1. Introduction

The purpose of this short article is two-fold: to announce the new results related to analytic properties of motivic (exponential) functions, which we hope could be widely applicable; and to summarize the recent applications of these results in harmonic analysis on p-adic groups.

Concretely, motivic (exponential) functions are complex-valued functions on p-adic manifolds defined uniformly in p by means of a rich yet sufficiently manageable language of logic. The word “exponential” refers to the situation when additive characters of the local field (leading to exponential sums) are included in the set of ingredients one is allowed to use when making such a function. The class of motivic exponential functions has two key features that make it particularly useful. On the one hand, these functions can be described in a field-independent manner, and thus are an ideal tool for transferring results between different local fields. On the other hand, the class of motivic (exponential) functions is closed under integration with respect to parameters, and thanks to this property one can show that many functions naturally arising in harmonic analysis on p-adic groups belong to this class.

The project of using motivic integration in harmonic analysis on p-adic groups was initiated by T.C. Hales in 1998, and goes under the emerging name of “motivic harmonic analysis”. One of the goals of this article is to collect results about “definability” of various objects arising in representation theory of p-adic groups and the applications in harmonic analysis that follow from such definability, summarizing the state of the art of this project.

In the following sections, we summarize most of the definitions we use that relate to (motivic) functions, motivic measures, etc. However, we do not include here any definitions related to harmonic analysis on reductive groups, as they are widely available in other sources, for example, in the beautiful article [25].

Acknowledgment. This article summarizes the results of a project carried out over several years. It certainly would not have happened without the influence of Tom Hales and the prior work of Jonathan Korman and Jyotsna Diwadkar. It is a pleasure to thank many people who have helped us at various stages of the project, (and those who collaborated on it in earlier stages), in particular, Jan Denef, François Loeser, Fiona Murnaghan, Clifton Cunningham, Loren Spice, Sug Woo Shin, Nicolas Templier, Tasho Kaletha, William Casselman, Gopal Prasad, and Lance Robson. I.H. was supported by the SFB 878 of the Deutsche Forschungsgemeinschaft; J.G. was supported by NSERC; R.C. was supported in part by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013) with ERC Grant Agreement nr. 246903.
2. **What is a motivic (exponential) function?**

Informally, motivic functions are built from definable functions in the Denef-Pas language and motivic exponential functions are built from motivic functions, additive characters on local fields, and definable functions serving as arguments of the characters. As such, they are given independently of the local field and can be interpreted in any local field and with any additive character. Let us recall the definition of the Denef-Pas language first, and proceed to motivic (exponential) functions afterwards, where we slightly simplify the terminology and notation of [9].

2.1. **Denef-Pas language.** The Denef-Pas language is a first order language of logic designed for working with valued fields. Formulas in this language will allow us to uniformly handle sets and functions for all local fields. We start by defining two sublanguages of the language of Denef-Pas: the language of rings and the Presburger language.

2.1.1. **The language of rings.** Apart from the symbols for variables x_1, \ldots, x_n, \ldots and the usual logical symbols equality ‘=’, parentheses ‘(’, ‘)’, the quantifiers ‘∃’, ‘∀’, and the logical operations conjunction ‘∧’, negation ‘¬’, disjunction ‘∨’, the language of rings consists of the following symbols:

- constants ‘0’, ‘1’;
- binary functions ‘×’, ‘+’.

A (first-order) formula in the language of rings is any syntactically correct formula built out of these symbols. One usually omits the words ‘first order’.

If a formula in the language of rings has n free (i.e. unquantified) variables then it defines a subset of R^n for any ring R. For example the formula "$\exists x_2 (x_2 \times x_1 = 1)$" defines the set of units R^* in any ring R; note that quantifiers (by convention) always run over the ring in question. Note also that quantifier-free formulas in the language of rings define constructible sets (in the sense of algebraic geometry).

2.1.2. **Presburger language.** A formula in Presburger’s language is built out of variables running over \mathbb{Z}, the logical symbols (as above) and symbols ‘+’, ‘≤’, ‘0’, ‘1’, and for each $d = 2, 3, 4, \ldots$, a symbol ‘≡d’ to denote the binary relation $x \equiv y \pmod{d}$. Note the absence of the symbol for multiplication.

Since multiplication is not allowed, sets and functions defined by formulas in the Presburger language are in fact very basic, cf. [5] or [29]. For example, definable subsets of the line \mathbb{Z} are finite unions of arithmetic progressions (in positive or negative direction) and points. By [29], quantifiers are never needed to describe Presburger sets, so all definable sets are of simple form.

2.1.3. **Denef-Pas language.** The Denef-Pas language is a three-sorted language in the sense that its formulas speak about three different “sorts” of elements: those of the valued field, of the residue field and of the value group (which will always be \mathbb{Z} in our setting). Each variable in such a formula only runs over the elements of one of the sorts, i.e., there are three disjoint sets of symbols for the variables of the different sorts. For a formula to be syntactically correct, one has to pay attention to the sorts when composing functions and plugging them into relations.
In addition to the variables and the logical symbols, the formulas use the following symbols.

- In the valued field sort: the language of rings.
- In the residue field sort: the language of rings.
- In the \mathbb{Z}-sort: the Presburger language.
- A symbol $\text{ord}(\cdot)$ for the valuation map from the nonzero elements of the valued field sort to the \mathbb{Z}-sort, and a symbol $\varphi(\cdot)$ for the so-called angular component, which is a multiplicative function from the valued field sort to the residue field sort (more about this function below).

A formula in this language can be interpreted in any discretely valued field F which comes with a uniformizing element ϖ, by letting the variables range over F, over its residue field k_F, and over \mathbb{Z}, respectively, depending on the sort they belong to; ord is the valuation map (defined on F^\times and such that $\text{ord}(\varpi) = 1$), and φ is defined as follows. If x is a unit in O_F (that is, $\text{ord}(x) = 0$), then $\varphi(x)$ is the residue of x modulo ϖ (thus, an element of the residue field). For all other nonzero x, one puts $\varphi(x) := \varpi^{-\text{ord}(x)} x \mod (\varpi)$; thus, $\varphi(x)$ is the first non-zero coefficient of the ϖ-adic expansion of x. Finally, we define $\varphi(0) = 0$.

Thus, a formula φ in this language with n free valued-field variables, m free residue-field variables, and r free \mathbb{Z}-variables gives naturally, for each discretely valued field F, a subset $\varphi(F)$ of $F^n \times k_F^m \times \mathbb{Z}^r$: namely, $\varphi(F)$ is the set of all the tuples where the interpretation of φ in F is "true" (where a variable appearing inside a quantifier runs over either F, k_F, or \mathbb{Z}, respectively, depending on its sort).

2.1.4. Adding constants to the language. In many situations one needs to work with geometric objects defined over some fixed base number field, or over its ring of integers O. In such situations, on top of the symbols for the constants that are already present in the above language (like 0 and 1), we will add to the Denef-Pas language all elements of $O[[t]]$ as extra symbols for constants in the valued field sort. We denote the resulting language by L_O.

Given a complete discretely valued field F which is an algebra over O via a chosen algebra homomorphism $\iota : O \rightarrow F$, with a chosen uniformizer ϖ of the valuation ring O_F of F, one can interpret the formulas in L_O as described in the previous subsection, where the new constants from O are interpreted as elements of F by using ι, the constant symbol t is interpreted as the uniformizer ϖ, and thus, by the completeness of F, elements of $O[[t]]$ can be naturally interpreted in F as well.

Definition 1. Let C_O be the collection of all triples (F, ι, ϖ), where F is a non-Archimedean local field which allows at least one ring homomorphism from O to F, the map $\iota : O \rightarrow F$ is such a ring homomorphism, and ϖ is a uniformizer for F. Let A_O be the collection of triples (F, ι, ϖ) in C_O with F of characteristic zero, and let B_O be the collection of the triples (F, ι, ϖ) such that F has positive characteristic.

Given an integer M, let $C_{O,M}$ be the collection of (F, ι, ϖ) in C_O such that the residue field of F has characteristic larger than M, and similarly for $A_{O,M}$ and $B_{O,M}$.

Since our results and proofs are independent of the choices of the map ι and the uniformizer ϖ, we will often just write $F \in C_O$, instead of naming the whole triple. For any $F \in C_O$, write O_F for the valuation ring of F, k_F for its residue field, and q_F for the cardinality of k_F.
2.2. **Definable sets and motivic functions.** The $\mathcal{L}_{\mathcal{O}}$-formulas introduced in the previous section allow us to obtain a field-independent notion of subsets of $F^n \times k_F^{m} \times \mathbb{Z}^r$ for $F \in \mathcal{C}_{\mathcal{O}}$.

Definition 2. A collection $X = (X_F)_F$ of subsets $X_F \subset F^n \times k_F^{m} \times \mathbb{Z}^r$ for F in $\mathcal{C}_{\mathcal{O}}$ is called a *definable set* if there is an $\mathcal{L}_{\mathcal{O}}$-formula φ such that $X_F = \varphi(F)$ for each F, where $\varphi(F)$ is as explained at the end of §2.1.3.

By Definition 2 a “definable set” is actually a collection of sets indexed by $F \in \mathcal{C}_{\mathcal{O}}$; such practice is not uncommon in model theory and has its analogues in algebraic geometry. A particularly simple definable set is $(F^n \times k_F^{m} \times \mathbb{Z}^r)_F$; we introduce the simplified notation $VF^n \times RF^m \times \mathbb{Z}^r$, where VF stands for valued field and RF for residue field. We apply the typical set-theoretical notation to definable sets X, Y, e.g., $X \subset Y$ (if $X_F \subset Y_F$ for each $F \in \mathcal{C}_{\mathcal{O}}$), $X \times Y$, and so on.

For definable sets X and Y, a collection $f = (f_F)_F$ of functions $f_F : X_F \to Y_F$ for $F \in \mathcal{C}_{\mathcal{O}}$ is called a definable function and denoted by $f : X \to Y$ if the collection of graphs of the f_F is a definable set.

There are precise quantifier elimination statements for the Denef-Pas language, which lead to the study of the geometry of definable sets and functions for F in $\mathcal{C}_{\mathcal{O}, M}$, where often M is large and depends on the data defining the set. To give an overview of these results is beyond the scope of this survey, but the reader may consult [7], [6], [12] and others.

We now come to motivic functions, for which definable functions are the building blocks as mentioned above.

Definition 3. Let $X = (X_F)_F$ be a definable set. A collection $f = (f_F)_F$ of functions $f_F : X_F \to \mathbb{C}$ is called a *motivic function* on X if and only if there exist integers N, N', and N'', such that, for all $F \in \mathcal{C}_{\mathcal{O}}$,

$$f_F(x) = \sum_{i=1}^{N} a_{iF} \alpha_i(x) \prod_{j=1}^{N'} \beta_{ijF}(x) \left(\prod_{\ell=1}^{N''} \frac{1}{1 - q_{F}^{\beta_{ijF}(x)}} \right)$$

for some

- nonzero integers a_{iF},
- definable functions $\alpha_i : X \to \mathbb{Z}$ and $\beta_{ij} : X \to \mathbb{Z}$,
- definable sets $Y_i \subset X \times RF^{r_i}$,

where, for $x \in X_F$, $(Y_i)_F$ is the finite set $\{ y \in k_F^{r_i} \mid (x, y) \in Y_i \}$.

2.3. **Motivic exponential functions.** For any local field F, let \mathcal{D}_F be the set of the additive characters on F that are trivial on the maximal ideal m_F and nontrivial on \mathcal{O}_F. For $\Lambda \in \mathcal{D}_F$, we will write $\bar{\Lambda}$ for the induced additive character on k_F.

Definition 4. Let $X = (X_F)_F$ be a definable set. A collection $f = (f_{F, \Lambda})_{F, \Lambda}$ of functions $f_{F, \Lambda} : X_F \to \mathbb{C}$ for $F \in \mathcal{C}_{\mathcal{O}}$ and $\Lambda \in \mathcal{D}_F$ in is called a *motivic exponential function* on X if there exist integers $N > 0$ and $r_i \geq 0$, motivic functions $f_i = (f_i)_F$, definable sets $Y_i \subset X \times RF^{r_i}$ and definable functions $g_i : Y_i \to VF$ and $e_i : Y_i \to RF$ for $i = 1, \ldots, N$, such that for all $F \in \mathcal{C}_{\mathcal{O}}$ and all $\Lambda \in \mathcal{D}_F$,

$$f_{F, \Lambda}(x) = \sum_{i=1}^{N} f_{iF}(x) \left(\sum_{y \in (Y_i)_F} \Lambda(g_i(x, y)) \cdot \bar{\Lambda}(e_i(x, y)) \right)$$

for all $x \in X_F$.
Compared to Definition\ref{def:counting} the counting operation \# has been replaced by taking exponential sums, which makes the motivic exponential functions a richer class than the motivic functions. Motivic (exponential) functions form classes of functions which are stable under integrating some of the variables out, see Theorem\ref{thm:motivic_integral} below. In fact, the search for this very property led to their definition.

2.4. **Families.** There are natural notions of “uniform families” of the objects introduced in Definitions\ref{def:measure}-\ref{def:counting} and \ref{def:volume_form}. We fix the following terminology.

Definition 5. Suppose that A is a definable set. A family of definable sets with parameter in A is a definable set $X \subset A \times Y$ with some definable set Y. We denote such a family by $(X_a)_{a \in A}$. For each $F \in C_O$ and $a \in A_F$, the sets $X_{F,a} := \{ y \in Y_F \mid (a,y) \in X_F \}$ are called the family members of the family $X_F = (X_{F,a})_{a \in A_F}$.

Similarly, for $(X_a)_{a \in A}$ as above, an (exponential) motivic, resp. definable, function f on X can be considered as a family $(f_a)_{a \in A}$ of (exponential) motivic, resp. definable functions with parameter in A. Its members are functions $f_{F,a}$ or $f_{F,a,\Lambda,a}$ for $F \in C_O$, $\Lambda \in \mathcal{D}_F$ and $a \in A_F$.

Whenever we call a specific function f_F motivic, we implicitly think of F as varying and we mean that there exists an $M > 0$ and a motivic function g with $f_F = g_F$ for all $F \in C_M$. Likewise, we think of F as varying whenever a specific set X_F or function f_F is called definable. All the results presented in this article will only be valid for sufficiently big residue characteristic. In particular, for any of the uniform objects X we introduced in Defintions\ref{def:measure} \ref{def:counting} \ref{def:volume_form} we are actually only interested in $(X_F)_{F \in C_{O,M}}$ for M sufficiently big.

2.5. **Measure and integration.** To integrate a motivic function f on a definable set X, we need a uniformly given family of measures on each X_F. For $X = VF$, we put the Haar measure on $X_F = F$ so that O_F has measure 1; on k_F and on \mathbb{Z}, we use the counting measure. To obtain measures on arbitrary definable sets X, we use “definable volume forms”, as follows.

In a nutshell, a definable volume form ω on X is a volume form defined by means of definable functions on definable coordinate charts, see \cite{15}. Such a definable volume form specializes to a volume form ω_F on X_F for every F with sufficiently large residue characteristic; more precisely, a definable volume form specializes to a top degree differential form for every F, but its non-vanishing can be assured only when the residue characteristic of F is sufficiently large.

Any F-analytic subvariety of F^n, say, everywhere of equal dimension, together with an F-analytic volume form, carries a natural measure associated to the volume form, cf. \cite{14}. This carries over to the motivic setting, i.e., a volume form ω_F as above induces a measure on X_F. By a “motivic measure”, we mean a family of measures on each X_F that arises in this way from a definable volume form.

Any algebraic volume form defined over O on a variety V over O gives rise to a definable volume form on $V(F)$ for $F \in C_{O,M}$ for a sufficiently large constant M, in the above sense. However, often one deals with volume forms on, say, orbits of elements of a group defined over a local field, or other volume forms defined over a local field, for which it is not always easy to obtain that they can be defined in a way which does not depend on the particular local field.

The classes of motivic (exponential) functions are natural to work with for the purposes of integration, as shown by the following theorem, which generalizes a
similar result of \[13\] to the class of functions summable in the classical sense of \(L^1\)-integrability.

Theorem 6. \[9, Theorem 4.3.1\] Let \(f\) be a motivic function, resp. a motivic exponential function, on \(X \times Y\) for some definable sets \(X\) and \(Y\), with \(Y\) equipped with a motivic measure \(\mu\). Then there exist a motivic function, resp. a motivic exponential function, \(g\) on \(X\) and an integer \(M > 0\) such that for each \(F \in \mathcal{C}_{\mathcal{O},M}\), each \(\Lambda \in \mathcal{D}_F\) and for each \(x \in X_F\) one has

\[
g_F(x) = \int_{y \in Y_F} f_F(x, y) \, d\mu_F, \quad \text{resp.} \quad g_{F,\Lambda}(x) = \int_{y \in Y_F} f_{F,\Lambda}(x, y) \, d\mu_F,
\]

whenever the function \(Y_F : \mathbb{C} \to \mathbb{C} : y \mapsto f_F(x, y)\), resp. \(y \mapsto f_{F,\Lambda}(x, y)\) lies in \(L^1(Y_F, \mu_F)\).

3. **NEW TRANSFER PRINCIPLES FOR MOTIVIC EXPONENTIAL FUNCTIONS**

Theorem 7. \[9, Theorem 4.4.1\] Let \(f\) be a motivic exponential function on \(VF^n\). Then there exists \(M > 0\), such that for the fields \(F \in \mathcal{C}_{\mathcal{O},M}\), the truth of the statement that \(f_{F,\Lambda}\) is (locally) integrable for all \(\Lambda \in \mathcal{D}_F\) depends only on the isomorphism class of the residue field of \(F\).

Theorem 8. \[9, Theorem 4.4.2\] Let \(f\) be a motivic exponential function on \(VF^n\). Then, for some \(M > 0\), for the fields \(F \in \mathcal{C}_{\mathcal{O},M}\), the truth of the statement that \(f_{F,\Lambda}\) is (locally) bounded for all \(\Lambda \in \mathcal{D}_F\) depends only on the isomorphism class of the residue field of \(F\).

In the versions with parameters of these results, \(f\) is a family of motivic exponential functions with parameter in a definable set \(A\). In that case, each of the two theorems states that there exists a motivic exponential function \(g\) on \(A\) such that the statement under consideration is true for \(f_{F,\Lambda,a}\) iff \(g_{F,\Lambda}(a) = 0\), that is, we relate the locus of integrability, resp. the locus of boundedness of the motivic (exponential) function \(f\) to the zero locus of another motivic (exponential) function \(g\).

4. **NEW “UNIFORM BOUNDEDNESS” RESULTS FOR MOTIVIC FUNCTIONS**

It turns out that the field-independent description of motivic functions leads not only to transfer principles, but also to uniform (in the residue characteristic of the field) bounds for those motivic functions whose specializations are known to be bounded for individual local fields (for now, for motivic functions without the exponential). We quote the following theorems from \[31\].

Theorem 9. \[31, Theorem B.6\] Let \(f\) be a motivic function on \(W \times \mathbb{Z}^n\), where \(W\) is a definable set. Then there exist integers \(a, b\) and \(M\) such that for all \(F \in \mathcal{C}_{\mathcal{O},M}\) the following holds.

If there exists any (set-theoretical) function \(\alpha : \mathbb{Z}^n \to \mathbb{R}\) such that

\[
|f_F(w, \lambda)|_R \leq \alpha(\lambda) \quad \text{on} \quad W_F \times \mathbb{Z}^n,
\]
then one actually has

$$|f_F(w, \lambda)|_R \leq q_F^{a+b}\|\lambda\|$$ on $W_F \times \mathbb{Z}^n$,

where $\|\lambda\| = \sum_{i=1}^{n} |\lambda_i|$, and where $|\cdot|_R$ is the norm on \mathbb{R}.

We observe that in the case with $n = 0$, the theorem yields that if a motivic function f on W is such that f_F is bounded on W_F for each $F \in \mathcal{C}_{\mathcal{O},M}$, then the bound for $|f_F|_R$ can be taken to be q_F^a for some $a \geq 0$, uniformly in F with large residue characteristic.

The following statement allows one to transfer bounds which are known for local fields of characteristic zero to local fields of positive characteristic, and vice versa.

Theorem 10. [31, Theorem B.7] Let f be a motivic function on $W \times \mathbb{Z}^n$, where W is a definable set, and let a and b be integers. Then there exists M such that, for any $F \in \mathcal{C}_{\mathcal{O},M}$, whether the statement

$$f_F(w, \lambda) \leq q_F^{a+b}\|\lambda\|$$ for all $(w, \lambda) \in W_F \times \mathbb{Z}^n$

holds or not, only depends on the isomorphism class of the residue field of F.

4.1. A few words about proofs. The common strategy in the proofs of Theorems 6–10 (assuming the set-up of motivic integration developed in [14] and [13]) is the following. The first step is to reduce the problem from arbitrary motivic exponential functions f to motivic exponential functions g_i of a simpler form, by writing f as a sum $\sum_i g_i$. For some of the results (e.g. to obtain a precise description of the locus of integrability or boundedness of f), one needs to prove that not too much cancellation can occur in this sum; this is in fact one of the main difficulties in the proofs of Theorems 7 and 8.

In the next step, we eliminate all the valued-field variables, possibly at the cost of introducing more residue-field and \mathbb{Z}-valued variables, which uses the Cell Decomposition Theorem. Once we have a motivic function that depends only on the residue-field and value-group variables, we again break it into a sum of simpler terms, and then get rid of the residue-field variables. Finally, the question is reduced to the study of functions $h : \mathbb{Z}^r \to \mathbb{R}$, which are, up to a finite partition of \mathbb{Z}^r into sets which are definable in the Presburger language (see Section 2.1.2), sums of products of linear functions in $x \in \mathbb{Z}^r$ and of powers of q_F, where the power also depends linearly on x. For most x, the behaviour of such a sum h is governed by a dominant term, and for a single term, each of the theorems is easy to prove. To control the locus where no single term of h is dominant, we use the powerful result by Wilkie about “α-minimality of \mathbb{R}_exp”.

5. Which objects arising in harmonic analysis are definable?

In the remainder of the article, when we say “definable”, we mean, definable in the Denef-Pas language $\mathcal{L}_\mathbb{Z}$ (introduced in Section 2.1.3). If one wishes to think specifically of reductive grouse defined over a given global field F with the ring of integers \mathcal{O} and its completions, then one can use the language $\mathcal{L}_\mathcal{O}$ instead. We write A_M, B_M, and C_M for $A_{\mathbb{Z},M}$, $B_{\mathbb{Z},M}$ and $C_{\mathbb{Z},M}$, respectively (see Definition 1).

5.1. Connected reductive groups. We recall that a split connected reductive group over a local field is determined by its root datum $\Psi = (X_*, \Phi, X^*, \Phi^*)$. By an absolute root datum of G we will mean the root datum of G over the separable closure of the given local field; it is a quadruple of this form.
By an unramified root datum we mean a root datum of an unramified reductive group over a local field \(F \), i.e. a quintuple \(\xi = (X, \Phi, X^\vee, \Phi^\vee, \theta) \), where \(\theta \) is the action of the Frobenius element of \(F^*/F \) on the first four components of \(\xi \).

Given an unramified root datum \(\xi \), it is shown in [11] §4 that a connected reductive group \(G(F) \) with root datum \(\xi \) is “definable using parameters”, for all local fields \(F \in \mathcal{L}_M \), where \(M \) is determined by the root datum. This result is extended to all connected reductive groups (not necessarily unramified) in [10] §3.1, [31] B.4.3. More precisely, by “definable using parameters”, we mean that \(G(F) \) is a member of a family (in the sense of Definition 5) of definable connected reductive groups with parameter in a suitable definable set \(Z \). This parameter encodes information about the extension over which \(G \) splits (see [10] §3.1 for details). In the remainder of this article, every definable or motivic object in \(G(F) \) is parametrized by \(Z \), and all results are uniform in the family.

5.2. Haar measure and Moy-Prasad filtrations. If \(G \) is unramified, the canonical measure on \(G(F) \) defined by Gross [22] is motivic for \(F \in \mathcal{L}_M \) (with \(M \) depending only on the root datum that determines \(G \)), see [11] §7.1. For a root datum defining a ramified group \(G \), to the best of our knowledge, this is presently not known. However, in [31] Appendix B we prove that there is a constant \(c \) that depends only on the root datum, such that Gross’ measure can be renormalized by a factor between \(q^{-c} \) and \(q^c \) (possibly depending on \(F \)) to give a motivic measure on \(G(F) \), where \(q = p^r \) is the cardinality of the residue field of \(F \), and \(p \) is assumed large enough so that the group is tamely ramified.

In fact, this question is closely related to whether Moy-Prasad filtration subgroups \(G(F)_{x,r} \) are definable (here \(x \) is a point in the building of \(G(F) \), and \(r \geq 0 \)). This question has been answered in a number of important special cases. Namely, if \(G \) is unramified over \(F \), and \(x \) is a hyper-special point, then we prove in [10] §3 that \(G_{x,r} \) is definable for all \(r \geq 0 \). The same proof (which relies on the split case and taking Galois-fixed points) works in the case when \(G \) is ramified over \(F \), \(x \) is a special point, and \(r > 0 \), but fails for \(r = 0 \) since Galois descent no longer works. This is exactly the reason that the question whether the canonical measure is motivic is open in the ramified case. We also prove in [10] §3 that for \(x \) an optimal point in the alcove (in the sense of the definition by Adler and DeBacker, [4]), \(G(F)_{x,r} \) is definable for \(r > 0 \), and for all \(r \geq 0 \) if \(G \) is unramified over \(F \), and therefore the \(G \)-domain \(G(F)_r \) is definable. We also prove the corresponding results for the Lie algebra. We note that the first results on definability of \(G(F)_{x,0} \) in some special cases appeared in [13].

5.3. Orbital integrals and their Fourier transforms. There are two ways to think of an orbital integral: as a distribution on the space \(C_c^\infty(G(F)) \) of locally constant compactly supported functions on \(G(F) \) (or, respectively, on the Lie algebra), or to fix a test function \(f \) on \(G(F) \) (respectively, on \(g(F) \)), and consider the orbital integral \(\mathcal{O}_X(f) \) (respectively, \(\mathcal{O}_X(f) \)) as a function on \(G(F) \) (respectively, on the Lie algebra \(g(F) \)).

The earliest results concerning definability of orbital integrals use the second approach: in [16], C. Cunningham and T.C. Hales prove that with \(f \) fixed to be the characteristic function of \(\mathcal{O}_F \) and if \(G \) is unramified, \(\mathcal{O}_X \) is a motivic function on the set of so-called good regular elements in \(g(F) \). In fact, they prove a slightly more refined result, giving explicitly the residue field parameters that control the
behaviour of this function. In [23], T.C. Hales proves that orbital integrals are motivic “on average”. Both of these papers pre-date the most general notion of a motivic function, and because of this, extra complications arise from having to explicitly track the parameters needed to define orbital integrals.

In order to be able to use the first approach to orbital integrals (as distributions), we define a notion of a “motivic distribution” (without this name, it first appears in this context in [8, §3]). We say that a distribution Φ is motivic if it is, in fact, a collection of distributions defined for each $F \in C_{M'}$ for some $M' > 0$, and for any suitable family $(f_a)_{a \in S}$ of motivic test functions indexed by a parameter a varying over a definable set S, there exists a motivic function g on S and an $M \geq M'$ such that $\Phi(f_a,F) = g(a)$ for all $F \in C_M$ and all $a \in S_F$, where by “suitable” we mean that $f_{F,a}$ is in the domain of Φ for all $F \in C_M$ and $a \in S_F$.

The most general current results on orbital integrals are:

1. Cluckers, Hales and Loeser prove in [11] that for G – unramified over F, and with f fixed to be the characteristic function of $g(O_F)$, $X \mapsto O_X(f)$ is a motivic function on the set of regular semisimple elements in $g(F)$. In fact, their method shows also that the orbital integrals of regular semisimple elements $X \in g(F)$ form a family of motivic distributions in the sense defined above, indexed by X.

2. Still under the assumption that G is unramified, in [31, §B.6], we prove that with a suitable normalization of measures, non-regular orbital integrals O_{γ} of tame elements (note that all elements are tame when the residue characteristic p is large enough), form a family of motivic distributions (i.e., they also depend on $\gamma \in G(F)$ in a definable way, thus showing that the orbital integrals are motivic in the sense of both approaches).

If the centralizer $C_G(\gamma)$ of γ splits over an unramified extension, our normalization of the measure coincides with the canonical measure on the orbit that one gets from the canonical measure on $C_G(\gamma)$: if $C_G(\gamma)$ is ramified, the motivic and canonical measures might differ by a constant not exceeding a fixed power of q. This result should easily generalize to the case when G is ramified as well (though one more constant from the measure on G would appear).

We also note that even though we state the result for orbital integrals on the group, since this is what is required for the estimates that are the main goal of [31 Appendix B], in the course of the proof we essentially prove the analogous statement for the Lie algebra as well.

3. It follows from the results of McNinch [27] and Jantzen [24] that the set of nilpotent elements N in the Lie algebra $g(F)$ is definable, cf [10 §4.1]. We prove in [10] §4 that nilpotent orbital integrals (on the Lie algebra) form a family of motivic distributions, indexed by the set of nilpotent elements N.

4. On the Lie algebra, one can consider the Fourier transform $\hat{O}_X(f) = O_X(\hat{f})$ of an orbital integral. By a theorem of Harish-Chandra in the characteristic zero case, and of Huntsinger [2] in positive characteristic, this distribution is represented by a locally constant function supported on the set of regular elements $g(F)^{\text{reg}}$. We will denote this function by $\hat{\mu}_X(Y)$. In [10] Theorem 5.7, Theorem 5.11] we prove that:
(a) For nilpotent elements X, $\tilde{\mu}_X(Y)$ is a motivic function defined on $\mathcal{N} \times \mathfrak{g}$.
(b) For regular semisimple elements X, $\tilde{\mu}_X(Y)$ is a motivic function defined on $\mathfrak{g}^{\text{reg}} \times \mathfrak{g}$.

5.4. Classification of nilpotent orbits, and Shalika germs. It is well-known that when the residue characteristic of the field F is large enough, there are finitely many nilpotent orbits in $\mathfrak{g}(K)$. Using Waldspurger’s parametrization of nilpotent orbits for classical Lie algebras [32, §1.6], it is possible to prove that these orbits are parametrized by the residue-field points of a definable set. This approach is carried out in detail for odd orthogonal groups in [19]. Alternatively, one can use DeBacker’s parametrization of nilpotent orbits that uses Bruhat-Tits theory. This approach is demonstrated for the Lie algebra of type G_2 (as well as for \mathfrak{sl}_n) in J. Diwadkar’s thesis [18].

Using both parametrizations of nilpotent orbits, and the explicit matching between them due to M. Nevins, [28], L. Robson proves in [30] that for \mathfrak{sp}_{2n}, Shalika germs are motivic functions, up to a “motivic constant”. More precisely, one of the main results of [21] is:

Theorem 11. Let $\mathfrak{g} = \mathfrak{sp}_{2n}$. Let \mathcal{N} be the set of nilpotent elements in \mathfrak{g}. Then

1. There exists a definable set $\mathcal{E} \subset \text{RF}^n$ (that is, having only residue-field variables), and a definable function $h : \mathcal{N} \to \mathcal{E}$, such that for every $d \in \mathcal{E}$, $h^{-1}(d)$ is an adjoint orbit, and each orbit appears exactly once as the fibre of h.

2. There exist a finite collection of integers $(a_i)_{i=0}^r$, a motivic function Γ on $\mathcal{E} \times \mathfrak{g}^{\text{reg}}$, and a constant $M > 0$, such that for $F \in \mathcal{C}_M$, for every $d \in \mathcal{E}_F$, the function $\left(q^{a_0} \prod_{i=1}^r \frac{1}{1-q^{a_i}} \right)^{-1} \Gamma_F(d, \cdot)$ is a representative of the Shalika germ on $\mathfrak{g}^{\text{reg}}$ corresponding to d.

In a different context of groups over $\mathbb{C}((t))$, a motivic interpretation of the subregular germ is given in E. Lawes’ thesis, [26].

5.5. Transfer factors and other ingredients of the Fundamental Lemma. In [11], the authors prove that transfer factors, weights, and other ingredients of the Fundamental Lemma are motivic functions.

5.6. Characters. So far, the only results on Harish-Chandra characters of representations have been restricted to the cases where the character can be related to an orbital integral. One of the fundamental problems is that the parametrization of supercuspidal representations via K-types (and the classification of the K-types due to J.-K. Yu and Ju-Lee Kim) uses multiplicative characters of the field, which cannot be easily incorporated into the motivic integration framework. Because of this, at present we do not have a way of talking about representations in a completely field-independent way. There are two partial results on characters of some representations in a suitable neighbourhood of the identity, where Murnaghan-Kirillov theory holds.

1. The main result of [20] can be expressed in modern terms as: the character of a depth-zero representation of Sp_{2n} or SO_{2n+1} is a motivic distribution (in the sense defined above) on the set of topologically unipotent elements.
For positive-depth so-called toral, very supercuspidal representations, it is shown in [8], that up to a constant, their Harish-Chandra characters are motivic exponential functions on a neighbourhood of the identity on which Murnaghan-Kirillov theory works, and an explicit parameter space (over the residue field) is constructed for these representations up to crude equivalence, where we identify two representations if their characters on this neighbourhood of the identity are the same.

However, thanks to Harish-Chandra’s local character expansion, extended to an expansion near an arbitrary tame semisimple element by J. Adler and J. Korman [3], one can prove results about characters, using motivic integration, even without knowing that they are themselves motivic functions. We give an example of such an application in the next section.

We note that proving that the coefficients of Harish-Chandra’s local character expansion are motivic is a question of the same order of difficulty as the question about the characters themselves, and so it is presently far from known.

6. Local integrability results in positive characteristic

Following Harish-Chandra (and using the modification by R. Kottwitz [31, Appendix A] for non-regular elements), for a semisimple element \(\gamma \in G(F) \), we define the discriminant

\[
D^G(\gamma) := \prod_{\alpha \in \Phi, \alpha(\gamma) \neq 1} |1 - \alpha(\gamma)|, \quad \text{and} \quad D(\gamma) := \prod_{\alpha \in \Phi} |1 - \alpha(\gamma)|,
\]

where \(\Phi \) is the root system of \(G \).

On the Lie algebra, define \(D(X) = \prod_{\alpha \in \Phi} |\alpha(X)| \). Following [25], we call a function \(h \) defined on \(g(F) \) nice, if it satisfies the following conditions:

- when extended by zero to all of \(g(F) \), it is locally integrable, and
- the function \(D(X)^{1/2} h(X) \) is locally bounded on \(g(F) \).

Similarly, call a function on \(G(F) \) nice, if it satisfies the same conditions on \(G(F) \), with \(D(X) \) replaced by its group version \(D(\gamma) \).

Combining the theorems of Harish-Chandra in characteristic zero with the Transfer Principles of [33] above, in [10] we obtain

Theorem 12.

1. For a connected reductive group \(G \) (defined via specifying a root datum), there exists a constant \(M_G^> > 0 \) that depends only on the absolute root datum of \(G \), such that for every \(F \in \mathcal{B}_{M_G} \), and every nilpotent orbit \(O \) in \(g(F) \), the function \(\hat{\mu}_O \) is a nice function on \(g(F) \).

2. There exists a constant \(M_G^{>\text{reg}} > 0 \) that depends only on the absolute root datum of \(G \), such that for \(F \in \mathcal{B}_{M_G^{>\text{reg}}} \), for every \(X \in g(F)^{\text{reg}} \), the function \(\hat{\mu}_X \) is a nice function on \(g(F) \).

Local character expansion, which is crucial for our next result, in large positive characteristic is proved by DeBacker [17] near the identity, and by Adler-Korman [3] near a general tame semisimple element. These results require an additional hypothesis on the existence of the so-called mock exponential map \(e \), discussed in [3], which we will not quote here; we note only that for classical groups one can take \(e \) to be the Cayley transform.
Theorem 13. Given an absolute root datum Ψ, there exists a constant $M > 0$, such that for every $F \in B_M$, every connected reductive group G defined over F with the absolute root datum Ψ, and every admissible representation π of $G(F)$, the Harish-Chandra character θ_π is a nice function on $G(F)$, provided that mock exponential map e exists for $G(F)$.

Finally, Theorem 12 also implies (thanks to a result of DeBacker) that Fourier transforms of general invariant distributions on $g(F)$ with support bounded modulo conjugation are represented by nice functions in a neighbourhood of the origin.

7. Uniform bounds for orbital integrals

In order to state the next result we need to introduce the notation for a family of test functions, namely, the generators of the spherical Hecke algebra. Assume that G is an unramified reductive group with root datum ξ. Let $K = G(O_F)$ be a hyperspecial maximal compact subgroup (where G is the smooth model associated with a hyperspecial point by Bruhat-Tits theory).

We have a Borel subgroup $B = TU$, and let A be the maximal F-split torus in T. For $\lambda \in X_*(A)$, let τ^G_λ be the characteristic function of the double coset $K\lambda(\pi)K$.

In [31, Appendix B], we prove, using Theorem 9,

Theorem 14. Consider an unramified root datum ξ. Then there exist constants $M > 0$, a_ξ and b_ξ that depend only on ξ, such that for each non-Archimedean local field F with residue characteristic at least M, the following holds. Let G be a connected reductive algebraic group over F with the root datum ξ. Let A be a maximal F-split torus in G, and let τ^G_λ be as above. Then for all $\lambda \in X_*(A)$ with $\|\lambda\| \leq \kappa$,

$$|O_\gamma(\tau^G_\lambda)| \leq q^a_\xi+b_\xi\kappa D^G(\gamma)^{-1/2}$$

for all semisimple elements $\gamma \in G(F)$.

It is sometimes useful to reformulate theorems of this type to make an assertion about a group defined over a global field. This is possible because given a connected reductive group over a global field F, there are finitely many possibilities for the root data of $G_v = G \otimes_F F_v$, as v runs over the set of finite places of F, and F_v denotes the completion of F at v. Here we give an example of one such reformulation, which proved to be useful in [31] (we also refer to §7 of loc.cit. for a more detailed explanation of the setting).

Theorem 15. Let G be a connected reductive algebraic group over F, with a maximal split torus A. There exist constants a_G and b_G that depend only on the global integral model of G such that for all but finitely many places v, for all $\lambda \in X_*(A_v)$ with $\|\lambda\| \leq \kappa$,

$$|O_\gamma(\tau^G_\lambda)| \leq q^a_G+b_G\kappa D^G(\gamma)^{-1/2}$$

for all semisimple elements $\gamma \in G(F_v)$, where q_v is the cardinality of the residue field of F_v.

References

[1] Jeffrey D. Adler and Stephen DeBacker, Some applications of Bruhat–Tits theory to harmonic analysis on the Lie algebra of a reductive p-adic group, Michigan Math. J. 50 (2002), no. 2, 263–286. MR1914065 (2003g:22016)
1. Murnaghan–Kirillov theory for supercuspidal representations of tame general linear groups, with appendices by Reid Huntsinger and Gopal Prasad, J. Reine Angew. Math. 575 (2004), 1–35. MR2097545 (2005j:22008)

2. Jeffrey D. Adler and Jonathan Korman, The local character expansion near a tame, semisimple element, Amer. J. Math. 129 (2007), no. 2, 381–403.

3. Nicolas Bourbaki, Variétés différentielles et analytiques. Fascicule de résultats, Hermann, 1967.

4. R. Cluckers, Presburger sets and p-minimal fields, J. of Symbolic Logic 68 (2003), 153–162.

5. R. and Comte and G. and Loeser, Lipschitz continuity properties for p-adic semi-algebraic and subanalytic functions, GAFA (Geom. Funct. Anal.) 20 (2010), 68–87.

6. Local metric properties and regular stratifications of p-adic definable sets, to appear in Commentarii Mathematici Helvetici, arXiv:0910.0799.

7. Raf Cluckers, Clifton Cunningham, Julia Gordon, and Loren Spice, On the computability of some positive-depth characters near the identity, Represent. Theory 15 (2011), 531–567.

8. Raf Cluckers, Julia Gordon, and Immanuel Halupczok, Integrability of oscillatory functions on local fields: transfer principles (2011), preprint. http://arxiv.org/abs/1111.4405.

9. Local integrability results in harmonic analysis on reductive groups in large positive characteristic (2011), preprint. http://arxiv.org/abs/1111.7057.

10. Raf Cluckers, Thomas Hales, and François Loeser, Transfer principle for the Fundamental Lemma, On the Stabilization of the Trace Formula (L. Clozel, M. Harris, J.-P. Labesse, and B.-C. Ngô, eds.), International Press of Boston, 2011.

11. Raf Cluckers and Immanuel Halupczok, Approximations and Lipschitz continuity in p-adic semi-algebraic and subanalytic geometry, Selecta Mathematica New Series 18 (2012), no. 4, 825–837.

12. Raf Cluckers and François Loeser, Constructible exponential functions, motivic Fourier transform and transfer principle, Annals of Mathematics 171 (2010), no. 2, 1011–1065.

13. Raf Cluckers and François Loeser, Constructible motivic functions and motivic integration, Invent. Math. 173 (2008), no. 1, 23–121.

14. Raf Cluckers, François Loeser, and Johannes Nicaise, Chai’s Conjecture and Fukubis properties of dimensional motivic integration, Algebra and Number Theory 7 (2013), no. 4, 893–915.

15. Clifton Cunningham and Thomas C. Hales, Good orbital integrals, Represent. Theory 8 (2004), 414–457 (electronic).

16. Jenk DeBacker, Homogeneity results for invariant distributions of a reductive p-adic group, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 3, 391–422 (English, with English and French summaries).MR1914003 (2003i:22019)

17. Jyotsna Mainkar Diwadkar, Nilpotent conjugacy classes of reductive p-adic Lie algebras and definability in Pas’s language, Ph.D. Thesis, University of Pittsburgh (2006).

18. Nilpotent conjugacy classes in p-adic Lie algebras: the odd orthogonal case, Canadian J. Math 60 (2008), 88–108.

19. Julia Gordon, Motivic nature of character values of depth-zero representations, Int. Math. Res. Not. 34 (2004), 1735–1760.

20. Julia Gordon and Lance Robson, Shalika germs are motivic. in preparation.

21. B. Gross, On the motive of a reductive group, Invent. Math. 130 (1997), 287–313.

22. Thomas C. Hales, Orbital integrals are motivic, Proc. Amer. Math. Soc. 133 (2005), 1515–1525.

23. Jens C. Jantzen, Nilpotent orbits in representation theory, Lie Theory: Lie algebras and Representations, 2004, pp. 1–212.

24. Robert E. Kottwitz, Harmonic analysis on reductive p-adic groups and Lie algebras, Harmonic analysis, the trace formula, and Shimura varieties, 2005, pp. 393–522. MR2192014 (2006m:22016)

25. Elliott Lawes, Motivic Integration and the Regular Shalika Germ (2003). Ph.D. Thesis, University of Michigan.

26. George J. McNinch, Nilpotent orbits over ground fields of good characteristic, Math. Ann. 329 (2004), no. 1, 49–85. MR2052969 (2005j:17018)

27. Monica Nevins, On nilpotent orbits of SL_n and Sp_{2n} over a local non-Archimedean field, Algebra and Representation Theory 14 (2011), 161-190.
[29] M. Presburger, *On the completeness of a certain system of arithmetic of whole numbers in which addition occurs as the only operation*, History and Philosophy of Logic 12 (1991), no. 2, 92–101.

[30] Lance Robson, *Shalika germs are motivic*, 2012. M.Sc. Essay, University of British Columbia.

[31] Sug Woo Shin and Nicolas Templier, *Sato-Tate theorem for families and low-lying zeroes of automorphic L-functions, with appendices by R. Kottwitz and J. Gordon, R. Cluckers and I. Halupczok*, preprint. http://arxiv.org/abs/1208.1945.

[32] Jean-Loup Waldspurger, *Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés*, Astérisque 269 (2001), vi+449.