Kinematics of the ionized-to-neutral interfaces in Monoceros R2*

P. Pilleri1,2,3, A. Fuente2, M. Gerin4, J. Cernicharo5, J. R. Goicoechea6, V. Ossenkopf5, C. Joblin6,7, M. González-García8, S. P. Treviño-Morales8, Á. Sánchez-Monge5,9, J. Pety10, O. Berné6,7, C. Kramer8

1 Los Alamos National Laboratory, P.O. Box 1663, Los Alamos (NM) 87545, USA
2 Observatorio Astronómico Nacional, Apdo. 112, E-28803 Alcalá de Henares (Madrid), Spain
3 Centro de Astrobiología, (INTA-CSIC), Ctra. M-108, km. 4, E-28850 Torrejón de Ardoz, Spain
4 LERMA, Observatoire de Paris, 61 Av. de l’Observatoire, 75014 Paris, France
5 I. Physikalisches Institut der Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
6 Universidad de Toulouse, UPS, IRAP, 9 avenue du colonel Roche, 31062 Toulouse cedex 4, France
7 CNRS, UMR 5187, 31028 Toulouse, France
8 Instituto de Radio Astronomía Millimétrica (IRAM), Avenida Divina Pastora 7, Local 20, 18012 Granada, Spain
9 Observatorio Astrofísico di Arcetri, INAF, Largo E. Fermi 5, I-50125 Firenze, Italy
10 Institut de Radioastronomie Millimétrique, 300 Rue de la Piscine, 38406 Saint Martin d’Hères, France

November 6, 2013

ABSTRACT

Context. Monoceros R2 (Mon R2), at a distance of 830 pc, is the only ultra-compact H II region (UCH II) where its associated photon-dominated region (PDR) can be resolved with the Herschel Space Observatory.

Aims. Our aim is to investigate observationally the kinematical patterns in the interface regions (i.e., the transition from atomic to molecular gas) associated with Mon R2.

Methods. We used the HiFI instrument onboard Herschel to observe the line profiles of the reactive ions CH+ and OH+ toward different positions in Mon R2. We derive the column density of these molecules and compare them with gas-phase chemistry models.

Results. The reactive ions CH+ and OH+ detected both in emission (at central and red-shifted velocities) and in absorption (at blue-shifted velocities). OH+ is detected in absorption at both blue- and red-shifted velocities, with similar column densities. H2O+ is not detected at any of the positions, down to a rms of 40 mK toward the molecular peak. At this position, we find that the OH+ absorption originates in a mainly atomic medium, and therefore is associated with the most exposed layers of the PDR. These results are consistent with the predictions from photo-chemical models. The line profiles are consistent with the atomic gas being entrained in the ionized gas flow along the walls of the cavity of the H II region. Based on this evidence, we are able to propose a new geometrical model for this region.

Conclusions. The kinematical patterns of the OH+ and CH+ absorption indicate the existence of a layer of mainly atomic gas for which we have derived, for the first time, some physical parameters and its dynamics.

Key words. ISM: abundances – ISM: individual objects: Mon R2 – Photon-dominated regions – ISM: molecules – ISM: HII regions

1. Introduction

Monoceros R2 (Mon R2) is a relatively nearby (830 pc) ultra-compact H II region (UCH II). Due to its brightness and proximity, it is the best source in which to investigate the chemistry and physics of this stage of high-mass stellar formation. The main ionizing source, IRS1, is located at the center of a spherical cavity free of molecular gas which extends for about 20″ (0.08 pc) in radius (Choi et al. 2000). The UCH II is surrounded by several photon-dominated regions (PDRs) that are characterized by different physical and chemical conditions (Rizzo et al. 2003; Berné et al. 2009; Pilleri et al. 2013). These PDRs have a roughly circular spatial distribution, with a projected thickness between 4″ and 6″ (~ 0.02 pc, Berné et al. 2009). Rizzo et al. (2003) estimated the intensity of the UV radiation field to be G0 ≃ 5 x 10^5 in units of the Habing (1968) field, by fitting the observed far-IR intensity with a blackbody curve, assuming an effective temperature of T_eff = 25,000 K and using the projected radius of the H II region as the real distance from the star. Berné et al. (2009) studied the H II mid-IR lines from Spitzer-IRS observations and estimated a hydrogen density in the PDRs ranging from n_H = 4 x 10^3 to 4 x 10^5 cm^-3. Higher densities, up to n_H = 6 x 10^6 cm^-3, were found by Choi et al. (2000), Rizzo et al. (2003) and Pilleri et al. (2013) to account for the emission of molecular species in the far-IR and radio domains. The UCH II and the PDRs are surrounded by a moderate density (n_H ≃ 5 x 10^6 cm^-3), cometary-shaped molecular cloud (Fuente et al. 2010; Pilleri et al. 2012, 2013).

Observations and modeling of this source showed that the molecular cloud is relatively quiescent, with a systemic velocity of the main cloud being ~ 11 km s^-1 and expansion velocities ≲ 1 km s^-1 (Fuente et al. 2010; Pilleri et al. 2012). High velocity wings, observed at red-shifted velocities relative to the cloud systemic velocity, can be attributed either to the expansion of the PDR surrounding the H II region or to the relic of a now inactive outflow (Giannakopoulou et al. 1997; Pilleri et al. 2012, 2013). Jaffe et al. (2003), through the analysis of high spatial and spectral resolution observations of the 12.8 μm Ne II line, suggested that the innermost H II region is expanding at a high velocity.
In this paper, we present data taken at three different positions (Fig. 1): the Ionization Front (IF), the Molecular Peak 1 (MP1) at offset [+10′′, -10′′], relative to the IF, and Continuum Point 1 (CP1) at offset [-28′′, 10′′]. The former two points have been studied in detail in several molecular and atomic lines (e.g., Rizzo et al. 2003; Fuente et al. 2010; Pilleri et al. 2012; Ginard et al. 2012; Ossenkopf et al. 2013; Pilleri et al. 2013) and are key references for this source. The last point (CP1) was chosen to be the as far as possible from the IF position and still have a significant continuum at the observed frequencies.

The OH line at all positions and the H$_2$O$^+$ line toward MP1 were observed using single pointing, double beam switch pattern, providing also a reliable measurement of the 971 GHz continuum at all positions and at 1113 GHz toward MP1. The CH$^+$ observation toward the IF was observed in WADI with a high signal-to-noise (S/N) on a strip centered toward the IF, that also provides a good estimate of the continuum at 835 GHz at this position. The remaining CH$^+$ and H$_2$O$^+$ observations were obtained from a full 2′ × 2′ OTF map centered at the IF. Unfortunately, using OTF on such large areas causes large drifts in the continuum level. To estimate the continuum for these observations, we assume that the relative ratios of the continuum are the same at all positions, and scale the 971 GHz continuum (which is measured at all positions) accordingly. We also use the sparse-sampling continuum map at 971 GHz obtained with SPIRE-FTS within the program SPECHIS-GT (PI: E. Polehampton).

The data were pipelined using HIPE (Ott 2010) 9.0 and then Level 2 products were exported to FITS format. Further analysis was performed with the CLASS/GILDAS suite (Pety 2005), and consisted of averaging the two polarizations and conversion to main beam temperature (T_{mb}) scale. Finally we divided the observed continuum by 2 since HIFI is a double side band receiver.
Table 1. Observed noise and continuum brightness, in T_{mb}.

Species	IF [0"", 0"]	MP1 [10"", -10"]	CP1 [-28"", 10"]			
	rms	T_c	rms	T_c	rms	T_c
CH$^+$	25 [mK]	0.45 [K]	129 [mK]	0.57$^{(a)}$	153 [mK]	0.26$^{(a)}$
OH$^+$	21 [mK]	0.57 [K]	60 [mK]	0.72	19 [mK]	0.33
H$_2$O$^+$	180 [mK]	0.67$^{(a)}$	40 [mK]	0.85	280 [mK]	0.39$^{(a)}$

Notes. Noise rms values have been calculated on a T_{mb} scale with $\Delta v = 0.5 \text{ km s}^{-1}$.

$^{(a)}$ The observed continuum level is not reliable, and the value reported here is an estimate based on the OH$^+$ continuum (see text).

with a sideband ratio of ~ 1 (Roelfsema et al. 2012) at these frequencies.

3. Results

Figure 2 displays the detected lines toward the IF, MP1 and CP1. H$_2$O$^+$ was not detected toward any position (see Table 2 for the detection limits). This provides strong limits on the gas molecular fraction (Hollenbach et al. 2012). OH$^+$ is detected in absorption at all positions, with two broad features peaking at blueshifted ($\Delta v \sim -8 \text{ km s}^{-1}$) and redshifted ($\Delta v \sim 4 \text{ km s}^{-1}$) velocities relative to 11 km s$^{-1}$. The bulk velocity of the cloud. CH$^+$ is observed in emission in the interval [5,20] km s$^{-1}$. Toward IF and MP1, and tentatively toward CP1, it presents an absorption feature at blue-shifted velocities ($[-5,5]$ km s$^{-1}$).

In Fig. 3, we show the integrated intensity maps of the CH$^+$ and [C ii] lines obtained from our OTF mapping observations in different velocity bins. The red-shifted emission is clearly related to the H ii region and to the surrounding PDRs, whereas the blue-shifted absorption better correlates with the C18O 2-1 emission, as well as the 971GHz continuum emission (shown in Fig. 1) tracing the bulk of the dust emission associated with the molecular cloud. The central velocities [5-12] km s$^{-1}$ seem to be associated with the H ii region and the northern, low-UV irradiated PDR described in Ginard et al. (2012) and Pilleri et al. (2013).

In the following, we focus on the blue- and red-shifted velocities. We define the blue and red intervals as [-5.5] km s$^{-1}$ and [12,20] km s$^{-1}$, respectively. In Table 2 we present a summary of the observational results, detailed below.

CH$^+$ Owing to very high critical densities, the CH$^+$ level population is out of local thermodynamic equilibrium, thus the column density of the gas associated with the emission line depends on the assumed excitation temperature (T_{ex}). As a first approximation, we used the MADEX large velocity gradient (LVG) code (Cernicharo 2012) assuming the typical physical conditions of the PDR ($n_H \sim 2 \times 10^5 \text{ cm}^{-3}$, $T_{\text{kin}} \sim 100 \text{ K}$, Pilleri et al. 2012) to estimate the column density of this molecule at all positions, since the bulk of the CH$^+$ emission is expected to arise in the most exposed layers ($\Delta v \lesssim 1$) of the PDR (Nagy et al. 2013). To fit the observed intensity of the J=1-0 line toward the IF position, the LVG code returns $T_{\text{ex}} \sim 10 \text{ K}$, an opacity of $\tau = 3.2$ and a total column density of $7.4 \times 10^{13} \text{ cm}^{-2}$ for the red-shifted velocity interval. On the other extreme, if we consider that the emission stems from the densest layer ($n_H = 3 \times 10^6 \text{ cm}^{-3}$, Rizzo et al. 2003; Pilleri et al. 2012), we obtain $T_{\text{ex}} = 14 \text{ K}$ and $N(\text{CH}^+) = 6 \times 10^{12} \text{ cm}^{-2}$, corresponding to an opacity of 0.2.

The column density in the blue interval can be calculated with the usual steps for absorption measurements. We calculated the opacity of the absorption at each velocity as $\tau = -\log(T_l/T_c)$ where T_l and T_c are the line and continuum intensities, respectively. This can be used to estimate the molecular column density using $N(\text{CH}^+) = 3.1 \times 10^{12} \int \tau dv \text{ cm}^{-2}$ (Godard et al. 2012). In the expression above, we have assumed that the absorbing CH$^+$ gas is almost entirely in its ground rotational state ($T_{\text{ex}} < 5 \text{ K}$), which is justified by the relatively large Einstein A_{eff} coefficient for this transition, implying a large critical density ($> 10^6 \text{ cm}^{-3}$). We also assume that the covering factor over the continuum source is unity. This is reasonable according to the SPIRE map (Fig. 1), although we cannot exclude some clumpiness at smaller scales.

OH$^+$ We calculated the integrated opacities $\int \tau dv$ of the OH$^+$ line in the different velocity intervals (see Table 2). Since the ground state of OH$^+$ is split into two levels with a negligible energy difference we assume that the population in each level is proportional to their level degeneracies, and included the corresponding correction factor 1.5 in the total column density calculations (see Gupta et al. 2010; Neufeld et al. 2010; Gerin et al. 2010). This gives a simple expression for the total column density, $N(\text{OH}^+) = 4.69 \times 10^{12} \int \tau dv \text{ cm}^{-2}$. The column density results are reported in Table 2.

H$_2$O$^+$ We derived upper limits to the opacity and the column density of H$_2$O$^+$ assuming a 3σ detection (calculated at the spectral resolution of 1 km s$^{-1}$) and a line width of 3 km s$^{-1}$. Unlike OH$^+$, the ground state of H$_2$O$^+$ is separated into two very close energy levels, and the same correction factor 1.5 must be used to relate the integrated opacity with the column density. This leads to the expression: $N(\text{H}_2\text{O}^+) = 4.28 \times 10^{12} \int \tau dv \text{ cm}^{-2}$. The resulting column densities are reported in Table 2. For CP1, the noise in the spectrum is too high compared to the continuum level to estimate a reliable upper limit to the column density.

4. Discussion

4.1. Origin of the OH$^+$ and CH$^+$ emission and absorption

The column density ratio $N(\text{OH}^+)/N(\text{H}_2\text{O}^+)$ toward MP1 is higher than 8 for both the blue and red intervals. We can use this ratio to estimate an upper limit to the molecular fraction, $f(H_2) =$$\frac{N(\text{H}_2\text{O}^+)}{N(\text{OH}^+)}$. Alike OH$^+$, the ground state of H$_2O^+$ is separated into two very close energy levels, and the same correction factor 1.5 must be used to relate the integrated opacity with the column density. This leads to the expression: $N(\text{H}_2\text{O}^+) = 4.28 \times 10^{12} \int \tau dv \text{ cm}^{-2}$. The resulting column densities are reported in Table 2. For CP1, the noise in the spectrum is too high compared to the continuum level to estimate a reliable upper limit to the column density.
is lower toward the IF and CP1 compared to the molecular bar,

whereas atomic tracers such as [C ii] have more a circular spa-
ierra CP1 region, OH absorptions are produced by the same di-
provides evidence for a local atomic outflow. Toward the IF and CP1 positions we obtain looser up-

$2\rho_{H}/(n_{H}+2n_{H})$, using the relationship $[OH^{+}]/[H_{2}O^{+}] = 0.64 + 0.12 \times \left(T_{\text{kin}}/300\right)^{(-0.5)}/f(H_{2})$ (Gerin et al. 2010). Assuming $T_{\text{kin}} = 100$ K leads to $f(H_{2}) \leq 0.03$, i.e., the regions producing the absorption consist of mainly atomic gas, and most likely corre-

The column density for the red and blue intervals of OH$^{+}$ is approximately constant toward all three positions. Even to-

Fig. 3. Integrated intensity of the blue ([−5, 5] km s$^{-1}$), central ([5, 12] km s$^{-1}$) and red ([12, 20] km s$^{-1}$) intervals of the CH$^{+}$ 1-0 (color scale) and [C ii] lines (black contours, starting at 15 K km s$^{-1}$ for the blue interval, starting at 50 K km s$^{-1}$ with a step of 50 K km s$^{-1}$ for the central and red intervals). White contours are the integrated intensity between 5 and 15 km s$^{-1}$ of the C18O 2-1 line. In the blue interval, the CH$^{+}$ absorption (dark color) correlates with the molecular cloud.

Table 2. Observational results.

	$\int T_{\text{mb}}dv$ [K km s$^{-1}$]	$\int \tau dv$ [km s$^{-1}$]	N(X) [10^{12} cm$^{-2}$]
CH$^{+}$ IF [−5, 5]	-0.94	2.66	8.25
CH$^{+}$ MP1 [−5, 5]	-2.13	4.16	12.9
CH$^{+}$ CP1 [−5, 5]	<−0.55	<2.19	<6.7
CH$^{+}$ IF [12−20]	4.26	-	74$^{(a)}$
CH$^{+}$ MP1 [12−20]	4.21	-	72$^{(a)}$
CH$^{+}$ CP1 [12−20]	3.05	-	52$^{(a)}$
OH$^{+}$ IF [−5, 5]	-1.09	2.30	10.8
OH$^{+}$ MP1 [−5, 5]	-0.93	1.75	8.2
OH$^{+}$ CP1 [−5, 5]	-0.64	2.40	11.3
OH$^{+}$ IF [12−20]	-0.77	1.55	7.3
OH$^{+}$ MP1 [12−20]	-0.93	1.50	7.0
OH$^{+}$ CP1 [12−20]	-0.39	1.36	6.4
H$_{2}$O$^{+}$ IF [−5, 5], [12−20]	-	<1.39	<5.94
H$_{2}$O$^{+}$ MP1 [−5, 5], [12−20]	-	<0.20	<0.86

Notes. Upper limits are calculated assuming a 3σ Gaussian profile with a width of 3 km s$^{-1}$.

$^{(a)}$ The column density of CH$^{+}$ observed in emission is calculated for $n_{H} = 2 \times 10^{4}$ cm$^{-3}$, $T_{\text{kin}} = 100$ K, and a line width of 7.5 km s$^{-1}$.
originates in this region. A second possibility is that the absorptions come from the large scale bipolar outflow associated with this IR cluster (Giannakopoulou et al. 1997; Tafalla et al. 1997; Xu et al. 2006). However, if the absorptions were associated to a bipolar outflow at a certain inclination to the plane of the sky, the red and blue profiles would be significantly different toward MP1 and CP1 that are separated by ∼43”, therefore we can discard this possibility. We cannot discard though the presence of an outflow with a perfect symmetrical pole-on configuration, although it is quite unlikely to have such a perfectly symmetrical pole-on structure.

It is more likely, however, that the low molecular fraction layers are associated with the PDR around the H II region. In this case, the profiles of the OH+ line can provide important information about the kinematics of the UCHII region. In the picture of an expanding H II region (Jaffe et al. 2003), the values of the velocity centroids of the blue- and red-shifted absorption features would provide an upper limit to the expansion velocity of this layer, ∼8 km s⁻¹ for the front side, and ∼4 km s⁻¹ for the back side. The main argument against this interpretation is that one would expect to see some changes in the separation between the red and blue absorptions among the observed positions. In the description of Zhu et al. (2005), in which the molecular cloud is sustained by the stellar wind pressure, the atomic gas would be instead entrained in the ionized gas that flows along the walls of the cavity. This latter interpretation better explains the absence of a difference in the OH+ profiles toward the three positions. However, an anisotropic expansion or a larger shell could also explain this pattern. Finally, neither the expansion scenario nor the Zhu et al. (2005) model are able to fully explain the change in the kinematics between the ionized gas (that peaks at 25 km s⁻¹, see Jaffe et al. 2003) and the atomic gas (peaking at 15 km s⁻¹, this paper). Thus, our data cannot distinguish between these two interpretations.

In Fig. 4, we show the sketch of a model that is consistent with the observations presented here. The dust grains in the molecular cloud in the back side (relative to the observer) of the H II region are responsible for the observed continuum emission (see Fig. 1). The OH+ and CH+ absorption signatures arise in the main atomic layers of the PDR in front of the molecular cloud. The emission of the high density molecular gas in the back of the H II region produces the observed absorption-emission profile. The continuum emission must be mainly produced by the dust behind the H II region to allow absorption at both blue-shifted and red-shifted velocities. This means that the gas density and column densities are larger in the back than in the front side.

4.2. Comparison with chemical models

In our schematic view of Mon R2, the cloud is constituted by spherically symmetric layers of different densities (Fig. 5). The layers surround the H II region so that the PDRs are found both in the back and in the front of the H II region. We have used the Meudon PDR code (Le Petit et al. 2006; Goicoechea & Le Bourlot 2007; Gonzalez Garcia et al. 2008; Le Bourlot et al. 2012) version 1.4.3 to compare the column densities derived from the observations to those predicted by gas-phase chemical models. Since the Meudon code is a 1-D model, these are radial column densities integrated from the beginning of the PDR at r=0.08 pc. The input parameters of the model and the density structure are the same as in Pilleri et al. (2012, 2013).

The results of the codes are shown in Fig. 5. In the code, most of the OH+ and CH+ is produced at the transition between the atomic and molecular layers at AV ∼ 1. The code predicts N(OH+) = 1.35 × 10¹³ cm⁻² in each side (back and front) of the sphere, in good agreement with the observed values. This supports that the OH+ absorption is due to the most exposed layers of the PDR. Concerning CH+, the code predicts a column density of 1.6 × 10¹³ cm⁻² in each side of the cloud. This is in reasonable agreement with the column density obtained from the LVG calculations, considering the large uncertainties in the column density and the simplicity of our sketch model. The code predicts also a column density of H₂O⁺ of 6 × 10¹² cm⁻², in good agreement with our upper limits toward the IF.

5. Conclusions

We have presented observations of the reactive ions OH+, CH+ and H₂O⁺ of the Monoceros R2 complex obtained with the HIFI
instrument onboard Herschel. CH$^+$ is observed in emission at the bulk velocity of the region and in absorption at blue-shifted velocities. On the other hand, OH$^+$ is observed in absorption at both blue- and red-shifted velocities, with similar opacities and line profiles at the three observed positions in the cloud. The line profiles of the transitions of CH$^+$ and OH$^+$ observed with HIFI allow us to constrain the geometry of the region and study the dynamics of the ionized-to-neutral gas conversion layers.

Based on our observations, we propose a geometrical model in which the column density of dust grains in the back of the \textsc{Hii} region (relative to the observer) is higher compared to the front. In this model, the OH$^+$ absorption signatures are associated with the layer of mainly atomic gas that surrounds the \textsc{Hii} region. Concerning the kinematics, the line profiles of OH$^+$ at all the observed positions are consistent with the scenario of the atomic gas flowing along the walls of the cavity with the ionized gas, as described in Zhu et al. (2005). However, an alternative kinematical scenario consisting in an anisotropic expansion of the \textsc{UCHii} cannot be excluded based on our dataset.

References

Bernet, O., Fuente, A., Goicoechea, J. R., et al. 2009, ApJ, 706, L160
Cernicharo, J. 2012, in EAS Publications Series, ed. C. Stehlí, C. Joblin, & L. d’Hendecourt, in press
Cho, M., Evans, II, N. J., Tafalla, M., & Bachiller, R. 2000, ApJ, 538, 738
de Graauw, T., Helmich, F. P., Phillips, T. G., et al. 2010, A&A, 518, L6
Fuente, A., Bernet, O., Cernicharo, J., et al. 2010, A&A, 521, L23
Gerin, M., de Luca, M., Goicoechea, J. R., et al. 2010, A&A, 521, L16
Giannakoulopou, J., Mitchell, G. F., Hasegawa, T. I., Matthews, H. E., & Maillet, J.-P. 1997, ApJ, 487, 346
Ginard, D., González-García, M., Fuente, A., et al. 2012, A&A, 543, A27
Godard, B., Falgarone, E., Gerin, M., et al. 2012, A&A, 540, A87
Goicoechea, J. R. & Le Bourlot, J. 2007, A&A, 467, 1
Gonzalez Garcia, M., Le Bourlot, J., Le Petit, F., & Roueff, E. 2008, A&A, 485, 127
Gupta, H., Rimmer, P., Pearson, J. C., et al. 2010, A&A, 521, L47
Habing, H. J. 1968, Bull. Astron. Inst. Netherlands, 19, 421
Hollenbach, D., Kaufman, M. J., Neufeld, D., Wolfire, M., & Goicoechea, J. R. 2012, ApJ, 754, 105
Jaffe, D. T., Zhu, Q., Lacy, J. H., & Richter, M. 2003, The Astrophysical Journal, 596, 1053
Le Bourlot, J., Le Petit, F., Pinto, C., Roueff, E., & Roy, F. 2012, A&A, 541, A76
Le Petit, F., Néméé, C., Le Bourlot, J., & Roueff, E. 2006, ApJS, 164, 506
Loren, R. B. 1977, ApJ, 215, 129
Nagy, Z., Van der Tak, F. F. S., Ossenkopf, V., et al. 2013, A&A, 550, A96
Neufeld, D. A., Goicoechea, J. R., Soemntamrucker, P., et al. 2010, A&A, 521, L10
Ossenkopf, V., Röllig, M., Kramer, C., et al. 2011, in EAS Publications Series, Vol. 52, EAS Publications Series, ed. M. Röllig, R. Simon, V. Ossenkopf, & J. Stutzki, 181–186
Ossenkopf, V., Röllig, M., Neufeld, D. A., et al. 2013, A&A, 550, A57
Ott, S. 2010, in Astronomical Society of the Pacific Conference Series, Vol. 434, Astronomical Data Analysis Software and Systems XIX, ed. Y. Mizumoto, K.-I. Morita, & M. Ohashi, 139
Pety, J. 2005, in SF2A-2005: Semaine de l’Astrophysique Francaise, ed. F. Carilli, T. Contini, J. M. Hameury, & L. Pagani, 721
Pilbratt, G. L., Riedinger, J. R., Passvogel, T., et al. 2010, A&A, 518, L1
Pilleri, P., Fuente, A., Cernicharo, J., et al. 2012, A&A, 544, A110
Pilleri, P., Treviño-Morales, S., Fuente, A., et al. 2013, A&A, 554, A87
Rizzo, J. R., Fuente, A., Rodríguez-Franco, A., & García-Burillo, S. 2003, ApJ, 597, L153
Roelfsema, P. R., Helmich, F. P., Teyssier, D., et al. 2012, A&A, 537, A17
Tafalla, M., Bachiller, R., Wright, M. C. H., & Welch, W. J. 1997, ApJ, 474, 329
Xu, Y., Shen, Z.-Q., Yang, J., et al. 2006, The Astronomical Journal, 132, 20
Zhu, Q.-F., Lacy, J. H., Jaffe, D. T., Richter, M. J., & Greathouse, T. K. 2005, ApJ, 631, 381
Zhu, Q.-F., Lacy, J. H., Jaffe, D. T., Richter, M. J., & Greathouse, T. K. 2008, ApJS, 177, 584

Acknowledgements. We thank the referee for his useful comments. The authors thank the spanish MINECO for funding support through the grants CSD2009-00038 and AYA2009-07304 and AYA2012-32032. JRG was supported by a Ramon y Cajal contract. HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada, and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France, and the US. Consortium members are: Canada: CSA, UWaterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, FISI-INAF, Osservatorio Astrofisico di Arcetri- INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronómico Nacional (IGN), Centro de Astrobiología (CSIC-INTA), Sweden: Chalmers University of Technology - MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC.