Clinical Outcomes after Isolated Infrapopliteal Revascularization in Hemodialysis Patients with Critical Limb Ischemia: Endovascular Therapy versus Bypass Surgery

Ryuta Ito¹, Yoshitaka Kumada², Hideki Ishii³, Daisuke Kamoi⁴, Takashi Sakakibara⁴, Norio Umemoto⁴, Hiroshi Takahashi⁵ and Toyoaki Murohara⁶

¹ Department of Cardiology, Matsunami General Hospital, Gifu, Japan
² Department of Cardiovascular Surgery, Matsunami General Hospital, Gifu, Japan
³ Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
⁴ Department of Cardiology, Nagoya Kyoritsu Hospital, Nagoya, Japan
⁵ Department of Nephrology, Fujita Health University School of Medicine, Aichi, Japan

Aim: To investigate the long-term clinical outcome of endovascular therapy (EVT) or bypass surgery in patients on hemodialysis (HD) with critical limb ischemia due to isolated infrapopliteal disease.

Methods: We enrolled 254 consecutive HD patients successfully undergoing infrapopliteal revascularization by EVT (126 patients) and bypass surgery (128 patients). They were followed up for five years. Amputation-free survival (AFS) and incidence of any re-intervention were evaluated. A propensity score from all baseline variables was incorporated into Cox analysis.

Results: In the EVT group, age was higher (p = 0.039), diabetes and coronary artery disease were more frequent (p = 0.004 and p = 0.0052, respectively), and tissue loss was more rarely observed (p < 0.0001) than in the bypass group. During the follow-up period, 21 major amputations and 64 deaths occurred. The propensity score-adjusted AFS rate at 5 years was comparable between groups (61.0% in EVT group vs. 55.1% in the bypass group, adjusted hazard ratio [HR] 0.87, 95% confidence interval [CI] 0.52–1.42, p = 0.58). The adjusted survival rates were also similar between groups for amputation and all-cause mortality. However, freedom from any re-intervention was markedly lower in the EVT than in the bypass group (48.6% vs. 84.6%, adjusted-HR, 3.56, 95% CI 1.95-6.75, p < 0.0001).

Conclusions: The rate of AFS was broadly comparable between the two strategies, although compared with bypass surgery, EVT had much higher rates for re-intervention.

Key words: Infrapopliteal, Critical limb ischemia, Hemodialysis, Endovascular therapy, Bypass surgery

Introduction

Patients with end-stage renal failure requiring chronic hemodialysis (HD) are at high-risk of atherosclerosis including peripheral artery disease (PAD)¹. Even after revascularization of lower limbs, poorer prognosis has been a perennial clinical problem in HD patients with critical limb ischemia (CLI) as compared with non-HD patients²-⁴. In particular, isolated infrapopliteal disease, which accounts for 25% of patients with CLI⁵, is frequently observed in HD patients and correlates with poor clinical outcomes such as restenosis, major amputation, and death after revascularization⁶-⁸. Although bypass surgery is considered the first-line strategy for infrapopliteal disease⁹, HD patients as well as diabetic patients have been regarded
as a challenging population with poor prognosis after surgical revascularization\(^4\). Currently, endovascular therapy (EVT) is being widely performed to treat CLI due to isolated infrapopliteal disease\(^6, 10-12\), but only limited reports on outcomes of EVT for HD patients are available\(^4, 7\).

Recent reports have presented that rates of major amputation and death are broadly comparable between the two procedure groups in HD patients with infrainguinal disease\(^13, 14\), although compared with EVT, bypass surgery had lower rates of any re-intervention\(^15\). However, there have been few reports on the clinical outcomes after revascularization in HD patients with CLI due to isolated infrapopliteal disease. Moreover, whether EVT is an optimal procedure in this high-risk population remains controversial.

Aim

The present study aimed to investigate the long-term clinical outcome after EVT or after bypass surgery in HD patients with CLI due to isolated infrapopliteal disease.

Methods

Patients

This study was conducted as a retrospective record review. From May 2006 to June 2015, a total of 254 consecutive HD patients with CLI due to isolated infrapopliteal disease who successfully underwent revascularization at the Matsunami General Hospital (Kasamatsu, Japan) and the Nagoya Kyoritsu Hospital (Nagoya, Japan) were enrolled. Of them, 126 patients underwent EVT and 128 patients underwent bypass surgery. Patients who underwent emergency revascularization for acute limb ischemia were excluded. CLI was defined as ischemic rest pain or tissue loss, consistent with Rutherford Classes 4–6\(^15\).

All patients underwent preoperative contrast arteriography and had >75% angiographic stenosis before revascularization. Vascular specialists including vascular surgeons and interventionalists decided whether EVT or bypass surgery was indicated for each patient considering angiographical findings, degree of tissue loss, general health conditions, comorbidities, and presence of a suitable great saphenous vein for grafting. Generally, for patients with extensive tissue loss, bypass surgery was recommended. In cases of unsuitable anastomosis site, unavailable vein graft and intolerable conditions for open surgery, EVT was preferred. Patients in Rutherford class 4 status and with short diseased lesions were initially recommended for EVT.

The EVT procedure was performed generally through the antegrade approach from the ipsilateral common femoral artery. Target vessels were identified by anatomical status of diseased vessels and networking of distal vessels for achieving straight artery flow to the foot. A 4–6 French sheath was inserted and 5,000 IU of heparin was injected in the beginning. A 0.014-inch wire was used for crossing in most cases, and balloon angioplasty was performed. Technical success was defined as achieving <30% residual stenosis and straight flow to the foot without flow-limiting dissection. Even when residual stenosis or dissection was observed after balloon angioplasty, no stent was used because of unavailability for the infrapopliteal artery in Japan. Bypass surgery was performed using general anesthesia and the primary choice of graft was the ipsilateral or contralateral great saphenous vein. No upper extremity veins were used because the veins had to be reserved for the arteriovenous fistula for HD. Proximal inflow of bypass graft was arranged via popliteal artery. For distal outflow, artery was selected in accordance with runoff to the foot.

Demographics, risk factors including patient gender, age, diabetes, hypertension, dyslipidemia, smoking status, body mass index (BMI), history of cardiovascular disease and stroke, indication of revascularization, ankle brachial index, and procedural variables were obtained from the medical records in each hospital. In this study, pre-procedural C-reactive protein (CRP) level was also measured because elevated CRP was reportedly associated with poor prognosis in CKD patients\(^16\). Geriatric nutritional risk index (GNRI), a marker for nutritional status, was also calculated from serum albumin levels and body weight, as follows: \(\text{GNRI} = 14.89 \times \text{albumin (g/dL)} + (41.7 \times \text{[body weight/ideal body weight]})\). The ideal body weight was defined as the value calculated from the height and a BMI of 22 kg/m\(^2\)\(^17\).

Follow-up Study

Patients were routinely followed up at discharge: at 1, 3, and 6 months after the procedure for 1 year; and then at yearly intervals, using duplex ultrasound. Amputation-free survival (AFS), as a composite endpoint defined as freedom from amputation above the ankle or any-cause death, was primarily evaluated. The incidence of re-intervention was also analyzed. These endpoints were defined as was reported by a previous study\(^15\). Patients were followed up for five years or until December 2015 if the follow-up period was less than five years. The study protocol and chart reviews used were approved by the institutional ethics committee in each hospital and conducted in accordance with the Declaration of Helsinki. Written informed consent was obtained from each patient.
Table 3

(13.5 vs. 24.2 mg/L, performed in four cases (3.2%) in the EVT group.

Baseline Characteristics

Clinical and lesion characteristics are shown in Table 1. Patient age was higher (71 ± 10 vs. 68 ± 9 years, p = 0.039), and diabetes and coronary artery disease were more frequent in the EVT than in the bypass group (76.8% [96 patients] vs. 60.2% [77 patients], p = 0.004; and 67.9% [76 patients] vs. 45.3% [58 patients], p = 0.0052, respectively). In contrast, Rutherford Classes 5 and 6 were more rarely observed (62.7% [79 patients] vs. 97.7% [125 patients], p < 0.0001), and CRP levels were lower (13.5 vs. 24.2 mg/L, p = 0.003) in the EVT than in the bypass group. The GNRI was higher (91.6 vs. 89.2, p = 0.042) in the EVT than in the bypass group. HbA1c levels and the rate of insulin use were similar between groups. No major procedural complications occurred in either group. Retrograde approaches were performed in four cases (3.2%) in the EVT group.

Followed-up Results

During the follow-up period (median, 32 months), 21 major amputations (5 in the EVT group and 16 in the bypass group), 64 deaths (27 in the EVT group and 37 in the bypass group) and 60 re-interventions (44 in the EVT group and 16 in the bypass group) occurred. Cardiovascular disease, from which 29 patients (45.3%) died, was the greatest cause of death, and other causes of death included sepsis, pneumonia, and gastrointestinal bleeding. With regard to re-intervention strategies, 28 (63.6%) bypass surgeries and 16 (36.4%) repeat EVTs were performed in the EVT group, while all patients who underwent re-intervention in the bypass group were treated endovascularly. AFS rate at 5 years was comparable (60.8% in the EVT group vs. 54.3% in the bypass group, HR 0.87, 95% CI 0.55–1.37, p = 0.55) between groups (Table 2 and Fig. 1A). The survival rates for amputation and all-cause mortality were also similar (91.1% vs. 75.3%, HR 0.46, 95% CI 0.15–1.18, p = 0.11 and 67.0% vs. 61.9%, HR 0.98, 95% CI 0.58–1.62, p = 0.93 for the EVT and bypass groups, respectively) (Table 2 and Fig. 1B and 1C). Freedom from any re-intervention was markedly lower in the EVT than in the bypass group (47.4% vs. 85.2%, HR 3.79, 95% CI 2.17–6.96, p < 0.0001; Table 2 and Fig. 1D). Even after adjustment by propensity score, the rates of AFS, limb salvage, and survival rate at 5 years were still comparable between groups (61.0% vs. 55.1%, adjusted HR 0.87, 95% CI 0.52–1.42, p = 0.58; 93.9% vs. 86.4%, adjusted HR 0.65, 95% CI 0.21–1.69, p = 0.39; and 68.8% vs. 60.5%, adjusted HR 0.84, 95% CI 0.47–1.49, p = 0.56 in the EVT and bypass groups, respectively) (Table 2 and Fig. 2A, 2B, and 2C). Freedom from any re-intervention was significantly lower in the EVT than in the bypass group, as before (48.6% vs. 84.6%, adjusted HR 3.56, 95% CI 1.95–6.75, p < 0.0001; Table 2 and Fig. 2D).

Significant Predictors

For the composite endpoint with amputation or death, the independent risk factors were age (HR 1.03, 95% CI 1.01–1.06, p = 0.016), declined GNRI (HR 0.98, 95% CI 0.95–0.99, p = 0.045), and elevated CRP levels (HR 1.04, 95% CI 1.01–1.07, p = 0.041) on Cox multivariate analysis (Table 3). Further, elevated CRP levels and declined GNRI were identified as independent risk factors for amputation (HR 1.05, 95% CI 1.01–1.10, p = 0.049) and death (HR 0.97, 95% CI 0.94–0.99, p = 0.027), respectively.

Discussion

This study was conducted to comparatively investigate the long-term clinical outcomes after EVT or after bypass surgery in HD patients with CLI due to isolated infrapopliteal disease. Patients in the bypass group had severe CLI, with higher frequency of tissue loss. Further, higher CRP levels and lower GNRI,
Despite the younger age of patients in the bypass group, could reflect a more comorbid condition such as malnutrition or inflammation, compared with those observed in the EVT group. The inferior status in the bypass group may possibly lead to worse outcomes of AFS, limb salvage and mortality rate. However, no significant differences between the two groups were observed; further, similar results were derived even after adjustment for the differences of clinical characteristics using propensity score.

Both chronic HD status and isolated infrapopliteal disease are risk factors for poor prognosis\(^8\),\(^9\),\(^10\),\(^11\), and clinical outcomes of HD patients after EVT for isolated infrapopliteal disease were reported to be poorer than those of non-HD patients\(^12\). In terms of the revascularization method for HD patients with infrapopliteal disease, there have been limited studies describing EVT outcomes, as compared with those of bypass surgery. In the general population, a retrospective study using propensity score analysis by Söderström et al.\(^6\) showed that EVT and bypass surgery achieved similar 5-year AFS, limb salvage, and survival in patients with infrapopliteal disease. Similarly, even in HD patients, our propensity-adjusted comparison showed no significant difference between the two procedures EVT and bypass surgery.

The survival rate of CLI patients on HD reported by Ramdev P et al.\(^20\) was much lower than

Table 1. Clinical Characteristics

	All patients \((n = 254)\)	EVT \((n = 126)\)	Bypass surgery \((n = 128)\)	\(p\) value
Male (%)	174 (68.5)	84 (66.7)	90 (70.3)	0.53
Age (years)	69 ± 10	71 ± 10	68 ± 9	0.039
Duration of HD (years)	6.1 (3.5-9.0)	6.6 (4.8-9.2)	4.0 (1.4-8.4)	0.012
Diabetes (%)	174 (68.4)	97 (76.8)	77 (60.2)	0.0042
HbA1c (%)\(^8\)	6.4 ± 1.3	6.4 ± 1.2	6.4 ± 1.3	0.86
Insulin use (%)\(^8\)	41 (23.6)	25 (25.7)	16 (20.8)	0.44
Hypertension (%)	161 (63.4)	96 (76.2)	65 (50.8)	<0.0001
Hyperlipidemia (%)	62 (24.4)	37 (29.4)	25 (19.5)	0.068
Smoking (%)	45 (17.7)	27 (21.4)	18 (14.1)	0.10
Body mass index	21.2 (19.3-23.3)	21.3 (19.3-21.3)	21.1 (19.1-22.8)	0.58
Coronary artery disease (%)	144 (56.7)	86 (67.9)	58 (45.3)	0.0052
Stroke (%)	40 (15.7)	25 (19.8)	15 (11.7)	0.18
GNRI	90.4 ± 9.4	91.6 ± 9.3	89.2 ± 9.4	0.042
Rutherford classification (%)	\(<0.0001\)			
4	50 (19.7)	47 (37.3)	3 (2.3)	
5	147 (57.9)	60 (47.6)	87 (68.0)	
6	57 (22.4)	19 (15.1)	38 (29.7)	
Ankle brachial index	0.57 (0.37-0.78)	0.56 (0.35-0.77)	0.66 (0.37-0.88)	0.15
C-reactive protein (mg/l)	17.1 (5.0-42.5)	13.5 (2.8-35.3)	24.2 (7.3-47.8)	0.0029
Number of limb	268	133	135	
Target artery (%)	0.71	9.67	9.67	
Tibioperoneal	14 (5.2)	5 (3.8)	9 (6.7)	
Anterior tibial / Dorsal pedis	154 (57.5)	79 (59.4)	75 (55.6)	
Posterior tibial / Plantar	75 (28.0)	39 (29.3)	36 (26.7)	
Peroneal	25 (9.3)	10 (7.5)	15 (11.0)	
Medication (%)				
Cilostazol	31.0	42.9	19.1	<0.0001
Other antiplatelets	90.6	90.6	90.6	0.99
ACE-inhibitor/ARB	34.0	35.3	33.3	0.78
Statin	17.0	17.7	16.7	0.86
β blocker	21.3	22.1	20.6	0.82
Calcium channel blocker	29.9	36.8	26.2	0.13

EVT, endovascular therapy; HD, hemodialysis; GNRI, geriatric nutritional risk index; ACE, angiotensin-converting-enzyme; ARB, Angiotensin II receptor blocker

\(^8\); diabetic patients only
Table 2. Hazard ratio of EVT vs. Bypass surgery for clinical outcomes

	Crude HR (95% CI) P value	Propensity score-adjusted HR (95% CI) P value
Amputation or death	0.87 (0.55-1.37) 0.55	0.87 (0.52-1.42) 0.58
Amputation	0.46 (0.15-1.18) 0.11	0.65 (0.21-1.69) 0.39
All-cause death	0.98 (0.58-1.62) 0.93	0.84 (0.47-1.49) 0.56
Revascularization	3.79 (2.17-6.96) <0.0001	3.56 (1.95-6.75) <0.0001

HR, hazard ratio; CI, confidence interval

that of our study. A possible reason for this discrepancy is that all enrolled subjects in the present study were Japanese, who are at a lower risk for atherosclerosis and cardiovascular mortality than patients in Europe or in the US. In a previous report, the 5-year survival rate was about 83% in non-HD Japanese patients who underwent infrapopliteal revascularization, which was higher than the survival rate in our study. However, the 5-year survival rate in our population was slightly better than the average survival rate of Japanese patients on HD (59%), as reported by the Japanese Society of Dialysis Therapy, or the rates in Europe (48%) or the US (40%), reported by Held et al. In this regard, our results seemed to be fully acceptable.

For aortoiliac occlusive disease, EVT was associated with acceptable clinical outcomes even in HD patients. As for HD patients with CLI due to...
infrainguinal disease, we reported that the five-year rates of AFS and survival were comparable between the two procedure groups (47.1% and 50.9% in the EVT group, and 51.4% and 60.6% in the bypass group, respectively), and freedom from any re-intervention at five years was significantly lower in the EVT group than in the bypass group (52.3% vs. 81.9%)\(^\text{13}\). In the present study, we focused on HD patients with CLI due to isolated infrapopliteal disease because isolated infrapopliteal disease was common in such patients\(^\text{6}\), and seemed to be a persistent problem. With regard to the EVT strategy, drug-eluting stents, drug-coated balloons, and atherectomy devices may provide better clinical outcomes compared with those provided by conventional balloon angioplasty\(^\text{28-30}\). Unfortunately they were not available in Japan at that time, and their role in infrapopliteal disease of patients on HD is unclear.

In the present study, elevated CRP levels and low

Table 3. Independent risk factors for each clinical outcome

Event	HR (95% CI)	P value
Age	1.03 (1.01-1.06)	0.016
GNRI	0.98 (0.95-0.99)	0.045
C-reactive protein	1.04 (1.01-1.07)	0.041
Amputation	1.05 (1.01-1.10)	0.049
Death	1.06 (1.03-1.10)	0.0001
History of CAD	1.94 (1.15-3.36)	0.013
GNRI	0.97 (0.94-0.99)	0.027

Multivariate model includes age, GNRI, previous CAD, and C-reactive protein level as covariates with \(p<0.05\) by univariate analysis, with diabetes and tissue loss.

HR, hazard ratio; CI, confidence interval; GNRI, geriatric nutritional risk index; CAD, coronary artery disease
GNRI were associated with amputation or death, or both. Currently, protein-energy wasting (PEW), a state of decreased body stores of protein and energy fuels, has been reported to be commonly observed, and is associated with cardiovascular risk in patients with chronic kidney disease (CKD)31. PEW or malnutrition was also considered to be due to inflammation rather than poor nutritional intake 32; therefore, a comorbid condition such as low GNRI or elevated CRP levels is considered to be a part of the manifestation of PEW. Besides, we have previously reported that low BMI and elevated CRP levels could predict amputation or mortality after bypass surgery for infrapopliteal disease 29, and that elevated CRP levels or hypoalbuminemia were associated with poor limb salvage and survival after EVT in this population 33, 34. In this regard, more attention should be paid in further studies to the pre-procedural PEW state, a CKD-specific comorbidity, in this high-risk population.

Limitations

The present study had some limitations. First, this study was a non-randomized, retrospective record review of patients in regular clinical practice, and the number of enrolled patients was relatively small because they were recruited from only two centers. Randomized control trials with a larger sample size are eagerly awaited. Second, there remains a concern about unobserved risk factors which may affect outcomes such as hemodynamic status, duration of comorbid diseases, and etiology of renal failure. Although propensity score adjustment can reduce the difference of characteristics between the two groups, biases from unrecorded characteristics remain. In addition, about two thirds of enrolled patients were diabetic. Diabetes may present various clinical features of neuropathy, ischemia and sepsis, and these could each lead to limb threats by themselves 35. Precise risk stratification based on wound, ischemia and foot infection should be considered 36, and, moreover, information about the patients’ conditions was incomplete. As well as AFS, status of ambulatory and wound healing at the end of the study was important for assessing clinical outcomes.

Conclusion

The rate of AFS is broadly comparable between the two strategies and the survival rate after both procedures might be fully acceptable in HD patients with CLI due to isolated infrapopliteal disease. However, compared with bypass surgery, EVT had much higher rates for re-intervention; thus, patients with tolerance to invasive surgery may be treated with bypass surgery.

Acknowledgment

None.

Conflict of Interest

H.I. received lecture fees from Astellas Pharma Inc. Daiichi-Sankyo Pharma Inc. and MSD K.K. T. M. received lecture fees from Bayer Pharmaceutical Co., Ltd., Daiichi Sankyo Co., Ltd., Dainippon Sumitomo Pharma Co., Ltd., Kowa Co., Ltd., MSD K.K., Mitsubishi Tanabe Pharma Co., Nippon Boehringer Ingelheim Co., Ltd., Novartis Pharma K.K., Pfizer Japan Inc., Sanofi-aventis K.K., and Takeda Pharmaceutical Co., Ltd. T.M. received unrestricted research grant for Department of Cardiology, Nagoya University Graduate School of Medicine from Astellas Pharma Inc, Daiichi Sankyo Co., Ltd., Dainippon Sumitomo Pharma Co., Ltd., Kowa Co., Ltd., MSD K.K., Mitsubishi Tanabe Pharma Co., Nippon Boehringer Ingelheim Co., Ltd., Novartis Pharma K.K., Otsuka Pharma Ltd., Pfizer Japan Inc., Sanofi-aventis K.K., Teijin Pharma Ltd.

References

1) United States renal data system: Annual data report. Bethesda, MD, National Institute of Health, National Institute of Diabetes and Digestive and Kidney Disease, Division of Kidney, Urologic and Hematologic Disease, 2000; 339-348

2) Schanzer A, Mega J, Meadows J, Samson RH, Bandyk DF, Conte MS: Risk stratification in critical limb ischemia: derivation and validation of a model to predict amputation-free survival using multicenter surgical outcomes data. J Vasc Surg, 2008; 48: 1464-1471

3) Owens CD, Ho KJ, Kim S, Schanzer A, Lin J, Matros E, Belkin M, Conte MS: Refinement of survival prediction in patients undergoing lower extremity bypass surgery: stratification by chronic kidney disease classification. J Vasc Surg, 2007; 45: 944-952

4) Conte MS: Challenges of distal bypass surgery in patients with diabetes: patient selection, techniques, and outcomes. J Am Podiatr Med Assoc, 2010; 100: 429-438

5) Abdelsalam H, Markose G, Bolia A: Revascularization strategies in below the knee interventions. J Cardiovasc Surg, 2008; 49: 187-191

6) Gray BH, Grant AA, Kalbaugh CA, Blackhurst DW, Langen EM 3rd, Taylor SA, Cull DL: The impact of isolated tibial disease on outcomes in the critical limb ischemic population. Ann Vasc Surg, 2010; 24: 349-359

7) Kumada Y, Aoyama T, Ishii H, Tanaka M, Kawamura Y, Takahashi H, Toriyama T, Aoyama T, Yuzawa Y, Maruyama S, Matsuo S, Murohara T: Long-term out-
come of percutaneous transluminal angioplasty in chronic haemodialysis patients with peripheral arterial disease. Nephrol Dial Transplant, 2008; 23: 3996-4001

8) Brosi P, Baumgartner I, Silvestro A, Do DD, Mahler F, Triller J, Diehm N: Below-the-knee angioplasty in patients with end-stage renal disease. J Endovasc Ther, 2005; 12: 704-713

9) Söderström MI, Arvela EM, Korhonen M, Halmesmäki KH, Albäck AN, Biancari F, Lepäntalo MJ, Venermo MA: Infrapopliteal percutaneous transluminal angioplasty versus bypass surgery as first-line strategies in critical leg ischemia: a propensity score analysis. Ann Surg, 2010; 252: 765-773

10) Romiti M1, Albers M, Brochado-Neto FC, Durazzo AE, Pereira CA, De Luccia N: Meta-analysis of infrapopliteal angioplasty for chronic critical limb ischemia. J Vasc Surg, 2008; 47: 975-981

11) Garg K, Kaszubski PA, Moridzadeh R, Rockman CB, Adelman MA, Maldonado TS, Veith FJ, Mussa FF: Endovascular-first approach is not associated with worse amputation-free survival in appropriately selected patients with critical limb ischemia. J Vasc Surg, 2014; 59: 392-399

12) Albers M, Romiti M, Brochado-Neto FC, Pereira CA: Meta-analysis of alternate autologous vein bypass grafts to infrapopliteal arteries. J Vasc Surg, 2005; 42: 449-455

13) Kumada Y, Ishii H, Aoyama T, Kamoi D, Sakakibara T, Umemoto N, Suzuki S, Takahashi H, Murohara T: Bypass Surgery Versus Endovascular Therapy in Chronic Hemo-
dialysis Patients With CLI Due to Infringuinal Disease. J Am Coll Cardiol, 2016; 68: 1601-1602

14) Tatsuya Shiraki, Osamu Iida, Mitsuyoshi Takahara, Yoshimitsu Soga, Shinsuke Mii, Jin Okazaki, Sosei Kumamura T, Takamiya T, Kashihagi A, Edmondowicz D, Suzuki K, Miyashita Y: Prognosis of critical limb ischemia: a propensity score analysis. Ann Surg, 2010; 252: 1914-1922

15) Conte MS, Geraghty PJ, Bradbury AW, Hevelone ND, Lipitz SR, Moneta GL, Nehler MR, Powell RJ, Sidaway AN: Suggested objective performance goals and clinical trial design for evaluating catheter-based treatment of critical limb ischemia. J Vasc Surg, 2009; 50: 1462-1473

16) Menon V, Greene T, Wang X, Pereira AA, Marcovina SM, Beck GJ, Kusek JW, Collins AJ, Levey AS, Sarnak MJ: C-reactive protein and albumin as predictors of all-cause and cardiovascular mortality in chronic kidney disease. Kidney Int, 2005; 68: 766-772

17) Yamada K, Furuya R, Takita T, Maruyama Y, Yamaguchi Y, Okhawa S, Kumagai H: Simplified nutritional screening tools for patients on maintenance hemodialysis. Am J Clin Nutr, 2008; 87: 106-113

18) O’Hare AM, Sidaway AN, Feinglass J, Merine KM, Daley J, Khuri S, Henderson WG, Johansen KL: Influence of renal insufficiency on limb loss and mortality after initial lower extremity surgical revascularization. J Vasc Surg, 2004; 39: 709-716

19) Nakano M, Hirano K, Iida O, Soga Y, Kawasaki D, Suzuki K, Miyashita Y: Prognosis of critical limb ischemia in hemodialysis patients after isolated infrapopliteal balloon angioplasty: results from the Japan below-the-knee artery treatment (J-BEAT) registry. J Endovasc Ther, 2013; 20: 113-124

20) Ramdev P, Rayan SS, Sheahan M, Hamdan AD, Logerfo FW, Akbari CM, Campbell DR, Pommelli FB Jr.: A decade experience with infrainguinal revascularization in a dialysis-dependent patient population. J Vasc Surg, 2002; 36: 969-974

21) Held PJ, Brunner F, Odaka M, García JR, Port FK, Gaylin DS: Five-year survival for end-stage renal disease patients in the United States, Europe, and Japan, 1982 to 1987. Am J Kidney Dis, 1990; 15: 451-457

22) Rajagopalan S, Dellegrottaglie S, Furniss AL, Gillespie BW, Satayathum S, Lameire N, Saito A, Akiba T, Jadoul M, Ginsberg N, Keen M, Port FK, Mukherjee D, Saran R: Peripheral arterial disease in patients with end-stage renal disease: observations from the Dialysis Outcomes and Practice Patterns Study (DOPPS). Circulation, 2006; 114: 1914-1922

23) Sekikawa A, Ueshima H, Kadowaki T, El-Saed A, Okama-
Takasiyama T, Kashihagi A, Edmondowicz D, Murata K, Sutton-Tyrrell K, Maegawa H, Evans RW, Kita Y, Muller LH: Less subclinical atherosclerosis in Japanese men in Japan than in white men in the United States in the post-World War II birth cohort. Am J Epidemiol, 2007; 165: 617-624

24) Kumada Y, Nogaki H, Ishii H, Aoyama T, Kamoi D, Takahashi H, Murohara T: Clinical outcome after infrapopliteal bypass surgery in chronic hemodialysis patients with critical limb ischemia. J Vasc Surg, 2015; 61: 400-404

25) Renal Data Registry Committee: Japanese Society for Dialysis Therapy. Overview of regular dialysis treatment in Japan (as of 31 December 2008). Ther Apher Dial, 2010; 14: 505-540

26) Tsujimura T, Iida O, Fujita M, Masuda M, Okamoto S, Ishihara T, Nanto K, Kanda T, Okuno S, Matsuda Y, Fujihara M, Yokoi Y, Mano T: Two-year Clinical Outcomes Post Implantation of EpicTM Self-Expanding Nitinol Stents for the Aortoiliac Occlusive Disease in Patients with Peripheral Arterial Disease. J Atheroscler Thromb, 2018; 25: 344-349

27) Klonaris C, Katsargyris A, Tsekouras N, Alexandrou A, Giannopoulos A, Bastounis E: Primary stenting for aortic lesions: from single stenoses to total aortoiliac occlusions. J Vasc Surg, 2008; 47: 310-317

28) Fusaro M, Cassese S, Ndrepepa G, Tepe G, King L, Ott I, Nerad M, Schunkert H, Kastrati A: Drug-eluting stents for revascularization of infrapopliteal arteries: updated meta-analysis of randomized trials. JACC Cardiovasc Interv, 2013; 6: 1284-1293

29) Schmidt A, Piorkowski M, Werner M, Ulrich M, Bauschke Y, Bräunlich S, Ich H, Schuster J, Bottsios S, Kruse HJ, Varcoe RL, Scheinert D: First experience with drug-eluting balloons in infrapopliteal arteries: restenosis rate and clinical outcome. J Am Coll Cardiol, 2011; 514: 1105-1109

30) Shammas NW, Lam R, Mustapha J, Ellichman J, Aggarwala G, Rivera E, Niazi K, Balar N: Comparison of orbital atherectomy plus balloon angioplasty vs. balloon angioplasty alone in patients with critical limb ischemia: results of the CALCICUM 360 randomized pilot trial. J
Endovasc Ther, 2012; 19: 480-488
31) Fouque D, Kalantar-Zadeh K, Kopple J, Cano N, Chauveau P, Cuppari L, Franch H, Guarnieri G, Ikizler TA, Kaysen G, Lindholm B, Massy Z, Mitch W, Pineda E, Stenvinkel P, Treviño-Becerra A, Wanner C: A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int, 2008; 73 (4): 391-398
32) Stenvinkel P, Heimbürger O, Paulmre F, Diczfalusy U, Wang T, Berglund L, Jogestrand T: Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int, 1999; 55 (5): 1899-1911
33) Ishii H, Kumada Y, Toriyama T, Aoyama T, Takahashi H, Murohara T: Prognostic values of C-reactive protein levels on clinical outcome after endovascular therapy in hemodialysis patients with peripheral artery disease. J Vasc Surg, 2010; 52: 854-859
34) Ishii H, Aoyama T, Takahashi H, Kamoi D, Tanaka M, Yoshikawa D, Hayashi M, Matsubara T, Murohara T: Serum albumin and C-reactive protein levels predict clinical outcome in hemodialysis patients undergoing endovascular therapy for peripheral artery disease. Atherosclerosis, 2013; 227: 130-134
35) Bell PRF, Charlesworth D, DePalma RG, Eastcott HHG, Eklöf B, Jamieson CW: The definition of critical ischemia of a limb. Working Party of the International Vascular Symposium. Br J Surg, 1982; 69: S2
36) Mills JL Sr, Conte MS, Armstrong DG, Pomposelli FB, Schanzer A, Sidawy AN, Andros G; Society for Vascular Surgery Lower Extremity Guidelines Committee: The Society for Vascular Surgery Lower Extremity Threatened Limb Classification System: risk stratification based on wound, ischemia, and foot infection (WIfI). J Vasc Surg, 2014; 59: 220-234