Computing isolated singular solutions of polynomial systems: case of breadth one

Nan Li and Lihong Zhi

Abstract. We present a symbolic-numeric method to refine an approximate isolated singular solution \(\hat{x} = (\hat{x}_1, \ldots, \hat{x}_n) \) of a polynomial system \(F = \{f_1, \ldots, f_n\} \) when the Jacobian matrix of \(F \) evaluated at \(\hat{x} \) has corank one approximately. Our new approach is based on the regularized Newton iteration and the computation of approximate Max Noether conditions satisfied at the approximate singular solution. The size of matrices involved in our algorithm is bounded by \(n \times n \). The algorithm converges quadratically if \(\hat{x} \) is close to the isolated exact singular solution.

Key words. Root refinement, isolated singular solution, regularized Newton iteration, Max Noether space, quadratic convergence.

AMS subject classifications.

1. Introduction.

Motivation and problem statement. Consider an ideal \(I \) generated by a polynomial system \(F = \{f_1, \ldots, f_n\} \), where \(f_i \in \mathbb{C}[x_1, \ldots, x_n] \). Suppose \(\hat{x} = \hat{x}_e + \hat{x}_\varepsilon \), where \(\hat{x}_e \) denotes the isolated exact singular solution of \(F \) and \(\hat{x}_\varepsilon \) denotes the error in the solution. The multiplicity \(\mu \) of \(\hat{x}_e \) is defined as \(\mu = \dim(\mathbb{C}[x]/Q) \), where \(Q \) is the isolated primary component whose associate prime ideal is \(P = \langle x_1 - \hat{x}_1, \ldots, x_n - \hat{x}_n \rangle \), and the index \(\rho \) of \(\hat{x}_e \) is defined as the minimal nonnegative integer \(\rho \) such that \(P^\rho \subseteq Q \).

In [36, 37], they compute the truncated coefficient matrix of the involutive system to the order \(\rho \), and generate the multiplication matrices from its approximate null vectors. Then a basis of the approximate Max Noether space (Definition 2.1) of \(\hat{x}_e \) can be obtained from these vectors (Theorem 5.4 in [36]). Let \(\hat{y} \) be the vector whose \(i \)-th element is the average of the trace of the multiplication matrix with respect to \(x_i \). In [37], it has been proved that if the given approximation \(\hat{x} \) satisfies \(\| \hat{x} - \hat{x}_e \| = \varepsilon \), for a small positive number \(\varepsilon \), and the index \(\rho \) and the multiplicity \(\mu \) are computed correctly, then the refined solution obtained by adding \(\hat{y} \) to \(\hat{x} \) will satisfy \(\| \hat{x} + \hat{y} - \hat{x}_e \| = O(\varepsilon^2) \). Here and hereafter, \(\| \cdot \| \) is denoted as the \(l^2 \)-norm. The size of these coefficient matrices in [37] is bounded by \(n^{(\rho+n)} \times (\rho+n) \) which will be very big when \(\rho \) is large. Especially, when the corank of the Jacobian \(F'(\hat{x}_e) \) is one, then \(\rho = \mu \), which is also called the breadth one case in [4, 5].

In [18], we present a new algorithm which is based on Stetter’s strategies [33] for computing a closed basis \(L = \{L_0, \ldots, L_{\mu-1}\} \) of the approximate Max Noether space of \(I = \{f_1, \ldots, f_n\} \) at \(\hat{x} \) incrementally in the breadth one case. The size of matrices we used in computing each order of Max Noether conditions is bounded by \(n \times (n - 1) \), which does not depend on the multiplicity. Moreover, during the computation, we only need to store the input polynomial system \(F \), the last \(n - 1 \) columns of the Jacobian \(F'(\hat{x}) \) and the computed Max Noether conditions. Therefore, in the breadth one case, both storage space and execution time for computing a closed basis of the approximate Max Noether space are reduced significantly by the algorithm in [18]. This motivates us to consider whether we can get rid of large coefficient matrices in [36, 37] and refine...
approximate singular solutions more efficiently based on the computed Max Noether conditions.

Main contribution. Suppose we are given an approximate singular solution \hat{x} of a polynomial system F satisfying $\|\hat{x} - x_c\| = \varepsilon$, where the positive number ε is small enough such that there are no other solutions of F nearby. We also assume that the corank of the Jacobian matrix $F'(x_c)$ is one. In order to restore the quadratic convergence of the Newton method, we first apply one regularized Newton iteration (in Section 3.1) to obtain a new approximation $\hat{x} + \hat{y}$ which also satisfies the assumptions above, and then compute the approximate null vector r_1 of the Jacobian $F' (\hat{x} + \hat{y})$ which gives a generalized Newton direction, and the step length δ is obtained by solving a linear system formulated by the computed differential operators using the algorithm in [18]. We show that $\|\hat{x} + \hat{y} + \delta r_1 - x_c\| = O(\varepsilon^2)$. The size of matrices involved in our algorithm is bounded by $n \times n$. The method has been implemented in Maple. Moreover, we also prove the conjecture in [5] that the breadth one depth-deflation always terminates at step $\mu - 1$, where μ is the multiplicity.

Structure of the paper. Section 2 is devoted to recall some notations and well-known facts. In Section 3 we describe an algorithm for refining approximate isolated singular solutions of polynomial systems in the breadth one case. Moreover, we prove that the algorithm converges quadratically if the approximate solution is close to the isolated exact singular solution. Some experiment results are given in Section 4. We mention some ongoing research in Section 5.

2. Preliminaries. Let $D(\alpha) = D(\alpha_1, \ldots, \alpha_n) : \mathbb{C}[x] \rightarrow \mathbb{C}[x]$ denote the differential operator defined by:

$$D(\alpha_1, \ldots, \alpha_n) := \frac{1}{\alpha_1! \cdots \alpha_n!} \frac{\partial^{\alpha_1 + \cdots + \alpha_n}}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}},$$

for nonnegative integer array $\alpha = [\alpha_1, \ldots, \alpha_n]$. We write $\mathcal{D} = \{D(\alpha), |\alpha| \geq 0\}$ and denote by $\text{Span}_{\mathbb{C}}(\mathcal{D})$ the \mathbb{C}-vector space generated by \mathcal{D}. Introducing a morphism on \mathcal{D} that acts as “integral”:

$$\Phi_j(D(\alpha)) := \begin{cases} D(\alpha_1, \ldots, \alpha_j - 1, \ldots, \alpha_n), & \text{if } \alpha_j > 0, \\ 0, & \text{otherwise}. \end{cases}$$

As a counterpart of the anti-differentiation operator Φ_j, we define the differential operator Ψ_j as

$$\Psi_j(D(\alpha)) := D(\alpha_1, \ldots, \alpha_j + 1, \ldots, \alpha_n).$$

Definition 2.1. Given a zero x_c of an ideal $I = (f_1, \ldots, f_n)$, we define the Max Noether space [22] of I at x_c as

$$\triangle_{x_c}(I) := \{L \in \text{Span}_{\mathbb{C}}(\mathcal{D})| L(f)_{x=x_c} = 0, \forall f \in I\}.$$

Conditions equivalent to $L(f)_{x=x_c} = 0, \forall L \in \triangle_{x_c}(I)$ are called Max Noether conditions [23]. The space $\{L_{x_c} | L \in \triangle_{x_c}(I)\}$, where $L_{x_c}(f) := L(f)_{x=x_c}$, is also called the dual space of I at x_c. [5, 19, 20, 22, 24, 33]. For a nonnegative integer k, $\triangle_{x_c}^{(k)}(I)$ is a subspace of $\triangle_{x_c}(I)$ which consists of differential operators with differential order bounded by k. Obviously, $\triangle_{x_c}^{(0)}(I) = D(0, \ldots, 0)$. We have that

$$\dim_{\mathbb{C}}(\triangle_{x_c}(I)) = \mu,$$ \hfill (2.1)
where μ is the multiplicity of the zero \tilde{x}_e.

Definition 2.2. [18][23] A subspace \triangle of $\text{Span}_c(\mathcal{Q})$ is said to be closed if and only if its dimension is finite and

$$L \in \triangle \implies \Phi_j(L) \in \triangle, \ j = 1, \ldots, n.$$

Suppose $\text{Span}(L_0, L_1, \ldots, L_{\mu-1})$ is closed and $L_0, \ldots, L_{\mu-1}$ are linearly independent differential operators which satisfy that $L_i(f_j)_{x=\tilde{x}_e} = 0, \ j = 1, \ldots, n, \ i = 0, \ldots, \mu - 1$, then due to the closedness, $L_i(q \cdot f_j)_{x=\tilde{x}_e} = 0, \ \forall q \in \mathbb{C}[x_1, \ldots, x_n]$. Hence, $\Delta_{\tilde{x}_e}(I) = \text{Span}(L_0, L_1, \ldots, L_{\mu-1})$.

Lemma 2.3. Let $F'(\tilde{x}_e)$ be the Jacobian of a polynomial system $F = \{f_1, \ldots, f_n\}$ evaluated at \tilde{x}_e. Suppose the corank of $F'(\tilde{x}_e)$ is one, i.e., the dimension of its null space is one, then $\dim(\Delta_{\tilde{x}_e}^{(k)}(I)) = \dim(\Delta_{\tilde{x}_e}^{(k-1)}(I)) + 1$ for $1 \leq k \leq \mu - 1$ and $\dim(\Delta_{\tilde{x}_e}^{(k)}(I)) = \dim(\Delta_{\tilde{x}_e}^{(\mu - 1)}(I))$, for $k > \mu$. Hence we have $\mu = \rho$.

Proof. Lemma 2.3 is an immediate consequence of [32, Theorem 2.2] and [5, Lemma 1].

Theorem 2.4. [18] Suppose we are given an isolated multiple root \tilde{x}_e of the polynomial system $F = \{f_1, \ldots, f_n\}$ with the multiplicity μ and the corank of the Jacobian $F'(\tilde{x}_e)$ is one, and $L_1 = D(1, 0, \ldots, 0) \in \Delta_{\tilde{x}_e}^{(1)}(I)$. We can construct the k-th order Max Noether condition retaining the closedness incrementally for k from 2 to $\mu - 1$ by the following formulas:

$$L_k = P_k + a_{k,2}D(0,1,\ldots,0) + \cdots + a_{k,n}D(0,\ldots,1), \quad (2.2)$$

where P_k has no free parameters and is obtained from previous computed L_1, \ldots, L_{k-1} by the following formula:

$$P_k = \Psi_1(L_{k-1}) + \Psi_2(Q_{k,2})_{\alpha_1=0} + \cdots + \Psi_n(Q_{k,n})_{\alpha_1=0, \ldots, \alpha_{n-1}=0}, \quad (2.3)$$

where

$$\Phi_1(P_k) = L_{k-1}, \quad Q_{k,j} = \Phi_j(P_k) = a_{2,j}L_{k-2} + \cdots + a_{k-1,j}L_1, \quad 2 \leq j \leq n. \quad (2.4)$$

Here $\Psi_j(Q_{k,j})_{\alpha_1=\cdots=\alpha_{j-1}=0}$ means that we only pick up differential operators $D(\alpha)$ in $Q_{k,j}$ where $\alpha_1 = \cdots = \alpha_{j-1} = 0$. The parameters $a_{k,j}, \ j = 2, \ldots, n$ are determined by checking whether $[P_k(f_1)_{x=\tilde{x}_e}, \ldots, P_k(f_n)_{x=\tilde{x}_e}]^T$ can be written as a linear combination of the last $n - 1$ linearly independent columns of $F'(\tilde{x}_e)$.

Suppose \hat{x} is an approximation of \tilde{x}_e and $\|\hat{x} - \tilde{x}_e\| = \epsilon \ll 1$, we can use the algorithm MultiplicityStructureBreadthOneNumeric in [18] to compute a closed basis $\{L_0, \ldots, L_{\mu-1}\}$ of the approximate Max Noether space of I at \hat{x}. Since the errors in the matrix of the linear system

$$\begin{bmatrix} P_k(F)_{x=\hat{x}}, \frac{\partial F(\hat{x})}{\partial x_2}, \ldots, \frac{\partial F(\hat{x})}{\partial x_n} \end{bmatrix} \cdot [1, a_{k,2}, \ldots, a_{k,n}]^T = 0,$$

used in Theorem 2.4 are bounded by $O(\epsilon)$ and

$$L_k = P_k + a_{k,2}D(0,1,0,\ldots,0) + \cdots + a_{k,n}D(0,\ldots,0,1),$$

is determined by its right singular vector $[1, a_{k,1}, \ldots, a_{k,n}]^T$ corresponding to its smallest singular value, we have

$$\|L_k(F)_{x=\hat{x}}\| = O(\epsilon), \quad (2.5)$$

according to [11, Corollary 8.6.2].
3. An Algorithm for Refining Approximate Singular Solutions. Suppose we are given an approximate solution
\[\hat{x} = \hat{x}_e + \hat{x}_\varepsilon, \]
where \(\hat{x}_e \) denotes the error in the solution and \(\hat{x}_\varepsilon \) denotes the exact solution of the polynomial system \(F = \{ f_1, \ldots, f_n \} \) with the multiplicity \(\mu \) and the index \(\rho \). In this section, we present a new method to refine \(\hat{x} \) in the breadth one case, i.e., \(\mu = \rho \).

Let \(A = F'(\hat{x}) \) be the Jacobian matrix of \(F \) evaluated at \(\hat{x} \) and \(b = -F(\hat{x}) \).

Suppose the error in the solution is small enough, i.e., \(\| \hat{x} - \hat{x}_e \| = \varepsilon \ll 1 \), and \(A \) is invertible, then Newton’s iteration computes
\[\hat{y} = A^{-1}b, \quad (3.1) \]
and \(\| \hat{x} + \hat{y} - \hat{x}_e \| = O(\varepsilon^2) \) according to the well-known Kantorovich theorem [15]. However, if \(A \) is singular, then the convergence of Newton iterations is linear rather than quadratic.

Rall [27] studied the convergence properties of Newton’s method at singular points. Some modifications of Newton’s method to restore quadratic convergence have also been proposed in [1, 6, 7, 8, 12, 13, 14, 25, 26, 28, 29, 31]. In [13], a bordered system was introduced to restore the quadratic convergence of Newton’s method when \(A \) has corank one approximately and \(\hat{x} \) is a simple singular solution. It is clear to see that the regularity condition in [13] can not be satisfied if the multiplicity is larger than 2.

For simplicity, we make an assumption throughout this section.

Assumption 1. Suppose we are given an approximate singular solution \(\hat{x} \) of a polynomial system \(F \) satisfying \(\| \hat{x} - \hat{x}_e \| = \varepsilon \), where the positive number \(\varepsilon \) is small enough such that there are no other solutions of \(F \) nearby. Moreover, we assume that the corank of the Jacobian matrix \(F'(\hat{x}_e) \) is one.

Let \(A = F'(\hat{x}) \) be the Jacobian matrix of \(F \) evaluated at \(\hat{x} \) and its singular values be \(\sigma_1, \ldots, \sigma_s \). Under Assumption [1] we have \(\| F(\hat{x}) \| = O(\varepsilon) \), \(\sigma_i = \Theta(1) \), \(1 \leq i \leq n - 1 \) and \(\sigma_n = O(\varepsilon) \).

Remark 3.1. Notice that the notation \(O(g) \) denotes that the value is bounded above by \(g \) up to a constant factor, while \(\Theta(g) \) denotes that the value is bounded both above and below by \(g \) up to constant factors.

3.1. Regularized Newton iteration.

Under Assumption [1], \(F'(\hat{x}) \) is approximately singular. Instead of using (3.1) to compute \(\hat{y} \), we apply Tikhonov regularization [34] to solve the minimization problem
\[\min \| Ay - b \|^2 + \lambda \| y \|^2, \]
to obtain \(\hat{y} \), where \(A = F'(\hat{x}) \) and \(b = -F(\hat{x}) \). The real number \(\lambda > 0 \) is called the regularization parameter.

Theorem 3.2 (Regularized Newton Iteration). Under Assumption [1], if we choose the smallest singular value \(\sigma_n \) of \(F'(\hat{x}) \) as the regularization parameter, the solution \(\hat{y} \) of the following regularized least squares problem
\[(A^*A + \sigma_n I_n)\hat{y} = A^*b \quad (3.2) \]
satisfies
\[\| \hat{y} \| = O(\varepsilon), \quad \| F(\hat{x} + \hat{y}) \| = O(\varepsilon^2), \quad (3.3) \]
where A^* is the Hermitian (conjugate) transpose of $A = F'(\hat{x})$, I_n is the $n \times n$ identity matrix and $b = -F(\hat{x})$.

Proof. Suppose $A = U \cdot \Sigma \cdot V^*$ is the singular value decomposition of A where $\Sigma = \text{diag}\{\sigma_1, \ldots, \sigma_n\}$, then the solution of (3.2) is
\begin{equation}
\hat{y} = V \cdot (\Sigma^2 + \sigma_n I_n)^{-1} \cdot \Sigma \cdot U^* \cdot b.
\end{equation}

Since $\sigma_i = \Theta(1)$, $1 \leq i \leq n - 1$, $\sigma_n = O(\varepsilon)$ and $\|b\| = O(\varepsilon)$, we have
\begin{equation}
\|\hat{y}\|^2 = \sum_{i=1}^{n} \left(\frac{\sigma_i |\tilde{b}_i|}{\sigma_i^2 + \sigma_n} \right)^2 = O(\varepsilon^2),
\end{equation}
where $\tilde{b} = [\tilde{b}_1, \ldots, \tilde{b}_n]^T = U^* b$ and $\|\tilde{b}\| = \|b\| = O(\varepsilon)$. Hence, $\|\hat{y}\| = O(\varepsilon)$.

From the Taylor expansion of F at \hat{x}, we have
\begin{equation}
F(\hat{x}_e) = -b + A(\hat{x}_e - \hat{x}) + O(\varepsilon^2).
\end{equation}

Hence
\begin{equation}
\| - b + A(\hat{x}_e - \hat{x})\| = O(\varepsilon^2).
\end{equation}

Furthermore, we have
\begin{equation}
\| - U^* b + \Sigma \cdot V^*(\hat{x}_e - \hat{x})\| = O(\varepsilon^2).
\end{equation}

Since $\sigma_n = O(\varepsilon)$ and $\|V^*(\hat{x} - \hat{x}_e)\| = \|\hat{x} - \hat{x}_e\| = \varepsilon$, we derive that the last component of the vector \tilde{b} satisfies
\begin{equation}
|\tilde{b}_n| = O(\varepsilon^2).
\end{equation}

Since
\begin{equation}
A\hat{y} - b = U \cdot \text{diag}\left\{ \frac{-\sigma_n}{\sigma_i^2 + \sigma_n}, \ldots, \frac{-\sigma_n}{\sigma_n^2 + \sigma_n} \right\} \cdot \tilde{b},
\end{equation}

we have
\begin{equation}
\|A\hat{y} - b\|^2 = \sum_{i=1}^{n} \left(\frac{\sigma_n |\tilde{b}_i|}{\sigma_i^2 + \sigma_n} \right)^2,
\end{equation}
where
\begin{equation}
\frac{\sigma_n}{\sigma_i^2 + \sigma_n} = O(\varepsilon), \text{ for } i = 1, \ldots, n - 1,
\end{equation}
and $\|\tilde{b}\| = O(\varepsilon)$. Although
\begin{equation}
\frac{\sigma_n}{\sigma_n^2 + \sigma_n} = \Theta(1),
\end{equation}
we have from (3.5) that $|\tilde{b}_n| = O(\varepsilon^2)$, hence
\begin{equation}
\|A\hat{y} - b\| = O(\varepsilon^2).
\end{equation}
Finally, from the Taylor expansion of F at \hat{x}, we have
\[\|F(\hat{x} + \hat{y})\| \leq \|-b + A\hat{y}\| + O(\epsilon^2) = O(\epsilon^2). \]

According to Theorem 3.2, after applying one regularized Newton iteration to F and \hat{x}, we get \hat{y} satisfies (3.3), and the new approximate singular solution $\hat{x} + \hat{y}$ satisfies
\[\|\hat{x} + \hat{y} - \hat{x}_e\| \leq \|\hat{x} - \hat{x}_e\| + \|\hat{y}\| = \epsilon + O(\epsilon). \]

If
\[\|\hat{x} + \hat{y} - \hat{x}_e\| = O(\epsilon^2), \]
then we have already achieved the quadratic convergence. However, the convergence rate of the regularized Newton iteration is linear too when the Jacobian matrix is near singular. Hence, in most cases, we will have
\[\|\hat{x} + \hat{y} - \hat{x}_e\| = \Theta(\epsilon). \] (3.7)

We show below how to restore the quadratic convergence when the computed approximate singular solution $\hat{x} + \hat{y}$ satisfies (3.3) and (3.7).

If $L_1 \in \Delta(1)_{\hat{x} + \hat{y}}(I)$ is not $D(1,0,\ldots,0)$, as pointed out by Stetter in [33], we can compute the right singular vector of $F'(\hat{x} + \hat{y})$ corresponding to its smallest singular value σ'_n, denoted by r_1 satisfying $\|r_1\| = 1$ and
\[\|F'(\hat{x} + \hat{y})r_1\| = \sigma'_n = O(\epsilon). \] (3.8)

Let us form a unitary matrix $R = [r_1, \ldots, r_n]$ and perform the linear transformation
\[H(z) = F(Rz). \] (3.9)

It is clear that
\[\hat{z}_e = R^{-1}\hat{x}_e \] (3.10)

is an exact root of $H(z)$ and
\[\hat{z} = R^{-1}(\hat{x} + \hat{y}) \] (3.11)

is an approximate root of $H(z)$. Moreover, we have
\[\|\hat{z} - \hat{z}_e\| = \|R^{-1}(\hat{x} + \hat{y} - \hat{x}_e)\| = \|\hat{x} + \hat{y} - \hat{x}_e\| = \Theta(\epsilon), \] (3.12)
\[\|H(\hat{z})\| = \|F(\hat{x} + \hat{y})\| = O(\epsilon^2), \] (3.13)

and
\[\left\| \frac{\partial H(\hat{z})}{\partial z_1} \right\| = \|F'(\hat{x} + \hat{y})r_1\| = \sigma'_n = O(\epsilon). \] (3.14)
Hence, the condition \((3.7)\) is equivalent to \((3.12)\). Here and hereafter, we always assume that \(\hat{z}\) satisfies
\[
\|\hat{z} - \hat{z}_c\| = \Theta(\varepsilon), \tag{3.15}
\]

Theorem 3.3. The root \(\hat{z}_c\) defined in \((3.11)\) is an isolated singular solution of \(H\) with the multiplicity \(\mu\) and the corank of \(H'(\hat{z}_c)\) is one.

Proof. Since \(H'(\hat{z}_c) = F'(\hat{x}_c)R\) and \(R\) is a unitary matrix, we derive that the corank of \(H'(\hat{z}_c)\) is one. Let \(\mu'\) be the multiplicity of \(\hat{z}_c\), and \(\{L_0, L_1, \ldots, L_{\mu'-1}\}\) be a closed basis of the Max Noether space of \(H\) at \(\hat{z}_c\). The operator \(\Gamma_R : \text{Span}_\mathbb{C}(\mathcal{D}) \rightarrow \text{Span}_\mathbb{C}(\mathcal{D})\) is defined by:
\[
\Gamma_R(D(\alpha)) := \Gamma_R \left(\frac{1}{\alpha_1! \cdots \alpha_n!} \frac{\partial^{\alpha_1 + \cdots + \alpha_n}}{\partial z_1^{\alpha_1} \cdots \partial z_n^{\alpha_n}} \right)
\]
\[
= \frac{1}{\alpha_1! \cdots \alpha_n!} \frac{\partial^{\alpha_1 + \cdots + \alpha_n}}{\partial r_1^{\alpha_1} \cdots \partial r_n^{\alpha_n}} f(\hat{x})^{\alpha_1} \cdots f(\hat{x})^{\alpha_n}
\]
\[
= \frac{1}{\alpha_1! \cdots \alpha_n!} \sum_{|\beta| = |\alpha|} c_\beta \cdot \frac{\partial^{\beta_1 + \cdots + \beta_n}}{\partial x_1^{\beta_1} \cdots \partial x_n^{\beta_n}} \big|_{x = \hat{x}}
\]
\[
= \frac{1}{\alpha_1! \cdots \alpha_n!} \sum_{|\beta| = |\alpha|} c_\beta \cdot \beta_1! \cdots \beta_n! \cdot D(\beta),
\]
where \(c_\beta\) is the coefficient of \(\frac{\partial^{\beta_1 + \cdots + \beta_n}}{\partial x_1^{\beta_1} \cdots \partial x_n^{\beta_n}}\) in the expansion of \(\frac{\partial^{\alpha_1 + \cdots + \alpha_n}}{\partial r_1^{\alpha_1} \cdots \partial r_n^{\alpha_n}} f(\hat{x})^{\alpha_1} \cdots f(\hat{x})^{\alpha_n}\). Since \(H(z) = F(Rz)\) and \(x = Rz\), according to multivariate chain rules, we have
\[
\Gamma_R(L_k)(F)_{x = \hat{x}_c} = L_k(H)_{x = \hat{z}_c} = 0,
\]
and for \(1 \leq j \leq n\)
\[
\Phi_j(\Gamma_R(L_k)) = \gamma_R \left(\sum_{i=1}^{n} r_{i,j} \phi_i(L_k) \right)
\]
\[
= \gamma_R \left(\sum_{i=1}^{k-2} (a_{k-i,2r_{2,j} + \cdots + a_{k-i,nr_{n,j}}}) L_i + r_{1,j} L_{k-1} \right)
\]
\[
= \sum_{i=1}^{k-1} (a_{k-i,2r_{2,j} + \cdots + a_{k-i,nr_{n,j}}}) \Gamma_R(L_i) + r_{1,j} \Gamma_R(L_{k-1}),
\]
where \(0 \leq k \leq \mu' - 1\). Hence, \(\{\Gamma_R(L_0), \Gamma_R(L_1), \ldots, \Gamma_R(L_{\mu'-1})\}\) is a closed basis of \(\Delta_{\hat{z}_c}^{(\mu'-1)}(I)\) and \(\mu' \leq \mu\). On the other hand, since \(F(x) = H(R^{-1}x)\), we derive that \(\mu \leq \mu'\). Hence, \(\mu' = \mu\). \(\square\)

Remark 3.4. Since \(H'(\hat{z}) = F'(\hat{x} + \hat{y})R\) and \(R\) is a unitary matrix, we derive that the singular values of \(H'(\hat{z})\) are the same as those of \(F'(\hat{x} + \hat{y})\) and the corank of \(H'(\hat{z})\) is one approximately. Suppose \(\{L_0, L_1, \ldots, L_{\mu-1}\}\) is a closed basis of the approximate Max Noether space of \(H\) at \(\hat{z}\), where \(L_0 = D(0, \ldots, 0)\) and \(L_1 = D(1, 0, \ldots, 0)\). From the proof of Theorem 3.3 and \((2.7)\), we have
\[
\Gamma_R(L_k)(F)_{x = \hat{x} + \hat{y}} = L_k(H)_{x = \hat{z}} = O(\varepsilon),
\]
and
\[
\Phi_j(\Gamma_R(L_k)) \in \text{Span}\{\Gamma_R(L_1), \ldots, \Gamma_R(L_{k-1})\},
\]
where \(0 \leq k \leq \mu - 1\) and \(1 \leq j \leq n\). Hence, \(\{\Gamma_R(L_0), \Gamma_R(L_1), \ldots, \Gamma_R(L_{\mu-1})\}\) is a closed basis of \(\Delta_{\hat{x}+\hat{y}}(I)\).

Remark 3.5. It should be noticed that Theorem 3.3 holds as long as \(R\) is a regular matrix. However, if we choose a unitary matrix \(R\), then it is much easier to compute the inverse of \(R\) since \(R^{-1} = R^{*}\).

It is interesting to notice that, after running one regularized Newton iteration, the last \(n - 1\) elements of the solution \(\hat{z}\) have already been refined quadratically.

Theorem 3.6. Suppose \(\hat{z}_e\) and \(\hat{z}\) are defined in (3.10) and (3.11) respectively. Under Assumption 1, we have

\[
|\hat{z}_{1,e} - \hat{z}_1| = \Theta(\varepsilon),
\]

(3.16)

and

\[
|\hat{z}_{i,e} - \hat{z}_i| = O(\varepsilon^2), \text{ for } i = 2, \ldots, n.
\]

(3.17)

Proof. From the Taylor expansion of \(H(z)\) at \(\hat{z}\), we have

\[
H(\hat{z}_e) = H(\hat{z}) + H'(\hat{z})(\hat{z}_e - \hat{z}) + O(\varepsilon^2).
\]

Since \(H(\hat{z}_e) = 0\) and \(\|H(\hat{z})\| = O(\varepsilon^2)\), we have

\[
\|H'(\hat{z})(\hat{z}_e - \hat{z})\| = O(\varepsilon^2).
\]

From (3.14) and (3.15), we have

\[
\left\| \frac{\partial H(\hat{z})}{\partial \hat{z}_1}(\hat{z}_{1,e} - \hat{z}_1) \right\| = O(\varepsilon^2),
\]

and

\[
\left\| \left[\frac{\partial H(\hat{z})}{\partial \hat{z}_2}, \ldots, \frac{\partial H(\hat{z})}{\partial \hat{z}_n} \right] \cdot [\hat{z}_{2,e} - \hat{z}_2, \ldots, \hat{z}_{n,e} - \hat{z}_n]^T \right\| = O(\varepsilon^2).
\]

According to Remark 3.3, the matrix \(\left[\frac{\partial H(\hat{z})}{\partial \hat{z}_2}, \ldots, \frac{\partial H(\hat{z})}{\partial \hat{z}_n} \right]\) is of full column rank, so that (3.17) is correct. The equation (3.16) follows from (3.15) and (3.17).

If the multiplicity \(\mu\) is larger than 2, the regularity assumption in [13] will not be satisfied. The violation of the regularity assumption is caused by the existence of the higher order Max Noether condition. It is interesting to notice that the left singular vector of the Jacobian matrix \(H'(\hat{z})\) corresponding to the smallest singular value can be used to prove the following theorem.

Theorem 3.7. If the multiplicity of the singular root is larger than 2, under Assumption 1, we have

\[
\|L_1(H)_{z=\hat{z}}\| = \left\| \frac{\partial H(\hat{z})}{\partial \hat{z}_1} \right\| = O(\varepsilon^2).
\]

Proof. If \(\mu > 2\), according to Theorem 2.4 and (2.5), there exists a second order Max Noether condition such that

\[
\|L_2(H)_{z=\hat{z}}\| = \left\| \left(\frac{1}{2} \frac{\partial^2}{\partial \hat{z}_1^2} + a_{2,2} \frac{\partial}{\partial \hat{z}_2} + \cdots + a_{2,n} \frac{\partial}{\partial \hat{z}_n} \right)(H)_{z=\hat{z}} \right\| = O(\varepsilon). \tag{3.18}
\]

(3.18)
Suppose u_n is the left singular vector of $H'(\hat{z})$ corresponding to the smallest singular value σ_n' and $\|u_n\| = 1$, then
\[
\left| u_n^* \frac{\partial H(\hat{z})}{\partial z_i} \right| = O(\epsilon), \quad 1 \leq i \leq n. \tag{3.19}
\]
From (3.18) and (3.19), we have
\[
\left| u_n^* \frac{\partial^2 H(\hat{z})}{\partial z_i^2} \right| = O(\epsilon). \tag{3.20}
\]
Therefore, we get
\[
\left| u_n^* \frac{\partial^2 H(\hat{z})}{\partial z_i^2} (\hat{z}_{1,e} - \hat{z}_1)^2 \right| = O(\epsilon^3). \tag{3.21}
\]
From the Taylor expansion of $H(\hat{z})$ at \hat{z}, we have
\[
H(\hat{z}_e) = H(\hat{z}) + H'(\hat{z})(\hat{z}_e - \hat{z}) + H''(\hat{z})(\hat{z}_e - \hat{z})^2 + O(\epsilon^3), \tag{3.22}
\]
where $(\hat{z}_e - \hat{z})^2$ denotes the vector of all monomials with degree 2 and $H''(\hat{z})$ consists of all second order derivatives of H evaluated at \hat{z}.

According to Theorem 3.6, all elements in $(\hat{z}_e - \hat{z})^2$ are $O(\epsilon^3)$ except the first one. Combining with (3.21), we have
\[
\left| u_n^* H''(\hat{z})(\hat{z}_e - \hat{z})^2 \right| = O(\epsilon^3). \tag{3.23}
\]
On the other hand, the Taylor expansion of $H(\hat{z})$ at \hat{z}_e shows that
\[
H(\hat{z}) = H(\hat{z}_e) + H'(\hat{z}_e)(\hat{z} - \hat{z}_e) + H''(\hat{z}_e)(\hat{z} - \hat{z}_e)^2 + O(\epsilon^3).
\]
Since the corank of $H'(\hat{z}_e)$ is one, suppose u_e is the left null vector of $H'(\hat{z}_e)$ and $\|u_e\| = 1$, then
\[
u_e^* H'(\hat{z}_e) = 0.
\]
Notice that
\[
\|u_n^* H'(\hat{z})\| = \|u_n^* [H'(\hat{z}) - H'(\hat{z}_e)]\| \leq \|H'(\hat{z}) - H'(\hat{z}_e)\| = O(\epsilon),
\]
and $H'(\hat{z})$ has corank one approximately, so that $\|u_n - u_e\| = O(\epsilon)$. Moreover, using the same analysis above, we obtain that
\[
\left| u_n^* H''(\hat{z}_e)(\hat{z} - \hat{z}_e)^2 \right| = O(\epsilon^3).
\]
Hence, we have $|u_n^* H(\hat{z})| = O(\epsilon^3)$. Noticing $\|H(\hat{z})\| = O(\epsilon^2)$, we get
\[
|u_n^* H(\hat{z})| \leq \|(u_n - u_e)^* H(\hat{z})\| + |u_n^* H(\hat{z})| = O(\epsilon^3). \tag{3.24}
\]
Combining (3.22), (3.23) and (3.24), we have
\[
|u_n^* H'(\hat{z})(\hat{z}_e - \hat{z})| = O(\epsilon^3), \tag{3.25}
\]
which is equivalent to
\[
|\sigma_n' v_n^* (\hat{z}_e - \hat{z})| = O(\epsilon^3), \tag{3.26}
\]
where $v_n = [1, 0, \ldots, 0]^T$ is the right singular vector of $H'(\hat{z})$ corresponding to σ'_n. Hence, $|\sigma'_n(\hat{z}_{1, e} - \hat{z}_1)| = O(\varepsilon^3).$ Based on (3.16), we have

$$\sigma'_n = O(\varepsilon^2).$$

(3.27)

Moreover, from (3.14), we have

$$\|L_1(H)(z - \hat{z})\| = \frac{\partial H(\hat{z})}{\partial z_1} = O(\varepsilon^2).$$

(3.28)

It is amazing to notice that not only the first order Max Noether condition computed according to Theorem 2.4 satisfies (3.28), but also all other Max Noether conditions up to the order $\mu - 2 \geq 0$ satisfy similar conditions:

$$\|L_i(H)(z - \hat{z})\| = O(\varepsilon^2), \text{ for } i = 0, \ldots, \mu - 2.$$

(3.29)

3.2. An Augmented Polynomial System. To prove (3.29) inductively, we need to introduce an augmented polynomial system and prove the following theorem.

Theorem 3.8. Let us assume that $H(z) \text{ is a polynomial system which has } \hat{z}_e \text{ as an isolated exact singular solution with the multiplicity } \mu, \text{ the corank of } H'(\hat{z}_e) \text{ is one. Let } I \text{ be the ideal generated by polynomials in } H \text{ and } \{L_0, L_1, \ldots, L_{\mu - 1}\} \text{ be a closed basis of } \triangle_\Lambda(\hat{I}), \text{ where } L_0 = D(0, \ldots, 0), L_1 = D(1, 0, \ldots, 0) \text{ and } L_k = P_k + a_{k, 2}D(0, 1, \ldots, 0) + \cdots + a_{k, n}D(0, 1, \ldots, 1) \text{ constructed according to Theorem 2.4.} \text{ The augmented polynomial system}

$$G(z, \lambda) := \begin{cases} H(z), \\ H'(z) \cdot \lambda, \\ \lambda_1 - 1, \end{cases}$$

(3.30)

where $\lambda = [\lambda_1, \ldots, \lambda_n]^T$ has an isolated singular solution $(\hat{z}_e, \hat{\lambda}_e)$ with the multiplicity $\mu - 1$, where $\hat{\lambda}_e = [1, 0, \ldots, 0]^T$. If $\mu \geq 3$ then the Jacobian matrix $G'(\hat{z}_e, \hat{\lambda}_e)$ has corank one and

$$\tilde{L}_1 = \frac{\partial}{\partial z_1} + 2a_{2, 2} \frac{\partial}{\partial \lambda_2} + \cdots + 2a_{2, n} \frac{\partial}{\partial \lambda_n}$$

(3.31)

satisfies $\tilde{L}_1(G)(z, \lambda) = (\hat{z}_e, \hat{\lambda}_e) = 0$. Moreover, starting from $L_0 = D(0, \ldots, 0)$ and L_1, for $2 \leq k \leq \mu - 2$, the k-th order Max Noether condition of G at $(\hat{z}_e, \hat{\lambda}_e)$ retaining the closedness has the following form:

$$\tilde{L}_k = \tilde{P}_k + a_{k, 2} \frac{\partial}{\partial z_2} + \cdots + a_{k, n} \frac{\partial}{\partial z_n} + (k + 1)a_{k + 1, 2} \frac{\partial}{\partial \lambda_2} + \cdots + (k + 1)a_{k + 1, n} \frac{\partial}{\partial \lambda_n}$$

(3.32)

where

$$\tilde{P}_k = P_k + \Psi_{n + 2}(Q_{k, n + 2}) + \Psi_{n + 3}(Q_{k, n + 3})a_{n + 2} = 0 + \cdots + \Psi_{2n}(Q_{k, 2n})a_{n + 2} = \cdots = a_{2n - 1} = 0$$

(3.33)

and

$$Q_{k, n + j} = \Phi_{n + j}(\tilde{P}_k) = 2a_{2, j} \tilde{L}_{k - 1} + \cdots + k a_{k, j} \tilde{L}_1, \quad 2 \leq j \leq n.$$

(3.34)
Proof. The Jacobian matrix of \(G(z, \lambda) \) at \((\hat{z}_e, \hat{\lambda}_e)\) is

\[
G'(\hat{z}_e, \hat{\lambda}_e) = \begin{bmatrix}
H'(\hat{z}_e) & 0 \\
H''(\hat{z}_e) \cdot \hat{\lambda}_e & H'(\hat{z}_e)
\end{bmatrix},
\]

where \(H''(\hat{z}_e) \cdot \hat{\lambda}_e = \left[\frac{\partial^2 H(\hat{z}_e)}{\partial z_1^2}, \ldots, \frac{\partial^2 H(\hat{z}_e)}{\partial z_1 \partial z_n} \right] \). Since the corank of \(H'(\hat{z}_e) \) is one and \(L_1 = D(1, 0, \ldots, 0) \in \Delta^{(3)}(I) \), the first column of \(H'(\hat{z}_e) \) is a zero vector and the remaining columns of \(H'(\hat{z}_e) \) are linearly independent. Moreover, since \(\hat{\lambda}^T_e = [1, 0, \ldots, 0] \), the last \(2n - 1 \) columns of \(G'(\hat{z}_e, \hat{\lambda}_e) \) are linearly independent and its corank is less than one.

If \(\mu \geq 3 \), the second order Max Noether condition of \(H \) at \(\hat{z}_e \) has the form \(L_2 = D(2, 0, \ldots, 0) + a_{2,2}D(0, 1, 0, \ldots, 0) + \cdots + a_{2,n}D(0, \ldots, 0, 1) \). From \(L_2(H)_{z=\hat{z}_e} = 0 \), we have

\[
\frac{1}{2} \frac{\partial^2 H(\hat{z}_e)}{\partial z_1^2} + a_{2,2} \frac{\partial H(\hat{z}_e)}{\partial z_2} + \cdots + a_{2,n} \frac{\partial H(\hat{z}_e)}{\partial z_n} = 0.
\]

The vector \(v = [1, 0, \ldots, 0, 2a_{2,2}, \ldots, 2a_{2,n}]^T \) is a null vector of \(G'(\hat{z}_e, \hat{\lambda}_e) \). Therefore, the Jacobian matrix \(G'(\hat{z}_e, \hat{\lambda}_e) \) has corank one and the first order differential operator \(\hat{L}_1 \) in (3.31) satisfies

\[
\hat{L}_1(H'(z) \cdot \lambda)_{(z, \lambda)=(\hat{z}_e, \hat{\lambda}_e)} = 2L_2(H)_{z=\hat{z}_e} = 0. \quad (3.35)
\]

Hence, we have

\[
\hat{L}_1(G)_{(z, \lambda)=(\hat{z}_e, \hat{\lambda}_e)} = 0. \quad (3.36)
\]

Using similar arguments in [18] for proving Theorem 2.4, we can show that the differential operators \(\hat{L}_k \) defined by formulas (3.32), (3.33) and (3.34) retain the closedness. It should also be noticed that \(\hat{L}_k \) always contains the differential monomial \(D(k, 0, \ldots, 0) \) and there are no differential monomials \(D(i, 0, \ldots, 0) \) for \(i < k \) contained in \(\hat{L}_k \). Otherwise, we can reduce them by \(\hat{L}_i \). Moreover, \(\frac{\partial}{\partial \lambda_1} \) is not contained in any \(\hat{L}_k \), otherwise, \(\hat{L}_k(\lambda_1)_{(z, \lambda)=(\hat{z}_e, \hat{\lambda}_e)} \neq 0 \). Hence, due to the closedness, there are no differential operators \(D(\alpha_1, \ldots, \alpha_n, \alpha_{n+1}, \ldots, \alpha_{2n}) \) with \(\alpha_{n+1} > 0 \) contained in any \(\hat{L}_k \).

Now let us show that the constructed differential operators \(\hat{L}_k \) satisfy

\[
\hat{L}_k(G)_{(z, \lambda)=(\hat{z}_e, \hat{\lambda}_e)} = 0, \text{ for } 1 \leq k \leq \mu - 2. \quad (3.37)
\]

From (3.36), we can see that (3.37) is true for \(k = 1 \). Moreover, it is easy to check that

\[
\hat{L}_k(H)_{(z, \lambda)=(\hat{z}_e, \hat{\lambda}_e)} = \left(\rho_k + a_{k,2} \frac{\partial}{\partial z_2} + \cdots + a_{k,n} \frac{\partial}{\partial z_n} \right) (H)_{z=\hat{z}_e} = 0, \quad (3.38)
\]

and

\[
\hat{L}_k(\lambda_1)_{(z, \lambda)=(\hat{z}_e, \hat{\lambda}_e)} = 0. \quad (3.39)
\]
Based on formulas (3.32), (3.33) and (3.34), we have

$$L_k(H'(z) \cdot \lambda) = \left(L_k \frac{\partial}{\partial z_1} + \sum_{j=2}^{n} \left(2 a_{2,j} L_{k-1} + \cdots + k a_{k,j} L_1 + (k+1) a_{k+1,j} \frac{\partial}{\partial z_j} \right) \right) (H)_{z=\hat{z}_c}.$$

Let us set

$$Q_{k+1} = L_k \frac{\partial}{\partial z_1} + \sum_{j=2}^{n} \left(2 a_{2,j} L_{k-1} + \cdots + k a_{k,j} L_1 \right) \frac{\partial}{\partial z_j}. \quad (3.40)$$

We show (Proposition 5.1 in Appendix) that

$$Q_{k+1} = (k+1) P_{k+1}. \quad (3.41)$$

Hence, we have

$$L_k(H'(z) \cdot \lambda) = (k+1) P_{k+1} + (k+1) a_{k+1,j} \frac{\partial}{\partial z_j} \right) (H)_{z=\hat{z}_c} \quad (3.42)$$

From (3.35), (3.39) and (3.42), we derive that (3.37) is true for $1 \leq k \leq \mu - 2. \ \Box$

Corollary 3.9. Suppose $F(x)$ is a polynomial system which has \hat{x}_e as an isolated exact singular solution with the multiplicity μ and the corank of $F'(x)$ is one. Let r_1 be the null vector of $F'(x)$ and $\|r_1\| = 1$. For any random vector $h \in \mathbb{C}^n$ satisfying $h^* r_1 \neq 0$, the augmented polynomial system

$$J(x, \nu) := \begin{cases} F(x), \\ F'(x) \cdot \nu, \\ h^* \nu - 1, \end{cases} \quad (3.43)$$

has $(\hat{x}_e, \frac{r_1}{h^* r_1})$ as an isolated singular solution with the multiplicity $\mu - 1$.

Proof. Let $\{r_1, \ldots, r_n\}$ be a normal orthogonal basis of \mathbb{C}^n, then $h = (h^* r_1) r_1 + \cdots + (h^* r_n) r_n$. If $h^* r_1 \neq 0$, performing the linear transformation

$$x = R z, \quad \nu = R \lambda,$$

where $R = \begin{bmatrix} \frac{r_1}{h^* r_1}, \frac{r_2}{h^* r_1}, \ldots, \frac{r_n}{h^* r_1} r_1 \end{bmatrix}$ is a regular matrix, we obtain the augmented polynomial system

$$G(z, \lambda) := \begin{cases} H(z), \\ H'(z) \cdot \lambda, \\ \lambda_1 - 1, \end{cases}$$

where

$$H(z) = F(R z), \quad H'(z) \cdot \lambda = F'(x) \cdot R \cdot R^{-1} \nu, \quad \lambda_1 - 1 = h^* \nu - 1.$$

According to Theorem 3.8, we know that $(\hat{z}_e, \hat{\lambda}_c)$ is an isolated singular solution of G with the multiplicity $\mu - 1$, where $\hat{z}_e = R^{-1} \hat{x}_e$ and $\hat{\lambda}_c = [1, 0, \ldots, 0]^T$. Hence, by
Theorem 3.3 and Remark 3.5 \(\hat{x}_e \), \(\frac{r_1}{h^r_1} \) is an isolated singular solution of \(J(x, \nu) \) with the multiplicity \(\mu - 1 \).

Remark 3.10. It is well known that the augmented polynomial system \(J(x, \nu) \) defined in (3.43) has an isolated singular solution \(\left(\hat{x}_e, \frac{r_1}{h^r_1} \right) \) with the multiplicity less than \(\nu \), see [77, 7]. Here, we proved the conjecture in [7] that the multiplicity of the singular solution of the augmented polynomial system (3.43) drops by one exactly in the breadth one case.

Remark 3.11. For the system \(H(z) \) and its approximate singular solution \(\hat{z} \) defined in (3.9) and (3.11), the augmented polynomial system defined in (3.3A) has \((\hat{z}, \lambda) \) \((\lambda = [1, 0, \ldots, 0]^T) \) as an approximate solution. Suppose \(\{L_0, \ldots, L_{\mu-1}\} \) is a closed basis of the approximate Max Noether space of the system \(H \) at \(\hat{z} \) constructed according to Theorem 3.2 from \(L_0 = D(0, \ldots, 0) \) and \(L_1 = D(1, 0, \ldots, 0) \), then \(\{L_0, L_1, \ldots, L_{\mu-2}\} \) constructed according to Theorem 3.3 is a closed basis of the approximate Max Noether space of the system \(G \) at \((\hat{z}, \lambda) \), satisfying
\[
\left\{ \begin{array}{l}
\|\tilde{L}_k(H)(z, \lambda) = (\hat{z}, \lambda)\| = \|L_k(H)_{z=\hat{z}}\| = O(\epsilon), \\
\|\tilde{L}_k(H')(z, \lambda) = (\hat{z}, \lambda)\| = \|(k + 1)L_{k+1}(H)_{z=\hat{z}}\| = O(\epsilon), \\
\|\tilde{L}_k(\lambda_1)(z, \lambda) = (\hat{z}, \lambda)\| = 0,
\end{array} \right.
\]
for \(1 \leq k \leq \mu - 2 \).

Theorem 3.12. Let \(F(x) \) be a polynomial system which has \(\hat{x}_e \) as an isolated exact singular solution with the multiplicity \(\mu \) and the breadth one. Suppose \(\hat{x} \) is an approximate solution of \(F \) which satisfies
\[
\|\hat{x} - \hat{x}_e\| = O(\epsilon) \text{ and } \|F'(\hat{x})\| = O(\epsilon^2),
\]
for a small positive number \(\epsilon \). Let \(\sigma_1, \ldots, \sigma_n \) be the singular values of \(F'(\hat{x}) \) satisfying \(\sigma_i = O(1), 1 \leq i \leq n - 1 \) and \(\sigma_n = O(\epsilon) \). Suppose \(r_1 \) is the right singular vector corresponding to \(\sigma_n \). We form a unitary matrix \(R = [r_1, \ldots, r_n] \) and set \(H(z) = F(Rz) \). Suppose \(\{L_0, \ldots, L_{\mu-1}\} \) is a closed basis of the approximate Max Noether space of the system \(H \) at \(\hat{z} = R^{-1}\hat{x} \) constructed according to Theorem 3.2 from \(L_0 = D(0, \ldots, 0) \) and \(L_1 = D(1, 0, \ldots, 0) \), then
\[
\|L_i(H)_{z=\hat{z}}\| = O(\epsilon^2), \text{ for } i = 0, \ldots, \mu - 2.
\]

Remark 3.13. Under Assumption 7, according to Theorem 3.12, we can always perform the regularized Newton iteration to obtain an approximate singular solution \(\hat{x} \) satisfying (3.44). Moreover, it should also be noticed that all discussions in Section 3.1 after Theorem 3.2 are valid if we start with an approximate singular solution satisfying (3.44).

Proof. According to (3.8) and Theorem 3.7, we know that Theorem 3.12 is true for \(\mu = 2 \) and \(\mu = 3 \).

Now let us assume that Theorem 3.12 is true for \(\mu = k \) and \(k \geq 3 \). For \(\mu = k + 1 \), we form the augmented polynomial system \(G(z, \lambda) = \{H'(z), H'(z) \cdot \lambda, \lambda_1 - 1\} \).

According to Theorem 3.3, the root \(\hat{z}_e \) defined in (3.10) is an exact singular solution of \(H(z) \) with the multiplicity \(\mu \) and the corank of \(H'(\hat{z}_e) \) is one. Let \(v \) be the null vector of \(H'(\hat{z}_e) \) and \(\|v\| = 1 \). Since
\[
\|H'(\hat{z}_e)v\| = \|[H'(\hat{z}_e) - H'(\hat{z}_e)]v\| = O(\epsilon),
\]
(3.45)
\[
\begin{bmatrix}
\frac{\partial H(z)}{\partial z_2}, \ldots, \frac{\partial H(z)}{\partial z_n}
\end{bmatrix}
\] is of full column rank, combining with (3.14), we derive that
\[
v_1 = \Theta(1), \quad \text{and} \quad v_i = O(\varepsilon), \quad \text{for} \quad 2 \leq i \leq n.
\] (3.46)

Set \(h = [1, 0, \ldots, 0]^T \), we have \(h^Tv = v_1 = \Theta(1) \neq 0 \).

According to Corollary 3.13, the augmented polynomial system \(G(z, \lambda) \) has \((\hat{z}_e, \hat{\lambda}) = (\hat{z}_e, \hat{\lambda}_e)\), where
\[
\hat{\lambda}_e = \left[\begin{array}{c}
v_2 \\ v_1 \\
\vdots \\
v_n \\
v_1
\end{array}\right]^T,
\]
as an isolated singular solution with the multiplicity \(\mu - 1 \), which is equal to \(k \).

According to Remark 3.11, \((\hat{z}, \hat{\lambda}) \) \((\hat{\lambda} = [1, 0, \ldots, 0]^T)\) is an approximate solution of \(G(z, \lambda) \). Moreover, by (3.15) and (3.46), we have
\[
\|G(\hat{z}, \hat{\lambda})\| = \sqrt{\|H(\hat{z})\|^2 + \left\|\frac{\partial H(\hat{z})}{\partial z_1}\right\|^2} = O(\varepsilon^2).
\]

We have assumed that Theorem 3.12 is true when the multiplicity is equal to \(k \). Therefore, for the augmented polynomial system \(G(z, \lambda) \), we can form a unitary matrix \(\hat{R} \) with \(r_1 = \frac{1}{a}[1, 0, \ldots, 0, 2a_2, \ldots, 2a_n]^T \) as its first column, where \(a = \sqrt{1 + 4(a_{2,2}^2 + \cdots + a_{2,n}^2)} \), then generating a new system \(J(w) = G(\hat{R}w) \) which has an approximate singular solution \(\hat{w} \) with the multiplicity \(k \). By the inductive assumption, we have
\[
\|\tilde{L}_i(J)_{w=\hat{w}}\| = O(\varepsilon^2), \quad \text{for} \quad 0 \leq i \leq k - 2,
\]
where \(\tilde{L}_i \) is the \(i \)-th Max Noether condition of \(J \) at \(\hat{w} \) constructed by Theorem 2.4 from \(\tilde{L}_0 = D(0, \ldots, 0) \) and \(\tilde{L}_1 = D(1, 0, \ldots, 0) \). According to Theorem 3.3,
\[
\tilde{L}_i(J)_{w=\hat{w}} = \Gamma_{\hat{R}}(\tilde{L}_i)(G)_{(z, \lambda) = (\hat{z}, \hat{\lambda})}.
\]

Since \(\{\tilde{L}_0, \tilde{L}_1, \ldots, \tilde{L}_{k-1}\} \) and \(\{\Gamma_{\hat{R}}(\tilde{L}_0), \Gamma_{\hat{R}}(\tilde{L}_1), \ldots, \Gamma_{\hat{R}}(\tilde{L}_{k-1})\} \) are both closed basis of the approximate Max Noether space of the system \(G \) at \((\hat{z}, \hat{\lambda})\), and
\[
\Gamma_{\hat{R}}(\tilde{L}_0) = \tilde{L}_0, \quad \text{and} \quad \Gamma_{\hat{R}}(\tilde{L}_1) = \frac{1}{a} \hat{L}_1,
\]
we derive that \(\Gamma_{\hat{R}}(\tilde{L}_i) \) is a linear combination of \(\{\tilde{L}_0, \tilde{L}_1, \ldots, \tilde{L}_i\} \) (Proposition 5.2 in Appendix). Hence, we have \(\|\tilde{L}_i(G)_{(z, \lambda) = (\hat{z}, \hat{\lambda})}\| = O(\varepsilon^2) \), and
\[
\|\tilde{L}_{i+1}(H)_{z=\hat{z}}\| = \left\|\frac{1}{i+1} \tilde{L}_i(H'(\lambda))_{(z, \lambda) = (\hat{z}, \hat{\lambda})}\right\| = O(\varepsilon^2).
\]

Therefore, Theorem 3.12 is true for \(\mu = k + 1 \). \(\blacksquare \)
3.3. An Algorithm for Refining Approximate Singular Solutions.

Algorithm 1. MultipleRootRefinerBreadthOne

Input: An approximate solution \hat{x} of a polynomial system F which is close to an isolated exact singular solution of F with the multiplicity μ in the breadth one case, and a tolerance τ.

Output: Refined solution \hat{x}.

1. **Regularized Newton Iteration:** Solve the regularized least squares problem
 \[
 (A^* A + \sigma_n I_n) \hat{y} = A^* b,
 \]
 where $b = -F(\hat{x})$, A^* is the Hermitian (conjugate) transpose of $A = F'(\hat{x})$, I_n is the $n \times n$ identity matrix and σ_n is the smallest singular value of A.

2. Compute the null vector r_1 of $F'(\hat{x} + \hat{y})$ with respect to τ, form a unitary matrix R with r_1 as its first column and perform the linear transformation
 \[H(z) := F(Rz),\]
 and set $\hat{z} := R^{-1}(\hat{x} + \hat{y})$.

3. Construct a closed basis of the approximate Max Noether space of $I = (h_1, \ldots, h_n)$ at \hat{z} with respect to τ:
 \[\triangle_\mu(\hat{z}) := \text{Span}(L_0, L_1, \ldots, L_{\mu-1})\]
 by Algorithm MultiplicityStructureBreadthOneNumeric in [18].

4. Solve the linear system
 \[
 \left[P_\mu(H)_{z=\hat{z}}, \frac{\partial H(\hat{z})}{\partial z_2}, \ldots, \frac{\partial H(\hat{z})}{\partial z_n} \right] v = -L_{\mu-1}(H)_{z=\hat{z}},
 \]
 where $v = [v_1, \ldots, v_n]^T$ and P_μ is the differential operator of order μ computed by formulas in Theorem 2.4. Set $\delta := \frac{v_1}{\mu}$.

5. Return
 \[\hat{x} := \hat{x} + \hat{y} + \delta r_1.\]

Remark 3.14. The size of matrices involved in the algorithm MultipleRootRefinerBreadthOne is bounded by $n \times n$, whereas the size of matrices used in the deflation method is bounded by $(\mu n) \times (\mu n)$ [5, 17].

Remark 3.15. In fact, in order to keep the sparse structure of the original polynomial system, we should avoid performing the linear transformation. Moreover, it is expensive to compute and store all Max Noether conditions. Since we only need their evaluations to solve (3.47), it’s possible to compute and store only the necessary evaluations of these Max Noether conditions. We will discuss these issues in forthcoming papers.

3.4. Quadratic Convergence of the Algorithm.

Theorem 3.16. Under Assumptions [7] the refined singular solution \hat{x} returned by Algorithm MultipleRootRefinerBreadthOne satisfies
 \[\|\hat{x} - \hat{x}_e\| = O(\varepsilon^2).\]
Proof. According to Theorem 3.412 we have $L_i(H)_{z=\hat{z}} = O(\varepsilon^2)$, for $0 \leq i \leq \mu - 2$. Since

$$\Phi_k(L_i) \in \text{Span}(L_0, \ldots, L_{\mu-2}), \text{ for } 1 \leq k \leq n,$$

we have

$$\|L_i((z_k - \hat{z}_k)H)_{z=\hat{z}}\| = \|\Phi_k(L_i)(H)_{z=\hat{z}}\| = O(\varepsilon^2), \text{ for } 1 \leq k \leq n, 0 \leq i \leq \mu - 1. \quad (3.49)$$

The matrix in (3.47) is of full rank. We solve the linear system (3.47) to obtain the vector $v = [v_1, \ldots, v_n]^T$ such that $L_\mu(H)_{z=\hat{z}} = 0$ for

$$L_\mu := L_{\mu-1} + v_1 \cdot P_\mu + v_2 \cdot \frac{\partial}{\partial z_2} + \cdots + v_n \cdot \frac{\partial}{\partial z_n}. \quad (3.50)$$

It should be noticed that the vector v satisfies $\|v\| = O(\varepsilon)$ since $\|L_{\mu-1}(H)_{z=\hat{z}}\| = O(\varepsilon)$. Moreover,

$$\Phi_k(L_\mu) \in \text{Span}(L_0, \ldots, L_{\mu-2}), \text{ for } 2 \leq k \leq n,$$

we have

$$\|L_\mu((z_k - \hat{z}_k)H)_{z=\hat{z}}\| = \|\Phi_k(L_\mu)(H)_{z=\hat{z}}\| = O(\varepsilon^2), \text{ for } 2 \leq k \leq n. \quad (3.51)$$

For $k = 1$, since $\|\Phi_1(v_1 P_\mu)(H)_{z=\hat{z}}\| = \|v_1 L_{\mu-1}(H)_{z=\hat{z}}\| = O(\varepsilon^2)$, we have

$$\|L_\mu((z_1 - \hat{z}_1)H)_{z=\hat{z}}\| = \|\Phi_1(L_\mu)(H)_{z=\hat{z}}\| = O(\varepsilon^2). \quad (3.52)$$

From (3.49) and (3.52), for $i = 0, 1, \ldots, \mu - 2, \mu$, we have

$$\|L_i(p \cdot H)_{z=\hat{z}}\| = O(\varepsilon^2), \text{ } \forall p \in \{(z_1 - \hat{z}_1)^\alpha_1 \cdots (z_n - \hat{z}_n)^\alpha_n, \alpha_1 \geq 0, \ldots, \alpha_n \geq 0\}.$$

Especially, we have

$$\|M_{\mu+1} \cdot L_i(v(z)_\mu)_{z=\hat{z}}\| = O(\varepsilon^2),$$

where $M_{\mu+1}$ is the coefficient matrix of the Taylor expansion of the system H and all its prolongations up to the degree μ at \hat{z}, and

$$v(z)_\mu = [(z_1 - \hat{z}_1)^\mu, (z_1 - \hat{z}_1)^{\mu-1}(z_2 - \hat{z}_2), \ldots, z_1 - \hat{z}_1, \ldots, z_n - \hat{z}_n, 1]^T.$$

It is important to notice that, based on the closedness conditions, we obtain the null space of $M_{\mu+1}$ with matrices of size $n \times n$ instead of generating the big matrix $M_{\mu+1}$. Similarly to the analysis in [37] Remark 18, the trace of the multiplication matrix $\tilde{M}_{\hat{z}_i}$ formed from approximate null vectors $L_i(v(z)_\mu)_{z=\hat{z}}$ has the following property

$$\frac{1}{\mu} \text{Tr}(\tilde{M}_{\hat{z}_i}) = \frac{1}{\mu} \text{Tr}(M_{\hat{z}_i}) + O(\varepsilon^2) = -\hat{z}_{i,\varepsilon} + O(\varepsilon^2). \quad (3.53)$$

It is interesting to notice that, by using the approximate basis $\{L_0, \ldots, L_{\mu-2}, L_\mu\}$ and the normal set $\{1, \frac{\partial}{\partial z_1}, \ldots, \frac{\partial^{\mu-1}}{\partial z_1^{\mu-1}}\}$, we can form the multiplication matrix

$$\tilde{M}_{\hat{z}_i} := \begin{bmatrix} l_0 & 0 & \cdots & 0 \\ 0 & l_1 & \cdots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & \cdots & 0 & l_{\mu-1} \end{bmatrix} = \begin{bmatrix} 0 & l_1 & 0 & \cdots & 0 \\ 0 & 0 & l_2 & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & l_{\mu-1} & v_1 \cdot l_{\mu-1} \end{bmatrix}.$$
where \(l_i \) is the coefficient of \(\frac{\partial}{\partial z_1} \) in \(L_i \). Hence, the trace of \(\tilde{M}_z \) is \(v_1 \). Therefore, there is no need to form the multiplication matrix! According to (3.53), we have

\[
\frac{v_1}{\mu} + \hat{z}_{1,e} = O(\varepsilon^2).
\]

(3.54)

Since the last \(n - 1 \) elements of \(\hat{z} \) have already been refined quadratically, by updating \(\hat{z}_1 := \hat{z}_1 + \delta \) for \(\delta := \frac{v_1}{\mu} \), we have

\[
\| \hat{x} - x_e \| = \| R(\hat{z} - \hat{x}_e) \| = O(\varepsilon^2).
\]

Remark 3.17. The algorithm MultipleRootRefinerBreadthOne also works well for some overdetermined polynomial systems, i.e., the number of polynomials is bigger than the number of variables, see the last example Menzel1 in Table 4.

4. Examples. The following experiments are done in Maple 13 under Linux for Digits := 15. Let \(t \) and \(s \) be the number of polynomials and variables respectively, \(\mu \) be the multiplicity. Systems DZ3, Dayton2 and DLZ are quoted from [3, 4, 5], Menzel1 and SY5 are cited from [21] and [31] respectively. Other examples are cited from the PHCpack demos by Jan Verschelde.

System	Zero	\(t \)	\(s \)	\(\mu \)	# Digits
Ojika1	(1, 2)	2	2	3	2 \(\rightarrow \) 5 \(\rightarrow \) 11 \(\rightarrow \) 15
Ojika2	(1, 0, 0)	3	3	2	2 \(\rightarrow \) 5 \(\rightarrow \) 10 \(\rightarrow \) 14
Ojika3	(−2.5, 2.5, 1)	3	3	2	2 \(\rightarrow \) 4 \(\rightarrow \) 9 \(\rightarrow \) 14
Ojika4	(0, 0, 10)	3	3	3	2 \(\rightarrow \) 3 \(\rightarrow \) 7 \(\rightarrow \) 13
Decker2	(0, 0)	2	2	4	2 \(\rightarrow \) 5 \(\rightarrow \) 15
DLZ	(0, 0)	2	2	10	2 \(\rightarrow \) 5 \(\rightarrow \) 16
DZ3	\((\sqrt{7} + \sqrt{5}, -\sqrt{7} + 2\sqrt{5}) \)	2	2	5	2 \(\rightarrow \) 5 \(\rightarrow \) 13
Dayton2	(0, 0, 0)	3	3	5	2 \(\rightarrow \) 3 \(\rightarrow \) 7 \(\rightarrow \) 13
SY5	(1, 1)	2	2	2	2 \(\rightarrow \) 5 \(\rightarrow \) 11 \(\rightarrow \) 14
Menzel1	(1, 1)	3	2	2	2 \(\rightarrow \) 5 \(\rightarrow \) 10 \(\rightarrow \) 14

Algorithm Performance

5. Conclusion. It is a challenge problem to solve the polynomial systems with singular solutions. Various symbolic-numeric methods have been proposed for refining an approximate singular solution to high accuracy [2, 4, 5, 9, 10, 16, 17, 25, 36, 37]. The breadth one case root refinement has been studied in [4, 5, 10, 13]. In this paper, we show how to apply strategies in [18] to reduce the size of matrices appeared in [5, 36] to obtain a more efficient algorithm for refining an approximately known multiple root for this special case. We have proved the quadratic convergency of the new algorithm when the approximate solution is close to the isolated exact singular solution. We also notice that when the singular solution \(x_e \) is not well separated from other solutions of \(F \), it is difficult to ensure that the approximate solution \(\hat{x} \) will converge to \(x_e \). In [30], they described an algorithm for computing verified error bounds for double roots of polynomial systems. We will explore ways of computing the certified bound for \(\varepsilon \) to guarantee the convergency of our algorithm. It is also interesting to see whether the approach in the paper can be generalized to refine singular solutions when the Jacobian matrix is not of corank one.
REFERENCES

[1] Xiaojun Chen, Zuhair Nashed, and Liqun Qi, Convergence of Newton’s method for singular smooth and nonsmooth equations using adaptive outer inverses, SIAM J. on Optimization, 7 (1997), pp. 445–462.

[2] R. Corless, P. Gianni, and B. Trager, A reordered Schur factorization method for zero-dimensional polynomial systems with multiple roots, in Proc. 1997 Internat. Symp. Symbolic Algebraic Comput. ISSAC’97, Küchlin, ed., New York, 1997, ACM Press, pp. 133–140.

[3] B. Dayton, Numerical local rings and local solutions of nonlinear systems, in SNC’07 Proc. 2007 Internat. Workshop on Symbolic-Numeric Comput., Jan Verschelde and Stephen M. Watt, eds., New York, N. Y., 2007, ACM Press, pp. 79–86.

[4] B. Dayton, T. Li, and Z. Zeng, Multiple zeros of nonlinear systems, 2009. preprint, http://orion.neiu.edu/~zzeng/Papers/MultipleZeros.pdf.

[5] B. Dayton and Z. Zeng, Computing the multiplicity structure in solving polynomial systems, in ISSAC’05 Proc. 2005 Internat. Symp. Symbolic Algebraic Comput., Manuel Kauers, ed., New York, N. Y., 2005, ACM Press, pp. 116–123.

[6] D. W. Decker and C. T. Kelley, Newton’s method at singular points. i, SIAM Journal on Numerical Analysis, 17 (1980), pp. 66–70.

[7] , Newton’s method at singular points. ii, SIAM Journal on Numerical Analysis, 17 (1980), pp. 465–471.

[8] Convergence acceleration for Newton’s method at singular points, SIAM Journal on Numerical Analysis, 19 (1982), pp. 219–229.

[9] M. Giusti, G. Lecerf, B. Salvy, and J.-C. Yakoubsohn, On location and approximation of clusters of zeros of analytic functions, Found. Comput. Math., 5 (2005), pp. 257–311.

[10] , On location and approximation of clusters of zeros: Case of embedding dimension one, Found. Comput. Math., 7 (2007), pp. 1–58.

[11] G. Golub and C. Van Loan, Matrix computations, Johns Hopkins University Press, 3rd edition, 1996.

[12] Andreas Griewank, Analysis and modification of Newton’s method at singularities, thesis, Australian National University, 1980.

[13] A. Griewank, On solving nonlinear equations with simple singularities or nearly singular solutions, SIAM Review, 27 (1985), pp. 537–563.

[14] Andreas Griewank and M. R. Osborne, Newton’s method for singular problems when the dimension of the null space is > 1, SIAM Journal on Numerical Analysis, 18 (1981), pp. 145–149.

[15] L.V. Kantorovich and G.P. Akilov, Functional analysis in normed spaces, Pergamon, New York, 1964.

[16] G. Lecerf, Quadratic Newton iteration for systems with multiplicity, Foundations of Computational Mathematics, 2 (2002), pp. 247–293.

[17] A. Levkin, J. Verschelde, and A. Zhao, Newton’s method with deflation for isolated singularities of polynomial systems, Theoretical Computer Science, 359 (2006), pp. 111–122.

[18] N. Li and L. Zhi, Compute the multiplicity structure of an isolated singular solution: case of breadth one, MM Research Preprints, 28 (2009), pp. 93–103. Accepted for publication in J. Symbolic Comput.

http://www.mmrc.iss.ac.cn/~1zhi/ Publications/jsc_LiZhi2010.pdf

[19] T. Ojika, Modified deflation algorithm for the solution of singular problems, J. Math. Anal. Appl., 123 (1987), pp. 199–221.

[20] T. Ojika, S. Watanabe, and T. Mitsui, Deflation algorithm for the multiple roots of a system of nonlinear equations, J. Math. Anal. Appl., 96 (1983), pp. 463–479.
[27] L.B. Rall, Convergence of the Newton process to multiple solutions, Numer. Math., 9 (1966), pp. 23–37.
[28] G. W. Reddien, On Newton’s method for singular problems, SIAM Journal on Numerical Analysis, 15 (1978), pp. 993–996.
[29] ———, Newton’s method and high order singularities, Comput. Math. Appl, 5 (1980), pp. 79–86.
[30] S.M. Rump and S. Graillat, Verified error bounds for multiple roots of systems of nonlinear equations, Numerical Algorithms, 54 (2009), pp. 359–377.
[31] Yun-Qiu Shen and Tjalling J. Ypma, Newton’s method for singular nonlinear equations using approximate left and right nullspaces of the Jacobian, Applied Numerical Mathematics, 54 (2005), pp. 256 – 265. 6th IMACS.
[32] R.P. Stanley, Hilbert function of graded algebras, Advances in Math., 28 (1973), pp. 57–83.
[33] H. Stetter, Numerical Polynomial Algebra, SIAM, Philadelphia, 2004.
[34] A. N. Tikhonov and V. Y. Arsenin, Solution of Ill Posed Problems, V. H. Winston and Sons, 1977.
[35] van der Waerden B. L., Algebra, Frederick Ungar Pub. Co., 1970.
[36] X. Wu and L. Zhi, Computing the multiplicity structure from geometric involutive form, in Proc. 2008 Internat. Symp. Symbolic Algebraic Comput. (ISSAC’08), David Jeffrey, ed., New York, N. Y., 2008, ACM Press, pp. 325–332.
[37] ———, Determining singular solutions of polynomial systems via symbolic-numeric reduction to geometric involutive form, MM Research Preprints, 27 (2008), pp. 104–122. Accepted for publication in J. Symbolic Comput.

http://www.mmrc.iss.ac.cn/~lzhi/Publications/jsc_zhiwu.pdf

Appendix. In the following, we suppose that there are no differential operators $D(i, 0, \ldots, 0)$ for $i < k$ contained in L_k, otherwise, we can reduce them by L_1. Here and hereafter, we always assume the coefficient of $D(k, 0, \ldots, 0)$ is one.

Proposition 5.1. The formula (3.41) is true for $1 \leq k \leq \mu - 1$.

Proof. From (3.35), we know that (3.41) is true for $k = 1$. Now let us assume (3.41) is true for k. Let $C_{D_1}^{P_{k+1}}$ and $C_{D_1}^{Q_{k+1}}$ denote the coefficients of $D(\alpha)$ in P_{k+1} and Q_{k+1} respectively. In order to prove (3.41) for $k + 1$, we show that $C_{D_1}^{P_{k+1}} = (k + 1)C_{D_1}^{P_{k+1}}$ by using the following relations repeatedly:

$$
\begin{cases}
 C_{D_1}^{P_{k+1}} = C_{D_1}^{L_k}, \\
 C_{D_1}^{P_{k+1}} = a_{2,j_1}C_{D_1}^{L_{j_1}} + \cdots + a_{k,j_k}C_{D_1}^{L_{j_k}}, \\
\end{cases}
\quad \alpha_1 \neq 0,
\quad \alpha_j \neq 0.
\quad (5.1)
$$

Let $D(\alpha) = D(\alpha_1, \ldots, \alpha_\mu)$, denote $j_1 = \cdots = j_{\alpha_1} = 1, \ldots, j_{|\alpha| - \alpha_{j+1}} = \cdots = j_{|\alpha|} = i$, where α_j is the last nonzero entry in α, e.g., $j_1 = j_2 = j_3 = 1, j_4 = j_5 = 2, j_6 = 3$ for $D(\alpha) = D(3, 2, 1, 0)$. Since all derivatives in Q_{k+1} and P_{k+1} are of order at least 2, we can start with $|\alpha| = 2$. We consider 3 cases.

1. If $\alpha_1 = 0$ and $|\alpha| = 2$, then we have

$$
C_{D_1}^{Q_{k+1}} = 2a_{2,j_1}a_{k-1,j_2} + \cdots + (k - 1)a_{k-1,j_1}a_{2,j_2} + 2a_{2,j_2}a_{k-1,j_1} + \cdots + (k - 1)a_{k-1,j_2}a_{2,j_1} = (k + 1)(a_{2,j_1}a_{k-1,j_2} + \cdots + a_{k-1,j_1}a_{2,j_2}) = (k + 1)C_{D_1}^{P_{k+1}}.
$$

2. If $\alpha_1 \neq 0$ and $|\alpha| = 2$,

$$
C_{D_1}^{Q_{k+1}} = a_{k,j_1} + k a_{k,j_1} = (k + 1)a_{k,j_1} = (k + 1)C_{D_1}^{P_{k+1}}.
$$

3. If $\alpha_1 \neq 0$ and $|\alpha| > 2$, by induction,

$$
C_{D_1}^{Q_{k+1}}(D(\alpha)) = kC_{D_1}^{P_{k+1}}(D(\alpha)) = (\alpha_1 - 1)C_{D_1}^{Q_{k-1}}(D(\alpha)) + \sum_{j=2}^{n} \alpha_j \left(2a_{2,j_1}C_{D_1}^{L_{j_1}} + \cdots + (k - 1)a_{k-1,j}C_{D_1}^{L_{j}} \right) + \cdots + \sum_{j=2}^{n} \alpha_j \left(2a_{2,j_1}C_{D_1}^{L_{j_1}} + \cdots + (k - 1)a_{k-1,j}C_{D_1}^{L_{j}} \right).
$$
the proposition is true. We can reduce $\Gamma_{\Phi_j(D(\alpha))]}

$C_{\Phi_j(D(\alpha))] = \alpha_1 C_{\Phi_j(D(\alpha))] + \sum_{j=2}^{n} \alpha_j \left(2a_{2,j} C_{\Phi_j(D(\alpha))] + \cdots + ka_{k,j} C_{\Phi_j(D(\alpha))] \right)\right)

$= \alpha_1 C_{\Phi_j(D(\alpha))] + \sum_{j=2}^{n} \alpha_j \left(2a_{2,j} C_{\Phi_j(D(\alpha))] + \cdots + a_{k-1,j} \Phi_j(D(\alpha))] \right)\right)

$= (k+1)C_{\Phi_j(D(\alpha))] = (k+1)C_{\Phi_j(D(\alpha))]}

4. If $\alpha_1 = 0$ and $|\alpha| > 2$, we have

$C_{\Phi_j(D(\alpha))] = a_{2,j} C_{\Phi_j(D(\alpha))] + \cdots + a_{k-1,j} C_{\Phi_j(D(\alpha))]\right)\right)

By (3.34), we have $C_{\Phi_j(D(\alpha))] = a_{2,j} C_{\Phi_j(D(\alpha))] + \cdots + a_{k-1,j} C_{\Phi_j(D(\alpha))]\right)\right)

For $2 \leq p \leq k$, we collect all items with respect to $a_{p,j}$:

$p a_{p,j} C_{\Phi_j(D(\alpha))] = a_{2,j} C_{\Phi_j(D(\alpha))] + \cdots + \left(k - p \right) a_{k-p,j} C_{\Phi_j(D(\alpha))]\right)\right)

Hence, $C_{\Phi_j(D(\alpha))] = (k+1) \sum_{p=2}^{k} a_{p,j} C_{\Phi_j(D(\alpha))] = (k+1)C_{\Phi_j(D(\alpha))]\right)\right)

Hence, (3.34) is true for $1 \leq k \leq \mu - 1$.

Proposition 5.2. In the proof of Theorem 5.12 we claim that $\Gamma_{\tilde{L}}(L)$ is a linear combination of $\{\tilde{L}_0, \tilde{L}_1, \ldots, \tilde{L}_1\}$.

Proof. For $i = 2$, since $\Gamma_{\tilde{L}}(L_1) = \frac{1}{a^2} \tilde{L}_1$, we can reduce $\Gamma_{\tilde{L}}(L_2)$ by \tilde{L}_1 to a differential operator which does not contain $D(1,0, \ldots, 0)$, denoted by $\Gamma_{\tilde{L}}(L_2)$. Since L_2 is constructed by Theorem 3.4 from $L_0 = D(0, \ldots, 0)$ and $L_1 = D(1,0, \ldots, 0), D(2,0, \ldots, 0)$ is the only second order derivative contained in L_2 with coefficient one [15, Lemma 3.3]. Moreover, by Theorem 3.3, the coefficient of $D(2,0, \ldots, 0)$ in $\Gamma_{\tilde{L}}(L_2)$ is $\frac{1}{a^2}$. Since $\Gamma_{\tilde{L}}(L_2)$ is an approximate basis, due to the closedness, we have

$\Phi_1(\Gamma_{\tilde{L}}(L_2)) = \frac{1}{a^2} \tilde{L}_1$.

Therefore, we have

$\Gamma_{\tilde{L}}(L_2) = \frac{1}{a^2} \tilde{L}_2$.

Hence, $\Gamma_{\tilde{L}}(L_2)$ is a linear combination of $\{\tilde{L}_0, \tilde{L}_1, \tilde{L}_2\}$. Let us assume that for all $0 \leq i \leq k-1$, the proposition is true. We can reduce $\Gamma_{\tilde{L}}(L_k)$ by $\{\tilde{L}_0, \tilde{L}_1, \ldots, \tilde{L}_{k-1}\}$ to a differential operator which does not contain differential operators $D(i,0, \ldots, 0)$, denoted by $\Gamma_{\tilde{L}}(L_k)$. Since $\Gamma_{\tilde{L}}(L_k)$ is an approximate basis, due to the closedness, we have

$\Phi_1(\Gamma_{\tilde{L}}(L_k)) = \frac{1}{a^k} \tilde{L}_{k-1}$.

therefore, $\Gamma_{\tilde{L}}(L_k) = \frac{1}{a^k} \tilde{L}_{k}$. Hence, $\Gamma_{\tilde{L}}(L_k)$ is a linear combination of $\{\tilde{L}_0, \tilde{L}_1, \ldots, \tilde{L}_k\}$.
