Deriving accurate molecular indicators of protein synthesis through Raman-based sparse classification:
Supplementary Information

N. Pavillon1, N. I. Smith1,2
1Biophotonics Laboratory, Immunology Frontier Research Center (IFReC),
2Open and Transdisciplinary Research Institute (OTRI),
Osaka University, Yamadaoka 3-1, Suita, 565-0871, Suita, Osaka, Japan

Figure S1: Selection of the regularization parameter λ in Lasso through cross-validation, based on binomial deviance. The selected value (right dashed line) corresponds to the λ value that increases deviance compared to the average minimum (left dashed line) by less than one standard deviation.
Figure S2: Representative Raman spectra from single cells, for both control and LPS experimental conditions. (A) Raw spectra as recorded by the camera, and (B) Pre-processed spectra as used for classification.

Figure S3: Amount of parameters for Lasso and PCA/LDA in function of sample size. While the limitation to 90% of variance implies that the amount of variables in PCA/LDA rapidly saturates, it keeps increasing in the case of Lasso. The line represents the average of 10 runs with different random selection of training subsets, the shaded regions represent the standard deviation.
Figure S4: (A) Coefficients of classification models for variance-limited PCA/LDA and PCA/Lasso. The limit on variance implies that selected coefficients are concentrated on low-order PCs, while Lasso selects coefficients in the whole range. An offset of ±0.5 has been added for visibility. (B) Coefficients in the low-order PCs within the variance limit, where multiple coefficients are zero (shown in green) in the case of PCA/Lasso.

Figure S5: IL-6 secretion measured by enzyme-linked immunosorbent assay (ELISA MAX, Biolegend) in the culture medium of Raw264 cells exposed to LPS (50 ng/mL) and increasing dosage of CHX, represented by the median of triplicate measurements, with the error bar showing the standard deviation. Colors represent 2 independent experiments, and the dashed bar represents the limit of detection of the kit. The manufacturer’s protocol was followed, and absorbance was measured at 450 nm.
Figure S6: PCA scores for components 1 to 12 on LPS/LPS+CHX data, displayed as density plots. Lines show the limits containing 50%, 75% and 95% of the respective populations.
Figure S7: Loading vectors corresponding to scores in Fig. S5. The respective contribution to variance is shown for each vector.
Band [cm\(^{-1}\)]	Possible assignment	Vibrational mode	Reported shift [cm\(^{-1}\)]
Positive (LPS+CHX)			
710–727	Adenine	Ring breathing mode \(^1\)	728
865–885	Ribose	Ribose-base linkage \(^1\)	868
	Tryptophan	Indole ring \(^2\)	875–880
1226–1237	Uracil	Ring stretching \(^3\)	1234
	Protein secondary structure	Amide III \(^4\), (rand coils \(^4\))	1231, 1230–1295
1050–1113	DNA/RNA	PO\(_2\) stretching \(^4\)	1092
	Phospholipids	PO\(_2\) symmetric stretch \(^2\)	1080
	Protein primary structure	C-N stretch, chain C-C stretch \(^4\)	1066, 1080
1483–1493	Guanine	CN stretching \(^1\)	1485
	Guanine, Adenine	Ring mode \(^5\)	1486
1367–1386	Adenine	C-H bending \(^1\)	1378
	Guanine	Ring stretch \(^2\)	1370
773–781	Uracil, Cytosine	Ring breathing \(^2\)	782
1018–1020	Ribose	CO stretch \(^4\)	1017
3037–3046			
Negative (LPS)			
1399–1423	Amino-acids	Carboxyl groups side chain \(^6\)	1404
	Adenine, Guanine	N=H bending \(^1\)	1419
913–940	\(\alpha\)-helix	Backbone CC stretch \(^7,4\)	933, 937
	Ribose-phosphate	C-O, C-C stretching \(^2\)	914–925
1542–1550	Tryptophan	Amide II, indole ring \(^7,2\)	1551
		Amide II, CN stretch \(^5\)	1548
801–815	Lipids	PO\(_2\) stretching \(^4\)	811
	A-form helix	PO\(_2\) stretching \(^2\)	813–816
1028.5			1027
1175–1186	Tyrosine, Phenylalanine	Side chain/Indole ring \(^7\)	1181
	Tyrosine	CH in plane bend \(^4\)	1176
1156–1164	Ribose	Ribose-phosphate \(^1\)	1162
		Backbone CC, CN \(^6\)	1060
1194–1205	Proline, Tyrosine \(^8\)	-	1194, 1200
	Pyruvate, Coenzyme A \(^8\)	-	1197, 1203
1736.5		CO ester stretch \(^3\)	1735
1792–1797			
1042	Ribose	Backbone ribose \(^4\)	1043
642–645	Uracil	Ribose-uracil link bending \(^4\)	647
	Tyrosine	C-C twist \(^4\)	645
1317–1328	Guanine	Ring stretch \(^2\)	1325
	Amide III	NH, CH stretch \(^2,7\)	1300–1340, 1327

Table S1: Possible band assignments for the separation vectors of LPS versus LPS+CHX. Regions are listed in the order of decreasing strength.
References

[1] A. J. Hobro, D. M. Standley, S. Ahmad, and N. I. Smith. “Deconstructing RNA: optical measurement of composition and structure”. *Phys. Chem. Chem. Phys.* **15**(31), 13,199 (2013).

[2] D. I. Ellis, D. P. Cowcher, L. Ashton, S. O’Hagan, and R. Goodacre. “Illuminating disease and enlightening biomedicine: Raman spectroscopy as a diagnostic tool”. *Analyst* **138**, 3871–3884 (2013).

[3] K. Maquelin, C. Kirschner, L.-P. Choo-Smith, N. van den Braak, H. P. Endtz, D. Naumann, and G. J. Puppels. “Identification of medically relevant microorganisms by vibrational spectroscopy”. *J. Microbiol. Methods* **51**(3), 255–271 (2002).

[4] I. Notingher, S. Verrier, S. Haque, J. M. Polak, and L. L. Hench. “Spectroscopic study of human lung epithelial cells (A549) in culture: Living cells versus dead cells”. *Biopolymers* **72**(4), 230–240 (2003).

[5] H. Byrne, G. Sockalingum, and N. Stone. *Biomedical Applications of Synchrotron Infrared Microspectroscopy*, chap. Raman Microscopy: Complement or Competitor?, pp. 105–142. RSC (2011).

[6] M. Ogawa, S. Nakamura, Y. Horimoto, H. An, T. Tsuchiya, and S. Nakai. “Raman Spectroscopic Study of Changes in Fish Actomyosin during Setting”. *J. Agric. Food Chem.* **47**(8), 3309–3318 (1999).

[7] L. Ashton and E. W. Blanch. “pH-induced conformational transitions in α-lactalbumin investigated with two-dimensional Raman correlation variance plots and moving windows”. *J. Mol. Struct.* **974**(1), 132–138 (2010).

[8] J. De Gelder, K. De Gussem, P. Vandenabeele, and L. Moens. “Reference database of Raman spectra of biological molecules”. *J. Raman Spectrosc.* **38**(9), 1133–1147 (2007).