Some results of Fekete–Szegö type for Bavrin’s families of holomorphic functions in \(\mathbb{C}^n \)

Renata Długosz\(^1\) · Piotr Liczberski\(^2\)

Received: 2 November 2020 / Accepted: 20 February 2021 / Published online: 27 March 2021
© The Author(s) 2021

Abstract
In the paper there is considered a generalization of the well-known Fekete–Szegö type problem onto some Bavrin’s families of complex valued holomorphic functions of several variables. The definitions of Bavrin’s families correspond to geometric properties of univalent functions of a complex variable, like as starlikeness and convexity. First of all, there are investigated such Bavrin’s families which elements satisfy also a \((j, k)\)-symmetry condition. As application of these results there is given the solution of a Fekete–Szegö type problem for a family of normalized biholomorphic starlike mappings in \(\mathbb{C}^n \).

Keywords Holomorphic functions of scv · \(n \)-circular domains in \(\mathbb{C}^n \) · Minkowski function · \((j, k)\)-symmetry · Fekete–Szegö type estimations

Mathematics Subject Classification 32A30 · 30C45

1 Introduction

By \(\mathbb{C}, \mathbb{R}, \mathbb{Z}, \mathbb{N}_0, \mathbb{N}_1, \mathbb{N}_2 \) let us denote the sets of complex numbers, real numbers, all integers, nonnegative integers, positive integers and the integers not smaller than 2, respectively. We say that a domain \(G \subset \mathbb{C}^n, n \in \mathbb{N}_1 \), is complete \(n \)-circular if \(z\lambda = (z_1\lambda_1, \ldots, z_n\lambda_n) \in G \) for each \(z = (z_1, \ldots, z_n) \in G \) and every \(\lambda = (\lambda_1, \ldots, \lambda_n) \in \overline{U}^n \), where \(U \) is the unit disc \(\{ \zeta \in \mathbb{C} : |\zeta| < 1 \} \). From now on by \(G \) will be denoted a bounded complete \(n \)-circular domain in \(\mathbb{C}^n, n \in \mathbb{N}_1 \). Of course, only the open discs with the centre \(\zeta = 0 \) and the radius \(r > 0 \), are the bounded complete 1-circular domains \(G \subset \mathbb{C} \).

In our considerations the Minkowski function \(\mu_G : \mathbb{C}^n \to [0, \infty) \)

\(^1\) Centre of Mathematics and Physics, Lodz University of Technology, Ul. Żwirki 36, 90-924 Lodz, Poland

\(^2\) Institute of Mathematics, Lodz University of Technology, Ul. Żwirki 36, 90-924 Lodz, Poland
\[\mu_G(z) = \inf \left\{ t > 0 : \frac{1}{t} z \in G \right\}, z \in \mathbb{C}^n. \]

will be very useful. It is known (see e.g., [26]) that \(\mu_G \) is a norm in \(\mathbb{C}^n \) if \(G \) is a convex bounded complete \(n \)-circular domain. This function gives the possibility to redefine the domain \(G \) and its boundary \(\partial G \) as follows:

\[G = \{ z \in \mathbb{C}^n : \mu_G(z) < 1 \}, \partial G = \{ z \in \mathbb{C}^n : \mu_G(z) = 1 \}. \]

Now, we recall some information about \(m \)-homogeneous polynomials. We say that a function \(Q_m : \mathbb{C}^n \to \mathbb{C}, m \in \mathbb{N}_1 \), is an \(m \)-homogeneous polynomial if

\[Q_m(z) = L_m(z^m) = L_m(z, ..., z), z \in \mathbb{C}^n, \]

where \(L_m : (\mathbb{C}^n)^m \to \mathbb{C} \) is a bounded \(m \)-linear function (by \(Q_0 \) we note a complex constant). For this reason it is very natural to define (see [4]) the following generalization of the norm of \(m \)-homogeneous polynomials \(Q_m : \mathbb{C}^n \to \mathbb{C} \), i.e., the \(\mu_G \)-balance of such \(m \)-homogeneous polynomials

\[\mu_G(Q_m) = \sup_{w \in \mathbb{C}^n \setminus \{ 0 \} } \frac{|Q_m(w)|}{(\mu_G(w))^m} = \sup_{v \in \partial G} |Q_m(v)| = \sup_{w \in G} |Q_m(w)|. \]

A simple kind of 1-homogeneous polynomials are the linear functionals \(J, I \in (\mathbb{C}^n)^* \) of the form

\[J(z) = \sum_{j=1}^n z_j, z = (z_1, ..., z_n) \in \mathbb{C}^n, I(z) = (\mu_G(J))^{-1} J(z). \]

Note that for \(m \in \mathbb{N}_1 \), the mapping

\[I^m : \mathbb{C}^n \to \mathbb{C}, I^m(z) = (I(z))^m, z \in \mathbb{C}^n, \]

is an \(m \)-homogeneous polynomial and \(\mu_G(I^m) = 1 \).

By \(\mathcal{F}(G, \mathbb{C}^m), m \in \mathbb{N}_1 \), let us denote the space of all functions \(f : G \to \mathbb{C}^m \), by \(\mathcal{H}_G \) the space of all holomorphic functions \(f \in \mathcal{F}(G, \mathbb{C}) \) and by \(\mathcal{H}_G(0), \mathcal{H}_G(1) \) the collection of all \(f \in \mathcal{H}_G \), normalized by \(f(0) = 0, f(0) = 1 \), respectively. Let us recall that every function \(f \in \mathcal{H}_G \) has a unique power series expansion

\[f(z) = \sum_{m=0}^{\infty} Q_{f,m}(z), z \in G, \tag{1.1} \]

where \(Q_{f,m} : \mathbb{C}^n \to \mathbb{C}, m \in \mathbb{N}_0 \), are \(m \)-homogeneous polynomials determined uniquely by the \(m \)th Frechét differential \(D^m f(0) \) of \(f \) at zero via the formula

\[Q_{f,m}(z) = \frac{1}{m!} D^m f(0)(z^m). \]

Many authors considered some problems connected with \(m \)-homogeneous polynomials in the power series expansion (1.1) of functions from different subfamilies of \(\mathcal{H}_G \) (see for instance [2, 5, 9, 13, 24]). In particular, in the case \(G \subset \mathbb{C}^2 \) Bavrin [2] gives the following sharp estimates

\[\square \text{ Springer} \]
Some results of Fekete–Szegő type for Bavrin’s families of…

\[
\sup_{z \in \mathcal{G}} \left| Q_{f,m}(z) \right| \leq 1 - \left| Q_{f,0} \right|^2, \quad m \in \mathbb{N}_1,
\]

for the homogeneous polynomials \(Q_{f,m} \) of functions belonging to the family
\[
\mathcal{B}_G = \{ f \in \mathcal{H}_G : |f(z)| < 1, z \in \mathcal{G} \}.
\]

Note, that the sharpness in the Bavrin’s result was understood as follows: There exists a bounded complete 2-circular domain \(\mathcal{G} \subset \mathbb{C}^2 \) and a function \(f \in \mathcal{B}_G \) which realizes the equality in the above inequality. Let us observe that in general case \(\mathcal{G} \subset \mathbb{C}^n, n \in \mathbb{N}_1 \), the above inequality takes currently the following form
\[
\mu_G(Q_{f,m}) \leq 1 - \left| Q_{f,0} \right|^2, \quad m \in \mathbb{N}_1,
\]
by the definition of the \(\mu_G \)-balance \(\mu_G(Q_m) \).

In the paper, we solve for \(\lambda \in \mathbb{C}, k \in \mathbb{N}_2 \), the problem of the sharp upper estimate
\[
\mu_G(Q_{f,2k} - \lambda(Q_{f,k})^2) \leq M(\lambda, k)
\]
for the pairs \(Q_{f,k}, Q_{f,2k} \) homogeneous polynomials of functions belonging to some Bavrin’s subfamilies of the families \(\mathcal{H}_{G_0}(0), \mathcal{H}_{G_1}(1) \) (the case \(k = 1 \) see the section Final Remarks). Moreover, here the sharpness is understood more generally. It means that for every bounded complete \(n \)-circular domain \(\mathcal{G} \subset \mathbb{C}^n \) there exists a function \(f \) which belongs to a mentioned Bavrin’s subfamily and realizes the equality in the above inequality.

Note that the afore-mentioned estimate is a generalization of the well known planar Fekete–Szegő [8] result onto the s.c.v. case.

In the sequel we use a special kind of functions symmetry. Let us observe that bounded complete \(n \)-circular domains \(\mathcal{G} \subset \mathbb{C}^n \) are \(k \)-symmetric sets, \(k \in \mathbb{N}_2 \), that is \(\varepsilon \mathcal{G} = \mathcal{G} \), where \(\varepsilon = \varepsilon_k = \exp \frac{2\pi i}{k} \) is a generator of the cyclic group of \(k \)th roots of unity. For \(k \in \mathbb{N}_2, j \in \mathbb{Z} \) we define the collections \(\mathcal{F}_{j,k}(\mathcal{G}, \mathbb{C}^m) \) of functions \(f \in \mathcal{F}(\mathcal{G}, \mathbb{C}^m) \), \((j,k)\)-symmetrical, i.e.,
\[
f(\varepsilon z) = \varepsilon^j f(z), \quad z \in \mathcal{G}.
\]
Let us observe that \(\mathcal{F}_{j,k}(\mathcal{G}, \mathbb{C}^m) \neq \mathcal{F}_{l,k}(\mathcal{G}, \mathbb{C}^m) \) for different \(j, l \in \{0, 1, ..., k - 1\} \). Moreover, the intersections \(\mathcal{F}_{j,k}(\mathcal{G}, \mathbb{C}^m) \cap \mathcal{F}_{l,k}(\mathcal{G}, \mathbb{C}^m) \) are the singleton \(\{0\} \) for such \(j, l \).

Now we present a functions decomposition theorem [19].

Theorem A For every function \(f \in \mathcal{F}(\mathcal{G}, \mathbb{C}^m) \) and every \(k \in \mathbb{N}_2 \) there exists exactly one sequence of functions \(f_{j,k} \in \mathcal{F}_{j,k}(\mathcal{G}, \mathbb{C}^m), j = 0, 1, ..., k - 1, \) such that
\[
f = \sum_{j=0}^{k-1} f_{j,k}.
\] (1.2)

Moreover,
\[
f_{j,k}(z) = \frac{1}{k} \sum_{l=0}^{k-1} \varepsilon^{-jl} f(\varepsilon^l z), \quad z \in \mathcal{G}.
\]

By the uniqueness of this decomposition, the functions \(f_{j,k}, j = 0, 1, ..., k - 1, \) will be called \((j,k)\)-symmetrical components of the function \(f \).
In the next sections of the paper will be very useful the fact that $f_{0,k} \in \mathcal{H}_G(1)$ for $f \in \mathcal{H}_G(1)$. Note that

$$f_{0,k}(z) = 1 + \sum_{m=1}^{\infty} Q_{f_{0,k},m}(z) = 1 + \sum_{s=1}^{\infty} Q_{f_{0,k},s}(z), z \in G.$$

Note that the above unique decomposition (1.2) of functions was used in [20] to solve some functional equations, in [21] to construction a semi power series and in [22] to obtain a uniqueness theorem of Cartan type for holomorphic mappings in \mathbb{C}^n.

We close this section with the following Golusin’s [10] result, very useful in the proof of the first result of Fekete–Szegö type for holomorphic functions of several complex variables.

Lemma 1.1 Let $\Phi : U \to U$ be a holomorphic function of the form

$$\Phi(\zeta) = \sum_{v=0}^{\infty} a_v \zeta^v, \zeta \in U.$$

Then

$$|a_m| \leq 1 - |a_p|^2,$$

for every $m \in \mathbb{N}_1, p \in \mathbb{N}_0$, satisfying the condition $0 \leq 2p < m$. The estimates are optimal.

Proof Let us recall that the simplest case

$$|a_1| \leq 1 - |a_0|^2$$

follows from the well-known inequality

$$|\Phi'(\zeta)| \leq \frac{1 - |\Phi(\zeta)|^2}{1 - |\zeta|^2}, \zeta \in U.$$

For another m, p we use a Krzyż’s idea [17, Chapt. 6.2] and some properties of (j, k)-symmetrical functions.

Let us take

$$\Psi(\zeta) = \zeta^{m-2p} \Phi(\zeta) = \sum_{s=0}^{\infty} a_s \zeta^{s+m-2p}, \zeta \in U.$$

Then $\Psi : U \to U$ and is holomorphic. Thus the $(0, m - p)$-part $\Psi_{0,m-p}$ of Ψ transforms U into itself, is holomorphic and

$$\Psi_{0,m-p}(\zeta) = \sum_{s=0}^{\infty} a_{p+s(m-p)} \zeta^{s+(m-p)}, \zeta \in U.$$

Hence, by the Schwarz Lemma (in version with the zero $\zeta = 0$ of multiplicity $m - p > 0$) it fulfils the inequality
Therefore, the function

\[\Theta(\zeta) = \frac{1}{\zeta^{m-p}} \Psi_{0,m-p}(\zeta), \zeta \in U. \]

maps \(U \) into itself, is holomorphic and has the expansion

\[\Theta(\zeta) = \sum_{s=0}^{\infty} a_{p+s(m-p)} \zeta^{s(m-p)}, \zeta \in U. \]

Consequently, replacing \(\zeta^{m-p} \in U \) by \(\bar{\xi} \in U \), we get that the function

\[\sum_{s=0}^{\infty} b_s \bar{\xi}^s = \sum_{s=0}^{\infty} a_{p+s(m-p)} \bar{\xi}^s, \bar{\xi} \in U \]

transforms holomorphically \(U \) into itself. Hence, by the first part of the proof, we get the thesis.

Note that the equality in the inequality is attained by the functions \(F(\zeta) = \zeta^m, \zeta \in U \) and \(F(\zeta) = \zeta^p, \zeta \in U \). This completes the proof \(\square \)

2 Main results

We start this section with an \(n \)-dimensional Fekete–Szegö type theorem for bounded holomorphic functions on bounded complete \(n \)-circular domains in \(\mathbb{C}^n \). Note that it is a generalization of a 1-dimensional result given by Keogh and Merkes [14].

Theorem 2.1 Let \(\varphi \) be a function from the family

\[\mathcal{B}_{\varphi}(0) = \{ \varphi \in \mathcal{H}_{\varphi}(0) : |\varphi(z)| < 1, z \in \mathcal{G} \} \]

and has the form

\[\varphi(z) = \sum_{j=1}^{\infty} Q_{\varphi,j}(z), z \in \mathcal{G}. \]

Then, for every \(k \in \mathbb{N}_1 \) and every \(\gamma \in \mathbb{C} \), there holds the inequality

\[\mu_{\mathcal{G}} \left(Q_{\varphi,2k} - \gamma (Q_{\varphi,k})^2 \right) \leq \max\{1, |\gamma|\}. \tag{2.1} \]

The estimate is sharp.

Proof For every arbitrarily fixed \(z \in \mathcal{G} \) we define the function

\[\Phi(\zeta) = \begin{cases} \frac{\varphi(z)}{\zeta}, & \zeta \in U \setminus \{0\} \\ Q_{\varphi,1}(z) = \lim_{z \to 0} \frac{\varphi(z)}{\zeta}, & \zeta = 0 \end{cases}. \]
Then Φ is holomorphic,

$$\Phi(\zeta) = \sum_{v=0}^{\infty} a_v \zeta^v, \zeta \in U,$$

for $a_{l-1} = Q_{\varphi,l}(z), l \in \mathbb{N}_1,$ and $|\Phi(0)| < 1.$ Moreover, applying a C^2-version of Schwarz Lemma, i.e., $|\varphi(z)| \leq \mu_G(z), z \in G,$ for $\varphi \in B_G(0)$, we conclude also that for $\zeta \in U \setminus \{0\}$

$$|\Phi(\zeta)| = \frac{|\varphi(\zeta)|}{|\zeta|} \leq \frac{\mu_G(\zeta)}{|\zeta|} = \frac{|\zeta| \mu_G(z)}{|\zeta|} < 1,$$

hence $\Phi : U \to U.$ Now let us observe that from the Lemma 1.1 we get

$$|a_{m-1}| \leq 1 - \left|a_{p-1}\right|^2,$$

for arbitrarily fixed $m, p \in \mathbb{N}_1,$ satisfying the condition $0 \leq 2(p-1) < m - 1.$ Thus

$$\left|Q_{\varphi,m}(z)\right| \leq 1 - \left|Q_{\varphi,p}(z)\right|^2, z \in G.$$

Therefore, for $z \in G$ and every $\gamma \in \mathbb{C}$

$$\left|Q_{\varphi,m}(z) - \gamma \left(Q_{\varphi,p}(z)\right)^2\right|$$

$$\leq \left|Q_{\varphi,m}(z)\right| + |\gamma| \left|Q_{\varphi,p}(z)\right|^2 \leq 1 - \left|Q_{\varphi,p}(z)\right|^2 + |\gamma| \left|Q_{\varphi,p}(z)\right|^2$$

$$= 1 + (|\gamma| - 1)\left|Q_{\varphi,p}(z)\right|^2 \leq \max\{1, |\gamma|\},$$

because

$$\begin{cases}
|\gamma| - 1 \left|Q_{\varphi,p}(z)\right|^2 \leq 0, & \text{if } |\gamma| < 1, \\
0 \leq (|\gamma| - 1)\left|Q_{\varphi,p}(z)\right|^2 \leq |\gamma| - 1, & \text{if } |\gamma| \geq 1.
\end{cases}$$

Consequently, by the arbitrariness of $z \in G,$ also

$$\sup_{z \in G} \left|Q_{\varphi,m}(z) - \gamma \left(Q_{\varphi,p}(z)\right)^2\right| \leq \max\{1, |\gamma|\}.$$

Putting in the above $p = k$ and $m = 2k, k \in \mathbb{N}_1,$ we obtain $m - 1 > 2(p - 1) \geq 1 \geq 0$ and

$$\sup_{z \in G} \left|Q_{\varphi,2k}(z) - \gamma \left(Q_{\varphi,k}(z)\right)^2\right| \leq \max\{1, |\gamma|\}.$$

Finally, by the fact that $Q_{\varphi,2k} - \gamma \left(Q_{\varphi,k}\right)^2$ is a $2k$-homogeneous polynomial for every $\gamma \in \mathbb{C}$ and by the definition of its μ_G-balance, we get the statements of the Theorem 2.1.

Now, we will analyse the sharpness of the above estimate.

First, we prove that in the case $|\gamma| \geq 1$, the equality in (2.1) is attained by the function $\varphi = \tilde{\varphi} \in B_G(0), \tilde{\varphi} = I^k$, more precisely $\tilde{\varphi} = I^k|_G$, i.e., $\tilde{\varphi}(z) = I^k(z), z \in G$. Indeed, since $Q_{\tilde{\varphi},k} = I^k, Q_{\tilde{\varphi},2k} = 0$ and $\mu_G(I^k) = 1$, we have
\(\mu_{\gamma}(Q_{\varphi,2k} - \gamma (Q_{\varphi,k})^2) = \mu_{\gamma}(-\gamma (Q_{\varphi,k})^2) = |\gamma| \mu_{\gamma}(Q_{\varphi,k})^2 = |\gamma| = \max\{1, |\gamma|\} \).

Now, we show that in the case \(|\gamma| < 1\), the equality in (2.1) realizes the function \(\varphi = \hat{\varphi} \in B_{\mathcal{G}}(0), \hat{\varphi} = f^{2k} \), more precisely \(\hat{\varphi} = I_{|\gamma|}^{2k} \), i.e., \(\hat{\varphi}(z) = I_{|\gamma|}^{2k}(z), z \in \mathcal{G} \). Indeed, since \(Q_{\varphi,k} = 0, Q_{\varphi,2k} = I_{|\gamma|}^{2k}, \) we get
\[
\mu_{\gamma}(Q_{\varphi,2k} - \gamma (Q_{\varphi,k})^2) = \mu_{\gamma}(Q_{\varphi,k}) = 1 = \max\{1, |\gamma|\}.
\]
This completes the proof. \(\square \)

Note that Theorem 2.1 generalizes an earlier result given by authors in [7].

In the sequel we apply Theorem 2.1 to study two Bavrin's families \(\mathcal{M}_G, \mathcal{N}_G \) of functions \(f \in \mathcal{H}_G(1) \). These families are defined by the following family \(\mathcal{C}_G \),
\[
\mathcal{C}_G = \{ f \in \mathcal{H}_G(1) : \text{Re}(f) > 0, z \in \mathcal{G} \}
\]
and by the following Temljakov [29] linear operator \(\mathcal{L} : \mathcal{H}_G \rightarrow \mathcal{H}_G
\]
\[
\mathcal{L} f(z) = f(z) + Df(z), z \in \mathcal{G},
\]
where \(Df(z) \) means the Fréchet derivative of \(f \) at the point \(z \). Note that the operator \(\mathcal{L} \) is invertible and
\[
\mathcal{L}^{-1} f(z) = \int_0^1 f(zt) dt, z \in \mathcal{G}.
\]
It is obvious also that for the transforms \(\mathcal{L} f, \mathcal{L} \mathcal{L} f \) of the functions \(f \in \mathcal{H}_G(1) \) we have
\[
\mathcal{L} f(z) = 1 + \sum_{m=1}^{\infty} Q_{\mathcal{L} f,m}(z) = 1 + \sum_{m=1}^{\infty} (m + 1) Q_{f,m}(z), z \in \mathcal{G}, \tag{2.2}
\]
\[
\mathcal{L} \mathcal{L} f(z) = 1 + \sum_{m=1}^{\infty} Q_{\mathcal{L} \mathcal{L} f,m}(z) = 1 + \sum_{m=1}^{\infty} (m + 1)^2 Q_{f,m}(z), z \in \mathcal{G}. \tag{2.3}
\]
Moreover,
\[
\mathcal{L}^{-1} f(z) = 1 + \sum_{m=1}^{\infty} Q_{\mathcal{L}^{-1} f,m}(z) = 1 + \sum_{m=1}^{\infty} \frac{1}{m + 1} Q_{f,m}(z), z \in \mathcal{G}. \tag{2.4}
\]

We say that a function \(f \in \mathcal{H}_G(1) \) belongs to the Bavrin’s family \(\mathcal{M}_G(N_G) \) if it satisfies the factorization
\[
\mathcal{L} f(z) = f(z) h(z), z \in \mathcal{G},
\]
\[
\mathcal{L} \mathcal{L} f(z) = \mathcal{L} f(z) h(z), z \in \mathcal{G}, \tag{2.5}
\]
together with a function \(h \in \mathcal{C}_G \) and the transform \(\mathcal{L} f, (\mathcal{L} \mathcal{L} f) \), respectively. Note that the families \(\mathcal{M}_G, \mathcal{N}_G \) correspond with the well-known families of normalized univalent starlike (convex) functions in the disc \(U \) [2] and the family \(\mathcal{M}_G \) can be used to construction biholomorphic starlike mappings in \(C^n \) (see [6, 18], compare also [12, 25]). Between functions
from $\mathcal{M}_G, \mathcal{N}_G$ there holds a relationship, corresponding to the well-known Alexander type connexion [1], for univalent starlike and convex mappings in the unit disc. Here, this relationship is the following: if $f \in \mathcal{N}_G$, then $Lf \in \mathcal{M}_G$ and conversely, if $f \in \mathcal{M}_G$, then $L^{-1}f \in \mathcal{N}_G$ [2].

We begin the presentation of some Fekete–Szegö type results in Bavrin’s families with the following theorem.

Theorem 2.2 Let $G \subset \mathbb{C}^n$ be a bounded complete n-circular domain and let $f \in \mathcal{N}_G \cap \mathcal{F}_{0,k}(G,\mathbb{C}), k \in \mathbb{N}_2$. If the expansion of the function f into a series of m-homogeneous polynomials $Q_{f,m}$ has the form (1.1), with $Q_{f,0} = 1$, then for the homogeneous polynomials $Q_{f,2k}, Q_{f,k}$ and every $\lambda \in \mathbb{C}$ there holds the following sharp estimate:

$$\mu_G\left(Q_{f,2k} - \lambda(Q_{f,k})^2\right) \leq \frac{1}{k(2k+1)} \max\left\{1, \left|\frac{4(2k+1)\lambda - (k+1)^2(2k+2)}{k(k+1)^2}\right|\right\}.$$ \hspace{1cm} (2.6)

Proof Let us recall that between the functions $p \in C_G$ and $\varphi \in B_G(0)$, there holds the following relation [2]:

$$\frac{p - 1}{p + 1} = \varphi \in B_G(0) \iff p \in C_G.$$

Let $k \in \mathbb{N}_2$ be arbitrarily fixed and let the function f belongs to $\mathcal{N}_G \cap \mathcal{F}_{0,k}(G,\mathbb{C})$. Then, by the definition of the family \mathcal{N}_G and by the above relation between the families $C_G, B_G(0)$, we get

$$\frac{L}{L}f(z) - \frac{L}{L}f(z) = \varphi(z), z \in G.$$ \hspace{1cm} (2.7)

where $\varphi \in B_G(0) \cap \mathcal{F}_{0,k}(G,\mathbb{C})$. On the other hand, from (1.1) we have for $z \in G$:

$$\varphi(z) = \sum_{s=1}^{\infty} Q_{\varphi,s,k}(z),$$

$$f(z) = 1 + \sum_{s=1}^{\infty} Q_{f,s,k}(z)$$

and from (2.2), (2.3) also

$$Lf(z) = 1 + \sum_{s=1}^{\infty} (sk + 1)Q_{f,s,k}(z),$$

$$\frac{L}{L}f(z) = 1 + \sum_{s=1}^{\infty} (sk + 1)^2Q_{f,s,k}(z).$$

Inserting the above expansion of functions into (2.7), we receive after computations

$$\sum_{s=1}^{\infty} sk(1+sk)Q_{f,s,k}(z) = \left(\sum_{s=1}^{\infty} Q_{\varphi,s,k}(z)\right)\left(2 + \sum_{s=1}^{\infty} (sk + 1)(sk + 2)Q_{f,s,k}(z)\right).$$
Then, comparing the m-homogeneous polynomials of the same degree on both sides of the above equality, we can determine homogeneous polynomials $Q_{\varphi,k}$, $Q_{\varphi,2k}$, as follows

\[
\begin{align*}
Q_{\varphi,k} &= \frac{1}{2}k(k+1)Q_{f,k}, \\
Q_{\varphi,2k} &= k(2k+1)Q_{f,2k} - \frac{1}{4}k(k+1)^2(k+2)(Q_{f,k})^2.
\end{align*}
\]

(2.8)

Putting the above equalities into Theorem 2.1 and using the fact that the mapping $(Q_{f,k})^2$, is a 2k-homogenous polynomial, we obtain

\[
\mu_G\left[k(2k+1)Q_{f,2k} - \left(\frac{1}{4}k(k+1)^2(k+2) + \gamma \frac{1}{4}k^2(k+1)^2\right)(Q_{f,k})^2\right] \leq \max\{1, |\gamma|\}.
\]

Denoting

\[
\lambda = \frac{(k+1)^2}{4(2k+1)}(k+2+\gamma k),
\]

we obtain

\[
\mu_G\left(Q_{f,2k} - \lambda(Q_{f,k})^2\right) \leq \frac{1}{k(2k+1)} \max\left\{1, \left|\frac{4(2k+1)\lambda - (k+1)^2(k+2)}{k(k+1)^2}\right|\right\}.
\]

Now, we show the sharpness of our estimate. To do it, let us consider two cases.

At the beginning, we prove that, in the case

\[
\frac{4(2k+1)\lambda - (k+1)^2(k+2)}{k(k+1)^2} \geq 1
\]

the equality in (2.6) is attained by the function $f = L^{-1}\tilde{f}$, with

\[
\tilde{f}(z) = (1 - I^\ast(z))^{\frac{2}{\gamma}}, z \in \mathcal{G},
\]

(2.9)

where the branch of the function $(1 - \xi)^{\frac{2}{\gamma}}$ takes value 1 at the point $\xi = 0$. Indeed. Function f belongs to $\mathcal{F}_{0,k}(\mathcal{G},\mathbb{C})$, because $\tilde{f} \in \mathcal{F}_{0,k}(\mathcal{G},\mathbb{C})$. On the other hand, the function $f = L^{-1}\tilde{f}$ belongs to \mathcal{N}_G, because the function φ from (2.7) has the form $\varphi = \tilde{\varphi} = I^k$ and belongs to $\mathcal{B}_G(0)$. Therefore, we can write equalities (2.8) in the following form

\[
Q_{f,k} = \frac{2}{k(k+1)}I^k, Q_{f,2k} = \frac{k+2}{k^2(2k+1)}(I^k)^2.
\]

(2.10)

From this, by the case condition for λ, we have step by step:
\[
\mu_g(Q_{f,2k} - \lambda(Q_{f,k}))^2 = \mu_g \left[\frac{(k + 1)^2(k + 2) - 4(2k + 1)\lambda}{k^2(k + 1)^2(2k + 1)} \right]^2 \\
= \left| \frac{(k + 1)^2(k + 2) - 4(2k + 1)\lambda}{k^2(k + 1)^2(2k + 1)} \right| \mu_g \left(t^{2k} \right) \\
= \frac{1}{k(2k + 1)} \max \left\{ 1, \left| \frac{4(2k + 1)\lambda - (k + 1)^2(k + 2)}{k(k + 1)^2} \right| \right\}.
\]

Now, we show that, in the case
\[
\left| \frac{4(2k + 1)\lambda - (k + 1)^2(k + 2)}{k(k + 1)^2} \right| < 1
\]
the equality in (2.6) realizes the function \(f = \mathcal{L}^{-1}\hat{f} \), with
\[
\hat{f}(z) = \left(1 - t^{2k} \right)^{\frac{1}{\xi}}, \quad z \in \mathcal{G}, \quad (2.11)
\]
where the branch of the function \((1 - \xi)^{\frac{1}{\xi}} \) takes value 1 at the point \(\xi = 0 \). The function \(f = \mathcal{L}^{-1}\hat{f} \) belongs to \(\mathcal{F}_{0,k}(G, \mathbb{C}) \), because \(\hat{f} \in \mathcal{F}_{0,k}(G, \mathbb{C}) \). Also, \(f \in \mathcal{N}_g \), because the function \(\varphi \) from (2.7) has the form \(\varphi = \hat{\varphi} = t^{2k} \) and belongs to \(\mathcal{B}_g(0) \). Therefore, we can write equalities (2.8) in the following form
\[
Q_{f,k} = 0, \quad Q_{f,2k} = \frac{1}{k(2k + 1)} t^{2k}.
\]
(2.12)

From this, by the case condition for \(\lambda \), we have:
\[
\mu_g(Q_{f,2k} - \lambda(Q_{f,k}))^2 = \mu_g \left(\frac{1}{k(2k + 1)} t^{2k} \right) = \frac{1}{k(2k + 1)} \mu_g (t^{2k}) \\
= \frac{1}{k(2k + 1)} \max \left\{ 1, \left| \frac{4(2k + 1)\lambda - (k + 1)^2(k + 2)}{k(k + 1)^2} \right| \right\}.
\]

This completes the proof. \(\square \)

We continue the presentation of some Fekete–Szegö type results in Bavrin’s families with the following theorem:

Theorem 2.3 Let \(G \subset \mathbb{C}^n \) be a bounded complete n-circular domain and let \(k \in \mathbb{N}_2 \). If the expansion of the function \(f \in \mathcal{M}_g \cap \mathcal{F}_{0,k}(G, \mathbb{C}) \), into a series of m-homogenous polynomials \(Q_{f,m} \) has the form (1.1), with \(Q_{f,0} = 1 \), then for the homogeneous polynomials \(Q_{f,2k}, Q_{f,k} \) and \(\lambda \in \mathbb{C} \) there holds the following sharp estimate:
\[
\mu_g(Q_{f,2k} - \lambda(Q_{f,k}))^2 \leq \frac{1}{k} \max \left\{ 1, \frac{|2 + k - 4\lambda|}{k} \right\}. \quad (2.13)
\]

Proof Let \(k \in \mathbb{N}_2 \) be arbitrarily fixed. Then, it is obvious that \(\mathcal{L}^{-1}f \in \mathcal{F}_{0,k}(G, \mathbb{C}) \), because \(f \in \mathcal{F}_{0,k}(G, \mathbb{C}) \). Also the assumption that \(f \in \mathcal{M}_g \), by the relationship of the Alexander type, gives that \(\mathcal{L}^{-1}f \in \mathcal{N}_g \). Hence, we have that \(\mathcal{L}^{-1}f \in \mathcal{N}_g \cap \mathcal{F}_{0,k}(G, \mathbb{C}) \). On the other hand, its expansion into a series of \(m \)-homogenous polynomials \(Q_{f,m} \), by (2.4), has the form

\(\square \) Springer
\[\mathcal{L}^{-1}f(z) = 1 + \sum_{s=1}^{\infty} \frac{1}{sk+1} Q_{f,sk}(z), z \in \mathcal{G}. \]

Thus, in view of (2.6) from Theorem 2.2, we get that for every \(\delta \in \mathbb{C} \)
\[
\mu_\mathcal{G}
\left(\frac{1}{2k+1} Q_{f,2k} - \delta \left(\frac{1}{k+1} Q_{f,k} \right)^2 \right)
\leq \frac{1}{k(2k+1)} \max \left\{ 1, \frac{4(2k+1)\delta - (k+1)^2(k+2)}{k(k+1)^2} \right\}.
\]

Hence,
\[
\mu_\mathcal{G}
\left(Q_{f,2k} - \delta \frac{2k+1}{(k+1)^2} (Q_{f,k})^2 \right)
\leq \frac{1}{k} \max \left\{ 1, \frac{4(2k+1)\delta - (k+1)^2(k+2)}{k(k+1)^2} \right\}
\]
and denoting \(\delta \frac{2k+1}{(k+1)^2} = \lambda \), finally
\[
\mu_\mathcal{G}
\left(Q_{f,2k} - \lambda (Q_{f,k})^2 \right)
\leq \frac{1}{k} \max \left\{ 1, \frac{4\lambda - (k+2)}{k} \right\},
\]
which is the same as (2.13).

It remains to show the sharpness of the estimate (2.13).

First, we prove that, in the case
\[
\frac{|2 + k - 4\lambda|}{k} \geq 1
\]
the equality in (2.13) is attained by the function \(f = \tilde{f} \) defined in (2.9). Of course \(\tilde{f} \in \mathcal{F}_{0,k}(\mathcal{G},\mathbb{C}) \) and, by the Alexander type relationship and the fact that \(\mathcal{L}^{-1}\tilde{f} \in \mathcal{N}_\mathcal{G} \) (see the proof of the sharpness in Theorem 2.2), the function \(\tilde{f} \) belongs to \(\mathcal{M}_\mathcal{G} \). Therefore, in view of (2.2) and (2.10), we achieve
\[
Q_{f,k} = Q_{\tilde{f},k} = \frac{2}{k} t^k, \quad Q_{f,2k} = Q_{\tilde{f},2k} = \frac{k+2}{k^2} (t^k)^2.
\]

From this (see the proof of the sharpness in Theorem 2.2) and by the case condition for \(\lambda \), we have step by step:
\[
\mu_\mathcal{G}
\left(Q_{f,2k} - \lambda (Q_{f,k})^2 \right)
= \mu_\mathcal{G}
\left(\frac{(k+2) - 4\lambda}{k^2} (t^k)^2 \right)
= \left| \frac{(k+2) - 4\lambda}{k^2} \right| \mu_\mathcal{G}(t^{2k}) = \frac{1}{k} \max \left\{ 1, \frac{|2 + k - 4\lambda|}{k} \right\}.
\]

Now, we show that, in the case
\[
\frac{|2 + k - 4\lambda|}{k} < 1
\]
the equality in (2.13) realizes the function \(f = \tilde{f} \) defined in (2.11). Of course \(\tilde{f} \in \mathcal{F}_{0,k}(\mathcal{G},\mathbb{C}) \) and, by the Alexander type relationship and the fact that \(\mathcal{L}^{-1}\tilde{f} \in \mathcal{N}_\mathcal{G} \) (see the proof of the
sharpness in Theorem 2.2), the function \(\hat{f} \) belongs to \(\mathcal{M}_G \). Therefore, in view of (2.2) and (2.12) we achieve

\[
Q_{f,k} = Q_{f,2k} = 0, \quad Q_{f,2k} = \frac{1}{k} f^{2k}.
\]

From this (see the proof of the sharpness in Theorem 2.2) and by the case condition for \(\lambda \), we conclude that:

\[
\mu \left(Q_{f,2k} - \lambda (Q_{f,k})^2 \right) = \mu \left(\frac{1}{k} f^{2k} \right) = \frac{1}{k} = \frac{1}{k} \max \left\{ 1, \frac{|2 + k - 4\lambda|}{k} \right\}.
\]

This completes the proof. \(\square \)

Now, we transfer the statement of Theorem 2.3, onto a family \(\mathcal{M}^k_G \cap \mathcal{F}_{0,k}(G,\mathbb{C}), k \in \mathbb{N}_2 \). Here, \(\mathcal{M}^k_G \) is defined by the factorization similar as for the elements from \(\mathcal{M}_G \). More precisely, the function \(f \) of the right hand side in (2.5) is replaced by a function from \(\mathcal{F}_{0,k}(G,\mathbb{C}), k \in \mathbb{N}_2 \), generated by \(f \). Formally, we say that a function \(f \in \mathcal{H}_G(1) \) belongs to \(\mathcal{M}^k_G, k \in \mathbb{N}_2 \) (see [3, 5]) if there exists a function \(h \in \mathcal{C}_G \) such that

\[
\mathcal{L} f(z) = f_{0,k}(z) h(z), z \in \mathcal{G},
\]

where \(f_{0,k} \in \mathcal{F}_{0,k}(G,\mathbb{C}) \) is the \((0,k)\)-symmetrical component of the function \(f \) in the decomposition (1.2) from Theorem A. This family for \(k = 2 \) corresponds to a well-known Sakaguchi family [27] of a complex variable functions; strictly speaking of functions univalent starlike with respect to two symmetric points. In the paper [5] it was shown that for \(k \in \mathbb{N}_2 \) the inclusions \(\mathcal{M}_G \subset \mathcal{M}^k_G, \mathcal{M}^k_G \subset \mathcal{M}_G \) do not hold, but

\[
\mathcal{M}_G \cap \mathcal{F}_{0,k}(\mathcal{G},\mathbb{C}) = \mathcal{M}^k_G \cap \mathcal{F}_{0,k}(\mathcal{G},\mathbb{C}).
\]

This identity and Theorem 2.3 implies directly the next result of Fekete–Szegő type in Bavrin’s families:

Theorem 2.4 Let \(\mathcal{G} \subset \mathbb{C}^n \) be a bounded complete \(n \)-circular domain and let \(f \in \mathcal{M}^k_G \cap \mathcal{F}_{0,k}(\mathcal{G},\mathbb{C}), k \in \mathbb{N}_2 \). If the expansion of the function \(f \) into a series of \(m \)-homogeneous polynomials \(Q_{f,m} \) has the form (1.1), with \(Q_{f,0} = 1 \), then for the homogeneous polynomials \(Q_{f,2k}, Q_{f,k} \) and \(\lambda \in \mathbb{C} \) there holds the following sharp estimate:

\[
\mu \left(Q_{f,2k} - \lambda (Q_{f,k})^2 \right) \leq \frac{1}{k} \max \left\{ 1, \frac{|2 + k - 4\lambda|}{k} \right\}.
\]

The equality in the above inequality realize the same functions \(f = \tilde{f}, f = \hat{f} \) as in the previous Theorem 2.2.

3 Applications

In this section we apply Theorems 2.3 and 2.4, to obtain a Fekete–Szegő type results for two families of biholomorphic mappings in \(\mathbb{C}^n \). By \(\mathcal{S}^n(\mathbb{B}^n) \) let us denote the family of biholomorphic mappings \(F \in \mathcal{F}(\mathbb{B}^n, \mathbb{C}^n), F(0) = 0, DF(0) = I \) onto starlike domains
F(\mathbb{B}^n). For a wide collection of references in this area see the monographs [11, 16]. In a Kikuchi–Matsuno–Suffridge characterization [15, 23, 28] of the family $S^n(\mathbb{B}^n)$, the collection $P(\mathbb{B}^n)$ of all holomorphic mappings $H \in \mathcal{F}(\mathbb{B}^n, \mathbb{C}^n)$, $H(0) = 0$, $DH(0) = I$, such that $\Re \langle H(z), z \rangle > 0$, $z \in \mathbb{B}^n \setminus \{0\}$, plays the main role (here $\langle \cdot, \cdot \rangle$ means the Euclidean inner product). This characterization is included in the following theorem:

Theorem B A locally biholomorphic mapping $F \in \mathcal{F}(\mathbb{B}^n, \mathbb{C}^n)$ normalized by the conditions $F(0) = 0$, $DF(0) = I$, belongs to $S^n(\mathbb{B}^n)$, iff there exist a mapping $H \in P(\mathbb{B}^n)$ such that

$$F(z) = DF(z)H(z), \ z \in \mathbb{B}^n. \quad (3.1)$$

Let $\tilde{S}^n(\mathbb{B}^n)$ be the family of mappings $F \in S^n(\mathbb{B}^n)$ with the factorization

$$F(z) = zf(z), \ z \in \mathbb{B}^n, \quad (3.2)$$

where $f \in \mathcal{H}_{\mathbb{B}^n}(1)$.

In the paper [6] the authors considered a family of biholomorphic mappings $S^k(\mathbb{B}^n), k \in \mathbb{N}_2$, defined by an equation similar to (3.1). More precisely, the mapping F of the left hand side in (3.1) is replaced by a function from $\mathcal{F}_{1,k}(\mathbb{B}^n, \mathbb{C}^n)$, generated by F.

Formally, we say that a locally biholomorphic mapping $F \in \mathcal{F}(\mathbb{B}^n, \mathbb{C}^n)$, normalized by $F(0) = 0$, $DF(0) = I$, belongs to the family $S^k(\mathbb{B}^n), k \in \mathbb{N}_2$, if it satisfies the equation

$$F_{1,k}(z) = DF(z)H(z), \ z \in \mathbb{B}^n,$$

where $H \in P(\mathbb{B}^n)$ and $F_{1,k} \in \mathcal{F}_{1,k}(\mathbb{B}^n, \mathbb{C}^n)$ is the $(1, k)$-symmetrical part of F in the decomposition (1.2). Also in the paper [6] the authors proved, that for every $k \in \mathbb{N}_2$ any inclusions $S^k(\mathbb{B}^n) \subset S^n(\mathbb{B}^n), S^n(\mathbb{B}^n) \subset S^k(\mathbb{B}^n)$ do not holds. However, for the same k there holds the following identity:

$$S^k(\mathbb{B}^n) \cap \mathcal{F}_{1,k}(\mathbb{B}^n, \mathbb{C}^n) = S^n(\mathbb{B}^n) \cap \mathcal{F}_{1,k}(\mathbb{B}^n, \mathbb{C}^n). \quad (3.3)$$

Let $\tilde{S}^k(\mathbb{B}^n), k \in \mathbb{N}_2$, be the family of mappings $F \in \tilde{S}^k(\mathbb{B}^n)$ with the factorization (3.2).

Now, we present the main theorem, in this section of the paper. It is a Fekete–Szegö type result for locally biholomorphic mappings in \mathbb{C}^n, compare [30].

Theorem 3.1 For mappings $F \in \tilde{S}^k(\mathbb{B}^n) \cap \mathcal{F}_{1,k}(\mathbb{B}^n, \mathbb{C}^n), k \in \mathbb{N}_2$, the parameter $\lambda \in \mathbb{C}$ and points $z \in \mathbb{B}^n \setminus \{0\}$ there holds the following sharp estimate

$$\left| \frac{T_z(D^{2k+1}F(0)(z^{2k+1)}))}{(2k+1)!\|z\|^{2k+1}} - \lambda \left(\frac{T_z(D^{k+1}F(0)(z^{k+1)}))}{(k+1)!\|z\|^{k+1}} \right)^2 \right| \leq \frac{1}{k} \max \left\{ 1, \frac{|2k - 4\lambda|}{k} \right\}, \quad (3.4)$$

where $T_z \in (\mathbb{C}^n)^*, z \in \mathbb{B}^n \setminus \{0\}$, is arbitrary functional satisfying the conditions $\|T_z\| = 1$, $T_z(z) = \|z\|$.

Proof We start with a few facts, very useful in the proof:

1. A mapping F, satisfying (3.2), belongs to $\tilde{S}^k(\mathbb{B}^n)$, iff $f \in \mathcal{M}_{\mathbb{B}^n}^k$ (see [6, 18]).
2. A mapping F of the form (3.2) belongs to $\mathcal{F}_{1,k}(\mathbb{B}^n, \mathbb{C}^n)$, iff $f \in \mathcal{F}_{0,k}(\mathbb{B}^n, \mathbb{C})$.
3. For $z \in \mathbb{B}^n$ there hold (see for instance [30]) the equalities:
\[
\frac{D^{2k+1}F(0)(z^{2k+1})}{(2k+1)!} = z^{k} \frac{D^{2k}f(0)(z^{2k})}{(2k)!},
\]
\[
\frac{D^{k+1}F(0)(z^{k+1})}{(k+1)!} = z^{k} \frac{D^{k}f(0)(z^{k})}{(k)!}.
\]

4. For \(\varepsilon \in \mathbb{C}\) the mapping \(Q_{f,2k} - \lambda Q_{f,k}^{2} \in \mathcal{F}(\mathbb{B}^{n}, \mathbb{C})\), is a 2kth homogeneous polynomial.

5. There hold the identity \(\mu_{\mathbb{B}^{n}}(\cdot) = || \cdot ||\) in \(\mathbb{C}^{n}\).

Applying the above facts and Theorem 2.5, we get step by step

\[
\left| \frac{T_{z}(D^{2k+1}F(0)(z^{2k+1})))}{(2k+1)!||z||^{2k+1}} - \lambda \left(\frac{T_{z}(D^{k+1}F(0)(z^{k+1})))}{(k+1)!||z||^{k+1}} \right)^{2} \right|
\]
\[
= \left| \frac{T_{z}(z)D^{2k}f(0)(z^{2k})}{(2k)!||z||^{2k+1}} - \lambda \left(\frac{T_{z}(z)D^{k}f(0)(z^{k})}{(k)!||z||^{k+1}} \right)^{2} \right|
\]
\[
= \left| \frac{D^{2k}f(0)(z^{2k})}{(2k)!||z||^{2k}} - \lambda \left(\frac{D^{k}f(0)(z^{k})}{(k)!||z||^{k}} \right)^{2} \right|
\]
\[
= \left| \frac{Q_{f,2k}(z)}{||z||^{2k}} - \lambda \left(\frac{Q_{f,k}(z)}{||z||^{k}} \right)^{2} \right|
\]
\[
\leq \sup_{z \in \mathbb{B}^{n}} \left| \frac{Q_{f,2k}(z) - \lambda (Q_{f,k}(z))^{2}}{||z||^{2k}} \right| = \mu_{\mathbb{B}^{n}}(Q_{f,2k} - \lambda (Q_{f,k})^{2})
\]
\[
\leq \frac{1}{k} \max \left\{ 1, \frac{2 + k - 4 \lambda}{k} \right\}.
\]

It remains to show the sharpness of the estimate (3.4).

To do it, observe first that there exist points \(z^{0} \in \mathbb{B}^{n}\setminus\{0\}\) such that \(|I(z^{0})||z^{0}|| = 1\). It follows from the maximum principle for the modulus of holomorphic functions of several complex variables, because ||f|| = \(\mu_{\mathbb{B}^{n}}(I) = 1\). We will show that the equality in (3.4) in such points are attained by the mappings \(\mathcal{F}, \mathcal{F}\) of the form (3.2), where \(f = \tilde{f}, f = \bar{f}\) are defined in \(\mathcal{G} = \mathbb{B}^{n}\) by (2.9), (2.11) in the cases \(|2 + k - 4 \lambda| \geq k\) and \(|2 + k - 4 \lambda| < k\), respectively. The mappings \(\mathcal{F}, \mathcal{F}\) belong to \(\mathcal{F}_{1,k}(\mathbb{B}^{n}, \mathbb{C}^{n})\), by the enumerated above fact 2, because \(\tilde{f}, \bar{f} \in \mathcal{F}_{0,k}(\mathbb{B}^{n}, \mathbb{C})\). Also \(\mathcal{F}, \mathcal{F} \in \mathcal{F}_{k}(\mathbb{B}^{n})\), by the enumerated above fact l and the relations \(\bar{f}, \bar{f} \in \mathcal{M}_{k}\).

First, we assume that \(|2 + k - 4 \lambda| \geq k\), i.e., \(f = \tilde{f}\) It is easy to check that in this case

\[
Q_{f,k} = Q_{\tilde{f},k} = \frac{2}{k} f^{k}, \quad Q_{f,2k} = Q_{\tilde{f},2k} = \frac{k + 2}{k} (f^{k})^{2}.
\]

For \(z = z^{0}\) and \(F = \tilde{F}\), i.e., \((f = \tilde{f})\), we obtain (for the first below equality see the previous part of the proof)
Theorem 3.2 For mappings $F \in \mathcal{S}^n(\mathbb{B}^n) \cap \mathcal{F}_{1,\lambda}(\mathbb{B}^n, \mathbb{C}^n), k \in \mathbb{N}_2$, points $z \in \mathbb{B}^n \setminus \{0\}$ and parameter $\lambda \in \mathbb{C}$, there holds the following sharp estimate
\[
\left| T_z(D^{2k+1}F(0)(z^{2k+1})) \right|_{(2k + 1)!\|z\|^{2k+1}} - \lambda \left(T_z(D^{k+1}F(0)(z^{k+1})) \right|_{(k + 1)!\|z\|^{k+1}}^2 \right) \\
= \frac{1}{\|z\|^{2k}} Q_{f,2k}(z) - \lambda \left(Q_{f,2k}(z) \right|_{k+1}^2 \\
= \frac{1}{\|z\|^{2k}}\left| k + 2 \left(f^k(z) \right) - \lambda \frac{4}{k^2} \left(f^k(z) \right) \right| = \left| \left(f^k(z) \right) \right|_{k+1}^2 \left| \frac{k + 2}{k^2} - \lambda \frac{4}{k^2} \right| \\
= \frac{1}{k} \max \left\{ 1, \frac{|2 + k - 4\lambda|}{k} \right\}.
\]

Now, we assume that $|2 + k - 4\lambda| < k$, i.e., $f = \hat{f}$. In this case it is easy to check that

$$Q_{f,k} = Q_{\hat{f},k} = 0, \quad Q_{f,2k} = Q_{\hat{f},2k} = \frac{1}{k} f^{2k}.$$

For $z = z^0$ and $F = \hat{F}$, i.e., $(f = \hat{f})$, we obtain similarly
\[
\left| T_z(D^{2k+1}F(0)(z^{2k+1})) \right|_{(2k + 1)!\|z\|^{2k+1}} - \lambda \left(T_z(D^{k+1}F(0)(z^{k+1})) \right|_{(k + 1)!\|z\|^{k+1}}^2 \right) \\
= \frac{1}{\|z\|^{2k}} \left| f^{2k}(z) \right| = \max \left\{ 1, \frac{|2 + k - 4\lambda|}{k} \right\}.
\]

The identity (3.3) and Theorem 3.1 implies the following result of Fekete–Szegö type for starlike biholomorphic mappings in \mathbb{C}^n.

Theorem 3.2 For mappings $F \in \mathcal{S}^n(\mathbb{B}^n) \cap \mathcal{F}_{1,\lambda}(\mathbb{B}^n, \mathbb{C}^n), k \in \mathbb{N}_2$, points $z \in \mathbb{B}^n \setminus \{0\}$ and parameter $\lambda \in \mathbb{C}$, there holds the following sharp estimate
\[
\left| T_z(D^{2k+1}F(0)(z^{2k+1})) \right|_{(2k + 1)!\|z\|^{2k+1}} - \lambda \left(T_z(D^{k+1}F(0)(z^{k+1})) \right|_{(k + 1)!\|z\|^{k+1}}^2 \right) \leq \frac{1}{k} \max \left\{ 1, \frac{|2 + k - 4\lambda|}{k} \right\},
\]

where $T_z \in (\mathbb{C}^n)^n, z \in \mathbb{B}^n \setminus \{0\}$, is arbitrary functional satisfying the conditions: $\|T_z\| = 1$, $T_z(z) = \|z\|$.

In the other way a similar theorem was proved by Xu [30].

4 Final remarks

It is possible to allow also $k = 1$ in definition of (j,k)-symmetrical, $j \in \mathbb{Z}$, functions, from $\mathcal{F}(G,\mathbb{C}^m)$. Then $\varepsilon = 1$ and we should take the convention $\mathcal{F}_{1,\lambda}(G,\mathbb{C}^m) = \mathcal{F}(G,\mathbb{C}^m)$ for $j \in \mathbb{Z}$.

Consequently, in the case $m = 1$
while in the case \(m = n \)

\[
\tilde{S}^n(\mathbb{B}^n) \cap \mathcal{F}_{1,1}(\mathbb{B}^n, \mathbb{C}^n) = \tilde{S}^n(\mathbb{B}^n) = \tilde{S}^1(\mathbb{B}^n) = \tilde{S}^1(\mathbb{B}^n) \cap \mathcal{F}_{1,1}(\mathbb{B}^n, \mathbb{C}^n).
\]

Therefore, for \(\lambda \in \mathbb{C} \), we obtain the following sharp estimates

\[
\mu_\mathcal{G}\left(Q_{f,2} - \lambda(Q_{f,1})^2\right) \leq \frac{1}{3} \max \{1, 3|\lambda - 1|\},
\]

\[
\mu_\mathcal{G}\left(Q_{f,2} - \lambda(Q_{f,1})^2\right) \leq \max \{1, 3|4\lambda|\},
\]

\[
\left| \frac{T_z(D^2F(0)(z^2))}{3||z||^3} - \lambda \left(\frac{T_z(D^2F(0)(z^2))}{2||z||^2} \right)^2 \right| \leq \max \{1, 3|4\lambda|\}, z \in \mathbb{B}^n \setminus \{0\},
\]

with \(T_z \in (\mathbb{C}^n)^*, \|T_z\| = 1, T_z(z) = ||z|| \), for the families \(\mathcal{N}_\mathcal{G}, \mathcal{M}_\mathcal{G} = \mathcal{M}_\mathcal{G}^1 \cap \mathcal{F}_{0,1}(\mathcal{G}, \mathbb{C}) \), respectively.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alexander, J.W.: Functions which map the interior of the unit circle upon simple regions. Ann. Math. 17, 12–22 (1915)
2. Bavrin, I.I.: A Classes of regular functions in the case of several complex variables and extremal problems in these classes. Moskov Obl. Ped. Inst., Moscov, pp. 1–99 (1976) (In Russian)
3. Długosz, R.: Embedding theorems for holomorphic functions of several complex variables. J. Appl. Anal. 19, 153–165 (2013)
4. Długosz, R., Leś, E.: Embedding theorems and extreme problems for holomorphic functions on circular domains of \(\mathbb{C}^n \). Complex Variables Elliptic Equ. 59, 883–899 (2014)
5. Długosz, R., Liczberski, P.: An application of hypergeometric functions to a construction in several complex variables. J. d’Analyse Math. 137, 707–721 (2019)
6. Długosz, R., Liczberski, P.: Relations among starlikeness, convexity and k-fold symmetry of locally biholomorphic mappings in \(\mathbb{C}^n \). J. Math. Anal. Appl. 450, 169–179 (2017)
7. Długosz, R., Liczberski, P.: Some results of Fekete–Szegö type. Some holomorphic Functions of several complex variables. Symmetry 12(1707), 1–10 (2020)
8. Fekete, M., Szegö, G.: Eine Bemerkung über ungerade schlichte Funktionen. J. Lond. Math. Soc. 8, 85–89 (1933)
9. Fukui, S.: On the estimates of coefficients of analytic functions. Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 10, 216–218 (1969)
10. Golusin, G.M.: Estimates for analytic functions with bounded mean of the modulus. Trav. Inst. Math. Stekloff 18, 3–88 (1946)
11. Graham, I., Kohr, G.: Geometric Function Theory in One and Higher Dimensions. Marcel Dekker Inc, New York (2003)

Springer
12. Hamada, H., Honda, T., Kohr, G.: Parabolic starlike mappings in several complex variables. Manuscrr. Math. 123, 301–324 (2007)
13. Higuchi, T.: On coefficients of holomorphic functions of several complex variables. Sci. Rep. Tokyo Kyoiku Daigaku 8, 251–258 (1965)
14. Keogh, F.R., Merkes, E.P.: A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 20, 8–12 (1969)
15. Kikuchi, K.: Starlike and convex mappings in several complex variables. Pac. J. Math. 44, 569–580 (1973)
16. Kohr, G., Liczberski, P.: Univalent Mappings of Several complex Variables. Cluj University Press, Cluj-Napoca (1998)
17. Krzyż, J.G.: Problems in Complex Variable Theory. Elsevier, New York (1971)
18. Liczberski, P.: On the subordination of holomorphic mappings in \mathbb{C}^n. Demonstr. Math. 2, 293–301 (1986)
19. Liczberski, P., Połubiński, J.: On (j,k)-symmetrical functions. Math. Bohem. 120, 13–28 (1995)
20. Liczberski, P., Połubiński, J.: Functions (j,k)-symmetrical and functional equations with iterates of the unknown function. Publ. Math. Debr. 60, 291–305 (2002)
21. Liczberski, P., Połubiński, J.: Symmetrical series expansion of Complex valued functions. N. Z. J. Math. 27, 245–253 (1998)
22. Liczberski, P., Połubiński, J.: A uniqueness theorem of Cartan–Gutzmer type for holomorphic mappings in \mathbb{C}^n. Ann. Pol. Math. 79, 121–127 (2002)
23. Matsuno, T.: Star-like and convex-like theorems in the complex space. Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 5, 88–95 (1955)
24. Michiwaki, Y.: Note on some coefficients in a starlike functions of two complex variables. Res. Rep. Nagaoka Tech. College 1, 151–153 (1963)
25. Pfaltzgraff, J.A., Suffridge, T.J.: An extension theorem and linear invariant families generated by starlike maps. Ann. UMCS Sect. Math. 53, 193–207 (1999)
26. Rudin, W.: Functional Analysis. McGraw-Hill Inc., New York (1991)
27. Sakaguch, K.: On certain univalent mapping. J. Math. Soc. Jpn. 11, 72–75 (1959)
28. Suffridge, T.J.: The principle of subordination applied to functions of several variables. Pac. J. Math. 33, 241–248 (1970)
29. Temljakov, A.: Integral representation of functions of two complex variables. Izv. Acad. Sci. SSSR Ser. Math. 21, 89–92 (1957)
30. Xu, Q.H.: A refinement of the coefficient inequalities for a subclass of starlike mappings in several complex variables. Results Math. 74, 156 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.