New examples of higher-dimensional minimal hypersurfaces

Sergienko Vladimir V. and Tkachev Vladimir G.

ABSTRACT. The main results of the paper are Proposition 3 and 4 which provide an effective way to construct minimal hypersurfaces in a Euclidean space. We demonstrate our technique by several new examples.

This note is English translation of an earlier note written by the authors (in Russian) in September 1999. The final version of the paper will be published somewhere else. The authors are grateful to Prof. Hojoo Lee (KIAS) for encouraging to complete and publish the present notes.

1. Introduction

It is well known that any classical solution $u(x) = u(x_1, \ldots, x_n)$ of the following equation

\[(1 + |Du|^2)\Delta u - \sum_{i,j=1}^n u_{x_i}u_{x_j}u_{x_i}x_{x_j} = 0,\]

where $u_{x_i} = D_{x_i}u$, gives rise to a minimal (zero mean curvature) hypersurface

$x_{n+1} = u(x), \quad x \in \Omega \subset \mathbb{R}^n$.

1.1. Minimal surfaces with ‘harmonic level sets’. In \[3\], \[4\] and \[5\], the authors studied and classified all zero mean curvature surfaces in the Euclidean and Minkowski spaces given implicitly by

\[M = \{x \in \mathbb{R}^3 : \text{Re} \ h(z) = F(x_3)\}, \quad z = x_1 + x_2\sqrt{-1},\]

where $h(z)$ is a holomorphic function of one complex variable. These surfaces were referred to as minimal surfaces with ‘harmonic level sets’ (\[5\]). More precisely, one has the following result in the Euclidean case.

Theorem A (\[3\]). The surface M defined by (2) is minimal if and only if $h'(z) = 1/g(z)$, where $g(z)$ satisfies

\[g''(z)g(z) - g'^2(z) = c \in \mathbb{R}.

Key words and phrases. minimal hypersurfaces, entire solution.

An updated version of a earlier preprint of 1999.
the catenoid \(g(z) = z \) \(h(z) = \ln z \) \(x_1^2 + x_2^2 = \cosh^2 x_3 \)

the helicoid \(g(z) = iz \) \(h(z) = -i \ln z \) \(\frac{x_2}{x_1} = \tan x_3 \)

a Scherk type surface \(g(z) = e^z \) \(h(z) = -e^{-z} \) \(\exp x_3 = \frac{\cos x_2}{\cos x_1} \)

a doubly periodic surface \(g(z) = \sin z \) \(h(w) = -\ln \tanh \frac{w}{2} \) \(\operatorname{cn}\left(\frac{kx_2}{k'}, k\right) = \frac{\sin x_2}{\sinh x_1} \)

\[\text{Table 1. Some partial solutions} \]

In this case, the function \(F \) is found by \(F''(t) + Y(F(t)) = 0 \), where \(Y(t) \) is well-defined by virtue of

\[\frac{\operatorname{Re} g'}{|g|^2} = -Y(\operatorname{Re} h(z)). \]

Remark. Notice that the resulting surface \(M \), if non-empty, is automatically embedded because

\[|\nabla f(x)|^2 = F'^2(x_1) + \frac{1}{|g(z)|^2} > 0, \]

where \(f(x) = F(x_1) - \operatorname{Re} h(z) \).

A simple analysis reveals that the only possible solutions of (3) are

(a) \(g(z) = az + b \),
(b) \(g(z) = ae^{bz} \), and
(c) \(g(z) = a \sin(bz + c) \), \(a^2, b^2 \in \mathbb{R} \) and \(c \in \mathbb{C} \)

which, in particular, yields:

2. The higher dimensional case

Let \(f = f(\xi) \) be of class \(C^2 \) in an open set of \(\mathbb{R}^N \). It is well known (see, for instance, [1]) that the non-singular zero-locus

\[M_f := f^{-1}(0) \cap \{ \xi : |Df(\xi)| \neq 0 \} \]

is a minimal hypersurface in \(\mathbb{R}^N \) if and only if

\[\Delta_1 f(\xi) = 0 \mod f(\xi). \]
Here
\[\Delta_1 f := |Df|^2 - \sum_{i,j=1}^{N} f_{\xi_i \xi_j} f_{\xi_i \xi_j} \]
is the mean curvature operator (in fact, the 1-Laplace operator) and the congruence
\[a(\xi) \equiv b(\xi) \mod c(\xi) \]
is understood in the sense that \(c(\xi) = 0 \) implies \(a(\xi) - b(\xi) = 0 \). Notice that the hypersurface is automatically embedded as a level set.

Below, we study a generalization of (2), i.e. the solutions \(f(\xi) \) of (4) having the form
\[f(\xi) = \text{Re} \ h(z) - F(t), \quad \xi = (z, t) \in \mathbb{C}^m \times \mathbb{R}^k = \mathbb{R}^{2m+k}, \]
where \(h(z) \) is a holomorphic function and \(F(t) \) is a function of class \(C^2 \). More precisely, recall that a function \(h(z) = h(z_1, \ldots, z_k) : \Omega \to \mathbb{C} \) is called holomorphic in \(\Omega \subset \mathbb{C}^n \), or \(h \in \mathcal{O}(\Omega) \), if \(D_{z_k} h(z) = 0 \) in \(\Omega \) for any \(k = 1, \ldots, m \), where
\[D_{z_k} = \frac{1}{2}(D_{x_k} - \sqrt{-1}D_{y_k}), \quad D_{\bar{z}_k} = \frac{1}{2}(D_{x_k} + \sqrt{-1}D_{y_k}) \]
and \(z_k = x_k + \sqrt{-1}y_k \in \mathbb{C}, k = 1, \ldots, m \). The reader easily verifies that the following fact holds true.

Proposition 1. Let \(h = h(z) \in \mathcal{O}(\Omega) \). Then
\[D_{x_k} \text{Re} \ h = D_{y_k} \text{Im} \ h = \text{Re} h'_{z_k}, \]
\[D_{x_k} \text{Im} \ h = -D_{y_k} \text{Re} \ h = \text{Im} h'_{z_k} \]
and
\[D^2_{x_i x_j} \text{Re} \ h = D^2_{x_i y_j} \text{Im} \ h = -D^2_{y_i y_j} \text{Im} \ h = \text{Re} h''_{z_i z_j}, \]
\[D^2_{x_i x_j} \text{Im} \ h = -D^2_{x_i y_j} \text{Re} \ h = -D^2_{y_i y_j} \text{Re} \ h = \text{Im} h''_{z_i z_j} \]

It follows from (6) that
\[|D_z h|^2 := \sum_{i=1}^{m} |h'_{z_i}|^2 = |D_{(x,y)} \text{Re} h|^2 = |D_{(x,y)} \text{Im} h|^2. \]

Proposition 2. Let \(f \) is defined by (5) and \(\mathcal{M}_f \neq \emptyset \). The surface \(\mathcal{M}_f \) is an (embedded) minimal hypersurface if and only if
\[\text{Re} \sum_{i,j=1}^{m} h'_{z_i z_j} h'_{z_i z_j} h'_{z_i z_j} \equiv -|D_z h|^2 \Delta F - \Delta_1 F \mod (F - \text{Re} h) \]
holds whenever
\[|D_{\xi} f|^2 = \sum_{i=1}^{m} |h'_{z_k}|^2 + |D_{\xi} F|^2 \neq 0. \]

Proof. Under the non-singularity assumption (9), it suffices to show that (4) is equivalent to (8). To this end, we notice that by Proposition 1
\[f'_{x_i} = \text{Re} h'_{z_i}, \quad f'_{y_j} = -\text{Im} h'_{z_i}, \quad f'_{t_k} = -F_{t_k}. \]
Further, \(f_{x_i t_k}'' = f_{y_j t_k}'' = 0, \ f_{t_i t_j}'' = -F_{t_i t_j}'' \) and
\[
\begin{align*}
f_{x_i x_j}'' &= -f_{y_j y_i}'' = \text{Re} \ h_{z_i z_j}'', \\
f_{y_j y_i}' &= -f_{x_i x_j}'' = \text{Im} \ h_{z_i z_j}''.
\end{align*}
\]
This readily yields
\[
2m+k \sum_{i,j=1}^{m} f_{x_i x_j} f_{x_i x_j}'' = \text{Re} \sum_{i,j=1}^{m} h_{z_i z_j}' h_{z_i z_j}' - \sum_{i,j=1}^{k} F_{t_i t_j} F_{t_i t_j}''
\]
hence
\[
-\Delta_1 f = \sum_{k=1}^{m} |h_{z_k}'|^2 + |D F|^2 \Delta F + \text{Re} \sum_{i,j=1}^{m} h_{z_i z_j}' h_{z_i z_j}' - \sum_{i,j=1}^{k} F_{t_i t_j} F_{t_i t_j}''
\]
and the desired property follows. \(\square \)

3. Applications

3.1. The class \(\mathcal{T}^m \). Here we show some examples how Proposition 2 can be used to construct minimal hypersurfaces in \(\mathbb{R}^{2m} \).

Definition 1. We say that a holomorphic function \(h(z_1, \ldots, z_m) \) is \(\mathbb{R} \)-holomorphic equivalently write \(h \in \mathcal{T}^m \), if there exists a real valued function \(\mu : \mathbb{C}^m \to \mathbb{R} \) such that the relation
\[
(10) \sum_{i,j=1}^{m} h_{z_i z_j}' h_{z_i z_j}' = \mu(z) h(z)
\]
holds everywhere in the domain of holomorphy of \(h \).

It follows from the standard theory that if a function \(h \) is \(\mathbb{R} \)-holomorphic in some open set then it is \(\mathbb{R} \)-holomorphic everywhere in the domain of holomorphy. The importance of the introduced class follows from the proposition below.

Proposition 3. Let \(h(z) \in \mathcal{T}^m \). Then
\[
\mathcal{M}_{\text{Re} h} = \{ z \in \mathbb{C}^m = \mathbb{R}^{2m} : \text{Re} h(z) = 0, |D h(z)| \neq 0 \}
\]
is an embedded minimal hypersurface.

Proof. It follows from (10) that
\[
\text{Re} \sum_{i,j=1}^{m} h_{z_i z_j}' h_{z_i z_j}' = \mu(z) \text{Re} h(z),
\]
hence applying Proposition 2 to \(h(z) \) and \(F(z) \equiv 0 \) yields by (8) the required conclusion. \(\square \)

Though the case \(m = 1 \) is trivial (to get a non-trivial minimal hypersurface one need to have at least \(m = 2 \)), it still is very useful for the further constructions. We have the following complete classification of \(\mathcal{T}^1 \).
Proposition 4. Any element of \mathcal{F}^1 is either a binomial $h(z) = (az + b)^p$ or the exponential $h(z) = e^{pz}$, where $a, b \in \mathbb{C}$ and $p \in \mathbb{R}$.

Proof. Indeed, let Ω be the domain of holomorphy of $h(z)$. Then (10) yields
\[
\frac{|h''(z)|^2}{\mu(z)} = \frac{h''(z)h(z)}{h'^2(z)},
\]
where the right hand side is a meromorphic function in Ω, while the left hand side is real-valued in Ω. Thus, the both sides are constant in Ω, say equal to $c \in \mathbb{R}$. This yields $ch'^2(z) = h''(z)h(z)$, or $h'(z) = ch(z)^b$ for some real b. This yields the required conclusions. \square

The following proposition shows that \mathbb{R}-holomorphic functions have a nice multiplicative structure.

Proposition 5. Let $h(z) \in \mathcal{F}^m$ and $g(w) \in \mathcal{F}^n$. Then

(i) $ch(z)^r \in \mathcal{F}^n$ for any $c \in \mathbb{C}$ and $r \in \mathbb{R}$;

(ii) $h(z)g(w) \in \mathcal{F}^{m+n}$.

(iii) $h(z)/g(w) \in \mathcal{F}^{m-n}$.

Proof. Setting $H(z) := h(z)^r$ one easily verifies that
\[
\sum_{i,j=1}^{m} \overline{H'_{z_i}H'_{z_j}} = r^2 \sum_{i,j=1}^{m} (|h|^{2r-4}|D_z h|^4 + \mu |h|^{2r-2})h^r = \mu_1 H,
\]
with $\mu_1 = r^2 \sum_{i,j=1}^{m} (|h|^{2r-4}|D_z h|^4 + \mu |h|^{2r-2})$, obviously a real-valued function, thus yielding $h^r \in \mathcal{F}^m$. Similarly one justifies $ch \in \mathcal{F}^m$ which yields (i).

Further, we have
\[
\sum_{i,j=1}^{m} \overline{H'_{z_i}H'_{z_j}} = \mu h, \quad \sum_{\alpha,\beta=1}^{n} \overline{g'_{w_\alpha}g'_{w_\beta}} = \nu g,
\]
where $\mu(z)$ and $\nu(w)$ are real-valued functions. Therefore, setting $H(z, w) := h(z)g(w)$ one obtains
\[
\sum_{k,l=1}^{m+n} \overline{H'_{z_k}H'_{z_l}} = |g|^2 g \sum_{i,j=1}^{m} \overline{H'_{z_i}H'_{z_j}} + |h|^2 h \sum_{\alpha,\beta=1}^{n} \overline{g'_{w_\alpha}g'_{w_\beta}} + 2|D_z h|^2 |D_w g|^2 h g
\]
\[
= (\mu |g|^2 + \nu |h|^2 + 2|D_z h|^2 |D_w g|^2) H,
\]
yielding (i). Finally, setting $r = -1$ and $c = 1$ in (i) implies that $1/h(z) \in \mathcal{F}^n$, thus together with (ii) implies (iii). \square

3.2. Examples.

Example 1. A trivial example of a \mathbb{R}-holomorphic function is a linear function $h(z_1, \ldots, z_m)$, where $\mu \equiv 0$. The corresponding minimal hypersurface is a hyperplane in \mathbb{R}^{2m}. Another simple example of a \mathbb{R}-holomorphic function is (by Proposition 4) the function $h(z_1) = e^{z_1}$. It can be used to construct a highly non-trivial examples as Corollary 1 below shows.
Example 2. A less trivial example is and the quadratic form
\[h(z_1, \ldots, z_m) = z_1^2 + \ldots + z_m^2 \]
which satisfies (10) with \(\mu = 8 \). The corresponding minimal hypersurface is the Clifford cone
\[\text{Re} \, h(z) = x_1^2 + \ldots + x_m^2 - y_1^2 - \ldots - y_m^2 = 0. \]
Observe that the non-singularity condition
\[|Dz h|^2 = 4(|z_1|^2 + \ldots + |z_m|^2) \neq 0 \]
holds everywhere outside the origin of \(\mathbb{R}^{2m} \).

Example 3. Another interesting example is the cubic form
\[h(z) = \det \begin{pmatrix} z_1 & z_2 & z_3 \\ z_4 & z_5 & z_6 \\ z_7 & z_8 & z_9 \end{pmatrix} = z_1z_5z_9 - z_1z_8z_6 - z_2z_4z_9 + z_2z_7z_6 + z_3z_8z_4 - z_3z_5z_7 \]
in which case \(\text{Re} \, h(z) \) is an irreducible cubic form in \(\mathbb{R}^{18} \). It is straightforward to verify that \(\mu = 2 \sum_{i=1}^{9} |z_i|^2 \) in (10). The equation \(\text{Re} \, h(z) = 0 \) yields a known example of a cubic minimal hypercone in \(\mathbb{R}^{18} \) (see also [?], [?]). The corresponding Hsiang algebra (REC-algebra in terminology of [?]) is isomorphic to the Jordan algebra of Hermitian 3 \(\times \) 3-matrices over \(\mathbb{C} \).

Below we briefly demonstrate how to use Examples 1-5 and Proposition 5 to constructing new examples. For instance, we have the following construction of minimal hypersurfaces in odd-dimensional ambient spaces.

Corollary 1. Let \(h(z) \in \mathcal{I}^m \). Then
\[x_{2m+1} = \text{arg} \, h(z) \]
is a minimal hypersurface in \(\mathbb{R}^{2m+1} \).

Proof. Indeed, the function \(g(z_1, \ldots, z_m, z_{m+1}) := ie^{z_{m+1}}h(z_1, \ldots, z_m) \) is \(\mathbb{R} \)-holomorphic by Proposition 5 and Proposition 4. Then
\[\text{Re} \, g = -e^{\text{Re} \, z_{m+1}}(\text{Re} \, h \sin \text{Im} \, z_{m+1} + \text{Im} \, h \cos \text{Im} \, z_{m+1}) \]
yields that \(\text{Re} \, g = 0 \) is equivalently defined by
\[\text{Im} \, z_{m+1} = -\arctan \frac{\text{Im} \, h}{\text{Re} \, h} = -\text{arg} \, h + C \]
for some real constant \(C \). It is easily seen that the latter equation is equivalent to (11) up to an orthogonal transformation (a reflection) of \(\mathbb{R}^{2m+1} \). \(\square \)

Example 4. Setting \(h(z_1) = z_1 = x_1 + ix_2 \), (11) becomes \(x_3 = \arctan x_2/x_1 \), i.e. the classical helicoid. More generally, one has the following minimal hypersurface:
\[x_{2m+1} = \text{arg}(z_1^{k_1} \ldots z_m^{k_m}), \quad k_i \in \mathbb{Z}. \]
Combining Example 2 and Proposition 5 yields.
Corollary 2. Let natural numbers p_i, $1 \leq i \leq m$, be subject to the GCD-condition $(p_1, \ldots, p_m) = 1$ and let $c \in \mathbb{C}^x$. Then the hypersurface
\[\text{Re}(cz_1^{p_1} \cdots z_m^{p_m}) = 0, \]
is minimal (in general singularly) immersed cone in $\mathbb{R}^{2n} \cong \mathbb{C}^m$.

Example 5. For $c = 1$, Corollary 2 yields exactly the observation made earlier by H.B. Lawson [2, p. 352]. For instance, when $m = 2$ one obtains the well-known infinite family of immersed algebraic minimal Lawson’s hypercones $\text{Re}(z_1^p z_2^q) = 0$, $(p, q) = 1$, in \mathbb{R}^4. The intersection of such a cone with the unit sphere S^3 is an immersed minimal surface of Euler characteristic zero of S^3 [2].

Example 6. For $c = \sqrt{-1}$, Corollary 2 one obtains minimal hypersurfaces in \mathbb{R}^{2m} of the following kind:
\[\sum_{i=1}^m p_i \arctan \frac{y_k}{x_k} = 0 \]
which obviously is an algebraic minimal cone in \mathbb{R}^{2m}.

3.3. Open questions. Concluding this short paper, we emphasize again, that many more examples can be constructed by combining Examples 1-5 and Proposition 5. An interesting and important question in this direction is how to classify all \mathbb{R}-holomorphic functions?

Even some particular results could be interesting. For instance, all the above examples are obtained from simplest elementary blocks $h = z$ and $h = e^z$ by products (ratios) and exponentiations. Is it true that \mathcal{F} is finitely generated?

References

[1] Wu-yi Hsiang, Remarks on closed minimal submanifolds in the standard Riemannian m-sphere, J. Differential Geometry 1 (1967), 257–267.
[2] H. Blaine Lawson, Jr., Complete minimal surfaces in S^3, Ann. of Math. (2) 92 (1970), 335–374.
[3] V. V. Sergienko and V. G. Tkachev, Minimal surfaces with harmonic level sets, preprint, Volgograd state University, Volgograd, 1998, p. 12 p.
[4] ______, Entire one-periodic maximal surfaces, The Mansfield-Volgograd Journal, Ed.: James York Glimm, Mansfield University of Pennsylvania, Mansfield, 2000, pp. 148–156.
[5] ______, Doubly periodic maximal surfaces with singularities, Siberian Adv. Math. 12 (2002), no. 1, 77–91.
[6] V.G. Tkachev, Minimal cubic cones via Clifford algebras, Complex Anal. Oper. Theory 4 (2010), no. 3, 685–700.
[7] ______, Cubic minimal cones and nonassociative algebras, (2014).

Department of Mathematics, Linköping University, 581 83 Linköping, Sweden

E-mail address: vladimir.tkatjev@liu.se