REVIEW

From conifers to cognition: Microbes, brain and behavior

Richard Lathe1 | David St. Clair2

1Division of Infection Medicine, University of Edinburgh Medical School, Edinburgh, UK
2Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, UK

Correspondence
Richard Lathe, Division of Infection Medicine, University of Edinburgh Medical School, Little France, Edinburgh, UK.
Email: richard.lathe@ed.ac.uk
and
David St. Clair, Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, UK.
Email: d.stclair@abdn.ac.uk

Abstract

A diversity of bacteria, protozoans and viruses (“endozoites”) were recently uncovered within healthy tissues including the human brain. By contrast, it was already recognized a century ago that healthy plants tissues contain abundant endogenous microbes (“endophytes”). Taking endophytes as an informative precedent, we overview the nature, prevalence, and role of endozoites in mammalian tissues, centrally focusing on the brain, concluding that endozoites are ubiquitous in diverse tissues. These passengers often remain subclinical, but they are not silent. We address their routes of entry, mechanisms of persistence, tissue specificity, and potential to cause long-term behavioral changes and/or immunosuppression in mammals, where rabies virus is the exemplar. We extend the discussion to Herpesviridae, Coronaviridae, and Toxoplasma, as well as to diverse bacteria and yeasts, and debate the advantages and disadvantages that endozoite infection might afford to the host and to the ecosystem. We provide a clinical perspective in which endozoites are implicated in neurodegenerative disease, anxiety/depression, and schizophrenia. We conclude that endozoites are instrumental in the delicate balance between health and disease, including age-related brain disease, and that endozoites have played an important role in the evolution of brain function and human behavior.

KEYWORDS
behavior, brain, cognition, endophyte, endozoite, evolution, hippocampus, immunosuppression, microbiome, plant

1 MICROBES ARE UBIQUITOUS

Botanists a century ago were puzzled to discover fungal cells within healthy tissues of the Canadian spruce tree, Picea glauca (formerly Picea canadensis), and also in Larix laricina, the tamarack or American larch.1 Although it was known that plant roots have a symbiotic relationship with external soil microorganisms, particularly nitrogen-fixing bacteria and mycorrhizal fungi, the surprise was to find live microbes (“endophytes”; Box 1) within normal healthy tissues of a live tree.

Emerging evidence, 100 years later, now argues that, exactly as in plants, healthy (and diseased) mammalian tissues, including the brain, harbor a multiplicity of endogenous passenger organisms (“endozoites”;

Box 1) that may have both detrimental and beneficial effects on their hosts. Building on findings in plants, this overview summarizes current evidence and raises questions about the broader roles that endozoites play in human health, disease, and evolution, as well as in behavior, the central focus of this review.

2 THE MICROBIOME: ENDOPHYTES AND ENDOZOITES

Multicellular organisms across the tree of life—from plants to animals—are outnumbered by the constellation of microorganisms to
which they give sanctuary. The microbiome—defined as the ensemble of organisms that are intimately associated with a host species—encompasses the multitude of bacteria, protozoans, and viruses that cohabit/live in close association with the host.

In plants, where the microbiota constitutes a "hidden world" (reference² for an excellent review), the root has been a central target for studies on microbe–host symbiosis. Plant growth is crucially dependent on endogenous nutrient-assimilating and nitrogen-fixing bacteria.³,⁴ Moreover, endophytes have been reported to provide additional benefits. For example, root-colonizing Pseudomonas spp. produce antifungal molecules that protect the root against fungal pathogens.⁵ Some plants favor colonization by insect-killing microbes.
(entomopathogens), including fungi and bacteria, because their presence can confer resistance to insect attack.6 Other endophytes alter the metabolism of the host to generate defense molecules that in turn can fend off herbivore attack or reduce infection by other plant pathogens.7

Paralleling the role of root microorganisms in plants, the microbiome in the gut of vertebrates promotes the metabolism and uptake of external nutrients from the diet,8 can have beneficial effects on the immune system,9 and can exert direct modulatory effects on brain and behavior (see below). Commonalities between root and gut, including a large surface area and a key role in nutrient assimilation, have been highlighted previously.10,11 However, as in plants, other healthy tissues in vertebrates also contain diverse types of microbes.

2.1 Endozoites are widely distributed in healthy tissues

In plants, endophytes are found in association with all tissues analyzed to date, and this could lead us to suspect that endozoites might also be present in multiple body tissues of vertebrates. In human, outside the intestine, attention has been paid to colonization of gastric mucosa by *Helicobacter pylori* that has also been associated with the initiation of gastric ulceration,12 but most recent work has been carried out on epithelial surfaces that are a rich repository of bacterial species (e.g., the Human Microbiome Project15). Bacterial species are widely reported in blood of healthy individuals (reviewed in Ref. 14). In another study an overt pathogen, *Streptococcus pneumoniae*, was found in the nasopharyngea of 4% of adults but in 53% of children,15 blurring the distinction between endozoite and pathogen.

Diverse viruses are also present on external surfaces, including the naso-olfactory system and mouth,16 and multiple viruses are found in cervical secretions.17 Lymphoid and neuronal cells are additional repositories for lymphotropic/neurotropic viruses. Indeed, the majority of the population is seropositive for multiple herpes viruses, including herpes simplex virus (HSV; Table 1). HSV-1 and HSV-2 seropositivity increases with age in the United States, where >60% of the elderly population is HSV-1-positive, and >20% are positive for both HSV-1 and HSV-2.18 Similar findings have been reported in Europe, with seropositivity rising with age to >80% in some countries,19 pointing to progressive acquisition over a lifetime. Similar high seroprevalences have been reported for multiple herpes viruses (Table 1). The widespread presence of these and other passengers, particularly of varicella zoster virus (VZV; also known as human herpes virus 3, HHV-3), Epstein–Barr virus (EBV/HHV-4), cytomegalovirus (CMV/HHV-5), HHV-6A/B, HHV-7, and anelloviruses (Torque Teno viruses), has been substantiated by deep sequencing of blood DNA from 8000 humans.20

By contrast, the distribution of endozoites in peripheral tissues has not been systematically addressed. However, in addition to the gut, blood, and epithelial surfaces including the lung,21 there is evidence that endozoites are present within other organs. PCR and deep sequencing of DNA from normal hamster liver revealed multiple bacterial species, confirmed by direct microbial culture from liver tissue.22 There is evidence that the kidney also houses its own microbiota,23 and the human urinary microbiome (a proxy for the kidney) contained multiple species of Firmicutes, Actinobacteria, Bacteriodetes, and Proteobacteria.24 Studies on other key tissues are so far lacking, for example breast, heart, ovary, pancreas, prostate, skeletal muscle, testis, thymus, and thyroid; future work will be necessary to address this issue.

TABLE 1 Human seroprevalence of herpes viruses

Virus	Alternative name	Prevalence a	Population	Ref. b
Herpes simplex virus 1 (HSV-1)	HHV-1	67.60% c	USA	18
		52–84%	Europe	19
Herpes simplex virus 2 (HSV-2)	HHV-2	21.90% c	USA	18
		4–24%	Europe	19
Varicella zoster virus (VZV)	HHV-3	90%	USA d	301
		>90%	Europe d	302
Epstein-Barr virus (EBV)	HHV-4	82.90% c	USA	303
Cytomegalovirus (CMV)	HHV-5	50.40%	USA	304
Human herpes virus 6A/6B	HHV-6A/6B	70–100%	Worldwide	305
Human herpes virus 7	HHV-7	>65%	UK	306
Human herpes virus 8	HHV-8	3–4%	USA	307
		35.7–49.3%	SubSaharan Africa	308

aSeroprevalence increases with age, data are predominantly for adults.
bComprehensive survey is not intended, only indicative references are given.
cSequencing data suggest that ~100% of the population harbors both HSV-1 and HSV-2.240

35.7–49.3% SubSaharan Africa | 308
2.2 | Microbial diversity

It is important to recognize that our knowledge of the spectrum of endozoites is limited. Kowarsky et al. performed deep sequencing of blood cell-free DNA from 188 individuals and reported that, of new bacterial and viral (including bacteriophage) sequences, the majority were absent from current databases. Notably, this study almost doubled the number of human anelloviruses sequenced to date. We are only seeing the tip of the iceberg.

In addition, although we tend to refer to viruses as unique entities, this is seldom if ever the case. For example, HSV-1 and HSV-2 each comprise multiple substrains; moreover, recombinants between HSV-1 and HSV-2 have been detected worldwide.

3 | GUT–BRAIN AXIS

Multiple studies report that the composition of the gut microbiota can influence brain function, partly by release of metabolites including neurotransmitters that can enter the circulation, but also via direct neuronal communication between gut and brain (notably via the vagus nerve). For an excellent review see Ref. 29. However, our focus here is on microbes that directly enter the CNS. That endozoites are probably present in all human tissues is borne out by recent studies on the brain, discussed below.

4 | ENDOZOITES IN THE BRAIN

We saw above that the plant root contains a high diversity of endogenous microbes, thus resembling the vertebrate gut. However, ever since Darwin’s time there have been suggestions that the plant root—through demonstrable adaptive behavior—in some ways resembles the vertebrate brain (the “root–brain hypothesis”) where endophytes play a pivotal role. The presence of microbes in the brain, and whether they modulate behavior, is the central focus of this review.

Box 2 overviews current knowledge of the presence of diverse endozoites in brain, not only including bacteria, protozoans, Archaea, and viruses, but also bacteriophages, higher eukaryotes, and plant-derived agents (endogenous retroviruses/retroelements are not considered to be true endozoites; Box 3). One central conclusion emerging from this analysis is that there are parallels between the taxa found in plant tissues and those found in both gut and brain (Table 2, discussed in Box 2), suggesting that some species may be particularly adapted to a close association with multicellular organisms including both plants and animals.

Although these combined reports confirm the widespread presence of endozoites in the brain, a complexity of all these studies is that it is not always possible to distinguish between endozoites that endogenously inhabit brain tissue versus contamination with agents borne by the circulation (including migrating lymphoid cells). Nevertheless, HSV sequences within the brain parenchyma have been confirmed by in situ hybridization, and in situ studies have directly demonstrated bacteria and protozoans within the brain (see below). However, this remains a general point of debate, and future studies on the broader brain microbiome will need to confirm the presence of endozoites by microscopy, immunohistochemistry, hybridization, and/or transcriptomics at the single-cell level.

5 | HOW DO ENDOZOITES ENTER THE BRAIN? ROLE OF THE BLOOD–BRAIN BARRIER

In plants, endophytes are both horizontally and vertically transmitted. In addition to sites of damage by insects and herbivores, stomata are likely to serve as a widespread transmission route, and dissemination via the xylem is thought to facilitate propagation throughout the plant (reviewed in Ref. 33). In mammals, microbes are inhaled, ingested with the diet, or inoculated via biting insects/wounds, and can disseminate via the bloodstream. However, entry to the brain demands special mechanisms because the blood–brain barrier (BBB) prevents simple diffusion into brain tissue.

The BBB, generated by tight junctions between endothelial cells lining the cerebrovasculature, effectively prevents small molecules from entering the brain parenchyma. However, the BBB does not appear to constitute a barrier to many microbes. Porphyromonas gingivalis could be detected within the brain parenchyma following chronic oral administration to mice, and replication-defective HSV is found in the brain within 3 days (see below). Intranasal or intratracheal administration of the fungus Cryptococcus neoformans in mice led to rapid dissemination into the brain as quickly as 3 h post-infection, although the titers were low (≤1% of the inoculum). Similarly, intranasal administration of a filamentous bacteriophage to mice was followed by rapid appearance in the brain.

Microbes are thought to sidestep the BBB by exploiting at least four routes. First, many biologically active molecules such as polypeptide hormones are actively transported across the BBB into the brain, and many pathogens exploit host receptor-mediated transcytosis. Following receptor–ligand interactions at the endothelial cell surface, several microbes (bacteria and yeast) are internalized as vacuoles and thence pass into the brain without disrupting the integrity of the BBB (reviewed in Refs. 38-40). For example, following intravenous inoculation in mice, the yeast Candida albicans is found within brain tissue as quickly as 4 days postinfection by exploiting a specific receptor on endothelial cells.

Second, the BBB is not effective against migrating host cells, as exemplified by the common appearance of tumor cell metastases in brain tissue. Immune cells such as macrophages can efficiently enter the brain, and latent lymphotrophic viruses (e.g., HHV-6 and 7) borne by macrophages can thereby be delivered into the CNS. Viruses associated with mobile cells can therefore gain brain access (the “Trojan horse mechanism”), and similar pathways may apply to intracellular bacterial pathogens. Passage parallels that in the gut, where intestinal dendritic, goblet, and M cells have been implicated in transporting bacteria from the gut lumen into the circulation.
BOX 2 **Endozoites in the brain**

Bacteria

For many years there have been reports of bacteria in brain, notably in Alzheimer’s disease (AD), such as Borrelia and Chlamydia/Chlamyphila spp. (Figure I), but also in healthy tissue. Systematic surveys in both health and disease using PCR and deep sequencing have revealed that the major phyla are α-Proteobacteria and Actinobacteria, with further Firmicutes and Bacteriodetes; similar findings were seen in macaque monkeys (Table 2). Proteobacteria constitute a phylum of Gram-negative bacteria that include not only gut commensals (e.g., Escherichia) but also several human pathogens (e.g., Yersinia). The Actinobacteria also include human pathogens (e.g., Mycobacterium).

These are the same taxa that are seen in plants (Table 2), including the actinobacterium Frankia that can fix nitrogen, and several agriculturally important nitrogen-fixing α-Proteobacteria species that enter symbiotic relationships with leguminous plants (e.g., Rhizobium spp.). These specific taxa may be predisposed to live in association with higher eukaryotes (noting that endosymbiosis with α-Proteobacteria is held to have been the primary driver for the emergence of Eukaryotes). In support, some human commensal bacteria of these phyla enter the human gut (e.g., Enterobacteriaceae)—gut organisms in humans—can colonize root tissues of plants such as maize, lettuce, tomato, and barley where they may persist as a reservoir for recolonization of humans, and can even promote the growth of the new plant host.

Protozoans

Fungi are widespread in plant tissues, but there have been few studies on human, although Pisa et al. report intermittent detection of several fungal species, principally Candida spp., in brain tissue of Alzheimer patients. Candida spp. are also prevalent plant endophytes, and species such as Candida metapsilosis are found both in plants and in human infections.
The apicomplexan *T. gondii*, an obligate intracellular eukaryote, is widely present in healthy humans and animals, and 20–50% of the population is seropositive for *T. gondii.*\(^{209,210}\) *T. gondii* can persist in a subclinical state in multiple tissues including the brain.\(^{211}\) Toxoplasma sequences were detected in 16.5% of human brain samples.\(^{104}\) A different apicomplexan, *Neospora*, is an endozoite of bovine species. Oomycetes such as *Phytophthora* spp. that are phycogenetically rooted alongside apicomplexans are important plant pathogens.

Archaea

These simple unicellular organisms are inferred to be the evolutionary precursor to all life on Earth, and are well represented in the plant root microbiome\(^{212}\) (reviewed in Ref. 213). They are also present in human colonic, lung, nasal, pulmonary, and oral microbial flora.\(^{214}\) However, no studies to date have systematically addressed whether they enter healthy tissues such as the brain, and so far no archaeal species has been demonstrated to cause disease in human.\(^{215,216}\) However, methanogenic Archaea have been directly implicated in refractory sinusitis,\(^{217}\) and one report described finding archaeal species in multiple brain abscesses, although only 1/27 control samples were positive\(^{218}\)—possibly suggesting that archaea are not typically present in the normal CNS, perhaps because they are predominantly anaerobic. Archael viruses have been intermittently reported in blood.\(^{219}\) Further studies on Archaea in healthy and diseased brain are certainly warranted.

Viruses

HSV in normal neuronal tissue (sensory ganglia) was reported in 1972, when virus was isolated by culture of brain tissue from 1 of 22 patients with no evidence of active HSV disease.\(^{217}\) HSV in 18 of 39 normal trigeminal ganglia was demonstrated by passage and immunohistochemistry.\(^{220}\) The presence of HSV sequences in normal brain samples has been confirmed by DNA-based analysis\(^ {221}\) and by PCR.\(^ {222}\)

Multiple other virus sequences have also been detected. Infection with polyomaviruses is widespread in the human population, and Southern blot and PCR analysis confirmed the presence of BK and JC genomes in up to 20% of healthy brain samples.\(^ {223}\) Other viruses including HHV-6A/6B, EBV, CMV, VZV, and coronavirus have been reported in human brain,\(^ {136,221,224}\) and HHV-6A and -6B proteins were detected using specific antibodies in 22–32% of control brain samples.\(^ {145}\) EBV was detected by PCR in 24% of control brain samples.\(^ {225}\) Deep sequencing has now revealed an extraordinary diversity of viruses in normal human brain, ranging from several types of HHV and HSV to adenovirus, Duvenhage virus, hepatitis C virus, coronavirus, torque teno virus, and BK polymavirus, among others.\(^ {140}\) There was evidence of over-representation of HHV and HSV in AD brain.\(^ {140}\)

Bacteriophages

There have reports of bacteriophages (or bacteriophage-like sequences) in multiple human tissues and that phages readily enter the brain (reviewed in Refs. 226-228). For example, a sequence (dubbed Sphinx) with 70% homology to an Acinetobacter bacteriophage was reported in transmissible spongiform encephalopathy brain.\(^ {229}\) These may well be markers of bacterial coinfection rather than pathogens or endozoites in their own right because they are likely to lack the machinery for replication in higher eukaryotes. However, infection (e.g., of plastids of prokaryotic origin) may not be formally excluded. Arabidopsis chloroplasts contain a replication machinery similar to that of bacteriophage \(T7\)\(^ {230}\) and so-called mitochondrial viruses ("mitoviruses") have been reported in several plant species,\(^ {231}\) but not yet to the best of our knowledge in vertebrates.

Higher eukaryotes

Endozoites more rarely include multicellular species such as the tapeworm, *Taenia solium*. Neurocysticercosis caused by *T. solium* is the most common parasitic disease of the human CNS, and, although the parasite infects multiple body tissues, the larvae display a strong affinity for the CNS.\(^ {232}\) Common symptoms include headache, seizures, and meningitis, and in children include depression, social problems, and rule-breaking behavior.\(^ {233}\)

Algae- and plant-derived agents

For completeness we include agents derived from photosynthetic species. Apicomplexans such as *Toxoplasma* have a secondary plastid—the apicoplast—whose distant ancestor was probably a photosynthetic plastid that originated from a red algal cell\(^ {234}\) (reviewed in Ref. 235), whereas plastids emerged separately from green algae. Indeed, apicomplexans are not phycogenetically related to plants nor to any other members of the Streptophyta.\(^ {236}\) Nonetheless, the presence of plastid remnants may render particular apicomplexan species sensitive to some herbicides.\(^ {237}\)

Regarding plant-derived agents, there has long been speculation that some plant viruses may also interact with, or reside in, humans (reviewed in Ref. 238). An excellent illustration is provided by the work of Zhang and colleagues\(^ {239}\) who reported that the most abundant viral sequence in human feces is a plant virus (pepper mild mottle virus, PMMoV). Although this could be purely dietary (liters up to \(10^7\) particles/ml have been reported in a commercial chili product\(^ {240}\)), it was reported that PMMoV may predispose to gastrointestinal dysregulation in human,\(^ {240}\) possibly indicative of host cell infection. In another example, Liu et al.\(^ {241}\) reported significant levels of antibodies against tobacco mosaic virus (TMV) in healthy volunteers (including nonusers of tobacco products), potentially suggestive of persistence of TMV (or a related virus) in the population.
Other plant agents may potentially reside in mammals. Following antibiotic administration to mice, fecal DNA PCR amplicons were highly enriched in Streptophyta (a taxon comprising land plants and six main lineages of green algae) and Zea luxurians (a species of grass), perhaps reflecting residual plant-origin DNA introduced via feed. Streptophyta have been widely detected in human mucosal microbiomes and could derive from plant pollens. However, Streptophyta have been detected in mouse seminal fluid, raising the possibility that green algae might potentially be true endozoites. Caution is urged, however, because the PCR apparatus might itself be contaminated with pollens.

Conversely, some human endozoites can infect plants (see earlier). Nonetheless, with the exception of apicomplexans, there have been no reports of algae- or plant-related agents in brain tissue, but future studies on the human microbiome (including the brain) should not limit themselves to known vertebrate endozoites.

BOX 3 Retroviruses and retroelements

The genomes of humans and mice are (as in plants) also vastly punctuated by integrated elements such as endogenous retroviruses (e.g., HERVs) and retroelements (e.g., long and short interspersed nuclear elements: LINES and SINES) that are inferred to have had an earlier exogenous origin. Although these may have played a major evolutionary role, they are not generally regarded as endozoites, and the focus here is on agents acquired from the environment. However, in mouse, there is evidence for active retrotransposition of LINES in brain, with suggestions that these might be of benefit (so far uncharacterized) to the host (reviewed in Ref. 245). In human, LINE element mobilization in brain has been reported in schizophrenia and upregulation of HERV-W expression and increased copy number have been reported in multiple sclerosis and neurological disease (reviewed in Refs. 247,248). The potential benefits and adverse effects of endogenous retroviruses/elements warrant further study.

Third, by direct neuronal pathways. Rabies virus, for example, is typically delivered to peripheral neurons following the bite of an infected animal, and then travels via axonal and trans-synaptic transport to the brain, thus bypassing the BBB. The vagus nerve has been specifically implicated as a gut–brain delivery highway for microbes in the gastrointestinal tract, and alphaherpesviruses such as HSV-1 employ a similar neuronal strategy (reviewed in Ref. 47), principally via the olfactory system. In support, following intranasal delivery of HSV-1 to young mice, virus particles could be detected by immunohistochemistry in olfactory bulb and trigeminal nuclei in under a week, subsequently spreading to multiple brain regions including hippocampus and cortex. Virus replication does not appear to be essential for dissemination. After delivery of a replication-defective marked HSV-1 either intranasally or intravenously, viral gene expression was detected in multiple brain regions as quickly as 3 days after inoculation.

Fourth, via the circumventricular organs. The circumventricular organs and choroid plexus lack a classical BBB, and trypanosomes (Trypanosoma spp.) appear to use this route for early invasion, whereas infiltration of the brain parenchyma occurs only later.

Thus, although the BBB may afford an obstacle to opportunistic pathogens, species-adapted endozoites appear to have evolved effective mechanisms to evade the BBB and gain brain entry. However, this remains to be clarified more extensively. For example, do genetically tagged endozoites introduced into the oronasal cavities, lung, or gut generally enter the brain (as demonstrated for P. gingivalis and HSV) or other organs?

6 | MECHANISMS OF PERSISTENCE

At first sight, the presence of endozoites in normal healthy tissue is enigmatic. Vertebrates deploy an arsenal of defenses against pathogens, including pathogen-recognition mechanisms, antibody- and complement-mediated pathogen elimination, and cell-mediated defenses (both antigen-specific and nonspecific). How then do endozoites persist?

Entry into host cells and extrachromosomal replication (e.g., HSV) and/or genomic integration (e.g., HHV) and subsequent persistence as intracellular latent forms is the most obvious means to evade the immune system. Some normally extracellular bacteria and parasites such as Salmonella spp. and Toxoplasma gondii can enter host cells where they clad themselves with host proteins inside the cell. Multiple other routes include antigenic variation (bacteria, protozoans, viruses), antigen shedding (e.g., Leishmania), and metabolic dormancy (e.g., Mycobacterium tuberculosis) (for an excellent and forward-looking review see Ref. 52). To this list one must add biofilms, secreted layers of inert (non-immunogenic) polymers that coat the local environment of the cellular endozoites, as well as coronas of host proteins that can surround the endozoite, and that may prevent recognition by innate immune receptors, antibodies, and cell-mediated immune mechanisms.
As we will see later, several endozoites also cause local or systemic immunosuppression that further contributes to their persistence.

7 | LATENT/DORMANT ENDOZOITES ARE NOT SILENT

A longstanding view is that endozoites, after entering tissues such as the brain, remain in a hidden “silent” form that can persist for years. However, this view has been challenged by findings that latent HSV-1 infection is accompanied by persistent cytokine upregulation. Following low-dose infection of mice with HSV-1, brain cytokines including IFN-\(\gamma\), IL-4, IL-6, and TNF-\(\alpha\) were chronically upregulated for up to 120 days postinfection, despite evident viral clearance.\(^{55,56}\)

In an important study, Halford et al.\(^{57}\) reported that ongoing treatment of latently infected mice with a potent inhibitor of HSV-1 DNA replication, aciclovir, led to an extensive decline in brain (trigeminal ganglia) expression of IFN-\(\gamma\) and TNF-\(\alpha\) by 120 days postinfection (aciclovir was started at 15 days postinfection). This demonstrates that, instead of being inert, low-level HSV-1 gene expression and DNA replication continues to take place despite viral clearance, driving chronic cytokine production.\(^{57}\) Low-level neuronal expression of multiple VZV proteins was also detected during latency.\(^{58}\) In support, viral sequences are detected in blood, and saliva can be a source of HSV and VZV virions in otherwise healthy individuals.\(^{59,60}\)

The reported behavioral effects of \(T.\) gondii infection (discussed in more detail later) also argue that the parasite is not silent, and causes changes in the host despite persisting in a subclinical state.

In sum, far from being silent, the albeit limited evidence suggests that endozoites in subclinical infection (parallelizing endophytes in plants) display low-level gene expression and turnover that may have an ongoing influence on their host. As we will see in the following sections, endozoites can both provide benefits to the host as well as manipulating local or systemic immunity and behavior to maximize their own persistence and/or onward transmission.

8 | THE ENEMY WITHIN: BEHAVIORAL CHANGES AND IMMUNOSUPPRESSION

Plant endophytes alter host physiology and metabolism, in some instances to promote host defense (see earlier), and in others to ensure their own propagation—for example by associating with seeds or pollen.\(^{33,61}\) and also by suppressing host immunity.\(^{62}\) Indeed, local immunosuppression is essential for maintenance of \(Rhizobium\)–legume symbiosis.\(^{63}\)

Similarly, specific endozoites cause behavioral and physiological changes that may facilitate their own proliferation. Although extensive work has been done in insects (not reviewed), the focus here is on vertebrates and the brain. Because most work has been done with acute replication, this is covered first before discussing more subtle changes taking place in subclinical infection.

Pathogens including viruses not only influence host behavior (perhaps to promote host–host transmission) but also can dampen the immune system (to prevent their elimination).

8.1 | Local immunosuppression

Multiple viruses escape immunosurveillance by downregulation of major histocompatibility complex (MHC)-mediated antigen presentation of infected cells, blockade of complement-mediated cytotoxicity, or interfering with cytokine signaling, examples being adenoviruses, poxviruses, and herpes viruses.\(^{64}\) Measles virus and endozootic HHV-6A/6B interfere with key immunoregulatory circuits.\(^{65,66}\) and CMV is reported to disrupt signaling pathways leading to the release of immunosuppressor molecules such as arachidonic acid, prostaglandins, and cytokines.\(^{67}\)

8.2 | Systemic immunosuppression

Two routes are central. The first strategy is to directly infect immune cells including macrophages (reviewed in Ref. 68). For lymphotropic viruses such as HIV, direct infection and inactivation of key immune cells can precipitate systemic immunosuppression.

A second route but less well studied route exploits the fact that limbic brain areas control both behavior and the immune system. Damage to temporal brain including hippocampus, amygdala, and overlying cortex can cause Klüver–Bucy syndrome that is associated in monkeys and humans with hyperorality, hypersexuality, and decreased or increased aggression.\(^{69}\) Infection of limbic areas may thus modulate onward pathogen transmission.

Furthermore, the limbic brain is directly connected to the hypothalamus—and controls the hypothalamic–pituitary–adrenal (HPA) axis\(^{70,71}\) and the release of glucocorticoids that have direct immunosuppressive effects (reviewed in Ref. 72). Although the literature is mixed, hippocampal lesions are associated with upregulation of basal levels of adrenal corticosteroids, and chronic excess of cortisol is firmly linked to immunosuppression. Pivotal, a wide literature documents chronically upregulated cortisol levels in Alzheimer patients,\(^{72}\) in which early hippocampus involvement is seen, that accompany clinical progression.\(^{73}\)

A case may therefore be made that hippocampus targeting by endozoites can contribute to immunosuppression.

As we will see, several classes of endozoites directly enter the brain and, through effects on key brain regions such as the hippocampus, may both dampen the immune system and cause behavioral changes to promote their own proliferation. Rabies virus affords the exemplar of how a virus can influence both behavior and immunity, and we consider this case first.

8.3 | Rabies virus: the exemplar

Rabies virus (RV) is a pathogen, and infection is predominantly lethal (unless rescued by vaccination\(^{74}\)), and it is therefore not a true
endozoite (related endozootic lyssaviruses of humans and animals are reviewed in Box 4), but this neurotropic negative-stranded RNA virus is the paradigm for behavioral changes.

The name of the virus is reputed to derive from the old Indian word *rabh*, meaning “to make violent.” Following peripheral infection, the virus travels in a retrograde direction via the nervous system of the brain (specifically HSV-1 and HSV-2—the HHV group of viruses tend to be lymphotropic) has been known for almost a century (Ref. 254, reprinted from 1929). As noted earlier, the virus can persist lifelong in sensory ganglia, but the hippocampus displays the highest abundance of HSV-1 receptors (Figure 1(D)) and latent virus is often found in hippocampus, amygdala, and olfactory system. Regional apoptosis in hippocampus has been reported following HSV-1 infection. Indeed, following reactivation or primary infection, the hippocampus is a central site for virus replication in HSV encephalitis. Multiple cases of Klüver–Bucy syndrome or autism have been reported following HSV encephalitis, consistent with virus-mediated damage to the limbic brain; behavioral changes in severe infection have been discussed that could plausibly facilitate onward transmission.

In addition to behavioral changes in acute infection, multiple other herpes viruses are known to cause immunosuppression by infecting and/or interfering with immune cell function (e.g., CMV, EBV, and Marek disease virus of birds; reviewed in Ref. 260). In mouse, the homolog of human HHV-6/7, murine roseolovirus (MRV; also known as mouse thymic virus, MTV; that is present in 90% of house mice), causes necrosis of the thymus and acute immunosuppression in juveniles.

Neurotropic herpesviruses are also reported to cause systemic immunosuppression. Following infection of mice with HSV-2, the in vivo response to a potent proinflammatory molecule (phytohemagglutinin) dropped dramatically shortly after inoculation, and lymphocytes remained unresponsive for several weeks, although the mechanisms are not understood.

For HSV-1 a subtle mechanism has been proposed. HSV-1 latency in the CNS is accompanied by persistent upregulation of cytokines (see earlier) and, as noted by Baker, chronic production of specific cytokines may have detrimental effects on endocrine function and immunity, perhaps by targeting receptors that are expressed in the brain as well as by immune cells.

There is a further potential avenue for immunomodulation. Following ocular administration of HSV-1 in rats, a selective and intense focus of viral replication was seen in the hypothalamus, the master regulator of body physiology including immunity. Thus, HSV-1 (and potentially other viruses) could directly target the apex of the HPA axis to cause immunosuppression.

Picornaviruses

The major cause of the common cold, rhinovirus, is among the most common viral infections in humans. However, rhinovirus infections of the brain appear to be uncommon. In mouse, a different picornavirus, Theiler’s murine encephalomyelitis virus (TMEV), or murine poliovirus, is primarily an enteric endozoite that rarely causes overt disease, and reports of TMEV seropositivity in laboratory mice range from 0.1 to 48%. However, acute TMEV infection of sensitive animals leads to neurological deficits and neuronal destruction in the hippocampus (Figure 1). As with other agents, infection can also lead to immunosuppression, including inhibition of innate immunity and lymphopopenia, suggesting that persistent rhinovirus infection in humans and animals might adversely affect the immune system.

Flaviviruses

These comprise a family of principally insect-borne viruses that are endemic in tropical and subtropical regions. We focus on two flaviviruses: Dengue and its recently emerged relative, Zika. Most individuals infected with Dengue recover, but, in a study on Brazilian Dengue-infected individuals, 6% had symptoms that persisted for more than 6 months, including memory loss, headache, and emotional lability, consistent with hippocampal involvement. Zika virus (that in neonates is associated with human microcephaly), also targets the hippocampal dentate gyrus even in the absence of microcephaly, a finding replicated in adult mice.
system until it reaches the brain. Target brain regions in human and animals centrally include the limbic system and hippocampus, a site that displays the highest density of RV receptors CHRNA1 (nicotinic acetylcholine receptor) and GRM2 (metabotropic glutamate receptor subtype 2); Figure 1A). In animals, RV infection is then accompanied by extensive virus shedding (of presumed neuronal origin) in saliva and aggressive behavior (“furious rabies”) that can facilitate infection of new hosts.

RV infection is also associated with profound immunosuppression. Kasempimolporn et al. reported atrophy of the spleen and thymus in RV-infected mice, but with no evidence of infection of these tissues, and the authors argued that neuronal infection by RV

FIGURE 1 Pathogen localization and neurotoxic effects in mammalian brain. (A) Region-specific expression of rabies virus receptors ChmA1 and Grm2 in dentate gyrus (DG) of mouse hippocampus (HPC); reduced-size insets are brightfield images of the same sections (data: Allen Brain Atlas; https://mouse.brain-map.org/). (B) Selective destruction of the hippocampal DG in rats infected on postnatal day 1 with Borna disease virus (BDV); left, uninfected (age 60 days); right, infected (75 days). Figure adapted, with permission, from Ref. 197.

(C) Distribution of *Toxoplasma gondii* cysts in brain of mouse with latent *T. gondii* infection, showing enrichment in cortex (CX) and limbic brain including the HPC. (D) Distribution of herpes simplex virus type 1 receptors in the human telencephalon, showing enrichment in the HPC (adapted, with permission, from Ref. 198). (E) Picornavirus (Theiler murine encephalomyelitis virus) infection in mouse leads to selective DNA fragmentation within hippocampal CA1 neurons (white/green on blue background; 7 days postinfection) via pathways that may not involve direct virus infection (adapted, with permission, from Ref. 199)
causes lymphoid cell apoptosis and immunosuppression by an indirec
t route.83

8.4 | Other lyssaviruses, herpes viruses,
picornaviruses, flaviviruses

Box 4 overviews different types of viruses and their effects on the
brain and immunity. One commonality emerging from this analysis is
that many agents selectively target the hippocampus (Figure 1), where
they can cause behavioral changes. They also induce immunosuppres-

sion, although in many cases the underlying mechanisms remain
unknown. In addition, there is some evidence that HSV-1 may target
the hypothalamus (Box 4), potentially affording a further mechanism
for subverting host immunity.

As in rables, saliva may be a major route of transmission, notably
for herpesviruses. Indeed, some viruses (e.g., mumps rubulavirus) tar-
get the salivary gland.

8.5 | Coronaviruses: bats as an unusual source of
human infection

Human coronaviruses such as the agents of severe acute respiratory
syndrome (SARS), Middle East respiratory syndrome (MERS), and
more recently COVID-19, have been in the headlines as a result of
recent human epidemics, but their biology is not fully understood.
These pathogenic viruses principally cause respiratory tract disease;
brain infection, although strongly suspected, has not yet been
studied in detail. By contrast, murine coronaviruses (rat JHM virus
and a derivative of murine hepatitis virus, HMV) have been reported
to cause selective cell destruction in the hippocampus. Suppres-

sion of the innate immune system by the SARS agent has been
reported.87

Although these specific human viruses are principally pathogens,
four different types of subclinical coronavirus (229E, NL63, OC43,
and HKU1) are widespread in the general population where they
cause a condition that is difficult to distinguish from the common cold
caused by rhinoviruses. Coronavirus have been associated with
CNS diseases such as encephalitis.88 Over 70% of adults worldwide
are seropositive for all four virus types, demonstrating that these
are true endozoites.

By contrast, the new pathogenic strains appear to derive from
endozoites of bats, and the COVID-19 virus is 96% identical to a
known bat virus.90 This raises the intriguing question of why bats in
particular are a rich source of human pathogens.

8.5.1 | Viruses in bats

There are over 1200 species of bats that comprise a quarter of mamma-
lian species. Bats harbor more viruses per species than any other mam-
mal. How do bats coexist with so many viruses? Bats are the only
mammalian species adapted to flight, and it appears that this changed
their immune systems. The energy demands of flight are so great that
cells in the body break down and release copious quantities of DNA and
RNA into the circulation. Mammals, including bats, have sensors that
respond to DNA/RNA and induce an innate immune response. To avoid
damaging inflammation during flight, a key mediator of the innate
immune response, STING (stimulator of interferon genes) is altered. Xie
et al. (Wuhan) have found that the serine residue at position 358 of
STING is replaced in every known bat species examined, whereas it is
absolutely conserved in all other mammals. They then demonstrated
the S358 replacement in bat STING dampened but did not fully diminish
the functionality of STING. They speculate that adaptation to flight via
weakened (but not entirely lost) functionality of the STING-mediated
innate immune response may have a profound impact on the ability of
bats to maintain an unusually high burden of endogenous viruses.94

8.6 | Bacteria and Archaea

Far less is known about the proclivity of bacteria for specific brain
regions, but cognitive decline is commonplace in survivors of bacterial
sepsis (Ref. 95 for review), and bacterial toxins including lipopolysaccha-
ride (LPS) are known to exert negative effects on the hippocampus,96 where they inhibit neurogenesis and neuronal replacement.98 Hippocam-
pal damage, particularly of the dentate gyrus, is a common feature of
bacterial meningitis in human. In addition, LPS administration to mice
(a model for sepsis) can lead to immunosuppression. Further studies
on the relationship between enzootic bacteria, brain physiology, and
immunosuppression are warranted.

To date there have been no systematic studies on Archaea, and
their potential role as brain endozoites remains unknown.

8.7 | Yeast

Candida albicans is detected in the brain of AD patients, including
cortex and hippocampus, and Candida infection has been
suggested to promote functional changes in the immune system
and enhance immunosuppression. However, this was not con-

firmed in another study, and it remains an open question
whether yeasts such as Candida spp. modulate local/systemic immunity and/or behavior.

8.8 | Toxoplasma and fatal attraction

Infection with the protozoan T. gondii is prevalent in the human
population, and some very high rates have been reported, confirming that T. gondii is a true endozoite. In experimental rats, persis-
tent infection remarkably blocks their innate aversion to the odor of
cats ("fatal attraction"), the definitive host for T. gondii, thereby
increasing the chance of transmission to that species. Berenreiterova
et al. reported a significant association of T. gondii
cysts with the limbic brain and cortex (Figure 1(C)), and more detailed studies highlight the amygdala, adjacent to the hippocampus, as the region responsible for the altered odor response.109 There is also evidence for subtle behavioral changes in humans, including changes in the perception of animal pheromones110 and in impulsivity and aggressiveness111 (schizophrenia [SZ] is discussed later). Toxoplasma infection can also cause immunosuppression in mice and potentially in human.112-114

8.9 | Trypanosomes and sleeping sickness

African sleeping sickness, also known as human African trypanosomiasis, is caused by infection by one of two related protozoan parasites, Trypanosoma brucei (Tb) rhodesiensis that is found in East Africa, and Tb gambiensis in West Africa. The parasite is transmitted to humans by bites from the tsetse fly (genus Glossina). These are painful—the fly's mouth has tiny serrations that saw into the skin and allow it suck from pooled extravasated blood. Primary infection leads to long-term persistence of the parasite. Although it has been known for over a century that trypanosomes are found in cerebrospinal fluid (CSF) of infected individuals, the skin itself is also a significant reservoir of trypanosomes115 and the fly likely ingests the parasite from both skin and blood.

Infection appears to be a three-stage process. The first stage is a bite from the tsetse fly, leading to blood infection. In the second stage, the parasite enters the CSF and meninges. In the third stage, the protective barriers of the brain break down and a "mass invasion" of trypanosomes crosses the BBB, attacks the brain, and is often fatal. Our appreciation of the importance of events in second stage has been highlighted by recent work of Duszenko et al. It seems that the parasite keeps itself in the second stage as long as possible and actively slows disease progression, and the third stage often only occurs months, years or even decades after infection.116

Why do trypanosomes enter the CNS and why was this phenomenon advantageous enough to be stably passed on during evolution? Mogk et al. discuss this in detail and make several interesting points.116 Escaping from the hostile blood system into a relatively immune-privileged organ may offer advantages. By occupying the pial cell layer trypanosomes are not challenged by the full immune system, but from this refuge trypanosomes can easily interfere with sleep/wake cycles117 and at the same time easily re-enter blood vessels to ensure a permanent blood infection for onward transmission.

Sleeping sickness is an excellent example of where an endozoite deliberately manipulates host behavior. Two compounds are produced by the parasite: (i) prostaglandins including PGD2, and (ii) a tryptophan metabolite, tryptophol. PGD2 is selectively elevated in the CSF of advanced sleeping sickness patients and has somniferous properties as well as inducing immunosuppression.118 Tryptophol is reported to induce sleep in mice119 and also causes immune system down-regulation.120 The lethargy and somnolence that name the disease may well maximize the likelihood that an infected individual is bitten by a further tsetse fly, thus completing the insect–human–insect life cycle.

In sum, several different classes of endozoite have been shown to invade (or indirectly target) limbic regions if the brain where they can modulate both behavior and immunity. Although this suggests that brain infection and local/systemic immunosuppression are central to their life cycle, the generality of this phenomenon warrants further investigation.

We stress that behavioral changes are by no means restricted to vertebrates, and infections of mosquitoes by La Crosse virus (the agent of the most common mosquito-borne disease of US children) are reported to modify mosquito bloodfeeding behavior to enhance transmission by biting.121,122

9 | ENDOZOITES IN THE BRAIN: NEUROPSYCHIATRIC DISORDERS INCLUDING SZ

Acute infections of the CNS with bacteria and viruses are associated with multiple clinical conditions including meningitis, encephalitis, and retinal necrosis (herpesvirus infections of the CNS are reviewed in Ref. 123). Acute and postacute infections with different types of herpes viruses have also been associated with epilepsy, including but not restricted to HSV-2, CMV, and HHV-6A/6B.124-126 However, our focus here is on long-term infections by endozoites.

9.1 | Neurodegeneration, bacteria, and herpesviruses

Host immunodeficiency inexorably leads to microbial proliferation and tissue damage in multiple organs. Thus, the persistence of endogenous microbes in healthy tissues such as the brain appears to reflect a delicate balance between microbial proliferation and elimination by the immune system. Therefore, aging, that is characterized by decline of the immune system,127,128 is likely to be accompanied by re-emergence of erstwhile clinically silent endozoites, as reported for HSV129,130 and VZV.131 Indeed, there is growing interest in the possibility that age-related reactivation of subclinical endozoites in brain might be causally linked to disorders such as AD.132

This idea has a long history. At about the same that Lewis was studying endophytes in trees, Fischer and Alzheimer discovered deposits ("Drusen") in the brain of patients with AD that they suspected ("I emphasized the peculiar similarity of the Drusen with bacterial colonies") to be associated with microbes.133 Several reports have recently appeared that address the potential relationship between AD and different types of infection including viruses, yeasts, and bacteria,101,134-140 and these are not reviewed here.

Causal links are notoriously difficult to prove, but emerging population evidence argues that antitherpetic medication may reduce the incidence of AD,141 and several studies are underway to reproduce or refute this finding. Antiviral treatment is also reported to reduce the incidence of Parkinson’s disease (PD).142 If confirmed, it would raise the prospect of eventual treatments not only in AD and PD143,144 but
also of conditions such as atherosclerosis and diabetes, among others, where an infectious trigger has long been suspected.

We raise a potential caveat regarding the brain microbiome in neurodegeneration (and other disorders) because most studies have been performed on postmortem samples from elderly patients, and it is difficult to distinguish between microbes that might play a role in brain disease such as AD versus those that invade the brain during terminal illness (e.g., the cause of death in AD is typically severe respiratory infection).

9.2 Depression/anxiety and infection

There have long been suggestions that chronic infections may be associated with both depression and the associated condition, anxiety. HHV infection has been associated with major depressive disorder,145,146 and we saw earlier that subclinical infection with for example HSV leads to persistently elevated levels of circulating cytokines. These predominantly target limbic brain regions, centrally including the hippocampus,147 and clinical administration of interleukins and interferons such as IL-1α, IL-2, IFN-α, IFN-β and TNF-α has been widely reported to cause malaise and sickness behavior that resemble anxiety/depression.148-152 Indeed, subclinical infection of several types, perhaps not only in the brain, that lead to systemic inflammation may underlie depressive and anxiety disorders.154

9.3 Schizophrenia and Toxoplasma

Intense research is presently focused on endozoite involvement in AD and PD, as well as in depression, and we therefore draw attention to a neglected condition, SZ, where infection has long been implicated.

The cause of SZ, an enigmatic condition that is typically diagnosed in late teenage years, is unknown. A possible infective contribution to the etiology and pathogenesis of SZ has been investigated intermittently for over a century. In part this is because of the textbook example of the once common form of psychosis called general paralysis of the insane (GPI). Infection of the CNS by a single agent, Treponema pallidum, is responsible, and the disorder can be effectively treated with penicillin.

In support of a role of an infectious agent, genome-wide association studies of SZ have consistently reported by far the largest signal from the MHC region on chromosome six,155 and part of the risk for SZ comes from allelic variations of the complement component 4 (C4) located in the MHC region.156 This is of particular note because the complement receptor CR2 is a receptor for EBV and complement C4 directly targets viruses for inactivation.158

We overview in Box 5 some of the best-studied potential infectious organisms that have been associated with SZ, including influenza virus, HSV-2, Porphyromonas gingivalis, and Toxoplasma spp. All are associated with CNS invasion.

Of these, the case for an involvement of Toxoplasma spp. in SZ is supported by genetic and pharmacological findings. First, the DISC1 gene, that has long been recognized to be a key determinant of familial SZ,159,160 is now reported to be a pivotal modulator of immune responses to T. gondii,161 directly implicating Toxoplasma spp.

Second, SZ is widely treated with neuroleptics, but their mechanism of action is unknown. Intriguingly, these psychotropic drugs may inhibit the growth of T. gondii. Jones-Brando et al. examined the effect of a range of neuroleptic and mood stabilizing drugs on T. gondii cells. Valproic acid together with haloperidol showed the strongest inhibitory effect on cell proliferation, but risperidone and trimethoprim also showed some effect.162 In rats haloperidol or valproic acid can reverse behavioral changes induced by T. gondii infection, such as reduced fear of cats and attraction by cat odor. However, those drugs did not prevent acute infection nor decrease the number of tissue cysts in the animal brain,163 and more recent studies have yielded less clearcut results. However, a recent study164 confirms that antipsychotics, in particular, have antimicrobial effects. The available data suggest that some neuroleptic drugs may reduce psychosis not only through antidopaminergic action but also by direct inhibition of T. gondii or other endozoites.

10 Host Advantages: An Evolutionary Role for Endozoites

Healthy tissues contain a multiplicity of endozoites, from bacteria to protozoans and viruses. These are not silent. In plants, select endophytes confer protection against pathogens and herbivores. Endozoites in vertebrates can also provide advantages to the host.

10.1 Protection against superinfection

There are many examples. Ever since the time of Jenner it was observed that infection with one pathogen (e.g., poxvirus) could confer protection against a second unrelated pathogen (e.g., herpes),166 and the 1927 Nobel Prize in Physiology or Medicine was awarded to Julius Wagner-Jauregg for the discovery that malaria infection is protective against GPI (i.e., neurosyphilis): inoculation of infectious malaria into patients remitted GPI in 83% of cases.167 Bohnhoff et al. in 1954 found that, unlike control mice, mice treated with streptomycin were easily infected by Salmonella enterica,168 demonstrating the protective role of the normal microbiota. In a further example, experimental animals inoculated with the human symbiont Bacteroides fragilis were protected against colitis induced by Helicobacter hepaticus.169

Similar effects have been reported for viruses. Infection with human CMV in vitro was reported to inhibit superinfection with HIV,170 and mice latently infected with either murine gammaherpesvirus 68 or murine CMV are more resistant to infection with the bacterial pathogens Listeria monocytogenes and Yersinia pestis, respectively.171 Early measles virus infection in human may be associated with a twofold reduced risk of PD.172 Host advantages have been well reviewed by Roossinck173 (further discussion below).
BOX 5 Endozoites and schizophrenia (SZ)

Influenza

Influenza is one of the best-studied potential prenatal contributors to SZ. Mednick et al. reported an increased risk for SZ in people exposed prenatally to the 1957 influenza epidemic. This was followed in rapid succession by papers from Scotland and Denmark essentially confirming the Mednick findings. National registry records were used and allowed examination of prenatal exposure to both the 1918–1919 and 1957 influenza epidemics. Unfortunately since then around 20 additional ecological studies have addressed the issue, with around half supporting the hypothesis and the other half failing to confirm. However, there are confounders that make interpretation of these studies difficult. For example, almost all studies of prenatal exposure to influenza are based solely on whether an individual was in utero at the time of an influenza epidemic. In these circumstances around 70% of individuals who were in utero during the 1957 type A2 influenza epidemic would have been misclassified as having been exposed. This increases the risk of false negative (type 2 error) associations.

In a nested case–control study, Brown et al. demonstrated a threefold elevation in risk of SZ following influenza prenatal exposure during the first half of gestation. For first trimester exposure, the risk of SZ was increased sevenfold but there was no elevated risk following exposure during the second half of gestation. These results have been difficult to interpret especially because Seltzen et al. pointed out that serological studies may have limited validity.

HSV-2

Neonatal exposure to HSV-2 is associated with congenital anomalies and neuropsychiatric disorders. Three studies have examined the relationship between prenatal exposure to HSV-2 and risk of SZ in offspring. Two were derived from selected sites of the Collaborative Perinatal Project (CPP), a multisite study of population-based birth cohorts born from 1959 to 1967. In the first study, raised maternal IgG antibody levels to HSV-2 were associated with a significantly elevated risk of SZ and other psychoses in offspring with odds ratios of 3.4 to 4.4. In a much larger follow-up study, which included 200 case subjects with psychotic disorders from three cohorts of the CPP, a 1.8-fold increased risk of SZ psychoses was observed among offspring of mothers who were seropositive for HSV-2, but only among seropositive mothers who has regular unprotected sexual intercourse. A third study based on the Child Health and Development Study cohort failed to replicate these positive associations. Potential explanations for these discrepant findings are discussed by Brown, as are the limited and equivocal findings investigating measles, rubella, varicella zoster, rubies, and poliomyelitis. There have been few and mostly negative subsequent studies of HSV-2 and SZ, and the data so far argue that HSV-2 is not a major contributor to SZ.

Porphyromonas gingivalis

Multiple studies have demonstrated increased rates of periodontal disease in patients with SZ. Indeed Fawzi et al. demonstrated increased levels of P. gingivalis (the key pathogen in periodontal disease) in saliva from SZ patients compared to controls, and the severity of psychopathology was related to P. gingivalis levels. Although the most obvious explanation for these findings is that the periodontal changes are secondary to lifestyle, poor oral hygiene, and medications associated with SZ, a bidirectional link between the two conditions cannot be ruled out, especially given observations of the presence of P. gingivalis in postmortem AD and its presence in brain parenchyma following chronic oral administration in mice (see earlier).

Toxoplasma

This is the topic of excellent reviews, much of which is paraphrased in the following outline. Toxoplasmosis is an infectious disease caused by the parasitic protozoan, T. gondii, that affects approximately one third of entire human population. T. gondii can be found in almost all warm-blooded animals, but cats are the only known natural hosts. T. gondii is highly neurotropic and, soon after the infestation, migrates within the brain tissue to localize in astrocytes, microglia, and neurons. The dormant form or bradyzoite can persist in the host brain for many years. The brain tissue cysts undergo continuous remodeling, but until recently were not thought to cause clinical symptoms in immunocompetent individuals. However, given the high level of neurotropism and the fact that T. gondii is endemic in almost all cultures worldwide, it has long been postulated that there may be a link with SZ. Increased rates of T. gondii infection are reported in SZ. Three meta-analyses of association between T. gondii exposure and SZ have been published. All were conducted with necessary scientific rigor and all have demonstrated, even accounting for publication bias, an association between exposure to T. gondii (as measured by IgG antibodies) and SZ. The most recent analysis by Sutterland et al. included 50 studies. Significant odds ratios (ORs) with IgG antibodies were found in SZ (OR 1.81), and to a lesser extent in bipolar disorder and obsessive compulsive disorder, but not in major depression. Increased risk of SZ was also found in the offspring of mothers with serologic signs of infection detected during pregnancy. Cohort studies of blood samples taken from mothers in the perinatal period also show a twofold increase (OR 2.61) of IgG antibodies to T. gondii in those whose children went on to develop SZ. None of the studies demonstrated acute infection, as detected by specific IgM antibodies: this suggests the effects are due to latent
10.2 | Competition

There are likely to be other benefits, both indirect and direct, that operate at an evolutionary/ecosystem level. For example, Johnson in 1926 reported that overtly healthy potato plants harbored a latent virus that produced severe pathology in a different plant, tobacco. Harboring a latent pathogen could thus favor the host in competition with other plants. The same phenomenon is evident in human: the history of human migration has reported decimation of native populations, not by conflict, but through exposure to pathogens carried by the invaders. Such effects have undoubtedly had a major impact since the dawn of the vertebrate lineage, and no doubt well before.

10.3 | Ecosystem advantages

At the ecosystem level, plant ecologists argue that many endophytes within plant tissues remain latent until natural senescence, when they proliferate to promote recycling of biomaterial, to the benefit of seedlings and saplings, and thus to the ecosystem (see earlier). This is a perhaps a strange idea in the context of vertebrates, but this cannot be formally excluded over an evolutionary timescale, particularly for fungi and bacteria.

10.4 | Coevolution and horizontal gene transfer

There may be more direct routes. Herpes viruses and vertebrates have coevolved for at least 200 Ma. In human, where the majority of the population harbors persistent infections with herpes viruses (Table 1), the divergence of HSV-1 and HSV-2 (and recombinants) accompanied human evolution from primates, and perhaps also migration out of Africa, suggestive of functional effects.

In plants, integration of (non-retrovirus) viral sequences is commonplace, raising speculation that “integrated viral sequences might reflect some functional advantage to the possession of the sequence.” Indeed, key genes determining the evolution of land plants from precursors appear to have arisen by horizontal gene transfer from soil bacteria.

Intriguingly, around 1% of the human population now contains integrated HHV-6 sequences. The fact that these insertions have expanded from a small number of ancestors is very suggestive of a host advantage, so far unknown. Of the other endozoites discussed here, BDV-related sequences are also present in both human and primate genomes, again suggesting that viral sequences might provide a selective advantage. Indeed, there is good evidence for horizontal gene transfer from endozoites, particularly parasites, to the human genome.

10.5 | Cognitive benefits

Given that the majority of the population harbors HSV-1 and/or HSV-2, as well as multiple other diverse endozoites, one must query whether any beneficial behavioral changes are associated with subclinical infection—or are the changes (if any) normally so subtle that we do not recognize them?

Recent meta-analysis concluded, unexpectedly, that possession of the APOE e4 allele (an established genetic predisposition to several types of infection, including HSV, as well as to AD), was associated with marked cognitive benefits in the 0–30 year age group, the inferred lifespan of ancestral Homo.

In a striking example of cognitive benefits, Trumble et al. studied Amazonian forager-horticulturists who harbor chronic burdens of (untyped) microbial species. Performance on a battery of cognitive tests addressing verbal memory, working memory, semantic memory, and visual scanning was significantly elevated in APOE e4 individuals with the highest endozoite burden (assessed by level of eosinophilia). This finding mirrors reports of cognitive deficits in germfree mice. Nevertheless, how endozoites might enhance cognition remains unknown, and brain infection was not demonstrated (although this appears likely). Even so, the far-sighted study of Trumble et al. needs to be extended by research on other populations and microbes to determine the extent to which endozoites might promote cognitive function in the host carrier, perhaps by competing with disadvantageous microbes, thus providing an evolutionary selective pressure for their persistence.

How do we explain the cognitive benefits in Trumble’s villagers? Increased “alertness” by stimulating adrenergic/cholinergic pathways is a possibility, but how might endozoites achieve this? We are reminded of the speculative Orowan–Haldane theory that elevated levels of the caffeine-like stimulatory molecule, uric acid, in the blood of human versus other mammals may have given the lineage leading to Homo an edge, of particular note because uric acid is associated with inflammation.

11 | HYGIENE AND MICROBIAL ECOLOGY

The findings of Trumble et al. contrast sharply with other reports. For example, Benros et al. reported that infections of diverse types are associated with compromised cognition in young Danish males. However, we underline a major complicating factor—hygiene.
Improved sanitation in developed countries has substantially cut infant mortality, but may have inadvertently increased other disorders. Indeed, the "hygiene hypothesis" has been invoked to explain differential rates of autoimmune disease across the world, including aAD, although recent data now argue against the hygiene hypothesis of AD.

One remarks that the situation of indigenous Amazonian villagers, who are chronically exposed over their entire lifetime to a myriad of endozoites, is a far cry from Western populations who are insulated from the vast majority of environmental microbes, and are only exposed to a restricted range of endozoites in later years. It is very possible that, despite benefits in terms of infant mortality, the lack of exposure to an "evolutionary" spectrum of microbes may predispose the human population to "modern" diseases including AD, PD and SZ.

12 | ENDOZOITES AND THE MISSING HERITABILITY

As a final note, we wonder if endozoites might explain a longstanding conundrum. Many CNS disorders, exemplified by SZ and autism, show high concordance between identical twins (a measure of "heritability"), as well as raised concordance between siblings. However, other than for specific single-gene defects (e.g., CFTR mutations in cystic fibrosis), multiple genomic analyses have failed to uncover gene variants (or groups of variants) that could explain this concordance, a phenomenon dubbed "missing heritability." Indeed, for most disorders, genes explain no more than a small fraction of the heritability.

The widespread distribution of endozoites in the human population leads us to wonder whether endozoites, clusters of endozoites, and/or specific variants thereof could explain why twins and siblings display phenotypes that are closer to each other than to the general population. We undoubtedly inherit more from our parents (and from our prenatal and postnatal environments) that merely genes. Others have suggested that the gut microbiota might play a role, but the broader spectrum of endozoites, specifically those reaching the brain, might have greater impact on diseases such as SZ that principally affect the nervous system. Comparative studies on twin/sibling microbiomes will be necessary to address this possibility.

13 | CONCLUSIONS

Given the precedent of plants, it comes as no surprise to discover that endozoites are widely present not only on superficial surfaces and in the gastrointestinal tract but also within healthy human tissues such as the brain. Indeed, for many host-adapted microbes it seems that there is no fundamental barrier to entering host tissues. The benefits of the close association are well documented in plants, but there is so far only limited evidence (except for the gut microbiome) that vertebrate endozoites benefit the host, and this is an area that demands further research. Instead, there is extensive evidence that endozoites manipulate host immunology and behavior to promote their own persistence and transmission.

Building on clear parallels between plants and animals, the key conclusions of this analysis are as follows.

1. Endozoites (like endophytes) are widely present not only in the circulation but in multiple body tissues including the brain.
2. Endozoites have accompanied the evolution of the lineage leading to Homo at least since the divergence of insects and vertebrates (0.5 Ga).
3. These passengers are not silent, and can influence both immunity and behavior.
4. As in plants, some of these passengers can be beneficial, and others harmful—a delicate balance. Endozoites are directly implicated in CNS disorders including AD, PD, and SZ, but in other cases endozoites may give their host a cognitive advantage.

In our view, endozoite modulation of behavior is the most intriguing of all the issues we have raised here. Is this mostly an incidental correlate of immunomodulation, given that the limbic brain governs both behavior/cognition and the immune system, or do endozoites deliberately manipulate our behavior?

We also wonder if there is an optimal (beneficial) brain microbiome that—paralleling GI tract microbiome transplantation in diabetes and colitis—we could perhaps resurrect (e.g., by simple measures such as intranasal inoculation) to prevent the adverse effects of key endozoites?

In sum, both plants and animals harbor a multiplicity of endogenous microbes that inhabit multiple tissues including solid tissues such as the brain. These are not silent, and harboring particular passengers may have both advantages and disadvantages. Understanding the mechanisms, roles, and ecology of endogenous microbes in different mammalian tissues including the brain will undoubtedly be a fertile field of investigation for the future.

ACKNOWLEDGMENTS

We would like to thank Hans Kuepper (Munich), Juergen Haas (Edinburgh), and Rob Moir† (Harvard) for constructive comments on the MS. This work was funded in part by the Benter Foundation.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID

Richard Lathe https://orcid.org/0000-0001-9698-9834

REFERENCES

1. Lewis FJ. An endotrophic fungus in the coniferae. Nature. 1924; 114:860.
2. Hardoin PR, van Overbeek LS, Berg G, et al. The hidden world within plants: ecological and evolutionary considerations for defining

†Deceased.
functioning of microbial endophytes. Microbiol Mol Biol Rev. 2015;79:293-320.
3. Liu H, Carvalhais LC, Crawford M, et al. Inner plant values: diversity, colonization and benefits from endophytic bacteria. Front Microbiol. 2017;8:2552.
4. Masson-Boivin C, Sachs JL. Symbiotic nitrogen fixation by rhizobial-the roots of a success story. Curr Opin Plant Biol. 2018;44:7-15.
5. Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol. 2002;40:309-348.
6. Vidal S, Jaber LR. Entomopathogenic fungi as endophytes: plant-endophyte–herbivore interactions and prospects for use in biological control. Curr Nutr. 2015;10:46-54.
7. Gange AD, Brown VK, Aplin DM. Multitrophic links between arbuscular mycorrhizal fungi and insect parasitoids. Ecol Lett. 2003;6:1051-1055.
8. Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK. Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract. 2012;27:201-214.
9. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JL. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474:327-336.
10. Ramirez-Puebla ST, Servin-Garciduenas LE, Jimenez-Marin B, et al. Gut and root microbiota commonalities. Appl Environ Microbiol. 2013;79:2-9.
11. Hacquard S, Garrido-Oter R, Gonzalez A, et al. Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe. 2015;17:603-616.
12. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984;1:1311-1315.
13. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207-214.
14. Castillo DJ, Rifkin RF, Cowan DA, Potgieter M. The healthy human blood microbiome: fact or fiction? Front Cell Infect Microbiol. 2019;9:148.
15. Regev-Yochay G, Raz M, Dagan R, et al. Nasopharyngeal carriage of Streptococcus pneumoniae by adults and children in community and family settings. Clin Infect Dis. 2004;38:632-639.
16. Wylie KM, Mihindukulasuriya KA, Zhou Y, Sodergren E, Storch GA, Weinstock GM. Metagenomic analysis of double-stranded DNA viruses in healthy adults. BMC Biol. 2014;12:71.
17. Berntsson M, Dubicacan L, Tunback P, et al. Frequent detection of cytomegalovirus and Epstein–Barr virus in cervical secretions from healthy young women. Acta Obstet Gynecol Scand. 2013;92:706-710.
18. Xu F, Schilling JA, Sternberg MR, et al. Seroprevalence and coinfection with herpes simplex virus type 1 and type 2 in the United States, 1988–1994. J Infect Dis. 2002;185:1019-1024.
19. Pedbo RG, Andrews N, Brown D, et al. The seroepidemiology of herpes simplex virus type 1 and 2 in Europe. Sex Transm Infect. 2004;80:185-191.
20. Moustafa A, Xie C, Kirkness E, et al. The blood DNA virome in 8,000 by adults and children in community and animal populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol. 2002;40:309-348.
21. Whiteside SA, Razvi H, Dave S, Reid G, Burton JP. The microbiome of the urinary tract – a role beyond infection. Nat Rev Urol. 2015;12:81-90.
22. Modena BD, Milam R, Harrison F, et al. Changes in urinary microbiome populations correlate in kidney transplants with interstitial fibrosis and tubular atrophy documented in early surveillance biopsies. Am J Transplant. 2017;17:712-723.
23. Kowalsky M, Camunas-Soler J, Kertesz M, et al. Numerous uncharacterized and highly divergent microbes which colonize humans are revealed by circulating cell-free DNA. Proc Natl Acad Sci U S A. 2017;114:9623-9628.
24. Koelle DM, Norberg P, Fitzgibbon MP, et al. Worldwide circulation of HSV-2 × HSV-1 recombinant strains. Sci Rep. 2017;7:44084.
25. Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K. Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci. 2014;34:15490-15496.
26. Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 2015;17:565-576.
27. Smith LK, Wissel EF. Microbes and the mind: how bacteria shape affect, neurological processes, cognition, social relationships, development, and pathology. Perspect Psychol Sci. 2019;14:397-418.
28. Balufka F, Mancuso S, Volkmann D, Barlow PW. The ‘root-brain’ hypothesis of Charles and Francis Darwin: revival after more than 125 years. Plant Signal Behav. 2009;4:1121-1127.
29. Sequiera LW, Jennings LC, Carrasco LH, Lord MA, Curry A, Sutton RN. Detection of herpes-simplex viral genome in brain tissue. Lancet. 1979;2:609-612.
30. Wozniak MA, Mee AP, Itzhaki RF. Herpes simplex virus type 1 DNA is located within Alzheimer’s disease amyloid plaques. J Pathol. 2009;207:13-138.
31. Frank AC, Saldierna Guzman JP, Shay JE. Transmission of bacterial endophytes. Microorganisms. 2017;5:E70.
32. Ilievski V, Zuchowska PK, Green SJ, et al. Chronic oral application of a periodontal pathogen results in brain inflammation, neurodegeneration and amyloid beta production in wild type mice. PLoS One. 2018;13:e0204941.
33. Dominy SS, Lynch C, Ermini F, et al. Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv. 2019;5:eavaa3333.
34. Coelho C, Camacho E, Salas A, Alaino A, Casadevall A. Intranasal inoculation of Cryptococcus neoformans in mice produces nasal infection with rapid brain dissemination. mSphere. 2019;4:e00483-19.
35. Frenkel D, Solomon B. Filamentous phage as vector-mediated antibody delivery to the brain. Proc Natl Acad Sci U S A. 2002;99:5675-5679.
36. Kim KS. Microbial translocation of the blood-brain barrier. Int J Paraitol. 2006;36:607-614.
37. Kim KS. Mechanisms of microbial traversal of the blood-brain barrier. Nat Rev Microbiol. 2008;6:625-634.
38. Pulzova L, Bhide MR, Andrej K. Pathogen translocation across the blood-brain barrier. FEMS Immunol Med Microbiol. 2009;57:203-213.
39. Wu Y, Du S, Johnson JL, et al. Microglia and amyloid precursor protein coordinate control of transient Candida cerebralis with memory deficits. Nat Commun. 2019;10:58.
40. Liu Y, Mittal R, Solis NV, Prasadaro NV, Filler SG. Mechanisms of Candida albicans trafficking to the brain. PLoS Pathog. 2011;7:e1002305.
41. Tsiang H, Ceccaldi PE, Lycke E. Rabies virus infection and transport in human sensory dorsal root ganglia neurons. J Gen Virol. 2004;85:1191-1194.
42. MacGibeny MA, Koyuncu OO, Wirblich C, et al. Retrograde axonal transport of herpes simplex virus: evidence for a single grade axonal transport of herpes simplex virus: evidence for a single
mechanism and a role for tegument. *Proc Natl Acad Sci U S A*. 2000; 97:8146-8150.

47. Miranda-Saksena M, Denes CE, Diefenbach RJ, Cunningham AL. Infection and transport of herpes simplex virus type 1 in neurons: role of the cytoskeleton. *Viruses*. 2018;10:E92.

48. Tomlinson AH, Esiri MM. Herpes simplex encephalitis. Immunohistological demonstration of spread of virus via olfactory pathways in mice. *J Neurol Sci*. 1983;60:473-484.

49. Jiang Y, Wei N, Zhu J, et al. A new approach with less damage: intranasal delivery of tetracycline-inducible replication-defective herpes simplex virus type-1 vector to brain. *Neuroscience*. 2012;201: 96-104.

50. Mogk S, Meiwes A, Bosselmann CM, et al. The lane to the brain: how African trypanosomes invade the CNS. *Trends Parasitol*. 2014; 30;470-477.

51. Bentivoglio M, Kristenson K, Rottenberg ME. Circumventricular organs and parasitopenic neurotroism: neglected gates to the brain? *Front Immunol*. 2018;9:2877.

52. Mackowiak PA. Microbial latency. *Rev Infect Dis*. 1984;6:649-666.

53. Parsek MR, Singh PK. Bacterial biofilms: an emerging link to disease pathogenesis. *Annu Rev Microbiol*. 2003;57:677-701.

54. Ezzat K, Pernemalm M, Palsson S, et al. The viral protein corona directs viral pathogenesis and amyloid aggregation. *Not Commun*. 2019;10:2331.

55. Halford WP, Gebhardt BM, Carr DJ. Persistent cytokine expression in trigeminal ganglion latently infected with herpes simplex virus type 1. *J Immunol*. 1996;157:3542-3549.

56. Shimeld C, Whitelard JL, Williams NA, et al. Cytokine production in the nervous system of mice during acute and latent infection with herpes simplex virus type 1. *J Gen Virol*. 1997;78:3317-3325.

57. Halford WP, Gebhardt BM, Carr DJ. Ayclovir blocks cytokine gene expression in trigeminal ganglia latently infected with herpes simplex virus type 1. *Virology*. 1997;238:53-63.

58. Grinfeld E, Kennedy PG. Translation of varicella-zoster virus genes in human monocytes. *Future Virol*. 2011;5:223.

59. Slots J, Slots H. Bacterial and viral pathogens in saliva: disease relationship and infectious risk. *Periodontol 2000*. 2001;11:55-68.

60. Levin MJ. Varicella-zoster virus and virus DNA in the blood and oropharynx of people with latent or active varicella-zoster virus infections. *J Clin Virol*. 2014;61:487-195.

61. Shahzad R, Khan AL, Bilal S, Asaf S, Lee U. What is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. *Front Plant Sci*. 2018;9:24.

62. Khan M, Seto D, Subramaniam R, Desveaux D. Oh, the places they’ll go! A survey of phytopathogen effectors and their host targets. *Plant J*. 2018;93:651-663.

63. Luo L, Lu D. Immunosuppression during Rhizobium-legume symbiosis. *Plant Signal Behav*. 2014;9:e28197.

64. Gooding LR. Virus proteins that counteract host immune defenses. *Cell*. 1992;71:5-7.

65. Gerlier D, Valentin H. Measles virus interaction with host cells and impact on innate immunity. *Curr Top Microbiol Immunol*. 2009;329: 163-191.

66. Dagna L, Pritchett JC, Lusso P. Immunomodulation and immunosuppression by human herpesvirus 6A and 6B. *Future Virol*. 2013;8: 273-287.

67. Nokta MA, Hassan MI, Loesch K, Pollard RB. Human cytomegalovirus-induced immunosuppression. Relationship to tumor necrosis factor-dependent release of arachidonic acid and prostaglandin E2 in human monocytes. *J Clin Invest*. 1996;97:2635-2641.

68. Rouse BT, Horohov DW. Immunosuppression in viral infections. *Rev Infect Dis*. 1986;8:850-873.

69. Lanksa DJ. The Kluver–Bucy syndrome. *Front Neural Neurosci*. 2018; 41:77-89.

70. Jacobson L, Sapolsky R. The role of the hippocampus in feedback regulation of the hypothalamic–pituitary–adrenocortical axis. *Endocr Rev*. 1991;12:118-134.

71. Haas HS, Schauenstein K. Neuroimmunomodulation via limbic structures – the neuroanatomy of psychoimmunology. *Prog Neuropsychiatry*. 1997;51:195-222.

72. Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mecha- nistic insights. *Mol Cell Endocrinol*. 2011;335:2-13.

73. Ballidin J, Gottfries CG, Karlsson I, Lindstedt G, Långström G, Wällinder J. Dexamethasone suppression test and serum prolactin in dementia disorders. *Br J Psychiatry*. 1983;143:277-281.

74. Weiner MF, Vobach S, Olsson K, Svetlik D, Risser RC. Cortisol secretion and Alzheimer’s disease progression. *Brain Res*. 1997;64:1030-1038.

75. Kieny MP, Desmettre P, Soulebot JP, Lathe R. Rabies vaccine: traditional and novel approaches. *Prog Vet Microbiol Immunol*. 1987;3: 73-111.

76. Awasthi M, Parmar H, Patankar T, Castillo M. Imaging findings in rabies encephalitis. *Am J Neuropathol*. 2001;22:677-680.

77. Mrak RE, Young L. Rabies encephalitis in humans: pathology, pathogenesis and pathophysiology. *J Neuropath Exp Neurol*. 1994;53: 1-10.

78. Stein LT, Rech RR, Harrison L, Brown CC. Immunohistochemical study of rabies virus within the central nervous system of domestic and wildlife species. *Vet Pathol*. 2010;47:630-633.

79. Lafon M. Rabies virus receptors. *J Neurovirol*. 2005;11:82-87.

80. Wang J, Wang Z, Liu R, et al. Metabotropic glutamate receptor subtype 2 is a cellular receptor for rabies virus. *PLoS Pathog*. 2018;14:e1007169.

81. Wiktor TJ, Doherty PC, Koprowski H. Suppression of cell-mediated immunity by street rabies virus. *J Exp Med*. 1977;145:1617-1622.

82. Hirai K, Kawano H, Mifune K, et al. Suppression of cell-mediated immunity by street rabies virus infection. *Microbiol Immunol*. 1992; 36:1277-1290.

83. Kasempimolporn S, Tirawatnapong T, Saengseesom W, Nookhai S, Sitprija V. Immunosuppression in rabies virus infection mediated by lymphocyte apoptosis. *Jpn J Infect Dis*. 2001;54:144-147.

84. Desforges M, Le CA, Dubpeau P, et al. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? *Viruses*. 2019;12:E14.

85. Sorensen O, Dales S. In vivo and in vitro models of demyelinating disease: JHM virus in the rat central nervous system localized by in situ cDNA hybridization and immunofluorescent microscopy. *J Virol*. 1985;56:434-438.

86. Kakizaki M, Kashiwazaki H, Watanabe R. Mutant murine hepatitis virus-induced apoptosis in the hippocampus. *Jpn J Infect Dis*. 2014; 67:9-16.

87. Siu KL, Chan CP, Kok KH, Chiu-Yat Woo P, Jin DY. Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain. *Cell Mol Immunol*. 2014;11:141-149.

88. Li Y, Li H, Fan R, et al. Coronavirus infections in the central nervous system and respiratory tract show distinct features in hospitalized children. *Intervirology*. 2016;59:163-169.

89. Zhou W, Wang W, Wang H, Lu R, Tan W. First infection by all four non-severe acute respiratory syndrome human coronaviruses takes place during childhood. *BMC Infect Dis*. 2013;13:433.

90. Zhou P, Yang X-L, Wang X-G, et al. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. *BioRxiv*. 2020;Published online January 23 2020. https://doi.org/10.1101/2020.01.22.914952.

91. Brook CE, Dobson AP. Bats as ‘special’ reservoirs for emerging zoonotic pathogens. *Trends Microbiol*. 2015;23:172-180.
92. Luis AD, Hayman DT, O'Shea TJ, et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc Biol Sci. 2013;280:20122753.
93. Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL, Daszak P. Host and viral traits predict zoonotic spillover from mammals. Nature. 2017;546:646-650.
94. Xie J, Li Y, Shen X, et al. Dampered STING-dependent interferon activation in bats. Cell Host Microbe. 2018;23:297-301.
95. Sankowski R, Mader S, Valdes-Ferrer SL. Systemic inflammation and the brain: novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration. Front Cell Neurosci. 2015;9:28.
96. Johansson S, Bohman S, Radesater AC, et al. Salmonella lipopolysaccharide (LPS) mediated neurodegeneration in hippocampal slice cultures. Neurotox Res. 2005;8:207-220.
97. Zhang J, Li A, Song Z. Systemic LPS resulted in a transient hippocampal slice dysfunction but a prolonged corpus callosum injury. BMC Anesthesiol. 2017;17:105.
98. Ekdahl CT, Claassen JH, Bonde S, Kokaia Z, et al. Persistence of lipopolysaccharide-induced immunosuppression: immunological activity of B cell subsets responding to T-dependent or T-independent antigens in lipopolysaccharide-preinfected mice. Infect Immun. 1984;45:367-371.
99. Pisa D, Alonso R, Rabano A, et al. Different brain regions are infected with fungi in Alzheimer's disease. Sci Rep. 2015;5:15015.
100. Angulo I, Jimenez-Diaz MB, Garcia-Bustos JF, et al. Candida albicans infection enhances immunosuppression induced by cyclophoshamide by selective priming of suppressive myeloid progenitors for NO production. Cell Immunol. 2002;218:45-58.
101. Kirchner FR, Littringer K, Altmeier S, et al. Persistence of Candida albicans in the oral mucosa induces a curbed inflammatory host response that is independent of immunosuppression. Front Immunol. 2019;10:330.
102. Samojlowicz D, Twarowska-Malczynska J, Borowska-Solonynko A, et al. Presence of Toxoplasma gondii infection in brain as a potential cause of risky behavior: a report of 102 autopsy cases. Exp Gerontol. 2002;37:1110-1116.
103. Desmonts G, Crevet J. Congenital toxoplasmosis. A prospective study of 378 pregnancies. N Engl J Med. 1974;290:1110-1116.
104. Berndy M, Webster JP, Macdonald DW. Fatal attraction in rats infected with Toxoplasma gondii. Proc Biol Sci. 2000;267:1591-1594.
105. Flegel J, Marks A, Masterpiece of epigenetic engineering – how Toxoplasma gondii reprograms host brains to change fear to sexual attraction. Mol Ecol. 2014;23:5934-5936.
106. Berenreiterova M, Flegel J, Kubena AA, Nemec P. The distribution of Toxoplasma gondii cysts in the brain of a mouse with latent toxoplasmosis: implications for the behavioral manipulation hypothesis. PLoS One. 2011;6:e28825.
107. Hari Dass SA, Vyas A. Toxoplasma gondii infection reduces predator aversion in rats through epigenetic modulation in the host medial amygdala. Mol Ecol. 2014;23:6114-6122.
108. Flegel J, Lenochova P, Hodny Z, Vondrova M. Fatal attraction phenomenon in humans: cat odour attractiveness increased for Toxoplasma-infected men while decreased for infected women. PLoS Negl Trop Dis. 2011;5:e11389.
109. Martinez VO, de Mendonca Lima FW, de Carvalho CF, Meneses-Filho JA. Toxoplasma gondii infection and behavioral outcomes in humans: a systematic review. Parasitol Res. 2018;117:3059-3065.
110. Kobayashi A, Suzuki Y. Suppression of antibody responses by Toxoplasma infection in mice. Zentralbl Bakteriol Mikrobiol Hyg A. 1987;264:312-318.
111. Khan IA, Matsuura T, Kasper LH. IL-10 mediates immunosuppression following primary infection with Toxoplasma gondii in mice. Parasite Immunol. 1995;17:185-195.
112. Capewell P, Cren-Travaillee C, Marchesi F, et al. The skin is a significant but overlooked anatomical reservoir for vector-borne African trypanosomes. Elife. 2016;5:e17716.
113. Wolburg H, Mogk S, Acker S, et al. Late stage infection in sleeping sickness. PLoS One. 2012;7:e34304.
114. Dunis-Wasowicz D, Kasprzyk-Obara J, Jurkiewicz E, Kapusta M, Milewska-Bobula B. Infantile spasms and cytomegalovirus infection: antiviral and antiepileptic treatment. Dev Med Child Neurol. 2007;49:684-692.
115. Wipfli P, Dunn N, Beiki O, Trinka E, Fogdell-Hahn A. The viral hypothesis of mesial temporal lobe epilepsy – is human herpes virus-6 the missing link? A systematic review and meta-analysis. Seizure. 2018;54:33-40.
116. Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K. Causes, consequences, and reversal of immune system aging. J Clin Invest. 2013;123:958-965.
117. Vallathan R, Ashman M, Athana D. Effects of ageing on the immune system: infants to elderly. Scand J Immunol. 2016;83:255-266.
118. Stowe RP, Kozlova EV, Yetman DL, et al. Chronic herpesvirus reactivation occurs in aging. Exp Gerontol. 2007;42:563-570.
119. Stowe RP, Peek MK, Cutchin MP, Goodwin JS. Reactivation of herpes simplex virus type 1 is associated with cytomegalovirus and age. J Med Virol. 2012;84:1797-1802.
120. Thomas SL, Hall AJ. What does epidemiology tell us about risk factors for herpes zoster? Lancet Infect Dis. 2004;4:26-33.
121. Itzhaki RF, Lathe R, Balin BJ, et al. Microbes and Alzheimer's disease. J Alzheimers Dis. 2016;51:979-984.
122. Izhaki RF, Lathe R, Balin BJ, et al. Microbes and Alzheimer's disease. J Alzheimers Dis. 2016;51:979-984.
123. Fischer O. Die presbyophrene Demenz, deren anatomische Grundlage und klinische Abgrenzung. Zeitschr Ges Neurolog Psychiat. 1910;3:371-471.
124. MacDonald AB. Borrelia in the brains of patients dying with dementia. JAMA. 1986;256:2195-2196.
135. Miklossy J. Alzheimer’s disease – a neurospirochetosis. Analysis of the evidence following Koch’s and Hill’s criteria. *J Neuroinflammation*. 2011;8:90.

136. Branton WG, Eliestad KK, Maingat F, et al. Brain microbial populations in HIV/AIDS: alpha-proteobacteria predominate independent of host immune status. *PLoS One*. 2013;8:e54673.

137. Itzhaki RF. Herpes simplex virus type 1 and Alzheimer’s disease: increasing evidence for a major role of the virus. *Front Aging Neurosci*. 2014;6:202.

138. Emery DC, Shoemark DK, Batstone TE, et al. 16S rRNA next generation sequencing analysis shows bacteria in Alzheimer’s post-mortem brain. *Front Aging Neurosci*. 2017;9:195.

139. Balin BJ, Hammond CJ, Little CS, et al. *Chlamydia pneumoniae*: an etiologic agent for late-onset dementia. *Front Aging Neurosci*. 2018;10:302.

140. Readhead B, Haure-Mirande JV, Funk CC, et al. Multiscale analysis of independent Alzheimer's cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron. 2018;99:64-82.

141. Tzeng N-S, Chung CH, Lin FH, et al. Antitherapeutic medications and reduced risk of dementia in patients with herpes simplex virus infections – a nationwide population-based cohort study in Taiwan. *Neurotherapeutics*. 2018;15:417-429.

142. Lin HY, Lin MS, Weng YH, et al. Assortment of antiviral therapy with risk of Parkinson disease in patients with chronic hepatitis C virus infection. *JAMA Neural*. 2019;76:1019-1027.

143. Park SC, Moon JC, Shin SY, et al. Functional characterization of alpha-synuclein protein with antimicrobial activity. *Biochem Biophys Res Commun*. 2016;478:924-928.

144. Olsen K, Dowd E, McKernan DP. A role for viral infections in Parkinson’s etiology. *Neuronal Signal*. 2018;2:NS20170166.

145. Prusty BK, Gulve N, Govind S, et al. Active HHV-6 infection of cerebellar purkinje cells in mood disorders. *Front Microbiol*. 2018;9:1955.

146. Toro CT, Eliassen E, Prusty BK. Does infection of cerebellar Purkinje neurons with human herpes virus 6A or 6B (HHV-6) increase the risk of developing mood disorders? *Future Microbiol*. 2019;14:85-88.

147. Lathe R, Singadla S, Jordan C, Riedel G. The interoceptive hippocampus: mouse brain endocrine receptor expression highlights a dentate gyrus (DG)-comu ammon (CA) challenge-sufficiency axis. *PLoS One*. 2020;15:e0227575.

148. Smith JW, Urba WJ, Curti BD, et al. The toxic and hematologic adverse effects of interferon-alpha: recognition and management. *CNS Drugs*. 2001:26:797-808.

149. Valentine AD, Meyers CA, Kling MA, Richelson E, Hauser P. Mood and cognitive side effects of interferon-alpha therapy. *Semin Oncol*. 1998;25:39-47.

150. Raison CL, Demetrashvili M, Capuron L, Miller AH. Neuropsychiatric adverse effects of interferon-alpha: recognition and management. *CNS Drugs*. 2005;19:105-123.

151. Exton MS, Baas J, Pithan V, Goebel MU, Limrhoth V, Schedlowski M. Neuropsychological performance and mood states following acute interferon-beta-1b administration in healthy males. *Neuropsychobiology*. 2002;45:199-204.

152. Creaven PJ, Plager JE, Dupere S, et al. Phase I clinical trial of recombinant human tumor necrosis factor. *Chemotherapy Pharmacol*. 1987:20:137-144.

153. Bullmore E. *The Inflamed Mind*. London: Short Books; 2018.

154. Smith JW, Urba WJ, Curti BD, et al. The toxic and hematologic adverse effects of interferon-alpha: recognition and management. *CNS Drugs*. 2001:26:797-808.

155. Bulmore E. *The Inflamed Mind*. London: Short Books; 2018.
227. Tetz G, Tetz V. Bacteriophages as new human viral pathogens. Microorganisms. 2018;6:54.

228. Huh H, Wong S, St Jean J, Slavcev R. Bacteriophage interactions with mammalian tissue: therapeutic applications. Adv Drug Deliv Rev. 2019;145:4-17.

229. Szegi-Buck K, Manuellidis L. Prokaryotic SPHINX replication sequences are conserved in mammalian brain and participate in neurodegeneration. J Cell Biochem. 2019;120:17687-17698.

230. Morley SA, Ahmad N, Nielsen BL. Plant organelle genome replication. Plan Theory. 2019;8:E358.

231. Nibert ML, Vong M, Fugate KK, Debatt HJ. Evidence for contemporaneous plant mitoviruses. Virology. 2018;518:14-24.

232. Gripper LB, Welburn SC. Neurocysticercosis infection and disease – a review. Acta Trop. 2017;166:218-224.

233. Prasad R, Shambhavi, Mishra OP, et al. Cognitive and behavioral dysfunction of children with neurocysticercosis: a cross-sectional study. J Trop Pediatr. 2014;60:358-362.

234. Wilson RJ, Williamson DH, Preiser P. Malaria and other apicomplexans: the ‘plant’ connection. Infect Agents Dis. 1994;3:29-37.

235. Nair SC, Striepen B. What do human parasites do with a chloroplast anyway? PLoS Biol. 2011;9:e1001137.

236. Burki F, Roger AJ, Brown MW, Simpson AGB. The new tree of life. Proc Natl Acad Sci U S A. 2011;108:15725-15729.

237. Zuther E, Johnson JJ, Haselkorn R, McLeod R, Gornicki P. Growth of T. cruzi in mammalian cells and its implications. In: Trends Ecol Evol. 2020;35:43-55.

238. Balique F, Lecoq H, Raoult D, Colson P. Can plant viruses cross the plant kingdom border and be pathogenic to humans? Toxoplasma gondii is inhibited by aryloxyphenoxypropionate herbicides targeting acetyl-CoA carboxylase. Proc Natl Acad Sci U S A. 1999;96:13387-13392.

239. Zhang T, Breitbart M, Lee WH, et al. RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS One. 2014;9:e97038.

240. Colson P, Richet H, Desnues C, et al. Plant virus associated with specific immune responses, fever, and antibody response against a plant virus: evidence from tobacco mosaic virus. PLoS Pathog. 2011;7:e1002773.

241. Liu R, Vaishnav RA, Roberts AM, Friedland RP. Humans have antibodies against a plant virus: evidence from tobacco mosaic virus. PLoS One. 2013;8:e60621.

242. Ericsson AC, Franklin CL. Manipulating the gut microbiota: methods and challenges. ILAR J. 2015;56:205-217.

243. Knights D, Costello KE, Knight R. Supervised classification of human microbiota. FEMS Microbiol Rev. 2011;35:343-359.

244. Javurek AB, Spollen WG, Ali AM, et al. Discovery of a novel seminal fluid microbiome and influence of estrogen receptor alpha genetic status. Sci Rep. 2016;6:23027.

245. Erwin JA, Marchetto MC, Gage FH. Mobile DNA elements in the generation of diversity and complexity in the brain. Nat Rev Neurosci. 2014;15:497-506.

246. Doyle GA, Crist RC, Karatas ET, et al. Analysis of LINE-1 elements in DNA from postmortem brains of individuals with schizophrenia. Neuropsychopharmacology. 2017;42:2602-2611.

247. Morandi E, Tanasecu R, Tarlinton RE, et al. The association between human endogenous retroviruses and multiple sclerosis: a systematic review and meta-analysis. PLoS One. 2017;12:e0172415.

248. Christensen T. Human endogenous retroviruses in neurologic disease. APMIS. 2016;124:116-126.

249. Richt JA, Pfeiffer I, Christ M, Frese K, Bechter K, Herzog S. Borna disease virus infection in animals and humans. Emerg Infect Dis. 1997;3:343-352.

250. Gosztonyi G, Ludwig H. Borna disease–neuropathology and pathogenesis. Curr Top Microbiol Immunol. 1995;190:39-73.

251. Carbine KM, Rubin SA, Nishino Y, Pletnikov MV. Borna disease: virus-induced neurobehavioral disease pathogenesis. Curr Opin Microbiol. 2001;4:467-475.

252. Carbine KM, Park SW, Rubin SA, Waltrip RW 2nd, Vogelsang GB. Borna disease: association with a maturation defect in the cellular immune response. J Virol. 1991;65:6154-6164.

253. Ludlow M, Korteekaas J, Herden C, et al. Neurotropic virus infections as the cause of immediate and delayed neuropathology. Acta Neuro- pathol. 2016;131:159-184.

254. Goodpasture EW. Herpetica infection, with especial reference to the involvement of the nervous system. 1929. Medicine (Baltimore). 1993;72:125-132.

255. Baringer JR, Pisani P. Herpes simplex virus genomes in human nervous system tissue analyzed by polymerase chain reaction. Ann Neurol. 1994;36:823-829.

256. Kopp SJ, Banisadr G, Glajch K, et al. Infection of neurons and encephalitis after intracranial inoculation of herpes simplex virus requires the entry receptor nectin-1. Proc Natl Acad Sci U S A. 2009;106:17916-17920.

257. Damasio AR, Van Hoesen GW. The limbic system and the localisation of herpes simplex encephalitis. J Neurol Neurosurg Psychiatry. 1985;48:297-301.

258. Becker Y. HSV-1 brain infection by the olfactory nerve route and virus latency and reactivation may cause learning and behavioral deficiencies and violence in children and adults: a point of view. Virus Genes. 1995;10:217-226.

259. Baker M, Noisakran S, Gebhardt BM, Kriiesel JD, Carr DJJ. The relationship between interleukin-6 and herpes simplex virus type 1: implications for behavior and immunopathology. Brain Behav Immun. 1999;13:201-211.

260. Banks TA, Rouse BT. Herpesviruses – immune escape artists? Clin Infect Dis. 1992;14:933-941.

261. Morse SS. Mouse thymic necrosis virus: a novel murine lymphotropic agent. Lab Anim Sci. 1987;37:717-725.

262. Cappel R, Henry C, Thiry L. Experimental immunosuppression induced by herpes simplex virus. Arch Virol. 1975;49:67-72.

263. Rinaldo CR Jr, Torpey DJ III. Cell-mediated immunity and immunosuppression in herpes simplex virus infection. Immunodeficiency. 1993;5:33-90.

264. Cleator GM, Klapper PE, Lewis AG, Longson M. Specific neuro-radiological diagnosis of herpes encephalitis in an animal model. Arch Virol. 1988;101:1-12.

265. Nicklas W, Bleich A, Maehler B. Viral Infections of Laboratory Mice. 2nd ed. London: Short Books; 2012:427-480.

266. Cusick MF, Libbey JE, Fujinami RS. Picornavirus infection leading to immunosuppression. Future Virol. 2014;9:475-482.

267. Teixeira LAS, Nogueira FPDS, Nascentes GAN. Prospective study of patients with persistent symptoms of dengue in Brazil. Rev Inst Med Trop Sao Paulo. 2017;59:e65.

268. Yeo PS, Pinheiro L, Tong P, Lim PL, Sitoh YY. Hippocampal involvement in dengue fever. Singapore Med J. 2005;46:647-650.

269. Adams Waldorf KM, Nelson BR, Stencel-Baerenwald JE, et al. Congenital Zika virus infection as a silent pathology with loss of neuro-radiological connection in dengue fever. J Trop Pediatr. 2014;60:358-362.

270. Kilbourne ED. Influenza. New York: Plenum; 1987.

271. Baringer JR, Pisani P. Herpes simplex virus infections in animals and humans. Emerg Infect Dis. 1993;5:33-90.

272. Kilbourne ED. Influenza. New York: Plenum; 1987.

273. Flieg J, Horacek J. Toxoplasma-infected subjects report an obsessive-compulsive disorder diagnosis more often and score higher in obsessive-compulsive inventory. Eur Psychiatry. 2017;40:82-87.
274. Brown AS, Derkits EJ. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry. 2010;167:261-280.

275. Selten JP, Termorshuizen F. The serological evidence for maternal influenza as risk factor for psychosis in offspring is insufficient: critical review and meta-analysis. Schizophr Res. 2017;183:2-9.

276. Buka SL, Tsuang MT, Torrey EF, Klebanoff MA, Bernstein D, Yolken RH. Maternal infections and subsequent psychosis among offspring. Arch Gen Psychiatry. 2001;58:1032-1037.

277. Buka SL, Cannon TD, Torrey EF, Yolken RH. Maternal exposure to herpes simplex virus and risk of psychosis among adult offspring. Biol Psychiatry. 2006;63:809-815.

278. Brown AS, Schaefer CA, Quesenberry CP Jr, et al. No evidence of relation between maternal exposure to herpes simplex virus type 2 and risk of schizophrenia? Am J Psychiatry. 2006;163:2178-2180.

279. Brown AS. The environment and susceptibility to schizophrenia. Prog Neurobiol. 2011;93:23-58.

280. Tanaka T, Matsuda T, Hayes LN, et al. Infection and inflammation in schizophrenia and bipolar disorder. Neurosci Res. 2017;115:59-63.

281. Gurbuz O, Alatas G, Kurt E, Dogan F, Issever H. Periodontal health and treatment needs among hospitalized chronic psychiatric patients in Istanbul, Turkey. Community Dent Health. 2011;28:69-74.

282. Amiz A, Zumarraga M, Diez-Altuna I, et al. Oral health and the symptoms of schizophrenia. Psychiatry Res. 2011;188:24-28.

283. Kebede B, Kemal T, Abera S. Oral health status of patients with mental disorders in southwest Ethiopia. PLoS One. 2012;7:e39142.

284. Eltas A, Kartalci S, Eltas SD, et al. An assessment of periodontal health in patients with schizophrenia and taking antidepressant medication. Int J Dent Hyg. 2013;11:78-83.

285. Shetty S, Bose A. Schizophrenia and periodontal disease: an oro-neural connection? A cross-sectional epidemiological study. J Indian Soc Periodontol. 2014;18:69-73.

286. Morales-Chavez MC, Rueda-Delgado YM, Pena-Orozco DA. Prevalence of bucco-dental pathologies in patients with psychiatric disorders. J Clin Exp Dent. 2014;6:e7-e11.

287. Fawzi MM, El-Amin HM, ElFandy MH. Detection and quantification of Porphyromonas gingivalis from saliva of schizophrenic patients by culture and Taqman real-time PCR: a pilot study. Life Sci J. 2011;8:65-74.

288. Fuglewicz AJ, Piotrowski P, Stodolak A. Relationship between toxoplasmosis and schizophrenia: a review. Adv Clin Exp Med. 2017;26:1031-1036.

289. Tedford E, McConkey G. Neurophysiological changes induced by chronic Toxoplasma gondii infection. Pathogens. 2017;6:E19.

290. Henriquez SA, Brett R, Alexander J, Pratt J, Roberts CW. Neuropsychiatric disease and Toxoplasma gondii infection. Neurommunomodulation. 2009;16:122-133.

291. Kamerkar S, Davis PH. Toxoplasma on the brain: understanding host-pathogen interactions in chronic CNS infection. J Parasitol Res. 2012-2012:589295.

292. Vyas A, Sapolsky R. Manipulation of host behaviour by Toxoplasma gondii: what is the minimum a proposed proximate mechanism should explain? Folia Parasitol (Praha). 2010;57:88-94.

293. Hurley RA, Taber KH. Latent toxoplasmosis gondii: emerging evidence for influences on neuropsychiatric disorders. J Neuropsychiatry Clin Neurosci. 2012;24:376-383.

294. Lyons RE, McLeod R, Roberts CW. Toxoplasma gondii tachyzoite-bradyzoite interconversion. Trends Parasitol. 2002;18:198-201.

295. Torrey EF, Bartko JJ, Lun ZR, Yolken RH. Antibodies to Toxoplasma gondii in patients with schizophrenia: a meta-analysis. Schizophr Bull. 2007;33:729-736.

296. Carruthers VB, Suzuki Y. Effects of Toxoplasma gondii infection on the brain. Schizophr Bull. 2007;33:745-751.

297. Torrey EF, Bartko JJ, Yolken RH. Toxoplasma gondii and other risk factors for schizophrenia: an update. Schizophr Bull. 2012;38:642-647.

298. Sutterland AL, Bond G, Kuin A, et al. Beyond the association. Toxoplasma gondii as a risk factor for early-onset schizophrenia: analysis of filter paper blood samples obtained at birth. Biol Psychiatry. 2007;61:688-693.

299. Brown AS, Patterson PH. Maternal infection and schizophrenia: implications for prevention. Schizophr Bull. 2011;37:284-290.

300. Reynolds MA, Kruszon-Moran D, Jumaan A, Schmid DS, McQuillan GM. Varicella seroprevalence in the U.S.: data from the National Health and Nutrition Examination Survey, 1999–2004. Public Health Rep. 2010;125:860-869.

301. Bollaerts K, Riera-Montes M, Heininger U, et al. A systematic review of varicella seroprevalence in European countries before universal childhood immunization: deriving incidence from seroprevalence data. Epidemiol Infect. 2017;145:2666-2677.

302. Dowd JB, Palermo T, Brite J, McDade TW, Aiello A. Seroprevalence of Epstein-Barr virus infection in U.S. children ages 6–19, 2003–2010. PLoS One. 2013;8:e64921.

303. Bate SL, Dollard SC, Cannon MJ. Cytomegalovirus seroprevalence in the United States: the national health and nutrition examination surveys, 1999–2004. Clin Infect Dis. 2010;50:1439-1447.

304. De Bolle L, Naesens L, De CE. Update on human herpesvirus 6 biology, clinical features, and therapy. Clin Microbiol Rev. 2005;18:217-245.

305. Ward KN. The natural history and laboratory diagnosis of human herpesviruses-6 and -7 infections in the immunocompetent. J Clin Virol. 2005;32:183-193.

306. Marto E, Bulterys M, Stewart JA, et al. Comparison of human herpesvirus 8 and Epstein-Barr virus seropositivity among children in areas endemic and non-endemic for Kaposi’s sarcoma. J Med Virol. 2004;72:126-131.

307. Butler LM, Were WA, Balandin S, et al. Human herpesvirus 8 infection in children and adults in a population-based study in rural Uganda. J Infect Dis. 2011;203:625-634.

308. David LA, Alm EJ. Rapid evolutionary innovation during an Archaean genetic expansion. Nature. 2011;469:93-96.

309. Lathe JC, Lathe R. Evidence against a geographic gradient of Alzheimer’s disease and the hygiene hypothesis. Evol Med. Public Health. 2020 [in press].