al, 1970). Nowadays, 99mTc-DTPA is a well-known agent for evaluation of renal function. It is cleared rapidly and efficiently from the circulation by glomerular filtration. This might explain, for liposomes, the unusual, rapid accumulation of activity in the tumours. In our opinion, the authors should have performed, and shown – at least in some patients – a control 99mTc-DTPA scan, to rule out that the liposome scan represents free 99mTc-DTPA instead of radiolabelled Caelyx.

A better approach to label Caelyx would be the labelling with indium-111-oxine (111In-oxine). This easy method will yield radio-labelled liposomes with good radiochemical yield (>80%) and good in vivo stability (Laverman et al, 2001). An additional advantage is the longer physical half-life of 111In, which enables the acquisition of delayed images and thus better visualization of the tumours (Harrington et al, 2001).

In summary, scintigraphic techniques are very helpful in investigating the in vivo distribution of (new) pharmaceuticals, but should only be performed using well-established labelling techniques and quality control methods. The results presented by Koukourakis et al (1999, 2000a,b) should therefore be interpreted with caution.

REFERENCES

Cao Y, Suresh MR (2000) Bispecific MAb aided liposomal drug delivery. J Drug Target 8: 257 – 266

Dams ET, Oyen WJ, Boerman OC, Storm G, Laverman P, Kok PJ, Buijs WC, Bakker H, van der Meer JW, Corstens FH (2000) 99mTc-PEG liposomes for the scintigraphic detection of infection and inflammation: clinical evaluation. J Nucl Med 41: 622 – 630

Harrington KJ, Mohammadtaghi S, Uster PS, Glass D, Peters AM, Vile RG, Stewart JS (2001) Effective targeting of solid tumors in patients with locally advanced cancers by radiolabelled pegylated liposomes. Clin Cancer Res 7: 243 – 254

Hauser W, Atkins HL, Nelson KG, Richards P (1970) Technetium-99m DTPA: a new radiopharmaceutical for brain and kidney scanning. Radiology 94: 679 – 684

Koukourakis MI, Koukouraki S, Giatromanolaki A, Archimandritis SC, Skarlatos J, Beroukas K, Bizakis JG, Retalis G, Karkavitsas N, Helidonis ES (1999) Liposomal doxorubicin and conventionally fractionated radiotherapy in the treatment of locally advanced non-small-cell lung cancer and head and neck cancer. J Clin Oncol 17: 3512 – 3521

Laverman P, Carstens MG, Boerman OC, Dams ET, Oyen WJ, van Rooijen N, Corstens FH, Storm G (2001) Factors affecting the accelerated blood clearance of PEG-liposomes upon repeated injection. J Pharmacol Exp Ther 298: 607 – 612

Reply: 99mTc-labelled Stealth liposomal doxorubicin (Caelyx®) in glioblastomas and metastatic brain tumours

MI Koukourakis*1

1Tumour and Angiogenesis Research Group, Department of Radiotherapy and Oncology, Democritus University of Thrace, PO Box 12, Alexandroupolis 68100, Greece

Sir

In these previous studies we provided a simple method to label Caelyx by incubation of 5 mg of the ready-to-use solution with 20 mCi of 99mTc-DTPA. Instant thin layer chromatography (ITLC) suggested an 80% labelling (Koukourakis et al, 1999), which is also a result found by Dr Laverman and colleagues. As additional more sophisticated analysis, performed by the later research group, failed to confirm this finding, it was suggested that the tumour and body imaging obtained in our studies is rather a result of 99mTc-DTPA and not of labelled liposomes. 99mTc-DTPA is currently used in the evaluation of renal function, and as well noted by Dr Laverman, this is rapidly cleared from the kidneys. Two hours following injection, the imaging quality of kidneys is really poor. 99mTc-DTPA can give good images of gliomas, probably as a result of the high tumour vascularization or even of the disrupted blood–brain barrier, which allows a net contrast between normal and abnormal brain. However, imaging of other tumours with 99mTc-DTPA is questionable.

*Correspondence: MI Koukourakis; E-mail: targ@her.forthnet.gr
We believe that the best answer to whether our simple labelling technique labels Caelyx indeed, comes from the clinical practice. The patterns and quality of imaging using 99mTc-DTPA-Caelyx has been assessed in more than 30 non-small cell lung cancer patients comparatively with 99mTc-sestamibi (Koukourakis et al, 1997), while in five of them imaging with simple 99mTc-DTPA was also performed at 2 h post-injection. The patterns of normal tissue imaging using the three radio-pharmaceuticals was entirely different. The quality of tumour images obtained with sestamibi and labelled-Caelyx was very good, while in some cases liposomal imaging was even better. Tumour imaging with 99mTc-DTPA was of unacceptably poor quality, and rather absent in 3 out of 5 cases. Similar comparison of the three imaging procedures in patients with head and neck cancer showed an excellent imaging using labelled-Caelyx and 99mTc-sestamibi, while using 99mTc-DTPA the imaging was questionable especially at 2 h post-injection (Figure 1). The superiority of liposomal imaging over sestamibi was confirmed in more than 10 glioma patients. Indeed, lesions of some mm in dimensions were perfectly scanned using 99mTc-DTPA-Caelyx (Koukourakis et al, 2000a), which is rarely seen with sestamibi.

We, therefore, have to cope with a discrepancy between the clinical imaging and the 1% labelling suggested by Dr Laverman. 99mTc-DTPA is a hydrophilic compound and, as well stressed by Dr Laverman and colleagues, it is difficult to explain how a hydrophilic radiotracer can pass through the lipid layer and become entrapped in the liposomes. There are two possibilities: (a) our labelling procedure is not efficient and 99mTc-DTPA scanning is the cheapest, still the best, imaging procedure for tumours (which is not true according to ours and the general experience); (b) 99mTc-DTPA labels liposomes without passing through the lipid layer. Caelyx is a pegylated liposome with a water soluble polyethylene-glycol coat. 99mTc-DTPA could be entrapped in this layer and label liposomes without necessitating internalization. The radiochemical elaboration of labelled-PEG-liposomes on Sephadex performed by Dr Laverman could well lead to 99mTc-DTPA disassociation from the PEG-coat, which explains the poor labelling efficiency found.

Simple labelling procedures of liposomal drugs will become of great value within the following years, when multiple liposomal agents will be available. The technique described by Laverman et al (2001) is as simple as ours, while the Indium-oxine labelling allows a better monitoring of the liposome kinetics for at least 3 days after administration. We will certainly incorporate this in current and future projects.

REFERENCES

Koukourakis MI, Koukouraki S, Giatromanolaki A, Archimandritis SG, Skarlatos J, Beroukas K, Bizakis IG, Retalis G, Karkavitisa N, Helioudis ES (1999) Liposomal doxorubicin and conventionally fractionated radiotherapy in the treatment of locally advanced non-small-cell lung cancer and head and neck cancer. J Clin Oncol 17: 3512–3521

Koukourakis MI, Koukouraki S, Fezoulidis I, Keklakis N, Kyrrias G, Archimandritis S, Karkavitisa N (2000a) High intratumoral accumulation of stealth liposomal doxorubicin (Caelyx) in glioblastomas and in metastatic brain tumours. Br J Cancer 83: 1281–1286

Koukourakis MI, Koukouraki S, Giatromanolaki A, Kakolyris S, Georgoulas V, Velidiak A, Archimandritis S, Karkavitisa NN (2000b) High intratumoral accumulation of stealth liposomal doxorubicin in sarcomas rationale for combination with radiotherapy Acta Oncol 39: 207–211

Figure 1 Comparison of images obtained from a patient with a large naso/parapharyngeal tumoral mass (white box marked on figures) using different radio-tracers (injection of 20 mCi, 20 min capture time): (A) 99mTc-sestamibi imaging at 2 h post-injection, (B) 99mTc-DTPA-Caelyx at 2 h post-injection, (C) 99mTc-DTPA at 1 h post-injection and (D) 99mTc-DTPA at 2 h post-injection.