On the Capacity of Quantum Private Information Retrieval from MDS-Coded and Colluding Servers

Matteo Allaix, Student Member, IEEE, Seunghoan Song, Member, IEEE, Lukas Holzbaur, Graduate Student Member, IEEE, Tefjol Pllaha, Masahito Hayashi, Fellow, IEEE, Camilla Hollanti, Member, IEEE

Abstract—In quantum private information retrieval (QPIR), a user retrieves a classical file from multiple servers by downloading quantum systems without revealing the identity of the file. The QPIR capacity is the maximal achievable ratio of the retrieved file size to the total download size. In this paper, the capacity of QPIR from MDS-coded and colluding servers is studied for the first time. Two general classes of QPIR, called stabilizer QPIR and dimension-squared QPIR induced from classical strongly linear PIR are defined, and the related QPIR capacities are derived. For the non-colluding case, the general QPIR capacity is derived when the number of files goes to infinity. A general statement on the converse bound for QPIR with coded and colluding servers is derived showing that the capacities of stabilizer QPIR and dimension-squared QPIR induced from any class of PIR are upper bounded by twice the classical capacity of the respective PIR class. The proposed capacity-achieving scheme combines the star-product scheme by Freij-Hollanti et al. and the stabilizer QPIR scheme by Song et al. by employing (weakly) self-dual Reed–Solomon codes.

I. INTRODUCTION

With the amount of data stored in distributed storage systems steadily increasing, the demand for user privacy has surged in recent years. One notion that has received considerable attention is private information retrieval (PIR), where the user’s goal is to access a file of a (distributed) storage system without revealing the identity (index) of this desired file. In their seminal work Chor et al. [2] introduced the concept of PIR from multiple non-colluding servers, where the user obtains no other information than the desired file in addition to the requirements of PIR. For the non-colluding case, the general PIR capacity is derived when the number of files goes to infinity. A general statement on the converse bound for PIR with coded and colluding servers is derived showing that the capacities of stabilizer PIR and dimension-squared PIR induced from any class of PIR are upper bounded by twice the classical capacity of the respective PIR class.

The proposed capacity-achieving scheme combines the star-product scheme by Freij-Hollanti et al. and the stabilizer PIR scheme by Song et al. by employing (weakly) self-dual Reed–Solomon codes.

A. Contributions

As a generalization of [24], we study the QPIR/QSPIR capacity from [n,k] MDS coded storage with t colluding servers for any t + k ≤ n. Since the capacity of this setting is even unsolved for the classical case, similar to [9], [10], we define two new classes of QPIR, which include the existing QPIR schemes [21]–[24], and derive the capacity for these classes. The first class is stabilizer QPIR induced from classical PIR. Stabilizer QPIR is a class of QPIR that naturally imports linear PIR schemes in quantum settings while doubling the PIR rate. More specifically, the user and the servers simulate the classical PIR scheme, except that the servers’ prior entangled state is a state in a stabilizer code and the servers apply Pauli X and Z operations on each quantum system depending on the answers of the classical PIR. The second class is dimension-squared QPIR, which is a broader class of QPIR that includes stabilizer QPIR. Whereas the stabilizer QPIR is defined with restrictions on the encoding, decoding, and shared entanglement, dimension-squared QPIR is defined only with restriction on dimensions of the answered quantum systems, which is a sufficient condition for our converse proof. Similar to the stabilizer QPIR, dimension-squared QPIR can also be induced from classical PIR and the...
existing QPIR schemes [21]–[24] are dimension-squared QPIR induced from strongly linear PIR.

For stabilizer PIR and dimension-squared QPIR induced from strongly-linear PIR, we prove that the asymptotic QPIR/QSPIR capacities with MDS-coded and colluding servers are

\[
\min\{1,2(n-k-t+1)/n\}.
\]

Furthermore, for non-colluding case \(t=1\), we prove that the general asymptotic QPIR/QSPIR capacity is

\[
\min\{1,2(n-k)/n\}.
\]

The derived quantum capacities double the classical asymptotic capacities of PIR and S-PIR, as compared in Table 1.

The capacity achieving scheme is based on the strongly-linear star-product scheme of [12] for classical PIR from MDS-coded storage and the QPIR scheme of [23] for replicated storage, both in the presence of \(t\) colluding servers. A generalization of these schemes, which employs (weakly) self-dual Generalized Reed–Solomon (GRS) codes, results in the first known QPIR scheme from MDS-coded storage in the considered setting. The scheme is non-trivial for two main reasons. First, the chosen codes must behave well with the star-product operation: one example is the polynomial-based codes class, that includes GRS codes. This requirement comes from the classical PIR scheme described in [12]. Second, the star-product of the storage code and the query code must be a (weakly) self-dual code in order to employ the stabilizer formalism and get the advantage of quantum communication. To the best of our knowledge the combination of these two properties was not considered in previous literature. In this paper, we prove that for any given GRS storage code we can find a GRS query code such that their star-product is a (weakly) self-dual code.

The converse bounds are proved separately for the colluding and non-colluding cases. First, the converse for colluding case is derived generally for any PIR classes. Namely, when the classical capacity of any PIR class is \(C\), we prove that the rates of stabilizer PIR and dimension-squared QPIR induced from the same class of PIR are upper bounded by

\[
\min\{1,2(n-k-t+1)/n\}.
\]

Then, from the capacity of strongly linear PIR for coded and colluding servers \((n-k-t+1)/n\) [9], [10], we obtain our converse bound for colluding case. Second, the converse for non-colluding case is proved for general QPIR schemes with the following idea. We prove that the \(k\) servers obtain negligible information of the user’s information. Combining this fact and the entanglement-assisted classical capacity [26], we prove that the desired converse bound \(C \leq \min\{1,2(n-k)/n\} \) for PIR.

Likewise to the existing multi-server QPIR studies [21]–[24], the communication model in this paper is classical query and quantum answers with entanglement. This model is the hybrid model of classical and quantum communication for classical file retrieval. Compared to the non-quantum model, our main theorem implies that the capacity doubles only with the one-way quantum communication from the servers to the user. On the other hand, compared to the purely quantum model, which allows quantum queries, our model has three practical advantages. First, since the quantum communication is hard to be implemented with the current technology, our one-way communication model is a more realizable model than the two-way quantum communication. Second, in our scheme, most of the quantum resources and computations are operated by the servers, and the only quantum device required for the user is a fixed measurement apparatus.1 The same kind of outsourcing also appears in the blind computation by measurement-based quantum computation [28]. Third, since the storage is still classical, we can just employ quantum communication technology and quantum memory to double the rate of an already existing MDS-coded storage implementing a classical PIR scheme.

B. Organization

The remainder of the paper is organized as follows. Section II is a preliminary section for notation, linear codes and distributed data storage, quantum information theory, and stabilizer formalism. In Section III, we formally define classical PIR, QPIR, and the related QPIR classes. In Section IV, we present our main capacity results. Our capacity-achieving QPIR scheme with MDS-coded storage and colluding servers is proposed in Section V and the converse bound is derived in Section VI. Section VII is the conclusion of the paper.

II. PRELIMINARIES

A. Notation

We denote by \([n]\) and \([n_1 : n_2]\) the sets \(\{1, 2, \ldots, n\}\), \(n \in \mathbb{N}\) and \(\{n_1, n_1+1, \ldots, n_2\}, n_1, n_2 \in \mathbb{N}\), respectively, and by \(\mathbb{F}_q\) the finite field of \(q\) elements. For a linear code of length \(n\) and dimension \(k\) over \(\mathbb{F}_q\) we write \([n,k]\). For random variables \(A_1, \ldots, A_n\), quantum systems \(\mathcal{A}_1, \ldots, \mathcal{A}_n\) and a set \(S \subseteq [n]\), we denote \(A_S := (A_j | j \in S)\) and \(A_S := \bigotimes_{j \in S} A_j\). For a matrix \(A\) we write \(A^\dagger\) for its transpose and \(A^t\) for its conjugate transpose. The function \(\delta_{i,j}\) is the Kronecker delta and \(\mathbf{1}_i\) is the \(n \times n\) identity matrix. For an \(n \times m\) matrix \(A = (a_{ij})_{i \in [n], j \in [m]}, S_1 \subseteq [n]\), and \(S_2 \subseteq [m]\), we denote \(A_{S_1}^{S_2} = (a_{ij})_{i \in S_1, j \in S_2}\) and \(A_{S_1}^t = (a_{ij})_{i \in S_1, j \in [m]}\). Throughout this paper, we use log for the logarithm to the base 2.

B. Linear codes and distributed data storage

We consider a distributed storage system employing error/erasure correcting codes to protect against data loss. To this end, let \(X\) be an \(m \times k\) matrix containing \(m\) files \(X_i \in \mathbb{F}_q^{d_i \times k}, i \in [m]\). This matrix is encoded with a linear code \(C\) of length \(n\) and dimension \(k\) over \(\mathbb{F}_q\). The \(m \times n\) matrix of encoded files is

\[1\] QPIR problem can also be considered for the retrieval of quantum states, i.e., QPIR with quantum storage. A part of authors discussed this problem in a recent paper [27].
given by $\mathbf{Y} = \mathbf{X} \cdot \mathbf{G}_C$, where $\mathbf{G}_C \in \mathbb{F}_q^{d \times n}$ is the generator matrix of C. Server $s \in [n]$ stores the s-th column of \mathbf{Y}, which is denoted by \mathbf{Y}_s.

In this work we consider systems encoded with MDS codes. A linear code C is called an MDS code if any k columns of the generator matrix \mathbf{G}_C are linearly independent. Since we consider a MDS coded data storage, we have the following properties.

1) The matrix \mathbf{X}' can be recovered from any k elements of \{${\mathbf{Y}_1, \ldots, \mathbf{Y}_n}$\} for any $i \in [m]$.
2) Any k columns of \mathbf{Y} are linearly independent.

C. Preliminaries on quantum information theory

In this subsection, we introduce the preliminaries on quantum information theory. To be precise, we introduce quantum systems, states, operations, and measurements. Further, after the introduction, we explain the quantum information theory is a generalization of classical information theory. For more details the reader is referred to [29], [30].

A quantum system \mathcal{H} is represented by a finite dimensional complex vector space. Vectors in a quantum system are written with bra–ket notation as $|\psi\rangle \in \mathcal{H}$ and their complex conjugates are as $\langle \psi |$. The computational basis of a d-dimensional quantum system \mathcal{H} is a fixed orthonormal basis written as $\{|0\rangle, \ldots, |d-1\rangle\}$. The composite system of multiple quantum systems $\mathcal{H}_1, \ldots, \mathcal{H}_n$ is represented by the tensor product $\mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n$.

A state σ on \mathcal{H} is represented by a positive-semidefinite matrix on \mathcal{H} with trace 1, which is called a density matrix. When a density matrix σ is a rank-one matrix, i.e., $\sigma = |\psi\rangle \langle \psi |$, the state is equivalently represented by a unit vector $|\psi\rangle$, called a pure state. When a state is not a pure state, the state is called a mixed state. On a composite system $\mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n$, a state is called separable if the state is written as $\sigma = \sum_i p_i |\psi_i\rangle \langle \psi_i |$ with $p_i \geq 0$, $\sum_i p_i = 1$, and density matrices σ_i for all i. A state on a composite system is called entangled if it is not a separable state. When the state on $\mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n$ is σ, the reduced state on \mathcal{H}_k is written as $Tr_{k\neq l} \sigma$, where $Tr_{k\neq l}$ is the partial trace over $\bigotimes_{k \neq l} \mathcal{H}_l$.

A quantum operation κ from \mathcal{H}_1 to \mathcal{H}_2 is represented by completely positive trace-preserving (CPTP) map defined as follows. A linear map κ from matrices on \mathcal{H}_1 to matrices on \mathcal{H}_2 is called completely positive if for all positive integer n, the map $\kappa \otimes id_{\mathcal{H}_n}$ maps positive-semidefinite matrices to positive-semidefinite matrices, where $id_{\mathcal{H}_n}$ is the identity map over the matrices on $id_{\mathcal{H}_n}$, and trace-preserving if $Tr(\kappa(M)) = Tr(M)$ for all matrices M on \mathcal{H}_1. A CPTP map κ is called a unitary map if $\kappa(M) = U^\dagger MU$ with a unitary matrix U on \mathcal{H}.

A measurement on a quantum system \mathcal{H} is represented by a set of positive-semidefinite matrices $M = \{M_0, \ldots, M_k\}$ on \mathcal{H} with $\sum_{i=0}^{k} M_i = I$, called a positive operation-valued measure (POVM). When a POVM is performed on a state σ, the measurement outcome is ω with probability $Tr(M_\omega \sigma)$, where M_ω. If all elements of a POVM $\{M_0, \ldots, M_k\}$ are orthogonal projections, the POVM is called the projection-valued measure (PVM).

Classical information theory is included in the framework of quantum information theory in the following sense. A finite set $\{0: d-1\}$ corresponds to a d-dimensional quantum system with computational basis $\{|0\rangle, \ldots, |d-1\rangle\}$. An instance $x \in \{0: d-1\}$ and a random variable X with probability $p_x[|x\rangle \in \{0: d-1\}]$ correspond, respectively, to a pure state $|x\rangle$ and a mixed state $\sigma = \sum_{x \in \{0: d-1\}} p_x |x\rangle \langle x |$. A transition matrix $Q = (Q_{x,y})_{x \in \{0: d-1\}, y \in \{0: d-1\}}$, which satisfies $Q_{x,y} \in [0, 1]$ and $\sum_y Q_{x,y} = 1$, corresponds to a CPTP map $\kappa(\sigma) = \sum_y Q_{x,y} |y\rangle \langle y| \sigma |y\rangle \langle y|$. For example, if the state σ corresponds to the random variable X, i.e., $\sigma = \sum_x p_x |x\rangle \langle x |$, the resultant state after applying κ is $\sum_y (\sum_x p_x Q_{x,y}) |y\rangle \langle y|$, i.e., the random variable after applying κ on X. Sampling a random variable X with the outcome x corresponds to performing PVM $M = \{P_x = |x\rangle \langle x |\}$ and obtaining the measurement outcome x with probability p_x.

D. Stabilizer formalism

Stabilizer formalism is an algebraic structure in quantum information theory and is often used for the quantum error correction [31], [32]. In the context of QIPR, it is also an essential tool to design most of the existing multi-server QIPR schemes [21]–[24]. With the stabilizer formalism, we will define a new class of QIPR, called stabilizer QIPR in Section III-B1, and design our capacity-achieving schemes in Section V. As a preliminary, in this section, we first define stabilizer formalism over finite fields \mathbb{F}_q. Then, to help understanding how the mathematical definition of the stabilizer formalism is used for information processing tasks, we briefly explain the application to the quantum error correction.

1) Stabilizer formalism over finite fields: Let $q = p^r$ with a prime number p and a positive integer r. Let \mathcal{H} be a q-dimensional Hilbert space spanned by orthonormal states $\{|j\rangle : j \in \mathbb{F}_q\}$. For $x \in \mathbb{F}_q$, we define \mathbf{T}_x on \mathbb{F}_q^n as the linear map $y \in \mathbb{F}_q \mapsto xy \in \mathbb{F}_q$ by identifying the finite field \mathbb{F}_q with the vector space \mathbb{F}_q^n. Let $tr x \coloneqq Tr \mathbf{T}_x \in \mathbb{F}_p$ for $x \in \mathbb{F}_q$. Let $\omega \coloneqq \exp(2\pi i / p)$. For $a, b \in \mathbb{F}_q$, we define unitary matrices $X(a) \coloneqq \sum_{j \in \mathbb{F}_q} |j+a\rangle \langle j |$ and $Z(b) \coloneqq \sum_{j \in \mathbb{F}_q} \omega^{bj} |j\rangle \langle j |$ on \mathcal{H}. For $s = (s_1, \ldots, s_{n_q}) \in \mathbb{F}_q^m$, we define a unitary matrix $\mathbf{W}(s) \coloneqq X(s_1)Z(s_{n_q}) \otimes \cdots \otimes X(s_2)Z(s_3)$ on \mathcal{H}^n. For $x = (x_1, \ldots, x_n)$, $y = (y_1, \ldots, y_n) \in \mathbb{F}_q^n$, we define the tracial bilinear form $(x, y) \coloneqq \sum_{i=1}^{n} x_i y_i \in \mathbb{F}_p$ and the trace-symphetic bilinear form $(x, y)_{\mathbb{F}_q} \coloneqq (x, y)$, where J is a $2n \times 2n$ matrix $\begin{bmatrix} 0 & -I_n \\ I_n & 0 \end{bmatrix}$.

The Heisenberg-Weyl group is defined as $\mathbb{H}^n_q \coloneqq \{e^{i\mathbf{W}(s)} | s \in \mathbb{F}_q^n, c \in \mathbb{C}\}$. A commutative subgroup of \mathbb{H}^n_q not containing \mathbf{I}_q for any $c \neq 0$ is called a stabilizer. A subspace V of \mathbb{H}^n_q is called self-orthogonal with respect to the bilinear form $(\cdot, \cdot)_q$ if $V \subset V^{ot_q} \coloneqq \{s \in \mathbb{F}_q^n | (v, s)_q = 0 \text{ for any } v \in V\}$. Any self-orthogonal subspace of \mathbb{H}^n_q defines a stabilizer by the following proposition.

Proposition II.1 ([23, Section IV-A]). Let V be a self-orthogonal subspace of \mathbb{F}_q^n. There exists $\{c \in \mathbb{C} | v \in V\}$ such that $S(V) \coloneqq \{\mathbf{W}(v) : c_v \mathbf{W}(v) \in V \} \subset \mathbb{H}^n_q$ is a stabilizer.

In the next proposition, we denote the elements of the quotient space $\mathbb{F}_q^n/V^{ot_q}$ by $\overline{s} \coloneqq s + V^{ot_q} \in \mathbb{F}_q^n/V^{ot_q}$.

Proposition II.2 ([23, Section IV-A]). Let V be a d-dimensional self-orthogonal subspace of \mathbb{F}_q^n and $S(V)$ be a stabilizer defined from Proposition II.1. Then, we obtain the following statements.
(a) For any \(v \in \mathcal{V} \), the operation \(W(v) \in \mathcal{S}(\mathcal{V}) \) is simultaneously and uniquely decomposed as
\[
W(v) = \sum_{\bar{x} \in \mathbb{Z}_q^{2n}/\mathbb{V}^{+2}} \omega^{(v,s)} p_{\bar{x}}^V V
\]
with orthogonal projections \(\{ p_{\bar{x}}^V \} \) such that
\[
p_{\bar{x}}^V p_{\bar{x}'}^V = 0 \quad \text{for any } \bar{x} \neq \bar{x}',
\]
\[
\sum_{\bar{x} \in \mathbb{Z}_q^{2n}/\mathbb{V}^{+2}} p_{\bar{x}}^V = I_{q^n}.
\]

(b) Let \(H^V_\bar{x} := \text{Im} p_{\bar{x}}^V \). We have \(\dim H^V_\bar{x} = q^{n-d} \) for any \(\bar{x} \in \mathbb{Z}_q^{2n}/\mathbb{V}^{+2} \) and the quantum system \(H^{\text{QN}}_\bar{x} \) is decomposed as
\[
H^{\text{QN}}_\bar{x} = \bigotimes_{\bar{x} \in \mathbb{Z}_q^{2n}/\mathbb{V}^{+2}} H^V_\bar{x} = W \otimes \mathbb{C}^{q^n-d},
\]
where the system \(W \) is the \(q^d \)-dimensional Hilbert space spanned by \(\{ | \bar{x} \rangle \mid \bar{x} \in \mathbb{Z}_q^{2n}/\mathbb{V}^{+2} \} \) with the property
\[
H^{\text{QN}}_\bar{x} = | \bar{x} \rangle \otimes \mathbb{C}^{q^n-d} := \{ | \bar{x} \rangle \otimes | \varphi \rangle \mid | \varphi \rangle \in \mathbb{C}^{q^n-d} \}.
\]

(c) For any \(s, t \in \mathbb{Z}_q^{2n} \), we have
\[
W(t) | \bar{x} \rangle \otimes | \varphi \rangle = | s+t \rangle \otimes | \varphi \rangle,
\]
\[
W(t) (| \bar{x} \rangle \otimes | I_{q^n-d} \rangle) W(t)^\dagger = | s+t \rangle \otimes | I_{q^n-d} \rangle.
\]

(d) For any \(v \in \mathcal{V} \) and any \(| \varphi \rangle \in | \bar{x} \rangle \otimes \mathbb{C}^{q^n-d} \), we have
\[
W(v) | \varphi \rangle = | \varphi \rangle.
\]

2) Application to quantum error correction: Next, we explain how the stabilizer formalism is used for quantum error correction [31], [32]. Similar to the classical case, the structure of error correction will be used for accomplishing PIR tasks in the later sections.

Consider the transmission of a quantum state from a sender to a receiver over a noisy channel. When the sender’s message state is \(\sigma \) on \(\mathbb{C}^{q^n-d} \), the sender encodes the state \(\sigma \) as \(| \bar{0} \rangle \otimes | \bar{0} \rangle \otimes \sigma \) on the quantum system \(| \bar{0} \rangle \otimes \mathbb{C}^{q^n-d} \subset H^{\text{QN}}_\bar{x} \) defined in (b) of Proposition II.2, and send the quantum system \(H^{\text{QN}}_\bar{x} \) to the receiver. Suppose the noise of the channel is \(W(s) \), i.e., the operation \(W(s) \) is applied to the state. Then, the receiver’s state is in the space \(| \bar{0} \rangle \otimes \mathbb{C}^{q^n-d} \) on the noise and error correction operation are combined as the unitary matrix \(W(s) W(-s') \) if \(s - s' \in \mathcal{V} \), the decoded state is \(| \bar{0} \rangle | \bar{0} \rangle \otimes | \sigma \rangle \). That is, \(| \sigma \rangle \) is correctly recovered by the receiver. The characterization of the noise \(s \) and the corresponding choice of \(s' \) in decoding are essential problems in quantum error correction to achieve more reliable communication.

III. NOTIONS OF PIR

A. Classical PIR

We formally define a classical PIR scheme with MDS-coded storage (MDS-PIR). In a general MDS-PIR scheme, one user and \(n \) servers participate.

Distributed Storage The \(m \) files are given as uniformly and independently distributed random variables \(X_1, \ldots, X_m \) in \(\mathbb{F}_q^{b \times k} \). As described in Section II-B, the files \(X = (A_1, \ldots, (A_m)^\dagger) \) are encoded with an MDS code \(C \) as \(Y = (Y_1, \ldots, Y_n) = X G_C \in \mathbb{F}_q^{n \times m0} \) and is distributed as the \(s \)-th server contains \(Y_s \in \mathbb{F}_q^{n \times 1} \).

Shared Randomness The servers possibly share randomness \(H = (H_1, \ldots, H_n) \), where \(H_i \) is owned by server \(s_i \).

Query Let \(K \) be a uniform random variable with values in \([m] \). The user desiring the \(K \)-th file prepares \(\Phi_K = (Q_1, \ldots, Q_k) \) with local randomness \(R \) by the encoder \(\Phi_{\text{user}} : [m] \times R \rightarrow Q := Q_1 \times \cdots \times Q_n \), where \(R \) is the alphabet of the user’s local randomness and \(Q_k \) is the alphabet of the query to server \(s \), and sends \(Q_k \) to server \(s \).

Response With the encoder \(\Phi_{\text{serv}_k} : \mathbb{F}_q^{b \times m} \times H_k \times Q_k \rightarrow B_k \), the \(s \)-th server responds \(B_k = \Phi_{\text{serv}_k}(Y, H_k, Q_k) \in B_k \) to the user. We denote \(B_k = (B_k, \ldots, B_k) \) and \(B = B_1 \times \cdots \times B_n \).

Decoding With the decoder \(\Phi_{\text{dec}} : [m] \times Q \times B \rightarrow \mathbb{F}_q^{b \times k} \), the user obtains an estimate \(\hat{X} = \Phi_{\text{dec}}(K, Q^K, B_k) \in \mathbb{F}_q^{b \times k} \) of \(X^K \).

As described above, an MDS-PIR scheme \(\Phi_C \) is defined as \(\Phi_C = (C, c_{\text{init}}, \Phi_{\text{serv}}, \Phi_{\text{dec}}, \Phi_{\text{enc}}) \) with the MDS code for storage \(C \), the initial state \(c_{\text{init}} \), the query encoder of the user \(\Phi_{\text{serv}} \), the answer encoders of the servers \(\Phi_{\text{enc}} := \{ \Phi_{\text{serv}_k} \mid \forall s \in [n] \} \), and the decoder of the user \(\Phi_{\text{dec}} \).

The correctness of MDS-PIR is defined as follows.

Definition III.1 (Correctness). The correctness of a MDS-PIR scheme \(\Phi_C \) is evaluated by the error probability
\[
P_e(\Phi_C) := \max_{i \in [m]} \Pr[X_i \neq \hat{X}_i].
\]

We also consider the following secrecy conditions with a positive integer \(t \) with \(1 \leq t \leq n \).

Definition III.2 (Privacy with \(t \)-Collusion). User \(t \)-secrecy: Any set of at most \(t \) colluding servers gains no information about the index \(i \) of the desired file, i.e., \(P_{Q_i|Q_i^t} = P_{Q_i|Q_i^t} \) for any \(i, i' \in [m] \) and \(i \leq t \leq n \), where \(P_{Q_i|Q_i^t} \) is the distribution of \(Q_i \) conditioned with \(K = i \).

Server secrecy: The user does not gain any information about the files other than the requested one, i.e.,
\[
I(B_t^i; X|Q_i, K = i) = H(X_i).
\]

As customary, we assume that the size of the query alphabet is negligible compared to the size of the files. This is justified if the files are assumed to be large, as the upload cost is independent of the size of the files. For simplicity, we only consider files of sizes \(k \log q \) in the following. However, note that repeatedly applying the scheme with the same queries allows for the download of files that are any multiple of \(k \log q \) in size at the same rate and without additional upload cost.

When user \(t \)-secrecy is satisfied, the scheme is called \([n, k, t] \)-PIR and leaks no information of the index \(K \) to any \(t \) colluding servers. When both user \(t \)-secrecy and server secrecy are satisfied, the scheme is called symmetric and we denote it by \([n, k, t] \)-SPIR.

As a measure of efficiency of the MDS-PIR scheme \(\Phi_C \) is defined as follows.

Definition III.3 (MDS-PIR rate). The MDS-PIR scheme \(\Phi_C \) is
defined as
\[R(\Phi_C) = \frac{H(X^i)}{\sum_{i=1}^{n} \log |\mathcal{B}|} \] (11)

Definition III.4 (Achievable MDS-PIR rate). A rate \(R \) is called \(\epsilon \)-error achievable \([n,k,t] \)-PIR \(([n,k,t] \)-SPIR\) rate with \(m \) files if there exists a sequence of \([n,k,t] \)-PIR \(([n,k,t] \)-SPIR\) schemes with \(m \) files \(\{\Phi_T\}_T \) such that the PIR rate \(K(\Phi_T) \) approaches \(R \) and the error probability satisfies \(\lim_{T \to \infty} P_{\text{err}}(\Phi_T) \leq \epsilon \).

Definition III.5 (MDS-PIR capacity). The \(\epsilon \)-error \([n,k,t] \)-PIR \(([n,k,t] \)-SPIR\) capacity with \(m \) files \(C_{m,e}^{[n,k,t]} \) \((C_{m,e}^{[n,k,t]},s) \) is the supremum of \(\epsilon \)-error achievable \([n,k,t] \)-PIR \(([n,k,t] \)-SPIR\) rate with \(m \) files.

Remark 1. Our definition of the achievable rate and capacity with asymptotic \(\epsilon \) error generalizes the case of \(\epsilon = 0 \), which have been discussed in other PIR studies [3], [6].

We define two well-known classes of classical PIR. For a set \(I \subseteq [n] \) and \(y \in \mathbb{N} \), we define \(\psi_y(I) = \bigcup_{i \in I} [(i-1)y+1:iy] \). For example, if \(I = [n] \), we have \(\psi_y([n]) = \{yn\} \).

Definition III.6 (Linear PIR [9, Definition 1]). A PIR scheme is called linear if
- the query \(Q \) is represented by a matrix \(Q \in \mathbb{Z}_q^{m \times n} \), where \(Q_{\psi_y(s)} \) is the query to server \(s \), and
- the classical answer \(B \) of server \(s \) is represented by \(B_{\psi_y(s)} = Y^s_{\psi_y(s)} \in \mathbb{F}_q^{1 \times n} \). (12)

We also define strongly linear PIR, which requires the linearity also for the reconstruction of the targeted file.

Definition III.7 (Strongly linear PIR [9]). A linear PIR scheme is called strongly linear if there exist linear maps \(\{f_{i,j} | (i,j) \in [\beta] \times [k]\} \) such that
\[X^i_j = f_{i,j}(B_{(s-1)y+ty}, | s \in [n]) \] for some \(t_{i,j} \in [y] \).

One of our main results is on the MDS-PIR capacity induced from strongly linear PIR. The capacity of strongly linear PIR is derived in [9] as follows.

Proposition III.1 ([9], [10]). The zero-error capacity of any strongly linear PIR with \([n,k] \)-MDS coded storage and \(t \) colluding servers is
\[\sup_{m \geq 1} \frac{k \beta \log q}{\sum_{i=1}^{n} H(B_i)} = 1 - \frac{k + t - 1}{n} \] (13)
for any number of files \(m \).

B. Quantum PIR (QPIR)

1) QPIR from MDS-coded storage: We formally define a QPIR scheme with MDS-coded storage (MDS-QPIR), depicted in Figure 1.

Distributed Storage The same as classical PIR.

Shared Entanglement The initial state of the \(n \) servers is given as a density matrix \(\sigma_{\text{init}} \) on quantum system \(\mathcal{H} = \mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n \), where \(\mathcal{H}_n \) is distributed to server \(n \). The state \(\sigma_{\text{init}} \) is entangled.

Query The same as classical PIR.

Response Each server \(s \) applies a CPTP map \(\text{Enc}_{\text{serv}}[Q^s] : Y_s \rightarrow X^s \) from \(\mathcal{H}_s \) to \(\mathcal{A}_s \) depending on \(Q^s \) and \(Y_s \), where \(\mathcal{A}_s \) is a \(d \)-dimensional quantum system, and returns \(\mathcal{A}_s \) to the user.

Decoding Depending on \(K \) and \(Q^K \), the user applies a POM \(\text{Dec}[K, Q^K] \) on \(\mathcal{A} = \mathcal{A}_1 \otimes \cdots \otimes \mathcal{A}_n \) and obtains the measurement outcome \(\hat{X}^K \).

As described above, an MDS-QPIR scheme \(\Phi \) is defined as \(\Phi = (C, \sigma_{\text{init}}, \text{Enc}_{\text{user}}, \text{Enc}_{\text{serv}}, \text{Dec}) \) with the MDS code for storage \(C \), the initial state \(\sigma_{\text{init}} \), the query encoder of the user \(\text{Enc}_{\text{user}} \), the answer encoders of the servers \(\text{Enc}_{\text{serv}} \), and the decoding measurement of the user \(\text{Dec} \).

Definition III.8. The correctness, privacy, rate, and capacity of QPIR are defined in the same way as Definitions III.1, III.2, III.3, and III.5, respectively, except that \((10) \) and \((11) \) are replaced as
\[I(\mathcal{A}; X|Q^K, K = i) = H(X^i), \] (14)
and
\[R(\Phi) = \frac{H(X^i)}{\sum_{j=1}^{n} \log \dim \mathcal{A}_j}. \] (15)

Notation III.1. We denote by \(C_{m,e}^{[n,k,t],s} \) the \(\epsilon \)-error \([n,k,t] \)-QPIR \(([n,k,t] \)-QSPIR\) capacity with \(m \) files.

In Definition III.2, user t-secrecy is defined as the independency of the index \(K \) and the queries \(Q_K \) of the colluding servers. Although this user secrecy condition is natural in classical PIR, one may be unsure whether this condition is sufficient for the QPIR setting because the servers share quantum entanglement. To justify this condition in the QPIR setting, we consider the malicious scenario where the servers apply malicious operations on the answers and in order to extract the information of the user’s request \(K \). Even in this malicious scenario, the servers cannot exploit entanglement to break the user’s secrecy because of the no-signaling principle [33]. No-signaling principle states that two parties sharing an entangled state cannot communicate any information from their local measurements. From this principle, even if the colluding servers share entanglement with the other servers or the user throughout the scheme, the only information obtained by the colluding servers is the queries \(Q_K \). Thus, the user t-secrecy condition guarantees the secrecy of \(K \) from the colluding servers.

2) Example of QPIR scheme: With stabilizer formalism, we give an example of two-server QPIR, which corresponds to the QPIR scheme in [21]. Let \(\mathcal{H}_1 \) and \(\mathcal{H}_2 \) be two-dimensional quantum systems, which are also called qubits. From Proposition III.1, we define a stabilizer on \(\mathcal{H}_1 \otimes \mathcal{H}_2 \) with the self-orthogonal subspace
\[\mathcal{V} = \{(0,0,0,0),(1,0,0,0),(0,0,1,1),(1,1,1,1)\} \subset \mathbb{F}_2^4. \]

The space \(\mathcal{V} \) satisfies \(\mathcal{V}^{\perp_2} = \mathcal{V}^{\perp_2} \). With this stabilizer, we set the initial entangled state of the two servers as \(|0\rangle \in \mathcal{H}_1 \otimes \mathcal{H}_2 \), where
\(\overline{s} = s + \mathcal{V}^{1/2} \) for all \(s \in \mathbb{F}_q^2 \). The two servers have \(\mathcal{H}_1 \) and \(\mathcal{H}_2 \), respectively. The files are prepared as \(\mathbf{m}_i = (m_{1X}, m_{iZ}) \in \mathbb{F}_q^2 \) for all \(i \in [m] \). For querying the \(k \)-th file, the user sends queries
\[
\begin{align*}
q_1 &= (e_k, e_k) + r \in \mathbb{F}_q^2, \\
q_2 &= r \in \mathbb{F}_q^2,
\end{align*}
\]
where \(e_k \) is the \(k \)-th standard vector in \(\mathbb{F}_q^2 \) and \(r \) is a random vector in \(\mathbb{F}_q^2 \). After receiving queries, the servers generates
\[
(a_1, b_1) = q_1 \cdot m = m_k + r \cdot m, \quad (a_2, b_2) = q_2 \cdot r = m \cdot r \quad \text{and} \quad m = (m_{1X}, m_{2X}, \ldots, m_{mX}, m_{1Z}, m_{2Z}, \ldots, m_{mZ}) \in \mathbb{F}_q^{2m}.
\]
Then, the server \(i \) applies \(X(a_1)Z(b_2) \) on \(\mathcal{H}_1 \) and sends \(\mathcal{H}_1 \) to the user. The user receives the states
\[
\begin{align*}
\tilde{W}(a_1, a_2, b_1, b_2) &= \left((a_1, a_2, b_1, b_2) \right), \\
&= \left((m_{kX}, 0, m_{kZ}, 0) \right),
\end{align*}
\]
which where the first equality follows from (6) and the second equality follows from \((1, 1, 1, 1) \in \mathcal{V}^{1/2} = \mathcal{V} \). By applying measurement on the received state, the user retrieves \(\mathbf{m}_k = (m_{1X}, m_{kZ}) \in \mathbb{F}_q^2 \) correctly. The user secrecy is satisfied from the query structure, and the server secrecy is satisfied because the user’s state only depends on \(\mathbf{m}_k \) as in (21). The QPIR rate is 1 because 2 bits are retrieved and 2 qubits are downloaded.

3) Classes of QPIR: As a general class of QPIR schemes, we introduce a new class called stabilizer QPIR, which includes the example in Section III-B2 and most of the known multi-server QPIR schemes [21]-[24].

Definition III.9 (Stabilizer QPIR). A QPIR scheme is called a stabilizer QPIR induced from a classical PIR scheme \(\Phi_C \) if:
- The initial state of the servers \(\sigma_{init} \) is a state in \(\mathcal{H}_0^V = \mathcal{H}_0^V \otimes \mathcal{C}^{n-d} \subset \mathcal{H}_0^N \) defined with a self-orthogonal subspace \(\mathcal{V} \) by Proposition II.2,
- The query is the same as \(\Phi_C \), and
- The \(s \)-th server’s operation is the Weyl operation \(X(a_3)Z(b_3) \), where \((a_3, b_3) \in \mathbb{F}_q^2 \) is the \(s \)-th server’s answer of \(\Phi_C \).

In Section V, we construct a stabilizer QPIR scheme, which achieves the capacities in Corollaries IV.1 and IV.2.

Further, we define a more general class of QPIR as follows.

Definition III.10 (Dimension-squared QPIR). A QPIR scheme is said to be dimension-squared if the \(s \)-th server’s operation is determined by classical information \(B_s \in B_s \) with \(|B_s| \leq 2^d \) for all \(s \in [n] \).

Furthermore, if \(B = (B_1, \ldots, B_n) \) is the answer of a classical PIR scheme \(\Phi_C \) and the query of the QPIR scheme is the same as \(\Phi_C \), the QPIR scheme is called a dimension-squared QPIR induced from the classical PIR scheme \(\Phi_C \).

Any stabilizer QPIR scheme is a dimension-squared scheme induced from a classical PIR scheme. Accordingly, the example in Section III-B2 and the multi-server QPIR schemes [21]-[24] are also dimension-squared schemes induced from strongly linear schemes. In Section VI, we derive the converse bound for dimension-squared QPIR schemes.

When a classical PIR scheme \(\Phi_C \) induces a QPIR scheme without the condition of dimensions, then the scheme can be modified to induce dimension-squared QPIR in the following way. First, we make the \(n \) answers the same size by repeating \(\Phi_C \) multiple times while reordering the roles of the servers for all possible cases. Let \(d' \) be the size of one answer and \(\Phi_C' \) be the repeated PIR scheme. Again, let \(\Phi_C'' \) be the PIR scheme made by repeating \(\Phi_C' \) \(d' \) times, and then, the size of each answer of \(\Phi_C'' \) is \((d')^2\). Thus, a dimension-squared QPIR scheme \(\Phi_C'' \) is induced from \(\Phi_C'' \) if \(\Phi_C \) can be made to satisfy the correctness condition. For convenience, we consider a dimension-squared QPIR scheme induced from \(\Phi_C'' \) as induced from \(\Phi_C' \).

Notation III.2. We denote by \(C^{[n,k,t]}_{m.e, stab}, C^{[n,k,t]}_{m.e, dim} (C^{[n,k,t],s}_{m.e, stab}, C^{[n,k,t],s}_{m.e, dim}) \) the \(\epsilon \)-error \([n,k,t] \)-QPIR \([n,k,t] - \text{QPIR}\) capacities of stabilizer QPIR induced from strongly linear PIR and dimension-squared QPIR induced from strongly linear PIR.

From the definitions, the capacities are decreasing for \(t \) and increasing for \(\epsilon \), and satisfy
\[
C^{[n,k,t],s}_{m.e, dim} \leq C^{[n,k,t],s}_{m.e, stab} \leq C^{[n,k,t],s}_{m.e} \quad \text{and} \quad C^{[n,k,t]}_{m.e, dim} \leq C^{[n,k,t]}_{m.e}.
\]

IV. MAIN RESULTS

In this section, we give our two main results of the paper. The first result is the asymptotic capacity of stabilizer QPIR and dimension-squared QPIR induced from strongly linear PIR. The second result is the general asymptotic capacity without collusion, i.e., the case \(t = 1 \). Before our capacity result, we state a general upper bound of dimension-squared QPIR capacity.

Theorem IV.1 (Converse for dimension-squared QPIR induced from classical PIR). Let \(A \) be a set of assumptions on classical PIR and \(C(\mathcal{C}) \) the classical QPIR with assumptions \(A \). Then, for any \(\epsilon' \in [0, 1] \), the \(\epsilon' \)-error capacity of dimension-squared QPIR induced from classical \(\epsilon' \)-error PIR with the assumptions \(A \) is upper bounded by \(\min \{ 1, 2C(\mathcal{C}) \} \).

Theorem IV.1 will be proved in Section VI-A. Notice that Theorem IV.1 is proved for dimension-squared QPIR induced from any classical PIR class. Intuitively, the dimensional condition in the dimension-squared QPIR is the key factor for doubling the capacity of any classical PIR. On the other hand, it should be noted that classical PIR schemes do not necessarily induce QPIR schemes, i.e., the existence and the construction of QPIR induced from the classical PIR is not trivial as discussed in Section I-A.

Our first capacity result is on the capacities of stabilizer QPIR and dimension-squared QPIR induced from strongly linear
PIR. An upper bound of the capacities $C_{\mathbf{m}, e, \mathsf{dim}}^{[n, k, t], s}$ and $C_{\mathbf{m}, e, \mathsf{dim}}^{[n, k, t], s}$ is derived by Theorem IV.1 and Proposition III.1 as
\[
C_{\mathbf{m}, 0, \mathsf{dim}}^{[n, k, t], s} + C_{\mathbf{m}, 0, \mathsf{dim}}^{[n, k, t], s} \leq 2 \left(1 - \frac{k + t - 1}{n}\right).
\] (23)

Furthermore, we prove the following theorem in Section V.

Theorem IV.2 (Achievability). Let n, k, t be positive integers with $1 \leq n/2 \leq k + t - 1 < n$. There exists a stabilizer QPIR scheme induced from strongly linear PIR with $[n, k]$, MDS coded storage and t-colluding servers achieving (23) with equality for any number of files \mathbf{m} and without error.

Combining Eqs. (22), (23), and Theorem IV.2, we obtain the first capacity result.

Corollary IV.1 (MDS-Q(S)PIR capacity with colluding servers). Let n, k, t be positive integers such that $1 \leq k \leq n$ and $1 \leq t < n$. Then, for any $C_{\mathbf{m}, 0} \in \{C_{\mathbf{m}, 0, \mathsf{stab}}, C_{\mathbf{m}, 0, \mathsf{stab}}^{[n, k, t], s}, C_{\mathbf{m}, 0, \mathsf{dim}}^{[n, k, t], s}, C_{\mathbf{m}, 0, \mathsf{dim}}^{[n, k, t], s}\}$,
\[
C_{\mathbf{m}, 0} = \begin{cases}
1 & \text{if } k + t - 1 \leq n/2, \\
\frac{2}{1 - \frac{k + t - 1}{n}} & \text{otherwise}.
\end{cases}
\] (24)

In Corollary IV.1, the case for $k + t - 1 \leq n/2$ is proved as follows. When $k + t - 1 = n/2$, Theorem IV.2 proves the rate 1 is achievable. If $t \leq t'$, the QPIR scheme for t' colluding servers also has the user secrecy against t colluding servers. Therefore, when $k + t - 1 < n/2$, we can apply the scheme for $k + t' - 1 = n/2$ with n even to achieve the rate 1. Finally, the tightness of the rate 1 follows trivially from definition. If n is odd, we just consider $n - 1$ servers and $t = (n + 1)/2 - k$ in order to achieve rate 1.

As the second result, when no servers collude, i.e., $t = 1$, we prove the general asymptotic capacity theorem. Without the assumption of dimension-squared PIR, we prove the following upper bound of PIR.

Theorem IV.3 (Converse of PIR without collusion). Let n, k be positive integers with $1 \leq n/2 < k < n$. Then, we have
\[
\lim_{\epsilon \to 0} \lim_{m \to \infty} C_{\mathbf{m}, e}^{[n, k, 1], s} \leq 2 \left(1 - \frac{k}{n}\right).
\] (25)

Theorem IV.3 will be proved in Section VI-A. Combining Eq. (22), Theorem IV.3, and Theorem IV.2 for the case $t = 1$, we obtain the second capacity result.

Corollary IV.2 (MDS-Q(S)PIR capacity). Let n, k be positive integers such that $1 \leq k \leq n$. For any $C_{\mathbf{m}, e} \in \{C_{\mathbf{m}, e, \mathsf{stab}}^{[n, k, 1], s}, C_{\mathbf{m}, e, \mathsf{dim}}^{[n, k, 1], s}, C_{\mathbf{m}, e, \mathsf{dim}}^{[n, k, 1], s}, C_{\mathbf{m}, e, \mathsf{dim}}^{[n, k, 1], s}\}$,
\[
\lim_{\epsilon \to 0} \lim_{m \to \infty} C_{\mathbf{m}, e} = \begin{cases}
1 & \text{if } k \leq n/2, \\
\frac{2}{1 - \frac{k}{n}} & \text{otherwise}.
\end{cases}
\] (26)

In Corollary IV.2, the smallest capacity in the six capacities is $C_{\mathbf{m}, e, \mathsf{stab}}^{[n, k, 1], s}$ from (22), and this value is asymptotically lower bounded by the RHS of (26) from Theorem IV.2. On the other hand, the greatest capacity is $C_{\mathbf{m}, e, \mathsf{dim}}^{[n, k, 1], s}$, which is upper bounded by the RHS of (26) from Theorem IV.3.

V. ACHIEVABILITY

We will frequently deal with $m \beta \times 2n$ matrices, where sub-blocks of β rows and the pair of columns s and $n + s$ semantically belong together. We therefore index such a matrix Y by two pairs of indices (i, b), $i \in [m]$, $b \in [\beta]$ and (p, s), $p \in [2]$, $s \in [n]$, where $Y_{i, b, p, s}^{(r)}$ denotes the symbol in row $(i - 1)\beta + b$ and column $(p - 1)n + s$, i.e., the symbol in the b-th row of the i-th sub-block of rows and the s-th column of the p-th sub-block of columns.

Omitting of an index implies that we take all positions, i.e., $Y_i^{(r)}$ denotes the j-th sub-block of β rows, $Y_{bij}^{(r)}$ the row $(i - 1)\beta + b$, $Y_{p, s}^{(r)}$ the p-th sub-block of n columns, and $Y_{p, s}^{(r)}$ the column $(p - 1)n + s$.

For the reader’s convenience, we sometimes imply the separation of the sub-blocks of columns by a vertical bar in the following. We denote by e_{β} the standard basis column vector of length β in \mathbb{F}_q^β with a 1 in position $\gamma \in [\beta]$. Given $\alpha \in [\beta]$, $b \in [\beta]$, it will help our notation to call coordinate (a, b) the position $\beta(a - 1) + b$ in a vector of length $\beta|\alpha|$. For instance, $e_{\beta}^\gamma 0 | e_{\beta}^\gamma 0 = (0, 0, 0, 1, 0, 0)$. For a zero matrix 0 and matrices $M_1, M_2 \in \mathbb{F}_{q^{2n}}$
\[
\text{diag}(M_1, M_2) = \begin{pmatrix} M_1 & 0 \\ 0 & M_2 \end{pmatrix} \in \mathbb{F}_{q^{2\beta}}.
\]

For a matrix M, the space spanned by the rows of M is denoted by $(M)_{\text{row}}$.

For two vectors $c, d \in \mathbb{F}_q^n$ we define the (Hadamard–) star-product as $c \star d = (c_1d_1, c_2d_2, \ldots, c_n d_n)$. For two codes $C, D \subseteq \mathbb{F}_q^n$ we denote $C \star D = \{c \star d \mid c \in C, d \in D\}$. Observe that, as the star-product is an element-wise operation, we have
\[
(C \star C) \star (D \star D) = (C \star D) \times (C \star D).
\] (27)

A. Generalized Reed–Solomon codes

We consider systems encoded with (the Cartesian product of) Generalized Reed–Solomon (GRS) codes (cf. [34, Ch. 10]), a popular class of MDS codes.

Definition VI.1. Let $\mathcal{L} = \{a_1 \in \mathbb{F}_q : i \in [n]\}$ and $\mathcal{M} = \{b_i \in \mathbb{F}_q : i \in [n]\}$ be the sets of the code locators and of the column multipliers, respectively. The Generalized Reed–Solomon (GRS) code C of dimension k is given by
\[
C = \{(\beta_1 f(a_1), \ldots, \beta_n f(a_n)) : f \in \mathbb{F}_q[x], \deg(f) < k\}.
\]

Among coded storage systems, these have proven to be particularly well-suited for PIR and general schemes exist for a wide range of parameters [11], [12], [35]. The key idea is to design the queries such that the retrieved symbols are the sum of a codeword of another GRS code (of higher dimension), which we refer to as the star-product code, plus a vector depending only on the desired file. To obtain the desired file, the codeword part is projected to zero, leaving only the desired part of the responses. In the PIR system we consider in the following, this projection is part of the quantum measurement. This imposes a constraint on this star-product code, namely, that the code is (weakly) self-dual. In the following, we collect/establish the required theoretical results on GRS codes and their star-products.

Definition VI.2 (Weakly self-dual code). We say that an $[n, k]$ code C is weakly self-dual if $C^\perp \subseteq C$ and self-dual if $C^\perp = C$. It is easy to see that any such code with parity-check matrix H has a generator matrix of the form $G = (H^T F^T)^T$ for some $(2k - n) \times n$ matrix F.

Lemma V.1 (Follows from [36, Theorem 3]). For $q = 2^r$ there exist self-dual GRS $[2k, k]$ codes over \mathbb{F}_q for any $k \in [2^{r - 1}]$ and code locators \mathcal{L}.

Lemma V.2. Let q be even with $q \geq n$. Then there exists a weakly self-dual $[n, k]$ GRS code C for any integer $k \geq \frac{n}{2}$ and code locators \mathcal{L}.

Proof. First consider the case of even n. Let S be an $[n, n/2]$ self-dual GRS code with code locators $\mathcal{L} \subseteq \mathbb{F}_q$, as shown to exist in [36, Theorem 3] (see Lemma V.1). It is easy to see that this code is a subcode of the $[n, k]$ GRS code C with the same
locators and column multipliers. The property $C^\perp \subset C$ follows directly from observing that $C^\perp \subseteq S^\perp = S \subset C$.

Now consider the case of odd n. First, observe that this implies $n < q$ and $\left\lceil \frac{n}{2} \right\rceil = \frac{n+1}{2}$. Then, by Lemma V.1, there exists a self-dual $[n+1, \left\lfloor \frac{n}{2} \right\rfloor]$ GRS code S' with code locators $L' = L \cup \{a\}$, where $a \in \mathbb{F}_q \setminus L$. Let $j \in [n+1]$ be the index of the position corresponding to a. Now consider the code C obtained from puncturing this position j, i.e., the set

$$S = \{c_{[n+1]}(j) \mid c \in S'\}.$$

It is well-known that the operation dual to puncturing is shortening and therefore the corresponding $[n, \left\lfloor \frac{n}{2} \right\rfloor]$ dual code S^\perp is given by

$$S^\perp = \{c_{[n+1]}(j) \mid c_j = 0, c \in (S')^\perp\} = \{c_{[n+1]}(j) \mid c_j = 0, c \in S'\}.$$

Clearly, this operation preserves the weak duality, i.e., $S^\perp \subset S$. Again, it is easy to see that S is a subcode of the $[n,k]$ GRS code C with the same locators and column multipliers for any $k \geq \frac{n}{2}$. The statement follows from observing that we have $C \subseteq S^\perp \subseteq S \subset C$.

Lemma V.3. Let q be even with $n \geq 4$. For any $[n,k]$ GRS code C there exists an $[n,t]$ GRS code D such that their star-product $S = C \star D$ is an $[n,k+1]$ weakly self-dual GRS code.

Proof. By [37] the star product between an $[n,k]$ GRS code C with column multipliers M_C and an $[n,t]$ GRS code D with column multipliers M_D, both with the same locators L, is the $[n,k+1]$ GRS code with column multipliers $M_C \star M_D$ and code locators L. Denote by M_S the column multipliers of a weakly-self-dual $[n,k+1-1]$ GRS code with code locators L, as shown to exist in Lemma V.2. Then, the lemma statement follows from setting $M_D = (M_C)^{-1} \star M_S$, where we denote by $(M_C)^{-1}$ the element-wise inverse of M_C.

B. Description of the coded QPIR scheme

In this subsection we describe the required preliminaries for the capacity-achieving QPIR scheme. Afterwards, we give a compact list of the steps followed by the protocol.

Storage. We consider a linear code C of length $2n$ and dimension $2k$, which is the Cartesian product of an $[n,k]$ GRS code C' over \mathbb{F}_q with itself1, i.e., $C = C' \times C'$. It therefore has a generator matrix $G_C = \text{diag}(G_{C'}, G_{C'})$, where $G_{C'}$ is a generator matrix of C'. The $2n \times 2n$ matrix of encoded files is given by $Y = X \cdot G_C$. Server $s \in [n]$ stores columns s and $n+s$ of Y, i.e., it stores Y_{1s} and Y_{2s} (for an illustration see Figure 2). For a given integer c, which will be defined in the next paragraph, the parameter β is fixed to $\beta = \text{lcm}(c,k)/k$.

Query and Star-Product Code. Let t be the collusion parameter with $\frac{n}{2} \leq k+t-1 < n$. By Lemma V.3 there exists an $[n,t]$ GRS code D' such that $S' = C' \star D'$ is an $[n,k+1-1]$ weakly self-dual GRS code. We define the query code as the Cartesian product $D = D' \times D'$. Thus, for a generator matrix $G_{D'}$ of D', the matrix $G_D = \text{diag}(G_{D'}, G_{D'}) \in \mathbb{F}_q^{2n \times 2n}$ is a generator matrix of D.

Define $S = C \star D$ and $S' = C' \star D'$. By (27) we have $S = C \star D = S' \times S'$, so S is the Cartesian product of two star product codes. Define $c = d_S - 1$, where $d_S = n - k + 2$ is the minimum distance of S'.

Let $H_{S'} \in \mathbb{F}_q^{[n-k+1] \times n}$ be a parity-check matrix of S'. By Definition V.2, the code S' has a generator matrix of the form $G_{S'} = (H_{S'}, F_{S'})^{\top}$ for some $F_{S'} \in \mathbb{F}_q^{[n-k+1] \times n}$. Hence, S has a generator matrix of form

$$G_S = \begin{pmatrix} \text{diag}(H_{S'}, H_{S'}) \\ \text{diag}(F_{S'}, F_{S'}) \end{pmatrix} \in \mathbb{F}_q^{2([k+1] \times n) \times 2n}.$$

(28)

Lemma V.4. Let G_S be the matrix defined in Eq. (28) and let H_S be the submatrix of G_S containing its first $2(n-k+1)$ rows. Let w_1, \ldots, w_{2n} be the column vectors of G_S. Then, they satisfy conditions (a) and (b) of [23, Lemma 2.1, i.e.,

(a) $w_{\pi(1)}, \ldots, w_{\pi(k+1)}, w_{\pi(1)+n}, \ldots, w_{\pi(k+1)+n}$ are linearly independent for any permutation π of $[n]$.

(b) $H_S J^T G_S^\top = 0$.

Proof. It is well-known that any subset of $k+t-1$ columns of the generator matrix of an $[n,k+1-1]$ MDS code are linearly independent. Hence, the columns $w_{\pi(1)}, \ldots, w_{\pi(k+1)}$ are linearly independent, as the first n columns of G_S generate S. The same holds for $w_{\pi(k+1)+n}, \ldots, w_{\pi(k+1)+n}$. Trivially, any non-zero columns of a diagonal matrix are linearly independent and property (a) follows.

Property (b) follows directly from observing that, by definition, $H_S G_S^\top = 0$ for any linear code with generator matrix G_S and parity-check matrix H_S.

Let V' be the space spanned by the first $2(n-k-t+1)$ rows of G_S, i.e., $V' = (\text{diag}(H_S, H_S))^\top \text{row}$. By Lemma V.4, the space V' is self-orthogonal and the rows of G_S span the space \mathbb{V}_{k+t}. Notice that V' is defined from a classical code $E = (H_S)^\top \text{row}$, which satisfies $E \subset \mathbb{E}_{k+t}$. Thus, the stabilizer $S'(V')$ defines a Calderbank–Steane–Shor (CSS) code [38], [39], which is defined from the self-orthogonal space $(\text{diag}(G_{C_1}, G_{C_2}))^\top \text{row}$ with the generator matrices G_{C_1} and G_{C_2} of two classical codes C_1 and C_2 satisfying $C_1 \subset C_2^{k+t}$. Our QPIR scheme will be constructed with the CSS code.

Targeted positions. Let $\rho = \text{lcm}(c,k)/c$. Fix $J = \{1, \ldots, \max(c,k)\}$ to be the set of server indices from which the user obtains the symbols of Y'.

We consider $J_1 = [c] \subset J$ and we partition it into subsets $J_1^b = \{i + (b-1)c/\beta \mid i \in [c/\beta]\}$, $b \in [\beta]$. Then, for $r \in [2 : p]$ we define recursively $J_1^b = \{(j + c/\beta - 1) \text{ mod } [J] + 1 \mid j \in J_{r-1}^b\}$ and $J_r = \bigcup_{b \in [\beta]} J_1^b$. We will construct our scheme so that during the r-th iteration the user obtains the symbols of $Y_{1,a}^{j_r}$, $Y_{2,a}^{j_r}$ for every $a \in J_1^b$ and $b \in [\beta]$.

We define

$$N^{(r)} = \left(\epsilon_n^{(a)}\right)_{a \in J_1^b} \in \mathbb{F}_q^{\rho \times n},$$

(29)

where $\epsilon_n^{(a)}$ is the standard basis column vector of length n with a 1 in position a. Then, the matrix $G_S^\top (M_1^{(r)})^\top G_S$, with $M_1^{(r)} = \text{diag}(N^{(r)}, N^{(r)}) \in \mathbb{F}_q^{\rho \times 2n}$, is a basis for \mathbb{E}_n^{ρ}. To see that this is in fact a basis observe that the row span of $N^{(r)}$, by definition, contains vectors of weight at most c. The span of G_S^\top contains vectors of weight at least $d_S = c + 1$. It follows that the spans of $N^{(r)}$ and G_S^\top intersect trivially, which implies that their ranks add up.

A capacity-achieving QPIR scheme. In our scheme, we use the the stabilizer formalism for the transmission of the classical files. On the other hand, as discussed in Section II-D, the stabilizer formalism is often used for the transmission of quantum states, which is performed by four steps of the encoding.
of the state, transmission over the error channel, syndrome measurement, and error-correction. For the transmission of the classical files, similar to the QPIR scheme [23], we construct our scheme so that the desired file is extracted by the syndrome measurement of the stabilizer code. Then, by the same property as the superdense coding [40], our scheme can convey twice more classical information compared to the classical PIR schemes. We refer to [23, Section IV-B] for the detailed explanation of this idea.

Suppose the desired file is X^i. The queries are constructed so that the total response vector during one iteration is the sum of a codeword in S and a vector containing $2c$ distinct symbols of Y^i in known locations, and zeros elsewhere.

We now describe the five steps of the capacity-achieving PIR scheme Φ^*.

Protocol V1. The first four steps are repeated in each round $r \in [\rho]$.

1) **Distribution of entangled state.** Let $\mathcal{H}_1, \ldots, \mathcal{H}_m$ be q-dimensional quantum systems, $\sigma_{\text{init}} = Q_{n-2(kt-1)} \otimes Q_{n.}$ and $Q_{n} = Q_{1}^2 = (\mathcal{W} = \mathcal{W} + Y^{1z} : w \in \mathcal{M}(^r)).$ By Proposition II.2(b) the composite quantum system $\mathcal{H} = \mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_m$ is decomposed as $\mathcal{H} = \mathcal{W} \otimes Q_{n}^2$, where $\mathcal{W} = \text{span}(\mathcal{W}) \in Q_{n} = Q_{1}^2$. The state of \mathcal{H} is initialized as $Q_{\text{init}} = Q_{1}^2 \otimes \sigma_{\text{init}}$ and distributed such that server $s \in [n]$ obtains \mathcal{H}_s.

2) **Query.** The user chooses a matrix $Z^{(r)}(x) \in \mathbb{F}_q^{m \times 2^m}$ uniformly at random. We define $E_{(r)} = e_{1a}^{(r)}$ with $E_{(r), p, a} = e_{1a}^{(r)}$, $p \in [2]$, $a \in [c]$, where $e_{1a}^{(r)}$ is the standard basis column vector of length m with a 1 in coordinate (i, a). We denote by $Q^{(r)}(x) \in \mathbb{F}_q^{m \times 2^m}$ the matrix of all the queries, which are computed as

$$Q^{(r)} = (Z^{(r)} - E_{(r)} \cdot G_{(r)} + E_{(r)} \cdot G_{D}^+) \cdot G_{D} + E_{(r)} \cdot G_{D}^+ \cdot G_{D}^+. \tag{30}$$

Each server $s \in [n]$ receives two vectors $Q_{1a}^{(r)}, Q_{2a}^{(r)} \in \mathbb{F}_q^{m \times 2^m}$.

3) **Response.** The servers compute the dot product of each column of their stored symbols and the respective column of the queries received, i.e., they compute the response $Z_{p, a}^{(r)} = Y_{p, a} \otimes Q_{p, a} \in \mathbb{F}_q$, $s \in [n], p \in [2]$. Server s applies $X(B_{1, s})$ and $Z(B_{2, s})$ to its quantum system and sends it to the user.

4) **Measurement.** The user applies the PVM $B^Y = \{P_{W} | W \in \mathbb{F}_q^{2^m} \}$ on \mathcal{H} defined in Proposition II.2 and obtains the output $o^{(r)} \in \mathbb{F}_q^2$.

5) **Retrieval.** Finally, after ρ rounds the user has retrieved $2pc = 2\beta k$ symbols of \mathbb{F}_q from which he can recover the desired file X^i.

C. Properties of the coded QPIR scheme

Lemma V.5. The scheme Φ^* of Section V-B is correct, i.e., fulfills Definition III.1.

Proof. Let us fix the round $r \in [\rho]$ and let $B^{(r)}$ be the vector of responses computed by the servers. By Prop. II.2(c) the state after the servers’ encoding is

$$W(B^{(r)})[(\bar{0}) \otimes \sigma_{\text{init}}]W(B^{(r)})^\dagger = [\overline{B^{(r)}}] \otimes \sigma_{\text{init}}. \tag{31}$$

We observe that $\mathcal{V}^{1z} = S$ since both spaces are spanned by the rows of G_S. Notice that the row in coordinate (i, b) of the product $E_{(i)} \cdot M^{(r)}$ is $\sum_{a=1}^{2^m} \delta_{i, a} \cdot e_{a}^{(r)}(\mathcal{V}^{1z})$. Remembering that $e_{a}^{(r)}(\mathcal{V}^{1z})$ is the standard basis column vector of length $2n$ with a 1 in coordinate (p, a), by definition of the star product scheme the response vector is

$$B^{(r)} = (B^{(r)}_1 \mid B^{(r)}_2) = \sum_{i=1}^{m} \sum_{b=1}^{\beta} Y^{i, b} \cdot Q^{(r), i, b} \tag{31}$$

Each part $s \in [n]$ receives two vectors $Q_{1a}^{(r)}, Q_{2a}^{(r)} \in \mathbb{F}_q^{m \times 2^m}$.

The random part is encoded into a vector in \mathcal{V}^{1z} while the vector $(Y^{i, b, 1a} | Y^{i, b, 2a}, a \in [c], b \in [\beta]) \in \mathbb{F}_q^{c}$ is encoded with $M^{(r)}$ and hence independent of the representative of $o^{(r)}$. Therefore, the user obtains the latter without error after measuring the quantum systems with the PVM B^Y. Recall that we fixed $\beta = \text{lcm}(c, k)/k$ for $c = d_S - 1$. To allow the user to download exactly the desired file over ρ iterations, we defined $\rho = \text{lcm}(c, k)/c$. During each iteration, the user can download $2c/\beta = 2k/\rho$ symbols from each of the β rows of Y^i, where the factor 2 is achieved by utilizing the properties of superdense coding [40]. After ρ rounds the user obtains the $2k$ symbols $Y^{i, b} \in \mathbb{F}_q^{c}$ of each codeword corresponding to a block $X^{i, b}, b \in [\beta]$ and is therefore able to recover the file. $lacksquare$

Lemma V.6. The scheme Φ^* of Section V-B is symmetric and protects against t-collusion in the sense of Definition III.2.

Proof. The idea is that user privacy is achieved since, for each subset of t servers, the corresponding joint distribution of queries
is the uniform distribution over $\mathbb{F}_q^{m \times n}$. Consider a set of t colluding servers. The set of queries these servers receive is given by $Q^{(r)}$ during round $r \in [\rho]$. By the MDS property of the code D, any subset of t columns of G_D is linearly independent. As the columns of $Z^{(r)}$ are uniformly distributed and chosen independently for each $r \in [\rho]$, any subset of t columns of $Z^{(r)} \cdot G_D$ is statistically independent and uniformly distributed. The sum of a uniformly distributed vector and an independently chosen vector is again uniformly distributed, and therefore adding the matrix $E_{(\ell)} \cdot M^{(r)}$ does not incur any dependence between any subset of t columns and the file index i.

For each $r \in [\rho]$, server secrecy is achieved because in every round the received state of the user is $B^{(r)}(\ell) \otimes \sigma_{init}$ with $B^{(r)} = \{Y_{1,a}^{(r,b)} | Y_{2,a}^{(r,b)} \in \mathbb{F}_q^{n \times n}, b \in [\beta] \}$ from (31) and this state is independent of $Y^{(r)}$ with $i \neq t$. □

Unlike in the classical setting, the servers in the quantum setting do not need access to a source of shared randomness that is hidden from the user to achieve server secrecy. However, this should not be viewed as an inherent advantage since the servers instead share entanglement.

Theorem VI.1. The QPIR rate of the scheme in Section V-B is

$$R(\Phi^*) = \frac{2(n-k-t+1)}{n}$$

Proof. The user downloads $p \cdot n$ quantum systems while retrieving $2k\beta \log(q)$ bits of information, thus the rate is given by

$$R(\Phi^*) = \frac{2k \beta \log(q)}{\log(q^m)} = \frac{2pc \log(q)}{p \cdot \log(q)} = \frac{2(n-k-t+1)}{n}.$$ □

The presented scheme is an adapted version of the star-product scheme of [12], which is strongly linear [10]. To see that the QPIR scheme is induced by this strongly linear scheme, it suffices to observe that for each $r \in [\rho]$, a strongly linear scheme Φ^* is induced by this strongly linear scheme with $B^{(r)} = \{Y_{1,a}^{(r,b)} | Y_{2,a}^{(r,b)} \in \mathbb{F}_q^{n \times n}, b \in [\beta] \}$ from (31) and this state is independent of $Y^{(r)}$ with $i \neq t$. □

The following proofs are written with quantum mutual information and quantum relative entropy defined as follows. When a quantum system A has a state $\sigma = \sum_i \rho_i (\psi_i)$, the von Neumann entropy is defined as $H(A) = -\sum_i \rho_i \log \rho_i$. Similar to the classical case, the mutual information and conditional mutual information are defined as $I(A;B) = H(A) + H(B) - H(A,B) = I(A;B|C) = I(A;B|C) - I(A;C\mid C)$, respectively. For two states σ and σ' on A, the quantum relative entropy is defined as $D(\sigma\|\sigma') = \text{Tr}(\sigma \log \sigma - \sigma \log \sigma')$. Similar to classical case, we have $I(A;B) = D(\sigma\|\sigma')$.

For the proof, we prepare two propositions.

Proposition VI.1 (Fano's inequality). Let X,Y be random variables with values in $[n]$ and Z be any random variable. Then, $H(X|YZ) \leq \epsilon \log n + h_2(\epsilon)$, where $\epsilon = \Pr[X \neq Y]$. □

Proposition VI.2. Let k be a CPTP map from A to B and σ be a state on $A \otimes C$. Then, $I(\mathcal{A};C)_{\sigma} \geq I(\mathcal{B};C)_{k_{\otimes}id_C(\sigma)}$, where id_C is the identity operator on C.

Proof. The proposition follows from the following inequality

$$I(\mathcal{A};C)_{\sigma} \geq D(\sigma\mid\sigma_{A\otimes C}) \geq D(k_{\otimes}id_C(\sigma)\mid k_{\otimes}id_C(\sigma) \otimes \sigma_C) = I(\mathcal{B};C)_{k_{\otimes}id_C(\sigma)}.$$ where $\sigma_{A\otimes C}$ and σ_C are reduced states on \mathcal{A} and C, and the inequality is from the data-processing inequality of the quantum relative entropy. □

Theorem IV.3 is proved by the following two lemmas.

Lemma VI.1. The size of one file is upper bounded as

$$k\beta \log(q) \leq \frac{2(n-k) \log d + I(\mathcal{A}|k) + h_2(\epsilon)}{1 - \epsilon},$$

where $\epsilon = \max_{x \in [m]} \Pr[X \neq \tilde{X}]$.

Proof. The proposition follows from the following inequality

$$I(\mathcal{A};C)_{\sigma} \geq D(\sigma\mid\sigma_{\mathcal{A}\otimes C}) \geq D(k_{\otimes}id_C(\sigma)\mid k_{\otimes}id_C(\sigma) \otimes \sigma_C) = I(\mathcal{B};C)_{k_{\otimes}id_C(\sigma)}.$$ where $\sigma_{A\otimes C}$ and σ_C are reduced states on \mathcal{A} and C, and the inequality is from the data-processing inequality of the quantum relative entropy. □
Proof. Fix the index of the targeted file as $K = t = \arg\max_{i \in [m]} \Pr[X^t \neq \tilde{X}^i]$. The uniformity of $X^t \in \mathbb{F}_q^{d \times k}$ and the Fano’s inequality (Proposition VI.1) imply
\[
I(\tilde{X}^t; X^t|Q^t) = H(X^t|Q^t) - H(X^t|\tilde{X}^t,Q^t) \geq (1 - \epsilon)k\beta \log q - h_2(\epsilon)
\] (35)
From Proposition VI.2, the mutual information in the above inequality is upper bounded as
\[
I(\mathcal{A}; X^t|Q^t) \geq I(\tilde{X}^t; X^t|Q^t)
\] (37)
Furthermore, the left-hand side of the above inequality is upper bounded as
\[
I(\mathcal{A}; X^t|Q^t) = I(\mathcal{A}[k]; X^t|Q^t) + I(\mathcal{A}[k]; X^t|Q^t) \\
\leq 2 \log \dim \mathcal{A}[k] + \frac{I(\mathcal{A}[k]; X^t|Q^t)}{2(n - k) \log d + I(\mathcal{A}[k]; X^t|Q^t)}
\]
Thus, combining (36), (37), and (38), we obtain the desired lemma. □

Lemma VI.2. $\lim_{m \to \infty} I(\mathcal{A}[k]; X^t|Q^t) = 0$.

With Lemmas VI.1 and VI.2, we prove Theorem IV.3 as follows. From Lemma VI.1, the $[n, k, 1]$-QPIR capacity is upper bounded as
\[
\frac{n[k, 1]}{m} = \sup \frac{k\beta \log q}{n \log d} (38)
\]
\[
\leq 1 - \epsilon \left(\frac{2(n - k)}{n} \right) \frac{I(\mathcal{A}[k]; X^t|Q^t) + h_2(\epsilon)}{n \log d + I(\mathcal{A}[k]; X^t|Q^t)}
\]
Furthermore, Lemma VI.2 proves that $I(\mathcal{A}[k]; X^t|Q^t)$ approaches zero as the number of files m goes to infinity, and $h_2(\epsilon) \to 0$ as $\epsilon \to 0$. Thus, as $m \to \infty$ and $\epsilon \to 0$, the capacity is upper bounded by $2(1 - k/n)$, which implies Theorem IV.3.

In the remainder of this subsection, we prove Lemma VI.2.

For the proof, we prepare the following lemma.

Lemma VI.3. Suppose that $t \in [n]$ and $\mathcal{T} \subset [n]$ satisfy $t \notin \mathcal{T}$. Then,
\[
I(\mathcal{A}_t, \mathcal{H}_r; Y^t_i|Q^t) \leq \frac{2 \log d}{m}
\] (40)
Proof. Since the operation of \mathcal{H}_r to \mathcal{A}_t is applied on the quantum system of dimension of d, we have
\[
I(\mathcal{A}_t, \mathcal{H}_r; Y^t_i|Q^t) \leq 2 \log d.
\] (41)
On the other hand, we have
\[
I(\mathcal{A}_t, \mathcal{H}_r; Y^t_i|Q^t) = \sum_{j=1}^{m} I(\mathcal{A}_t, \mathcal{H}_r; Y^t_i|Y^t_{j-1}^t|Q^t)
\] (42)
\[
= \sum_{j=1}^{m} I(\mathcal{A}_t, \mathcal{H}_r; Y^t_i|Y^t_{j-1}^t|Q^t) \geq \sum_{j=1}^{m} I(\mathcal{A}_t, \mathcal{H}_r; Y^t_i|Q^t)
\]
\[
= m I(\mathcal{A}_t, \mathcal{H}_r; Y^t_i|Q^t)
\]
where the last equality follows from the user secrecy condition. Thus, combining (41) and (44), we obtain the desired inequality (40). □

Now, we prove Lemma VI.2.

Proof of Lemma VI.2. By mathematical induction, we prove
\[
\lim_{m \to \infty} I(\mathcal{A}[j], \mathcal{H}_{j+1}; Y^t_{[j]|Q^t}) = 0
\] (45)
for any $j \in [k]$. Then, the case for $j = k$ proves the lemma.

First, the case $j = 1$ follows from Lemma VI.3. Next, assuming
\[
\lim_{m \to \infty} I(\mathcal{A}[j], \mathcal{H}_{j+1}; Y^t_{[j]|Q^t}) = 0
\] (46)
we prove
\[
\lim_{m \to \infty} I(\mathcal{A}[j+1], \mathcal{H}_{j+2}; Y^t_{[j]|Q^t}) = 0
\] (47)
for $j \in [k-1]$. Since
\[
I(\mathcal{A}[j+1], \mathcal{H}_{j+2}; Y^t_{[j]|Q^t}) = I(\mathcal{A}[j+1], \mathcal{H}_{j+2}; Y^t_{[j]|Q^t}) + I(\mathcal{A}[j+1], \mathcal{H}_{j+2}; Y_{j+1}^t|Y^t_{[j]|Q^t})
\]
(48)
we prove that the two terms of (49) approaches 0 as $m \to \infty$. Then, we obtain the desired statement by induction.

The first term of (49) is upper bounded as
\[
I(\mathcal{A}[j+1], \mathcal{H}_{j+2}; Y^t_{[j]|Q^t}) \leq I(\mathcal{A}[j+1], \mathcal{H}_{j+2}; Y_{j+1}^t|Y^t_{[j]|Q^t}) \leq I(\mathcal{A}[j+1], \mathcal{H}_{j+2}; Y_{j+1}^t|Y^t_{[j]|Q^t})
\]
(49)
\[
\leq I(\mathcal{A}[j+1], \mathcal{H}_{j+2}; Y_{j+1}^t|Y^t_{[j]|Q^t}) \leq I(\mathcal{A}[j], \mathcal{H}_{j+1}; Y^t_{[j]|Q^t})
\]
(50)
\[
\leq I(\mathcal{A}[j], \mathcal{H}_{j+1}; Y^t_{[j]|Q^t}) \leq \frac{2 \log d}{m}
\]
(51)
Thus, the second term of (49) approaches 0 as $m \to \infty$.

The first term of (49) is upper bounded as
\[
I(\mathcal{A}[j+1], \mathcal{H}_{j+2}; Y^t_{[j]|Q^t}) \leq I(\mathcal{A}[j+1], \mathcal{H}_{j+2}; Y_{j+1}^t|Y^t_{[j]|Q^t}) \leq I(\mathcal{A}[j+1], \mathcal{H}_{j+2}; Y_{j+1}^t|Y^t_{[j]|Q^t})
\]
(52)
\[
\leq I(\mathcal{A}[j+1], \mathcal{H}_{j+2}; Y_{j+1}^t|Y^t_{[j]|Q^t}) \leq \frac{2 \log d}{m}
\]
(53)
where (53) follows from Proposition VI.2 and the last inequality is from Lemma VI.3. Thus, the second term of (49) approaches 0 as $m \to \infty$.

VII. CONCLUSION

In this paper, we have studied the capacity of QPIR/QSPIR with $[n, k]$-MDS coded storage and t colluding servers. As general classes of QPIR, we defined stabilizer QPIR and dimension-squared QPIR induced from classical strongly linear PIR. We have proved that the capacities of stabilizer QPIR/QSPIR and dimension-squared QPIR/QSPIR induced from strongly linear PIR are $2(n - k - t + 1)/n$. When there is no collusion, i.e., $t = 1$, we have proved that the asymptotic capacity of QPIR/QSPIR is $2(n - k)/n$, when the number of files m approaches infinity. These capacities are greater than the known classical counterparts. For the achievability, we have proposed a capacity-achieving QSPIR scheme. The proposed scheme combined the star product PIR scheme [12] and the QPIR scheme with the stabilizer formalism [23].

As open problems, we state three directions for extending our results. The first direction is to find the general capacity of QPIR/QSPIR with MDS coded storage and colluding servers. This problem in full generality is also unsolved in the classical setting. Partial solutions were given in [8], [9], which imply that the combination of collusion and coded storage leads to involved linear dependencies that need to be taken into account for a general converse proof. Note that as the capacities proved in these works depend on the number of files m, it is possible that they exceed the asymptotic QPIR capacity proved in this work for a very small number of files.
The second direction is to find non-stabilizer QPIR schemes. Most of the existing multi-server QPIR schemes are stabilizer QPIR schemes. Finding non-stabilizer QPIR schemes is the first step towards the achievability part of the general non-asymptotic capacity theorem.

The third direction is to clarify the trade-off between the amount of entanglement and the capacity. However, even in the case of only two servers, it is very challenging to derive the capacity with restricted entanglement. As a related study, the entanglement-assisted classical capacity for a noisy quantum channel [41] has been recently studied with several new techniques.

REFERENCES

[1] M. Allaix, L. Holzbaur, T. Pllaha, and C. Hollanti, “High-rate quantum private information retrieval with weakly self-dual star product codes,” in 2021 IEEE International Symposium on Information Theory (ISIT), 2021, pp. 1046–1051.
[2] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private information retrieval,” in Proceedings of IEEE 36th Annual Foundations of Computer Science. IEEE, 1995, pp. 41–50.
[3] H. Sun and S. A. Jafar, “The capacity of private information retrieval,” IEEE Transactions on Information Theory, vol. 63, no. 7, pp. 4075–4088, 2017.
[4] H. Sun and S. A. Jafar, “The capacity of robust private information retrieval with colluding databases,” IEEE Transactions on Information Theory, vol. 64, no. 4, pp. 2361–2370, 2017.
[5] K. Banawan and S. Ulukus, “The capacity of private information retrieval from coded databases,” IEEE Transactions on Information Theory, vol. 64, no. 3, pp. 1945–1956, 2018.
[6] H. Sun and S. A. Jafar, “The capacity of symmetric private information retrieval,” IEEE Transactions on Information Theory, vol. 65, no. 1, pp. 322–329, 2018.
[7] Q. Wang and M. Skoglund, “Symmetric private information retrieval from MDS coded distributed storage with non-colluding and colluding servers,” IEEE Transactions on Information Theory, vol. 65, no. 8, pp. 5160–5175, 2019.
[8] Q. Wang and M. Hayashi, “Quantum private information retrieval from quantum channels,” in 2021 IEEE International Symposium on Information Theory (ISIT), 2021, pp. 1052–1057.
[9] M. Hayashi and T. Morimae, “Verifiable measurement-only blind quantum computing with stabilizer testing,” Phys. Rev. Lett., vol. 115, p. 220502, Nov 2015. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.115.220502
[10] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information. Cambridge University Press, Cambridge, 2000.
[11] M. Hayashi, Quantum Information Theory: Mathematical Foundation. Graduate Texts in Physics, Springer, (Second edition of Quantum Information: An Introduction Springer), 2017.
[12] D. Gottesman, “Stabilizer codes and quantum error correction,” 1997, PhD thesis, California Institute of Technology.
[13] K. A. Kretar, F. Klappenecker and P. Sarvepalli, “Nonbinary stabilizer codes over finite fields,” IEEE Transactions on Information Theory, vol. 52, no. 11, pp. 4892–4914, 2006.
[14] J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics, vol. 1, pp. 195–200, 1964. [Online]. Available: https://cubs.cern.ch/recl01/11654
[15] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes, ser. North-Holland Mathematical Library. Elsevier, 1977, vol. 16.
[16] F. J. MacWilliams and N. J. A. Sloane, “The theory of error-correcting codes,” ser. North-Holland Mathematical Library. Elsevier, 1977, vol. 16.
[17] R. Taijedine, O. W. Guilke, and S. El Rouayheb, “Private information retrieval from MDS coded data in distributed storage systems,” IEEE Transactions on Information Theory, vol. 64, no. 11, pp. 7081–7093, 2018.
[18] D. Grass and T. A. Gulliver, “On self-dual MDS codes,” in 2008 IEEE International Symposium on Information Theory, IEEE, 2008, pp. 1954–1957.
[19] D. Mirandola and G. Zémor, “Critical pairs for the product Singleton bound,” IEEE Transactions on Information Theory, vol. 61, no. 9, pp. 4928–4937, 2015.
[20] A. Steane, “Error correcting codes in quantum theory,” Physical Review Letters, vol. 77, pp. 767–793, 1996.
[21] R. Calderbank and P. Shor, “Good quantum error-correcting codes exist,” Physical Review A, vol. 54, pp. 1098–1105, 1996.
[22] C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,” Phys. Rev. Lett., vol. 69, pp. 2881–2884, Nov 1992. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.69.2881
[23] K. Wang and M. Hayashi, “Permutation enhances classical communication assisted by entangled states,” IEEE Transactions on Information Theory, vol. 67, no. 6, pp. 3905–3925, 2021.