Classical models are a better explanation of the Jiuzhang Gaussian Boson Samplers than their targeted squeezed light models

Javier Martínez-Cifuentes,1 K. M. Fonseca-Romero,2 and Nicolás Quesada1

1Department of Engineering Physics, École Polytechnique de Montréal, Montréal, QC, H3T 1JK, Canada
2Departamento de Física, Universidad Nacional de Colombia - Sede Bogotá,
Facultad de Ciencias, Grupo de Óptica e Información Cuántica,
Carrera 30 Calle 43-03, C.P. 111321, Bogotá, Colombia

Recently, Zhong et al. [12] performed landmark Gaussian boson sampling experiments with up to 144 modes using threshold detectors. The authors claim to have achieved quantum computational advantage with the implementation of these experiments, named Jiuzhang 1.0 and Jiuzhang 2.0. Their experimental results are validated against several classical hypotheses and adversaries using tests such as the comparison of statistical correlations between modes, Bayesian hypothesis testing and the Heavy Output Generation test. In this work we propose an alternative classical hypothesis for the validation of these experiments. We use the probability distribution of mixtures of coherent states sent into a lossy interferometer; these input mixed states, which we term squashed states, have vacuum fluctuations in one quadrature and excess fluctuations in the other. We find that for configurations in the large photon number density regime, the comparison of statistical correlations does not tell apart the ground truth of the experiment (namely, the probability distribution of two-mode squeezed states sent into a lossy interferometer) from our alternative hypothesis. Moreover, the Bayesian test indicates that our alternative hypothesis is a more likely explanation of the experimental data than the ground truth. Our results indicate that a classical explanation of the experiments of Zhong et al., lacking any quantum features, has not been ruled out.

I. INTRODUCTION

One of the most exciting frontiers within the field of quantum computing is the topic of quantum advantage, which aims to design experiments that demonstrate the ability of current quantum devices to significantly outperform classical computers at a well defined computational task [3, 4]. The theoretical design and real-world implementation of such experiments has been the focus of significant effort in the superconducting circuit [5, 6] and quantum photonics [1, 2, 7] communities in the form of Random Circuit Sampling (RCS) [8, 9] and Gaussian Boson Sampling (GBS) [10–13].

GBS consists of sending a set of input squeezed states into an interferometer and measuring its output using photon-number [10, 11] or threshold [14] detectors. The former directly sample the photon number distribution while the later sample binary patterns of clicks that indicate whether light has been detected or not. It has been shown that sampling from the theoretical probability distribution of the resulting detection patterns, i.e., the ground truth distribution of the ideal experiment, is a computationally hard task [10, 12, 13]. These results have important caveats, for example, the known proofs of hardness for GBS require the photon number density (the average number of photons per mode) to be small so that the probability of two or more photons being measured in the same detectors is very small. On the algorithmic side, the best known methods to classically simulate these quantum sampling problems scale exponentially in the number of detected photons or counted clicks [15, 17].

Verifying that quantum samplers are operating correctly remains an active area of research (cf. the review paper by Hangleiter and Eisert [4] and references therein). For RCS it was identified early on that an estimate of the cross entropy between the samples generated by the physical device and the probability distribution associated with the ideal computation served as a witness of quantum advantage [8, 9]. For GBS the situation is more complex, as the development of a proper figure of merit that allows to readily verify a claim of quantum computational advantage is still an open challenge [4, 12]. On this account, the validation of GBS usually relies on a series of tests that rule out possible classical hypotheses or that compare the quality of the samples generated by the quantum machine against samples generated by classically efficient methods.

Two recent landmark threshold GBS experiments by Zhong et al. using 100-mode [1] and 144-mode [2] interferometers have claimed to achieve quantum computational advantage. The authors use three different validation tests: the comparison of truncated first to fourth order correlation functions (i.e., the first to fourth order click cumulants of the probability distribution), a Bayesian test and the Heavy Output Generation (HOG) test. The first examines how well the correlations in the observed data match the correlations predicted by the squeezed state hypothesis. The second test compares how good the squeezed state hypothesis is at explaining the observed data relative to other hypotheses such as thermal states, coherent states, distinguishable squeezed states and uniform probability distributions. The third test looks at how well the samples generated by the experiment have “heavy outputs” (i.e., correspond to events with high probability) in the ideal distribution relative to samples generated by classically efficient methods. These classically efficient methods can be physically motivated.
as considered by Zhong et al. [11][2] but need not be [18].

We propose an alternative classical hypothesis to explain the experiments of Zhong et al. Our hypothesis is based on the probability distribution that is obtained from using classical mixtures of coherent states (resulting in Gaussian states that we term squashed states [19][20]) as inputs of the interferometers in GBS setups. These states are classical, possessing a non-negative Glauber-Sudarshan P function [21][23] and upon interacting on an interferometer generate fully separable (i.e. having zero entanglement) multimode states, by virtue of having a positive multimode Glauber-Sudarshan P function. We find that, in the high photon number density regime where the quantum advantage is claimed to exist, our hypothesis is better at explaining the data observed by Zhong et al. than their ground truth hypothesis of quantum squeezed states interacting in an interferometer.

To compare different hypotheses, we investigate two of the tests (correlation functions and Bayesian test) that the authors of the experiment employed. We find that for configurations in the high photon number density regime, on which most of the quantum computational advantage claim relies, the truncated correlation functions predicted by the squashed states distributions are as consistent with the experimental results as those predicted by the ground truth of the experiment given by pure squeezed states. Moreover, the Bayesian test shows that in this regime the squashed states hypothesis is more likely to describe the experimental samples than the squeezed ground truth. Thus, the hypothesis introduced in this paper forms an alternative classical explanation for current threshold GBS experiments that should be weighted in future experiments.

After considering hypothesis testing, we generate samples from our squashed states hypothesis (which can be done in polynomial time and space in the number of modes/clicks [19][23][24]) and compare against the experimental samples from the Jiuzhang experiments, to see if, like the Boltzmann machine and greedy methods from Villalonga et al. [18], we can spoof the HOG test. Surprisingly, despite the squashed states being a more likely explanation of the data observed in Jiuzhang 1.0/2.0, their samples are unable to spoof the HOG test.

This paper is organized as follows: In Sec. II we obtain the ground truth distribution of the Zhong et al. experiments and define the squashed states hypothesis. In Sec. III we specify the different tests used in the validation of the experimental samples against the squashed states hypothesis and show the corresponding results. Finally, we conclude and give a possible explanation for the behavior of the squashed states hypothesis in the different regimes of photon number density in Sec. IV.

Experiment	$P(W)$	$w(\mu m)$	ν	\bar{C}	$\sigma(C)$
Jiuzhang 1.0	-	-	0.786	41.042	6.509
Jiuzhang 2.0	0.5	125	0.055	7.273	3.391
	1.412	125	0.161	19.256	5.596
	0.15	65	0.044	5.976	3.016
	0.3	65	0.093	11.941	4.325
	0.6	65	0.218	24.664	6.269
	1.0	65	0.442	41.794	7.95
	1.65	65	0.975	66.866	9.02

TABLE I. Available specifications (power P and focus waist w) of the light source and theoretical photon density $\nu = \frac{N}{\mathcal{N}} = \frac{1}{\sqrt{2}} \sum_{i=1}^M \langle a_i^\dagger a_i \rangle$, theoretical mean number of clicks \bar{C}, and theoretical standard deviation of the number of clicks $\sigma(C)$ of the different configurations of Jiuzhang 1.0 (with $M = 100$ modes) and Jiuzhang 2.0 experiments (with $M = 144$ modes).

II. GROUND TRUTH AND SQUASHED STATES DISTRIBUTIONS

A threshold GBS experiment has three stages: preparation of K (single-mode) squeezed states, evolution in an interferometer with $M \geq K$ output modes, and sampling of the output statistics using threshold detectors. These detectors do not resolve the incoming number of photons, they can only indicate if light has arrived to the detector or not. Therefore, the outcomes of the measurement can be expressed as M-bit strings, patterns consisting only of zeros and ones, where one indicates that a detector has been triggered (the detector has ‘clicked’) and zero indicates that no light has been detected.

Jiuzhang 1.0 (2.0) uses 25 two-mode squeezed states (TMSS), corresponding to 50 squeezed states, as inputs to a 100-mode (144-mode) interferometer for the first (second) setup.

The specification of the different experimental configurations, along with the theoretical photon number density $\nu = N/M$ (the ratio between the mean photon number and the number of output modes), mean number of clicks, \bar{C}, and standard deviation of the number of clicks, $\sigma(C)$, of the Jiuzhang 1.0 and Jiuzhang 2.0 experiments are shown in Table II. The values of \bar{C} and $\sigma(C)$ were computed using the methods of Refs. [13][24].

The ground truth of the Jiuzhang 1.0 and Jiuzhang 2.0 experiments is described as 25 input two-mode squeezed states that interfere in a linear lossy interferometer. The output state is then measured using ideal threshold detectors. The interferometer in this model contains the information about the losses in the real experiment (collection efficiency, propagation loss, and finite detector efficiency).

Two-mode squeezed states are mathematically defined as

$$|\zeta_{kl}\rangle = \exp \left(-\zeta a_k^\dagger a_l^\dagger + \zeta^* a_l a_k \right) |0_k, 0_l\rangle,$$

where $|0_k, 0_l\rangle$ is the vacuum state of modes k and l, a_k, a_l and a_k^\dagger, a_l^\dagger are the annihilation and creation operators of
these modes, and \(\zeta = r e^{i\phi} \) is a complex squeezing parameter. The annihilation and creation operators of the modes satisfy the usual bosonic canonical commutation relations \([a_i, a_j] = [a_i^\dagger, a_j^\dagger] = 0 \) and \([a_i, a_j^\dagger] = \delta_{i,j} \). The state \(|\zeta_i\rangle \) can also be expressed in the form \([25, 26]\)

\[
|\zeta_i\rangle = U_{BS} \left[S_k(\zeta) |o_k\rangle \otimes S_l(-\zeta) |0_l\rangle \right],
\]

where \(U_{BS} = \exp \left[\frac{i}{2} (a_k^\dagger a_k - a_k a_k^\dagger) \right] \) is a unitary transformation representing the action of a 50 : 50 real beamsplitter, and \(S_k(\zeta) = \exp \left[-\frac{1}{2} (\zeta a_k^2 - \zeta^* a_k^2) \right] \) is the single-mode squeezing operator of mode \(k \). This expression indicates that a TMSS can be physically generated by interfering two single-mode squeezed states (SMSS) compressed along orthogonal directions into a 50 : 50 real beamsplitter.

For Jiuzhang 1.0 and Jiuzhang 2.0, the squeezing parameters of the input states \(\zeta_i = r_i \), \(i = 1, \cdots, 25 \), are considered to be real and positive. The information about the phases \(\phi_i \) is absorbed into the rectangular sub-unitary matrix \(T \) that describes the action of the lossy interferometer. The size of \(T \) is \(M \times 50 \), where \(M \) is the number of output modes. Data about the squeezing parameters and the matrix \(T \) is available in \([28]\) for Jiuzhang 1.0, and in \([27]\) for Jiuzhang 2.0.

In order to verify the results of the Jiuzhang experiments, we need to determine the theoretical probability distribution of the experimental samples, which is commonly known as the ground truth distribution of the experiment. The specification of this distribution will also allow us to motivate the definition of the probability distribution of the squashed states.

The ground truth distributions of the Jiuzhang experiments are completely characterized by the output state of the interferometer. Since the input states are Gaussian, and the interferometer is linear, the output state is also Gaussian. Gaussian states of \(K \) modes are characterized by their vector of first moments and their covariance matrix. If we write the annihilation operators as \(a_k = (x_k + ip_k)/\sqrt{2n} \), in terms of the hermitian in- (out-) phase quadratures \(x_k \) (\(p_k \)), we can define the vector \(r^T = (x_1, x_2, \cdots, x_K, p_1, p_2, \cdots, p_K) \). Then, assuming a vanishing vector of first moments \(\bar{r} = \text{Tr}(\rho G r) = 0 \), (as is the case for the Jiuzhang experiments) the covariance matrix can be written as \(\sigma = \frac{1}{2} \text{Tr}(\rho G (r, r^T)) \). Here, \(\rho_G \) denotes the density matrix of the Gaussian state and \(\{A, B\} = AB + BA \) stands for the anticommutator of operators \(A \) and \(B \). On this account, the ground truth distribution of the Jiuzhang experiments will be com-

\[
\begin{align*}
\text{Vacuum state} & \quad \text{Thermal state} \\
\text{Coherent state} & \quad \text{Squeezed state} \\
\text{Squashed state}
\end{align*}
\]
completely specified by the covariance matrix of the output states. In what follows, we will explain how to compute this matrix.

We first specify the covariance matrix of the input states. To do this, we follow the procedure indicated by Eq. [2] we generate 25 TMSS by interfering 50 pairs of SMSS with squeezing parameters \{-r_1, r_1, \ldots, -r_{25}, r_{25}\} into 25 beamsplitters that act on consecutive modes. The covariance matrix of one SMSS with squeezing parameter \(r\) is

\[
\sigma^{(1)}_{\text{SMSS}} = \frac{\hbar}{2} \begin{pmatrix}
-e^{-2r} & 0 \\
0 & e^{2r}
\end{pmatrix},
\]

Note that in this covariance matrix, the variances of the two quadratures are inversely related, thus saturating the uncertainty relation [25].

We can now construct the 100 \(\times\) 100 covariance matrix of the 50 SMSS (in the ordering indicated by \(r^T\)) as

\[
\sigma_{\text{SMSS}} = \frac{\hbar}{2} \text{diag}(e^{-2r_1}, e^{-2r_1}, \ldots, e^{2r_{25}}, e^{-2r_{25}}, e^{-2r_1}, e^{2r_1}, \ldots, e^{-2r_{25}}, e^{2r_{25}}),
\]

where \(\text{diag}(v_1, \ldots, v_m)\) forms a diagonal matrix of size \(m\) with entries \(v_1, \ldots, v_m\). A 50 : 50 real beamsplitter interfering two adjacent modes (see Fig. 1a) is represented by the matrix

\[
H = \frac{1}{\sqrt{2}} \begin{pmatrix}
1 & -1 \\
1 & 1
\end{pmatrix}.
\]

The corresponding matrix for the 25 beamsplitters has the form

\[
B = \bigoplus_{k=1}^{50} H,
\]

The covariance matrix of the input TMSS can then be computed as

\[
\sigma_{\text{TMSS}} = B \sigma_{\text{SMSS}} B^T.
\]

Given a \(K\)-mode input Gaussian state with covariance matrix \(\sigma_{\text{IN}}\), an interferometer channel with transmission matrix \(T\) maps it to an \(M\)-mode Gaussian state with covariance matrix \(\sigma_{\text{OUT}}\) given by [23]

\[
\sigma_{\text{OUT}} = \mathcal{L}_T(\sigma_{\text{IN}}) = \frac{\hbar}{2}(I_{2M} - VV^T) + V \sigma_{\text{IN}} V^T,
\]

\[
V = \begin{pmatrix}
\text{Re}(T) & -\text{Im}(T) \\
\text{Im}(T) & \text{Re}(T)
\end{pmatrix}.
\]

The complex transmission matrix in the last equation is generally rectangular and of dimensions \(M \times K\). With this notation in mind, we can then simply write the covariance matrix of the squeezed ground truth hypothesis as \(\sigma^{(1)}_{\text{SQUE}} = \mathcal{L}_T(\sigma_{\text{TMSS}})\). Having the covariance matrix \(\sigma\) of a given Gaussian state we can calculate click-probabilities as [14]

\[
\Pr(s) = \frac{\text{Tor} \left(\frac{O(s)}{\sqrt{\det(\Sigma)}} \right)}{\sqrt{\det(\Sigma)}}, \quad \text{with } O = I_{2M} - \Sigma^{-1},
\]

\[
\Sigma = \frac{I_{2M}}{2} + \frac{1}{\hbar} R \sigma R^\dagger \quad \text{and} \quad R = \frac{1}{\sqrt{2}} \begin{pmatrix}
I_M & iI_M \\
I_M & -iI_M
\end{pmatrix}.
\]

Here, Tor(\(A\)) is the Torontonian of matrix \(A\) (see Appendix A for a definition). The operation \(A_{(s)}\) is explained as follows: suppose that the detection pattern \(s\) contains \(C\) clicks (\(C\) ones) observed in the modes \(\{j_1, \ldots, j_C\}\), then matrix \(A_{(s)}\) is obtained by keeping only the rows and columns \(\{j_1, \ldots, j_C, j_1 + M, \ldots, j_C + M\}\) of matrix \(A\), whose size is \(2M \times 2M\). To obtain probabilities associated with the ground truth we simply let \(\sigma \rightarrow \sigma^{(1)}_{\text{SQUE}}\) in the last equation. Note that the results presented here can be extended to Gaussian states with displacements [20] using loop Torontonians [30].

We now turn to the definition of the squashed states distribution. When losses are incorporated in the input states, squeezed states become squeezed thermal states [19]. These states still have a quadrature with noise lower than that of the vacuum state. We define the squashed states as squeezed thermal states with vacuum fluctuations in one quadrature and larger fluctuations in the other. The output states obtained by interfering squashed states are classical, which means that we can efficiently sample from their probability distribution using classical computers. As can be seen in Fig. 1b, the noise ellipse of the squashed states suggests that they are better approximations to the squeezed states than the classical states that Zhong et al. used for the validation of the experimental results which have circular noise ellipses. Indeed, squashed states are the classical Gaussian states with the highest fidelity to thermal squeezed states [19].

The definition of the probability distribution associated with the squashed distribution is now straightforward: we need to apply the interferometer channel with transmission \(T\) to 25 two-mode squashed states. In turn, the input covariance matrix to the interferometer is obtained by replacing \(\sigma_{\text{TMSS}}\) for the input 25 two-mode squashed states covariance matrix, \(\sigma_0\). This matrix is obtained in the same way we constructed \(\sigma_{\text{TMSS}}\): we interfere 50 single-mode squashed states into 25 real 50 : 50 beamsplitters. The covariance matrix of a single-mode squashed state with mean photon number \(\bar{n} = \sinh^2 r\) is

\[
\sigma^{(1)}_0 = \frac{\hbar}{2} \begin{pmatrix}
1 & 0 \\
0 & 1 + 4\bar{n}
\end{pmatrix}.
\]

This covariance matrix has no squeezing as one of the quadratures is at the vacuum level while the other has excess (classical) noise proportional to \(\bar{n}\), thus they can be described as classical mixtures of coherent states as
shown in Ref. [20]. Notice that the matrix above can be obtained by replacing e^{-2r} and e^{2r} in Eq. (3) by 1 and $1 + 4\bar{n}$, respectively. This same procedure can be used to construct the covariance matrix of the 50 single-mode squashed states, σ_0^\prime: we replace the e^{-2r} and e^{2r} terms in Eq. (4) by 1 and $1 + 4\bar{n}_k$, respectively. Then, σ_0^\prime can be written as

$$
\sigma_0^\prime = B\sigma_0 B^T.
$$

(13)

It is worth mentioning that the squashed states need not have the same mean photon numbers as the squeezed states used in the definition of the covariance matrix in Eq. (7). We make this choice in order to have a photon number distribution with lower total variation distance to the distribution predicted by the ground truth. However, the squashed states hypothesis allows the modification of the n_k. In particular, we may slightly change the input photon numbers so that instead of being $n_k = \sinh^2 r_k$ they are $\bar{n}_k = (1 - \epsilon_k) \sinh^2 r_k$ with ϵ_k small. This modification of the squashed states hypothesis will prove useful when validating the experimental results.

We can write the covariance matrix associated with the squashed states hypothesis as $\sigma_{\text{(SQUA)}} = E^T(\sigma_0^\prime)$. The covariance matrix of this state satisfies $\sigma_{\text{(SQUA)}} \geq \frac{2}{5}I_{2M}$ and thus the Gaussian state associated with it can be written as a mixture of products of single-mode coherent states [20] [22] [23], implying that this Gaussian state is separable across any partition of its modes. Finally, having the covariance matrix of the state, we can obtain probabilities associated with it by letting $\sigma \rightarrow \sigma_{\text{(SQUA)}}$ in Eq. (10).

III. VALIDATION TESTS

The results of the Jiuzhang experiments have been validated against a number of hypotheses and adversaries. These validations generally made use of three different tests: a Bayesian test, the Heavy Output Generation (HOG) test, and the comparison of the click cumulants of the different possible distributions with those of the experimental samples. Here, we will study how well the squashed states hypothesis explains the experimental data relative to the squeezed ground truth hypothesis and, moreover, will use samples generated from the squashed states hypothesis to perform the HOG test.

A. Click cumulants of the distribution

The comparison of click cumulants was first used in the validation of the Jiuzhang 2.0 experiment [2]. The authors used this method to investigate how robust the experimental samples are against classical simulation schemes based on marginal distributions. They claim that the presence of “non-trivial genuine high-order correlation in the GBS samples is evidence of robustness against possible classical simulation schemes” [2].

These high-order correlation functions are given by cumulants (also called Ursell functions) defined in terms of moments of a multidimensional random variable $X = (X_1, X_2, \ldots, X_M)$ as

$$
\kappa(X_1, \ldots, X_n) = \sum_{\pi} (|\pi| - 1)!(-1)^{|\pi| - 1} \prod_{B \in \pi} \left(\prod_{i \in B} X_i \right),
$$

(14)

where π runs through the list of all partitions of $\{1, \ldots, n\}$, B runs through the list of all blocks of the partition π, and $|\pi|$ is the number of parts in the partition. Note that the first order cumulants are simply the means $\kappa(X_i) = \langle X_i \rangle$ and that the second order cumulants are the covariances $\kappa(X_i, X_j) = \langle X_i X_j \rangle - \langle X_i \rangle \langle X_j \rangle$.

Since the probability distribution associated with a threshold detector experiment has binary outcomes 0, 1 in each mode, it is straightforward to see that moments of the distribution correspond to marginal probabilities

$$
\langle X_{i_1} X_{i_2} \ldots X_{i_n} \rangle = \Pr (i_1 = 1, i_2 = 1, \ldots, i_n = 1).
$$

(15)

The latter in turn can be computed by constructing the marginal covariance matrix of the modes i_1, i_2, \ldots, i_n and using Eq. (10).

Following Ref. [2], we compute the cumulants up to fourth order of the squashed states distribution of the different setups of the Jiuzhang experiment and compare them with those of the experimental samples. We also make the corresponding comparison with the ground truth distributions. For these computations, we used 10^7 of the $\sim 5 \times 10^7$ samples available in Ref. [27]. Note that the number of cumulants increases sharply with the order; for a system with M modes there are $M!/\ell!(M - \ell)!$ possible combinations of ℓ different modes (without repetitions), which is precisely the number of cumulants of order ℓ. Considering this fact, we randomly select 10^5 sets of three and four different modes for the computation of the third and fourth order cumulants, respectively. We compute all the possible cumulants of first and second order.

Fig. 2 shows the results for Jiuzhang 1.0 ($\nu = 0.786$) and for two configurations of Jiuzhang 2.0 ($\nu = 0.044$ and $\nu = 0.975$). Fig. 3 shows the Pearson and Spearman correlation coefficients between experimental and theoretical cumulants as functions of ν (for all the configurations of Jiuzhang 1.0/2.0). The corresponding p-values, computed using the function cor.test from the R stats package [31], are lower than $\text{machine} _ \text{epsilon} = 2.2 \times 10^{-16}$ for every configuration, indicating a negligible probability of obtaining these correlation coefficients using uncorrelated data sets (i.e. a negligible probability of obtaining these correlation coefficients by chance). The same computation using the pearsonr and spearmanr functions from the SciPy stats (scipy.stats) module [32] results in p-values that are effectively zero for all ν.

It is clear that for low densities, as exemplified by the $\nu = 0.044$ configuration in Fig. 3, the cumulants
FIG. 2. Comparison between the experimental click cumulants (up to fourth order) and those predicted by the squashed states (violet) and ground truth (blue) distributions for Jiuzhang 1.0 ($\nu = 0.786$) and two configurations of Jiuzhang 2.0 ($\nu = 0.044$ and $\nu = 0.975$). For a hypothesis that perfectly describes the experimental samples, all the cumulants would lie in the dashed straight lines shown in the figure. The Pearson and Spearman correlation coefficients between theoretical and experimental cumulants are shown in Fig. [3].
predicted by the squashed states distribution are not consistent with the experimental results. In this case we can readily admit the ground truth of the experiment as the better hypothesis. This observation also holds for configurations with photon number densities between $\nu = 0.055$ and $\nu = 0.218$ as seen by looking at the Pearson and Spearman correlation coefficients in Fig. 3a. However, we note that by increasing ν, the cumulants of the squashed states distribution become progressively consistent with the experimental samples. Indeed, for setups with $\nu = 0.786$ and $\nu = 0.975$ (also for $\nu = 0.442$), the experimental results are as consistent with the squashed states distribution as they are with the ground truth distribution of the experiment. In these cases, the comparison of cumulants does not allow to directly determine which of these two distributions better describes the experiment. This suggests that for configurations with high photon number density the presence of higher order cumulants in the experimental samples can be efficiently reproduced by a classical hypothesis, which implies that the idea of having high-order correlations in the data does not necessarily shield the experiment from classical simulations.

This result is of particular importance even if it does not hold for all ν. From Table I and also from Fig. 3 in Appendix B it can be inferred that configurations with low ν have click number distributions that are mostly located below 40 clicks, that is, these configurations mostly generate samples with less than 40 clicks. This upper limit in the number of clicks makes the simulation of these setups a feasible task for a classical computer. It is the configurations of the Jiuzhang experiments with high photon number density that become increasingly difficult to simulate. The comparison of click cumulants shown here indicates that a simulation scheme using the squashed states hypothesis efficiently reproduces the results of the experiment in this regime.

B. Bayesian test

The Bayesian test that was used in the validation of the Jiuzhang 1.0/2.0 experiments compares two different hypotheses regarding the true probability distribution of the experimental samples. This test gives the degree of confidence of one hypothesis over another. In this case, we compute the degree of confidence of the ground truth of the experiment over the squashed states hypothesis. The test relies on the computation of probabilities of individual samples, which is a computationally hard task for patterns with a high number of clicks. For this reason, we use sets of samples with fixed click numbers (following Refs. 14, 15, 33) between 5 and 25. This upper limit in the number of clicks takes into account
that the computation of the corresponding probabilities requires quadruple precision of complex type numbers, thus increasing the computational cost. Indeed, obtaining the probability for a single pattern of 25 clicks takes \(\sim 3.5 \) hours using a 64-core CPU with two AMD Rome 7532 processors with 2.4 GHz clock speed, using a custom implementation of the Torontonian function which uses Quadruple-precision (128 bits for each real number) provided by the library DoubleFloats.jl \[35\] in the Julia Programming language \[36\].

Consider a set \(S = \{s_1, \ldots, s_N\} \) of \(N \) experimental samples, each of them containing \(C \) clicks. The probability of obtaining one of these samples, given that it has \(C \) clicks, under the hypothesis \(\mathrm{HYP} \in \{\mathrm{SQUA}, \mathrm{SQUE}\} \) is given by

\[
\Pr(\mathrm{HYP} | s_k) = \frac{\Pr(\mathrm{HYP})}{\Pr(\mathrm{HYP})} \Pr(\mathrm{HYP}) (16)
\]

where \(\Pr(\mathrm{HYP})\) is the probability of sample \(s_k \) under hypothesis \(\mathrm{HYP} \) given in terms of a Torontonian (cf. Eq. 10) and \(\Pr(\mathrm{HYP}) \) is the grouped probability of obtaining \(C \) clicks in total, again under the hypothesis \(\mathrm{HYP} \). The probability of obtaining the set of samples \(S \) under a given hypothesis \(\mathrm{HYP} \) takes the form

\[
\Pr(\mathrm{HYP}) (S | C) = \prod_{k=1}^{N} \Pr(\mathrm{HYP}) (s_k | C). \tag{17}
\]

We define the Bayesian ratio, \(r_B (C) \), which can be interpreted as the probability assigned to the ground truth hypothesis for a given number of clicks, as

\[
r_B (C) = \frac{\Pr(\mathrm{SQUE}) (S | C)}{\Pr(\mathrm{SQUA}) (S | C)} = \frac{1}{1 + \chi_B (C)}, \tag{18}
\]

where \(\chi_B (C) = \Pr(\mathrm{SQUA}) (S | C) / \Pr(\mathrm{SQUE}) (S | C) \). The Bayesian test consists in checking the convergence of \(r_B (C) \) when the number of samples is increased: if \(r_B (C) \rightarrow 1 \) for any \(C \), we conclude that the ground truth hypothesis is more likely to describe the experimental samples. Conversely, if \(r_B (C) \rightarrow 0 \) for any \(C \), the squashed states hypothesis becomes more likely.

An alternative way to express this test is obtained by writing \(\chi_B = \exp (N \Delta H (C)) \), where

\[
\Delta H (C) = - \frac{1}{N} \sum_{k=1}^{N} \ln \left[\Pr(\mathrm{SQUE}) (s_k | C) \right] + \frac{1}{N} \sum_{k=1}^{N} \ln \left[\Pr(\mathrm{SQUA}) (s_k | C) \right] \tag{19}
\]

The quantities \(H_{\mathrm{SQUE}} (C) \) and \(H_{\mathrm{SQUA}} (C) \) are estimators of the cross-entropy, for a given number of counts, of the ground truth and squashed states distributions relative to the real probability distribution of the experimental samples. In terms of the cross-entropy difference \(\Delta H (C) \),

\[
r_B (C) = \left[1 + \exp (N \Delta H (C)) \right]^{-1}
\]

and, for an increasing number of samples, the condition \(r_B (C) \rightarrow 1 \) is equivalent to \(\Delta H (C) < 0 \), while \(r_B (C) \rightarrow 0 \) is equivalent to \(\Delta H (C) > 0 \).

An important step for the computation of the Bayesian test is the determination of the grouped click probability distributions \(\Pr(\mathrm{SQUE}) (C) \) and \(\Pr(\mathrm{SQUA}) (C) \). To do this, we use the simulation method introduced in Ref. \[37\]. The definition of this method, as well as the resulting click probability distributions and the parameters used in the simulation, are shown in Appendix B. It is worth mentioning that this method allows the determination of \(\Pr(\mathrm{SQUE}) (C) \) and \(\Pr(\mathrm{SQUA}) (C) \) for all click numbers \(C \), not only those for which the probabilities of individual samples are easily computed.

Fig. 4 shows the results of the Bayesian test for the Jiuzhang 1.0 and Jiuzhang 2.0 experiments in terms of cross-entropy differences. For configurations with \(\nu \leq 0.218 \), we considered experimental samples with click numbers between 5 and 20. In these cases, we used 4000 samples for each \(C \). For the \(\nu = 0.786 \) and \(\nu = 0.442 \) setups, we considered click numbers between 21 and 25 due to the lack of sufficient samples with \(C \) lower than 20. In the case of \(\nu = 0.786 \), we used 1686 samples for \(C = 21 \), 2885 for \(C = 22 \), and 4000 for the remaining click numbers. For \(\nu = 0.442 \), we used 4000 samples for each \(C \). The results for \(\nu = 0.975 \) are not addressed on account of the insufficient number of experimental samples within the range of click numbers considered.

For low photon number density, the Bayesian test consistently indicates that the ground truth is more likely than the squashed states hypothesis (in agreement with the comparison of click cumulants). However, as was the case with the click cumulants comparison, by increasing \(\nu \) the values of \(\Delta H (C) \) become progressively closer to zero, indicating that the degree of confidence in the squashed states hypothesis increases. This trend is verified by the results for the \(\nu = 0.786 \) configuration of Jiuzhang 1.0, which indicate that the squashed states hypothesis is more likely to describe the experimental samples than the ground truth of the experiment.

For \(\nu = 0.442 \) in Jiuzhang 2.0, we observe that \(\Delta H (C) \) remains negative for the range of click numbers considered. Nevertheless, it is possible to slightly modify the squashed states hypothesis as was mentioned earlier in Sec. 4, where we replace the mean number of photons of the input squashed states \(\bar{n}_k \) by \(\bar{n}_k' = (1 - \epsilon_k) \bar{n}_k \), where the \(\epsilon_k \) are chosen in order to minimize the difference between the first order cumulants predicted by the squashed states distribution and those obtained from the experimental samples. With this modification, we obtain the results shown in Fig. 4 under the label "\(\nu = 0.442 \) (Modified)". The comparison between the modified mean number of photons and the ones originally used in the squashed states hypothesis is shown in Fig. 5. Notice that \(\Delta H (C) \) changes sign for all the values of \(C \) considered, implying
that the modified squashed states hypothesis becomes more likely than the ground truth of the experiment.

We explain the higher likelihood of the squashed states hypothesis for high ν by noticing that these experiments use input states with different squeezing parameters and threshold detectors. For a general GBS setup, it can be shown [13] that the expected mean number of clicks, \bar{C}, when using threshold detectors follows the relation

$$\frac{1}{\bar{C}} = \frac{1}{\bar{N}} + \frac{1}{M},$$

(20)

where \bar{N} is the expected mean number of photons and M is the number of output modes. In terms of the photon number density $\nu = \bar{N}/M$ we have

$$\frac{\bar{N}}{\bar{C}} = 1 + \nu.$$

(21)

As can be seen from the equation above, $\bar{N} \sim \bar{C}$ for $\nu \ll 1$. This suggests that in this regime we can interpret each click detected as corresponding to approximately one single photon. On the other hand, for increasing ν, $\bar{N} > \bar{C}$, implying that a single click corresponds to more than one photon (there is an increasing number of collisions). These observations suggest that in the low ν regime we can interpret a measurement using threshold detectors as an approximate photon number resolving (PNR) measurement. For increasing ν we can no longer state that the use of threshold detectors is similar to the use of PNR detectors. When the squeezing parameters of the input states are all the same, a PNR measurement can readily distinguish between squeezed and squashed states (this can be checked by comparing their second order cumulants [7]). This does not necessarily hold when the squeezing parameters are different, ν is high or threshold detectors are used.
C. HOG test

The Heavy Output Generation (HOG) test was first introduced in Ref. 11 for the validation of the Jiuzhang 1.0 experiment. This test compares the probabilities with respect to the ground truth distribution of two sets of samples: one corresponding to experimental samples, and the other corresponding to samples from an alternative distribution, which in our case corresponds to the squashed states distribution. This test verifies if a sampler using the alternative distribution can generate samples with higher ground truth probability than the experimental samples.

The definition of the HOG test is made in a similar fashion to the Bayesian test. We define the HOG ratio, \(r_{\text{HOG}}(C) \), as

\[
r_{\text{HOG}}(C) = \frac{\Pr_{(\text{SQUE})}(S|C)}{\Pr_{(\text{SQUE})}(S|C) + \Pr_{(\text{SQUE})}(S'\mid C)}
\]

\[
= \frac{1}{1 + \chi_{\text{HOG}}(C)},
\]

where \(\chi_{\text{HOG}}(C) = \Pr_{(\text{SQUE})}(S'\mid C)/\Pr_{(\text{SQUE})}(S|C) \) and \(S' = \{s'_1, \ldots, s'_N \} \) is a set of \(N \) samples obtained from the squashed states distribution (each one with \(C \) clicks). \(\Pr_{(\text{SQUE})}(S|C) \) is computed according to Eq. (17). We emphasize that in the last equation all the probabilities are taken with respect to the squeezing SQUE distribution. The test consists in checking the convergence of \(r_{\text{HOG}}(C) \) for an increasing number of samples: \(r_{\text{HOG}}(C) \to 1 \) if we generally find that the experimental samples have higher ground truth probability for any \(C \), while \(r_{\text{HOG}}(C) \to 0 \) when the samples from the squashed states distribution have higher ground truth probability for any \(C \).

As in the case of the Bayesian test, the ratio \(\chi_{\text{HOG}}(C) \) may be rewritten as

\[
\Delta E(C) = -\frac{1}{N} \sum_{k=1}^{N} \ln \left[\Pr_{(\text{SQUE})}(s_k\mid C) \right]
+ \frac{1}{N} \sum_{k=1}^{N} \ln \left[\Pr_{(\text{SQUE})}(s'_{k}\mid C) \right]
= E_{(\text{SQUE})}(C) - E'_{(\text{SQUE})}(C).
\]

In terms of the cross-entropy difference \(\Delta E(C) \) [18], \(r_{\text{HOG}}(C) = [1 + \exp(N\Delta E(C))]^{-1} \) and, for increasing \(N \), the conditions \(r_{\text{HOG}}(C) \to 1 \) and \(r_{\text{HOG}}(C) \to 0 \) are equivalent to \(\Delta E(C) < 0 \) and \(\Delta E(C) > 0 \), respectively.

In Fig. 6 we show the results for the HOG test, in terms of \(\Delta E(C) \), for the Jiuzhang 1.0 and Jiuzhang 2.0 experiments. The parameters used in the calculation of the grouped click probabilities were the same as those used in the computation of the Bayesian test (see Appendix B). The ranges of click numbers considered here, as well as the corresponding \(N \), were also the same as in the case of the Bayesian test. The results for the \(\nu = 0.975 \) configuration of Jiuzhang 2.0 are not shown due to the lack of experimental samples in the range of click numbers considered.

As can be seen in Fig. 6 for the Jiuzhang 1.0 experi-
ment, we get inconclusive results as $\Delta E(C)$ changes sign depending on the total click number sector C. For all the configurations of Juizhang 2.0, we consistently find that the experimental samples have higher ground truth probability than the squashed states samples, even for setups in the high photon number density regime. Additionally, contrary to the case of the Bayesian test, the cross-entropy difference $\Delta E(C)$ does not consistently approach zero with increasing ν.

Adjusting the mean number of photons of the input states in the squashed states hypothesis for the $\nu = 0.442$ setup, we obtain the results shown in Fig. 6 under the label “$\nu = 0.442$ (Modified)”. This modification in the mean number of photons is the same as the one used in the computation of the Bayesian test. In opposition to the Bayesian test, the modification of the squashed states hypothesis does not significantly change the behavior of $\Delta E(C)$; the HOG test still indicates that the experimental samples have higher ground truth probability.

IV. DISCUSSION

In this work we proposed an alternative hypothesis for the validation of the Juizhang GBS experiments. This hypothesis is based on the probability distribution of classical mixtures of coherent states that we call squashed states. For the validation of the experimental results against this alternative hypothesis, we used the same methods as the authors of the experiments.

The results for the click cumulants comparison show that the theoretical cumulants predicted by the squashed states distribution are not consistent with the experimental results for setups with low photon number density, ν. However, it is noticeable that with increasing ν the squashed states cumulants become progressively consistent with those obtained from the experimental samples. This trend is confirmed by the results for the configurations with high photon number density, for which the theoretical cumulants predicted by the squashed states distribution are as compatible with the experimental results as those predicted by the ground truth of the experiment. These results suggest that the presence of high-order cumulants in the experimental samples can be efficiently reproduced by classical hypotheses lacking any quantum correlation.

The Bayesian test follows a similar behavior as the comparison of click cumulants. By analyzing the cross-entropy difference $\Delta H(C)$ as function of the number of clicks, we find that, for low ν, $\Delta H(C) < 0$, indicating that the ground truth of the experiment is more likely to describe the experimental samples than the squashed states hypothesis. Nevertheless, for increasing photon number density, $\Delta H(C)$ approaches zero for all the number of clicks considered. In the high ν regime, $\Delta H(C) > 0$, indicating that the squashed states hypothesis is a better explanation of the experimental samples than the ground truth of the experiment.

Even though the results of the click cumulants comparison and the Bayesian test favor the ground truth distribution in the low density (ν) regime, it is important to note that setups in this regime can be efficiently simulated using classical algorithms [13], while those with high ν are progressively harder for classical computers. Thus, the quantum computational advantage claim of the Juizhang experiments is mostly supported by the implementation of configurations with high ν. Our results show that it is precisely for this regime that the squashed states hypothesis works best, indicating that it is a suitable candidate for a classical explanation of the Juizhang 1.0/2.0 experiments.

Finally, we generated samples from the squashed states distribution and compared them against the experimental samples at the task of heavy output generation (HOG) from the squeezed states distribution. In this case we found that, surprisingly, except for a subset of the data in Jiuzhang 1.0, the experiments perform better at the HOG task than the samples from the squashed states hypothesis.

Our results provide a more nuanced picture of the different tools employed in arguing about quantum advantage in threshold GBS experiments. On the one hand we found that the experimental samples from Juizhang 1.0 and 2.0 in the high photon number density regime are better explained by states lacking any quantum feature than by genuine squeezed states of light. On the other hand the samples generated using this alternative hypothesis are not able to spoof the HOG test when compared to the samples of the experiment. However, note that other efficient classical methods have already outperformed the Juizhang 1.0 and 2.0 at this task [13]. However, in absence of rigorous results about the significance of the HOG test for GBS (as opposed to RCS), these negative results must be taken with a grain of salt, especially when alternative hypotheses are more probable than the ground truth.

This work thus provides a new adversary that should be considered against future GBS experiments and, perhaps more importantly, further motivates the need to identify proper metrics and optimal classical adversaries for quantum advantage in the context of threshold GBS.

ACKNOWLEDGEMENTS

N.Q. acknowledges support from the Ministère de l’Économie et de l’Innovation du Québec and the Natural Sciences and Engineering Research Council of Canada. This research was enabled in part by support provided by Calcul Québec and Compute Canada. N.Q. and J.M.-C. thank B. Villalonga and J.F.F. Bulmer for helpful pointers in parsing the data in Refs. [27, 28], P. Drummond and C.-Y. Lu for insightful correspondence and M. Houde for a critical reading of the manuscript.
Appendix A: The Torontonian

As discussed in Sec. [11] the ground truth and squashed states distributions depend on the Torontonian [14] of a matrix constructed from the corresponding covariance matrices of the output states of the interferometer. For a $2N \times 2N$ matrix A, the Torontonian, $\text{Tor}(A)$, is computed as

$$\text{Tor}(A) = (-1)^N \sum_{Z \in \Omega([N])} \frac{(-1)^{|Z|}}{\det ([I - A](Z))}. \quad (A1)$$

Here, $\Omega([N])$ is the power set, i.e., the set of all subsets, of $[N] = \{1, 2, \ldots, N\}$; $|Z|$ stands for the cardinality of set Z, that is, the number of elements in Z; and I is the $2M \times 2M$ identity matrix. If we write $Z = \{z_1, \ldots, z_n\}$, with $n = |Z|$, then $A_{(Z)}$ is the matrix obtained from removing the rows and columns $\{z_1, \ldots, z_n\}$ and $\{z_1 + N, \ldots, z_n + N\}$ from matrix A.

Appendix B: Simulation of grouped click probabilities

In this appendix we describe the positive P-distribution simulation method [21], used in Sec. [11] for the computation of the ground truth and squashed states grouped click probability distributions.

Suppose that the input state of the interferometer in the Jiuzhang experiments is represented by the density operator ρ_{in}. This state can be expanded in terms of its positive P-representation [21], $P(\alpha, \beta)$, which is a phase space representation over a subspace of the complex plane. The expansion reads

$$\rho_{\text{in}} = \text{Re} \left[\int P(\alpha, \beta) \frac{|\alpha\rangle\langle\beta|}{|\alpha\rangle\langle\beta|} d\mu(\alpha, \beta) \right], \quad (B1)$$

where $|\alpha\rangle = |\alpha_1, \ldots, \alpha_K\rangle$ and $|\beta\rangle = |\beta_1, \ldots, \beta_K\rangle$ are K-mode coherent states, with K being the number of input states of the interferometer. $d\mu(\alpha, \beta)$ corresponds to an integration measure over the $2K$-dimensional complex space of the amplitudes $\alpha = (\alpha_1, \ldots, \alpha_K)$ and $\beta = (\beta_1, \ldots, \beta_K)$.

The state of the system after the interferometer, ρ_{out}, has a similar representation in terms of the same P-distribution, we need only modify the multimode coherent states in Eq. (B1):

$$\rho_{\text{out}} = \text{Re} \left[\int P(\alpha, \beta) \frac{|\bar{\alpha}\rangle\langle\bar{\beta}|}{|\bar{\alpha}\rangle\langle\bar{\beta}|} d\mu(\alpha, \beta) \right]. \quad (B2)$$

Here, $\bar{\alpha} = T\alpha$ and $\bar{\beta} = T^*\beta$, where T is the $M \times K$ transfer matrix representing the action of the interferometer, where M is the number of output modes. Notice that $|\bar{\alpha}\rangle$ and $|\bar{\beta}\rangle$ become now M-mode coherent states.

With this representation of the output state, we can compute the probability of obtaining a detection pattern $s = (s_1, \ldots, s_M)$, with $s_i = 0, 1$, (when the system is measured using threshold detectors) as

$$\Pr(s) = \text{Tr}(\rho_{\text{out}} \Pi_s)$$

$$= \text{Re} \left[\int P(\alpha, \beta) \text{Tr} \left(\frac{|\alpha\rangle\langle\beta|}{|\alpha\rangle\langle\beta|} \Pi_s \right) d\mu(\alpha, \beta) \right]. \quad (B3)$$

Π_s is the operator representing the measurement of pattern s, which can be expressed as

$$\Pi_s = \bigotimes_{k \in V(s)} |0_k\rangle\langle0_k| \bigotimes_{j \in C(s)} (I_j - |j\rangle\langle j|), \quad (B4)$$

where $|0_k\rangle$ is the vacuum state in the Hilbert state of mode k and I_k the corresponding identity operator. The set $C(s)$ is composed by the modes where a click is detected when the result of the measurement is pattern s. Conversely, the elements of set $V(s)$ are the modes where no click was detected. After a direct computation of the trace, it can be shown that

$$\Pr(s) = \text{Re} \left[\int P(\alpha, \beta) \Lambda(s, \bar{\alpha}, \bar{\beta}) d\mu(\alpha, \beta) \right], \quad (B5)$$

where

$$\Lambda(s, \bar{\alpha}, \bar{\beta}) = \prod_{k=1}^{M} e^{-\bar{\alpha}_k\bar{\beta}_k} \left(e^{\bar{\alpha}_k\bar{\beta}_k} - 1 \right)^{s_k}. \quad (B6)$$

Now, suppose that $D(C)$ is the set of all detection patterns s with C clicks. Then, the probability of obtaining C clicks, $\Pr(C) = \sum_{s \in D(C)} \Pr(s)$, takes the form

$$\Pr(C) = \text{Re} \left[\int P(\alpha, \beta) \sum_{s \in D(C)} \Lambda(s, \bar{\alpha}, \bar{\beta}) d\mu(\alpha, \beta) \right]. \quad (B7)$$

By defining the function

$$G(\bar{\alpha}, \bar{\beta}; \theta_l) = \prod_{j=1}^{M} \left[e^{-\bar{\alpha}_j\bar{\beta}_j} + e^{i\theta_l} \left(1 - e^{-\bar{\alpha}_j\bar{\beta}_j} \right) \right], \quad (B8)$$

where $\theta_l = 2\pi l/(M + 1)$, we can write

$$\sum_{s \in D(C)} \Lambda(s, \bar{\alpha}, \bar{\beta}) = \frac{1}{M + 1} \sum_{l=1}^{M+1} G(\bar{\alpha}, \bar{\beta}; \theta_l) e^{-iC\theta_l}, \quad (B9)$$

and thus, the probability of obtaining C clicks can be simply written as

$$\Pr(C) = \text{Re} \left[\int P(\alpha, \beta) G(\bar{\alpha}, \bar{\beta}; C) d\mu(\alpha, \beta) \right]. \quad (B10)$$

The previous expression does not depend on the number elements of $D(C)$, which is generally large for a large
number of modes. This fact makes the computation of \(\Pr(C) \) a feasible task for a classical computer.

Notice that obtaining \(\Pr(C) \) is equivalent to the computation of a sort of expected value of the function \(\tilde{G}(\bar{\alpha}, \bar{\beta}; C) \) with respect to distribution \(P(\alpha, \beta) \). Thus, we can estimate \(\Pr(C) \) numerically by generating \(N \) pairs of random vectors \(\alpha_k = (\alpha_1^{(k)}, \ldots, \alpha_K^{(k)}) \) and \(\beta_k = (\beta_1^{(k)}, \ldots, \beta_K^{(k)}) \) distributed as \(P(\alpha, \beta) \); then, computing the corresponding \(\tilde{G}(\bar{\alpha}_k, \bar{\beta}_k; C) \) functions; and finally, taking the real part of the average \(\frac{1}{N} \sum_{k=1}^{N} \tilde{G}(\bar{\alpha}_k, \bar{\beta}_k; C) \). The random variables \(\alpha_k \) and \(\beta_k \) will depend only on the initial state in consideration.

For an input state of \(K \) single-mode squeezed states (SMSS), we can generate the samples \(\alpha_k \) and \(\beta_k \) in the following way \[37\]. First, we calculate the mean photon numbers \(\bar{n}_j = \langle a_j^\dagger a_j \rangle = \sinh^2(r_j) \) and coherences \(\bar{m}_j = \langle a_j^2 \rangle = \frac{1}{2} \sinh(2r_j) \) of the \(K \) input states. Here \(a_j^\dagger \) and \(a_j \) stand for the creation and annihilation operators of mode \(j \) and \(r_j \) is the squeezing parameter corresponding to that same mode. We then generate \(N \) pairs of real Gaussian random vectors \(\mathbf{u}_k = (u_1^{(k)}, \ldots, u_K^{(k)}) \) and \(\mathbf{v}_k = (v_1^{(k)}, \ldots, v_K^{(k)}) \). The components of these vectors must satisfy the relations \(\mathbb{E}(u_j^{(k)} v_j^{(k)}) = 0 \), \(\mathbb{E}(u_j^{(k)} u_l^{(k)}) = \mathbb{E}(v_j^{(k)} v_l^{(k)}) = \delta_{jl} \), where \(\mathbb{E}(\cdot) \) indicates the expectation value with respect to the Gaussian distribution. Finally, with this definition of \(\mathbf{u}_k \) and \(\mathbf{v}_k \), we can write the components of \(\alpha_k \) and \(\beta_k \) as

\[
\begin{align*}
\alpha_j^{(k)} &= u_j^{(k)} \sqrt{\frac{1}{2}(\bar{n}_j + \bar{m}_j) + i v_j^{(k)} \sqrt{\frac{1}{2}(\bar{n}_j - \bar{m}_j)}}, \\
\beta_j^{(k)} &= u_j^{(k)} \sqrt{\frac{1}{2}(\bar{n}_j + \bar{m}_j) - i v_j^{(k)} \sqrt{\frac{1}{2}(\bar{n}_j - \bar{m}_j)}}.
\end{align*}
\tag{B11}
\]

To take into account that the input states of the Jiujiang experiments are two-mode squeezed states (TMSS), we modify the transformation matrix that represents the action of the interferometer. As was discussed in Sec. \(\text{II} \), the input TMSS can be generated by sending SMSS into 50 : 50 beamsplitters, whose action is represented by a \(K \times K \) matrix \(B \). Following this idea, we
apply the transformation induced by the beamsplitters before applying the transformation of the interferometer over the amplitudes α_k and β_k of the SMSS. Then, we can write the transformed amplitudes $\bar{\alpha}_k$ and $\bar{\beta}_k$ as

$$\bar{\alpha}_k = T^* \alpha_k \quad \text{and} \quad \bar{\beta}_k = (T^*)^* \beta_k,$$

where $T = TB$.

This procedure can be readily modified for the case of input squashed states, we need only notice that for these states $\bar{n}_k = \tilde{n}_k = \sinh^2(\tilde{r}_k)$.

To assign an uncertainty to the estimation of $\Pr(C)$, we can sort the N pairs of vectors α_k and β_k in \mathcal{G} groups, each one with $M = \mathcal{N}/\mathcal{G}$ elements. We then compute

$$\Pr_{G}(C) = \frac{1}{M} \sum_{k=1}^{M} \tilde{G}(\bar{\alpha}_k, \bar{\beta}_k; C)$$

for each group. Notice that the average of the $\Pr_{G}(C)$ over all groups is equal to $\Pr(C)$. The uncertainty of the estimation of $\Pr(C)$ corresponds to the standard deviation of the $\Pr_{G}(C)$ over all groups.

For the estimation of the ground truth and squashed states grouped click probability distributions, $\Pr_{\text{SQUA}}(C)$ and $\Pr_{\text{SQUA}}(C)$, we used $N = 10^8$ samples α_k and β_k. For the computation of the uncertainty, we sorted these samples in $\mathcal{G} = 100$ groups. In Fig. [7] we show the obtained distributions for the different setups of the Jiuzhang experiments. In Table [II] we show the estimated mean number of clicks, \bar{C}, and standard deviation, $\sigma(C)$, for the ground truth and squashed states distributions of the different setups of the Jiuzhang experiments. These results are in excellent agreement with the values shown in Table [I].

Table II. Estimated mean number of clicks, \bar{C}, and standard deviation, $\sigma(C)$, for the ground truth and squashed states distributions of the different setups of the Jiuzhang experiments.

Experiment	$P(W)$	$w(\mu m)$	ν	Ground truth	Squashed states			
	1.0	-	-	0.786	41.042 ± 0.007	3.509 ± 0.022	41.162 ± 0.007	3.643 ± 0.022
Jiuzhang 1.0	0.5	125	0.055	7.272 ± 0.002	3.393 ± 0.002	7.378 ± 0.001	2.91 ± 0.001	
	1.412	125	0.161	19.255 ± 0.003	5.596 ± 0.005	19.471 ± 0.003	5.039 ± 0.005	
	0.15	65	0.044	5.975 ± 0.001	3.017 ± 0.001	6.057 ± 0.001	2.616 ± 0.001	
	0.3	65	0.093	11.94 ± 0.002	4.325 ± 0.002	12.086 ± 0.002	5.849 ± 0.002	
	0.6	65	0.218	24.664 ± 0.004	6.269 ± 0.007	24.897 ± 0.004	5.787 ± 0.007	
	1.0	65	0.442	41.794 ± 0.007	7.948 ± 0.017	42.067 ± 0.007	7.551 ± 0.018	
	1.65	65	0.975	66.866 ± 0.012	9.018 ± 0.043	67.103 ± 0.012	8.761 ± 0.043	

1. H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, Quantum computational advantage using photons, Science 370, 1460 (2020).

2. H.-S. Zhong, Y.-H. Deng, J. Qin, H. Wang, M.-C. Chen, L.-C. Peng, Y.-H. Luo, D. Wu, S.-Q. Gong, H. Su, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, J. J. Renema, C.-Y. Lu, and J.-W. Pan, Phase-programmable gaussian boson sampling using stimulated squeezed light, Phys. Rev. Lett. 127, 180502 (2021).

3. A. W. Harrow and A. Montanaro, Quantum computational supremacy, Nature 549, 203 (2017).

4. D. Hangleiter and J. Eisert, Computational advantage of quantum random sampling, arXiv preprint arXiv:2206.04079 (2022).

5. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell, et al., Quantum supremacy using a programmable superconducting processor, Nature 574, 505 (2019).

6. Y. Wu, W.-S. Bao, S. Cao, F. Chen, M.-C. Chen, X. Chen, T.-H. Chung, H. Deng, Y. Du, D. Fan, et al., Strong quantum computational advantage using a superconducting quantum processor, Phys. Rev. Lett. 127, 180501 (2021).

7. L. S. Madsen, F. Lauderdale, M. F. Askarani, F. Ronnais, T. Vincent, J. F. Bulmer, F. M. Miatto, L. Neuhaus, L. G. Helt, M. J. Collins, et al., Quantum computational advantage with a programmable photonic processor, Nature 606, 75 (2022).

8. S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven, Characterizing quantum supremacy in near-term devices, Nature Physics 14, 595 (2018).

9. A. Bouland, B. Fefferman, C. Nirkhe, and U. Vazirani, On the complexity and verification of quantum random circuit sampling, Nature Physics 15, 159 (2019).

10. C. S. Hamilton, R. Kruse, L. Sansonni, S. Barkhofen, C. Silberhorn, and I. Jex, Gaussian boson sampling, Phys. Rev. Lett. 119, 170501 (2017).

11. R. Kruse, C. S. Hamilton, L. Sansonni, S. Barkhofen, C. Silberhorn, and I. Jex, Detailed study of gaussian boson sampling, Phys. Rev. A 100, 032326 (2019).

12. A. Deshpande, A. Mehta, T. Vincent, N. Quesada, M. Hinsche, M. Ioannou, L. Madsen, J. Lavoie, H. Qi, J. Eisert, et al., Quantum computational advantage via high-dimensional gaussian boson sampling, Science advances 8, eabi7894 (2022).

13. D. Grier, D. J. Brod, J. M. Arrazola, M. B. d. A. Alonso, and N. Quesada, The complexity of bipartite gaussian boson sampling, arXiv preprint arXiv:2110.06964 (2021).

14. N. Quesada, J. M. Arrazola, and N. Killoran, Gaussian
boson sampling using threshold detectors, Phys. Rev. A
98, 062322 (2018).

[15] J. F. Bulmer, B. A. Bell, R. S. Chadwick, A. E. Jones, D. Moise, A. Rigazzi, J. Thorbecke, U.-U. Haus, T. Van Vaerenbergh, R. B. Patel, et al., The boundary for quantum advantage in gaussian boson sampling, Science advances 8, eabl9236 (2022).

[16] N. Quesada, R. S. Chadwick, B. A. Bell, J. M. Arrazola, T. Vincent, H. Qi, R. García, et al., Quadratic speed-up for simulating gaussian boson sampling, PRX Quantum 3, 010306 (2022).

[17] N. Quesada and J. M. Arrazola, Exact simulation of gaussian boson sampling in polynomial space and exponential time, Phys. Rev. Research 2, 023005 (2020).

[18] B. Villalonga, M. Y. Niu, L. Li, H. Neven, J. C. Platt, V. N. Smelyanskiy, and S. Boixo, Efficient approximation of experimental gaussian boson sampling, arXiv preprint arXiv:2109.11525 (2021).

[19] H. Qi, D. J. Brod, N. Quesada, and R. García-Patrón, Regimes of classical simulability for noisy gaussian boson sampling, Phys. Rev. Lett. 124, 100502 (2020).

[20] S. Jahangiri, J. M. Arrazola, N. Quesada, and N. Killoran, Point processes with gaussian boson sampling, Phys. Rev. E 101, 022134 (2020).

[21] P. D. Drummond and M. Hillery, The quantum theory of nonlinear optics (Cambridge University Press, 2014).

[26] S. Barnett and P. M. Radmore, Methods in theoretical quantum optics, Vol. 15 (Oxford University Press, 2002).

[27] Experimental raw data of "quantum computational advantage using photons", https://quantum.ustc.edu.cn/web/en/node/915 (2020).

[28] Raw data of jiuzhang 2.0 for sharing, https://quantum.ustc.edu.cn/web/en/node/951 (2021).

[29] G. Thekkadath, S. Sempere-Llagostera, B. Bell, R. Patel, M. Kim, and I. Walmsley, Experimental demonstration of gaussian boson sampling with displacement, PRX Quantum 3, 020336 (2022).

[30] J. F. Bulmer, S. Paesani, R. S. Chadwick, and N. Quesada, Threshold detection statistics of bosonic states, arXiv preprint arXiv:2202.04600 (2022).

[31] R Core Team, R: A Language and Environment for Statistical Computing, Vienna, Austria (2013), ISBN 3-900051-07-0.

[32] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, I. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods 17, 261 (2020).

[33] A. Kaposi, Z. Kolarovszki, T. Koszik, Z. Zimborás, and P. Rakytová, Polynomial speedup in torontonian calculation by a scalable recursive algorithm, arXiv preprint arXiv:2109.04528 (2021).

[34] M. Bentivegna, N. Spagnolo, C. Vitelli, D. J. Brod, A. Crespi, F. Flanini, R. Ramponi, P. Mataloni, R. Oselame, E. F. Galvão, and F. Sciarrino, Bayesian approach to boson sampling validation, International Journal of Quantum Information 12, 1560028 (2014).

[35] J. Sarnoff and JuliaMath, DoubleFloats (2022).

[36] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to numerical computing, SIAM review 59, 65 (2017).

[37] P. D. Drummond, B. Opanchuk, A. Dellios, and M. D. Reid, Simulating complex networks in phase space: Gaussian boson sampling, Phys. Rev. A 105, 012427 (2022).