A Vicenary Analysis of SARS-CoV-2 Genomes

Sk Sarif Hassan¹, Ranjeet Kumar Rout², Kshira Sagar Sahoo³, Nz Jhanjhi⁴, Saiyed Umer⁵, Thamer A. Tabbakh⁶*, and Zahrah A. Almusaylim⁷

¹Department of Mathematics, Pingla Thana Mahavidyalaya, Paschim Medinipur, 721140, India
²Computer Science & Engineering, National Institute of Technology Srinagar, Hazratbal, 190006, J&K, India
³Department of Computer Science and Engineering, SRM University, Amaravati, AP, 522502, India
⁴School of Computer Science and Engineering, Taylor’s University, Subang Jaya, 47500, Malaysia
⁵Department of Computer Science and Engineering, Aliah University, Kolkata, India
⁶Materials Science Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 6086, Kingdom of Saudi Arabia
⁷General Administration of Research and Development Laboratories, King Abdulaziz City for Science and Technology (KACST), Riyadh, 6086, Kingdom of Saudi Arabia

*Corresponding Author: Thamer A. Tabbakh. E-mail: ttabbakh@kacst.edu.sa
Received: 24 January 2021; Accepted: 01 May 2021

Abstract: Coronaviruses are responsible for various diseases ranging from the common cold to severe infections like the Middle East syndromes and the severe acute respiratory syndrome. However, a new coronavirus strain known as COVID-19 developed into a pandemic resulting in an ongoing global public health crisis. Therefore, there is a need to understand the genomic transformations that occur within this family of viruses in order to limit disease spread and develop new therapeutic targets. The nucleotide sequences of SARS-CoV-2 are consist of several bases. These bases can be classified into purines and pyrimidines according to their chemical composition. Purines include adenine (A) and guanine (G), while pyrimidines include cytosine (C) and tyrosine (T). There is a need to understand the spatial distribution of these bases on the nucleotide sequence to facilitate the development of antivirals (including neutralizing antibodies) and epitopes necessary for vaccine development. This study aimed to evaluate all the purine and pyrimidine associations within the SARS-CoV-2 genome sequence by measuring mathematical parameters including; Shannon entropy, Hurst exponent, and the nucleotide guanine-cytosine content. The Shannon entropy is used to identify closely associated sequences. Whereas Hurst exponent is used to identifying the auto-correlation of purine-pyrimidine bases even if their organization differs. Different frequency patterns can be used to determine the distribution of all four proteins and the density of each base. The GC-content is used to understand the stability of the DNA. The relevant genome sequences were extracted from the National Center for Biotechnology Information (NCBI) virus database. Furthermore, the phylogenetic properties of the COVID-19
virus were characterized to compare the closeness of the COVID-19 virus with other coronaviruses by evaluating the purine and pyrimidine distribution.

Keywords: Fractal dimension; shannon entropy; hurst exponent; GC-content; SARS-CoV-2

1 Introduction

The coronavirus disease pandemic (COVID-19) is an ongoing global public health crisis caused by the severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) [1,2]. The disease originally started in Wuhan, China, and quickly spread to the rest of the world, infecting millions of people worldwide [3–5]. The rapid spread of the virus has overwhelmed the most advanced healthcare systems and has so far resulted in the death of over 2.5 million people worldwide. In January 2020, the World Health Organization (WHO) affirmed COVID-19 as a public health emergency of international concern [6–9]. In order to control the disease and hence give time for the healthcare systems to cope with the sudden demand, lockdowns were ordered in many countries worldwide, leading to major economic and social disruption. In view of this, there is an urgent need to understand the genomic of the virus so as to limit the spread, reduce mortality from the disease, and develop new effective treatments.

The SARS-CoV-2 was found to be connected to two bat-derived stern acute respiratory syndrome-like coronaviruses; bat-SL-CoVZC45 and bat-SLCoVZXC21 [10]. On the 11th February 2020, the WHO formally named the disease COVID-19. From that day onwards, the coronavirus research group of the International Committee on Taxonomy of Viruses called the virus SARS-CoV-2 [11]. The National Center for Biotechnology Information (NCBI) has a complete genomic sequence of the CoV evolutionary basis and molecular uniqueness [12]. Ceraoio et al. [13] identified a good sequence relationship (above 99%) between all sequenced 2019 CoVs genomes and the bat CoV genomes, with the closest bat CoV sequence sharing 96.2% of the sequence identity. This confirmed the zoonotic origin of the virus.

Coronaviruses are enclosed RNA viruses that circulate amongst humans, other mammals, and birds, causing respiratory, enteric, hepatic, and neurologic diseases [14,15]. A total of 89 nucleotide sequences of SARS-CoV-2 are accessible from the NCBI virus database [16,17]. All these sequences consist of nearly about 29000 bases. These bases can be classified into purines and pyrimidines according to their chemical composition. Purines include adenine (A) and guanine (G), while pyrimidines include cytosine (C) and tyrosine (T). There is a need to understand the spatial distribution of these bases on the nucleotide sequence to facilitate the development of antivirals (including neutralizing antibodies) and epitopes necessary for vaccine development. Various quantitative metrics can be used to understand the spatial distribution of purines and pyrimidines, including: Hurst exponent (HE), Shannon entropy (SE), and the nucleotide guanine-cytosine content (GC-content). The HE is used to identify the auto-correlation of purine-pyrimidine bases even if their organization differs. SE is used to identify closely associated sequences. Different frequency patterns can be used to determine the distribution of all four proteins and the density of each base. The GC-content is used to understand the stability of the DNA. Therefore, this study aimed to evaluate all the purine and pyrimidine associations within the SARS-CoV-2 genome sequence by measuring mathematical parameters including; SE, HE, and the nucleotide GC-content.
The rest part of this paper is organized as follows. In Section 2, the specification of the database is explained. Definition of different fundamental parameters and their effectiveness with respect to the database have been explained in Section 3. Experimental results and illustrations are demonstrated in Section 4. Section 5 concludes the article, emphasizing the critical factors of the entire analysis.

2 Materials and Methods

2.1 Specifications of the Used Database

All the CoV nucleotide sequences were acquired from the NCBI Virus Database (http://www.ncbi.nlm.nih.gov/labs/virus/vssi/). This dataset contains 89 complete SARS-CoV-2 nucleotide sequences from the 15th March 2020. For the purpose of the study, each DNA sequence has been converted into a binary sequence of “10s” and “00s” as per Eq. (1).

Eq. (1) corresponds to purine and pyrimidine nucleotide bases encoded as 1 and 0 correspondingly into the changed binary sequence. All the 89 complete SARS-CoV-2 nucleotide sequences were labeled according to their accession ID as listed below in Tab. 1.

\[
\begin{align*}
A/G & \rightarrow 0 \\
T/C & \rightarrow 1
\end{align*}
\] (1)

Seq	Accession ID								
S1	NC_045512	S19	MT159712	S37	MT050493	S55	MT066175	S73	MT019531
S2	MT188341	S20	MT159716	S38	MT152824	S56	MT066176	S74	MT007544
S3	MT188339	S21	MT159707	S39	MT135044	S57	MT044257	S75	MN996527
S4	MT188340	S22	MT159715	S40	MT135042	S58	MT049951	S76	MN996531
S5	MT184910	S23	MT159721	S41	MT135043	S59	MT044258	S78	MN996530
S6	MT184908	S24	MT159717	S42	MT135041	S60	MT039888	S79	MN996529
S7	MT184909	S25	MT159722	S43	MT126808	S61	MT039873	S80	MN988668
S8	MT184911	S26	MT159714	S44	MT123291	S62	MT039887	S81	MN997409
S9	MT184913	S27	MT159713	S45	MT123290	S63	MT039890	S82	MN994467
S10	MT184912	S28	MT159706	S46	MT123293	S64	MT027063	S83	MN988669
S11	MT184907	S29	MT066156	S47	MT123292	S65	MT027064	S84	MN994468
S12	MT163716	S30	MT159705	S48	MT118835	S66	MT027062	S85	MN988713
S13	MT163719	S31	MT121215	S49	MT106054	S67	MT019529	S86	MN975262
S14	MT163717	S32	MT159719	S50	MT06053	S68	MT020880	S87	MN938384
S15	MT163718	S33	MT159720	S51	MT106052	S69	MT019530	S88	MN985325
S16	MT159711	S34	MT159709	S52	MT093571	S70	MT019532	S89	MN908947
S17	MT159710	S35	MT159718	S53	MT093631	S71	MT019533		
S18	MT159708	S36	MT012098	S54	MT072688	S72	MT020881		
The length of these complete 89 sequences varied between 29783 to 29981 nucleotides, and the range was 198 bp long. The smallest complete SARS-CoV sequence was S2 with a length of 29783, and the largest one was S47, with a length of 29981. Two sequences had a length of 29867, Thirty-nine sequences had a length of 29882, and 11 sequences were 29903 long.

2.2 Generation of Gene Clusters

Different quantitative parameters, including; SE, fractal dimension (FD), HE, and the distribution of purines-pyrimidines contents, were used to describe the spatial distribution of the bases of the SARS-CoV-2 sequences.

2.3 FD of the Indicator Matrices

FD is a key for characterizing fractal patterns or sets whereby \(D = \{0, 1\} \) is a set of two symbols characterizing the purine and pyrimidine bases of a nucleotide sequence, and \(S(l) \) is the binary sequence corresponding to a nucleotide sequence with the repetition of two characters from \(D \) to length \(l \). All the binary sequences in our study were transferred into the indicator matrices [18–21]. The patterns were demonstrating self-similarity in the fractal dimension point to which the fractal objects filled a particular Euclidean space in which it was entrenched. Several methods have been described in the literature to determine the self-organizing configuration of the DNA sequences throughout an indicator matrix. The indicator function for each sequence was then defined as shown in Eq. (2) [22]:

\[
\vartheta : \{0, 1\} \times \{0, 1\} \rightarrow \{0, 1\}, \tag{2}
\]

such that the indicator matrix:

\[
\vartheta_{hk} = \vartheta (x, y) = \begin{cases}
1, & \text{if } x = y \\
0, & \text{if } x \neq y
\end{cases}
\]

whereby \(\vartheta_{hk} \) is a matrix with the values 0 and 1. A binary image is generated through this matrix to understand the correlation between the sequences. Similarly, we can also depict the auto-correlation between the purine and pyrimidine for the same sequence. The image will be generated by assigning a ‘1’ to black dots and ’0’ to white dots. The purine and pyrimidines have been distributed like a fractal. The indicator matrix FD has been calculated as the average number of \(\sigma(p) \) of 1, acquired from the \(P \times P \) indicator matrix with \(p \times p \) randomly. Using \(\sigma(p) \), the FD is defined in Eq. (3):

\[
D = -\frac{1}{P} \sum_{n=2}^{p} \frac{\log \sigma(p)}{\log p} \tag{3}
\]

The self-organization of purine and pyrimidine bases for all the SARS-CoV-2 sequences can be obtained through the indicator matrix FD. The box-counting method is the most commonly used to determine the FD.

2.4 HE

The autocorrelation of purine-pyrimidine bases for all the SARS-CoV-2 sequences was obtained through the HE. The HE was applied during the time series investigation to infer the autocorrelation [23,24]. The HE values range between 0 to 1. An HE value of 0.5 indicates the absolute randomness of the time series data, while a value below 0.5 indicates a negative
correlation, and a value above 0.5 indicates a positive correlation. The HE of a binary sequence s_n is defined as below.

$$\left(\frac{n}{2}\right)^{HE} = \frac{X(n)}{Y(n)} \quad (4)$$

where

$$Y(n) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (s_i - m)}$$

and $X(n) = maxT(i,n) - minT(i,n)$, where

$$T(i) = \sum_{j=1}^{n} (s_i - t)$$

and

$$t = \sqrt{\frac{1}{n} \sum_{i=1}^{n} s_i}$$

2.5 SE

The SE was used to measure the uncertainty of the binary sequence. Primary protein sequences were generated through different combinations of amino acids ranging from 30 to 3000. Some protein sequences were kept as a substring like AAAAAAAG and AAAAAAAATTTTTTTT, which resulted from coding of one or an assortment of amino acids. Such proteins are less likely to encode functional proteins. Therefore, the amount of information or the sequence uncertainty concerning a base pair was measured using the SE. The SE was used to measure the Bernoulli process entropy with the probability (p) of the two outcomes (0/1) defined as below;

$$SE = -\sum_{i=1}^{2} p_i \log_2(p_i)$$

where $p_1 = \frac{k}{2^l}$ and $p_2 = \frac{l-k}{2^l}$; here l is the length of the binary sequence, and k is the number of 1’s in the binary sequence of length l [25,26].

If the probability $p = 0$, the event will never occur; otherwise, if $p = 1$, a certain result will be generated with entropy 0. When $p = 0.5$, the uncertainty is at a maximum, and consequently, the SE is 1.

2.6 GC Content and Nucleotides Density

In molecular biology, the GC-content is usually calculated as a percentage and is sometimes called $G + C$ ratio or GC-ratio [25–28]. The percentage of GC-content and GC-ratio of the DNA sequences s used to measure several resources. One of the simplest procedures is to measure the melting point of the DNA sequences using spectrophotometry. A higher GC-content indicates a more stable DNA structure.
The GC-content percentage was calculated by the formula \(\frac{\text{Count}(G+C)}{\text{Count}(A+T+G+C)} \times 100\% \) [29,30].

In addition to the GC-content, the density of the nucleotides \(A, T, C, \) and \(G \) were acquired separately in the present study [31,32].

3 Results and Illustrations

The frequencies of several nucleotides in the SARS-CoV-2 sequences were not selected randomly. In this study, we, therefore, tried to evaluate the purine and pyrimidine spatial distribution organizations among the SARS-CoV-2 sequences through the parameters as defined in the previous section. In addition to the investigation of the purine-pyrimidine distribution, we also explored the density of each of the nucleotides and GC—content, which has a significant role on the stability of the sequence.

3.1 Classification based on the FD of the Indicator Matrices

Three distinct FDs (0.3, 0.4755, and 0.6) were identified, indicating that only three clusters within the sequences are turned up. Tab. 2 demonstrates the sequences and their corresponding FD. The histograms of all the SARS-CoV-2 sequences that were plotted according to the FD are illustrated in Fig. 1.

The dimension of each indicator matrix was above 29000 \(\times \) 29000, and therefore it was not possible to generate an image of the indicator matrix. The sequences S47, S13, S28, and S79, had an FD of 0.3, which depicts that the amount of fractality (a kind of non-linearity) is small, indicating that the purine and pyrimidine organization is relatively well-organized and closely resembling the affine type. There were eight sequences, S48, S49, S50, S51, S53, S54, S55, and S56, having an FD 0.4755, and the rest of the purine and pyrimidine sequences had an FD of 0.6, indicating a significant closeness to the FD of the cantor set [33,34].

Table 2: Sequences and their corresponding FDs

Seq	FD																
S47	0.300	S7	0.6	S26	0.6	S45	0.6	S72	0.6	S1	0.600	S20	0.6	S39	0.6	S85	0.6
S13	0.300	S8	0.6	S27	0.6	S46	0.6	S73	0.6	S2	0.600	S21	0.6	S40	0.6	S86	0.6
S28	0.300	S9	0.6	S29	0.6	S52	0.6	S74	0.6	S3	0.600	S22	0.6	S41	0.6	S87	0.6
S79	0.300	S10	0.6	S30	0.6	S57	0.6	S75	0.6	S4	0.600	S23	0.6	S42	0.6	S88	0.6
S48	0.475	S11	0.6	S31	0.6	S58	0.6	S76	0.6	S5	0.600	S24	0.6	S43	0.6	S89	0.6
S49	0.475	S12	0.6	S32	0.6	S59	0.6	S77	0.6	S6	0.600	S25	0.6	S44	0.6		
S50	0.475	S14	0.6	S33	0.6	S60	0.6	S78	0.6	S39	0.6	S66	0.6	S66	0.6		
S51	0.475	S15	0.6	S34	0.6	S61	0.6	S80	0.6	S40	0.6	S67	0.6	S67	0.6		
S53	0.475	S16	0.6	S35	0.6	S62	0.6	S81	0.6	S41	0.6	S68	0.6	S68	0.6		
S54	0.475	S17	0.6	S36	0.6	S63	0.6	S82	0.6	S42	0.6	S69	0.6	S69	0.6		
S55	0.475	S18	0.6	S37	0.6	S64	0.6	S83	0.6	S43	0.6	S70	0.6	S70	0.6		
S56	0.475	S19	0.6	S38	0.6	S65	0.6	S84	0.6	S44	0.6	S71	0.6	S71	0.6		

3.2 Classification Based on the HE

For each of the binary SARS-CoV-2 sequences, the HE was calculated using Eq. (4), and then ten clusters were formed using the k-means clustering technique for all the sequences. The
histograms of all the SARS-CoV-2 sequences that were plotted according to the HE are illustrated in Fig. 2.

Figure 1: Plot of the fractal dimension (FD) and corresponding histogram of all the purine-pyrimidine binary sequences corresponding to the SARS-CoV-2 sequences

Figure 2: Plot of the Hurst exponent (HE) and corresponding histogram of all the purine-pyrimidine binary sequences corresponding to the SARS-CoV-2 Sequences

The HE was confined to the interval 0.643, 0.655 of length 0.0123. This suggests a positive autocorrelation in the spatial distribution of the purine and pyrimidine bases for all the SARS-CoV-2 sequences. The sequence S1 (accession ID: NC04551) had the highest HE (0.712) as shown in Tab. 3. Furthermore the sequence also had a significantly different spatial organization of purine and pyrimidine bases. The length of the sequence S1 was 29903. Although there were ten other sequences (S1, S13, S14, S15, S39, S40, S41, S42, S57, S60, and S89) with the same length as S1, their HE value differed significantly from S1.
Table 3: Hurst exponent of all the 89 purine-pyrimidine binary sequences corresponding to SARS-CoV-2 sequences

Seq.	HE										
S47	0.6430890415	S11	0.6463681216	S44	0.6456954376	S50	0.6463681216	S40	0.6491763266		
S79	0.6438083222	S16	0.6463681216	S70	0.6466330524	S63	0.6457628936	S51	0.6463681216	S41	0.6491763266
S75	0.6439455807	S17	0.6463681216	S80	0.6466330524	S2	0.6459898777	S64	0.6463681216	S60	0.6491763266
S76	0.644253158	S18	0.6463681216	S58	0.6466886489	S5	0.6459943594	S65	0.6463681216	S74	0.6491856177
S28	0.6443251468	S19	0.6463681216	S59	0.6467842124	S53	0.6459898777	S66	0.6463681216	S13	0.6494006145
S37	0.6444723241	S20	0.6463681216	S58	0.6466886489	S21	0.6460659477	S72	0.6463681216	S14	0.6494692533
S77	0.644522348	S24	0.6463681216	S45	0.6470843102	S33	0.6460659477	S62	0.6463681216	S57	0.6497613576
S55	0.6445500767	S25	0.6463681216	S68	0.6475613391	S38	0.6460690307	S5	0.6459943594	S30	0.6553858343
S56	0.6445721887	S26	0.6463681216	S78	0.6477090451	S87	0.6464119458	S12	0.6497671065		
S86	0.6447294561	S29	0.6463681216	S71	0.6483049547	S8	0.6464832466				
S44	0.644748006	S31	0.6463681216	S67	0.6487736204	S42	0.648825729				
S46	0.644776066	S32	0.6463681216	S47	0.648825729	S71	0.6483049547				
S2	0.644839682	S33	0.6463681216	S69	0.6488862311	S88	0.6482531468				
S83	0.644839682	S34	0.6463681216	S76	0.6487736204	S67	0.6483049547				
S61	0.6448639682	S35	0.6463681216	S84	0.648825729	S76	0.6487736204				
S68	0.6449176326	S36	0.6463681216	S81	0.648825729	S76	0.6487736204				

Based on the HE obtained from the binary SARS-CoV-2 sequences, ten clusters were formed by using the k-means clustering. Cluster-1 contained 41 sequences (S81, S82, S62, S7, S11, S16, S17, S18, S19, S20, S24, S25, S26, S27, S29, S31, S32, S34, S48, S49, S50, S51, S64, S65, S66, S72, S73, S78, S10, S39, S40, S41, S60, S74, S13, S14, S89, S57, S12, S3) all having their center at 0.6464. Cluster-2 contained 11 sequences (S39, S40, S41, S60, S74, S13, S14, S89, S57, S12, S3) with their center at 0.6494. Cluster-3 contained only one sequence (S1) centered at 0.7125. Similarly, cluster-4 contained only one sequence (S47), centered at 0.6431. Cluster-5 contained 11 sequences (S37, S77, S55, S56, S57, S61, S54, S46, S52, S6, S36), all having their centers at 0.6448. The sequence S30 was located in cluster S6, with its center at 0.6554. The sequences (S68, S78, S88, S71, S67, S42, S15, S69) are in cluster-7, whose center is at 0.6483. The cluster-8 contained sequences (S43, S63, S2, S5, S21, S22, S33, S35, S38, S84) whose center was at 0.6460. The sequence S4 belonged to cluster-9, centered at 0.6516. Cluster 10 contained four sequences, S79, S75, S76, S28, all with their center at 0.6441. The sequences S55 and S66 had the same HE of 0.6445500767. This confirmed their identical long-range correlation even though the length of these two sequences differed by 2 bp (S55: 29870 and S66: 29872). Furthermore, the sequences S21, S22, S33, S35 belonging to the cluster-8 also had the same HE of 0.646059477. The cluster-1 sequences S81, S82, S62, S7, S11, S16, S17, S18, S19, S20, S24, S25, S26, S27, S29, S31, S32, S34, S48, S49, S50, S51, S64, S65, S66, S72, S73 and S87 belonging had an HE of 0.6463681216. Three sequences S9, S10, S83, in cluster-1 were found to have the same HE of 0.6464832466. Four sequences in cluster-2 S39, S40, S41 and S60, also had the same HE of 0.6491763266.

3.3 Classification Based on SE

For all the 89-binary purine-pyrimidine sequences of the SARS-CoV-2, the SE was first determined, and then ten different clusters were formed based on the SE obtained for all the sequences, as shown in Tab. 4. The SE and the histograms of all the SARS-CoV-2 sequences are illustrated in Fig. 3.

An SE ranging from 0.9999 to 1 indicates that the length of the range is too small, and therefore the SE is precisely the same for all the sequences. The SE for all sequences was 0.9999.
except for sequence S30, which was 29945. This indicates the maximum level of uncertainty for the S30 sequence with a probability of a purine-pyrimidine occurrence of 0.5. This means that although this sequence was not randomly composed of nucleotide bases as they are positively autocorrelated with an HE 0.6553, the purine and pyrimidine bases are composed with equal probability.

Table 4: Shannon entropy (SE) of all the purine-pyrimidine binaries sequences corresponding to SARS-CoV-2

Seq	SE										
S47	0.9999223787	S36	0.999928592	S87	0.9999320596	S88	0.9999362496	S22	0.9999362496	S89	0.9999416252
S28	0.999927878	S63	0.9999301724	S62	0.9999325138	S71	0.9999380434	S33	0.9999311193	S12	0.9999424669
S79	0.9999235693	S84	0.9999301724	S44	0.999932568	S13	0.999938992	S35	0.9999311193	S57	0.99994249
S75	0.9999242037	S2	0.9999301848	S58	0.9999328857	S69	0.9999398601	S83	0.9999311193	S38	0.9999311008
S77	0.9999247235	S64	0.9999320596	S45	0.9999329935	S15	0.9999398762	S65	0.9999320596	S9	0.9999311193
S37	0.999925013	S7	0.9999320596	S23	0.999932568	S14	0.9999398762	S66	0.9999320596	S10	0.9999311193
S76	0.999925013	S11	0.9999320596	S53	0.9999348593	S74	0.9999407143	S72	0.9999320596	S21	0.9999311193
S46	0.9999260645	S16	0.9999320596	S68	0.9999357908	S67	0.9999407381	S73	0.9999320596	S50	0.9999320596
S86	0.9999261031	S17	0.9999320596	S78	0.9999362496	S39	0.9999407381	S70	0.9999320596	S51	0.9999320596
S55	0.9999262613	S18	0.9999320596	S25	0.9999320596	S40	0.9999407539	S39	0.9999407381	S89	0.9999311193
S56	0.9999262613	S19	0.9999320596	S26	0.9999320596	S41	0.9999407539	S30	0.9999407539	S6	0.9999272835
S54	0.9999264586	S20	0.9999320596	S27	0.9999320596	S60	0.9999407539	S1	0.9999416252	S82	0.9999315857
S61	0.999926567	S24	0.9999320596	S29	0.9999320596	S59	0.9999320596	S14	0.9999416252	S34	0.9999320596
S52	0.999927186	S85	0.9999311193	S31	0.9999320596	S5	0.9999282594	S70	0.9999315948	S34	0.9999320596
S43	0.999927264	S81	0.9999315857	S32	0.9999320596	S8	0.9999282594	S80	0.9999315948	S82	0.9999315857

Figure 3: Plot of the Shannon entropy (SE) and matching histogram of all the purine-pyrimidine binary sequences corresponding with the SARS-CoV-2 sequences

After evaluating all the SE of the binary purine and pyrimidine represented for the SARS-CoV sequences, only three clusters were formed using the k-means clustering technique. The cluster-1 contained 21 sequences S68, S78, S88, S71, S13, S69, S15, S42, S74, S67, S39, S40, S41, S60, S1, S14, S89, S12, S57, S3, and S4 having SE centered at 0.999940381147619. The other 67
sequences belonged to cluster-2 and were all centered at 0.999930184068656. Therefore, these two clusters can be considered the same. Cluster-3 contained only one sequence (S30) with an SE of 0.9999585474 (approximately 1), as already mentioned before.

The distribution of SE for all the purine and pyrimidine distributions among the SARS-CoV-2 sequences was mostly linear. This is crucial for the SARS-CoV-2, unlike other sequences obtained in previous studies made [35–37]. The uncertainty level reached the maximum, which means that the probability of purine and pyrimidine bases occurring across the sequences among all the SARS-CoV-2 is equal.

3.4 GC, A, T, C, and G Density in the SARS-CoV-2

The sequences were classified according to the GC, A, T, and G densities, as follows. Tab. 5 shows the percentage density of the GC-content among all the SARS-CoV-2 sequences. The histograms of all the SARS-CoV-2 sequences that were plotted according to the GC content as shown in Fig. 4. The percentage density of the GC-content was around 37.5% meaning that the SARS-CoV-2 sequences is A and T rich. This means that A (30) was the most common purine base nucleotides, and T (32) was the most common pyrimidine base nucleotide(T). The occurrence of purine and pyrimidine bases was equally probable based on their SE. This is an important specialty of the SARS-CoV-2 sequences.

Table 5: Sequences and their respective percentage GC Content and their corresponding clusters

Seq	% of GC	C									
S30	37.912840207	10	S24	37.9927715682	4	S22	37.9994645606	5	S89	37.972778651	6
S13	37.9460254824	1	S33	37.9927715682	4	S25	37.9994645606	5	S3	37.9795610655	3
S60	37.9560579206	9	S35	37.9927715682	4	S26	37.9994645606	5	S69	37.9812033847	3
S8	37.9659995984	6	S49	37.9927715682	4	S31	37.9994645606	5	S5	37.9860785757	7
S74	37.968755227	6	S65	37.9927715682	4	S51	37.9994645606	5	S7	37.9991500184	7
S57	37.9694345049	6	S83	37.9927715682	4	S62	37.9993303634	5	S6	37.9953145917	4
S12	37.9703649196	6	S89	37.9927715682	4	S65	37.9927715682	4	S43	38.0004016602	5
S1	37.972778651	6	S23	37.9951116617	4	S81	38.0007362538	5	S53	38.0010707355	5
S14	37.972778651	6	S6	37.9953145917	4	S82	38.0007362538	5	S78	37.9860785757	7
S15	37.972778651	6	S10	37.9961806444	4	S53	38.0010707355	5	S78	37.9880231508	7
S39	37.972778651	6	S19	37.9961806444	4	S50	38.0028110568	5	S8	37.9892450719	7
S40	37.972778651	6	S21	37.9961806444	4	S58	38.0032152187	5	S86	37.9892450719	7
S41	37.972778651	6	S27	37.9961806444	4	S28	38.0051561925	5	S20	37.9892450719	7
S42	37.972778651	6	S32	37.9961806444	4	S28	38.0051561925	5	S20	37.9892450719	7
S48	37.972778651	6	S36	38.012168969	2	S34	37.9894250719	7	S9	38.0150880134	2
S59	37.972778651	6	S46	38.0132918139	2	S38	37.9978579557	5	S86	38.0152825526	2
S64	37.972778651	6	S47	38.0140755812	2	S44	37.9980596166	5	S52	38.0174146015	2
S66	37.972778651	6	S55	38.0147304988	2	S7	37.9994645606	5	S80	37.9915001841	7

Based on the GC-content density in the SARS-CoV-2 sequences, ten different clusters are formed using the k-means clustering technique as shown in Tab. 5. These ten clusters (C) had their centers at 37.9460, 38.0143, 37.9826, 37.9952, 38.0002, 37.9714, 37.9888, 38.0230, 37.9561, and 37.9128. The density of all these sequences was located in the 37.91284, 38.02505 interval. Cluster-10 and cluster-9 contained only one sequence. The GC-content of the S30, S13, and S60 were 37.91284%, 37.94602%, and 37.95605%, respectively. As also previously explained, S30 also had an SE of 1.
The A, T, C, and G intervals and their corresponding densities are summarized in Tab. 6. The histograms of all the SARS-CoV-2 sequences that were plotted according to the density of A, T, G and C are illustrated in Figs. 5–8 respectively. The spread of A, T, C, and G over the SARS-CoV-2 sequences were approximately 30%, 32%, 18%, and 19%, respectively. These findings further confirm that SAR-CoV2 is significantly \(AT\) rich and the density of the purine and pyrimidine bases is similar as shown by the SE.

Seq	% A	% T	% C	% G	Seq	% A	% T	% C	% G	Seq	% A	% T	% C	% G	Seq	% A	% T	% C	% G
S1	29.94	32.08	18.37	19.61	S31	29.89	32.11	18.38	19.62	S61	29.87	32.11	18.39	19.63					
S2	29.86	32.13	18.36	19.65	S32	29.89	32.11	18.38	19.62	S62	29.89	32.11	18.38	19.62					
S3	29.93	32.09	18.35	19.62	S33	29.89	32.11	18.38	19.62	S63	29.89	32.12	18.37	19.62					
S4	29.92	32.09	18.35	19.64	S34	29.89	32.12	18.37	19.62	S64	29.89	32.11	18.38	19.62					
S5	29.89	32.12	18.38	19.61	S35	29.89	32.11	18.38	19.62	S65	29.89	32.11	18.37	19.62					
S6	29.88	32.12	18.38	19.62	S36	29.86	32.12	18.37	19.64	S66	29.89	32.11	18.38	19.62					
S7	29.89	32.11	18.38	19.62	S37	29.86	32.12	18.39	19.63	S67	29.93	32.08	18.37	19.62					
S8	29.89	32.12	18.36	19.61	S38	29.88	32.12	18.37	19.63	S68	29.91	32.10	18.37	19.62					
S9	29.90	32.11	18.37	19.61	S39	29.94	32.08	18.37	19.60	S69	29.93	32.08	18.37	19.61					
S10	29.89	32.11	18.38	19.62	S40	29.94	32.08	18.37	19.60	S70	29.90	32.11	18.38	19.62					
S11	29.89	32.11	18.38	19.62	S41	29.94	32.08	18.37	19.60	S71	29.92	32.09	18.38	19.62					
S12	29.94	32.09	18.36	19.61	S42	29.94	32.09	18.37	19.60	S72	29.89	32.11	18.38	19.62					
S13	29.95	32.10	18.36	19.59	S43	29.88	32.12	18.38	19.62	S73	29.89	32.11	18.38	19.62					
S14	29.94	32.09	18.36	19.61	S44	29.89	32.11	18.37	19.63	S74	29.95	32.08	18.37	19.60					
S15	29.93	32.10	18.36	19.62	S45	29.90	32.11	18.37	19.61	S75	29.86	32.12	18.39	19.63					

(Continued)
Table 6: Continued

Seq	% A	% T	% C	% G	Seq	% A	% T	% C	% G	Seq	% A	% T	% C	% G
S16	29.89	32.11	18.38	19.62	S46	29.87	32.11	18.39	19.62	S76	29.86	32.12	18.39	19.63
S17	29.89	32.11	18.38	19.62	S47	29.87	32.12	18.40	19.62	S77	29.86	32.12	18.39	19.63
S18	29.89	32.11	18.38	19.62	S48	29.89	32.11	18.38	19.62	S78	29.92	32.10	18.37	19.61
S19	29.89	32.11	18.38	19.62	S49	29.90	32.11	18.38	19.61	S79	29.85	32.13	18.38	19.63
S20	29.89	32.12	18.37	19.62	S50	29.89	32.11	18.38	19.62	S80	29.90	32.11	18.37	19.62
S21	29.89	32.11	18.38	19.62	S51	29.89	32.11	18.38	19.62	S81	29.89	32.11	18.38	19.62
S22	29.89	32.11	18.38	19.62	S52	29.87	32.11	18.39	19.63	S82	29.89	32.11	18.38	19.62
S23	29.91	32.10	18.38	19.61	S53	29.90	32.10	18.38	19.62	S83	29.89	32.11	18.38	19.62
S24	29.90	32.11	18.38	19.62	S54	29.86	32.12	18.39	19.63	S84	29.89	32.11	18.38	19.61
S25	29.89	32.11	18.38	19.62	S55	29.86	32.12	18.38	19.63	S85	29.89	32.10	18.37	19.62
S26	29.89	32.11	18.38	19.62	S56	29.87	32.12	18.39	19.63	S86	29.86	32.13	18.38	19.64
S27	29.89	32.11	18.38	19.62	S57	29.95	32.08	18.37	19.60	S87	29.89	32.11	18.38	19.62
S28	29.86	32.13	18.38	19.62	S58	29.90	32.10	18.39	19.62	S88	29.92	32.10	18.37	19.61
S29	29.90	32.11	18.37	19.62	S59	29.90	32.11	18.38	19.62	S89	29.94	32.08	18.37	19.61
S30	30.04	32.05	18.33	19.58	S60	29.95	32.10	18.36	19.60					

Figure 5: Plot of the A content density and its corresponding histogram of the SARS-CoV-2 sequences

All the sequences of SARS-CoV-2 sequences are clustered into different clusters. The position of each cluster center for all four bases differed by 0.01. The sequence S79 has the least percentage (29.85%) of the nucleotide base A, whereas sequence S30 has the lowest percentage of T, C, and G densities. It is also observed that S79, S47, and S2 have the highest percentages (32.13%) of T density, followed by G (19.65%) of C (18.40%).
The similarity analysis of the SARS-CoV-2 sequences was measured by calculating the distance between the binary vectors of the binary strings encoded based on purines and pyrimidines nucleotide bases, as mentioned earlier. Several computing methods measure the distance between multidimensional vectors, such as Hamming distance (HD), Euclidean distance, Elastic-matching distance, Jeffrey and Matusita distance, Manhattan distance, and Minkowski norm. Reportedly, these methods have little effect on the vector similarity [38]. The HD between two binary strings is defined by the number of bits in which they vary [39,40]. However, here we had to take into consideration that the length of the different SARS-CoV-2 genome usually varies by some bases.
Suppose there are two \(SARS-CoV-2 S_{1}^{x} \) and \(S_{2}^{y} \) with a length of \(x \) and \(y \) respectively (\(x > y \)), then
\[
HD(S_{1}^{x}, S_{2}^{y}) = hd(S_{1}^{y}, S_{2}^{y})
\]
if the two binary sequences \(S_{x} = 101011 \) and \(S_{m} = 0010 \), have a minimum length of 4, from left to right the HDs are \((101011,0010) = 1\). The two binary sequences, \(x \), and \(y \) are identical if the HD= 0, which indicates a similar distribution of purines and pyrimidines over the \(SARS-CoV-2 \) sequences. Similarly, the distribution of purines and pyrimidines over the \(SARS-CoV-2 \) sequences are completely different when the HD = \(\min(x, y) \). To measure the distance of the \(SARS-CoV-2 \) based on their purine-pyrimidine distribution, minimum HD was used. The larger the HD between the sequences the lower the probability that these two sequences are related to each other.

Figure 8: Plot of the \(G \) content density and its corresponding histogram of the SARS-CoV-2 sequences

The \(SARS-COV-2 \) virus sequences MT044258(S59), MN994468 (S84), NC_045512(S1), and MN039888(S60) were grouped together as a single cluster as the distance between them was almost negligible, indicating that they are closely related. Furthermore, the sequences MT152824(S38), MN996531(S76), MT012098(S36), and MT975262(S86) were closely related to each other and therefore treated as a single cluster. Similarly, the sequences MT163719(S13), MT007544(S74), MT03988(S62), MT188341(S2), MT188339(S3), MT188340 (S4), MN123290(S45), MT039873(S61), MT159721(S23), and MN072688(S54) also had similar HD and were therefore grouped together. After taking into consideration the HD between these sequences, it was observed that they were very closely related. This closeness (nearness) among the \(SARS-CoV-2 \) genomes makes it possible for future such genomes or other blasted results to analyze clusters quantitatively instead of only relying on sequential similarity.

4 Conclusions and Summary

The novel coronavirus has led to a worldwide public health emergency. One of the major reasons for such a global threat is the lack of quantitative and qualitative knowledge about this novel virus, including its genomic and proteomic levels. In this article, we evaluated the quantitative nature of the \(SARS-COV-2 \) complete sequences. This present study revealed the
closeness amongst the 89 complete sequences in the purine-pyrimidine level descriptions through phylogenetic analysis. Based on this quantitative investigation, very interesting observations were made. The purine and pyrimidine were found to be evenly and equally spaced throughout all 89 SARS-CoV sequences. The GC− content was also significantly low. This quantitative data helps us to better understand the genomic sequences of the SARS-CoV-2 sequences and could potentially be used to reduce disease spread and to identify new therapeutic targets. However, these observations could be further strengthened by evaluating the SARS-CoV-2 proteins.

Acknowledgement: We appreciate the linguistic assistance provided by TopEdit (www.topeditsci.com) during the preparation of this manuscript.

Funding Statement: We are thankful to King Addulaziz City for Science and Technology (KACST) Saudi Arabia for providing support. We are thankful to the Center of Smart Society 5.0 [CSS5] for the support to complete this research.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

References
[1] K. V. Holmes, “SARS-associated coronavirus,” New England Journal of Medicine, vol. 348, no. 20, pp. 1948–1951, 2003.
[2] L. Van Der Hoek, K. Pyrc, M. F. Jebbink, W. Vermeulen-Oost, R. J. M. Berkhout et al., “Identification of a new human coronavirus,” Nature Medicine, vol. 10, no. 4, pp. 368–373, 2004.
[3] M. Lipsitch, D. L. Swerdlow and L. Finelli, “Defining the epidemiology of Covid-19—Studies needed,” New England Journal of Medicine, vol. 382, no. 13, pp. 1194–1196, 2020.
[4] A. S. Fauci, H. C. Lane and R. R. Redfield, Covid-19—Navigating the uncharted. Waltham, Massachusetts, United States: Mass Medical Soc., 2020.
[5] W. Liu, Q. Zhang, J. Chen, R. Xiang and H. Song, “Detection of Covid-19 in children in early January 2020 in Wuhan, China,” New England Journal of Medicine, vol. 382, no. 14, pp. 1370–1371, 2020.
[6] F. Jiang, L. Deng, L. Zhang, Y. Cai, C. W. Cheung et al., “Review of the clinical characteristics of coronavirus disease 2019 (covid-19),” Journal of General Internal Medicine, vol. 35, no. 5, pp. 1–5, 2020.
[7] J. Stebbing, A. Phelan, I. Griffin, C. Tucker, O. Oechsle et al., “Covid-19: Combining antiviral and anti-inflammatory treatments,” The Lancet Infectious Diseases, vol. 20, no. 4, pp. 400–402, 2020.
[8] J. F. W. Chan, C. C. Y. Yip, K. K. W. To, T. H. C. Tang, S. Y. C. Wong et al., “Improved molecular diagnosis of covid-19 by the novel, highly sensitive and specific covid-19-RDRP/HEL real-time reverse transcription-polymerase chain reaction assay validated in vitro and with clinical specimens,” Journal of Clinical Microbiology, vol. 58, no. 5, pp. e00310-20, 2020.
[9] C. Sohrabi, Z. Alsafi, N. O’Neill, M. Khan, A. Kerwan et al., “World health organization declares global emergency: A review of the 2019 novel coronavirus (covid-19),” International Journal of Surgery, vol. 76, pp. 71–76, 2020.
[10] M. A. Marra, S. J. Jones, C. R. Astell, R. A. Holt, A. Brooks-Wilson et al., “The genome sequence of the sars-associated coronavirus,” Science, American Association for the Advancement of Science, vol. 300, pp. 1399–1404, 2003.
[11] P. Sun, X. Lu, C. Xu, W. Sun and B. Pan, “Understanding of COVID-19 based on current evidence,” Journal of Medical Virology, vol. 92, no. 6, pp. 548–551, 2020.
[12] S. Zhang, M. Y. Diao, L. Duan, Z. Lin and D. Chen, “The novel coronavirus (Sars-cov-2) infections in china: Prevention, control and challenges,” Intensive Care Medicine, vol. 46, no. 4, pp. 1–3, 2020.
[13] C. Ceraolo and F. M. Giorgi, “Genomic variance of the 2019-ncov coronavirus,” Journal of Medical Virology, vol. 92, no. 5, pp. 522–528, 2020.
[14] G. Kampf, D. Todt, S. Pfaender and E. Steinmann, “Persistence of coronaviruses on inanimate surfaces and its inactivation with biocidal agents,” Journal of Hospital Infection, vol. 104, no. 3, pp. 246–251, 2020.

[15] S. Khan, A. Ali, R. Siddique and G. Nabi, “Novel coronavirus is putting the whole world on alert,” Journal of Hospital Infection, vol. 104, no. 3, pp. 252–253, 2020.

[16] J. Xu, S. Zhao, T. Teng, A. E. Abdalla, W. Zhu et al., “Systematic comparison of two animal-to-human transmitted human coronaviruses: Sars-cov-2 andsars-cov,” Viruses, vol. 12, no. 2, pp. 244, 2020.

[17] W. B. Yu, G. D. Tang, L. Zhang and R. T. Corlett, “Decoding the evolution and transmissions of the novel pneumonia coronavirus (Sars-cov-2) using whole genomic data,” Zoological Research, vol. 41, no. 3, pp. 247–257, 2020.

[18] C. Cattani and G. Pierro, “On the fractal geometry of DNA by the binary image analysis,” Bulletin of Mathematical Biology, vol. 75, no. 9, pp. 1544–1570, 2013.

[19] C. Cattani, Fractals and hidden symmetries in DNA. In: Mathematical Problems in Engineering. London, United Kingdom: Hindawi, 2010.

[20] S. S. Hassan, P. P. Choudhury, B. DayaSagar, S. Chakraborty, R. Guha et al., “Quantitative description of genomic evolution of olfactory receptors,” Asian-European Journal of Mathematics, vol. 8, no. 3, pp. 1550043, 2015.

[21] R. K. Rout, P. Pal Choudhury, S. P. Maity, B. DayaSagar and S. S. Hassan, “Fractal and mathematical morphology in intricate comparison between tertiary protein structures,” Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, vol. 6, no. 2, pp. 192–203, 2018.

[22] C. L. Berthelsen, J. A. Glazier and M. H. Skolnick, “Global fractal dimension of human dnasequences treated as pseudorandom walks,” Physical Review A, vol. 45, no. 12, pp. 8902–8913, 1992.

[23] A. Carbone, G. Castelli and H. E. Stanley, “Time-dependent Hurst exponent in financial time series,” Physica A: Statistical Mechanics and its Applications, vol. 344, no. 1–2, pp. 267–271, 2004.

[24] J. Miściniczuk and P. Wójcik, “Estimation of Hurst exponent revisited,” Computational Statistics & Data Analysis, vol. 51, no. 9, pp. 4510–4525, 2007.

[25] C. E. Shannon, “Prediction and entropy of printed English,” Bell System Technical Journal, vol. 30, no. 1, pp. 50–64, 1951.

[26] S. Noorizadeh and E. Shakerzadeh, “Shannon entropy as a new measure of aromaticity, shannonaromaticity,” Physical Chemistry Chemical Physics, vol. 12, no. 18, pp. 4742–4749, 2010.

[27] Y. Benjamini and T. Speed, “Estimation and correction for GC-content bias in high throughput sequencing,” Nucleic Acids Research, vol. 40, no. 10, pp. e72, 2011.

[28] D. Risso, K. Schwartz, G. Sherlock and S. Dudoit, “GC-content normalization for RNA-seqdata,” BMC Bioinformatics, vol. 12, no. 1, pp. 480, 2011.

[29] N. Galtier, G. Piganeau, D. Mouchiroud and L. Duret, “GC-content evolution in mammalian genomes: The biased gene conversion hypothesis,” Genetics, vol. 159, no. 2, pp. 907–911, 2001.

[30] F. Hildebrand, A. Meyer and A. Eyre-Walker, “Evidence of selection upon genomic GC-content in bacteria,” PLoS Genetics, vol. 6, no. 9, pp. e1001107, 2010.

[31] S. Dutta and M. Ojha, “Relatedness between major taxonomic groups of fungi based on the measurement of DNA nucleotide sequence homology,” Molecular and General Genetics MGG, vol. 114, no. 3, pp. 232–240, 1972.

[32] T. H. Jukes, “Silent nucleotide substitutions and the molecular evolutionary clock,” Science, vol. 210, no. 4473, pp. 973–978, 1980.

[33] M. El Naschie, “On dimensions of cantor set related systems,” Chaos, Solitons & Fractals, vol. 3, no. 6, pp. 675–685, 1993.

[34] I. S. Baek, “Dimensions of the perturbed cantor set,” Real Analysis Exchange, vol. 19, no. 1, pp. 269–273, 1993.

[35] J. K. Das, P. P. Choudhury, A. Chaudhuri, S. S. Hassan and P. Basu, “Analysis of purines andpyrimidines distribution over mirnas of human, gorilla, chimpanzee, mouse and rat,” Scientific Reports, vol. 8, no. 1, pp. 1–19, 2018.
[36] R. K. Rout, S. S. Hassan, S. Sindhwani, H. M. Pandey and S. Umer, “Intelligent classification and analysis of essential genes species using quantitative methods,” ACM Transactions on Multimedia Computing, Communications, and Applications, vol. 16, pp. 38:1–38:21, 2019.

[37] J. P. Banerjee, J. K. Das, P. P. Choudhury, S. Mukherjee, S. S. Hassan et al., “The variations of human miRNAs and ising like base pairing models,” BioRxiv, pp. 319301, 2018.

[38] S. Xu, Z. Li, S. Zhang and J. Hu, “Primary structure similarity analysis of proteins sequences by a new graphical representation,” SAR and QSAR in Environmental Research, vol. 25, no. 10, pp. 791–803, 2014.

[39] Y. ZuGuo and C. GuoYi, “Rescaled range and transition matrix analysis of DNA sequences,” Communications in Theoretical Physics, vol. 33, no. 4, pp. 673–678, 2000.

[40] R. W. Hamming, “Error detecting and error-correcting codes,” The Bell System Technical Journal, vol. 29, no. 2, pp. 147–160, 1950.