Tropical forage breeding from classic to new genomic tools: an example with interspecific tetraploid *Urochloa* spp. hybrids

Filipe Inácio Matias

Thesis presented to obtain the degree of Doctor in Science. Area: Genetics and Plant Breeding

Piracicaba
2018
Tropical forage breeding from classic to new genomic tools: an example with interspecific tetraploid *Urochloa* spp. hybrids

versão revisada de acordo com a resolução CoPGr 6018 de 2011

Advisor:
Prof. Dr. ROBERTO FRITSCHER-NETO

Thesis presented to obtain the degree of Doctor in Science. Area: Genetics and Plant Breeding

Piracicaba
2018
Matias, Filipe Inácio

Tropical forage breeding from classic to new genomic tools: an example with interspecific tetraploid *Urochloa* spp. hybrids / Filipe Inácio Matias. - versão revisada de acordo com a resolução CoPGr 6018 de 2011. - Piracicaba, 2018.

135 p.

Tese (Doutorado) - USP / Escola Superior de Agricultura “Luiz de Queiroz”.

1. Seleção genômica 2. Associação genômica 3. Modelos mistos 4. Genotipagem por sequenciamento 5. Dosagem alélica 6. *Brachiaria* spp. 7. Poliploidia I. Título
“Não é o mais forte que sobrevive, nem o mais inteligente, mas o que melhor se adapta às mudanças.”

Leon C. Megginson
DEDICO

Aos meus pais e irmã, pelos ensinamentos, pela paciência, pelo exemplo de pessoas nas quais sempre me espelho e por sempre acreditarem na minha capacidade.

Aos meus amigos, pelo companheirismo e apoio.
AGRADECIMENTOS

Nuca é tarde para realizar nossos sonhos, pois a melhor maneira de prever o futuro é inventá-lo. Hoje, ao concluir esse trabalho, procuro entre palavras àquelas que, talvez, conseguissem expressar meus sentimentos às pessoas tão queridas. E só encontro um simples e sincero: Obrigado!

Obrigado primeiramente a Deus que tão generosamente distribuíra a dádiva dos talentos entre nós.

Obrigado aos meus pais e minha irmã, pela força que me deram, pelo apoio incondicional, pelo incentivo, pela alegria nas minhas conquistas, e mais, por fazerem seus, o meu sonho.

Obrigado aos meus familiares queridos, aos meus primos e tios que tanto me apoiaram e me ajudaram nos momentos que precisei.

Obrigado aos meus amigos pelos conselhos, segredos compartilhados, aventuras, diversões e por serem tão presentes em minha vida e por terem sido minha família nesse tempo longe de casa.

Obrigado ao Professor Dr. Roberto Fritsche-Neto e toda sua equipe, por toda a dedicação, pelos ensinamentos transmitidos, pela orientação, paciência, e por acreditar no meu potencial.

Obrigado a Dra. Karem Guimaraes Xavier Meireles e ao Dr. Sanzio Carvalho Lima Barrios pela oportunidade, pela coorientação e por me darem todo o suporte para a realização deste trabalho. Agradeço também a todos os membros de sua equipe da EMBRAPA Gado de Corte em Campo Grande/MS, pelos esforços na condução do experimento.

Obrigado ao Dr. Jeffrey Endelman da University of Wisconsin por me receber tão gentilmente em seu grupo, por me coorientar no desenvolvimento deste trabalho e por dividir tantos ensinamentos.

Obrigado a Dra. Cacilda Borges do Valle por ser uma inspiração profissional, por ter me influenciado a seguir o caminho do melhoramento de forrageiras tropicais e por todos os ensinamentos.

Obrigado a Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq pelo auxílio financeiro concedido em forma de bolsa.

Obrigado a Associação para o Fomento à Pesquisa de Melhoramento de Forrageiras Tropicais - UNIPASTO e a Fundação para o Desenvolvimento da Educação, Ciência e Tecnologia do Estado de Mato Grosso do Sul - FUNDECT pelo apoio financeiro.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001.
CONTENTS

RESUMO .. 7
ABSTRACT ... 9
1. INTRODUCTION .. 12
2. GENERAL CONCLUSION ... 16
REFERENCES .. 17
RESUMO

Melhoramento de forrageiras tropicais do clássico as modernas ferramentas genômicas: um exemplo em híbridos interespecíficos tetraploides de Urochloa spp.

Um programa de melhoramento de forragem tropical contém várias peculiaridades, especialmente quando se trata de espécies poliploides e de apomixia facultativa. Apesar de sua importância, atualmente, faltam informações sobre estudos genéticos de características forrageiras e sobre o emprego de ferramentas genômicas quando comparadas a outras culturas e forragens de clima temperado. O gênero Brachiaria é o mais importante para formação de pastagens nas regiões tropicais, principalmente para produção de carne bovina. As espécies comerciais deste gênero são excelentes forrageiras perenes, e a identificação de genótipos superiores depende da seleção de muitas características sob controle genético complexo, com alto custo e avaliação demorada. Portanto, o conhecimento sobre usos e aplicações de ferramentas clássicas e genômicas em características forrageiras pode ser útil para apoiar programas de melhoramento e o desenvolvimento de novas cultivares. Nesse contexto, objetivou-se avaliar diversas ferramentas clássicas e genômicas a serem empregadas como estratégias de seleção em um programa tradicional de melhoramento de forrageiras tropicais. Um painel de híbridos tetraploïdes obtidos do cruzamento Urochloa brizantha x Urochloa ruzizensis foi fenotipado e genotipado para avaliar parâmetros genéticos e realizar estudos genômicos. Para a análise fenotípica clássica, concluímos que não havia uma tendência clara da importância dos efeitos genéticos aditivos e não-aditivos para características agronômicas e nutricionais. O índice de Mulamba e Mock deve ser usado no nível univariado, devido à promoção de uma resposta mais equilibrada à seleção para todas as características na seleção multivariada. Na extração e nas avaliações genômicas, as leituras que foram alinhadas ao genoma de referência 'simulado', criado a partir dos dados de GBS da cultivar 'Marandu', tiveram a maior porcentagem de descoberta de marcadores SNP comparado aos genomas de referência mais próximos, Setaria viridis e S. italic. Recomendamos diferentes limiares de profundidade de leitura e qualidade de genótipo (GQ) para eliminar leituras de baixa qualidade sem introduzir viés de chamada de genótipo. A validação cruzada revelou que os genótipos ausentes foram imputados com uma precisão mediana de 0,85 pelo algoritmo Random Forest para produzir uma matriz genotípica completa, independentemente da frequência de heterozigotos. A análise de associação genômica ampla (GWAS) revelou genes candidatos associados a muitas características forrageiras tropicais, o que poderia ser o primeiro passo em direção à seleção assistida por marcadores (MAS). Além disso, nossos resultados sugerem que a contabilização da dosagem alélica é essencial, uma vez que o nível tetraploide fornece mais informações sobre o verdadeiro estado biológico. Portanto, nossos achados revelam a complexidade da arquitetura genética de características de Urochloa spp. e fornecem informações importantes para a aplicação de GWAS em espécies poliploides. A análise de seleção genômica revela que o GBLUP-A (aditivo) e o GBLUP-AD (aditivo + dominância) mostraram capacidades de predição semelhantes, considerando tanto os modelos simples quanto os multi-característica. Por outro lado, combinando-se
GBLUP-AD e informação tetraploide foi possível melhorar a coincidência de seleção. Além disso, o esquema de validação multi-característica 2 (VS2), onde uma característica não é avaliada para alguns indivíduos, pode fornecer um incremento de até 30% da capacidade de previsão. Portanto, é uma estratégia útil para características com baixa herdabilidade. No geral, todos os modelos de seleção genômica considerados proporcionaram maiores ganhos genéticos do que a seleção fenotípica tradicional. Da mesma forma, a dosagem do alelo associado a fatores aditivos, de dominância e multicaracteres aumentou a acurácia dos modelos genômicos de predição para híbridos poliploides interespecíficos. Finalmente, ferramentas genômicas devem ser utilizadas em programas de melhoramento de forragens para reduzir custos e tempo.

Palavras-chave: Seleção genômica; Associação genômica; Modelos mistos; Genotipagem por sequenciamento; Dosagem alélica; *Brachiaria* spp.
ABSTRACT

Tropical forage breeding from classic to new genomic tools: an example with interspecific tetraploid Urochloa spp. hybrids

A tropical forage breeding program contains several peculiarities, especially when it involves polyploid species and facultative apomixis. Despite their importance, there is still a lack of information on genetic studies of critical forage traits and on the employment of genomic tools when compared to other crops and temperate forages. The genus *Brachiaria* is the most important for forage in tropical regions mainly beef production. The commercial species in this genus are excellent perennial forage, and the identification of superior genotypes depends on the selection of many characteristics under complex genetic control, with high cost and time-consuming evaluation. Therefore, the knowledge about uses and applications of classic and genomic tools in forage traits may be useful to support breeding programs and the development of new cultivars. In this context, the aim was to evaluate several different classic and genomic tools to be employed as selection strategies in a traditional tropical forage breeding program. A panel of tetraploid hybrids obtained from crossing *Urochloa brizantha* x *Urochloa ruzigensis* was phenotyped and genotyped to evaluate genetic parameters and perform genomic studies. The classic phenotypic analysis showed no clear trend of the importance of additive and non-additive genetics effects for agronomical and nutritional traits. The Mulamba and Mock index should be used in the univariate level, due to the promotion of a more balanced response to selection for all traits in the multivariate selection. In the genomic extraction and evaluations, the reads that were aligned to a ‘mock’ reference genome, created from GBS data of the cultivar ‘Marandu’, had more SNP discovered compared to the closest true reference genomes, *Setaria viridis* and *S. italica*. We recommended different thresholds of sample depth and genotype quality (GQ) to eliminate poor quality reads without introducing genotype bias. Cross-validation revealed that missing genotypes were imputed with a median accuracy of 0.85 using Random Forest algorithm to produce a complete genotype matrix, regardless of heterozygote frequency. The genome-wide association analysis (GWAS) revealed candidate genes associated with many tropical forage traits across all cutting seasons, which could be the first step toward marker-assisted selection (MAS). Moreover, our results suggest that accounting for allele dosage is essential, since the tetraploid level provided more information about the true biological state. Therefore, our findings revealed the complexity of the genetic architecture of *Urochloa* spp. traits and provided important insights towards the application of GWAS in polyploids species. The genomic selection analysis revealed that GBLUP-A (additive) and GBLUP-AD (additive + dominance) showed similar prediction abilities considering both single and multi-trait models. Conversely, combining GBLUP-AD and tetraploid information could improve the selection coincidence. Furthermore, the multi-trait validation scheme 2 (VS2), where one trait is not evaluated for some individuals, provided an increment of up to 30% to the prediction ability. Therefore, it is an useful strategy for traits with low heritability.
Overall, all genomic selection models considered provided greater genetic gains than the phenotypic selection. Similarly, the allele dosage associated with additive, dominance and multi-trait factors increased the accuracy of genomic prediction models for interspecific polyploid hybrids. Finally, genomic tools should be used in forages breeding programs in order to reduce cost and time.

Keywords: Genomic selection; Genomic association; Mixed models; Genotyping-by-sequencing; Allele dosage; Brachiaria spp.
1. INTRODUCTION

Animal protein is an important nutritional source for humans’ health due to the high biological value (World Health Organization and United Nations University, 2007). The consumption of animal protein increased following the population growth, and meat and milk from cattle are undoubtedly the favored and most important protein sources (Tilman and Clark, 2014; Henchion et al., 2017; FAO, 2018). Despite improved animal production technologies and sustainable animal production systems there is still an association between a negative impact on the environment and cattle production (Henchion et al. 2017). Thus, the use of native and cultivated pastures rather than animal confinement has contributed to animal welfare, product quality, environmental protection and costs reduction, resulting in a more natural protein source (Lupo et al., 2013; Picasso et al., 2014; Grandin, 2015; O’Callaghan et al., 2016a; b; Henchion et al., 2017).

Brachiaria is the most cultivated genus as pasture on tropical livestock farms and *U. decumbens* (syn. *Brachiaria decumbens*) and *U. brizantha* (syn. *B. brizantha*) the most used species (Jank et al., 2014; Pessoa-Filho et al., 2017). Cultivars from this genus have many advantages such as tolerance to poor and acid soils, good carrying capacity, tolerance to insects and good nutritional value. The economically important *Brachiaria* cultivars are tetraploid (2n = 4x = 36), but this genus also has diploid (2n = 2x = 18), pentaploid (2n = 5x = 45) and hexaploid commercial genotypes (2n = 6x = 54) (Mendes-Bonato et al., 2002; Jank et al., 2014). Due to the cytogenetic behavior of the *Brachiaria* polyploid species, Mendes-Bonato et al. (2002) and Worthington et al. (2016) suggested that they may be complex segmental allopolyploids. The segmental allopolyploids have partial homology among chromosomes and sets of chromosomes with differentiated behavior, varying between allopolyploid and autopolyploid (Sybenga, 1996). Segmental allopolyploids also are common for other plants as already described in the literature for buffelgrass (Jessup et al., 2003) and *Leucaena benth* (Boff and Schifino-Wittmann, 2003).

Initially, the commercial cultivars used in tropical regions came from introductions from Africa (Jank et al., 2011, 2014; Maass et al., 2015). The hybridization between *U. brizantha* tetraploid cultivars was impossible due the apomictic reproduction and lack of compatible sexual source (Miles, 2007). Then in 1981 the *Urochloa ruziziensis*, that is originally a diploid species, had the genome duplicated by colchicine (Swenne et al., 1981) opening a new possibility for *Brachiaria* breeding programs. Now it is possible to hybridize in a recurrent selection schemes (Miles, 2007; Worthington and Miles, 2015).
between sexual “polyploidized” *U. ruziziensis* with apomictic commercial pollen donor *U. decumbens* or *U. brizantha* (Lutts et al., 1991; Souza-Kaneshima et al., 2010; Monteiro et al., 2016; Worthington et al., 2016). Thus, it is possible to select superior males (apomictic) and females (sexual) genotypes to provide a unique and distinctive diversity interspecific hybrids of *Urochloa* spp to be explored.

An ideal forage plant should produce large quantities of dry matter, especially of leaves, good regrowth ability, which allows for more grazing cycles throughout the year, and high nutritional value regarding the content of protein, less fiber and lignin content, which allows for good digestibility (Resende et al. 2008). Although selection on a single trait provides for higher genetic progress, its use may be detrimental due to the occurrence of unwanted correlations between the traits of interest under improvement (Bauer and Léon 2008). Thus, multivariate methods, such as principal component analysis, allow multivariate patterns of interest to be shown graphically, assisting in the simultaneous selection of agronomic and nutritional characteristics.

In a breeding program, it is necessary to estimate genetic parameters in order to establish the best strategy of hybridization, selection and germplasm organization considering traits of interest. Estimation of genetic parameters and correlations have been described in the literature for *U. decumbens* (Mateus et al. 2015; Matias et al. 2016) and *U. humidicola* (Figueiredo et al. 2012). However, studies about genetic parameters such as additive and dominance variance, as well as general and specific combining ability in interspecific hybrid populations are not yet available in the literature.

The molecular studies in *Brachiaria* populations were restricted before to microsatellites (Jungmann et al., 2009, 2010; Vigna et al., 2011; Silva et al., 2013) and more recently in the use of genotyping-by-sequencing methods (GBS) (Worthington et al., 2016; Ferreira et al., 2018). However, little is known about the influence of filtering parameters criteria on GBS data in polyploids forages. New breeding panels and polyploid species can be evaluated genomically using GBS (Poland et al., 2012; Worthington et al., 2016) which is an interesting approach to reduce the complexity of polyploid genomes by restriction enzyme digestion (Huang et al., 2014). Different methods and softwares were developed to perform genotype calling of polyploid species using GBS. All these methodologies have in common the use of the ratio between the number of reads and alleles (Grandke et al., 2014). However, estimating polyploid genotypes require higher read depth compared to diploids. For instance, different genotyping call requirements can be found in the literature for tetraploid data. Genotype call could require a depth of at least 48x as described for *Poa*
grasses (Griffin et al., 2011) or among 60-80x as described for potato (Uitdewilligen et al., 2013). In addition, the genotype call for the single nucleotide polymorphisms (SNP) discovery is an inference by the allele depth, where alleles with shallow depth could be biased. Then, it is necessary to choose carefully the genotype quality score to prevent bias in genomics studies (Anderson et al., 2010; Laurie et al., 2010; McKenna et al., 2010).

Among many quantitative genetics tools, genome-wide association studies (GWAS) have been used to discover genetic regions in significant association with essential traits (Zargar et al., 2015). However, in polyploid species, GWAS is complicated, mainly due to the number of genotype classes and possible modes of gene action which, until recently, where under supported with appropriate analysis methods (Rosyara et al., 2016). Consequently, GWAS use in polyploids is relatively new (Bourke et al., 2018; Ferrão et al., 2018) and is predominantly applied by disregarding the allele dosage and then applying diploid models and software (Sun et al., 2016; Mourad et al., 2018). However, little is known about the consequences of using diploid models on the GWAS results compared to the use of the adequate allele dosage. Furthermore, despite the noteworthy importance of *Urochloa* spp. for livestock in tropical regions, as far as we know, there are no studies of GWAS using SNP markers performed on this genus.

Usually, the whole selection process, from the generation of segregating populations to the release of new cultivars in tropical perennial forages, takes around 10-15 years. Furthermore, it is a hard-working and expensive process due to the evaluation of animal performance apart from plant performance (Jank et al, 2014). For instance, one selection cycle in these species demands on average of two years, where phenotypic records of seven to ten cuttings are employed to evaluate the genetic value, stability, and adaptability of genotypes. Hence, genomic prediction methods can be a useful tool to reduce the costs due to the phenotyping expenses and the length of *Urochloa* spp. breeding cycle. In this sense, a simulation study of the feasibility of GP in a traditional forages breeding program (Resende et al. 2014), concluded that the individual genomic prediction method (INDG) could be useful when marker effects have been previously estimated. However, the genomic prediction may be ineffective depending on the heritability of the target trait (de los Campos et al., 2013). Thus, an alternative is the use of the correlation between traits to improve the predictive ability of the models by using the multi-trait approach (MTM). Through this approach, it is possible to use traits with higher heritability to improve the power to predict the others trait (Bauer and Léon, 2008; Dos Santos et al., 2016; Fernandes et al., 2018). It has been successfully implemented using single by single
trait (Jia and Jannink, 2012; Guo et al., 2014) or indices (Schulthess et al., 2016; Lyra et al., 2017).

In this context, our aims were (i) to estimate the contribution of additive and non-additive effects on agronomical and nutritional traits; (ii) to estimate the accuracy of multivariate index selection efficiency; (iii) the influence of different quality filters to select markers from GBS analysis; (iv) to infer the phylogeny of Brachiaria species by GBS reads alignment and SNP discovery using five different grass genomes; (v) to compare the missing data imputation accuracy using the Random Forest and Mode methods; (vi) to perform GWAS analysis for forage traits of different cutting seasons using SNP markers from genotyping by sequencing (GBS); (vii) to verify the influence of allele dosage through diploid and tetraploid configuration markers in the GWAS approach; (viii) to empirically evaluate the influence of multi-trait and the allele dosage information in genomic prediction accuracy in a diversity panel of Urochloa spp. hybrids.
2. GENERAL CONCLUSION

The classic phenotypic analysis showed no clear trend of the importance of additive and non-additive genetics effects for agronomical and nutritional traits. The Mulamba and Mock index should be used in the univariate level, due to the promotion of a more balanced response to selection for all traits in the multivariate selection. In the genomic extraction and evaluations, the reads that were aligned to a ‘mock’ reference genome, created from GBS data of the cultivar ‘Marandu’, had more SNP discovered compared to the closest true reference genomes, *Setaria viridis* and *S. italica*. We recommended different thresholds of sample depth and genotype quality (GQ) to eliminate poor quality reads without introducing genotype bias. Cross-validation revealed that missing genotypes were imputed with a median accuracy of 0.85 using Random Forest algorithm to produce a complete genotype matrix, regardless of heterozygote frequency. The genome-wide association analysis (GWAS) revealed candidate genes associated with many tropical forage traits across all cutting seasons, which could be the first step toward marker-assisted selection (MAS). Moreover, our results suggest that accounting for allele dosage is essential, since the tetraploid level provided more information about the true biological state. Therefore, our findings revealed the complexity of the genetic architecture of *Urochloa* spp. traits and provided important insights towards the application of GWAS in polyploids species. The genomic selection analysis revealed that GBLUP-A (additive) and GBLUP-AD (additive + dominance) showed similar prediction abilities considering both single and multi-trait models. Conversely, combining GBLUP-AD and tetraploid information could improve the selection coincidence. Furthermore, the multi-trait validation scheme 2 (VS2), where one trait is not evaluated for some individuals, provided an increment of up to 30% to the prediction ability. Therefore, it is an useful strategy for traits with low heritability. Overall, all genomic selection models considered provided greater genetic gains than the phenotypic selection. Similarly, the allele dosage associated with additive, dominance and multi-trait factors increased the accuracy of genomic prediction models for interspecific polyploid hybrids. Finally, genomic tools should be used in forages breeding programs in order to reduce cost and time.
REFERENCES

Anderson, C.A., F.H. Pettersson, G.M. Clarke, L.R. Cardon, A.P. Morris, and K.T. Zondervan. 2010. Data quality control in genetic case-control association studies. Nat. Protoc. 5(9): 1564–1573.

Bauer, A.M., and J. Léon. 2008. Multiple-trait breeding values for parental selection in self-pollinating crops. Theor. Appl. Genet. 116(2): 235–242.

Boff, T., and M.T. Schifino-Wittmann. 2003. Segmental allopolyploidy and paleopolyploidy in species of Leucaena bentho: Evidence from meiotic behaviour analysis. Hereditas 138(1): 27–35.

Bourke, P.M., V.W. Gitonga, R.E. Voorrips, R.G.F. Visser, F.A. Krens, and C. Maliepaard. 2018. Multi-environment QTL analysis of plant and flower morphological traits in tetraploid rose. Theor. Appl. Genet.: 1–15.

FAO. 2018. FAOSTAT. Available at http://faostat3.fao.org/faostat-gateway/go/to/home/E (verified 3 March 2018).

Fernandes, S.B., K.O.G. Dias, D.F. Ferreira, and P.J. Brown. 2018. Efficiency of multi-trait, indirect, and trait-assisted genomic selection for improvement of biomass sorghum. Theor. Appl. Genet. 131(3): 747–755.

Ferrão, L.F. V., J. Benevenuto, I. de B. Oliveira, C. Cellon, J. Olmstead, M. Kirst, M.F.R. Resende, and P. Munoz. 2018. Insights Into the Genetic Basis of Blueberry Fruit-Related Traits Using Diploid and Polyploid Models in a GWAS Context. Front. Ecol. Evol. 6: 107.

Ferreira, R.C.U., L.A. de C. Lara, L. Chari, S.C.L. Barrios, C.B. do Valle, J.R. Valerio, F.Z.V. Torres, A.A.F. Garcia, and A.P. de Souza. 2018. Genetic mapping with allele dosage information in tetraploid Urochloa decumbens (Stapf) R.D. Webster reveals insights into spittlebug (Notozulia entreriana Berg) resistance. bioRxiv: 360594.

Figueiredo UJ de, Nunes JAR, Valle CB do (2012) Estimation of genetic parameters and selection of Brachiaria humidicola progenies using a selection index. Crop Breed Appl Biotechnol 12:237–244.

Grandin, T. 2015. Improving Animal Welfare: A Practical Approach (T Grandin, Ed.). 2nd ed. CAB International, Boston, MA, USA.

Grandke, F., S. Ranganathan, A. Czech, J.R. de Haan, and D. Metzler. 2014. Bioinformatic Tools for Polyploid Crops. J. Agric. Sci. Technol. B 4(8).

Griffin, P.C., C. Robin, and A.A. Hoffmann. 2011. A next-generation sequencing method for overcoming the multiple gene copy problem in polyploid phylogenetics, applied to Poa grasses. BMC Biol. 9(1): 19.

Guo, G., F. Zhao, Y. Wang, Y. Zhang, L. Du, and G. Su. 2014. Comparison of single-trait and multiple-trait genomic prediction models. BMC Genet. 15.

Henchion, M., M. Hayes, A. Mullen, M. Fenelon, and B. Tiwari. 2017. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 6(7): 53.
Huang, Y.F., J.A. Poland, C.P. Wight, E.W. Jackson, and N.A. Tinker. 2014. Using Genotyping-By-Sequencing (GBS) for genomic discovery in cultivated oat. PLoS One 9(7).

Jank, L., S.C. Barrios, C.B. do Valle, R.M. Simeão, and G.F. Alves. 2014. The value of improved pastures to Brazilian beef production. Crop Pasture Sci. 65(11): 1132–1137.

Jank, L., C. Valle, and R. Resende. 2011. Breeding tropical forages. Crop Breed. Appl. Biotechnol. S1(September 2015): 27–34.

JJessup, R.W., B.L. Burson, G. Burow, Y.-W. Wang, C. Chang, Z. Li, A.H. Paterson, and M.A. Hussey. 2003. Segmental allotetraploidy and allelic interactions in buffelgrass (Pennisetum ciliare (L.) Link syn. Cenchrus ciliaris L.) as revealed by genome mapping. Genome 46(2): 304–313.

Jia, Y., and J.-L. Jannink. 2012. Multiple-trait genomic selection methods increase genetic value prediction accuracy. Genetics 192(4): 1513–22.

Jungmann, L., B.B.Z. Vigna, K.R. Boldrini, a C.B. Sousa, C.B. do Valle, R.M.S. Resende, M.S. Pagliarini, M.I. Zucchi, and a P. de Souza. 2010. Genetic diversity and population structure analysis of the tropical pasture grass Brachiaria humidicola based on microsatellites, cytogenetics, morphological traits, and geographical origin. Genome 53(9): 698–709.

Jungmann, L., B.B.Z. Vigna, J. Paiva, A.C.B. Sousa, C.B. do Valle, P.R. Laborda, M.I. Zucchi, and A.P. de Souza. 2009. Development of microsatellite markers for Brachiaria humidicola (Rendle) Schweick. Conserv. Genet. Resour. 1(1): 475–479.

Laurie, C.C., K.F. Doheny, D.B. Mirel, E.W. Pugh, L.J. Bierut, T. Bhangale, F. Boehm, N.E. Caporaso, M.C. Cornelis, H.J. Edenberg, S.B. Gabriel, E.L. Harris, F.B. Hu, K.B. Jacobs, P. Kraif, M.T. Landi, T. Lumley, T.A. Manolio, C. McHugh, I. Painter, J. Paschall, J.P. Rice, K.M. Rice, X. Zheng, and B.S. Weir. 2010. Quality control and quality assurance in genotypic data for genome-wide association studies. Genet. Epidemiol. 34(6): 591–602.

de los Campos, G., J.M. Hickey, R. Pong-Wong, H.D. Daetwyler, and M.P.L. Calus. 2013. Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding. Genetics 193(2): 327–345.

Lupo, C.D., D.E. Clay, J.L. Benning, and J.J. Stone. 2013. Life-Cycle Assessment of the Beef Cattle Production System for the Northern Great Plains, USA. J. Environ. Qual. 42(5): 1386.

Lutts, S., J. Ndikumana, and B.P. Louant. 1991. Fertility of Brachiaria ruziziensis in Interspecific Crosses with Brachiaria decumbens and Brachiaria brizantha - Meiotic Behavior, Pollen Viability and Seed Set. Euphytica 57(3): 267–274.

Lyra, D.H., L. de Freitas Mendonça, G. Galli, F.C. Alves, Í.S.C. Granato, and R. Fritsche-Neto. 2017. Multi-trait genomic prediction for nitrogen response indices in tropical maize hybrids. Mol. Breed. 37(6).

Maass, B.L., C. a O. Midega, M. Mutimura, V.B. Rahetlah, P. Salgado, J.M. Kabirizi, Z.R. Khan, S.R. Ghimire, and I.M. Rao. 2015. Homecoming of Brachiaria: Improved hybrids prove useful for African animal agriculture. East African Agric. For. J. 81(1): 71–78.
Matias FI, Barrios SCL, Valle CB do, et al. (2016) Estimate of genetic parameters in Brachiaria decumbens hybrids. Crop Breed Appl Biotechnol 16:115–122.

McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, and M.A. DePristo. 2010. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20(9): 1297–1303.

Mendes-Bonato, A.B., M.S. Pagliarini, F. Forli, C. Borges Do Valle, and M.I. De Oliveira Pentead. 2002. Chromosome numbers and microsporogenesis in Brachiaria brizantha (Gramineae). Euphytica 125(3): 419–425.

Miles, J.W. 2007. Apomixis for cultivar development in tropical forage grasses. Crop Sci. 47(Supplement_3): S–238.

Monteiro, L.C., J.R. Verzignassi, S.C.L. Barrios, C.B. do Valle, G. de L. Benteo, and C.B. de Libório. 2016. Characterization and selection of interspecific hybrids of Brachiaria decumbens for seed production in Campo Grande-MS. Crop Breed. Appl. Biotechnol. 16(3): 174–181.

Mourad, A.M.I., A. Sallam, V. Belamkar, S. Wegulo, R. Bowden, Y. Jin, E. Mahdy, B. Bakheit, A. Abo El-Wafaa, J. Poland, and P.S. Baenziger. 2018. Genome-wide association study for Identification and validation of novel SNP markers for Sr6 stem rust resistance gene in bread wheat. Front. Plant Sci. 9(March): 380.

O’Callaghan, T.F., H. Faulkner, S. McAuliffe, M.G. O’Sullivan, D. Hennessy, P. Dillon, K.N. Kilcawley, C. Stanton, and R.P. Ross. 2016a. Quality characteristics, chemical composition, and sensory properties of butter from cows on pasture versus indoor feeding systems. J. Dairy Sci. 99(12): 9441–9460.

O’Callaghan, T.F., D. Hennessy, S. McAuliffe, K.N. Kilcawley, M. O’Donovan, P. Dillon, R.P. Ross, and C. Stanton. 2016b. Effect of pasture versus indoor feeding systems on raw milk composition and quality over an entire lactation. J. Dairy Sci. 99(12): 9424–9440.

Pessoa-Filho, M., A.M. Martins, and M.E. Ferreira. 2017. Molecular dating of phylogenetic divergence between Urochloa species based on complete chloroplast genomes. BMC Genomics 18(1).

Picasso, V.D., P.D. Modernel, G. Becoña, L. Salvo, L. Gutiérrez, and L. Astigarraga. 2014. Sustainability of meat production beyond carbon footprint: A synthesis of case studies from grazing systems in Uruguay. Meat Sci. 98(3): 346–354.

Poland, J., J. Endelman, J. Dawson, J. Rutkoski, S. Wu, Y. Manes, S. Dreisigacker, J. Crossa, H. Sánchez-Villeda, M. Sorrells, and J.-L. Jannink. 2012. Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome J. 5(3): 103.

Resende, R.M.S., M.D. Casler, and M.D.V. de Resende. 2014. Genomic selection in forage breeding: Accuracy and methods. Crop Sci. 54(1): 143–156.

Rosyara, U.R., W.S. De Jong, D.S. Douches, and J.B. Endelman. 2016. Software for Genome-Wide Association Studies in Autopolyploids and Its Application to Potato. Plant Genome: 1–10.

Dos Santos, J.P.R., R.C. De Castro Vasconcellos, L.P.M. Pires, M. Balestre, and R.G. Von Pinho. 2016. Inclusion of dominance effects in the multivariate GBLUP model. PLoS One 11(4).
Schulthess, A.W., Y. Wang, T. Miedaner, P. Wilde, J.C. Reif, and Y. Zhao. 2016. Multiple-trait and selection indices-genomic predictions for grain yield and protein content in rye for feeding purposes. Theor. Appl. Genet. 129(2): 273–287.

Silva, P.I.T., A.M. Martins, E.G. Gouvea, M. Pessoa-Filho, and M.E. Ferreira. 2013. Development and validation of microsatellite markers for Brachiaria ruziziensis obtained by partial genome assembly of Illumina single-end reads. BMC Genomics 14(1).

Souza-Kaneshima, A.M. de, C. Simioni, M.F. Felismino, A.B. Mendes-Bonato, C. Risso-Pascotto, C. Pessim, M.S. Pagliarini, and C.B. do Valle. 2010. Meiotic behaviour in the first interspecific hybrids between Brachiaria brizantha and Brachiaria decumbens. Plant Breed. 129(2): 186–191.

Sun, C., B. Wang, X. Wang, K. Hu, K. Li, Z. Li, S. Li, L. Yan, C. Guan, J. Zhang, Z. Zhang, S. Chen, J. Wen, J. Tu, J. Shen, T. Fu, and B. Yi. 2016. Genome-Wide Association Study Dissecting the Genetic Architecture Underlying the Branch Angle Trait in Rapeseed (Brassica napus L.). Sci. Rep. 6.

Swenne, A., B.P. Louant, and M. Dujardin. 1981. Induction par la colchicine de formes autotétraploïdes chez Brachiaria ruziziensis Germain et Évrard (Graminée). Agron. Trop. 36: 134–141.

Sybenga, J. 1996. Chromosome pairing affinity and quadrivalent formation in polyploids: do segmental allopolyploids exist? Genome 39(6): 1176–1184.

Tilman, D., and M. Clark. 2014. Global diets link environmental sustainability and human health. Nature 515(7528): 518–522.

Uitdewilligen, J.G.A.M.L., A.M.A. Wolters, B.B. D’hoop, T.J.A. Borm, R.G.F. Visser, and H.J. van Eck. 2013. A Next-Generation Sequencing Method for Genotyping-by-Sequencing of Highly Heterozygous Autotetraploid Potato. PLoS One 8(5).

Vigna, B.B.Z., L. Jungmann, P.M. Francisco, M.I. Zucchi, C.B. do Valle, and A.P. de Souza. 2011. Genetic Diversity and Population Structure of the Brachiaria brizantha Germplasm. Trop. Plant Biol. 4(3–4): 157–169.

World Health Organization and United Nations University. 2007. Protein and amino acid requirements in human nutrition. World Health Organ. Tech. Rep. Ser. (935): 1–265.

Worthington, M., C. Heffelfinger, D. Bernal, C. Quintero, Y.P. Zapata, J.G. Perez, J. De Vega, J. Miles, S. Dellaporta, and J. Tohme. 2016. A parthenogenesis gene candidate and evidence for segmental allopolyploidy in apomictic Brachiaria decumbens. Genetics 203(3): 1117–1132.

Worthington, M.L., and J.W. Miles. 2015. Reciprocal full-sib recurrent selection and tools for accelerating genetic gain in apomictic Brachiaria. p. 19–30. In Molecular Breeding of Forage and Turf. Springer.

Zargar, S.M., B. Raatz, H. Sonah, Mubashir, J.A. Bhat, Z.A. Dar, G.K. Agrawal, and R. Rakwal. 2015. Recent advances in molecular marker techniques: Insight into QTL mapping, GWAS and genomic selection in plants. J. Crop Sci. Biotechnol. 18(5): 293–308.