Reproductive performance and functional response of *Eretmocerus mundus* Mercet (Hymenoptera: Aphelinidae) obtained from cold-stored red-eyed pupae

Berivan Keser, Mahmut Mete Karaca and Kamil Karut*

Abstract

Background: Cold storage of reared natural enemies is important in terms of planning the release time and quantity, eliminating unpredicted demand increases, and reducing production costs. However, the tolerance of reared natural enemies at low temperatures varies depending on the species and needs to be determined. *Eretmocerus mundus* Mercet (Hymenoptera: Aphelinidae) is one of the most important natural enemies used in biological control of *Bemisia tabaci* (Gennadius) (Hemiptera: Aleyrodidae) in greenhouses.

Results: In a laboratory study, longevity, parasitism capacity and functional response of *E. mundus* adults obtained from 8-days cold-stored red-eyed *E. mundus* pupae at 10 °C with 45 ± 5% RH conditions were determined. Mean longevity obtained from stored *E. mundus* pupae of female and male were 23.6 and 16.2 days, respectively. However, parasitism capacity was negatively affected so that the total mean number of immature *B. tabaci* parasitized by an *E. mundus* female obtained from cold-stored pupae (13.6) was statistically lower than that obtained from the colony (26.8) reared at room temperature. Adults obtained from both non-stored and stored *E. mundus* pupae exhibited a type II functional response to increasing host density. Although cold storage did not alter the type of functional response, it negatively affected the maximum attack rate (α) and handling time (T_h) of the parasitoid. The lowest maximum attack rate (1.56) and highest handling time (0.059) were obtained for adults of cold-stored *E. mundus* pupae.

Conclusions: The results obtained may contribute to the augmentative biological control of *B. tabaci* in greenhouses.

Keywords: *Eretmocerus mundus*, *Bemisia tabaci*, Cold storage, Longevity, Parasitism capacity, Functional response

Background

The sweet potato whitefly, *Bemisia tabaci* (Gennadius) (Hemiptera: Aleyrodidae), is one of the most prominent pests in agricultural production systems including greenhouses (Oliveira et al. 2001). Chemical control is the primary method preferred for the management of the pest. Insecticide applications that are not done properly can cause serious human and environmental health problems. On the other hand, successful biological control treatments could avoid the negative effects such as residue and resistance caused by chemicals (Kazak et al. 2020).

Many natural enemies are mass-reared and marketed by various companies to be used in the biological control of *B. tabaci*, especially in greenhouses (Gerling et al. 2001). *Eretmocerus mundus* Mercet (Hymenoptera: Aphelinidae) is one of the most important parasitoids used in the biological control of *B. tabaci*. It is a parasitoid native to the Mediterranean region and has a significant commercial value in the augmentative biological control of the pest.
control programs of *B. tabaci* (van Lenteren 2012). Its commercial use began in Europe in 2001 and it is ranked 23rd among the most used natural enemies in the world (van Lenteren 2012). Parasitism rates by this parasitoid reached up to 90% (in greenhouse), and it mostly prefers the 1st and 2nd instars of *B. tabaci* for parasitism (Stansly et al. 2004; Gerling and Foltyn 2009).

The increase in integrated pest management applications and awareness among producers has also increased the demand for natural enemies. Accordingly, the importance of mass production of natural enemies has also increased. However, a short life span and difficulty in transportation due to temperature and humidity demands are reported to be the most notable challenges encountered in mass production of natural enemies (Venkatesan et al. 2000). Cold-storage of augmentative natural enemies is important in terms of planning the release time and quantity, eliminating unpredicted demand increases, and reducing production costs. Therefore, many studies have been carried out on the storage technique of biological control agents have shown that short-term cold storage has different effects on predator/parasitoid biology and reproduction (van Lenteren and Woets 1988; Tauber et al. 1993; van Lenteren and Tommasini 2002; Nadeem et al. 2014).

Since insects are poikilothermic, they can already survive at low temperatures where climate are not optimal. Through manipulation of this feature of insects, mass-produced natural enemies can be stored for use when needed. However, the tolerance of natural enemies used in biological control to low temperatures varies depending on the species and needs to be determined accordingly. Therefore, this study was conducted to evaluate the performance of adults obtained from cold-stored *E. mundus* pupae under laboratory conditions.

Methods

Host plant, Bemisia tabaci and Eretmocerus mundus rearing

Cotton (*Gossypium hirsutum* L.) plant was used for mass rearing of *B. tabaci* MEAM1 (Middle East–Asia Minor 1) and *E. mundus*, and for setting up the experiments. The host plant rearing was carried out in a controlled room at 25 ± 2 °C with 70 ± 5% RH conditions in pots filled with fertile soil. For the *E. mundus* colony, the parasitoid pupae were obtained from cotton fields of the Çukurova University, Faculty of Agriculture, Research and Implementation Sites, Adana, Turkey. Dark parasitoid subtraction boxes containing glass tubes were used for obtaining adult parasitoids (Kazak et al. 2020). For the requested parasitoid population level, one hundred recently hatching adult parasitoids were afterward released into cages (50 × 50x70 cm), which had 8 whitefly-infested cotton plants. The parasitoid colony was repeatedly provided with *B. tabaci* cotton plants acquired from the *B. tabaci* rearing cages, during the experiment (10 generations). For this aim, separate whitefly rearing cages (50 × 50x70 cm) were prepared with cotton plants in insect rearing rooms (25 ± 2 °C, 70 ± 5% RH, 16:8D). The parasitoid, *E. mundus* was confirmed by using morphological characters such as: antenna, colorization of the first 2 abdominal segments and ovipositor structure (Sharaf 1982; Kim and Heraty 2012).

Longevity of Eretmocerus mundus adults obtained from cold-stored pupae

Red-eyed *E. mundus* pupae were used in the experiment. For obtaining red-eyed pupae from the parasitoid colony, cotton leaves with parasitized *B. tabaci* were examined under a stereomicroscope. Then, selected 5 red-eyed *E. mundus* pupae, with mouthparts in the up situation, were stuck on one-sided sticky paper strips (1 × 5 cm), using an insect pin and a fine brush (Kazak et al. 2020). The paper strips were then settled in Eppendorf tubes and located in a controlled environmental test cabinet (NUVE®TK252) at 10 °C with 45 ± 5% RH, 16:8D conditions for 8-day storage periods (Kazak et al. 2020). Totally, 100 pupae were stored. The storage conditions used in this study were selected according to the results of a previously published study by Kazak et al. (2020). After 8 days, 50 stored *E. mundus* pupae, 5 in one Eppendorf tube (1.5 ml), were transferred to a controlled cabinet at 25 °C with 75 ± 5% RH, 16:8D for determining adult longevity. A similar number of *E. mundus* pupae (50) obtained from the culture were also transferred to the chamber and evaluated as a control. Before adult emergence, the pupae transferred to new Eppendorf tube individually and a small drop of honey was smeared at the cap of the tube for feeding the emerged parasitoid adults. The emerged parasitoids were observed daily until the last adult was dead. Not all the stored pupae succeeded to the adult stage. Therefore, the mean longevity was calculated according to data obtained from at least 19 adults for each stored and control group for females and males separately. Males and females were separated according to antennal clava. Females have antennal clava, which are 5 times as long as wide, while those of males are 6 times as long as wide (Kim and Heraty 2012).

Parasitism performance of Eretmocerus mundus adults obtained from cold-stored pupae

The 2nd instar *B. tabaci* nymphs was used in the study. To obtain the desired nymph instar, clean cotton plants were kept in the whitefly rearing cages, and the females were allowed to lay eggs. After 24 h, the whiteflies were removed and the plants were transferred to a climate room with a temperature of 25 ± 1 °C and 70 ± 5% RH,
Determining functional response parameters of Eretmocerus mundus adults obtained from cold-stored pupae

In the functional response study, cotton leaf discs with 5, 10, 20, 40 and 80 of 2nd instar B. tabaci nymphs prepared as described above were used. A pair of newly emerged adult parasitoids that emerged from cold-stored and un-stored red-eyed E. mundus pupae were released into the prepared Petri dishes. After 24 h, adults were removed, and the Petri dishes were kept in the controlled cabinet (with a temperature of 25±1 °C, 70±5% RH and 16L: 8D photoperiod) until the first sign of parasitism. The experiments were repeated 15 times for each host density separately for adults obtained from cold-stored and un-stored red-eyed E. mundus pupae.

Data analysis

Effect of cold storage on longevity and the parasitism capacity of E. mundus were compared by using t test. Before analysis, the data were first subjected to logarithmic and angular transformation for normalization.

The type of functional response of parasitoid was determined in two-step data analysis (Juliano 2001). In the first step, the type was determined by a logistic regression of the proportion of the host parasitized (Npar/N0) in relation to the initial host density (N) (Eq. 1). The maximum likelihood test was used to estimate the parameters P0, P1, P2 and P3. In all cases, since N03 were not significant, cubic confidents were removed from the formula, and the data were re-subjected to the logistic regression. If linear coefficient P1 is significantly negative, a type II functional response is evident, whereas a positive linear parameter indicates a type III functional response (Juliano 2001).

In the second step, the handling time (Th) and the attack rate (a) coefficients of a type II response were estimated using the Rogers (1972) random parasitoid equation (Eq. 2), since the initial host densities were provided without replacement. Nonlinear least square regression was used to estimate the parameters of the Rogers (1972) random parasitoid Eq. (2). All analyses were performed using Microsoft Excel and SPSS 23.0 (SPSS, Chicago IL, USA).

\[
\frac{N_{\text{par}}}{N_0} = \frac{\exp(P_0 + P_1N_0 + P_2N_0^2 + P_3N_0^3)}{1 + \exp(P_0 + P_1N_0 + P_2N_0^2 + P_3N_0^3)}
\] (1)

\[
N_{\text{par}} = \text{number of host parasitized; } N_0 = \text{host density and } P_0, P_1, P_2 \text{ and } P_3 \text{ are the intercept, the linear, the quadratic and the cubic factor,}
\] (2)

where Npar is the number of parasitized host, N is initial host density, a is attack rate, Th is handling time (h) and T is total time available for searching during the experiment (h).

Results

The mean longevity of females and males obtained from stored red-eyed E. mundus pupae was shorter but non-statistically different from adults obtained from un-stored E. mundus pupae (Female: df: 22, t: 1.92, P: 0.06; male: df: 18, t: 1.26, P: 0.22). While the mean longevity periods of un-mated females and males obtained from un-stored pupae were 25.7±0.80 and 17.6±0.70 days, respectively, these values were 23.6±0.69 and 16.2±0.67 days for females and males obtained from stored E. mundus pupae, respectively (Fig. 1). The total mean number of immature B. tabaci parasitized by E. mundus females obtained from stored pupae (13.6±2.54) during 8 days was statistically lower than the ones parasitized by the females obtained from the un-stored colony (26.8±2.79) (df: 41, t: 3.42, P: 0.001) (Fig. 2).

The mean parasitism rates of the females obtained from un-stored and stored E. mundus pupae varied according to host density, and parasitism rates declined when host densities were increased. The rates ranged from 18.01 to 68.6 and 16.6–55.7% for the females obtained from un-stored and stored pupae, respectively (Fig. 3). In low host
densities, the rates were found to be higher than in high host densities, and the differences among treatments were statistically significant when 5, 10 and 20 host densities were provided (five: df:33, t: 1.95, P: 0.05; ten: df: 30, t:1.69, P: 0.02; twenty: df: 24, t: 1.71, P: 0.03) (Fig. 3).

Linear coefficients and P_1 values were found to be significantly different at the 2 treatments (Table 1). The proportion of parasitism increased with increasing host density for parasitoids obtained from both un-stored and stored pupae (Fig. 4). The logistic regression analysis showed that parasitoids obtained from both un-stored and stored pupae showed a type II functional response by a negative P_1 parameter (Fig. 4 and Table 1). The functional response of adult female parasitoid to whitefly immature at 2 different treatments well fitted to the

Table 1 Estimated coefficients by logistic regression of proportion of hosts parasitized by adult *Eretmocerus mundus* obtained from un-stored and eight-day-stored pupae in relation to initial *Bemisia tabaci* nymph densities

Parameter	Estimates (± SE)	χ^2	P
Unstored			
P_0	1.0135 (±0.1903)	28.34	< 0.0001
P_1	−0.0553 (±0.0096)	32.59	< 0.0001
P_2	0.0002 (±0.00009)	9.408	0.002
Stored			
P_0	0.6092 (±0.1744)	12.20	< 0.0001
P_1	−0.0472 (±0.009)	26.62	< 0.0001
P_2	0.0002 (±0.00009)	6.969	0.008

P_0, P_1, and P_2 are the intercept, the linear, and the quadratic factors, respectively.
random parasitoid equation (Rogers 1972). The higher attack rate and the shorter handling time were found to be 2.569 and 0.057 for adults from un-stored pupae treatment (Table 2).

Discussion
Storage at 10 °C had a non-negative effect on the longevity of adult parasitoids that emerged from cold-stored pupae. The mean longevity of *E. mundus* females and males obtained from un-stored and stored pupae in this study was higher than the results published earlier (Qiu et al. 2004; Lopez and Botto 2005; Urbaneja et al. 2006; Zandi-Sohani et al. 2009). The values of this parameter reportedly ranged from 3.9 and 10.5 days depending on the temperature and nutritional quality of the food which parasitoids were fed (Zandi-Sohani et al. 2009). The decline in the longevity of adults from stored treatments at low temperature was also reported for a variety of hymenopterous parasitoids (Kidane et al. 2015; Anwar et al. 2016; Yan et al. 2017). Ismail et al. (2012) attributed this to the amount of energy reserves remaining inside the body after storage in both sexes. They speculated that there was a positive relationship between survival and the amount of lipid reserves accumulated from the host during larval development.

Cold storage had negatively affected the parasitism capacity of *E. mundus* by causing almost a 50% reduction in the number of parasitized whitefly nymphs. Similar to obtained results, Luczynski et al. (2007) reported that storage at 7 and 12 °C had a negative effect on the parasitism capacity of *Eretmocerus eremicus* Rose & Zolnerowich and *Encarsia formosa* Gahan (Hymenoptera: Aphelinidae), while Lopez and Botto (2005) found a reduction on 1st day parasitism of adult *En. formosa* after >14 days of storage and reported that females stored at 4.5 °C did not lay eggs after a 28-day storage period. In addition to the above-mentioned studies, it was reported that the parasitism capacity of different species of parasitoids decreases depending on the temperature and storage time (Al-Tememi and Ashfaq 2005). On the contrary, it was reported that storing of the egg-parasitoid, *Trichogramma evanescens* Westwood (Hymenoptera: Trichogrammatidae) at 4 and 6 °C for 3 weeks did not negatively affect its parasitism ability (El-Gawad et al. 2010). Similarly, Lopez and Botto (2005) also observed non-statistical difference among the numbers of hosts parasitized by *Eretmocerus corni* Haldeman individuals stored for 7, 14, 21, and 28 days at temperatures between 4.5 and 11.5 °C.

In the functional response study, both *E. mundus* adults obtained from un-stored and 8-day-stored pupae exhibited a type II response to increasing host density. This is in agreement with the findings of previous studies conducted with *E. mundus* (Awadalla et al. 2014; Najem and Al-Rubeae 2015; Xu et al. 2016).

Although cold storage did not change the model of functional response of the parasitoid in the present study, it did negatively affect the maximum attack rate and handling time of *E. mundus*. The lower maximum attack rate of 1.56 was observed for *E. mundus* adults obtained from cold-stored pupae. This may be attributed to the increase in energy necessity and gradual weakness of the individuals during metamorphosis in the storage period. Therefore, accumulation of toxic metabolites, oxidative stress caused by a buildup of reactive oxygen, and extraction of energy reserves have been suggested as probable causes for decreasing suitability of individuals after extended exposures to cold temperatures (Colinet and Boivin 2011).

The results of this study showed that parasitism capacity, and functional response parameters of adults obtained from 8-day-stored *E. mundus* pupae were negatively affected by the storage. However, Kazak et al. (2020) reported that cold storage did not negatively affect the parasitism ability of a native strain (Adana, Turkey) of *E. mundus*, suggesting that the parasitoid could be used successfully in the biological control of *B. tabaci* in greenhouse-grown tomato plants. This may be due to the fact that *F*₁ individuals obtained from parents were not affected by cold storage, although it was not tested in this study.

Conclusions
It was concluded that although a decrease in the parasitism ability of adults obtained from cold-stored pupae was detected, this can be tolerated in subsequent generations. Therefore, to increase the success of augmentative biological control of *B. tabaci*, additional storage studies of *E. mundus* should be conducted at different temperatures and humidity levels until optimization of appropriate conditions is attained.

Acknowledgements
This research was part of the MSc thesis of first author which was supported by the Çukurova University Research Foundation, under Grant FYL-2018-10467.

Table 2 Attack rate (α), handling time (Th), and standard error values of the random parasitoid equation for adult *Eretmocerus mundus* obtained from un-stored and eight-day-stored pupae at 10 °C degrees

	α ± SE (95% CL)*	Th ± SE (95% CL)	R²
Unstored	2.569 ± 1.377	0.057 ± 0.006	0.527
Stored	1.560 ± 0.854	0.059 ± 0.009	0.357

*CL: Confidence limits were obtained based on bootstrap method with 10,000 iterations.
Author contributions
BK: Investigation. MMK: Investigation. KK: Methodology, Supervision, Writing—Original draft preparation. All authors read and approved the final manuscript.

Funding
This research work was funded by Scientific Research Foundation of Çukurova University, (project number: FYL-2018-10467).

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 28 February 2022 Accepted: 16 June 2022 Published online: 21 June 2022

References

Al-Tememi NK, Ashfaq M (2005) Effect of low temperature storage on the fecundity and parasitizing efficacy of Bracon hebetor (Say). J Agric Res 43:155–160
Anwar M, Abdin Z, Abbas SK, Tahir M, Hussain F, Manzoor A (2016) Effect of cold storage on the survival, sex ratio and longevity of ectoparasitoid, Bracon hebetor (Say) (Hymenoptera: Braconidae). Pak J Zool 48(6):1775–1780
Awadalla SS, Bayoumy MH, EL-Wahab AH (2014) Density-independent and inverse-density dependent parasitism of Encarsia lutea Masi and Eretmocerus mundus Mercet to Bemisia tabaci Biotype “B”. Egypt J Biol Cont 24(1):125–132
Colinet H, Boivin G (2011) Insect parasitoids cold storage: a comprehensive review of factors of variability and consequences. Biol Control 58:83–95
El-Gawad H, Sayed A, Ahmed S (2010) Impact of cold storage temperature and period on performance of Trichogramma evanescentis Westwood (Hymenoptera: Trichogrammatidae). Aust J Basic Appl Sci 4(8):2188–2195
Gerling D, Foltyn S (2009) Development and host preference of Encarsia lutea Masi and Eretmocerus mundus Mercet (Hymenoptera: Aphelinidae) parasitoids of Bemisia tabaci (Hemiptera: Aleyrodidae). J Appl Entomol 103:425–433
Gerling D, Alomar O, Arno J (2001) Biological control of Bemisia tabaci using predators and parasitoids. Crop Prot 20(9):779–799
Ismail M, Vernon P, Hance T, Pierre JS, van Lenteren JC (2012) What are the possible benefits of small size for energy-consuming ectotherms in cold stress conditions? Oikos 121:2072–2080
Juliano SA (2001) Non-linear curve fitting: predation and functional response curves. In: Schneider SM, Gurevitch J (eds) Design and analysis of ecological experiments. Chapman and Hall, New York, pp 178–196
Kazak C, Doker I, Karaca MM, Karut K (2020) Effect of cold storage on performance of Eretmocerus mundus, larval parasitoid of Bemisia tabaci in a conventional tomato growing greenhouse. Crop Prot 137:105–203
Kidane D, Yang NW, Wan FH (2015) Effect of cold storage on the biological fitness of Encarsia sophia (Hymenoptera: Aphelinidae), a parasitoid of Bemisia tabaci (Hemiptera: Aleyrodidae). Eur J Entomol 112:460–469
Kim JW, Heraty J (2012) A phylogenetic analysis of the genera of Aphelininae (Hymenoptera: Aphelinidae), with a generic and species descriptions of new taxa. Syst Entomol 37:497–549
Lopez SN, Botto E (2005) Effect of cold storage on some biological parameters of Eretmocerus cori and Encarsia formosa (Hymenoptera: Aphelinidae). Biol Control 33:123–130
Lucznik A, Nyrop JP, Shi A (2007) Influence of cold storage on pupal development and mortality during storage and on post-storage performance of Encarsia formosa and Eretmocerus eremicus (Hymenoptera: Aphelinidae). Biol Control 40:107–117
Mohammed AM, Karut K (2021) Transgenerational effect of insecticides on juvenile development time of the Sweet potato whitefly parasitoid Eretmocerus mundus Mercet (Hymenoptera: Aphelinidae). Int J Pest Manag. https://doi.org/10.1080/09670874.2021.1944698
Nadeem S, Hamed M, Ishaq M, Nadeem MK, Hasnain M, Saeed NA (2014) Effect of storage duration and low temperatures on the developmental stages of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). J Anim Plant Sci 24:1569–1572
Najem SM, Al-Rubeaei JK (2015) Functional response and reproductive potential tables for the parasite Eretmocerus mundus Mercet. J Agric Sci 46(2):214–219
Oliveira MRV, Henneberty TJ, Anderson P (2001) History, current status, and collaborative research projects for Bemisia tabaci. Crop Prot 20:709–723
Qi Y, Lenteren JC, Drost YC, Posthuma-Doodeman CJAM (2004) Life-history parameters of Encarsia formosa, Eretmocerus eremicus and E. mundus, Aphelinid parasitoids of Bemisia argentifoli (Hemiptera: Aleyrodidae). Eur J Entomol 101:83–94
Rogers DJ (1972) Random search and insect population models. J Anim Ecol 41:369–383
Sharaf NS (1982) Parasitization of the tobacco whitefly Bemisia tabaci Genn. (Hom., Aleyrodidae) on Lantana camara L. in the Jordan valley. Z Angew Entomol 94:263–271
Stansly PA, Sanchez PA, Rodriguez JM, Canizares F, Nietoc A, Lopez-Leyva MJ, Fajardo M, Suarez V, Urbaneja A (2004) Prospects for biological control of Bemisia tabaci (Homoptera, Aleyrodidae) in greenhouse tomatoes of southern Spain. Crop Prot 23:701–712
Tauber M, Tauber CA, Gardescu S (1993) Prolonged storage of Chrysoperla carnea (Neuroptera: Chrysopidae). Environ Entomol 22:843–848
Urbaneja A, Sanchez E, Stansly PA (2006) Life history of Eretmocerus mundus, a parasitoid of Bemisia tabaci, on tomato and sweet pepper. BioControl 52:25–39
van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl 57:1–20
van Lenteren JC, Tommasini M (2002) Mass production, storage, shipment and quality control of natural enemies. In: Albajes R, Guillino ML, van Lenteren JC, Elad Y (eds) Integrated pest and disease management in greenhouse crops. Springer, Amsterdam, pp 276–294
van Lenteren JC, Woets J (1988) Biological and integrated pest control in greenhouses. Annu Rev Entomol 33:239–269
Venkatesan T, Singh SP, Jalali SK (2000) Effect of cold storage on cocoons of Goniosia nephantidis Muesebeck (Hymenoptera: Bethylidae) stored for varying periods at different temperature regimes. J Entomol Res 24(1):43–47
Xu HY, Yang NW, Duan M, Wan FH (2016) Functional response, host stage preference and interference of two whitefly parasitoids. Insect Sci 23:134–144
Yan Z, Yue JJ, Bai C, Peng ZQ, Zhang CH (2017) Effects of cold storage on the biological characteristics of Microplitis demonedae (Hymenoptera: Braconidae). Bull Entomol 107:506–512
Zandi-Sohani N, Shishehbor P, Kocheili F (2009) Parasitism of cotton whitefly, Bemisia tabaci Genn. (Hemiptera: Aleyrodidae) in greenhouse tomatoes of southern Spain. Crop Prot 23:701–712

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.