Prospective Multicenter Study on the Prognostic and Predictive Impact of Tumor Budding in Stage II Colon Cancer: Results From the SACURA Trial

Hideki Ueno, MD, PhD; Megumi Ishiguro, MD, PhD; Eiji Nakatani, PhD; Toshiaki Ishikawa, MD, PhD; Hiroyuki Uetake, MD, PhD; Chu Matsuda, MD, PhD; Yoshihiko Nakamoto, MD; Masanori Kotake, MD; Kiyotaka Kurachi, MD, PhD; Tomohisa Egawa, MD, PhD; Keigo Yasumasu, MD; Kohei Murata, MD, PhD; Osamu Ikawa, MD; Seiichi Shinji, MD, PhD; Kenta Murotani, PhD; Shigeyuki Matsui, PhD; Satoshi Teramukai, PhD; Naohiro Tomita, MD, PhD; and Kenichi Sugihara, MD, PhD; on behalf of the SACURA Study Group

PURPOSE The International Union Against Cancer highlighted tumor budding as a tumor-related prognostic factor. International assessment criteria for tumor budding were recently defined by the 2016 International Tumor Budding Consensus Conference (ITBCC2016). This study aimed to clarify the prognostic and predictive values of tumor budding in a randomized controlled trial evaluating the superiority of adjuvant chemotherapy with oral tegafur-uracil over surgery alone for stage II colon cancer (SACURA trial; ClinicalTrials.gov identifier: NCT00392899).

PATIENTS AND METHODS Between 2006 and 2010, we enrolled 991 patients from 123 institutions with stage II colon cancer. Tumor budding was diagnosed by central review on the basis of the criteria adopted in the ITBCC2016. We prospectively recorded all clinical and pathologic data, including the budding grade, and performed prognostic analyses after 5 years of completing the patients’ registration.

RESULTS Of 991 tumors, 376, 331, and 284 were classified as BD1, BD2, and BD3, respectively; the 5-year relapse-free survival (RFS) rate was 90.9%, 85.1%, and 74.4%, respectively ($P < .001$), and ranged widely in T4 tumors (86.6% to 53.3%). The budding grade significantly correlated with recurrence in the liver, lungs, lymph nodes, and peritoneum ($P < .001$ to .01). Multivariable analysis revealed that budding and T stage exerted an independent impact on RFS, and on the basis of the Harrell concordance index, these two factors substantially contributed to the improvement of the Cox model for predicting RFS. Both the BD2 and BD3 groups demonstrated greater improvement in the 5-year recurrence rate in the adjuvant chemotherapy group than the surgery-alone group by approximately 5%, but the difference was statistically nonsignificant.

CONCLUSION Tumor budding grade on the basis of the ITBCC2016 criteria should be routinely evaluated in pathologic practice and could improve the benefit of adjuvant chemotherapy for stage II colon cancer.

J Clin Oncol 37:1886-1894. © 2019 by American Society of Clinical Oncology
the UFT group than in the surgery-alone group (10.4% vs 13.4%). The SACURA trial projected several translational studies in which tumor budding was prospectively evaluated to determine its prognostic value in stage II colon cancer. The assessment criteria for tumor budding used in the SACURA trial were subsequently adopted as the international standard criteria in the ITBCC2016.

Budding is reportedly a morphologic characteristic of the epithelial-mesenchymal transition (EMT). Reports suggest that tumors undergoing EMT may resist conventional chemotherapy; thus, an important clinical question to clarify would be whether high-grade budding is associated with decreased efficiency of adjuvant chemotherapy. Specifically, budding would probably not be an optimal decision-making factor if it was associated with decreased efficacy of adjuvant chemotherapy because it is not helpful for selecting patients who would benefit from postoperative adjuvant chemotherapy. Hence, this prospective clinical study attempted to validate the prognostic stratification power of tumor budding on the basis of the ITBCC criteria and clarify the predictive impact of adjuvant chemotherapy efficiency in stage II colon cancer.

PATIENTS AND METHODS
Patients

This study was conducted according to the Declaration of Helsinki and comparable Japanese ethical standards and was approved by the institutional review boards of each participating institution. Furthermore, we obtained written informed consent from all study patients.

Overall, 2,024 patients with stage II colon cancer and no preoperative treatment were enrolled in the SACURA trial between October 2006 and July 2010. After excluding 42 ineligible patients, 1,982 were randomly assigned to the surgery-alone group or the UFT group and compared regarding DFS (primary end point) and secondary end points, including overall survival, relapse-free survival (RFS), and incidence and severity of adverse events (Appendix Fig A1, online only). Consequently, at the primary analysis after 5 years from the last patient's enrollment, results showed that there was no superiority in any of the end points in the UFT group.

Of 1,982 patients, 1,003 underwent surgery at 123 separate institutions participating in the preplanned translational study for new histopathologic prognostic factors in the SACURA trial. After excluding 12 patients because of noncompliance with the allocated protocol treatment, we enrolled 991 patients with curatively resected stage II colon cancer at 123 institutions (surgery-alone group, 501 patients; UFT group, 490 patients). Of these, 807 patients had colon cancer and 184 had rectosigmoid cancer. Regarding the extent of lymph node dissection per the Japanese Classification of Colorectal Carcinoma (2nd English edition), most patients underwent D3 or D2 procedures (800 and 188 patients, respectively). Institutional pathologists diagnosed conventional factors, including venous invasion, for which positive judgment was made regardless of whether it was observed intramurally or extramurally, and elastic stains to identify vascular invasion were left to the discretion of the pathologists. The median follow-up was 69.7 months (range, 2.1 to 105.6 months), and the 5-year RFS was 84.2% in all patients, 85.3% in the UFT group, and 83.2% in the surgery-alone group (P = .3083).

Pathologic Examination for Tumor Budding

Postoperatively, among glass slides stained with hematoxylin and eosin (HE) prepared in routine pathologic practice, only slides prepared from a whole-tumor section were collected in the SACURA trial. In the study office, Tokyo Medical and Dental University, and from each institution, and submitted to National Defense Medical College, the institution responsible for the central review of new histopathologic factors and blinded to patient and tumor information. All of the HE slides collected for this study were prospectively examined by one of the authors (H.U.) to evaluate the tumor budding grade according to the criteria detailed in the following paragraph.

Tumor budding was defined as an isolated cancer cell or cluster comprising less than five cells in the invasive front and graded according to its number in a microscopic field with a ×20 objective lens (0.785 mm²) in the hotspot. We classified tumors with less than five, five to nine, and 10 or more budding foci as grades BD1, BD2, and BD3, respectively. These assessment criteria were subsequently adopted in the Japanese guidelines (2009) and international criteria in the ITBCC2016. Category BD3 was subclassified as BD3a for tumors with 10 to 19 and BD3b for those with 20 or more budding foci in the hotspot (in a field of 0.785 mm²) at the invasive front. No cytookeratin stains were used to determine the hotspots or to count the number of buds.

Statistical Analyses

The end point definition in the SACURA trial was reported previously. DFS was defined as the time from randomization to recurrence, second cancers, or death, whichever occurred first. Second cancers included metachronous cancers developed in both the colorectum and other organs. The SACURA trial revealed that approximately 9% of the patients experienced second cancers, comprising 40.7% of the DFS events. Because we considered RFS, the time from randomization to first recurrence or death, more suitable for appraising the clinical value of the prognostic factors, we used it as a substitute end point.

The Kruskal-Wallis test was used for continuous variables and the χ² test for categorical variables to assess
differences between tumor budding in clinicopathologic characteristics and postoperative oncologic events. The RFS and recurrence rates were estimated using Kaplan-Meier analysis. We evaluated the 95% CIs at a specific time using the SE computed by the Greenwood formula and performed comparisons using the log-rank test. Univariable and multivariable analyses using the Cox proportional hazards regression model were performed to calculate HRs and 95% CIs for RFS of eight prespecified, elemental prognostic factors, including conventional factors used in the current international guidelines (number of lymph nodes examined, tumor differentiation, T stage, lymphatic and venous invasion, and microsatellite instability),11,12 treatment arm, and tumor budding. Additional multivariable analyses were also performed as sensitivity analyses in other sets of prognostic factors. Furthermore, we compared the multivariable Cox models for the prediction of RFS to assess the prognostic power of the individual prognostic factors using the Harrell concordance index (C-index).13 The 95% CI for the difference in Harrell C-index from the interest model was estimated using the bootstrap percentile method with resampling 10,000 times. We conducted an interaction analysis to compare the treatment effect of UFT between subgroups determined according to the three-tier tumor budding grade by using a Cox model with treatment, three-tier tumor budding (two terms), and their interaction (two terms) as covariables to have an interaction test with degrees of freedom of 2. We also estimated subgroup-specific treatment effects to inspect the profile of the interaction. All statistical analyses were performed using SAS, version 9.3 (SAS Institute, Cary, NC).

RESULTS

Incidence of Grades of Tumor Budding in the SACURA Trial

On the basis of the budding grade, 376, 331, and 284 tumors were classified as BD1, BD2, and BD3, respectively. The proportion of T4, positive lymphatic invasion, and preoperative serum carcinoembryonic antigen value of more than 5.0 ng/mL was higher based on the increased tumor budding grade (P < .001 to .03; Table 1). The budding grade was marginally associated with the tumor differentiation grade (P = .0598).

Tumor Budding and Prognostic Outcomes

On the basis of the tumor budding grade, the 5-year RFS rate was 90.9% (95% CI, 87.4% to 93.5%), 85.1% (95% CI, 80.7% to 88.6%), and 74.4% (95% CI, 68.9% to 79.1%) for BD1, BD2, and BD3, respectively (P < .001; Fig 1). Moreover, a significant difference was observed in RFS between BD3a and BD3b (P = .0465); the 5-year RFS rate was 77.5% (95% CI, 71.3% to 82.6%) for BD3a and 64.6% (95% CI, 52.0% to 74.7%) for BD3b. A positive correlation was observed between the three-tier

TABLE 1. Tumor Budding and Clinicopathologic Characteristics

Parameters	BD1 (n = 376)	BD2 (n = 331)	BD3 (n = 284)	P
Sex				.1241
Male	243 (64.6)	195 (58.9)	163 (57.4)	
Female	133 (35.4)	136 (41.1)	121 (42.6)	
Age, years	65.5	65.3	65.7	.7511
Tumor location				.4724
Right-sided colon	150 (39.9)	128 (38.7)	127 (44.7)	
Left-sided colon	158 (42.0)	134 (40.5)	110 (38.7)	
Rectosigmoid	68 (18.1)	69 (20.8)	47 (16.5)	
Maximum diameter, mm	50.1	50.0	45.8	.0036
Extent of LN dissection*				.1024
D1	0 (0.0)	0 (0.0)	3 (1.1)	
D2	71 (18.9)	61 (18.4)	56 (19.7)	
D3	305 (81.1)	270 (81.6)	226 (79.2)	
No. of examined LNs	20.5	20.2	19.8	.5532
Tumor differentiation				.0598
G1	159 (42.3)	156 (47.1)	105 (37.0)	
G2	198 (52.7)	166 (50.2)	162 (57.0)	
G3	19 (5.1)	9 (2.7)	17 (6.0)	
T stage				< .001
T3	337 (89.6)	278 (84.0)	208 (73.2)	
T4	39 (10.4)	53 (16.0)	76 (26.8)	
Lymphatic invasion				< .001
Negative	187 (49.7)	136 (41.1)	93 (32.7)	
Positive	189 (50.3)	195 (58.9)	191 (67.3)	
Venous invasion				.7196
Negative	152 (40.4)	124 (37.5)	110 (38.7)	
Positive	224 (59.6)	207 (62.5)	174 (61.3)	
Preoperative CEA, ng/mL				.0286
≤ 5.0	273 (72.6)	214 (64.7)	183 (64.4)	
> 5.0	87 (23.1)	100 (30.2)	89 (31.3)	
Not available	16 (4.3)	17 (5.1)	12 (4.2)	
MSI				.6076
MSI-high	26 (6.9)	20 (6.0)	23 (8.1)	
MSI-low, MSS	340 (90.4)	300 (90.6)	252 (88.7)	
Not available	10 (2.7)	11 (3.3)	9 (3.2)	
Treatment arm				.5105
Surgery alone	193 (51.3)	159 (48.0)	149 (52.5)	
UFT	183 (48.7)	172 (52.0)	135 (47.5)	

NOTE. Data are No. (%) unless otherwise indicated.

Abbreviations: CEA, carcinoembryonic antigen; LN, lymph node; MSI, microsatellite instability; MSS, microsatellite stable; UFT, tegafur-uracil.

*Japanese Classification of Colorectal Carcinoma (2nd English edition).10
budding grade and RFS in both T3 and T4 (P = .0100 and < .001, respectively); however, the 5-year RFS rate stratified according to the three-tier budding grade was wider in patients with T4 tumors (86.6% to 53.3%) compared with those with T3 tumors (91.4% to 82.1%).

The incidence of recurrence was 6.4%, 12.1%, and 23.6% in the BD1, BD2, and BD3 groups, respectively (P < .001; Table 2). Of first relapse organs, the three-tier budding grade was significantly associated with the incidence of liver, lung, lymph node, and peritoneal recurrence, respectively (P < .001 to .02; Table 2).

Identification of Significant Prognostic Factors for RFS

Among eight prespecified prognostic factors, T stage, microsatellite instability status, and tumor budding correlated with RFS on the basis of univariable analysis using the Cox proportional hazards regression model (Table 3). However, other factors were not significant, including tumor differentiation, lymphatic and venous invasions, and number of lymph nodes examined.

Multivariable analysis for RFS revealed budding (BD2: HR, 1.5; 95% CI, 1.0 to 2.3; P = .0692; BD3: HR, 2.6; 95% CI, 1.7 to 3.9; P < .001) along with T stage (T4: HR, 2.5; 95% CI, 1.8 to 3.6; P < .001) as independently affecting the prognostic outcome (Table 3). In sensitivity analysis with the other two sets of combined prognostic factors, we had similar results in which tumor budding was selected as an independent factor for RFS (Appendix Table A1, online only).

Value of Tumor Budding as a Prognostic Model Factor on the Basis of Harrell C-Index

Table 4 lists a comparison of multivariable Cox models for predicting RFS according to the Harrell C-index. The C-index of a prognostic model consisting of eight elemental prognostic factors was 0.6805 (full model). Among the prognostic models excluding a component factor from the full model, the reduction in C-index was the most significant in the model excluding tumor budding (0.0423), and its 95% CI did not contain zero (0.0086 to 0.0712). Similarly, T factor was associated with a substantially reduced C-index, of which 95% CI did not contain zero.

Impact of Adjuvant Chemotherapy on Recurrence Rate According to Tumor Budding Grade

On interaction analysis, the treatment effect of UFT was not significantly different between subgroups according to the grade of tumor budding (P = .5733 in the interaction test; Fig 2). Although the interaction was not significant, we observed a tendency of the beneficial effect of UFT with HRs of 0.84 (95% CI, 0.53 to 1.33) and 0.72 (95% CI, 0.41 to 1.27) in patients with BD2 tumors and those with BD3 tumors, respectively, but no such a tendency in patients with BD1 tumors with an HR of 1.14 (95% CI, 0.60 to 2.16).

DISCUSSION

Initially, tumor budding was loosely defined as a histologic characteristic on HE glass slides.14,15 However, from early time, budding grade and RFS in both T3 and T4 (P = .0100 and < .001, respectively); however, the 5-year RFS rate stratified according to the three-tier budding grade was wider in patients with T4 tumors (86.6% to 53.3%) compared with those with T3 tumors (91.4% to 82.1%).

The incidence of recurrence was 6.4%, 12.1%, and 23.6% in the BD1, BD2, and BD3 groups, respectively (P < .001; Table 2). Of first relapse organs, the three-tier budding grade was significantly associated with the incidence of liver, lung, lymph node, and peritoneal recurrence, respectively (P < .001 to .02; Table 2).

Identification of Significant Prognostic Factors for RFS

Among eight prespecified prognostic factors, T stage, microsatellite instability status, and tumor budding correlated with RFS on the basis of univariable analysis using the Cox proportional hazards regression model (Table 3). However, other factors were not significant, including tumor differentiation, lymphatic and venous invasions, and number of lymph nodes examined.

Multivariable analysis for RFS revealed budding (BD2: HR, 1.5; 95% CI, 1.0 to 2.3; P = .0692; BD3: HR, 2.6; 95% CI, 1.7 to 3.9; P < .001) along with T stage (T4: HR, 2.5; 95% CI, 1.8 to 3.6; P < .001) as independently affecting the prognostic outcome (Table 3). In sensitivity analysis with the other two sets of combined prognostic factors, we had similar results in which tumor budding was selected as an independent factor for RFS (Appendix Table A1, online only).

Value of Tumor Budding as a Prognostic Model Factor on the Basis of Harrell C-Index

Table 4 lists a comparison of multivariable Cox models for predicting RFS according to the Harrell C-index. The C-index of a prognostic model consisting of eight elemental prognostic factors was 0.6805 (full model). Among the prognostic models excluding a component factor from the full model, the reduction in C-index was the most significant in the model excluding tumor budding (0.0423), and its 95% CI did not contain zero (0.0086 to 0.0712). Similarly, T factor was associated with a substantially reduced C-index, of which 95% CI did not contain zero.

Impact of Adjuvant Chemotherapy on Recurrence Rate According to Tumor Budding Grade

On interaction analysis, the treatment effect of UFT was not significantly different between subgroups according to the grade of tumor budding (P = .5733 in the interaction test; Fig 2). Although the interaction was not significant, we observed a tendency of the beneficial effect of UFT with HRs of 0.84 (95% CI, 0.53 to 1.33) and 0.72 (95% CI, 0.41 to 1.27) in patients with BD2 tumors and those with BD3 tumors, respectively, but no such a tendency in patients with BD1 tumors with an HR of 1.14 (95% CI, 0.60 to 2.16).

DISCUSSION

Initially, tumor budding was loosely defined as a histologic characteristic on HE glass slides.14,15 However, from early time, budding grade and RFS in both T3 and T4 (P = .0100 and < .001, respectively); however, the 5-year RFS rate stratified according to the three-tier budding grade was wider in patients with T4 tumors (86.6% to 53.3%) compared with those with T3 tumors (91.4% to 82.1%).

The incidence of recurrence was 6.4%, 12.1%, and 23.6% in the BD1, BD2, and BD3 groups, respectively (P < .001; Table 2). Of first relapse organs, the three-tier budding grade was significantly associated with the incidence of liver, lung, lymph node, and peritoneal recurrence, respectively (P < .001 to .02; Table 2).

Identification of Significant Prognostic Factors for RFS

Among eight prespecified prognostic factors, T stage, microsatellite instability status, and tumor budding correlated with RFS on the basis of univariable analysis using the Cox proportional hazards regression model (Table 3). However, other factors were not significant, including tumor differentiation, lymphatic and venous invasions, and number of lymph nodes examined.

Multivariable analysis for RFS revealed budding (BD2: HR, 1.5; 95% CI, 1.0 to 2.3; P = .0692; BD3: HR, 2.6; 95% CI, 1.7 to 3.9; P < .001) along with T stage (T4: HR, 2.5; 95% CI, 1.8 to 3.6; P < .001) as independently affecting the prognostic outcome (Table 3). In sensitivity analysis with the other two sets of combined prognostic factors, we had similar results in which tumor budding was selected as an independent factor for RFS (Appendix Table A1, online only).

Value of Tumor Budding as a Prognostic Model Factor on the Basis of Harrell C-Index

Table 4 lists a comparison of multivariable Cox models for predicting RFS according to the Harrell C-index. The C-index of a prognostic model consisting of eight elemental prognostic factors was 0.6805 (full model). Among the prognostic models excluding a component factor from the full model, the reduction in C-index was the most significant in the model excluding tumor budding (0.0423), and its 95% CI did not contain zero (0.0086 to 0.0712). Similarly, T factor was associated with a substantially reduced C-index, of which 95% CI did not contain zero.

Impact of Adjuvant Chemotherapy on Recurrence Rate According to Tumor Budding Grade

On interaction analysis, the treatment effect of UFT was not significantly different between subgroups according to the grade of tumor budding (P = .5733 in the interaction test; Fig 2). Although the interaction was not significant, we observed a tendency of the beneficial effect of UFT with HRs of 0.84 (95% CI, 0.53 to 1.33) and 0.72 (95% CI, 0.41 to 1.27) in patients with BD2 tumors and those with BD3 tumors, respectively, but no such a tendency in patients with BD1 tumors with an HR of 1.14 (95% CI, 0.60 to 2.16).

DISCUSSION

Initially, tumor budding was loosely defined as a histologic characteristic on HE glass slides.14,15 However, from early
reports on the prognostic impact of tumor budding,15,16 until the latest edition of the UICC TNM staging system, which listed tumor budding as a tumor-associated prognostic factor in CRC,3 several attempts were made to define the grading system and maximize its value, accounting for various internationally proposed assessment criteria.17 First, the size of the buds needs to be characterized, because the definition of budding is not always uniform among studies (ie, not strictly defined15; less than five cells16; five or more cells18). Second, grading was determined according to either the subjective manner,15 bud intensity criteria,16,18 or percentage of the area with budding at the infiltrating margin.19 Third, even in studies using the intensity-based grading system, the most widely used system in prior studies, several inconsistencies in the detailed criteria exist, including field selection (eg, not specified15; hotspot method16,18; randomly determined16), objective lens magnification for counting buds (3×2022, 3×2516,23, 3×4016,24), and number of fields assessed (one per case16; five per slide20; 10 per case25). Finally, perhaps a more important issue in the intensity-based grading system, cytokeratin staining was applied in some studies to improve the diagnostic accuracy of isolated cancer cells, and an issue was raised regarding whether either HE or cytokeratin should be used for bud scoring.23,24,26

Although these multidirectional approaches have substantially contributed to establishing the value of tumor budding, its routine implementation has been hindered by inconsistencies in the assessment criteria. In the ITBCC2016, consensus was reached in the following four assessment criteria for tumor budding: (1) tumor budding is defined as a single tumor cell or a cell cluster comprising four or fewer tumor cells; (2) tumor budding is

Parameter	Univariable	Multivariable*	
No. of LNs examined	749	1	
≥ 12	1.26 (0.90 to 1.78)	.1799	
< 12	1.22 (0.85 to 1.74)	.2880	
Tumor differentiation			
G1	420	1	
G2	526	1.25 (0.91 to 1.72)	.1734
G3	45	0.45 (0.14 to 1.44)	.1808
T stage			
T3	823	1	
T4	168	2.76 (1.98 to 3.84)	< .001
Lymphatic invasion			
Negative	416	1	
Positive	575	1.10 (0.80 to 1.51)	.5682
Venous invasion			
Negative	386	1	
Positive	605	1.29 (0.93 to 1.79)	.1293
MSI			
MSI-low, MSS	892	1	
MSI-high	69	0.33 (0.12 to 0.90)	.0296
Treatment arm			
Surgery alone	501	1	
UFT	490	0.85 (0.62 to 1.16)	.3099
Tumor budding			
BD1	376	1	
BD2	331	1.58 (1.03 to 2.42)	.0352
BD3	284	2.93 (1.97 to 4.36)	< .001

Abbreviations: HR, hazard ratio; LN, lymph node; MSI, microsatellite instability; MSS, microsatellite stable; UFT, tegafur-uracil.

*Only 961 patients with MSI values were analyzed.
In the SACURA trial (2006 to 2010), the tumor budding status of stage II colon cancer was prospectively assessed based on the criteria later adopted in the ITBCC2016. This study revealed that RFS decreased according to an increase in the three-tier grade. Also, the SACURA trial assigned subgrades to the BD3 category on the basis of the number of budding foci in a field measuring 0.785 mm² (ie, BD3a, 10 to 19; BD3b, ≥ 20) and revealed a marked difference in RFS between BD3a and BD3b, resulting in statistically different 5-year RFS rates, with BD1, BD2, BD3a, and BD3b decreasing in this order. Zlobec et al27 argued that one of the essential properties of budding is that it is a continuous variable affecting the event of metastases, that is, the higher the number of buds, the higher the risk of lymph node and distant metastases. Although tumor budding was an intensity-dependent prognostic factor that potentially facilitated patient stratification into four groups with different survival outcomes in 638 patients with stage I to III rectal cancer at St Mark’s Hospital,16 all prior studies reporting the prognostic value of tumor budding in stage II CRC demonstrated that the entire population was successfully stratified into only two different prognosis groups.19,20,28-32 Notably, the ITBCC2016 criteria resolved the intrastage prognostic heterogeneity, enabling the stratification of patients with stage II colon cancer into four groups with wide-ranging differences in 5-year RFS rates (65% to 91%). We believe our results show that the hotspot method for tumor budding adopted in the ITBCC2016 criteria is practical and allows us to make the most of its property, although additional studies are needed to confirm the clinical benefit of the subclassification categories for BD3.

In this study, we evaluated the prognostic value of tumor budding on the basis of two statistical methods. First, we evaluated whether tumor budding was an independent prognostic factor using a Cox proportional hazard model together with other prespecified factors. Consequently, tumor budding was shown to be an independent factor, along with T stage, and the result was similar in other sensitivity analyses. Second, we compared the Harrell C-index between Cox models, in which tumor budding was shown to be essential for improving the performance of prognostic prediction, as well as T factor.

Conversely, our study shows that some of the prognostic factors in stage II CRC that have been adopted in clinical guidelines are worthy of reconsideration, for example, tumor differentiation grade is listed in the National Comprehensive Cancer Network guidelines11 and the European Society for Medical Oncology guidelines,12 but that has no impact on this study. A conclusion reached by the ITBCC2016 is that tumor budding is not the same as tumor grade,2 which is well supported in this study, presenting only marginal correlation and a different survival impact. Another factor for reevaluation is whether vascular invasion is a reliable treatment indicator for adjuvant therapy in stage II colon cancer.33

A retrospective analysis of 979 patients in the QUASAR (Quick And Simple And Reliable) trial (majority stage II) revealed a nonsignificant trend toward increased chemotherapy efficacy with increased bud counts,34 which is consistent with our study, that is, although time to recurrence was similar in BD1 tumors, adjuvant chemotherapy with UFT

Table 4. Comparison of Multivariable Cox Models for Relapse-Free Survival to Estimate the Contribution of Individual Prognostic Factors According to the Harrell C-Index

Combinations of Prognostic Factors	Harrell C-Index	Difference (reduction) of Harrell C-Index (v full model)	95% CI of Difference
Full model*	0.6805	—	—
No. of LN examined (< 12, ≥ 12)	0.6815	-0.0010	-0.0044 to 0.0093
Tumor differentiation (G1, G2, G3)	0.6792	0.0013	-0.0036 to 0.0166
T stage (T3, T4)	0.6520	0.0284	0.0068 to 0.0514
Lymphatic invasion (negative, positive)	0.6793	0.0012	-0.0025 to 0.0112
Venous invasion (negative, negative)	0.6804	0.0000	-0.0039 to 0.0108
MSI (MSI-low/MSS, MSI-high)	0.6745	0.0060	-0.0012 to 0.0201
Treatment arm (surgery alone, UFT)	0.6792	0.0013	-0.0024 to 0.0158
Tumor budding (BD1, BD2, BD3)	0.6382	0.0423	0.0086 to 0.0712

*Prognostic model consisting of eight elemental prognostic factors (number of lymph nodes examined, tumor differentiation, T stage, lymphatic invasion, venous invasion, MSI, treatment arm, and tumor budding).

NOTE. Bold type indicates the factors associated with a substantially reduced C-index, of which 95% CI did not contain zero. Only 961 patients with microsatellite instability (MSI) values were analyzed.

Abbreviations: C-index, concordance index; LN, lymph node; MSI, microsatellite instability; MSS, microsatellite stable; UFT, tegafur-uracil.
for 1 year seemed to be associated with an improved 5-year recurrence rate by approximately 5% in both BD2 and BD3 tumors. Although the P values were statistically insignificant, perhaps because of the small number of patients enrolled in the individual subgroups and the limited adjuvant power of UFT, the results of two discrete randomized controlled studies suggest that the proportional reduction in recurrence with chemotherapy in patients with higher bud counts might seem at least equivalent in those with low counts.

Budding is reportedly a morphologic characteristic of the EMT,6,7 and tumors undergoing EMT may resist conventional chemotherapy.8,9 However, the results of the QUASAR and SACURA trials indicate that the value of tumor budding as a decision-making factor for adjuvant chemotherapy was upheld in terms of its predictive effect in patients with stage II colon cancer, for whom none have been confirmed as predictive markers to direct use of adjuvant therapy. Because this study has limitations regarding the small sample size and single-agent UFT as an adjuvant therapy as stated previously, additional validation will be required, including perhaps a prospective randomized trial using tumor budding as a stratification factor and more effective adjuvant therapy for the high-risk groups, that is, oxaliplatin combination therapy.

In conclusion, the clinical value of the definition and grading system for tumor budding adopted in the Japanese guidelines and ITBCC2016 criteria is well validated in this multicenter prospective study for stage II colon cancer. The role of tumor budding, a tumor-related prognostic factor adopted in the UICC TNM classification, should be emphasized in the adjuvant treatment setting.
AFFILIATIONS
1 National Defense Medical College, Saitama, Japan
2 Tokyo Medical and Dental University, Tokyo, Japan
3 Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
4 Osaka General Medical Center, Osaka, Japan
5 Kobe City Medical Center West Hospital, Hyogo, Japan
6 Koseiren Takaoka Hospital, Toyama, Japan
7 Hamamatsu University School of Medicine, Shizuoka, Japan
8 Saiseikai Yokohamashi Tobu Hospital, Kanagawa, Japan
9 Japan Community Health Care Organization Osaka Hospital, Osaka, Japan
10 Suita Municipal Hospital, Osaka, Japan
11 Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
12 Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan
13 Kurume University, Fukuoka, Japan
14 Nagoya University, Aichi, Japan
15 Kyoto Prefectural University of Medicine, Kyoto, Japan
16 Hyogo College of Medicine, Hyogo, Japan

CORRESPONDING AUTHOR
Hideki Ueno, MD, PhD, Department of Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; e-mail: ueno_surg1@ndmc.ac.jp

REFERENCES
1. Watanabe T, Muro K, Ajoka Y, et al: Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2016 for the treatment of colorectal cancer. Int J Clin Oncol 23:1-34, 2018
2. Lugli A, Kirsch R, Ajoka Y, et al: Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod Pathol 30:1299-1311, 2017
3. Union for International Cancer Control: TNM Classification of Malignant Tumours (ed 8). West Sussex, United Kingdom, John Wiley & Sons, 2017
4. Matsuda C, Ishiguro M, Teramukai S, et al: A randomised-controlled trial of 1-year adjuvant chemotherapy with oral tegafur-uracil versus surgery alone in stage II colon cancer: SACURA trial. Eur J Cancer 96:54-63, 2018
5. Ishiguro M, Mochizuki H, Tomita N, et al: Study protocol of the SACURA trial: A randomized phase III trial of efficacy and safety of UFT as adjuvant chemotherapy for stage II colon cancer. BMC Cancer 12:281, 2012
6. De Smedt L, Palsmans S, Andel D, et al: Expression profiling of budding cells in colorectal cancer reveals an EMRT-like phenotype and molecular subtype switching. Br J Cancer 116:58-65, 2017
7. Zlobec I, Lugli A: Tumour budding in colorectal cancer: Molecular rationale for clinical translation. Nat Rev Cancer 18:203-204, 2018
8. Yang AD, Fan F, Camp ER, et al: Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clin Cancer Res 12: 4147-4153, 2006
9. Thiery JP, Acloque H, Huang RY, et al: Epithelial-mesenchymal transitions in development and disease. Cell 139:871-890, 2009
10. Japanese Society for Cancer of the Colon and Rectum: Japanese Classification of Colorectal Carcinoma (ed 2). Tokyo, Japan, Kanehara & Co, 2009
11. National Comprehensive Cancer Network: NCCN Clinical Practice Guidelines in Oncology, colon cancer version 3. 2018. https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf
12. Labianca R, Nordlinger B, Beretta GD, et al: Early colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 24: vi64-v72, 2013 (suppl 6)
13. Harrell FE Jr, Lee KL, Mark DB: Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15:361-387, 1996

PRIORITY PRESENTATION
Presented in part at the ASCO 2017 Annual Meeting, Chicago, IL, June 2 to 6, 2017.

SUPPORT
Supported by the Foundation for Biomedical Research and Innovation at Translational Research Center for Medical Innovation at Kobe under the funding contract with Taiho Pharmaceutical, Tokyo, Japan. The funding sources had no role in the design of the study; collection, analysis, or interpretation of the data; writing of the report; or in the decision to submit for publication. The corresponding author had full access to all of the study data and final responsibility for the decision to submit the report for publication.

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST AND DATA AVAILABILITY STATEMENT
Disclosures provided by the authors and data availability statement (if applicable) are available with this article at DOI https://doi.org/10.1200/JCO.18.02059.

AUTHOR CONTRIBUTIONS
Conception and design: Hideki Ueno, Megumi Ishiguro, Eiji Nakatani, Hiroyuki Uetake, Naohiro Tomita, Kenichi Sugihara
Administrative support: Kenichi Sugihara
Provision of study materials or patients: Hideki Ueno, Megumi Ishiguro, Toshiki Ishikawa, Hiroyuki Uetake, Masanori Kotake, Kiyotaka Kurachi, Kohei Murata, Osamu Ikawa, Naohiro Tomita, Kenichi Sugihara
Collection and assembly of data: Hideki Ueno, Megumi Ishiguro, Toshiki Ishikawa, Hiroyuki Uetake, Chu Matsuda, Yoshishiko Nakamoto, Masanori Kotake, Kiyotaka Kurachi, Tomohisa Egawa, Keigo Yasumasa, Kohei Murata, Osamu Ikawa, Seichi Shinji, Naohiro Tomita, Kenichi Sugihara
Data analysis and interpretation: Hideki Ueno, Megumi Ishiguro, Eiji Nakatani, Kenta Murotani, Shigeyuki Matsui, Satoshi Teramukai, Kenichi Sugihara
Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

ACKNOWLEDGMENT
We are grateful to all the patients and the co-investigators for their cooperation in the SACURA trial. A list of participating institutions is given in the Appendix (online only). The authors also thank the following collaborators for their contributions to this trial: Kenichi Kono, Satoshi Nakagawa, Yasuyo Kusunoki, Fumi Kinoshita, and Naoko Kashiwagi in data management; Tasuku Inaji, Hayami Tsumura, Akinori Ogawara, Yuki Ueda, and Syuichiro Sugimoto as the project office staff; Yoshihiro Matsubara, Satomi Sakabayashi, Yoko Nakagawa, and Tatsuo Kagimura as the statistical staff; Yoko Takagi, Aiko Saito, Sachiko Kishiro, and Yasuyo Okamoto as the translational study office staff; and Masanori Fukushima, MD, PhD, as a director of the Translational Research Center for Medical Innovation.

DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Potential conflicts of interest are listed in the following order: Employment or leadership: None; Consulting or other remuneration: Pfizer, MSD, OncoGnostika, Takeda, Nippon Kayaku, Taiho, Takeda, and Nippon Kayaku; Grants or other financial benefits: None; Stock or other ownership: None; Honoraria: Pfizer, MSD, OncoGnostika, Takeda, Nippon Kayaku, Taiho, Takeda, and Nippon Kayaku; Expert testimony: None; Other remuneration: None.
14. Morodomi T, Isomoto H, Shirouzu K, et al: An index for estimating the probability of lymph node metastasis in rectal cancers. Lymph node metastasis and the histopathology of actively invasive regions of cancer. Cancer 63:539-543, 1989
15. Hase K, Shatney C, Johnson D, et al: Prognostic value of tumor "budding" in patients with colorectal cancer. Dis Colon Rectum 36:627-635, 1993
16. Ueno H, Murphy J, Jass JR, et al: Tumour 'budding' as an index to estimate the potential of aggressiveness in rectal cancer. Histopathology 40:127-132, 2002
17. Mitrovic B, Schaeffer DF, Riddell RH, et al: Tumor budding in colorectal carcinoma: Time to take notice. Mod Pathol 25:1315-1325, 2012
18. Jass JR, Barker M, Fraser L, et al: APC mutation and tumour budding in colorectal cancer. J Clin Pathol 56:69-73, 2003
19. Nakamura T, Mitomi H, Kanazawa H, et al: Tumor budding as an index to identify high-risk patients with stage II colon cancer. Dis Colon Rectum 51:568-572, 2008
20. Wang LM, Kevans D, Mulcahy H, et al: Tumor budding is a strong and reproducible prognostic marker in T3N0 colorectal cancer. Am J Surg Pathol 33:134-141, 2009
21. Ueno H, Mochizuki H, Hashiguchi Y, et al: Risk factors for an adverse outcome in early invasive colorectal carcinoma. Gastroenterology 127:385-394, 2004
22. Shinto E, Mochizuki H, Ueno H, et al: A novel classification of tumour budding in colorectal cancer based on the presence of cytoplasmic pseudo-fragments around budding foci. Histopathology 47:25-31, 2005
23. Prall F, Nize H, Barten M: Tumour budding as prognostic factor in stage III colorectal carcinoma. Histopathology 47:17-24, 2005
24. Lugli A, Karamitopoulou E, Panayiotides I, et al: CD8+ lymphocytes/tumour-budding index: An independent prognostic factor representing a 'pro-/anti-tumour' approach to tumour host interaction in colorectal cancer. Br J Cancer 101:1382-1392, 2009
25. Karamitopoulou E, Zlobec I, Kölzer V, et al: Proposal for a 10-high-power-fields scoring method for the assessment of tumor budding in colorectal cancer. Mod Pathol 26:295-301, 2013
26. Puppa G, Senore C, Sheahan K, et al: Diagnostic reproducibility of tumour budding in colorectal cancer: A multicentre, multinational study using virtual microscopy. Histopathology 61:562-575, 2012
27. Zlobec I, Hädrich M, Dawson H, et al: Intratumoural budding (ITB) in preoperative biopsies predicts the presence of lymph node and distant metastases in colon and rectal cancer patients. Br J Cancer 110:1008-1013, 2014
28. Tanaka M, Hashiguchi Y, Ueno H, et al: Tumor budding at the invasive margin can predict patients at high risk of recurrence after curative surgery for stage II, T3 colon cancer. Dis Colon Rectum 46:1054-1059, 2003
29. Okuyama T, Nakamura T, Yamaguchi M: Budding is useful to select high-risk patients in stage II well-differentiated or moderately differentiated colon adenocarcinoma. Dis Colon Rectum 46:1400-1406, 2003
30. Betge J, Komprat P, Pollheimer MJ, et al: Tumor budding is an independent predictor of outcome in AJCC/UICC stage II colorectal cancer. Ann Surg Oncol 19:3706-3712, 2012
31. Lai Y-H, Wu L-C, Li P-S, et al: Tumour budding is a reproducible index for risk stratification of patients with stage II colon cancer. Colorectal Dis 16:259-264, 2014
32. Horcic M, Koelzer VH, Karamitopoulou E, et al: Tumor budding score based on 10 high-power fields is a promising basis for a standardized prognostic scoring system in stage II colorectal cancer. Hum Pathol 44:697-705, 2013
33. Venook AP, Niedzwiecki D, Lopatin M, et al: Biologic determinants of tumor recurrence in stage II colon cancer: Validation study of the 12-gene recurrence score in cancer and leukemia group B (CALGB) 9581. J Clin Oncol 31:1775-1781, 2013
34. Mitrovic B, Handley K, Assarzadegan N, et al: Prognostic and predictive value of tumour budding in stage II colorectal carcinoma. J Clin Oncol 33, 2015 (suppl; abstr 3605)
AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Prospective Multicenter Study on the Prognostic and Predictive Impact of Tumor Budding in Stage II Colon Cancer: Results From the SACURA Trial

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/jco/site/ifc.

Megumi Ishiguro
Honoraria: Taiho Pharmaceutical, Yakult Honsha, Merck Serono
Consulting or Advisory Role: Taiho Pharmaceutical
Research Funding: Taiho Pharmaceutical (Inst), Yakult Honsha (Inst), Sysmex (Inst)

Toshiaki Ishikawa
Honoraria: Chugai Pharma, Sanofi, Taiho Pharmaceutical, Takeda, Daiichi Sankyo
Consulting or Advisory Role: Takeda

Satoshi Teramukai
Honoraria: Daiichi Sankyo, Takeda, Sanofi, Solasia Pharma, Sysmex, Gunze
Research Funding: Nippon Boehringer Ingelheim (Inst)

Naohiro Tomita
Research Funding: Taiho Pharmaceutical (Inst), Chugai Pharma

No other potential conflicts of interest were reported.
Enrolled/randomly assigned
(N = 2,024 [1,015])

Control arm (surgery alone)
(n = 1,011 [511])

Excluded
Duplicate registration (n = 14 [6])
Informed consent withdrawn (n = 13 [6])
Ineligible after registration (n = 1 [1])

Study arm (1-year UFT)
(n = 1,013 [504])

Excluded
Duplicate registration (n = 1 [0])
Informed consent withdrawn (n = 24 [6])
Ineligible after registration (n = 3 [0])

Analysis set for the primary and secondary end points
(n = 997 [505])

Excluded
Noncompliance with allocated protocol treatment (n = 15 [4])

Analysis set for the primary and secondary end points
(n = 985 [498])

Excluded
Noncompliance with allocated protocol treatment (n = 17 [8])

Analysis set for the translational study for new histopathologic factors
(n = 501)

Analysis set for the translational study for new histopathological factors
(n = 490)

FIG A1. CONSORT diagram. Numbers in brackets indicate the number of patients in the translational study for new histopathologic factors. UFT, tegafur-uracil.
Parameter	No.	HR (95% CI) Selected Prognostic Factors	P	HR (95% CI) Full Prognostic Factors*	P
Sex					
Female	390		1		
Male	601	0.87 (0.61 to 1.25)	.4541		
Age, years					
≤ 70	674		1		
71 to 80	317	1.42 (1.00 to 2.02)	.0482		
Tumor location					
Right-sided colon	405		1		
Left-sided colon	402	1.10 (0.76 to 1.61)	.6119		
Rectosigmoid	184	1.23 (0.77 to 1.97)	.3964		
Extent of LN dissection†					
D3	800		1		
D1, D2	191	1.57 (0.76 to 3.23)	.2222		
No. of LN examined					
≥ 12	749		1		
< 12	242	1.29 (0.92 to 1.83)	.1442	1.20 (0.82 to 1.75)	.3401
Tumor differentiation					
G1	420		1		
G2	526	1.23 (0.89 to 1.7)	.2045	1.19 (0.84 to 1.67)	.3332
G3	45	0.42 (0.13 to 1.35)	.1462	0.77 (0.23 to 2.6)	.6765
T stage					
T3	823		1		
T4	168	2.46 (1.75 to 3.46)	< .001	2.60 (1.82 to 3.74)	< .001
Lymphatic invasion					
Negative	416		1		
Positive	575	0.92 (0.66 to 1.28)	.6149	0.83 (0.54 to 1.28)	.4003
Venous invasion					
Negative	386		1		
Positive	605	1.18 (0.84 to 1.66)	.3448	0.85 (0.53 to 1.37)	.4975
Preoperative CEA, ng/mL					
≤ 5.0	670		1		
> 5.0	276	1.62 (0.92 to 2.86)	.0942		
MSI*					
MSI-low, MSS	892		1		
MSI-high	69	0.33 (0.1 to 1.09)	.0695		
Treatment arm					
Surgery alone	501		1		
UFT	490	0.83 (0.61 to 1.14)	.2497	0.87 (0.63 to 1.22)	.4219
Tumor budding					
BD1	376		1		
BD2	331	1.47 (0.96 to 2.27)	.0772	1.46 (0.92 to 2.32)	.1072
BD3	284	2.51 (1.67 to 3.77)	< .001	2.52 (1.63 to 3.89)	< .001

Abbreviations: CEA, carcinoembryonic antigen; HR, hazard ratio; LN, lymph node; MSI, microsatellite instability; MSS, microsatellite stable; UFT, tegafur-uracil.

*Japanese Classification of Colorectal Carcinoma (2nd English edition).10

†Only 901 patients with CEA and MSI values were analyzed.
Institution
Osaka General Medical Center
National Defense Medical College
Kobe City Hospital Organization Kobe City Medical Center West Hospital
Koseiren Takaoka Hospital
Hamamatsu University School of Medicine
Saiseikai Yokohamashi Tobu Hospital
Tokyo Medical and Dental University
Japan Community Health Care Organization Osaka Hospital
Saita Municipal Hospital
Japanese Red Cross Kyoto Daini Hospital
Niippon Medical School Chiba Hokusoh Hospital
Shizuoka City Shimizu Hospital
Sano Hospital
Saiseikai Tondabayashi Hospital
Fukui-ken Saiseikai Hospital
National Hospital Organization Kyoto Medical Center
St Mary’s Hospital
Sakai City Medical Center
Ogaki Municipal Hospital
Tokyo Metropolitan Tama Medical Center
Social Insurance Tagawa Hospital
Chugoku Central Hospital
Teikyo University School of Medicine
National Hospital Organization Kobe Medical Center
Hakodate Goryoukaku Hospital
Gunma Prefectural Cancer Center
Hyogo College of Medicine
Kagawa Prefectural Central Hospital
International Goodwill Hospital
Kobe University Graduate School of Medicine
Rinku General Medical Center
Kyorin University
Niigata Cancer Center Hospital
Osaka Police Hospital
Kansai Rosai Hospital
National Center for Global Health and Medicine
Fukushima Medical University
Osaka Rosai Hospital
Sapporo Medical University
Miyoshi Central Hospital
Nagoya University Hospital
Osaka City General Hospital
Higashi Takarazuka Satoh Hospital

(continued in next column)

Institution
Tokyo Yamate Medical Center
Takarazuka City Hospital
Kurashiki Central Hospital
Kurume University School of Medicine
Hakodate Municipal Hospital
Tochigi Cancer Center
Kitakyushu Municipal Medical Center
Hashima City Hospital
Kure Medical Center and Chugoku Cancer Center
Hokushin General Hospital
Miyagi Cancer Center
Yamagata University Hospital
Yamaguchi University Graduate School of Medicine
Oita University Graduate School of Medicine
Nagano Municipal Hospital
Shimonoseki Medical Center
Himeji St Mary's Hospital
Nagoya Ekisaikai Hospital
Tokushima University Hospital
Anan Kyoei Hospital
Kumamoto University
National Hospital Organization Shikoku Cancer Center
Kanagawa Cancer Center
Matsunami General Hospital
Otomei Hospital
Japanese Red Cross Osaka Hospital
Hyogo Cancer Center
Aichi Cancer Center Aichi Hospital
University of Yamanashi Hospital
Jichi Medical University Hospital
Otsu City Hospital
Oita Red Cross Hospital
Teikyo University Chiba Medical Center
Tohoku Rosai Hospital
Kitasato University East Hospital
Minoh City Hospital
Asahikawa Medical University
Kyushu University Graduate School of Medical Sciences
Nissay Hospital
Gunma University Graduate School of Medicine
Nagahama City Hospital
Shinshu University Hospital

(continued on following page)
List of Institutions That Participated in the Translational Study for New Histopathologic Prognostic Factors in the SACURA Trial

Institution
Tottori University Hospital
Kyoritsu General hospital
Saitama Medical University International Medical Center
Numazu City Hospital
Nishijin Hospital
Shizuoka City Shizuoka Hospital
Fujita Health University Banbuntane Hotokukai Hospital
Hokkaido Chuo Rosai Hospital
Heisei Yokohama Hospital
Iida Municipal Hospital
Gifu City Hospital
Hiraka General Hospital
Tokyo Women’s Medical University Hospital
University of Fukui Hospital
Midori Municipal Hospital
Kawakita General Hospital
Chigasaki Municipal Hospital
Minamiosaka Hospital
Saiseikai Hiroshima Hospital
Kobe City Nishi-Kobe Medical Center
Nanpuh Hospital
Noshiro Kousei Medical Center
Niigata University Medical & Dental Hospital
Hoshigaoka Medical Center
Almeida Memorial Hospital
Kagawa Rosai Hospital
Japanese Red Cross Wakayama Medical Center
Kansai Medical University Medical Center
Saitama Medical Center
Himeji Central Hospital
Katsushika Edogawa Hospital
Matsuda Hospital
International University of Health and Welfare, Mita Hospital
National Hospital Organization Kumamoto Minami Hospital
Saitama Medical Center
Ishikawa Prefectural Central Hospital
Saiseikai Nara Hospital