The muon $g - 2$ in an Aligned 2-Higgs Doublet Model with Right-Handed Neutrinos

Luigi Delle Rose

Institut de Fisica d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra (Barcelona), Spain

Shaaban Khalil

Center for Fundamental Physics, Zewail City of Science and Technology, 6 October City, Giza 12588, Egypt

Stefano Moretti

School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, United Kingdom and Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden

In this note, we show how one can attribute the anomaly currently present in the measurement of the anomalous magnetic moment of the muon (a_μ) to the presence of an underlying Aligned 2-Higgs Doublet Model (A2HDM) with Right-Handed (RH) neutrinos, ν_R. The effects of the latter scenario are driven by one and two-loop topologies wherein a very light CP-odd neutral Higgs state (A) contributes significantly to a_μ. Over the region of parameter space of our new physics model which explains the aforementioned anomaly, also consistent with the most recent measurements of the electron anomalous magnetic moment (a_e), wherein the charged Higgs state H^\pm plays a similar role, we predict an almost background-free hallmark signature of it, due to $H^\pm A$ production followed by Higgs boson decays yielding multi-\tau final states, which can already be searched for at the Large Hadron Collider (LHC).

I. INTRODUCTION

It is a belief held by a large part of the particle physics community that the long-standing discrepancy between the Standard Model (SM) prediction for the muon anomalous magnetic moment and its experimental measurement is a clear hint of some New Physics (NP) Beyond the SM (BSM). It all started with the E821 experiment at Brookhaven National Laboratory (BNL) studying the precession of muons and antimuons in a constant external magnetic field as they circulated in a confining storage ring, which reported the following average value \cite{1}: $a_\mu = 0.0011659209(6)$. New measurement techniques \cite{2, 3} enabled a more recent experiment at the Fermi National Laboratory (Fermilab), called ‘Muon $g - 2$’, using the E821 magnet, to already improve the accuracy of the a_μ value with the first batch of data obtained from March 2018 (the full run is expected to end in September 2022), as an ad interim result released on 7 April 2021 yielded $a_\mu = 0.00116592040(54)$ \cite{4}, which, in combination with all other existing measurements, gives the most precise estimate to date as $a_\mu = 0.00116592061(41)$, exceeding the SM prediction by up to 4.2 standard deviations (depending on the assumptions made on the central value and error of SM prediction) \cite{5}. Finally, the E34 experiment at the Japan Proton Accelerator Research Complex (J-PARC) plans to start its first run measuring a_μ in 2024 and is expected to improve accuracy further using new laser techniques \cite{7}.

Such a sequence of measurements has generated growing interest in the particle physics community and several extensions of the SM have been proposed and analysed as possible origins of this result. Here, we study a_μ in a 2HDM with RH neutrinos and Aligned Yukawa couplings. In this class of models, one can account for the aforementioned deviations through two-loop effects generated by a light CP-odd neutral Higgs state (A) in combination with charged leptons. In fact, after improving the determination of the fine structure constant, it recently turned out that there is also a significant difference between the experimental result of the electron anomalous magnetic moment and the corresponding SM prediction. In our BSM scenario, possible deviations in a_e can be obtained through one-loop effects generated by the exchange of RH neutrinos and charged Higgs bosons and by exploiting the lepton non-universality that naturally arises in RH neutrino models (we exploited RH neutrinos coupling predominantly to the first lepton family). Notably, the A2HDM with RH neutrinos can explain the two (potential) anomalies over the same region of parameter space. We refer to \cite{8} for more details. Crucially, this phenomenology also requires the H^\pm and A states to be relatively light, so that their pair production processes have a sizeable cross section at the LHC, thereby enabling one to fingerprint this A2HDM with RH neutrinos in the years to come.

\footnote{ldellerose@ifae.es} \footnote{skhalil@zewailcity.edu.eg} \footnote{s.moretti@soton.ac.uk, stefano.moretti@physics.uu.se} \footnote{The recent lattice determination of the hadronic vacuum polarisation contribution \cite{5} has questioned the significance of the anomaly. Nevertheless, its implications are still debated \cite{6}.}

arXiv:2111.12185v2 [hep-ph] 22 Jan 2022
According to the latest results, we have the following deviations in the anomalous magnetic moments of muon and electrons [6-9,17]:
\[
\delta a_\mu = a_\mu^{\text{exp}} - a_\mu^{\text{SM}} = (251 \pm 59) \times 10^{-11}, \\
\delta a_e = a_e^{\text{exp}} - a_e^{\text{SM}} = (-87 \pm 36) \times 10^{-14},
\]
which indicate a 4.2σ and 2.4σ discrepancy between theory and experiment, respectively. Here, it is crucial to notice that the sign of the two anomalies is different, prompting the realisation that they cannot be resolved simultaneously with the same NP contribution, unless it violates Lepton Flavour Universality (LFU) in a very peculiar way, see, e.g., Refs. [13-37] in [8].

II. THE A2HDM WITH RH NEUTRINOS

We refer to [8,19] for the details on the model while here we only discuss the most relevant features. As for the neutrino sector, we simply note that the heavy ν_R states generate the light neutrino masses through a seesaw mechanism. Concerning the 2HDM Higgs sector, we note that, other than requiring the usual Z_2 symmetry, the potentially dangerous tree-level Flavour Changing Neutral Currents (FCNCs) can also be tamed by implementing an alignment in flavour space. This implies that the two Yukawa matrices that couple to the same RH quark or lepton are proportional to each others with a coefficient ζ. We assume a real ζ to avoid extra sources of CP-violation and the alignment also in the neutrino sector (even though it is not strictly required by the absence of FCNCs). Because of such an alignment, all the couplings of the scalar fields to fermions are proportional to the corresponding mass matrices. As such, this 2HDM realisation is different from the standard four Types [20–22], wherein the interactions are fixed by tan β, the ratio of the Vacuum Expectation Values (VEVs) of the two Higgs doublets.

The Yukawa interactions of the (pseudo)scalar states are given by
\[
-L_Y = \frac{\sqrt{2}}{v} \left[\bar{u}(-\zeta_u m_u V_{ud} P_L + \zeta_d V_{ud} m_d P_R)d + \bar{\nu}_R(-\zeta_\nu m_\nu U_{L\nu} P_L + \zeta_\ell U_{L\ell}^\dagger P_L + \zeta_\ell U_{L\ell}^\dagger m_\ell P_R)\ell + \bar{\nu}_L(-\zeta_\nu m_\nu U_{L\nu}^\dagger P_L + \zeta_\ell U_{L\ell} P_R + \zeta_\ell U_{L\ell} P_R)\ell \right] + \frac{1}{v} \sum_{\phi=h,H,A} \sum_{f=u,d,\ell} \xi_{f}^\phi \phi \bar{f}_f m_f P_R f + \frac{1}{v} \sum_{\phi=h,H,A} \xi_{f}^\phi \phi \bar{f}_f U_{L\phi}^\dagger P_R(U_{L\phi} m_\nu \nu_\phi^c + U_{L\phi} m_\nu \nu_\phi^c) + \text{h.c.,}
\] (2)
where ζf are the proportionality coefficients introduced above, V_{ud} is the usual Cabibbo-Kobayashi-Maskawa (CKM) matrix and P_{L,R} are the chiral projectors. The couplings of the neutral Higgs states to the fermions are given by
\[
\xi_{\nu_L} = \mathcal{R}_{11} + (\mathcal{R}_{12} - i\mathcal{R}_{13})\zeta^\star_u, \\
\xi_{\nu_L} = \mathcal{R}_{11} + (\mathcal{R}_{12} + i\mathcal{R}_{13})\zeta_{\nu_L},
\] (3)
with the matrix \mathcal{R} diagonalising the scalar mass matrix. The U_{L\nu} and U_{L\ell} are the components of the mixing matrix in the neutrino sector,
\[
\begin{pmatrix}
\nu_L^c \\
\nu_R^c
\end{pmatrix} = U
\begin{pmatrix}
\nu_L \\
\nu_R
\end{pmatrix}
= \begin{pmatrix}
U_{L\nu} & U_{L\ell} \\
U_{R\nu} & U_{R\ell}
\end{pmatrix}
\begin{pmatrix}
\nu_L \\
\nu_R
\end{pmatrix}.
\]
Finally, the neutral and charged gauge boson interactions of the neutrinos, respectively, are:
\[
\mathcal{L}_Z = \frac{g}{2 \cos \theta_W}(\bar{\nu}_l U_{Ll}^\dagger + \bar{\nu}_h U_{Lh}^\dagger)\gamma^\mu(U_{Ll} \nu_l + U_{Lh} \nu_h)Z_\mu, \\
\mathcal{L}_W = -\frac{g}{\sqrt{2}} \left[(\bar{\nu}_l U_{Ll}^\dagger + \bar{\nu}_h U_{Lh}^\dagger)\gamma^\mu P_L \ell \right] W_\mu^+ + \text{h.c.}
\] (5)

2 The experimental value of a_\mu is sensitive to the measurement of the fine-structure constant α. The discrepancy quoted above is based on the measurement of caesium recoil by the Berkeley experiment [11]. Recently, a different experiment [18] reported a result for α that implies a +1.6σ deviation from the SM. The two experiments appear to be inconsistent with each other.
III. THE μ AND e ANOMALOUS MAGNETIC MOMENTS

As customary in many 2HDM realisations, the solution of the a_{μ} anomaly relies upon a light pseudoscalar state A contributing through the two-loop Barr-Zee diagrams, see left panel in Figure 1. The explanation is particularly simple in the 'lepton-specific' 2HDM scenario in which the couplings of the A and H^\pm scalars to the leptons can be enhanced. At the same time, those to the quarks are suppressed thus avoiding the strong constraint from the perturbativity of the top-quark Yukawa coupling (typical of Type-I and -III) or the severe bounds imposed by flavour physics (such as in Type-II). All these issues can be naturally addressed in the A2HDM since the couplings to leptons and quarks are disentangled, namely ζ_ℓ can be enhanced independently of ζ_u and ζ_d. Moreover, it is worth emphasising that a simultaneous explanation of the a_{μ} anomaly and a possible deviation in the a_e cannot be neither achieved in scenarios with a discrete Z_2 symmetry nor in the pure aligned 2HDM, since the contributions to the magnetic moments have a fixed sign originating from the same ζ_ℓ. Here, instead, the degeneracy will be broken by exploiting the LFU breaking that naturally arises in the RH neutrino sector.

The results of our analysis are depicted in the right plot in Figure 1, which shows the regions in which the predicted a_{μ} is within 1 and 2σ around the measured central value

$$\delta a_\mu = a_{\mu}^{\exp} - a_{\mu}^{SM} = (251 \pm 59) \times 10^{-11}. \quad (6)$$

These are projected onto the most relevant parameter space given by m_A and ζ_ℓ while the charged Higgs boson mass is fixed to a reference value of $m_{H^\pm} = 200$ GeV. Different choices of m_{H^\pm} would only slightly modify the contours shown in the plot. Details of the scan of the parameter space can be found in [8], here we just mention the results complying with all experimental and theoretical bounds: namely, direct LEP searches, EW precision observables, flavour physics, Higgs direct and indirect searches at the LHC, LFU violation as well as vacuum stability, perturbativity and unitarity, respectively.

As an additional prediction of the model, we show in Figure 2 the maximum allowed BSM correction to the AMM of the τ lepton as a function of ζ_ℓ. The region of the parameter space depicted in the plot also reproduces the AMMs of the muon and the electron as in Eq. 1. Among all the constraints, the most relevant one is the LFV process $\tau \to e\gamma$ which sets a strong bound on the product of mixings $(U_{Lh})_{\tau \nu_h} (U_{Lh})_{e \nu_h}$. In Figure 2, we show the δa_τ corresponding to the maximum value of the mixing matrix element $(U_{Lh})_{\tau \nu_h}$ compatible with the aforementioned constraint. It is worth mentioning that if one does not insist in reproducing δa_τ in Eq. 1, then the predicted value of the AMM of the τ could be further increased. Although the current precision is far from probing these corrections, the best measurement at 95% CL is $-0.052 < a_\tau < 0.013$, the possibility to improve this determination in the future would be very interesting for constraining BSM scenarios and could be directly correlated to the collider predictions discussed in the next section.

3 See [23,25] for other solutions.
IV. COLLIDER SIGNALS

Within the parameter space defined above and characterised by a light A and H^\pm with leptophilic interactions, the main decay modes for the BSM (pseudo)scalars are summarised by the following list:

- $A \rightarrow \tau\tau$
- $H^\pm \rightarrow \tau^\pm\nu, H^\pm \rightarrow AW^\pm$
- $H \rightarrow \tau\tau, H \rightarrow AZ$

The A state decays at tree-level to τ pairs with Branching Ratio (BR) close to 100%. Furthermore, for the charged Higgs boson, a leptonic decay mode is determined by the coupling $g_\ell = \zeta_\ell m_\tau/m_{H^\pm}$ while the strength of the $H^\pm \rightarrow AW^\pm$ channel is completely fixed by the $SU(2)_L$ coupling constant. In fact, the decay modes of the heavy neutral scalar state, H, share the same properties of those of the charged Higgs one. For large m_{H^\pm}, m_H and neglecting small deviations from $\sin(\beta-\alpha) = 1$, the BRs of the H^\pm and H can be approximated by

$$\text{BR}(H^\pm \rightarrow AW^\pm) = \text{BR}(H \rightarrow AZ) = \frac{1}{1 + 2g_\ell^2},$$

$$\text{BR}(H^\pm \rightarrow \tau^\pm\nu) = \text{BR}(H \rightarrow \tau\tau) = \frac{2g_\ell^2}{1 + 2g_\ell^2}. \quad (7)$$

The main production modes of these BSM (pseudo)scalar states proceed through Electro-Weak (EW) interactions since the couplings to the quarks are suppressed. Therefore, the relevant channels are

$$pp \rightarrow H^\pm A, \quad pp \rightarrow HA, \quad pp \rightarrow H^\pm H, \quad pp \rightarrow H^+H^-,$$

and the corresponding cross sections, shown in Figure 3, depend only on the masses of the produced Higgs bosons.

The main signatures resulting from the production and decay channels discussed above are characterised by final states with several τ leptons:

$$3\tau + E_T, \quad 4\tau + W^\pm, \quad 4\tau, \quad 4\tau + Z, \quad (9)$$

where the first two mainly arise from $H^\pm A$ production (with a subleading contamination from $H^\pm H$) while the other two stem from HA production.

In order to get a feel of the discovery potential of these channels at the LHC, with cross sections that can easily reach $10 - 10^2$ fb, here we also provide an estimate of the inclusive cross sections of the relevant SM backgrounds:

$$\sigma_{\text{SM}}(ZW^\pm \rightarrow 3\tau + E_T) \simeq 94\text{fb}, \quad \sigma_{\text{SM}}(ZZW^\pm \rightarrow 4\tau + W^\pm) \simeq 3.2 \times 10^{-2}\text{fb},$$
$$\sigma_{\text{SM}}(ZZ \rightarrow 4\tau) \simeq 11\text{fb}, \quad \sigma_{\text{SM}}(ZZZ \rightarrow 4\tau + Z) \simeq 1.1 \times 10^{-2}\text{fb}. \quad (10)$$

The signal-to-background ratios in the above channels can therefore be of $O(1)$ or higher, thereby motivating future analyses by ATLAS and CMS already at Run 2.
FIG. 3. The production cross sections of the extra Higgs boson pairs at the LHC with $\sqrt{s} = 13$ TeV as functions of m_A and $m_{H^\pm} = m_H$.

V. CONCLUSIONS

The current a_μ measurement is amongst the most precise ones experimentally, and so is also that of a_e, thereby probing not only the structure of the SM but also the possibility of BSM extensions. The anomaly appearing in the $g - 2$ measurement of the muon and/or electron finds a natural explanation in the A2HDM supplemented by RH neutrinos. In such a scenario, the contribution of a very light CP-odd neutral Higgs state interacting with leptons and the interplay of a charged Higgs boson with heavy neutrinos at the EW scale can easily explain the deviations from the SM predictions with one and two-loop corrections in either or both observables. Rather crucially, such a dynamics also predicts new signals at the LHC from $H^\pm A$ production yielding multi-τ final states, which can even be background free (in some BSM region of parameter space) and thus accessible already with current LHC data.

[1] G. W. Bennett et al. (Muon g-2), Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73, 072003 (2006) [arXiv:hep-ex/0602035]
[2] Y. Semertzidis et al., Sensitive search for a permanent muon electric dipole moment, in KEK International Workshop on High Intensity Muon Sources (HIMUS 99) (1999) pp. 81–96, [arXiv:hep-ph/0012087]
[3] F. Farley, K. Jungmann, J. Miller, W. Morse, Y. Orlov, B. Roberts, Y. Semertzidis, A. Silenko, and E. Stephenson, A New method of measuring electric dipole moments in storage rings, Phys. Rev. Lett. 93, 052001 (2004) [arXiv:hep-ex/0307006]
[4] B. Abi et al. (Muon g-2), Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021) [arXiv:2104.03281 [hep-ex]]
[5] S. Borsanyi et al., Leading hadronic contribution to the muon magnetic moment from lattice QCD, Nature 593, 51 (2021) [arXiv:2002.12347 [hep-lat]]
[6] A. Crivellin, M. Hoferichter, C. A. Manzari, and M. Montull, Hadronic Vacuum Polarization: $(g - 2)_\mu$ versus Global Electroweak Fits, Phys. Rev. Lett. 125, 091801 (2020) [arXiv:2003.04886 [hep-ph]]
[7] G. A. Beer et al., Enhancement of muonium emission rate from silica aerogel with a laser ablated surface, PTEP 2014, 091C01 (2014) [arXiv:1407.8248 [physics.ins-det]]
[8] L. Delle Rose, S. Khalil, and S. Moretti, Explaining electron and muon $g - 2$ anomalies in an Aligned 2-Higgs Doublet Model with right-handed neutrinos, Phys. Lett. B 816, 136216 (2021) [arXiv:2012.06911 [hep-ph]]
[9] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, Rerevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon $g - 2$ and $\alpha(m_Z^2)$ using newest hadron cross-section data, Eur. Phys. J. C 77, 827 (2017) [arXiv:1706.09436 [hep-ph]]
[10] A. Keshavarzi, W. J. Marciano, M. Passera, and A. Sirlin, Muon $g - 2$ and $\Delta\alpha$ connection, Phys. Rev. D 102, 033002 (2020) [arXiv:2006.12666 [hep-ph]]
[11] R. H. Parker, C. Yu, W. Zhong, B. Estey, and H. Müller, Measurement of the fine-structure constant as a test of the Standard Model, Science 360, 191 (2018) [arXiv:1812.04130 [physics.atom-ph]]
[12] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to $\alpha(m_Z^2)$, Eur. Phys. J. C 80, 241 (2020) [Erratum: Eur.Phys.J.C 80, 410 (2020)] [arXiv:1908.00921 [hep-ph]]
[13] G. Colangelo, M. Hoferichter, and P. Stoffer, Constraints on the two-pion contribution to hadronic vacuum polarization, (2020) [arXiv:2010.07943 [hep-ph]]
[14] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, Rerevaluation of the Hadrionic Contributions to the Muon g-2 and to alpha(MZ), Eur. Phys. J. C 71, 1515 (2011) [Erratum: Eur.Phys.J.C 72, 1874 (2012)] [arXiv:1010.4180 [hep-ph]]
[15] G. Giudice, P. Paradisi, and M. Passera, Testing new physics with the electron g-2, JHEP 11, 113 [arXiv:1208.6583 [hep-ph]]
[16] A. Keshavarzi, D. Nomura, and T. Teubner, $g - 2$ of charged leptons, $\alpha(M_Z^2)$, and the hyperfine splitting of muonium, Phys. Rev. D 101, 014029 (2020), arXiv:1911.00367 [hep-ph].

[17] T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model, Phys. Rept. 887, 1 (2020), arXiv:2006.04822 [hep-ph].

[18] L. Morel, Z. Yao, P. Cladé, and S. Guellati-Khelifa, Determination of the fine-structure constant with an accuracy of 81 parts per trillion, Nature 588, 61 (2020).

[19] L. Delle Rose, S. Khalil, S. J. King, and S. Moretti, R_K and R_{K^*} in an Aligned 2HDM with Right-Handed Neutrinos, Phys. Rev. D 101, 115009 (2020), arXiv:1903.11146 [hep-ph].

[20] J. F. Gunion, H. E. Haber, G. L. Kane, and S. Dawson, The Higgs Hunter’s Guide, Vol. 80 (2000).

[21] J. F. Gunion, H. E. Haber, G. L. Kane, and S. Dawson, Errata for the Higgs hunter’s guide, (1992), arXiv:hep-ph/9302272.

[22] G. Branco, P. Ferreira, L. Lavoura, M. Rebelo, M. Sher, and J. P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516, 1 (2012), arXiv:1106.0034 [hep-ph].

[23] F. Botella, F. Cornet-Gomez, and M. Nebot, Electron and muon $g - 2$ anomalies in general flavour conserving two Higgs doublets models, Phys. Rev. D 102, 035023 (2020), arXiv:2006.01934 [hep-ph].

[24] A. Peñuelas and A. Pich, Flavour alignment in multi-Higgs-doublet models, JHEP 12, 084, arXiv:1710.02040 [hep-ph].

[25] F. Botella, F. Cornet-Gomez, and M. Nebot, Flavor conservation in two-Higgs-doublet models, Phys. Rev. D 98, 035046 (2018), arXiv:1803.08521 [hep-ph].