

Research Article

A Novel Multiple-Criteria Decision-Making Approach Based on Picture Fuzzy Sets

Hanen Karamti,1 Muhammad Sarwar Sindhu,2 Muhammad Ahsan,2 Imran Siddique,3 Ibrahim Mekawy,4 and Hamiden Abd El-Wahed Khalifa5,6

1Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
2Department of Mathematics, Virtual University of Pakistan, Lahore, Pakistan
3Department of Mathematics, University of Management and Technology, Lahore 54770, Pakistan
4Department of Mathematics, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia
5Department of Operations Research, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613, Egypt
6Department of Mathematics, College of Science and Arts, Qassim University, Al-Badaya 51951, Saudi Arabia

Correspondence should be addressed to Imran Siddique; imransmsrazi@gmail.com and Ibrahim Mekawy; im.mekawy@qu.edu.sa

Received 10 December 2021; Accepted 26 January 2022; Published 27 February 2022

1. Introduction

Handling vague uncertain information in real-life situations has trouble. Therefore, various techniques, such as the theory of fuzzy sets (FSs), have been examined to address the ambiguity and uncertainty found in the real world. Zadeh [1] introduced the concept of FSs in 1965 to tackle the imprecise, unclear data and applied them in decision-making complications by considering diverse perspectives. Although the FS theory has been applied to a variety of sectors, some circumstances in actual life appear to be beyond its capabilities. To capture such occurrences, Atanassov [2] suggested intuitionistic fuzzy sets (IFSs). IFSs are a generalization of FSs made up of two degrees: membership degree (MD) and non-membership degree (NMD), with 0 ≤ MD + NMD ≤ 1. Innumerable investigators contributed their work in this extension, for example, based on the Hamming distance, Szmidt and Kacprzyk [3] developed a similarity measure (SM) between IFSs. Xu and Xia [4] categorized SM and the geometric distance of IFSs for group decision-making problems. Several scholars have begun research on Atanassov’s intuitionistic fuzzy theory due to its elasticity and effective applications. Furthermore, stimulating solicitations in specific areas such as risk analysis, image processing, and medical diagnosis have been established in [5, 6].
This cosmos is full of uncertainty, inconsistency, and ambiguity. In reality, the great majority of the concepts we discuss include ambiguity instead of exact information. Addressing fear or uncertainties is a major difficulty in many professions, including sociology, natural science, engineering, medicine, and economics. Recently, a lot of authors have expressed a significant interest in depicting ambiguity. Traditional hypotheses, such as FS [1], vague sets [7], and rough sets [8], are well known and play a significant role in demonstrating uncertainty. Molodtsov [9] defined soft sets as an entirely new scientific instrument for coping with uncertainty. Cuong [10] developed a general method for depicting uncertainty. Molodtsov [9] defined soft sets as an entirely new scientific instrument for coping with uncertainty.

Regardless, IFSs have been used in many fields of life. However, there are a variety of situations in which IFSs cannot be used. For example, casting a vote and dealing with issues such as yes, neutral, rejection, and refusal, which restricts the use of IFSs. Cuong [10] developed a generalization of FS called picture fuzzy (PF) sets (PFSs) to address such issues. PFSs have considered three factors from their inception: neutral membership degree (NMD), acceptance membership degree (AMD), and refusal membership degree (RMD). The requirement $0 \leq \text{AMD} + \text{NMD} + \text{RMD} \leq 1$ was met by these three features. From its beginning to the current day, PFSs have been verified for treating unclear circumstances in real-life issues, for example, decision making, pattern recognition, clustering, etc.

Based on PFSs, numerous researchers have worked in different fields, for instance, Thong [11] put forward an algorithm for fuzzy clustering that depicts the benefits of PFSs, Wei [12] developed the PF cross-entropy model for MCDM problems, Ashraf et al. [13] explained several procedures to MCDM issues under PF framework, and Sindhu et al. [14] implemented PFSs to select the best alternative. Recently, Zhao et al. [15] presented a dynamic distance measure of PFS depending on a PF point operator to resolve the real-life problem. Duong and Thao established a dissimilarity measure on PFSs and applied it MCDM problem to choose the optimal option. Verma and Rohtagi [16] presented the similarity measures based on PFSs to diagnose diseases and pattern recognition. Gocer [17] created a group decision-making technique based on interval-valued PFSs and then used it to determine a sustainable supply chain strategy. Sustainable supply chain strategy is a complex MCDM issue involving multiple parameters that may be contradictory at the same time. Luo et al. [18] proposed the SM based on relationship matrix and showed that it satisfied all the conditions of SM and then implemented the established SM to resolve the MCDM problem.

DM is useful for discriminating between two probability distributions and extracting conclusions from that discrimination. With the use of HFSs [19] and IFSs [20], many academics have worked and developed to answer decision-making difficulties. DM has also been utilized in MCDM problems by several experts [21, 22]. The PFS has been regarded as an extension of the FS and IFSs. As a result of the findings of the study on FS measures, the IFSs for the PFSs are likewise natural and necessary. This is the motivation behind our research into the DM of PFSs, both in theory and in practice. The major aims and contributions of this study are as follows:

(i) A novel PF divergence measure (PF-DM) is proposed along with its properties.
(ii) PF-DM is developed to measure the degree of fuzziness.
(iii) Two examples, one related to medical diagnosis and the other to pattern recognition, are used to reveal the strength and reliability of the newly developed PF-DM.

Since the inception of the current MCDM theory in the early 1960s, MCDM has been developing to aid decision making to meet various applications [23]. Its importance in numerous application fields has grown significantly, particularly when new techniques are developed and existing ones are improved. MCDM approaches can provide powerful tools for allocating resources inside difficult operations, as well as in complicated exercises such as picking alternatives, weighing criteria, and establishing priorities. MCDM strategies are techniques and ways that attempt to find an optimal solution when there are several competing criteria. The selection of the most appealing DM goals from a wide number of available options while taking into account a variety of physical and abstract features or attributes [24] is at the heart of MCDM techniques. MCDM is a discipline that supports decision makers in making the best decision possible from a set of options based on several factors [25]. Several MCDM approaches have been created in the current decade [26] and used in many fields, such as supplier selection [27, 28] and project management development [29]. Sindhu et al. [30, 31] proposed a TOPSIS-based assessment approach for PFSs to address MCDM problems.

The remainder of the paper is organized as follows. Some basic and related knowledge is penned in Section 2. Novel PF-DM and its properties are discussed comprehensively in Section 3. An MCDM model based on PF-DM is established to resolve the uncertain information. Section 5 comprises two MCDM problems related to medical diagnosis and pattern recognition. In Section 6, the validity of the suggested model is investigated. A comprehensive comparison based on TC is analyzed in Section 6.3. Finally, Section 7 points out some conclusions.

2. Basic Concepts

Some basic ideas connected to the present work like FSs, IFSs, and PFSs and their operational laws are briefly penned in this section.

Definition 1 (see [1]). Let Y be a discourse set such that $Y = \{y_1, y_2, \ldots, y_n\}$; then, a FS \mathcal{F} over Y can be illustrated as

$$
\mathcal{F} = \{ (y, \mu_\mathcal{F}(y)) \mid y \in Y \},
$$

where $\mu_\mathcal{F}(y) : X \rightarrow [0, 1]$ is a MD so that $y \in Y$ to \mathcal{F}.

Definition 2 (see [2]). Suppose that Y is a fixed set, and an IFS \mathcal{I} on Y is illustrated as
\(\mathcal{F} = \{ \langle y, \alpha_F(y), \beta_F(y) \rangle \mid y \in Y \} \),

(2)

where \(\alpha_F(y) \) and \(\beta_F(y) \) are called the MD and NMD of \(y \in Y \) to \(\mathcal{F} \), respectively, with the condition:
\(0 \leq \alpha_F(y) + \beta_F(y) \leq 1 \), for all \(y \in Y \). For all \(y \in Y \), \(\eta_F(y) \) is known as the hesitancy degree of \(y \in \mathcal{F} \) where
\(\eta_F(y) = 1 - \alpha_F(y) - \beta_F(y) \).

Definition 3 (see [10]). A PFS on \(Y = \{ y_1, y_2, \ldots, y_n \} \) is penned as follows:
\[
P = \{ \langle y, \alpha_P(y), \eta_P(y), \beta_P(y) \rangle \mid y \in Y \},
\]

(3)

where \(\alpha_P(y) \), \(\beta_P(y) \), and \(\eta_P(y) \in [0, 1] \) are called the MD, neutral degree, and NMD of \(y \in Y \) to the set \(P \); subsequently, \(\alpha_P(y), \eta_P(y) \), and \(\beta_P(y) \) fulfill the condition:
\(0 \leq \alpha_P(y) + \eta_P(y) + \beta_P(y) \leq 1 \), for all \(y \in Y \). Also, \(\eta_P(y) = 1 - \alpha_P(y) - \eta_P(y) - \beta_P(y) \); then, \(\eta_P(y) \) is supposed to represent a degree of refusal membership of \(y \in Y \) in \(P \). For simplicity, PFS over a fixed set \(Y \) is read as PFS \((Y) \).

Definition 4 (see [10]). Let \(P_1 = (\alpha_{P_1}(y), \eta_{P_1}(y), \beta_{P_1}(y)) \), \(P_2 = (\alpha_{P_2}(y), \eta_{P_2}(y), \beta_{P_2}(y)) \), and \(P = (\alpha_P(y), \eta_P(y), \beta_P(y)) \) be three PFS on \(Y \); then, some arithmetic operations are described as follows:

\[
D_m(\mathfrak{P}_1, \mathfrak{P}_2) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{6} - 1} \left(\sqrt{\mathfrak{P}_1^6(y_i) + \mathfrak{P}_2^6(y_i)} - \mathfrak{P}_1(y_i) - \mathfrak{P}_2(y_i) \right).
\]

(4)

where \(\mathfrak{P}_1(y_i) = (\alpha_{P_1}(y_i), \eta_{P_1}(y_i), \beta_{P_1}(y_i)) \) and \(\mathfrak{P}_2^k(y_i) = (\alpha_{P_2}^k(y_i), \eta_{P_2}^k(y_i), \beta_{P_2}^k(y_i)) \), \(k = 6 \).

Theorem 1. Let \(\mathfrak{P}_1, \mathfrak{P}_2 \in \text{PFSs}. \) Then, the measure \(D_M(\mathfrak{P}_1, \mathfrak{P}_2) \) is valid PF-divergence measure.

Proof

(i) The following inequality holds for any two real numbers \(a, b \in [0, 1] \):
\[
\sqrt{a^6 + b^6} \geq a + b/6.
\]

\[
D_m(\mathfrak{P}_1, \mathfrak{P}_2) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{6} - 1} \left(\sqrt{\mathfrak{P}_1^6(y_i) + \mathfrak{P}_2^6(y_i)} - \mathfrak{P}_1(y_i) - \mathfrak{P}_2(y_i) \right) = 0.
\]

(5)

Conversely, assume \(D_m(\mathfrak{P}_1, \mathfrak{P}_2) = 0 \).

\[
D_m(\mathfrak{P}_1, \mathfrak{P}_2) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{6} - 1} \left(\sqrt{\mathfrak{P}_1^6(y_i) + \mathfrak{P}_2^6(y_i)} - \mathfrak{P}_1(y_i) - \mathfrak{P}_2(y_i) \right) = 0.
\]

(6)

3. **Novel Divergence Measure for PFSs**

In the present work, a novel PF-DM is proposed.

(i) \(D_m(\mathfrak{P}_1, \mathfrak{P}_2) \geq 0 \).

(ii) \(D_m(\mathfrak{P}_1, \mathfrak{P}_2) = 0 \Leftrightarrow \mathfrak{P}_1 = \mathfrak{P}_2 \).

Definition 5. Let \(\mathfrak{P}_1, \mathfrak{P}_2 \in \text{PFSs}. \) The function \(D: \text{PFS} \times \text{PFS} \) \(R \) is called a PF-divergence measure (PF-DM) denoted by \(D_m(\mathfrak{P}_1, \mathfrak{P}_2) \) if it satisfies

\[
\begin{align*}
D_m(\mathfrak{P}_1, \mathfrak{P}_2) &\geq 0, \\
D_m(\mathfrak{P}_1, \mathfrak{P}_2) &\equiv D_m(\mathfrak{P}_2, \mathfrak{P}_1), \\
D_m(\mathfrak{P}_1, \mathfrak{P}_2) &\geq D_m(\mathfrak{P}_1, \mathfrak{P}_3), \\
\end{align*}
\]

for any \(\mathfrak{P}_1, \mathfrak{P}_2 \in \text{PFSs} \).

Definition 6. Let \(\mathfrak{P}_1, \mathfrak{P}_2 \in \text{PFSs}. \) Then, a PF-DM is defined by

\[
D_m(\mathfrak{P}_1, \mathfrak{P}_2) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{6} - 1} \left(\sqrt{\mathfrak{P}_1^6(y_i) + \mathfrak{P}_2^6(y_i)} - \mathfrak{P}_1(y_i) - \mathfrak{P}_2(y_i) \right) = 0.
\]

(4)

Since \(0 \leq \mathfrak{P}_1(y_i), \mathfrak{P}_1(y_i) \leq 1 \).

\[
\begin{align*}
\mathfrak{P}_1(y_i) + \mathfrak{P}_2(y_i) &\geq \frac{\mathfrak{P}_1^6(y_i) + \mathfrak{P}_2^6(y_i)}{6}, \\
\mathfrak{P}_1(y_i) + \mathfrak{P}_2(y_i) &\geq \frac{\mathfrak{P}_1^6(y_i) + \mathfrak{P}_2^6(y_i) - \mathfrak{P}_1(y_i) - \mathfrak{P}_2(y_i)}{6} \geq 0, \\
\end{align*}
\]

\[
\Rightarrow D_m(\mathfrak{P}_1, \mathfrak{P}_2) \geq 0.
\]

(ii) Suppose that \(\mathfrak{P}_1 = \mathfrak{P}_1 \); therefore,
\(\alpha_1(y_i) = \alpha_2(y_i), \eta_1(y_i) = \eta_2(y_i), \beta_1(y_i) = \beta_2(y_i), \forall i = 1, 2, \ldots, n \). Then, (4) becomes

\[
D_m(\mathfrak{P}_1, \mathfrak{P}_2) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{6} - 1} \left(\sqrt{\mathfrak{P}_1^6(y_i) + \mathfrak{P}_2^6(y_i)} - \mathfrak{P}_1(y_i) - \mathfrak{P}_2(y_i) \right) = 0.
\]

(5)
This is possible if and only if
\[\alpha_i(y_i) = \alpha_2(y_i), \eta_1(y_i) = \eta_2(y_i), \beta_1(y_i) = \beta_2(y_i), \]
\[\forall i = 1, 2, \ldots, n. \]
This proves that \(\mathds{P}_1 = \mathds{P}_2. \)
Since the measure \(D_m(\mathds{P}_1, \mathds{P}_2) \) holds the postulates of Definition 5, \(D_m(\mathds{P}_1, \mathds{P}_2) \) is an appropriate divergence measure for PFSs.

Theorem 2. Let \(\mathds{P}_1, \mathds{P}_2, 3 \in \text{PFSs} (Y); \) then, the measure \(D_m(\mathds{P}_1, \mathds{P}_2) \) satisfies the following axioms:

(i) \(D_m(\mathds{P}_1, \mathds{P}_2) = D_m(\mathds{P}_2, \mathds{P}_1). \)
(ii) \(\forall \mathds{P}_1 \subseteq \mathds{P}_2 \leq \mathds{P}_3, \) we have
(a) \(D_m(\mathds{P}_1, \mathds{P}_2) \leq D_m(\mathds{P}_1, \mathds{P}_3). \)
(b) \(D_m(\mathds{P}_2, \mathds{P}_3) \leq D_m(\mathds{P}_1, \mathds{P}_3). \)

Proof
(i) It is easy to understand.
(ii) (a) Let \(\mathds{P}_1 \subseteq \mathds{P}_2 \subseteq \mathds{P}_3; \) then, for any \(0 \leq i \leq n, \)
\[\alpha_i(y_i) \leq \alpha_2(y_i) \leq \alpha_3(y_i), \]
\[\eta_1(y_i) \leq \eta_2(y_i) \leq \eta_3(y_i), \]
and \(\beta_1(y_i) \leq \beta_2(y_i) \leq \beta_3(y_i), \) and we obtain
\[D_m(\mathds{P}_1, \mathds{P}_2) = {1/n} \sum_{i=1}^{n} \left[1/\sqrt{6} - 1 \left(\sqrt{\eta_1(y_i) + \eta_2(y_i)} + \sqrt{\eta_2(y_i) + \eta_3(y_i)} - \sqrt{\eta_1(y_i) + \eta_3(y_i)} \right) + \beta_1(y_i) \right] \]
\[\leq {1/n} \sum_{i=1}^{n} \left[1/\sqrt{6} - 1 \left(\sqrt{\eta_1(y_i) + \eta_2(y_i)} + \sqrt{\eta_2(y_i) + \eta_3(y_i)} - \sqrt{\eta_1(y_i) + \eta_3(y_i)} \right) + \beta_1(y_i) \right] \]
\[\leq {1/n} \sum_{i=1}^{n} \left[1/\sqrt{6} - 1 \left(\sqrt{\eta_1(y_i) + \eta_2(y_i)} + \sqrt{\eta_2(y_i) + \eta_3(y_i)} - \sqrt{\eta_1(y_i) + \eta_3(y_i)} \right) + \beta_1(y_i) \right] \]
Hence, \(D_m(\mathds{P}_1, \mathds{P}_2) \leq D_m(\mathds{P}_1, \mathds{P}_3). \) Similarly, we can verify axiom (b).

Theorem 3. Let \(\mathds{P}_1, \mathds{P}_2 \in \text{PFSs}. \) Then, for \(D_m(\mathds{P}_1, \mathds{P}_2), \) we get

(1) \(D_m(\mathds{P}^\mathbf{E}_1, \mathds{P}^\mathbf{E}_2) = D_m(\mathds{P}_1, \mathds{P}_2). \)
(2) \(D_m(\mathds{P}^\mathbf{B}_1, \mathds{P}^\mathbf{B}_2) = D_m(\mathds{P}_1, \mathds{P}_2). \)
(3) \(\forall \mathds{P}_1 \subseteq \mathds{P}_2 \leq \mathds{P}_1, \) we get
(i) \(D_m(\mathds{P}_1 \cap \mathds{P}_2, \mathds{P}_2) = D_m(\mathds{P}_1, \mathds{P}_2). \)
(ii) \(D_m(\mathds{P}_1 \cap \mathds{P}_2, \mathds{P}_1 \cup \mathds{P}_2) = D_m(\mathds{P}_1, \mathds{P}_2). \)

Proof
(1) Since \(\mathds{P}_1 = (\alpha_1(y_i), \eta_1(y_i), \beta_1(y_i)), \mathds{P}_2 = (\alpha_2(y_i), \eta_2(y_i), \beta_2(y_i)); \)
\[\mathds{P}_1^\mathbf{E} = (\beta_1(y_i), \eta_1(y_i), \alpha_2(y_i)), \]
\[\mathds{P}_2^\mathbf{B} = (\beta_2(y_i), \eta_2(y_i), \alpha_2(y_i)); \]
then,
\[D_m(\mathds{P}_1^\mathbf{E}, \mathds{P}_2^\mathbf{B}) = \frac{1}{n} \sum_{i=1}^{n} \left[1/\sqrt{6} - 1 \left(\sqrt{\eta_1(y_i) + \eta_2(y_i)} + \sqrt{\eta_2(y_i) + \eta_3(y_i)} - \sqrt{\eta_1(y_i) + \eta_3(y_i)} \right) + \beta_1(y_i) \right] \]
\[= \frac{1}{n} \sum_{i=1}^{n} \left[1/\sqrt{6} - 1 \left(\sqrt{\eta_1(y_i) + \eta_2(y_i)} + \sqrt{\eta_2(y_i) + \eta_3(y_i)} - \sqrt{\eta_1(y_i) + \eta_3(y_i)} \right) + \beta_1(y_i) \right] \]
\[\Rightarrow D_m(\mathds{P}_1^\mathbf{E}, \mathds{P}_2^\mathbf{B}) = D_m(\mathds{P}_1, \mathds{P}_2). \]

4. **MCDM Process Based on PF-DM**

In this section, a decision-making process based on PF-DM has been provided, followed by practical examples to demonstrate the concept. Suppose a collection of \(n \) alternatives represented by \(A = \{A_1, A_2, \ldots, A_n\} \) that has been investigated by the decision maker by considering the collection of \(m \) different criteria \(Q = \{Q_1, Q_2, \ldots, Q_m\} \). Having weight vectors is \(W = (w_1, w_2, \ldots, w_m) \) so that \(\sum_{i=1}^{m} w_i = 1 \). Consider the decision maker assessing the rating of an alternative \(A_i, (1 \leq i \leq n) \) on the criteria \(G_j, (1 \leq j \leq m) \) in the form of PFSs. To arrive at the best solution, MCDM takes the following actions.

Step 1. Gather data in the form of PF decision matrix.
\[P_c = [p_{ij}]_{n \times m}. \]
\[P_c = (\alpha_{p_{11}}, \eta_{p_{11}}, \beta_{p_{11}}) \ldots \]
\[(\alpha_{p_{1m}}, \eta_{p_{1m}}, \beta_{p_{1m}}); \]
\[(\alpha_{p_{21}}, \eta_{p_{21}}, \beta_{p_{21}}) \ldots \]
\[(\alpha_{p_{2m}}, \eta_{p_{2m}}, \beta_{p_{2m}}); \]
\[\ldots ; \]
\[(\alpha_{p_{n1}}, \eta_{p_{n1}}, \beta_{p_{n1}}) \ldots \]
\[(\alpha_{p_{nm}}, \eta_{p_{nm}}, \beta_{p_{nm}}). \]

Step 2. Evaluate the ideal solution \(N = \min[p_{ij}]_{n \times m}. \)

Step 3. Based on (4), compute the PF-DM.

Step 4. Arrange the values of PF-DM from lower order to top order.

Step 5. Based on Step 4, choose the best alternative.

5. **Solution of Problems Based on PF-DM**

The authors used the proposed MCDM model to recognize the pattern and breakout of dengue disease in this section.

Step 1. Picture fuzzy (PF) decision matrix \(P_c = [p_{ij}]_{5 \times 5} \) is denoted in Table 1.

Step 2. The ideal solution \(N = \{ (y_1, 0.1000, 0.1000, 0.1000), (y_2, 0.1000, 0.3000), (y_3, 0.3000, 0.1000, 0.1000), (y_4, 0.2000, 0.1000, 0.1000, 0.2000) \} \).
Table 1: PF decision matrix.

| Symptoms | \((y_1, 0.1, 0.4, 0.3), (y_2, 0.4, 0.1, 0.3), (y_3, 0.3, 0.2, 0.4), (y_4, 0.2, 0.3, 0.5), (y_5, 0.5, 0.1, 0.3)\) | \((y_1, 0.3, 0.3, 0.3), (y_2, 0.0, 0.2, 0.7), (y_3, 0.6, 0.1, 0.1), (y_4, 0.4, 0.4, 0.2), (y_5, 0.1, 0.5, 0.3)\) | \((y_1, 0.5, 0.1, 0.3), (y_2, 0.3, 0.4, 0.3), (y_3, 0.6, 0.1, 0.3), (y_4, 0.4, 0.4, 0.1), (y_5, 0.1, 0.5, 0.2)\) | \((y_1, 0.6, 0.2, 0.1), (y_2, 0.3, 0.2, 0.4), (y_3, 0.4, 0.2, 0.3), (y_4, 0.6, 0.1, 0.1), (y_5, 0.4, 0.2, 0.2)\) | \((y_1, 0.1, 0.4, 0.3), (y_2, 0.4, 0.1, 0.3), (y_3, 0.3, 0.2, 0.4), (y_4, 0.2, 0.3, 0.4), (y_5, 0.5, 0.1, 0.3)\) |

Step 3. The PF-DM values among the symptoms \(B_1, B_2, B_3, B_4,\) and \(B_5\) and the ideal solution \(N\) are
\[
D_m(B_1, N) = 0.0629, \quad D_m(B_2, N) = 0.1006, \\
D_m(B_3, N) = 0.0824, \\
D_m(B_4, N) = 0.0866, \quad D_m(B_5, N) = 0.0558.
\]

Step 4. Arrange the values of PF-DM from lower order to top order such that \(B_5 \prec B_1 \prec B_3 \prec B_4 \prec B_2\).

Step 5. The most frequent symptom is \(B_4\) which can be seen in Figure 1.

Example 1. In the context of dengue disease, it is critical to provide a productive path in crisis response in order to avoid additional misfortunes and save people’s lives. As a result of such a life-threatening situation, health professionals must respond quickly in order to effectively control the situation and prevent further deaths. There are five major symptoms, namely, aching muscles and joints \(B_1\), body rash that can disappear and then reappear \(B_2\), high fever \(B_3\), intense headache \(B_4\), and vomiting and feeling nauseous \(B_5\), that can be investigated to diagnose this disease. All symptoms, \(B_1, B_2, B_3, B_4,\) and \(B_5\), are penned in terms of PFSs in Table 1.

An unknown pattern is classified into a specific pattern using numerous fuzzy information parameters such as distance, similarity, accuracy, and others. For pattern recognition, we employ the proposed PF-DM. A pattern recognition problem is phrased as follows in the picture fuzzy environment.

(i) **Step 1.** PF decision matrix \(P_c = [p_{ij}]_{5 \times 5}\) is denoted in Table 2.

(ii) **Step 2.** An unknown pattern represented by \(N\) is:
\[
N = \{(0.1000, 0.1000, 0.1000), (0.2000, 0.3000, 0.1000), (0.2000, 0.1000, 0.0), (0.1000, 0.0, 0.2000), (0.3000, 0.1000, 0.0)\}
\]

Step 3. The PF-DM values among the alternatives \(B_1, B_2, B_3,\) and \(B_5\) and the unknown pattern \(N\) are
\[
D_m(B_1, N) = 0.2953, \quad D_m(B_2, N) = 0.3303, \quad D_m(B_3, N) = 0.2495.
\]

Step 4. Arrange the values of PF-DM from lower order to top order such that \(B_1 \prec B_3 \prec B_5\).

Step 5. Hence, \(B_3\) is an optimal pattern. Figure 2 illustrates the ranking order of the alternatives.

Example 2. Suppose \(A = \{B_1, B_2, B_3\}\) are some well-known patterns distinguished by PFSs in the universal set \(Y = \{Y_1, Y_2, Y_3, Y_4, Y_5\}\) which are given in the table below.

| Symptoms | \((y_1, 0.1, 0.4, 0.3), (y_2, 0.4, 0.1, 0.3), (y_3, 0.3, 0.2, 0.4), (y_4, 0.2, 0.3, 0.5), (y_5, 0.5, 0.1, 0.3)\) |

6. Validity Testing of Criteria for the Proposed MCDM Model

Criterion 1. An effective MCDM approach should not change the indication of the best option when replacing a non-optimal option with a worse option without changing the relative relevance of any decision criterion.

Criterion 2. The transitive property should be followed by an effective MCDM approach.

Criterion 3. When an MCDM problem is broken down into smaller problems and the same MCDM method is used to assess the options on the smaller problems, the combined ranking of the alternatives should equal the undecomposed problem’s original rating. These testing criteria are being used to evaluate the proposed PF-DM MCDM model’s validity.
6.1. Testing Criterion 1. Decision matrix provided in Table 3 is attained by altering the AMD and RMD of the alternative \(B_1 \) (non-favorable) and \(B_2 \) (inferior) in the original decision matrix to check the efficacy of the suggested model under test criterion 1 of Example 1.

The PF-DM values among the symptoms \(B_1, B_2, B_3, B_4, \) and \(B_5 \) and the ideal solution \(N \) are \(D_m(B_1, N) = 0.0660, D_m(B_2, N) = 0.1037, D_m(B_3, N) = 0.0855, D_m(B_4, N) = 0.0896, \) and \(D_m(B_5, N) = 0.0590 \). As a result, the proposed technique supported test criterion 1 provided in [32].

6.2. Testing Criteria 2 and 3. To validate the suggested approach, use test criterion 2 and test criterion 3. The MCDM problem presented in Example 1 has been divided into five smaller subsets such as \(\{B_1, B_2, B_3, B_4\}, \{B_1, B_2, B_3, B_5\}, \{B_1, B_3, B_4, B_5\}, \{B_1, B_2, B_3, B_5\}, \) and \(\{B_2, B_3, B_4, B_5\} \). We may obtain the following arrangements for each subset using the suggested MCDM model: \(B_1 < B_3 < B_2 < B_5 < B_4 < B_3 < B_1 < B_5 < B_2 < B_4, B_5 < B_2 < B_3 < B_4 < B_1, B_5 < B_1 < B_2 < B_3, \) and \(B_5 < B_2 < B_3 < B_4 < B_1 \), respectively. By aggregating all these arrangements, overall ranking \(B_5 < B_2 < B_3 < B_4 < B_1 \) is obtained which is identical to the original one. Thereby, the suggested MCDM model is validated under the test criteria 2 and 3 presented in [32].
6.3. Comparison Based on Time Complexity. In order to strengthen the results obtained from the proposed MCDM model, TC analysis is performed in this section. TC is the time required to execute an algorithm to reach the final result. TC is measured among the proposed and the existing techniques presented by Kadian and Kumar [6], Thao et al. [27], Wang et al. [30], and Wei et al. [32]. The executing time of each technique is evaluated with the help of MATLAB which is presented in Table 4, and its graphical view is drawn in Figure 3. From Table 4, our approach takes less time as compared to others, and hence the proposed MCDM model is more effective and resolves the issues rapidly.

7. Conclusions

A PF-DM is proposed in this study, along with proof of its validity, and some of its features are studied. Existing DMs for PFSs are less feasible than the suggested DM. The suggested divergence metric surpasses other current similarities and DMs by illustrating real challenges in medical analysis and pattern recognition. It can be seen that in pattern recognition, the suggested divergence metric can assign an unknown pattern to one of the previously recognized patterns. Diseases are diagnosed in medical analysis based on their symptoms, which are represented by visual fuzzy numbers. In addition, pattern recognition employs the proposed divergence measure. It holds in both circumstances.

As a result, the proposed DM is useful for pattern identification as well as medical diagnostics. In addition, the following are the study’s long-term goals. (i) It is possible to develop a parametric generalized divergence measure. (ii) PFS can be enhanced by including a third parameter, the degree of refusal. (iii) The suggested divergence metric may be expanded and implemented in an image fuzzy soft set environment. (iv) The suggested DMs may be used to a wide range of real-world problems [36].

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R192), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

References

[1] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965.
[2] K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 20, no. 1, pp. 87–96, 1986.
[3] E. Szmidt and J. Kacprzyk, “Distances between intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 114, no. 3, pp. 505–518, 2000.
[4] Z. S. Xu and M. M. Xia, “Some new similarity measures for intuitionistic fuzzy values and their application in group decision making,” Journal of Systems Science and Systems Engineering, vol. 19, pp. 430–452, 2010.
[5] R. Joshi, “A novel decision-making method using R-norm concept and VIKOR approach under picture fuzzy environment,” Expert Systems with Applications, vol. 147, p. 113228, 2020.
[6] R. Kadian and S. Kumar, “A novel intuitionistic Renyi-Tsallis discriminant information measure and its applications in decision-making,” Granular Computing, vol. 6, pp. 901–913, 2021.
[7] W.-L. Gau and D. J. Buehrer, “Vague sets,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, no. 2, pp. 610–614, 1993.
[8] Z. Pawlak, J. Grzymala-Busse, R. Slowinski, and W. Ziarko, “ Rough sets,” Communications of the ACM, vol. 38, no. 11, pp. 88–95, 1995.
[9] D. Molodtsov, “Soft Set theory-first results,” Computers & Mathematics with Applications, vol. 37, no. 4-5, pp. 19–31, 1999.
[10] B. C. Cuong, “Picture fuzzy sets, a new concept for computational intelligence problems,” in Proceedings of the third world congress on information and communication technologies, pp. 1–6, Hanoi, Vietnam, December 2013.

[11] P. H. Thong, “Some novel hybrid forecast methods based on picture fuzzy clustering for weather nowcasting from satellite image sequences,” Applied Intelligence, vol. 46, pp. 1–15, 2017.

[12] G. Wei, “Picture fuzzy aggregation operators and their application to multiple attribute decision making,” Journal of Intelligent and Fuzzy Systems, vol. 33, no. 2, pp. 713–724, 2017.

[13] S. Ashraf, T. Mahmood, S. Abdullah, and Q. Khan, “Different approaches to multi-criteria group decision making problems for picture fuzzy environment,” Bulletin of the Brazilian Mathematical Society, New Series, vol. 50, no. 2, pp. 373–397, 2019.

[14] M. S. Sindhu, T. Rashid, and A. Kashif, “Modeling of linear programming and extended TOPSIS in decision making problem under the framework of picture fuzzy sets,” PLoS One, vol. 14, no. 8, Article ID e0220957, 2019.

[15] R. Zhao, M. Luo, and S. Li, “A dynamic distance measure of picture fuzzy sets and its application,” Symmetry, vol. 13, no. 3, p. 436, 2021.

[16] R. Verma and B. Rohtagi, “Novel similarity measures between picture fuzzy sets and their applications to pattern recognition and medical diagnosis,” Granular Computing, pp. 1–17, 2022.

[17] F. Gocer, “A novel interval value extension of picture fuzzy sets into group decision making: an approach to support supply chain sustainability in catastrophic disruptions,” IEEE Access, vol. 9, pp. 117080–117096, 2021.

[18] M. Luo, Y. Zhang, and L. Fu, “A new similarity measure for picture fuzzy sets and its application to multi-attribute decision making,” Informatica, vol. 32, pp. 1–22, 2021.

[19] V. Kobza, V. Janiš, and S. Monteš, “Divergence measures on hesitant fuzzy sets,” Journal of Intelligent and Fuzzy Systems, vol. 33, no. 3, pp. 1589–1601, 2017.

[20] A. R. Mishra, R. Kumari, and D. K. Sharma, “Intuitionistic fuzzy divergence measure-based multi-criteria decision-making method,” Neural Computing & Applications, vol. 31, no. 7, pp. 2279–2294, 2019.

[21] A. R. Mishra, P. Rani, K. R. Pardasani, A. Mardani, Ž. Stević, and D. Pamučar, “A novel entropy and divergence measures with multi-criteria service quality assessment using interval-valued intuitionistic fuzzy TODIM method,” Soft Computing, vol. 24, no. 15, pp. 11641–11661, 2020.

[22] Q. Zhou, H. Mo, and Y. Deng, “A new divergence measure of pythagorean fuzzy sets based on belief function and its application in medical diagnosis,” Mathematics, vol. 8, no. 1, p. 142, 2020.

[23] C. Kahraman, S. C. Önar, and B. Öztayşı, “Fuzzy multicriteria decision-making: a literature review,” International Journal of Computational Intelligence Systems, vol. 8, no. 4, pp. 637–666, 2015.

[24] G. Buyuukozkan, F. Gocer, and O. Feyzioglu, “Cloud computing technology selection based on interval-valued intuitionistic fuzzy MCDM methods,” Soft Computing, vol. 22, no. 15, pp. 5091–5114, 2018.

[25] J. Antucheviciene, Z. Kala, M. Marzouk, and E. R. Vaidogas, “Solving civil engineering problems by means of fuzzy and stochastic MCDM methods: current state and future research,” Mathematical Problems in Engineering, vol. 2015, pp. 1–16, 2015.

[26] A. Mardani, A. Jusoh, K. Md Nor, Z. Khalifah, N. Zakwan, and A. Valipour, “Multiple criteria decision-making techniques and their applications - a review of the literature from 2000 to 2014,” Economic Research-Ekonomska Istraživanja, vol. 28, no. 1, pp. 516–571, 2015.

[27] D. Kannan, A. B. L. d. S. Jabbour, and C. J. C. Jabbour, “Selecting green suppliers based on GSCM practices: using fuzzy TOPSIS applied to a Brazilian electronics company,” European Journal of Operational Research, vol. 233, no. 2, pp. 432–447, 2014.

[28] P. Liu and X. Zhang, “Research on the supplier selection of a supply chain based on entropy weight and improved electro-III method,” International Journal of Production Research, vol. 49, no. 3, pp. 637–646, 2011.

[29] J. R. San Cristóbal, “Multi-criteria decision-making in the selection of a renewable energy project in Spain: the Vikor method,” Renewable Energy, vol. 36, no. 2, pp. 498–502, 2011.

[30] M. S. Sindhu, M. Ahsan, A. Rafiq, and I. A. Khan, “Multiple criteria decision making based on bipolar picture fuzzy sets and extended TOPSIS,” The Journal of Mathematics and Computer Science, vol. 23, no. 1, pp. 49–57, 2021.

[31] M. S. Sindhu, T. Rashid, and A. Kashif, “An approach to select the investment based on bipolar picture fuzzy sets,” International Journal of Fuzzy Systems, vol. 23, pp. 1–13, 2021.

[32] X. Wang and E. Triantaphyllou, “Ranking irregularities when evaluating alternatives by using some ELECTRE methods,” Omega, vol. 36, no. 1, pp. 45–63, 2008.

[33] N. X. Thao, M. Ali, L. T. Nhung, H. K. Gianey, and F. Smarandache, “A new multi-criteria decision making algorithm for medical diagnosis and classification problems using divergence measure of picture fuzzy sets,” Journal of Intelligent and Fuzzy Systems, vol. 37, no. 6, pp. 7785–7796, 2019.

[34] R. Wang, J. Wang, H. Gao, and G. Wei, “Methods for MADM with picture fuzzy Muirhead mean operators and their application for evaluating the financial investment risk,” Symmetry, vol. 11, no. 1, p. 6, 2019.

[35] G. Wei, M. Lu, and H. Gao, “Picture fuzzy heronian mean aggregation operators in multiple attribute decision making,” International Journal of Knowledge-Based and Intelligent Engineering Systems, vol. 22, no. 3, pp. 167–175, 2018.

[36] T. T. T. Duong and N. X. Thao, “A novel dissimilarity measure on picture fuzzy sets and its application in multi-criteria decision making,” Soft Computing, vol. 25, no. 1, pp. 15–25, 2021.