Evaluation and Segmentation of Printing Accessories Suppliers Based on the Integration of the Best Worst Method and Fuzzy TOPSIS (Case Study at PT. Udaka Indonesia)

Wakhid Nur Hidayat1, Elly Wuryaningtyas Yunitasari1, Patrisius Edi Prasetyo1
1 Faculty of Engineering, Departement of Industrial Engineering
Universitas Sarjanawiyata Tamansiswa, Yogyakarta, 55165
email: wakhidnur567@gmail.com
doi: https://doi.org/10.31315/opsi.v14i2.5312

ABSTRACT
In an increasingly competitive industrial environment, every company strives to increase the quality and efficiency of its product development process. PT. Udaka Indonesia, a clothing manufacturer, is experiencing raw material shortages that disrupt the company's production process. The goal of this research is to assess and segment the company's suppliers. The Best Worst Method (BWM) is employed for weighting criteria, and Fuzzy TOPSIS is used to rank alternative providers and segment them. The dimensions of capabilities (8 criteria with 26 sub-criteria) and willingness (4 criteria with 15 sub-criteria) make up the company's supplier evaluation criteria. The evaluation results suggest that suppliers A2, B3, C2, and D2 are the best in terms of capabilities for label accessories, stickers, paper tags, and polybags, respectively, while A1, B2, C2, and D2 are the best in terms of willingness. Supplier segmentation results show that segmentation 1 includes suppliers C1, B1, B3, and D1, segmentation 2 includes supplier A3, and segmentation 4 includes suppliers A1, A2, B2, B4, C2, and D2.

Keywords: Supplier evaluation; Supplier segmentation; Best Worst Method (BWM); Fuzzy TOPSIS

1. INTRODUCTION
In an increasingly competitive industrial environment, every company strives to increase the quality and efficiency of its product development process. The company does this to remain competitive with its rivals. One of the essential factors in improving product production performance is the availability of raw resources. According to Hendratmiko (2010), raw materials are the company's most crucial aspect in ensuring a smooth production process. The supplier is one factor that has a significant impact on the company's raw material availability.

PT. Udaka Indonesia is a clothing manufacturing firm. Fulfillment of the company's raw material needs, especially in printing accessories, is often rejected. In the last four months, 31.9% of arrivals experienced rejection due to raw materials coming from suppliers that were defective or not in accordance with company standards. In addition, the company's issues are tied to delivering raw materials from suppliers who frequently have mistaken quality and quantity and late deliveries, resulting in losses.

This study aims to determine the best supplier and the actions that need to be taken against each supplier through supplier evaluation and segmentation. Evaluation and segmentation of suppliers is one strategy to address these issues. Supplier segmentation is meant to classify suppliers based on their ability to supply raw materials to the company, and supplier evaluation is used as a reference in establishing the company's primary suppliers. Furthermore, the segmentation is used as a proposal for determining the company's activities towards its suppliers. Companies can consider suppliers to be maintained, upgraded, or replaced.

The Multi-Criteria Decision Making (MCDM) approach has been used to research supplier selection and assessment issues. Some research that raises related topics are as follows:
The difference between this study and previous studies is that the Best Worst Method (BWM) is integrated with the Fuzzy TOPSIS method to produce supplier evaluation and segmentation. Determination of criteria and sub-criteria considers two dimensions, namely the dimensions of capabilities and willingness, which can be seen in Table 2 and Table 3. These two dimensions are used to consider the supplier's ability and willingness to supply raw materials to the company. In addition, previous studies only produced supplier evaluations in the form of the results of weighting criteria and rankings from their evaluations, while in this study, the evaluations obtained were used as the basis for segmenting suppliers to produce proposed company actions against their suppliers. The company's proposed actions are clarified by prioritizing suppliers based on the segmentation position and the circumstances of the related suppliers.

Table 1. State of the art

Name and Reference	Method	Criteria
Gupta and Barua (2017)	BWM and Fuzzy TOPSIS	Collaboration, environmental investment, and economic benefits, availability of green competencies, environmental management initiatives, research and design initiatives, green purchasing, regulatory obligations, and identification of market pressures and demands are among the seven main criteria with 42 sub-criteria (collaboration, environmental investment and economic benefits, availability of green competencies, environmental management initiatives, research and design initiatives, green purchasing, regulatory obligations, and market pressures and demands identification).
Adhiana et al. (2019)	Fuzzy Promethee	There are five requirements (competitive price, availability of goods, quality of goods, delivery time, and delivery capacity)
Dachyar and Maharani (2019)	BWM and TOPSIS	There are two dimensions, twelve primary criteria, and 37 sub-criteria (ability: technical, product quality, delivery, intangible, financial, sustainable, and organizational, as well as willingness to improve performance, share information, interdependence, and long-term relationships)
Lestari and Fauzi (2019)	AHP	There are six main criteria and fifteen sub-categories (quality, delivery, price, production capability, service, vendor characteristics)
Sulistyoningarum et al (2019)	BWM, TOPSIS and MOLP	There are four main criteria and ten sub-criteria (price, delivery, capability, and flexibility)
Kurniawan and Puspitasari (2021)	Fuzzy BWM	There are five requirements (service, flexibility & delivery, reputation, quality, and purchase cost)
Hidayat	BWM and Fuzzy TOPSIS	There are two dimensions, 12 criteria, and 41 sub-criteria.

2. METHOD

This study was carried out at PT. Udaka Indonesia, which is located in Kalasan, Sleman, Yogyakarta. The investigation was carried out in the following manner:

2.1 Determination of criteria and sub-criteria

Identifying the criteria and sub-criteria desired by the firm is the first step in problem-solving. The findings of conversations between the company's Decision Maker (DM), typically the general manager and factory manager, and PPIC purchasing are used to determine these criteria. The two parties were picked because they have the most influence over its continuity and are the most knowledgeable about its suppliers. According to Rezaei et al. (2015), the evaluation criteria are divided into two categories: the capabilities dimension, which consists of eight criteria (ability: technical, product quality, delivery, service, financial, organizational, sustainable, and intangible) and
the willingness dimension, which consists of four criteria (willingness: to improve performance). 24 sub-criteria in the capabilities dimension and 15 sub-criteria in the willingness dimension were derived based on the findings of the Decision Maker (DM) discussion with the company’s PPIC purchasing, as shown in Tables 2 and 3 below:

Table 2. Dimension Capabilities
No.

1.
2.
3.
4.
5.
6.
7.
8.

Table 3. Dimensions of Willingness
No.

1.
2.
3.
4.
2.2 Criteria Weighting

The weighting of the previously derived criterion and sub-criteria is then applied. The company's policymaker, typically the Decision Maker, performs this weighing via a criterion-weighted questionnaire (DM). The Best Worst Method is then used to process the weighted findings (BWM). Rezaei (2015) proposed the best worst technique to solve the problem of Multi-Criteria Decision Making for the first time (MCDM). The processes for utilizing the BWM approach to calculate the weight of the criteria are as follows:

\[A^- = (\tilde{v}_1, \tilde{v}_2, \ldots, \tilde{v}_n), \]

5) Calculating alternative distance from FPIS and FNIS

\[d^+_i = \sum_{j=1}^{n} d(\tilde{v}_{ij}, \tilde{v}^+_i), \quad i = 1, 2, \ldots, m \]
\[d^-_i = \sum_{j=1}^{n} d(\tilde{v}_{ij}, \tilde{v}^-_i), \quad i = 1, 2, \ldots, m \]

6) Calculating Closeness Coefficient (CCI) and determining alternative rankings

\[CCI = \frac{d^-_i}{d^+_i + d^-_i}, \quad i = 1, 2, \ldots, m \]

2.3 Supplier Segmentation

The weighted results and the results of the supplier assessment questionnaire done by PPIC purchasing are then used as input in the supplier evaluation. The Fuzzy TOPSIS approach is used for supplier evaluation. The steps are as follows, according to Chen (2015): Fuzzy TOPSIS:

1) Determining the weight of the criteria and the ranking of the criteria with variable linguistic

2) Calculating the normalized fuzzy decision matrix

\[\tilde{r}_{ij} = \left(\frac{a_{ij}}{c_{ij}^+}, \frac{b_{ij}}{c_{ij}^-}, \frac{c_{ij}}{c_{ij}^+} \right), \quad j \in B; \]
\[\tilde{r}_{ij} = \left(\frac{a^-_{ij}}{c_{ij}^-}, \frac{a^+_{ij}}{a^+_{ij}}, \frac{a^+_{ij}}{a^-_{ij}} \right), \quad j \in C; \]

3) Calculating the weighted normalized fuzzy decision matrix

\[\tilde{v} = [\tilde{v}_{ij}]_{m \times n}, \quad i = 1, 2, \ldots, m, \]
\[j = 1, 2, \ldots, n \]

4) Determining FPIS and FNIS values

\[A^+ = (\tilde{v}_1^+, \tilde{v}_2^+, \ldots, \tilde{v}_n^+), \]

3. RESULTS AND DISCUSSION

3.1 Weighting Results

After obtaining the criteria and sub-criteria, use the Best Worst Method to calculate the weight of each criterion and sub-criteria (BWM). Ms. Excel Solver was used to carry out
The weights of each criterion and sub-criteria can be decided after the overall assessment has been consistent. The following tables show the outcomes of these calculations: Table 6 and Table 7.

Table 6. Dimensional weight capabilities

Criteria	Weight	Sub criteria	Weight	Global weight
C1	0.140	C11	0.378	0.053
		C12	0.514	0.072
		C13	0.108	0.015
C2	0.293	C21	0.500	0.147
		C22	0.500	0.147
C3	0.110	C31	0.119	0.013
		C32	0.417	0.046
		C33	0.310	0.034
		C34	0.155	0.017
C4	0.163	C41	0.292	0.047
		C42	0.708	0.115
C5	0.142	C51	0.434	0.061
		C52	0.116	0.016
		C53	0.260	0.037
		C54	0.189	0.027
C6	0.058	C61	0.081	0.005
		C62	0.315	0.018
		C63	0.410	0.024
		C64	0.193	0.011
C7	0.035	C71	0.143	0.005
		C72	0.115	0.004
		C73	0.426	0.015
		C74	0.316	0.011
C8	0.060	C81	0.444	0.026
		C82	0.444	0.026
		C83	0.111	0.007
Table 7. Willingness dimension weight

Criteria	Weight	Sub criteria	Weight	Global weight
W1	0.170	W11	0.351	0.060
		W12	0.092	0.016
		W13	0.350	0.060
		W14	0.207	0.035
W2	0.309	W21	0.292	0.090
		W22	0.167	0.051
		W23	0.542	0.167
W3	0.237	W31	0.289	0.068
		W32	0.454	0.107
		W33	0.179	0.042
		W34	0.078	0.019
W4	0.282	W41	0.115	0.032
		W42	0.458	0.129
		W43	0.355	0.100
		W44	0.071	0.020

3.2 Supplier Evaluation and Segmentation Results

Table 8 shows the results of the evaluation and classification of providers once they have been calculated:

Table 8. Evaluation results and supplier segmentation

Accessories Supplier	Dimension Capabilities	Dimension	Willingness
Label	CCI 0.896	High	1.000 High
	A2 0.986	High	0.895 High
	A3 0.104	Low	0.668 High
Sticker	B1 0.451	Low	0.253 Low
	B2 0.979	High	0.833 High
	B3 0.264	Low	0.313 Low
	B4 0.857	High	0.543 High
Paper tag	C1 0.148	Low	0.484 Low
	C2 0.852	High	0.516 High
Polybag	D1 0.000	Low	0.000 Low
	D2 1.000	High	1.000 High

On the capabilities dimension, suppliers A2, A1, A3 B2, B4, B1, B3, C2, C1, and D2, D1 are the providers of choice for label accessories, stickers, paper tags, and polybags. Meanwhile, suppliers for accessories, labels, stickers, paper tags, and polybags are in the following order: A1, A2, A3, B2, B4, B3, B1, C2, C1, and D2, D1.

Figure 2 shows the detailed findings of supplier segmentation in the meantime:

According to the results of the supplier segmentation, the eleven suppliers are separated into three segments: segmentation 1, segmentation 2, and segmentation 4:

a) Segmentation 1
In sector 1, suppliers of sticker accessories B1 and B3 are found. Other providers, such as B2 and B4, are, nonetheless, excellent (segment 4). This suggests that it is preferable to avoid using B1 and B3 suppliers to form ties with B2 and B4. Supplier D1 is a polybag provider who should be reconsidered. This is because this supplier performs poorly compared to its competitors, particularly supplier D2, which meets all of the company's requirements. Meanwhile, although in segment 1, paper tag accessories supplier C1 requires attention, this provider is critical as a backup to segment 4 supplier C2.

b) Segmentation 2
In segmentation 2, there is an A3 provider who is a label accessory supplier. Suppliers
in this area should increase their ability to supply raw materials to the company in general. Companies can assist suppliers by enhancing their skills by recognizing and resolving difficulties they face. This can, however, be ruled out because the company should already have more connections with A2 and A1 label accessory vendors in segment 4.

c) Segmentation 4
Companies should make an effort to keep their ties with these vendors intact. Furthermore, suppliers in this category profit, implying that the relationship is more likely to develop into a partnership. Suppliers A1 and A2 (label accessories), B2 and B4 (sticker accessories), C2 (paper tag accessories), and D2 (paper tag accessories) make up this sector (polybag accessories).

4. CONCLUSION
According to the research findings, suppliers A2, B2, C2, and D2 are the best on the dimensions of capabilities for accessory labels, stickers, paper tags, and polybags. Suppliers A1, B2, C2, and D2 are the dimensions of willingness in the meantime. Suppliers C1, B1, B3, and D1 are the results of segmentation 1 based on the findings of the supplier segmentation, and the company is encouraged to look for a replacement/override from suppliers in this first segmentation. A3 providers are segmentation number two, and this is where organizations may work to strengthen their capabilities. While segmentation 4 includes suppliers A1, A2, B2, B4, C2, and D2, this segmentation firm is expected to maintain ties with more like partnerships.

It is recommended that more studies be done to identify the value classification of each factor in the supplier evaluation process. Its goal is to offer each of the assessments a precise classification.

REFERENCES
Adhiana, T. P., Krisnawati, M., & Asyari, H. (2019). Evaluasi Kinerja Pemasok Bahan Baku Menggunakan Metode Fuzzy Promethee. Dinamika Rekayasa, 15(2), 107. https://doi.org/10.20884/1.dr.2019.15.2.271

Dachyar, M., & Maharani, A. K. (2019). Supplier evaluation and segmentation in cheese companies using the best-worst method and TOPSIS. Proceedings of the International Conference on Industrial Engineering and Operations Management, July, 81–89.

Gupta, H., & Barua, M. K. (2017). Supplier selection among SMEs based on their green innovation ability using BWM and fuzzy TOPSIS. Journal of Cleaner Production, 152, 242–258. https://doi.org/10.1016/j.jclepro.2017.03.125

Hendratmiko, Y. (2010). Analisis Pengendalian Persediaan Bahan Baku Pada Industri Kecil Menengah Mebel di Kota Kendal (Issue 1).

Kurniawan, V. R. B., & Puspitasari, F. H. (2021). A Fuzzy BWM Method for Evaluating Supplier Selection Factors in an SME Paper Manufacturer. IOP Conference Series: Materials Science and Engineering, 1071(1), 012004. https://doi.org/10.1088/1757-899x/1071/1/012004

Lestari, S., & Fauzi, C. (2019). Evaluasi Supplier Kemasan Dus Dengan Menerapkan Metode Analytical Hierarchy Process (Ahp) (Studi Kasus Di Pt Innovation). Journal Industrial Services, 4(2). https://doi.org/10.36055/jiss.v4i2.5153

Mokhtarian, M. N. (2015). A note on "extension of fuzzy TOPSIS method based on interval-valued fuzzy sets." Applied Soft Computing Journal, 26, 513–514. https://doi.org/10.1016/j.asoc.2014.10.013

Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega (United Kingdom), 53, 49–57. https://doi.org/10.1016/j.omega.2014.11.009

Rezaei, J., & Ortt, R. (2013). Multi-criteria supplier segmentation using a fuzzy preference relation-based AHP. European Journal of Operational Research, 225(1), 75–84. https://doi.org/10.1016/j.ejor.2012.09.037

Rezaei, J., Wang, J., & Tavasszy, L. (2015). Linking supplier development to supplier segmentation using Best Worst Method.
Sulistyoningarum, R., Rosyidi, C. N., & Rochman, T. (2019). Supplier selection of recycled plastic materials using best worst and TOPSIS method. *Journal of Physics: Conference Series, 1367*(1). https://doi.org/10.1088/1742-6596/1367/1/012041