Possible use of processed ferromanganese concretions for production sewage purification

M A Sulimova
Mining Museum, Saint-Petersburg Mining University

E-mail: wwlog@ya.ru

Abstract. This article describes a possible scenario for ferromanganese concretions usage as a sorbent for purification of wastewater obtained from mining enterprises. To study the chemical and physicochemical properties of iron-manganese nodules, the methods of tomography and X-ray phase analysis were applied. The data obtained during the experiments can be used for a more detailed study of ferromanganese nodules of various deposits, for their use as a sorbent.

1. Introduction
Sewage is produced by all mining enterprises. Most of the enterprises dump sewage in nearby reservoirs that will eventually lead to environmental disaster. In this regard, penalties are increased and measures for sewage dumping become tougher [1]. However, according to researches [2], pollution of water reservoirs of the Russian Federation increases.

Huge variety of the existing chemical compositions of water systems, conditions of their formation and the necessity of individual researches for each case makes waste water purification from phenols, cyanides, oil products and surfactant almost impracticable task [3-8]. The majority of efficient ways of deep cleaning are associated with economic and resource expenses, usage of scarce reagents with its subsequent regeneration, utilization or waste disposal. Therefore, search for new efficient ways of sewage purification is still relevant [9-14]. Its implementation will allow one to reduce negative impact on environment and to decrease investment and operational expenditure for environmental actions.

A great number of enterprises have water treating facilities [15-17] which, however, are not capable to cope with the amount of pollutants in drains. To choose the optimal sewage disposal method one should take into account sewage characteristics and the possibility of pollutants extraction.

2. Materials and methods
There are a lot of ways for sewage disposal. Destructive methods of sewage disposal comprise oxidizing methods, thermooxidizing, electrochemical oxidation and hydrolysis [18-22,28]. Copper, manganese and their compounds, as well as metals of variable valency mainly of the VIII group, their oxides and salts are used as catalysts. This leads to repeated pollution of drains. One of the most widespread and inexpensive purification methods is sorption. Any sorbent has to correspond to the following characteristics: high sorption capacities, high reagent resistance to acids and alkalis. The sorbent has to be low-toxic or non-toxic, it has to possess low abradability, high mechanical strength, and low prime cost [23, 24].
Table 1. FMC sample parameters: specific surface area, porosity, etc.

Characteristic	Quantity
Specific area capacity	3116 mm2/g
Number of closed pores	46564
Specific volume of closed pores	3.2 mm3/g
Specific surface area of closed pores	345.9 mm2/g
Occluded porosity	0.64 %
Total specific volume of occluded porosity	2620.5 mm3/g
Open porosity	84.11 %
Total specific volume of pore space	2623.7 mm3/g
Common porosity	84.21 %

Ferromanganese concretions (FMC) are one of the most perspective sorbents, due to its low prime cost in comparison with other sorbents [25]. FMC distribution territory is quite large: from the Arctic tundra to tropics [3]. FMC chemical and phase composition is quite diversified, and is able to change depending on the deposit and depth of its burial, as well as on the time of their formation.

Table 2. Chemical composition of ferromanganese concretions of various deposits [25, 26].

Element	Mass fraction %	Element	Mass fraction 10$^{-4}$ %
Fe	19.97	Ni	228
Mn	12.4	Co	120
P	0.94	Cu	52
Si	11.0	Zn	166
Al	2.0	Mo	254
Ca	1.35	Pb	36
Mg	0.83	Ba	2500
K	1.36	V	114
Na	1.0	W	36
CO2	1.65	Ge	1.5
Corpr	1.25	Ga	11
S	0.08	Cr	50
Ti	0.22	Zr	93
Mn/Fe	0.62	Hf	2.2
Ta	0.5*10$^{-4}$	Sr	410
As	327*10$^{-4}$	Rb	62
Th	5.2*10$^{-4}$	Cs	2.5
Ra	15.4*10$^{-4}$	Sc	6

The surface morphology of FMC ore is heterogeneous (Figure 1), some part of the surface has dense texture formed from globules, having pores of micron size between globules. Sample morphology is more bulky at the FMC granule cleavage than at its surface. Also Figure 1 presents tomographic images of FMC sample, which show specific surface and porosity of structure.
Figure 1. Tomography of FMC sample.

The concretions phase composition was defined by x-ray diffraction method using Shimadzu XRD-7000. The graphs presented in Figure 2 show that the main crystal phase of concretions is manganese oxide. By comparing this result with data from Table 1, one can conclude that iron-containing component of concretions is in X-ray amorphous state. Usually X-ray amorphous hydroxides have a developed surface and, as a result, high sorption capacity.

Figure 2. X-ray diffractometry of the FMC sample.

3. Results and discussion
According to the results of X-ray diffractometry, the ferromanganese concretion samples are completely amorphous.

Ferromanganese concretions are extracted in order to obtain manganese concentrates and iron oxides. The samples less than 0.01 mm are dumped. This fraction can be used as a sorbent. Thus usage of ferromanganese concretions as a sorbent for sewage disposal is perspective and low-cost [26,29].

Table 3. Results of FMC usage as a sorbent for the reference pollutants of sewage from metallurgical enterprises [27].
The method is based on oxidizing adsorption using ferromanganese concretions of the Finnish Gulf, which possess an oxidizing function and catalytic properties [24]. The sewage purified using FMC might contain suspended matters, heavy metals and oil products. These pollutants do not influence the FMC oxidizing ability. During sorption of cations of heavy and non-ferrous metals on FMC, there is no decrease in sorbent capacity, as the process is driven by ion-exchange mechanism. Thus, the presence of heavy metals cations in sewage does not have an impact on oxidizing ability of FMC.

4. Conclusion

Ferromanganese concretions have high specific surface area, due to the structure amortization due to a large number of pores and roughnesses of structure, which are able to act as active sites. The FMC chemical composition is composed of amorphous forms of manganese and iron oxides, which are a catalyst and an oxidizer. This increases sorption capacity of FMC and, as a result, increases sorption capacity of a sorbent based on it. Therefore FMC is reasonable to be used as a sorbent for sewage treatment.

References

[1] Patrin R K and Bazhin V Yu 2014 Spent Linings from Aluminum Cells as a Raw Material for the Metallurgical, Chemical, and Construction Industries Metallurgist 58(7-8) 625-9
[2] State report On the state and use of water resources of the Russian Federation in 2016
[3] Aleksandrov P A, Anikeeva L I, Andreev S I and Roosters S I 2009 Thalassochemistry of World Ocean Ore Generation (SPb.: Federal State Unitary Enterprise VNII Okeangeologiya)
[4] Barashkova P S, Molodkina L M and Korovina M D 2017 Magazine of Civil Engineering 71(3) 68-75
[5] Baturova L P, Demidov A I, Maslov V V and Ferapontova O E 2015 Russian J. of Applied Chemistry 88(1) 59-64
[6] Politaeva N, Bazarnova Y, Semyatskaya Y, Slugin V and Prokhorov V 2017 J. of Industrial Pollution Control 33(2) 1617-21
[7] Chechevichkin A V, Vatin N I, Samonin V V and Grekov M A 2017 Magazine of Civil Engineering 76(8) 201-13
[8] Politaeva N A, Slugin V V, Taranovskaya E A, Alferov I N, Soloviev M A and Zakharevich A M 2017 Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Khimiya i Khimicheskaya Tekhnologiya 60(7) 85-90
[9] Barashkova P S and Molodkina L M 2018 Magazine of Civil Engineering 77(1) 112-20
[10] Arakcheev E N, Brunman V V, Brunman M V, Brunman M V, Konyshev A V, Dyachenko V A, Petkova A R and Nekrasov R E 2017 Gigiena i Sanitariya 96(3)
[11] Andrianova M and Bondarenko E 2016 MATEC Web of Conferences 53 01037
[12] Politayeva N A, Smyatskaya Y A and Slugin V V 2018 Comptes Rendus de L'Academie Bulgare des Sciences 71(6) 766-71
[13] Ulyanova V V and Sobgaida N A 2016 Ecology and Industry of Russia 20(7) pp 4-9
[14] Ul’yanova V V and Sobgaida N A 2015 Chemical and Petroleum Engineering 51(1-2) pp 133-7
[15] Aksenov V I, Ladygichev M G, Nichkova I I, Nikulin V A, Klein S E and Aksenov E V 2005 Water industry industrial enterprises
[16] Aksenov V I 1983 Closed water management systems of metallurgical enterprises Metallurgy
[17] Matveyeva A N, Pakhomov N A and Murzin D Y 2016 Industrial and Engineering Chemistry Research 55(34) 9101-8
[18] Qadeer R and Rehan A H 2002 Aq. J. Chem. 26 357
[19] Palma M, Paiva J L, Zilic M and Converti A 2007 Chem. Eng. Process. 4 7646
[20] Xu A, Yang M, Du H and Sun C 2009 Appl. Clay Sci. 43 435
[21] Fan B C, Xiong Y, Su Q, Li A M, Chen J L and Zhang Q X 2003 Chemosphere 51 953
[22] Pavlov R D 2010 Mining Notes 194-9