The open XXZ spin chain in the SoV framework: scalar product of separate states

N Kitanine¹, J M Maillet², G Niccoli² and V Terras³

¹ IMB UMR5584, CNRS, University of Bourgogne Franche-Comté, F-21000 Dijon, France
² Laboratoire de Physique, University of Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, F-69342 Lyon, France
³ LPTMS, CNRS, University of Paris-Sud, Université Paris-Saclay, 91405 Orsay, France

E-mail: Nikolai.Kitanine@u-bourgogne.fr, maillet@ens-lyon.fr, giuliano.niccoli@ens-lyon.fr and veronique.terras@lptms.u-psud.fr

Received 25 July 2018, revised 18 September 2018
Accepted for publication 10 October 2018
Published 31 October 2018

Abstract

In our previous paper (Kitanine et al 2017 J. Phys. A: Math. Theor. 50 224001) we have obtained, for the XXX spin-1/2 Heisenberg open chain, new determinant representations for the scalar products of separate states in the quantum separation of variables (SoV) framework. In this article we perform a similar study in a more complicated case: the XXZ open spin-1/2 chain with the most general integrable boundary terms. We first revisit the SoV solution of this model using a matrix version of the Vertex-IRF gauge transformation so as to reduce one of the boundary K-matrices to a diagonal form. As usual within the SoV approach, the scalar products of separate states are computed in terms of dressed Vandermonde determinants having an intricate dependency on the inhomogeneity parameters. We show that these determinants can be transformed into different ones in which the homogeneous limit can be taken straightforwardly. These representations generalize in a non-trivial manner to the trigonometric case the expressions found previously in the rational case. We also show that generically all scalar products can be expressed in a form which is similar to—although more cumbersome than—the well-known Slavnov determinant representation for the scalar products of the Bethe states of the periodic chain. Considering a special choice of the boundary parameters relevant in the thermodynamic limit to describe the half infinite chain with a general boundary, we particularize these representations to the case of one of the two states being an eigenstate. We obtain simplified formulas that should
be of direct use to compute the form factors and correlation functions of this model.

Keywords: quantum integrable systems, separation of variables, XXZ open spin chain, determinant representation for scalar products

1. Introduction

The resolution of quantum lattice models with the most general boundary conditions preserving integrability properties has become along the years a subject of intense studies [2–70]. This interest is due, in particular, to their potential relevance for the investigation of the non-equilibrium and transport properties of quantum integrable systems [71–78]. Among several different approaches to this problem, the separation of variables (SoV) method [9, 79–81] has proven to produce cutting edge answers to give the possibility to construct the full set of eigenvalues and eigenstates of the Hamiltonians, while providing the first steps towards the computation of the form factors and correlation functions [1, 82–104].

We would like to mention that numerous other methods were used in this context, including algebraic Bethe ansatz and its modifications, analytic Bethe ansatz, Baxter T-Q equation and q-Onsager algebras. In our recent articles [1, 102, 103] we extensively discussed their connection to our approach and their possible relevance for the computation of form factors and correlation functions.

Looking for the exact description of the dynamics of quantum integrable lattice models, the determinant representations for the scalar products of states, including eigenstates of the Hamiltonian, plays a prominent role, as it was clearly demonstrated in the algebraic Bethe ansatz framework, see e.g. [105–107] using the determinant formula [105, 108]. It was shown there that they are expected to provide, together with the necessary resolution of the quantum inverse scattering problem [105, 109], the key ingredients to compute form factors of local operators [105]. These results in their turn lead to efficient expressions for the correlation functions [107, 110, 111] that can be computed either numerically from their exact formulas [112–116], leading to direct predictions for experimental measurements, or from refined analysis, in particular of the form factor series [110, 111], to their asymptotic behavior [117–124] leading to an exact derivation of the CFT predictions [125].

In the SoV framework it was shown already in [94] that determinant representations for scalar products of separate states, which include all eigenstates, can be obtained rather straightforwardly. They are given in terms of Vandermonde determinants dressed by the separate wave functions of the considered states. Hence for eigenstates these scalar products directly involve the Q-functions solving the Baxter T-Q relation. It should be noted however that to apply the SoV method one needs to construct a separate basis. In Sklyanin’s approach it is identified with the eigenstate basis of a distinguished operator of the Yang–Baxter or reflection algebra that is diagonalizable with simple spectrum. This is made possible by considering integrable lattice models with generic representations in each lattice site, meaning the presence of inhomogeneity parameters in generic positions.

However, to be fully successful, the program of computing scalar products, form factors and then correlation functions [110, 111, 117–124], needs determinant formulas for which the homogeneous and then the large volume limit can be tackled explicitly as in [122]. Unfortunately, it became clear from the results of [94], that although the obtained dressed Vandermonde determinants were easy to derive and appear quite universally from the SoV method, their homogeneous limit was very involved. This is due to the fact that the
inhomogeneity parameters are somehow spread non-locally in the whole determinant thus preventing a clear extraction of the homogeneous limit. This motivated us to dedicate our main efforts to a resolution of this problem that appeared to be a crucial point for the applicability of the SoV method itself. Indeed, while SoV has proven to be efficient quite widely for determining the full spectrum of integrable quantum systems [1, 9, 79–83, 85–94, 96–104, 126, 127], even in cases where other methods fail, its use for computing the dynamics, in particular in the infinite volume limit, was strongly dependent of the resolution of this homogeneous limit question.

It turns out that we have been able recently to find an answer to this question for the Heisenberg XXX spin-1/2 chain both in the closed [102] and open [1] cases. It is based on a rather beautiful correspondence between Vandermonde, Izergin [128, 129] and generalized Slavnov type [108, 130] determinants. This approach is similar to the one used for the study of the semi-classical limit of scalar products [131–133]. Using such a rewriting the homogeneous limit can be taken quite easily. What is more, these alternative determinants, written in terms of completely different matrices, sometimes of different dimensions, can be obtained using purely algebraic identities. Hence, it gave hopes that similar rewritings can be derived for other models of interest, the XXZ spin-1/2 Heisenberg models with general boundaries being one of the first on such a wish list. The aim of the present article is to present the corresponding results for this model. As such, it can be considered as the continuation of [1]. It should be stressed however that going from rational to trigonometric case is not as trivial as one could think at first sight. The reduction of the global symmetry together with the change of the basis of functions involved have direct consequences on the transformations one can use to solve the problem. Hence part of the methods developed in [1] have to be adapted and generalized. Nevertheless the results we obtain in the present article are quite similar to the rational case, although slightly more complex. In particular the determinant formulas relevant for describing an half-infinite chain with a general boundary can be tackled very nicely.

This article is organized as follows. In section 2 we recall the definition of the Heisenberg XXZ spin-1/2 open chain with the most general boundary conditions preserving integrability together with the associated reflection algebra and associated boundary K-matrices. In section 3 we use the vertex-IRF gauge transformation [51, 134, 135] in its algebraic form [136] to put into correspondence this model having the most general K-matrices with a model of SOS type for which one of the K-matrices has a diagonal form. This connection to the generators of the SOS monodromy matrix allows us to compute for the first time explicitly the normalization of the elements of the left and right SoV basis, as described in appendix C. In section 4 and in the first part of section 5, we recall and present in a uniformized manner results previously derived in [47, 49, 50]. More precisely, in section 4 we recall the implementation of the SoV method for this model and characterize the complete spectrum, i.e. eigenvalues and eigenstates, of the transfer matrix. The result is also written in terms of a functional T-Q equation with an inhomogeneous term, and we specify the constraints on the boundary parameters for which this inhomogeneous term vanishes. We also describe the set of separate states, namely states having a separate wave function in the SoV basis, that include all eigenstates. In section 5 we first recall the scalar products of the separate states in terms of dressed Vandermonde determinants, as it is usual in integrable systems solved by SoV. Then we give the main result of this article: the rewriting of these scalar products in terms of new dressed Vandermonde determinants with one modified column for which the homogeneous limit can be taken easily, and ultimately in terms of some generalized version of the Slavnov determinant [108, 130]. All technical details and proofs are gathered in a set of five appendices.
2. The open spin-1/2 XXZ quantum chain

The Hamiltonian of the open spin-1/2 quantum XXZ chain with the most general non-diagonal integrable boundary terms can be written in the following form:

\[
H = \sum_{n=1}^{N-1} \left[\sigma_n^x \sigma_{n+1}^x + \sigma_n^y \sigma_{n+1}^y + \cosh \eta \sigma_n^z \sigma_{n+1}^z \right] + \frac{\sinh \eta}{\sinh \zeta_-} \left[\sigma_1^z \cosh \zeta_- + 2 \kappa_- \left(\sigma_1^x \cosh \tau_- + i \sigma_1^y \sinh \tau_- \right) \right] + \frac{\sinh \eta}{\sinh \zeta_+} \left[\sigma_N^z \cosh \zeta_+ + 2 \kappa_+ \left(\sigma_N^x \cosh \tau_+ + i \sigma_N^y \sinh \tau_+ \right) \right].
\]

(2.1)

This is an operator acting on the quantum space of states \(\mathcal{H} = \otimes_{n=1}^N \mathcal{H}_n \) of the chain, where \(\mathcal{H}_n \cong \mathbb{C}^2 \) is the bidimensional local quantum spin space at site \(n \), on which the operators \(\sigma_n^a, a \in \{x, y, z\} \), act as the corresponding Pauli matrices. In (2.1), \(\Delta = \cosh \eta \) is the anisotropy parameter, and \(\zeta_\pm, \kappa_\pm, \tau_\pm \) parametrize the most general non-diagonal integrable boundary interactions. It may sometimes be convenient to use different sets of boundary parameters \(\alpha_\pm, \beta_\pm \) instead of \(\zeta_\pm, \kappa_\pm \), by using the following reparametrization:

\[
\sinh \alpha_\pm \cosh \beta_\pm = \frac{\sinh \zeta_\pm}{2 \kappa_\pm}, \quad \cosh \alpha_\pm \sinh \beta_\pm = \frac{\cosh \zeta_\pm}{2 \kappa_\pm}.
\]

(2.2)

The open spin-1/2 XXZ chain can be studied in the framework of the representation theory of the reflection algebra, by considering monodromy matrices \(\mathcal{U}(\lambda) \in \text{End}(\mathbb{C}^2 \otimes \mathcal{H}) \) satisfying the following reflection equation, on \(\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathcal{H} \):

\[
R_{21}(\lambda - \mu) \mathcal{U}_1(\lambda) R_{12}(\lambda + \mu - \eta) \mathcal{U}_2(\mu) = \mathcal{U}_2(\mu) R_{21}(\lambda + \mu - \eta) \mathcal{U}_1(\lambda) R_{12}(\lambda - \mu).
\]

(2.3)

In this relation, the subscripts parameterize the subspaces of \(\mathbb{C}^2 \otimes \mathbb{C}^2 \) on which the corresponding operator acts non-trivially. The \(R \)-matrix,

\[
R_{12}(\lambda) = \begin{pmatrix}
\sinh(\lambda + \eta) & 0 & 0 & 0 \\
0 & \sinh \lambda & \sinh \eta & 0 \\
0 & \sinh \eta & \sinh \lambda & 0 \\
0 & 0 & 0 & \sinh(\lambda + \eta)
\end{pmatrix} \in \text{End}(\mathbb{C}^2 \otimes \mathbb{C}^2),
\]

(2.4)

is the 6-vertex trigonometric solution of the Yang–Baxter equation, and \(R_{21}(\lambda) = P_{12} R_{12}(\lambda) P_{12} \), where \(P_{12} \) is the permutation operator on \(\mathbb{C}^2 \otimes \mathbb{C}^2 \). Note that, in the case (2.4), \(R_{21}(\lambda) = R_{12}(\lambda) \).

Following Sklyanin [10], we define two classes of solutions \(\mathcal{V}_-(\lambda) \equiv \mathcal{U}_-(\lambda) \) and \(\mathcal{V}_+(\lambda) \equiv \mathcal{U}_+(\lambda) \) of (2.3) by considering the operators

\[
\mathcal{U}_-(\lambda) = \mathcal{M}(\lambda) \mathcal{K}_-(\lambda) \mathcal{M}(\lambda) = \begin{pmatrix}
A_-(\lambda) & B_-(\lambda) \\
C_-(\lambda) & D_-(\lambda)
\end{pmatrix},
\]

(2.5)

\[
\mathcal{U}_+(\lambda) = \mathcal{M}^\nu(\lambda) \mathcal{K}_+(\lambda) \mathcal{M}^\nu(\lambda) = \begin{pmatrix}
A_+(\lambda) & B_+(\lambda) \\
C_+(\lambda) & D_+(\lambda)
\end{pmatrix}.
\]

(2.6)

Both operators are acting on \(\mathcal{H}_0 \otimes \mathcal{H} \), where \(\mathcal{H}_0 = \mathbb{C}^2 \) is called auxiliary space. They are defined in terms of

\[
\mathcal{M}(\lambda) = R_{0\nu}(\lambda - \xi_\nu - \eta/2) \ldots R_{01}(\lambda - \xi_1 - \eta/2) = \begin{pmatrix}
A(\lambda) & B(\lambda) \\
C(\lambda) & D(\lambda)
\end{pmatrix},
\]

(2.7)
which corresponds to the bulk monodromy matrix of a chain of length \(N \) with some inhomogeneity parameters \(\xi_1, \ldots, \xi_N \), and of
\[
\hat{M}(\lambda) = (-1)^N \sigma^x_0 \hat{M}^h(-\lambda) \sigma^x_0. \tag{2.8}
\]
The boundary matrices \(K_\pm(\lambda) \in \text{End}(\mathcal{H}_0) \) are here defined as
\[
K_-(\lambda) = K(\lambda; \zeta_-, \kappa_-, \tau_-), \quad K_+(\lambda) = K(\lambda + \eta; \zeta_+, \kappa_+, \tau_+), \tag{2.9}
\]
where
\[
K(\lambda; \zeta, \kappa, \tau) = \frac{1}{\sinh \zeta} \begin{pmatrix} \sinh(\lambda - \eta/2 + \zeta) & \kappa e^\tau \sinh(2\lambda - \eta) \\ \kappa e^{-\tau} \sinh(2\lambda - \eta) & \sinh(\zeta - \lambda + \eta/2) \end{pmatrix}, \tag{2.10}
\]
is the most general scalar solution [17–19] of the reflection equation (2.3) for general values of the parameters \(\zeta, \kappa \) and \(\tau \).

Sklyanin [10] has shown that the transfer matrices,
\[
\mathcal{T}(\lambda) = \text{tr}_0\{K_+(\lambda) M(\lambda) K_-(\lambda) M(\lambda)\} = \text{tr}_0\{K_-(\lambda) U_-(\lambda)\},
\]
form a one-parameter family of commuting operators on \(\mathcal{H} \). In the homogeneous limit in which \(\xi_m = 0, \ m = 1, \ldots, N \), the Hamiltonian (2.1) of the spin-1/2 open chain can be obtained as
\[
H = \left. \frac{2(\sinh \eta)^{1-2N}}{\text{tr}\{K_+(\eta/2)\} \text{tr}\{K_-(\eta/2)\}} \frac{d\mathcal{T}(\lambda)}{d\lambda} \right|_{\lambda = \eta/2} + \text{constant}. \tag{2.12}
\]

To conclude this section, let us recall some useful properties of the 6-vertex reflection algebra. The inversion relation for \(U_-(\lambda) \) can be written as
\[
U_-(\lambda + \eta/2) U_-(\lambda - \eta/2) = \frac{\det_q U_-(\lambda)}{\sinh(2\lambda - 2\eta)}.	ag{2.13}
\]
in terms of the quantum determinant \(\det_q \).

\[
\frac{\det_q U_-(\lambda)}{\sinh(2\lambda - 2\eta)} = A_-(\eta/2 \pm \lambda) A_-(\eta/2 \mp \lambda) + B_-(\eta/2 \pm \lambda) C_-(\eta/2 \mp \lambda)
\]
\[
= D_-(\eta/2 \pm \lambda) D_-(\eta/2 \mp \lambda) + C_-(\eta/2 \pm \lambda) B_-(\eta/2 \mp \lambda)\tag{2.14}
\]
which is a central element of the reflection algebra: \([\det_q U_-(\lambda), U_-(\lambda)] = 0 \). It is obtained as the product
\[
\det_q U_-(\lambda) = \det_q M(\lambda) \det_q M(-\lambda) \det_q K_-(\lambda), \tag{2.15}
\]
of the bulk quantum determinant
\[
\det_q M(\lambda) = a(\lambda + \eta/2) d(\lambda - \eta/2), \tag{2.16}
\]
where
\[
a(\lambda) = \prod_{n=1}^{N} \sinh(\lambda - \xi_n + \eta/2), \quad d(\lambda) = \prod_{n=1}^{N} \sinh(\lambda - \xi_n - \eta/2). \tag{2.17}
\]
\[
\det_q K_\pm(\lambda) = \mp \frac{(\sinh^2 \lambda - \sinh^2 \alpha \mp \gamma)(\sinh^2 \lambda + \cosh^2 \beta \mp \gamma)}{\sinh^2 \alpha \mp \gamma \cosh^2 \beta \mp \gamma}.
\] (2.18)

3. Gauge transformation of the model

It is possible to solve the model, i.e. to diagonalize the boundary transfer matrices (2.11), by means of the quantum version of the separation of variable (SoV) approach [9, 79–81]. This has been done in [49]. The idea is, as in the XXX case [1], to gauge transform the model into an effective one in which at least one of the boundary matrices becomes triangular [47]. The XXZ case is however much more complicated than the XXX case, since the involved gauged transformation is a generalized (or dynamical) one. In this section, we reformulate the generalized gauge transformation used in [49] in a more usual way\(^4\), by using the trigonometric version of the Vertex-IRF transformation [134] in its algebraic form [136].

3.1. Vertex-IRF transformation

The vertex-IRF transformation relates the 6-vertex R-matrix (2.4) to the R-matrix of the trigonometric solid-on-solid (SOS) model:

\[
R_{12}(\lambda - \mu) S_1(\lambda|\beta) S_2(\mu|\beta + \sigma_z^1) = S_2(\mu|\beta) S_1(\lambda|\beta + \sigma_z^2) R_{12}^{SOS}(\lambda - \mu|\beta),
\] (3.1)

where the trigonometric SOS (or dynamical) R-matrix reads:

\[
R_{SOS}(\lambda|\beta) =
\begin{pmatrix}
\frac{\sinh(\lambda + \eta)}{\sinh(\eta + \beta)} & 0 & 0 & 0 & 0 \\
0 & \frac{\sinh(\eta + \beta + \gamma)}{\sinh(\eta + \gamma)} & \sinh \lambda & \frac{\sinh(\lambda + \eta + \gamma)}{\sinh(\eta + \gamma)} & 0 \\
0 & \frac{\sinh(\eta - \beta - \gamma)}{\sinh(\eta - \gamma)} & \sinh \eta & \frac{\sinh(\eta + \beta - \gamma)}{\sinh(\eta - \gamma)} & 0 \\
0 & 0 & 0 & \sinh(\lambda + \eta)
\end{pmatrix}.
\] (3.2)

In this context, the parameter \(\beta\) is usually called dynamical parameter. The corresponding Vertex-IRF transformation matrix can be written as

\[
S(\lambda|\beta) = \begin{pmatrix}
e^{\lambda - \eta(\beta + \alpha)} & e^{\lambda + \eta(\beta - \alpha)} \\
1 & 1
\end{pmatrix},
\] (3.3)

where the parameter \(\alpha\) corresponds to an arbitrary shift of the spectral parameter. Note that the relation (3.1) can equivalently be written as

\[
R_{12}(\lambda - \mu) S_2(-\mu|\beta) S_1(-\lambda|\beta + \sigma_z^2) = S_1(-\lambda|\beta) S_2(-\mu|\beta + \sigma_z^0) R_{21}^{SOS}(\lambda - \mu|\beta).
\] (3.4)

3.2. Gauge transformed monodromy matrices

The vertex-IRF transformation can easily be extended to a transformation between bulk monodromy matrices:

\[
M(\lambda) S_{1 \ldots N}(\{\xi\}|\beta) S_0(-\lambda + \eta/2|\beta + \sigma_z^0) = S_0(-\lambda + \eta/2|\beta) S_{1 \ldots N}(\{\xi\}|\beta + \sigma_z^0) M^{SOS}(\lambda|\beta),
\] (3.5)

\(^4\)The generalized gauge transformation presented here is equivalent to the one of [49]. However, the notations and the objects that are considered may sometimes be slightly different.
where \(M(\lambda) \in \text{End}(\mathcal{H}_0 \otimes \mathcal{H}) \) is the bulk monodromy matrix (2.7), \(S' = \sum_{j=1}^{N} \sigma_j \), \(S_0(\lambda|\beta) \) denotes the Vertex-IRF transformation matrix (3.3) acting on the auxiliary space \(\mathcal{H}_0 \), whereas \(S_{1...N}(\{\xi\}|\beta) \) is the following product of local gauge matrices (3.3) acting on the tensor product \(\mathcal{H} = \otimes_{n=1}^{N} \mathcal{H}_n \) of the \(N \) local quantum spaces:

\[
S_{1...N}(\{\xi\}|\beta) = S_N(-\xi_N|\beta) S_{N-1}(-\xi_{N-1}|\beta + \sigma_N^j) \ldots S_1(-\xi_1|\beta + \sigma_2^j + \ldots + \sigma_N^j)
= \prod_{n=N}^{1} S_n(-\xi_n|\beta + \sum_{j=n+1}^{N} \sigma_j^j). \tag{3.6}
\]

The resulting gauged transformed bulk monodromy matrix \(M^{\text{SOS}}(\lambda|\beta) \) is defined as

\[
M^{\text{SOS}}(\lambda|\beta) = \prod_{n=N}^{1} R_{n0}^{\text{SOS}} \begin{pmatrix} \lambda - \xi_n - \frac{\eta}{2} + \sum_{j=n+1}^{N} \sigma_j^j \end{pmatrix}
= \begin{pmatrix} A^{\text{SOS}}(\lambda|\beta) & B^{\text{SOS}}(\lambda|\beta) \\ C^{\text{SOS}}(\lambda|\beta) & D^{\text{SOS}}(\lambda|\beta) \end{pmatrix}. \tag{3.7}
\]

In these expressions, we have used the following notation concerning an ordered product of non-commuting operators:

\[
\prod_{n=N}^{1} X_n \equiv X_N X_{N-1} \ldots X_1. \tag{3.8}
\]

In a similar way, we obtain the following transformation for the matrix \(\tilde{M}(\lambda) \) (2.8):

\[
\tilde{M}(\lambda) S_0(\lambda - \eta/2|\beta) S_{1...N}(\{\xi\}|\beta + \sigma_0^j)
= S_{1...N}(\{\xi\}|\beta) S_0(\lambda - \eta/2|\beta + S') \tilde{M}^{\text{SOS}}(\lambda|\beta), \tag{3.9}
\]

where

\[
\tilde{M}^{\text{SOS}}(\lambda|\beta) = \prod_{n=1}^{N} R_{0n}^{\text{SOS}} \begin{pmatrix} \lambda + \xi_n - \frac{\eta}{2} + \sum_{j=n+1}^{N} \sigma_j^j \end{pmatrix}
= \begin{pmatrix} \tilde{A}^{\text{SOS}}(\lambda|\beta) & \tilde{B}^{\text{SOS}}(\lambda|\beta) \\ \tilde{C}^{\text{SOS}}(\lambda|\beta) & \tilde{D}^{\text{SOS}}(\lambda|\beta) \end{pmatrix}. \tag{3.10}
\]

Let us introduce the following gauged transformed versions of the boundary monodromy matrix \(\mathcal{U}^-(\lambda) \):

\[
\tilde{\mathcal{U}}^-(\lambda|\beta) = S_0^{-1}(\lambda + \eta/2|\beta) \mathcal{U}^-(\lambda) S_0(\lambda - \eta/2|\beta)
= \begin{pmatrix} \tilde{A}^-(\lambda|\beta) & \tilde{B}^-(\lambda|\beta) \\ \tilde{C}^-(\lambda|\beta) & \tilde{D}^-(\lambda|\beta) \end{pmatrix}, \tag{3.11}
\]

and

\[
\mathcal{U}^{\text{SOS}}^-(\lambda|\beta) = S_0^{-1}(\{\xi\}|\beta + \sigma_0^j) \tilde{\mathcal{U}}^-(\lambda|\beta) S_{1...N}(\{\xi\}|\beta + \sigma_0^j)
= \begin{pmatrix} A^{\text{SOS}}(\lambda|\beta) & B^{\text{SOS}}(\lambda|\beta) \\ C^{\text{SOS}}(\lambda|\beta) & D^{\text{SOS}}(\lambda|\beta) \end{pmatrix}. \tag{3.12}
\]

It is easy to see that both (3.11) and (3.12) satisfy the following dynamical reflection equation:
\[R_{21}^{\text{SOS}}(\lambda - \mu | \beta) U_1(\lambda | \beta + \sigma_1^\beta) S_{12}^{\text{SOS}}(\lambda + \mu - \eta | \beta) U_2(\mu | \beta + \sigma_2^\beta) = U_2(\mu | \beta + \sigma_2^\beta) R_{21}^{\text{SOS}}(\lambda + \mu - \eta | \beta) U_1(\lambda | \beta + \sigma_1^\beta) S_{12}^{\text{SOS}}(\lambda - \mu | \beta). \] (3.13)

A few useful commutation relations issued from (3.13) are specified in appendix A. Moreover, the elements of the matrix (3.11) can easily be expressed in terms of the elements of the matrix (2.13) for the bulk monodromy matrices (3.7) and (3.10) as

\[U_\pm^{\text{SOS}}(\lambda | \beta) = M^{\text{SOS}}(\lambda | \beta) K_\pm^{\text{SOS}}(\lambda | \beta + S^\beta) M^{\text{SOS}}(\lambda | \beta), \] (3.14)

where

\[K_\pm^{\text{SOS}}(\lambda | \beta) = S_0^{-1}(\lambda + \eta/2 | \beta) K_\pm(\lambda) S_0(\lambda - \eta/2 | \beta) \]

\[= \begin{pmatrix} a_\pm(\lambda | \beta) & b_\pm(\lambda | \beta) \\ c_\pm(\lambda | \beta) & d_\pm(\lambda | \beta) \end{pmatrix}. \] (3.15)

In particular, the expression for \(b_-(\lambda | \beta) \) and \(c_-(\lambda | \beta) \) in (3.15) is given by

\[b_-(\lambda | \beta) = c_-(\lambda | \beta) = e^{\lambda - \eta/2} \sinh(2\lambda - \eta) b_-(\beta), \] (3.16)

where \(b_-(\beta) \) depends on \(\beta, \alpha, \) and on the boundary parameters as

\[b_-(\beta) = \frac{e^{\eta\beta}}{2 \sinh(\eta\beta) \sinh \varsigma_-} \left[2 \kappa_- \sinh(\eta(\beta - \alpha) - \tau_-) - e^{-} \right] \]

\[= \frac{\kappa_- e^{\eta\beta}}{\sinh(\eta\beta) \sinh \varsigma_-} \left[\sinh(\eta(\beta - \alpha) - \tau_-) - \sinh(\alpha_- + \beta_-) \right]. \] (3.17)

The inversion relation for the matrix \(U^{\text{SOS}}(\lambda | \beta) \) follows directly from the inversion relation (2.13) for \(U_-^{\text{SOS}}(\lambda): \)

\[U_-^{\text{SOS}}(\lambda + \eta/2 | \beta) U_+^{\text{SOS}}(-\lambda + \eta/2 | \beta) = \frac{\det_q U_-^{\text{SOS}}(\lambda)}{\sinh(2\lambda - \eta)}. \] (3.18)

where \(\det_q U_-^{\text{SOS}}(\lambda) \) is the quantum determinant (2.14) and (2.15). Hence we also have

\[\frac{\det_q U_-^{\text{SOS}}(\lambda)}{\sinh(2\lambda - \eta)} = A_-^{\text{SOS}}(\eta/2 + \epsilon \lambda | \beta) A_-^{\text{SOS}}(\eta/2 - \epsilon \lambda | \beta) + B_-^{\text{SOS}}(\eta/2 + \epsilon \lambda | \beta) C_-^{\text{SOS}}(\eta/2 - \epsilon \lambda | \beta) \]

\[= D_-^{\text{SOS}}(\eta/2 + \epsilon \lambda | \beta) D_-^{\text{SOS}}(\eta/2 - \epsilon \lambda | \beta) + C_-^{\text{SOS}}(\eta/2 + \epsilon \lambda | \beta) B_-^{\text{SOS}}(\eta/2 - \epsilon \lambda | \beta). \] (3.19)

3.3. Transfer matrix and gauge for \(K_+(\lambda) \)

It remains to express the transfer matrix (2.11) \(\mathcal{T}(\lambda) = \text{tr}_q\{K_+(\lambda) U_-^{\text{SOS}}(\lambda)\} \) in terms of the elements of the gauged monodromy matrix (3.11) or (3.12). A natural way to do this would be to apply the gauge transformation (3.11) to \(U_-^{\text{SOS}}(\lambda) \) inside the trace, which would result into an expression for \(\mathcal{T}(\lambda) \) in terms of \(\tilde{A}_-^{\text{SOS}}(\lambda | \beta), \tilde{B}_-^{\text{SOS}}(\lambda | \beta), \tilde{C}_-^{\text{SOS}}(\lambda | \beta) \) and \(\tilde{D}_-^{\text{SOS}}(\lambda | \beta) \). Such a representation would however not be so convenient, since the natural commutation relations issued from (3.13) are established between \(\tilde{A}_-^{\text{SOS}}(\lambda | \beta - 1) \) and \(\tilde{D}_-^{\text{SOS}}(\lambda | \beta + 1) \) (and not between \(\tilde{A}_-^{\text{SOS}}(\lambda | \beta) \) and \(\tilde{D}_-^{\text{SOS}}(\lambda | \beta) \), see (A.4) and (A.5)). The same is true for the expression
of $\tilde{D}_-(\lambda|\beta + 1)$ in terms of $\tilde{A}_-(\lambda|\beta - 1)$ and $\tilde{A}_-(-\lambda|\beta - 1)$ (see \textit{(A.8)} and \textit{(A.9)}). It is therefore better to introduce a slightly modified gauge transformation which, when applied to $U_-(\lambda)$, produces $A_-(\lambda|\beta - 1)$ and $D_-(\lambda|\beta + 1)$. To this aim, one can for instance consider the following modified gauged boundary monodromy matrix

$$\tilde{U}_-(\lambda|\beta) = S_0^{-1}(\eta/2 - \lambda|\beta, \alpha + 1) U_-(\lambda) S_0(\lambda - \eta/2|\beta, \alpha - 1),$$

(3.20)

in which we have specified the explicit dependency of (3.3) and of its inverse on the parameter α. Indeed, by considering these different shifts of α, we obtain that the diagonal entries of $\tilde{U}_-(\lambda|\beta)$ are

$$\tilde{U}_-(\lambda|\beta) = \left(\begin{array}{cc} e^{\eta \frac{\sinh(\eta(\beta-1))}{\sinh(\eta\beta)}} & * \\ \frac{\sinh(\eta(\beta+1))}{\sinh(\eta\beta)} & e^{\eta \frac{\sinh(\eta(\beta+1))}{\sinh(\eta\beta)}} \tilde{D}_-(\lambda|\beta + 1) \end{array}\right),$$

(3.21)

Then the transfer matrix is given as

$$\mathcal{T}(\lambda) = t_0 \left\{ \tilde{K}_+(\lambda|\beta) \tilde{U}_-(\lambda|\beta) \right\},$$

(3.22)

in which

$$\tilde{K}_+(\lambda|\beta) = S_0^{-1}(\lambda - \eta/2|\beta, \alpha - 1) K_+(\lambda) S_0(\eta/2 - \lambda|\beta, \alpha + 1)$$

$$= \left(\begin{array}{cc} a_+(\lambda|\beta) & b_+(\lambda|\beta) \\ c_+(\lambda|\beta) & d_+(\lambda|\beta) \end{array}\right).$$

(3.23)

The parameters α and β can then be chosen adequately so as to simplify the expression of $\mathcal{T}(\lambda)$. In particular, we can impose the gauged boundary matrix (3.23) to be diagonal6, i.e. choose $b_+(\lambda|\beta) = c_+(\lambda|\beta) = 0$. The condition $b_+(\lambda|\beta) = 0$ is equivalent to

$$2\kappa_+ \sinh(\eta(\beta - \alpha) - \tau_+) - e^{-\epsilon_+} = 0,$$

(3.24)

which can alternatively be rewritten in terms of the boundary parameters α_+ and β_+ as

$$\sinh(\eta(\beta - \alpha) - \tau_+) = \sinh(\beta_+ - \alpha_+),$$

(3.25)

or equivalently as

$$\exists \epsilon_+ \in \{1, -1\}, \quad \eta(\beta - \alpha) = \tau_+ + \epsilon_+(\alpha_+ - \beta_+) + \frac{1 + \epsilon_+}{2} i\pi \mod 2i\pi.$$

(3.26)

The condition $c_+(\lambda|\beta) = 0$ is equivalent to

$$2\kappa_+ \sinh(\eta(\beta + \alpha) + \tau_+) + e^{-\epsilon_+} = 0,$$

(3.27)

which can alternatively be rewritten in terms of the boundary parameters α_+ and β_+ as

$$\sinh(\eta(\beta + \alpha) + \tau_+) = \sinh(\alpha_+ - \beta_+),$$

(3.28)

or equivalently as

5 We do not specify here the expression of the other entries of $\tilde{U}_-(\lambda|\beta)$ since we shall not use them.

6 In fact, for the use of the SoV approach, it is enough to choose $\tilde{K}_+(\lambda|\beta)$ to be lower triangular, i.e. to impose $b_+(\lambda|\beta) = 0$ (see [49]). The choice (3.27) and (3.28) is here just for convenience.
\[\exists \epsilon' \in \{1, -1\}, \quad \eta(\beta + \alpha) = -\tau + \epsilon'(\alpha - \beta) + \frac{1 - \epsilon'}{2} i \pi \mod 2 \pi. \] (3.29)

A choice for the gauged parameters \(\alpha \) and \(\beta \) compatible with these two conditions is therefore given by

\[\eta \alpha = -\tau + \frac{\epsilon + \epsilon'}{2}(\alpha - \beta) - \frac{\epsilon + \epsilon'}{4} i \pi \mod i \pi, \] (3.30)

\[\eta \beta = \frac{\epsilon + \epsilon'}{2}(\alpha - \beta) + \frac{\epsilon + \epsilon'}{4} i \pi \mod i \pi, \] (3.31)

for \(\epsilon, \epsilon' \in \{1, -1\} \).

If these two conditions are fulfilled (which we shall suppose from now on), the transfer matrix is simply given by

\[T(\lambda) = e^{\eta \sinh(\eta \beta)} \left\{ a_+ (\lambda|\beta) \sinh(\eta(\beta - 1)) \tilde{A}_-(\lambda|\beta - 1) + d_+ (\lambda|\beta) \sinh(\eta(\beta + 1)) \tilde{D}_-(\lambda|\beta + 1) \right\}, \] (3.32)

where

\[a_+ (\lambda|\beta) = d_+ (\lambda|\beta) = \frac{e^{-\lambda - \frac{\beta}{2}}}{2 \sinh(\eta \beta)} \sinh(2\lambda + \eta) \sinh(\eta(\alpha + \tau)) \sinh(\eta \alpha + \tau) \] (3.33)

Note that, by using (3.26) for a given choice of \(\epsilon, \) these coefficients (3.30) can be rewritten as

\[a_+ (\lambda|\beta) \equiv a_+ (\lambda) = e^\epsilon e^{-\lambda - \frac{\beta}{2}} \frac{\sinh(\lambda + \frac{\beta}{2} + \epsilon \alpha)}{\cosh \alpha} \], (3.34)

\[d_+ (\lambda|\beta) \equiv d_+ (\lambda) = -e^{-\epsilon} e^{-\lambda - \frac{\beta}{2}} \frac{\sinh(\lambda + \frac{\beta}{2} - \epsilon \alpha \beta)}{\cosh \beta}. \] (3.35)

It may be useful to express the transfer matrix in the following form:

\[T(\lambda) = F(\lambda|\beta) + F(\lambda|\beta), \] (3.36)

with \(F(\lambda|\beta) = e^{\eta \sinh(\eta(\beta - 1))} a_+ (\lambda|\beta) \tilde{A}_-(\lambda|\beta - 1). \) (3.37)

One can alternatively express the transfer matrix (3.32) in terms of the elements of SOS boundary monodromy matrix (3.12), i.e. as

\[T(\lambda) = S_{1...N}(\{\xi\}|\beta) T^{SOS}(\lambda|\beta) S_{1...N}^{-1}(\{\xi\}|\beta), \] (3.38)

in terms of the following SOS transfer matrix:

7 These rewritings hold even if (3.28) is not satisfied.
\[T_{\text{SOS}}(\lambda | \beta) = \frac{e^{\eta}}{\sinh(\eta \beta)} \left\{ a_+ (\lambda | \beta) \sinh(\eta (\beta - 1)) A_{\text{SOS}}^{\text{SOS}}(\lambda | \beta - 1) \right. \\
\left. + \ d_+ (\lambda | \beta) \sinh(\eta (\beta + 1)) D_{\text{SOS}}^{\text{SOS}}(\lambda | \beta + 1) \right\}. \quad (3.39) \]

Hence, we have reduced the problem of diagonalizing the transfer matrix (2.11) to the study of the eigenstates of the SOS transfer matrix (3.39).

4. Diagonalisation of the transfer matrix by SoV

It is easy to see that, by construction, the transfer matrix \(T(\lambda) \) is a polynomial of degree \(N + 2 \) in \(\sinh^2 \lambda \) (or equivalently in \(\cosh(2\lambda) \)), with leading asymptotic behavior

\[T(\lambda) \mid_{\lambda \to \pm \infty} \sim \frac{\kappa + \kappa - \cosh(\tau_+ - \tau_-)}{2^{N+1}} \sinh \zeta_+ \sinh \zeta_- e^{\pm 2(N+2)\lambda}. \quad (4.1) \]

Its value at \(\frac{\eta}{2} \) (respectively at \(\frac{\eta}{2} + i \frac{\pi}{2} \)) can easily be computed from the fact that \(U_-(\frac{\eta}{2}) = (-1)^N \det_{\eta} M(0) \) (respectively that \(U_-(\frac{\eta}{2} + i \frac{\pi}{2}) = i \coth \zeta_+ \det_{\eta} M(i \frac{\pi}{2}) \sigma^z \)):

\[T(\eta/2) = 2 (-1)^N \cosh \eta \det_{\eta} M(0), \quad (4.2) \]
\[T(\eta/2 + i \pi/2) = -2 \cosh \eta \coth \zeta_+ \coth \zeta_- \det_{\eta} M(i \pi/2). \quad (4.3) \]

Finally, its spectrum and eigenstates are directly related to those of the SOS transfer matrix \(T_{\text{SOS}}(\lambda) \) through the gauge transformation (3.38). The latter being expressed in a simple form (3.39) in terms of \(A_{\text{SOS}}^{\text{SOS}}(\lambda | \beta - 1) \) and \(D_{\text{SOS}}^{\text{SOS}}(\lambda | \beta + 1) \), we can construct \([47, 49]\) a basis of the space of states (the SoV basis) which separates the variables for the spectral problem associated to \(T_{\text{SOS}}(\lambda) \) at particular values (related to the inhomogeneity parameters of the model) of the spectral parameter \(\lambda \).

4.1. SoV basis of the space of states

The construction of the basis which separates the spectral problem for \(T_{\text{SOS}}(\lambda) \) relies, as usual, on the use of the (shifted) inhomogeneity parameters of the model. The latter have to be generic or, at least, to satisfy the following non-intersecting conditions:

\[\xi^{(h)} \neq \xi^{(k)} \notin \mathbb{N}, \quad \forall j, k \in \{1, \ldots, N\} \text{ with } j \neq k, \forall h_j, h_k \in \{0, 1\}. \quad (4.4) \]

Here we have used the notation:

\[\xi^{(h)} = \xi + \eta/2 - h, \quad 1 \leq n \leq N, \quad h \in \{0, 1\}. \quad (4.5) \]

Let \(|0\rangle \) be the dual reference state with all spins up and \(|0\rangle \) be the reference state with all spins down. For each \(N \)-tuple \(h \equiv (h_1, \ldots, h_N) \in \{0, 1\}^N \), we define the following states\(^8\):

\[|h, \beta + 1\rangle = \prod_{j=1}^{N} \left(\frac{D_{\text{SOS}}^{\text{SOS}}(\xi_j + \eta/2 | \beta + 1)}{k_j A_{-} \eta/2 - \xi_j} \right)^{h_j} |0\rangle, \quad (4.6) \]

\(^8\)Note that the ordering of operators is not important in (4.6) (resp. in (4.7)), due to the commutation relation (A.3) (resp. (A.2)) and the fact that the action of \(B_{\text{SOS}}^{\text{SOS}}(\xi + \eta/2 | \beta + 1) \) on \(|0\rangle \) (resp. the action of \(B_{\text{SOS}}^{\text{SOS}}(\eta/2 - \xi | \beta - 1) \) on \(|0\rangle \) vanishes.
(\beta - 1, \mathbf{h}) = \langle 0 | \prod_{j=1}^{N} \left(\frac{A_{\text{SOS}}(\eta/2 - \xi_j |\beta - 1)}{A_{-}(\eta/2 - \xi_j)} \right)^{1-h_j} | \mathbf{0} \rangle. \quad (4.7)

In (4.6) and (4.7), the normalization coefficients are chosen in the form

\begin{equation}
(k_j = \frac{\sinh(2\xi_j + \eta)}{\sinh(2\xi_j - \eta)}, \quad A_{-}(\lambda) = g_{-}(\lambda) a(\lambda) d(-\lambda), \quad (4.8)
\end{equation}

in terms of a function \(g_{-}(\lambda)\) satisfying the relation

\begin{equation}
g_{-}(\lambda + \eta/2) g_{-}(-\lambda + \eta/2) = \frac{\det_q K_{-}(\lambda)}{\sinh(2\lambda - 2\eta)}. \quad (4.9)
\end{equation}

It is easy to see that these states are right and left pseudo-eigenstates of the operator \(B_{\text{SOS}}(\lambda|\beta)\), i.e.

\begin{equation}
B_{-}\text{SOS}(\lambda|\beta - 1) | \mathbf{h}, \beta - 1 \rangle = (-1)^N a_{\mathbf{h}}(\lambda) a_{\mathbf{h}}(-\lambda) \times \frac{\sinh(\eta(\beta - N - 1))}{\sinh(\eta(\beta - 1))} | \mathbf{h}, \beta + 1 \rangle, \quad (4.10)
\end{equation}

\begin{equation}
\langle \beta + 1, \mathbf{h} | B_{-}\text{SOS}(\lambda|\beta + 1) = (-1)^N a_{\mathbf{h}}(\lambda) a_{\mathbf{h}}(-\lambda) \times \frac{\sinh(\eta\beta)}{\sinh(\eta(\beta + N))} \langle \beta - 1, \mathbf{h} |, \quad (4.11)
\end{equation}

where

\begin{equation}
a_{\mathbf{h}}(\lambda) = \prod_{n=1}^{N} \sinh(\lambda - \xi_n - \eta/2 + h_n\eta). \quad (4.12)
\end{equation}

As usual, one can determine the action on (4.7) and (4.6) of the other operators of the SOS boundary algebra by polynomial interpolation (see appendix B).

From these actions, we can easily derive the orthogonality property:

\begin{equation}
\langle \beta - 1, \mathbf{h} | \mathbf{k}, \beta + 1 \rangle = \delta_{\mathbf{h}, \mathbf{k}} N(\{\xi\}, \beta) \frac{e^{2\sum_{j=1}^{N} h_j \xi_j}}{\tilde{V}(\xi_{1}^{(h_1)}, \ldots, \xi_{N}^{(h_N)})}. \quad (4.13)
\end{equation}

Here and in the following, we define, for any \(N\)-tuple of variables \((x_1, \ldots, x_N)\), the quantity \(\tilde{V}(x_1, \ldots, x_N)\) as

\begin{equation}
\tilde{V}(x_1, \ldots, x_N) = \frac{\det_{1 \leq i, j \leq N} \left[\sinh(2(j-1) x_i) \right]}{\prod_{j<k} (\sinh^2 x_k - \sinh^2 x_j)}. \quad (4.14)
\end{equation}

The normalization constant in (4.13), as computed in appendix C, is given by the following expression:

\begin{equation}
N(\{\xi\}, \beta) = \tilde{V}(\xi_{1}^{(0)}, \ldots, \xi_{N}^{(0)}) \langle 0 | \prod_{j=1}^{N} \frac{A_{\text{SOS}}(\eta/2 - \xi_j |\beta - 1)}{A_{-}(\eta/2 - \xi_j)} | 0 \rangle

= (-1)^N \tilde{V}(\xi_{1}, \ldots, \xi_{N}) \tilde{V}(\xi_{1}^{(1)}, \ldots, \xi_{N}^{(1)}) \frac{\tilde{V}(\xi_{1}^{(0)}, \ldots, \xi_{N}^{(0)})}{\tilde{V}(\xi_{1}^{(1)}, \ldots, \xi_{N}^{(1)})}

\times \prod_{j=1}^{N} \left[\frac{b_{-}(\frac{\eta}{2} - \xi_j |\beta + 1 + N - 2j)}{g_{-}(\frac{\eta}{2} - \xi_j)} \sinh(\eta(\beta + 1 + N - 2j)) \sinh(\eta(\beta + N - j)) \right]. \quad (4.15)
\end{equation}
Note that, for $\beta \not\in \mathbb{Z}$ and generic inhomogeneity parameters ξ, the condition for this normalization constant (4.15) to be non-zero is
$$\forall j \in \{1, \ldots, N\}, \sinh(\eta(\beta + 1 - \alpha + N - 2j) - \tau_-) \neq \sinh(\alpha_- + \beta_-),$$
which, taking into account the condition (3.26) for a given choice of ϵ_+, is equivalent to the following condition on the boundary parameters:
$$\forall j \in \{1, \ldots, N\}, \forall \epsilon \in \{1, -1\},$$
$$\tau_+ - \tau_- + \eta(N - 2j + 1) \neq \epsilon(\alpha_- + \beta_-) - \epsilon_+(\alpha_+ - \beta_+) - \frac{\epsilon + \epsilon_+ i \pi}{2} \text{ mod } 2i \pi.$$
(4.17)
Hence, from now on, we shall suppose that the condition (4.17) is satisfied, which means that, for generic values of the inhomogeneity parameters (4.4), the states (4.6) (respectively (4.7)) form a basis of \mathcal{H} (respectively of \mathcal{H}^\ast). In that case, we have the following resolution of the identity:
$$1 = \frac{1}{N(\{\xi\}, \beta)} \sum_{h \in \{0, 1\}^N} e^{-2 \sum_{h_1} h_1\xi_1} \langle \chi^{(h_1)}, \ldots, \chi^{(h_N)} \rangle h, \beta + 1 \rangle (\beta - 1, h \rangle.$$
(4.18)

4.2. The transfer matrix spectrum and eigenstates

From the actions (B.3), (B.6) and the parity properties (A.8) and (A.9), it is easy to compute the action of $T_{\text{SOS}}(\xi^{(h)} \beta)$ on the states $|h, \beta - 1, h \rangle$. Hence we see that the basis (4.6) of \mathcal{H} (respectively the basis (4.7) of \mathcal{H}^\ast) separately the variables for the spectral problem associated to $T_{\text{SOS}}(\lambda)$ at these points $\xi^{(h)} \beta, n \in \{1, \ldots, N\}$. This fact, together with the aforementioned algebraic properties of the transfer matrix, leads to the following characterization for the spectrum and eigenstates of $T(\lambda)$:

Theorem 4.1. Let us suppose that the inhomogeneity parameters are generic (4.4) and that the condition (4.16) is satisfied. Then the spectrum Σ_T of the transfer matrix $T(\lambda)$ is simple and consists in the set of functions $\tau(\lambda)$ which satisfy the following properties:

(i) $\tau(\lambda)$ is a polynomial of degree $N + 2$ in $\sinh^2 \lambda$ (or equivalently in $\cosh(2\lambda)$),
(ii) its leading asymptotic behavior when $\lambda \to \pm \infty$ is
$$\tau(\lambda) \sim \frac{\kappa_+ \kappa_- \cosh(\tau_+ - \tau_-)}{2^{N+1} \sinh \varsigma_+ \sinh \varsigma_-} e^{\pm 2(N + 2)\lambda},$$
(4.19)
(iii) its values at $\eta/2$ and at $\eta/2 + i\pi/2$ are respectively given by
$$\tau(\eta/2) = 2 (-1)^N \cosh \eta \det_q M(0),$$
(4.20)
$$\tau(\eta/2 + i\pi/2) = -2 \cosh \eta \coth \varsigma_+ \coth \varsigma_- \det_q M(i\pi/2).$$
(4.21)
(iv) it satisfies the conditions
$$\tau(\xi_n + \eta/2) \tau(\xi_n - \eta/2) = -\frac{\det_q K_+ (\xi_n) \det_q U_-(\xi_n)}{\sinh(2\xi_n + \eta) \sinh(2\xi_n - \eta)}, \forall n \in \{1, \ldots, N\}.$$
(4.22)

The one-dimensional right and left $T(\lambda)$-eigenstates associated with the eigenvalue $\tau(\lambda)$ are respectively generated by the following vectors
\[|\Psi_1\rangle = \sum_{h_1 \in \{0,1\}^N} \prod_{n=1}^{N} \Omega_q(\xi_n^{(h_n)}) e^{-\sum_n h_n \tilde{V}(\xi_1^{(h_1)}, \ldots, \xi_N^{(h_N)})} S_{1 \ldots N}(\{\xi\} | \beta) | h, \beta + 1 \rangle, \quad (4.23) \]

\[\langle \Psi_1 | = \sum_{h_1 \in \{0,1\}^N} \prod_{n=1}^{N} \left[\frac{\sinh(2\xi_n - 2\eta)}{\sinh(2\xi_n + 2\eta)} \frac{A(\xi_n + \eta/2)}{A(-\xi_n + \eta/2)} Q_\tau(\xi_n^{(h_n)}) \right] \]
\[\times e^{-\sum_n h_n \tilde{V}(\xi_1^{(h_1)}, \ldots, \xi_N^{(h_N)})} (\beta - 1, h | S_{1 \ldots N}^{-1}(\{\xi\} | \beta) , \quad (4.24) \]

expressed on the gauged transformed basis (4.6) (respectively (4.7)). In these expressions, \(Q_\tau \) denotes a function on the discrete set of values \(\xi_n^{(h_n)} \), \(n \in \{1, \ldots, N\}, h_n \in \{0,1\} \), which satisfies

\[\frac{Q_\tau(\xi_1^{(1)})}{Q_\tau(\xi_1^{(0)})} = \frac{t(\xi_0^{(0)})}{A(\xi_0^{(0)})} = \frac{A(\xi_1^{(1)})}{t(\xi_1^{(1)})}, \quad (4.25) \]

and \(A(\lambda) \) is defined in terms of (3.35) and (4.8) as

\[A(\lambda) = e^{-\lambda + \eta/2} \frac{\sinh(2\lambda + \eta)}{\sinh(2\lambda)} d_+(\lambda) A_-(\lambda). \quad (4.26) \]

Note that the explicit expression of the function \(A(\lambda) \) (4.26) appearing in (4.23)–(4.25) depends on the particular choices that we make on one hand for \(\epsilon_+ \in \{1,-1\} \) fixing the gauge parameters \(\beta - \alpha \) in (3.26), and on the other hand for the function \(g_-(\lambda) \) involved in the normalization of the states (4.6) and (4.7). In particular, since there is a large freedom in fixing \(g_-(\lambda) \) (it has only to satisfy the relation (4.9)), the resulting function \(A(\lambda) \) may be any function satisfying the relation

\[A(\lambda + \eta/2) A(-\lambda + \eta/2) = -\frac{\det_q K_+ (\lambda) \det_q K_- (\lambda)}{\sinh(2\lambda + \eta) \sinh(2\lambda - \eta)}. \quad (4.27) \]

In the following, we shall focus on the particular solutions of (4.27) which are given by the expressions

\[A_\pm(\lambda) = (-1)^{\lambda} \frac{\sinh(2\lambda + \eta)}{\sinh(2\lambda)} a_\pm(\lambda) a(\lambda) d(\lambda), \quad (4.28) \]

with

\[a_\pm(\lambda) = \frac{\sinh(\lambda - \frac{\eta}{2} + \epsilon_\pm \alpha_+)}{\sinh(\epsilon_\pm \alpha_+)} \cdot \frac{\cosh(\lambda - \frac{\eta}{2} - \epsilon_\pm \beta_+)}{\cosh(\epsilon_\pm \beta_+)} \]
\[\times \frac{\sinh(\lambda - \frac{\eta}{2} + \epsilon_\pm \alpha_-)}{\sinh(\epsilon_\pm \alpha_-)} \cdot \frac{\cosh(\lambda - \frac{\eta}{2} + \epsilon_\pm \beta_-)}{\cosh(\epsilon_\pm \beta_-)} \quad (4.29) \]

for any choice of \(\epsilon \equiv (\epsilon_+, \epsilon_-, \epsilon_+^*, \epsilon_-^*) \in \{-1,1\}^4 \) such that \(\epsilon_+ \epsilon_- \epsilon_+^* \epsilon_-^* = 1 \). Such solutions correspond, for a fixed choice of \(\epsilon_+ \) in (3.26), to a choice of \(g_-(\lambda) \) in (4.8) and (4.9) such that

\[g_-(\lambda + \eta/2) = \epsilon_+ \epsilon_+ (\lambda + \eta/2) \frac{\sinh(\lambda + \epsilon_+ \alpha_-)}{\sinh(\epsilon_+ \alpha_-)} \cdot \frac{\cosh(\lambda + \epsilon_+ \beta_-)}{\cosh(\epsilon_+ \beta_-)} \cdot \frac{\sinh(\lambda + \epsilon_+ \alpha_+)}{\sinh(\epsilon_+ \alpha_+)} \cdot \frac{\cosh(\lambda - \epsilon_+ \beta_+)}{\cosh(\epsilon_+ \beta_+)}. \]
\[\times \frac{\sinh(\lambda + \epsilon_+ \alpha_-)}{\sinh(\epsilon_+ \alpha_-)} \cdot \frac{\cosh(\lambda - \epsilon_+ \beta_-)}{\cosh(\epsilon_+ \beta_-)} \cdot \frac{\sinh(\lambda + \epsilon_+ \alpha_+)}{\sinh(\epsilon_+ \alpha_+)} \cdot \frac{\cosh(\lambda - \epsilon_+ \beta_+)}{\cosh(\epsilon_+ \beta_+)}. \quad (4.30) \]
From now on, we shall also denote by
\[|h, \beta + 1 \rangle \] and \[\epsilon (\beta - 1, h) \] the states (4.6) and (4.7) with normalization (4.30) given by such a particular choice of \(\epsilon \).

4.3. Transfer matrix spectrum by \(T\)-\(Q \) functional equation

We now recall the results of [50] concerning the rewriting of the above SoV discrete characterization of the transfer matrix spectrum and eigenstates in terms of particular classes of solutions of a functional equation of Baxter’s type.

We denote by \(\Sigma_M^Q \) the set of \(Q(\lambda) \) polynomials in \(\cosh(2\lambda) \) of degree \(M \) of the form
\[
Q(\lambda) = \prod_{j=1}^{M} \frac{\cosh(2\lambda) - \cosh(2\lambda_j)}{2} = \prod_{j=1}^{M} \left(\frac{\sinh^2 \lambda - \sinh^2 \lambda_j}{2} \right),
\]
with \(\cosh(2\lambda_j) \neq \cosh(2\lambda_n^{(b)}) \), \(\forall (j,n,h) \in \{1, \ldots, M\} \times \{1, \ldots, N\} \times \{0,1\} \).

Moreover, we consider the following function:
\[
F_\epsilon(\lambda) = F^{(N)}_\epsilon(\lambda) = a(\lambda) a(-\lambda) d(\lambda) d(-\lambda) \left(\cosh^2(2\lambda) - \cosh^2 \eta \right)
= F^{(N)}_\epsilon \left(\cosh^2(2\lambda) - \cosh^2 \eta \right) \prod_{n=1}^{N} \prod_{h=0}^{1} \cosh(2\lambda_j) - \cosh(2\epsilon_n^{(b)}),
\]
where
\[
F^{(N)}_\epsilon \equiv F^{(N)}_\epsilon(\tau_+, \tau_-, \alpha_+, \alpha_-, \beta_+, \beta_-) = \frac{2\kappa_+ \kappa_-}{\sinh \kappa_+ \sinh \kappa_-} \left[\cosh(\tau_+ - \tau_-) \right.
- \epsilon_+ \epsilon_- \cosh(\epsilon_+ \alpha_+ + \epsilon_- \alpha_- - \epsilon_+ \beta_+ + \epsilon_- \beta_- + (N - 1 - 2r) \eta) \left].
\]

Theorem 4.2. Let us suppose that the inhomogeneity parameters are generic (4.4) and that the condition (4.17) is satisfied. Suppose moreover that, for a given choice of \(\epsilon \equiv (\epsilon_+ , \epsilon_- , \epsilon_+ , \epsilon_-) \in \{-1, 1\}^2 \) such that \(\epsilon_+ \epsilon_- \epsilon_+ \epsilon_- = 1 \),
\[
\forall r \in \{0, \ldots, N - 1\}, \quad F^{(N)}_\epsilon(\tau_+, \tau_-, \alpha_+, \alpha_-, \beta_+, \beta_-) \neq 0.
\]
Then, a function \(\tau(\lambda) \) is an eigenvalue of the transfer matrix \(T(\lambda) \) (i.e. \(\tau(\lambda) \in \Sigma_T \)) if and only if it is an entire function of \(\lambda \) such that there exists a unique \(Q(\lambda) \in \Sigma_M^Q \) satisfying
\[
\tau(\lambda) Q(\lambda) = A_\epsilon(\lambda) Q(\lambda - \eta) + A_\epsilon(-\lambda) Q(\lambda + \eta) + F_\epsilon(\lambda).
\]

An interesting particular case of the above theorem corresponds to the situation in which the function \(F_\epsilon(\lambda) \) cancels, so that we obtain a complete description of the transfer matrix spectrum in terms of solutions of a usual (homogeneous) \(T\)-\(Q \) functional equation. Denoting with \(\Sigma_{M,T}^Q \) the set of entire functions of \(\lambda \) which can be expressed in the form
\[
A_\epsilon(\lambda) Q(\lambda - \eta) + A_\epsilon(-\lambda) Q(\lambda + \eta)
\]
\[
Q(\lambda)
\]
in terms of some polynomial $Q(\lambda) \in \Sigma^M_Q$ for a given choice of $\varepsilon \equiv (\varepsilon_{\alpha_+}, \varepsilon_{\alpha_-}, \varepsilon_{\beta^+_+}, \varepsilon_{\beta^-}) \in \{-1, 1\}^4$, we obtain in that case the following corollary:

Corollary 4.1. Let us suppose that the inhomogeneity parameters are generic (4.4) and that the conditions (4.17) and (4.36) are satisfied. Suppose moreover that

$$f^M_{\varepsilon}(\tau_+, \tau_-, \alpha_+, \alpha_-, \beta^+_+, \beta^-) = 0. \quad (4.39)$$

Then, $\tau(\lambda) \in \Sigma_T$ if and only if it is an entire function of λ such that there exists a unique $Q(\lambda) \in \Sigma^N_Q$ satisfying

$$\tau(\lambda) Q(\lambda) = A_{\varepsilon}(\lambda) Q(\lambda - \eta) + A_{\varepsilon}(-\lambda) Q(\lambda + \eta). \quad (4.40)$$

In other words, $\Sigma^N_{\varepsilon,T} = \Sigma_T$.

There are other situations in which the spectrum of the transfer matrix is partially given by solutions of the form (4.32) of a homogeneous T-Q equation, as described by the following theorem:

Theorem 4.3. Let us suppose that the inhomogeneity parameters are generic (4.4) and that the condition (4.17) is satisfied. Suppose moreover that, for a given choice of $\varepsilon \equiv (\varepsilon_{\alpha_+}, \varepsilon_{\alpha_-}, \varepsilon_{\beta^+_+}, \varepsilon_{\beta^-}) \in \{-1, 1\}^4$ such that $\varepsilon_{\alpha_+} \varepsilon_{\alpha_-} \varepsilon_{\beta^+_+} \varepsilon_{\beta^-} = 1$, there exists $M \in \{0, \ldots, N - 1\}$ such that

$$f^M_{\varepsilon}(\tau_+, \tau_-, \alpha_+, \alpha_-, \beta^+_+, \beta^-) = 0. \quad (4.41)$$

Then $\Sigma^M_{\varepsilon,T} \subset \Sigma_T$ and, for any $\tau(\lambda) \in \Sigma^M_{\varepsilon,T}$, there exists one and only one $Q(\lambda) \in \Sigma^M_{\varepsilon,Q}$ such that $\tau(\lambda)$ and $Q(\lambda)$ satisfy the functional equation (4.40), whereas for each $\tau(\lambda) \in \Sigma_T \setminus \Sigma^M_{\varepsilon,T}$, there exists one and only one $Q(\lambda) \in \Sigma^N_{\varepsilon,Q}$ such that $\tau(\lambda)$ and $Q(\lambda)$ satisfy the functional equation (4.37).

Remark 1. The condition that $f^M_{\varepsilon}(\tau_+, \tau_-, \alpha_+, \alpha_-, \beta^+_+, \beta^-) = 0$ for some r is essentially (up periodicity and to some additional freedom in the choice of the signs e) the condition (1.4) of [28].

The rewriting of the spectrum in terms of the solutions of a functional T-Q equation of the form (4.37) or (4.40) makes it possible to consider the homogeneous limit $\xi_1, \ldots, \xi_N \to 0$, and therefore to come back to the description of the physical model. In particular, the energy levels of the Hamiltonian (2.1) can be written from (2.12) in terms of the homogeneous limit $\bar{\lambda}_i$ of the roots λ_i of the solution $Q(\lambda)$ (4.32), using either (4.37) or (4.40).

4.4. Separate states and eigenstates

For any polynomial $Q(\lambda)$ of the form (4.32) and for a given choice of ε, let us consider the states

$$|Q\rangle_{\varepsilon} = \frac{1}{N(|\xi\rangle, \beta)} \sum_{h \in \{0, 1\}^N} \prod_{n=1}^N Q(h_\xi) e^{-\sum h_\xi}$$

$$\times \bar{V}(h_1^{(1)}, \ldots, h_N^{(N)}) S_{1\ldots N}(|\xi\rangle |\beta\rangle |h, \beta + 1\rangle). \quad (4.42)$$
and
\[
\epsilon \langle Q \rangle = \frac{1}{N(\{\xi\}, \beta)} \sum_{\{\xi\} \in \{0,1\}^N} \prod_{n=1}^N \left((u_n \nu_{n,e})^h \mathcal{Q}(\xi_n^{(h)}) \right) e^{-\sum_n h_n \xi_n} \\
\times \hat{V}(\xi_1^{(h_1)}, \ldots, \xi_N^{(h_N)}) \epsilon(\beta - 1, h | S_{1 \ldots N}^{-1}(\{\xi\}) | \beta). \tag{4.43}
\]

Here we have defined
\[
u_n = \frac{\sinh(2\xi_n - \eta) a(\xi_n + \eta/2) \, d(-\xi_n - \eta/2)}{\sinh(2\xi_n + \eta) a(-\xi_n + \eta/2) \, d(\xi_n - \eta/2)} = -\prod_{j \neq n} \frac{\sinh(\xi_n - \xi_j + \eta) \sinh(\xi_n + \xi_j + \eta)}{\sinh(\xi_n + \xi_j - \eta) \sinh(\xi_n - \xi_j - \eta)}, \tag{4.44}
\]
and
\[
v_{n,e} = \frac{a_e(\xi_n + \eta/2)}{a_e(-\xi_n + \eta/2)} = \frac{a_e(\xi_n + \eta/2)}{a_e(-\xi_n + \eta/2)}, \tag{4.45}
\]
so that
\[
\frac{\sinh(2\xi_n - 2\eta)}{\sinh(2\xi_n + 2\eta)} \frac{a_e(\xi_n + \eta/2)}{a_e(-\xi_n + \eta/2)} = u_n \nu_{n,e}. \tag{4.46}
\]
States of the form (4.42) and (4.43) are called separate states. If moreover \(Q(\lambda) \) satisfies the \(T \)-\(Q \) equation (4.40) or (4.37) with some entire function \(\tau(\lambda) \), they are eigenstates of the transfer matrix \(T(\lambda) \).

As in the XXX case [1], it is simple to prove the following identity
\[
\prod_{n=1}^N (-u_n)^h \hat{V}(\xi_1^{(h_1)}, \ldots, \xi_N^{(h_N)}) = \frac{\hat{V}(\xi_1^{(0)}, \ldots, \xi_N^{(0)})}{\hat{V}(\xi_1^{(1)}, \ldots, \xi_N^{(1)})} \hat{V}(\xi_1^{(1-h_1)}, \ldots, \xi_N^{(1-h_N)}), \tag{4.47}
\]
so that the state (4.43) can equivalently be rewritten as
\[
\epsilon \langle Q \rangle = \frac{1}{N(\{\xi\}, \beta)} \frac{\hat{V}(\xi_1^{(0)}, \ldots, \xi_N^{(0)})}{\hat{V}(\xi_1^{(1)}, \ldots, \xi_N^{(1)})} \sum_{\{\xi\} \in \{0,1\}^N} \prod_{n=1}^N \left((-\nu_{n,e})^h \mathcal{Q}(\xi_n^{(h)}) \right) \\
\times e^{-\sum_n h_n \xi_n} \hat{V}(\xi_1^{(1-h_1)}, \ldots, \xi_N^{(1-h_N)}) \epsilon(\beta - 1, h | S_{1 \ldots N}^{-1}(\{\xi\}) | \beta). \tag{4.48}
\]
As usual, it is possible to rewrite the separate states in a Bethe-type form, using that
\[
\prod_{n=1}^N \mathcal{Q}(\xi_n^{(h)}) = \prod_{j=1}^M a_\lambda(\lambda_j) a_\lambda(-\lambda_j), \tag{4.49}
\]
and the formulas (4.10) and (4.11) for the action of the operators \(\mathcal{B}^{SOS}(\lambda | \beta - 1) \) and \(\mathcal{B}^{SOS}(\lambda | \beta + 1) \) on the states (4.6) and (4.7) respectively. We obtain that
\[
| Q \rangle_\epsilon = S_{1 \ldots N}(\{\xi\}) | \beta \rangle \mathcal{B}^{R}(\lambda_1 | \beta - 1) \mathcal{B}^{R}(\lambda_2 | \beta - 3) \ldots \\
\ldots \mathcal{B}^{R}(\lambda_M | \beta + 1 - 2M) | \Omega_{\beta + 1 - 2M} \rangle_\epsilon. \tag{4.50}
\]
and
\[
\mathcal{E}(Q) = \mathcal{E}(\Omega_{\beta-1+2M} | \hat{\mathcal{B}}_{+}^N (\lambda M | \beta - 1 + 2M) \ldots
\hat{\mathcal{B}}_{+}^N (\lambda_2 | \beta - 2 + 2M) \hat{\mathcal{B}}_{+}^N (\lambda_1 | \beta - 1 + 2M) S_{-N}^{-1} (\{ \xi \} | \beta).
\]
(4.51)

Here we have defined the renormalized operators \(\hat{\mathcal{B}}_{+}^N (\lambda | \beta) \) and \(\hat{\mathcal{B}}_{-}^N (\lambda | \beta) \) in terms of \(\mathcal{B}_{\text{SOS}} (\lambda | \beta) \) as
\[
\hat{\mathcal{B}}_{+}^N (\lambda | \beta) = \frac{(-1)^N}{b_+ (\lambda | \beta - N)} \frac{\sinh(\eta \lambda)}{\sinh(\eta (\beta - N))} \mathcal{B}_{\text{SOS}} (\lambda | \beta),
\]
(4.52)
\[
\hat{\mathcal{B}}_{-}^N (\lambda | \beta) = \frac{(-1)^N}{b_- (\lambda | \beta + N)} \frac{\sinh(\eta (\beta + N - 1))}{\sinh(\eta (\beta - 1))} \mathcal{B}_{\text{SOS}} (\lambda | \beta),
\]
(4.53)
and the right and left reference states as
\[
| \Omega_{\beta+1} \rangle_\varepsilon = \frac{1}{N(\{ \xi \}, \beta)} \sum_{h \in \{0, 1\}^\nu} e^{-\sum h \xi_i \hat{V}(\xi_i^{(h)} \ldots, \xi_N^{(h)})} | h, \beta + 1 \rangle_\varepsilon.
\]
(4.54)

and
\[
\mathcal{E}(\Omega_{\beta-1} |) = \frac{1}{N(\{ \xi \}, \beta)} \sum_{h \in \{0, 1\}^\nu} \prod_{n=1}^N (u_n, \varepsilon)^{h_n} e^{-\sum h_n \xi_i \hat{V}(\xi_i^{(h)} \ldots, \xi_N^{(h)})} \mathcal{E}(\beta - 1, h |)
\]
(4.55)
\[
= \frac{1}{N(\{ \xi \}, \beta)} \hat{V}(\xi_1^{(0)}, \ldots, \xi_N^{(0)}) \sum_{h \in \{0, 1\}^\nu} \prod_{n=1}^N (\varepsilon - u_n)^{h_n}
\times e^{-\sum h_n \xi_i \hat{V}(\xi_1^{(1-h)} \ldots, \xi_N^{(1-h)})} \mathcal{E}(\beta - 1, h |).
\]
(4.56)

Note that we can define the separate states (4.42) and (4.43), as well as the reference states (4.54) and (4.56) for different choices of \(\varepsilon \in \{-1, 1\}^4 \). In particular, we can use the relation between the SoV basis for \(\varepsilon \) and \(-\varepsilon \),
\[
| h, \beta + 1 \rangle_{-\varepsilon} = \prod_{n=1}^N v_n^{-h_n} | h, \beta + 1 \rangle_\varepsilon
\]
(4.57)
\[
-\varepsilon(\beta - 1, h) = \prod_{n=1}^N v_n^{-h_n} \mathcal{E}(\beta - 1, h |),
\]
(4.58)

to re-express the reference states (4.54) and (4.56) associated with \(-\varepsilon \) in terms of the SoV basis for \(\varepsilon \) as
\[
| \Omega_{\beta+1} \rangle_{-\varepsilon} = \sum_{h \in \{0, 1\}^\nu} \prod_{n=1}^N v_n^{-h_n} e^{-\sum h_n \xi_i \hat{V}(\xi_i^{(h)} \ldots, \xi_N^{(h)})} | h, \beta + 1 \rangle_\varepsilon.
\]
(4.59)

and
\[
-\varepsilon(\Omega_{\beta-1} |) = \prod_{n=1}^N v_n^{-h_n} \sum_{h \in \{0, 1\}^\nu} \prod_{n=1}^N u_n^{h_n} e^{-\sum h_n \xi_i \hat{V}(\xi_i^{(h)} \ldots, \xi_N^{(h)})} \mathcal{E}(\beta - 1, h |)
\]
(4.60)
\[
\sum_{\beta} e^{-\sum_{h} h_{\beta} \tilde{V}(\chi(1-h_{\beta}), \ldots, \chi(N-1-h_{\beta}))} \epsilon^{(\beta - 1, h_{\beta})}. \tag{4.61}
\]

Proposition 4.1. Let us suppose that the hypothesis of theorem 4.1 are satisfied. For \(\tau(\lambda) \in \Sigma_{T}\) and for a given choice of \(\epsilon\), we denote by

\[
Q_{\epsilon, \tau}(\lambda) = \prod_{j=1}^{q_{\epsilon}} \frac{\cosh(2\lambda j) - \cosh(2\lambda j_{\epsilon})}{2} \quad (q_{\epsilon} \leq N)
\]

the unique solution of the T-Q equation (4.40) if the condition

\[
f_{\tau(\lambda)}^{q_{\epsilon}}(\tau_{+}, \tau_{-}, \alpha_{+}, \alpha_{-}, \beta_{+}, \beta_{-}) = 0
\]

is satisfied with \(\tau(\lambda) \in \Sigma_{\epsilon, \tau}\), or the unique solution of (4.37) with \(q_{\epsilon} = N\) otherwise.

Then, the one-dimensional right eigenspace of the transfer matrix \(T(\lambda)\) associated with the eigenvalue \(\epsilon(\lambda)\) is generated by any of the separate states \(|Q_{\epsilon, \tau}\rangle\) for any choice of \(\epsilon \equiv (\epsilon_{\alpha_{+}}, \epsilon_{\alpha_{-}}, \epsilon_{\beta_{+}}, \epsilon_{\beta_{-}}) \in \{-1, 1\}^4\) such that \(\epsilon_{\alpha_{+}} \epsilon_{\alpha_{-}} \epsilon_{\beta_{+}} \epsilon_{\beta_{-}} = 1\). For two such choices of \(\epsilon\), the corresponding states are proportional:

\[
|Q_{\epsilon, \tau} \rangle \langle \epsilon'| = \prod_{n=1}^{N} \frac{Q_{\epsilon, \tau}(\xi_{n} + \frac{\eta}{2})}{Q_{\epsilon, \tau}(\xi_{n} + \frac{\eta}{2})} \prod_{j=1}^{q_{\epsilon}} d(\lambda_{\epsilon_{j}}) d(-\lambda_{\epsilon_{j}}) |Q_{\epsilon, \tau} \rangle \epsilon. \tag{4.64}
\]

Similarly, the one-dimensional left eigenspace of the transfer matrix \(T(\lambda)\) associated with the eigenvalue \(\epsilon(\lambda)\) is generated by any of the separate states \(\epsilon' \langle Q_{\epsilon, \tau} |\) for any choice of \(\epsilon \equiv (\epsilon_{\alpha_{+}}, \epsilon_{\alpha_{-}}, \epsilon_{\beta_{+}}, \epsilon_{\beta_{-}}) \in \{-1, 1\}^4\) such that \(\epsilon_{\alpha_{+}} \epsilon_{\alpha_{-}} \epsilon_{\beta_{+}} \epsilon_{\beta_{-}} = 1\). For two such choices of \(\epsilon\), the corresponding states are proportional:

\[
\epsilon' \langle Q_{\epsilon, \tau} | = \prod_{n=1}^{N} \frac{Q_{\epsilon, \tau'}(\xi_{n} + \frac{\eta}{2})}{Q_{\epsilon, \tau}(\xi_{n} + \frac{\eta}{2})} \frac{a_{\epsilon'}(\xi_{n} + \frac{\eta}{2})}{a_{\epsilon}(\xi_{n} + \frac{\eta}{2})} \epsilon(\langle Q_{\epsilon, \tau} |) = \prod_{j=1}^{q_{\epsilon}} d(\lambda_{\epsilon_{j}}) d(-\lambda_{\epsilon_{j}}) \prod_{n=1}^{N} \frac{a_{\epsilon'}(\xi_{n} + \frac{\eta}{2})}{a_{\epsilon}(\xi_{n} + \frac{\eta}{2})} \epsilon' \langle Q_{\epsilon, \tau} |. \tag{4.65}
\]

Proof. This is a direct consequence of the previous study, of the following identities,

\[
\frac{Q_{\epsilon, \tau}(\xi_{n}^{(1)})}{Q_{\epsilon, \tau'}(\xi_{n}^{(0)})} = \frac{a_{\epsilon}(\xi_{n}^{(0)})}{a_{\epsilon'}(\xi_{n}^{(0)})} \frac{Q_{\epsilon, \tau}(\xi_{n}^{(1)})}{Q_{\epsilon, \tau'}(\xi_{n}^{(0)})}, \tag{4.66}
\]

and

\[
|\hbar, \beta + 1 \rangle' = \prod_{n=1}^{N} \left(\frac{a_{-\epsilon}(\xi_{n} + \frac{\eta}{2})}{a_{-\epsilon'}(\xi_{n} + \frac{\eta}{2})} \right)^{h_{n}} |\hbar, \beta + 1 \rangle \epsilon. \tag{4.67}
\]

\[
\epsilon' \langle \beta - 1, \hbar | = \prod_{n=1}^{N} \left(\frac{a_{-\epsilon}(\xi_{n} + \frac{\eta}{2})}{a_{-\epsilon'}(\xi_{n} + \frac{\eta}{2})} \right)^{1-h_{n}} \epsilon' \langle \beta - 1, \hbar |, \tag{4.68}
\]

and of the fact that the product \(a_{\epsilon}(\lambda) a_{-\epsilon}(\lambda)\) does not depend on \(\epsilon\).
5. Scalar product of separate states

Let \(P(\lambda) \) and \(Q(\lambda) \) be two polynomials in \(\cosh(2\lambda) \), of respective degree \(n_p \) and \(n_q \), and which can be expressed as

\[
P(\lambda) = \prod_{j=1}^{n_p} \frac{\cosh(2\lambda) - \cosh(2p_j)}{2}, \quad Q(\lambda) = \prod_{j=1}^{n_q} \frac{\cosh(2\lambda) - \cosh(2q_j)}{2}.
\]

(5.1)

It is easy to see that the scalar product of any two separate states of the form (4.42) and (4.43) (or (4.48)) constructed from \(P \) and \(Q \) can be represented as a determinant.

Proposition 5.1. Let us suppose that the inhomogeneity parameters are generic (4.4) and that the condition (4.17) is satisfied. Let \(\varepsilon, \varepsilon' \in \{-1,1\}^4 \) such that

\[
\varepsilon_{\alpha+}\varepsilon_{\alpha-}\varepsilon_{\beta+}\varepsilon_{\beta-} = \varepsilon_{\alpha'+}\varepsilon_{\alpha'-}\varepsilon_{\beta'+}\varepsilon_{\beta'-} = 1.
\]

The scalar products of the separate states \(\varepsilon(Q|P)_{\varepsilon'} \) built as in (4.43) or (4.48) from \(Q(\lambda) \) and \(|P\rangle_{\varepsilon'} \) built as in (4.42) from \(P(\lambda) \), admit the following determinant representation:

\[
\langle Q|P\rangle_{\varepsilon'} = \frac{1}{N(\xi_1^{(0)}, \ldots, \xi_N^{(0)})} \prod_{1 \leq i < j \leq N}^\prime \left[\frac{1}{\cosh(2\lambda_{(i-1j-1)})} \right] P(\xi_i^{(0)}) Q(\xi_j^{(0)}) \left(\frac{\cosh(2\lambda_{(i-1j-1)})}{2} \right)^{j-1}.
\]

(5.2)

The representation (5.2) of proposition 5.1 is a direct consequence of the representations (4.48) and (4.42) of the separate states, of the proportionality relation (4.67), and of the orthogonality relation (4.13).

It is an important advantage of the SoV that the scalar products of separate states are always expressed as determinants. However the present formula (5.2) becomes very difficult to use in the homogeneous and thermodynamic limits. For this reason it is important to recast this expression in a more convenient form depending more directly on the roots of polynomials \(P \) and \(Q \), and in which the dependence on the inhomogeneous parameters is such that taking the homogeneous limit becomes straightforward. As in the XXX case [1], we will in fact show that it is possible to rewrite the expression (5.2) for the scalar product of two arbitrary separate states (without requiring any of them to be an eigenstate) in terms of a generalized Slavnov determinant [108]. We will proceed with this computations following an approach similar to what was done in [1]. However, due to some additional difficulties in the XXZ case, the most general result becomes much more involved than in the rational case. Hence, we will gather many technical details in appendices D and E, and insist mainly on the cases which seem to be the most interesting for the physical applications. As we shall see, in these cases, the obtained formulas simplify due to the use of the Bethe equations.

5.1. Scalar product of two arbitrary separate states

Let us first notice that the whole dependence on \(\varepsilon, \varepsilon' \) in the expression (5.2) is contained in the ratio of \(a_{\varepsilon'}(\xi_i + \frac{1}{2}) \) and \(a_{-\varepsilon}(\xi_i + \frac{1}{2}) \), which is of the form

\[
\frac{a_{\varepsilon'}(\xi_i + \frac{1}{2})}{a_{-\varepsilon}(\xi_i + \frac{1}{2})} = \prod_{\ell=1}^{n_{\varepsilon'^{-1}}} \frac{\sinh(\xi_i + a_{\ell})}{\sinh(\xi_i - a_{\ell})}.
\]

(5.3)
In this expression,

- $n_{\varepsilon, \varepsilon'} = 0$ if $\varepsilon = -\varepsilon'$

- $n_{\varepsilon, \varepsilon'} = 4, \quad \{a_\ell\} = \{\epsilon'_\alpha, \alpha_+, \epsilon'_\alpha, \alpha_-, \epsilon'_{\beta_+} (-\beta_+ + i\pi/2), \epsilon'_{\beta_-} (\beta_- + i\pi/2)\}$ if $\varepsilon = \varepsilon'$,

- $n_{\varepsilon, \varepsilon'} = 2, \quad \{a_\ell\} \subset \{\epsilon'_\alpha, \alpha_+, \epsilon'_\alpha, \alpha_-, \epsilon'_{\beta_+} (-\beta_+ + i\pi/2), \epsilon'_{\beta_-} (\beta_- + i\pi/2)\}$ otherwise.

We also introduce some additional notations. For two arbitrary functions f and g, and any set of variables $\{z\} \equiv \{z_1, \ldots, z_L\}$, we define

$$A_{\{z\}}[f, g] = \frac{\det_{1 \leq i, j \leq L} \left[\sum_{\varepsilon \in \{+,-\}} f(\varepsilon z_i) \left(\frac{\cosh(2\varepsilon + \eta)}{2} \right)^{j-1} + \delta_{j,1} g(z_i) \right]}{V(z_1, \ldots, z_L)}.$$

When the function g vanishes identically, we may simply denote (5.8) by $A_{\{z\}}[f]$. We also consider a particular function $f_{\varepsilon, \varepsilon'}$, defined in terms of the corresponding set $\{a_\ell\}_{1 \leq \ell \leq n_\varepsilon}$ as

$$f_{\varepsilon, \varepsilon'}(\lambda) = (-1)^N \prod_{\ell=1}^{n_\varepsilon} \frac{\sinh(\lambda - a_\ell + \frac{\eta}{2})}{\sinh(a_\ell)} \frac{a(-\lambda)}{\sinh(2\lambda)}.$$

and, in the case $\varepsilon = \varepsilon'$, a function $g^{(L)}_\varepsilon(\lambda)$ such that

$$g^{(N)}_\varepsilon(\lambda) = \frac{\sinh(\sum_\ell a_\ell - \eta)}{\prod_\ell \sinh(a_\ell)} - a(\lambda) a(-\lambda) d(\lambda) d(-\lambda),$$

$$g^{(L)}_\varepsilon(\lambda) = (-1)^{L-N} g^{(N)}_\varepsilon(\lambda) - f^{(L)}_{\varepsilon, \varepsilon'}(\lambda)$$

if $L > N$,

whereas, if $L < N$, the function $g^{(L)}_\varepsilon(\lambda)$ is defined by induction as

$$g^{(L)}_\varepsilon(z) = \frac{\prod_\ell \sinh(a_\ell) f^{(L)}_{\varepsilon, \varepsilon'}(z)}{\sinh((L+1-N)\eta - \sum_\ell a_\ell)} \lim_{\varepsilon' \to \infty} \frac{f^{(L+1)}_{\varepsilon, \varepsilon'}(\varepsilon' z') + g^{(L+1)}_\varepsilon(\varepsilon' z')}{\xi(\varepsilon')^{N+L}}$$

$$- f^{(L)}_{\varepsilon, \varepsilon'}(z) - g^{(L+1)}_\varepsilon(\varepsilon z) - g^{(L+1)}_\varepsilon(z).$$

Here we have used the shortcut notation:

$$f^{(l)}_{\varepsilon, \varepsilon'}(\lambda) = \sum_{\varepsilon \in \{+,-\}} f_{\varepsilon, \varepsilon'}(\varepsilon \lambda) \left(\frac{\cosh(2\lambda + \varepsilon \eta)}{2} \right)^{l-1},$$

for a generic integer l. Then we have the following result:
Theorem 5.1. Let us suppose that the inhomogeneity parameters are generic (4.4) and that the condition (4.17) is satisfied. Let \(\varepsilon, \varepsilon' \in \{-1, 1\}^4 \) such that
\[\epsilon_+ \epsilon_+ \epsilon_- \epsilon_- = \epsilon_+ \epsilon_+ \epsilon_- \epsilon_- = \epsilon_+ \epsilon_- \epsilon_+ \epsilon_- = \epsilon_- \epsilon_- \epsilon_+ \epsilon_+ = 1. \]

The scalar products of the separate states \(\varepsilon \langle Q | P \rangle \varepsilon' \) built as in (4.43) or (4.48) from \(Q(\lambda) \) with roots \(\{q\} \equiv \{q_1, \ldots, q_n\} \), and \(|P\rangle_{\varepsilon'} \) built as in (4.42) from \(P(\lambda) \) with roots \(\{p\} \equiv \{p_1, \ldots, p_n\} \), admit the following determinant representation:
\[\varepsilon \langle Q | P \rangle \varepsilon' = (-1)^{N(p_q+n_q)} Z_\beta \tilde{Z}_{\{a\}, \{\xi\}} \Gamma_{\{a\}}^{(p_q+n_q)} A_{\{q\} \cup \{p\}}[f_{\varepsilon', \varepsilon} g_{\varepsilon', \varepsilon}], \quad (5.14) \]

where the function \(f_{\varepsilon', \varepsilon} \) is given as in (5.9).

Here the function \(g_{\varepsilon', \varepsilon} \) is defined to be identically zero if \(\varepsilon \neq \varepsilon' \), while for \(\varepsilon = \varepsilon' \), it is equal to the function \(g_{\varepsilon, \varepsilon}'^{(p_q+n_q)} \) defined as in (5.10), (5.11) or (5.12) according to whether \(n_p + n_q \) is equal, larger or smaller than \(N \).

Finally, the normalization coefficient \(Z_\beta \tilde{Z}_{\{a\}, \{\xi\}} \) and \(\Gamma_{\{a\}}^{(p_q+n_q)} \) are respectively given by
\[Z_\beta = \prod_{j=1}^{N} \left[\frac{1}{b_j \beta + N - 2j} \sinh(\eta(\beta + N - j)) \right], \quad (5.15) \]
\[\tilde{Z}_{\{a\}, \{\xi\}} = \prod_{i=1}^{N} \left\{ e^{\xi_i} g_{\eta/2 - \xi_i} \prod_{\ell=1}^{n_p} \frac{\sinh(a_\ell)}{\sinh(\xi_i - a_\ell)} \right\}, \quad (5.16) \]

and
\[\Gamma_{\{a\}}^{(p_q+n_q)} = \begin{cases} \displaystyle \prod_{j=1}^{n_p+n_q-N} \frac{\prod_{\ell} \sinh(a_\ell)}{\sinh(\eta_j - \sum \ell a_\ell)} & \text{if } n_p + n_q \geq N, \\ \displaystyle \prod_{j=1}^{n_p+n_q-N} \frac{\prod_{\ell} \sinh(\eta_j - \sum \ell a_\ell)}{\sinh(\eta_j + \sum \ell a_\ell)} & \text{if } n_p + n_q < N. \end{cases} \quad (5.17) \]

Proof. Using the notation (5.8), we can rewrite (5.2) as
\[\varepsilon \langle Q | P \rangle \varepsilon' = (-1)^{N} Z_\beta \prod_{j=1}^{N} e^{\eta_j/2 - \xi_j} \prod_{\ell=1}^{n_p} \sinh(\xi_j - a_\ell) \times \prod_{i=1}^{N} \frac{P(\xi_j^{(0)}) Q(\xi_j^{(0)}) P(\xi_j^{(1)}) Q(\xi_j^{(1)})}{P(\xi_j) Q(\xi_j)} A_{\{\xi_1, \ldots, \xi_N\} \cup \{q_1, \ldots, q_n\}}[f_{\{a\}, \{p\} \cup \{q\}}] \quad (5.18) \]
in terms of the function \(f_{\{a\}, \{p\} \cup \{q\}}(z) \equiv f_{\{a_1, \ldots, a_n\} \cup \{p_1, \ldots, p_n\} \cup \{q_1, \ldots, q_n\}} \) defined as
\[f_{\{a\}, \{p\} \cup \{q\}}(z) = \prod_{\ell=1}^{n_p} \frac{\sinh(\xi + a_\ell)}{\sinh(2z)} \prod_{\mu \in \{p\} \cup \{q\}} \frac{\cosh(2z) - \cosh(2\mu)}{\cosh(2z + 2\eta) - \cosh(2\mu)}. \quad (5.19) \]

In (5.18), we have also used the explicit expression (4.15) of \(N(\{\xi\}, \beta) \).

We now use the identities of appendix D to transform (5.18) in terms of a new ratio of determinants in which the role of the sets of variables \(\{\xi\} \) and \(\{p\} \cup \{q\} \) are exchanged. Reinserting part of the normalization coefficient into the determinant in the numerator, we finally obtain (5.14). \(\square \)
Remark 2. Note that the normalization coefficient (5.17), and hence the scalar product (5.14), vanishes in the case \(\epsilon = -\epsilon' \) and \(n_p + n_q < N \).

Theorem 5.1 is the XXZ analog of the first part of theorem 4.1 of [1]. The expression (5.14) is now in a completely regular form with respect to the homogeneous limit. However, the formulas that we obtain for the XXZ scalar products appear to be significantly more complicated than their XXX analogs, at least in the \(\epsilon = \epsilon' \) case, due to the appearance of the non-zero function \(g_{\epsilon, \epsilon'} \).

As shown in appendix E, it is also possible to transform the functional (5.8) of \(f \) and \(g \) into a new functional which takes the form of a generalized version of the famous Slavnov formula [108] (see Identities 6 and 7). This can be done whatever the form of \(f \) and \(g \) and for any arbitrary set of integers \(\{z_1, \ldots, z_L\} \) defined as the union of two subsets \(\{x_1, \ldots, x_L\} \cup \{y_1, \ldots, y_L\} \). This means in particular that we can re-write the scalar product (5.14) in terms of a generalized Slavnov determinant by using Identities 6 and 7, and this for any two arbitrary separate states (i.e. without supposing one of the two states to be an eigenstate). However, the general formula is quite cumbersome9. Therefore, we chose not to present it in the main text (the interested reader can refer to appendix E), and instead to emphasize on a particular case which seems to be the most relevant for the computation of correlation functions: when one of the two sets of variables satisfies the Bethe equations following from the homogeneous \(T-Q \) equation (4.40). This is the purpose of the next subsection.

5.2. Scalar product of an eigenstate with an arbitrary separate state

As mentioned above, the generalization of the Slavnov formula for the scalar products of two arbitrary separate states is more cumbersome than in the XXX rational case [1], at least when \(\epsilon = \epsilon' \) due to the appearance of the non-zero function \(g_{\epsilon, \epsilon'} \). However, the most general case is not the most important for the computation of correlation functions in the thermodynamic limit (i.e. on the half line), for which we need to consider normalized mean values of the form

\[
E(O) = \lim_{N \to \infty} \frac{\langle Q | O | Q \rangle_{\epsilon}}{\epsilon | Q \rangle_{\epsilon}^2}, \quad (5.20)
\]

where \(O \) is a product of local spin operators [22, 23, 107]. Note that, strictly speaking, the denominator in (5.20) is not the square of the norm of the separate state \(| Q \rangle_{\epsilon} \), but it plays exactly the same role, so, by a slight abuse of language, we will still use the terminology ‘norm’ in this section.

For the consideration of quantities of the form (5.20) we can make the following remarks:

- To compute the norms and mean values of local operators the case \(\epsilon = \epsilon' \) (i.e. \(n_a = 4 \)) seems to be the most relevant.
- In the half-line limit one of the boundaries should become irrelevant, which means that we can impose the most convenient boundary constraint (4.39). Then all the eigenstates are characterized by polynomials \(Q \) of degree \(N \) satisfying the homogeneous Baxter equation (4.40).
- We expect that the resulting action of the product of local operators \(O \) on an eigenstate can always be simply expressed as a linear combination of off-shell separate states associated to polynomials of degree \(L \geq N \).

Hence, in this subsection, we will restrict ourselves to the case \(\epsilon = \epsilon' \) (i.e. \(n_a = 4 \)). We shall moreover suppose that \(n_p \geq n_q \) and that the polynomial \(Q \) satisfies the homogeneous \(T-Q \)

9It nevertheless simplifies in the cases \(\epsilon \neq \epsilon' \), for which the function \(g_{\epsilon, \epsilon'} \) vanishes: the resulting formulas are then quite similar to the ones obtained for the XXX chain in [1].
Let P and Q be two trigonometric polynomials of the form (5.1) and of the same degree $n_P = n_Q = n$. We suppose moreover that $Q(\lambda)$ satisfies the homogeneous T-Q equation (4.40) with $\tau(\lambda) \in \Sigma_T$, whereas the roots p_j of the trigonometric polynomial P are arbitrary complex numbers.

Then the scalar product of the two corresponding separate states $\epsilon \langle Q | P \rangle$ and $| P \rangle \epsilon$ can be written as

$$\epsilon \langle Q | P \rangle \epsilon = Z_\beta Z_{(a)} \Gamma_{(a)}^{(2n)} H_Q[f_{\epsilon,\epsilon}, s_{\epsilon}^{(2n)}] \prod_{j=1}^n \frac{Q(p_j)}{\sinh(2p_j + \eta) \sinh(2p_j - \eta)}$$

$$\times \prod_{j=1}^n \left(-\frac{A_\epsilon(q_j)}{\sinh(2q_j + \eta)} \right) \check{V}(q_1 - \frac{n}{2}, \ldots, q_n - \frac{n}{2}) \det_{1 \leq j,k \leq n} \left[\frac{\partial \tau(p_j)}{\partial q_k} \right] V(q_n, \ldots, q_1)V(p_1, \ldots, p_n),$$

where the normalization coefficient Z_β, $Z_{(a)}$, $\Gamma_{(a)}^{(2n)}$ and $\Gamma_{(a)}^{(2n)}$ are respectively given by (5.15)–(5.17). The normalization coefficient $H_Q[f_{\epsilon,\epsilon}, s_{\epsilon}^{(2n)}]$ is defined in terms of the roots q_1, \ldots, q_n of Q as

$$H_Q[f_{\epsilon,\epsilon}, s_{\epsilon}^{(2n)}] = 1 + \sum_{j=1}^n g_{\epsilon}^{(2n)}(q_j) \sinh(2q_j - \eta).$$

It involves the functions $f_{\epsilon,\epsilon}$ (5.9), which can be more simply written as

$$f_{\epsilon,\epsilon}(\lambda) = \frac{A_\epsilon(-\lambda)}{\sinh(2\lambda - \eta)},$$

and $g_{\epsilon}^{(2n)}$ defined as in (5.10)–(5.12) according to whether $2n$ is equal, larger or smaller than N.

A comment is due here. This result is essentially the Slavnov formula [108] (presented as in [105] in terms of a Jacobian), the only difference being the normalization coefficients. Note however that most of these normalization coefficients do not depend on the off-shell separate state $| P \rangle$. Hence, they are irrelevant for the computation of the correlation functions since they will always be cancelled by the same coefficient from the norm of the on-shell state in the denominator of (5.20).

Proof. This is a direct consequence of theorem 5.1 and of identity 5.\qed

As a corollary of this theorem is the analog of the Gaudin formula [137] for the square of the norm of on-shell separate states:

Corollary 5.1. Let Q be a polynomial of the form (5.1) of degree degree $n_Q = n$ satisfying the homogeneous T-Q equation (4.40) with $\tau(\lambda) \in \Sigma_T$. Then

$$\epsilon \langle Q | Q \rangle \epsilon = Z_\beta Z_{(a)} \Gamma_{(a)}^{(2n)} H_Q[f_{\epsilon,\epsilon}, s_{\epsilon}^{(2n)}] \prod_{j=1}^n \frac{A_\epsilon(q_j)^2 Q(q_j - \eta)}{\sinh(2q_j + \eta)^2 \sinh(2q_j - \eta)}$$

$$\times \check{V}(q_1 - \frac{n}{2}, \ldots, q_n - \frac{n}{2}) \det_{1 \leq j,k \leq n} \left[\frac{\partial \tau(q_j)}{\partial q_k} \log \left(\frac{A_{(a)}(-q_j)}{A_{(a)}(q_j + \eta)} \right) \right] V(q_n, \ldots, q_1)V(q_1, \ldots, q_n).$$

(5.24)
Finally, we present a generalization of theorem 5.2 in the case $n_p > n_q$:

Theorem 5.3. Let P and Q be two trigonometric polynomials of the form (5.1) with $n_p > n_q$. We suppose moreover that $Q(\lambda)$ satisfies the homogeneous T-Q equation (4.40) with $\tau(\lambda) \in \Sigma_T$, whereas the roots p_j of the trigonometric polynomial P are arbitrary complex numbers.

Then the scalar product of the two corresponding separate states $\langle Q \mid P \rangle_\epsilon$ can be written as a generalized Slavnov determinant with a rank one correction:

$$
\epsilon \langle Q \mid P \rangle_\epsilon = (-1)^{N(n_p+n_q)} Z_p Z_\epsilon \tilde{Z}_\epsilon \tilde{Z}_\epsilon (\omega, \xi) \Gamma^{(n_p+n_q)} \frac{Q(p_j)}{\sinh(2p_j + \eta) \sinh(2p_j - \eta)}
\times \prod_{l=1}^{n_q} \frac{f_\epsilon \sigma(-q_l)}{\sinh \eta \sinh(2q_l)} \tilde{V}(q_1 - \frac{\eta}{2}, \ldots, q_{n_q} - \frac{\eta}{2}) \det_{n_p}(S_p + \mathcal{P}) \bigg(\frac{\cosh(2p_j + \eta)}{2} \bigg)^{k=n_q-1},
$$

(5.25)

The $n_p \times n_p$ matrix S_p is a generalized Slavnov matrix with elements:

$$
[S_p]_{jk} = \frac{\partial \tau(p_j)}{\partial q_k}, \quad \text{if} \quad k \leq n_q,
$$

$$
[S_p]_{jk} = \sum_{\epsilon=\pm 1} \bar{\epsilon} A_\epsilon(-\bar{\epsilon} q_j) \sinh(2p_j + \bar{\epsilon} \eta) \frac{Q(p_j + \bar{\epsilon} \eta)}{Q(p_j)} \bigg(\frac{\cosh(2p_j + \bar{\epsilon} \eta)}{2} \bigg)^{k=n_q-1},
$$

(5.26)

The additional rank one matrix \mathcal{P} has only one non-zero column: $\mathcal{P}_{jk} = 0$ if $j \neq n_p$ and $k \leq n_q$, and

$$
\mathcal{P}_{np} = g^{(n_p+n_q)}(q_j) \frac{\sinh(2p_j + \eta) \sinh(2p_j - \eta)}{Q^2(p_j)}
- \sum_{\epsilon=\pm 1} \bar{\epsilon} A_\epsilon(-\bar{\epsilon} q_j) \sinh(2p_j + \bar{\epsilon} \eta) \frac{Q(p_j + \bar{\epsilon} \eta)}{Q(p_j)}
\times \sum_{l=1}^{n_q} f_\epsilon \sigma(-q_l) \frac{2 g^{(n_p+n_q)}(q_l) \sinh(2q_l - \eta)}{Q(q_l) Q(q_l - \eta) \left[\cosh(2p_j + \bar{\epsilon} \eta) - \cosh(2q_l - \eta) \right]},
$$

if $k > n_q$.

Proof. This is a direct consequence of theorem 5.1 and of identity 7.

6. Conclusion

We have shown that the program of rewriting SoV type determinant representations for the scalar products of separate states (that include all eigenstates of the transfer matrix) in terms of generalized Slavnov’s type determinants can be achieved for the most general XXZ spin-1/2 integrable open chain. It generalizes to the trigonometric case the results obtained in the rational model [1]. It paves the way to the computation of form factors and correlation functions and to the study of the dynamics of these models that we plan to address in future publications. In particular, these formulae allow to start the computation of elementary blocks of correlation functions in the SoV framework on a similar ground to that previously developed for some
special boundary conditions in [22, 23]. Along these lines, it would be very important also to pursue this program for the case of cyclic representations of the 6-vertex Yang–Baxter algebra. Indeed this case is relevant for the lattice version of the sine-Gordon field theory and to the Chiral Potts model [94, 138]. A rewriting of the scalar products in a way similar to what we achieved here would give, in particular, the possibility to obtain a direct re-derivation of the order parameter of the Chiral Potts model. More interestingly, it would also lead to the computation of the relevant form factors of local operators and correlation functions in the thermodynamic limit for these important models. We would like to stress here that the rewrit-ing of the various determinants arising all along such a program is essential to be able to take the homogeneous limit and then eventually the thermodynamic limit. Hence those rewritings constitute a cornerstone for the applicability of the SoV method itself that requires to consider the inhomogeneity parameters to be in generic position. This is perfectly acceptable only if the homogeneous limit can be effectively taken in this end. We have no doubt that such a program can be achieved for general integrable models solvable by the quantum SoV method along the lines presented in this article.

Acknowledgments

JMM, GN and VT are supported by CNRS. NK would like to thank LPTHE, Sorbonne University, and LPTMS, Univ. Paris-Sud, for hospitality. NK and VT would like to thank Laboratoire de Physique, ENS-Lyon, for hospitality.

Appendix A. A few useful properties of the gauged transformed operators

We gather here for completeness some relations involving the elements of the gauged transformed boundary monodromy matrix (3.11) or (3.12).

Both matrices satisfy the dynamical reflection equation (3.13). A few useful commutation relations (which are therefore equally valid for the elements of (3.11) or (3.12)) issued from this equation are gathered here:

$$B(\lambda|\beta + 1)B(\mu|\beta - 1) = B(\mu|\beta + 1)B(\lambda|\beta - 1),$$ \hspace{1cm} (A.1)

$$[A(\lambda|\beta), A(\mu|\beta)] = \frac{\sinh \eta \sinh(\lambda + \mu - \eta \beta)}{\sinh(\lambda + \mu) \sinh(\eta(\beta - 1))} \times \{B(\lambda|\beta)C(\mu|\beta) - B(\mu|\beta)C(\lambda|\beta)\},$$ \hspace{1cm} (A.2)

$$[D(\lambda|\beta), D(\mu|\beta)] = \frac{\sinh \eta \sinh(\lambda + \mu + \eta \beta)}{\sinh(\lambda + \mu) \sinh(\eta(\beta + 1))} \times \{C(\mu|\beta)B(\lambda|\beta) - C(\lambda|\beta)B(\mu|\beta)\},$$ \hspace{1cm} (A.3)

$$A(\mu|\beta + 1)B(\lambda|\beta + 1) = \frac{\sinh(\lambda + \mu - \eta)}{\sinh(\lambda + \mu) \sinh(\lambda - \mu)} \frac{\sinh(\lambda - \mu + \eta)}{\sinh(\lambda - \mu)} B(\lambda|\beta + 1)A(\mu|\beta - 1)$$

$$- \frac{\sinh(\lambda + \mu - \eta) \sinh \eta \sinh(\lambda - \mu + \eta \beta)}{\sinh(\lambda + \mu) \sinh(\lambda - \mu) \sinh(\eta \beta)} B(\mu|\beta + 1)A(\lambda|\beta - 1)$$

$$+ \frac{\sinh \eta \sinh(\lambda + \mu - \eta(\beta + 1))}{\sinh(\lambda + \mu) \sinh(\eta \beta)} B(\mu|\beta + 1)D(\lambda|\beta + 1),$$ \hspace{1cm} (A.4)
\[\mathcal{B}(\lambda|\beta - 1) \mathcal{D}(\mu|\beta - 1) = \sinh(\lambda + \mu - \eta) \sinh(\lambda - \mu + \eta) \mathcal{D}(\mu + 1 \sinh(\lambda + \mu) \sinh(\lambda - \mu)) \mathcal{B}(\lambda|\beta - 1) + \frac{\sinh(\lambda + \mu - \eta)}{\sinh(\lambda + \mu) \sinh(\lambda - \mu) \sinh(\eta \beta)} \mathcal{D}(\lambda|\beta + 1) \mathcal{B}(\mu|\beta - 1) - \frac{\sinh(\eta \sinh(\lambda + \mu + \eta(\beta - 1)))}{\sinh(\lambda + \mu) \sinh(\eta \beta)} \mathcal{A}(\lambda|\beta - 1) \mathcal{B}(\mu|\beta - 1). \]

(A.5)

By means of the transformation (3.11), the elements of the matrix \(\tilde{U}(\lambda|\beta) \) can explicitly be expressed in terms of the elements of the matrix \(U_-(\lambda) \) (2.5) as

\[\tilde{\mathcal{A}}_-(\lambda|\beta) = \mathcal{D}_-(\lambda|\beta) = \frac{1}{2 \sinh(\eta \beta)} \left\{ - e^{2\lambda - \eta \alpha - \eta \beta} \mathcal{A}_-(\lambda) - e^{\frac{\pi i}{4} + \eta \alpha} \mathcal{B}_-(\lambda) + e^{\frac{\pi i}{4} - \eta \alpha} \mathcal{C}_-(\lambda) + e^{\eta \alpha} \mathcal{D}_-(\lambda) \right\}, \]

(A.6)

\[\tilde{\mathcal{B}}_-(\lambda|\beta) = \tilde{\mathcal{C}}_-(\lambda|\beta) = \frac{1}{2 \sinh(\eta \beta)} \left\{ - e^{2\lambda - \eta \alpha - \eta \beta} \mathcal{A}_-(\lambda) - e^{\frac{\pi i}{4} + \eta \alpha} \mathcal{B}_-(\lambda) + e^{\frac{\pi i}{4} - \eta \alpha} \mathcal{C}_-(\lambda) + e^{\eta \alpha} \mathcal{D}_-(\lambda) \right\}. \]

(A.7)

The gauged transformed matrix elements of (3.11), as well as the SOS boundary matrix elements of (3.12), also satisfy parity properties of the form

\[e^{2\lambda} \sinh(2\lambda - \eta) \mathcal{A}_-(\lambda|\beta - 1) = \frac{\sinh(\eta(\beta + 1))}{\sinh(\eta \beta)} \sinh(2\lambda) \mathcal{D}_-(\lambda|\beta + 1) - \frac{\sinh(2\lambda + \eta \beta)}{\sinh(\eta \beta)} \sinh \eta \mathcal{A}_-(\lambda|\beta - 1), \]

(A.8)

\[e^{2\lambda} \sinh(2\lambda - \eta) \mathcal{D}_-(\lambda|\beta - 1) = \frac{\sinh(\eta(\beta - 1))}{\sinh(\eta \beta)} \sinh(2\lambda) \mathcal{A}_-(\lambda|\beta - 1) + \frac{\sinh(2\lambda - \eta \beta)}{\sinh(\eta \beta)} \sinh \eta \mathcal{D}_-(\lambda|\beta - 1), \]

(A.9)

\[e^{2\lambda} \sinh(2\lambda - \eta) \mathcal{B}_-(\lambda|\beta - 1) = - \sinh(2\lambda + \eta) \mathcal{B}_-(\lambda|\beta), \]

(A.10)

\[e^{2\lambda} \sinh(2\lambda - \eta) \mathcal{C}_-(\lambda|\beta - 1) = - \sinh(2\lambda + \eta) \mathcal{C}_-(\lambda|\beta). \]

(A.11)

Appendix B. Action of the SOS boundary operators on the SoV states

Computing the action of \(\mathcal{A}^{\text{SOS}}(\lambda|\beta - 1) \) on \((\beta - 1, \hbar) \) at the 2N points \(\pm \xi_n^{(h)} \), \(n \in \{1, \ldots, N\} \), using the fact that

\[U_0^{\text{SOS}}(\eta/2|\beta) = (-1)^N \det_q M(0), \]

(B.1)

\[U_0^{\text{SOS}}(\eta/2 + i \pi/2|\beta) = i \coth \zeta \det_q M(i \pi/2), \]

(B.2)

and that \(e^{(2N + 1)\lambda} \mathcal{A}^{\text{SOS}}(\lambda|\beta - 1) \) is a polynomial in \(e^{2\lambda} \) of degree \(2N + 2 \), we obtain,
\[
(\beta - 1, h) | A_{\text{SOS}}^>(\lambda | \beta - 1) = \sum_{n=1}^{N} \sum_{\epsilon = \pm} \frac{\sinh(2\lambda - \eta) \sinh(\lambda + \epsilon \xi_n^{(h)})}{\sinh(2\xi_n^{(h)} - \epsilon \eta) \sinh(2\xi_n^{(h)})} \\
\times \prod_{j=1}^{N} \frac{\sinh^2 \lambda - \sinh^2 \xi_j^{(h)}}{\sinh^2 \xi_n^{(h)} - \sinh^2 \xi_j^{(h)}} A_{\epsilon}(\epsilon \xi_n^{(h)}) (\beta - 1, T_n^h | h)
\]

\[
+ (-1)^N \left[\det_{\epsilon}(M(0)) \cosh(\lambda - \eta/2) \prod_{j=1}^{N} \frac{\sinh^2 \lambda - \sinh^2 \xi_j^{(h)}}{\cosh^2 \frac{\xi_j^{(h)}}{2} + \sinh^2 \xi_j^{(h)}} \right] (\beta - 1, h)
\]

\[
+ 2^{2N+1} e^{\lambda + \eta} \sinh(2\lambda - \eta) \prod_{j=1}^{N} \left[\sinh^2 \lambda - \sinh^2 \xi_j^{(h)} \right] (\beta - 1, h) | A_{\text{SOS}}^>(\lambda | \beta - 1),
\]

in which

\[
\langle \beta - 1, h | A_{\text{SOS}}^>(\lambda | \beta - 1) = - \frac{\epsilon^{-3N/2 - \eta(\beta - 1)}}{2^{N+1} \sinh(\eta(\beta - 1))} \left\{ \frac{\kappa_{\epsilon} \varphi^{(\beta - 1)} \sinh(\eta_\alpha + \tau_\alpha)}{\sinh \xi_\alpha} \right\} \right.
\]

\[
\times (-1)^N \det_{\epsilon}(M(0)) \prod_{\epsilon = \pm} \left[\sinh^2 \frac{\xi_\alpha^{(h)}}{2} - \sinh^2 \xi_j^{(h)} \right] \left(\frac{\cosh(\xi_j^{(h)})}{\sinh(\xi_j^{(h)})} \right) \right)
\]

\[
+ \sum_{n=1}^{N} \sum_{\epsilon = \pm} \frac{\epsilon^{N/2 - \epsilon(\xi_j^{(h)})}}{\sinh(2\xi_n^{(h)} - \epsilon \eta) \sinh(2\xi_n^{(h)})} \prod_{j \neq n} \left[\sinh^2 \xi_n^{(h)} - \sinh^2 \xi_j^{(h)} \right] A_{\epsilon}(\epsilon \xi_n^{(h)}) \left(\beta - 1, T_n^h | h \right)
\]

(B.3)

and

\[
T_n^h = (h_1, \ldots, h_n \pm 1, \ldots, h_N) \quad \text{for} \quad n \in \{1, \ldots, N\}.
\]

(B.4)

The action of \(D_{\text{SOS}}^>(\lambda | \beta + 1) \) on \((\beta - 1, h) \) can then be obtained by using the parity identity (A.8).

Similarly,

\[
D_{\text{SOS}}^>(\lambda | \beta + 1) | h, \beta + 1) = \sum_{n=1}^{N} \sum_{\epsilon = \pm} \frac{\sinh(2\lambda - \eta) \sinh(\lambda + \epsilon \xi_n^{(h)})}{\sinh(2\xi_n^{(h)} - \epsilon \eta) \sinh(2\xi_n^{(h)})} \\
\times \prod_{j=1}^{N} \frac{\sinh^2 \lambda - \sinh^2 \xi_j^{(h)}}{\sinh^2 \xi_n^{(h)} - \sinh^2 \xi_j^{(h)}} k_\alpha A_{\epsilon}(\epsilon \xi_n^{(h)}) (\beta - 1, h, \beta + 1)
\]

\[
+ (-1)^N \left[\det_{\epsilon}(M(0)) \cosh(\lambda - \eta/2) \prod_{j=1}^{N} \frac{\sinh^2 \lambda - \sinh^2 \xi_j^{(h)}}{\cosh^2 \frac{\xi_j^{(h)}}{2} + \sinh^2 \xi_j^{(h)}} \right] (h, \beta + 1)
\]

\[
+ 2^{2N+1} e^{\lambda + \eta} \sinh(2\lambda - \eta) \prod_{j=1}^{N} \left[\sinh^2 \lambda - \sinh^2 \xi_j^{(h)} \right] D_{\text{SOS}}^>(\lambda | \beta + 1) | h, \beta + 1),
\]

(B.6)
in which
\[
D^\infty (\beta + 1) |h, \beta + 1\rangle = \frac{e^{-3\eta/2 + \eta(\beta + 1)}}{2^{2N+1} \sinh(\eta(\beta + 1))} \left\{ \left[\frac{\sinh(\eta(\beta + 1))}{\sinh(\beta)} \right] + \frac{(-1)^N \det_q M(0)}{2 \prod_{j=1}^N \left(\sinh^2 \frac{\eta}{2} - \sinh^2 \xi_j^{(h)} \right)} \frac{(-1)^N \coth \xi_j^{(h)} M(i \frac{j}{2})}{2 \prod_{j=1}^N \left(\cosh^2 \frac{\eta}{2} + \sinh^2 \xi_j^{(h)} \right)} \right\} |h, \beta + 1\rangle
\]

\[
+ \sum_{\eta_{n=1}}^N \sum_{\epsilon_{\pm}} \sinh(2 \xi_n^{(h)} - \eta) \sinh(2 \xi_n^{(h)}) \prod_{j \neq n} \sinh^2 \xi_n^{(h)} \sinh^2 \xi_j^{(h)} |T^j h, \beta + 1\rangle
\]

and the action of \(\mathcal{A}_{ \text{SOS}}(\lambda | \beta - 1) \) on \(|h, \beta + 1\rangle \) can be obtained by means of (A.9).

Appendix C. Computation of the normalization coefficient \(N(\{\xi\}, \beta) \)

We want to compute the following matrix element:
\[
F(\beta) = \langle 0 | \prod_{k=1}^N \mathcal{A}_{ \text{SOS}} \left(\frac{\eta}{2} - \xi_k | \beta \right) | 0 \rangle,
\]

from which the value of the normalization \(N(\{\xi\}, \beta) \) follows. From the boundary bulk decomposition (3.14) it is easy to see that
\[
\mathcal{A}_{\text{SOS}}(\lambda | \beta) = A_{\text{SOS}}(\lambda | \beta) a_{-}(\lambda | \beta + S_e) \tilde{A}_{\text{SOS}}(\lambda | \beta) + B_{\text{SOS}}(\lambda | \beta) c_{-}(\lambda | \beta + S_e) \tilde{B}_{\text{SOS}}(\lambda | \beta)
\]

\[
+ A_{\text{SOS}}(\lambda | \beta) b_{-}(\lambda | \beta + S_e) \tilde{C}_{\text{SOS}}(\lambda | \beta) + B_{\text{SOS}}(\lambda | \beta) d_{-}(\lambda | \beta + S_e) \tilde{D}_{\text{SOS}}(\lambda | \beta).
\]

Evidently only the term with \(b_{-} \) will contribute leading to the following expression
\[
F(\beta) = \prod_{k=0}^{N-1} b_{-} \left(\frac{\eta}{2} - \xi_{k+1} | \beta + N - 2k \right)
\]

\[
\times \langle 0 | \prod_{j=1}^N \mathcal{A}_{ \text{SOS}} \left(\frac{\eta}{2} - \xi_j | \beta \right) \tilde{C}_{\text{SOS}} \left(\frac{\eta}{2} - \xi_j | \beta \right) | 0 \rangle.
\]

By using the explicit form of the \(\mathcal{M}_{ \text{SOS}} \) and \(\tilde{M}_{ \text{SOS}} \) monodromy matrices, we can now compute the above matrix element. We can show that
\[
\langle 0 | \tilde{C}_{\text{SOS}} \left(\frac{\eta}{2} - \xi_j | \beta \right) \ldots \tilde{C}_{\text{SOS}} \left(\frac{\eta}{2} - \xi_k | \beta \right) = (-1)^k \prod_{j=1}^k d \left(\xi_j - \frac{\eta}{2} \right) \langle 0_k | \otimes \langle 0_{N-k} | \right\}
\]

where in the right hand side we obtain a state with first \(k \) spins down and all the remaining spins up, and
\[
\langle 0_k | \otimes \langle 0_{N-k} | A_{\text{SOS}}(\lambda | \beta) = a(\lambda) \frac{\sinh(\beta + N - 2k)\eta}{\sinh(\beta + N - k)\eta}
\]

\[
\times \prod_{j=1}^k \frac{\sinh(\lambda - \xi_j - \frac{\eta}{2})}{\sinh(\lambda - \xi_j + \frac{\eta}{2})} \langle 0_k | \otimes \langle 0_{N-k} |.
\]

These two equations lead to the following result
\[F(\beta) = (-1)^N \left(\prod_{r=0}^{N-1} b_r \left(\frac{\eta}{2} - \xi_{r+1} | \beta + N - 2r \right) \frac{\sinh(\beta + N - r)\eta}{\sinh(\beta + N - 2r)\eta} \right) \times \left(\prod_{j=1}^N a \left(\frac{\eta}{2} - \xi_j \right) d \left(\xi_j - \frac{\eta}{2} \right) \prod_{j<k} \frac{\sinh(\xi_j + \xi_k)}{\sinh(\xi_j + \xi_k - \eta)} \right). \] (C.6)

Appendix D. Determinant identities: exchanging the role of the two sets of variables

In this appendix we give a detailed proof of several identities that we use to establish theorem 5.1. For three sets of arbitrary variables \(\{a\} \equiv \{a_1, \ldots, a_n\} \) with \(n_a \in \{2, 4\} \), \(\{x\} \equiv \{x_1, \ldots, x_N\} \) and \(\{z\} \equiv \{z_1, \ldots, z_M\} \), we consider the quantity

\[A_{\{x\}} [f_{[a], \{z\}}] = A_{\{x_1, \ldots, x_N\}} [f_{[a_1, \ldots, a_n], \{z_1, \ldots, z_M\}}], \] (D.1)

defined as in (5.8) in terms of a function \(f_{[a], \{z\}} \) of the form

\[f_{[a], \{z\}} (\lambda) = \prod_{\ell=1}^{n_a} \frac{\sinh(\lambda + a_\ell)}{\sinh 2\lambda} \prod_{\ell=1}^{M} \frac{\zeta(\lambda) - \zeta(z_\ell)}{\zeta(\lambda + \eta/2) - \zeta(z_\ell)}. \] (D.2)

Here and in the following, we use for simplicity the shorthand notation:

\[\zeta(\lambda) = \frac{\cosh(2\lambda)}{2}. \] (D.3)

It is also convenient to introduce the function

\[\tilde{f}_{[a], \{z\}} (\lambda) = \sum_{\epsilon = \pm 1} f_{[a], \{z\}} (\epsilon \lambda) [\zeta(\lambda + \epsilon \eta)]^{j-1}, \] (D.4)

where \(f_{[a], \{z\}} \) is given by (D.2), so that (D.1) can be simply written as

\[A_{\{x\}} [f_{[a], \{z\}}] = \frac{\det_{1 \leq i, j \leq N} \tilde{f}_{[a], \{z\}} (x_j)}{V(x_1, \ldots, x_N)}. \] (D.5)

The aim of this appendix is to express the quantity (D.1) (or equivalently (D.5)), which is a ratio of two determinants, as a new ratio of determinants in which the role of the two sets of variables \(\{x\} \) and \(\{z\} \) has been exchanged. When applied to scalar products, and in particular to formula (5.18), these identities lead to theorem 5.1, which makes possible the computation of the homogeneous limit of these scalar products.

D.1. The case \(N = M \)

Identity 1. Let \(N = M \). Then

\[A_{\{x\}} [f_{[a], \{z\}}] = (-1)^N A_{\{z\}} [f_{[\eta/2 - a], \{x\}}, \varsigma_{[a], \{z\}}]. \] (D.6)

Here \(f_{[\eta/2 - a], \{x\}} \) is the function defined as in (D.2) in terms of the sets \(\{\eta/2 - a\} \equiv \{\eta/2 - a_1, \ldots, \eta/2 - a_n\} \) and \(\{x\} \equiv \{x_1, \ldots, x_N\} \), and
\[g_{\{a\},\{\ell\}}(\lambda) = \delta_{n,4} \sinh(a_1 + a_2 + a_3 + a_4 - \eta) \prod_{\ell=1}^{N} [\zeta(\lambda) - \zeta(x_{\ell})]. \quad (D.7) \]

Proof. The proof goes along the same lines as for identity 1 of [1]. We consider the matrices \(C^X \) and \(C^Z \) whose elements are defined respectively from the sets of variables \(\{x\} \) and \(\{z\} \) as:

\[\prod_{\ell=1}^{N} (\zeta(\lambda) - \zeta(x_{\ell})) = \sum_{j=1}^{N} c^X_j [\zeta(\lambda)]^{j-1}, \quad \prod_{\ell=1}^{M} (\zeta(\lambda) - \zeta(z_{k})) = \sum_{j=1}^{M} c^Z_j [\zeta(\lambda)]^{j-1}, \]

and with respective determinants

\[\det_{\ell}^{N} [C^X] = \tilde{V}(x_N, \ldots, x_1), \quad \det_{M}^{M} [C^Z] = \tilde{V}(z_M, \ldots, z_1). \quad (D.8) \]

For \(M = N \), we can compute the product of the determinant of \(C^Z \) with the determinant in the numerator of (D.5) by using that

\[\prod_{\ell=1}^{N} f_{\{a\},\{\ell\}}(x_{\ell}) c^X_{\ell k} = \sum_{\epsilon \in \{+,-\}} f_{\{a\},\{\ell\}}(\epsilon x_{\ell}) \sum_{j=1}^{N} c^X_j \zeta \left(x_{\ell} + \epsilon \eta / 2 \right)^{j-1} \]

\[= \prod_{\ell=1}^{N} [\zeta(x_{\ell}) - \zeta(z_k)] \sum_{\epsilon \in \{+,-\}} \epsilon \prod_{\ell=1}^{N} \frac{\sinh(x_{\ell} + \epsilon \eta)}{\sinh(2x_{\ell}) [\zeta(x_{\ell} + \epsilon \eta / 2) - \zeta(z_k)]}. \]

Noticing that

\[\sum_{\epsilon \in \{+,-\}} \epsilon \prod_{\ell=1}^{N} \frac{\sinh(x_{\ell} + \epsilon \eta)}{\sinh(2x_{\ell}) [\zeta(x_{\ell} + \epsilon \eta / 2) - \zeta(z_k)]} = \sum_{\epsilon \in \{+,-\}} \epsilon \prod_{\ell=1}^{N} \frac{\sinh(z_k + \epsilon \eta / 2 - \epsilon \eta)}{\sinh(2z_k) [\zeta(z_k + \epsilon \eta / 2) - \zeta(z_k)]} + \delta_{n,4} c_{\{a\}}, \quad (D.9) \]

with \(c_{\{a\}} = \sinh(a_1 + a_2 + a_3 + a_4 - \eta) \), we can rewrite the initial determinant as

\[\det_{\ell=1}^{N} f_{\{a\},\{\ell\}}(x_{\ell}) = \frac{(-1)^N}{\tilde{V}(z_N, \ldots, z_1)} \lim_{\Lambda \to +\infty} \det \left[B_{\Lambda} \right], \quad (D.10) \]

in terms of a matrix \(B_{\Lambda} \) defined as

\[[B_{\Lambda}]_{\ell k} = \sum_{\epsilon \in \{+,-\}} \epsilon \prod_{\ell=1}^{N} \frac{\sinh(z_k + \epsilon \eta / 2 - \epsilon \eta)}{\sinh(2z_k)} \]

\[\times \prod_{\ell=1}^{N} \frac{\zeta(z_k) - \zeta(x_{\ell})}{\zeta(z_k) + \epsilon \eta / 2} \prod_{\ell=1}^{N} [\zeta(z_k + \epsilon \eta / 2) - \zeta(x_{\ell})] \]

\[+ \delta_{n,4} c_{\{a\}} \zeta(z_k + \Lambda) \prod_{\ell=1}^{N} \frac{\zeta(z_k) - \zeta(x_{\ell})}{\zeta(z_k + \Lambda) - \zeta(x_{\ell})} \prod_{\ell=1}^{N} [\zeta(z_k + \Lambda) - \zeta(x_{\ell})]. \quad (D.11) \]
We can now easily factor the matrix \(C^X \) out of \(B_{\Lambda} \), and taking the limit \(\Lambda \to +\infty \), we obtain (D.6).

D.2. The case \(N < M \)

Identity 2. Let \(N < M \). Then

\[
A_{\{s\}} \left[f_{\{a\}}, \{z\} \right] = (-1)^M \frac{A_{\{z\}} \left[f_{\eta/2-a}, \{s\} \cdot \tilde{R}^{(M)}_{\{a\}}, \{s\} \right]}{\prod_{j=1}^{M-N} \sinh \left(\sum_{\ell=1}^{n_\ell} a_\ell - \eta \right)},
\]

(D.12)

with

\[
\tilde{R}^{(M)}_{\{a\}, \{s\}} (\lambda) = \delta_{a_4, 4} \left\{ (-1)^{M-N} \sinh (a_1 + a_2 + a_3 + a_4 - \eta) \prod_{\ell=1}^{N} [\varsigma(\lambda) - \varsigma(x_\ell)] \right\},
\]

(D.13)

where \(f_{\eta/2-a}, \{s\} \) and \(\tilde{f}^{(M)}_{\eta/2-a}, \{s\} \) are respectively defined as in (D.2) and (D.4) in terms of the sets \(\{\eta/2 - a\} \equiv \{\eta/2 - a_1, \ldots, \eta/2 - a_{n_\eta}\} \) and \(\{s\} \equiv \{x_1, \ldots, x_N\} \).

Proof. Let us rewrite \(A_{\{s\}} \left[f_{\{a\}}, \{z\} \right] \) as the following limit:

\[
A_{\{s_1, \ldots, s_N\}} \left[f_{\{a\}}, \{z_1, \ldots, z_M\} \right] = \lim_{x_N \to +\infty} \ldots \lim_{x_1 \to +\infty} \frac{A_{\{s_1, \ldots, s_N\}} \left[f_{\{a\}}, \{z_1, \ldots, z_M\} \right]}{\prod_{i=N+1}^M \sinh(\eta/2 - a + (i - 1 - M) \eta)}.
\]

(D.14)

By applying identity 1 to \(A_{\{s_1, \ldots, s_N\}} \left[f_{\{a\}}, \{z_1, \ldots, z_M\} \right] \) and by computing the successive limits, we obtain (D.12).

D.3. The case \(M < N \)

In the case \(n_\eta = 2 \), we obtain an identity which is the analog of identity 2 of [1], and which can be shown similarly:

Identity 3. Let \(n_\eta = 2 \) and \(M < N \). Then

\[
A_{\{s_1, \ldots, s_N\}} \left[f_{\{a\}}, \{z_1, \ldots, z_M\} \right] = (-1)^M \prod_{j=0}^{N-M-1} \sinh(a_1 + a_2 + j \eta) \times A_{\{z_1, \ldots, z_M\}} \left[f_{\eta/2-a}, \{s_1, \ldots, s_N\} \right].
\]

(D.15)

The case \(n_\eta = 4 \) is unfortunately much more complicated. In that case, we obtain the following result:
Identity 4. Let \(n_a = 4 \) and \(M < N \). Then

\[
A_{\{x_1, \ldots, x_N\}} [f_{\eta} a, \{x_1, \ldots, x_N\}] = (-1)^M \prod_{j=0}^{N-M-1} \sinh \left(j \eta + \sum_l a_l \right)
\times A_{\{x_1, \ldots, x_N\}} [f_{\eta} 2-a, \{x\} \hat{g}^{(M)}_{\{a\}, \{x\} }],
\]

(D.16)

where \(\hat{g}^{(L)}_{\{a\}, \{x\}} \) is defined by induction for \(L \leq N \) as

\[
\hat{g}^{(N)}_{\{a\}, \{x\}} (z) = \sinh (a_1 + a_2 + a_3 + a_4 - \eta) \prod_{\ell=1}^N [\varsigma(z) - \varsigma (x_\ell)],
\]

(D.17)

\[
\hat{g}^{(L)}_{\{a\}, \{x\}} (z) = \frac{\hat{f}^{(L)}_{\{\eta/2-a\}, \{x\}} (z) }{\sinh((L+1-N)\eta - \sum_\ell a_\ell) } \lim_{z' \rightarrow \infty} f^{(L+1)}_{\{\eta/2-a\}, \{x\}} (z') + \hat{g}^{(L+1)}_{\{a\}, \{x\}} (z')
\]

\[- \hat{f}^{(L)}_{\{\eta/2-a\}, \{x\}} (z) - \hat{g}^{(L+1)}_{\{a\}, \{x\}} (z) - \hat{g}^{(L)}_{\{a\}, \{x\}} (z).
\]

(D.18)

in terms of the function \(\hat{f}^{(L)}_{\{\eta/2-a\}, \{x\}} \) defined as in (D.4) in terms of the sets \(\{\eta/2-a\} \equiv \{\eta/2-a_1, \ldots, \eta/2-a_n \} \) and \(\{x\} \equiv \{x_1, \ldots, x_N\} \).

Proof. Since \(M < N \), we can write

\[
\hat{f}_{\{a\}, \{x_1, \ldots, x_N\}} (x) = \lim_{z_{M+1} \rightarrow \infty} \ldots \lim_{z_2 \rightarrow \infty} \hat{f}_{\{a\}, \{x_1, \ldots, x_N\}} (x),
\]

(D.19)

so that

\[
A_{\{x_1, \ldots, x_N\}} [f_{\eta} a, \{x_1, \ldots, x_N\}] = \lim_{z_{M+1} \rightarrow \infty} \ldots \lim_{z_2 \rightarrow \infty} A_{\{x_1, \ldots, x_N\}} [f_{\eta} a, \{x_1, \ldots, x_N\}]
\]

\[
= (-1)^N \lim_{z_{M+1} \rightarrow \infty} \ldots \lim_{z_2 \rightarrow \infty} A_{\{x_1, \ldots, x_N\}} [f_{\eta} 2-a, \{x_1, \ldots, x_N\} , \hat{g}^{(N)}_{\{a\}, \{x\}}],
\]

(D.20)

where we have used identity 1. We want now to show by induction that the successive limits in (D.20) gives the right hand side of (D.16).

Let us first note that

\[
\hat{f}^{(j)}_{\{\eta/2-a\}, \{x\}} (z) \sim \sinh \left((j + 1 - N)\eta - \sum_\ell a_\ell \right) [\varsigma(z)]^j,
\]

(D.21)

so that, in particular,

\[
\hat{f}^{(N)}_{\{\eta/2-a\}, \{x\}} (z) + \hat{g}^{(N)}_{\{a\}, \{x\}} (z) = O \left(\varsigma(z)^{N-1} \right).
\]

(D.22)

Let us now suppose that, for some \(L \leq N \), \(\hat{g}^{(L)} \) is well defined by the above recursion (D.17) and (D.18), that

\[
\lim_{z_{L+1} \rightarrow \infty} \ldots \lim_{z_2 \rightarrow \infty} A_{\{x_1, \ldots, x_N\}} [f_{\eta} 2-a, \{x\} , \hat{g}^{(N)}_{\{a\}, \{x\}}] = (-1)^N \times \prod_{j=0}^{N-L-1} \sinh \left(j \eta + \sum_\ell a_\ell \right) A_{\{x_1, \ldots, x_N\}} [f_{\eta} 2-a, \{x\} , \hat{g}^{(L)}_{\{a\}, \{x\}}],
\]

(D.23)
and that $f^{(L)}_{\nu/2-a},\{i\}(z) + \bar{g}^{(L)}_{\{i\},\{i\}}(z) = O(\zeta^L)$. Writing explicitly

$$A_{\{z_1,\ldots,z_L\}}[f_{\nu/2-a},\{i\},\bar{g}^{(L)}_{\{i\},\{i\}}] = \frac{\det_{1 \leq i < L} \left[f^{(j)}_{\nu/2-a},\{i\}(z_i) + \delta_{iL} \bar{g}^{(L)}_{\{i\},\{i\}}(z_i) \right]}{V(z_1,\ldots,z_L)}, \quad (D.24)$$

and decomposing the determinant in the numerator with respect to the last column, we get

$$A_{\{z_1,\ldots,z_L\}}[f_{\nu/2-a},\{i\},\bar{g}^{(L)}_{\{i\},\{i\}}] = \sum_{l=1}^{L} \frac{(-1)^{L+l}}{V(z_1,\ldots,z_L)} \det_{j \neq L} \left[f^{(j)}_{\nu/2-a},\{i\}(z_i) \right] \times \left[f^{(L)}_{\nu/2-a},\{i\}(z_l) + \bar{g}^{(L)}_{\{i\},\{i\}}(z_l) \right]. \quad (D.25)$$

Let us remark that, in each of the first $L-1$ terms, the only dependence in z_L is contained in the determinant, whereas in the last term $l=L$ it is contained in the last factor $\left[f^{(L)}_{\nu/2-a},\{i\}(z_L) + \bar{g}^{(L)}_{\{i\},\{i\}}(z_L) \right]$. Taking the respective limits $z_L \to \infty$ in all these terms, we obtain,

$$A_{\{z_1,\ldots,z_L\}}[f_{\nu/2-a},\{i\},\bar{g}^{(L)}_{\{i\},\{i\}}] \xrightarrow{z_L \to \infty} \sum_{l=1}^{L-1} (-1)^{L+l} \sinh \left((L-N)\eta - \sum_\ell a_\ell \right)$$

$$\times \frac{\det_{j \neq L; j \leq L-1} \left[f^{(j)}_{\nu/2-a},\{i\}(z_j) \right]}{V(z_1,\ldots,z_{L-1})} \times \left[f^{(L)}_{\nu/2-a},\{i\}(z_l) + \bar{g}^{(L)}_{\{i\},\{i\}}(z_l) \right] \times \lim_{z' \to \infty} \frac{\bar{g}^{(L)}_{\{i\},\{i\}}(z') + \bar{g}^{(L)}_{\{i\},\{i\}}(z')}{\zeta(z')^{L-1}}, \quad (D.26)$$

in which we have used (D.21) for taking the limit in the first $L-1$ terms, and the fact that the remaining limit is well defined in the last term. Hence, recomposing the determinant in (D.26), we obtain that

$$\lim_{z_L \to \infty} A_{\{z_1,\ldots,z_L\}}[f_{\nu/2-a},\{i\},\bar{g}^{(L)}_{\{i\},\{i\}}] = - \sinh \left((N-L)\eta + \sum_\ell a_\ell \right) \times A_{\{z_1,\ldots,z_L\}}[f_{\nu/2-a},\{i\},\bar{g}^{(L-1)}_{\{i\},\{i\}}] \quad (D.27)$$

with

$$\bar{f}^{(L-1)}_{\nu/2-a},\{i\}(z) + \bar{g}^{(L-1)}_{\{i\},\{i\}}(z) = -\bar{f}^{(L)}_{\nu/2-a},\{i\}(z) - \bar{g}^{(L)}_{\{i\},\{i\}}(z)$$

$$+ \frac{\bar{f}^{(L-1)}_{\nu/2-a},\{i\}(z)}{\sinh((L-N)\eta - \sum_\ell a_\ell)} \lim_{z' \to \infty} \bar{f}^{(L)}_{\nu/2-a},\{i\}(z') + \bar{g}^{(L)}_{\{i\},\{i\}}(z'). \quad (D.28)$$

It remains to notice that, by construction

$$\bar{f}^{(L-1)}_{\nu/2-a},\{i\}(z) + \bar{g}^{(L-1)}_{\{i\},\{i\}}(z) = O(\zeta(z)^{-2}), \quad (D.29)$$

which ends the proof of the recursion. \[\square\]
Appendix E. Determinant identities: transformation into generalized Slavnov determinants

In this appendix, we explain how to transform quantities of the form (5.8), for two arbitrary functions \(f \) and \(g \) and a set of arbitrary parameters \(\{z_1, \ldots, z_N\} \equiv \{x_1, \ldots, x_L\} \cup \{y_1, \ldots, y_L\} \), into some generalization of the Slavnov determinant [108].

Throughout this appendix we will use the following shortcut notations:

\[
X(\lambda) = \prod_{\ell=1}^{L_1} \left[\varsigma(\lambda) - \varsigma(x_\ell) \right],
\]

(E.1)

\[
X_k(\lambda) = \prod_{\ell \neq k} \left[\varsigma(\lambda) - \varsigma(x_\ell) \right],
\]

(E.2)

\[
\varphi_{(\ldots)}(\lambda) = \frac{\sinh(2\lambda - \eta) X(\lambda + \eta)}{\sinh(2\lambda + \eta) X(\lambda - \eta)},
\]

(E.3)

and

\[
X^g_{f, k} = \frac{g(x_k) \sinh(2x_k - \eta)}{f(-x_k) \sinh(2x_k) \sinh \eta X_k(x_k) X_k(x_k - \eta)},
\]

(E.4)

\[
= \frac{g(x_k) \sinh(2x_k - \eta)}{f(-x_k) X'(x_k) X(x_k - \eta)},
\]

(E.5)

with \(\varsigma(\lambda) \) given as in (D.3).

E.1. A simple case: \(L_1 = L_2 \) with one on-shell set of parameters

Identity 5. We suppose that \(L_1 = L_2 \equiv L \), and that the parameters \(x_1, \ldots, x_L \) are on-shell, i.e. that they satisfy the equations:

\[
f(-x_k) - f(x_k) \varphi_{(\ldots)}(x_k) = 0, \quad k = 1, \ldots, L.
\]

(E.6)

Then

\[
\mathcal{A}_{\{x\} \cup \{y\}}[f, g] = \prod_{j=1}^{L} \left(\sinh \eta f(-x_j) \sinh 2x_j \right) \frac{\hat{V}(x_1 - \frac{\eta}{2}, \ldots, x_L - \frac{\eta}{2})}{\hat{V}(x_1 + \frac{\eta}{2}, \ldots, x_L + \frac{\eta}{2})}
\]

\[
\times \left(1 + \sum_{k=1}^{L} X^g_{f, k} \right)\frac{\det_L \left[\sum_{e \in \{+, -\}} f(e) \varsigma(x_{e(y_j)}) \right]}{\hat{V}(x_L, \ldots, x_1) \hat{V}(y_1, \ldots, y_L)}.
\]

(E.7)

Proof. We introduce an auxiliary \(2L \times 2L \) matrix \(\tilde{D} \) with coefficients \(\tilde{D}_{j,k} \) given by the following relations:

\[
X^{(+)}_k(\lambda) X^{(-)}_k(\lambda) = \sum_{j=1}^{2L} \tilde{D}_{j,k} \varsigma(\lambda)^{j-1}, \quad 1 \leq k \leq L,
\]

(E.8)

\[
X^{(+)}(\lambda) X^{(-)}(\lambda) = \sum_{j=1}^{2L} \tilde{D}_{+,k} \varsigma(\lambda)^{j-1}, \quad 1 \leq k \leq L.
\]
Here we have defined $X(\pm) (\lambda)$, $X_k(\pm) (\lambda)$ as the following polynomials in $\zeta(\lambda)$:

$$X(\pm) (\lambda) = \prod_{\ell=1}^L \left[\zeta(\lambda) - \zeta(x_{\ell} \pm \eta/2) \right],$$

(E.9)

$$X_k(\pm) (\lambda) = \prod_{\ell=1}^L \left[\zeta(\lambda) - \zeta(x_{\ell} \pm \eta/2) \right], \quad 1 \leq k \leq L.$$

(E.10)

The determinant of this matrix can be computed as in [1, 102]. We obtain

$$\det_{2L} \tilde{D} = \tilde{V} \left(x_1 + \frac{\eta}{2}, \ldots, x_1 + \frac{\eta}{2} \right) \tilde{V} \left(x_L - \frac{\eta}{2}, \ldots, x_L - \frac{\eta}{2} \right) \prod_{k=1}^L X_k ^{(-)} \left(x_k + \frac{\eta}{2} \right).$$

(E.11)

Computing the product of $A_{(s)\cup(y)} [f, g]$ with the determinant of the matrix \tilde{D}, we obtain

$$A_{(s)\cup(y)} [f, g] \cdot \det_{2L} \tilde{D} = \frac{\det_{2L} \mathcal{G}}{\tilde{V}(x_1, \ldots, x_L, y_1, \ldots, y_L)},$$

(E.12)

where \mathcal{G} is a block matrix:

$$\mathcal{G} = \det_{2L} \begin{pmatrix} G^{(1,1)} & G^{(1,2)} \\ G^{(2,1)} & G^{(2,2)} \end{pmatrix}.$$

(E.13)

The blocks $G^{(a,b)}$ in (E.13) are $L \times L$ matrices. More precisely, the first block $G^{(1,1)}$ is the following diagonal matrix:

$$G^{(1,1)}_{i,k} = \delta_{i,k} \left(f(-x_i) X_i^{(+)} \left(x_i - \frac{\eta}{2} \right) X_i^{(-)} \left(x_i - \frac{\eta}{2} \right) + f(x_i) X_i^{(+)} \left(x_i + \frac{\eta}{2} \right) X_i^{(-)} \left(x_i + \frac{\eta}{2} \right) \right).$$

(E.14)

Using simple trigonometric relation,

$$|\zeta(\lambda + \eta/2) - \zeta(x_{\ell} + \eta/2)| \leq |\zeta(\lambda + \eta/2) - \zeta(x_{\ell} - \eta/2)| = |\zeta(\lambda) - \zeta(x_{\ell})| |\zeta(\lambda + \eta) - \zeta(x_{\ell})|,$$

we can rewrite this matrix as

$$G^{(1,1)}_{i,k} = -\delta_{i,k} X_i \left(f(-x_i) \frac{X(x_i - \eta)}{\sinh(2x_i - \eta)} - f(x_i) \frac{X(x_i + \eta)}{\sinh(2x_i + \eta)} \right) \frac{1}{\sinh(\eta)},$$

which vanishes due to the equation (E.6). It means in particular that the explicit form of the matrix $G^{(2,2)}$ is irrelevant and that

$$\det_{2L} \mathcal{G} = (-1)^L \prod_{k \neq \ell} \det G^{(1,2)}_{k,\ell} \det G^{(2,1)}_{k,\ell}.$$

(E.15)

The matrix $G^{(1,2)}$ is a diagonal matrix with a rank 1 addition:

$$G^{(1,2)}_{i,k} = \delta_{i,k} f(-x_i) X_i^{(+)} \left(x_i - \frac{\eta}{2} \right) X_i^{(-)} \left(x_i - \frac{\eta}{2} \right) + g(x_i).$$

(E.16)

Its determinant can easily be computed:
\[
\det G^{(1,2)}_L = \prod_{k=1}^L \left(- \sinh \eta \sinh 2x_k f(-x_k) X_k(x_k) X_k(x_k - \eta) \right) \\
\times \left(1 - \sum_{j=1}^L \frac{g(x_j)}{f(-x_j) \sinh \eta X_j(x_j) X_j(x_j - \eta)} \right). \tag{E.17}
\]

Finally, the matrix \(G^{(2,1)} \) is a Slavnov-type matrix:
\[
G^{(2,1)}_{L,k} = \sum_{\epsilon \in \{\pm, -\}} f(\epsilon y_i) X_k^{(+)}(y_i + \epsilon \frac{\eta}{2}) X_k^{(-)}(y_i + \epsilon \frac{\eta}{2}) \\
= \sum_{\epsilon \in \{\pm, -\}} f(\epsilon y_i) X_k(y_i + \epsilon \eta). \tag{E.18}
\]

Now combining all the terms together we obtain the identity (E.7).

Let us mention that, if \(f \) coincides with the function \(f_{\alpha,\varepsilon} \) (5.9), then the system of equation (E.6) coincides with the Bethe equations resulting from the homogeneous \(T-Q \) functional equation (4.40).

We would also like to stress that in (E.7) the function \(g(\lambda) \) appears only in the irrelevant normalization coefficients.

E.2. The case of two arbitrary sets of parameters

Let us now turn to the most general situation in which the two sets of variables, as well as the functions \(f \) and \(g \), are arbitrary. We will distinguish two different cases according to whether the cardinality of the two sets of variables are equal (\(L_1 = L_2 \equiv L \)) or different (\(L_1 < L_2 \)).

Identity 6. Let \(L_1 = L_2 \equiv L \). Then
\[
A_{(\alpha), (\beta)}[f, g] = \frac{\mathcal{D}(x_1 - \frac{\eta}{2}, \ldots, x_L - \frac{\eta}{2})}{\mathcal{D}(x_1 + \frac{\eta}{2}, \ldots, x_L + \frac{\eta}{2})} \left(1 + \sum_{k=1}^L X_{f,k} \right) \\
\times \frac{\det \mathcal{S}_{xy}[f, g]}{\mathcal{D}(x_1, \ldots, x_L) \mathcal{D}(y_1, \ldots, y_L)}, \tag{E.19}
\]

where the \(L \times L \) matrix \(\mathcal{S}_{xy}[f, g] \) is given by
\[
[\mathcal{S}_{xy}[f, g]]_{ik} = \sum_{\epsilon \in \{\pm, -\}} f(\epsilon y_i) X_k(y_i + \epsilon \eta) \left[\frac{f(-x_i)}{\varsigma(y_i + \epsilon \frac{\eta}{2}) - \varsigma(x_i + \frac{\eta}{2})} \\
- \frac{f(x_i) \varphi_{(\epsilon)}(x_i)}{\varsigma(y_i + \epsilon \frac{\eta}{2}) - \varsigma(x_i - \frac{\eta}{2})} + \int f(-x_i) - f(x_i) \varphi_{(\epsilon)}(x_i) \sum_{j=1}^L \frac{X_j^{(\epsilon)}}{1 + \sum_{\ell=1}^L X_{f,\ell}^{(\epsilon)}} \frac{X_j^{(\epsilon)}}{\varsigma(y_j + \epsilon \frac{\eta}{2}) - \varsigma(x_j - \frac{\eta}{2})} \right] \\
+ \frac{g(y_i) f(-x_i) - f(x_i) \varphi_{(\epsilon)}(x_i)}{X(y_i) 1 + \sum_{\ell=1}^L X_{f,\ell}^{(\epsilon)}}. \tag{E.20}
\]

Remark E.3. All the extra terms with respect to identity 5 are proportional to the quantity \(f(-x_i) - f(x_i) \varphi_{(\epsilon)}(x_i) \) which vanishes if the equation (E.6) are satisfied.
Proof. The proof follows the same lines as the proof of identity 5 with a slightly different auxiliary \((2L) \times (2L)\) matrix \(\tilde{C}\) with coefficients \(\tilde{C}_{j,k}\) given by the following relations:

\[
X^{(+)}(\lambda) X^{(-)}(\lambda) = \sum_{j=1}^{2L} \tilde{C}_{j,k} \zeta(\lambda)^{j-1}, \quad 1 \leq k \leq L, \\
X^{(+)}(\lambda) X^{(-)}(\lambda) = \sum_{j=1}^{2L} \tilde{C}_{L+j,k} \zeta(\lambda)^{j-1}, \quad 1 \leq k \leq L.
\]

(E.21)

Here the polynomials \(X^{(\pm)}(\lambda)\) and \(X^{(\pm)}(\lambda)\) are defined by (E.9) and (E.10). The determinant of the matrix \(\tilde{C}\) can easily be computed:

\[
\det_{2L} \tilde{C} = \tilde{V} \left(x_L + \frac{\eta}{2}, \ldots, x_1 + \frac{\eta}{2} \right) \tilde{V} \left(x_L - \frac{\eta}{2}, \ldots, x_1 - \frac{\eta}{2} \right) \prod_{k=1}^{L} X^{(+)} \left(x_k - \frac{\eta}{2} \right).
\]

(E.22)

Similarly as in the proof of identity 5, we can write

\[
\mathcal{A}_{\{x_1, \ldots, x_L\}}[f, g] \cdot \det_{2L} \tilde{C} = \frac{\det_{2L} \mathcal{G}}{\tilde{V}(x_1, \ldots, x_L, y_1, \ldots, y_L)},
\]

(E.23)

with

\[
\mathcal{G} = \begin{pmatrix} \tilde{g}^{(1,1)} & \tilde{g}^{(1,2)} \\ \tilde{g}^{(2,1)} & \tilde{g}^{(2,2)} \end{pmatrix}.
\]

(E.24)

The matrices \(\tilde{g}^{(n,b)}\) can here be written in the following form:

\[
\tilde{g}^{(1,b)}_{i,k} = g^{(1,b)}_{i,k} + g(x_i), \quad \tilde{g}^{(2,b)}_{i,k} = g^{(2,b)}_{i,k} + g(y_i), \quad b = 1, 2,
\]

where \(g^{(1,1)}\) and \(g^{(1,2)}\) are \(L \times L\) diagonal matrices with elements

\[
g^{(1,1)}_{i,k} = \delta_{i,k} f\left(-x_i \right) X^{(+)} \left(x_i - \frac{\eta}{2} \right) X^{(-)} \left(x_i - \frac{\eta}{2} \right), \\
g^{(1,2)}_{i,k} = \delta_{i,k} f\left(x_i \right) X^{(+)} \left(x_i + \frac{\eta}{2} \right) X^{(-)} \left(x_i + \frac{\eta}{2} \right),
\]

(E.25)

(E.26)

and \(g^{(2,1)}\) and \(g^{(2,2)}\) are \(L \times L\) matrices with elements

\[
g^{(2,1)}_{i,k} = \sum_{\epsilon \in \{+,-\}} f(\epsilon y_i) \frac{X^{(+)}(y_i + \epsilon \frac{\eta}{2}) X^{(-)}(y_i + \epsilon \frac{\eta}{2})}{\zeta(y_i + \epsilon \frac{\eta}{2}) - \zeta(x_k - \frac{\eta}{2})}, \\
g^{(2,2)}_{i,k} = \sum_{\epsilon \in \{+,-\}} f(\epsilon y_i) \frac{X^{(+)}(y_i + \epsilon \frac{\eta}{2}) X^{(-)}(y_i + \epsilon \frac{\eta}{2})}{\zeta(y_i + \epsilon \frac{\eta}{2}) - \zeta(x_k + \frac{\eta}{2})}.
\]

(E.27)

(E.28)

We now use the following formula for the determinant of block matrix:

\[
\det_{2L} \begin{pmatrix} \tilde{g}^{(1,1)} & \tilde{g}^{(1,2)} \\ \tilde{g}^{(2,1)} & \tilde{g}^{(2,2)} \end{pmatrix} = \det_{2L} \tilde{c}^{(1,1)} \det_{L} \left(\tilde{g}^{(2,2)} - \tilde{g}^{(2,1)} \tilde{g}^{(1,1)^{-1}} \tilde{g}^{(1,2)} \right).
\]

(E.29)
Since \(\tilde{G}^{(1,1)} \) is the sum of a diagonal invertible matrix with a rank 1 matrix it is possible to compute its determinant

\[
\det \tilde{G}^{(1,1)} = \left(1 + \sum_{j=1}^{k} \left(G_{ij}^{(1,1)} \right)^{-1} g(x_j) \right) \det G^{(1,1)}, \tag{E.30}
\]

and its inverse by the Sherman-Morrison formula:

\[
\left(\tilde{G}^{(1,1)} \right)^{-1}_{ij} = \delta_{ij} \left(G_{ij}^{(1,1)} \right)^{-1} - \frac{\left(G_{ij}^{(1,1)} \right)^{-1}}{1 + \sum_{j=1}^{L} \left(G_{ij}^{(1,1)} \right)^{-1} g(x_j)} \tag{E.31}
\]

Then after straightforward but cumbersome computations we obtain the expression (E.19). □

Identity 7. Let \(L_1 < L_2 \). Then

\[
\mathcal{A}_{L_1 \cup L_2}[f, g] = \frac{\det \hat{S}_{xy}[f, g]}{V(x_1, \ldots, x_{L_1}, \ldots, x_{L_2})}, \tag{E.32}
\]

where

\[
\hat{S}_{xy}[f, g]_{ik} = \sum_{\epsilon \in \{+, -\}} f(\epsilon y_i) X(y_i + \epsilon \eta)
\]

and

\[
\left[\hat{S}_{xy}[f, g] \right]_{ik} = \sum_{\epsilon \in \{+, -\}} f(\epsilon y_i) X(y_i + \epsilon \eta) \left\{ \frac{(y_i + \epsilon \eta/2) - \varsigma(x_{L_1} + \frac{\eta}{2})}{\varsigma(y_i + \epsilon \eta/2) - \varsigma(x_{L_1} + \frac{\eta}{2})} \right\} \quad \text{if } k \leq L_1, \tag{E.33}
\]

\[
- \delta_{k, L_1} \sum_{j=1}^{L_1} \frac{X^g_{f, j}}{\varsigma(y_i + \epsilon \eta/2) - \varsigma(x_j - \frac{\eta}{2})} + \delta_{k, L_2} \frac{g(y_i)}{X(y_i)} \quad \text{if } k > L_1. \tag{E.34}
\]

Proof. Once again, the proof follows the lines of [1]. As before we introduce an auxiliary \((L_1 + L_2) \times (L_1 + L_2)\) matrix \(\hat{C} \) with coefficients \(\hat{C}_{ik} \) given by the following relations:

\[
X^{(+)}(\lambda) X^{(-)}(\lambda) = \sum_{j=1}^{L_1 + L_2} \hat{C}_{ik} \varsigma(\lambda)^{j-1}, \quad 1 \leq k \leq L_1, \tag{E.35}
\]

\[
X^{(+)}(\lambda) X^{(-)}(\lambda) = \sum_{j=1}^{L_1 + L_2} \hat{C}_{j,k+1} \varsigma(\lambda)^{j-1}, \quad 1 \leq k \leq L_1, \tag{E.35}
\]

\[
X^{(+)}(\lambda) X^{(-)}(\lambda) W_k(\lambda) = \sum_{j=1}^{L_1 + L_2} \hat{C}_{j,2L_2+k} \varsigma(\lambda)^{j-1}, \quad 1 \leq k \leq L_2 - L_1. \tag{E.35}
\]

Here the polynomials \(X^{(\pm)}(\lambda) \) are defined by (E.9) while \(X^{(\pm)}(\lambda) \) by (E.10) and \(W_k(\lambda) \) is the following polynomial in \(\varsigma(\lambda) \):
\[W_k(\lambda) = \prod_{\ell=1}^{S} \left[\zeta(\lambda) - \zeta(w_\ell) \right], \quad 1 \leq k \leq S = L_2 - L_1, \quad (E.36) \]

where \(w_1, \ldots, w_S \) are arbitrary pairwise distinct auxiliary variables. Note in particular that, for \(k \leq 2L_1 \), \(\tilde{C}_{j,k} = 0 \) if \(j > 2L_1 \) and \(\tilde{C}_{2L_1,k} = 1 \). Note also that \(\tilde{C}_{L_1+L_2,k} = 1 \) for \(k > 2L_1 \). The determinant of this matrix can be computed as in [1, 102]. We obtain

\[\det \tilde{C} = \tilde{V}(w_S, \ldots, w_1) \tilde{V} \left(x_{L_1} + \frac{\eta}{2}, \ldots, x_1 + \frac{\eta}{2}, x_{L_1} - \frac{\eta}{2}, \ldots, x_1 - \frac{\eta}{2} \right). \quad (E.37) \]

Computing the product of \(A_{\{x\} \cup \{y\}}[f,g] \) with the determinant of the matrix \(\tilde{C} \), we obtain:

\[A_{\{x\} \cup \{y\}}[f,g] \cdot \det \tilde{C} = \frac{\det L_1 + L_2 \mathcal{G}}{V(x_1, \ldots, x_{L_1}, y_1, \ldots, y_{L_2})}, \quad (E.38) \]

where \(\mathcal{G} \) is given as the following block matrix:

\[\mathcal{G} = \begin{pmatrix} \mathcal{G}^{(1,1)} & \mathcal{G}^{(1,2)} & \mathcal{G}^{(1,3)} \\ \mathcal{G}^{(2,1)} & \mathcal{G}^{(2,2)} & \mathcal{G}^{(2,3)} \end{pmatrix}. \quad (E.39) \]

In this expression, \(\mathcal{G}^{(1,1)} \) and \(\mathcal{G}^{(1,2)} \) are \(L_1 \times L_1 \) matrices with elements given by \((E.25) \) and \((E.26) \) for \(1 \leq i, k \leq L_1 \), whereas \(\mathcal{G}^{(1,1)} \) and \(\mathcal{G}^{(2,2)} \) are \(L_2 \times L_2 \) matrices with elements given by \((E.27) \) and \((E.28) \) for \(1 \leq i \leq L_2 \) and \(1 \leq k \leq L_1 \). Finally, we have extra blocks \(\mathcal{G}^{(1,3)} \) and \(\mathcal{G}^{(2,3)} \). \(\mathcal{G}^{(1,3)} \) is a \(L_1 \times S \) rank 1 matrix with elements:

\[\mathcal{G}^{(1,3)}_{i,k} = g(x_i) = \sum_{j=1}^{S} c^w_{j,k} \{ \delta_{i,j} g(x_i) \}, \quad (E.40) \]

for \(1 \leq i \leq L_1 \) and \(1 \leq k \leq S \), whereas \(\mathcal{G}^{(2,3)} \) is a \(L_2 \times S \) matrix with elements

\[\mathcal{G}^{(2,3)}_{i,k} = \sum_{\epsilon \in \{+,-\}} f(\epsilon y_j) X^{(+)}(y_j + \frac{\epsilon \eta}{2}) X^{(-)}(y_j - \frac{\epsilon \eta}{2}) W_k(y_j + \frac{\epsilon \eta}{2}) + g(y_j) \]

\[= \sum_{j=1}^{S} c^w_{j,k} \left\{ \sum_{\epsilon \in \{+,-\}} f(\epsilon y_j) X^{(+)}(y_j + \frac{\epsilon \eta}{2}) X^{(-)}(y_j + \frac{\epsilon \eta}{2}) \zeta(y_j + \epsilon \eta / 2)^{j-1} \right. \]

\[+ \left. \delta_{i,j} g(y_j) \right\}. \quad (E.41) \]

In these expressions, \(c^w \) is the \(S \times S \) matrix with determinant \(\tilde{V}(w_S, \ldots, w_1) \) defined from the set of variables \(\{w_1, \ldots, w_S\} \) by the relations

\[W_k(\lambda) = \sum_{j=1}^{S} c^w_{j,k} \zeta(\lambda)^{j-1}. \quad (E.42) \]

Hence we obtain

\[\det L_1 + L_2 \mathcal{G} = \det L_1 + L_2 \begin{pmatrix} \mathcal{G}^{(1,1)} & \mathcal{G}^{(1,2)} & \mathcal{G}^{(1,3)} \\ \mathcal{G}^{(2,1)} & \mathcal{G}^{(2,2)} & \mathcal{G}^{(2,3)} \end{pmatrix} \cdot \tilde{V}(w_S, \ldots, w_1), \quad (E.43) \]

where the elements of the \(L_1 \times S \) block \(\mathcal{G}^{(1,3)} \) and of the \(L_2 \times S \) block \(\mathcal{G}^{(2,3)} \) are respectively given by
\[G^{(1,1)}_{i,k} = \delta_{k,5} g(x_i), \]
\[G^{(2,3)}_{i,k} = \sum_{\epsilon \in \{+,-\}} f(\epsilon y_i) X(\epsilon) \left(y_i + \epsilon \frac{\eta}{2} \right) X(-\epsilon) \left(y_i + \epsilon \frac{\eta}{2} \right) + \delta_{k,5} g(y_i). \]

It is easy to compute by blocks the determinant in (E.43) using the fact that \(G^{(1,1)} \) is a diagonal invertible matrix. It leads to the final expression (E.32). □

ORCID iDs

V Terras https://orcid.org/0000-0002-1643-4319

References

[1] Kitanine N, Maillet J M, Niccoli G and Terras V 2017 The open XXX spin chain in the sov framework: scalar product of separate states J. Phys. A: Math. Theor. 50 224001
[2] Gaudin M 1971 Boundary energy of a Bose gas in one dimension Phys. Rev. A4 386
[3] Bariev R Z 1979 Correlation functions of the semi-infinite two-dimensional Ising model. I. Local magnetization Theor. Mat. Fiz. 40 95
[4] Bariev R Z 1980 Local magnetization of the semi-infinite XY-chain Physica A 103 363
[5] Bariev R Z 1980 Correlation functions of the semi-infinite two-dimensional Ising model II. Two-point correlation functions Theor. Math. Phys. 42 173
[6] Schulz H 1985 Hubbard chain with reflecting ends J. Phys. C: Solid State Phys. 18 581
[7] Alcaraz F, Barber M, Batchelor M, Baxter R and Quispel G 1987 Surface exponents of the quantum XXZ Ashkin–Teller and Potts models J. Phys. A: Math. Gen. 20 6397
[8] Cherednik I V 1984 Factorizing particles on a half line and root systems Theor. Mat. Fiz. 61 977
[9] Sklyanin E K 1985 The quantum Toda chain Non-Linear Equations in Classical and Quantum Field Theory ed N Sanchez (Berlin: Springer) pp 196–233
[10] Sklyanin E K 1988 Boundary conditions for integrable quantum systems J. Phys. A: Math. Gen. 21 2375
[11] Bariev R Z 1988 Correlation functions of the semi-infinite two-dimensional Ising model. III. Influence of a ‘fixed’ boundary Theor. Mat. Fiz. 77 127
[12] Kulish P P and Sklyanin E K 1991 The general \(U_q(sl(2)) \) invariant XXZ integrable quantum spin chain J. Phys. A: Math. Gen. 24 L435
[13] Mezincescu L, Nepomechie R I and Rittenberg V 1990 Bethe ansatz solution of the Fateev–Zamolodchikov quantum spin chain with boundary terms Phys. Lett. A 147 70
[14] Mezincescu L and Nepomechie R I 1991 Integrability of open spin chains with quantum algebra symmetry Int. J. Mod. Phys. A 6 5231
[15] Pasquier V and Saleur H 1990 Common structures between finite systems and conformal field theories through quantum groups Nucl. Phys. B 330 523
[16] Batchelor M T, Mezincescu L, Nepomechie R I and Rittenberg V 1990 q-deformations of the O(3) symmetric spin-1 heisenberg chain J. Phys. A: Math. Gen. 23 L141
[17] de Vega H J and Ruiz A G 1993 Boundary K-matrices for the six vertex and the \(n(2n – 1) A_{n-1} \) vertex models J. Phys. A : Math. Gen. 26 L519
[18] de Vega H J and Gonzalez-Ruiz A 1994 Boundary K-matrices for the XYZ XXZ and XXX spin chains J. Phys. A: Math. Gen. 27 6129
[19] Ghoshal S and Zamolodchikov A 1994 Boundary S-matrix and boundary state in two-dimensional integrable quantum field theory Int. J. Mod. Phys. A 9 3841
[20] Jimbo M, Kedem R, Kojima T, Konno H and Miwa T 1995 XXZ chain with a boundary Nucl. Phys. B 441 437
[21] Jimbo M, Kedem R, Konno H, Miwa T and Weston R 1995 Difference equations in spin chains with a boundary Nucl. Phys. B 448 429
[22] Kitanine N, Kozlowski K K, Maillet J M, Niccoli G, Slavnov N A and Terras V 2007 Correlation functions of the open XXZ chain: I J. Stat. Mech. P10009
[23] Kitanine N, Kozlowski K K, Mailler J M, Niccoli G, Slavnov N A and Terras V 2008 Correlation functions of the open XXZ chain: II J. Stat. Mech. P07010
[24] Artz S, Mezincescu L and Nepomechie R I 1995 Analytical Bethe ansatz for a $A_n^{(2)}$, $B_n^{(1)}$, $C_n^{(1)}$, $D_n^{(1)}$ quantum-algebra-invariant open spin chains J. Phys. A: Math. Gen. 28 5131
[25] Doikou A 2003 Fused integrable lattice models with quantum impurities and open boundaries Nucl. Phys. B 668 447
[26] Doikou A 2006 The open XXZ and associated models at q root of unity J. Stat. Mech. P09010
[27] Crampe N and Ragoucy E 2012 Generalized coordinate Bethe ansatz for non-diagonal boundaries Nucl. Phys. B 858 502
[28] Nepomechie R I 2004 Bethe ansatz solution of the open XXZ chain with nondiagonal boundary terms J. Phys. A: Math. Gen. 37 433
[29] Baseilhac P and Koizumi K 2007 Exact spectrum of the XXZ open spin chain from the q-Onsager algebra representation theory J. Stat. Mech. P09006
[30] Nepomechie R I 2002 Solving the open XXZ spin chain with nondiagonal boundary terms at roots of unity Nucl. Phys. B 622 615
[31] Nepomechie R I and Ravanini F 2003 Completeness of the Bethe ansatz solution of the open XXZ chain with nondiagonal boundary terms J. Phys. A: Math. Gen. 36 11391
[32] Murgan R, Nepomechie R I and Shi C 2006 Exact solution of the open XXZ chain with general integrable boundary terms at roots of unity J. Stat. Mech. P08006
[33] Galleas W 2008 Functional relations from the Yang–Baxter algebra: eigenvalues of the XXZ model with non-diagonal twisted and open boundary conditions Nucl. Phys. B 790 524
[34] Yang W-L, Nepomechie R I and Zhang Y-Z 2006 Q-operator and T-Q relation from the fusion hierarchy Phys. Lett. B 633 664
[35] Frappat L, Nepomechie R I and Ragoucy E 2007 A complete Bethe ansatz solution for the open spin-s XXZ chain with general integrable boundary terms J. Stat. Mech. P09009
[36] Crampe N, Ragoucy E and Simon D 2010 Eigenvectors of open XXZ and ASEP models for a class of non-diagonal boundary conditions J. Stat. Mech. P11038
[37] Filali G and Kitanine N 2010 Partition function of the trigonometric SOS model with reflecting end J. Stat. Mech. L06001
[38] Filali G and Kitanine N 2011 Spin chains with non-diagonal boundaries and trigonometric SOS model with reflecting end SIGMA 7 012
[39] Filali G 2011 Elliptic dynamical reflection algebra and partition function of SOS model with reflecting end J. Geom. Phys. 61 1789
[40] Cao J, Yang W-L, Shi K and Wang Y 2013 Off-diagonal Bethe ansatz solutions of the anisotropic spin-1/2 chains with arbitrary boundary fields Nucl. Phys. B 877 152
[41] Xu X, Hao K, Yang T, Cao J, Yang W-L and Shi K-J 2016 Bethe ansatz solutions of the τ_2-model with arbitrary boundary fields J. High Energy Phys. JHEP11(2016)180
[42] Derkachov S E, Korchemsky G P and Manashov A N 2003 Baxter Q-operator and separation of variables for the open SL(2, R) spin chain J. High Energy Phys. JHEP10(2003)053
[43] Frahm H, Seel A and Wirth T 2009 Separation of variables in the open XXX chain Nucl. Phys. B 802 351
[44] Frahm H, Grelik J H, Seel A and Wirth T 2011 Functional Bethe ansatz methods for the open XXX chain J. Phys. A: Math. Theor. 44 015001
[45] Amico L, Frahm H, Osterloh A and Ribeiro G 2007 Integrable spin-boson models descendimg from rational six-vertex models Nucl. Phys. B 787 283
[46] Amico L, Frahm H, Osterloh A and Wirth T 2010 Separation of variables for integrable spin-boson models Nucl. Phys. B 839 604
[47] Niccoli G 2012 Non-diagonal open spin-1/2 XXZ quantum chains by separation of variables: complete spectrum and matrix elements of some quasi-local operators J. Stat. Mech. P10025
[48] Faldella S and Niccoli G 2014 SOV approach for integrable quantum models associated with general representations on spin-1/2 chains of the 8-vertex reflection algebra J. Phys. A: Math. Theor. 47 115202
[49] Faldella S, Kitanine N and Niccoli G 2014 Complete spectrum and scalar products for the open spin-1/2 XXZ quantum chains with non-diagonal boundary terms J. Stat. Mech. P01011
[50] Kitanine N, Maillet J M and Niccoli G 2014 Open spin chains with generic integrable boundaries: Baxter equation and Bethe ansatz completeness from separation of variables J. Stat. Mech. P05015
[51] Fan H, Hou B-Y, Shi K-J and Yang Z-X 1996 Algebraic Bethe ansatz for the eight-vertex model with general open boundary conditions Nucl. Phys. B 478 723
[52] Cao J, Lin H-Q, Shi K-J and Wang Y 2003 Exact solution of XXZ spin chain with unparallel boundary fields Nucl. Phys. B 663 487
[53] Yang W-L and Zhang Y-Z 2007 On the second reference state and complete eigenstates of the open XXZ chain J. High Energy Phys. JHEP04(2007)044
[54] Arnaudon D, Crampé N, Doikou A, Frappat L and Ragoucy E 2005 Analytical Bethe ansatz for closed and open $gl(N)$-spin chains in any representation J. Stat. Mech. P02007
[55] Arnaudon D, Crampé N, Doikou A, Frappat L and Ragoucy E 2006 Spectrum and Bethe ansatz equations for the $U_q(gl(N))$ closed and open spin chains in any representation Ann. Henri Poincaré 7 1217
[56] Ragoucy E and Satta G 2007 Analytical bethe ansatz for closed and open $gl(N)$ super-spin chains in arbitrary representations and for any Dynkin diagram J. High Energy Phys. JHEP09(2007)001
[57] Belliard S and Ragoucy E 2009 The nested Bethe ansatz for ‘all’ open spin chains with diagonal boundary conditions J. Phys. A: Math. Theor. 42 205203
[58] Baseilhac P and Belliard S 2013 The half-infinite XXZ chain in Onsager’s approach Nucl. Phys. B 873 550
[59] Baseilhac P and Belliard S 2017 Non-Abelian symmetries of the half-infinite XXZ spin chain Nucl. Phys. B 916 373
[60] Belliard S and Crampé N 2013 Heisenberg XXX model with general boundaries: eigenvectors from algebraic Bethe ansatz SIGMA 9 072
[61] Belliard S, Crampé N and Ragoucy E 2013 Algebraic Bethe ansatz for open XXX model with triangular boundary matrices Lett. Math. Phys. 103 493
[62] Belliard S 2015 Modified algebraic Bethe ansatz for XXZ chain on the segment—Ⅰ—triangular cases Nucl. Phys. B 892 1
[63] Belliard S and Pimenta R A 2015 Modified algebraic Bethe ansatz for XXZ chain on the segment—Ⅱ—general cases Nucl. Phys. B 894 527
[64] Avan J, Belliard S, Grosjean N and Pimenta R 2015 Modified algebraic Bethe ansatz for XXZ chain on the segment—Ⅲ—proof Nucl. Phys. B 899 229
[65] Zhou H-Q 1996 Quantum integrability for the one-dimensional Hubbard open chain Phys. Rev. B 54 41
[66] Zhou H-Q 1997 Graded reflection equations and the one-dimensional Hubbard open chain Phys. Lett. A 228 48
[67] Asakawa H and Suzuki M 1996 Finite-size corrections in the XXZ model and the Hubbard model with boundary fields J. Phys. A: Math. Gen. 29 225
[68] Guan X-W, Wang M-S and Yang S-D 1997 Lax pair and boundary K-matrices for the one-dimensional Hubbard model Nucl. Phys. B 485 685
[69] Guan X-W 2000 Algebraic Bethe ansatz for the one-dimensional Hubbard model with open boundaries J. Phys. A: Math. Gen. 33 5391
[70] Shiroishi M and Wadati M 1997 Bethe ansatz equation for the Hubbard model with boundary fields J. Phys. Soc. Japan 66 1
[71] Kinoshita T, Wenger T and Weiss D S 2006 A quantum newton’s cradle Nature 440 900
[72] Hofferberth S, Lesanovsky I, Fischer B, Schumm T and Schmiedmayer J 2007 Non-equilibrium coherence dynamics in one-dimensional Bose gases Nature 449 324
[73] Bloch I, Dalibard J and Zwerger W 2008 Many-body physics with ultracold gases Rev. Mod. Phys. 80 885
[74] Trotzky S, Chen Y-A, Fleisch A, McCulloch I P, Schollwöck U, Eisert J and Bloch I 2012 Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas Nat. Phys. 8 325
[75] Schneider U et al 2012 Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms Nat. Phys. 8 213
[76] Eisert J, Friesdorf M and Gogolin C 2015 Quantum many-body systems out of equilibrium Nat. Phys. 11 124
[77] Ronzheimer J P, Schreiber M, Braun S, Hodgman S S, Langer S, McCulloch I P, Heidrich-Meisner F, Bloch I and Schneider U 2013 Expansion dynamics of interacting bosons in homogeneous lattices in one and two dimensions Phys. Rev. Lett. 110 205301
[105] Kitanine N, Maillet J M and Terras V 1999 Form factors of the XXZ Heisenberg spin-1/2 finite chain *Nucl. Phys. B* **554** 647

[106] Izergin A G, Kitanine N, Maillet J M and Terras V 1999 Spontaneous magnetization of the XXZ Heisenberg spin-1/2 chain *Nucl. Phys. B* **554** 679

[107] Kitanine N, Maillet J M and Terras V 2000 Correlation functions of the XXZ Heisenberg spin-1/2 chain in a magnetic field *Nucl. Phys. B* **567** 554

[108] Slavnov N A 1989 Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz *Theor. Math. Phys.* **79** 502

[109] Maillet J M and Terras V 2000 On the quantum inverse scattering problem *Nucl. Phys. B* **575** 627

[110] Kitanine N, Maillet J M, Slavnov N A and Terras V 2005 Master equation for spin–spin correlation functions of the XXZ chain *Nucl. Phys. B* **712** 600

[111] Kitanine N, Maillet J M, Slavnov N A and Terras V 2005 Dynamical correlation functions of the XXZ spin-1/2 chain *Nucl. Phys. B* **729** 558

[112] Caux J S and Maillet J M 2005 Computation of dynamical correlation functions of Heisenberg chains in a magnetic field *Phys. Rev. Lett.* **95** 077201

[113] Caux J S, Hagemans R and Maillet J M 2005 Computation of dynamical correlation functions of Heisenberg chains: the gapless anisotropic regime *J. Stat. Mech.* P09003

[114] Pereira R G, Sirker J, Caux J-S, Hagemans R, Maillet J M, White S R and Affleck I 2006 Dynamical spin structure factor for the anisotropic spin-1/2 Heisenberg chain *Phys. Rev. Lett.* **96** 257202

[115] Pereira R G, Sirker J, Caux J-S, Hagemans R, Maillet J M, White S R and Affleck I 2007 Dynamical structure factor at small q for the XXZ spin-1/2 chain *J. Stat. Mech.* P08022

[116] Maillet J-M 2007 Heisenberg spin chains: from quantum groups to neutron scattering experiments *Nucl. Phys.* **554** 679

[117] Maillet J M and Terras V 2000 Algebraic Bethe ansatz framework of the algebraic Bethe ansatz *J. Stat. Mech.* P08022

[118] Kitanine N, Kozlowski K K, Maillet J M, Slavnov N A and Terras V 2009 Algebraic Bethe ansatz approach to the asymptotic behavior of correlation functions *J. Stat. Mech.* P04003

[119] Kozlowski K K, Maillet J M and Slavnov N A 2011 Long-distance behavior of temperature correlation functions of the quantum one-dimensional Bose gas *J. Stat. Mech.* P03018

[120] Kozlowski K K, Maillet J M and Slavnov N A 2011 Correlation functions for one-dimensional bosons at low temperature *J. Stat. Mech.* P03019

[121] Kozlowski K K and Terras V 2011 Long-time and large-distance asymptotic behavior of the current-current correlators in the non-linear Schrödinger model *J. Stat. Mech.* P09013

[122] Kitanine N, Kozlowski K K, Maillet J M, Slavnov N A and Terras V 2011 A form factor approach to the asymptotic behavior of correlation functions in critical models *J. Stat. Mech.* P12010

[123] Kitanine N, Kozlowski K K, Maillet J M, Slavnov N A and Terras V 2011 The thermodynamic limit of particle-hole form factors in the massless XXZ Heisenberg chain *J. Stat. Mech.* P05028

[124] Kitanine N, Kozlowski K K, Maillet J M and Terras V 2014 Large-distance asymptotic behaviour of multi-point correlation functions in massless quantum models *J. Stat. Mech.* P09001

[125] Kozlowski K K and Maillet J M 2015 Microscopic approach to a class of 1d quantum critical models *J. Phys. A: Math. Theor.* **48** 484004

[126] Smirnov F A 1998 Quasi-classical study of form factors in finite volume (arXiv:hep-th/9802132)

[127] Niekamp S, Wirth T and Frahm H 2009 The XXZ model with anti-periodic twisted boundary conditions *J. Phys. A: Math. Theor.* **42** 195008

[128] Izergin A G 1987 Partition function of the six-vertex model in a finite volume *Sov. Phys. Dokl.* **32** 878

[129] Tsuchiya O 1998 Determinant formula for the six-vertex model with reflecting end *J. Math. Phys.* **39** 5946

[130] Foda O and Wheeler M 2012 Variations on Slavnov’s scalar product *J. High Energy Phys.* JHEP10(2012)096

[131] Kostov I 2012 Three-point function of semiclassical states at weak coupling *J. Phys. A: Math. Theor.* **45** 494018

[132] Kostov I 2012 Classical limit of the three-point function of $N = 4$ supersymmetric Yang–Mills theory from integrability *Phys. Rev. Lett.* **26** 261604

[133] Kostov I and Matsuo Y 2012 Inner products of Bethe states as partial domain wall partition function *J. High Energy Phys.* JHEP10(2012)168
[134] Baxter R J 1973 Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain II. Ann. Phys. 76 25
[135] Takhtadzhan L A and Faddeev L D 1979 The quantum method of the inverse problem and the Heisenberg XYZ model Russ. Math. Surv. 34 11
[136] Felder G and Varchenko A 1996 Algebraic Bethe ansatz for the elliptic quantum group $E_{r,q}(sl_2)$ Nucl. Phys. B 480 485
[137] Gaudin M, McCoy B M and Wu T T 1981 Normalization sum for the Bethe’s hypothesis wave functions of the Heisenberg–Ising model Phys. Rev. D 23 417
[138] Bazhanov V V and Stroganov Y G 1990 Chiral potts model as a descendant of the six-vertex model J. Stat. Phys. 59 799