A Polarized HERA Collider
V. W. Hughes and A. Deshpande

Physics Department, Yale University P.O.Box 208121, New Haven, CT 06520-8121, U.S.A.

A brief review is given of the status of nucleon spin structure functions as determined from polarized deep inelastic lepton-nucleon scattering, including current outstanding problems. The characteristics of a polarized HERA collider, some of the particle physics topics it could address, and the accelerator physics challenges it must meet are discussed.

1. Introduction

It is often said that physics studies involving spin can lead to surprising results. We list some outstanding examples below.

Some Surprises With Spin

1. Space quantization associated with quantized spin directions. Stern, Gerlach, 1921.
2. Atomic fine structure and electron spin magnetic moment. Goudsmit, Uhlenbeck, 1926.
3. Proton anomalous magnetic moment; \(\mu_p = 2.79 \text{ nm} \). Stern, 1933.
4. Electron spin anomalous magnetic moment. \(\mu_e = \mu_0 (1.00119)\); QED. Kusch, 1947.
5. Electroweak interference from virtual photon-proton asymmetry. Prescott & SLAC-Yale Collaboration, 1978.
6. Proton spin structure; puzzle or crisis. EMC, 1989.

Hence from an historical viewpoint the spin variable is a promising one for discovery.

The first experiment, beginning in the mid-1970’s, on polarized lepton-proton deep inelastic scattering was a series of two measurements at SLAC by a SLAC-Yale group, using an atomic beam polarized electron source built at Yale and an electron beam energy of \(\sim 20 \text{ GeV}\). The virtual photon-proton asymmetry \(A_1^p\) was measured in the \(x\) range from 0.1 to 0.7 and found to be large. The values were consistent with a plausible quark-parton model satisfying the Bjorken sum rule, and also satisfying the Ellis-Jaffe sum rule if Regge extrapolation of \(g_1^p(x)\) to \(x = 0\) was employed.

The European Muon Collaboration (EMC) in the mid-1980’s made a similar measurement of \(A_1^p\) using a polarized \(\mu^+\) beam with energy up to 200 GeV. In addition to confirming the SLAC results for \(x > 0.1\), their data extended down to \(x = 0.01\). Unexpectedly, the \(A_1^p\) data at low \(x\) fell well below the extrapolated SLAC data. The consequence was violation of the Ellis-Jaffe sum rule at the 3 standard deviation level, and the conclusions were that only the small fraction \(\Delta = 0.12 \pm 0.17\) of the proton spin is due to quark spins and that strange quarks have a substantial negative polarization.

This discovery by EMC has led to major new experiments at CERN, SLAC and DESY which were reviewed by R. Windmolders in this workshop.

Some outstanding questions relevant to spin structure remain: 1) Behavior of \(g_1^p(x)\) at small \(x\) and the value of the first moment \(\Gamma_1^p = \int_0^1 dx g_1^p(x)\). 2) Contribution of gluons to proton spin and the polarized gluon distribution. 3) Contribution of the orbital angular momentum of quarks and gluons to proton spin. 4) Hadronic spin structure of the photon. 5) Chiral structure of any observed contact interaction or leptoquark beyond the standard model.

Experiments such as polarized lepton-nucleon scattering which require a polarized beam and a polarized target are sometimes spoken of as spin physics and are sometimes regarded as not of central interest. However, it is well known that the hadronic tensor \(W^{\mu\nu}\), which describes
Table 1: A Polarized HERA Collider

	Electron Beam	Proton Beam
Beam Energy	26 – 30 GeV	800 – 930 GeV
Polarization Status	Polarized Sokolov	Negligible polarization due to SKE
Ternov Effect (SKE)	$P_e \sim 60\%$ in 1/2 hour	Need polarized source
Expected Polarization	70%	70%
Uncertainty $\delta P/P$	$\leq 2\%$	$\leq 3\%$
Integrated Luminosity	$\sim 500 \text{ pb}^{-1}$, 3 years running with 150–170 pb$^{-1}$/year	

The proton in DIS ep or μp scattering, involves four scalar functions: $F_1(x)$, $F_2(x)$, $g_1(x)$ and $g_2(x)$, which are required for a complete knowledge of $W^{\mu\nu}$. The functions F_1 and F_2 do not involve the spin variables, whereas g_1 and g_2 do. Perhaps the principal achievements of HERA to date are the measurement of $F_2(x)$ at small x and also at high Q^2, the determination of the unpolarized gluon distribution in the proton, study of the hadronic constituents of the photon, and extension of the limits on a contact interaction or leptoquark search. A polarized HERA collider will address these same topics from a different viewpoint. Spin is a fascinating tool but it is not the goal of these experiments.

2. Characteristics of a Polarized HERA Collider

There has been considerable interest in a possible polarized HERA collider with the characteristics indicated in Tab. 1, in several workshops associated with HERA[3,4]. At present of course there is a polarized electron beam in HERA which is used in the HERMES experiment. Development of a polarized proton beam is required. Then one or both of the existing collider detectors –ZEUSSH1– could be used for measurements of polarized $e^\pm p$ DIS.

The huge increase in the $x - Q^2$ range for measurements of spin variables possible with a polarized HERA collider is shown in Fig. 1. Two orders of magnitude increase in both x and Q^2 range is possible for exploring the spin structure of the proton. If a sufficiently intense source of $^3\text{He}^-$ can be developed, measurements of the spin structure of the neutron could be done[3].

![Figure 1. The $x - Q^2$ range of HERA compared to the fixed target experiments at CERN, SLAC and DESY.](image)

3. Particle & Nuclear Physics with Polarized HERA

3.1. Measurement of g_1^p at low x

The behavior of g_1^p at low x is of fundamental interest and the largest uncertainty on the first moment of g_1^p now comes from the unmeasured low x region, $x < 0.003$[3]. The statistical uncertainties for a measurement of g_1^p with a polarized HERA collider (Tab. 1), using the H1
or ZEUS detector, are shown in Fig. 3. Even though the predicted asymmetries are as small as 3×10^{-4} at low x, false asymmetries associated with correlations of proton beam intensity or bunch crossing angle with proton polarization, or with time variation of detection efficiencies can be kept still smaller by modulation of the spin direction. From the polarized H$^-$ source any desired polarization can be provided for a proton bunch so that rapid modulation for successive interactions is achieved. Also in the HERA ring at high energy, all of the spin directions of the proton bunches can be flipped periodically by a microwave pulse. Recently [4] it has been checked that the detector smearing and event migration effects due to the measurement after HERA measurements of 2-jets is disentangled from models and QCD fits consistent with the presently available data.

3.2. The Polarized Gluon Distribution

Determination of the polarized gluon distribution $\Delta G(x, Q^2)$ inside a nucleon and its first moment ΔG have become important goals of all experiments proposed and planned in the next decade. Polarized HERA can contribute significantly, through the various different and independent ways in which it can measure $\Delta G(x, Q^2)$.

Perturbative QCD analysis of g_1^p allows a determination of $\Delta G(x, Q^2)$ through a next-to-leading order analysis [5]. The published value of $\Delta G = 1.0^{+1.2}_{-0.7} \text{(stat)}^{+0.3}_{-0.2} \text{(syst)}^{+1.4}_{-0.5} \text{(theo)}$ [5] indicates that statistical and theoretical uncertainties dominate our lack of knowledge of $\Delta G(x, Q^2)$. A study [6] using simulated HERA data and the presently available fixed target data indicates that the statistical & theoretical uncertainties could be reduced by factors ~ 2 & ~ 3, respectively.

In the Photon Gluon Fusion (PGF) process the gluon is involved at leading order (LO). The measurement of such a process through detection of 2 high-PT jets and the scattered electron allows access to the polarized gluon distribution [3]. Figure 3 shows the statistical uncertainty achieved by polarized HERA collider (Tab. 7). Also shown are three widely different predictions for $\Delta G(x, Q^2)$ at LO, all consistent with the fixed target data, which HERA data can easily distinguish between. Expected uncertainty on $\Delta G/G$ after HERA measurements of 2-jets is ± 0.1 [3]. It has also been checked that the detector smearing and migration effects due to the measurement process do not affect the measurability of ΔG. Recently, NLO corrections to this process were

![Figure 2](image-url)

Figure 2. The statistical uncertainty on g_1^p from possible measurements at HERA with 500 pb$^{-1}$ is shown along with different theoretical predictions for the low x in the kinematic region $x < 0.003$.

![Figure 3](image-url)

Figure 3. Statistical accuracy possible for the measurement of $\Delta G(x)$ using 2 jets from the PGF process shown with different predictions for $\Delta G(x, Q^2 = 20 \text{ GeV}^2)$.
evaluated and found to be small.

Both H1 and ZEUS collaborations have published results on the parton distributions inside the unpolarized photon $q\gamma$. With polarized HERA one could investigate the structure of the polarized photon $\Delta q\gamma$. A study\cite{3}, using single and 2 high-p_T jets or hadron tracks from the PGF process in photoproduction, showed that a luminosity of 100 pb$^{-1}$ was sufficient to resolve the polarized photon and the gluon structure.

4. Polarized HERA: Accelerator Aspects

Production of a high energy polarized proton beam in HERA requires first a polarized H^- source and then acceleration to high energy through the DESY acceleration chain with retention of polarization (Fig. 4). The full initial study\cite{6} of the requirements for a high energy polarized beam in HERA identified two crucial problems. One is the development of an adequate polarized H^- source, and the second is the acceleration and retention of proton polarization in HERA.

4.1. Polarized Source for HERA

The design specifications for a polarized H^- source for HERA are\cite{6}: $I=20$ mA, in 100μs pulses at 0.25 Hz with emittance 2π mm\cdotmr, and $P_p = 0.8$. At present the most promising approach is the Optically Pumped Polarized Ion Source (OPPIS) development at TRIUMF by A. Zelenski et al.\cite{7}. The overall source arrangement is shown in Fig. 5.

A polarized H^- source is now being developed at TRIUMF for the Relativistic Heavy Ion Collider (RHIC) at BNL for their RHIC-Spin program. Development of an OPPIS source suitable for HERA is progressing with optimism.

4.2. Acceleration of Polarized Protons

The acceleration and then storage of polarized protons from the ion source to the high energy HERA ring is a major problem dominated principally by depolarizing resonances. Because of the large anomalous magnetic moment of the proton ($\mu_p = 2.79$ nm), the relativistic equations of spin motion\cite{8} show that at high energy the number of spin precessions per orbit –the spin tune– is large, indeed equal to $G\gamma$ which is ~1530 at $E=800$ GeV. Hence the spin motion is very sensitive to the magnetic field, and in particular the many intrinsic and imperfection resonances can lead to depolarization. Avoidance of depolarization involves the use of the Siberian Snake principle\cite{9}. Extensive simulation calculations by spin tracking codes have been done\cite{8}. Figure 6 shows for two energies the equilibrium polarization distribution or the spin vector for the stored proton beam in HERA, using 8 snakes. Although such results are encouraging, much further intensive study of spin motion is required to assure adequate proton polarization at high energy. Electron cooling in the DESYIII ring is being considered to reduce the beam emittance and thus make it simpler to obtain high proton polarization.

4.3. Proton Beam Polarimetry

Measurement of proton beam polarization at high energy is under active development at BNL, mainly for the RHIC Spin program in which polarized proton beams up to 250 GeV will collide. Three types of polarimeter are presently considered\cite{4}: 1) Inclusive pion production $\vec{p} + C \rightarrow \pi^+ + X$, 2) $\vec{p} + C$ elastic scattering in the Coulomb Nuclear Interference (CNI) region, ca-
A distribution of spins aligned along an invariant spin field is the ideal starting point for long term tracking studies of spin stability at fixed energy since deviations from equilibrium are then easy to discern.

Figure 5. The TRIUMF Optically Pumped Polarized Ion Source: 1. plasmatron proton source, 2. hydrogen neutralizer, 3. superconducting solenoid, 4. helium ionizer, 5. optically pumped Rb vapor cell, 6. deflection plates, 7. Na vapor ionizer, 8. bending magnet, 9. Lyman-alpha polarimeter

Figure 6. SPRINT simulation of the resultant spin vector at 800 (802) GeV proton beam above (below). Shown is the effect of 4π mm mrad deviation from the nominal spin direction.

5. Summary

Important physics results can be expected from ī + ī̅ collisions with the polarized HERA collider. However, increased effort is needed now to solve the challenging accelerator physics problems associated with achieving high energy polarized protons in the HERA ring.

REFERENCES

[1] V. W. Hughes & J. Kuti, Ann. Rev. Nucl. Part. Sci., 33, (1983) 611, and references therein.
[2] EMC, J. Ashman et al., Nucl. Phys., B328, (1989) 1.
[3] Proc. Workshop on Polarized Protons at HERA, DESY-Proceedings-1998-01, Ed. A. De Roeck & T. Gehrmann; Proc. 1997 Workshop on DIS off Polarized Targets, DESY 97-200, Ed. by J. Blümlein et al.; Proc. Workshop 1995/96 “Future Physics at HERA”, Ed. G. Ingelman et al., Vol.2.
[4] Proc. of the Workshop on Polarized Protons at High Energies –Accelerator Challenges and Physics Opportunities, May 17–20, 1999, DESY, Hamburg.
[5] SMC, B. Adeva et al., Phys. Rev. D58, 112001 & 112002 (1998).
[6] A. Krisch et al., SPIN Collaboration & DESY Polarization Team, UM-HE 96-30.
[7] A. Zelenski & L. Anderson, Comments At. Mol Phys. 32, No.5 (1996) 281.
[8] D. Barber et al., DESY 98-096, Sept. 1998.
[9] Ya. S. Derbenev & A. M. Kondratenko, Sov. Phys. JEPT, 25, No.2 (1972) 230.