Atmospheric excitation of polar motion

Wei Chen, Wenbin Shen & Xiaowei Dong

To cite this article: Wei Chen, Wenbin Shen & Xiaowei Dong (2010) Atmospheric excitation of polar motion, Geo-spatial Information Science, 13:2, 130-136, DOI: 10.1007/s11806-010-0042-2

To link to this article: http://dx.doi.org/10.1007/s11806-010-0042-2

Copyright Taylor and Francis Group, LLC

Published online: 14 Aug 2012.

Submit your article to this journal

Article views: 44

View related articles

Citing articles: 2 View citing articles
Atmospheric Excitation of Polar Motion

CHEN Wei¹ ² , SHEN Wenbin ¹ ² ³ , DONG Xiaowei¹

1. School of Geodesy and Geomatics, Wuhan University, 129 Luoyu Road, Wuhan 430079, China
2. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan 430079, China
3. Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University, 129 Luoyu Road, Wuhan 430079, China

© Wuhan University and Springer-Verlag Berlin Heidelberg 2010

Abstract The polar motion excited by the fluctuation of global atmospheric angular momentum (AAM) is investigated. Based on the global AAM data, numerical results demonstrate that the fluctuation of AAM can excite the seasonal wobbles (e.g., the 18-month wobble) and the Chandler wobble, which agree well with previous studies. In addition, by filtering the dominant low frequency components, some distinct polar wobbles corresponding to some great diurnal and semi-diurnal atmospheric tides are found.

Keywords polar motion; atmospheric excitation; 18-month wobble; Chandler wobble; atmospheric tides

CLC number P223

Introduction

Polar motion refers to the displacement of the Earth’s rotation axis in a frame tied to the Earth (or more precisely, the mantle). It is a response to the mass redistribution and relative motions within the Earth system, as well as torques from both celestial bodies and Earth’s internal layers (such as the inner and outer cores) and superficial fluid envelopes (such as the atmosphere and ocean)¹ ² . Any process that can perturb the rotation axis is an excitation source of polar motion. In this study, only the effects of atmospheric excitation will be investigated.

The atmosphere, with strong mobility forced primarily by the diurnal and seasonal cycles, is the primary excitation source for the Earth’s rotation on intraseasonal and seasonal timescales³ ⁷ . The atmospheric excitation is usually separated into two parts: the “wind” terms due to the atmospheric motion relative to the crust plus mantle; and the “pressure” terms due to the variations of the atmospheric mass distribution, evident through surface pressure changes. At seasonal and intraseasonal timescales, the wind has been shown to be the dominant excitation source to the length of day (LOD) change, whereas it is comparable to the surface pressure change in exciting the Earth’s polar motion⁵ ⁸ ¹ ² .

Received on February 28, 2010.

Supported by the Special Project Fund of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (China); the Ph.D. Candidates Self-research (including 1+4) Program of Wuhan University in 2008 (No.49); the Engagement Fund of Outstanding Doctoral Dissertation of Wuhan University (No.22); the Open Fund of Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, China (No.08-02-02).

CHEN Wei, Ph.D. candidate, majors in astro-geophysics and physics of the Earth’s interior. He had gained the Excellent Graduate Pacesetter of Wuhan University in the year 2007 and 2009, respectively.

E-mail: wbshen@sgg.whu.edu.cn, daniel135@126.com
In the present study, the global atmospheric angular momentum (AAM) data\[^{8-11}\] ranging from 1948 to 2006, are adopted to analyze the AAM’s influence on the rotational axis. We find that the atmospheric excitation can be quite significant in exciting the polar motion, especially the 18-month wobble and the Chandler wobble.

1 Theory of nonrigid earth rotation

As is well known, the governing equations of polar motion, namely the Liouville equations, can be written as\[^{1-2}\]

\[
i m + m = \psi \quad (1)
\]

where \(\sigma = \frac{C - A}{A} \Omega\) is the Euler frequency, \(C\) and \(A\) are the principal moments of inertia, and \(\Omega\) is the mean rotation rate of the Earth. In Eq.(1), the traditional complex notations are adopted

\[
m = m_1 + im_2 \\
c = c_1 + ic_{23} \\
h = h_1 + ih_2 \\
L = L_i + iL_2 \\
\psi = \psi_1 + i\psi_2
\]

In Eq.(2), \(m, c, h\) and \(L\) are the pole coordinate, product of inertia (caused by the mass redistribution within the Earth system), relative angular momentum (caused by the relative motion with respect to the mantle) and torques from celestial bodies, respectively, while \(\psi\) is the so called excitation functions including all the factors perturbing the rotation state of the Earth. The excitation function might be written as\[^{1-2}\]

\[
\psi = \frac{Q^2 c - iQ\dot{c} + Qh - ih + iL}{\Omega^2 (C - A)}
\]

(3)

The rotation of the Earth will give rise to a centrifugal force, which leads to a deformation of the nonrigid Earth. That is the Earth’s principal departure from the rigid body. Also, there are some other non-rotational deformations, such as the luni-solar tidal deformation. We can decompose the total deformation as

\[
c = c^R + c^{NR}
\]

and correspondingly

\[
\psi = \psi^R + \psi^{NR}
\]

(5)

where the superscripts \(R\) and \(NR\) correspond to the rotational and non-rotational deformations, respectively.

Concerning the Lagrangian displacement field \(s(r,t)\), a particle with an initial position \(r\) will get placed to \(r + s(r,t)\), then the total acceleration vector can be expressed as

\[
a = \left(\frac{\partial}{\partial t} + \omega \times \right) \left(\frac{\partial}{\partial t} + \omega \times (r + s) \right)
\]

(6)

where \(\omega\) is the angular velocity of the Earth. Noting \(\omega = (m_1 + m_2 + m_3)\Omega\) and neglecting terms of order \(m_1 m_j\) and \(m_i m_j\) \((i,j = 1,2,3)\), Eq.(6) can be simplified to

\[
f = -\nabla \phi = -\nabla \frac{1}{2} \left[m_1 [\cos \lambda + m_1 \sin \lambda] P_{20} (\cos \theta) \right.
\]

\[
- m_2 [2P_{20}(\cos \theta) + 1] \right]
\]

(7)

is the centrifugal potential. In Eq.(8), \(P_{20}(\cos \theta)\) is the un-normalized associated Legendre polynomials. According to Love’s principle, the induced perturbation of the Earth’s gravitation potential measured at the Earth’s surface might be expressed as

\[
\delta V(r) = k \phi(r)
\]

(9)

where \(k\) is the second-order Love number. On the other hand, \(\delta V(r)\) might be decomposed as (only the second-order component is retained)

\[
\delta V(r) = \frac{GMa^2}{r^2} \sum_{m=0}^{\infty} \left(\delta \overline{c}_{2m} \cos m\lambda + \delta \overline{s}_{2m} \sin m\lambda \right) \overline{P}_{2m}(\cos \theta)
\]

(10)

where \(\overline{P}_{2m}(\cos \theta)\) is the fully-normalized associated Legendre polynomials, while \(\delta \overline{c}_{2m}\) and \(\delta \overline{s}_{2m}\) are the corresponding spherical harmonic coefficients. From Eqs.(18) to (10) and using the relationship between un-normalized and fully-normalized associated Legendre polynomials\[^{13}\], one can get

\[
\left\{ \begin{array}{l}
\delta \overline{c}_{21} = \frac{-2ka^3 \Omega^2}{3\sqrt{15GM}} m_2 \\
\delta \overline{c}_{21} = \frac{ka^3 \Omega^2}{\sqrt{15GM}} m_1 \\
\delta \overline{s}_{21} = \frac{-ka^3 \Omega^2}{\sqrt{15GM}} m_2
\end{array} \right.
\]

(11)
Physically speaking, $\delta \mathbf{C}_{21}$ and $\delta \mathbf{S}_{21}$ are related with the product of inertia, namely \cite{1-2}

$$
\begin{align*}
\delta \mathbf{C}_{20} &= -\frac{c_3^r -(c_3^r + c_3^r)}{\sqrt{5Ma^2}} \\
\delta \mathbf{C}_{21} &= -\frac{c_3^r}{\sqrt{15Ma^2}} \\
\delta \mathbf{S}_{21} &= -\frac{c_3^r}{\sqrt{15Ma^2}}
\end{align*}
$$

(12)

Then from Eqs.(11) and (12), the rotational-induced perturbation of tensor might be written as

$$
c^r = c_3^r + ic_3^r = \frac{ka^r}{3G} \Omega^2 m = \frac{k}{k_s} (C - A)m
$$

(13)

where k is the second-degree Love number and $k_s = \frac{3G(C - A)}{a^r \Omega^2}$ is the secular Love number. Thus, the excitation function might be expressed as

$$
\psi = \psi^p + \psi^{NR} = \frac{\Omega^2 c^r - i\Omega c^{NR} + \Omega^2 e^{NR} - i\Omega e^{NR} + \Omega h - ih + L}{\Omega^2 (C - A)}
$$

(14)

Substituting Eqs.(13) and (14) into Eq.(1), one gets

$$
i \frac{k_s}{\sigma_c} \Omega^2 m + (k_s - k)m = \frac{\Omega^2 c^{NR} - i\Omega c^{NR} + \Omega h - ih + L}{\Omega^2 (C - A)} = \psi^{NR}
$$

(15)

noting that $\frac{1}{\sigma_c} = 305 \frac{1}{\Omega}$ and $\frac{k_s}{k} = 0.94 \approx 3.13$, thus $\frac{k}{\Omega} = 10^{-3} \frac{k_s}{\sigma_c}$ and is quite negligible. Thus, Eq.(15) can be simplified to

$$
i \frac{1}{\sigma_c} m + (1 - \frac{k_s}{k_s})m = \psi^{NR}
$$

(16)

Let $\sigma_c = (1 - \frac{k_s}{k_s})\sigma_c$ (σ_c is in fact the Chandler frequency), Eq.(16) might be rewritten as

$$
i \frac{1}{\sigma_c} m + m = \frac{k_s}{k_s - k} \psi^{NR} = \psi^{eff}
$$

(17)

where ψ^{eff} might be called the effective excitation function \cite{1-2}. As is well known, the solution to Eq.(17) is

$$
m = e^{i\sigma_c} \left[m_0 - i\sigma_c \left(\frac{1}{\sigma_c} \right)^{-1} \psi^{eff}(\tau) e^{-i\sigma_c \tau} d\tau \right]
$$

(18)

In fact, c^r denotes the permanent rotational deformation of the Earth due to the rotation with a constant angular velocity Ω. We can limit our interest in the non-rotational deformations since we can always adopt Eq.(17) to include this permanent deformation.

Thus, the supscript “NR” will be omitted in the following text, but one should keep in mind that the quantities such as c and ψ are actually c^{NR} and ψ^{NR}, respectively.

2 Atmospheric excitation of polar motion

Barnes et al. (1983) \cite{4} had introduced the so called angular momentum functions which make the treatment of the influence of atmosphere on the rotation of the Earth much more convenient. The complex angular momentum function is

$$
\chi = \frac{\Omega c + h}{\Omega(C - A)} \equiv \chi_p + \chi_w
$$

(19)

where the subscripts p and w denote the pressure term (relevant with Ωc) and the wind term (relevant with h) respectively.

The atmospheric pressure will load the Earth, and the pressure term χ_p will give rise to an additional term $k' \chi_p$, which denotes the loading deformation of the Earth (k' is the second-order load Love number). Then, the total angular momentum function will be

$$
\chi_{total} = (1 + k') \chi_p + \chi_w
$$

(20)

Considering Eqs.(17), (19) and (20) (noting that only the non-rotational deformations are needed and concerned here), the effective angular momentum might be expressed as

$$
\psi^{eff} = \frac{k_s}{k_s - k} \left(\chi_{total} - i \frac{\chi_{total}}{\Omega} \right)
$$

(21)

By substituting the numerical values $k = 0.30$, $k_s = 0.94$ and $k' = -0.30$ \cite{1-2} to Eq.(21), one gets

$$
\psi^{eff} = \chi_p + 1.43 \chi_w - i \frac{\chi_p + 1.43 \chi_w}{\Omega}
$$

(22)

where $\chi_{eff} = 1.00 \chi_p + 1.43 \chi_w$. Substituting Eq.(22) into Eq.(18), one gets the atmospheric-excited polar motion

$$
m = e^{i\sigma_c} \left[m_0 - i\sigma_c (1 + \frac{\sigma_c}{\Omega}) \int_0^t \chi_{eff}(\tau) e^{-i\sigma_c \tau} d\tau \right] - \frac{\sigma_c}{\Omega} \left[\chi_{eff}(t) - e^{-i\sigma_c \tau} \chi_{eff}(0) \right]
$$

(23)
3 Polar motion excited by AAM fluctuations

Here we adopt the NCEP (National Centers for Environmental Prediction) values of global atmospheric angular momentum (AAM) as calculated from NCEP/NCAR (National Center for Atmospheric Research) re-analyses archived on pressure surfaces[8-11]. Data are given up to four times daily from 1948-1-1 to 2006-12-31, and are provided by the Global Geophysical Fluids Data (GGFD) Center of International Earth rotation and Reference systems Service (IERS) (the AAM data are available at http://www.iers.org/). The AAM data contain values of inverted barometer (IB) pressure (or, mass) terms, Non-IB pressure terms, and wind (or, motion) terms of the atmospheric angular momentum (see Fig.1). The wind terms are computed by integrating winds from the Earth’s surface to 10 hPa, the top of atmospheric model. The inverted barometer correction involves applying the mean atmospheric surface pressure over the whole world ocean to every point over the world ocean. More information about the data can be accessed at the above mentioned website.

Based on the AAM data and the theory provided in sections 2 and 3, the polar motion excited by the AAM fluctuations

\[m_{AAM} = m_{AAM1} + im_{AAM2} \]

(24)
can be obtained (see Fig.2. The \(X\) and \(Y\) components denote \(m_{AAM1}\) and \(m_{AAM2}\) respectively). One can see that the AAM-excited polar motion \(m_{AAM}\) is significant and can even exceed 100 mas sometimes (noting the observed polar motion is approximately on the order of 200 mas). Also, \(m_{AAM}\) contains variations of multiple frequencies. In order to obtain its frequency spectrum, a Fast Fourier Transformation (FFT) analysis is applied to \(m_{AAM}\). However, the frequency spectrum of \(m_{AAM}\) is dominated by some low frequency variations (such as the Chandler and annual wobbles as well as an 18-month fluctuation. Wherein, the Chandler wobble (CW) and the 18-month fluctuation are described in Fig.3 while the annual wobble is removed), and other components of \(m_{AAM}\) are all enshrouded by them. From Fig.3, one can see that the AAM-excited CW can reach about 30 mas, accounting for 19% of the observed amplitude of CW (with a mean value about 160 mas). This result is quite in agreement with the study of Wahr (1983)[3], which found that the atmosphere is not the primary excita-
tion source though it has a noticeable effect on the Chandler wobble excitation during 1900-1973. Besides, the variation of AAM might give rise to the 18-month polar motion with an amplitude of 15 mas. The 18-month wobble is known as one component of the seasonal variation of the pole position\cite{1,2}.

As stated above, some high frequency AAM-induced polar motion are enshrouded by the low frequency variations, so a high-pass filter should be applied to m_{AAM}. In the present study, Butterworth filter, one of the Infinite Impulse Response (IIR) filters, is chosen to remove the low frequency components of m_{AAM}. The results are shown in Fig.4 and Fig.5.

Fig.4 shows the original m_{AAM} (the top figure) and its high frequency variations (the bottom figure) obtained by applying the Butterworth filter to m_{AAM}. One can see that the diurnal and semi-diurnal components of m_{AAM} become evident after filtering. According to Fig.5, there are 3 main peaks both in the diurnal and semi-diurnal frequency bands. These peaks should correspond to some largest atmospheric tides (see Table 1): the 3 peaks in the diurnal frequency band correspond to the O_1, P_1 and K_1 tides respectively; the 3 peaks in the semi-diurnal frequency band correspond to the N_2, M_2 and S_2 tides respectively. Because of the low sampling rate of the AAM data, the semi-diurnal signals (just corresponds to the Nyquist frequency) could be only marginally determined, and the diurnal signals are also mixed with much uncertainty. Thus, the frequency spectra shown in Fig.5 are rather sparse, and their corresponding frequencies might not coincide with the actual atmospheric tidal frequencies exactly.

Table 1 Some significant atmospheric tides\cite{14}

Frequency band	Angular frequency(°/h)	Origin
Diurnal	O_1	13.943063 Moon
	P_1	14.958931 Sun
	K_1	15.041069 Moon and sun
Semi-diurnal	N_2	28.439730 Moon
	M_2	28.984104 Moon
	S_2	30.000000 Sun

The periodic luni-solar tidal generating force will attract the atmosphere and then give rise to periodic atmospheric redistribution as well as periodic winds. The two factors, corresponding to the mass and motion terms in the excitation function stated by Eq.(3), will...
contribute to polar wobbles with the same periods. That is why components with tidal frequencies appear in the polar motion. According to Fig.5, the atmosphere tides will lead to polar wobbles with a few mas in the diurnal frequency band and a few tenth of mas in the semi-diurnal frequency band.

4 Discussion and conclusion

In this paper, the atmospheric excitation of polar motion is studied both theoretically and numerically for the case of a biaxial Earth (just following the traditional theory). Our results demonstrate that the atmospheric excitation is significant to the seasonal wobble (e.g., the 18-month wobble) and the Chandler wobble, which coincide well with previous studies, as well as some distinct polar wobbles corresponding to some great diurnal and semi-diurnal atmospheric tides.

The role of the atmosphere in exciting polar motion has been relatively well quantified, mainly because the time variations of the atmospheric angular momentum (AAM) are well constrained by the available meteorological observations. However, the oceanic excitation, although expected to be important, have not been known as well as the atmospheric one, and the main
difficulty is the lack of observation data of the worldwide ocean bottom pressures and currents\cite{15}.

On the other hand, Shen et al. (2007)\cite{16} and Chen et al. (2009)\cite{17} predicted that the triaxiality of the Earth could give rise to a small fluctuation in the length of day (LOD) which does not present in the theory of biaxial Earth rotation. Chen et al. (2009)\cite{18} predicted that the geophysical excitations for the case of triaxial Earth will differ from the case of biaxial one. Our further studies demonstrate that the difference between the atmospheric-induced polar motions for the biaxial and triaxial cases is close to 1 mas, which should not be ignored within the present measurement accuracy\cite{19}. The details are beyond the scope of the present study and will be presented in a separate paper.

References

[1] Lambeck K (1980) The Earth’s variable rotation: geophysical causes and consequences [M]. Cambridge: Cambridge University Press
[2] Moritz H, Mueller II (1987) Earth rotation: theory and observation [M]. New York: The Ungar Publishing Company
[3] Wahr J (1983) The effects of the atmosphere and oceans on the Earth’s wobble and on the seasonal variations in the length of day, II. results [J]. Geophys. J. R. Astr. Soc., 74: 451-487
[4] Barnes RTH, Hide R, White A A, Wilson C R (1983) Atmospheric angular momentum functions, length-of-day changes and polar motion [J]. Proc. R. Soc. Lond., A, 387: 31-73
[5] Naito I, Kikuchi N, Yokoyama K (1987) Results of estimating the atmospheric effective angular momentum functions based on the JMA global analysis data [J]. Pbl. Int. Latitude Obs. Mizusawa, 20: 1-11
[6] Eubanks T M (1993) Variations in the orientation of the Earth [C]. Contributions of Space Geodesy to Geodynamics: Earth Dynamics, Washington DC
[7] Gross R S, Fukumori I, Menemenlis D (2003) Atmospheric and oceanic excitation of the Earth’s wobbles during 1980–2000 [J]. J. Geophys. Res., 108(B8)
[8] Salstein D A, Kann D M, Miller A J, et al. (1993) The sub-bureau for atmospheric angular momentum of the International Earth Rotation Service: a meteorological data center with geodetic applications [J]. Bull. Amer. Meteor. Soc., 74: 67-80
[9] Salstein D A, Rosen R D (1997) Global momentum and energy signals from reanalysis systems [C]. Proc. 7th Conf. on Climate Variations, Boston, MA
[10] Salstein D A, Zhou Y H, Chen J L (2005) Revised angular momentum datasets for atmospheric angular momentum studies [C]. European Geophysical Union (EGU) Spring Meeting, Vienna, Austria
[11] Zhou Y H, Salstein D A, Chen J L (2006) Revised atmospheric excitation function series related to Earth variable rotation under consideration of surface topography [J]. J. Geophys. Res., 111, D12108. DOI 10.1029/2005JD006608
[12] Aoyama Y, Naito I (2000) Wind contributions to the Earth’s angular momentum budgets in seasonal variation [J]. J. Geophys. Res., 105: 12417-12431
[13] Heiskanen W A, Moritz H (1967) Physical geodesy [M]. San Francisco :W.H. Freeman and Company
[14] Melchior P (1983) The tides of the planet earth (2nd edition) [M]. Oxford: Pergamon Press
[15] Brzezinski A (2003) Oceanic excitation of polar motion and nutation: an overview [R]. IERS Technical Note No.30, Observatoire de Paris
[16] Shen Wenbin, Chen Wei, Wang Wenjun, et al. (2007) Rotation of the Earth as a triaxial rigid body [J]. Geo-spatial Information Science, 10(2): 85-90
[17] Chen Wei, Shen Wenbin, Qin Xiaofeng(2009) New solution for the Earth’s free wobble and its geophysical implications [J]. Geo-spatial Information Science, 13(1): 49-55
[18] Chen Wei, Shen Wenbin, Han Jiancheng,et al. (2009) Free wobble of the triaxial Earth: theory and comparisons with International Earth Rotation Service (IERS) data [J]. Surv. Geophys., 30(1): 39-49
[19] McCarthy D D, Petit G (eds) (2003) IERS conventions (2003) [R]. IERS Technical Notes 32, Observatoire de Paris