N-STRONGLY QUASI-INVARIANT MEASURE ON DOUBLE COSET SPACES

F. FAHIMIAN 1 AND R.A. KAMYABI-GOL2* F. ESMAEELZADEH 3

Abstract. Let G be a locally compact group, H and K be two closed subgroups of G, and N be the normalizer group of K in G. In this paper, the existence and properties of a rho-function for the triple (K,G,H) and an N-strongly quasi-invariant measure of double coset space $K\backslash G/H$ is investigated. In particular, it is shown that any such measure arises from a rho-function. Furthermore, the conditions under which an N-strongly quasi-invariant measure arises from a rho-function are studied.

1. Introduction

Let G be a locally compact group and H and K be closed subgroups of G. The double coset space of G by H and K respectively, is

$$K\backslash G/H = \{KxH; x \in G\},$$

which induced by Liu in [8].

When K is trivial, a double coset $K\backslash G/H$ changes to a homogeneous space G/H. The existence of quasi-invariant measures on homogeneous spaces G/H (with merely measurable rho-functions) was first proved by Mackey [10] under the assumption that G is second countable. Bruhat [2] and Loomis [9] showed how to obtain strongly quasi-invariant measures with no countability hypotheses. This work is extended in a special case in [5]. Also, the existence of a homomorphism rho-function causes the existence of a relatively invariant measure on G/H is in [11].

One may refer to [11, 6] to find more informations about homogeneous space G/H. When $K = H$, a double coset space $K\backslash G/H$ changes to a hypergroup in which the homogeneous space G/H is a semi hypergroup [7]. It is worthwhile to note that the hypergroup plays important rules in physics.

In this paper, we construct an N-strongly quasi-invariant measure on $K\backslash G/H$ when H and K are used subgroups, not necessarily compact. Also we investigate when K is a normal closed subgroup of G then $K\backslash G/H$ possesses a G-strongly quasi-invariant measure. In addition, when H is trivial we show the existence of an N-strongly quasi-invariant measure on the right cosets of K in G.

It is worth mentioning that in [8] the conditions for the existence of N-relatively invariant measures and N-invariant measures are investigated.

Some preliminaries and notations about coset space $K\backslash G/H$ and related measures on it are stated in Section 2.

In Section 3, we construct a rho-function for the triple (K,G,H) and introduce
an N-strongly quasi-invariant measure which arises from this rho-function.
In particular, we obtain in Section 4., conditions under which an N-strongly quasi-invariant measure arises from a rho-function.

2. Notations and Preliminary Results

Let G be a locally compact Hausdorff group and let H and K be closed subgroups of G. Throughout this paper, we denote the left Haar measures on G, H and K respectively, by dx, dh, dk, and their modular functions by Δ_G, Δ_H and Δ_K, respectively. If S is a locally compact Hausdorff space, a (left) action of G on S is a continuous map $(x, s) \mapsto xs$ from $G \times S$ to S such that (i) $s \rightarrow xs$ is a homeomorphism of S for each $x \in G$, and (ii) $x(ys) = (xy)s$ for all $x, y \in G$ and $s \in S$. A space S equipped with an action of G is called a G-space. A G-space S is called transitive if for every $s, t \in S$ there exists $x \in G$ such that $xs = t$.

The standard examples of transitive G-spaces are the quotient spaces G/H (where H is a closed subgroup of G), equipped with the quotient topology on which G acts by left multiplication. We shall use the term homogeneous space to mean a transitive space S that is isomorphic to a quotient space G/H. In homogeneous space G/H, if μ is a positive Radon measure on G/H, Borel set E is called negligible with respect to μ, if $\mu(E) = 0$. Let μ_x denote its transfer by $x \in G$, that is $\mu_x(E) = \mu(x \cdot E)$ for any Borel set $E \subseteq G/H$. μ is called strongly quasi invariant if there is a positive continuous function λ on $G \times G/H$ such that $d\mu_x(yH) = \lambda(x, yH)d\mu(yH)$, for all $x, y \in G$. A rho-function for the pair (G, H) is defined to be a positive locally integrable function ρ on G which satisfies

$$\rho(xh) = \frac{\Delta_H(h)}{\Delta_G(h)} \rho(x), \quad (x \in G, \ h \in H).$$

It is known that for each pair (G, H) there is a strictly positive rho-function which constructs a strongly quasi-invariant measure μ on G/H such that

$$\int_G f(x) \rho(x) dx = \int_G \int_H f(xh) dh d\mu(xH), \quad (2.1)$$

for all $f \in C_c(G)$, the space of all continuous functions on G with compact supports. And conversely, each strongly quasi-invariant measure on G/H arises from a rho-function which satisfies (2.1) for a rho-function ρ, and all such measures are strongly equivalent. That is to say, all strongly quasi-invariant measures on G/H have the same negligible sets (see [6, 11]).

The notion of double coset space is a natural generalization of that of coset space arising by two subgroups, simultaneously. Recall that if $K \backslash G/H$ is a double coset space of G by H and K, then elements of $K \backslash G/H$ are given by $\{KxH: x \in G\}$. The canonical mapping of which, is $q : G \rightarrow K \backslash G/H$, defined by $q(x) = KxH$, which is abbreviated by \bar{x}, and which is surjective. The double coset space $K \backslash G/H$ equipped with the quotient topology, which is the largest topology, that makes q continuous. In this topology q is also an open mapping and proper—that is for each compact set $F \subseteq K \backslash G/H$ there is a compact set $E \subseteq G$ with $q(E) = F$. Based on the above mentioned case, $K \backslash G/H$ is a locally compact and Hausdorff space.

Let N be the normalizer of K in G, i.e.,

$$N = \{g \in G; \ gK = Kg\}.$$
Then, there is a naturally defined mapping
\[\varphi : N \times K \backslash G / H \to K \backslash G / H \]
given by
\[\varphi(n, q(x)) := KnxH. \]
It can be verified that \(\varphi \) is a well-defined, continuous, transitive action of \(N \) on \(K \backslash G / H \). Considering \(K \backslash G / H \) with this transitive action, we now denote \(\varphi(n, q(x)) \) by \(n \cdot q(x) \).

We define the mapping \(Q \) from \(C_c(G) \) to \(C_c(K \backslash G / H) \) by
\[
Q(f)(KxH) = \int_K \int_H f(k^{-1}xh)dhdk.
\]
It is evident that \(Q \) is a well-defined continuous linear map, as well as \(\text{supp}(Q(f)) \subseteq q(\text{supp} f) \). In the following, the properties of this mapping is investigated. However, we first recall that the definition of \(\text{IN} \)-group and verification of a property of it is used in the sequel.

A locally compact group \(G \) is called an \(\text{IN} \)-group if there is a compact unit neighbourhood \(U \) in \(G \) which is invariant under inner automorphism, that is, for any \(x \in G \), \(xUx^{-1} = U \). It is known that the \(\text{IN} \)-groups are unimodular.

Lemma 2.1. If \(K \) is also an \(\text{IN} \)-group, then \(\int_K f(k)dk = \int_K f(nkn^{-1})dk \), for all \(f \in C_c(K) \) and \(n \in N \).

Proof. Let for \(n \in N \), \(\lambda_n : C_c(K) \to \mathbb{C} \) be given by
\[\lambda_n(f) = \int_K f(nkn^{-1})dk. \]
Then for every \(t \in K \), we have
\[\lambda_n(L_t^{-1}f) = \int_K L_t^{-1}f(nkn^{-1})dk = \int_K f(tnk^{-1})dk = \int_K f(nkn^{-1})dk. \]
This shows that \(\lambda_n \) is left invariant, so it induced a left Haar measure \(\lambda_n \) on \(K \).

Therefore, there is \(c > 0 \) such that
\[\int_K f(k)d\lambda_n(k) = c \int_K f(k)dk. \]
Since \(K \) is an \(\text{IN} \)-group, then there is a compact unit neighbourhood \(U \) in \(K \) such that \(xUx^{-1} = U \) for all \(x \in K \). Thus, \(|n^{-1}Un| \leq |U| \) for each \(n \in N \), where \(|U| \) denotes the measure of \(U \). Therefore, we can write
\[
|c - 1||U| = ||c|U| - |U|| = |\lambda_n(U) - |U|| = ||nUn^{-1}| - |U|| \leq ||U| - |U|| = 0.
\]
This implies that \(c = 1 \). \(\square \)

Lemma 2.2. For any compact set \(F \subseteq K \backslash G / H \) there exists \(f \in C_c^+(G) \) such that \(Qf = 1 \) on \(F \).

Proof. The proof is straightforward. \(\square \)
Note that for $f \in C_c(G)$ and $g \in G$, we consider $L_g f(x) = f(g^{-1}x)$ and $R_g f(x) = f(xg)$, and for each $n \in \mathbb{N}$ and $F \in C_c(K \backslash G/H)$, we define $L_g F(\tilde{x}) = F((g^{-1}x)^\circ)$ and $R_g F(\tilde{x}) = F((xg)^\circ)$.

Lemma 2.3. Given the notation at the beginning of the section, the map $Q : C_c(G) \rightarrow C_c(K \backslash G/H)$ has the following properties.

(i) $Q(C_c(G)) = C_c(K \backslash G/H)$

(ii) If K is also an IN-group, then for each $n \in \mathbb{N}$

$$Q(L_n f) = L_n Q(f), \quad f \in C_c(G).$$

Proof. For (i) suppose that $F \in C_c(K \backslash G/H)$. Since q is proper, then there is a compact subset $D \subseteq G$ such that $q(D) = \text{supp } F$. Let $f \in C_c(G)$ be such that $f(d) > 0$ for all $d \in D$. Consider the function f_1 defined on G by

$$f_1(x) = \begin{cases} f(x) & \text{if } Q(f)(q(x)) \neq 0 \\ 0 & \text{if } Q(f)(q(x)) = 0 \end{cases}.$$

Since $Q(f)(q(x)) > 0$ for $x \in q^{-1}(\text{supp } F)$, and $F(q(x)) = 0$, for $x \in G \setminus q^{-1}(\text{supp } F)$, which is an open subset in G, $f_1 \in C_c(G)$ and $Q(f_1) = F$.

Finally, for (ii) according to Lemma 2.1, we may state that

$$Q(L_n f)(KxH) = \int_K \int_H f(nk^{-1}xh)dhdk$$

$$= \int_H \int_K f(nk^{-1}nxh)dkdh$$

$$= \int_H \int_K f(k^{-1}nxh)dkdh$$

$$= L_n Q(f)(KxH).$$

Next theorem gives a necessary and sufficient condition for the existence of a positive Radon measure on $K \backslash G/H$.

Theorem 2.4. If μ is a positive Radon measure on $K \backslash G/H$, then positive Radon measure $\tilde{\mu}$ on G is defined by

$$\int_G f(x)d\tilde{\mu}(x) = \int_{K \backslash G/H} Q(f)(\tilde{x})d\mu(\tilde{x}), \quad (2.2)$$

satisfying

$$\int_G f(kxh^{-1})d\tilde{\mu}(x) = \Delta_K(k)\Delta_H(h) \int_G f(x)d\mu(x). \quad (2.3)$$

Conversely, if a positive Radon measure $\tilde{\mu}$ on G has the property (2.3), then the equation (2.2) defines a positive Radon measure μ on $K \backslash G/H$.

Proof. Suppose that μ is a positive Radon measure on $K \backslash G/H$, then $\tilde{\mu}$ defined by (2.2) is clearly a positive Radon measure on G. Also, for each $h_0 \in H$, $k_0 \in K$,
Let $f \in C_c(G)$, we have
\[
\int_G f(k_0 x h_0^{-1}) d\tilde{\mu}(x) = \int_{K \backslash G / H} \int_K \int_H L_{k_0^{-1}} \circ R_{h_0^{-1}} f(k^{-1} x h) dh dk d\tilde{\mu}(x)
\]
\[
= \int_{K \backslash G / H} \int_K \int_H f(k_0 k_0^{-1} x h h_0^{-1}) dh dk d\tilde{\mu}(\tilde{x})
\]
\[
= \Delta_H(h_0) \Delta_K(k_0) \int_{K \backslash G / H} Q(f)(\tilde{x}) d\mu(\tilde{x})
\]
\[
= \Delta_H(h_0) \Delta_K(k_0) \int_{G} f(x) d\tilde{\mu}(x).
\]

Conversely, suppose that the positive Radon measure $\tilde{\mu}$ on G has the property 2.3, then take
\[
\mu : C_c(K \backslash G / H) \to (0, +\infty),
\]
by
\[
\mu(Q(f)) = \int_G f(x) d\tilde{\mu}.
\]

Now we show that μ is well-defined, let $f \in C_c(G)$ such that $Q(f) = 0$. According to Lemma 2.2, there is g in $C_c(G)$ such that $Q(g) \equiv 1$ on $Q(supp f)$. By using the Fubini’s Theorem, we have
\[
\int_G f(x) d\tilde{\mu} = \int_{K \backslash G / H} \int_K \int_H g(k^{-1} x h) dh dk d\tilde{\mu}(x)
\]
\[
= \int_{K \backslash G / H} \int_K \int_H f(k x h^{-1}) g(x) \Delta_K(k) \Delta_H(h) d\tilde{\mu}(x) dk
\]
\[
= \int_{G} g(x) \int_H \int_K f(k^{-1} x h) dh dk d\tilde{\mu}(x)
\]
\[
= \int_{G} g(x) Q(f)(q(x)) d\tilde{\mu}(x) = 0.
\]

It is easy to check that μ is a positive linear functional, therefore it induces a positive Radon measure μ on $K \backslash G / H$ such that,
\[
\int_{G} f(x) d\tilde{\mu}(x) = \int_{K \backslash G / H} Q(f)(\tilde{x}) d\mu(\tilde{x}).
\]

\[\square\]

Corollary 2.5. Considering the assumptions of Theorem 2.4, there is a correspondence between the positive Radon measure $\tilde{\mu}$ on G and μ on the double coset space $G // H$, such that
\[
\int_{G} f(x) d\tilde{\mu}(x) = \int_{G / H} Q(f)(\tilde{x}) d\mu(\tilde{x})
\]
and
\[
\int_{G} f(h x h^{-1}) d\tilde{\mu}(x) = \int_{G} f(x) d\tilde{\mu}(x)
\]
for all $f \in C_c(G)$.
3. The existence of N-strongly quasi invariant measure

In this section, we refine and generalize the concept of strongly quasi invariant measure on double coset spaces. Moreover, we investigate the existence of N-strongly quasi-invariant measure on these spaces. We start our work with the following definitions.

Definition 3.1. Let G be a locally compact group and H and K be closed subgroups of it. For a positive Radon measure μ on $K\backslash G/H$, assume that μ_n is its transfer by $n \in N$, that is, $\mu_n(E) = \mu(n \cdot E)$, for any Borel set $E \subseteq K\backslash G/H$. μ is called N-strongly quasi invariant if there is a continuous positive function λ on $N \times K\backslash G/H$ such that for all $n \in N$, $d\mu_n(\tilde{y}) = \lambda(n, \tilde{y}) d\mu(\tilde{y})$ ($\tilde{y} \in K\backslash G/H$). We call such λ the modular function of μ.

Remark 3.2. Note that if K is normal in G, then the N-strongly quasi-invariant measure μ is the G-strongly quasi invariant on $K\backslash G/H$ and if $K = \{e\}$, μ is the strongly quasi invariant measure on G/H.

Definition 3.3. Suppose that G is a locally compact group and H and K are closed subgroups of G. A rho-function for the triple (K, G, H) is a non-negative locally integrable function ρ on G, which satisfies

$$\rho(kxh) = \frac{\Delta_K(k)\Delta_H(h)}{\Delta_G(h)} \rho(x).$$

In the following, it is shown that for every triple (K, G, H) there exists a rho-function and an N-strongly quasi-invariant measure on $K\backslash G/H$, which arises from this rho-function. For this, first it is shown that for each $f \in C_c(G)$ there exists a rho-function ρ_f for the triple (K, G, H).

Proposition 3.4. Suppose that G is a locally compact group and H and K are closed subgroups of G. Then for each $f \in C_c(G)$ there exists a continuous rho-function ρ_f on G.

Proof. For each $f \in C_c(G)$, take

$$\rho_f(x) = \int_K \int_H \frac{\Delta_G(h)}{\Delta_H(h)\Delta_K(k^{-1})} f(k^{-1}xh) dh dk.$$

It is clear that ρ_f is a well-defined positive linear map and according to Fubini’s formula we have

$$\int_K \int_H \frac{\Delta_G(h)}{\Delta_H(h)\Delta_K(k^{-1})} f(k^{-1}xh) dh dk = \int_H \int_K \frac{\Delta_G(h)}{\Delta_H(h)\Delta_K(k^{-1})} f(k^{-1}xh) dk dh = \int_{K \times H} \frac{\Delta_G(h)}{\Delta_H(h)\Delta_K(k^{-1})} f(k^{-1}xh) dk dh.$$

First, we show that ρ_f is uniformly continuous. Suppose that V is a compact unit neighbourhood in G. Since $f \in C_c(G)$, for given $\varepsilon > 0$ there is a symmetric neighbourhood U of e such that $U \subseteq V$ and for each $y \in Ux$, $|f(x) - f(y)| < \varepsilon$.

Take $M = V \cdot \text{supp} f \cdot V$. If $x \in G\setminus KMH$, then $f(k^{-1}xh) = f(k^{-1}yh) = 0$ for all $k \in K$ and $h \in H$, and if $x \in KMH$, there is $k_0 \in K$ and $h_0 \in H$ such that $k_0^{-1}xh_0 \in M$. If $y \in Ux$, then we have two cases:

1. If $k^{-1}k_0^{-1}y \in \text{supp} f$, then $k^{-1}k_0^{-1}x \in M$. Therefore, $k^{-1} \in Mh_0M^{-1} \cap K$. Also, if $k^{-1}k_0^{-1}x \in \text{supp} f$, then $k^{-1} \in Mh_0M^{-1} \cap K$.

Lemma 3.5. Let U be a symmetric unit neighbourhood of G with compact closure and N be the normalizer of K in G. If $U_N = U \cap N$ is taken, there exists a subset A of G with the following properties:

(i) For every $x \in G$, we have $KxH \cap U_Na \neq \emptyset$, for some $a \in A$.
(ii) If M is a compact subset of G, then $\{ a \in A : KMH \cap U_Na \neq \emptyset \}$ is finite.

Proof. Let $A = \{ A \subseteq G ; \text{ for all } a \neq b \text{ in } A, a \notin KU_NbH \}$. According to Zorn’s Lemma, A has a maximal element, say A. We claim that A satisfies (i) and (ii).

(i) If $x \in A$ the claim is clear. If $x \in G \setminus A$ where such that $KxH \cap U_Na = \emptyset$, for all $a \in A$, then we could add x to A and make A strictly larger. So (i) holds for A.

This proves ρ_f.
(ii) Let M be a compact subset of G and $A_M = \{ a \in A; KMH \cap U_N a \neq \emptyset \}$. For every $a \in A_M$, $KMH \cap U_N a \neq \emptyset$ implies $KaH \cap U_N M \neq \emptyset$ and conversely.

Pick $x_a \in KaH \cap U_N M$. If A_M is infinite, then $\{ x_a; a \in A_M \}$ would have a cluster point x, say, in the compact set $\bar{U}_N M$.

Let V be a unit neighbourhood such that $VV^{-1} \subseteq U$. Then, by choosing $V_N = V \cap N$, we have $V_N V_N^{-1} \subseteq U_N$. Since the x_a is a cluster at x, there exist distinct $a, b \in A_M$ such that $x_a, x_b \in VNx$. This implies that $x_a x_b^{-1} \in V_N V_N^{-1} \subseteq U_N$. But $x_a \in KaH$ and $x_b \in KbH$, so $x_a \in KU_N bH$ which forces $a \in KU_N bH$, in contradiction to $a \in A$. So, A_M is finite and (ii) is met.

□

Next we use Lemma 3.5 and Proposition 3.4 to give a rho-function for each triple (K, G, H) mentioned above, which is strictly positive on G.

Proposition 3.6. With the above notation, there exists a rho-function ρ for the triple (K, G, H), which is continuous and everywhere strictly positive on G.

Proof. Choose $f \in C^+_c(G)$ such that $f(c) > 0$ and $f(x) = f(x^{-1})$ for all $x \in G$.

Put $U = \{ x \in G; f(x) > 0 \}$, by choosing $U_N = U \cap N$ and according to Lemma 3.5 there is subset A of G with properties (i) and (ii) which are mentioned in this Lemma.

Let for every $y \in A$, $f^y(x) = f(xy^{-1})$ for $x \in G$. By using Proposition 3.4, we can define a continuous rho-function ρ_{f^y} by

$$\rho_{f^y}(x) = \int_K \int_H \frac{\Delta_G(h)}{\Delta_H(h) \Delta_K(k^{-1})} f(k^{-1} x h y^{-1}) dh dk.$$

Now, by using the fact that $\rho_{f^y}(x) = 0$ if $x \notin KU_N y H$ and applying the Proposition 3.4, for any compact subset M of G, we have ρ_{f^y} as being zero on M for all but finitely many $y \in A$. Thus $\rho = \sum_{y \in A} \rho_{f^y}$ is a continuous function on G. Also, it is evident that ρ is a rho-function.

According to Lemma 3.5 (i), for each $x \in G$, there is $y \in A$ such that $f^y(k x h) > 0$ for some $k \in K$ and $h \in H$. Therefore, $\rho_{f^y}(x) > 0$ and hence $\rho(x) > 0$. □

Next, we use Proposition 3.4 to construct a positive measure on $K \setminus G \setminus H$.

Theorem 3.7. Let ρ be a rho-function for the triple (K, G, H). Then there exists a positive Radon measure μ_ρ on $K \setminus G \setminus H$ such that

$$\int_{K \setminus G \setminus H} Q(f)(\bar{x}) d\mu_\rho(\bar{x}) = \int_G f(x) \rho(x) dx$$

for all $f \in C_c(G)$.

Proof. By applying Proposition 3.6, for each triple (K, G, H) we can get a rho-function ρ. Take the linear functional I_ρ on $C_c(K \setminus G \setminus H)$ by

$$I_\rho(Q(f)) = \int_G f(x) \rho(x) dx.$$
By using Lemma 2.2, there exists \(g \in C_c(G) \) such that \(Q(g)(\bar{x}) = 1 \) on \(\text{supp}(Q(f)) \). That is, \(\int_K \int_H g(k^{-1}xh)dhdk = 1 \) for all \(x \in \text{Supp} f \) therefore we can write

\[
\int_G f(x)\rho(x)dx = \int_G f(x)\rho(x)Q(g)(\bar{x})dx \\
= \int_K \int_H \int_G f(x)\rho(x)g(k^{-1}xh)dxdhdk \\
= \int_G \int_K \int_H f(kxh^{-1})\Delta_H(h^{-1})\Delta_K(k)\rho(x)g(x)dhdxdx \\
= \int_G g(x)\rho(x)\left(\int_K \int_H f(k^{-1}xh)dhdk \right)dx.
\]

Now if \(Q(f) = 0 \), then \(\int_G f(x)\rho(x)dx = 0 \). Therefore, \(I_\rho \) is a well-defined positive linear functional on \(C_c(K\backslash G/H) \). We conclude that there exists a positive Radon measure \(\mu_\rho \) on \(K\backslash G/H \) such that

\[
\int_{K\backslash G/H} Q(f)(\bar{y})d\mu_\rho(\bar{y}) = \int_G f(x)\rho(x)dx.
\]

\(\square \)

We add the \(IN \)-group condition for closed subgroup \(K \) of \(G \) in Theorem 3.7 to achieve our result.

Theorem 3.8. Suppose also that \(K \) is an \(IN \)-group. Given any rho-function \(\rho \) for the triple \((K, G, H) \), there is an \(N \)-strongly quasi-invariant measure \(\mu_\rho \) on \(K\backslash G/H \) such that

\[
\int_{K\backslash G/H} f(y)\rho(y)dy = \int_{K\backslash G/H} Q(f)(\bar{y})d\mu_\rho(\bar{y}) \\
= \int_{K\backslash G/H} \int_K \int_H f(k^{-1}yh)dhdkd\mu_\rho(\bar{y}).
\]

Proof. By applying Theorem 3.7, we can get a unique measure \(\mu_\rho \) on \(K\backslash G/H \), which satisfies the following:

\[
\int_G f(y)\rho(y)dy = \int_{K\backslash G/H} \int_K \int_H f(k^{-1}yh)dhdkd\mu_\rho(\bar{y}).
\]

\(\mu_\rho \) is an \(N \)-strongly quasi invariant. Indeed, let

\[
\lambda : N \times K\backslash G/H \times \rightarrow (0, +\infty)
\]

by

\[
\lambda(n, \bar{y}) = \frac{\rho(ny)}{\rho(y)}.
\]

(3.1)

By using the fact that \(K \) is an \(IN \)-group, one can prove that \(\lambda \) is well-defined.
The continuity of rho-function \(\rho \) results in the fact that \(\lambda \) is also continuous. Moreover, for each \(n \in \mathbb{N} \), we have

\[
\int_{K \backslash G/H} Q(f(\tilde{y}))d\mu_n(\tilde{y}) = \int_{K \backslash G/H} Q(L_n f)(\tilde{y})d\mu(y)
\]

\[
= \int_G L_n f(y)\cdot \rho(y)dy
\]

\[
= \int_{K \backslash G/H} Q(f, \lambda(n, .))(\tilde{y})d\mu(\tilde{y}).
\]

Therefore,

\[
\frac{d\mu_n(\tilde{y})}{d\mu(\tilde{y})} = \lambda(n, \tilde{y}).
\]

\[\square\]

Remark 3.9. According to Theorem 3.8, if \(K \) is also normal in \(G \), then \(K \backslash G/H \) has a \(G \)-strongly quasi-invariant measure.

In the following proposition we list some properties of \(\mu_n \).

Proposition 3.10. Let \(\rho \) be a rho-function for the triple \((K, G, H)\).

(i). If \(A \) is a closed subset of \(K \backslash G/H \) such that \(\rho(n) = 0 \), for all \(n \in N \backslash q^{-1}(A) \), then \(\text{Supp}\mu_n \subseteq A \).

(ii). For each \(n \in N \), \(L_n \rho \) is also a rho-function for the triple \((K, G, H)\) and \(\mu_{L_n \rho} = (\mu_n)^{-1} \).

(iii). Suppose that \(K \) is an \(IN \)-group, then if \(f \in C_c^+(G) \) and take \(\rho = \rho_f \), therefore for any \(\alpha \in C_c(K \backslash G/H) \)

\[
\int_{K \backslash G/H} \alpha(\tilde{x})d\mu_n(\tilde{x}) = \int_G \alpha(q(x)) f(x)dx.
\]

Proof. The proof of (i) and (ii) are straightforward. For each \(\alpha \in C_c(K \backslash G/H) \), there is \(\varphi \in C_c(G) \) such that \(Q(\varphi) = \alpha \). Therefore, we have

\[
\int_{K \backslash G/H} \alpha(\tilde{x})d\mu_n(\tilde{x}) = \int_{K \backslash G/H} \alpha(\tilde{x})d\mu_n(\tilde{x})
\]

\[
= \int_G \varphi(x)\rho(x)dx
\]

\[
= \int_G \varphi(x) \int_K \int_H \frac{\Delta_G(h)}{\Delta_H(h)} f(k^{-1}xh)dhdkdx
\]

\[
= \int_G \int_{H \times K} \varphi(k^{-1}xh)f(x)d(h \times k)dx
\]

\[
= \int_G f(x) \left(\int_{H \times K} \varphi(k^{-1}xh)d(h \times k) \right)dx
\]

\[
= \int_G f(x)Q(\varphi)(q(x))dx.
\]

This proves (iii). \[\square\]
4. RHO-FUNCTION AND N-STRONGLY QUASI-INVARIANT MEASURE

Suppose that G is a locally compact group, H and K are closed subgroups of G and N is the normalizer group of K in G. Also, suppose that ω is a left Haar measure on N with the modular function Δ_N. In this section, we want to consider under which conditions an N-strongly quasi-invariant measure on $K \setminus G/H$ arises from a rho-function.

First, we recall that if X is a locally compact Hausdorff space and μ is a positive Radon measure on X, then subset B is called locally negligible, if for each compact subset M of X, $\mu(B \cap M) = 0$.

Remark 4.1. In [1] has been shown that N is not locally negligible if and only if N is open subgroup of G.

Lemma 4.2. If N is an open subgroup of G then each $f \in C_c(N)$ may be regarded as a function in $C_c(G)$ and $Q : C_c(G)|_{C_c(N)}$ is surjective on $B = \{F \in C_c(K \setminus G/H), \text{supp} F \subseteq q(N)\}$.

Proof. Proof is straightforward. □

Our main result in this section is as follows:

Theorem 4.3. Suppose also that K is an IN-group, N is not locally negligible, and $H \subseteq N$. Then every N-strongly quasi-invariant measure μ on $K \setminus G/H$ arises from a rho-function. That is, there is a rho-function $\rho : G \to (0, +\infty)$, such that

$$\int_{K \setminus G/H} \int_K \int_H f(k^{-1} x h) dh dk d\mu(knH) = \int_G f(x) \rho(x) dx$$

for all $f \in C_c(N)$, (4.1)

and all such measures are N-strongly equivalent. That is to say that they have the same negligible sets on $q(N)$.

Proof. Suppose that μ is an N-strongly quasi-invariant measure on $K \setminus G/H$, then there is a positive continuous function λ on $N \times (K \setminus G/H)$, such that $(d\mu_x/d\mu)(\bar{y}) = \lambda(x, \bar{y})$. It is easy to check that

$$\lambda(n_1n_2p) = \lambda(n_1, n_2p)\lambda(n_2, p).$$

According to Remark 4.1, N is an open subgroup of G. Therefore, by applying Lemma 4.2, each function in $C_c(N)$ may be regarded as a function in $C_c(G)$. Also, Range $Q|_{C_c(N)}$ is $\{F \in C_c(K \setminus G/H); \text{supp} F \subseteq q(N)\}$. The mapping $f \mapsto \int_{K \setminus G/H} Q(f)(KnH)\lambda(n, KH)^{-1}d\mu(KnH)$ is a left invariant positive linear
functional on \(C_c(N) \). Indeed:

\[
\int_{K \backslash G / H} Q(L_m f)(KnH)\lambda(n, KH)^{-1}d\mu(KnH)
= \int_{K \backslash G / H} L_m Q(f)(KnH)\lambda(n, KH)^{-1}d\mu(KnH)
= \int_{K \backslash G / H} Q(f)(Km^{-1}nH)\lambda(n, KH)^{-1}d\mu(KnH)
= \int_{K \backslash G / H} Q(f)(KnH)\lambda(mn, KH)^{-1}\lambda(n, KH)^{-1}\lambda(m, KnH)d\mu(KnH)
= \int_{K \backslash G / H} Q(f)(KnH)\lambda(n, KH)^{-1}d\mu(KnH).
\]

By uniqueness of Haar measure on \(N \), there is \(c > 0 \) such that

\[
\int_{K \backslash G / H} Q(f)(KnH)\lambda(n, KH)^{-1}d\mu(KnH) = c \int_N f(x)d\omega(x). \tag{4.2}
\]

Let \(\rho_1 : N \to (0, +\infty) \) be given by \(\rho_1(n) = c\lambda(n, KH) \). By replacing \(f \) by \(f \cdot \lambda(n, KH) \) in (4.2), we see that

\[
\int_{K \backslash G / H} \int_K \int_H f(k^{-1}nh)dh dk = \int_N f(n)\rho_1(n)dn \tag{4.3}
\]

Now \(\rho_1 \) can be extended on \(G \) by the following definition:

\[
\rho : G \to (0, +\infty)
\]

\[
\rho(x) = \begin{cases}
\rho_1(x) & x \in N \\
0 & x \notin N
\end{cases}
\]

then \(\rho \) is a positive continuous function on \(G \). Moreover, if \(h_0 \in H \) and \(k_0 \in K \), then by using \(H \subseteq N \), we can write

\[
\int_G f(x)\rho(k_0xh_0)dx = \int_N f(x)\rho(k_0xh_0)\omega(x)
= \int_G f(k_0^{-1}xh_0^{-1})\rho(x)\Delta_N(h_0^{-1})\omega(x)
= \Delta_G(h_0^{-1})\int_{K \backslash G / H} \int_K \int_H f(k_0^{-1}xh_0^{-1}kdh d\mu(\bar{x})
= \Delta_G(h_0^{-1})\Delta_H(h_0)\Delta_K(k_0)\int_G f(x)\rho(x)\omega(x)
= \frac{\Delta_K(k_0)\Delta_H(h_0)}{\Delta_G(h_0)} \int_N f(x)\rho(x)\omega(x).
\]
This being for all \(f \in C_c(N) \), \(\rho(knh_0) = \frac{\Delta_\mu(h_0) \Delta_k(k_0)}{\Delta_G(h_0)} \rho(n) \). When \(x \notin N \), the equality \(\rho(k_0 x h_0) = \frac{\Delta_\mu(h_0) \Delta_k(k_0)}{\Delta_G(h_0)} \rho(x) \) is trivial. This proves that \(\rho \) is a rho-function.

Suppose that \(\mu_1 \) and \(\mu_2 \) are \(N \)-strongly quasi-invariant measures on \(K \triangleleft G/H \) associated with rho-function \(\rho_1 \) and \(\rho_2 \) on \(G \), respectively. Then, we have

\[
\frac{\rho_1(knh)}{\rho_2(knh)} = \frac{\Delta_\mu(h) \Delta_k(k)}{\Delta_G(h)} \frac{\rho_1(n)}{\rho_2(n)}
\]

for all \(n \in N \).

Take \(\varphi : K \triangleleft G/H \to [0, +\infty) \) by

\[
\varphi(KxH) = \begin{cases}
\frac{\rho_1(x)}{\rho_2(x)} & \text{if } x \in N \\
0 & \text{if } x \notin N
\end{cases}
\]

clearly \(\varphi \) is well-defined and continuous.

Let \(f \in C_c(G) \). Then we can write

\[
Q(f \cdot \frac{\rho_1}{\rho_2})(KnH) = \int_K \int_H f(k^{-1}nh) \frac{\rho_1(k^{-1}nh)}{\rho_2(k^{-1}nh)} d\mu dh
\]

\[
= \frac{\rho_1(n)}{\rho_2(n)} \int_K \int_H f(k^{-1}nh) d\mu dh,
\]

for all \(n \in N \).

Therefore, we have

\[
\int_{K \triangleleft G/H} Q(f)(\tilde{n}) d\mu_1(\tilde{n}) = \int_N f(n) \rho_1(n) dn
\]

\[
= \int_N f(n) \left(\frac{\rho_1(n)}{\rho_2(n)} \right) \rho_2(n) dn
\]

\[
= \int_{K \triangleleft G/H} Q(f)(\tilde{n}) \varphi(\tilde{n}) d\mu_2(\tilde{n}).
\]

Hence, \(\frac{d\mu_1}{d\mu_2}(\tilde{n}) = \varphi(\tilde{n}) \) for all \(\tilde{n} \in K \triangleleft G/H \).

Now, if \(A \subseteq q(N) \) is a negligible set with respect to \(\mu_1 \), then we have

\[
0 = \int_{K \triangleleft G/H} 1_A(\tilde{x}) d\mu_1(\tilde{x}) = \int_{K \triangleleft G/H} 1_A(\tilde{x}) \varphi(\tilde{x}) d\mu_2(\tilde{x}).
\]

Therefore, \(\int_{K \triangleleft G/H} 1_A(\tilde{x}) \varphi(\tilde{x}) d\mu_2(\tilde{x}) = 0 \). By using the fact that for each \(n \in N \) we can get \(\varphi(\tilde{n}) > 0 \) we have \(\int_{K \triangleleft G/H} 1_A(\tilde{x}) d\mu_2(\tilde{x}) = 0 \), so \(\mu_2(A) = 0 \).

Therefore, the negligible sets of \(q(N) \) with respect to \(\mu_1 \) are the same as the negligible sets, with respect to \(\mu_2 \), and we are done. \(\square \)

Corollary 4.4. Let \(G \) be a semidirect product of \(K \) and \(H \), respectively. Double coset space \(K \triangleleft G/H \) possesses a strongly quasi-invariant measure.

Corollary 4.5. If \(K \triangleleft G \), then each strongly quasi-invariant measure on \(K \triangleleft G/H \) arises from a rho-function. In other words, there exists a rho-function \(\rho \) on \(G \) such that

\[
\int_{K \triangleleft G/H} \int_K \int_H f(k^{-1}xh) d\mu dh dx = \int_G f(x) \rho(x) dx \quad \text{for all } f \in C_c(G)
\]
Proof. It is sufficient to apply Theorem 4.3 and to note the fact that $N = G$.

Proposition 4.6. If μ is an N-strongly quasi-invariant measure on $K \backslash G/H$ which arises from a rho-function, then supp $\mu = K \backslash G/H$.

Proof. Suppose that μ is an N-strongly quasi-invariant measure on $K \backslash G/H$ which arises from a rho-function ρ. Therefore, we can write

$$\int_{K \backslash G/H} \int_K \int_H f(k^{-1}xh)dhdkd\mu(\tilde{x}) = \int_G f(x)\rho(x)dx \quad \text{for all } f \in C_c(G).$$

Now if supp $\mu \neq K \backslash G/H$, then there is a non-empty open subset U of $K \backslash G/H$ such that $\mu(U) = 0$. By applying Urysohn’s Lemma, there is a non-zero $F \in C_c(K \backslash G/H)$ such that supp $F \subseteq U$. Also, there is a non-zero $f \in C_c(G)$ such that $Q(f) = F$. So,

$$0 = \int_{K \backslash G/H} F(\tilde{x})d\mu(\tilde{x}) = \int_{K \backslash G/H} Q(f)(\tilde{x})d\mu(\tilde{x})$$

$$= \int_{K \backslash G/H} \int_K \int_H f(k^{-1}xh)dhdkd\mu(\tilde{x})$$

$$= \int_G f(x)\rho(x)dx > 0$$

which is a contradiction. Therefore, supp $\mu = K \backslash G/H$.

Proposition 4.7. Let N be open in G, and μ be any N-strongly quasi-invariant measure on $K \backslash G/H$ which arises from a rho-function. Then, for a Borel subset $A \subseteq K \backslash G/H$, $A \cap q(N)$ is locally negligible if and only if $q^{-1}(A) \cap N$ is locally negligible in G.

Proof. Let $A \subseteq K \backslash G/H$ be a Borel set such that $A \cap q(N)$ be locally negligible. By intersecting $A \cap q(N)$ with an arbitrary compact subset of $K \backslash G/H$, we may assume, without loss of generality, that $A \cap q(N)$ is relatively compact, that is, $A \cap q(N)$ is compact.

Let $f \in C^+(G)$ be such that $f \neq 0$. By applying Fubini’s Theorem, we can write

$$\int_{K \backslash G/H} \int_N f(x)1_{A \cap q(N)}(x \cdot \tilde{y})d\omega(x)d\mu(\tilde{y}) = \int_N \int_{K \backslash G/H} f(x)1_{A \cap q(N)}(x \cdot \tilde{y})d\mu(\tilde{y})d\omega(x).$$

(4.4)

Suppose that $\mu(A \cap q(N)) = 0$, then $\mu(x^{-1} \cdot A \cap q(N)) = 0$ for all $x \in N$. Thus, the right hand side of (4.4) is zero, and so the left hand side. Therefore, we may state that

$$\int_N f(x)1_{A \cap q(N)}(x \cdot \tilde{y})d\omega(x) = 0$$

for almost all $\tilde{y} \in K \backslash G/H$.

Let C be any compact subset of G such that $C \cap N \neq \emptyset$ and U a compact unit neighbourhood in G. Select $f \in C_c^+(G)$ so that $f(x) > 1$ for all $x \in CU^{-1} \cap N$. Since $\mu(q(U \cap N)) > 0$, there exists $y \in U \cap N$ such that

$$\int_N f(x) \cdot 1_{A \cap q(N)}(x \cdot \tilde{y})d\omega(x) = 0.$$
So,

\[0 = \Delta_N(y) \int_N f(x) \cdot 1_{A \cap q(N)}(q(xy)) \, d\omega(x) \]
\[= \int_N f(xy^{-1}) 1_{q^{-1}(A) \cap N}(x) \, d\omega(x). \]

Now, for each \(x \in CU^{-1} \cap N \), we have \(f(xy^{-1}) \geq 1 \) which implies that
\[\int_N 1_{q^{-1}(A) \cap N \cap C}(x) \, d\omega(x) = 0. \]

Thus, \(q^{-1}(A) \cap N \cap C \) is negligible set for any compact set \(C \subseteq G \), that is, \(q^{-1}(A) \cap N \) is locally negligible.

Conversely, suppose that \(q^{-1}(A) \cap N \) is locally negligible. Again, let \(f \in C^+(N) \), and \(\hat{y} \in q(N) \) be arbitrary and from now fixed, since \(q \) is onto, choose \(y \in N \) such that \(q(y) = \hat{y} \). Then, \(x \mapsto f(xy^{-1}) \) is continuous with compact support.

Then, the left hand side of (4.4) is zero, therefore the right hand side is zero as well. Hence, for almost all \(x \in N \)

\[0 = \int_{K \setminus G/H} f(x) \cdot 1_{A \cap q(N)}(x \cdot \hat{y}) \, d\mu(\hat{y}) \]
\[= f(x) \cdot \mu(x^{-1} \cdot A \cap q(N)). \]

Since \(f \neq 0 \), there is \(x \in N \) so that \(\mu(x^{-1} \cdot A \cap q(N)) = 0 \) which implies that \(\mu(A \cap q(N)) = 0. \)

\[\square \]

Theorem 4.8. If \(K \) is also an IN-group and \(\mu \) is an \(N \)-strongly quasi-invariant measure on \(K \setminus G/H \), then \(\tilde{\mu} \) defined by \(\tilde{\mu}(f) = \int_{K \setminus G/H} Q(f)(\hat{x}) \, d\tilde{\mu}(\hat{x}) \) has the following property:

\[\int_G f(nx^{-1}) \, d\tilde{\mu}(x) = \Delta_H(h) \int_G f(x) \cdot \lambda(n, q(x)) \, d\tilde{\mu}(x). \quad (4.5) \]

Proof. Suppose that \(\mu \) is an \(N \)-strongly quasi-invariant measure. Therefore, there is the continuous positive function \(\lambda \) on \(N \times K \setminus G/H \) such that \(d\mu_n(\hat{x}) = \lambda(n, \hat{x}) \, d\mu(\hat{x}) \).
for all $n \in N$. Hence, by applying Theorem 2.4, we have
\[
\int_G f(nxh^{-1})d\tilde{\mu}(x) = \int_G L_n^{-1} \circ R_h^{-1} f(x)d\tilde{\mu}(x)
\]
\[
= \Delta_H(h) \int_G L_n^{-1} f(x)d\tilde{\mu}(x)
\]
\[
= \Delta_H(h) \int_{K\setminus G/H} L_n^{-1} Q(f)q(\bar{x})d\mu(\bar{x})
\]
\[
= \Delta_H(h) \int_{K\setminus G/H} Q(f)q(\bar{x})\lambda(n, \bar{x})d\mu(\bar{x})
\]
\[
= \Delta_H(h) \int_G \left(f \cdot \lambda(n, q(\cdot)) \right)(x)d\tilde{\mu}(x)
\]
\[\square\]

Remark 4.9. Note that if $K = \{e\}$, then we conclude that each strongly quasi-invariant measure on G/H arises from a rho-function and if $H = \{e\}$, then $K \setminus G$ (the right cosets of K in G) has N-strongly quasi-invariant measure by the left action and if N is not locally negligible, this measure arises from a rho-function.

Remark 4.10. Take $K = H$. Now if N is not locally negligible, each N-strongly quasi-invariant measure on $G//H$ arises from a rho-function.

References
1. N. Bourbaki, Elements of Mathematics Integration (I), (II), 2004.
2. F. Bruhat, Sur les representations induites des groupes de Lie, Bull. Soc. Math. France 81(1956), 97-205.
3. C. H. Chu and A. T. M. Lau, Jordan structures in Harmonic functions and Fourier algebras on homogeneous spaces, Math. Ann, 336(2006), no. 4, 803-840.
4. A. Deitmar, Seigfried Echterhoff, Principles of Harmonic Analysis, Springer Science Business, LLC. 2009.
5. F. Esmaeelzadeh, R. A. Kamyabi-Gol, Homogeneous spaces and square-integrable representations, Ann. Funct. Anal. 7(2016), no.1, 9-16.
6. B. G. Folland, A Course In Abstract Harmonic Analysis, CRC press, Inc, 1995.
7. R. I. Jewett, Spaces With an Abstract convolution of measures, Advances in Math, 18 (1975).
8. T. S. Liu, Invariant measure on Double Coset Spaces, university of pennsylvania and university of Massachusetts, 26 March 1965.
9. L. H. Loomis, Positive definite functions and induced representations, Duke Math, J. 27(1960), 569-579.
10. G. W. Mackey, Induced representations of locally compact groups I, Ann. of Math. 55 (1959), 101-139.
11. H. Reiter, J. Stegeman, Classical Harmonic Analysis and Locally Compact Groups, Oxford University Press, 2000.

3 Department of Mathematics, Bojnourd Branch, Islamic Azad university, Bojnourd, Iran.
E-mail address: esmaeelzadeh@bojnourdiau.ac.ir

1,2 Department of Mathematics, Center of Excellecy in Analysis on Algberic Structures (CEAAS), Ferdowsi University of Mashhad, Mashhad, Iran.
E-mail address: fatemefahimian@gmail.com
E-mail address: kamyabi@um.ac.ir