MINIMALLY INVASIVE SURGERY FOR GASTRIC CANCER: TIME TO CHANGE THE PARADIGM

Cirurgia minimamente invasiva no câncer gástrico: tempo de mudar o paradigma

Leandro Cardoso BARCHI1, Carlos Eduardo JACOB1, Cláudio José Caldas BRESCIANI1, Osmar Kenji YAGI1, Donato Roberto MUCERINO1, Fábio Pinatel LOPASSO1, Marcelo MESTER1, Ulysses RIBEIRO-JÚNIOR1, André Roncon DIAS1, Marcus Fernando Kodama Pertille RAMOS1, Ivan CECCONELLO2, Bruno ZILBERSTEIN2

ABSTRACT - Introduction: Minimally invasive surgery widely used to treat benign disorders of the digestive system, has become the focus of intense study in recent years in the field of surgical oncology. Since then, the experience with this kind of approach has grown, aiming to provide the same oncological outcomes and survival to conventional surgery. Regarding gastric cancer, surgery is still considered the only curative treatment, considering the extent of resection and lymphadenectomy performed. Conventional surgery remains the main modality performed worldwide. Notwithstanding, the role of the minimally invasive access is yet to be clarified. Objective: To evaluate and summarize the current status of minimally invasive resection of gastric cancer. Methods: A literature review was performed using Medline/PubMed, Cochrane Library and SciELO with the following headings: gastric cancer, minimally invasive surgery, robotic gastrectomy, laparoscopic gastrectomy, stomach cancer. The language used for the research was English. Results: 28 articles were considered, including randomized controlled trials, meta-analyses, prospective and retrospective cohort studies. Conclusion: Minimally invasive gastrectomy may be considered as a technical option in the treatment of early gastric cancer. As for advanced cancer, recent studies have demonstrated the safety and feasibility of the laparoscopic approach. Robotic gastrectomy will probably improve outcomes obtained with laparoscopy. However, high cost is still a barrier to its use on a large scale.

INTRODUCTION

The minimally invasive surgery widely used to treat benign disorders of the digestive system, has become the focus of intense study in recent years in the field of surgical oncology. However, the development and reproducibility of operations for the digestive tract cancer are still insufficient when compared to other specialties. Initially, the good results in colorectal cancer treatment by laparoscopic surgery encouraged other operations such as hepatectomy, esophagectomy, pancreatectomy, among others. Yet, some operations such as pancreatoduodenectomy and total gastrectomy with D2 lymphadenectomy still represent an important challenge because it demands great skill from the surgeon. More important than the traditional benefits of the laparoscopic approach as less pain, better cosmetic result, less tissue damage, shorter hospital stay and earlier return to work, is the apparent improved immune response to surgical trauma experienced by the patient. This might be one of the main reasons that has lead the development of laparoscopic surgery. Technological advances such as the robotic platform, with various forms of energy devices and improved optical systems and video, have proved to be useful in performing less traumatic procedures, better...
postoperative recovery and more adequate oncological results24. Since gastric cancer is very prevalent in the East, the pioneering laparoscopic operations were conducted there. The first laparoscopic gastrectomy dates from the early 1990s. Partial gastric resections were performed by Kitano in Japan in 1991 with Billroth I reconstruction and Goh in Singapore in 1992 with Billroth II. Azagra, in Belgium, performed the first total gastrectomy in 1995110.

Since then, the experience with this kind of approach has grown worldwide, aiming to provide the same oncological outcomes and survival to conventional surgery with the advantages of a less traumatic procedure. Therefore, minimally invasive surgery for early gastric cancer has been considered safe and an efficient alternative to open gastrectomy16,27. On the other hand, there is still no consensus regarding advanced gastric cancer, but many experienced surgeons have used this approach, reporting good short-term outcomes4,22.

The aim of this review was to evaluate and summarize the current status of minimally invasive resection of gastric cancer.

MINIMALLY INVASIVE SURGERY FOR EARLY GASTRIC CANCER

Initially the laparoscopic approach was applied in study protocols in Japan and South Korea institutions. The authors described series with distal gastrectomy and limited lymphadenectomy, preferably in patients with early gastric cancer. Later on larger series studies were published. In 2009, Yakoub et al. published a systematic review on laparoscopic distal gastrectomy compared to the operations performed by laparotomy in early gastric cancer. The laparoscopic approach was associated with greater operative time and lesser pain, fever, blood loss, time to first walk and elimination of flatus, length of hospital stays and lower morbidity (10.5% vs. 20.1%). There were no differences in anastomotic complications. Patients operated by laparoscopy had fewer lymph nodes retrieved (mean difference of 4.6 lymph nodes). Nevertheless, there was no difference between the groups when the goal was a lymphadenectomy minor than D225.

Kim et al. analyzed large series with 753 patients operated by laparoscopy. Early tumors were 78%. D2 lymphadenectomy was performed in 95% of cases with an average of retrieved lymph nodes of 34.1 and 40.6 for subtotal and total gastrectomy, respectively. Complications occurred in 9.2% and there was one death. With a mean of 56 months of follow-up, 5-year overall survival and disease free survival were greater than 96%

Vinuela et al. published a meta-analysis of randomized and nonrandomized studies including 3,055 patients and compared laparoscopic and open gastrectomy in gastric cancer patients (1,658 and 1,397, respectively). Stage I patients were 83%. Although mortality was similar, the laparoscopic approach was associated with lower morbidity, longer operative time, less blood loss, shorter hospital stays and higher number of retrieved lymph nodes by 3.9 nodes in the open gastrectomy compared to laparoscopy. The minimally invasive approach was associated with shorter hospital stay, less blood loss and longer operative time. Moreover, there were no significant differences between the two groups concerning the number of dissected lymph nodes and no significant differences for cancer-related mortality risk (adjusted for 60 months of follow-up), although there was a tendency toward a protective effect for laparoscopy7.22.

Park et al. reported long-term results of a multicenter study (10 hospitals in South Korea, 239 patients) between 1998 and 2005. Extended lymphadenectomy (D2) was performed in 68% of cases and the average number of retrieved lymph nodes was 33.6. The mortality rate was 0.8 and the main complications were: wound infection (5%), bleeding (1.7%), fistula (1.7%) and pulmonary complications (0.8%). Overall complications rate was 15.9%. Overall survival and disease free survival at five years were 78.8% and 85.6%, respectively. These authors reported that survival by stage were similar to historical controls operated by laparotomy. Prognostic factors analysis showed that age, depth of invasion in the gastric wall (T parameter) and lymph node status (N parameter) were statistically significant in multivariate analysis12.

In 2012, Shinohara et al. published a study which analyzed the laparoscopic approach in advanced cases between 1998 and 2008. During this period laparoscopic gastrectomy increased from about 30% to almost 100% of the operated cases. Extended lymphadenectomy was performed in 39% vs 69% treated by laparotomy. Although mortality was similar in both groups, complications rate was lower in the laparoscopic group, where there were fewer lymph nodes retrieved, shorter operative time, less blood loss and shorter hospital stay18.

Recently, three randomized multicenter prospective trials have begun to survey the feasibility of minimally invasive surgery for advanced gastric cancer in South Korea, Japan and China. Probably, they will provide solid evidence regarding the use of this method in advanced stages patients (Table 1).
TABLE 1 - Randomized, multicenter, prospective controlled trials of laparoscopic gastrectomy in advanced gastric cancer treatment

TRIAL	FASE	INCLUSION CRITERIA	PATIENTS (N)	PRIMARY ENDPOINT	SECONDARY ENDPOINTS	STATUS
JAPAN	JLSSG 0901	II/III	cNO-2 (excluding bulky N2)	500 Incidence of anastomotic leakage or pancreatic fistula; Relapse-free survival	OS; Proportion of LDG completion; Proportion of conversion to open surgery; Adverse events; Short-term clinical outcomes; Number of retrieved LN; Recurrence sites	Recruiting
KOREA	KLAASS-02	III	ct2/cT3 / ct4a cN0-1 (including LN47)	1,056 3-yr DFS	Early postoperative complication; Postoperative mortality; Late postoperative complication; Postoperative recovery index; Postoperative QOL; 3-yr OS	Recruiting finished
CHINA	CLASS-01	III	cNO-0-3 (except bulky LN5s)	1,050 3-yr DFS	Morbidity and mortality; 3-yr OS; 3-yr recurrence pattern; Postoperative recovery course; Inflammatory and immune response	Enrollment completed

KLASS=Korean Laparoscopic Gastrointestinal Surgery Study; JLSSG= Japanese Laparoscopic Gastric Surgery Study Group; CLASS=Chinese Laparoscopic Gastrointestinal Surgery Study; LDG=laparoscopic distal gastrectomy; ODG=open distal gastrectomy; LN=lymph node; OS=overall survival; DFS=disease free survival; QOL=quality of life

In respect of total gastrectomy in advanced cases, few series were reported, probably due to great technical difficulty in the digestive tract reconstruction performed by laparoscopy. Lee et al. analyzed 94 cases of total gastrectomy with D2 lymphadenectomy. Complications were reported in 42.6% of patients and 9.6% analyzed 94 cases of total gastrectomy with D2 lymphadenectomy. et al. digestive tract reconstruction performed by laparoscopy. Lee et al. reported the need of, at least, 40 cases to improve the oncological outcomes; Number of retrieved LN; Recurrence sites. The surgeon should be well familiar with open gastrectomy as well as extended lymphadenectomy and have great experience with minimally invasive surgery, including endo-sutures. Hu et al. reported the need of, at least, 40 cases to improve the surgical time, reduce blood loss and increase the number of resected lymph nodes.

MINIMALLY INVASIVE SURGERY FOR GASTRIC CANCER IN BRAZIL

The first laparoscopic gastrectomy in Brazil was performed by Tinocco et al. in 1993. Over two decades after this report, the minimally invasive approach in gastric cancer treatment has not been routinely used and only few centers perform this treatment modality. There are many causes such as high costs of laparoscopic surgery for the public health system, high government taxes on imported materials (endostaplers, energy devices, etc.), difficulty to teach and promulgate this method and decentralization in the oncological diseases treatment. This pioneering group reported 92 cases of laparoscopic gastrectomy performed between 1993 and 2008, with 7.6% conversion rate, 14.1% morbidity and 5.4% mortality. The number of lymph nodes resected ranged from 21 to 57, with a mean operative time of 162 minutes. According to the authors, this kind of approach is safe and effective, nevertheless demands long learning curve.

Oliveira et al. published a retrospective study comparing laparoscopic total gastrectomy with laparotomy for gastric cancer. Between 2009 and 2013, 111 patients stage I, II and III were operated. Conventional surgery was performed in 64 (57.7%) and 47 (42.3%) received treatment by laparoscopy, all with extended lymphadenectomy. There was no significant difference between the groups regarding age, gender, ASA (American Society of Anesthesiologists), tumor stage, need for blood transfusion, Bormann classification, negative margins, complications and mortality. Operative time and oral and enteral intake period were shorter in the laparoscopy group comparing to conventional technique. Yet, the average number of resected lymph node was 29.1 in the laparoscopy group and 35.1 in the conventional group (p=0.014). These short-term results have shown the benefit of minimally invasive surgery over conventional surgery.

The Stomach, Duodenum and Small Intestine Unit of Hospital das Clínicas – University of São Paulo School of Medicine has also been pioneer in Brazil concerning the minimally invasive gastric resection for gastric cancer. Zilberstein et al. published the realization of laparoscopic gastrectomy with extended lymphadenectomy in 70 patients between 2007 and 2013. Most patients were submitted to partial gastrectomy (70%), with at least 37 lymph nodes removed. There was no conversion to open surgery and no mortality. As complications, there was only one esophageoguenostomy leakage and two injury of middle colic vessels, requiring partial colectomy.

ROBOTIC GASTRECTOMY FOR GASTRIC CANCER

Despite the benefit to patients obtained by the laparoscopic approach, it is known that this pathway often causes greater physical effort and wear of the medical team, in addition to other drawbacks such as, for example, 2D view. In this regard, robotic surgery has been reported as a minimally invasive alternative for gastric cancer, since it provides a more ergonomic position, wristed instruments that allow seven degrees of freedom, tremor filtering, the ability to scale motions, and 3D high definition stereoscopic vision that improves surgeon’s dexterity when performing fine manipulations of tissue in a closed, fixed operating field.

Early studies using the robotic access date back from the second half of the past decade, mainly about partial resections and limited lymphadenectomy in patients in early stage disease. Song et al. published the first large series with 100 patients, 42 underwent extended lymphadenectomy. The average number of lymph nodes retrieved was 36.7, very close to the one obtained in the open operations.

In a large series published by Yonsei University in South Korea, probably the center with the most experience in robotic gastrectomy, Woo et al. compared 591 operations by laparoscopy with 236 cases operated robotically. The operative time was longer in the second group. However, there was less blood loss, short-term surgical results were better and oncological results were similar.

In a recent meta-analysis, Marano et al. analyzed 1,967 patients operated for gastric cancer (404 robotic, 718 open and 845 laparoscopic) and concluded that robotic gastrectomy reduces intraoperative blood loss and time of postoperative hospital stay compared with laparoscopy and laparotomy at a cost of longer surgical time and much more expensive costs. It also provides an adequate oncological lymphadenectomy.

Hyung et al. conducted a multicenter prospective study with 434 patients comparing robotic (n=223) vs laparoscopic...
gastrectomy (n = 211) for gastric cancer. The short-term outcomes showed similarity between both groups regarding overall complications, mortality, number of harvest lymph nodes, with longer operative time and higher costs in the robotic group. Barchi et al. described a technique for robotic digestive tract reconstruction after total gastrectomy in six patients with a laterolateral esophagojejunostomy with linear stapler. Although it was a small series, the authors demonstrated a safe technique, with no major complications and demands a relatively short time for its accomplishment, even when dealing with initial experience.

CONCLUSION

Minimally invasive gastrectomy with extended lymphadenectomy has been established as a technical alternative for early gastric cancer. Recent studies have shown that the laparoscopic approach is associated with lower rates of pain, blood loss, hospital stay, complications and mortality. The average number of removed lymph nodes is, at least, equal to open operations and although few studies have follow-up longer than five years, oncologic results appear to be similar. These data are likely to be confirmed by randomized trials results from Japan and South Korea. Concerning advanced gastric cancer, recent studies have demonstrated the safety and feasibility of the minimally invasive access. The mid-term oncological outcomes have encouraged surgeons to continue the development of this method. High cost is still a hindrance to the large-scale use of robotics. This advanced technological platform is nothing more than a sophisticated laparoscopic working tool for more complex procedures. It is an evolution in technology and improvement of instruments that may facilitate procedures such as radical gastrectomy. The knowledge gained from laparoscopic surgery should be used and incorporated into robotic surgery, which surely will result in an improvement of outcomes obtained in the minimally invasive treatment of gastric cancer.

REFERENCES

1. Barchi LC, Jacob CE, Zilberstein B. Robotic digestive tract reconstruction after total gastrectomy for gastric cancer: a simple way to do it. Int J Med Robot. 2015 Dec 9. doi: 10.1002/rcs.1720. [Epub ahead of print]
2. Cai J, Wei D, Zhao T et al. A prospective randomized study comparing open versus laparoscopic-assisted D2 radical gastrectomy in advanced gastric cancer. Dig Surg 2011; 28: 331-7.
3. Goh PM, Alponat A, Mak K et al. Early international results of laparoscopic gastrectomies. Surg Endosc 1997; 11: 650-652.
4. Gordon AC, Kojima K, Inokuchi M et al. Long-term comparison of laparoscopic-assisted distal gastrectomy and open distal gastrectomy in advanced gastric cancer. Surg Endosc 2013; 27:462-470.
5. HuWG1, MaJL, Zheng MH et al. Learning curve and long-term outcomes of laparoscopic-assisted distal gastrectomy for gastric cancer. J Laparoendosc Adv Surg Tech A. 2014 Jul;24(7):487-92.
6. HyungWJ, KimHJ, HanSU et al. Multicenter Prospective Comparative Study of Robotic Versus Laparoscopic Gastrectomy for Gastric Adenocarcinoma. Ann Surg 2016; 263:103–10.
7. Kim HH, Hyung WJ, Cho GS et al. Morbidity and mortality of laparoscopic gastrectomy versus open gastrectomy for gastric cancer: an interim report: a phase III multicenter, prospective, randomized Trial (KLASS Trial). Ann Surg 2010; 251:147-20.
8. Kim HU, Hyung WJ, Song Y et al. Prospective randomized controlled trial (phase III) to comparing laparoscopic distal gastrectomy with open distal gastrectomy for gastric adenocarcinoma (KLASS 01) J Korean Surg Soc 2013;84:123-130.
9. Kim KH, Kim MC, Jung GJ et al. Long-term outcomes and feasibility with laparoscopic assisted for gastric cancer. J Gastric Cancer 2012; 12: 18-25.
10. Khano S, Iso Y, Moriyanai Y, Sugimachi K. Laparoscopic assisted Billroth I gastrectomy. Surg Laparosc Endosc 1994; 4:146–146.
11. Lee JH, Ahn SH, Yang HK et al. Laparoscopic Total gastrectomy with D2 Lymphadenectomy for advanced gastric cancer. World J Surg 2012;36:2394.
12. Lee J, Kim W. Long-term outcomes after laparoscopy-assisted gastrectomy for advanced gastric cancer: analysis of consecutive 106 experiences. J Surg Oncol 2009; 100: 693.
13. Marano A, Hyung WJ, Noh SH et al. Robotic versus Laparoscopic versus Open Gastrectomy: A Meta-Analysis. J Gastric Cancer 2013;13(3):136-48.
14. Martínez-Ramos D, Miralles-Tera M, Salvador-Sanchís L. Laparoscopic versus open surgery for advanced and resectable gastric cancer: a meta-analysis. Rev Esp Enferm Dig 2011; 103: 133.
15. Nakamura K, Katai H, Sasaki M et al. A phase II study of laparoscopic-assisted versus open distal gastrectomy with nodal dissection for clinical stage A/B gastric cancer (JCOG0912). Jpn J Clin Oncol 2013; 43:324-327.[PMID: 23275644 DOI: 10.1093/jjco/hys220]
16. Oliveira ATT, Ramagem CAG, Linhares Metal. Comparison of laparoscopic total gastrectomy and laparotomic total gastrectomy for gastric cancer. ABCD Arq Bras Cir Dig 2015; 28(1):65-69 DOII http://dx.doi.org/10.1590/1020-672x2015000100017
17. Park do J, Han SU, Kim HH et al. Korean Laparoscopic Gastrointestinal Surgery Study (KLASS) Group Long-term outcomes after laparoscopic-assisted gastrectomy for advanced gastric cancer: a large-scale multicenter retrospective study. Surg Endosc 2012; 26: 1548.
18. Shinohara T, Satoh S, Uyama J et al. Laparoscopic versus open D2 gastrectomy for advanced gastric cancer: a retrospective cohort study. Surg Endosc 2013; 27: 286-94.
19. Song J, Oh SJ, Noh SH et al. Robot-Assisted Gastrectomy With Lymph Node Dissection for Gastric Cancer – Lessons Learned From an Initial 100 Consecutive Procedures. Ann Surg 2009; 249: 927-32.
20. Tonico R, Tonico A, Conde LM et al. Laparoscopic Gastrectomy for Gastric Cancer. Surg Laparosc Endosc Percutan Tech 2009; 19:384–387.
21. Uyama I, Suda K, Satoh S. Laparoscopic surgery for advanced gastric cancer: current status and future perspectives. J Gastric Cancer 2013;13:19-25.
22. Virtuel EF, Brennan MF, Strong VE et al. Laparoscopic versus open distal gastrectomy for gastric cancer: a meta-analysis of randomized controlled trials and high-quality nonrandomized studies. Ann Surg 2012; 255:446
23. Woo Y, Hyung WJ, Noh SH et al. Robotic gastrectomy as an oncologically sound alternative to laparoscopic resections for the treatment of early-stage gastric cancers. Arch Surg 2011; 146: 1086-92.
24. Yakoub D, Athanasioiu T, Tekkis P et al. Laparoscopic assisted distal gastrectomy for early gastric cancer: is it an alternative to the open approach? Surg Oncol 2009; 18: 333.
25. Yang HK, Suh YS, Lee HJ. Minimally invasive approaches for gastric cancer-Korean experience. J Surg Oncal 2013; 107:277-281.
26. Yasunaga H1, Horiguchi H, Kuwabara K et al. Outcomes after laparoscopic or open distal gastrectomy for early-stage gastric cancer: a propensity-matched analysis. Ann Surg. 2013 Apr;257(4):640-6. doi: 10.1097/ SLA.0b013e31826f5d41.
27. Zilberstein B, Brucher BLD, Barchi LC et al. Gastric Cancer: Aspects of Minimal Invasive Technique. Gastrointestinal & Digestive System 2013; 3: 3-5.
28. Zilberstein B, Jacob CE, Barchi LC. Simplified technique for reconstruction of the digestive tract after total and subtotal gastrectomy for gastric cancer. ABCD. Arquivos Brasileiros de Cirurgia Digestiva, v. 27, p. 133-137, 2014.