Lacunarity Transition

Bartomeu Cucurull1, Marc Pradas1 and Michael Wilkinson1,2

1 School of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, England.
2 Chan Zuckerberg Biohub, 499 Illinois Street, San Francisco, CA94158, USA

Abstract.

Experiments investigating particles floating on a randomly stirred fluid show regions of very low density, which are not well understood. We introduce a simplified model for understanding sparsely occupied regions of the phase space of non-autonomous, chaotic dynamical systems, based upon an extension of the skinny bakers’ map. We show how the distribution of the sizes of voids in the phase space can be mapped to the statistics of the running maximum of a Wiener process. We find that the model exhibits a \textit{lacunarity transition}, which is characterised by regions of the phase space remaining empty as the number of trajectories is increased.

1. Introduction

Very small particles floating on a chaotically stirred liquid \cite{1,2} show regions where there is accumulation into regions of very high density, which are well described by fractal measures \cite{1,3}. These experiments also show regions of very low density, which were characterised in the paper by Larkin \textit{et al.} \cite{2}, but which are not yet well understood. Figure \ref{fig:1} illustrates the \textit{lacunarity} of these chaotic attractors, by plotting 10^7 trajectories of a dynamical system which mimics the motion of particles floating on the surface of a randomly stirred fluid (the equations defining the model are the same as those considered in \cite{4,5}, the model is precisely that considered in \cite{5} with compressibility parameter $\beta = 1/2$). The concept of \textit{lacunarity}, characterising the tendency of some complex sets to have sparsely populated regions, was introduced by Benoit Mandelbrot in his classic book on fractals \cite{6}, but its influence has not been as far-reaching as the fractal dimension. This is perhaps because there is not a single agreed definition of how lacunarity should be quantified: see \cite{7} and \cite{8} for a discussion of some definitions of lacunarity.

The fractal dimension concept has been extended to consider ‘multifractal’ measures, which are considered to have different scaling exponent α in the vicinity of each point, and with the set of points with exponent α being a fractal with dimension $f(\alpha)$ \cite{9,10}. If this model is valid, the function $f(\alpha)$ is obtained by a Legendre transform of the Renyi dimension, as discussed in \cite{9,10}. The extent to which our results
A model for particles floating on the surface of a randomly stirred fluid exhibits regions which are very sparsely occupied. This simulation represents the model discussed in [5] (with compressibility parameter $\beta = 0.5$ in the notation of that paper). We plot positions of $M = 10^7$ trajectories, at a representative large time, which were initially a uniform random scatter. Note that there are substantial voids, which contain no trajectories.

are consistent with this model is considered in our concluding remarks, section 6. A recent paper [11] considered sets arising as attractors of chaotic dynamical systems, and showed evidence that distribution of low densities has a power-law probability density function (PDF). The exponent was termed the lacunarity exponent. However, the model considered in that work was fundamentally different because its dynamics was many-to-one (as a result of folds or caustics), whereas here we consider a dynamical system which is invertible. The theoretical arguments supporting the power-law described in [11] are critically dependent upon the non-invertible nature of the systems which were considered there.

This paper will introduce and analyse a simple model for invertible, non-autonomous, chaotic dynamical systems, such as the surface flow of a chaotically stirred fluid. The model is an extension of the skinny bakers’ map, which is used as a minimal model for discussing fractality of chaotic attractors. Our model, which will be referred to as the strudel model, differs from the skinny bakers’ map in two respects. Firstly, unlike the skinny bakers’ map, it is invertible: there are no inaccessible regions of the phase space. Secondly, the discontinuities are introduced at random positions. Introducing this random element has two advantages. Firstly, it makes the phase
space statistically homogeneous. Secondly, the randomness facilitates our analysis of the system by enabling the use of statistical methods.

Here we describe sparse regions by considering the distribution of $M \gg 1$ trajectories, and considering the statistics of the size ϵ of the trajectory-free void surrounding an arbitrarily chosen point. We characterise the distribution of ϵ by determining how the expectation value of its logarithm, $\langle \ln \epsilon \rangle$ varies as a function of $\ln M$. We show that the distribution of $\ln \epsilon$ may be mapped to determining the running maximum of a Wiener process with drift.

At very large values of M there is a linear dependence: $\langle \ln \epsilon \rangle \sim -\gamma \ln M$, for some exponent γ, which depends upon the parameters of the model. We find that the value of γ is equal to zero for some regions. When γ becomes equal to zero, the voids in the distribution of trajectories are not filled when we add more trajectories, whereas the voids are filled by adding more trajectories when $\gamma > 0$. We say that the edge of the region where $\gamma = 0$ marks a phase transition, which we term the *lacunarity transition*.

Section 2 will introduce the strudel model, and describe its backward iteration as well as forward iteration. Section 3 discusses a succession of models for distribution of the void size ϵ, and section 4 discusses the lacunarity transition, where the distribution of ϵ changes abruptly in the limit as the number of trajectories M is increased. Section 5 discusses our numerical results, which show good agreement with the theory of section 3 despite the quite brutal coarse-graining approximations which are used. Section 6 contains some concluding remarks on the relation to earlier work and prospects for extension of the theory to more physically realistic models.

2. Strudel model

2.1. Definition of model

The skinny bakers’ map is a piecewise linear map, which mimics the stretch-and-fold action of a typical chaotic system. The unit square is stretched to twice its length in the x-direction, whilst being contracted by more than a factor of two in the y-direction. The stretched region is then cut into two halves which are placed in the upper and lower halves of the unit square. The unit square is, therefore, mapped into two rectangles, both of dimension $1 \times \beta/2$, where $\beta \in [0, 1]$. The resulting attractor is the Cartesian product of the unit interval and a fractal Cantor set. The fractal dimension of the attractor is $d = 1 + \ln 2/(\ln 2 - \ln \beta)$.

Our model is a variant of this skinny baker map, which we shall refer to as the *strudel model*. It is an invertible two-dimensional random dynamical system, which is designed to have regions of very low density, and to be simple enough to facilitate making analytical approximations to the distribution of sizes of empty regions. It also has the advantage that, by virtue of being a map rather than a flow, it is suited to efficient numerical work. The operation of the map is illustrated schematically by figure 2. The map depends upon two parameters, $p \in [0, 1]$ and $\beta \in [0, 1]$. It acts on a
Figure 2. Illustrating the action of the strudel map. At the first step, there is a continuous, piecewise linear transformation of the y-coordinate of the unit square, which maps a region of length $1 - p$ to length β. The lower edge of this region is at a random position, ϕ_n. This region is then stretched along the x-axis, to occupy a $2 \times 1/2$ rectangle. This rectangle is cut and the two halves are stacked back into the unit square.

point (x, y) in the unit square, as described by equations (1) and (2) below. In the first step, a unit square is subjected to a continuous, piecewise linear, transformation of the y component. The square is then stretched by a factor of 2 in the x-coordinate, and contracted by a factor of 2 in the y-direction. The $2 \times 1/2$ rectangle is then cut into two halves, which are moved back into the unit square.

To describe the transformation of the y-coordinate, we define a periodic function, $F(x) = F(x + 1)$ by specifying its values on $[0, 1]$ as follows:

$$
F(x) = \begin{cases}
\beta x & x \in [0, 1 - p] \\
\beta + \frac{1 - \beta}{p}(x + p - 1) & x \in [1 - p, 1]
\end{cases}.
$$

(1)

Also let n be the index of the iteration and let ϕ_n be a random number, uniform on $[0, 1]$, chosen independently at each iteration. Then we define the strudel map as follows:

$$
x_{n+1} = 2x_n \mod 1
$$

$$
y_{n+1} = \frac{1}{2} [F(y_n - \phi_n) + \text{int}(2x_n)] .
$$

(2)

If we set $\phi_n = 0$ and $p = 0$, this is the skinny baker map [12], which has empty regions which occupy a fraction $1 - \beta^N$ of the phase space after N iterations. When $p > 0$, there are no inaccessible regions, but as $p \to 0$ the density of some regions may be very small.

For completeness, we give expressions for the Lyapunov exponents of this model and its fractal dimensions. Small separations in the x-coordinate are doubled upon each iteration. If we also define

$$
\xi_1 = \ln \left(\frac{1 - \beta}{2p}\right) , \quad \xi_2 = \ln \left(\frac{\beta}{2(1 - p)}\right)
$$

(3)

then the logarithm of the small separation in the y-coordinate is incremented by either ξ_1 or ξ_2 with probability p or $1 - p$ respectively. The Lyapunov exponents are therefore

$$
\lambda_1 = \ln 2 , \quad \lambda_2 = p\xi_1 + (1 - p)\xi_2 .
$$

(4)

Of the Renyi dimensions, two are easily determined. If $p > 0$, the box counting dimension is $d_0 = 2$ because there are no inaccessible points. And the information
The distribution of points generated by this map is a random scatter in the x-direction, but highly inhomogeneous in the y-coordinate. An example is shown in figure 3. The striated texture of this image resembles the fine structure of the foliations shown in figure 1.

2.2. Pre-images

Consider the distribution obtained from $M \gg 1$ trajectories, which are initially uniformly scattered on the unit square, after $N \gg 1$ iterations. These end up uniformly scattered in the x-coordinate, but the values of the y-coordinate are highly inhomogeneous, as illustrated in figure 3. Let us sort the y-coordinates of the trajectories into ascending order. If we then pick a point at random, it can be placed inside a rectangular void, of dimensions $1 \times \epsilon$, with trajectories on the upper and lower edges. The values of the gap size ϵ in the y-coordinate are random variables. We can characterise the lacunarity of the distribution of trajectories by determining the PDF of ϵ, or by determining its statistics.

To understand the statistics of these void regions, notice that all of the pre-images of a void are also empty regions. If we follow the evolution backwards by N steps to the initial configuration, all of the pre-images are also empty. After n steps backwards, the
area of the pre-image of the $1 \times \epsilon$ rectangle is denoted by A_n, and the area of the initial empty region is A_N. Because the initial distribution is a random scatter of M points in the unit square, the probability of an area A in the initial configuration being empty is $P(A) = \exp(-MA)$, so that the probability of the area of the N step pre-image being a large multiple of $1/M$ is very small. This implies that the large gaps in the y-coordinate arise as a consequence of having small areas of the pre-image.

Let us consider the sequence of pre-images of a rectangular region of size $1 \times \epsilon$ which has its lower edge at y, after N steps backwards. To facilitate the discussion, we first obtain an expression for the pre-image of a point. The forward map is defined by equations (2), with $F(x)$ defined by (1). We define a function G that is the inverse of F:

$$G(F(x)) = x$$

that is

$$G(x) = \begin{cases} \frac{1-p}{\beta}x & x \in [0, \beta] \\ 1 - p + \frac{p}{1-p}(x - \beta) & x \in [\beta, 1] \end{cases} \quad (6)$$

We extend the definition of $G(x)$ to the whole real line as a periodic function with unit period. Noting that equation (2) implies that $\text{int}(2x_n) = \text{int}(2y_{n+1})$, we have $2y_{n+1} - \text{int}(2y_{n+1}) = F(y_n - \phi_n)$, so acting on this relation with G we obtain

$$y_n = \phi_n + G(2y_{n+1} - \text{int}(2y_{n+1})) \quad (8)$$

where we use the fact that $\phi = G(2y_{n+1}) = \text{int}(2y_{n+1})$. This has the nice feature that it is independent of the x_n coordinate. Also, because the function G has been constructed to be periodic with unit period, we can simplify further by applying the following backward iteration:

$$\tilde{y}_n = \phi_n + G(2\tilde{y}_{n+1}) \quad (9)$$

and recover the value of y_n by subtracting the integer part. The backward iteration of the x_n coordinate is a little more complicated: the pre-image of any vertical line which crosses the horizontal line $y = 1/2$ consists of two segments, with horizontal separation equal to one half. However, the pre-images of a rectangle always reduce in width by a factor of two with each iteration.

Consider the backward iteration of an $1 \times \epsilon$ rectangular region, where the lower and upper edges are two successive values of the y-coordinate after N iterations, differing by ϵ, with the lower edge at y_n. After N backward steps, this maps to a set of rectangular regions, each one of which has width $\Delta x = 2^{-N}$. The sum of the vertical extent of each fragment is $\Delta \tilde{y}$, which is iterated according to

$$\Delta \tilde{y}_n = G(2y_{n+1} + 2\Delta \tilde{y}_{n+1}) - G(2y_{n+1}) \quad (10)$$

starting with $\Delta \tilde{y}_N = \epsilon$. The pre-image of the $1 \times \epsilon$ rectangle is a set of rectangular regions of total area

$$A_n = 2^{-N} \Delta \tilde{y}_n \quad (11)$$
If $\epsilon \ll 1$, the iteration of y_n can be approximated by linearisation, so that after N steps of backward iteration the total vertical extent of the pre-image area is

$$\Delta \tilde{y}_N \sim 2^N \epsilon \prod_{i=1}^{N} G'(2^{y_n}) .$$

Thus $\Delta \tilde{y}_n$ typically grow under iteration, and the approximation (12) ceases to be valid when $\Delta \tilde{y}_n$ is of order one. When $\Delta \tilde{y}_n \gg 1$, we use the fact that

$$\int_0^1 dx \ G'(x) = 1$$

and conclude that $\Delta \tilde{y}_n 2^{-N}$ becomes independent of N for sufficiently large N. Given that $\Delta x_N = 2^{-N}$, this implies that the area A_N of the pre-image set approaches a constant as $N \to \infty$.

We note that the Lyapunov exponents for the backward propagation are different from the forward Lyapunov exponents. Defining $\tilde{\xi} = \ln 2G'$, we see that $\tilde{\xi}$ takes two possible values, which occur randomly and independently in the sequence of y_n values:

$$\tilde{\xi}_1 = \ln \left(\frac{2(1 - p)}{\beta} \right) \quad \text{probability } p_1 = \beta,$$

$$\tilde{\xi}_2 = \ln \left(\frac{2p}{1 - \beta} \right) \quad \text{probability } p_2 = 1 - \beta .$$

(14)

The Lyapunov exponents of the backward iterated map are then

$$\bar{\lambda}_1 = \beta \tilde{\xi}_1 + (1 - \beta) \tilde{\xi}_2 , \quad \bar{\lambda}_2 = -\ln 2 .$$

(15)

3. Model for distribution of void sizes

3.1. Representation in logarithmic variables

Consider the pre-image of a rectangular region of size $1 \times \epsilon$ after n backwards iterations. It is mapped to a set of rectangular regions of total area $A_n = \Delta x \times \Delta \tilde{y}$. While $\Delta \tilde{y}_n \ll 1$ its evolution is well approximated by

$$A_n \sim \epsilon \prod_{j=1}^{n} G'(2^{y_j})$$

(16)

where $G'(2^{y_j})$ takes one of two values, $(1 - p)/\beta$ or $p/(1 - \beta)$, with probabilities $p_1 = \beta$ or $p_2 = 1 - \beta$, respectively. After $\Delta \tilde{y}$ has grown to be of order unity, the area $A_n = \Delta x_n \Delta \tilde{y}_n$ of the pre-image set stabilises, at a value denoted by \bar{A}. The size of the open interval, ϵ, is determined by the condition that $\Delta \tilde{y}_n$ never exceeds unity, while the area of the pre-image reduces to $1/M$ or less.

It is convenient to use logarithmic variables:

$$X_1 = \ln \Delta x , \quad X_2 = \ln \Delta \tilde{y} .$$

(17)
The backwards evolution of X_1 is trivial, and the evolution of X_2 follows from equation (12): after N backwards steps we have

$$X_1 = -N \ln 2 \ , \quad X_2 = \ln \epsilon + N \sum_{j=1}^{N} \bar{\xi}_j \quad (18)$$

where the $\bar{\xi}_j$ take one of two values as specified by equation (14).

Note that the condition $\Delta \tilde{y} \leq 1$ corresponds to the constraint $X_2 \leq 0$. In terms of the logarithmic variables, the condition that $\bar{A} \leq 1/M$ is

$$X_1 + X_2 \leq -\ln M \ , \quad (19)$$

and the dynamical process describing the evolution of the pre-image is therefore a random walk in X_2, as a function of X_1. The initial condition is $(X_1, X_2) = (0, \ln \epsilon)$. The point moves to the left in (X_1, X_2) space by $\ln 2$ at each step. The motion proceeds until (19) is satisfied, and we choose the largest value of ϵ so that X_2 never exceeds zero. When $\Delta \tilde{y} = 1$, the area is $A_N = \Delta x \Delta \tilde{y} = 2^{-N}$, so that the number of backward iterations is

$$N = \frac{\ln M}{\ln 2} \quad (20)$$

(which achieves $\bar{A} = 1/M$) or greater (which results in a smaller pre-image). The trajectory in (X_1, X_2) space is illustrated in figure 4.
3.2. Modelling by Wiener process

Next we make a further approximation, which enables us to approximate the statistics of the void sizes by simple analytic formulae. The motion of X_2 as a function of X_1 defined by equation (18) is a biased random walk. It can be modelled as a Wiener process, $x(t)$ where $t \equiv -X_1$ and $x \equiv X_2$. This Wiener process has a drift velocity v and a diffusion coefficient D. The mean and variance of the change in x over one timestep, $\Delta t = \ln 2$, are $v\Delta t = p_1\bar{\xi}_1 + p_2\bar{\xi}_2$, and $2D\Delta t = p_1\bar{\xi}_1^2 + p_2\bar{\xi}_2^2 - v^2\Delta t^2$, so that

$$v = \frac{p_1\bar{\xi}_1 + p_2\bar{\xi}_2}{\ln 2} = \frac{\bar{\lambda}_1}{\ln 2} \quad (21)$$

and

$$D = \frac{1}{2\ln 2} \left[p_1\bar{\xi}_1^2 + p_2\bar{\xi}_2^2 - (p_1\bar{\xi}_1 + p_2\bar{\xi}_2)^2 \right] . \quad (22)$$

For each realisation of the Wiener process, we must determine the largest value of $x_0 = \ln \epsilon < 0$ such that if $x(t)$ starts at x_0, it remains negative for all times t up to

$$T = N \ln 2 = \ln M . \quad (23)$$

Alternatively, $-\ln \epsilon$ is the maximum value of a Wiener process $x(t)$ in the time interval $t \in [0, T]$. This is illustrated schematically in figure 5.

3.3. Estimate for mean value

Now let us estimate the mean value of $x_0 = \ln \epsilon$, using the Wiener process model. If the diffusion coefficient were $D = 0$, and $v > 0$, and we were to release a particle at $x_0 = -vT$, then it would reach $x = 0$ when $t = T$. In this deterministic case we would
have \(\langle x_0 \rangle = -vT \). On the other hand, if \(v = 0 \) we would expect that the maximum displacement would be of order \(\sqrt{DT} \). If diffusion is significant, but \(v \neq 0 \), we might, therefore, anticipate that

\[
\langle x_0 \rangle = -\sqrt{2DT} F(Y)
\]

where \(F(Y) \) is a function of a dimensionless variable

\[
Y = \frac{v}{\sqrt{2D}}
\]

and where \(F(Y) \sim Y \) as \(Y \to \infty \). In the Appendix we show that the function \(F(Y) \) is

\[
F(Y) = \Phi'(Y) + \Phi(Y) \frac{1 + Y^2}{Y} - \frac{1}{2Y}
\]

where

\[
\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} dy \exp(-y^2/2)
\]

is the cumulative distribution function of a Gaussian with unit variance. The limiting behaviours of \(F(Y) \) are

\[
F(Y) \sim \begin{cases}
Y & Y \gg 1 \\
\sqrt{\frac{2}{\pi}} & Y = 0 \\
\frac{1}{2|Y|} & -Y \gg 1
\end{cases}
\]

4. Lacunarity transition

We have proposed a theory for the statistic \(\langle \ln \epsilon \rangle \), where \(\epsilon \) characterises the size of a void region. In the limit as the number of trajectories \(M \) approaches infinity, the dimensionless variable \(Y \) defined by (25) is large, and (according to equations (24) and (28) the theory predicts that

\[
\langle \ln \epsilon \rangle \sim -v \ln M
\]

where \(v \) is given by equation (21), provided that \(v > 0 \). This is consistent with the typical size of \(\epsilon \) having a power-law dependence:

\[
\epsilon \sim M^{-\gamma}
\]

where the exponent is \(\gamma = v \). If \(\gamma < 1 \) this indicates that the voids are larger than would be expected for a random scatter of points, for which the separation of the ordered \(y \)-coordinates would be \(\epsilon \sim 1/M \).

In the case where \(v < 0 \), however, \(Y \to -\infty \) as \(M \to \infty \), and the theory predicts that \(\langle \ln \epsilon \rangle \) becomes independent of \(M \) as \(M \to \infty \), so that \(\gamma = 0 \) in regions where \(v < 0 \). There is indeed a region in the parameter space of our model where \(v < 0 \). In this case \(\langle \ln \epsilon \rangle \sim D/v \), which is independent of \(M \). This implies that when \(v < 0 \), there are voids in the distribution of trajectories which are not filled as we increase their number. The locus where \(v = 0 \) in the parameter space of the model \(\{p, \beta\} \in [0, 1]^2 \) represents a phase
transition, between a phase space which fills every region as $M \to \infty$ when $v > 0$, to one which has persistent voids when $v < 0$.

The value of v as a function of p for different choices of β is shown in figure 6(a). The line of the phase transition in the (p, β) parameter space is illustrated in figure 6(b).

5. Numerical simulations

We evaluated the values of $-\langle \ln \epsilon \rangle$, after $N = 100$ iterations of the map. We averaged $N_r = 500$ realisations of the map, and in each case we evaluated the set of void sizes ϵ using $K = 250$ evenly spaced initial points. The resulting expectation values of $\ln \epsilon$ are compared with the theoretical prediction, equations (24) and (26) in figure 7 for three different points in the parameter space of the model. The agreement between the simulations and equation (24) is excellent in one case ($\beta = 0.4$ and $p = 0.24$), but the other two cases show a small offset between the simulation and this theoretical prediction, which is approximately independent of M.

The values of the drift velocity and diffusion coefficient for the three cases illustrated in figure 7 are:

\[
\begin{align*}
\text{for } p = 0.08, \beta = 0.4 & \quad \Rightarrow \quad v = -0.2634 \ldots, \quad D = 1.4040 \ldots, \\
\text{for } p = 0.16, \beta = 0.4 & \quad \Rightarrow \quad v = 0.2840 \ldots, \quad D = 0.7373 \ldots, \\
\text{for } p = 0.24, \beta = 0.4 & \quad \Rightarrow \quad v = 0.5772 \ldots, \quad D = 0.4203 \ldots
\end{align*}
\]

(31)

When $v > 0$, the asymptotic behaviour as $M \to \infty$ is $\langle \ln \epsilon \rangle \sim -v \ln M$, whereas if $v < 0$, $\langle \ln \epsilon \rangle \sim D/v$. The data points in figure 7 all appear to be well approximated by a straight line when M is large. However, this figure also shows the $M \to \infty$ asymptotic behaviour as lines, and even for the largest values of M (up to $10 \times 2^{18} > 10^6$), the theoretical
Figure 7. Plots of $-\langle \ln \epsilon \rangle$ as a function of $T = \ln M$, for $\beta = 0.4$, with three different values of p. These data are compared with the theory, equations (24) and (26). The dotted lines are the asymptotes of the theory for very large values of M, showing that even 10^6 trajectories are not sufficient to explore the $M \to \infty$ limit.

expression is still far from these asymptotes. We conclude that the true asymptotic behaviour is not accessible even for the very large values of M which are explored in figure 7.

We also evaluated $\langle \ln \epsilon \rangle$ for 18 different values of M, namely $M = 4, 8, \ldots, 2^{19}$, for all values of p and β forming a lattice in the parameter space. (The lattice spacing was 0.075, with p taking values from 0.075 to 0.9 and β from 0.15 to 0.9, making 132 different points in the parameter space). For each of these 132×18 data points we determined v and D from the values of p and β and $T = \ln M$. We then computed $Y = v\sqrt{T/2D}$ and $Z = -\langle \ln \epsilon \rangle/\sqrt{2DT}$. Figure 8 is a scatterplot of Z against Y, compared with the function $F(Y)$, given by equation (26). There is a good scaling collapse of the scatterplot onto a single line, and this line is in good agreement with the function $F(Y)$.

6. Concluding remarks

Data from both physical and numerical experiments on non-autonomous chaotic systems indicate that there can be very sparsely occupied regions of phase space. These have previously been investigated for the case of systems which have folds or caustics [11], but in the case of systems with invertible dynamics there is very little previous work.

In this paper we considered a simple model, which is susceptible to analysis by mapping the problem to that of determining the running maximum of a biased diffusion process. The model system which we consider has uniform distribution of trajectories in its x-coordinate, but a highly non-uniform distribution of the y-coordinate, as illustrated in figure 3. We considered M trajectories with uniformly scattered initial points, after
Figure 8. Scatterplot of $Z = -\langle \ln \epsilon \rangle / \sqrt{2DT}$ as a function of $Y = v\sqrt{T/2D}$, for more than 10^3 different combinations of values of p, β and $T = \ln M$. These data are compared with the function $F(Y)$ (solid line), defined by equation (24).

N iterations of the map. A randomly chosen point (x, y) can be positioned in a rectangle of dimensions $1 \times \epsilon$, which contains none of the trajectories in its interior, but which does have one trajectory on its upper and lower edges. The statistics of the gap size, ϵ, provide a means to describe figure 3. We developed a theory for $\langle \ln \epsilon \rangle$, predicting that $\langle \ln \epsilon \rangle \sim -\gamma \ln M$ as $\ln M \to \infty$, where γ is a positive coefficient which depends upon the parameters of the model. This relationship is consistent with ϵ having a power-law relation to the number of trajectories, $\epsilon \sim M^{-\gamma}$, but (as illustrated by figure 7) the approach to this limiting power-law can be so slow that the exponent cannot be seen in numerical simulations.

As well as having a power-law dependence, $\epsilon \sim M^{-\gamma}$, in the limit as $M \to \infty$, there is a transient behaviour at finite values of M. We showed that this transient behaviour can be described quite accurately by a rather brutal approximation of the equations describing our model, replacing a random walk with a Wiener process.

We argued that varying parameters of this model system can cause a transition, from a phase in which γ is positive, to regions of parameter space in which it is zero. It is, however, difficult to observe a sharp phase transition upon varying parameters of the model, because the width of the transition region, where the limiting slope of the plot of $\langle \ln \epsilon \rangle$ versus $\ln M$ becomes established, increases as $\gamma \to 0$. Equations (24), (25) imply that the width of this transition region is $\ln M^* \sim D/v^2$, so that seeing the change of slope in the transition region required a very large number of trajectories, $M^* \sim \exp(2D/v^2)$.

In the introduction we mentioned that the concept of multifractal measures appears as if it may be relevant to our investigation. The power-law relation $\epsilon \sim M^{-\gamma}$
Lacunarity Transition

is consistent with the ‘multifractal’ model, in that it represents an exponent which characterises the dimension of the measure in the vicinity of a point. However, the exponent γ is the same for almost all points in the phase space, rather than different values of γ being realised on sets which have a fractal structure. Also, as illustrated in figure 7, the convergence towards a power-law as the number of trajectories increases can be so slow that it is not observable.

Figure 1 showed voids in the distribution of a physically interesting invertible, non-autonomous chaotic system. It is interesting to consider how the approach used on our simplified model can be extended to understand the distribution of the distance ε from a randomly chosen point to the nearest one of M trajectories in more general cases. As in the case of the simplified model that we have considered here, the simplest way to understand the statistics of ε is to propagate the dynamics backwards in time. All of the pre-images of this ε ball are also empty. In particular, the pre-image at time zero does not contain any of the initial random distribution of trajectories. Because the trajectories were assumed to be randomly scattered at time zero, the pre-image set at $t = 0$ is very unlikely to have an area which exceeds $1/M$ by a large factor.

Consider that form of the pre-images of a small ball of radius ε. The evolution of this set under backward time evolution is, at least initially, described by the linearisation of the flow. In many examples, including the case illustrated in figure 1, the pre-image of a ball is initially transformed into an ellipse with one principal axis increasing and the other one decreasing, such that the area is contracting. Eventually, the linearisation approximation fails, when the size of the larger principal axis of the ellipse approaches unity. Upon further backward propagation, the pre-image set is a string-like object, which eventually becomes foliated so that it covers the whole of the phase space with uniform density. When this happens, the area remains approximately constant as we propagate backwards in time, because the dynamics preserves the total area. This picture is quite analogous to our treatment of the strudel model, but the machinery of the calculations will be more complex. We expect to explore the generalisation to more complex dynamical systems in a subsequent paper.

Acknowledgements

MW acknowledges hospitality of the Chan-Zuckerberg Biohub, and discussions with John Hannay about different approaches to the derivation of equation (26). MP acknowledges financial support by the UK Engineering and Physical Sciences Research Council (EPSRC) through Grant No. EP/R041954/1.

References

[1] J. Sommerer and E. Ott, *Particles floating on a random flow: a dynamically comprehensible physical fractal*, Science, 359, 334, (1993).

[2] J. Larkin, M. M. Bandi, A. Pumir and W. I. Goldburg, *Power-law distributions of particle concentration in free-surface flows*, Phys. Rev. E, 80, 066301,(2009).
Appendix: Derivation of expectation value of maximum of Wiener process

In [14] there is an analysis of the solution of the advection diffusion equation, with drift velocity v and diffusion coefficient D. It is shown that the flux onto an absorbing point at \bar{x} from a source at $x = 0$, $t = 0$ is

$$ J(\bar{x}, t) = \frac{\bar{x}}{\sqrt{4\pi Dt^3}} \exp \left[-\frac{(\bar{x} - vt)^2}{4Dt} \right]. \quad (32) $$

The probability that a particle has a maximum excursion which is less than \bar{x} before time t is equal to the probability that it is not absorbed onto that surface, namely

$$ P(\bar{x}, t) = 1 - \int_0^t dt' J(\bar{x}, t'). \quad (33) $$

The corresponding probability density for \bar{x} is $p(\bar{x}, t) = \partial P / \partial \bar{x}$, so that the expectation value of \bar{x} is

$$ \langle \bar{x} \rangle = -\int_0^t dt' \int_0^\infty d\bar{x} \bar{x} \frac{\partial J}{\partial \bar{x}}(\bar{x}, t') = \int_0^t dt' \int_0^\infty d\bar{x} J(\bar{x}, t'). \quad (34) $$

That is, defining $Z = v \sqrt{t'/2D}$ and $Y = v \sqrt{t/2D}$,

$$ \langle \bar{x} \rangle = \frac{1}{\sqrt{4\pi D}} \int_0^t dt' \frac{1}{t'^{3/2}} \int_0^\infty d\bar{x} \bar{x} \exp \left[-\frac{(\bar{x} - vt')^2}{4Dt'} \right] $$

$$ = \frac{1}{\sqrt{2\pi}} \int_0^t dt' \frac{1}{t'^{3/2}} \int_{-\sqrt{2Dt'}}^{\sqrt{2Dt'}} d\omega \left[\sqrt{2Dt'} \omega + vt' \right] \exp \left(-\frac{\omega^2}{2} \right) $$
\[
= \sqrt{\frac{D}{\pi}} \int_0^t \frac{dt'}{\sqrt{t'}} \int_{-Z}^{\infty} d\omega \omega \exp \left(-\frac{\omega^2}{2} \right) + \frac{v}{\sqrt{2\pi}} \int_0^t \frac{dt'}{\sqrt{t'}} \int_{-Z}^{\infty} d\omega \exp \left(-\frac{\omega^2}{2} \right)
\]

\[
= \sqrt{\frac{D}{\pi}} \int_0^t \frac{dt'}{\sqrt{t'}} \exp \left(-\frac{Z^2}{2} \right) + v \int_0^t dt' \Phi(Z)
\]

\[
= \frac{4D}{v} \frac{1}{\sqrt{2\pi}} \int_0^Y dZ \exp \left(-\frac{Z^2}{2} \right) + \frac{4D}{v} \int_0^Y dZ Z \Phi(Z)
\]

\[
= \frac{2}{Y} \sqrt{2Dt} \left[\Phi(Y) - \frac{1}{2} + \frac{Y^2}{2} \Phi(Y) - \frac{1}{2\sqrt{2\pi}} \int_0^Y dZ Z^2 \exp \left(-\frac{Z^2}{2} \right) \right]
\]

\[
= \sqrt{2Dt} \left[\frac{2}{Y} \Phi(Y) - \frac{1}{Y} + Y \Phi(Y) - \frac{1}{Y\sqrt{2\pi}} (-Y \exp(-\frac{Y^2}{2}) + \sqrt{\frac{\pi}{2}} (2\Phi(Y) - 1)) \right]
\]

\[
= \sqrt{2Dt} \left[\Phi(Y)(Y + \frac{1}{Y}) + \Phi'(Y) - \frac{1}{2Y} \right]
\]

\[
= \sqrt{2Dt} F(Y)
\]

where \(F(Y) \) is the function specified in equation (26). There are other sources which could be used to obtain (24) and (26), for example a book by Borodin and Salminen ([15], see Part II, ch.2, eq. (1.1.4), p.250), although there is an error in the published formula.