Fatal gastrointestinal bleeding due to IgA vasculitis complicated with tuberculous lymphadenitis: A case report and literature review

Norihito Yamauchi | Shuji Tanda | Saori Kashiwagi | Atsunori Ohnishi | Munehiro Kugai | Takako Akazawa | Tsuguhiro Matsumoto | Junko Yamauchi | Akira Muramatsu | Soutaro Fujimoto

1Department of Gastroenterology, Akashi City Hospital, Akashi, Japan
2Department of Nephrology, Akashi City Hospital, Akashi, Japan

Correspondence
Norihito Yamauchi, Department of Gastroenterology, Akashi City Hospital, 1-33 Takashōmachi, Akashi, Hyogo 673-8501, Japan.
Email: n.yamauti@akashi-shiminhosp.jp

Abstract
We report a case of IgA vasculitis that developed during the treatment of tuberculosis. Patients with tuberculosis who are on antituberculosis treatment can be administered steroids for severe disease or complications.

KEYWORDS
gastrointestinal bleeding, Henoch-Schönlein purpura, IgA vasculitis, leukocytoclastic vasculitis, tuberculosis

1 | INTRODUCTION

Immunoglobulin A vasculitis (IgAV), formerly called Henoch-Schönlein purpura, is a small vessel vasculitis that commonly occurs in children but can also affect people of all ages. Patients with this condition typically exhibit lower extremity purpura, arthritis, and hematuria. The gastrointestinal tract is affected in approximately one-half of patients with IgAV. Gastrointestinal symptoms include abdominal pain, nausea, vomiting, and occult or overt intestinal bleeding. The condition is generally self-limiting, and patients are usually managed with symptomatic treatment, but there are also severe cases with gastrointestinal bleeding, intussusception, infarction, and perforation.1-3 Although various infectious and chemical triggers are recognized, the underlying cause of IgAV remains unknown to date.4

We report the case of a patient with IgAV that developed during treatment of tuberculous lymphadenitis and later proved fatal because of deterioration of gastrointestinal lesions.

2 | CASE REPORT

A 71-year-old man with diabetes mellitus presented to our institution complaining of left axillary lymphadenopathy, which lasted for 1 month. Whole-body CT revealed lymphadenopathy with central necrosis in the left clavicle, axilla, and abdomen. Scars and nonspecific fibrosis were observed in the apex of both lungs, but no active lesions or tumors were found in the lungs or other organs. Mycobacterium tuberculosis was detected from the exudate of the left axillary lymph nodes but not from the sputum, and tuberculous lymphadenitis diagnosis was made. Thereafter, the patient was treated with isoniazid (300 mg), rifampicin (450 mg), pyrazinamide (1.5 g), and ethambutol (1 g) daily. On the 19th day of treatment, he complained of abdominal pain and diarrhea, and on day 20, palpable purpura appeared on both of his legs (Figure 1A).

Laboratory findings were as follows: white blood cell count, 11.3 × 10^3/μL; eosinophils, 0.2%; hemoglobin level, 13.2 g/dL; platelet count, 498 × 10^3/μL; international normalized ratio, 1.05; D-dimer, 61.9 μg/mL; percentage factor XIII...
activity, 77%; serum urea level, 20.9 mg/dL; creatinine level, 0.55 mg/dL; C-reactive protein level, 12.5 mg/dL; serum, IgA 472 mg/dL; IgE, 122 IU/mL. Meanwhile, the results of serologic tests for antinuclear antibodies, rheumatoid factor, antineutrophil cytoplasmic antibodies, and hepatitis B and C viruses were all negative. Urinalysis showed a protein level of 50 mg/dL, and the patient tested negative for occult blood. Abdominal computed tomography showed wall thickening of the duodenum and small intestine, and mild to moderate ascites (Figure 2). An endoscopic examination demonstrated highly reddish erosions in the antrum of the stomach (Figure 3A) and circular ulcers in the descending part of the duodenum (Figure 3B). Biopsy of skin lesions showed leukocytoclastic vasculitis (Figure 1B). The deposition of IgA on the vascular wall was not proven, and we reached a diagnosis of IgAV in combination with palpable purpura and digestive symptoms.

The clinical course is shown in Figure 4. We considered corticosteroid administration to improve his abdominal symptoms, but we believed that this also carried a risk of worsening of tuberculosis and diabetes, so we opted to manage the patient with fasting and rest instead. A small amount of bloody stool was noted on day 27, but upper and lower gastrointestinal endoscopy did not reveal a definite source of bleeding. On day 30, the patient suffered hypovolemic shock as a result of massive blood loss, and we started systemic management, blood transfusion, and venous corticosteroid administration. Simultaneously, acute respiratory distress syndrome caused by aspiration pneumonia, and acute kidney injury occurred, which indicated that the patient required artificial respiration and hemodialysis. Hemorrhage was relieved temporarily, but a large amount of bloody stool reappeared on day 50, making it impossible to manage his condition by conservative treatment. Although we considered performing abdominal surgery, his general condition was deemed too severe for this approach. Therefore, abdominal angiography was performed with sufficient informed consent. Because the extravasation of contrast agent was observed in the jejunum, we performed transcatheter arterial embolization. Consequently, blood loss decreased, but gastrointestinal perforation merged. The patient died on day 56. His relatives did not accept the autopsy.

3 | DISCUSSION

We report a patient who developed leukocytoclastic vasculitis during mycobacterial infection treatment. Leukocytoclastic vasculitis is a term for pathological finding, and several vasculitides show this finding. Among these vasculitides, IgAV was defined as vasculitis with IgA1-dominant immune deposits that invades small blood vessels in the skin and gastrointestinal tract and often cause arthritis. However, IgA deposition cannot be proven in all cases, and some cases are difficult to diagnose. In the present case, there was no opportunity to prove IgA deposition.
Biopsies from the gastric and duodenal mucosa did not contain appropriately sized blood vessels, and the involvement of vasculitis could not be pointed out. Therefore, we made the diagnosis of IgAV from clinical symptoms (ie, palpable purpura and abdominal pain) on the basis of the conventional criteria for Henoch-Schönlein purpura proposed by the American College of Rheumatology (ACR) and the European League Against Rheumatism.
Reference	Age (year)	Sex	Type of tuberculosis	Renal symptoms	Arthralgia/arthritis	Gastrointestinal symptoms	LCV	IgA deposit^a	Treatment	Outcome
Dalgleish and Ansell	44	M	Pulmonary tuberculosis	+	−	+	NR	NR	Supportive therapy	Survive
	31	F	Pulmonary tuberculosis	+	−	+	NR	NR	Supportive therapy	Death
	47	M	Pulmonary tuberculosis	−	+	−	NR	NR	Supportive therapy	Survive
Washio et al	21	M	Tuberculous pleurisy	+	−	−	NR	+	Tuberculosis treatment	Survive
Sais et al	61	F	Tuberculous lymphadenitis	−	−	−	+	+	Tuberculosis treatment, Colchicine	Survive
Lee et al	15	F	Pulmonary tuberculosis	−	+	−	+	NR	Tuberculosis treatment	Survive
	13	F	Positive for blood mononuclear cell PCR	−	−	+	+	NR	Tuberculosis treatment	Survive
Minguez et al	36	M	Pulmonary tuberculosis, Tuberculous pleurisy	−	+	−	+	NR	Tuberculosis treatment, NSAIDs	Survive
Islek et al	8	F	Pulmonary tuberculosis	−	−	+	NR	NR	Tuberculosis treatment	Survive
Kim et al	49	M	Tuberculous lymphadenitis	−	+	−	+	NR	Tuberculosis treatment	Survive
Isebe et al	54	M	Pulmonary tuberculosis	+	−	−	+	+	Tuberculosis treatment, Systemic corticosteroid	Survive
Carvalho et al	50	M	Pulmonary tuberculosis	−	+	−	+	NR	NSAIDs, antihistamines	Survive
Bueno Filho et al	45	F	Tuberculous lymphadenitis	+	−	−	+	+	Tuberculosis treatment	Survive
Meziane et al	19	M	Pulmonary tuberculosis, Tuberculous pleurisy, Anal tuberculosis	−	+	+	+	−	Tuberculosis treatment	Survive

Abbreviations: F, female; LCV, leukocytoclastic vasculitis; M, male; NR, not reported.
^aIgA deposition in the vessels of skin or kidney.
Reference	Age (year)	Sex	Type of tuberculosis	Antituberculosis drugs	Interval\(^a\) (days)	Renal symptoms	Arthralgia/arthritis	Gastrointestinal symptoms	LCV	IgA deposit\(^b\)	Treatment	Outcome
McLachlan	34	M	Tuberculous pericarditis,	SM, INH	20	+	+	+	NR	NR	Systemic corticosteroid, ACTH	Survive
	21	M	Pulmonary tuberculosis	SM, INH	>400	+	+	+	NR	NR	Withdrawal of antituberculosis drugs, Systemic corticosteroid	Survive
Chan et al	64	M	Pulmonary tuberculosis,	INH, RFP, PZA, EB	150	+	−	−	+	+	Withdrawal of antituberculosis drugs	Survive
	41	M	Pulmonary tuberculosis	INH, RFP, PZA, EB	120	+	−	−	+	+	Withdrawal of antituberculosis drugs	Death
Mishima et al	34	M	Pulmonary tuberculosis,	INH, RFP, SM	150	−	+	−	NR	NR	Systemic corticosteroid	Survive
Han et al	41	M	Disseminated tuberculosis	Unknown	15	+	−	−	+	+	Tuberculosis treatment	Survive
Kitamura et al	38	M	Pulmonary tuberculosis	INH, RFP, PZA, EB	90	+	+	+	+	+	Systemic corticosteroid	Survive
Chanprapaph et al	62	M	Pulmonary tuberculosis	INH, RFP, EB	14	−	−	−	+	+	Withdrawal of antituberculosis drugs, Topical corticosteroid, Antihistamines	Survive
Bhatia et al	14	M	Disseminated tuberculosis	INH, RFP, PZA, EB	42	−	−	−	+	−	Withdrawal of antituberculosis drugs, Systemic corticosteroid	Survive
AVCU	12	F	Pulmonary tuberculosis	INH, RFP, PZA, EB	29	−	−	−	+	NR	Withdrawal of antituberculosis drugs, Systemic corticosteroid, Antihistamines	Survive
Gargouri et al	29	M	Pulmonary tuberculosis	INH, RFP, PZA, EB	3	−	+	−	+	+	Withdrawal of antituberculosis drugs	Survive
Shim and Jung	72	M	Pulmonary tuberculosis	INH, RFP, EB	14	−	−	+	+	−	Withdrawal of antituberculosis drugs, Systemic corticosteroid	Survive
This case	71	M	Tuberculous lymphadenitis	INH, RFP, PZA, EB	19	+	−	+	+	NR	Systemic corticosteroid	Death

Abbreviations: EB, ethambutol; F, female; INH, isoniazid; LCV, leukocytoclastic vasculitis; M, male; NR, not reported; PZA, pyrazinamide; RFP, rifampicin; SM, streptomycin.

\(^a\)Interval between the start of tuberculosis treatment and onset of symptoms of IgA vasculitis.

\(^b\)IgA deposition in the vessels of skin or kidney.
Gastrointestinal symptoms of IgAV include abdominal pain, nausea, vomiting, and occult or overt intestinal bleeding.1-3 The small intestine is the most frequently involved site in the gastrointestinal tract. The descending part of the duodenum is characteristically involved more often than the bulb. Endoscopic findings exhibit various forms such as diffuse mucosal redness, petechiae, hemorrhagic erosions, and ulcers.30 Although symptomatic treatment alone often improves symptoms of IgAV, corticosteroids are useful in cases with severe abdominal symptoms. Corticosteroids should be considered early in cases with severe abdominal symptoms, because early corticosteroid therapy has been reported to reduce the need for abdominal surgery.31 We delayed the use of corticosteroids for fear of worsening the course of tuberculosis, but this was not necessary because corticosteroids have also been reported to improve the prognosis of tuberculosis.32 In addition, we could have used higher doses of corticosteroids because rifampicin has been reported to reduce the effectiveness of corticosteroids.33 On the other hand, deaths caused by infections associated with the use of glucocorticoids have been reported in older adults with IgAV, and it is thought that their use requires careful attention.34

In summary, there are only a few reports of IgAV complicated with tuberculosis, and the case we have presented marks the first fatal case attributed to gastrointestinal tract lesions. If IgAV caused by antituberculosis drugs is suspected, discontinuation of tuberculosis treatment is usually considered, but in cases marked by severe abdominal pain or gastrointestinal bleeding, use of corticosteroids should be considered. There is no need to withhold the use of corticosteroids because of the coexistence of tuberculosis. On the contrary, patients taking rifampicin may usually need more steroids. Careful attention should be paid when administering steroids to elderly patients with IgAV, as deaths from infections have been reported.

ACKNOWLEDGMENTS
The authors would like to thank Enago (www.enago.jp) for the English language review.

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest regarding the publication of this article.

AUTHOR CONTRIBUTIONS
NY: wrote the manuscript. ST, SK, AO, MK, TA, TM, JY and AM: revised the manuscript. SF: supervised the final draft.

ORCID
Norihito Yamauchi ID https://orcid.org/0000-0002-7186-8611

REFERENCES
1. Audemard-Verger A, Pillebout E, Guillevin L, Thervet E, Terrier B. IgA vasculitis (Henoch–Schönlein purpura) in adults: Diagnostic and therapeutic aspects. Autoimmun Rev. 2015;14(7):579-585.
2. Hetland L, Susrud K, Lindahl K, Bygum A. Henoch-Schönlein Purpura: a literature review. Acta Derm-venereol. 2017;97(10):1160-1166.
3. Ebert E. Gastrointestinal manifestations of Henoch-Schönlein Purpura. *Digest Dis Sci.* 2008;53(8):2011-2019.

4. Rigante D, Castellazzi L, Bosco A, Esposito S. Is there a crossroad between infections, genetics, and Henoch-Schönlein purpura? *Autoimmun Rev.* 2013;12(10):1016-1021.

5. Jennette JC, Falk RJ, Bacon PA, et al. 2012 revised international Chapel Hill consensus conference nomenclature of Vasculitides. *Arthritis Rheum.* 2013;65(1):1-11.

6. Mills J, Michel B, Bloch D, et al. The American College of Rheumatology 1990 criteria for the classification of Henoch-Schönlein purpura. *Arthritis Rheum.* 1990;33(8):1114-1121.

7. Ozen S, Pistorio A, Iusan S, et al. EULAR/PRINTO/PRES classification criteria for Henoch-Schönlein purpura, childhood polyarteritis nodosa, childhood Wegener granulomatosis and childhood Takayasu arteritis. *Ankara* 2008. Part II: final classification criteria. *Ann Rheum Dis.* 2010; 69(5): 798-806.

8. Hočevar A, Rotar Z, Jurčič V, et al. IgA vasculitis in adults: the performance of the EULAR/PRINTO/PRES classification criteria in adults. *Arthritis Res Ther.* 2015;18(1):38.

9. Chan CH, Chong YW, Sun AJ, Hoheisel GB. Cutaneous vasculitis associated with tuberculosis and its treatment. *Tubercle* 1990;71(4):297-300.

10. Dalgleish A. Anaphylactoid purpura in pulmonary tuberculosis. *BMJ.* 1950;1(467):225.

11. McLachlan RM. Tuberculosis and the Schönlein-Henoch syndrome; report of two cases. *Tubercle.* 1958;39(1):35-37.

12. Washio M, Nanishi F, Onoyama K, Fujii K, Ohchi N, Fujishima M. Recurrence of Henoch Schonlein purpura nephritis associated with tuberculous pleuritis. *Nihon Jinzo Gakkai Shi.* 1988;30(9):1087-1089.

13. Mishima Y, Takeuchi M, Kamisaka K, et al. Henoch-Schönlein purpura associated with pulmonary tuberculosis. (in Japanese). *Kekkaku.* 1994;69(1):21-25.

14. Han BG, Choi SO, Shin SJ, Kim HY, Jung SH, Lee KH. A case of Henoch-Schönlein purpura in disseminated tuberculosis. *Korean J Intern Med.* 1995;10(1):54-59.

15. Sais G, Vidallkr A, Jugla A, Peyri J. Tuberculous lymphadenitis presenting with cutaneous leukocytoclastic vasculitis. *Clin Exp Dermatol.* 1996;21(1):65-66.

16. Lee AV, Jang JH, Lee KH. Two cases of leukocytoclastic vasculitis with tuberculosis. *Clin Exp Dermatol.* 1998;23(5):225-226.

17. Mínguez P, Burón D-P, Puiche P. Pulmonary tuberculosis presenting with cutaneous leukocytoclastic vasculitis. *Infection.* 2000;28(1):55-57.

18. Islék I, Muslu A, Totan M, Gok F, Sanic A. Henoch-Schönlein purpura and pulmonary tuberculosis. *Pediatri Int.* 2002;44(5):545-546.

19. Kim HM, Park Y-BB, Maeng HY, Lee S-KK. Cutaneous leukocytoclastic vasculitis with cervical lymphadenopathy: a case report and literature review. *Rheumatol Int.* 2006;26(12):1154-1157.

20. Kitamura H, Shimizu K, Takeda H, Tai H, Ito Y, Fukunaga M. A case of henoch-schönlein purpura nephritis in pulmonary tuberculosis. *Am J Med Sci.* 2007;333(2):117-121.

21. Isobe Z, Suga T, Aoki Y, et al. A case of anaphylactoid purpura associated with nephrosis followed by pulmonary tuberculosis. (in Japanese). *Nihon Kokyuki Gakkai Zasshi.* 2008;46(8):645-649.

22. Carvalho M, Dominoni RL, Senchenchen D, Fernandes AF, Burigo IP, Doubrawa E. Cutaneous leukocytoclastic vasculitis accompanied by pulmonary tuberculosis. *J Bras Pneumol.* 2008;34(9):745-748.

23. Bueno Filho R, Cordeiro AP, Almeida FT, Shaletich C, Costa RS, Roselino AM. Rare association of cutaneous vasculitis, IgA nephropathy and antiphospholipid antibody syndrome with tuberculous lymphadenitis. *Clinics.* 2012;67(12):1497-1500.

24. Chanprapaph K, Roongpisuthipong W, Thadanikon P. Annullar leukocytoclastic vasculitis associated with anti-tuberculosis medications: a case report. *J Med Case Rep.* 2013;7:34.

25. Bhatia V, Sibal A, Rajgarhia S. Anti-tuberculosis therapy-associated cutaneous leukocytoclastic vasculitis. *J Trop Pediatri.* 2013;59(6):507-508.

26. Meziane M, Amraoui N, Taoufik H, Mernissi FZ. Cutaneous leukocytoclastic vasculitis revealing multifocal tuberculosis. *Int J Mycobacteriol.* 2013;2(4):230-232.

27. Avcu G, Sensoy G, Çeliksoy MH, et al. Cutaneous leukocytoclastic vasculitis associated with anti-tuberculosis drugs. *Pediatri Int.* 2015;57(1):155-157.

28. Gargouri I, Kacem A, Ben Salem H, et al. Adult Henoch-Schönlein purpura and pulmonary tuberculosis. *Tunis Med.* 2017;95(4):313-314.

29. Shim S, Jung CY. Cutaneous leukocytoclastic vasculitis with gastrointestinal involvement after anti-Tuberculosis treatment. *Tuberc Respir Dis (Seoul).* 2017;80(2):210-211.

30. Esaki M, Matsumoto T, Nakamura S, et al. Gl involvement in Henoch-Schönlein purpura. *Gastrointest Endosc.* 2002;56(6):920-923.

31. Weiss PF, Klink AJ, Localio R, et al. Corticosteroids may improve clinical outcomes during hospitalization for Henoch-Schönlein purpura. *Pediatrics.* 2010;126(4):674-681.

32. Critchley J, Young F, Orton L, Garner P. Corticosteroids for prevention of mortality in people with tuberculosis: a systematic review and meta-analysis. *Lancet Infect Dis.* 2013;13(3):223-237.

33. McAllister T, Al-Habet R. Rifampicin reduces effectiveness and bioavailability of prednisolone. *Br Medical J Clin Res Ed.* 1983;286(6369):923-925.

34. Ueda H, Miyazaki Y, Tsuboi N, et al. Clinical and pathological characteristics of elderly Japanese patients with IgA vasculitis with nephritis: a case series. *Intern Med.* 2019;58(1):31-38.

How to cite this article: Yamauchi N, Tanda S. Kashiwagi S, et al. Fatal gastrointestinal bleeding due to IgA vasculitis complicated with tuberculous lymphadenitis: A fatal gastrointestinal bleeding case report and literature review. *Clin Case Rep. 2020;8:1741–1747.* https://doi.org/10.1002/ ccr3.2938