Characterization of Carbapenem Resistant Acinetobacter baumannii causing Ventilator associated Pneumonia in ICUs of Zagazig University Hospitals, Egypt

Ghada E. Amr¹* and Ghada M. Abdel Razek²

¹Departments of Clinical Pathology, Faculty of Medicine, Zagazig University, Egypt
²Anaesthesia and Intensive Care, Faculty of Medicine, Zagazig University, Egypt

*Corresponding author

ABSTRACT

Ventilator associated pneumonia (VAP) affects approximately 30% of intubated mechanically ventilated patients in intensive care units (ICUs) worldwide. Acinetobacter baumannii causing VAP is often resistant to a wide variety of antibiotics including carbapenems that have been considered the drug of choice for the treatment for this infection. To characterize A. baumannii as a cause of VAP in our ICUs and to study its incidence, antimicrobial resistant profile and to investigate the presence of carbapenem hydrolyzing class D β-lactamase genes as a cause of carbapenem resistance among the studied isolates. A total of 44 A. baumannii isolates were recovered from 135 endotracheal aspirate samples of VAP patients. A. baumannii were identified by Matrix-assisted laser desorption ionization–time of flight mass spectrometry and its antimicrobial susceptibility was investigated by VITEK 2 instrument and E test. class D β-lactamase genes were investigated by multiplex PCR technique. All A. baumannii isolates were multidrug resistant;75% were resistant to carbapenems while colistin remains the most active compound among the studied isolates with sensitivity rate of 93.2%. Multiplex PCR results showed that all A. baumannii isolates were positive for blaOXA-51-like gene while 69.7% of carbapenems resistant isolates were positive for blaOXA-23 like gene,blaOXA-58 and blaOXA-24 like genes were not detected in any of the studied isolates. This study highlights the emergence of carbapenem resistant A. baumannii as a cause of VAP in our ICUs that was mostly due the presence of blaOXA-23 like gene.

Keywords
Acinetobacter baumannii, blaOXA-23, VAP.

Article Info
Accepted: 26 November 2016
Available Online: 10 December 2016

Introduction

Ventilator-associated pneumonia (VAP) is a common serious healthcare-associated infection among patients in intensive care units (ICUs) who have endotracheal intubation or a tracheostomy for mechanical ventilation, affecting an estimated 10–30% of ventilated patients worldwide (Bantar et al., 2008). Acinetobacter baumannii (A. baumannii) is an important opportunistic pathogen associated with ventilator-associated pneumonia and other variety of nosocomial infections in ICUs as central
line-associated bloodstream infections, urinary tract infections and wound infections (Peleg et al., 2008). Multidrug-resistant (MDR) A. baumannii isolates have been increasingly reported worldwide that are associated with an enhanced risk of mortality and prolonged durations of hospitalization (Antunes et al., 2014, Lemos et al., 2014).

Carbapenems (e.g., imipenem, meropenem) have historically retained the best antibacterial activity and are considered as the treatment of choice for this pathogen however nowadays clinicians are very concerned for the carbapenemase producer A. baumannii, the increasing rates of this resistance worldwide limit the range of therapeutic alternatives (Dai et al., 2013).

Carbapenem resistance in A. baumannii is most commonly caused by the production of carbapenemases; enzymes belonging to Ambler classes B, A and D (Bush and Jacoby, 2010). The most prevalent mechanism is carbapenem hydrolyzing class D β-lactamases (CHDLs) that can be divided into four main subgroups including OXA51, OXA 23, OXA24 and OXA 58, which are encoded by the intrinsic blaOXA-51-like and the acquired carbapenemase genes including blaOXA-23-like, blaOXA-24-like and blaOXA-58-like genes respectively (Poirel and Nordmann, 2006, Merkier and Centron, 2006).

The aim of this study was to characterize A. baumannii as a major cause of VAP in patients admitted to the ICUs of Zagazig University hospitals and to investigate its incidence, illustrate its antimicrobial resistance pattern and the genetic mechanisms of resistance involved in carbapenam resistant isolates by investigating the presence of blaOXA-51, blaOXA-23, blaOXA-24, blaOXA-58 like gens.

Materials and Methods

A total of 44 A. baumannii isolates were recovered from 135 endotracheal aspirate samples of patients with VAP admitted to the ICUs of Zagazig University Hospitals over 18 months period (September 2014 to February 2016). Approval for this study was obtained from Research Administration and Research Ethics Committee of Faculty of Medicine, Zagazig University. The collected samples were transported to the microbiology laboratory and inoculated on Mac Conkey agar, blood agar and chocolate agar plates that incubated in aerobic, CO2 condition at 37°C for 24-48 hours.

Identification

All the organisms were identified by Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) using the VITEK MS system (Biomerieux. Inc, Durham, USA). A. baumannii isolates were further investigated by:

Antibiotic susceptibility testing

Antibiotic susceptibility testing was carried out using Vitek 2 System (card no 222) for Gram negative bacilli (Biomerieux. Inc, Durham, USA) in accordance with the guidelines of the Clinical and Laboratory Standards Institute (CLSI, 2012), the following antibiotics were included: amikacin, aztreonam, cefepime, ceftazidime, ciprofloxacin, colistin, gentamicin, imipenem, meropenem, minocyclin, pefloxacin, piperacillin, piperacillin/tazobactam, rifampicin, ticarcillin, ticarcillin/clavulanic acid, tobramycin, and sulfamethoxazole. Susceptibility of A. baumannii isolates to imipenem and meropenem was confirmed Etest strips (Biomerieux, France) that were performed according to the manufacturer’s instructions.
PCR

All A. baumannii isolates were analyzed by multiplex PCR to detect blaOXA-51-like, blaOXA-23-like, blaOXA-24-like and blaOXA-58-like genes as follow:

DNA was extracted from isolated A. baumannii colonies by using QIAamp® DNA Mini kit (Qiagen GmbH, Germany), for DNA amplification Qiagen multiplex plus kit (Qiagen, Hilden, Germany) were used as described by the manufacture. PCR amplification conditions were as follows: initial denaturation at 94°C for 3 mins followed by 30 cycles of amplification. Each cycle consists of 25 s at 94°C, 40 s at 52°C and 50 s at 72°C with a final extension of 5 min at 72°C. The amplified PCR products were visualized on 2 % agarose gel stained with ethidium bromide and examined under ultraviolet light; the molecular size marker is a 100-bp ladder (NEB, Frankfurt am Main, Germany). A single DNA band at 353 bp was recorded as positive for the blaOXA-51-like gene and at 501 bp was recorded as positive for the blaOXA-23-like gene, for blaOXA-58 like and blaOXA-24 like genes bands were expected to be at599 bp and 246 bp respectively. Primers used in this study are shown on table 1.

Statistical analysis

Data were analyzed using SPSS 20. Chi Square was used to compare categorical variables. P value of 0.05 was considered statistically significant

Results and Discussion

A. baumannii was the most common isolated organism from endotracheal aspirate samples of all VAP patients (44/135) 32.6%, followed by Klebsiella 23.7% (32/135), Staphylococci 22.2% (30/135), Pseudomonas 14.8% (20/135), E. coli which represent 6.7%(9/135).

Hospitalization for more than 14 days, prior use of antibiotics were identified as significant risk factors for A. baumannii resistant to carbapenems (P0.016, P0.012 respectively), while age and sex were not significant risk factors (table 2)

Antimicrobial susceptibility

The resistant rate of carbapenem resistant A. baumannii (CRAB) to impenim was 75% (33) and to meropenim was72.7%. All A. baumannii showed 100% resistant to cefepime, ceftazidime, aztreonam, pipracillin and trimethoprim/ sulfemethoxazole. The resistance to antibiotics were as follow in a descending order: pipracillin/ tazobactam95.5% (42), ticarcillin 93.2% (41), ticarcillin/clavulanic acid 88.6%,(39), ciprofloxacin88%,(39), pefloxacin 84.1% (37), gentamycin 75% (33), tobramycin 72.7 % (42), minocycline 70% (31), amikacin 57%(25), rifampicin 34.1% (15),colistin 6.8%(3). Percentages of antimicrobial resistance among the studied A. baumannii isolates are illustrated in (figure 1).

Colistin was the most active antibiotic against isolated A. baumannii (sensitivity was 93.2%). All A. baumannii isolates (100%) were multidrug resistant (MDR). These isolates sensitivity results to imipenem and meropemem were confirmed by E test and reported as resistant when MIC> 16 g/ml.

Molecular analysis of carbapenem resistance genes by PCR

All the 44 A. baumannii isolates were positive for the blaOXA-51-like gene (100%), among 33 impenim resistant isolates there
were 23 (69.7%) positive isolates for blaOXA-23-like gene, while 10 (30.3%) were not carrying this gene. On the other hand 11 (25%) sensitive isolates to imipenem were also negative to blaOXA-23 gene. None of A. baumannii isolates were positive for blaOXA-24 or blaOXA-58 like genes.

Nowadays VAP is one of the most common infections in the intensive care units (ICUs), increasing the length of stay of patients in these units, the cost of the treatment, and the risk of death. (Baxter, 2005).

A. baumannii has probably been the most frequently isolated bacterium from patients with VAP around the world (Garnacho-Montero, 2005). This organism has emerged as one of the most problematic pathogens for healthcare institutions worldwide. Carbapenems remain the antibiotics of choice to treat A. baumannii due to both a wider spectrum of antibacterial activity and less frequent side effects. The development of resistance did not spare even this group of antimicrobial drugs that is largely due to the selective pressure from antimicrobials especially in ICUs, in addition to its incredible ability to acquire resistance (Fouad et al., 2013). Early detection of such resistance can help the clinician in managing infections, prevent the toxic adverse effect of different antimicrobial agents that may be caused by different trials of empirical treatment and also limit the spread of infections.

In this study, A. baumannii represented the predominant isolated organism from endotracheal aspiration samples of VAP patients (32.6%), this result was in agreement with many studies as that of Rit et al., (2014) and Chawla (2008) who reported that A. baumannii was the most common pathogen in VAP in Pakistan, India, Thailand and Malaysia however, other organisms were often responsible for VAP in Korea and Taiwan Chawla (2008). The difference in incidences of isolated organisms may be due to different communities, different hospital wards and different strategies of infection control applications among countries.

In this study the risk factors that significantly associated with increase infection with carbapenem resistant A. baumannii (CRAB) in VAP patients were include; hospital stay > 14 days and prior use of antibiotics. This is similar to results of studies carried out by several investigators as Özgür et al. (2014), Marie et al. (2012), Robertino et al. (2010), they concluded that longer periods of hospitalization, and prior use of antibiotics are the recognized factors increasing the risk of VAP due to multidrug and imipenim resistant Acinetobacter infection. On the other hand, there were no statistical significant differences regarding age and sex and presence of CRAB in VAP patients, the same finding concerning age of patients was reported by (Fattouh et al., 2014).

This study revealed that CRAB rates to imipenim, meropenim were relatively high as the resistant rates to imipenim was 75% and to meropenim was 72.7%, these results were in agreement with the results of other studies done in Egypt as that of AlHassan et al. (2013) who reported that A. baumannii isolates resistant rates were 73% to imipenim and / or meropenem, (Al-Agamy et al., 2014) reported that the resistant rates were 70% to imipenim, other authors also concluded that High resistance rates to carbapenems have been observed in Egypt, ranging from 75% to 100% for imipenem and from 61% to 77% for meropenem (Mohamed et al., 2011; Ahmed et al., 2011; Fouad et al., 2013). A. baumannii resistant rate to imipenem was found to be 65% in
Saudi Arabia, 95% in Turkey, 47.9% in Algeria, 45% in Tunisia, and 19.14% in Kuwait (Al agamy et al., 2013; Cicek et al., 2013; Bakour et al., 2013; Ben othman, 2007; Al Sweih et al., 2012). The increased rates of resistant to carbapenems are most probably due uncontrolled extensive use of these drugs.

All A. baumannii isolates were multiple drug resistant (MDR) strains based on resistance to more than two antibiotic groups, these result is consistent with Cherkaoui et al., 2015. Many authors also reported about MDR A. baumannii as Pleg et al., 2008, Cicek et al., 2014. None of the studied isolate was pan drug resistant strain. The same also reported by Cicek et al., 2014.

The present study found 100% resistant isolates to cefepime, ceftazidime aztreonam, pipracillin and trimethoprim/ sulfemethoxazole, less resistant to pipracillin/ tazobactam, ticarcillin, ticarcillin/clavulanic acid, ciprofloxacin, pefloxacin, gentamycin, tobramycin, minocycline, amikacin, rifampicin and colistin. This results was consistent to some extent with previous studies carried out in Egypt by Al Agamy et al. 2014, Nasr and Attalla, 2012 and Mohamed et al., 2011 and they concluded that A. baumannii isolates in their studies were 100% resistant to third and fourth generation cephalosporins and variable results of resistance concerning other antibiotics.

We found that colistin was the most effective antibiotic against A. baumannii causing VAP infection as its sensitivity rate was 93.2% and it had the least resistant rate (6.8%) among 18 different antibiotic used for antimicrobial sensitivity test. This result is in agreement with a previous Egyptian study by Al-Agamy et al., 2014 who reported that the percentage of colistin susceptibility was 95%. Also our finding is consistent with the finding of other studies that reported A. baumannii isolates were 100% sensitive to colistin such as Fouad et al., (2013), Josheghani et al., (2016), Cherkaoui et al., (2015), Cicek et al., (2013), Abdalhamid et al., (2014). There is tendency to increase using colistin in treatment of VAP caused by A. baumannii as it currently most effective drug (Aydemir et al., 2013; Jean & Hsueh, 2011). The colistin resistance rate is relatively low may be because its infrequent use (Al-Agamy et al., 2014).

On the other hand some studies reported lower rates of colistin sensitivity as one study in Egypt by Mohamed et al., (2011) as they reported it was 82.2% and while in Saudia Arabia it was 70.9% (Al-Agamy et al., 2013).

The most prevalent resistant mechanism in CRAB isolates is carbapenem hydrolyzing class D \(\beta \)-lactamases (CHDLs) that can be divided into four main subgroups, and encoded by intrinsic \(\text{bla}_{OXA-51} \)-like gene and the acquired carbapenemase genes including \(\text{bla}_{OXA-23} \)-like, \(\text{bla}_{OXA-24} \)-like, \(\text{bla}_{OXA-58} \)-like genes (Adams-Haduch et al., 2006).

In this study \(\text{bla}_{OXA-23} \)-gene was most common virulent oxacillinase gene detected among carbapenem resistant A. baumannii, this in agreement with many studies reported that \(\text{bla}_{OXA-23} \) was the most frequent type of carbapenemase identified (Al agamy et al., 2013; Cicek et al., 2013; Abbot et al., 2013; Al Hassan et al., 2013; Fouad et al., 2013). The percentage of \(\text{bla}_{OXA-23} \)-like gene detected in impenem resistant isolates were 69.7% (23/33), this result is in agreement with Zowawi et al., 2015; Luo et al., 2015, different percentages of presence of \(\text{bla}_{OXA-23} \)-like gene were reported in Egypt as 50% (Al Agamy et al., 2014), 52.9% (Al Hassan
et al., 2013), 100% by Fouad et al. 2013, and others also reported all over the world as those reported by Cherkaoue et al., 2015 (51.8%), Val et al., 2015 (85%), 85.7% ElAbd et al., 2014 and 100% Rolain et al., 2016.

None of the impenem resistant isolates were positive for blaOXA-23-like or blaOXA-58-like genes this result was in agreement with Rolain et al., (2016). However blaOXA-58-like, and blaOXA-24/40-like genes were detected in lower rate than of blaOXA-23-like genes in many studies in Egypt as that by Al Agamy et al., (2014) who reported that A. baumannii carrying blaOXA-58-like gene were 5% and that carrying blaOXA-24/40-like gene is 7.5%, and another study by AlHassan et al.(2013) reported that the percentage of blaOXA-40, and blaOXA-58 were 2.9%, and 14.7%, respectively.

However carbapenem resistance of A. baumannii has mostly related to the production of blaOXA-58 in other countries as Italy and Turkey (Metan et al., 2013, Migliavacca et al., 2013).

Moreover blaOXA-24-like gene was detected with variable rates in many countries as Saudi Arabia from 4-45% (Al agamy, 2014, Al Arfaj, 2011), Poland (Nowak et al., 2012), Spain (Villalon, 3013) and in United states (Qi et al., 2007).

Table.1 Primer used for detection of genes encoding oxacillinases in A. baumannii isolates

Primer	Nucleotide Sequence (5’—3’)	Amplicon size
OXA-23F	GATCGGATTGGAGAACCAGA	501
OXA-23R	ATTTCTGACCCGCATTCCAT	
OXA-51F	TAATGCTTTTGATCGGCTTGG	353
OXA-51R	TGGATTGCACCTCAGCTTGG	
OXA24 F	GGTAGTGGGCCCCCTTAAA	246
OXA24 R	AGTTGAGCGAAAAAGGGGATT	
OXA58F	AAGTATTGGGGCTTGCTG	599
OXA58R	CCCCTCTGCGCTCTACATAC	

Table.2 Risk factors associated with isolation of imipenem sensitive and resistant A. baumannii among VAP patients

Risk factors	Imipenem resistant A. baumannii(33)	Imipenem sensitive A. baumannii(11)	X²	P value		
	No.	%	No.	%		
Age	14	42.4%	5	45.5%	0.32	0.86
< 40	19	57.6%	6	54.5%		
Length of hospital stay:	1	3%	3	27.3.1%	5.73	0.016*
<14days	32	97%	8	72.7%		
>14days						
Prior use of antibiotics	29	87.9%	5	45.5%	6.21	0.012*
Yes	4	12.1%	6	54.5%		
No						
Sex	16	48.5%	5	45.5%	0.03	0.86
Male	17	51.5%	6	54.5%		
Female						

* Significant
Fig.1 Percentages of antimicrobial resistance among *A. baumannii* isolates

![Graph showing percentages of antimicrobial resistance among *A. baumannii* isolates.](image)

Fig.2 Multiplex PCR results of some *A. baumannii* isolates show intrinsic *bla*OXA-51-like gene at 353 (lanes 1 to 4) and the acquired *bla*OXA-23-like gene at 501 bp (lanes 2 to 4).

![Multiplex PCR results showing *bla*OXA-51 and *bla*OXA-23 genes.](image)
These variable rates of detecting different types of oxacillinases are mostly due to different antibiotic treatment strategy that may affect the evolutionary direction of *A. baumannii*.

All of the studied isolates including carbepenem sensitive and resistant strains were carrying *bla*_{OXA-51}-like gene (100%), this in agreement with El Abd *et al.*, 2014 and many other author as Howard *et al.*, 2012; Lee *et al.*, 2012 who concluded that this gene occur naturally in *A. baumannii* and it is chromosomally located and widely prevalent and it can be used as a supplementary tool to identify *A. baumannii* at species level.

In this study there were 33 carbapenem resistant strains 23 of them were carrying both *bla*_{OXA-51}-like gene and *bla*_{OXA-23}-like gene. There were 11 resistant strains carrying only *bla*_{OXA-51}-like gene and no other CHDLs genes detected, this may be due to presence of other resistance mechanisms as acquisition of *met allo* β-lactamases.

This study had some limitation as a relatively small number of *A. baumannii* that was due to low numbers of VAP cases in comparison to other types of pneumonia admitted in our hospitals during the period of study. Other limitation of this study is being it is a single center study and our finding may not be applied to other hospitals in Egypt.

Multicenter molecular based epidemiological studies of *A. baumannii* with longer surveillance duration are recommended for better understanding of the prevalence and distribution of the carbapenemase genes, that can help in prevention of the spread of carbapenem resistant *A. baumannii* in Egyptian hospitals and support the determination of priorities for local intervention actions. Also careful choice of empirical antimicrobial agent in VAP patients should be of great concern.

In conclusion, this study highlights multidrug resistant *A. baumannii* as the main cause VAP in our ICUs. Carbapenem resistance was significant in the studied isolates; the most common gene responsible for this resistance was *bla*_{OXA-23}-like gene. Colistin is the most effective antimicrobial agent against the studied isolates. The recovery of these resistant strains for the first time is emerging threat in our hospitals, as it will contribute in increasing patient hospital stay and associated costs; also it will lead to some difficulties in choice of empirical treatment in VAP patients. Monitoring the use of carbapenems and strict infection control measures are required for controlling the spread of the resistance and for optimizing the treatment of patients with *A. baumannii*.

Conflict of interest

The authors declare no conflict of interest

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sector.

Abbreviations

VAP: Ventilator-associated pneumonia, MALDI-TOF MS: Matrix-assisted laser desorption ionization–time of flight mass spectrometry, MDR: multidrug-resistant, CRAB: carbapenem resistant *A. baumannii*, CHDLs: hydrolyzing class D β-lactamases

References

Abbott, I., Cerqueira, G.M., Bhuiyan, S., Peleg, A.Y. 2013. Carbapenem resistance in *Acinetobacter baumannii*: laboratory challenges, mechanistic
insights and therapeutic strategies. *Expert. Rev. Anti. Infect. Ther.*, 1, 395–409.

Abdalhamid, B., Hassan, H., Itbaileh, A., Shorman, M., 2014. Characterization of carbapenem-resistant *Acinetobacter baumannii* clinical isolates in a tertiary care hospital in Saudi Arabia. *New Microbiologica*, 37, 65–73.

Adams-Haduch, J.M., Paterson, D.L., Sidjabat, H.E., et al. 2008. Genetic basis of multidrug resistance in *Acinetobacter baumannii* clinical strains at a tertiary medical center in Pennsylvania. *Antimicrob. Agents Chemother.*, 52, 3837–3843.

Ahmed, S.H., Abdelwahab, S.F., Hasanen, A.M., Mohammed, D.S., 2011. Multidrug resistant Egyptian isolates of *Acinetobacter baumannii*. *J. Am. Sci.*, 7, 1013–9.

Al-Agamy, M.H., Khalaf, N.G., Tawfick, M.M., Shibl, A.M., El Kholy, A., 2014. Molecular characterization of carbapenem-insensitive *Acinetobacter baumannii* in Egypt. *Int. J. Infect. Dis.*, 14, 22:49-54.

Al-Agamy, M.H., Shibl, A.M., Ali, M.S., Khubnani, H., Radwan, H.H., Livermore, D.M., 2013. Distribution of β-lactamases in carbapenem-non-susceptible *Acinetobacter baumannii* in Riyadh, Saudi Arabia. *J. Glob. Antimicrob. Res.*, 2(1), 17–21.

Al-Arfaj, A.A., Ibrahim, A.S., Somily, A.M., Al-Salamah, A.A., 2011. Genetic basis of carbapenem resistance in *Acinetobacter baumannii* clinical isolates in Saudi Arabia. *Afr. J. Biotech.*, 10, 14186-96.

Al-Hassan, L., El Mehallawy, H., Amyes, S.G., 2013. Diversity in *Acinetobacter baumannii* isolates from pediatric cancer patients in Egypt. *Clin. Microbiol. Infect.* 19(11), 1082-8.

Al-Sweih, N.A., Al-Hubail, M., Rotimi, V.O., 2012. Three distinct clones of carbapenem-resistant *Acinetobacter baumannii* with high diversity of carbapenemases isolated from patients in two hospitals in Kuwait. *J. Infect. Public. Health*, 5, 102–8.

Antunes, L., Visca, P., Towner, K.J., 2014.*Acinetobacter baumannii*: evolution of a global pathogen. *Pathog. Dis.*, 71, 292–301.

Aydemir, H., Akduman, D., Piskin, N., Comert, F., Horuz, E., Terzi, A., Kokturk, F., Ornek, T., Celebi, G., 2013. Colistin vs. the combination of colistin and rifampicin for the treatment of carbapenem-resistant *Acinetobacter baumannii* ventilator-associated pneumonia. *Epidemiol. Infect.*, 141, 1214–1222.

Bakour, S., Touati, A., Sahli, F., Ameur, A.A., Haouchine, D., Rolain, J.M., 2013. Antibiotic resistance determinants of multidrug-resistant *Acinetobacter baumannii* clinical isolates in Algeria. *Diagn. Microbiol. Infect. Dis.*, 76: 529–31.

Bantar, C., Famiglietti, A., Radice, M., Quinteros, M. Antimicrobial Committee & SIR Participants Group, 2008. A 7-year national survey on bacterial resistance in bronchoalveolar lavage from patients hospitalized in Argentina. *Diagn. Microbiol. Infect. Dis.* 60, 65–69.

Baxter, A.D., Allan, J., Bedard, J., et al., 2005. Adherence to simple and effective measures reduces the incidence of ventilator-associated pneumonia. *Can. J. Anesth.*, 5, 535–41.

Ben Othman, A., Zribi, M., Masmoudi, A., Abdellatif, S., Ben Lakhal, S., Fendri, C., 2007. Phenotypic and molecular epidemiology of *Acinetobacter baumannii* strains isolated in Rabta Hospital, Tunisia. *Arch. Inst. Pasteur.*
Tunis, 84, 11–9.

Bush, K., Jacoby, G.A., 2010. Updated functional classification of lactamases. Antimicrob. Agent Chemother., 54, 969-976.

Chawla, R., 2008. Epidemiology, etiology, and diagnosis of hospital-acquired pneumonia and ventilator-associated pneumonia in Asian countries. Am. J. Infect. Control, 36(4 Suppl), S93-100.

Cherkaoui, A., Emonet, S., Renzi, G., Schrenzel, J., 2015. Characteristics of multidrug-resistant Acinetobacter baumannii strains isolated in Geneva during colonization or infection. Ann. Clin. Microbiol. Antimicrob. 11, 14:42.

Cicek, A.C., Saral, A., Iraz, M., Ceylan, A., Duzgun, A.O., Peleg, A.Y., Sandalli, C., 2014. OXA- and GES-type β-lactamases predominate in extensively drug-resistant Acinetobacter baumannii isolates from a Turkish University Hospital, Clin. Microbiol. Infect., 20(5), 410-5

Dai, W., Huang, S., Sun, S., Cao, J., Zhang, L., 2013. Nosocomial spread of carbapenem-resistant Acinetobacter baumannii (types ST75 and ST137) carrying blaOXA-23-like gene with an upstream ISAba1 in a Chinese hospital. Infection Genetics and Evol., 14, 98–105.

Elabd, F.M., Al-Ayed, M.S., Asaad, A.M., Alsareii, S.A., Qureshi, M.A., Musa, H.A., 2015. Molecular characterization of oxacillinases among carbapenem-resistant Acinetobacter baumannii nosocomial isolates in a Saudi hospital. J. Infect. Public Health, 8(3), 242-7.

Fattouh, M. and Nasr El Din, 2014. Emergence of Carbapenem-Resistant Acinetobacter baumannii in the Intensive Care Unit in Sohag University Hospital, Egypt. Int. J. Curr. Microbiol. App. Sci., 3(4), 732-744.

Fouad, M., Attia, A.S., Tawakkol, W.M., Hashem, A.M., 2013. Emergence of carbapenem-resistant Acinetobacter baumannii harboring the OXA-23 carbapenemase in intensive care units of Egyptian hospitals. Int. J. Infect. Dis., 17(12): e1252-4

Garnacho-Montero, J., Ortiz-Leyba, C., Fernandez-Hinojosa, E., et al., 2005. Acinetobacter baumannii ventilator-associated pneumonia: epidemiological and clinical findings. Intensive Care Med., 31, 649–5.

Howard, A., O’Donoghue, M., Feeney, A., Sleator, R.D., 2012. Acinetobacter baumannii: an emerging opportunistic pathogen. Virulence, 3, 243-50.

Jean, S.S., Hsueh, P.R., 2011. Current review of antimicrobial treatment of nosocomial pneumonia caused by multidrug-resistant pathogens. Expert Opin. Pharmacother. 12, 2145–2148.

Josheghani, S.B., Moniri, R., Firoozeh, F., Sehat, M., Dastehgoli, K., Koosha, H., Farahani, R.K., 2016 Emergence of blaOXA-Carrying Carbapenem Resistance in Multidrug-Resistant Acinetobacter baumannii in the Intensive Care Unit. Iran Red Crescent Med. J., doi:10.5812/ircmj.27327

Lee, Y.T., Kuo, S.C., Chiang, M.C., et al., 2011. Emergence of carbapenem-resistant non-baumannii species of Acinetobacter harboring a blaOXA-51-like gene that is intrinsic to A. baumannii. Antimicrob. Agents Chemother., 56, 1124–1127.

Lemos, E., de la Hoz, F., Einarson, T., McGhan, W., Quevedo, E., Castañeda, C., et al., 2014. Carbapenem resistance and mortality in patients with Acinetobacter baumannii.
infection: systematic review and meta-analysis. *Clin. Microbiol. Infect.*, 20, 416–423.

Luo, T.L., Rickard, A.H., Srinivasan, U., Kaye, K.S., Foxman, B., 2015. Association of bla\textit{OXA-23} and bap with the persistence of *Acinetobacter baumannii* within a major healthcare system. *Front. Microbiol.*, 6, 182.

Marie, K., Rolain, J.M., 2012. Emergence of resistance to carbapenems in *Acinetobacter baumannii* in Europe: clinical impact and therapeutic options. *Int. J. Antimicrob. Agents*, 39, 105–114.

Nowak, P., Paluchowska, P., Budak, A., 2012. Distribution of bla\textit{OXA} genes among carbapenem-resistant *Acinetobacter baumannii* nosocomial strains in Poland. *New Microbiol.*, 35, 317–25.

Özgür, E.S., Horasan, E.S., Karaca, K., Ersöz, G., Naycı Atıs, S. 2014. Ventilator-associated pneumonia due to extensive drug-resistant *Acinetobacter baumannii*: Risk factors, clinical features, and outcomes. *American J. Infection Control*, 42, 206–8.

Peleg, A.Y., Seifert, H., Paterson, D.L., 2008. *Acinetobacter baumannii*: emergence of a successful pathogen. *Clin. Microbiol. Rev.*, 21, 538–582.

Poirel, L., Nordmann, P., 2006. Carbapenem resistance in *Acinetobacter baumannii*: mechanisms and epidemiology. *Clin. Microbiol. Infect.*, 12, 826–836.

Qi, C., Malczynskim, M., Parker, M., Scheetz, M.H., 2008. Characterization of genetic diversity of carbapenem-resistant *Acinetobacter baumannii* clinical strains collected from 2004 to 2007. *J. Clin. Microbiol.*, 46, 1106–9.

Rit, K., Chakraborty, B., Saha, R., Majumder, U., 2014. Ventilator associated pneumonia in a tertiary care hospital in India: Incidence, etiology, risk factors, role of multidrug resistant pathogens. *Int. J. Med. Public Health*, 4, 51–6.

Robertino, M., Mera, L., Miller, A., Amrine-Madsen, H., Sahm, D.F., 2010. *Acinetobacter baumannii* 2002-2008: increase of carbapenem-associated multiclass resistance in the United States. *Microb. Drug Resist.*, 16, 209–15.

Rolain, J.M., Loucif, L., Al-Maslamani, M., Elmagboul, E., Al-Ansari, N., Taj-Aldeen, S., Shaukat, A., Ahmedullah, H., Hamed, M., 2016. Emergence of
multidrug-resistant Acinetobacter baumannii producing OXA-23 Carbapenemase in Qatar. New Microbes New Infect, 23, 11:47-51.

Vali, L., Dashti, K., Opazo-Capurro, A.F., Dashti, A.A., Al Obaid, K., Evans, B.A., 2015. Diversity of multi-drug resistant Acinetobacter baumannii population in a major hospital in Kuwait. Front Microbiol., 23, 6:743.

Villalon, P., Valdezate, S., Medina-Pascual, M.J., Carrasco, G., Vin-del, A., Saenz-Nieto, J.A., 2013. Epidemiology of the Acinetobacter-derived cephalosporinase, carbapenem-hydrolysing oxacil-linase and metallo-lactamase genes, and of commoninsertion sequences, in epidemic clones of Acinetobacter baumannii from Spain. J. Antimicrob. Chemother., 68, 550-3.

Woodford, N., Ellington, M.J., Coelho, J.M., Turton, J.F., Ward, M.E., Brown, S., Amyes, S.G., Livermore, D.M., 2006. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int. J. Antimicrob. Agents, 27(4), 351–3

Zowawi, H.M., Sartor, A.L., Sidjabat, H.E., Balkhy, H.H., Walsh, T.R., Al Johani, S.M., et al., 2015. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii isolates in the Gulf Cooperation Council States: dominance of OXA-23-type producers. J. Clin. Microbiol., 53, 896–903.

How to cite this article:
Ghada E. Amr and Ghada M. Abdel Razek. 2016. Characterization of Carbapenem Resistant Acinetobacter baumannii causing Ventilator associated Pneumonia in ICUs of Zagazig University Hospitals, Egypt. Int.J.Curr.Microbiol.App.Sci. 5(12): 660-671. doi: http://dx.doi.org/10.20546/ijcmas.2016.512.074