Hydrogen Sulfide-Induced Vasodilation: The Involvement of Vascular Potassium Channels

Xiao-Yu Liu, Ling-Ling Qian* and Ru-Xing Wang*

Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China

Hydrogen sulfide (H2S) has been highlighted as an important gasotransmitter in mammals. A growing number of studies have indicated that H2S plays a key role in the pathophysiology of vascular diseases and physiological vascular homeostasis. Alteration in H2S biogenesis has been reported in a variety of vascular diseases and H2S supplementation exerts effects of vasodilation. Accumulating evidence has shown vascular potassium channels activation is involved in H2S-induced vasodilation. This review aimed to summarize and discuss the role of H2S in the regulation of vascular tone, especially by interaction with different vascular potassium channels and the underlying mechanisms.

Keywords: hydrogen sulfide, vasodilation, ATP-sensitive potassium channels, Ca2+-activated potassium channels, voltage-dependent potassium channels

INTRODUCTION

Hydrogen sulfide (H2S) has been recognized as the third gasotransmitter following nitric oxide and carbon monoxide. Endogenous H2S is mainly produced by enzyme pathways in vivo, including cystathionine γ-lyase (CES), cystathionine β-synthase (CBS), cysteine aminotransferase and 3-mercaptopyruvate sulfurtransferase (3-MST) (Olas, 2015). In the vascular system, H2S is principally synthesized by CES (Szabo, 2012). Biogenesis of H2S or downregulation of H2S pathway has been found in a variety of vascular diseases, such as hypertension, atherosclerosis, diabetes and pulmonary hypertension (Barton and Meyer, 2019; Dillon et al., 2021; Dorofeyeva et al., 2021; Roubenne et al., 2021). H2S plays an important role in regulation vascular homeostasis, such as angiogenesis, proliferation of vascular smooth muscle cells, leukocyte adhesion, oxidative stress and vascular dilation (Wang et al., 2015). The mechanisms underlying H2S induced vascular dilation are not completely understood.

Potassium channels are important determinant of vascular tone (Lorigo et al., 2020; Burkhoff et al., 2021). Activation of potassium channels in vascular cells leads to membrane hyperpolarization and subsequent vasodilatation. Five types of potassium channels have been recognized in vascular cells, including voltage-dependent potassium channels (K(V)), Ca2+-activated potassium channels (K(Ca)), ATP-sensitive potassium channels (K(ATP)), inward rectifier potassium channels (Kir), and tandem two-pore potassium channels (K2P) (Dogan et al., 2019). Accumulating evidence has shown vascular potassium channels activation is involved in H2S-induced vasodilation (Li et al., 2021; Marinko et al., 2021; Wen et al., 2021). However, the interaction of H2S with different vascular potassium channels and the underlying mechanisms have not been reviewed systematically. This review aimed to summarize and discuss the effects of H2S in the regulation of vascular tone, especially by interaction with different vascular potassium channels and the underlying mechanisms.
ROLE OF HYDROGEN SULFIDE IN VASCULAR DISEASES AND VASODILATION

Biogenesis of H₂S or downregulation of H₂S has been found in a variety of vascular diseases. Plasma H₂S levels were significantly lower in ever-treated hypertensive patients compared with normal subjects, and were higher in patients with well-controlled blood pressure than in patients with grade 2 and 3 hypertension, suggesting that the reduction of endogenous H₂S plays a role in the pathophysiology of hypertension (Sun et al., 2007). The H₂S generating enzymes, CSE and 3-MPST were significantly reduced in cutaneous tissue of hypertension adults (Greaney et al., 2017); CSE and CBS expression in lymphocytes were reduced of hypertensive patients (Cui et al., 2020). In patients with portal hypertension, plasma H₂S was significantly lower than that in normal subjects, and the level of H₂S was negatively correlated with the severity of the disease (Wang et al., 2014). In patients with pulmonary hypertension, plasma level of H₂S was decreased (Sun et al., 2014) and negatively correlated with pulmonary artery diameter (Liao et al., 2021). The increase of H₂S predicted lower pulmonary artery diameter (Liao et al., 2021). Thus, H₂S may be involved in these vascular diseases, providing a new method for the diagnosis and treatment of these vascular diseases.

Accumulating evidence indicated endogenous H₂S or H₂S supplementation may prevent the development of the vascular diseases. 8 weeks administration of NaHS, a H₂S donor, lowered tail artery pressure in spontaneously hypertensive rats (SHR) (Sun et al., 2015). Tain et al. (2018) also reported early short-term NaHS treatment prevented the development of hypertension in SHRs. Exogenous supply of H₂S reduced pulmonary hypertension (Chunyu et al., 2003). The intravenous injections of H₂S donors, Na₂S and NaHS, decreased systemic arterial pressure in the anesthetized rats (Yoo et al., 2015). The predominantly effect of H₂S or the H₂S donors on regulation of vascular tone is vasodilation, although H₂S has vascular constrictive effects in certain conditions (Orlov et al., 2017). NaHS produced vasorelaxation in different vessel beds, including aorta (Köh et al., 2012), coronary artery (Hedegaard et al., 2014), carotid artery (Centeno et al., 2019), and mesenteric small artery (White et al., 2013). GYY4137, a slow-releasing H₂S donor, induced concentration-dependent relaxation in rat mesenteric arteries (Abramavicius et al., 2021) and bovine posterior ciliary artery (Chitnis et al., 2013). N-phenylthiourea (PTU) and N, N’-diphenylthiourea (DPTU) compounds, showing long-lasting H₂S donation, promoted vasodilation in rat aortic rings (Citi et al., 2020). Novel H₂S donors, AP67 and AP72, also elicited a dose-dependent relaxation in phenylephrine preconstricted-bovine posterior ciliary arteries vessels (Kulkarni-Chitnis et al., 2015). L-cysteine, the substrate for CSE, caused a vasodilation in mouse mesenteric artery (Hart, 2020). However, the mechanisms of H₂S induced-vasodilation are not fully understood. It may be closely related to vascular potassium channels.

HYDROGEN SULFIDE-INDUCED VASODILATION VIA ACTIVATION OF POTASSIUM CHANNELS

Potassium channels play important roles in regulating of membrane potential and vascular tone. There are many studies having been carried out on H₂S-induced vasodilation via activation of potassium channels in different vascular beds. Modulation of potassium channel activity by H₂S donors may be a novel treatment for vascular diseases. This review presents the effects and mechanisms of H₂S-induced vasodilation via activation of potassium channels, including ATP-sensitive potassium channels (KATP), calcium activated potassium channels (KCa) and voltage dependent potassium channels (KV).

ATP-Sensitive Potassium Channels

The active KATP channel structurally is a hetero-octamer of four Kir6 subunits at the center and four sulfonylurea receptor (SUR) subunits surrounded (Li et al., 2017). Kir6 forms the channel pore and SURs are regulatory subunits (Alquisiras-Burgos et al., 2022). Activation of KATP channels can induce membrane hyperpolarization of the vascular smooth muscle cell, and then lead to the vasodilation.

H₂S acted as a KATP channel regulator. Glibenclamide, a KATP channel blocker, significantly inhibited vasodilation-induced by NaHS in carotid arteries of diabetic rabbits (Centeno et al., 2019). H₂S was involved in the anticontractile effect of perivascular adipose tissue on aorta of hypertensive pregnant rat and the anticontractile effect was eliminated by KATP blocker (Souza-Paula et al., 2020). NaHS decreases the myogenic response of cerebral arterioles and this effect was partially mediated by KATP channels (Liu et al., 2012). Na⁺-S⁻-mediated relaxation of human umbilical vein was also impaired by glibenclamide (Mohammed et al., 2017). Maximum vasodilation of constricted mouse aorta elicited by NaHS was unaffected by removal of the endothelium but significantly attenuated by glibenclamide (Al-Magableh and Hart, 2011). In addition to Na⁺ and NaHS, other H₂S donors, such as DPTU, caused vasodilation in rat aorta and was abolished by KATP blocker (Citi et al., 2020). ZYZ-803, a novel H₂S and NO conjugated donor, relaxed the aortic contraction induced by PE and the effect was suppressed by glibenclamide (Wu et al., 2016). Glibenclamide significantly attenuated the dilation effect induced by AP67 and AP72 (H₂S donors) (Kulkarni-Chitnis et al., 2015) and GYY4137 (Chitnis et al., 2013) respectively on bovine ciliary arteries. H₂S plays a role in the vasodilation in response to the reagents, such as moringa oleifera leaves (Aekthammarat et al., 2020) and sulforaphane (Parfenova et al., 2020), and their vasodilation effects was also reduced by glibenclamide. These data suggested an important role of KATP in H₂S-induced vasodilation and the possible mechanisms are discussed as below.

First, H₂S directly activated KATP channel. H₂S increased the whole-cell currents and the single channel open probability of KATP channels. Inhibition of endogenous H₂S production reduced whole-cell KATP currents in mesenteric artery smooth muscle cells (Tang et al., 2005). Second, KATP channel can be sulfhydrated by H₂S. H₂S-mediated sulfhydration and
hydropolari zation are absent in cells overexpressing C43S mutant Kir 6.1. Mutating the site of sulphydration (Kir 6.1 C43S) inhibited H₂S-induced hydropolarization. Sulphydration augments Kᵢ, ATP activity by enhancing Kir 6.1-PIP2 binding and reducing Kir 6.1-ATP binding (Mustafa et al., 2011). Third, H₂S-induced vasodilation by activating Kᵢ, ATP is mediated by its subunits. Liang et al. (2011) reported glibenclamide partially reversed H₂S induced potassium currents in piglet cerebral arterial smooth muscle cells and H₂S-induced vasodilation was much smaller in cerebral arteries of SUR2 subunit knockout mice than in wild type mice. Additionally, H₂S promoted vasodilation in SHR, partly through upregulating the expression of Kir6.1 and SUR2B subunits of Kᵢ, ATP. H₂S inhibited phosphorylation of forkhead transcription factors FOXO1 and FOXO3a, stimulated their nuclear translocation, and enhanced their binding with Kir6.1 and SUR2B promoters (Sun et al., 2015). However, several studies indicated Kᵢ, ATP channel had no effect in hydrogen sulfide mediated vasodilation, as Kᵢ, ATP blocker did not attenuate H₂S-induced vasodilation (Streeter et al., 2012; White et al.,2013; Kutz et al., 2015), suggesting other potassium channels are involved in H₂S-induced vascular regulation.

Calcium Activated Potassium Channels

According to the conductance, calcium activated potassium channels are divided into three groups: the large conductance calcium-activated potassium channels (BK, 100–300pS), the intermediate conductance calcium-activated potassium channels (IK, 25–100pS) and the small conductance calcium-activated potassium channels (SK, 2–25pS) (Qian et al., 2014). BK channel is a tetramer consist of α-subunit and β-subunit (Salkoff et al., 2006). The β-subunits have four isoforms (β1–β4) and the β1-subunits are primarily expressed in vascular smooth muscle cells (Lee and Cui, 2010; Wu and Marx, 2010).

Iberotoxin, a BK channel specific inhibitor, reduced maximal relaxation of human saphenous vein induced by NaHS (Marino et al., 2021), and Na₂S produced dilation of mouse coronary arteries (Chai et al., 2015). Exogenous H₂S dilated mesenteric arteries of intermittent hypoxia rats, requires BK channels (Jackson-Weaver et al., 2011). Blockers of BK channel also inhibited GYY4137 induced relaxations in rat mesenteric arteries (Abramavicius et al., 2021).

The activation of BK channel by H₂S is mainly mediated by the following two mechanisms. First, H₂S activates BK channels by increasing channel currents. BK current density was 17 ± 5 pA/pF under baseline condition while 20 ± 5 pA/pF after exposure to Na₂S at testing potential 150 mV in mouse coronary arterial smooth muscle cells (Chai et al., 2015). Second, BK channel was activated by Ca²⁺ influx increase induced by H₂S. Naik et al. (2016) reported Na₂S increased sulphydration of transient receptor potential vanilloid type 4 channels in aortic endothelium cells. Activation of transient receptor potential vanilloid type 4 channels by H₂S caused Ca²⁺ influx, resulting in BK channels activation in endothelial cells and subsequent endothelial hydropolarization, and vascular dilation. Furthermore, the activation of endothelial BK channels by H₂S can also increase Ca²⁺ sparks in mesenteric artery smooth muscle cells, thus resulted in vasodilation (Jackson-Weaver et al., 2013).

IK and SK channels are also distributed in vascular cells (Liu et al., 2018). H₂S-induced vasodilation was partly inhibited by selective IK and SK channel inhibitor charybdotoxin and SK channel inhibitor apamin. H₂S stimulated IK and SK in endothelial cells, leading to hydropolarization and vasodilation (Mustafa et al., 2011). Cheng et al. (2004) also reported charybdotoxin/apamin-sensitive K⁺ channels in endothelium cells had an important role in H₂S effect on rat mesenteric artery. The expression of SK2.3 was decreased in CSE knockout mice or by CSE inhibitor, and was upregulated by H₂S (Tang et al., 2013). Expression of IK was enhanced in carotid arteries from diabetic rabbits, and the relaxant action of NaHS was significantly inhibited by charybdotoxin and 4-aminopyridine in diabetic arteries (Centeno et al., 2019). Thus, H₂S-induced vasodilation was partly through IK and SK.

Voltage Dependent Potassium Channels

KV channels is a diverse family of outwardly rectifying potassium channels (including Kv₁₁–Kv₁₂) (Hua et al., 2022). Each Kv channel comprises a α-subunit and an ancillary β-subunit. α-subunits form the ion conducting pore and β-subunits modulate the activity of α-subunits. Kv channels are major determinants of membrane potential and play a key role in regulating vascular dilation (Rhee and Rusch, 2018). And the distribution of Kv₁₁, Kv₂₇, and Kv₉₃ are reported in vascular smooth muscle cells of different vessel beds (Nieves-Cintrón et al., 2018).

NaHS relaxed carotid arteries precontracted by phenylephrine of diabetic rabbits, while 4-aminopyridine, a Kv channel blocker, significantly inhibited the relaxant effect of NaHS, suggesting a role of Kv in H₂S induce vasodilation in diabetes (Centeno et al., 2019). Vasodilation to NaHS was also inhibited by blocking Kv channels in mouse mesenteric arteries (Hart, 2020), but only a significant shift to the right of the concentration-response curve of NaHS without affecting maximum dilation in the aorta (Al-Magableh and Hart, 2011).

Kv₇ channel, encoded by KCNQ gene, is thought as a powerful mechanism to H₂S induced vasorelaxation. NaHS produced concentration-dependent vasorelaxation, which was blocked by XE991, a Kv₇ channel inhibitor. Perivascular adipose tissue released H₂S, which play a major role in control of vascular tone via Kv₇ channel (Schleifenbaum et al., 2010). XE991 also inhibited H₂S-induced vasodilation of porcine coronary arteries (Hedegaard et al., 2014) and murine aortas (Köhn et al., 2012). GYY4137-induced relaxation was also inhibited by Kv₇ blocker (Abramavicius et al., 2021). The mechanism may be related to persulfidation of Kv₇ channels by CBS-derived H₂S (Vellecco et al., 2020).

CONCLUSION

Taken together, H₂S is involved in vascular diseases, such as hypertension, diabetes, pulmonary hypertension and so on. H₂S causes vasodilation in numerous vascular beds and regulates vascular tone by interaction with different vascular potassium channels, including Kᵢ, ATP, Kᵢ, Ca, and Kv channels via the following different mechanisms. H₂S can directly activated vascular Kᵢ, ATP and BK channels and increased sulphydration of Kᵢ, ATP and Kv.
channels. H$_2$S promoted vasodilation in partly through upregulating the expression of Kir6.1 and SUR2B subunits of K_{ATP}, or BK channel activation by increased Ca$^{2+}$ influx. Thus, H$_2$S may present a potential therapeutic target on vascular diseases. However, the vasorelaxant effect of H$_2$S in different vessel beds is complex. More studies are needed to focus on the activation mechanisms of H$_2$S on potassium channels, and novel, low-releasing H$_2$S donors are required for treatment in the future.

AUTHOR CONTRIBUTIONS

X-YL wrote the manuscript. R-XW and L-LQ edited the manuscript. All authors read and approved the final manuscript.

REFERENCES

Abramavicius, S., Petersen, A. G., Renaltan, N. S., Prat-Duran, J., Torregrossa, R., Stankevicius, E., et al. (2021). GYY4137 and Sodium Hydrogen Sulfide Relaxations Are Inhibited by L-Cysteine and KV7 Channel Blockers in Rat Small Mesenteric Arteries. *Front. Pharmacol.* 12, 613989. doi:10.3389/fphar. 2021.613989

Aekthammarat, D., Tangsucharit, P., and Pannangpetch, P. (2020). Hydrogen Sulfide as a Mediator of Endothelium-dependent Relaxation Evoked by Moringa Oleifera Leaf Extract in Mesenteric Arterial Beds Isolated from L-NAMETreated Hypertensive Rats. *J. Complement. Integr. Med.* 18, 287–293. doi:10.1515/jcim-2020-0060

Alquisiras-Burgos, I., Franco-Pérez, J., Rubio-Osornio, M., and Aguilera, P. (2022). The Short Form of the SUR1 And Its Functional Implications in the Damaged Brain. *Neural. Regen. Res.* 17, 488–496. doi:10.4103/1673-5374.320967

Abramavicius, S., Petersen, A. G., Renaltan, N. S., Prat-Duran, J., Torregrossa, R., Stankevicius, E., et al. (2021). GYY4137 and Sodium Hydrogen Sulfide Relaxations Are Inhibited by L-Cysteine and KV7 Channel Blockers in Rat Small Mesenteric Arteries. *Front. Pharmacol.* 12, 613989. doi:10.3389/fphar. 2021.613989

Barton, M., and Meyer, M. R. (2019). HuR-ry up: How Hydrogen Sul

FUNDING

This study was supported in part by grants from the National Natural Science Foundation of China (Nos. 82000317 to X-YL and 81770331 to R-XW), Top Talent Support Program for Young and Middle-aged People of Wuxi Health Committee (BJ2020018 to L-LQ) and Research Foundation from Wuxi Health Commission for the Youth (Q202034 to L-LQ).

ACKNOWLEDGMENTS

Thanks to all the peer reviewers for their opinions and suggestions.

Cui, C., Fan, J., Zeng, Q., Cai, J., Chen, Y., Chen, Z., et al. (2020). CD4+ T-Cell Endogenous Cystathionine γ-Lyase-Hydrogen Sulfide Attenuates Hypertension by Sulphhydrating Liver Kinase B1 to Promote T Regulatory Cell Differentiation and Proliferation. *Circulation* 142, 1752–1769. doi:10.1161/CIRCULATIONAHA.119.045344

Dillon, G. A., Staniewicz, A. E., Serviente, C., Greaney, I. J., and Alexander, L. M. (2021). Hydrogen Sulfide-dependent Microvascular Vasodilation Is Improved Following Chronic Sulphydryl-Donating Antihypertensive Pharmacotherapy in Adults with Hypertension. *Am. J. Physiol. Heart. Circ. Physiol.* 321, H728–H734. doi:10.1152/ajpheart.00404.2021

Dogan, M. F., Yildiz, O., Arslan, S. O., and Ulusoy, K. G. (2019). Potassium Channels in Vascular Smooth Muscle: a Pathophysiological and Pharmacological Perspective. *Fundam. Clin. Pharmacol.* 33, 504–523. doi:10.1111/fcp.12461

Dorofeyeva, N. A., Korkach, L. P., Kutsyk, O. E., and Vorsch, V. F. (2021). Modulation of Hydrogen Sulfide Synthesis Improves Heart Function and Endothelium-dependent Vasorelaxation in Diabetes. *Can. J. Physiol. Pharmacol.* 99, 549–555. doi:10.1139/cjpp-2020-0302

Greaney, I. J., Kutz, J. L., Shank, S. W., Jandu, S., Santhanam, L., and Alexander, L. M. (2017). Impaired Hydrogen Sulfide-Mediated Vasodilation Contributes to Microvascular Endothelial Dysfunction in Hypertensive Adults. *Hypertension* 69, 902–909. doi:10.1161/HYPERTENSIONAHA.116.08964

Hart, J. L. (2020). Vasorelaxation Elicted by Endogenous and Exogenous Hydrogen Sulfide in Mouse Mesenteric Arteries. *Naunyn Schmiedeb. Arch.* 393, 551–564. doi:10.1007/s00210-019-01752-w

Hedegaard, E. R., Nielsen, B. D., Kun, A., Hughes, A. D., Kroeggaard, C., Mogensen, S., et al. (2014). KV 7 Channels Are Involved in Hypoxia-Induced Vasodilatation of Porcine Coronary Arteries. *Br. J. Pharmacol.* 171, 69–82. doi:10.1111/bph.12424

Hua, B., Liu, Q., Gao, S., Li, W., and Li, H. (2022). Protective Role of Activating PPARy in Advanced Glycation End Products-Induced Injury of Coronary Artery Vasodilation via Inhibiting P38 Phosphorylation and Reactive Oxygen Species Production. *Biomed. Pharmacother.* 147, 112641. doi:10.1016/j.biopha.2022.112641

Jackson-Weaver, O., Osmond, J. M., Riddle, M. A., Naik, J. S., Gonzalez Bosc, L. V., Walker, B. R., et al. (2013). Hydrogen Sulfide Dilates Rat Mesenteric Arteries by Activating Endothelial Large-Conductance Ca$^{2+}$-Activated K+ Channels and Smooth Muscle Ca$^{2+}$ Sparks. *Am. J. Physiol. Heart. Circ. Physiol.* 304, H1446–H1454. doi:10.1152/ajpheart.00506.2012

Jackson-Weaver, O., Paredes, D. A., Gonzalez Bosc, L. V., Walker, B. R., and Kanagy, N. L. (2011). Intermittent Hypoxia in Rats Increases Myogenic Tone through Loss of Hydrogen Sulfide Activation of Large-Conductance Ca$^{2+}$-Activated Potassium Channels. *Circ. Res.* 108, 1439–1447. doi:10.1161/CIRCRESAHA.110.228999

Köh, C., Schleifenbaum, J., Szijártó, I. A., Markó, L., Dubrovsková, G., Huang, Y., et al. (2012). Differential Effects of Cystathionine-γ-lyase-dependent Vasodilatory H2S in Perivascular Vasoregulation of Rat and Mouse Aortas. *PLoS. One* 7, e41951. doi:10.1371/journal.pone.0041951

Köhn, C., Schleifenbaum, J., Szijártó, I. A., Markó, L., Dubrovsková, G., Huang, Y., et al. (2012). Differential Effects of Cystathionine-γ-lyase-dependent Vasodilatory H2S in Perivascular Vasoregulation of Rat and Mouse Aortas. *PLoS. One* 7, e41951. doi:10.1371/journal.pone.0041951
through cGMP Pathway. *Oxid. Med. Cell. Longev.* 2016, 7075682. doi:10.1155/2016/7075682

Wu, R. S., and Marx, S. O. (2010). The BK Potassium Channel in the Vascular Smooth Muscle and Kidney: α- and β-subunits. *Kidney. Int.* 78, 963–974. doi:10.1038/ki.2010.325

Yoo, D., Jupiter, R. C., Pankey, E. A., Reddy, V. G., Edward, J. A., Swan, K. W., et al. (2015). Analysis of Cardiovascular Responses to the H2S Donors Na2S and NaHS in the Rat. *Am. J. Physiol. Heart. Circ. Physiol.* 309, H605–H614. doi:10.1152/ajpheart.00171.2015

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Liu, Qian and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.