A Fast Synchronization Clustering Algorithm

Xinquan Chen1, 2

1Web Science Center, University of Electronic Science & Technology of China, China
2School of Computer Science & Engineering, Chongqing Three Gorges University, China
chenxqscut@126.com

Abstract: This paper presents a Fast Synchronization Clustering algorithm (FSynC), which is an improved version of SynC algorithm. In order to decrease the time complexity of the original SynC algorithm, we combine grid cell partitioning method and Red-Black tree to construct the near neighbor point set of every point. By simulated experiments of some artificial data sets and several real data sets, we observe that FSynC algorithm can often get less time than SynC algorithm for many kinds of data sets. At last, it gives some research expectations to popularize this algorithm.

Keywords: near neighbor points; SynC algorithm; grid cell partitioning; Red-Black tree; clustering

1. Introduction

Clustering is an unsupervised learning method that tries to find some obvious distributions and patterns in unlabeled data sets by maximizing the similarity of the objects in a common cluster and minimizing the similarity of the objects in different clusters.

The traditional clustering algorithms are usually categorized into partitioning methods, hierarchical methods, density-based methods, grid-based methods, and model-based methods.

This paper researchs an improved technique of SynC algorithm, which is a famous synchronization clustering algorithm presented in [1]. The major contributions of this paper can be summarized as follows:

(1) It presents a Fast Synchronization Clustering algorithm (FSynC), which is an improved version of SynC algorithm, by combining grid cell partitioning method and Red-Black tree in the process of constructing the near neighbor point set of every point.

(2) It presents another cluster order parameter (named as t step average length of edges) to characterize the degree of local synchronization.

(3) It validates the improved effect of FSynC algorithm in time cost by the
simulated experiments of several different kinds of data sets.

The remainder of this paper is organized as follows. Section 2 lists some related papers. Section 3 gives some basic concepts. Section 4 introduces FSynC algorithm. Section 5 validates FSynC algorithm by some simulated experiments. Conclusions and future works are presented in Section 6.

2. Related Work

This paper is built on two papers [1, 2]. Chen [2] presents an efficient graph-based clustering method by using the idea of near neighbors and the principle that the global distribution can be approximately represented by many conjoint local distributions. In [2], an efficient method is presented to construct \(\delta \) near neighbor point set by using some index structures and effective methods.

Böhm et al. [1] presents a novel clustering approach, SynC algorithm [1], inspired the synchronization principle. SynC algorithm can find the intrinsic structure of the data set without any distribution assumptions and handle outliers by dynamic synchronization. In order to implement automatic clustering, those natural clusters and parameters setting can be discovered by using the Minimum Description Length principle (MDL) [3].

3. Some Basic Concepts

Suppose there is a data set \(S = \{X_1, X_2, \ldots, X_n\} \) in an \(d \)-dimensional Euclidean space. Naturally, we can use Euclidean metric as our dissimilarity measure. In order to describe our algorithm clearly, some concepts are presented first.

Definition 1 [2]. The \(\delta \) near neighbor point set \(\delta(P) \) of point \(P \) is defined as

\[
\delta(P) = \{X | \text{dis}(X, P) \leq \delta, X \in S\}, \tag{1}
\]

where \(\text{dis}(X, P) \) is the dissimilarity measure between point \(X \) and point \(P \) in the data set \(S \). \(\delta \) is a predefined threshold parameter.

Definition 2 [1]. The extensive Kuramoto model for clustering is defined as

Point \(X = (x_1, x_2, \ldots, x_d) \) is a vector in \(d \)-dimensional Euclidean space. If each point \(X \) is regarded as a phase oscillator according to Eq.(1) of [1], with an interaction in \(\delta \) near neighbor point set \(\delta(X) \), then the dynamics of the \(k \) dimension \(x_k \) \((k = 1, 2, \ldots, d)\) of the point \(X \) over time is described by:

\[
x_k(t+1) = x_k(t) + \frac{1}{|\delta(X(t))|} \sum_{y \in \delta(X(t))} \sin(y_k(t) - x_k(t)), \tag{2}
\]

where \(X(t = 0) = (x_1(0), x_2(0), \ldots, x_d(0)) \) represents the original phase of point \(X \), and
$x_k(t+1)$ describes the renewal phase value in k-th dimension of point X at the t step evolution.

Definition 3. The t-step δ near neighbor undirected graph $G_\delta(t)$ of the data set $S = \{X_1, X_2, \ldots, X_n\}$ is defined as

$$G_\delta(t) = (V(t), E(t)),$$

where $V(t = 0) = S = \{X_1, X_2, \ldots, X_n\}$ is the original vertex set, $E(t = 0) = \{(X_i, X_j) \mid X_j \in \delta(X_i), X_i \in V\}$ is the original edge set. $V(t) = \{X_1(t), X_2(t), \ldots, X_n(t)\}$ is the t-step vertex set of S, $E(t) = \{(X_i(t), X_j(t)) \mid X_j(t) \in \delta(X_i(t)), X_i(t) \in V(t)\}$ is the t-step edge set, and the weight-computing equation of edge (X_i, X_j) is $weight(X_i, X_j) = dis(X_i, X_j)$.

Definition 4. The t step average length of edges, $AveLen(t)$, in δ near neighbor undirected graph $G_\delta(t)$ is defined as

$$AveLen(t) = \frac{1}{|E(t)|} \sum_{e \in E(t)} |e|,$$

where $E(t)$ is the t step edge set, and $|e|$ is the length (or weight) of edge e. The average length of edges in $G_\delta(t)$ will decreases to its limit zero, $AveLen(t) \to 0$, as more δ near neighbor points synchronize together with time evolution. This concept is developed independently, although we find that it is equivalent with the cluster order parameter [1] later.

Definition 5 [1]. The cluster order parameter r_c characterizing the degree of local synchronization is defined as:

$$r_c = \frac{1}{n} \sum_{i=1}^{n} \sum_{Y \in \delta(X_i)} e^{-dis(X,Y)},$$

The value of r_c increases to its limit 1 as more δ near neighbor points synchronize together with time evolution.

Definition 6 [2]. The Grid Cell is defined as follows:

Grid cells can be obtained after partitioned the multidimensional ordered-attribute space by using a multidimensional grid partition method.

The data structure of grid cell g can be defined as:

$$DS(g) = (\text{Grid Label}, \text{Grid Position}, \text{Grid Range}, \text{Point Number}, \text{Points Set}).$$

In equation (6),

Grid Label is the key label of the grid cell.
Grid_Position is the center position of the grid cell. It is a d-dimensional vector expressed by \(P = (p_1, p_2, ..., p_d) \).

Grid_Range records the region of the grid cell. It is a d-dimensional interval vector expressed by:

\[
R = ([p_1 - r_1/2, p_1 + r_1/2], ..., [p_d - r_d/2, p_d + r_d/2]),
\]

(7)

where \(r_i \) (\(i = 1, 2, ..., d \)) is the interval length in the \(i \)-th dimension of the grid cell.

Point_Number records the number of points of the grid cell.

Points_Set records the labels of points of the grid cell. In FSynC algorithm, we use a Red-Black tree to records the labels of points of the grid cell to obtain efficient inserting and deleting operations.

4. A Fast Version of Synchronization Clustering Algorithm

In order to implement a fast version of SynC algorithm, first we partition the data space of the data set \(S = \{X_1, X_2, ..., X_n\} \) by using a kind of grid partitioning method. Then construct an effective index of all grid cells and compute \(\delta \) near neighbor grid cell set of each grid cell. In each synchronization step of dynamical clustering, there are insert and delete operations of some data points. These data points disengage their original grid cells and enter new grid cells because of their synchronization moving. If each grid cell uses a Red-Black tree to store its data points in each synchronization step, then constructing the near neighbor point set of every point will became more quick when the number of data points is enough large.

Although we use the Euclidean metric as our dissimilarity measure in this paper, the algorithm is by no means restricted to this measure and this data space. If we can construct a proper dissimilarity measure in a hybrid-attribute space, then the algorithm can also be used.

4.1 The Description of FSynC Algorithm

Algorithm Name: Fast Synchronization Clustering algorithm (FSynC)

Input: data set \(S = \{X_1, X_2, ..., X_n\} \), interval length vector of grid cell \(\text{Interval} = (r_1, r_2, ..., r_d) \), dissimilarity measure \(d(\cdot, \cdot) \), parameters \(\delta \).

Output: The final convergent result \(S(T) = \{X_1(T), X_2(T), ..., X_n(T)\} \) of the original data set \(S \).

Procedure:

Step1. Partition the data space of the data set \(S = \{X_1, X_2, ..., X_n\} \) by using a multidimensional grid partitioning method basing on the interval length vector of grid
cell \(\text{Interval} = (r_1, r_2, \ldots, r_d) \). Suppose we obtain \(N \) grid cells. Usually, multidimensional index tree or multidimensional array can be used to as an index of the \(N \) grid cells.

Step2. Constructing \(\delta \) near neighbor grid cell set for each grid cell. The \(N \) \(\delta \) near neighbor grid cell sets can be used to construct \(n \) \(\delta \) near neighbor point sets with less time cost in the next repeat synchronization clustering procedure. The details of Step1 and Step2 are described in [2].

Step3. When the dynamical clustering does not reach its convergent result, repeat the synchronization clustering procedure listed in Figure 1.

Figure 1. The repeat synchronization clustering procedure in FSynC algorithm

Step4. Finally we get a convergent result \(S(T) = \{X_1(T), X_2(T), \ldots, X_n(T)\} \), where \(T \) is the times of the while circulation in Figure 1. The final convergent set \(S(T) \) reflects the natural clusters or isolate points of the data set \(S \).

4.2 Some basic knowledge of FSynC Algorithm

\textbf{Lemma 1}. Suppose a function \(f(x_1, x_2, \ldots, x_m) = x_1^{x_{i1}} \cdot x_2^{x_{i2}} \cdot \ldots \cdot x_m^{x_{im}} \), subject to \(x_1 \)
+ x_2 + \ldots + x_m = n. Then its maximum is \((n/m)^m \) when \(x_j = (n/m), j = 1, 2, \ldots, m \).

Proof: According to Lagrange method, we can prove this lemma easily. We first set

\[
L(x_1, x_2, \ldots, x_m, \lambda) = x_1^{x_1} \cdot x_2^{x_2} \cdots x_m^{x_m} + \lambda (x_1 + x_2 + \ldots + x_m - n).
\]

Because

\[
\frac{\partial L}{\partial x_1} = (1 + \ln x_1) \cdot x_1^{x_1} \cdot x_2^{x_2} \cdots x_m^{x_m} + \lambda = 0,
\]

\[
\frac{\partial L}{\partial x_2} = (1 + \ln x_2) \cdot x_1^{x_1} \cdot x_2^{x_2} \cdots x_m^{x_m} + \lambda = 0,
\]

\[
\ldots
\]

\[
\frac{\partial L}{\partial x_m} = (1 + \ln x_m) \cdot x_1^{x_1} \cdot x_2^{x_2} \cdots x_m^{x_m} + \lambda = 0,
\]

\[x_1 + x_2 + \ldots + x_m = n.\]

So there are

\[(1 + \ln x_1) = (1 + \ln x_2) = \ldots = (1 + \ln x_m),\]

and \(x_1 + x_2 + \ldots + x_m = n.\)

At last, we get

\[x_j = (n/m), j = 1, 2, \ldots, m.\]

At this time, the maximum is \((n/m)^m\).

Theorem 1. Suppose there are \(N\) grid cells after partitioned the \(d\)-dimensional ordered-attribute space by using a multidimensional grid partition method. If the data set \(S = \{X_1, X_2, \ldots, X_n\}\) is indexed initially by \(m\) grid cells and \(m\) corresponding Red-Black trees, then constructing the initial \(m\) Red-Black trees needs

\[\text{Time} = O(n \ast \log(n) + m)\]

and \(\text{Space} = O(n + m).\)

Proof: At first, the data set \(S = \{X_1, X_2, \ldots, X_n\}\) is located into \(m\) grid cells, which needs \(\text{Time} = O(n \ast d).\) Suppose \(n_i (n_i > 0)\) is the number of points in the \(i\)-th grid cell. In initial step of clustering, if \(n_i\) is larger than 1, all points in the \(i\)-th grid cell are inserted into the \(i\)-th Red-Black tree in turn, which needs \(\text{Time} = O(\log(n_i)) < O(n_i \ast \log(n_i))\). If \(n_i\) is equal to 1, the point in the \(i\)-th grid cell is inserted into the \(i\)-th Red-Black tree, which needs \(\text{Time} = O(1).\) Suppose the number of data points in the first \(m^* (m^* \leq m)\) grid cells is larger than 1, and the number of data points in the last \(m - m^*\) grid cells is equal to 1. For the \(m\) grid cells where the number of data points is larger than 0, because
\[n_1 \cdot \log(n_1) + n_2 \cdot \log(n_2) + \ldots + n_m \cdot \log(n_m) \leq (n - m + m^*) \cdot \log((n - m + m^*) / m^*) < n \cdot \log(n)\]

and

\[n_{(m^*+1)} + n_{(m^*+2)} + \ldots + n_m = m - m^* < m.\]

So constructing the initial \(m\) Red-Black trees for the data set \(S = \{X_1, X_2, \ldots, X_n\}\) needs Time = \(O(n \cdot \log(n) + m)\) and Space = \(O(n + m)\).

Theorem 2. Suppose there are \(N\) grid cells after partitioned the \(d\)-dimensional ordered-attribute space by using a multidimensional grid partition method. If the data set \(S = \{X_1, X_2, \ldots, X_n\}\) is indexed initially by \(m\) \((m \leq N)\) grid cells and \(m\) corresponding Red-Black trees, then the inserting and deleting operations in dynamical clustering need Time = \(O(n \cdot \log(n / m))\) and Space = \(O(n + N)\).

Proof: In dynamical clustering, usually, there are only part points will be deleted from their original grid cells and be inserted into new grid cells. A special case is that all points in the \(i\)-th grid cell are deleted from the \(i\)-th Red-Black tree and are inserted into the \(j\)-th Red-Black tree, which needs Time = \(O(n_i \cdot \log(n_i) + n_j \cdot \log(n_i + n_j))\) < \(O(n_i \cdot \log(n))\). So the inserting and deleting operations in dynamical clustering need Time = \(O(n \cdot \log(n))\) and Space = \(O(n + N)\).

4.3 Time complexity analysis of FSynC Algorithm

According to [1] and our analysis, the original SynC Algorithm [1] needs Time = \(O(Td n^2)\). Our FSynC algorithm uses a strategy of ”space exchanges time”.

In Step1, according to [2], we know that partitioning the data space and storing the basic information of all grid cells according to Definition 6 need Time = \(O(nd + Nd)\) and Space = \(O(nd + Nd)\). According to Theorem 1, assigning all data points to their corresponding grid cells needs Time = \(O(nd + n \log(n) + m)\) and Space = \(O(nd + m)\).

In Step2, if we use a simple method, then constructing \(\delta\) near neighbor grid cell sets for every grid cell needs Time = \(O(dN^2)\) and Space = \(O(Nd)\). If we use the coordinates-locating method [2], then constructing \(\delta\) near neighbor grid cell sets for every grid cell needs Time = \(O(Nd + N \cdot C^d)\) and Space = \(O(Nd)\), where \(C\) is related to \(\delta\) and \(\text{Interval} = (r_1, r_2, \ldots, r_d)\). If \(\delta \leq r_i (i = 1, 2, \ldots, d)\), then \(C = 3\). And if \(r_i < \delta \leq 2r_i (i = 1, 2, \ldots, d)\), then \(C = 5\).

In Step3, locating the corresponding grid cell for \(X_i(t)\) needs Time = \(O(d)\) [2]. It needs Time = \(O(\log(\text{number of points in the grid cell of } X_i(t)))\) that \(X_i(t)\) is inserted into the Red-Black tree of its grid cell. It also needs Time = \(O(\log(\text{number of points in})\)
the grid cell of $X_i(t))$ that $X_i(t)$ is deleted from the Red-Black tree of its original grid cell. According to Theorem 2, we know that Step3 needs $Time = O(Tn \times (d + \log(n / m)))$ and $Space = O(n + N)$, where T is the times of the while circulation in Figure 1 and m is the number of grid cells where the number of data points is larger than 0.

Step4 needs $Time = O(n)$ and $Space = O(n)$.

4.4 Setting parameters in FSynC Algorithm

Parameter δ will affect the results of clusters. In [1], parameter δ is optimized by the MDL principle [3]. In [4], two other methods can also be used to estimate parameter δ.

Parameter interval length vector of grid cell $Interval = (r_1, r_2, ..., r_d)$ will affect the time cost of FSynC algorithm. We know that the whole time cost of FSynC algorithm is $Time = O(nd + n\log(n) + N + m + \min\{dN^2, N * C^d\} + Tn * (d + \log(n / m)))$. Here, N is determined by $Interval = (r_1, r_2, ..., r_d)$. In [2], the relation between $Interval = (r_1, r_2, ..., r_d)$ and N is discussed in detail.

5. Simulated Experiments

5.1 Experimental Design

Our experiments are finished in a personal computer (Capability Parameters: Pentium(R) Dual CPU T3200 2.0GHz, 2G Memory). Experimental programs are developed using Visual C++6.0 under Windows XP.

To verify the improvements in time complexity of this algorithm, there will be some experiments of some artificial data sets, two UCI data sets, and two bmp pictures in the next subsections.

Four kinds of artificial data sets (DS1 – DS4) are produced in a 2-D region $[0, 600] \times [0, 600]$ by a program. Four kinds of artificial data sets (DS5 – DS8) are produced in a range $[0, 600]$ in each dimension by a similar program. Table 1 is the description of the eight kinds of artificial data sets.
Table 1. The description of eight kinds of artificial data sets

Data Sets (DS)	Number of Clusters (NC)	With Noise	Cluster Semidiameter (CS)	Dimension (d)
DS1	5	yes	40	2
DS2	5	no	50	2
DS3	9	yes	30	2
DS4	9	no	40	2
DS5	5	yes	40	1, 2, …, 8
DS6	5	no	40	1, 2, …, 8
DS7	9	yes	40	1, 2, …, 8
DS8	9	no	40	1, 2, …, 8

3D_spatial_network and Tamilnadu Electricity Board Hourly Readings are two UCI data sets [5] used in our experiments.

Two bmp pictures are obtained from Internet.

In SynC algorithm and FSynC algorithm, the times of synchronization clustering in the while circulation of SynC and FSynC algorithms is set as 50 in our simulated experiments.

Comparative results of the two algorithms are given by four figures (Figure 2 - Figure 5) and two table (Table 2 - Table 3), and performance of algorithms is measured by time cost (second).

In subsection 5.2, FSynC algorithm will be compared with SynC algorithm in time cost using some artificial data sets.

In subsection 5.3, FSynC algorithm will be compared with SynC algorithm in time cost using two UCI data sets.

In subsection 5.4, FSynC algorithm will be compared with SynC algorithm in time cost using two bmp pictures.

Since δ near neighbor point of point P locates in the grid cell of point P or its near grid cells, so ususlly less time is needed to construct δ near neighbor point sets of all points if we set $r_i (i = 1, 2, ..., d) \geq \delta$. The detailed discussion on how to construct grid cells is described in [2].

In the experiment, parameter $r_i (i = 1, 2, ..., d)$ is the interval length in the i-th dimension of grid cell [2], and δ is the threshold parameter in Definition 1. How to select a proper parameter δ for SynC algorithm is discussed detailly in [1]. Selecting a proper parameter δ, FSynC algorithm can use the same method as SynC algorithm. In FSynC algorithm, different parameter $r_i (i = 1, 2, ..., d)$ for different dimensions will result in different number of grid cells and different time cost.

5.2 Compare with SynC Algorithm Using Some Artificial Data Sets (DS1 – DS8)
Figure 2 and Figure 3 are the experimental results of four artificial data sets (DS1 – DS4) in time cost between FSynC algorithm and SynC algorithm. Table 2 and Table 3 are the experimental results of four artificial data sets (DS5 – DS8) in time cost between FSynC algorithm and SynC algorithm.

(a). DS1

(b). DS2

(c). DS3
Figure 2. Comparison of time cost between FSynC algorithm and SynC algorithm by using four kinds of artificial data sets

(d). DS4

$(\delta = 18; \text{In FSync, } r_i (i = 1, 2) = 20)$

(a). DS1 (In FSync, $N = 648$)

(b). DS2 (In FSync, $N = 420$)
Figure 3. Comparison of time cost between FSynC algorithm and SynC algorithm by using four kinds of artificial data sets

(c). DS3 (In FSync, $N = 812$)

(d). DS4 (In FSync, $N = 783$)

($n = 10000$; In FSync, $r_i (i = 1, 2) = 20$)
Table 2. Comparison of time cost between FSynC algorithm and SynC algorithm by using four kinds of data sets

(a) DS5

d	ST of DS5 (second)	ST of DS5 (second)						
	(n = 6000; δ = 18)	(n = 12000; δ = 18)						
SynC	FSynC	SynC	FSynC					
ST	ST	N	r₁	ST	ST	N	r₁	
1	218	236	525	1	882	926	525	1
	261	175	3	1012	175	3		
	290	53	10	1165	53	10		
	310	27	20	1257	27	20		
2	199	198	2688	10	800	798	3240	10
	218	672	20	894	810	20		
3	313	283	6498	30	1250	1113	4864	30
4	319	316	15840	50	1280	1142	10560	50
	282	1080	100	1138	720	100		
5	401	298	9072	100	1602	1137	7560	100
6	352	324	12500	120	1414	1182	15625	120
	397	4096	150	1528	4096	150		
7	411	374	16384	150	1643	1309	16384	150
	598	2187	200	2426	2187	200		
8	449	1694	65536	150	1804	1724	32768	150
	747	6561	200	3156	4374	200		

(b) DS6

d	ST of DS6 (second)	ST of DS6 (second)						
	(n = 6000; δ = 18)	(n = 12000; δ = 18)						
SynC	FSynC	SynC	FSynC					
ST	ST	N	r₁	ST	ST	N	r₁	
1	221	233	525	1	881	921	525	1
	261	175	3	1007	175	3		
	289	53	10	1166	53	10		
	311	27	20	1258	27	20		
2	200	184	6206	5	800	712	6206	5
	199	1566	10	800	1566	10		
	220	405	20	891	405	20		
3	313	279	4320	30	1254	1124	4320	30
4	325	288	3168	50	1332	1144	3168	50
	292	216	100	1149	216	100		
5	401	294	7560	100	1605	1142	7560	100
6	352	393	21600	100	1417	1242	21600	100
	333	6000	120	1322	6000	120		
	398	3072	150	1580	3072	150		
7	412	407	19200	140	1646	1327	19200	140
	456	12288	150	1697	12288	150		
	597	1458	200	2426	1458	200		
8	499	16200	130	1797	1417	16200	130	
	495	3072	150	1946	3072	150		
(c) DS7

d	ST of DS7 (second) $(n = 6000; \delta = 18)$	ST of DS7 (second) $(n = 12000; \delta = 18)$				
	$SynC$	$FSynC$	$SynC$	$FSynC$	$SynC$	$FSynC$
1	212	180	840	717	58	10
	197	30	777	29	20	
2	193	123	771	487	3480	10
	140	870	548	870	20	
3	306	163	1226	631	8360	30
	316	215	1282	677	18876	50
4	213	1512	843	1512	100	
5	399	185	1594	671	8820	100
6	351	226	1409	746	8000	150
7	410	262	1642	1004	6912	200
8	450	354	1799	1338	8748	200

(d) DS8

d	ST of DS8 (second) $(n = 6000; \delta = 18)$	ST of DS8 (second) $(n = 12000; \delta = 18)$				
	$SynC$	$FSynC$	$SynC$	$FSynC$	$SynC$	$FSynC$
1	211	181	850	718	58	10
	197	29	779	29	20	
2	193	125	771	482	3078	10
	140	783	559	783	20	
3	307	164	1226	629	7128	30
	316	6552	1286	737	6552	50
4	228	504	935	504	100	
5	398	189	1592	738	7560	100
6	351	217	1408	814	8000	150
7	411	284	1640	1107	3888	200
8	449	332	1798	1283	6561	200
Table 3. Comparison of time cost between FSynC algorithm and SynC algorithm by using four kinds of data sets

(a) DS5 ($d = 1$)

δ	ST of DS5 (second) ($n = 6000$)	ST of DS5 (second) ($n = 12000$)						
	SynC	FSynC	SynC	FSynC				
	ST	ST	N	r_i	ST	ST	N	r_i
2	242	58	5245	0.1	968	205	5245	0.1
	56	525	1		206	525	1	
	363	27	20	1438	27	20		
6	248	109	5245	0.1	980	384	5245	0.1
	133	525	1		471	525	1	
	355	27	20	1425	27	20		
10	254	192	5245	0.1	1015	726	5245	0.1
	176	525	1		692	525	1	
	367	27	20	1458	27	20		
14	259	276	5245	0.1	1041	1081	5245	0.1
	254	525	1		1039	525	1	
	367	27	20	1486	27	20		
18	262	2901	5245	0.1	1053	1125	5245	0.1
	208	525	1		1111	525	1	
	369	27	20	1501	27	20		

(b) DS6 ($d = 1$)

δ	ST of DS6 (second) ($n = 6000$)	ST of DS6 (second) ($n = 12000$)						
	SynC	FSynC	SynC	FSynC				
	ST	ST	N	r_i	ST	ST	N	r_i
2	246	58	5245	0.1	970	203	5245	0.1
	57	525	1		204	525	1	
	365	27	20	1433	27	20		
6	246	105	5245	0.1	977	349	5245	0.1
	134	525	1		477	525	1	
	352	27	20	1405	27	20		
10	256	186	5245	0.1	1018	728	5245	0.1
	172	525	1		694	525	1	
	367	27	20	1460	27	20		
14	265	274	5245	0.1	1036	1085	5245	0.1
	254	525	1		1039	525	1	
	368	27	20	1489	27	20		
18	265	288	5245	0.1	1042	1118	5245	0.1
	276	525	1		1094	525	1	
	370	27	20	1490	27	20		
\[\delta \]

ST of DS6 (second)	ST of DS6 (second)							
(\(n = 6000\))	(\(n = 12000\))							
\textit{SynC}	\textit{FSynC}	\textit{SynC}	\textit{FSynC}					
\textit{ST}	\textit{ST}	\(N\)	\(r_i\)	\textit{ST}	\textit{ST}	\(N\)	\(r_i\)	
2	531	570	24300	120	2126	1653	24300	120
	937	864	200		3828	864	200	
6	530	570	24300	120	2131	1652	24300	120
	936	864	200		3828	864	200	
10	531	570	24300	120	2126	1653	24300	120
	937	864	200		3821	864	200	
14	530	570	24300	120	2124	1653	24300	120
	932	864	200		3821	864	200	
18	531	571	24300	120	2134	1672	24300	120
	929	864	200		3820	864	200	

5.3 Compare with \textit{SynC} Algorithm Using Two UCI Data Sets

Figure 4 is the experimental results of two UCI data sets in time cost between FSynC algorithm and SynC algorithm.

(a). 3D\textunderscore spatial\textunderscore network data set (\(d = 3\); In FSynC, \(N = 29791\))

(b). Tamilnadu Electricity Board Hourly Readings data set (\(d = 2\); In FSynC, \(N = 961\))

Figure 4. Comparison of time cost between FSynC algorithm and SynC algorithm by using two UCI data sets (all points are standard into a range \([0, 600]\) in each dimension) \((n = 10000\); In FSynC, \(r_i\) \((i = 1, 2, \ldots, d) = 20\))
5.4 Compare with SynC Algorithm by Clustering Pixel Points of Two Bmp Pictures in RGB Space

Figure 5 is the experimental results of two bmp pictures data sets in time cost between FSynC algorithm and SynC algorithm.

(a). Picture1 data set

(In FSynC, \(r_i (i = 1, 2, 3) = 16 \), \(N = 640 \) (original pixel points); \(r_i (i = 1, 2, 3) = 20 \) (all pixel points are standard into a range \([0, 600]\) in each dimension), \(N = 29791 \))

(b). Picture2 data set

(In FSynC, \(r_i (i = 1, 2, 3) = 16 \), \(N = 810 \) (original pixel points); \(r_i (i = 1, 2, 3) = 20 \) (all pixel points are standard into a range \([0, 600]\) in each dimension), \(N = 29791 \))

Figure 5. Comparison of time cost between FSynC algorithm and SynC algorithm by using two picture pixel data sets \((d = 3; n = 10000) \)

5.5 Analysis and Conclusions of Experimental Results

From the comparative experimental results of Figure 2, Figure 3, and Table 2, we observe that FSynC algorithm is faster than SynC algorithm for many cases. From the comparative experimental results of Table 3, we find that even for two cases (case1: \(d = 1 \) of Table 2 (a); case2: \(d = 1 \) of Table 2 (a)), FSynC algorithm can also get a less time cost by selecting another parameter \(r_i (i = 1, 2, \ldots, d) \) or parameter \(\delta \).

From the comparative results of Figure 4, we observe that FSynC algorithm is faster than SynC algorithm for the two UCI data sets.

From the comparative results of Figure 5, we observe that FSynC algorithm can
get a less time cost by selecting a proper parameter $r_i (i = 1, 2, 3)$.

FSynC algorithm is an improved clustering algorithm with faster clustering speed than SynC algorithm for many cases. The time cost of FSynC algorithm is sensitive to parameter $r_i (i = 1, 2, \ldots, d)$. Usually, if the data sets have obvious clusters, the number of grids is better near to or larger than the number of points. If the number of grids is too less, then perhaps FSynC algorithm can not obtain obvious improvement in time cost.

6. Conclusions

This paper presents an improved clustering algorithm, FSynC, which gets the same clustering results and can often obtain faster clustering speed for some kinds of data sets than SynC algorithm.

FSynC algorithm is also robust to outliers and can find obvious clusters with different shapes. The number of clusters does not have to be fixed before clustering. Usually, parameter δ has some valid interval that can be determined by using an exploring method listed in [4] or using the same method presented in [2]. In the process of constructing δ near neighbor point sets, the time cost of FSynC algorithm can often be decreased by combining grid cell partitioning method and Red-Black tree index structure.

The next work is to explore the relation between the time cost and the number of grids of this algorithm.

Reference

[1] Xinquan Chen. (2013). Clustering Based on a Near Neighbor Graph and a Grid Cell Graph. *Journal of Intelligent Information Systems*, 40(3): 529-554.

[2] Böhm C, Plant C, Shao J M, et al (2010). Clustering by synchronization. In: *Proceedings of ACM SIGKDD ’10*, Washington, USA, pp583–592.

[3] P. Grünwald (2005). A tutorial introduction to the minimum description length principle. *Advances in Minimum Description Length: Theory and Applications*.

[4] Xinquan Chen (2014). A New Clustering Algorithm Based on Near Neighbor Influence. Submitted to 2014 ICDM.

[5] A. Frank, and A. Asuncion (2010). *UCI Machine Learning Repository* [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.