DIETARY FIBRE CONTENT IN ETHNIC AND UNCONVENTIONAL VEGETABLES AND FRUITS GROWING IN BANGLADESH

Ruheea Taskin Ruhee, Samia Sams, Amena Begum, Mohammad Khairul Alam, Parveen Begum, Maksuda Khatun, Mahbuba Kawser, Silvia Saberin, Monira Ahsan, Sheikh Nazrul Islam

ABSTRACT
Dietary fibre is known to provide health benefit and protect against degenerative chronic diseases. Thus, the present study reports the total dietary fibre (TDF) content of sixty-nine selected ethnic and unconventional vegetables and fruits growing in Bangladesh. The samples were collected from different locations of Bangladesh and mixed together to ensure sample representativeness. Dietary fibre assay kit according to the AOAC method was utilized for the analysis of TDF in selected vegetables and fruits. In the ethnic varieties, the TDF content ranged from 1.02 ±0.16 to 7.16 ±0.16 g for leafy (LV), 0.18 ±0.01 to 6.71 ±0.49 g for non-leafy vegetables (NLV) and 1.21 ±0.12 to 5.29 ±0.20 g for fruits per 100 g edible portion (EP). In the unconventional items, it arrayed from 3.08 ±0.34 g to 7.75 ±0.13 g for LV and 1.02 ±0.06 to 8.82 ±0.40 g for NLV per 100 g EP. Among the analysed samples, the highest and lowest content of TDF was found in Orohordal and Mairabokong, respectively. The unconventional vegetables contained much higher content of TDF than the ethnics and the commonly consumed similar varieties. Data on TDF content in underutilized vegetables and fruits of Bangladesh is sparse. Thus, the finding of this study would fill up the data gap in the existing food composition table of Bangladesh and also would aware the people to take vegetables and fruits rich in fibres.

Keywords: Bangladesh; dietary fibre; ethnic vegetables and fruits; unconventional vegetables

INTRODUCTION
In the recent years, health benefits of dietary fibre in reducing the risk of many chronic diseases have extensively been addressed (Venn and Mann, 2004; Streppel et al., 2008; Aune et al., 2011; Jurasová et al., 2011). Epidemiological and interventional studies reported that consumption of dietary fibre rich foods such as vegetables, fruits, and whole grains reduce the blood cholesterol, especially, low-density lipoprotein and blood pressure, promote weight loss and improve insulin sensitivity (Anderson, 2003; Streppel et al., 2008; Ivaníšová et al., 2017; Rana et al., 2019). Diet implicates the etiology of diabetes and fibre rich diets have low glyceremic index and, thus, decrease diabetic incidence (Meyer et al., 2000; Murtaugh et al., 2003; Venn and Mann, 2004; Kaline et al., 2007; Krishnan et al., 2007). Dietary fibre also reduce insulin need, slow down the absorption of sugar and prevent spikes after meals (Takekawa and Matsumoto, 2012; Kamila et al., 2018). Risk of cancers incidence, particularly colon cancer, has also been reported to cut to those who consume high dietary fibre containing foods (Aune et al., 2011; Dong and Qin, 2011; Alam et al., 2017a, b). Intake of high fibre diets also help alleviate constipation (Dhingra et al., 2012; Stewart and Schroeder, 2013). Soluble fibre has been reported to improve immunity, to speed up elimination of toxic waste through the colon and to enhance digestion. They can help treat or prevent overweight or obesity (Takekawa and Matsumoto, 2012; Kamila et al., 2018).

Data on dietary fibre are sparse. Bangladesh does not yet have its own dietary fibre data; some data are being generated for a few common foods. Dietary fibre data for ethnic or unconventional foods have not yet been generated or reported elsewhere. In our present-attempt to prepare a food composition database for Bangladesh with special reference to ethnic foods (Islam et al., 2010; Islam et al., 2012; Shajib et al., 2013; Alam et al., 2016; Alam et al., 2019; Hossain et al., 2016; Islam et al., 2016; Rana et al., 2019), this article reports the analysis of total dietary fibre (TDF) for sixty-nine vegetables and fruits of ethnic and unconventional varieties. Data generated in present study would surely add to and enrich the existing Food Composition Tables and database for Bangladesh (Islam et al., 2010; Islam et al., 2012; Shaheen et al., 2014).
Figure 1 Photograph of the selected ethnic leafy vegetable samples studied.

Figure 2 Photograph of the selected ethnic non-leafy vegetable and fruit samples studied.
Scientific hypothesis
The content of total dietary fibre was evaluated in different types of leafy vegetables, non-leafy vegetables and fruits consumed by specific tribal community of Bangladesh. We presumed that there exist a significant difference with respect to total dietary fibre, measured by AOAC method, in different indigenous leafy and non-leafy vegetables, as well as fruit species.

MATERIAL AND METHODOLOGY
Reagents
Total dietary fibre assay kit (TDF-100) was purchased from Sigma-Aldrich (Saint Louis, MO, USA). Reagent grade ethanol, acetone, dibasic sodium phosphate, sodium phosphate, sodium hydroxide, hydrochloric acid was procured from Merck (Darmstadt, Germany).

Food samples
This study included analysis of total dietary fibre content for sixty-nine vegetables and fruits of ethnic and unconventional varieties grown in Chittagong Hill Tracts (CHTs) and in some specific plane lands. Ethnic group comprised twenty-eight leafy and seventeen non-leafy vegetables and six fruits; and unconventional group consisted of fifteen leafy and three non-leafy vegetables.

Sample plan
Multi-region sampling plan was employed for collection of the food sample. To conform to the representative sample principle- “what the mass people consume’ and from where they collect it”? (Southgate and Greenfield, 2017), the ethnic samples were collected from weekly local markets at Rangamati and Bandarban, and the unconventional ones were collected from the specific local areas of Gazipur, Mymansingh and from some places of Dhaka, where they were grown. The samples were collected fresh, which were then water sprayed, packed into auto seal plastic poly bags and brought to the lab where the food samples were processed for analysis of dietary fibre. Depending on the availability, two to three samples were collected for each of the food from every market and growing area. These were then mixed to make three analytes or composite test samples.
Table 1a Ethnic leafy, non-leafy vegetables and fruits tested for TDF.

SN	Local Name	English Name	Scientific Name	Family
1	Simeialu pata	Cassava leaves	Manihot esculenta Crantz.	Euphorbiaceae
2	Konguloaga	unavailable	Unavailable	unavailable
3	Sineyeshak	unavailable	Unavailable	unavailable
4	Bat bai tastshak	Blue commelina	Commelina benghalensis L.	Commelinaceae
5	Sakumubakla	Lawn marsh	Hydrocotyle sibthorpiodes L.	Araliaceae
6	Kamino shak	unavailable	Caesalpinia digyna Rottler	Caesalpinaceae
7	Amsurothi	unavailable	Unavailable	unavailable
8	Noyalong	Trailing Smartweed	Ampelomycon chinense (L.)	Polygonaceae
9	Monjori	unavailable	Unavailable	unavailable
10	Yangfo	Banyan Tree	Ficus benghalensis L.	Moraceae
11	Missayamu	unavailable	Sarcochlamys pulcherrima Gaudich	Urticaceae
12	Felong dal shak	Common Bean	Phaseolus vulgaris L.	Fabaceae
13	Gaiboma	unavailable	Polycarporn prostratum (Forssk.)	Caryophyllaceae
14	Chikipung	Rosy Dock	Rumex vesicarius L.	Polygonaceae
15	Ambush	unavailable	Blumea lacera (Burm.f) DC.	Asteraceae
16	Mrolapiong	Bitter Cassava	Manihot esculenta Crantz	Euphorbiaceae
17	Projuktipata	Arrow leaf False	Monochoria hastata (L.) Solms.	Pontederiaceae
18	Khor pata	unavailable	Cissus repens Lam.	Vitaceae
19	Katoldingi	Arum	Lasia spinoza (L.) Thwaites	Araceae
20	Kasani	False pickerelweed	Monochoria vaginalis (Burm.f.)	Pontederiaceae
21	Saimya	Lime, Sour Lime,	Citrus aurantiifolia (Christm.)	Rutaceae
22	Balapata™	Pouzolzia	Pouzolzia hirta (Blume) Hassk.	Urticaceae
23	Moroi shak	Fennel	Foeniculum vulgare P. Mill.	Apiaceae
24	Kochi aampata	Mango leaf	Mangifera indica L.	Anacardiaceae
25	Dimeypata™	Bitter leaves	Glinus oppositifolius (L.) A.D.C.	Molluginaceae
26	Maisapagoh	Wild coriander	Eryngium foetidum L.	Apiaceae
27	Moikhunu	Edible fern	Diplazium esculentum (Retz.)Sw.	Dryopteridaceae
28	Gondhobatali	unavailable	Paederia foetida L.	Rubiaceae
29	Oraibalai	unavailable	Premna esculenta Roxb.	Verbenaceae
30	Shimeful	Red cotton flower	Bombax ceiba L.	Bombaceae
31	Sengetur/seng	unavailable	Anomum corynostachyum Wall.	Zingiberaceae
32	Betagi	Canereed	Costus speciosus L.	Costaceae
33	Bas koral	Berry bamboo	Melocanna baccifera (Roxb.) Kurz	Poaceae
34	Mairabokong	unavailable	Unavailable	unavailable
35	Lagraobokong	unavailable	Unavailable	unavailable
36	Non hong he	Turmeric	Curcuma longa L.	Zingiberaceae
37	Khirar data	Cucumber stem	Cucumis sativus L.	Cucurbitaceae
38	Pudukroi	unavailable	Amomum aromaticum Roxb.	Zingiberaceae
39	Sakdusi	Crispy brinjal	Solanum lasiocarpum Dunal	Solanaceae
40	Fala	Not known	Alpinia nigra (Gaertn.) B.L.Burtt	Zingiberaceae
41	Forashdal	Kidney been	Vigna grahamiana L.	Fabaceae.
42	Kiokokro	unavailable	Unavailable	unavailable
43	Moalu	Yam	Dioscorea bulbifera L.	Dioscoreaceae
44	Rangajhumalu	Greater/water Yam	Dioscorea alata L.	Dioscoreaceae
45	Mulachi	Radish	Raphanus sativus L.	Brassicaceae
Sample processing

Each of the collected samples was cleaned with tap water and then rinsed with distilled water, gently swabbed with tissue paper to remove trace of water and air dried. The air-dried sample was diced or cut into small pieces (peeled where needed) using a clean stainless steel knife on a dried clean plastic cutting board.

The diced sample was mixed, and a weighted portion was spread in stainless steel plate(s) and then dried in air-oven at 100 – 105 °C to constant weight (AOAC, 2007), which was then milled to 0.3 to 0.5 mm mesh powder. The powdered or milled sample was stored in desiccators for analysis of total dietary fibre.

Analysis of total dietary fibre
The total dietary fibre was estimated by the enzymatic and gravimetric method of the Association of the Official Analytical Chemists (AOAC, 2007) using a total dietary fibre assay kit (TDF-100A, Sigma-Aldrich, Saint Louis, USA). The assay procedure as described in the kit was strictly followed. In brief, the dried meshed sample was incubated with α-amylase at pH 6.0 for 15 min at 95 °C for gelatinization, which was then digested by incubation with protease at pH 7.5 for 30 min at 60 °C, then with amyloglucosidase at pH 4.5 for another 30 min at 60 °C to remove protein and starch present in the sample. Ethanol was added in excess to precipitate the soluble dietary fibre.

The residue was filtered and washed with ethanol and acetone; which was then dried overnight in an air-oven until it reduced to constant weight or nearest 0.1 mg. After

Table 1b Ethnic leafy, non-leafy vegetables and fruits tested for TDF.				
SN	Local Name	English Name	Scientific Name	Family
---	---	---	---	---
Leafy vegetable				
Fruits				
46	Sindire	Oriental cantaloupe	Cucumis melo L.	Cucurbitaceae
47	Rosko	unavailable	Syzygium balseum (Wight)	Myrtaceae
48	Kushumgulo	Bead tree	Elaeocarpus angustifolius Blume	Elaeocarpaceae
49	Jogunagula	Common red stem fig	Ficus variegata Blume	Moraceae
50	Jonglikola^{ac}	Bronze banana	Musa ornata Roxb.	Musaceae
51	Jongli/Bonaam	Wild mango	Mangifera sylvatica Roxb.	Anacardiaceae
Table 2 Unconventional leafy and non-leafy vegetables tested for TDF.				
SN	Local Name	English Name	Scientific Name	Family
---	---	---	---	---
Leafy vegetables				
52	Chimitishak	Small knotweed	Polygonum plebeium R. Br.	Polygonaceae
53	Bon palong	Bitter dock	Rumex maritimus L.	Polygonaceae
54	Tit begun shak	Black night shade	Solanum indicum L.	Solanaceae
55	Bondhonia	Wild coriander	Scoparia dulcis L.	Scrophulariaceae
56	Vennapata	Venna leaves	Ricinus communis L.	Euphorbiaceae
57	Orohorpata	Pigeon pea	Cajanus cajan Millsp.	Fabaceae
58	Bet gach	Korok bet	Calamus tenuis Roxb.	Araceae
59	Sornolota/ Torulota	Dodder	Cuscuta reflexa Roxb.	Cuscutaceae
60	Sadakoroi pata	Labbec tree	Albizia procera (Roxb.) Benth	Fabaceae
61	Telakucha	Ivy gourd	Coccinia grandis (L.) Voigt	C urbitaceae
62	Tetulpata	Tamarind tree	Tamarindus indica L.	Fabaceae
63	Muktajhuri	Indian acalypha	Acalypha indica L.	Euphorbiaceae
64	Khudemanik	Thankuni leaves	Centella asiatica (L.) Urban	Apiaceae
65	Roktodrone	Red verticulia	Leonurus sibiricus L.	Lamiaceae
66	Jolpai pata	Indian olive leaves	Elaeocarpus varunua B.	Elaeocarpaceae
Non-Leafy vegetables				
67	Rakahlshosha	Wood cumber	Zehneria scabra (L.f.) Sond.	Cucurbitaceae
68	Orohordal	Pigeon pea	Cajanus cajan (L.) Millsp.	Fabaceae
69	Jam alu	Potato	Solanum tuberosum L.	Solanaceae

Identification of vegetable sample
A taxonomist (Dr. Maksuda Khatun) of the Department of Botany, University of Dhaka, who was also accompanied the collection team, and confirmed the sample identity with name and family. The collected samples are listed in the Table 1a, Table 1b and Table 2. Photographs of some vegetables and fruits are also provided in the Figure 1, Figure 2 and Figure 3.
drying, half of the sample was analyzed for protein and the other half was burnt to ash.

Total dietary fibre content in the samples was calculated according to the below mentioned formula.

\[
TDF \% = \left(\frac{R_{\text{sample}} - P_{\text{sample}} - A_{\text{sample}} - \text{Blank}}{\text{SM}} \right) \times 100
\]

Where: \(TDF = \) Total Dietary Fibres, \(R = \) average residue weight (mg), \(P = \) average protein weight (mg), \(A = \) average ash weight (mg), \(\text{SM} = \) average sample weight (mg), \(\text{Blank} = R_{\text{blank}} - P_{\text{blank}} - A_{\text{blank}} \). Residues were corrected for protein, ash and blank in final calculation.

Statistical analysis

The analysis was carried out in triplicates. Descriptive statistics were performed and values were expressed as mean \(\pm \) standard deviation. One-way analysis of variance (ANOVA) was employed to evaluate the differences among varieties for total dietary fibre content and was declared significant when \(p < 0.05 \) at 5\% level of significance. Minitab version 18.0. (Minitab Inc., State College, PA, USA) was used to analyze the data.

RESULTS AND DISCUSSION

Table 3 and Table 4 represent the total dietary fibre contents in the ethnic leafy and non-leafy vegetables and Table 5 and Table 6 represent the total dietary fibre contents in the ethnic fruits, and unconventional leafy and non-leafy vegetables. In the ethnic vegetables, the dietary fibre ranged from 1.02 ±0.16 to 7.16 ±0.16 g per 100 g fresh edible portion (pooled mean ±SD: 2.25 ±1.34) for leafy vegetables (Table 3), 0.18 ±0.01 to 6.71 ±0.49 g per 100 g fresh edible portion (pooled mean ±SD: 2.75 ±1.64) for non-leafy vegetables (Table 4) and in the ethnic fruits (Table 5), the content varied from 1.21 ±0.12 to 5.29 ±0.20 g per 100 g fresh edible portion (pooled mean ±SD: 3.11 ±1.44). Although the combined data for ethnic fruits showed high amount of dietary fibre compared to ethnic leafy- and non-leafy vegetables, but we did not observe any statistical significance. In unconventional vegetables (Table 6), the content ranged from 3.08 ±0.34 to 7.75 ±0.13 g per 100 g fresh edible portion (pooled mean ±SD: 5.79 ±1.42) for leafy vegetable and 1.02 ±0.06 to 8.82 ±0.40 g per 100 g fresh edible portion (pooled mean ±SD: 4.93 ±3.29) for non-leafy vegetable. Like ethnic vegetables and fruits combined data, unconventional vegetables also failed to show statistical significance between leafy and non-leafy vegetables.

SN	Leafy vegetable (Local name)	TDF g per 100 g edible portion
1	Simei alu pata	1.02 ±0.16 \(^a\)
2	Konguloaga	2.07 ±0.09 \(^{de}\)
3	Sineiyeshak	2.36 ±0.33 \(^d\)
4	Bat baiittashak	1.96 ±0.15 \(^{def}\)
5	Sakumubakla	4.06 ±0.30 \(^e\)
6	Kamino shak	1.87 ±0.16 \(^{defg}\)
7	Amsurothi	1.79 ±0.22 \(^{efgh}\)
8	Noyalong	1.74 ±0.18 \(^{efgh}\)
9	Monjori	1.12 ±0.07 \(^{ijk}\)
10	Yangfo	2.16 ±0.10 \(^{ge}\)
11	Missayanu	5.06 ±0.05 \(^b\)
12	Felong dal shak	1.89 ±0.12 \(^{defg}\)
13	Gaiboma	1.97 ±0.12 \(^{def}\)
14	Chikipung	2.14 ±0.15 \(^{de}\)
15	Ambush	2.08 ±0.16 \(^{de}\)
16	Mrolapiong	2.41 ±0.23 \(^d\)
17	Projuktipata	1.67 ±0.26 \(^{efghij}\)
18	Khoru pata	1.18 ±0.19 \(^{ijk}\)
19	Katoldingi	1.68 ±0.14 \(^{efgh}\)
20	Kasani	1.88 ±0.10 \(^{efghi}\)
21	Saimya	2.07 ±0.05 \(^{de}\)
22	Balapata	1.26 ±0.18 \(^{ijk}\)
23	Moroi shak	1.45 ±0.17 \(^{efghijk}\)
24	Kochi aampilta	4.35 ±0.33 \(^a\)
25	Dimyepata	1.12 ±0.02 \(^{k}\)
26	Maisapagoh	1.34 ±0.04 \(^{ghijk}\)
27	Moikhumu	2.09 ±0.10 \(^{de}\)
28	Gondhobatali	7.16 ±0.16 \(^a\)

Note: Different superscript letters in each column indicates the significant differences in the mean at \(p <0.05 \).
Table 4 Total dietary fibre of ethnic non-leafy vegetables.

SI	Non-Leafy vegetable (Local name)	TDF g per 100 g edible portion
29	Oraibalai	6.71 ±0.49^a
30	Shimeful	4.90 ±0.24^b
31	Sengetur/senga	1.70 ±0.02^{fgh}
32	Betagi	4.37 ±0.34^b
33	Bas koral	2.19 ±0.14^{deg}
34	Mairabokong	0.18 ±0.01ⁱ
35	Laigraobokong	1.27 ±0.26^{ha}
36	Non hong he	2.98 ±0.05^{cd}
37	Khirar data	2.13 ±0.02^{efg}
38	Pudukroi	3.44 ±0.25^c
39	Sakdusi	2.51 ±0.47^{def}
40	Fala	2.41 ±0.32^{defg}
41	Forashdal	2.63 ±0.42^{ede}
42	Kiokokro	0.74 ±0.12ⁱ
43	Moalu	2.28 ±0.37^{de}
44	Ranga jhum alu	1.65 ±0.13^{gh}
45	Mulachi	4.74 ±0.23^b

Note: Different superscript letters in each column indicates the significant differences in the mean at p <0.05.

Table 5 Total dietary fibre of ethnic fruits.

SI	Fruits (Local name)	TDF g per 100 g edible portion
46	Sindire	1.94 ±0.13^d
47	Rosko	4.38 ±0.46^b
48	Kushumgulo	1.21 ±0.12^a
49	Jogunagula	2.78 ±0.21^e
50	Jonglikola	3.06 ±0.09^c
51	Jongli/Bonaam	5.29 ±0.20^a

Note: Different superscript letters in each column indicates the significant differences in the mean at p <0.05.

Table 6 Total dietary fibre of unconventional vegetables.

SI	Leafy vegetables (Local name)	TDF g per 100 g edible portion
52	Chimitishak	7.75 ±0.13^{ab}
53	Bon palong	4.69 ±0.33^b
54	Tit begun shak	4.65 ±0.13^b
55	Bondhonia	6.27±0.03^{def}
56	Vennapata	4.49 ±0.38^b
57	Orohorpata	6.64 ±0.25^{def}
58	Bet gach	7.16 ±0.41^{bcd}
59	Sornolota/Torulota	6.12 ±0.36^{ef}
60	Sadakoroi pata	3.08 ±0.34ⁱ
61	Telakucha	7.32 ±0.34^b
62	Tetulpata	6.29 ±0.16^{def}
63	Muktajhuri	6.85 ±0.46^{bde}
64	Khudemanik	3.33 ±0.29ⁱ
65	Roktodorne	6.56 ±0.11^{def}
66	Jolpai pata	5.74 ±0.06^{fgh}

SI	Non-Leafy vegetables	TDF g per 100 g edible portion
67	Rakahlshosha	1.02 ±0.06ⁱ
68	Orohordal	8.82 ±0.40⁴
69	Jam alu	5.19 ±0.22^{gh}

Note: Different superscript letters in each column indicates the significant differences in the mean at p <0.05.
The present study indicates that amongst the vegetables and fruits those were tested, Orohordal contains the highest amount of total dietary fibre (8.82 ±0.40 g per 100 g fresh edible portion).

It was followed by Chintimshak, Telakucha, Betgach, Gondhobatati, Muktajahuri, Orhorpata, Oraibalai, Roktdronde, Tetulpata, Bondhonia, Sornolota, which also contain rich amount of dietary fibre ranging from 7.75 ±0.13 to 6.12 ±0.36 g per 100 g fresh edible portion. The other vegetables such as Jolipaipata, Jonglaam, Jamalu, Misayananu, Shimeful, Mulachi, Bonpalong, Titbegun, Vennapata, Rosko, Betagi, Kochi aamppata, Sakumubakla also contain a high amount of TDF (5.74 ±0.06 to 4.06 ±0.30 g per 100 g fresh edible portion). For leafy vegetable, the lowest TDF was present in Simeialupta (1.02 ±0.16 g per 100 g fresh edible portion). Among the fruits, Jonglaam or Bonaam has the highest amount of TDF (5.29 ±0.20 g per 100 g fresh edible portion), followed by Rosko (4.38 ±0.46 g per 100 g fresh edible portion) and Jongliliki (3.06 ±0.09 g per 100 g fresh edible portion).

The study findings also indicate that the unconventional vegetables contain higher amount of total dietary fibre (5.65 ±1.85 g per 100 g fresh edible portion) as compared to the ethnic vegetables (2.52 ±1.48 g per 100 g fresh edible portion). In case of most food items, the content of dietary fibre in ethnic vegetables was found to be, somewhat, comparable to that of commonly consumed vegetables in Bangladesh (Islam et al., 2010; Islam et al., 2012; Shaheen et al., 2014; Alam et al., 2016; Rana et al., 2019) as well as in India (Longvah et al., 2017) and elsewhere (Dhingra et al., 2012). From Table 5 it can be seen that, among ethnic fruits, Rosko, which looks like Plum or Black berry, was found to contain much higher amount of dietary fibre (4.38 g per 100 g edible fresh) than the Plum (2.80 g per 100 g edible fresh) or higher than or similar to the Black berry (3.50 or 4.35 g per 100 g fresh edible portion) (Islam et al., 2012; Longvah et al., 2017).

Similarly, Jonglaam and Jojgolkola were found to contain higher amount of dietary fibre (5.29 and 3.06 g per 100 g fresh edible portion respectively) as compared to the mango (3.65 or 1.5 g per 100 g fresh edible portion) and banana (1.90 or 2.6 g per 100 g fresh edible portion) (Islam et al., 2010; Islam et al., 2012; Shaheen et al., 2014).

In the ethnic Mulachi and Green Chilli, the total dietary fibre was found to be almost same (4.74 vs 4.90 g per 100 g fresh edible portion). The recommended dietary intake (RDI) of TDF for an adult human is 30 – 38 g per day and the consumption of these ethnic and unconventional vegetables and fruits can contribute up to 30% of RDI of TDF.

CONCLUSION

Some of ethnic vegetable and fruits such as Gondhobatati, Oraibalai, Shimeful, Rosko, Betagi, Kochi aamppata, Jonglaam and most of the unconventional vegetables were found to contain rich amount of total dietary fibre. The findings of present study would encourage people to adopt dietary diversity. Cultivation and regular intake of plant foods rich in fibre might reduce the risk of many diseases. It would also go a long way in filling up the data gap that exists in food composition database for Bangladesh.

REFERENCES

Alam, M. K., Rana, Z. H., Akhtaruzzaman, M. 2017a. Chemical composition and fatty acid profile of Bangladeshi beef at retail. International Food Research Journal, vol. 24, no. 5, p. 1897-1902.

Alam, M. K., Rana, Z. H., Akhtaruzzaman, M. 2017b. Comparison of muscle and subcutaneous tissue fatty acid composition of Bangladeshi non descript deshi Bulls finished on pasture diet. Journal of Chemistry, vol. 2017, no. 8579387, p. 1-6. https://doi.org/10.1155/2017/8579387

Alam, M. K., Rana, Z. H., Islam, S. N. 2016. Comparison of the Proximate Composition, Total Carotenoids and Total Polyphenol Content of Nine Orange-Fleshed Sweet Potato Varieties Grown in Bangladesh. Foods, vol. 5, no. 3, p. 64. https://doi.org/10.3390/foods5030064

Alam, M. K., Rana, Z. H., Islam, S. N., Akhtaruzzaman, M. 2019. Total phenolic content and antioxidant activity of melatonin extract of selected wild leafy vegetables grown in Bangladesh: A cheapest source of antioxidants. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 287-293. https://doi.org/10.5219/1107

Anderson, J. W. 2003. Whole grains protect against atherosclerotic cardiovascular disease. Proceedings of the Nutrition Society, vol. 62, no. 1, p. 135-142. https://doi.org/10.1079/pns2002222

AOAC. 2007. Official Methods of Analysis. 18th ed. Gaithersburg, USA : Association of Official Analytical Chemists International. ISBN 09 3 558478 1

Aune, D., Chan, D. S. M., Lau, R., Vieira, R., Greenwood, D.C., Kampman, E., Norat, T. 2011. Dietary fibre, whole grains, and risk of colorectal cancer: Systematic review and dose-response meta-analysis of prospective studies. BMJ (Online), vol. 343, no. 7833, p. 1082. https://doi.org/10.1136/bmj.d6617

Dhingra, D., Michael, M., Rajput, H., Patil, R. T. 2012. Dietary fibre in foods: a review. Journal of Food Science and Technology, vol. 49, no. 3, p. 255-66. https://doi.org/10.1007/s13197-011-0365-5

Dong, J. Y., Qin, L. Q. 2011. Dietary glycemic index, glycemic load, and risk of breast cancer: Meta-analysis of prospective cohort studies. Breast Cancer Research and Treatment, vol. 126, no. 2, p. 287-294. https://doi.org/10.1007/s10549-011-1343-3

Hossain, A., Begum, P., Salma Zannat, M., Hafizur Rahman, M., Ahsan, M., Islam, S. N. 2016. Nutrient composition of strawberry genotypes cultivated in a horticulture farm. Food Chemistry, vol. 199, p. 648-652. https://doi.org/10.1016/j.foodchem.2015.12.056

Islam, S. N., Khan, M. N. I., Akhtaruzzaman, M. 2010. A Food Composition Database for Bangladesh with Special Reference to Selected Ethnic Foods. Dhaka, Bangladesh : Institute of Nutrition and Food Science (INFS). Available from: http://fpmu.gov.bd/agridrupal/sites/default/files/Final%20Report-20Sk%20Nazrul%20Islam.pdf

Islam, S. N., Khan, M. N. I., Akhtaruzzaman, M. 2012. Food Composition Tables and Database for Bangladesh with Special Reference to Selected Ethnic Foods. Dhaka, Bangladesh : Institute of Nutrition and Food Science (INFS). ISBN 978984335237-8.

Islam, S. N., Nusrat, T., Begum, P., Ahsan, M. 2016. Carotenoids and β-carotene in orange fleshed sweet potato: A possible solution to Vitamin A deficiency. Food Chemistry, vol. 199, p. 628-631. https://doi.org/10.1016/j.foodchem.2015.12.057
