Structural characterization of hydrothermally synthesized MnO₂ nanorods

D Q A’yuni¹, I Alkian¹, F K Sya’diyah¹, Kadarisman¹, A Darari¹, V Gunawan¹ and A Subagio¹

¹Department of Physics, Faculty of Science and Mathematics, Diponegoro University
Jl. Prof. Soedarto, Tembalang, Semarang City, 50275, Indonesia

E-mail: dewiqurrota@st.fisika.undip.ac.id

Abstract. We prepared the hydrothermal method to synthesize MnO₂ nanorods with controlled structure. KMnO₄ and HCl with the various molar ratio (1:2, 1:6, 1:8) reacted at 160°C for three hours to form MnO₂ nanorods. The study found that changing the molar ratio can control the structure and morphology of MnO₂. The result revealed that MnO₂ formed in nanorod microstructures with different crystallographic structure and phase composition of each molar ratio. The diffraction peaks observed at 2θ values of 28.9°, 37.8°, 40.9°, 49.7° and 60.5° respectively indexed to (110), (101), (200), (411) and (521) plane reflections of a tetragonal phase of β-MnO₂ and α-MnO₂. The characterization of the morphology showed that the diameters of nanorod microstructures of MnO₂ ranging from 30 to 145 nm with length ranging from 0.5 to 3 μm. These MnO₂ nanorods product would be potentially used in energy storage devices.

1. Introduction

MnO₂ was one of the most attractive materials because of its applications, such as catalysts, lithium-ion batteries and Mg batteries, electrochemical supercapacitors, ionic or molecular sieves, for its advantages of low cost, earth abundance, environmentally friendly, and superior performance in energy capacity [1,2]. The physical properties of MnO₂ relied on the crystalline phase and morphology of MnO₂ nanostructures [2,3]. The previous studies investigated the morphology and crystal structure of MnO₂ in the different morphology, including nanorods [1,3,4], nanoflower [5,6], nano urchin [3,7], nanowires [8,9], nanoneedles [10]. Nanorods were one of the most interesting morphologies because it can control self-aggregation effectively [11]. The various method has been developed to synthesize MnO₂ with controlled morphologies, including thermal, refluxing, hydrothermal, sol-gel, electrochemical, solid-state reaction [12]. The hydrothermal method was attractive because it is a cheap, environmentally friendly method to prepare materials in different nanostructures [13]. For example, Li et al. [3] studied the electrochemical properties on supercapacitor with the different morphology of MnO₂ including nanorod, hollow urchin, and smooth ball, and nanorod structure displayed the best electrochemical capacity.

In this study, we demonstrate a hydrothermal method to synthesize MnO₂ nanorods with controlled structure. We changed the molar ratio of Mn precursor solution to HCl to control the structure of MnO₂. To calculating the crystallite sizes of MnO₂, we used the Scherrer equation given below [14]:

\[
\frac{1}{D} = \frac{K \lambda}{B \cos \theta}
\]
\[D = \frac{K \lambda}{\beta \sin \theta} \]

(1)

where \(\lambda \) is X-Ray wavelength (nm), \(\beta \) is the peak width of the diffraction peak profile at half maximum height (rad) and \(K \) is a constant related to crystallite shape. Furthermore, the products of MnO\(_2\) nanorods potentially would be used in energy storage and other devices which are need storage of electron.

2. Experimental

2.1. Synthesis MnO\(_2\) Nanorods

MnO\(_2\) were synthesized by using KMnO\(_4\) and HCl with the different molar ratio (1:2, 1:6, 1:8). All chemicals were analytical grade reagents from Merck, Germany. 0.395 g KMnO\(_4\) was dissolved completely in deionized water + HCl at room temperature. The solution was kept continuous stirring to form a clear solution. The mixture was transferred into a 20 mL Teflon-lined autoclave. The autoclave was heated at 160 °C for three hours (Figure 1.) in an oven and then cooled down to room temperature naturally.

![Figure 1. Schematic of hydrothermally synthesized MnO\(_2\) nanorods](image)

2.2. Characterization

The samples were characterized by X-ray diffraction spectroscopy (XRD, Philip Analytical X-Ray B. V) with Cu K\(\alpha\) radiation (\(\lambda=1.5418\) Å) at 40 kV, and Scanning Electron Microscopy (SEM) to study the morphology of MnO\(_2\) nanorods.

3. Results and Discussion

Analysis role of the molar ratio of KMnO\(_4\) to HCl, we made three different samples with the molar ratio of 1:2, 1:6, and 1:8. The reaction was carried out at the temperature of 160 °C for 3 h. The morphology of samples was characterized by SEM. Figure 2. shows the morphology of MnO\(_2\) nanorods at the different molar ratio. The results show nanorod microstructures with aggregation with length ranging from 0.5-3 μm. However, the product of molar ratio 1:2 shows more spherical nanostructure than nanorod structure (Figure 2. (a)). Figure 2. (b) and (c) shows nanorod and nanowire structures with more nanorods in the molar ratio of 1:8. The products of nanorod structures consist with the diameter ranging from 30-145 nm. It is likely that a larger amount of HCl will produce more nanorod structures with the same reaction time. Based on the reaction process, the reaction on the formation of MnO\(_2\) using KMnO\(_4\) and HCl is according to the following reaction [1]:

\[KMnO_4 + H_2O + HCl \rightarrow MnO_2.H_2O + KCl + H_2O \]
Figure 2. SEM images of MnO$_2$ nanorods at the different molar ratio: (a) 1:2, (b) 1:6, (c) 1:8

Figure 3. XRD patterns of MnO$_2$ nanorods at the different molar ratio: (a) 1:2, (b) 1:6, (c) 1:8

The powder X-Ray diffraction (XRD) pattern was shown in Figure 2. for the samples synthesized with the three different molar ratio. The diffraction peaks observed at 2θ values of 28.9°, 37.8°, 40.9°,
49.7°, and 60.5° respectively indexed to (110), (101), (200), (411), and (521) plane reflections of a tetragonal phase of β-MnO$_2$ and α-MnO [1,3]. However, the crystallinity of the molar ratio of 1:2 has small rods and irregularity (Figure 2. (a)), indicating that the product presents an amorphous structure. The diffraction patterns show that, of the three samples, the molar ratio of 1:8 has the best crystallinity. However, the peaks of intensity are broad and low, indicating the presence of low degree crystallinity of MnO$_2$ nanorods.

Table 1. shows the crystallite size of MnO$_2$ nanorods as calculated according to the equation (1).

Molar Ratio	Crystallite Size (nm)
1:2	-
1:6	10.09
1:8	20.61

The mechanism of the crystallographic structure transformation has been illustrated in Figure 4. At the molar ratio of 1:2, the high concentration of precursors lead to rapid formation of numerous nuclei, which these nuclei self-assemble to form nearly amorphous spheres [15,16]. Increasing molar ratio from 1:2 to 1:6 and 1:8, the spherical morphology with amorphous structures are changed to nanorod morphology with the crystal structure. This is attributed that more HCl could lead to a decrease in the nucleation rate, thus the structures becoming to nanorods [5].

4. Conclusions
This work shows that MnO$_2$ nanorods have been successfully prepared by hydrothermal method. We have synthesized β-MnO$_2$ and α-MnO$_2$ nanorods with the combination of sphere and wire nanostructures by tuning the molar ratio of Mn precursor solution to HCl. The peaks of intensity are still broad and low, indicating the presence of low degree crystallinity of MnO$_2$ nanorods. The uniform morphology can be controlled by increasing the molar ratio. Synthesis process studies reveal that the molar ratio is one of the parameters to get the nanorod structures. These products would be potentially used in energy storage devices.
5. Acknowledgments

We would like thank to Diponegoro University, Ministry of Research Technology and the Higher Education Republic of Indonesia for funding our research from Program Kreativitas Mahasiswa (PKM). We are also indebted to Mr. Chasbullah Hindratmo for his valuable assistance in Laboratory Nanotechnology, Diponegoro University.

References

[1] Wu J, Huang H, Yu L and Hu J 2013 Advances in Materials Physics and Chemistry 3 201
[2] Darari A, Ardiansah H R, Arifin, Rismaningsih N, Ningrum A N and Subagio A 2016 AIP Conference Proceedings 1725 020012
[3] Li N, Zhu X, Zhang C, Lai L, Jiang R and Zhu J 2017 Journal of Alloys and Compound 692 26
[4] Kumar A, Sanger A, Singh A K, Kumar A, Kumar M and Chandra R 2017 Journal of Magnetism and Magnetic Materials 433 227
[5] Wang G, Tang B, Zhuo L, Ge J and Xue M 2006 Eur. J. Inorg. Chem 2313
[6] Chu J, Lu D, Ma J, Wang M, Wang X and Xiong S 2017 Material Letters 193 263
[7] Li W et al. 2012 Journal of Materials Chemistry 22 14864
[8] Devaraj S and Mundichairah N 2008 J. Phys. Chem 112 4406
[9] Guan H, Chen G, Zhang S and Wang Y 2010 Material Chemistry and Physics 124 639
[10] Deng S, Sun D, Wu C, Wang H, Liu J, Sun Y and Yan H 2013 Electrochimica Acta 111 707
[11] Chen Y, Liu C, Li F and Cheng H M 2005 Journal of Alloys and Compounds 397 282
[12] Liu X, Fu S and Huang C 2005 Powder Technology 154 120
[13] Subramanian V, Zhu H and Wei B 2006 Journal of Power Sources 159 361
[14] Feng L, Xuan Z, Zhao H, Bai Y, Guo J, Su C and Chen X 2014 Nanoscale Research Letter 9:290
[15] Xiao W, Wang D and Lou X W 2010 J. Phys. Chem. C 114 1694
[16] Zhu J, Tang S, Xie H, Dai Y and Meng X 2014 ACS Appl. Mater. Interfaces 1