Mycobacteria isolated from Angkor monument sandstones grow chemolithoautotrophically by oxidizing elemental sulfur

Asako Kusumi, Xian Shu Li† and Yoko Katayama*

Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan

INTRODUCTION

Many stone monuments suffer from various kinds of degradation; biodeterioration caused by algae, cyanobacteria, bacteria, archaea, fungi, and lichens is among the most destructive (Warscheid and Braams, 2000; Scheerer et al., 2009). The ancient structures of Angkor, Cambodia, one of the most famous cultural heritage sites in the world are suffering from serious biodeterioration. For example, the Bayon temple, known for its intricately carved bas-reliefs, are being lost due to exfoliation and the formation of biofilms, where sandstone flakes off in large, flat pieces, is also damaging historical cathedrals and churches in Europe (Hirsch et al., 1995).

Sulfur-oxidizing bacteria that excrete sulfuric acid are the dominant group of microorganisms involved in exfoliate weathering of sandstone at the Angkor site (Pochon and Jaton, 1967). However, sulfur-oxidizing bacteria have not been detected on the historic monuments in northern France. Therefore, they are considered to play a major role in stone decay only under warm and wet conditions (Warscheid and Braams, 2000), such as in Southeast Asia. The Angkor site has a tropical climate with high humidity. The density of sulfur-oxidizing microorganisms at Angkor, estimated annually using the most probable number (MPN) method, ranged from 10^1 to 10^10 MPN g⁻¹ of deteriorated stone sample over a 10-year period. This data indicated their possible involvement of sulfur-oxidizing microorganisms in the deterioration of sandstone in this area (Li et al., 2008).

Sulfur-oxidizing fungal strains, including Fusarium solani strain THIF01, have been isolated from the MPN-positive cultures inoculated with the deteriorated sandstone collected at Angkor monuments. Strain THIF01 exhibited both chemolithoautotrophic sulfur-oxidizing activity and chemooorganoheterotrophic growth using organic substances (Li et al., 2010). Strain THIF01 was able to degrade carbonyl sulfide (COS), the most abundant sulfur compound in the atmosphere, suggesting that ambient COS could provide a source of sulfur for fungi colonizing on stone surfaces. Thus, COS may also be a source of sulfur for sulfur-oxidizing bacteria.

Sulfur-oxidizing ability is a characteristic of many phylogenetically diverse bacteria, including members of the phyla Aquificae, Chlorobi, Proteobacteria, and Firmicutes (Friedrich et al., 2001). Knowledge of this diversity continues to expand. For example, chemolithoautotrophic thiosulfate-oxidizing bacteria that were isolated from rhizosphere soils were identified as belonging to five genera not previously known to be sulfur-oxidizers (Anandham et al., 2008). Furthermore, the well-known soil bacterium Bradyrhizobium japonicum strain USDA110 recently demonstrated the ability to grow chemolithoautotrophically, using thiosulfate as an electron donor (Masuda et al., 2010). Thus, the genes required for sulfur-oxidizing ability may occur in bacteria and fungi that are not currently known to be sulfur-oxidizing microorganisms.

In the present study, five strains of sulfur-oxidizing bacteria of the genus Mycobacterium (phylum Actinobacteria) were isolated from MPN-positive cultures inoculated with samples from Angkor monuments. All five isolates were able to grow both chemolithoautotrophically using elemental sulfur (S⁰) and chemooorganoheterotrophically using organic substances. Autotrophic growth with hydrogen (Lukins and Foster, 1963; Park and Decicco, 1974) and the ability to use either methanol or carbon monoxide as a sole source of carbon and energy has been reported for several mycobacteria (Park et al., 2003). Structural genes encoding a novel sulfur-oxidizing ability are being characterized in the present study.

To characterize sulfate-producing microorganisms from the deteriorated sandstones of Angkor monuments in Cambodia, strains of Mycobacterium spp. were isolated from most probable number-positive cultures. All five strains isolated were able to use both elemental sulfur (S⁰) for chemolithoautotrophic growth and organic substances for chemooorganoheterotrophic growth. Results of phylogenetic and phenotypic analyses indicated that all five isolates were rapid growers of the genus Mycobacterium and were most similar to Mycobacterium cosmeticum and Mycobacterium pallenii. Chemolithoautotrophic growth was further examined in the representative strain THIF03. When grown in mineral salts medium, strain THIF03 oxidized S⁰ to thiosulfate and sulfate; oxidation was accompanied by a decrease in the pH of the medium from 4.7 to 3.6. The link between sulfur oxidation and energy metabolism was confirmed by an increase in ATP. Fluorescence microscopy of DAPI-stained cells revealed that strain THIF03 adheres to and proliferates on the surface of sulfur particles. The flexible metabolic ability of facultative chemolithoautotrophs enables their survival in nutrient-limited sandstone environments.

Keywords: facultative sulfur-oxidizing bacteria, Mycobacterium, biodeterioration, Angkor monuments

Edited by: Thomas E. Hanson, University of Delaware, USA
Reviewed by: Masaharu Ishii, University of Tokyo, Japan
Koji Mori, National Institute of Technology and Evaluation, Japan

*Correspondence: Yoko Katayama, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
e-mail: katayama@cc.tuat.ac.jp

†Present address: Xian Shu Li, Division of Environmental Biotechnology, Fujimix Co., Ltd., 4-44-1 Kohoku-cho, Minato-ku, Nagoya-shi, Aichi 455-0067, Japan.

www.frontiersin.org May 2011 Volume 2 Article 104 1
form of ribulose 1,5-bisphosphate carboxylase/oxygenase were identified in *Mycobacterium* strain JC1 (Park et al., 2009). The role of assimilatory sulfur metabolism in the virulence, antibiotic resistance, and anti-oxidant defense of pathogenic *Mycobacterium* spp. has been examined (Schelle and Bertozzi, 2006). However, this is the first study to suggest a link between sulfur oxidation, energy production, and chemolithoautotrophic growth in the mycobacteria. The results have important implications for the role of sulfur-oxidizing bacteria in the deterioration of sandstone in Angkor site.

MATERIALS AND METHODS

SAMPLING OF DETERIORATED SANDSTONE

Sandstone samples were collected from deteriorated walls and near-ground sections of pillars at Angkor Wat, Bayon, and Phnom Krom temples, Angkor, Cambodia during August 2003. Details of the sampling sites and the densities of sulfur-oxidizing microorganisms, enumerated by the MPN method, were previously reported (Li et al., 2008).

ISOLATION OF SULFUR-OXIDIZING BACTERIA

Sulfur-oxidizing bacteria were isolated from MPN-positive cultures, grown in a liquid WS5 medium (3.0 g L$^{-1}$ KH$_2$PO$_4$, 0.2 g L$^{-1}$ (NH$_4$)$_2$SO$_4$, 0.5 g L$^{-1}$ MgSO$_4$ 7H$_2$O, 0.01 g L$^{-1}$ FeSO$_4$ 7H$_2$O, 0.25 g L$^{-1}$ CaCl$_2$ 2H$_2$O, 10 g L$^{-1}$ S$_0$, pH 5.0; Li et al., 2008). Oxidation of S_0 was monitored by measuring the decrease in pH of the culture medium, due to the production of sulfuric acid, with a pH meter (Twin pH, Type B-212, Horiba, Kyoto, Japan). Sulfur-oxidizing bacteria from the most dilute MPN-positive cultures were isolated on agar plates of WS5 medium (Li et al., 2010) by serial streaking, and the colonies were then transferred to agar plates of PYG medium (2.0 g L$^{-1}$ Polypepton (Nihon Pharmaceutical, Tokyo, Japan), 1.0 g L$^{-1}$ Bacto yeast extract (Difco Laboratories, Detroit, MI, USA), 0.5 g L$^{-1}$ glucose, pH 7.2) to which 15 g L$^{-1}$ of Bacto agar (Difco Laboratories) was supplemented.

MORPHOLOGICAL AND PHYSIOLOGICAL CHARACTERIZATION

Morphological characteristics of the cultured bacteria were observed after Gram-staining. Catalase and oxidase activities were determined for all isolates. Catalase activity was tested in liquid medium of WS5 at 30°C with reciprocal shaking for 9 day in liquid medium of WS5 at 30°C with reciprocal shaking at 120 rpm, in the dark. The cells were stained with 4,6-diamidino-2-hydrate (FLAAS, Sigma-Aldrich, MO, USA) was used to prepare the standard curve.

EXTRACTION AND MEASUREMENT OF ATP

To evaluate bacterial growth, ATP was measured by the bioluminescence method (Stanley and Williams, 1969). Strain THI503 was cultured as described in section Oxidation of S_0 by strain THI503 except for using WS5 medium. ATP was extracted as reported (Rakotonirainy et al., 2003) and assayed using ATP assay mix (FLAAM, Sigma-Aldrich, MO, USA) and a LUMI-COUNTER 700 (Microtec, Chiba, Japan) at room temperature. ATP disodium salt hydrate (FLAAS, Sigma-Aldrich, MO, USA) was used to prepare the standard curve.

DEGRADATION OF COS BY STRAIN THI503

Degradation of COS by strain THI503 was measured according to the procedure described by Kato et al. (2008). Strain THI503 was pre-incubated for 3 day in a test tube containing 10 mL of PYG medium, with reciprocal shaking at 120 rpm at 30°C in the dark. The pre-culture was then added to a 500-mL Sakaguchi flask containing 100 mL of PYG medium and incubated for 24 h.
Cells were collected by centrifugation at 5,000 \(\times \) g for 15 min, and then rinsed three times with autoclaved 25 mM phosphate buffer (PB, pH 7.0). The aqueous phase was discarded, and fresh PB was added to prepare the cell suspension. Volumes of 10 mL were dispensed into Pyrex test tubes (180 mm \(\times \) 18 mm), which were sealed with butyl rubber caps. We then added 11.5 \(\mu \)L 10.5% COS gas with \(\mathrm{N}_2 \) as the balance gas (Nissan Tanaka, Saitama, Japan) to headspace to make a final COS mixing ratio of 25 parts per million by volume (ppmv). As a control, 10 mL of sterile PB was dispensed into test tubes. A gas-tight microsyringe was used to obtain 50 \(\mu \)L of headspace gas, which was injected into a gas chromatograph (GC-14B, Shimadzu, Kyoto, Japan) with a flame photometric detector and a glass column packed with Porapak QS (50-80 mesh, Waters Associates, MA, USA) as described previously (Katayama et al., 1992). Organic carbon was measured by using a wet oxidation-non-dispersive infrared gas analyzer (Seto and Tange, 1980).

RESULTS

ISOlATION AND PHYLOGENETIC ANALYSIS OF SULFUR-OXIDIZING BACTERIA

Bacterial colonies on WS5 agar plates were around 0.1 mm in diameter, circular, entire, convex, and transparent. Five strains – THI501, THI502, THI503, THI504, and THI505 – were isolated from the deteriorated stone samples from the Angkor Wat, Bayon, and Phnom Krom temples (Table 1). On PYG agar medium, all isolates formed colonies within 3 days at 30\(^\circ\)C in the dark that were approximately 1 mm diameter, circular, smooth, entire, and convex. Color of the colonies of strains THI501, THI504, and THI505 were pale yellow, and that of strains THI502 and THI503 were creamy white. All isolates were catalase positive and oxidase negative. Microscopic observation revealed that all isolates were Gram-positive rods and acid-fast positive.

Phylogenetic analysis of 16S rRNA gene sequences showed that all isolates belonged to the rapid grower group of the genus *Mycobacterium* (Figure 1). Strains THI501, THI504, and THI505 were most closely related to *Mycobacterium pallens* (DQ370008; Hennessee et al., 2009), and strains THI502 and THI503 to *Mycobacterium cosmeticum* (AY449728; Cooksey et al., 2004). Because all isolates grew in both the mineral salts medium supplemented with \(\mathrm{S}^0 \) and the PYG medium, they were considered to be facultative chemolithoautotrophic bacteria.

SULFUR-OXIDIZING ABILITY OF STRAIN THI503

Strain THI503 was selected for further analysis because it originated in a deteriorated sandstone wall in the Bayon temple where sulfur-oxidizing microbes were found every year through the observation (Li et al., 2008). Epifluorescence microscopy of DAPI-stained cells showed that strain THI503 cultivated in WS5 liquid medium grew on the surface \(\mathrm{S}^0 \) particles (Figures 2A,B). Planktonic cells of strain THI503 were much less abundant than attached cells (data not shown). Growth of cells adhering to solid surfaces, particularly to insoluble substrates, such as \(\mathrm{S}^0 \), have been reported for *Thiobacillus thiooxidans* (now *Acidithiobacillus thiooxidans*; Schaeffer et al., 1963), *Ferrobasillus ferroxidans* and *Thiobacillus ferroxidans* (now *Acidithiobacillus ferroxidans*; Dugan and Lundgren, 1964; McGoran et al., 1969), and *Sulfobacillus acidocaldarius* (Brock et al., 1972; Shivers and Brock, 1973).

\(\mathrm{S}^0 \) is hydrophobic. When incubated with strain THI503 for 7 day, however, the sulfur became “wet” (Figure 2C) and easily diffused in the WS5 medium (Figure 2D), indicating that being covered with bacterial cells reduced its hydrophobicity. \(\mathrm{S}^0 \) in the non-inoculated tube remained floating on the medium, due to hydrophobicity (Figure 2E). Adherence of strain THI503 cells may promote solubilization of \(\mathrm{S}^0 \) and help the bacteria acquire nutrients (Knickerbocker et al., 2000). When strain THI503 was incubated in mineral salts medium with \(\mathrm{S}^0 \) as the sole energy source, the pH of the medium decreased from 4.7 to 3.6, and 1.1 ± 0.3 mol thiosulfate and 0.1 ± 0.1 mol sulfate accumulated in 50 mL culture after 22 day (Figure 3).

ATP MEASUREMENT

Estimating the growth of strain THI503 in mineral salts medium with \(\mathrm{S}^0 \) after DAPI staining and epifluorescence microscopy was difficult, because solid particles of \(\mathrm{S}^0 \) impeded microscopic observation and the cells adhered so tightly to the surface of \(\mathrm{S}^0 \) that detaching them was problematic. Therefore, an increase in ATP was used to confirm growth in the mineral salts medium, assuming that the energy was produced through the oxidation of \(\mathrm{S}^0 \). ATP reached a maximum of 300 pmol in 50 mL culture after 12 day (Figure 4). Control culture without added sulfur reached only around half that ATP concentration; the increased ATP probably derived from ~1 g L\(^{-1}\) \(\mathrm{S}^0 \) transferred from the pre-culture medium. By comparing to the reported data on the content of ATP in *Mycobacterium bovis* (1.014 fg per a colony-forming unit,

Table 1 | Phylogenetic affiliation by 16S rRNA gene sequences and some phenotypic characteristics of the five sulfur-oxidizing isolates.

Strain	Phylogenetic affiliation	Similarity (%)	Color of colony	Cell size, length \(\times \) width (μm)	Cell shape	Sampling site	Sampling location†
THI502	*M. cosmeticum*	1369/1369 (100)	Cream	1.2 × 0.5	Rod	P, AW	AW2
THI503	*M. cosmeticum*	1438/1438 (100)	Cream	0.8 × 0.4	Rod	W, BY	BYc
THI501	*M. pallens*	1415/1416 (99)	Pale yellow	1.1 × 0.8	Short rod	P, AW	AW1
THI504	*M. pallens*	1343/1350 (99)	Pale yellow	0.7 × 0.5	Short rod	W, PK	PK2
THI505	*M. pallens*	1415/1416 (99)	Pale yellow	0.8 × 0.6	Short rod	P, PK	PK3

†| near-ground sections of deteriorated pillars; W, deteriorated wall; AW, Angkor Wat; BY, Bayon; PK, Phnom Krom.

All strains were Gram positive, acid-fast positive, catalase positive, and oxidase negative.
tube. Total organic carbon from strain THI503 was estimated to be 1.62 mg C. By comparing to the reported data on the carbon content of cell in *Pseudomonas putida* (1.1 × 10^{-13} to 3.1 × 10^{-13} g of carbon cell^{-1}, Bratbak, 1985), bacterial cell in the test tube was calculated as 4.8 × 10^9 to 1.4 × 10^{10} cells and estimated COS degraded per cell per hour was estimated as 3.3 × 10^{-10} to 9.2 × 10^{-10} nmol COS cell^{-1} h^{-1}. Figure 5 showed that 25 ppmv COS was degraded by strain THI503, however, at ambient atmospheric levels (500 pptv; Torres et al., 1980; Bandy et al., 1992; Chin and Davis, 1995), COS was not degraded by strain THI503 under experimental condition used (data not shown).

DISCUSSION

Analysis of morphological and physiological characteristics indicated that all five strains isolated as sulfur-oxidizing bacteria were closely related to the genus *Mycobacterium*. Comparison of 16S rRNA gene sequences supported this conclusion (Figure 1; Table 1). All five strains isolated in the present study developed visible colo-

Figure 1 | Phylogenetic relationship between the five sulfur-oxidizing isolates and other rapid growing *Mycobacterium* species based on a comparison of their 16S rRNA gene sequences. A slow-growing species, *M. tuberculosis*, was included as the outgroup. GenBank accession numbers are shown in parentheses. Numbers at the branch nodes are bootstrap values per 1000 trials; only values greater than 50% are shown. The scale bar corresponds to 1% estimated sequence divergence. TTRG, thermostolerant rapid growers; RG, rapid growers.

CFU; Prioli et al., 1985), bacterial density in WS5-S medium was calculated to be 1.5 × 10^7 CFU tube^{-1} at the maximum of 300 pmol ATP (1.5 × 10^7 fg).
Mycobacterium spp. are known to produce sulfated metabolites, such as sulfated glycolipids (Mougous et al., 2002); however, a link between sulfur oxidation and energy metabolism has not been reported. Sulfates were found in most of the samples of the salts and deteriorated sandstones taken from Angkor Wat, Bayon, and Phnom Krom temples. The primary source of sulfur in deteriorated sandstone was assumed to be bat dropping, based on stable isotope analysis (Hosono et al., 2006). Since low concentrations of sulfur compounds can limit survival and growth of sulfur-oxidizing bacteria (Graff and Stubner, 2003; Anandham et al., 2008), the ability to switch between chemolithotrophy and chemoorganotrophy, or to use sulfur compounds by co-oxidation in addition to organic substrates, would be advantageous in nutrient-limited environments such as sandstone surfaces. Strain THI503 degraded COS when it was provided at 25 ppmv, but not at 500 pptv under the experimental conditions employed here. Considering that Mycobacterium spp. isolated from soils (Kato et al., 2008) and sulfur-oxidizing fungi isolated from deteriorated sandstones in Angkor site (Li et al., 2010) degraded COS at both high (30 ppmv) and ambient (500 pptv) levels, it is unclear whether strain THI503 can use COS as a sulfur source under ambient conditions. Experiments to test the utilization of other reduced sulfur compounds such as sulfide, thiosulfate, sulfite, and tetrathionate by these Mycobacterium spp. isolates are in progress.

Although pathogenic species have been reported in the rapid-growth group of Mycobacterium (Brown-Elliott and Wallace, 2002), none of the isolates were closely related to those species. All five isolates fell into either M. pallens or M. cosmeticum by 16S.
Kusumi et al. Mycobacteria oxidize elemental sulfur

rRNA sequences. *M. pallen* was isolated from a soil as a bacterium degrading polycyclic aromatic hydrocarbons (Hennessee et al., 2009); *M. cosmeticum* was isolated from a cosmetic and nail salon (Cooksey et al., 2004).

Strain THI503 achieved a density of around 1.5×10^7 CFU (50 mL culture)$^{-1}$ in mineral salts medium with S_0, with accumulations of 1.1 ± 0.3 mol thiosulfate and 0.1 ± 0.1 mol sulfate. The higher amount of thiosulfate suggests that the sulfate formed was rapidly used for biosynthesis in the sulfate-free medium, WSS-1. Although little is known about the oxidation of sulfur compounds in Gram-positive bacteria, activities of sulfur dioxygenase (SDO) and other relevant enzymes were reported for *Sulfobacillus thermosulfidooxidans* (Egorova et al., 2004; Rohwerder and Sand, 2007). In mesophilic Gram-negative sulfur-oxidizing bacteria, such as *Acidithiobacillus ferrooxidans* and *Acidithiobacillus thiooxidans*, S_0 is thought to be oxidized by SDO, resulting in the formation of sulfite: $\left[S + O_2 + H_2O \right] \rightarrow SO_4^{2-} + 2H^+$. Much of the sulfite is further oxidized to sulfate by the sulfite:acceptor oxidoreductase (SAR). The sulfite can also react abiotically with excess S_0 to produce thiosulfate. Another metabolic pathway of S_0 found in archaea is the formation of thiosulfate by sulfur oxygenase reductase (SOR): $5[\text{S}] + O_2 + 4\text{OH}^- \rightarrow \text{HSO}_4^- + S_2\text{O}_3^{2-} + 2\text{HS}^- + \text{H}^+$ (Chen et al., 2005). SOR activity results in the concomitant formation of sulfite and sulfide; the sulfite can either react abiotically with excess S_0 or be oxidized by SAR (Rohwerder and Sand, 2007). SOR genes have been identified in a novel mesophilic *Acidithiobacillus* sp. strain SM-1, as well as in archaea (Chen et al., 2007; Kletzin, 2008). Based on the higher accumulation of thiosulfate compared to sulfate, strain THI503 probably oxidizes S_0 by the SOR pathway. The search for a gene relevant to sulfur oxidation by strain THI503 is in progress.

CONCLUSION

The MPN approach used to isolate the bacterial strains reported here indicated that the sulfur-oxidizing microorganisms occurred at 10^3–10^4 cells g$^{-1}$ of deteriorated sandstone in the Angkor monuments. All five isolates were characterized as facultative chemolithoautotrophic sulfur-oxidizing bacteria by growth in both mineral salts medium with S_0 and chemoorgano heterotrophic PYG medium. The isolates were most closely related to *M. pallens* or *M. cosmeticum* by 16S rRNA gene sequence comparisons. Thus, the present study provides the first evidence of facultative chemolithoautotrophic sulfur oxidation with S_0 in the species of the genus *Mycobacterium*.

ACKNOWLEDGMENTS

The authors thank APSARA Authority and Ministry on Environment, Kingdom of Cambodia, for permission to collect stone samples from monuments and transport to Japan, and Plant Protection Station of Japanese Ministry of Agriculture, Forestry, and Fisheries, for permission to import the stone samples. This research was supported by Japanese Government Team for Safeguarding Angkor and by a Grant-in-aid for Scientific Research (No.19251001) from the Ministry of Education, Culture, Sports, and Technology of Japan. Assistance of Hideo Arai, and Ichita Shimoda in sampling is appreciated.

REFERENCES

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. *J. Mol. Biol.* 215, 403–410.

Anandham, R., Indiragandhi, P., Medhaiyan, M., Ryu, K. Y., Jee, H. J., and Sa, T. M. (2008). Chemolithoautotrophic oxidation of thiosulfate and phylogenetic distribution of sulfur oxidation gene (sorB) in rhizobacteria isolated from crop plants. *Res. Microbiol.* 159, 579–589.

Bandy, A. R., Thornton, D. C., Scott, D. L., Lakevich, M., Levin, E. E., and Driedger, A. R. III. (1992). A time series for carbonyl sulfide in the northern hemisphere. *J. Atmos. Chem.* 14, 527–534.

Bratbak, G. (1985). Bacterial bioluminescence and biomass estimations. *Appl. Environ. Microbiol.* 49, 1488–1493.

Brock, T. D., Brock, K. M., Bely, R. T., and Weiss, R. L. (1972). *Sulfolobus* sp. from a thermal spring in the northern hemisphere. *Appl. Environ. Microbiol.* 31, 148–153.

Brown-Elliott, B. A., and Wallace, R. J. Jr. (2002). Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. *Clin. Microbiol. Rev.* 15, 716–746.

Chen, Z.-W., Liu, Y.-Y., Wu, J.-F., She, Q., Jiang, C.-Y., and Liu, S.-J. (2007). Novel bacterial sulfur oxygenase reductases from bioreactors treating gold-bearing concentrates. *Appl. Microbiol. Biotechnol.* 74, 688–698.

Chin, M., and Davis, D. D. (1995). A reanalysis of carbonyl sulfide as a source of stratospheric background sulfur aerosol. *J. Geophys. Res.* 100, 8993–9005.

Cooksey, R. C., de Waard, J. H., Yakrus, M. A., Rivera, I., Chopite, M., Toney, S. R., Morlock, G. P., and Butler, W. Y. (2004). Chemical and physical characteristics of deteriorated sandstone in the Angkor monuments and transport to Japan, and Plant Protection Station of Japanese Ministry of Agriculture, Forestry, and Fisheries, for permission to collect stone samples from.
of ambient carbonyl sulfide by Mycobacterium spp. in soil. Microbiology 154, 249–255.

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.

Kletzin, A. (2008). “Oxidation of sulfur and inorganic sulfur compounds in Acidimans bainvaliensis,” in Microbial Sulfur Metabolism, eds C. Dahl and C. G. Friedrich (Berlin: Springer), 184–201.

Knickerbocker, C., Nordstrom, D. K., and Southam, G. (2000). The role of “blebbing” in overcoming the hydrophobic barrier during biooxidation of elemental sulfur by Thiothrix thiooxidans. Chem. Geol. 169, 425–433.

Lane, D. J. (1991). “16S/23S rRNA sequencing,” in Nucleic Acid Techniques in Bacteria – A Laboratory Manual, eds E. Stackebrandt and M. Goodfellow (New York: John Wiley & Sons), 115–175.

Li, X., Arai, H., Shimoda, I., Kuraishi, H., and Katayama, Y. (2008). Enumeration of sulfur-oxidizing microorganisms on deteriorating stone of the Angkor monuments, Cambodia. Microbes Environ. 23, 293–298.

Lin, S. X., Sato, T., Ooiwa, Y., Kusumi, A., Gu, J.-D., and Katayama, Y. (2010). Oxidation of elemental sulfur by Fusarium solani strain THIF01 harboring endobacterium Bradyrhizobium strain 41. Microb. Ecol. 60, 96–104.

Lukins, H. B., and Foster, J. W. (1963). Utilization of hydrocarbons and hydrogen by mycobacteria. Z. Allg. Mikrobiol. 3, 251–264.

Masuda, S., Eda, S., Ikeda, S., Mitsui, H., and Minamisawa, K. (2010). Thiolsulfate-dependent chemolithoautotrophic growth of Bradyrhizobium japonicum. Appl. Environ. Microbiol. 76, 2402–2409.

McGran, C. J. M., Duncan, D. W., and Walden, C. C. (1969). Growth of Thiobacillus ferrooxidans on various substrates. Can. J. Microbiol. 15, 135–138.

Mougeot, J. D., Leavell, M. D., Serenate, R. H., Leigh, C. D., Williams, S. J., Riley, L. W., Leary, J. A., and Bertozzi, C. R. (2002). Discovery of sulfated metabolites in mycobacteria with a genetic and mass spectrometric approach. Proc. Natl. Acad. Sci. U.S.A. 99, 17037–17042.

Park, S. S., and Decicco, B. T. (1974). Autotrophic growth with hydrogen of Mycobacterium gordonae and another scotochromogenic mycobacterium. Int. J. Syst. Bacteriol. 24, 338–345.

Park, S.-W., Hwang, E. H., Jung, H. S., Lee, J. H., Kang, B. S., Oh, J. I., and Kim, Y. M. (2009). Presence of duplicate genes encoding a phylogenetically new subgroup of form I ribulose 1,5-bisphosphate carboxylase/oxygenase in Mycobacterium sp. strain JCI DSM 3803. Res. Microbiol. 160, 159–163.

Park, S. W., Hwang, E. H., Park, H., Kim, J. A., Hio, J., Lee, K. H., Song, T., Kim, E., Ro, Y. T., Kim, S. W., and Kim, Y. M. (2003). Growth of mycobacteria on carbon monoxide and methanol. J. Bacteriol. 185, 142–147.

Pochon, J., and Jaton, C. (1967). The role of microbiological agencies in the deterioration of stone. Chem. Ind. 9, 1387–1389.

Prioli, R. P., Tanna, A., and Brown, I. N. (1985). Rapid methods for counting of Thiosulfate-dependent chemolithoautotrophs from extraction of mycobacterial adenosine triphosphate (ATP) determined by firefly luciferase assay. Tubercle. 66, 99–108.

Rakotonirainy, M. S., Héraud, C., and Lavérèine, B. (2003). Detection of viable fungal spores contaminating on documents and rapid control of the effectiveness of an ethylene oxide disinfection using ATP assay. Luminescence 18, 113–121.

Rohwerder, T., and Sand, W. (2007). Oxidation of inorganic sulfur compounds in acidophilic prokaryotes. Eng. Life Sci. 7, 301–309.

Saito, H., and Miura, K.-I. (1963). Preparation of deoxycyromonucleic acid by phenol treatment. Biochim. Biophys. Acta 72, 619–629.

Scheaffer, W. L., Holbert, P. E., and Umbrick, W. W. (1963). Attachment of Thiothrix thiooxidans to sulfur crystals. J. Bacteriol. 85, 137–140.

Scheurer, S., Ortega-Morales, O., and Gaylarde, C. (2009). Microbial deterioration of stone monuments – an updated overview. Adv. Appl. Microbiol. 66, 97–139.

Schelle, M. W., and Bertozzi, C. R. (2006). Sulfate metabolism in mycobacteria. ChembioChem 7, 1516–1524.

Seto, M., and Tange, I. (1980). Rapid and sensitive method for the determination of total organic carbon in soil by potassium persulfate-nondispersive infrared gas analyzer. Jap. J. Soil Sci. Plant Nutr. 51, 27–30 (in Japanese).

Shivvers, D. W., and Brock, T. D. (1973). Oxidation of elemental sulfur by Sulfobobus acidocaldarius. J. Bacteriol. 114, 706–710.

Stanley, P. E., and Williams, S. G. (1969). Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. Anal. Biochem. 29, 381–392.

Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.

Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

Torres, A. L., Maroulis, P. J., Goldberg, A. B., and Bandy, A. R. (1980). Atmospheric OCS measurements on project Gagmet. J. Geophys. Res. 85, 7357–7360.

Vince, E., Petit, N., and Verstraete, W. (2001). Analysis of the microbial communities on corroded concrete pipes – a case study. Appl. Microbiol. Biotechnol. 57, 776–785.

Warscheid, T., and Braams, J. (2000). Biodeterioration of stone: a review. Int. Biodeter. Biodegr. 46, 343–368.

Yaws, C. L. (1999). “Solubility in water and octanol-water partition coefficient,” in Chemical Properties Handbook: Physical, Thermodynamic, Environmental, Transport, Safety, and Health Related Properties for Organic and Inorganic Chemicals, ed. C. L. Yaws (New York: McGraw-Hill), 364–388.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 17 January 2011; accepted: 27 April 2011; published online: 10 May 2011. Citation: Kusumi A, Li XS and Katayama Y (2011) Mycobacteria isolated from Angkor monument sandstones grow chemolithoautotrophically by oxidizing elemental sulfur. Front. Microbiol. 2:104. doi: 10.3389/ fmicb.2011.00104

This article was submitted to Frontiers in Microbial Physiology and Metabolism, a specialty of Frontiers in Microbiology.

Copyright © 2011 Kusumi, Li and Katayama. This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided that the original authors and source are credited and other Frontiers conditions are complied with.