June 29th, 2020

To Whom It May Concern:

Please find attached the electronic version of our manuscript “Protein synthesis inhibitors stimulate MondoA transcriptional activity by driving an accumulation of mitochondrial ATP”. That we would like considered for publication as a research manuscript in Cancer and Metabolism. In this paper we provide data that supports an intriguing connection between translation rate, the activity of the MondoA transcription factor, its principal direct target Thioredoxin Interacting Protein (TXNIP), and the availability of glucose. We believe that our work is of general interest to the readers of Cancer and Metabolism for several reasons:

1) Translation initiation inhibitors are potential cancer therapeutics and our work provides new insight into the potential application in the clinic:
 i. RocA is able to induce TXNIP expression in a variety of cancer cell lines, independent of oncogenic burden, suggesting the possibility of broad clinical application.
 ii. RocA is cytotoxic to a number of cell types and full cytotoxicity requires MondoA and TXNIP, suggesting a limitation of RocA, or similar translation inhibitors, in clinical settings.
 iii. We conducted a screen of RocA efficacy in 17 Patient-Derived xenograft Organoid cultures. RocA was most effective against ER- organoids, suggesting it may be efficacious against basal or triple negative breast cancers.

2) It provides a mechanistic framework to a previous publication that showed that inhibition of translation initiation increased TXNIP expression.

3) TXNIP is a potent negative regulator of glucose uptake suggesting that the availability of glucose for biosynthetic reactions and ATP production is linked to translation rate.

4) It shows that translation inhibition drives a rewiring of metabolism leading to increases in mitochondrial ATP and glucose 6-phosphate, which is a well-established regulator of MondoA transcriptional activity.

We are not aware of any issues relating to journal policy, nor are we aware of any competing interests. Authors or their PI’s have approved the manuscript. This work has not been published or submitted for publication elsewhere.

Thank you for considering this manuscript for publication.

Sincerely,

[Signature]
Protein synthesis inhibitors stimulate MondoA transcriptional activity by driving an accumulation of glucose 6-phosphate

Blake R. Wildea, c, Mohan R. Kaadigea, d, Katrin P. Guillenb, Andrew Butterfieldb, Bryan E. Welmb, Donald E. Ayera#

aDepartment of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
bDepartment of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA

Running Head: Translation inhibition drives MondoA transcription function

#Address correspondence to Donald E. Ayer, don.ayer@hci.utah.edu

Current Addresses

cDepartment of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
dTranslational Genomics Research Institute, Phoenix, AZ 85004
ABSTRACT (350 words)

BACKGROUND

Protein synthesis is regulated by the availability of amino acids, the engagement of growth factor signaling pathways and ATP levels sufficient to support translation. Crosstalk between these inputs is extensive, yet other regulatory mechanisms remain to be characterized. For example, the translation initiation inhibitor Rocaglamide A (RocA) induces Thioredoxin Interacting Protein (TXNIP). TXNIP is a negative regulator of glucose uptake, thus its induction by RocA links translation to the availability of glucose. MondoA is the principal regulator of glucose-induced transcription and its activity is triggered by the glycolytic intermediate, glucose 6-phosphate (G6P). MondoA responds to G6P generated by cytoplasmic glucose and mitochondrial ATP (mtATP), suggesting a critical role in the cellular response to these energy sources. TXNIP expression is entirely dependent on MondoA, therefore, we investigated how protein synthesis inhibitors impact its transcriptional activity.

METHODS

We investigated how translation regulates MondoA activity using cell line models and loss-of-function approaches. We examined how protein synthesis inhibitors effect gene expression and metabolism using RNA-sequencing and metabolomics, respectively. The biological impact of RocA was evaluated using cell lines and Patient-Derived xenograft Organoid (PDxO) models.

RESULTS

We discovered that multiple protein synthesis inhibitors, including RocA, increase TXNIP expression in a manner that depends on MondoA, a functional electron transport chain and mtATP synthesis. Furthermore, RocA increases mtATP and G6P levels and TXNIP induction depends on interactions between the Voltage-Dependent Anion Channel (VDAC) and hexokinase, which generates G6P. RocA treatment impacts the regulation of
~1200 genes and ~250 of those genes are MondoA-dependent. RocA treatment is cytotoxic to Triple Negative Breast Cancer cell lines and shows preferential cytotoxicity against ER- PDxO breast cancer models. Finally, RocA-driven cytotoxicity is partially-dependent on MondoA or TXNIP.

CONCLUSIONS

Our data suggest that protein synthesis inhibitors rewire metabolism, resulting in an increase in mtATP and G6P, the latter driving MondoA-dependent transcriptional activity. Further, MondoA is a critical component of the cellular transcriptional response to RocA. Our functional assays suggest that RocA or similar translation inhibitors may show efficacy against ER- breast tumors and that the levels of MondoA and TXNIP should be considered when exploring these potential treatment options.

BACKGROUND

A unifying characteristic of oncogenes is their ability to drive anabolic metabolism to support the biosynthesis of macromolecules. Oncogenes also impose significant metabolic stress on cells (1). For example, as a result of increased protein synthesis, cancer cells experience depletion of local nutrients (2), which can lead to accumulation of reactive oxygen species (ROS) and other metabolic challenges that if unchecked result in cell death (3). These findings suggest that cells must integrate information about translation rate with the pathways that control nutrient availability. Recently protein synthesis inhibitors have received attention as potential anticancer therapeutics (4-7), with translation initiation inhibitors among the most promising candidates. The full mechanistic and biological consequences of targeting translation initiation have not been described.

The translation inhibitor Rocaglamide A (RocA) induces expression of Thioredoxin Interacting Protein (TXNIP) in a number of cell types (6); however, the underlying mechanisms were not explored. TXNIP has pleiotropic function (8, 9), including acting as
a very potent negative regulator of glucose uptake (10). Therefore, TXNIP may bridge translation initiation or elongation rate to the availability of glucose. TXNIP expression is strongly, if not entirely dependent on the MondoA transcription factor and glucose (10, 11). Mechanistically, glucose-6-phosphate (G6P) drives translocation of MondoA from the outer mitochondrial membrane (OMM) to the nucleus where it binds the promoters of its target genes and recruits cofactors that initiate transcription (10, 12, 13). MondoA binds a double E-box Carbohydrate Response Element (ChoRE) in the TXNIP promoter to drive its expression in response to elevated glucose levels (11, 14, 15).

In addition to an absolute functional requirement on glucose (10, 11), we recently showed that MondoA transcriptional activity is also highly dependent on mtATP (13). Our data suggest that MondoA functions as a coincidence detector, only being active when above threshold levels of glucose and mtATP are available to generate enough G6P to drive MondoA activity (13). Collectively, our data suggest that MondoA is sensor of high cellular energy charge exemplified by its two most prevalent nutrient sources and is critical for the adaptive transcriptional response to a hyper-nutrient state.

Here we investigate whether MondoA is required for protein synthesis inhibitors to increase TXNIP expression. We provide evidence that protein synthesis inhibitors cause metabolic rewiring, resulting in increased levels of mtATP and G6P that drive MondoA transcriptional activity. Further, the cytotoxic effect of RocA depends on both MondoA and TXNIP, suggesting that they may be critically required for the utility of protein synthesis inhibitors in clinical settings.

METHODS
Cell culture
All cell lines were maintained at 37 °C in 5% CO₂. DMEM with penicillin/streptomycin and 10% FBS (Gibco) was used for murine embryonic fibroblasts
(MEFs), HeLa, MDA-MB-231, L6, C2C12 and 293T (all from ATCC) and MDA-MB-157 cells (a gift from Andrea Bild, University of Utah). TSC2\(^{-/}\) and TSC2\(^{-/-}\):hTSC2 MEFs were a gift of Brendan Manning, Harvard University. MondoA\(^{-/-}\) MEFs were created from day 15 embryos as described previously (16).

Plasmids

pcDNA3.1-MondoA-V5, pcDNA3-Mlx-FLAG, and LXSH-MondoA as well as TXNIP promoter luciferase reporter plasmids (wild type and ChoRE mutant) have been described (12, 16). pcDNA3-Mit-ATEAM (pcDNA3-mitAT1.03) was a gift of Hiroyuki Noji, Rikkyo University (17). pLKO.1-shScr1 and pLKO.1-shTXNIP were obtained from Sigma Aldrich.

Standard molecular cloning techniques were used to generate pLVX-TetOne-Puro-MYC(T58A). The pLVX-TetOne-Puro vector was obtained from Clontech Laboratories.

Transfections were performed using Lipofectamine 2000 (Thermo Fisher) or Lipofectamine 3000 (Thermo Fisher).

Protein synthesis inhibitor treatments

Growth media was replaced with glucose-free DMEM with penicillin/streptomycin and 10% FBS for six hours. Media was then replaced with glucose-free DMEM with penicillin/streptomycin, 10% FBS, and translation inhibitors for 16 hours. Unless otherwise indicated, the protein synthesis inhibitors were added at the following concentrations: Cycloheximide (Sigma Aldrich), 50 μg/ml; emetine (Sigma Aldrich), 100 μg/ml; puromycin (Sigma Aldrich), 100 μg/ml; and Rocaglamide A (Santa Cruz), 25-100 nM. Dialyzed FBS was prepared by dialysis 3 times against 40-fold excess water to remove small molecules.

Quantitative real-time PCR

Total RNA was extracted using the RNAeasy Kit (Qiagen). cDNA was synthesized from 0.1-1 μg RNA using GoScript reverse transcription kit (Promega). qPCR was performed using OneTaq Hot Start DNA Polymerase (18), SYBR/ROX Combo PCR DNA Fluorescence Dye (Thermo Fisher) and dNTPs (Thermo Fisher). The \(\Delta\Delta C_t\) method with
normalization to actin levels was used to analyze the data. Three biological replicates were used to determine mRNA levels and calculate significance. Three technical replicates were performed for every biological sample. TXNIP primers: forward – TGACTTTGGCCTACAGTGGG and reverse – TTGCGCTTCTCCAGATACTGC; Actin primers: forward – TCCATCATGAGTGTGACGT and reverse – TACTCCTGCTTGCAGGATCCAC.

Immunofluorescence

Cells were transfected with plasmids containing MondoA-V5 and FLAG-Mlx using Lipofectamine 2000 (Thermo Fisher). Following protein synthesis inhibitor treatment, cells were fixed on glass coverslips using ice-cold 100% methanol for 15 minutes and stained using standard immunofluorescence procedures. Mouse anti-V5 (Thermo Fisher) antibody was used at 1:2000, rabbit anti-FLAG (Cell Signaling) antibody was used at 1:2000.

Metabolomics

GC-MS was used to determine metabolite levels as described previously (13). Metabolites were harvested from cells using 90% methanol and analyzed over a 30 m Phenomex ZB5-5 MSi column. Data was analyzed using MassLynx 4.1 software (Waters). Six biological replicates were used for each treatment group. Peak areas for individual metabolites were determined and used to calculate fold change after treatment with CHX.

Chromatin immunoprecipitation

MondoA-V5 was transfected into HeLa cells. Chromatin was cross-linked and sheared as described (19). Chromatin was incubated overnight with anti-V5 antibody (Thermo Fisher) or mouse IgG (Sigma Aldrich). M-280 sheep anti-mouse Dynabeads (Thermo Fisher) were used to capture and purify immunocomplexes. DNA was purified using a QIAquick PCR Purification Kit (Qiagen) and analyzed using quantitative PCR as described above. Primers were previously described (20).
Promoter activity assay

TXNIP promoter luciferase assays were performed as described previously (21). Briefly, cells were transfected with a TXNIP promoter luciferase construct and a CMV-driven β-galactosidase construct. Following treatments, luciferase and β-galactosidase activities were determined according to manufacturer’s recommendations (Promega, Tropix). Luciferase activity was normalized to β-galactosidase to control for differences in transfection efficiency.

Fluorescence Resonance Energy Transfer (FRET)

Widefield microscopy was used to perform live cell imaging on cells expressing Mit-ATEAM as described previously (13). Briefly, cells transiently transfected with pcDNA3-Mit-ATEAM. Live imaging was conducted using a Nikon A1R with a 40X lens. Images were captured every hour for 6 hours using the following channels: YFP (excitation: 488 nm, emission: 525 nm), CFP (excitation: 405nm, emission: 480 nm), and FRET (excitation: 405 nm, emission: 525 nm). The YFP channel was used to designate mitochondria area. The ratio of CFP intensity to FRET intensity was used to determine relative mitochondrial ATP levels.

Immunoblotting

Immunoblotting was performed as described previously (19). Primary antibodies were used at a dilution of 1:1000 anti-MLXIP/MondoA (Proteintech, 13614-1-AP), 1:2000 anti-VDUP1/TNXIP (MBL, K0205-3), 1:15,000 anti-Tubulin (Molecular Probes, 236-10501) and 1:1,000 anti-EIF4E (BioLegend, 693002). Secondary antibodies were used at a dilution of 1:5000 anti-rabbit-HRP (GE Life Sciences, NA-934) or 1:15,000 anti-mouse-HRP (GE Life Sciences, NA-931).

Cell viability assay
Crystal violet staining was used to determine relative cell viability/proliferation. Cells were stained/fixed using a mixture of 0.05% crystal violet, 1% formaldehyde, 1% methanol, 137 mM NaCl, 2.7 mM KCl, 10 mM Na$_2$HPO$_4$, and 1.8 mM KH$_2$PO$_4$. Following 1 hour in the staining/fixing solution, cells were washed with water until all excess stain was removed and the plates were dried at room temperature. Crystal violet was extracted from the cells using 1% SDS and absorbance at 590 nm was used as a relative measure of total cell numbers.

mRNA sequencing and analysis

mRNA sequencing was performed as described previously (13). RNA was harvested using a Quick RNA Miniprep kit (Qiagen) and cDNA libraries were constructed using a Stranded mRNA-seq Kit with mRNA Capture Beads (Kapa). The library was sequenced using an Illumina HiSeq. Sequencing was performed by Huntsman Cancer Institute's High Throughput Genomics Core. Reads were aligned to the human genome using STAR. DESeq2 was used to determine differential expression of genes. To determine regulated pathways, we conducted 1) overrepresentation analysis using ConsensusPathDB (22), and 2) Gene Set Enrichment Analysis and leading-edge analysis (Broad Institute) (23, 24).

Patient-Derived xenograft Organoids

Patient-derived xenograft (PDX) tumors were harvested, processed into organoids (PDxOs) (25-27), and cultured exclusively in a 3D matrigel environment (Corning, growth factor reduced). Fully mature organoids, >50 µm in diameter, were seeded at a density of 50-100 organoids/well in 5% matrigel, into 384-well tissue cultures plates - coated with matrigel to prevent adhesion. 24h after seeding, PDxOs were treated with serial dilutions of RocA. We assayed cell viability prior to treatment and after 4 days of treatment with CellTiter-Glo 3D (Promega). Response was determined from technical quadruplicates over three biological replicates.
Data represents the mean ± S.D. for five biological replicates for metabolomics experiments and three biological replicates for all other experiments including RNA-seq. ANOVA was performed to determine significance.

RESULTS

Translation inhibition drives TXNIP expression

To determine whether TXNIP expression is generally correlated with protein synthesis, we investigated how the expression of several known translation regulators correlate with TXNIP expression. Using the Gene-tissue Expression Database (GTEx) and examining expression in all tissues, we identified a positive correlation between TXNIP and translation elongation inhibitor eukaryotic elongation factor 2 kinase (EEF2K), which negatively regulates mRNA translation elongation by phosphorylating and inactivating eukaryotic elongation factor 2 (Figure 1A) (28). By contrast, expression and EIF4E, the rate-limiting component of the elongation initiation machinery (29, 30), was anticorrelated with TXNIP expression (Figure 1A). We extended these findings to over 1200 breast cancers and found that TXNIP expression was negatively correlated with the expression of elongation-initiation factor EIF4G1 and the ribosomal biogenesis genes RRP12 and RRP1 (Figure 1B). These data support the hypothesis that high translation rates suppress TXNIP expression.

We next determined whether compounds that block translation at different steps regulate TXNIP expression. We found that treatment of Hela cells with three translation elongation inhibitors, cycloheximide (CHX), emetine, and puromycin, increased TXNIP expression dramatically (Figure 1C). Likewise, the translation initiation inhibitor RocA (31), induced TXNIP expression comparably to CHX (Figure 1D). As expected (6), TXNIP induction by RocA was accompanied by a decrease in glucose uptake (Fig 1E). siRNA-
mediate knockdown of translation initiation factor EIF4E also increased TXNIP expression (Figure 2F-G), confirming our findings with the pharmacological inhibitors. It is counter-intuitive that TXNIP protein would accumulate in the presence the translation initiation inhibitor RocA and following knockdown of EIF4E; however, TXNIP undergoes both cap-dependent and IRES-dependent translation (32). Our previous studies demonstrated that mTORC1 suppresses MondoA transcriptional activity and TXNIP expression by competing for its obligate transcriptional partner Mlx (19). Consistent with our previous findings, the mTORC1 inhibitor Torin increased TXNIP expression, but this increase was much more modest than that observed with CHX (Figure 1H). This finding suggests that broad translation inhibitors like RocA and CHX increase TXNIP expression by a different mechanism than does Torin and their action is largely independent of mTORC1. Finally, CHX increased TXNIP expression in C2C12 and L6 myoblasts and HEK293T embryonic kidney cells (Figure 2I-K), suggesting that protein synthesis inhibitors generally increase TXNIP expression. Together these findings suggest that TXNIP expression, and consequently glucose uptake, is tightly linked to translation rate.

Protein synthesis inhibitors drive MondoA transcriptional activity

We next evaluated the involvement of MondoA in TXNIP induction in response to protein synthesis inhibition. CHX treatment increased TXNIP expression, in wildtype but not in MondoA−/− mouse embryonic fibroblasts (MEFs) (Figure 2A). Ectopic expression of MondoA in MondoA−/− MEFs rescued TXNIP induction (Figure 2B). We tested whether CHX increased MondoA transcriptional activity using several approaches. First, the nuclear localization of MondoA and the amount of MondoA on the TXNIP promoter increased following CHX treatment (Figure 2C-D). Second, CHX increased the expression from a TXNIP luciferase reporter construct in a manner that was strongly dependent on an intact CACGAG ChoRE about 80 bp upstream of the transcription start site (Figure
Together these data demonstrate that CHX, and likely other protein synthesis inhibitors, drive MondoA nuclear accumulation, promoter binding and transcriptional activity.

Because MondoA transcriptional activity is strictly dependent on glucose (10, 11), we next determined the requirement for glucose in CHX-driven TXNIP expression. HeLa cells were treated with CHX in DMEM or in glucose-free DMEM. Surprisingly, TXNIP was induced in the presence and in the apparent absence of glucose (Figure 2F), suggesting that CHX might induce MondoA transcriptional activity independent of glucose. An alternate possibility is that Fetal Bovine Serum (FBS) contains sufficient glucose (~5 mM) such that when present in culture medium at 10% the resulting concentration of glucose (~0.5 mM) can support MondoA transcriptional activity. To test this hypothesis, we dialyzed FBS to remove small molecules including glucose and then treated cells with CHX in glucose-free DMEM + 10% dialyzed FBS. Under these conditions, CHX did not increase TXNIP expression; however, adding glucose back to the medium that contained dialyzed serum rescued TXNIP induction (Figure 2G-H). CHX increased TXNIP expression at all glucose levels tested, and surprisingly decreased the threshold of glucose required for TXNIP induction ~5-fold (Figure 2H). Thus, glucose is strictly required for CHX to increase MondoA transcriptional activity and also sensitizes MondoA transcriptional activity to lower glucose levels.

Protein synthesis inhibition drives G6P production

We next investigated how protein synthesis inhibitors increase MondoA transcriptional activity. We focused on a potential role for mitochondrial function and mtATP for three reasons: 1) protein translation is the most ATP-consuming biosynthetic reaction, 2) MondoA transcriptional activity depends on mtATP (13), 3) higher mtATP levels may sensitize MondoA transcriptional activity and TXNIP expression to lower levels.
of glucose by increasing levels of G6P (13). Consistent with a requirement for functional electron transport, inhibition of complex I with metformin completely abrogated TXNIP induction by CHX (Figure 3A). Likewise, and consistent with a requirement for mtATP, blocking the activity of ATP synthase (complex V) with oligomycin also robustly inhibited TXNIP expression (Figure 3A). To test the requirement of ATP synthesis further, we used siRNA to deplete ATP5I, which is an essential component of ATP synthase: our previous work established that ATP5I knockdown in HeLa cells blocks the production of mtATP (13). In this experimental context, ATP5I knockdown reduced background TXNIP expression and completely suppressed its induction by RocA (Figure 3B). We next determined how protein synthesis inhibition affects mtATP. We expressed a mitochondrial-targeted ATP FRET-biosensor (mitATEAM) in HeLa cells and used live cell imaging to quantify fluorescence (13, 17). Inhibiting protein synthesis by RocA lead to increased FRET signal indicating accumulation of ATP in the mitochondria (Figure 3C). These findings suggest a requirement for mtATP synthesis in driving TXNIP expression in response to the protein synthesis inhibitors.

Low pH medium increases MondoA transcriptional activity by increasing mtATP levels (13). In that work, we established that mtATP exits the mitochondrial matrix via a channel comprised of the adenine nucleotide transporter (ANT) and the voltage-dependent anion channel (VDAC), where it is used as a substrate for VDAC-bound hexokinase II (HKII). Mitochondria-bound HKII then transfers a phosphate to cytoplasmic glucose to generate G6P resulting in a stimulation of MondoA transcriptional activity. We tested whether RocA induces TXNIP expression through a similar mechanism in three ways. First, expression of VDAC1(E72Q), which cannot interact with HKII and prevents HKII from interacting with mitochondria (33), blocked the increase in TXNIP expression following RocA treatment (Figure 3D). By contrast, wildtype VDAC increased TXNIP expression in the presence of RocA. Second, methyl-jasmonate, which removes HKII from
the outer membrane of mitochondria (34), blocked RocA induction of TXNIP (Figure 3E).

Third, CHX lead to a dramatic reprogramming of metabolism, including significant changes in the levels of glycolytic and TCA cycle intermediates (Figures 3F-G and supplemental Table 1). In particular, G6P levels increased more than 20-fold following CHX treatment (Figure 3G). Together these data are consistent with the model that protein synthesis inhibitors increase mtATP, which is subsequently exported from the mitochondrial matrix through the ANT/VDAC channel, ultimately increasing G6P levels to drive MondoA transcriptional activity.

MondoA and TXNIP are required for the cytotoxic effects of RocA

Because protein synthesis inhibitors are emerging as potential cancer therapeutics (4-7), we tested whether blocking protein synthesis induced TXNIP expression in cell lines with different oncogenic lesions. CHX induced TXNIP in MEFs and in MEFs that expressed an activated allele of HRAS (Figure 4A) (35). Further, TXNIP was induced by CHX-treatment in MEFs that lack the TSC2 tumor suppressor and in MDA-MDA-231 cells, which is a Triple Negative Breast Cancer (TNBC) cell line that harbors an inactivating mutation in TP53 and activating mutations in KRAS and BRAF (Figure 4B-C). Further, induction of c-Myc (T58A) expression, which is a stabilized allele of c-Myc, did not block TXNIP induction in MDA-MB-231 cells (Figure 4C). RocA also increased TXNIP protein levels in HeLa cells, MDA-MB-157 cells, which is also a TNBC cell line, and in MBA-MB-231 cells (Figure 4D-F). Together these data demonstrate that RocA can induce TXNIP expression in a variety of cell lines and its action appears relatively independent of oncogenic burden.

The growth inhibitory effects of RocA has been tested primarily on multiple myeloma cell lines (6, 36). Consistent with a potential broad effect of RocA on cell growth, treatment of MDA-MB-157 and MDA-MB-231 breast cancer cells with 100 nM RocA
resulted in a time-dependent reduction in cell viability such that virtually all the cells were dead after 4 days of treatment (Figure 5A). We expanded this analysis to 17 organoid cultures derived from breast cancer patients treated at Huntsman Cancer Institute. As with the cell lines, these Patient-Derived xenograft Organoids (PDxOs), showed sensitivity to RocA. 10 of 12 ER- models were sensitive to RocA, with consistently strong cytotoxicity around 50 nM (Figure 5B). Most of the Estrogen Receptor positive (ER+) models, with the exception of HCI-011, were also sensitive to RocA, but sensitivity was attenuated compared to the ER- models: HCI-003 was highly sensitive to RocA like the majority of the ER- models. Thus, RocA is broadly cytotoxic to breast cancer cells and appears to show preferential killing of cells from ER- breast cancers.

We next determined whether MondoA or TXNIP were required to mediate the cytotoxic effects of RocA. TXNIP null MEFs were less susceptible to RocA than wild type MEFs (Figure 5C), consistent with the notion that TXNIP is a RocA effector. Likewise, TXNIP knockdown in MDA-MB-157 cells also partially blocked the cytotoxic effects of RocA (Figure 5D). Finally, we used CRISPR-Cas9 editing to generate HeLa cells that lack MondoA and conducted a RocA dose response experiment. This experiment showed that MondoA was required for the full cytotoxic effects of RocA and increased the IC50 of RocA from ~15 nM to ~25 nM (Figure 5E). Together these data suggest that induction of MondoA transcriptional activity and its activation of TXNIP in response to RocA is a required component of RocA-driven cytotoxicity.

The role of MondoA in the transcriptional response to RocA

To understand the contribution of MondoA to the RocA-dependent transcriptional response, we conducted mRNA-sequencing on RNA prepared from wildtype or MondoA knockout Hela cells (HeLa:MKO) that had been treated with 100nM RocA for 4 hrs. Using a 2-fold expression change cutoff and a p-value of ≤0.01, we identified 1,241 genes
that were differentially regulated by RocA. Of these, 224 genes were not differentially regulated in the absence of MondoA. This finding suggests that approximately 20% (224/1241) of the RocA-driven transcriptome requires MondoA (Figure 6A): both up and downregulated genes were MondoA-dependent. We next used regression analysis to look for genes that were affected by RocA treatment and genotype. As expected, TXNIP was highly induced by RocA and its expression was highly dependent on MondoA (Figure 6A-B). Induction of the TXNIP paralog ARRDC4 by RocA was less robust but was also highly MondoA-dependent (Figure 6A-B). Pathways downregulated following RocA treatment of MondoA knockout cells included extracellular matrix organization and a number of signaling-related pathways (Figure 6C) (22). Pathways upregulated following RocA treatment of MondoA knockout cells also included extracellular matrix organization and several pathways involved in sterol biosynthesis. Finally, we conducted Gene Set Enrichment Analysis on the differentially regulated genes in HeLa and HeLa:MondoA-KO cells treated with RocA using 13445 pathways in the Molecular Signatures Database (23, 24). We identified 1033 gene sets that were enriched with a nominal p-value of ≤0.01. Leading edge analysis showed that pathways associated cell proliferation and cell movement were upregulated, and electron transport and ribosome-related pathways were downregulated in RocA-treated HeLa:MondoA-KO cells (Figure 6D). Together these data suggest that MondoA is required for the cellular transcriptional response to RocA treatment and may contribute to migratory and growth phenotypes driven by protein synthesis inhibitors.

DISCUSSION

Translation rate is positively linked to the availability of progrowth signals and the availability of nutrients and charged amino acids (37-39). A previous report showed that RocA induced TXNIP (6), which correlated with a downregulation of glucose uptake and
a blockade of cell growth. Here we provide a mechanistic framework for this observation, showing that multiple protein synthesis inhibitors, including RocA, drive TXNIP expression by increasing MondoA transcriptional activity. These findings link translation rate to glucose uptake through regulation of MondoA transcriptional activity. We show that protein synthesis inhibitors induce TXNIP expression in a number of different cell lines, apparently independent of oncogenic burden. This finding complements earlier studies showing that a compound related to RocA induces TXNIP expression in a number of cancer cell lines, representing a spectrum of malignancies (6).

Cancer cells must coordinate the use and the availability of nutrients to support growth and division. TXNIP is a potent negative regulator of glucose uptake, in fact its loss or downregulation is sufficient to increase glucose uptake (19, 40), suggesting that low TXNIP levels may be a common route to aerobic glycolysis common in cancer. Consistent with this hypothesis, TXNIP levels are generally lower in tumors compared to normal adjacent tissues (8), and a number of pro-growth/oncogenic pathways suppress TXNIP expression by a variety of mechanisms (19, 20, 35, 41-43). Together these data suggest that the high demand for ATP driven by translation, may result in a reduction of G6P, MondoA transcriptional activity and low TXNIP expression. Low TXNIP levels increase glucose uptake to help sustain ATP production through glycolysis and potentially replenish stores of glucose-derived amino acids.

We and others showed previously that MondoA is a critical regulator of glucose-induced transcription (10), which is triggered by G6P. We reported previously that low pH (~6.7) triggers MondoA transcriptional activity and TXNIP expression (44). Our recent report demonstrated that low pH triggers TXNIP expression by increasing mtATP production (13). Under low pH conditions mtATP is exported from the mitochondrial matrix, encountering hexokinase II at the outer mitochondrial membrane and generating G6P from cytoplasmic glucose to trigger MondoA transcriptional activity. We show here that
inhibition of protein synthesis drives increases MondoA transcriptional activity by a similar mechanism. RocA's induction of MondoA transcriptional activity depends on mtATP synthesis and the interaction of HKII with the outer mitochondrial membrane. Further, our metabolomics experiment showed that CHX treatment results in a dramatic increase in G6P and several other glycolytic intermediates, whereas most TCA intermediates are reduced under these conditions. Together these data suggest that blocking protein synthesis drives MondoA transcriptional activity by increasing mtATP levels, followed by export of mtATP from the mitochondrial matrix and the subsequent increase in G6P: increased G6P triggers MondoA transcriptional activity. It seems most likely that protein synthesis blockade increases mtATP levels by reducing the cytoplasmic demand for ATP.

We are currently exploring this and other possibilities.

We showed that both MondoA and TXNIP are required for the growth suppressive activity of RocA, suggesting that the increase in MondoA activity and in TXNIP expression are just not correlated with protein synthesis inhibition, but may be critical for the full therapeutic response to protein synthesis blockade. Our previous work demonstrated that a number of progrowth pathways inhibit MondoA transcriptional activity and TXNIP expression (19, 35, 41, 42), suggesting a potential limitation of protein synthesis inhibitors as cancer therapeutics. However, we show that RocA induced MondoA activity and TXNIP expression in several cell lines independent of oncogenic burden. While our current experiments focus on TXNIP induction by RocA, our previous work demonstrated that an slightly acidic pH of ~6.7 drives a gene signature that correlates with good clinical prognosis in breast cancer and TXNIP is a component of that signature (44). These findings argue that identifying or developing more specific TXNIP inducers may have therapeutic utility.

In addition to its inhibitory effects on eIF4A, RocA also been shown to disrupt Ras-Raf-MEK signaling. This occurs through the direct binding of prohibitins (PHB1 and PHB2)
and their sequestration in the cytosol, which prevents Raf localization to the plasma membrane and its activation by Ras (45). Given our previous findings that that Ras-Raf signaling prevents MondoA transcriptional activity and TXNIP expression (35, 41, 42), it is possible that RocA-driven inhibition of Ras-Raf-MEK signaling also contributes to the increase in MondoA transcriptional activity we observe with RocA treatment.

Finally, MondoA is required for the adaptive transcriptional program driven by RocA and accounts for ~20% of the RocA-induced changes in gene expression. Consistent with our recent demonstration that TXNIP and its paralog ARRDC4 are the principal direct MondoA targets in response to acidosis (12, 13, 16), their expression is also highly MondoA- and RocA-dependent in these experiments. Leading edge analysis indicates that multiple pathways involved in ribosome function and electron transport chain activity are downregulated in response to RocA, supporting the possibility that translation rate is coupled to mitochondrial function and mtATP levels. Conversely, multiple cell proliferation and migration pathways are upregulated in response to RocA, perhaps reflecting increased mtATP levels. Further experiments will be necessary to fully understand the biological impact the MondoA-dependent changes in gene expression following protein synthesis inhibition.

List of Abbreviations

Glucose 6-Phosphate; G6P, Rocaglamide A; RocA, mitochondrial ATP, mtATP.
Thioredoxin Interacting Protein (TXNIP), Arrestin Domain Containing 4; ARRDC4,
Cycloheximide; CHX, Estrogen Receptor; ER, Patient-Derived xenograft Organoids; PDxOs, Triple Negative Breast Cancer; TNBC, mammalian Target of Rapamycin Complex 1, mTORC1,

Declarations

Ethics approval and consent to participate
De-identified breast tumor tissues were collected by the Huntsman Cancer Institute Tissue Resource and Applications Core Facility with informed consent from patients at the Huntsman Cancer Hospital and the University of Utah Hospitals and Clinics under a protocol approved by the University of Utah Institutional Review Board. (25)

Consent for publication: Not applicable

Availability of data and materials: RNA-seq data is available at GEO under the accession number GSE153499. The metabolomics dataset is available in supplemental table 1.

Competing Interests: Not applicable

Funding: DEA is supported by R01CA222650, funds from the Huntsman Cancer Foundation and the HCl Cancer Center Support Grant P30CA042014-31. BEW is supported by U54 CA224076

Author contributions: DEA, MRK and BRW conceived the majority of experiments and DEA and BRW wrote the manuscript. BRW conducted the all of the experiments presented in the manuscript except for the PDxO experiments. DEA and BEW conceived the PDxO experiments which were conducted by AB and KPG. All authors have approved the manuscript.

Acknowledgements: We thank members of the Ayer lab for many helpful discussions during the course of this work. Michelle Mendoza, Assistant Professor in the Department of Oncological Sciences, provided access to the widefield microscope used for the FRET experiments. The sequencing for the RNA-seq experiment was conducted by Huntsman Cancer Institute’s High Throughput Genomics Core. The measurement of steady state metabolites was conducted by the Health Sciences Center at the University of Utah’s Metabolomics Core.
REFERENCES

1. Hsieh AL, Dang CV. MYC, Metabolic Synthetic Lethality, and Cancer. Recent Results Cancer Res. 2016;207:73-91.
2. Lettieri-Barbato D, Aquilano K. Pushing the Limits of Cancer Therapy: The Nutrient Game. Front Oncol. 2018;8:148.
3. Wellen KE, Thompson CB. Cellular metabolic stress: considering how cells respond to nutrient excess. Molecular cell. 2010;40(2):323-32.
4. Bhat M, Robichaud N, Hulea L, Sonenberg N, Pelletier J, Topisirovic I. Targeting the translation machinery in cancer. Nat Rev Drug Discov. 2015;14(4):261-78.
5. Martineau Y, Muller D, Pyronnet S. Targeting protein synthesis in cancer cells. Oncoscience. 2014;1(7):484-5.
6. Santagata S, Mendillo ML, Tang YC, Subramanian A, Perley CC, Roche SP, et al. Tight coordination of protein translation and HSF1 activation supports the anabolic malignant state. Science. 2013;341(6143):1238303.
7. Truitt ML, Ruggiero D. New frontiers in translational control of the cancer genome. Nat Rev Cancer. 2017;17(5):332.
8. O'Shea JM, Ayer DE. Coordination of nutrient availability and utilization by MAX- and MLX-centered transcription networks. Cold Spring Harbor Perspectives in Medicine. 2013;3(9):a014258.
9. Shalev A. Minireview: Thioredoxin-interacting protein: regulation and function in the pancreatic beta-cell. Mol Endocrinol. 2014;28(8):1211-20.
10. Stoltzman CA, Peterson CW, Breen KT, Muoio DM, Billin AN, Ayer DE. Glucose sensing by MondoA:MLx complexes: a role for hexokinases and direct regulation of thioredoxin-interacting protein expression. Proc Natl Acad Sci U S A. 2008;105(19):6912-7.
11. Peterson CW, Stoltzman CA, Sighinolfi MP, Han KS, Ayer DE. Glucose controls nuclear accumulation, promoter binding, and transcriptional activity of the MondoA-MLx heterodimer. Mol Cell Biol. 2010;30(12):2887-95.
12. Sans CL, Satterwhite DJ, Stoltzman CA, Breen KT, Ayer DE. MondoA-MLx heterodimers are candidate sensors of cellular energy status: mitochondrial localization and direct regulation of glycolysis. Mol Cell Biol. 2006;26(13):4863-71.
13. Wilde BR, Ye Z, Lim TY, Ayer DE. Cellular acidosis triggers human MondoA transcriptional activity by driving mitochondrial ATP production. Elife. 2019;8.
14. Minn AH, Hafele C, Shalev A. Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces beta-cell apoptosis. Endocrinology. 2005;146(5):2397-405.
15. Wilde BR, Ayer DE. Interactions between Myc and MondoA transcription factors in metabolism and tumourigenesis. Br J Cancer. 2015;113(11):1529-33.
16. Stoltzman CA, Kaadige MR, Peterson CW, Ayer DE. MondoA senses non-glucose sugars: regulation of thioredoxin-interacting protein (TXNIP) and the hexose transport curb. J Biol Chem. 2011;286(44):38027-34.
17. Imamura H, Nhat KP, Togawa H, Saito K, Iino R, Kato-Yamada Y, et al. Visualization of ATP levels inside single living cells with fluorescence resonance energy
transfer-based genetically encoded indicators. Proc Natl Acad Sci U S A 2009;106(37):15651-6.

18. Heidelberger C, Chaudhuri NK, Danneberg P, Mooren D, Griesbach L, Duschinsky R, et al. Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature. 1957;179(4561):663-6.

19. Kaadige MR, Yang J, Wilde BR, Ayer DE. MondoA-Mlx transcriptional activity is limited by mTOR-MondoA interaction. Mol Cell Biol. 2015;35(1):101-10.

20. Shen L, O'Shea JM, Kaadige MR, Cunha S, Wilde BR, Cohen AL, et al. Metabolic reprogramming in triple-negative breast cancer through Myc suppression of TXNIP. Proc Natl Acad Sci U S A. 2015;112(17):5425-30.

21. Billin AN, Eilers AL, Queva C, Ayer DE. Mlx, a novel Max-like BHLHZip protein that interacts with the Max network of transcription factors. J Biol Chem. 1999;274(51):36344-50.

22. Kamburov A, Stelzl U, Lehrach H, Herwig R. The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res. 2013;41(Database issue):D793-800.

23. Subramanian A, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehár J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267-73.

24. DeRose YS, Gligorich KM, Wang G, Georgelas A, Bowman P, Courdy SJ, et al. Patient-derived models of human breast cancer: protocols for in vitro and in vivo applications in tumor biology and translational medicine. Curr Protoc Pharmacol. 2013;Chapter 14:Unit14 23.

25. DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011;17(11):1514-20.

26. Gligorich KM, Vaden RM, Shelton DN, Wang G, Matsen CB, Looper RE, et al. Development of a screen to identify selective small molecules active against patient-derived metastatic and chemoresistant breast cancer cells. Breast Cancer Res. 2013;15(4):R58.

27. White-Gilbertson S, Kurtz DT, Voelkel-Johnson C. The role of protein synthesis in cell cycling and cancer. Mol Oncol. 2009;3(5-6):402-8.

28. Duncan R, Milburn SC, Hershey JW. Regulated phosphorylation and low abundance of HeLa cell initiation factor eIF-4F suggest a role in translational control. Heat shock effects on eIF-4F. J Biol Chem. 1987;262(1):380-8.

29. Hiremath LS, Webb NR, Rhoads RE. Immunological detection of the messenger RNA cap-binding protein. J Biol Chem. 1985;260(13):7843-9.

30. Iwaski S, Floor SN, Ingolia NT. Rocaglates convert DEAD-box protein eIF4A into a sequence-selective translational repressor. Nature. 2016;534(7608):558-61.

31. Lampe S, Kunze M, Scholz A, Brauss TF, Winslow S, Simm S, et al. Identification of the TXNIP IRES and characterization of the impact of regulatory IRES trans-acting factors. Biochim Biophys Acta Gene Regul Mech. 2018;1861(2):147-57.
33. Zaid H, Abu-Hamad S, Israelson A, Nathan I, Shoshan-Barmatz V. The voltage-dependent anion channel-1 modulates apoptotic cell death. Cell Death Differ. 2005;12(7):751-60.

34. Goldin N, Arzoine L, Heyfets A, Israelson A, Zaslavsky Z, Bravman T, et al. Methyl jasmonate binds to and detaches mitochondria-bound hexokinase. Oncogene. 2008;27(34):4636-43.

35. Ye Z, Ayer DE. Ras Suppresses TXNIP Expression by Restricting Ribosome Translocation. Mol Cell Biol. 2018;38(20).

36. Wu Y, Giaisi M, Kohler R, Chen WM, Krammer PH, Li-Weber M. Rocaglamide breaks TRAIL-resistance in human multiple myeloma and acute T-cell leukemia in vivo in a mouse xenograft model. Cancer Lett. 2017;389:70-7.

37. Condon KJ, Sabatini DM. Nutrient regulation of mTORC1 at a glance. J Cell Sci. 2019;132(21).

38. Kimball SR, Jefferson LS. Control of protein synthesis by amino acid availability. Curr Opin Clin Nutr Metab Care. 2002;5(1):63-7.

39. Wolfson RL, Sabatini DM. The Dawn of the Age of Amino Acid Sensors for the mTORC1 Pathway. Cell Metab. 2017;26(2):301-9.

40. Hui ST, Andres AM, Miller AK, Spann NJ, Potter DW, Post NM, et al. Txnip balances metabolic and growth signaling via PTEN disulfide reduction. Proc Natl Acad Sci U S A. 2008;105(10):3921-6.

41. Elgort MG, O'Shea JM, Jiang Y, Ayer DE. Transcriptional and Translational Downregulation of Thioredoxin Interacting Protein Is Required for Metabolic Reprogramming during G(1). Genes Cancer. 2010;1(9):893-907.

42. Parmenter TJ, Kleinschmidt M, Kinross KM, Bond ST, Li J, Kaadige MR, et al. Response of BRAF-mutant melanoma to BRAF inhibition is mediated by a network of transcriptional regulators of glycolysis. Cancer Discov. 2014;4(4):423-33.

43. Waldhart AN, Dykstra H, Peck AS, Boguslawski EA, Madaj ZB, Wen J, et al. Phosphorylation of TXNIP by AKT Mediates Acute Influx of Glucose in Response to Insulin. Cell Rep. 2017;19(10):2005-13.

44. Chen JL, Merl D, Peterson CW, Wu J, Liu PY, Yin H, et al. Lactic acidosis triggers starvation response with paradoxical induction of TXNIP through MondoA. PLoS Genet. 2010;6(9):e1001093.

45. Polier G, Neumann J, Thauad F, Ribeiro N, Gelhaus C, Schmidt H, et al. The natural anticancer compounds rocaglamides inhibit the Raf-MEK-ERK pathway by targeting prohibitin 1 and 2. Chem Biol. 2012;19(9):1093-104.

Figure Legends

Figure 1 TXNIP expression is suppressed by translation

Heatmaps showing TXNIP mRNA relative to (A) EIF4E and EF2 kinase (EEF2K) in the Genotype-tissue expression project (GTEx) database and (B) EIF4G1, RRP12 and RRP1 in breast cancer (The Cancer Genome Atlas, TCGA). Spearman correlation statistics are reported. (C) TXNIP mRNA levels in HeLa cells following 16 hr treatments with the
translation elongation inhibitors CHX (50 µg/mL), emetine (50 µg/mL), and puromycin (100 µg/mL) or the translation initiation inhibitor Rocaglamide A (RocA, 100 nM). (E) Relative rate of 3H-2-deoxyglucose uptake in HeLa cells following 16 hr treatments with RocA or vehicle. (F-G) TXNIP mRNA and protein levels of the indicated proteins in HeLa cells transfected with a pool of four siRNAs against EIF4E or a pool of four scrambled siRNA controls. (H) TXNIP mRNA levels in HeLa cells following 16 hr treatments with CHX or Torin (250 nM). TXNIP mRNA levels following 16 hr CHX treatments of (I) C2C12 mouse myoblasts, (J) L6 rat myoblasts, and (K) 293T embryonic kidney cells. TXNIP mRNA levels were determined using RT-qPCR.

Figure 2 Protein synthesis inhibition drives MondoA transcriptional activity.
TXNIP mRNA levels following 16-hour CHX treatments of (A) MondoA+/+ and MondoA-/- MEFs, and (B) MondoA-/- MEFs expressing empty vector or MondoA. (C) Immunofluorescence was used to assess the subcellular localization of MondoA in HeLa cells treated with CHX for 16 hours. Cells were scored for localization of MondoA (cytoplasmic > nuclear or cytoplasmic ≤ nuclear). (D) Chromatin-immunoprecipitation was used to determine the enrichment of MondoA on the TXNIP promoter in HeLa cells treated with CHX for 16 hours. (E) HeLa cells transfected with the indicated reporter luciferase constructs were treated with CHX for 16 hours. The ChoREmut TXNIP promoter lacks the double CACGAG carbohydrate responsive element located directly upstream of luciferase. The media was replaced with regular medium for 1 hour to wash out CHX, allowing translation of accumulated luciferase message. (F) To ensure that TXNIP levels were at a minimum, HeLa cells were starved of glucose for 6 hours prior to treatment with CHX. We then measured TXNIP mRNA levels in cells growing in DMEM + 10% FBS or glucose-free DMEM + 10% FBS following 16 hr CHX treatments. (G) TXNIP mRNA levels in HeLa cells growing in glucose-free DMEM + 10% FBS or in glucose-free DMEM +10%
dialyzed FBS following 16 hours treatments (H) TXNIP mRNA levels in HeLa cells growing
in glucose-free DMEM + 10% dialyzed FBS with the indicated amount of glucose following
16 hr treatments with CHX. TXNIP mRNA levels were determined using RT-qPCR.

Figure 3 Protein synthesis inhibition drives G6P synthesis.
(A) TXNIP mRNA levels in HeLa cells treated with CHX and electron transport chain
inhibitors metformin (Met, 5 mM) and oligomycin (Olig, 1 µM) for 16 hrs. (B) TXNIP mRNA
levels following a 16 hr RocA treatment of HeLa cells transfected with pool of siRNA
specific for ATP5I (siATP5I) or a pool of scrambled control siRNAs (siSCRM). (C) A
mitochondrial-targeted ATP FRET biosensor (mitATEAM) was used to determine relative
mtATP levels in HeLa cells treated with the protein synthesis inhibitor RocA for up to 6
hours. Relative mtATP was determined as the ratio of FRET to CFP intensities. (D) TXNIP
mRNA levels following a 16 hr RocA treatment (100 nM) of HeLa cells expressing wild
type mouse VDAC1 (mVDAC1) or VDAC1(E72Q), which cannot bind Hexokinase II. (E)
TXNIP mRNA levels in HeLa cells treated for 16 hrs with CHX or methyl-jasmonate (3
mM). (F) Heatmap showing relative metabolite levels from HeLa cells treated with CHX
for 16 hours. Metabolite levels were assessed through GC-MS. (F) Log2(fold-change) of
glycolytic and TCA cycle intermediates from HeLa cells treated with CHX for 16 hrs,
relative to control DMSO treatment. TXNIP mRNA levels were determined using RT-
qPCR.

Figure 4 Protein synthesis inhibition drives TXNIP expression independent of oncogenic
burden
TXNIP mRNA levels following a 16 hr CHX treatment of (A) normal or HRAS(G12V)-
expressing murine embryonic fibroblasts (MEFs), (B) TSC2/-/ MEFs expressing empty
vector or human-TSC2, and (C) MDA-MB-231 expressing tet-inducible MYC(T58A) with
or without doxycyline. Immunoblots showing TXNIP, MondoA and tubulin protein levels following 16 hr RocA treatment of (D) HeLa cells, (E) MDA-MB-157 cells, and (F) MDA-MB-231 cells. TXNIP mRNA levels were determined using RT-qPCR.

Figure 5 Cytotoxicity elicited by protein synthesis inhibitors requires TXNIP
(A) Relative viability over the indicated time course of MDA-MB-157 and MDA-MB-231 cells in the presence of RocA (100 nM) was assessed by crystal violet staining. (B) Viability of patient-derived xenograft organoids (PDxOs) following treatment with RocA at various concentrations. PDxOs are separated into ER+ and ER- groups. (C) TXNIP+/+ or TXNIP-/- MEFS were treated with RocA for two days then cell viability was analyzed using crystal violet staining. (D) MDA-MB-157 cells expressing scrambled shRNA (shScrm) or shTXNIP were treated with 100 nM RocA for two days, then cell viability was analyzed using crystal violet staining. (E) We previously characterized MDA-MB-231 cells in which MondoA was knocked out by CRISPR/Cas9. Cells were treated with RocA for two days and then cell viability was analyzed using crystal violet staining.

Figure 6 The MondoA-dependent transcriptional response to translation inhibition
mRNA sequencing was used to determine gene expression changes in HeLa and HeLa:MondoA-KO cells following 4 hr treatments with 100nM RocA. (A) Heatmap depicting the top 500 genes regulated by RocA treatment. Regression analysis using DESeq2 was performed to generate a genotype:treatment interaction scores. (B) A volcano plot showing log2(fold-change) of HeLa cells treated with RocA compared to HeLa:MondoA-KO cells treated with RocA. Genes with an adjusted p-value ≤ 1E-10 are indicated in blue (downregulated) and red (upregulated). (C) Overrepresentation analysis was used to determine pathways that are dysregulated in HeLa cells treated with RocA compared to HeLa:MondoA-KO cells treated with RocA. (D) Gene set enrichment analysis
and leading-edge analysis was performed using all gene sets in the Molecular Signature Database (Broad Institute). HeLa cells treated with RocA were compared to HeLa:MondoA-KO cells treated with RocA. Nodes that contain at least 4 gene sets are shown.
Figure 1 - Wilde et al.
Figure 2 - Wilde et al.
Figure 3 - Wilde et al.
Figure 4 - Wilde et al.
Figure 5 - Wilde et al.
Figure 6 - Wilde et al.
	lactic acid	pyruvic acid	glycerol	glyceric acid	citric acid			
CHX 1	116.442146	52.7953518	3286.17705	1.96392147	170.257141			
CHX 2	122.764541	63.4095206	3066.10822	1.80608682	173.569202			
CHX 3	135.746381	61.8444506	3276.38016	1.67637229	214.016473			
CHX 4	140.461227	45.4579777	2390.14977	1.95621808	178.998425			
CHX 5	147.929518	66.2854254	3704.17216	1.5645384	218.463319			
CHX 6	116.10042	3.89059838	1843.9029	2.7063732	121.128143			
DMSO 1	71.5953453	48.8728557	3259.26081	1.36230145	203.219281			
DMSO 2	69.2957727	39.0247271	2251.00142	1.29558367	259.27104			
DMSO 3	72.203743	53.8758806	3096.56294	1.41884869	194.748553			
DMSO 4	75.1761166	50.6580908	1750.53235	1.57010789	324.600941			
DMSO 5	92.2003957	51.5939123	3820.22633	1.5595411	332.95659			
DMSO 6	84.2406176	53.8882847	2254.07063	1.47893532	262.73666			
aconitate	isocitric acid	2-ketoglutaric acid	succinic acid	fumaric acid	malic acid	2-hydroxygl.		
-----------	----------------	---------------------	--------------	--------------	------------	--------------		
0.98861058	4.68814212	0	16.2344931	36.7381879	51.6493615	0.14962156		
1.23309464	4.95560798	0	19.5620689	44.2597738	60.9965654	0.13066544		
1.12888993	4.80801823	0	21.3038492	46.771138	64.3303481	0		
1.04214519	4.23234586	0	21.3693726	45.0367301	61.8071522	0.25334465		
1.84712022	6.90602411	0	28.0679567	49.792296	71.020394	0.21503788		
1.03694465	3.10261016	0	23.2531286	29.1488355	45.4379127	0.22802316		
0	4.57593565	0	44.9233458	61.6365724	117.42107	0.57752267		
1.03064409	4.29920275	0	44.6855058	73.5775069	121.607268	0.61236951		
1.56654287	3.74158573	0.72665533	39.9778589	79.1847542	135.593098	0.8103487		
2.38802456	7.09185682	0	44.211317	75.0454771	131.339728	0.73677414		
2.05810519	7.83846005	0.6642993	49.9678055	73.1503567	137.840067	0.64528051		
1.12002649	5.32108804	0	47.6598212	81.6041291	145.683308	0.45705548		
2-aminoadipic acid	lysine	valine	leucine	isoleucine	threonine	homoserine		
--------------------	--------	--------	---------	------------	-----------	------------		
2.61671479	38.1900712	931.42855	833.846479	611.718315	37.519545	9.03825035		
3.75542167	44.0758743	1149.17355	916.114792	644.818484	50.0448654	10.1619		
4.80216906	52.0634675	1354.35791	1214.048	846.935337	52.0892039	9.36218247		
4.99635384	45.2890813	1263.08203	1094.66745	819.814335	50.1304478	10.6563713		
5.4820874	62.5222626	2130.43262	2005.55213	1399.51337	93.4380926	12.4680615		
2.88505364	34.4726155	1262.93204	1218.1326	825.519335	45.913397	10.6782123		
7.21321153	107.124633	4580.09474	4475.89032	3044.53882	201.802255	9.16118618		
8.37131443	106.347525	3133.4123	2757.77941	1996.33722	151.350376	7.61434419		
7.93117712	119.856776	3229.61668	2941.24873	2141.53007	157.798424	8.30238181		
8.08828705	110.521801	3049.25501	2804.4261	1964.8963	126.782764	7.63470033		
7.01385948	102.44745	3172.36471	2950.62187	2093.68936	135.282039	8.43483508		
7.93833206	137.158982	2906.62942	2688.65149	1909.70001	110.748873	7.64292988		
------------	------------	------------	------------	------------	------------			
glycine	serine	alanine	glutamic acid	glutamine	proline			
33.6770417	143.040425	4.15282944	207.573865	101.0411	797.182547			
36.6134255	170.90653	6.10933547	292.183421	121.385295	856.763643			
45.6867017	154.675467	5.54969307	373.477732	176.320908	964.240453			
41.95288	131.672651	6.04947276	382.485839	161.095403	1000.93489			
59.5337875	288.350629	8.1424919	473.30388	202.969565	1571.68703			
30.9662922	101.817946	5.48975094	202.113745	231.285756	815.519211			
131.845165	402.691652	19.9780926	800.971543	493.579281	2915.71633			
113.443636	228.139183	15.2218951	806.034523	389.989125	1794.21064			
112.558714	287.661973	16.1341115	816.729087	403.960303	1912.04188			
101.656169	235.881325	1.64313616	708.989318	461.852713	1974.54658			
104.822082	306.269147	15.8086932	707.128266	372.182853	1749.49538			
100.452135	211.642668	4.01054158	784.724812	371.165616	1691.49402			
aspartic acid								
1007.67459								
1168.20328								
1227.20045								
1021.11305								
1422.00274								
524.102627								
1745.00104								
1774.02574								
2051.01422								
1858.98827								
2048.0592								
2033.53318								
Protein	Value1	Value2	Value3	Value4	Value5	Value6	Value7	Value8
--------------	--------	--------	--------	--------	--------	--------	--------	--------
Asparagine	0.9199	106.34	102.01	0.7082	206.09	35.07	35.07	102.37
Methionine	1.11	128.91	128.13	0.8923	255.64	47.71	47.71	129.50
Cysteine	1.45	142.83	134.61	1.41	331.47	60.73	60.73	158.84
Homocysteine	1.40	121.90	129.95	1.34	314.31	60.52	60.52	160.40
Phenylalanine	1.79	228.05	125.15	1.31	514.08	91.55	91.55	229.03
Tyrosine	1.24	73.77	17.37	1.24	254.01	68.25	68.25	134.24
Tryptophan	3.92	481.30	157.84	2.19	1015.88	181.79	181.79	508.08
	4.92	377.49	353.42	2.71	806.13	172.22	172.22	469.51
	4.38	424.53	200.79	2.03	849.86	160.88	160.88	475.35
	4.14	355.53	314.59	2.01	682.08	152.95	152.95	429.89
	2.98	394.26	141.05	1.19	795.79	136.49	136.49	391.42
	4.06	315.02	225.49	1.64	620.37	133.71	133.71	348.76
histidine	4-hydroxyproline	ornithine	phosphate	diphosphate	1-phosphoglycerate	3-phosphoglycerate		
-----------	------------------	-----------	-----------	-------------	-------------------	-------------------		
6.95352332	7.54757632	72.5631302	31885.9209	348.842106	116.271466	108.670691		
9.29660443	8.27838185	80.2034179	29390.3075	328.340969	149.933275	114.098034		
5.10398627	11.5813578	67.4046722	32241.6473	483.845732	254.653001	112.27366		
0.32984479	10.3175849	63.5388374	28453.033	436.8536	250.336303	111.396138		
9.65602772	11.8436246	72.9364366	36150.1759	498.683863	204.725707	77.9002276		
3.83153664	7.91053448	33.7728461	19170.6103	227.226197	166.735018	89.8478521		
36.3292031	23.3302856	68.3584239	34776.722	383.109442	32.3296257	38.9932593		
29.3355081	20.623557	62.3432922	30218.2955	314.833626	55.9595099	38.1532408		
16.180389	21.9473542	76.3559185	30727.4193	300.372533	42.4187513	60.9868628		
28.6498033	20.1558036	72.4643334	28953.5774	277.584526	52.7369623	58.7220351		
10.612487	16.1225033	77.6184148	39528.5919	360.58003	30.2045616	42.3874576		
29.7865463	18.007986	60.4766192	32252.7475	347.9828	50.6504074	50.2828386		
2-phosphoglycerate	DHAP	phosphoenolpyruvate	ribose	galactose or glucose				
-------------------	------	---------------------	-------	---------------------				
6.17770784	0.36463328	5.76320071	1.16261491	7.93326745	0.98196074	13.342918		
5.1017597	0.59138212	3.95383957	1.32407651	7.04141564	1.19437896	15.2646276		
6.57914709	0.59544557	3.77505471	1.60618225	4.8513021	1.12538042	75.2355418		
6.14783009	0	4.79566514	1.45847036	4.34163179	0.93687844	16.7217402		
4.32419114	0.52794556	2.20965202	1.54661857	4.30351442	0.60789554	9.91104058		
5.71553125	0.01869042	1.75465688	1.12890153	6.14615858	1.27543444	14.6615151		
1.60448838	0	1.34483605	2.06441066	22.552493	0.89073556	3.41623287		
2.01567587	0	1.98170926	2.58049212	12.9325453	1.05781738	3.36754707		
3.03462295	0.01181553	3.10650078	3.70023136	32.5596729	1.48186488	7.17498295		
2.60305225	0.04138269	2.16893974	1.71941014	25.7416551	1.28367477	4.03765212		
2.13961431	0	1.53101291	1.59893717	23.9826991	1.20361796	7.92812008		
2.44500627	0	1.30284868	2.24390186	27.6571489	1.20277758	18.714257		
	glucose-6-P	mannitol	sorbitol	inositol	myo-inositol	sedoheptulose	sedoheptulose	
----------------	-------------	----------	----------	----------	--------------	---------------	---------------	
35.9523977	0.5098216	3.6241666	264.554187	11.4044876	1.67465313	14.3625612		
38.3527278	0.87110297	5.69314183	318.76174	20.5057638	2.5010334	19.2717013		
34.1954212	1.24002417	7.41206899	473.517266	15.155201	2.34551741	17.4831709		
30.7351764	1.28162586	5.28844531	434.402614	11.6667694	2.24433552	17.9457426		
22.0055427	0.90977563	4.72531949	544.151968	11.5376091	1.25576606	11.964928		
19.4208444	0.44857014	3.86667464	316.478946	8.10042918	1.24777262	11.5177861		
0.6671784	2.20064081	9.8423369	525.642269	9.75966733	1.08401936	27.084183		
1.18786099	2.18356799	11.6563712	557.923942	7.49594628	0.74338359	20.6429665		
1.27213915	1.91017798	7.04698134	540.053592	8.75924912	2.17504286	48.4771663		
2.13161417	2.5884466	11.9612198	507.668218	11.6593696	1.40701141	31.8573674		
1.48346592	2.13282188	13.4557967	475.937166	13.980172	1.46988107	25.8506163		
2.21792187	2.40555517	16.2067063	489.955779	9.34702517	2.40074406	33.112948		
	myristic acid	palmitiladic acid	palmitic acid	linoleic acid	oleic acid	elaidic acid	stearic acid	
--------	---------------	-------------------	---------------	---------------	------------	--------------	--------------	
16.0272395	2.84391789	745.728248	0.99747705	40.3545964	11.5618673	340.053225		
15.0894391	2.47296453	709.527884	1.12081915	37.3045006	13.0588013	331.298848		
15.1645597	2.57363506	922.15684	1.30202538	38.1155353	12.7149271	450.275002		
12.7715507	2.44403071	721.269229	1.17233993	40.3781691	13.456078	345.761793		
15.8287175	2.69900104	720.123251	0.97594113	32.7657072	10.8056533	350.089933		
9.27867342	2.28322203	693.757836	1.03245895	29.76861	10.0741378	323.836991		
20.2901411	3.52801145	645.104462	1.22956439	40.7316491	12.8894676	294.307181		
19.2348078	3.17927499	949.49397	1.16748102	37.7048815	10.6082585	477.110576		
24.5910799	4.62282763	725.975941	1.83239238	58.4740926	17.4732054	336.764378		
17.8635272	3.16780424	693.7045	1.31207465	37.078889	11.0540464	323.156604		
26.709179	3.32964741	730.740098	1.18459916	43.4294158	12.9898362	348.379474		
21.0717011	3.21189726	822.932726	1.41735311	40.2285802	11.6361515	382.275432		
1-monooleoyl	1-monostearoyl	1-monopalmitoyl	2-monostearoyl	Cholesterol	Xanthine	Hypoxanthine		
-------------	---------------	----------------	---------------	-------------	---------	-------------		
3.55766813	5.57257177	26.9473966	2.59565694	715.103486	26.1217072	206.71936		
3.25405352	6.02803252	30.6512097	2.23099148	672.335659	27.3884451	232.484799		
3.85109392	6.00124904	31.8323562	2.26245919	960.360113	25.9083163	189.98691		
2.77983656	7.4582677	28.2851847	2.47582298	929.819561	34.6297294	205.81421		
3.12769834	6.10376741	28.4883833	0	775.611294	27.2160758	190.658646		
2.21668413	4.80418624	21.0723301	1.64400958	652.707687	68.1916332	280.274849		
4.0007417	5.63201036	32.5461967	2.83638148	377.258532	28.6153167	756.527913		
2.82796316	5.80149753	24.2919512	1.41883395	468.193855	23.7591607	648.756488		
3.89912618	7.15824428	32.3341931	3.6874312	464.450914	37.8431858	1244.95948		
3.00795346	5.85362187	27.2289976	3.06231895	347.169111	34.4368883	1104.87721		
4.31047378	6.12541011	31.9257625	1.58942777	420.361533	27.2743089	812.182649		
2.75869067	5.72810797	29.7345863	2.40459295	350.890635	29.9991974	857.937402		
adenosine	adenine	uracil	adenosine-5' ribose(xyl)-5 phosphoetha	4-aminobutyrl				
-----------	---------	-------	-------------------------------------	--------------				
31.8339258	116.330206	26.0241762	132.064853	17.602145	10.7217699	7.54757632		
36.599875	129.600763	31.7313774	187.279394	25.9017627	16.9613426	8.27838185		
26.7342192	113.993316	24.2272646	201.964842	23.9441648	21.0675427	11.5813578		
27.8122747	150.67648	32.0485946	196.703738	16.2150509	20.5825139	10.3175849		
25.9575529	140.416976	32.4652155	246.948946	20.6505284	16.9273405	11.8436246		
33.1904525	146.531418	32.2185506	127.624187	4.24795926	19.9643619	7.91053448		
109.518558	97.082026	18.5063413	155.433938	18.5855178	15.0027814	23.3302856		
69.9654002	109.857732	19.6841376	186.656244	10.8741686	14.2620956	20.623557		
186.445186	116.060051	27.6709957	137.945374	22.7015791	13.9255913	21.9473542		
147.520359	135.902372	28.6311405	165.86993	20.6783615	16.3664476	20.1558036		
111.571037	118.093125	33.0682486	149.429305	22.9665521	11.3501445	16.1225033		
108.774394	99.0097641	22.6199164	195.991164	18.705597	14.7604865	18.007986		
B-alanine	pantothenic acid	creatinine	3-hydroxybutyrate	N-methylalanine	sn-glycero-3-phosphoethanolamine	nicotinic acid		
-----------	-----------------	------------	-------------------	----------------	---------------------------------	---------------		
43.4899992	10.1044425	12.5748606	0.50206345	10.3804111	1.56936389	55.5627964		
61.5269704	14.0441156	12.9736268	0.71333654	10.4987265	1.93481648	59.1798318		
73.7545318	19.5502678	16.791799	0.63054059	11.1485192	1.71146732	51.4422856		
72.4684911	18.7981728	16.4395838	0.71830659	11.5137691	1.90654266	52.3340495		
93.971552	22.8381252	26.1022899	0.80087824	12.8622976	3.5522603	57.6563414		
65.6833785	19.9658571	3.18709087	0.78499775	8.92505062	0.45006538	48.9681597		
245.209604	52.6139451	52.4066889	1.62078942	23.2825469	1.40421842	41.5897825		
201.601554	53.4479215	52.9985917	1.85651803	15.6605496	1.07722687	34.2655193		
199.727816	50.6207011	54.2923782	1.54881957	16.0317102	2.50981632	48.7459697		
225.581092	50.1939555	39.1131321	1.62366196	14.3468101	0.72054564	39.3338398		
168.943946	42.3983255	34.9171471	1.71440842	16.8248402	3.51983535	39.7628641		
155.613439	45.8575793	36.8810096	1.77241305	13.6914578	2.02451523	37.3351785		
1-methylnico cytosine
35.2574887 4.38557408
40.3911087 6.33388645
39.1859335 4.06166407
36.6763568 5.44144561
51.4078369 5.25877884
40.429627 3.80013673
29.8588534 3.93400232
23.4913097 1.83031521
34.855825 2.57874027
30.2523682 2.57221809
37.1206102 2.6938763
35.0402788 2.36610406