The range of non-linear natural polynomials cannot be context-free

Dömötör Pálvölgyi

MTA-ELTE Lendület Combinatorial Geometry Research Group,
Institute of Mathematics, Eötvös Loránd University, Budapest, Hungary

April 10, 2019

Abstract

Suppose that some polynomial \(f \) with rational coefficients takes only natural values at natural numbers, i.e., \(L = \{ f(n) \mid n \in \mathbb{N} \} \subseteq \mathbb{N} \). We show that the base-\(k \)-representation of \(L \) is a context-free language if and only if \(f \) is linear, answering a question of Shallit. The proof is based on a new criterion for context-freeness, which is a combination of the Interchange lemma and a generalization of the Pumping lemma.

Call a polynomial \(f \) over \(\mathbb{Q} \) natural if \(f(n) \in \mathbb{N} \) for every \(n \in \mathbb{N} \). For example, \(x^2 + x^2 \) is natural.

Shallit [4, Research problem 3 in Section 4.11, page 138] proposed to study whether the base-\(k \)-representation of the range, \(L = \{ f(n) \mid n \in \mathbb{N} \} \), of a natural polynomial is context-free or not. It is easy to see that if \(f \) is linear, i.e., its degree is at most one, then \(L \) is context-free for any \(k \). It was conjectured that \(L \) is not context-free for any other \(f \). This conjecture was known to hold only in special cases, though Sándor Horváth had an unpublished manuscript that claimed a solution. The goal of this note is to present a simple proof that uses a new lemma, which is a simple combination of two well-known necessary criteria for context-freeness.

A context-free grammar \(G \) is defined as a finite 4-tuple \(G = (V, \Sigma, P, S) \), where \(V \) is the set of non-terminal symbols, \(\Sigma \) is the set of the terminal symbols, which we also call the letters of the alphabet (where \(V \cap \Sigma = \emptyset \)), \(P \) is the set of production rules and \(S \in V \) is the start symbol. Each production rule is of the form \(A \rightarrow \alpha \) where \(A \in V \) and \(\alpha \in (V \cup \Sigma)^* \) is an expression. When such a rule is applied to an occurrence of \(A \) in some expression \(\beta \), that occurrence of the symbol \(A \) is replaced with \(\alpha \) in \(\beta \) to obtain a new expression. We say that an expression \(\gamma \in (V \cup \Sigma)^* \) can be derived from another expression \(\beta \in (V \cup \Sigma)^* \) if after applying some rules to some appropriate non-terminals starting from \(\beta \) we can obtain \(\gamma \). The language \(L(G) \) of the grammar \(G \) is the set of words from \(\Sigma^* \) that can be derived from \(S \). A derivation of a word \(z \in L(G) \) from \(S \) can be described by a derivation tree; this is a rooted ordered tree whose nodes are labeled with non-terminal symbols such that the root is labeled with \(S \), the labels of the children of any node labeled \(A \) are the right side of some rule \(A \rightarrow \alpha \) in the given order, and the labels of the leaves give \(z \) in the given order. A grammar is in Chomsky normal form if the right side of each production rule is either two non-terminal symbols, or one terminal symbol, or the empty string; every context-free grammar has a Chomsky normal form. A language \(L \) is context-free if \(L = L(G) \) for some context-free grammar \(G \).

\[1\text{According to Shallit, see } \url{https://cstheory.stackexchange.com/a/41864/419}.\]
For other basic definitions and statements about context-free grammars and languages, we direct the reader to [4].

Now we state a slightly weaker form of the two lemmas we later combine. The first is known as the Interchange lemma.

Lemma 1 (Interchange lemma [3]). For every context-free language \(L \) there is a constant \(p > 0 \) such that for all \(n \) for any collection of length \(n \) words \(R \subseteq L \) there is a \(Z = \{z_1, \ldots, z_k\} \subseteq R \) with \(k \geq |R|/(pn^2) \), and decompositions \(z_i = u_i v_i x_i \) such that each of \(|v_i|, |w_i|, \) and \(|x_i| \) is independent of \(i \), and the words \(v_i w_j x_i \) are in \(L \) for every \(1 \leq i, j \leq k \).

The second is the following generalization of the Pumping lemma [1].

Lemma 2 (Dömősi-Kudlek [2]). For every context-free language \(L \) there is a constant \(p > 0 \) such that if in a word \(z \in L \) we distinguish \(d \) positions and exclude \(e \) positions such that \(d \geq p(e + 1) \), then there is a decomposition \(z = uvwxy \in L \) for every \(i \geq 0 \).

A straight-forward combination of the proofs of Lemmas 1 and 2 gives the following.

Lemma 3 (Combined lemma). For every context-free language \(L \) there is a constant \(p > 0 \) such that for all \(n \) for any collection of length \(n \) words \(R \subseteq L \), if we distinguish \(d \) positions and exclude \(e \) positions such that \(d \geq p(e + 1) \), then there is a \(Z = \{z_1, \ldots, z_k\} \subseteq R \) with \(k \geq |R|/(pn^4) \), and a decomposition \(z_i = u_i v_i w_i x_i y_i \) such that

- \(|u_i|, |v_i|, |w_i|, |x_i|, \) and \(|y_i| \) are all independent of \(i \),
- \(v_i x_i \) has a distinguished position, but no excluded positions,
- \(u_{i_0} v_{i_1} \ldots v_{i_m} w_{i_{m+1}} x_{i_{m+2}} \ldots x_{i_{m+i_0}} y_{i_0} \in L \) for every sequence of indices \(1 \leq i_0, i_1, \ldots, i_{m+1} \leq k \).

The proof of Lemma 3 can be found at the end of this note. Now we state an interesting corollary of Lemma 3 that we can apply to Shallit’s problem.

Corollary 4. If in a context-free language \(L \) for infinitely many \(n \) there are \(\omega(n^4) \) words of equal length in \(L \) whose first \(\omega(n) \) letters are the same and their last \(n \) letters are different (pairwise), then there is an integer \(B \) such that there are infinitely many pairs of words in \(L \) of equal length that differ only in their last \(B \) letters.

Proof. There is a \(p \) that satisfies the conditions of Lemma 3 for \(L \). Take a large enough \(n \) for which there are \(pn^4 + 1 \) words of equal length in \(L \) whose first \(p(n+1) \) letters are the same, but their last \(n \) letters are different; this will be \(R \). Apply Lemma 3 to \(R \), distinguishing the first \(p(n+1) \) positions and excluding the last \(n \) positions to obtain some \(Z = \{z_1 = u_1 v_1 w_1 x_1 y_1, z_2 = u_2 v_2 w_2 x_2 y_2\} \). It follows from the conditions that \(u_1 \) and \(u_2 \) must contain only distinguished positions, thus \(u_1 = u_2 \). Since \(v_1 \) and \(x_1 \) cannot contain excluded positions, either \(y_1 = y_2 \), or \(x_1 = x_2 = \emptyset \) and \(w_1 y_1 = w_2 y_2 \). In the former case the pairs of words \(u_1 v_1^j w_1 x_1^j y_1 \) and \(u_2 v_2^j w_1 x_2^j y_2 = u_1 v_1^j w_1 x_1^j y_2 \), in the latter case the pairs of words \(u_1 v_1^j w_1 y_1 \) and \(u_1 v_1^j w_2 y_2 \) satisfy the conclusion. \(\square \)

Now we are ready to prove our main result.

Theorem 5. \(L \) is not context-free for non-linear natural polynomials over any base-\(k \).
Proof. First we show that the condition of Corollary 4 is satisfied for every natural polynomial \(f \) for infinitely many \(n \) for some words from \(L = \{ f(x) \mid x \in \mathbb{N} \} \). The plan is to take some numbers \(x_1, \ldots, x_N \) (where \(N = n^5 \)) for which \(f(x_i) \neq f(x_j) \), and then add some large number \(s \) to each of them to obtain the desired words \(f(x_i + s) \).

If the degree of \(f \) is \(d \), then at most \(d \) numbers can take the same value, thus we can select \(x_1, \ldots, x_N \) from the first \(dN \) numbers, which means that they have \(O(\log n) \) digits (since \(d \) is a constant). In this case \(f(x_i) = O((dN)^d) \), thus each \(f(x_i) \) will also have \(O(\log n) \) digits. If we pick \(s \) to be some number with \(n^2 \) digits, then \(f(s) \) will have \(D = dn^2 + \Theta(1) \) digits, and each \(f(x_i + s) \) will have \(D \) or \(D + 1 \) digits, thus at least half, i.e., \(N/2 \) of them have the same length; these will be the words we input to Corollary 4. We still need to show that for these \(f(x_i + s) \) their first \(\Omega(n^2) \) digits are the same and that their last \(O(\log n) \) digits differ.

Let \(q \in \mathbb{N} \) be such that \(f(x) = \sum_{i=0}^d \alpha_i x^i \) for \(\alpha_i \in \mathbb{Z} \). If \(s \) is a multiple of \(qk^m \), then the last \(m \) digits of \(f(x) \) and \(f(x + s) \) are the same for any \(x \). This way it is easy to ensure that the last \(O(\log n) \) digits in base-\(k \) stay different. Since \(f(x + s) = \sum_{i=0}^d \alpha_i (x + s)^i = \alpha_d s^d + O(s^{d-1}(dN)^d) \), the first \(n^2 - O(\log n) \) digits can take only two possible values (depending on whether there is a carry or not), thus one of these values is the same for \(N/2 \) of the \(f(x_i + s) \). Thus we have shown that the condition of Corollary 4 is satisfied

If \(L = \{ f(x) \mid x \in \mathbb{N} \} \) was context-free, then from the conclusion of Corollary 4 we would obtain infinitely many pairs of numbers, \(a_i, b_i \in L \), such that \(|a_i - b_i| \leq 2^D \), but this is impossible for non-linear polynomials.

We end with the omitted proof.

Proof of Lemma 3. Fix a context-free grammar for \(L \) in Chomsky normal form, with \(t \) non-terminals. Fix a derivation tree for each word \(z \in R \). We say that a node has a distinguished (resp. excluded) descendant if a distinguished (resp. excluded) position is derived from the given node in the tree, i.e., if there is a leaf among its descendants whose label is in a distinguished (resp. excluded) position of \(z \).

Call a node of the derivation tree an \(e \)-branch node if both of its children have an excluded descendant. There are exactly \(e - 1 \) \(e \)-branch nodes in the derivation tree (if \(e \geq 1 \)).

Call a node of the derivation tree a \(d \)-branch node if both of its children have a distinguished descendant. There are exactly \(d - 1 \) \(d \)-branch nodes in the derivation tree. Say that a \(d \)-branch node is the \(d \)-parent of its descendant \(d \)-branch node if there are no \(d \)-branch nodes between them. With this structure the \(d \)-branch nodes form a binary tree. The \(i \)-th \(d \)-parent of a \(d \)-branch node is the \(i \)-times iteration of the \(d \)-parent operator.

Call a \(d \)-branch node bad if there is an \(e \)-branch node between it and its \((2t + 3) \)\(d \)-parent (excluding the node, but including its \((2t + 3) \)\(d \)-parent), or if it does not have a \((2t + 3) \)\(d \)-parent. Because of the binary structure of the \(d \)-branch nodes, the root and each \(e \)-branch node can cause at most \(2^{2t+3} \) bad \(d \)-branch nodes, so there is a \(d \)-branch node that is not bad. Consider the path from the \((2t + 3) \)\(d \)-parent to a non-bad \(d \)-branch node. Note that the nodes on this path might have an excluded descendant, but since there is no \(e \)-branching node along the path, we can conclude that there is a subpath with \(t + 1 \) \(d \)-branch nodes on it such that no sibling of any node along the subpath has an excluded descendant.

By the pigeonhole principle some non-terminal \(A \) appears twice on the left side of a rule along this subpath. While we reach one node from the other, some expression \(\alpha A \beta \) is derived from \(A \).
Apply the corresponding rules from the derivation tree to α and β to obtain the expression vAx where $v, x \in \Sigma^*$. Thus, z can be written as $z = uvwxy$ such that vAx can be derived from A, w can be derived from A, the subwords v and x have no excluded position (since they are descendants of siblings of nodes along the path), but at least one of them has a distinguished position. For each $z \in R$ we fix such a decomposition $z = uvwxy$.

We partition R into at most $t \binom{n+4}{4}$ groups depending on which non-terminal A appeared on the left side of the rule, and the lengths of u, v, w, x and y. Let $c = t \max_n \binom{n+4}{4}/n^4 = 5t$ (if we only care about large n, then c would be close to $t/24$). By the pigeonhole principle one of the groups will have at least $|R|/(cn^4)$ words in it; this will be Z. Since we can arbitrarily apply the rules for A, the conclusion follows.

\[\square \]

Remark

This note started as a CSTheory.SE answer\[2\]

References

[1] Yehoshua Bar-Hillel, Micha A. Perles, and Eli Shamir, On formal properties of simple phrase-structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft, und Kommunikationsforschung. 14 (2): 143172, 1961.

[2] Pál Dömösi, Manfred Kudlek, Strong iteration lemmata for regular, linear, context-free, and linear indexed languages, in: Fundamentals of Computation Theory (FCT) 1999, LNCS 1684.

[3] William Ogden, Rockford J. Ross, and Karl Winklmann, An “Interchange Lemma” for Context-Free Languages. SIAM J. Comput. 14 (2): 410–415, 1982.

[4] Jeffrey Shallit, A Second Course in Formal Languages and Automata Theory (1 ed.), 2008. Cambridge University Press, New York, NY, USA.

\[2\]See my two answers for \url{https://cstheory.stackexchange.com/questions/41863/base-k-representations-of-the-co-domain-of-a-polynomial-is-it-context-free}; note that at that time I didn’t know about Lemmas 1 and 2.