Search for New Physics in Lepton + Photon + X Events with 305 pb$^{-1}$ of pp Collisions at $\sqrt{s} = 1.96$ TeV

A. Abulencia, D. Acosta, J. Adelman, T. Affolder, T. Akimoto, M.G. Albrow, D. Ambrose, S. Amerio, D. Amidei, A. Anastassov, K. Anikeev, A. Annoy, J. Antos, M. Aoki, G. Apollinari, J.F. Arguin, T. Arisawa, A. Artikov, W. Ashmanns, A. Attal, F. Azfar, P. Azzi-Bacchetta, P. Azzurri, N. Bacchetta, H. Bachacou, W. Badgett, A. Barbaro-Galtieri, V.E. Barnes, B.A. Barnett, S. Baroian, V. Bartsch, G. Bauer, F. Bedeschi, S. Behari, S. Belforte, G. Bellettini, J. Bellinger, A. Belloni, E. Ben Haim, D. Benjamim, A. Beretvas, J. Beringer, T. Berry, A. Bhatti, M. Binkley, D. Bisello, R. E. Blair, C. Blocker, B. Blumenfeld, A. Bocci, A. Bodek, V. Boisvert, G. Bolla, A. Bolshov, D. Bortoletto, J. Boudreau, A. Boveia, B. Braun, C. Bronsberg, E. Brubaker, J. Budagov, H.S. Budd, S. Budd, K. Burkett, G. Busetto, P. Bussey, B. K. Byrum, S. Cabrera, M. Campanelli, M. Campbell, F. Canelli, A. Canepa, D. Carlsmit, R. Carosi, S. Cannon, M. Casarsa, A. Castro, P. Castaniti, D. Cauz, M. Cavalli-Sforza, A. Cerri, L. Cerrito, S.H. Chang, J. Chapman, Y.C. Chen, M. Chertok, G. Chiarelli, G. Chalidache, F. Chlebana, I. Cho, K. Cho, D. Chokheli, J.P. Chou, P.H. Chu, S.H. Chung, W.H. Chung, Y.S. Chung, M. Cilijak, C.I. Ciobanu, M.A. Ciocci, A. Clark, D. Clark, M. Coca, G. Compostella, M.E. Convery, J. Conway, B. Cooper, K. Copic, M. Cordelli, G. Cortiana, F. Cresciolo, A. Cruz, C. Cuenca Almenar, J. Cueva, R. Culbertson, D. Cyr, S. DaRienzo, S. D’Auria, M. D’Onofrio, D. Dagenhart, P. de Barbaro, S. De Cecco, P. Deissler, G. De Lendecker, M. Dell’Orso, F. Delli Paoli, S. Demers, L. Demortier, J. Deng, M. Deninno, D. De Pedis, P.F. Derwent, C. Dionisi, J.R. Dittmann, P. DiTuro, C. Dörr, S. Donati, M. Doneva, P. Dong, J. Donini, T. Dorigo, S. Dube, K. Ebina, J. Efron, J. Eilers, R. Erbacher, S. Errede, S. Errede, R. Eusebi, H.C. Fang, S. Farrington, I. Fedorko, W.T. Fedorko, R.G. Feld, M. Feindt, J.P. Fernandez, R. Field, G. Flanagan, L.R. Flores-Castillo, A. Foland, S. Forrester, G.W. Foster, M. Franklin, G. J. Freeman, H. Frisch, I. Furic, M. Gallinaro, J. Galyard, J.E. Garcia, M. Garcia Sciveres, A.F. Garfinkel, C. Gay, H. Gerberich, D. Gerdes, S. Giagu, P. Giannetti, A. Gibson, K. Gibson, C. Ginsburg, N. Giokaris, K. Giolo, M. Giordani, P. Giromini, M. Giunta, G. Giurgiu, V. Glagolev, D. Glenzinski, M. Gold, N. Goldschmidt, J. Goldstein, G. Gomez, G. Gomez-Ceballos, M. Goncharov, O. González, I. Gorelov, A.T. Goshaw, Y. Gotra, K. Goulianos, A. Greede, M. Griffiths, S. Grinstein, C. Grosso-Pilcher, R.C. Group, U. Grunder, J. Guimaraes da Costa, Z. Gunay-Unal, C. Haber, S.R. Hahn, K. Hahn, E. Halkiadakis, A. Hamilton, B.Y. Han, J.Y. Han, R. Handler, F. Happacher, K. Hara, M. Hare, S. Harper, R.F. Harr, R.M. Harris, K. Hatakeyama, J. Hauser, C. Hays, A. Heijboer, B. Heinemann, J. Heinrich, M. Herndon, D. Hidas, C.S. Hill, D. Hirschbuehl, A. Hocker, A. Holloway, S. Hou, M. Houlden, S.C. Hsu, B.T. Huffman, R.E. Hughes, J. Huston, J. Incandela, G. INTORROZI, M. Iori, Y. Ishizawa, A. Ivanov, B. Ilyutin, E. James, D. Jiang, B. Jayatilaka, D. Jeans, H. Jensen, E.J. Jeon, S. Jindariani, M. Jones, K.K. Joo, S.Y. Jun, T.R. Junk, T. Kamon, J. Kang, P.E. Karchin, Y. Kato, Y. Kemp, R.R. Keplar, U. Kerzel, V. Khotilovich, B. Kilmister, D.H. Kim, H.S. Kim, J.E. Kim, M.J. Kim, S.B. Kim, S.H. Kim, Y.K. Kim, L. Kirsch, S. Klimenko, K. Klute, B. Knuteson, B.R. Ko, K. Kobayashi, K. Kondo, D.J. Kong, J. Konigsberg, A. Korytov, A.V. Kotwal, A. Kovalev, A. Kraan, J. Kraus, I. Kravchenko, M. Kreps, J. Kroll, N. KrummacK, M. Kruse, V. Krutelov, S. E. Kuhlmann, Y. Kusakabe, S. Kwang, A.T. Laasanen, S. Lai, S. Lami, S. Lambell, M. Lancaster, R.L. Lander, K. Lannon, A. Lath, G. Latino, I. Lazzizzera, T. LeCompte, J. Lee, J. Lee, Y.J. Lee, S.W. Lee, L. Lefevre, N. Leonardo, S. Leone, S. Levy, J.D. Lewis, C. Lin, C.S. Lin, M. Lindgren, E. Lipeles, T.M. Liss, A. Lister, D.O. Litvintsev, T. Liu, N.S. Lockyer, A. Loginov, M. Loretli, P. Loverre, R.S. Lu, D. Luchesi, P. Lujan, P. Lukens, G. Lungu, L. Lyons, J. Lys, R. Lysak, E. Lytken, P. Mack, D. MacQueen, R. Madrak, K. Maeshima, T. Maki, P. Maksimovic, S. Malde, G. Manca, F. Margaroli, R. Marginean, C. Marino, A. Martin, V. Martin, M. Martínez, T. Maruyama, P. Mastrandrea, H. Matsunaga, M.E. Mattson, R. Mazini, P. Mazzanti, K.S. McFarland, P. McIntyre, R. McNulty, A. Mehta, S. Menzemer, A. Menzione, P. Merkel, C. Mesropian, A. Messina, M. von der Mey, T. Mia, N. Miladinovic, J. Miles, R. Miller, J.S. Miller,
We present results of a search for anomalous production of events containing a charged lepton (ℓ, either e or µ) and a photon (γ), both with high transverse momentum, accompanied by additional signatures, X, including missing transverse energy (HT) and additional leptons and photons. We use the same selection criteria as in a previous CDF search, but with a substantially larger data set, 305 pb⁻¹, an pp collision energy of 1.96 TeV, and the CDF II detector. We find 42 ℓγHT events versus an expectation of 37.3 ± 5.4 events. We observe 31 ℓℓγX events versus an expectation of 23.0 ± 2.7 events. We find no events similar to the Run I eeγγHT event.

PACS numbers: 13.85.Rm, 12.60.Jv, 13.85.Qk, 14.80.Ly

In 1995 the CDF experiment, studying pp collisions in 86 pb⁻¹ of data at a center-of-mass energy of 1.8 TeV at the Fermilab Tevatron, observed an event consistent with the production of two energetic photons, two energetic electrons, and large missing transverse energy E_T. This signature is predicted to be very rare in the standard model (SM) of particle physics, with the dominant contribution being from the production of four gauge bosons: two W bosons and two photons. The event raised theoretical interest, however, as the ℓℓγγ
signature is expected in some models of physics “beyond the standard model” such as gauge-mediated models of supersymmetry [4] or the production of a pair of excited electrons [3]. The detection of this event led to the development of “signature-based” inclusive searches to cast a wider net for new phenomena: in this case one search for two photons + X (γγ + X) [4], and a second for one lepton + one photon + X (ℓγ+X) [2][5][6], where X can be e, μ, γ, or E_T, plus any number of jets.

Neither Run I search revealed convincing evidence for new physics. However, in the ℓγ + X search, the results were consistent with SM expectations, with “the possible exception of photon-lepton events with large E_T, for which the observed total was 16 events and the SM expectation was 7.6 ± 0.7 events, corresponding in likelihood to a 2.7 sigma effect.” [5]. The Run I paper concluded: “However, an excess of events with 0.7% likelihood (equivalent to 2.7 standard deviations for a Gaussian distribution) in one subsample among the five studied is an interesting result, but it is not a compelling observation of new physics. We look forward to more data in the upcoming run of the Fermilab Tevatron.” [5]. In this Letter we report the results of repeating the ℓγ + X search with the same kinematic selection criteria in a substantially larger data set, 305 ± 18 pb⁻¹, a higher pp collision energy, 1.96 TeV, and the CDF II detector [2].

The CDF II detector is a cylindrically symmetric spectrometer designed to study pp collisions at the Fermilab Tevatron based on the same solenoidal magnet and central calorimeters as the CDF I detector [10] from which it was upgraded. Because the analysis described here is intended to repeat the Run I search as closely as possible, we note especially the differences from the CDF I detector relevant to the detection of leptons, photons, and E_T. The tracking systems used to measure the momenta of charged particles have been replaced with a central inner tracker (COT) with smaller drift cells [11], and an enhanced system of silicon strip detectors [12]. The calorimeters in the regions [13] with pseudorapidity |η| > 1 have been replaced with a more compact scintillator-based design, retaining the projective geometry [14]. The coverage in φ of the CMP and CMX muon systems [15] has been extended; the CMU system is unchanged [2].

A 3-level trigger [2] system selects events with a high transverse momentum (p_T) lepton (p_T > 18 GeV) or photon (E_T > 25 GeV) in the central region, |η| < 1.0. The trigger system selects photon and electron candidates from clusters of energy in the central electromagnetic calorimeter. Electrons are distinguished from photons by requiring a COT track pointing at the cluster. The muon trigger requires a COT track that extrapolates to a track segment (“stub”) in the muon chambers.

Inclusive ℓγ events are selected by requiring a central γ candidate with E_T > 25 GeV and a central e or μ with E_T > 25 GeV originating less than 60 cm along the beam-line from the detector center and passing the “tight” criteria listed below.

The identification of leptons and photons is essentially the same as in the Run I search [2]. A muon candidate passing the “tight” cuts must have: a) a well-measured track in the COT; b) energy deposited in the calorimeter consistent with expectations; c) a muon “stub” in both the CMU and CMP, or in the CMX, consistent with the extrapolated COT track; and d) COT timing consistent with a track from a p̅p collision. An electron candidate passing the “tight” selection must have: a) a high-quality track with p_T > 0.5 E_T, unless E_T > 100 GeV, in which case the p_T threshold is set to 25 GeV; b) a good transverse shower profile that matches the extrapolated track position; c) a lateral sharing of energy in the two calorimeter towers containing the electron shower consistent with that expected; and d) minimal leakage into the hadron calorimeter [10].

Photon candidates are required to have no track with p_T > 1 GeV, and at most one track with p_T < 1 GeV, pointing at the calorimeter cluster; good profiles in both transverse dimensions at shower maximum; and minimal leakage into the hadron calorimeter [10].

To reduce background from photons or leptons from the decays of hadrons produced in jets, both the photon and the lepton in each event are required to be “isolated”. The E_T deposited in the calorimeter towers in a cone in η − φ space [13] of radius R = 0.4 around the photon or lepton position is summed, and the E_T due to the photon or lepton is subtracted. The remaining E_T is required to be less than 2.0 GeV + 0.02 × (E_T − 20 GeV) for a photon, or less than 10% of the E_T for electrons or p_T for muons. In addition, for photons the sum of the p_T of all tracks in the cone must be less than 2.0 GeV + 0.005 × E_T.

Missing transverse energy E_T is calculated from the calorimeter tower energies in the region |η| < 3.6. Corrections are then made to the E_T for non-uniform calorimeter response [17] for jets with uncorrected E_T > 15 GeV and η < 2.0, and for muons with p_T > 20 GeV.

A total of 574 events, 508 inclusive γℓ and 66 inclusive μγ candidates, pass the ℓγ selection criteria. Of the 508 inclusive γℓ events, 397 have the electron and photon within 30° of back-to-back in φ, E_T < 25 GeV, and no additional leptons or photons. These are dominated by Z⁰ → e⁺e⁻ decays in which one of the electrons radiates a high-E_T photon while traversing the material inside the COT active volume, leading to the observation of an electron and a photon approximately back-to-back in φ, with an eγ invariant mass close to the Z⁰ mass.

We use W± and Z⁰ production as control samples to ensure that the efficiencies for high-p_T electrons and muons, as well as for E_T, are well understood. The photon control sample is constructed from events in which one of the electrons radiates a high-E_T γ such that the eγ invariant mass is within 10 GeV of the Z⁰ mass.

The first search we perform is in the ℓγE_T + X
subsample, defined by requiring that an event contain \(\mathcal{E}_T > 25 \) GeV in addition to the \(\gamma \) and “tight” lepton. Of the 574 \(\ell\gamma \) events, 25 \(e\gamma\mathcal{E}_T \) events and 17 \(\mu\gamma\mathcal{E}_T \) events pass the \(\mathcal{E}_T \) requirement. Figure 1 shows the observed distributions in a) the \(\mathcal{E}_T \) of the photon; b) the \(\mathcal{E}_T \) of the lepton; c) \(\mathcal{E}_T \); and d) the transverse mass of the \(\ell\gamma\mathcal{E}_T \) system. The histograms show the expected SM contributions, including estimated backgrounds from misidentified photons and leptons.

A second search, for the \(\ell\ell\gamma + X \) signature, is constructed by requiring another \(e \) or \(\mu \) in addition to the “tight” lepton and the \(\gamma \). The additional muons are required to have \(p_T > 20 \) GeV and to satisfy the same criteria as for “tight” muons but with fewer hits required on the track, or, alternatively, a more stringent cut on track quality but no requirement that there be a matching “stub” in the muon systems. Additional central electrons are required to have \(E_T > 20 \) GeV and to satisfy the tight central electron criteria but with a track requirement of only \(p_T > 10 \) GeV (rather than \(0.5\times E_T \)), and no requirement on a shower maximum measurement or lateral energy sharing between calorimeter towers. Electrons in the end-plug calorimeters (1.2 < |\(\eta \)| < 2.0) are required to have \(E_T > 15 \) GeV, minimal leakage into the hadron calorimeter, a “track” containing at least 3 hits in the silicon tracking system, and a shower transverse shape consistent with that expected, with a centroid close to the extrapolated position of the track.

The \(\ell\gamma \) search criteria select 31 events (19 \(e\gamma\gamma \) and 12 \(\mu\mu\gamma \)) of the 574 \(\ell\gamma \) events. No \(e\mu\gamma \) events are observed. Figure 2 shows the observed distributions in a) the \(\mathcal{E}_T \) of the photon; b) the \(\mathcal{E}_T \) of the leptons; c) the 2-body mass \(M_{\ell\ell\gamma} \) of the dilepton system; and d) the 3-body mass \(m_{\ell\ell\gamma} \).

We do not expect SM events with large \(\mathcal{E}_T \) in the \(\ell\ell\gamma \) sample; the Run I \(ee\gamma\gamma\mathcal{E}_T \) event was of special interest in the context of supersymmetry [4] due to the large value of \(\mathcal{E}_T \) (55 ± 7 GeV). Figure 3 shows the distributions in \(\mathcal{E}_T \) for the \(\mu\mu\gamma \) and \(ee\gamma \) subsamples of the \(\ell\ell\gamma \) sample. No events are observed with \(\mathcal{E}_T > 25 \) GeV.

The dominant SM source of \(\ell\gamma \) events is electroweak \(W \) and \(Z^0\gamma\gamma \) production along with a \(\gamma \) radiated from one of the charged particles involved in the process [10]. The number of such events is estimated using leading-order (LO) event generators [20,21,22]. Initial state radiation is simulated by the PYTHIA shower Monte Carlo (MC) code [22] tuned to reproduce the underlying event. The generated particles are then passed through a full detector simulation, and these events are then reconstructed with the same code used for the data.

The expected contributions from \(W\gamma \) and \(Z^0\gamma\gamma \) production to the \(\ell\gamma\mathcal{E}_T \) and \(\ell\gamma \) searches are given in Table I. A correction for higher-order processes (K-factor) has been applied [22]. In the \(\ell\gamma\mathcal{E}_T \) signature we expect 22.5

![FIG. 1: The distributions for events in the \(\ell\gamma\mathcal{E}_T \) sample (points) in a) the \(\mathcal{E}_T \) of the photon; b) the \(\mathcal{E}_T \) of the lepton; c) the missing transverse energy, \(\mathcal{E}_T \); and d) the transverse mass of the \(\ell\gamma\mathcal{E}_T \) system. The histograms show the expected SM contributions, including estimated backgrounds from misidentified photons and leptons.](image1)

![FIG. 2: The distributions for events in the \(\ell\ell\gamma \) sample (points) in a) the \(\mathcal{E}_T \) of the photon; b) the \(\mathcal{E}_T \) of the leptons (two entries per event); c) the 2-body mass of the dilepton system; and d) the 3-body mass \(m_{\ell\ell\gamma} \). The histograms show the expected SM contributions.](image2)

![FIG. 3: The distributions in missing transverse energy \(\mathcal{E}_T \) observed in the inclusive search for a) \(\mu\mu\gamma \) events and b) \(ee\gamma \) events. The histograms show the expected SM contributions.](image3)
± 2.8 events from $W\gamma$ and 5.7 ± 1.0 from $Z\gamma^{\ast}\gamma$. In the $\ell\ell\gamma$ signature, we expect 20.3 ± 2.4 events from $Z\gamma^{\ast}\gamma^{\ast}\gamma$. The contribution from $W\gamma$ is negligible. The uncertainties on the SM contributions include those from parton distribution functions (5%), factorization scale (2%), and K-factor (3%), a comparison of different MC generators (∼ 5%), and the luminosity (6%).

TABLE I: A comparison of the numbers of events predicted by the SM and the observations for the $\ell\gamma E_T$ and $\ell\ell\gamma$ searches.

SM Source	$\ell\gamma E_T$	$\mu\gamma E_T$	$(e+\mu)\gamma E_T$
$W^{\pm}\gamma$	13.70±1.89	8.84±1.35	22.54±2.80
$Z^{\pm}\gamma^{\ast}+\gamma$	1.16±0.40	4.49±0.64	5.65±1.03
$W^{\pm}\gamma$, $Z^{\pm}\gamma^{\ast}+\gamma\gamma$	0.14±0.02	0.18±0.02	0.32±0.03
$W^{\gamma\gamma}$, $Z^{\pm}\gamma^{\ast}+\gamma\gamma$	0.71±0.18	0.26±0.08	0.97±0.22
W^{\pm}+Jet faking γ	2.8±2.8	1.6±1.6	4.4±4.4
$Z^{\pm}\gamma^{\ast}+e^{\pm}e^{-},e\rightarrow\gamma$	2.45±0.33	-	2.45±0.33
Jets faking $\ell+E_T$	0.7±0.7	0.3±0.3	1.0±0.8
Total	21.7±3.4	15.7±2.2	37.3±5.4
Observed	25	17	42

Multi-Lepton+Photon Events
SM Source
$Z^{\pm}\gamma^{\ast}+\gamma$
$Z^{\pm}\gamma^{\ast}+\gamma\gamma$
$Z^{\pm}\gamma^{\ast}+Jet faking$ γ
$Z^{\pm}\gamma^{\ast}+e^{\pm}e^{-},e\rightarrow\gamma$
Jets faking $\ell+E_T$
Total
Observed

High p_T photons are copiously created from hadron decays in jets initiated by a scattered quark or gluon. In particular, mesons such as the π^0 or η decay to photons which may satisfy the photon selection criteria. The numbers of lepton-plus-misidentified-jet events expected in the $\ell\gamma E_T$ and $\ell\ell\gamma$ samples are determined by measuring the jet E_T spectrum in $\ell\ell\gamma$ and $\ell\ell++$jet samples, respectively, and then multiplying by the probability of a jet being misidentified as a photon, $P_{\gamma}^{jet}(E_T)$, which is measured in data samples triggered on jets. The misidentification rate for $P_{\gamma}^{jet} = (6.5 \pm 3.3) \times 10^{-4}$ for $E_T = 13$ GeV, and $(4.0 \pm 4.0) \times 10^{-4}$ for $E_T = 50$ GeV [19]. The predicted number of events with jets misidentified as photons is 4.4 ± 4.4 for the $\ell\gamma E_T$ signature and 0.5 ± 0.5 for $\ell\ell\gamma$.

The probability that an electron undergoes hard bremsstrahlung and is misidentified as a photon, P_{γ}^{ee}, is measured from the photon control sample. The number of misidentified $e\gamma$ events divided by twice the number of ee events gives $P_{\gamma}^{ee} = (1.7 \pm 0.1)\%$. Applying this misidentification rate to electrons in the inclusive lepton samples, we find 2.5 ± 0.3 and 0.2 ± 0.1 events pass the selection criteria for the $\ell\gamma E_T$ and $\ell\ell\gamma$ searches, respectively.

We have estimated the background due to events with jets misidentified as $\ell\gamma E_T$ or $\ell\ell\gamma$ signatures by studying the total p_T of tracks in a cone in $\eta - \phi$ space of radius $R = 0.4$ around the lepton track. We estimate there are 1.0 ± 0.8 and 1.6 ± 1.2 events in the $\ell\gamma E_T$ and $\ell\ell\gamma$ signatures, respectively.

We have used both MadGraph [20] and Comphep [22] to simulate the triboson channels $W\gamma\gamma$ and $Z\gamma\gamma$. The expected contributions are small, 0.32 ± 0.03 and 0.36 ± 0.04 events in the $\ell\gamma E_T$ and $\ell\ell\gamma$ signatures, respectively.

Muon backgrounds from hadrons either decaying in-flight or penetrating the iron before the muon chambers, and from the decay of bottom and charm quarks, are found to be negligible.

The predicted and observed totals for both the $\ell\gamma E_T$ and $\ell\ell\gamma$ searches are shown in Table I. We observe 42 $\ell\gamma E_T$ events, versus the expectation of 37.3 ± 5.4 events. In the $\ell\ell\gamma$ channel, we observe 31 events, versus an expectation of 23.0 ± 2.7 events. There is no significant excess in either signature. The predicted and observed kinematic distributions are compared in Figure [1] for the $\ell\gamma E_T$ signature, and Figures [2] and [3] for the $\ell\ell\gamma$ search.

In conclusion, we have repeated the search for inclusive lepton + photon production with the same kinematic requirements as the Run I search, but with a significantly larger data sample and a higher collision energy. We find that the numbers of events in the $\ell\gamma E_T$ and $\ell\ell\gamma$ subsamples of the $\ell\gamma$+X sample agree with SM predictions. We observe no $\ell\ell\gamma$ events with anomalously large E_T or with multiple photons and so find no events like the $ee\gamma\gamma E_T$ event of Run I.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. Uli Baur, Alexander Belyaev, Edward Boos, Lev Dudko, Tim Stelzer, and Steve Mrenna were extraordinarily helpful with the SM predictions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Particle Physics and Astronomy Research Council and the Royal Society, UK; the Russian Foundation for Basic Research; the Comisión Interministerial de Ciencia y Tecnología, Spain; in part by the European Community’s Human Potential Programme under contract HPRN-CT-2002-00292; and the Academy of Finland.
Transverse momentum and energy are defined as $p_T = p \sin \theta$ and $E_T = E \sin \theta$, respectively. Missing E_T (\vec{E}_T) is defined by $\vec{E}_T = -\sum_i E^i n_i$, where i is the calorimeter tower number for $|\eta| < 3.6$ (see Ref. [13]), and n_i is a unit vector perpendicular to the beam axis and pointing at the i^{th} tower. We correct \vec{E}_T for jets and muons. We define the magnitude $E_T = |\vec{E}_T|$. We use the convention that “momentum” refers to pc and “mass” to mc^2.

The CDF coordinate system of r, φ, and z is cylindrical, with the z-axis along the proton beam. The pseudorapidity is $\eta = -\ln(\tan(\theta/2))$.

The CMU system consists of gas proportional chambers in the region $|\eta| < 0.6$; the CMP system consists of chambers after an additional meter of steel, also for $|\eta| < 0.6$. The CMX chambers cover 0.6 < $|\eta|$ < 1.0.

The fraction of electromagnetic energy allowed to leak into the hadron compartment E_{had}/E_{em} must be less than 0.05, and the CDF uses central energies, less than 0.05 for electrons in the end-plug calorimeters, less than max[0.125, 0.055+0.00045 × E_{em} (GeV)] for photons.

A. Bhatti et al., submitted to Nucl. Instrum. Methods, Oct. 2005; hep-ex/0510047

D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 051104 (2005); hep-ex/0501023

D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 94, 041803 (2005).

T. Stelzer and W. F. Long, Comput. Phys. Commun. 81, 357 (1994); F. Maltoni and T. Stelzer, JHEP 302, 27 (2003).

U. Baur, T. Han, and J. Ohnemus, Phys. Rev. D 48, 5140 (1993); J. Ohnemus, Phys. Rev. D 47, 940 (1993).

E. Boos et al. (The COMPHEP Collaboration), Nucl. Instrum. Methods A 534, 250, (2004); hep-ph/0403113

T. Sjostrand, Comput. Phys. Commun. 82 (1994) 74; S. Mrenna, Comput. Phys. Commun. 101 (1997) 232.

U. Baur, T. Han and J. Ohnemus, Phys. Rev. D 48, 5140 (1993); U. Baur, T. Han and J. Ohnemus, Phys. Rev. D 57, 2823 (1998); hep-ph/9710416

Both the W_γ and Z_γ K-factors are fixed at 1.36 for generated $\ell^+\ell^-$ masses below 76 GeV and for generated $\ell^+\ell^-$ masses below 86 GeV. Above the poles the K-factors grow with E_{ℓ^+} to be 1.62 and 1.53 at $E_{\ell^+} = 100$ GeV for W_γ and Z_γ, respectively.