Fungal pathogens—a sweet and sour treat for \textit{toll}-like receptors

\textbf{Christelle Bourgeois* and Karl Kuchler*}

Medical University of Vienna, Max F. Perutz Laboratories, Vienna, Austria

\textbf{INTRODUCTION}

An estimated 1.5 million fungal species are present in the environment (Hube, 2009). Some of them have evolved as commensal colonizers of cutaneous and mucosal surfaces in humans. While only a few fungal microbes are actually true pathogens for healthy individuals, in Western societies opportunistic fungi can cause life-threatening infections in immunosuppressed individuals, ranging from superficial mucocutaneous disease to invasive deep-seated infections. In developing countries, fungal infections affect not only immunocompromised but also immunocompetent healthy individuals in region of endemic mycoses (Brown et al., 2012), with \textit{Cryptococcus} species (spp.) representing the major human fungal pathogen (Del Poeta and Chaturvedi, 2012). The main fungal pathogens affecting humans comprise those ubiquitously present in the environmental fungi, \textit{Aspergillus fumigatus}, \textit{Cryptococcus neoformans} and more recently \textit{Cryptococcus gattii}, \textit{Histoplasma capsulatum}, \textit{Coccidioides posadasii}, \textit{Pneumocystis jirovecii} and the commensal \textit{P. jiroveci} or the \textit{Candida} spp. The rising incidence in fungal infections observed in the last decades correlates with increases in invasive medical interventions, long-term hospitalization and with large numbers of immunosuppressed patients due to acquired- (e.g., HIV infection) or treatment-induced immunodeficiency such as transplantation or anticancer therapy (Pfaller and Diekema, 2007, 2010). No obvious clinical symptoms distinguish invasive fungal infections from other microbial infections. Furthermore, clinical diagnoses pose a huge challenge, since current methods are not always reliable, speedy, accurate, or specific, in particular when speciation is required for efficient antifungal therapy. Thus, antifungal treatments are often delayed or inappropriately applied. Consequently, fungi stand out as the fourth main cause of hospital acquired infections in “at-risk” populations, despite availability of efficient but costly antifungal therapies (Perlin, 2011; Pfaller, 2012).

Several particularities distinguish fungal from viral or bacterial microbes in their interaction with host immune cells. For instance, many fungal pathogens are dimorphic and able to undergo morphogenesis upon environmental or host stimuli, which facilitates immune evasion or dissemination and niche occupancy in the host. Morphogenesis is hence considered a major virulence trait (Gow et al., 2012). Further, all fungal eukaryotes are protected by the cell wall, a highly complex and...
The precise molecular nature of fungal PAMPs that active specific TLRs is difficult to pin down due to the often collaborative mechanism of TLR recognition and the plasticity of the fungal cell wall. Whereas fungal PAMPs are clearly recognized by a number of TLRs (i.e., TLR2/1, TLR4, TLR3, TLR2/6, TLR7, and TLR9), they are not the primary receptors driving pathogen engulfment. The major class of pattern recognition receptors (PRRs) known to be involved in sensing and recognition of fungal PAMPs comprise the C-type lectin receptor family recognizing glucan and mannan (such as Dectin-1, Dectin-2, Mincle, SIGNR, and mannoside receptor), the scavenger receptors (such as CD5 and CD36), Galectin-3, and the Toll-like receptor (TLR) family (Romani, 2011). This review addresses TLRs recognizing fungal pathogens on hematopoietic and non-hematopoietic cells, recapitulating the most recent advances in the field. We shall reiterate the emerging concept of TLRs in shaping host-fungal relationships. Importantly, we will also discuss fundamental differences of TLR function in mouse and humans, since there is increasing evidence not only for cell-type specific responses, but also for species-specific distinct roles of TLRs in fungal immunity or tolerance.

Fungal Sensing by Toll-like Receptors

Recognition of Fungal PAMPs by surface and phagosomal TLRs

The precise molecular nature of fungal PAMPs that active specific TLRs is difficult to pin down due to the often collaborative mechanism of TLR recognition and the plasticity of the fungal cell wall. Whereas fungal PAMPs are clearly recognized by a number of TLRs (i.e., TLR2/1, TLR4, TLR3, TLR2/6, TLR7, and TLR9), they are not the primary receptors driving pathogen engulfment. Fungal PAMPs for cell-surface TLRs have been mainly characterized for *Candida albicans*, but they remain mostly unknown for other fungi. For *C. albicans*, mutants with specific cell wall defects have facilitated the identification of PAMPs. Because cell-wall mutations often attenuate virulence or induce compensatory alteration of the cell wall composition (Murciano et al., 2011), altered immune responses to such mutants should be interpreted with caution. Nonetheless these studies have proven useful in identifying cell wall components activating TLRs (Figure 1). For example, TLR2 recognizes fungal β-glucans of several fungal species (Viriyakosol et al., 2005; Netea et al., 2006; Sorgi et al., 2009). In addition, it also specifically interacts with phospholipomannans (PLMs), linear beta-1,2-oligomannoside structures that are unique to *C. albicans* (Jouault et al., 2003). TLR2 is also stimulated by as yet unidentified ligands present on conidia and hyphal forms of *A. fumigatus* (Netea et al., 2003). TLR2/TLR1 and TLR2/TLR6 heterodimers are receptors for the glucuronoxymannan (GXM) component of *Cryptococcus neoformans* (Fonseca et al., 2010). Notably, *A. fumigatus* activates mouse but not human TLR2/6 heterodimers, whereas TLR2/1 heterodimers recognize *A. fumigatus* both in human and mice (Rubino et al., 2012). This is a striking example of differences between human and mice in fungal recognition. TLR4 is activated upon ligation of *C. albicans* O-linked mannan (Netea et al., 2006), as well as *C. neoformans* GXM (Shoham et al., 2001). Ligands for TLR4 are present as well on *A. fumigatus* conidia but not hyphae (Netea et al., 2003).

In addition, to cell surface PAMPs, nucleic acids liberated from fungi within the phagosome also stimulate or modulate the dynamic host response during infection. TLR3 is activated by double-stranded RNA from *A. fumigatus* conidia in lung epithelial cells (Beisswenger et al., 2012). Single-stranded RNA from *Candida* spp. are ligands for TLR7 in mouse bone-marrow dendritic cells (BM-DCs) (Biondo et al., 2011). TLR9-mediated sensing of fungal genomic DNA (gDNA) appears conserved across fungal species (Nakamura et al., 2008; Ramirez-Ortiz et al., 2008; Miyazato et al., 2009; Biondo et al., 2011) and the recruitment of TLR9 to fungi-containing phagosome is observed with several fungal species (Kaspekovitz et al., 2011). Recognition of gDNA from *A. fumigatus* and *C. neoformans* occurs at unmethylated CpG motifs (Nakamura et al., 2008; Ramirez-Ortiz et al., 2008; Tanaka et al., 2011). By contrast, TLR9 detection of Candida gDNA does not seem to be restricted to these motifs (Miyazato et al., 2009).

TLRs and Modulation of Immunity to Fungi

Hematopoietic stem cells

Recent advances in hematopoietic stem cell (HSC) research suggest that commensal microbes, including fungi, “shape” the steady-state hematopoiesis through their interaction with TLRs (Boiko and Borghesi, 2012). Ligation of TLRs on mouse or human HSCs by microbial PAMPs affects both proliferation and differentiation (Balridge et al., 2011; Boiko and Borghesi, 2012). At steady state, bone marrow from mice lacking TLR4, TLR9, or MyD88 exhibit enhanced reconstitution activity (Massberg and Von Andrian, 2009). Furthermore, in Drosophila, mutations in the Toll/cactus pathway cause a deregulated hematopoiesis (Qiu et al., 1998). Thus, TLR signaling in HSCs may serve two purposes: (1) it participates in the maintenance of basal hematopoietic homeostasis in the absence of triggers, and (2) it activates emergency hematopoiesis upon microbial infections. In a mouse model of systemic infection, *C. albicans* stimulates both proliferation and differentiation of HSCs and committed progenitors, driving enhanced granulopoiesis independently of G-CSF (Basu et al., 2000) but in a MyD88/TLR2-dependent fashion (Yanez et al., 2009, 2010, 2011). Notably, TLR2 promotes the differentiation of HSCs into macrophages and monocyte-derived DCs upon interaction with *Candida* spp. (Yanez et al., 2010, 2011).

Innate, adaptive and non-hematopoietic effector cells

Professional phagocytes such as neutrophils, monocyte/macrophages, and dendritic cells, are rapidly recruited at the site of infection upon fungal challenge (Lionakis et al., 2010, 2012; Majer et al., 2012; Wurthrich et al., 2012b). Notably, the lack of TLR2 impairs the early recruitment as well as killing capacity of neutrophils against *A. fumigatus* (Meier et al., 2003; Belloccchio et al., 2004a). Similarly, fewer neutrophil/monocytes are recruited in TLR2Δ/Δ mice in comparison to wild-type animals at day 1 after post-peritoneal infection with live *C. albicans* (Tesarolli et al., 2010). Interestingly, upon intraperitoneal challenge with heat-killed *C. albicans*, TLR2 deficiency has no effect on early (4 h) phagocyte recruitment, but results in an enhanced...
FIGURE 1 | TLR signaling induced in host cells upon interaction with fungal pathogens. Surface Toll-like receptors (TLRs), as well as endosomal TLRs participate to the recognition of fungal PAMPs [e.g., O- and N-linked mannans, phospholipo-mannan (PLM), glucuronoxylomannan (GXM), α-mannosides, β-glucans, DNA, and RNA]. Activation of surface TLRs involves their homo- (TLR4) or hetero-dimerisation (TLR2/TLR1 or TLR6). The diversity of signaling pathways is increased by the involvement of co-receptors of the C-type lectin family (e.g., SIGNR1 and Dectin-1) or Galectin-3. Confirmed physical interactions between PRRs are represented by double-head arrows. The integration of simultaneously activated signaling pathways occurs at the level of intracellular adaptors and transcription factors shared between overlapping pathways. The resulting cytokine responses shape the activation of the adaptive response and ultimately modulate the outcome for the host. This figure was adapted from Bourgeois et al. (2010) by including newly published data from Biondo et al. (2012) and Takahara et al. (2012), and a review in Romani (2011) and Leibundgut-Landmann et al. (2012).

macrophage recruitment in mutant versus control mice at day 3 after infection (Netea et al., 2004). These results suggest that TLR2 differentially modulates phagocyte recruitment during the course of candidiasis. Additionally, the use of live versus heat-killed Candida cells may affect both kinetics and nature of recruited phagocytes. Phagocytes emerging at day 1 of post-peritoneal infection with live Candida exhibit impaired nitric-oxide release, myeloperoxidase activity, chemokine, and cytokine production, as well as neutrophil survival in the absence of TLR2 (Tessarolli et al., 2010). Thyoglycolate-elicited TLR2−/− neutrophils and macrophages show reduced phagocytic activity toward C. albicans than their wild-type counterparts (Tessarolli et al., 2010). Notably, no significant effects of TLR2 on phagocytosis by similar cells has also been reported (Netea et al., 2004), perhaps due to distinct experimental conditions used in the phagocyte preparations.

By contrast, the absence of TLR4 diminishes neutrophil effector functions against both A. fumigatus and C. albicans (Meier et al., 2003; Belloccchio et al., 2004b; Gasparoto et al., 2010), whereas TLR9 deficiency enhances the fungicidal capacity of neutrophils as well as macrophages (Belloccchio et al., 2004b; Kasperkovitz et al., 2011). Lack of TLRs also modulates the
cytokine response in macrophages and dendritic cells upon fungal encounters (for review see, Romani, 2011) (Figure 1). In BM-DCs, but not in bone-marrow derived-macrophages, both TLR7 and TLR9 trigger the release of IFN-β in response to Candida (Biondo et al., 2011, 2012; Bourgeois et al., 2011). Notably, IL-12 p70 release is also dependent on both TLR7 and TLR9 in these cells (Biondo et al., 2012).

Th1 and Th17 are the principal Th subsets that contribute to a protective adaptive response to fungal pathogens (for review see, Hernandez-Santos and Gaffen, 2012; Leibundgut-Landmann et al., 2012; Wuthrich et al., 2012a). However, IL-17 and Th17 cells have been reported to be detrimental in certain mouse models of fungal infection (Zelante et al., 2009). In humans, by contrast, a defect in IL-17 signaling is linked to increased susceptibility to mucocutaneous Candida infection (Puel et al., 2011). Regulatory T-cells (Tregs) modulate the Th1/Th17 balance either by preventing expansion of the Th17 subset or by minimizing host damage (Loures et al., 2009). However, Tregs may also enhance the Th17 response and promote fungal clearance (Pandiyan et al., 2011). TLRs could influence the adaptive response either indirectly via activation of antigen presenting cells (APCs) or, by acting as co-receptors for TCRs directly on T-cells (for review see Jin et al., 2012). It is generally accepted that TLRs mediate the development of antifungal Th1 response. Notably, MyD88 is dispensable for the CD4+ T-cell priming against and trafficking during Aspergillus airway infections (Rivera et al., 2006), but it is required for the differentiation of fungi-specific CD4+ T-cells into IFN-γ-producing cells in lungs. TLR2, however, may promote T-reg differentiation. Indeed, TLR2−/− mice have reduced levels of natural Tregs in comparison with wild-type mice, suggesting that TLR2 also regulates Treg homeostasis. In a Paracoccidioides brasiliensis intratracheal infection model, TLR2 promotes Treg expansion, thereby limiting Th17 cell differentiation and tissue pathology (Loures et al., 2009). By contrast, in a systemic infection model of candidiasis, TLR2-mediated recognition of Candida triggers IL-10 production and decreases Th1 polarisation (Neta et al., 2004). Recent studies suggest that TLRs may also play a direct role in the induction of a Th17 antifungal response: TLR6 exerts protective effects in a model of chronic Aspergillus-induced asthma, by promoting IL-23 release and a subsequent Th17 response (Moreira et al., 2011). In a skin-resident DC subset, Langerhans cells, MyD88 is required for their full activation and function in response to C. albicans infection, including the development of a Th17 response (Haley et al., 2012). Similarly, in a Blastomyces dermatidis-specific TCR mouse model, MyD88 but not dectin-1 is required for the development of a vaccine-induced Th17 subset and resistance to infection, which is consistent with the involvement of TLRs in DC activation (Wuthrich et al., 2011). Furthermore, TLR3-deficient mice fail to activate protective memory-CD8+ T cells following vaccination by A. fumigatus (Carvalho et al., 2012b). Thus, some TLRs expressed in APCs may be good candidates to stimulate DCs for antifungal vaccination strategies both as danger signals and to condition professional APCs to induce the appropriate class of protective adaptive immunity (for review see, Iannitti et al., 2012; Roy and Klein, 2012).

Terminally differentiated epithelial cells also take an active part in antifungal defense and immune surveillance (for review see, Naglik and Moyes, 2011; Weindl et al., 2011). The TLR expression levels are altered in these cells upon fungal infection, and their cytokine response is, at least in part, TLRR-dependent. In mice, TLR4 is required for protection of epithelial cells from fungal invasion in the presence of polymorphonuclear leucocytes (PMNs) (Weindl et al., 2007). Similarly, TRIF−/− epithelial cells are more susceptible to A. fumigatus due to over activation of Th17 cytokines and down-regulation of Th1-Tregs (De Luca et al., 2010). Thus, TLR signaling in epithelial cells may modulate the inter-cellular communication and cooperation between hematopoietic and non-hematopoietic cells. Deregulation of underlying processes can enhance immunopathology and impair clearance (De Luca et al., 2010). Notably, TLRs also modulate the ability of epithelial cells and innate immune cells to sense and respond to danger signals others than established TLR ligands, including host or fungal proteases or other host “damage-associated molecular patterns” (DAMPs) (Moretti et al., 2008; Sorci et al., 2011).

MECHANISMS MODULATING TOLL-LIKE RECEPTOR SIGNALING DURING FUNGAL RECOGNITION

Because microbial pathogens usually carry multiple classes of PAMPs, their recognition may involve the simultaneous or sequential activation of several PRRs from different families. Collaboration between PRRs and/or cross talk between their signaling pathways can enhance the specificity and coverage of PAMP recognition and enables a tailored host response (Van De Veerendonk et al., 2008a) (Figure 1). TLR2 transduces signals as a heterodimer recruiting either, TLR1 or TLR6 (Ozinsky et al., 2000). However, the functional consequences of these TLR cooperations for fungal recognition remain ill-defined. In addition, several molecules including C-type lectins or other carbohydrate-binding proteins have been identified as TLR2 co-receptors (e.g., Dectin-1, SIGNR1, and Galectin-3). Interestingly, depending on the co-receptor involved, co-igation of TLR2 may either enhance a TLR2-dependent response (Smeekens et al., 2010; Takahara et al., 2012) or modulate its PAMPs specificity (Jouault et al., 2006). Dectin-1 has also been shown to synergies with TLR4 signaling (Ferwerda et al., 2008).

The molecular basis of signaling pathway crosstalk is just beginning to be investigated (reviewed in Hontelez et al., 2012). Dectin-1 signaling requires its clustering and the formation of a phagocytic synapse (Goodridge et al., 2011). No physical interaction between TLR2 and Dectin-1 have been reported so far, but TLR2 co-immunoprecipitates with Galectin-3 following stimulation with C. albicans (Jouault et al., 2006). Interestingly, Galectin-3 also co-immunoprecipitates with Dectin-1 (Esteban et al., 2011), suggesting that Galectin-3 may mediate the cooperation between TLR2 and Dectin-1 signaling. TLR2 also co-immunoprecipitates with SIGN1 (Takahara et al., 2012). Thus, the dynamic clustering and/or exclusion of PRRs from the phagocytic synapse may control and modulate signaling cross talks during the initial immune response to surface PAMPs. Subsequent liberation of fungal PAMPs such as nucleic acids, through fungal pathogen degradation in the course of phagosome maturation...
may also facilitate pathogen detection by the host and thereby, promote its resolution (Sorci et al., 2011). Thus, host DAMPs may facilitate pathogen detection by the host and thereby, promote its resolution (Sorci et al., 2011). Thus, host DAMPs may collaborate with PAMP-activated TLRs to control the outcome of the inflammatory response.

C. albicans is uniquely recognized by TLR2 after antifungal treatment that targets and alters the cell wall (Roeder et al., 2004). Similarly, pretreatment of C. albicans or A. fumigatus with antifungal drugs enhance their ability to stimulate TLR expression in human PMNs (Salvenmoser et al., 2010). These results suggest that beside their direct fungicidal properties, antimycotics in human PMNs (Salvenmoser et al., 2010). These results suggest that beside their direct fungicidal properties, antimycotics may also facilitate pathogen detection by the host and thereby, facilitate clearance.

Fungal strategies to escape or subvert detection by toll-like receptors

Many fungal pathogens have developed strategies to escape or subvert host immune recognition systems, including sensing by TLRs or other PRRs (for review see, Collette and Lorenz, 2011). Cell wall remodeling upon environmental stress or during hyphal formation may change PAMP composition and alter accessibility for TLRs as observed for many species (Hohl et al., 2005; Collette and Lorenz, 2011). Furthermore, formation of large cellular structures either by germination and filamentation in dimorphic fungi, or by nuclear replication without fission in Cryptococcus, can hamper phagocytosis (Okagaki et al., 2010; Zaragoza et al., 2010) and thereby, is likely to prevent activation of the intra-phagosomal recognition processes.

Cryptococcus spp. and several other fungi secrete polysaccharides and protein cargos through dedicated exosomes upon host interaction. Supernatant of C. neoformans cultures inhibit TLR9 activation by C. neoformans DNA (Yamamoto et al., 2011). Similarly, A. fumigatus cell wall components differentially modulate TLR2 and TLR4 signaling (Chai et al., 2011).

Activation of endosomal TLR7-9 is controlled by their timely recruitment to the phagosome and proteolytic processing upon ligand binding (Ewald and Barton, 2011). Thus, modulation of intracellular protein trafficking and phagosome maturation, are likely to influence the recognition of fungal pathogens by endosomal TLRs. Candida spp. as well as H. capsulatum prevent phagosomal maturation and acidification (Eisenberg et al., 1993; Marcil et al., 2008; Fernandez-Arenas et al., 2009; Garcia-Rodas et al., 2011; Seider et al., 2011). C. neoformans and C. albicans share the ability to escape the phagosome, although using entirely distinct mechanisms (Collette and Lorenz, 2011). Paradoxically, the rapid recruitment of TLR9 to the fungus-containing phagosomes favors persistence, suggesting that this receptor may be exploited as an immune evasion strategy by several fungal species (Kasperkovic et al., 2010, 2011).

TLR-signaling and inborn susceptibility to fungal infections

Mouse models of fungal infections

Mice lacking MyD88, the signaling adaptor shared by several surface and endosomal receptors, but also by the IL-1, IL-18, and IL-33 receptors, are hypersensitive to systemic C. albicans infections (Bellochio et al., 2004a; Villamon et al., 2004), as well as to intraperitoneal and intranasal C. neoformans infections (Yauch et al., 2004; Biondo et al., 2005). Fungal clearance is impaired in MyD88−/− mice during systemic and intra-gastric candidiasis, pulmonary, as well as corneal aspergillosis, and during C. neoformans infections (Bellochio et al., 2004a; Yauch et al., 2004; Biondo et al., 2005; De Luca, 2007; Leal et al., 2010). Consistently, expression of Th1 and inflammatory cytokines during C. neoformans infections is lower in mice lacking MyD88 when compared to wild-type mice (Biondo et al., 2005).

In corneal aspergillosis, TRIF-deficient mice do not exhibit a fungal killing defect (Leal et al., 2010). However, in intra-gastric infection models, TRIF−/− mice fail to prevent spreading of C. albicans to peripheral organs (De Luca, 2007). In pulmonary aspergillosis, TRIF−/− mice as well as TLR3−/− mice are highly susceptible to infection and develop pathogen-induced inflammation (De Luca et al., 2010; Carvalho et al., 2012b). Thus, these data suggest that TLR signaling adaptors drive pathways with distinct effector functions in fungal pathogenesis. TRIF pathways appear to promote tolerance, whereas MyD88 is required for fungicidal activity (Romani, 2011).

Mice lacking TLR2 exhibit an intrinsic defect in the number of CD4+CD25+ Treg subset that maintains peripheral tolerance, but may also dampen the immune response to infection (Netea et al., 2004). Upon intravenous Candida infection, absence of Tregs results in improved fungal clearance 7 days after infection and better survival of TLR2−/− mice when compared to wild-type mice (Bellochio et al., 2004a; Netea et al., 2004). By contrast, in an intraperitoneal model of candidiasis, clearance is impaired 1 day after infection in the absence of TLR2 (Tesarolli et al., 2010). TLR2-deficient mice infected with P. jirovecii display intense severity in symptoms, as well as increased fungal burden and decreased TNFα and nitric oxide release in the lungs (Wang et al., 2008).

Immunosuppressed TLR2−/− mice (neutropenic and treated with antibiotics) have an increased susceptibility to A. fumigatus following intratracheal infection and increased fungal burden in the lung in comparison to wild-type immunosuppressed animals (Balloy et al., 2005). By contrast, cyclophosphamide-treated TLR2−/− mice are equally susceptible to intranasal Aspergillus infections than control mice, although untreated mutant mice have higher lung fungal burden (Bellochio et al., 2004a). In a model of chronic fungal asthma, TLR2−/− mice show impaired airway hyper-responsiveness to A. fumigatus and reduced fungal clearance at early infection stages. As a result of fungal persistence, but also perhaps due to the deficiency in the Treg subset, airway hyper-responsiveness increases during the adaptive phase of this disease model (Buckland et al., 2008). In a model of mouse corneal inflammation, TLR2-deficiency does not affect immune cell infiltration or fungal clearance (Leal et al., 2010). Conversely, Aspergillus-induced corneal inflammation in rats is decreased
following application of TLR2 siRNA when compared to non-specific siRNA and fungal clearance, as well as the outcome of fungal disease, are improved (Guo et al., 2012).

TLR2−/− mice are also more susceptible to intranasal or intraperitoneal cryptococcal infections and exhibit higher fungal burden (Y auch et al., 2004; Biondo et al., 2005), as well as decreased inflammatory cytokines (Biondo et al., 2005). By contrast, in a model of Cryptococcus intratracheal infections, TLR2−/− mice show no changes in survival in comparison to control mice (Nakamura et al., 2006). Thus, in most mouse models of fungal airway infection, TLR2 appears to contribute to fungal clearance, perhaps by modulating the induction of inflammatory cytokines. However, depending on the airway infection model, the disease outcome itself may vary from unaffected to increased susceptibility. Conversely, in systemic or corneal infection models, T-reg may hinder fungal clearance and worsen the outcome of fungal disease.

Mice lacking TLR4 are either hyperresistant, hypersensitive or equally susceptible to fungal challenges than wild-type mice, depending on the C. albicans or the mouse strains used or the infection route. The recently described variable recognition of different C. albicans strains by TLR4 may account for some of these apparent discrepancies (Netea et al., 2010). TLR4 recognition may be required to elicit host defense only against strains inducing proinflammatory cytokines in a TLR4-dependent fashion. Interestingly, C. albicans mutants lacking particular glycosylation patterns such as O-glycosylation, are specifically recognized by TLR4, and lead to enhanced activation of macrophages (Lewis et al., 2012). Hence, intraspecies variability in cell wall glycosylation can determine the nature of the interaction between TLR4 and C. albicans strains, and thereby the type and intensity of the host immune response. A similar mechanism may be operating in flies, since Toll-signaling in Drosophila can distinguish virulent from avirulent Candida strains (Glittenberg et al., 2011).

Lack of TLR4 exacerbates the host inflammatory response to P. jirovecii in mice, though without affecting pathogen clearance (Ding et al., 2005). However, the course of intranasal, tracheal, intravenous, or intraperitoneal infections with C. neoformans remains unaffected in these mutant mice in comparison with control mice (Y auch et al., 2004; Biondo et al., 2005; Nakamura et al., 2006). In a model of pulmonary fungal infection with C. posadasii, lack of TLR4 improved fungal clearance (Awasthi, 2010). By contrast, Aspergillus killing is impaired in TLR4−/− mice in a model of corneal inflammation, although immune cell infiltration is unaffected (Leal et al., 2010). Whether intraspecies variabilities in cell wall composition can determine the nature of interactions between TLR4 and other fungal species than Candida remains open.

TLR3-deficient mice fail to activate protective memory-CD8+ T cells following Aspergillus vaccination (Carvalho et al., 2012b). Mice deficient in TLR7 are more susceptible to systemic infections by low doses of C. albicans than their WT wild-type littermates. However, when challenged with higher doses, the mutant mice are equally susceptible to infection than the control mice (Biondo et al., 2012).

A lack of TLR9 impairs clearance and decreases survival to C. neoformans challenge in an intranasal infection model (Nakamura et al., 2008; Wang et al., 2011). In this model, TLR9 contributes to the early induction of CCL7 and IFN-γ, thereby promoting recruitment and activation of DCs and other effector cells. Similarly, a lack of TLR9 during intratracheal C. neoformans infections results in impaired clearance during the adaptive phase, decreased recruitment of lymphocyte and macrophages, as well as alternative activation of macrophages (Zhang et al., 2010). By contrast, TLR9−/− mice depleted from neutrophils/inflammatory monocytes prior to tracheal infection with A. fumigatus, exhibit delayed mortality in comparison to depleted control mice (Ramaprakash et al., 2009). Notably, although TLR9-deficiency in immunosuppressed mice has no effect on survival to A. fumigatus after intranasal infections, it improves clearance (Bellochio et al., 2004a).

Using high dose challenges, TLR9−/− mice show no significant alterations in survival to clinical isolates of C. albicans (Van De Veerdonk et al., 2008b; Miyazato et al., 2009; Biondo et al., 2012), and even enhanced clearance when infected with an avirulent strain (Bellochio et al., 2004a). However, a lower fungal dose leads to increased susceptibility to systemic candidiasis and impaired fungal clearance in TLR9−/− mice (Biondo et al., 2012), indicating that the fungal load may determine the role of TLR9 during infection. In summary, TLR9 signaling appears to mediate clearance of Cryptococcus and low doses of C. albicans. However, TLR9 may be exploited for immune evasion by C. albicans at higher doses or A. fumigatus. Interestingly, endosomal TLR7, TLR8, and TLR9 show inhibitory cooperations or interactions (Wang et al., 2006). Notably, autoimmune models have been instrumental for a better understanding of regulatory interactions between endosomal TLRs, indicating a modulatory role of TLR9 on TLR7 signaling (Ewald and Barton, 2011). Thus, the improved clearance observed in TLR9−/− phagocytes may result from hyperactivated TLR7 signaling in absence of TLR9 (Nickerson et al., 2010).

Thus, contrary to the strong impact of MyD88 deficiency on fungal clearance and disease susceptibility, data from animal models with single TLR defects are more difficult to interpret or often even conflicting. This may result, at least in part, from the central role of MyD88 as adapter protein not only for most TLRs but also for cytokine receptors recognizing IL-1, IL-18, and IL33. IL-1R signaling for instance has an essential function in the defense against C. albicans but not all fungal species (Bellochio et al., 2004a; Leal et al., 2010; Wang et al., 2011). Hence, the contribution of individual TLRs to protection against infection appears to greatly vary depending on the fungal strain and/or species, infection model, infection dose as well as the genetics of mouse strains.

Furthermore, unchanged susceptibility of some TLR-deficient mouse strains may be due to a possible dual role of TLRs on pathogen clearance but also host tolerance (Ayres and Schneider, 2008; Carvalho et al., 2012a; Medzhitov et al., 2012). In this scenario, lack of a given TLR may impair fungicidal mechanisms, but also improve host tolerance to infection such that the final outcome of disease appears unaffected by the TLR absence. The notion that tolerance to infections is as crucial for resolution of infections as it is for resistance to the pathogen is a relatively recent conceptual idea in mammalian infection biology.
one of the most important nosocomial infections after HSC transplants in these patients (Plantinga et al., 2012). Invasive aspergillosis is release by blood monocytes in response to C. albicans is impaired in these patients (Plantinga et al., 2012). Invasive aspergillosis is one of the most important nosocomial infections after HSC transplants (Cunha et al., 2011; Lamoth et al., 2011). Recipients of allogeneic HSC transplants carrying the TLR1 Arg80Thr or both TLR1 Asn248Ser and TLR6 Ser249Pro SNPs are more prone to Aspergillus infections (Kesh et al., 2005). Increased susceptibility to aspergillosis is also observed in this “at-risk” group in patients carrying a TLR3 +95C/A, but not a TLR3 L412F SNP (Carvalho et al., 2012b). As a result of the TLR3 +95C/A SNP, activation of a memory-protective CD8+ T-cell response against Aspergillus is impaired (Carvalho et al., 2012b). By contrast, TLR3 L412F SNP is associated with increased prevalence of cutaneous candidiasis and impaired TLR3 signaling (Nahum et al., 2011, 2012).

An enhanced risk of chronic pulmonary aspergillosis has been linked to allele G on TLR4 Asp299Gly (Carvalho et al., 2008). The prevalence of this SNP in association with TLR4 Thr399Ile was also higher in a patient cohort suffering from Candida bloodstream infection in comparison to the control group (Van Der Graaf et al., 2006). Peripheral blood mononuclear cells (PBMCs) from patients carrying both polymorphisms exhibited enhanced IL-10 release upon C. albicans challenge (Van Der Graaf et al., 2006) but not C. albicans systemic infections (Van Der Graaf et al., 2005). Finally, allele C on TLR9 T-1237C has been linked to a higher susceptibility to allergic bronchopulmonary aspergillosis (Carvalho et al., 2008). Hence, a growing body of evidence indicates that TLRs are actively involved in Candida and Aspergillus recognition in humans and most likely in recognition of other fungal pathogens as well. The challenges associated with such studies are the low number of patients/groups and the relative low risk of infection in people carrying these SNPs, perhaps due to genetic redundancy in certain components (Neta et al., 2012) or because of TLR dual roles in shaping both resistance and tolerance to fungi. The consequences of SNPs may become more obvious in individuals with a weakened immune system. The continuous identification of new SNPs and the characterization of their effects at the molecular and cellular level will help a further uncovering of TLR roles in the antifungal immune response in humans. The identification of functional SNPs may also serve to detect “at-risk” patients and design efficient prophylaxis when necessary. Interestingly, age-related alterations in the host response to fungi may also occur, as recent data indicate that neutrophils from elderly individuals express lower levels of TLR2 than younger patients (Gasparoto et al., 2012).

CONCLUSIONS AND PERSPECTIVES

Historically, TLRs were the first described specific PRRs for fungal pathogens. The past 12 years of research on host immune response to fungi have delineated the roles of several TLRs in mediating cytokine response upon fungal interaction. Importantly, mouse survival studies have uncovered somewhat contradictory (protective or detrimental) or even non-conclusive (without effect) data on the role of TLRs in the murine antifungal response. Similarly, humans lacking MyD88, an ubiquitous signaling adaptor for TLRs, fail to show increased incidences of fungal infections. To date, no genetic defects in human TLRs have been associated with a primary immune deficiency conferring increased susceptibility to fungal pathogens and toll-like receptors.

Table 1 | TLR polymorphisms associated with increased susceptibility to fungal diseases.

Gene	SNPs or haplotypes	Effect	Disease	Outcome	References
TLR1	R80T, N248S, I602S	Reduced cytokine production by PBMCs in vitro	Invasive aspergillosis, *C. albicans* systemic infections	Susceptibility	Kesh et al., 2005; Plantinga et al., 2012
TLR3	+95C/A	Failure to activate CD8+ T-cell response	Invasive aspergillosis	Susceptibility	Carvalho et al., 2012b
L412F	Decreased TLR3 functionality	Chronic mucocutaneous candidiasis	Susceptibility	Nahum et al., 2011	
TLR4	D299G/T399I	Predicted to impair ligand binding	Invasive aspergillosis, *A. fumigatus*, CCPA, *C. albicans* systemic infections	Susceptibility	Van Der Graaf et al., 2006; Bochud et al., 2008; Carvalho et al., 2008; De Boer et al., 2011
TLR6	S249P	Unknown	Invasive aspergillosis	Susceptibility	Kesh et al., 2005
TLR9	T-1237C	Increased NF-κB binding affinity	ABPA	Susceptibility	Carvalho et al., 2008

ABPA, allergic bronchopulmonary aspergillosis; CCPA, chronic cavitary pulmonary aspergillosis; *C. albicans*, Candida albicans; *A. fumigatus*, Aspergillus fumigatus.

Modified from Romani (2011).
to either mucocutaneous or invasive fungal infections (reviewed in Lilic, 2012). However, certain TLR SNPs are clearly associated with increased susceptibility to fungal disease in specific “at-risk” populations, suggesting that TLRs are involved in fine-tuning the outcome of various host-fungus interactions (e.g., commensalism, symbiosis, latency, infection, and dissemination). In agreement, at the cellular levels, most TLRs appear not to be required for the primary step of sensing and engulfment of fungal microbes by innate immune cells. However, TLRs are recruited to sites of host cell-microbe recognition and modulate the subsequent host-fungi interplay in maturing phagosomes. Furthermore, certain TLRs mediate specific protective adaptive responses. Thus, such TLRs may be suitable targets for activating DCs in efforts to generate fungal vaccines (Ianniiti et al., 2012; Roy and Klein, 2012).

The outcome of a host response is determined by several phases, including activation of inflammatory defenses aimed at eliminating pathogens. However, uncontrolled host inflammatory responses promote sepsis and can be fatal for the host (Lionakis et al., 2012; Majer et al., 2012). Thus, the ability of the host to (1) control the inflammatory response in a timely manner and (2) to activate tissue repair mechanisms to resolve organ damages are critical components of a proper host immune response (Medzhitov et al., 2012). In this prospect, new findings suggest that TLRs and other PRRs may be involved in epithelial resistance to fungi (Weindl et al., 2011; Iliev et al., 2012). Whether TLR signaling also modulates the activity of professional phagocytes that promote the resolution of inflammation and repair processes during fungal infection (Sica and Mantovani, 2012), remains to be established.

Finally, exciting recent advances in the molecular mechanisms driving an immune memory of innate origin (Netea et al., 2011), open new fields concerning possible roles of TLRs in host-fungus interactions. Indeed, fungal β-glucans acting through Dectin-1 are clearly able to prime mouse and human monocytes to elicit a stronger inflammatory response upon restimulation with C. albicans or other PAMPs, and this by inducing chromatin remodeling (Quintin et al., 2012). The effect of β-glucans, reminiscent of the LPS-mediated priming of some TLR4-induced genes through chromatin modifications (Foster and Medzhitov, 2009), raises the question whether other fungal PAMPs, such as nucleic acids, may also induce monocyte priming in a TLR-dependent fashion. These data also suggest new ways by which PRRs in innate cells, including TLRs, exploit host chromatin remodeling to shape the host immune response to fungi at steady-state and during dynamics of infections (Tierney et al., 2012).

ACKNOWLEDGMENTS

We appreciate the careful reading of the manuscript by laboratory members.

REFERENCES

Awasthi, S. (2010). Susceptibility of TLR4-defective C3H/HeJ mice to Coccidioides posadasi infection. Med. Mycol. 48, 470–475.
Ayres, J. S., and Schneider, D. S. (2008). Inflammatory signals regulate hematopoietic stem cells. Trends Immunol. 32, 57–65.
Baldrige, M. T., King, K. Y., and Goodell, M. A. (2011). Inflammatory signals regulate hematopoietic stem cells. Trends Immunol. 32, 57–65.
Bayol Varo, V., Si-Taah, M., Takeuchi, O., Philippe, B., Nahori, M. A., Tanguy, M., et al. (2005). Involvement of toll-like receptor 2 in experimental invasive pulmonary aspergillosis. Infect. Immun. 73, 5420–5425.
Basu, S., Hodgson, G., Zhang, H. H., Katz, M., Quilici, C., and Dunn, A. R. (2000). “Emergency” granulopoiesis in G-CSF-deficient mice in response to Candida albicans infection. Blood 95, 3725–3733.
Beisswenger, C., Hess, C., and Bals, R. (2012). Aspergillus fumigatus conidia induce interferon-beta signalling in respiratory epithelial cells. Eur. Respir. J. 39, 411–418.
Bellochio, S., Montagnoli, C., Bozza, S., Gazzano, R., Rossi, G., Mambula, S. S., et al. (2004a). The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J. Immunol. 172, 3059–3069.
Bellochio, S., Moretti, S., Perruccio, K., Fallarino, F., Bozza, S., Montagnoli, C., et al. (2004b). TLRs govern neutrophil activity in aspergillosis. J. Immunol. 173, 7406–7415.
Biondo, C., Malara, A., Costa, A., Signorino, G., Cardile, F., Midiri, A., et al. (2012). Recognition of fungal RNA by TLR7 has a non-redundant role in host defense against experimental candidiasis. Eur. J. Immunol. 42, 2632–2643.
Biondo, C., Midiri, A., Messina, L., Tommasolo, F., Garufi, C., Catania, M. R., et al. (2005). MyD88 and TLR2, but not TLR4, are required for host defense against Cryptococcus neoformans. Eur. J. Immunol. 35, 870–878.
Biondo, C., Signorino, G., Costa, A., Midiri, A., Gerace, E., Galbo, R., et al. (2011). Recognition of yeast nucleic acids triggers a host protective type I interferon response. Eur. J. Immunol. 41, 1969–1979.
Bochud, P. Y., Chien, J. W., Marr, K. A., Leisenzinger, W. M., Upton, A., Janer, M., et al. (2008). Toll-like receptor 4 polymorphisms and aspergillosis in stem-cell transplantation. N. Engl. J. Med. 359, 1766–1777.
Boiko, J. R., and Borghesi, L. (2012). Hematopoiesis sculpted by pathogens: Toll-like receptors and inflammatory mediators directly activate stem cells. Cytokine 57, 1–8.
Bourgeois, C., Majer, O., Frohner, I. E., Lesiak-Markowicz, I., Hildering, K. S., Glaser, W., et al. (2011). Conventional dendritic cells mount a type I IFN response against Candida spp, requiring novel phagosomal TLR7-mediated IFN-β signaling. J. Immunol. 186, 3104–3112.
Bourgeois, C., Majer, O., Frohner, I. E., Tierney, L., and Kuchler, K. (2010). Fungal attacks on mammalian hosts: pathogen elimination requires sensing and tasting. Curr. Opin. Microbiol. 13, 401–408.
Brown, G. D., Denning, D. W., and Levitz, S. M. (2012). Tackling human fungal infections. Science 336, 647.
Buckland, K. F., O’Connor, E., Murray, L. A., and Hogaboam, C. M. (2008). Toll-like receptor 2 modulates both innate and adaptive immune responses during chronic fungal asthma in mice. Inflamm. Res. 57, 379–387.
Carvalho, A., Cunha, C., Bozza, S., Moretti, S., Massi-Benedetti, C., Bistoni, F., et al. (2012a). Immunity and tolerance to fungi in hematopoietic transplantation: principles and perspectives. Front. Immunol. 3:156. doi: 10.3389/fimmu.2012.00156
Carvalho, A., De Luca, A., Bozza, S., Cunha, C., D’Angelo, C., Moretti, S., et al. (2012b). TLR3 essentially promotes protective class I-restricted memory CD8+ T-cell responses to Aspergillus fumigatus in hematopoietic transplanted patients. Blood 119, 967–977.
Carvalho, A., Pasqualotto, A. C., Pitzurra, L., Romani, L., Denning, D. W., and Rodrigues, F. (2008).
Bourgeois and Kuchler

Frontiers in Cellular and Infection Microbiology

Fungal pathogens and toll-like receptors

Polymorphisms in Toll-like receptor genes and susceptibility to pulmonary aspergillosis. J. Infect. Dis. 197, 618–626.

Chai, L. Y., Vonk, A. G., Kullberg, B. J., Verweij, P. E., Verschuuren, I., Van Der Meer, J. W., et al. (2011). Aspergillus fumigatus cell wall components differentially modulate host TLR2 and TLR4 responses. Microbes Infect. 13, 151–159.

Collette, J. R., and Lorenz, M. C. (2011). Mechanisms of immune evasion in fungal pathogens. Curr. Opin. Microbiol. 14, 668–675.

Cunha, C., Rodrigues, F., Zelante, T., Aversa, F., Romani, L., and Carvalho, A. (2011). Genetic susceptibility to aspergillosis in allogeneic stem cell transplantation. Med. Mycol. 49(Suppl. 1), S137–S143.

De Boer, M. G., Jolink, H., Halke, C. J., Von Der Heide, P. L., Krempens, D., Fanburg, J. H., et al. (2011). Influence of polymorphisms in innate immunity genes on susceptibility to invasive aspergillosis after stem cell transplantation. PLoS ONE 6, e18403. doi: 10.1371/journal.pone.0018403

Del Poeta, M., and Chaturvedi, V. (2012). Cryptococcus and cryptococcosis in the twenty-first century. Myopathologia 173, 283–285.

De Luca, A. (2007). Functional yet balanced reactivity to Candida albicans requires TRIF, MyD88, and IDO-dependent inhibition of Rorc. J. Immunol. 179, 5999–6008.

De Luca, A., Bozza, S., Zelante, T., Zagarella, S., D’Angelo, C., Ebel, S. E., and Barton, G. M. (2012). Importance of the fungal cell walls in innate immunity genes on susceptibility to invasive aspergillosis after stem cell transplantation. J. Immunol. 179, 2136–2140.

Eisenberg, L. G., Goldman, W. E., and Schlesinger, P. H. (1993). Histoplasma capsulatum modulates the acidification of phagolysosomes. J. Exp. Med. 177, 1605–1611.

Esteban, A., Popp, M. W., Vyaz, V. K., Strubij, K., Ploegh, H. L., and Fink, G. R. (2011). Fungal recognition is mediated by the association of TOLL-1 and galectin-3 in macrophages. Proc. Natl. Acad. Sci. U.S.A. 108, 14279–14275.
receptor ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis. PLoS Pathog. 8:e1002865. doi: 10.1371/journal.ppat.1002865

Lionakis, M. S., Lim, J. K., Lee, C. C., and Murphy, P. M. (2010). Organ-specific innate immune responses in a mouse model of invasive candidiasis. J. Infect. Immun. 3, 180–199.

Loures, F. V., Pina, A., Felonato, M., and Calich, V. L. (2009). TLR2 is a negative regulator of Th17 cells and tissue pathology in a pulmonary model of fungal infection. J. Immunol. 183, 1279–1290.

Majer, O., Bourgeois, C., Zwolanek, F., Lassnig, C., Kerjaschki, D., Mack, M., et al. (2012). Type I interferons and neutrophils during Candida albicans infection and neutrophils regulating inflammatory monocytes and tissue pathology in a pulmonary model of fungal infection. J. Immunol. 183, 1279–1290.

Moreira, A. P., Cavassani, K. A., Ismailoglu, U. B., Hullinger, R., Dunleavy, M. P., Knight, D. A., et al. (2011). Caspofungin, a lipopeptide antifungal drug, extends survival and reduces fungal burden in a murine model of invasive candidiasis. J. Infect. Dis. 203, 840–848.

Netea, M. G., Wijmenga, C., and O'Neill, L. A. (2012). Genetic variation in Toll-like receptors and disease susceptibility. Nat. Immunol. 13, 535–542.

O'Neill, L. A. (2012). Toll-like receptor expression and function in fungal pathogens. Front. Microbiol. 3, 552.

Pandiyan, P., Conroy, H., Zheng, L., Ao, J., Steinmetz, D., Smith, P. B., et al. (2011). TLR2-dependent autophagy and disease in a murine model of lupus. J. Immunol. 184, 1840–1848.

Quinlan, J., Sreedhar, S., Martins, J. H., Giamarellos-Bourboulis, E. J., Iñigo, P. C., and Godwin, S. (1998). A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Development 125, 1909–1920.

Ramin, A., Kirschning, C. J., Nikolaus, M. K., Meier, A., Kirschning, C. J., Nikolaus, M. K., and Calich, V. L. (2009). TLR2 is required for activation of epitope-specific innate immune responses in Candida albicans. Adv. Dent. Res. 23, 50–55.

Nahum, A., Dadi, H., Bates, A., and Roifman, C. M. (2011). The L412F variant of Toll-like receptor 3 (TLR3) is associated with cutaneous candidiasis, increased susceptibility to cytomegalovirus, and autoimmunity. J. Allergy Clin. Immunol. 127, 528–531.

Nahum, A., Dadi, H., Bates, A., and Roifman, C. M. (2012). The biological significance of TLR3 variant, L412F, in conferring susceptibility to cutaneous candidiasis, CMV and autoimmunity. Autoimmun. Rev. 11, 341–347.

Nakamura, K., Miyazato, A., Koguchi, Y., Kinjo, Y., Uezu, K., Kinjo, T., et al. (2006). Limited contribution of Toll-like receptor 2 and 4 to the host response to a fungal infectious pathogen, Cryptococcus neoformans. FEMS Immunol. Med. Microbiol. 47, 148–154.

Netea, M. G., Warris, A., Van Der Meer, J. W., Fenton, D. A., Vercruysse, I., Van Der Meer, J. W., and Muller, F. M. (2010). Cryptococcal cell morphology affects host cell interactions and pathogenicity. PLoS Pathog. 6:e1000953. doi: 10.1371/journal.ppat.1000953

O'Neill, L. A. (2012). Toll-like receptor 9 modulates immune responses to Aspergillus fumigatus conidia in immunodeficient and allergic mice. Infect. Immun. 79, 108–119.

Pandiyan, P., Conroy, H., Zheng, L., Peterson, A. C., Mathern, D. R., Hernandez-Santos, N., et al. (2011). CD4(+)/CD25(+)Foxp3(+) regulatory T cells promote Th17 cells in vitro and enhance host resistance in mouse Candida albicans Th17 cell infection model. Immunity 34, 422–434.

Perlin, D. S. (2011). Current perspectives on echinocandin class drugs. Future Microbiol. 6, 441–457.

Pfaffer, M. A. (2012). Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am. J. Med. 125, S3–S13.

Pfaffer, M. A., and Diekema, D. J. (2007). Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev. 20, 133–163.

Pfaffer, M. A., and Diekema, D. J. (2010). Epidemiology of invasive mycoses in North America. Crit. Rev. Microbiol. 36, 1–53.

Plantinga, T. S., Johnson, M. D., Scott, W. K., Van De Vosse, E., Velez Edwards, D. R., Smith, P. B., et al. (2012). Toll-like receptor 1 polymorphisms increase susceptibility to candidemia. J. Infect. Dis. 205, 934–943.

Puel, A., Cypowyj, S., Buvanendran, J., Wright, J. F., Liu, L., Lim, H. K., et al. (2011). Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332, 65–68.

Quinlan, J., Sreedhar, S., Martins, J. H., Giamarellos-Bourboulis, E. J., Iñigo, P. C., Logie, C., et al. (2012). Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12, 223–232.

Ramanaprasak, H., Ito, T., Stendfors, T. J., Kunkel, S. L., and Hogaboam, C. M. (2009). Toll-like receptor 9 modulates immune responses to Aspergillus fumigatus conidia in immunodeficient and allergic mice. Infect. Immun. 77, 108–119.

Ramos-Cerda, Z. G., Specht, C. A., Wang, J. P., Lee, K. K., Bartholomeu, D. C., Gazzinelli, R. T., et al. (2008). Toll-like receptor 9-dependent immune activation by unmethylated CpG motifs in Aspergillus fumigatus DNA. Infect. Immun. 76, 2123–2129.

Rehl, M. (2002). Of mice and men: species variations of Toll-like receptor expression. Trends Immunol. 23, 375–378.

Rivera, A., Ro, G., Van Epps, H. L., Simpson, T., Leiner, I., Sant’Angelo, D. B., et al. (2006). Invasive innate activation and CD4+ T cell priming during respiratory fungal infection. Immunity 25, 665–675.

Roeder, A., Kirschning, C. J., Schaller, M. J., Weindl, G., Wagner, H., Korting, H. C., et al. (2004). Induction of nuclear factor-κ B and c-Jun/activator protein-1 via Toll-like receptor 2 in macrophages by antymycotic-treated Candida albicans. J. Infect. Dis. 190, 1318–1326.

Romani, L. (2011). Immunity to fungal infections. Nat. Rev. Immunol. 11, 275–288.

Roy, R. M., and Klein, B. S. (2012). Dendritic cells in antifungal immunity and vaccine design. Cell Host Microbe 11, 436–446.

Rubino, I., Coste, A., Le Roy, D., Roger, T., Jaton, K., Boekhig, M., et al. (2012). Species-specific recognition of Aspergillus fumigatus by Toll-like receptor 1 and Toll-like receptor 6. J. Infect. Dis. 205, 944–954.

Salvemmoser, S., Seidler, M. J., Dalpke, A., and Muller, F. M. (2010). Effects of caspofungin, Candida albicans and Aspergillus fumigatus.
Shoham, S., Huang, C., Chen, J. M., Savage, D. C., and Dubos, R. J. (1967). Localization of indigenous yeast in the murine stomach. J. Bacteriol. 94, 1811–1816.

Schneider, D. S., and Ayres, J. S. (2008). Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat. Rev. Immunol. 8, 889–895.

Seider, K., Brunke, S., Schild, L., Jaehn, N., Wilson, D., Majer, O., et al. (2011). The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation. J. Immunol. 187, 3072–3086.

Shoham, S., Huang, C., Chen, J. M., Golenbock, D. T., and Levits, S. M. (2001). Toll-like receptor 4 mediates intracellular signaling without TNF-alpha release in response to Cryptococcus neoformans polysaccharide capsule. J. Immunol. 166, 4620–4626.

Sica, A., and Mantovani, A. (2012). Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122, 787–795.

Smeekens, S. P., Van De Veenbonk, F. L., Van Der Meer, J. W., Kullberg, B. J., Joosten, L. A., and Netea, M. G. (2010). The Candida Th17 response is dependent on mannann- and beta-glucan-induced prostaglandin E2. Int. Immunol. 22, 889–895.

Sorci, G., Giovannini, G., Riuizi, F., Bonizzi, P., Zelante, L., Zagarella, S., et al. (2011). The danger signal S100B integrates pathogen- and danger-sensing pathways to restrain inflammation. PLoS Pathog. 7:e1001315. doi: 10.1371/journal.ppat.1001315

Sorgi, C. A., Secatto, A., Fontanari, S., Turato, W. M., Belanger, C., De Medeiros, A. I., et al. (2009). Histoplasma capsulatum cell wall beta-glucan induces lipid body formation through CD18, TLR2, and TLR4 receptors: correlation with leuкоktiene B4 generation and role in HIV-1 infection. J. Immunol. 182, 4025–4035.

Stuart, L. M., and Ezekowitz, R. A. (2005). Phagocytosis: elegant complexity. Immunity 22, 539–550.

Takahara, K., Tokieda, S., Nagaoka, K., and Inaba, K. (2012). Efficient capture of Candida albicans and zymosan by SIGIRR1 fragments: TLR2-dependent TNF-alpha production. Int. Immunol. 24, 89–96.

Tanaka, M., Ishii, K., Nakamura, Y., Miyazato, A., Maki, A., Abe, Y., et al. (2011). Toll-like receptor 9-dependent activation of bone marrow-derived dendritic cells by urA5 DNA from Cryptococcus neoformans. Infect. Immun. 80, 778–786.

Tassaroli, V., Gasparoto, T. H., Lima, H. R., Figueira, E. A., Garlet, T. P., Torres, S. A., et al. (2010). Absence of TLR2 induces susceptibility to neutrophilic after infection with Candida albicans. Med. Mycol. 48, 129–140.

Tierney, L., Linde, J., Muller, S., Britzemeier, S., Molina, J. C., Hube, B., et al. (2012). An interspecies regulatory network inferred from simultaneous RNA-seq of Candida albicans invading innate immune cells. Front. Microbiol. 3:85. doi: 10.3389/fmicb.2012.00085

Van Der Graaf, C., Kullberg, B. J., Joosten, L., Verver-Jansen, T., Jacobs, L., Van Der Meer, J. W., et al. (2005). Functional consequences of the Asp299Gly Toll-like receptor-4 polymorphism. Cytokine 30, 264–268.

Van Der Graaf, C. A., Netea, M. G., Morre, S. A., Den Heijer, M., Verweij, P. E., Van Der Meer, J. W., et al. (2006). Toll-like receptor 4 Asp299Gly/Thr399le polymorphisms are a risk factor for Candida bloodstream infection. Eur. Cytokine Netw. 17, 29–34.

Van De Veenbonk, F. L., Kullberg, B. J., Van Der Meer, J. W. M., Gow, N. A. R., and Netea, M. G. (2008a). Host-microbe interactions: innate pattern recognition of fungal pathogens. Curr. Opin. Immunol. 20, 315–321.

Van Der Meer, J. W., Netea, M. G., Jansen, T. J., Jacobs, L., Verschuren, L., Van Der Meer, J. W., et al. (2008b). Redundant role of TLR9 for anti-Candida host defense. Immunobiology 213, 613–620.

Villamor, E., Gozalbo, D., Roig, P., Murciano, C., O’Connor, J. E., Fradelizi, D., et al. (2004). Myeloid differentiation factor 88 (MyD88) is required for murine resistance to Candida albicans and is critically involved in Candida-induced production of cytokines. Eur. Cytokine Netw. 15, 263–271.

Viriyakosol, S., Frier, J., Brown, G. D., and Kirkland, T. N. (2005). Innate immunity to the pathogenic fungus Coccidioides posadae is dependent on Toll-like receptor 2 and Dectin-1. Infect. Immun. 73, 1535–1538.

Von Boreuth, H., Picard, C., Jin, Z., Pankla, R., Xiao, H., Ku, C. L., et al. (2008). Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321, 691–696.

Wang, J., Shao, Y., Bennett, T. A., Shankar, R. A., Wightman, P. D., and Reddy, L. G. (2006). The functional effects of physical interactions among Toll-like receptors 7, 8, and 9. J. Biol. Chem. 281, 37423–37434.

Wang, J. P., Lee, C. K., Akalin, A., Finberg, R. W., and Levitz, S. M. (2011). Contributions of the MyD88-dependent receptors IL-1R, IL-1R, and TLR9 to host defenses following pulmonary challenge with Cryptococcus neoformans. PLoS ONE 6:e26232. doi: 10.1371/journal.pone.0026232

Wang, S. H., Zhang, C., Lasbury, L. E., Cao, P., Durant, P. J., Tischang, D., et al. (2008). Decreased inflammatory response in Toll-like receptor 2 knockout mice is associated with exacerbated Pneumocystis pneumonia. Microbes Infect. 10, 531–535.

Yauh, L. E., Mansour, M. K., Shoham, S., Rottman, J. B., and Levitz, S. M. (2004). Involvement of CD14, toll-like receptors 2 and 4, and MyD88 in the host response to the fungal pathogen Cryptococcus neoformans in vivo. Infect. Immun. 72, 5373–5380.

Zaragosa, O., Garcia-Rodas, R., Nosanchuk, J. D., Cuesta-Estrella, M., Rodriguez-Tudela, J. L., and Casadevall, A. (2010). Fungal cell gigantism during mammalian infection. PLoS Pathog. 6:e1000945. doi: 10.1371/journal.ppat.1000945

Zelante, T., De Luca, A., D’Angelo, C., Moretti, S., and Romani, L. (2009). IL-17/Th17 in anti-fungal immunity: what’s new? Eur. J. Immunol. 39, 645–648.

Zhang, Y., Wang, F., Bhan, U., Hupfngale, G. B., Toews, G. B., Standiford, T. J., et al. (2010). TLR9 signaling is required for generation of the adaptive immune protection in Cryptococcus neoformans-infected lungs. Am. J. Pathol. 177, 754–765.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 25 September 2012; paper pending published: 19 October 2012; accepted: 05 November 2012; published online: 22 November 2012. Citation: Bourgeois C and Kuchler K (2012) Fungal pathogens—a sweet and sour treat for toll-like receptors. Front. Cell. Inf. Microbiol. 2:142. doi: 10.3389/fcimb.2012.00142

Copyright © 2012 Bourgeois and Kuchler. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.