Ultrahigh energy neutrinos in the Mediterranean: detecting ν_τ and ν_μ with a km^3 telescope

A Cuoco1, G Mangano1, G Miele1, S Pastor2, L Perrone3, O Pisanti1 and P D Serpico4

1 Dipartimento di Scienze Fisiche, Università di Napoli Federico II and INFN Sezione di Napoli, Complesso Universitario di Monte S Angelo, Via Cinthia, I-80126 Napoli, Italy
2 Instituto de Física Corpuscular (CSIC-Universitat de València), Edificio Institutos de Investigación, Apartado 22085, E-46071 València, Spain
3 Dipartimento di Ingegneria dell’Innovazione, Università di Lecce and INFN Sezione di Lecce, Via per Monteroni, I-73100 Lecce, Italy
4 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 Munich, Germany
E-mail: cuoco@na.infn.it, mangano@na.infn.it, miele@na.infn.it, pastor@ific.uv.es, lorenzo@le.infn.it, pisanti@na.infn.it and serpico@mppmu.mpg.de

Received 20 September 2006
Accepted 15 January 2007
Published 6 February 2007

Abstract. We perform a study of the ultrahigh energy neutrino detection performances of a km^3 neutrino telescope sitting at the three proposed sites for ANTARES, NEMO and NESTOR in the Mediterranean sea. We focus on the effect of the under-water surface profile on the total amount of yearly expected τ and μ crossing the fiducial volume in the limit of full detection efficiency and energy resolution. We also emphasize the possible enhancement of the matter effect by making a suitable choice of the geometry of the telescope.

Keywords: neutrino experiments, neutrino detectors, neutrino and gamma astronomy

ArXiv ePrint: astro-ph/0609241
1. Introduction

Neutrinos are among the main components of the cosmic radiation in the ultrahigh energy (UHE) regime. Although their fluxes are uncertain and depend on the production mechanism, their detection can provide information on the sources and origin of the UHE cosmic rays. For example, UHE neutrinos can be produced via π photoproduction by strongly accelerated hadrons in the presence of a background electromagnetic field. This scenario is expected to occur in extreme astrophysical environments like the jets of active galactic nuclei, radio galaxies and gamma ray burst sources as well as in the propagation of UHE nucleons scattering off the cosmic background radiation (known as cosmogenic neutrinos [1,2]).

From the experimental point of view, since the first pioneering and successful achievements, neutrino astronomy in the high energy regime [3]–[7] has been a rapidly developing field, with a new generation of neutrino telescopes on the way. A benchmark result was obtained by the DUMAND [8] collaboration, followed by the successful deployments of NT-200 at Lake Baikal [9] and AMANDA [10] at the South Pole, which have shown the feasibility of large optical Cherenkov neutrino telescopes (NT) in open media like sea-water or lake-water and glacial ice. These experiments observed atmospheric neutrinos [11] and set bounds on their extraterrestrial flux [12]–[14] which are much more constraining than the corresponding bounds obtained by underground neutrino detectors [15]. These interesting results and the perspective of performing astronomical studies using UHE neutrinos stimulated several proposals and R&D projects for neutrino telescopes in the deep water of the Mediterranean sea, namely ANTARES [16], NESTOR [17] and NEMO [18], which in the future could lead to the construction of a km3 telescope as pursued by the KM3NeT project [19,20]. Actually, the ANTARES collaboration is in a more advanced phase, with a telescope with an area of \sim0.1 km2 already under construction [21]. A further project is IceCube, a cubic kilometre under-ice neutrino detector [22]–[24] currently being deployed in a location near the geographic South Pole in Antarctica. IceCube applies and improves the successful technique of AMANDA to a larger volume.

Until now, the possibility of performing astronomy with neutrinos has been seriously limited by the presence of the heavy atmospheric background in the energy range currently

1. Contents

1. Introduction 2
2. The effective aperture of a NT 5
3. The event rate for ν_τ interactions 8
4. The ν_μ contribution: disentangling μs from τs 16
5. Conclusions 19
 Acknowledgments 21
 References 21
explored. The start of ν astronomy is eagerly awaiting the completion of the new km3 projects. In fact, according to theoretical expectations, the km3 is the minimum detector size required to detect with reasonable chances of success point-like sources at the TeV scale and, more relevant for this paper, to explore energies above about 100 TeV, where extraterrestrial diffuse fluxes should start to dominate over the steeper atmospheric spectrum. In the following we shall focus attention mainly on this energy range, although many of our results are valid also at lower energies.

Although NTs were originally thought of as ν_μ detectors, their capability as ν_τ detectors has become a hot topic \cite{25}–\cite{33}, in view of the fact that neutrino oscillations lead to nearly equal astrophysical fluxes for the three neutrino flavours\footnote{This statement may not hold for exotic neutrino models \cite{34,35} or for peculiar astrophysical sources \cite{36}–\cite{38}.}. Despite the different behaviour of the produced tau leptons with respect to muons in terms of energy loss and decay length, both ν_μ and ν_τ detections are sensitive to the matter distribution near the NT site. Thus, a computation of the event detection rate of a km3 telescope requires a careful analysis of the surroundings of the proposed site. The importance of the elevation profile of the Earth’s surface around the detector was already found of some relevance in \cite{39}, where some of the present authors calculated the aperture of the Pierre Auger Observatory \cite{40,41} for Earth-skimming UHE ν_τs. Indeed, air shower experiments can be used as NTs at energies $\gtrsim 10^{18}$ eV, a topic recently reviewed in \cite{42}. In particular, the possibility of detection of the τ leptons produced by Earth-skimming UHE ν_τs has been analysed in a series of papers \cite{39}, \cite{43}–\cite{53}. In \cite{39} the use of a digital elevation map (DEM) of the geographical area of the experiment proved useful for characterizing peculiar matter effects in Earth-skimming events.

The aim of this paper is to estimate the effective aperture for ν_τ and ν_μ detection of a km3 NT in the Mediterranean sea placed at any of the three locations proposed by the \textbf{ANTARES}, \textbf{NEMO} and \textbf{NESTOR} collaborations. We do not consider any detail related to the experimental set-up or the detector response. In particular, we assume full detection efficiency via Cherenkov radiation for muons and taus crossing the NT fiducial volume. This means that we consider a lepton as detected if it crosses any point of the surface delimiting our fiducial volume, without e.g. taking into account further requirements or cuts needed for a good directional or energy reconstruction. These would depend on several parameters, like the spacing of the strings, the distribution of photomultipliers along the string, etc, which are characteristics of the apparatus and thus beyond the scope of the present analysis. We rather compare the site characteristics by using the DEM of the different areas. We shall therefore characterize and quantify the importance of ‘matter effects’ for the three sites, and focus on the role played by the geometry of the experiment in enhancing the effect. These considerations may provide an important ingredient in shaping the final design of a km3 Mediterranean NT.

A detailed DEM of the under-water Earth’s surface is available from the Global Relief Data survey (ETOPO2) \cite{54}, a grid of altimetry measurements with a vertical resolution of 1 m averaged over cells of 2 min of latitude and longitude. In figures 1–3 we show the 3D maps of the areas around the three NT sites. The black curve represents the coast line, whereas the red spot stands for the location of the apparatus. By following the same approach as was developed in \cite{39}, we use this DEM to produce a realistic and
statistically significant sample of ν_τ/τ and ν_μ/μ tracks crossing the fiducial volume of the NT that are then used to evaluate the effective aperture of each detector.

We note that when the events are reconstructed only in terms of the energy loss along the track, the UHE taus cannot be distinguished from less energetic muons. This implies that the reconstruction analyses of UHE ν_μ and ν_τ events are highly entangled issues. We shall consider both of them, although for the sake of clarity we shall first focus on ν_τ detection. Of course, when considering shower events or more general contained events—
Figure 3. The surface profile of the area near the NESTOR site (red spot) at 36° 21 N, 21° 21 E. The black curve represents the coastline. The sea plateau depth in the simulation is assumed to be 4166 m. The effective volume starts at a height of 100 m from the sea bed, to account for the spacing of the first photomultipliers as foreseen by the current designs. The km3 detector is oriented along the E–W/S–N directions.

where the charged lepton production happens inside the instrumented volume—including events with peculiar topologies like ‘lollipop’ or ‘double bang’, there are realistic chances of flavour tagging in the detector. However, in the UHE range above $\sim 10^7$ GeV such events are sub-dominant with respect to the bulk of tau track events. Further details on the flavour discrimination possibilities are discussed in section 4.

The structure of the paper is as follows. In section 2 we introduce the formalism and definitions used in the analysis and define the aperture for a NT. Our results for ν_τ induced events are reported and discussed in section 3 for various incoming neutrino fluxes, while ν_μ/μ events are described in section 4. Finally, we report our conclusions in section 5.

2. The effective aperture of a NT

We define the km3 NT fiducial volume as that bounded by the six lateral surfaces Σ_a (the subscript $a = D, U, S, N, W,$ and E labels each surface through its orientation: down, up, south, north, west, and east), and indicate with $\Omega_a \equiv (\theta_a, \phi_a)$ the generic direction of a track entering the surface Σ_a. The scheme of the NT fiducial volume and two examples of incoming tracks are shown in figure 4. We introduce all relevant quantities with reference to ν_τ events, the case of ν_μ being completely analogous.

Let $d\Phi_\nu/(dE_\nu, d\Omega_a)$ be the differential flux of UHE $\nu_\tau + \bar{\nu}_\tau$. The number per unit time of τ leptons emerging from the Earth’s surface and entering the NT through Σ_a with energy E_τ is given by

$$\left(\frac{dN_\tau}{dt}\right)_a = \int d\Omega_a \int dS_a \int dE_\nu \frac{d\Phi_\nu(E_\nu, \Omega_a)}{dE_\nu d\Omega_a} \int dE_\tau \cos (\theta_a) k_a^\tau (E_\nu, E_\tau; \vec{r}_a, \Omega_a).$$

(1)
This equation is the same as in [39], but for the full duty cycle and detection efficiency. The kernel $k_\tau (E_\nu, E_\tau; \vec{r}_a, \Omega_a)$ is the probability that an incoming ν_τ crossing the Earth, with energy E_ν and direction Ω_a, produces a τ lepton which enters the NT fiducial volume through the lateral surface dS_a at the position \vec{r}_a with energy E_τ (see figure 4 for the angle definition). If we split the possible events between those with a track intersecting the rock and the ones only crossing water, the kernel $k_\tau (E_\nu, E_\tau; \vec{r}_a, \Omega_a)$ is given by the sum of these two mutually exclusive contributions:

$$k_\tau (E_\nu, E_\tau; \vec{r}_a, \Omega_a) = k_\tau,r (E_\nu, E_\tau; \vec{r}_a, \Omega_a) + k_\tau,w (E_\nu, E_\tau; \vec{r}_a, \Omega_a).$$

Let us focus on the rock events contributing to $k_\tau,r (E_\nu, E_\tau; \vec{r}_a, \Omega_a)$. These can be classified according to their production mechanism as follows:

1. events in which the ν_τ interacts producing a τ in the rock (r1);
2. events in which the ν_τ interacts producing a τ in water, on the way to the NT (r2);
3. events in which the ν_τ interacts producing a τ inside the NT fiducial volume (r3).

Therefore one has

$$k_\tau,r (E_\nu, E_\tau; \vec{r}_a, \Omega_a) = k_\tau,r1 (E_\nu, E_\tau; \vec{r}_a, \Omega_a) + k_\tau,r2 (E_\nu, E_\tau; \vec{r}_a, \Omega_a) + k_\tau,r3 (E_\nu, E_\tau; \vec{r}_a, \Omega_a).$$

Although here, for the sake of brevity, we only discuss in detail the events occurring in rock (r1), the analysis of those of type (r2) and (r3) is completely analogous and straightforward. Of course, all contributions (r1)–(r3) have been added to compute the event rate.

As already shown in detail in [39, 51] an (r1)-event corresponds to the simultaneous fulfilment of the following conditions:
A ν_{τ} with energy E_{ν} travels over a distance z through the Earth before interacting. The corresponding probability P_1 is given by

$$P_1 = \exp \left\{ - \frac{z}{\lambda_{CC}^{\nu}(E_{\nu})} \right\},$$

(4)

where

$$\lambda_{CC}^{\nu}(E_{\nu}) = \frac{1}{\sigma_{CC}^{\nu N}(E_{\nu}) \varrho_r N_A},$$

(5)

where N_A is the Avogadro number. See [39, 51] for notation as well as a detailed discussion of the neutrino-nucleon cross section, $\sigma_{CC}^{\nu N}(E_{\nu})$. In the present formalism the effect of the Earth’s density profile is approximated using, track by track, the averaged ϱ_r along the chord subtended by that track. The calculations are made adopting a suitable parametrization of the Earth’s density profile. Note, however, that for almost horizontal events particles travel in the terrestrial crust only, and thus the superficial value for the Earth’s density $\varrho_r \simeq 2.65$ g cm$^{-3}$ [49] would be an accurate approximation. Some differences could appear for low energy particles crossing the Earth deeply. We checked that, using the constant value of the crust density for all the Earth’s density profile the changes in the tau aperture are generally less than 10%, while the effect is of the order of 16% for muons with $E < 10^5$ GeV, i.e. below the energy range for which the cosmic flux is expected to dominate over the atmospheric flux. The inclusion of the Earth’s density profile also affects at the 10% level the distributions of both τ and μ incoming zenith angles: due to increased screening along the nadir direction (vertical up-going), the distributions slightly shrink along the horizontal direction.

The neutrino produces a τ in the interval $z, z + dz$, the probability of such an event being

$$P_2 dz = \frac{dz}{\lambda_{CC}^{\nu}(E_{\nu})}.$$

(6)

We do not consider here the event corresponding to the scattering of a ν_{τ} via neutral current in the Earth followed by conversion via charged current, which amounts to a small distortion of the incoming neutrino flux, the latter being as yet unknown [57]. Of course, this sub-leading effect should be added when trying to reconstruct the flux from experimental data. Also, we consider the charged lepton track as collinear with the parent neutrino direction, which is highly accurate given the huge relativistic boosting factors involved.

The produced τ emerges from the Earth’s rock with an energy E_{τ}'. This happens with a probability

$$P_3 = \exp \left\{ - \frac{m_{\tau}}{c \tau \beta_{\tau} \varrho_r} \left(\frac{1}{E_{\tau}'} - \frac{1}{E_{\tau}^0(E_{\nu})} \right) \right\} \delta \left(E_{\tau}' - E_{\tau}^0(E_{\nu}) e^{-\beta_{\tau} \varrho_r (z_r - z)} \right),$$

(7)

Parameters of the Preliminary Reference Earth Model are given by [55]. We use the formula from this work cited in [25].
where \(m_\tau = 1.78 \text{ GeV} \), \(\tau_\tau \simeq 3.4 \times 10^{-13} \text{ s} \) is the \(\tau \) mean lifetime and \(E^0_\tau \) is the \(\tau \) energy at production, whereas the parameter \(\beta_\tau = 0.71 \times 10^{-6} \text{ cm}^2 \text{ g}^{-1} \) weights the leading term in the \(\tau \) differential energy loss in rock \([51,58]\):

\[
\frac{dE_\tau}{dz} = - (\beta_\tau + \gamma_\tau E_\tau) E_\tau \rho_w. \tag{8}
\]

The contribution of \(\gamma_\tau \) can be neglected as it only affects extremely energetic \(\tau \)s which, unlike in the case of the Pierre Auger Observatory, are not relevant for NTs. The quantity \(z_\tau (\vec{r}_a, \Omega_a) \) represents the total length in rock for a given track entering the lateral surface \(\Sigma_a \) of the fiducial volume at the point \(\vec{r}_a \) and with direction \(\Omega_a \).

Finally, the \(\tau \) lepton emerging from the Earth’s rock propagates in water and enters the NT fiducial volume through the lateral surface \(\Sigma_a \) at the point \(\vec{r}_a \) with energy \(E_\tau \). The corresponding survival probability is

\[
P_4 = \exp \left\{ - \frac{m_\tau}{c \tau_\tau \beta_w \rho_w} \left(\frac{1}{E_\tau} - \frac{1}{E'_{\tau}} \right) \right\} \delta \left(E_\tau - E'_{\tau} e^{-\beta_w \rho_w z_w} \right), \tag{9}
\]

where \(\rho_w \) stands for the water density and \(z_w (\vec{r}_a, \Omega_a) \) represents the total length in water before arriving to the fiducial volume for a given track entering the lateral surface \(\Sigma_a \) at the point \(\vec{r}_a \) with direction \(\Omega_a \).

Collecting together the different probabilities in equations (4), (6), (7) and (9), we have

\[
k_{a}^{\tau,r1}(E_\nu, E_\tau; \vec{r}_a, \Omega_a) = \int_{0}^{\tau_\tau} dz \int_{0}^{E_{\nu}(E_\nu)} dE'_\tau P_1 P_2 P_3 P_4. \tag{10}
\]

Similar results can be obtained for the (r2)- and (r3)-events as well as for those we defined as water-like ones.

For an isotropic flux we can rewrite equation (1), summing over all the surfaces, as

\[
\frac{dN_{\tau}^{(r,w)}}{dt} = \int dE_\nu \frac{1}{4\pi} \frac{d\Phi_\nu(E_\nu)}{dE_\nu} A^{(r,w)}(E_\nu)
= \sum_a \int dE_\nu \frac{1}{4\pi} \frac{d\Phi_\nu(E_\nu)}{dE_\nu} A_{a}^{(r,w)}(E_\nu), \tag{11}
\]

which defines the total aperture \(A^{(r,w)}(E_\nu) \), with ‘\(r \)’ and ‘\(w \)’ denoting the rock and water kinds of events, respectively. The contribution of each surface to the total aperture reads

\[
A_{a}^{(r,w)}(E_\nu) = \int dE_\tau \int d\Omega_a \int dS_a \cos (\theta_a) k_{a}^{(r,w)}(E_\nu, E_\tau; \vec{r}_a, \Omega_a). \tag{12}
\]

3. The event rate for \(\nu_\tau \) interactions

We show in figure 5 the apertures \(A^{(r,w)} \) for the NEMO site together with the corresponding quantity for the Pierre Auger Observatory Fluorescence Detector (FD) calculated in \([39]\). Note that the Auger case is only for Earth-skimming \(\tau \)s, since down-going neutrino induced events can be disentangled from ordinary cosmic rays only for very inclined showers.
Interestingly, the NEMO-water and Auger FD apertures almost match at the FD threshold of 10^{18} eV, so that using both detectors results in a wide energy range of sensitivity to ν_τ fluxes.

We show in figure 6 the high energy behaviour for each surface contributing to the effective aperture. For rock events there is a clear W–E asymmetry, easily understood in terms of matter effects related to the particular morphology of the NEMO site (see figure 2). A much smaller S–N asymmetry is also present. In other words, the asymmetries in the number of rock events reflect the asymmetries in the morphology of the site.

For neutrino energies larger than 10^7 GeV the main contribution to the aperture $A^{\tau(r)}(E_\nu)$ comes from the lateral surfaces, i.e. from τ leptons emerging from the rock far from the NT basis and crossing the fiducial volume almost horizontally. In contrast, the upper surface contribution is negligible due to the very small fraction of events crossing the rock and entering the detector from above. The decreasing contribution of the bottom face to rock events is due to the Earth shadowing effect.

For water events the contributions to the aperture from all surfaces are comparable (except for the lower one which has no events), the upper one providing a slightly larger contribution as the energy decreases. Indeed, events which would cross the lateral surfaces should travel over a longer path in water and this becomes more unlikely at lower energies due to the shorter τ decay length. The matter effect in the case of water events is less pronounced and anticorrelated with the asymmetries in the morphology of the site resulting effectively in a small (per cent) screening effect.
The effective apertures $A_{\tau}(r,w)(E_\nu)$ of equation (12) versus tau neutrino energy for (left) rock events and (right) water events for the NEMO site.

In figure 7 we report, for both the rock and water cases and for the NEMO site, the contours enclosing 68, 95 and 99% of the total event rate, as they appear in the $E_\tau-\theta$ plane, where θ is the arrival direction zenith angle. These results were obtained assuming a Waxmann–Bahcall-like neutrino flux (GZK-WB) [59] (see also [39] and references therein). As the energy increases, the arrival directions of rock events are almost restricted to the horizontal (Earth-skimming) ones, while at lower energies the Earth-screening effect is less pronounced and this explains the broader angular distribution. The situation is different for water events for which the angular distribution is broad at all energies, a purely geometrical effect due to the fact that (down-going) water events are not screened in a few kilometres of water. The same geometrical considerations explain the ratio of water to rock event rate of $\mathcal{O}(10)$ (see table 1) which is simply related to the ratio of down-going to Earth-skimming solid angles. This is the same kind of behaviour as is expected in the Auger detector although, as we already mentioned, the down-going events in this case are hardly distinguishable from the background of proton induced showers so that only Earth-skimming or almost horizontal showers can be used to identify unambiguously the neutrino induced events. It is also worth commenting the expected τ energy distribution shown in figure 7. All events correspond to a relatively narrow energy window, from 10^6 GeV up to 10^{10} GeV, where the lower cut-off arises from the shorter τ decay length at low energy.

In figure 8 we compare the detection performances of a km3 NT placed at one of the three sites in the Mediterranean sea. The NESTOR site shows the highest values of the τ aperture for both rock and water, due to its larger depth and the particular matter distribution of the surrounding area, while the lowest rates are obtained for ANTARES. The apertures in the three sites can be quite different at high energy, but in order to get the expected number of UHE events per year, one has to convolve the aperture with
Figure 7. Contour plot in the zenith angle–\(\tau \) energy plane for the NEMO site and for rock (red full lines) and water (black dashed lines) events. In both cases the contours enclose 68, 95 and 99% of the total number of events calculated assuming a GZK-WB flux ([59]; see also [53]). \(\cos \theta = 1, 0, -1 \) correspond respectively to down-going, Earth-skimming, and up-going events.

Table 1. Estimated rate per year of rock/water \(\tau \) events at the three km\(^3\) NT sites for a GZK-WB flux [59,53]. The contribution of each detector surface to the total number of events is also reported.

Surf.	ANTARES	NEMO	NESTOR
D	0.0059/0	0.0059/0	0.0058/0
U	0/0.1677	0.0002/0.2133	0.0002/0.2543
S	0.0185/0.1602	0.0256/0.1773	0.0240/0.2011
N	0.0241/0.1540	0.0229/0.1823	0.0321/0.1924
W	0.0212/0.1584	0.0335/0.1691	0.0265/0.2002
E	0.0206/0.1589	0.0190/0.1875	0.0348/0.1907
Total	0.090/0.799	0.107/0.929	0.123/1.039

A neutrino flux which typically drops rapidly with the energy. Although the percentage value of the matter effects remains unchanged, in this very low statistics regime they can be hardly distinguished; still, they can be enhanced by making an appropriate choice of the detector shape as we discuss in the following.

Knowing the aperture of the NT at each site, we can compute the expected \(\tau \) event rate, once a neutrino flux is specified. In table 1 these rates are shown assuming a GZK-WB flux [59,53]. The effect due to the local matter distribution is responsible for the N–S, W–E and NE–SW asymmetries for the ANTARES, NEMO and NESTOR sites, respectively, as expected from the matter profiles shown in figures 1–3. These matter effects, for the
Figure 8. A comparison of the effective apertures $A^{\tau((r,w))}(E_{\nu})$ for the three NT sites. We plot the ratios $[A^{\tau((r,w))}(\text{NESTOR}) - A^{\tau((r,w))}(\text{NEMO})]/A^{\tau((r,w))}(\text{NEMO})$ and $[A^{\tau((r,w))}(\text{ANTARES}) - A^{\tau((r,w))}(\text{NEMO})]/A^{\tau((r,w))}(\text{NEMO})$ versus the neutrino energy.

specific UHE flux considered (GZK-WB), correspond to an enhancement of rock events which goes from 20 to 50% for the three sites, respectively, and a screening factor for water events from 3 to 10%. The largest relative difference among lateral surfaces is in the case of W/E for NEMO, where the huge wall to the west of the site (see figure 2) improves the rate by about 75%, almost a factor 2! Notice also that the water events from the U surface are basically proportional to the depth.

It is important to emphasize that the impact of matter effects on the rates depends critically upon the energy spectrum of the UHE neutrino flux. For more energetic neutrino fluxes the enhancement factor is expected to be more significant (see the energy behaviour of $A^{\tau(r)}(E_{\nu})$ in figure 6). In table 2 the rates of rock/water τ events are computed for the three different km3 NT sites using several UHE neutrino fluxes as already considered in [39,51] and described in [59]–[65] (see also figure 11). For comparison, we also show in the last column the corresponding prediction for Earth-skimming ν_{τ} at Auger FD. As can be seen from table 2, the relative enhancements due to matter effects on rock events can be as large as 30%, whereas the difference in the rates of water events for a fixed neutrino flux is mainly due to the different depths of the three sites.

An interesting feature is the dependence of the event rate upon the shape of the NT detector for a fixed total volume of 1 km3, a property that might be relevant for the eventual design of the detector. Consider for example a km3 NT placed at the NEMO site with the shape of a parallelepiped rather than a cube, where in particular the E and W surfaces are enlarged by a factor 3 in the horizontal dimension, the N and S surfaces being reduced by the same factor, keeping the height of towers still 1 km. In this case the expected rate of rock events per year is enhanced by almost a factor 2, from 0.11 to 0.18 for...
the GZK-WB flux, while this enhancement could be even larger for neutrino fluxes with a larger high energy component. Moreover, the expected rate of water events increases as well by a factor of the order of 50%, from 0.93 up to 1.40 per year. Similar exercises can be also performed for the ANTARES and NESTOR sites. Of course, a further possibility which might favour UHE \(\tau \) detection consists in increasing the effective volume of the detector keeping unchanged the 1 km height and the number of towers of photomultipliers but adopting a larger spacing. As an example, for a factor 4 larger volume with a doubling of the tower spacing both the rock and water \(\tau \) events would increase by almost a factor 2, but obviously at the expense of the energy threshold and the quality of the event reconstruction for 'low energy' (TeV) neutrinos. For a detector aiming at the exploration of the range above the PeV, this is a less severe problem.

The fact that the event rate depends upon the total surface of the detector is a peculiar feature of a NT, quite different from what was expected at the Auger observatory. Actually, in this case observed showers are generally initiated not very far from the detector compared to its dimensions so that the shape of the detector (i.e., the position on the border where the FDs are placed) is not as important as its 'volume' (controlled by the area enclosed by the FDs). In fact, in order to produce a \(\tau \) emerging from the Earth with enough energy to generate a shower detectable by the Auger FDs, the energy of the neutrino should be larger than 1 EeV = 10^{18} \, eV, taking into account the \(\tau \) energy loss in the rock. But the decay length of such a UHE \(\tau \) is \(l_{\text{decay}} \approx 50 \, \text{km} \times (E_\tau/\text{EeV}) \), to be compared with the dimensions of the Auger fiducial volume, \(\sim 50 \times 60 \times 10 \, \text{km}^3 \). Conversely, a neutrino telescope can detect taus or muons which are produced very far from the detector by a neutrino charged-current interaction, from distances comparable to the charged lepton range at that particular energy [29]. Indeed, the \(\tau \) range in water is of the order of several kilometres: from the value of \(\beta_\tau = 0.71 \times 10^{-6} \, \text{cm}^2 \, \text{g}^{-1} \), we obtain an attenuation length \(1/(\beta_\tau \rho_w) \approx 15 \, \text{km} \), while for muons (see the next section) the range is approximately eight times smaller, of the order of 2 km. In other words, the effective volume of a NT of the kind discussed so far can be much larger than 1 km^3; thus maximizing the detector area might greatly improve the detection rate.
Of course, one should not forget that the design of a NT also depends strongly upon more detailed experimental considerations. Shapes which are not very compact or a detector with very sparse instrumentation have poorer performances in the reconstruction of track properties as well as in signal–background separation, though this is mainly problematic at energies lower than 100 TeV, in the atmospheric neutrino energy range. In any case, our analysis suggests that the choice of the detector shape could be an important feature in orienting the target of a NT investigation towards either atmospheric or extra-atmospheric neutrino physics. In this respect, the possibility to modify this parameter quite easily for a NT water detector offers a great advantage with respect to an under-ice detector.

A comment is in turn regarding the various approximations we used in the calculation. In particular we neglected tau regeneration effects. It is well known that these effects depend on the incoming spectrum adopted with a typical behaviour in which the steeper the spectrum is the less relevant the effect is [56,32]. For an E^{-2} spectrum the effect is almost negligible [56], while for harder spectra like the ones we currently consider the effect can be of the order of 20% for taus coming from the nadir direction and of decreasing relevance for more horizontal events [32]. An estimate of the direction averaged effect gives then a correction less of 10%.

A further approximation regards the stochastic nature of the tau interaction in matter that we approximated like a continuous energy loss process through the parametrization of equation (8). At energies larger than 10^6 GeV, tau energy losses are affected by the large theoretical uncertainty on the cross section for photonuclear interaction, the leading mechanism at these energies (see [51] and [70], and references therein). Unlike for muons, for taus the dominant source of uncertainty is not the stochastic versus continuous nature of the energy loss, but the model dependence of the photonuclear interaction itself; the stochastic nature of the losses is then sub-dominant with respect to the understanding of the process. A detailed discussion of the problem is given in [51]. The continuous approximation is then enough for the estimate of the mean rate values as given in the text, especially for a relative comparison of the sites. A more careful treatment would be needed if one was interested in a realistic estimate of the errors.

A final comment deserves the dependence that matter effects could have not only on true differences of amounts of matter present in different directions, but also on the differences in the lepton interactions in water or rock due to the different chemical compositions (A, Z), i.e. to differences between β_r and β_w. We study the issue performing detailed calculations of the lepton propagation as given in [71]. The calculations show that the (A, Z) dependence is of the order 10% for taus, almost constant at high energies (>1 PeV), while it is of the order 20% for muons, again almost constant at high energies. Given the model uncertainties in the tau losses and the level of approximation of 10% used throughout the paper we used the same value of β for rock and water losses for both muons and taus so that the difference seen at high energies in the apertures in figure 6 has to be all ascribed to a genuine matter effect. Note moreover that the matter effect is a feature increasing with energy, amounting for example to a factor even of 4 in difference between the W–E surfaces for NEMO at 10^{11} GeV, while the percentage difference in β_w/β_r always remains of the order 10% through the whole energy range. The role of chemical composition then is at most sub-dominant.

One of the main motivations for studying UHE neutrinos is that they provide the possibility to explore a range of energies for scattering processes which is still untested...
Ultrahigh energy neutrinos in the Mediterranean

Figure 9. Left: the effective apertures \(A^{\tau(r,w)}(E_{\nu}) \) for the NEMO site for a \(\nu_\tau \)–nucleon cross section multiplied by a factor 0.5, 1 and 2 with respect to the standard result \(\sigma \). Right: ratios of the number of events in rock/water when the cross section is rescaled by the factor shown on the x axis, for several incoming UHE neutrino fluxes.

(maybe impossible to test) with particle accelerators. In this respect, measuring the neutrino–nucleon cross sections at high energies could have a large impact on constraining or discovering new physics beyond the standard model (see e.g. [28, 66]). While a measurement of the event energy spectrum cannot remove in general a degeneracy between the neutrino cross section and the incoming neutrino flux, a neutrino telescope could offer the interesting capability of disentangling these two factors because of the role of matter effects. Indeed, provided that enough statistics is collected and the detector has a good zenith angle resolution, the flux dependence can be subtracted off by measuring the ratio of the event rates coming from different directions [67]–[69]. In the left panel of figure 9 we show how the NEMO effective apertures for \(\tau \) rock and water events change if the neutrino–nucleon cross section is half or twice the standard model result, while in the right panel we display the ratio of water/rock \(\tau \) event rates for several adopted fluxes. We see that this ratio is quite sensitive to the value of the cross section. In particular, the number of rock events is essentially unaffected while the water event rate increases almost linearly with the cross section. Clearly, since the statistical error on the ratio would be dominated by the rare rock events, an experiment which aims at exploiting this effect should maximize the acceptance for almost horizontal events. We conclude by noticing that our results do not take into account any detailed experimental set-up and up to this point the \(\nu_\mu \) contribution is not yet considered. Nevertheless, since both the incoming neutrino flux and cross section on nucleons are expected to be flavour independent the possibility of determining both these quantities at a NT seems an interesting perspective. A more detailed analysis of this issue will be addressed elsewhere.
4. The ν_μ contribution: disentangling μs from τs

In the previous section we have discussed the rate of ν_τ events implicitly assuming that a τ lepton can be distinguished from a μ in a NT. However, given the experimental characteristics of the detector, this could be a difficult task and ν_μ events should be also included in any realistic simulation. We address this issue in the present section.

Using the definition of the aperture in full analogy with equation (12) and applying the same considerations as in section 2 to ν_μ/μ, we have computed the μ apertures for water and rock events for the various surfaces of the NT, adopting the value $\beta_\mu = 0.58 \times 10^{-5}$ cm2 g$^{-1}$ in the expression of the muon differential energy loss analogous to equation (8) (as for the τ, the term weighted by γ_μ is negligible for the energy range of interest). The results are shown in figure 10. The main features as well as the roles of matter effects are essentially unchanged for muons, the only difference coming from the muon contribution at lower energies because of the longer muon lifetime compared to that of taus.

It is worth discussing briefly the parametrization adopted for the muon energy losses. As discussed above, tau energy losses are affected by the large theoretical uncertainty in the cross section for photonuclear interaction. On the other hand, photonuclear interactions are less relevant for muon propagation, and thus the theoretical uncertainty on the energy loss is correspondingly smaller. We then checked the validity of the approximation given in section 4 versus the detailed calculation given in [71]. We found that the accuracy is at the level of 15% over the whole energy range. The impact of this uncertainty on the expected event rate is as follows: a 15% increase of β_μ gives a few % decrease of the number of water events and a $\sim 10\%$ decrease of the number of rock events. This uncertainty then does not affect the estimate of the number of ν_μ events.
while a more careful treatment is required for a reliable forecast of the neutrino cross section sensitivities at a neutrino telescope.

In figure 11 we summarize the τ and μ results by showing the total sensitivity $S_{\mu,\tau}$ for NEMO defined as $S_{\mu,\tau} E_{\nu} A_{\mu,\tau} = 1$ event year$^{-1}$ (E_{ν} decade)$^{-1}$, with $A_{\mu,\tau}$ the total μ and τ effective aperture, respectively; we also show the various neutrino fluxes considered through the paper. We see that in agreement with the results of table 2, at least one event per year is expected even in the case of a GZK-WB flux, while larger rates are expected for higher fluxes (see also [72]). Notice that in the energy bin 10^8–10^{10} GeV the μ and τ contributions are comparable while muons are expected to dominate in the lower energy range, depending on the particular flux we consider.

Concerning the possibility of distinguishing between UHE taus and less energetic muons a comment is appropriate. As we mentioned in the introduction, the main difficulty is that Cherenkov detectors like a NT do not measure the particle energy but rather the energy loss inside the detector volume and thus a high energy τ track can be misidentified as a muon track of lower energy. This is because the ratio of τ to μ energy loss rate is given by $\beta_{\tau}/\beta_{\mu} \approx 1/8$. In principle, given that tau energy losses are dominated by photonuclear processes versus radiative interactions for muons, it would be possible to distinguish a muon track from a tau track from the different hadronic content along the track. However, Monte Carlo simulations indicate that NTs are poorly sensitive to this signature [32].

As far as the contained events are concerned (i.e. where the charged lepton production happens inside the instrumented volume), the telescope has, instead, realistic chances of flavour tagging. As long as the energy loss or decay range of the particle to be detected is small compared with the detector size, the event rate depends basically on the fiducial volume. This is always the case for neutral current events, which if detectable

Figure 11. The total NEMO sensitivities for (left) τ and (right) μ events versus the neutrino energy, compared with the UHE neutrino fluxes considered in the paper.
produce a localized hadronic shower from the struck nucleon, and for charged-current ν_e events, since the electron rapidly loses its energy. In contrast, for energies above the TeV scale, ν_μ charged-current events produce muons which are detectable as tracks several km away from the production point. The case of ν_τ charged-current events is different again: for energies $\lesssim 10^7$ GeV, the boosted decay range of the tau particle is negligible with respect to the detector size and depth, and the event rate is determined by the instrumented volume, like for ν_e events. On the other hand, for the typical spacings between strings/photomultipliers considered by current designs, above the PeV scale the boosted τ decay length is larger than the spacing and one starts resolving the tracks, while below this energy τ produces showers which differ from ν_e events only by the hadronic content, which is however challenging to tag.

We show in figure 12 the total apertures for τ and μ events at the NEMO site together with the aperture for τ contained events (the same would apply for μ contained events). Indeed, contained events represent a sub-leading although non-negligible fraction of the total number of events, always of the order of 10% for μ and even greater for low energy τ ($\lesssim 10^7$ GeV) due to the very short ($\lesssim 1$ km) decay length at these energies. Moreover, the contained aperture depends only on the neutrino interaction probability so that it can be considered also a reliable estimate of the e induced showering events, neglecting the effect of the Glashow $\bar{\nu}_e e^-$ resonance at 6.3 PeV. It may also be possible to identify lollipop events in which a τ with energy larger than PeV produces a long minimum-ionizing track that enters the detector and eventually ends in a huge burst as the τ lepton decays into a final state with hadrons or an electron. In this case, the final burst would be a direct measurement of the τ energy while the energy loss along the track would be smaller than for a muon of the same energy. Probably, the cleanest signature of a τ particle would
be the detections of a double-bang event [73] in which a ν_τ interacts inside the detector and the produced τ decays in shower again in the detector, but the probability of such an event is extremely small. In any case, all these possibilities suffer from lower statistics as they all require that the interactions (showering or production) occur inside the detector, with a reduction of the effective volume down to $1\,\text{km}^3$ compared with the several km^3 effective volume for μ and τ events which go across the NT fiducial volume.

In view of these considerations, we conclude that, at least for the bulk of the events, the most viable strategy is to combine muon and tau contributions and construct spectra depending upon quantities which are directly observable. The simplest choice is to consider the energy loss rate inside the detector which amounts to measuring the track length and the total deposited energy and the arrival direction. In figure 13 we show the contours of expected μ and τ event rates in terms of the zenith angle $\cos \theta$ and $dE/dx \simeq -\beta E \rho_w$. For relatively low energy losses $\beta E \rho_w \lesssim 10^5 \,\text{GeV km}^{-1}$ the whole dominant contribution comes from muons, which therefore can be easily disentangled, whereas in the high energy loss tails the event distributions are almost the same for the two neutrino flavours and one is forced to use the total $\nu_\mu + \nu_\tau$ events as the input of any analysis of the data.

5. Conclusions

Ultrahigh energy neutrinos represent one of the main targets for several experiments which adopt a variety of detection techniques. Among these, the optical Cherenkov neutrino telescopes deployed under water or ice look for the tracks of charged leptons produced by the high energy neutrinos that reach the Earth. In this paper, we have presented a new
Ultrahigh energy neutrinos in the Mediterranean

study of the performance of a km3 neutrino telescope to be located in any of the three sites in the Mediterranean sea proposed by the ANTARES, NEMO, and NESTOR collaborations. Our main goal is to compare the performances of the different sites, keeping apart detector-specific features, like partial detection efficiency or the architecture adopted for the towers of strings. We concentrated instead on the details of the under-water surface profile of each of the three sites, using the data from a digital elevation map. By generating a realistic and statistically significant sample of ν_τ/τ and ν_μ/μ tracks crossing the fiducial volume of the km3 neutrino telescope, we have calculated its effective aperture to UHE ν_τ and ν_μ neutrinos and the expected number of events for different UHE neutrino fluxes, for both cases where the neutrino/charged lepton track is crossing the rock (denoted as rock events) or the water only (denoted as water events). Our results can be summarized as follows:

- The impact of the site geography (or matter effects) on observables such as the ‘rock fraction’ of the total event rate or asymmetries in the event direction can be important, particularly at high energies.
- Even for a fixed instrumented volume, these matter effects can be enhanced by a suitable choice of the geometry of the telescope, maximizing the lateral surface of the fiducial volume.
- The continental crust provides an absolute orientation, and hence the matter effects may provide a mean for calibrating the pointing capabilities of the detector, even when no point-source identification is possible, like for diffuse cosmic fluxes at UHE.
- We analysed briefly the dependence of the rock and water events from the neutrino fluxes and the neutrino–nucleon cross section. We found that the ratio of rock to water events may provide an additional way to disentangle the two unknowns, in addition e.g. to the well-known zenith angle dependence of the rates due to the screening effect of the average spherical Earth. Although a detailed analysis would be needed, we stress that this may be important for constraining neutrino–nucleon cross section at UHE energies, otherwise unaccessible at the Lab.
- While below the PeV scale the aperture for muon tracks is one order of magnitude larger than the aperture for contained events, above $\sim 10^8$ GeV the numbers of muon and tau track events are comparable. We have briefly addressed the problem of whether it is possible to distinguish μs and τs in the detector. Apart for the sub-dominant fraction of contained events with specific signatures, we stressed that a realistic prescription at UHE is to sum the bulk of μ and τ events, the natural variables for describing the events being the arrival direction and the energy loss rate in the fiducial volume.

The main conclusion one can draw from our analysis is that the optimization for a telescope aiming at the $E > $ PeV region is significantly different from one whose target is the $E \sim $ TeV range: in the first case, the search is basically background free and even a relatively poor angular and energy resolution may be acceptable. The crucial goal is to maximize the event rates, and the discrimination among models may be based on ‘counts’ and a very rough directional and energy binning of the events. In this respect, one should maximize the instrumented volume—compatibly with the experimental requirements for a meaningful reconstruction of the event—and also carefully design the geometry to
maximize the lateral surface, in order to exploit the matter effects provided by the underwater profile. On the other hand, at TeV energies angular and energy resolutions are crucial for improving the signal to noise ratio, and may help identifying point-like sources. At the same time, in the TeV range the matter effects we have stressed in this paper are less relevant, and should not influence significantly the choice of the site.

Acknowledgments

We are pleased to thank G Barbarino, D Hooper, G Longo, and E Migneco for useful comments and discussions. This work was supported by a Spanish–Italian AI, the Spanish grants FPA2005-01269 and GV/05/017 of Generalitat Valenciana, a MEC-INFN agreement as well as the PRIN04 ‘Fisica Astroparticellare’ of Italian MIUR. SP was supported by a Ramón y Cajal contract of MEC. PS acknowledges the support by the Deutsche Forschungsgemeinschaft under grant SFB 375 and by the European Network of Theoretical Astroparticle Physics I LIAS/N6 under contract number RI3-CT-2004-506222.

References

[1] Berezinsky V S and Zatsepin G T, Cosmic rays at ultrahigh-energies (neutrino?), 1969 Phys. Lett. B 28 423 [SPIRES]
[2] Berezinsky V S and Zatsepin G T, 1970 Yad. Fiz. 11 200 [SPIRES]
Berezinsky V S and Zatsepin G T, Cosmic neutrinos of superhigh energy, 1970 Sov. J. Nucl. Phys. 11 111 (translation)
[3] Gaisser T K, Halzen F and Stanev T, Particle astrophysics with high-energy neutrinos, 1995 Phys. Rep. 258 173
[4] Learned J G and Mannheim K, High-energy neutrino astrophysics, 2000 Ann. Rev. Nucl. Part. Sci. 50 679 [SPIRES]
[5] Spiering C, High energy neutrino astronomy, 2002 Prog. Part. Nucl. Phys. 48 43
[6] Halzen F and Hooper D, High-energy neutrino astronomy: the cosmic ray connection, 2002 Rep. Prog. Phys. 65 1025
[7] McDonald A B et al, Astrophysical neutrino telescopes, 2004 Rev. Sci. Instrum. 75 293
[8] Grieder P K F et al, DUMAND II: String 1 deployment, initial operation, results and system retrieval, 1995 Nucl. Phys. (Proc. Suppl.) 43 145 [SPIRES]
[9] Balkanov V A et al, The Lake Baikal neutrino telescope NT-200: status, results, future, 1999 Nucl. Phys. (Proc. Suppl.) 75A 409 [SPIRES]
[10] Andres E et al, The AMANDA neutrino telescope: principle of operation and first results, 2000 Astropart. Phys. 13 1 [SPIRES]
[11] Ahrens J et al, Observation of high energy atmospheric neutrinos with the Antarctic muon and neutrino detector array, 2002 Phys. Rev. D 66 012005 [SPIRES]
[12] Belolaptikov I A et al, The Lake Baikal neutrino experiment: selected results, 2000 Phys. Atom. Nucl. 63 951 [SPIRES]
[13] Ahrens J et al, Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector, 2003 Phys. Rev. Lett. 90 251101 [SPIRES]
[14] Halzen F and Hooper D, AMANDA observations constrain the ultra-high energy neutrino flux, 2006 Phys. Rev. Lett. 97 099901 [SPIRES]
[15] Ambrosio M et al, Search for diffuse neutrino flux from astrophysical sources with MACRO, 2003 Astropart. Phys. 19 1 [SPIRES]
[16] Aslanides E et al, A deep sea telescope for high energy neutrinos, proposal, 1999 Preprint astro-ph/9907432
[17] Bottai S et al (NESTOR Collaboration), NESTOR: A Status Report, 2000 Nucl. Phys. (Proc. Suppl.) 85 153 [SPIRES]
[18] Riccobene G, 2002 Proc. Workshop on Methodical Aspects of Underwater/Ice Neutrino Telescopes p 61
[19] Katz U F, Neutrino telescopy in the Mediterranean sea, 2006 Prog. Part. Nucl. Phys. 57 273
[20] Katz U F, KM3NeT: Towards a km**3 Mediterranean neutrino telescope, 2006 Preprint astro-ph/0606068
Ultrahigh energy neutrinos in the Mediterranean

[21] Aguilar J A et al (ANTARES Collaboration), First results of the instrumentation line for the deep-sea ANTARES neutrino telescope, 2006 Astropart. Phys. 26 314 [SPIRES] [astro-ph/0608229]

[22] Ahrens J et al, 2000 The IceCube NSF Proposal

[23] Ahrens J et al, 2001 IceCube Conceptual Design Document

[24] Ahrens J et al, Sensitivity of the icecube detector to astrophysical sources of high energy muon neutrinos, 2004 Astropart. Phys. 20 507 [SPIRES]

[25] Gandhi R, Quigg C, Reno M H and Sarcevic I, Ultra-high-energy neutrino interactions, 1996 Astropart. Phys. 5 81 [SPIRES] [hep-ph/9512364]

[26] Dutta S I, Reno M H and Sarcevic I, Tau-neutrinos underground: Signals of nu/nu --> nu/tau oscillations with extragalactic neutrinos, 2000 Phys. Rev. D 62 123001 [SPIRES]

[27] González-García M C, Halzen F and Maltoni M, Physics reach of high-energy and high-statistics Icecube atmospheric neutrino data, 2005 Phys. Rev. D 71 093010 [SPIRES]

[28] Anchordoqui L and Halzen F, Icehep high energy physics at the South Pole, 2006 Ann. Phys. 321 2660 [hep-ph/0510389]

[29] Yoshida S, Ishibashi R and Miyamoto H, Propagation of extremely-high energy leptons in the Earth: implications to their detection by the IceCube neutrino telescope, 2004 Phys. Rev. D 69 103004 [SPIRES]

[30] Beacom J F et al, Measuring flavor ratios of high-energy astrophysical neutrinos, 2003 Phys. Rev. D 68 093005 [SPIRES]

Beacom J F et al, 2005 Phys. Rev. D 72 019901 [SPIRES] (erratum)

[31] Athar H, Parente G and Zas E, Prospects for observations of high-energy cosmic tau-neutrinos, 2000 Phys. Rev. D 62 093010 [SPIRES]

[32] Bugaev E, Montaruli T, Shlepin Y and Sokalski I, Pseudo-Dirac neutrinos, a challenge for neutrino telescopes, 2004 Phys. Rev. D 70 011101 [SPIRES]

[33] Ishihara A (IceCube Collaboration), IceCube projects and its EHE physics capability, 2007 Proc. CRS06, Catania (Italy); Nucl. Phys. Proc. Suppl. 165 at press [astro-ph/0611794]

[34] Serpico P D, Probing the 2–3 leptonic mixing at high-energy neutrino telescopes, 2004 Phys. Rev. Lett. 90 181301 [SPIRES]

[35] Beacom J F et al, Pseudo-Dirac neutrinos, a challenge for neutrino telescopes, 2004 Phys. Rev. Lett. 92 011101 [SPIRES]

[36] Serpico P D and Kachelrieß M, Measuring the 13-mixing angle and the CP phase with neutrino telescopes, 2005 Phys. Rev. Lett. 94 211102 [SPIRES]

[37] Kashti T and Waxman E, Flavoring astrophysical neutrinos: flavor ratios depend on energy, 2005 Phys. Rev. Lett. 95 181101 [SPIRES]

[38] Serpico P D, Probing the 2-3 leptonic mixing at high-energy neutrino telescopes, 2006 Phys. Rev. D 73 043001 [SPIRES]

[39] Miele G, Pastor S and Pisanti O, The aperture for UHE tau neutrinos of the Auger fluorescence detector using a digital elevation map, 2006 Phys. Lett. B 634 137 [SPIRES]

[40] Fargion D, Aiello A and Conversano R, Horizontal tau air showers from mountains in deep valley: Traces of on the detection of ultra high energy neutrinos with the Auger Observatory, 1998 Astropart. Phys. 8 321 [SPIRES]

[41] Fargion D, Di Aiello A and Conversano R, Horizontal tau air showers from mountains in deep valley: Traces of UHECR neutrino/tau, 1999 1999 Contribution to 26th ICRC (Salt Lake City); AIP Conf. Proc. 516 396

[42] Becattini F and Bottai S, Extreme energy nu/tau propagation through the Earth, 2001 Astropart. Phys. 15 323 [SPIRES]

[43] Capelle K S, Cronin J W, Parente G and Zas E, On the detection of ultra high energy neutrinos with the Auger Observatory, 1998 Astropart. Phys. 17 183 [SPIRES]

[44] Fargion D, Di Aiello A and Conversano R, Horizontal tau air showers from mountains in deep valley: Traces of UHECR neutrino/tau, 1999 Contribution to 26th ICRC (Salt Lake City); AIP Conf. Proc. 516 396

[45] Becattini F and Bottai S, Extreme energy nu/tau propagation through the Earth, 2001 Astropart. Phys. 15 323 [SPIRES]

[46] Fargion D, Discovering ultra high energy neutrinos by horizontal and upward tau air-showers: first evidences in terrestrial gamma flashes, 2002 Astrophys. J. 570 909 [SPIRES]

[47] Letessier-Selvon A, Establishing the GZK cutoff with ultra high energy tau neutrinos, 2000 AIP Conf. Proc. 566 157

[48] Bertou X et al, Tau neutrinos in the Auger observatory: a new window to UHECR sources, 2002 Astropart. Phys. 17 183 [SPIRES]

[49] Feng J L, Fisher P, Wilczek F and Yu T M, Observability of Earth-skimming ultra-high energy neutrinos, 2002 Phys. Rev. Lett. 88 161102 [SPIRES]

[50] Fargion D, De Sanctis Lucentini P G and De Santis M, Updated event rate for horizontal and upward tau air showers in EUSO, 2004 Astrophys. J. 613 1285 [SPIRES]

[51] Aramo C et al, Earth-skimming UHE tau neutrinos at the fluorescence detector of Pierre Auger Observatory, 2005 Astropart. Phys. 23 65 [SPIRES]
Ultrahigh energy neutrinos in the Mediterranean

[52] Cao Z, Huang M A, Sokolsky P and Hu Y, *Ultra high energy nu/tau detection using cosmic ray tau neutrino telescope used in fluorescence/Cerenkov light detection*, 2005 J. Phys. G: Nucl. Part. Phys. 31 571 [SPIRES]

[53] Miele G, Perrone L and Pisanti O, *Ultra high energy nu/tau detection at Pierre Auger Observatory*, 2005 Nucl. Phys. (Proc. Suppl.) 145 347 [SPIRES]

[54] U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Geophysical Data Center, 2001 2-minute Gridded Global Relief Data (ETOPO2) http://www.ngdc.noaa.gov/mgg/fliers/01mgg04.html

[55] Dziewonski A, *Earth structure, global*, 1989 The Encyclopedia of Solid Earth Geophysics ed E David James (New York: Van Nostrand-Reinhold) p 331

[56] Halzen F and Saltzberg D, *Tau neutrino appearance with a 1000-Megaparsec baseline*, 1998 Phys. Rev. Lett. 81 4305 [SPIRES]

[57] L’Abbate A, Montaruli T and Sokalski I, *Effect of neutral current interactions on high energy muon and electron neutrino propagation through the Earth*, 2005 Astropart. Phys. 23 57 [SPIRES]

[58] Dutta S I, Huang Y and Reno M H, *Tau neutrino propagation and tau energy loss*, 2005 Phys. Rev. D 72 013005 [SPIRES]

[59] Waxman E and Bahcall J N, *High energy neutrinos from astrophysical sources: an upper bound*, 1999 Phys. Rev. D 59 023002 [SPIRES]

[60] Kalashev O E, Kuzmin V A and Semikoz D V, *Top-down models and extremely high energy cosmic rays*, 1999 Preprint astro-ph/9911035

[61] Kalashev O E, Kuzmin V A and Semikoz D V, *Ultra high energy cosmic rays propagation in the galaxy and anisotropy*, 2001 Mod. Phys. Lett. A 16 2505 [SPIRES]

[62] Kalashev O E, Kuzmin V A, Semikoz D V and Sigl G, *Ultra-high energy neutrino fluxes and their constraints*, 2002 Phys. Rev. D 66 063004 [SPIRES]

[63] Semikoz D V and Sigl G, *Ultra-high energy neutrino fluxes: new constraints and implications*, 2004 J. Cosmol. Astropart. Phys. JCAP04(2004)003 [SPIRES]

[64] Kachelriess M, Semikoz D V and Törntola M A, *New hadrons as ultra-high energy cosmic rays*, 2003 Phys. Rev. D 68 043005 [SPIRES]

[65] Bhattacharyee P and Sigl G, *Origin and propagation of extremely high energy cosmic rays*, 2000 Phys. Rep. 327 109

[66] Anchordoqui L A et al, *Probing Planck scale physics with IceCube*, 2005 Phys. Rev. D 72 065019 [SPIRES]

[67] Kusenko A and Weiler T J, *Neutrinos associated with cosmic rays of top-down origin*, 2003 Phys. Lett. B 555 22 [SPIRES]

[68] DeYoung T, Razzaque S and Cowen D F, *Astrophysical tau neutrino detection in kilometer-scale Cherenkov detectors via muonic tau decay*, 2006 Preprint astro-ph/0608486

[69] Bottai S and Perrone L, *Simulation of UHE muons propagation for GEANT3*, 2001 Nucl. Instrum. Meth. A 459 319 [SPIRES]

[70] Barbot C, Drees M, Halzen F and Hooper D, *Neutrinos associated with cosmic rays of top-down origin*, 2003 Phys. Lett. B 555 22 [SPIRES]

[71] Learned J G and Pakvasa S, *Detecting tau-neutrino oscillations at PeV energies*, 1995 Astropart. Phys. 3 267 [SPIRES]