Yang, Yunfeng; Zhou, Jiaqian; Li, Bing; Zhao, Hongmou; Yu, Tao; Yu, Guangrong
EXPLORAÇÃO OPERATÓRIA E REDUÇÃO DE SINDESMOSE EM LESÃO DE TORNOZELO DE WEBER TIPO C
Acta Ortopédica Brasileira, vol. 21, núm. 2, 2013, pp. 103-108
Sociedade Brasileira de Ortopedia e Traumatologia
São Paulo, Brasil

Disponível em: http://www.redalyc.org/articulo.oa?id=65727451007
EXPLORAÇÃO OPERATÓRIA E REDUÇÃO DE SINDESMOSE EM LESÃO DE TORMOZELO DE WEBER TIPO C

YUNFENG YANG¹, JIAQIAN ZHOU¹, BING LI¹, HONGMOU ZHAO¹, TAO YU¹, GUANGRONG YU¹

RESUMO

Objetivo: Investigar os métodos cirúrgicos no tratamento de fratura de tornozelo de Weber tipo C e estimar a necessidade de exploração cirúrgica da sindesmose. Métodos: Quarenta e três pacientes que apresentavam fratura de tornozelo de Weber tipo C foram tratados com redução aberta e fixação interna de outubro de 2004 a dezembro de 2009. Vinte e nove pacientes foram tratados com o procedimento de rodota, que envolve redução aberta e fixação interna, exploração de sindesmose. Nos outros pacientes, foram realizados reparos adicionais. Trinta e quatro pacientes foram acompanhados durante um período médio de 31,2 meses (faixa, 18 a 50 meses), 22 pacientes desse total foram tratados com procedimentos de roda e 12 foram tratados com exploração cirúrgica adicional da sindesmose. Resultados: Todas as fraturas estavam unidas no período médio de 13,1 semanas (faixa, 10 a 18 semanas), tendo início o apoio de peso total. A escala média de tornozelo e retropé do escore de American Orthopaedics Foot and Ankle Society foi 79,86 (faixa, 65 a 98) no grupo de procedimentos de roda e 86,67 (faixa, 78 a 100) no grupo exploração da sindesmose. Os valores do escore de Olerud-Molander foram 77,27 (faixa, 55 a 100) e 86,67 (faixa, 75 a 100), respectivamente. Constatou-se diferença estatisticamente significante entre os dois grupos (P < 0,05). Conclusão: A exploração cirúrgica da sindesmose é essencial em certas fraturas de tornozelo de Weber tipo C, que torna possível o desbridamento e a redução direta da sindesmose, permitindo maior estabilização da articulação do tornozelo. Nível de evidência III, Estudo retrospectivo comparativo.

Descritores: Traumatismos de tornozelo/terapia. Traumatismos de tornozelo/cirurgia. Ligamentos articulares.

ABSTRACT

Objective: To investigate the surgical methods in treating Weber type C ankle injury and estimate the necessity of syndesmosis operative exploration. Methods: Forty three patients presenting Weber type C ankle injury were treated with open reduction and internal fixation from October 2004 to December 2009. Twenty nine patients were treated with routine procedure involving open reduction and internal fixation, syndesmosis exploration. Additional repair was performed in the others. Thirty four patients were followed during an average time of 31.2 months (range, 18 to 50 months), 22 patients of those were treated with routine procedures and 12 were treated with additional syndesmosis surgical exploration. Results: All the fractures were united within the average time of 13.1 weeks (range, 10 to 18 weeks) and full weight bearing began. The mean ankle and hindfoot scale of the American Orthopaedics Foot and Ankle Society score was 79.86 (range, 65 to 98) in the routine procedures group and 86.67 (range, 78 to 100) in the syndesmosis exploration group. The values of Olerud-Molander score were 77.27 (range, 55 to 100) and 86.67 (range, 75 to 100), respectively. Statistically significant difference was found between the two groups (P<0.05). Conclusion: Syndesmosis surgical exploration is essential in some Weber type C ankle injuries, which make debridement and direct reduction of the syndesmosis possible, allowing higher stabilization of the ankle joint. Level of Evidence III, Retrospective Comparative Study.

Keywords: Ankle injuries/therapy. Ankle injuries/surgery. Ligaments, articular.

INTRODUÇÃO

As fraturas do tornozelo estão entre as lesões mais comuns tratadas pelos cirurgiões ortopédicos. As fraturas do tornozelo de Weber tipo C são consideradas as mais comumente associadas à instabilidade da sindesmose e tem sido reconhecido como uma das causas de dor prolongada no tornozelo.¹ Tem se tornado evidente que uma redução anatômica deste tipo de fraturas é crítico para resultados ótimos e melhor obtido com redução aberta. Entretanto, o método de tratamento é ainda controverso. Além de tratar a fratura propriamente dita, é necessário também avaliar a
integridade de sindesmose. Relatos anteriores mostram que as lesões distais de sindesmoses tibiofibular são responsáveis por 1% a 11% de todas as lesões do tornozelo. Atualmente, porém, 17% a 74% das lesões de tornozelos entre atletas jovens são lesões de sindesmose distal tibiofibular. Este aumento aparente da incidência de lesões de sindesmoses podem ser atribuídos a um aumento no conhecimento, compreensão, e conscientização sobre lesões de sindesmoses. A lesão deste complexo pode levar à diástase da articulação distal tibiofibular e um encaixe instável do tornozelo. Vários estudos têm mostrado baixa tolerância do encaixe do tornozelo para deslocamento talar. Ramsay e Hamilton mostraram uma área de contato de articulação reduzida de 42% com somente 1mm de deslocamento talar. Os estudos clínicos também comprovam a precisão da redução da sindesmose como um fator crítico para obter bons resultados clínicos. A lesão sindesmotíca apresenta um desafio não só no diagnóstico, como também na tomada de decisão cirúrgica e redução. Muitos autores descreveram diferentes tipos de métodos e dispositivos para fixação de sindesmoses na redução aberta e fixação interna da fratura de tornozelo, enquanto poucos focalizaram sobre como realizar a redução de sindesmoses anatômica com exatidão durante a operação, além da avaliação fluoroscópica, e nenhum deles informou a redução direta de sindesmose e comparou o resultado com redução indireta de fraturas do tornozelo de Weber tipo C. A finalidade do presente estudo retrospectivo foi apresentar um método para restaurar o alinhamento de sindesmose com direta visualização e testar a hipótese de que tratamento com a direta visualização da redução teria o mesmo resultado funcional ou melhor a curto e médio prazo, tal como o tratamento com redução indireta de sindesmose em fraturas do tornozelo de Weber tipo C.

MATERIAIS E MÉTODOS

Uma análise retrospectiva de 43 pacientes com lesão de tornozelo de Weber tipo C foi realizada. Todos foram tratados com redução aberta e fixação interna em nosso Instituto por um grupo de cirurgiões de outubro de 2004 até dezembro de 2009. Eles eram 25 homens e 18 mulheres com a idade média de 42,5 anos (entre 21 e 64 anos). Três deles tinham fraturas abertas com feridas menores que 10mm no sítio medial sem defeito ou exposição óssea. Todos os pacientes possuíam lesão unilateral. O tempo médio de lesão inicial foi 11,7 dias (de 1 a 22 dias). Segundo classificação de Lauge - Hansen, 14 pacientes encontravam-se no estágio IV de lesão pronada- rotação externa, 21 pacientes encontravam-se no estágio III e cinco no estágio III de lesão pronada-abdução. Três pacientes não puderam ser identificados por esta classificação. Quatroze pacientes mantiveram uma fratura posterior maleolar e fragmento de Chaput foi encontrado em 13 pacientes. Vinte e nove pacientes foram operados com o procedimento padrão por redução aberta e fixação interna, exploração direta de sindesmose e reparo foram realizados também nos outros. Nenhuma diferença significativa entre os grupos com respeito à idade, sexo, mecanismo de lesão, ou seguimento estiveram presentes. Dados demográficos de pacientes e classificação de fraturas estão resumidos na Tabela 1. Sete pacientes foram perdidos durante o seguimento, deixando 36 pacientes disponíveis para a análise. O seguimento médio foi 31,2 meses (entre 18 a 50 meses). Esta pesquisa foi realizada com a aprovação da Junta de Revisão Institucional de nosso hospital. A Junta renunciou ao requisito de consentimento informado porque se tratou de estudo retrospectivo. Comparações estatísticas entre os dois grupos de tratamento foram realizadas com prova "t" de Student com a significância estatística definida como p < 0,05. Valores de p bi-caudais são apresentados.

Técnicas cirúrgicas

A operação foi realizada com uso de um torniquete e iniciada com a exposição e reconstrução da estrutura e a sindesmose lateral. Os pacientes foram deitados na lateral com a parte danificada inicialmente para cima e depois alterada para a posição supina depois que o procedimento lateral foi completado. Para facilitar a redução e fixação das estruturas mediastal. A lesão à sindesmose foi determinada pela experiência do cirurgião antes e durante a operação. Testes de estresse transoperatório fluoroscópico foram feitos após a fixação da fratura fibular e antes da aplicação do parafuso sindesmótico para avaliar a instabilidade, usando-se a rotação externa e os testes de distração fibulares posteriores. Depois da fixação do parafuso sindesmótico, testes de estresse foram repetidos. A diástase menor que 1mm foi nosso fator determinante da estabilização adequada. Todos os pacientes foram imobilizados com molde plástico durante 2 semanas após a cirurgia. Vinte e nove pacientes foram operados com a técnica padrão AO constituindo assim o grupo controle de procedimento. Quatorze pacientes foram submetidos à visualização direta da redução de sindesmose, além do procedimento padrão, conferindo o grupo de exploração de sindesmose. Grupo de procedimento padrão: Redução aberta e fixação interna da fratura fibular foram feitas usando-se técnica padrão de AO. Foi usado um enfoque póstero-lateral do tornozelo para tratar tanto a fratura posterior maleolar como as fraturas fibulares associadas. A fratura de fibula foi reduzida e fixada primeiro através do intervalo entre operônio breve e o flexor halux longo, depois, a parte posterior de sindesmose e posterior maleolar foram expostas ao elevar o músculo do abdome flexor halux longo da parte posterior da tibia distal. O fragmento posterior maleolar foi depois reduzido através de visualização. O fragmento foi classicamente estabilizado com um ou dois parafusos para ossos trabeculares e aneurais. A sindesmose foi reduzida por redução fechada da parte distal da articulação tibiofibular por flexão plantar e rotação medial do pé enquanto se aplicava um grampo de ponta grande na parte distal da tibia e da fibula. Foram colocados dois parafusos trans-sindesmóticos através das quatro camadas corticais sob controle fluoroscópico anterior para posterior, de encaixe e lateral. Todas as fraturas maleolares medias foram tratadas com redução a céu aberto e fixação interna, primeiramente com dois parafusos

Tabela 1. Dados demográficos.

Classificação	RPG (n=29)	SPG (n=14)
C1	5	3
C2	14	7
C3	10	4
Fragmento de Chaput	7	6
Ferida Medial	2	1
Seguimento (meses)	35,1(19-50)	29,4(18-42)
Peso suportado (semanas)	14,8(11-18)	12,7(10-18)
Fixação de parafuso de Syndesmose %	79.31%(23/29)	50.00%(7/14)
roscados de 4,0 mm para osso trabecular antes de se proceder à redução fechada da sindesmose.

Grupo de exploração de sindesmose: Nos pacientes com fratura fibular da parte distal, além do procedimento de rotina, a articulação tibiofibular distal foi diretamente exposta anteriormente, utilizando o mesmo enfoque póstero-lateral que foi usado para redução aberta e fixação interna da fibula. Nos pacientes com fratura fibular da parte média ou proximal, a sindesmose se aproximou anteriormente com uma incisão longitudinal pequena de 2-3cm antes da redução de fragmentos fibulares e pós-maleolares. (Figura 1) A disseção é realizada até que o ligamento tibiofibular inferior anterior interrompido seja visualizado. O resíduo do ligamento anterior tibiofibular inferior refletiu medialmente, e todo o tecido fibroso interposto na articulação distal tibiofibular foi extirpado. (Figura 2A) O fragmento distal do fibular foi puxado distalmente e rotacionado internamente por meio de uma pinça pequena (Figura 2 B, C) para reduzir tanto o local da fratura fibular e a articulação tibiofibular distal ao tentar centrar a fibula dentro da incisura tibial, e confirmando a redução fluoroscópica da sindesmose usando parâmetros radiográficos padrão e visualização direta. A fixação de placas da fratura fibular foi então realizada assim que seu comprimento e rotação foram corrigidos. (Figura 3) O ligamento rompido foi suturado usando sutura não absorvível 2-0 (Ethibond®, Johnson&Johnson, NJ, EUA). Se o ligamento fosse extraído, era fixado na inserção original usando parafusos ou arames K. (Figuras 4 e 5) O medial maleolar e sindesmose foram fixados como o método descrito anteriormente no procedimento corrente.

Todos os pacientes tiveram protocolos de tratamento pós-operatórios semelhantes. Os tornozelos foram imobilizados com um molde abaixo do joelho durante 2 semanas. Depois, tiveram início exercícios sem peso. Exercícios com peso foram permitido após a evidência radiológica da união da lesão. Os tempos de união da lesão e de provas com pesos são mostrados na Tabela 1.

Figura 1. Duas incisões foram usadas para reduzir a fratura fibular e sindesmose; a sindesmose foi acessada anteriormente por meio de uma incisão longitudinal de 2-3cm.

Figura 2. Dissecção para visualizar o ligamento interrompido tibiofibular inferior anterior. O resíduo do ligamento anterior tibiofibular inferior é refletido medialmente, e todo o tecido fibroso interposto na articulação distal tibiofibular é extirpado (A). O fragmento distal da fibula é tirado distalmente e girado internamente usando-se uma pinça pequena em uma fratura fibular alta (B) e em uma fratura fibular distal (C).

Figura 3. Radiografia AP e lateral (A) mostrando uma fratura da fibula fragmentada combinada com a fratura medial maleolar e avulsão da sindesmose. Exploração e estabilização de sindesmose foi obtida por um parafuso pequeno, arame K e sutura de ATIFL (B, C). Nesses casos, os maleolos mediais e laterais são fixados, e a sindesmose é então testada. Doze semanas após a operação, as fraturas foram curadas (D) e o paciente podia caminhar e ficar em pé sem desconforto (E).

Figura 4. A fratura extraída da tíbia lateral distal (fragmento de Chaput) foi reduzida e reparada temporariamente com arames K e o fibular fixado com placa após redução anatômica.
RESULTADOS
Trinta quatro pacientes foram seguidos por médio de 31,2 meses (entre 18 a 71 meses), destes, 22 pacientes foram tratados com os procedimentos de rotina e 12 adicionnalmente com exploração operatória de sindesmose direta. Todos os tipos de fraturas foram unidas no tempo médio de 13,1 semanas (entre 10 a 23 semanas) e teve início a série de treinamento com pesos. De acordo com a escala de tornozelo e retropé da AOFAS, a pontuação média foi 79.86 (entre 65 a 98) no grupo de procedimentos padrão e 86.67 (entre 75 a 100) respectivamente. Diferença estatisticamente significativa foi encontrada entre os dois grupos (p<0.05) mediante a análise do teste t de Student. Quebra de parafuso foi observada em dois pacientes. Um deles estava insatisfeito com os parafusos quebrados, mas não apresentava nenhum outro sintoma ou os presentes de restrição nos movimentos do tornozelo. Diástase da sindesmose recorreu em outro paciente que se queixou de edema persistente e dor depois da remoção dos parafusos e uma artrodesia de reversão da sindesmose foi feita por um parafuso cortical 3.5 com a avaliação adicional de fluoroscopia transoperatoria.

DISCUSSÃO
A articulação do tornozelo está sujeito a enormes forças através de uma superfície relativamente pequena do contato, a reduzida área superficial de contato da articulação do tornozelo leva a uma distribuição anormal do estresse conjunto, que leva provavelmente à artrite pós-traumático. As fraturas do tornozelo se encontram entre as mais comuns de todas as fraturas que representam um espectro de modelos de lesão de simples ao complexo e as fraturas do tornozelo de Weber tipo C são consideravelmente associadas com lesões sindesmoticas. Muitos autores afirmam que instabilidade do tornozelo é causada pelo deslocamento lateral do tálus secundário a lesão fibulares ou da sindesmose. Redução inadequada da fíbula leva a um encaixe instável e valgo inclinando do tálus. Redução estável da fíbula na sua posição anatômica é a chave para a estabilidade do tálus. Recentemente, o tratamento recomendado e aceito para lesões de tornozelo de Weber tipo C é redução aberta e fixação interna, mas, apesar da redução inicial da fratura apropriada, todavia pode ocorrer osteoartrose dolorosa e articulação instável em alguns pacientes. Um dos fatores mais aceitáveis é a redução inexacta da sindesmose. Vários estudos têm demonstrado que fracassou em reduzir e estabilizar uma interrupção da sindesmose, que ocorre em associação com fraturas de tornozelo rotacional e é associada com resultados deficientes. A redução inicial inadequada da sindesmose nos pacientes com fraturas bimalleares ou trimaleolares pode apresentar um efeito negativo sobre as medidas subjetivas e objetivas dos resultados e nota-se correlação com a presença de instabilidade tardia e artrite do tornozelo. Os autores chegaram à conclusão de que redução anatômica da sindesmose leva a bons resultados clínicos. Weening e Bhandari também observaram que redução anatômica da sindesmose foi significativamente associada a melhores resultados funcionais. De modo semelhante, Thordarson et al. mostraram que encurtar 2mm, ou deslocamento lateral da fíbula, ou rotação externa maior ou igual a 5 graus, aumenta as forças de contato na articulação do tornozelo, que pode predispor a artrite do tornozelo. Segundo nossa experiência, a redução inadequada da fíbula resulta em grande parte da perturbação da articulação tibiofibular distal com o fragmento distal fibular roteando lateralmente e cambiante proximalmente. Com auxílio da técnica melhorada ou procedimento adicional, a redução anatômica e o alinhamento das estruturas laterais do tornozelo podem ser obtidos. A lesão sindesmotica é particularmente problemática devido ao desafio que a mesma apresente no diagnóstico, tomada de decisões operatória e redução. Tomou-se evidente que uma redução anatômica é crítica para bons resultados. Entre tanto, o método de tratamento é ainda controverso. Muitos debates concentrados na identificação de instabilidade e desenvolveram métodos com base em fluoroscopia antes e durante a cirurgia, enquanto alguns
relatos demonstraram que medições radiográficas comuns usadas a avaliar a integridade da sindesmose são imprecisas.13,14 No presente estudo, o resultado clínico foi significativamente diferente, melhor com SEG do que com RPG, apesar da radiografia transoperatoriá ter sido usada em ambos os grupos, e a estabilidade da sindesmose testada com o mesmo método. Isso significa algum tipo de má-redução foi ignorado ou mal interpretado sem detecção por visualização direta das estruturas afetadas. O comprimento adequado da fíbula pode ser obtido por um espaçador femorotibial no local da fratura quando a rotação não pode ser corrigida apenas por inspeção por meio de Raio X. Um estudo recente de amostras de cadáveres humanos também revelou que em uma fratura do tornozelo Weber tipo C com interrupção sindesmotica, fixando a fíbula em até 30 graus de rotação externa pode não ser detectado usando apenas fluoroscopia, confirmando nos índices radiográficos aceitos para alargamento da sindesmose.15 Estes resultados sugerem que não existe medição radiográfica ideal para avaliar integridade sindesmotica, e que radiografias repetidas do tornozelo são de pouca ajuda, devido à incapacidade para reproduzir a posição do tornozelo até mesmo em otimadas condições laboratoriais. Portanto, é urgente desenvolver outros meios para visualização da sindesmose para assegurar a redução rotacional correta da fíbula dentro da incisura tibial. Há algumas opções disponíveis para o cirurgião, como radiografias transoperatoriais formais, Tomografia computadorizada intra-operatoriá e redução aberta da sindesmose. Quando foram consideradas as questões sobre precisão de redução, influência em resultado no pacientes, aplicabilidade, e custo-efetividade destas opções, a melhor opção disponível pode ser visualização direta com auxílio de fluoroscopia transoperatoriá para redução de sindesmose.

A redução e a fixação percutânea de sindesmose em fratura do tornozelo do tipo de Maisonneuve têm sido abandonada por algum autores.16 A capacidade de medições radiográficas para avaliar a sindesmose pós-operatoriá é desconhecida.17 A dificuldade em depender de medições radiográficas para avaliação da sindesmose é em grande parte devido principalmente a sua dependência em rotação e a incapacidade resultante para obter imagens padronizadas em uma situação aguda. Teramoto et al.18 também indicaram que instabilidades multidirecionais ocorreram no tornozelo depois que a sindesmose tibiofibular foi cortada e uma carga se aplicou em um estudo com análises 3-D. Apesar dessas limitações, radiografias são geralmente usadas, pois eles estão frequentemente disponíveis aos pacientes de ambulatórios, e permitem um visão geral das relações ósseas, e são relativamente de baixo custo.

É essencial restaurar a sindesmose interrompida tibiofibular distal anatomicamente. Uma vez que tratamento não operatório não pode estabilizar eficazmente a sindesmose distal tibiofibular durante o processo de cura, a fixação operatoriá é recomendada com frequência. Numerosas técnicas operatoriá foram descritas para estabilizar a sindesmose distal tibiofibular. Além da fixação de parafusos sindesmoticos convencionais, as técnicas de estabilização incluem uso de parafusos bioabsorvíveis, grampos sindesmoticos, ou fixações externas de arame circular as, arames de Kirschner, implantes flexíveis, ganchos sindesmoticos, assim como porcas e parafusos sindesmoticos e arames de cerclagem.

Entretanto, poucos autores concentraram sua atenção nas técnicas de redução, que é sempre o passo mais importante antes da fixação. Neste estudo, os autores expuseram a sindesmose para acessar visualmente o alinhamento rotacional e o comprimento fibular, além de também segurar a fíbula no entalhe fibular intra-operatoriá em vez de depender apenas de fluoroscopia transoperatoriá. Se o sitio de fratura fibular e a sindesmose rompida estivessem passíveis de visualização direta, a rotação e o encurtamento do fibular poderia ser corrigido por inspeção de “duas janelas” (local da fratura fibular e da sindesmose). Isto tornou a redução fibular mais conveniente e exata pela remoção do fragmento fibular distalmente e rotação internamente por meio de uma pinça pequena (Figura 2 B, C). A borda anterior do fibular também poderia ser visualizado em seu local adequado ao incisão. Com o auxilio da fluoroscopia transoperatoriá, a redução anatômica da sindesmose e fraturas fibulares foram obtidos o máximo possível. Além disso, com a visualização direta da parte anterior da sindesmose agravada, o ATiFL rompido poderia ser detectado e desbridado, tornando possível o reparo ou reconstrução do ligamento.

O resultado da reconstrução desta incisão agressiva e protocolo de visualização direta foi comparado com os procedimentos rotineiros dos pacientes que foram tratados com a técnica estabelecida pela AO. Além da incisão no sitio maleolar fibular e medial, em sete pacientes SEG em nossos estudos terceira incisão foi feita para expor a sindesmose anteriormente. Nenhuma complicações foram detectadas e o adormecimento, infecção ou necrose da aba foi encontrada em ambos os grupos. O enfoque aberto piora a morbidade do procedimento com outro sitio cirúrgico e exposição e desbridamento da sindesmose são seguros e factíveis.15,18 A necessidade de transfixação da sindesmose como parte de tratamento de fraturas ainda permanece um tema de debate. Na maioria das fraturas do tornozelo incluindo um fragmento posterior, o ligamento posterior tibiofibular inferior (PITFL) pode ser reparado mediante a redução e fixação de uma fratura póstero-lateral, o que pode aumentar a estabilidade do tornozelo e diminuir a necessidade de transfixação da sindesmose.19 Gardner et al.20 afirmaram que quando o posterior maleolar é fraturado, a falha do osso sugere que a integridade do PITFL tenha sido preservada. Pela mesma razão, o ATiFL pode ser reconstruído quando o fragmento de Chaput está presente.

Em nosso estudo, a porcentagem de pacientes nos quais se usou fixação dos parafusos da sindesmose foi inferior em SEG comparado a RPG, que foi 50% (7 entre 14) e 79,31% (23 entre 29) respectivamente. A reconstrução dos ligamentos de sindesmose melhora a estabilidade do tornozelo e eliminou a necessidade de transfixação da sindesmose que talvez seja associado com maior morbidade. Estamos a par das várias limitações deste estudo. Esta série foi uma análise retrospectiva com amostra pequena em que faltou seguimento a longo prazo, sendo que nove pacientes (20,93%) foram perdidos durante o seguimento, que pode ter acrescentado um viés. Resultados de medição radiológica especialmente comparações de tomografias computadorizadas entre os dois grupos e à perna contralateral não podia ser feitas, o que também prejudicou a suficiência da evidência. Também não levamos em consideração os fatores potenciais contraditórios, como o dano condral, que pode afetar os resultados clínicos. São necessários estudos prospectivos futuros usando amostras maiores com as devidas correlações clínicas.
CONCLUSÃO
Além do tratamento das fraturas nas lesões de tornozelos de Weber tipo C, a redução anatômica e fixação estável da sindesmose proporcionam resultado clínico favorável. Acreditamos que a redução aberta limitada da sindesmose muito provavelmente levará a uma redução mais exata de qualquer deformidade rotativa ou de encurtamento que o procedimento indireto, baseado em fluoroscopia. Visualização direta, desbridamento e redução aberta e reconstrução da sindesmose são indicados em algumas lesões de tornozelos de Weber tipo C para assegurar uma articulação estável de tornozelo.

REFERÊNCIAS
1. Zalavras C, Thordarson D. Ankle syndesmotic injury. J Am Acad Orthop Surg. 2007;15(6):330-9.
2. Cedell CA. Ankle lesions. Acta Orthop Scand. 1975;46(3):425-45.
3. Hopkinson WJ, St PP, Ryan JB, Wheeler JH. Syndesmosis sprains of the ankle. Foot Ankle. 1990;10(6):325-30.
4. Gerber JP, Williams GN, Scoville CR, Arciero RA, Taylor DC. Persistent disability associated with ankle sprains: a prospective examination of an athletic population. Foot Ankle Int. 1996;19(10):653-60.
5. Wright RW, Banlie RJ, Suprenant DA, Matava MJ. Ankle syndesmosis sprains in national hockey league players. Am J Sports Med. 2004;32(3):1941-5.
6. Bava E, Charlton T, Thordarson D. Ankle fracture syndesmosis fixation and management: the current practice of orthopedic surgeons. Am J Orthop (Belle Mead NJ). 2010;39(5):242-6.
7. Weening B, Bhandari M. Predictors of functional outcome following transsyndesmotic screw fixation of ankle fractures. J Orthop Trauma. 2005;19(2):102-8.
8. Rensey RL, Hamilton W. Changes in tibiotaral area of contact caused by lateral talar shift. J Bone Joint Surg Am. 1976;58(3):356-7.
9. Olson KM, Dairyko GH Jr, Toolan BC. Salvage of chronic instability of the syndesmosis with distal tibiofibular arthrodesis: functional and radiographic results. J Bone Joint Surg Am. 2011;93(1):66-72.
10. Yasui Y, Takao M, Miyamoto W, Innami K, Matsushita T. Anatomical reconstruction of the anterior inferior tibiofibular ligament for chronic disruption of the distal tibiofibular syndesmosis. Knee Surg Sports Traumatol Arthrosc. 2011;19(4):691-5.
11. Thordarson DB, Motamed S, Hedman T, Ebramzadeh E, Bakshian S. The effect of fibular malreduction on contact pressures in an ankle fracture malunion model. J Bone Joint Surg Am. 1997;79(12):1809-15.
12. Mulligan EP. Evaluation and management of ankle syndesmosis injuries. Phys Ther Sport. 2011;12(2):57-69.
13. Marmor M, Hansen E, Han HK, Buckley J, Mattiyahu A. Limitations of standard fluoroscopy in detecting rotational malreduction of the syndesmosis in an ankle fracture model. Foot Ankle Int. 2011;32(8):616-22.
14. Mukhopadhyay S, Metcalfe A, Guha AR, Mohanty K, Hemmadi S, Lyons K et al. Malreduction of syndesmosis—are we considering the anatomical variation. Injury. 2011;42(10):1073-6.
15. Pelton K, Thordarson DB, Barnwell J. Open versus closed treatment of the fibula in Maisonneuve injuries. Foot Ankle Int. 2010;31(7):604-8.
16. Nielson JH, Gardner MJ, Peterson MG, Saillis JG, Helfet DL, Lorig DG et al. Radiographic measurements do not predict syndesmotic injury in ankle fractures: an MRI study. Clin Orthop Relat Res. 2005;436(3):216-21.
17. Teramoto A, Kura H, Uchiyama E, Suzuki D, Yamashita T. Three-dimensional analysis of ankle instability after tibiofibular syndesmosis injuries: a biomechanical experimental study. Am J Sports Med. 2006;34(2):348-52.
18. Miller AN, Carroll EA, Parker RJ, Boraiah S, Lorigh DG. Direct visualization for syndesmotic stabilization of ankle fractures. Foot Ankle Int. 2009;30(5):419-26.
19. Mingo-Robinet J, Lopez-Duran L, Galeote JE, Martinez-Cervell C. Ankle fractures with posterior malleolar fragment: management and results. J Foot Ankle Surg. 2011;50(2):141-5.
20. Gardner MJ, Brodsky A, Briggs SM, Nielson JH, Lorigh DG. Fixation of posterior malleolar fractures provides greater syndesmotic stability. Clin Orthop Relat Res. 2006;447:165-71.