Original article

First report with morphometrics and molecular characterization of phytonematodes associating mango trees in the tropics of Saudi Arabia

Ahmed A.M. Dawabah a,⇑, Fahad A. Al-Yahya b, Hamzeh A. Lafi b

⁎Nematode Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center, 9 Gameat El-Qahera street, Giza 12619, Egypt

⇑Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia

A R T I C L E   I N F O

Article history:
Received 19 April 2019
Revised 29 July 2019
Accepted 1 August 2019
Available online 2 August 2019

Keywords:
Mangifera indica
Morphometrics
Molecular
Stylet-bearing nematodes
Saudi Arabia

A B S T R A C T

A sum of 218 composite rhizosphere soil samples were collected from around the feeder roots of mango, Mangifera indica growing in Jazan region, the tropical south west corner of Saudi Arabia. Samples were rendered for nematodes extraction using the centrifugal floatation method, and the stylet-bearing nematodes were morphologically identified according to the standardized taxonomical keys. A list of 14 stylet-bearing nematode genera and/or species were found to be associating the roots of mango in this study. Species identification of the most important parasitic nematodes, in this list, was carried-out, based on morphometrics and morphological features. Identification of these species was then molecularly confirmed using the D3 expansion region of 28S ribosomal RNA (rRNA) gene. These nematodes included; Tylenchoryynchus mediterraneus, Hoplolaimus seinhorsti, Hemicriconemoides strictathecatus, Longidorus latocephalus and Xiphinema elongatum. Some new local nematode-host records in Saudi Arabia were recorded including; Aphelenchus sp., H. strictathecatus, L. latocephalus, and T. mediterraneus. Some new world nematode-host records were also reported including; L. latocephalus and T. mediterraneus.

Peer review under responsibility of King Saud University.

© 2019 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Jazan region is a very distinguished agricultural area located in its tropical south west corner of Saudi Arabia. This region has been noted for its high-quality production of mango, Mangifera indica L. (Family: Anacardiaceae), many years ago. Unlike, many species and genera of plant-parasitic nematodes were reported associating the roots of mango trees in many countries all over the world (Castillo and Gomez-Barcina, 1993; Quijada et al., 2002; Van den Berg and Mekete, 2010), and in Saudi Arabia as well (Al-Hazmi et al., 1995; Al-Yahya, 1999, 2005; Mokbel, 2014). However, these nematode records in Saudi Arabia were mostly identified to genera, and no further studies were carried-out to identify them to the species level, either on morphometrics or molecular bases.

In fact, species characterization of plant nematodes is not so easy as it could be assumed due to their microscopic sizes, morphological analogy, overlapping morphometric characters and the minority of the definite taxonomic criteria (Handoo and Palomares-Rius, 2014). The use of modern molecular tools and the phylogenetic analysis offer a good solution for the misleading problems of nematode identification by the classical methods. The large subunit of the nuclear ribosomal RNA (28S rRNA), also known as LSU-rRNA has conserved domains and certain expansion segments such as D2-D3 expansion region which is very useful for the molecular characterization of many nematode species (Bae et al., 2010; Susulovska et al., 2017). However, D2 segment is more variable, compared to D3 segment (Douda et al., 2013). Thus, various studies have adopted the D3 segment of the 28S rRNA for identifying nematodes (Bae et al., 2010, Carta et al., 2001). Accordingly, the integration of morphometrics, morphological and molecular tools is being the most effective in the nematode characterization (De Ley et al., 2005; Handoo and Palomares-Rius, 2014). Many workers have successfully identified many different nematode species following the classical methods and confirmed their identification using 28S rRNA sequence data (Handoo and Palomares-Rius, 2014; Carta et al., 2016).

The purpose of this study was to identify and analyze the communities of the stylet-bearing nematodes associating mango trees in the tropical south west corner of Saudi Arabia, and to clearly...
characterize the most important nematode species associating these trees on morphometrics, morphological and molecular bases.

2. Materials and methods

2.1. Sampling and nematode extraction

A survey of stylet-bearing nematodes associated with mango, Mangifera indica L., was carried-out in Jazan region, the tropical south west corner of Saudi Arabia. A sum of 218 composite rhizosphere soil samples were collected randomly from around the roots of mango trees. The composite samples (5–7 cores/tree) were collected from 3 to 4 sites surrounding the feeder roots of each tree, then sealed in transparent plastic bags, labeled and air transported to our university campus. Once samples reached the lab, they were processed for nematode extraction immediately, or kept in a refrigerator (<10°C) until they were handled within a week.

Whenever handled, samples were thoroughly mixed, sieved to remove stones and debris. Representative sub-samples (200 cm³ soil) were taken from the whole samples to be subjected for nematode extraction using a modified centrifugal flotation procedure, with nested 20, 150 and 400 mesh sieves (Hooper, 1986). Stylet-bearing nematodes were preliminary identified and counted using a specific counting slide under a compound microscope. Nematode communities were analyzed using the absolute frequency of occurrence (FO%), mean population density (PD) and the prominence value (PV) (Norton, 1978).

2.2. Morphological identification

Nematode individuals were collected in Syracuse dishes containing water, then the dishes were kept in an electrical oven (50–70°C) for a few hours to kill nematodes. Nematodes were then mounted in a fresh formalin solution (2%) on microscopic glass slides for examination (Shurtleff and Averre III, 2000). Stylet-bearing nematodes were morphologically identified either to genera and/or species according to the standardized taxonomic keys (Goodey, 1963; Mai and Lyon, 1975; Siddiqi, 1977; Handoo and Palomares-Rius, 2014; Kumari, 2014). A few drops of the fixative # 1 were heated up to 50–60°C and added to labeled staining blocks containing the live nematode specimens. The staining blocks were placed uncovered in a glass desiccator containing 1/10th (v/v) 96% ethyl alcohol. After 24 h, the staining blocks were pulled out from the desiccator, and the excess liquid volume inside was sucked out using a fine pipette, then the volume was topped up again with a few drops of the fixative # 2. Staining blocks were covered partially to allow slow evaporation of alcohol, then placed inside the incubator. A few drops of fixative # 2 were added every 2–3 h (3-4 times). Finally, a few drops of the fixative # 3 were added. After 48 h, the staining blocks were transferred from the incubator and tightly covered. Whenever needed, a few nematode specimens were mounted in a glycerin droplet on microscopic glass slides and measurements of the different important characters of the examined nematodes were recorded.

2.3. Morphometric studies

Adult stages of the most important parasitic nematodes were heat-killed and fixed using the following fixatives (De Grisse, 1969): fixative # (1) 4% formalin: glycerin (99: 1), fixative # (2) 96% ethyl alcohol: glycerin (95:5), fixative # (3) 96% ethyl alcohol:glycerin (50:50).

A few drops of the fixative # 1 were heated up to 50–60°C and added to labeled staining blocks containing the live nematode specimens. The staining blocks were placed uncovered in a glass desiccator containing 1/10th (v/v) 96% ethyl alcohol. After 24 h, the staining blocks were pulled out from the desiccator, and the excess liquid volume inside was sucked out using a fine pipette, then the volume was topped up again with a few drops of the fixative # 2. Staining blocks were covered partially to allow slow evaporation of alcohol, then placed inside the incubator. A few drops of fixative # 2 were added every 2–3 h (3-4 times). Finally, a few drops of the fixative # 3 were added. After 48 h, the staining blocks were transferred from the incubator and tightly covered. Whenever needed, a few nematode specimens were mounted in a glycerin droplet on microscopic glass slides and measurements of the different important characters of the examined nematodes were recorded.

2.4. Molecular characterization

Adult females of the most important parasitic nematodes were hand-picked, put singly in PCR tubes and crushed using the tip of a 10 µl pipette tip. Extraction of DNA was accomplished in 10 µl nematode lysis buffer [10X PCR buffer (1 µl), double distilled water (8 µl), proteinase K (0.06 µl)] (Subbotin et al., 2000). PCR reaction and program are shown in (Tables 1 and 2). The reaction was run-out for enzyme inactivation, firstly @ 60°C for 1 h, then @ 95°C for 15 min. Finally, the analyst was subjected to centrifugation @ 12,000 rpm for 1 min.

The D3 expansion regions of 28S ribosomal RNA (rRNA) gene of nematode samples was amplified using the forward D3A (5′-GACCCGTTCGAAAGACCGGA -3′) and the reverse D3B (5′-TCGGAAGGGAGGCTGCTACTA -3′) primers (Courtright et al., 2000; Douda et al., 2013). PCR-DNA products were visualized by the aid of ethidium bromide stain and the UV gel documentation system, then were cut-off from the gels and purified using QiAquick Gel Extraction Kit. The purified PCR-DNA products were sent to Macrogen company, south Korea (info@macrogen.com) for sequencing using D3A and D3B primers. BLASTN was operated to analyze the nematode sequences, and those sequences with the highest similarity e-values along with the nearest nematode species that had GenBank sequences were aligned in ClustalW as described by Thompson et al. (1994).

Phylogenetic trees were reconstructed by the maximum likelihood (ML) method using MEGA6 software (Tamura et al., 2013). The bootstrap consensus tree inferred from 100 replicates was taken to represent the evolutionary history of the taxa analyzed. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates were collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (100 replicates) were shown next to the branches (Felsenstein, 1985). The analysis involved 9, 9, 11, 7 and 7 nucleotide sequences for Tylenchorhynchus mediterraneus, Hoplolaimus seinhorsti, Hemicriconemoides strictathecatus, Longidorus latocephalus and Xiphinema elongatum, respectively. There were a total of 513, 163, 164, 222 and 289 clean positions (without gaps and missing data) in the final dataset for T. mediterraneus, H. seinhorsti, H. strictathecatus, L. latocephalus and X. elongatum, respectively.

3. Results and discussion

3.1. Community analysis of stylet-bearing nematodes associated with mango, M. indica in Jazan region, south west corner of Saudi Arabia

Fourteen species and/or genera of stylet-bearing nematodes were found to be associating mango, M. indica, trees in Jazan region, south west corner of Saudi Arabia (Table 3). These nematodes, according to their frequency of occurrence (FO%), were: Hoplolaimus seinhorsti (33.49%), Tylenchorhynchus mediterraneus (29.36%), Aphelenchus sp. (16.51%), Trichodorus sp. (14.68%), Xiphinema elongatum (11.01%), Hemicriconemoides strictathecatus (10.55%), Pratylenchus sp. (8.26%), Ditylenchus sp. (7.25%), Helicotylenchus sp. and Longidorus latocephalus (2.29%, both), Tylenchus sp. (1.38%), Aphelenchoides sp., Rotylenchus sp. and Tetylenchus sp. (0.46% each). The highest nematode population density (PD) was

| Table 1 | PCR reaction. |
|---------|---------------|
| 1×      | 33×           |
| 2 × PCR Master Mix - Promega | 12.5 | 412.5 |
| 10 picomol D3A primer | 1 | 33 |
| 10 picomol D3B primer | 1 | 33 |
| DNA | 4 | – |
| H2O | 6.5 | 214.5 |
recording for *H. strictathecatus* (1041.38 individuals/200 cm³ soil), whereas *Rotylenchus* sp. had the least PD (16 individuals/200 cm³ soil). According to the prominence value (PV), *H. strictathecatus* was the most prominent (PV = 338.25), followed by *T. mediterraneus* (PV = 54.14). However, *Rotylenchus* sp. and *Tetylenchus* sp. were the least prominent (PV = 1.09 and 3.80, respectively) (Table 3).

The fourteen nematode species and/or genera which have been found to be associated with mango in Jazan region, in this study, have also been reported to be associated with mango in different countries worldwide except for *T. mediterraneus* and *L. latocephalus* (McSorley et al., 1981; McSorley, 1992; Castillo and Gomez-Barcina, 1993; Quijada et al., 2002; Anwar et al., 2012). In Saudi Arabia, all of these species and/or genera have previously listed (McSorley et al., 1981; McSorley, 1992; Castillo and Gomez-Barcina, 1993; Quijada et al., 2002; Anwar et al., 2012). In Saudi Arabia, all of these species and/or genera have previously listed among the nematodes associating mango trees in Jazan region (Al-Yahya, 2005) except for *Aphelenchus* sp. and *Tetylenchus* sp. which were firstly reported by Handoo and Palomares-Rius (2014) except, that the body length of the Saudi populations of *T. mediterraneus* is slightly shorter.

3.2.2. *Hoplolaimus seinhorsti*

Morphometrics of *H. seinhorsti* females are listed in (Table 5). Body stout, about 1.4 mm long, and slightly ventrally arcuate when relaxed. Head has a strong distinguished cephalic framework sclerotization. Stylet strong, 42.52 µm long, with tulip-shaped basal knobs. Tail rounded and the reproductive system having two amphidelpic outstretched ovaries. Vulva opens near the median of the body (V = 54.1%). This Saudi population of *Hoplolaimus* sp. was identified as *H. seinhorsti* according to their morphometrics and morphological features which are greatly supported by those of *H. seinhorsti* population described by Handoo and Golden (1992).

3.2.3. *Hemicycricomoides strictathecatus* (Table 6) shows the morphometrics of *H. strictathecatus* adult females. Body is curved ventrally, 613.95 µm long. Lip region set off. Stylet knobs anchor shaped and anteriorly directed. The female has a single ovary, and the vulva slit at about 90.46% of the anterior end of the body. Tail conoid, with a pointed terminus. The morphometrics of the adult stages (females and males) of *T. mediterraneus* Lip region is hemispherical in shape, and is also offset by a constriction. The stylet is moderately strong (18.1 µm), with a laterally to posteriorly directed rounded basal knobs. Female has two ovaries, and a cylindrical tail. These characters are greatly similar to that population of *T. mediterraneus* which was firstly reported by Handoo and Palomares-Rius (2014) except, that the body length of the Saudi populations of *T. mediterraneus* is slightly shorter.

3.2. Morphometric studies of the most important parasitic nematode species associating mango in Jazan region, south west corner of Saudi Arabia

3.2.1. *Tylenchorhynchus mediterraneus* (Table 4) shows the morphometrics of the adult stages (females and males) of *T. mediterraneus*. Lip region is hemispherical in shape, and is also offset by a constriction. The stylet is moderately strong (18.1 µm), with a laterally to posteriorly directed rounded basal knobs. Female has two ovaries, and a cylindrical tail. These characters are greatly similar to that population of *T. mediterraneus* which was firstly reported by Handoo and Palomares-Rius (2014) except, that the body length of the Saudi populations of *T. mediterraneus* is slightly shorter.

### Table 3

| Nematode genus/species | FO%1 | PD2 | PV3 |
|------------------------|------|-----|-----|
| *Ditylenchus* sp. | 0.46 | 60.00 | 4.07 |
| *Aphelenchus* sp. | 16.51 | 61.64 | 25.05 |
| *Ditylenchus* sp. | 2.79 | 28.00 | 4.64 |
| *Helicotylenchus* sp. | 0.46 | 15.00 | 1.09 |
| *Hemicycricomoides strictathecatus* | 14.68 | 82.22 | 31.50 |
| *Aphelenchus* sp. | 3.39 | 85.86 | 49.69 |
| *Longidorus latocephalus* | 2.29 | 88.40 | 13.38 |
| *Pratylenchus* sp. | 8.26 | 145.67 | 41.87 |
| *Rotylenchus* sp. | 0.46 | 16.00 | 1.09 |
| *Tetylenchus* sp. | 14.68 | 82.22 | 31.50 |
| *Tylenchorhynchus mediterraneus* | 29.36 | 99.91 | 54.14 |
| *Trichodorus* sp. | 1.38 | 36.00 | 4.23 |
| *Xiphinema elongatum* | 11.01 | 50.79 | 16.85 |

No. collected samples = 218.

1 Frequency of occurrence (FO%) = (number of samples containing a genus or species ÷ number of collected samples) × 100.

2 Mean population density (PD) = total number of individuals in a genus or species ÷ number of samples containing this genus/species.

3 Prominence value (PV) = Frequency, based on absolute frequency and absolute density.

### Table 4

| Character | n | Mean ± SD | Range |
|-----------|---|-----------|-------|
| Body length | 17 | 1400.64 ± 126.13 | 1162.16–1648.65 |
| Stylet length | 17 | 42.52 ± 1.88 | 37.21–47.84 |
| Conus length | 17 | 21.48 ± 0.95 | 18.81–24.17 |
| Base of stylet to DGO | 17 | 5.12 ± 0.32 | 3.90–5.20 |
| Lip region height | 17 | 10.40 | |
| Lip region width | 17 | 15.83 ± 0.69 | 15.6–18.20 |
| Excretory pore | 17 | 120.06 ± 10.33 | 101.40–132.60 |
| Pharynx length | 17 | 208.61 ± 8.79 | 182.00–221.00 |
| Head tip to pharynx gland end | 17 | 216.30 ± 29.28 | 170.08–265.75 |
| Head tip to median bulb valve | 17 | 108.36 ± 6.52 | 91.00–117.00 |
| Head tip to oesophageal glands | 17 | 195.92 ± 19.43 | 161.20–218.40 |
| Head tip to metacorpus | 17 | 111.49 ± 5.11 | 104.00–119.60 |
| Head tip to vulva | 17 | 755.04 ± 56.28 | 639.06–882.49 |
| Body width | 17 | 44.71 ± 3.29 | 42.52–53.15 |
| Anal body width | 17 | 28.37 ± 3.13 | 26.00–33.80 |
| Tail length | 17 | 29.67 ± 2.44 | 26.00–33.80 |
| a | 17 | 31.33 ± 1.73 | 27.33–33.05 |
| b | 17 | 12.94 ± 0.98 | 10.63–14.10 |
| b’ | 17 | 7.21 ± 0.95 | 6.31–9.56 |
| C | 17 | 47.34 ± 3.95 | 39.98–54.05 |
| c’ | 17 | 1.06 ± 0.13 | 0.85–1.33 |
| V | 17 | 54.10 ± 2.95 | 48.99–62.78 |
| O | 17 | 12.07 ± 0.93 | 9.17–13.98 |
| MB% | 17 | 52.26 ± 6.33 | 48.99–62.78 |

### Table 5

| Character | n | Mean ± SD | Range |
|-----------|---|-----------|-------|
| Body length | 27 | 708.67 ± 50.33 | 552.76–754.73 |
| Stylet length | 27 | 18.10 ± 1.02 | 15.60–19.50 |
| Greatest width body | 27 | 20.17 ± 0.91 | 18.20–20.80 |
| Pharynx length | 27 | 107.23 ± 9.16 | 91.00–137.80 |
| Anterior end to excretory pore | 27 | 104.67 ± 6.12 | 93.60–117.00 |
| Anal body width | 27 | 13.91 ± 1.24 | 11.70–15.60 |
| Spicule length | 5 | 22.36 ± 1.09 | 20.80–23.40 |
| Gubernaculum length | 5 | 8.86 ± 2.37 | 7.80–9.10 |
| a | 27 | 35.21 ± 2.30 | 28.35–37.96 |
metrics of the Saudi population of *H. strictathecatus* agree to a large extent with those of a population from Florida, USA (Van den Berg et al., 2015) and another world populations as well (Geraert, 2010). However, this Saudi population of *L. latocephalus* strongly belongs to a separate clade. Within the clade of *T. mediterraneus* isolates (out group) located in GenBank were used for phylogenetic analysis. Outgroup taxa included two *Pratylenchus bolivianus* sequences from GenBank. The maximum likelihood (ML) method (Fig. 2) revealed that all the used isolates of *T. mediterraneus* clustered together in one clade, whereas the *P. Bolivianus* isolates (out group) located in another separate clade. Within the clade of *T. mediterraneus* isolates, the six GenBank isolates were clustered in one subclade, while Jazan isolate of *T. mediterraneus* was clustered separately in another subclade. This indicate that the Jazan population of *Tylenchus mediterraneus* strongly belongs to *T. mediterraneus* (Handoo and Palomares-Rius, 2014). However, this Saudi population of *T. mediterraneus* might have some minor genetic differences, compared to that described by Handoo and Palomares-Rius (2014).

### Table 6

| Character                        | n  | Mean ± SD | Range            |
|----------------------------------|----|-----------|------------------|
| Body length                      | 20 | 613.95 ± 20.34 | 585.00–638.00    |
| Stylet length                    | 20 | 79.71 ± 2.41  | 74.50–85.00      |
| Basal knobs height               | 20 | 4.49 ± 0.67  | 3.90–5.20        |
| Basal knobs width                | 20 | 7.51 ± 0.48  | 6.50–7.80        |
| Oesophagous length               | 20 | 4.55 ± 0.67  | 3.90–5.20        |
| Excretory pore                   | 20 | 142.0 ± 12.57 | 117.00–159.00    |
| Body width                       | 20 | 40.17 ± 4.88  | 31.20–46.80      |
| Distance from anterior end to vulva (L- VL) | 20 | 553.36 ± 18.71 | 523.00–577.80    |
| Distance from vulva to tail (VL) | 20 | 58.57 ± 6.30  | 44.20–67.60      |
| Distance from anterior end to oesophage-intestinal valve | 20 | 146.55 ± 9.83  | 130.00–159.00    |
| Tail length                      | 20 | 39.52 ± 4.96  | 36.40–52.00      |
| Total annules (R)                | 20 | 132.05 ± 5.28 | 124.00–144.00    |
| Annules between anterior to excretory pore (Rex) | 20 | 32.60 ± 2.48  | 27.00–37.00      |
| Annules between posterior to vulve pore (RV) | 20 | 12.85 ± 1.31  | 11.00–15.00      |
| Ovary length                     | 20 | 142.61 ± 14.20 | 114.40–169.00    |
| Anal body length                 | 20 | 24.44 ± 2.29  | 20.80–28.60      |
| a                               | 20 | 15.47 ± 1.70  | 13.40–19.07      |
| b                               | 20 | 4.21 ± 0.32   | 3.74–4.78        |
| c                               | 20 | 15.76 ± 1.99  | 12.71–19.07      |
| V                               | 20 | 90.46 ± 0.94  | 88.98–92.89      |
| O                               | 20 | 5.65 ± 0.83   | 4.76–6.52        |

#### 3.2.5. *Xiphinema elongatum*

Morphometrics of *X. elongatum* females are shown in (Table 8). Female has a “J” shaped cylindrical body, Odontostyle 98.99 ± 13.21 μm. Odontophore 48.75 ± 7.61 μm, with prominent basal flanges. Female has two amphidelphic equal ovaries, and vulva located at 884.95 ± 99.63 μm from the head tip. Tail elongated with a rounded end. The morphometrics and morphological features of the Saudi *X. elongatum* population fits perfectly with that of *X. elongatum* from Ethiopia (Getaneh et al., 2015). They also fit well with those of *X. elongatum* populations reported from different countries (Heyns and Coomans, 1991; Luc and Coomans, 1992; Chen et al., 2004).

### Table 8

| Character                              | n  | Mean ± SD | Range            |
|----------------------------------------|----|-----------|------------------|
| Body length                            | 12 | 5605.40 ± 665.11 | 4504.3–7261.61   |
| Lip region width                       | 10 | 18.85 ± 1.53  | 16.90–20.80      |
| Odontostyle length                     | 10 | 127.66 ± 17.95 | 101.40–150.80    |
| Ondontophore length                    | 10 | 70.72 ± 7.73  | 54.60–80.60      |
| Total stylet length                    | 10 | 195.52 ± 19.14 | 156.00–215.00    |
| Oral aperture to guding ring           | 10 | 36.27 ± 2.70  | 32.50–39.00      |
| Oesophagous length                     | 10 | 469.56 ± 21.66 | 449.90–507.00    |
| Pharyngeal bulbus length               | 10 | 135.72 ± 29.33 | 104.00–210.60    |
| Pharyngeal bulbus width                | 10 | 27.87 ± 7.07  | 23.40–46.80      |
| Anterior end to oesophage              | 10 | 488.18 ± 60.68 | 468.00–522.60    |
| Anterior end to vulva                  | 10 | 2988.80 ± 168.00 | 2604.35–3135.85  |
| Anterior ovary ovary length            | 10 | 73.84 ± 7.04  | 64.20–91.00      |
| Posterior ovary ovary length           | 10 | 79.30 ± 17.26  | 54.60–104.00     |
| Tail length                            | 10 | 38.74 ± 1.48  | 36.40–41.60      |
| Mid body width                         | 10 | 53.17 ± 7.31  | 45.50–62.40      |
| Anal width                             | 10 | 37.44 ± 5.51  | 28.80–44.20      |
| Hyaline tail length                    | 10 | 12.25 ± 2.10  | 7.80–15.50       |
| Hyaline tail width                     | 10 | 20.93 ± 2.84  | 15.60–23.40      |
| a                                       | 10 | 127.05 ± 25.33 | 86.63–162.855    |
| b                                       | 10 | 13.12 ± 1.08  | 9.82–15.43       |
| c                                       | 10 | 170.58 ± 16.79 | 138.60–195.43    |
| V                                       | 10 | 44.12 ± 2.94  | 38.35–48.18      |

Vulva located near the mid of the body (44.12%), and the female has two ovaries. Tail hemispherical or bluntly conoid. The morphology of Saudi *L. latocephalus* population resembles to a great extent that of a Bulgarian population (Choleva et al., 1991) with only minor differences especially that the females of the Saudi population were somewhat longer (5405.4–7621.61 μm).

### 3.3. Molecular characterization of the most important nematode species associating mango, *M. indica* in Jazan region, south west corner of Saudi Arabia

(Fig. 1) shows the 345 bp PCR products that were amplified using D3A/D3B primer, and were taken from *T. mediterraneus*, *H. seinhorsti*, *H. strictathecatus*, *L. latocephalus* and *X. elongatum*. All the amplified products were obtained from single nematode samples.

### 3.3.1. *Tylenchus mediterraneus*

The expansion region of 28S rRNA sequence of *T. mediterraneus* (Jazan isolate) and other *T. mediterraneus* sequences deposited in the GenBank were used for phylogenetic analysis. Outgroup taxa included two *Pratylenchus bolivianus* sequences from GenBank. The maximum likelihood (ML) method (Fig. 2) revealed that all the used isolates of *T. mediterraneus* clustered together in one clade, whereas the *P. Bolivianus* isolates (out group) located in another separate clade. Within the clade of *T. mediterraneus* isolates, the six GenBank isolates were clustered in one subclade, while Jazan isolate of *T. mediterraneus* was clustered separately in another subclade. This indicate that the Jazan population of *Tylenchus mediterraneus* strongly belongs to *T. mediterraneus* (Handoo and Palomares-Rius, 2014). However, this Saudi population of *T. mediterraneus* might have some minor genetic differences, compared to that described by Handoo and Palomares-Rius (2014).
due to certain environmental local changes (Dawabah et al., 2012) (see Figs. 3–6).

3.3.2. *Hoplolaimus seinhorsti*

The expansion region of 28S rRNA sequence of *H. seinhorsti* (Jazan isolate) and other *H. seinhorsti* sequences deposited in the GenBank were subjected for phylogenetics. Outgroup taxa included the sequences of two related species (*H. galeatus* and *H. stephanus*) and another non-related one (*Globodera rostochiensis*) selected from GenBank. The maximum likelihood (ML) method showed that the related (*H. galeatus* and *H. stephanus*) and the outgroup (*Globodera rostochiensis*) species were clustered nearby each other. However,
Fig. 4. Phylogenetic relationships of the Jazan isolate of *Hemicriconemoides strictathecatus* with other *H. strictathecatus* isolates based on 28S rRNA, reconstructed using maximum likelihood (ML) method. Nodes show the percentage bootstrap values (out of 100).

Fig. 5. Phylogenetic relationships of the Jazan isolate of *Longidorus latocephaalus* with other *L. latocephaalus* isolates based on 28S rRNA, reconstructed using maximum likelihood (ML) method. Nodes show the percentage bootstrap values (out of 100).

Fig. 6. Phylogenetic relationships of the Jazan isolate of *Xiphinema elongatum* with other *X. elongatum* isolates based on 28S rRNA, reconstructed using maximum likelihood (ML) method. Nodes show the percentage bootstrap values (out of 100).
H. seinhorsti (Jazan isolate) clustered within the other H. seinhorsti from GenBank confirming that Jazan population of Hoplolaimus strongly belongs to H. seinhorsti (Mansourabad et al., 2016).

3.3.3. Hemicriconemoides strictathecatus

The expansion region of 28S rRNA sequence of H. strictathecatus (Jazan isolate) and other eight sequences of H. strictathecatus from GenBank were used for phylogenetic analysis. Sequences of a related species, H. cocophilus and the species paratylennchus nanus (belongs to a systematically nearby genus) from GenBank were also included. The maximum likelihood (ML) method showed that the related species, H. cocophilus was located in the clade containing H. strictathecatus isolates but in a separate subclade, whereas the species P. nanus which belongs to a different genus was located in a separate clade. However, H. strictathecatus (Jazan isolate) located within the other H. strictathecatus isolates from GenBank proved that Jazan isolate of Hemicriconemoides fairly belongs to H. strictathecatus according to Van den Berg et al. (2015).

3.3.4. Longidorus latocephalus

The expansion region of 28S rRNA sequence of L. latocephalus (Jazan isolate) and other L. latocephalus sequences deposited in the GenBank were subjected for phylogenetics. The authors are thankful to the General Directorate of Research Grants Programs, King Abdulaziz City for Science and Technology (Project # At-35-51) for the financial support and cooperation in completion of this work.

Acknowledgment

The authors are thankful to the General Directorate of Research Grants Programs, King Abdulaziz City for Science and Technology (Project # At-35-51) for the financial support and cooperation in completion of this work.

References

Al-Hazmi, A.S., Al-Yahya, F.A., Abdul-Razig, A.T., 1995. Occurrence, distribution and plant association of plant nematodes in Saudi Arabia. Res. Bull. No. 52. King Saud Univ., Agric. Res. Center, pp. 5–45.

Al-Yahya, F.A., 1989. Plant nematodes associated with crop plants in Unayzah governorate, central of Saudi Arabia. J. King Saud Univ. Agric. Sci. 11, 59–69.

Al-Yahya, F.A., 2005. Plant-parasitic nematodes associated with plant groups in Abu Arish governorate, Jazan province, south west Saudi Arabia. Res. Bull. No. 140. Fd. & Agric. Res. Center., King Saud Univ., Riyadh, Saudi Arabia, pp. 5–21.

Anwar, S.A., McKenney, M.V., Ahmed, H.A., 2012. Nematode and fungal communities associated with mango decline of southern Pakistan. Pakistan J. Zool. 44, 915–922.

Bae, C.H., Robbins, R.T., Szalanski, A.L., 2010. Secondary structure models of D2–D3 expansion segments of 28S rRNA for Hoplolaiminae species. J. Nematol. 42, 218–229.

Castillo, P., Gomez-Barcina, A., 1993. Plant parasitic nematodes associated with 24 tropical and subtropical crops in southern Spain. Nematologica 39, 21–45.

Carter, S.A., Shiguing, L., Andreadis, M., George, N., 2016. Morphological and molecular characterization of two Aphelenchoides endophytic in poplar leaves. J. Nematol. 48, 28–33.

Chen, D.Y., Ni, H.F., Cheng, Y.H., Tsay, T.Y., 2004. Variability within Xiphinema elongatum populations in Taiwan. Plant Pathol. 13, 45–60.

Choleva, B., Peneva, V., Brown, D.J,F., 1991. Longidorus latocephalus Lambert, Choleva et Agostinelli, 1983, a junior synonym of L. pisi Edward, Misra & Singh, 1964 (Nematoda : Tylenuchidae). Phytopathol. Medit. 52, 84–97.

De Ley, P., De Ley, I.T., Morris, K., Abebe, E., Mundo-Quampo, M., Yoder, M., Heras, W., Wolfgang, D., Rocha-Oliveira, M., 2015. A new species of Bitylenchus (Nematoda: Criconematidae) from Ethiopia. Zookeys 489, 1–13.

Goodey, J.B., 1963. Soil and Fresh Water Nematodes. John Wiley & Sons Inc, New York, p. 543.

Handoo, Z.A., 1992. Plant parasitic nematodes of the genera Tylenchus and Ditylenchus (Nematoda: Tylenchidae) with description of two new species and a molecular phylogeny. J. Nematol. 34, 221–264.

Heyns, J., Coomans, A., 1991. Longidorus from Botswana (Nematoda), Phytophylactic 23, 29–37.

Hooper, D.J., 1986. Extraction of free-living stages from soil. In: Southey, J.F. (Ed.), Plant paratylenchus nanus as well as the species X. index (belong to another genus) with only one isolate of L. latocephalus from GenBank. This indicate that the Saudi population of Longidorus strongly fits to L. latocephalus (Choleva et al., 1991; Navas et al., 1993).

3.3.5. Xiphinema elongatum

The expansion region of 28S rRNA sequence of X. elongatum (Jazan isolate) and other X. elongatum sequences deposited in the GenBank were subjected for phylogenetics using the maximum likelihood (ML) method. The species Trichodorus viriliferus was used as an outgroup species. Results showed that all the used isolates of X. elongatum clustered in one clade consisting of two subclades. The first sub clade included Jazan isolate of X elongatum separately, while the other sub clade included the other five isolates of X elongatum from GenBank. However, the outgroup species Trichodorus viriliferus (belongs to another genus) separated in a separate clade. This indicating that the Jazan population of Xiphinema strongly fits to X elongatum (Heyns and Coomans, 1991; Luc and Coomans, 1992; Chen et al., 2004; Getaneh et al., 2015).
Siddiqi, M.R., 1977. Hemicriconemoides mangiferae. C.I.H. descriptions of plant parasitic nematodes. Set 7, No. 99. Commonwealth Agric. Bur, London, p. 4.
Subbotin, S.A., Waeyenberge, L., Moens, M., 2000. Identification of cyst forming nematodes of the genus Heterodera (Nematoda: Heteroderidae) based on ribosomal DNA-RFLP. Nematology 2, 153–164.
Subbotin, S.A., Waeyenberge, L., Moens, M., 2000. Identification of cyst forming nematodes of the genus Heterodera (Nematoda: Heteroderidae) based on ribosomal DNA-RFLP. Nematology 2, 153–164.
Susulovska, S., Castillo, P., Yuste, A.A., 2017. First Reports, Morphological, and Molecular Characterization of Longidorus caespiticola and Longidorus poesneckensis (Nematoda: Longidoridae) from Ukraine. J. Nematol. 49, 396–402.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molec. Biol. Evol. 30, 2725–2729.
Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice 11 Nucleic Acids Res. 22 (22), 4673–4680.
Van den Berg, E., Mekete, T., 2010. Notes on and new records of some Tylenchoidea (Nematoda) from Ethiopia. Nematol. Medit. 38, 211–214.
Van den Berg, E., Tiedt, L.R., Inserra, R.N., Stanley, J.D., Voulas, N., Palomares-Rius, J. E., Castillo, P., Subbotin, S.A., 2015. Characterisation of a topotype and other populations of Hemicriconemoides strictathecatus Esser, 1960 (Nematoda: Criconematidae) from Florida with description of H. phoenicis sp. n. from the USA. Nematology 17, 265–300.