Non–Oberbeck-Boussinesq effects in two-dimensional Rayleigh-Bénard convection in glycerol

K. Sugiyama¹, E. Calzavarini¹, S. Grossmann² and D. Lohse¹

¹ Physics of Fluids group, Department of Applied Physics, J. M. Burgers Centre for Fluid Dynamics, and Impact-, MESA-, and BMTI-Institutes, University of Twente - P. O. Box 217, 7500 AE Enschede, The Netherlands
² Fachbereich Physik der Philips-Universität - Renthof 6, D-35032 Marburg, Germany

received 1 July 2007; accepted in final form 3 September 2007
published online 28 September 2007

PACS 47.27.te - Turbulent convective heat transfer
PACS 47.20.Bp - Buoyancy-driven instabilities (e.g., Rayleigh-Bénard)
PACS 47.27.ek - Direct numerical simulations

Abstract – We numerically analyze Non–Oberbeck-Boussinesq (NOB) effects in two-dimensional Rayleigh-Bénard flow in glycerol, which shows a dramatic change in the viscosity with temperature. The results are presented both as functions of the Rayleigh number \(Ra\) up to \(10^8\) (for fixed temperature difference \(\Delta\) between the top and bottom plates) and as functions of \(\Delta\) (“non-Oberbeck-Boussinesqness” or “NOBness”) up to 50 K (for fixed \(Ra\)). For this large NOBness the center temperature \(T_c\) is more than 5 K larger than the arithmetic mean temperature \(T_m\) between top and bottom plate and only weakly depends on \(Ra\). To physically account for the NOB deviations of the Nusselt numbers from its Oberbeck-Boussinesq values, we apply the decomposition of \(Nu_{NOB}/Nu_{OB}\) into the product of two effects, namely first the change in the sum of the top and bottom thermal BL thicknesses, and second the shift of the center temperature \(T_c\) as compared to \(T_m\). While for water the origin of the \(Nu\) deviation is totally dominated by the second effect (cf. Ahlers G. et al., J. Fluid Mech., 569 (2006) 409) for glycerol the first effect is dominating, in spite of the large increase of \(T_c\) as compared to \(T_m\).

Copyright © EPLA, 2007

Introduction. – In most theoretical and numerical studies on Rayleigh-Bénard (RB) convection, the Oberbeck-Boussinesq (OB) approximation [1,2] is employed, i.e., the fluid material properties are assumed to be independent of temperature \(T\) except for the density in the buoyancy term which is taken to be linear in \(T\). The problem has two control parameters, namely the Rayleigh number \(Ra = \beta g L^3 \Delta / (\kappa \nu)\) (here \(\beta\) is the thermal expansion coefficient, \(g\) the gravitational acceleration, \(L\) the height, \(\Delta\) the temperature difference between bottom and top plates, \(\kappa\) the thermal diffusivity, and \(\nu\) the kinematic viscosity), and the Prandtl number \(Pr = \nu / \kappa\). For the OB case the mean temperature profile shows top-bottom symmetry. However, in real fluids, if \(\Delta\) is large, this symmetry no longer holds due to the temperature dependences of the material properties. Thus, for given fluid, \(\Delta\) appears as an additional control parameter, which characterizes the deviations from OB conditions, leading to so-called Non-Oberbeck-Boussinesq (NOB) effects. The NOB signatures can be quantified by i) a shift \(T_c - T_m\) of the bulk (or center) temperature \(T_c\) from the arithmetic mean temperature \(T_m\) between the bottom and top plates and ii) by the ratio of the Nusselt numbers \(Nu_{NOB}/Nu_{OB}\) in the NOB and OB cases, which deviates from one. Both quantities have been measured in the large \(Ra\) regime for helium [3], glycerol [4], ethane [5], and water [6] as functions of the NOB-ness \(\Delta\).

As shown in Ahlers et al. [6] the Nusselt number ratio \(Nu_{NOB}/Nu_{OB}\) can be connected to \(T_c\) by the identity

\[
\frac{Nu_{NOB}}{Nu_{OB}} = \frac{2\lambda_{DB}^t}{\lambda_{DB}^t + \lambda_{DB}^b} \left(\frac{\kappa_{sl} \Delta_{sl} + \kappa_{b} \Delta_{b}}{\kappa m \Delta} \right) = F_\lambda \cdot F_\Delta. \tag{1}
\]

Here the labels on material properties indicate the temperature at which they are taken, e.g. \(\kappa_{sl} = \kappa(T_{sl})\) etc. \(\Delta_{sl} = T_c - T_{sl}\) and \(\Delta_{b} = T_b - T_c\) denote the temperature drops over the top and bottom thermal boundary layers, and \(\lambda_{DB}^t\) and \(\lambda_{DB}^b\) indicate their thicknesses, based on the temperature slopes at the top and bottom plates, respectively. \(\lambda_{DB}^t\) is the thermal BL thickness in the OB case, both at top and at bottom. The factor \(F_\Delta\) can be calculated from the temperature dependences of the material properties immediately, once \(T_c\) is known.
Remarkably, Ahlers et al. [6] experimentally found that for water
\[F_\lambda \approx 1. \] (2)
This has been confirmed by numerical simulations of 2D NOB Rayleigh-Bénard convection in ref. [7]. If the relation eq. (2) holds, the Nusselt number ratio \(\frac{N_{\text{NOBJ}}}{Nu_{\text{OB}}} \) already follows from the center temperature \(T_c \), which for water can be calculated within a generalized boundary layer theory introduced in ref. [6].

The objective of this letter is to answer the apparently important question whether the relation \(F_\lambda \approx 1 \), meaning that the sum of the boundary layer thicknesses stays the same as in the OB case also under NOB conditions, \(\lambda_{i}^{B} + \lambda_{j}^{B} \approx 2 \lambda_{i}^{B} \), is more generally valid, i.e., if it holds for other liquids too. We therefore have performed (two-dimensional) NOB simulations with glycerol as the working fluid. For glycerol the kinematic viscosity dramatically depends on temperature, i.e., one should expect large changes of the boundary layer thicknesses at top and bottom. For instance, \(\nu \) decreases from 1759 mm²/s to 52.5 mm²/s if the temperature increases from 15°C to 65°C. Another advantage of considering glycerol is the existence of experimental data for the center temperature (see ref. [4]) for comparison (but not for the Nusselt number modification). Our main result will be that the sum of the boundary layer widths is indeed changed under NOB conditions, i.e., relation (2) does not hold for glycerol. Its validity for water thus turns out to be coincidental, due to the specific temperature dependences of its fundamental parameters for the chosen temperatures in the experiments of ref. [6].

Note that the fluid flow in glycerol is very different from that in water at the same \(Ra \). Due to glycerol’s huge Prandtl number of about \(Pr \approx 2500 \), the transition range between the onset of convection at \(Ra_c \), and the loss of spatial coherence in the flow is much more extended than for water or air, whose Prandtl numbers are of order one. While in air and in water this transition range extends to about \(Ra \approx 5 \cdot 10^7 \) to \(10^8 \), only beyond which there is turbulent convection in the bulk, this range extends to much larger \(Ra \) in glycerol, namely to Rayleigh numbers of order \(Ra \approx 10^{12} \). Since the numerical calculations cover the range up to \(Ra \approx 10^9 \) only, all results refer to a fluid flow still having coherent structures.

To quantify these statements we use an averaged Kolmogorov length \(\eta_K \) as a measure for the scale of coherent structures in the flow, more precisely
\[\ell_{\text{coh}} = 10 \eta_K = 10 (\nu^3/\varepsilon_u)^{1/4}. \] (3)
Here \(\varepsilon_u \) is the volume average of the energy dissipation rate of the flow for which the well-known exact relation \(\varepsilon_u = \nu^3 L^{-4} Pr^{-2} Ra(Nu - 1) \) holds. With this we obtain
\[\ell_{\text{coh}}/L = 10 Pr^{1/2} (Ra(Nu - 1))^{-1/4} \] (4)
as an estimate for a volume-averaged relative coherence length. Taking \(Nu(Ra, Pr) \) from the unified theory of refs. [8], one thus obtains an estimate of the coherence length as a function of \(Ra \) and \(Pr \) from eq. (4), see fig. 1. The main features of the coherence length are i) its pronounced explicit dependence on \(Pr \) (the implicit dependence via \(Nu \) is only weak). It is by about a factor \(\sqrt{2500} = 50 \) larger for glycerol than for gases or water. ii) Its \(Ra \)-dependence is approximately \(\ell_{\text{coh}} \propto Ra^{-0.3} \).

General description of numerical simulation. – We numerically solve the incompressible \(\partial_t u_i = 0 \) Navier-Stokes equations
\[\rho_m(\partial_t u_i + u_j \partial_j u_i) = -\partial_i p + \partial_j(\eta(\partial_j u_i + \partial_i u_j)) + g (\rho_m - \rho) \delta_{i3}, \] (5)
and the heat-transfer equation
\[\rho_m c_{p,m}(\partial_t T + u_j \partial_j T) = \partial_j (\Lambda \partial_j T). \] (6)
The temperature dependence of the dynamic viscosity \(\eta(T) \), the heat conductivity \(\Lambda(T) \), and the density \(\rho \) are experimentally known for glycerol. They are given in the appendix of ref. [6]. As justified in that reference, we can assume the isobaric specific heat capacity \(c_p \) and the density \(\rho \) in the time derivatives of the material parameters to be constant at their values \(\rho_m \) and \(c_{p,m} \) at the arithmetic mean temperature \(T_m \). We vary the Rayleigh number \(Ra \) up to \(10^8 \) and the level of the NOBness \(\Delta \) up to 50 K.

The container is two-dimensional (2D, no \(y \)-dependence), has height \(L \), and aspect ratio 1. The flow is wall-bounded, i.e., we use no-slip boundary conditions at all solid boundaries: \(u_i = 0 \) at the top \((z = L)\) and bottom \((z = 0)\) plates as well as on the side walls \(x = 0 \) and \(x = L \). For the temperature at the side walls heat-insulating conditions are employed and \(T_0 - T_i = \Delta \).
is the temperature drop across the whole cell. The Rayleigh number is defined with the material parameters taken at the mean temperature T_m, i.e., $Ra = \frac{\rho_m g L^3 \Delta}{\nu_m \kappa_m}$. The arithmetic mean temperature is fixed at $T_m = 40^\circ$C. We vary the Rayleigh number by varying the height L of the box, while the NOBness is changed by varying the temperature drop Δ. Note that in the buoyancy term in eq. (5) the full temperature dependence of the density is taken into account, rather than employing the linear approximation $\rho(T) - \rho_m = \rho_m \beta(T - T_m)$ only. (Nevertheless, the Rayleigh number is defined as usual with the linear expansion coefficient of the density with respect to temperature, taken at T_m, namely $\beta_m = -\frac{1}{\rho_m} \frac{\partial \rho}{\partial T} |_{T_m}$.) The Prandtl number is defined as $Pr = \nu_m / \kappa_m$; for glycerol at the chosen temperature T_m, its value is $Pr = 2495$. The basic equations are directly solved on the two-dimensional domain by means of the fourth-order finite difference method. For a detailed description of the simulation method as well as its validations, see ref. [7].

One may worry if two-dimensional simulations are sufficient to reflect the dynamics of the three-dimensional RB convection. For convection under OB conditions this point has been analyzed in detail in ref. [9] and earlier in refs. [10–13]. The conclusion is that for $Pr \geq 1$ various properties observed in numerical 3D convection and in experiment are well reflected in 2D simulations. This in particular holds for the BL profiles and for the Nusselt number. Since the focus of this paper is on the difference between OB and NOB convection, the restriction to 2D simulations seems to be even less severe, as NOB deviations are expected to be similar in both 2D and 3D simulations and remaining differences to cancel out in quantities such as $T_c - T_m$ or Nu_{NOB}/Nu_{OB}.

Results and discussions.

Large-scale flow dynamics and temperature snapshots.

In the steady-flow regime ($Ra < 1.5 \cdot 10^5$) a single large-scale circulation role develops, which however disappears in the unsteady flow regime ($Ra > 1.5 \cdot 10^5$) and does not reappear up to the largest accessible value $Ra = 10^8$ of the present study. Even if we start the simulation with an artificial single roll, the large-scale circulation disappears in the course of time and then isolated plumes (as shown in fig. 2) dominate the flow. This feature holds for both cases, OB and NOB, and is qualitatively different from the observations in 2D (OB and NOB) simulations in water (see ref. [7]). We attribute this to the much larger spatial correlations in glycerol as addressed above. Note that in experiment (ref. [4]) for larger $Ra = 2.3 \cdot 10^8$ a large-scale 3D circulation role has been observed for glycerol. The different behavior between the present DNS and the experiment could either be due to the smaller Ra or to the two-dimensionality in the simulation.

Typical temperature snapshots are shown in fig. 2. As observed in experiments, refs. [4,6], the NOB convection is characterized by an enhancement of the bulk temperature T_c, and a top-bottom asymmetry of the thermal BL thicknesses. Due to the large variation of the glycerol viscosity (the viscosity ratio reaches as much as $\nu_t/\nu_b \approx 16$ at $\Delta = 40$ K), the more viscous cold plumes from the top BL are much less mobile than the warmer plumes from the bottom BL. This results in a significant increase of T_c as compared to the water case.

Mean-temperature profiles and center temperature. To quantify the enhancement of the bulk temperature T_c, the temperature profiles for $Ra = 10^8$ are shown in fig. 3. Again, a strong asymmetry between top and bottom is observed: Due to the more mobile bottom plumes the center temperature T_c is significantly larger than T_m.

To demonstrate this the center temperature shift $T_c - T_m$ (normalized by Δ) as function of the Rayleigh number is plotted in fig. 2. It is evident that $T_c - T_m$ is larger for glycerol than for water, which is due to the much larger material thermal diffusivity κ_m of glycerol (20 times larger), which is manifest in the large increase of the bulk temperature T_c in the NOB case.

Fig. 2: (Color online) Snapshots of the velocity and temperature fields for $Ra = 10^8$ at $T_m = 40^\circ$C. The upper panel corresponds to the OB case (T-independent material parameters), the lower one to the NOB case, both with $\Delta = 40$ K. The temperature color scheme is the same in both cases. In the NOB case a strong temperature enhancement of the center is clearly visible.

Fig. 3: (Color online) Mean-temperature profiles for $Ra = 10^8$ at $T_m = 40^\circ$C. The top graph shows the mean temperature for the OB case (solid line), while the bottom graph shows the mean temperature for the NOB case (dashed line). The temperature color scheme is the same in both cases. In the NOB case a strong temperature enhancement of the center is clearly visible.
number Ra and of the NOBness Δ is shown in fig. 4. Except for small Rayleigh numbers just above onset of convection and in a region around $Ra \approx 2 \cdot 10^5$ just above the onset of unsteady motion, the bulk temperature shift $(T_c - T_m)/\Delta$ is rather independent of Ra. The tiny increase between $Ra = 10^7$ and 10^8 however is beyond the statistical error-bars. For comparison, the prediction of the NOB BL theory given in ref. [6] and the shift for the non-convective state (i.e., purely conductive heat transport, driven by the temperature gradient only) are shown. Though the NOB BL theory from ref. [6] is not applicable here due to the lack of a large-scale wind, it gives the correct qualitative trend for the shift $(T_c - T_m)/\Delta$. We also included experimental data measured at $Ra = 2.3 \cdot 10^8$ (taken from ref. [4]) in an aspect-ratio-1 cylindrical container. Though for that case a large-scale convection role has been observed, the agreement with the 2D numerical simulations is reasonable.

Nusselt number. The key question on NOB effects is: How do they affect the heat flux, i.e., the Nusselt number? For water we could address this question within an extended BL theory, cf. ref. [6], but only thanks to the exact relation eq. (1) and the experimental input $F_{\lambda} \approx 1$, see relation (2), because then only F_{Δ} is needed to calculate the NOB deviations in the Nusselt number ratio, and F_{Δ} is accessible within the extended BL theory, since it follows directly from T_c. But here, with glycerol as working fluid, we find that $F_{\lambda} \approx 1$ does not hold, as demonstrated in fig. 5. In contrast to water, for glycerol the main Δ-dependence of $Nu_{NOB}/Nu_{OB} = F_{\lambda}$, F_{Δ} is due to the Δ-dependence of F_{λ} while the factor F_{Δ} is basically 1 for all Δ's. This qualitative difference between glycerol and water in the origin of the Nusselt number modification also means that the experimental finding $F_{\lambda} \approx 1$ for water at $T_m = 40$ K and Ra in the range of

10^8-10^{10}, see ref. [6], is merely accidental and not a general feature of the RB flow under NOB conditions.

Both NOB responses, the shift of the center temperature T_c and thus $\Delta_b \neq \Delta$, as well as the shift of the BL thicknesses $\lambda_{\Delta,b,t}$, are determined by the full nonlinear dynamics, in glycerol as well as in water. The T_c-shift in glycerol is even larger (≈ 6.5 K) than in water (≈ 1 K). The same is expected for the $\lambda_{\Delta,b,t}$-shifts. But the differences in the temperature drops $\Delta_{b,t}$ enter via F_{Δ}; here they are weighed with the explicit temperature dependence of the material parameter $\kappa(T)$. Since the thermal diffusivity changes only minutely in glycerol, $\kappa_{b,t}/\kappa_m - 1 \approx \pm 0.01$, the factor F_{Δ} stays near $F_{\Delta} \approx 1$ despite the large T_c response, cf. figs. 5, 6. This does not happen in F_{λ}; here the full changes of $\lambda_{\Delta,b,t}$ enter. Because of the very strong and in particular nonlinear temperature dependence of ν the thicknesses of the BLs change significantly and also quite differently in magnitude at the bottom and the top BLs, because $\sqrt{\nu_{b,t}/\nu_m} \approx 2.4$ due to the strong nonlinear T-dependence of $\nu(T)$. Therefore the sum $\lambda_{\Delta,b}^{sl} + \lambda_{\Delta,t}^{sl}$ no longer is equal to $2\lambda_{\lambda,OB}^{sl}$.

K. Sugiyama et al.
dominantly linear $\lambda_{t,\ell}^{NOB}$ modifications are opposite in sign and nearly cancel in the sum of the NOB thicknesses, giving $\lambda_{t}^{NOB} + \lambda_{\ell}^{NOB} \approx 2\lambda_{t,\ell}^{BL}$ or $\lambda_{t} \approx 1$. Thus in glycerol we have $F_{\Delta} \approx 1$ and the Nu changes are dominated by F_{λ}, while in water it is $F_{\lambda} \approx 1$ and the NOB effects in Nu are determined dominantly by F_{Δ} (which is given by the temperature shift alone).

Figure 6 shows the dependences of Nu_{NOB}/Nu_{OB} and F_{λ} on the Rayleigh number Ra for fixed Rayleigh numbers. (a) $Ra = 10^6$, (b) $Ra = 10^7$, and (c) $Ra = 10^8$. As always, the working liquid is glycerol at $T_m = 40^\circ$C. The dashed lines correspond to F_{Δ} resulting from the NOB BL theory of ref. [6].

Summary and conclusions. – In summary, for glycerol both the center temperature T_c and the Nusselt number Nu of the 2D numerical simulations are in good agreement with the available experimental data of ref. [4]. The experimental finding by Ahlers et al. [6] of a “thermal-BL-thickness sum rule” for water, $F_{\lambda} \approx 1$ and $\lambda_{t}^{NOB} + \lambda_{\ell}^{NOB} \approx 2\lambda_{t,\ell}^{BL}$, is shown to be incidental and seems due to the specific temperature dependence of the material parameters of water at 40°C. Apparently this cannot
Fig. 7: (Color online) The Nusselt number Nu for glycerol vs. Ra under OB (dashed line) and NOB (solid line) conditions. In both cases $T_m = 40 ^\circ C$ and $\Delta = 40 K$. OB is provided by keeping the material parameters artificially constant with T. We have also included the available data from ref. [4]. Logarithmic slope $d \log (Nu)/d \log (Ra)$ is plotted in the inset and the line corresponding to the exponent 0.297 measured in ref. [4] is also shown.

be generalized to other fluids (or other mean temperatures), as our analysis of RB convection in glycerol has shown. While for water the Nusselt number modification Nu_{NOB}/Nu_{OB} is due to the modified temperature drops over the BLs, represented by F_Δ, as shown in refs. [6,7], for glycerol it is governed by the variation of the BL thicknesses, namely by F_λ. This can be attributed to the strong and nonlinear temperature dependence of $\nu(T)$.

We thank G. Ahlers and F. Fontenele Araujo for many fruitfull discussions over the last years. The work in Twente is part of the research program of FOM, which is financially supported by NWO and SfG. acknowledges support by FOM.

REFERENCES

[1] Oberbeck A., Über die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen, Ann. Phys. Chem., 7 (1879) 271.
[2] Boussinesq J., Théorie analytique de la chaleur, Vol. 2 (Gauthier-Villars, Paris) 1903.
[3] Wu X. Z. and Libchaber A., Phys. Rev. A, 43 (1991) 2833.
[4] Zhang J., Childress S. and Libchaber A., Phys. Fluids, 9 (1997) 1034.
[5] Ahlers G., Fontenele Araujo F., Funfschilling D., Grossmann S. and Lohse D., Phys. Rev. Lett., 98 (2007) 054501.
[6] Ahlers G., Brown E., Fontenele Araujo F., Funfschilling D., Grossmann S. and Lohse D., J. Fluid Mech., 569 (2006) 409.
[7] Sugiyama K., Calzavarini E., Fontenele-Araujo F., Grossmann S. and Lohse D., Non-Oberbeck-Boussinesq effects on flow structure in Rayleigh-Bénard convection in water, to be submitted to J. Fluid Mech. (2007).
[8] Grossmann S. and Lohse D., J. Fluid. Mech., 407 (2000) 27; Phys. Rev. Lett., 86 (2001) 3316; Phys. Rev. E, 66 (2002) 016305; Phys. Fluids, 16 (2004) 4462.
[9] Schmalzl J., Breuer M., Wessling S. and Hansen U., Europhys. Lett., 67 (2004) 390.
[10] DeLuca E. E., Werne J., Rosner R. and Cattaneo F., Phys. Rev. Lett., 64 (1990) 2370.
[11] Werne J., DeLuca E. E., Rosner R. and Cattaneo F., Phys. Rev. Lett., 67 (1991) 3519.
[12] Werne J., Phys. Rev. E, 48 (1993) 1020.
[13] Burr U., Kinzelbach W. and Tsinober A., Phys. Fluids, 15 (2003) 2313.