Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
C-reactive protein: a promising biomarker for poor prognosis in COVID-19 infection

Bikash R Sahu, Raj Kishor Kampa, Archana Padhi, Aditya K. Panda

PII: S0009-8981(20)30277-1
DOI: https://doi.org/10.1016/j.cca.2020.06.013
Reference: CCA 16196

To appear in: Clinica Chimica Acta

Received Date: 21 May 2020
Revised Date: 1 June 2020
Accepted Date: 4 June 2020

Please cite this article as: B.R. Sahu, R. Kishor Kampa, A. Padhi, A.K. Panda, C-reactive protein: a promising biomarker for poor prognosis in COVID-19 infection, Clinica Chimica Acta (2020), doi: https://doi.org/10.1016/j.cca.2020.06.013

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier B.V.
C-reactive protein: a promising biomarker for poor prognosis in COVID-19 infection

Bikash R Sahu¹, Raj Kishor Kampa², Archana Padhi³, Aditya K. Panda⁴

¹ School of Biotechnology, KIIT (Deemed to be University), Bhubaneswar, Odisha, India, 751016

² Department of Library and Information Science, Khallikote University, GMax Building, Konisi, Berhampur, Odisha, 761008

³ Department of Biology, K.C. Public School, Berhampur, Odisha India, 760004

⁴ Department of Bioscience and Bioinformatics, Khallikote University, GMax Building, Konisi, Berhampur, Odisha, 761008

Short running title: CRP and COVID-19: a meta-analysis

Correspondence

Dr. Aditya K. Panda
Department of Bioscience and Bioinformatics
Khallikote University
GMax Building, Konisi
Berhampur, Odisha, 761008
Electronic address: adityarmrc@gmail.com
ORCID id: 0000-0002-1192-1978
ABSTRACT

Background: The novel coronavirus disease 2019 (COVID-19) break out from Wuhan, China, spread over 227 countries and caused approximately 0.3 million death worldwide. Several biomolecules have been explored for possible biomarkers for prognosis outcome. Although increased C reactive protein (CRP) has been associated with death due to COVID-19 infections, results from different populations remain inconsistent. For a conclusive result, the present meta-analysis was performed.

Methods: We conducted a literature survey in PubMed and Scopus database for the association of CRP concentration with COVID-19 disease outcomes. A total of 16 eligible studies were enrolled in the present analysis comprising of 1896 survivors and 849 non-survivors cases. Concentrations of CRP were compared and analyzed by a meta-analysis.

Results: Egger’s regression analysis (intercept=0.04, P=0.98, 95%CI=-5.48 to 5.58) and funnel plot revealed an absence of publication bias in the included studies. Due to the presence of significant heterogeneity across the studies (Q=252.03, $I^2=93.65$, $P_{\text{heterogeneity}}=0.000$), random model was used for the analysis of the present study. The results of the meta-analysis demonstrated a significant role of CRP in COVID-19 infection outcome (Standard difference in means= 1.371, $P=0.000$).

Conclusions: Concentrations of CRP remained increased in patients who died in COVID-19 infection and could be a promising biomarker for accessing disease lethality.

Keywords: CRP, Meta-analysis, COVID-19, Biomarkers, Survivors, Non-survivors
1. Introduction

The first case of Novel coronavirus disease 2019 (COVID-19) was detected in Wuhan, China, in late December, that broke out worldwide, affecting over 227 countries and caused approximately three lakhs deaths till date (https://www.worldometers.info/coronavirus/ accessed on 13/05/2020). The mortality rate remained 14.50% worldwide (https://www.worldometers.info/coronavirus/ accessed on 13/05/2020). World Health Organisation had declared COVID-19 as pandemic disease (http://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/3/who-announces-covid-19-outbreak-a-pandemic). As of today (13/05/2020), the United States of America contributed the highest number of infected cases and death due to COVID-19 in comparison to other populations (https://www.worldometers.info/coronavirus/ accessed on 13/05/2020). COVID-19 infection displays a wide range of clinical manifestations. A recent study [1] highlighted cough, sputum production, diarrhoea, nausea/vomiting, and shortness of breath as more frequent clinical phenotypes in critical/non-survived COVID-19 patients, and in contrast, fever and headache were less prevalent. Furthermore, the pathogenesis of the diseases is regulated by several host factors. Various biomolecules such as aspartate aminotransferase, creatinine, high-sensitive cardiac troponin, procalcitonin, lactate dehydrogenase, and D-dimer has been increased in COVID-19 critical patients in comparison to those with non-severe infected cases[1].

The upregulation of C reactive protein (CRP) has been reported during severe acute respiratory syndrome (SARS) outbreak in 2002 and associated with respiratory dysfunctions and death of the patients [2]. Based on these observations, various studies were carried out in COVID-19 patients hypothesizing CRP as one of the possible biomolecules linked with the
death of the infected patients. However, the observations of the reports remained contradictory.

2. Materials and Methods

2.1. Literature search strategy

Two authors, RKP and BRP searched various databases (Medline, ScienceDirect, and Scopus) to trace eligible studies for the present meta-analysis. The keywords used for the search were "COVID-19, coronavirus 2019, 2019-nCoV, SARS-CoV-2, CRP, C-reactive protein, survivors, non-survivors, death, (till 10th May 2020). The title and abstracts of the articles obtained were screened, and apposite papers were downloaded. Furthermore, various preprint servers (bioRxiv, medRxiv and SSRN) were also screened with the above-mentioned keywords.

2.2. Inclusion and exclusion criteria

Various inclusion and exclusion criteria were considered in the present investigation. Inclusion of a report in the current meta-analysis must have a) added analysis for death and survivors, b) plasma/serum CRP concentrations, c) data must be presented in mean± standard deviation (S.D) or median (interquartile range). Exclusion of the articles was based on the following conditions: a) duplicate articles, b) research articles including only survivors or death cases, c) lack of CRP concentrations data d) review article, summaries, or case report.

2.3. Data extraction

Two authors BRS and AP extracted data such as authors' details, years of publication, population, number of COVID-19 infected subjects, death and survivors, CRP concentrations
in mean± S.D. or median (interquartile range), significance value. Details are shown in Table-1

2.4. Statistical analysis

The meta-analysis was performed by comprehensive meta-analysis V3.1 software (Biostat). Begg’s funnel plot and Eggers linear regression analysis were employed to test publication bias. CRP data was available in the median (interquartile range) format in most of the included reports, and those were converted into mean ± standard deviation according to an earlier report [3]. Association of CRP concentrations with COVID-19 disease prognosis was analyzed, and the combined standard difference in means and P-values were calculated. The Q test and I^2 statistics evaluated heterogeneity among included reports. Based on the results of heterogeneity statistics, random (heterogeneous), or fixed model (non-heterogenous) were deployed for analysis. Furthermore, a sensitivity analysis was performed to test the robustness of the meta-analysis.

3. Results and Discussions

A total of 122 and 153 articles were obtained after searching PubMed and Scopus, respectively. After screening the titles, abstracts, and full text based on inclusion and exclusion criterias, 14 articles including data of 15 different cohorts were enrolled for the present analysis. Further, we found two articles related to our searched norms from preprint servers. Baseline data from all eligible publications were extracted and presented in Table-1. CRP data in median (interquartile range) were converted into the required format of CMA V3.1 software (mean ± S.D and sample number)[3].
Both Egger’s regression analysis (intercept= 0.04, 95% confidence interval= -5.48 to 5.58 and P= 0.98) and Begg’s funnel plot (Supplementary Fig.-1) revealed absence of publication bias in the studied reports. Further, significance heterogeneity across enrolled studies was observed (Q=252.03, $P_{\text{heterogeneity}}= 0.000$, $I^2=93.65$), suggesting a random model as an appropriate model for testing of association between CRP concentrations and mortality from COVID-19 infection.

The result of the meta-analysis is shown in Fig.1. Patients who died with COVID-19 infections displayed significantly higher CRP concentrations compared to the survivors ($P=0.000$, the standard difference in means = 1.371). Sensitivity analysis by the exclusion of a study each time demonstrated a significant association of CRP with mortality, further strengthen the observation of the present analysis (Supplementary Fig.-2). CRP is an acute-phase protein responsible for the clearance of pathogens through the complement system and enhanced phagocytosis. The most common complications in non-survivors COVID-19 infected patients include acute respiratory distress syndrome, acute cardiac injury, acute kidney injury, shock, disseminated intravascular coagulation, and a significant alterations in CRP level have been observed in these subjects [4]. A positive correlation between CRP concentrations with the lung lesion in COVID-19 infected patients has been demonstrated [2]. Furthermore, the induction of acute kidney damage [5] and the extent of the cardiac injury [6] has been directly linked with the CRP concentrations. Possibly for clearance of viral infections, immune system responded more vigorously by producing various immune molecules and production of CRP [7] beyond threshold limit may lead to dysfunction of various organ system in COVID-19 infected patients. Production of CRP is controlled by genetic makeup of the subject [8] and it would be interesting to investigate candidate genetic approach in different population to obtained firm conclusion. The results of the present analysis and earlier observations altogether highlighted the importance of CRP as a possible
biomarker for mortality by COVID-19 infection. However, more studies are required in different populations to validate the findings of the present report.

Acknowledgements

AKP is supported by the DST-INSPIRE Faculty Grant from the Department of Science and Technology, Government of India, New Delhi.
References

[1] Z. Zheng, F. Peng, B. Xu, J. Zhao, H. Liu, J. Peng, Q. Li, C. Jiang, Y. Zhou, S. Liu, C. Ye, P. Zhang, Y. Xing, H. Guo, W. Tang, Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis, The Journal of infection (2020).

[2] L. Wang, C-reactive protein levels in the early stage of COVID-19, Medecine et maladies infectieuses (2020).

[3] X. Wan, W. Wang, J. Liu, T. Tong, Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range, BMC medical research methodology 14 (2014) 135.

[4] Y. Deng, W. Liu, K. Liu, Y.-Y. Fang, J. Shang, L. Zhou, K. Wang, F. Leng, S. Wei, L. Chen, H.-G. Liu, Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 (COVID-19) in Wuhan, China: a retrospective study, Chin Med J (Engl) (2020).

[5] Y. Tang, X.R. Huang, J. Lv, A.C. Chung, Y. Zhang, J.Z. Chen, A.J. Szalai, A. Xu, H.Y. Lan, C-reactive protein promotes acute kidney injury by impairing G1/S-dependent tubular epithelium cell regeneration, Clinical science (London, England : 1979) 126(9) (2014) 645-59.

[6] S. Orn, C. Manhenke, T. Ueland, J.K. Damas, T.E. Mollnes, T. Edvardsen, P. Aukrust, K. Dickstein, C-reactive protein, infarct size, microvascular obstruction, and left-ventricular remodelling following acute myocardial infarction, European heart journal 30(10) (2009) 1180-6.

[7] E.-M. Salonen, A. Vaheri, C-reactive protein in acute viral infections, Journal of Medical Virology 8(3) (1981) 161-167.

[8] D.J. Brull, N. Serrano, F. Zito, L. Jones, H.E. Montgomery, A. Rumley, P. Sharma, G.D. Lowe, M.J. World, S.E. Humphries, A.D. Hingorani, Human CRP gene polymorphism
influences CRP levels: implications for the prediction and pathogenesis of coronary heart disease, Arteriosclerosis, thrombosis, and vascular biology 23(11) (2003) 2063-9.

[9] T. Chen, D. Wu, H. Chen, W. Yan, D. Yang, G. Chen, K. Ma, D. Xu, H. Yu, H. Wang, T. Wang, W. Guo, J. Chen, C. Ding, X. Zhang, J. Huang, M. Han, S. Li, X. Luo, J. Zhao, Q. Ning, Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study, BMJ (Clinical research ed.) 368 (2020) m1091.

[10] Y. Deng, W. Liu, K. Liu, Y.Y. Fang, J. Shang, L. Zhou, K. Wang, F. Leng, S. Wei, L. Chen, H.G. Liu, Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 (COVID-19) in Wuhan, China: a retrospective study, Chin Med J (Engl) (2020).

[11] W. He, L. Chen, L. Chen, G. Yuan, Y. Fang, W. Chen, D. Wu, B. Liang, X. Lu, Y. Ma, L. Li, H. Wang, Z. Chen, Q. Li, R.P. Gale, COVID-19 in persons with haematological cancers, Leukemia (2020) 1-9.

[12] J. Li, L. Xi, L. Huilin, F. Fang, L. Xuefei, Z. Dandan, S. Yu, L. Fengming, L. Na, Z. Qing, F. Xi, H. Shaoping, L. Zhicheng, X. Nian, Clinical Characteristics of Deceased Patients Infected with SARS-CoV-2 in Wuhan, China, SSRN (2020).

[13] X. Luo, W. Zhou, X. Yan, T. Guo, B. Wang, H. Xia, L. Ye, J. Xiong, Z. Jiang, Y. Liu, B. Zhang, W. Yang, Prognostic value of C-reactive protein in patients with COVID-19, medRxiv (2020) 2020.03.21.20040360.

[14] Q. Ruan, K. Yang, W. Wang, L. Jiang, J. Song, Correction to: Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China, Intensive care medicine (2020) 1-4.

[15] J. Tomlins, F. Hamilton, S. Gunning, C. Sheehy, E. Moran, A. MacGowan, Clinical features of 95 sequential hospitalised patients with novel coronavirus 2019 disease (COVID-19), the first UK cohort, The Journal of infection (2020).
[16] W.J. Tu, J. Cao, L. Yu, X. Hu, Q. Liu, Clinicolaboratory study of 25 fatal cases of COVID-19 in Wuhan, Intensive care medicine (2020) 1-4.

[17] K. Wang, P. Zuo, Y. Liu, M. Zhang, X. Zhao, S. Xie, H. Zhang, X. Chen, C. Liu, Clinical and laboratory predictors of in-hospital mortality in patients with COVID-19: a cohort study in Wuhan, China, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America (2020).

[18] L. Wang, W. He, X. Yu, D. Hu, M. Bao, H. Liu, J. Zhou, H. Jiang, Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up, The Journal of infection 80(6) (2020) 639-645.

[19] Y. Wang, X. Lu, Y. Li, H. Chen, T. Chen, N. Su, F. Huang, J. Zhou, B. Zhang, F. Yan, J. Wang, Clinical Course and Outcomes of 344 Intensive Care Patients with COVID-19, American journal of respiratory and critical care medicine 201(11) (2020) 1430-1434.

[20] C. Wu, X. Chen, Y. Cai, J. Xia, X. Zhou, S. Xu, H. Huang, L. Zhang, X. Zhou, C. Du, Y. Zhang, J. Song, S. Wang, Y. Chao, Z. Yang, J. Xu, X. Zhou, D. Chen, W. Xiong, L. Xu, F. Zhou, J. Jiang, C. Bai, J. Zheng, Y. Song, Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China, JAMA internal medicine (2020).

[21] Y. Yan, Y. Yang, F. Wang, H. Ren, S. Zhang, X. Shi, X. Yu, K. Dong, Clinical characteristics and outcomes of patients with severe covid-19 with diabetes, BMJ open diabetes research & care 8(1) (2020).

[22] A. Zangrillo, L. Beretta, A.M. Scandroglio, G. Monti, E. Fominskyi, S. Colombo, F. Morselli, A. Belletti, P. Silvani, M. Crivellari, F. Monaco, M.L. Azzolini, R. Reineke, P. Nardelli, M. Sartorelli, C.D. Votta, A. Ruggeri, F. Ciciri, F. De Cobelli, M. Tresoldi, L. Dagna, P. Rovere-Querini, A. Serpa Neto, R. Bellomo, G. Landoni, Characteristics, treatment, outcomes and cause of death of invasively ventilated patients with COVID-19
ARDS in Milan, Italy, Critical care and resuscitation : journal of the Australasian Academy of Critical Care Medicine (2020).

[23] J. Zhang, P. Liu, M. Wang, J. Wang, J. Chen, W. Yuan, M. Li, Z. Xie, W. Dong, H. Li, Y. Zhao, L. Wan, T. Chu, L. Wang, H. Zhang, T. Tao, J. Ma, The clinical data from 19 critically ill patients with coronavirus disease 2019: a single-centered, retrospective, observational study, Zeitschrift fur Gesundheitswissenschaften = Journal of public health (2020) 1-4.

[24] J. Zhang, M. Yu, S. Tong, L.Y. Liu, L.V. Tang, Predictive factors for disease progression in hospitalized patients with coronavirus disease 2019 in Wuhan, China, Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology 127 (2020) 104392.
Table-1 Details of studies enrolled in the meta-analysis.

Authors, y	Digital Object Identifier/ PMID	Country	Number of COVID-19 patients	Survivors	Non-survivors	P-value				
			Number CRP (mg/L) mean ± SD/median (IQR)	Mean ± S.D.	Number CRP (mg/L) mean ± SD/median (IQR)	Mean ± S.D.				
Chen Tao et al. 2020	10.1136/bmj.m1091	China	274	161	113	<0.001				
			26.2 (8.7 – 55.2)	30.03 ± 34.78	113 (69.1 – 168.4)	116.83 ± 74.56				
Name et al. 2020	DOI	Region	N	NCase	RR (95% CI)	RR 95% CI	N	NCase 95% CI	p-Value	
------------------	-----	--------	-----	-------	-------------	-----------	-------	--------------	---------	
Deng Yan et al. 2020 [10]	10.1097/CM9.000000000000000824	China	225	116	3.22 (1.04 – 21.8)	8.68 ± 15.58	109	109.25 (35 – 170.28)	<0.001	
He Wenjuan et al. 2020 [11]	10.1038/s41375-020-0836-7	China	13	5	121 (37 – 144)	100.66 ± 107.60	8	68 (64 – 115)	NS	
Li Jingwen et al. 2020 (Preprint) [12]	10.2139/ssrn.3546043	China	161	96	8.48 (0.13 – 310.10)	106.23 ± 233.30	65	81.2 (8.4 – 284.4)	0.00	
Luo Xiaomin et al. 2020 (Preprint) [13]	10.1101/2020.03.21.20040360	China	298	214	9.65 (5 – 37.9)	17.51 ± 24.55	84	100 (60.7 – 179.4)	113.36 ± 89.53	0.000
Author	Journal	Country	Total	Control	Case	Percent Difference	n	Mean (95% CI)	p-value	
--------	---------	---------	-------	---------	------	-------------------	---	---------------	---------	
Ruan Qiurong et al. 2020 [14]	10.1007/s00134-020-06028-z	China	150	82	34.1±54.5	--	68	126.6 ±106.3	<0.001	
Tomlins Jennifer et al. 2020 [15]	10.1016/j.jinf.2020.04.020	UK	95	72s	36 (14 – 67)	39 ± 40.09	20	77 (53 – 124)	84.66 ± 56.64	0.001
Tu Wen-Jun et al. 2020 [16]	10.1007/s00134-020-06023-4	China	174	149	22 (6 – 45)	24.33 ± 29.19	25	118 (22 – 184)	108 ± 127.35	<0.001
Wang Kun et al. 2020a [17]	10.1093/cid/ciaa538	China	296	277	11.4 (2.2 – 27.9)	13.83 ± 19.17	19	88.6 (59.7 – 118.0)	88.76 ± 43.49	<0.001
Authors	DOI	Country	Sample Size	Mean (Min - Max)	SD	Median (Min - Max)	p-Value			
--------------------------	---------------------------------	---------	-------------	------------------	-------	--------------------	---------			
Wang Kun et al. 2020	10.1093/cid/ciaa538	China	44	39.9 (11.9 - 68.1)	39.96 ± 43.74	14 (98.0 - 117.8)	<0.001			
Wang Lang et al. 2020	10.1016/j.jinf.2020.03.019	China	339	44.2 (13.5 - 82.2)	13.83 ± 19.15	65 (102.0 - 187.4)	<0.001			
Wang Yang et al. 2020	10.1164/rccm.202003-0736LE	China	344	28 (6 - 67)	33.66 ± 45.53	133 (101 - 153)	<0.001			
Wu Chaomin et al. 2020	10.1001/jamainternmed.2020.0994	China	84	69.20 (26.60 - 120.80)	72.2 ± 72.43	44 (90.85 - 160)	NS			
Yan Yongli et al. 2020	10.1136/bmjderc-2020-001343	China	48	13 (1 - 48)	20.66 ± 41.10	39 (97.2 - 191.0)	<0.001			
Study	Country	N	Age	CRP Mean ± SD	CRP Min – Max	Sample Size	CRP Mean ± SD	CRP Min – Max	P Value	
------------------------------	---------	----	------	---------------	---------------	-------------	---------------	---------------	---------	
Zangrillo Alberto et al. 2020*	Italy	73	56	180.3 ± 25.6	110.2 – 255.5	17	256.4 ± 110.5	144.2 – 375.4	NS	
Zhang Jingping et al. 2020	China	19	11	86.9 ± 12.5	47.9 – 120.5	8	166.15 ± 61.58	82.3 – 129.4	NS	
Zhang Jun et al. 2020	China	111	93	7.93 ± 2.5	3.14 – 22.5	18	79.52 ± 14.57	61.25 – 102.98	<0.001	

NOTE: mean±S.D. was calculated by Wan’s method, CRP was not measured in three samples, with diabetes patients, mg/dl, a training cohort, b validation cohort
Fig-1. Forest plot of the association between C-reactive protein and survival status of COVID-19 infected patients. Data from earlier published articles were analyzed in Comprehensive meta-analysis software.
Supplementary Fig.-1
Supplementary Fig.-1. Funnel plot for estimation of publication bias in meta-analysis of association of CRP with COVID-19 infection outcome.

Supplementary Fig.-2
Supplementary Fig.-2 sensitivity analysis for role of CRP in disease outcome of COVID-19 infections.
Highlights

1. CRP level is elevated in COVID-19 patients.
2. The present meta-analysis revealed significant association of CRP with poor prognosis of COVID-19 infection.

CRediT author statement

BRS: Investigation, formal analysis; RKP: Investigation, formal analysis; AP: writing original draft; AKP: conceptualization, supervision, writing, review and editing.