Baseline

Grain size and organic carbon controls polyaromatic hydrocarbons (PAH), mercury (Hg) and toxicity of surface sediments in the River Conwy Estuary, Wales, UK

Christopher H. Vane⁎, Alexander W. Kim, Joseph F. Emmings, Gren H. Turner, Vicky Moss-Hayes, Jack A. Lort, Peter J. Williams

⁎ British Geological Survey, Keyworth, Nottingham NG12 5GG, UK

A R T I C L E I N F O

Keywords:
Estuary
Sediment
Contamination
Particle-size
PAH
Microtox
Carbon

A B S T R A C T

The Conwy estuary was evaluated for sediment quality. Microtox bioassay revealed 38 of 39 sites were non-toxic. Hg ranged from 0.001 to 0.153 μg kg⁻¹, mean 0.026 mg kg⁻¹, Σ16 PAH from 18 to 1578 μg kg⁻¹, mean 269 μg kg⁻¹, Σ22 PAH, 18 to 1871 μg kg⁻¹ mean to 312 μg kg⁻¹, two sites had high perylene relative to ΣPAH. Σ22PAH correlated positively with TOC, clay and silt (R² 0.89, 0.92, 0.90) and negatively with sand. Multivariate statistics, delineated four spatial (site) and five variable (measurements) clusters. Spatial clustering relates to sediment grain size, in response to hydrodynamic processes in estuary; fine (clay to silt) sized sediments exhibit the highest Hg and PAH content, because these components partitioned into the fine fraction. Comparison to national and international environmental standards suggests Hg and PAH content of Conwy sediments are unlikely to harm ecology or transfer up into the human food chain.

Estuaries are dynamic environments in which sedimentation is driven by the interplay of geomorphology, tectonics and fluvial-tidal processes as well as variety of human interventions such as engineering and river catchment management. Consequently, estuaries can act as permanent or transient stores of sedimentary pollution, prior to remobilisation and transport out to adjacent shelf sea (Ridgway and Shimmield, 2002). The UK’s urban-industrial estuaries such as the Thames (London) and Clyde (Glasgow), Mersey (Liverpool) and Humber (Hull) have benefited from chemical pollutant assessments to assist in the sustainable management of sediment resources and compliance to national legislation and international agreements (Jones et al., 2019; Lee and Cundy, 2001; Vane et al., 2020b). In contrast, information on organic chemistry and toxicity within rural UK estuaries, such as the Conwy is lacking.

The River Conwy (Afon Conwy) is a 55 km-long exemplar rural-agricultural catchment (590 km²) (Emmet et al., 2016). Land-use-cover comprises of blanket bog, moorland, semi-natural woodland and coniferous forests, as well as agricultural land (diary, beef and sheep). Consequently, the Conwy is a centre for tourism but is ranked at a low position of the national productivity gradient (Emmet et al., 2016; Maskell et al., 2013). The tidal reaches of the river (final 16 km) are flanked by agricultural pasture and a variety of protected habitats such as reedbeds, saltmarshes, mudflats including the Conway RSPB reserve at Llandudno Junction. The lower reaches host; 1) the historic towns of Conwy (west bank), famous for its waterfront world heritage medieval Castle, built in 1289 CE by King Edward 1st, and; 2) the Llandudno Junction /Deganwy area (east bank). These towns are linked via Conwy Railway bridge (1849), and a tunnel for vehicles (1991; Fig. 1). The narrow outlet of the estuary contains the culturally important Conwy Bay and Estuary Mussel Fishery, which has harvested Mytilus for over 500 years. Whilst data exists on the heavy metal content in suspended particulates, waters and suspended faecal wastes, very little is known about the distribution of organic pollutants in bed sediments (Elderfield et al., 1979; Mudge and Norris, 1997; Perkins et al., 2014; Zhou et al., 2003). This study was undertaken to fill this information gap with the potential to be a background (control) against which other UK estuaries may be assessed.

Surface sediments from the active channel of the tidal River Conwy were collected on August 1st 2017 using a 2 L van Veen grab deployed from the vessel ‘Four Reasons’ (Fig. 1). The position of each site was recorded using a handheld Garmin GPSMAP 64 s ± 6 m. At each site, the sediment (0 to ~10 cm) from three grab deployments were combined, sealed in a polyethylene bag (5.7 L) and stored in an ice box (~0 °C) for 3 h (Supplementary data 1). A subsample of ~120 g (wet weight) was submitted for grain size analysis, chemical analysis and filtration for the Microtox bioassay.

https://doi.org/10.1016/j.marpolbul.2020.111412
Received 1 May 2020; Received in revised form 18 June 2020; Accepted 24 June 2020
Available online 06 July 2020

© 2020 British Geological Survey, a component body of UKRI. All Rights Reserved. {BGS (c) UKRI 2020. All Rights Reserved}. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
weight) was frozen at −20 °C (24 h), freeze dried (48 h), disaggregated and sieved ≤2 mm, milled in agate ≤40 μm.

Particle size (< 1 mm) was measured using a Malvern Mastersizer 2000 (Naden et al., 2016). Each sediment was placed in a beaker with 20 mL H2O and the suspension (0.5 mL) analysed with HydroS with pump/stir speed of 2700 rpm or HydroG with pump speed 1600 rpm.

The proportions of particles at each size class (100 groups, from 0.1 μm – 1000 μm) were calculated using the Fraunhofer model and grouped using established size term categories clay-silt-sand (Folk and Ward, 1957).

Total organic carbon (TOC % wt/wt) was determined on de-carbonated sediment using a Europa Scientific Elemental analyser, the

Fig. 1. Location of surface sediment sites in the River Conwy Estuary, Wales, UK. (a–b) outline of Britain, Wales and the Conwy Estuary study area (WGS84 geographic coordinates). (c) Sample locations on the Conwy Estuary (British National Grid projection). Contains Ordnance Survey data © Crown Copyright and database rights.
limits of quantification for a typical 300 mg sample was 0.1%. Total mercury (Hg) was determined by atomic absorption spectrophotometer (AAS) using a Milestone DMA-80, direct mercury analyser (MA122). Analysis of external reference materials MESS3-1 (Hg, 0.092 mg kg\(^{-1}\)) and TH2-1 (Hg, 0.620 mg kg\(^{-1}\)) yielded ± 0.01 and 0.002 mg kg\(^{-1}\) (2\(\sigma\)), respectively. Sediment toxicity was determined using the Microtox® solid phase test (SPT) applied to the luminescent bacterium Aliivibrio fischeri (strain NRRL B-1117) (Vane et al., 2020a).

PAH were measured by spiking 10 g sediment (dry weight) with deuterated (surrogate) standards. Samples, procedural blanks and certified reference materials (CRMs) were extracted using a Dionex ASE-200 with dichloromethane/acetone 1:1\(v/v\), 100 °C at 1500 psi. The extract was transferred to a conditioned (6 mL n-hexane) SPE cartridge (Varian, Bond Elute TPH w.500 mg Na\(_2\)SO\(_4\), 1 g sorbent, 3 mL reservoir volume). The first fraction was eluted with pentane (0.5 + 1 mL) using gravity. The second fraction which contained the PAHs was eluted with 6 mL hexane/isopropanol (97:3)\(v/v\). The volume of eluant was reduced and internal standards added (Vane et al., 2020a). PAH were determined using a Varian 3800 gas chromatograph (GC) coupled to a Varian 1200 L triple quadrupole mass spectrometer fitted with an Agilent PAH Select column (30 m \(\times\) 0.25 mm \(\times\) 0.1 \(\mu\)m). All PAH concentrations are reported in this study are in \(\mu\)g kg\(^{-1}\) on a dry sediment weight basis. The marine/harbour reference material (NIST 1941b) was used to ensure PAH concentrations were within expected limits (n = 8 analysed in duplicate) (Wise et al., 2004). A comparison of the CRM certified reference PAH values revealed a good correlation to the values obtained in this study (Supplementary data 2).

The Microtox® Solid Phase Test (SPT) EC\(_{50}\) values for Conwy sediments ranged from 5587 to 83,522,531 mg/L. When benchmarked against > 10,000 non-toxic, 10,000 to 5000 moderately toxic, and 5000 to 0 as acutely toxic criteria indicated that the majority (38 of the 39 sites) did not contain toxins at sufficient levels to elicit an acute biological response. (Guerra et al., 2007; Kwan and Dutka, 1995; Vane et al., 2020a) In contrast, site 19, a location close to the Conwy Rail Bridge and the historic castle, exhibited EC\(_{50}\) of 5587 mg/L, a value taken to indicate moderate toxicity. Greater sediment toxicity at this location may be explained by direct anthropogenic input possibly related to materials inadvertently or deliberately discarded from the bridge. Overall, the microtox bioassay indicated that the Conwy sediments were not toxic, with one exception.

Total Hg ranged from 0.0004 to 0.153 mg kg\(^{-1}\) (mean 0.026 mg kg\(^{-1}\), median 0.007 mg kg\(^{-1}\)), which are some of lowest concentrations in a UK estuary (Supplementary data 3). From a marine management sediment quality standpoint, primarily used for to assist in the issue of licences to dredge which in encompasses disposal of dredge at sea, all sediments are within the lower bounds of non-statutory
legislative action Level 1 criteria (0.0 to 0.29 mg kg\(^{-1}\)), and none be-
tween 1 and 2 criteria (0.29 to < 0.3 mg kg\(^{-1}\)) or the higher action
Level 2 criteria (> 0.3 mg kg\(^{-1}\)). Con
firi
ing that the sediments could,
on the basis of Hg content, be disposed at sea (with no further action
necessary). The highest Hg of 0.153 mg kg\(^{-1}\) (site 1) was observed
close to the tidal limit suggesting deposition of particulates from the
upstream catchment, and/or changing physical-chemical upstream
conditions. For example, ‘salting out’ processes can lead to accumula-
tion of trace metals in bed sediments at the point of salt-fresh water
mixing (Supplementary data 3) (Vane et al., 2015).

Comparison with the major urban-industrial estuaries of the UK
such as the Thames, Tyne, Mersey and Clyde, as well as sites in SE Asia,
Europe and USA, indicates that the Conwy estuary contains 3 to 50
times less Hg. This supports the notion that river-estuarine sediment
quality is in
fluenced more by the type, proximity and intensity of in-
dustrial activity as compared to duration of human occupation. Given
that total Hg ng in river-estuarine sediments is a combination of anthro-
pogenic Hg hosted in industrial slag, vehicular exhausts, sewage ef-
fluent, coal particles, incineration/pow er site dusts augmented by
background of geogenic sources, we suggest surface sediments of the
Conwy have received low anthropogenic Hg. This finding is not un-
expected given that the Conwy catchment (watershed) is partially
located in Snowdonia National Park, an area protected from significant
industrialisation/urban development.

Total organic carbon (TOC %) ranged from 0.03% to 2.40% with a
mean 0.30% and median of 0.06%. Particle size data for the 39 sites
showed that the majority of sediments, comprise a mixture of fine and
medium sands, whilst those from the outermost open-sea sites Conwy
Bay (37–39) were coarse and medium sands (Fig. 2). In contrast, par-
ticles from some sections of the mid and inner river-estuary are rela-
tively fine; typically clay (10%), silt (60%) and sand (30%) (Fig. 2). The
most plausible explanation for the switch to finer grained sediments
(e.g. sites 16–20 and 24–26) is that it either represents soil eroded from
the adjacent and unembanked agricultural fields, in-wash from lower
order tributaries or alternatively this fine sediment could possibly have
been transported and deposited from higher in the catchment.

Sedimentary Σ16 PAH ranged from 18 to 1578 μg kg\(^{-1}\) (dry weight),
with a mean 269 μg kg\(^{-1}\) and median of 67 μg kg\(^{-1}\) (Fig. 3). Addition
of 2-methylnaphthalene, 1-methylnaphthalene, triphenylene, benzo[j]
fluoranthene, benzo[e]pyrene and perylene to the PAH inventory (Σ22
PAH), yielded only slightly higher amounts 18 to 1871 μg kg\(^{-1}\) mean to
312 μg kg\(^{-1}\) and median of 70 μg kg\(^{-1}\) reflecting minor contribution to
overall PAH content (Fig. 3). Inner estuary sites, down-stream of Tal-y-
Cafyn Bridge (sites 1 to 4) exhibited the highest PAH concentrations

Fig. 3. Concentration of 22 polycyclic aromatic hydrocarbons (Σ22 PAH) and total organic carbon (TOC %) in surface (~0–10 cm depth) sediments of the Conwy
estuary.
Contains Ordnance Survey data © Crown Copyright and database rights.
\(\Sigma 22\) PAH, 804 to 1871 \(\mu g\ kg^{-1}\). In addition, several sites adjacent to Conwy and Llandudno Junction (sites 22–32) exhibited higher PAH, typically > 300 \(\mu g\ kg^{-1}\), and rising to a maxima of 1541 \(\mu g\ kg^{-1}\) at site 30 (Fig. 3). In contrast, the most offshore Conwy Bay sites 26 to 39 had low \(\Sigma 16\) PAH of < 100 \(\mu g\ kg^{-1}\). Inspection of the lateral distribution of benzo[a]pyrene, one of the most toxic of the parent PAH, used as a surrogate chemical marker for genotoxic organic compounds, revealed a similar spatial pattern to that of the \(\Sigma 16\) or \(\Sigma 22\) PAH (Safe, 1998). Benzo[a]pyrene content is high in the upper estuary (78 to 160 \(\mu g\ kg^{-1}\)), highly variable in the mid estuary (1 to 124 \(\mu g\ kg^{-1}\)) and low in the outer estuary (~2 to 4 \(\mu g\ kg^{-1}\)) (Fig. 3) (Cave et al., 2015; Vane et al., 2020a). The PAH distribution profile of Conwy sediments show a minor contribution of low molecular weight PAH (2–3 ring), and major contributions from higher molecular weight PAH (4–6 ring) dominated by fluoroanthene, pyrene, benzo[a]pyrene, phenanthrene, benzo[b]fluoroanthene and benzo[a]anthracene (Fig. 4). The rise in PAH concentrations observed in the latter middle reaches are likely due to greater proximity to anthropogenic activity (Llansanffraid, Glen Conwy, Landudno Junction, Deganwy and Conwy) emanating either as road run-off and/or combusted particulates from vehicles or possibly the railway tracks (Figs. 1 and 3). Also, the middle portion of the river-estuary is spanned by three closely spaced bridges namely, Conwy-suspension Bridge, Road Bridge and Rail Bridge and underlain by the Conwy tunnel which may influence sediment and tidal flow processes and therefore indirectly affect accumulation of sedimentary PAH.

The five ring compound perylene is one of the predominant PAHs in upland UK vegetation (10 to 18%) and soils (3 to 5%) but reported in lower amounts in UK urban soils and sediments (≤3%) (Vane et al., 2014; Vane et al., 2013). In the Conwy, the perylene concentration was low and ranged from < 1.0 to 55.5 \(\mu g\ kg^{-1}\) such that it contributed ~3% \(\Sigma\)PAH (Fig. 3). In contrast, site 19 contained 283 \(\mu g\ kg^{-1}\) perylene, comprising 63% of the total PAH \(\Sigma 22\) (Fig. 5). Unusually high concentrations of perylene that are poorly correlated to other PAH have been widely reported in lakes and coastal sediments since the 1980s (Venkatesan, 1988). Perylene has also been shown to be a product of fungal decay of wood in the rhizosphere such that it can serve as a marker for soil erosion and subsequent aquatic deposition (Grice et al., 2009; Hanke et al., 2019). Precursor compounds, perylene-quinones from ectomycorrhizal fungi found in boreal, temperate and sub-tropical woodland soils are deoxygenated during sedimentary burial to yield perylene (Hanke et al., 2019). Therefore, the elevated perylene concentration at site 19 may be explained by erosion and deposition of woodland soils containing perylene-quinone precursor compounds. However, it’s also prudent to consider that whilst an eroded soil source fits current theory, the fact that it was only observed at one site seems at odds with what must be a ubiquitous catchment scale biogeochemical process. Thus, in this instance an unknown/unproven anthropogenic source seems more plausible (e.g. decomposition of chemical dyes which contain perylene backbone). Although perylene is not considered to be as toxic to humans compared to benzo[a]pyrene or other key PAH such as dibenz[a,h]anthracene, the causative connection to the low \(EC_{50}\), which infers moderate toxicity observed at the same site seems entirely plausible (Safe, 1998). For example, evaluation of perylene toxicity on benthic bacteria and macrofauna such shrimps (Corophium volutator) in an estuarine environment toxicity assay revealed statistically significant negative effects on the survival, growth and number of pregnant females (Cunha et al., 2006). Further, exposure of Salmonella typhimurium to PAH suggested that perylene caused mutagenic activity a lower concentration than benzo[a]pyrene (ODonovan, 1990). Triphenylene, the four ring PAH found in low amounts in coal tars, cigarette smoke and vehicular exhaust is rarely reported in marine environmental pollution studies in the UK due to co-elution with chrysene on standard GC columns and similarities in mass spectra. We observed triphenylene at concentrations ranging from 0.33 up to 22.98 \(\mu g\ kg^{-1}\) with a mean of 4.68 \(\mu g\ kg^{-1}\) and median of 1.49 \(\mu g\ kg^{-1}\).

PAH concentration (\(\Sigma 22\)) exhibits a strong positive correlation with TOC (R², 0.89) (Supplementary data 4) This relationship is likely due to sorption of PAH to natural organic matter (humic substances coating mineral surfaces), or possibly black carbon including coal particles.
which also contain PAH (Bucheli et al., 2004; Hedges and Keil, 1999; Lohmann et al., 2005; Stout and Emsbo-Mattingly, 2008; Ukalska-Jaruga et al., 2018). The strong correspondence of PAH to TOC has been previously shown in sediment cores from the Mersey estuary where a variable PAH to TOC correlation (R² of 0.5) was attributed to a PAH association with wind-blown soot fraction (Vane et al., 2007). The relationship between PAH and sediment grain-size (% clay, silt, sand) was similarly clear, with silt (R² 0.90) and clay (R² 0.92) content showing a strong positive correlation and sand content being negatively correlated (Supplementary data 4). The positive correlation maybe explained by PAH being partitioned/adsorbed to the organics coating clay/silts or directly to clay minerals. However, it should also be borne in mind that the relationship may be driven by other factors, for example, organic matter might behave in a hydrodynamically similar manner to the clay fraction; thus, the correlation between PAH and clays may not be necessarily causal.

On a national basis (UK), the mean concentrations and ranges of PAH for the Conwy rank below those reported for major urban industrial estuaries in the UK such as the Mersey (626 to 3776 μg kg⁻¹), Clyde (630 to 23,711 μg kg⁻¹), Humber (598 to 3372 μg kg⁻¹) and Tyne (260 to 43,470 μg kg⁻¹) (Vane et al., 2007; Vane et al., 2019;...

Fig. 5. Partial chromatogram (from triple quadropole GC/MS) showing high perylene concentration at site 19 (close to Conwy Castle) as compared to more typical relative abundance at site 1 (Tal-Cafyn). Positions of sites shown Fig. 1.

Table 1
Comparison of sedimentary PAH concentrations of the Conwy estuary to international marine sediment quality benchmarks. With one exception all sites PAH content suggest good ecological status (e.g. within < Background (BAC) and < Effects Range Low (ERL)).

Polycyclic aromatic hydrocarbon	< BAC (μg kg⁻¹)	No. sites	< ERL (μg kg⁻¹)	No. sites	> BAC to < ERL	No. sites	≥ ERL	No. sites
Naphthalene	8	28	160	10	0			
Phenanthrene	32	26	240	12	0			
Anthracene	5	27	85	11	0			
Pyrene	24	27	665	11	0			
Chrysene	20	27	384	11	0			
Benzo[a]pyrene	30	29	430	9	0			
Benzo[g,h,i]perylene	80	37	85	0	1			
Perylene	103	38	240	0	0			

which also contain PAH (Bucheli et al., 2004; Hedges and Keil, 1999; Lohmann et al., 2005; Stout and Emsbo-Mattingly, 2008; Ukalska-Jaruga et al., 2018). The strong correspondence of PAH to TOC has been previously shown in sediment cores from the Mersey estuary where a variable PAH to TOC correlation (R² of 0.5) was attributed to a PAH association with wind-blown soot fraction (Vane et al., 2007). The relationship between PAH and sediment grain-size (% clay, silt, sand) was similarly clear, with silt (R² 0.90) and clay (R² 0.92) content showing a strong positive correlation and sand content being negatively correlated (Supplementary data 4). The positive correlation maybe explained by PAH being partitioned/adsorbed to the organics coating clay/silts or directly to clay minerals. However, it should also be borne in mind that the relationship may be driven by other factors, for example, organic matter might behave in a hydrodynamically similar manner to the clay fraction; thus, the correlation between PAH and clays may not be necessarily causal.

On a national basis (UK), the mean concentrations and ranges of PAH for the Conwy rank below those reported for major urban industrial estuaries in the UK such as the Mersey (626 to 3776 μg kg⁻¹), Clyde (630 to 23,711 μg kg⁻¹), Humber (598 to 3372 μg kg⁻¹) and Tyne (260 to 43,470 μg kg⁻¹) (Vane et al., 2007; Vane et al., 2019;...
Woodhead et al., 1999). However, they are similar to those reported for the more rural estuaries such as the Tweed (Σ^{14}PAH 50 μg kg$^{-1}$) (Woodhead et al., 1999). On an international basis, PAH contents are substantially lower than most urban industrial estuaries and are far more comparable to sections of coast considered to be fairly pristine such as Danube coastline Black Sea, Ukraine (67 to 635 μg kg$^{-1}$ (Σ^{17}PAH)), Gironde estuary, France (4 to 853 μg kg$^{-1}$; mean 256 μg kg$^{-1}$ (Σ^{14}PAH)), Barnegat Bay, USA (37 to 1696 μg kg$^{-1}$; mean 671 μg kg$^{-1}$), Benin, 80 to 1411 μg kg$^{-1}$; mean 487 μg kg$^{-1}$ (Σ^{2}PAH) (Readman et al., 2002; Soclo et al., 2000; Vane et al., 2008).

In the UK, marine sediment PAH concentrations are evaluated using a combination of pre-defined OSPAR (Background concentrations (BAC)) and International Council for Exploration of the Sea (effect range low (ERL)) which mark the lower and upper thresholds of “Good Environmental Status” listed within Descriptor 8 of the Marine Strategy Framework Directive (MSFD) (Tornero and Hanke, 2018). The ERL benchmarks originated from a statistical evaluation of a concentration-effect database such that ERL is the 10th percentile and ERM is the 50th percentile of the concentrations that were toxic (Long et al., 1995). Sediments with individual contaminant concentrations $>$ ERL may be taken to indicate a possible contamination risk. Using these criteria, the majority of sites PAH concentrations fall in the < BAC category and a few samples PAH values fall within the < ERL category. In contrast, only one site exceeded the benzo[ghi]perylene ERL criterion confirming the notion that the ecological threat posed by the specified PAH compounds is negligible (Table 1). Overall, comparison with non-statutory sediment quality guidelines suggests the PAH content in the Conwy is of low concern and unlikely to bioaccumulate up trophic levels and thereby cause no harm to estuarine ecology.

Data manipulation, interpolation and multivariate statistical analysis was conducted using a software package called ‘R’ (R Core Team, 2018). Samples were interpolated via inverse distance weighting for 200 × 200 m tiles. Hierarchical cluster analysis (HCA) was conducted on log-transformed and standardized data (z-scores). Clusters were determined for sites and variables (measurements) via the sum of squares (Ward clustering) and Euclidian distance matrix. Cluster stability was estimated using Approximately Unbiased bootstrap resampling (nboot = 10,000). Principal component analysis (PCA) was conducted on a scaled and centred (but otherwise raw) dataset.

HCA and PCA (Fig. 6) demonstrate grain size exerts a strong control on the compositional variance across sites. Interpreted hierarchical clusters by site, A-C, describe a spectrum defined by the admixture of two end-members (Fig. 6a). The majority of sampled sites represent a sand-rich and thus TOC and PAH-lean end-member (Cluster A). Cluster C represents an organic-poor end-member, defined by high Hg, relatively high toxicity, TOC, high (and typically consistent) PAH content, and high clay and silt content. Cluster B represents an intermediate between clusters A and C. Cluster D defines sample sites 19 and 32, which exhibit high clay and silt content, relatively high toxicity, and inconsistent PAH content. PCA is consistent with interpretations based on the HCA (Fig. 6b). Principal component 1 accounts for 76.3% of the variance in the dataset, and describes the spectrum between organic-poor, coarse-grained (Cluster A) and organic-rich, fine-grained (Cluster C) end-members. Principal component 2 delineates Cluster D; samples which are fine grained and exhibit inconsistent PAH content (including high perylene content). In general, this finding supports the interpretation that sedimentary PAH concentration in the tidal Conwy are highly influenced and correlated with organic matter and fine-grained sediments.

Hierarchical clustering by variables (Fig. 6) delineates at least six clusters; medium-fine sand and Microtox EC50; coarse sand; fine grains (clay and silt); and three PAH groupings. PAH group 1 includes pyrene,
fluoranthene, anthracene, chrysene, indeno[1,2,3-cd]pyrene and all PAHs attached to a benzene ring. PAH group 2 includes naphthalene (including methylated forms), Hg, triphenylene, fluorene, phenanthrene and perylene. PAH group 3 includes acenaphthylene, acenaphthene and dibenz[a,h]anthracene. In terms of PAH groupings, Clusters B-C typically exhibit relatively uniform composition; whereas clusters A and D tend to exhibit increased variability. PAH consistency for sites in clusters B-C suggests 1) PAH are readily accommodated within the sediment at these sites (i.e., limited competition for sorption); 2) the PAH reservoir at these sites is relatively well-mixed; 3) residence times are similar for all PAH compounds at these sites. Increased variability between PAH groups in Cluster A suggests an environment subject to PAH input from multiple sources, coupled to variable residence times, and perhaps related to increased competition for limited sorption sites (i.e., sand-rich grains with low surface area and unfavourable physiochemical properties for PAH fixation). Similarly, cluster D is relatively enriched in PAH group 2 (particularly perylene), depleted in PAH groups 1 and 3, and exhibits a very low TOC/clay ratio (Supplementary data 4). This shows at least one additional input or process controls PAH content in Conwy River bed sediments; potentially related to localised natural or anthropogenic input, PAH competition for fixation, selective desorption or degradation of PAH, or sampling of older and/or younger sediments that are out-of-phase with the majority of sampled sites.

Application of traditional isomeric and non-isomeric PAH ratio source apportionment bi-plots suggests mainly pyrogenic sources...
(vegetation/coal/urban background) with little indication of PAH petroleum spills or crude oil (Supplementary data 5) (Tobiszewski and Namiesnik, 2012; Yunker et al., 2002). This interpretation is also supported in part by the greater amount of naphthalene as compared to 1-methylnaphthalene (parent > alkyl). However, it should be borne in mind that the ratio data are difficult to clearly interpret because many of the values plot on the borders between identifying quadrants/areas (Supplementary data 5). Inspection of the biplots with the clusters from the PCA and HCA show that Cluster B (moderately organic-rich sandy clays/silts) PAH are more likely from pyrogenic sources than for example sites from Cluster A (Organic-poor sands). Further, the non-isomeric bi-plot also suggests that Cluster D (organic-poor clay/silt high perylene) PAH source is different. Overall, the combination of diagnostic source ratios overlap with PCA/HCA clusters suggests mixing and possibly some attenuation/attenuation of PAH according to sediment type driven by factors such as grain size and TOC (e.g. Fig. 7).

1. Conclusions

Microtox solid phase test bioassay and chemical measurement of total Hg and PAH show that Conway estuary surface sediments (< 2 mm fraction) are unpolluted when compared to the urban-industrial estuaries of UK. Grain size analysis revealed a mainly sand dominated sediment regime with minor silts and clays. Comparison with non-statutory sediment quality criteria revealed that all sites fell below Hg action levels and the presence of PAH at concentrations 18 to 1578 μg kg⁻¹ are unlikely to impact bottom feeding biota and or important cultural ecosystem services such as the mussel fishery, Conway. The PAH compound triphenylene is rarely reported in UK pollution studies, but was observed in the Conway at concentrations ranging from 0.3 up to 23 μg kg⁻¹ suggesting that it is minor, but ever-present component of estuarine total PAH. The unusually high perylene concentrations observed close to the castle and one at the entrance to Conway marina was unexpected and most likely linked to an unknown anthropogenic source. Whilst, other perylene sources such as degraded perylene-quinones from eroded woodland catchment soils could not be entirely discounted they are less plausible as intuitively this should be a feature to a lesser or greater extent down the entire transect.

Multivariate statistical (PCA and HCA) evaluation of chemical-toxicity grain size data confirmed that PAH content is highly influenced by and correlated with organic matter (e.g. TOC) and fine-grained sediments (e.g. silt and clay) (R² ~0.90); conversely PAH content was negatively correlated with coarse sandy sediment. This approach suggested four grain size–PAH interactions, namely, organic poor sands low in PAH (Cluster A), organic rich sands/silts/clays with uniform PAH (Cluster B, C) and non-uniform (perylene) PAH (Cluster D). Based on this study there is clear evidence that estuarine pollution assessments need to consider chemical concentration data and grain size as well as organic carbon and thus counter the attenuating effects of the sediments they are found in and bound to.

Acknowledgements

Thanks are due to the captain and crew of the vessel Four Reasons for assistance in the estuary survey. All analytical work was funded by Organic Geochemistry Facility (BGS) from National Capability project NEE46995/T01, sediment collection (CHV) was funded from Land Ocean Carbon Transfer (LOCATE; http://locate.ac.uk) a study supported by Natural Environment Research Council grant NE/N018087/1. All authors publish with the permission of the Executive Director, British Geological Survey (UKRI).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.marpolbul.2020.111412.

References

Bucheli, T.D., Blum, F., Desaules, A., Gustafsson, Ö., 2004. Polycyclic aromatic hydrocarbons, black carbon, and molecular markers in soils of Switzerland. Chemosphere 56, 1061–1076.

Cave, M.R., Vane, C.H., Kim, A., Moss-Hayes, V.L., Wragg, J., Richardson, C.L., Harrison, H., Paul Nathanial, C., Thomas, R., Wills, G., 2015. Measurement and modelling of the ingestion bioavailability of polycyclic aromatic hydrocarbons in environments. Environmental Technology & Innovation 3 (0), 35–45.

Cunha, A., Almeida, A., Ré, A., Martins, A., Alcântara, F., 2006. Perylene toxicity in the estuarine environment of Ria de Aveiro (Portugal). Ecotoxicology 15 (2), 171–185.

Elderfield, H., Hipworth, A., Edwards, P.N., Holliday, L.M., 1979. Zinc in the Conway River and estuary. Estuar. Coast. Mar. Sci. 9 (4), 403–422.

Emmett, B.A., Cooper, D., Smart, S., Jackson, B., Thomas, A., Cosby, B., Evans, C., Glanville, H., McDonald, J.E., Balham, S.K., Marshall, M., Jarvis, S., Rajko-Nerov, P., Webb, G.P., Ward, S., Rowe, E., Jones, L., Vanbergen, A.J., Keith, A., Carter, H., Pereira, M.G., Hughes, S., Lebron, I., Wade, A., Jones, D.L., 2016. Spatial patterns and environmental constraints on ecosystem services at a catchment scale. Sci. Total Environment, 572, 1586–1600.

Folk, R.L., Ward, W., 1957. Brazos River bar. A study in the significance of grain-size parameters. J. Sediment. Petrol. 27, 3–26.

Grice, K., Lu, H., Atahan, P., Asif, M., Hallmann, C., Greenwood, P., Maslen, E., Tulipani, S., Williford, K., Dodson, J., 2009. New insights into the origin of perylene in geological samples. Geochim. Cosmochim. Acta 73 (21), 6531–6543.

Guerra, R., Pasteris, A., Ponti, M., Fabbri, D., Bruzzi, L., 2007. Impact of dredging in a shallow coastal lagoon: Microtox(R) Basic Solid-Phase Test, trace metals and Corophium bioassay. Environment. Int. 33 (4), 469–473.

Hanke, U.M., Lima-Braun, A.L., Eglinton, T.J., Donnelly, J.P., Galy, V., Pousset, P., Hughes, K., McNichol, A.P., Xu, L., Reddy, C.M., 2019. Significance of perylene for source allocation of terrigenous organic matter in aquatic sediments. Environmental Science & Technology 53, 8244–8251.

Hedges, J.J., Keil, R.G., 1999. Organic geochemical perspectives on estuarine processes: sorption reactions and consequences. Mar. Chem. 65 (1–2), 55–65.

Jones, D., Vane, C.H., Lass-Evans, S., Chenery, S., Lister, B., Cave, M., Wilkinson, I., 2019. Geochemistry and related studies of Clyde Estuary sediments. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 108 (2–3), 269–288.

Kwan, K.K., Dutka, B.J., 1995. Comparative assessment of two solid phase toxicity bioassays: the direct sediment toxicity testing procedure (DSTTP) and the Microtox solid phase test (SPT). Bull. Environ. Contam. Toxicol. 55, 338–346.

Lee, S.V., Cundy, A.B., 2001. Heavy metal contamination and mixing processes in sediments from the Humber Estuary, Eastern England. Estuar. Coast. Shelf Sci. 53 (5), 619–630.

Lohmann, R., MacFarlane, J.K., Kochwend, P.M., 2005. Importance of black carbon to sorption of native PAHs, PCBs, and PCDDs in Boston and New York, Harbor sediments. Environmental Science & Technology 39 (1), 141–148.

Long, E.R., MacDonald, D.D., Smith, S.L., Calder, F.D., 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine estuarine sediments. Environ. Manag. 19 (1), 81–97.

Maskell, L.C., Crowe, A., Dunbar, M.J., Emmett, B., Henri, P., Keith, A.M., Norton, I.R., Scholefield, P., Clark, D.B., Simpson, I.C., Smart, S.M., 2013. Exploring the ecological constraints to multiple ecosystem service delivery and biodiversity. J. Appl. Ecol. 50, 561–571.

Mudge, S.M., Norris, C.E., 1997. Lipid biomarkers in the Conwy Estuary (North Wales, U.K.): a comparison between fatty alcohols and sterols. Mar. Chem. 57 (1), 63–84.

Naden, P.S., Murphy, J.F., Old, G.H., Newman, J., Scarlett, P., Harman, M., Duerdoth, C.P., Hawczak, A., Pretty, J.L., Arnold, A., Laizé, C., Hornby, D.D., Collins, A.L., Sear, L.C., Crowe, A., Edwards, P.N., Holliday, L.M., 1979. Zinc in the Conway River and estuary. Estuar. Coast. Mar. Sci. 9 (4), 403–422.

O’Donovan, M., 1990. The comparative responses of Salomonaella typhimurium TA1537 and TA97a to a range of reference mutagens and novel compounds. Mutagenesis 5 (3), 267–274.

Perkins, T., Clements, K., Baas, J., Jago, C., Jones, D., 2014. Sediment composition influences spatial variation in the abundance of human pathogen indicator bacteria.
within an estuarine environment. PLoS One 9 (11), e112951.

R Core Team., 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Readman, J.W., Fillmann, G., Tolosa, I., Bartocci, J., Villedieu, J.-P., Catinini, C., Mee, I.D., 2002. Petroleum and PAH contamination of the Black Sea. Mar. Pollut. Bull. 44, 48–62.

Ridgway, J., Shimmield, G., 2002. Estuaries as repositories of historical contamination and their impact on shelf seas. Estuar. Coast. Shelf Sci. 55 (6), 903–928.

Safe, S.H., 1998. Hazard and risk assessment of chemical mixtures using the toxic equivalency factor approach. Environ. Health Perspect. 106 (4), 1051–1058.

Socol, H.H., Garrigues, P., Ewald, M., 2000. Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Mar. Pollut. Bull. 40 (5), 387–396.

Stout, S.A., Embo-Maptingally, S.D., 2008. Concentration and character of PAHs and other hydrocarbons in coals of varying rank - implications for environmental studies of soils and sediments containing particulate coal. Org. Geochem. 39 (7), 801–819.

Tobiszewski, M., Namiesnik, J., 2012. PAH diagnostic ratios for the identification of pollution emission sources. Env. Pollut. 162, 110–119.

Tornero, V., Hanke, G., 2018. Marine Chemical Contaminants – Support to Harmonized MSFD Reporting: Substances Considered for MSFD Descriptor 8, EUR 29281, 2018. ISBN 978-92-79-88542-6. Publications Office of the European Union.

Ukalska-Jaruga, A., Skmeszak, B., Klimkowicz-Pawlas, A., 2018. Soil organic matter composition as a factor affecting the accumulation of polycyclic aromatic hydrocarbons. Journal of Soils and Sediment 19, 1890–1900.

Vane, C.H., Harrison, I., Kim, A.W., 2007. Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in sediments from the Mersey Estuary, U.K. Sci. Total Environ. 374 (1), 112–126.

Vane, C.H., Harrison, I., Kim, A.W., Moss-Hayes, V., Vickers, B.P., Horton, B.P., 2008. Status of organic pollutants in surface sediments of Barnegat Bay-Little Egg Harbor Estuary, New Jersey, USA. Mar. Pollut. Bull. 56 (10), 1802–1808.

Vane, C.H., Rawlins, B.G., Kim, A.W., Moss-Hayes, V., Kendrick, C.P., Leng, M.J., 2013. Sedimentary transport and fate of polycyclic aromatic hydrocarbons (PAH) from managed burning of moorland vegetation on a blanket peat, South Yorkshire, UK. Sci. Total Environ. 449, 81–94.

Vane, C.H., Kim, A.W., Beriro, D.J., Cave, M.R., Knights, K., Moss-Hayes, V., Nathanail, P.C., 2014. Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK. Appl. Geochem. 51, 303–314.

Vane, C.H., Beriro, D., Turner, G., 2015. Rise and fall of Mercury (Hg) pollution in sediment cores of the Thames Estuary, London, UK. Earth Env Sci Tr So. 105 (4), 285–296.

Vane, C.H., Lopes, d.S.R.A., Kim, A.W., Moss-Hayes, V., Fordyce, F.M., Bearcock, J.M., 2019. Persistent organic pollutants (PAH, PCB, TPH) in freshwater, urban tributary and estuarine surface sediments of the River Clyde, Scotland, UK. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 108 (2–3), 299–314.

Vane, C.H., Kim, A.W., Moss-Hayes, V., Turner, G., Mills, K., Cherney, S.R., Barlow, T.S., Kemp, A.C., Engelhart, S.E., Hill, T.D., Horton, B.P., Brain, M., 2020a. Organic pollutants, heavy metals and toxicity in sediment cores from an oil spill impacted salt marsh, Staten Island, New York, USA. Mar. Pollut. Bull. 151, 110271. https://doi.org/10.1016/j.marpolbul.2019.110721.

Vane, C.H., Turner, G.H., Cherney, S.R., Richardson, M., Cave, M.R., Terrington, R., Gowing, C.J.B., Moss-Hayes, V., 2020b. Trends in heavy metals, polychlorinated biphenyls and toxicity from sediment cores of the inner River Thames estuary, London, UK. Environmental Science: Processes & Impacts 22, 364–380.

Venkatesan, M.I., 1988. Occurrence and possible sources of perylene in marine sediments—a review. Mar. Chem. 25 (1), 1–27.

Wise, S.A., Foster, D.L., Schantz, M.M., Kucklick, J.R., Sander, L.C., Lopez de Alda, M., Schubert, P., Parris, R.M., Porter, B.L., 2004. Two new marine sediment standard reference materials (SRMs) for the determination of organic contaminants. Anal. Bioanal. Chem. 378 (5), 1251–1264.

Woodhead, R.J., Law, R.J., Matthiessen, P., 1999. Polycyclic aromatic hydrocarbons in surface sediments around England and Wales, and their possible biological significance. Mar. Pollut. Bull. 38 (9), 773–790.

Yunker, M.B., Macdonald, R.W., Vingarzan, R.V., Mitchell, R.H., Goyette, D., 2002. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry 33 (4), 489–515.

Zhou, J.L., Liu, Y.P., Abrahams, P.W., 2003. Trace metal behaviour in the Conwy estuary, North Wales. Chemosphere 51 (5), 429–440.