Projective normality of special scrolls II.

Luis Fuentes García* Manuel Pedreira Pérez

Authors' address: Departamento de Algebra, Universidad de Santiago de Compostela. 15706 Santiago de Compostela. Galicia. Spain. e-mail: pedreira@zmat.usc.es; luisfg@usc.es

Abstract: We study the projective normality of a linearly normal special scroll \(R \) of degree \(d \) and speciality \(i \) over a smooth curve \(X \) of genus \(g \). We relate it with the Clifford index of the base curve \(X \). If \(d \geq 4g - 2i - \text{Cliff}(X) + 1 \), \(i \geq 3 \) and \(R \) is smooth, we prove that the projective normality of the scroll is equivalent to the projective normality of its directrix curve of minimum degree.

Mathematics Subject Classifications (1991): Primary, 14J26; secondary, 14H25, 14H45.

Key Words: Ruled Surfaces, projective normality.

Introduction.

Let \(R \subset P^N \) be a linearly normal special scroll of genus \(g \), speciality \(i \) and degree \(d \). We know that \(R \) has an associated ruled surface \(\pi: S \rightarrow X \) with a linear system \(|H| = |X_0 + b f| \), such that \(R \) is the image of \(S \) by the map defined by \(|H| \) (see [1]). We study the projective normality of \(R \), or equivalently, the normal generation of the invertible sheaf \(O_S(H) \) on \(S \).

In the previous paper [3] we gave the bound \(d \geq 4g - 2i + 1 \) to reduce the problem of the projective normality of the special scroll \(R \) to the problem of the projective normality of the curve of minimum degree.

In this paper we improve this result by using the Clifford index of the base curve \(X \). We will prove the following theorem:

Theorem Let \(R \subset P^N \) be a smooth special linearly normal scroll of genus \(g \), degree \(d \) and speciality \(i \geq 3 \). Let \(X \) be the base curve of the scroll.

If \(d \geq 4g - 2i - \text{Cliff}(X) + 1 \), then:

1. \(R \) has an unique special directrix curve \(X_0 \). Moreover, \(X_0 \) is the curve of minimum degree, it is linearly normal and it has the speciality of \(R \).

2. \(R \) and \(X_0 \) have the same speciality respect to hypersurfaces of degree \(m \).

In particular the scroll is projectively normal if and only if the curve of

*Supported by an F.P.U. fellowship of Spanish Government
minimum degree is projectively normal.

We will see that this result is optimal. We also study the particular case of R being a cone. In this case the bound $d \geq 4g - 2i - \text{Cliff}(X) + 1$ is equivalent to the bound $d \geq 2g - 2h^1(L) - \text{Cliff}(X)$, that M. Green and R. Lazarsfeld gave in [6] for a line bundle L on a curve.

We refer to [1] for a systematic development of the projective theory of scrolls and ruled surfaces that we will use in this paper and to [2] to study the special scrolls. In the first section we recall some basic facts about the Clifford index of a curve, that we will use along the paper.

1 Preliminaries.

A geometrically ruled surface, or simply a ruled surface, will be a \mathbb{P}^1-bundle over a smooth curve X of genus $g > 0$. It will be denoted by $\pi : S = \mathbb{P}(\mathcal{E}_0) \longrightarrow X$. We will suppose that \mathcal{E}_0 is a normalized sheaf and X_0 is the section of minimum self-intersection that corresponds to the surjection $\mathcal{E}_0 \longrightarrow \mathcal{O}_X(e) \longrightarrow 0$, $\bigwedge^2 \mathcal{E} \cong \mathcal{O}_X(e)$ and $e = -\text{deg}(e)$ (see [3], V, §2 and [1]).

If $|H| = |X_0 + b|$ is a base-point-free linear system on a ruled surface S, $|H|$ defines a regular map $\phi_H : S \longrightarrow \mathbb{P}(H^0(\mathcal{O}_S(H)^\vee))$. The image of S is a scroll R. If ϕ_H is a birational map we say that S and H are the ruled surface and the linear system associated to the scroll R. We denote the image of a curve $C \subset S$ by $\overline{C} \subset R$. The curve X_0 is the curve of minimum degree of R. It is embedded by the linear system $|b + \mathfrak{t}|$ on X.

Let X be a smooth curve of genus $g \geq 2$. Let L be a line bundle on X. We define the Clifford index of L by:

$$\text{Cliff}(L) = \text{deg}(L) - 2(h^0(L) - 1)$$

The Clifford index of the curve X is defined by:

$$\text{Cliff}(X) = \min\{\text{Cliff}(L)/h^0(L) \geq 2, h^1(L) \geq 2\}$$

From this we have the following formula:

Lemma 1.1 If \mathfrak{b} is an effective special divisor such that $h^0(\mathcal{O}_X(\mathfrak{b})) \geq 2$ and $h^0(\mathcal{O}_X(\mathfrak{b})) \geq 2$ then

$$h^0(\mathcal{O}_X(\mathfrak{b})) \leq \frac{\text{deg}(\mathfrak{b}) - \text{Cliff}(X)}{2} + 1$$
By the Clifford Theorem, \(\text{Cliff}(X) \geq 0 \) with equality if and only if \(X \) is hyperelliptic; \(\text{Cliff}(X) = 1 \) if and only if either \(X \) is trigonal or a smooth plane quintic. Furthermore, if \(X \) is a general curve of genus \(g \) then \(\gamma = \left[\frac{g-1}{2} \right] \), and in any event \(\gamma \leq \left[\frac{g-1}{2} \right] \).

Note that if \(b \) is a divisor such that \(\mathcal{O}_X(b) \) provides the Clifford index of \(X \), the linear system \(|b| \) is base-point-free. In other case, if \(P \) is a base point of \(|b| \), then \(b - P \) is a divisor with a Clifford index less than \(\text{Cliff}(\mathcal{O}_X(b)) \).

2 Projective normality of a special scroll.

Proposition 2.1 Let \(R \subset \mathbb{P}^N \) be a special linearly normal scroll of genus \(g \), degree \(d \) and speciality \(i \geq 3 \). Suppose that \(R \) is not a cone. Let \(X \) be the base curve of the scroll.

If \(d \geq 4g - 2i - \text{Cliff}(X) + 1 \), then \(R \) has an unique special directrix curve \(X_0 \). Moreover, \(X_0 \) is the curve of minimum degree, it is linearly normal and it has the speciality of \(R \).

Proof: Let \(S \) be the ruled surface and \(|H| = |X_0 + b| \) the linear system corresponding to the scroll \(R \). Let \(\gamma = \text{Cliff}(X) \) be the Clifford index of \(X \).

Since \(R \) is special, it has a special directrix curve (see [2]) so the curve \(X_0 \) of minimum degree of the scroll verifies \(\text{deg}(b + \epsilon) \leq 2g - 2 \). Furthermore, we know that:

\[
d - 2g + 2 + i = h^0(\mathcal{O}_S(H)) \leq h^0(\mathcal{O}_X(b + \epsilon)) + h^0(\mathcal{O}_X(b)) \tag{1}
\]

and

\[
i = h^1(\mathcal{O}_S(H)) \leq h^1(\mathcal{O}_X(b + \epsilon)) + h^1(\mathcal{O}_X(b)) \tag{2}
\]

Because \(R \) is not a cone, \(h^0(\mathcal{O}_X(b + \epsilon)) \geq 2 \). We will prove that \(\text{deg}(b) \geq 2g + 1 \) and then we will apply the Proposition 2.3 of [3].

1. Suppose that \(h^1(\mathcal{O}_X(b + \epsilon)) \geq 2 \). Then we can apply the formula of Lemma 1.1 to the divisor \(b + \epsilon \).

If \(\text{deg}(b) \leq 2g \), then we also can apply the Clifford Theorem ([7], page 343) to the divisor \(b \). From the inequality (1) we obtain:

\[
d - 2g + 2 + i \leq \frac{\text{deg}(b + \epsilon) - \gamma}{2} + 1 + \frac{\text{deg}(b)}{2} + 1 = \frac{d - \gamma}{2} + 2
\]

and then \(d \leq 4g - 2i - \gamma \) which contradicts the hypothesis.

2. Suppose that \(h^1(\mathcal{O}_X(b + \epsilon)) \leq 1 \). By hypothesis \(i \geq 3 \), so \(h^1(\mathcal{O}_X(b)) \geq 2 \).
If \(h^0(\mathcal{O}_X(b)) \geq 2 \) we can apply the formula of Lemma 1.1 to the divisor \(b \) and the Clifford Theorem to the divisor \(b + e \). From the inequality (2) we obtain \(d \leq 4g - 2i - \gamma \) which contradicts the hypothesis.

If \(h^0(\mathcal{O}_X(b)) \leq 1 \), we have that:

\[
1 \geq h^0(\mathcal{O}_X(b)) = \deg(b) + 1 + h^1(\mathcal{O}_X(b)) \\
\geq \deg(b) - g + i
\]

Furthermore, by Nagata Theorem \[4\] we know that \(\deg(e) \leq g \), so:

\[
\deg(b + e) \leq \deg(b) + g \leq 2g - i + 1 \tag{3}
\]

On the other hand, from the inequality (1) we have:

\[
d - 2g + 2 + i \leq 1 + \deg(b + c) - g + 1 + h^1(\mathcal{O}_X(b + e)) \leq 1 + \deg(b + e) - g + 1 + 1
\]

and because \(d \geq 4g - 2i - \gamma + 1 \),

\[
\deg(b + e) \geq 3g - i - \gamma
\]

Now, replacing the above expression at inequality (3) we obtain:

\[
2g - i + 1 \geq 3g - i - \gamma \implies \gamma \geq g - 1
\]

but the Clifford index verifies \(\gamma \leq \left\lfloor \frac{g-1}{2} \right\rfloor \).

\[\blacksquare\]

Remark 2.2 The inequality and the condition \(i \geq 3 \) are optimal in the following way:

Given a non hyperelliptic smooth curve \(X \), let \(a \) be a divisor such that \(\mathcal{O}_X(a) \) provides the Clifford index \(\gamma \) of \(X \). Let us consider the ruled surface \(S = \mathbb{P}(\mathcal{O}_X \oplus \mathcal{O}_X(a - K)) \). The linear system \(|X_0 + Kf| \) on \(S \) is base-point-free and defines a birational map \(\phi_H \). Let \(R \) be the image of \(S \) by the map \(\phi_H \). The degree of \(R \) is \(d = 2g - 2 + \deg(a) \) and the speciality is \(i = 1 + g - \frac{\deg(a) + \gamma}{2} \geq 3 \). From this:

\[
4g - 2i - \gamma = 4g - 2 - 2g + \deg(a) + \gamma - \gamma = d
\]

However, the scroll \(R \) has two special directrix curves: \(X_0 \) and \(X_1 \) defined by the linear systems \(|a| \) and \(|K| \) respectively.

On the other hand, we can also take the ruled surface \(S = X \times \mathbb{P}^1 \) and the linear system \(|X_0 + Kf| \). In this case, the corresponding scroll \(R \) has degree \(d = 4g - 4 \) and speciality 2. Since \(X \) is non hyperelliptic, \(\gamma = \text{Cliff}(X) \geq 1 \) and \(d \geq 4g - 2i - \gamma + 1 \), but the scroll \(R \) has a one dimensional family of special directrix curves.

\[\blacksquare\]
Proposition 2.3 Let $R \subset \mathbb{P}^N$ be a special linearly normal scroll of genus g, degree d and speciality $i \geq 3$. Suppose that R is a cone. Let X be the base curve of the scroll.

If the unique singular point of R is the vertex and $d \geq 4g - 2i - \text{Cliff}(X) + 1$, then R is projectively normal.

Proof: We know that $S = \mathbb{P}(|O_X \oplus O_X(-b)|)$ is the ruled surface associated to R and R is given by the linear system $|X_1| = |X_0 + bf|$. Moreover, the degree of R is $d = \deg(b)$ and the speciality is $i = g + h^1(O_X(b))$ (see [1]).

It is clear that R is projectively normal iff $O_X(b)$ is normally generated (see [2]). Since the unique singular point of R is the vertex, the linear system $|b|$ is very ample. Moreover,

$$
\deg(b) = d \geq 4g - 2i - \text{Cliff}(X) + 1 = 2g - 2h^1(O_X(b)) - \text{Cliff}(X) + 1
$$

Thus, we can apply the Green-Lazarsfeld Theorem (see [3]) to the divisor b and we deduce that the cone is projectively normal. ■

Remark 2.4 Note that the condition $d \geq 4g - 2i - \text{Cliff}(X) + 1$ is optimal, because it is equivalent to the inequality $d \geq 2g - 2h^1(O_X(b)) - \text{Cliff}(X) + 1$ for the hyperplane section of the cone. This condition is the best possible for the projective normality of line bundles on curves (see [3]). ■

Theorem 2.5 Let $R \subset \mathbb{P}^N$ be a smooth special linearly normal scroll of genus g, degree d and speciality $i \geq 3$. Let X be the base curve of the scroll.

If $d \geq 4g - 2i - \text{Cliff}(X) + 1$, then:

1. R has an unique special directrix curve X_0. Moreover, X_0 is the curve of minimum degree, it is linearly normal and it has the speciality of R.

2. R and X_0 have the same speciality respect to hypersurfaces of degree m.

In particular the scroll is projectively normal if and only if the curve of minimum degree is projectively normal.

Proof: Let S be the ruled surface and $|H| = |X_0 + bf|$ the linear system corresponding to the scroll R. Let $\gamma = \text{Cliff}(X)$ be the Clifford index of X.

The first assertion is the Proposition 2.1. From the proof of this Proposition we also know that $\deg(b) \geq 2g + 1$.

To prove the second statement we will apply the Proposition 2.1 of [4]. We will see that:

$$
s(b + c, \ldots, b + c, b, \ldots, b) = 0 \text{ for all } i, \text{ with } 0 \leq i \leq k - 1
$$
Reasoning as in the proof of the Theorem 2.4 of [3] it is sufficient to see that
\(s(b, b + e) = 0 \) and in particular we only have to prove that (see Lemma 1.5 in [3]):

\[
h^1(O_X(b - (b + e))) < h^0(O_X(b + e)) - 1
\]

We distinguish two cases:

1. Suppose that \(h^1(O_X(-e)) \leq 1 \). It is sufficient to prove that \(h^0(O_X(b + e)) \geq 3 \). But this follows from the smoothness of the scroll:

 (a) If \(h^0(O_X(b + e)) = 0 \) the scroll is a cone.

 (b) \(h^0(O_X(b + e)) = 1 \) can not occur, because \(b + e \) is base-point-free.

 (c) If \(h^0(O_X(b + e)) = 2 \) the directrix curve of minimum degree is a line.

 Since the scroll is not rational, it must be a singular curve of the scroll.

2. Suppose that \(h^1(O_X(-e)) \geq 2 \):

 (a) If \(h^0(O_X(-e)) \leq 1 \), then by Riemann-Roch Theorem \(h^1(O_X(-e)) \leq g - e \). Moreover, we know that \(\text{deg}(b) \geq 2g + 1 \) and from this:

 \[
h^0(O_X(b + e)) - 1 = b - e - g + i \geq 2g + 1 - e - g + i > g - e \geq h^1(O_X(-e))
\]

 (b) If \(h^0(O_X(-e)) \geq 2 \) we can apply the formula of Lemma 1.1 to the divisor \(-e\):

 \[
h^0(O_X(-e)) \leq \frac{e - \gamma}{2} - 1, \text{ or equivalently, } h^1(O_X(-e)) \leq g - \frac{e + \gamma}{2}
\]

 Furthermore,

 \[
h^0(O_X(b + e)) - 1 = \text{deg}(b) - e - g + 1 + i - 1 = \text{deg}(b) - e - g + i
\]

 By hypothesis \(d \geq 4g - 2i - \gamma + 1 \), so \(2\text{deg}(b) - e \geq 4g - 2i - \gamma + 1 \) and \(\text{deg}(b) \geq \frac{4g - 2i - \gamma + 1 + e}{2} \). Then:

 \[
h^0(O_X(b + e)) - 1 \geq \frac{4g - 2i - \gamma + 1 + e}{2} - e - g + i \geq g - \frac{e + \gamma}{2} + \frac{1}{2} \geq h^1(O_X(-e)) + \frac{1}{2} > h^1(O_X(-e))
\]
References

[1] FUENTES, L.; PEDREIRA, M. The Projective Theory of Ruled Surfaces. Preprint. math.AG/0006204.

[2] FUENTES, L.; PEDREIRA, M. Canonical geometrically ruled surfaces. Preprint. math.AG/0107114.

[3] FUENTES, L.; PEDREIRA, M. Projective normality of special scrolls. Preprint. math.AG/0203257.

[4] NAGATA, M. On the self–intersection number of a section on a ruled surface. Nagoya Math. J., 37, 191-196 (1970).

[5] GREEN, M Koszul cohomology and the geometry of projective varieties. J. Differential Geometry 19 (1984), 125-171.

[6] GREEN, M; LAZARSFELD, R. On the projective normality of complete linear series on an algebraic curve. Invent. Math. 83 (1986), pp. 73-90.

[7] HARTSHORNE, R. Algebraic Geometry. GTM, 52. Springer–Verlag, 1977.

[8] LANGE, H.; MARTENS, G. Normal generation and presentation of line bundles of low degree. J. Reine Angew Math 356 (1985), pp. 1-18.