, 202*, 1-7. https://doi.org/10.1016/j.agee.2015.01.001

Cao, Y., Sun, H., Liu, Y., Fu, Z., Chen, G., Zou, G., & Zhou, S. (2017). Reducing N losses through surface runoff from rice-wheat rotation by improving fertilizer management. *Environmental Science and Pollution Research, 24*(5), 4841- 4850. https://doi.org/10.1007/s11356-016-8191-y

Goswami, D., Thakker, J. N., & Dhandhukia, P. C. (2016). Portraying mechanisms of plant growth promoting rhizobacteria (PGPR): a review. *Cogent Food and Agriculture (2)*, 1127500. https://doi.org/10.1080/1002-0160.2017.08.016

Goswami, M., & Deka, S. (2020). Plant growth-promoting rhizobacteria—alleviators of abiotic stresses in soil: a review. *Pedosphere, 30*, 40-61. https://doi.org/10.1007/S1002-0160(19)60839-8

Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H.-S., & Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. *Microbiological Research, 206*, 131-140. https://doi.org/10.1016/j.micres.2017.08.016

Haghshenas, H., & Malidarreh, A. G. (2021). Response of yield and yield components of released rice cultivars from 1990-2010 to nitrogen rates. *Central Asian Journal of Plant Science Innovation, 1*, 23-31. https://doi.org/10.22034/CAJPSI.2021.01.03

Konkolewska, A., Piechalak, A., Ciszewska, L., Antos-Krzemińska, N., Skrzypczak, T., Hanč, A., ... Malecka, A. (2020). Combined use of companion planting and PGPR for the assisted phytoextraction of trace metals (Zn, Pb, Cd). *Environmental Science and Pollution Research, 27*, 13809-13825. https://doi.org/10.1007/s11356-020-07885-3

Kumar, Akhilesh., & Verma, J. P. (2019). The role of microbes to improve crop productivity and soil health. In V. Achal & A. Mukherjee (Eds.), *Ecological Wisdom Inspired Restoration Engineering* (pp. 249–265). Singapore: Springer. https://doi.org/10.1007/978-981-13-0149-0_14

Kumar, Arvind. (2016). Phosphate solubilizing bacteria in agriculture biotechnology : Diversity, mechanism and their role in plant growth and crop yield. *International Journal of Advanced Research, 4*(4), 116–124. Retrieved from https://www.journaliar.
Kumar, M., & Ashraf, S. (2017). Role of Trichoderma spp. as a biocontrol agent of fungal plant pathogens. In V. Kumar, M. Kumar, S. Sharma, & R. Prasad (Eds.), *Probiotics and Plant Health* (pp. 497–506). Singapore: Springer. https://doi.org/10.1007/978-981-10-3473-2_23

Liu, Y., Gao, J., Bai, Z., Wu, S., Li, X., Wang, N., ... Zhuang, X. (2021). Unraveling mechanisms and impact of microbial recruitment on oilseed rape (*Brassica napus* L.) and the rhizosphere mediated by plant growth-promoting rhizobacteria. *Microorganisms, 9*(1), 161. https://doi.org/10.3390/microorganisms9010161

Nawaz, A., Shahbaz, M., Asadullah, A. L., Imran, A., Marghoob, M. U., Imtiaz, M., & Mubeen, F. (2020). Potential of salt tolerant PGPR in growth and yield augmentation of wheat (*Triticum aestivum* L.) under saline conditions. *Frontiers in Microbiology, 11*, 02019. https://doi.org/10.3389/fmicb.2020.02019

Norton, J. M., & Stark, J. M. (2011). Regulation and measurement of nitrification in terrestrial systems. In *Research on Nitrification and Related Processes, Part A* (Vol. 486, pp. 343-368). Academic Press. https://doi.org/10.1016/B978-0-12-381294-0.00015-8

Paungfoo-Lonhienne, C., Lonhienne, T. G. A., Yeoh, Y. K., Donose, B. C., Webb, R. I., Parsons, J., & Ragan, M. A. (2016). Crosstalk between sugarcane and a plant-growth promoting *Burkholderia* species. *Scientific Reports, 6*(1), 37389. https://doi.org/10.1038/srep37389

Rouphael, Y., & Colla, G. (2020). Editorial: Biostimulations in agriculture. *Frontiers in Plant Science, 11*, 40. https://doi.org/10.3389/fpls.2020.00040

Sahu, A., Bhattacharjya, S., Mandai, A., Thakur, J. K., Atoliya, N., Sahu, N., & Patra, A. K. (2018). Microbes: A sustainable approach for enhancing nutrient availability in agricultural soils. In V. Meena (Ed.), *Role of Rhizospheric Microbes in Soil: Volume 2: Nutrient Management and Crop Improvement* (pp. 47–75). Singapore: Springer. https://doi.org/10.1007/978-981-13-0044-8_2

Santoyo, G., Hernández-Pacheco, C., Hernández-Salmerón, J., & Hernández-León, R. (2017). The role of abiotic factors modulating the plant-microbe-soil interactions: Toward sustainable agriculture. A review. *Spanish Journal of Agricultural Research, 15*(1), 1–15. https://doi.org/10.5424/sjar/2017151-9990

Sattar, A., Naveed, M., Ali, M., Zahir, Z. A., Nadeem, S. M., Yaseen, M., & Meena, H. N. (2019). Perspectives of potassium solubilizing microbes in sustainable food production system: A review. *Applied Soil Ecology, 133*, 146–159. https://doi.org/10.1016/j.apsoil.2018.09.012

Savci, S. (2012). An agricultural pollutant: chemical fertilizer. *International Journal of Environmental Science and Development, 3*(1), 77-80. https://doi.org/10.7763/JESD.2012.V3.191

Singh, J. S., & Gupta, V. K. (2018). Soil microbial biomass: A key soil driver in management of ecosystem functioning. *Science of The Total Environment, 634*, 497–500. https://doi.org/10.1016/j.scitotenv.2018.03.373

Slepetiene, A., Volungevicius, J., Jurgutis, L., Liaudanskiene, I., Amalevicute-Volunge, K., Slepetys, J., & Ceseviciene, J. (2020). The potential of digestate as a biofertilizer in eroded soils of Lithuania. *Waste Management, 102*, 441–451. https://doi.org/10.1016/j.wasman.2019.11.008

Soumare, A., Diedhiou, A. G., Thuita, M., Hafidi, M., Ouhdouch, Y., Gopalakrishnan, S., & Kouisi, L. (2020). Exploiting biological nitrogen fixation: A route towards a sustainable agriculture. *Plants, 9*(8), 1011. https://doi.org/10.3390/plants9081011

Sukul, P., Kumar, J., Rani, A., Abdillahi, A. M., Rakesh, R. B., & Kumar, M. H. (2021). Functioning of plant growth promoting rhizobacteria (PGPR) and their mode of actions: An overview from chemistry point of view. *Plant Archives, 21*(suppl. 1), 628-638. https://doi.org/10.51470/PLANTARCHIVES.2021.v21.S1.096

Tegeder, M., & Masclaux-Daubresse, C. (2018). Source and sink mechanisms of nitrogen transport and use. *New Phytologist, 217*(1), 35-53. https://doi.org/10.1111/nph.14876

Xu, G., Fan, X., & Miller, A.J. (2012). Plant nitrogen assimilation and use efficiency. *Annual Review of Plant Biology, 63*, 153-182. https://doi.org/10.1146/annurev-arplant-042811-105532

Yagmur, B., & Gunes, A. (2021). Evaluation of the effects of plant growth promoting rhizobacteria (PGPR) on yield and quality parameters of tomato plants.
Zhang, L., Hu, B., Deng, K., Gao, X., Sun, G., Zhang, Z., Li, P., Wang, W., Li, H., & Zhang, Z. 2019. NRT1.1B improves selenium concentrations in rice grains by facilitating selenomethionine translocation. *Plant Biotechnology Journal*, 17, 1058-068. https://doi.org/10.1111/pbi.13037

Zhou, L., Song, C., Li, Z., & Kuipers, O. P. (2021). Antimicrobial activity screening of rhizosphere soil bacteria from tomato and genome-based analysis of their antimicrobial biosynthetic potential. *BMC Genomics*, 22, 29. https://doi.org/10.1186/s12864-020-07346-8