Communications

On the intrinsic nature of viral pathogenesis: The assumption of a Darwinian paradigm to describe COVID-19 pandemic

Pier Francesco Roggero a,1, Arianna Calistri a,1, Giorgio Palù a,b,*

a Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
b Italian Medicines Agency, Via del Tritone 181, 00187 Rome, Italy

Article history:
Received 31 July 2022
Received in revised form 17 October 2022
Accepted 23 October 2022
Available online 28 October 2022

Keywords:
COVID-19
Infectivity
Lethality
Virus evolution
Darwinian paradigm

Abstract

Our hypothesis about evolution of the COVID-19 pandemic foresees an inverse relation between infectivity (R0) and lethality (L) of SARS-CoV-2. The above parameters are driven by a continuing mutation process granting the virus a clear survival advantage over virulence. For interpreting this relation we adopted a simple equation, \(R_0 \times L = k \), by which \(R_0 \) and \(L \) depend upon a constant \(k \), that corresponds to an intrinsic property of the viral species involved. The hypothesis was verified by following changes of the \(R_0 \) and \(L \) terms of the formula in the different variants of SARS-CoV-2 that progressively appeared. A further validation came when the equation was applied to pandemic and epidemic influenza type A viruses, Ebola virus and measles virus. We believe this equation that considers virus biology in Darwinian terms could be extremely useful to better face infectious viral threats and validate virus-host molecular interactions relevant to viral pathogenesis.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Viruses, the predominant living entities dwelling the biosphere, necessarily depend on the hosts they infect, i.e. animal or vegetal cells, worms, simple and complex microorganisms, in order to self-reproduce in the form of their nucleic acid [1,2]. This obligate parasitism relies upon some virus-host interactions that are specific for each virus and could be traced back to three main biological parameters: i) infectivity/contagiousness, meant as the capability to spread from one host to the other; ii) virulence, as the degree of pathogenic insult or disease produced; iii) immune-evasion, as the virus ability to circumvent the host innate and adaptive antiviral response. Infectivity and virulence of viruses that infect humans can be indisputably measured by taking into account two basic quantifiable parameters that are linked to viral pathogenesis, i.e. the virus basic reproduction number (\(R_0 \)) during the exponential phase of the outbreak and the virus-induced lethality (\(L \)), respectively [3,4]. Immune-evasion, instead, is particularly difficult to define, due to the variability, complexity and large pleiomorphism of the viral and human genes involved that make virus escape from the host defense a singularity more than a directly quantifiable phenomenon [5]. However, for the sake of simplicity, immune-evasion (IE) can be recapitulated in the infectivity parameter for being viewed as an acquired genetic trait generally ascribable to the reproduction potential of the virus to which IE is clearly linked. Given these concepts, we want to prove here that the fate of SARS-CoV-2 pandemic can be reconciled in Darwinian terms with a selective advantage of the coronavirus that drives its evolutionary programme towards an increased contagiousness at the expense of virulence to guarantee persistence within the natural host. We used a mathematical equation that proves that a direct correlation exists between \(R_0 \) and \(L \) that depends from a constant value \(k \) from which each either variable can be deduced in the course of the pandemic. The same concept holds true also for the spreading of other pandemic/epidemic viruses e.g. the influenzavirus, Ebola virus and measles virus that were used as a control. For the conceptual validation of our equation, when applied to SARS-CoV-2, we have herewith considered only the main variants of the coronavirus that develop in the course of the pandemic and not the innumerable distinct subvariants and quasi-species that are evolutionally accruing without becoming epidemiologically dominant and clinically relevant. Calculating \(k \) for any emerging virus responsible for a pandemic/epidemic could help to predict its biological behavior and to anticipate the consequences of viral infection at the public and global health levels.
The herewith presented hypothesis factually rests on one of the first description interpreting microbiological evolution in response to an environmental agent, namely the Luria-Delbrück experiment of 1943, also called the “fluctuation test” [6]. This is, to our knowledge, the first biological experiment dealing with infectious agents to be deciphered with a mathematical formula. The test showed that genetic mutations coding for resistance to bacteriophages, rather than being a response to virus exposure, arise randomly in bacteria in the absence of selective pressure. In other terms, mutations are not induced by the environment, consisting of a newly introduced biological entity, but are rather pre-existing and naturally selected by the environment itself [6]. According to the chaos theory [7], mutations follow a “strange attractor” called the basin of attraction where those peculiar random mutations dynamically converge that are “driven” over time towards the best possible edge, the first biological experiment dealing with infectious agents of 1943, also called the “fluctuation test” [6]. This is, to our knowledge, the first description interpreting microbiological evolution in response to an environmental agent, namely the Luria-Delbrück experiment of 1943, also called the “fluctuation test” [6]. This is, to our knowledge, the first biological experiment dealing with infectious agents that genetic mutations coding for resistance to bacteriophages, rather than being a response to virus exposure, arise randomly in bacteria in the absence of selective pressure. In other terms, mutations are not induced by the environment, consisting of a newly introduced biological entity, but are rather pre-existing and naturally selected by the environment itself [6].

As asymptomatic infections are relevant in the case of SARS-CoV-2 [17] and expected to lower the lethality rate, the L values can be corrected as follows.

\[\text{LC} = |L(1 - \frac{\%A}{100})| \]

where LC is the corrected L and \%A is the percentage of asymptomatic subjects. If we assume that the number of asymptomatic infected people were roughly equal to 27 % in 2020 and 30 % in 2021 and now approximately equal to 40 % thanks to vaccines [18], the k product is almost constant and around 5, as estimated (Table 1).

SARS-CoV-2 R0 L% A% k
B1.1.7 (Alfa) 4 2 27 5.84
B1.351 (Beta) 4.5 1.8 27 5.91
P.1 (Gamma) 5 1.6 30 5.60
B.1.617 (Delta) 7 1.1 30 5.39
B.1.1.529 (Omicron) 14 0.6 40 5.04

The fact that the first well described SARS-CoV-2 variant, Alfa, had a constant k = 5.84 and that this value remained almost stable all subsequent variants over time, would drive to a notion suggesting that the process of virus evolution over time responds to an intrinsic pre-determined biological feature of this virus. This may accompany SARS-CoV-2 until the coronavirus hopefully becomes endemic. On the other hand, with the exception of the beta variant (Table 1), the k constant tends to decrease over time, although remaining in the same order of magnitude and close to the initial value.

A confirmation that our hypothesis has a rationale comes from the application of our formula: \(k \approx R0 \times L \) to the H1N1 subtypes of influenza type A viruses, both the pandemic and the seasonal strains. Despite the fact that R0 and L available for SARS-CoV-2 are actual numbers, while influenza data are calculated estimates [19], we obtain a k value that fluctuates around 0.25, with the exception of the Spanish influenza for which R0 and L parameters are difficult to define (Table 2).

Interestingly, these values, considering all type A viruses, are admittedly lower than those of SARS-CoV-2 [3], suggesting that k could represent an intrinsically virus-specific feature. A proof of the concept of this conclusion comes when the influenza k value is substituted in the equation for the k obtained for SARS-CoV-2. In this case, we would obtain an R0 equal to 50, a value that has not been reached by any known human virus and that is almost threefold higher than the R0 of the most contagious so far Omicron BA.5 subvariant.

Furthermore, the much lower k value of influenza virus with respect to the one obtained for SARS-CoV-2 would mathematically confirm that COVID-19 is a more serious disease than flu by approximately twentyfold, on average.

To further prove these conclusions, we took advantage of the 2014 Ebola virus outbreak, in West Africa the largest epidemic of the genus Ebolavirus to date. This outbreak began in Guinea in December 2013, spreading to Sierra Leone, Liberia and Nigeria. Such an epidemic gave us the opportunity to apply the formula to a virus circulating in different geographical regions with diversities in the reported R0 and L. As shown in Table 3, k values are almost constant and represent very high estimates linked to the danger and mortality of the Ebola virus. This, in turn, would confirm that k is an intrinsic feature of the virus, nicely correlating with its dangerousness and aggressiveness.

Table 2
Calculated k for Influenza type A virus parameters. Values adopted for k calculation are calculated estimates [19].

Influenza type A virus	R0	L%	k
Spanish H1N1 – 1918	2	0.1–1	0.2–2
Asian H2N2 – 1957	2	0.15	0.3
Hong Kong H3N2 – 1968	1.9	0.15	0.29
Swine H1N1 – 2009	1.6	0.14	0.22
Seasonal H1N1/H3N2	2.1	0.1	0.21
Finally, as depicted in Table 4, by applying the formula to the measles virus for which R0 and L are known over time, k values remain almost constant from year 1980 to year 1990, after vaccine introduction. Interestingly, while remaining in the same order of magnitude, k values for measles virus decrease from 42 to 12 over the period of observation (30 years). Such a finding, on one hand, supports k as an informative virus specific feature, on the other hand, suggests that k like L values tend to vary, and specifically to decrease. This phenomenon would depend on several other factors in addition to virus adaptation to the host i.e.the time-length of virus circulation among humans with acquisition of natural or artificial immunity by the population as well as improvements in cares and specific treatments.

In conclusion, for the viruses we have considered in this report, namely SARS-CoV-2 variants, influenza type A subtypes, Ebola virus and measles virus, the product of R0 and L gives an almost constant value. Fatality rate and infectivity follow a pattern sup-

\[k \approx R_0L \]

according to the general principle that a high R0 value relates to a low L value and vice versa. Since k seems to nicely correlate with the seriousness of disease, its knowledge could be useful for an effective management of emerging infections: the higher is the value of the constant the more fatal is the virus. Furthermore, the fact that k lowers over-time (Table 1 and Table 4) depending on virus and host-specific factors can represent an even more informative parameter for Public Health evaluations.

Obviously, the hypothesis of a constant relationship between virulence (measured as L) and infectivity/contagiousness (measured as R0) in different virus species causing acute infections has to be further confirmed by properly designed longitudinal field investigations since a review of replication and fatality rates during the last 50 years is not easily inferred from published studies. We reckon that our simple formulation, if thoroughly validated, could greatly help public health systems to deal with medical and epidemiological problems linked to the emergence/re-emergence of infectious viral threats. It may also inspire new ways of looking at virus-host molecular interactions and quantifying their respective impact on some relevant pathogenic manifestations.

2. Funding acknowledgment

No funds used for this study.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. No funds were used for this work.

References

[1] Knipe DM, Howley P. Fields virology. Philadelphia, PA: Wolters Kluwer Health; 2013.

[2] López-Larraza M. Host-virus relationships: a sum of many battles. FEMS Open Biol 2022;12:1094–5. https://doi.org/10.1093/femsop/221i.00533-5.

[3] Leung NHL. Transmissibility and transmission of respiratory viruses. Nat Rev Microbiol 2021;19:528–45. https://doi.org/10.1038/s41579-021-00533-w.

[4] COVID-19 Forecasting Team. Variation in the COVID-19 infection-fatality ratio by age, time, and geography during the pre-vaccine era: a systematic analysis. Lancet 2022;399:1409–88. https://doi.org/10.1016/S0140-6736(21)02607-1.

[5] Rubino-Casillas A, Redman EM, Uversky VN. SARS-CoV-2: A Master of Immune Evasion. Biomedicines 2022;10:1339. https://doi.org/10.3390/biomedicines10061339.

[6] Luna SE, Delbrück M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics 1943, 28,481–511. https://doi.org/10.1093/genetics/28.6.481.

[7] Calin GA, Vasilescu C, Negrini M, Barbanti-Brodano G. Genetic chaos and antichaos in human cancers. Med Hypotheses 2003;60:258–62. https://doi.org/10.1016/S0306-9877(03)00393-3.

[8] Flores-Vega VR, Monroy-Molina JV, Jiménez-Hernández LE, Torres AG, Santos-Preciado JJ, et al. Cumulative SARS-CoV-2 mutations and corresponding changes in immunity in an immunocompromised patient indicate viral evolution within the host. Nat Commun 2022;13:2560. https://doi.org/10.1038/s41467-022-03163-4.

[9] Sonneleitner ST, Prelog M, Sonneleitner S, Hinterbichler E, Halbfurter H, et al. Temporal dynamics of SARS-CoV-2 mutation accumulation within and across infected hosts. PLoS Pathog 2021;17:e1009491.

[10] Dempsey TA, McCall PJ, Viner RM, Caso P, Lessler J, et al. Evolution of SARS-CoV-2 during treatment of chronic infection. Nature 2021;592:277–82. https://doi.org/10.1038/s41586-021-03291-y.

[11] Choi B, Choudhary MC, Regan J, Sparks JA, Padera RF, et al. Persistence and temporal dynamics of SARS-CoV-2 variants in an immunocompromised host. N Engl J Med 2020;383:2291–3. https://doi.org/10.1056/NEJMoa2031366.

[12] Rubio-Casillas A, Redman EM, Uversky VN. SARS-CoV-2: A Master of Immune Evasion. Biomedicines 2022;10:1339. https://doi.org/10.3390/biomedicines10061339.

[13] Aggarwal A, Akerman A, Milogianakis V, Silva MR, Walker Get al (2022) SARS-CoV-2 Omicron BA.5: Evolving tropism and evasion of potent humoral responses and resistance to clinical immunotherapeutics relative to viral variants of concern. medRxiv 2022.07.07.22277128. https://doi.org/10.1101/2022.07.07.22277128.

[14] Liu Y, Rocklov J. The effective reproductive number of the Omicron variant of SARS-CoV-2 is several times relative to Delta, J Travel Med 2022;29:taa037. https://doi.org/10.1093/jtm/taac037.

[15] Yan Y, Li X, Zhang L, Wan S, Zhang L, et al. SARS-CoV-2 Omicron variant: recent progress and future perspectives. Signal Transduct Target Ther 2022;7:141. https://doi.org/10.1038/s41392-022-00997-x.

[16] Gao Z, Xu Y, Sun C, Wang X, Guo Y, et al. A systematic review of asymptomatic infections with COVID-19. J Microbiol Immunol Infect 2021;54:12–6. https://doi.org/10.1016/j.jmii.2020.05.001.

[17] Fan Y, Li X, Wang Z, Li H, et al. Temporal dynamics of SARS-CoV-2 variants in an immunocompromised host. Virus Evol 2022;8:veac042. https://doi.org/10.1093/ve/veac042.

[18] Althaus CL (2014) Estimating the Reproduction Number of Ebola Virus (EBOV) During the 2014 Outbreak in West Africa. PLoS Curr. 2;6:ecurrents.outbreaks.

[19] Althaus CL (20130814150053/http://www.who.int/immunization_monitoring/diseases/measles/en/.

Table 3

Ebola virus	R0	L%	k
Guinea	1.51	74	111
Sierra Leone	2.53	48	120
Liberia	1.59	71	112

Table 4

Measles virus	R0	L%	k
1980	14	3	42
1990	19	2.5	45
2000	16	2	32
2005	14	1.5	21
2014	12	1	12