A High-Coverage SARS-CoV-2 Genome Sequence Acquired by Target Capture Sequencing

Shaoqing Wen12†; Chang Sun2†; Huanying Zheng3†; Lingxiang Wang2; Huan Zhang3; Lirong Zou3; Zhe Liu3; Pan-xin Du3; Lijun Liang3; Xiaofang Peng3; Wei Zhang3; Jie Wu3; Bo Lei2; Changwen Ke3; Fang Chen5; Xiao Zhang14†;
1. Guangzhou Regeneration Medicine and Health Guangdong Laboratory, Guangzhou 510700, China;
2. Institute of Archaeological Science and School of Life Sciences, Fudan University, Shanghai 200433, China;
3. Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China;
4. CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou, 511436, China;
5. MGI Shenzhen, BGI-Shenzhen, Shenzhen 518083, China

† These authors contributed equally to this work.

* E-mail: wenshaoqing@fudan.edu.cn; zhang_xiao@gibh.ac.cn

Ongoing outbreak of the novel coronavirus (SARS-CoV-2) disease has become a global health concern. Since a patient with pneumonia of unknown etiology were firstly reported in the city of Wuhan on 30th of Dec, 2019., Subsequently, epidemiological, clinical, radiological, laboratory and genomic findings of this virus gradually revealed by the Chinese and 00 experts around the globe [1]. At current stage, however, two topics emerged as things that needed to be addressed. Firstly, according to latest diagnostic criteria, reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assays are recommended as the standard diagnosis of SARS-CoV-2-infection. Despite, present studies found that some patients had typical imaging findings, including ground-glass opacity, but negative RT-PCR testing [2]. The false-negative RT-PCR results may cause by many reasons, especially insufficient detection sensitivity in a low viral load scenario [2]. Secondly, although, by using metagenome sequencing, the complete genome sequence, taxonomic position, potential intermediate hosts, and evolutionary history of SARS-CoV-2 have been already reported [3-6], it is more important to monitor the virus mutation and its influence on disease severity and progression. Necessitating the full-length of SARS-CoV-2 genome, metagenome sequencing technology is the latest and most comprehensive approach but still costly. Moreover, in metagenome sequencing library, there are human (host) nucleic acid contamination cannot be eliminated. Inevitably, the carrier RNA introduced by commercial RNA extraction kits presented as contamination in library preparation stage, which indeed impairs the amount of viral sequence readout.

In the context, we developed a set of SARS-CoV-2 enrichment probes, by utilizing hybridization capture technology, to increase the sensitivity of sequence-based virus detection and characterization. This method was first used to enrich sequence targets from the human genome [7]
and then from vertebrate virome [8]. The enrichment probe set contains 502 ssDNA biotin-labelled probes at 2X tiling designed based on all available SARS-CoV-2 viral sequences, downloaded from the GISAID (Global Initiative on Sharing All Influenza Data; https://www.gisaid.org/) on 2/1/2020, and it can be used to enrich for SARS-CoV-2 sequences without prior knowledge of type or subtype. Additionally, the probes for human housekeeping genes (GAPDH, PCBP1, EIF3L, POLR2A, EIF3A, TGOLN2, TCEB3, CDK12, and BTBD7) were spiked in the probe set as internal controls for studying viral expression.

The SARS-CoV-2 virus isolation and culturing was reported previously, which followed the CDC guidelines and good practice in laboratory health and safety requirement. Experiments were performed with approvals of W96-027B framework. Therefore, a SARS-CoV-2 virus strain (20SF014) was cultured in Vero-E6 cell, and RNA preparation performed using the QIAamp Viral RNA Mini Kit (Qiagen, Hilden, Germany). The cell culture media was collected and tested for viral RNA using the RT-PCR amplicons of partial ORF1ab with Ct value 36, and N gene regions with Ct value 33, respectively.

We divided the total RNA sample into six samples (with following slightly different experimental conditions) (Table 1). Control is RNase free water. Six samples were reverse-transcribed into cDNA, followed by the second-strand synthesis. Utilization of the synthetic double-stranded DNA, six DNA libraries were constructed through DNA fragmentation, end-repair, adaptor-igation, and PCR amplification. Subsequently, library hybridization capture was performed by using the SARS-CoV-2 enrichment probe set. The enriched libraries were qualified with Agilent 2100 Bioanalyzer using Agilent High Sensitivity DNA Kit and equivalent double-stranded DNA libraries were pooled and transformed into a single-stranded circular DNA library through DNA-denaturation and circularisation. DNA nanoballs were generated from single-stranded circular DNA by rolling circle amplification, then qualified with Qubit 2.0 and loaded onto the flow cell and sequenced with PE100 on the MGI-2000 platform (MGI, Shenzhen, China). Detailed experimental protocol in the Chinese and English version is presented in the Supplementary Data 1.

The cutadapt (version 2.7) and trimmonmatic (version 0.38) software was used for clipping adaptors and trimming low-quality reads. After removing adaptor, low-quality, and low-complexity reads, high-quality reads were first filtered against the human reference genome (hg 38) using Burrows-Wheeler Alignment (MEM). The remaining non-human reads were then realigned to the SARS-COV-2 reference (MN908947.3, https://www.ncbi.nlm.nih.gov/nuccore/MN908947) using bowtie2 (version 2.3.4.1) and filtered reads according to mapping quality (-q 30) by samtools (version 1.10). The variant was called by samtools and varscan (version 2.3.9, parameter: --strand-filter 0 --min-avg-qual 30 --min-reads2 15 --min-coverage 15). Finally, the sample consensus sequence was created by samtools and bcftools (version 1.9) according to the variants called above.

The results illustrated in Table 6, for library 1-6, 4,797,881-199,421,414 unique reads were obtained. Among them, 4,412,665-192,545,532 reads were mapped to SARS-CoV-2 reference sequence (MN908947.3). The fraction of SARS-CoV-2 endogenous DNA from these enrichment libraries were found to be between 90.07% and 96.58%, demonstrating that the numbers of mapped reads to SARS-CoV-2 reference sequence significantly increased, compared to metagenomic sequencing technology, following SARS-CoV-2 probe enrichment. The library complexity is evaluated by Cluster Factor, which is defined by “the number of raw reads divided
by the number of reads after removing duplicates”. In our six enrichment libraries, the Cluster Factor is about 1.1. The closer to 1, the better the library construction is. Notably, when adding the PCR cycle numbers of library amplification from 15 to 17, the library quality gets better. Collectively, merging the data from six enrichment libraries, a total of 371,981,580 reads were obtained, among which 358,112,573 reads were mapped to SARS-CoV-2 reference. Using these unique SARS-CoV-2 fragments, we reconstructed six SARS-CoV-2 genomes (mean depth being 186,869× and minimum coverage 13,816×). Only the merged sequence (coverage 1,121,217×) was used for further analysis. There are five variants called from merged data, including one homozygous variant at SNP (T23569C), and four heterozygotic variants (three SNPs: C4534T, A5522T, C23525T; and one deletion: CT16779C). The phenomenon of heterozygosity had also been reported in previous studies [6,10], but we propose that this heterogeneity could be caused by the mutations that occur during viral cultivation or the infection by multi-strain of coronavirus.

We collected the variations information (gff3 files) of high-quality samples from The Genome Variation Map (GVM) (ftp://download.big.ac.cn/GVM/Coronavirus/gff3/) (on 2020/03/22). According to the quality criteria for 2019-nCoV delivered by National Genomics Data Center (2019nCoVR, https://bigd.big.ac.cn/ncov) (Zhao, 2020), we enrolled the 597 samples with 45 SNVs at first and second levels (with MAF>0.01 and no dense variation regions, see https://bigd.big.ac.cn/ncov/variation/annotation) in the following analysis. The information of raw variations in gff3 file is recoded into binary format as an input file for Network analysis (Network version 5, www.fluxus-engineering.com) (Supplementary Table S1). Five clades could be identified and labelled, corresponding to the Full genome tree delivered by GISAID (see Figure 1). Except for three main larger clades [named: S:ORF8-L84S (defined by SNP: 28144), G: S-D614G (SNP: 23403), V:NS3-G251V(SNP: 26144)], we defined a new clade I: orf1ab-V378I (segregating at position 1397). The haplotype of the reference genome (MN908947) is in the centre clade (yellow circle), and our sample studied here is also in this clade with only one homozygous variant at position 23569 (T→C).

In Figure 2, we found two peaks in genome sequencing depths, one covering the 5′UTR region (MN908947.3:1-256) and another covering the N region (MN908947.3:28274-29533), which may be associated with the high expression in these two regions during replication of coronavirus [11-12]. For high sequencing depths in 5′UTR region, a reasonable explanation is that 5′UTRs before ORF1a is necessary for the discontinuous synthesis of sub genomic RNAs in the beta coronaviruses and contains the cis-acting sequences necessary for viral replication [11]. Clinically, N gene RT-PCR assay was found to be more sensitive than other genes in SARS-CoV-2 detection, which is consistent with our finding of high sequencing depths in N region. This can be explained as the structural composition of coronavirus, also the difference in expression regulation in the host cells regarding sub genomic mRNA [12-14]

In the current study, we, based on the available SARS-CoV-2 virus sequences, designed a set of SARS-CoV-2 enrichment probes. We made six enrichment libraries from one cultured SARS-CoV-2 virus strain to test the enrichment effects and sequenced them on MGI-2000 platform. Overall, the SARS-CoV-2 enrichment probe set-up described in this study showed significance in SARS-CoV-2-specific enrichment. This high specific probe rate with RNA carrier-free approach can function as a useful tool for the SARS-CoV-2 research community, especially in detecting SARS-CoV-2 RNA in low amounts and monitoring the virus evolution.
continuously.

ACKNOWLEDGEMENTS
We sincerely thank those who are on the front lines battling SARS-CoV-2 virus. We also thank the technical support provided by Guangzhou Koalson Bio-Technique Co. Ltd. Groups interested in testing this protocol can request guidance by emailing wenhsaoqing@fudan.edu.cn, and a limited number of our SARS-CoV-2 enrichment probe set are available on request.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

REFERENCES
1. Chan JF, Yuan S, Kok KH et al (2020) A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 395(10223):514-523.
2. Ai T, Yang Z, Hou H et al (2020) Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology. 26:200642.
3. Wu F, Zhao S, Yu B et al (2020) A new coronavirus associated with human respiratory disease in China. Nature. 579(7798):265-269.
4. Zhou P, Yang XL, Wang XG et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 579(7798):270-273.
5. Lu R, Zhao X, Li J et al (2020) Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 395(10224):565-574.
6. Tang XL, Wu CC, Li X et al (2020) On the origin and continuing evolution of SARS-CoV-2. National Science Review. nwaa036, https://doi.org/10.1093/nsr/nwaa036.
7. Tewhey R, Nakano M, Wang X et al (2009) Enrichment of sequencing targets from the human genome by solution hybridization. Genome Biol. 10(10):R116.
8. Briese T, Kapoor A, Mishra N et al (2015) Virome Capture Sequencing Enables Sensitive Viral Diagnosis and Comprehensive Virome Analysis. mBio. 6(5):e01491-15.
9. Zhang H, Zheng HY, Zou LR et al (2020) First Isolation and Identification of SARS-CoV-2 in Guangdong Province, China. Chinese Journal of Virology. https://doi.org/10.13242/j.cnki.bingduxuebao.003657.
10. Chen L, Liu W, Zhang Q et al (2020) RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak. Emerg Microbes Infect. 9(1):313-319.
11. Yang D, Leibowitz JL. (2015) The structure and functions of coronavirus genomic 3' and 5' ends. Virus Res. 206:120-33.
12. Chu DKW, Pan Y, Cheng SMS et al (2020) Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia. Clin Chem. pii: hvaa029.
13. Zijie Shen, Yan Xiao, Lu Kang et al (2020) Genomic diversity of SARS-CoV-2 in Coronavirus Disease 2019 patients. Clinical Infectious Diseases, ciaa203.
14. Changtai Wang, Zhongping Liu, Zixiang Chen et al (2020) The establishment of reference
sequence for SARS-CoV-2 and variation analysis. J Med Virol, 2020;1-8.

Electronic supplementary materials

Doc S1 A protocol for in-solution SARS-CoV-2 genome capture enrichment (PDF)

Table S1 The information of 597 high-quality SARS-CoV-2 sequences (especially 45 selected SNVs and their weight) for Network analysis in this study (XLS)
Table 1 Summary statistics for six enrichment libraries from one cultured SARS-CoV-2 virus strain (20SF014)

Sample ID	Volume (ul)	PCR Circles of Library Amplification	Total Reads raw	Total Reads rmdup	Map_2019COV_Reads	nCov_Endo_Ratio	Cluster_Factor	Mean_depth
20200217A_1	9	15	5841044	5036902	4813734	0.95569	1.15965	15070.33
20200217A_2	9	15	5738560	4797881	4412665	0.91971	1.19606	13816.72
20200217A_3	7	15	6125219	5150484	4638866	0.90067	1.18925	14526.37
20200217A_4	7	15	8837914	7432367	6694515	0.90072	1.18911	20966.49
20200217A_5	6	17	170189070	150142532	145007261	0.96580	1.13352	454007.04
20200217A_6	7	17	224071046	199421414	192545532	0.96552	1.12361	602829.61
20200217A	-	-	420802853	371981580	358112573	0.93469	1.1652	1121216.55
Figure 1. Five clades revealed by network analysis based on 597 SARS-CoV-2 genomes.
Figure 2. Sequencing depths corresponding to SARS-CoV-2 genome reference (MN908947.3)