Phage Lysins for Fighting Bacterial Respiratory Infections: A New Generation of Antimicrobials

Roberto Vázquez1,2, Ernesto García1,2 and Pedro García1,2*

1 Centro de Investigaciones Biológicas (CSIC), Madrid, Spain, 2 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain

Lower respiratory tract infections and tuberculosis are responsible for the death of about 4.5 million people each year and are the main causes of mortality in children under 5 years of age. *Streptococcus pneumoniae* is the most common bacterial pathogen associated with severe pneumonia, although other Gram-positive and Gram-negative bacteria are involved in respiratory infections as well. The ability of these pathogens to persist and produce infection under the appropriate conditions is also associated with their capacity to form biofilms in the respiratory mucous membranes. Adding to the difficulty of treating biofilm-forming bacteria with antibiotics, many of these strains are becoming multidrug resistant, and thus the alternative therapeutics available for combating this kind of infections are rapidly depleting. Given these concerns, it is urgent to consider other unconventional strategies and, in this regard, phage lysins represent an attractive resource to circumvent some of the current issues in infection treatment. When added exogenously, lysins break specific bonds of the peptidoglycan and have potent bactericidal effects against susceptible bacteria. These enzymes possess interesting features, including that they do not trigger an adverse immune response and raise of resistance is very unlikely. Although Gram-negative bacteria had been considered refractory to these compounds, strategies to overcome this drawback have been developed recently. In this review we describe the most relevant *in vitro* and *in vivo* results obtained to date with lysins against bacterial respiratory pathogens.

Keywords: phage lysins, pneumonia, respiratory infection, antibacterials, antibiotic resistance, endolysins

THE IMPACT OF BACTERIAL RESPIRATORY DISEASES ON HUMAN HEALTH

Lower respiratory tract infections remain the most deadly communicable diseases, and caused 3.2 million deaths worldwide in 2015 (1). Tuberculosis is still to date among the top 10 death causes, and community-acquired pneumonia is the single largest bacterial infectious cause of death in children worldwide (2). *Streptococcus pneumoniae* (pneumococcus) accounts for most of the bacterial pneumonia cases in children, followed by *Haemophilus influenzae* type b, and other bacterial pathogens: *Streptococcus pyogenes* (group A *Streptococcus*), non-typeable *H. influenzae*, *Staphylococcus aureus*, *Mycoplasma pneumoniae*, *Moraxella catarrhalis*, and *Klebsiella pneumoniae* (3). Pneumococcus is also a common cause of community-acquired pneumonia in elderly patients with comorbidities (4). On the other hand, hospital-acquired pneumonia and ventilator-associated pneumonia are among the leading nosocomial infections worldwide, with an increasing frequency of multidrug resistant (MDR) Gram-negative bacteria (G−) as the bacteriologic cause (5).
Indeed, antimicrobial resistance (AMR) and associated morbidity and mortality have been increasing globally. A recent study estimated that AMR could produce 10 million deaths a year by 2050 (6), although this prediction should be taken with care (7). Accordingly, economic simulations predict that the world will suffer an annual shortfall loss of between $1 and $3.4 trillion by 2030 because of AMR (8). In this scenario, the World Health Organization (WHO) has called for global action on AMR (9). This has encouraged several actions: (a) prevention and control actions in healthcare facilities (10); (b) widespread antimicrobial stewardship programs (11); (c) reduction of antibiotic use in livestock production and the environment (12); and (d) the search for alternatives to the currently used antibiotics (13), particularly against a group of MDR bacteria having a global impact (14). Among these priority pathogens, *S. pneumoniae*, *H. influenzae* and those referred to as “the ESKAPE bugs” (15), are of particular concern. Of note, *Mycobacterium tuberculosis* was not included in the above list as it is already in a globally established priority for which innovative new treatments are urgently needed (16). A few decades ago, phage therapy revived as an alternative to conventional antibiotics and, since the beginning of twenty-first century, phage lytic enzymes have also been extensively tested as antibacterials. This area of research is the focus of this review and the most relevant results of certain enzymes against respiratory pathogens will be discussed. Extensive details on the issue can be found in other recent reviews (17–26).

GENERAL CHARACTERISTICS OF LYSINS

Endolysins, or more simply lysins, are phage-encoded enzymes capable of hydrolyzing the bacterial cell wall (CW) and that are synthesized at the end of the phage replication cycle. The peptidoglycan (PG) polymer is the basic component of the CW, and is composed of chains of a disaccharide repeat made up of N-acetylmuramic acid and N-acetylmuramyl peptide, linked by β(1→4) glycosidic bonds. Glycan strands are cross-linked by tetra/pentapeptide side arms attached to muramic acid residues through amide bonds. Lysins are usually classified as glycosidases [glucosaminidases, transglycosylases, and lysozymes (or muramidases)], if they break any of the bonds of the glycan chain, N-acetylmuramoyl-L-alanine amidases (NAM-amidases), if they break the amide bonds between the glycan strands and peptide chains, or endopeptidases if they hydrolyze different bonds within peptide chains. When purified lysins are added exogenously, their CW-degrading activity can lead to rapid osmotic lysis and bacterial death. The enzymatic activity of lysins was the basis for their exploration as antibacterial agents and they were also named “enzymbiotics” (27). Lysins possess several advantages over antibiotics: (a) they rapidly kill bacteria, practically upon contact; (b) they can be specific to the target pathogen, particularly against Gram-positive (G+) bacteria (28–31), which allows to preserve the normal microbiota (32); (c) development of resistance seems very unlikely (33, 34), probably because these enzymes directly target an essential and well-conserved structural component such as the PG, which cannot be easily modified without compromising fitness (35); (d) with few exceptions (36, 37), lysins are active independently of the bacterial physiological state (38, 39); (e) they are effective against MDR bacteria (20, 34, 40–42); (f) they can act synergistically with other lysins or antibiotics and thus theoretically reduce the development of resistance while increasing therapeutic efficiency; and (g) lysins are also effective killing colonizing pathogens growing on mucosal surfaces and/or in biofilms (Tables 1, 2).

Lysins encoded by phages infecting G+ bacteria generally display a modular structure, comprising one or more catalytic domains (CDs) and one or more CW binding domains (CWBD). Although the species specificity of a lysin is generally assigned to its CWBD, there are some data suggesting that combined interactions of CD and CWBD with unknown CW receptors may play a significant role (129). On the other hand, phages from G– bacteria usually encode globular lysins with a single CD, with several exceptions (31, 111, 128).

Concerning their systemic, therapeutic use, it has been alleged that lysins, as foreign proteins, could be expected to trigger the production of neutralizing antibodies that might hinder their antibacterial action in subsequent administrations. However, early studies addressing this potential drawback, strongly suggested that highly immune serum slows down—but does not block—lysins (46, 130). Pre-clinical and clinical trials with the antistaphylococcal lysin SAL-1 have been performed in animal models and, lately, in humans. An immune response was indeed elicited after repeated intravenous injections of SAL200, as demonstrated by the presence of specific antibodies and reduced C3 complement levels in the animal blood samples (80). Still, pharmacokinetic, pharmacodynamic, and tolerance studies of SAL200 in monkeys and humans did not show any serious adverse effects or clinically significant alterations even at the highest dose tested (81, 82). Anyhow, host immune responses to specific lysin formulations must always be considered concerning safety and improving the therapeutic potential of lysins.

The antibacterial efficacy of lysins can be improved by several means including: (a) replacement of certain amino acids to modify the net charge of the enzyme (53, 131) or allow dimerization (132); (b) deletion of entire domains (75, 133); (c) construction of chimeric proteins by domain shuffling (41); (d) fusion to cationic peptides (or other domains) to render lysins capable to cross the outer membrane (OM), a widely recognized drawback of lysin therapy against G– bacteria (122, 134, 135), or to increase CW affinity (136); (e) co-administration of lysins with membrane destabilizing agents (EDTA, carvacrol, etc.), especially in G– pathogens (53, 112).

LYSINS AGAINST GRAM-POSITIVE BACTERIA

Streptococcus pneumoniae

The key aspect of the *S. pneumoniae* system is the role of the aminoacohol choline in the enzymatic activity of the bacterial autolysin LytA, and the pneumococcal phage lysins. Choline forms part of the (lipo)teichoic acids and constitutes an absolute CW substrate. This peculiarity explains the extreme specificity...
Species	Lysin/phage	Susceptible bacteria tested	Methodology used	Acc. No.; comments	References
S. pneumoniae					
Pal/Dp-1	Pneumococci and relatives	Biofilm; synergy with Cpl-1	Colonization and sepsis (mice)	O03979	(40, 43–45)
Cpl-1/Cp-1	Pneumococci and relatives	Biofilm; synergy with Pal and antibiotics; cell culture	Colonization, otitis, pneumonia, sepsis (mice)	P15057	(43–52)
LytA	Pneumococci and relatives	Biofilm	Sepsis (mice)	P06653; major autolysin	(45, 53)
Cpl-7/Cp-7	Streptococci; other G+	Biofilm	Colonization (mice), pneumococcal infection (zebrafish)	P19385	(45, 53)
Cpl-7S	Streptococci; other G+	Cell culture	Colonization (mice), pneumococcal infection (zebrafish)	Engineered protein	(51, 53)
Cpl-711	Pneumococci and relatives	Biofilm; synergy with antibiotics; cell culture	Colonization and sepsis (mice), pneumococcal infection (zebrafish)	Chimera of Cpl-7 and Cpl-1	(41, 51, 54)
PL3	Pneumococci and relatives	Biofilm	Pneumococcal infection (zebrafish)	Chimera of Pal and LytA	(38)
S. pyogenes (GAS)					
PyG/C1	GAS and other streptococci	Biofilm; cell culture (intracellular killing of GAS)	Colonization (mice)	J7M5V6	(27, 55–57)
PyG/MGAS315	GAS and other streptococci		Sepsis (mice)	AAM79913	(58)
S. agalactiae (GBS)					
PyGBS	GAS, GBS and other streptococci		Colonization (mice)	Q5MY96	(59, 60)
S. aureus					
Lysostaphin	Staphylococci	Biofilm; synergy with LysK; CHAP and antibiotics; controlled release	Sepsis and colonization (mice, rats)	P10547; from S. simulans	(35, 61–72)
LysK/K	Staphylococci	Biofilm; complex with polycationic peptides	Colonization (mice)	Q6Y7T6	(61, 73, 74)
CHAPK	Staphylococci	Biofilm; synergy with lysostaphin; controlled release	Colonization (mice)	CHAP domain of LySK	(64, 75–78)
ClyS	Staphylococci	Synergy with oxacillin and vancomycin	Colonization and septiemia (mice)	Chimera of Twort phage lysis (O56788) and ϕNM3 phage lysis (Q2FWV2)	(79)

(Continued)
Species	Lysin/phage	Susceptible bacteria tested	Methodology used	Acc. No.; comments	References
			In vitro	**in vivo**	
SAL-1/SAP-1	Staphylococci	Biofilm	Bacteremia (mouse), toxicity and pharmacokinetics (rats, dogs, monkeys), pharmacokinetics and pharmacodynamics (healthy humans)	SAL200 is a drug formulation of SAL-1	(80–84)
P128	Staphylococci	Biofilm; cell culture; synergy with antibiotics	Colonization and sepsis (rats)	Chimera of Gp57 (Q6Y7R1) and lysostaphin; under clinical testing	(85–92)
LysGH15/GH15	Staphylococci	Biofilm	Sepsis and pneumonia (mice)	D6QY02; under clinical testing	(93–97)
OF-301 (PlySs2)/S. suis 9/1591 prophage	S. aureus, S. pyogenes, S. pneumoniae; other G+	Biofilm; synergy with antibiotics	Sepsis (mice)	M1NS67; under clinical testing	(33, 98, 99)
ClyF	Staphylococci	Biofilm	Sepsis (mice)	Chimera of Ply187 (O56785) and PlySs2	(100)
Mycobacterium sp.	LysB/Ms6	Mycobacteria	Growth inhibition with surfactants	Q92X49; esterase	(101, 102)
LysB/Bx2	Mycobacteria	Growth inhibition with surfactants	Q9F279; esterase	(101)	
LysA/BTCU-1	Mycobacteria	Cell culture	O64203; intracellular killing of M. smegmatis	(103)	
LysB/BTCU-1	Mycobacteria	Cell culture	R9B59; intracellular killing of M. smegmatis; esterase	(103)	
TABLE 2 | Selected lysins active against Gram-negative bacteria.

Species	Lysin/phage	Susceptible bacteria	Methodology used	Acc. No.; comments	References
P. aeruginosa	Lys1521/B. amyloliquefaciens phage	G–	Activity on intact bacteria	Q94ML9	(104–107)
	EL188/EL	G–	Activity on permeabilized bacteria	CAG27282	(108–110)
	KZ144/ϕKZ	G–	Activity on permeabilized bacteria	AAL83045	(108, 110)
	OBPGp279/OBP	G–	Activity on intact bacteria	YP_004958186	(111)
	Art-175	G–	Activity on intact bacteria	Chimera of KZ144 and SMAP-29 peptide	(34, 112)
	LysPA26/JD010	G–	Activity on intact bacteria, biofilm	A0A1V0EFL1	(113)
A. baumannii	LysAB2/ϕAB2	G– and S. aureus	Activity on intact bacteria in vivo: sepsis (mice)	F1BCP4	(114, 115)
	LysABP-01/ØABP-01	G–	Activity on intact bacteria; synergy with colistin	KF548002	(116)
	PlyAB1/Abp1	A. baumannii	Activity on intact bacteria	YP_008058242	(117)
	Ply307/RL-2015	A. baumannii; otros G–	Activity on intact bacteria, biofilm in vivo: sepsis (mice)	AJG41873	(36, 118)
	LysAB3/A. baumannii ATCC 17978 prophage	A. baumannii	Activity on intact bacteria	ABO12027	(119)
	LysAB4/A. baumannii ATCC 17978 prophage	A. baumannii	Activity on intact bacteria	CP000521	(119)
E. coli	Lysep3/Ep3	E. coli, P. aeruginosa	Activity on permeabilized bacteria	A0A088FRS6	(120)
	Lysep3-D8	G–, Streptococcus sp.	Activity on intact bacteria	Chimera of Lysep3 and Lys1521 (Q94ML9)	(121)
	Colcin-lysep3	E. coli	Activity on intact bacteria in vivo: intestinal infection	Chimera of Lysep3 and colicin A (Q47108)	(122)
	EndoT5/T5	E. coli	Activity on permeabilized bacteria	Q6QGP7	(123)
	PlyE146/E. coli 8.0569 prophage	G–	Activity on intact bacteria	EKK47578	(37)
K. pneumoniae	K11gp3.5/K11	G–	Activity on permeabilized bacteria	B3VCZ3	(124)
	KP32gp15/KP32	G–	Activity on permeabilized bacteria	D1L2U8	(124)
	KP27 lysin/KP27	G–	Activity on permeabilized bacteria; cell culture	K7NPX3	(125)
C. freundii	CIP1 lysin/CIP1	Citrobacter sp.	Activity on intact bacteria	A0A1B19XL3	(126)
S. maltophilia	P28	G– and some G+	Activity on intact bacteria	Lytic enzyme from a bacteriocin system	(127)
Burkholderia sp.	AP3gp15/AP3	G–	Activity on permeabilized bacteria	A0A1SSNV50	(128)
of CBPs for pneumococci. The first article reporting the use of a CBP as an enzymatic demonstrated the capacity of the NAM-amidase Pal to kill pneumococci of every serotype tested, including penicillin-resistant isolates (40). These results were confirmed in a mouse model of nasopharyngeal carriage (27). The Cpl-1 lysozyme has also been successfully tested in several in vitro assays and in different animal models of infection (46–48), and a synergistic effect was found when Cpl-1 was used together with several antibiotics (49, 50), or in combination with Pal (43, 44). The Cpl-7 lysozyme represents an exception to choline-recognizing pneumococcal lysins, since it harbors a different CWBD (138–140) that allows it to recognize and kill a broader range of bacteria. Moreover, the bactericidal effect of Cpl-7 has been improved in the engineered Cpl-7S by inverting the net charge of its CWBD (53). To date, the most powerful killing lysins tested against S. pneumoniae are nonetheless chimeric proteins: Cpl-711, a chimera of Cpl-7 and Cpl-1 (41), and PL3, a fusion protein between Pal and LytA [Table 1; (38)]. Treatment with Cpl-711 strongly reduced the attachment of S. pneumoniae to human epithelial cells, and a single intranasal dose of Cpl-711 significantly reduced nasopharyngeal colonization in a mouse model (51).

Staphylococcus aureus

Although S. aureus is frequently carried asymptomatically in humans, it is also the cause of a variety of diseases and, particularly, methicillin-resistant strains (MRSA) are responsible for a great percentage of all infections, up to 80% in some countries (141). The S. aureus PG displays a characteristic pentaglycine interpeptide cross-linking the glycan strands (142). Most tested lysins in the S. aureus system contain two CDs (endopeptidase and NAM-amidase) together with an SH3b CWBD (61, 143, 144). Although the exact interaction between the CWBD and the structures to which these domains bind remains to be demonstrated in many cases, it has been proposed that some CWBDs recognize the pentaglycine peptide cross-bridge (145) or the CW-associated glycopolymers (79). Of note, the vast majority of studies reporting the therapeutic use of lysins are directed to fight S. aureus infections (20, 21). Together with lysostaphin (produced by *Staphylococcus simulans*), LysK and its derivatives seem to be the most lethal lysins against S. aureus, including MRSA (73, 76, 146, 147) as well as vancomycin-intermediate and -resistant isolates [see reference (21) and references therein]. Other examples of anti-staphylococcal lysins include several engineered proteins such as chimeric or truncated proteins (76, 85, 100, 148, 149) or fusion proteins with short cationic peptides able to cross the eukaryotic membrane and kill intracellular S. aureus (150, 151). Nevertheless, lysin-based studies that consider S. aureus as a respiratory pathogen are scarce and only include some decolonization assays (62, 63, 75, 85) and a single example of endolysin efficacy in a mouse S. aureus pneumonia model (93).

Other Gram-Positive Pathogens and Mycobacteria

S. pyogenes is a major causative agent of upper respiratory tract infections (152). The most relevant example of a lysin targeting this pathogen is PlyC, a peculiar multimeric enzyme that kills group A streptococci with high efficiency (27, 55). In addition, the ability of PlyC to penetrate respiratory tract epithelial cells to eliminate intracellular *S. pyogenes* cells has also been proven (56). This intracellular activity overcomes one of the major drawbacks of antibiotic therapy against streptococcal throat infections, which is bacterial self-protection by cellular invasion. Other lysins reported to kill *S. pyogenes* are PlyPy (58) and the broad range, pneumococcal phage-derived Cpl-7S (53). Besides, group B streptococci are known to cause severe pneumonia in newborns (153). At least one attempt has been conducted in mice toward oropharyngeal decolonization of group B streptococci using PlyGBS lysin (59).

The acid-fast *M. tuberculosis* is still rather unexplored for the development of lysin-based therapy. This might be due to the peculiarity of *Mycobacterium* CW structure, which comprises a thick PG layer covalently attached to arabinogalactan sterified with mycolic acids (154). Because of this architecture, the lytic cassette of mycobacteriophages comprises two different lytic enzymes: a classical PG hydrolase (usually named LysA) and mycolyl-arabinogalactan esterase (LysB), which cleaves the ester bond linking mycolic acid to the arabinogalactan-PG layer. As a result, the mycolic acid layer detaches from the cell, rendering vulnerable to osmotic shock and, finally, lysis (155). Some in vitro assays have been conducted with both mycobacteriophage-derived hydrolases, yielding, in general, promising results that show either growth arrest (101) or a bactericidal effect (103), but further research is still required. The mycobacterial endolysins and their therapeutic potential have been recently reviewed (156).

LYSINS AGAINST GRAM-NEGATIVE BACTERIA

Pseudomonas aeruginosa

The first lysins tested against *P. aeruginosa*, for example, EL188, only killed bacteria when membrane permeabilizers (e.g., polycationic agents, EDTA) were co-administered (108, 109). Due to the potential difficulties of therapies based on the co-administration of lysins and permeabilizing agents, some of the most recent efforts have been directed toward the engineering of the enzymes themselves, giving rise to the “artilysin” concept (134). In this study, lysins were fused to cationic, antimicrobial peptides (AMPs), and these fusions were able to exert a permeabilizing activity that allowed them to cross *P. aeruginosa* OM to degrade the PG layer both in vitro and in vivo (134). Art-175 is an artilysin that was constructed by fusing lysin KZ144 and the sheep myeloid AMP 29 (SMAP-29), and further optimizing the thermostability of the resulting chimera by point mutation of several cysteine residues (34). Art-175 was able to efficiently kill either antibiotic-susceptible or MDR *P. aeruginosa* strains. Of note, Art-175 also controlled the appearance of persisters, i.e., bacterial subpopulations transiently tolerant to antibiotics that often appear upon antiinfective chemotherapy (157).

Despite the engineering efforts mentioned above, lysins able to lyse G- bacteria on their own are also currently available.
Typically, this intrinsic activity from without relies on non-enzymatic mechanisms, which were first described for the T4 phage lysozyme (158) and then in several *P. aeruginosa* phage lysins (159). These lysins harbor AMP-like elements (peptides with an amphipathic secondary structure and a positive net charge) that destabilize the OM. In some cases, as for T4 lysozyme, these regions account for the bactericidal activity of the enzyme to a higher extent than the enzymatic activity itself (158).

One of the first examples of a lysozyme with a natural cationic peptide exploited as an enzymbiotic was the *Bacillus amyloliquefaciens* phage lysin Lys1521, which was indeed able to lyse *P. aeruginosa* cells (104). Other examples of *P. aeruginosa* lysins with intrinsic anti-G− activity include OBPgp279 (124) and LysPA26 (113). Although active research is being performed to deal with the OM barrier issue, no extensive in vivo experimental evidence has been provided for the clearance, upon lysin treatment, of *P. aeruginosa* from respiratory infections.

Acinetobacter baumannii

In general, lysins against G− bacteria appear to be less specific than their G+ counterparts, possibly due to the (apparently) simpler organization of the former sacculi (160). This broader spectrum allows some lysins to kill several pathogenic genera, like the already mentioned lysin LysPA26, which besides *P. aeruginosa* can also lyse other G− pathogens such as *E. coli*, *K. pneumoniae* or *A. baumannii* (113), or Art-175, which also kills *A. baumannii* (112). This bacterium is a potential respiratory pathogen (particularly for immunocompromised and debilitated patients) that is receiving great attention in recent years due to its worrisome increased antibiotic resistance (161). Thus, several enzymbiotics have also been developed with emphasis in their *A. baumannii* killing capacity, such as LysAB3 and LysAB4 (119), PlyAB1 (117), and LysABP-01 (116).

PlyF307 was capable of killing *A. baumannii* isolates, including MDR strains, both in planktonic and biofilm cultures (36) and represents the first example of an intact lysin with intrinsic anti-G− activity tested in a mammalian (mouse bacteremia) model. Unsurprisingly, it was later determined that such intrinsic activity from without partly resided in a cationic peptide located in the C-terminal domain of the lysin (118). Further studies revealed that this region contains sub-domain structural motifs with membrane permeabilizing ability, but lacking enzymatic activity; similar motifs have also been found in other lysins. For example, lysin LysAB2 (114) represents a broad-spectrum enzymbiotic, both active against G+ and G− bacteria (*A. baumannii*, *Escherichia coli* and, surprisingly, *S. aureus*). Based on its permeabilizing properties (114), AMPs based on the C-terminal region of LysAB2 have been synthesized and demonstrated high antimicrobial activity when tested in mice infected with *A. baumannii* (115).

Other Gram-Negative Pathogens

In spite of being a prominent member of the ESKAPE group (162), there are only few reports of lysins active against *K. pneumoniae*. As already mentioned, LysPA26 also showed bactericidal activity against *K. pneumoniae* (113). Consequently, it is conceivable that some of the other broad spectrum anti-G− lysins would kill *K. pneumoniae*. As for specific *Klebsiella* phage lysins, some examples of lysins with proven lytic activity are those from phages K11, KP32, and KP27 (124, 125, 163), but only KP32 and KP27 were tested for their anti-*Klebsiella* activity. Although usually associated with intestinal infections, *E. coli* is also a frequent cause of nosocomial pneumonia (164). Again, some of the other G− lysins are also active against *E. coli* (105, 113, 114, 116, 124). Specifically from an *E. coli* phage, Lyse3 lysin has demonstrated noticeable activity against permeabilized *E. coli* cells (120). Moreover, a chimeric construction between Lyse3 and a colicin was able to traverse the OM via specific recognition by OM transporters (122, 165).

CONCLUDING REMARKS AND FUTURE TRENDS

As MDR bacterial respiratory pathogens are increasingly prevalent, alternative therapeutics are urgently needed. Lysins represent more than a hope in this scenario and may be a perfect counterpart to therapies based on standard antibiotics. The potential for lysin development is seemingly endless. For example, thousands of putative lysins, many of which displaying novel domain architectures, have been recently described using bioinformatic techniques (166). All this huge amount of information, together with the crystal structures of lysins and a more detailed knowledge on the bacterial CW structure, will provide better insights to design and construct “tailor-made lysins” potentially directed against any desired pathogen. Drug delivery and other added-value systems involving lysins are now also being researched by setting up different approaches (167–170). Several polymers have been studied as potential drug release vehicles not only for research but also for clinical purposes. Particularly interesting is the case of poly(N-isopropylacrylamide) (PNIPAM) that has been used for the coadministration of the CHAP$_{k}$ lysin and lysostaphin through a thermally triggered release event (the temperature increase due to infection) (64).

Although a limited number of endolysins have entered clinical trials and some of them are already available in the market [reviewed in reference (18)], phages and phage-based products are subjected to strict regulatory measures (171). Moreover, in spite of their demonstrated specificity and lack of resistance development, the use of phage endolysins in humans raises several concerns. Among them, the relatively short plasma life of lysins, their immunogenicity and possible toxicity, the proinflammatory response to bacterial debris, and the difficulties to attack intracellular bacteria have been mentioned. Although only limited data of phage lysin interactions with the human body, e.g., pharmacokinetic/pharmacodynamic studies, have been published, it is encouraging that most (if not all) of the above mentioned potential limitations lack current experimental support (18, 23, 25). Although this scenario seems favorable toward hitting the clinic in the short term, further evidence is still due, especially when bacterial respiratory diseases—in particular, those caused by G− bacteria—are considered. Additional efforts
to cover the currently unmet therapeutic requirements are warranted.

AUTHOR CONTRIBUTIONS

RV, EG, and PG wrote, edited, and approved the final manuscript.

FUNDING

The authors are supported by a grant from the Ministerio de Economía, Industria y Competitividad (MEICOM) (SAF2017-88664-R). Additional funding was provided by CIBER de Enfermedades Respiratorias (CIBERES), an initiative of the Instituto de Salud Carlos III (ISICIII). RV was the recipient of a predoctoral fellowship from CIBERES.

ACKNOWLEDGMENTS

We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).

REFERENCES

1. World Health Organization. The Top 10 Causes of Death (2017). Available online at: http://www.who.int/mediacentre/factsheets/fs310/en/ (Accessed April 18, 2018).
2. World Health Organization. Pneumonia (2016). Available online at: http://www.who.int/mediacentre/factsheets/fs331/en (Accessed April 24, 2018).
3. Rodrígues CMC, Groves H. Community-acquired pneumonia in children: the challenges of microbiological diagnosis. J Clin Microbiol. (2018) 56:e01318–17. doi: 10.1128/JCM.01318-17
4. Torres A, Cillóniz C, Blasi F, Chalmers JD, Gaillat J, Dartois N, et al. Burden of pneumococcal community-acquired pneumonia in adults across Europe: a literature review. Respir Med. (2018) 137:6–13. doi: 10.1016/j.rmed.2018.02.007
5. Kidd JM, Kutli JI, Nicolau DP. Novel pharmacotherapy for the treatment of hospital-acquired and ventilator-associated pneumonia caused by resistant Gram-negative bacteria. Expert Opin Pharmacother. (2018) 19:397–408. doi: 10.1080/14656666.2018.1438408
6. O’Neill J. Review on Antimicrobial Resistance. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations (2014). Available online at: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20Crisis%20for%20the%20Health%20and%20Wealth%20of%20nations_1.pdf. (Accessed April 24, 2018).
7. de Kraker MEA, Stewardson AJ, Harbarth S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. (2016) 13:e1002184. doi: 10.1371/journal.pmed.1002184
8. World Bank. Drug-Resistant Infections: A Threat to our Economic Future (2017). Available online at: http://www.worldbank.org/en/topic/health/publication/drug-resistant-infections-a-threat-to-our-economic-future (Accessed April 24, 2018).
9. World Health Organization. Antimicrobial Resistance (2018). Available online at: http://www.who.int/en/news-room/fact-sheets/detail/antimicrobial-resistance (Accessed April 25, 2018).
10. Pires D, de Kraker MEA, Tartari E, Abbas M, Pittet D. ‘Fight antibiotic resistance—it’s in your hands’: call from the World Health Organization for 5th May 2017. Clin Infect Dis. (2017) 64:1780–3. doi: 10.1093/cid/cix226
11. Pulcini C. Antibiotic stewardship: a European perspective. FEMS Microbiol Lett. (2017) 364, fnx230. doi: 10.1093/femsle/fnx230
12. Holmes AH, Moore LSP, Sundersford A, Steinbakk M, Regmi S, Karkey A, et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet (2016) 387:176–87. doi: 10.1016/S0140-6736(15)00473-0
13. Tacconelli E, Sífaísí F, Harbarth S, Schrijver R, von Mourik M, Voss A, et al. Surveillance for control of antimicrobial resistance. Lancet Infect Dis. (2018) 18:99–100. doi: 10.1016/S1473-3099(17)30485-1
14. World Health Organization. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics (2017). Available online at: http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf (Accessed April, 26 2018).
15. Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J Infect Dis. (2008) 197:1079–81. doi: 10.1086/533452
16. World Health Organization. Global Tuberculosis Report 2018 (2018). Available online at: http://www.who.int/tb/publications/global_report/en/ (Accessed September 24, 2018).
17. Cooper CJ, Koonjan S, Nilsson AS. Enhancing whole phage therapy and their derived antimicrobial enzymes through complex formulation. Pharmaceuticals (2018) 11:34. doi: 10.3390/phi11020034
18. Gerstmanns H, Criel B, Briërs Y. Synthetic biology of modular endolysins. Bio技术 Adv. (2018) 36:624–40. doi: 10.1016/j.biotechadv.2017.12.009
19. Gu J, Xi H, Cheng M, Han W. Phage-derived lysins as therapeutic agents against multidrug-resistant Enterococcus faecalis. Future Microbiol. (2018) 13:275–8. doi: 10.2217/fmb-2017-0235
20. Gutiérrez D, Fernández L, Rodríguez A, García P. Are phage lytic proteins the secret weapon to kill Staphylococcus aureus? mBio (2018) 9:e01923–17. doi: 10.1128/mBio.01923–17
21. Haddad Kasahani H, Schmelcher M, Sabzalipoor H, Seyed Hosseini E, Moniri R. Recombinant endolysins as potential therapeutics against antibiotic-resistant Staphylococcus aureus: current status of research and novel delivery strategies. Clin Microbiol Rev. (2018) 31:e00071–17. doi: 10.1128/CMR.00071-17
22. Love MJ, Bhandari D, Dobson RCJ, Billington C. Potential for bacteriophage endolysins to supplement or replace antibiotics in food production and clinical care. Antibiotics (2018) 7:17. doi: 10.3390/antibiotics7010017
23. Oliveira H, São-José C, Azeredo J. Phage-derived peptidoglycan degrading enzymes: challenges and future prospects for in vivo therapy. Viruses (2018) 10:292. doi: 10.3390/v10060292
24. Sá-José C. Engineering of phage-derived lytic enzymes: improving their potential as antimicrobials. Antibiotics (2018) 7:29. doi: 10.3390/antibiotics7020029
25. Sharma U, Virpa A, Channabasappa S. Phage-derived lysins as potential agents for eradicating biofilms and persisters. Drug Discov Today (2018) 23:848–56. doi: 10.1016/j.drudis.2018.01.026
26. Fischetti V. Development of phage lysins as novel therapeutics: a historical perspective. Viruses (2018) 10:310. doi: 10.3390/v10060310
27. Nelson D, Loomis L, Fischetti V A. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci USA (2001) 98:4107–12. doi: 10.1073/pnas.06103898
28. López R, García E, García JL. The pneumococcal cell wall degrading enzymes: a modular design to create new lysins? Microb Drug Resist. (1997) 3:199–211. doi: 10.1089/mdr.1997.3.199
29. Loessner MJ, Kramer K, Ebel F, Scherer S. C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Mol Microbiol. (2002) 44:335–49. doi: 10.1046/j.1365-2958.2002.02889.x
30. Schuch R, Nelson D, Fischetti VA. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature (2002) 418:884–9. doi: 10.1038/nature01026
31. Briërs Y, Schmelcher M, Loesnner MJ, Hendrix J, Engelborghs Y, Volckaert G, et al. The high-affinity peptidoglycan binding domain of Pseudomonas phase endolysin KZ144. Biochem Biophys Res Commun. (2009) 383:187–91. doi: 10.1016/j.bbrc.2009.03.161
32. Cheng M, Zhang Y, Li X, Liang J, Hu L, Gong P, et al. Endolysin LysEF-P10 shows potential as an alternative treatment strategy for
multidrug-resistant Enterococcus faecalis infections. Sci Rep. (2017) 7:10164. doi: 10.1038/s41598-017-10755-7

33. Gilmer DB, Schmitz JE, Euler CW, Fischetti VA. Novel bacteriophage lysis with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. (2013) 57:2743–50. doi: 10.1128/AAC.02526-12

34. Briers Y, Walmagh M, Glymonprez B, Biebl M, Piriya J-P, DeFraene V, et al. Art-175 is a highly efficient antibacterial against multidrug-resistant strains and persisters of Pseudomonas aeruginosa. Antimicrob Agents Chemother. (2014) 58:3774–84. doi: 10.1128/AAC.02668-14

35. Kusuma C, Jadanova A, Chanturiy T, Kokai-Kun JF. Lysostaphin-resistant variants of Staphylococcus aureus demonstrate reduced fitness in vitro and in vivo. Antimicrob Agents Chemother. (2007) 51:475–82. doi: 10.1128/AAC.00786-06

36. Lood R, Winer BY, Pelzek AJ, Letrado P, et al. Chemotherapy with phage lysins reduces pneumococcal colonization of the respiratory tract. Antimicrob Agents Chemother. (2018) 62:e02212–17. doi: 10.1128/AAC.02212-17

37. Wittenrath M, Schmeck B, Doehn JM, Tschnerr T, Zahnlet J, Loeffler JM, et al. Systemic use of the endolysin Cpl-1 rescues mice with fatal pneumococcal pneumonia. Crit Care Med. (2009) 37:642–9. doi: 10.1097/CCM.0b013e31819586a6

38. Vázquez R, Domenech M, Iglesias-Bexiga M, Menéndez M, García P. Improving the lethal effect of Cpl-7, a pneumococcal phage lysozyme with broad bactericidal activity, by inverting the net charge of its cell wall-binding module. Antimicrob Agents Chemother. (2013) 57:5355–65. doi: 10.1128/AAC.01372-13

39. Jado I, López R, García E, Fenoll A, Casal J, García P, et al. Phage bactericidal activity against Streptococcus pneumoniae strains. J Antimicrob Chemother. (2003) 52:967–73. doi: 10.1093/jac/dkg485

40. Yang H, Wang M, Yu J, Wei H. Antibacterial activity of a novel peptide-modified lysis against Acinetobacter baumannii and Pseudomonas aeruginosa. Frontiers Microbiol. (2015) 6:1471. doi: 10.3389/fmicb.2015.01471

41. Díez-Martínez R, De Paz HD, García-Fernández E, Bustamante N, Euler CW, Fischetti VA, et al. A novel chimeric bacteriophage lysis with high in vitro and in vivo bactericidal activity against Streptococcus pneumoniae. J Antimicrob Chemother. (2015) 70:1763–73. doi: 10.1093/jac/dkv038

42. Larmor Y, Oechslin F, Moreillon P, Resch G, Entenza JM, Mancini S. Pneumococcal bactericidal synergism between daptomycin and the phage lysin Cpl-1 in a fatal pneumococcal pneumonia. Proc Natl Acad Sci USA (2006) 103:10765–70. doi: 10.1073/pnas.0604521103

43. Loo, J, Barros P, Vennemann T, Gallacher DT, Yin Y, Linden SR, et al. A bacteriophage endolysin that eliminates intracellular streptococci. eLife (2016) 5:e13152. doi: 10.7554/eLife.13152

44. Yang H, Koller T, Kreikemeyer B, Nelson DC. Rapid degradation of Streptococcus pyogenes biofilms by Pylc, a bacteriophage-encoded endolysin. J Antimicrob Chemother. (2013) 68:1818–24. doi: 10.1093/jac/dkt104

45. Lood R, Riz A, Molina H, Euler CW, Fischetti VA. A highly active and negatively charged Streptococcus pyogenes lysis with a rare D-alanyl-L-alanine endopeptidase activity protects mice against streptococcal bacteremia. Antimicrob Agents Chemother. (2015) 59:1581–7. doi: 10.1128/AAC.00115-14

46. Schmelcher M, Shen Y, Nelson D, Eugster MR, Eichenseher F, Hanke DC, et al. Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection. J Antimicrob Chemother. (2015) 70:1453–65. doi: 10.1146/65139

47. Cheng Q, Nelson D, Zuo S, Fischetti VA. Removal of group B streptococci colonizing the vagina and oropharynx of mice with a bacteriophage lytic enzyme. Antimicrob Agents Chemother. (2005) 49:1111–7. doi: 10.1128/AAC.49.1111-11.2005

48. Loo, J, Barros J, Mancini S. Pneumococcal bactericidal synergism between daptomycin and the phage endolysin Cpl-711 to kill multidrug-resistant pneumococci. Future Microbiol. (2018) (in press).

49. Daikos GL, Kavantzas N, Fasoulas A, Goulielmos M, Maniatis T, Antoniadou A, et al. Pneumococcal bactericidal synergism between oxacillin-sensitive and -resistant Staphylococcus aureus by endolysin Cpl-711. Antimicrob Agents Chemother. (2013) 57:4166–73. doi: 10.1128/AAC.00326-13

50. Vázquez R, Domenech M, Iglesias-Bexiga M, Menéndez M, García P. Improving the lethal effect of Cpl-7, a pneumococcal phage lysozyme with broad bactericidal activity, by inverting the net charge of its cell wall-binding module. Antimicrob Agents Chemother. (2013) 57:5355–65. doi: 10.1128/AAC.01372-13

51. Loo, J, Barros J, Mancini S. Pneumococcal bactericidal synergism between daptomycin and the phage endolysin Cpl-711 to kill multidrug-resistant pneumococci. Future Microbiol. (2018) (in press).

52. Loo, J, Barros J, Mancini S. Pneumococcal bactericidal synergism between daptomycin and the phage endolysin Cpl-711 to kill multidrug-resistant pneumococci. Future Microbiol. (2018) (in press).
76. Horgan M, O’Flynn G, Garry J, Cooney J, Coffey A, Fitzgerald GF, et al. Phage lysins against bacterial respiratory infections. Antimicrob Agents Chemother. (2005) 49:768–74. doi: 10.1128/AAC.49.4.768-774.2005

77. Aguinaga A, Francés ML, Del Pozo JL, Alonso M, Serrera A, Lasa I, et al. Lysostaphin conjugated to polyethylene glycol. Antimicrob Agents Chemother. 2013 57:3249–56. doi: 10.1128/AAC.00497-13

78. Jun SY, Jung GM, Yoon SJ, Cho Y-J, Lee WJ, et al. Lysostaphin conjugated to PEG reduces the toxicity of lysostaphin conjugated to polyethylene glycol. Antimicrob Agents Chemother. (2013) 57:3249–56. doi: 10.1128/AAC.00497-13

79. Filatova IY, Donovan DM, Becker SC, Lebedev DN, Priyma AD, Koudriachova HV, et al. Physicochemical characterization of the staphylocytic LysK enzyme in complexes with polycationic polymers as a potent antimicrobial. Biochimie (2013) 95:1689–96. doi: 10.1016/j.bioch.2013.04.013

80. Fenton M, Casey PG, Hill C, Gahan CGM, Ross RP, McAuliffe O, et al. The truncated phage lysin CHAPK eliminates Staphylococcus aureus in the nares of mice. Bioeng Bugs (2010) 1:402–14. doi: 10.1186/1542.1363-1422

81. Horgan M, O’Flynn G, Garry J, Cooney J, Coffey A, Fitzgerald GF, et al. Phage lysins against bacterial respiratory infections. Antimicrob Agents Chemother. (2005) 49:768–74. doi: 10.1128/AAC.49.4.768-774.2005

82. Jun SY, Jung GM, Yoon SJ, Cho Y-J, Lee WJ, et al. Lysostaphin conjugated to PEG reduces the toxicity of lysostaphin conjugated to polyethylene glycol. Antimicrob Agents Chemother. (2013) 57:3249–56. doi: 10.1128/AAC.00497-13

83. Daniel A, Euler C, Collin M, Chahales P, Gorelick KJ, Fischetti VA. Synergism between a novel chimeric lysin and oxacillin protects against infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. (2010) 54:1603–12. doi: 10.1128/AAC.01625-09

84. Jun SY, Jung GM, Yoon SJ, Cho Y-J, Lee WJ, et al. Lysostaphin conjugated to PEG reduces the toxicity of lysostaphin conjugated to polyethylene glycol. Antimicrob Agents Chemother. (2013) 57:3249–56. doi: 10.1128/AAC.00497-13

85. Jun SY, Jung GM, Yoon SJ, Cho Y-J, Lee WJ, et al. Lysostaphin conjugated to PEG reduces the toxicity of lysostaphin conjugated to polyethylene glycol. Antimicrob Agents Chemother. (2013) 57:3249–56. doi: 10.1128/AAC.00497-13

86. Jun SY, Jung GM, Yoon SJ, Cho Y-J, Lee WJ, et al. Lysostaphin conjugated to PEG reduces the toxicity of lysostaphin conjugated to polyethylene glycol. Antimicrob Agents Chemther. (2013) 57:3249–56. doi: 10.1128/AAC.00497-13

87. George SE, Chikkammadhara R, Durgaih M, Joshi AA, Thankappan UK, Madhusudhana SN, et al. Biochemical characterization and evaluation of cytotoxicity of antistaphylococcal chimeric protein P128. BMC Res Notes (2012) 5:280. doi: 10.1186/1756-0500-5-280

88. Schuch R, Khan BK, Raz A, Rotolo JA, Wittekind M. Bacteriophage lysin CF-301, a potent antistaphylococcal biofilm agent. Antimicrob Agents Chemother. (2017) 61:e02666–16. doi: 10.1128/AAC.02666-16

89. Yang H, Zhang H, Wang J, Wei H. A novel chimeric lysin with robust antibacterial activity against planktonic and biofilm cell-borne coagulase-negative staphylococci. Antimicrob Agents Chemother. (2011) 55:1764–7. doi: 10.1128/AAC.01097-10

90. Schuch R, Khan BK, Raz A, Rotolo JA, Wittekind M. Bacteriophage lysin CF-301, a potent antistaphylococcal biofilm agent. Antimicrob Agents Chemther. (2017) 61:e02666–16. doi: 10.1128/AAC.02666-16

91. Grover N, Paskaleva EE, Mehta KK, Dordick JS, Kane RS. Growth inhibition of the staphylococcal bacteriophage lysin CHAPK. J Appl Microbiol. (2011) 111:1025–35. doi: 10.1111/j.1365-2672.2011.05119.x

92. Drilling AJ, Cooksley C, Chan C, Wormald PJ, Vreugde S. Fighting staphylococcal biofilms on Staphylococcus aureus sinus-derived biofilms. J Clin Microbiol. (2013) 51:287–91. doi: 10.1128/JCM.02666–16.

93. Xia F, Li X, Wang B, Gong P, Xiao F, Yang M, et al. Combination therapy of LysGH15 and apigenin as a new strategy for treating pneumonia caused by Staphylococcus aureus. Appl Environ Microbiol. (2016) 82:87–94. doi: 10.1128/AEM.02581-15

94. Jun SY, Jung GM, Yoon SJ, Cho Y-J, Lee WJ, et al. Lysostaphin conjugated to PEG reduces the toxicity of lysostaphin conjugated to polyethylene glycol. Antimicrob Agents Chemother. (2013) 57:3249–56. doi: 10.1128/AAC.00497-13

95. Grover N, Paskaleva EE, Mehta KK, Dordick JS, Kane RS. Growth inhibition of the staphylococcal bacteriophage lysin CHAPK. J Appl Microbiol. (2011) 111:1025–35. doi: 10.1111/j.1365-2672.2011.05119.x

96. Daniel A, Euler C, Collin M, Chahales P, Gorelick KJ, Fischetti VA. Synergism between a novel chimeric lysin and oxacillin protects against infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. (2010) 54:1603–12. doi: 10.1128/AAC.01625-09

97. Jun SY, Jung GM, Yoon SJ, Cho Y-J, Lee WJ, et al. Preclinical safety evaluation of intravenously administered SAL200 containing the recombinant phage endolysin SAL-1 as a pharmaceutical ingredient. Antimicrob Agents Chemother. (2014) 58:2084–8. doi: 10.1128/AAC.02322-13

98. Jun SY, Jung GM, Yoon SJ, Youm SY, Han H-Y, Lee J-H, et al. Pharmacokinetics of the phage endolysin-based candidate drug SAL200 in monkeys and its appropriate intravenous dosing period. Clin Exp Pharmacol Physiol. (2016) 43:1013–6. doi: 10.1111/1440-1618.12613

99. Jun SY, Jung GM, Yoon SJ, Youm SY, Han H-Y, Lee J-H, et al. Pharmacokinetics of the phage endolysin-based candidate drug SAL200 in monkeys and its appropriate intravenous dosing period. Clin Exp Pharmacol Physiol. (2016) 43:1013–6. doi: 10.1111/1440-1618.12613

100. Jun SY, Jung GM, Yoon SJ, Youm SY, Han H-Y, Lee J-H, et al. Pharmacokinetics of the phage endolysin-based candidate drug SAL200 in monkeys and its appropriate intravenous dosing period. Clin Exp Pharmacol Physiol. (2016) 43:1013–6. doi: 10.1111/1440-1618.12613

101. Jun SY, Jung GM, Yoon SJ, Youm SY, Han H-Y, Lee J-H, et al. Pharmacokinetics of the phage endolysin-based candidate drug SAL200 in monkeys and its appropriate intravenous dosing period. Clin Exp Pharmacol Physiol. (2016) 43:1013–6. doi: 10.1111/1440-1618.12613

102. Jun SY, Jung GM, Yoon SJ, Youm SY, Han H-Y, Lee J-H, et al. Pharmacokinetics of the phage endolysin-based candidate drug SAL200 in monkeys and its appropriate intravenous dosing period. Clin Exp Pharmacol Physiol. (2016) 43:1013–6. doi: 10.1111/1440-1618.12613

103. Jun SY, Jung GM, Yoon SJ, Youm SY, Han H-Y, Lee J-H, et al. Pharmacokinetics of the phage endolysin-based candidate drug SAL200 in monkeys and its appropriate intravenous dosing period. Clin Exp Pharmacol Physiol. (2016) 43:1013–6. doi: 10.1111/1440-1618.12613
Morita M, Tanji Y, Mizoguchi K, Soejima A, Orito Y, Mizoguchi K, Soejima A, Unno H. Functional analysis of antibacterial activity of Bacillus amyloliquefaciens phage endolysin against Gram-negative bacteria. FEBS Lett. (2001) 500:56–9. doi: 10.1016/S0014-5793(01)02587-X

Orito Y, Morita M, Hori K, Unno H, Tanji Y. Bacillus amyloliquefaciens phage endolysin can enhance permeability of Pseudomonas aeruginosa outer membrane and induce cell lysis. Appl Microbiol Biotechnol. (2004) 65:105–9. doi: 10.1007/s00253-004-0472-3

Muyombwe A, Tanji Y, Unno H. Cloning and expression of a gene encoding the lytic functions of Bacillus amyloliquefaciens phage: evidence of an auxiliary lysis system. J Bacteriol. (1999) 181:2281–5. doi: 10.1128/JB.181.8.2281-2285.1999

Briers Y, Voldkaert G, Cornelissen A, Lagaert S, Michiels CW, Voldkaert K, et al. Muralytic activity and modular structure of the endolysins of Pseudomonas aeruginosa bacteriophages ϕKZ and EL. Mol Microbiol. (2007) 63:1334–44. doi: 10.1111/j.1365-2958.2007.05870.x

Briers Y, Walmagh M, Lagaert S, Aertsen A, Defraine V, Schuermans J, Grymonprez B, Govers SK, Aertsen A, Defraine V, Schuermans J, Grymonprez B, Govers SK, Aertsen A. Analysis of an Escherichia coli genome sequence analysis in Acinetobacter baumannii. Antimicrob Agents Chemother. (2013) 42:e141–8. doi: 10.1128/AAC.00285-16

Defraine V, Schuermans J, Grymonprez B, Govers SK, Aertsen A, Faustino MA, Briers Y, et al. Characterization and genome sequencing of a Citrobacter freundii phage CIP1 harboring a lysin active against multidrug-resistant isolates. Appl Microbiol Biotechnol. (2010) 86:1053–63. doi: 10.1007/s00253-010-2738-4

Dong H, Zhu C, Chen J, Ye X, Huang Y-P. Antibacterial activity of Stenotrophomonas maltophilia endolysin P28 against both Gram-positive and Gram-negative bacteria. Front Microbiol. (2015) 6:1299. doi: 10.3389/fmicb.2015.01299

Maciejewska B, Zrubek Z, Espallat A, Kesik-Szeloch A, Małkowska-Skrobek G, Kropinski AM, et al. Klebsiella phages representing a novel clade of viruses with an unknown DNA modification and biotechnologically interesting enzymes. Appl Microbiol Biotechnol. (2017) 101:673–84. doi: 10.1007/s00253-016-7928-3

Oliveira H, Pinto G, Oliveira A, Oliveira C, Faustino MA, Briers Y, et al. Characterization and genome sequencing of a Citrobacter freundii phage CIP1 harboring a lysin active against multidrug-resistant isolates. Appl Microbiol Biotechnol. (2010) 86:1053–63. doi: 10.1007/s00253-010-2738-4

Becker SC, Foster-Frey J, Stodola AJ, Anacker DM, Donovan DM. Differentially conserved staphylococcal SH3b_5 cell wall binding domains confer increased staphylolytic and streptolytic activity to a streptococcal prophage endolysin domain. Genome (2009) 445:32–41. doi: 10.1101/gene.2009.04.023

López R, García E, García P. Enzymes for anti-infective therapy: phage lysins. Drug Discov Today Ther Strateg. (2004) 1:469–74. doi: 10.1016/j.ddstr.2004.09.002

Low LY, Yang C, Perego M, Osterman A, Liddington R. Role of net charge on the catalytic domain and the influence of the cell-wall binding domain on the bactericidal activity, specificity, and host-range of phage lysins. J Biol Chem. (2011) 286:34391–403. doi: 10.1074/jbc.M111.244160

Resch G, Moreillon P, Fischetti VA. A stable phage lysin (Cpl-1) dimer with increased staphylolytic and streptolytic activity to a streptococcal prophage endolysin. J Antimicrob Agents Chemother. (2011) 55:516–21. doi: 10.1128/AAC.01322-10

Donovan DM, Foster-Frey J. LambdaSa2 prophage endolysin requires Cpl-7-binding domains and amidase-5 domain for antimicrobial lysis of streptococci. FEMS Microbiol Lett. (2008) 287:22–33. doi: 10.1111/j.1574-6968.2008.01287.x

Briers Y, Walmagh M, Van Puyenbroeck V, Cornelissen A, Cenens W, Aertsen A, et al. Engineered endolysin-based “Artilysins” to combat multidrug-resistant Gram-negative pathogens. mbio (2015) 5:e01379–14. doi: 10.1128/mBio.01379-14

Antonova NP, Balabanyan VY, Tkachuk AP, Makarov VV, Gushchin VA. Modcular endolysin of Burkholderia AP3 phage has the largest lysozyme-like catalytic subunit discovered to date and no catalytic aspartate residue. Sci Rep. (2017) 7:14501. doi: 10.1038/s41598-017-14799-7

Becker SC, Foster-Frey J, Stodola AJ, Anacker DM, Donovan DM. Differentially conserved staphylococcal SH3b_5 cell wall binding domains confer increased staphylolytic and streptolytic activity to a streptococcal prophage endolysin domain. Genome (2009) 445:32–41. doi: 10.1101/gene.2009.04.023

López R, García E, García P. Enzymes for anti-infective therapy: phage lysins. Drug Discov Today Ther Strateg. (2004) 1:469–74. doi: 10.1016/j.ddstr.2004.09.002

Low LY, Yang C, Perego M, Osterman A, Liddington R. Role of net charge on the catalytic domain and the influence of the cell-wall binding domain on the bactericidal activity, specificity, and host-range of phage lysins. J Biol Chem. (2011) 286:34391–403. doi: 10.1074/jbc.M111.244160

Resch G, Moreillon P, Fischetti VA. A stable phage lysin (Cpl-1) dimer with increased staphylolytic and streptolytic activity to a streptococcal prophage endolysin. J Antimicrob Agents Chemother. (2011) 55:516–21. doi: 10.1128/AAC.01322-10

Donovan DM, Foster-Frey J. LambdaSa2 prophage endolysin requires Cpl-7-binding domains and amidase-5 domain for antimicrobial lysis of streptococci. FEMS Microbiol Lett. (2008) 287:22–33. doi: 10.1111/j.1574-6968.2008.01287.x

Briers Y, Walmagh M, Van Puyenbroeck V, Cornelissen A, Cenens W, Aertsen A, et al. Engineered endolysin-based “Artilysins” to combat multidrug-resistant Gram-negative pathogens. mbio (2015) 5:e01379–14. doi: 10.1128/mBio.01379-14
153. Heath PT, Culley FJ, Garcia E, Gallego C, Pera B, Diakun GP, et al. Cpl-7, a lysozyme encoded by a pneumococcal bacteriophage with a novel cell wall-binding motif. J Biol Chem. (2010) 285:33184–96. doi: 10.1074/jbc.M110.154559

154. Bustamante N, Iglesias-Beniga M, Bernardo-Garcia N, Silva-Martin N, Garcia G, Campanero-Rhodes MA, et al. Deciphering how Cpl-7 cell wall-binding repeats recognize the bacterial peptidoglycan. Sci Rep. (2017) 7:16494. doi: 10.1038/s41598-017-16392-4

155. World Health Organization. Antimicrobial Resistance: Global Report on Surveillance (2014). Available online at: http://www.who.int/drugresistance/dossiersurveillance/en/ (Accessed September 24, 2018).

156. Rajagopal M, Walker S. Envelope structures of Gram-positive bacteria. Curr Top Microbiol Immunol. (2010) 340:1–44. doi: 10.1007/82_2015_5021

157. Sass P, Bierbaum G. Lytic activity of recombinant bacteriophage ϕ11 and ϕ12 endolysins on whole cells and biofilms of Staphylococcus aureus. Appl Environ Microbiol. (2007) 73:3437–52. doi: 10.1128/AEM.01616-06

158. Pritchard DG, Dong S, Baker JR, Engler JA. The bifunctional peptidoglycan lysozyme of Streptococcus agalactiae bacteria B30. Microbiology (2004) 150:2079–87. doi: 10.1099/micro.0.27063-0

159. Gründling A, Schneewind O. Cross-linked peptidoglycan mediates lysozyme binding to the cell wall envelope of Staphylococcus aureus. J Bacteriol. (2006) 188:2463–72. doi: 10.1128/JB.188.7.2463-2472.2006

160. Idelevich EA, von Eiff C, Friedrich AW, Iannelli D, Xia G, Peters G, et al. In vitro activity against Staphylococcus aureus of a novel antimicrobial agent, PRF-119, a recombinant chimeric bacteriophage endolysin. Antimicrob Agents Chemother. (2011) 55:4416–9. doi: 10.1128/AAC.00217-11

161. Idelevich EA, Schaubmuller E, Knaack D, Scherzinger AS, Mutter W, Peters G, et al. The recombinant bacteriophage endolysin HY-133 exhibits in vitro activity against different African clonal lineages of the Staphylococcus aureus complex, including Staphylococcus schleiferi. Antimicrob Agents Chemother. (2016) 60:2531–3. doi: 10.1128/AAC.02859-15

162. Schmelcher M, Powell AM, Becker SC, Camp MJ, Donovan DM. Chimeric phage lysins act synergistically with lysozyme to kill mastitis-causing Staphylococcus aureus in murine mammary glands. Appl Environ Microbiol. (2012) 78:2297–305. doi: 10.1128/AEM.00705-11

163. Mao J, Schmelcher M, Harty WJ, Foster-Frey J, Donovan DM. Chimeric Ply187 endolysin kills Staphylococcus aureus more effectively than the parental enzyme. FEMS Microbiol Lett. (2013) 342:30–6. doi: 10.1111/1574-6968.12104

164. Becker SC, Roach DR, Chauhan VS, Shen Y, Foster-Frey J, Powell AM, et al. Triple-acting lytic enzyme treatment of drug-resistant and intracelluar Staphylococcus aureus. Sci Rep. (2016) 6:25063. doi: 10.1038/srep25063

165. Wang Z, Kong L, Liu Y, Fu Q, Cui Z, Wang J, et al. A phage lysin fused to a cell-penetrating peptide kills intracellular methicillin-resistant Staphylococcus aureus in keratinocytes and has potential as a treatment for skin infections in mice. Appl Environ Microbiol. (2018) 84:e00380–18. doi: 10.1128/AEM.00380-18

166. Brouwer S, Barnett Timothy C, Rivera-Hernandez T, Rohde M, Walker Mark J. Streptococcus pyogenes adhesion and colonization. FEMS Lett. (2016) 590:3739–57. doi: 10.1002/1873-3468.12254

167. Heath PT, Culley FJ, Jones CE, Kampmann B, Le Doare K, Nunes MC, et al. Group B streptococcus and respiratory syncytial virus immunisation during pregnancy: a landscape analysis. Lancet Infect Dis. (2017) 17:223–34. doi: 10.1016/S1473-3099(17)30232-3

168. Squigia F, Ruggiero A, Berisio R. Chemistry of peptidoglycan in Mycobacterium tuberculosis life cycle: an off-the-wall balance of synthesis and degradation. Chemistry (2018) 24:2533–46. doi: 10.1002/chem.201702973

169. Payne KM, Hatfull GF. Mycobacteriophage endolysins: diverse and modular enzymes with multiple catalytic activities. PLoS ONE (2012) 7:e34052. doi: 10.1371/journal.pone.0034052

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.