Supplementary information:

Genotype-specific acquisition, evolution and adaptation of characteristic mutations in
hepatitis E virus

Aqsa Ikram1,2, Mohamad S. Hakim1,3, Jian-hua Zhou1,4, Wenshi Wang1, Maikel P. Peppelenbosch1, Qiuwei Pan1,*

1 Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
2 Atta Ur Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
3 Department of Microbiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
4 State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
Organism	Mutations	Method of introducing mutations
Hepatitis E virus	Mutations	Engineered
HEV ORF1	Mutagenesis	Site directed
HEV ORF2	Site directed mutations	Wild type
HEV genotype 1	Transductions	Induced
HEV genotype 3	Mutants	
HEV genotype 4	Codon	

Table S1. Search terms used in this study.
Table S2. Schematic illustration of the study

Table S3. The GenBank accession numbers of HEV sequences used in this study.
GT1/ORF1	GT1/ORF2	GT3/ORF1	GT3/ORF2	GT4/ORF1	GT4 ORF2
AY204877	AY204877	AB089824	AB089824	AB161717	AB161717
AAB94808	AAB61825	BAC44897	BAC44899	AB197673	AB197673
NC_001434	NC_001434	AB291951	AB291951	BAE02700	BAE02701
BAG09237	BAG09239	BAH08575	BAH08577	AJ272108	AJ272108
NP_056779.	M80581	AF060669	AF060669	AB108537	AB108537
M80581	M80581	AF060668	AF060668	BAC77167	BAC77168
L08816	AF185822	AB369687	AB369687	AB193177	AB193177
AAB82002	D11092	BAG32124	BAG32126	AB074917	AB074917
AF185822	JF443717	BAG32124	AAD15813	AB197674	AB197674
D11092	M73218	AB074918	AB074918	BAB93538	BAB96557
JF443717	P29326	APO03430	APO03430	BAD95600	BAB96559
M73218	AFB71096	BAB93541	BAB96562	BAE02703	BAE02704
AFB71094.	D10330	BAB93539	BAB96564	AB074915	AB074915
P29324	BAA01867	BAB93194	BAB63941	AB200239	AB200239
D10330	NP_056788	AB074920	AB091394	AB161718	AB161718
AAA45725	X99441	BAC65250	BAC65250	AB080575	AB080575
BAA01865	AAA65490	BAE92012	BAC65252	AB091395	AB091395
X99441	L25595	AB301710	AB301710	AB097812	AB097812
Q40610	D11093	AB630971	AB630971	AB091395	AB091395
AAA96139	Q68985	AB437318	AB437318	BAC75630	BAC65254
L25595	CAA66937	AB437317	AB437317	BAD95603	BAC5695
D11093	X98292	AB189075	AB189075	BAC65253	BACD5604
AAA65488	AAC35764	AB189074	AB189074	BAC05694	LC22745
CAA67802	JF443718	AB189073	AB189073	LC22745	B291964
JF443718	P29324	AAD10627	AAD10627	BAK52326	BAH59609
AFB71097	AAD4593	BAF92625	BAF92627	BAVAS29763	BAH08615
AAG16764	AAG16766	BAD74172	BAK52238	BAC79251	BAC52976
AFB71100	AB73523	BAD74175	BAD74177	BAD95597	B291965
ABE87252	AAM66330	BAD74181	AB291961	BAH08614	B093347
Q9WC28	JF443722.	BAH08584	BAH08584	KC166976	AB291965
AAL50055	JF443723.	BAH08605	BAH08605	AB099347	AB161719
AAM66329	JF443717	BAH08605	BAH08605	AB291964	AB193176
JF443718	AAD10627	BAK5236	BAH59609	AB193176	BAD95598
AFB71097	AAD4593	BAF92625	BAF92627	BAVAS29763	BAH08615
AAG16764	AAG16766	BAD74172	BAK52238	BAC79251	BAC52976
AFB71100	AB73523	BAD74175	BAD74177	BAD95597	B291965
ABE87252	AAM66330	BAD74181	AB291961	BAH08614	B093347
Q9WC28	JF443722.	BAH08584	BAH08584	KC166976	AB291965
AAL50055	JF443723.	BAH08605	BAH08605	AB099347	AB161719
AAM66329	JF443717	BAH08605	BAH08605	AB291964	AB193176
JF443718	JF443722.	FJ457024	FJ457024	B291961	B291961
AFB71109	JF443724	KC166967	KC166967	AB291956	B291956
AAO72991	AC70099	AB369689	AB291954	B291954	B291954
JF443723	JF443725	B291962	B291962	BAH08586	BAD34958
AFB71112	AFB71120	AB291957	AB291957	BAH08589	BAH08589
FJ457024	AFB71123	B291956	B291956	BAH08610	BAH08610
JF443724	JF443724	AFB71120	AFB71120	B291954	B291954
AFB71115	AFB71108	BAH08590	BAH08590	B229074	B229074
ACJ70098	BAN5759S	BAG32130	BAG32130	AGT96614	AB604239
JF443725	BAF66974	BAH08593	BAH08593	B229071	B229071
AFB71118	JF443721	BAH08578	BAH08578	B229072	B229072
AFB71103	JF443720	KC166968	KC166968	AB229079	AB229079
A. Twenty main mutations analyzed in the present study.

Mutations	Effect	Reference(s)
Y1320H; G1634R/K, K1383N, D1384G; K1398R; V1479I; Y1587F	Ribavirin treatment failure	[1-3]
L477T; L613T	Influence the immunoreactivity of HEV by affecting the neutralization epitope	[4]
F179S, A317T, T735I, L1110F, V1120I, F1439Y, C1483W, N1530T, P259S	Fulminant hepatic failure	[5-7]
V1213A	Chronic hepatitis	[8]

B. Other studies analyzed to see the effect of specific mutations.

Studies for HEV mutation evaluations	Reference(s)
H443L; C457A; C459A; C471A; C472A; C481A; C483A; H497L; H590L	[9, 10]
Insertion/deletion	[11]
Mutational analysis	[12]
Insertion/deletion of a 24 bp RdRp-derived fragment	[1]
N809A; H812L; G816A/V; G817A/V	[13, 14]
L1110F; V1120I	[15]
Effect of mutagenesis on enzyme activity	[16]
K1383N	[1]
F51L	[11, 17]
T59A	[17, 18]
S390L	[17, 18]
N137Q; N310Q; N311Q	[19]
N562Q/D/P/Y	[19]
A5145C; A5178C; A5190C; G5676T; T5690G	[20]
CGC5148–5150AGA	[20]
A5108Δ; T5109C; C5112U; TCT5116–5118AGC; T5121C	[20]
S80A (V66G)	[20]
G6574C; C6570G; G7106T/A; G7097A; C7144A	[21-23]
C1816, U3148, C5907	[24, 25]
186 bp insertion	[26]
90 bp insertion	[27]
171 bp insertion	[28]
174 bp insertion	[28]
117 bp insertion	[29]
246 bp deletion	[30]
Recombination	[31]
Mutations in HEV	[32, 33]
Topic	Reference
--	-----------
Deletion	[34]
HEV adaptations	[35, 36]
HEV mutations (review)	[37]
Ribavirin induced mutagenesis	[3]
Role of asparagine at position at 562	[38]
Role of truncated ORF2 region in immoreactivity	[39]
HEV pathogenesis in pregnancy	[40]
Table S5. Missense SNPs in ORF1 and ORF2 regions of HEV predicted to be deleterious using nsSNP Analyzer, PROVEAN, PMUT and SNPs & GO.

Mutations	Provean	PMUT	SNPs&Go	nSSNP analyser	Provean	PMUT	SNPs&Go	nSSNP analyser
ORF1								
GT1								
GT3								
GT4								
F179S	-	-	-	-	-	-	-	-
A317T	-	-	-	-	-	-	-	-
T735I	✓	✓	✓	✓	✓	✓	✓	✓
L1110F	-	-	-	-	-	-	-	-
V1120I	-	-	-	-	-	-	-	-
V1213A	-	-	-	-	-	-	-	-
Y1320H	✓	✓	✓	✓	✓	✓	✓	✓
K1383N	✓	✓	✓	✓	✓	✓	✓	✓
D1384G	✓	✓	✓	✓	✓	✓	✓	✓
K1398N	-	-	-	-	-	-	-	-
F1439Y	-	-	-	-	-	-	-	-
V1479I	-	-	-	-	-	-	-	-
C1483W	✓	✓	✓	✓	✓	✓	✓	✓
N1530T	✓	✓	✓	✓	✓	✓	✓	✓
Y1587F	✓	✓	✓	✓	✓	✓	✓	✓
G1634R	-	-	-	-	-	-	-	-
G1634K	-	-	-	-	-	-	-	-
ORF2								
GT1								
GT3								
GT4								
P259S	-	-	-	-	-	-	-	-
L477T	✓	✓	✓	✓	✓	✓	✓	✓
L613T	-	-	-	-	-	-	-	-
Mutations	I-Mutant	I-Mutant	I-Mutant					
-----------	----------	----------	----------					
ORF1								
F179S	✓	✓	✓					
A317T	✓	✓	✓					
T735I	✓	✓	✓					
L1110F	✓	✓	✓					
V1120I	✓	✓	✓					
V1213A	✓	✓	✓					
Y1320H	✓	✓	✓					
K1383N	✓	✓	✓					
D1384G	✓	✓	✓					
K1398N	✓	✓	✓					
F1439Y	✓	✓	✓					
V1479I	✓	✓	✓					
C1483W	✓	✓	✓					
N1530T	✓	✓	✓					
Y1587F	✓	✓	✓					
G1634R	✓	✓	✓					
G1634K								
ORF2								
P259S	-	-	-					
L477T	✓	✓	✓					
L613T	✓	✓	✓					

Table S6.

Stability analysis of the mutations by using I-Mutant web server. Tick mark in the table shows that a mutation is found to be destabilizing by the server.
Reference.

1. Debing, Y., et al., Hepatitis E virus mutations associated with ribavirin treatment failure result in altered viral fitness and ribavirin sensitivity. Journal of hepatology, 2016. 65(3): p. 499-508.
2. Debing, Y., et al., A mutation in the hepatitis E virus RNA polymerase promotes its replication and associates with ribavirin treatment failure in organ transplant recipients. Gastroenterology, 2014. 147(5): p. 1008-1011. e7.
3. Todt, D., et al., In vivo evidence for ribavirin-induced mutagenesis of the hepatitis E virus genome. Gut, 2016. 65(10): p. 1733-1743.
4. Zhang, H., et al., The Leu477 and Leu613 of ORF2-encoded protein are critical in forming neutralization antigenic epitope of hepatitis E virus genotype 4. Cellular & molecular immunology, 2008. 5(6): p. 447.
5. Parvez, M.K. and M.S. Al-Dosari, Evidence of MAPK–JNK1/2 activation by hepatitis E virus ORF3 protein in cultured hepatoma cells. Cytotechnology, 2015. 67(3): p. 545-550.
6. Devhare, P., et al., Analysis of helicase domain mutations in the hepatitis E virus derived from patients with fulminant hepatic failure: effects on enzymatic activities and virus replication. Journal of virology, 2014. 184: p. 103-110.
7. Graff, J., et al., Mutations within potential glycosylation sites in the capsid protein of hepatitis E virus prevent the formation of infectious virus particles. Journal of virology, 2008. 82(3): p. 1185-1194.
8. Graff, J., et al., The open reading frame 3 gene of hepatitis E virus contains a cis-reactive element and encodes a protein required for infection of macaques. Journal of virology, 2005. 79(11): p. 6680-6689.
24. Inoue, J., et al., *Analysis of the full-length genome of genotype 4 hepatitis E virus isolates from patients with fulminant or acute self-limited hepatitis* E. Journal of medical virology, 2006. **78**(4): p. 476-484.

25. Inoue, J., et al., *Nucleotide substitutions of hepatitis E virus genomes associated with fulminant hepatitis and disease severity*. The Tohoku journal of experimental medicine, 2009. **218**(4): p. 279-284.

26. Johne, R., et al., *An ORF1-rearranged hepatitis E virus derived from a chronically infected patient efficiently replicates in cell culture*. Journal of viral hepatitis, 2014. **21**(6): p. 447-456.

27. Legrand-Abravanel, F., *Hepatitis E Virus Genotype 3 Diversity*, France-Volume 15, Number 1—January 2009-Emerging Infectious Disease journal-CDC. 2009.

28. Shukla, P., et al., *Cross-species infections of cultured cells by hepatitis E virus and discovery of an infectious virus–host recombinant*. Proceedings of the National Academy of Sciences, 2011. **108**(6): p. 2438-2443.

29. Nguyen, H., et al., *A naturally occurring human/hepatitis E recombinant virus predominates in serum but not in faeces of a chronic hepatitis E patient and has a growth advantage in cell culture*. Journal of General Virology, 2012. **93**(3): p. 526-530.

30. Ray, R., et al., *Indian hepatitis E virus shows a major deletion in the small open reading frame*. Virology, 1992. **189**(1): p. 359-362.

31. Purdy, M.A., J. Lara, and Y.E. Khudyakov, *The hepatitis E virus polyproline region is involved in viral adaptation*. PloS one, 2012. **7**(4): p. e35974.

32. Dalton, H.R., et al., *Locally acquired hepatitis E in chronic liver disease*. Lancet, 2007. **369**(9569): p. 1260.

33. Navaneethan, U., M. Al Mohajer, and M.T. Shata, *Hepatitis E and pregnancy: understanding the pathogenesis*. Liver international, 2008. **28**(9): p. 1190-1199.