Guidelines

Revision of expert panel’s guidelines on postoperative pain management

Frédéric Aubrun a,*, Karine Nouette-Gaulain b, Dominique Fletcher c, Anissa Belbachir d, Hélène Beloeil e, Michel Carles f, Philippe Cuvillon g, Christophe Dadure h, Gilles Lebuffe i, Emmanuel Marret j, Valeria Martinez k, Michel Olivier l, Nada Sabourdin m, Paul Zetlaoui n

a Hospices Civils de Lyon, 69317 Lyon, France
b CHU de Bordeaux, 33000 Bordeaux, France
c Hôpital Raymond-Poincaré, 92380 Garches, France
d CHU de Rennes, 35000 Rennes, France
e CHU de Nice, 06001 Nice, France
f CHU de Nîmes, 30900 Nîmes, France
g CHU de Montpellier, 34000 Montpellier, France
h CHU de Lille, 59000 Lille, France
i Institut hospitalier franco-britannique, 92300 Levallois-Perret, France
j CHU de Toulouse, 31059 Toulouse, France
k CHU de Kremlin-Bicêtre, 94270 Le Kremlin-Bicêtre, France
l CHU de Kremin Bicêtre, 94270 Le Kremlin Bicêtre, France

1. SFAR Organisers and experts coordinators
Frédéric Aubrun, Karine Nouette-Gaulain

2. Organisational Committee
Dominique Fletcher, Hôpital Raymond Poincaré, Assistance Publique-Hôpitaux de Paris.

3. SFAR experts group
Frédéric Aubrun, Anissa Belbachir, Hélène Beloeil, Michel Carles, Philippe Cuvillon, Christophe Dadure, Dominique Fletcher, Gilles Lebuffe, Emmanuel Marret, Valeria Martinez, Karine Nouette-Gaulain, Michel Olivier, Nada Sabourdin, Paul Zetlaoui.

4. Reading group

The French Society of Anaesthesia and Intensive Care Medicine (SFAR) published experts’ guidelines on the care of postoperative pain. This was an update of the 2008 guidelines. Fourteen experts analysed the literature (PubMedTM, CochraneTM) on questions that had not been treated in the previous guidelines, or to modify the guidelines following new data in the published literature. The used method is invariably the GRADE method, which guarantees a rigorous work. Seventeen recommendations were formalised on the assessment of perioperative pain, and most particularly in non-communicating patients, on opioid and non-opioid analgesics and on anti-hyperalgesic drugs, such as ketamine and gabapentinoids, as well as on local and regional anaesthesia. The concept of vulnerability and therefore the identification of the most fragile patients in terms of analgesics requirements were specified. Because of the absence of sufficient data or new information, no recommendation was made about analgesia monitoring, the procedures for the surveillance of patients in conventional care structures, or perineural or epidural catheterism.

© 2019 The Authors. Published by Elsevier Masson SAS on behalf of Société française d’anesthésie et de réanimation (Sfar). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
5. Introduction

Since the consensus conference on postoperative pain (POP) in 1997 and the experts’ guidelines of 2008, it was necessary to complete or modify the existing guidelines. A group of 14 experts has worked on questions that have not been treated in the previous guidelines, or on published guidelines to be modified following new data in the literature. The method used remains the GRADE method, which guarantees a rigorous work.

Methodology

The method used to elaborate these guidelines was the GRADE method. Following a quantitative literature analysis, this method was used to separately determine the quality of available evidence, i.e. estimation of the confidence needed to analyse the effect of the quantitative intervention, and the level of recommendation. The quality of evidence was rated as follows:

- high-quality evidence: further research is very unlikely to change the confidence in the estimate of the effect;
- moderate-quality evidence: further research is likely to have an impact on the confidence in the estimate of the effect and may change the estimate of the effect itself;
- low-quality evidence: further research is very likely to have an impact on the confidence in the estimate of the effect and is likely to change the estimate of the effect itself;
- very low-quality evidence: any estimate of the effect is very unlikely.

The analysis of the evidence’s quality is performed for each study. A global level of evidence is then defined for a given question and criterion. The final wording of the recommendations will always be binary – either positive or negative, either weak or strong:

- strong recommendation: we recommend or we do not recommend (GRADE 1+ or 1−);
- weak recommendation: we suggest or we do not suggest (GRADE 2+ or 2−).

The strength of the recommendation is determined by key factors, and approved by the experts after a vote, using the Delphi and GRADE grids:

- estimate of the effect;
- global level of evidence: the higher this level, the stronger the recommendation;
- the balance between desirable and adverse effects: the more favourable the balance, the higher the recommendation;
- values and preferences: in the event of uncertainties or great variability, the recommendation will most likely be weak. These values and preferences must be obtained directly from the people involved (patient, doctor, decision-maker);
- costs: the higher the costs or the use of resources, the weaker the recommendation;
- to develop a recommendation, at least 50% of participants must have an opinion and less than 20% the opposite opinion;
- to develop a strong recommendation, at least 70% of participants must agree (grade between 7 and 10).

For some questions, the existence of several studies and/or meta-analyses of acceptable methodological quality, the GRADE method applied entirely and allowed making recommendations.

If experts did not have a meta-analysis allowing them to respond to the question, a quantitative analysis following the GRADE method was possible, and a systematic review was performed. An expert opinion was then proposed and approved if at least 70% of experts agreed with the proposal.

Finally, in some fields, the lack of recent studies did not allow us to formulate recommendations.

The questions tackled in these Guidelines updates are the following:

- postoperative pain (POP) assessment in adults and children:
 - when and why to assess it? Benefits of the assessment on postoperative consequences and chronicisation;
 - should the DN4 form be used in perioperative?
 - which pain scale(s) to use in children under 7 years old?
 - which scale(s) to use in non-communicating patients?
 - the procedures for the surveillance of patients in morphine-type medicine in postoperative, monitoring postoperative analgesia;
 - analgesia monitoring: what are the methods enabling a monitoring of analgesia in the immediate postoperative period in children and adults?
 - drug therapies via systemic and oral routes:
 - what is the place for selective and non-selective NSAIDs in perioperative?
 - what place for oxycodone in perioperative: main indications?
 - what limits?
 - what are the indications on lidocaine in perioperative?
 - what dose?
 - what place for corticoids in premedication, during and after surgery?
 - should small doses of ketamine be administered to all patients during surgery? what dose? When to administer it (before the incision or before the induction)? should ketamine be used in postoperative and if yes, in which patients?
 - what place for gabapentinoids in pre and postoperative?
 - postoperative local and loco-regional anaesthesia:
 - what are the indications and limits for postoperative perineural catheterisation?
 - what are the indications and limits for an epidural and paravertebral catheterisation?
 - what are the indications and limits for an infiltration catheterisation?

After the synthesis of our experts’ work and the implementation of the GRADE method, 17 recommendations were formalised by the organisational committee. Among these, 11 are strong, 3 are weak and for 3 recommendations, the GRADE method could not be applied, and they are therefore formulated as experts’ opinions.

The entirety of these recommendations was submitted to a proofreading group for a Delphi type rating. After two rounds of scoring and several amendments, a strong agreement was reached for 14 recommendations.

Pain assessment during the perioperative period

1. When and why to assess it? Benefits of the assessment on postoperative consequences and chronicisation,
2. Should the DN4 form be used perioperatively?
R1.1 – During the preoperative period, we recommend identifying the most vulnerable patients to pain (with risks to develop severe postoperative pain and/or a chronic post-surgical pain (CPSP)) by focusing on preoperative pain, including pain even far from the operating site, the long-term consumption of opioids, and surgical and psychological factors such as anxiety or depression.

Argument: identifying patients implies a cautious supervision with a multimodal therapeutic strategy, including, whenever possible, regional analgesia and the administration of anti-hyperalgesic drugs.

Surgical factors are:

- surgical procedures such as thoracotomy [1], breasts surgery, sternotomy and iliac crest sampling [2,3], most likely to cause CPSP;
- repeated surgical procedures causing a risk of CPSP higher than the initial surgery [4], because of the high number of nerve damages on a revised scar tissue, more inflammatory tissues;
- surgical procedures with preoperative pain on the site of the intervention;
- a duration of surgery greater than 3 hours.

R1.2 – We recommend using the APAIS scale (Amsterdam Preoperative Anxiety and Information Scale) as a measure of anxiety and/or the need for information during the preoperative period.

Argument: anxiety, stress and depression are the psychological factors most likely to cause severe postoperative pain [5–7]. They play an important role for CPSP development. Catastrophism is a predictive factor of a more intense postoperative pain, of greater morphine consumption in various surgical models, but also of a more frequent CPSP in orthopaedic surgery. The assessment during the pre-anaesthesia evaluation, using a simple scale (APAIS) would allow predicting the transition from acute to chronic POP.

R2. – We recommend identifying the postoperative risk factors for CPSP by searching a high intensity of POP (using a numerical scale), an uncommon prolongation of POP, an early neuropathic pain (using a DN4 scale), or signs of anxiety or depression.

Argument: An early neuropathic pain should be properly treated [3]. The result of a positive screening of neuropathic pain should be reported to the patient, the surgeon and the referring physician.

R3. – We recommend using a self-assessment scale from 5 years old (face scale, Appendix 1). Otherwise, we recommend using the FLACC scale for postoperative pain assessment in children under 7 years of age (Appendix 2).

G1+, Strong agreement

Argument: for new-borns: the EDIN (neonatal pain and discomfort scale), DAN (acute neonatal pain) and NFCS (neonatal facial coding system) scales can be used but have not been validated for postoperative pain. The FLACC (face legs activity cry consolability) scale can be used from 2 months old [8–10]. EVEN-DOL is a pain scale approved for an outside hospital use and Emergency unit only [11]. As for the EVA pain scale, it must be presented vertically to the child.

4. Which scale(s) to use in non-communicating patients?

R4. – For communicant patients, we recommend using a modified FLACC scale in children, and ALGOPLUS in elderly people.

Argument: The modified FLACC scale can be used in non-communicant patient from birth until 18 years old and contains 5 simple behavioural items: face, legs, activity, screams and consolability [12,13]. For the ALGOPLUS scale [14], a grade ≥ 2/5 allows the diagnosis of pain with an 87% sensibility and a 80% specificity.

5. What are the procedures for monitoring the patients under opioid-like drugs in postoperative period?

The procedures for monitoring the patients under opioid-like drugs by subcutaneous route, by patient-controlled analgesia (PCA) or by epidural route were specified in the consensus conferences on postoperative pain management in adults and children of 1997 and 1999. These do not need to be changed.

R5. – We recommend using an analgesia monitoring including a pulse oximetry, the ANI (Analgesia Nociception Index) and the SPI (Surgical Pleth Index) allow the correct assessment of the analgesia – monitoring of analgesia in the immediate postoperative period.

Argument: the analysis of literature established that pupillometry, the ANI (Analgesia Nociception Index) and the SPI (Surgical Pleth Index) allow the correct assessment of the analgesia nociception balance under general anaesthesia [21–23]. However, it is at the moment impossible to assert that such perioperative monitoring enables a decrease in postoperative pain or in the consumption of postoperative analgesics.

In awake patients, some publications suggest a degree of correlation between the ANI or the pupillometry and the pain scores obtained from the self or hetero-assessment scales [24,25]. However, the use of these monitors in the immediate
postoperative period did not prove to be better or more beneficial than auto or hetero-assessment scales.

It is however important to note that no study was performed in postoperative non-communicant patients, population for which pain assessment scales are most difficult.

Apart from these various reminders, no new data enables to write more precise recommendations.

9. Drug therapies via systemic and oral routes

6. What is the place for selective and non-selective NSAIDs in perioperative?

R6.1. – We recommend the association of a non-selective NSAID (NS-NSAID) or a selective inhibitor of type 2 cyclooxygenase (ISCOX2) with morphine if there is no contraindication to the use of NSAIDs.

G1+, Strong agreement

Argument: NS-NSAIDs or ISCOX2, associated with morphine, allow an improvement of pain scores, a significant morphine sparing coupled with a decrease of sedation, PONVs and of the length of postoperative ileus. This association allows the most important decrease in morphine consumption when compare with other associations involving other non-opioid analgesics (nefopam or paracetamol). The level of evidence is high and based on an abundant literature of high methodological quality. Fifteen studies, amongst which 2 meta-analyses, have studied the benefit of NS-NSAIDs associated with morphine, and 25 studies, amongst which 1 meta-analysis, have studied the benefit of ISCOX2 associated with morphine. NS-NSAIDs and ISCOX2 were compared in 6 studies: 4 RCTs and 2 meta-analyses. Results showed similar benefits in terms of analgesia for both drugs either usedalone or associated with morphine.

NSAIDs are probably recommended after colorectal surgery but a doubt remains on the risk of anastomotic leakage (Guidelines on enhanced recovery after colorectal surgery).

About the renal risk, we do not recommend prescribing a NSAID (NS or ISCOX2) in the event of renal hypoperfusion. An estimated clearance of plasma creatinine below 50 mL/min is a contraindication to the use of NSAIDs.

G1-, Weak agreement

R6.2. – We do not recommend using a type-2 inhibitor of cyclooxygenases (ISCOX2) in patients with a history of atherothrombosis (PAD (peripheral artery disease), stroke, myocardial infarction).

G1-, Strong agreement

R6.3 – We do not recommend administering NS-NSAIDs in patients atherothrombosis (PAD (peripheral artery disease), stroke, myocardial infarction) for more than 7 days

G2-, Strong agreement

Argument: The increased risk of atherothrombotic events associated with a chronic treatment (mainly after 7 days of treatment), with NS-NSAIDs or ISCOX2 is highly documented [28,29,30,31] in the medical literature. In the perioperative period, the atherothrombotic risk associated with ISCOX2 is well documented [32,33]. For NS-NSAIDs, the only two available studies are retrospective but have included a large number of patients (10 873 and 1 309); they did not report an additional cardiovascular risk [34,35].

R6.4 – We do not recommend associating NS-NSAIDs with curative doses of anticoagulant.

G1-, Weak agreement

Argument: the NSAIDs used in France (ketoprofen, ibuprofen) in the perioperative period do not increase the risk of postoperative haemorrhage, including after tonsillectomy [36,37]. No study assessing postoperative bleeding as the main outcome has been published so far [38–40]. The studies that have highlighted a haemorrhage risk are either retrospective (n = 1) [41] or a meta-analysis [42] that has included the retrospective studies with an important heterogeneity. All of them studied ketorolac, which is not available in France. According to Bellis et al.’s meta-analysis published in 2014 [43] and including 15 studies and 1693 patient, NSAIDs administered with dexamethasone are not associated with an increased risk of haemorrhage. However, the association of NSAIDs and a curative dose of anticoagulants (enoxaparine, rivaroxaban or VKA) was shown to multiply by 2.5 the risk of severe [44].

7. What place for oxycodone in perioperative: main indications? What limits?

R7. – We recommend to prescribe a strong opiate (morphine or oxycodone), ideally through oral route, for severe postoperative pain or if weaker analgesics are not powerful enough to relief the patients. This recommendation applies to all ages.

G1+, Strong agreement

Argument: morphine remains the reference strong opiate in perioperative period. The oral route must be favoured as much as possible [45,46]. The clinical efficacy of oxycodone equals that of morphine, with a ratio of 1/1 for the IV route and ½ for the oral route (5 mg of oxycodone = 10 mg of morphine sulphate).

8. What are the indications on lidocaine in perioperative? What dose?

R8. – We suggest that adults who undergo major surgery (abdominal, pelvic or spinal surgeries) and who do not benefit regional analgesia receive intravenous lidocaine infusion (bolus: 1 to 2 mg/kg followed by 1 to 2 mg/kg/h) in order to decrease the level of postoperative pain and to improve recovery.

G2+, Strong agreement

Argument: lidocaine is a local anaesthetic usually administered for nerve or epidural block. Intravenous lidocaine presents analgesic, anti-hyperalgesic and anti-inflammatory properties. Comparisons between intravenous lidocaine and loco regional analgesia techniques will allow clarifying the role for each of these techniques. The panel proposed a bolus dose of IV lidocaine 1-2 mg.kg.-1 followed by a continuous infusion of 1 to 2 mg/kg.h-1 [47–50].

9. What place for corticoids in premedication, during and after surgery?

R9. – We suggest that adults receive dexamethasone IV at 8 mg to reduce postoperative pain.

G2+, Strong agreement

Argument: corticosteroids are widely used in anaesthetised patients. Dexamethasone, given at induction of anaesthesia, is the most studied glucocorticoid in anaesthesia and decreases the risk of postoperative nausea and vomiting Its effect on postoperative pain was assessed in numerous studies [51,52]. The recommended dose of dexamethasone is 8 mg in adults and 0.15 mg/kg in children.

10. Should small doses of ketamine be administered to all patients during surgery? What dose? When to administer it (before the incision or before the induction)? Should ketamine be used in postoperative and if yes, in which patients?
Argument: ketamine is the anti-hyperalgesic drug recommended in first intention at a maximum dose of 0.5 mg/kg/h after anaesthesia induction (to prevent psychodysleptic side effects) more or less in continuous at a dose between 0.125 and 0.25 mg/kg/h. Perfusion will be stopped 30 min before the end of the surgery.

The use of ketamine at small doses during the surgical period allows a decrease in acute pain intensity for 24 hours, a mean drop of 15 mg in 24 hours of morphine consumption and a decrease in the risk of nausea and vomiting (moderate evidence) [53,54]. The continuation of ketamine treatment in the postoperative period increases the risk of hallucinations and does not importantly increase the analgesic effect. The effect on chronic postoperative pain is an estimated decrease of 30% in the incidence of chronic pain three months after surgery (low level of evidence) [55,56]. We cannot specify if the prolongation of treatment for 24 hours can allow a decrease in the risk of postoperative chronic pain.

Use of magnesium is not currently recommended because of a too low level of evidence.

11. What place for gabapentinoids in pre and postoperative.

Argument: The use of gabapentine or pregabaline in premedication allows decreasing the pain intensity during the first postoperative day. The consumption of morphine and the risk of hallucinations and dizziness, and visual impairment (pregabaline) [55–59]. There is no noticeable effect on the prevention of chronic postoperative pain (high level of evidence) [55,56]. If the benefit/risk balance is taken into account, gabapentinoids should not be used systematically, or in outpatient surgery. There is no evidence on the interest of coupling gabapentinoids to ketamine. The key anti-hyperalgesic is ketamine. Patients who seem to benefit more from gabapentinoids in moderate to severe, and most particularly in shoulder (interscalenic) or knee (femoral) prosthetic surgery [61,62]. In addition to prolonged analgesia efficiency, the benefits concern the sparing effect of opioids and the decrease in morphine adverse effects (postoperative nausea and vomiting), the improvement of sleep and the satisfaction of patients.

However, the literature cannot demonstrate the input of perinervous catheters on pain chronisation.

The risk of catheter mobilisation (5 to 25%) potentially decreases the analgesic benefit. The femoral catheter, by motor block induced and prolonged, can foster falls, alter rehabilitation and early recovery after a knee prosthetic surgery. The interscalenic catheter induces a diaphragmatic paresis to take into account in the event of respiratory pathology.

Apart from these various reminders, no new data allows writing more precise recommendations.

14. What are the indication and limits for an infiltration catheterisation?

Argument: For information, the maximum doses for the first injection of local anaesthetics in a young adult of class ASA 1 are reminded in the table hereunder:

Agent	Maximal dose in mg/kg
Lidocaine with adrenaline	7
Mepivacaine	5
Levobupivacaine	3
Ropivacaine	3

R14.1 – It is recommended not to exceed the maximal toxic doses of local anaesthetics, most specifically for peri-prosthetic orthopaedic infiltrations and during associations of scar infiltrations and perinervous analgesic catheters.

G1+, Accord fort

Argument: published studies suggest a direct toxicity of local anaesthetics on cartilage [66,67].

Disclosure of interest

Aubrun: SANOFI, MYLAN, BAXTER.
Fletcher: PIERRE FABRE, BIOCODEX, GRUNENTHAL, MYLAN.
Beloeil: BIBRAUN, ASPEN, ORION.
Cuillon: GRUNENTHAL, MSD.
Lebuffe: MSD, BAXTER.
Martinez: GRUNENTHAL, MUNDIPHARMA, PFIZER, ASTELLAS.
The other authors declare that they have no competing interest.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at https://doi.org/10.1016/j.accpm.2019.02.011
References

[1] Dulce C, Guastella V, Morand D, Cardot JM, Aublet-Cuvelier B, Mulliez A, et al. Characteristics of the neuropathy induced by thoracotomy: a 4-month follow-up - a clinical and radiographical examination. Ann Fr Anesth Crit Care 2011;30:271–80.

[2] Dimitriu R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV. Preoperative anxiety and need for information with six issues. Ann Fr Anesth Crit Care 2011;30:533–7.

[3] Bringuièr S, Picot MC, Dadure C, Rochette A, Raux O, Boulliau M, et al. A prospective comparison of post-operative surgical behavioral pain scales in pediatries surgery: study and validation. J Pediatr Surg 2009;44:591–6.

[4] Cirelli D, Sullivan TP, Babl FE, Sullivan TP, Babl FE, Sullivan TP, Babl FE. Analysis of the validation of existing behavioral pain and distress scales for use in the procedural setting. Paediatr Anaesth 2007;17:272–9.

[5] Couture CL, Roy J. Systematic review of observational (behavioral) measures of pain in children and adolescents aged 3 to 18 years. Pain 2007;127:140–50.

[6] Yaffe HK, Charrue E, Tournaire B, Carbajal R, Cimerman P, Lassauge F, et al. ENFIDOL, a new behavioral pain scale for children aged 0 to 7 years in the emergency department: design and validation. Pain 2012;153:1573–82.

[7] McGettigan P, Henry D. Cardiovascular risk and inhibition of cyclooxygenase: a review of the safety and efficacy of intravenous ibuprofen for moderate-to-severe postoperative pain. Anesthesiology 2013;118:827–38.

[8] Olak J, Rauled RM, Angoules AG, Kanakaris NK, Giannoudis PV. Preoperative anxiety and need for information with six issues. Ann Fr Anesth Crit Care 2011;30:533–7.

[9] Robert P, Jouve E, Pickering G, Donnare L, Nguyen L, Michel M, et al. Validation of an acute pain-behavior scale for older persons with i.th inability to communicate verbally: AlgoEur. Eur J Pain 2011;15:198 [e1–e10].

[10] Ahman A, Nagle A, McCarthy RJ, Fitzgerald PC, Sullivan JT, Prystowsky J. Postoperative hypoxemia in morbidly obese patients with and without obstructive sleep apnea undergoing laparoscopic bariatric surgery. Anesth Analg 2008;107:138–43.

[11] Gall B, Whalen FX, Schroeder DR, Gay PC, Plevak DJ. Identification of patients at risk for postoperative respiratory complications using a preoperative obstructive sleep apnea screening tool and postanesthesia care assessment. Anesth Analg 2007;105:887–7.

[12] Hwang S, Shafik N, Limann B, Sicon C, Kalva S, Shulman L, et al. Association of sleep- disordered breathing with i.th postoperative complications. Chest 2008;133:1128–34.

[13] Weingarten TN, Kasevich MV, Glischin MC, Beatty NC, Christensen ED, Patarakip, et al. Predictors of delayed postoperative respiratory depression: a prospective observational study. Br J Anaesth 2014;112:422–9.

[14] Kato R, Shimamoto H, Terui K, Yokota K, Miyao H. Delayed respiratory depression assessed with 0.15 mg intravenous morphine for ceasarean section: a review of 1915 cases. J Anesth 2008;22:112–6.

[15] Siruussawakul A, Mandee S, Thonsontia J, Vitayaburananont P, Areewatana S, Kato R, et al. Delayed respiratory depression after cardiac surgery: a prospective study. Acta Anaesthesiol Scand 2010;54:70–8.

[16] Weingarten TN, Herasevich V, McGlinch MC, Beatty NC, Christensen ED, Patarakip, et al. Predictors of delayed postoperative respiratory depression: a prospective observational study. Br J Anaesth 2014;112:715–21.

[17] Houshyar S, Eshaghi J, Schreiber J, Pudlicak A, Schmid A, et al. Influence of nociceptive stimulation on analgesia/nociception index: a prospective observational study. Br J Anaesth 2005;95:1128–33.

[18] Boselli E, Bouvet L, Begou G, Bouvet L, Begou G, Bouvet L. Preoperative pain assessment in pediatric tonsillectomy: a systematic review of the observational studies of selective and nonselective inhibitors of cyclooxygenase 2. JAMA 2006;296:1633–44.

[19] Hummers L, Kimura K, Kimura K, Kimura K, Kimura K, Kimura K. The influence of dexamethasone on postoperative analgesia and side-effects: systematic review & meta-analysis of 36 randomized controlled trials; no apparent effects of non steroidal anti-inflammatory agents on the risk of bleeding after tonsillectomy. Ortoped Surg 2013;38:115–29.

[20] Raimon L, Lamarkhisa S, Sommer DD, Koren GA, Lamarkhisa S, Sommer DD, Koren GA. 2013 updated systematic review & meta-analysis of 36 randomized controlled trials; no apparent effects of non steroidal anti-inflammatory agents on the risk of bleeding after tonsillectomy. Ortoped Surg 2013;38:115–29.

[21] Liu S, Bae J, Biehl M, Ma Y, Mentzos E, Liu S, Bae J, Biehl M, Ma Y, Mentzos E. Preoperative use of nonsteroidal anti-inflammatory drugs with i.th postoperative myocardial infarction after total joint replacement. Reg Anesth Pain Med 2012;37:45–50.

[22] Mosey ML, Mosey ML, Mosey ML, Mosey ML, Mosey ML, Mosey ML. Preoperative use of nonsteroidal anti-inflammatory drugs with i.th postoperative myocardial infarction after total joint replacement. Reg Anesth Pain Med 2012;37:45–50.

[23] Weingarten TN, Herasevich V, McGlinch MC, Beatty NC, Christensen ED, Patarakip, et al. Predictors of delayed postoperative respiratory depression: a prospective observational study. Br J Anaesth 2014;112:422–9.

[24] Vigneault L, Turgeon AF, Cote D, Lauzier F, Zarychanski R, Moore L, et al. Dexamethasone and haemorrhage risk in paediatric tonsillectomy: a systematic review and meta-analysis. Br J Anaesth 2014;113:23–42.

[25] Chamberlain A, Chamberlain A, Chamberlain A, Chamberlain A, Chamberlain A, Chamberlain A, et al. Dexamethasone and haemorrhage risk in paediatric tonsillectomy: a systematic review and meta-analysis. Br J Anaesth 2014;113:23–42.

[26] Ding M, Ding M, Ding M, Ding M, Ding M, Ding M, et al. Dexamethasone and haemorrhage risk in paediatric tonsillectomy: a systematic review and meta-analysis. Br J Anaesth 2014;113:23–42.

[27] Wilson M, Crellin D, Sullivan TP, Babl FE, Sullivan TP, Babl FE, Sullivan TP. Safety and efficacy of the cyclooxygenase-2 inhibitor parecoxib and valdecoxib in the postoperative setting: an analysis of integrated data. Anesth Analg 2009;108:299–307.

[28] Oliveri L, Jezierski K, Kulkik A. Black box warning: is ketorolac safe for use after cardiac surgery? J Cardiothorac Vasc Anesth 2014;28:274–9.

[29] Liu S, Bae J, Biehl M, Ma Y, Mentzos E, Liu S, Bae J, Biehl M, Ma Y, Mentzos E. Preoperative use of nonsteroidal anti-inflammatory drugs with i.th postoperative myocardial infarction after total joint replacement. Reg Anesth Pain Med 2012;37:45–50.

[30] Liu S, Bae J, Biehl M, Ma Y, Mentzos E, Liu S, Bae J, Biehl M, Ma Y, Mentzos E. Preoperative use of nonsteroidal anti-inflammatory drugs with i.th postoperative myocardial infarction after total joint replacement. Reg Anesth Pain Med 2012;37:45–50.

[31] Capo M, Capo M, Capo M, Capo M, Capo M, Capo M, et al. Perioperative intravenous lidocaine infusion for postoperative pain control: a systematic review. Plastic Reconstr Surg 2014;133:741–55.

[32] Capo M, Capo M, Capo M, Capo M, Capo M, Capo M, et al. Perioperative intravenous lidocaine infusion for postoperative pain control: a systematic review. Plastic Reconstr Surg 2014;133:741–55.

[33] Capo M, Capo M, Capo M, Capo M, Capo M, Capo M, et al. Perioperative intravenous lidocaine infusion for postoperative pain control: a systematic review. Plastic Reconstr Surg 2014;133:741–55.

[34] Capo M, Capo M, Capo M, Capo M, Capo M, Capo M, et al. Perioperative intravenous lidocaine infusion for postoperative pain control: a systematic review. Plastic Reconstr Surg 2014;133:741–55.

[35] Capo M, Capo M, Capo M, Capo M, Capo M, Capo M, et al. Perioperative intravenous lidocaine infusion for postoperative pain control: a systematic review. Plastic Reconstr Surg 2014;133:741–55.

[36] Capo M, Capo M, Capo M, Capo M, Capo M, Capo M, et al. Perioperative intravenous lidocaine infusion for postoperative pain control: a systematic review. Plastic Reconstr Surg 2014;133:741–55.
Laskowski K, Stirling A, McKay WP, Lim HJ. A systematic review of intravenous ketamine for postoperative analgesia. Can J Anaesth 2011;58:911–23.

Chaparro LE, Smith SA, Moore RA, Wiffen PJ, Gilron I. Pharmacotherapy for the prevention of chronic pain after surgery in adults. Cochrane Database Syst Rev 2013;7:CD008307.

McNicol ED, Schumann R, Haroutounian S. A systematic review and meta-analysis of ketamine for the prevention of persistent post-surgical pain. Acta Anaesthesiol Scand 2014;58:1199–213.

Dahl JB, Mathiesen O, Moiniche S. ‘Protective premedication’: an option with gabapentin and related drugs? A review of gabapentin and pregabalin in the treatment of post-operative pain. Acta Anaesthesiol Scand 2004;48:1130–6.

Eipe N, Penning J, Yazdi F, Mallick R, Turner L, Ahmadzai N, Ansari MT. Perioperative use of pregabalin for acute pain - a systematic review and meta-analysis. Pain 2015;156:1284–300.

Mishriky BM, Waldron NH, Habib AS. Impact of pregabalin on acute and persistent postoperative pain: a systematic review and meta-analysis. Br J Anaesth 2015;114:10–31.

Clarke H, Bonin RP, Orser BA, Englesakis M, Wijeysundera DN, Katz J. The prevention of chronic postsurgical pain using gabapentin and pregabalin: a combined systematic review and meta-analysis. Anesth Analg 2012;115:428–42.

Bingham AE, Fu R, Horn JL, Abrahams MS. Continuous peripheral nerve block compared with single-injection peripheral nerve block: a systematic review and meta-analysis of randomized controlled trials. Reg Anesth Pain Med 2012;37:583–94.

Ullah H, Samad K, Khan FA. Continuous interscalene brachial plexus block versus parenteral analgesia for postoperative pain relief after major shoulder surgery. Cochrane Database Syst Rev 2014;2:CD007080.

Andersen LO, Kehlet H. Analgesic efficacy of local infiltration analgesia in hip and knee arthroplasty: a systematic review. Br J Anaesth 2014;113:360–74.

Dahl JB, Moiniche S. Relief of postoperative pain by local anaesthetic infiltration: efficacy for major abdominal and orthopedic surgery. Pain 2009;143:7–11.

Ventham NT, O’Neill S, Johns N, Brady RR, Fearon KC. Evaluation of novel local anesthetic wound infiltration techniques for postoperative pain following colorectal resection surgery: a meta-analysis. Dis Colon Rectum 2014;57:237–50.

Cobo-Molinos J, Poncela-Garcia M, Marchal-Corrcoles JA, Delgado-Martinez AD. Effect of levobupivacaine on articular chondrocytes: an in-vitro investigation. Eur J Anaesthesiol 2014;31:635–9.

Sherman SL, James C, Stoker AM, Cook CR, Khazai RS, Flood DL, Cook JL. In Vivo toxicity of local anesthetics and corticosteroids on chondrocyte and synovio-cyte viability and metabolism. Cartilage 2015;6:106–12.