Determination of fungal and parasitic infections caused vaginitis: molecular identification of Candida parapsilosis in Al-Nasiriyah city, Iraq

Enas R. Alwaily1, Mohamed H. Flaith2*, Meethaq S. Abood3
Khwam R. Hussein4

1College of Pharmacy, Al-Ayen University, Al-Nasiriyah, Iraq.
2Department of Nursing Techniques, Nasiriyah Technical Institute, Southern Technical University, Al-Nasiriyah, Iraq.
3Department of Biology, College of Education for Pure Science, Thi-Qar University, Al-Nasiriyah, Iraq.
*Corresponding author: moh.alqurayshi@stu.edu.iq
E-mail addresses: Enas.Kazem@alayen.edu.iq, Meethaq.Sattar@utq.edu.iq, khrussein@stu.edu.iq

Received 10/11/2021, Revised 24/6/2022, Accepted 26/6/2022, Published Online First 20/11/2022
Published 1/6/2023

Abstract:
The current study aims to determine the prevalence of Trichomonas vaginalis and Candida spp., and also to identify Candida parapsilosis and some virulence genes. It was conducted in Bint Al-Hoda Hospital of Maternity and Children in Thi-Qar province, south of Iraq for the period from the beginning of January to the end of December 2020. Two hundred and fifty samples were collected from the female genital tract for women whose age ranged between 17-50 years. Microscopic, traditional and molecular tests were used in the sample examination. The results recorded 12 (4.8%) samples infected with T. vaginalis parasite, whereas 130 (52%) samples showed Candida yeast distributed as follows: 75 (30%) C. albicans, 20 (8%) C. krusei, 14 (5.6%) C. parapsilosis, 11 (4.4%) C. glabrata and 10 (4%) C. tropicalis. A 18S rRNA gene of C. parapsilosis appeared in all samples confirmed with biochemical tests and CHROM agar Candida. The cph1 and hwp1 genes were observed in all of C. parapsilosis isolates (100%), whereas sap1 and plb1 genes showed different proportions (64.3% and 57.1%, respectively). Depending on phylogenetic analysis, there was a slight genetic variation between local isolate sequences compared with global recorded strains. The current study confirmed that 18S rRNA gene is highly precise to identify C. parapsilosis. The appearance or absence of the genetic variation of some virulence genes may cause different clinical manifestations.

Keywords: 18S rRNA, C. parapsilosis, T. vaginalis, Trichomonal vaginitis, vulvovaginal candidiasis.

Introduction:
Vaginitis is considered a common disease among all women that it has a wide spectrum of clinical manifestations. This disease develops to become a chronic, if continued for more than a year. However, vaginitis is usually occurred by disbalance of the vaginal flora, this means some pathogens become dominant such as Candida, Trichomonas or Mycoplasma. Normally, Candida species are found in the genital, mucosal alimentary and upper respiratory tracts of human and other animals. Candida parapsilosis is an opportunistic fungal pathogen and considered one of the most common Candida species found in the clinical specimens.

Candida parapsilosis complex species show differences in the sensitivity to antifungals, geographical distribution, virulence and formation of biofilm. However, biofilms formation in Candida spp. is important for its pathogenicity and also considered as substantial virulence factors. In addition, the site of the infection, species and strain, and the micro-environment play a crucial role in the ability of C. parapsilosis to generate biofilms. So, the cell surface proteins, such as Als1, Als2, Hwp1, the cell wall-related protein and Sun4I have an effective role in occurrence, the adhesion process and the virulence of the biofilm. Modrzewska and Kurnatowski have mentioned that ALS, EPA, HWP1 are specific proteins existing on the cell wall at Candida spp. that have an important role in adhesion. The production of hydrolytic enzymes, such as phospholipases (PLs) and aspartyl proteinases...
(SAPs) is mainly responsible for pathogenicity of Candida species, which play an essential role in C. parapsilosis adherence, tissue penetration, and host invasion. Pharkjaksu et al. confirmed that the clinical isolates of C. parapsilosis have many virulence factors like secretion phospholipase and protease enzymes and pseudohyphae formation.

For the importance of C. parapsilosis as an essential causative agent causes vulvovaginal candidiasis. Moreover, molecular studies are considered necessary to determine and to identify C. parapsilosis virulence factors that can be targeted by antifungal agents to control the disease. Generally, this study aims to detect the prevalence of T. vaginalis and identify C. parapsilosis with PCR technique and to sequence some virulence genes that may increase pathogenicity in C. parapsilosis.

Materials and methods:

Sample collection:

Randomly, vaginal swabs and urine samples were collected from 250 women who attended the consulting clinic at Bint Al-Huda Hospital of Maternity and Children in Al-Nasiriyah city, Thi-Qar province/Iraq. The current study was conducted for the period from the beginning of January to the end of December 2020. The age of the women ranged between 17-50 years. Urine samples were directly collected then centrifuged and examined with microscopy to determine T. vaginalis. All vaginal swabs were cultivated on sabouraud dextrose agar to diagnose Candida spp. that may grow.

C. parapsilosis isolates

The phenotype of fungal colonies was checked and identified after the cultivation and incubation on SDA depending on microscopic and traditional tests (Germ tube formation, Sugar fermentation, Chlamydospore formation and Differential medium CHROM agar Candida) were used to identify C. parapsilosis.

Genomic DNA Extraction

Using EZ-10 Spin Column Fungal Genomic DNA Mini-Preps Kit, genomic DNA of Candida spp. was extracted according to the produced company protocol and then DNA was checked with Nanodrop-spectrophotometer. Finally, the extracted DNA was stored at -20°C until to used with PCR technique.

PCR amplification

In the study, 18S rRNA gene was used to identify C. parapsilosis isolates according to Mousavi et al. The conventional PCR technique was also used to determine some virulence genes (hwp1, plb1, sap1, cph1) in all C. parapsilosis isolates. The primers were designed online with NCBI database and Primer 3. They were provided by Bioneer Company (Korea) (Table 1). The PCR master mix was prepared according to AccuPower®PCR PreMix kit (Bioneer, Korea). The PCR master mix reaction components consisted of 5 μl of DNA template, 10 pmol of each F and R primers and 12 μl of PCR water then placed in standard PCR tubes. PCR thermocycler conditions consisted of an initial denaturation set at 95 °C for 5 min, then 30 cycles at 95 °C for 20 s., 60 °C for 20 s. and 72 °C for 1 min. Final extension was at 72 °C for 5 min. PCR products of each gene were electrophoresed using 1% agarose gel with 3μL of ethidium bromide. In each comb well, 10 μl of PCR product was added and also 5 μl of ladder (100bp) was added in one well. Next, the gel tray was fixed and filled with a (1X) TBE buffer inside the chamber. After that, the current was set at 100 volts and 80 mA for 1 hr. Finally, PCR amplification products were imaged with an UV transilluminator.

Phylogenetic analysis

Using a purification kit, the gene samples were purified, and one sample was sent to Macrogen Company (Korea) in order sequencing deposited into GenBank for an obtainment of accession numbers. The recorded nucleotide sequences of C. parapsilosis isolates were compared with C. parapsilosis strains in NCBI GenBank to detect mismatching between genes sequence using the NCBI-Blast, (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Phylogenetic tree analysis has based on molecular evolutionary genetic analysis using Mega V. 6.
Results:
A total 250 women suspected with vaginitis, 12 (4.8%) samples were infected with T. vaginalis parasite (parasitic infection) with microscopy, whereas 130 (52%) samples showed Candida spp. yeast (fungal infection) with biochemical tests and CHROM agar Candida that distributed as follows: 75 (30%) C. albicans, 20 (8%) C. krusei, 14 (5.6%) C. parapsilosis, 11 (4.4%) C. glabrata and 10 (4%) C. tropicalis.

Molecular identification of C. parapsilosis

All isolates of C. parapsilosis were identified with biochemical tests and CHROM agar Candida have confirmed their diagnosis through the presence of 18S rRNA gene at 507bp (Fig 1A).

In the current study, PCR product of cph1 and hwp1 genes showed in all of C. parapsilosis isolates which were molecularly identified in this study at 546bp and 351 bp (Fig 1B, C), respectively. The sap1 gene appeared in 9 (64.3%) C. parapsilosis at 637bp, whereas plb1 gene detected in 8 (57.1%) of these isolates, which generated at 598bp (Fig 1D, E).

Table 1. Oligonucleotide primers designed and used in PCR technique

Primer	Sequence (5'-3')	Product Size
18S rRNA gene Candida	F GCTACACTGACGGAGCCAG	507bp
parapsilosis	R TGCGAGAACCAAGAGATCCG	
C. parapsilosis HWP1	F ATATGTTCGGCGGACGTGTT	351bp
Adhesion gene	R CCTTGCTGACCAAACGGAATG	
C. parapsilosis	F GCCTTTGGACTTTGATGTGCT	637bp
SAP1 proteinase gene	R CTGCTCGCAACCAACTTG	
C. parapsilosis	F TGAGGATGGGCAAAATGTACCT	407bp
phospholipase gene	R TCAATCTGTTGTCGCTGCA	
C. parapsilosis, hyphal	F CAGGTCTTTGGGCAAGCAAC	546bp
formation CPH1 gene	R GCTGCTGCATTGACCTTT	

![Image A](image1.png)

![Image B](image2.png)
Figure 1. Agarose gel electrophoresis of *C. parapsilosis*. Where Marker ladder (100-2000bp), lane (NTC): Non template negative control. A: Lanes (1-7) positive for 18S rRNA gene (A) at 507bp, B: *cph1* gene at 546bp, C: *hwp1* adhesion gene at 351bp, D: *sap1* proteinase gene at 637bp and E: *plb1* gene at 598bp. (Thermal condition of the PCR reaction included an initial denaturation at 95 °C for 5 min, then 30 cycles at 95 °C for 20 s., 60 °C for 20 s. and 72 °C for 1 min. and finally, final extension was at 72 °C for 5 min.).
Phylogenetic analysis

Among all C. parapsilosis isolates containing virulence genes in their genome; one isolate was selected and sent for sequencing in order to conduct multiple alignment analysis. The nucleotide sequence of 18S rRNA gene showed upstream slight genetic variation. Phylogenetic analysis was observed in the genetic affinity between local isolates and the global strains, where C. parapsilosis isolate (MW899046) has showed relatively similarity and genetically related to NCBI-Blas strains, especially 4100050L39-1 (Identity: 99.34%).

Phylogenetic analysis of cph1 gene in C. parapsilosis isolate (MW960357) showed genetic closely related to NCBI-Blas C. parapsilosis (U15152.1/USA/ 1995) (Identity: 97.31%) at total genetic change (0.8-0.2 %). AS for hwp1 gene recorded simple genetic variation (MW960355). It was near NCBI- BLAST isolate (KX758629.1) isolated in Italy 2016, (Identity: 99.00%) at genetic change (0.08- 0.2%). Phylogenetic tree of sap1 gene of local C. parapsilosis isolate (MW960356) showed a similarity related to NCBI-Blas C. parapsilosis isolate (FJ560879.1) (Identity: 99.32%) at total genetic change (0.4 -0.1 %), while local C. parapsilosis isolate of pbl1 gene (MZ020782) showed homology identity to NCBI-Blas isolate (AY544775.1/ Japan/2018) (Identity: 98.91%) at total genetic change was (0.4 -0.1 %) (Fig. 2).
Figure 2. Phylogenetic analysis using Maximum Likelihood method (MEGA 6.0 version). A: 18S rRNA gene sequencing of local C. parapsilosis (MW899046) isolate at total genetic changes (0.003-0.0005%), B: cph1 gene partial sequence in local C. parapsilosis (MW960357) isolate at total genetic changes (0.8-0.2%), C: hwp1 gene partial sequence in local C. parapsilosis (MW960355) isolate at total genetic changes (0.8-0.2%), D: sap1 gene partial sequence in local C. parapsilosis (MW960356) isolate at total genetic changes (0.8-0.2%), E: plb1 gene partial sequence in local C. parapsilosis isolate at total genetic changes (0.4-0.1%).
Discussion:

Overall, T. vaginalis parasite causes a common infection that is transmitted by sexual contact. In the current study, T. vaginalis recorded 4.8% of 250 samples. The finding is nearly consistent with Kadir and Fattah, 2010. The determination of non-C. albicans species in vaginal candidiasis is essential where some of these species have resistance to theazole compounds used to treat this infection. The common species recorded in this study included C. tropicalis, C. glabrata, C. krusei, and C. parapsilosis. According to this study, the prevalence of C. parapsilosis was 10.7%. Other authors have reported the prevalence of 8.5% for C. parapsilosis in patients with VVC. Bitew and Abebaw have recorded 2.3% for C. parapsilosis in their study of Candida isolated from 210 infected women with vulvovaginal candidiasis.

In the current study, 18S rRNA gene was used to identify C. parapsilosis. This gene was demonstrated to detect different Candida species regardless of morphological form of growth. The results showed the presence of this gene in all isolates at 507bp and this is comparable with isolation methods with chemical tests as well as by CHROM agar Candida. This result is consistent with Kanwal et al. whose study used specific regions (18S, 5.8S and 28S) of ribosomal RNA genes to diagnose C. parapsilosis. In the study, virulence genes showed a variation in its presence inside C. parapsilosis genome. During infection, pathogenic fungi excrete several hydrolytic enzymes so as to facilitate a penetration of the host. Generally, these secreted enzymes deactivate the membrane of the host cell and damage the extracellular matrix and host tissues. Hydrolytic enzymes in fungi may support cell adhesion, intracellular survival or biofilm formation. Ramos et al. have found that the clinical isolates of C. parapsilosis taken from patients of cutaneous candidiasis (15/16) actively produced protease (saps). Conventional-PCR was performed for determination of virulence factors.

There is a broad diversity of sap production among C. parapsilosis isolates derived from surfaces of the host like skin or vaginal mucosal layer, but these isolates secrete more than those obtained from the environment or systemic infections. This explains that surface isolates are more virulent. C. parapsilosis secretes proteases that support an existence of the yeast in the host, raise the resistance of phagocytosis, and destroy the host cell and also facilitate intracellular survival. In addition, they inhibit host defense proteins such as antimicrobial, complement or antibodies. There are many studies refer fungal phospholipases may promote virulence by damage membranes of the host cell.

29. Neji et al. have found 111/172 (63.5%) clinical C. parapsilosis isolates were positive for phospholipase enzyme production. The plb may play an essential role through direct breakdown of host cell membranes. The lesion would allow elements of fungal hyphal to more effectively cross the vascular endothelium, this leads to increase the rapidity of dissemination to and invasion of target organs.

In the present study, the hwp1 gene has been detected in all C. parapsilosis isolates, this is consistent with Abastabar et al. and Nikmanesh et al. who observed that hwp1 gene was an excellent marker to detect non-Candida albicans species. Modrzewska and Kurnatowski have mentioned that als, epa, hwp1 are considered the most important adhesins found on the cell wall of Candida spp. It is also considered responsible gene of the fungal hyphae formation. Naglik et al. have mentioned that expression of hwp1 gene is high among strains isolated from patients with candidiasis.

The results showed that cph1 gene was found in all isolates of C. parapsilosis. The transcription factor genes cph1 regulate cell wall biosynthesis and involvement in virulence and hyphae are necessary to develop a biofilm. In addition are positive regulators of hyphal morphogenesis.

Conclusion:

There are few studies on identifying and detecting non-C. albicans species responsible for vaginitis in Thi-Qar province. The study has shown that 18S rRNA gene has high sensitivity to identify C. parapsilosis. The virulence genes show a variation in its presence within C. parapsilosis genome, which may explain a difference of the disease severity. In addition, the genetic variation of virulence gene sequences among isolate may result in different clinical manifestations.

Acknowledgments

The authors would say thanks to the staff of Bint Al-Huda Hospital of Maternity and Children in Thi-Qar province for their helping to collect the samples. The study is not supported financially.

Authors' declaration:

- Conflicts of Interest: None.
- We hereby confirm that all the Figures and Tables in the manuscript are ours. Besides, the Figures and images, which are not ours, have been given the permission for re-publication attached with the manuscript.
- Ethical Clearance: The project was approved by the local ethical committee in Al-Ayen University.
Authors’ contributions statement:
MSA collected the samples. ERA design of the work and wrote original manuscript. MHF analyzed data. MHF and KRH read and modified the manuscript carefully.

Ethical approval
The protocol of this study was obtained from college of pharmacy, Al-Ayen University (16 at 8/1/2020) and approved by management of training and human development department/ Thi-Qar Health Office (2022133).

References:
1. Nyvirjesy P. Management of persistent vaginitis. Obstet. Gyn. 2014; 124(6): 1135-1146. https://doi.org/10.1097/AOG.0000000000000551.
2. Paladine HL, Desai UA. Vaginitis: Diagnosis and Treatment. Am Fam Physician. 2018; 97(5): 321-329.
3. Hardiy M, Abdo W, Hashem M, Yanai T. Candida parapsilosis and Candida tropicalis infections in an Okhotosk snailfish (Liparis ochotensis). J Vet Med Sci. 2018; 80(11): 1676-1680. https://doi.org/10.1292/jvms.18-0133.
4. Töth R, Nösek J, Mora-Montes HM, Gabaldon T, Bliss JM, Nosanchuk JD, et al. Candida parapsilosis: from infection to genes to the Bedside. Clinic Microbiol Rev. 2019; 32(2): 315-329. e00111-18. https://doi.org/10.1128/CMR.00111-18.
5. Aldosari MA, Alghamdi MH, Alhamdan AA, Alamri MM, Ahmed AM, Aziz MS. Native valve fungal endocarditis caused by Aspergillus fumigatus: management dilemma. Oxf Med Case Reports. 2020; 2020(3): 147. https://doi.org/10.1093/omcr/onz147.
6. Neji S, Trabelsi H, Hadrich I, Cheikhrouhou F, Sellami H, Makni F, et al. Molecular study of the Candida parapsilosis complex in Sfax, Tunisia Med Mycol. 2017; 55(2): 137-144. https://doi.org/10.1093/mmy/myw063.
7. Rodríguez-Cerdeira C, Martínez-Herrera E, Carnero-Gregorio M, López-Barcenas A, Fabbrocini G, Fida M, et al. Pathogenesis and Clinical Relevance of Candida Biofilms in Vulvovaginal Candidiasis. Front Microbiol. 2020; 11: 544480. https://doi.org/10.3389/fmicb.2020.544480.
8. Modrzewska B, Kurnatowski P. Adherence of Candida sp. to host tissues and cells as one of its pathogenicity features. Ann. Parasitol. 2015; 61(1): 3-9. PMID: 25911031.
9. Lim SJ, Ali MSM, Sabri S, Noor NDM, Salleh AB, Oslan SN. Opportunistic yeast pathogen Candida spp.: Secreted and membrane-bound virulence factors. Med Mycol 2021; 59(2): 137-144. https://doi.org/10.1093/mmy/myab053.
10. Pharkjaksu S, Chongtrakool P, Suwannakarn K, Ngamskulrungroj P. Species distribution, virulence factors, and antifungal susceptibility among Candida parapsilosis complex isolates from clinical specimens at Siriraj Hospital, Thailand, from 2011 to 2015. Med Mycol. 2018; 56(4): 426-433. https://doi.org/10.1093/mmy/mny058.
11. Senanayake IC, Rathnayaka AR, Marasinghe DS, Calabon MS, Gentekaki E, Lee HB, et al. Morphological approaches in studying fungi: collection, examination, isolation, sporulation and preservation. Mycosph. 2020; 11(1): 2678–2754. https://doi.org/10.5943/mycosphere/11/1/20.
12. Forsberg K, Woodworth K, Walters M, Berkow EL, Jackson B, Chiller T, et al. Candida auris: The recent emergence of a multidrug-resistant fungal pathogen. Med Mycol. 2019;57(1): 1-12. https://doi.org/10.1093/mmy/myy054.
13. Papp C, Kocsis K, Töth R, Bodai L, Willis JR, Ksiezpolska E, et al. Echinocandin-Induced Microevolution of Candida parapsilosis Influences Virulence and Abiotic Stress Tolerance. mSphere. 2018; 3(6): e00547-18. https://doi.org/10.1128/mSphere.00547-18.
14. Hyde KD, Dong Y, Phookamsak R, Jeewon R, Fungal diversity notes 1151–1276, taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity. 2020; 1005–277.
15. Fatima A, Bashir G, Wani T, Jan A, Kohli A, Khan MS. Molecular identification of Candida species isolated from cases of neonatal candidemia using polymerase chain reaction-restriction fragment length polymorphism in a tertiary care hospital. Indian J Pathol Microbiol. 2017; 60(1): 61-65. https://doi.org/10.4103/0377-4929.200023.
16. van Schalkwyk J, Yudin MH; Infectious Disease Committee. Vulvovaginitis: screening for and management of trichomoniasis, vulvovaginal candidiasis, and bacterial vaginosis. J Obstet Gynaecol Can. 2015; 37(3): 266-274. https://doi.org/10.1016/S1701-2163(15)30316-9.
17. Abdulaziz M, Mahdy MA, Abdul-Ghani R, Alhili NA, Al-Mujahed LK, Alabsi SA, et al. Bacterial vaginosis, vulvovaginal candidiasis and trichomonal vaginitis among reproductive-aged women seeking primary healthcare in Sana’a city, Yemen. BMC Infect Dis. 2019;19(1):879. https://doi.org/10.1186/s12879-019-4549-3.
18. Kadir MA, Fattah CO. ‘Trichomonas vaginalis Among Women in Sulaimania Governate Iraq’. Tirkit J Pharma Sci. 2010; 6(1): 3–9.
19. De Bernardis F, Graziani S, Tirelli F, Antonopoulou S. Candida vaginitis: virulence, host response and vaccine prospects. Med Mycol. 2018; 56(suppl_1): 26-31. https://doi.org/10.1093/mmy/mmy139.
20. Anh DN, Nguyen HD, Tien TV, Dinh VN, Son VT, Luong NV, Van NT, Quynh NT, et al. Prevalence, species distribution and antifungal susceptibility of Candida albicans causing vaginal discharge among symptomatic non-pregnant women of reproductive age at a tertiary care hospital, Vietnam. BMC Infect Dis. 2021; 21(1): 523. https://doi.org/10.1186/s12879-021-06192-7.
21. R AN, Rafiq NB. Candidiasis. 2021 Aug 13. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. PubMed. 2021: 32809459.
تحديد الإصابة الطيفية والفطرية المسببة لالتهاب المهبل: التشخيص الجزيئي لـ Candida parapsilosis

أيناس عبد الزاق الوائلي1، محمد حسن حسين2، خوام ريسان حسين3

1 كلية الصيدلة، جامعة العين، محافظة ذي قار
2 مسمى تدريبي، المعهد التقني ناصري، الجامعة التقنية الجنوبية، محافظة ذي قار
3 قسم علوم الحياة، كلية التربية للعلوم الصرفة، جامعة ذي قار، محافظة ذي قار

الخلاصة

اتجاهات الدراسات الحديثة تتجسد في تحديد أعراض الفطريات Candida spp. والفطرية Trichomonas vaginalis، وبعض بنات جنس البكتيريا. أجريت هذه الدراسة في مستشفى ناصري للعناية والمراقبة في محافظة ذي قار، جنوب العراق في الفترة الممتدة من شهر كانون الثاني إلى نهاية شهار كانون الأول 2020. تم جمع 250 عينة من المنطقة التاسع المصلحة لمنطقة دائرة واسع في قسم الحيوانات C. albicans (8%) وC. parapsilosis (30%) في كل عقلات HSV1 وC. glabrata (4.4%). 11, C. parapsilosis (5.6%) و14, kruusei عادات في شجرة في كل عقلات C. parapsilosis ونفس الشيء في SHV1 وC. glabrata. 100% (C. parapsilosis) كلمة المكتوبة: FTR

الكلمات المفتاحية: فطر, T. vaginalis, C. parapsilosis

4.283-23 778-786

Candida parapsilosis virulence. J Infect Dis. 2012;205(6):923-