Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Older Patients With Acute Decompensated Heart Failure Who Live Alone: An Analysis From the REHAB-HF Trial

Social isolation has greatly worsened owing to the COVID-19 pandemic and patients with heart failure (HF) who live alone experience poorer outcomes such as hospital readmission. However, drivers of poor outcomes in these patients and estimates about their physical and quality of life (QOL) impairments remain unknown. We sought to assess the prevalence of patients with acute decompensated HF (ADHF) enrolled in the REHAB-HF trial living alone, and hypothesized that these patients would have worse physical function, QOL, cognition, and depression, than patients living with someone else.

Methods

We assessed patients enrolled in the REHAB-HF Trial. Patients were 60 years or older with preserved or reduced ejection fraction hospitalized with ADHF. Additional inclusion criteria included independence with activities of daily living, attainment of clinical stability, ability to walk 4 or more meters with or without a device, planned home discharge, and sufficient support to comply with postdischarge exercise intervention. Patients provided written informed consent and the institutional review boards of the participating sites approved the study.

Physical function measures included the short physical performance battery, normal gait speed, 6-minute walk distance, handgrip strength, and frailty (Fried criteria). QOL was assessed using the Kansas City Cardiomyopathy Questionnaire, the Short Form-12, and EuroQol-5D-5L. Depression was assessed using the Geriatric Depression Scale. Cognitive function was assessed using the Montreal Cognitive Assessment.

Patients were categorized by patient self-reported data into those living alone vs those living with someone. Categorical variables were analyzed as frequencies (percentages) using the χ² test. Continuous variables were compared by t test and presented as mean ± standard deviation. Outcomes were analyzed using analysis of covariance, adjusting for sex.

Results

Of 202 patients, 67 (33.2%) lived alone. Of those who lived with someone, 56.3% lived with their spouse. Patients who lived alone had a mean age of 72.4 ± 7.8 years, 64% of whom were female, 52% were non-White and had a mean of 6.1 ± 5.5 comorbidities (Table 1). Patients living alone were more likely to be female, have higher N-terminal pro B-type natriuretic peptides, and more prevalent chronic kidney disease.

Patients living alone had severe impairments in physical function and QOL and more than one-half met the criteria for frailty (56%). Depression was very common in both groups. Cognitive dysfunction was present in 81% of those living alone. However, no differences in physical function, depression, cognitive dysfunction, or QOL were noted between patients who lived alone or those who lived with someone else after adjusting for sex.

Patients who lived with a spouse, compared with those who lived with someone else, were more likely to be male (68% vs 29%), White (63% vs 29%), and have a high school education or greater (91% vs 39%) (all P < .05). No differences in physical function or other clinical parameters were noted between patients who lived with their spouse compared with those who lived with someone other than their spouse.

Discussion

Our results show that, among a diverse population of older hospitalized patients with ADHF, one-third live by themselves. These patients, mostly women, had significant impairments in physical function, QOL, mood, and cognition, similar to patients living with others with more additional social support. These patients, therefore, represent a large proportion of patients with ADHF at high risk for adverse outcomes.

The prevalence of those living alone was higher in our population (33%) than the general older population (26%). Consistent with the age of this population, women were much more likely to live alone than men. Social isolation, recognized as a major risk factor for readmission, may contribute to women with HF being at greater risk than men for hospital readmission. The high prevalence of women living...
alone may need to be taken into account when designing postdischarge programs and strategies for patients with ADHF, particularly accounting for variable support that patients might have.

These findings are novel because, to our knowledge, living situation has not been reported for any HF population, let alone for older patients with ADHF. ADHF is the most common Medicare hospital discharge diagnosis, highlighting the potential impact of our findings. These data were collected before the COVID-19 pandemic, which likely magnified the adverse consequences of living alone.

Table 1. Characteristics of Older, Hospitalized Patients With Acute Decompensated Heart Failure Who Live Alone vs Those Not Living Alone

Characteristics	Living Alone (n = 67)	Not Living Alone (n = 135)	P Value
Age (years)	72.4 ± 7.8	71.9 ± 7.4	.63
Women	43 (64%)	66 (49%)	.040
Non-White	35 (52%)	65 (48%)	.96
Less than high school education	12 (18%)	25 (19%)	.92
Body mass index (kg/m²)	34.0 ± 9.0	32.8 ± 8.8	.36
Ejection fraction of ≥45%	30 (45%)	66 (49%)	.58
Duration of index hospitalization	5 (3–6)	5 (3–7)	.23
Patients w/hospitalizations within 6 months	26 (39%)	63 (47%)	.29
Patients w/HF hospitalizations within 6 months	17 (25%)	38 (28%)	.68
B-type natriuretic peptide (pg/mL) (n = 117)	1084 ± 1066	850 ± 901	.37
N-terminal brain natriuretic peptide (n = 77)	3595 ± 3474	7324 ± 12,186	.041

Comorbidities

- Diabetes mellitus: 36 (54%) vs 75 (56%) (P = .81)
- Hypertension: 59 (88%) vs 128 (95%) (P = .09)
- Hyperlipidemia: 45 (67%) vs 95 (70%) (P = .64)
- Atrial Fibrillation: 31 (46%) vs 62 (46%) (P = .96)
- Previous myocardial infarction: 14 (21%) vs 26 (19%) (P = .78)
- Chronic obstructive pulmonary disease: 19 (28%) vs 46 (34%) (P = .41)
- Chronic kidney disease: 13 (19%) vs 54 (40%) (P = .003)
- Stroke: 13 (19%) vs 19 (14%) (P = .33)
- Arthritis/connective tissue disease: 37 (55%) vs 57 (42%) (P = .08)
- Cancer: 17 (25%) vs 25 (19%) (P = .26)
- Depression: 11 (16%) vs 22 (16%) (P = .98)
- Anemia (Hgb < 13 for men, < 12 for women): 46 (69%) vs 98 (73%) (P = .56)
- Peripheral vascular disease: 12 (18%) vs 14 (10%) (P = .13)
- Peptic ulcer disease: 2 (3%) vs 7 (5%) (P = .48)
- Dementia: 2 (3%) vs 2 (1%) (P = .47)
- Obstructive sleep apnea: 19 (28%) vs 42 (31%) (P = .69)
- AIDS/HIV: 1 (2%) vs 1 (1%) (P = .61)
- Total No. of comorbidities: 6.1 ± 5.5 vs 6.2 ± 2.0 (P = .62)

Medication use

- Loop diuretics: 64 (96%) vs 124 (93%) (P = .42)
- Beta blockers: 60 (90%) vs 108 (81%) (P = .11)
- Angiotensin-converting enzymes inhibitors: 35 (52%) vs 49 (37%) (P = .034)
- Angiotensin receptor blockers: 13 (19%) vs 31 (23%) (P = .55)
- Calcium channel blockers: 14 (21%) vs 46 (34%) (P = .050)
- Aldosterone agonist: 15 (22%) vs 21 (16%) (P = .24)

Physical function and QOL parameters

- Frailty: 37 (56%) vs 64 (49%) (P = .32)
- KCCQ overall score: 42 ± 3 vs 40 ± 2 (P = .45)
- Short Form-12 Physical Composite score: 28 ± 1 vs 28 ± 1 (P = .85)
- Short Form-12 Mental Composite score: 45 ± 2 vs 43 ± 1 (P = .37)
- Geriatric depression scale score: 4.9 ± 0.4 vs 4.9 ± 0.3 (P = .99)
- Geriatric depression scale score ≥5: 32 (48%) vs 61 (45%) (P = .73)
- Montreal Cognitive Assessment score ≥26: 21.7 ± 0.6 vs 21.7 ± 0.4 (P = .99)
- Montreal Cognitive Assessment score <26: 54 (81%) vs 135 (77%) (P = .56)
- EQ-5D-5L components:
 - Walking: 2.6 ± 0.1 vs 2.4 ± 0.1 (P = .27)
 - Self-care: 1.8 ± 0.1 vs 1.7 ± 0.1 (P = .32)
 - Usual activities: 2.6 ± 0.1 vs 2.7 ± 0.1 (P = .94)
 - Pain/discomfort: 2.5 ± 0.1 vs 2.4 ± 0.1 (P = .54)
 - Depression/anxiety: 1.8 ± 0.1 vs 1.8 ± 0.1 (P = .91)
 - Health thermometer: 59 ± 3 vs 57 ± 2 (P = .51)

Abbreviations: HF, heart failure; Hgb, hemoglobin; KCCQ, Kansas City Cardiomyopathy Questionnaire; EQ-5D-5L, EuroQol questionnaire; QOL, quality of life.

Values shown as number (%), median (interquartile range), or mean ± standard error. Outcomes adjusted for sex. Depression is defined as geriatric depression scale score of ≥5. Cognitive impairment is defined as Montreal Cognitive Assessment Score <26.
Limitations included our small sample size and that this was not a prespecified analysis. Furthermore, our results could be an underestimate of patients with ADHF living alone, because we excluded patients discharged to facilities. The high prevalence of patients with ADHF living alone suggests that treatment strategies that leverage social supports, such as caregivers, may have to be tailored based on patients’ living situation. Mechanisms to better support patients with ADHF living alone should be developed, tested, and implemented.

Disclosures

Dr Kitzman has been a consultant for Relypsa, Abbvie, GlaxoSmithKline, Merck, Corvia Medical, Bayer, CinRx, Boehringer-Ingelheim, and St. Luke’s Medical Center in Kansas City, Kansas; received grant support from Novartis, Bayer, and St. Luke’s Medical Center in Kansas City, Kansas; and owns stock in Gilead Sciences. Dr Mentz receives research support from the National Institutes of Health (U01HL125511-01A1 and R01AG045551-01A1), Akros, Amgen, AstraZeneca, Bayer, GlaxoSmithKline, Gilead, InnoLife, Luitpold/American Regent, Medtronic, Merck, Novartis and Sanofi; honoraria from Abbott, Amgen, AstraZeneca, Bayer, Boston Scientific, Janssen, Luitpold Pharmaceuticals, Medtronic, Merck, Novartis, and Sanofi; and has served on an advisory board for Amgen, AstraZeneca, Luitpold, Merck, Novartis, and Boehringer Ingelheim. Dr Whellan has research support from Amgen, CVR Global, Merck, NIH, Novartis, and ResMed; and has been a consultant for Akros Pharmaceuticals, BDC Advisors, Cytokinetics, and Fibrogen.

Haider J. Warraich, MD1,2,*
Dalane W. Kitzman, MD3
M. Benjamin Nelson, MS3
Robert J. Mentz, MD4,5
Paul B. Rosenberg, MD3
Yair Lev, MD5

David J. Whellan, MD, MHS6

1Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
2Department of Medicine, Cardiology Section, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
3Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
4Department of Medicine, Cardiology Division, Duke University School of Medicine, Durham, North Carolina
5Duke Clinical Research Institute, Durham, North Carolina
6Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania

E-mail address: hwarraich@partners.org (H.J. Warraich).

References

1. Zhu W, Wu Y, Zhou Y, Liang W, Xue R, Wu Z, et al. Living alone and clinical outcomes in patients with heart failure with preserved ejection fraction. Psychosom Med 2021;853:470–6.
2. Kitzman DW, Whellan DJ, Duncan P, Pastva AM, Mentz RJ, Reeves GR, et al. Physical rehabilitation for older patients hospitalized for heart failure. N Engl J Med 2021. May 16 [Epub ahead of print].
3. Stepler R. Pew Research Center. Smaller share of women ages 65 and older are living alone. Available at: https://www.pewsocialtrends.org/2016/02/18/smaller-share-of-women-ages-65-and-older-are-living-alone/. Published 2016. Accessed October 1, 2019.
4. Lee SM, Edmonston B. Living alone among older adults in Canada and the U.S. Healthcare (Basel) 2019;7:68.
5. Dreyer RP, Dharmarajan K, Hsieh AF, Welsh J, Qin L, Krumholz HM. Sex differences in trajectories of risk after rehospitalization for heart failure, acute myocardial infarction, or pneumonia. Circ Cardiovasc Qual Outcomes 2017;10:e003271.

https://doi.org/10.1016/j.cardfail.2021.06.005