CONNECT FOUR AND GRAPH DECOMPOSITION

LAURENT EVAIN, MATHIAS LEDERER, AND BJARKE HAMMERSHOLT ROUÈN

Abstract. We introduce standard decomposition, a natural way of decomposing a labeled graph into a sum of certain labeled subgraphs. We motivate this graph-theoretic concept by relating it to Connect Four decompositions of standard sets. We prove that all standard decompositions can be generated in polynomial time, which implies that all Connect Four decompositions can be generated in polynomial time.

1. Introduction

Let G be a directed graph. We say that an integer-valued labeling on the nodes of G is compatible with the edge relation if for all edges (a, b), the label of node a is less than or equal to the label of node b. Graphs satisfying that compatibility form the class of standard graphs; they are the objects of study of the present paper.

The paper is divided into two parts. In the first part, we study standard graphs and introduce a way of decomposing a standard graph as a sum of standard components — these are the standard subgraphs of G whose labels are 0 or 1. Here addition of labeled graphs is defined as addition of the labels. A standard decomposition of a standard graph is a multiset of standard components whose sum is the given graph. Standard components may be viewed as the building blocks of a standard graph.

Standard decomposition is not unique — standard graphs in general admit more than one standard decomposition. Figure 1 shows a simple example of a standard graph and all its standard decompositions. This raises the question of what the complexity of generating all standard decompositions given a standard graph is. Theorem 1 answers this question and it is the main result of the first part of the paper.

Theorem 1. It is possible to generate all the standard decompositions of a standard graph in polynomial time.

In the second part of the paper, we link standard graphs and standard decomposition to a previously studied subject — Connect Four decomposition of standard sets. A standard set is an “n-dimensional staircase”, and a Connect Four decomposition of a standard set Δ is a set of $n - 1$ dimensional standard sets from which Δ can be built by stacking them on top of each other and “letting gravity pull them
Figure 1. A standard graph and its two standard decompositions

Connect Four decomposition is an ubiquitous notion relevant to the study of the Hilbert scheme of points [Led]. It is useful in the study of singularities of plane curves as a tool for the Horace method [Hir85], in the context of Gröbner basis theory [Eis95, Led08, Led], to compute tangent spaces [Nak99, Proposition 7.5], or to produce new counterexamples to Hilbert’s fourteenth problem [Eva05]. Handling Connect Four decompositions is what originally prompted the work in this paper. We will show:

Theorem 2. (i) The two problems,
(a) computing standard decompositions of labeled graphs, and
(b) computing Connect Four decompositions of finite standard sets,
are equivalent in the sense that for each labeled graph G, there exists a standard set Δ such that the standard decompositions of G are in canonical bijection with the Connect Four decompositions of Δ, and conversely.

(ii) This equivalence preserves polynomial complexity in the sense that for each labeled graph G, we can compute a standard set Δ with graph G in polynomial time, and for each standard set Δ, we can compute its graph $G(\Delta)$ in polynomial time.

Corollary 3. It is possible to generate all Connect Four decompositions of a standard set in polynomial time.

We conclude our paper with an appendix which links the notions introduced in this paper to other classical tools and problems. First we present a generating function for the number of standard decompositions of a given graph. Then we show that the set of all Connect Four games in \mathbb{N}^d of a given size n is in canonical bijection with the set of $(d-1)$-fold iterated partitions of n.

A word on the proofs. We prove Theorem 1 by presenting an algorithm that generates all standard decompositions in polynomial time. The algorithm is based on reducing the problem of computing all standard decompositions of G to the problem of computing all standard decompositions of G containing a fixed node v. We then solve that problem in a recursive way. Any choice of the node v results in a
correct algorithm, yet we give a specific choice of v that allows the algorithm to generate its output in polynomial time.

The proof of Theorem 2 is done in several steps. We first attach a graph $G(\Delta)$ to each standard set Δ such that the standard decompositions of $G(\Delta)$ and the Connect Four decompositions of Δ are in canonical bijection. From $G(\Delta)$ we then define another graph $G'(\Delta)$ that is easier to work with, called the canonicalized standard graph, which has the same decompositions (see Proposition 30). We show that all labeled graphs arising from standard sets in this way have three specific properties, namely,

- they are standard,
- they are connected, and
- they have a unique node of maximal label.

Let \mathcal{S} be the class of labeled graphs satisfying these conditions. The connectedness assumption in the definition of \mathcal{S} is not essential for the complexity of the graphs from that class, since the standard decompositions of a disjoint union of graphs is the product of the standard decompositions of the individual graphs. We prove in Proposition 34 that each connected graph in \mathcal{S} arises from a standard set if, in addition, the relation on the nodes of the graph defined by the edges of the graph is transitive. In Proposition 36, we show that for each connected standard graph, there exists a graph in \mathcal{S} such that the standard decompositions of the two graphs are in canonical bijection.

Acknowledgements. Thanks to Dustin Cartwright, Daniel Erman, Allen Knutson, Diane Maclagan, Jenna Rajchgot, Roy Skjelnes, Greg Smith, Mike Stillman and Elmar Teufl for fruitful discussions.

2. Standard graphs and standard components

All graphs under consideration are directed, have finitely many nodes and do not have any parallel edges or loops. Given a graph, let $<$ be the partial preorder on the set of nodes such that $a < b$ if b is reachable from a. The graphs that we consider are labeled in the following sense.
Definition 4 (Labeled graph). A labeled graph is a graph G with a finite node set V_G, an edge set $E_G \subseteq V_G \times V_G$ such that the graph contains no loops, and a labeling of nodes $L_G : V_G \to \mathbb{Z}$.

This definition does not allow parallel edges since the edge set is not a multiset. The constraints on parallel edges and loops are not important to the results of this paper. We impose those conditions for simplicity since loops and parallel edges add nothing interesting to the problem.

Definition 5 (Standard graph). A labeled graph G is standard if all labels are non-negative and the labeling is compatible with the partial order on the nodes in the sense that $L_G(a) \leq L_G(b)$ for all edges $(a, b) \in E_G$.

We now introduce the operations of addition and subtraction on labeled graphs.

Definition 6 (Addition and subtraction). Let G and H be labeled graphs. Then $G \oplus H$ is the labeled graph with node set $V_{G \oplus H} := V_G \cup V_H$, edge set $E_{G \oplus H} := E_G \cup E_H$ and labeling

$\mathcal{L}_{G \oplus H} := \begin{cases} L_G & \text{for } v \in V_G \setminus V_H, \\ L_G + L_H & \text{for } v \in V_G \cap V_H, \\ L_H & \text{for } v \in V_H \setminus V_G. \end{cases}$

We define $G \ominus H$ to have the same node set and edge set as $G \oplus H$, but with labeling

$\mathcal{L}_{G \ominus H} := \begin{cases} L_G & \text{for } v \in V_G \setminus V_H, \\ L_G - L_H & \text{for } v \in V_G \cap V_H, \\ -L_H & \text{for } v \in V_H \setminus V_G. \end{cases}$

The sum of two standard graphs with the same set of nodes and the same set of edges is again a standard graph. This is in general true when the set of nodes or edges differ, as shown in the example from Figure 3. In the present paper, we will only consider sums and differences of graphs sharing the same set of nodes and edges.

Figure 3. The sum of two standard graphs

Definition 7 (0-1 graph). A labeled graph is a 0-1 graph if all labels are 0 or 1.
If we take a standard graph and replace all positive labels by 1, then we obtain another standard graph. This is a standard 0-1 graph — a graph that is both standard and a 0-1 graph. Some subgraphs H of a standard graph G are standard 0-1 graphs and in some cases we can write G as $H \oplus G'$, where G' is another standard graph. In this case we call H a standard component of G.

Definition 8 (Standard component). Let G and H be labeled graphs. Then H is a standard component of G if

1. H is a standard 0-1 graph;
2. $G \ominus H$ is a standard graph; and
3. not all labels in H are zero.

We think of standard components of G as the building blocks of G. Our goal is to determine all the ways to build a graph out of such building blocks.

Definition 9 (Standard decomposition). Let G be a labeled graph. A multiset of labeled graphs \mathcal{H} is a standard decomposition of G if each $H \in \mathcal{H}$ is a standard component of G and $G = \sum_{H \in \mathcal{H}} H$. We denote the set of standard decompositions of G by $D(G)$.

To keep formulas succinct, we use the shorthand notation $\sum \mathcal{H} = \sum_{H \in \mathcal{H}} H$.

A standard 0-1 graph G admits only the standard decomposition $\{G\}$. In particular, the building blocks of a graph are indecomposable; this is why we call them standard components. We define standard decompositions to be multisets rather than sets since a standard component can appear multiple times within one decomposition.

Example 10. Figure 4 shows a standard graph and all its decompositions.

![Figure 4. All decompositions of a graph.](image)
Since the sum of two standard graphs with the same nodes and edges is standard, a labeled graph has a standard decomposition only if it is standard. Proposition 12 shows that the converse is also true.

Definition 11 (Maximal standard component). The maximal standard component of a standard graph \(G\) is the unique standard component \(H\) for which \(L_H(v) = 1\) if, and only if, \(L_G(v) > 0\).

The standard component is maximal in the sense that it contains all other standard components. Note that the maximal standard component is always a standard component unless we are in the degenerate case where all nodes of \(G\) are labeled zero.

Proposition 12. Let \(\mathcal{H}\) be a multiset of standard components of a labeled graph \(G\). Then \(\mathcal{H}\) can be extended to a standard decomposition of \(G\) if, and only if, \(G \ominus \sum \mathcal{H}\) is standard. In particular, a standard graph admits a standard decomposition.

Proof. if: If \(G = \sum \mathcal{H}\) then we are done, so suppose that \(G \neq \sum \mathcal{H}\). Let \(C\) be the maximal standard component of \(G \ominus \sum \mathcal{H}\). Then \(G \ominus \sum (\mathcal{H} \cup \{C\})\) is standard. The assertion follows from this by induction.

only if: If \(\mathcal{H}'\) is a multiset of standard components of \(G\) that contains \(\mathcal{H}\), and \(G \ominus \sum \mathcal{H}\) is not standard, then neither is \(G \ominus \sum \mathcal{H}'\), so \(\mathcal{H}'\) is not a standard decomposition of \(G\).

The last statement of the proposition follows from the first by taking \(\mathcal{H} = \emptyset\). □

Corollary 13. If \(H\) is a standard component of a standard graph \(G\), then \(H\) is an element of at least one standard decomposition of \(G\).

We conclude this section with a remark on the class of graphs under consideration. We stated earlier in this section that loops and parallel edges are not interesting in the theory of standard graphs. We now state that

- neither are cycles in \(G\),
- nor nodes with label zero,
- nor edges \((a, b) \in E_G\) with \(L_G(a) = L_G(b)\).

To support these statements, let \(H\) be a standard component of \(G\) and let \((a, b)\) be an edge of \(G\) such that \(L_G(a) = L_G(b)\). Then \(L_H(a) = 1\) if, and only if, \(L_H(b) = 1\). So to study standard decompositions, we might as well suppress all such edges \((a, b)\), merging the nodes \(a\) and \(b\) into a single node \(ab\). We then replace each edge with source either \(a\) or \(b\) by an edge with source \(ab\) and the same target as before, and each edge with target either \(a\) or \(b\) by an edge with target \(ab\) and the same source as before. If a standard graph has a cycle, then the labels along the cycle are all equal, so contracting same-label edges removes all cycles. Nodes with label zero are not relevant for standard decomposition either, so we can get rid of those nodes too. Combining these ideas, we get the notion of a canonical labeled graph.

Definition 14 (Canonical labeled graph). A labeled graph \(G\) is canonical if

1. \(G\) is standard;
2. \(G\) has no cycles;
3. all labels are positive;
(4) $\mathcal{L}_G(a) < \mathcal{L}_G(b)$ for all edges $(a, b) \in \mathcal{E}_G$.

From the above discussion, we have proved:

Proposition 15. For each standard graph G, there is a canonical graph G' such that the standard decompositions and standard components of G and G' are related by a bijection.

We call the process of replacing G with G' canonicalization. This notion of canonicalization is not to be confused with the usual notion of graph canonicalization, which has to do with isomorphism classes of graphs.

Canonicalizations of graphs are useful to speed-up computer programs. We will return to the topic of canonicalization in Section 7.

3. Standard node decompositions

We now turn to the topic of the computational complexity of the problem of computing standard decompositions. We start with a simple instructive example.

Example 16. Let G_n be the labeled graph defined by

$V_{G_n} := \{y, x_1, \ldots, x_n\}$, $E_{G_n} := \{(x_1, y), \ldots, (x_n, y)\}$,

and $\mathcal{L}_{G_n}(x_i) := 1$ for $i = 1, \ldots, n$, while $\mathcal{L}_{G_n}(y) := 2$. There are 2^n standard components of G_n, corresponding to the n independent choices of whether to include or exclude each x_i. The standard decompositions of G_n are pairs of standard components that include complementary subsets of $\{x_1, \ldots, x_n\}$. So G_n has $2^n - 1$ standard decompositions while having only $n + 1$ nodes.

Consider the computational problem whose input is a labeled graph G and whose output is the set of standard decompositions $\mathcal{D}(G)$. Recall that $\mathcal{D}(G) \neq \emptyset$ if, and only if, G is standard — however, we will formulate our statements for arbitrary labeled graphs, thus covering also the case where the output is the empty set. Example 16 shows that this computation cannot be done in time better than exponential in the worst case since just writing down the output can take exponential time. For problems such as this, it is standard practice to consider an alternative notion of complexity, *generating complexity*, in which we consider the running time as a function of the combined size of the input and the output.

We present an algorithm for standard decomposition of graphs that runs in polynomial time in the combined size of input and output. This algorithm is based on the following notion of decomposing a single node of a standard graph.

Definition 17 (Standard node decomposition). Let G be a labeled graph and let v be a node of G. A multiset of standard graphs \mathcal{H} is a *standard v-decomposition* of G if

1. each $H \in \mathcal{H}$ is a standard component of G,
2. $\mathcal{L}_H(v) = 1$ for all $H \in \mathcal{H}$,
3. $G \ominus \sum \mathcal{H}$ is standard,
4. $|H| = \mathcal{L}_G(v)$.

We denote the set of standard v-decompositions of G by $\mathcal{D}_v(G)$.

Consider a standard graph G with a standard decomposition \mathcal{H} and a node v of G. The submultiset of \mathcal{H} whose elements give v a label of 1 forms a standard v-decomposition of G. Another way of characterizing a standard v-decomposition
is that it is a minimal multiset H of standard components of G such that $G \oplus \sum H$ gives v the label 0 and such that H can be extended to a standard decomposition of G.

Every standard graph has at least one standard decomposition, so Proposition 18 implies that if we can generate standard v-decompositions in polynomial time, then we can also generate standard decompositions in polynomial time.

Proposition 18. Let v be a node of a labeled graph G. Then

$$D(G) = \left\{ H \cup H' \mid H \in D_v(G), H' \in D(G \ominus \sum H) \right\},$$

where no decomposition appears twice on the right hand side.

Proof. Let $D \in D(G)$ and let H be the submultiset of D whose elements give v the label 1. Then $H \in D_v(G)$. It only remains to prove that $D \backslash H \in D(G \ominus \sum H)$, which follows from Lemma 19 below.

Lemma 19. Let G be a labeled graph. Let A be a multiset of standard 0-1 subgraphs of G and let B be a submultiset of A. Then A is a standard decomposition of G if, and only if, $A \setminus B$ is a standard decomposition of $G \ominus \sum B$.

Proof. Let $A \setminus B$ be a standard decomposition of $G \ominus \sum B$. Then $G \ominus \sum B = \sum (A \setminus B)$ so $G = \sum A$. It only remains to prove that each $a \in A$ is a standard component of G. To prove that, we need to show that $G \ominus a$ is standard. We already know that a is a standard component of $G \ominus \sum B$, which implies that $G \ominus \sum B \ominus a$ is standard. Then $G \ominus a = (G \ominus \sum B \ominus a) \ominus \sum B$ is standard, as it is a sum of standard graphs with identical node sets.

only if: Assume that A is a standard decomposition of G. Then $G = \sum A$ so $G \ominus \sum B = \sum (A \setminus B)$. It only remains to prove that each $a \in A \setminus B$ is a standard component of $G \ominus \sum B$. To prove that we need to show that $G \ominus \sum B \ominus a$ is standard. We already know that $G \ominus \sum A$ has all labels zero, so it is standard. Then $G \ominus \sum B \ominus a = (G \ominus \sum A) \ominus \sum (A \setminus (B \cup \{a\}))$, so $G \ominus \sum B \ominus a$ is standard, as it is a sum of standard graphs with identical node sets.

4. Generating Standard Node Decompositions

Proposition 18 reduces the problem of generating $D(G)$ in polynomial time to the problem of generating the standard node decomposition $D_v(G)$ in polynomial time for some freely chosen node v of G. In this section we investigate this problem. Our solution is based on choosing the right node v to decompose.

Consider the set of all standard components of G that give v the label 1. We impose an ordering, H_1, \ldots, H_k, on the elements of that set. This ordering can be chosen arbitrarily, but is fixed once and for all. Now let F be any labeled subgraph of G. For each such F and each $i = 1, \ldots, k$, we define

$$\tau(F, i) := \{H \subseteq \{H_1, \ldots, H_k\} \mid H \in D_v(F)\}$$
Let H be the maximal standard component of G. Then the label 1 is precisely H of v of the construction will give H Proposition 20.

For detecting irrelevant pairs. We can use such a criterion to quickly eliminate making the algorithm generate its output in polynomial time, we need a criterion for detecting irrelevant pairs. We can use such a criterion to quickly eliminate irrelevant pairs in the algorithm.

Proposition 20. Let v be a node of minimal positive label in a labeled graph G. Let H be the maximal standard component of G. Assume that $G = \sum \mathcal{H}$ is standard. Let \mathcal{H}' be the union of \mathcal{H} and the multiset containing $\mathcal{L}_G(v) - |\mathcal{H}|$ copies of H. Then \mathcal{H}' is a standard v-decomposition of G.

Proof. Upon applying the proof of Proposition 12 to \mathcal{H}, we obtain a standard decomposition $\mathcal{H}'' \supseteq \mathcal{H}$ of G. Since the label of v is minimal among all positive labels appearing in G, the first $\mathcal{L}_G(v) - |\mathcal{H}|$ rounds of the inductive construction in that proof will use the same maximal standard component H. After that the label of v has become zero, so the maximal standard components used in later rounds of the construction will give v the label zero. So the subset of \mathcal{H}'' that gives v the label 1 is precisely \mathcal{H}', which implies that \mathcal{H}' is a standard v-decomposition of G.

Through choosing wisely the node v and the order of the standard components H_1, \ldots, H_k, Proposition 21 gives an if-and-only-if criterion for detecting irrelevant pairs.

Proposition 21. Given a labeled graph G, choose v to be a node of minimal positive label, and choose an order on the standard components H_1, \ldots, H_k giving v the label 1 such that H_1 is the maximal standard component of G. Let \mathcal{H} be a multiset whose elements are chosen among the standard components H_i of G, and let $F := G = \sum \mathcal{H}$. Then a pair (F, i) with $1 \leq i \leq k$ is relevant if, and only if, F is standard.

Proof. If: Assume that F is standard. By Proposition 20, $G = \sum \mathcal{H}$, where \mathcal{H}_1 is a multiset containing copies of H_1 and \mathcal{H}_2 is a multiset containing standard components of G with label 0 on v. Thus $F = \sum \mathcal{H}_1 = \sum \mathcal{H}_2$, and $\tau(F, i)$ is not empty.

Only if: This part is obvious.

1In particular, we see that it suffices to consider graphs such that $0 \leq L_F(w) \leq L_G(w)$ for all nodes w, since (F, i) is irrelevant otherwise.
1. function standardDecompositions(G)
2. if all labels of all nodes of G are zero then
3. return {∅}
4. else
5. choose a node \(v \in V_G \) of minimal positive label
6. \(D \leftarrow \text{standardNodeDecompositions}(G, v) \)
7. return \(\{ H \cup H' \mid H \in D, H' \in \text{standardDecompositions}(G \ominus \sum H) \} \)
8. end if
9. end function
10. function standardNodeDecompositions(G, v)
11. \(H_1 \leftarrow \) the maximal standard component of \(G \)
12. \(H_2, \ldots, H_k \leftarrow \) all other standard components of \(G \) that give \(v \) the label 1
13. \(S \leftarrow \{ H_1, \ldots, H_k \} \)
14. return \(\text{tau}(G, k, S) \)
15. end function
16. function tau(F, i, S)
17. if all labels of \(F \) are zero then
18. return {∅}
19. else
20. if \(F \) is not a standard graph then
21. return ∅
22. else
23. return \(\text{tau}(F, i - 1, S) \cup \{ H \cup \{ H_i \} \mid H \in \text{tau}(F \ominus H_i, i, S) \} \)
24. end if
25. end if
26. end function

Figure 5. An algorithm for standard decomposition.

5. Generating standard decompositions in polynomial time

Based on the previous two sections, we can now present an algorithm for generating standard decompositions and prove that it runs in polynomial time.

Theorem 22. The algorithm in Figure 5 generates the standard decompositions of a labeled graph in polynomial time.

The pseudo code for standardDecompositions implements the recursive formula from Proposition 18. The pseudo code for standardNodeDecompositions implements the recursion from Section 4 where the function Tau is \(\tau \) from that section. Line 20 eliminates pairs that are irrelevant according to Proposition 21.

In reading the pseudo code for Tau, note that the first return is of the value \{∅\} while the second is of the value ∅. Here \{∅\} is a set containing one decomposition while ∅ is a set containing nothing.

Proof of Theorem 22 and thus also of Theorem 7. Recall that generating output in polynomial time means that the algorithm runs in polynomial time in the combined size of input and output — this is the meaning of the word “generate” in this context.
The size of the input and output depend on the representation used. We specify a graph as a list of nodes with labels and a list of edges. We specify the set of decompositions as a list of standard components followed by a list of sets that specify a decomposition by referring back to the list of components. Each standard component is specified by a bit per node indicating whether that node is an element of the standard component.

We assume a model where all labels and indices take up one word of space, rather than the logarithmic number of bits actually necessary to hold these numbers. The only arithmetic operations we perform is subtractions $a - b$ where $a > b$ so this assumption does not weaken the theorem.

standardNodeDecompositions is correct: Suppose that we call the function `standardNodeDecompositions` on the pair (G, v). We know that v is a node of minimal positive label in G since `standardDecompositions` always makes calls to `standardNodeDecompositions` with such a v. Also observe that the sequence H_1, \ldots, H_n are ordered to satisfy the precondition of Proposition 20. We then see that `standardNodeDecompositions` computes the correct value $D_v(G)$ since it directly implements the recursive formula from equation 1 along with the criterion for irrelevant pairs from Proposition 21.

standardNodeDecompositions is polynomial: Let G have n nodes and e edges. We do not give pseudo code for generating H_1, \ldots, H_k, but it is not difficult to do this in time $O(k(n + e))$ using backtracking. We first need to prove that $k(n + e)$ is polynomial in the size of the output.

Let l be the label of v in G. Every H_i is an element of at least one standard decomposition of G by Corollary 13 and each v-decomposition has exactly l elements, so $k \leq ld$ where d is the number of standard v-decompositions of G. So computing H_1, \ldots, H_k can be done in time $O(ld(n + e))$. The size of the input is $\Theta(n + e)$ and the size of the output is $\Theta(ld + kn)$ since it takes l elements of S to specify each of the d decompositions and for each irreducible decomposition we need one bit per node to specify whether it is in the graph or not. Clearly $ld(n + e) = \Omega(ldn^2)$ is bounded above by a polynomial in $ld + kn$, so the time to compute S is polynomial.

It remains to prove that τ takes polynomial time. Each individual call to τ, not counting recursive subcalls, can be done in time $O(n + e)$. We need an upper bound for the number of recursive calls.

Consider a tree T where each recursive call to τ is a node labeled by the parameters (F, i) and where there is an edge from the caller to the callee. The relevant leaves of T give rise to one distinct node decomposition per leaf so d, the number of v-decompositions of G, is also the number of relevant leaves of T. Let r be the number of irrelevant leaves of T — these do not give rise to a v-decomposition. Since T is a binary tree we see that there are $r + d - 1$ internal nodes in T. We need an upper bound for r.

Since Proposition 21 is an if-and-only-if criterion for irrelevant pairs, we see that the sub-tree rooted at any internal node contains a relevant pair. This implies that the sibling of an irrelevant leaf A is a root of a sub-tree that contains some relevant leaf B. Let f be the mapping $A \rightarrow B$. If $f(A) = B$ then the parent of A is on the path from the root of T to B. All the relevant leaves are at depth k or less, so f can map at most k irrelevant leaves to each relevant leaf. This implies that $r \leq dk$.

We have seen that there are d relevant leaves, at most dk irrelevant leaves and therefore also at most $d + dk$ internal nodes in T, which is a total of at most
2d + 2dk nodes. So the time taken by all recursive calls to Tau is \(O(dk(n + e))\).

Recall that the input size is \(\Theta(n + e)\) and the output size is \(\Theta(ld + kn)\). Clearly \(dk(n + e)\) is dominated by a polynomial in \((n + e) + (ld + kn)\). This proves that standardNodeDecompositions generates \(D_v(G)\) in polynomial time.

standardDecompositions is correct: We have already done the correctness proof since standardDecompositions directly implements the recursive formula for \(D(G)\) from Proposition 18.

standardDecompositions is polynomial: We have already seen that each call to standardNodeDecompositions generates its own output in polynomial time. Consider as before a tree \(T\) where each recursive call to standardDecompositions is a node with an edge from the caller to the callee. Let \(q\) be the number of leaves of \(T\). Every leaf contributes at least one distinct decomposition to the output, so \(q\) is a lower bound on the number of decompositions of \(G\). The multiset of node decompositions computed by all the calls to standardNodeDecompositions is in bijection with the edges of \(T\). All trees have more nodes than edges and more leaves than internal nodes so the combined time to compute all the node decompositions is dominated by a polynomial in \(q(n + e)\) where \(n + e\) is the input size for the original input which is an upper bound on the size of any graph produced during the computation.

Line 7 could a priori seem to require too much time by going through all the elements of \(D\). However, we can charge this work to each of the children of that node that are produced in this way which clears up the problem. As trees have more leaves than internal nodes the total number of nodes of \(T\) is less than \(2q\). This proves that the total time to compute \(D(G)\) is bounded by a polynomial in \(w(n + e)\) where \(w\) is the number of decompositions and \(\Theta(n + e)\) is the size of the input. \(\square\)

We can extract some bounds on the number of node decompositions from the arguments just given.

Proposition 23. Let \(v\) be a node of a standard graph \(G\). Let \(l := L_G(v)\). If \(G\) has \(k\) standard components that give \(v\) label 1, then there are between \(\frac{k}{l}\) and \(\binom{k+l-1}{l-1}\) standard \(v\)-decompositions of \(G\). If \(v\) is a node of minimal positive label in \(G\), then there are at least \(k\) standard \(v\)-decompositions of \(G\).

Proof. Every \(v\)-decomposition of \(G\) has exactly \(l\) elements, and the elements of each such multiset are chosen among the \(k\) standard components that give \(v\) the label 1, so there cannot be more than \(\binom{k+l-1}{l-1}\) standard \(v\)-decompositions.

Every one of the \(k\) standard components giving \(v\) label 1 can be extended to a standard decomposition of \(G\) by Corollary 13 and therefore also to a standard \(v\)-decomposition. We get the minimal number of standard \(v\)-decompositions when each of these extensions are unique. As each standard \(v\)-decomposition has \(l\) elements, that implies the existence of at least \(\frac{k}{l}\) standard \(v\)-decompositions.

If \(v\) is a label of minimal positive label, then each standard component \(H\) that gives \(v\) the label 1 can be extended to a \(v\)-decomposition using only the maximal standard component by Proposition 20. So there are at least \(k\) standard \(v\)-decompositions in this case. \(\square\)

Here are examples in which the bounds from the proposition are sharp.
Example 24. Consider the graph G from Figure 6 whose labels we will presently specify, and the graphs G' and G'' from the same figure, whose labels are specified in the picture.

- Choose the labels such that $\mathcal{L}_G(v_i) \geq \mathcal{L}_G(v)$ for all i and $\mathcal{L}_G(w) \geq \mathcal{L}_G(v) + \sum_i \mathcal{L}_G(v_i)$. Then for each multiset of standard graphs \mathcal{H} satisfying conditions (1), (2) and (4) from Definition 17 condition (3) is automatically satisfied. The number k from the proposition depends on the choice of the labels, but in any case, G has $\binom{k+l-1}{l}$ standard v-decompositions. The upper bound for the number of standard v-decompositions is therefore sharp.

- Define $\mathcal{L}_G(v) := 1$, $\mathcal{L}_G(v_i) := 1$ for all i and $\mathcal{L}_G(w) := 2$. Then the standard components that give v the label 1 correspond to the power set of $\{v_1, \ldots, v_m\}$, whose cardinality is 2^m. All standard components that give v the label 1 lead to standard v-decompositions of G. The lower bound for the number of standard v-decompositions is therefore sharp.

- The graph G' provides another example of sharpness of the lower bound, this time with $l > 1$. We define v as the node of label l. As in the proposition, we denote by k the number of standard components of G' that give v the label 1. Since v is labeled 1 in every standard component, k is just the number of components of G'. Likewise, a standard v-decomposition of G' is just a standard decomposition of G'. Obviously $k = l$, and there exists precisely one standard v-decomposition.

- Also in the graph G'', we define v as the node of label l. This graph has the property that the lower bound is sharp while, unlike in the previous example, there exists more than one standard v-decomposition. Note that the fraction $\frac{k}{l} = \frac{2l-1}{l}$ is not an integer, but $\left\lceil \frac{k}{l} \right\rceil = 2$.

We leave the question open whether there exist k and l as in the proposition such that $\frac{k}{l} > 2$ and there exists a graph G such that the lower bound from the proposition is sharp.
6. FROM STANDARD SETS TO STANDARD GRAPHS

In the remaining three sections, we investigate the relation between standard decomposition of labeled graphs and another combinatorial problem called Connect Four decomposition. In the end we show that the two problems are equivalent.

A standard set, or staircase, is a subset $\Delta \subseteq \mathbb{N}^d$ whose complement $C := \mathbb{N}^d \setminus \Delta$ satisfies $C + \mathbb{N}^d = C$. We are only going to consider standard sets of finite cardinalities. Standard sets in \mathbb{N} are just intervals starting at 0; in \mathbb{N}^2, they can be identified with partitions, or with Young diagrams; in \mathbb{N}^3, they are also known as plane partitions; in \mathbb{N}^d for $d > 3$, they are also known as solid partitions. Standard sets in \mathbb{N}^d canonically correspond to monomial ideals in the polynomial ring $k[x_1, \ldots, x_d]$. See Figure 7 for examples in dimensions 1, 2, and 3.

Consider the projection to the first $d - 1$ components, $q^d : \mathbb{N}^d \to \mathbb{N}^{d-1} : \beta \mapsto (\beta_1, \ldots, \beta_{d-1})$ and its complementary projection, $q_d : \mathbb{N}^d \to \mathbb{N} : (\beta_1, \ldots, \beta_d) \mapsto \beta_d$

For each standard set Δ, we have the equality

$$\Delta = \{ \beta \in \mathbb{N}^d | q_d(\beta) < |(q^d)^{-1}(q^d(\beta)) \cap \Delta| \}.$$

The integer $|(q^d)^{-1}(q^d(\beta)) \cap \Delta|$ appearing on the right-hand side is the cardinality of the fiber of the projection $q^d : \Delta \to \mathbb{N}^{d-1}$ over the point $\gamma := q^d(\beta)$. We call that quantity the height of Δ over γ. The equation displayed above implies that the datum of standard set Δ is equivalent to the datum of the projection $\Delta' := q^d(\Delta)$, which is a standard set in \mathbb{N}^{d-1}, and the datum of the heights over all $\gamma \in \Delta'$. The heights satisfy a compatibility condition: Upon denoting by h_γ the height over $\gamma \in \Delta'$, we see that $h_{\gamma + e_i} \leq h_\gamma$ for all standard basis elements $e_i \in \mathbb{N}^{d-1}$ and all $\gamma \in \Delta'$ such that also $\gamma + e_i \in \Delta'$. These observations motivate the following definition:

\footnote{in the French notation}
Definition 25 (Standard graph of a standard set). Let \(\Delta \subseteq \mathbb{N}^d \) be a finite standard set. We define the standard graph of \(\Delta \), denoted by \(G(\Delta) \), by setting

\[
\begin{align*}
V_{G(\Delta)} &:= q^d(\Delta), \\
E_{G(\Delta)} &:= \{ (\gamma', \gamma) | \gamma' = \gamma + e_i \text{ for some } i \} \\
L_{G(\Delta)}(\gamma) &:= |(q^d)^{-1}(\gamma) \cap \Delta|.
\end{align*}
\]

The discussion leading to the definition proves that \(G(\Delta) \) is indeed a standard graph. The transition from a standard set to its standard graph is illustrated in the first two pictures in Figure 9.

Addition of standard graphs has a counterpart on standard sets, called \(C4 \) addition.

Definition 26 (C4 sum). Let \(\Delta_1 \) and \(\Delta_2 \) be two finite standard sets in \(\mathbb{N}^d \). We define the Connect Four sum, or \(C4 \) sum of \(\Delta_1 \) and \(\Delta_2 \) by

\[
\Delta_1 + \Delta_2 := \left\{ \beta \in \mathbb{N}^d \middle| q^d(\beta) < |(q^d)^{-1}(q^d(\beta)) \cap \Delta_1| + |(q^d)^{-1}(q^d(\beta)) \cap \Delta_2| \right\}.
\]

So for determining the \(C4 \) sum of \(\Delta_1 \) and \(\Delta_2 \), we define \(\Delta' \) to be the union of \(q^d(\Delta_1) \) and \(q^d(\Delta_2) \) and, for all \(\gamma \in \Delta' \), \(h_{\gamma} \) to be the sum of the heights over \(\gamma \) of \(\Delta_1 \) and \(\Delta_2 \). Then \(\Delta \) is characterized by its projection \(\Delta' \) and the heights \(h_{\gamma} \).

Here is a more graphic way of thinking about the \(C4 \) sum: Place \(\Delta_1 \) and \(\Delta_2 \) somewhere on the \(d \)-axis in \(\mathbb{N}^d \) such that they do not intersect, subsequently drop the cubes along the \(d \)-axis, until they get stacked above each other on the \(1, 2, \ldots, (d - 1) \)-hyperplane. The result is the standard set \(\Delta_1 + \Delta_2 \). Figure 8 illustrates that process in two examples. The figure also explains the analogy to the eponymous game Connect Four.

![Figure 8. C4 sums of 2-dimensional standard sets yielding a 3-dimensional standard set](image)

It is easy to see that

- \(\Delta_1 + \Delta_2 \) is a standard set;
- its cardinality is the sum of the cardinalities of \(\Delta_1 \) and \(\Delta_2 \);

\(^3\)We say that the height of \(\Delta_i \) over \(\gamma \) is zero if \(\gamma \notin q^d(\Delta_i) \).
• C4 addition is associative and commutative, and \(\emptyset \) is its neutral element;
• \(G(\Delta_1 + \Delta_2) = G(\Delta_1) \oplus G(\Delta_2) \).

The last item confirms that C4 addition of standard set is indeed the counterpart of addition of standard graphs. Here is the counterpart of standard decomposition of standard graphs.

Definition 27 (C4 decomposition). Let \(\Delta \subseteq \mathbb{N}^d \) be a finite standard set. A C4 decomposition of \(\Delta \) is a multiset \(\{ \Delta_1, \ldots, \Delta_h \} \) of standard sets in \(\mathbb{N}^{d-1} \) whose C4 sum equals \(\Delta \). Here we understand each \(\Delta_i \) to be a standard set in \(\mathbb{N}^d \) via the embedding \(\mathbb{N}^{d-1} \hookrightarrow \mathbb{N}^d : \gamma \mapsto (\gamma, 0) \).

Figure 8 shows C4 decompositions of the standard set in \(\mathbb{N}^3 \) on the right hand side into two (multi)sets of standard set in \(\mathbb{N}^2 \). Note, however, that the three-dimensional standard set of that example has more C4 decompositions than the two shown in the figure.

The following proposition is the first step of four in proving that C4 decomposition and standard decomposition of labeled graphs are equivalent.

Proposition 28. Let \(\Delta \subseteq \mathbb{N}^d \) be a finite standard set. Then the C4 decompositions of \(\Delta \) and the standard decompositions of \(G(\Delta) \) are in canonical bijection.

Proof. Let \(\{ \Delta_1, \ldots, \Delta_h \} \) be a C4 decomposition of \(\Delta \). Consider, for \(j = 1, \ldots, h \), the graph \(H_j \) whose nodes and edges are identical to the nodes and edges of \(G(\Delta) \) and whose labeling is given by

\[
L_{H_j}(\gamma) = \begin{cases} 1 & \text{if } \gamma \in H_j \\ 0 & \text{else} \end{cases}
\]

In other words, we think of \(\Delta_j \), which is a priori a standard set in \(\mathbb{N}^{d-1} \), as being a standard set in \(\mathbb{N}^d \), as we do in Definition 27, and define \(H_j := G(\Delta_j) \). Then \(H_j \) is obviously a standard 0-1 graph. The fact that \(\{ \Delta_1, \ldots, \Delta_h \} \) is a C4 decomposition of \(\Delta \) implies that \(\mathcal{H} := \{ H_1, \ldots, H_h \} \) is a standard decomposition of \(G(\Delta) \).

Conversely, let \(\mathcal{H} \) be a standard decomposition of \(G(\Delta) \). Recall that the node set of \(G(\Delta) \) is \(\Delta' := q^d(\Delta) \), which is a standard set in \(\mathbb{N}^{d-1} \). For every \(H \in \mathcal{H} \), we define \(\Delta(H) \) to be the set of all \(\gamma \in \Delta' \) with \(L_H(\gamma) = 1 \). The definition of \(\mathcal{E}_{G(\Delta)} \), together with the fact that \(H \) is a standard graph, shows that \(\Delta(H) \subseteq \mathbb{N}^{d-1} \) is a standard set contained in \(\Delta' \). The fact that \(\mathcal{H} \) is a standard decomposition of \(G(\Delta) \) means that for each \(\gamma \in \Delta' \), the labels of all nodes \(\gamma \), which are 0 or 1, sum up to the height \(h_\gamma \). This means that C4 sum of the corresponding multiset \(\{ \Delta(H) \mid H \in \mathcal{H} \} \) equals \(\Delta \), so that multiset is a C4 decomposition of \(\Delta \).

The two constructions are readily seen to be mutual inverses. \(\square \)

7. Canonicalization for graphs of standard sets

The graph of a given standard set will in general contain many nodes of identical label which are connected by an edge. From the discussion at the end of Section 2 we know that edges between nodes of the same label are irrelevant for computing the standard decomposition of that graph. We also know that we can get rid of those redundancies, without spoiling standard decompositions, by passing from a graph to its canonicalization. Given a standard set \(\Delta \), we should therefore not work with its standard graph, but rather the canonicalization of its standard graph.
Definition 29 (Canonicalization of the standard graph of Δ).

- We say that a subset B of \mathbb{N}^{d-1} is connected if for all $\gamma, \gamma' \in B$, there exists a sequence (γ_j) in B starting at $\gamma_0 = \gamma$ and ending at $\gamma_n = \gamma'$ such that for all j, we either have $\gamma_{j+1} = \gamma_j + e_i$ or $\gamma_j = \gamma_{j+1} + e_i$ for some $i \in \{1, \ldots, d-1\}$.
- A connected component of $A \subseteq \mathbb{N}^{d-1}$ is a connected $B \subseteq A$, maximal with respect to inclusion.
- Let $\Delta \subseteq \mathbb{N}^d$ be a standard set, $h := \max(q_d(\Delta))$ its height, and $\Delta' := q^d(\Delta)$ its projection. For $a = 1, \ldots, h$, we define the a-th isohypse as $\Delta^a := \{ \gamma \in \Delta' | \left| (q^d)^{-1}(\gamma) \cap \Delta \right| = a \}$, the set of all points in the projection of height a.
- We define the graph $G'(\Delta)$ by
 \begin{align*}
 V_{G'(\Delta)} &:= \{ \text{connected components of } \Delta^a | a = 1, \ldots, h \}; \\
 E_{G'(\Delta)} &= \{ (\Delta^a_a, \Delta^a_b) | \exists \gamma' \in \Delta^a_a, \gamma \in \Delta^a_b : \gamma' = \gamma + e_i \text{ for some } i \}
 \end{align*}
where we denote by Δ^a_\ast the connected components of isohypse Δ^a.

The transition from Δ to $G(\Delta)$ and to $G'(\Delta)$ is illustrated in Figure 9.

![Figure 9](image)

Figure 9. A standard set of height 3, its graph, and its canonicalized graph

The following proposition is the second step of four in proving that $C4$ decomposition and standard decomposition of labeled graphs are equivalent.

Proposition 30. Let $\Delta \subseteq \mathbb{N}^d$ be a finite standard set. Then $G'(\Delta)$, as defined above, is the canonicalization of the standard graph of Δ.

Proof. Let $G(\Delta)$ be the standard graph of Δ. Then Δ' is the node set of $G(\Delta)$, and two nodes get the same label if, and only if, they lie in the same isohypse Δ^a. Moreover, the definition of $G(\Delta)$ shows that two nodes of this graph lying in the same isohypse are connected by a sequence of edges in that graph if, and only if, they lie in the same connected component of some Δ^a. So we may contract each
connected component Δ^a_i of each isohypse to one node. This is what the definition of $G'(\Delta)$ does.

For finishing the proof, we have to show that no more pairs of nodes in $G'(\Delta)$ may be contracted into one node. Contraction only happens if two nodes have the same label and are connected by an edge. Suppose that Δ^a_i and Δ^a_j are connected by an edge. Then there exist $\gamma' \in \Delta^a_i$ and $\gamma \in \Delta^a_j$ such that $\gamma' = \gamma + e_i$, so γ' and γ lie in the same connected component of Δ^a, a contradiction. □

8. From standard graphs with unique maximal nodes to standard sets

For each standard set Δ, the canonicalized graph $G'(\Delta)$ is connected and contains a unique node of maximal label, namely, the highest isohypse Δ^h. This graph thus lies in the class S defined in the Introduction. Example 31 and Proposition 32 show that graphs in S may or may not arise from standard sets.

Example 31. Figure 10 shows a standard graph which arises as the standard graph of a standard set in \mathbb{N}^4, namely;

$$\Delta = \begin{cases} (0,0,0,0), (0,0,0,1), (0,0,0,2), \\
(1,0,0,0), (1,0,0,1), (0,1,0,0), (0,1,0,1), \\
(0,0,1,0), (0,0,1,1), (0,1,1,0), (0,1,1,1), \\
(1,1,0,0), (1,0,1,0) \end{cases}.$$

The picture on the right hand side of that figure shows Δ^3, Δ^2 and $\Delta^1 \subseteq \mathbb{N}^3$.

![Figure 10. A standard graph arising from a standard set in \mathbb{N}^4.](image)

Proposition 32. The graph shown in Figure 11 does not arise as the standard graph of a standard set.

Proof. Assume that $\Delta \subseteq \mathbb{N}^d$ is a standard set whose standard graph is the given graph G. In particular, the nodes of G are the isohypses Δ^i, for $i = 1, 2, 3, 4$. We claim that there exists an element $\beta \in \Delta^1$ and $i, j \in \{1, \ldots, d-1\}$ such that $\beta - e_i \in \Delta^2$ and $\beta - e_j \in \Delta^4$. This will finish the proof, since $\beta - e_i - e_j$ will then lie in Δ. But $\beta - e_i - e_j$ can lie in neither Δ^1 nor Δ^2 nor Δ^3, since either of these inclusions would contradict the standard set property of Δ. However, an inclusion $\beta - e_i - e_j \in \Delta^4$ would force an edge from node Δ^2 to node Δ^4 in the standard graph of Δ, which isn’t there.
So we have to prove the above assertion. There exists elements $\sigma \in \Delta^4$ and $\tau \in \Delta^2$ and a sequence $(\gamma_k)_{k=0}^N$ such that

- its subsequence $(\gamma_k)_{k=1}^{N-1}$ lies in Δ^1,
- its starting point γ_0 is σ,
- its end point γ_N is τ, and
- it has the property that for all k, $\gamma_{k+1} = \gamma_k \pm e_i$ for some i.

Take σ, τ and (γ_k) sharing these properties such that, in addition, N, the length of the sequence (γ_k) is minimal. If $N = 2$, then $\beta := \gamma_1$ is of the desired shape.

We now assume that $N > 2$, and are going to show that this assumption leads to a contradiction. For doing so, we prove three claims concerning the sequence (γ_k).

The first claim is that for all $k < N$,

$$
\gamma_k = \sigma + \sum_{i \in I_k} e_i
$$

for some multiset of indices I_k. Note that $\gamma_k \in \Delta^1$ for all k in question. For $k = 0, 1$, equation (2) is evident. We assume that the equation holds for k and prove it to hold for $k+1$. Suppose that $\gamma_{k+1} = \sigma + \sum_{i \in I_k} e_i - e_j$ for some $j \notin I_k$. Then, in particular, $\sigma' := \sigma - e_j \in \Delta^4$ and $\gamma_{k+1} \in \Delta^1$. Consider the sequence $(\gamma'_l)_{l=0}^{N-1}$, where

$$
\gamma'_l := \begin{cases}
\gamma_l - e_j & \text{for } l < k, \\
\gamma_{l+1} & \text{for } l \geq k.
\end{cases}
$$

This sequence is one element shorter than the original sequence (γ_k). Like the original sequence, it starts in Δ^4 and ends in Δ^2. A priori the elements γ'_m, for $m = 1, \ldots, k-1$, may lie in Δ^1, Δ^2, Δ^3 or Δ^4.

- If all of them lie in Δ^1, the sequence (γ'_l) contradicts the minimality of N.
- If $\gamma'_m \in \Delta^2$, the sequence $(\gamma''_p)_{p=0}^{m+1}$, where

$$
\gamma''_p := \begin{cases}
\gamma_p & \text{for } l \leq m, \\
\gamma'_m & \text{for } p = m + 1
\end{cases}
$$

contradicts the minimality of N.
- If $\gamma'_m \in \Delta^3$, we obtain an edge from node Δ^1 to node Δ^3, which isn’t there.
- If $\gamma'_m \in \Delta^4$, we consider the largest index M such that $\gamma'_M \in \Delta^4$ and consider the subsequence $\gamma'_M, \ldots, \gamma'_N$. The condition $\gamma_i \in \Delta^1$ implies that
\(\gamma'_i \in \Delta^1 \cup \Delta^2 \cup \Delta^4\), since there is no node from \(\Delta^1\) to \(\Delta^3\). Thus the first term of \(\gamma'_M, \ldots, \gamma'_N\) lies in \(\Delta^4\), and the other terms in \(\Delta^1 \cup \Delta^2\). The subsequence \(\gamma'_{M'}, \ldots, \gamma'_{M''}\), where \(M' \geq M\) is the smallest index with \(\gamma'_{M'} \in \Delta^2\), contradicts the minimality of \(N\).

This finishes the proof of the first claim.

Our second claim is that \(I_k \subseteq I_{k+1}\) for all sets appearing in \(\Delta\). This is true for \(I_0 \subseteq I_1\); moreover, since \(\gamma_{k+1} = \gamma_k \pm e_i\), our first claim shows that either \(I_k \subseteq I_{k+1}\) or \(I_k \supseteq I_{k+1}\) holds. Let \(m\) be the smallest index such that \(I_m \supseteq I_{m+1}\). Then the sequence \((\gamma_k)_{k=0}^{m+1}\) is obtained by adding to \(\sigma\) a number of \(e_i\), one by one, and finally subtracting one of them, say \(e_j\). We obtain a shorter sequence \((\gamma'_k)_{k=0}^{m-1}\) by adding to \(\sigma\) the same sequence of \(e_i\) as above, but leaving out \(e_j\). The same arguments as the ones from the four bulleted items above then lead to a contradiction. This finishes the proof of the second claim.

Our third claim is that \(\tau\), the final member of our sequence \((\gamma_k)\), takes the shape \(\tau = \gamma_N = \gamma_{N-1} - e_j\), for some \(e_j \notin I_{N-1}\). The complementary cases include \(\gamma_N = \gamma_{N-1} - e_j\) for some \(e_j \in I_{N-1}\), which immediately contradicts minimality of \(N\), and \(\gamma_N = \gamma_{N-1} + e_j\) for some \(e_j\). In the latter case, the inclusion \(\gamma_N = \tau \in \Delta^2\) shows that \(\gamma_{N-1}\) would also lie in \(\Delta^2\), a contradiction. This finishes the proof of the third claim.

The sequence \((\gamma_k)_{k=0}^{N}\) is therefore obtained by adding to \(\sigma\) a number of \(e_i\), one by one, and finally subtracting some \(e_j\) which is not found among the \(e_i\) previously added. We denote by \(e_u\) the last element from the sequence of \(e_i\) which we add, that is, the one element which we add for passing from \(\gamma_{N-2}\) to \(\gamma_{N-1}\). Consider \(\rho := \tau - e_u\). Then \(\rho\) may lie in \(\Delta^2, \Delta^3\) or \(\Delta^4\).

- If \(\tau' \in \Delta^2\), the sequence \((\gamma'_l)_{l=0}^{N-1}\), where
 \[
 \gamma'_l := \begin{cases}
 \gamma_l & \text{for } l \leq N - 2, \\
 \tau' & \text{for } l = N - 1
 \end{cases}
 \]
 contradicts the minimality of \(N\).
- If \(\tau' \in \Delta^3\), we obtain an edge from node \(\Delta^1\) to node \(\Delta^3\), which isn’t there.
- If \(\tau' \in \Delta^4\), we obtain an edge from node \(\Delta^2\) to node \(\Delta^4\), which isn’t there.

So we have disproved the assumption that \(N > 2\). The proposition follows.

The graphs in Figures 10 and 11 define relations on their respective node sets which both fail to be transitive. So one might not guess that transitivity of graphs in \(S\) is crucial for such graphs to arise from standard sets. That, however, is indeed true, as we shall see in Proposition 34 below. Let us first establish that passing from a graph to its transitive closure has no impact on standard decompositions.

Lemma 33. Let \(G\) be a standard graph and \(\overline{G}\) its transitive closure. Then the standard decompositions of \(G\) and \(\overline{G}\) are in canonical bijection.

Proof. Given a standard decomposition \(H\) of \(G\), replace every member \(H\) by its transitive closure \(\overline{H}\). The resulting multiset \(\overline{H}\) is a standard decomposition of \(\overline{G}\). Given a standard decomposition \(K\) of \(G\), we delete from every member \(K\) all edges that appear in \(\overline{G}\) but not in \(G\), and call the resulting graph \(K^\circ\). The resulting multiset \(K^\circ\) is a standard decomposition of \(G\). The maps \(H \mapsto \overline{H}\) and \(K \mapsto K^\circ\) are mutual inverses. \(\square\)
Proposition 34. Let G be a canonical, connected and transitive standard graph containing a unique node of maximal label. Then there exists a standard set $\Delta \subseteq \mathbb{N}^d$, for some $d \geq 1$, whose canonicalized standard graph is G.

Proof. Upon using the terminology of Definition 29, we denote by $G'(\Delta)$ the canonicalized standard graph of a standard set Δ. We prove the proposition by two nested inductions, the outer over the number of nodes of G, and the inner over the number of edges of G. The base case of the outer induction is trivial. As for the outer induction step, let G be a given connected and transitive standard graph containing a unique node v_h of maximal label, h. Let v_0 be a node of minimal label. We remove from G the node v_0, along with all edges whose source is v_0. We call the graph thus obtained G_0. Then G_0 is also canonical, connected and transitive. Canonicity and transitivity are obvious. As for connectedness, we note that each node in G other than the node v_0 is the starting point of a sequence of edges ending up in v_h, which sequence does not pass through v_0 by minimality of v_0 and canonicity of G. Moreover, when replacing G by G_0, we do not change the labels of the remaining nodes. Thus G_0 contains a unique node of maximal label. We may therefore assume that there exists a standard set $\Delta_0 \subseteq \mathbb{N}^d$, for some d, such that $G'(\Delta_0) = G_0$.

For establishing the outer induction step, we shall put the node v_0 back into the graph. Transitivity of G implies that this graph contains an edge from v_0 to v_h. Let G_1 be the (transitive) graph that arises from G_0 by adding the one node v_0 and the one edge (v_0, v_h). We now construct a standard set Δ_1 such that $G'(\Delta_1) = G_1$.

Consider the embedding $\iota: \mathbb{N}^d \mapsto \mathbb{N}^{d+1}: \beta \mapsto (0, \beta)$. The transition from Δ_0 to $\iota(\Delta_0)$ does not affect the standard graph of Δ_0. We may therefore assume that $\Delta_0 \subseteq \mathbb{N}^d$ is contained in the hyperplane $\{\beta_1 = 0\}$ of \mathbb{N}^d. The node $v_h \in G_0$ corresponds to the isohypse $(\Delta_0)^h$. Let $h_0 < h$ be the label of v_0. We may assume that $v_0 > 1$. The set

\begin{align}
\Delta_1 := \Delta_0 \cup M_1, \\
M_1 := \{(1, 0, \ldots, 0, \beta_d) | 0 \leq \beta_d \leq h_0 - 1\}
\end{align}

(3)

is standard. See Figure 12 for a visualization of the transition from Δ_0 to Δ_1. For $a \neq h_0$, the isohypes $(\Delta_0)^a$ and $(\Delta_1)^a$ are identical. The isohypse $(\Delta_1)^{h_0}$ is $(\Delta_0)^{h_0} \cup q^d(M_1) = (\Delta_0)^{h_0} \cup \{e_1\}$. When passing to $G'(\Delta_1)$, we see that this graph arises from $G'(\Delta_0)$ by adding the one node $q^d(M_1)$ and the one edge connecting that new node and $(\Delta_1)^{h_0}$. This establishes the outer induction step, and at the same time the inner induction basis.

As for the inner induction step, we may assume to have a transitive graph G_1

- with the same nodes and the same labels as G,
- and a distinguished node v_0
- such that all edges but those with source v_0 agree in G and G_1,

along with a standard set $\Delta_1 \subseteq \mathbb{N}^d$ such that $G'(\Delta_1) = G_1$. Let v_1 be a node of G such that (v_0, v_1) is an edge in G, but our original graph G contains no chain of edges from v_0 to v_1 of length more than 1. We may assume that $\mathcal{L}_G(v_0) < \mathcal{L}_G(v_1)$. Denote by G_2 the graph that arises from G_1 by adding the edge (v_0, v_1). We will prove the existence of a standard set Δ_2 such that $G'(\Delta_2) = G_2$. This will establish the inner induction step, and finish the proof of the proposition.
Analogously as above, we assume that \(\Delta_1 \subseteq \mathbb{N}^d \) is contained in the hyperplane \(\{ \beta_1 = 0 \} \) of \(\mathbb{N}^d \). The choice of \(v_1 \) implies that \(G_2 \) is again transitive. For \(i = 0, 1 \), the node \(v_i \in G_1 \) corresponds to a connected component \(C_i \) of \((\Delta_1)^{h_i} \), where \(h_i \) is the label of \(v_i \). The set \[
\Delta_1^+ := \Delta_1 \cup M_2^+ , \quad \text{where}
\]
\[
M_1^+ := (\bigcup_{\alpha \in \mathbb{N}^d} ((q^d)^{-1}(C_1) \cap \Delta_1 + e_1 - \alpha)) \cap \mathbb{N}^d
\]
is standard. See the first two pictures in Figure 13 for a visualization of the transition from \(\Delta_1 \) to \(\Delta_1^+ \): We create a copy of the set \((q^d)^{-1}(C_1) \cap \Delta_1 \) in the hyperplane \(\{ \beta_1 = 1 \} \) of \(\mathbb{N}^d \) and subsequently pass to the smallest standard set containing both \(\Delta_1 \) and that copy. Transitivity of \(G_1 \) implies that \(G'(\Delta_1^+) = G'(\Delta_1) \). Indeed, for all heights \(a \neq h_1 \), the connected components of \((\Delta_1^+)^a\) are identical to the connected components of \((\Delta_1)^a\). For height \(h_1 \), the same is true for those connected components of \((\Delta_1^+)^{h_1}\) that do not project to \(C_1 \) under \(q^d \). The connected component \(C_1 \) of \((\Delta_1)^{h_1}\), however, has a much larger counterpart in \(\Delta_1^+ \), namely, the union of \(C_1 \) and the set \(q^d(M_1^+) \). As for edges in \(G'(\Delta_1^+) \) emerging from node \(C_1 \cup q^d(M_1^+) \), the presence of \(M_1^+ \) obviously leads to new adjacencies in connected components of isohypses of \(\Delta_1^+ \). But transitivity of \(G_1 \) guarantees that none of those adjacencies lead to an edge in \(G'(\Delta_1^+) \) that does exist in \(G'(\Delta_1) \). So the graphs \(G'(\Delta_1) \) and \(G'(\Delta_1^+) \) are identical.

However, we do not want another standard set with the same canonicalized graph, but rather a graph with one additional edge. We obtain that edge by applying the same trick once more, defining \[
\Delta_2 := \Delta_1 \cup M_1^+ \cup M_2 , \quad \text{where}
\]
\[
M_2 := \bigcup_{\alpha \in \mathbb{N}^d} ((q^d)^{-1}(C_1) + e_1 - \alpha) \cap \mathbb{N}^d.
\]
This is another standard set. See the last two pictures in Figure 13 for a visualization of the transition from \(\Delta_1^+ \) to \(\Delta_2 \): We also create a copy of the set \((q^d)^{-1}(C_1) \cap \Delta_1 \) in the hyperplane \(\{ \beta_1 = 1 \} \) of \(\mathbb{N}^d \) and subsequently pass to the smallest standard set containing both \(\Delta_1 \) and that copy. For all heights \(a \neq h_0, h_1 \), the connected components of \((\Delta_2)^a\) are identical to the connected components of \((\Delta_1^+)^a\). For heights \(a = h_0, h_1 \), the same is true for those connected components of \((\Delta_2)^a\) that do not project to \(C_0 \) or \(C_1 \). Note that the sets \(M_1^+ \) and \(M_2 \) will in general intersect. The counterpart of \(C_1 \) in \(\Delta_2 \) is the union \(C_1 \cup M_1^+ \); and the counterpart of \(C_0 \) in \(\Delta_2 \) is \((C_0 \cup M_2) \setminus M_1^+ \). The graph \(G'(\Delta_2) \) contains all the edges that appear in \(G'(\Delta_1^+) \), plus an edge from node \((C_0 \cup M_2) \setminus M_1^+\) to node \(C_1 \cup M_1^+ \) : the extra edge exists since \((1, 0, \ldots, 0, h_1) \in C_1 \cup M_1^+ \) and \(z_0 + e_1 \in (C_0 \cup M_2) \setminus M_1^+ \) for \(z_0 \in (q^d)^{-1}(C_0) \). This establishes the inner induction step. \(\square \)

Readers might wonder how the polynomial dependence from Theorem 1 is preserved in Proposition 3. Indeed, in the inductive construction of the standard set \(\Delta \) from the proof of the proposition, the dimension of \(\Delta \) and the number of elements in it grow rapidly. However, we don’t specify \(\Delta \) as list of its elements, but
rather as a list of the minimal generators of the \mathbb{N}^d-module $\mathbb{N}^d \setminus \Delta$. This set is also known as the set of outer corners of Δ. Doing so, we avoid large data sets when handling large standard sets. We will use this representation of Δ in the proof of Theorem 2 below.

9. Reduction to standard graphs with unique maximal nodes

The following proposition provides the fourth and last step in proving that C4 decomposition and standard decomposition of labeled graphs are equivalent. Here is a small example illustrating its assertion.

Example 35. Let G be the graph with nodes x and y, both of label 1, and no edges. Let G' be the graph with nodes x and y of label 1 and z of label 2, with edges from x and from y to z. Figure 14 shows that there is a bijection between the standard decompositions of G and the standard decompositions of G'.
\[G = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \oplus \begin{bmatrix} 0 & 1 \end{bmatrix} \]

\[G' = \begin{bmatrix} 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \oplus \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \]

Figure 14. The decompositions of the graphs from Example 35

Proposition 36. Let \(G \) be a labeled graph. Then there exists a graph \(G' \) such that

1. \(G \) is a subgraph of \(G' \),
2. \(G' \) has a unique node of maximal label that is reachable from all nodes of \(G' \) and,
3. the standard decompositions of \(G \) and \(G' \) are in canonical bijection.

Proof. Let \(l \) be the maximal label among all nodes of \(G \). Let \(G' \) be equal to \(G \), except that \(G' \) has an extra node \(v \) with label \(l + 1 \), and \(v \) has an edge to it from all other nodes. The first two conditions are immediate, so it remains to show that the standard decompositions of \(G \) and \(G' \) are in canonical bijection.

It is not hard to see that the function

\[f : \{\text{standard cmps of } G'\} \setminus \{\{v\}\} \rightarrow \{\text{standard cmps of } G\} \]

\[H \mapsto H \setminus \{v\} \text{ without edges in } H \text{ with target } v \]

is a bijection. We extend \(f \) to a map of multisets of standard components by applying it to each standard component individually, so for example \(f(\{A, B\}) := \{f(A), f(B)\} \).

Let \(D' \) be a standard decomposition of \(G' \). Write \(D' \) as a union of \(D \) and \(V \) where \(V \) is a multiset that contains only copies of \(\{v\} \) while \(D \) does not contain \(\{v\} \) at all. Then obviously \(f(D) \) is a decomposition of \(G \).

For the other direction, let \(D \) be a standard decomposition of \(G \) and let \(D' := f^{-1}(D) \). Then \(G' - \sum D' \) is a graph in which all nodes but \(v \) have label zero, node \(v \) having a label \(l > 0 \). Let \(V \) be the multiset that contains \(l \) copies of \(\{v\} \). Then \(D' \cup V \) is a decomposition of \(G' \). Let \(g \) be the function \(D \mapsto D' \cup V \). It is not hard to see that \(f \) and \(g \) are mutual inverses. \(\square \)

We can now prove that C4 decomposition and standard decomposition of labeled graphs are equivalent.

Proof of Theorem 3. (i) A solution of problem (a) implies a solution of problem (b) by Proposition 28. Assume we are able to solve problem (b), and are given a labeled graph \(G \). We pass to the canonicalization \(G' \), which has the same standard decompositions as \(G \) by Proposition 15. If \(G' \) has multiple nodes of locally maximal
label \(l \), we pass to the graph \(G'' \) with only one node of maximal label \(l + 1 \) from Proposition 36. \(G'' \) still has the same standard decompositions as \(G \). Then we replace \(G'' \) by its transitive closure \(G''' \). By Lemma 34 this transition does not harm the decompositions either. Finally, Proposition 34 provides a standard set \(\Delta''' \) whose canonicalized standard graph is \(G''' \). Problem (a) is solved.

(ii) This assertion depends on the representations of \(G \) and \(\Delta \). In the proof of Theorem 22 we explained that we specify a graph as a list of nodes with labels \(G \), whose graph equals \(\Delta \). Let us first show that for any graph \(G \) with \(n \) nodes and \(e \) edges, a staircase \(\Delta \) whose graph equals \(G \) can be computed in polynomial time. We may assume that \(G \) is canonical and transitive, and has only one node of maximal label, since the operations

- passing to the canonicalization,
- passing to a graph with only one node of maximal label, and
- passing to the transitive closure

are obviously polynomial in the datum of \(G \). It therefore remains to show that the construction from the proof of Proposition 34 is polynomial. That construction builds \(\Delta \) using two nested inductions over \(n \) and \(e \). The respective base cases being trivial, it suffices to show that both induction steps are polynomial in the datum of \(G \). Let us stick to the notation from the proof of Proposition 34. In addition to that notation, we define \(\mathcal{C}_i \subseteq \mathbb{N}^d \) as the set of corners of \(\Delta_i \) for \(i = 0, 1, 2 \). In both the inner and the outer induction, the dimension of the standard sets involved rises by one. Thus the dimension \(d \) is polynomial in the datum of \(G \). The outer induction step is the passage from \(\Delta_0 \) to \(\Delta_1 \), as defined in 34. That definition shows that \(e_1 \in \mathcal{C}_0 \) and

\[
\mathcal{C}_1 = (\mathcal{C}_0 \setminus \{e_1\}) \cup \{e_1 + e_i \mid i = 1, \ldots, d - 1\} \cup \{h_0 e_d\},
\]

cf. Figure 12. The inner induction step is thus polynomial.

The inner induction step is the passage from \(\Delta_1 \) via \(\Delta_1^+ \) to \(\Delta_2 \). Remember that for \(i = 1 \), the node \(v_i \in G_1 \) corresponds to a connected component \(C_i \) of \((\Delta_1)^{b_1} \). Let \(\mathcal{C}' \) be the union of the following three sets:

- all corners \(\alpha \in \mathcal{C}_1 \) such that \(\alpha - e_j \in (q^d)^{-1}(C_1) \cap \Delta_1 \) for some \(e_j \neq e_1 \),
- the projections to the hyperplane \(\{x_d = 0\} \) of all corners \(\alpha \in \mathcal{C}_1 \) such that \(\alpha - e_j \in (q^d)^{-1}(C_1) \cap \Delta_1 \) for some \(e_j \neq e_1, e_d \), and
- the elements \(2e_1 \) and \(h_1 e_d \).

Then \(\mathcal{C}' \) is the set of corners of \(M_1^{b_1} \) from 34. Remember that \(\Delta_1^+ \) is the union of \(\Delta_1 \) and \(M_1^{b_1} \). The set \(\mathcal{C}_{1^+} \) of corners of \(\Delta_{1^+} \) is therefore obtained by

- collecting the exponents of least common multiples of \(x^\alpha \) \(x^\beta \), for all \(\alpha \in \mathcal{C}_1 \) and all \(\beta \in \mathcal{C}' \),
- and subsequently cleaning that set up, that is, detecting pairs \(\alpha, \beta \) such that \(\alpha \in \beta + \mathbb{N}^d \) and deleting each such \(\alpha \).

This establishes the passage from \(\Delta_1 \) to \(\Delta_1^+ \). As for the passage from \(\Delta_1^+ \) to \(\Delta_2 \), we construct a set of corners \(\mathcal{C}'' \) in an analogous way as we constructed \(\mathcal{C}' \) in the three bulleted items above, but using \(C_0 \) rather than \(C_1 \) and \(h_0 \) rather than \(h_1 \). Then \(\Delta_2 \) is the union of \(\Delta_1^+ \) and the standard set with corners \(\mathcal{C}'' \). The set \(\mathcal{C}_2 \) is
therefore obtained from sets \mathcal{C}_1 and \mathcal{C}'' by the method of taking least common multiples and cleaning up which we employed above. All operations are polynomial.

Let us now show that for each standard set Δ, its canonicalized graph $G'(\Delta)$ can be computed in polynomial time. In other words, we have to compute the connected components of the isohypses in polynomial time. We assume Δ to be given by its corner set C. For each $\alpha \in C$, we define $\Delta^\alpha = q_d(\alpha) + \sum_{i=1}^{d-1} N e_i$. For each height a, we define Δ^a as the union of all Δ^α, for all α with $|\alpha| \leq a$. Then the a-th isohypse is

$$\Delta^a = \Delta_a \setminus \Delta_{a-1} = \cup_{|\alpha|=a} (\Delta_a \setminus T_{a-1}).$$

Obviously each $E^\alpha := \Delta^\alpha \setminus T_{a-1}$ is connected. Moreover, it is easy to see that $E^\alpha \cup E^\beta$ is connected if, and only if, the least common multiple of the monomials $x^{q_d(\alpha)}$ and $x^{q_d(\beta)}$ has its exponent outside of T_{a-1}. Upon applying this observation to all α, β of total degree a, we compute the connected components of the a-th isohypse in polynomial time. □

Appendix A. A generating function

We will now present a natural generating function for the number of standard decompositions of a standard graph G. The analogue of this generating function in the setting of standard sets is discussed in [Led, Section 2.3].

It is good to temporarily forget about labelings. So let F be an unlabeled directed graph. Let \mathcal{E} be the set of all standard 0-1 subgraphs of F with node set \mathcal{V}_F. We identify each $E \in \mathcal{E}$ with the characteristic function of the labeling, that is, with the vector $\chi_E := (\chi_{E,v})_{v \in \mathcal{V}_F}$ indexed by nodes of F, with entries

$$\chi_{E,v} := \begin{cases} 1 & \text{if } v \in \mathcal{V}_E \\ 0 & \text{else.} \end{cases}$$

We define $\chi := (\chi_{E,v})_{E \in \mathcal{E}, v \in \mathcal{V}_F}$ to be the matrix whose rows are indexed by \mathcal{E}, the row with index E being the vector χ_E. Moreover, we introduce a vector $t := (t_v)_{v \in \mathcal{V}_F}$ of indeterminates, also indexed by nodes of F. If $w := (w_v)_{v \in \mathcal{V}_F}$ is any vector of nonnegative integers, indexed by nodes of F, we write $t^w := \prod_{v \in \mathcal{V}_F} t_v^{w_v}$.

Consider the power series

$$g := \prod_{E \in \mathcal{E}} \frac{1}{1 - t^{\chi_E}}.$$

We define integers $\Phi_\chi(w)$, one for each integer-valued vector w as above, by expanding the power series g,

$$g =: \sum_{v \in \mathcal{V}_F} \Phi_\chi(w) t^w.$$

Φ_χ is called a vector partition function, see [Stu95]. Note that labelings of graphs G with the same nodes and edges as F correspond to vectors w as above via

$$w = (\mathcal{L}_G(v))_{v \in \mathcal{V}_F}.$$

We denote by G_w the labeled graph G with the same nodes and edges as F and labeling given by w.

4We defined standard 0-1 subgraphs only for labeled graphs; if F is unlabeled, we give each node the trivial label 1; then the notion of 0-1 subgraphs is well-defined.
Proposition 37. (1) Given any vector $w \in \mathbb{N}^{V_F}$, the coefficient $\Phi_{\chi}(w)$ vanishes unless the labeled graph G_w is standard.

(2) If the labeled graph G_w is standard, the coefficient $\Phi_{\chi}(w)$ equals the number of standard decompositions of F.

Proof. We expand each term $\frac{1}{1-t \chi_E}$ in the product expression of g as a geometric series,

$$g = \prod_{E \in \mathcal{E}} (1 + t^{\chi_E} + t^{2 \chi_E} + t^{3 \chi_E} + t^{4 \chi_E} + \ldots).$$

Upon expanding the product, we see that each monomial appearing in the series takes the shape $m = \prod_{E \in F} t^{n_E} \chi_E$ for some finite $F \subseteq \mathcal{E}$ and some $n_E \in \mathbb{N}$. We replace the set F by the multiset H in which each $E \in F$ appears n_E times. Since each member of H is a standard 0-1 subgraph of F, the graph $G := \sum H$ standard graph and has the same nodes and edges as F. The above monomial m equals $\prod_{v \in V_F} t^{L_G(v)}$. This establishes (1).

As for (2), let G be a standard graph with the same nodes and edges as V_F. The above discussion shows that the coefficient of the monomial $m := \prod_{v \in V_F} t^{L_G(v)}$ shows up in the expansion of g, and its coefficient counts the number of ways of writing G as a sum $G = \sum H$ of elements of \mathcal{E}. This is just the number of standard decompositions of G.

□

Appendix B. Partitions of partitions

Appendix A suggests a connection between standard decompositions and partitions. Let us further investigate this.

Example 38. The set of partitions of an integer n is in natural bijection with the set of standard sets of cardinality n by identifying a partition and its Young diagram (in the French notation).

- If $p = \{n_1, \ldots, n_h\}$ (a multiset) is a partition of n and for each i, p_i is a partition of n_i, we call $\{p_1, \ldots, p_h\}$ a partition of partition of n. The set of partitions of partitions of n is in natural bijection with the set of standard sets $\Delta \subseteq \mathbb{N}^3$ of cardinality n, together with all their C4 decompositions.

Both bijections are visualized in Figure 15. For generalizing the statements, we introduce the notion of C4 games.

Definition 39 (Iterated partition). Let n be a positive integer. We recursively define a q-fold iterated partition of n as follows:

- for $q = 1$, it is a partition of n, that is, a multiset $p = \{n_1, \ldots, n_h\}$ of positive integers such that $\sum n_i = n$;
- for $q > 1$, it is a multiset $p = \{n_1, \ldots, n_h\}$ of $(q-1)$-fold iterated partitions of integers n_1, \ldots, n_h such that $\sum n_i = n$.

In other words, we look at all partitions of n into n_i, together with all partitions of all parts n_i into $n_{i,j}$, together with all partitions of all parts $n_{i,j}$ into $n_{i,j,k}$, etc.

Definition 40 (C4 game). Let n be a positive integer. We recursively define a C4 game of size n in \mathbb{N}^d as follows:

- for $d = 1, 2$, it is standard set $\Delta \subseteq \mathbb{N}^d$ of cardinality n;
\[\{5, 3, 2, 2\} = \{\{4, 3\}, \{2, 1\}, \{5\}\} = \{\} \]

Figure 15. Partitions (of partitions, resp.) and C4 games in \(\mathbb{N}^2 \) (in \(\mathbb{N}^3 \), resp.) correspond to each other.

- for \(d > 2 \), it is a multiset \(\{g_1, \ldots, g_h\} \) of C4 games of respective sizes \(n_i \) in \(\mathbb{N}^{d-1} \) such that \(\sum n_i = n \).

In other words, we look at all standard sets \(\Delta \subseteq \mathbb{N}^d \) of a cardinality \(n \), together with all C4 decompositions of \(\Delta \) into \(\Delta_i \subseteq \mathbb{N}^{d-1} \), together with all C4 decompositions of all \(\Delta_i \) into \(\Delta_{i,j} \subseteq \mathbb{N}^{d-2} \), together with all C4 decompositions of all \(\Delta_{i,j} \) into \(\Delta_{i,j,k} \subseteq \mathbb{N}^{d-3} \), etc.

Proposition 41. For all \(d, n \in \mathbb{N} \), there is a natural bijection

\[f_d : \{(d-1)\text{-fold iterated partitions of } n\} \to \{\text{C4 games of size } n \text{ in } \mathbb{N}^d\}. \]

Proof. The assertion is obvious for \(d = 1, 2 \). For \(d > 2 \), the bijection \(f_d \) sends each multiset \(\{H_1, \ldots, H_l\} \) of \((d-2)\)-fold iterated partitions of integers \(n_1, \ldots, n_l \) to the multiset \(\{f_{d-1}(H_1), \ldots, f_{d-1}(H_l)\} \).

Note that the bijection is only natural up to the choice of coordinate axes in \(\mathbb{N}^d \). In other words, replacing the tuple \((e_1, \ldots, e_d)\) of standard basis elements by \((e_{\sigma(1)}, \ldots, e_{\sigma(d)})\) for some permutation \(\sigma \) induces an automorphism of the source of bijection \(f_d \). For \(d = 2 \), this corresponds to the ambiguity between a partition and its transpose.

References

[Eis95] David Eisenbud, *Commutative algebra*, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995, With a view toward algebraic geometry. MR MR1322960 (97a:13001)

[Eva05] Laurent Evain, *On the postulation of \(s^d \) fat points in \(\mathbb{P}^d \)*, J. Algebra 285 (2005), no. 2, 516–530. MR 2125451 (2005j:13019)

[Hir85] André Hirschowitz, *La méthode d’Horace pour l’interpolation à plusieurs variables*, Manuscripta Math. 50 (1985), 337–388. MR 784148 (86j:14013)

[Led] Mathias Lederer, *Components of Gröbner strata in the Hilbert scheme of points*, Proc. London Math. Soc., to appear.

[Led08] M. Lederer, *The vanishing ideal of a finite set of closed points in affine space*, J. Pure Appl. Algebra 212 (2008), 1116–1133.

[Nak99] Hiraku Nakajima, *Lectures on Hilbert schemes of points on surfaces*, University Lecture Series, vol. 18, American Mathematical Society, Providence, RI, 1999. MR 1711344 (2001b:14007)
[Stu95] Bernd Sturmfels, *On vector partition functions*, J. Combin. Theory Ser. A **72** (1995), no. 2, 302–309. MR 1357776 (97b:52014)

E-mail address: laurent.evain@univ-angers.fr

Université d’Angers, Faculté des Sciences, Département de mathématiques, 2, Boulevard Lavoisier, 49045 Angers Cedex 01, FRANCE

E-mail address: mlederer@math.cornell.edu

Department of Mathematics, Cornell University, Malott Hall, Ithaca, New York 14853, USA

E-mail address: bhroune@math.cornell.edu

Department of Mathematics, Cornell University, Malott Hall, Ithaca, New York 14853, USA