Analysis of Distributed Snapshot Algorithms

Sharath Srivatsa
sharath.srivatsa@iiitb.org
February 1, 2016

Abstract

Many problems in distributed systems can be cast in terms of the problem of detecting global states. For instance, the global state detection algorithm helps to solve an important class of problems: stable property detection. A stable property is one that persists: once a stable property becomes true it remains true thereafter. Examples of stable properties are “computation has terminate”, “the system is deadlocked” and “all tokens in a token ring have disappeared”. [3]

Distributed Snapshot algorithms are categorized by underlying message delivery mechanisms FIFO, Non-FIFO and Causal Ordering. Through FIFO channels the messages arrive in the order in which they were transmitted and in Non-FIFO channels the order is not ensured. Causal Ordering mechanism delivers the messages in the order they were created.

Snapshot recording durations at each process contribute to the overall efficiency of the algorithm. In this paper we are presenting the observed variations in snapshot recording durations at processes in a distributed system. We conclude with key characteristics of a reliable and effective snapshot algorithm. Simulations were achieved using SimGrid Java API.

1 Introduction

A snapshot of a distributed system is a global state (consisting of the local states of the processes and all the messages in transit) which is meaningful in the sense that it corresponds to a possible global state where the local
states of all processes and of all communication channels are recorded simultaneously [5]. Since processes do not share common clock, the start and end of recordings varies at each process. Through simulations we have captured recording durations at each process in a distributed system.

Algorithms in Table 1 were reviewed and analysed.

Chandy-Lamport algorithm assumes FIFO channels and rely on control messages. Spezialetti-Kearns algorithm optimizes concurrent initiation of snapshot collection and efficiently distributes the recorded snapshot with channel recording similar to Chandy-Lamport.

Lai-Yang algorithm assumes non-FIFO channels and does not require control messages since colouring scheme is used on computation messages. Initially all messages are “white” and “red” message initiates the snapshot recording. Mattern algorithm initiates snapshot recording through vector clocks.

Acharya-Badrinath and Alagar-Venkatesan algorithms rely on underlying causal delivery of messages and use control messages to capture snapshot.

Distributed system was simulated using SimGrid platform with 90 hosts. Latency and message interval variations were generated using Poisson, Pareto, Weibull and ARIMA distributions. In an instance of simulation 10 messages were sent by each process and snapshot was initiated once. Snapshot recordings of processes were not aggregated, instead the recording durations at each process were captured and analysed.

Table 1: Message delivery mechanisms and distributed snapshot algorithms

	FIFO	Non-FIFO	Causal Delivery
Chandy-Lamport	[3]	Lai-Yang [4]	Acharya-Badrinath [1]
Spezialetti-Kearns [6]	Mattern [5]	Alagar-Venkatesan [2]	

2 Simulation results and analysis

The main work accomplished was running the snapshot algorithms with variations in message generation and platform latency from standard distributions. Chandy-Lamport, Lai-Yang and Mattern algorithms were implemented and analysed. Acharya-Badrinath and Alagar-Venkatesan were
similar, hence a combined implementation was done and analysed. Birman-
Schiper-Stephenson Protocol was implemented to achieve causal ordering of
messages. The snapshot recording durations at each process were consid-
ered to be the key factors to gain insights of the algorithms. A minimal
variation in recording durations across processes would indicate better time
complexity, though the space complexity be high.

2.1 Typical platform

The first simulation was achieved using distributed platform with multiple
links of different latencies and the message generation interval from a normal
distribution. Any two hosts were connected with varying number of links
and every host was connected to other host with a set of links. Different
processing power was assigned to each host. The duration at each host to
record the snapshot was platform specific time units. Recording durations
at each host are of the same units. Figure 1 shows the variations in the
algorithms.

It can be observed that there are more variations in Mattern and Lai-Yang
algorithms, this is because control messages are not used. Less variations in
Chandy-Lamport and Acharya Badrinath-Alagar Venkatesan algorithms are
due to use of control messages. Control messages ensure that the algorithm
completes in a minimal time.

We further verified the variations in recording durations using only vary-
ing latencies from standard distributions and, using both varying latencies
from standard distributions and Poisson message intervals.

2.2 Platform with varying latencies

Figure 2 shows the recording durations with latencies from Poisson, Pareto,
Weibull and ARIMA distributions.

Figure 3 shows the recording durations with Poisson message interval and
latencies from Poisson, Pareto, Weibull and ARIMA distributions.

Table 2 and 3 shows the standard deviations of recording durations.

It can be observed that even with random latencies, algorithms (Chandy-
Lamport and Acharya Badrinath-Alagar Venkatesan) have minimal record-
ing variations across hosts. In these algorithms control messages bound the
duration to complete snapshot recording. Whereas in Lai-Yang and Mattern
Figure 1: Recording duration variations on a typical platform

Table 2: Standard Deviations of recording durations with varying latencies

Latency Distribution	Chandy-Lamport	Lai-Yang	Mattern	Acharya Badrinath - Alagar Venkatesan
Possion	0.804	75.176	135.666	0.001
Pareto	97.206	97.206	107.792	0
Weibull	3.429	72.711	132.18	27.639
ARIMA	1.424	422.13	1571.357	27.45

Table 3: Standard Deviations of recording durations with Poisson message intervals and varying latencies

Latency Distribution	Chandy-Lamport	Lai-Yang	Mattern	Acharya Badrinath - Alagar Venkatesan
Possion	1.323	715.236	159.897	25.837
Pareto	0.783	490.815	1755.357	27.289
Weibull	0.454	733.017	1685.168	26.872
ARIMA	2.325	52.245	145.374	29.682
Figure 2: Recording duration variations with varying link latencies

algorithms the snapshot initiation is piggybacked on the computation message, hence the snapshot recording is dependent on computational messages which is dependent on the system rather on the algorithm.

Minimal standard deviation indicates high probability of better time complexity. Control messages trigger the snapshot recording at each host in a bounded manner.

3 Conclusions

Through simulations we observed that recording durations were minimal when control messages are used and causal message delivery ensured reliability. Control messages bound the completion time of the algorithm. We conclude that a snapshot algorithm using causal delivery and control messages sent with vector clock timestamp would be an effective solution.
Figure 3: Recording duration variations with Poisson message interval and varying link latencies

References

[1] A. Acharya and B. R. Badrinath. Recording distributed snapshots based on causal order of message delivery. *Information Processing Letters*, 44(6):317–321, December 1992.

[2] S. Alagar and S. Venkatesan. An optimal algorithm for distributed snapshots with causal message ordering. *Information Processing Letters*, 50(6):311–316, June 1994.

[3] K. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed systems. *ACM Trans. Computer Systems*, 3(1):63–75, February 1985.
[4] T. Lai and T. Yang. On distributed snapshots. *Information Processing Letters*, 25(3):153–158, 1987.

[5] F. Mattern. Efficient algorithms for distributed snapshots and global virtual time approximation. *Journal of Parallel and Distributed Computing*, 18(4):423–434, August 1993.

[6] M. Spezialetti and P. Kearns. Efficient distributed snapshots. In *Proc. Sixth Int’l Conf. Distributed Computing Systems*, pages 382–388, 1986.