Stability analysis of MSW slope layered by aging

Xinping Fani), Maosong Huangii), Yilin Liuiii) and Haoran Wangiv)

i) Ph.D. Student, Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China.
ii) Professor, Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China.
iii) Professorial Research Fellow, Research Institute of Highway Ministry of Transport, Beijing 100088, China.
iv) Engineer, Shanghai Urban Construction Design & Research Institute, Shanghai 200125, China.

ABSTRACT

As the age of waste changes, the strength of the waste varies during the service years of the landfill. On base of the upper bound limit analysis theorem, two mechanisms for stability analysis of landfills layered by aging are presented in this paper. The rotational-translational mechanism is generalized to analyze the multi-layer municipal solid waste (MSW) landfill slope. The other failure mechanism is comprised of irregular blocks undergoing translational movements. To examine the two mechanisms, the cases of a soil slope layered horizontally and a landfill slope layered by aging are taken into consideration in the case studies. In comparison with the results from the shear strength reduction finite element method (SSRFEM), it demonstrates that the validity of the two mechanisms in the stability analysis of landfill slope cases considering the aging of landfills. In addition, the stability of the Coll Cardús in Spain with complex layers by aging is analyzed, and the results are also compared with those from the SSRFEM.

Keywords: Landfill; age; stability; rotational-translational; multi-block; numerical simulation

1 INTRODUCTION

The difference between landfill slopes and other general soil slopes is the specific character of MSW. During the term use of landfill, the degree of degradation of waste is diverse because the time of waste buried is different. The shear strength has distinct difference. Chen et al. (2009) obtained the relationship between waste compositions and age by the test analysis of the borehole samples from the Suzhou Qizishan Landfill. With the fill age, the strength of the waste changed, including that friction angle increased and cohesion decreased. Machado et al. (2002) and Feng et al. (2007) gained the similar conclusions. Hence, it is necessary that landfill slopes are layered by aging when the stability is analyzed.

Recently several scholars have analyzed the stability of the landfill slopes by the limit equilibrium method (LEM). Qian et al. (2003) and Qian & Koerner (2004) used the limit equilibrium method to analyze the landfill slopes. In their studies, the sliding mass was split into two wedges, the active wedge and the passive wedge. The equilibrium function was set up to obtain the safety factor after analyzing the two wedges. Hossain et al. (2009) analyzed the stability of the MSW slope considering different fill ages by the finite element method (FEM) and LEM.

In this paper, the landfill slope layered by aging is analyzed by two failure mechanisms based on the limit analysis method. One is the rotational-translational mechanism; and the other is the multi-block mechanism. At first, a typical soil slope layered horizontally is analyzed by the limit analysis method to demonstrate the validity of the two mechanisms in the stability analysis of the slope. Then the case of the landfill slope layered by aging is analyzed by the two mechanisms above. Their results are consistent with that from the shear strength reduction finite element method (SSRFEM). Finally, these two mechanisms are applied to calculate the stability of the Coll Cardús landfill in Spain with complex layers by aging. Again, good agreement with the SSRFEM can be found.

2 UPPER BOUND LIMIT ANALYSIS

2.1 Upper bound theorem

The limit analysis method in this paper is based on the upper bound theorem, which states that the rate of external work is less than or equal to the rate of internal plastic energy dissipation in any kinematically admissible velocity field (Michalowski, 1995). This can be expressed as

\[\begin{align*}
\int_S T_v \delta S + \int_V X_v \delta V &\leq \int_V \sigma_y \delta \varepsilon_s dV (i, j = 1, 2, 3)
\end{align*}\]

(1)

2.2 Rotational-translational mechanism

Because of the liner system in the landfill, the limit analysis is based on the rotational-translational mechanism rather than the conventional rotational failure mechanism for homogeneous slopes. As show in Fig. 1, the wedge A is the rotating block, and the wedge B is the translating block. It is assumed that the
failure surface (the BN part) is a logarithmic spiral rotating around the point \(O \). The wedge \(B \) translates along the liner system. The velocity of the wedge \(B \) is \(v_B \), of which direction is tilted \(\delta_{B2} \) relative to the liner interface on the bottom. The layers in the wedge \(A \) rotates with the same angular velocity. The three sections (NP, PQ and QB) are tilted respectively \(\phi_1 \), \(\phi_2 \), \(\phi_3 \). The velocity of the gap FN between the wedge \(A \) and \(B \) is \(v_{ab} \), along the liner system. The velocity of the wedge \(B \) is \(v_B \), of which direction is tilted \(\delta_{B2} \) relative to the liner interface on the bottom. When the failure surface is through the sliding mass, the direction of \(v_B \) is tilted \(\delta_i \) (the frictional angle of the corresponding soil layer) relative to the failure surface. The velocity of the block \(i-1 \) is \(v_{i-1} \), and the relative velocity of the block \(i \) and \(i-1 \) is \([v]_i \). On the assuming that the velocity of the block \(1 \) is \(v_1 \), the kinematically admissible velocity field is constructed. And the safety factor can be obtained by Eq. (1).

![Fig 1 Rotational-translational mechanism of a landfill slope layered by ageing](image)

In the calculative process, it is worth noting that the frictional angle should be consistent with the corresponding layer that the gap contains. After constructing the kinematically admissible velocity field (Fig.2), the safety factor can be obtained by Eq. (1).

2.3 Multi-block mechanism

Similar to the rotational-translational mechanism, the upper bound limit analysis can be performed with the multi-block mechanism. In the analysis of the slope stability, the rotational-translational mechanism is a simplified model, of which the wedge number is not large. And the sliding surface should not be complicated. However, the multi-block mechanism is a global searching model. The number of blocks in the multi-block mechanism is large, so the failure surface can be any shape.

The sliding mass is divided into \(n \) blocks to build the velocity field (Fig. 3). The velocity of the block \(i \) is \(v_i \). When the block \(i \) is translating along the liner system, the direction of \(v_i \) is tilted \(\delta_{i2} \) relative to the liner interface on the bottom. When the failure surface is through the sliding mass, the direction of \(v_i \) is tilted \(\delta_i \) (the frictional angle of the corresponding soil layer) relative to the failure surface. The velocity of the block \(i-1 \) is \(v_{i-1} \), and the relative velocity of the block \(i \) and \(i-1 \) is \([v]_i \). On the assuming that the velocity of the block \(1 \) is \(v_1 \), the kinematically admissible velocity field is constructed. And the safety factor can be obtained by Eq. (1).

![Fig 2 Velocity field of the rotational-translational mechanism](image)

3 CASE STUDIES

3.1 Case 1: a layered soil slope

Case 1 (Fig. 4) is a layered soil slope which was previously studied by Bui et al. (2011) with the elasto-plastic smoothed particle hydrodynamics (SPH). This case is studied again to verify the suitability of the two mechanisms for the limit analysis. Table 1 shows the parameters of soils used in the analysis. The case is also analyzed by the SSRFEM as well as the LEM. Comparisons with the SSRFEM, SPH and LEM are summarized in Table 2.

As shown in the table, the safety factors obtained from various methods are similar. The critical failure modes of the slope (Fig. 5) are almost the same. The result of the rotational mechanism is slightly better than that of the multi-block mechanism, since the failure surface of this slope is close to a circular arc other than the multi-polyline found in the multi-block mechanism. It can be concluded that even if the number of blocks in the multi-block mechanism is very large, the critical failure mode is different from the theoretical mode.
Table 1 Parameters of the soils (Case 1)

Soil	Soil 1	Soil 2	Soil 3
Unit weight	18 kN·m$^{-3}$	19.5 kN·m$^{-3}$	21 kN·m$^{-3}$
Cohesion	14 kPa	16.8 kPa	19 kPa
Frictional angle	18°	20°	23°
Elastic modulus	60 MPa	80 MPa	100 MPa
Poisson’s ratio	0.3	0.3	0.3

Table 2 Factors of safety (Case 1)

Analysis methods	M-P	SPH	LA rotational-translational	LA multi-block	FEM
The factors of safety	1.72	1.70	1.705	1.711	1.72

Note: M-P—Morgenstern-Price method; LA—Limit analysis method.

3.2 Case 2: a landfill slope layered by aging

A case of the landfill slope is analyzed by considering the fill age here. The geometry of the landfill slope is shown in Fig. 6 with L/H=4.5. The fill age of the waste is divide into low, middle and high levels. Parameters of the waste are given in Table 3.

As shown in Table 4, the larger safety factor can be obtained when the waste has the larger fill age. So the landfill slope becomes stable with the fill age increasing in the absence of pore pressures. And the safety factor of the landfill slope layered by aging (multi-block mechanism for example, 1.277) is between that of the homogeneous slope with the middle (1.203) and high (1.304) fill age level.

3.3 Case 3: the Coll Cardús landfill in Spain

The Coll Cardús landfill is located at the northeast of Spain, and it has worked from 1980s. The waste was directly dumped in a natural valley. The height of the waste mass was around 150 m as shown in Fig. 8 (Yu and Batlle, 2011). In the 2D analysis of its stability, the A-A section is selected which has the most risk. Fig. 9 shows the calculation mode. And the parameters of the waste are in the Table 5.
The safety factor obtained by the multi-block mechanism is smaller than that by the rotational-translational mechanism (Table 6). This is mainly owing to that the global search is used in the multi-block mechanism, while the local search is used in the rotational-translational mechanism. The factors of safety obtained by the two mechanisms are close to that by the SSRFEM, and the critical failure modes are also similar (as shown in Fig.10).

Table 5 Parameters of the waste (the Coll Cardús landfill)

Fill age(years)	Unit weight (kN·m⁻³)	Cohesion (kPa)	Friction angle (°)	Elastic modulus (MPa)
5	18.5	40	15	7
8	18.5	35	19	7
10	18.5	30	23	7
12	18.5	25	27	7
17	18.5	20	31	7
22	18.5	15	35	7

Table 6 Factors of safety (the Coll Cardús landfill)

Analysis method	Rotational-Translational	Multi-block	SSRFEM
Safety factors	1.268	1.232	1.24

Fig. 9 Analyzed cross-section of the Coll Cardús landfill

Fig. 8 Aerial view of the Coll Cardús landfill (Yu and Battle, 2011)

4 CONCLUSIONS
In this paper, two failure mechanisms have been proposed for the upper bound limit analysis method to analyze the stability of the landfill slopes layered by aging. The layered soil slope, the landfill slope layered by aging and the Coll Cardús landfill in Spain have been analyzed by the above-mentioned method. The studies indicate:

(1) In comparison with the results of finite element methods, it demonstrates that the validity of the two mechanisms in the stability analysis of landfill slopes considering the aging of landfills.

(2) The more reasonable result of the analysis by the rotational-translational mechanism can be obtained when the failure surface is close to a circular arc. For the case of the landfill slope layered by aging, which failure surface is irregular under the complicated condition, analyses with the multi-block mechanism will lead to more reasonable results.

(3) As the fill age increases, the landfill slope becomes stable in the absent of pore pressures. The fill age is divided into low, middle and high levels. The safety factor of the landfill slope layered by aging is between those of the homogeneous slopes with the middle and high fill age levels.

5 ACKNOWLEDGEMENTS
This work was financially supported by the National Basic Research Program of China (973 Program, Grant No. 2012CB719803). This support is gratefully acknowledged.

6 REFERENCES
1) Chen, Y.-M., Lin, W.-A., Zhan, L.-T. (2009): A study on the relationship between the shear strength of municipal solid waste and the fill age. China Civil Engineering Journal, 3, 111-117.
2) Machado, S. L., Carvalho, M. F., Vilar, O. M. (2002): Constitutive model for municipal solid waste. Journal of Geotechnical and Geoenvironmental Engineering, 128(11), 940-951.
3) Feng, S.-J., Chen, Y.-M., Gao, G.-Y. (2007): Analysis on translational failure of landfill along the underlying liner system. Chinese Journal of Geotechnical Engineering, 29(1), 20-25.
4) Qian, X., Koerner, R.M., Gray, D.H. (2003): Translational failure analysis of landfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 129(6), 506-519.
5) Qian X., Koerner, R.M. (2004): Effect of apparent cohesion on translational failure analysis of landfills. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 130(1), 71-80.
6) Hossain M. S., Haque, M.A. (2009): Stability Analyses of Municipal Solid Waste Landfills with Decomposition. Geotechnical and Geological Engineering, 27(6), 659-666.
7) Michalowski, R. L. (1995): Slope stability analysis: a kinematical approach. Geotechnique, 45(2), 283-293.
8) Bui, H. H., Fukagawa, R., Sako, K. (2011): Slope stability analysis and discontinuous slope failure simulation by elasto-plastic smoothed particle hydrodynamics (SPH). Geotechnique, 61(7), 565-574.
9) Yu, L., Battle, F. (2011): A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill [J]. Waste Management, 31(12), 2484-2496.