Airborne microbial biodiversity and seasonality in Northern and Southern Sweden.

Edvin Karlsson¹,²*, Anna-Mia Johansson¹, Jon Ahlinder², Moa J. Lundkvist¹, Navinder J. Singh³, Tomas Brodin³, Mats Forsman², Per Stenberg²,⁴*

1. Department of Molecular Biology, Umeå University, Umeå, Sweden
2. CBRN Defense and Security, Swedish Defense Research Agency (FOI), Umeå, Sweden
3. Department of Wildlife, Fish, and Environmental Studies, SLU, Umeå
4. Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden

*Correspondence to per.stenberg@umu.se, edvin.karlsson@umu.se

Supplementary information
Table S2. Amplicon primer sequences used for generating amplicons for 16S-V4, ITS and rbcL, respectively. Gene-specific sequence and sequences associated with the references are emboldened.

Marker	Primer sequence (5’-3’)	Ref.
16S-V4-515f	TCGTCCGACGTCAGATGTTATAGAGACAGCATGGYCGACGTCAGATGTTATAGAGACAGCATGGYCGACGTCAGATGTTATAGAGACAGCATG	1, 2
16S-V4-806r	GTCTCTCGAGCTCTCGAGATGTTATAGAGACAGCATGGYCGACGTCAGATGTTATAGAGACAGCATGGYCGACGTCAGATGTTATAGAGACAGCATG	1, 3
ITS1f	TCGTCCGACGTCAGATGTTATAGAGACAGCATGGYCGACGTCAGATGTTATAGAGACAGCATGGYCGACGTCAGATGTTATAGAGACAGCATG	1, 4
ITS2	GTCTCGGACGTCAGATGTTATAGAGACAGCATGGYCGACGTCAGATGTTATAGAGACAGCATGGYCGACGTCAGATGTTATAGAGACAGCATG	1, 5
rbcL Z1aF	TCGTCCGACGTCAGATGTTATAGAGACAGCATGGYCGACGTCAGATGTTATAGAGACAGCATGGYCGACGTCAGATGTTATAGAGACAGCATG	6
rbcL 19bR	GTCTCGGACGTCAGATGTTATAGAGACAGCATGGYCGACGTCAGATGTTATAGAGACAGCATGGYCGACGTCAGATGTTATAGAGACAGCATG	6
Figure S1. Rarefaction plots for (A) plants \((rbcL)\), (B) bacteria (16S-V4) and (C) fungi (ITS) showing the number of OTUs for each sequence subsampling level. Each sample is subsampled from ten sequences up to the median sequence count, in ten steps. The rarefaction level chosen for the principal component analysis is shown by a dashed line (16S-V4: 8970 sequences, ITS: 22278 sequences, \(rbcL\): 36277 sequences).
Table S3. Number of observed orders, families and genera over the two locations and two years studied.

Taxonomic group (marker)	Orders	Families	Genera
Plants (rbcL)	84	236	382
Bacteria/Archaea (16S-V4)	230	452	980
Fungi (ITS)	136	356	1107
Total	450	1046	2471
Figure S2. Comparison between the biweekly distributions of sequences assigned to (A) Fagales, (B) Pinales, (C) Ericales, (D) Malpighiales, (E) Poales and (F) Rosales with daily pollen counts (counts/m3, grey) from Abisko, in the years 2006 and 2007. The time period shown is restricted to the pollen sampling period.
Figure S3. Non-metric Multidimensional Scaling (NMDS) ordination based on Bray-Curtis dissimilarities of Hellinger transformed sequence counts assigned to plants (*rbcL*). (A, B, C) Sample scores are shown for the first (MDS1), second (MDS2) and third (MDS3) dimension. The samples are labelled by week number. (D, E, F) The corresponding OTU scores for the three dimensions are colored according to taxonomic identity (order). For clarity, only the 20% most abundant OTUs are displayed. Color keys are shown in Fig. S4.
Figure S4. Extended legend for the NMDS OTU score plots in Fig. 1 and Fig S3.
Figure S5. Taxonomic summary at order level for (A) bacteria and (B) fungi in Kiruna and Ljungbyhed across the sampling period and seasons. Orders below 1% of the total sequence abundance are grouped as “Other”.
Figure S6. Ranked relative abundance for (A) bacterial OTUs, (B) bacterial orders, (C) fungal OTUs and (D) fungal orders in Kiruna (blue) and Ljungbyhed (green).
Figure S7. Distribution of observed number of (A) bacterial OTUs, (B) bacterial orders, (C) fungal OTUs and (D) fungal orders in Kiruna and Ljungbyhed. Jitter points represent each individual week, colored by season: spring (yellow), summer (green), autumn (red) and winter (blue). The p-values were calculated using the Wilcoxon rank-sum test.
Figure S8. Geographic comparison of (A) bacterial and (B) fungal order composition between Kiruna and Ljungbyhed. Bars represent the log$_2$-fold difference in sequence abundance for each individual order. Significant differences are illustrated by filled bars (Wilcoxon rank-sum test, p < 0.01). Values are adjusted for the differences in total sequence abundance between the two locations. Orders with a sequence abundance below 0.1% of the total sequence abundance are not shown.
Figure S9. (A) Proportion of land cover types surrounding the air filter stations in Kiruna and Ljungbyhed at a radius of 1 km, 5 km and 10 km. Land cover diversity within each area is shown as the Shannon entropy (H'). The bars are colored by land type category (see legend). (B) Ranked relative abundance (in log

10 scale) of the land cover types within 1 km, 5 km and 10 km radius in Kiruna (blue) and Ljungbyhed (green).
Figure S10. Ranked abundance scatter plots between families within the fungal order Sordariales and families within the bacterial orders Clostridiales and Bacillales. P-values below 0.05 are depicted in red.
Figure S11. Ranked abundance scatter plots between families within the bacterial orders Clostridiales and Bacillales. P-values below 0.05 are depicted in red.
Figure S12. Proportion of sequences predicted to have a fecal origin, predicted as domestic bird and pig, across the two years in Ljungbyhed. Uncertainty of the proportions of sequences of fecal origin via the standard deviation is provided as error bars.
Figure S13. Relationship between ranked bacterial OTU and fungal OTU richness and ranked weather parameters. P-values were calculated using Spearman’s correlation. P-values below 0.05 are depicted in red.
Figure S14. Relationship between ranked bacterial order and fungal order richness and ranked weather parameters. P-values were calculated using Spearman’s correlation. P-values below 0.05 are depicted in red.
Figure S15. The weekly observed number of bacterial orders in (A) Kiruna and (B) Ljungbyhed, and the weekly observed number of fungal orders in (C) Kiruna and (D) Ljungbyhed. Weeks are colored by season (spring; yellow, summer; green, autumn; red and winter; blue). A local regression (LOESS) curve is fitted to the observations to display seasonal trends (black line). The standard error of the LOESS curve is depicted in grey.
Figure S16. Distribution of the relative mean order abundance per week by season for (A) fungal and (B) bacterial orders in Kiruna and Ljungbyhed.
References

1. Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, Gilbert JA, Jansson JK, Caporaso JG, Fuhrman JA, Apprill A and Knight R (2016) Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys. mSystems 1:

2. Parada AE, Needham DM and Fuhrman JA (2016) Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 18:1403-14

3. Apprill A, McNally S, Parsons R and Weber L (2015) Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol 75:129-137

4. Gardes M and Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes--application to the identification of mycorrhizae and rusts. Mol Ecol 2:113-8

5. White TJ, Bruns S, Lee S and Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, MA, Gelfand, DH, Sninsky, JJ and White, TJ (Eds.). PCR - Protocols and Applications - A Laboratory Manual. 1st ed:315-322. New York, NY. Academic Press

6. Hofreiter M, Poinar HN, Spaulding WG, Bauer K, Martin PS, Possnert G and Paabo S (2000) A molecular analysis of ground sloth diet through the last glaciation. Mol Ecol 9:1975-84