NORMAL, COHYPERNORMAL AND NORMALOID
WEIGHTED COMPOSITION OPERATORS ON THE HARDY
AND WEIGHTED BERGMAN SPACES

Mahsa Fatehi and Mahmood Haji Shaabani

Abstract. If ψ is analytic on the open unit disk \mathbb{D} and φ is an analytic self-map of \mathbb{D}, the weighted composition operator $C_{\psi, \varphi}$ is defined by $C_{\psi, \varphi}f(z) = \psi(z)f(\varphi(z))$, when f is analytic on \mathbb{D}. In this paper, we study normal, cohyponormal, hyponormal and normaloid weighted composition operators on the Hardy and weighted Bergman spaces. First, for some weighted Hardy spaces $H^2(\beta)$, we prove that if $C_{\psi, \varphi}$ is cohyponormal on $H^2(\beta)$, then ψ never vanishes on \mathbb{D} and φ is univalent, when $\psi \not\equiv 0$ and φ is not a constant function. Moreover, for $\psi = K_a$, where $|a| < 1$, we investigate normal, cohyponormal and hyponormal weighted composition operators $C_{\psi, \varphi}$. After that, for φ which is a hyperbolic or parabolic automorphism, we characterize all normal weighted composition operators $C_{\psi, \varphi}$, when $\psi \not\equiv 0$ and ψ is analytic on \mathbb{D}. Finally, we find all normal weighted composition operators which are bounded below.

1. Introduction

Let $H(\mathbb{D})$ denote the collection of all holomorphic functions on the open unit disk \mathbb{D}. A function f is called analytic on a closed set F if there exists an open set U such that f is analytic on U and $F \subseteq U$. The algebra $A(\mathbb{D})$ consists of all continuous functions on the closure of \mathbb{D} that are analytic on \mathbb{D}.

For f which is analytic on \mathbb{D}, we denote by $\hat{f}(n)$ the n-th coefficient of f in its Maclaurin series. The Hardy space H^2 is the collection of all such functions f for which
\[
\|f\|^2_2 = \sum_{n=0}^{\infty} |\hat{f}(n)|^2 < \infty.
\]
The space $H^\infty(\mathbb{D})$, simply H^∞, consists of all functions that are analytic and bounded on \mathbb{D}. Recall that for $\alpha > -1$, the weighted Bergman space $A^2_\alpha(\mathbb{D}) =$
A^2_\alpha$, is the set of functions f analytic on the unit disk, satisfying the norm condition
\[\|f\|_2^2 = \int_D |f(z)|^2 w_\alpha(z) dA(z) < \infty, \]
where $w_\alpha(z) = (\alpha + 1)(1 - |z|^2)^\alpha$ and dA is the normalized area measure. When $\alpha = 0$, this gives the Bergman space $A^2(D) = A^2$.

Let e_w be the linear functional for evaluation at w, that is, $e_w(f) = f(w)$. Then for functional Hilbert spaces H, we let K_w denote the unique function in H which satisfies $(f, K_w) = f(w)$ for every $f \in H$. In this case, the functional Hilbert space H is called a reproducing kernel Hilbert space. The weighted Bergman spaces A^2_α and the Hardy space H^2 are all reproducing kernel Hilbert spaces. Let $\gamma = 1$ for H^2 and $\gamma = \alpha + 2$ for A^2_α. In H^2 and A^2_α, we have reproducing kernels $K_w(z) = (1 - wz)^{-\gamma}$ with norm $(1 - |w|^2)^{-\gamma/2}$. Moreover, let k_w denote the normalized reproducing kernel.

Let φ be an analytic map of the open unit disk D into itself. We define the composition operator C_φ by $C_\varphi(f) = f \circ \varphi$, where f is analytic on D. If ψ is in $H(D)$ and φ is an analytic map of the unit disk into itself, the weighted composition operator with symbols ψ and φ is the operator $C_{\psi,\varphi}$ which is defined by $C_{\psi,\varphi}(f) = \psi(f \circ \varphi)$, where f is analytic on D. If ψ is a bounded analytic function on D, then the weighted composition operator $C_{\psi,\varphi}$ is bounded on H^2 and A^2_α.

A linear-fractional self-map of D is a map of the form
\[\varphi(z) = \frac{az + b}{cz + d} \]
for some $a, b, c, d \in \mathbb{D}$ such that $ad - bc \neq 0$, with the property that $\varphi(D) \subseteq D$. We denote the set of those maps by $\text{LFT}(D)$. It is well-known that the automorphisms of the unit disk, that is, the one-to-one analytic maps of the unit disk onto itself, are just the functions $\varphi(z) = \lambda(a - z)/(1 - \bar{a}z)$, where $|\lambda| = 1$ and $|a| < 1$ (see, e.g., [5]). We denote the class of automorphisms of D by $\text{Aut}(D)$.

Let $d\theta$ be the arc-length measure on ∂D. The space $L^2(\partial D)$ denotes the Lebesgue space of ∂D induced by $d\theta/(2\pi)$. Also $L^\infty(\partial D)$ is the space of all essentially bounded measurable functions on ∂D. Suppose that $dA(z)$ is the area measure on D normalized so that the area of D is 1. For any $\alpha > -1$, let dA_α be the measure on \mathbb{D} defined by
\[dA_\alpha(z) = (\alpha + 1)(1 - |z|^2)^\alpha dA(z). \]
The Banach space $L^2(D, dA_\alpha)$ denotes the space of Lebesgue measurable functions f on \mathbb{D} with norm $\left(\int_\mathbb{D} |f(z)|^2 dA_\alpha(z) \right)^{1/2}$. For each $b \in L^\infty(\partial D)$, we define the Toeplitz operator T_b on H^2 by $T_b(f) = P(bf)$, where P denotes the orthogonal projection of $L^2(\partial D)$ onto H^2. For each $\psi \in L^\infty(D)$, we define the Toeplitz operator T_ψ on A^2_α by $T_\psi(f) = P_\alpha(\psi f)$, where P_α denotes the orthogonal projection of $L^2(D, dA_\alpha)$ onto A^2_α. Since an orthogonal projection has
norm 1, clearly T_φ is bounded. If ψ is a bounded analytic function on \mathbb{D}, then the weighted composition operator can be rewritten as $C_{\psi,\varphi} = T_\psi C_\varphi$.

If φ is as in Equation (1), then the adjoint of any linear-fractional composition operator C_{φ}, acting on H^2 and A_α^2, is given by $C_{\varphi}^* = T_\gamma C_{\sigma} T_h^*$ (we call it Cowen's adjoint formula), where $\sigma(z) = (\bar{\sigma} z - \tau)/(\bar{\bar{\sigma}} z + \overline{\overline{\tau}})$ is a self-map of \mathbb{D}, $\gamma(z) = (-\overline{\bar{\sigma}} z + \overline{\overline{\tau}})^{-\gamma}$ and $h(z) = (cz + d)^\gamma$, with $\gamma = 1$ for H^2 and $\gamma = \alpha + 2$ for A_α^2 (see [8] and [17]). From now on, unless otherwise stated, we assume that σ, h and g are given as above.

A point ζ of \mathbb{D} is called a fixed point of a self-map φ of \mathbb{D} if $\lim_{r \to 1} \varphi(r \zeta) = \zeta$. We will write $\varphi'(\zeta)$ for $\lim_{r \to 1} \varphi'(r \zeta)$. Each analytic self-map φ of \mathbb{D} that is neither the identity nor an elliptic automorphism of \mathbb{D} has a unique point w in \mathbb{D} that acts like an attractive fixed point in that $\varphi_n(z) \to w$ uniformly on compact subsets of \mathbb{D} as $n \to \infty$, where φ_n denotes φ composed with itself n times (φ_0 being the identity function). The point w, called the Denjoy-Wolff point of φ, is also characterized as follows:

- if $|w| < 1$, then $\varphi(w) = w$ and $|\varphi'(w)| < 1$;
- if $|w| = 1$, then $\varphi(w) = w$ and $0 < |\varphi'(w)| \leq 1$.

More information about Denjoy-Wolff points can be found in [10, Chapter 2] or [23, Chapters 4 and 5].

A map $\varphi \in \text{LFT}(\mathbb{D})$ is called parabolic if it has a single fixed point ζ in the Riemann sphere $\hat{\mathbb{C}}$ such that $\zeta \in \partial \mathbb{D}$. Let $\tau(z) = (1 + \zeta z)/(1 - \zeta z)$. The map τ takes the unit disk onto the right half-plane Π and takes ζ to ∞. The function $\phi = \tau \circ \varphi \circ \tau^{-1}$ is a linear-fractional self-map of Π that fixes only the point ∞, so it must have the form $\phi(z) = z + t$ for some complex number t, where $\text{Re}(t) \geq 0$. Let us call t the translation number of either φ or ϕ. Note that if $\text{Re}(t) = 0$, then $\varphi \in \text{Aut}(\mathbb{D})$. Also if $\text{Re}(t) > 0$, then $\varphi \not\in \text{Aut}(\mathbb{D})$. In [23, p. 3], J. H. Shapiro showed that among the linear-fractional transformations fixing $\zeta \in \partial \mathbb{D}$, the parabolic ones are characterized by $\varphi'(\zeta) = 1$. Let $\varphi \in \text{LFT}(\mathbb{D})$ be parabolic with fixed point ζ and translation number t. Therefore,

$$\varphi(z) = \frac{(2 - t)z + t\zeta}{2 + t - t\zeta} \quad (2)$$

Recall that an operator T on a Hilbert space H is said to be normal if $TT^* = T^*T$ and essentially normal if $TT^* - T^*T$ is compact on H. Also T is unitary if $TT^* = T^*T = I$. The normal composition operators on A_α^2 and H^2 have symbol $\varphi(z) = az$, where $|a| \leq 1$ (see [10, Theorem 8.2]). An operator T on a Hilbert space H is said to be binormal if $(T^*T)(TT^*) = (TT^*)(T^*T)$. It is obvious that every normal operator is binormal. In [18], binormal composition operator C_φ was characterized when φ is a linear-fractional self-map of \mathbb{D}. If $A^*A \geq AA^*$ or, equivalently, $\|Ah\| \geq \|A^*h\|$ for all vectors h, then A is said to be a hyponormal operator. An operator A is said to be cohyponormal if A^* is hyponormal. An operator A on a Hilbert space H is normal if and only if for all vectors $h \in H$, $\|Ah\| = \|A^*h\|$, so it is not hard to see that an operator A is normal if and only if A and A^* are hyponormal. Recall that an operator
T is said to be normaloid if $\|T\| = r(T)$, where $r(T)$ is the spectral radius of T. Then we can see that all normal, hyponormal and cohyponormal operators are normaloid. The normal and unitary weighted composition operators on H^2 were investigated in [3] by Bourdon et al. After that, in [21], these results were extended to the bigger spaces containing the Hardy and weighted Bergman spaces. Recently, hyponormal and cohyponormal weighted composition operators have been investigated in [9] and [14]. In this paper, we work on normal, normaloid, cohyponormal and hyponormal weighted composition operators. In the second section, we extend [9, Theorem 3.2] to some weighted Hardy spaces. In the third section, for $\psi = K_a$, where $a \in \mathbb{D}$, we show that if $C_{\psi, \phi}$ is normal, then $|\phi(0)| = |a|$. In the fourth section, we state that for $\phi \in \text{Aut}(\mathbb{D})$ and $\psi \neq 0$ which is analytic on $\overline{\mathbb{D}}$, if $C_{\psi, \phi}$ is normal on H^2 or A^2_{α} and $\psi(\zeta) = 0$, then $\zeta \in \partial \mathbb{D}$, $\phi(\zeta) = \zeta$ and ζ is not the Denjoy-Wolff point of φ. Also we prove that if $C_{\psi, \phi}$ is normal on H^2 or A^2_{α}, then 1 is an eigenvalue of $C_{\psi, \phi}$, when φ is a parabolic or hyperbolic automorphism, we give a necessary and sufficient condition for $C_{\psi, \phi}$ to be normal on H^2 and A^2_{α}, when ψ is analytic on $\overline{\mathbb{D}}$. Finally, we show that for a normal weighted composition operator $C_{\psi, \phi}$ on a Hilbert space H which contains all the polynomials, $C_{\psi, \phi}$ is Fredholm if and only if $C_{\psi, \phi}$ has closed range.

2. Cohyponormal weighted composition operators

In this section, we provide the generalized result of [9, Theorem 3.2] on some weighted Hardy spaces. We first state the following well-known lemma which was proved in [13, p. 1211] and [19, p. 1524].

Lemma 2.1. Let $C_{\psi, \phi}$ be a bounded operator on H^2 and A^2_{α}. For each $w \in \mathbb{D}$, $C_{\psi, \phi}^* K_w = \overline{\psi(w)} K_{\overline{\phi(w)}}$.

Let H be a Hilbert space. The set of all bounded operators from H into itself is denoted by $B(H)$. Now assume that H is a Hilbert space of analytic functions on \mathbb{D}. For $f \in H$, let $[f]$ denote the smallest closed subspace of H which contains $\{z^n f\}_{n=0}^{\infty}$. If $S \in B(H)$ is the unilateral shift $Sf = zf$, then $[f]$ is the smallest closed subspace of H containing f which is invariant under S; moreover, if $[f] = H$, then the function f is called cyclic. Also for $\psi \in H$, we define a multiplication operator $M_{\psi} : H \to H$ that for each $f \in H$, $M_{\psi}(f) = \psi f$. In this section, we assume that M_{ψ} and S are bounded operators, but in general every multiplication operator is not bounded.

Theorem 2.2. Assume that H is a Hilbert space of analytic functions on \mathbb{D} and the polynomials are dense in H. Assume that $\psi \neq 0$ and φ is not a constant function. If $C_{\psi, \phi}$ is cohyponormal on H, then ψ is cyclic in H.

Proof. Suppose that $C_{\psi, \phi}$ is cohyponormal. By the Open Mapping Theorem, $\ker C_{\psi, \phi} = \{0\}$. Then $C_{\psi, \phi}^* = \{0\}$. Since $\ker M_{\psi} \subseteq \ker C_{\psi, \phi}^*$, we have
ker \(M^*_ψ = \{0\} \). [6, Theorem 2.19, p. 35] and [6, Corollary 2.10, p. 10] imply that \(\text{ran} \, M^*_ψ = H \). Then \(ψH \) is dense in \(H \). Because the polynomials are dense in \(H \), it is easily seen that this is equivalent to saying that polynomial multiples of \(ψ \) are dense in \(H \), that is, to \(ψ \) being a cyclic vector. □

Note that by [16, Corollary 1.5, p. 15], if \(f \in H^2 \) is cyclic, then it is an outer function. Then under the conditions of Theorem 2.2, if \(C_{ψ, ϕ} \) is cohyponormal on \(H^2 \), then \(ψ \) is an outer function (see [9, Theorem 3.2]).

Lemma 2.3. Let \(H \) be a reproducing kernel Hilbert space of analytic functions on \(\mathbb{D} \). Assume that for each \(w \in \mathbb{D} \), there is \(g \in H \) such that \(g(w) \neq 0 \). Let \(ψ \) be cyclic in \(H \). Then \(ψ \) never vanishes on \(\mathbb{D} \).

Proof. Since \(ψ \) is cyclic in \(H \), \(\{ψ : p \text{ is a polynomial}\} \) is dense in \(H \). Let \(f \in H \). Then there is a sequence \(\{p_n\} \) of polynomials such that \(p_n \psi \to f \) as \(n \to \infty \). Suppose that \(ψ(w) = 0 \) for some \(w \in \mathbb{D} \). We can see that \(f(w) = \langle f, K_w \rangle = \lim_{n \to \infty} \langle p_n, K_w \rangle = 0 \). Then for each \(f \in H \), \(f(w) = 0 \) and it is a contradiction. □

Let \(H \) be a Hilbert space of analytic functions on the unit disk. If the monomials \(1, z, z^2, \ldots \) are an orthogonal set of non-zero vectors with dense span in \(H \), then \(H \) is called a weighted Hardy space. We will assume that the norm satisfies the normalization \(||1|| = 1 \). The weight sequence for a weighted Hardy space \(H \) is defined to be \(β(n) = ||z^n|| \). The weighted Hardy space with weight sequence \(β(n) \) will be denoted by \(H^2(β) \). The inner product on \(H^2(β) \) is given by

\[
\langle \sum_{j=0}^{∞} a_j z^j, \sum_{j=0}^{∞} c_j z^j \rangle = \sum_{j=0}^{∞} a_j \overline{c_j} β(j)^2.
\]

We require the following corollary, which is a generalization of [9, Theorem 3.2]. The proof which shows that \(ϕ \) is univalent of the following corollary relies on some ideas from [9, Theorem 3.2].

Corollary 2.4. Let \(H^2(β) \) be a weighted Hardy space. Suppose that \(\sup β(j+1)/β(j) \) is finite. Assume that \(ψ \neq 0 \) and \(ϕ \) is not a constant function. If \(C_{ψ, ϕ} \) is cohyponormal on \(H^2(β) \), then \(ψ \) never vanishes on \(\mathbb{D} \) and \(ϕ \) is univalent.

Proof. By Theorem 2.2, Lemma 2.3, [10, Proposition 2.7] and [10, Theorem 2.10], \(ψ \) never vanishes on \(\mathbb{D} \). Assume that there are points \(w_1 \) and \(w_2 \) in \(\mathbb{D} \) such that \(ϕ(w_1) = ϕ(w_2) \) and \(w_1 \neq w_2 \). Hence

\[
C_{ϕ, ψ} (\overline{ϕ(w_2)K_{w_1}} - ϕ(w_1)K_{w_2}) = \overline{ϕ(w_2)ϕ(w_1)}K_{ϕ(w_1)} - ϕ(w_1)ϕ(w_2)K_{ϕ(w_2)} = 0.
\]

We conclude that \(0 \in σ_p(C_{ϕ, ψ}^*) \). Therefore, by [7, Proposition 4.4, p. 47], \(0 \in σ_p(C_{ϕ, ψ}) \) and \(C_{ϕ, ψ}(ψ(w_2)K_{w_1} - ϕ(w_1)K_{w_2}) = 0 \). Since \(ψ \) never vanishes on \(\mathbb{D} \), \(C_{ϕ, ψ}(ψ(w_2)K_{w_1} - ϕ(w_1)K_{w_2}) = 0 \). Setting \(h = K_{w_2}/K_{w_1} \), we find

\[
h ◦ ϕ \equiv \frac{ψ(w_2)}{ψ(w_1)}.
\]
Since φ is not a constant function, $\varphi(\mathbb{D})$ is an open set by the Open Mapping Theorem. It follows that K_{w_2}/K_{w_1} is a constant function and it is a contradiction. □

Suppose that T belongs to $B(H^2)$ or $B(A^2_{\alpha})$. Through this paper, the spectrum of T, the essential spectrum of T and the point spectrum of T are denoted by $\sigma(T)$, $\sigma_e(T)$ and $\sigma_p(T)$, respectively.

Remark 2.5. Suppose that $C_{\psi,\varphi}$ is cohypnormal on H^2 or A^2_{α} and $\psi \not= 0$. First, assume that φ is not a constant function. Since H^2 and A^2_{α} are weighted Hardy spaces, Theorem 2.2 and Corollary 2.4 imply that ψ is cyclic and ψ never vanishes on \mathbb{D}. Now suppose that $\varphi \equiv c$, where c is a constant number and $|c| < 1$. Assume that there are points w_1 and w_2 in \mathbb{D} such that $\psi(w_1) = 0$ and $\psi(w_2) \neq 0$. From Lemma 2.1, we observe that $C_{\psi,\varphi}^*(K_{w_1}) = \overline{\psi(w_1)K_c} \equiv 0$. Since $C_{\psi,\varphi}$ is cohypnormal, we have $C_{\psi,\varphi}(K_{w_1}) = 0$. Since $\psi \cdot K_{w_1} \varphi \equiv 0$, we obtain that $\psi(w_2)K_{w_1}(c) = 0$ and so $\psi(w_2) = 0$. It is a contradiction. Hence we conclude that ψ never vanishes on \mathbb{D}.

3. Normaloid weighted composition operators

Let α be a complex number of modulus 1 and φ be an analytic self-map of \mathbb{D}. Since $\text{Re} \left(\frac{\varphi(z)}{\alpha - \varphi(z)} \right)$ is a positive harmonic function on \mathbb{D}, this function is the poisson integral of a finite positive Borel measure μ_α on $\partial \mathbb{D}$. Let us write $E(\varphi)$ for the closure in $\partial \mathbb{D}$ of the union of the closed supports of the singular parts μ^s_α of the measures μ_α as $|\alpha| = 1$. In the next lemma and proposition, the set of points which φ makes contact with $\partial \mathbb{D}$ is $\{ \zeta \in \partial \mathbb{D} : \varphi(\zeta) \in \partial \mathbb{D} \}$.

Lemma 3.1 ([14, Lemma 3.2]). Let φ be an analytic self-map of \mathbb{D}. Suppose that $\varphi \in A(\mathbb{D})$ and the set of points which φ makes contact with $\partial \mathbb{D}$ is finite. Assume that there are a positive integer n and $\zeta \in \partial \mathbb{D}$ such that $E(\varphi^n) = \{ \zeta \}$, where ζ is the Denjoy-Wolff point of φ. Let $\psi \in H^\infty$ be continuous at ζ. Then

$$r_\gamma(C_{\psi,\varphi}) = |\psi(\zeta)| |\varphi'(\zeta)|^{-\gamma/2}.$$

Proposition 3.2. Let φ be an analytic self-map of \mathbb{D}. Suppose that $\varphi \in A(\mathbb{D})$ and the set of points which φ makes contact with $\partial \mathbb{D}$ is finite. Assume that there are a positive integer n and $\zeta \in \partial \mathbb{D}$ such that $E(\varphi^n) = \{ \zeta \}$, where ζ is the Denjoy-Wolff point of φ. Suppose that $\psi = K_\alpha$ for some $\alpha \in \mathbb{D}$. Let $C_{\psi,\varphi}$ be normaloid on H^2 or A^2_{α}. Then

$$\frac{(1 - |\varphi(\alpha)|^2)(1 + |\alpha|)}{1 - |\alpha|} \geq \varphi'(\zeta).$$

In particular, if $\varphi'(\zeta) = 1$, then $2|\alpha| \geq |\varphi(\alpha)|^2(1 + |\alpha|)$.

Proof. Assume that $C_{\psi,\varphi}$ is normaloid. Let $\gamma = 1$ for H^2 and $\gamma = \alpha + 2$ for A^2_{α}. By Lemmas 2.1 and 3.1, we can see that

\[
\left| \frac{1}{1 - \overline{a}\zeta} \right|^{2\gamma} (\varphi'(\zeta))^{-\gamma} = \|C_{\psi,\varphi}\|^2
\geq \langle C^*_{\psi,\varphi}k_a, C^*_{\psi,\varphi}k_a \rangle
= (1 - |a|^2)^\gamma \langle C^*_{\psi,\varphi}K_a, C^*_{\psi,\varphi}K_a \rangle
= \frac{1}{(1 - |a|^2)^{2\gamma}} \left(\frac{1}{1 - |\varphi(a)|^2} \right)^\gamma.
\]

Then

\[
\frac{1}{(1 - |a|^2)^{2\gamma}} \varphi'(\zeta)^{-\gamma} \geq \frac{1}{(1 - |a|^2)^{2\gamma}} \left(\frac{1}{1 - |\varphi(a)|^2} \right)^\gamma,
\]

so the result follows. Now suppose that $\varphi'(\zeta) = 1$. In this case, after some computation, we can see that $2|a| \geq |\varphi(a)|^2 + |a||\varphi(a)|^2$. □

Corollary 3.3. Let φ satisfy the hypotheses of Proposition 3.2. If C_{φ} is normaloid on H^2 or A^2_{α}, then $1 - |\varphi(0)|^2 \geq \varphi'(\zeta)$. Moreover, if $\varphi'(\zeta) = 1$, then C_{φ} is not normaloid.

Proof. Let $\psi \equiv K_0$. By Proposition 3.2, we can see that if C_{φ} is normaloid, then $1 - |\varphi(0)|^2 \geq \varphi'(\zeta)$. Now assume that $\varphi'(\zeta) = 1$. Suppose that C_{φ} is normal. Then $1 - |\varphi(0)|^2 \geq 1$. Hence $\varphi(0) = 0$ and it is a contradiction. □

In Proposition 3.4, we only prove the third part. Proofs of the other parts is similar to part (c) and follows from the definitions of hyponormal and cohyponormal operators.

Proposition 3.4. Let φ be an analytic self-map of \mathbb{D} and $\psi = K_a$ for some $a \in \mathbb{D}$. The following statements hold on H^2 or A^2_{α}.

(a) If $C_{\psi,\varphi}$ is cohyponormal, then $|\varphi(0)| \geq |a|$.

(b) If $C_{\psi,\varphi}$ is hyponormal, then $|\varphi(0)| \leq |a|$.

(c) If $C_{\psi,\varphi}$ is normal, then $|\varphi(0)| = |a|$.

Proof. (c) Let $\gamma = 1$ for H^2 and $\gamma = \alpha + 2$ for A^2_{α}. Since $K_0 \equiv 1$, it follows from Lemma 2.1 that

\[
\frac{1}{(1 - |\varphi(0)|^2)^\gamma} = \langle \overline{\varphi(0)}K_{\varphi(0)}, \overline{\varphi(0)}K_{\varphi(0)} \rangle
= \langle C_{\psi,\varphi}C^*_{\psi,\varphi}K_0, K_0 \rangle
= \langle C^*_{\psi,\varphi}C_{\psi,\varphi}K_0, K_0 \rangle
= \langle \psi, \psi \rangle
= \frac{1}{(1 - |a|^2)^\gamma},
\]

which implies that $|\varphi(0)| = |a|$. □
Let $\varphi \in \text{LFT}(\mathbb{D})$. It is easy to see that φ must belong to one of the following three disjoint classes:

- Automorphism of \mathbb{D}.
- Non-automorphism of \mathbb{D} with $\varphi(\mathbb{D}) \subseteq \mathbb{D}$.
- Non-automorphism of \mathbb{D} with $\varphi(\zeta) = \eta$ for some $\zeta, \eta \in \partial \mathbb{D}$.

Let $\varphi \in \text{LFT}(\mathbb{D})$ such that $\varphi(\mathbb{D}) \subseteq \mathbb{D}$. Then by [10, Theorem 2.48], φ has a fixed point $p \in \mathbb{D}$. Suppose that $\varphi \in \text{LFT}(\mathbb{D})$ such that $\varphi(\mathbb{D}) \subseteq \mathbb{D}$ or φ is the identity or an automorphism of \mathbb{D} with a fixed point in \mathbb{D}. All normal weighted composition operators $C_{\psi,\varphi}$ of these types were found (see [3, Theorem 10], [9, Theorem 3.7] and [21, Theorem 4.3]). Also suppose $\varphi \in \text{Aut}(\mathbb{D})$ which has no fixed point in \mathbb{D} and $\psi = K_a$ for some $a \in \mathbb{D}$; all normal weighted composition operators $C_{\psi,\varphi}$ on H^2 and A^2_α are characterized in Theorem 4.5. Bourdon et al. in [3, Proposition 12] obtained a condition that reveals what is required for normality of a weighted composition operator $C_{\psi,\varphi}$ on H^2, where φ is a linear-fractional and $\psi = K_{\sigma(0)}$ (also by the similar proof, an analogue result holds on A^2_α). In the following corollary, for $\psi = K_a$ and $\varphi \in \text{LFT}(\mathbb{D})$, where $\varphi(\zeta) = \eta$ for some $\zeta, \eta \in \partial \mathbb{D}$ and $a \in \mathbb{D}$, we investigate normal weighted composition operators $C_{\psi,\varphi}$ on H^2 and A^2_α.

Corollary 3.5. Suppose that $\varphi \in \text{LFT}(\mathbb{D})$ is not an automorphism and $\varphi(\zeta) = \eta$ for some $\zeta, \eta \in \partial \mathbb{D}$. Assume that $\psi = K_a$ for some $a \in \mathbb{D}$. If $C_{\psi,\varphi}$ is normal on H^2 or A^2_α, then φ is a parabolic non-automorphism and $|a| = |t/(2 + t)| = |\sigma(0)|$, where t is the translation number of φ.

Proof. Let $C_{\psi,\varphi}$ be normal on H^2 or A^2_α. Then $C_{\psi,\varphi}$ is essentially normal. Since ψ never vanishes on $\partial \mathbb{D}$, we conclude from [13, Theorem 2.6] and [13, Remark 2.7] that φ is a parabolic non-automorphism and the result follows from Proposition 3.4 and Equation (2). □

4. Normal weighted composition operators

Each disk automorphism φ has two fixed points on the sphere, counting multiplicity. The automorphisms are classified according to the location of their fixed points: elliptic if one fixed point is in \mathbb{D} and a second fixed point is in the complement of the closed disk, hyperbolic if both fixed points are in $\partial \mathbb{D}$, and parabolic if there is one fixed point in $\partial \mathbb{D}$ of multiplicity two (see [10] and [23]). Let φ be an automorphism of \mathbb{D}. In [13] and [15], the present authors investigated essentially normal weighted composition operator $C_{\psi,\varphi}$, when $\psi \in A(\mathbb{D})$ and $\psi(z) \neq 0$ for each $z \in \overline{\mathbb{D}}$. In this section, we just assume that ψ is analytic on $\overline{\mathbb{D}}$ and we attempt to find all normal weighted composition operators $C_{\psi,\varphi}$. Also we will show that ψ never vanishes on $\overline{\mathbb{D}}$.

Lemma 4.1. Let $\varphi \in \text{Aut}(\mathbb{D})$ and $f \in A(\mathbb{D})$. Then $T_f^* C_{\varphi} - C_{\varphi} T_{f \circ \varphi^{-1}}^*$ is compact on H^2 and A^2_α.

Proof. We know that \(\sigma = \varphi^{-1} \). It is not hard to see that
\[
C_{\varphi}^* T_f = T_g C_{\sigma} T_h^* T_f = C_{\sigma} T_g \varphi T_h^* T_f
\]
and
\[
T_f \varphi^{-1} C_{\varphi}^* = T_f \varphi^{-1} C_{\sigma} T_g \varphi T_h^* = C_{\sigma} T_f \varphi T_h^*.
\]
Since \(C_{\varphi} C_{\sigma} = I \), by [11, Proposition 7.22] and [22, Corollary 1(c)], \(C_{\varphi}^* T_f - T_f \varphi^{-1} C_{\varphi}^* \) is compact and the result follows.

In this section, we assume that \(\varphi(z) = \lambda(a - z)/(1 - \bar{a}z) \) and \(w(z) = (1 - \bar{a}z)^{\gamma} \psi(z) \), where \(a \in \mathbb{D}, |\lambda| = 1, \psi \in A(\mathbb{D}) \) and \(\gamma = 1 \) for \(H^2 \) and \(\gamma = \alpha + 2 \) for \(A_\alpha^2 \). We will use the notation \(A \equiv B \) to indicate that the difference of the two bounded operators \(A \) and \(B \) is compact.

Proposition 4.2. Let \(\psi \in A(\mathbb{D}) \) and \(\varphi \in \text{Aut}(\mathbb{D}) \). If \(C_{\varphi, \psi} \) is hyponormal on \(H^2 \) or \(A_\alpha^2 \), then for each \(\zeta \in \partial \mathbb{D}, |w(\zeta)| - |w(\varphi(\zeta))| \geq 0 \). Moreover, if \(C_{\varphi, \psi} \) is ccohyponormal on \(H^2 \) or \(A_\alpha^2 \), then for each \(\zeta \in \partial \mathbb{D}, |w(\varphi(\zeta))| - |w(\zeta)| \geq 0 \).

Proof. Suppose that \(C_{\varphi, \psi} \) is hyponormal. By [11, Proposition 7.22], [22, Corollary 1(c)] and the preceding lemma, we can see that
\[
C_{\psi, \varphi} C_{\psi, \varphi}^* = T_\psi C_{\psi, \varphi} C_\sigma T_{\psi}^* T_\psi^*
= T_\psi C_\sigma T_{\psi} \varphi T_{\psi}^* T_\psi^*
= T_{|\psi|^2 T_{\varphi} \sigma}
\]
and
\[
C_{\psi, \varphi}^* C_{\psi, \varphi} = T_g C_{\psi, \varphi}^* T_{\psi}^* T_\psi C_{\psi, \varphi}
= T_g C_{\sigma} T_{\psi}^* T_\psi C_{\sigma} T_{\varphi} \sigma^{-1}
= T_g C_{\sigma} T_{\psi}^* T_\psi C_{\sigma} T_{\varphi} \sigma^{-1}
= T_{|\psi|^2 T_{\varphi} \sigma^{-1}}.
\]
Let \(\varphi(a) = 0 \) for \(a \in \mathbb{D} \). After some computation, we see that \(\overline{h(z)} g(\varphi(z)) = |1 - \overline{a}z|^{2\gamma} / (1 - |\alpha|^2)^\gamma \), where \(\gamma = 1 \) for \(H^2 \) and \(\gamma = \alpha + 2 \) for \(A^2_\alpha \). Hence by [12, Corollary 2.6] and [4, Corollary 1.3], we have
\[
\sigma(e_C_{\psi, \varphi} C_{\psi, \varphi} - C_{\psi, \varphi} C_{\psi, \varphi}^*) = \frac{1}{(1 - |\alpha|^2)^\gamma} \sigma(e_{T_{|\psi|^2 T_{\varphi} \sigma^{-1}}} |2 - |w|^2| z))
\]
\[
= \left\{ \frac{|w(\varphi^{-1}(\zeta))|^2 - |w(\zeta)|^2}{(1 - |\alpha|^2)^\gamma} : \zeta \in \partial \mathbb{D} \right\}.
\]
Since \(C_{\psi, \varphi} C_{\psi, \varphi} \geq C_{\psi, \varphi} C_{\psi, \varphi}^* , |w(\varphi^{-1}(\zeta))|^2 - |w(\zeta)|^2 \geq 0 \) for each \(\zeta \in \partial \mathbb{D} \), and so \(|w(\zeta)|^2 - |w(\varphi(\zeta))|^2 \geq 0 \) for any \(\zeta \in \partial \mathbb{D} \). Therefore, the conclusion follows.

The idea of the proof of the result for ccohyponormal operator \(C_{\psi, \varphi} \) is similar to hyponormal operator, so it is left for the reader. \(\square \)
Suppose ψ is a non-constant analytic function on $\overline{\mathbb{D}}$ and ψ never vanishes on \mathbb{D}. By [5, Exercise 1, p. 129], we see that $|\psi|$ assumes its minimum value on $\partial\mathbb{D}$. Assume that $C_{\psi,\varphi}$ is essentially normal on H^2 or A_2. Now let $\psi(z) = 0$ for some $z \in \partial\mathbb{D}$. In the following proposition, we show that $\varphi(z) = \zeta$ and ζ is not the Denjoy-Wolff point of φ.

Proposition 4.3. Let $\varphi \in \text{Aut}(\mathbb{D})$. Suppose that ψ is analytic on $\overline{\mathbb{D}}$ and ψ never vanishes on \mathbb{D}. Let $C_{\psi,\varphi}$ be essentially normal on H^2 or A_2. If $\psi(z) = 0$ for some $z \in \partial\mathbb{D}$, then $\varphi(z) = \zeta$ and ζ is not the Denjoy-Wolff point of φ.

Proof. Assume that there is $\zeta \in \partial\mathbb{D}$ such that $\psi(\zeta) = 0$. According to [13, Theorem 3.2] and [15, Theorem 3.3], the map ψ is zero on $B = \{\zeta, \varphi(\zeta), \varphi_2(\zeta), \ldots\}$. It is trivial that $B \subset \partial\mathbb{D}$. Since ψ is an analytic function on $\overline{\mathbb{D}}$ never vanishing on \mathbb{D}, we get that B is a finite set. Suppose that B contains N elements. If $\varphi(z) \neq \zeta$, then one can write $B = \{\zeta, \varphi(\zeta), \varphi_2(\zeta), \ldots, \varphi_{N-1}(\zeta)\}$. Observe that $\varphi_N(b) = b$ for each $b \in B$, which ensures that $N \leq 2$. If $N = 1$, then it is straightforward to see that $\varphi(z) = \zeta$ but this is a contradiction. If $N = 2$, i.e., $B = \{\zeta, \varphi(z)\}$, then B is precisely the set of all fixed points of φ_2. Since $\varphi_2(\zeta) \neq \varphi(z)$, the point $\varphi(z)$ cannot be fixed by φ. Since all fixed points of φ belong to B, we obtain that ζ must be a fixed point of φ, which is a contradiction. Thus $\varphi(z) = \zeta$.

It remains to show that ζ is not the Denjoy-Wolff point of φ. Assume that ζ is the Denjoy-Wolff point of φ. Since $|w| = |w \circ \varphi|$ on $\partial\mathbb{D}$ from [13, Theorem 3.2] and [15, Theorem 3.3], choose a constant $\lambda \in \partial\mathbb{D}$ such that $w \circ \varphi = \lambda w$. Denjoy-Wolff Theorem implies that

$$0 = |w(\zeta)| = \lim_{n \to \infty} |w(\varphi_n(z))| = \lim_{n \to \infty} |\lambda^n w(z)| = |w(z)|$$

for each $z \in \mathbb{D}$. Then $\psi \equiv 0$ on \mathbb{D}, which is a contradiction. Hence, ζ is not the Denjoy-Wolff point of φ. \qed

If $C_{\psi,\varphi}$ is normal on H^2 or A_2, then by Remark 2.5, ψ never vanishes on \mathbb{D}. In Proposition 4.3, we saw that for $\varphi \in \text{Aut}(\mathbb{D})$ which is not a hyperbolic automorphism and ψ that is analytic on $\overline{\mathbb{D}}$, if $C_{\psi,\varphi}$ is normal on H^2 or A_2, then ψ never vanishes on \mathbb{D}.

Proposition 4.4. Let $\varphi \in \text{Aut}(\mathbb{D})$ and $\varphi(a) = 0$ for some $a \in \mathbb{D}$. Assume that ψ is analytic on $\overline{\mathbb{D}}$ and $\psi \neq 0$. If $C_{\psi,\varphi}$ is normal on H^2 or A_2, then w is an α-eigenvector for the operator C_{φ} and the corresponding C_{φ}-eigenvalue for w is 1.

Proof. Suppose that $C_{\psi,\varphi}$ is normal. Proposition 4.2 implies that $|w| = |w \circ \varphi|$ on $\partial\mathbb{D}$. Since ψ never vanishes on \mathbb{D}, by [5, Exercise 6, p. 130], we conclude that $C_{\varphi}(w) = \lambda w$, where $|\lambda| = 1$. If φ is an elliptic automorphism with a fixed point $t \in \mathbb{D}$, then $w(t) = w(\varphi(t)) = \lambda w(t)$. Since ψ never vanishes on \mathbb{D}, $\lambda = 1$. Now suppose that φ is a parabolic or hyperbolic automorphism with Denjoy-Wolff...
point ζ. Then
\[
w(\zeta) = \lim_{r \to 1} w(\varphi(r\zeta)) = \lambda \lim_{r \to 1} w(r\zeta) = \lambda w(\zeta).
\]
By Proposition 4.3, $\psi(\zeta) \neq 0$ and so $\lambda = 1$. Therefore, we conclude that $C_\varphi(w) = w$. \qed

Let φ be an elliptic automorphism or the identity. As we stated before
Corollary 3.5, all normal weighted composition operators $C_{\psi, \varphi}$ of these types
were found. Also we must say that in this case ψ never vanishes on $\overline{\mathbb{D}}$.
In the next theorem, for φ, not the identity and not an elliptic automorphism of
\mathbb{D}, which is in $\text{Aut}(\mathbb{D})$, we show that constant multiples of $K_{\sigma(0)}$ are the only
examples for ψ that again ψ never vanishes on $\overline{\mathbb{D}}$. It is interesting
that again ψ never vanishes on $\overline{\mathbb{D}}$ and these weighted composition operators are
actually a constant multiples of unitary weighted composition operators (see
[3, Theorem 6] and [21, Corollary 3.6]).

Theorem 4.5. Assume that φ, not the identity and not an elliptic automor-
phism of \mathbb{D}, is in $\text{Aut}(\mathbb{D})$. Suppose that ψ is analytic on $\overline{\mathbb{D}}$ and $\psi \neq 0$. Then $C_{\psi, \varphi}$ is normal on H^2 or A^2_k if and only if $\psi = \psi(0)K_{\sigma(0)}$; hence ψ never
vanishes on $\overline{\mathbb{D}}$.

Proof. Suppose that $C_{\psi, \varphi}$ is normal and $\varphi(a) = 0$. By Proposition 4.4, $w \circ \varphi = w$ on \mathbb{D}.
Then for each integer n, $\psi(z)(1 - \overline{\psi(z)})^\gamma = \psi(\varphi_n(z))(1 - \overline{\varphi_n(z)})^\gamma$ on
\mathbb{D}, where $\gamma = 1$ for H^2 and $\gamma = \alpha + 2$ for A^2_k. Let ζ be the Denjoy-Wolff point
of φ. Applying Denjoy-Wolff Theorem, we have
\[
\psi(\zeta)(1 - \overline{\psi(\zeta)})^\gamma = \lim_{n \to \infty} \psi(\varphi_n(z))(1 - \overline{\varphi_n(z)})^\gamma = \psi(z)(1 - \overline{\psi(z)})^\gamma
\]
for each $z \in \mathbb{D}$. Hence $\psi(z) = \frac{\psi(z)(1 - \overline{\psi(z)})^\gamma}{(1 - \overline{\psi(z)})^\gamma}$ and so $\psi = \psi(0)K_{\sigma(0)}$.

Conversely, it is not hard to see that the fact that for a constant number c,
$C_{\psi, \varphi}$ is normal implies that $C_{\psi, \varphi}$ is also. Then without loss of generality, we
assume that $\psi = K_{\sigma(0)}$. Observe that $g \circ \varphi = \frac{1}{(1 - |\varphi|^2)^{1/2}}$ and $h \psi \equiv 1$. Since
$\sigma = \varphi^{-1}$, we obtain from Cowen’s adjoint formula that
\[
C_{\psi, \varphi}^* C_{\psi, \varphi} = T_g C_\sigma T_{h \psi} C_\varphi T_g C_\sigma = T_g C_\sigma C_\varphi T_{\psi \sigma} \equiv T_g \psi \varphi^{-1} - 1
\]
and
\[
C_{\psi, \varphi}^* C_{\psi, \varphi} = T_g C_\sigma C_\varphi T_{h \psi} C_\sigma = T_g C_\sigma C_\varphi T_{\psi \sigma} \equiv T_g \psi \varphi.
\]
After some computation, one can see that $\psi \cdot g \circ \varphi = g \cdot \psi \circ \varphi^{-1} = \frac{1}{(1 - |\varphi|^2)^{1/2}}$. Hence $C_{\psi, \varphi}$ is normal. \qed

Lemma 4.6. Assume that $\varphi \in \text{Aut}(\mathbb{D})$. Suppose that for some $\zeta \in \partial\mathbb{D}$,
$\{\varphi_n(\zeta) : n$ is a positive integer} is a finite set. If φ is parabolic or hyperbolic,
then ζ is a fixed point of φ.

Proof. Let \(\{ \zeta, \varphi(\zeta), \varphi_2(\zeta), \ldots \} \) be a finite set. Then there is an integer \(N \) such that \(\varphi_N(\zeta) = \zeta \), so \(\zeta \) is a fixed point of \(\varphi_N \). It is not hard to see that \(\varphi \) is parabolic or hyperbolic if and only if \(\varphi_N \) is parabolic or hyperbolic, respectively and fixed points of \(\varphi \) and \(\varphi_N \) are the same. Hence \(\zeta \) is the fixed point of \(\varphi \). \(\square \)

Let \(\psi \in A(D) \). If \(C_{\psi, \varphi} \) is cohyponormal on \(H^2 \) or \(A^2_\alpha \), then \(\psi \) never vanishes on \(D \) or \(\psi \equiv 0 \) (see Remark 2.5). Therefore, by Maximum Modulus Theorem and [5, Exercise 1, p. 129], there are \(\zeta_1, \zeta_2 \in \partial D \), with \(|w(\zeta_1)| \leq |w(\zeta)| \) and \(|w(\zeta)| \leq |w(\zeta_2)| \) for all \(\zeta \in D \). In the following theorem, we assume that \(\zeta_1 \) and \(\zeta_2 \) are given as above.

Theorem 4.7. Suppose that \(\psi \in A(D) \). Let \(\{ \eta \in \partial D : |w(\eta)| = |w(\zeta_1)| \} \) and \(\{ \eta \in \partial D : |w(\eta)| = |w(\zeta_2)| \} \) be finite sets. Suppose that \(C_{\psi, \varphi} \) is cohyponormal on \(H^2 \) or \(A^2_\alpha \). The following statements hold.

(a) If \(\psi \) is a parabolic automorphism, then \(|w| \) is a constant function on \(\partial D \). Moreover, if \(\psi \not\equiv 0 \), then \(C_{\psi, \varphi} \) is normal and \(\psi = \psi(0)K_{\sigma(0)} \).

(b) If \(\varphi \) is a hyperbolic automorphism, then \(\zeta_1 \) and \(\zeta_2 \) are the fixed points of \(\varphi \).

Proof. (a) Suppose that \(\varphi \) is a parabolic automorphism. Since \(C_{\psi, \varphi} \) is cohyponormal, by Proposition 4.2, for each positive integer \(n \), we have

\[
|w(\varphi_n(\zeta_2))| \geq |w(\varphi_{n-1}(\zeta_2))| \geq |w(\varphi_{n-2}(\zeta_2))| \geq \cdots \geq |w(\zeta_2)|
\]

and

\[
|w(\zeta_1)| \geq |w(\varphi^{-1}(\zeta_1))| \geq |w(\varphi_2^{-1}(\zeta_1))| \geq \cdots \geq |w(\varphi_n^{-1}(\zeta_1))|.
\]

It is not hard to see that \(\varphi^{-1} \) is parabolic and \(\varphi \) and \(\varphi^{-1} \) have the same fixed point. Then by Lemma 4.6 and the statement which was stated before Theorem 4.7, we can see that \(\zeta_1 = \zeta_2 \). Then \(|w| \) is constant on \(\partial D \). Now assume that \(\psi \not\equiv 0 \). We know that \(\psi \) never vanishes on \(D \) (see Corollary 2.4), so by [5, Exercise 2, p. 129], \(w \) is a constant function. Then \(\psi = \psi(0)K_{\alpha} \) and by Theorem 4.5, \(C_{\psi, \varphi} \) is normal.

(b) Suppose that \(\varphi \) is a hyperbolic automorphism. By the proof of part (a) and Lemma 4.6, we can see that \(\zeta_1 \) and \(\zeta_2 \) are the fixed points of \(\varphi \). \(\square \)

For \(\psi \in H^\infty \) and \(\varphi \) which is an elliptic automorphism of \(D \), cohyponormality and normality of a weighted composition operator \(C_{\psi, \varphi} \) on \(H^2 \) are equivalent (see [9, Proposition 3.17]). In the previous theorem, we showed that if \(\varphi \) is a parabolic automorphism and \(\psi \) and \(w \) satisfy the hypotheses of this theorem, then \(C_{\psi, \varphi} \) is cohyponormal on \(H^2 \) or \(A^2_\alpha \) if and only if \(C_{\psi, \varphi} \) is normal and we saw that \(\psi = \psi(0)K_{\sigma(0)} \).

Recall that a bounded linear operator \(T \) between two Banach spaces is Fredholm if it is invertible modulo compact operators. We say that an operator \(A \in B(H) \) is bounded below if there is a constant \(c > 0 \) such that \(c\|h\| \leq \|A(h)\| \) for all \(h \in H \). Moreover, we know that a normal operator \(N \) on a Hilbert space \(H \) is bounded below if and only if \(N \) is invertible (see [6,
Exercise 15, p. 36). By this fact, the statements (a) and (c) in Theorem 4.8 are equivalent.

Theorem 4.8. Suppose that $C_{\psi, \varphi}$ is a normal operator on a Hilbert space H of analytic functions on D. Assume that all the polynomials belong to H. The following statements are equivalent.

(a) The operator $C_{\psi, \varphi}$ is bounded below.

(b) The operator $C_{\psi, \varphi}$ is Fredholm.

(c) The operator $C_{\psi, \varphi}$ is invertible.

Proof. (b) implies (c). Suppose that $C_{\psi, \varphi}$ is Fredholm. Since by [6, Corollary 2.4, p. 352], $\dim \ker C_{\psi, \varphi} < \infty$, it is not hard to see that $\psi \not\equiv 0$. We claim that φ is not a constant function. Assume that $\varphi \equiv c$, where $|c| < 1$. It is not hard to see that for each n, $z^n(z - c) \in \ker C_{\psi, \varphi}$, so $\dim \ker C_{\psi, \varphi} = \infty$ and it is a contradiction. By the Open Mapping Theorem, we can see that $0 \notin \sigma_p(C_{\psi, \varphi})$. Assume that $C_{\psi, \varphi}$ is not invertible. Then by [6, Proposition 4.6, p. 359], $0 \in \sigma_p(C_{\psi, \varphi})$ and it is a contradiction.

(c) implies (b). This is clear. □

Assume $\psi \not\equiv 0$ and φ is not a constant function. By the Open Mapping Theorem, it is clear that $\ker C_{\psi, \varphi} = \{0\}$. Then $C_{\psi, \varphi}$ has closed range if and only if $C_{\psi, \varphi}$ is bounded below. We know that $C_{\psi, \varphi}$ on H^2 or A^2_α is invertible if and only if $\varphi \in \text{Aut}(D)$ and $\psi \in H^\infty$ is bounded away from zero on D (see [2, Theorem 3.4]). As we stated before if φ is an elliptic automorphism or the identity, all normal weighted composition operators were found; moreover others were characterized in Theorem 4.8. Then closed range weighted composition operators on H^2 and A^2_α which are normal were found.

Acknowledgment. We would like to thank referees for their suggestions and comments.

References

[1] P. S. Bourdon, *Spectra of some composition operators and associated weighted composition operators*, J. Operator Theory 67 (2012), no. 2, 537–560.

[2] ________, *Invertible weighted composition operators*, Proc. Amer. Math. Soc. 142 (2014), no. 1, 289–299.

[3] P. S. Bourdon and S. K. Narayan, *Normal weighted composition operators on the Hardy space $H^2(D)$*, J. Math. Anal. Appl. 367 (2010), no. 1, 278–286.

[4] L. A. Coburn, *The C^*-algebra generated by an isometry. II*, Trans. Amer. Math. Soc. 137 (1969), 211–217.

[5] J. B. Conway, *Functions of One Complex Variable*, Second Edition, Springer-Verlag, New York, 1978.

[6] ________, *A Course in Functional Analysis*, Second Edition, Springer-Verlag, New York, 1990.

[7] ________, *The Theory of Subnormal Operators*, Amer. Math. Soc., Providence, 1991.

[8] C. C. Cowen, *Linear fractional composition operators on H^2*, Integral Equations Operator Theory 11 (1988), no. 2, 151–160.
[9] C. C. Cowen, S. Jung, and E. Ko, *Normal and cohyponormal weighted composition operators on H^2*, Operator theory in harmonic and non-commutative analysis, 69–85, Oper. Theory Adv. Appl., 240, Birkhäuser/Springer, Cham, 2014.

[10] C. C. Cowen and B. D. MacCluer, *Composition Operators on Spaces of Analytic Functions*, CRC Press, Boca Raton, 1995.

[11] R. G. Douglas, *Banach Algebra Techniques in Operator Theory*, Academic Press, New York, 1972.

[12] N. Elias, *Toeplitz operators on weighted Bergman spaces*, Integral Equations Operator Theory 11 (1988), no. 3, 310–331.

[13] M. Fatehi and M. Haji Shaabani, *Some essentially normal weighted composition operators on the weighted Bergman spaces*, Complex Var. Elliptic Equ. 60 (2015), no. 9, 1205–1216.

[14] ———, *Which weighted composition operators are hyponormal on the Hardy and weighted Bergman spaces?*, arXiv preprint.

[15] M. Fatehi and B. Khani Robati, *Essential normality for certain weighted composition operators on the Hardy space H^2*, Turk. J. Math. 36 (2012), no. 4, 583–595.

[16] A. Hanine, *Cyclic vectors in some spaces of analytic functions*, PhD diss., Aix-Marseille, 2013.

[17] P. Hurst, *Relating composition operators on different weighted Hardy spaces*, Arch. Math. (Basel) 68 (1997), no. 6, 503–513.

[18] S. Jung, Y. Kim, and E. Ko, *Characterization of binormal composition operators with linear fractional symbols on H^2*, Appl. Math. Comput. 261 (2015), 252–263.

[19] S. Jung and E. Ko, *On T_u-Toeplitzness of weighted composition operators on H^2*, Complex Var. Elliptic Equ. 60 (2015), no. 11, 1522–1538.

[20] T. L. Kriete, B. D. MacCluer, and J. L. Moorhouse, *Toeplitz-composition C*-algebras*, J. Operator Theory 58 (2007), no. 1, 135–156.

[21] T. Le, *Self-adjoint, unitary, and normal weighted composition operators in several variables*, J. Math. Anal. Appl. 395 (2012), no. 2, 596–607.

[22] R. F. Olin and J. E. Thomson, *Algebra generated by a subnormal operator*, Trans. Amer. Math. Soc. 271 (1982), no. 1, 299–311.

[23] J. H. Shapiro, *Composition Operators and Classical Function Theory*, Springer-Verlag, New York, 1993.

Mahsa Fatehi
Department of Mathematics
Shiraz Branch, Islamic Azad University
Shiraz, Iran
E-mail address: fatehimahsa@yahoo.com

Mahmood Haji Shaabani
Department of Mathematics
Shiraz University of Technology
P. O. Box 71555-313, Shiraz, Iran
E-mail address: shaabani@sutech.ac.ir