Combination of the top-quark mass measurements from the Tevatron collider

T. Aaltonen,12 V.M. Abazov,48 B. Abbott,112 B.S. Acharya,31 M. Adams,78 T. Adams,74 G.D. Alexeev,48 G. Alkhazov,52 A. Alton,48 B. Álvarez González,12,57 G. Alversen,92 S. Amerio,35 D. Amidei,96 A. Anastassov,12,76 A. Annavi,34 J. Antos,53 G. Apollinari,76 J.A. Appel,76 T. Arisawa,41 A. Artikov,93 J. Asadai,119 W. Ashmanskas,76 A. Askev,74 S. Atkins,89 B. Auerbach,72 K. Augsten,9 A. Aurisano,119 C. Avila,7 F. Azfar,66 F. Badauld,13 W. Badgett,76 T. Bae,43 L. Bagby,76 B. Baldin,76 D.V. Bandurin,74 S. Banerjee,31 A. Barbaro-Galtieri,98 E. Barberis,92 P. Baringer,87 V.E. Barnes,85 B.A. Barnett,90 P. Barria,36 J.F. Bartlett,76 P. Bartos,53 U. Bassler,18 M. Bauge,35 V. Baztterra,78 A. Bean,87 F. Bedeschi,36 M. Begalli,2 S. Behari,90 L. Bellantoni,76 G. Bellotti,36 J. Bellinger,125 D. Benjamín,90 A. Beretvas,76 S.B. Beri,29 G. Bernardi,77 R. Bernhard,49 I. Bertram,61 M. Besanoń,18 R. Beuselinck,63 P.C. Bhat,76 S. Bhatia,99 V. Bhatnagar,29 A. Bhatti,105 D. Bisello,43 I. Bizjak,64 K.R. Bland,122 G. Blazy,79 S. Blessing,74 K. Bloom,100 B. Blumenfeld,90 A. Bocci,109 A. Bodek,106 A. Boehmlein,76 D. Boline,107 E.E. Boos,50 G. Borisov,61 D. Bortoletto,85 T. Bose,91 J. Boudreau,116 A. Boveia,77 A. Brandt,118 O. Brandt,23 L. Brigliadori,33 R. Brock,98 C. Bromberg,98 A. Bros,76 D. Brown,17 J. Brown,17 E. Bucken,12 X.B. Bu,76 J. Budagov,48 H.S. Buh,106 M. Buehler,76 V. Buescher,25 V. Bunichev,50 S. Burdin,18,61 K. Burkett,76 G. Busetto,35 P. Bussey,60 C.P. Buszello,58 A. Buzatu,4 A. Calamba,115 C. Calancha,66 E. Camacho-Pérez,45 S. Camarda,54 M. Campanelli,54 M. Campbell,96 F. Canelli,77 B. Carls,81 D. Carlsmith,125 R. Carosi,36 S. Carrillo,73 S. Carron,76 B. Casalik,57 M. Casarsa,85 B.C.K. Casey,76 H. Castilla-Valdez,45 A. Castro,33 P. Castañini,93 S. Caughran,98 D. Cauz,38 V. Cavaliere,81 M. Cavalli-Sforza,54 A. Cerri,68 L. Cerri,64 S. Cherubini,107 D. Charkraborty,79 K.M. Chan,54 A. Chandra,121 E. Chapon,18 G. Chen,87 Y.C. Chen,6 M. Chertok,69 S. Chevalier-Théry,18 G. Chiarelli,36 G. Chlachidze,76 F. Chlebana,76 D.K. Cho,117 K. Cho,43 S.W. Cho,44 S. Choi,44 D. Chokheli,48 B. Choudhary,30 W.H. Chung,125 Y.S. Chung,106 S. Cihangir,76 M.A. Ciocci,36,38 D. Claes,100 A. Clark,59 C. Clarke,97 J. Chatterjee,48 G. Compostella,45 M.E. Convery,76 J. Conway,69 M. Cooke,76 W.E. Cooper,76 M. Corbo,76 M. Corcoran,121 M. Cordelli,34 F. Cordiere,18 M.-C. Cousinou,15 C.A. Cox,69 D.J. Cox,69 F. Crescioli,36 A. Croc,18 J. Cuevas,125 R. Culbertson,76 D. Cutts,117 D. Dagenhart,76 A. Das,57 N. d’Ascenzo,126 M. Datta,76 G. Davies,63 P. de Barbaro,106 S.J. de Jong,46,47 E. De La Cruz-Burelo,45 F. Deliot,18 M. Dell’Orso,36 R. Demina,106 L. Demortier,105 M. Deninno,33 D. Denisov,76 S.P. Denisov,51 M. d’Errico,36,35 S. Desai,76 C. Deterre,18 K. DeVaughaun,109 F. Devoto,12 A. Di Canto,43 C. Di Ruzza,76 H.T. Diel,76 M. Diesburg,76 P.F. Ding,65 J.R. Dittmann,122 A. Dominguez,100 S. Donati,36 P. Dong,76 M. D’Onofrio,62 M. Dorigo,38 T. Dorigo,35 A. Dubey,30 L.V. Dudko,56 D. Duggan,101 A. Duperrin,15 S. Dutt,29 A. Dyskant,79 M. Eads,100 K. Ebina,41 D. Edmunds,88 A. Elagin,119 J. Ellison,71 V.D. Elvira,76 Y. Enari,17 A. Eppig,96 R. Erbacher,69 S. Errede,11 N. Ershadat,76 R. Eusabio,119 H. Evans,82 A. Evdokimov,108 V.N. Evdokimov,51 G. Facini,92 S. Farrington,66 M. Feindt,24 L. Feng,79 T. Ferbel,106 J.P. Fernandez,56 F. Fiedler,25 R. Field,73 F. Filthaut,46,47 W. Fisher,98 H.E. Fisk,76 G. Flanagan,16,76 R. Forrest,69 M. Fortner,79 H. Fox,61 M.J. Frank,122 M. Franklin,93 J.C. Freeman,76 S. Fuess,76 Y. Funakoshi,41 I. Furic,73 M. Gallinaro,105 J.E. Garcia,59 A. García-Bellido,106 J.A. García-González,45 G.A. García-Guerra,45 A.F. Garfinkel,85 P. Garosi,36 V. Gavrilov,49 P. Gay,13 W. Geng,15,98 F. Gerbaudo,102 C.E. Gerber,78 H. Gerberich,81 E. Gerchtein,75 Y. Gerstlein,101 S. Giagu,37 V. Giakoumopoulos,28 P. Giannetti,36 K. Gibson,116 C.M. Ginsbury,76 G. Ginther,76,106 N. Giokaris,28 P. Gironi,34 G. Giorgi,90 V. Glagolev,48 D. Glenzinski,76 M. Gold,103 D. Goldin,109 N. Goldschmidt,73 A. Goloshchapov,106 G. Golovanov,48 G. Gomez,57 G. Gomez-Ceballos,94 M. Goncharov,94 O. González,56 I. Gorelov,163 A.T. Goshaw,109 K. Goulianos,105 A. Goussis,124 P.D. Grannis,107 S. Greder,19 H. Greenlee,76 G. Grenier,20 S. Grinstein,54 Ph. Gris,13 J.-F. Grivaz,16 A.Grohsjean,12,18 C. Grosso-Pilcher,77 R.C. Group,123,76 S. Grünendahl,76 M.W. Grünwald,32 T. Guillemin,16 J. Guimarães da Costa,93 G. Gutierrez,76 P. Gutierrez,112 S. Hagopian,74 S.R. Hahn,76 J. Haley,92 E. Halkiadakis,101 A. Hamaguchi,40 J.Y. Han,106 L. Han,5 F. Happacher,34 K. Hara,42 K. Harder,65 D. Hare,101 M. Hare,95 A. Harel,106 R.F. Harr,97 K. Hatakeyama,122 J.M. Hauptman,86 C. Hays,66 J. Hays,65 T. Head,65 T. Hebbeker,24 M. Heck,24 D. Hedin,79 H. Hegab,113 J. Heinrich,114 A.P. Heinson,71 U. Heintz,117 C. Hensel,23 I. Heredia-Díaz,45 M. Herndon,125 K. Herner,96 G. Heskel,71,65 S. Hewamanage,122 M.D. Hildreth,84 R. Hirkozy,123 T. Hoang,74 J.D. Hobbs,107 A. Hocker,76 B. Hoeheisen,11 J. Hogan,121 M. Hohlfeld,25 W. Hopkins,19,76 D. Horn,58 H. Hsiao,74 J. Howley,118 Z. Hubeck,9,18 R.E. Hughes,110
The top quark is the heaviest known elementary particle, with a mass about 40 times larger than the mass of its isospin partner, the bottom quark. It decays almost 100% of the time to a $W$ boson and a bottom quark. Using top-antitop pairs at the Tevatron proton-antiproton collider, the CDF and D0 collaborations have measured the top quark’s mass in different final states for integrated luminosities of up to 5.8 fb$^{-1}$. This paper reports on a combination of these measurements that results in a more precise value of the mass than any individual decay channel can provide. It describes the treatment of the systematic uncertainties and their correlations. The mass value determined is 173.18 ± 0.56 (stat) ± 0.75 (syst) GeV or 173.18 ± 0.94 GeV, which has a precision of ±0.54%, making this the most precise determination of the top quark mass.

PACS numbers: 14.65.Ha, 13.85.Ni, 13.85.Qk, 12.15.Ff

---

*Deceased
†With CDF visitors from ‡Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy, †University of California Irvine, Irvine, CA 92697, USA, †University of California Santa Barbara, Santa Barbara, CA 93106, USA, †University of California Santa Cruz, Santa Cruz, CA 95064, USA, †Institute of Physics, Academy of Sciences of the Czech Republic, Czech Republic, 1/CERN, CH-1211 Geneva, Switzerland, †Cornell University, Ithaca, NY 14853, USA, †University of Cyprus, Nicosia CY-1678, Cyprus, †Office of Science, U.S. Department of Energy, Washington, DC 20585, USA, †University College Dublin, Dublin 4, Ireland, †ETH, 8092 Zurich, Switzerland, †University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017, †University Iberoamericana, Mexico D.F., Mexico, †University of Iowa, Iowa City, IA 52242, USA, †Kinki University, Higashi-Osaka City, Japan 577-8502, †Kansas State University, Manhattan, KS 66506, USA, †Ewha Womans University, Seoul, 120-750, Korea, †University of Manchester, Manchester M13 9PL, United Kingdom, †Queen Mary, University of London, London, E1 4NS, United Kingdom, †University of Melbourne, Victoria 3010, Australia, †Muons, Inc., Batavia, IL 60510, USA, †Nagasaki Institute of Applied Science, Nagasaki, Japan, †National Research Nuclear University, Moscow, Russia, †Northwestern University, Evanston, IL 60208, USA, †University of Notre Dame, Notre Dame, IN 46556, USA, †Universidad de Oviedo, E-33007 Oviedo, Spain, †CNRS-IN2P3, Paris, F-75205 France, †Texas Tech University, Lubbock, TX 79096, USA, †Universidad Tecnica Federico Santa Maria,
I. INTRODUCTION

A. The top quark

The standard model (SM) of particle physics describes the elementary particles and their interactions. The top quark (t) has a special place in the hierarchy of particles because it is far more massive than any of the other fundamental objects. It is the up-type quark, partnered with the down-type bottom quark (b), forming the third generation of quarks which was predicted by Kobayashi and Maskawa in 1973 [1] to accommodate CP violation in neutral kaon decays [2]. At particle colliders the top quark is produced mainly in top-antitop (tt) pairs. First evidence of top quark production was reported by the CDF collaboration [3] and the top quark was first observed in this production mode by the CDF [3] and D0 [4] collaborations at the Tevatron proton-antiproton collider. Since then, great efforts have been focused on measuring its properties with ever higher precision. In addition to its large mass (mt), the top quark is also singular because it decays before it can hadronize: there are no mesons or baryons containing valence top quarks. The top quark decays almost exclusively to a W boson and a b quark, with the fraction determined by the neutr-unity value of the CKM quark mixing matrix [1, 4] element Vtb (≈ 0.9992) [5]. Its other decays are limited by the small values of Vts ≈ 0.0387 and Vtd ≈ 0.0084 [2], assuming three-family unitarity of the CKM matrix. The W boson decays to a charged lepton and its associated neutrino, or to a quark-antiquark pair, and the final states of tt events are thus characterized as: “lepton+jets” (tt → ℓ+νbq′q′b and qq′bℓ−¯νb); “alljets” (tt → qq′bq′q′bb); and “dileptons” (tt → ℓ+νℓ−¯νb). In this notation the charged lepton ℓ represents an electron or muon, and q is a first- or second-generation quark. The W boson also decays to a τ lepton and a τ neutrino. If the τ decays to an electron or muon, the event contributes to the lepton categories, and if the τ decays into hadrons, it contributes to the lepton+jets or alljets categories. A fourth category labelled “Eτ+jets” is used to measure mt when there are jets and a large imbalance in transverse momentum in the event (Eτ), but no identified lepton. It comprises tt → τ+νbτ−¯νb, τ+νqq′b, and qq′bτ−¯νb final states, accounting for 40% of the tt signal events in the Eτ+jets category, or ℓ+νqq′b, qq′bℓ−¯νb, where the electron or muon are not reconstructed, accounting for 60% of the tt signal in this category. Additional contributions to Eτ arise from the neutrino(s) produced in τ decays.

In dilepton events, there are typically two jets from the two b quarks, one from each top quark decay. In lepton+jets events, there are typically four jets, including two b jets and two light-quark jets from W-boson decay. Alljets events most often contain six jets, the two b jets and four light-quark jets. The Eτ+jets events usually have four or five jets. Additional gluon or quark jets can arise due to radiation from initial or final state colored particles, including the top quarks. About 23% of the tt events have an extra jet with sufficient energy to pass the selection criteria and about 5% of the events have two additional jets. These extra jets complicate the measurement of mt and degrade its resolution. Figure 1 illustrates leading-order (LO) production of tt events at the Fermilab Tevatron Collider, and Fig. 2 shows the relevant tt decay modes.

![Diagram of tt production at the Tevatron Collider](image1)

**FIG. 1:** Examples of tree Feynman diagrams for tt production. At the Tevatron collider, the qq channel contributes 81% to the total tt inclusive cross section and the gg channel the remaining 19% [3, 4].

![Diagram of tt decay](image2)

**FIG. 2:** Leading-order Feynman diagram for tt decay. The dilepton modes (ee, eμ, μμ) have a combined branching fraction of ≈ 4%, the electron+jets and muon+jets modes combined correspond to ≈ 30%, and the alljets mode has a branching fraction of ≈ 46%. The τ modes are shared among the Eτ+jets and the other channels in the analyses.

B. Top-quark mass origin and definitions

One of the fundamental properties of an elementary particle is its mass. In the SM, fermions acquire mass
through interactions with the Higgs field \cite{10}. Absolute values of these masses are not predicted by the SM. In theoretical calculations, a particle’s mass can be defined in more than one way, and it depends on how higher-order terms in perturbative quantum chromodynamics (QCD) calculations are renormalized. In the modified minimal subtraction scheme (\(\overline{\text{MS}}\)), for example, the mass definition reflects short-distance effects, whereas in the pole-mass scheme the mass definition reflects long-distance effects \cite{11}. The concept of the pole mass is not well defined since color confinement does not provide \(S\)-matrix poles at \(m = m_\ell\) \cite{12}. Direct mass measurements that are inputs to the combination described in this paper rely on Monte Carlo (MC) generators to extract \(m_\ell\). Hence the measured mass corresponds in fact to the mass parameter in the MC. Work is proceeding to address the exact difference between the measured mass and the pole mass, as presented for example in Appendix C of Ref. \cite{13}. One alternative way to address this problem is to extract \(m_\ell\) from a measurement of the \(t\bar{t}\) cross section \cite{14}. The D0 collaboration has recently shown that the directly measured mass of the top quark is closer to the pole mass extracted from a measurement of the \(t\bar{t}\) cross section than to an \(\overline{\text{MS}}\) mass extracted in a similar way \cite{14}. Hence, within the precision of theory and data, the directly measured \(m_\ell\) is best interpreted as the top-quark pole mass.

CPT invariance predicts that a particle and its antiparticle partner have the same mass. This has been checked for the top quark by the D0, CDF, and CMS collaborations and the masses are found to hold within the measurement uncertainties, with \(\Delta m_\ell = m_\ell - m_{\bar{\ell}} = 0.84 \pm 1.87 \text{ GeV} \) \cite{15}, \(\Delta m_{\bar{\ell}} = -3.3 \pm 1.7 \text{ GeV} \) \cite{16}, and \(\Delta m_\ell = -0.44 \pm 0.53 \text{ GeV} \) \cite{17}, respectively. Thus, the top quark mass combination in this paper assumes \(m_\ell = m_{\bar{\ell}}\).

C. Predictions based on the top-quark mass

The internal consistency of the SM can be tested by using different observables to predict the values of others, and then compare the expectations with their measured values. For example, the relation between the mass of the \(W\) boson \((M_W)\) and \(\sin^2 \theta_W\) (the electroweak mixing angle) includes higher-order radiative corrections involving \(m_\ell\), hence the smaller the uncertainty on the measured \(m_\ell\), the stronger is the test of consistency. Since 1997, the LEP Electroweak Working Group (LEPEWWG) has used the the observed top-quark and the \(W\) boson masses and other precision electroweak variables to extract constraints on the Higgs boson mass \((M_H)\) in the SM \cite{18}. This has been extended to the minimal supersymmetric standard model (MSSM) \cite{19} and the GFITTER collaboration has applied the technique to set limits on a wide variety of theories beyond the SM \cite{20}. Figure 3 shows the combined constraint due to \(M_W\) and \(m_\ell\) (as of March 2012) on the Higgs boson mass. Figure 3 shows the constraint from \(M_W\) and \(m_\ell\) separately (as of March 2012) on the Higgs boson mass, and a global constraint originating from all the other electroweak variables, showing the importance of the \(M_W\) and \(m_\ell\) variables to constrain the Higgs boson mass.

D. History of measurement of \(m_\ell\)

Before 1995, global fits to electroweak data from the CERN and SLAC \(e^+e^-\) colliders (LEP and SLC) and from other experiments produced estimates of \(m_\ell\) that ranged from \(\approx 90 \text{ GeV}\) to \(\approx 190 \text{ GeV}\) \cite{21}. At the time of the first observation of the top quark in 1995, the fits indicated a mass close to the current Tevatron value of \(m_\ell\), but with an uncertainty of \(\approx \pm 10\%\) and an
assumption of 300 GeV mass of the Higgs boson \(^{22}\). CDF measured \(m_t = 176 \pm 8\) (stat) \(\pm 10\) (syst) GeV \(^{4}\) (total uncertainty of 7\%) and D0 measured \(m_t = 190^{+19}_{-21}\) (stat) \(\pm 22\) (syst) GeV \(^{2}\) (total uncertainty of 15\%).

Since then, the CDF and D0 collaborations have developed many novel measurement techniques, and published nearly 50 journal papers on their measurements of \(m_t\). Recently, the CMS collaboration at the Large Hadron Collider (LHC) published a measurement using 102 dilepton events \(^{24}\) and finds \(m_t = 175.5 \pm 4.6\) (stat) \(\pm 4.6\) (syst) GeV (total uncertainty of 3.7\%). The ATLAS collaboration at the LHC has submitted a measurement of \(m_t = 174.5 \pm 0.6 \pm 2.3\) GeV (total uncertainty of 1.4\%) using nearly 12,000 lepton+jets events \(^{24}\). The most precise measurements from the Tevatron in a single decay channel use lepton+jets events and a matrix element method as introduced in Ref. \(^{25}\) and an in-situ calibration of the jet energy scale. CDF’s matrix element measurement \(^{26}\) uses 5.6 fb\(^{-1}\) of integrated luminosity to find \(m_t = 173.00 \pm 0.65\) (stat) \(\pm 1.06\) (syst) GeV (total uncertainty of 0.72\%). D0’s measurement \(^{27}\) uses 3.6 fb\(^{-1}\) of integrated luminosity to obtain \(m_t = 174.94 \pm 0.83\) (stat) \(\pm 1.24\) (syst) GeV (total uncertainty of 0.85\%). Figure 4 shows the publication history of the direct measurements of \(m_t\) at the Tevatron.

E. Overview of mass measurements

This paper reports on the combination of previously published measurements of \(m_t\). Details of the analyses are therefore not repeated as this information is available in recent reviews \(^{28}\), as well as in the publications of each of the results. We will, however, summarize the basic techniques used for the measurements.

The cross section for \(t\bar{t}\) production in proton-antiproton (\(p\bar{p}\)) interactions at 1.96 TeV is \(\approx 7.2\) pb \(^{29}\). \(^{30}\). The mean transverse momentum (\(p_T\)) of the \(t\bar{t}\) system at parton level is \(\approx 20\) GeV, which is attributed to initial-state radiation (i.e., gluon emission). The mean transverse momentum of the top quarks at parton level is \(\approx 95\) GeV \(^{31}\). Top quarks have a lifetime of \(\approx 0.3 \times 10^{-24}\) s \(^{32}\), \(^{33}\), which is an order of magnitude smaller than the time scale for parton evolution and hadronization. Hence, when top quarks decay, they transfer their kinematic characteristics to the W boson and b quark, and the measured energy-momentum four-vectors of the final state particles can be used to reconstruct the mass of the top quark, except for the presence of initial or final-state radiation.

In alljets events, the four-vector of every jet emerging from quarks can be reconstructed, but neutrinos emitted in semileptonic decays of b quarks and jet energy resolution effects will lead to lost energy. In lepton+jets events, the momentum of the neutrino from the \(W \rightarrow l\nu\) decay is not detected. The transverse component can be inferred from the negative of the vector sum of all transverse momenta of particles detected in the calorimeter and muon detectors. We estimate the longitudinal momentum of \(\nu_t\) by constraining the mass of the charged lepton and neutrino system to the world average value of \(M_W\) \(^7\). We also use \(M_W\) to choose the two light jets from \(W \rightarrow q\bar{q}\) decay, and use that information for an in-situ calibration of jet energies. In dilepton events, the analysis is more complicated because there are two final-state neutrinos from the leptonic decays of both W bosons. Therefore, the longitudinal and transverse momentum components of the neutrinos can not be determined without the application of more sophisticated tools. These involve assuming a value for \(m_t\) to solve the event kinematics and assigning a weight to each \(m_t\) hypothesis to determine the most likely value of \(m_t\) consistent with the hypothesis that the event is a \(t\bar{t}\) event.

A major issue in \(t\bar{t}\) final state reconstruction is the correct mapping of the reconstructed objects to the partons from the decays of the top quark and W boson. The problem arises because often the jet charge and flavor cannot be uniquely determined. This creates combinatorial ambiguities in the \(t\bar{t}\) event reconstruction which vary from 90 possible jet-to-parton assignments for the alljets final state to 2 in the dilepton channel. In the lepton+jets and dilepton final states, additional ambiguities may arise from multiple kinematical solutions for the longitudinal component of the neutrino momentum.

Two methods are used to measure the value of \(m_t\). In the first method, the reconstructed mass distribution in data, or a variable correlated with \(m_t\), such as the decay length of the B hadron or the transverse momentum of a lepton, is compared to template distributions composed of contributions from background and simulation of \(t\bar{t}\) events. One template is used to represent background and another for each putative value of \(m_t\). The second method uses event probabilities based on the LO matrix element for the production of \(t\bar{t}\). For each event, a probability is calculated as a function of \(m_t\) that this event is from \(t\bar{t}\) production, as based on the corresponding production and decay matrix element. Detector resolution is taken into account in the calculation of these probabilities through transfer functions that correlate parton-level energies and their measured values. The value of \(m_t\) is then extracted from the joint probability calculated for all selected events, based on the probability for signal and background (also defined through its matrix element). This method produces the most accurate results, but the computations are time-consuming.

F. Combination overview

This paper describes the combination of statistically-independent top-quark mass measurements from the Fermilab Tevatron Collider. Measurements are independent if they are based on different data sets, e.g., from CDF and from D0, or from Tevatron Run I (1992–1996) and Run II (2001–2011). They are also
FIG. 4: The CDF and D0 published direct measurements of the top quark mass as a function of time.

independent within one data set if the event selections are designed to be exclusive, i.e., no event can pass more than one category of selections. At times, more than one measurement is published using the same data and decay channel. In this situation, the result with smallest overall uncertainty is chosen for the combination. Twelve measurements are used in the combination described here, eight from the CDF collaboration and four from D0. These comprise five lepton+jets measurements (CDF and D0, Run II and Run I, and a CDF Run II result based on the decay length of B hadrons); two alljets measurements (CDF Run II and Run I); four dilepton measurements (CDF and D0, Run II and Run I); and an $E_T$+jets measurement (CDF Run II). We combine these measurements using an analytic method called the best linear unbiased estimator (BLUE) [34–36]. This technique forms a linear combination of the separate unbiased mass measurements to produce the best estimate of $m_t$ with the smallest uncertainty. This procedure follows a series of 11 such mass combinations presented in [37–47], updated each year since 2004 as new measurements of $m_t$ became available. The combination presented here is the first to be published in a peer-reviewed journal.

II. INPUTS TO THE COMBINATION

A. The independent mass measurements

The mass measurements included in the combination are shown in Table I [26, 27, 48–57]. These 12 channels are chosen because they are statistically independent, which maximizes the improvement in the combination, and because enough information is available to separate out the components of systematic uncertainty for proper treatment in the combination.

The D0 measurement from 2005 in the alljets channel (Run I) [58] of $m_t = 178.5 \pm 13.7$ (stat) $\pm 7.7$ (syst) GeV (total uncertainty of 8.8%) is not included in the combination because some subcomponents of the systematic uncertainty are not available.

The CDF measurement from Run II based on decay-length analysis [57] differs from the others in that it uses the mean decay length of B hadrons in $b$-tagged lepton+jets events as the $m_t$-sensitive variable. It is independent of energy information in the calorimeter, and its main source of systematic uncertainty is uncorrelated with the dominant ones from the jet energy scale calibration in other measurements. This measurement of $m_t$ is essentially uncorrelated with the higher precision CDF result from the lepton+jets channel. The overlap between the data samples used for the decay-length method and the lepton+jets sample has therefore no effect.

B. Data

The data were collected with the CDF [59] and D0 [60, 61] detectors at the Tevatron $p\bar{p}$ collider at Fermilab between 1992 and 2009. The Tevatron “center-of-mass” energy was 1.8 TeV in Run I from 1992 to 1996 and 1.96 TeV in Run II from 2001. A silicon microstrip tracker around the beampipe at the center of each detector was used to reconstruct charged-particle tracks (only in Run II at D0). Tracks spatially matched to calorimeter jets are checked for originating from a secondary vertex, or for evidence that they originate from decays of long-lived heavy-flavor hadrons containing...
b quarks from the decay of top quarks [52, 62]. Electrons and jets produce particle showers in the calorimeters, and the collected information is used to measure their energies. Muons traverse the calorimeters and outer muon detectors that are used to reconstruct their tracks. Both CDF and D0 have central axial magnetic fields in the tracking region (D0 only in Run II), in which the momenta of charged particles are determined from the curvature of their tracks. The CDF magnet has a diameter of 3 m and extends 4.8 m along the beamline, with a field strength of 1.4 T, and the D0 magnet has a diameter of 1.0 m and length of 2.7 m to fit inside the Run I calorimeter with a field strength of 2.0 T. The CDF detector’s larger tracking volume with a higher density of measurements gives better transverse-momentum resolution for charged-particle tracks. The transverse-momentum resolution is ≈ 3.5% at CDF and ≈ 10% at D0 for a muon with $p_T = 50$ GeV. The trigger and event-selection criteria depend on the $t\bar{t}$ final states, details of which appear in the publications listed in Table I. The experiments collected $O(10^{14})$ hard collisions, from which 7420 events are selected because they have the characteristics expected for $t\bar{t}$ pairs, of which ≈ 56% are expected to be true $t\bar{t}$ events.

### C. Models for $t\bar{t}$ signal

The $t\bar{t}$ signal in Run I was simulated using the LO generator HERWIG [64] with the MRSD0 [65] and CTEQ4M [66] parton distribution functions (PDF) used by CDF and D0, respectively. The HERWIG generator implements the hard scattering processes $q\bar{q} \rightarrow t\bar{t}$ and $gg \rightarrow t\bar{t}$, adding initial-state and final-state radiation through leading-log QCD evolution [67]. The top quark and $W$ boson in HERWIG decay according to the branching fractions listed by the Particle Data Group [7], and the final-state partons are subsequently fragmented into jets. The MC events are then processed through a fast simulation or a GEANT model [68] of the detectors and then through event reconstruction programs.

For the $t\bar{t}$ signal in Run II, CDF uses PYTHIA [69] with the CTEQ5L [70] PDF, and D0 uses the leading-log generator ALPGEN [71] with the CTEQ6L1 [9] PDF and PYTHIA for parton showering. ALPGEN contains more tree-level graphs in higher-order $\alpha_s$ than PYTHIA. ALPGEN has parton-jet matching [72], which avoids double-counting of partons in overlapping regions of jet kinematics. CDF sets the event generation factorization and renormalization scales $Q^2$ to $m_t^2 + p_T^2 + (P_T^2 + P_Z^2)/2$, where $p_T$ is the transverse momentum characterizing the scattering process, and $P_T^2$ and $P_Z^2$ are the virtualities of the incoming partons. D0 sets the scales to $m_t^2 + (p_T^2)$, where $p_T^2$ is the average of the square of transverse momentum of all other light partons produced in association with the $t\bar{t}$ pair. The PYTHIA model treats each step of the $t\bar{t}$ decay chain ($t\rightarrow Wb$, $W\rightarrow\ell\nu$ or $qq'$) separately and does not preserve spin correlations. ALPGEN uses exact matrix elements for each step and thereby correctly describes the spin information of the final-state partons. The fragments of the proton and antiproton or “underlying event” are added separately to each hard collision. CDF uses the “Tune A” settings [73] in PYTHIA while D0 uses a modified version of the tune. Both collaborations use angular ordering for modeling parton-showering in PYTHIA, and not $p_T$-ordered models. The underlying event is therefore not interleaved with the paron showers as in models of color reconnection [74].

### D. Background models

In the lepton+jets channel, the dominant background is from $W$+jets production. Smaller contributions arise from multijet events, $Z$+jets, single top-quark ($t\bar{q}$ and $tb$), and diboson production ($WW$, $WZ$, and $ZZ$). The alljets channel has mainly multijet events as background. The largest background in the dilepton channel is from $Z$+jets events, which include Drell-Yan production. Backgrounds from diboson production and from events with jets identified as leptons are very small in the dilepton channel. The $E_T$+jets channel has multijet

### TABLE I: Top quark mass measurements used as input to determine the combined value of $m_t$ from the Tevatron and the combined result.

| Decay channel or method | Tevatron period | Experiment | Integrated luminosity $[\text{fb}^{-1}]$ | Number of events | Background $[\%]$ | $m_t$ $[\text{GeV}]$ | Uncertainty on $m_t$ $[\%]$ | Reference |
|------------------------|----------------|------------|----------------------------------------|------------------|-----------------|----------------|----------------|----------|
| Lepton+jets Run II     | CDF            | 5.6        | 1087                                   | 17               | $173.00 \pm 0.65 \pm 0.106$ | 0.72           | 26             |
| Lepton+jets Run II     | D0             | 3.6        | 615                                    | 27               | $174.94 \pm 0.83 \pm 1.24$   | 0.85           | 27             |
| Lepton+jets Run I      | CDF            | 0.1        | 76                                     | 54               | $176.1 \pm 5.1 \pm 5.3$      | 4.2            | 48             |
| Lepton+jets Run I      | D0             | 0.1        | 22                                     | 22               | $180.1 \pm 3.6 \pm 3.9$      | 2.9            | 49             |
| Alljets Run II         | CDF            | 5.8        | 2856                                   | 71               | $172.47 \pm 1.43 \pm 1.40$   | 1.2            | 50             |
| Alljets Run I          | D0             | 0.1        | 136                                    | 79               | $186.0 \pm 10.0 \pm 5.7$     | 6.2            | 51             |
| Dileptons Run II       | CDF            | 5.6        | 392                                    | 23               | $170.28 \pm 1.95 \pm 3.13$   | 2.2            | 52             |
| Dileptons Run II       | D0             | 5.3        | 415                                    | 21               | $174.00 \pm 2.36 \pm 1.44$   | 1.6            | 53             |
| Dileptons Run I        | CDF            | 0.1        | 8                                      | 16               | $167.4 \pm 10.3 \pm 4.9$     | 6.8            | 54             |
| $E_T$+jets Run II      | CDF            | 5.7        | 1432                                   | 32               | $172.32 \pm 1.80 \pm 1.82$   | 1.5            | 55             |
| Decay length Run II    | CDF            | 1.9        | 375                                    | 30               | $166.90 \pm 9.00 \pm 2.82$   | 5.7            | 56             |
| Combination            |               |            |                                        |                  | $\leq 5.8$                    | 7420           | 44             | $173.18 \pm 0.56 \pm 0.75$ | 0.54     |
events and W+jets as main backgrounds.

In all channels contributions from multijet events are modeled using data. Most other background sources are modeled through MC simulation. In Run I, both collaborations used VECBOS [78] to model W+jets events. VECBOS is a precursor of ALPGEN and provides one of the first models of events with many high-momentum final-state partons. PYTHIA was used to model Z+jets, Drell-Yan, and diboson processes. Background from events with single top quark was negligible. In Run II, both collaborations used ALPGEN for the simulation of the W+jets background. The treatment of heavy-flavor jets is implemented more accurately in ALPGEN and parton-jet matching also improves the simulation. For the Z+jets background, CDF uses PYTHIA and D0 uses ALPGEN. For dibosons, both collaborations use PYTHIA. Processes with single top-quark are modeled by CDF using MADEVENT [20] (based on MADGRAPH [21]), and by D0 with SINGLETOP [78] (based on COMPHEP [29]).

The uncertainty in the description of the W+jets background has three main components: (i) the uncertainty on the scale $Q^2$, which affects both the overall normalization and the differential jet distributions in pseudorapidity $\eta$ [80] and $p_T$; (ii) the uncertainty in the correction for flavor content of jets to higher order; and (iii) the limitation in the MC model we are using to reproduce the jet $p_T$ and $\eta$ distributions in data at low $p_T$ and large $|\eta|$. 

### E. Jet properties

After the top quarks decay, the final-state quarks and gluons hadronize to produce multiple charged and neutral particles that traverse the central tracking systems into the calorimeters, where they produce many lower-momentum particles through interactions in the absorbers of the calorimeters. The observed particles tend to cluster in jets that can be assigned to the initial partons. For jet reconstruction, the CDF collaboration uses a clustering algorithm in $(\eta, \phi)$ space [81] with a cone radius of

CDF \[ R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.4, \]

where $\phi$ is the azimuthal angle around the beamline, $\eta$ is the pseudorapidity, and $\Delta \eta$ or $\Delta \phi$ are the widths of the cone. D0 uses a midpoint iterative seed-based cone algorithm in $(y, \phi)$ space [82] with a radius defined by

D0 \[ R = \sqrt{(\Delta y)^2 + (\Delta \phi)^2} = 0.5, \]

where the rapidity $y = 1/2 \ln ((E + p_L) / (E - p_L))$, $E$ is the jet energy, and $p_L$ is its longitudinal momentum component.

The jet energy resolution in the central region ($|\eta| < 1$) is approximately the same for CDF and D0; for CDF it is $\sigma(E_T)/E_T = 50\% / \sqrt{E_T(\text{GeV})} \pm 3\%$. For jets in the forward region, however, the energy resolution at D0 is similar to that in the central region, while at CDF it is not as good ($\sigma(E_T)/E_T = 70\% / \sqrt{E_T(\text{GeV})} \pm 4\%$). CDF’s calorimeter covers $|\eta| < 3.8$ whereas D0’s calorimeter covers $|\eta| < 4.2$. The D0 calorimeter is more homogeneous, so that the imbalance in transverse momentum (see Section II C) usually has better resolution at D0. For both CDF and D0, to reject jets with mismeasured energy, selections on energy deposition are required when clustering the energy from the calorimeter cells into jets. When a muon is reconstructed within the jet cone, a correction is applied to the jet energy to account for the muon and its associated neutrino assumed to arise from heavy-quark decay.

Jet energy scale calibrations are applied after jet reconstruction. CDF calibrates the transverse momentum using test-beam data and single-particle simulated events and corrects the jet energy to the parton level. Consequently, CDF does not calibrate the jet energy scale in MC events. D0 calibrates the energy using photon+jets and two-jet data and calibrates jets in data as well as in MC to the observed particle level. Particle jets are clustered from stable particles after fragmentation, including particles from the underlying event, but excluding undetected energy from muons and neutrinos.

CDF’s jet calibration [83] applies two scale factors and three offsets to convert the measured transverse momentum of a jet to that of the parton that initiated the jet. D0’s jet calibration [84] applies three scale factors and one offset to the jet energy to convert to the particle jet energy scale. The calibrations are expressed as follows:

$$ CDF \quad p_T^{\text{parton}} = \frac{p_T^{\text{jet}} R_{\text{rel}} - C_{\text{MI}}}{R_{\text{abs}}} - C_{\text{UE}} + C_{\text{OC}}, $$

$$ D0 \quad E_{\text{particle}} = \frac{E_{\text{jet}} - C_{\text{ML,UE}}}{R_{\text{abs}} R_{\text{rel}} F_{\text{OC}}} + C_{\text{OC}}, $$

The absolute response $R_{\text{abs}}$ corrects for energy lost in uninstrumented regions between calorimeter modules, for differences between electromagnetically and hadronically interacting particles, as well as for module-to-module irregularities. The relative response $R_{\text{rel}}$ is a scale factor that corrects forward relative to central jets and $C_{\text{MI}}$ is a correction for multiple interactions in the same bunch crossing. The function $C_{\text{UE}}$ is a correction for the jet energy added from the underlying event. D0 has one offset correction, $C_{\text{ML,UE}}$, which includes the effects of multiple interactions, the underlying event, noise from radioactive decays of the uranium absorber, and the effect of collisions from previous bunch crossings (pile up). The functions $C_{\text{OC}}$ and $F_{\text{OC}}$ are corrections for shower particles scattered in or out of the cone of radius $R$. CDF’s correction accounts for MC modeling that affects how the parton energy is translated into particle jet energy, whereas D0’s correction accounts for a detector effect caused by the finite cell size in the calorimeter coupled with the cone size for the jet algorithm. The combined jet energy scale corrections increase the measured jet energies by about 20–50%, depending on $p_T$ and $\eta$. 

The overall uncertainties on the jet energy scale corrections vary from about 2.7% for CDF and 1.1% for D0 for central jets of transverse energy of 100 GeV to 3.3% for CDF and 2.2% for D0 for forward jets. Central jets of 25 GeV have correction uncertainties of 5.9% for CDF and 1.4% for D0. For both experiments, the uncertainty on the corrections for absolute response $R_{\text{abs}}$ dominate these uncertainties.

At D0, the jet energy resolution in data is inferior than predicted by the detector simulation. Therefore, the energies of MC jets are smeared so that the resulting resolution in MC matches that in data. Similarly, the reconstruction efficiency for jets in data is lower than is predicted by the detector simulation, so an appropriate fraction of MC jets are randomly removed. Both effects are corrected for as functions of jet $p_T$ and pseudo-rapidity.

D0 Run II analyses include an energy correction to simulated jets that depends on jet flavor. There are corrections for $b$ jets, other-quark flavor jets ($u$, $d$, $s$, and $c$), and gluon jets implemented in both the lepton+jets and dilepton analyses. Such corrections refine the simulation by improving the matching of jet energies in MC to data. The differences arise from the varying electromagnetic fractions and widths of the jets. The corrections depend on jet transverse energy and pseudorapidity and range from $-6\%$ to $+2\%$.

Both collaborations perform an in-situ jet energy scale calibration in lepton+jets events for the matrix-element mass extraction of $m_t$, and in CDF’s alljets and $E_T+\text{jets}$ measurements of $m_t$. The invariant mass of the two jets is constrained to a Breit-Wigner distribution for the $W \to q\bar{q}^\prime$ decay, set to the world average value for the $W$-boson mass. The energies of all jets in the event are then rescaled to complete this calibration.

**F. $b$-quark jet properties**

To separate top-quark events from background and to decrease the ambiguity in jet-to-parton matching, it is important to identify $b$-quark jets. Every $t\bar{t}$ event has two $b$ jets, whereas such jets are rare in background. As $B$ hadrons have a mean lifetime of $\approx 10^{-12}$ seconds, $b$ jets can be tagged through secondary vertices of the $B$ decay a few mm away from the primary $p\bar{p}$ interaction. CDF’s $b$-tagging algorithm uses the significance of the displacement of the secondary vertex in the transverse $(r, \phi)$ plane for the lepton+jets and $E_T+\text{jets}$ channels, as well as a jet-probability algorithm for $E_T+\text{jets}$ events. One parameter defines the significance of the separation of the primary and secondary vertices for events with one and two $b$ jets. For jets that are within the acceptance of the silicon microstrip tracker (i.e., “taggable” jets), this algorithm identifies 50% of real $b$ jets and 9% of real charm jets, while falsely tagging 1% of light jets. D0 tags jets by combining nine track and secondary-vertex-related variables using a neural network. For jets within the acceptance of the silicon microstrip detector, this yields efficiencies of 65% and 20% for real $b$ and charm jets, respectively, while falsely tagging 3% of light jets. To identify heavy flavor jets in data and in MC events, the tagging algorithm is applied by CDF and D0 directly to the jets, except for simulated $W$+light jets events, where CDF uses tag-rate functions measured in multijet data, since the rate for directly-tagged MC events is very low. After applying direct tagging to $b$ and $c$ jets in MC events, D0 corrects the tagging efficiencies to match those observed in data by randomly dropping the tagging of 13% of such jets. For light-flavor jets, D0 assigns a a per jet mistag weight.

**G. Properties of other event observables**

The uncertainty on $m_t$ depends not only on an accurate measurement of jet energies and proper assignment of flavor, but also on the reconstruction and calibration of the other elements of the event, including electrons, muons, and the imbalance in transverse momentum, taking into account the presence of any simultaneous $p\bar{p}$ interactions in the same bunch crossing.

The mean number of $p\bar{p}$ collisions per bunch crossing is $\approx 2$ in Run I and $\approx 5$ in Run II. Such additional collisions affect the observed characteristics of the hard scatter of interest, and must be included in the MC simulation. These extra collisions result mostly in the production of low-$p_T$ particles. CDF simulates such additional interactions using the PYTHIA model of minimum-bias events and overlays them onto the hard scatters using a Poisson mean appropriate to the instantaneous luminosity of the data. In a similar manner D0 overlays randomly-triggered data events with the same luminosity profile as the data onto the MC simulated events.

Electrons are identified by matching clusters of energy deposited in the electromagnetic layers of the calorimeters with tracks that point from the primary collision vertex to the clusters. The spatial shapes of the showers must agree with those expected for electrons, as studied in test beam data. The energy of an electron is determined as a combination of the total energy of the cluster and the momentum measured from the curvature of the matching track. The reconstruction efficiency is determined using $Z \to e+e$ data by identifying one tight charged lepton as tag and using the other charged lepton as a probe (tag-and-probe method). The electron energy is also recalibrated using such $Z$ events.

Muons are reconstructed from a central track and matched to a track in the outer muon chambers. In D0, both the inner and outer trajectories pass through magnetic fields and so the transverse momenta of the two are therefore required to match. The reconstruction efficiency and calibration of $p_T$ are determined using a tag-and-probe method applied on $J/\psi \to \mu\mu$ and $Z \to \mu\mu$ events in a manner similar to that used for electrons.

As indicated above, all $t\bar{t}$ decay channels except for alljets events have a large $E_T$. All jet energy calibration
corrections are also propagated to \( E_T \) in each event.

III. COMBINATION OF MASS MEASUREMENTS

A. BLUE combination method

The basic idea of the technique, called the best linear unbiased estimator (BLUE) method \[34–36\], used to obtain the combined mass \( m_t^{\text{comb}} \), an “estimator” of the true mass \( m_t^{\text{true}} \), is to calculate a linear weighted sum of the results from separate measurements:

\[
m_t^{\text{comb}} = \sum_{i=1}^{12} w_i m_i.
\]  

(1)

The \( m_i \) are the twelve CDF and D0 measurements \( i \) of \( m_t \) and

\[
\sum_{i=1}^{12} w_i = 1.
\]  

(2)

The weights are determined using the value of \( m_t^{\text{comb}} \) that minimizes the squared difference relative to the unknown true value \( m_t^{\text{true}} \):

\[
(m_t^{\text{comb}} - m_t^{\text{true}})^2 = \text{Variance}(m_t^{\text{comb}}) + \text{Bias}(m_t^{\text{comb}})^2,
\]  

(3)

where the two terms represent the weighted variance and bias in the twelve input \( m_t \) values with

\[
\text{Variance}(m_t^{\text{comb}}) = \sum_{i=1}^{12} w_i^2 \text{Variance}(m_i^t),
\]  

(4)

and

\[
\text{Variance}(m_i^t) = \sigma(m_i^t)^2,
\]  

(5)

where \( \sigma(m_i^t) \) are the uncertainties on the twelve input values given in Table I.

On average, we expect the input mass measurements to be unbiased and we therefore assume

\[
\text{Bias}(m_t^{\text{comb}}) = \sum_{i=1}^{12} w_i \text{Bias}(m_i^t) = 0.
\]  

(6)

Equation (3) shows that the BLUE method defines the best estimate through a minimization of the variance of \( m_t \) for an assumed unbiased set of measurements. The minimum corresponds to setting the weights to

\[
w_i = \frac{1/\text{Variance}(m_i^t)}{\sum_{i=1}^{12} 1/\text{Variance}(m_i^t)}
\]  

(7)

for uncorrelated input values. Since the input \( m_t \) values are correlated, the variance in Eq. (4) has to be replaced with a covariance matrix:

\[
\text{Variance}(m_i^{\text{comb}}) = \sum_{i=1}^{12} \sum_{j=1}^{12} w_i w_j \text{Covariance}(m_i^t, m_j^t),
\]  

(8)

which is defined as

\[
\text{Covariance}(m_i^t, m_j^t) = \sigma(m_i^t)\sigma(m_j^t),
\]  

(9)

Minimizing Eq. (3) yields

\[
w_i = \frac{\sum_{j=1}^{12} \text{Covariance}^{-1}(m_i^t, m_j^t)}{\sum_{i=1}^{12} \sum_{j=1}^{12} \text{Covariance}^{-1}(m_i^t, m_j^t)},
\]  

(10)

where \( \text{Covariance}^{-1}(m_i^t, m_j^t) \) are the elements of the inverse of the covariance matrix (also known as the error matrix), and

\[
\text{Covariance}(m_i^t, m_j^t) = \text{Correlation}(m_i^t, m_j^t)\sigma(m_i^t)\sigma(m_j^t)
\]  

(11)

with \( \text{Correlation}(m_i^t, m_j^t) \) the correlation coefficient between \( m_i^t \) and \( m_j^t \). The following sections show how the correlation matrix is derived by examining the uncertainty components and their individual correlations.

B. Measurement uncertainties

The uncertainty on any \( m_t \) measurement has a statistical component from the limited number of events available for the measurement and a systematic component from the uncertainties assigned to the calibration of input quantities, to the model of the signal, and to the calibration of the mass extraction method. Since the first measurements of \( m_t \) \[4, 5\], the systematic component has been slightly larger than the statistical one. As more data became available, the statistical uncertainties on \( m_t \) improved as did the calibrations of systematic uncertainty, and the two components therefore improved together.

The systematic uncertainty on each \( m_t \) measurement in this combination is divided into 14 parts. Some of them have origin in only one source whereas others include several related sources of uncertainties. For the latter the patterns of correlation among different channels, Tevatron Run I and Run II, or experiments are the same for all sources included in these systematic components. The uncertainty on jet energy scale (JES),
on the other hand, is split into seven components, which do not apply to all measurements, given the significantly different approaches to jet energy calibration between CDF and D0 and the change in the D0 procedure between Run I and Run II.

Table II gives the uncertainty of each of the twelve top quark mass measurements for the different contributions to uncertainty, and their effect on the final combination. The components of uncertainty are defined in the following and can be classified as uncertainties in detector response (jet energy scale, jet and lepton modeling), uncertainties from modeling signal and background (signal modeling, multiple interactions model, background estimated from theory and background based on data), uncertainties from method of mass extraction and statistical uncertainties. A detailed description of the methods to evaluate these systematic uncertainties is presented in the Appendix.

1. Jet energy scale

1.1 Light-jet response (1)

One subcomponent of the uncertainty in JES covers the absolute calibration for CDF’s Run I and Run II measurements. It also includes small contributions from the uncertainties associated with modeling multiple interactions within a single bunch crossing and corrections for the underlying event.

1.2 Light-jet response (2)

Another subcomponent of this uncertainty includes D0’s Run I and Run II calibrations of absolute response (energy dependent), the relative response ($\eta$-dependent), and the out-of-cone showering correction which is a detector effect. This uncertainty term for CDF includes only the small relative response calibration ($\eta$-dependent) for Run I and Run II.

1.3 Out-of-cone correction

This subcomponent of the JES uncertainty quantifies the out-of-cone showering corrections to the MC showers for all of CDF’s and for D0’s Run I measurements that is obtained by varying the model for light-quark fragmentation.

1.4 Offset

This subcomponent originates from the offset in D0’s Run I calibration, which corrects for noise from uranium decay, pile-up from previous collisions, and for multiple interactions and the model for the underlying event. In Run I, the uncertainties are large, but in Run II, owing to the smaller integration time for calorimeter electronics, they are negligible. CDF’s calorimeter does not have the same sources of noise and sensitivity to pile-up as D0 so CDF measurements do not have this term.

1.5 Model for $b$ jets

This subcomponent comes from the uncertainty on the semileptonic branching fraction in $b$ decays and from differences between two models of $b$-jet hadronization.

1.6 Response to $b/q/g$ jets

This subcomponent accounts for the difference in electromagnetic versus hadronic response of $b$ jets, light-quark and gluon jets. CDF corrects for jet flavor as part of the main calibration, and defines the uncertainty based on the remaining difference in response between $b$ jets and light-flavor jets, whereas D0 corrects the response for $b$, light-quark ($u$, $d$, $s$, and $c$) and gluon jets as a function of jet $p_T$ and $\eta$.

1.7 In-situ light-jet calibration

The last part of the uncertainty in jet energy scale is from the in-situ calibration of $m_t$. It corresponds to the statistical uncertainty from the limited number of events used in the fit when using the $W$-boson mass to constrain the energies of the light quarks from the $W$ decay.

2. Jet modeling

The uncertainty in jet modeling has two components for D0. This uncertainty is negligible for CDF.

(i) The jet energy resolution is smeared for MC jets to match the resolution observed in data and the uncertainty on the smearing functions is propagated to $m_t$.

(ii) The identification efficiency in MC events is corrected to match that found in data and the uncertainty on this correction functions is propagated to $m_t$.

3. Lepton modeling

This uncertainty has two components:

(i) The electron and muon $p_T$ scales are calibrated to the $J/\psi$ and $Z$-boson mass by both CDF and D0. This uncertainty on the calibration is included in the measurements of $m_t$.

(ii) D0 smears the muon momentum resolution in MC events to match that in data and the uncertainty on this correction is included in this term. The uncertainty on the electron resolution has a negligible impact on the measurements of $m_t$.

4. Signal modeling

There are six components to this uncertainty. They are combined into one term because the correlations between channels are similar for each component:

(i) Knowledge of the PDF parametrization.

(ii) The quark annihilation and gluon fusion fractions that differ significantly between leading-log and next-to-leading order (NLO) QCD calculations (Run II).

(iii) The amount of initial and final-state radiation in MC signal events differs from that in data and is adjusted through the value of $\Lambda_{QCD}$ used in the shower and the scales of time and space-like showers.

(iv) Higher-order QCD corrections to initial and final-state radiation differ from precise parton-level models and this is not accounted for by the choice of scale for the calculations (Run II).

(v) Our model for jet hadronization is based on angular ordering in PYTHIA with Tune A underlying event tuning. Parton showering and the underlying event can also be simulated with HERWIG and JIMMY [85, 86]. The effect of
the difference on $m_t$ between the two models is included in this term.

(vi) Final-state partons and remnants of the protons and antiprotons are connected through color strings, which affect the distributions of jets. Since this effect is not included in the model for $t\bar{t}$ signal, the value of $m_t$ has an uncertainty from this omission (Run II).

5. Multiple interactions model

The number of soft $p\bar{p}$ events overlaid on each MC event has a Poisson distribution. The mean number does not equal exactly the number seen in data since the luminosity increased as the Tevatron run progressed. The top-quark mass is measured as a function of the number of multiple interactions in signal events by CDF and the signal MC events are reweighted to match the distribution seen in data by D0 and the related uncertainties are included here.

6. Background from theory

There are four components in this uncertainty:

(i) Difference between NLO calculations of the fraction of heavy-flavor jets in $W$+jets events. The ALPGEN model underestimates this fraction.

(ii) Impact of factorization and renormalization scales on the $W$+jets simulation, which affects the background model for distributions characterizing jets.

(iii) The theoretical cross sections used to normalize all MC estimated background processes (except for $W$+jets for CDF and D0 lepton+jets measurements, and Drell-Yan production for CDF dilepton measurements).

(iv) Impact of difference between the MC modeling of background kinematic distributions and those observed in data.

7. Background based on data

This refers primarily to uncertainties from the normalization of certain background components to data. These include multijet backgrounds in the lepton+jets, alljets, and $E_T$+jets analyses, the $W$+jets background in the D0 lepton+jets analyses, and the Drell-Yan backgrounds in the CDF dilepton analyses.

D0 also considers the following four components of uncertainty:

(i) the uncertainty from correcting the MC events to match the trigger efficiency in data which is based on the turn-on response for each trigger element.

(ii) the uncertainty from applying tag-rate and taggability corrections to MC events to make the efficiencies match the data for each jet flavor.

(iii) the uncertainty on the $t\bar{t}$ signal fractions in the samples used to calibrate the measurements.

(iv) the uncertainty on the fraction of multijet events included in the pseudoexperiments used for calibration.

8. Calibration method

The extracted values of $m_t$ are calibrated using a straight-line fit to the relationship between input mass
TABLE III: Correlations in systematic uncertainties (in percent) among the different measurements of $m_t$.

| Calibration method | Statistical uncertainty |
|--------------------|-------------------------|
| In-situ light-jet calibration (JES) | Not correlated among any measurements |
| Lepton+jets Run II CDF | 100 0 0 0 0 0 0 0 0 0 0 0 |
| Lepton+jets Run II D0 | 0 100 0 0 0 0 0 0 100 0 0 0 |
| Lepton+jets Run I CDF | 0 0 0 100 0 0 0 0 0 0 0 0 |
| Lepton+jets Run I D0 | 0 0 0 100 0 0 0 0 0 0 0 0 |
| Alljets Run II CDF | 0 0 0 0 100 0 0 0 0 0 0 0 |
| Alljets Run II D0 | 0 0 0 0 100 0 0 0 0 0 0 0 |
| Alljets Run I CDF | 0 0 0 0 0 0 100 0 0 0 0 0 |
| Alljets Run I D0 | 0 0 0 0 0 0 100 0 0 0 0 0 |
| Dileptons Run II CDF | 0 0 0 0 0 0 0 100 0 0 0 0 |
| Dileptons Run II D0 | 0 0 0 0 0 0 0 100 0 0 0 0 |
| Dileptons Run I CDF | 0 0 0 0 0 0 0 0 100 0 0 0 |
| Dileptons Run I D0 | 0 0 0 0 0 0 0 0 0 100 0 0 |
| $\not{E}_T$+jets Run II CDF | 0 0 0 0 0 0 0 0 0 0 100 0 |
| Decay length Run II CDF | 0 0 0 0 0 0 0 0 0 0 0 100 |

| Background based on data | |
|-------------------------|-------------------------|
| Lepton+jets Run II CDF | 100 100 100 100 0 0 0 0 0 0 0 0 |
| Lepton+jets Run II D0 | 100 100 100 100 0 0 0 0 0 0 0 0 |
| Lepton+jets Run I CDF | 100 100 100 100 0 0 0 0 0 0 0 0 |
| Lepton+jets Run I D0 | 100 100 100 100 0 0 0 0 0 0 0 0 |
| Alljets Run II CDF | 0 0 0 0 100 100 0 0 0 0 0 0 |
| Alljets Run II D0 | 0 0 0 0 100 100 0 0 0 0 0 0 |
| Alljets Run I CDF | 0 0 0 0 0 0 100 100 0 0 0 0 |
| Alljets Run I D0 | 0 0 0 0 0 0 100 100 0 0 0 0 |
| Dileptons Run II CDF | 0 0 0 0 0 0 0 100 100 100 100 0 |
| Dileptons Run II D0 | 0 0 0 0 0 0 0 100 100 100 100 0 |
| Dileptons Run I CDF | 0 0 0 0 0 0 0 0 100 100 100 100 |
| Dileptons Run I D0 | 0 0 0 0 0 0 0 0 0 100 100 100 |
| $\not{E}_T$+jets Run II CDF | 0 0 0 0 0 0 0 0 0 0 100 0 |
| Decay length Run II CDF | 100 100 100 100 0 0 0 0 0 0 0 0 |

| Background from theory | |
|------------------------|-------------------------|
| Lepton+jets Run II CDF | 100 100 100 100 0 0 0 0 0 0 0 0 |
| Lepton+jets Run II D0 | 100 100 100 100 0 0 0 0 0 0 0 0 |
| Lepton+jets Run I CDF | 100 100 100 100 0 0 0 0 0 0 0 0 |
| Lepton+jets Run I D0 | 100 100 100 100 0 0 0 0 0 0 0 0 |
| Alljets Run II CDF | 0 0 0 0 100 100 0 0 0 0 0 0 |
| Alljets Run II D0 | 0 0 0 0 100 100 0 0 0 0 0 0 |
| Alljets Run I CDF | 0 0 0 0 0 0 100 100 0 0 0 0 |
| Alljets Run I D0 | 0 0 0 0 0 0 100 100 0 0 0 0 |
| Dileptons Run II CDF | 0 0 0 0 0 0 0 100 100 100 100 0 |
| Dileptons Run II D0 | 0 0 0 0 0 0 0 100 100 100 100 0 |
| Dileptons Run I CDF | 0 0 0 0 0 0 0 0 100 100 100 100 |
| Dileptons Run I D0 | 0 0 0 0 0 0 0 0 0 100 100 100 |
| $\not{E}_T$+jets Run II CDF | 0 0 0 0 0 0 0 0 0 0 100 0 |
| Decay length Run II CDF | 100 100 100 100 0 0 0 0 0 0 0 0 |

| Light-jet response (2) (JES) | Offset (JES) | Response to b/q/g jets (JES) |
|-------------------------------|-------------|-----------------------------|
| Jet modeling                 | Lepton modeling | Multiple interactions model |
| Lepton+jets Run II CDF | 100 0 0 0 0 0 0 0 0 0 0 0 100 100 |
| Lepton+jets Run II D0 | 0 100 0 0 0 0 0 0 0 0 0 0 0 100 100 |
| Lepton+jets Run I CDF | 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 |
| Lepton+jets Run I D0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 |
| Alljets Run II CDF | 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 |
| Alljets Run II D0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 |
| Alljets Run I CDF | 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 |
| Alljets Run I D0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 |
| Dileptons Run II CDF | 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 |
| Dileptons Run II D0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 |
| Dileptons Run I CDF | 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 |
| Dileptons Run I D0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 |
| $\not{E}_T$+jets Run II CDF | 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 |
| Decay length Run II CDF | 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 |
TABLE IV: Correlations in systematic uncertainties (in percent) among the different measurements of $m_t$ (continued).

| Correlation                  | Run II CDF | Run II D0  | Run I CDF | Run I D0  | Run II CDF | Run II D0  | Run I CDF | Run I D0  | Run II CDF | Run II D0  | Run I CDF | Run I D0  | Run II CDF | Run II D0  | Run I CDF | Run I D0  | Run II CDF | Run II D0  | Run I CDF | Run I D0  | Run II CDF | Run II D0  | Run I CDF | Run I D0  |
|------------------------------|------------|------------|-----------|-----------|------------|------------|-----------|-----------|------------|------------|-----------|-----------|------------|------------|-----------|-----------|------------|------------|-----------|-----------|------------|------------|-----------|-----------|
| Lepton+jets                  | 100%       | 0          | 100%      | 0         | 100%       | 100%       | 0         | 100%      | 0          | 100%       | 0         | 100%      | 100%       | 0         | 100%      | 0          | 100%       | 0         | 100%      | 100%       | 0         | 100%      | 0          |
| Light-jet response (1) (JES) | 0          | 100%       | 0          | 100%      | 0          | 100%       | 0         | 100%      | 0          | 100%       | 0         | 100%      | 100%       | 0         | 100%      | 0          | 100%       | 0         | 100%      | 100%       | 0         | 100%      | 0          |
| Out-of-cone correction (JES) | 100%       | 0          | 100%      | 0         | 100%       | 100%       | 0         | 100%      | 0          | 100%       | 0         | 100%      | 100%       | 0         | 100%      | 0          | 100%       | 0         | 100%      | 100%       | 0         | 100%      | 0          |
| Model for $b$ jets (JES)     | 100%       | 0          | 100%      | 0         | 100%       | 100%       | 0         | 100%      | 0          | 100%       | 0         | 100%      | 100%       | 0         | 100%      | 0          | 100%       | 0         | 100%      | 100%       | 0         | 100%      | 0          |
| Signal modeling              | 100%       | 0          | 100%      | 0         | 100%       | 100%       | 0         | 100%      | 0          | 100%       | 0         | 100%      | 100%       | 0         | 100%      | 0          | 100%       | 0         | 100%      | 100%       | 0         | 100%      | 0          |

100% correlated among all measurements
and measured mass in simulated pseudoexperiments. This term includes the systematic uncertainties from the slope and offset of this calibration.

9. Statistical uncertainty

The statistical uncertainties are determined from the number of data events in each of the twelve measurements.

Figure 5 shows the relative contribution for each major uncertainty to the analysis channels in Run II. The Appendix provides more detail on how each of the sources of the uncertainties is estimated.

![Figure 5: The average uncertainties for CDF and D0 for each Run II measurement and for the Tevatron combination, separated according to major components (see Table VIII in the Appendix for details on the systematic categories).](image)

C. Uncertainty correlations

Tables III and IV indicate how uncertainties are correlated between measurements. There are seven patterns of correlation:

(i) Statistical uncertainty and calibration method uncertainty are not correlated among the measurements.
(ii) Correlations among D0 measurements that implement the same final jet energy corrections for the uncertainty from in-situ light-jet calibration.
(iii) Correlations among CDF measurements that use the same data samples for the uncertainty from background.
(iv) Correlations among all measurements in the same $t\bar{t}$ decay channel for the uncertainty from background estimated from theory.
(v) Correlations of measurements within the same experiment for a given run period for the uncertainties from light-jet response (2), offset, response to $b/q/g$ jets, jet modeling, lepton modeling and multiple interactions model.

(vi) Correlations for measurements within the same experiment such as the uncertainty from light-jet response (1).
(vii) Correlations among all measurements such as the uncertainties from out-of-cone correction, model for $b$ jets and signal modeling.

We assume that all sources correspond to either no or 100% correlation. A check of this assumption (see Section IV B) shows that it has negligible effect on the combined value and uncertainty of $m_t$.

D. Measurement correlations

The uncertainties shown in Table II and their correlations shown in Tables III and IV provide the correlations among the twelve input values of $m_t$. The correlation matrix for these measurements, as returned by the combination procedure, is shown in Table V. The inversion of the covariance matrix built with the correlation matrix defines the measurement weights, as described in Section III A.

E. Measurement weights

As discussed in Section III A the combined mass $m_t^{comb}$ is defined through the set of weights that minimize the squared difference between $m_t^{comb}$ and the true value of $m_t$, which is equivalent to minimizing the sum of the covariance matrix elements. Table V gives the weights $w_i$ for each of the input measurements as determined in this minimization. A weight of zero means that an input measurement has no effect on $m_t^{comb}$. The Run I measurement weights are negative which reflects the fact that the correlations for these and other measurements are larger than the ratio of their total uncertainties. In this case, the less precise measurement may acquire a negative weight. Input measurements with negative weights still affect the value of $m_t^{comb}$ and reduce the total uncertainty. By design, the sum of the weights is set to unity.

IV. RESULTS OF THE COMBINATION

A. Tevatron top-quark mass result

Combining the twelve independent measurements of $m_t$ from the CDF and D0 collaborations yields

$$m_t^{comb} = 173.18 \pm 0.56 \text{ (stat)} \pm 0.75 \text{ (syst)} \text{ GeV}$$

$$= 173.18 \pm 0.94 \text{ GeV}.$$  

The uncertainties are split into their components in Table II and Fig. 5. The jet energy scale contributes 0.49 GeV to the total systematic uncertainty. Of this, 0.39 GeV arises from limited statistics of the in-situ JES calibration and 0.30 GeV from the remaining contributions. Figure 6 summarizes the input $m_t$ values and the combined result.
TABLE V: Correlations in % among the input $m_t$ measurements and their weights in the BLUE combination.

|                  | Lepton+jets Run II CDF | Lepton+jets Run II DØ | Lepton+jets Run I CDF | Lepton+jets Run I DØ | Alljets Run II CDF | Alljets Run I CDF | Dileptons Run II CDF | Dileptons Run II DØ | Dileptons Run I CDF | Dileptons Run I DØ | $E_T$+jets Run II CDF | $E_T$+jets Run I CDF | Decay length Run II CDF | Weight |
|------------------|------------------------|-----------------------|-----------------------|----------------------|-------------------|--------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|------------------|
| Lepton+jets Run II CDF | 100                    | 27                    | 45                    | 25                   | 25                | 26                 | 44                   | 12                   | 26                   | 11                  | 24                   | 8                   | 55.50             |
| Lepton+jets Run II DØ | 27                     | 100                   | 21                    | 14                   | 16                | 9                  | 11                   | 39                   | 13                   | 7                   | 15                  | 6                   | 26.66             |
| Lepton+jets Run I CDF | 45                     | 21                    | 100                   | 26                   | 25                | 32                 | 54                   | 12                   | 29                   | 11                  | 22                  | 7                   | -4.72             |
| Lepton+jets Run I DØ | 25                     | 14                    | 26                    | 100                  | 12                | 14                 | 27                   | 7                    | 15                   | 16                  | 10                  | 5                   | -0.06             |
| Alljets Run II CDF  | 25                     | 16                    | 25                    | 12                   | 100               | 15                 | 25                   | 10                   | 15                   | 7                   | 14                  | 4                   | 13.99             |
| Alljets Run I CDF  | 26                     | 9                     | 32                    | 14                   | 15                | 100                | 38                   | 6                    | 19                   | 7                   | 14                  | 4                   | -0.80             |
| Dileptons Run II CDF | 44                     | 11                    | 54                    | 27                   | 25                | 38                 | 100                  | 7                    | 32                   | 13                  | 22                  | 6                   | 1.41              |
| Dileptons Run II DØ | 12                     | 39                    | 12                    | 7                    | 10                | 6                  | 7                    | 100                  | 8                    | 5                   | 10                  | 3                   | 2.28              |
| Dileptons Run I CDF | 26                     | 13                    | 29                    | 15                   | 15                | 19                 | 32                   | 8                    | 100                  | 8                   | 14                  | 4                   | -1.05             |
| Dileptons Run I DØ | 11                     | 7                     | 11                    | 16                   | 7                 | 13                 | 5                    | 8                    | 100                  | 6                   | 2                   | 0                   | -0.15             |
| $E_T$+jets Run II CDF | 24                    | 15                    | 22                    | 10                   | 14                | 14                 | 22                   | 10                   | 14                   | 6                   | 10                  | 4                   | 6.65              |
| $E_T$+jets Run I CDF | 11                     | 7                     | 11                    | 16                   | 7                 | 13                 | 5                    | 8                    | 100                  | 6                   | 10                  | 4                   | 6.65              |
| Decay length Run II CDF | 8                     | 6                     | 7                     | 5                    | 4                 | 4                  | 6                    | 3                    | 4                    | 2                   | 4                   | 100                | 0.29              |

FIG. 6: The twelve input measurements of $m_t$ from the Tevatron collider experiments along with the resulting combined value of $m_t^{\text{comb}}$. The grey region corresponds to $\pm 0.94$ GeV.

We assess the consistency of the input $m_t$ measurements with their combination using a $\chi^2$ test statistic, defined as follows:

$$
\chi^2_{\text{comb}} = \left( m_i^t - m_t^{\text{comb}} \right)^T \times \text{Covariance}^{-1} \left( m_i^t, m_j^t \right) \left( m_i^t - m_t^{\text{comb}} \right),
$$

\[ \chi^2 / \text{dof} = 8.3 / 11 \]
TABLE VI: Separate calculations of $m_t^{\text{comb}}$ for each $t\bar{t}$ decay mode, by run period, and by experiment, and their $\chi^2$ probabilities.

| Subset   | $m_t^{\text{comb}}$ | Consistency $\chi^2$ (Degrees of freedom = 1) | $\chi^2$ probability |
|----------|----------------------|---------------------------------------------|----------------------|
|          | Lepton+jets          | Alljets  Dileptons $E_T^{+}\text{jets}$ Run I Run II CDF D0          |                      |
| Lepton+jets | 173.4 ± 1.0         | 0.14  1.51  0.28 | —                       | 71% 22% 60%          |
| Alljets   | 172.7 ± 1.9          | 1.14  0.40  0.04 | 0.12                    | 71% 53% 85%          |
| Dileptons | 171.1 ± 2.1          | 0.28  0.04  0.12 | 0.28                    | 60% 53% 73%          |
| $E_T^{+}\text{jets}$ | 172.1 ± 2.5        | 0.28  0.04  0.12 | 0.28                    | 60% 53% 73%          |
| Run I     | 173.6 ± 1.0          | —                       | 2.89                    | 9%                   |
| Run II    | 180.0 ± 4.1          | —                       | 2.56                    | 11%                  |
| CDF       | 172.5 ± 1.0          | —                       | —                       | —                    |
| D0        | 174.9 ± 1.4          | —                       | —                       | —                    |

where $m_i^t$ is a column vector of the twelve $m_t$ inputs, $m_t^{comb}$ is a matching column vector for the measurements adjusted in the previous minimization, and the superscript $T$ denotes the transpose. We find

$$\chi^2_{\text{comb}} = 8.3$$

for 11 degrees of freedom, which is equivalent to a 69% probability for agreement (i.e., $p$-value for the observed $\chi^2$ value) among the twelve input measurements.

B. Consistency checks

We check one aspect of the assumption that biases in the input $m_t$ are on average zero (see section IIIA) by calculating separately the combined $m_t^{comb}$ for each $t\bar{t}$ decay mode, each run period, and each experiment. The results are shown in Table VI. The resulting $m_t^{comb}$ values are calculated using all twelve input measurements and their correlations. The $\chi^2$ test statistic provides the compatibility of each subset with the others and is defined as:

$$\chi^2_{\text{sub1,sub2}} = (m_t^{\text{sub1}} - m_t^{\text{sub2}})^2 \text{Covariance}^{-1}(m_t^{\text{sub1}}, m_t^{\text{sub2}}).$$

The $\chi^2$ values in Table VI show that biases in the input measurements are not large.

To check the impact of the assumption that the systematic uncertainty terms are either 0% or 100% correlated between input measurements, we change all off-diagonal 100% values to 50% (see Tables III and IV) and recalculate the combined top-quark mass. This extreme change shifts the central mass value up by 0.17 GeV and reduces the uncertainty negligibly. The chosen approach is therefore conservative.

C. Summary

We have combined twelve measurements of the mass of the top quark by the CDF and D0 collaborations at the Tevatron collider and find:

$$m_t^{\text{comb}} = 173.18 \pm 0.56 \text{ (stat)} \pm 0.75 \text{ (syst)} \text{ GeV}$$

which corresponds to a precision of 0.54%. The result is shown in Table VII together with previous combined results for comparison. The input measurements for this combination use up to 5.8 fb$^{-1}$ of integrated luminosity for each experiment, while 10 fb$^{-1}$ are now available. We therefore expect the final combination to improve in precision with the use of all the data, but also from analyzing all $t\bar{t}$ decay channels in both experiments, and from the application of improved measurement techniques, signal and background models, and calibration corrections to all channels that will reduce systematic uncertainties. Currently, there are also some overlaps of the systematic effects that are included in different uncertainty categories. In addition to the in-situ light-jet calibration systematic uncertainty that will scale down with the increase of analyzed luminosity, these levels of double counting are expected to be reduced for the next combination. The combination presented here has a 0.54% precision on $m_t$ making the top quark the particle with the best known mass in the SM.

Acknowledgments

We thank the Fermilab staff and technical staffs of the participating institutions for their vital contributions and acknowledge support from the DOE and NSF (USA), ARC (Australia), CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil), NSERC (Canada), NSC, CAS and CNSF (China), Colciencias (Colombia), MSMT and GACR (Czech Republic), the Academy of Finland, CEA and CNRS/IN2P3 (France), BMBF and DFG (Germany), DAE and DST (India), SFI
TABLE VII: Mass measurements of the top quark from 1999 until this publication at the Tevatron collider.

| Year | Integrated Luminosity [fb⁻¹] | \(m_t\) [GeV] | Uncertainty on \(m_t\) | Reference |
|------|-----------------------------|---------------|----------------------|-----------|
| 1999 | 0.22                       | 174.3 ± 3.2 ± 4.9 | 2.9% | [3] |
| 2004 | 0.1                        | 178.5 ± 2.7 ± 3.3 | 2.4% | [6] |
| 2005 | 0.3                        | 172.7 ± 1.7 ± 2.4 | 1.7% | [6] |
| 2006 | 0.7                        | 172.5 ± 1.3 ± 1.9 | 1.3% | [6] |
| 2006 | 1.0                        | 171.4 ± 1.2 ± 1.8 | 1.2% | [6] |
| 2007 | 2.1                        | 170.9 ± 1.1 ± 1.5 | 1.1% | [6] |
| 2008 | 2.1                        | 172.6 ± 0.8 ± 1.1 | 0.8% | [6] |
| 2008 | 2.1                        | 172.4 ± 0.7 ± 1.0 | 0.7% | [6] |
| 2009 | 3.6                        | 173.1 ± 0.6 ± 1.1 | 0.7% | [6] |
| 2010 | 5.6                        | 173.32 ± 0.56 ± 0.89 | 0.61% | [6] |
| 2011 | 5.8                        | 173.18 ± 0.56 ± 0.75 | 0.54% | This paper |

5.8 173.18 ± 0.56 ± 0.75 0.54% This paper

APPENDIX: EVALUATION OF SYSTEMATIC UNCERTAINTIES

Systematic uncertainties arise from inadequate modeling of signal and backgrounds, and the inability to reproduce the detector response with simulated events. Systematic uncertainties also arise from ambiguities in reconstructing the top quarks from their jet and lepton remnants. We minimize such uncertainties by using independent data to calibrate the absolute response of the detector, and we use state-of-the-art input from theory for modeling the signal and backgrounds. We use alternative models for signal and different parameters for modeling backgrounds to check our assumptions.

Table VIII lists the uncertainties from the Run II lepton+jets measurements for CDF and D0 that are based on the matrix element technique [26, 27]. These two measurements provide most of the sensitivity to the top-quark mass. When these measurements are performed again for each shifted sample and define shifts in \(m_t\) that correspond to each independent source of systematic uncertainty. These uncertainties are not determined at other \(m_t\) values and it is assumed that their dependence on \(m_t\) is minimal.

For uncertainties that arise from ambiguities in the modeling of the \(t\bar{t}\) signal, which include the uncertainties from initial and final-state radiation, higher-order QCD corrections, b-jet hadronization, light-jet hadronization, the underlying event model, and color reconnection, we generate simulated \(t\bar{t}\) events using alternative models also at \(m_t = 172.5\) GeV. These events are processed through detector simulation, are reconstructed, and the probability density is calculated by integration over the matrix elements.

For the uncertainties from the choice of parton distribution functions, the ratio of contribution from quark annihilation and gluon fusion, and models for overlapping interactions, we reweight the fully reconstructed simulated \(t\bar{t}\) MC events at \(m_t = 165, 170, 172.5, 175, 180\) GeV to reflect the uncertainty on ±1σ range on each parameter, and extract its impact on \(m_t\).

Each method used to measure \(m_t\) is calibrated using \(t\bar{t}\) MC events generated at \(m_t = 165, 170, 172.5, 175, 180\) GeV, which provide the relationship between input and “measured” masses. A straight line is fitted to these values, representing a response function that is used to correct the \(m_t\) measurement in data.

Systematic uncertainties are evaluated using studies of ensembles of pseudoexperiments. For each of the shifted or reweighted sets of events, and those based on alternative models or different generated \(m_t\), we create an ensemble of at least 1000 pseudoexperiments, by means of binomially-smeared signal and background fractions that match the expectation in the data sample and with the total number of events in each pseudoexperiment equal to the number of events observed in data. We use the ensembles of such pseudoexperiments to assess the difference between generated and measured mass, and to calibrate the method of mass extraction.

For the uncertainty on background, we change the fraction of background events in the pseudoexperiments within their uncertainties and remeasure the top-quark mass.

For the BLUE combination method, the uncertainties must be defined symmetrically around the central mass value, and this requirement determines part of the following definitions of uncertainty.

For the uncertainties obtained in ensemble studies with shifted or reweighted parameters, \(m_t^\pm\) corresponds to the +1σ shift in the input parameter and \(m_t^-\) corresponds to the −1σ shift. The systematic uncertainty on the value of \(m_t\) from these parameters is defined as ±1\(|m_t^+ - m_t^-|/2\), unless both shifts are in the same direction relative to the
TABLE VIII: Individual components of uncertainty on CDF and D0 $m_t$ measurements in the lepton+jets channel for Run II data [26, 27].

| Source | CDF (5.6 fb$^{-1}$) | D0 (3.6 fb$^{-1}$) |
|--------|---------------------|---------------------|
| DETECTOR RESPONSE | | |
| Jet energy scale | | |
| Light-jet response (1) | 0.41 | n/a |
| Light-jet response (2) | 0.01 | 0.63 |
| Out-of-cone correction | 0.27 | n/a |
| Model for $b$ jets | 0.23 | 0.07 |
| Semileptonic $b$ decay | 0.16 | 0.04 |
| $b$-jet hadronization | 0.16 | 0.06 |
| Response to $b/q/g$ jets | 0.13 | 0.26 |
| In-situ light-jet calibration | 0.58 | 0.46 |
| Jet modeling | 0.00 | 0.36 |
| Jet energy resolution | 0.00 | 0.24 |
| Jet identification | 0.00 | 0.26 |
| Lepton modeling | 0.14 | 0.18 |
| MODELING SIGNAL | | |
| Signal modeling | 0.56 | 0.77 |
| Parton distribution functions | 0.14 | 0.24 |
| Quark annihilation fraction | 0.03 | n/a |
| Initial and final-state radiation | 0.15 | 0.26 |
| Higher-order QCD corrections | n/a | 0.25 |
| Jet hadronization and underlying event | 0.25 | 0.58 |
| Color reconnection | 0.37 | 0.28 |
| Multiple interactions model | 0.10 | 0.05 |
| MODELING BACKGROUND | | |
| Background from theory | 0.27 | 0.19 |
| Higher-order correction for heavy flavor | 0.03 | 0.07 |
| Factorization scale for $W$+jets | 0.07 | 0.16 |
| Normalization to predicted cross sections | 0.25 | 0.07 |
| Distribution for background | 0.07 | 0.03 |
| Background based on data | 0.06 | 0.23 |
| Normalization to data | 0.00 | 0.06 |
| Trigger modeling | 0.00 | 0.06 |
| $b$-tagging modeling | 0.00 | n/a |
| Signal fraction for calibration | n/a | 0.10 |
| Impact of multijet background on the calibration | n/a | 0.14 |
| METHOD OF MASS EXTRACTION | | |
| Calibration method | 0.10 | 0.16 |
| STATISTICAL UNCERTAINTY | 0.65 | 0.83 |
| UNCERTAINTY ON JET ENERGY SCALE | 0.80 | 0.83 |
| OTHER SYSTEMATIC UNCERTAINTIES | 0.67 | 0.94 |
| TOTAL UNCERTAINTY | 1.23 | 1.50 |

nominal value, in which case the systematic uncertainty is defined as the larger of $|m_{1}^{T} - m_{2}^{T}|$ or $|m_{1}^{T} - m_{3}^{T}|$.

For the values obtained from a comparison between two or more models, the systematic uncertainty is taken as ± of the largest difference among the resulting masses (without dividing by two).

1. Jet energy scale

The following seven terms (1.1 - 1.7) refer to the jet energy scale:

1.1 Light-jet response (1)

This uncertainty includes the absolute calibration of the CDF JES for Run I and Run II and the smaller effects on JES from overlapping interactions and the model for the underlying event.

CDF’s calibration of the absolute jet energy scale uses the single-pion response to calibrate jets in data and to tune the model of the calorimeter in the simulation. Uncertainties of these processes form the greatest part of the JES uncertainty. Small constant terms are added to account for the model of jet fragmentation, for calorimeter simulation of electromagnetically decaying particles, and to take into account small variations of the absolute calorimeter response over time. The total resulting uncertainty on the absolute JES is 1.8% for 20 GeV jets rising to 2.5% for 150 GeV jets.

At high Tevatron instantaneous luminosities, more than one $p\bar{p}$ interaction occurs during the same bunch crossing, and the average number of interactions depends linearly on instantaneous luminosity and changed from $\approx 1$ to 8 between the start and the end of Run II. If the final-state particles from these extra $p\bar{p}$ interactions
overlap with the jets from a $t\bar{t}$ event, the energy of these jets is increased, thereby requiring the correction. The uncertainty on this correction depends on vertex-reconstruction efficiency and the rate for misidentifying vertices. The impact of these effects is checked on data samples, including $W\rightarrow e\nu$, minimum bias, and multijet events with a trigger threshold of 100 GeV. CDF finds an uncertainty of 0.05 GeV per jet. This uncertainty was estimated early in Run II. With increasing instantaneous luminosity, this correction was insufficient, and another systematic uncertainty term was introduced through the “multiple-interactions-model” term, which is described later.

CDF includes the impact of the underlying event on JES in this component of uncertainty. The proton and antiproton remnants of the collision deposit energy in the calorimeter, and these can contribute to the energy of the jets from $t\bar{t}$ decay, which must be subtracted before $m_t$ can be measured accurately. CDF compares the “Tune A” underlying event model \texttt{23} in \texttt{PYTHIA} \texttt{60} with the JIMMY model \texttt{S5} \texttt{S6} in \texttt{HERWIG} \texttt{S7} using isolated tracks with $p_T > 0.5$ GeV. The data agree well with Tune A, which is expected since it was tuned to CDF data, but differ from JIMMY by about 30%. This difference is propagated to the absolute calibration of JES and yields a 2% uncertainty for low-$p_T$ jets, and less than 0.5% for 35 GeV jets.

MC $t\bar{t}$ events are generated by CDF with jet energies shifted by the above three uncertainties, and the resulting shifts in $m_t$ are used to estimate the uncertainty. The overall uncertainty on $m_t$ from these combined sources is 0.24% for lepton+jets, 0.22% for alljets, 1.18% for CDF Run II dilepton data, and 0.26% for $E_T$+jets for Run II data of CDF.

### 1.2 Light-jet response (2)

This uncertainty term represents almost all parts of D0 Run I and Run II calibrations of JES. The absolute energy scale for jets in data is calibrated using $\gamma$+jet data with photon $p_T > 7$ GeV and $|\eta|<1.0$, and jet $p_T > 15$ GeV and $|\eta_{jet}| < 0.4$, using the “$E_T$ projection fraction” method \texttt{S8}. Simulated samples of $\gamma$+jets and $Z$+jets events are compared to data, and used to correct the energy scale for jets in MC events. The JES is also corrected as a function of $\eta$ for forward jets relative to the central jets using $\gamma$+jets and dijets data. Out-of-cone particle scattering corrections are determined with $\gamma$+jets data and simulated events, without using overlays of underlying events, to avoid double-counting of this effect. Templates of deposited energy are formed for particles belonging to and not belonging to a jet using 23 annular rings around the jet axis for $R(y, \phi) = \sqrt{(\Delta y)^2 + (\Delta \phi)^2} \leq 3.5$. All of these calibration steps are combined and the total uncertainty on JES is calculated for light jets and heavy-flavor jets (independent of the type of jet). The resulting D0 uncertainty on $m_t$ for Run II lepton+jets events is 0.36% and 0.86% for dilepton data.

This uncertainty term also includes the relative jet energy correction as a function of jet $\eta$ for CDF. This is measured using dijet data, along with \texttt{PYTHIA} and \texttt{HERWIG} simulations of $t\bar{t}$ events generated with shifted jet energies, and lead to the following uncertainties on Run II measurements of $m_t$: 0.01% for lepton+jets, 0.02% for alljets, 0.34% for dileptons, and 0.03% for $E_T$+jets.

### 1.3 Out-of-cone corrections

For all CDF measurements and for D0 Run I, this uncertainty component accounts for energy lost outside the jet reconstruction cone, and uses the difference between two models of light-quark and gluon fragmentation and simulation of the underlying event. D0 changed the way it measures the out-of-cone uncertainty between Run I and Run II, and this uncertainty for D0 Run II measurements is therefore included in the light-jet response (2) term, described previously.

Energy is lost from the cone of jet reconstruction when a quark or gluon is radiated at large angle relative to the original parton direction, or when the fragmentation shower is wider than the cone, or when low momentum particles are bent out of the cone by the axial magnetic field of the detector. Energy is gained in the cone from initial-state radiation and from remnants of spectator partons, called collectively at CDF the underlying event. The two models compared by CDF in Run II are \texttt{PYTHIA} with Tune A for the underlying event, and \texttt{HERWIG} with the JIMMY modeling of the underlying event. For the narrow cone size of $R = 0.4$ used in measurements of $m_t$, more energy is lost from the cone than gained. The correction is measured using \texttt{PYTHIA} dijet events and data in the region $0.4 < R \leq 1.3$. A small constant is added to compensate for energy outside the $R > 1.3$ region (“splash out”). The correction is largest for jets at low transverse momentum: +18% for $p_T = 20$ GeV jets and < 4% for jets with $p_T > 70$ GeV. A detailed description of the method can be found in Ref. \texttt{S9}.

The uncertainty on these corrections is measured by comparing $\gamma$+jets data to the two simulations. The largest difference between either of the models and data is taken as the uncertainty (the difference between the two models is very small). For jets with $p_T = 20$ GeV, the uncertainty on the jet energy scale is 6%, and for jets above 70 GeV, it is 1.5%. These translate into uncertainties on CDF Run II $m_t$ measurements of 0.16% for the lepton+jets measurement, 0.14% for alljets, 1.25% for dileptons, and 0.12% for $E_T$+jets.

### 1.4 Energy offset

This uncertainty term is specific to D0 Run I measurements. It includes the uncertainty arising from uranium decays noise in the calorimeter and from the correction for multiple interaction to JES. These lead to uncertainties in $m_t$ of 0.72% for lepton+jets and 0.77% for dilepton events. In Run II, the integration time for the calorimeter electronics is short, after the upgrade to
shorter bunch-crossing time (3.5 µs to 396 ns). This effect results in a negligible uncertainty on the offset for D0 Run II measurements of \( m_t \).

1.5 Model for \( b \) jets

(i) Semileptonic \( b \) decay

The uncertainty on the semileptonic branching fraction (10.69 ± 0.22) \times 10^{-2} \) (PDG 2007 values) of \( B \) hadrons affects the value of \( m_t \). Both collaborations reweight \( t\bar{t} \) events by \( \pm \) the uncertainty on the central value (±2.1%), and take half the resulting mass difference as the uncertainty on \( m_t \): 0.09% for CDF and 0.03% for D0.

(ii) \( b \)-jet hadronization

For its nominal \( m_t \) measurements, CDF uses the default PYTHIA model of \( b \)-jet fragmentation based on the Bowler model \( r_q = 1.0, a = 0.3, b = 0.58 \), where \( r_q \) is the Bowler fragmentation-function parameter and \( a \) and \( b \) are Lund fragmentation function parameters. D0 uses a model with these parameters tuned to data from ALEPH, DELPHI, and OPAL \( r_q = 0.897 \pm 0.013, a = 1.03 \pm 0.08, b = 1.31 \pm 0.08 \). To measure the uncertainty on these models, CDF compares its \( m_t \) values to those measured with the LEP parameters used by D0, and to those from the SLD experiment at SLC \( r_q = 0.980 \pm 0.010, a = 1.30 \pm 0.09, b = 1.58 \pm 0.09 \). D0 compares the measured \( m_t \) with the LEP parameters to the one from SLC. The resulting uncertainties on the \( m_t \) extracted from the lepton+jets channel are 0.09% for CDF and 0.03% for D0.

For some analyses, the determination of the uncertainties in (i) and (ii) may be affected by statistical fluctuations of the MC samples.

1.6 Response to \( b/q/g \) jets

The calibrations of JES described in the first two paragraphs of the Appendix are derived on samples dominated by “light quark” and gluon jets and applied to all jets. However the calorimeter response to heavy-flavor jets differs in that these particles often decay semileptonically and the \( b \) jet will have some energy lost through the escaping neutrino. Bottom quark jets can also contain an electron that showers in a pattern different than for hadronic particles, or the jet may contain a muon that does neither produce a shower nor gets absorbed in the calorimeter. Bottom jets also differ from light jets in the distribution of their shower and particle content. Since every \( t\bar{t} \) event contains two \( b \) jets, it is important to understand their energy calibration after the application of the previous overall corrections.

CDF measures an uncertainty from the difference between the \( b \)-jets response and light-flavor jets response in Run II. CDF takes sets of MC \( t\bar{t} \) events and cluster particles into jets classifying each such particle jet as a \( b \) jet or a light jet \( r_q \). Single-particle response for data and for MC events are applied to the formed particle jets to predict the energy measured in the calorimeter. A double ratio is calculated: \( (p^\text{data}_{T}/p^\text{MC}_{T})_{b \text{jets}}/(p^\text{data}_{T}/p^\text{MC}_{T})_{\text{light jets}} \), which is found to be 1.010. The uncertainty on \( m_t \) is measured by generating new \( t\bar{t} \) samples with the \( b \)-jet scale shifted by this 1% difference, which results in 0.1% uncertainty in \( m_t \) for the lepton+jets measurement.

For Run II measurements, D0 corrects the transverse momentum distributions of jets differently in four regions of detector pseudorapidity to make the MC response match that in data (after the main JES calibration) as a function of jet flavor: \( b \) jets, light-quark jets \( (u, d, s, c) \) and gluon jets \( \bar{g} \). The correction functions are shifted up and down by their uncertainties and the extracted shifts in \( m_t \) are used to define the resulting uncertainty on \( m_t \) of 0.15% for the lepton+jets measurement and 0.23% for the dilepton measurement.

1.7 In-situ light-jet calibration

In \( t\bar{t} \) events where one or both \( W \) bosons decay to \( q\bar{q'} \), the world average value of \( M_W \) \( 8 \) is used to constrain the jet energy scale for light-quark jets in-situ \( 90, 91 \). CDF and D0 perform simultaneous measurements of \( m_t \) and \( M_W \), and fit a linear function to the JES for light-quark jets that is applied to all the jets to improve precision of \( m_t \).

CDF measures the in-situ rescaling factor independently in their lepton+jets, alljets, and \( E_T \)-jets analyses and so these terms are uncorrelated. D0 applies the rescaling derived from their lepton+jets measurement to dilepton events, and these uncertainties are therefore correlated.

The uncertainty from the in-situ calibration is determined through a two-dimensional minimization of a likelihood that is a function of top-quark mass and JES. The extracted JES is then shifted relatively to its measured central value and a one-dimensional fit is performed to the top-quark mass. The difference in quadrature between the uncertainty on \( m_t \) from the first and second fits is taken as the uncertainty on \( m_t \) from the in-situ calibration, giving 0.34% for CDF’s lepton+jets measurement, 0.27% for D0’s lepton+jets result, 0.55% for CDF’s alljets, 0.89% for their \( E_T \)-jets measurement, and 0.32% for D0’s dilepton measurement.

2. Jet modeling

Applying jet algorithms to MC events, CDF finds that the resulting efficiencies and resolutions closely match those in data. The small differences propagated to \( m_t \) lead to a negligible uncertainty of 0.005 GeV, which is then ignored. D0 proceeds as follows.

(i) Jet energy resolution

The modeling of the jet energy resolution is corrected in D0 to match that in data. The value of \( m_t \) is then remeasured using MC samples with jet energy resolution corrections shifted up and down by their uncertainties, resulting in an uncertainty on \( m_t \) of 0.18%.
(ii) Jet identification

D0 applies correction functions to MC events to match the jet identification efficiency in data. The uncertainty on $m_t$ is estimated by reducing the corrections by 1σ and remeasuring the mass in the adjusted MC samples. The efficiency can only be shifted down and not up because jets can be removed from the simulated events but not added. The uncertainty on $m_t$ is therefore set to ± the single-sided shift and is 0.15%.

3. Lepton modeling

(i) Momentum scale for leptons

In Run II, the electron and muon channels for CDF and the muon channels for D0 are used to calibrate the lepton momentum scales by comparing the invariant dilepton mass $m_{\ell\ell} = \sqrt{(E_{\ell 1} + E_{\ell 2})^2 - (p_{\ell 1} + p_{\ell 2})^2}$ for $J/\psi \rightarrow \ell\ell$ and $Z \rightarrow \ell\ell$ decays in MC events with data. The positions of the resonances observed in the $m_{\ell\ell}$ distributions reflect the absolute momentum scales for the leptons. CDF and D0 perform a linear fit as a function of the mean value of transverse momentum to the dilepton mass

$E_{\ell}\rightarrow\ell\ell$ and $Z\rightarrow\ell\ell$ decays in MC events with data. The positions of the resonances observed in the $m_{\ell\ell}$ distributions reflect the absolute momentum scales for the leptons. CDF and D0 perform a linear fit as a function of the mean value of transverse momentum to the dilepton mass $m_{\ell\ell} = \sqrt{(E_{\ell 1} + E_{\ell 2})^2 - (p_{\ell 1} + p_{\ell 2})^2}$ for $J/\psi \rightarrow \ell\ell$ and $Z \rightarrow \ell\ell$ decays in MC events with data. The value of $m_t$ is measured using MC $t\bar{t}$ ensembles without rescaling lepton $p_T$ and with lepton $p_T$ values rescaled using these fitted relations. Half of the largest difference in extracting $m_t$ is taken as its systematic uncertainty resulting from lepton $p_T$ scale. For muon measurements from D0, the largest shift is observed for the linear parametrization. In Run I, this source of uncertainty was neglected as it was negligible relative to other sources of uncertainty.

In D0 Run II measurement of the $W$-boson mass in the electron decay channel, it was found that 0.26 radiation lengths of material was left out in the GEANT modeling of the solenoid [82]. The Z-boson mass peak was used to calculate a quadratic correction to the electron energy by reweighting the PYTHIA model to match possible excursions in the parameters represented by the 20 CTEQ6M uncertainties, and taking the quadratic sum of the differences. The resulting uncertainty on $m_t$ is 0.08% for CDF and 0.14% for D0.

(ii) Lepton momentum resolution

The muon momenta in simulated events at D0 are smeared to match the resolution in data. The uncertainty on this correction corresponds to an uncertainty on $m_t$ of 0.17%.

4. Signal modeling

(i) Parton distribution functions

In Run I, the uncertainties from choice of parton distribution functions (PDF) are determined by measuring the change in $m_t$ using the MRSA′ set [83] instead of MRSD0 [84] or CTEQ4M [85], and are found to be negligible.

In Run II, the uncertainty is measured by CDF by comparing CTEQ5L results with MRST98L [94], by changing the value of $\alpha_s$ in the MRST98L model, and by varying the 20 eigenvectors in CTEQ6M [9]. The total uncertainty is obtained by combining these sources in quadrature. D0 measures this uncertainty by reweighting the PYTHIA model to match possible excursions in the parameters represented by the 20 CTEQ6M uncertainties, and taking the quadratic sum of the differences. The resulting uncertainty on $m_t$ is 0.08% for CDF and 0.14% for D0.

(ii) Fractional contributions from quark annihilation and gluon fusion

In Run I, this source of uncertainty in $t\bar{t}$ production is not considered. In Run II, CDF estimates the effect on $m_t$ by reweighting the gluon fusion fraction in the PYTHIA model from 5% to 20% [86]. The uncertainty on $m_t$ is found to be 0.02%. This uncertainty is included by D0 in the systematic component (iv) below, where the effects of higher-order QCD corrections are discussed.

(iii) Initial and final-state radiation

Initial and final-state radiation refers to additional gluons radiated from the incoming or outgoing partons or from the top quarks. Jets initiated by these gluons affect the measured value of $m_t$ because they can be misidentified as jets from the final-state partons in top-quark decay. Extensive checks were performed in Run I measurements to assess the effects of initial and final-state radiation by varying parameters in HERWIG.

In Run II, uncertainties from initial and final-state radiation are assessed by both collaborations using a CDF measurement [87] in Drell-Yan dilepton events that have the same $q\bar{q}$ initial state as most $t\bar{t}$ events, but no final-state radiation. The mean $p_T$ of the produced dilepton pairs is measured as a function of the dilepton invariant mass, and the values of $\Lambda_{\text{QCD}}$ and the $Q^2$ scale in the MC that matches best the data when extrapolated to the $t\bar{t}$ mass region are found. CDF’s best-fit values are $\Lambda_{\text{QCD}}$ (5 flavors) = 292 MeV with 0.5 × $Q^2$ and $\Lambda_{\text{QCD}}$ (5 flavors) = 73 MeV with 2.0 × $Q^2$ for ±σ excursions around the mean dilepton $p_T$ values. Since the initial and final-state shower algorithms are controlled by the same QCD evolution equation [88], the same variations of $\Lambda_{\text{QCD}}$ and $Q^2$ scale are used to estimate the effect of final-state radiation. The resulting uncertainty for modeling of the initial and final-state radiation is 0.09% for CDF and 0.15% for D0. The correction algorithm does not distinguish between “soft” (out of cone) and “hard” (separate jet) radiation, and there is therefore some overlap between the uncertainty on $m_t$ for the out-
of-cone jet energy correction and for gluon radiation. There is also some overlap between the uncertainty for initial and final-state radiation and the uncertainty on higher-order QCD corrections for high-\(p_T\) radiation.

(iv) Higher-order QCD corrections

Higher-order QCD corrections to \(t\bar{t}\) production are not used for Run I measurements as only LO generators were available at that time. D0 measures higher-order jet-modeling uncertainties in Run II by comparing \(m_t\) extracted with ALPGEN and HERWIG for evolution and fragmentation to the value obtained from events generated with MC\(^\odot\)NLO [8], which uses HERWIG parton showering with a NLO model for the hard-scattering process. This component of uncertainty also includes (for D0) the uncertainty from the fraction of quark-antiquark to gluon-gluon contributions to the initial state. CDF also studies differences in \(m_t\) using MC\(^\odot\)NLO, and finds that the uncertainties in distributions in the number of jets and the transverse momentum of the \(t\bar{t}\) system overlap with the uncertainty from initial and final-state radiation. Future measurements of \(m_t\) are expected to treat these uncertainties separately. The uncertainty on \(m_t\) from higher order contributions and initial-state \(q\bar{q}/g\) ratio is 0.14\% for D0.

(v) Jet hadronization and underlying event

In Run I, CDF measured the uncertainty in the model for parton showering and hadronization and the underlying event by comparing the value of \(m_t\) based on HERWIG to that on PYTHIA [7], and D0 compared HERWIG results to those from ISAJET [9].

In Run II, CDF estimates these uncertainties by comparing \(m_t\) obtained using PYTHIA with Tune A of the underlying event model to results from HERWIG with a tuned implementation of the underlying-event generator JIMMY. D0 estimates these uncertainties by comparing identical sets of hard-scatter events from ALPGEN coupled to HERWIG instead of to PYTHIA. For the uncertainty on \(m_t\), this corresponds to 0.40\% for CDF and 0.33\% for D0.

(vi) Color reconnection

There are up to six final-state quarks in \(t\bar{t}\) events, in addition to initial and final-state radiation. When hadronization and fragmentation occur, there are color interactions among these partons and the color-remnants of the proton and antiproton. This process is referred to as “color reconnection”. It changes the directions and distributions of final-state jets [99, 100], which affects the reconstructed value of \(m_t\) [74].

The uncertainty on color reconnection was not evaluated for Run I because appropriate MC tools were not available at that time. Both collaborations estimate this effect in Run II by comparing the value of \(m_t\) extracted from ensembles of \(t\bar{t}\) events generated by PYTHIA using the difference between two parton shower simulations: (i) angular ordering for jet showers (same as used in the nominal \(m_t\) measurements) using the A-PRO underlying-event model (Tune A but updated using the “Professor” tuning tool [101]), (ii) ACR-PRO. ACR-PRO is identical to A-PRO except that it includes color reconnection in the model. The resulting uncertainties on \(m_t\) are 0.32\% for CDF and 0.16\% for D0.

5. Multiple interactions model

Monte-Carlo simulated events are overlaid with Poisson-distributed low-\(p_T\) events (PYTHIA MC events for CDF, “zero-bias” data for D0) to simulate the presence of simultaneous additional p\(\bar{p}\) interactions. The mean number of overlaid events is chosen at the time of event generation, but in data, the number of such interactions changes with instantaneous luminosity of the Tevatron.

CDF measures \(m_t\) as a function of the number of multiple interactions, finding a change of 0.07±0.10 GeV per primary vertex. For CDF’s measurements, the average number of primary vertices in data is 2.20 and for simulated events it is 1.85, leading to an uncertainty on \(m_t\) of 0.02\%. CDF adds to this in quadrature a term to cover the difference in jet energy response as a function of the number of multiple interactions of 0.06\%, giving a total uncertainty of 0.06\%.

D0 reweights the simulated events to make the instantaneous luminosity distribution match that in data. The resulting uncertainty on \(m_t\) is 0.03\%.

6. Background from theory

(i) Higher-order correction for heavy flavor

D0 corrects the leading-log W+jets cross section from ALPGEN to NLO precision before normalizing this background to data. This increases the fraction of Wb\(\bar{b}\) and Wc\(\bar{c}\) events in W+jets by a factor of 1.47±0.50. CDF normalizes the W+heavy-flavor jets background to data independent of the other components in W+jets, which has a similar effect. The resulting uncertainties on \(m_t\) are 0.11\% for CDF and 0.04\% for D0.

(ii) Factorization scale for W+jets

The transverse momenta of the jets in W+jets events are sensitive to the factorization and renormalization scales chosen for the calculations. These two scales are set equal to each other, with \(Q^2 = M_W^2 + \sum p_T^2\). To determine the uncertainty on \(m_t\), the scale is changed from \((Q/2)^2\) to \((2 \times Q)^2\), the MC events regenerated, and the mass remeasured. Changing the scale does not affect the fraction of W+jets in the model but does affect the transverse momentum distributions of the jets. The uncertainties on \(m_t\) are 0.02\% for CDF and 0.09\% for D0.

(iii) Normalization to predicted cross sections

CDF divides the background into seven independent parts: W+heavy-flavor jets, W+ light-flavor jets, single top t\(\bar{q}\)b and t\(\bar{b}\), Z+jets, dibosons (WW, WZ, and ZZ), and multijet contributions. This uncertainty term covers
the normalization of the components modeled with MC simulated events (not multijets). The small backgrounds from single-top, $Z$+jets, and diboson production are normalized to NLO calculations. The uncertainties on the cross sections are 10% for $tg\bar{b}$, 12% for $tb$, 14% for $Z$+jets, and 10% for dibosons. The $W$+jets background is normalized to data before implementation of $b$-tagging using a fit to the distribution for $E_T$ in the event. The uncertainty on this normalization cannot be easily disentangled from the other sources and so it is kept in this category. The combined uncertainty on $m_t$ from these normalizations is 0.09%.

D0 also normalizes single-top, $Z$+jets, and diboson contributions, in all analysis channels, and Drell-Yan in the dilepton channel, to next-to-leading order cross sections, using values from the MCFM event generator\cite{MCDF02}. The uncertainties on the cross sections take into account the uncertainty on PDF and on the choice of factorization and renormalization scales, which together propagate through to $m_t$ an uncertainty of 0.04%.

(iv) Background differential distributions

For CDF, different methods were used to estimate the uncertainty due to the overall background shape. In the recent lepton+jets analysis, this uncertainty was assessed by dividing randomly the background events into subsets, building the background likelihood from one of the subsets and reconstructing the $m_t$ from the second subset. In the next step, the difference in $m_t$ obtained from the second subset and the nominal $m_t$ value is evaluated. This contributes an uncertainty of 0.03%. CDF also estimates an uncertainty from the limited MC statistics used to measure the background. This yields an additional 0.03% uncertainty on $m_t$.

For D0, the $p_T$ and $\eta$ distributions of jets in $W$+jets events do not fully reproduce those in data. An uncertainty to cover these deviations is based on the difference between the model for background and data in the $\eta$ distribution of the third jet in three-jet events. The resultant uncertainty on $m_t$ is 0.09%.

7. Background based on data

(i) Normalization to data

In the lepton+jets, alljets, $E_T$+jets, and decay-length channels, backgrounds from multijet events are normalized to data. In the lepton+jets analyses at D0, the $W$+jets background model is combined with the contribution from multijet events, and both are normalized simultaneously to data, so that their uncertainties in normalization are anticorrelated. In dilepton analyses at CDF, the Drell-Yan background is normalized to data. For the lepton+jets analyses, CDF uncertainty on $m_t$ from the normalization of the multijet backgrounds to data is 0.03% and D0’s uncertainty for the normalization of $W$+jets and multijets to data is 0.13%.

(ii) Trigger modeling

CDF expects a negligible uncertainty on $m_t$ from the modeling of the trigger. D0 simulates the trigger turn-on efficiencies for MC events by applying weights as a function of the transverse momentum of each object in the trigger. The uncertainty is measured by setting all the trigger efficiencies to unity and recalculating the value of $m_t$, which shifts $m_t$ by 0.03%.

(iii) $b$-tagging modeling

CDF applies the $b$-tagging algorithm directly to MC events, and finds that any difference between the $b$-tagging behavior in MC and data has a negligible impact on the measurement of $m_t$. D0 applies the $b$-tagging algorithm directly to MC events for recent Run II measurements. Previously $b$-tagging was simulated with tag-probability, and in Run I, as D0 did not have a silicon tracker, nonisolated muons were used to identify $b$-jets. The tagging efficiency for simulated events is made to match that in data by randomly dropping $b$ tags for $b$ and $c$ jets, while assigning a per-jet weight for tagging light-flavor jets as $b$ jets. The uncertainties for these corrections are determined by shifting the efficiencies for tagging $b$ and $c$ jets by 5% and by 20% for light jets, which introduces an uncertainty on $m_t$ of 0.06%.

(iv) Signal fraction for calibration

D0 measures the impact of the uncertainty in the ratio of signal to background events, which affects the calibration of $m_t$. Changing the signal fraction within uncertainty results in an uncertainty on $m_t$ of 0.06%.

(v) Impact of multijet background on the calibration

Multijet background events are not used in D0 samples that determine the calibration of $m_t$ for the lepton+jets measurement since the background probability for such events is much larger than the signal probability. The assumption that this has a small effect on $m_t$ is tested by selecting a multijet-enriched sample of events from data (by inverting the lepton isolation criteria) and adding these events when deriving the calibration. Applying this alternative calibration to data indicates that $m_t$ can shift by an uncertainty of 0.08%.

8. Calibration method

Monte Carlo $t\bar{t}$ ensembles are generated at different values of input $m_t$ ($m_t = 155, 170, 172.5, 175, 180$ GeV) and calibrations relate the input masses for $t\bar{t}$ events to the extracted masses using a straight line. For some of the $m_t$ measurements, there is an additional in-situ calibration of the JES to the light quarks in $W$-boson decay, which is then applied to all jets. The uncertainties from both calibrations are propagated to the uncertainty on $m_t$, which for CDF are 0.04% and 0.05% respectively, giving a total of 0.06%. For D0, the uncertainty on $m_t$ is 0.13%.
[1] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[2] J.H. Christenson, J.W. Cronin, V.L. Fitch, and R. Turlay, Phys. Rev. Lett. 13, 138 (1964).
[3] F. Abe et al. (CDF Collaboration), Phys. Rev. D 50, 2966 (1994); F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 73, 225 (1994).
[4] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 74, 2626 (1995).
[5] S. Abachi et al. (D0 Collaboration), Phys. Rev. Lett. 74, 2632 (1995).
[6] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
[7] K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010).
[8] S. Frixione and B.R. Webber, arXiv:0812.0770 [hep-ph].
[9] J. Pumpin, D.R. Stump, J. Huston, H.-L. Lai, P. Nadolsky, and W.-K. Tung, J. High Energy Phys. 07, 012 (2002).
[10] F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964); P.W. Higgs, Phys. Lett. 12, 132 (1964); P.W. Higgs, Phys. Rev. Lett. 13, 508 (1964); G.S. Guralnik, C.R. Hagen, and T.W.B. Kibble, Phys. Rev. Lett. 13, 585 (1964); P.W. Higgs, Phys. Rev. 145, 1156 (1965).
[11] U. Langenfeld, M. Moch, and P. Uwer, Phys. Rev. D 80, 054009 (2009).
[12] M.C. Smith and S.S. Willenbrock, Phys. Rev. Lett. 79, 3825 (1997).
[13] A. Buckley et al., Phys. Rept. 504, 145 (2011).
[14] V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 703, 422 (2011).
[15] V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 103, 132001 (2009); Phys. Rev. D 84, 052005 (2011).
[16] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 106, 152001 (2011).
[17] S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1206, 109 (2012).
[18] The ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD Collaborations, the LEPT Electrowork Working Group, the Tevatron Electrowork Working Group, and the SLD Electrowork and Heavy Flavor Groups, arXiv:1012.2367 [hep-ex]. http://lepewwg.web.cern.ch/LEPWWG/
[19] private communication with S. Heinemeyer based on S. Heinemeyer, W. Hollik, and G. Weiglein, Phys. Rept. 425, 265 (2006).
http://www.ifca.es/users/heinemey/un/plots/
[20] M. Baak, M. Goebel, J. Haller, A. Hoeker, D. Ludwig, K. Mönig, M. Schott, and J. Stelzer, Eur. Phys. J. C 72, 2003 (2012). http://cern.ch/gfitter/
[21] C. Quigg, Physics Today 50N5, 20 (May 1997), arXiv:hep-ph/9704332, and references therein.
[22] The LEP Collaborations ALEPH, DELPHI, L3, OPAL and the LEP Electrowork Working Group, CERN-PPE/94-187 (1994), and references therein.
[23] S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1107, 049 (2011).
[24] G. Aad et al. (ATLAS Collaboration), Eur. Phys. J. C 72, 2046 (2012).
[25] J.C. Estrada Vigil, Ph.D. thesis, University of Rochester, 2001, FERMILAB-THESIS-2001-07.
[26] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 105, 252001 (2010).
[27] V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 84, 032004 (2011).
[28] A.B. Galtieri, F. Margaroli, and I. Volobouev, Rep. Prog. Phys. 75 056201 (2012); G.V. Velev, J. of Phys. Conf. Ser. 323 012010 (2011); F. Deliot and D. A. Glazenski, Rev. Mod. Phys. 84, 211 (2012); D. Wicke, Eur. Phys. J. C 71, 1627 (2011).
[29] V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 84, 012008 (2011); Phys. Lett. B 704, 403 (2011); Phys. Rev. D 82, 071102 (2010); T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 83, 071102 (2011); 84, 031101 (2011); 82, 052002 (2010); 81, 052011 (2010); 84, 032003 (2011).
[30] P.M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumpin, D. Stump, W.-K. Tung, and C.-P. Yuan, Phys. Rev. D 78, 013004 (2008); S. Moch and P. Uwer, Phys. Rev. D 78, 034003 (2008); M. Cacciari, S. Frixione, M.L. Mangano, P. Nason, and G. Ridolfi, J. High Energy Phys. 0809, 127 (2008); N. Kidonakis and R. Vogt, Phys. Rev. D 78, 074005 (2008); V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak, and L.L. Yang, J. High Energy Phys. 1009, 097 (2010); N. Kidonakis, Phys. Rev. D 82, 114030 (2010); V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak, and L.L. Yang, Phys. Lett. B 703, 135 (2011); M. Cacciari, M. Czakon, M. L. Mangano, A. Mitov and P. Nason, Phys. Lett. B 710, 612 (2012); M. Beneke, P. Falgari, S. Klein and C. Schwinn, Nucl. Phys. B 855, 695 (2012); M. Beneke, P. Falgari, S. Klein, J. Pichum, C. Schwinn, M. Ubiali and F. Yan, J. High Energy Phys. 1207, 194 (2012); P. Baenreuther, M. Czakon and A. Mitov, arXiv:1204.5201 [hep-ph].
[31] V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 693, 515 (2010).
[32] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 102, 042001 (2009); 105, 232003 (2010); V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 106, 022001 (2011); Phys. Rev. D 85, 091104 (2012).
[33] M. Ježabek and J.H. Kühl, Phys. Rev. D 48, 191 (1993).
[34] H. Cramer, Mathematical Methods of Statistics, (Princeton University Press, Princeton, 1946), p. 554.
[35] L. Lyons, D. Gibaut, and P. Clifford, Nucl. Instrum. Methods in Phys. Res. Sect. A 270, 110 (1988).
[36] A. Valassi, Nucl. Instrum. Methods in Phys. Res. Sect. A 500, 391 (2003).
[37] The Top Averaging Group for the CDF and D0 Collaborations, Fermilab Technical Memo No. 2084 (1999).
[38] The CDF Collaboration, the D0 Collaboration, and the Tevatron Electrowork Working Group, arXiv:hep-ex/040401.
[39] The CDF Collaboration, the D0 Collaboration, and the Tevatron Electrowork Working Group, Fermilab Technical Memo No. 2323-E (2005), arXiv:hep-ex/0507091.
[40] The Tevatron Electrowork Working Group for the CDF and D0 Collaborations, Fermilab Technical Memo No. 2347-E (2006), arXiv:hep-ex/0603039.
[41] The Tevatron Electrowork Working Group for the CDF and D0 Collaborations, Fermilab Technical Memo No.
A. Abulencia, G. Marchesini, B.R. Webber, G. Abbiendi, A.D. Martin, W.J. Stirling, and R.G. Roberts, Phys. H.L. Lai, J. Huston, S. Kuhlmann, F. Olness, J. Owens, V.M. Abazov et al.
F. Abe et al.
T. Aaltonen et al.
T. Affolder et al. (CDF Collaboration), Phys. Rev. D 63, 032003 (2001).
V.M. Abazov et al. (D0 Collaboration), Nature 429, 638 (2004).
T. Aaltonen et al. (CDF Collaboration), Phys. Lett. B 714, 24 (2012).
F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 79, 1992 (1997); see also Ref. [18] where the systematic uncertainty is re-evaluated.
T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 83, 111101 (2011).
V.M. Abazov et al. (D0 Collaboration), submitted to Phys. Rev. D, arXiv:1201.5172 [hep-ex].
F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 82, 271 (1999); 82, 2808 (1999) [erratum].
B. Abbott et al. (D0 Collaboration), Phys. Rev. Lett. 80, 2063 (1998); Phys. Rev. D 60, 052001 (1999).
T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 107, 232002 (2011).
T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 81, 032002 (2010).
V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 606, 25 (2005).
D.E. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 052003 (2005).
S. Abachi et al. (D0 Collaboration), Nucl. Instrum. Methods in Phys. Res. Sect. A 338, 185 (1994); V.M. Abazov et al. (D0 Collaboration), Nucl. Instrum. Methods in Phys. Res. Sect. A 565, 463 (2006); V.M. Abazov et al., Nucl. Instrum. Methods in Phys. Res. Sect. A 552, 372 (2005).
S.N. Ahmed et al., Nucl. Instrum. Methods in Phys. Res. Sect. A 634, 8 (2011); R. Angstadt et al., Nucl. Instrum. Methods in Phys. Res. Sect. A 622, 298 (2011).
V.M. Abazov et al. (D0 Collaboration), Nucl. Instrum. Methods in Phys. Res. Sect. A 620, 490 (2010).
A. Abulencia et al. (CDF Collaboration), Phys. Rev. D 74, 072006 (2006).
G. Marchesini, B.R. Webber, G. Abbiendi, I.G. Knowles, M.H. Seymour, and L. Stanco, Comput. Phys. Commun. 67, 465 (1992). In Run I, CDF used version 5.6 and D0 used version 5.7.
A.D. Martin, W.J. Stirling, and R.G. Roberts, Phys. Lett. B 306, 145 (1993); B 309, 492 (1993) [erratum].
H.L. Lai, J. Huston, S. Kuhlmann, F. Olness, J. Owens, D. Soper, W.K. Tung, and H. Weerts, Phys. Rev. D 55, 1280 (1997).
V.N. Gribov and L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972); Yu.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977); G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).
R. Brun, F. Carminati, and S. Giani, CERN Program Library Long Writeup W5013, 1994 (unpublished).
T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05, 026 (2006). In Run II, CDF used version 6.216 for top-pairs and diboson generation and version 6.326 for showering, and D0 used version 6.409.
H.-L. Lai, J. Huston, S. Kuhlmann, J. Morfin, F. Olness, J.F. Owens, J. Pumpulin, and W.-K. Tung, Eur. Phys. J. C 12, 375 (2000).
M.L. Mangano, F. Piccinini, A.D. Polosa, M. Moretti, and R. Pittau, J. High Energy Phys. 07, 001 (2003). In Run II, CDF used version 2.10 and D0 used version 2.11.
S. Höche, F. Krauss, N. Lavesson, L. Lönnblad, M. Mangano, A. Schälicke, and S. Schumann, Proceedings of the Workshop on the Implications of HERA for LHC Physics, edited by A. De Roeck and H. Jung, (DESY, Hamburg, 2005), pp. 288-299, arXiv:hep-ph/0602031.
T. Affolder et al. (CDF Collaboration), Phys. Rev. D 65, 092002 (2002).
P. Skands and D. Wicke, Eur. Phys. J. C 52, 133 (2007).
F.A. Berends, H. Kuijf, B. Tausk, and W.T. Giele, Nucl. Phys. B 357, 32 (1991).
F. Maltoni and T. Stelzer, J. High Energy Phys. 02, 027 (2003).
T. Stelzer and W.F. Long, Comput. Phys. Commun. 81, 357 (1994).
E.E. Boos, V.E. Bunichev, V.I. Savrin, and V.V. Sherstnev, Phys. Atom. Nucl. 69, 1317 (2006).
E. Boos, V. Bunichev, M. Dubinen, L. Dudko, V. Edneral, V. Ilyin, A. Kryukov, V. Savrin, A. Semenov, and A. Sherstnev, Nucl. Instrum. Methods in Phys. Res. Sect. A 534, 250 (2004).
The pseudorapidity $\eta$ is defined as: $\eta = -\ln[\tan(\theta/2)]$, where $\theta$ is the polar angle with respect to the proton beamline.
F. Abe et al. (CDF Collaboration), Phys. Rev. D 45, 1448 (1992).
G.C. Blazey et al., Proceedings of the Workshop on QCD and Weak Boson Physics in Run II, edited by U. Baur, R.K. Ellis, and D. Zeppenfeld, pp. 47-77, (Fermilab, Batavia, 2001), FERMILAB-PUB-00-297.
A. Bhatti et al., Nucl. Instrum. Methods in Phys. Res. Sect. A 566, 375 (2006).
B. Abbott et al. (D0 Collaboration), Nucl. Instrum. Methods in Phys. Res. Sect. A 424, 352 (1999); V. M. Abazov et al. (D0 Collaboration), Phys. Rev. D 85, 052006 (2012).
J.M. Butterworth, J.R. Forshaw, and M.H. Seymour, Z. Phys. C 72, 637 (1996).
R. Field and R.C. Group, arXiv:hep-ph/0510198.
G. Corcella, I.G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M.H. Seymour, and B.R. Webber, arXiv:hep-ph/0210213. In Run I, CDF and D0 used version 6.5.
M.G. Bowler, Z. Phys. C 11, 169 (1981).
Y. Peters, K. Hamacher, and D. Wicke, Fermilab
[90] A. Abulencia et al. (CDF Collaboration), Phys. Rev. D 73, 032003 (2006).

[91] V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 74, 092005 (2006).

[92] V.M. Abazov (D0 Collaboration), Phys. Rev. Lett. 108, 151804 (2012).

[93] A.D. Martin, W.J. Stirling, and R.G. Roberts, Phys. Lett. B 356, 89 (1995).

[94] A.D. Martin, R.G. Roberts, W.J. Stirling, and R.S. Thorne, Eur. Phys. J C 4, 463 (1998).

[95] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 79, 031101 (2009).

[96] A. Abulencia et al. (CDF Collaboration), Phys. Rev. D 73, 032003 (2006).

[97] T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994). In Run I, CDF used version 5.7.

[98] F.E. Paige, S.D. Protopopescu, H. Baer, and X. Tata, BNL-HET-98-18, Brookhaven, 1998 (unpublished). In Run I, CDF used version 6.36 and D0 used version 7.21.

[99] V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 83, 092002 (2011).

[100] B.R. Webber, J. Phys. G: Nucl. Part. Phys. 24, 287 (1998).

[101] P. Abreu et al. (DELPHI Collaboration), Z. Phys. C 73, 11 (1996), http://professor.hepforge.org.

[102] J. Campbell, K. Ellis, and C. Williams, Phys. Rev. D 65, 113007 (2002).