Evaluating Automatic Difficulty Estimation of Logic Formalization Exercises

Alexandra Mayn¹ and Kees van Deemter²

¹Department of Language Science and Technology, Saarland University
amayn@lst.uni-saarland.de

²Department of Information and Computing Sciences, Utrecht University
c.j.vandeemter@uu.nl

Abstract

Teaching logic effectively requires an understanding of the factors which cause logic students to struggle. Formalization exercises, which require the student to produce a formula corresponding to the natural language sentence, are a good candidate for scrutiny since they tap into the students’ understanding of various aspects of logic. We correlate the difficulty of formalization exercises predicted by a previously proposed difficulty estimation algorithm with two empirical difficulty measures on the Grade Grinder corpus, which contains student solutions to FOL exercises. We obtain a moderate correlation with both measures, suggesting that the said algorithm indeed taps into important sources of difficulty but leaves a fair amount of variance uncaptured. We conduct an error analysis, closely examining exercises which were misclassified, with the aim of identifying additional sources of difficulty. We identify three additional factors which emerge from the difficulty analysis, namely predicate complexity, pragmatic factors and typicality of the exercises, and discuss the implications of automated difficulty estimation for logic teaching and explainable AI.

1 Introduction

Mathematical Logic has applications in many domains, from Linguistics to Artificial Intelligence and Engineering. Over the last 5 years or so, these applications
have been acquiring added importance now that there exists a new focus on making algorithms in Artificial Intelligence transparent. One way in which this has been stated says: “The principle of transparency requires that any information and communication relating to the processing of those personal data be easily accessible and easy to understand, and that clear and plain language be used” (Parliament and of the European Union 2016).

For example, when multi-agent systems construct plans automatically, then the system should be able to “explain” (i.e., justify) why a certain solution was chosen, and perhaps even allow a user to modify the plan when she disagrees with the system’s justification. If the system used logic theorem proving to compute the plan, then the system’s explanation will typically involve an explanation of one or more formulas that occur in the proof (Oren et al. 2020). For example, the system might choose a particular crane to transport an object because “all other cranes are either faulty or otherwise occupied”, in which case it is this (universally quantified and disjunctive) information that needs to be conveyed to a user. Natural language – sometimes in combination with graphics – can offer a good way to convey this information to users, especially if these users are not familiar with Mathematical Logic; in this case Language Technology tools are sometimes used to produce automatic English “translations” of the formulas involved (Alonso et al. 2020).

When Mathematical Logic is used – in philosophy and linguistics, but also in the design of electronic circuits and in certain areas of Artificial Intelligence – there is often a need for logic teaching, which can be very challenging and time consuming. One type of exercise that is found across logic classrooms is “formalization” of natural language sentences. In such an exercise, the student gets to see a sentence or text in natural language (e.g., English) and is asked to produce a logic formula that expressed the same information as the sentence.

Mathematical Logic can take many shapes and forms, but its most frequent uses, in Artificial Intelligence and elsewhere, involve a formalism called First Order Predicate Logic (FOPL). FOPL is also the logic most often taught (e.g., Enderton 2001, Fitting 2012). When other logics are involved, these tend to be close variants of FOPL. Formalisation exercises require the student to have a thorough understanding of the meaning of FOPL. Formalisation is an interesting candidate for scrutiny because it taps into the students’ understanding of various aspects of logic, and there are a number of studies dedicated to this problem (see 2.3.1).

In order to maximize the effectiveness of logic teaching, it is important to gain an understanding of the factors that can sometimes cause logic students to struggle. Likewise, in Explainable AI, it is important to know where users struggle, because
this enables system designers to know what logic formulas are most in need of explanation.

In the present paper we will be engaged with algorithms that attempt to assess the difficulty level of a FOPL formula. The Background Section (Section 2) discusses the work on which our efforts build. Section 3 presents an empirical study that we conducted to evaluate the above-mentioned algorithms. Section 4 discusses the implications of our findings, and the way forward in this challenging area of research.

2 Background

A promising approach to assessing both the difficulty of a logic formula and the task of formalising a formula into natural language was proposed in Perikos et al. (2011, 2016, 2017), who introduce a tutoring system which is aimed at teaching FOL-formalization to students and providing detailed feedback. Their tutoring system (Perikos et al. (2016)) contains a difficulty estimation module based on an elaborate algorithm which takes both logic and natural language features into account. This difficulty module sorts formalization exercises into five difficulty classes, from very easy to advanced. The authors conduct an evaluation in which they ask three logic tutors to assign a set of test exercises to the five difficulty classes and find that the system’s ratings closely match those of human experts, with the F-measure ranging from 0.89 to 1 for each of the five classes. These results appear to be very encouraging; however, we believe that one should be careful when interpreting them. Teachers are not always accurate in assessing exercise difficulty, sometimes overestimating the difficulty of questions which are easy for students, and vice versa (see van de Watering and van der Rijt (2006) for a review). Therefore, it is worthwhile to investigate how the difficulty predictions of the system relate to an empirical, performance-based metric of difficulty.

We address this question by using data from the well-known Grade Grinder Corpus (Barker-Plummer et al. (2011a)), a resource that contains hundreds of thousands of student submissions to 274 FOL-formalization exercises. In a nutshell, we correlated the difficulty predicted by the system by Perikos et al. (2016) with two empirical difficulty measures, proportion of students who solved the exercise correctly on their first attempt, and the average number of attempts before the correct solution. We obtained a moderate correlation with both measures, suggesting that the algorithm used by Perikos et al. (2016)’s system indeed taps into important sources of difficulty but leaves a fair amount of variance uncaptured.

More subtly, an automated assessment of the difficulty of a formula also allows designers to know what version of a given formula would be the best starting point for producing an English “translation” (Oren et al. (2020)).
We then conducted an error analysis, closely examining exercises that were misclassified, with the aim of identifying additional sources of difficulty. Based on this analysis, we propose a change to Perikos et al. (2016)’s way of calculating word order matching and discuss three additional factors which emerge from the difficulty analysis, namely predicate complexity, pragmatic factors and typicality of the exercises.

2.1 Perikos et al.’s Difficulty Estimation System

Perikos et al. (2016) developed a tutoring system meant to assist university instructors in teaching AI topics, including first order logic. The system can be used for practicing the task of formalizing sentences into first-order logic; it provides automatic feedback on erroneous solutions. Crucially, it includes a difficulty estimation module, which assigns each formalization exercise to one of five difficulty classes, from very easy to advanced. The difficulty score is obtained using a set of rules that rely on both natural language features (i.e., features of the English sentence to be formalized) and logic features (i.e., features of a FOL formula that formalizes the sentence). Let’s look at the logic features first.

Logic features include the number of implications, number of quantifiers, the presence of a universal or an existential quantifier, and the number of different connectives. Broadly speaking, the more of every feature there is, the harder the formula is judged to be. Table 1 contains the logic rules. For instance, if the formula in question is ∀x(\text{Cube}(x) \rightarrow \exists y \text{Next}(x,y)) (“Every cube is next to something”), it would be assigned to the class ’Difficult’ according to rule 10 because it contains 1 conditional (→) and both types of quantifiers.

The logic-based difficulty level is then combined with natural language features to produce the final exercise difficulty level. The natural language features are as listed below. For each of these features, if the feature is found then it adds to the difficulty of the formalization task.

- **Word order matching** penalizes mismatch between the formula and the corresponding sentence and is operationalized as the sum of the distances of the positions of the predicate and of the corresponding word in the natural language sentence.
- **Anaphoric pronouns** (such as ”it” or ”themselves”) are thought to contribute to difficulty because the student needs to map them back to their referents.
- **Negation** may lead to confusion because the student needs to decide whether the negated words cancel each other out or not.
Table 1: The logic-based difficulty rules from Perikos et al. (2016).
* stands for “any number”.

- **Special words or phrases** are a list of natural language expressions which were collected from the tutors which are argued to cause confusion, e.g. only or unless.

- **Connective mismatch** is based on the idea that certain words normally signal the use of a particular connective, and when that connective is absent from the formula, there is said to be a mismatch. For instance, if the sentence “Apples and oranges are fruits” is formalised as $\forall x((\text{apple}(x) \lor \text{orange}(x)) \rightarrow \text{fruit}(x))$, then the and corresponds to a logical disjunction.

- Similarly, **quantifier mismatch** emerges when a certain word invites the use of a particular quantifier but that quantifier is absent from the formula.

An important aspect of the proposed algorithm is thus that, given an English sentence in need of formalisation, it requires a reference formula to compute the logic features, as well as some of the language features. For example, when we discussed the above sentence “Apples and oranges are fruits”, we assumed that it has the reference formula $\forall x((\text{apple}(x) \lor \text{orange}(x)) \rightarrow \text{fruit}(x))$ and concluded there was a connective mismatch. But if the sentence has the reference formula $\forall x(\text{apple}(x) \rightarrow \text{fruit}(x)) \land \forall x(\text{orange}(x) \rightarrow \text{fruit}(x))$, there is no such mismatch.
Table 2: A subset of natural language feature-based difficulty rules from Perikos et al. (2016). * stands for “any number”. See the original paper for the whole table.

(though a word order mismatch appears in its place). In theory, there is an infinite number of equivalent formulas which can be used as the reference, potentially leading to a different difficulty score. The authors do not discuss the question of how to choose a reference formula for a given English sentence; our own investigations have used a corpus-based approach to this issue (see Section 3.1).

The authors conducted an evaluation of their system by asking three tutors to assign a difficulty level to a set of test sentences and correlating the tutor ratings with the system predictions. The system’s predictions closely matched the difficulty levels assigned by students, with the F-measure of the 5 classes ranging between 0.89 and 1. However, the fact that the system behaves similarly to the tutors does not necessarily mean that it makes accurate difficulty predictions. Speaking in general, there is evidence that teachers often give an inaccurate difficulty assessment to an exercise (van de Watering and van der Rijt, 2006). Moreover, since the rules of this particular system were obtained from logic teachers, it is perhaps unsurprising that logic teachers find them plausible. We therefore believe that another, additional type of evaluation is called for.

2.2 Grade Grinder Corpus

The Grade Grinder Corpus (Barker-Plummer et al. (2011a)) is a collection of student submissions to 274 FOL-formalization exercises. It includes over 4.5 million submissions by 55,000 students, which were submitted to the automatic grading system, Grade Grinder, as part of a logic course between 2001 and 2010. Of those exercises, 70% of students’ first attempts, and 83.4% of all attempts, are correct. Most of the remaining attempts are incorrect, but other answer types exist, such as missing and ill-formed answers. The exercises come from three domains. 222 of

\[\text{Table 2: A subset of natural language feature-based difficulty rules from Perikos et al. (2016). * stands for “any number”. See the original paper for the whole table.}\]
the 274 sentences are from the so-called Tarski’s World domain, which describes simple stylised objects, their geometric and size properties and their relationship to each other. Of the remaining sentences, 42 come from the pets domain, which describes pets and their owners, and 10 come from the number domain, which describes properties of numbers. Additionally, while the main task for all the exercises is formalization of sentences in FOL, the exact task type varies in the corpus. For instance, for some exercises, the students look at the picture of the world while formalizing them. For others, a skeleton translation is given and the student’s job is to fill in the missing parts. This is important to keep in mind since the exact task type might be a factor in exercise difficulty.

Some summary statistics regarding the complexity of the formulas contained in the corpus can be found in Table 3.

Table 3: Statistics relevant to the complexity of formulas contained in the Grade Grinder corpus.

	avg (sd)	min	max
quantifiers	1.29 (1.27)	0	7
connectives	2.27 (2.67)	0	21
different connectives	1.78 (0.93)	0	4
predicate arguments	1.62 (0.57)	1	4

2.3 Difficulty of logic and maths problems

Many studies have sought to understand the relation between human reasoning, which is resource bounded and involves all kinds of human misunderstandings and biases, and formal reasoning, which tends to rest on the “normative” idea of validity in mathematical logic (e.g. (Johnson-Laird, 1983)). Here we briefly review strands of this work that are relevant to our present endeavour, starting with studies that focussed on formalisation from Natural Language sentences.

2.3.1 Difficulty of logic formalization

Our own work is most closely related to studies that used the Grade-Grinder corpus to investigate factors that might contribute to formalization exercise difficulty.

Barker-Plummer et al. (2008) conducted a detailed analysis of incorrect formalisations that students had proposed for 20 sentences. The most frequent errors turned out to be antecedent-consequent reversal (where the natural language sentence confuses the antecedent with the consequent), and substitution of the con-
ditional for the bi-conditional. A follow-up study (Barker-Plummer et al. (2009)) considered the same set of 20 sentences and examined them in terms of two empirical measures of difficulty, namely the proportion of students who submitted an incorrect solution on their first attempt and the number of attempts it took students to correct an erroneous solution. They showed that, while correlated, these two measures do not tap into exactly the same concept because there are sentences which are easy to get wrong but easy to fix, and the other way around. Barker-Plummer et al. (2011b) studied the influence of type of information on difficulty and found that the interaction of visual and spatial features affects exercise difficulty. For instance, they showed that sentences containing spatial information were more difficult to formalize than sentences containing information about size and shape.

All of these studies were exploratory in nature. They did not involve algorithms for automatically quantifying the difficulty of a formalisation exercise. They also only look at a small portion of the Grade Grinder corpus. In the present study, we adopt the metrics used by Barker-Plummer et al. (2009) but we use the entire Grade Grinder corpus.

2.3.2 Difficulty of other types of problems

While difficulty of formalization exercises has been addressed by a number of studies, it is worthwhile to also examine the literature which looks at complexity estimation of other logic and math problems.

Some studies in this category still focussed on mathematical logic (though not on formalisation). In many cases, the focus was Description Logic, a class of formalisms often used for encoding formal ontologies (e.g. Baader et al. (2017)) It was found that subjects have trouble distinguishing formulas of the form $\neg \exists x (F(x))$ (“No object has F”) from those of the form $\exists x (\neg F(x))$ (“Some objects do not have F”) Rector et al. (2004), where the scope of the negation changes the meaning. The same authors also identified problems with Description Logic’s use of the \forall quantifier. For example, the Description Logic construct $\forall \text{ParentOf}.\text{Female}$ denotes the set of things such that all things they are parents of are female (i.e., the set of people who have no sons). This construct is often misunderstood as requiring the elements of this set to have at least one daughter (i.e., with existential import). These issues, and ways to address them by modifying the Description Logic formalism, have been studied further in Warren et al. (2019), where a useful overview of this area is offered.

Strannegård et al. (2013) conducted a study in which participants were asked to verify whether a given a first-order logic formula was true or false given a certain
model. They correlated participants’ response latency and accuracy with a number of logical as well as cognitive difficulty measures. Length of the proof needed to determine truth or falsity had the highest correlation with those measures, followed by working memory capacity.

Newstead et al. (2006) modeled the difficulty of problems from the reasoning section of the Graduate Record Examination (GRE), a test required for admission to many graduate schools in the United States and Canada. Their approach relied on variables like the complexity of the used rules, as well as the number of mental models (Johnson-Laird (1983)) required to represent the problem. They first conducted a pilot study to identify variables that should be included in their model, and then validated their model in a larger-scale experiment.

In order to identify factors contributing to the difficulty of mathematical problems, the studies discussed above define models and then correlate their predictions with empirical measures of difficulty, e.g. accuracy and latency the case of Strannegård et al. (2013). In our study, we apply a very similar method to empirically validate the sources of difficulty in logic formalization exercises that Perikos et al. (2016)’s algorithm relies on.

3 The present study

In this study, we correlate the difficulty scores assigned to the Grade Grinder exercises by Perikos et al. (2016)’s system with two measures of student performance. We then conduct an error analysis with the goal of identifying other important factors which contribute to exercise difficulty.

3.1 Evaluation using the Grade Grinder Corpus

Perikos’s rules do not cover the connective ↔ (“if and only if”, also known as equivalence), and the authors told us that their tutoring system did not contain any formalization problems with that connective, so we first filter out the 7 sentences which contain equivalence from the corpus.

For the remaining sentences, we calculate two empirical difficulty measures - the proportion of students who solved the exercise correctly on their first attempt (First Attempt Correct, FAC) and the average number of attempts among all students preceding the correct answer (Avg. Attempts, AA). We saw that AA included outliers with more than 26 attempts for some sentences, so in our calculation of AA we discarded submissions which were beyond three standard deviations from the mean number of attempts for each sentence. FAC is a real number between 0 and 1, AA is a real number between 1 and 6.11. These measures are
quite similar to those used in Barker-Plummer et al. (2009). Our two measures are very strongly correlated with each other ($r=-0.85$, $p<0.0001$), supporting the intuition that a more difficult sentence will as a rule be solved by fewer students correctly the first time and will also take more attempts to correct. However, we decided to keep both of these measures since they appear to not always tap into the same concept (see Barker-Plummer et al. (2009) for discussion).

We assigned a difficulty score to each exercise following the procedure outlined in Perikos et al. (2016). For assigning the difficulty score, a reference formula is required (see section 2.1). Since there are many equivalent correct answers, some of which might have different difficulty scores, we computed the difficulty score for each submission and averaged those individual scores to obtain a final difficulty score for the sentence. The difficulty score is thus a real number between 0 and 4.

We then correlated the difficulty scores with both performance metrics. The results are presented in Table 2. For all sentences, the difficulty level assigned by Perikos et al. (2016) is significantly moderately correlated with the performance metrics, with a stronger correlation with FAC, $r=-0.42$ than with AA, $r=0.33$. We hypothesized that task type might be a confounding factor, so we also calculated the same correlations for sentences in the two most common task types, looking at world and with world check. Indeed, the correlations with Perikos’s scores are stronger in this case, up to $r=-0.58$ for FAC and $r=0.51$ for AA for the looking at world task type.

We also calculated the correlation of the difficulty level assigned by Perikos’s system just based on the logic features, and for most conditions, the correlation was significantly worse (e.g. for all sentences, it was -0.37 and 0.23 for FAC and AA respectively). One interesting exception is the looking at the world subcondition, where the students looked at the picture describing the world in which the sentence was true while translating it: for that subcondition, using language-based features on top of the logic-based ones improved the correlation with AA (0.27 vs. 0.51, $t=10.72$, $p=0$ on a two-tailed paired correlations test) but not with FAC (-0.55 vs. -0.59, $p > 0.1$). It is not quite clear how to interpret this result; it might suggest that at least in some cases, the natural language phrasing of the exercise matters for how likely someone is to fix it once they got it wrong, but not so much for getting it correct the first time. In general, however, we observe a significant difference.

Alternatively, we could have taken the difficulty of the most preferred solution or the minimum difficulty.

Experimentation suggested that a change to these alternative metrics would only minimally affect the scores. Therefore, we decided not to complicate matters unnecessarily, proceeding as outlined above.
contribution of the NL features.

exercises	num sents	FAC	AA
all	274	-0.42	0.33
looking at world	90	-0.58	0.46
world check	87	-0.53	0.51

Table 4: Correlation of the average difficulty score assigned by Perikos et al. (2016)’s algorithm with empirical measures of difficulty, first attempt correct (FAC) and average number of attempts (AA) for the sentences in the Grade Grinder Corpus. All correlations are significant at \(p<0.0001 \).

Figure 1: First attempt correct (left) and average number of attempts (right) vs. the difficulty score assigned by Perikos et al. (2016)’s system for all sentences. A general downward trend for FAC and an upward trend for AA (more difficult sentences are solved correctly the first time less often and take more attempts to solve) is apparent but the spread, especially around the difficulty classes 2 and 4, is quite large.

These results suggest that, at least on the GradeGrinder data, the difficulty estimation criteria proposed by Perikos et al. (2016) capture some important sources of difficulty. However, it also serves to make the point that expert evaluation does not always provide an accurate prediction of student performance.

We were interested to know which of the features in Perikos et al. (2016)’s algorithm have the biggest weight in determining difficulty. We trained a machine learning Random Forest-based regressor and used it to predict FAC and AA based on all 11 features in Perikos et al. (2016). We then extracted feature importances, and

4See Section 4.2 for a discussion of this qualification.
observed that number of quantifiers was the feature that the regressor assigned by far the most weight to, 0.34 and 0.58 out of 1 for FAC and AA respectively. Word order matching was second in importance, with the weights of 0.23 and 0.14 respectively for the two measures. The rest of the features were assigned quite small weights. We then correlated the (average) number of quantifiers (grouped into 5 levels using 1-dimensional k-means clustering in order to be comparable with Perikos et al. (2016)’s difficulty scores) for each submission with FAC and AA and obtained the scores of \(r = -0.4 \) and \(r = 0.32 \) respectively, which is comparable to and not significantly different from the correlations of those empirical metrics with Perikos et al. (2016)’s difficulty score. It is important to note that the number of quantifiers and Perikos et al. (2016)’s final difficulty class assignments also correlate very highly with each other at \(r = 0.87 \).

3.2 Error analysis

Having seen that Perikos et al. (2016)’s difficulty scores have a moderate correlation with the student performance metrics, we now examine concrete sentences which were misclassified more closely. We are interested in two cases: those which were assigned a high difficulty score but were actually easy to solve, as evidenced by a high FA and a low AA; and those which were classified as easy but in practice caused students difficulty, resulting in a low FA and a high AA.

3.2.1 Predicted difficult, actually easy

One example where the system’s prediction differed from the observed difficulty quite strikingly was Exercise 14.4.2, “There are exactly 3 cubes”. The average difficulty level assigned by the system was 3.73 out of 4. However, the students appeared to have very little trouble with it, with 93% of first attempts being correct and an average of only 1.13 attempts.

A reason might be familiarity: logic courses often pay much attention to formulas of this kind, because of the obvious importance that numbers (such as 3, for instance) have in mathematics. In fact the LPL textbook (Barwise et al. (2000)), which is used for the logic courses which employ Grade Grinder, contains an example solution of an extremely similar formalization exercise, “There are exactly 2 cubes”. To firm up this idea, we note that it has been shown in other areas of cognition that familiarity, even at the symbol level, has a positive effect on performance, and this positive effect increases with task difficulty (Shen et al. (2020)).

\(^5\)Results were very similar with XGBoost and Extra Trees.
Another telling example for which the difficulty was overestimated by the system is Exercise 11.16.4, “A large cube is in front of a small cube”. The most frequent correct solution is $\exists x(Cube(x) \land Large(x) \land \exists y(Cube(y) \land Small(y) \land FrontOf(x, y)))$, which is assigned the highest difficulty class by Perikos et al. (2016) because the order of predicates in the formula does not match the word order of the sentence. However, people don’t appear to have any difficulty with the order of conjuncts - indeed, swapping them in any way would result in an equivalent formula which would possibly be assigned a lower difficulty score by the system. We therefore hypothesized that the order of conjuncts and disjuncts shouldn’t matter for the total mismatch, but mismatches for non-transitive connectives, e.g. antecedent-consequent reversal, should. We therefore implemented an alternative version of the word order matching function which did not overcount such conjunct and disjunct mismatches. However, that did not result in a significant improvement in correlation with either FAC or AA, presumably because the contribution of word order matching to Perikos et al. (2016)’s final difficulty score calculation is so small, for example compared to num_quantifiers.

3.2.2 Predicted easy, actually difficult

We observed that there were fewer such cases - difficulty seems to be over- rather than underestimated by the system.

An interesting example is Sentence 7.18.2, from the Pet domain. The sentence to be formalized is as follows: “Max fed Folly at 2pm, but if he gave her to Claire then, Folly was not hungry five minutes later.” This translates to the following formula (in addition to other, logically equivalent answers):

$Fed(M, F, 2 : 00) \land (Gave(M, F, C, 2 : 00) \rightarrow \neg Hungry(F, 2 : 05))$.

Perikos et al. (2016)’s system assigns this sentence to the easiest difficulty class. However, only 65% of the students solve it correctly the first time and 2.27 attempts are needed on average. What are the sources of difficulty which aren’t captured? To answer that question, we look at the most frequent incorrect solutions, and the one that stands out and accounts for 19% of the 1214 incorrect solutions is the following:

$(Fed(M, F, 2 : 00) \land Gave(M, F, C, 2 : 00)) \rightarrow \neg Hungry(F, 2 : 05)$.

There is a bracketing error here, where the predicates representing feeding and giving are grouped together.

We believe that this is an error caused by pragmatics: world knowledge tells us that being hungry is related to feeding, not giving. So this error was supposedly made in an attempt to make sense of a pragmatically improbable sentence. This
illustrates pragmatic effects on FOL-formalization. Such effects would be quite
difficult to capture automatically but could be considered by the instructor when
creating or assigning exercises.

Another factor which might be at play here is readability. The sentence about
Folly is probably quite difficult to read. Barker-Plummer et al. (2011b) found
an effect of readability and informational complexity, which Perikos et al. (2016)
appears to account for only partially through features like anaphoric pronouns and
negation words.

We also see that the predicates in this exercise contain many arguments, indi-
cating a potentially more complex relation between arguments. We hypothesized
that the number of arguments in the predicates might be an important predictive
feature. To test this hypothesis, we fitted two sets of linear models - one with
just the difficulty class assigned by Perikos et al. (2016)’s system as the predictor
variable, and another where the average number of predicate arguments in the
solution is also included as a predictor. In each set, the dependent variable is one
of our empirical difficulty measures - FAC and AA. One-way ANOVA indicated
that in both cases, adding the number of predicate arguments as a predictor sig-
nificantly improved model fit (F(1) = 33.7, p < 0.0001 for FAC and F(1)=12.1, p
< 0.001 for AA). This suggests that the complexity of predicates in the formula is
a meaningful predictor of difficulty, which would lead to more accurate difficulty
estimations if incorporated in an automated estimation system like that of Perikos
et al. (2016).

4 Discussion

4.1 Discussion of the findings

In this study, we evaluated the complexity estimation algorithm for logic formal-
ization exercises proposed by Perikos et al. (2016) using two metrics of student
performance on the Grade Grinder exercises (Barker-Plummer et al. (2011a)), pro-
portion of students whose first attempt at the exercise was correct (FAC), and the
average number of attempts needed to solve the exercise correctly (AA). We then
conducted an error analysis in order to identify additional sources of complexity
that the algorithm proposed by Perikos et al. (2016) didn’t account for.

The assigned difficulty classes correlated moderately with the empirical difficulty
metrics, with the highest correlations in the 0.5-0.6 range for subtasks of the same
type. These results can be regarded as quite good, yet they are very different
from those obtained using the expert evaluation reported in the paper (F1-score
in the range of 0.89 and 1). This shows that caution is in order when using only
expert evaluations because experts are not always able to accurately assess how difficult the material will be for learners, and that an expert evaluation should be accompanied by one with the actual target audience of the material.

Difficulty is a complex notion that can be defined in different ways, tapping into potentially different underlying concepts: we see that our metrics, FAC and AA, correlate quite strongly but not perfectly with each other ($r=0.85$) and moderately ($r=-0.41$ to -0.59 for FAC and $r=0.32$ to 0.51 for AA) with the difficulty scores assigned by Perikos et al. (2016)’s algorithm. Further investigation into what those underlying concepts are could be essential to creating better difficulty estimation algorithms.

Perikos et al. (2016)’s difficulty estimation system does identify some features that, taken collectively, contribute to difficulty, as indicated by their generally quite good correlation with the empirical performance metrics. Interestingly, however, most of the features in their algorithm appear not to contribute much: one feature, namely the number of quantifiers, appears to be by far the most important one, as evidenced by the fact that the correlation of the empirical metrics with just that one feature grouped into five levels is not significantly different from the correlation of those metrics with Perikos et al. (2016)’s final score using all features.

Our error analysis revealed some other interesting factors contributing to complexity. First, we saw that, like in language comprehension more generally (Grice (1975)), pragmatic factors play a role: if the sentence to be formalized is pragmatically improbable, the learner might make an error trying to make sense of that sentence. This idea would be very challenging to operationalize and to measure automatically; however, it could be borne in mind when developing or selecting exercises. Second, we saw that familiarity is a factor that influences difficulty: notably, students had no trouble with an exercise that was assigned the highest difficulty class by Perikos et al. (2016); closer investigation revealed that a practically identical exercise was explained in the chapter of the book used by the students in the course. A familiarity metric could be incorporated into the algorithm for determining difficulty by, for instance, comparing the exercise to those in the textbook and computing a similarity score. Finally, we saw that the average number of arguments of the predicates in the formula was a significant predictor of difficulty which improved on the system’s predictions, presumably because a larger number of predicates signals a more complex relation, which would also translate into a more complicated sentence.

Existing work has started to explore the relationship between the computational complexity of quantified logical formulas and the cognitive difficulty humans experience when processing those formulas. For example, McMillan et al. (2005)
showed that different brain regions are involved in processing sentences containing quantifiers which are recognized by finite state automata (FA), versus push-down automata (PDA), higher-order quantifiers. In a similar vein, Szymanik and Zajenkowski (2010) examined a more fine-grained quantifier subgrouping, that of quantifiers recognized by acyclic FAs, FAs with loops and PDAs, and found that reaction times of humans comprehending quantified sentences were significantly higher for quantifiers recognized by more complex automata. For example, sentences with the quantifier ”most” is harder than ones with the quantifier ”three”, and these were harder than ones with the quantifier ”at least one”).

We asked ourselves whether a similar pattern would emerge here - whether students would have less difficulty with exercises containing monadic formulas (i.e., formulas all of whose predicates have only one argument place) than with one that involve formulas of higher arity. Unfortunately, in the Grade Grinder corpus, there is only a very small number of monadic quantifiers (35 out of the 265 sentences we considered), and all of those are very simple along other dimensions (they all have only one quantifier and most of them have only 2 predicates), which makes them not directly comparable to the full FOL sentences. It would be interesting to examine whether exercises that correspond to monadic formulas tend to have different difficulty levels than other formulas when formulas are matched for length, for the number of predicates, and for the number of quantifiers. We imagine that that is likely to be the case, since the average number of predicate arguments in a formula turned out to be a significant feature in predicting exercise difficulty in our error analysis.

There are other possible sources of difficulty one could speculate about, which Perikos et al. (2016)’s algorithm doesn’t consider - one is the total number of different predicates: we suspect that a sentence like ”There are only three cubes” should be no more difficult than ”There is only one cube”, but because the former’s formalisation requires more quantifiers (since each one of the cubes has to be enumerated separately in the formula), it is nonetheless assigned a higher complexity.

Another factor that could be considered is symmetry. The basic intuition here is that when a formula repeats the same syntactic construct n times in a row, then the formula is easier than a similar formula that mixes different very syntactic constructs. For example, a formula of the form $\forall x F_1(x) \& \forall x F_2(x) \& \ldots \& \forall x F_n(x)$ should not be penalized for containing n universal quantifiers, because this happens in a uniform sequence of conjuncts, each of which is almost exactly like the others, and hence not adding much difficulty. Another possibility, which would have similar effects in the case of this formula, would be to assess the difficulty levels of unrelated conjuncts separately, and to legislate that the difficulty of such
a conjunction is equal to the highest difficulty level that is found in any of its
couns or, instead of adding up the difficulty levels of the conjunctions; the same
could be done for disjunctions. This would be a drastic change to Perikos’ approach,
with huge effects particularly on longer formulas (which happen to be rare in the
Gradegrinder corpus).

Needless to say, these ideas would have to be tested empirically.

4.2 Limitations and future work

Finally, let’s reflect on the enterprise itself of designing and evaluating difficulty
estimation algorithms for logic formulas. Regardless of what predicates and ar-
guments are permitted, and of how many arguments a predicate can have, the
class of FOL formulas is mathematically infinite. What does it mean to propose
an algorithm that estimates the difficulty level of each member of this infinite
class? And even more crucially, how should formulas be sampled from this infinite
space?

It is important to acknowledge that difficulty estimation is always relative to a
task. The task for which the formulas are used determines the class of formulas
on which the algorithm and its evaluation should focus. FOL-Formalization is an
important task students will need to master to gain an understanding of First-
Order Logic, but it is by no means the only one. For example, in the type of
“Explainable AI” discussed in the Introduction, the skill of being able to interpret
a formula (and possibly render it in English – going in the direction opposite to
formalisation) might be at least as important to master. Other important tasks
include verification (i.e., Is a given formula true with respect to a given domain?),
inference (Does one formula follow from another?), and so on.

It is worth pondering how much and what kind of adaptation would be required to
extend an algorithm such as the one proposed by Perikos et al. (2016) to a different
task or to a larger subset of FOL-formulas. By definition, formulas that students
produce when formalizing natural language sentences are human-authored and,
therefore, not include formulas of unintuitive structure, such as formulas that are
extremely lengthy, or that use very deep levels of embedding. Yet such formulas
abound in other areas.

Consider, for example, formulas that contain vacuous quantifiers (i.e., quantifiers

\footnote{This can easily be seen from the recursive structure of the syntax rules for FOL. For example,
the rule for negation says that if \(\phi \) is any formula, then \(\neg \phi \) is likewise a formula. Given one
atomic formula, e.g., Even(4) (“The number 4 is even”), this rule alone yields all the formulas
\(\neg \text{Even}(4), \neg \neg \text{Even}(4), \neg \neg \neg \text{Even}(4), \ldots \) The rules governing connectives and quantifiers operate
in similar ways.}
that do not bind any variables). A simple example is \(\forall x \text{Even}(4) \), which is a well-formed formula of FOL even though \(\forall \) does not bind any variables. An algorithm like that of [Perikos et al. (2016)] would assign this formula a low difficulty level, since it contains just one quantifier and one predicate, yet students struggle, because they find it difficult to grasp the effect of a quantifier that fails to bind any variables.\(^7\)

It is worth seeing why formulas that are not “well-behaved” can nonetheless be of considerable importance in logic teaching. For example, such formulas are routinely produced by any automated theorem prover, for example when the prover converts a premiss into Skolem Normal Form (e.g., [Robinson and Voronkov (2001)]); such normal forms were not constructed for human consumption but merely as intermediate steps in a formal proof. Making such formulas understandable to people can be important in the context of applied multi-agent systems, for example, where theorem provers become much more “scrutable” (i.e., transparent) when the formulas that they use can be grasped by human users [Oren et al. (2020)].

Another class of formulas that are well formed yet not “well behaved” are the formulas employed by semantic parsers in the tradition of Richard Montague (e.g., [Popescu et al. (2003)]). In a nutshell, semantic parsers compose a formula \(\phi \) that represents the meaning of a sentence \(S \) from a number of formulas, say \(\phi_1, \ldots, \phi_n \), that represent the meanings of the \(n \) syntactic parts of \(S \). Even if the formula \(\phi \) is relatively simple, \(\phi_1, \ldots, \phi_n \) can often be highly complex (e.g. containing numerous \(\lambda \) operators), making it difficult for builders of semantic parsers to grasp their meaning, and this complexity motivates a considerable amount of logic teaching.\(^8\)

These examples illustrate that when algorithms such as that of Perikos and colleagues, which claim to assess the difficulty of logical formulas are proposed and evaluated, it is not enough to specify the formalism (e.g. FOL). Crucially, the specific class of formulas the algorithm applies to – which is always only a small subclass of the set of all formulas permitted by the formalism – should be made explicit. This could be done, for example, by specifying a maximum formula length and adding further constraints such as a prohibition against vacuous quantifiers.

The discussion above also demonstrates the diversity of the beneficiaries of the algorithms discussed, who vary from engineers to linguists and people who work on

\(^7\)In fact, such quantifiers do not change the meaning of the formula: the formula above means the same as \(\text{Even}(4) \).

\(^8\)Although the semantic representations employed by semantic parsers go beyond FOL (e.g., by including \(\lambda \) and modal operators), they tend to have FOL at their core.
automated theorem proving. For all these reasons, we believe that it is important that future work on algorithms for estimating the difficulty of logical formulas should be as specific as possible about the aims and purposes of the work and, consequently, not only about what type of learners they want to target, but also about the precise class of formulas whose difficulty the algorithm is intended to assess.

References

J.M. Alonso, S. Barro, A. Bugarin, K. Van Deemter, C. Gardent, A. Gatt, E. Reiter, C. Sierra, M. Theune, N. Tintarev, H. Yano, and K. Budzynska. 2020. Interactive natural language technology for explainable artificial intelligence. In Proceedings of TAILOR Workshop. pages 63–70.

Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. 2017. Introduction to description logic. Cambridge University Press.

Dave Barker-Plummer, Richard Cox, and Robert Dale. 2009. Dimensions of difficulty in translating natural language into first order logic. International Working Group on Educational Data Mining.

Dave Barker-Plummer, Richard Cox, and Robert Dale. 2011a. Student translations of natural language into logic: The grade grinder corpus release 1.0. In Proceedings of the 4th international conference on educational data mining. pages 51–60.

Dave Barker-Plummer, Richard Cox, Robert Dale, and John Etchemendy. 2008. An empirical study of errors in translating natural language into logic. In Proceedings of the Annual Meeting of the Cognitive Science Society. volume 30.

Dave Barker-Plummer, Robert Dale, and Richard Cox. 2011b. Impedance effects of visual and spatial content upon language-to-logic translation accuracy. In Proceedings of the Annual Meeting of the Cognitive Science Society. volume 33.

Jon Barwise, John Etchemendy, Gerard Allwein, Dave Barker-Plummer, and Albert Liu. 2000. Language, proof and logic. CSLI publications.

Herbert B Enderton. 2001. A mathematical introduction to logic. Elsevier.

Melvin Fitting. 2012. First-order logic and automated theorem proving. Springer Science & Business Media.

Herbert P Grice. 1975. Logic and conversation. In Speech acts, Brill, pages 41–58.
Philip Nicholas Johnson-Laird. 1983. *Mental models: Towards a cognitive science of language, inference, and consciousness.* 6. Harvard University Press.

Corey T McMillan, Robin Clark, Peachie Moore, Christian Devita, and Murray Grossman. 2005. Neural basis for generalized quantifier comprehension. *Neuropsychologia* 43(12):1729–1737.

Stephen E Newstead, Peter Bradon, Simon J Handley, Ian Dennis, and Jonathan St BT Evans. 2006. Predicting the difficulty of complex logical reasoning problems. *Thinking & Reasoning* 12(1):62–90.

Nir Oren, Kees van Deemter, and Wamberto W. Vasconcelos. 2020. *Argument-Based Plan Explanation*, Springer, Cham, Switzerland, pages 173–188.

Parliament and Council of the European Union. 2016. *General Data Protection Regulation (GDPR).* http://data.europa.eu/eli/reg/2016/679/oj.

Isidoros Perikos, Foteini Grivokostopoulou, and Ioannis Hatzilygeroudis. 2011. Teaching assistant tools for nl to fol conversion. In *IADIS International Conference e-Learning.* pages 337–344.

Isidoros Perikos, Foteini Grivokostopoulou, and Ioannis Hatzilygeroudis. 2017. Assistance and feedback mechanism in an intelligent tutoring system for teaching conversion of natural language into logic. *International Journal of Artificial Intelligence in Education* 27(3):475–514.

Isidoros Perikos, Foteini Grivokostopoulou, Konstantinos Kovas, and Ioannis Hatzilygeroudis. 2016. Automatic estimation of exercises’ difficulty levels in a tutoring system for teaching the conversion of natural language into first-order logic. *Expert Systems* 33(6):569–580.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. 2003. *Towards a theory of natural language interfaces to databases.* In *Proceedings of the 8th International Conference on Intelligent User Interfaces.* Association for Computing Machinery, New York, NY, USA, IUI ’03, page 149–157. https://doi.org/10.1145/604045.604070.

Alan Rector, Nick Drummond, Matthew Horridge, Jeremy Rogers, Holger Knublauch, Robert Stevens, Hai Wang, and Chris Wroe. 2004. Owl pizzas: Practical experience of teaching owl-dl: Common errors & common patterns. In *International Conference on Knowledge Engineering and Knowledge Management.* Springer, pages 63–81.

Alan Robinson and Andrei Voronkov. 2001. *Handbook of Automated Reasoning Volume I & II.* Elsevier and MIT Press.
Zhangfan Shen, Linghao Zhang, Xing Xiao, Rui Li, and Ruoyu Liang. 2020. Icon familiarity affects the performance of complex cognitive tasks. *i-Perception* 11(2):2041669520910167.

Claes Strannegård, Fredrik Engström, Abdul Rahim Nizamani, and Lance Rips. 2013. Reasoning about truth in first-order logic. *Journal of Logic, Language and Information* 22(1):115–137.

Jakub Szymanik and Marcin Zajenkowski. 2010. Comprehension of simple quantifiers: Empirical evaluation of a computational model. *Cognitive Science* 34(3):521–532.

Gerard van de Watering and Janine van der Rijt. 2006. Teachers’ and students’ perceptions of assessments: A review and a study into the ability and accuracy of estimating the difficulty levels of assessment items. *Educational Research Review* 1(2):133–147.

Paul Warren, Paul Mulholland, Trevor Collins, and Enrico Motta. 2019. Improving comprehension of knowledge representation languages: a case study with description logics. *International Journal of Human-Computer Studies* 122:145–167.