Torsion points of abelian varieties with values in infinite extensions over a p-adic field

Yoshiyasu Ozeki

September 24, 2008

Abstract

Let A be an abelian variety over a p-adic field K and L an algebraic infinite extension over K. We consider the finiteness of the torsion part of the group of rational points $A(L)$ under some assumptions. In 1975, Hideo Imai proved that such a group is finite if A has good reduction and L is the cyclotomic \mathbb{Z}_p-extension of K. In this talk, first we show a generalization of Imai’s result in the case where A has ordinary good reduction. Next we give some finiteness results when A is an elliptic curve and L is the field generated by the p-power torsion of an elliptic curve.

1 Introduction

Let K be a finite extension field of the p-adic number field \mathbb{Q}_p with residue field k. Fix an algebraic closure \bar{K} of K. Let A be an abelian variety over K. If $L \subset \bar{K}$ is a finite extension over K, it is well-known that the torsion part of the L-rational points $A(L)$ is finite (cf. [Mat], Thm. 7). On the other hand, in general, we do not know whether the torsion part of $A(L)$ is finite or infinite if $L \subset \bar{K}$ is an infinite algebraic extension over K. We are interested in understanding whether the torsion part of $A(L)$ is finite or infinite.

Theorem 1.1 (Thm. 2.9 and Cor. 2.10). Let A be an abelian variety over K which has potential ordinary good reduction. Let L be an algebraic extension of K with residue field k_L.

1. Assume that the residue field of $L(\mu_{p^\infty})$ is a potential prime-to-p extension of k (in the sense of Def. 2.4). Then $A(L)[p^\infty]$ is finite.
2. If L contains $K(A[p])$ and $K(\mu_{p^\infty})$, then k_L is a potential prime-to-p extension of k if and only if $A(L)[p^\infty]$ is finite.
3. Assume that $L(\mu_{p^\infty})$ is a Galois extension of K whose residue field is finite. Then the torsion part of $A(L)$ is finite.

Here we denote by $K(A[p])$ the field generated by the coordinates of all p-torsion points of A. This theorem is a generalization of Imai’s theorem under the hypothesis that A has ordinary good reduction. We can also obtain the global case of this theorem, see Section 2.4. As an easy consequence of Thm.
we see that the group $A(K(\mu_\infty))[[p^\infty]]$ is infinite for an abelian variety A as in the theorem if we replace K with its suitable finite extension (here we denote by $K(\mu_\infty)$ the field obtained by adjoining all roots of unity to K). We shall point out that such a group must be finite in the global case by a result of Ribet ([Ri]).

Next we consider the finiteness of the torsion part of $A(L)$ for $L = K_{B,p} := K(B[p^\infty])$, the field generated by the coordinates of all p-power torsion points of a semiabelian variety B. For example, $K_{G_m,p}$ is the cyclotomic field $K(\mu_{p^\infty})$, where G_m is the multiplicative group over K. Hence Imai’s theorem is a result on the torsion part of $A(K_{G_m,p})$. From such a point of view, we raise the following question:

Question. Let the notation be as above. Then is the torsion part of $A(K_{B,p})$ finite?

The torsion part of $A(K_{B,p})$ is finite if and only if $A(K_{B,p})[[\ell^\infty]]$ is finite for all primes ℓ and $A(K_{B,p})[[\ell^\infty]] = 0$ for almost all primes ℓ. For any prime $\ell \neq p$, it is easy to see that the ℓ-part of $A(K_{B,p})$ is finite (cf. Prop. 3.1). Hence we are interested in the finiteness of the p-part of $A(K_{B,p})$. If $A = E_1$ and $B = E_2$ are elliptic curves, we can gain various results by distinguishing the reduction types of E_1 and E_2, see the table below.

Theorem 1.2. The finiteness of $E_1(K_{E_2,p})[[p^\infty]]$ is as follows:

E_1	E_2	$E_1(K_{E_2,p})[[p^\infty]]$	statement
ord	ord	“∞” *	Prop. 3.4
ss	finite	Cor. 3.2	
mult	finite	Cor. 3.2	
FCM	CM	finite2	Prop. 3.7
ss	finite	Prop. 3.7	
non-FCM	CM	finite	Prop. 3.7
ss	finite	Prop. 3.7	
split mult	FCM	finite	Prop. 3.7
non-split mult	any	∞	Prop. 3.12
non-split mult	any	“finite”	Prop. 3.14

Here “ord”, “ss”, “mult”, “CM” and “FCM” in the above table stand for ordinary, supersingular, multiplicative, complex multiplication and formal complex multiplication, respectively. The symbols *, 2 and 3 in the table imply the followings:

*1 \cdots E_1, E_2: ordinary good reduction

$\Rightarrow E_1(K_{E_2,p})[[p^\infty]]$ is infinite in many cases.

*2 \cdots E_1: supersingular good reduction, formal complex multiplication

E_2: ordinary good reduction, complex multiplication

$\Rightarrow E_1(K_{E_2,p})[[p^\infty]]$ is finite in all cases.

*3 \cdots E_1, E_2: supersingular good reduction, formal complex multiplication
2 Finiteness theorems for abelian varieties

In this section, we prove Thm. 1.1 given in the Introduction and consider the global case for this theorem.

Let p be a prime number. Let A be an abelian variety over a field K of dimension d and A^\vee the dual abelian variety of A. Fix an algebraic closure \bar{K} of K and a separable closure K^{sep} of K in \bar{K}. Put $G_K := \text{Gal}(K^{sep}/K)$, the absolute Galois group of K. For any algebraic extension L over K and any integer $n > 0$, We denote by $A(L)[p^n]$ the kernel of the multiplication-by-p^n map of the L-rational points $A(L)$ of A and put $A(L)[p^\infty] := \cup_{n>0} A(L)[p^n]$. We denote by $K_{A,p} = K(A[p^n])$ the field generated by the coordinates of $A(\bar{K})[p^n]$. Put $K_{A,p} = K(A[p^\infty]) := \cup_{n>0} K(A[p^n])$. Then the field $K_{A,p}$ contains $K(\mu_{p^\infty})$, the field adjoining all p-power roots of unity to K. The natural continuous representation associated to the Tate module $T_p(A)$ of A is denoted by

$$\rho_{A,p} : G_K \to GL(T_p(A)) \simeq GL_{h}(\mathbb{Z}_p)$$

for some $h \geq 0$ and denote its residual representation by

$$\bar{\rho}_{A,p} : G_K \overset{\rho_{A,p}}{\to} GL_{h}(\mathbb{Z}_p) \overset{\text{mod } p}{\to} GL_{h}(\mathbb{F}_p) \simeq GL(A(K^{sep}[p])).$$

By abuse of notation, we shall consider $\rho_{A,p}$ as the representation of $V_p(A) = T_p(A) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$. We note that the definition field of the representation $\rho_{A,p}$ (resp. $\bar{\rho}_{A,p}$) is the field $K_{A,p}$ (resp. $K_{A,p}$).

2.1 Some properties of torsion points

In this subsection, we collect some (in-)finiteness properties of the torsion part of abelian varieties which are easy to prove.

First we note the following proposition, which plays an important role throughout this paper:

Proposition 2.1. $A(L)[p^n]$ is finite if and only if the fixed subgroup $T_p(A)^{GL}$ of $T_p(A)$ by the absolute Galois group G_L of L is 0.

Proof. This immediately follows from the definition of Tate module and the fact that each $A(L)[p^n]$ is finite. \qed

The field $K(A[p])$ is a finite Galois extension of K whose Galois group $\text{Gal}(K(A[p])/K)$ is a subgroup of $GL_h(\mathbb{F}_p)$ for the integer $h \geq 0$ such that $A(\bar{K})[p] \simeq (\mathbb{Z}/p\mathbb{Z})^{\oplus h}$. Put $g_{h,p} := (p^h - 1)(p^h - p)\cdots(p^h - p^{h-1})$, the order of $GL_h(\mathbb{F}_p)$.

$\Rightarrow E_1(K_{E_2,p})[p^\infty]$ may be finite or infinite (case by case).

For more precise information of Thm. 1.2 see the corresponding statements of the table.

Acknowledgements. The author would like to express his sincere gratitude to Professor Yuichiro Taguchi who proposed the theme of this paper to him and gave him useful advices, especially the proof of Prop. 3.11. The author also would like to thank Akio Tamagawa for pointing out a mistake of Thm. 1.1.
Proposition 2.2. (1) If the absolute Galois group G_K of K is an inverse limit of finite groups of order prime to p, then

$$A(K_{[p]})[p^\infty] = A(K_{\text{sep}})[p^\infty].$$

(2) If the absolute Galois group G_K of K is an inverse limit of finite groups of order prime to $g_{h,p}$, then

$$A(K)[p^\infty] = A(K_{\text{sep}})[p^\infty].$$

Proof. (1) If the group $A(K_{\text{sep}})[p^\infty]$ is 0, there is nothing to prove and hence we may assume that $A(K_{\text{sep}})[p^\infty] \neq 0$. Hence, for some $h > 0$, $\rho_{A,p}|_{G_{K,[p]}}$ has values in the kernel of the reduction map $GL_h(\mathbb{Z}_p) \to GL_h(\mathbb{F}_p)$, which is a pro-$p$ group. Since $G_{K,[p]}$ is an inverse limit of finite groups of order prime to p, the representation $\rho_{A,p}|_{G_{K,[p]}}$ is trivial and thus we have

$$A(\bar{K})[p^\infty] = A(\bar{K})[p^\infty]^{\ker \rho_{A,p}} \subset A(\bar{K})[p^\infty]^{G_{K,[p]}} = A(K_{A,p})[p^\infty].$$

This completes the proof of (1).

(2) We use the same argument as (1) except only that we do not need to consider $K_{A,[p]}$ since $\rho_{A,p}|_{G_K}$ is already trivial. □

If there is a Galois equivariant homomorphism among two Tate modules of abelian varieties, we can see some infiniteness properties about torsion points of abelian varieties.

Proposition 2.3. Let A and B be abelian varieties over K. If

$$\text{Hom}_{\mathbb{Z}_p[G_K]}(T_p(B), T_p(A)) \neq 0,$$

then $A(K_{B,[p]})[p^\infty]$ is infinite.

Proof. Take f to be a non-trivial element of $\text{Hom}_{\mathbb{Z}_p[G_K]}(T_p(B), T_p(A))$. Then $T_p(B)/\ker(f)$ is a non-zero subspace of $T_p(A)$ with trivial $G_{K_{B,[p]}}$-action. This implies the desired statement. □

Definition 2.4. Let L be an algebraic extension of K.

(1) We say that L is a prime-to-p extension of K if L is a union of finite extensions over K of degree prime-to-p.

(2) We say that L is a potential prime-to-p extension of K if L is a prime-to-p extension over some finite extension field of K.

Proposition 2.5. Let A be an abelian variety over K. Assume that A has the following property: for any finite Galois extension K' of K, the torsion part of $A(K')$ is finite. Then $A(L)[p^\infty]$ is finite for any potential prime-to-p Galois extension L of K.

Proof. The assertion follows from the facts that

$$A(L)[p^\infty] = A(L \cap K_{A,[p]})[p^\infty]$$

and $L \cap K_{A,[p]}$ is a finite Galois extension of K. □
Note that we can apply Prop. 2.5 if K is one of the following fields:
(i) a finitely generated field over a prime field,
(ii) a finite extension of \mathbb{Q}_p.

Proposition 2.6. Let A be an abelian variety over a finite field k of characteristic $p > 0$. Let k' be an algebraic extension of k and k_p the maximal pro-p-extension of k in \overline{k}. Assume that $A(\overline{k})[p]$ is not trivial.

1. Suppose that $A(\overline{k})[p]$ is rational over k. Then $A(k'[p^{\infty}])$ is finite if and only if k' is a potential prime-to-p extension over k. Furthermore in the other case,

$$A(k'[p^{\infty}]) = A(\overline{k})[p^{\infty}]$$

2. $k_{A,p} = k_p(A[p])$.

Proof.
(1) First we note that $k_p = k_{A,p}$ because $A(\overline{k})[p] \neq 0$ and k is a finite field of characteristic p. If k' is a potential prime-to-p extension over k, Prop. 2.6 implies that $A(k'[p^{\infty}])$ is finite. In the other case, k' contains k_p and hence $A(k'[p^{\infty}])$ is infinite.

(2) If we put $k' := k(A[p])$, we see that $k_{A,p}$ coincides with k_p, the maximal pro-p-extension of k'. Since $k_p = k_p(A[p])$, we have done.

2.2 Finiteness theorems for abelian varieties with ordinary good reduction

Let K be a finite extension field of \mathbb{Q}_p with integer ring \mathcal{O}_K and residue field k. Let I_K be the inertia subgroup of G_K. If A has good reduction over K, we denote by \tilde{A} the reduction of A over k. For any p-divisible group G over \mathcal{O}_K, we denote its Tate module, Tate comodule, connected component and maximal étale quotient by $T_p(G)$, $\Phi_p(G)$, G^\dagger and $G^{\acute{e}t}$, respectively and put $V_p(G) := T_p(G) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$.

Before proving Thm. 1.1 given in the Introduction, we shall show the proposition related with the matrix of the representation attached to abelian varieties by an analogous proof due to Conrad ([16], Thm. 1.1).

Proposition 2.7. Let A be an abelian variety over K of dimension d which has good reduction.

1. The representation $\rho_{A,p}$ has the form

$$\left(\begin{array}{cc} S_A & U_A \\ 0 & T_A \end{array} \right)$$

with respect to a suitable basis of $T_p(A)$. Here, for some integer $0 \leq f \leq d$,

(i) $S_A : G_K \rightarrow GL_{2d-f}(\mathbb{Z}_p)$ is a continuous homomorphism,

(ii) $T_A : G_K \rightarrow GL_f(\mathbb{Z}_p)$ is an unramified continuous homomorphism and

(iii) $U_A : G_K \rightarrow M_{2d-f,f}(\mathbb{Z}_p)$ is a map.

2. If A has ordinary good reduction over K, then $f = d$ and $S_A|_{I_K}$ is conjugate with the direct sum of the p-adic cyclotomic characters $\varepsilon^{\oplus d}$.

3. If A has ordinary good reduction over K, the map S_A is conjugate with the map $\varepsilon \cdot (T_A^{\vee})^{-1}$.

Here, explicitly, the map $\varepsilon^{\oplus d} : G_K \rightarrow GL_d(\mathbb{Z}_p)$ is given by the equation

$$\varepsilon^{\oplus d}(\sigma) = \text{diag}(\varepsilon(\sigma)) \in GL_d(\mathbb{Z}_p),$$
the diagonal matrix with coefficients $\varepsilon(\sigma)$ for all $\sigma \in G_K$, and for any map $T : G_K \to GL_d(\mathbb{Z}_p)$, we denote by $^t T$ the map $G_K \to GL_d(\mathbb{Z}_p)$ defined by $^t T(\sigma) := (T(\sigma))^\dagger \in GL_d(\mathbb{Z}_p)$ for all $\sigma \in G_K$, where $(T(\sigma))^\dagger$ is the transposed matrix of $T(\sigma)$.

Proof of Prop. 2.7. (1) Let A be the Néron model of A over \mathcal{O}_K and $A(p)$ the p-divisible group associated to A. The connected-étale sequence of $A(p)$ induces the exact sequence

$$0 \to V^p_p(A(p)^0) \to V^p_p(A(p)) \to V^p_p(A(p)^{\acute{e}t}) \to 0$$

of $\mathbb{Q}_p[G_K]$-modules. The desired decomposition of $\rho_{A,p}$ can be obtained by this sequence.

(2) Assume the reduction type of A over \mathcal{O}_K is ordinary. Let K^ur be the completion of the maximal unramified extension K^{ur} over K and \mathcal{O}_{K^ur} the integer ring of K^{ur}. Then $\hat{\mathcal{A}}_{\mathcal{O}_{K^ur}} := \hat{\mathcal{A}} \times_{\mathcal{O}_K} \text{Spf}(\mathcal{O}_{K^{ur}})$ is isomorphic to $\hat{G}^{\hat{\mathbb{Z}}_m}$ over $\mathcal{O}_{K^{ur}}$, where $\hat{\mathcal{A}}$ is the formal completion of \mathcal{A} along its zero section and \hat{G}_m is the formal multiplicative group over $\mathcal{O}_{K^{ur}}$ (cf. [Max], Lem. 4.26 and Lem. 4.27). This implies the assertion (2).

(3) Consider the following two exact sequences as G_K-modules;

$$0 \to V^p_p(A(p)^{\acute{e}t})^\vee \to V^p_p(A(p))^\vee \to V^p_p(A(p)^0)^\vee \to 0,$$

$$0 \to V^p_p(A^\vee(p)^0)(-1) \to V^p_p(A^\vee)(-1) \to V^p_p(A^\vee(p)^{\acute{e}t})(-1) \to 0,$$

where $M^\vee = \text{Hom}_{\mathbb{Q}_p}(M, \mathbb{Q}_p)$ is the dual of a $\mathbb{Q}_p[G_K]$-module M and $M(i)$ is the i-th Tate twist of M. Note that $V^p_p(A(p))^\vee \simeq V^p_p(A^\vee)(-1)$ as G_K-modules. By taking the functor $\Pi^0(I_K, -)$ of the above exact sequences and using the assertion (2), we can see that

$$V^p_p(A(p)^{\acute{e}t})^\vee \simeq (V^p_p(A(p))^\vee)^{I_K} \simeq (V^p_p(A^\vee)(-1))^{I_K} \simeq V^p_p(A^\vee(p)^0)(-1)$$

as G_K-modules, since I_K acts on $V^p_p(A(p)^{\acute{e}t})^\vee$ and $V^p_p(A^\vee(p)^0)(-1)$ trivially, and I_K acts on $V^p_p(A(p)^0)^\vee$ and $V^p_p(A^\vee(p)^{\acute{e}t})(-1)$ by $(\varepsilon^{\hat{\mathbb{Z}}_m})^{-1}$. We know that the group G_K acts on $V^p_p(A(p)^{\acute{e}t})^\vee(1)$ by $\varepsilon \cdot (^t T_A)^{-1}$ and also acts on $V^p_p(A^\vee(p)^0)$ by S_{A^\vee}. Therefore, we see that $\varepsilon \cdot (^t T_A)^{-1}$ is conjugate with S_{A^\vee} and thus we finish the proof of the assertion (3) after replacing A with A^\vee.

Remark 2.8. (1) The above proof implies the following: the integer f is equal to the dimension of $V^p_p(\hat{A})$ and the map S_A is the natural continuous homomorphism

$$G_K \to GL(T_p(A(p)^0)) \approx GL_{2d-f}(\mathbb{Z}_p)$$

and the map T_A is the natural continuous homomorphism

$$G_K \to GL(T_p(\hat{A})) \approx GL_f(\mathbb{Z}_p).$$

(2) Suppose that A has ordinary good reduction over K. We denote the semi-simplification of $\rho_{A,p}$ by $\rho_{A,p}^{ss}$. The criterion of Néron-Ogg-Shafarevich implies that the representation $\rho_{A,p}^{ss}$ factors through G_{kl} for any algebraic extension L of K such that L contains all p-power roots of unity.
Now we can show our main finiteness theorem which is given in the Introduction.

Theorem 2.9. Let A be an abelian variety over K which has potential ordinary good reduction. Let L be an algebraic extension of K.

1. Assume that the residue field of $L(\mu_p^\infty)$ is a potential prime-to-p extension of k. Then $A(L)[p^\infty]$ is finite.
2. Assume that $L(\mu_p^\infty)$ is a Galois extension of K whose residue field is finite. Then the torsion part of $A(L)$ is finite.

Proof. (1) By extending K and L, we may assume that A has ordinary good reduction over K and L contains $K(\mu_p^\infty)$. Put $d := \dim(A)$ and denote by k_L the residue field of L. We have the following form of the representation $\rho_{A,p}$ for a suitable basis of the \mathbb{Z}_p-module $T_p(A)$:

$$
\begin{pmatrix}
S_A & U_A \\
0 & T_A
\end{pmatrix},
$$

with certain $S_A = \varepsilon \cdot (T_A^\vee)^{-1} : G_K \to GL_d(\mathbb{Z}_p)$, $T_A : G_K \to GL_d(\mathbb{Z}_p)$ and $U_A : G_K \to M_d(\mathbb{Z}_p)$ as in Prop. 2.7. In this proof, we shall fix the above basis and identify $V_p(A)$ with $\mathbb{Q}_p^{\oplus 2d} = M_{2d,1}(\mathbb{Q}_p)$. Since L contains all p-power roots of unity, we know that the maps $S_A|_{G_L}$ and $T_A|_{G_L}$ factor through the absolute Galois group $G_{k_L} := \text{Gal}(k^{\text{sep}}/k_L)$ of k_L. Thus the maps $S_A|_{G_L}$ and $T_A|_{G_L}$ are determined by a topological generator σ_L of G_{k_L}. To prove $V_p(A)|_{G_L} = 0$, it suffices to show that the matrices $S_A(\sigma_L)$ and $T_A(\sigma_L)$ do not have eigenvalue 1. First we assume that this assertion about $T_A(\sigma_L)$ is false. Then the Tate module $V_p(A)|_{G_L}$ is not zero

and hence $A(k_L)[p^\infty]$ is infinite. By Prop. 2.8 this contradicts the assumption that the field k_L is potential prime-to-p extension of k. Next we show that $S_A(\sigma_L)$ does not have eigenvalue 1. Since L contains $K(\mu_p^\infty)$ and A has ordinary good reduction, the map $S_A|_{G_L}$ coincides with $(T_A^\vee|_{G_L})^{-1}$. Hence if we assume $S_A(\sigma_L)$ has eigenvalue 1, then $T_A^\vee(\sigma_L)$ also has eigenvalue 1. But this induces a contradiction by the same argument as the above.

(2) The criterion of Néron-Ogg-Shafarevich implies that

$$
A(L)' \subset A(L(\mu_p^\infty))' = A(L(\mu_p^\infty) \cap K^{ur})'
$$

where the symbol ‘ means the prime-to-p part. Hence $A(L)'$ is finite because $L(\mu_p^\infty)$ has a finite residue field. Therefore, the assertion (1) implies that the torsion points of $A(L)$ is finite.

Corollary 2.10. Let A be an abelian variety over K which has ordinary good reduction. Let L be a Galois extension of K with residue field k_L. Assume that L contains $K(\mu_p^\infty)$ and $K(A[p])$. Then the following are equivalent:

1. $A(L)[p^\infty]$ is finite,
2. $A'(L)[p^\infty]$ is finite,
3. $A(k_L)[p^\infty]$ is finite,
4. $A'(k_L)[p^\infty]$ is finite,
5. k_L is a potential prime-to-p extension over k.

Note that the Weil-paring implies that L contains $K(\mu_p^\infty)$ and $K(A[p])$ if and only if L contains $K(\mu_p^\infty)$ and $K(A'[p])$.
Proof. The equivalence of assertions (3), (4) and (5) follows from Prop. 2.6, thus it is enough to show that (1) is equivalent to (3), (4) and (5). By Thm. 2.9 (1), the condition (5) implies the condition (1).

Let us assume that the condition (4) is not satisfied. Then we know that $T_{\mathcal{A}}(\sigma_{L})$ has eigenvalue 1, where $T_{\mathcal{A}}$ is a natural unramified homomorphism $G_{K} \to GL(T_{p}(\mathcal{A}))$ and σ_{L} is a topological generator of $G_{k_{L}}$. Hence $\varepsilon \cdot (\varepsilon T_{\mathcal{A}})^{-1}(\sigma_{L})$ also has eigenvalue 1. By using this fact and Prop. 2.7, we can see that $T_{p}(\mathcal{A})^{G_{\mathcal{A}}}$ is not trivial. Therefore, the group $A(L)[p^{\infty}]$ is infinite.

2.3 K_{ur}-rational points

We continue to use the same notation p, K, k, A and d as in the previous subsection. In this subsection, we consider some relations of $\rho_{A,p} : G_{K} \to GL(V_{p}(A)) \simeq GL_{2d}(\mathbb{Q}_{p})$ with $A(K_{ur})[p^{\infty}]$. Our goal in this subsection is to prove that

Theorem 2.11. Let E be an elliptic curve over K which has ordinary good reduction. Then the followings are equivalent;

1. $\rho_{E,p}$ is abelian,
2. $\rho_{E,p}|_{I_{K}}$ is abelian,
3. $E(K_{ur})[p^{\infty}]$ is infinite.

Note that it is known that the condition (1) is equivalent to the condition (4) E has complex multiplication over K.

See [Se2], A.2.4 for more information.

Now we start with an argument by proving the fact below;

Proposition 2.12. Let A be an abelian variety over K which has ordinary good reduction. If $\rho_{A,p}|_{I_{K}}$ is abelian, then $A(K_{ur})[p^{\infty}]$ is infinite.

Proof. By Prop. 2.7, we have the following form of the representation $\rho_{A,p}|_{I_{K}}$ for a suitable basis of the \mathbb{Q}_{p}-module $V_{p}(A)$:

$$
\begin{pmatrix}
\varepsilon^{\otimes d} & U \\
0 & I_{d}
\end{pmatrix},
$$

where U is a map $I_{K} \to M_{d}(\mathbb{Q}_{p})$ and I_{d} is the unit matrix of $d \times d$. Since $\rho_{A,p}|_{I_{K}}$ is abelian, we see that $U = (\varepsilon^{\otimes d} - I_{d})U_{0}$ for some $U_{0} \in M_{d}(\mathbb{Q}_{p})$. Then, on I_{K},

$$
\begin{pmatrix}
\varepsilon^{\otimes d} & U \\
0 & I_{d}
\end{pmatrix}
\begin{pmatrix}
U_{0}1_{d} \\
1_{d}
\end{pmatrix}
=
\begin{pmatrix}
U_{0}1_{d} \\
1_{d}
\end{pmatrix},
$$

where $1_{d} = (1,1,\cdots,1) \in M_{d,1}(\mathbb{Q}_{p})$. Consequently, we know that $V_{p}(A)^{I_{K}} \neq 0$ and this implies the desired result.

In the rest of this subsection we always assume that A has ordinary good reduction over K. Let K^{ab} be the maximal abelian extension of K in \bar{K}. The exact sequence

$$
0 \to \ker(r) \to V_{p}(A) \xrightarrow{r} V_{p}(\bar{A}) \to 0
$$

gives the exact sequence

$$
0 \to \ker(r) \to V_{p}(A)^{G_{K^{ab}}} \xrightarrow{r} V_{p}(\bar{A}) \quad (*)
$$
of $\mathbb{Q}_p[\text{Gal}(K_{ab}/K)]$-modules. Here we remark that $G_{K_{ab}}$ acts trivially on $\ker(r)$ and $V_p(\hat{A})$. We define the representation $\rho^{ur}_{A,p}$ by the natural action of $\text{Gal}(K_{ab}/K^{ur})$ on $V_p(A)^{G_{K_{ab}}} = V_p(A(K_{ab}))$:

$$\rho^{ur}_{A,p} : \text{Gal}(K_{ab}/K^{ur}) \to GL(V_p(A)^{G_{K_{ab}}}) = GL(V_p(A(K_{ab}))).$$

Now we define the integer $e(A)$ to be $e(A) := \dim_{\mathbb{Q}_p} V_p(A(K_{ab})) - \dim_{\mathbb{Q}_p} \ker(r) = \dim_{\mathbb{Q}_p} V_p(A(K_{ab})) - d$. Then $\rho^{ur}_{A,p}$ is a p-adic representation of dimension $d + e(A)$. Clearly $0 \leq e(A) \leq d$. Furthermore, the above sequence (\ast) implies that $\rho^{ur}_{A,p}$ has the following shape for a suitable basis of the \mathbb{Q}_p-module $V_p(A(K_{ab}))$:

$$\rho^{ur}_{A,p} \simeq \left(\begin{array}{cc} \varepsilon^{\otimes d} & U \\ 0 & I_{e(A)} \end{array} \right),$$

where U is a map $\text{Gal}(K_{ab}/K^{ur}) \to M_d(\mathbb{Q}_p)$ and $I_{e(A)}$ is the unit matrix of $e(A) \times e(A)$.

(I) The case $e(A) \neq 0$.

In this case, we see that $U = (\varepsilon^{\otimes d} - I_d)U_0$ for some $U_0 \in M_d,e(A)(\mathbb{Q}_p)$ since $\rho^{ur}_{A,p}$ is abelian. Then, on $\text{Gal}(K_{ab}/K^{ur})$,

$$\left(\begin{array}{cc} \varepsilon^{\otimes d} & U \\ 0 & I_{e(A)} \end{array} \right) \left(\begin{array}{cc} U_01_{e(A)} \\ 1_{e(A)} \end{array} \right) = \left(\begin{array}{cc} U_01_{e(A)} \\ 1_{e(A)} \end{array} \right),$$

where $1_{e(A)} = t(1,1,\cdots,1) \in M_{e(A),1}(\mathbb{Q}_p)$. This equation shows the fact that $V_p(A(K_{ab}))^{\text{Gal}(K_{ab}/K^{ur})} \neq 0$, that is, $A(K^{ur})[p^{\infty}]$ is infinite.

(II) The case $e(A) = 0$.

In this case, we have $\rho^{ur}_{A,p} = \varepsilon^{\otimes d}$ and hence $V_p(A(K_{ab}))^{\text{Gal}(K_{ab}/K^{ur})} = 0$, that is, $A(K^{ur})[p^{\infty}]$ is finite.

Consequently we obtained the following lemma:

Lemma 2.13. Let the notation be as above. Then $e(A) = 0$ if and only if $A(K^{ur})[p^{\infty}]$ is finite.

Now we can finish the proof of Thm. 2.11.

Proof of Thm. 2.11 Since E is an elliptic curve, by combining Prop. 2.12 with Lem. 2.13 we can show the desired statement by the following way: $e(E) \neq 0 \Leftrightarrow e(E) = 1 \Leftrightarrow \dim_{\mathbb{Q}_p} V_p(E(K_{ab})) = 2 \Leftrightarrow V_p(E(K_{ab})) = V_p(E) \Leftrightarrow G_{K_{ab}} \subset G_{K,E,p} \Leftrightarrow \rho_{E,p}$ is abelian.

2.4 Global cases

Consider “global cases” of Thm. 2.9. Let A be an abelian variety over a number field K. It is well-known that the group $A(L)$ is a finitely generated commutative group for a finite extension field L of K by the theorem of Mordell-Weil-Néron-Lang. In particular its torsion subgroup is finite. In the case where L is any algebraic extension of K, there are many results on the finiteness of torsion points of $A(L)$.
Let \(v \) be a finite place of \(K \). For any finite extension \(K' \) of \(K \) and any finite place \(v' \) of \(K' \) above \(v \), we denote the completion of \(K' \) at \(v' \) by \(K'_v \). More generally, for any algebraic extension \(L \) and any place \(w \) above \(v \), we denote

\[
L_w := \bigcup_{K'} K'_v,
\]

where \(K' \) runs through all the finite extensions of \(K \) in \(L \) and \(v' \) is the unique place of \(K' \) under \(w \). Note that the residue field \(k_{L_w} \) of \(L_w \) is \(\bigcup_{K'} k_{K'_v} \).

As corollaries of Thm. 2.9, we can see the “global cases” below immediately.

Corollary 2.14. Let \(K, L, A \) be as above. Assume that there exist places \(v \) of \(K \) above \(p \) and \(w_{\infty} \) of \(L(\mu_{p^{\infty}}) \) above \(v \) satisfying the following properties:

(i) The residue field \(k_{w_{\infty}} \) of \(L(\mu_{p^{\infty}}) \) at \(w_{\infty} \) is a potential prime-to-\(p \) extension of the residue field \(k_v \) of \(K \) at \(v \).

(ii) \(A \) has potential ordinary good reduction at \(v \).

Then \(A(L)[p^{\infty}] \) is finite.

Corollary 2.15. Let \(K, L, A \) be as above. Assume that \(L(\mu_{p^{\infty}}) \) is a Galois extension of \(K \), and there exist places \(v \) of \(K \) above \(p \) and \(w_{\infty} \) of \(L(\mu_{p^{\infty}}) \) above \(v \) satisfying the following properties:

(i) The residue field \(k_{w_{\infty}} \) of \(L(\mu_{p^{\infty}}) \) at \(w_{\infty} \) is finite.

(ii) \(A \) has potential ordinary good reduction at \(v \).

Then the torsion part of \(A(L) \) is finite.

If we always assume that \(L \) contains all \(p \)-power roots of unity, these corollaries are generalizations of a result of Greenberg. See [Gr], Prop. 1.2 (ii).

3 Finiteness of torsion points for elliptic curves

We use the same notations as defined at the beginning of the previous section (soon we will suppose \(K \) to be a finite extension of \(\mathbb{Q}_p \)). In particular \(A \) is an abelian variety over a field \(K \). In this section, we give results on the Question which is proposed in the Introduction. At the beginning, we shall remark the following proposition related with “a torsion problem of two abelian varieties”.

Proposition 3.1. Let \(A \) and \(B \) be abelian varieties over a field \(K \). Assume that \(K \) has the following property: the torsion part of \(A(K') \) is finite for any finite Galois extension \(K' \) of \(K \). Then, for two different prime numbers \(\ell_1 \) and \(\ell_2 \), the group \(A(K_{B,\ell_1})[\ell_1^{\infty}] \) is finite.

Proof. This follows immediately from Prop. 2.5. \(\square \)

In view of the above proposition, we will be interested in the finiteness of \(A(K_{B,\ell_1})[\ell_1^{\infty}] \) with \(\ell_1 = \ell_2 \).

From now on, throughout this Section, we always denote by \(K \) a finite extension of \(\mathbb{Q}_p \). Some of results on such the (in-)finiteness properties can be checked immediately, by using the results given in the previous section, as follows.

Proposition 3.2. Let \(E \) be elliptic curves over \(K \) which has potential multiplicative reduction or potential supersingular good reduction. We assume that \(A \) has potential ordinary good reduction over \(K \). Then the torsion part of \(A(K_{E,p}) \) is finite.
Proof. The two Lie groups $\rho_{E,p}(G_K)$ and $\rho_{E,p}(I_K)$ have the same Lie algebras (cf. [Se1]) and hence the residue field of $K_{E,p}$ is a finite field. Therefore, the residue field of $K_{E,p}$ is also finite. Consequently we finish the proof by Thm. 2.9 (2).

Proposition 3.3. Let A and B be abelian varieties over K which have ordinary good reductions. Assume that $A(\bar{K})[p]$ is rational over K. Then $A(K_{B,p})$ is infinite.

Proof. Since $B(K_{B,p})[p^\infty]$ is infinite, the residue field $k_{B,p}$ of $K_{B,p}$ is not a potential prime-to-p extension of k by Thm. 2.9. Because $A(\bar{K})[p]$ is rational over K, Cor. 2.10 shows that $A(K_{B,p})[p^\infty]$ is infinite.

In the rest of this section, we discuss the following question:

Question. Let A and B be abelian varieties over K. When is $A(K_{B,p})[p^\infty]$ finite?

Now we are interested in the case where A (and B) are elliptic curves. Let us consider the above Question by distinguishing the reduction type of A.

3.1 Ordinary good reduction case

Let $A = E_1$ and $B = E_2$ be two elliptic curves over K. We have already proved in Cor. 3.2 that the torsion part of $E_1(K_{E_2,p})[p^\infty]$ is finite if E_1 has ordinary good reduction over K and E_2 has supersingular good reduction or multiplicative reduction over K. We consider the infiniteness of $E_1(K_{E_2,p})[p^\infty]$ under the condition that E_1 and E_2 have ordinary good reduction over K. One of the result for the finiteness of $E_1(K_{E_2,p})[p^\infty]$ has given in Prop. 3.3. However, in this 1-dimensional case, we will show more precise criterion in Thm. 3.4 and Cor. 3.5.

We shall give some notation that we need. In the rest of this subsection we always assume that E_1 and E_2 have ordinary good reduction over K. Let \tilde{E}_1 and \tilde{E}_2 be the reduction of E_1 and E_2 over k, respectively. For each elliptic curves E_i, Put

$$\chi_i = \rho_{E_i,p} : G_K \to GL(T_p(\tilde{E}_i)) \simeq GL_1(\mathbb{Z}_p) = \mathbb{Z}_p^\times,$$

and

$$\bar{\chi}_i = \bar{\rho}_{E_i,p} : G_K \to GL(\tilde{E}_i(k_{sep})[p]) \simeq GL_1(\mathbb{F}_p) = \mathbb{F}_p^\times.$$

Clearly χ_i and $\bar{\chi}_i$ are unramified characters by their definitions. It can be checked that each χ_i is of infinite order. We know that each $\rho_{E_i,p}$ has the form

$$\begin{pmatrix} \varepsilon \chi_i^{-1} & u_i \\ 0 & \chi_i \end{pmatrix}$$

with respect to a suitable basis of $T_p(E_i)$. We fix such a basis and identify $T_p(E_i)$ with $\mathbb{Z}_p^{\oplus 2}$.

Proposition 3.4. Let the notations be as above and $p \geq 3$. Consider the following four conditions:

(a) The group $E_1(K_{E_2,p})[p^\infty]$ is infinite.
(b) \(G_{K_{E_2,p}} \subset \ker(\chi_1) \).
(c) \(\ker(\chi_2) \subset \ker(\chi_1) \).
(d) \(\text{Im}(\chi_1) \subset \text{Im}(\chi_2) \).

Then there is the following relation: (a) \(\Leftrightarrow \) (b) \(\Leftrightarrow \) (c) \(\Leftrightarrow \) (d).

Proof. If we assume that the condition (a) is satisfied, there is a 1-dimensional \(G_{K_{E_2,p}} \)-invariant subspace \(W \) of \(V_p(E_1) = M_{2,1}(\mathbb{Q}_p) \). Take any non-zero element \((\frac{x}{y}, \frac{y}{x})\) in \(W \). Since \(x \) or \(y \) is a non-zero element which is invariant under the multiplication by \(\chi_1(\sigma) \) for all \(\sigma \in G_{K_{E_2,p}} \), we see that \(V_p(E_1)^{G_{K_{E_2,p}}} \) has non-trivial subspace and hence \(V_p(E_1)^{G_{K_{E_2,p}}} = V_p(E_1) \). This implies the condition (b). Conversely we assume that the condition (b) is satisfied. Then the condition (a) follows from the fact that

\[
\rho_{E_1,p}|_{G_{K_{E_2,p}}} = \begin{pmatrix} \varepsilon \chi_1^{-1} & u_1 \\ 0 & \chi_1 \end{pmatrix} = \begin{pmatrix} 1 & u_1 \\ 0 & 1 \end{pmatrix}.
\]

Because \(G_{K_{E_2,p}} \subset \ker(\chi_2) \), the condition (c) implies (b). Finally let us show that conditions (c) and (d) are equivalent. Since \(\chi_1 \) and \(\chi_2 \) are unramified, we may consider each character \(\chi_i \) as a character

\[G_k \twoheadrightarrow \mathbb{Z}^x \simeq \mathbb{Z}/(p-1)\mathbb{Z} \times \mathbb{Z}_p, \]

where \(G_k \) is an absolute Galois group of \(k \). By \(\text{pr}_1 : \mathbb{Z}/(p-1)\mathbb{Z} \times \mathbb{Z}_p \rightarrow \mathbb{Z}/(p-1)\mathbb{Z} \) and \(\text{pr}_2 : \mathbb{Z}/(p-1)\mathbb{Z} \times \mathbb{Z}_p \rightarrow \mathbb{Z}_p \), we denote natural projections. Let \(\sigma_k \) be the Frobenius automorphism of \(G_k \) and we decompose \(\chi_i(\sigma_k) = (m_i, n_i) \in \mathbb{Z}/(p-1)\mathbb{Z} \times \mathbb{Z}_p \). Note that \(\text{Im}(\chi_i) \) has an infinite image and thus \(n_i \neq 0 \), since \(k \) is a finite field. If we identify \(G_k \) with \(\prod_{\ell} \mathbb{Z}_\ell \), we see that

\[
\ker(\chi_i) = \ker(\text{pr}_1 \circ \chi_i) \cap \ker(\text{pr}_2 \circ \chi_i) = (p-1)/(\gcd(p-1, m_i)) \prod_{\ell \neq p} \mathbb{Z}_\ell \cap \prod_{\ell} \mathbb{Z}_\ell.
\]

Therefore, it can be checked that the condition (c) is equivalent to the condition that \(m_1 \cdot \mathbb{Z}/(p-1)\mathbb{Z} \subset m_2 \cdot \mathbb{Z}/(p-1)\mathbb{Z} \), which is (d). \(\square \)

Let \(k_{E_1[p]} \) be the smallest field extension of \(k \) over which the elements of \(\bar{E}_1(k_{\text{sep}})[p] \) is rational.

Corollary 3.5. Let \(E_1 \) and \(E_2 \) be elliptic curves over \(K \) which have ordinary good reduction. Assume that \(p \geq 3 \).

1. If \(k_{E_1[p]} \subset k_{E_2[p]} \), then \(E_1(K_{E_2,p})[p^\infty] \) is infinite.
2. If the map \(\chi_1 \) is trivial, then \(E_1(K_{E_2,p})[p^\infty] \) is infinite.
3. If the map \(\chi_2 \) is surjective, then \(E_1(K_{E_2,p})[p^\infty] \) is infinite.

Proof. All statements will immediately follow from Prop.3.4. \(\square \)
3.2 Supersingular good reduction case

Let $A = E_1$ and $B = E_2$ be elliptic curves over K. In this subsection we consider the case where E_1 has (potential) supersingular good reduction over K. We recall the structure of the Lie algebra associated to an elliptic curve.

Proposition 3.6 ([Se2], Appendix of Chap. 4). Let E be an elliptic curve over K. Put $\mathfrak{g} := \text{Lie}(\rho_{E,p}(G_K))$ and $i := \text{Lie}(\rho_{E,p}(I_K))$ (these are Lie subalgebras of $\text{End}_{\mathbb{Q}_p}(V_p(E))$).

1. If E has ordinary good reduction with complex multiplication, then \mathfrak{g} is a split Cartan subalgebra of $\text{End}_{\mathbb{Q}_p}(V_p(E))$ and i is a 1-dimensional subspace of \mathfrak{g}.
2. If E has ordinary good reduction without complex multiplication, then \mathfrak{g} is the Borel subalgebra of $\text{End}_{\mathbb{Q}_p}(V_p(E))$ corresponding to the kernel of the natural reduction map $V_p(E) \to V_p(E)$ and i is a 2-dimensional subspace of \mathfrak{g}.
3. If E has supersingular good reduction with formal complex multiplication, then \mathfrak{g} is a non-split Cartan subalgebra of $\text{End}_{\mathbb{Q}_p}(V_p(E))$ and $i = \mathfrak{g}$.
4. If E has supersingular good reduction without formal complex multiplication, then $\mathfrak{g} = \text{End}_{\mathbb{Q}_p}(V_p(E))$ and $i = \mathfrak{g}$.
5. If the j-invariant of E has negative p-adic valuation, then \mathfrak{g} coincides with n_X for some 1-dimensional subspace X of $V_p(E)$ and $i = \mathfrak{g}$. Here n_X is the subspace of $\text{End}_{\mathbb{Q}_p}(V_p(E))$ generated by all $u \in \text{End}_{\mathbb{Q}_p}(V_p(E))$ satisfying that $u(V_p(E)) \subset X$.

Here, for any elliptic curve E over K which has supersingular good reduction, we say that E has formal complex multiplication over K if an endomorphism ring of the p-divisible group $E(p)$ over \mathcal{O}_K has rank 2 as a \mathbb{Z}_p-module, where $E(p)$ is the p-divisible group associated with the Néron model E of E over \mathcal{O}_K.

We also say that E has formal complex multiplication if $E \times_K K'$ has formal complex multiplication defined over some algebraic extension K' of K. Then the quadratic field $\text{End}_{\mathcal{O}_{K'}}(E(p)) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ is called the the field of formal complex multiplication. We can take K' for at most degree 2 extension of K.

Our first result in this subsection is:

Proposition 3.7. Let E_1 and E_2 be elliptic curves over K. Suppose that E_1 has potential supersingular good reduction over K. Then $E_1(K_{E_2,p})[p^\infty]$ is finite if one of the following conditions is satisfied:

1. The elliptic curve E_2 has potential ordinary good reduction.
2. The elliptic curve E_2 has potential supersingular good reduction. Furthermore, one of the following conditions is satisfied:
 (i) E_1 has formal complex multiplication but E_2 does not have.
 (ii) E_2 has formal complex multiplication but E_1 does not have.
3. The j-invariant of E_2 has negative p-adic value.

To prove this proposition, we need the following important lemma, which is easy to prove, but we often make use of this lemma in this subsection.

Lemma 3.8. Let E be an elliptic curve over K which has supersingular good reduction over K. Let L be a Galois extension of K. Then the group $E(L)[p^\infty]$ is finite if and only if $K_{E,p}$ is not contained in L.

Proof. Let us assume that $K_{E,p}$ is not contained in L. Then we have $V_p(E)^{G_L} \subsetneq V_p(E)$. By the assumption that L is a Galois extension of K, we see that
$V_p(E)^{G_L}$ is a G_K-submodule of $V_p(E)$. In addition, since E has supersingular reduction, $V_p(E)$ is an irreducible G_K-module (cf. [Se2], Thm. of A.2.2). Hence we see that $V_p(E)^{G_L}$ is vanished and this implies the fact that $E(L)[p^\infty]$ is finite.

The converse is obvious.

Proof of Prop. 3.7. First we note that the Lie algebras $g_i := \text{Lie}(\rho_{E_i,p}(G_K))$ and $i := \text{Lie}(\rho_{E_i,p}(I_K))$ are subspaces of $\text{End}(V_p(E_i))$ for $i = 1, 2$. By extending K finitely, we may assume that E_1 has good reduction over K. By Lem. 3.8 it suffices to show that $K_{E_1,p}$ is not contained in $K_{E_2,p}$. Let us assume that $K_{E_1,p}$ is contained in $K_{E_2,p}$. Then there is a natural surjection $\text{Gal}(K_{E_2,p}/K) \to \text{Gal}(K_{E_1,p}/K)$ and hence we obtain the surjections of Lie algebras $g_2 \to g_1$ and $i_2 \to i_1$. Hence we see that $\dim_{\mathbb{Q}_p} g_2 \geq \dim_{\mathbb{Q}_p} g_1$ and $\dim_{\mathbb{Q}_p} i_2 \geq \dim_{\mathbb{Q}_p} i_1$. If g_1 (resp. i_1) is abelian, we can also obtain the inequality $\dim_{\mathbb{Q}_p} (g_2/[g_2,g_2]) \geq \dim_{\mathbb{Q}_p} g_1$ (resp. $\dim_{\mathbb{Q}_p} (i_2/[i_2,i_2]) \geq \dim_{\mathbb{Q}_p} i_1$). But Prop. 3.6 implies that at least one of the above inequalities is not satisfied.

In the rest of this section, we consider the case where E_2 has supersingular good reduction. First we prove an elementary result of the algebraic number theory.

Lemma 3.9. Suppose F_1 and F_2 are quadratic subfields in K. Denote by Nr_{K/F_i} the norm map $K^\times \to F_i^\times$ for $i = 1, 2$. Then the followings are equivalent:

(a) $F_1 \neq F_2$,

(b) $\ker(\text{Nr}_{K/F_1}) \not\subset \ker(\text{Nr}_{K/F_1})$,

(c) $\ker(\text{Nr}_{K/F_1}) \not\subset \ker(\text{Nr}_{K/F_2})$.

Proof. Let α_i be a p-adic integer satisfying that $F_i = \mathbb{Q}_p(\alpha_i)$ and $\alpha_i^2 \in \mathbb{Z}_p$ for $i = 1, 2$. Assume that $F_1 \neq F_2$. Then

$$\text{Nr}_{K/F_i}(x + y\alpha_i) = (x^2 - y^2\alpha_i^2)^d, \quad \text{Nr}_{K/F_i}(x + y\alpha_1) = (x + y\alpha_1)^{2d},$$

where d is the extension degree of K/F_1F_2 and $x, y \in \mathbb{Z}_p$. By the elementary field theory, $\ker(\text{Nr}_{K/F_2})_{|F_1^\times}$ has order at most $2d$. Thus, to obtain the desired result, it is enough to show that the following claim:

Claim. The group $\ker(\text{Nr}_{K/F_i})_{|F_i^\times}$ has an infinite order.

If we suppose $p \geq 3$, then the polynomial $T^2 - y^2\alpha_i^2 - 1$ has roots in \mathbb{Z}_p for all $y \in p\mathbb{Z}_p$ by Hensel’s lemma and thus the claim is true. Suppose $p = 2$. To prove the claim, it suffices to show that $x^2 - y^2\alpha_i^2$ is equal to 1 for infinitely many $x, y \in \mathbb{Z}_p$. Take any integer $k \geq 0$ and suppose $y = 4kx$. In this case $x^2 - y^2\alpha_i^2 = (1 - 16k^2\alpha_i^2)x^2$ and we see $(1 - 16k^2\alpha_i^2) \in (\mathbb{Z}_p^\times)^2$ since it can be checked that the polynomial $(1 + 2T)^2 - (1 - 16k^2\alpha_i^2) \in \mathbb{Z}_p[T]$ has roots in \mathbb{Z}_p by Hensel’s lemma. This completes the proof of the claim.

Proposition 3.10. Let E_1 and E_2 be elliptic curves over K which have supersingular good reduction with formal complex multiplication. Let $F_1 \subset K$ be the field of formal complex multiplication for each E_i. Then $E_i(K_{E_2,p})[p^\infty]$ is finite if $F_1 \neq F_2$.

Proof. By extending K finitely, we may assume that E_1 and E_2 have formal complex multiplication over K. Then the representation $\rho_{E_i, p} : G_K \to GL(V_p(E))$ has values in $O_{\hat{\mathcal{E}}}$, and hence $\rho_{E_i, p}$ induces the representation

$$\Psi_i : O_K^\times \simeq I(K^{ab}/K) \to O_{\hat{\mathcal{E}}},$$

where $I(K^{ab}/K)$ is the inertia subgroup of $Gal(K^{ab}/K)$. It is known that $\Psi_i(x) = \text{Nr}_{K/F}(x^{-1})$ for any $x \in O_K^\times$. (See [Se2], A.2.2). Lam. 3.8 implies that $E_2(K_2)[p^\infty]$ is infinite only if $K^{ur}(E_1(K))[p^\infty] \subset K^{ur}(E_2(K))[p^\infty]$. Because $K^{ur}(E_1(K))[p^\infty]$ is the definition field of the representation $\rho_{E_1, p}|_{K_2}$ and $\ker(\text{Nr}_{K/F_2})|_{O_K^\times} = \ker(\text{Nr}_{K/F_2})$ (resp. $\ker(\text{Nr}_{K/F_1})|_{O_K^\times} = \ker(\text{Nr}_{K/F_1})$), we see that $E_2(K_2)[p^\infty]$ is infinite only if $\ker(\text{Nr}_{K/F_2}) \not\subset \ker(\text{Nr}_{K/F_1})$. Combining this fact and Lem. 3.9, we obtain the desired result.

For any elliptic curve E over K, we denote by \hat{E} the formal group associated with E.

Proposition 3.11. Let E_1 and E_2 be elliptic curves over K which have supersingular good reduction without formal complex multiplication.

1. If there is a non-trivial homomorphism of formal groups $\hat{E}_2 \to \hat{E}_1$ over O_K, then $E_1(K_2)[p^\infty]$ is infinite.
2. If $E_1(K_2)[p^\infty]$ is infinite, then there is a non-trivial homomorphism of formal groups $\hat{E}_2 \to \hat{E}_1$ over $O_{K'}$, for some finite extension K' of K.

Proof. (1) Since each E_i has supersingular good reduction, there is a non-trivial G_K-homomorphism $T_p(E_2) \to T_p(E_1)$ by a theorem of Tate (cf. [La], Cor. 1 of Thm. 4). Hence Prop. 2,3 implies that $E_1(K_2)[p^\infty]$ is infinite.

(2) Extending K finitely, we may assume that E_1 and E_2 have formal complex multiplication over K. By Lem. 3.8 we know that $E_{i, p} \subset K_{E_{i, p}}$. Furthermore this is a finite field extension since the Lie groups $Gal(K_{E_{i, p}}/K)$ and $Gal(K_{E_{i, p}}/K)$ have same Lie algebras. Hence we may assume that $K_{E_{i, p}}$ coincides with $K_{E_{i, p}}$ by replacing K with a finite extension. Put $G := Gal(K_{E_{i, p}}/K) = Gal(K_{E_{i, p}}/K)$ and $\mathfrak{g} := Lie(G)$. Then the Lie algebra homomorphism $\text{Lie}(\rho_{E_{i, p}}) : \mathfrak{g} \to K_{GL_2(\mathbb{Q}_p)}$ corresponding to $\rho_{E_{i, p}} : G \to GL(T_p(E_1)) \simeq GL_2(\mathbb{Z}_p)$ is an isomorphism by our assumptions of E_i for $i = 1, 2$.

Claim. $\text{Lie}(\rho_{E_{i, p}})$ is conjugate with $\text{Lie}(\rho_{E_{i, p}})$.

If we finish the proof of this claim, we know that $\rho_{E_{i, p}}$ is conjugate with $\rho_{E_{i, p}}$ on $G_{K'}/K$ for some finite extension K' of K (this fact follows from [DSMS], Thm. 9.11). Thus there is a non-trivial $G_{K'}$-homomorphism $T_p(E_2) \to T_p(E_1)$. By using the theorem of Tate again, we see that there is a desired non-trivial homomorphism of formal groups $\hat{E}_2 \to \hat{E}_1$ over $O_{K'}$.

Let us prove the above claim. We denote by $Z(G)$ (resp. Z_1, Z_2) the center of G (resp. $\text{Im}(\rho_{E_{i, p}})$, $\text{Im}(\rho_{E_{i, p}})$) and put $\mathfrak{s} := \text{Lie}(G/Gal(K_{E_{i, p}}/K))$. We see that the homomorphisms $\text{Lie}(\rho_{E_{i, p}})$ and $\text{Lie}(\rho_{E_{i, p}})$ induce isomorphisms $\text{Lie}(Z(G)) \simeq \text{Lie}(Z_2) = \mathbb{Q}_p \cdot I_2$ and $\text{Lie}(Z(G)) \simeq \text{Lie}(Z_2) = \mathbb{Q}_p \cdot I_2$, respectively. Here I_2 is the unit matrix of 2×2. We shall remark that $\text{Lie}(Z(G))$ and \mathfrak{s} generate \mathfrak{g}. This can be checked from the facts that $\dim_{\mathbb{Q}_p} \text{Lie}(Z(G)) = 1$, $\dim_{\mathbb{Q}_p} \mathfrak{s} = 3$ and

$$\text{Lie}(\rho_{E_{i, p}})(\text{Lie}(Z(G)) \cap \mathfrak{s}) = \text{Lie}(\rho_{E_{i, p}})(\text{Lie}(Z(G))) \cap \text{Lie}(\rho_{E_{i, p}})(\mathfrak{s}) = \mathbb{Q}_p \cdot I_2 \cap \mathfrak{s} = 0.$$
Since \(\det(\rho_{E_1,p}) \) and \(\det(\rho_{E_2,p}) \) coincide with the \(p \)-adic cyclotomic character, we have the equality that \(\text{Lie}(\rho_{E_1,p}) = \text{Lie}(\rho_{E_2,p}) \) on \(\text{Lie}(\mathbb{Z}(G)) \). On the other hand, up to inner automorphisms, there exists the unique Lie algebra injection from \(\mathfrak{s} \) to \(\mathfrak{g}l_2(\mathbb{Q}_p) \) because \(\mathfrak{s} \) is isomorphic to \(\mathfrak{sl}_2(\mathbb{Q}_p) \). This fact is followed from the highest weight theory (cf. [Se3], the remark of the end of Subsection 7.4) Thus \(\text{Lie}(\rho_{E_1,p}) \) is conjugate with \(\text{Lie}(\rho_{E_2,p}) \) on \(\mathfrak{s} \). Thus we have proved the assertion of the claim.

3.3 Multiplicative reduction case

Finally we give some results on the finiteness of \(A(K_B,\mu)\mathbb{F}_p \) for an elliptic curve \(A = E \) over \(K \) with multiplicative reduction and an abelian variety \(B \) over \(K \). We always suppose this assumption to the end of this subsection. Since \(E \) has multiplicative reduction, we may choose a suitable basis of \(T_p(E) \) such that the corresponding matrix of \(\rho_{E,p} \) has the form

\[
\begin{pmatrix}
\varepsilon \chi^{-1} & u \\
0 & \chi
\end{pmatrix},
\]

where \(\chi : G_K \to \mathbb{Z}_p^\times \) is a character which has an image of order at most 2 (cf. [Co], Thm. 1.1). Moreover \(\chi \) is trivial if and only if \(E \) has split multiplicative reduction over \(K \). We identify \(T_p(E) \) as \(\mathbb{Z}_p^{\oplus 2} \) with respect to the above basis.

Proposition 3.12. Let \(E \) be an elliptic curve which has split multiplicative reduction over \(K \). Let \(K(\mu_p) \) be an algebraic extension of \(K \) adjoining all \(p \)-power roots of unity. Then \(E(K(\mu_p))\mathbb{F}_p \) is infinite. In particular, \(E(K_B,\mu)\mathbb{F}_p \) is infinite for any abelian varieties \(B \) over \(K \).

Proof. By the theory of Tate curve, we have a \(G_K \)-isomorphism

\[
E(\bar{K})[p^\infty] \cong \bar{K}^\times / q^n
\]

for some element \(q \) in the maximal ideal of \(\mathcal{O}_K \) and hence we have the desired result.

Next we shall consider the case where \(E \) has non-split multiplicative reduction, equivalently, \(\chi \neq 1 \).

Lemma 3.13. Suppose that \(E \) has non-split multiplicative reduction over \(K \). Let \(L \) be an algebraic extension of \(K \) which contains all \(p \)-power roots of unity. Then \(E(L)[p^\infty] \) is finite if and only if \(\chi \) is not trivial on \(G_L \).

Proof. Since the field \(L \) contains all \(p \)-power roots of unity, the matrix \((\tilde{y}) \in T_p(E)\mathbb{F}_p \) if and only if

\[
\chi(\sigma)^{-1}x + u(\sigma)y = x, \quad \chi(\sigma)y = y
\]

for all \(\sigma \in G_L \). The assertion immediately follows from this fact.

Applying this Lemma, we can show the following finiteness results without difficulty.
Proposition 3.14. Let E be an elliptic curve which has non-split multiplicative reduction over K. We suppose that $p \neq 2$.

1. If L is a prime-to-2 algebraic extension of K which contains all p-power roots of unity, then $E(L)[p^\infty]$ is finite.

2. Let B be an abelian variety such that $B(\bar{K})[p]$ is rational over K. Then $E(K_{B,p})[p^\infty]$ is finite.

Proof. Since the assertion (2) is a special case of (1), it is enough to show the assertion (1). Let K_χ be the definition field of the character χ. By the assumption that L is a profinite prime-to-2 algebraic extension of K, we know that $L \cap K_\chi = K$, in particular K_χ is not contained in L. Consequently it follows that $E(L)[p^\infty]$ is finite by Lem. 3.13.

References

[Co] Brian Conrad, The flat deformation functor, Modular forms and Fermat’s last theorem, Boston, MA, 1995, Springer, New York, 373–420 (1997).

[DSMS] J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-p groups, second ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, (1999).

[Gr] Ralph Greenberg, Galois theory for the Selmer group of an abelian variety, Compositio Math. 136, no. 3, 255–297 (2003).

[Im] Hideo Imai, A remark on the rational points of abelian varieties with values in cyclotomic \mathbb{Z}_p-extensions, Proc. Japan Acad. 51, 12–16 (1975).

[Mat] Arthur Mattuck, Abelian varieties over p-adic ground fields, Ann. of Math. (2) 62, 92–119 (1955).

[Maz] Barry Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18, 183–266 (1972).

[Ri] Kenneth A. Ribet, Torsion points of abelian varieties in cyclotomic extensions, Enseign. Math. (2) 27 (1981), no. 3-4, 315–319 (1982), Appendix to: Katz, Nicholas M. and Lang, Serge. Finiteness theorems in geometric classfield theory.

[Se1] Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15, no. 4, 259–331 (1972).

[Se2] Jean-Pierre Serre, Abelian l-adic representations and elliptic curves, second ed., Advanced Book Classics, Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, 1989 With the collaboration of Willem Kuyk and John Labute.

[Se3] Jean-Pierre Serre, Lie algebras and Lie groups, Lecture Notes in Mathematics, vol. 1500, Springer-Verlag, Berlin, 2006, 1964 lectures given at Harvard University, Corrected fifth printing of the second (1992) edition.

[Ta] John Tate, p-divisible groups, Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, 158–183 (1967).