Optimization of PM$_{2.5}$ Measurement System Using NOVA SDS011 Sensor

A Y P Wardoyo1, H A Dharmawan1, M Nurhuda1 and E T P Adi1

1Laboratory of Air Quality and Astro Imaging, Department of Physics, Faculty of Mathematics and Natural Science, Brawijaya University, Malang, Indonesia

Corresponding Email: a.wardoyo@ub.ac.id

Abstract. Particulate matters with the diameter less than 2.5 µm or PM$_{2.5}$, have been known to the health adverse. The developing of a measurement system of PM$_{2.5}$ with a high precision has become a challenge in the last decade. We design the system using a NOVA SDS011 sensor to measure PM$_{2.5}$ concentration. The problem is that the sensor has a capacity to measure particulate matter in the range of 0.3 to 10 µm, meanwhile we would like to design the measurement system of PM$_{2.5}$ with the high precision. Another this that we address is how to optimize the sensor. A factor influenced the sensor optimization is a sample compartment. In this paper, we present the PM$_{2.5}$ measurement system with the different compartments. The PM$_{2.5}$ measurement system was calibrated using the 3443 Kanomax dust monitor. The result shows that the system works well with the compartment is important factor to increase the precision.

1. Introduction
The PM$_{2.5}$ has been known formed naturally or by human activity that are named as natural PM$_{2.5}$ and human-made PM$_{2.5}$ (1–3). The natural PM$_{2.5}$ are created by nature activity such as sandstorm and volcanic activity (4–7). Because of the natural phenomenon is uncommon, the presence of the natural PM$_{2.5}$ are sited on a certain location such as desert or volcano (8). In the other hand, human-made PM$_{2.5}$ occurred more frequently and wider than natural once (9,10). The simple human activity can produce PM$_{2.5}$ such as: cooking known as indoor source (11), motor vehicle, biomass burning, industrial, and mining activity as outdoor sources (12–18).

The concentration of PM$_{2.5}$ depends on the source (19). The concentration of PM$_{2.5}$ has been measured higher in the big city due to several sources (20,21). In the other hand, the low concentration was reported in the rural area (22). The high concentration of PM$_{2.5}$ was also found in the highway, industrial, and mining area (9,23–25) with a number of the sources were identified (26,27). In the big city, the high PM$_{2.5}$ concentration is related to amount of vehicles as well as is on the area near highway (28–30) especially in the rush hours (31,32). The industrial and mining area contribute to PM$_{2.5}$ with the high concentration (33,34).

PM$_{2.5}$ have been known to have an impact on mortality and morbidity (35–40). PM$_{2.5}$ cause respiratory-related disease on children and the people that live closely to the source (41–44). The studies confirm that PM$_{2.5}$ trigger the development of cardiovascular diseases (45,46), non-alcoholic fatty liver disease (NAFLD) (47,48), and the development of tumor growth factor, cancer, and insulin resistance (49–54).
The concentration of PM\textsubscript{2.5} play a role on the diseases\cite{55,3,56}. Due to the importance of the PM\textsubscript{2.5} concentration measurement, a good measurement device is needed. In this study is aimed to develop a PM\textsubscript{2.5} measurement device using a low price infrared sensor module that the performance has been tested for PM\textsubscript{2.5} measurement \cite{57–59,59} by adjusting the sample compartment to increase the module precision.

2. Method
2.1. Sample Compartment Design
We design three different sample compartments Dsg 1, Dsg 2, and Dsg 3 as presented in Fig 1. The Dsg 1 is an compartment with the dimension of 11 x 9 cm2 that is divided into two different rooms that are used for placing the PM\textsubscript{2.5} sensor and the microcontroller. The second design compartment Dsg2 is the modified of Dsg1 by dividing the sensor room into four different rooms for the sensor inlet, the sensor body, the sensor outlet, and the sensor cable and connector. Meanwhile the last design Dsg3 is the developing of Dsg2 by adding a PM\textsubscript{2.5} filter and a fan. The PM\textsubscript{2.5} filter is positioned in the front of the sensor inlet while the fan is attached to the sensor outlet.

2.2. Evaluation Procedures
In order to optimize the sample compartment, four NOVA SDS011 configurations were tested on this study. The sensor without any compartment, St was evaluated in advance. Next, the sensor was the designed compartments Dsg1, Dsg2, and Dsg3. The test was conducted for 10 minutes in the standard ambient room (temperature of 24\textdegree C -26\textdegree C with relative humidity of 60% - 61%). The 3443 Kanomax dust monitor was used to calibrate the designed. The data were recorded for every 30 seconds. The system performance is calculated by using the equation (1) as follows

\[
\text{System Performance} = \left(\frac{C_{DM} - C_{DSG}}{C_{DM}} \right) \times 100\% \tag{1}
\]

In the Eq 1, \(C_{DM}\) is the PM\textsubscript{2.5} concentration that are measured by dust monitor while \(C_{DSG}\) is the concentration of designed system.

2.3. Data Validation
The data validation is conducted by comparing the PM\textsubscript{2.5} measured by the designed system and the dust monitor. The validation was done for the device with the different compartments.

3. Result
The measured concentrations of PM\textsubscript{2.5} for the NOVA SDS011 sensor without compartment and the three different designed device are presented in Fig.2. The PM\textsubscript{2.5} concentration measured by the dust
monitor is found in the average value of 19.4 μg/m³, meanwhile the concentration is varied depending on the designed compartment whereas the sensor is placed. The average concentration of PM$_{2.5}$ measured for the condition of the sensor without the compartment (Fig 2.a) is found of 11.8 μg/m³. The different concentration measured both the equipment is 7.6 μg/m³. The PM$_{2.5}$ concentration is measured by the dust monitor in the average of 19.1 μg/m³and by the Dsg1 (Fig 2.b) of 5.30 μg/m³with the difference of the concentration is significantly high of 13.8 μg/m³. The trend is similar for the the Dsg2 (Fig 2.c) with the measured concentration of 21.2 μg/m³and 3.99 μg/m³ for the dust monitor and the Dsg respectively with the difference concentration of 17.3 μg/m³. The Dsg3 (Fig 2.d) measure the PM$_{2.5}$ concentration with the average of 21.2 μg/m³, meanwhile the average concentration measured by the dust monitor is of 15.8 μg/m³. The difference of the measured concentration between the equipment is 5.3 μg/m³. Figure 3 present the difference concentration is measured by the dust monitor and the designed system.

![Figure 2](image1.png)

Figure 2. The measured concentrations of PM$_{2.5}$ for different condition

![Figure 3](image2.png)

Figure 3. A comparison result of PM$_{2.5}$ concentration in various configurations.
4. Discussion

A NOVA SDS011 sensor is an infrared-based PM$_{2.5}$ measurement device that is commercially traded in unpackaged module. The module detects the infrared intensity change because of the PM$_{2.5}$ block. The NOVA SDS011 module is equipped by a fan that is as function to provide a self-airflow. The limitation of the sensor is there is no filter accomplished in the module as well as the sample sampling. They have an impact on the difference result of the PM$_{2.5}$ concentration using the dust monitor and the designed device. The different concentration is 7.6 μg/m3 for unfiltered condition. We overcome this problem by designing the compartment using three configuration Dsg1, Dsg2, and Dsg3. Based on these designed system, we obtain the difference of the measured concentration between the dust monitor and the Dsg1 and Dsg2 of 13.8 μg/m3 and 17.3 μg/m3 respectively. The Dsg3 is the best designed system with the difference concentration measured by the dust monitor and the designed system of 5.30 μg/m3. The Dsg3 system is very comparable with the calibration equipment. The performance of the designed system is calculated using the equation (1). Based on the equation, we find the system performance is 61 % for the uncontained system, 28 % for the Dsg1 system, 19 % for the Dsg2 system, and 75% for the Dsg3 system. The Dsg3 system has the best performance among others as shown in Fig.4.

Figure 5 shows the relationship of the PM$_{2.5}$ measured concentration between the dust monitor and the designed system. The PM$_{2.5}$ concentrations are measured by all designed systems are found linearly to those are measured by the dust monitor with the correlation equation of $L=0.12x + 20.9$ for the standard system (Fig 5.a), $L=0.40x + 21.2$ for the Dsg1 system (Fig 5.b), $L=0.75x + 18.1$ for the Dsg2 system (Fig 5.b), and $L = 1.07x + 4.18$ the Dsg3 system (Fig 5.d) respectively.
5. Conclusion
In conclusion, the performance of the system for PM$_{2.5}$ concentration measurement depends on the configuration compartment where the SDS011 sensor is placed. The best design is the system with the configuration of Dsg3 where the inlet and outlet of the sensor is separated in order to stop re-counted particulate samples with the performance of 75%. The designed systems are comparable to the validation equipment with the linear correlation.

Acknowledgement
All authors gratefully acknowledged the support from Directorate General of Higher Education for the funding (Contract no.167/SP2H/LT/DRPM/2019, signed on March 11, 2019). The author also thankfully acknowledged the kind hand of Arif Budianto and Nizaky A. Putra.

References
[1] Schladitz A, Lení J, Bene I, Kov M, Poulain L, Plach H, et al. Air quality in the German e Czech border region : A focus on harmful fractions of PM and ultra fine particles. Atmos Environ. 2015;122:236–49.
[2] Song Y, Maher BA, Li F, Wang X, Sun X. Particulate matter deposited on leaf of fi ve evergreen species in Beijing, China : Source identiﬁ cation and size distribution. Atmos Environ [Internet]. 2015;105:53–60. Available from: http://dx.doi.org/10.1016/j.atmosenv.2015.01.032
[3] Lin Y, Qiu X, Ma Y, Ma J, Zheng M, Shao M. Concentrations and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in the atmosphere of North China, and the transformation from PAHs to NPAHs. Environ Pollut [Internet]. 2015;196:164–70. Available from: http://dx.doi.org/10.1016/j.envpol.2014.10.005
[4] Wardoyo AYP, Noor JAE, Elber G, Schmitz S, Flaig ST, Budianto A. Characterization of
Volcanic ash elements from the 2015 eruptions of Bromo and Raung volcanoes, Indonesia. Characterization of volcanic ash elements from the 2015 eruptions of Bromo and Raung volcanoes, Indonesia. Polish J Environ Stud. 2019;X(X).

Wadsworth FB, Vasseur J, Lliewellin EW, Genareau K, Cimarella C, Dingwell DB. Size limits for rounding of volcanic ash particles heated by lightning. J Geophys Res Solid Earth. 2017;1977–89.

Saxby J, Beckett F, Cashman K, Rust A, Tennant E. The impact of particle shape on fall velocity: Implications for volcanic ash dispersion modelling. J Volcanol Geotherm Res [Internet]. 2018;362:32–48. Available from: https://doi.org/10.1016/j.jvolgeores.2018.08.006

Borgie M, Ledoux F, Dagher Z, Verdin A, Cazier F, Courcot L, et al. Chemical characteristics of PM2.5–0.3 and PM0.3 and consequence of a dust storm episode at an urban site in Lebanon. Atmos Res [Internet]. 2016;180:274–86. Available from: http://dx.doi.org/10.1016/j.atmosres.2016.06.001

Ueda S, Miura K, Kawata R, Furutani H, Uematsu M, Omori Y, et al. Number and size distribution of aerosol particles and new particle formation events in tropical and subtropical Pacific Oceans. Atmos Environ [Internet]. 2016;142:324–39. Available from: http://dx.doi.org/10.1016/j.atmosenv.2016.07.055

Wang N, Zhen J. Size distributions of hydrophilic and hydrophobic fractions of water-soluble organic carbon in an urban atmosphere in Hong Kong. Atmos Environ [Internet]. 2017;166:110–9. Available from: http://dx.doi.org/10.1016/j.atmosenv.2017.07.009

Ren Y, Zhou B, Tao J, Cao J, Zhang Z, Wu C, et al. Composition and size distribution of airborne particulate PAHs and oxygenated PAHs in two Chinese megacities. Atmos Res [Internet]. 2017;183:322–30. Available from: http://dx.doi.org/10.1016/j.atmosres.2016.09.015

Wang L, Xiang Z, Stevanovic S, Ristovski Z, Salimi F, Gao J, et al. Science of the Total Environment Role of Chinese cooking emissions on ambient air quality and human health. Sci Total Environ. 2017;589:173–81.

Ibrahim A. Investigating the effect of using diethyl ether as a fuel additive on diesel engine performance and combustion. Appl Therm Eng [Internet]. 2016;107:853–62. Available from: http://dx.doi.org/10.1016/j.applthermaleng.2016.07.061

Maenhaut W, Vermeylen R, Claeyts M, Vercauteren J, Matheeussen C, Roeckens E. Assessment of the contribution from wood burning to the PM10 aerosol. Sci Total Environ [Internet]. 2012;437:226–36. Available from: http://dx.doi.org/10.1016/j.scitotenv.2012.08.015

Gautam S, Patra AK. Dispersion of particulate matter generated at higher depths in opencast mines. Environ Technol Innov [Internet]. 2015;3(April 2014):11–27. Available from: http://dx.doi.org/10.1016/j.eti.2014.11.002

Sa Z, Li F, Qin B, Pan X. Numerical simulation study of dust concentration distribution regularity in cavern stope. Saf Sci [Internet]. 2012;50(4):857–60. Available from: http://dx.doi.org/10.1016/j.ssci.2011.08.019

Liu B, Bao B, Wang Y, Xu H. Numerical simulation of fl ow , combustion and NO emission of a fuel-staged industrial gas burner. J Energy Inst [Internet]. 2017;90(3):441–51. Available from: http://dx.doi.org/10.1016/j.oei.2016.03.005

Nandini D, Sinha N, Paramita P, Kumar P, Mukhopadhyay S, Mallick SK, et al. Mutagenic and genotoxic potential of native air borne particulate matter from industrial area of Rourkela city, Odisha, India. Environ Toxicol Pharmacol [Internet]. 2016;46:131–9. Available from: http://dx.doi.org/10.1016/j.etap.2016.07.011

Ogundele LT, Owoade OK, Hopke PK, Olise FS. Heavy metals in industrially emitted particulate matter in Ile-Ife, Nigeria. Environ Res [Internet]. 2017;156(January):320–5. Available from: http://dx.doi.org/10.1016/j.envres.2017.03.051

Weichenthal S, Farrell W, Goldberg M, Joseph L, Hatzopoulou M. Characterizing the impact of traffic and the built environment on near-road ultra fine particle and black carbon...
concentrations. Environ Res [Internet]. 2014;132:305–10. Available from: http://dx.doi.org/10.1016/j.envres.2014.04.007

[20] Kim Y, Guldmann J. Land-use regression panel models of NO2 concentrations in Seoul, Korea. Atmos Environ [Internet]. 2015;107(2):364–73. Available from: http://dx.doi.org/10.1016/j.atmosenv.2015.02.053

[21] Ongwandee M, Moonrinta R, Panyametheekul S. Investigation of volatile organic compounds in of ice buildings in Bangkok, Thailand: Concentrations, sources, and occupant symptoms. Build Environ [Internet]. 2011;46(7):1512–22. Available from: http://dx.doi.org/10.1016/j.buildenv.2011.01.026

[22] Matson U. Indoor and outdoor concentrations of ultrafine particles in some Scandinavian rural and urban areas. Appl Acoust. 2017;115(1–3):158–65.

[23] Kuuluvainen H, Ronkko T, Jarvinen A, Saari S, Karjalainen P, Lahde T, et al. Lung deposited surface area size distributions of particulate matter in different urban areas. Atmos Environ. 2016;136:105–13.

[24] Çolakkadıog D, Yücel M. Modeling of Tarsus-Adana-Gaziantep highway-induced noise pollution within the scope of Adana city and estimated the affected population. Appl Acoust. 2017;115:158–65.

[25] Fu S, Gu Y. Highway toll and air pollution: Evidence from Chinese cities. J Environ Econ Manage [Internet]. 2017;83:32–49. Available from: http://dx.doi.org/10.1016/j.jeem.2016.11.007

[26] Zhang L, Dong L, Ren L, Shi S, Zhou L, Zhang T, et al. Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta, China. J Environ Sci [Internet]. 2012;24(2):335–42. Available from: http://dx.doi.org/10.1016/S1001-0742(11)60782-1

[27] Rahman MM, Mazaheri M, Clifford S, Morawska L. Estimate of main local sources to ambient ultrafine particle number concentrations in an urban area. Atmos Res. 2017;194(September 2016):178–89.

[28] Tiitta P, Raunemaa T, Tissari J, Yli-Tuomi T, Leskinen A, Kukkonen J, et al. Measurements and modelling of PM2.5 concentrations near a major road in Kuopio, Finland. Atmos Environ. 2002;36(25):4057–68.

[29] Sabaliauskas K, Evansa G, Jeonga C-H. Source Identification of Traffic-Related Ultrafine Particles Data Mining Contest. Procedia Comput Sci. 2012;13:99–107.

[30] Sabaliauskas K, Jeong C, Yao X, Evans GJ. The application of wavelet decomposition to quantify the local and regional sources of ultra fine particles in cities. Atmos Environ [Internet]. 2014;95:249–57. Available from: http://dx.doi.org/10.1016/j.atmosenv.2014.05.035

[31] Tri N, Hung Q, Lee S, Thanh N, Kongpran J. Characterization of black carbon at roadside sites and along vehicle roadways in the Bangkok Metropolitan Region. Atmos Environ [Internet]. 2014;92:231–9. Available from: http://dx.doi.org/10.1016/j.atmosenv.2014.04.011

[32] Tsai J, Huang P, Chiang H. Characteristics of volatile organic compounds from motorcycle exhaust emission during real-world driving. Atmos Environ. 2014;99:215–26.

[33] Kusmierek E, Chrzescijanska E. Atmospheric corrosion of metals in industrial city environment. Data Br. 2015;3:149–54.

[34] Ma X, Zhong W, Feng W, Li G. Modelling of pollutant dispersion with atmospheric instabilities in an industrial park. Powder Technol [Internet]. 2017;314:577–88. Available from: http://dx.doi.org/10.1016/j.powtec.2016.08.062

[35] Thach TQ, Wong CM, Chan KP, Chau YK, Chung YN, Ou CQ, et al. Daily visibility and mortality: Assessment of health benefits from improved visibility in Hong Kong. Environ Res [Internet]. 2010;110(6):617–23. Available from: http://dx.doi.org/10.1016/j.envres.2010.05.005

[36] Li G, Sun J, Jayasinghe R, Pan X, Zhou M, Wang X, et al. Temperature Modifies the Effects of
Particulate Matter on Non-Accidental Mortality: A Comparative Study of Beijing, China and Brisbane, Australia. Public Heal Res [Internet]. 2012;2(2):21–7. Available from: http://article.sapub.org/10.5923.j.phr.20120202.04.html

[37] Passman AM, Strauss RP, McSpadden SB, Finch-Edmondson ML, Woo KH, Diepeveen LA, et al. A modified choline-deficient, ethionine-supplemented diet reduces morbidity and retains a liver progenitor cell response in mice. Dis Model Mech [Internet]. 2015;8(12):1635–41. Available from: http://dmm.biologists.org/cgi/doi/10.1242/dmm.022020

[38] Nowak DJ, Hirabayashi S, Bodine A, Hoehn R. Modeled PM 2.5 removal by trees in ten U.S. cities and associated health effects. Environ Pollut [Internet]. 2013;178:395–402. Available from: http://dx.doi.org/10.1016/j.envpol.2013.03.050

[39] Berrones-sanz LD. The working conditions of motorcycle taxi drivers in Tláhuac, Mexico City. J Transp Heal [Internet]. 2017; (xxxx):0–1. Available from: http://dx.doi.org/10.1016/j.jth.2017.04.008

[40] Lawin H, Agodokpessi G, Ayelo P, Kagima J, Sonoukon R, Mbatchou BH, et al. A cross-sectional study with an improved methodology to assess occupational air pollution exposure and respiratory health in motorcycle taxi driving. Sci Total Environ [Internet]. 2016;550:1–5. Available from: http://dx.doi.org/10.1016/j.scitotenv.2016.01.068

[41] Bråbäck L, Forsberg B. Does traffic exhaust contribute to the development of asthma and allergic sensitization in children: findings from recent cohort studies. Environ Health [Internet]. 2009;8:17. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2674435&tool=pmcentrez&rendertype=abstract

[42] Deng Q, Lu C, Li Y, Sundell J, Norbäck D. Exposure to outdoor air pollution during trimesters of pregnancy and childhood asthma, allergic rhinitis, and eczema. Environ Res [Internet]. 2016;150:119–27. Available from: http://dx.doi.org/10.1016/j.envres.2016.05.050

[43] Sun X, Luo X, Zhao C, Zhang B, Tao J, Yang Z, et al. The associations between birth weight and exposure to fine particulate matter (PM 2.5) and its chemical constituents during pregnancy: A meta-analysis. Environ Pollut [Internet]. 2016;211:38–47. Available from: http://dx.doi.org/10.1016/j.envpol.2015.12.022

[44] Quoc B, Clappier A, Carlo M. Road traffic emission inventory for air quality modelling and to evaluate the abatement strategies: A case of Ho Chi Minh City, Vietnam. Atmos Environ [Internet]. 2011;45(21):3584–93. Available from: http://dx.doi.org/10.1016/j.atmosenv.2011.03.073

[45] Dabass A, Talbott EO, Venkat A, Rager J, Marsh GM, Sharma RK, et al. International Journal of Hygiene and Association of exposure to particulate matter (PM 2.5) air pollution and biomarkers of cardiovascular disease risk in adult NHANES participants (2001–2008). Int J Hyg Environ Health [Internet]. 2016;219(3):301–10. Available from: http://dx.doi.org/10.1016/j.ijheh.2015.12.002

[46] Jens W. Levy. Effects of Air Pollution on Liver Metabolism With Relevance for Cardiovascular Disease – a Multilevel Analysis. J Chem Inf Model. 2013;53(9):1689–99.

[47] Tan H-H, Fiel MI, Sun Q, Guo J, Gordon RE, Chen L-C, et al. Kupffer cell activation by ambient air particulate matter exposure may exacerbate non-alcoholic fatty liver disease. J Immunotoxicol [Internet]. 2009;6(4):266–75. Available from: http://www.tandfonline.com/doi/full/10.3109/15476910903241704

[48] Kim JW, Park S, Lim CW, Lee K, Kim B. The role of air pollutants in initiating liver disease. Toxicol Res. 2014;30(2):65–70.

[49] Wang S, Lee J, Hyun J, Kim J, Kim SU, Cha H, et al. Tumor necrosis factor-inducible gene 6 promotes liver regeneration in mice with acute liver injury. Stem Cell Res Ther. 2015;1:1–14.

[50] Stinn W, Buettner A, Weiler H, Friedrichs B, Luetjen S, van Overveld F, et al. Lung inflammatory effects, tumorigenesis, and emphysema development in a long-term inhalation study with cigarette mainstream smoke in mice. Toxicol Sci. 2013;131(2):596–611.
[51] Sun Q, Yue P, Deiuliis JA, Lumeng CN, Kampfrath T, Mikolaj MB, et al. Ambient Air Pollution Exaggerates Adipose Inflammation and Insulin Resistance in a Mouse Model of Diet-Induced Obesity. Mol Cardiol. 2009;

[52] Li R, Qiu X, Xu F, Lin Y, Fang Y, Zhu T. Macrophage-Mediated Effects of Airborne Fine Particulate Matter (PM 2.5) on Hepatocyte Insulin Resistance in Vitro. Mol Cardiol. 2016;119:538–46.

[53] Merlo DF, Filiberti R, Kobernus M, Bartonova A, Gamulin M, Ferencic Z, et al. Cancer risk and the complexity of the interactions between environmental and host factors: HENVINET interactive diagrams as simple tools for exploring and understanding the scientific evidence. Environ Heal. 2012;11(Suppl 1):1–12.

[54] Guimarães A, Stanley G, Umbelino C, Freitas D, Chiaravalloti F, Regina M, et al. Incidence and mortality for respiratory cancer and traffic-related air pollution in São Paulo, Brazil. Environ Res [Internet]. 2019;170(December 2018):243–51. Available from: https://doi.org/10.1016/j.envres.2018.12.034

[55] Wardoyo AYP, Juswono UP, Noor JAE. A study of the correlation between ultrafine particle emissions in motorcycle smoke and mice erythrocyte damages. Exp Toxicol Pathol [Internet]. 2017;69(8):649–55. Available from: http://dx.doi.org/10.1016/j.etp.2017.06.003

[56] Liu J, Han Y, Tang X, Zhu J, Zhu T. Science of the Total Environment Estimating adult mortality attributable to PM 2.5 exposure in China with assimilated PM 2.5 concentrations based on a ground monitoring network. Sci Total Environ [Internet]. 2016;568:1253–62. Available from: http://dx.doi.org/10.1016/j.scitotenv.2016.05.165

[57] Liu HY, Schneider P, Haugen R, Vogt M. Performance assessment of a low-cost PM 2.5 sensor for a near four-month period in Oslo, Norway. Atmosphere (Basel). 2019;10(2).

[58] Budde M, Schwarz A, Müller T, Laquai B, Streibl N, Schindler G, et al. Potential and Limitations of the Low-Cost SDS011 Particle Sensor for Monitoring Urban Air Quality. ProScience [Internet]. 2018;5(3rd International Conference on Atmospheric Dust (DUST2018)):6–12. Available from: https://www.scientevents.com/proscience/download/potential-and-limitations-of-the-low-cost-sds011-particle-sensor-for-monitoring-urban-air-quality/#

[59] Budde M, Müller T, Laquai B, Streibl N, Schwarz AD, Schindler G, et al. Suitability of the Low-Cost SDS011 Particle Sensor for Urban PM-Monitoring. Sci Res Abstr 8 (DUST 2018) [Internet]. 2018;(May):11. Available from: http://www.teco.edu/~budde/publications/dust2018_budde_sds011.pdf

[60] Badura M, Batog P, Drzeniecka-Osiadacz A, Modzel P. Optical particulate matter sensors in PM2.5 measurements in atmospheric air. E3S Web Conf. 2018;44:4–6.