FEEDING INHIBITION IN THE SOIL COLLEMBOLAN FOLSOMIA CANDIDA AS AN ENDPOINT FOR THE ESTIMATION OF ORGANIC WASTE ECOTOXICITY

XAVIER DOMENE,*† TIAGO NATAL-DA-LUZ,‡ JOSEP M. ALCANÌZ,† PILAR ANDRÈS,† and JOSÉ PAULO SOUSA‡
†Center for Ecological Research and Forestry Applications (CREAF), Department of Plant Biology, Animal Biology, and Ecology, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
‡Instituto do Ambiente e Vida (IAV), Department of Zoology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal

(Received 13 December 2006; Accepted 13 February 2007)

Abstract—Despite the increasing quantities of organic wastes that are being reused in soils, there are few studies that focus on the selection of bioassays for the ecotoxicological risk assessment of organic wastes to soils. In the present study, differences in feeding inhibition in the soil collembolan Folsomia candida were evaluated as an ecotoxicological endpoint for the assessment of risk to soils amended with polluted organic wastes. Seven organic wastes (dewatered sewage sludges, thermally dried sewage sludges, composted sewage sludges, and a thermally dried pig slurry) were tested. These wastes had different origins, treatments, and pollutant burdens, and were selected as a representative sample of the wide variety of wastes currently generated. A clear dose response was observed for this parameter, with an increase in percentage of individual feeding inhibition with increased doses of organic wastes. More significantly, feeding inhibition correlated highly with mortality and reproduction inhibition in the different wastes. Composted sludges displayed the lowest toxicity, followed by thermally dried sludge and dewatered sludge. Thermally dried pig slurry showed the highest toxicity for feeding, with lower median effective concentration (EC50) values than the lowest dose tested. Among waste physicochemical parameters and pollutants, low organic matter stability appeared to be the main predictor of potential adverse effects on soil fauna, because it correlated significantly with feeding inhibition and mortality. Furthermore, feeding inhibition tests were run over a short exposure time (less than 7 d), which, together with the results obtained, makes this bioassay a good screening tool for organic waste toxicity.

Keywords—Folsomia candida Feeding inhibition Reproduction Survival Ecotoxicity

INTRODUCTION

In recent decades, increase in the production of sewage sludge in the European Union, as a result of the implementation of Directive 91/271/EEC, mainly has been recycled to land, over other options such as landfill or incineration ([11]; http://ec.europa.eu/environment/waste/sludge/problems.htm). Despite the undeniable benefits of organic waste amendments in terms of soil fertility, concerns may arise regarding waste with a higher pollutant content, which may have deleterious effects on soil ecosystems and, hence, counteract their contribution to soil fertility. Despite the importance of soil fauna for soil ecosystems [2], only a few studies have focused on the harmful effects of sludge amendments to soil invertebrates in the field. None of them have reported noxious effects of sludge at agronomical dosages [13]. http://www2.mst.dk/Udgiv/publications/1997/87-7810-865-9/pdf/87-7810-865-9.pdf; [4,5]). On the other hand, several laboratory studies have shown significant effects on soil fauna [3,6]. Despite the extent of soil reuse and the existence of limit values for some pollutants in sludge for this practice, there is still a paucity of studies that focus on the selection of laboratory assays to determine the ecotoxicological risk of wastes for soil-inhabiting organisms. Among the few attempts that have been conducted are those involving plants and earthworms [7–9] and collembolans [3,10–12].

Reproduction and growth are the most common sublethal endpoints in soil ecotoxicity testing due to their ecological relevancy. However, they require a great effort in terms of time and handling, which in recent decades has encouraged research aimed at finding alternative endpoints that provide similar information but require less experimental effort [13–15]. Reproduction and growth are the ultimate objectives in a long line of processes that start with biochemical and physiological events [16], and endpoints at the biochemical, physiological, or behavioral level then might be used as a complement to these traditional endpoints because they are early-warning indicators that generally provide results faster. This is the main reason for the attempts to relate reproduction or growth with biomarkers [17,18] or avoidance responses [19]. However, it has been indicated that behavioral responses, together with growth and reproduction, only show a weak correlation with effects at higher biological levels. Furthermore, it also has been indicated that biomarkers rarely provide useful predictions of effects at higher biological levels [20,21]. This is why endpoints at the individual level such as reproduction, growth, or behavioral responses, are preferred to those at lower biological levels and considered as more ecologically relevant. An alternative to conventional individual endpoints might be feeding inhibition, a parameter that has been recognized as a general stress response to toxicants and demonstrated on a variety of aquatic species [15,22,23], although not much is known about its importance in soil organisms. Reduced feeding from artificially polluted food has been reported in Folsomia candida by several authors [24–26], although this pattern has never been tested for polluted organic wastes, despite the evidence in this species of active feeding on these materials [10,27].

Feeding inhibition, either during or after exposure to con-
taminants, has been used as an ecotoxicological endpoint in a variety of organisms, mainly aquatic but also in terrestrial species. Feeding inhibition during exposure especially has been demonstrated in the freshwater cladoceran, *Daphnia magna*, for a variety of pollutants [14,28–31], and in other aquatic invertebrates [13,32–35]. Other authors have detected feeding inhibition behavior in several crustaceans [15,23,36] and fish [37] when relocated to uncontaminated environments, after previous exposure to contaminants (so-called postfeeding inhibition).

On the other hand, only a few studies have addressed feeding inhibition in terrestrial organisms and with contradictory results. Several authors have shown feeding inhibition with exposure to pollutants in nematodes [38,39] and collembolans [24–26]. However, no feeding inhibition was observed in isopods when leaves contaminated with the herbicide trifluralin [24–26]. However, no feeding inhibition was observed in isopods when leaves contaminated with the herbicide trifluralin [24–26]. However, no feeding inhibition was observed in isopods when leaves contaminated with the herbicide trifluralin [24–26]. However, no feeding inhibition was observed in isopods when leaves contaminated with the herbicide trifluralin [24–26]. However, no feeding inhibition was observed in isopods when leaves contaminated with the herbicide trifluralin [24–26]. However, no feeding inhibition was observed in isopods when leaves contaminated with the herbicide trifluralin [24–26]. However, no feeding inhibition was observed in isopods when leaves contaminated with the herbicide trifluralin [24–26]. However, no feeding inhibition was observed in isopods when leaves contaminated with the herbicide trifluralin [24–26]. However, no feeding inhibition was observed in isopods when leaves contaminated with the herbicide trifluralin [24–26]. However, no feeding inhibition was observed in isopods when leaves contaminated with the herbicide trifluralin [24–26]. However, no feeding inhibition was observed in isopods when leaves contaminated with the herbicide trifluralin [24–26]. However, no feeding inhibition was observed in isopods when leaves contaminated with the herbicide trifluralin [24–26].

Despite the relative abundance of literature using this endpoint, the exact mechanisms involved in feeding inhibition as a response to pollution are still unknown. More precisely, it is not clear whether it is due to direct avoidance of pollutants in food or an indirect physiological or biochemical effect of toxicants that finally impact feeding activities, or both.

It has been suggested that direct avoidance of contaminated food occurs in collembolans [24–26], soil nematodes [38], and *D. magna* [41]. The importance of preingestive inhibition may be high in collembolans because it has been demonstrated that their food preferences are linked to odor [42]. Furthermore, regurgitation of polluted food in *D. magna* also has been reported [30]. Feeding behavior also may be affected indirectly through physiological and biochemical effects. The persistence of feeding inhibition after exposure to contaminants is the main evidence of this mechanism. The explanation is that pollutants are able to affect the organism’s biochemistry and physiology, disturbing its sensorial reception, enzymatic activities, and metabolism, with unavoidable influences on feeding behavior and other parameters. Several studies have demonstrated this mechanism in daphnids [15,28] and polychaetes [43]. Other studies have even specifically linked feeding inhibition with a decrease in acetylcholinesterase levels due to pollutant levels, as demonstrated in crustaceans [32], fishes [44], and birds [45].

In summary, feeding inhibition seems to be a complex response involving components that are not easy to separate. On the one hand, pollutants may directly reduce consumption through active avoidance of polluted food, but conversely, they can disrupt feeding mechanisms through effects on biochemical and physiological processes.

The aim of this work was to evaluate the suitability of feeding inhibition in *F. candida* as an ecotoxicological endpoint to assess potential risks of soil amendments with polluted organic wastes. To achieve this goal, different wastes and exposure times were tested, and feeding inhibition values were compared with effects of survival and reproduction inhibition in the same species in terms of sensitivity, correlation of responses, and workload.

MATERIALS AND METHODS

Test organisms

The *F. candida* culture used in the tests was raised in our laboratory and was initiated four years ago from cultures of the Institute of Ecological Science of the Vrije Universiteit (Amsterdam, The Netherlands). Breeding of individuals was performed in polyethylene containers of **17.5 × 12.5 × 7.5 cm**, with a 1-cm layer of wet substrate made of a mixture of plaster of Paris and charcoal (9:1 v/v). Cultures were kept in darkness in a climatic chamber at a constant temperature of **21 ± 1°C**. Every two months the substrate was renewed and the density of individuals was reduced to avoid overcrowding. Synchronized cultures were used in the tests, prepared as described in the International Organization for Standardization (ISO) Guideline 11267 [46].

Test substrate

Artificial soil was prepared as documented by the ISO Guideline 11267 [46], except that peat was removed from the mixture. By doing this it was ensured that reported consumptions in artificial soil–waste mixtures corresponded only to waste ingestion, because in a preliminary test with conventional artificial soil it was shown that individuals consumed peat from the substrate, a fact that would disturb the assessment of feeding behavior. The test substrate was composed of **78% quartz sand and 22% kaolin**. A suitable amount of calcium carbonate was added to provide a pH of approximately **6.0 ± 0.5**. In all tested doses of the organic wastes, the water content of the mixture was adjusted to **50%** of the water-holding capacity of the artificial soil.

Organic wastes

One dried pig slurry and six sewage sludges, with different origins and subjected to different treatments and posttreatments, were selected in order to provide a wide range of waste properties to evaluate the sensitivity of the bioassay described in this work (Table 1). All wastes were dried at **60°C** for **48 to 72 h**, depending on the initial humidity, and then ground and sieved (<2 mm). This step was unavoidable in order to ensure the accuracy of the low doses tested in most of the wastes. The resulting samples were used both for the prepa-

Table 1. Origin, treatments, and posttreatments of the organic wastes

Waste	Origin	Treatment	Posttreatment
AED	Banyoles WWTP	Aerobic digestion, dewatering	None
AEC	Banyoles WWTP	Aerobic digestion, dewatering	Composting in vessel
AET	Banyoles WWTP	Aerobic digestion, dewatering	Thermal drying
AND	Blanes WWTP	Anaerobic digestion, dewatering	None
ANC	Blanes WWTP	Anaerobic digestion, dewatering	Composting in heap
ANT	Blanes WWTP	Anaerobic digestion, dewatering	Thermal drying
SLT	Juneda WTP	Anaerobic digestion, dewatering	Thermal drying

a AE = aerobically digested sludge; *D* = dewatered; *C* = composted; *T* = thermally-dried; *AN* = anaerobically digested sludge; *SL* = anaerobically digested pig slurry.

a WWTP = wastewater treatment plant; WTP = waste treatment plant.
ration of soil–waste mixtures and for waste characterization. Details of physicochemical properties and concentrations of metals and organic pollutants in the wastes, together with methods for their characterization, are described in Domene et al. [12].

Sludge composts used in the present study were produced from a 1:4.5 (v/v) mixture of dewatered sludge and pinewood chips. For the anaerobic sludge, composting was carried out with pine splinters in a tunnel with air injection for 15 d, and aerobic sludge was composted in a heap for 50 d using chips from recycled wood and furniture as a bulking agent. At the end of the process, both composts were sieved to 1 cm to remove approximately 90% of the chips. This posttreatment decreased the total, hydrolysable and ammonium nitrogen content of the initial sludge, while increasing organic matter stability.

Thermal drying was carried out by placing dewatered sludge in a heated rotary cylinder and injecting hot air, which subjected the sludge to a temperature of approximately 130 to 150°C for 45 min. With this posttreatment, pollutant levels did not change significantly, but N-NH₄ levels decreased and electrical conductivity increased.

Pig slurry was obtained from a treatment plant where the raw slurry is subjected to anaerobic digestion followed by thermal drying at 130°C, producing a final product with a dusty appearance. The final product showed high electrical conductivity, high levels of hydrolysable nitrogen and ammonium, and low organic matter stability.

Experimental setup

A 4-d preliminary assay was performed in order to define the range of doses for each organic waste to be tested in the definitive assay. The doses used in this preliminary assay were 1, 10, 50, 100, 300, 500, 700, and 1,000 g kg⁻¹. Based on these results, a definitive concentration range was defined for each waste, taking as definitive the range of concentrations with 20 to 80% of individuals showing feeding inhibition. In the definitive test, five doses in an arithmetic progression were defined for each waste, but always within the 1 to 500 g kg⁻¹ range as maximum. Each dose tested was composed of five replicates and an additional replicate for the determination of water content, pH, and electric conductivity. The test was carried out using 50-ml polyethylene containers filled with only 5 g of wet substrate mixture in order to maximize retrieving of the individuals and their observation. Fifteen individuals (10–12 d old) were placed in each test container. Three exposure times (2, 4, and 7 d) were defined for each waste and concentration. The number of individuals was determined in a preliminary experiment that showed that feeding patterns were similar regardless of the number of individuals tested (10, 15, and 20). The number of individuals selected (15) is considered high enough to minimize the impact of possible individual mortality or inability to refloat some of the animals, but low enough to allow direct and simultaneous counting of all the individuals in the test container.

Observation of feeding behavior

It has been suggested that *F. candida* ingests sludge from test substrate when this is available [10,27]. Because gut content in *F. candida* easily is observed in vivo, given the lack of pigment in its cuticle [26], individuals feeding on the organic wastes easily could be assessed at the end of the test by the presence of dark content in the gut. Direct observation of

Fig. 1. Group of *Folsomia candida* removed from a test chamber by flotation. Four individuals have the ingested waste clearly visible in their gut.

Data treatment

The median effective concentration (EC₅₀) values and their associated 95% confidence intervals were estimated by probit analysis using Minitab Version 13.2 software (Minitab, State College, PA, USA). A logistic distribution was assumed to carry out probit analysis as it displayed the best adjustment to the data. After calculations, EC₅₀ values for feeding in each waste after 2, 4, and 7 d of exposure were compared by Pearson correlation with the 50% lethal concentration values (LC₅₀) and EC₅₀ reproduction values for *F. candida*, obtained from the same wastes in a previous study [12]. These values were obtained in accordance with ISO Guideline 11267 [46] with some modifications to adapt it to waste testing and were derived using linear and nonlinear regression models according to Stephenson et al. [47]. The EC₅₀ feeding values also were compared by Pearson correlation with all the physicochemical parameters and pollutants assessed for each waste to detect any significant relationship. All correlations in the present study were carried out with log-transformed values.

RESULTS

Feeding behavior

Retrieving of individuals with the substrate used averaged 75%. Losses mainly should be attributed to an inability to float all the individuals in this type of substrate rather than to mortality, because losses of individuals in replicates were similar with increasing waste doses and also because these were not expected to affect survival according to the LC₅₀ values found by Domene et al. [12] (Table 2). The main reason may be a lack of peat in the substrate, which gave it a less crumbly structure. This made flotation of individuals more difficult in comparison with conventional artificial soil. For the reasons already indicated, we assumed that this phenomenon did not affect the test results.
Feeding inhibition increased with increasing doses of the different wastes, presenting a linear or linear-like form depending on waste and exposure time tested (data not shown, see an example in Fig. 2). Mean feeding inhibition rates in the lower test doses varied between 12 and 34%, depending on the waste, although at the highest tested doses mean rates increased toward the highest dose (data not shown). An additional experiment (results not presented) showed that the feeding inhibition of this waste remained very high even at concentrations as low as 0.1 g kg\(^{-1}\). Because no feeding EC50 could be calculated for this waste, we excluded this waste for comparisons with reproduction and survival inhibition values.

The EC50 feeding values of the different wastes generally did not overlap in their 95% confidence intervals, suggesting a satisfactory precision of the method (Table 2), and were below 5 g kg\(^{-1}\) in the aerobic dewatered and thermally dried sludges, although the anaerobic dewatered and thermally dried sludges showed values below 30 g kg\(^{-1}\). On the other hand, composted sludges showed the highest EC50 values, approximately 165 to 300 g kg\(^{-1}\) for the anaerobic compost and 423 to 456 g kg\(^{-1}\) for the aerobic compost.

Feeding rates for each waste and concentration showed no significant differences between times tested (analysis of variance, \(p < 0.05\)), indicating that the response of this endpoint remains nearly constant within one week of exposure.

Table 2. Feeding inhibition values (concentration of waste estimated to reduce the outcome in a sublethal endpoint rate by 50% compared to the control [EC50]) and reproduction (EC50) (28 d) inhibition, after exposure to contaminated waste. Values expressed as g kg\(^{-1}\) (dry wt)

Waste	Feeding EC50, 2 d	Feeding EC50, 4 d	Feeding EC50, 7 d	LC50, 28 d\(b\)	Reproduction EC50, 28 d\(b\)
AEC	445.7 (435.3, 456.2)	455.9 (445.7, 466.0)	423.6 (411.1, 436.0)	252.3 (221.7, 287.2)	206.9 (36.8, 1,141.8)
AED	3.9 (3.7, 4.2)	3.6 (3.4, 3.9)	4.4 (4.2, 4.6)	43.9 (34.1, 56.6)	10.0 (3.8, 23.8)
AET	1.7 (1.1, 2.2)	2.9 (2.7, 3.2)	3.9 (3.7, 4.1)	44.0 (37.4, 51.7)	5.3 (2.8, 9.4)
ANC	299.1 (290.3, 308.2)	281.5 (264.2, 304.0)	164.6 (155.2, 173.6)	833.8 (626.4, 1,109.7)	28.7 (17.7, 46.0)
AND	18.1 (16.9, 19.3)	26.1 (25.2, 27.1)	20.5 (18.8, 22.0)	154.4 (133.7, 178.3)	16.4 (14.7, 18.2)
ANT	27.3 (26.2, 28.5)	20.0 (19.2, 20.8)	24.7 (24.0, 25.5)	85.6 (72.3, 101.3)	10.4 (7.5, 14.2)
SLT	—	—	—	23.7 (20.2, 27.8)	19.4 (3.8, 86.4)

\(a\) AE = aerobically digested sludge; C = composted; D = dewatered; T = thermally-dried; AN = anaerobically digested sludge; SL = anaerobically digested pig slurry.

\(b\) From Domene et al. [12].

Feeding inhibition in F. candida exposed to increasing concentrations of the anaerobic thermally dried sewage sludge (ANT) after 2, 4, and 7 d of exposure. Bars indicate standard deviation. \(n = 5\).

Fig. 2. Feeding inhibition values in *Folsomia candida* exposed to increasing concentrations of the anaerobic thermally dried sewage sludge (ANT) after 2, 4, and 7 d of exposure. Bars indicate standard deviation. \(n = 5\).
effects at the population level [14,15,34,48,49]. For example, Maltby [50] showed that feeding inhibition in the amphipod, *Gammarus pulex*, correlated both with lethality and reproduction. This pattern has been confirmed in the freshwater rotifer, *Brachionus calyciflorus* [13]. Barata and Baird [14] also concluded for *D. magna* that chemicals affecting endpoints like feeding rate or viability of eggs were predictive of effects in traits such as reproduction and survival, given the influence of the former endpoints on the latter. However, Lopes et al. [51] found no correlation between feeding inhibition and survival in *Daphnia longispina* when exposed to copper. Results from our study suggest a link between feeding inhibition in the first week of exposure and reproduction and survival after a month.

Furthermore, some studies have suggested that feeding inhibition might be an ecologically relevant parameter, because impacts of pollutants on this endpoint have correlated with changes at the community and ecosystem levels. Maltby et al. [33] found that in situ feeding rates of the aquatic crustacean, *G. pulex*, correlated significantly with stream macroinvertebrate diversity and detritus processing. Conversely, McWilliam and Baird [15] found no correlation between postexposure feeding depression of *D. magna* and macroinvertebrate community structure. No studies are available for terrestrial ecosystems, but given the key role of soil fauna in facilitating microbial decomposition and nutrient turnover [52], effects at the individual level may provoke effects at higher biological levels [34].

In the present study, feeding inhibition of *F. candida* in the set of wastes studied correlated highly with mortality and reproduction inhibition, indicating the relevance of this endpoint for estimating effects on other more commonly used endpoints, which require a longer experimental period. Furthermore, EC50 values for feeding also remained significantly constant during the first week of exposure. This may permit a reduction of the exposure time to only 2 d while still providing relevant information on waste toxicity. In addition, feeding inhibition values displayed narrower confidence intervals than survival and reproduction inhibition values, showing the high reliability of this endpoint. An explanation might be the lower chance of mortality (due to the feeding test running for a shorter period), and/or the best adjustment of the model used for feeding data with respect to those used for survival and reproduction.

When inhibition values were compared, it was apparent that feeding behavior generally was inhibited at lower waste concentrations than mortality, and feeding usually was inhibited at concentrations above those affecting reproduction. This trend is usual for lethality in studies with aquatic organisms exposed to pollutants [13,14,23,29]. However, there is no agreement on what is typical with respect to reproduction. Some published studies have shown that reproduction generally is affected at lower concentrations than feeding [13,5], although others have reported inhibition at similar concentrations [14,39] or the opposite relationship [53].

Suitability of *F. candida* for feeding inhibition bioassays

Among the most commonly used soil test species, *F. candida* is especially recommended for the assessment of feeding-inhibition responses, because it is possible to observe the consumption of some food sources, in this case organic wastes, as a dark gut content due to the lack of pigment in its cuticle [26]. Like other collembolans, *F. candida* molts throughout its entire life cycle. During molting, the whole cuticle and gut epithelium is completely regenerated, and at this stage individuals stop feeding. This may interfere with the observation of feeding activities [54]. Despite this fact, we assumed that this phenomenon is negligible for the purposes of the present study because a synchronized culture was used for the experiments, which should reduce any variability in results caused by these molting events. In addition, the rate of nonfeeding individuals in the lower waste concentrations is similar, independent of the waste type and exposure time (∼25%, data not reported), suggesting a low bias on the results of molting stages. These rates are in accordance with the 20% reported by Thimm et al. [54] in mixed-age cultures, which were assigned by the authors to molting individuals. Moreover, the feeding rates observed offer an accurate assessment of the instantaneous situation of individuals, because the period between ingestion and excretion of food boluses in this species lasts only 35 min in similar experimental conditions to those used in our study [54].

The consumption of sewage sludge already has been suggested for *Folsomia candida* [12] and *F. fimetaria* [27]. However, this consumption seems to be important only when an alternative clean food source is not available. In a previous unpublished work, we observed that individuals of *F. candida* showed lower consumption rates of sewage sludge when yeast was available, in accordance with its near relative *F. fimetaria* [3]. This behavior agrees with findings from other authors who reported avoidance of contaminated food in this species [24–26]. Filser and Hölischer [24] also showed that the appeal of potato bait decreased with copper concentration. Pedersen et al. [25] found that both *F. candida* and *F. fimetaria* consumed less contaminated yeast with increasing concentrations of copper. Fountain and Hopkin [26] reported a lower feeding rate for *F. candida* with increasing concentrations of heavy metals in yeast offered as food. These authors also demonstrated an active avoidance of polluted food, because a higher percentage of individuals fed on culture substrate with increasing concentrations of metals in yeast. The authors attributed this behavior to an attempt to use the substrate as an alternative food

	Feeding EC50, 2 d	Feeding EC50, 4 d	Feeding EC50, 7 d
LC50, 28 d	\(r = 0.890, p = 0.017 \)	\(r = 0.908, p = 0.012 \)	\(r = 0.858, p = 0.029 \)
Reproduction EC50, 28 d	\(r = 0.865, p = 0.026 \)	\(r = 0.880, p = 0.021 \)	\(r = 0.905, p = 0.013 \)
Organic matter stability	\(r = -0.773, p = 0.071 \)	\(r = -0.801, p = 0.056 \)	\(r = -0.817, p = 0.047 \)
NH₄-N	\(r = -0.634, p = 0.021 \)	\(r = -0.802, p = 0.015 \)	\(r = -0.829, p = 0.041 \)
Total nitrogen	\(r = -0.773, p = 0.071 \)	\(r = -0.801, p = 0.056 \)	\(r = -0.764, p = 0.077 \)
source, demonstrating the existence of mechanisms of contaminant recognition in this species.

The use of feeding inhibition as an endpoint has the main advantage of providing results more quickly than other endpoints and generally requires simpler experimental setups [13–15]. However, no endpoint could be considered generally better than others, because each chemical has its main mode of action and each species may present a different sensitivity to a given parameter. Despite this, feeding inhibition seems to be a general response to a variety of pollutants with different modes of action and toxicities, making this parameter a sensitive and robust response for use as an ecotoxicological endpoint [15].

Parameters involved in feeding inhibition behavior

Results from the present study indicate the suitability of feeding inhibition in *F. candida* as a sensitive endpoint for organic waste ecotoxicity testing, because it clearly was affected at different doses depending on the waste. We have no evidence about the main mechanism involved in the feeding inhibition observed in the present study. However, by not adding an alternative food source to test containers, we forced individuals to interact with the waste offered. By doing this, we obtained an integrative response, regardless of whether direct avoidance of polluted food and/or biochemical and physiological disruption of feeding behavior were the main cause.

Composted sewage sludges inhibited feeding at much higher doses when compared to the effects obtained with dewatered and thermally dried sludges. On the other hand, it was not possible to assess the EC50 feeding values of the thermally dried pig slurry because they were below 1 g kg⁻¹, given the higher toxicity of this sludge with respect to the other wastes [12].

The main factor influencing feeding patterns in this species was the organic matter stability of wastes, a parameter that reflects ease of decomposition. This relationship already has been pointed out in a previous study [12] where a strong correlation was found between this waste parameter and mortality in this species, although no significant relationship was found with reproduction. During decomposition, the breakdown of the more labile fraction of organic matter decreases the relative quantities of total nitrogen, mainly through ammonia losses [55]. Soil amendments with organic wastes with a low degree of stability may cause problems for soil biota, because during their decomposition there is a release of secondary metabolites such as ammonium, phenols, and organic acids, among other adverse effects [56]. Correlation between degree of waste stability and toxicity has been widely reported for plants [57] and also for soil fauna [2]. Furthermore, a correlation with the degree of stability also may reflect the already mentioned degradation of the less persistent organic pollutants in wastes through composting [58,59]. Whatever the reason, according to results from this study, organic matter stability appears as the best predictor for anticipating potential adverse effects for soil fauna derived from soil amendments, at least in the short term.

CONCLUSION

Feeding inhibition of *F. candida* is a suitable endpoint to assess the ecotoxicological risk of organic waste amendments in soils. It showed different responses to different wastes, and presented a clear dose–response relationship with increasing waste doses. More significantly, feeding inhibition was correlated highly with mortality and reproduction inhibition in the different wastes. Besides providing equivalent information, results involving feeding inhibition could be obtained over a shorter exposure time (less than 7 d) in comparison with other more conventional endpoints like reproduction. Results from this study indicate the value of this bioassay as a screening tool for organic waste toxicity.

Acknowledgement—The present study has been funded partly by the LODOTOX project (AGL2002-03297) of the Spanish Ministry of Science and Technology, the RESMINLOD project (4.3-236/2005/2-B) of the Spanish Ministry of Environment, and through a scientific exchange program between Spain and Portugal (Acciones Integradas Hispano-Portuguesas HP2004-0118, Acção Integrada Luso-Espanhola E 5/05). We also would like to thank anonymous referees for their helpful suggestions concerning this paper.

REFERENCES

1. Magoarou P. 2000. Urban wastewater in Europe—what about the sludge? In Langenkamp H, Marmo L, eds, *Proceedings, Workshop on Problems Around Sludge, Stresa, Italy, November 18–19, 1999. European Communities*. EUR 19657. Brussels, Belgium, pp 9–16.

2. Neher DA. 1999. Soil community composition and ecosystem processes. Comparing agricultural ecosystems with natural ecosystems. *Agrofor Syst* 45:159–185.

3. Krogf PH, Holmstrup M, Jensen J, Petersen SO. 1997. Ecotoxicological assessment of sewage sludge in agricultural soil. Working Report 69. Ministry of Environment and Energy. Danish Environmental Protection Agency, Copenhagen.

4. Cole LJ, McCracken DJ, Foster GN, Aitken MN. 2001. Using Collombola to assess the risks of applying metal-rich sewage sludge to agricultural land in western Scotland. *Agric Ecosyst Environ* 83:177–189.

5. Petersen SO, Henriksen K, Mortensen GK, Krogf PH, Brandt KK, Sorensen J, Madsen T, Petersen J, Cron C. 2003. Recycling of sewage sludge and household compost to arable land: Fate and effects of organic contaminants and impact on soil fertility. *Soil Tilage Res* 72:139–152.

6. Andrés P, Domene X. 2005. Ecotoxicological and fertilizing effects of dewatered, composted, and dry sewage sludge on soil mesofauna: A TME experiment. *Ecotoxicology* 14:545–557.

7. Renoux AY, Rajeshwar DT, Samson R. 2001. Assessment of toxicity reduction after metal removal in bioleached sewage sludge. *Water Res* 35:1415–1424.

8. Pandiari P, Devillers J, Charissou A-M, Poulsen V, Jourdain M-J, Férard J-F, Grand C, Bispo A. 2006. Selecting a battery of bioassays for ecotoxicological characterization of wastes. *Sci Total Environ* 363:114–126.

9. Renoux AY, Rocheleau S, Sarrazin M, Sunahara GI, Blais J-F. 2007. Assessment of a sewage sludge treatment on cadmium, copper, and zinc bioavailability in barley, ryegrass, and earthworms. *Environ Pollut* 145:41–50.

10. Krogf PH, Pedersen MB. 1997. Ecological effects assessment of industrial sludge for microarthropods and decomposition in a spruce plantation. *Ecotoxicol Environ Saf* 36:162–168.

11. Crouau Y, Gisclard C, Perotti P. 2002. The use of *Folsomia candida* (Collombola, Isotomidae) in bioassays of waste. *Appl Soil Ecol* 19:65–70.

12. Domene X, Alcaniz JM, Andreis P. 2007. Ecotoxicity assessment of organic wastes using tests with the soil collombolan *Folsomia candida*. *Appl Soil Ecol* 35:461–472.

13. Juchelka CM, Snell TW. 1994. Rapid toxicity assessment using rotifer ingestion rate. *Arch Environ Contam Toxicol* 26:549–554.

14. Barata C, Baird DJ. 2000. Determining the ecotoxicological mode of action of chemicals from measurements made on individuals: Results from instar-based tests with *Daphnia magna* Straus. *Aquat Toxicol* 48:195–209.

15. McWilliam RA, Baird DJ. 2002. Postexposure feeding depression: A new toxicity endpoint for use in laboratory studies with *Daphnia magna*. *Environ Toxicol Chem* 21:1198–1205.

16. Gerhardt A. 1996. Behavioral early warning responses to polluted water—Performance of *Gammarus pulex* L. (*Crustacea*) and *Hydropsychus angustipennis* Curt. (Insecta) to a complex industrial effluent. *Environ Sci Pollut Res Int* 3:63–70.

17. Lagadic L, Caquet T, Ramade F. 1994. The role of biomarkers in...
environmental assessment (5). Invertebrate populations and communities. Ecotoxicology 3:193–208.
18. Gillis PL, Diener LC, Reynolds TD, Dixon DG. 2002. Cadmium-induced production of a metallothionein-like protein in Turbi felis tubifex (Oligochaeta) and Chironomus riparius (Diptera): Correlation with reproduction and growth. Environ Toxicol Chem 21:1836–1844.
19. Natal-da-Luz T, Ribeiro R, Sousa JP. 2004. Avoidance tests with collembo and earthworms as early screening tools for site-specific assessment of polluted soils. Environ Toxicol Chem 23:2188–2193.
20. Forbes VE, Calow P 1999. Is the per capita rate of increase a good measure of population-level effects in ecotoxicology? Environ Toxicol Chem 18:1544–1556.
21. Forbes VE, Palmqvist A, Bach L. 2006. The use and misuse of biomarkers in ecotoxicology. Environ Toxicol Chem 25:272–280.
22. McLoughlin N, Yin D, Maltby L, Wood RM, Yu H. 2000. Evaluation of sensitivity and specificity of two crustacean biochemical biomarkers. Environ Toxicol Chem 19:2085–2092.
23. McLaughlin N, Yin D, Maltby L, Wood RM, Yu H. 2000. Evaluation of sensitivity and specificity of two crustacean biochemical biomarkers. Environ Toxicol Chem 19:2085–2092.
24. Filser J, Hölscher G. 1997. Experimental studies on the reactions of Collembola to copper contamination. Pedobiologia 41:173–178.
25. Pedersen MB, van Gestel CAM, Elmegaard N. 2000. Effects of copper on reproduction of two collemobolan species exposed through soil, food, and water. Environ Toxicol Chem 19:2579–2588.
26. Fountain MT, Hopkin SP. 2001. Continuous monitoring of Folsomia candida (Insecta: Collembola) in a metal exposure test. Ecotoxicol Environ Saf 48:275–286.
27. Tin-Forde M, Persson B, Krøgh PH. 2004. The influence of application form on the toxicity of nonylphenol to Folsomia candida (Collombola: Isotomidae). Ecotoxicol Environ Saf 58:294–299.
28. De Coen WM, Vangheluwe ML, Janssen CR. 1998. The use of biomarkers in Daphnia magna toxicity testing. III. Rapid toxicity testing of pure chemicals and sediment pore waters using ingestion and digestive enzyme activity. Chemosphere 37:2677–2679.
29. Villarzel MJ, Sancho E, Ferrando MD, Andreu E. 2003. Acute, chronic, and sublethal effects of the herbicide propanil on Daphnia magna. Chemosphere 53:857–864.
30. Clément B, Zaid S. 2004. A new protocol to measure the effects of toxican on daphnids-algea interactions. Chemosphere 55:1429–1438.
31. Christensen BT, Lauridsen TL, Ravn HW, Bayley M. 2005. A comparison of feeding efficiency and swimming ability of Daphnia magna exposed to copper, Ett Aquat Toxicol 73:210–220.
32. Fornstrom CB, Landrum PF, Weisskopf CP, La Point TW. 1997. Effects of terbutos on juvenile red swamp crayfish (Procambarus clarkii): Differential routes of exposure. Environ Toxicol Chem 16:2514–2520.
33. Maltby L, Clayton SA, Wood RM, McLoughlin N. 2002. Evaluation of the Gammarus pulex in situ feeding assay as a biomonitor of water quality: Robustness and relevance. Environ Toxicol Chem 21:361–368.
34. Irving EC, Baird DJ, Culp JM. 2003. Ecotoxicological responses of the mayfly Baetis tricaudatus to dietary and waterborne cadmium: Implications for the toxicity testing. Environ Toxicol Chem 22:1058–1064.
35. Bloor MC, Banks CJ. 2006. An evaluation of mixed species in situ and ex situ feeding assays: The altered response of Aselus aquaticus and Gammarus pulex. Environ Int 32:22–27.
36. Moreira SM, Moreira-Santos M, Guillermino L, Ribeiro R. 2006. An in situ postexposure feeding assay with Carcinus maenas for estuarine sediment-overlying water toxicity evaluations. Environ Pollut 139:318–329.
37. Branco-Castro B, Sobral O, Guillermino L, Ribeiro R. 2004. An in situ bioassay integrating individual and biochemical responses using small fish species, Ecotoxicology 13:667–681.
38. Jones D, Candido EPM. 1999. Feeding by sublethal concentrations of toxican and by heat stress in the nematode Caenorhabditis elegans: Relationship to the cellular stress response. J Exp Zool 284:147–157.
39. Anderson GL, Boyd WA, Williams PL. 2001. Assessment of sublethal endpoints for toxicity testing with the nematode Caenorhabditis elegans. Environ Toxicol Chem 20:833–838.
40. Staka A, Frost M, Kratz W. 1998. Ecotoxicological studies on the impact of the herbicide trifluralin on Porcellio scaber (Isopoda). Appl Soil Ecol 9:405–409.
41. Taylor G, Baird DJ, Soares AMVM. 1998. Surface binding of contaminants by algae: Consequences for lethal toxicity and feeding to Daphnia magna Strass. Environ Toxicol Chem 17:412–419.
42. Heylandt K, Bengtssson G, Randgren S. 1995. Fungal odor discrimination in two sympatric species of fungivorous collembo-lants. Funct Ecol 9:869–875.
43. Chen Z, Mayer LM. 1998. Digestive proteases of the lugworm (Arenicola marina) inhibited by Cu from contaminated sediments. Environ Toxicol Chem 17:433–438.
44. Sathial JF, Baldwin D, Jenkins JJ, Scholz NL. 2005. Comparative thresholds for acetylcholinesterase inhibition and behavioral impairment in coho salmon exposed to chlorpyrifos. Environ Toxicol Chem 24:136–145.
45. Fryday SL, Hart ADM, Langton SD. 1996. Effects of exposure to an organophosphorous pesticide on the behavior and use of cover by captive starlings. Environ Toxicol Chem 15:1500–1506.
46. International Organization for Standardization. 1999. Soil quality—Ihibition of reproduction of Collembola (Folsomia candida) by soil pollutants. ISO Guideline 11267. Geneva, Switzerland.
47. Stephenson GL, Koper N, Atkinson GE, Salomon KR, Scroggins RP. 2000. Use of nonlinear regression techniques for describing concentration-response relationships of plant species exposed to contaminated site soils. Environ Toxicol Chem 19:2968–2981.
48. Kooijman SAML. 2000. Dynamic Energy Mass Budgets in Biological Systems. Cambridge University Press, Cambridge, UK.
49. Maltby L, McKirdy TJ, Forbes VE, Grassman K, Kammenga JE, Munns WR Jr, Ringwood AH, Weis JS, Wood SN. 2001. Linking individual-level responses and population-level consequences. In Baird DJ, Brown GA Jr, eds, Ecological Variability: Separating Natural from Anthropogenic Causes of Ecosystem Impairment. SETAC, Pensacola, FL, USA, pp 27–82.
50. Maltby L. 1994. Stress, shredders, and streams: Using Gammarus energetics to assess water quality. In Sutcliffe DW, ed, Water Quality and Stress Indicators in Marine and Freshwater Systems: Linking Levels of Organization. Freshwater Biological Association, Ambleside, Cumbria, UK, pp 98–110.
51. Lopes I, Baird DJ, Ribeiro R. 2005. Genetically determined resistance to lethal levels of copper by Daphnia longispina: Association with sublethal response and multiple/coresistance. Environ Toxicol Chem 24:1414–1419.
52. Barged RD, Griffiths BS. 1997. Ecology and biology of soil protozoa, nematodes, and microarthropods. In van Elsas JD, Voor te JT, Wellington EM, eds, Modern Soil Microbiology. Marcel Dekker, New York, NY, USA, pp 129–163.
53. Christensen PD, Borzek M, Hansen BW. 1998. Energetic and behavioral responses by the common goby, Pomatoschistus microps (Krøyer), exposed to linear alkylbenzene sulfonate. Environ Toxicol Chem 17:2051–2057.
54. Thimm T, Hoffmann A, Borrhk H, Munch JC, Tebbe CC. 1998. The gut of the soil microarthroboth Folsomia candida (Collembola) is a frequently changeable but selective habitat and a vector for microorganisms. Appl Environ Microbiol 64:2660–2669.
55. Martins O, Dewes T. 1992. Loss of nitrogenous compounds during composting of animal wastes. Bioresour Technol 42:103–110.
56. Tiqiuia SM, Tan N Y. 1998. Elimination of phytotoxicity during cocomposting of spent pig-manure sawdust litter and pig sludge. Bioresour Technol 65:43–49.
57. Zmora-Nahum S, Markovitz O, Tarchitzky J, Chen Y. 2005. Dissolved organic carbon (DOC) as a parameter of compost maturity. Soil Biol Biochem 37:2109–2116.
58. Bagó B, Martin Y, Mejía G, Broto-Puig J, Díaz-Ferrer J, Agut M, Comellas L. 2005. Di-(2-ethylhexyl)phthalate in sewage sludge and posttreated sludge: Quantitative determination by HRGC-MS and mass spectral characterization. Chemosphere 59:1191–1195.
59. Sanz E, Prats D, Rodri guez M, Camacho A. 2006. Effect of temperature and organic nutrients on the biodegradation of linear alkyl benzenesulfonate (LAS) during the composting of anaerobically digested sludge from a wastewater treatment plant. Waste Manag 26:1237–1245.