Glioblastoma as an age-related neurological disorder in adults

1Miri Kim, 2Erik Ladomersky, 2Andreas Mozny, 3Masha Kocherginsky, 3Kaitlyn O’Shea, 2Zachary Z. Reinstein, 2Lijie Zhai, 2April Bell, 2Kristen L. Lauing, 2Lakshmi Bollu, 2Erik Rabin, 4Karan Dixit, 4Priya Kumthekar, 5Leonidas C. Platanias, 5Lifang Hou, 3Yinan Zheng, 2Jennifer Wu, 5Bin Zhang, 7Maya Hrachova, 7Sarah A. Merrill, 7Maciej M. Mrugala, 1Vikram C. Prabhu, 2Craig Horbinski, 2Charles David James, 8Bakhtiar Yamini, 9Quinn T. Ostrom, 9Margaret O. Johnson, 10David A. Reardon, 4Rimas V. Lukas, 2,5,11Derek A. Wainwright

1Department of Neurological Surgery at Loyola University Medical Center, Maywood, IL; 2Department of Neurological Surgery at Northwestern University Feinberg School of Medicine, Chicago, IL; 3Department of Preventive Medicine at Northwestern University Feinberg School of Medicine, Chicago, IL; 4Department of Neurology at Northwestern University Feinberg School of Medicine, Chicago, IL; 5Department of Medicine, Division of Hematology-Oncology at Northwestern University Feinberg School of Medicine, Chicago, IL; 6Department of Urology at Northwestern University Feinberg School of Medicine, Chicago, IL; 7Division of Neuro-Oncology, Department of Neurology, Mayo Clinic, Phoenix, AZ; 8Department of Neurological Surgery at the University of Chicago Medical Center & Biological Sciences; 9Department of Neurosurgery at Duke University School of Medicine, Durham, NC 10Dana Farber/Harvard Cancer center at Harvard Medical School, Boston, MA; 11Department of Microbiology and Immunology at Northwestern University Feinberg School of Medicine, Chicago, IL.

© The Author(s) 2021. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Conflicts of interest: The authors declare no conflict of interest.

Author contributions: All authors read, reviewed, provided edits, and approved of this submission.

Acknowledgements: This work was supported in part by National Institutes of Health (NIH) grants R01NS113425 (L.C.P.), R01NS102669 (C.H.), P50CA221747 (L.C.P., R.V.L., C.H., P.K., D.A.W.), R01NS097851 (D.A.W.), K02AG068617 (D.A.W.), BrainUp grant 2136 (R.V.L. and D.A.W.), the Gail Boyter Magness (GBM) Foundation (D.A.W.), the Grace Giving Foundation (D.A.W.), and American Cancer Scholar Research Scholar Award RSG-21-058-01 - CCE (D.A.W.).

Corresponding author: Derek A. Wainwright, Ph.D.
Northwestern University Feinberg School of Medicine, Departments of Neurological Surgery, Medicine-Hematology/Oncology, Microbiology-Immunology
300 East Superior St., Tarry Building, Room 2-703
Chicago, IL 60611
Phone: (312) 503-3161, Fax: (312) 503-3552
Email: Derekwainwright@northwestern.edu
ABSTRACT

Background: Advanced age is a major risk factor for the development of many diseases including those affecting the central nervous system (CNS). Wild-type isocitrate dehydrogenase glioblastoma (IDHwt GBM) is the most common primary brain cancer and accounts for ≥90% of all adult GBM diagnoses. Patients with IDHwt GBM have a median age of diagnosis at 68-70 years of age and increasing age is associated with an increasingly worse prognosis for patients with this type of GBM.

Methods: SEER, TCGA, and CGGA databases were analyzed for mortality indices. Meta-analysis of 80 clinical trials were evaluated for log-hazard ratio for aging to tumor survivorship.

Results: Despite significant advances in the understanding of intratumoral genetic alterations, molecular characteristics of tumor microenvironments, and relationships between tumor molecular characteristics and the use of targeted therapeutics, life expectancy for older adults with GBM has yet to improve.

Conclusions: Based upon the results of our analysis, we propose that age-dependent factors that are yet to be fully elucidated, contribute to IDHwt GBM patient outcomes.

Keywords: CD4, aging, immunotherapy, senescence, IDO, glioma
KEY POINTS

- The aging brain and body contributes to the especially poor outcomes for older adult patients.
- The mechanism of GBM progression and response to treatment in the context of aging remains as an understudied area of research.

IMPORTANCE OF THE STUDY

IDHwt glioblastoma (GBM) is an aggressive primary brain cancer for which patient outcomes remain poor despite the use of multimodal therapies. This study was undertaken to address a gap in knowledge regarding the especially poor outcomes for older GBM patients. Age-associated changes including decreased immune system function and chronic neuro-inflammation are potential contributors to the reduced post-treatment survival of older adult (≥65 years of age) GBM patients and represent areas of need for increased study to inform personalized approaches for treating elderly patients.
INTRODUCTION

Advanced age enhances the risk for human disease

Wild-type isocitrate dehydrogenase glioblastoma (IDHwt GBM) is the most common aggressive primary brain tumor in adults and has a rapidly progressing course with a median age of diagnosis at 68-70 years.[1] GBM consists of distinct subclonal cell populations with a high heterogeneity that contributes to poor survival outcomes irrespective of the treatment used.[2-4] Age- and gender-adjusted incidence of GBM is highest among adults 75 to 84 years of age.[5] The age-adjusted incidence rate of GBM among adults 35 to 44 years of age per 100,000 people is 1.25, and increases to 8.05, 12.99, and 15.13 among adults 55 to 65-, 65 to 74-, and 75 to 84-years of age, respectively.[6] The basis for the increased incidence of GBM among elderly individuals is poorly understood and underexplored.

Life expectancy has been increasing in the United States and many other developed countries for >40 years. Increasing life expectancy is attributed to scientific, medical, technological, and/or sociological discoveries that have contributed to a growing population that survive to ≥65 years of age. For an individual in the U.S. born in 2018, life expectancy is 76 and 81 years of age for men and women, respectively.[7, 8]

Advanced age of ≥65 years is associated with high risk of disease incidence with greater than 80% of this age group being afflicted with diabetes, hypertension, heart disease, cancer, or other condition requiring medical management.[9-11] With respect to cancer, fifty-five percent of newly diagnosed cancer and 70% of cancer-related deaths occur in individuals ≥65 years of age.[14] Advanced age is therefore the most common risk factor associated with a cancer diagnosis and also the most common negative prognostic factor.[9, 15]

Here we explore the hypothesis and evidence that IDHwt GBM primarily arises due to age-dependent changes that take place in the older adult central nervous system (CNS) that
include declining immune system function. We hypothesize that age-dependent processes enhance GBM cell initiation, progression, and resistance to therapeutic approaches. A better understanding of age-dependent changes in the brain and immune system may lead to the development of personalized therapeutic approaches that provide better outcomes for older adults with GBM.

METHODS

Surveillance of Epidemiology and End Results Database (SEER)

All population, incidence, and mortality data from the SEER database were accessed through SEER * Stat (Version 8.3.5). Population-level data were accessed through a Frequency Session. Variables examined were: (1) Age recode with <1 year olds; and (2) year. Incidence and mortality data were accessed through a Rate Session. Variables examined for incidence include: (1) age recode with <1 year olds; (2) year of diagnosis; (3) histology recode – broad groupings; (4) histology recode – brain groupings; and (5) COD to site recode. The COD to site recode was used to analyze the mortality rate of GBM. Variables examined for mortality include: (1) age recode with <1 year old; (2) year of death; and (3) cause of death recode. All rate data were crude/non-age-adjusted. Data were accessed on 03-16-2021.

TCGA and CGGA

Survival data for GBM patients were analyzed from the cancer genome atlas and the Chinese Glioma Genome Atlas. The data were accessed using the UCSC Xena portal. Data were accessed on 03-16-2021.
Meta-analysis

PubMed search of “glioblastoma” that was limited to phase III randomized trials between 1985 and 2020. Each study was reviewed independently to assess the contribution of aging to tumor survivorship. Log-hazard ratio and stand error from the hazard ratio and confidence intervals for age were extracted and reported hazard ratios for age. Confidence intervals are reported “as is” for studies that reported hazard ratios and confidence intervals by age group. Four studies represented with blocks reported only the HR point estimate without the corresponding confidence intervals or standard error. In the Levin et al (2000) and Brem (1995) papers, HR was reported on the log-scale per either a decade of age or 1 year of age, and was converted to HR-scale by exponentiating the estimate. For the Elliot et al. (1997) and Malmström et al. (2017) studies 1/HR is reported to have the younger age group as the reference group. Forest plot was done using metaviz package in R v. 4.0.2 statistical software.

RESULTS

Advanced age and IDH^{wt} GBM

SEER database analysis between 1975 and 2017 of patients diagnosed with GBM shows the age-related increase of the incidence for this cancer, with peak incidence between 70-79 years old. GBM has a poor prognosis as indicated by a mortality to incidence ratio (MIR) consistently >0.8 for all patients over the age of 35 (Fig. 1A). A percent mortality vs. age plot developed from SEER data reveals a highest value for the 65-69 years of age group. Analysis of the same data recorded by TCGA shows a peak at 60-64 years of age. CGGA data is distinct in showing a peak in a younger population of GBM patients; possibly as a
result of a patient cohort that includes a surprisingly low percentage of adults ≥65 years of age: 16.25% (Figs. 1B, 1C).

Clinical trials and the aging population

A review of GBM clinical trials finds that many limit enrollment to patients ≤70 years of age (Supp. Table 1). In addition, many studies do not report outcomes with respect to patient age. Eighty publications were identified that report phase III clinical trial outcomes and of these, only ten report hazard ratios for age; although the median age of patients enrolled in those trials was in the 50's. Of the clinical trials that allow for age stratification of data, an increased hazard ratio of mortality clearly associates with increasing age (Fig. 2). Though limited in number, these studies show that patients in the 60+ demographic group consistently have reduced survival irrespective of treatment used. The studies that are for identifying treatment options for the aged population include de-escalation regimens.
DISCUSSION

The relationship between advanced age and the onset of neuropathological disease

The aged brain is more susceptible to local insults from reactive oxygen species within specific CNS regions including the hippocampus, substantia nigra, and the spinal cord.[16] Stalled or impaired cerebral blood flow (CBF) in the aged cingulate, insular, prefrontal gyri, as well as hippocampus contribute to brain volume loss in those regions and have been associated with cognitive decline with primary and secondary neurodegenerative conditions.[17] The median age of patients with Alzheimer’s disease (AD), Parkinson’s disease (PD), and stroke falls at or between 75-84, 72-78, and 69-years of age, respectively (Table 1). This is within a similar age range to the median age of a IDH^{wt} GBM patient diagnosis. However, the age-dependent mechanistic relationship between IDH^{wt} GBM and other age-related neurodegenerative diseases remain unexplored (Fig. 3A).

Advanced age in the CNS is associated with an enhancement of pro-inflammatory processes and the upregulation of immunosuppressive factors that can impair anti-tumor immune system functions. Microglia are the resident macrophages of the brain and contribute to the immunosuppressive microenvironment as they skew toward an M2 phenotype and secret matrix metalloproteinases.[18] Major histocompatibility complex (MHC) II and CD11b is upregulated while [19, 20] bone marrow-derived dendritic cells (DCs) infiltrate and accumulate inside the brain parenchyma of older adult mice.[21-23] Immunosuppressive indoleamine 2,3 dioxygenase 1 (IDO) levels increase in the normal brain during advanced age and decrease the benefit of immunotherapy in older adult mice with brain tumors.[24-27] Unexpectedly, the age-dependent increase of brain IDO activity acts non-enzymically since pharmacologic IDO enzyme inhibitor treatment fails to reverse its immunosuppressive effects in older adults.[26] This raises an
intriguing consideration of whether there are additional immunosuppressive factors that increase in the brain and act non-canonically during advanced age (Fig. 3B).

Aging and senescence

Cellular senescence, chronic sterile inflammation, and the development of the inflammasome play a critical role in the development of age-related pathologies. Cellular senescence is a hallmark of aging and affects the outcome of subjects with neurodegenerative disease and cancer.[28] In contrast to an acute response to extrinsic factors, senescence is triggered by the exposure to genotypic stress and damage to intracellular components. Senescent cells are permanently growth arrested and reflect a mechanism of defense against the transformation into an oncogenic cell that divides uncontrollably. Although cellular senescence is presumed to confer an anti-tumorigenic function, the senescent cells release pro-inflammatory factors referred to as the secretory associated senescent phenotype (SASP) that exacerbate a variety of different age-related pathologies including Alzheimer's disease (AD), Parkinson's disease (PD), and cancer.[29, 30] Brain aging and neurodegenerative changes are associated with an enrichment of gene expression for SASP factors including TGF-β, IL-6, IL-8, VEGF, matrix metalloproteinase-2 (MMP-2) and MMP-9 – all of which have been implicated to also possess a role in cancer, neuro-inflammation, and neurodegeneration.[30-32] The SASP enhances the invasion of tumor cells and accelerates the rate of cancer progression by changing DNA methylation and gene expression patterns. [33-35]

Inflammaging represents age-associated changes that result from chronic exposure to pro-inflammatory factors and the consequential effects that result in tissue damage.[36] Secondary pathological mechanisms that arise due to inflammaging contribute to type II diabetes, atherosclerosis, and a weakened immune system that is incapable of clearing infectious agents,
infected cells, and malignant cells.[37, 38] Implicated in neurodegenerative conditions, activated microglia release the inflammasome-derived cytokines, IL-1β and IL-8, which are toxic to neurons and contribute to neurotoxicity.[39] Age-dependent inflammasome activation in microglia, macrophages, and dendritic cells also contributes to tumorigenesis.[40] Immunosenescence is the derivative result of inflammaging that leads to decreased immune cell effector functions and the inability to adequately address infections, cancer, and antigenic challenges.[41, 42]

P53 and p16\(^{INK4A}\) play critical roles in regulating the phenotype of senescent cells. Older adult mouse hippocampal cells with increased p16\(^{INK4A}\) have an associated cognitive decline that is rescued by eradicating p16\(^{INK4A+}\) senescent cells.[43] The p16\(^{INK4A}\) expression model has proven to be one of the most useful in vivo markers of senescent cells to-date. With this in-mind, p16 reporter mice were generated to allow for the detection of senescent cells through bioluminescence, localization, and isolation of live p16\(^{INK4A+}\) cells, as well as the inducible eradication of these cells with the benign drug, ganciclovir. This model was previously used to confirm that senescent cell eradication decreases inflammation, tumor metastasis, and relapse of non-CNS models of cancer.[44, 45]

Targeting cellular senescence has been an area of research and development in both animal models and humans. Dasatinib and quercetin are senolytics that target the PI3K/Akt/mTOR pathway and are approved for use in humans. Treatment with dasatinib and quercetin enhance the longevity of animal models and alleviate aging related phenotypes [46, 47] by decreasing senescent cell numbers, enhancing cardiovascular function, and even ameliorating neurocognitive effects of AD plaque burden.[48, 49] Initial studies using mouse brain tumor models treated with radiation (RT), anti-PD-1 mAb, IDO enzyme inhibitor, dasatinib, and quercetin improved long-term survival in older adults as compared to mice treated with RT, anti-PD-1 mAb, and IDO enzyme inhibitor without senolytics.[50] Although a phase II clinical trial in
recurrent GBM for selective treatment with dasatinib was previously found to be ineffective at improving overall survival, [51] this result is in-line with recent studies in older adult mice when it is not further combined with both quercetin and immunotherapy. The consideration of the complex environment, inside of the tumor, as well as outside of the tumor but within the brain of older adults, should be evaluated for fully addressing the factors that promote GBM outgrowth and contribute to therapeutic resistance (Fig. 3).

Dynamic interactions between the aging brain, the aging immune system, and GBM

A robust anti-GBM immune response in adults requires (i) a fully competent immune system including both the CD4+ and CD8+ T cell lineages, (ii) immune cell activation and specificity to GBM-specific antigens, (iii) effective infiltration into the GBM microenvironment, and (iv) the ability to eradicate GBM cells (Fig. 4). Major limitations to maximal immunotherapeutic efficacy in older adults with GBM is due to the intratumoral immunosuppression that increases in-part due to tumor-infiltrating T cells [52, 53], as well as due to the immunosuppression in the brain that arises due to aging-dependent mechanisms and are the subject of an ongoing investigation by our group. [26, 27] Compounding the impaired systemic and local anti-tumor response effects are the conservative options with respect to chemotherapeutic dose intensity, extent of resection, and radiation based on clinical evaluation of patient treatment tolerance among older adults which places them at a therapeutic disadvantage. The complexity of managing a newly diagnosed GBM in older adults presents as a multidimensional challenge due to the consideration of additional risk factors including frailty, medical comorbidities, compromised immune system status, and an increased risk and susceptibility to neuro-toxicity with standard treatments. [54]
Intratumoral immune suppression is independent of age-related changes in the brain

Factors expressed and cells that reside within the GBM microenvironment influence the strength of anti-GBM immune-mediated tumor eradication potential. Immunosuppressive factors within the GBM microenvironment are primarily regulated by tumor cells [55, 56] that are further enhanced by progressively increasing levels of tumor-infiltrating T cells [52, 53]. Indications to-date suggest that the immune suppression inside of the tumor is independent of age-dependent immunosuppressive mechanisms.[27] Due to this, the GBM can be considered in some ways to act as a time capsule that is insulated to ongoing age-dependent changes that are ongoing in the surrounding brain stroma. It’s tempting to hypothesize that age-dependent changes also contribute to the initiation of precursor cells during a GBM cell transforming event.

The cellular composition of the tumor microenvironment including surface ligands such as the immune checkpoint inhibitor PD-L1, secreted cytokines including IL-10 and TGFβ, as well as senescence associated proteins, create a complex landscape of immunosuppressive interactions between the tumor cells, stroma, antigen presenting cells, and infiltrating immune cells. Furthermore, this landscape is dynamic in time. Tumor infiltrating T cells induce immunosuppressive factors including IDO and PD-L1 in human GBM. [53] In humanized mouse models with intracranial human GBM, GBM-infiltrating T cells also promote the expression of interferon-sensitive immunosuppressive factors including PD-L1, PD-L2, and IDO. [52, 57] IDO is canonically-characterized as an interferon inducible tryptophan metabolic enzyme that suppresses the immune response by facilitating immunosuppressive Treg recruitment and accumulation, which in-turn, suppresses CD8+ cytolytic T cell effector actions.[58] Increased IDO expression in patient-resected glioma is inversely associated with patient survival.[59]

Since the intratumoral immunosuppressive environment appears to be age independent, it's unknown as to how the age-dependent changes in the CNS parenchyma surrounding bulk
tumor have such a dramatically negative effect on GBM patient outcomes. It remains possible that contributions by the increased levels of senescent cells, increased levels of neuroinflammation, and increased vascular abnormalities arising in the older adult brain, have a collectively synergistic negative effect that enhances GBM cell migration and/or GBM margin invasion into the non-tumor brain parenchyma. With respect to immune checkpoint blockade (ICB) that works well in a subset of patients with a variety of malignancies and age groups such as in melanoma, it's now critical to determine whether the resistance of ICB in GBM patients is the result of intra-GBM factors or primarily due to age-dependent extra-GBM factors in the brain parenchyma.[60]

Treatment related immune changes in GBM patients and consequences for the elderly

Standard of care treatment for GBM patients includes surgical debulking, radiation, and systemic chemotherapy that generates lymphopenic conditions to a level that is comparable with HIV+ AIDS patients. These lymphopenia-inducing effects may be amplified in older adults with GBM.[61, 62] At the systemic level, immune cells from patients with high grade glioma display systemic dysfunction of effector cells as compared to control patients. However, it’s important to note that age matched controls have not been carefully considered as exemplified by a study that prospectively evaluated GBM diagnosed patients at a median age of 68 as compared to a healthy cohort with a median age of 56.[62, 63] In a study of 219 newly diagnosed GBM patients with a mean age of 54.2 years, over 25% developed grade 1 lymphopenia (<1500 cells/mm3) and grade 3 lymphopenia (200-500 cells/mm3) was noted in 15-25% of GBM patients even prior to the initiation of standard of care, with sustained lymphopenia lasting several months after the final cycle of chemotherapy.[64] In this study, 75% of patients
were predicted to fully recover lymphocyte counts at a median of 240 days after final temozolomide (TMZ) dosing.[63-65]

Aside from lymphopenia caused by chemoradiotherapy, corticosteroids that are routinely administered for ameliorating tumor related symptoms or treatment related edema may further exacerbate lymphopenia.[66] GBM patients who are treated with dexamethasone to address symptomatic cerebral edema were found to have a striking CD4+ T cell deficiency without a significant increase in the proportion of Tregs.[67] The combination of surgical resection with steroid use has also been demonstrated to impact the number of circulating T lymphocytes in animal models of surgical resection.[68] Evaluation of 65-86 year old GBM patients found that only 57% had normal baseline total lymphocyte counts with a 41% reduction of total lymphocyte counts after beginning chemoradiation that persisted for at least a 12 month duration.[69] The older adult patients with high grade lymphopenia demonstrated a significantly worse overall survival of 4.6 months as compared to patients with mild or moderate lymphopenia of 11.6 months.[64, 69] Combining chemoradiotherapy while increasing tumor immunogenicity also affects circulating CD4+ counts in the peripheral immune system.[70]

Systemic immune changes in the elderly and implications for antitumor immunity

Outside the CNS, the aging body undergoes significant immunological changes that reduce the ability: (i) to counter pathogens, (ii) mount significant immune responses to standard vaccinations, and (iii) to survey the landscape for neoplastic cells. Aging causes progressive thymic involution that decreases the formation of nascent T cells whereby up to 20% are generated by the thymus in younger individuals that decreases to <1% in individuals over the age of 50.[71] Additionally, there is a relative and absolute decrease in naïve CD4+ and CD8+ T cells coincident with a decrease of TCR diversity in older adults.
Immunosuppressive Tregs increase in the peripheral circulation of GBM patients and have an increased migratory potential toward tumor conditioned media in vitro. Strikingly, this effect was skewed to favor younger GBM patients with a median age of 54.\[59, 72, 73\]

Immunosuppressive myeloid derived suppressor cells (MDSCs) are increased in the circulating peripheral blood, bone marrow, spleen, and tumors of patients with various types of cancers including glial neoplasms, melanoma, and pancreatic tumors. However, their distribution across the different age groups has not been well studied.\[74, 75\]\[76\]

Within the bone marrow, fat deposition increases in an age-dependent manner \[77\] and hematopoietic stem cell differentiation shifts from a predominantly lymphoid- to myeloid-based developmental output.\[78\] Peripheral blood DCs (pbDCs) from aged humans have an increased activation state as demonstrated by their increased CD83 and CD86 expression \[79\] and conversely, myeloid DCs (mDCs) produce less pro-inflammatory cytokines including IL-6, IL-12, and TNF-α with age.\[79, 80\] Monocyte-derived DCs (moDCs) have a limited ability to activate lymphocytes \[81\] and both moDCs and pbDCs have a decreased ability to produce IFN-γ in older adults.\[80, 82-86\] The composition of peripheral blood CD4⁺ T cells declines with age \[87\] and becomes enriched with Tregs while exhausted CD4⁺PD1⁺CD62L⁻ T cells become more common and the absolute number of circulating naïve CD4⁺ T cells declines.\[88\] The effects of aging inside of the bone marrow, on the adaptive immune system, and their combined relationship to changes on host neuroimmunology have yet to be investigated (Fig. 4).

CONCLUSIONS AND FUTURE DIRECTIONS

Older adults with GBM pose a unique challenge to clinicians and researchers as preclinical animal models have yet to provide a vehicle that translates beneficial results into human clinical trials. Some of this failure is likely due to the lack of analogous ages between older human adults with GBM and the age of the mouse with brain tumor undergoing experimental evaluation.[26] The analogous age of a 65 year-old human patient with GBM is equivalent to ~90 weeks of age for a C57BL/6 mouse with a brain tumor. Studying the age-relevant animal brain tumor model to recapitulate the physiology of advanced age in the brain can become costly and time intensive as survivorship and care of these animals can extend into the timeline of years. Although these studies require an increased length of time and financial support, the preclinical brain tumor modeling outcomes may better predict which therapies will benefit the large majority of IDHwt GBM patients.

Gradual functional decline that accompanies the aging process impacts multiple organ systems and influences the extent of treatment that elderly patients with GBM receive.[89] Optimal treatment for GBM has not changed significantly and the extent of resection at initial presentation and tumor recurrence has been shown to have a significant impact on both PFS and OS in both younger and older patients.[90] Pre-existing medical comorbidities often confer elderly patients as less than optimal candidates for major surgical procedures and treatment modalities. In particular, cardiopulmonary disease, the use of anticoagulant or antiplatelet agents, and the presence of cardiac implanted devices can make surgery less safe and render the patient as a biopsy candidate rather than for consideration of complete resection. These issues also complicate eligibility criteria for enrolling into clinical trials due to the need to perform MR imaging over time. Our analysis of published phase III clinical trials collectively demonstrated that current studies do not adequately evaluate treatment options for the elderly despite the evolution of care as it has expanded into immune-based therapies and
chemotherapeutic agents. Limitations of our observations and evaluations of the database include the difficulty in isolating IDHwt tumors from the SEER database over the course of study and also the lack of clinical trial data that routinely stratify patient outcomes by age; thus yielding a descriptive analysis of the listed clinical trials. These results beg the question: how do clinicians and scientists address phenotypic changes of older adult patients with GBM to aim for better outcomes (Fig. 5)?

Future studies of GBM should go beyond the understanding of intratumoral changes and should also incorporate the age-dependent changes in the brain that affect subject outcomes. As further genetic biomarkers of aging are identified, patient stratification and the identification of easily targeted proteins, surface markers, or immune cell populations may yield improved results. Studies to fully evaluate the immunologic landscape of older adults with GBM in the periphery and in the tumor microenvironment may help elucidate targetable pathways for improved overall survival and quality of life. Multimodal combination therapies that target senescence, inflammaging, and the immunosuppressive environment of elderly patients will likely become necessary during future therapeutic approaches that address the negative effects of tumor and brain aging, simultaneously, for improving OS in IDHwt GBM patients.
[1] Q.T. Ostrom, N. Patil, G. Cioffi, K. Waite, C. Kruchko, J.S. Barnholtz-Sloan, CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013-2017, Neuro Oncol, 22 (2020) iv1-iv96.

[2] X. Lan, D.J. Jorg, F.M.G. Cavalli, L.M. Richards, L.V. Nguyen, R.J. Vanner, P. Guilhamon, L. Lee, M.M. Kushida, D. Pellacani, N.I. Park, F.J. Coutinho, H. Whetstone, H.J. Selvadurai, C. Che, B. Luu, A. Carles, M. Moksa, N. Rastegar, R. Head, S. Dolma, P. Prinos, M.D. Cusimano, S. Das, M. Bernstein, C.H. Arrowsmith, A.J. Mungall, R.A. Moore, Y. Ma, M. Gallo, M. Lupien, T.J. Pugh, M.D. Taylor, M. Hirst, C.J. Eaves, B.D. Simons, P.B. Dirks, Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy, Nature, 549 (2017) 227-232.

[3] J. Wang, E. Cazzato, E. Ladewig, V. Frattini, D.I. Rosenbloom, S. Zairis, F. Abate, Z. Liu, O. Elliott, Y.J. Shin, J.K. Lee, I.H. Lee, W.Y. Park, M. Eoli, A.J. Blumberg, A. Lasorella, D.H. Nam, G. Finocchiaro, A. Iavarone, R. Rabadan, Clonal evolution of glioblastoma under therapy, Nat Genet, 48 (2016) 768-776.

[4] B.K. Neilsen, R. Sleightholm, R. McComb, S.H. Ramkissoon, J.S. Ross, R.J. Corona, V.A. Miller, M. Cooke, M.R. Aizenberg, Comprehensive genetic alteration profiling in primary and recurrent glioblastoma, J Neurooncol, 142 (2019) 111-118.

[5] J.P. Thakkar, T.A. Dolecek, C. Horbinski, Q.T. Ostrom, D.D. Lightner, J.S. Barnholtz-Sloan, J.L. Villano, Epidemiologic and molecular prognostic review of glioblastoma, Cancer Epidemiol Biomarkers Prev, 23 (2014) 1985-1996.
[6] Q.T. Ostrom, H. Gittleman, G. Truitt, A. Boscia, C. Kruchko, J.S. Barnholtz-Sloan, CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011-2015, Neuro Oncol, 20 (2018) iv1-iv86.

[7] E. Arias, Xu, JQ, United States life tables, 2018, National Vital Statistics Reports, 2020.

[8] S. Harper, C.A. Riddell, N.B. King, Declining Life Expectancy in the United States: Missing the Trees for the Forest, Annu Rev Public Health, 42 (2021) 381-403.

[9] R. Yancik, P.A. Ganz, C.G. Varricchio, B. Conley, Perspectives on comorbidity and cancer in older patients: approaches to expand the knowledge base, J Clin Oncol, 19 (2001) 1147-1151.

[10] L.P. Fried, R.B. Wallace, The complexity of chronic illness in the elderly: From clinic to community, The epidemiologic study of the elderly, DOI (1992) 10-19.

[11] J.M. Wood, A.A. Black, Ocular disease and driving, Clin Exp Optom, 99 (2016) 395-401.

[12] A.G. Pallis, S. Hatse, B. Brouwers, G. Pawelec, C. Falandry, U. Wedding, L.D. Lago, L. Repetto, A. Ring, H. Wildiers, Evaluating the physiological reserves of older patients with cancer: the value of potential biomarkers of aging?, J Geriatr Oncol, 5 (2014) 204-218.

[13] C. Lopez-Otin, M.A. Blasco, L. Partridge, M. Serrano, G. Kroemer, The hallmarks of aging, Cell, 153 (2013) 1194-1217.

[14] R. Yancik, Population aging and cancer: a cross-national concern, Cancer J, 11 (2005) 437-441.
[15] R. Yancik, M.N. Wesley, L.A. Ries, R.J. Havlik, S. Long, B.K. Edwards, J.W. Yates, Comorbidity and age as predictors of risk for early mortality of male and female colon carcinoma patients: a population-based study, Cancer, 82 (1998) 2123-2134.

[16] V.A. Pandya, R. Patani, Region-specific vulnerability in neurodegeneration: lessons from normal ageing, Ageing Res Rev, DOI 10.1016/j.arr.2021.101311 (2021) 101311.

[17] M.D. Sweeney, K. Kisler, A. Montagne, A.W. Toga, B.V. Zlokovic, The role of brain vasculature in neurodegenerative disorders, Nat Neurosci, 21 (2018) 1318-1331.

[18] D. Hambardzumyan, D.H. Gutmann, H. Kettenmann, The role of microglia and macrophages in glioma maintenance and progression, Nat Neurosci, 19 (2016) 20-27.

[19] J. Rogers, J. Luber-Narod, S.D. Styren, W.H. Civin, Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer's disease, Neurobiology of aging, 9 (1988) 339-349.

[20] V.H. Perry, M.K. Matyszak, S. Fearn, Altered antigen expression of microglia in the aged rodent CNS, Glia, 7 (1993) 60-67.

[21] K. Bulloch, M.M. Miller, J. Gal-Toth, T.A. Milner, A. Gottfried-Blackmore, E.M. Waters, U.W. Kaunzner, K. Liu, R. Lindquist, M.C. Nussenzweig, R.M. Steinman, B.S. McEwen, CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain, The Journal of comparative neurology, 508 (2008) 687-710.

[22] P.M. D'Agostino, A. Gottfried-Blackmore, N. Anandasabapathy, K. Bulloch, Brain dendritic cells: biology and pathology, Acta neuropathologica, 124 (2012) 599-614.
[23] U.W. Kaunzner, M.M. Miller, A. Gottfried-Blackmore, J. Gal-Toth, J.C. Felger, B.S. McEwen, K. Bulloch, Accumulation of resident and peripheral dendritic cells in the aging CNS, Neurobiol Aging, 33 (2012) 681-693 e681.

[24] E. Ladomersky, L. Zhai, G. Gritsina, M. Genet, K.L. Lauing, M. Wu, C.D. James, D.A. Wainwright, Advanced age negatively impacts survival in an experimental brain tumor model, Neurosci Lett, 630 (2016) 203-208.

[25] E. Ladomersky, L. Zhai, A. Lenzen, K.L. Lauing, J. Qian, D.M. Scholtens, G. Gritsina, X. Sun, Y. Liu, F. Yu, W. Gong, Y. Liu, B. Jiang, T. Tang, R. Patel, L.C. Platanias, C.D. James, R. Stupp, R.V. Lukas, D.C. Binder, D.A. Wainwright, IDO1 Inhibition Synergizes with Radiation and PD-1 Blockade to Durably Increase Survival Against Advanced Glioblastoma, Clinical cancer research, 24 (2018) 2559-2573.

[26] E. Ladomersky, L. Zhai, K.L. Lauing, A. Bell, J. Xu, M. Kocherginsky, B. Zhang, J.D. Wu, J.R. Podojil, L.C. Platanias, A.Y. Mochizuki, R.M. Prins, P. Kumthekar, J. Raizer, K. Dixit, R.V. Lukas, C. Horbinski, M. Wei, C. Zhou, G. Pawelec, J. Campisi, U. Grohmann, G.C. Prendergast, D. Munn, D.A. Wainwright, Advanced Age Increases Immunosuppression in the Brain and Decreases Immunotherapeutic Efficacy in Subjects with Glioblastoma, Clinical cancer research, 26 (2020) 5232-5245.

[27] E. Ladomersky, D.M. Scholtens, M. Kocherginsky, E.A. Hibler, E.T. Bartom, S. Otto-Meyer, L. Zhai, K.L. Lauing, J. Choi, J.A. Sosman, J.D. Wu, B. Zhang, R.V. Lukas, D.A. Wainwright, The Coincidence Between Increasing Age, Immunosuppression, and the Incidence of Patients With Glioblastoma, Front Pharmacol, 10 (2019) 200.
[28] Z. Li, Z. Zhang, Y. Ren, Y. Wang, J. Fang, H. Yue, S. Ma, F. Guan, Aging and age-related diseases: from mechanisms to therapeutic strategies, Biogerontology, 22 (2021) 165-187.

[29] J.P. Coppe, P.Y. Desprez, A. Krtolica, J. Campisi, The senescence-associated secretory phenotype: the dark side of tumor suppression, Annu Rev Pathol, 5 (2010) 99-118.

[30] D.J. Baker, R.C. Petersen, Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives, The Journal of clinical investigation, 128 (2018) 1208-1216.

[31] J. Meldolesi, Astrocytes: News about Brain Health and Diseases, Biomedicines, 8 (2020).

[32] K. Abe, Y. Chiba, S. Hattori, A. Yoshimi, T. Asami, O. Katsuse, A. Suda, A. Hishimoto, I. Alzheimer’s Disease Neuroimaging, Influence of plasma matrix metalloproteinase levels on longitudinal changes in Alzheimer’s disease (AD) biomarkers and cognitive function in patients with mild cognitive impairment due to AD registered in the Alzheimer’s Disease Neuroimaging Initiative database, J Neurol Sci, 416 (2020) 116989.

[33] S.B. Baylin, J.E. Ohm, Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction?, Nat Rev Cancer, 6 (2006) 107-116.

[34] M.F. Fraga, M. Esteller, Towards the human cancer epigenome: a first draft of histone modifications, Cell Cycle, 4 (2005) 1377-1381.

[35] M.F. Fraga, E. Ballestar, A. Villar-Garea, M. Boix-Chornet, J. Espada, G. Schotta, T. Bonaldi, C. Haydon, S. Ropero, K. Petrie, N.G. Iyer, A. Perez-Rosado, E. Calvo, J.A.
Lopez, A. Cano, M.J. Calasanz, D. Colomer, M.A. Piris, N. Ahn, A. Imhof, C. Caldas, T. Jenuwein, M. Esteller, Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer, Nat Genet, 37 (2005) 391-400.

[36] A. Salminen, K. Kaarniranta, A. Kauppinen, Inflammaging: disturbed interplay between autophagy and inflammasomes, Aging (Albany NY), 4 (2012) 166-175.

[37] S.G. Deeks, HIV infection, inflammation, immunosenescence, and aging, Annu Rev Med, 62 (2011) 141-155.

[38] M.P. Mattson, T.V. Arumugam, Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States, Cell Metab, 27 (2018) 1176-1199.

[39] J.K.Y. Yap, B.S. Pickard, E.W.L. Chan, S.Y. Gan, The Role of Neuronal NLRP1 Inflammasome in Alzheimer's Disease: Bringing Neurons into the Neuroinflammation Game, Mol Neurobiol, 56 (2019) 7741-7753.

[40] T.Y. Lin, M.C. Tsai, W. Tu, H.C. Yeh, S.C. Wang, S.P. Huang, C.Y. Li, Role of the NLRP3 Inflammasome: Insights Into Cancer Hallmarks, Front Immunol, 11 (2020) 610492.

[41] J.J. Goronzy, C.M. Weyand, Understanding immunosenescence to improve responses to vaccines, Nature immunology, 14 (2013) 428-436.

[42] N.P. Weng, Aging of the immune system: how much can the adaptive immune system adapt?, Immunity, 24 (2006) 495-499.

[43] M. Ogrodnik, S.A. Evans, E. Fielder, S. Victorelli, P. Kruger, H. Salmonowicz, B.M. Weigand, A.D. Patel, T. Pirtskhalava, C.L. Inman, K.O. Johnson, S.L. Dickinson, A. Rocha, M.J. Schafer, Y. Zhu, D.B. Allison, T. von Zglinicki, N.K. LeBrasseur, T. Tchkonia, N. Neretti, J.F. Passos, J.L. Kirkland, D. Jurk, Whole-body senescent cell
clearance alleviates age-related brain inflammation and cognitive impairment in mice, Aging Cell, 20 (2021) e13296.

[44] M. Demaria, N. Ohtani, S.A. Youssef, F. Rodier, W. Toussaint, J.R. Mitchell, R.M. Laberge, J. Vijg, H. Van Steeg, M.E. Dolle, J.H. Hoeijmakers, A. de Bruin, E. Hara, J. Campisi, An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA, Dev Cell, 31 (2014) 722-733.

[45] M. Demaria, M.N. O'Leary, J. Chang, L. Shao, S. Liu, F. Alimirah, K. Koenig, C. Le, N. Mitin, A.M. Deal, S. Alston, E.C. Academia, S. Kilmarx, A. Valdovinos, B. Wang, A. de Bruin, B.K. Kennedy, S. Melov, D. Zhou, N.E. Sharpless, H. Muss, J. Campisi, Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse, Cancer Discovery, 7 (2017) 165-176.

[46] D.E. Harrison, R. Strong, Z.D. Sharp, J.F. Nelson, C.M. Astle, K. Flurkey, N.L. Nadon, J.E. Wilkinson, K. Frenkel, C.S. Carter, M. Pahor, M.A. Javors, E. Fernandez, R.A. Miller, Rapamycin fed late in life extends lifespan in genetically heterogeneous mice, Nature, 460 (2009) 392-395.

[47] I. Bjedov, J.M. Toivonen, F. Kerr, C. Slack, J. Jacobson, A. Foley, L. Partridge, Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster, Cell Metab, 11 (2010) 35-46.

[48] Y. Zhu, T. Tchkonia, T. Pirtskhalava, A.C. Gower, H. Ding, N. Giorgadze, A.K. Palmer, Y. Ikeno, G.B. Hubbard, M. Lenburg, S.P. O'Hara, N.F. LaRusso, J.D. Miller, C.M. Roos, G.C. Verzosa, N.K. LeBrasseur, J.D. Wren, J.N. Farr, S. Khosla, M.B. Stout, S.J. McGowan, H. Fuhrmann-Stroissnigg, A.U. Gurkar, J. Zhao, D. Colangelo, A. Dorronsoro, Y.Y. Ling, A.S. Barghouthy, D.C. Navarro, T. Sano, P.D. Robbins, L.J.
Niedernhofer, J.L. Kirkland, The Achilles' heel of senescent cells: from transcriptome to senolytic drugs, Aging Cell, 14 (2015) 644-658.

[49] P. Zhang, Y. Kishimoto, I. Grammatikakis, K. Gottimukkala, R.G. Cutler, S. Zhang, K. Abdelmohsen, V.A. Bohr, J. Misra Sen, M. Gorospe, M.P. Mattson, Senolytic therapy alleviates Abeta-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model, Nat Neurosci, 22 (2019) 719-728.

[50] E. Ladomersky, Zhai, L., Bollu, L., Bell, A., Lauing, K., Lukas, R., Wainwright, D., IMMU-40 - Improving Outcomes in Older Adults with Glioblastoma By Reversing Age-Related Changes of the Central Nervous System, Neuro-Oncology, (2020), pp. 113.

[51] A.B. Lassman, S.L. Pugh, M.R. Gilbert, K.D. Aldape, S. Geinoz, J.H. Beumer, S.M. Christner, R. Komaki, L.M. DeAngelis, R. Gaur, E. Youssef, H. Wagner, M. Won, M.P. Mehta, Phase 2 trial of dasatinib in target-selected patients with recurrent glioblastoma (RTOG 0627), Neuro Oncol, 17 (2015) 992-998.

[52] L. Zhai, E. Ladomersky, K.L. Lauing, M. Wu, M. Genet, G. Gritsina, B. Gyorffy, P.K. Brastianos, D.C. Binder, J.A. Sosman, F.J. Giles, C.D. James, C. Horbinski, R. Stupp, D.A. Wainwright, Infiltrating T Cells Increase IDO1 Expression in Glioblastoma and Contribute to Decreased Patient Survival, Clinical Cancer Research, 23 (2017) 6650-6660.

[53] D.M. O'Rourke, M.P. Nasrallah, A. Desai, J.J. Melenhorst, K. Mansfield, J.J.D. Morrisssette, M. Martinez-Lage, S. Brem, E. Maloney, A. Shen, R. Isaacs, S. Mohan, G. Plesa, S.F. Lacey, J.M. Navenot, Z. Zheng, B.L. Levine, H. Okada, C.H. June, J.L. Brogdon, M.V. Maus, A single dose of peripherally infused EGFRvIII-directed CAR T
cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma, Sci Transl Med, 9 (2017).

[54] A.A. Brandes, E. Franceschi, A. Tosoni, F. Benevento, L. Scopece, V. Mazzocchi, A. Bacci, R. Agati, F. Calbucci, M. Ermani, Temozolomide concomitant and adjuvant to radiotherapy in elderly patients with glioblastoma: correlation with MGMT promoter methylation status, Cancer, 115 (2009) 3512-3518.

[55] D.A. Wainwright, S. Sengupta, Y. Han, M.S. Lesniak, Thymus-derived rather than tumor-induced regulatory T cells predominate in brain tumors, Neuro-oncology, 13 (2011) 1308-1323.

[56] D.A. Wainwright, A.L. Chang, M. Dey, I.V. Balyasnikova, C.K. Kim, A. Tobias, Y. Cheng, J.W. Kim, J. Qiao, L. Zhang, Y. Han, M.S. Lesniak, Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors, Clinical Cancer Research, 20 (2014) 5290-5301.

[57] L. Zhai, E. Ladomersky, A. Lenzen, B. Nguyen, R. Patel, K.L. Lauing, M. Wu, D.A. Wainwright, IDO1 in cancer: a Gemini of immune checkpoints, Cell Mol Immunol, 15 (2018) 447-457.

[58] I. Theate, N. van Baren, L. Pilotte, P. Moulin, P. Larrieu, J.C. Renauld, C. Herve, I. Gutierrez-Roelens, E. Marbaix, C. Sempoux, B.J. Van den Eynde, Extensive profiling of the expression of the indoleamine 2,3-dioxygenase 1 protein in normal and tumoral human tissues, Cancer Immunol Res, 3 (2015) 161-172.

[59] D.A. Wainwright, I.V. Balyasnikova, A.L. Chang, A.U. Ahmed, K.S. Moon, B. Auffinger, A.L. Tobias, Y. Han, M.S. Lesniak, IDO expression in brain tumors increases
the recruitment of regulatory T cells and negatively impacts survival, Clinical Cancer Research, 18 (2012) 6110-6121.

[60] D.A. Reardon, A.A. Brandes, A. Omuro, P. Mulholland, M. Lim, A. Wick, J. Baehring, M.S. Ahluwalia, P. Roth, O. Bahr, S. Phuphanich, J.M. Sepulveda, P. De Souza, S. Sahebjam, M. Carleton, K. Tatsuoka, C. Taitt, R. Zwirtes, J. Sampson, M. Weller, Effect of Nivolumab vs Bevacizumab in Patients With Recurrent Glioblastoma: The CheckMate 143 Phase 3 Randomized Clinical Trial, JAMA Oncol, 6 (2020) 1003-1010.

[61] R.V. Lukas, D.A. Wainwright, C.M. Horbinski, F.M. Iwamoto, A.M. Sonabend, Immunotherapy Against Gliomas: is the Breakthrough Near?, Drugs, 79 (2019) 1839-1848.

[62] P. Chongsathidkiet, C. Jackson, S. Koyama, F. Loebel, X. Cui, S.H. Farber, K. Woroniecka, A.A. Elsamadicy, C.A. Dechant, H.R. Kemeny, L. Sanchez-Perez, T.A. Cheema, N.C. Souders, J.E. Herndon, J.V. Coumans, J.I. Everitt, B.V. Nahed, J.H. Sampson, M.D. Gunn, R.L. Martuza, G. Dranoff, W.T. Curry, P.E. Feci, Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors, Nat Med, 24 (2018) 1459-1468.

[63] K.I. Woroniecka, K.E. Rhodin, P. Chongsathidkiet, K.A. Keith, P.E. Feci, T-cell Dysfunction in Glioblastoma: Applying a New Framework, Clinical cancer research : an official journal of the American Association for Cancer Research, 24 (2018) 3792-3802.

[64] W.J. Kim, Y.S. Dho, C.Y. Ock, J.W. Kim, S.H. Choi, S.T. Lee, I.H. Kim, T.M. Kim, C.K. Park, Clinical observation of lymphopenia in patients with newly diagnosed glioblastoma, J Neurooncol, 143 (2019) 321-328.
[65] A.R. Dix, W.H. Brooks, T.L. Roszman, L.A. Morford, Immune defects observed in patients with primary malignant brain tumors, J Neuroimmunol, 100 (1999) 216-232.
[66] C.J. Vecht, A. Hovestadt, H.B. Verbiest, J.J. van Vliet, W.L. van Putten, Dose-effect relationship of dexamethasone on Karnofsky performance in metastatic brain tumors: a randomized study of doses of 4, 8, and 16 mg per day, Neurology, 44 (1994) 675-680.
[67] M.P. Gustafson, Y. Lin, K.C. New, P.A. Bulur, B.P. O'Neill, D.A. Gastineau, A.B. Dietz, Systemic immune suppression in glioblastoma: the interplay between CD14+HLA-DRlo/neg monocytes, tumor factors, and dexamethasone, Neuro Oncol, 12 (2010) 631-644.
[68] B. Otvos, T.J. Alban, M.M. Grabowski, D. Bayik, E.E. Mulkarens-Hubert, T. Radivoyevitch, A. Rabljenovic, S. Johnson, C. Androjna, A.M. Mohammadi, G.H. Barnett, M.S. Ahluwalia, M.A. Vogelbaum, P.E. Fecci, J.D. Lathia, Preclinical Modeling of Surgery and Steroid Therapy for Glioblastoma Reveals Changes in Immunophenotype that are Associated with Tumor Growth and Outcome, Clin Cancer Res, 27 (2021) 2038-2049.
[69] J.S. Mendez, A. Govindan, J. Leong, F. Gao, J. Huang, J.L. Campian, Association between treatment-related lymphopenia and overall survival in elderly patients with newly diagnosed glioblastoma, J Neurooncol, 127 (2016) 329-335.
[70] C.E. Fadul, J.L. Fisher, J. Gui, T.H. Hampton, A.L. Cote, M.S. Ernstoff, Immune modulation effects of concomitant temozolomide and radiation therapy on peripheral blood mononuclear cells in patients with glioblastoma multiforme, Neuro-oncology, 13 (2011) 393-400.
[71] I. Bains, R. Antia, R. Callard, A.J. Yates, Quantifying the development of the peripheral naive CD4+ T-cell pool in humans, Blood, 113 (2009) 5480-5487.
[72] C. Schaefer, G.G. Kim, A. Albers, K. Hoermann, E.N. Myers, T.L. Whiteside, Characteristics of CD4+CD25+ regulatory T cells in the peripheral circulation of patients with head and neck cancer, Br J Cancer, 92 (2005) 913-920.
[73] C. Vasco, A. Canazza, A. Rizzo, A. Mossa, E. Corsini, A. Silvani, L. Fariselli, A. Salmaggi, E. Ciusani, Circulating T regulatory cells migration and phenotype in glioblastoma patients: an in vitro study, J Neurooncol, 115 (2013) 353-363.
[74] P. Serafini, I. Borrello, V. Bronte, Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression, Semin Cancer Biol, 16 (2006) 53-65.
[75] P. Serafini, C. De Santo, I. Marigo, S. Cingarlini, L. Dolcetti, G. Gallina, P. Zanovello, V. Bronte, Derangement of immune responses by myeloid suppressor cells, Cancer Immunol Immunother, 53 (2004) 64-72.
[76] B. Raychaudhuri, P. Rayman, J. Ireland, J. Ko, B. Rini, E.C. Borden, J. Garcia, M.A. Vogelbaum, J. Finke, Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma, Neuro Oncol, 13 (2011) 591-599.
[77] J.L. Kirkland, T. Tchkonia, T. Pirtskhalava, J. Han, I. Karagiannides, Adipogenesis and aging: does aging make fat go MAD?, Exp Gerontol, 37 (2002) 757-767.
[78] H. Leins, M. Mulaw, K. Eiwen, V. Sakk, Y. Liang, M. Denkinger, H. Geiger, R. Schirmbeck, Aged murine hematopoietic stem cells drive aging-associated immune remodeling, Blood, 132 (2018) 565-576.
[79] S. Della Bella, L. Bierti, P. Presicce, R. Arienti, M. Valenti, M. Saresella, C. Vergani, M.L. Villa, Peripheral blood dendritic cells and monocytes are differently regulated in the elderly, Clinical immunology, 122 (2007) 220-228.

[80] A. Panda, F. Qian, S. Mohanty, D. van Duin, F.K. Newman, L. Zhang, S. Chen, V. Towle, R.B. Belshe, E. Fikrig, H.G. Allore, R.R. Montgomery, A.C. Shaw, Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response, J Immunol, 184 (2010) 2518-2527.

[81] A. Ciaramella, G. Spalletta, F. Bizzoni, F. Salani, C. Caltagirone, P. Bossu, Effect of age on surface molecules and cytokine expression in human dendritic cells, Cellular immunology, 269 (2011) 82-89.

[82] D.H. Canaday, N.A. Amponsah, L. Jones, D.J. Tisch, T.R. Hornick, L. Ramachandra, Influenza-induced production of interferon-alpha is defective in geriatric individuals, J Clin Immunol, 30 (2010) 373-383.

[83] Y. Jing, E. Shaheen, R.R. Drake, N. Chen, S. Gravenstein, Y. Deng, Aging is associated with a numerical and functional decline in plasmacytoid dendritic cells, whereas myeloid dendritic cells are relatively unaltered in human peripheral blood, Human immunology, 70 (2009) 777-784.

[84] F. Qian, X. Wang, L. Zhang, A. Lin, H. Zhao, E. Fikrig, R.R. Montgomery, Impaired interferon signaling in dendritic cells from older donors infected in vitro with West Nile virus, J Infect Dis, 203 (2011) 1415-1424.

[85] M. Shodell, F.P. Siegal, Circulating, interferon-producing plasmacytoid dendritic cells decline during human ageing, Scandinavian journal of immunology, 56 (2002) 518-521.
[86] A. Sridharan, M. Esposo, K. Kaushal, J. Tay, K. Osann, S. Agrawal, S. Gupta, A. Agrawal, Age-associated impaired plasmacytoid dendritic cell functions lead to decreased CD4 and CD8 T cell immunity, Age, 33 (2011) 363-376.

[87] J.J. Goronzy, C.M. Weyand, Successful and Maladaptive T Cell Aging, Immunity, 46 (2017) 364-378.

[88] Y. Elyahu, I. Hekselman, I. Eizenberg-Magar, O. Berner, I. Strominger, M. Schiller, K. Mittal, A. Nemirovsky, E. Eremenko, A. Vital, E. Simonovsky, V. Chalifa-Caspi, N. Friedman, E. Yeger-Lotem, A. Monsonego, Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes, Sci Adv, 5 (2019) eaaw8330.

[89] D. McHugh, J. Gil, Senescence and aging: Causes, consequences, and therapeutic avenues, J Cell Biol, 217 (2018) 65-77.

[90] N. Sanai, M.Y. Polley, M.W. McDermott, A.T. Parsa, M.S. Berger, An extent of resection threshold for newly diagnosed glioblastomas, J Neurosurg, 115 (2011) 3-8.
Figure 1. Age-dependent stratification of glioblastoma (GBM) patient incidence, mortality, and frequency across different databases. The Surveillance, Epidemiology, and End Results (SEER), the Cancer Genome Atlas (TCGA), and the Chinese Glioma Genome Atlas (CGGA) databases were analyzed. A. The incidence of GBM per 100,000 individuals (red), mortality due to GBM (blue), and the mortality/incidence ratio (green) of patients between 1975 and 2017 were binned by 5-year intervals of age groups. B. Comparison across databases for percentage mortality due to GBM among the SEER (red), TCGA (blue), and CGGA (green) between 1975 and 2017 binned by 5-year intervals of age groups. C. Age distribution among the SEER (red), TCGA (blue), and CGGA (green) databases as assessed across different GBM patient age groups demonstrating increased representation of elderly individuals (65-85+ bin) in the SEER database relative to CGGA and TCGA databases (inside open bracket).

Figure 2. Forest plot of meta-analysis evaluating hazard ratios as stratified by age of published phase III clinical trials involving patients with glioblastoma. Among the 10 publications available for meta-analysis based on age, six unique reference groups were identified for comparison. Hazard ratios comparing each age group vs. the youngest group were obtained from reported univariable analyses or from multivariable analyses which adjusted for age. Overall, most hazard ratios were greater than 1 among older age groups, suggesting worse overall survival.
Figure 3. Immunological factors associated with aging, GBM progression, and/or resistance to treatment. A. Antitumor and pro-tumorigenic factors at the cellular level in young versus elderly patients. Specific factors at the level of the tumor microenvironment have not been fully examined in aging populations. Extra-tumoral brain specific factors within young versus elderly patients and systemic features associated with young and elderly. Question marks indicate unexplored biology. B. Working hypothesis of aging-dependent factors affecting anti-tumor immune responses. T cell effector function is inhibited in young brains through intratumoral IDO expression. In contrast, aging brain T cell effector function is impaired by tumor expressing IDO, SASP factors and associated neuroinflammatory changes within the brain parenchyma, as well as other extra-tumoral factors including non-enzymatic IDO activity and systemic senescence. Number of arrows indicates abundance with increases indicated by upward-facing and decreases indicated by down-facing. Created with BioRender.com
Figure 4. The intra- and extra-tumoral environment changes with age and treatment. A hypothetical schema for describing factors in and around the brain tumor that contribute to malignant progression and response to therapy with age dependent changes and therapy related changes. Blue indicates a more immunocompetent antitumor response with increased T_{eff} (bright green) response and adequate tumor killing. Red indicates a progressively immunosuppressive tumor environment with increased age, recruiting more T_{reg} cells (dark green), increasing SASP factors, and treatment related immunosuppressive changes including reduced activity of T_{eff} cells and reduced tumor killing. Adapted from “Cold vs Hot Tumors” BioRender.com (2021). Retrieved from https://app.biorender.com/biorender-templates

Created with BioRender.com

Figure 5. Age-specific questions that remain to be explored in the setting of glioblastoma.
Table 1. CNS disease states, SEER database analysis, TCGA, and Norwegian database analysis MSBASE.org.

Condition	Median Age of Diagnosis (years)	Age-Adjusted Incidence (per 100,000)	Median Survival (months)	Standard of Care
Glioma (astrocytoma)	57	4.99	11.6	Resection, radiation
Grade II (diffuse)	48	0.46	104.4	Resection, radiation, temozolomide
Grade III (anaplastic)	53	0.41	9.9	Resection, radiation, temozolomide
Grade IV (Glioblastoma)	65	3.21	10.0	Resection, radiation, temozolomide, TTF
IDH WT GBM	68-70	NR	12.1 (mean=14.0)	See above
IDH MT GBM	45-48	NR	24.2 (mean=39.7)	
Oligodendroglioma	45	0.34	129.7	Surgery, radiation
Grade II	43	0.23	147.7	Surgery, radiation, PCV
Grade III (Anaplastic)	50	0.11	63.8	
Ependymoma	44	0.43	150+	Resection, radiation, combo. chemotherapy
Meningioma	66	8.33	78.4	
Grade I	66	8.23	116	Surgery
Grade II-II-III	65	0.10	76.4	Surgery, radiation
Pituitary Tumors	51	3.94	120+	Surgery, radiation
Metastatic Lesions to the Brain				
Lung	61-80	8.17	5.8	Targeted therapy for driver mutation, whole brain radiation therapy, immune checkpoint inhibitors, chemotherapies
Breast	61-80	0.33	10.0	Surgery, stereotactic radiosurgery
Colon	61-80	0.12	6.0	Surgery, stereotactic radiosurgery, whole brain radiation therapy, immune checkpoint inhibitors, chemotherapies
Renal	61-80	0.33	5.0	
Melanoma	61-80	0.19	6.0	
CNS Lymphoma	66	0.43	7.9	Methotrexate, radiation, rituximab
Neurodegenerative Disorders				
Alzheimer’s Disease	75-84	148	48-96	Cholinesterase inhibitors, NMDA antagonist
Parkinson’s Disease	72.3	8-18	9 years	Dopamine agonists, NMDA antagonist, MOA B inhibitors,
Amyotrophic Lateral Sclerosis	34.0	1.6	20-48	Riluzole, edaravone
Huntington’s Disease	53.4	0.38	10-20 years	Tetrabenazine, deutetrebabzone
Stroke	69.2	249.5	5-10 years	Thrombolytics, mechanical thrombectomy
Autoimmune Disorders				
Multiple Sclerosis	20-30	7.5	40.6 years	Ocrelizumab, Siponimod, Cladribine, interferon beta
Condition	Incidence	Time	Outcome	Treatment
----------------------------	-----------	------	---------	--
Transverse Myelitis	10-19, 30-40	0.134	Not reported	Glucocorticoids, IVIG, plasmapheresis
Neuromyelitis Optica	40.1	0.053-0.4	Not reported	Methylprednisolone, PLEX, Eculizumab, Ocrelizumab, Inebilizumab, Satralizumab

All info from UpToDate unless otherwise noted
See supplemental for references
Figure 1

A. Incidence (1975-2017), Mortality (1975-2017), and MIR (1975-2017)

B. Percentage of total mortalities among SEER (1975-2017; n=28,128), TCGA (n=415), and CGGA (n=80) across different age groups.

C. Percentage of total subjects across different age groups for SEER (1975-2017; n=28,128), TCGA (n=415), and CGGA (n=80).
Figure 2

Study	Comparison	Reference	Hazard Ratio [95% CI]
Weller et al., 2003	30 to 39	18 to 30	0.48 [0.30, 0.77]
Weller et al., 2003	40 to 49	18 to 30	0.95
Ali et al., 2018	40 to 60	18 to 40	1.87 [1.47, 2.39]
Buckner et al., 2006	40 to 60	18 to 40	1.33 [0.92, 1.93]
Halperin et al., 1996	45 or greater	18 to 45	2.78
Schold Jr. et al., 1993	45 or greater	18 to 45	1.86 [1.29, 2.66]
Weller et al., 2015	50 or greater	18 to 49	1.27 [0.75, 2.16]
Malmström et al., 2017	50 or greater	18 to 49	0.78 [0.49, 1.23]
Weller et al., 2003	50 to 59	18 to 30	1.34
Elliot et al., 1997	55 or greater	18 to 55	2.40
Weller et al., 2003	60 or greater	18 to 30	1.58 [1.19, 2.10]
Ali et al., 2018	60 or greater	18 to 40	3.30 [2.55, 4.29]
Buckner et al., 2006	60 or greater	18 to 40	2.35 [1.59, 3.47]
Brem et al., 1995	per decade (continuous)		1.24 [1.10, 1.39]
Levin et al., 2000	per year (continuous)		1.03 [1.02, 1.04]
Figure 3

A.	Features	Young	Elderly
Antitumor Factors			
Circulating Lymphocytes	Immune function, adaptive immunity, reduced in GBM patients	↓	↓↓
CD8+ T Eff	PD1 expression, CTLA-4, LAG-3, Tim-3	↓	↓
NK	Intrinsic immune system, tumor lysis	↓	?
Protumoral, Immunosuppressive Factors			
Hypoxia	Promotion of VEGF and angiogenesis, reduces T cell activation and activity	↑	↑
microglia	Resident brain macrophages, can skew to M2 phenotype, promotes tumor proliferation and migration, MMP expression	↑	↑
CD4+PD1+CD62L- Exhausted T cell	PD1 expression, CTLA-4, LAG-3, Tim-3	↑	↑
TAM, MDSC	M2 phenotype, anti-inflammatory, PD-L1 expression immune suppression	↑↑	↑
CD4+FOXP3+CD25+ T Regulatory Cells	Suppress antitumor immunity by T Effector cells	↑	↑
mDCs and pDCs	Antigen presentation, T cell anergy by low antigen presentation	↑	↑
Brain Specific Factors			
IDO	PD1 expression, CTLA-4, LAG-3, Tim-3	↑	↑↑↑
SASP factors	TGF-β, IL-6, IL-8, MMP	↑	↑↑
Immunosuppressive Cytokines	IL-10, reduced IFN-g, CSF-1, reduce T cell recruitment and activation	↑	↑↑
Neuroinflammation	PD-1, CTLA-4, LAG-3, Tim-3	↑	↑↑
Surgical Debulking	Reduced number of peripheral lymphocytes		
Systemic Factors			
Thymic involution	Absolute decrease in naive CD4+ and CD8+ T cells, decreased TCR diversity		↑
Bone Marrow Sequestration	Reduced circulating lymphocytes		↑
Systemic senescence, inflammaging	p70S6K44a expression, chronic inflammation, neurotoxicity		↑↑
Systemic Steroids	Reduced number of peripheral lymphocytes, inhibits IL-1β		
Chemotherapy	Chronic treatment mediated lymphopenia, reduced circulating CD4+ counts		

B. Young Brain with GBM

- Anti-tumor effect
- APC
- T cell
- Immunotherapy
- ↑ tumor IDO non-enzyme activity

Old Brain with GBM

- GBM progression
- APC
- T cell
- ↑ extra-tumoral IDO non-enzyme activity
- ↑ Systemic senescence
Figure 4
Figure 5

Is the tumor more aggressive due to phenotypic changes in aged individuals?

Is the brain parenchyma of the aged host more permissive for tumor growth?

What happens to the aging immune system, rendering it unable to clear the tumor?

How can clinical trial design better address the aging population to improve survival outcomes?