Hausdorff dimension,
Mean quadratic variation of
infinite self-similar measures*

Zu-Guo Yu¹, Fu-Yao Ren² and Jin-Rong Liang²

¹Institute of Theoretical Physics, Academia Sinica,
P.O. Box 2735, Beijing 100080, P.R.C. E-mail:yuzg@itp.ac.cn.
²Institute of Mathematics, Fudan University, Shanghai 200433, P.R.C.

(Received on 10 October, 1996; Accepted on 15 August, 1997)

Abstract: Under weaker condition than that of Riedi & Mandelbrot, the Hausdorff
(and Hausdorff-Besicovitch) dimension of infinite self-similar set $K \subset \mathbb{R}^d$ which is the
invariant compact set of infinite contractive similarities $\{S_j(x) = \rho_j R_j x + b_j\}_{j \in \mathbb{N}}$ ($0 < \rho_j < 1$, $b_j \in \mathbb{R}^d$, R_j orthogonal) satisfying open set condition is obtained. It is proved
(under some additional hypotheses) that the β-mean quadratic variation of infinite self-
similar measure is of asymptotic property (as $t \to 0$).

Key Words: Hausdorff (and Hausdorff-Besicovitch) dimension, infinite self-similar
set/measure, mean quadratic variation.

AMS Classification: 28A80, 00A73.

* Project partially supported by the Tianyuan Foundation of China and Postdoctoral station Foundation of the State Education Committee.
1 Introduction

In this paper, we denote \mathbb{R}^d the d-dimensional Euclidean space, \mathbb{N} the set of natural numbers and \mathbb{Z} the set of integer numbers.

For given finite contractive similarities $\{S_j(x) = \rho_j R_j x + b_j\}_{j=1}^m$ of \mathbb{R}^d, where $0 < \rho_j < 1$, $b_j \in \mathbb{R}^d$, R_j orthogonal, J.E.Hutchinson [1] proved that there exists unique compact set K_1 satisfying

$$K_1 = \bigcup_{j=1}^m S_j(K_1).$$

K_1 is called self-similar set. If there exists an open set O_1 satisfying $S_j(O_1) \subset O_1$ and $S_i(O_1) \cap S_j(O_1) = \emptyset$ ($i \neq j$), we call that $\{S_j\}_{j=1}^m$ satisfy open set condition. We call that they satisfy strong open set condition if the sets $S_j(O)$ are disjoint. Then

Theorem A (Hutchinson) If $\{S_j\}_{j=1}^m$ satisfy open set condition, then the Hausdorff dimension s' of K_1 is the unique solution of the equation $\sum_{j=1}^m \rho_j s' = 1$.

In [1], he also proved that for given probability vector $P = (P_1, P_2, \cdots, P_m)$ satisfying $\sum_{j=1}^m P_j = 1$, there exists unique probability measure μ_1 on \mathbb{R}^d satisfying

$$\mu_1(\cdot) = \sum_{j=1}^m P_j \mu_1(S_j(\cdot))$$

and the support set of μ_1 is K_1. μ_1 is called self-similar measure and $\{P_j\}_{j=1}^m$ is called weights of μ_1.

Ka-Sing Lau and Jian-rong Wang [2], and R.S.Strichartz [3-7] have done much study on Fourier analysis of self-similar measure. R.S.Strichartz in [3] (or [7]) discussed many fractal numbers and set of integer numbers.

In [1], he also proved that for given probability vector $P = (P_1, P_2, \cdots, P_m)$ satisfying $\sum_{j=1}^m P_j = 1$, there exists unique probability measure μ_1 on \mathbb{R}^d satisfying

$$\mu_1(\cdot) = \sum_{j=1}^m P_j \mu_1(S_j(\cdot))$$

and the support set of μ_1 is K_1. μ_1 is called self-similar measure and $\{P_j\}_{j=1}^m$ is called weights of μ_1.

It is proved in [5] that if $\{S_j\}_{j=1}^m$ satisfies the strong open set condition, then for the self-similar measure μ defined by natural weights (i.e. $P_j = \rho_j^{\beta'}$, $\beta' = s'$)

$$\frac{1}{r^{d-\beta'}} \int_{|x| \leq r} |(\mu f)(x)|^2 dx = q(r) \int |f|^2 d\mu + E(r) \quad \forall f \in L^2(d\mu),$$

(*)

where $E(r) \rightarrow 0$ as $r \rightarrow +\infty$, and $q(r)$ is a multiplicative periodic function or a positive constant.

Let μ be a σ-finite measure on \mathbb{R}^d, for $0 \leq \alpha \leq d$, let

$$V_\alpha(t; \mu) = \frac{1}{t^{d+\alpha}} \int_{\mathbb{R}^d} |\mu(B_t(x))|^2 dx,$$
where $B_t(x)$ is the ball of radius t, centered at x. We will call $\limsup_{t\to 0} V_\alpha(t; \mu)$ the
upper α-mean quadratic variation (m.q.v.) of μ, and simply call it α-m.q.v. if the limit
exists.

If μ is a self-similar measure on \mathbb{R}^d, Ka-sing Lau and Jian-rong Wang [2] proved the
following two Theorems

Theorem B ([2]) Under some additional conditions, we have

$$
\lim_{t \to 0} \left| V_{\beta'}(t; \mu) - p(t) \right| = 0.
$$

where $p(t)$ is a multiplicative periodic function or a positive constant and β' is defined as
above.

Theorem C ([2]) If the self-similar measure μ defined by natural weights (i.e. $P_j = \rho_j^{\beta'}$, $\beta' = s'$), under some additional hypotheses

$$
\lim_{t \to 0} \frac{1}{t^{d+\beta'}} \int_{\mathbb{R}^d} |\mu_f(B_t(x))|^2 dx - p(t) \int |f|^2 d\mu = 0 \quad \text{for} \quad \forall f \in L^2(d\mu),
$$

where $p(t)$ is the function in Theorem B.

R.H.Riedi and B.B.Mandelbrot [8] introduced infinite self-similar sets and infinite self-similar
measures on \mathbb{R}^d (definitions see later of this paper), discussed multifractal formalism for infinite self-similar measures and the Hausdorff dimension of infinite self-similar sets (under some additional conditions). In this paper, under weaker condition than that of Riedi & Mandelbrot, we extend Theorem A to the infinite self-similar case. If μ is infinite self-similar measure and the equation $\sum_{j=1}^{\infty} P_j \rho_j^{-\beta} = 1$ has finite solution β, then under some additional hypotheses, R.S.Strichartz [5] obtained the asymptotic property of function $H(r)$ and conclusion (*). In this paper, we also extend Theorem B,C to the infinite self-similar case.

2 Hausdorff (and Hausdorff-Besicovitch) dimension of infinite self-similar set.

For given infinite contractive similarities $\{S_j(x) = \rho_j R_j x + b_j\}_{j \in \mathbb{N}}$ of \mathbb{R}^d, where $0 < \rho_j < 1$, $b_j \in \mathbb{R}^d$, R_j orthogonal, from [8], there exists unique compact set K satisfying

$$
K = \bigcup_{j=1}^{\infty} S_j(K).
$$

K is called infinite self-similar set. K can be constructed as following. Let $E_0 \subset \mathbb{R}^d$ be
a compact set, denote $E_{j_1\cdots j_k} = S_{j_1} \circ \cdots \circ S_{j_k}(E_0)$, then

$$
K = \bigcap_{k=0}^{\infty} \bigcup_{j_1,\cdots,j_k \in \mathbb{N}} E_{j_1\cdots j_k}.
$$

For given probability sequence (P_1, P_2, \cdots) with $\sum_{j=1}^{\infty} P_j = 1$, from [8], there exists unique
probability measure μ on \mathbb{R}^d satisfying

$$
\mu(\cdot) = \sum_{j=1}^{\infty} P_j \mu(S_j(\cdot)).
$$
We call μ infinite self-similar measure and $\{P_j\}_{j=1}^\infty$ weights of μ. Its support set is K.

Definition 1 We call $\{S_j(x)\}_{j \in \mathbb{N}}$ satisfying open set condition if there exists a bounded open set $O \subset \mathbb{R}^d$ such that $S_j(O) \subset O$ and $S_i(O) \cap S_j(O) = \emptyset$ ($i \neq j$).

For any subset $A \subset \mathbb{R}^d$ and $0 \leq s < \infty$, let $\mathcal{M}_s^\delta(A) = \inf \sum_{i=1}^\infty |A_i|^s$, where $A = \cup_{i=1}^\infty A_i$ is a countable decomposition of A into subsets of diameter $|A_i| < \delta$ (>0). We set $|A_i|^0 = 0$ if A_i is empty and $|A_i|^0 = 1$ otherwise. The s-dimensional measure of A is defined to be

$$\mathcal{M}_s^\delta(A) = \sup_{\delta > 0} \mathcal{M}_s^\delta(A).$$

The Hausdorff-Besicovitch dimension of A is

$$\dim_M(A) = \sup\{0 \leq s < \infty : \mathcal{M}_s^\infty(A) > 0\}.$$

Remark: It is easy to see that in the definition of $\mathcal{M}_s^\delta(A)$, we can replace $|A_i|$ by $|\overline{A_i}|$. From the definition of fractal dimension, $\dim_H(A)$, we can see that

$$\dim_H(A) \leq \dim_M(A). \quad (1)$$

Theorem 1 If the equation $\sum_{j=1}^\infty \rho_j^s = 1$ has finite solution s, and $\{S_j\}_{j=1}^\infty$ satisfy open set condition, K is the infinite self-similar set, then the Hausdorff-Besicovitch dimension $\dim_M(K)$ and Hausdorff dimension $\dim_H(K)$ of K is s.

Remark. Our condition is weaker than Riedi & Mandelbrot’s [8] condition: there exist numbers r, R such that $-\infty < \log r \leq (1/j) \log \rho_j \leq \log R < 0 \forall j$.

Proof of Theorem 1 To get the upper bound. Let $K = \cup_{i=1}^\infty A_i$ be any decomposition of K into subsets of diameter $< \delta$, then a new decomposition is provided by $K = \cup_{i=1}^\infty \cup_{j=1}^\infty A_{ij}$, where $A_{ij} = \varphi_j(A_i)$. Because

$$\sum_{i=1}^\infty \sum_{j=1}^\infty |A_{ij}|^s \leq \sum_{i=1}^\infty \sum_{j=1}^\infty |\rho_j|^s |A_i|^s \leq \sum_{j=1}^\infty \rho_j^s \sum_{i=1}^\infty |A_i|^s,$$

it follows that whenever $\sum_{j=1}^\infty \rho_j^s < 1$ we must have $\mathcal{M}_s^\delta(K) = 0$, then $\mathcal{M}_s^\infty(K) = 0$. As $\dim_M(K) = \inf\{s : \mathcal{M}_s^\infty(K) = 0\}$, hence $\dim_M(K) \leq s$ where $\sum_{j=1}^\infty \rho_j^s = 1$. From (1), we have $\dim_H(K) \leq s$.

To get the lower bound. We let $K^{(m)}$ be the self-similar set generated by $\{S_j\}_{j=1}^m$, then from Theorem 8 of ref.[11], we have

$$\dim_M(K^{(m)}) \geq \min\{d, s^{(m)}\}, \quad (2)$$

4
where $s^{(m)}$ is the positive solution of $\sum_{j=1}^{m} \rho_j^{s^{(m)}} = 1$. Using Theorem 4.13 of ref.[10], similar to the proof of Theorem 8 of ref.[11], we can obtain
\[
\dim_H(K^{(m)}) \geq \min\{d, s^{(m)}\}. \tag{3}
\]
Then from Lemma 8 of ref.[8], we have $\lim_{m \to \infty} s^{(m)} = s$, where $\sum_{j=1}^{\infty} \rho_j^s = 1$. Since for any m, $K^{(m)} \subset K$, we have $\dim_M(K) \geq \dim_M(K^{(m)})$ and $\dim_H(K) \geq \dim_H(K^{(m)})$. From open set condition, we have $s < d$, then from (2) and (3), we have
\[
\dim_M(K) \geq s^{(m)} \tag{4}
\]
and
\[
\dim_H(K) \geq s^{(m)}. \tag{5}
\]
Take limit from (4) and (5), we have $\dim_M(K) \geq s$ and $\dim_H(K) \geq s$.

The method used in proof of Theorem 1 can be used to estimate the Hausdorff (and Hausdorff-Besicovitch) dimension of the limit set of infinite non-similar contractive maps.

Corollary 1 Let $\{\varphi_j\}_{j=1}^{\infty}$ be infinite contractive maps with
\[|\varphi_j(x) - \varphi_j(y)| \leq c_j|x - y|, \quad x, y \in \mathbb{R}^d, \quad j = 1, 2, \ldots,\]
and satisfying open set condition, and denote E their contractive-invariant set. If the equation $\sum_{j=1}^{\infty} c_j^u = 1$ has finite solution u, then $\dim_H(E) \leq \dim_M(E) \leq u$.

Corollary 2 Let $\{\varphi_j\}_{j=1}^{\infty}$ be infinite contractive maps with
\[|\varphi_j(x) - \varphi_j(y)| \geq b_j|x - y|, \quad x, y \in \mathbb{R}^d, \quad j = 1, 2, \ldots,\]
and satisfying open set condition, and denote E their contractive-invariant set. If the equation $\sum_{j=1}^{\infty} b_j^l = 1$ has finite solution l, then $\dim_M(E) \geq \dim_H(E) \geq \min\{d, l\}$.

Proof. Since $\{\varphi_j\}$ are non-similar maps, we can not obtain $l^{(m)} \leq d$ from open set condition, where $l^{(m)}$ satisfies $\sum_{j=1}^{m} b_j^{l^{(m)}} = 1$. then similar to proof of Theorem 1, this conclusion holds.

3 Mean quadratic variations of infinite self-similar measures.

We define
\[H(r) = \frac{1}{r^{d-\beta}} \int_{|x| \leq r} |F(x)|^2dx,\]
where $F(x)$ is the Fourier transform of μ.

If μ is a Borel measure on \mathbb{R}^d, for every μ-measurable function f, we use μ_f to denote the measure $\mu_f(E) = \int_E f d\mu$ for any Borel subset E.

5
Definition 2. If in addition to the definition of open set condition, the sets $S_j(O)$ are mutually disjoint and O intersects K, we call $\{S_j\}_{j \in \mathbb{N}}$ satisfy strong open set condition.

We assume $\{S_j\}_{j=1}^\infty$ satisfy strong open set condition. Let d_{jk} denote the distance between $S_j(O)$ and $S_k(O)$ which is positive for $j \neq k$ by strong open set condition. We assume

$$\sum_{j \neq k} P_jP_kd_{jk}^{-\beta} < \infty. \tag{6}$$

Denote $q(\lambda) = \sum_{\rho_j \leq \lambda} P_j^2 \rho_j^{-\beta}$, we assume

$$q(\varepsilon \lambda) \leq \delta q(\lambda) \tag{7}$$

for some $0 < \varepsilon < 1$ and $0 < \delta < 1$.

Under the conditions (6) and (7), R.S. Strichartz [5] (P357-P358) obtained the asymptotic property (as $r \to +\infty$) of the function $H(r)$ and conclusion (*) for infinite self-similar measures.

We use $J = (j_1, j_2, \ldots, j_k)$ to denote the multi-index, $|J| = k$ its length, and Λ the set of all such multi-indices, where $j_i \in \mathbb{N}, \ i = 1, \ldots, k$ and $k \in \mathbb{N}$. We set

$$P_J = P_{j_1}P_{j_2}\cdots P_{j_k}, \quad \rho_J = \rho_{j_1}\cdots \rho_{j_k}, \quad E_J = E_{j_1j_2\cdots j_k}$$

For any $0 < t < 1$, we denote

$$\Lambda(t) = \{J \in \Lambda : \rho_J = \sup \rho_{J'}, \ \rho_{J'} < t\},$$

and for fixed parameter ε (given in condition (7)), we denote

$$\Lambda_1(t) = \{J \in \Lambda(t) : \rho_J \geq \varepsilon t\}.$$

Then we have

Theorem 2 Let μ be infinite self-similar measure, we assume that the condition (7) holds, then $V_\beta(t; \mu)$ is bounded below by a positive constant on $0 < t \leq 1$.

Proof. Since $\sum_{j=1}^\infty P_j^2 \rho_j^{-\beta} = 1$, then $\sum_{J \in \Lambda(t)} P_J^2 \rho_J^{-\beta} = 1$. When $J \in \Lambda_1(t)$, we have $\varepsilon t \leq \rho_J < t$. Hence

$$t^{-\beta} < \rho_J^{-\beta} \leq (\varepsilon t)^{-\beta}.$$

From the condition (7) and similar to ref.[5](P358), we can prove

$$\sum_{J \in \Lambda_1(t)} P_J^2 \rho_J^{-\beta} \geq (\delta^{-1} - 1) \sum_{J \in \Lambda(t)} P_J^2 \rho_J^{-\beta}.$$

Hence

$$\begin{align*}
(\delta^{-1} - 1) &= (\delta^{-1} - 1) \sum_{J \in \Lambda(t)} P_J^2 \rho_J^{-\beta} \leq \sum_{J \in \Lambda_1(t)} P_J^2 \rho_J^{-\beta} \\
&\leq \sum_{J \in \Lambda_1(t)} P_J^2 (\varepsilon t)^{-\beta} \leq \sum_{J \in \Lambda(t)} P_J^2 (\varepsilon t)^{-\beta},
\end{align*}$$
hence
\[\frac{1}{t^\beta} \sum_{J \in \Lambda(t)} P_j^2 \geq (\delta^{-1} - 1)\varepsilon^\beta. \]

Without loss of generality we assume \(|E_0| = 1\). We denote \(\omega_d\) the Lebesgue measure. Note that \(\mu\) is supported by \(\cup \{E_J : J \in \Lambda(t)\}\) and \(\mu(E_J) = P_J\). Hence
\[
V_\beta(t; \mu) = \frac{1}{t^{d+\beta}} \int \int \chi_{B_t(x)}(\xi) \chi_{B_t(x)}(\eta) d\mu(\xi) d\mu(\eta) dx
\]
\[= \frac{1}{t^{d+\beta}} \int \int \omega_d(B_t(\xi) \cap B_t(\eta)) d\mu(\xi) d\mu(\eta)
\]
\[\geq \frac{1}{t^{d+\beta}} \sum_{J \in \Lambda(t)} \int_{\xi, \eta \in E_J} \omega_d(B_t(\xi) \cap B_t(\eta)) d\mu(\xi) d\mu(\eta). \]

Since \(|E_J| = \rho_J \leq t\), hence \(B_t(\xi) \cap B_t(\eta)\) contains a ball of radius \(t/2\) whenever \(\xi, \eta \in E_J\). It follows that
\[
V_\beta(t; \mu) \geq \frac{c}{t^\beta} \sum_{J \in \Lambda(t)} \int_{\xi, \eta \in E_J} d\mu(\xi) d\mu(\eta)
\]
\[\geq \frac{c}{t^\beta} \sum_{J \in \Lambda(t)} P_j^2 \geq c(\delta^{-1} - 1)\varepsilon^\beta, \]

where \(c(\delta^{-1} - 1)\varepsilon^\beta\) is a positive constant. #

From the asymptotic property of \(H(r)\) of infinite self-similar measure ([5]), Theorem 4.10 and Corollary 4.12 of [2] and our Theorem 2, we have

Theorem 3 Let \(\mu\) be infinite self-similar measure. Assume conditions (6) and (7) hold, then
\[
\lim_{t \rightarrow 0} (V_\beta(t; \mu) - P(t)) = 0
\]
for some \(P > 0\) such that the following holds.

(i) If \(\{ - \ln \rho_j : j \in \mathbb{N}\}\) is non-arithmetic, then \(P(t) = c'\) for some constant \(c'\).

(ii) Otherwise, let \((\ln \rho)\mathbb{Z}, \rho > 1\) be the lattice generated by \(\{ - \ln \rho_j : j \in \mathbb{N}\}\), then \(P(\rho t) = P(t)\).

From the conclusion (*) of infinite self-similar measure ([5]), Theorem 4.10 and Corollary 4.12 of [2], if the equation \(\sum_{j=1}^{\infty} \rho_j^s = 1\) has finite solution \(s\), then

Theorem 4 Let \(\mu\) be infinite self-similar measure with natural weights \(P_j = \rho_j^\beta\), where \(\beta = s\) is the finite solution of equation \(\sum_{j=1}^{\infty} \rho_j^s = 1\), we assume conditions (6) and (7) holds, then for any \(f \in L^2(d\mu)\) we have
\[
\lim_{t \rightarrow 0} \frac{1}{t^{d+\beta}} \int |\mu_f(B_t(x))|^2 dx - P(t) \int |f|^2 d\mu = 0,
\]
where \(P\) defined in Theorem 3.
References

[1] J.E.Hutchinson, Fractals and Self-similarity, *Indiana University Math.Journal*, 30(5) (1981), 713-747.

[2] Ka-sing Lau and Jian-rong Wang, Mean Quadratic Variations and Fourier Asymptotics of Self-similar Measures, *Monatshefte Fur Mathematik*, 115 (1993), 99-132.

[3] R.S.Strichartz, Fourier asymptotics of fractal measures, *J.Functional Anal.* 89 (1990), 154-187.

[4] R.S.Strichartz, Self-similar measures and their Fourier transforms I, *Indiana University Math.Journal*, 39 (1990), 797-817.

[5] R.S.Strichartz, Self-similar measures and their Fourier transforms II, *Trans. Amer. Math. Soc.* 39 (1990), 797-817.

[6] R.S.Strichartz, Self-similar measures and their Fourier transforms III, *Indiana University Math. Journal*, 42 (1993), 367-410.

[7] R.S.Strichartz, Self-similarity in harmonic analysis, *J.Fourier Anal. and Appli.* 1 (1994), 1-37.

[8] R.H.Riedi and B.B.Mandelbrot, Multifractal formalism for infinite multinomial measures, *Adv. in Appli.Math.* 16 (1995), 132-150.

[9] Hurewitz & Wallman, Dimension theory, Princeton University Press, 1948

[10] K.Falconer, Fractal Geometry — Mathematical Functions and Applications, John wiley & sons Ltd, 1990.

[11] M.F.Barnsley and S.Demko, Iterated function systems and the global construction of fractals, *Proc.R.Soc.Lond.A.* 399 (1985), 243-275.

[12] K.Falconer, The Geometry of Fractal Sets, Cambridge Univ.Press.London, 1985.

[13] Fu-yao Ren, Zu-guo Yu and Feng Su, Fractional integral associated to self-similar set or generalized self-similar set and its Physical interpretation, *Physics Letters A*, 219 (1996), 59-68.

[14] Patrik Billingsley, Probability and Measure (2nd), John wiley & sons New York Chichester Brisbane Toronto Singapore, 1985.

[15] Zhi-ying Wen, Fractal Geometry and its some proceedings recently (in Chinese), Lecture note in Nanjing University, 1994.