TOOLS OF PEDAGOGY AND COGNITIVE LINGUISTICS IN FOREIGN LANGUAGE ACQUISITION WITHIN A UNIVERSITY CURRICULUM

Abstract. The article presents a theoretical basis of interdisciplinary research in the domain of bilingual Pedagogy. The concept "a process of learning" is interpreted as a quality cooperation between the teacher and students, aimed at achieving definite education goals. The learning process involves a reasonable combination of its components, which enclasps the teacher, employed methods, techniques and tools, students completing the assignments under the guidance of the teacher in the classroom or autonomously, technical and visual aids that are used to achieve high efficiency of learning. The process of foreign language acquisition consists of two interconnected components – teaching and learning. This is a dynamic cooperation between the teacher and a student, targeted at developing a well-rounded personality. In order to achieve this goal in the process of learning, it is necessary to correctly organize a language course, taking into account individual characteristics of students, choosing an approach, which will satisfy the interest of each person. To foster linguistic competence of learners, the teacher must have a clear idea of its structure and content, and conform the learning process to current didactic standards in order to create an efficacious pedagogical discourse. With this in mind, it is deemed appropriate to involve in the process of foreign language acquisition the tools of cognitive linguistics to establish the mechanisms of shaping a language representation of the world among students. The analysis of linguistic phenomena within the framework of cognitive linguistics opens up broad perspectives of the view of language in all its diverse relationships with an individual and allows revealing not only those mental processes that constitute a basis of human cognitive activity, but also linguistic structures that correlate with them. The cognitive approach to language phenomena employs new methods of verifying its findings, since cognitive science is regarded to be an interdisciplinary research area. In this, the relevance of the present study is seen.

Method. The theoretical methods of research are used in the article.

Results. The article focuses on establishing a theoretical base of an interdisciplinary research area, exploring the possibility of integrating the achievements of pedagogy and cognitive linguistics in one research project.

Conclusion. To sum up the aforementioned, the advanced category of cognitive linguistics is a concept that is viewed as a unit of mental space and knowledge structures about the world. Being the elements of mental lexicon of an individual concepts serve as language substitutions of various related items in the mind. Through such imaginary entities, a person views himself and the world, realizes his position in it, understands and interprets events of life. The analysis of linguistic phenomena from a standpoint of cognitive linguistics opens up broad perspectives of language view in its connections with a person. The interdisciplinary search for mechanisms of shaping a language representation of the world among students when studying a foreign language allows elaborating cognitive and pedagogical approaches to enable learners to master the material under study. The success of the process of foreign language acquisition within a University Curriculum is determined not only by a professional qualification of the teacher, but also by his ability to establish a dynamic collaboration with students. That is why it is necessary to create such learning conditions under which students are maximally exposed to foreign language communicative settings, and the teacher performs the role of a facilitator that governs this process and guides students. Such a learning process will ensure a successful result in enhancing linguistic competence of cognizing subjects.

Keywords: pedagogy; cognitive linguistics; process of learning; concept; cognition; education; student; foreign language acquisition; linguistic competence; language representation of the world.

DOI 10.31651/2524-2660-2019-1-65-72
ORCID 0000-0001-6868-6297

ЧУГУНОВА Олена Василівна,
аспірант кафедри математичного аналізу,
Житомирський державний університет імені Івана Франка
e-mail: olenachg@gmail.com

УДК 37.015.311:37.016:512-053.6

ЗОНИ НАЙБІЛЬШОГО МАТЕМАТИЧНОГО РОЗВИТКУ СТАРШОКЛАСНИКІВ У НАВЧАННІ АЛГЕБРИ І ПОЧАТОКІВ АНАЛІЗУ

У роботі обґрунтовується думка про те, що в процесі навчання мають враховуватися індивідуально-психологічні якості учнів і, водночас, створюватися зони ємного найбільшого розвитку. Нарешті, визначення зони найбільшого розвитку можна розглядати як розвиток математичної здібності старших класників у навчанні алгебри і початків аналізу, в рамках якої дотепер не окреслених зони залежать зоною найбільшого математичного розвитку названої вікової категорії учнів. Для вирішення цієї проблеми в контексті вчіння про зони найбільшого розвитку зроблено аналіз змісту зони найбільшого математичного розвитку учнів. Потім, послідовуючи трьом окресленим феномеанологічним характеристиками такої зони, сформульовано авторські визначення «зони найбільшого розвитку» та «зони найбільшого математичного розвитку учнів». Обґрунтовано, що навчання алгебри і початків аналізу має передбачати перетво-
Постановка проблеми. Наразі проblemа зміни особистості займає чільне місце в процесі модернізації цієї та іншої освіти. У математичній освіті зроблено акцент на формуванні та розвиток інтегрованої характеристики якості особистості, якою слугує математична компетенція. Ефективність цього процесу зумовлена рівнем розвитку математичних здібностей як індивідуально-психологічних якостей, що характеризують один із внутрішніх проявів математичної компетентності. Тому запровадження компетентнісної моделі математичної освіти має передбачати навчання, в якому враховуються індивідуально-психологічні якості учнів і, відповідно, створюються зони їхнього найближчого розвитку. Однак, дотепер маловивченою є проблема розвитку математичних здібностей старшокласників у процесі вивчення алгебри і початків аналізу, у рамках якої не окремими зазнають зони найближчого математичного розвитку цієї інновації категорії, недостатньо вивченим є зв'язок таких зон зі змістом навчального матеріалу й компонентами математичних здібностей.

Аналіз останніх досліджень та публікацій. Поняття «зона найближчого розвитку» введено видатним психологом XX століття Левом Семеновичем Виготським, який обґрунтував його теоретичне значення в педагогічній психології (психології розвитку). Застосування такої терміну в педагогіці й психології, дидактики й методики навчання учнів потребувало змістового аналізу, конкретізації та методично виготовленої пропрацювання. Відповідна проблематика порушується в роботах Л. І. Божович, О. В. Гаваш, П. Я. Гальперіна, В. В. Давидова, А. З. Зак, А. В. Запорожця, П. І. Зінченка, І. О. Корепанова, Г. С. Костюка, О. М. Леонтєва та інших.

Психологічні аспекти розвитку особистості, її здібностей в шкільному віковому періоді вивчали такі психологи, як П. Я. Гальперіна, В. М. Дужинин, З. І. Каликова, Н. О. Мечницька, Ж. Піаже, С. А. Рубінштейн, Б. М. Теплов. Зміст і структура математичних здібностей учнів, методика їх розвитку студуються в роботах В. А. Крутецького, М. П. Пихтара, С. П. Семенича, Л. М. Семенець, О. С. Чашечникової та інших. Із зонами найближчого розвитку особистості тісно пов'язані питанням теорії задач і концепції навчальної діяльності, порушені в роботах Г. О. Бала, М. І. Бури, О. К. Дусацевського, Ю. М. Колягіна, Ю. М. Швалба та інших.

Мета статті - розкрити зміст зон найближчого математичного розвитку, з'ясувати їх структуру в навчанні старшокласників алгебри і початків аналізу, встановити зв'язок зі змістом навчального матеріалу й компонентами математичних здібностей.

Виклад основного матеріалу дослідження. У процесі розвитку особистості передувала одна із ключових проблем педагогічної психології - проблема про співвідношення навчання та розвитку. На початок XX століття чітко окреслився три наукові теорії. Представники першої теорії (А. Газел, Ж. Піаже, З. Фрейд) вважали, що процес розвитку не залежить від навчання, розвиток дитини відбувається внаслідок внутрішньої самозміни, на яку навчання не впливає. В основі другої теорії (В. Джеймс, Е. Тройдайк) ключовою була ідея про те, що власне навчання - це й розвиток. Дитина розвивається в міру того, як вона навчається, по суті розвиток - це навчання, а навчання - це розвиток. Третя теорія розрізняла процеси навчання і розвитку, водночас встановлювала їх взаємозв'язок. Тут розвиток сприяє навчанню, а останне забезпечує розвиток. Отож розвиток є ширшим поняттям ніж навчання. Одним засад них положень третьої теорії було твердження структурної психології (учення К. Коффка) про те, що оволодіння дитиною певною операцією приводить до засвоєння деякого структурного принципу, сфера застосування якого шириша.

А. С. Виготський, симпатизуючи трьоум теорії, сформулював свою позицію так: навчання пов'язане з розвитком, але ці процеси не проходять рівномірно і паралельно, навчання нетривкі розвитку, воно створює “зону найближчого розвитку”, пробуджує внутрішні процеси розвитку, які поступово, через співробіт-
ництво (взаємодію), стають надбанням самої дитини. Тому, на думку психолога, навчання має орієнтуватися на нові можливості учня, воно має випереджати розвиток, тільки правильно організоване навчання веде за собою розвиток [1, с. 264].

Згідно з вченням Л. С. Виготського, з'ясовуючи співвідношення навчання та розвитку не можна обійтися визначенням лише одного рівня розвитку. Для цього потрібно визначати хоча б два рівні розвитку: перший називається рівнем актуального розвитку - це рівень розвитку психічних функцій дитини, який має завершені цикли; другий рівень - зона найближчого розвитку, логічний наслідок закону становлення вищих психічних функцій, які формуються в співпраці з дорослим (учителем) і однолітками, поступово стають внутрішніми психічними процесами суб'єкта [1, с. 384].

За означенням вченого зона найближчого розвитку - це відстань між рівнем актуального розвитку дитини, що визнається її самостійними досягненнями та рівнем можливого розвитку, окресленого задачами, що вирішуються дорослим, передусім, батьками, вихователями, вчителями [2, с. 42].

Зони актуального розвитку дітей встановлюються в процесі і за результатами їхньої індивідуальної діяльності. Механізмомокреслення таких зон слугує процес екстериорізації як перехід внутрішніх, мисленнівих психічних актів у зовнішній план, у конкретні зовнішні реакції і дії учнів [3, с. 51]. У ході його реалізації з'ясовується якимою формою культурної поведінки оволоділа дитина, з якими задачами (запаненнями) вона впирається самостійно. Тут важливо зазначити, що процес екстериорізації передбачає зовні виражену знакову і соціальну форму культурної поведінки, актуалізується в спільній діяльності дітей і дорослого. Така діяльність, з одного боку, дозволяє встановити зони актуального розвитку дітей, а із іншого боку - сформувати нову проблему (створити проблемну ситуацію), з якою діти ще не в змозі впоратися самостійно (індивідуально). Усвідомлена невідповідність засвідчує процес інтеріорізації протиріччя як джерела саморуху й саморозвитку в процесі навчально-пізнавального пізнання. Так осмислена діяльність суперечність слугує джерелом їхнього пізнавального інтересу та водночас зовнішнім чинником для актуалізації мисленсвої діяльності. Змістовий аналіз зон актуального розвитку і порівняння того, що дитина вже знає і робить безпомилково сама з тим, в чому в неї виникають труднощі (помилки), дозволяє устаткувати міру її самостійності у вирішенні проблемної ситуації, розв'язанні існуючої суперечності.

Саме від діяльності процесу співпраці дорослого (вчителя) і дітей, а також співпраці самих дітей, що набуває колективних і колективно розподілених форм роботи (групових, парних), залежить ефективність вирішення існуючого про- тиріччя, а головне, перебіг процесу розвитку індивідуально-психологічних якос- тей особистості кожної дитини. Низький рівень самостійності дітей (високий рівень допомоги) передбачає навчальну роботу, зорієнтовану на встановлення зон розуміння задачій ситуації (як-от її структури, змісту умови й вимоги, понятійної складової, відношення та їх важливості, причино-наслідкових зв'язків), актуалізацію теоретичного мислення і активізацію колективно розподіленої навчальної діяльності.

Погоджується з думкою про те, що ефективна співпраця має бути зорієнтована не на передачу знань учнів або розв'язання проблеми лише постановкою навідних питань, а на визначення труднощів і помилок, які виникають при ви- рішенні задачі у зоні найближчого розвитку. Основна допомога вчителя учні - організація його рефлексії. В такому ви- падку це дає можливість учня самостій- но долати труднощі, він має самостійно аналізувати та осмислювати причини їх виникнення. Це має бути співпраця до- рослого та дитини як рівноправних суб'єктів навчальної діяльності [4, с. 103]. За таких умов проходить процес інтеріорізації - засвоєння учнем зовнішніх дій і соціальних форм спілкування, формування розумових дій і свідомості. У такий спосіб відбувається пере- рехід від колективної діяльності до індиві- дуальної, саме таким чином розширюється зона актуального розвитку учень і, власне кажучи, завершується цикл розвивального навчання (рис.1).

Зважаючи на окреслену в роботі проблему, зона найближчого математич- ного розвитку - це така складова на- вчання математики, якій, по-перше, за результатами спільної діяльності встановлюється міра самостійності учня в ово-олоднінні способом дій у процесі розв'язування нового типу задач, подруже, організовується доцільна колективна (колективно розподілена) навчально-математична діяльність задля опануван- ня школярем новими знаннями та вмін- нями, розвитку його особистісних якос-
тей, по-третє, в такому навчанні матема-
tики його феноменологічною характери-
стикою є інтерпретація, за результатами
якої певний тип задач розв’язується уч-
нем самостійно, а його особистісні якості
мають вищий рівень розвитку [5, с.84].

Рис 1. Цикл розвивального навчання

Перебіг процесу перетворення зон
найближчого розвитку в зону актуаль-
ного розвитку залежить, передусім, від
психологічно збереженої та методично до-
вереної організації навчально-
математичної діяльності. Тут акцентуємо
увагу на тому, що шлях навчального пі-
знання має вирізнятися від традиційно
усталеного (теорія ⇝ задачі ⇝ знання
⇝ контроль і оцінка), він має мотивувати,
спонукати процес мислення, орієн-
tувати, передувати, на розуміння (осмис-
лення), а не на відтворення (за-
pам’ятовування готових зразків). На на-
шу думку, це має бути нелінійна організа-
ція навчання математики.

Нелінійність дидактичної технології
полегшує у включені в педагогічній про-
cес можливостей, з одного боку, непослі-
dовного навчання, під час якого учень
сам вибирає наступну дидактичну одиницю або її вибір залежить від його осо-
bистісних характеристик, а з іншого, –
посуду рівень методом «спроба і поми-
лок», що забезпечує засвоєння знань на
інтуїтивному рівні, коли для вибору спо-
sобу дій достатньо лише натяку, непов-
ної інформації про задачу [6].

С. П. Семенць вбачає втілення нелінійної організації навчання математики через задачний підхід до формування і розвитку навчально-математичної діяльності, активізації її потребово-
мотиваційного та операційного складки-
ків, актуалізації складних особистісних
утворень – математичних здібностей і
науково-теоретичного мислення. Як за-
начає дослідник, така організація на-
вчання уможлижує суб’єктну поведінку
учнів на всіх етапах навчального пізнан-
ня. [7, с. 122].

Задачний підхід, на нашу думку, ре-
презентує сукцупність універсальних спо-
собів планування, організації, розвитку
та діагностики навчально-математичної
діяльності суб’єкта, у якій системно по-
єднуються зовнішні прояви (способи дій
у процесі розв’язування задач, усне та
письмене мовлення, відповідь на поставле-
нене питання) та внутрішні її прояви (по-
треби, мотиви, цінність, пам’ять, мис-
лення, самоконтроль, самооцінка та здіб-
ності).

Створення зон найближчого матема-
tичного розвитку учнів пов’язуємо з пла-
нуванням та організацією навчально-
математичної діяльності згідно з прин-
ципом розвивальної наступності, за яким
ekожen наступний тип задач має відріз
нятися від попереднього вищим рівнем
змістового-теоретичного узагальнення.
Зважаючи на те, що рівень змістово-
теоретичного узагальнення задачої сис-
теми навчання математики співвідно-
sиться із зоною найближчого математич-
ного розвитку суб’єктів навчально-
математичної діяльності [8, с. 134], в на-
вчанні старших курсів алгебри і початкі-
в аналізу використовуємо чотири зони
найближчого розвитку: базову, навчальну,
навчально-теоретичну і навчально-
дослідницьку.

І рівень: базова зона – формулюють
та розв’язується базові (прикладні) задачі
з алгебри і початків аналізу, форму-
ються вміння створювати математичні
моделі, встановлюють способи дій у
процесі розв’язування часткових задач з
алгебри і початків аналізу, їх планувати,
контролювати виконання та оцінювати
рівень охолодіння.

II рівень: навчальна зона – формулюють
та розв’язується навчальні задачі з
алгебри і початків аналізу, формують
вміння створювати навчальні моделі, вста-
новлювати способи дій у процесі
розв’язування типових задач з алгебри і
початків аналізу, їх планувати, викону-
вати самоконтроль і самокорекцію, здій-
снювати самооцінку рівня засвоєння.

III рівень: навчально-теоретична зона –
формуються та розв’язується навча-
льно-теоретичні задачі з алгебри і початкі-
в аналізу, формується вміння створю-
вати навчально-теоретичні моделі, вста-
новлювати та застосовувати методи
розв’язування задач змістових ліній алгеб-
ри і початків аналізу, загальноалгебраїчні
i загальноматематичні методи розв’язу-
вання (доведення і дослідження), а також вміння виконувати самоконтроль і самокорекцію, здійснювати самооцінку рівня засвоєння.

IV рівень: навчально-дослідницька зона — формулюються та розв’язуються навчально-дослідницькі задачі з алгебри і початків аналізу, формулюються дослідницько-математичні вміння, а також уміння робити теоретичний аналіз навчальної та науково-математичної літератури, застосовувати методи математичного пізнання та дослідження, визначати змістовні компоненти наукового дослідження (об’єкт, предмет, мета, завдання, гіпотеза, наукова новизна, науково-математична методологія).

Формулювання та розв’язання такої системи задач з одного боку, розширює зону актуального математичного розвитку учня, а з іншого — створює підліткові для створення зони його найближчого математичного розвитку.

З’єднання зон найближчого математичного розвитку, змісту навчання старших класників алгебри і початків аналізу [9] та структурних компонентів математичних здібностей подано в таблиці 1.

| Таблиця 1 |

Зони найближчого математичного розвитку	Зміст алгебри і початків аналізу	Структурні компоненти математичних здібностей
Базова зона	Базові задачі	Системотворчий: математична спрямованість розуму як особистісна характеристика, що виявляється в структурно-математичному мисленні, інтересі до подій, дослідження й реалізації математичних моделей
— прикладні задачі з алгебри і початків аналізу;	— задачі на: дослідження функцій, побудову їх графіків; обчислення вирахів, які містять степені з раціональними показниками та значки радикалів; переход з радіальній мірі кута до градусної й навпаки; знаходження розв’язків тригонометричних рівнянь і нерівностей;	
— задачі на: дослідження функцій, побудову їх графіків; обчислення вирахів, які містять степені з раціональними показниками та значки радикалів; переход з радіальній мірі кута до градусної й навпаки; знаходження розв’язків тригонометричних рівнянь і нерівностей;		
— обчислення кутового коефіцієнта і кута нахилу дотичної до графіка функції в заданій точці; знаходження проміжків монотонності функції та її екстремумів;		
— обчислення кутового коефіцієнта і кута нахилу дотичної до графіка функції в заданій точці; знаходження проміжків монотонності функції та її екстремумів;		
— знаходження найбільшого та найменшого значення функції на відрізку;		
— знаходження розв’язків показниковых, логарифмічних рівнянь і нерівностей;		
— обчислення первісної функції та площі криволінійної трапеції;		
— обчислення функції інтеграла; обчислення кількості перестановок, розміщення, комбінацій;		
— обчислення ймовірності події		
— обчислення вибіркових характеристик (середніх показників) побудову діаграм і гістограм		
Навчальна зона	Навчальні задачі	Системотворчий і кодувально-формалізований: здібності до формалізації в процесі встановлення математичної структури теоретичного і практичного матеріалу, створення й дослідження знако-символьних інтерпретацій задачних ситуацій
— побудова навчальних моделей процесу розв’язання прикладних задач з алгебри і початків аналізу (реалізації методу математичного моделювання);	— навчальне моделювання процесу розв’язання базових задач з алгебри і початків аналізу;	
— навчальне моделювання процесу розв’язання базових задач з алгебри і початків аналізу;	— навчальне моделювання складання базових задач з алгебри і початків аналізу;	
— навчальне моделювання складання базових задач з алгебри і початків аналізу;	— навчальне моделювання складання базових задач з алгебри і початків аналізу;	
— побудова моделей процесу розв’язання прикладних задач з алгебри і початків аналізу;	— побудова моделей процесу розв’язання прикладних задач з алгебри і початків аналізу;	
Зони найближчого математичного розвитку	Зміст алгебри і початків аналізу	Структурні компоненти математичних здібностей
---	--	---
Навчально-теоретична зона	Навчально-теоретичні задачі	Системотвірний, кодувально-формалізований і когнітивно-узагальнювальний: здібності до змістового узагальнення математичного матеріалу на декількох рівнях, знаходження альтернативних (варіативних) та раціональних розв’язків, інклюзивно-інклюзивного його підвищення формальної структури (алгоритмів) на основі часткового випадку
Навчально-дослідницька зона	Навчально-дослідницькі задачі	Системотвірний, кодувально-формалізований, когнітивно-узагальнювальний і мемічно-узагальнювальний: запам’ятовування математичного матеріалу на різних рівнях теоретичного узагальнення

Згідно з концепцією особистісно-розвивального навчання перетворення зони найближчого математичного розвитку учнів в зону їхнього актуального розвитку (де відповідний тип задач учніми розв’язується самостійно) звучатиме про нову інтелектуальну якість, перехід суб’єктів навчально-математичної діяльності (їхніх математичних здібностей) на вищий рівень розвитку [10, с. 33]. На нашу думку, саме такі перетворення мають відбуватися в навчанні алгебри і початків аналізу, саме в такий спосіб старшокласники стають суб’єктами не тільки навчання, але й суб’єктами розвитку.

Висновки і перспективи подальших досліджень. Підсумовуючи результати досліджень, зазначимо, що процес розвитку індивідуально-психологічних якостей особистості старшокласника залежить від діяльнісного процесу співпраці зі вчителям й однолітками, у ході якої створюються зони найближчого математичного розвитку: встановлюється міра самостійності, організованість доцільна навчально-математична діяльність, забезпечується процес інтерпретації. Тут має втілюватися нелінійна організація навчання алгебри і початків аналізу, реалізуватися задачі підход до розвитку навчально-математичної діяльності, а рівні змістово-теоретичного узагальнення задач співвідносяться із зонами найближчого математичного розвитку старшокласників. Окреслені в роботі зони найближчого розвитку (базова, навчальна, навчально-теоретична, навчально-дослідницька) відповідають змісту навчання алгебри і початків аналізу, вони корелюють зі структурними компонен-
тами математичних здібностей старшокласників.

До перспектив подальших досліджень відносно зміст і структуру навчально-математичної діяльності старшокласників у процесі вивчення алгебри і початків аналізу.

Список бібліографічних посіваль

1. Виготський А. С. Детська психологія: в 6 т. / ред. Д. Е. Злікохіна. М.: Педагогіка, 1984. Т. 4. 432 с.
2. Виготський А. С. Умістне розвиток дітей в процесі освіти: сборник статей. М.-Л.: ГУПИ, 1935. 134 с.
3. Психологічний словник / за ред. В. І Войтик. Київ: Вища школа, 1982. 214 с.
4. Зарецький В. К. Зона ближайшого розвитку: о чем не успел написать Виготский. Культурно-историческая психология. 2007. № 3. С. 96-104. URL: http://psijournals.ru/kip/2007/n3/Zaretsky.shtm l(дата звернення: 23.01.2019).
5. Семенець С. П., Чутунова О. В. Про зони найближчого математичного розвитку старшокласників у процесі вивчення алгебри та початків аналізу. Проблеми математичної освіти (ПМО-2019): матеріали Міжнародної науково-методичної конференції, (Черкаси, 11–12 квіт. 2019 р.) Черкаси, 2019. С. 84–85.
6. Бобков В. В. Дифференцірований подхід до навчання: психоінформаційна точка зорі. Часть 1. URL: http://zhurnal.ape.relarn.ru/articles/2006/041.pd.
7. Семенець С. П. Концепція розвивального навчання математики: дидактичні моделі організації навчально-обмінної діяльності учнів. Педагогіка вищої та середньої школи. 2016. Вип. 47. С. 118-125.
8. Семенець С. П. Методологія і теорія розвивального навчання математики: монографія. Житомир: О. О. Евгенюк, 2015. 236 с.
9. Навчальна програма з математики для учнів 10-11 класів загальноосвітніх навчальних закладів. Профільний рівень. URL: https://mon.gov.ua/ua/osvita/zagalna-serednya-osvita/navchalni-programi/navchalni-programi-dyia-10-11-klassiv
10. Семенець С. П. Навчально-теоретичні задачі з математики: моделювання процесу розв’язування нерівностей методом інтервалів. Математика в рідній школі. 2016. №9. С. 31–33.

References

1. Vygotsky, L.S. (1984). Children’s psychology. In 6 volumes. In D.B. Elkonin (Ed.). Moscow: Pedagogy [in Russ].
2. Vygotsky, L.S. (1935). Mental development of children in the learning process: a collection of articles. Moscow-Leningrad: GUPI (in Russ.).
3. Psychological dictionary (1982). In V. I. Wojtka (Ed.). Kyiv: Higher school (in Ukr.).
4. Zaretsky, V.K. (2007). The zone of proximal development: what Vygotsky did not have to write about. Cultural-historical psychology, 3, 96–104. Retrieved 23/01/2019, from http://psijourn als.ru/kip/2007/n3/Zaretsky.shtml.
5. Semenets, S.P., Chugunova, O.V. (2019). On the areas of the nearest mathematical development of senior pupils in the process of studying algebra and the principles of analysis. Problems of Mathematical Education (PME-2019): materials of the International Scientific-Methodical Conference. Cherkasy, 84–85 (in Ukr.).
6. Bobkov, V.V. Differenctiated approach to learning: the psycho-informational point of view. Retrieved 23/01/2019, from http://zhurnal.ape.relarn.ru/ articles/2006/041.pdf.
7. Semenets, S.P. (2016). The concept of developing mathematics education: didactic model of organization of teaching and mathematical activity of students. Pedagogy of higher and secondary schools, 47, 118–125 (in Ukr.).
8. Semenets, S.P. (2015). Methodology and theory of developmental mathematics education: a monograph. Zhymyom: O.O.Evenyuk (in Ukr.).
9. Educational program for mathematics for pupils of 10-11 forms of general educational institutions. Profile level. Retrieved 20/03/2019, from: https://mon.gov.ua/ua/osvita/zagalna-serednya-osvita/navchalni-programi/navchalni-programi-dyia-10-11-klassiv.
10. Semenets, S.P. (2016). Educational-theoretical problems in mathematics: modeling of the process of solving inequalities by the interval method. Mathematics in native school, 9, 31–33.

CHUGUNOVA Olena,
Post-graduate student of Mathematical Analysis Department,
Zhytomyr Ivan Franko State University

ZONES OF IMMEDIATE MATHEMATICAL DEVELOPMENT OF SENIOR PUPILS
IN ALGEBRA EDUCATION AND ANALYSIS BEGINNING

Abstract. Introduction. The learning process should take into account the individual and psychological qualities of the pupils and, at the same time, create the areas of their immediate development. At present, the problem of developing mathematical abilities of senior pupils in the study of algebra and the beginning of analysis, in which the areas of the immediate mathematical development of the named age group of pupils are still not defined.

Purpose. To reveal the content of the areas of the immediate mathematical development, to find out their structure in the study of senior pupils of algebra and the beginning of analysis, to establish a connection with the content of the educational material and components of mathematical abilities.

Methods. In the research the methods of theoretical analysis, structural-system analysis, structural-didactic analysis, content-theoretical generalization are used.

Results. An analysis of the contents of the area of the immediate mathematical development of pupils is made. It is substantiated that the study of algebra and the beginning of analysis should foresee transformation of the areas of the immediate mathematical development of pupils into the area of actual development, actualize the processes of internalization and exteriorization. It was formulated the author’s definitions of «zone of the immediate development» and «zone of the immediate mathematical development of pupils». The model of the cycle of developmental education is presented, the areas of the immediate mathematical development of senior pupils in the study of algebra and the beginning of analysis are outlined, their relationship with the content of the educational material and components of mathematical abilities is determined.

Originality. For the first time the zones of the immediate mathematical development of senior pupils in the process of studying algebra and the beginning of analysis are outlined, author’s definitions of the «zone of the immediate development» and «zone of the immediate mathematical development of pupils» are formulated and the model of the cycle of developmental education is presented.

Conclusion. The process of development of individu al psychological qualities of the personality of the senior
АЙВАЗЯН Эдвард Ишханович,
dоктор педагогических наук, профессор,
Ереванский государственный университет, Республика Армения
e-mail: ayvazyan.51@mail.ru

ОРКИД 0000-0003-2916-9929

САРУХАНЯН Алавар Гарегинович, преподаватель,
Ширакский государственный университет им. М. Налбандяна,
г. Гюмри, Республика Армения
e-mail: allasarukhanyan92@mail.ru

О МЕТОДОЛОГИЧЕСКИХ ОСНОВАХ ОБУЧЕНИЯ ОПРЕДЕЛЕНИЯМ

Статья посвящена интерпретации методологических основ обучения определениям, выявлению прежних и фактически используемых ситуаций.

Ключевые слова: определение понятия; виды определений; корректные и некорректные определения; определямое и определяющее; обучение определениям; усвоение определений; методика обучения определениям.

Понятие «определение» и его виды.
Каждая наука имеет свою систему понятий. Математические понятия делятся на определяемые и неопределяемые понятия. Для начала попробуем понять, что такое определение.
Известный польский математик Г. Штейнгауз говорил: «Определение необходимо для того, чтобы вместо длинных словосочетаний и предложений использовать один символ или слово, иначе выражения наших мыслей будут очень длиными».
Мы знаем, что производное двух натуральных чисел m и n определяется как сумма m слагаемых, равных n:

\[m \cdot n = n + n + ... + n \]

Пример 1. 5·3=3+3+3+3+3.
Пример 2. Вместо того чтоб говорить «четырехугольник с параллельными противоположными сторонами» мы говорим «параллелограмм».
Чаще всего используют следующие виды определений: реальные, номинальные, классические, подвижные, рекурсивные, аксиоматические, дескриптивные, генетические, описательные и т.д [1].

В зависимости от того, что определяется, – знаковое выражение (тег, символ) или непосредственно объект, обозначаемый им, – определения делит на номинальные и реальные [2, с. 201].

1. Реальные определения фиксируют характеристические свойства означаемых объектов, позволяющие выделять их среди всех остальных по некоторому отличительному признаку.
Например, к реальным можно отнести такие определения:
«Параллелограмм, у которого все углы прямые, является прямоугольником»;
«Многочлен называется алгебраической суммой одночленов».

В каждом из этих определений речь идет о выделении соответствующего объекта из множества всех других по характерному для него признаку. При этом каждый из означаемых объектов получает свое обозначение (наименование) в виде термина «прямоугольник», «многочлен».

2. Номинальные определения – это те, с помощью которых вводится новый термин, символ или выражение как сокращение более сложных выражений ранее введенных терминов или символов, или же объясняется (утончается)