A review on the distribution records of mangrove-associated heterocytous cyanobacteria: an update

Arun T. Ram 1* and Tessy Paul P. 2

1. Research & PG Department of Botany, M.E.S. Asmabi College, P.Vemballur, Kodungallur, Thrissur District, Kerala – 680 671

2. Department of Botany, Christ College (Autonomous), Irinjalakuda, Thrissur District, Kerala- 680 125

1 & 2 Affiliated to University of Calicut

Abstract:

Microorganisms associated with mangrove habitats have an important role in this ecosystem, contributing significantly to its productivity and ecosystem maintenance. Studies on the distribution of mangroves inhabiting cyanobacterial diversity are scarce and meagre. This study aims to record the occurrence and geographic distribution of the heterocytous cyanobacteria in mangrove environments during 43 years of research carried out by different countries in the world. We consulted 33 publications (national and international journals and books published from 1977 to 2020). There are a total of 70 heterocytous cyanobacterial species. The dominant family was Nostocaceae with 27 species, followed by Calothrichaceae with 12 species, Rivulariaceae and Scytonemataceae with 10 species each, Aphanizomenonaceae with 5 species, Hapalosiphonaceae with 2 species, Chlorogloeopsidaceae, Heteroscytonemataceae, Microchaetaceae and Tolypothrichaceae with one species each. This study will be a contribution to our knowledge of cyanobacterial biodiversity in mangrove ecosystems and generate data for future taxonomic, ecological and biogeographic studies.

Keywords: Cyanobacteria, heterocytous, mangrove environment, biodiversity.

Introduction

Cyanobacteria are the most ancestral lineage responsible for the generation of an oxygen-rich atmosphere that originated before 3.0 Ga (Schirrmeister et al., 2015). Taxonomic classification of cyanobacteria is the only method for understanding their diversity and diversification processes (Komarek, 2013). The modern taxonomic classification of cyanobacteria must be continually revised to
incorporate data resulting from the polyphasic evaluation of cyanobacterial diversity. Komarek and Anagnostidis (1998) classified cyanobacteria into 14 families based on the presence or absence of false branching, true branching and heterocytes, for discussion, they used the terms ‘heterocytes’ and ‘hormogonia’ rather than ‘heterocysts’ and ‘hormogones’, as recommended by the International Association for Cyanophyte Research (IAC) (Mollenhauer et al., 1994).

Cyanobacteria play a pivotal role in mangrove ecosystems as they are the primary producers of organic carbon and nitrogen. Many cyanobacterial species provide nitrogen by biological nitrogen fixation and as a significant group within the diazotrophic guild, contribute to the availability of nitrogen in the system (Toledo et al., 1995). Studies on the nitrogen-fixing capability of cyanobacteria in mangroves have been carried out in a few regions of the world (Ramachandran and Venugopalan, 1987; Kyaruzi et al., 2003; Boopathi, 2011). Some studies focused on cyanobacteria that grow on the surface of mangrove tree trunks, aerial roots, pneumatophores and leaves and their contribution to biological nitrogen-fixing capability has been assessed (Mann and Steinke, 2003; Lugomela and Bergman, 2002).

Data on mangrove-associated cyanobacteria are scarce throughout the world. Research on this topic is particularly rare and is restricted to certain regions (Lambert et al., 1987). To the best of our knowledge, the first published literature appeared in 1977 (Potts and Whitton, 1977) who reported the occurrence of heterocytous mangrove-associated cyanobacteria Calothrix crustacea Thuret ex Bornet & Flahault 1886 (Current name: Scytonematopsis crustacea (Thuret ex Bornet & Flahault) Kovacik & Komarek 1988) from the intertidal zone of the lagoon shores of West Island, Aldabra. The general aim of this work is to provide an updated revision of the diversity and distribution of previously recorded cyanobacteria in mangrove ecosystems. The need for conducting surveys to fulfil research gaps in this field, including the global distribution pattern of mangrove-associated cyanobacteria, can be used as a reliable database for future major research studies in this field.
Materials and Methods

The data on heterocytous cyanobacteria associated with mangroves has been compiled solely from published works of literature from 1977-2020. We used 33 research papers and books published nationally and internationally to create a catalogue of cyanobacterial species and the articles in which they are cited. Cyanobacteria can be found in diverse habitats, including epipsammic/edaphic, epizoic, epiphytic, planktic, benthic, and epilithic forms, all of which are common in mangrove ecosystems. The occurrence of cyanobacterial species may not be explicitly indicated in some publications; instead, such species are included under the category ‘mangrove environment’. Different methods for collecting cyanobacteria were discussed in the original research literature, which is cited in this study.

The list is exclusively based on published works of literature. We considered only published works that referenced cyanobacteria at the species level of identification. Names of taxa are given with the proper author citation. Species are classified according to their respective families. The species are classified based on the current classification system proposed by Komarek et al. (2014) and Hauer and Komarek (2021) and the entities of the taxonomically accepted species are verified by Guiry and Guiry (2021). When a specific or infraspecific taxon is recorded under a synonym if cited, it is represented under the currently accepted names.

Results and Discussion

This study aims to compile a catalogue of mangroves inhabiting cyanobacteria and to revise and update the nomenclature to reflect current taxonomically accepted names for the previously documented species. From the 33 research articles and books published nationally and internationally from 1977 to 2020, we considered cyanobacteria to have species-level identification. The results indicated 70 heterocytous cyanobacterial species in which 47 are from mangrove environments, 17 epiphytic, 11 planktic, 12 epilithic, 5 epipsammic/edaphic, 2
benthic, 1 epiphylic and 1 epizoic, while 4 species co-occur among mangrove environments, epipsammic and epiphytic, 2 species co-occur in mangrove environments, epilithic and epiphytic, 4 species co-occur in both epiphytic and mangrove environments, 4 species co-occur in both planktic and mangrove environments, 1 species co-occurs in both epilithic and epizoic, 1 species co-occurs in both epilithic and mangrove environments, 1 species co-occurs in both planktic and benthic environments (Table 1). From this documentation study, the family Nostocaceae was the dominant family with 27 taxa, followed by Calotrichaceae had 12 taxa, Rivulariaceae and Scytonemataceae had 10 taxa each, Aphanizomenonaceae had 5 taxa, Hapalosiphonaceae had 2 taxa and Chlorogleopsidaceae, Heteroscytonemataceae, Microchaetaceae and Tolypothrichaceae had one species each (Figure 1).

Figure 1: Graphical position and number of species from the mangrove-associated cyanobacteria according to family.
Table 1: Occurrence of cyanobacterial species from the mangrove environments, habitat, country/provinces and their respective citations are provided. The updated species name was based on Algaebase; (=) symbol indicates the species synonyms if cited in the referred work.

List of cyanobacterial species	Habitat	Country/Province	References
Nostocales - Aphanizomenonaceae			
Anabaenopsis arnoldii Aptekar 1926	Planktic	India	Sen and Naskar, 2003
Dolichospermum flosaquae (Brebisson ex Bornet & Flahault) P.Wacklin, L.Hoffmann & J.Komarek 2009 (= *Anabaena flosaquae* Brebisson ex Bornet & Flahault 1886)	Mangrove environment	India	Barman et al., 2015
Dolichospermum spiroides (Klebhan) Wacklin, L.Hoffmann & Komarek 2009 (= *Anabaena spiroides* Klebahn 1895)	Mangrove environment	India	Bhuvaneshwari and Muruganandam, 2016
			Priya et al., 2019
Nodularia spumigena Mertens ex Bornet & Flahault 1888	Mangrove environment	India	Ramamurthy and Abhinand, 2016
	Mangrove Swamps	Saudi Arabia	Hussain and Khoja, 1993
	Mangrove environment	India	Sudha, 2005
	Mangrove environment	India	Sudha et al., 2007
	Epipsammic	Nigeria	Essien et al., 2008
	Epiphytic	India	Nedumaran et al., 2008
Nodularia spumigena var. major Bornet & Flahault 1886	Mangrove Swamps	Saudi Arabia	Hussain and Khoja, 1993
Nostocales – Calotrichaceae			
Calothrix aeruginosa Woronichin 1923	Epiphytic	Australia	Huisman et al., 2015
	Epiphytic	Egypt	Potts, 1980
Calothrix bharadwajae G.De Toni 1939	Mangrove environment	India	Silambasarasan et al., 2012
Calothrix breviarticulata West & G.S. West 1897	Mangrove environment	Saudi Arabia	Mohammed and Al-Shehri, 2015
Calothrix brevissima G.S. West 1907	Epiphytic, Edaphic	Pakistan	Bano and Siddiqui, 2007
	Mangrove environment	India	Silambaresan et al., 2012
Calothrix castellii Bornet & Flahault 1886	Epiphytic	India	Boopathi, 2011
Calothrix clavata G.S. West 1914	Mangrove environment	India	Barman et al., 2015
Calothrix confervicola C. Agardh ex Bornet & Flahault 1886	Micrbial mat, Mangrove Swamps	Saudi Arabia	Hussain and Khoja, 1993
Calothrix contarenii Bornet & Flahault 1886	Epipsammic	Aldabra Islands	Potts and Whitton, 1989
	Epiphytic	Africa	Lambert et al., 1989
	Epiphytic	Africa	Steinke et al., 2003
	Mangrove environment	India	Sudha, 2005
	Mangrove environment	India	Sudha et al., 2007
	Mangrove environment	India	Sakthivel and Kathiresan, 2013
	Mangrove environment	India	Bhuvaneshwari and Murugananandam, 2016
	Mangrove environment	India	Priya et al., 2019
Calothrix fusca Bornet & Flahault 1886	Epilithic	Pakistan	Bano and Siddiqui, 2007
Calothrix ghosei Bharadwaja 1935	Mangrove environment	India	Bhuvaneshwari and Murugananandam, 2016
			Priya et al., 2019
Calothrix pulvinata C. Agardh ex Bornet & Flahault 1886	Mangrove Swamps, Epilithic	Saudi Arabia	Hussain and Khoja, 1993
	Epiphytic	India	Nedumaran et al., 2008
A review on the distribution records of mangrove-associated heterocystous cyanobacteria: an update

Species	Type	Location	Authors
Calothrix scopulorum C.Agardh ex Bornet & Flahault 1886	Epilithic	Egypt	Potts, 1980
	Epiphytic	Africa	Lambert et al., 1989
	Epiphytic	Africa	Silva, 1991
	Microbial mat, Mangrove Swamps	Saudi Arabia	Hussain and Khoja, 1993
	Epiphytic	Africa	Steinke et al., 2003
		India	Sudha, 2005
		India	Sudha et al., 2007
		India	Sakthivel and Kathiresan, 2013
		Saudi Arabia	Mohammed and Al-Shehri, 2015
Nostoccales – Chlorogloeopsidaceae		Epiphytic	Pakistan
Chlorogloea fritschii A.K.Mitra 1950; Nostoc fritschii (Mitra) Schwabe & El Ayouty 1966		Pakistan	Bano and Siddiqui, 2007
		India	Sakthivel and Kathiresan, 2013
		India	Joseph and Saramma, 2016
Nostoccales – Hapalosiphonaceae			Sudha, 2005
Hapalosiphon welwitschii West & G.S.West 1897	Mangrove environment	India	Sudha et al., 2007
	Mangrove environment	India	Ramamurthy and Abhinand, 2016
Mastigocoleus testarum Lagerheim ex Bornet & Flahault 1886	Epilithic	Egypt	Potts, 1980
	Epizoic	India	Sen and Naskar, 2003
Nostocales – Heteroscytonemataceae			
-----------------------------------	------------------	------------------	
Heteroscytonema crispum (Bornet ex De Toni) G.B.McGregor & Sendall 2018 (= *Scytonema crispum* Bornet ex De Toni 1907)	Epiphytic	Australia	Huisman *et al.*, 2015
	Mangrove environment	India	Sakthivel and Kathiresan, 2013

Nostocales – Microchaetaceae			
Microchaete grisea Thuret ex Bornet & Flahaut 1886	Epilithic	Pakistan	Bano and Siddiqui, 2007
	Mangrove environment	India	Sakthivel and Kathiresan, 2013

Nostocales – Nostocaceae			
Anabaena iyengarii Bharadwaja 1935	Mangrove environment	India	Silambarasan *et al.*, 2012
	Mangrove environment	India	Sakthivel and Kathiresan, 2013
Anabaena orientalis S.C.Dixit 1936	Mangrove environment	India	Bhuvaneshwari and Muruganandam, 2016
	Mangrove environment	India	Priya *et al.*, 2019
Anabaena oscillarioides Bory ex Bornet & Flahaut 1886	Microbial mat	Saudi Arabia	Hussain and Khoja, 1993
Anabaena sphaerica Bornet & Flahaut 1886	Mangrove environment	India	Silambarasan *et al.*, 2012
	Mangrove environment	India	Sakthivel and Kathiresan, 2013
	Mangrove environment	India	Barman *et al.*, 2015
	Mangrove environment	Saudi Arabia	Mohammed and Al-Shehri, 2015
	Mangrove environment	India	Ramamurthy and Abhinand, 2016
Anabaena torulosa Lagerheim ex Bornet & Flahaut 1886	Mangrove environment	India	Silambarasan *et al.*, 2012

| Cylindrospermum majus* Kutzing ex Bornet & Flahaut 1888 | Planktic | India | Nedumaran *et al.*, 2008 |
A review on the distribution records of mangrove-associated heterocytous cyanobacteria: an update

Species	Synonym	Environment	Location	Reference
Desmonostoc muscorum (C.Agardh ex Bornet & Flahault) Hrouzek & Ventura 2013	(=) *Nostoc muscorum* C.Agardh ex Bornet & Flahault 1888	Planktic, Benthic	India	Ram and Shamina, 2015
Nostoc commure Vaucher ex Bornet & Flahault 1888		Mangrove environment	India	Ramamurthy and Abhinand, 2016
Nostoc ellipsosporum Rabenhorst ex Bornet & Flahault 1886		Mangrove environment	India	Ram and Shamina, 2017
Nostoc carneum C.Agardh ex Bornet & Flahault 1886		Mangrove environment	India	Ram and Shamina, 2017
Nostoc linekia Bornet ex Bornet & Flahault 1886	(=) *Nostoc piscinale* Kutzing ex Bornet & Flahault 1886	Epiphytic	India	Hussain and Khoja, 1993
Nostoc microscopticum Carmichael ex Bornet & Flahault 1886		Mangrove environment	India	Barman et al., 2015
Nostoc oryzae (F.E.Fritsch) J.Komarek & K.Anagnostidis 1989	(=) *Anabaena oryzae* F.E.Fritsch 1949			Boopathi, 2011
Nostoc paludosum Kutzing ex Bornet & Flahault 1886		Mangrove environment	India	Nedumaran et al., 2008
Nostoc passerinianum Bornet & Thuret ex Bornet et Flahault 1886		Benthic	India	Ram and Shamina, 2015
Nostoc punctiforme Hariot 1891		Planktic	India	Sen and Naskar, 2003
Species	Environment	Location	Authors	
--	-------------------	---------------------------	----------------------------------	
Raphidiopsis curvata Fritsch & M.F.Rich 1930	Planktic	India	Sen and Naskar, 2003	
Raphidiopsis indica R.N.Singh 1942	Planktic	India	Sen and Naskar, 2003	
	Mangrove environment	India	Sakthivel and Kathiresan, 2013	
Richelia intracellularis J.Schmidt 1901	Mangrove environment	India	Ramamurthy and Abhinand, 2016	
Trichormus doliolum (Bharadwaja) Komarek & Anagnostidis 1989 (= *Anabaena doliolum* Bharadwaja 1935)	Planktic	India	Sen and Naskar, 2003	
Trichormus khannae (Skuja) Komarek & Anagnostidis 1989 (= *Anabaena khannae* Skuja 1949)	Mangrove environment	India	Joseph and Saramma, 2016	
Trichormus anomalus (F.E.Fritsch) Komarek & Anagnostidis 1989 (= *Anabaena anomalus* F.E.Fritsch 1949)	Planktic	India	Sen and Naskar, 2003	
	Rock pool water, Coastal waters of mangrove waters	Pakistan	Bano and Siddiqui, 2007	
Trichormus ellipsosporus (F.E.Fritsch) Komarek & Anagnostidis 1989 (= *Anabaena variabilis var. ellipsospora* F.E. Fritsch 1949)	Mangrove environment	India	Silambarasan et al., 2012	
Trichormus gelatinicola (Ghose) Komarek & Anagnostidis 1989 (= *Anabaena gelatinicola* Ghose 1924)	Planktic	India	Sen and Naskar, 2003	
Trichormus variabilis (Kutzing ex Bornet & Flahaut) Komarek & Anagnostidis 1989 (= *Anabaena variabilis* Kutzing ex Bornet & Flahaut 1886)	Mangrove Swamps	Saudi Arabia	Hussain and Khoja, 1993	
	Planktic	India	Nedumaran et al., 2008	
	Mangrove environment	India	Barman et al., 2015	
Wollea ambiguа (C.B.Rao) R.Y.Singh 1942 (= *Anabaena ambiguа* C.B.Rao 1937)	Planktic	India	Kannan and Vasantha, 1992	

Egyptian J. of Phycol. Vol. 22, 2021
A review on the distribution records of mangrove-associated heterocytous cyanobacteria: an update

Nostocales – Rivulariaceae			
Dichothrix baueriana Bornet & Flahault 1886	Mangrove environment	India	*Silambarasan et al., 2012*
	Mangrove environment	India	*Sakthivel and Kathiresan, 2013*
	Mangrove environment	India	*Ramamurthy and Abhinand, 2016*
Dichothrix penicillata Zanardini ex Bornet & Flahault 1886	Mangrove environment	India	
	Mangrove Swamps, Epilithic	Saudi Arabia	*Hussain and Khoja, 1993*
Dichothrix utahensis Tilden 1898	Epiphytic	Australia	*Huisman et al., 2015*
Phyllonema aviceniicola Alvarenga, Rigonato, Branco, Melo & M.F.Fiore 2016	Epiphylic	Brazil	*Alvarenga et al., 2016*
Kyrtuthrix dalmatica Eregeovic 1929	Epilithic	Egypt	*Potts, 1980*
Kyrtuthrix maculans (Gomont) I.Umezaki 1958	Epilithic	Egypt	*Potts, 1980*
Gardnerula corymbosa De Toni 1936	Epipsammic	Egypt	*Potts, 1980*
Rivularia atra Roth ex Bornet & Flahault 1886	Epiphytic	Australia	*Beanland and Woelkerling, 1983*
	Epiphytic	Australia	*Huisman et al., 2015*
Rivularia bullata Berkeley ex Bornet & Flahault 1886	Epiphytic	Africa	*Lambert et al., 1989*
	Epiphytic	Africa	*Steinke et al., 2003*
Rivularia polyotis Roth ex Bornet & Flahault 1886	Epiphytic	Australia	*Beanland and Woelkerling, 1983*
	Mangrove Swamps	Saudi Arabia	*Hussain and Khoja, 1993*
	Epiphytic	Egypt	*Gab-Ala, 2000*

Nostocales – Scytonemataceae			
Scytonema hofmanii C.Agardh ex Bornet & Flahault 1886	Epiphytic	Africa	*Lambert et al., 1989*
	Epilithic	Saudi Arabia	*Hussain and Khoja, 1993*
	Epilithic	India	*Sen and Naskar, 2003*
	Epiphytic	Africa	*Steinke et al., 2003*
Scytonema arcangelii Bornet & Flahault 1886	Mangrove environment	Brazil	*Nogueira and Ferreira-Correia, 2001*

Egyptian J. of Phycol. Vol. 22, 2021 - 129 -
Species	Environment	Location	Reference
Scytonema bohneri Schmidle 1901	mangrove	India	Barman *et al.*, 2015
	Planktic	India	Ram and Shamina, 2015
	Mangrove	India	Ram and Shamina, 2017
Scytonema chiastum Geitler 1925	mangrove	India	Silambarasan *et al.*, 2012
Scytonema insulare C.L. Sant’Anna 1988	Mangrove	Brazil	Nogueira and Ferreira-Correia, 2001
Scytonema leptobasis S.L. Ghose 1931	Planktic	India	Ram and Shamina, 2015
	Mangrove	India	Ram and Shamina, 2017
Scytonema saleyeriense Weber Bosse 1913	Mangrove	Saudi Arabia	Hussain and Khoja, 1993
Scytonema varium Kutzing ex Bornet & Flahault 1886	Mangrove	India	Silambarasan *et al.*, 2012
Scytonematopsis crustacea (Thuret ex Bornet & Flahault) Kovacik & Komarek 1988 (= *Calothrix crustacea* Thuret ex Bornet & Flahault 1886)	Mangrove	India	Sakthivel and Kathiresan, 2013
	Mangrove	Saudi Arabia	Mohammed and Al-Shehri, 2015
	Epipsammic	Aldabra	Potts and Whitton, 1977
	Epiphytic	Egypt	Potts, 1980
	Epipsammic	Aldabra Islands	Potts and Whitton, 1980
	Epiphytic	Epiphytic	Silva, 1991
	Mangrove	Saudi Arabia	Hussain and Khoja, 1993
	Swamps,		Dharagkar, 1994
	Epilithic		
	Epiphytic	Pakistan	Saifullah *et al.*, 1997
	Epiphytic	India	Sen and Naskar, 2003
	Mangrove	India	Sudha, 2005
	environment		
	Mangrove	India	Sudha *et al.*, 2007
While compiling the elaborate list of cyanobacterial diversity with a special focus on mangrove environments, we consider only the specimen taxonomically identified up to the species level. It is noticed that research on mangrove-associated cyanobacterial diversity has become more focused since 1990 and a significant rise in biodiversity research has been recorded over recent decades. However, no taxonomic studies have been published as of 2020. There is a total lack of knowledge on the taxonomy of mangrove-associated cyanobacteria and are very scarce and meagre. As a result, the diversity and ecological importance of these habitats are highly neglected.

Based on existing data, it is clear that cyanobacterial floristic surveys should be carried out in diverse biotopes of tropical regions that are still to be explored as they can greatly contribute to our understanding of geographic distribution as well as relevant information for the taxonomy of these organisms. Recent developments in polyphasic approaches will help to explore a good percentage of the cyanobacterial community that can be exploited for the benefit of mankind.

Acknowledgements

The authors are thankful to the Management, Principal and Head, Research & PG Department of Botany, MES Asmabi College, Kodungallur, Thrissur, Kerala for providing the necessary facilities to carry out the work.
References

Alvarenga, D.O.; Rigonato, J.; Branco, L.H.Z.; Melo, L.S. and Fiore, M.E. (2016). Phyllonema avicieniicola gen. nov., sp. nov. and Foliisarcina bertioensis gen. nov., sp. nov., epiphytic cyanobacteria associated with Avicennia schauariana leaves. International Journal of Systematic and Evolutionary Microbiology, 66: 689–700. https://doi.org/10.1099/ijsem.0.000774

Bano, A. and Siddiqui, P.J.A. (2007). Diversity of cyanobacterial species distribution on rocky coast of Buleji, Pakistan. International Journal of Biology and Biotechnology, 4: 31-39.

Barman, N.; Satpati, G.G.; and Pal, R. (2015). A morphotaxonomic account of cyanobacterial diversity of Indian Sundarbans. Journal of Algal Biomass and Utilization, 6(3): 39-46.

Beanland, W.R. and Woelkerling, Wm J. (1983). Avicennia canopy effects on mangrove algal communities in Spencer Gulf, South Australia. Aquatic Botany, 17: 309-313. https://doi.org/10.1016/0304-3770(83)90067-0

Bhuvaneshwari, T. and Muruganandam, A. (2016). Cyanobacterial biodiversity at marine environment from Thondiyakadu, Thiruvarur district, south east coast of India. International Journal of Advanced Research, 4(4): 1639-1644. http://dx.doi.org/10.21474/IJAR01/186

Boopathi, T. (2011). Aquatic epiphytic cyanobacterial diversity of mangroves and its potential application in the development of mangrove plants. PhD, Bharathidasan University, Thiruchirappalli, Tamil Nadu, India.

Dhargalkar, V.K. (1994). Algae associated with mangroves. In: Conservation of mangrove forest genetic resources: A training manual. (Eds) Deshmukh SV and Balaji V., MS Swaminathan research foundation, Madras and International tropical timber organization, Japan, pp. 279-282.

Essien, J.P.; Antai, S.P. and Benson, N.U. (2008). Microalgae biodiversity and biomass status in Qua Iboe Estuary mangrove swamp, Nigeria. Aquatic Ecology, 42(1): 71–81. https://doi.org/10.1007/s10452-007-9083-5
A review on the distribution records of mangrove-associated heterocytous cyanobacteria: an update

Gab-Alla, Ali A-F. A. (2000). Biodiversity and distribution of epiphytes community associated with pneumatophores of Avicennia marina (Forssk.) Vierh, along Egyptian Red Sea Coast. *Egyptian Journal of Aquatic Biology and Fisheries*, 4(1): 179-196. https://dx.doi.org/10.21608/eqjabf.2000.1647

Guiry, M.D. and Guiry, G.M. (2021). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org; searched on 28 August 2021.

Hauer, T. and Komarek, J. (2021). CyanoDB 2.0 - On-line database of cyanobacterial genera. - World-wide electronic publication, Univ. of South Bohemia & Inst. of Botany AS CR, http://www.cyanodb.cz

Huisman, J. M.; Kendrick, A. J. and Rule, M. J. (2015). Mangrove-associated macroalgae and cyanobacteria in Shark Bay, Western Australia. *Journal of the Royal Society of Western Australia*, 98: 45-68.

Hussain, M.I. and Khoja, T.M. (1993). Intertidal and subtidal blue-green algal mats of open and mangrove areas in the Farasan Archipelago (Saudi Arabia), Red Sea. *Botanica Marina*, 36(5): 377-388. https://doi.org/10.1515/botm.1993.36.5.377

Joseph, S. and Saramma, A.V. (2016). Species diversity of cyanobacteria in Cochin estuary. *Journal of the Marine Biological Association of India*, 58(1): 55-63. https://doi.org/10.6024/jmbai.58.1.1842A-06

Kannan, L. and Vasantha, K. (1992). Microphytoplankton of the Pichavaram mangals, south east coast of India: species composition and population density. In: *The ecology of mangroves and related ecosystems*, (eds) Jaccarini V and Martens E. Hydrobiologia. 247:77–86.

Komarek, J. and Anagnostidis, K. (1998). *Cyanoprokaryota 1. Chroococcales*. – In: Ettl H., Gärtner G., Heynig H. & Mollenhauer D. (eds), Süßwasserflora von Mitteleuropa 19/1, Gustav Fischer, Jena-Stuttgart-Lübeck-Ulm.

Komarek, J. (2013). *Cyanoprokaryota, Part 3: Heterocytous Genera*, in B. Büdel, G. Gärtner, L. Krienitz, and M. Schagerl (eds), Süßwasserflora von Mitteleuropa, Band 19/3, Springer Spektrum Akademischer Verlag, Munich, Germany.
Komarek, J.; Kastovsky, J.; Mares, J. and Johansen, J.R. (2014). Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. *Prestlia*, **86**: 295–335.

Kyaruzi, J.J.; Kyewalyanga, M.S. and Muruke, M.H.S. (2003). Cyanobacteria Composition and Impact of Seasonality on their In Situ Nitrogen Fixation Rate in a Mangrove Ecosystem Adjacent to Zanzibar Town. *Western Indian Ocean Journal of Marine Science*, **2**(1): 35–44. http://dx.doi.org/10.4314/wiojms.v2i1.28427

Lambert, G.; Steinke, T.D. and Naidoo, Y. (1989). Algae associated with mangroves in southern African estuaries: Cyanophyceae. *South African Journal of Botany*, **55**(5): 476-491. https://doi.org/10.1016/S0254-6299(16)31145-0

Lambert, G., Steinke, T.D. and Naidoo, Y. (1987). Algae associated with mangroves in southern African estuaries. I. Rhodophyceae. *South African Journal of Botany*, **53**(5): 349-361. https://doi.org/10.1016/S0254-6299(16)31396-5

Lugomela, C. and Bergman, B. (2002). Biological N2-fixation on mangrove pneumatophores: preliminary observations and perspectives. *Ambio*, 31:612–613. [http://dx.doi.org/10.1639/0044-7447(2002)031[0612:BNFOMP]2.0.CO;2](http://dx.doi.org/10.1639/0044-7447(2002)031[0612:BNFOMP]2.0.CO;2)

Mann, F.D. and Steinke, T.D. (1993). Biological nitrogen fixation (acetylene reduction) associated with blue-green algal (cyanobacterial) communities in the Beachwood Mangrove Nature Reserve: II. Seasonal variation in acetylene reduction activity. *South African Journal of Botany*, **59**:1–8. https://doi.org/10.1016/S0254-6299(16)30767-0

Mohamed, Z.A. and Al-Shehri, A.M. (2015). Biodiversity and toxin production of cyanobacteria in mangrove swamps in the Red Sea off the southern coast of Saudi Arabia. *Botanica Marina*, **58**(1): 23–34. https://doi.org/10.1515/bot-2014-0055

Mollenhauer, D., Budel, B. and Mollenhauer, R. (1994). Approaches to species delimitations in the genus *Nostoc* Vaucher 1803 ex Bornet et Flahault 1888. *Algological Studies*, 75:189–209. http://dx.doi.org/10.1127/algol_stud/75/1995/189
Nedumaran, T.; Thillairajasekar, K. and Perumal, P. (2008). Mangrove associated cyanobacteria at Pichavaram, Tamilnadu. Seaweed Research and Utilization, 30: 77-85.

Nogueira, N.M.C. and Ferreira-Correia, M.M. (2001). Cyanophyceae/ Cyanobacteria in red mangrove forest at mosquitos and coqueiros estuaries, São Luís, State of Maranhão, Brazil. Brazilian Journal of Biology, 61(3): 347-356. https://doi.org/10.1590/s1519-69842001000300002

Potts, M. (1980). Blue-green algae (Cyanophyta) in marine coastal environments of the Sinai Peninsula; distribution, zonation, stratification and taxonomic diversity. Phycologia, 19(1): 60–73. https://doi.org/10.2216/i0031-8884-19-1-60.1

Potts, M. and Whitton, B.A. (1977). Nitrogen Fixation by Blue-Green Algal Communities in the Intertidal Zone of the Lagoon of Aldabra Atoll. Oecologia, 27: 275-283. http://dx.doi.org/10.1007/BF00345560

Potts, M. and Whitton, B.A. (1980). Vegetation of intertidal zone of the lagoon of Aldabra, with particular reference to the photosynthetic prokaryotic communities. Proceedings of the Royal Society B Biological Sciences, 208(1170): 13-55. https://doi.org/10.1098/rspb.1980.0041

Priya, N.; Venkatesan, G. and Muruganandam, A. (2019). Bio-diversity of cyanobacteria at Kodiakkarai coast and mangrove in south east coast of Tamil Nadu, India. Journal of Emerging Technologies and Innovative Research, 6(6): 162-170.

Ram, A.T. and Shamina, M. (2015). Mangrove Associated Cyanobacterial Diversity at Kottayam District, Kerala, India. International Journal of Chemical and Biological Sciences, 1(10): 20-24.

Ram, A.T. and Shamina, M. (2017). Cyanobacterial diversity from seven mangrove environments of Kerala, India. World News of Natural Sciences, 9: 91-97.

Ramamurthy, V. and Abhinand, R.L. (2016). A study on environmental quality and diversity of microbes in the Manakudy mangroves. World Journal of Pharmaceutical Research, 5(8): 949-960.

Saifullah, S.M., Aisha, K. and Rasool, F. (1997). Algal epiphytes on mangroves of Balochistan, Pakistan. Pakistan Journal of Botany, 29(2): 191-197.
Sakthivel, K. and Kathiresan, K. (2013). Cyanobacterial diversity from mangrove sediment of south east coast of India. *Asian Journal of Biodiversity, 4*(1): 190-203. http://dx.doi.org/10.7828/ajob.v4i1.303

Schirrmeister, B.E., Gugger, M. and Donoghue, P.C. (2015). Cyanobacteria and the great oxidation event: evidence from genes and fossils. *Palaeontology, 58*: 769-785. https://doi.org/10.1111/pala.12178

Sen, N. and Naskar, K. (2003). Algal flora of Sundarbans mangals. Daya publishing house, Delhi.

Shamina, M.; Saranya, T. and Ram, A.T. (2014). Cyanobacterial biodiversity at mangrove vegetation of Kadalundi, Kerala. *Journal of Microbiology, 3*: 15-16.

Silambarasan, G.; Ramanathan, T. and Kathiresan, K. (2012). Diversity of marine cyanobacteria from three mangrove environments in Tamilnadu coast, south east coast of India. *Current Research Journal of Biological Sciences, 4*(3): 235-238.

Silva, S.M.F. (1991). Cyanophyceae associated with mangrove trees at Inhaca Island, Mozambique. *Bothalia, 21*(2): 143-150. http://dx.doi.org/10.4102/abc.v21i2.874

Steinke, T.D.; Lubke, R.A. and Ward, C.J. (2003). The distribution of algae epiphytic on pneumatophores of the mangrove *Avicennia marina*, at different salinities in the Kosi system. *South African Journal of Botany, 69*(4): 546-554. http://dx.doi.org/10.1016/S0254-6299(15)30293-3

Sudha, S.S. (2005). Studies on fungi and microalgae of Muthupet mangrove environs, India. PhD thesis, Bharathidasan University, Tiruchirappalli, Tamilnadu.

Sudha, S.S.; Panneerselvam, A. and Thajuddin, N. (2007). Seasonal variation of cyanobacteria at Muthupet mangrove environs, Tamilnadu, South India. *Seaweed Research and Utilization, 29*(1&2): 263-271.

Toledo, G.; Bashan, Y. and Soeldner, A. (1995). In vitro colonization and increase in nitrogen fixation of seedling roots of black mangrove inoculated by a filamentous cyanobacteria. *Canadian Journal of Microbiology, 41*(11): 1012-1020. http://dx.doi.org/10.1139/m95-140