Comparison of clinical characteristics in adult patients under 65 years of age with and without Covid-19 pneumonia

Tugce Sahin Ozdemirel¹, Esma Sevil Akkurt¹, Ozlem Ertan¹, Mehmet Enes Gökler², Berna Akinci Ozurek¹

¹Department of Chest Disease, University of Health Sciences Ankara Atatürk Chest Diseases and Chest Surgery Training and Research Hospital, Ankara, Turkey; ²Department of Public Health, Yıldırım Beyazıt University Faculty of Medicine, Ankara, Turkey

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) can cause asymptomatic, mild upper respiratory tract symptoms and pneumonia in young persons. How the disease will progress in each patient is still unknown. Therefore, we aimed to investigate the prognostic markers of the development of pneumonia and the clinical characteristics of patients under 65 years with COVID-19 confirmed by a positive reverse transcriptase polymerase chain reaction test. Methods: In this retrospective study, a total of 271 patients admitted in our unit were included. The patients were divided into two groups, those who did and those who did not develop pneumonia. Their clinical features, treatment protocols, and laboratory parameters were recorded retrospectively. Results: Pneumonia developed in 67.9% (n = 184) of the cases. The age in the pneumonia group was higher than that in the non-pneumonia group (p < 0.001). In the logistic regression analysis, the symptom and co-morbidity status were examined according to the presence of pneumonia; hypertension (HT) (OR: 4.525, 95% CL: 1.494–13.708) was the most important risk factor for pneumonia. When age and laboratory values were examined according to the presence of pneumonia, advanced age (OR: 1.042, 95% CL: 1.01–1.073), low albumin (OR: 0.917, 95% CL: 0.854–0.986), and high troponin (OR: 1.291, 95% CL: 1.044–1.596) were identified as risk factors for pneumonia. Conclusion: In this article, HT (22.3%, P < 0.001) has been considered as an important risk factor, whereas association of diabetes mellitus (21.2%, P 0.029) and smoking (25.0%, P 0.038) was also significant. The median age of the group was 51 (41.5–58) in the group developing pneumonia and 41 (30–48) in the non-developing group. Young patients with these predictive factors should be more carefully evaluated by further diagnostic procedures, such as thoracic computed tomography.

KEY WORDS: COVID-19, pneumonia, young adults

INTRODUCTION

During the pneumonia epidemic that emerged in Wuhan, China, in December 2020, pneumonia because of the newly defined severe acute respiratory syndrome coronavirus 2, known as SARS-CoV-2, was defined as coronavirus disease 2019 (COVID-19). Patients presented with both asymptomatic and flu-like symptoms and showed different clinical courses, from pneumonia to respiratory failure.[1,2] Thorax computed tomography (thorax CT) is very sensitive to identifying viral pneumonia. In all age groups, patients with COVID-19 pneumonia generally have bilateral,
COVID-19 generally affects entire populations, but older people with underlying diseases are more susceptible. COVID-19 can cause asymptomatic or mild upper respiratory tract symptoms in young persons, and diffuse lung involvement is observed in some cases. The majority of patients who develop moderate to severe disease are over 50 years old, although there has been a substantial minority of young people requiring hospitalisation and mechanical ventilation. However, how the disease will progress in each patient is still unknown. Therefore, we aimed to investigate the prognostic markers of the development of pneumonia and the clinical characteristics of patients under 65 years with COVID-19 infection confirmed by a positive reverse transcriptase polymerase chain reaction (RT-PCR) test.

MATERIALS AND METHODS

The approval for the study was obtained from the Medical Specialty Education Board of our hospital (711-28/1/2021). We included 350 adult patients aged 18–65 years whose COVID-19 infection had been confirmed by RT-PCR positivity between August 2020 and January 2021 in our hospital’s COVID-19 out-patient clinic and COVID-19 service. The patients’ admission symptoms, clinical features, laboratory parameters, lung radiological imaging, and treatment regimens were retrospectively obtained from the hospital information system. Patients (n = 79) who did not have a thorax CT examination and were asymptomatic or had symptoms for less than 5 days were excluded from the study. According to the thorax CT images, the patients were divided into two groups, those who developed and those who did not develop pneumonia, and their clinical features, treatment protocols, and laboratory parameters, that is, D-dimer, troponin, C-reactive protein (CRP), albumin, ferritin, lymphocyte count and percentage, neutrophil count and percentage, neutrophil-to-lymphocyte ratio (NLR), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH), were recorded retrospectively. The patients’ informed consent was obtained.

Statistics

The obtained data were evaluated using the IBM-SPSS (Version 20.0) program in the computer environment. Number, percentage, and mean ± standard deviation were used for the descriptive statistics. Chi-squared tests were used to compare categorical data, and the Mann–Whitney U test was used to compare continuous data. Logistic regression models were created with variables found to be significant by bivariate analysis (p < 0.05). Binary logistic regression (backward stepwise method) analysis was used in the model analysis. P ≤ 0.05 was accepted for statistical significance.

RESULTS

Of the study group, 45.4% were female (n = 123), and the mean age was 46.48 ± 11.99 years. Pneumonia developed in 67.9% (n = 184) of the cases, with 54.9% (n = 101) of these being men, and 25.0% (n = 46) were smokers. For the pneumonia group, the hospitalisation rate was 52.2%, and 9.8% (n = 18) required intensive care. A history of smoking, the presence of dyspnoea, a need for intensive care, desaturation, and hospitalisation were more frequent in those with pneumonia (p < 0.005, respectively). The socio-demographic characteristics and COVID-19 symptoms of the study group according to the presence of pneumonia are presented in Table 1. Of those with pneumonia, 90.2% (n = 166) were using favipiravir, 53.3% (n = 98) were using hydroxychloroquine, 42.9% were using steroids, and 44.6% were using non-specific antibiotics. Also, 22.3% (n = 41) of the patients with pneumonia had hypertension (HT), 21.2% (n = 39) had diabetes mellitus (DM), 10.9% had cardiac disease (n = 20), 6.5% had chronic obstructive pulmonary disease (n = 12), and 8.2% (n = 5) had asthma. Favipiravir, steroid, and non-specific antibiotic use statuses and the presence of HT were detected more frequently in those with pneumonia (p < 0.005, respectively). The drug use and co-morbidities of the study group according to the presence of pneumonia are presented in Table 2. The age in the pneumonia group was higher than that in the non-pneumonia group (p < 0.001). When laboratory values were examined according to the presence of pneumonia in the study group, white blood cell count, neutrophil count, neutrophil percentage, LDH level and NLR and initial troponin, initial D-dimer, initial ferritin, and initial CRP values were higher in the pneumonia group, whereas lymphocyte count, lymphocyte percentage, and albumin values were higher in the non-pneumonia group (p < 0.005, respectively). The study groups’ ages and laboratory values according to the presence of pneumonia are presented in Table 3. In the logistic regression analysis, when the symptom and co-morbidity status were examined according to the presence of pneumonia, dyspnoea (OR: 2370, 95% CL: 1187–4730), hospitalisation (OR: 3803, 95% CL: 1877–7705), and HT (OR: 4525, 95% CL: 1494–13,708) were the most important risk factors for pneumonia (Table 4). In the logistic regression analysis of the study group, when age and laboratory values were examined according to the presence of pneumonia, advanced age (OR: 1.042, 95% CL: 1.01–1.073), low albumin (OR: 0.917, 95% CL: 0.854–0.986), and high troponin (OR: 1.291, 95% CL: 1.044–1.596) were identified as risk factors for pneumonia (see Table 5).

DISCUSSION

Our study included 271 patients aged 18–65 years with positive RT-PCR tests for COVID-19 who had symptoms for longer than 5 days at the time of admission. Smoking and the presence of HT were found to be statistically
significant in the group that developed pneumonia. Hospitalisation, the need for additional antibiotics, desaturation, and bilateral involvement of the lung parenchyma were more common in the pneumonia group. Of the laboratory parameters, initial D-dimer, troponin, neutrophil, NLR, CRP, LDH, and ferritin levels were higher in the pneumonia group, and lymphocyte, albumin, and hemoglobin values were lower. Older age, the presence of HT, dyspnoea at hospital admission, low albumin, and high troponin were found to be risk factors for the development of pneumonia. Studies have shown that the need for mechanical ventilators, intensive care hospitalisation, and mechanical ventilators, intensive care hospitalisation.
Table 3: Age and laboratory values of the study group according to the presence of pneumonia

	Without Pneumonia	With Pneumonia
Subjects n=271		
Age	41.0	51.0
IQR 25	30.0	41.5
IQR 75	48.0	58.0
White blood cell	5750.0	6500.0
IQR 25	4800.0	5150.0
IQR 75	7700.0	8560.0
Lymphocyte count	1640.0	1350.0
IQR 25	1290.0	965.0
IQR 75	2170.0	1915.0
Neutrophile count	3630.0	4295.0
IQR 25	2800.0	3200.0
IQR 75	4870.0	6150.0
Lymphocyte %	29.4	22.0
IQR 25	21.0	14.5
IQR 75	35.0	30.0
Neutrophile %	60.5	68.0
IQR 25	56.0	60.4
IQR 75	69.0	78.6
Haemoglobin	14.5	13.8
IQR 25	13.5	12.7
IQR 75	15.7	15.0
Albumin	42.7	38.8
IQR 25	38.3	34.1
IQR 75	45.8	41.9
ALT	23.0	27.0
IQR 25	15.0	19.0
IQR 75	40.0	40.0
AST	24.0	27.0
IQR 25	19.0	19.0
IQR 75	31.0	40.0
LDH	198.0	270.0
IQR 25	162.0	238.0
IQR 75	238.0	315.0
NLR	2.0	3.0
IQR 25	1.5	1.9
IQR 75	3.2	5.3
Platelet	228.0	234.0
IQR 25	198.0	189.0
IQR 75	270.0	286.0
Initial Troponin	2.5	3.2
IQR 25	2.0	2.0
IQR 75	2.7	6.5
Initial D-Dimer	3.0	6.0
IQR 25	2.0	3.0
IQR 75	3.3	1.0
Initial Ferritin	88.1	162.0
IQR 25	27.0	61.0
IQR 75	149.8	373.9
Initial CRP	5.1	24.0
IQR 25	1.9	7.0
IQR 75	16.9	89.1

CRP: C-reactive protein, ALT: Alanine transaminase, AST: Aspartate transaminase, NLR: neutrophil lymphocyte ratio, LDH: Lactate dehydrogenase.
P values written in bold show statistically significance.

Table 4: Symptom and co-morbidity status according to the presence of pneumonia in the logistic regression analysis (Step 4)

	B	S.E.	P	OR	%95 CI
Dyspnoea (Reference: None)	0.863	0.353	0.014	2.370	1.187-4.730
Treatment (Reference: Home)	1.336	0.360	<0.001	3.803	1.877-7.705
Favipiravir (Reference: No)	0.805	0.375	0.032	2.236	1.071-4.668
Hypertension (Reference: No)	1.510	0.566	0.008	4.525	1.494-13.708

CI, confidence interval; OR, odd’s ratio; SE, standard error.
The model dependent variable was the presence of pneumonia; Model content: Smoking, Dyspnoea, Treatment, Favipiravir, Steroid, Non-specific antibiotic, Hypertension.

Table 5: Age and laboratory values according to the presence of pneumonia in the logistic regression analysis (Step 9)

	B	S.E.	P	OR	%95 CI
Age	0.041	0.015	0.008	1.042	1.011-1.073
Lymphocyte %	0.079	0.047	0.095	1.083	0.986-1.188
Neutrophile %	0.076	0.044	0.084	1.079	0.990-1.176
Albumin	-0.086	0.037	0.019	0.917	0.854-0.986
Initial Troponin	0.256	0.108	0.018	1.291	1.044-1.596

CI, confidence interval; OR, odd’s ratio; SE, standard error.
The model dependent variable was the presence of pneumonia; Model content: Age, White blood cell, Lymphocyte count, Neutrophile count, Lymphocyte %, Neutrophile%, Albumin, LDH, NLR, Initial Trop, Initial D-Dimer, Initial Ferritin, Initial CRP.

death rates are significantly higher in COVID-19 patients over 65 years of age compared to younger patients.[6,7] However, no specific data for the clinical features and treatment of young adult COVID-19 patients admitted to hospitals have been published. As far as we know, although studies on COVID-19 patients under the age of 65 have been published, no comparative studies between young adult patients with and without pneumonia have been published. In a study of patients under the age of 50 with a diagnosis of COVID-19, 56% of the patients were male, their mean age was 44.44 years, and 92.1% had CT lung involvement.[3] Our study found that pneumonia developed at a rate of 67.9%, with a mean age of 46.48 ± 11.99 years. In another study, where a median age of 50 years (IQR; 40–68) was found in a pneumonia group, it was stated that older age was a significant risk factor for the development of pneumonia.[8] In Jung et al.’s study, the mean age of a group of patients who initially developed pneumonia or during a follow-up was significantly higher (51.5 and 54.9 years, respectively) compared to a group without pneumonia (38.5 years). In our study, in accordance with the literature, the median age was 51 years (IQR: 41.5–58) in the group that developed pneumonia, and older age was statistically significant for the development of pneumonia. In the literature, it has been stated that HT, CVD, DM, and smoking are associated with poor clinical outcomes of COVID-19 cases.[10,11] In our study, the most common co-morbidities detected in the pneumonia group were HT, DM, and CVD, and there was a significant relationship between smoking and the development of pneumonia. The most commonly reported symptoms observed in COVID-19 patients are fever, cough, and myalgia.[12,13] In our study, these symptoms were common in the pneumonia group, but only dyspnoea was statistically significantly associated with COVID-19 pneumonia. Fever, the most common COVID-19, was not found to be significant in our study, suggesting that it was not a predictor for pneumonia. In another study, approximately 63% of hospitalised COVID-19 patients under the age of 65 had desaturation, and the hospital stay was longer in this group.[14] In our study, desaturation and hospitalisation were statistically more significant in the pneumonia group. To date, most studies on prognostic markers have shown an increase in D-dimer and LDH values and a decrease in lymphocyte levels.[15,16] and Zhang et al.[17] emphasised that D-dimer levels are an important marker for determining mortality in cases with COVID-19 pneumonia. Itelman et al.[18] emphasised that...
patients with severe COVID-19 have higher leukocyte and neutrophil counts and LDH levels. In our study, increased D-dimer and LDH and decreased ferritin levels were found to be statistically significantly higher in the pneumonia group. NLR, high CRP and low albumin have high sensitivity and specificity for demonstrating inflammation. Studies have shown that the NLR and the CRP/lymphocyte ratio are independent prognostic markers for many diseases. In our study, although the NLR and initial CRP values were high in patients with pneumonia, albumin and lymphocyte values were lower. In a retrospective cohort study involving 191 patients with COVID-19 from Wuhan, China, high LDH and ferritin levels were associated with mortality, and Wang et al. reported that 40% of patients with COVID-19 had high LDH values at the time of admission. In a systematic review conducted by Taneri, including 189 studies and 57,563 patients, compared to patients with an intermediate or low risk of disease, high ferritin and low haemoglobin levels were found in patients with a high risk for severe disease. Cobre et al. also found that high ferritin and low haemoglobin levels were observed in both COVID-19 patient groups and patients with severe disease. In our study, although haemoglobin levels were lower in the group that developed pneumonia, ferritin and LDH levels were higher. In a systematic review of four studies, including 374 patients, troponin levels were observed to be significantly higher in patients with severe COVID-19 infection compared to non-serious patients. Zhu et al. study also found that troponin values were a prognostic marker for severe disease. In our study, troponin values were higher in the group with pneumonia, and they were found to be a statistically significant risk factor for the development of pneumonia. Various studies, increased liver function markers, particularly ALT, AST, gamma-glutamyl transferase, and total bilirubin levels, have been described in COVID-19 patients. However, no statistical difference was found in these values in our study. In one study, at the time of diagnosis, 203 patients had bilateral pneumonia, 39 patients had unilateral pneumonia, six patients had normal thorax CT scan results, and 163 (65.7%) had radiological progression of symptoms on the seventh day in repeated radiological imaging. In another study, patients with or without pneumonia at the time of diagnosis had negative or positive CT findings according to the duration of symptoms; it was stated that the presence of pneumonia varied depending on the time after symptom onset, and the non-pneumonia group was characterised by younger patients, normal laboratory findings, and less co-morbidity. In another study, it was stated that positive CT findings were associated with symptom duration, and 56% of patients showed normal CT findings in the early phase (0–2 days) after symptom onset. Patients with symptoms for more than 5 days were included in our study, and in accordance with the literature, bilateral involvement was more common in the group with pneumonia, and older age was considered a risk factor for the development of pneumonia.

CONCLUSION

The presence of dyspnoea and HT, older age, low albumin, high troponin, and hospitalisation, which are indicators of mortality in elderly patients, were also important factors for predicting COVID-19-related pneumonia in patients under 65 years of age. Young patients with these predictive factors should be more carefully evaluated by further diagnostic procedures, such as thoracic CT.

Ethics committee approval
The approval for the study was obtained from the Medical Specialty Education Board of our hospital (711-28/1/2021)

Informed consent
Written informed consent was obtained from all participants who participated in this study.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579:270-3.
2. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – An update on the status. Mil Med Res 2020;7:11.
3. Zhao W, Zhong Z, Xie X, Yu Q, Liu J. Relation between chest CT findings and clinical conditions of coronavirus disease (COVID-19) pneumonia: A multicenter study. AJR Am J Roentgenol 2020;214:1072-7.
4. Liu K, Chen Y, Lin R, Han K. Clinical features of COVID-19 in elderly patients: A comparison with young and middle-aged patients. J Infect 2020;80:e14-8.
5. Bonifazi M, Mei F, Skrami E, Latini LL, Amico D, Balestro E, et al. Predictors of worse prognosis in young and middle-aged adults hospitalized with COVID-19 pneumonia: A multi-center Italian study (COVID-UNDER50). J Clin Med 2021:10:1218.
6. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020;395:1054-62.
7. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA 2020;323:1574-81.
8. Özger HS, Ayset Yildiz P, Gaygısız Ü, Uğraş Dikmen A, Demirbaş Gülmec Z, Yıldız M, et al. The factors predicting pneumonia in COVID-19 patients: Preliminary results from a university hospital in Turkey. Turk J Med Sci 2020;30:1810-6.
9. Jung HK, Kim JY, Lee MS, Lee JY, Park JS, Hyun M, et al. Characteristics of COVID-19 patients who progress to pneumonia on follow-up chest radiograph: 236 patients from a single isolated cohort in Daegu, South Korea. Korean J Radiol 2020;21:1265-72.
10. Zheng Z, Peng F, Xu B, Zhao J, Liu H, Peng J, et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J Infect 2020;81:e16-25.
11. Zizin M, Rigatelli G, Zuliani G, Rigatelli A, Mazza A, Roncon L. Arterial hypertension and risk of death in patients with COVID-19 infection: Systematic review and meta-analysis. J Infect 2020;81:e84-6.
12. Tian S, Hu N, Lou J, Chen K, Kang X, Xiang Z, et al. Characteristics of COVID-19 infection in Beijing. J Infect 2020;80:401-6.
13. Kim GU, Kim MJ, Ra SH, Lee J, Bae S, Jung J, et al. Clinical characteristics
of asymptomatic and symptomatic patients with mild COVID-19. Clin Microbiol Infect 2020;26:948.e1-3.
14. Ni YN, Wang T, Liang BM, Liang ZA. The independent factors associated with oxygen therapy in COVID-19 patients under 65 years old. PLoS One 2021;16:e0245690.
15. Zhu YC, Tan L, Liu L, Li KZ, Qi WY, Hu X. Comparative analysis of characteristics and medications between coronavirus disease 2019 and severe acute respiratory syndrome. Clin Med J 2020;18:15-23.
16. Ming J, Hong W, Chunli S, Kun W. Literature review and research overview of novel coronavirus pneumonia. Shanxi Med J 2020;49:259-63.
17. Zhang L, Yan X, Fan Q, Liu H, Liu X, Liu Z, et al. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost 2020;18:1324-9.
18. Itelman E, Wasserstrum Y, Segev A, Avaky C, Negru L, Cohen D, et al. Clinical characterization of 162 COVID-19 patients in Israel: Preliminary report from a large tertiary center. Isr Med Assoc J 2020;22:271-4.
19. Yodying H, Matsuda A, Miyashita M, Matsumoto S, Sakurazawa N, Yamada M, et al. Prognostic significance of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in oncologic outcomes of esophageal cancer: A systematic review and meta-analysis. Ann Surg Oncol 2016;23:646-54.
20. Tanriverdi Z, Gungoren F, Tascanov MB, Besli F, Altiparmak IH. Comparing the diagnostic value of the C-reactive protein to albumin ratio with other inflammatory markers in patients with stable angina pectoris. Angiology 2020;71:360-5.
21. Deng Y, Liu W, Liu K, Fang YY, Shang J, Zhou L, et al. Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 in Wuhan, China: A retrospective study. Chin Med J (Engl) 2020;133:1261-7.
22. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;323:1061-9.
23. Taneri PE, Gómez-Ochoa SA, Llanaj E, Raguiindin PF, Rojas LZ, Roa-Díaz ZM, et al. Anemia and iron metabolism in COVID-19: A systematic review and meta-analysis. Eur J Epidemiol 2020;35:763-73.
24. Cobre AF, Stremel DP, Noleto GR, Fachi MM, Surek M, Wiens A, et al. Diagnosis and prediction of COVID-19 severity: Can biochemical tests and machine learning be used as prognostic indicators? Comput Biol Med 2021;134:104531.
25. Lippi G, Lavie CJ, Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): Evidence from a meta-analysis. Prog Cardiovasc Dis 2020;63:390-1.
26. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506.
27. Palogiannis P, Zinellu A. Bilirubin levels in patients with mild and severe Covid-19: A pooled analysis. Liver Int 2020;40:1787-8.
28. Chen J, Qi T, Liu L, Ling Y, Qian Z, Li T, et al. Clinical progression of patients with COVID-19 in Shanghai, China. J Infect 2020;80:e1-6.
29. Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, et al. Chest CT findings in coronavirus disease-19 (COVID-19): Relationship to duration of infection. Radiology 2020;295:200463.
30. Yoon SH, Lee KH, Kim JY, Lee YK, Ko H, Kim KH, et al. Chest radiographic and CT findings of the 2019 novel coronavirus disease (covid-19): Analysis of nine patients treated in Korea. Korean J Radiol 2020;21:494-500.

Sahin Ozdemirel, et al.: COVID-19 pneumonia in adult patients under 65 years of age