Volatile Secondary Metabolites in Cascarillo (Ocotea caparrapi (Sandino-Groot ex Nates) Dugand - Lauraceae)

Geovanna Tafurt García 1*, Amner Muñoz Acevedo 2

1* Universidad Nacional de Colombia, Sade Orinoquia, Research Group “Production, Structure and Application of Biomolecules” (PROBIOM), Medellín, Colombia
2 Universidad del Norte, División de Ciencias Básicas, Departamento de Química y Biología, Laboratorio de Investigaciones en Química, Barranquilla, Colombia

Received 15 March 2017; accepted in revised form 21 December 2017

Abstract: In this work, the chemical analysis of the volatile fractions obtained by simultaneous distillation-extraction of aerial parts of a species of Ocotea aff. O. caparrapi known as “Cascarillo” was carried out by GC-MS. The main components identified were: α-pinene (23.9 %) and β-pinene (14.7 %), in the resin; α-terpineol (26.6 %) and methyleugenol (14.7 %), in the leaves; elemicin (31.3 %) and methyleugenol (31.1 %), in the branch bark; myristicin (35.4-46.1 %), terpinen-4-ol (14.9-26.3 %), and α-terpineol (17.5-21.3 %), in stem bark. A high content of monoterpene hydrocarbons (82.6 % and 51.8 %) were found in the resin and leaves; and propenylbenzenes (66.5 %), in the branch bark. Oxygenated monoterpenes (44.5-57.3 %) and propenylbenzenes (52.3-38.7 %) constituted the stem bark. The identification of methyleugenol, elemicin and myristicin, in the volatile fractions, allowed us to establish a relationship between the Ocotea sp. of our study with O. caparrapi and O. cymbarum.

Key words: Ocotea; Cascarillo; volatile fractions; propenylbenzenes; SDE-GC-MS.

Introduction

The Lauraceae family has ca. 55 genera and 3000 species, and is constituted by trees and shrubs, which grow in wet and dry tropical forests (0 m to 4000 m). It is widely distributed in America, Asia and Australia, and with a little representation in Africa 1-3. This family is important from the economic point of view by its woods, resins, essential oils (Camphor - Cinnamomum camphora), spices (cinnamon - Cinnamomum zeylanicum; laurel - Laurus nobilis), and, fruits (avocado - Persea americana) 1.

Ocotea is the most diverse and abundant genus of the family, with about 350 species mainly distributed in the neotropics, from Mexico to Argentina, and also is found in Africa (Madagascar and Canary Islands) 2-5. This genus includes timbers, which for its fragrant features are a great source of essential oils (EO) constituted by terpenes, phenylpropanoids (e.g., safrole, asaricin, myristicin, phenols, aldehydes) or related compounds (e.g., caparratriene, caparrapi oxide) 4, 6-8. Additionally, compounds belonging to classes: flavonoids, lignanes, neolignanes, and alkaloids (benzylisoquinolines, aporfinics) are found in the Ocotea spp. 3, 9-12. However, it has been carried to endangered conditions due to the deforestation and unsustainable exploitation 4, 5, 13.

Some Ocotea species (O. quixos, O. puchury-major, O. longifolia, O. bullata, O. opifera, O. paulii) have pharmacological or therapeutic properties as anti-rheumatic, analgesic, anesthetic,
antidiarrheal, anti-inflammatory, antithrombotic, antiplaquet, antioxidant, antimicrobial, anti-abscesses, gastroenteric, purgative, tonic, headache, nervous disorders, sedative and appetizer. Other species, O. pretiosa, O. sassafras, O. caudata, O. odorifera, O. caparrapi and O. cymbarum, have a recognized position in the market, specifically in perfumery. And, the others, O. bofo, O. austinii and O. corymbosa, have been used as flavoring, furniture and construction 4, 5, 7, 9-19.

In this work, we carried out the chemical analysis of an Ocotea aff. O. caparrapi, called “Cascarillo”. Gas Chromatography coupled to Mass Spectrometry (GC-MS) was used for the analysis the volatile fractions of this species. Simultaneous Distillation-Extraction technique (SDE) was used for obtaining volatile fractions of different parts of the plant material (resin, leaves, and branch and stem barks). The importance of this work lies in the commercial potential of this species for the production of essential oils, resins and wood; in addition, because for this endangered species there are few documented studies for Colombia 6, 20-25.

Methods
Reagent
The solvents employed were dichloromethane (ACS grade, Riedel-de Haën) and distilled water. Anhydrous sodium sulfate (Analytical grade, Biopack) was used as a dehydrating agent.

Plant material
“Cascarillo” (Ocotea aff. O. caparrapi, Nº 0.38 of Orinoquía’s Science Research Group) was collected in “El Porvenir” village, municipality of Toledo, Departamento de Norte de Santander (Colombia). Between 100 g and 1000 g of each part of the plant material was collected. The resin was obtained by drilling the stem of the tree to the marrow. The preliminary taxonomic identification of botanical sample was performed by Gerardo Aymard Antonio Corredor (UNELLEZ - Guanare - Venezuela), expert in Venezuelan forest. The plant collection was made under Resolution No. 739 of July 8, 2014, conferred by the Agencia Nacional de Licencias Ambientales (ANLA).

Simultaneous distillation - extraction solvent (SDE)
The volatile fractions of the different parts of fresh plant were isolated using a Likens & Nickerson microscale apparatus, modified by Godefroot et al. 26, for high density solvents. 10 g of vegetal material were used, the extraction solvent was dichloromethane (2 mL), and the process was carried out during 2 h. The extracts were dehydrated with anhydrous sodium sulfate. For the case of resin, 50 μL of pure resin were dissolved in 500 μL of acetone. Finally, 1 mL of the extracts was analyzed by GC-MS.

Gas chromatography-Mass spectrometry (GC-MS)
The separation and analysis of the components present in the SDE extracts were carried out in a Trace 1310 gas chromatograph coupled to a mass selective detector ISQ (Thermo Fisher Scientific, Inc.), with split/splitless inlet (ratio split 20:1), automatic injection system (AI/AS 1310 Thermo Scientific). Rxi®-1ms column (30 m x 0.25 mm I.D. x 0.5 μm d), with stationary phase of 100 % dimethyl-polysiloxane, was used for the separation. Helium (99.999 %) was the carrier gas (constant flow, 1.0 mL/min). Oven temperature programming was from 50°C (5 min) to 150°C (10 min) at a rate of 2°C/min, a second rate of 3°C/min to 250°C (5 min). Ion source and transfer line temperatures were maintained at 230°C and 250°C, respectively. Mass spectra were obtained by electron impact (EI, 70 eV) using quadrupole mass analyzer. Total ion currents (TIC) were acquired by full scan mode, with a mass range of m/z 40-350. Chromatographic and spectroscopic data were processed using by Thermo Xcalibur™ (Version 2.2 SP1.48, Thermo Fisher Scientific, Inc.) and AMDIS (Automated Mass Spectral Deconvolution and Identification System, 13 May 2011, Build 130.53, Version 2.70) softwares.

Linear temperature-programmed retention indices were calculated from the data of a homologous series of saturated aliphatic hydrocarbons (C₇-C₃₅) and analyzed under the same conditions that the extracts. The secondary metabolites were identified by comparing their mass spectra with those of the databases (NIST11, NIST Retention
Index and Wiley9), and with linear retention indices reported in the existing literature 27-29.

Results and discussion

Table 1 contains the identified compounds from the volatile fractions (VF) isolated of the resin, leaves, and branch and stem barks of *Ocotea aff. O. caparrapi*, along with their relative amounts and retention indices (calculated and literature). Figure 1 shows the total ion currents (TIC) obtained by GC-MS of each VF analyzed.

According to the Table, α-pinene (23.9 %), β-pinene (14.7 %), p-cymene (7.8 %), and α-terpineneol (7.3 %) were the main constituents of the resin sample; linalool (8.6 %), terpinen-4-ol (8.7 %), α-terpineol (26.6 %), methyleugenol (14.7 %), and bicyclogermacrene (6.7 %), were identified in the leaves sample; also, in the branch bark sample were found α-terpineol (12.6 %), methyleugenol (31.1 %), elemicin (31.3 %) and myristicin (2.9 %), as the most abundant compounds; on the other hands, the stem barks of the

No.	Compound	Resin Relative amount, %	Leaves	Branch bark	Stem bark	I_R Calculated	Literature	
1	α-Pinene	23.9	-	-	-	-	936	930
2	α-Fenchene	0.4	-	-	-	-	942	940
3	Camphene	3.5	-	-	-	-	943	943
4	β-Citronellene	0.4	-	-	-	-	944	944
5	Sabinene	0.2	-	-	-	-	965	964
6	β-Pinene	14.7	-	-	-	-	969	970
7	Myrcene	1.1	-	-	-	-	983	981
8	p-Menth-2-ene	0.7	-	-	-	-	990	982
9	p-Cymene	7.8	-	-	tr	-	1008	1011
10	1,8-Cineole	3.9	0.1	-	0.2	0.2	1016	1020
11	Limonene	4.7	-	-	-	-	1018	1020
12	γ-Terpinene	0.9	-	-	-	-	1046	1047
13	cis-Sabinene hydrate	-	0.6	-	-	-	1048	1041
14	Fenchone	tr	-	-	0.5	0.9	1062	1066
15	Terpinolene	0.7	-	-	-	-	1075	1078
16	trans-Sabinene hydrate		-	1.2	-	-	1077	1051
17	Linalool	0.2	8.6	4.6	0.2	-	1082	1082
18	Fenchol	2.3	-	-	0.1	0.2	1092	1100
19	α-Campholenal	0.2	-	-	-	-	1098	1102
20	cis p-Menth-2-en-1-ol	tr	0.4	-	-	-	1101	1106
21	Camphor	0.7	-	-	2.4	3.2	1112	1115
22	trans-Pinocarveol	0.9	-	-	-	-	1115	1117
23	cis-Verbenol	0.2	-	-	-	-	1118	1127
24	trans-Verbenol	2.0	-	-	-	-	1122	1122
25	trans p-Menth-2-en-1-ol		-	0.3	-	-	1128	1123
26	Camphene hydrate	-	-	-	0.2	0.1	1124	1128
27	2,2,4-Trimethyl-3-cyclopentene-1-ethanol		-	-	0.2	0.3	1140	NR
28	δ-Terpineol	-	3.8	0.6	-	-	1140	1142
No.	Compound	Resin bark	Leaves	Branch bark	Stem bark	Literature		
-----	-------------------------------	------------	--------	-------------	-----------	------------		
29	Pinocamphone	-	-	0.2	-	1141		
30	Borneol	2.5	0.2	0.2	0.3	1142		
31	Unknown	-	-	0.4	0.1	1144		
32	Terpinen-4-ol	1.3	8.7	3.2	14.9	1158		
33	p-Cymen-8-ol	1.3	-	-	-	1158		
34	Myrtenal	0.2	-	-	-	1161		
35	α-Terpineol	7.3	26.6	12.6	17.5	1169		
36	Myrtenol	1.1	-	-	-	1172		
37	Verbenone	-	-	3.5	1.8	1173		
38	cis-Piperitol	-	0.2	-	-	1174		
39	Borneol formate	-	-	0.9	0.7	1180		
40	trans-Piperitol	0.3	-	-	-	1184		
41	trans-Myrtanol	-	-	0.5	-	1191		
42	2-Hydroxy-1,8-cineole	-	-	0.7	0.3	1192		
43	Fenchol acetate	0.2	-	-	-	1201		
44	Isoborneol formate	0.2	-	-	-	1203		
45	Nerol	-	0.5	0.2	-	1206		
46	2,5-Bornanedione	-	-	0.4	-	1207		
47	cis-Myrtanol	-	-	0.3	tr	1214		
48	Piperitone	-	-	1.0	1.0	1218		
49	trans-Myrtanol	-	-	0.5	-	1233		
50	Safrole	-	-	0.3	-	1256		
51	p-Cymen-7-ol	-	-	0.3	-	1258		
52	Borneol acetate	1.5	0.2	-	-	1264		
53	Unknown	0.8	-	-	-	1271		
54	Unknown	0.5	-	-	-	1274		
55	Unknown	0.2	-	-	-	1277		
56	Terpinen-4-ol acetate	1.1	-	-	-	1279		
57	Unknown	0.6	-	-	-	1286		
58	Unknown	0.2	-	-	-	1291		
59	α-Terpineol acetate	4.3	0.9	0.2	0.7	1328		
60	Carvyl acetate	1.0	-	-	-	1337		
61	Nerol acetate	-	0.2	-	-	1341		
62	Methyleugenol	-	14.7	31.1	0.6	1366		
63	β-Bourbonene	-	0.2	-	-	1374		
64	β-Elemene	-	0.3	-	-	1380		
65	β-Caryophyllene	-	4.4	0.4	-	1405		
66	Nerylacetone	-	-	0.2	0.3	1424		
67	Unknown(178 molecular ion)	-	-	0.4	0.2	1431		
68	α-Humulene	-	0.5	-	-	1438		
69	4,5-di-epi-Aristolochene	-	0.3	-	-	1454		

Relative amount, %	I_r	Literature						
		1140						
		1148						
		1160						
		1158						
		1152						
		1163						
		1169						
		1172						
		1174						
		1191						
		1179						
		1208						
		1184						
		1195						
		1192						
		1207						
		1201						
		1203						
		1206						
		1209						
		1264**						
		1214						
		1228						
		1233						
		1256						
		1258						
		1264						
		1273						
		1271						
		1274						
		1277						
		1279						
		1286						
		1291						
		1328						
		1322						
		1337						
		1341						
		1342						
		1366						
		1374						
		1374						
		1380						
		1405						
		1424						
		1431						
		1438						
		1454						
		1467						
No.	Compound	Relative amount, %	Literature					
-----	---------------------------------------	--------------------	------------					
		Resin	Leaves	Branch	Bark 1	Bark 2	Calculated	IR
70	Germacrene D		2.4	0.5	-	-	1464	1480
71	4-epi-Cubebol		0.3	-	-	-	1476	1489
72	Bicyclogermacrene		6.7	-	-	-	1479	1482
73	Myristicin	0.8	-	2.9	46.1	35.4	1485	1482
74	γ-Amorphene		0.5	0.2	-	-	1495	NR
75	δ-Cadinene		0.3	0.5	-	-	1504	1514
76	Elemicin		5.2	31.3	5.6	3.1	1512	1518
77	cis-3-Hexenol benzoate		0.3	-	-	-	1532	1540
78	trans-Nerolidol	5.3	-	1.7	3.5	-	1538	1548
79	Spathulenol		5.7	0.2	-	-	1545	1564
80	Unknown		-	0.2	-	-	1547	-
81	Caryophyllene oxide		2.4	1.8	0.2	-	1550	1575
82	Methoxyeugenol		0.2	-	1.2	-	1551	1560
83	Globulol		0.2	-	-	-	1554	1570
84	Unknown		0.3	-	-	-	-	-
85	Viridiflorol		0.2	1.1	-	-	1562	1592
86	Guaiol		-	0.8	-	-	1569	1582
87	Humulene epoxide II		0.5	0.6	-	-	1574	1596
88	1-epi-Cubenol		0.4	0.1	-	-	1600	NR
89	allo-Aromadendrene epoxide		1.3	-	-	-	1606	NR

Stem bark 1: alive three
Stem bark 2: death three (without branch)

IR: Calculated or experimental, and literature retention indices

tr: Trace (< 0.1 %)

NR: not reported

alive and death trees were characterized respectively by terpinen-4-ol (14.9 % and 26.3 %), α-terpineol (17.5 % and 21.3 %), and myristicin (46.1 % and 35.4 %).

In accordance with Figure 2, the resin of Ocotea aff. O. caparrapi was represented by a high percentage of monoterpenes (hydrocarbons and oxygenated, ~ 51.2 % and 31.4 %); sesquiterpenes and propenylbenzenes contributed with a low percentage (5.3 % and ~ 0.8 %). The leaves were characterized by oxygenated monoterpenes (~ 51.8 %), in conjunction with propenylbenzenes (19.8 %) and sesquiterpenes (hydrocarbons and oxygenated, ~ 15.5 % and 11.3 %). The branch
The specific chemical composition of the volatile metabolites determined in the different parts of *Ocotea aff. O. caparrapi*. of interest, differed of the reports found about the others Colombian *Ocotea* spp. (*O. caparrapi*, *O. longifolia*, *O. macrophylla*), which were rich in nerolidol (92 %), caparrapi oxide (43 %), α-terpinolene (81 %), spathulenol (16 %), and γ-murolene (15 %)⁶, ²², ²⁴. However, the composition of the resin has some similarities with the reported by Delgado *et al.* ²⁵, from the oil of Cascarillo acquired in the market of the city of Arauca, (Colombia). α-Pinene (47.2 %), camphor (21.4 %), β-phellandrene (8.1 %), β-myrcene (7.2 %), and β-pinene (4.2 %) were the main components reported by Delgado *et al.* ²⁵, who indicated that the plant known as Cascarillo could be related to the species *O. barcellensis* (synonymy of *O. cymbarum*).

Myristicin (35.4-46.1 %), and methyleugenol (0.2-0.6 %), determined in the VF of stem bark from *Ocotea aff. O. caparrapi* were also detected in the EO from wood of *O. caparrapi* studied by O. González ³⁰. In addition, nerolidol, caparrapi oxide, and caparrapiol, have also been detected as biomarker compounds for this species ⁴, ⁶, ²⁰, ³¹.

A distinctive constituent of some *Ocotea* spp., e.g., *O. puchury-major*, and *O. pretiosa* (*Sasafras albidum*), has been safrole, which is found in high percentage in these plants (above 30 %) ⁵, ¹⁹, ³²-³⁴. However, in the species of interest (*Ocotea aff. O. caparrapi*), safrole was determined only at trace level in the volatile fraction of
Monoterpenes (MT), Oxygenated monoterpenes (O-MT), Alkyl benzenes (AKB), Oxygenated alkyl benzenes (O-AKB), Propenylbenzenes (Oxygenated allyl benzenes (O-ALB)), Oxygenated allyl benzenes-benzodioxole (O-ALB-BD)), Sesquiterpenes (ST), Oxygenated sesquiterpenes (O-ST), not identified compound (UND), (Stem bark1: alive three; Stem bark2: death three (without branch)).

Moreover, methyleugenol was the main component of leaves and branch bark for Ocotea aff. O. caparrapi (14.7 % y 31.1 %); nevertheless, the ethanol extract of wood from O. cymbarum contained some eugenol derivatives as dehydroeugenol, mono-methyldehydroeugenol and dehydrodieugenol, which were the majority components 35, 36.

Chemical composition reported for O. quixos was different of Ocotea sp. under study; thus, the essential oil of the flower calices from O. quixos was constituted by trans-cinnamaldehyde (28 %), cinnamic acid methyl ester (22 %), β-caryophyllene (15 %), acetic acid cinnamyl ester (11 %), and sabinene (8 %). This species has been evaluated about the antiplatelet, anticoagulant, anti-inflammatory, antioxidant, antimicrobial and anti-fungal properties 7, 8, 13, 14, 37, 38.

On the other hand, methyleugenol and elemicin, the main components detected for branch bark of Ocotea aff. O. caparrapi were also identified in other species such as Laurus nobilis (Lauraceae), Asiasarum sieboldi and Asarum cordifolium (Aristolochiaceae), Artemisia dracunculus (Asteraceae), Pseudaerva mulgraveana (Annonaceae), Croton malambo (Euphorbiaceae) and Ocimum campechianum (Lamiaceae) 39-44. Likewise, elemicin and myristicin were found in Ferula heuffelii, Heracleum pastinacifolium, and Heracleum transcaucasicum (Apiaceae), Piper krukoffii (Piperaceae), and Aristolochia acutifolia (Aristolochiaceae) 45-49.

Finally, the pharmacological properties and uses of the most abundant compounds identified in the
volatile fractions from *Ocotea aff. O. caparrapi* have been previously determined and reported in the scientific literature. Thus, the monoterpenoids terpinen-4-ol and α-terpineol are mildly irritating and non-sensitising, diuretics, antibacterial, sedatives, antiseptics and antiallergics. These compounds are used as ingredients in the flavor, perfumery and food industries 50-52.

The 2-propenylbenzene derivatives methyleugenol and elemicin are “suspected” of genotoxicity and carcinogenicity. However, methyleugenol has antinociceptive, antiseptic and insect attractant properties. This compound has been used as ingredient in the flavor and perfumery industries. Meanwhile, elemicin has insecticide, antifeedant and hypotensive activities and is used as starting material for the synthesis of antibacterial drug (trimethoprim), and in topic analgesic formulations 53-62.

The last compound, myristicin, a safrole derivative with a methoxy group attached at carbon 4, has interesting properties such as insecticide, wound healing, anticancer and psychodelic activities, and hepatoprotective function; and this compound has application as food flavoring. Some synthetic analogs from myristicin resulted more potent than the natural product podophyllotoxin 62-69.

Conclusions

In conclusion, this work is the first report on the chemical composition of the resin and the volatile fractions of aerial parts of “Cascarillo”, an *Ocotea* sp. from Toledo (Norte de Santander, Colombia). Furthermore, the high content of methyleugenol (31%), elemicin (31%) and myristicin (35% - 46%) determined in the branch/stem barks allowed us to estimate the potential of this species as a possible source of raw materials (compounds) for industries related (flavor, perfumery and food). Finally, the *Ocotea* sp. of our study would have unique features due to the presence and content of elemicin (without previous reports), which are attributable to the exceptional ecological conditions of the geographical area of collection.

Acknowledgements

The authors thank to Gerardo Aymard, Botanical Forest-Venezuelan, for their support in the preliminary taxonomic identification of botanical samples. A-MA thanks to Universidad del Norte, for the financial support through of the Strategic Area “Biodiversidad, Servicios Ecosistémicos y Bienestar Humano”. The authors thanks to the support of Colciencias (Patrimonio Autónomo Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación, Francisco José de Caldas), through the Grant RC-0572-2012; and thanks to Instituto de Estudios de la Orinoquia.

Abbreviations

Agencia Nacional de Licencias Ambientales (ANLA); Essential Oils (EO); Gas Chromatography coupled to Mass Spectrometry (GC-MS); Simultaneous Distillation-Extraction Technique (SDE); Total Ion Currents (TIC); Volatile Fractions (VF).

References

1. Van der Werff, H. (2002). A synopsis of *Ocotea* (Lauraceae) in central america and southern mexico. Ann. Missouri Bot. Gard. 89: 429-451.
2. Chaverri, C. and Cicci, J.F. (2005). Essential oil of trees of the genus *Ocotea* (Lauraceae) in Costa Rica. I. *Ocotea brenesii*. Rev. Biol. Trop. 53: 431-436.
3. Coutinho, D.F., Dias, C.S., Barbosa-Filho, J.M., Agra, M.F., Martins, R.M., Silva, T.M.S., da-Cunha, E.V.L., Silva, M.S. and Craveiro, A.A. (2007). Composition and molluscicidal activity of the essential oil from the stem bark of *Ocotea bracteosa* (Meisn.) Mez. J. Essent. Oil Res. 19: 482-484.
4. Lorenzo, D., Loayza, I., Leigue, L., Frizzo, C., Dellacassa, E. and Moyna, P. (2001). Asaricin, the main component of *Ocotea opifera* Mart. Essential oil. Nat. Prod. Lett. 15: 163-170.
5. De Lima, K.K., Moreira, J., Silva, E. and da Veiga-Junior, V. (2013). Chemical composition
and platelet aggregation activity of essential oils of two species of the genus *Ocotea* (Lauraceae).

6. Brooks, C.J.W. and Campbell, M.M. (1969). Caparrapi oxide, a sesquiterpene from caparrapi oil. Phytochemistry. 8: 215-218.

7. Sacchetti, G., Guerrini, A., Noriega, P., Bianchi, A. and Bruni, R. (2006). Essential oil of wild *Ocotea quixos* (Lam.) Kosterm. (Lauraceae) leaves from Amazonian Ecuador. Flavour Fragr. J. 21: 674-676.

8. Ballabeni, V., Tognolini, M., Giorgio, C., Bertoni, S., Bruni, R. and Barocelli, E. (2010). *Ocotea quixos* Lam. essential oil: In vitro and in vivo investigation on its anti-inflammatory properties. Fitoterapia. 81: 7778-7788.

9. Guerrini, A., Moreno, G., Sacchetti, G., Muzzoli, M., Medici, A., Besco, E. and Bruni, R. (2006). Composition of the volatile fraction of *Ocotea bofo* Kunth (Lauraceae) calyces by GC-MS and NMR fingerprinting and its antimicrobial and antioxidant activity. J. Agric. Food Chem. 54: 4778-4788.

10. Chaverri, C. and Ciccio, J.F. (2007). Essential oils from *Ocotea austinii* C. K. Allen (Lauraceae) from Costa Rica. J. Essent. Oil Res. 19: 439-443.

11. De Luca, A.N., Batista, J.M., López, S.N., Furlan, M., Cavalheiro, A.J., Siqueira, D.H., da Silva, V., Massayoshi, S. and Yoshida, M. (2010). Aromatic compounds from three Brazilian Lauraceae species. Quim Nova. 33: 321-323.

12. De Camargo, M.J., Dantas, M.L., Miyuki, C., Delphino, E., Rodrigues, F. and Silva W. (2013). Sesquiterpenos de *Ocotea lancifolia* (Lauraceae). Quim Nova. 36: 1008-1013.

13. Bruni, R., Medici, A., Andreotti, E., Fantin, C., Muzzoli, M., Dehesa, M., Romagnoli, C. and Sacchetti, G. (2004). Chemical composition and biological activities of Ishpingo essential oil, a traditional Ecuadorian spice from *Ocotea quixos* (Lam.) Kosterm. (Lauraceae) flower calyces. Food Chem. 85: 415-421.

14. Ballabeni, V., Tognolini, M., Bertoni, S., Bruni, R., Guerrini, A., Moreno, G. and Barocelli, E. (2007). Antiplatelet and antithrombotic activities of essential oil from wild *Ocotea quixos* (Lam.) Kosterm. (Lauraceae) calyces from Amazonian Ecuador. Pharmacol. Res. 55: 23-30.

15. Zschocke, S., Drewes, S.E., Paulus, K., Bauer, R. and van Staden, J. (2000). Analytical and pharmacological investigation of *Ocotea bullata* (black stinkwood) bark and leaves. J. Ethnopharmacol. 71: 219-230.

16. Figueredo, A.C., Barroso, J.G., Pedro, L.G. and Scheffer, J.J.C. (2008). Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragr. J. 23: 213-226.

17. Niño, J., Correa, Y.M. and Mosquera, O.M. (2011). In vitro evaluation of Colombian plant extracts against Black Sigatoka (*Mycosphaerella fijiensis* Morelet). Arch. Phytopathol. Pfl. 44: 791-803.

18. Vermeulen, W.J., Geldenhuys, C.J. and Esler, K.J. (2012). Response of *Ocotea bullata*, *Curtsisia dentata* and *Rapanea melanophloeos* to medicinal bark stripping in the southern Cape, South Africa: implications for sustainable use. South Forests. 74: 183-193.

19. Leporatti, M.L., Pintore, G., Fodda, M., Chessa, M., Piana, A., Petretto, G.L., Masia, M.D., Mangano, G. and Nicoletti, M. (2013). Chemical, biological, morphoanatomical and antimicrobial study of *Ocotea puchury-major* Mart. Nat. Prod. Res: Formerly Natural Product Letters. 28: 294-300.

20. Borges, J., Brooks, C.J.W. and Campbell, M.M. (1966). Caparrapidiol and caparrapitriol. Tetrahedron Lett. 31: 3731-3736.

21. Ohloff, G. (1978). Recent development in the field of naturally-occurring aroma components In: Fortschritte der Chemie Organischer Naturstoffe/Progress in the Chemistry of Organic Natural
22. Palomino, E., Maldonado, C., Kempff, M.B. and Ksebati, M.B. (1996). Caparratriene, an active sesquiterpene hydrocarbon from Ocotea caparrapi. J. Nat. Prod. 59: 77-79.

23. Coy-Barrera, E.D., Cuca-Suárez, L.E., and Sefkow, M. (2009). PAF-antagonistic bicyclo[3.2.1] octanoid neolignans from leaves of Ocotea macrophylla Kunth. (Lauraceae). Phytochemistry. 70: 1309-1314.

24. Prieto, J.A., Pabón, L.C., Patino, O.J., Delgado, W.A. and Cuca, L.E. (2010). Chemical constituents, insecticide and antifungal activities of the essential oils of leaves of two Colombian species of ocotea genus (lauraceae). Rev. Colomb. Quim. 39(2): 199-209.

25. Delgado, W.A., Cuca, L.E. and Caroprese, J.F. (2016). Chemical composition of essential oil of Ocotea cymbarum Kunth (cascarilla and/or sassafras) from the Orinoquia region. Rev. Cubana Plant Med. 21(3): 248-260.

26. Godfroot, M., Sandra, P. and Verzele, M. (1981). New method for quantitative essential oil analysis. J. Chromatogr. A. 203: 325-335.

27. Joulian, D. and König, W.A. (1998). The atlas of spectral data of sesquiterpenes hydrocarbons. E.B.-Verlag, Hamburg, pp.

28. Adams, R.P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publishing Co. Carol Stream, Illinois.

29. Online Archive of National Institute of Standards and Technology [Available from: http://webbook.nist.gov/chemistry]. (2015). Department of Commerce. U.S.

30. González, O. (1979). Extracción y caracterización de algunos componentes presentes en los aceites de la madera de Ocotea caparrapi [dissertation]. Universidad Nacional de Colombia. Bogotá, (CO).

31. Uyanik, M., Ishihara, K. and Yamamoto, H. (2005). Biomimetic synthesis of acid-sensitive (-) and (+)-caparrapi oxides, (-) and (+)-8-epicaparrapi oxides, and (+)-dysifragin induced by artifical cyclases. Bioorgan. Med. Chem. 13: 5055-5065.

32. Bakkali, F., Averbeck, S., Averbeck, D. and Idaomar, M. (2008). Biological efects of essential oils - A review. Food Chem. Toxicol. 46: 446-475.

33. Vieira, R.F., Bizzo, H.R. and Deschamps C. (2010). Genetic resources of aromatic plants from Brazil. Isr. J. Plant Sci. 58: 263-271.

34. Castro, R.D. and Lima, E.O. (2011). Atividade antifúngica dos óleos essenciais de sassafrás (Ocotea odorifera Vell.) e alecrim (Rosmarinus officinalis L.) sobre o gênero Candida. Rev. Bras Pl. Med. Botucatu. 13: 203-208.

35. De Diaz, A.M.P., Gottlieb, H.E. and Gottlieb, O. (1980). Dehydrodieugenols from Ocotea cymbarum. Phytochemistry. 19: 681-682.

36. Andrei, C.C., Braz-Filho, R. and Gottlieb, O.R. (1988). Allylphenols from Ocotea cymbarum. Phytochemistry. 27: 3992-3993.

37. Tognolini, M., Barocelli, E., Ballabeni, V., Bruni, R., Bianchi, A., Chiavarini, M., Impicciatore, M. (2006). Comparative screening of plant essential oils: Phenylpropanoid moiety as basic core for antiplatelet activity. Life Sci. 78: 1419-1432.

38. Pérez, S., Zavala, M., Arias, L. and Ramos, M. (2011). Anti-inflammatory activity of some essential oils. J. Essent. Oil Res. 23: 38-44.

39. Hashimoto, K., Yanagisawa, T., Okui, Y., Ikeya, Y., Maruno, M. and Fujita, T. (1994). Studies on anti-allergic components in the roots of Asiasarum sieboldii. Planta Med. 60: 124-127.

40. Brophy, J.J., Goldsack, R.J., Hook, J.M., Fookes, C.J.R., Forster, Pl. (2004). The leaf essential oils of the australian species of Pseuduvaria (Annonaceae). J. Essent. Oil Res. 16: 362-366.

41. Nabiha, B., Abdelfateh, E.O., Fatheen, K., Paul, W.J., Michel, M. and Moncef, C.M. (2009).
Chemical composition and antioxidant activity of Laurus nobilis floral buds essential oil. J. Essent. Oil Bearing Plants. 12: 694-702.

42. Zawislak, G. and Dzida, K. (2012). Composition of essential oils and content of macronutrients in herbage of tarragon (Artemisia dracunculus l.) grown in south-eastern poland. J. Elem. 17: 721-729.

43. Thai, T.H., Bazzali, O., Hoi, T.M., Tuan, N.A., Tomi, F., Casanova, J. and Bighelli, A. (2013). Chemical composition of the essential oils from two vietnamese Asarum species: A. glabrum and A. cordifolium. Nat. Prod. Commun. 8: 235-238.

44. Muñoz-Acvedo, A., Puerto, C.E., Rodríguez, J.D., Aristizábal-Córdoba, S. and Kouznetsov, V. (2014). Estudio químico-biológico de los aceites esenciales de Croton malambo H. Karst y su componente mayoritario, metileugenol. Bol. Latinoam Caribe. 13: 336-343.

45. Palmeira, S.F., Conserva, L.M., Andrade, E.H.D. and Guilhon, G.M.S.P. (2001). Analysis by GC-MS of the hexane extract of the aerial parts of Aristolochia acutifolia Duchtr. Flavour Frag. J. 16: 85-88.

46. Grosso, C., Teixeira, G., Gomes, I., Martins, E.S., Barroso, J.G., Pedro, L.G. and Figueiredo, A.C. (2009). Assessment of the essential oil composition of Tornabenea annua, Tornabenea insularis and Tornabenea tenuissima fruits from Cape Verde islands. Biochem. Syst. Ecol. 37: 474-478.

47. Firuzi, O., Asadollahi, M., Gholami, M. and Javidnia, K. (2010). Composition and biological activities of essential oils from four Heracleum species. Food Chem. 122: 117-122.

48. Da Silva, J.K.R., Andrade, E.H.A., Kato, M.J., Carreira, L.M.M., Guimaraes, E.F. and Maia, J.G.S. (2011). Antioxidant capacity and larvicidal and antifungal activities of essential oils and extracts from Piper krukoffii. Nat. Prod. Commun. 6: 1361-1366.

49. Pavlovic, I., Petrovic, S., Radenkovic, M., Milenkovic, M., Couladis, M., Brankovic, S., Drobac, M.P. and Niketic M. (2012). Composition, antimicrobial, antiradical and spasmyolytic activity of Ferula heuffelii Griseb. ex Heuffel (Apiaceae) essential oil. Food Chem. 130: 310-315.

50. Opdyke, D.L.J. (1979). Methyleugenol. In: Monographs on Fragance Raw Materials. A collection of Monographs Originally Appearing in Food and Cosmetics Toxicology. Pergamon Press, UK; p. 555.

51. Gao, Y.Y. and Tseng, S. (2006). Method for treating ocular demodex. United States patent, (US). 8440240 B2.

52. Burdock, G.A. (2009). Fenaroli’s Handbook of Flavor Ingredients, Sixth Edition. CRC Press.

53. Kumar, A., Narayan, S. and Tava, A. (1997). Composition of Cymbopogon pendulus (Ness ex Steud) Wats, an elemicin-rich oil grass grown in jammu region of India. J. Essen. Oil Res. 9: 561-563.

54. Tisserand, R. and Balacs, T. (1999). Essential Oil Safety. A Guide for Health Care Professionals. Edinburgh: Churchill Livingstone.

55. De Vincenzi, M., de Vincenzi, A., Silano, M. (2004). Constituents of aromatic plants: elemicin. Fitoterapia. 75: 615-618.

56. White, J., Cook, P.J., Nkomo, J.E. and Gudz, N.G. (2007). Multi-component Insect Attractant. United States patent, (US). 20070292467 A1.

57. Flugge-Berendes, L.A., Wenzel, S.W., Cunningham, C.T., Joseph, P.R., Kruchoski, B.J. and Shannon, T.G. (2008). Skin cooling compositions. United States patent, (US). 20080085290 A1.

58. Al-Subeihi, A.A., Alhusainy, W., Paini, A., Punt, A., Vervoort, J., van Bladeren, P.J. and Rietjens, I.M. (2013). Inhibition of methyleugenol bioactivation by the herb-based constituent nevadensin and prediction of possible in vivo consequences using physiologically based kinetic
modeling. Food Chem. Toxicol. 59: 564-71.
59. **La Grange, M.J. (2013).** Synthesis of elemicin and topical analgesic compositions. World Intellectual Property Organization, (WO). 2013133723 A1.
60. **Williams, G.M., Iatropoulos, M.J., Jeffrey, A.M., Duan, J.D. (2013).** Methyleugenol hepatocellular cancer initiating effects in rat liver. Food Chem. Toxicol. 53:187-96.
61. **Sipe, H.J., Jr., Lardinois, O.M. and Mason, R.P. (2014).** Free radical metabolism of methyl-eugenol and related compounds. Chem. Res. Toxicol. 27: 483-489.
62. **Online Archive of Human Metabolome Database. (2015).** [Available from: http://www.hmdb.ca/metabolites/HMDB35873]. Canadian Institutes of Health Research. Canadá.
63. **Zheng, G.Q., Kenney, P.M., Zhang, J. and Lam, L.K.T. (1992).** Inhibition of benzo[a]pyrene-induced tumorigenesis by myristicin, a volatile aroma constituent of parsley leaf oil. Carcinogenesis. 13: 1921-23.
64. **Lee, H.S., Jeong, T.C. and Kim, J.H. (1998).** *In vitro and in vivo* metabolism of myristicin in the rat. J. Chromatogr. B Biomed. Sci. Appl. 705: 367-372.
65. **Henrich, V.C. and Weinberger, C.A. (2005).** Compounds that act to modulate insect growth and methods and systems for identifying such compounds. United States patent, (US). 20050049230 A1.
66. **Franke, P. and Roessling, G. (2008).** Medicinal composition for treating animal skin comprising a wound healing agent and a deterrent. World Intellectual Property Organization, (WO). 200808 0980 A1.
67. **Semenova, M.N., Kiselyov, A.S., Tsyganov, D.V., Konyushkin, L.D., Firgang, S.I., Semenov, R.V., Malyshev, O.R., Raihstat, M.M., Fuchs, F., Stielow, M., Philchenkov, A.A., Zavelevich, M.P., Zefirov, N.S., Kuznetsov, S.A. and Semenov VV. (2011).** Polyalkoxybenzenes from Plants. 5. Parsley Seed Extract in Synthesis of Azapodophytoxins Featuring Strong Tubulin Destabilizing Activity in the Sea Urchin Embryo and Cell Culture Assays. J. Med. Chem. 54: 7138-7149.
68. **Boulogne, I., Petit, P., Ozier-Lafontaine, H., Desfontaines, L. and Loranger-Merciris, G. (2012).** Insecticidal and antifungal chemicals produced by plants: a review. Environ. Chem. Lett. 10: 325-347.
69. **Lim, H.J., Woo, K.W., Lee, K.R., Lee, S.K. and Kim, H.P. (2014).** Inhibition of proinflammatory cytokine generation in lung inflammation by the leaves of *Perilla frutescens* and its constituents. Biomol. Ther. 22: 62-67.