Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Comparison between an in-house SARS-CoV-2 ELISpot and the T-Spot® Discovery SARS-CoV-2 for the assessment of T cell responses in prior SARS-CoV-2-infected individuals

Adaptive immune responses induced by SARS-CoV-2 vaccination or infection decrease over time and, especially neutralizing antibodies, are less effective against new SARS-CoV-2 variants of concern. [1–5] As immune protection is also determined by the cellular immunity, it is crucial to have T cell assays that can adequately assess SARS-CoV-2-specific T cell responses.

In our previous work, we assessed SARS-CoV-2 antigen-specific T cell responses after SARS-CoV-2 infection and vaccination using the T-Spot® Discovery SARS-CoV-2 kit from Oxford Immunotec. [6] Although the T-Spot® Discovery is a commercial kit that has been extensively used in clinical studies, this kit might not be economically feasible for all laboratories and adaptations to the assay are not possible, such as using different antigen peptide pools containing virus mutations. Therefore, we also developed an in-house SARS-CoV-2 enzyme-linked immunospot (ELISpot) assay. [7] In the current analysis, we compared the performances of our in-house SARS-CoV-2 ELISpot to the T-Spot® Discovery SARS-CoV-2.

Both assays detect SARS-CoV-2 antigen-specific interferon-gamma (IFN-γ)-secreting T cells, which include predominantly CD4+ T helper type 1 (Th1) cells and CD8+ cytotoxic T cells that are crucial for an antiviral immune response. [8–10] Also, peripheral blood mononuclear cells (PBMCs) are stimulated with overlapping peptide pools of SARS-CoV-2 spike subunit 1 (S1), nucleocapsid protein (N), and membrane protein (M) in these assays. The T-Spot® Discovery excludes S1, N, and M peptides that are homologous to endemic coronaviruses. [6] In contrast, our in-house ELISpot does not exclude sequences homologous to endemic coronaviruses. [7]

We determined T cell responses of 90 blood samples collected from 55 healthcare workers who tested SARS-CoV-2 positive 12 months before the first blood collection (Fig. 1). As described in our previous study, blood was collected either before (n = 32) or after (n = 58) receiving the first and second COVID-19 vaccination. [6] T cell responses were not statistically different between both assays after S1 and N stimulation but was significantly higher in the in-house ELISpot after M stimulation (P = 0.04). Furthermore, we found a strong association between S1 responses (r = 0.85) but only moderate associations of N and M responses between both assays (r = 0.43 and r = 0.56, respectively).

SARS-CoV-2 S1 is considered the most prominent target for achieving protective immunity and is thus solely integrated in most SARS-CoV-2 vaccines. [12, 13] Therefore, evaluating the T cell response against S1 is most valuable. S1 responses between both assays were strongly associated. Unlike S1, the N and M proteins of SARS-CoV-2 are highly homologous to proteins in endemic coronaviruses. [14, 15] The observed larger inter-assay differences in N and M responses might be attributable to considerable homologous sequences being removed from the T-Spot® Discovery N and M peptide pools, whereas for the in-house assay no homologous sequences were removed.

In conclusion, we showed that our in-house ELISpot assay was highly correlated with the commercially available T-Spot® Discovery for the assessment of T cell responses against SARS-CoV-2 S1. A great advantage of using an in-house ELISpot is the possibility to easily adapt the S1 peptide pools to more accurately assess specific T cell responses against current circulating viruses (e.g., Omicron (B.1.1.529) variant) and future SARS-CoV-2 variants of concern.
Fig. 1. Comparison between the in-house SARS-CoV-2 ELISpot and T-Spot® Discovery SARS-CoV-2. A total of 90 samples were included from our study cohort (n = 55) that tested SARS-CoV-2 positive 12 months before the first blood collection. The healthcare workers provided a blood sample once (n = 30), twice (n = 15), or thrice (n = 10), of which 32 samples were collected before and 58 samples were collected median 18 (IQR 14–69) days after receiving the first or second COVID-19 vaccination. PBMCs were stimulated for 16–20 h with SARS-CoV-2 antigens in both assays. (A) Total magnitude of IFN-γ responses to tested antigens of in-house ELISpot (red) and T-Spot® Discovery (blue). Datasets were compared with a Mann-Whitney U test. (B) Associations between antigen-specific responses assessed by Spearman’s rank correlation coefficient (r).

Funding

Franciscus Gasthuis and Vlietland, Rotterdam, the Netherlands

References

[1] Almendro-Vázquez Patricia, Laguna-Goya Rocio, Ruiz-Ruigomez Maria, Utrero-Rico Alberto, Laheza Antonio, Maestro de la Calle Guillermo, et al., Longitudinal dynamics of SARS-CoV-2-specific cellular and humoral immunity after natural infection or BNT162b2 vaccination, PLoS Pathog. 17 (12) (2021) 1–23, https://doi.org/10.1371/journal.ppat.1010211.

[2] Cele Sandile, Jackson Laurelle, Khoury David S, Khan Khadija, Khoury David, Moyo-Gwete Thandeka, et al., SARS-CoV-2 Omicron has extensive but incomplete escape of Pfizer BNT162b2 elicited neutralization and requires ACE2 for infection, MedRxiv (2021).

[3] Naranbhai Vivek, Nathan Anusha, Kaseke Clairey, Berrios Cristhian, Choi Shawn, A. Getz Matthew, et al., T cell reactivity to the SARS-CoV-2 Omicron variant is preserved in most but not all prior infected and vaccinated individuals, MedRxiv (2022).

[4] C. Jordan Stanley, Shin Bong-Ha, M. Gaduken Terry-Ann, Chu Maggie, Petrosyan Anna, N. Le Catherine, et al., T cell immune responses to SARS-CoV-2 and variants of concern (Alpha and Delta) in infected and vaccinated individuals, Cell Mol. Immunol. (2021) 1–3, https://doi.org/10.1038/s41423-021-00767-9.

[5] Planas Delphine, Veyer David, Baidalauik Artem, Staropoli Isabelle, Guivel-Benhassine Florence, Rajah Maaran Michael, et al., Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization, Nature 596 (2021) 276–280, https://doi.org/10.1038/s41586-021-03777-9.

[6] A. Mak Willem, G.M. Koelman Johannes, Keuren Frans van der Vliet Marijke, S. Y. Ong David, SARS-CoV-2 antibody and T cell responses one year after COVID-19 and the booster effect of vaccination: a prospective cohort study, J. Infect. 84 (2022) 171–178, https://doi.org/10.1016/j.jinf.2021.12.003.

[7] A. Mak Willem, G.M. Koelman Johannes, S.Y. Ong David, Development of an in-house SARS-CoV-2 interferon-gamma ELISpot and plate reader-free spot detection method, J. Virol. Methods 300 (114398) (2022) 1–6, https://doi.org/10.1016/j.jviromet.2021.114398.

[8] S.Y. Ong David, C. Fragkou Paraskevi, A. Schweitzer Valentijn, F. Chemaly Roy, D. Moschopoulos Charalampos, Shevaki Chrysanthi, How to interpret and use COVID-19 serology and immunology tests, Clin. Microbiol. Infect. 27 (7) (2021) 981–986, https://doi.org/10.1016/j.cmi.2021.05.001.

[9] A. Calarota Sandra, Baldanti Fausto, Enumeration and characterization of human memory t cells by enzyme-linked immunospot assays, Clin. Dev. Immunol. (2013) 1–8, https://doi.org/10.1155/2013/637649.

[10] Grifoni Alba, Weiskopf Daniela, I. Ramirez Sydney, Mateus Jose, M. Dan Jennifer, Morderbacher Carolyn Rydzynski, et al., Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals, Cell 181 (7) (2020) 1489–1501, https://doi.org/10.1016/j.cell.2020.05.015, e15.
[11] Schober Patrick, Christa Boer, Schwarte Lothar A. Correlation coefficients: appropriate use and interpretation, Anesth. Analg. 126 (5) (2018) 1763–1768, https://doi.org/10.1213/ANE.0000000000002864.

[12] Fiolet Thibault, Kherabi Youssa, MacDonald Conor-James, Ghosn Jade, Peiffer-Smadija Nathan, Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: a narrative review, Clin. Microbiol. Infect. 28 (2) (2021) 202–221, https://doi.org/10.1016/j.cmi.2021.10.005.

[13] Bertoletti Antonio, Tan Anthony T, Nina Le Bert, The T-cell response to SARS-CoV-2: kinetic and quantitative aspects and the case for their protective role, Oxford Open Immunol. 2 (1) (2021) 1–9, https://doi.org/10.1093/oxfimm/iqab006.

[14] Yang Mei, He Suhua, Chen Xiaoxue, Huang Zhaoxia, Zhou Ziliang, Zhou Zhechong, et al., Structural Insight Into the SARS-CoV-2 Nucleocapsid Protein C-Terminal Domain Reveals a Novel Recognition Mechanism for Viral Transcriptional Regulatory Sequences, Front. Chem. 8 (624765) (2021) 1–12, https://doi.org/10.3389/fchem.2020.624765.

[15] Kundu Rhiya, Narean Janakan Sam, Wang Lulu, Penn Joseph, Pillay Timesh, Fernandez Nieves Desqui, et al., Cross-reactive memory T cells associate with protection against SARS-CoV-2 infection in COVID-19 contacts, Nat. Commun. 13 (1) (2022) 1–8, https://doi.org/10.1038/s41467-021-27674-x.

Willem A. Mak^a, Johannes G.M. Koeleman^a, David S.Y. Ong^b,
^a Department of Medical Microbiology and Infection Control, Franciscus Gasthuis en Vlietland, Rotterdam, the Netherlands
^b Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands

* Corresponding author.
E-mail address: ashwinmak98@gmail.com (W.A. Mak).