Review

Phytochemistry, pharmacology, and biotechnology of Withania somnifera and Withania coagulans: A review

Rohit Jain, Sumita Kachhwaha and S. L. Kothari*

Department of Botany, University of Rajasthan, Jaipur, India–302004.

Accepted 11 September, 2012

Withania (Family: Solanaceae) is a highly acclaimed genus in the Indian Ayurvedic system of medicine. In Ayurveda, Withania is known to promote physical and mental health and used to treat almost all the disorders that affect human health. Withania somnifera and Withania coagulans are the two most esteemed species of this genus having high medicinal significance. These species are natural source of withanolides (steroidal lactones) which are used as ingredients in many formulations prescribed for a variety of diseases. Many pharmacological studies have been conducted to investigate the properties of Withania as a multi-purpose medicinal agent. Advances in biotechnology, especially in vitro culture techniques, molecular biology and metabolite profiling provided new insights for conservation and management of plant genetic resources and better harvesting of drugs from medicinal plants. This review presents a consolidated account of the phytochemistry, pharmacology and biotechnology involving in vitro propagation, genetic transformation and metabolite profiling in W. somnifera and W. coagulans.

Key words: Withania, phytochemistry, pharmacology, withanolides, micropropagation, metabolite profiling.

INTRODUCTION

The genus Withania (Family: Solanaceae) is a highly acclaimed genus of medicinal plants in the Indian Ayurvedic system of medicine because of its valuable pharmaceutical and nutraceutical properties. It is a small group of herbs distributed from the Canary Islands, the Mediterranean region and Northern Africa to the Southwest of Asia (Hepper, 1991; Bhandari, 1995). Among the twenty-three known species of Withania, only two (Withania somnifera and Withania coagulans) are economically significant (Negi et al., 2006) (Figure 1). W. somnifera, commonly known as ‘Ashwagandha’, is the most exploited species of the family Solanaceae; however, its counterpart W. coagulans has also received attention in the recent years due to its ethnomedical properties (Hemalatha et al., 2008). Table 1 shows the botanical description of both plants.

The commercial cultivation of both the species of Withania is mainly associated with two major problems: first, the plant to plant variation in the alkaloid quantity and yield, and Secondly the long gestation period (4 to 5yrs) between planting and harvesting (Rani et al., 2003; Ciddi, 2010). The reproductive failure due to unisexual nature of flowers in W. coagulans is also a major bottleneck in this regard. The increasing market demand of the drug causes overexploitation of natural populations. Therefore, there is need to develop approaches to ensure the avail-ability of raw material of a consistent quality from regular and viable source, thus circumventing the need of harvesting plants from wild. The previous reviews on Withania described the pharmacological properties of both the species (Budhiraja and Sudhir, 1987; Gupta and Rana, 2007; Hemalatha et al., 2008; Kulkarni and Dhir, 2008; Maurya and Akanksha, 2010; Uddin et al., 2012). This review presents the comprehensive information of the research work conducted.
Table 1. Botanical description of *W. coagulans* and *W. somnifera* (Bhandari, 1995).

S/N	Description	*Withania coagulans* (Stocks) Dunal	*Withania somnifera* (L.) Dunal
1	Habit	Herb	Undershrub
2	English Name	Vegetable Rennet, Indian Rennet	Winter Cherry, Indian Ginseng
3	Vernacular Name	Panir Bandh, Punir, Panir Dodi	Ashwagandha
4	Leaves	Alternate, elliptic lanceolate-coriaceous, obtuse, entire margins, glabrous, coated with minute stellate hairs on both the surfaces	Alternate, broadly ovate, sub-acute, entire margins
5	Inflorescence	Axillary	Axillary, umbrellate cymes
6	Flowers	Dioecious	Monoecious
7	Calyx	Campanulate, gamosepalous with 5 sepals clothed with fine stellate grey tomentum	Accrescent, gamosepalous with 5 sepals
8	Corolla	Campanulate, greenish-yellow with 5 petals	Campanulate, greenish-yellow with 5 petals
9	Androecium	Anthers long and filamentous in male flowers, smaller in female flowers	Anthers 1.2 mm long, broadly ovate
10	Gynoecium	Ovary ovoid/globose, without style or stigma	Ovary ovoid/globose, globose
11	Style	Glabrous	Filiform
12	Stigma	Mushroom-shaped, 2-lamellate	Mushroom-shaped, 2-lamellate
13	Fruit (Berry)	Globose, smooth, closely girt by the enlarged membranous persistent calyx	Globose, enclosed in the persistent calyx, seeds yellow, reniform
14	Seeds	Globose, ear shaped, glabrous, enclosed in the persistent calyx yellow, reniform	Globose, enclosed in the persistent calyx, yellow, reniform
15	Flowering	November-March*	Throughout the year

*Rarely flowers.

on phytochemistry, pharmacology and biotechnology of *W. coagulans* and *W. somnifera*.

PHYTOCHEMISTRY

Several specific reactions operating temporally and spatially are responsible for the production of secondary metabolites in medicinal plants. Changes in the environmental factors or placing a plant into tissue culture may also produce a new, and sometimes unexpected, secondary metabolic profile (Cordell, 2011). The phytochemistry of *Withania* species has been studied extensively by several workers and several groups of chemical such as steroidal lactones, alkaloids, flavonoids, tannin etc. have been identified, extracted, characterized and isolated (Atta-ur-Rahman et al., 1993; Kapoor, 2001). At present, more than 13 alkaloids, 138 withanolides, and several sitoindosides (a withanolide containing a glucose molecule at carbon 27) have been isolated and reported from aerial parts, roots and berries of *Withania* species (Subramanian and Sethi, 1969, 1971; Budhiraja et al., 1983; Velde et al., 1983; Neogi et al., 1988; Atta-ur-Rahman et al., 1993; Choudhary et al., 1995; Atta-ur-Rahman et al., 1998, 1999, 2003; Nur-e-Alam et al., 2003; Mirjalili et al., 2009b; Xu et al., 2011).

The major chemical constituents of this plant, withanolides, are mainly localized in the leaves and roots and their concentration usually ranges from 0.001 to 0.5% dry weight (Kapoor, 2001). The withanolides are a group of C28-steroidal lactones built on an ergostane structure in which C-22 and C-26 are oxidized to form a six-membered lactone ring. The basic structure is designated as the 'withanolide skeleton' (Figure 2) (Tursunova et al., 1977; Glotter, 1991; Alfonso et al., 1993). The withanolide skeleton may be defined as a 22-hydroxyergostan-26-oic acid-26,22-lactone. Modifications of the carbocyclic skeleton or the side chain give rise to many novel structures variants of withanolides. It has been reported that plants accumulating these polyoxygenated compounds possess enzyme machinery capable of oxidizing all carbon atoms in the steroid nucleus. The characteristic feature of withanolides and ergostane-type steroids is one C8 or C9-side chain with a lactone or lactol ring. The lactone ring may be either six-membered or
Figure 1. *Withania coagulans* (Stocks) Dunal and *Withania somnifera* (L.) Dunal plants growing in the field. (a) *W. coagulans* plant; (b) *W. somnifera* plant; (c) *W. coagulans* fruits; (d) *W. somnifera* fruits.

Figure 2. The basic withanolide skeleton.

five-membered and fused with the carbocyclic part of the molecule through a carbon-carbon bond or through an oxygen bridge. Appropriate oxygen substituents may lead to bond scission, formation of new bonds, aromatization of rings and many other kinds of rearrangements resulting in novel structures (Kirson et al., 1971; Glotter, 1991; Mirjalili et al., 2009b).

Though withanolides are the principal bioactive compounds found in both species, there are some withanolides specific to each of them. Withaferin A is a major compound found in *W. somnifera*, whereas, coagulin L has been found in major amounts in *W. coagulans*. A unique thio-dimer of withanolide named ashwagandhanolide has been found in *W. somnifera* (Subaraju, 2006). Withanolides containing a 14,20-epoxide bridge are specific to *W. coagulans* (Subaraju, 2006). Zhao et al. (2002) isolated five new withanolide derivatives from the roots of *W. somnifera* together with
fourteen known compounds and recently Tong et al. (2011) also reported a novel chlorinated withanolide, 6a-chloro-5b,17a-dihydroxywithaferin A (1), from W. somnifera.

Other compounds in Withania

Many other chemical compounds in W. somnifera and W. coagulans have also been reported. For example, Gupta et al. (1996) detected alkaloids in all the plant parts (roots, fruits, leaves), with the highest content found in leaves. Another study also detected nicotine, somniferine, somniferinine, withanine, withananine, pseudowithanine, tropine, pseudotropine, 3a-tigloyloxytropane, choline, cuscohygrine, dl-isopelletierine and new alkaloids anaferine and anhygrine in this medicinal plant (Gupta and Rana, 2007). The total alkaloid content varied between 0.13 and 0.31% (Johri et al., 2005). Apart from these contents, the plant also contains chemical constituents like acylsteryl glucosides, starch, hantreacotane, ducitol, and a variety of amino acids including aspartic acid, proline, tyrosine, alanine, glycine, glutamic acid, cystine, tryptophan, and high amount of iron (Gupta and Rana, 2007; Hemalatha et al., 2008).

PHARMACOLOGY

The chemical constituents of Withania have always been of great interest to the scientific community. The biologically active chemical constituents are alkaloids (ashwagandhine, cuscohygrine, anahygrine, tropine, etc), steroidal compounds including ergostane-type steroidal lactones, withaferin A, withanolides A-Y, withasomniferin A, withasomdienone, withasomniferols A-C, withanone, etc (Gupta and Rana, 2007; Maurya and Akanksha, 2010). Withaferin A (4β,27-dihydroxy-5β,6β-epoxy-1-oxowitha-2,24-dienolide) (Figure 3a), and withanolide A (5α,20α-dihydroxy- 6α,7α-epoxy-1-oxowitha-2,24-dienolide) (Figure 3b) are the main withanolidal active principles isolated from the plant. These are chemically similar but differed in their chemical constituents (Sangwan et al., 2007; Hemalatha et al., 2008).

Anti-inflammatory activities

The anti-inflammatory potential of W. coagulans and W. somnifera has been studied in details by several workers. Budhiraja et al. (1984) showed that the aqueous extract of fruits of W. coagulans has significant anti-inflammatory activity at 10 mg kg\(^{-1}\) in subacute models of inflammation, such as granuloma formation and formalin-induced arthritis in rats. Anbalagan and Sadique (1981) reported that W. somnifera possesses efficient anti-inflammatory activity as compared with hydrocortisone, a common anti-inflammatory drug.

The effect of W. somnifera on glycosaminoglycan synthesis in the granulation tissue of carrageenin-induced air pouch granuloma was studied by Begum and Sadique (1987). Oral administration of 1000 mg kg\(^{-1}\) W. somnifera root powder decreased the glycosaminoglycan content by 92%, which was much higher than that of the hydrocortisone and phenylbutazone. Al-Hindawi et al. (1992) studied the granuloma-tissue formation inhibiting activity of various fractions of an extract of the aerial parts of W. somnifera using subcutaneous cotton-pellet implantation in rats. The methanolic fractions of the extract showed high anti-inflammatory activity as compared to that of a 5 mg kg\(^{-1}\) dose of hydrocortisone sodium succinate. The activity in both the species was attributed...
to the high content of biologically active steroids in the plant, of which withaferin A is known to be a major component. Withaferin A is potent inhibitor of the pro inflammatory transcription factors and a promising agent for the treatment of the inflammatory cascade of cardiovascular diseases (Kaileh et al., 2007).

Anticancer and chemoprotective activities

The anticancer effect of *Withania* has been studied extensively (Devi et al., 1995, 1996; Devi, 1996; Davis and Kuttan, 2000; Prakash et al., 2002; Senthilnathan et al., 2006; Winters, 2006; Widodo et al., 2007), and it was found that it is the most effective agent in preventing cancer through its ability to reduce the tumor size. Treatment of root extract of *W. somnifera* on induced skin cancer in mice exhibited significant decrease in the incidence and average number of skin lesions compared to control group (Prakash et al., 2002). Withaferin A showed tumor-inhibitory activity against cells derived from human carcinoma of the nasopharynx (Jayaparakasam et al., 2003) and it also inhibited the growth of roots of *Allium cepa* by arresting the cell division at metaphase (Paliy et al., 1969). In another study, *W. somnifera* was evaluated for its antitumor effect in urethane-induced lung adenomas in adult male albino mice. Simultaneous administration of *W. somnifera* extract (200 mg kg\(^{-1}\) body weight daily orally for seven months) and urethane (125 mg kg\(^{-1}\) biweekly for seven months) reduced tumor incidence significantly (Singh et al., 1986). Additionally, in a different study the aqueous extract of *W. coagulans* was used for anti-cytotoxic effect in chicken lymphocytes and remarkable inhibitory activity of dimethyl sulfoxide (DMSO)-induced cytotoxicity with a decrease in TNF-G production was reported (Chattopadhyay et al., 2007).

Hepatoprotective activity

The extract of *W. coagulans* roots exhibited hepatoprotective activity against carbon tetrachloride (CCL\(_4\))-induced hepatotoxicity in adult albino rats of either sex due to the presence of 3-β-hydroxy-2, 3-dihydrowithanolide F. The hepatoprotective effect of *W. somnifera* root powder was studied by Mohanty et al. (2008). The extract influenced the levels of lipid peroxidation and thereby provided the hepatoprotection. Verma et al. (2009) also examined the effect of *W. somnifera* aqueous root extract on the hepatic cell of *Clarias batrachus* and reported that the root extract contains different flavonoids and neurotransmitters that stimulated the neuroendocrine system, leading to hyperactivity of the endomembrane and the exit of molecules through the surface via exocytosis.

Immuno modulatory activity

Withaferin A has been reported in various studies to possess both immuno-activating and immunosuppressive properties. Withaferin A has specific immunosuppressive effects on human B and T lymphocytes viz. antigen recognition and proliferative capacity of B and T lymphocytes (Bahr and Hansel, 1982). In mice, the ashwagandha extract was able to suppress the cyclophosphamide-induced potentiation of delayed type hypersensitivity (DTH) reaction. A protective effect in cyclophosphamide-induced myelosuppression was observed in animals treated with this extract (Agarwal et al., 1999). In another study, the aqueous suspension of the *W. somnifera* root powder inhibited the mitogen induced lymphocyte proliferation and DTH reaction in rats (Rasool and Varalakshmi, 2006). The root extract of *W. somnifera* also enhanced total white blood cell count, inhibited delayed-type hypersensitivity reactions and enhanced phagocytic activity of macrophages (Davis and Kuttan, 2002). Significant increases in hemoglobin concentration, red blood cell count, white blood cell count, platelet count, and body weight were observed in *W. somnifera*-treated mice compared to untreated control mice.

Huang et al. (2009) isolated novel withanolides, withacoagulins from the aerial parts of *W. coagulans* and reported the inhibitory activity of the extract on T and B-lymphocyte proliferation in murine spleen cells. It was also observed that the ethanolic extract showed strong activities in inhibiting the T and B-lymphocyte proliferation. Coagulin H isolated form *W. coagulans* exhibited effects on the immune response, including an inhibitory effect on lymphocyte proliferation, and expression of interleukin-2 (IL-2) cytokine. A complete suppression of phytohaemagglutinin-activated T-cells was observed at ≥2.5 μg/ml coagulin H. The withanolides from both the plants are found to be useful as a general tonic, due to their beneficial effects on the cardiopulmonary system. These alkaloids had a prolonged hypotensive, bradycardiac, and respiratory-stimulant action in dogs (Budhiraja et al., 1983; Mohanty et al., 2004).

Antifungal and antibacterial activities

Antifungal and antibacterial properties have been demonstrated in the withanolides isolated from the ethanolic extract of the whole plant and leaves, respectively. The methanolic extract possessed maximum inhibitory activity against a spectrum of bacteria. Oral administration of the aqueous fruit extracts successfully obliterated *Salmonella* infection in mice as revealed by increased survival rate, as well as less bacterial load in various vital organs of the treated animals (Owais et al., 2005). The methanol, hexane and diethyl ether extracts from both leaves and roots of *W. somnifera* were evaluated for the antibacterial
/synergistic activity by agar plate disc-diffusion assay against Salmonella typhimurium and Escherichia coli (Arora et al., 2004).

Hypocholesterolemic and hypolipidemic activities

The aqueous extract of fruits of W. coagulans and the root powder of W. somnifera have been reported to decrease total lipid, cholesterol and triglycerides in hypercholesterolemic animals (Andallu and Radhika, 2000; Hemalatha et al., 2006). Visavadiya and Narasimhacharya (2007) carried out a study to investigate the hypocholesterolemic activity of W. somnifera in male albino rats and suggest that the hypocholesterolemic effect of W. somnifera could be mediated through an increased bile acid synthesis for elimination of body cholesterol. The hypocholesterolemic and hypolipidemic activities of W. coagulans were also reported by Hemalatha et al. (2006). Administration of an aqueous extract of fruits of W. coagulans to high fat diet-induced hyperlipidemic rats for 7 weeks significantly reduced elevated serum cholesterol, triglycerides and lipoprotein levels. This extract also showed hypolipidemic activity in triton induced hypercholesterolemia (Hemalatha et al., 2006).

Central nervous system (CNS) related activities

The bioactive metabolites isolated form Withania have been found to be effective in alleviating many central nervous system disorders such as epilepsy, anxiety, depression, catalepsy, and sleep (Subramanian and Sethi, 1971; Budhiraja et al., 1977; Bhattacharya et al., 1997; Dhuley, 2001; Jain et al., 2001; Naidu et al., 2006). The extracts for the different parts of both the plants have the capacity to modulate various neurotransmitters also. Bhatnagar et al. (2009) observed that the extract work as a suppressor of corticosterone release and activating choline acetyltransferase, which in turn increase serotonin level in hippocampus. Withanolide A and withanoside IV from W. somnifera roots promote neurite outgrowth in cultured neurons and in rodents injected with Aβ 25-35 and after oral administration of withanoside IV, sominone, an aglycone of withanoside IV, was identified as the main metabolite (Kuboyama et al., 2002). Recently Sehgal et al. (2012) revealed that the semi-purified extract of the roots of W. somnifera reversed behavioural deficits, plaque pathology, accumulation of β-amyloid peptides (Aβ) and oligomers in the brains of middle-aged Alzheimer's disease transgenic mice by enhancing low-density lipoprotein receptor-related protein in brain microvessels and liver.

Free radical scavenging activities

The effect of the aqueous solution of root extract of W. somnifera on lipid peroxidation was investigated on stress induced rabbits and mice and (Dhuley, 1998). The oral administration of the extract prevented the elevation in lipid peroxidation by the free radical scavenging activity. The free radical scavenging activity of W. coagulans was detected by Hemalatha et al. (2004); it was concluded that administration of aqueous extract of W. coagulans to diabetic rats significantly lowered the liver and serum lipid peroxidation. The presence of free radical scavenging activity and lipid peroxidation lowering activity in aqueous extract of W. coagulans might have helped in providing protection to some degree against oxidative damage to beta cells of pancreas.

BIOTECHNOLOGY

Biotechnological approaches, specifically plant tissue cultures, are found to have potential as a supplement to traditional agriculture in the industrial production of bioactive plant metabolites (Namdeo, 2007). For plant cell culture techniques to become economically feasible, it is important to develop methods that would allow for consistent production of high yields of products from cultured cells (Berlin and Sasse, 1985). In order to obtain yields in high concentrations for commercial exploitation, efforts have been focused on the stimulation of biosynthetic activities of cultured cells using various methods (Dixon, 2001; Rao and Ravishankar, 2002).

Plant regeneration through micropropagation

Micropropagation of plants for the mass cultivation and production of plantlets in culture has been a useful vegetative propagation process for agriculture, horticulture and forestry, and plant biotechnology (Zhou and Wu, 2006). Other potential applications of plant tissue cultures are the production of novel compounds that are not normally found in the original plant, and bio-transformation of low-cost precursors into more valuable compounds. In a number of medicinal plants there is little knowledge of in vitro culture, genetic and cellular network descriptions. The genetic diversity of medicinal plants is going to be endangered at an alarming rate because of ruinous harvesting practices and over harvesting for production of medicines. Hence, an efficient and most suited alternative solution to the problem faced by pharmaceutical industry is the development of in vitro systems for mass production of medicinal plants, conservation of germplasm, study and production of bioactive compounds and for genetic improvement (Nalawade and Tsay, 2004).
Different explants including cotyledons, hypocotyls, leaves, shoot tips, zygotic embryos, embryonal leaves, stems, internodes and roots and combinations of different plant growth regulators have been employed for plant regeneration in *Withania*. Sen and Sharma (1991) examined regeneration from cultured shoot-tip and nodal explants of *W. somnifera*. Teli et al. (1999) obtained analogous results. Roja et al. (1991) reported callus formation from axillary meristem on Murashige and Skoog (MS) medium (Murashige and Skoog, 1962) with 2 mg L\(^{-1}\) 2,4-dichlorophenoxyacetic acid (2,4-D), whilst Baburaj and Gunasekaran (1995) observed callus induction from leaf explants of *W. somnifera* using MS medium supplemented with 2 mg L\(^{-1}\) naphthaleneacetic acid (NAA) and 0.5 mg L\(^{-1}\) kinetin (Kn). Kulkarni et al. (1996) also described the direct regeneration of *W. somnifera* with sixteen shoots on an average from leaf explants in *in vitro* raised seedlings using MS medium fortified with indole-3-acetic acid (IAA) and 6-benzylaminopurine (BA), while Abhyankar and Chinchanikar (1996) showed direct shoot regeneration from leaf discs grown on MS medium supplemented with IAA, BA, and Kn in various combinations. Furthermore, Rani and Grover (1999) initiated callus cultures from cotyledonary leaf, hypocotyl and root segments on MS medium supplemented with 2,4-D (2 mg L\(^{-1}\)) and Kn (0.2 mg L\(^{-1}\)). They also observed that MS medium with BA (2 mg L\(^{-1}\)) was best for multiplication of shoot bud on subculturing. Kulkarni et al., (2000) also reported regeneration of shoots from nodes, internodes, hypocotyls and embryos using BA and thidiazuron (TDZ) in the MS medium and found that the embryo derived plantlets failed to acclimatise. Meanwhile, Manickam et al. (2000) reported successful development of a callus mediated indirect plant regeneration system using shoot tips and internodal segments cultured on MS medium supplemented with 0.5 mg L\(^{-1}\) 2,4-D. Wadegaonkar et al. (2006) developed a protocol for direct rhizogenesis and establishment of fast growing normal root organ culture of *W. somnifera* using MS medium fortified with 0.5 mg L\(^{-1}\) IAA and 2 mg L\(^{-1}\) IBA in a bubble column reactor. Dewir et al. (2010) used leaves as explants source and 2 mg L\(^{-1}\) BA and 0.5 mg L\(^{-1}\) IAA for indirect differentiation of shoots in *W. somnifera*. In addition, Vadawale et al. (2004) and Kannan et al. (2005) advocated use of higher cytokinin levels for shoot multiplication in *W. somnifera*. Joshi and Padhya, (2010) also studied the effect of cytokinins and revealed that the leaf explant in presence of individual cytokinin does not regenerate shoot buds. The synergistic effect of combination of two cytokinins in the medium induced shoot bud regeneration. Saritha and Naidu (2007) observed *in vitro* flowering on MS supplemented with 0.5-4.0 mg L\(^{-1}\) Kn and 0.1 mg L\(^{-1}\) IAA and *in vitro* fruiting on Kn (2.0 mg L\(^{-1}\)) and IAA (0.1 mg L\(^{-1}\)) in *W. somnifera*. Lee et al. (2007) analyzed the effect of photon flux density and light quality on *in vitro* morphogenesis in cultures of *W. somnifera*. Sivanesan and Murugesan (2005) studied the effect of various cytokinins on regeneration from axillary buds of *W. somnifera*. Khatun et al. (2008) examined the effect of copper on growth and antioxidant enzyme responses *in vitro* grown plants of *W. somnifera*. Sinha et al. (2010) optimised the level of micronutrient copper in the culture medium and found that the number of shoot buds increased 1.9-fold on MS medium supplemented with 5 mg L\(^{-1}\) BA and 1 mg L\(^{-1}\) IAA with 5× the MS level of copper. Sivanandhan et al. (2011) developed an efficient protocol for *W. somnifera* from nodal explants of field-grown plants on MS medium supplemented with BA (1.5 mg L\(^{-1}\)), IAA (0.3 mg L\(^{-1}\)) and with the addition of polyamine, spermidine (20 mg L\(^{-1}\)), while Kanungo and Sahoo (2011) developed a short term protocol for *in vitro* propagation of *W. somnifera* using apical buds from the 6 week old *in vitro* grown seedlings.

In *W. coagulans*, Jain et al. (2009) for the first time reported the direct regeneration using shoot tip and nodal segments as explant cultured on MS+ BA (0.5 mg L\(^{-1}\)), Kn (0.5 mg L\(^{-1}\)) with histological details. Valizadeh and Valijadeh (2009) also developed an *in vitro* callus induction and plant regeneration protocol using leaf and internodal explants of *W. coagulans* cultured on 2 mg L\(^{-1}\) 2,4-D and 0.5 mg L\(^{-1}\) Kn, but the yield of shoot regeneration was only 18 - 33%. Adventitious shoot regeneration using leaf explants with a maximum of 17.6 ± 0.5 shoots per explant and determination of clonal fidelity of regenerated plantlets using randomly amplified polymorphic DNA (RAPD) in *W. coagulans* has also been reported by Jain et al. (2011).

Genetic transformation

The use of genomics and proteomics technologies to elucidate and characterize metabolite pathways in a holistic manner provided new directions in the metabolic engineering and metabolomics, in the past few years. Genetic manipulation of a metabolic pathway in medicinal plants requires accessibility of cloned genes and the development of basic gene transfer and expression technology to allow over-expression or down-regulation of genes involved in metabolic processes in the pathway (Capell and Christou, 2004). Although the establishment of transgenic cell lines and hairy root cultures is relatively simple, such systems have inherent drawbacks such as high cost of bioreactors and unstable nature of cell lines, which limit their usefulness and in turn the efficiency of the system to produce the target molecule. The development of protocols for successful and efficient genetic transformation in medicinal plants with exclusive metabolic pathways is important in terms of understanding the molecular basis and regulation of secondary metabolism in plants. There are many reports describing genetic transformation of a number of agriculturally
reported in the roots such as compositional standardization of herbal. Such v.HPTLC es of mixtures and molecular pharmacology only to establish correlation between complex chemical plants. Comprehensive chemical analysis is required not number of metabolites quantitatively and qualitatively. lomics research aimed at rapidly identifying a large (MS) in analytical systems like chromatography – as chromatography – produce secondary metabolism in relation to eco (M Sangwan, (2007) phytochemical variations and withanolide A biochemistry of various commercial Withania preparations (Sangwan et al., 2004; Dhar et al., 2006) and the compositional standardization of herbal formulation becomes difficult. Deocaris et al. (2008) described cases where multi-component W. somnifera extracts showed better medicinal efficiency than the purified compounds.

Qualitative and quantitative analysis of withanolides in Withania has been reported by several workers. In general, undifferentiated calli and cell suspensions of W. somnifera do not produce withaferin A (Yu et al., 1974; Ray et al., 1996) although shoot cultures from axillary meristems in W. somnifera synthesize withanolides (Roja et al., 1991). Furmanowa et al. (2001) underpinned the importance of various physical and hormonal parameters for production of withanolides from shoot cultures of W. somnifera. Ray and Jha (2001) raised shoot cultures of W. somnifera and determined that multiple shoot cultures were promising source of withaferin A. Ganzera et al. (2003) and Khajuria et al., (2004) developed a direct and rapid protocol for separation, identification, and quantification of selected withanolides in plant extracts of W. somnifera by HPLC-UV (DAD). Sharma et al. (2007) established a validated and densitometric high-performance thin-layer chromatographic (HPTLC) method for the quantification of withaferin-A and withanolide-A in different plant parts of two morphotypes of W. somnifera and reported that both the morphotypes differ in their morphological and chemical characteristics.

Phytochemical variations and withanolide A biogenesis in in vitro shoot cultures of W. somnifera were also described by Sangwan et al. (2004, 2007). Later Sangwan et al. (2008) reported that withanolide A is de novo synthesized in roots of W. somnifera. The productivity of withanolide A was found to vary considerably with the change in the hormone composition of the media as well as genotype used (Sharada et al., 2007). Hairy roots of this species were able to produce withanolide D (Ray et al., 1996), and sporadically, some root lines also produced withaferin A (Bandyopadhyay et al., 2007) and withanolide A (Murthy et al., 2008). Chaurasiya and Sangwan, (2007) examined develop-mental patterns and secondary metabolism in relation to eco-physiology and phytopharmaceutical variability and de novo biosynthesizing capacity via incorporation with a radiolabeled primary precursor, [14C]-acetate in W. somnifera and found that de novo biogenesis and accumulation of withanolides was most active in young leaves. More recently, Nagella and Murthy (2010a, b) established cell suspension cultures of W. somnifera for the production of
withanolide A and Dewir et al. (2010) performed a comparative analysis of withanolides in in vitro and greenhouse grown plants and found that in vitro grown plants of Withania somnifera contained greater contents of phenolics, flavonoids and polysaccharides while lower contents of withanolides than greenhouse grown plants. Chatterjee et al. (2010) presented a comprehensive metabolic fingerprinting of leaf and root extracts of Withania somnifera and identified a total of 62 major and minor primary and secondary metabolites from leaves and 48 from roots with a common set of 27 metabolites in both the tissues in Withania somnifera. Sabir et al. (2011) developed a strategy for biotransformation of withanolides in in vitro suspension cultures of Withania somnifera. Alam et al. (2011) characterised the phenolic acids, flavonoids and 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging activities in methanolic extracts of Withania somnifera fruits, roots and leaves using HPLC and found that the fruits and leaves provide potential benefits for human health because of its high content of polyphenols and antioxidant activities, with the leaves containing the highest amounts of polyphenols specially catechin with strong antioxidant properties.

Furthermore, Sivanandhan et al. (2011) compared the withanolide content in various parts of in vitro raised plants with field grown plants and observed that withaferin A and withanone content were 1.14 and 1.20 times higher in the leaves of in vitro derived plants than in the leaves of field-grown parent plants, respectively and the roots of in vitro shoots had shown 1.10 times increase in withanolide A production than the roots of field-grown parent plants. Significant level of withanolide B content was recorded in the leaves (6.5 times) and roots (3.3 times) of in vitro derived plants. Most recently, Sabir et al., (2012) studied the effect of various types of salts under in vitro culture conditions using tissue specific isozyme profiling and reported that the tissue could grow better under sodium chloride (NaCl) and potassium nitrate (KNO₃) compared to other salts and the in vitro shoots appeared healthy at 50 mM concentration of NaCl and KNO₃, while the total withanolide content increased with 50 mM NaCl and declined with all other salt treatments.

In vitro cultures of Withania coagulans are also the convincing source of the active principle (withanolides) but there are only a few reports on withanolides production in tissue cultures of this plant. Recently, Abouzid et al. (2010) reported production of withaferin A in the root cultures of Withania coagulans. Jain et al. (2011) for the first time confirmed the high accumulation of three important withanolides (withaferin A, withanolide A and withanone) in the shoot cultures of Withania coagulans. Mirjalli et al. (2011) introduced the Arabidopsis thaliana squalene synthase gene in Withania coagulans using A. rhizogenes and found that engineered hairy roots have a strong positive correlation between biosynthesis of phytosterol and withanolides and expression level of the transgene.

FUTURE PROSPECTIVE

The use of Withania somnifera and Withania coagulans as multipurpose traditional medicine has resulted into several commercial drugs and therefore Withania ranks a highly valued plant in the pharmaceutical industries. The phytochemistry and pharmacology of Withania has been widely investigated, but the studies on toxicology of the extracts of the plant parts in different solvents are very few. In the case of Withania somnifera, the studies are at a primary level and there are no such reports on Withania coagulans. Although it is required to identify the novel clinical properties of the plant, the identification and isolation of the particular compound responsible for the specific activity is more important. We believe that further advancements in the analytical and separation chemistry will provide valuable insights on the toxicology and isolation of novel compounds along with the chemotypic variation of these two ethnobotanically important species. The availability of micropropagation protocol will be supportive to conserve the elite germplasm of this genus. Further, the transgenic protocols for either the plants are well established but the efforts to enhance the withanolides or alkaloids content in plant parts using this approach are lacking. The progress in the transgenic biotechnology will further pave the way for metabolic engineering of useful compounds from Withania somnifera and Withania coagulans.

ACKNOWLEDGEMENTS

The Council of Scientific and Industrial Research (CSIR) is gratefully acknowledged for providing the financial support in the form of R&D project: CSIR–38(1178) EMR–II/2007. Dr. Rohit Jain thanks CSIR for the award of Research Associate. We also thank the DBT-UR-IPLS programme for financial support.

REFERENCES

Abhyankar GA, Chinchanchikar GS (1996). Response of Withania somnifera Dunal leaf explants in vitro. Phytomorphology 46:249-252.

AbouZid SF, El-Basuony AA, Nasib A, Khan S, Qureshi J, Choudhary MI (2010). Withaferin A production by root cultures of Withania coagulans. Int. J. Appl. Res. Nat. Prod. 3:23-27.

Abraham A, Kirson I, Glotter E, Lavie D (1968). A chemotaxonomic study of Withania somnifera (L.) Dunal. Phytochemistry 7:957-962.

Agrawal R, Diwanay S, Patki P, Patwardhan B (1999). Studies on immunomodulatory activity of Withania somnifera (Ashwagandha) extracts in experimental immune inflammation. J. Ethnopharmacol. 67:27-35.

Al-Hindawi MK, Al-Khafaji SH, Abdul-Nabi MH (1992). Anti-granuloma activity of Iraqi Withania somnifera. J. Ethnopharmacol. 37:113-116.

Alam N, Hossain M, Khalil MI, Moniruzzaman M, Sulaiman SA, Gan SH (2011). High catechin concentrations detected in Withania somnifera (ashwagandha) by high performance liquid chromatography analysis.
BMC Complement. Altern. Med. 11:65-69.
Alfonso D, Bernardielli G, Kapetanidis I (1993). Withanolides from Lophothyrea cucumerium. Phytochemistry 34:517-521.
Anbalagan K, Sadique J (1981). Influence of an Indian medicine (Ashwagandha) on acute-phase reactants in inflammation. Indian J. Exp. Biol. 19:245-249.
Andal R, Radhika B (2000). Hypoglycemic, diuretic and hypcholesterolemic effect of winter cherry (Withania somnifera, Dunal) root. Indian J. Exp. Biol. 38: 607-609.
Arora S, Dhillon S, Rani G, Nagpal A (2004). The in vitro antibacterial/synergistic activities of Withania somnifera extracts. Fitoterapia 75:385-388.
Attar-ul-Rahman A, Abbas S, Dur-e-Shawar NA, Jamal AS, Choudhary MI (1993). New withanolides from Withania spp. 56, 1000-1006. J. Nat. Prod. 56:1000-1006.
Attar-ul-Rahman A, Choudhary MI, Qureshi S, Gul W, Yousaf M (1998). Two new ergostane-type steroidal lactones from Withania coagulans. J. Nat. Prod. 61:819-824.
Attar-ul-Rahman A, Dur-e-Shawar NA, Choudhary MI (2003). Withanolides from Withania coagulans. Phytochemistry 63:387-390.
Attar-ul-Rahman A, Shabbir M, Yousaf M, Qureshi S, Dur-e-Shawar NA, Naz A, Choudhary MI (1999). Three withanolides from Withania coagulans. Phytochemistry 52:1361-1364.
Baburaj S, Gunasekaran K (1995). In vitro differentiation of shoots from leaf culture of Withania somnifera (L.) Dunal. J. Indian Bot Soc. 74:323-324.
Bahr V, Hansel R (1982). Immunomodulatory properties of 5, 20 (R)-dihydroxy-6, 7epoxy1oxo (5) with a 2, 24-dienolide and solasodine. Planta Med. 44:324-329.
Baldi A, Singh D, Dixit VK (2008). Dual elicitation for improved production of withaferin A by cell suspension cultures of Withania somnifera. Appl. Biochem. Biotechnol. 151:556-564.
Bandyopadhyay M, Jha S, Tepper D (2007). Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera. Plant Cell Rep. 26:599-609.
Begum VH, Sadique J (1987). Effect of Withania somnifera on glycosaminoglycan synthesis in carrageenin-induced air pouch granuloma. Biochem Med. Metab. Biol. 38:272-277.
Bhattacharya SK, Satyan KS, Ghosal S (1997). Antioxidant activity of glycowithanolides from Withania somnifera. Indian J. Exp. Biol. 35:236-239.
Budhrajha RD, Bala S, Garg KN (1977). Pharmacological investigations on fruits of Withania coagulans. Dunal. Planta Med. 32:154-157.
Budhrajha RD, Sudhir S (1987). Review of biological activity of withanolides. J. Sci. Ind. Res. 46:488-491.
Budhrajha RD, Sudhir S, Garg KN (1983). Cardiovascular effects of a withanolide from Withania coagulans, Dunal fruits. Indian J. Physiol. Pharmacol. 27:129-134.
Budhrajha RD, Sudhir S, Garg KN, Arora BC (1984). Antiinflammatory activity of 3-hydroxy-2, 3-dihydrowithanolide F. Planta Med. 50:134-136.
Capell T, Christou P (2004). Progress in plant metabolic engineering. Curr Opin Biotechnol. 15:148-154.
Chatopadhyay P, Mahaur K, Saha SK, Singh L, Shukla G, Wahi AK (2007). Effect of aqueous extract of fruits of Withania coagulans on cytotoxicity and tumor necrosis factor α-production in chicken lymphocytes. Indian J. Nat. Prod. Phytomed. 23:5-12.
Chaudhuri K, Das S, Bandyopadhyay M, Zalar A, Kollmann A, Jha S, Tepper D (2009). Transgenic mimicry of pathogen attack stimulates growth and secondary metabolism accumulation. Transgenic Res. 18:121-134.
Chitravasiya ND, Sangwan RS (2007). Leaf ontogenic phase-related dynamics of withaferin A and withanone biogenesis in Ashwagandha (Withania somnifera Dunal).- An important medicinal herb. J. Plant Biol. 50:508-513.
Choudhary MI, Dur-e-Shahwar NA, Parveen Z, Jabbar A, Ali I, Attar-Rahman A (1995). Antifungal steroidal lactones from Withania coagulans. Phytochemistry 40:1243-1246.
Cordell GA (2011). Phytochemistry and traditional medicine – A revolution in process. Phytochem. Lett., 4: 391-398.
Davis L, Kuttan G (2000). Effect of Withania somnifera on 20-methylcholanthrene induced fibrosarcoma. J Exp Clin Cancer Res. 19:165-167.
Davis L, Kuttan G (2002). Effect of Withania somnifera on cell mediated immune responses in mice. J. Exp. Clin. Cancer Res. 21:585-590.
Deocaris CC, Widdow N, Wadhwa R, Kaul SC (2008). Merger of ayurveda and tissue culture-based functional genomics: inspirations from systems biology. J. Trans. Med. 6:1-8.
Devi PU (1996). Withania somnifera Dunal (Ashwagandha); potential plant source of a promising drug for cancer chemotherapy and radiosensitization. Indian J. Exp. Biol. 34:927-932.
Devi PU, AKagi K, Ostatenko V, Tanaka Y, Sugahara T (1996). Withafarin A: a new radiosensitizer from the Indian medicinal plant Withania somnifera. Int. J. Radiat. Biol. 69:193-197.
Devi PU, Sharada AC, Solomon FE (1995). In vivo growth inhibitory and radiosensitizing effects of withaferin A on mouse Ehrlich ascites carcinoma. Cancer Lett. 95:189-193.
Dewir YH, Chakraborty D, Lee SH, Hahn EJ, Paek KY (2010). Indirect regeneration of Withania somnifera and comparative analysis of withanolides in in vitro and greenhouse grown plants. Biol Plant 54:357-360.
Dhar RS, Verma V, Suri KA, Sangwan RS, Satti NK, Kumar A, Tuli R, Qazi GN (2006). Phytochemical and genetic analysis in selected chemotypes of Withania somnifera. Phytochemistry 67:2269-2276.
Dhuley JN (1998). Effect of ashwagandha on lipid peroxidation in stress-induced animals. J. Ethnopharmacol. 60:173-178.
Dhuley JN (2001). Nootropic-like effect of ashwagandha (Withania somnifera L.) in mice. Phytother Res. 15:524-528.
Dixon RA (2001). Natural products and plant disease resistance. Nature 411:843-847.
Furmanowa M, Gajdzikus D, Ruszkowska J, Czarnocki Z, Obidoska G, Sadowska A, Rani U, Upadhyay SN (2001). In vitro propagation of Withania somnifera and isolation of withanolides with immunosuppressive activity. Planta Med. 67:146-149.
Ganzer A, Choudhary MI, Khan IA (2003). Quantitative HPLC analysis of withanolides in Withania somnifera. Fitoterapia 74:68-76.
Glotter E (1991). Withanolides and related ergostane-type steroids. Nat. Prod. Rep. 8:415-440.
Gómez-Galería S, Pelacho AM, Gené A, Capell T, Christou P (2007). The genetic manipulation of medicinal and aromatic plants. Plant Cell Rep. 26:1689-1715.
Gupta AP, Verma RK, Misra HO, Gupta MM (1996). Quantitative determination of withaferin A in different plant parts of Withania somnifera by TLC densitometry. J. Med. Aromat. Plant Sci. 18:788-790.
Gupta GL, Rana AC (2007). Withania somnifera (Ashwagandha): A review. Phcog Rev. 1:129-136.
Hemalatha S, Wahi AK, Singh PN, Chansouria JPN (2004). Hypoglycemic activity of Withania coagulans Dunal in streptozotocin induced diabetic rats. J. Ethnopharmacol. 93:261-264.
Hemalatha S, Wahi AK, Singh PN, Chansouria JPN (2006). Hypolipidemic activity of aqueous extract of Withania coagulans Dunal in albino rats. J. Ethnopharmacol. 100:614-617.
Hepper FN (1991). Old World Withania (Solancaceae): a taxonomic review and key to the species. In: Hawkes JG, Lester RN, Estrada N
Chemazon J (2009a). Morphology and withanolide-embryo explants of yihak E, Palyi V (1969). Cytological effects of compounds al development, kar GA (2005).: a hemodynamic, biochemical-nekura: An Indian ginseng.
asool S, Kumar A, Verma V, Qazi GN (2005). d-n EJ, Paek KY (2008). Copper toxicity in .fn EJ, Paek KY (2007). Photon flux density and .tiss.5398Manickam VS, Elango Mathavan R, Antonisamy R (2000). Lee SH, Tewari RK, Hahn EJ, Paek KY (2007). Photon flux density and .potent source of rejuvenating principles. Rejuv .neonkatun S, Ali MB, Hah .Khajuria RK, Suri KA, Gupta .Kanungo S, Sahoo SL (2011). Direct organogenesis of .Joshi AG, Padhya MA (2010). Shoot regeneration from leaf explants of .Withania somnifera (L.) Dunal. Notulae Scientiae Biologicae 2:63. Kaileh M, Vanden Berghe W, Heyerick A, Horion J, Piette J, Libert C. De Keuleleire D, Essawi T, Haegeman G (2007). Withafarin A strongly elicits ikappaB kinase beta hyperphosphorylation concomitant with potent inhibition of its kinase activity. J. Biol. Chem. 282:4253-4264. Kannan P, Ebenezer G, Dayanandan P, Abraham GC, Ignacimuthu S (2005). Large-scale production of Withania somnifera (L.) Dunal. using in vitro techniques. Phytotherapy 55:259-266. Kanungo S, Sahoo SL (2011). Direct organogenesis of Withania somnifera L. from apical bud. Int. Res. J. Biotechnol. 2:58-61. Kapoor LD (2001). Handbook of Ayurvedic medicinal plants. CRC Press Khajuria RK, Suri KA, Gupta RK, Satti NK, Amina M, Suri OP, Qazi GN (2004). Separation, identification, and quantification of selected withanolides in plant extracts of Withania somnifera by HPLC-UV(DAD)-positive ion electrospray ionisation-mass spectrometry. J. Sep. Sci. 27:541-546. Khatun S, Ali MB, Hahn EJ, Paek KY (2008). Copper toxicity in Withania somnifera: Growth and antioxidant enzymes responses of in vitro grown plants. Environ. Exp. Bot. 64:279-285. Kirson I, Glotter E, Lavi D, Abraham A (1971). Constituents of Withania somnifera Dun. XII. The withanolides of an Indian Chenopodiaceae. J. Chem. Soc. 11:2302-2304. Kuboyama T, Tohda C, Zhao J, Nakamura N, Hattori M, Komatsu K (2002). Axon- or derivate-predominant outgrowth induced by constituents from Ashwagandha. Neuroreport 13:1715-1720. Kulkarni AA, Thengane SR, Krishnamurthy KV (1996). Direct in vitro regeneration of leaf explants of Withania somnifera (L.) Dunal. Plant Sci. 119:163-168. Kulkarni AA, Thengane SR, Krishnamurthy KV (2000). Direct shoot regeneration from node, internode, hypocotyl and embryo explants of Withania somnifera. Plant Cell Tiss. Organ. Cult. 62:203-209. Kulkarni SK, Dhir A (2008). Withania somnifera: An Indian ginseng. Prog Neuro-Psychopharmacol. Biol. Psychiatry 32:1093-1105. Kumar V, Murthy KN, Bhamid S, Sudha CG, Ravishankar GA (2005). Genetically modified hairy roots of Withania somnifera Dunal: a potent source of rejuvenating principles. Rejuv. Res. 8:37-45. Lee SH, Tewari RK, Hahn EJ, Paek KY (2007). Photon flux density and light quality induce changes in growth, stomatal development, photosynthesis and transpiration of Withania somnifera (L.) Dunal. plantlets. Plant Cell Tiss Organ Cult. 90:141-151. Manickam VS, Elango Mathavan R, Antonisamy R (2000). Regeneration of Indian ginseng plantlets from stem callus. Plant Cell Tiss. Organ. Cult. 62:181-186. Manickam R, Akanksha K (2010). Chemistry and pharmacology of Withania coagulans: an Ayurvedic remedy. J. Pharm. Pharmacol. 62:153-160. Mirjalili HM, Fakhr-Tabatabaeti SM, Bonfill M, Alizadeh H, Cusido RM, Ghassempour A, Palazon J (2009a). Morphology and withanolide production of Withania coagulans hairy root cultures. Eng. Life Sci. 9:197-204. Mirjalili MH, Moyano E, Bonfill M, Cusido RM, Palazon J (2009b). Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules 14:2373-2393. Mirjalili MH, Moyano E, Bonfill M, Cusido RM, Palazon J (2011). Overexpression of the Arabidopsis thaliana squalene synthase gene in Withania coagulans hairy root cultures. Biol. Plant. 55:357-360. Mohanty I, Gupta SK, Talwar KR, Dinda A, Joshi S, Bansal P, Saxena A, Arya DS (2004). Cardioprotection from ischemia and reperfusion injury by Withania somnifera: a hemodynamic, biochemical and histopathological assessment. Mol. Cell Biochem. 260:39-47. Mohanty IR, Arya DS, Gupta SK (2008). Withania somnifera provides cardioprotection and attenuates ischemia-reperfusion induced apoptosis. Clin. Nutr. 27:532-542. Murashige T, Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco cultures. Physiol. Plant. 15:473-497. Murthy HN, Dijkstra C, Anthony P, White DA, Davey JR, Power JB, Hahn EJ, Paek KY (2008). Establishment of Withania somnifera hairy root cultures for the production of withanolide A. J. Integr. Plant Biol. 50:975-981. Nagella P, Murthy HN (2010a). Establishment of cell suspension culture of Withania somnifera for the production of withanolide A. Bioressour. Technol. 101:6735-6739. Nagella P, Murthy HN (2010b). Production of withanolide A from adventitious root cultures of Withania somnifera. Acta Physiol. Plant. 32:1017-1022. Naidu PS, Singh A, Kulkarni SK (2006). Effect of Withania somnifera root extract on reserpine-induced orofacial dyskinesia and cognitive dysfunction. Phytother Res. 20:140-146. Nakabayashi R, Kusano M, Kobayashi M, Tohge T, Yonekura-Sakikabara K, Kogure N, Yamazaki M, Kitajima M, Salto K, Takayama H (2009). Metabolomics-oriented isolation and structure elucidation of 37 compounds including two anthocyanins from Arabidopsis thaliana. Phytochemistry 70:1017-1029. Nalawade SM, Tsay HS (2004). In vitro propagation of some important Chinese medicinal plants and their sustainable usage. In Vitro Cell Dev. Biol. Plant 40:143-154. Namdeo AG (2007). Plant cell elicitation for production of secondary metabolites: A review. Phcog. Rev. 1:69-79. Negi MS, Sabharwal V, Wilson N, Lakshmikumaran MS (2006). Comparative analysis of the efficiency of SAMPL and AFLP in assessing genetic relationships among Withaniasomifera genotypes. Curr. Sci. 91:464-468. Neogi P, Kawai M, Butsugan Y, Mori Y, Suzuki M (1988). Withacon, a new withanolide from Withania coagulans roots. Bull. Chem. Soc. Jpn. 61:4479-4481. Nur-e-Alam M, Yousaif A, Qureshi S, Baig I, Nasim S (2003). A novel dimeric podophyllotoxin-type lignan and a new withanolide from Withania coagulans. Helv. Chim. Acta 86:607-614. Owais M, Sharad KS, Shetbazi A, Saleemuddin M (2005). Antibacterial efficacy of Withania somnifera (ashwagandha) an indigenous medicinal plant against experimental murine salmonellosis. Phytomedicine 12:229-235. Palvi I, Tyihak E, Palvi Y (1969). Cytological effects of compounds isolated from Withania somnifera Dunal. Herba Hung. 8:73-77. Pandey V, Misra P, Chaturvedi P, Mishra MK, Trivedi PK, Tuli R (2010). Agrobiotechnology: transformation of Withania somnifera (L.) Dunal: an important medicinal plant. Plant Cell Rep. 29:133-141. Prakash J, Gupta SK, Dinda AK (2002). Withania somnifera root extract prevents DMBIA-induced squamous cell carcinoma of skin in Swiss albino mice. Nutr. Cancer. 42:91-97. Rani G, Grover IS (1999). In vitro callus induction and regeneration studies of Withania somnifera. Plant Cell Tiss. Organ. Cult. 57:23-27. Rani G, Virk GS, Nanda A, Chaurasia GR, Kaur D (2000). Organ Induction and Plantlet Regeneration in Withania somnifera (L.) Dunal. In Vitro Cell. Dev. Biol. Plant 39:468-474.
Rao S, Ravishankar GA (2002). Plant cell cultures: Chemical factories of secondary metabolites. Biotechnol. Adv. 20:101-153.
Rasool I, Varalakshmi LP (2006). Immunomodulatory role of Withania somnifera root powder on experimental induced inflammation: An in vivo and in vitro study. Vasc. Pharmacol. 44:406-410.
Ray S, Ghosh B, Sen S, Jha S (1996). Withanolide production by root cultures of Withania somnifera transformed with Agrobacterium rhizogenes. Planta Med. 62:571-573.
Ray S, Jha S (1999). Withanolide synthesis in cultures of Withania somnifera transformed with Agrobacterium tumefaciens. Plant Sci. 146:1-7.
Ray S, Jha S (2001). Production of withaferin A in shoot cultures of Withania somnifera. Planta Med. 67:432-436.
Roja G, Helle MR, Sipahimalani AT (1991). Tissue cultures of Withania somnifera: Morphogenesis and withanolide synthesis. Phytother. Res. 5:185-187.
Sabir F, Sangwan RS, Kumar R, Sangwan NS (2012). Salt stress-induced responses in growth and metabolism in callus cultures and differentiating in vitro shoots of Indian ginseng (Withania somnifera Dunal). J Plant Growth Regul. 10.1007/s00344-012-9264-x.
Sabir F, Sangwan RS, Singh J, Misra LN, Pathak N, Sangwan NS (2011). Biotransformation of withanolides by cell suspension cultures of Withania somnifera (Dunal). Plant Biotechnol. Rep. 5:127-134.
Sangwan RS, Chauarsiya ND, Lal P, Misra L, Tulli R, Sangwan NS (2008). Withanolide A is inherently de novo biosynthesized in roots of the medicinal plant Ashwagandha (Withania somnifera). Physiol. Plant. 133:278-287.
Sangwan RS, Chauarsiya ND, Lal P, Misra L, Uniyal GC, Tulli R, Sangwan NS (2007). Withanolide A biogenesis in in vitro shoot cultures of Ashwagandha (Withania somnifera Dunal), a main medicinal plant in Ayurveda. Chem. Pharm. Bull. 55:1371-1375.
Sangwan RS, Chauarsiya ND, Mishra LN, Lal P, Uniyal GC, Sharma R, Sangwan NS, Suri K, Qazi GN, Tulli R (2004). Phytochemical variability in commercial herbal products and preparations of Withania somnifera. Curr. Sci. 86:461-465.
Sarita KV, Naidu CV (2007). In vitro flowering of Withania somnifera Dunal - An important antitumor medicinal plant. Plant Sci. 172:847-851.
Sehgal N, Gupta A, Valli RK, Joshi SD, Mills JT, Hamel E, Khanna P, Sehgal N, Gupta A, Valli RK, Joshi SD, Mills JT, Hamel E, Khanna P, Joshi SD, Mills JT, Hamel E, Khanna P (2005). Phenylalanine ammonia-lyase activity and its association with variability in commercial herbal products and preparations of Withania somnifera. Curr. Sci. 89:345-350.
Siva Prasad N, Narasimhacharya A (2007). Hypocholesteremic and antioxidant effects of Withania somnifera (Dunal) in hypercholesterolemic rats. Phytomedicine 14:136-142.
Sivanesan I, Murugesan K (2005). In vitro adventitious shoot formation from leaf explants of Withania somnifera Dunal. Plant Cell Biotechnol. Mol. Biol. 6:163-166.
Subbaraju GV (2006). Ashwagandholanine, a bioactive dimeric thiowithanolide isolated from the roots of Withania somnifera. J. Nat. Prod. 69:1790-1792.
Subramanian SS, Sethi E (1971). 5, 20 [alpha](R)-dihydroxy-6 [alpha], 7 [alpha]-epoxy-1-oxo-[5 alpha] witha-2, 24-dienol, a new steroidal lactone from Withania coagulans. Phytochemistry 10:685-688.
Subramanian SS, Sethi E (1969). Withaferin-A from the roots of Withania coagulans. Curr. Sci. 38:267-268.
Teli NP, Pathak HM, Bhalsing SR, Maheshwari VL (1999). Withania somnifera (Ashwagandha): Regeneration through meristem culture. J. Plant Biochem. Biotechnol. 8:109-111.
Tong X, Zhang H, Timmermann BN (2011). Chlorinated withanolides from Withania somnifera. Phytochem. Lett. 4(4):411-414.
Tursunova RN, Maslennikova VA, Abubakirov NK (1977). Withanolides in the vegetable kingdom. Chem. Nat. Comp. 13:131-136.
Uddin Q, Samiulla L, Singh VK, Jamil SS (2012). Phytochemical and pharmacological profile of Withania somnifera Dunal: a review. J. Appl. Pharm. Sci. 2:170-175.
Vadavale AV, Mehta-Bhatt P, Dave AM (2004). Rapid in vitro propagation of ashwagandha (Withania somnifera) through axillary multiplication and indirect organogenesis. Phytomorphology 54:59-64.
Valizadeh J, Valijadeh M (2009). In vitro callus induction and plant regeneration from Withania coagulans: A valuable medicinal plant. Pak. J. Biol. Sci. 12:1415-1491.
Velde VV, Lanie D, Budhiraja RD, Sudhir S, Garg KN (1983). Potential biogenetic precursors of withanolides from Withania coagulans. Phytochemistry 22:2253-2257.
Verma P, Srivastava SK, Singh NS (2009). Stimulatory effect of Withania somnifera on secretion and endocytic pathways in the hepatic cell of Clarias batrachus (Linn.). J. Ecophysiol. Occupat. Health 9:203-209.
Visavadiya NP, Narasimhacharya A (2007). Hypocholesteremic and antioxidant effects of Withania somnifera (Dunal) in hypercholesterolemic rats. Phytomedicine 14:136-142.
Wadegaonkar PA, Bhagwat KA, Rai MK (2006). Direct rhizogenesis and its neurite outgrowth activities. Chem. Nat. Comp. 33:11-16.
Sadhana B, Turi RN, Misra LN, Chakravarty S, Rana P, Turi RN (1997). Biotransformation of withanolides by cell cultures of Withania coagulans. Phytochemistry 45:2288-2295.
Walia D, Sangwan RS, Lal P, Uniyal GC, Tulli R, Sangwan NS (2008). Withanolide A is inherently de novo biosynthesized in roots of the medicinal plant Ashwagandha (Withania somnifera). Physiol. Plant. 133:278-287.
Singh N, Singh SP, Nath R, Singh DR, Gupta ML, Kohli RP, Bhargava KP (1986). Prevention of urethane induced lung adenomas by Withania somnifera (L.) Dunal in albino mice. Pharm. Biol. 24:90-100.
Singh A, Jain R, Kachhawa S, Kothari SL (2010). Optimization of the level of micronutrient copper in the culture medium improves shoot bud regeneration in Indian Ginseng [Withania somnifera (L.) Dunal]. Nat. Acad. Sci. Lett. (India). 33:11-16.
Sivanandan G, Mariashibu TS, Arun M, Rajesh M, KasthuriRengan S, Selvaraj N, Ganapathi A (2011). The effect of polyamines on the efficiency of multiplication and micro rooting of Withania somnifera (L.) Dunal and content of some withanolides in obtained plants. Acta Physiol. Plant 34:2279-2288.