Marine algal flora of Santa Maria Island, Azores

Ana I Azevedo Neto‡, Manuela I. Parente§, Eva Cacabelos*l‡, Ana Cristina Costa§, Andrea Zita Botelho§, Enric Ballesteros§, Sandra Monteiro§, Roberto Resendes#, Pedro Afonso®, Afonso C. L. Prestes‡, Rita F. Patarrai,a, Nuno V. Álvaro*, David Mila-Figuera, Raul M. A. Neto*, José M. N. Azevedo‡, Ignacio Moreu‡

‡ cE3c - Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group, Faculdade de Ciências e Tecnologia, Departamento de Biologia, Universidade dos Açores, 9500-321 Ponta Delgada, Açores, Portugal
§ CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBiO Laboratório Associado, Pólo dos Açores, Universidade dos Açores, Faculdade de Ciências e Tecnologia, Departamento de Biologia, 9500-321 Ponta Delgada, Açores, Portugal
| MARE – Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Edif. Madeira Tecnopolo, Piso 2, Caminho da Penteada, Funchal, Madeira, Portugal
‡ § |,‡ §
§ ¶ § #
¶ Centre d’Estudis Avançats de Blanes-CSIC, , Acc. Cala Sant Francesc 14, 17300 Blanes, Girona, Spain
Faculdade de Ciências e Tecnologia, Departamento de Biologia, Universidade dos Açores, 9500-321 Ponta Delgada, Açores, Portugal
| IMAR/Okeanos, Departamento de Oceanografia e Pescas, Universidade dos Açores, Rua Prof. Doutor Frederico Machado, 9901-862 Horta, Açores, Portugal
« Expolab - Ciência Viva Science Centre, Avenida da Ciência - Beta, n.º 8, Lagoa, São Miguel, Açores, Portugal
» CCMMG (Centro do Clima Meteorologia e Mudanças Globais) & IITA-A (Instituto de Investigação e Tecnologias Agrárias e do Ambiente), Universidade dos Açores, Faculdade de Ciências Agrárias, Rua Capitão João d’Ávila – Pico da Urze, 9700-042 Angra do Heroísmo, Açores, Portugal
* N/A, Ponta Delgada, Portugal

Corresponding author: Ana I Azevedo Neto (ana.im.neto@uac.pt)

Academic editor: Andreas Beck

Received: 10 Dec 2020 | Accepted: 24 Feb 2021 | Published: 25 Mar 2021

Citation: Neto AIA, Parente MI, Cacabelos E, Costa AC, Botelho AZ, Ballesteros E, Monteiro S, Resendes R, Afonso P, Prestes ACL, Patarrai RF, Álvaro NV, Mila-Figuera D, Neto RMA, Azevedo JMN, Moreu I (2021) Marine algal flora of Santa Maria Island, Azores. Biodiversity Data Journal 9: e61909. https://doi.org/10.3897/BDJ.9.e61909

Abstract

Background

The algal flora of the Island of Santa Maria (eastern group of the Azores archipelago) has attracted interest of researchers on past occasions (Drouët 1866, Agardh 1870, Trelease 1897, Schmidt 1931, Ardré et al. 1974, Fralick and Hehre 1990, Neto et al. 1991, Morton and Britton 2000, Amen et al. 2005, Wallenstein and Neto 2006, Tittley et al. 2009,
Wallenstein et al. 2009a, Wallenstein et al. 2010, Botelho et al. 2010, Torres et al. 2010, León-Cisneros et al. 2011, Martins et al. 2014, Micael et al. 2014, Rebelo et al. 2014, Ávila et al. 2015, Ávila et al. 2016, Machín-Sánchez et al. 2016, Uchman et al. 2016, Johnson et al. 2017, Parente et al. 2018). Nevertheless, the Island macroalgal flora is not well-known as published information reflects limited collections obtained in short-term visits by scientists. To overcome this, a thorough investigation, encompassing collections and presence data recording, was undertaken at both the littoral and sublittoral levels down to a depth of approximately 40 m, covering an area of approximately 64 km². The resultant taxonomic records are listed in the present paper which also provides information on species ecology and occurrence around the Island, improving, thereby, the knowledge of the Azorean macroalgal flora at both local and regional scales.

New information

A total of 2329 specimens (including some taxa identified only to genus level) belonging to 261 taxa of macroalgae are registered, comprising 152 Rhodophyta, 43 Chlorophyta and 66 Ochrophyta (Phaeophyceae). Of these, 174 were identified to species level (102 Rhodophyta, 29 Chlorophyta and 43 Ochrophyta), encompassing 52 new records for the Island (30 Rhodophyta, 9 Chlorophyta and 13 Ochrophyta), 2 Macaronesian endemics (Laurencia viridis Gil-Rodríguez & Haroun; and Millerella tinerfensis (Seoane-Camba) S.M.Boo & J.M.Rico), 10 introduced (the Rhodophyta Acrothamnion preissii (Sonder) E.M.Wollaston, Antithamnion hubbsii E.Y.Dawson, Asparagopsis armata Harvey, Bonnemaisonia hamifera Hariot, Melanothamnus harveyi (Bailey) Diaz-Tapia & Maggs, Scinaia acuta M.J.Wynne and Symphyocladia marchantioides (Harvey) Falkenberg; the Chlorophyta Codium fragile subsp. fragile (Suringar) Hariot; and the Ochrophyta Hydroclathrus tilesii (Endlicher) Santiañez & M.J.Wynne, and Papenfussiella kuromo (Yendo) Inagaki) and 18 species of uncertain status (11 Rhodophyta, 3 Chlorophyta and 4 Ochrophyta).

Keywords

Macroalgae, Azores, Santa Maria Island, new records, endemic, native, uncertain, introduced, occurrence data.

Introduction

The marine algal flora of the isolated mid-Atlantic Azores archipelago is considered cosmopolitan, with species shared with Macaronesia, North Africa, the Mediterranean Sea, Atlantic Europe and America (Tittley 2003, Tittley and Neto 2006, Wallenstein et al. 2009b) and relatively rich when compared to that of other remote oceanic Islands (Neto et al. 2005, Tittley and Neto 2005, Wallenstein et al. 2009b). Amongst the Atlantic archipelagos, Azores, with 405 species, comes second in species richness after the Canary Islands, with 689 species and is followed by Madeira (396), Cabo Verde (333) and Selvagens (295...
species) (Freitas et al. 2019). The latter authors, based on extensive analysis encompassing data on coastal fishes, brachyurans, polychaetes, gastropods echinoderms and macroalgae, suggested that the Azores should be a biogeographical entity on its own and proposed a re-definition of the Lusitanian biogeographical province, in which they consider four ecoregions: the South European Atlantic Shelf, the Saharan Upwelling, the Azores ecoregion and a new ecoregion they named Webnesia, which comprises the archipelagos of Madeira, Selvagens and the Canary Islands.

It should be noted that the paper by Freitas et al. (2019) reflects data from only a few of the nine Islands, since not all data were available to them. São Miguel, with 260 algal species cited at the moment (Table 1), is the Island with the greatest amount of research dedicated to the subject. To overcome this situation and with the aim of providing a better knowledge of the archipelago’s seaweed flora, research has been conducted over the past three decades on all the Islands. Data on the Islands of Corvo and Flores, Graciosa, Pico and Terceira are already available on the recently-published papers by Neto et al. (2020a), Neto et al. (2020b), Neto et al. (2020c), Neto et al. (2020e). Table 1 summarises the current available information.

Phylum	Santa Maria	São Miguel	Terceira	Graciosa	São Jorge	Pico	Faial	Flores	Corvo
Rhodophyta	68	168	73	126	35	142	59	120	30
Chlorophyta	20	39	24	31	17	41	16	35	9
Ochrophyta	28	53	16	38	10	42	8	41	17
Total	116	260	113	195	62	225	83	196	56

The present paper presents both physical and occurrence data and information gathered from macroalgae surveys undertaken on Santa Maria Island mainly by the Island Aquatic Research Group of the Azorean Biodiversity Centre of the University of the Azores (Link: https://ce3c.ciencias.ulisboa.pt/sub-team/island-aquatic-ecology), the BIOISLE, Biodiversity and Islands Research Group of CIBIO- Açores at the University of the Azores (Link: https://cibio.up.pt/research-groups-1/details/bioisle) and the OKEANOS Centre of the University of the Azores (Link: http://www.okeanos.uac.pt). In these surveys, particular attention was given to the small filamentous and thin sheet-like forms that are often short-lived and fast-growing and usually very difficult to identify in the wild, without the aid of a microscope and specialised literature in the laboratory.

The paper aims to provide a valuable marine biological tool for research on systematics, diversity and conservation, biological monitoring, climate change, ecology and more applied studies, such as biotechnological applications, for academics, students, government, private organisations and the general public.
General description

Purpose: In this paper we present taxonomic records of macroalgae for Santa Maria Island and provide general information on their occurrence and distribution. By doing this, we are addressing several biodiversity shortfalls (see Cardoso et al. 2011, Hortal et al. 2015), namely the need to catalogue the Azorean macroalgae (Linnean shortfall) and improve the current information on their local and regional geographic distribution (Wallacean shortfall), as well as on species abundance and dynamics in space (Prestonian shortfall).

Project description

Title: Marine algal flora of Santa Maria Island, Azores

Personnel: Collections were conducted and occurrence data recorded during several years (1989 - 2019). Main collectors were Abel Sentíes, Afonso C. L. Prestes, Ana Cristina Costa, Ana I Neto, André Amaral, Andrea Cunha, Andrea Z. Botelho, Camille Fontaine, Catarina Santos, Cláudia Lopes, Daniela Gabriel, David Milla-Figuereas, Dinis Geraldes, Edgar Rosas-Alquicira, Edward Hehre, Emanuel Xavier, Enric Ballesteros, Eunice Nogueira, Eva Cabacelos, Francisco Wallenstein, Heather Baldwin, Joana Michael, Joana Pombo, João Brum, João Ferreira, João Monteiro, José Baptista, José M. N. Azevedo, Linda Beiroldi, Luís Resendes, Marco Enoch, Manuela I. Parente, Maria Ana Dionísio, Maria Machín-Sánchez, Maria Manuel, Marlene Terra, Mutue Toyota Fujii, Nuno Vaz Álvaro, Patrícia Madeira, Paulo Torres, Pedro Monteiro, Raquel Torres, Ricardo Cordeiro, Richard Fralick, Rita F. Patarra, Ruben Couto, Rui Sousa, Sandra Monteiro, Sérgio Ávila, Tarso Costa, Tito Silva, Valeria Cassano and Viegas Pinto.

Preliminary in situ identifications were done by: Abel Sentíes, Ana I. Neto, Andrea Z. Botelho, Daniela Gabriel, David Milla-Figuereas, Edgar Rosas-Alquicira, Edward Hehre, Enric Ballesteros, Eva Cabacelos, Francisco Wallenstein, Heather Baldwin, Manuela I. Parente, Maria Machín-Sánchez, Marlene Terra, Mutue Toyota Fujii, Nuno Vaz Álvaro, Raquel Torres, Richard Fralick, Ruben Couto and Valeria Cassano.

Abel Sentíes, Ana I. Neto, Andrea Z. Botelho, David Milla-Figuereas, Edgar Rosas-Alquicira, Edward Hehre, Enric Ballesteros, Eva Cabacelos, Francisco Wallenstein, Heather Baldwin, Manuela I. Parente, Maria Machín-Sánchez, Marlene Terra, Mutue Toyota Fujii, Richard Fralick and Valeria Cassano were responsible for the final species identification.

Voucher specimen management was mainly done by Afonso C.L. Prestes, Ana I. Neto, Andrea Z. Botelho, David Milla-Figuereas, Eunice Nogueira, Manuela I. Parente, Natália Cabral, Rita Patarra and Roberto Resendes. Vouchers are deposited at the AZB Herbarium Ruy Telles Palhinha and the LSM - Molecular Systematics Laboratory at the Faculty of Sciences and Technology of the University of the Azores.

Study area description: Isolated in the mid-Atlantic Ocean and emerging from the Azores Plateau and located above an active triple junction between three of the world's largest
tectonic plates (the North American Plate, the Eurasian Plate and the African Plate, Hildenbrand et al. 2014), the Azores archipelago (38°43′49″N, 27°19′10″W, Fig. 1) comprises nine Islands and several islets spread over 500 km in a WNW direction. The Island of Santa Maria (in black in Fig. 1), approximately 97 km², is the easternmost one of the archipelago (37°1′1″N, 25°11′6″W, Fig. 2), located approximately 430 km east of the Mid-Atlantic Ridge within the boundary that divides the Eurasian and African Plates (Hildenbrand et al. 2014). The western part of the Island is flat and has extensive wave-cut platforms reaching altitudes of 250 m above sea level. The eastern part is very irregular and has its highest point around 450 m (Neto et al. 2008c). There are no indications of recent volcanism and the last eruptions occurred during the Upper Pliocene. It is the only Island of the archipelago where marine fossiliferous deposits are known, which have been studied since the 19th century (see, for example, Amen et al. 2005, Neto et al. 2008c, Rebelo et al. 2014, Ávila et al. 2015, Ávila et al. 2016, Uchman et al. 2016).

The climate is characterised by regular rainfall, medium levels of relative humidity and persistent winds, mainly during the winter and autumn seasons (Morton et al. 1998). As in the remaining Azorean Islands, the tidal range is small (< 2 m), the coastal extension is restricted, with deep waters occurring within a few kilometres offshore and coasts are subjected to swell and surge most of the year (see Hidrográfico 1981).

The Island coastline is approximately 63 km long and the coastal morphology results from the effect of the wave action, responsible for the predominance of erosive formations and from the Island antiquity and, also, the fact that it has been frequently submerged. As a consequence, several agglomerations of marine sedimentary rocks occur (e.g. marine conglomerates, fossiliferous calcarenites and arenites) distributed through cliffs and headlands, providing a special geological value to this Island that is not present elsewhere in the archipelago (Neto et al. 2008c). The north and east coasts are characterised by discontinuous and mixed geological forms, with abrupt headlands between which lengths of large boulder and cobbles occur. At São Lourenço high cliffs give rise to narrow high-tide
platforms and low headlands generally less than 10 m high, that allow the establishment of cobble beaches and marine deposition that creates the local sandy beach. The northwest coastline of the Island is characterised by the occurrence of marine deposition and agglomerations of small cobbles, while the northeast coast is sculpted by plunging cliffs. Boulders and cobbles are commonly present. The west and south coasts of the Island have predominantly steep slopes, characterised by the occurrence of plunging cliffs that vary in height, abrupt headland segments and occasional high-tide platforms covered by boulders and cobbles. Praia Formosa has a different configuration with a smooth typology that facilitates seasonal marine deposition processes that alternate between a sandy beach in summer and a cobble beach during the rest of the year (Neto et al. 2008c).

Along the coastline of the Island, the bottom is dominated by irregular rocky beds, with compact bedrock dominating over boulder and cobble ones. Only two sand basins occur, Praia Formosa (south coast) and São Lourenço on the east coast (Neto et al. 2008c). On both beaches, bedrock patches emerge from the sediment bed. This mixed substrate is common to several other places around Santa Maria, at variable depths down to 30 m (e.g. Baía do Salto de Cães and Ilhéu das Lagoinhas on the north coast, Baía do Aveiro and Baía da Maia on the east coast). Shore slope and topography show substantial variation along the shoreline. Western and northern shores are usually flatter, with depths of 30 m occurring about 500 m offshore. Eastern shores are steeper: depths of 30 m can be reached less than 200 m away from the coast. Southern shores are intermediate in this respect. The area that comprises the Praia Formosa presents a slope that is similar to that of the north side of the Island, while the one between Ponta da Malbusca and Ponta do Castelo is steeper (Neto et al. 2008c). Submerged or semi-submerged caves, arches and tunnels of small amplitude and reduced length are common. As depth increases, the slope decreases, although the bottom is still rocky and uneven (Neto et al. 2008a). The sediment floor covering the deepest areas is stable, generally composed of medium and/or coarse sand (Neto et al. 2008a). Along the coastline, natural sheltered habitats (arches and semi-submerged caves, tide pools) create favourable conditions for the growth and the occurrence of a considerable diversity and abundance of macroalgae, macroinvertebrates

Figure 2. doi
Santa Maria Island showing the sampling locations (by Nuno V. Álvaro).
(Neto et al. 2008a, Neto et al. 2008b) and pelagic and benthic coastal fish (Azevedo et al. 2008).

As on the other Islands of the archipelago, intertidal communities of Santa Maria Island are, in part, dominated by algal vegetation, which exhibits a distribution pattern in mosaic and/or bands, with a predominance of algal turfs, covering the rocks as a carpet (Neto et al. 2008c). This turf-growing form is a taxonomically complex mixture of small algae, recruits and juveniles of larger algae, in which the thalli intertwine and re-attach to one another and are adapted for vegetative spread using such multiple attachments to the substratum and adjacent thalli for anchorage (Wallenstein et al. 2009a). The compact mat retains water and provides a suitable habitat for admixed algae and other organisms. A very distinct horizontal pattern of species occurrence characterises the Azorean intertidal shores. In Santa Maria Island three major zones are commonly found (Neto et al. 2008c): the uppermost is dominated by littorinids (Fig. 3); the mid-level zone is characterised by chthamalid barnacles, sometimes limpets (Fig. 4) and dominated by algal turf (Fig. 5); and the lowest zone, representing the transition to the sublittoral fringe, is characterised by various species of frondose algae growing in bands (e.g. the Macaronesian endemic Laurencia viridis, Fig. 6), as epiphytes or forming patches amongst and over turf species (e.g. Ellisolandia elongata (J.Ellis & Solander) K.R.Hind & G.W.Saunders, Fig. 7). The mid-shore level zone on bedrock or boulder shores sometimes exhibits patches of the brown alga Fucus spiralis Linnaeus and the red agarophyte Gelidium microdon Kützing (Fig. 8) and/or the occasional occurrence of the red algae Porphyra/Pyropia and/or Nemalion elminthoides (Velley) Batters, this latter commonly growing in patches with the brown crust Nemoderma tingitanum Schousboe ex Bornet (Fig. 9). In spring and summer, considerable amounts of the introduced red alga Asparagopsis armata can be seen at the lower intertidal level.

Figure 3. doi
Littorinids, a characteristic species of the Azorean high intertidal level (by the Island Aquatic Ecology Subgroup of cE3c-ABG).
Figure 4. Chthamalid barnacles, algal turf and limpets on Santa Maria mid intertidal level (by the Island Aquatic Ecology Subgroup of cE3c-ABG).

Figure 5. Mid-shore intertidal level, dominated by algal turf. Patches of the red algae Nemalion elminthoides can be seen in the image first plan (by the Island Aquatic Ecology Subgroup of cE3c-ABG).
Figure 6. The Macaronesian endemic *Laurencia viridis* at the low-shore intertidal level (by the Island Aquatic Ecology Subgroup of cE3c-ABG).

Figure 7. The erect calcareous frond of *Ellisolandia elongata* growing epiphytically on the algal turf at the low intertidal level (by the Island Aquatic Ecology Subgroup of cE3c-ABG).
Important features and habitats at the shore level are rock pools, occurring in different shapes and sizes and often recreating a shallow subtidal habitat which contains a rich

Figure 8. doi
The mid-level zone on bedrock shores showing patches of the brown alga *Fucus spiralis* and the red agarophyte *Gelidium microdon* (by the Island Aquatic Ecology Subgroup of cE3c-ABG).

Figure 9. doi
Patches of the red algae *Nemalion elminthoides* and the brown crust *Nemoderma tingitanum* at the mid-shore level of bedrock shores (by the Island Aquatic Ecology Subgroup of cE3c-ABG).
diversity of marine life (Neto et al. 2008b). There is a gradient in the proportion of different algal groups in pools at different shore levels. Green algae dominate the upper shore while red and brown algae dominate rock pools lower on the shore. Similarly, faunal diversity in rock pools is greater at lower intertidal levels. Species diversity and richness are lower in upper shore rock-pools where climatic conditions are more stressful (Neto et al. 2008b).

The rocky bottoms in the submerged zone are covered by more frondose macrophytes (Neto et al. 2008a), such as the brown algae *Dictyota* spp. (Fig. 10), *Halopteris filicina* (Grateloup) Kützing (Fig. 11), *Halopteris scoparia* (Linnaeus) Sauvageau and *Zonaria tournefortii* (J.V. Lamouroux) Montagne; and the red species *Plocamium cartilagineum* (Linnaeus) P.S. Dixon and *Sphaerococcus coronopifolius* Stackhouse (Fig. 12). The brown species *Padina pavonica* (Linnaeus) Thivy (Fig. 13) can be locally common. At this level, the edible barnacle *Megabalanus azoricus* (Pilsbry, 1916) and/or the limpet *Patella aspera* Röding, 1798 are concentrated in the first subtidal meters. Other conspicuous invertebrates are the cephalopod *Octopus vulgaris* Cuvier, 1797, the fan worm *Sabella spallanzanii* (Gmelin, 1791), the sea urchins *Sphaerechinus granularis* (Lamarck, 1816) and *Arbacia lixula* (Linnaeus, 1758) and the sea stars *Marthasterias glacialis* (Linnaeus, 1758) and *Ophidiaster ophidianus* (Lamarck, 1816) (Neto et al. 2008a). Frequent fish species at this level are the blue wrasse *Symphodus caeruleus* (Azevedo, 1999) or the ornate wrasse *Thalassoma pavo* (Linnaeus, 1758) in shallow rocky areas and the morays, *Muraena helena* Linnaeus, 1758 or the forkbeards *Phycis phycis* (Linnaeus, 1766), mainly hidden in crevices during the day. The parrotfish *Sparisoma cretense* (Linnaeus, 1758), the salemas *Sarpa salpa* (Linnaeus, 1758) and the white sea bream *Diplodus sargus* (Linnaeus, 1758) roam amongst rocky reefs (Azevedo et al. 2008).
Figure 11. *Halopteris filicina* at the subtidal level (by the Island Aquatic Ecology Subgroup of cE3c-ABG).

Figure 12. *Sphaerococcus coronopifolius* growing in association with the brown algae *Zonaria tournefortii* and *Dictyota* at the deepest level sampled (by the Island Aquatic Ecology Subgroup of cE3c-ABG).
Design description: The sampling referred to in this paper was performed across littoral and sublittoral levels down to approximately 40 m on the Island of Santa Maria. Each sampling location was visited several times and, on each occasion, a careful and extensive survey was undertaken to provide a good coverage of the area. Both physical collections and presence recording were made by walking over the intertidal shores during low tides or by SCUBA diving. The specimens collected were taken to the laboratory for identification and preservation and the resulting vouchers were deposited at the AZB Herbarium Ruy Telles Palhinha and the LSM - Molecular Systematics Laboratory at the Faculty of Sciences and Technology of the University of the Azores.

Funding: This study was mainly financed by the following projects/scientific expeditions:

- Projects:
 - CAJFQ – “Characterization of the algal component of quaternary fossil deposits”, integrated in the project “Macaronésia 2000”, funded by the Autonomous Organism of Museums and Centers of Tenerife, Canary Islands (1999-2004);
 - PARQMAR – “Characterization, Planning and Management of Marine Protected Areas in Macaronesia - The cases of the Eco-Marine Park of Funchal (Madeira), Gran Canaria and Tenerife (Canary Islands) and Santa Maria (Azores)”, funded by INTERREG III B 2000 Community Initiative Program - 2006, Azores-Madeira-Canary Islands. 03/ MAC/ 4.2/ M9 (2004-2006);
 - RRASMA – “Removal of abandoned fishing nets off the island of Santa Maria”, funded by the Regional Government of the Azores, Environment Delegation of Santa Maria Island (2005-2007);
RCGO - “Coastal Waste of the Eastern Group (São Miguel and Santa Maria Islands; Formigas Islets): inventory, catalog, raise awareness”, funded by QUERCUS (2006);

CAMAG/ORI – “Characterization of coastal water bodies on the islands of Santa Maria and São Miguel”, funded by the Regional Government of the Azores, Regional Secretariat for the Environment and the Sea, Regional Directorate for Planning and Water Resources (2008-2012);

LAUMACAT - “Diversity and phylogenetic relationships on the benthic marine algae with pharmacological potential: the Laurencia complex (Rhodophyta) in Macaronesian archipelagos, tropical and subtropical Atlantic”, funded by the Ministerio de Ciencia e Innovación, Dirección General de Investigación y Gestión del Plan Nacional de R+D+i, Subdirección General de Proyectos de Investigación, Gobierno de España (2010 to 2013) and by the São Paulo State Research Support Foundation (FAPESP), Brazil, Proc. 2014 / 00012-1 (2013 a 2016);

ASMAS - Açores: Stop-over for Marine Alien Species?” Government of the Azores - Regional Secretariat for the Sea, Science and Technology (M2.1.2/ l/032/2011). 2012 – 2016;

PIMA – “Elaboration of the implementation program of the Marine Strategy Framework Directive - Marine Invasion Program in the Azores” (3/DRAM / 2015). Government of the Azores - Regional Secretariat for the Sea, Science and Technology, Regional Directorate for Sea Affairs (GRA / SRMCT-DRAM), 2015;

BALA – “Elaboration of the implementation program of the marine strategy framework directive - biodiversity of the coastal environments of the Azores” (2 /DRAM /2015). Government of the Azores - Regional Secretariat for the Sea, Science and Technology, Regional Directorate for Sea Affairs (GRA / SRMCT-DRAM), 2015;

“ACORES-01-0145-FEDER-000072 - AZORES BIOPORTAL – PORBIOTA. Operational Programme Azores 2020 (85% ERDF and 15% regional funds);

Scientific Expeditions and campaigns:

“SANTA MARIA E FORMIGAS/90”, organised by the Biology Department of the University of the Azores, Santa Maria Island, Azores, June 1990;

“Fossil deposits of Prainha and Lagoinhas” under the project CAJFQ-Macaronesia 2001

“Santa Maria 2002”, under the workshop ”Marine Fossils of the Azores: Perspectives for the future”, 2002;

“Santa Maria 2005”, under the project PARQMAR, 2005;

“Santa Maria Island (Azores) 2009”, organised by the Biology Department of the University of the Azores 2009;

“Laurencia/2011”, under the project LAUMACAT, 2011;

“Waitt Foundation”, under the projects BALA and PIMA, 2016;

“BALA/PIMA”, under the projects BALA and PIMA, 2018;
• “PORBIOTA/2019” under the project ACORES-01-0145-FEDER-000072 - AZORES BIOPORTAL – PORBIOTA, 2019;
• Other funds:
 ◦ Portuguese National Funds, through FCT – Fundação para a Ciência e a Tecnologia, within the projects UID/BIA/00329/2013, 2015-2019, UID/BIA/00329/2020-2023 and UID/BIA/50027/2019, UID/BIA/50027/2013-2020 and POCI-01-0145-FEDER-006821;
 ◦ ERDF funds through the Operational Programme for Competitiveness Factors – COMPETE;
 ◦ Portuguese Regional Funds, through DRCT - Regional Directorate for Science and Technology, within several projects, 2019 and 2020 and SRMCT /DRAM - Regional Secretariat for the Sea, Science and Technology, Regional Directorate for Sea Affairs;
 ◦ CIRN/DB/UAc (Research Centre for Natural Resources, Universidade dos Açores, Departamento de Biologia);
 ◦ CIIMAR (Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal).

Sampling methods

Study extent: The present paper includes sampling performed on a relatively large area, of approximately 64 km², covering littoral and sublittoral levels down to approximately 40 m around the Island (Table 2, Fig. 2).

Table 2.
Information and location of the sampling sites on Santa Maria Island.

Location N0	Location ID	Municipality	Locality	Latitude	Longitude	Littoral zone			
1	SMA_VP_Aapem	Vila do Porto	Anjos	Atrás do porto	37.004998	-25.159629	Intertidal		
				Entre-marés					
2	SMA_VP_aaprs	Vila do Porto	Atrás do aeroporto	Ponta do Rochedo	36.985484	-25.187049	Subtidal		
				Subtidal					
3	SMA_VP_aas1	Vila do Porto	Atrás do aeroporto	Subtidal 1	36.975484	-25.181233	Subtidal		
4	SMA_VP_aas2	Vila do Porto	Atrás do aeroporto	Subtidal 2	36.973329	-25.179014	Subtidal		
5	SMA_VP_Abjls	Vila do Porto	Anjos	Banco João Lopes	37.00946	-25.18495	Subtidal		
Location N°	Location ID	Municipality	Locality	Latitude	Longitude	Littoral zone			
-------------	-------------	--------------	----------	-----------	------------	---------------			
6	SMA_VP_Abs	Vila do Porto	Aveiro	36.949447	-25.016892	Subtidal			
7	SMA_VP_Afpis1	Vila do Porto	Anjos	37.006907	-25.158392	Subtidal			
8	SMA_VP_Afpis2	Vila do Porto	Anjos	37.005815	-25.157587	Subtidal			
9	SMA_VP_Ap fem	Vila do Porto	Anjos	37.012072	-25.146074	Intertidal			
10	SMA_VP_ap grcn12s1	Vila do Porto	Área protegida de	37.01291	-25.14428	Subtidal			
11	SMA_VP_ap grcn12s2	Vila do Porto	Área protegida de	37.02289	-25.08936	Subtidal			
12	SMA_VP_ap grcs13s	Vila do Porto	Área protegida de	36.94455	-25.00806	Subtidal			
13	SMA_VP_ap grpcm21s1	Vila do Porto	Área Protegida de Gestão de Recursos da Ponta do Cintrão–Ponta da Maia (SMA21)	36.92892	-25.06439	Subtidal			
14	SMA_VP_ap grpcm21s2	Vila do Porto	Área Protegida de Gestão de Recursos da Ponta do Cintrão–Ponta da Maia (SMA21)	36.92489	-25.02421	Subtidal			
15	SMA_VP_ap grpcm21s3	Vila do Porto	Área Protegida de Gestão de Recursos da Ponta do Cintrão–Ponta da Maia (SMA21)	36.93505	-25.09226	Subtidal			
16	SMA_VP_Apiem	Vila do Porto	Anjos	37.005173	-25.157061	Intertidal			
Location N0	Location ID	Municipality	Locality	Latitude	Longitude	Littoral zone			
------------	-------------	--------------	----------	-----------	------------	---------------			
17	SMA_VP_brsem	Vila do Porto	Boca da Ribeira Seca	Entre-marés	37.004435	-25.16595	Intertidal		
18	SMA_VP_bss	Vila do Porto	Baixa do Sul	Entre-marés	36.924751	-25.022099	Subtidal		
19	SMA_VP_CBpes	Vila do Porto	Calheta de Baixo	Ponta das Eirinhas	36.933883	-25.014702	Subtidal		
20	SMA_VP_crem	Vila do Porto	Calhau da Roupa	Entre-marés	36.9458	-25.146063	Intertidal		
21	SMA_VP_Eem	Vila do Porto	Emissores	Entre-marés	36.998404	-25.175029	Intertidal		
22	SMA_VP_FBbrs	Vila do Porto	Feteiras de Baixo	Baía do Raposo	37.010939	-25.118291	Subtidal		
23	SMA_VP_Fem	Vila do Porto	Figueiral	Entre-marés	36.94574	-25.122836	Intertidal		
24	SMA_VP_Fps	Vila do Porto	Figueiral	Ponta	36.94405	-25.122131	Subtidal		
25	SMA_VP_ISLs	Vila do Porto	Ilhéu de São Lourenço	Subtidal	36.987488	-25.041122	Subtidal		
26	SMA_VP_IVem	Vila do Porto	Ilhéu da Vila	Entre-marés	36.944045	-25.171163	Intertidal		
27	SMA_VP_IVs1	Vila do Porto	Ilhéu da Vila	Subtidal	36.93948333	-25.17646667	Subtidal		
28	SMA_VP_IVs10	Vila do Porto	Ilhéu da Vila	Subtidal	36.941005	-25.167868	Subtidal		
29	SMA_VP_IVs2	Vila do Porto	Ilhéu da Vila	Subtidal	36.93883333	-25.1757	Subtidal		
30	SMA_VP_IVs3	Vila do Porto	Ilhéu da Vila	Subtidal	36.9392	-25.17541667	Subtidal		
31	SMA_VP_IVs4	Vila do Porto	Ilhéu da Vila	Subtidal	36.94125	-25.17528333	Subtidal		
32	SMA_VP_IVs5	Vila do Porto	Ilhéu da Vila	Subtidal	36.939	-25.1752	Subtidal		
Location N0	Location ID	Municipality	Locality	Latitude	Longitude	Littoral zone			
------------	-------------	--------------	----------	----------	-----------	---------------			
33	SMA_VP_IVs6	Vila do Porto	Ilhéu da Vila	Subtidal 6	36.94318333	-25.17496667	Subtidal		
34	SMA_VP_IVs7	Vila do Porto	Ilhéu da Vila	Subtidal 7	36.94045	-25.17448333	Subtidal		
35	SMA_VP_IVs8	Vila do Porto	Ilhéu da Vila	Subtidal 8	36.9431	-25.17426667	Subtidal		
36	SMA_VP_IVs9	Vila do Porto	Ilhéu da Vila	Subtidal 9	36.941125	-25.169649	Subtidal		
37	SMA_VP_LApps	Vila do Porto	Lagoa	Pedra que Pica	Subtidal	36.931597	-25.075562	Subtidal	
38	SMA_VP_Lbscs	Vila do Porto	Lagoinhas	Baía do Salto dos Cães	Subtidal	37.017358	-25.098105	Subtidal	
39	SMA_VP_LiIem	Vila do Porto	Lagoinhas	Entre-marés	37.015012	-25.085176	Intertidal		
40	SMA_VP_LiIfis	Vila do Porto	Lagoinhas	Fora do ilhéu	Subtidal	37.03565	-25.09881	Subtidal	
41	SMA_VP_LIIs	Vila do Porto	Lagoinhas	Subtidal	37.017954	-25.086356	Subtidal		
42	SMA_VP_MbccIlnem	Vila do Porto	Maia	Baía entre Cedros e Castelete	lado Norte	Entre-marés	36.954591	-25.020362	Intertidal
43	SMA_VP_MbccIlsenm	Vila do Porto	Maia	Baía entre Cedros e Castelete	lado Sul	Entre-marés	36.95264	-25.019663	Intertidal
44	SMA_VP_Mbcs	Vila do Porto	Maia	Baía dos Cedros	Subtidal	36.954952	-25.017313	Subtidal	
45	SMA_VP_Mbs1	Vila do Porto	Maia	Baía	Subtidal 1	36.94436667	-25.00838333	Subtidal	
46	SMA_VP_Mbs2	Vila do Porto	Maia	Baía	Subtidal 2	36.94393333	-25.00826667	Subtidal	
47	SMA_VP_Mbs3	Vila do Porto	Maia	Baía	Subtidal 3	36.94433333	-25.00768333	Subtidal	
48	SMA_VP_Mbs4	Vila do Porto	Maia	Baía	Subtidal 4	36.94235	-25.0076	Subtidal	
Location N0	Location ID	Municipality	Locality	Latitude	Longitude	Littoral zone			
------------	---------------	-------------------	---------------------------	---------------	--------------	---------------			
49	SMA_VP_Mbs5	Vila do Porto	Maia	Baía	Subtidal 5	36.94318333	-25.00753333	Subtidal	
50	SMA_VP_Mem	Vila do Porto	Maia	Entre-marés		36.943886	-25.014773	Intertidal	
51	SMA_VP_Mfpis	Vila do Porto	Maia	Lado de Fora da Piscina	Subtidal	36.938923	-25.012707	Subtidal	
52	SMA_VP_mfps1	Vila do Porto	Marina	Lado de fora do Pontão	Subtidal 1	36.944834	-25.146131	Subtidal	
53	SMA_VP_mfps2	Vila do Porto	Marina	Lado de fora do Pontão	Subtidal 2	36.9458	-25.148333	Subtidal	
54	SMA_VP_mpem	Vila do Porto	Marina	Pontão	Entre-marés	36.944396	-25.147067	Intertidal	
55	SMA_VP_Mpiem	Vila do Porto	Maia	Piscina	Entre-marés	36.939526	-25.013879	Intertidal	
56	SMA_VP_MPsis1	Vila do Porto	Malbusca-Piedade	Subtidal 1		36.92783333	-25.0714	Subtidal	
57	SMA_VP_MPsis10	Vila do Porto	Malbusca-Piedade	Subtidal 10		36.929380	-25.071470	Subtidal	
58	SMA_VP_MPsis11	Vila do Porto	Malbusca-Piedade	Subtidal 11		36.930017	-25.071383	Subtidal	
59	SMA_VP_MPsis2	Vila do Porto	Malbusca-Piedade	Subtidal 2		36.92723333	-25.06591667	Subtidal	
60	SMA_VP_MPsis3	Vila do Porto	Malbusca-Piedade	Subtidal 3		36.9279	-25.07065	Subtidal	
61	SMA_VP_MPsis4	Vila do Porto	Malbusca-Piedade	Subtidal 4		36.927967	-25.072933	Subtidal	
62	SMA_VP_MPsis5	Vila do Porto	Malbusca-Piedade	Subtidal 5		36.92806667	-25.07045	Subtidal	
63	SMA_VP_MPsis6	Vila do Porto	Malbusca-Piedade	Subtidal 6		36.92621667	-25.06138333	Subtidal	
64	SMA_VP_MPsis7	Vila do Porto	Malbusca-Piedade	Subtidal 7		36.925667	-25.057567	Subtidal	
65	SMA_VP_MPsis8	Vila do Porto	Malbusca-Piedade	Subtidal 8		36.923030	-25.066550	Subtidal	
Location N°	Location ID	Municipality	Locality	Latitude	Longitude	Littoral zone			
------------	-------------	--------------	----------	-----------	------------	---------------			
66	SMA_VP_MPs9	Vila do Porto	Malbusca-Piedade	36.928750	-25.065217	Subtidal			
67	SMA_VP_Ms1	Vila do Porto	Malbusca	36.93582965	-25.09382679	Subtidal			
68	SMA_VP_Ms2	Vila do Porto	Malbusca	36.93821161	-25.07944033	Subtidal			
69	SMA_VP_Ms3	Vila do Porto	Malbusca	36.938555	-25.085032	Subtidal			
70	SMA_VP_PCbnss	Vila do Porto	Ponta do Castelo	36.931039	-25.057255	Subtidal			
71	SMA_VP_PCem	Vila do Porto	Ponta do Castelo	36.928153	-25.017055	Intertidal			
72	SMA_VP_PCras	Vila do Porto	Ponta do Castelo	36.926463	-25.014565	Subtidal			
73	SMA_VP_Pem	Vila do Porto	Prainha	36.951808	-25.104061	Intertidal			
74	SMA_VP_PFepem	Vila do Porto	Praia Formosa	36.950235	-25.095009	Intertidal			
75	SMA_VP_PFppem	Vila do Porto	Praia Formosa	36.94734	-25.088821	Intertidal			
76	SMA_VP_PFps	Vila do Porto	Praia Formosa	36.937365	-25.105259	Subtidal			
77	SMA_VP_PFsa1	Vila do Porto	Praia Formosa	36.940431	-25.095659	Subtidal			
78	SMA_VP_PMs	Vila do Porto	Ponta do Marvão	36.936973	-25.139363	Subtidal			
79	SMA_VP_Rs	Vila do Porto	Restinga	37.001733	-25.172973	Subtidal			
80	SMA_VP_SLaps	Vila do Porto	São Lourenço	36.99533	-25.052727	Subtidal			
81	SMA_VP_SLb11s	Vila do Porto	São Lourenço	36.98472	-25.04341	Subtidal			
82	SMA_VP_SLfem	Vila do Porto	São Lourenço	36.9858	-25.049216	Intertidal			
Location N0	Location ID	Municipality	Locality	Latitude	Longitude	Littoral zone			
------------	-------------	--------------	----------	-----------	------------	---------------			
83	SMA_VP_Slpnem	Vila do Porto	São Lourenço	Ponta Norte	Entre-marés	36.998556	-25.050887	Intertidal	
84	SMA_VP_SLpns	Vila do Porto	São Lourenço	Ponta do Norte	Subtidal	37.00491	-25.05133	Subtidal	
85	SMA_VP_Slpsbem	Vila do Porto	São Lourenço	Ponta Sul da Baía	Entre-marés	36.98538307	-25.05051544	Intertidal	
86	SMA_VP_SLs1	Vila do Porto	São Lourenço	Subtidal 1		36.996286	-25.045811	Subtidal	
87	SMA_VP_SLs2	Vila do Porto	São Lourenço	Subtidal 2		36.997331	-25.047914	Subtidal	
88	SMA_VP_VPpaem	Vila do Porto	Vila do Porto	Porto antigo	Entre-marés	36.945957	-25.14822	Intertidal	
89	SMA_VP_VPpnemW	Vila do Porto	Vila do Porto	Porto Novo	Entre-marés W	36.94141	-25.154005	Intertidal	
90	SMA_VP_VPpns	Vila do Porto	Vila do Porto	Porto Novo	Subtidal	36.940838	-25.146736	Subtidal	
91	SMA_VP_VPpnsE	Vila do Porto	Vila do Porto	Porto Novo	Subtidal E	36.9431	-25.146917	Subtidal	
92	SMA_VP_VPpnsW	Vila do Porto	Vila do Porto	Porto Novo	Subtidal W	36.9402	-25.150384	Subtidal	

Sampling description: Sampling involved specimen collecting and species presence recording. At each location, samples were obtained by scraping and/or manually collecting one or two specimens of all different species found into labelled bags (Fig. 14). Species recording data were gathered by registering all species present in the sampled locations (Fig. 15). Intertidal collections were made during low tide by walking over the shores. Subtidal collections were made by SCUBA diving around the area.

Quality control: Each sampled taxon was identified by trained taxonomists and involved morphological and anatomical observations of whole specimens by eye and/or of histological preparations under microscopes to determine the main diagnostic features of each species as described in literature.

Step description: At the laboratory, standard procedures were followed in specimens sorting and macroalgae identification. A combination of morphological and anatomical characters and reproductive structures was used for species identification. For small and simple thalli, this required the observation of the entire thallus with the naked eye and/or using dissecting and compound microscopes. For larger and more complex algae,
investigation of the thallus anatomy required histological preparations (longitudinal and transverse sections) or squashed preparations of mucilaginous thalli, sometimes after staining, to observe vegetative and reproductive structures and other diagnostic features.

The Azorean algal flora has components from several geographical regions which implies difficulties in species identification. Floras and keys for the North Atlantic, Tropical Atlantic and Western Mediterranean were used (e.g. Schmidt 1931, Taylor 1967, Taylor 1978, Levring 1974, Dixon and Irvine 1977, Lawson and John 1982, Irvine 1983, Gayral and Cosson 1986, Fletcher 1987, Afonso-Carrillo and Sansón 1989, Burrows 1991,
Boudouresque et al. 1992, Cabioc'h et al. 1992, Maggs and Hommersand 1993, Irvine and Chamberlain 1994, Brodie et al. 2007, Lloréns et al. 2012, Rodríguez-Prieto et al. 2013). For more critical and taxonomically difficult taxa, specimens were taken to the Natural History Museum (London) for comparison with collections there.

A reference collection was made for all collected specimens by assigning them a herbarium code number and depositing them at the AZB Herbarium Ruy Telles Palhinha and the LSM - Molecular Systematics Laboratory, University of Azores. Depending on the species and on planned further research, different types of collections were made, namely (i) wet collections using 5% buffered formaldehyde seawater and then replacing it by the fixing agent Kew (Bridsen and Forman 1999); (ii) dried collections, either by pressing the algae (most species) as described by Gayral and Cosson (1986) or by letting them air dry (calcareous species); and (iii) silica gel collections for molecular study.

Nomenclatural and taxonomic status used here follow Algaebase (Guiry and Guiry 2020). The database was organised on FileMaker Pro.

Geographic coverage

Description: Santa Maria Island

Description: Azores, Portugal (approximately 37°1'19''N, -25°11'24''W);

Coordinates: 36.918 and 37.022 Latitude; -25.190 and -25.009 Longitude.

Taxonomic coverage

Description: All macroalgae were identified to genus or species level. In total, 261 taxa were identified belonging to 28 orders and 60 families, in the phyla Rhodophyta (14 orders and 34 families), Chlorophyta (5 orders and 9 families) and Ochrophyta (9 orders and 17 families).

Temporal coverage

Notes: The sampling was performed on several occasions in the period between 1989 and 2019.

Collection data

Collection name: AZB | Marine macroalgae collection of Santa Maria Island (Azores)-Expedition Santa Maria and Formigas/90; AZB | Marine macroalgae collection of Santa Maria Island (Azores)-Project LAUMACAT; AZB | Marine macroalgae collection of Santa Maria Island (Azores)-Project PARQMAR; AZB | Marine macroalgae collection of Santa Maria Island (Azores)-Occasional sampling; LSM | Marine macroalgae collection of Santa
Collection identifier: 81c64926-4d75-429d-b21f-f7cd93e30504; 100ab0f2-7f8b-4eb6-a5f5-6257d32003a5; af962795-47c6-4219-a295-6687a94afeda; 08883948-f896-495f-ab3d-9fe49f23b76c; 865b91e9-1ec6-4bb8-a941-aba2b586071a; 4efe744e-1e38-431c-b112-7fb9f9bf279a; 77a28947-47db-420f-b40d-f49e87556090; 6606098f-5fbb-4731-9cfa-b7c8e78c3638; bae7fc8f-6333-43d4-887b-3e65617df133; 579bc266-7779-49ea-a775-f44abc2bdad3; 30ed893c-b66d-4c85-8848-10f144a6f957; 852eadcd-977e-44dd-9a52-172a5082a6dd; b74c3414-e277-4789-8806-27a9ab0f7fee; 22941d45-0678-49fb-bdfe-8b0052ceb298; 93e46396-33b2-4c85-8848-10f144a6f957.

Parent collection identifier: AZB Herbarium Ruy Telles Palhinha, Faculty of Sciences and Technology of the University of the Azores; AZB Herbarium Ruy Telles Palhinha, Faculty of Sciences and Technology of the University of the Azores; AZB Herbarium Ruy Telles Palhinha, Faculty of Sciences and Technology of the University of the Azores; AZB Herbarium Ruy Telles Palhinha, Faculty of Sciences and Technology of the University of the Azores; LSM - Molecular Systematics Laboratory, Faculty of Sciences and Technology of the University of the Azores; AZB Herbarium Ruy Telles Palhinha, Faculty of Sciences and Technology of the University of the Azores; LSM - Molecular Systematics Laboratory, Faculty of Sciences and Technology of the University of the Azores; Not applicable; Not applicable; Not applicable; Not applicable; Not applicable; Not applicable; Not applicable.

Specimen preservation method: Air dry, Dried and pressed; Wet (Formalin; fixing agent Kew), Silica gel.

Usage licence

Usage licence: Creative Commons Public Domain Waiver (CC-Zero)

Data resources

Data package title: Marine algal flora of Santa Maria Island, Azores

Resource link: https://www.gbif.org/dataset/38c70a82-c6e3-4ef4-89f4-a37455c6f73a

Alternative identifiers: http://ipt.gbif.pt/ipt/resource?r=santa_maria_macroalgal_flora
Number of data sets: 1

Data set name: Marine algal flora of Santa Maria Island, Azores

Download URL: http://ipt.gbif.pt/ipt/resource?r=santa_maria_macroalgal_flora&v=1.3

Data format: Darwin Core Archive

Data format version: 1.3

Description: This data paper presents physical and occurrence data from macroalgal surveys undertaken on Santa Maria Island between 1989 and 2019 (Neto et al. 2020d). The dataset submitted to GBIF is structured as a sample event dataset, with two tables: event (as core) and occurrences. The data in this sampling event resource have been published as a Darwin Core Archive (DwCA), which is a standardised format for sharing biodiversity data as a set of one or more data tables. The core data table contains 139 records (eventID). The extension data table has 2329 occurrences. An extension record supplies extra information about a core record. The number of records in each extension data table is illustrated in the IPT link. This IPT archives the data and thus serves as the data repository. The data and resource metadata are available for downloading in the downloads section.

Column label	Column description
eventID	Identifier of the event, unique for the dataset
country	Country of the sampling site
countryCode	Code of the country where the event occurred
stateProvince	Name of the region
island	Name of the island
municipality	Name of the municipality
locality	Name of the locality
locationID	Identifier of the location
decimalLatitude	The geographic latitude of the sampling site
decimalLongitude	The geographic longitud of the sampling site
geodeticDatum	The spatial reference system upon which the geographic coordinates are based
coordinateUncertaintyInMetres	The horizontal distance (in metres) from the given decimalLatitude and decimalLongitude describing the smallest circle containing the whole of the Location
eventDate	Time interval when the event occurred
year	The year of the event
samplingProtocol	Sampling method used during an event
Field	Description
----------------------------	---
locationRemarks	Zonation level
minimumDepthInMetres	The minimum depth in metres where the specimen was found
maximumDepthInMetres	The maximum depth in metres where the specimen was found
eventRemarks	Notes about the event
occurrenceID	Identifier of the record, coded as a global unique identifier
institutionID	The identifier for the institution having custody of the object or information referred to in the record
institutionCode	The acronym of the institution having custody of the object or information referred to in the record
collectionID	An identifier of the collection to which the record belongs
collectionCode	The name of the collection from which the record was derived
datasetName	The name identifying the dataset from which the record was derived
kingdom	Kingdom name
phylum	Phylum name
class	Class name
order	Order name
family	Family name
genus	Genus name
specificEpithet	The name of the first or species epithet of the scientificName
infraspecificEpithet	The name of the lowest or terminal infraspecific epithet of the scientificName, excluding any rank designation
acceptedNameUsage	The specimen accepted name, with authorship
previousIdentifications	Previous name of the specimen, with authorship
scientificName	The name without authorship applied on the first identification of the specimen
scientificNameAuthorship	The authorship information for the scientificName formatted according to the conventions of the applicable nomenclaturalCode
taxonRank	The taxonomic rank of the most specific name in the scientificName
basisOfRecord	The specific nature of the data record
habitat	Description of the habitat where the specimen was found
organismQuantityType	The type of quantification system used to quantify the organisms
organismQuantity	Percentage of the organism coverage
recordedBy	Person(s) responsible for sampling
catalogNumber	Identifying code for a unique sample lot in a biological collection
This paper is based on 2329 specimens of macroalgae recorded from Santa Maria Island in 261 taxa, comprising 174 confirmed species (Table 3) and 86 taxa identified only to genus level. The confirmed species (Table 4) include 102 Rhodophyta, 29 Chlorophyta and 43 Ochrophyta (Phaeophyceae). Of these, 52 species are newly recorded to the Island (30 Rhodophyta, 9 Chlorophyta and 13 Ochrophyta). Most species are native, including the two Macaronesian endemics (*Laurencia viridis* and *Millerella tinerfensis*). Eighteen have an uncertain status (11 Rhodophyta, 3 Chlorophyta and 4 Ochrophyta) and ten species represent introductions to the algal flora (the Rhodophyta *Acrothamnion preissii*, *Antithamnion hubbsii*, *Asparagopsis armata*, *Bonnemaisonia hamifera*, *Melanothamnus harveyi*, *Scinaia acuta* and *Symphyocladia marchantioides*; the Chlorophyta *Codium fragile* subsp. *fragile*; and the Ochrophyta *Hydroclathrus tilesii* and *Papenfussiella kuromo*).

Table 3.
Macroalgae species recorded from Santa Maria Island, with information on relative abundance, origin and status

Phylum	Species (Accepted Name)	Number of records	Establishment Means	OccurrenceRemarks	
Rhodophyta	*Acrosorium ciliolatum* (Harvey) Kylin	6	Native		
Rhodophyta	*Acrothamnion preissii* (Sonder)	28	Introduced		
Rhodophyta	*Aglaothamnion pseudobyssoides* (Crouan & Crouan) Halos	1	Native	New record	
Rhodophyta	*Amphiroa fragilissima* (Linnaeus) J.V.Lamouroux	1	Native	New record	
Rhodophyta	*Anotrichium furcellatum* (J.Agardh) Baldock	6	Uncertain		
Rhodophyta	*Antithamnion hubbsii* E.Y.Dawson	5	Introduced	New record	
Rhodophyta	*Asparagopsis armata* Harvey	22	Introduced		
Phylum	Species (Accepted Name)	Number of records	Establishment Means	Occurrence Remarks	
-----------	--	-------------------	---------------------	--------------------	
Rhodophyta	*Asparagopsis armata* Harvey phase	16	Introduced		
	Falkenbergia rufolanosa (Harvey) F.Schmitz				
	Bonnemaisonia hamifera Hariot	3	Introduced	New record	
	Bornetia secundiflora (J.Agardh) Thuret	1	Native	New record	
Rhodophyta	*Callithamnion corymbosum* (J.E.Smith) Lyngbye	2	Native		
Rhodophyta	*Callithamnion granulatum* (Ducluzeau) C.Agardh	4	Native		
Rhodophyta	*Carradoriella denudata* (Dillwyn) A.M.Savoie & G.W.Saunders	3	Uncertain		
Rhodophyta	*Carradoriella elongata* (Hudson) A.M.Savoie & G.W.Saunders	5	Native		
Rhodophyta	*Catenella caespitosa* (Withering) L.M.Irvine	3	Native		
Rhodophyta	*Caulacanthus ustulatus* (Turner) Kützing	6	Uncertain		
Rhodophyta	*Centroceras clavulatum* (C.Agardh) Montagne	8	Native		
Rhodophyta	*Ceramium codii* (H.Richards) Mazoyer	1	Native	New record	
Rhodophyta	*Ceramium diaphanum* (Lightfoot) Roth	10	Native		
Rhodophyta	*Ceramium strictum* Roth	1	Native		
Rhodophyta	*Ceramium virgatum* Roth	5	Native		
Rhodophyta	*Chondracanthus acicularis* (Roth) Fredericq	6	Native		
Rhodophyta	*Chondracanthus teedei* (Mertens ex Roth) Kützing	3	Native		
Rhodophyta	*Chondria capillaris* (Hudson) M.J.Wynne	2	Native		
Rhodophyta	*Chondria dasyphylla* (Woodward) C.Agardh	19	Uncertain		
Rhodophyta	*Corallina ferreyrae* E.Y.Dawson, Acleto & Foldvik	3	Native	New record	
Rhodophyta	*Corallina officinalis* Linnaeus	5	Native		
Rhodophyta	*Cottoniella filamentosa* (M.Howe) Børgesen	30	Native	New record	
Rhodophyta	*Crouania attenuata* (C.Agardh) J.Agardh	1	Native	New record	
Rhodophyta	*Cryptopleura ramosa* (Hudson) L.Newton	19	Native		
Phylum	Species (Accepted Name)	Number of records	Establishment Means	OccurrenceRemarks	
------------	--	-------------------	---------------------	-------------------	
Rhodophyta	*Dasya bailloniana* (S.G.Gmelin) Montagne	3	Uncertain	New record	
Rhodophyta	*Dasya corymbifera* J.Agardh	3	Native		
Rhodophyta	*Dasya hutchinsiae* Harvey	2	Native		
Rhodophyta	*Dasya rigidula* (Kützing) Ardissone	2	Native	New record	
Rhodophyta	*Dermocorynus dichotomus* (J.Agardh) Gargiulo, M.Morabito & Manghisi	1	Native		
Rhodophyta	*Dudresnaya verticillata* (Withering) Le Jolis	1	Native		
Rhodophyta	*Ellisantia elongata* (J.Ellis & Solander) K.R.Hind & G.W.Saunders	6	Native		
Rhodophyta	*Erythrocystis montagnei* (Derbès & Solier) P.C.Silva	2	Native		
Rhodophyta	*Feldmannophycus rayssiae* (Feldmann & G.Feldmann) H.Augier & Boudouresque	1	Native	New record	
Rhodophyta	*Gaillona hookeri* (Dillwyn) Athanasiadis	6	Native		
Rhodophyta	*Gelidium corneum* (Hudson) J.V.Lamouroux	3	Native	New record	
Rhodophyta	*Gelidium microdon* Kützing	11	Native		
Rhodophyta	*Gelidium pusillum* (Stackhouse) Le Jolis	1	Native		
Rhodophyta	*Gelidium spinosum* (S.G.Gmelin) P.C.Silva	2	Native		
Rhodophyta	*Gigartina pistillata* (S.G.Gmel.) Stackhouse	3	Native		
Rhodophyta	*Gracilariosis longissima* (S.G.Gmelin) Steentoft, L.M.Irvine & Farnham	14	Native		
Rhodophyta	*Gratelouopia filicina* (J.V.Lamouroux) C.Agardh	16	Native		
Rhodophyta	*Griffithsia corallinoides* (Linnaeus) Trevisan	1	Uncertain		
Rhodophyta	*Gymnogongrus crenulatus* (Turner) J.Agardh	3	Native		
Rhodophyta	*Gymnogongrus griffithsiae* (Turner) C.Martius	4	Native		
Rhodophyta	*Halarachnion ligulatum* (Woodward) Kützing	1	Native	New record	
Rhodophyta	*Halurus equisetifolius* (Lightfoot) Kützing	1	Native	New record	
Rhodophyta	*Halurus flosculosus* (J.Ellis) Maggs & Hommersand	6	Native		
Phylum	Species (Accepted Name)	Number of records	Establishment Means	Occurrence Remarks	
--------------	--	-------------------	---------------------	--------------------	
Rhodophyta	Herposiphonia secunda (C.Agardh) Ambronn	2	Native		
Rhodophyta	Herposiphonia secunda f. tenella (C.Agardh) M.J.Wynne	2	Native	New record	
Rhodophyta	Hypnea musciformis (Wulfen) J.V.Lamouroux	21	Uncertain		
Rhodophyta	Hypoglossum hypoglossoides (Stackhouse) F.S.Collins & Hervey	1	Native		
Rhodophyta	Itonoa marginifera (J.Agardh) Masuda & Guiry	1	Native	New record	
Rhodophyta	Jania capillacea Harvey	1	Native		
Rhodophyta	Jania longifurca Zanardini	2	Uncertain		
Rhodophyta	Jania pedunculata var. adhaerens (J.V.Lamouroux) A.S.Harvey, Woelkerling & Reviers	5	Native	New record	
Rhodophyta	Jania rubens (Linnaeus) J.V.Lamouroux	11	Native		
Rhodophyta	Jania virgata (Zanardini) Montagne	25	Uncertain		
Rhodophyta	Laurencia obtusa (Hudson) J.V.Lamouroux	2	Native		
Rhodophyta	Laurencia pyramidalis Bory ex Kützing	4	Native	New record	
Rhodophyta	Laurencia tenera C.K.Tseng	1	Native	New record	
Rhodophyta	Laurencia viridis Gil-Rodriguez & Haroun	111	Macaronesian endemism		
Rhodophyta	Leptosiphonia brodiei (Dillwyn) A.M.Savoie & G.W.Saunders	3	Uncertain		
Rhodophyta	Liagora distenta (Mertens ex Roth) J.V.Lamouroux	4	Native	New record	
Rhodophyta	Liagora viscida (Forsskål) C.A.Agardh	6	Native	New record	
Rhodophyta	Lophosphonia cristata Falkenberg	2	Native		
Rhodophyta	Melanothamnus harveyi (Bailey) Diaz-Tapia & Maggs	2	Introduced	New record	
Rhodophyta	Meredithia microphylla (J.Agardh) J.Agardh	11	Native		
Rhodophyta	Millerella tinerfensis (Seoane-Camba) S.M.Boo & J.M.Rico	1	Macaronesian endemism		
Rhodophyta	Nemalion elminthoides (Velley) Batters	4	Native		
Rhodophyta	Nitophyllum punctatum (Stackhouse) Greville	2	Native		
Phylum	Species (Accepted Name)	Number of records	Establishment Means	OccurrenceRemarks	
--------	-------------------------	-------------------	---------------------	-------------------	
Rhodophyta	Osmundea pinnatifida (Hudson) Stackhouse	7	Native		
Rhodophyta	Osmundea truncata (Kützing) K.W.Nam & Maggs	1	Native		
Rhodophyta	Peyssonnelia squamaria (S.G.Gmelin) Decaisne ex J.Agardh	1	Native		
Rhodophyta	Phyllophora crispa (Hudson) P.S.Dixon	6	Native	New record	
Rhodophyta	Platoma cyclocolpum (Montagne) F.Schmitz	8	Native		
Rhodophyta	Platysiphonia delicata (Clemente) Cremades	2	Native	New record	
Rhodophyta	Pleonosporium borreri (Smith) Nägeli	7	Native	New record	
Rhodophyta	Plocamium cartilagineum (Linnaeus) P.S.Dixon	22	Native		
Rhodophyta	Polysiphonia atlantica Kapraun & J.N.Norris	2	Native		
Rhodophyta	Polysiphonia breviarticulata (C.Agardh) Zanardini	1	Native	New record	
Rhodophyta	Polysiphonia ceramiiformis P.Crouan & H.Crouan	1	Native		
Rhodophyta	Polysiphonia havanensis Montagne	2	Native		
Rhodophyta	Predaea feldmannii Bergesen	9	Native	New record	
Rhodophyta	Pterocladiella capillacea (S.G.Gmelin) Santelices & Hommersand	41	Native		
Rhodophyta	Rhodymenia holmesii Ardissone	6	Native		
Rhodophyta	Scinaia acuta M.J.Wynne	2	Introduced		
Rhodophyta	Scinaia furcellata (Turner) J.Agardh	2	Native		
Rhodophyta	Sphaerococcus coronopifolius Stackhouse	13	Native	New record	
Rhodophyta	Sphondylothamnion multifidum (Hudson) Nägeli	1	Native		
Rhodophyta	Spyridia filamentosa (Wulfen) Harvey	8	Native		
Rhodophyta	Symphyocalcia marchantioides (Harvey) Falkenberg	5	Introduced		
Rhodophyta	Taenioma nanum (Kützing) Papenfuss	1	Native		
Rhodophyta	Vertebrata foetidissima (Cocks ex Bornet) Diaz-Tapia & Maggs	1	Native	New record	
Rhodophyta	Vertebrata fruticulosa (Wulfen) Kuntze	9	Native		
Rhodophyta	Vertebrata fucoides (Hudson) Kuntze	3	Uncertain		
Phylum	Species (Accepted Name)	Number of records	Establishment Means	OccurrenceRemarks	
-----------------	--	-------------------	---------------------	-------------------	
Rhodophyta	Xiphosiphonia pennata (C.Agardh) Savoie & G.W.Saunders	5	Native		
Chlorophyta	Bryopsis hypnoides J.V.Lamouroux	3	Native		
Chlorophyta	Bryopsis plumosa (Hudson) C.Agardh	1	Native		
Chlorophyta	Chaetomorpha aerea (Dillwyn) Kützing	3	Native		
Chlorophyta	Chaetomorpha linum (O.F.Müller) Kützing	7	Native		
Chlorophyta	Chaetomorpha pachynema (Montagne) Kützing	1	Native		
Chlorophyta	Cladophora albida (Nees) Kützing	6	Native		
Chlorophyta	Cladophora coelothrix Kützing	6	Native		
Chlorophyta	Cladophora laetevirens (Dillwyn) Kützing	10	Uncertain		
Chlorophyta	Cladophora lehmanniana (Lindenberg) Kützing	4	Native	New record	
Chlorophyta	Cladophora liebetruthii Grunow	9	Native		
Chlorophyta	Cladophora prolifera (Roth) Kützing	42	Native		
Chlorophyta	Codium adhaerens C.Agardh	43	Native		
Chlorophyta	Codium effusum (Rafinesque) Delle Chiaje	1	Uncertain	New record	
Chlorophyta	Codium fragile subsp. atlanticum (A.D.Cotton) P.C.Silva	1	Native	New record	
Chlorophyta	Codium fragile subsp. fragile (Suringar) Hariat	13	Introduced	New record	
Chlorophyta	Codium taylorii P.C.Silva	4	Native	New record	
Chlorophyta	Codium tomentosum Stackhouse	1	Native		
Chlorophyta	Lychaete pellucida (Hudson) M.J.Wynne	5	Native		
Chlorophyta	Microdictyon umbilicatum (Velley) Zanardini	8	Native	New record	
Chlorophyta	Pseudorhizoclonium africanum (Kützing) Boedeker	1	Native	New record	
Chlorophyta	Ullothrix flacca (Dillwyn) Thuret	1	Native	New record	
Chlorophyta	Ulva clathrata (Roth) C.Agardh	13	Native		
Chlorophyta	Ulva compressa Linnaeus	12	Native		
Chlorophyta	Ulva intestinalis Linnaeus	13	Native		
Chlorophyta	Ulva lactuca Linnaeus	3	Uncertain	New record	
Chlorophyta	Ulva linza Linnaeus	2	Native		
Chlorophyta	Ulva rigida C.Agardh	25	Native		
Phylum	Species (Accepted Name)	Number of records	Establishment Means	Occurrence Remarks	
--------------	---	-------------------	---------------------	--------------------	
Chlorophyta	Valonia macrophysa Kützing	1	Native		
Chlorophyta	Valonia utricularis (Roth) C.Agardh	7	Native		
Ochrophyta	Bachelotia antillarum (Grunow) Gerloff	1	Native		
Ochrophyta	Canistrocarpus cervicornis (Kützing) De Paula & De Clerck	1	Native	New record	
Ochrophyta	Carpomitra costata (Stackhouse) Batters	2	Native	New record	
Ochrophyta	Cladostephus spongiosus (Hudson) C.Agardh	44	Native		
Ochrophyta	Colpomenia sinuosa (Mertens ex Roth) Derbès & Solier	90	Native		
Ochrophyta	Cutleria multifida (Turner) Greville	2	Uncertain	New record	
Ochrophyta	Cutleria multifida (Turner) Greville phase Aglaozonia parvula (Greville) Zanardini	2	Uncertain		
Ochrophyta	Cystoseira compressa (Esper) Gerloff & Nizamuddin	17	Native	New record	
Ochrophyta	Cystoseira foeniculacea (Linnaeus) Greville	2	Native		
Ochrophyta	Cystoseira humilis Schousboe ex Kützing	7	Native		
Ochrophyta	Cystoseira tamariscifolia (Hudson) Papenfuss	5	Native		
Ochrophyta	Dictyopteris polyiodioides (A.P.De Candolle) J.V.Lamouroux	8	Native		
Ochrophyta	Dictyota bartayresiana J.V.Lamouroux	3	Native		
Ochrophyta	Dictyota ciliolata Sonder ex Kützing	1	Native		
Ochrophyta	Dictyota dichotoma (Hudson) J.V.Lamouroux	24	Native		
Ochrophyta	Dictyota dichotoma var. intricata (C.Agardh) Greville	11	Native	New record	
Ochrophyta	Dictyota implexa (Desfontaines) J.V.Lamouroux	2	Native		
Ochrophyta	Feldmannia globifera (Kützing) Hamel	1	Native	New record	
Ochrophyta	Fucus spiralis Linnaeus	27	Uncertain		
Ochrophyta	Halopteris filicina (Grateloup) Kützing	37	Native		
Ochrophyta	Halopteris scoparia (Linnaeus) Sauvageau	54	Native		
Ochrophyta	Hydroclathrus tilesii (Endlicher) Santiañez & M.J.Wynne	8	Introduced	New record	
Ochrophyta	Hydroclathrus clathratus (C.Agardh) M.Howe	6	Native		
Phylum	Species (Accepted Name)	Number of records	Establishment Means	OccurrenceRemarks	
---------	--	-------------------	---------------------	-------------------	
Ochrophyta	Leathesia marina (Lyngbye) Decaisne	9	Uncertain		
Ochrophyta	Lobophora variegata (J.V.Lamouroux) Womersley ex E.C.Oliveira	41	Native		
Ochrophyta	Mesogloia vermiculata (Smith) S.F.Gray	16	Native	New record	
Ochrophyta	Myronema strangulans Greville	8	Native		
Ochrophyta	Nemoderma tingitanum Schousboe ex Bornet	3	Native		
Ochrophyta	Padina pavonica (Linnaeus) Thivy	144	Native		
Ochrophyta	Papenfussiella kuromo (Yendo) Inagaki	8	Introduced		
Ochrophyta	Ralfsia verrucosa (Areschoung) Areschoug	1	Native	New record	
Ochrophyta	Sargassum cymosum C.Agardh	8	Native		
Ochrophyta	Sargassum desfontainesii (Turner) C.Agardh	3	Native		
Ochrophyta	Sargassum furcatum Kützing	16	Native	New record	
Ochrophyta	Sargassum vulgare C.Agardh, nom. illeg.	2	Native		
Ochrophyta	Scytopsiphon lomentaria (Lyngbye) Link	5	Native		
Ochrophyta	Sphacelaria cirrosa (Roth) C.Agardh	6	Native		
Ochrophyta	Sphacelaria plumula Zanardini	2	Native		
Ochrophyta	Sphaerorhiza divaricata (C.Agardh) Kylin	4	Uncertain	New record	
Ochrophyta	Sporochnus pedunculatus (Hudson) C.Agardh	2	Native	New record	
Ochrophyta	Stytopodium zonale (J.V.Lamoureoux) Papenfuss	1	Native	New record	
Ochrophyta	Taonia atomaria (Woodward) J.Agardh	3	Native		
Ochrophyta	Treptacantha abies-marina (S.G.Gmelin) Kützing	35	Native		
Ochrophyta	Zonaria tournefortii (J.V.Lamoureoux) Montagne	100	Native		

Table 4.
Summary of the macroalgal flora of the Island of Santa Maria with information on the species origin and status

Phylum	Order	Family	Specimens Number	Total taxa	Total species	Native	Introduced	Uncertain	Macaronesian endemism	New record
Rhodophyta	14	34	988	152	102	82	7	11	2	30
Phylum	Order	Family	Specimens Number	Total taxa	Total species	Native	Introduced	Uncertain	Macaronesian endemism	New record
----------	-------	--------	------------------	------------	---------------	--------	------------	-----------	------------------------	------------
Chlorophyta	5	9	276	43	29	25	1	3	9	
Ochrophyta	9	17	1065	66	44	37	2	4	13	
Total	28	60	2329	261	174	144	10	18	2	52

Many species were only sporadically recorded, but 12 were commonly found around the Island and occurred quite abundantly in some locations, namely: the Rhodophyta *Asparagopsis taxiformis* (Delile) Trevisan, *Laurencia viridis*, and *Pterocladiella capillacea* (S.G. Gmelin) Santelices & Hommersand; the Chlorophyta *Cladophora prolifera* (Roth) Kützing, *Codium adhaerens* C. Agardh and *Ulva rigida* C. Agardh; and the Ochrophyta *Cladostephus spongiosus* (Hudson) C. Agardh, *Colpomenia sinuosa* (Mertens ex Roth) Derbès & Solier, *Halopteris scoparia*, *Lobophora variegata* (J.V. Lamouroux) Womersley ex E. C. Oliveira, *Padina pavonica* and *Zonaria tournefortii*.

A mismatch regarding the GBIF backbone taxonomy of some of the macroalgae species names was identified as detailed in Suppl. material 1.

Acknowledgements

This research was supported by several projects, expeditions and campaigns (see Funding above) and lately by the project “ACORES-01-0145-FEDER-000072” funded the Operational Programme Azores 2020 (85% ERDF and 15% regional funds). We are grateful to the Municipalities of Vila do Porto, the Ecoteca of Santa Maria, the Basic and Secondary School of Santa Maria, the Environment Delegation of Santa Maria Island and the Club Naval of Santa Maria for their logistic support during the Expeditions and Campaigns. Thanks are due to the campaigns teams for their critical involvement in this project (Abel Sentíes, André Amaral, Andrea Cunha, Camille Fontaine, Catarina Santos, Cláudia Lopes, Daniela Gabriel, Dinis Geraldes, Edgar Rosas-Alquicira, Edward Hehre, Emanuel Xavier, Eunice Nogueira, Francisco Wallenstein, Heather Baldwin, Joana Michael, Joana Pombo, João Brum, João Ferreira, João Monteiro, Joana Pombo, José Baptista, Linda Beiroldi, Luís Resendes, Marco Enoch, Maria Ana Dionísio, Maria Machín-Sánchez, Maria Manuel, Marlene Terra, Mutue Toyota Fujii, Patrícia Madeira, Paulo Torres, Pedro Monteiro, Raquel Torres, Ricardo Cordeiro, Richard Fralick, Ruben Couto, Rui Sousa, Sérgio Ávila, Tarso Costa, Tito Silva, Valeria Cassano and Viegas Pinto). Manuela I. Parente was supported by a postdoctoral grant (SFRH/BPD/34246/2006) awarded by Fundação para a Ciência e a Tecnologia (FCT). Eva Cacabelos was supported by a postdoctoral grant (Project M1420-09-5369-FSE-000001) from ARDITI (Regional Agency for Development of Research, Technology and Innovation of Madeira). Afonso C.L. Prestes was supported by a PhD grant (M3.1.a/F/083/2015) awarded by Fundo Regional da Ciência e Tecnologia (FRCT). Rita F. Patarra was supported by a Science and Technology Management Fellowship grant (SFRH/BGCT/135478/2018) awarded by Fundação para a Ciência e a Tecnologia, IP.
Author contributions

AIN: Conceptualisation; Methodology; Research (field and laboratory work); Resources; Data Curation; Formal analysis and interpretation; Paper writing

MIP: Research (field and laboratory work); Data Curation; Formal analysis and interpretation; Paper writing

EC: Research (field work and laboratory work); Data Curation

ACC: Research (field work and laboratory work); Resources; Data Curation

AZB: Research (field and laboratory work); Data Curation

EB: Research (field work and laboratory work); Resources; Data Curation

SM: Research (field and laboratory work); Data Curation

RR: Resources; Data Curation

PA: Resources

ACLP: Research (field and laboratory work); Data Curation

RFP: Research (field and laboratory work); Data Curation

NVA: Research (field work); Maps elaboration

DM-F: Research (field and laboratory work); Data Curation

RMAN: Data Curation; Formal analysis and interpretation; Paper writing

JMNA: Research (field work and laboratory work); Formal analysis and interpretation; Paper writing

IM: Data Curation; Formal analysis and interpretation; Paper writing

References

- Afonso-Carrillo J, Sansón M (1989) Clave ilustrada para la determinación de los macrofitos marinos bentonicos de las Islas Canarias. [Illustrated key for the determination of the Benthic Marine Macrophytes of the Canary Islands], Departamento de Biología Vegetal (Botánica), Universidad de La Laguna, La Laguna, 55 pp.

- Agardh JG (1870) Om de under Korvetten Josephines expedition, sistliiden sommar, insamlade Algerne, ofversigt of Kongl. Vetenskaps-Akadiemiens Forhanlingar, Stockholm 4: 359-366.
• Amen RG, Neto AI, Azevedo JM (2005) Coralline-algal framework in the Quaternary of Prainha (Santa Maria Island, Azores. Revista Española de Micropaleontología 37 (1): 63-70. URL: http://hdl.handle.net/10400.3/1187
• Ardré F, Boudouresque C-, Cabioch J (1974) Symphyocladia marchantioides (Harvey) Falkenberg (Rhodomeniaceae, Ceramiales) aux Açores. Bulletin de la Société Phycologique de France 19: 178-182.
• Ávila SP, Ramalho RS, Habermann JM, Quartau R, Kroh A, Berning B, Johnson M, Kirby MX, Zanon V, Titschack J, Goss A, Rebelo AC, Melo C, Madeira P, Cordeiro R, Meireles R, Bagacho L, Hipilito A, Uchman A, Silva CM, Cachão M, Madeira J (2015) Palaeoecology, taphonomy, and preservation of a lower Pliocene shell bed (coquina) from a volcanic oceanic island (Santa Maria Island, Azores). Palaeogeography, Palaeoclimatology, Palaeoecology 430: 57-73. https://doi.org/10.1016/j.palaeo.2015.04.015
• Ávila SP, Cachão M, Ramalho RS, Botelho AZ, Madeira P, Rebelo AC, Cordeiro R, Melo C, Hipólito A, Ventura M, Lipps JH (2016) The palaeontological heritage of Santa Maria Island (Azores: NE Atlantic): a re-evaluation of geosites in GeoPark Azores and their use in geotourism. Geoheritage 8 (2): 155-171. https://doi.org/10.1007/s12371-015-0148-x
• Azevedo JMN, Álvaro NV, Raposeiro P, Neto AI (2008) Guias Costeiros de Santa Maria: Peixes Litorais. [Coastal guides of Santa Maria: Littoral fish]. Secretaria Regional do Ambiente e do Mar e Câmara Municipal de Vila do Porto, Açores [ISBN 978-972-99884-6-2 | 978-989-95262-2-8] https://doi.org/10.1590/S0103-84782008000500029
• Botelho AZ, Dionísio MA, Cunha A, Torres P, Monteiro S, Geraldes D, Costa AC (2010) Contributo para a inventariação da biodiversidade marinha da ilha de Santa Maria. XIV Expedição Científica do Departamento de Biologia - Santa Maria 2009, Relatórios e Comunicações do Departamento de Biologia da Universidade dos Açores, 36: 75-87.
• Boudouresque C-F, Meinesz A, Verlaque M (1992) Méditerranée. In: Boudouresque C-F, et al. (Ed.) Guide des Algues des Mers d’Europe. Delachaux et Niestlé, Paris, 138-231 pp.
• Bridsen D, Forman L (Eds) (1999) The Herbarium Handbook. Third Edition. Kew: The Board of Trustees of the Royal Botanic Gardens, Kew, 334 pp. [ISBN 1-900347-43-1]
• Brodie J, Maggs C, John DM (Eds) (2007) The green seaweeds of Britain and Ireland. British Phycological Society, Dunmurry, Northern Ireland, 242 pp.
• Burrows EM (1991) Seaweeds of the British Isles. Vol. 2. Chlorophyta. Natural History Museum, London, 238 pp.
• Cabioc'h J, Floch'JY, Le Toquin A (1992) Manche et Atlantique. In: Boudouresque C-F, et al. (Ed.) Guide des Algues des Mers d’Europe. Delachaux et Niestlé, 30-136 pp.
• Cardoso P, Erwin T, Borges PV, New T (2011) The seven impediments in invertebrate conservation and how to overcome them. Biological Conservation 144 (11): 2647-2655. https://doi.org/10.1016/j.biocon.2011.07.024
• Dixon SP, Irvine LM (1977) Seaweeds of the British Isles. Vol. I Rhodophyta. Part 1 Introduction, Nemaliales, Gigartinales. British Museum (Natural History), London, 252 pp.
• Drouët H (1866) Catalogue de la flore des Îles Açores précédé de l’itinéraire d’un voyage dans cet Archipel. Memoire de la Société Académique de l’Aube 30: 81-233.
• Fletcher RL (1987) Seaweeds of the British Isles. Vol. III. Fucophyceae (Phaeophyceae). Part 1. British Museum (Natural History), London, 359 pp.
• Fralick RA, Hehre EJ (1990) Observations on the marine algal flora of the Azores II. An annotated checklist of the Chlorophyta of the Azores. Arquipélago (Life and Earth Sciences) 8: 112-117.
• Freitas R, Romeiras M, Silva L, Cordeiro R, Madeira P, González JA, Wirtz P, Falcón JM, Brito A, Floeter SR, Afonso P, Porteiro F, Viera-Rodríguez MA, Neto AI, Haroun R, Farmino JN, Rebelo AC, Baptista L, Melo CS, Martínez A, Núñez J, Berning B, Johnson ME, Ávila SP (2019) Restructuring of the Macaronesia biogeographic unit: A marine multi-taxon biogeographical approach. Scientific Reports 9 (15792). https://doi.org/10.1038/s41598-019-51786-6
• Gayral P, Cosson J (1986) Connaître et reconnaitre les algues marines. Ouest France, 220 pp.
• Guiry MD, Guiry GM (2020) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org. Accessed on: 2020-11-15.
• Hidrográfico I (Ed.) (1981) Roteiro do Arquipélago dos Açores. PUB. (N) -Il-128-SN, Lisboa.
• Hildenbrand A, Weis D, Madureira P, Marques FO (2014) Recent plate re-organization at the Azores Triple Junction: Evidence from combined geochemical and geochronological data on Faial, S. Jorge and Terceira volcanic Islands. Lithos 210-211: 27-39. https://doi.org/10.1016/j.lithos.2014.09.009
• Hortal J, Bello F, Diniz-Filho JA, Lewinsohn TM, Lobo JM, Ladle RJ (2015) Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics 46: 523-549. https://doi.org/10.1146/annurev-ecolsys-112414-054400
• Irvine LM (1983) Seaweeds of the British Isles. Vol. I Rhodophyta. Part 2 A Cryptonemiales (sensu stricto), Palmariales, Rhodymeniales. British Museum (Natural History), London, 115 pp.
• Irvine LM, Chamberlain YM (1994) Seaweeds of the British Isles. Vol. 1. Rhodophyta. Part 2 B. Corallinales, Hildenbrandiales. Natural History Museum, London, 276 pp.
• Johnson ME, Ledesma-Vzquez J, Ramalho RS, Silva CM, Rebelo AC, Santos A, Baarli BG, Mayoral E, Cachão M (2017) Chapter 9. Taphonomic Range and Sedimentary Dynamics of Modern and Fossil Rhodolith Beds: Macaronesian Realm (North Atlantic Ocean). In: Riosmena-Rodríguez R, Nelson W, Aguirre J (Eds) Rhodolith/ Maërl Beds: A global Perspective. Coastal Research Library 15, Springer, USA, 221-261 pp. [ISBN 978-3-319-29313-4]. https://doi.org/10.1007/978-3-319-29315-8
• Lawson GW, John DM (1982) The marine algae and coastal environment of Tropical West Africa. Beihefte zur Nova Hedwigia, J. CRAMER, Vaduz, 455 pp.
• León-Cisneros K, Riosmena-Rodríguez R, Neto AI (2011) A re-evaluation of Scinaia (Nemaliales, Rhodophyta) in the Azores. Helgolander Marine Research 65: 111-121. https://doi.org/10.1007/s10152-010-0207-2
• Levring T (1974) The marine algae of the archipelago of Madeira. Boletim do Museu Municipal do Funchal 28 (125): 5-111. URL: http://publications.cm-funchal.pt/jspui/handle/1.00/1231
• Lloréns JLP, Cabrero IH, Lacida RB, González GP, Murillo FGB, Oñate JJV (2012) Flora marina del litoral gaditano. Biología, ecología, usos y guía de identificación. 368 pp.
- Machín-Sánchez M, Rousseau F, Le Gall L, Cassano V, Neto Al, Sentíes A, Fujii MT, Gil-Rodríguez MC (2016) Species diversity of the genus *Osmundea* (Ceramiales, Rhodophyta) in the Macaronesian region. Journal of Phycology 52: 664-681. https://doi.org/10.1111/jpy.12431
- Maggs CA, Hommersand MH (1993) Seaweeds of the British Isles. Vol1. Rhodophyta. Part 3A. Ceramiales. Natural History Museum, London, 444 pp.
- Martins GM, Faria J, Furtado M, Neto Al (2014) Shells of *Patella aspera* as islands for epibionts. Journal of the Marine Biological Association of the United Kingdom 94 (5): 1027-1032. https://doi.org/10.1017/S0025315414000447
- Micael J, Parente MI, Costa AC (2014) Tracking macroalgae introductions in North Atlantic oceanic islands. Helgoland Marine Research 68 (2): 209-219. https://doi.org/10.1007/s10152-014-0382-7
- Morton B, Britton JC, Martins AMF (1998) Coastal Ecology of the Azores. Sociedade Afonso Chaves, Ponta Delgada, 249 pp.
- Morton B, Britton JC (2000) Origins of the Azorean intertidal biota: the significance of introduced species, survivors of chance events. Arquipelago Life Marine Science Suppl 2 (A): 22-51.
- Neto Al, Baldwin HP, Fralick RA, Hehre EJ (1991) Algas marinhas do litoral da ilha de Santa Maria. Santa Maria e Formigas/90, Relatório Preliminar. Relatórios e Comunicações do Departamento de Biologia, 19: 27-32.
- Neto Al, Tittley I, Raposeiro P (2005) Flora Marinha do Litoral dos Açores. [Rocky shore marine flora of the Azores]. Secretaria Regional do Ambiente e do Mar, 156 pp. URL: http://hdl.handle.net/10400.3/1677
- Neto Al, Wallenstein FM, Álvaro NV, N. AM (2008a) Guias Costeiros de Santa Maria: Zona Submersa. [Coastal guides of Santa Maria: Subtidal zone]. Secretaria Regional do Ambiente e do Mar e Câmara Municipal de Vila do Porto URL: http://hdl.handle.net/10400.3/1684 [ISBN 978-972-99884-8-6 | 978-989-95262-4-2]
- Neto Al, Wallenstein FM, Silva TP, Álvaro NV, Tittley I (2008b) Guias Costeiros de Santa Maria: Poças de Maré. [Coastal guides of Santa Maria: Tide pools]. Secretaria Regional do Ambiente e do Mar e Câmara Municipal de Vila do Porto URL: http://hdl.handle.net/10400.3/1683 [ISBN 978-972-99884-7-9 | 978-989-95262-3-5]
- Neto Al, Wallenstein FM, Silva TP, Álvaro NV, Tittley I (2008c) Guias Costeiros de Santa Maria: Zona Entre-Marés. [Coastal guides of Santa Maria: Intertidal zone]. Secretaria Regional do Ambiente e do Mar e Câmara Municipal de Vila do Porto URL: http://hdl.handle.net/10400.3/1685 [ISBN 978-972-99884-5-5 | 978-989-95262-1-1]
- Neto Al, Prestes AC, Álvaro NV, Resendes R, Neto RM, Moreu I (2020a) Marine algal (seaweed) flora of Terceira Island, Azores. Biodiversity Data Journal 8: e57462. https://doi.org/10.3897/BDJ.8.e57462
- Neto Al, Prestes AC, Álvaro NV, Resendes R, Neto RM, Tittley I, Moreu I (2020b) Marine algal flora of Pico Island, Azores. Biodiversity Data Journal 8: e57461. https://doi.org/10.3897/BDJ.8.e57461
- Neto Al, Parente MI, Botelho AZ, Prestes AC, Resendes R, Afonso CL, Álvaro NV, Millafigueras D, Neto RM, Tittley I, Moreu I (2020c) Marine algal flora of Graciosa Island, Azores. Biodiversity Data Journal 8: e57201. https://doi.org/10.3897/BDJ.8.e57201
• Neto Al, Parente MI, Cacabelos E, Costa AC, Botelho AZ, Ballesteros E, Monteiro S, Resendes R, Afonso P, Afonso CL, Patarra RF, Álvaro NV, Milla-Figueras D, Neto RMA, Azevedo JM N, Moreu I (2020d) Marine algal flora of Santa Maria Island, Azores. Version 1.2. Universidade dos Açores. Sampling event dataset. 1.3. Universidade dos Açores via GBIF.org. Release date: 2020-12-10. URL: https://doi.org/10.15468/6t74eu

• Neto Al, Parente MI, Tittley I, Fletcher RL, Farnham WF, Costa AC, Botelho AZ, Monteiro S, Resendes R, Afonso P, Prestes ACL, Álvaro NV, Milla-Figueras D, Neto RMA, Azevedo JM N, Moreu I (2020e) Marine algal flora of Flores and Corvo Islands, Azores. v1.4. Sampling event dataset. Universidade dos Açores via GBIF.org. Release date: 2020-11-15. URL: https://doi.org/10.15468/jmjkm6

• Parente MI, Gabriel D, Micael J, Botelho AZ, Ballesteros E, Millia D, Santos R, Costa AC (2018) First report of the invasive macroalga Acrothamnion preissii (Rhodophyta, Ceramiales) in the Atlantic Ocean. Botanica Marina 61 (1): 85-90. https://doi.org/10.1515/bot-2017-0060

• Rebelo AC, Rasser MW, Riosmena-Rodríguez R, Neto AI, Ávila SP (2014) Rhodolith forming coralline algae in the Upper Miocene of Santa Maria Island (Azores, NE Atlantic): a critical evaluation. Phytotaxa 190 (1): 370-382. https://doi.org/10.11646/phytotaxa.190.1.22

• Rodríguez-Prieto C, Ballesteros E, Boisset F, Afonso-Carrillo J (2013) Guía de las macroalgas y fanerógamas marinas del Mediterráneo Occidental. Omega, S.A, Barcelona, 656 pp.

• Schmidt OC (1931) Die marine vegetation der Azoren in ihren Grundzgen dargestellt. Bibliotheca Botanica 24 (102): 1-116.

• Taylor WR (1967) Marine algae of the northeastern coasts of North America. The University of Michigan Press, 509 pp.

• Taylor WR (1978) Marine algae of the eastern tropical and subtropical coasts of the Americas. The University of Michigan Press, 870 pp.

• Tittley I (2003) Seaweed diversity in the North Atlantic Ocean. Arquipelago. Life and Marine Sciences 19A: 13-25.

• Tittley I, Neto AI (2005) The marine algal (seaweed) flora of the Azores: additions and amendments. Botanica Marina 48: 248-25. https://doi.org/10.1515/BOT.2005.030

• Tittley I, Neto AI (2006) The marine algal flora of the Azores: Island isolation or Atlantic stepping stones? Occasional papers of the Irish Biogeographical Society 9: 40-54.

• Tittley I, Neto AI, Parente MI (2009) The marine algal (seaweed) flora of the Azores: additions and amendments 3. Botanica Marina 52 (1): 7-14.

• Torres P, Lopes C, Dionísio MA, Costa AC (2010) Espécies exóticas invasoras marinhas da ilha de Santa Maria, Açores. XIV Expedição Científica do Departamento de Biologia - Santa Maria 2009. Relatórios e Comunicações do Departamento de Biologia da Universidade dos Açores 36: 103-111.

• Trelease W (1897) Botanical observations on the Azores. 8th Annual Report of the Michigan Botanical Garden: 77-220. https://doi.org/10.2307/2992160

• Uchman A, Johnson ME, Rebelo AC, Melo AC, Cordeiro R, Ramalho RS, Ávila SP (2016) Vertically-oriented trace fossil Macaronichnus segregatis from Neogene of Santa Maria Island (Azores; NE Atlantic) records vertical fluctuations of the coastal groundwater mixing zone on a small oceanic island. Geobios 49 (3): 229-241. https://doi.org/10.1016/j.geobios.2016.01.016
• Wallenstein FM, Neto AI (2006) Intertidal rocky shore biotopes of the Azores: a quantitative approach. Helgoland Marine Research 60 (3): 196-206. https://doi.org/10.1007/s10152-006-0035-6
• Wallenstein FM, Terra MR, Pombo J, Neto AI (2009a) Macroalgal turfs in the Azores. Marine Ecology - An Evolutionary Perspective 30 (Suppl. 1): 113-117. https://doi.org/10.1111/j.1439-0485.2009.00311.x
• Wallenstein FM, Neto AI, Álvaro NV, Tittley I, Azevedo JMN (2009b) Guia para Definição de Biótopos Costeiros em Ilhas Oceânicas. [Coastal biotope definition manual for Oceanic islands]. Secretaria Regional do Ambiente e do Mar URL: http://hdl.handle.net/10400.3/1687 [ISBN 978-972-99884-9-3]
• Wallenstein FM, Peres SD, Xavier ED, Neto AI (2010) Phytobenthic communities of intertidal rock pools in the eastern islands of Azores and their relation to position on shore and pool morphology. Arquipélago. Life and Marine Sciences 27: 9-20.

Supplementary material

Suppl. material 1: DP-SMA-id_15162_normalized.csv doi

Authors: Ana I Neto
Data type: Macroalgae taxonomic mismatching
Brief description: GBIF does not have the more actualised nomenclature for some of the macroalgae species names. Therefore, the matching tools of its platform were applied to the species list, as required by Pensoft’s data auditor, to identify the problematic taxonomic situations. The resulting file (DP-SMA-id_15162_normalized.csv) is included here, since the names will not be immediately updated in the GBIF Taxonomic Backbone. A request was already sent to GBIF helpdesk to solve this situation.
Download file (45.34 kb)