Anytime-Lidar: Deadline Aware 3D Object Detection

Ahmet Soyyigit1, Shuochao Yao2, Heechul Yun3

$^1,^3$ University of Kansas, Lawrence, KS

2 George Mason University, Fairfax, VA
Perception in Autonomous Vehicles

• Object detection
 – Happens in 3D
 • Camera, Radar, Lidar, ...
 – Lidar-based deep neural networks
 – Timeliness
 – Time/accuracy requirements are environment dependent

Image credits (up): https://blogs.nvidia.com/blog/2017/11/23/safer-autonomous-driving/
Image credits (down): https://newsroom.intel.com/editorials/experience-counts-particularly-safety-critical-areas/#gs.8azpk6
Lidar-based Object Detection DNNs

• Point cloud to 3D bounding boxes (End-to-end)
 – Examples: Voxelnet, SECOND, PointPillars, CenterPoint

• Challenges: High computational cost, deadline-unaware
Execution Time Analysis of PointPillars

• Timing of PointPillars*:

• High computational cost (>130 ms)
• No flexibility in execution timing

(*) Executed on Jetson AGX Xavier
Architecture of PointPillars (multi-head)

- Point Cloud Transform
- Backbone (RPN)
- Detection Head(s)*

- Block 1
 - Conv
 - Deconv

- Block 2
 - Conv
 - Deconv

- Block 3
 - Conv
 - Deconv
 - Concat 1,2,3

- Detection Head (Car)
- Detection Head (Traffic cone, Pedestrian)

- NMS

(*) B. Zhu, Z. Jiang, X. Zhou, Z. Li, and G. Yu, “Class-balanced grouping and sampling for point cloud 3d object detection,” CoRR, vol. abs/1908.09492, 2019.
Anytime Perception for Lidar-based Object Detection DNNs

• Enable dynamic time and accuracy tradeoff
• Prior work on anytime perception
 – Image-based, mostly object classification [1-6]
• Our key contribution
 – First work to enable anytime perception in the lidar domain
 – Novel scheduler framework: Accuracy + Timeliness

[1] S. Heo et al., “Real-time object detection system with multi-path neural networks,” in 2020 RTAS
[2] J.-E. Kim et al., “Anytimenet: Controlling time quality tradeoffs in deep neural network architectures,” in 2020 DATE
[3] S. Bateni et al., “Apnet: Approximation-aware real-time neural network,” in 2018 RTSS
[4] S. Yao et al., “Scheduling real-time deep learning services as imprecise computations,” in 2020 RTCSA
[5] S. Lee et al., “Subflow: A dynamic induced-subgraph strategy toward real-time dnn inference and training,” in 2020 RTAS
[6] S. Liu et al., “Real-time task scheduling for machine perception in intelligent cyber-physical systems,” IEEE Transactions on Computers, pp. 1–1, 2021.
Outline

• Introduction
• Anytime-Lidar
• Evaluation
• Conclusion
Anytime-Lidar

• Enable anytime perception for lidar-based object detection DNNs
 1. Imprecise computation on the backbone
 2. Scheduling of detection heads
 3. Predicting past results of skipped heads
 4. Scheduling the above three
Imprecise Backbone

• Time and accuracy trade-off by skipping blocks
 – Added early exists to skip block 3 or blocks 2+3
 – Each block takes equal time
 – Take advantage of multi-block structure
Schedulable Detection Heads

• Allow skipping a subset of detection heads
 – Linearly save time from convolutions and NMS

• Address safety concerns
 – Proper det. head scheduling
 – Projection
Projection

- Project the past results of skipped det. heads to the current frame
- Projection/CPU - NN/GPU parallel execution
Scheduling

• Maximize detection accuracy while meeting the deadline with two-phase scheduler.

Time/accuracy statistics collected offline

Previous det. head selections and results

Backbone, det. heads and projection configuration
Scheduling

• First scheduling phase: Determine the number of backbone blocks and the number of detection heads to run

• Done using time/accuracy statistics collected offline

RPN blocks	Detection heads					
1	1	2	3	4	5	6
1	30.9	42.2	52.2	62.1	70.6	78.2
2	46.3	56.8	66.9	76.8	85.4	93.2
3	61.8	71.9	81.8	92.0	100.6	107.9

* Numbers are in milliseconds.

WCET table

RPN blocks	Detection heads					
1	1	2	3	4	5	6
1	67.0	67.5	70.7	74.4	79.2	80.6
2	75.4	77.5	82.1	88.2	91.9	93.3
3	79.8	84.9	90.7	95.6	98.9	100.0

Normalized accuracy table
Scheduling

- **Second scheduling phase**: Decide **which** detection heads to execute
 - Provides safety while optimizing accuracy
 - Priority = Age x Confidence

Object	Age	Confidence	Priority
Car	1	3.5	3.5
Truck, Constr. Vehicle	2	0.7	1.4
Bus, Trailer	3	0.6	1.8
Barrier	3	2.0	6.0
Motorcycle, Bicycle	4	1.2	4.8
Traffic cone, Pedestrian	1	4.5	4.5

\[A \times C = P \]

\[
\begin{align*}
1 \times 3.5 &= 3.5 \\
2 \times 0.7 &= 1.4 \\
3 \times 0.6 &= 1.8 \\
3 \times 2.0 &= 6.0 \\
4 \times 1.2 &= 4.8 \\
1 \times 4.5 &= 4.5
\end{align*}
\]
Outline

• Introduction
• Anytime-Lidar
• Evaluation
• Conclusion
Evaluation

• Implemented by modifying Multi-head PointPillars (OpenPCDet*, PyTorch)
• Evaluated on NVIDIA Jetson AGX Xavier
 – 512-core Volta iGPU
 – 8 core ARM v8.2 64-bit CPU
 – 16 GBs of RAM
• Evaluated using nuScenes dataset
 – Used ten scenes each being 20 seconds

(*) OpenPCDet Development Team, “OpenPCDet: An Open-source Toolbox for 3D Object Detection from Point Clouds,” https://github.com/open-mmlab/OpenPCDet, 2020.
Evaluation

• Divide the dataset of ten scenes into two equal sets
 – Calibration set
 – Testing set

• Collect time/accuracy statistics for all requiring methods (calibration)

• For each method being evaluated:
 – For each deadline in a list of deadlines from 140ms to 60ms:
 • Process all samples in the testing scenes one by one
 • Nullify detection results for samples where deadline is missed
 • Calculate NDS* (nuScenes Detection Score)

(*) H. Caesar, et Al., “nuScenes: A multimodal dataset for autonomous driving,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11618–11628, 2020.
Evaluation

- Methods used for comparison:

Method	Number of model parameters	Number of RPN blocks	RPN stage selection	Detection head scheduling
PointPillars-3	6078K	3		Circulating
PointPillars-2	2626K	2		Class scores sum
PointPillars-1	1723K	1		Aging + Ground Truth
MultiStage				Aging + Aged confidences
RoundRobin				
ClsScrSum	9235K	3	✓	
NearOptimal				
Ours				
Effect of Enabling Fine-grained Anytime Perception

- Meet tighter deadlines (60ms vs 100ms)
- Maintain superior accuracy all the time
Effect of Head Scheduling Method

- Disabled projection when testing
- Our method schedules the detection heads close to optimal

![Graph showing normalized accuracy vs deadline with overhead comparison]

Method	Overhead (ms)
ClsScrSum-NoPrj	4.75
RoundRobin-NoPrj	0.50
Ours-NoPrj	1.50
NearOptimal-NoPrj	70.3
Current-NoPrj	61.1
Current-Prj	62.8
NearOptimal-Prj	66.9
Effect of Projection

- Projection can work with any head selection scheme and increases accuracy by 10% on average
Conclusion

• In this work, we presented:
 – A novel scheduling framework for lidar-based AI pipelines
 • Enables anytime perception through a combination of methods
 – Imprecise backbone, detection head scheduling, projection
 – We implemented our method on Multi-head PointPillars and evaluated its performance on Jetson AGX Xavier
 – Results show that our method significantly surpass baseline methods and enables anytime perception for lidar-based AI pipelines

• GitHub Link: https://github.com/CSL-KU/Anytime-Lidar
Thank You

Disclaimer:
This research is supported in part by NSF grants CNS1815959, CPS-2038923, and CPS-2038658

More details can be found in the following publication.
Ahmet Soyyigit, Shuochao Yao, Heechul Yun. “Anytime-Lidar: Deadline Aware 3D Object Detection.” IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), IEEE, 2022