HOMEOMORPHISMS OF S^1 AND FACTORIZATION

MARK DALTHORP AND DOUG PICKRELL

Abstract. For each $n > 0$ there is a one complex parameter family of homeomorphisms of the circle consisting of linear fractional transformations ‘conjugated by $z \to z^n$’. We show that these families are free of relations, which determines the structure of ‘the group of homeomorphisms of finite type’. We next consider factorization for more robust groups of homeomorphisms. We refer to this as root subgroup factorization (because the factors correspond to root subgroups). We are especially interested in how root subgroup factorization is related to triangular factorization (i.e. conformal welding), and correspondences between smoothness properties of the homeomorphisms and decay properties of the root subgroup parameters. This leads to interesting comparisons with Fourier series and the theory of Verblunsky coefficients.

0. Introduction

In this paper we consider the question of whether it is possible to factor an orientation preserving homeomorphism of the circle, belonging to a given group, as a composition of ‘linear fractional transformations conjugated by $z \to z^n$’. What we mean by factorization depends on the group of homeomorphisms we are considering. In the introduction we will start with the simplest classes of homeomorphisms and build up. For algebraic homeomorphisms, factorization is to be understood in terms of generators and relations. For less regular homeomorphisms factorization involves limits and ordering, and in particular is highly asymmetric with respect to inversion.

0.1. Diffeomorphisms of Finite Type. Given a positive integer n and $w_n \in \Delta := \{w \in \mathbb{C} : |w| < 1\}$, define a function $\phi_n : S^1 \to S^1$ by

\[
\phi_n(w_n; z) := \frac{(1 + w_n z^{-n})^{1/n}}{(1 + w_n z^n)^{1/n}}, \quad |z| = 1
\]

It is straightforward to check that $\phi_n \in Diff(S^1)$, the group of orientation preserving diffeomorphisms of S^1, and $\phi_n^{-1}(z) = \phi_n(-w_n; z)$. If n is fixed, the group generated by the ϕ_n, as w_n varies, is isomorphic to the n-fold covering of $PSU(1,1)$. We will refer to the subgroup of $Diff(S^1)$ generated by the ϕ_n, as w_n and n vary, as the group of diffeomorphisms of finite type (which we denote by $FTypeDiff$).

Theorem 1. (a) If m and n are relatively prime, then the set of diffeomorphisms \{\phi_m(w_m), \phi_n(w_n) : w_m, w_n \in \Delta\} generates a dense subgroup of $Diff(S^1)$ (with the standard C^∞ Lie group structure).

(b) If σ is a diffeomorphism of finite type, then σ has a unique factorization

$$\sigma = \lambda \circ \phi_{i_n}(w_{i_n}) \circ \ldots \circ \phi_{i_1}(w_{i_1})$$

where $\lambda \in S^1$ is a rotation, $w_{i_j} \in \Delta \setminus \{0\}$, $j = 1, \ldots, n$, and $i_j \neq i_{j+1}, j = 1, \ldots, n-1$, for some n.

1
Remark 1. (a) \(\phi_n \) satisfies the reality condition \(\phi_n(z^*) = \phi_n(z)^* \) (where \(z \to z^* \) is complex conjugation) if and only if \(w_n \) is real. For the subgroup of diffeomorphisms of finite type which satisfy this reality condition (and which can be identified with a group of homeomorphisms of an open oriented string parameterized by \([0, \pi] \)), the theorem implies that this subgroup is isomorphic to a countable free product \(\mathbb{R} \ast \mathbb{R} \ast \mathbb{R} \ast \ldots \).

(b) The (universal central extension of the) Lie algebra of the group of diffeomorphisms of a circle is essentially a real form of the Virasoro algebra, which in some ways is similar to a Kac-Moody algebra (see [24]). However the Virasoro algebra notably lacks a (or has a trivial) Weyl group. In this light it is interesting to contrast the absence of relations in Theorem 1 to the relations for the algebraic groups associated to Kac-Moody algebras in [19], which Kac and Peterson aptly refer to as ‘analytic continuation of the relations for the Weyl group’.

0.2. Algebraic Homeomorphisms. The set of diffeomorphisms (homeomorphisms) \(\sigma \) which are algebraic, i.e. satisfy a polynomial equation \(p(z, \sigma(z)) = 0 \), forms a subgroup \(\text{AlgDiff}(S^1) \) (\(\text{AlgHomeo}(S^1) \)), respectively, of \(\text{Homeo}(S^1) \). Via a linear fractional transformation which interchanges \(S^1 \) and \(\mathbb{R} \cup \{ \infty \} \), \(y = x^3 \) corresponds to an algebraic homeomorphism which is not a diffeomorphism.

A diffeomorphism \(\sigma = \sigma(z) \) of finite type can be expressed in terms of radicals and hence is an algebraic diffeomorphism. The converse is false. A famous example of an algebraic diffeomorphism which cannot be expressed in terms of radicals is the ‘Bring Radical’, which is a real solution of \(y^5 + y - x = 0 \) (with \(\mathbb{R} \) in place of \(S^1 \)). In turn \(y = x^3 + x \) corresponds to a rational diffeomorphism with an inverse which can be expressed in terms of radicals, and it is not of finite type.

Proposition 1. The group of diffeomorphisms of finite type is properly contained in the group of diffeomorphisms which, together with their inverses, can be expressed in terms of radicals. In turn this group is properly contained in \(\text{AlgDiff}(S^1) \), and in turn this group is properly contained in \(\text{AlgHomeo}(S^1) \).

Question 1. How does one characterize the group of diffeomorphisms of finite type, and is there an effective procedure for finding the factorization in (b) of Theorem 1?

From our point of view, this question is analogous to the question of how to characterize complex trigonometric polynomials on the circle. From a complex perspective trigonometric polynomials are the restrictions of meromorphic functions on the sphere which are regular on the complement of \(\{ 0, \infty \} \). We will adopt this complex perspective.

An algebraic homeomorphism \(\sigma \) can be viewed as a multi-valued function on the sphere, or more elegantly as an equivariant meromorphic function defined on an associated Riemann surface with real structure. Finite type diffeomorphisms have the property that (viewed as multi-valued functions) they stabilize (what we will call) the Hardy decomposition

\[
P^1 = \Delta \sqcup S^1 \sqcup \Delta^*
\]

It is tempting to believe that this property might characterize the subgroup \(\text{FTypeDiff} \) of \(\text{AlgDiff}(S^1) \). For example we will show that a rational homeomorphism has this property if and only if it is a linear fractional transformation, hence is of finite
type. However this is too simplistic. Homeomorphisms of the form $B^{1/n}$, where B is a Blaschke product with n factors, stabilize (0.2), and they are not generally of finite type; in deference to [10] and [33], we will refer to homeomorphisms of this type as ‘fingerprints of (polynomial) lemniscates’, or simply fingerprints. We denote the subgroup of AlgHomeo which stabilize (0.2) by HardyHomeo.

Associated to an algebraic homeomorphism satisfying $p(z, w) = 0$, there are two Galois groups obtained by writing $w(z)$ as a polynomial with coefficients in polynomials in z (w, respectively). For a diffeomorphism which, together with its inverse, can be expressed in terms of radicals, these two Galois groups are solvable. This is possibly a characterization of this subgroup of AlgDiff, which we will denote by SolvDiff (the group of solvable (algebraic) diffeomorphisms). The fingerprints of lemniscates of the previous paragraph are not generally solvable, hence are not generally of finite type. The various classes of homeomorphisms which we have discussed can be displayed as

$$
\text{AlgHomeo} \uparrow \uparrow \rightarrow \text{FTypeHomeo} \leftarrow \text{SolvHomeo}
$$

$$
\text{PolyHomeo} \subset \text{RatHomeo} \leftarrow \text{PSU}(1, 1) \rightarrow \text{RatHomeo}^{-1}
$$

(We apologize for the clumsy notation). Our best guess is that the group of diffeomorphisms of finite type is the intersection of the subgroups of AlgDiff which stabilize (0.2) and are solvable. The basic idea is to use the Holder series for the Galois group associated to a homeomorphism in this intersection to obtain the factorization in Theorem 1. This is unresolved.

It seems plausible that the $\phi_n(w_n)$ ($w_n \neq 0$) and the rational homeomorphisms of S^1 corresponding to the polynomial homeomorphisms $y = x^p$, for odd prime p, might generate SolvHomeo, with no additional relations beyond those in Theorem 1. We do not see an obvious candidate for a minimal set of generators to obtain all of $\text{AlgHomeo}(S^1)$.

0.3. Diffeomorphisms. Theorem 1 is a unique factorization result for homeomorphisms of finite type. In the rest of the paper we are interested in factorization for more robust groups of homeomorphisms of the circle, and for semigroups of increasing functions on the line. This involves ordering and taking limits. There will be obvious similarities with linear Fourier series (with the added complication that we must choose an ordering of the modes) and with the theory of Verblunsky coefficients.

Fix a permutation (or ordering) of the natural numbers, $p : \mathbb{N} \to \mathbb{N} : n \to n'$. Given a sequence $w = (w_n) \in \prod_{n=1}^{\infty} \Delta$, define

(0.3) $$
\sigma_N = \phi_{n'} \circ \ldots \circ \phi_1 \in \text{Diff}(S^1)
$$

More explicitly (in particular to emphasize the dependence on parameters)

(0.4) $$
\sigma_N(p, w; z) = z \prod_{n=1}^{N} \frac{(1 + w_n' \sigma_{n-1}(z)^{-n'})^{1/n'}}{(1 + w_n \sigma_{n-1}(z)^{n'})^{1/n}}, \quad |z| = 1
$$

If $\sum_{n>0} \frac{1}{n} |w_n| < \infty$ (a condition which does not depend on p), then the product (0.4) converges absolutely as $N \to \infty$, and hence the limit is a degree one surjective continuous function $S^1 \to S^1$. It turns out to be a delicate matter to determine
when this limit is an invertible function, hence a homeomorphism of S^1; we will address this in the next subsection. We first consider a kind of core result, where invertibility is a minor issue.

Theorem 2. Fix a permutation p as above. For $s = 1, 2, ..., \sum_{n=0}^{\infty} n^{s-1} |w_n| < \infty$, then for $z \in S^1$ the limit

$$\sigma(p, w; z) = z \prod_{n=1}^{\infty} \frac{(1 + w_n' \sigma_n(z)^{-n'})^{1/n'}}{(1 + w_n' \sigma_n(z)^{n'})^{1/n'}}$$

exists and $\sigma(z) = \sigma(p, w; z)$ is a C^s homeomorphism of S^1 with C^s inverse.

To prove this we will use the inverse function theorem to show that the inverse of σ exists and has the same degree of smoothness as σ. In general

$$\sigma_N^{-1} = \phi_1'(-w_1) \circ \phi_2'(-w_2) \circ \ldots \circ \phi_N'(-w_N)$$

This does not have an expression analogous to (0.4) which is as useful in understanding convergence (because the composition is now growing to the right).

This leads to a basic stumbling block.

Question 2. Fix a permutation p as above. Is the map

$$S^1 \times \left(c^\infty \cap \prod_{n=1}^{\infty} \Delta \right) \to \text{Diff}(S^1) : (\lambda; w) \to \lambda \sigma(p, w; z)$$

a bijection, where c^∞ is the Frechet space of rapidly decreasing sequences?

Although this question is unresolved, for the sake of convenience, we will refer to the parameters w_n as root subgroup coordinates, relative to the ordering p (see Section 1 for the origin of the terminology).

The subproblem of whether this map is locally a bijection onto a neighborhood of the identity should obviously be compared to the corresponding problem for the exponential map, which is a standard counterexample to the inverse function theorem in a Frechet space setting (see e.g. Section 3.3 of [29]).

0.4. **Less Regular Homeomorphisms.** A pivotal problem is to identify a robust criterion for $\sigma(w)$ to be invertible. A glance at the formula (0.10) below for the derivative of Σ suggests that $w \in l^2$ might be such a criterion.

Theorem 3. If $w \in l^2 \cap \prod_{n=1}^{\infty} \Delta$ and the phases of the w_n are independent uniformly distributed random variables, then almost surely $\sigma(w)$ is a homeomorphism of S^1.

It is not true that $w \in l^2$ implies $\sigma(w)$ is surely invertible. The point of the next two subsections is to identify the edge where deterministic conditions fail.

0.4.1. **Holder Perspective.** In a Holder setting, the best deterministic result we can hope for is Theorem 2. If $w \in l^1$, then $\sigma(w)$ is a C^1 homeomorphism, and in particular $\sigma(w)$ is invertible. A relevant fact is that for $0 < s < 1$, C^s is a Banach algebra, but it is not closed with respect to composition. This means it is not possible to filter homeomorphisms, as groups, in the Holder sense for $s < 1$ (see the Appendix for more background). However this does not (to our minds) fully explain why there does not exist a weaker deterministic condition which implies mere invertibility of $\sigma(w)$. The existence of the following transition seems surprising.
Remark 2. The transition from invertibility to non-invertibility to a relatively narrow window. Subsection 7.3). For deterministic magnitudes and random phases, this pins down if \(w \) is invertible (It is also possible to check this numerically in a convincing way). The moral is that a special alignment of phases can prevent invertibility. There is a similar phenomenon which occurs in the theory of Verblunsky coefficients (see Section 2.7 of \([30]\), in particular Example 2.7.5), although the basic issues are complementary, in a very interesting way, as we will explain in Section 8.

0.4.2. \(L^2 \)-Sobolev Perspective. \(L^2 \)-Sobolev conditions are better adapted to identify decay conditions on the parameters \(w_n \) which are equivalent to asserting that the corresponding homeomorphisms form a group, defined by some smoothness condition. The \(L^2 \)-Sobolev analogue of the condition \(w \in l^1 \) is \(w \in w^{1/2} \), where in general \(w^s := \{ w : \sum n^{2s}|w_n|^2 < \infty \} \).

Remark 2. If \(p > 1 \) and \(s > 1/2 \), then \(l^p \subset w^{1/2} \) and \(w^s \subset l^1 \). But neither condition implies the other. For example if \(w_n = \frac{1}{n \log(n)} \), then \(w \in w^{1/2} \setminus l^1 \), and if \(w_N = (2/3)^n \) when \(N = 3^n \) and \(w_N = 0 \) otherwise, then the lacunary sequence \(w \in l^1 \setminus w^{1/2} \).

Question 3. Suppose that \(s \geq 1/2 \). Does there exist a bijective correspondence

\[
S^1 \times \left(w^s \cap \prod_{n=1}^{\infty} \Delta \right) \to W^{s+1/2} Homeo(S^1) : (\lambda, w) \mapsto \lambda \circ \sigma(p, w)
\]

where the target is the group of homeomorphisms which satisfy the condition \(\ln(\Sigma') \in \Sigma^s \) (in the \(L^2 \) sense).

The critical case \(s = 1/2 \) is far away the most interesting. We are lacking a proper name which reflects the importance of this group. Whereas the group \(QS(S^1) \) of quasisymmetric homeomorphisms stabilizes the critical \(L^2 \)-Sobolev class \(W^{1/2}(S^1) \), \(W^{1+1/2} \) stabilizes \(W^{1/2} \) and commutes with the Hilbert transform modulo Hilbert-Schmidt operators; consequently, it is the maximal group of homeomorphisms which can be represented in the associated canonical commutation relation Fock space. Put another way, it is the maximal group of homeomorphisms which has a Virasoro extension. From another point of view, \(QS(S^1) \) is the symmetry group of Bers’s universal Teichmüller space (modeled on a Banach space), and \(W^{1+1/2} \) is the symmetry group of the same set equipped with a tighter topology (modeled on a Hilbert space); see \([31]\).

We have extensively experimented with Question 3 and its truth seems plausible, at least for tame orderings such as \(p(n) = n \). Note that Theorem 3 implies that we cannot hope to find a Sobolev condition which is weaker than \(w^{1/2} \) and which implies invertibility of \(\sigma(w) \) in a sure sense.

Szego settled the Verblunsky analogue of Question 3 in an exemplary way; see Corollary in Section 8.

0.4.3. Sharpness of Theorem 3. It turns out that Theorem 3 is relatively sharp. For example if \(|w_n| = \frac{1}{\sqrt{n}} \) and the phases of the \(w_n \) are i.i.d. and uniform, then \(\sigma(w) \) exhibits Cantor-like behavior (the general statement is relatively complex; see Subsection). For deterministic magnitudes and random phases, this pins down the transition from invertibility to non-invertibility to a relatively narrow window.
0.5. **Random Magnitudes and Phases.** In this subsection we will allow both the magnitudes and the phases of the \(w_n\) to be random. To put this in the proper perspective, we will slightly digress.

There are a number of known interesting probability measures on \(\text{Homeo}(S^1)\), with diverse origins (e.g. see [1], [3], [22], part IV of [26], and references). One example is related to Werner’s work on conformally invariant measures on self-avoiding loops on Riemann surfaces. In this case it is of interest to consider the welding map from topologically nontrivial self-avoiding loops in the punctured plane to homeomorphisms of \(S^1\),

\[
W : \text{Loop}^1(C \setminus \{0\}) \to \text{Homeo}(S^1) : \gamma \to \sigma(\gamma) := \phi^{-1} \circ \phi_+
\]

where \(\phi_{\pm}\) are appropriately normalized uniformizations for the regions interior and exterior to \(\gamma\), respectively, and the image of Werner’s measure with respect to this map (see the Introduction to [6] for more detail, and references). We are not aware of any (e.g. Poisson) geometrical structure which suggests that the image of Werner’s measure, or any other natural measure, is a product in terms of the parameters \((w_n)\). However all of the measures alluded to above are related to the critical exponent \(s = 1/2\); at least in a heuristic sense the group of \(W^{1+1/2,L^2}\) homeomorphisms is analogous to a Cameron-Martin type group for these measures. In any event it is interesting to reconsider the invertibility question of the previous subsection in a fully probabilistic background.

Consider a probability measure on \(\prod_{n=1}^\infty \Delta\) of the form

\[
\prod_{n=1}^\infty \frac{a(n) + 1}{\pi} \left(1 - |w_n|^2\right)^{a(n)}|dw_n|
\]

where \(a(n)/n \to \beta_0 > 0\) as \(n \to \infty\).

Lemma 1. With respect to the probability measure (0.7), almost surely \(w \in \cap_{\epsilon > 0} w^{-\epsilon}\) and \(w \notin l^2\).

Question 4. Is \(\sigma(p, w)\) almost surely invertible?

In Section 8 we consider a Verblunsky analogue of (0.7), which is not fully understood. In the Verblunsky case it appears that there are two phase transitions. So the answer to this last question is probably complex.

0.6. **Increasing Functions on the Line.** We continue to fix a permutation \(p\) of \(\mathbb{N}\). We now propose to simply ignore the invertibility question for the limit of the \(\sigma_N\), and attempt to imitate the theory of Verblunsky coefficients. In the theory of Verblunsky coefficients, there is a map

\[
\prod_{n=1}^\infty \Delta \to \text{Prob}(S^1)
\]

which induces a homeomorphism from a compactification of the domain to \(\text{Prob}(S^1)\) with its weak* topology (see Section 8 for background). Our map is less well-behaved “at infinity”.

Suppose that \(w \in \prod_{n=1}^\infty \Delta\). Write

\[
\sigma_N(p, w; e^{i\theta}) = e^{i\Sigma_N(p, w; \theta)}
\]
where the lift Σ_N is a homeomorphism of \mathbb{R} satisfying
$$\Sigma_N(\theta + 2\pi) = \Sigma_N(\theta) + 2\pi;$$
Σ_N is uniquely determined modulo $2\pi\mathbb{Z}$. To fix a choice we take
\begin{equation}
\Phi_n(w_n; \theta) := \theta - \frac{2}{n} \Theta(1 + w_n e^{i\theta})
\end{equation}
where $-\frac{\pi}{2} < \Theta < \frac{\pi}{2}$ is the polar angle. This definition actually makes sense for $w_n \in D$, the closed unit disk; when $|w_n| = 1$, Φ_n is a step function. Analogous to (0.4),
$$\Sigma_N(\theta) := \Phi_N \circ \ldots \circ \Phi_1(\theta) = \theta - 2 \sum_{n=1}^{N} \frac{1}{n'} \Theta(1 + w_{n'} \sigma_{n'-1}(e^{i\theta})^n)$$
By the chain rule
\begin{equation}
\frac{1}{2\pi} d\Sigma_N(\theta) = \left(\prod_{n=1}^{N} \frac{1 - |w_n'|^2}{1 + w_n' \sigma_{n-1}(e^{i\theta})^n} \right) \frac{d\theta}{2\pi}
\end{equation}
This (normalized) differential can be interpreted as a probability measure on S^1.

Since S^1 is compact, $\text{Prob}(S^1)$, the convex set of probability measures with the weak* topology relative to $C^0(S^1)$, is compact. Consequently the sequence of probability measures ($\frac{1}{2\pi} d\Sigma_N$) has weak* limits in $\text{Prob}(S^1)$. The question is whether there exists a unique limit. For a sequence of $w_n \in S^1$, it can easily happen that there is lack of uniqueness of the weak* limit. We focus on the typical case.

Theorem 5. Fix a permutation p as above. Given $w \in \prod_{n=1}^{\infty} D$, if the phases of the w_n are independent and uniform, then $\frac{1}{2\pi} d\Sigma_N$ has a unique weak* limit in $\text{Prob}(S^1)$.

0.7. Ordering of Factors and a Missing Plancherel Formula. Is there anything special about the obvious ordering of factors, $p(n) = n$? One would suspect that restrictions on ordering would be important for almost sure type questions. We do impose a restriction in Subsection 7.3 but it is not clear this is essential.

In the theory of root subgroup factorization for loop groups, there is a need for ordering, and there are special orderings, related to factorization in the associated Weyl group. But the special Kac-Moody algebra structure of the loop group setting is lacking in our context.

In root subgroup factorization for loop groups, the analogue of the Plancherel formula is an exact factorization for Toeplitz determinants, or in representation theoretic terms, fundamental matrix coefficients; see e.g. [27] and [28]. This is the key ingredient in the proof of the loop group analogue of Question 5. There are natural analogues of Toeplitz operators (with a composition operator in place of multiplication operator, see e.g. Subsection 1.3) and highest weight representations in the present context, but the corresponding determinants and matrix coefficients do not seem to factor exactly, and we do not know how to control the (what appear to be small) correction terms.

0.8. Plan of the Paper. In the first section we recall some basic facts about the Virasoro algebra and group. The Virasoro point of view explains why it is natural to consider the ϕ_n as basic building blocks. We also briefly mention triangular factorization (i.e. conformal welding). Triangular structure does not play a large
explicit role in this paper, but our expectation is that it will play a critical role in understanding the inversion question and a (missing) Plancherel formula.

In Section 2 we introduce the basic structure associated to an algebraic diffeomorphism, and in Section 3 we will prove Theorem 1. We will see that (b) of Theorem 1 can be restated in the following way: the group of diffeomorphisms of finite type is the amalgam (i.e. the free product modulo the rotation subgroup intersection) of the covering groups $PSU(1,1)^{(n)}$, $n = 1, 2, \ldots$, of $PSU(1,1)$, the group of linear fractional transformations which stabilize S^1.

In Section 4 we discuss a few elementary facts about algebraic homeomorphisms and triangular factorization. This is a classical topic which has recently received a huge boost from [10] and [33].

In Section 5 we prove Theorem 2 (rapidly decreasing coefficients map to smooth homeomorphisms). In this paper we will not address the existence of an inverse map, Questions 2 and 3. In a first version of this paper (on the ArXiv), we outlined an idea of proof, but we have not completed this (the main missing piece of the analytical part of the paper).

In Section 6 we consider increasing functions on the line. In particular we prove Theorem 5 (there is an almost sure map, with respect to random phases, from arbitrary coefficients to increasing functions), and we address other issues which we touched on above in Subsection 0.6.

In Section 7 we consider the issue of invertibility of $\sigma(w)$. In the first subsection we consider deterministic conditions and prove Theorem 4. In subsections 2 and 3 we consider random phases. In subsection 2 we prove Theorem 3 (l^2 is a sufficient condition for invertibility, in the presence of random phases). In subsection 3 we show that this result, Theorem 3 is sharp.

In Section 8 we have included some remarks on how the coefficients w_n compare with Verblunsky coefficients (denoted α_n) from the theory of orthogonal polynomials. For example suppose that $w, \alpha \in l^2 \cap \prod_{n>0} \Delta$. As we have observed above, $\Sigma(w)$ is continuous, hence the corresponding measure $\frac{1}{2\pi} d\Sigma$ does not have atoms, but its support can be a proper subset of S^1. By contrast, for the Verblunsky coefficients α, the support of the corresponding measure is S^1, but the measure can have atoms.

In an Appendix we recall some basic smoothness conditions for homeomorphisms of S^1, from a group theoretic point of view.

0.8.1. Acknowledgement. We thank Frank Jones for sharing enlightening examples of increasing functions, and we thank Pavel Gumenyuk for helpful correspondence and references.

0.9. Basic Notation. Homeomorphisms of S^1 are assumed to be orientation preserving, unless stated otherwise. Given a homeomorphism ϕ of S^1, there is a homeomorphism Φ of \mathbb{R} such that

$$\phi(e^{i\theta}) = e^{i\Phi(\theta)}$$

Φ satisfies

(0.11) \[\Phi(\theta + 2\pi) = \Phi(\theta) + 2\pi \]

and is uniquely determined up to the addition of a multiple of 2π. The set of homeomorphisms Φ of \mathbb{R} satisfying (0.11) is a realization of the universal covering
group
\[0 \to 2\pi\mathbb{Z} \to \tilde{\text{Homeo}}(S^1) \to \text{Homeo}(S^1) \to 0\]
where \(\Phi\) projects to \(\phi\). In the case of \(\phi = \phi_n(w_n)\) we singled out a preferred lift \(\Phi_n\) in \(\tilde{\text{Homeo}}(S^1)\), and relative to a fixed permutation \(p : n \to n'\), this determines a preferred lift for \(\phi = \sigma_N(p, w)\), \(N = \Phi_N \circ \ldots \circ \Phi_1\).

A simple but important observation is that \(\tilde{\text{Homeo}}(S^1)\) is convex, i.e. if \(\Psi_1, \ldots, \Psi_n \in \tilde{\text{Homeo}}(S^1)\) and \(\lambda_1, \ldots, \lambda_n\) are nonnegative and sum to one, then \(\sum \lambda_i \Psi_i \in \tilde{\text{Homeo}}(S^1)\). For example (a branch of) \(B^{1/n}\), where \(B\) is a Blaschke product with \(n\) factors, represents a homeomorphism, because it can be written as
\[B^{1/n} = \exp(2\pi i \sum_{j=1}^{n} \frac{1}{n} \Phi_1(w_{1j}))\]
for some \(w_{1j} \in \Delta\).

We use \(s \geq 0\) to denote order of smoothness, in various senses. If \(s = k\), where \(k = 0, 1, 2, \ldots\), then \(C^s\) is the space of functions \(f\) on \(S^1\) such that \(f\) is \(k\)-times continuously differentiable. If \(s = k + \alpha\), where \(k = 0, 1, 2, \ldots\) and \(0 < \alpha < 1\), then \(C^s = C^{k,\alpha}\) is the space of functions \(f\) on \(S^1\) such that \(f\) is \(k\)-times differentiable and \(f^{(k)}\) satisfies a Holder condition of order \(\alpha\). For \(s \geq 0\), \(C^s\) is a Banach algebra with respect to the norm
\[|f|_{C^s} = |f|_{C^k} + \sup_{\theta \neq \theta'} \frac{|f^{(k)}(\theta) - f^{(k)}(\theta')|}{|\theta - \theta'|^s}\]
\(C^s\) is a decomposing algebra for nonintegral \(s\), i.e. if \(f = \sum f_n z^n \in C^s\), then \(f = \sum_{n \geq 0} f_n z^n \in C^s\) (see page 60 of [7]).

Define \(C^{0+} = \lim_{\alpha \to 0} C^{\alpha}\), viewed as an inductive limit of Banach algebras. \(C^{0+}\) is additionally closed with respect to composition (which is not true for \(\alpha\) fixed), and \(C^{0+}\) is also a decomposing algebra.

\(W^s = W^{s, L^2}\) is the space of functions \(f\) on \(S^1\) which are \(L^2\) Sobolev of order \(s\).

\([\text{Leb}]\) denotes the class of Lebesgue measure.

\((m, n)\) denotes the greatest common divisor of positive integers \(m, n\).

1. Background

1.1. The Virasoro Algebra. The group of diffeomorphisms of \(S^1\) (or more generally, any compact manifold) is a (nonanalytic) Frechet Lie group. The Lie algebra of \(\text{Diff}(S^1)\) can be identified with smooth real vector fields on \(S^1\), with the negative of the traditional differential geometric bracket (see [23]). The complexification of this Lie algebra has a universal central extension by \(\mathbb{C}\). The complex Virasoro algebra is the universal central extension of the Lie subalgebra of complex trigonometric vector fields on the circle. As a vector space
\[Vir = (\sum_{n \in \mathbb{Z}} \mathbb{C} L_n) \oplus \mathbb{C} \kappa\]
where
\[L_n = i e^{in\theta} \frac{d}{d\theta} = -z^{n+1} \frac{d}{dz}\]
The bracket is determined by the relations

\[(1.1) \quad [L_n, L_m] = (m - n)L_{n+m} + \frac{1}{12}n(n^2 - 1)\delta(n + m)\kappa; \quad [L_n, \kappa] = 0\]

The Virasoro algebra has a triangular decomposition, in the technical sense of [24],

\[Vir = n^- \oplus h \oplus n^+, \quad \text{where} \quad n^\pm = \sum_{n > 0} \mathbb{C}L_n \quad \text{and} \quad h = \mathbb{C}L_0 \oplus \mathbb{C}\kappa\]

Remark 3. (a) For many purposes of this paper, the reader can ignore the central extension. The embeddings below can be viewed simply as embeddings into vector fields of the circle, and so on. But for some purposes the extension is essential. To distinguish the embeddings we will use hats (e.g. \(\hat{i}\)) when we are mapping into the central extension (i.e. the Virasoro algebra), and we will drop the hat when we are mapping into vector fields on the circle (i.e. the Witt algebra).

(b) The roots for the action of \(h\) on \(Vir\) are of the form \(n\alpha_1, n \in \mathbb{Z}\), where \(\alpha_1(L_0) = 1, \alpha(\kappa) = 0\). \(\alpha_1\) is the unique simple positive root.

For each \(n > 0\), there is a root subalgebra homomorphism corresponding to \(n\alpha_1\)

\[
\tilde{d}_n : sl(2, \mathbb{C}) \rightarrow Vir : \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \rightarrow f_n = -\frac{1}{n}L_{-n}, \\
\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \rightarrow h_n = \frac{2}{n}L_0 - \frac{1}{12n}(n^2 - 1)\kappa, \quad \text{and} \quad \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \rightarrow e_n = \frac{1}{n}L_n
\]

The restriction of \(\tilde{d}_n\) to \(su(1, 1)\) is given by

\[(1.2) \quad d_i : \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \rightarrow i h_n, \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \rightarrow \frac{1}{n}L_n - \frac{1}{n}L_{-n}, \quad \text{and} \quad \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \rightarrow i L_n + \frac{i}{n}L_{-n}\]

Remark 4. In a purely heuristic way, if one thinks of \(z \rightarrow z^n\) as a Weyl group element, one can perhaps think of \(\tilde{d}_n\) as a Weyl group conjugate of \(d_i\). But the thing to note is that this heuristic Weyl group element does not flip a positive root to a negative root, because of (b) of the previous Remark. This is a crucial structural difference between a Kac-Moody algebra and the Virasoro algebra, especially for the purposes of this paper.

1.2. The Virasoro Group. The group \(Diff(S^1)\) has a universal central extension

\[0 \rightarrow \mathbb{Z} \times i\mathbb{R} \rightarrow \hat{Diff}(S^1) \rightarrow Diff(S^1) \rightarrow 0\]

Bott observed that the group \(\hat{Diff}(S^1)\) can be realized in the following explicit way. As a manifold

\[\hat{Diff}(S^1) = Diff(S^1) \times i\mathbb{R}\]

In these coordinates the multiplication is given by

\[(\Phi; it) \cdot (\Psi; is) = (\Phi \circ \Psi; it + is + iC(\phi; \psi))\]

where \(C\) is the \(\mathbb{R}\)-valued cocycle given by

\[C(\phi; \psi) = \frac{1}{48\pi} Re \int_{S^1} log(\frac{\partial \phi}{\partial z} \circ \psi) d(log(\frac{\partial \psi}{\partial z}))\]

The corresponding Lie algebra is the real form of (the smooth completion of) \(Vir\) which as a vector space equals \(vect(S^1) \oplus i\mathbb{R}\) with the bracket given by [14].
Proof. One obtains the corresponding Lie algebra cocycle via
\[c(\vec{\xi}, \vec{\eta}) = \partial_s \partial_t \big|_{s=t=0} (C(e^{s\vec{\xi}}, e^{t\vec{\eta}}) - C(e^{t\vec{\eta}}, e^{s\vec{\xi}})) \]
\[= \frac{i}{24\pi} \int_{S^1} \frac{\partial \vec{\xi}}{\partial z} \frac{\partial \vec{\eta}}{\partial z} = \frac{i}{24\pi} \int_0^{2\pi} (\bar{\eta}'''(\theta) + \bar{\eta}'(\theta))\bar{\eta}(\theta) d\theta \]
where \(\vec{\xi} = \xi(z) \frac{d}{dz} = \xi(\theta) \frac{d}{d\theta} \). This gives the commutation relations in (1.1). \(\square \)

There are Lie group embeddings (root subgroup homomorphisms)
\[\overset{\sim}{PSU}(1,1) \overset{i_n}{\rightarrow} \Diff(S^1) \]
\[PSU(1,1)^{(n)} \overset{i_n}{\rightarrow} \Diff(S^1) \]
corresponding to the Lie algebra embedding (1.2), and the corresponding map into vector fields, where \(PSU(1,1)^{(n)} \) denotes the universal covering of \(PSU(1,1) \). We will write down the embedding \(i_n \) in an explicit way in the next subsection. At the level of diffeomorphisms, it is understood geometrically as follows. The group of projective transformations of the Riemann sphere which map the circle to itself is \(PSU(1,1) \subset PSL(2,\mathbb{C}) \), where
\[\left(\begin{array}{cc} \alpha & \beta \\ \beta & \bar{\alpha} \end{array} \right) \cdot z' = \frac{\bar{\eta} + \bar{\alpha}z'}{\alpha + \beta z'} \]
For \(n \geq 1 \) there is an \(n \)-fold covering map,
\[S^1 \rightarrow S^1 : z \rightarrow z^n \]
The diffeomorphisms of \(z \) which cover the projective transformations of \(z' \) form a group \(PSU(1,1)^{(n)} \), which is a realization of the \(n \)-fold covering
\[(1.3) \quad 0 \rightarrow \mathbb{Z}_n \rightarrow PSU(1,1)^{(n)} \rightarrow PSU(1,1) \rightarrow 0 \]
In [13] it is conjectured that every finite dimensional closed subgroup of \(Homeo(S^1) \) is contained in a conjugate of one of the subgroups \(PSU(1,1)^{(n)} \).

1.3. Triangular factorization. To better understand \(PSU(1,1)^{(n)} \), and for other purposes, we recall the analogue of triangular factorization for homeomorphisms of \(S^1 \), often referred to as conformal welding. Just as an invertible matrix may not have an LDU factorization, a general homeomorphism may not have a triangular factorization; unlike the matrix case, the existence of a triangular factorization does not imply that the factorization is unique. However for homeomorphisms which are quasisymmetric (a relatively mild regularity condition, with multiple characterizations - see Appendix B), the situation is completely straightforward.

Theorem 6. Suppose that \(\sigma \) is a quasisymmetric homeomorphism of \(S^1 \). Then
\[\sigma = l \circ ma \circ u \]
where
\[u = z(1 + \sum_{n \geq 1} u_n z^n) \]
is a univalent holomorphic function in the unit disk Δ, with quasiconformal extension to \mathbb{C}, $m \in S^1$ is rotation, $0 < a \leq 1$ is a dilation, the mapping inverse to l,

$$L(z) = z(1 + \sum_{n \geq 1} b_n z^{-n})$$

is a univalent holomorphic function on the unit disk about infinity Δ^*, with quasiconformal extension to \mathbb{C}, and the compatibility condition

$$\text{mau}(S^1) = L(S^1)$$

holds. This factorization is unique.

For the state of the art, and especially for examples of homeomorphisms which are not weldings, and for weldings which are not unique, see [5] and references in that paper.

Remark 5. If σ has triangular factorization $lmau$, then the triangular factorization of σ^{-1} is given by

$$u(\sigma^{-1})(z) = \frac{1}{L(\frac{1}{z})}; \quad l(\sigma^{-1})(z) = \frac{1}{U(\frac{1}{z})}; \quad m(\sigma^{-1}) = m(\sigma)^*; \quad a(\sigma^{-1}) = a(\sigma)$$

where L and U are inverse to l and u, respectively.

Suppose that $\phi \in PSU(1,1)^{(n)}$, and suppose that ϕ covers $\pm \left(\begin{array}{cc} \alpha & \beta \\ \bar{\beta} & \bar{\alpha} \end{array} \right) \in PSU(1,1)$. Corresponding to the matrix triangular factorization

$$\left(\begin{array}{cc} \alpha & \beta \\ \bar{\beta} & \bar{\alpha} \end{array} \right) = \left(\begin{array}{cc} 1 & 0 \\ \beta & 1 \end{array} \right) \left(\begin{array}{cc} \alpha & 0 \\ 0 & \alpha^{-1} \end{array} \right) \left(\begin{array}{cc} 1 & \alpha^{-1} \beta \\ 0 & 1 \end{array} \right)$$

and setting $w_n = \alpha^{-1} \beta$, there is a heuristic factorization in the ‘complexification of $\hat{\text{Diff}}(S^1)$’

$$\phi = \exp\left(-\frac{\bar{w}_n L_n L_0 - \frac{1}{n}(w_0^2 - 1)}{n} L_n \right) \exp\left(\frac{w_n}{n} L_n \right)$$

To make rigorous sense of this, one approach is to use formal completions, as in [26], but we will avoid this. At the level of diffeomorphisms, this can be understood rigorously as a triangular factorization, as in Theorem 6.

$$\phi = l(\phi) \circ ma(\phi) \circ u(\phi)$$

where

$$u(\phi)(z) = \frac{z}{(1 + w_n z^n)^{1/n}}, \quad ma(\phi) = \alpha^{-2/n}, \quad a(\phi) = (1 - |w_n|^2)^{1/n}$$

(where the root $\alpha^{1/n}$ is unambiguous because we are considering the n-fold covering of $PSU(1,1)$), and

$$L(\phi)(z) = z(1 - \bar{w}_n z^{-n})^{1/n}$$

The composition is given explicitly by

$$\phi = \left(\frac{\bar{\alpha}}{\alpha} \right)^{1/n} \phi_n(w_n; z)$$

where again the nth root is unambiguous because we are considering the n-fold covering of $PSU(1,1)$. The expression (1.5) implies part (a) of the following lemma. Part (b) is a straightforward calculation.
Lemma 2. (a) Each element in \(PSU(1,1)^{(n)} \) can be written as
\[
\text{Rot}(\theta) \circ \phi_n(w_n; z)
\]
for a uniquely determined rotation and \(w_n \in \Delta \).
(b) \(\phi_n(w_n) \circ \phi_n(w'_n) = e^{2\pi(1+w_n w'_n)} \phi_n(\bar{w}_n; w_n; z) \)

Thus all of the subgroups \(PSU(1,1)^{(n)} \) have the rotation subgroup in common, and the transformations \(\phi_n \) (parameterized by a disk) give a natural cross section for the projection from \(PSU(1,1)^{(n)} \) to the quotient modulo rotations.

Proposition 2. Suppose that the triangular factorization of \(\phi \) is known:
\[
\phi = l(\phi)ma(\phi)u(\phi)
\]

Then for \(\phi_1 = \phi_1(w_1) \)
\[
L(\phi \circ \phi_1)(z) = L(\phi)(z) - (ma)(\phi)u(\phi)(\bar{w}_1), \quad |z| > 1
\]
\[
(ma)(\phi \circ \phi_1) = (ma)(\phi)a(\phi_1)u(\phi)'(\bar{w}_1)
\]
where \(a(\phi_1) = (1 - w_1 \bar{w}_1) \) (by (1.4)), and
\[
u(\phi \circ \phi_1)(z) = \frac{1}{u(\phi)'(\bar{w}_1)(1 - w_1 \bar{w}_1)}(u(\phi)(\phi_1(z)) - u(\phi)(\bar{w}_1)), \quad |z| < 1
\]

Remark 6. (a) This shows that if we consider a composition \(\sigma_2 = \phi_2 \circ \phi_1 \), it is not the case that the diagonal term factors, e.g. in general, \(a(\sigma_2) \neq a(\phi_2)a(\phi_1) \). This is disappointing, because the analogue of this in the context of loop groups is true.
(b) There are also formulas for the triangular factorization of a composition of the form \(\phi_1 \circ \phi \), because of Remark 5.

Proof. First observe that our formulas for \(u \) and \(L \) do define univalent functions with the proper normalizations (for example we have simply subtracted a constant from \(L(\phi) \), so that it is still univalent in \(\Delta^* \), and has the correct kind of Laurent expansion). Thus it suffices to check that for our formulas, for \(|z| = 1 \)
\[
L(\phi \circ \phi_1) \circ \phi \circ \phi_1(z) = (ma)(\phi \circ \phi_1)u(\phi \circ \phi_1)(z)
\]
For our claimed formulas the left hand side equals
\[
(1.6) \quad L(\phi)(\phi(\phi_1(z)))(ma)(\phi)u(\phi)(\bar{w}_1)
\]
and the right hand side equals
\[
(ma)(\phi)(1 - w_1 \bar{w}_1)u(\phi)'(\bar{w}_1)\frac{1}{u(\phi)'(\bar{w}_1)(1 - w_1 \bar{w}_1)}(u(\phi)(\phi_1(z)) - u(\phi)(\bar{w}_1))
\]
When we substitute
\[
L(\phi) \circ \phi = (ma)(\phi)u(\phi)
\]
into (1.6), we see the left and right sides agree. This completes the proof. \(\square \)

In the introduction we mentioned fingerprints of polynomial lemniscates, i.e. algebraic homeomorphisms of the form \(B^{1/n} \), where \(B \) is a Blaschke product with \(n \) factors. These are best understood in terms of their triangular factorizations, see [10].
2. Algebraic Homeomorphisms, I

In this section we consider the Riemann surface associated to an algebraic diffeomorphism, and we discuss a number of examples. This will be used in the proof of Theorem 1 in Section 3.

2.1. The Surface Associated to an Algebraic Diffeomorphism. Suppose that Σ is a connected compact Riemann surface with nonempty boundary S (a disjoint union of circles). Let $\hat{\Sigma}$ denote the double, i.e.

$$ \hat{\Sigma} = \Sigma^* \circ \Sigma $$

where Σ^* is the adjoint of Σ, the surface Σ with the orientation reversed, and the composition is sewing along the common boundary S. Let R denote the anti-holomorphic involution (or reflection) fixing S. The basic example is the realization of the Riemann sphere as the double of the closed unit disk D, where $R(z) = \frac{1}{z}$.

Definition 1. (a) A Riemann surface with reflection symmetry (or a surface with a real structure) is a connected compact Riemann surface $\hat{\Sigma}$ which is a double $\hat{\Sigma} = \Sigma^* \circ \Sigma$.

(b) A holomorphic map $f : \Sigma^* \circ \Sigma \to D^* \circ D$ is equivariant if it satisfies

$$ f(R(q)) = \frac{1}{f(q)^*} $$

and strictly equivariant if it additionally satisfies $f^{-1}(D) = \Sigma$.

Suppose that ϕ is an analytic diffeomorphism of S^1. Analyticity implies that there exists a reflection invariant domain Ω containing S^1 and an analytic continuation $\phi : \Omega \to \phi(\Omega)$ which is a conformal isomorphism. For $q \in \Omega$, this continuation will satisfy the equivariance condition in (b) of the Definition, and the continuation is strictly equivariant in the limited sense that $\Omega \cap \Delta$ will be mapped into Δ. In general there does not exist a maximal domain Ω.

Suppose that ϕ is an algebraic diffeomorphism. In this event ϕ has an analytic continuation to a multi-valued function on a reflection invariant domain $\mathbb{P}^1 \setminus \{z_j \in \Delta, 1/z_j^* \in \Delta^* : 1 \leq j \leq n\}$ such that the singularities are algebraic (and off the circle), see e.g. [2], Theorem 4 of chapter 8. At one extreme, if ϕ is rational, then there are no branch points. At another extreme, if $\phi = \phi_n(w_n)$, $w_n \neq 0$, then the number of branch points in Δ is n.

Proposition 3. Suppose that $w = \phi(z)$ is an algebraic diffeomorphism. Then there exist

1. a compact connected Riemann surface with reflection symmetry $\hat{\Sigma} = \Sigma^* \circ \Sigma$;
2. equivariant holomorphic maps $Z, W : \hat{\Sigma} \to D^* \circ D$;
3. an irreducible polynomial p (of two variables over \mathbb{C}) such that $p(Z, W) = 0$;

and

4. a distinguished component of S, denoted S_1, such that $Z, W : S_1 \to S^1$ are homeomorphisms, $\phi = W \circ (Z|_{S_1})^{-1}$, and hence $p(z, \phi(z)) = 0$ for $z \in S^1$.

Proof. The Riemann surface defined by ϕ is the quotient of the universal covering of the punctured sphere $\mathbb{P}^1 \setminus \{z_j, 1/z_j^* : 1 \leq j \leq n\}$ by the group of automorphisms which fixes a single-valued lift of ϕ, where the z_j are the branch points for ϕ in Δ. There are other ways to describe this surface, such as by using germs of branches for
analytic continuations of ϕ, see e.g. chapter 8 of [2]. The punctured sphere is stable with respect to reflection, so this reflection symmetry lifts to the universal covering. Since ϕ is also reflection symmetric, this descends to a reflection symmetry for the Riemann surface defined by ϕ. Let \tilde{Z} denote the projection from this (incomplete) Riemann surface to the punctured sphere, and let \tilde{W} denote a single-valued lift of ϕ to the surface. \tilde{Z} is strictly equivariant, but \tilde{W} is in general only equivariant (more concretely, as a multivalued function, ϕ does not in general map the disk to the disk). These functions satisfy a polynomial equation $p(\tilde{Z}, \tilde{W}) = 0$, which we can suppose is irreducible. It is well-known that this implies that the surface defined by ϕ can be extended to a compact Riemann surface $\hat{\Sigma}$ in a unique way so that \tilde{Z} and \tilde{W} extend to holomorphic maps Z and W (This is essentially the Riemann extension theorem, see Theorem 2 of [3]).

□

Proposition 4. Suppose that ϕ is of finite type. Then (in reference to the preceding Proposition 3)

(a) Z and W are strictly equivariant;
(b) S is the inverse image of S^1 for both Z and W; and
(c) Z and W are homeomorphisms restricted to each connected component of S.

Proof. $\phi_n(w_n)$ is the nth root of a $PSU(1,1)$ linear fractional transformation. Consequently as a multi-valued function it stabilizes the decomposition $\mathbb{P}^1 = \Delta \sqcup S^1 \sqcup \Delta^*$. The same is true for a composition of the ϕ_n, hence for any ϕ of finite type. Parts (a) and (b) follow from this.

For part (c): This is true on the distinguished component S_1 by (4) of the preceding Proposition for any ϕ. Z and W locally invert one another (with respect to composition), so when they are continued to other components of S, they remain inverses. This implies (c).

□

2.1.1. Galois Groups. Suppose that $\sigma \in \text{AlgHomeo}(S^1)$ and $w = \sigma(z)$ satisfies the irreducible polynomial equation $p(z, w) = 0$. Then $w = \sigma(z)$ and its inverse satisfy polynomial equations of the form

$$w^n + a_{n-1}(z)w^{n-1} + \ldots + a_0(z) = 0$$

$$z^m + b_{m-1}(w)z^{m-1} + \ldots + b_0(w) = 0$$

where the coefficients are rational functions. We obtain two Galois groups, one associated to σ, one associated to σ^{-1}.

2.2. Examples.

2.2.1. Rational Homeomorphisms. For a rational homeomorphism $w = R(z)$ of the circle, the associated Riemann surface is the sphere, $Z = z$, and $W = R$. The degree of R is odd, because the components of $R^{-1}(S^1)$ on each side of S are reflections of one another. If $R \notin PSU(1,1)$, then the degree of R is at least three. There will be at least on component of $R^{-1}(S^1)$ in Δ. One side of such a component will map to Δ and the other will map to Δ^*. Thus R will not preserve the decomposition $\mathbb{P}^1 = \Delta \sqcup S^1 \sqcup \Delta^*$.

The Galois group associated to R is trivial. There are not any apparent restrictions on the Galois group for the inverse.
2.2.2. $\phi_n(w_n)$. Suppose $w_n \neq 0$. Then $w = \phi_n(z)$ satisfies
\[
w^n(1 + w_n z^n) - (z^n + \bar{w}_n) = 0
\]
The affine curve defined by this equation is smooth (the partial derivatives do not simultaneously vanish). However, consider the homogeneous equation
\[
Z_0^n Z_2^n + w_n Z_1^n Z_2^n - (Z_0^n Z_1^n + \bar{w}_n Z_0^{2n}) = 0
\]
(where $z = Z_1/Z_0$ and $w = Z_2/Z_0$), and the corresponding subvariety in projective space. If $u = Z_0/Z_1$ and $v = Z_2/Z_1$, then
\[
u^n v^n + w^n v^n - (u^n + \bar{w}_n u^{2n}) = 0
\]
The partial derivatives of the left hand side are
\[
\frac{\partial}{\partial u}(LHS) = nu^{n-1}v^n - (nu^{n-1} + \bar{w}_n 2nu^{2n-1})
\]
and
\[
\frac{\partial}{\partial v}(LHS) = nu^n v^{n-1} + w_n nu^{n-1}
\]
Assuming that $n > 1$, these partials vanish simultaneously at $u = v = 0$, and this is a point on the curve. Thus the projective variety defined by the homogeneous equation is not smooth.

Proposition 5. Suppose that $0 < |w_n| < 1$.
(a) the compact Riemann surface $\tilde{\Sigma}$ associated to $\phi_n(w_n)$ has genus $(n-1)^2$.
(b) The anti-holomorphic involution R for this surface,
\[
R(z, w) = (1/z^*, 1/w^*)
\]
has a fixed point set S which consists of n circles; there are $(n-1)(n-2)/2$ holes in the surface on each side of the fixed point set (this is the genus of Σ).

Remark 7. (a) This shows the projective variety associated to ϕ_n is not smoothly embedded in \mathbb{P}^2, for otherwise, using the genus formula for a projective curve (see page 219 of [14]), the genus would be $\frac{1}{2}(2n-1)(2n-2)$, where $2n$ is the degree of the homogeneous polynomial.
(b) This should be compared with the Legendre normal form in the theory of Jacobi elliptic functions
\[
y^2 = (1 - x^2)(1 - k^2 x^2)
\]
The affine curve is smooth (for $k \neq 0$), but the corresponding projective variety is not smooth, for otherwise the genus would be $\frac{1}{2}(4-1)(4-2) = 3$, and we know the genus is 1.

Proof. Consider first the equation in z,w coordinates:
\[
w_n(1 + w_n z^n) - (z^n + \bar{w}_n) = 0
\]
The partial derivatives of the left hand side are
\[
\frac{\partial}{\partial z}(LHS) = nw_n z^{n-1}w^n - z^{n-1}
\]
and
\[
\frac{\partial}{\partial w}(LHS) = nw^{n-1}(1 + \bar{w}_n z^n)
\]
For points on the affine curve, these are never simultaneously zero, and hence the affine curve is smooth. So we need to know how to compactify this smooth affine algebraic curve. These points are

\[z = \infty, \quad w = \left(\frac{1}{w_n} \right)^{1/n} \]

and these are smooth. To see this, change \(z \) to \(\frac{1}{\zeta} \). The curve is then

\[w^n = \frac{1 + \bar{w}_n \zeta^n}{\zeta^n + w_n} \]

and this is perfectly well-behaved near \(\zeta = 0 \). We could alternately have used symmetry to understand the behavior near \(z = \infty \), since it is the reflection of what happens at \(z = 0 \). Consider the holomorphic map

\[z : \hat{\Sigma} \to \mathbb{C} \cup \{\infty\} \]

Let \(\Sigma \) denote the inverse image of \(D \), the closed unit disk at \(z = 0 \). We can think of the surface \(\hat{\Sigma} = \Sigma^* \circ \Sigma \) as the double of \(\Sigma \), where the involution \(R \) is given by (2.4). For the map \(z \), there are \(2n \) branch points at the roots \((-\bar{w}_n)^{1/n} \) and their reflections through \(S^1 \). The ramification index is \(n - 1 \) at each branch point. By the Riemann-Hurwitz relation

\[\chi(\hat{\Sigma}) = n \chi(S^2) - 2n(n - 1) = 2(1 - (n - 1)^2) \]

implying that \(\text{genus}(\hat{\Sigma}) = (n - 1)^2 \), and the genus of \(\Sigma \), the number of holes in \(\Sigma \), is \((n - 1)(n - 2)/2 \), since

\[\text{genus}(\hat{\Sigma}) = 2 \text{genus}(\Sigma) + n - 1 \]

This construction is highly discontinuous at \(w_n = 0 \). When \(w_n = 0 \), the curve degenerates to \(w^n = z^n \), the Riemann sphere. \(\square \)

If \(w_n \neq 0 \), then the Galois group is \(\mathbb{Z}_n \).

2.2.3. \(\phi_n \circ \phi_m \). Suppose that \(n \neq m \), \(w_n, w_m \neq 0 \), and \((m, n) = d \). The equation we obtain from \(w = \phi_n \circ \phi_m(z) \) is

\[(z^m + \bar{w}_m)^{n/d}(1 - w_n w^n)^{m/d} - (w^n - \bar{w}_n)^{m/d}(1 + w_m z^m)^{n/d} = 0 \]

On the one hand this polynomial has degree \(mn/d \) in each individual variable for all \(w_n, w_m \neq 0 \). Thus the degree is unchanging. On the one hand the total degree of this polynomial is generically \(2mn/d \), but the total degree decreases when \((-w_n)^{m/d} = w_m^{n/d} \). This means that the topology of the surface \(\hat{\Sigma}_{\phi_n(w_n) \circ \phi_m(w_m)} \) can vary with the parameters.

The values of \(z \in \Delta \) at which branching occurs are

\[z^m = -\bar{w}_m \text{ and } \phi_m(z)^n = -\bar{w}_n \]

We want to calculate the ramification for \(Z \) at these branch points. For the value \(z = (\bar{w}_m)^{1/m} \), there are \(n \) inverse images, \((z, w = \bar{w}_n^{1/n}) \). By symmetry, the ramification index must be the same at each point, hence this index equals \(m/d \) at each of these inverse images. Given \(z \) such that \(\phi_m(z) = (\bar{w}_n)^{1/n} \), there are \(m \) inverse images, and possibly again by symmetry the index is the same at all of them.
Hence the ramification index must be n/d at each point. So in a generic situation we expect the ramification index

$$R = 2[m \cdot n \cdot m/d + n \cdot m \cdot n/d]$$

The Riemann-Hurwitz formula now implies

$$\text{genus} = 1 - \frac{mn}{d} + m \cdot n \cdot \frac{m}{d} + n \cdot m \cdot \frac{n}{d}$$

This does not appear to simplify.

It seems to be a difficult problem to find some constructive procedure for finding the equation defined by a general diffeomorphism of finite type.

3. Finite Type Diffeomorphisms and Factorization

In this section we will prove Theorem 1. Because of Lemma 2 part (a) can be restated in the following way.

Theorem 7. Suppose that n and m are relatively prime. Then the subgroup generated by $PSU(1,1)^{(n)}$ and $PSU(1,1)^{(m)}$ is dense in $Diff(S^1)$.

The proof of this follows by a straightforward modification of the proof of Proposition 3.3.3 of [29] (which in turn relies on an argument that goes back to Cartan, used in his proof that a closed subgroup of a finite dimensional Lie group is a Lie subgroup).

Proof. Let G denote the C^∞ closure of the subgroup generated by $PSU(1,1)^{(n)}$ and $PSU(1,1)^{(m)}$ in $Diff(S^1)$. Let \mathfrak{g} denote the set of vector fields X such that the corresponding one parameter group is contained in G. In a standard way \mathfrak{g} is a vector space and a Lie algebra, using

$$\exp(t(X + Y)) = \lim_{n \to \infty} (\exp(tX/n) \circ \exp(tY/n))^n$$

and

$$\exp(t^2[X,Y]) = \lim_{n \to \infty} (\exp(tX/n) \circ \exp(tY/n) \circ \exp(-tX/n) \circ \exp(-tY/n))^{n^2}$$

It is obvious that \mathfrak{g} contains the Lie algebras of $PSU(1,1)^{(n)}$ and $PSU(1,1)^{(m)}$. We claim that this, together with $(n,m) = 1$, implies that \mathfrak{g} contains the Lie algebra of all trigonometric vector fields. To prove this, it suffices to show that if $(n,m) = 1$, then the Lie algebra generated by $L_{\pm n}$ and $L_{\pm m}$ is the entire Witt algebra. The repeated adjoint action of the $L_{\pm m}$ on L_n generates all L_{n+km}, $k \in \mathbb{Z}$; similarly the repeated adjoint action of the $L_{\pm n}$ on L_m generates all L_{m+ln}, $l \in \mathbb{Z}$. Now $(n,m) = 1$ implies that $\{km + ln : k,l \in \mathbb{Z}\} = \mathbb{Z}$. Thus the Lie algebra generated by $L_{\pm n}$ and $L_{\pm m}$ is the entire Witt algebra. This proves the claim.

It now follows that \mathfrak{g} is dense in smooth vector fields. Since \mathfrak{g} is C^∞ closed, \mathfrak{g} is the Lie algebra of all smooth vector fields. Thus all one parameter subgroups of $Diff(S^1)$ belong to G, and this implies $G = Diff(S^1)$. \hfill \square

Since the intersection of $PSU(1,1)^{(n)}$ and $PSU(1,1)^{(m)}$ is the group of rotations, part (b) of Theorem 1 can be restated in the following way.

Theorem 8. The group of diffeomorphisms of finite type equals the amalgam of the subgroups $PSU(1,1)^{(n)}$, $n = 1, 2, ..$, i.e. it is the free product of these subgroups, modulo the obvious relations arising from the common intersection, $Rot(S^1)$.
Lemma 3. Suppose that $\sigma = \phi_{i_n}(w_{i_n}) \circ \ldots \circ \phi_{i_1}(w_{i_1})$ where $w_i \in \Delta \setminus \{0\}$, $i = i_1, \ldots, i_n$, and $i_j \neq i_{j+1}$, $j = 1, \ldots, n-1$. Then the degree of Z_σ and W_σ equal

$$(3.1) \quad \prod_{j=1}^{n} i_j / \prod_{k=1}^{n-1} (i_k, i_{k+1})$$

In particular given a sequence w with non-vanishing terms, and $\sigma_N = \phi_N(w_n) \circ \ldots \circ \phi_1(w_1)$,

$$\text{degree}(Z_{\sigma_N}) = N!$$

Proof. Suppose that $n = 1$, and let $m = i_1$. In this case, in subsection 2.2.2 we saw that the associated maps $Z, W : \tilde{S}_m \to D$ have degree m. But more simply, in the terminology of chapter 8 of [2], we can view ϕ_m as a branch in a neighborhood of S^1 for the algebraic (multivalued) function

$$w = z^{1/m} \circ \phi_1(w_m) \circ z^m$$

(3.2)

which happens to map $\Delta \to \Delta$, $S^1 \to S^1$, and $\Delta^* \to \Delta^*$. We can calculate the degree by choosing any point $z_0 \in \Delta$ such that $\phi_m(w_m; z_0^m) \neq 0$ (e.g. $z_0 = 0$, because $w_m \neq 0$) and observing that there are exactly m distinct values w_0 such that there exists a (germ of a) branch f of the multivalued expression (3.2) with $f(z_0) = w_0$. Of course we could also consider the “inverse”, and find that given a generic w_0, there are m corresponding points z_0.

In any event the degree is m.

Similarly the composition $\phi_n(w_{i_n}) \circ \ldots \circ \phi_1(w_{i_1})$ (where $w_{i_j} \neq 0$ and $i_j \neq i_{j-1}$ for all j) is a branch in a neighborhood of S^1 for the algebraic function

$$w = z^{1/i_n} \circ \phi_1(w_{i_n}) \circ z^{i_n} \circ z^{1/i_n-1} \circ \phi_1(w_{i_{n-1}}) \circ \ldots \circ z^{1/i_1} \circ \phi_1(w_{i_1}) \circ z^{i_1}$$

or as we prefer,

$$w = z^{1/i_n} \circ \phi_1(w_{i_n}) \circ z^{i_n/(i_{n-1})} \circ z^{1/(i_{n-1}/(i_n,i_{n-1}))} \circ \phi_1(w_{i_{n-1}}) \circ \ldots \circ z^{1/(i_1/i_2,i_i))} \circ \phi_1(w_{i_1}) \circ z^{i_1}$$

(3.3)

To prove the Lemma, it suffices to showing this algebraic function has degree given by the formula (3.1), as we observed in (b) of Proposition [3]. We do this by induction on n. We can focus on Δ, because these compositions map Δ into Δ. The degree is obviously ≤ 3.1, so the point is to prove equality. We considered $n = 1$ above. Suppose that $n > 1$. By induction, aside from a finite number of exceptional points in Δ, for $z_0 \in \Delta$ a nonexceptional point, there will be exactly

$$\prod_{j=1}^{n-1} i_j / \prod_{k=1}^{n-2} (i_k, i_{k+1})$$

values $w_0 \in \Delta$ such that there is a (germ of a) branch f

$$w_1 = z^{1/i_{n-1}} \circ \phi_1(w_{i_{n-1}}) \circ z^{i_{n-1}/(i_{n-1},i_{n-2})} \circ \ldots \circ z^{1/i_1} \circ \phi_1(w_{i_1}) \circ z^{i_1}(z)$$

(3.5) such that $f(z_0) = w_0$. For given z_0, the set of w_0 is acted upon by the i_{n-1} roots of unity, and when $w_0 \neq 0$ this action is free. We can perturb z_0 slightly if necessary, so that all of the $w_0 \neq 0$ (we can do this, because the inverse relation has the same properties, so that we can assume the z_0 and w_0 are simultaneously nonexceptional). In this case there will be $1/(i_{n-1}, i_n)$ times $\text{degree}(W_{\sigma_N})$ distinct values w_1 such that there is a (germ of a) branch f

$$w_2 = \phi_{i_n} \circ z^{i_n/i_{n-1}} \circ \phi_1(w_{i_{n-1}}) \circ z^{i_{n-1}/(i_{n-1},i_{n-2})} \circ \ldots \circ z^{1/(i_1/i_2,i_i)} \circ \phi_1(w_{i_1}) \circ z^{i_1}(z)$$

(3.6)
such that \(f(z_0) = w_1 \). We can assume that \(\phi_{i_n}(w_1^n) \neq 0 \). Then for generic \(z_0 \), there will be (3.1) distinct values \(w' \) such that there is a branch \(f \) for (3.3) such that \(f(z_0) = w' \). Thus the degree for (3.3) is given by (3.1).

\[\square \]

Remark 8. Note that this formula applies even if for some \(j \), \(i_j = i_{j+1} \), provided that \(w_{i_j} \neq -w_{i_{j+1}} \).

To prove Theorem 8, suppose by way of contradiction that

\[\lambda \phi_{i_n}(w_{i_n}) \circ \ldots \circ \phi_{i_1}(w_{i_1})(z) = z, \quad z \in S^1 \]

where \(\lambda \in S^1 \), \(w_{i_j} \neq 0 \), and \(i_j \neq i_{j-1} \) for all \(j \), for some \(n \). This extends to an equality of algebraic functions, and we can consider the degree of both sides. Unless \(n = 1 \) and \(i_1 = 1 \), the degree of the left hand side is not equal to 1, the degree of the right hand side. Thus by Lemma 2 (or obviously), \(\lambda = 1 \) and \(w_1 = 0 \), a contradiction. This completes the proof of Theorem 8.

4. **Algebraic Homeomorphisms, II**

Let \(\text{RatHomeo}(S^1) \) denote the set of rational homeomorphisms of \(S^1 \). Via the linear fractional transformations

\[X(z) = i \frac{1 - z}{z + z} \]

and its inverse \(Z(x) = i \frac{x - i}{i + x} \)

the sphere with the real structure \(R(z) = 1/z^* \) is isomorphic with the sphere and its real structure determined by conjugation. In the latter realization, which we will refer to as the real point of view, rational homeomorphisms of the circle, modulo rotations, are identified with real rational homeomorphisms of the line. We let \(\text{PolyHomeo}(S^1) \) denote the set of homeomorphisms of the circle which correspond to polynomial homeomorphisms of \(\mathbb{R} \).

Proposition 6. (a) \(\text{RatHomeo}(S^1) \) is a semigroup and \(\text{PolyHomeo}(S^1) \) is a sub-semigroup. Both are graded by odd degree (as maps of the sphere).

(b) The group of rational homeomorphisms which have rational inverses is \(\text{PSU}(1,1) \).

(c) The intersection of \(\text{RatHomeo}(S^1) \) with the group of diffeomorphisms of finite type is also \(\text{PSU}(1,1) \).

(d) An algebraic homeomorphism is quasisymmetric.

Proof. (a) The first part of (a) is obvious. The degree of \(R \in \text{RatHomeo}(S^1) \) is odd, because the components of \(R^{-1}(S^1) \) on each side of \(S^1 \) are reflections of one another (This is also obvious from the real point of view). The fact that degree is multiplicative is well-known.

(b) The degree of a rational homeomorphism with rational inverse has to be one, hence it has to be a linear fractional transformation.

(c) If \(R \notin \text{PSU}(1,1) \), then the degree of \(R \) is at least three. There will be at least on component of \(R^{-1}(S^1) \) in \(\Delta \). One side of each such a component will map to \(\Delta \) and the other will map to \(\Delta^* \). Thus \(R \) will not preserve the decomposition \(\mathbb{P}^1 = \Delta \cup S^1 \cup \Delta^* \). Thus \(R \) cannot be of finite type.

(d) At a point where the derivative is zero, an algebraic homeomorphism will look like a power. This is locally quasisymmetric. This implies (d).

\[\square \]
Example 1. Consider the set of polynomial homeomorphisms of degree $2k + 1$. From the real point of view, this is in bijection with the set of polynomials of degree $2k$ which are nonnegative. This set is contracted to a point by the homotopy $\lambda x^{2k} + (1 - \lambda)p_{2k}$. The set of rational homeomorphisms of degree $2k + 1$ similarly corresponds to a space of rational functions, although it is not as clear how to describe this space (because the condition that the integral is rational is a nontrivial constraint). Nonetheless this space is contracted to x^{2k} by the same homotopy.

It is not clear whether rational homeomorphisms are dense in Homeo(S^1).

Recall that a quasisymmetric homeomorphism σ has a unique triangular decomposition $\sigma = l m a u$. It is obvious that if u and l are rational (algebraic), then σ is rational (algebraic, respectively). It is natural to ask about the converses. We will see that σ is rational definitely does not imply that u and l are rational. It seems unlikely that σ is algebraic implies that u and l are algebraic, but this appears to be open (we hope to resolve this in the sequel).

Proposition 7. Suppose that σ is the inverse of a rational homeomorphism, and let $\sigma = l m a u$ be its triangular factorization. If u is rational, then $\sigma \in PSU(1,1)$. Similarly, if σ and L are rational, then $\sigma \in PSU(1,1)$.

Proof. Suppose that $\sigma^{-1} = R$ is rational and R is not a linear fractional transformation. The degree of R (as a map of the sphere) is at least 3. The inverse image of S^1 will have at least three components, hence at least one component in each of Δ and Δ^*.

This implies that R will map a disk in Δ^* onto Δ. Thus R will have a zero in Δ^*. In the proof of this proposition, without loss of generality, we can suppose that $R(\infty) = 0$. For otherwise we can compose R with a $g \in PSU(1,1)$ so that this is the case.

Let $f_+ = m a u$. Then $f_+(R(z)) = L(z)$ for z in an annular neighborhood of S^1.

Since L is holomorphic in Δ^*, we can analytically continue the left hand side to $z = \infty$; let $g(z)$ denote this analytic continuation along a neighborhood of some path from S^1 to ∞. By way of contradiction, suppose that f_+ is rational. In this event, $g(z) = f_+(R(z))$. Thus $f_+(R(\infty)) = f_+(0) = 0$. But $L(\infty) = \infty$, a contradiction. Thus f_+ cannot be rational. This proves the proposition for the inverse of a rational homeomorphism.

Suppose that σ is rational and not a linear fractional transformation. The triangular factorization of the inverse is given by

$$\sigma^{-1} = \frac{1}{U((\overline{\tau})^*)} \circ m^* a \circ \frac{1}{L((\overline{\tau})^*)}$$

This, and the first part of the proof, implies that L cannot be rational. \qed

Another question one can ask is, given a very simple u, e.g. u polynomial, does this imply that l is algebraic? The answer is no.

Example 2. Define

$$\sigma(z) = \frac{1 + \cos\left(\frac{\pi z}{1 + z}\right)}{1 - \cos\left(\frac{\pi z}{1 + z}\right)}$$

Then

$$u(z) = z(1 + z/2), \quad a = 8/\pi^2, \quad l(z) = \frac{1 + \cos\left(\frac{2\pi}{\sqrt{4 + \pi^2 z}}\right)}{1 - \cos\left(\frac{2\pi}{\sqrt{4 + \pi^2 z}}\right)}$$

For the general question of how to obtain L from u, see [15].
5. Diffeomorphisms: Proof of Theorem

We recall the statement to be proved:

Theorem 9. Fix a permutation \(p : \mathbb{N} \to \mathbb{N} : n \to n' \). For \(s = 1, 2, \ldots \) if \(w \in \prod_{n=1}^{\infty} \Delta \) and \(\sum_{n>0} n^{s-1} |w_n| < \infty \), then the limit

\[
\sigma(p, w; z) = z \prod_{n=1}^{\infty} \frac{1 + \bar{w}'_n \sigma_{n-1}(z)^{-n'}}{1 + w'_n \sigma_{n-1}(z)^{n'}}^{1/n'}
\]

exists and defines a \(C^* \) homeomorphism of \(S^1 \).

We first consider the case \(s = 1 \).

Lemma 4. (a)

\[
\Phi'_n(\theta) = \frac{1 - |w_n|^2}{1 + w_n z^n}, \quad |z| = 1
\]

(b)

\[
\Sigma'_N(\theta) = \prod_{k=1}^{N} \Phi'_k(\Sigma_{k-1}(\theta)) = \prod_{k=1}^{N} \frac{1 - |w_k|^2}{|1 + w_k \sigma_k^{-1}(z)^k|^2}
\]

(c) If \((w_n)\) is absolutely summable, then the product expression for \(\Sigma' \),

\[
\Sigma'(\theta) = \prod_{n=1}^{\infty} \frac{1 - |w_n'|^2}{|1 + w_n' \sigma_{n-1}(z)^{n'}|^2}
\]

is absolutely convergent on \(\mathbb{R} \), and \(\sigma \) is a \(C^1 \) diffeomorphism of \(S^1 \).

Proof. (a) is a straightforward calculation. Part (b) follows from the chain rule,

\[
\Sigma'_N(\theta) = \prod_{k=1}^{N} \Phi'_k(\Sigma_{k-1}(\theta))
\]

and part (a).

Assuming that \((w_n)\) is absolutely summable, the expression for the derivative of \(\Sigma \) is absolutely convergent, because

\[
\prod_{n=1}^{\infty} \frac{1 - |w_n'|^2}{|1 + w_n' \sigma_{n-1}(z)^{n'}|^2} \leq \prod_{n=1}^{\infty} \frac{1 - |w_n|^2}{|1 - |w_n||^2} = \prod_{n=1}^{\infty} \frac{1 + |w_n|}{|1 - |w_n||}
\]

The derivative of \(\Sigma \) is positive and continuous; together with the inverse function theorem, this implies that \(\Sigma \) and its inverse are \(C^1 \).

To investigate the higher derivatives of \(\Sigma \), define

\[
B_n(\theta) := \ln(\Phi'_n(\theta)) = \ln\left(\frac{1 - |w_n|^2}{1 + w_n z^n}\right)
\]

(5.1)

\[
= -\ln(1 + \bar{w}_n z^{-n}) + \ln(1 - |w_n|^2) + \ln(1 + w_n z^n), \quad z = e^{i\theta}
\]

and

\[
B(\theta) := \ln(\Sigma'(\theta)) = \sum_{n=1}^{\infty} B_n(\Sigma_{n-1}(\theta))
\]
Lemma 5. (a) For \(s = 1, 2, \ldots \),
\[
B_n^{(s)}(\theta) = (in)^s \frac{w_n z^n A_{s-1}(-w_n z^n)}{(1 + w_n z^n)^s} + \text{c.c.}, \quad z = e^{i\theta}
\]
where the \(A_{s-1} \) are the Eulerian polynomials.
(b) For given \(s \) there is a constant \(c = c(s) \) independent of \(n \) such that
\[
|B_n^{(s)}(\Sigma_{n-1}(\theta))| \leq cn^s |w_n|(1 - |w_n|)^{-s}
\]
Proof. From (5.1) (and expanding the logarithm in a power series)
(5.3) =
\[
\text{In general the Bell polynomials have positive integral coefficients.}
\]

This can be summed using the basic power series identity of Euler
\[
\sum_{k=1}^{\infty} k^n q^k = \frac{q A_n(q)}{(1 - q)^{n+1}}, \quad |q| < 1
\]
where \(A_n \) is the \(n \)th Eulerian polynomial. This implies part (a).

Part (b) follows from (a), where we bound \(|z^n A_{s-1}(w_n z^n)| \) by a constant depending only on \(s \) (and the size of coefficients for the Eulerian polynomial \(A_{s-1} \)), using the facts that \(|z| = 1 \) and \(|w_n z^n| < 1 \).

We now complete the proof of Theorem 9.

Proof. We will prove the slightly broader statement that if \(\sum n^{s-1} |w_n| < \infty \), then there is a bound for the derivatives of \(B_N \) up to order \(s - 1 \) which is independent of \(N \). This will imply that \(B \) itself is \(C^{s-1} \). Lemma 4 takes care of the case \(s = 1 \).

Suppose \(s > 1 \). Faa di Bruno’s formula for higher derivatives of a composition of functions implies that
\[
\left(\frac{d}{d\theta} \right)^{s-1} B_N(\theta) = \sum_{n=1}^{N} \left(\frac{d}{d\theta} \right)^{s-1} (B_n^s \circ \Sigma_{n-1})(\theta)
\]
(5.3)
\[
= \sum_{n=1}^{N} \sum_{k=1}^{s-1} B_n^{(k)}(\Sigma_{n-1}(\theta)) B_{s-1,k}(\Sigma_{n-1}', \ldots, \Sigma_{n-1}^{(s-1-k)})
\]
where \(B_{s-1,k} \) denotes the Bell polynomial of degree \(k \). For example
\[
B''(\theta) = \sum_{n=1}^{\infty} \left(B_n''(\Sigma_{n-1}(\theta)) \Sigma_{n-1}'(\theta)^2 + B_n'(\Sigma_{n-1}(\theta)) \Sigma_{n-1}''(\theta) \right)
\]
In general the Bell polynomials have positive integral coefficients.

Using (b) of Lemma 4 we can bound the sum in (5.3) by
\[
\sum_{n=1}^{s-1} \sum_{k=1}^{\infty} c n^k \frac{|w_n|}{(1 - |w_n|)^k} B_{s-1,k}(\sup |\Sigma_{n-1}'|, \ldots, \sup |\Sigma_{n-1}^{(s-1-k)}|)
\]
\[
\leq \sum_{n=1}^{\infty} cn^{s-1} |w_n| \sum_{k=1}^{s-1} B_{s-1,k} (\sup |\Sigma'_{n-1}|, \ldots, \sup |\Sigma_{n-1}^{(s-1-k)}|)
\]

In this sum, because \(s \) is fixed, we are considering a fixed finite number of Bell polynomials. Since the orders of the derivatives appearing in the sum over \(k \) are strictly less than \(s-1 \), by induction we find a bound for

\[
\sum_{k=1}^{s-1} B_{s-1,k} (\sup |\Sigma'_{n-1}|, \ldots, \sup |\Sigma_{n-1}^{(s-1-k)}|)
\]

which is independent of \(N \). This completes the induction step. \(\square \)

6. Semigroup of Increasing Functions

In this section we try to define the forward map \(w \to \Sigma(w) \) as broadly as possible.

We first formalize some of the algebraic structures that are relevant when we do not insist on invertibility or continuity of \(\Sigma(w) \).

Definition 2. (a) \(\widehat{\text{CDF}}(S^1) \) is the semigroup of right continuous nondecreasing functions on \(\mathbb{R} \) satisfying

\[
\Sigma(\theta + 2\pi) = \Sigma(\theta) + 2\pi
\]

where multiplication is given by composition.

(b) \(CDF(S^1) \) is the quotient of \(\widehat{\text{CDF}}(S^1) \) by the central subgroup \(2\pi \mathbb{Z} \), where \(2\pi n \) is identified with the map \(\theta \to \theta + 2\pi n \). We can identify cdfs (i.e. elements of \(CDF(S^1) \)) as self-maps of \(S^1 \) which (in reference to the orientation) are right continuous and nondecreasing.

Proposition 8. (a) The map \(CDF(S^1) \to \text{Prob}(S^1) : \Sigma \to \frac{1}{2\pi} d\Sigma \), the distributional derivative, induces a short exact sequence

\[
0 \to \text{Rot}(S^1) \to CDF(S^1) \to \text{Prob}(S^1) \to 0
\]

We will refer to \(\Sigma \) as a cdf corresponding to its generalized derivative \(d\Sigma \).

(b) With the weak star topology relative to \(C^0(S^1) \), \(CDF(S^1) \) is a topological semigroup.

(c) \(\text{Homeo}(S^1) \) is the group of units for \(CDF(S^1) \). It is not dense. It is not closed.

(d) The cdfs corresponding to measures with finite support is a dense normal subsemigroup.

(e) Fix \(n \). The cdfs corresponding to measures with \(n \) atoms is a normal subsemigroup.

Proof. This is straightforward. \(\square \)

Let \(D := \{ |z| \leq 1 \} \), the closed unit disk.

Definition 3. For \(w_n = u_n + iv_n = r_ne^{i\theta_n} \in D \),

\[
\Phi_n(w_n; \theta) := \theta - \frac{2}{n} \arctan \left(\frac{u_n \sin(n\theta) + v_n \cos(n\theta)}{1 + u_n \cos(n\theta) - v_n \sin(n\theta)} \right) = \theta - \frac{2}{n} \arctan \left(\frac{r_n \sin(n\theta + q_n)}{1 + r_n \cos(n\theta + q_n)} \right)
\]

when \(1 + u_n \cos(n\theta) - v_n \sin(n\theta) \neq 0 \) and extend the definition to all \(\theta \in \mathbb{R} \) by insisting that \(\Phi_n \) is right continuous. We also define

\[
\phi_n(w_n; z) := e^{\Phi_n(w_n, \theta)}, \quad z = e^{i\theta}
\]
and

\[\Sigma_N(w; \theta) = \Phi_N(w_N) \circ \ldots \circ \Phi_1(w_1)(\theta) \]

This agrees with our previous definition of \(\Phi_n(w_n) \) when \(w_n \in \Delta \).

Proposition 9. Suppose \(w_n \in D \). (a) \(\Phi_n(w_n) \in CDF(S^1) \) and \(\Phi_n(w_n) \) is uniquely determined by the normalized distributional derivative \(\frac{1}{2\pi} d\Phi_n \in \text{Prob}(S^1) \).

(b) Suppose that \(|w_n| = 1 \), i.e. \(w_n = e^{iq_n} \). Then \(\Phi_n \) has image consisting of the \(\frac{1}{n} \)-th roots of \(1/w_n = w_n^{-1} \), i.e. the angles \(\theta = \frac{2k}{n} \pi \), \(k = 0, \ldots, n-1 \), and the points of discontinuity are the \(\frac{1}{n} \)-th roots of \(-1/w_n = -w_n^{-1} \), i.e. the angles \(\frac{2k}{n} \pi \), \(k = 0, \ldots, n-1 \). Thus \(\Phi_n \) is a step function with the length and height of each step given by \(2\pi/n \), i.e. \(\frac{1}{2\pi} d\Phi_n \) is a sum of delta measures at the angles \(\frac{2k}{n} \pi \), \(k = 0, \ldots, n-1 \), each of mass \(\frac{1}{n} \).

Proof. (a) is clear for \(w_n \in \Delta \). It will follow from (b) in the case \(w_n \in S^1 \).

Suppose that \(w_n \in S^1 \). Then

\[\phi_n(z) = z^n \frac{1 + w_n z^{-n}}{1 + w_n z^n} = \frac{1}{w_n} \]

This implies the first half of the first part of (b).

When \(w_n \in \Delta \)

\[\Phi_n'(\theta) = \frac{1 - |w_n|^2}{|1 + w_n z_n|^2} \]

By letting \(w_n \) tend to the circle, we see that the jumps will occur when the denominator tends to zero, which is at the \(\frac{1}{n} \) the roots of \(-1/w_n \). This completes the proof of (b), and hence also of (a).

\[\square \]

6.1. **Proof of Theorem 5**. We recall the statement to be proved:

Theorem 10. Fix a permutation \(p : \mathbb{N} \to \mathbb{N} \). Given \(w \in \prod_{n=1}^{\infty} D_n \), if the phases of the \(w_n \) are independent and uniform, then \(\frac{1}{2\pi} d\Sigma_n \) has a unique weak limit in \(\text{Prob}(S^1) \).

Proof. Write \(w_n = r_n e^{iq_n} \). For \(\theta \in \mathbb{R} \)

\[\Sigma_N(\theta) = \theta - \sum_{n=1}^{N} 2 \arctan \left(\frac{r_n \sin(n' \Sigma_{n-1}(\theta) + q_{n'})}{1 + r_n \cos(n' \Sigma_{n-1}(\theta) + q_{n'})} \right) \]

Fix \(\theta \). The random variable \(\Sigma_{n-1}(\theta) \) depends on the random variables \(q_{k'} \) for \(k < n \), which are independent of \(q_{n'} \). Because \(q_{n'} \) is uniform, \(v_n := n' \Sigma_{n-1}(\theta) + q_{n'} \) is also uniform. Therefore

\[\Sigma_N(\theta) = \theta - \sum_{n=1}^{N} 2 \arctan \left(\frac{r_n \sin(v_n)}{1 + r_n \cos(v_n)} \right) \]

where the \(v_n \) are i.i.d. and uniform. The random variable \(\arctan \left(\frac{r_n \sin(v_n)}{1 + r_n \cos(v_n)} \right) \) is an odd function of \(v_n \). It follows that \(\Sigma_N(\theta) \) almost surely converges as \(N \) goes to infinity to the (conditionally convergent) sum

\[\Sigma(\theta) = \theta - \sum_{n=1}^{\infty} 2 \arctan \left(\frac{r_n \sin(n' \Sigma_{n-1}(\theta) + q_{n'})}{1 + r_n \cos(n' \Sigma_{n-1}(\theta) + q_{n'})} \right) \]
Because S^1 is compact, the sequence of probability measures $\frac{1}{2\pi}d\Sigma_{\lambda}$ has a weak* limit in $\text{Prob}(S^1)$. Suppose that a subsequence $d\Sigma_{\lambda_n}$ converges to dF. This means that Σ_{λ_n} converges pointwise to F at all points of continuity of F. As a non-decreasing function which is right continuous, F is determined by its values at a countable dense set of points. For each of these points θ_0, with probability one, $F(\theta_0) = \Sigma(\theta_0)$. Since the set of points is countable, this implies that almost surely $F = \Sigma$. This implies uniqueness of the limit in the theorem.

Corollary 1. Given $w \in \prod_{n=1}^{\infty}D$, if the phases of the w_n are independent and uniform, then almost surely $\Sigma_{\lambda}(\theta)$ converges to $\Sigma(\theta)$ at all points of continuity for Σ, hence at all but countably many points.

7. Invertibility of $\sigma(w)$

Throughout this section $w \in \prod_{n=1}^{\infty} \Delta$, $w_n = r_ne^{i\theta_n}$, and we fix a ordering p of \mathbb{N}. In the first subsection we consider invertibility in a deterministic framework, and we set limits on the best possible conditions. In the second and third subsections we consider invertibility of $\sigma(w)$, assuming that the phases of the w_n are i.i.d. and uniform; in the second we show that l^2 is sufficient for almost sure invertibility, and in the third we show this is essentially best possible.

7.1. Proof of Theorem 4 We have established that $w \in l^1$ implies $\sigma(w)$ is invertible (in fact it is C^1 with C^1 inverse). We now show that this is the most robust Holder condition we can hope for, and in addition we identify a phase transition.

Theorem 11. (a) If $\limsup_{n \to \infty} (|w_n|) < \frac{1}{2}$, then $\sigma(w)$ is invertible and hence a homeomorphism of S^1.

(b) If $w_n > 0$ for all n and $\liminf_{n \to \infty}(nw_n) > \frac{1}{2}$, then there exists $\theta_0 > 0$ such that $\Sigma(w, \theta_0) = \Sigma(\theta_0) = \Sigma(\theta)$. Consequently $\sigma(w)$ is not invertible.

Proof. (a) First observe that

$$|\Phi_n(w_n, \theta) - \theta| = \left|\frac{2}{n} \Theta(1 + w_nz^n)\right| \leq \frac{2}{n} \arcsin r_n \leq \frac{\pi}{n} r_n$$

This follows from $|\sin(\Theta(1 + w_nz^n))| = |\Im(1 + w_nz^n)| = |\Im(w_nz^n)| \leq |w_n|.$

Fix $\theta \in \mathbb{R}$, and let $I = \{x|\Sigma(x) = \Sigma(\theta)\}$. By monotonicity I must be an interval. We will show that under the assumption $\limsup_{n \to \infty}(|w_n|) < \frac{1}{2}$, $I = \{\theta\}$, and hence Σ is invertible.

Let $S_n(\theta) = \cdots \circ \Phi_{n+3} \circ \Phi_{n+2} \circ \Phi_{n+1}$. Notice that $S_n \circ \Sigma_n = \Sigma$. By (7.1),

$$|S_n(\theta) - \theta| \leq \sum_{k=n+1}^{\infty} \frac{2}{n} \arcsin(r_n)$$

In particular $|S_0(\theta) - \theta| \leq \sum_{k=n+1}^{\infty} \frac{2}{n} \arcsin(r_n)$. This implies that the length of I is bounded above by $2 \sum_{k=1}^{\infty} \frac{2}{n} \arcsin(r_n)$, and so at least one of $\theta \pm \sum_{k=n+1}^{\infty} \frac{2}{n} \arcsin(r_n)$ must lie outside of I. Let $I_n = \Sigma_n(I)$, then note that $I_n = \{x|S_n(x) = S_n(\theta)\}$. By similar reasoning at least one of $\theta \pm \sum_{k=n+1}^{\infty} \frac{2}{n} \arcsin(r_n)$ is not in I_n. Thus for
each \(n \) the following points are not in \(I \):

\[
(7.2) \quad a_n = \Sigma_n^{-1}\left(\theta + \sum_{k=n+1}^{\infty} \frac{2}{n} \arcsin(r_n)\right)
\]

\[
(7.3) \quad b_n = \Sigma_n^{-1}\left(\theta - \sum_{k=n+1}^{\infty} \frac{2}{n} \arcsin(r_n)\right)
\]

By monotonicity of \(\Sigma_n \), \(a_n > \theta > b_n \). Furthermore, observe that for the derivative of \(\Phi_n^{-1}(\theta) = \Phi_n(-w_n, \theta) \)

\[
\frac{1 - r_n^2}{1 - 2r_n \cos(n\theta + q_n) + r_n^2} \leq \frac{1 - r_n^2}{1 - 2r_n + r_n^2} = \frac{1 + r_n}{1 - r_n}
\]

Therefore

\[
\frac{d}{d\theta} \Sigma_n^{-1}(\theta) \leq \prod_{k=1}^{n} \frac{1 + r_k}{1 - r_k}
\]

Now choose \(\frac{1}{2} > \lambda > \lim inf(nr_n) \). Then

\[
|a_n - b_n| \leq \left(\prod_{k=1}^{n} \frac{1 + r_k}{1 - r_k}\right) \left(2 \sum_{k=n+1}^{\infty} \frac{2}{k} \arcsin r_k\right) \leq \left(\prod_{k=1}^{n} \frac{1 + r_k}{1 - r_k}\right) \left(2\pi \sum_{k=n+1}^{\infty} \frac{r_k}{k}\right) \leq K \left(\prod_{k=1}^{n} \frac{1 + \frac{\lambda}{k}}{1 - \frac{\lambda}{k}}\right) \left(\sum_{k=n+1}^{\infty} \frac{1}{k^2}\right)
\]

for sufficiently large \(n \) and some appropriate proportionality constant \(K \). Taking a logarithm, this becomes:

\[
\log |a_n - b_n| \leq \log K + \sum_{k=1}^{n} \left(\log(1 + \frac{\lambda}{k}) - \log(1 - \frac{\lambda}{k})\right) + \log \left(\sum_{k=n+1}^{\infty} \frac{1}{k^2}\right)
\]

\[
\sim \log K + \sum_{k=1}^{n} \frac{2\lambda}{k} + \log \left(\sum_{k=n+1}^{\infty} \frac{1}{k^2}\right)
\]

\[
\sim A + 2\lambda \log(n) - \log(n) = A + (2\lambda - 1) \log(n)
\]

for some constant \(A \). Note that this goes to \(-\infty \) because \(\lambda < \frac{1}{2} \). Hence, \(|a_n - b_n| \) goes to 0 as \(n \) goes to infinity. Since \(a_n \) and \(b_n \) lie above and below the interval \(I \) for all \(n \), we conclude that the length of \(I \) is 0, so it contains only a single point, \(\theta \).

Since \(\theta \) was arbitrary, we conclude that \(\Sigma \) is invertible.

Part (b): Because \(w \) is real, \(\Sigma(0) = 0 \). We will show that there exists a positive constant \(c \) such that for \(n \) sufficiently large, \(\Sigma_{n-1}(\theta) < \frac{\lambda}{n} \) implies \(\Sigma_n(\theta) < \frac{\lambda}{n+1} \).

Since there is certainly a positive \(\theta_0 \) such that \(\Sigma_{n-1}(\theta_0) < \frac{\lambda}{n} \), this will show that \(\Sigma_n(\theta_0) \to 0 \) as \(n \to \infty \) and hence \(\Sigma \) is not invertible.

We pick \(c \) in the following way. Since \(\lim \inf(nw_n) > \frac{1}{2} \), there exists \(c > 0 \) such that \(\lim \inf(nw_n) > \frac{c}{2\sin(c)} \), and \(c < \frac{\pi}{5} \). This implies \(\frac{\pi}{3n} < \frac{c}{n} < \frac{\pi}{2n} \). Observe the following asymptotic inequality for \(\alpha < \frac{\pi}{n} \):

\[
(7.4) \quad \frac{\sin\left(\frac{n\alpha}{2(n+1)}\right)}{\sin\left((1 - \frac{1}{2(n+1)})n\alpha\right)} < \frac{\sin\left(\frac{c}{2(n+1)}\right)}{\sin\left((1 - \frac{1}{2(n+1)})c\right)} \sim \frac{c}{2\sin(c)n} \quad \text{as } n \to \infty
\]
In what follows we suppose that $\epsilon < \liminf (nw_n) - \frac{\epsilon}{2\sin(c)}$ and n is large enough so that $nw_n > \frac{\epsilon}{2\sin(c)} + \epsilon$. Now suppose that $\Sigma_{n-1}(\theta) < \frac{c}{n}$. Using (7.4), we have the following chain of implications, where we abbreviate $\Sigma_k(\theta)$ to Σ_k:

$$w_n > \left(\frac{c}{2\sin(c)} + \epsilon \right) \cdot \frac{1}{n} > \frac{\sin(n\Sigma_{k-1}(\theta))}{\sin{(n - \frac{n}{2(n+1)})\Sigma_{n-1}}}$$

$$w_n \sin\left(\left(n - \frac{n}{2(n+1)}\right)\Sigma_{n-1}\right) > \sin\left(\frac{n}{2(n+1)}\Sigma_{n-1}\right)$$

$$w_n \sin(n\Sigma_{n-1}) \cos\left(\frac{n\Sigma_{n-1}}{2(n+1)}\right) - w_n \cos(n\Sigma_{n-1}) \sin\left(\frac{n\Sigma_{n-1}}{2(n+1)}\right) > \sin\left(\frac{n\Sigma_{n-1}}{2(n+1)}\right)$$

$$w_n \cos\left(\frac{n\Sigma_{n-1}}{2(n+1)}\right) \sin(n\Sigma_{n-1}) > \sin\left(\frac{n\Sigma_{n-1}}{2(n+1)}\right) + w_n \sin\left(\frac{n\Sigma_{n-1}}{2(n+1)}\right) \cos(n\Sigma_{n-1})$$

$$w_n \sin(n\Sigma_{n-1}) > \tan\left(\frac{n\Sigma_{n-1}}{2(n+1)}\right) (1 + w_n \cos(n\Sigma_{n-1}))$$

$$\frac{w_n \sin(n\Sigma_{n-1})}{1 + w_n \cos(n\Sigma_{n-1})} > \tan\left(\frac{n\Sigma_{n-1}}{2(n+1)}\right)$$

$$\frac{2}{n} \arctan\left(\frac{w_n \sin(n\Sigma_{n-1})}{1 + w_n \cos(n\Sigma_{n-1})}\right) > \Sigma_{n-1}$$

$$\frac{n}{n+1} \Sigma_{n-1} - \frac{2}{n} \arctan\left(\frac{w_n \sin(n\Sigma_{n-1})}{1 + w_n \cos(n\Sigma_{n-1})}\right) = \Sigma_n$$

Thus $\frac{n}{n+1} \Sigma_{n-1}(\theta) > \Sigma_n(\theta)$. We are assuming $\Sigma_{n-1}(\theta) < \frac{c}{n}$, and hence $\Sigma_n(\theta) < \frac{c}{n+1}$. Applying this to $\theta = \theta_0 > 0$ as above, and letting n go to infinity, we obtain $\Sigma(\theta_0) = 0$. This implies that Σ is not invertible and completes the proof of part (b).

7.2. Proof of Theorem 12. We recall the statement to be proved:

Theorem 12. Suppose that $r \in l^2$ and the phases q_n are i.i.d. and uniform. Then almost surely $\sigma(p, w)$ is 1-1.

Proof. Fix $\theta \in \mathbb{R}$.

(7.5)

$$\Sigma_N(\theta) = \prod_{n=1}^{N} \left(\frac{1 - r_n^2}{r_n^2 + 2r_n \cos(v_n)} + 1 \right) = \prod_{n=1}^{N} \left(\frac{1 - r_n^2}{r_n^2 + 2r_n \cos(v_n) + 1} \right)$$

where the random variables $v_n = n\Sigma_{n-1}(\theta) + q_n$ are i.i.d. and uniform (see the proof of Theorem 10 in the previous subsection). Because r is square summable, the convergence of this product to a non-zero number as N goes to infinity is equivalent to the convergence of $\sum r_n \cos(v_n)$. Because $r \in l^2$ and the v_n are i.i.d. and uniform, this sum converges. Let $W(\theta) = \lim_{N \to \infty} \Sigma_N(\theta)$. For each θ, almost surely $W(\theta) > 0$. Therefore by Fubini’s Theorem, almost surely (with respect to the random phases), $W(\theta) > 0$ almost surely with respect to Lebesgue measure.

Because $w \in l^2$, we know that Σ_N converges uniformly to Σ. Fatou’s Lemma implies that for any $\delta > 0$

$$\Sigma(\theta + \delta) - \Sigma(\theta) \geq \lim_{N \to \infty} \int_{\theta}^{\theta + \delta} \Sigma_N(\phi) d\phi \geq \int_{\theta}^{\theta + \delta} W(\phi) d\phi > 0$$

Therefore Σ is invertible, and hence σ is a homeomorphism. □
Remark 9. (a) Given that \(\text{(7.3)} \) converges, it seems inevitable that the pointwise derivative
\[
\Sigma'(\theta) = \prod_{n=1}^{\infty} \left(\frac{1 - r_n^2}{r_n^2 + 2 r_n \cos(n' \Sigma_{n-1}(\theta) + q_n) + 1} \right)
\]
However we have not proven this. The general issue is the following. Suppose that
\(s_n \) and \(s \) are nondecreasing functions and \(s_n \to s \) at points of continuity of \(s \). Does
this imply that \(s_n' \to s' \) a.e. [Leb]? The answer is no. For example \(s_n \) can be a
sequence of staircase step functions converging to \(s(\theta) = \theta \) (in which case \(s_n' = 0 \)
a.e., and \(s' = 1 \)). Suppose that \(s_n \to s \) and \(s_n' \to w \) a.e. Is there an inequality,
\(w \leq s' \)? This is unknown to us (see chapter 16 of [17], especially section C, for a
venerable positive result).

(b) Even if the above derivative formula does hold, this does not imply that \(d\Sigma \)
is in the Lebesgue class (we additionally need to show \(d\Sigma \) is almost surely singular with respect to Lebesgue measure, but this is uncertain (see Remark 9 above).

Lemma 6. Suppose \(0 \leq \rho < 1 \) and let \(X = -\log(1 + 2 \rho \cos(\theta) + \rho^2) \), where \(\theta \) is a
uniformly distributed angle. Then \(E(X) = 0 \) and
\[
E(X^2) = 2 \sum_{k=1}^{\infty} \frac{1}{k^2} \rho^{2k} = 2 \text{dilog}(1 - \rho^2)
\]

Proof. If \(\rho = 0 \), then clearly \(E(X) = E(X^2) = 0 \).
\[
\frac{d}{d\rho} E(X) = \frac{1}{2\pi} \int_{S^1} \frac{2(\rho + \cos(\theta))}{1 + 2\rho \cos(\theta) + \rho^2} d\theta = 0
\]
Thus \(E(X) = 0 \) for all \(\rho \). In a similar way
\[
\frac{d}{d\rho} E(X^2) = \frac{4}{\rho} \log\left(\frac{1}{1 - \rho^2} \right) = 4 \sum_{k=1}^{\infty} \frac{1}{k^2} \rho^{2k-1}
\]
This implies the formula for the second moment. \(\square \)

Theorem 13. If \(r \notin \mathbb{I}^2 \) and the phases are i.i.d. and uniform, then almost surely
\(\Sigma_n'(\theta) \to 0 \) a.e. [Leb].

Of course we would like to believe this implies that \(d\Sigma \) is almost surely singular
with respect to Lebesgue measure, but this is uncertain (see Remark 9 above).

Proof. We will use the same notation as in the proof of the preceding theorem. For each \(\theta \)
\[
(7.6) \quad \log \Sigma_N(\theta) = \sum_{n=1}^{N} \left(\log(1 - r_n^2) - \log(r_n^2 + 2 r_n \cos(v_n) + 1) \right)
\]
If \(r_n \) does not converge to zero, then this clearly diverges to \(-\infty\). So we can suppose
\(r_n \to 0 \).

Let \(X_n = -\log(r_n^2 + 2 r_n \cos(v_n) + 1) \). The \(X_n \) are independent random variables.
Since \(v_n \) is uniform, Lemma \(\text{(7.3)} \) implies that \(E(X_n) = 0 \) and the variance \(\text{var}(X_n) = 2r_n^2 + o(r_n^2) \) as \(n \to \infty \). Let \(S_N = X_1 + \ldots + X_N \). By the law of iterated logarithms,
there is a constant \(c \) such that almost surely \(S_N \leq c \sqrt{a_N \log \log a_N} \), where \(a_N = \sum_{n \leq N} r_n^2 \). Hence \(\log \Sigma_N(\theta) \) is almost surely asymptotically bounded by \(-a_N + c \sqrt{a_N \log \log a_N} \). Thus almost surely \(\log \Sigma_N'(\theta) \) diverges to \(-\infty \), i.e. \(\Sigma_N'(\theta) \) goes to
0. By Fubini’s theorem, almost surely \(\Sigma_N'(\theta) \to 0 \) a.e. [Leb].
7.3. Onset of Cantor-like Behavior. In this subsection, we consider the ordering $p(n) = n$.

The hypothesis in the following theorem is difficult. However using the example following the proof, we will clarify why the result is important.

Theorem 14. Assume $r \notin l^2$, $\limsup_n r_n < 1$, and the phases q_n are i.i.d. and uniform. Let $s_n = \sum_{k=1}^{n} r_k^2$. If $\sum n r_n \exp(-2s_n + 2\sqrt{2\pi s_n \log \log s_n})$ is convergent, then almost surely, for almost all θ [Leb] there exists a $\delta_\theta > 0$ such that $\Sigma(\theta + \delta_\theta) = \Sigma(\theta)$.

Fix θ. Define the following:

- $D_n(x) = \Sigma_n(\theta + x) - \Sigma_n(\theta)$
- $d_n(x) = x - \frac{2}{n} \arctan \left(\frac{2r_n \sin(nx/2) \cos(\beta_n(x)) + r_n^2 \sin(nx)}{1 + 2r_n \cos(nx/2) \cos(\beta_n(x)) + r_n^2 \cos(nx)} \right)$
- $U_n = \frac{1 - r_n^2}{1 + 2r_n \cos(\beta_n(0)) + r_n^2}$
- $p_n = \prod_{k=1}^{n} U_n$

where $\beta_n(x) = q_n + n\Sigma_{n-1}(\theta) + \frac{nx}{2}$

Remark 10. The domain of d_n is a priori the set of x for which the denominator is nonvanishing. If $r_n < 2^{1/2} - 1$, then there is no constraint on x. To see this consider the roots $r(a,b) = (-b \pm \sqrt{b^2 - a})/a$ of $1 + 2br + ar^2 = 0$ in the region $|a|, |b| \leq 1, b^2 - a \geq 0$. The minimum magnitude for these roots occurs in the corners $a = -1, b = \pm 1$. In the following lemma we will use an analytic continuation to enlarge the domain of d_n.

Lemma 7. Fix θ as above.

(a) For fixed x the $\beta_n(x)$ are i.i.d. and uniform random angles.

(b) $D_n(x) = d_n(D_{n-1}(x))$ for sufficiently small x; d_n can be analytically continued so that $d_n \in \text{Homeo}(S^1)$ $D_n = d_n \circ D_{n-1}$ holds for all x.

(c) $d_n(0) = 0$ and $d_n'(0) = U_n$.

(d) There is a constant B, independent of n, x, such that $d_n(x) \leq U_n x(1 + Br_nx)$ for all n and $x \geq 0$.

Proof. (a) is clear.

(b) For small a and b

$$\arctan(a) - \arctan(b) = \arctan\left(\frac{a - b}{1 + ab} \right)$$

In general this equality holds modulo $\mathbb{Z}\pi$.

$$D_n(x) = \Phi_n(w_n, \Sigma_{n-1}(\theta + x)) - \Phi_n(w_n, \Sigma_{n-1}(\theta))$$

(7.12)

$$= D_{n-1}(x) - \frac{2}{n} \left(\arctan\left(\frac{r_n \sin(n\Sigma_{n-1}(\theta + x) + q_n)}{1 + r_n \cos(n\Sigma_{n-1}(\theta + x) + q_n)} \right) - \arctan\left(\frac{r_n \sin(n\Sigma_{n-1}(\theta) + q_n)}{1 + r_n \cos(n\Sigma_{n-1}(\theta) + q_n)} \right) \right)$$
To simplify notation, let $T = n\Sigma_{n-1}(\theta + x) + q_n$ and $t = n\Sigma_{n-1}(\theta) + q_n$. Note $T - t = nD_{n-1}(x)$. Since a and b are small, the identity (7.11) implies that (7.12) equals

$$D_{n-1}(x) - \frac{2}{n} \arctan\left(\frac{r_n \sin(T)}{1 + r_n \cos(T)} + \frac{r_n \sin(t)}{1 + r_n \cos(t)} \right) = D_{n-1}(x) - \frac{2}{n} \arctan\left(\frac{r_n \sin(T - \sin(t)) + \sin(T - t)r_n}{1 + (\cos(T) + \cos(t))r_n + \cos(T - t)r_n^2} \right)$$

$$= D_{n-1}(x) - \frac{2}{n} \arctan\left(\frac{\sin(nD_{n-1}(x) + t) - \sin(t) + \sin(nD_{n-1}(x) - t)r_n}{1 + (\cos(nD_{n-1}(x) + t) + \cos(t))r_n + \cos(nD_{n-1}(x) - t)r_n^2} \right)$$

Now observe that

$$\sin(nD_{n-1}(x) + t) - \sin(t) = \sin(nx')/2) \cos(\beta_n(x'))|x'=D_{n-1}(x)$$

and

$$\cos(nD_{n-1}(x) + t) + \cos(t) = \cos(nx'/2) \cos(\beta_n(x'))|x'=D_{n-1}(x)$$

This implies part (b) for small x. It follows that $d_n(x) = D_{n-1}^{-1} \circ D_{n-1}(x)$ for small x. We can use this to analytically continue d_n. This implies (b).

(c) $d_n(0) = 0$ follows immediately from the definition of d_n. The derivative $d_n'(x)$ is given by a complicated formula. But the evaluation at $x = 0$ is given by the simple formula in (c).

(d) The assumption $\limsup_n (r_n) < 1$ implies that U_n has positive lower bound independent of n. So the essential claim is that there is a uniform bound $d_n'(x) < Bnr_n$, for all n and $x \geq 0$. Note that when we differentiate d_n, the branching issue in (b) vanishes. The explicit expression for $d_n'(x)$ is long (we used Maple). It is of the form $d_n'(x) = nr_nR$, where R is a rational function in r_n and cosines and sines with arguments nx, $\frac{nx}{2}$, and $n\Sigma_{n-1}(\theta) + q_n + \frac{nx}{2}$. The expression for R, as a function of r_n and these cosines and sines, does not depend on n. Using the fact that the cosines and sines are bounded by one, one can obtain a bound for R which does not depend on n, x (e.g. $R = 2n\sin(n\Sigma_{n-1}(\theta) + q_n)r_n + o(r_n)$ as $r_n \to 0$). This proves (d).

Proof. (of Theorem 14) Fix θ. We will first show that almost surely, for x small enough, $D_n(x) \to 0$ as $n \to \infty$.

As a random variable U_n is identical to $-X_n$ in the proof of Theorem 13 above. Using the same argument in that proof (using the Law of Iterated Logarithms), it follows that p_n almost surely goes to 0 at least as fast as $\exp(-2s_n + 2\sqrt{2\pi}s_n \log \log s_n)$.

Now define a sequence c_n recursively by $c_n = U_n c_{n-1}(1 + nr_nBU_{n-1}c_{n-1})$. Notice that $D_n(c_0) \leq c_n$ by (d) above. For sufficiently small c_0, we will show $c_n \to 0$ almost surely. Let $\lambda_n = \prod_{k=1}^{n}(1 + Bnr_n p_n)$. The assumption that $nr_n \exp(-2s_n + 2\sqrt{2\pi}s_n \log \log s_n)$ is summable implies that λ_n has a limit L. Notice that for $\epsilon < \min_{n \in \mathbb{N}}(U_n/\lambda_n-1)$, we will have that $c_{n-1} < \epsilon \lambda_{n-1} p_{n-1}$ implies $c_n < \epsilon \lambda_n p_n$ for all n, because in this case

$$c_n = U_n c_{n-1}(1 + nr_nBU_{n-1}c_{n-1}) < c_{n-1}(1 + Bnr_n\epsilon \lambda_{n-1} p_{n-1}) < \epsilon c_{n} \lambda_{n-1}(1 + Bnr_n p_n) = \epsilon \lambda_n p_n$$

Hence in this case, we must have that $c_n \to 0$, because we know λ_n converges while $p_n \to 0$. Hence we conclude that for $\delta < \min_{n \in \mathbb{N}}(U_n/\lambda_n-1)$, we will have that $D_n(\delta) \leq c_n \to 0$, so $D_n(\delta) = 0$ and hence $\Sigma(\theta + \delta) = \Sigma(\theta)$.

Since this applies to almost all θ, Fubini’s theorem now implies the statement in Theorem 14.

Example 3. To understand the condition in Theorem 14, consider $r_n = \sqrt{cn^p}$, for $p \in [-\frac{1}{2}, 0]$. We must check the summability of

$$nr_n \exp(-2s_n + 2\sqrt{2\pi s_n \log \log s_n})$$

In this case, if $p > -\frac{1}{2}$, $s_n = \sum_{k=1}^n c k^{2p}$, which is between $\frac{c}{2p+1}((n+1)^{2p+1} - 1)$ and $\frac{c}{2p+1}n^{2p+1}$. Thus

$$nr_n \exp(-2s_n + 2\sqrt{2\pi s_n \log \log s_n}) \leq \sqrt{cn^{1+p}} \exp\left(-\frac{2c(n+1)^{2p+1}}{2p+1} + \frac{2c}{2p+1} + 2\sqrt{\frac{2\pi cn^{2p+1}}{2p+1} \log \log \left(\frac{cn^{2p+1}}{2p+1}\right)}\right)$$

This in fact goes to 0 quite rapidly, due to the $\exp(-Kn^{2p+1})$ term, and therefore is summable. For the case of $p = \frac{1}{2}$, one has that $s_n = \sum r_n \sim c \log n + c\gamma$, where γ is the Euler-Mascheroni constant. In this case, we have:

$$nr_n \exp(-2s_n + 2\sqrt{2\pi s_n \log \log s_n}) \sim \sqrt{cn^{\frac{1}{2}}} \exp\left(-2c(\log n - 2\gamma + 2\sqrt{2\pi c(\log n + \gamma)} \log \log n)\right)$$

$$= \sqrt{ce^{-2\gamma}} n^{\frac{1}{2}} \exp\left(2\sqrt{2\pi c(\log n + \gamma)} \log \log n\right)$$

which, because of how slowly $\exp(\sqrt{\log n})$ diverges, will converge as long as $\frac{1}{2} - 2c < -1$, or equivalently $c > \frac{3}{4}$. Hence, $r_n > \frac{\sqrt{3}}{2\sqrt{n}}$ is sufficient for $\Sigma(w)$ to almost surely exhibit a Cantor-like behavior. In particular, $r_n = \frac{1}{\sqrt{n}}$ is bad enough.

Theorem 8 (which we proved at the beginning of this section) states that $r \in l^2$ and i.i.d. uniform random angles implies almost sure invertibility. Thus this result pins down the transition between invertibility to non-invertibility to a relatively narrow window, because $r_n = \frac{1}{\sqrt{n}}$ is very nearly l^2. Our aim in the next Section is to pin this down even further.

8. Comparison with Verblunsky Coefficients

In this section we briefly compare root subgroup coordinates with Verblunsky coefficients (which are actually related to root subgroup coordinates for the loop group $LSU(1,1)$). We assume that the ordering is $p(n) = n$, because it does not seem natural to orthogonalize polynomials in a nonstandard order. The goal is to explain the following diagram, where in the top (bottom) row we are considering root subgroup coordinates (Verblunsky coefficients, respectively):

\[
\begin{align*}
R.S.F. & \quad \prod_{n=1}^{\infty} \Delta \quad \downarrow \text{a.s.} \quad \prod_{n=1}^{\infty} \Delta \\
Prob(S^1) & \quad \downarrow \text{a.s.} \quad \prod_{n=1}^{\infty} \Delta
\end{align*}
\]

\[
(8.1) \quad \prod_{n=1}^{\infty} \Delta \quad \downarrow \text{a.s.} \quad \prod_{n=1}^{\infty} \Delta
\]

\[
V. \quad \prod_{n=1}^{\infty} \Delta \\
\uparrow \text{a.s.} \quad \prod_{n=1}^{\infty} \Delta
\]

\[
\begin{align*}
\text{w} \cap \prod_{n=1}^{\infty} \Delta & \quad \uparrow \text{a.s.} \quad \text{w} \cap \prod_{n=1}^{\infty} \Delta \\
\text{w} \cap \prod_{n=1}^{\infty} \Delta & \quad \uparrow \text{a.s.} \quad \text{w} \cap \prod_{n=1}^{\infty} \Delta
\end{align*}
\]
For root subgroup coordinates (by Theorem [10]) there is an almost sure map
\[\prod_{n=1}^{\infty} \Delta \overset{a.s.}{\rightarrow} CDF \]
\[\downarrow \]
\[\text{Prob}(S^1) \]

\[w \overset{a.s.}{\rightarrow} \Sigma(w,\theta) = \theta - 2 \sum_{n=1}^{\infty} \frac{1}{n} \Theta(1 + w_n \sigma_{n-1}(\theta)^n) \]
\[\frac{1}{2\pi} d\Sigma = \text{weak}^* - \lim_{N \to \infty} \left(\prod_{n=1}^{N} \frac{1-|w_n|^2}{|1+w_n\sigma_{n-1}(z)^{n}|^2} \right) \frac{d\theta}{2\pi} \]

where the phases of the \(w_n \) are i.i.d. and uniform (for \(w \) such that \(\sum \frac{1}{n}|w_n| < \infty \), the map is surely defined). The corresponding Verblunsky map (see [30]) is given by

\[\prod_{n=1}^{\infty} \Delta \rightarrow \text{Prob}(S^1) : \alpha \rightarrow \mu(\alpha) = \text{weak}^* - \lim_{N \to \infty} \prod_{n=1}^{N} \frac{1-|\alpha_n|^2}{|p_N(z)|^2} \frac{d\theta}{2\pi} \]

where \(p_0 = 1 \) and for \(n > 0 \) the \(p_n \) are defined by the Szego recursion relation

\[p_n(z) = zp_{n-1}(z) - \alpha^*_nz^{n-1}p_{n-1}^*(z) \]

If \(\alpha_n = 0 \) for \(n > N \), then \(p_{N+k}(z) = z^k p_N(z) \), and hence

\[\mu(\alpha) = \prod_{n=1}^{N} \frac{1-|\alpha_n|^2}{|p_N(z)|^2} \frac{d\theta}{2\pi} \]

If \(\alpha_n = 0 \) for \(n \neq N \), then \(p_N(z) = z^N - \alpha_N^* \), and hence

\[\mu(\alpha) = \frac{1}{2\pi} d\Sigma(w) \]

where \(w_n = 0 \) for \(n \neq N \) and \(w_N = -\alpha_N \).

The inverse of the Verblunsky map (for simplicity, restricted to measures with infinite support) is given by

\[\text{Prob}'(S^1) \rightarrow \prod_{n=0}^{\infty} \Delta : \mu \rightarrow (\alpha_n) \]

where if \(p_0 = 1, p_1(z), p_2(z), \ldots \) are the monic orthogonal polynomials corresponding to the nontrivial measure \(\mu \), then \(\alpha_n = -p_{n+1}(0)^* \) (It is not evident that \(|\alpha_n| < 1 \); this follows by an argument using the recursion relation (8.3) for the \(p_n \); see Theorem 1.5.2 of [30]). We do not know how to calculate the composition of maps

\[\prod_{n=1}^{\infty} \Delta \rightarrow \text{Prob}(S^1) \rightarrow \prod_{m=1}^{\infty} \Delta : w \rightarrow \mu_w \rightarrow \alpha \]

for sequences with multiple nonzero terms. It is even quite complicated to calculate that

\[\alpha_1^*(w_1, w_2, 0, \ldots) = \frac{w_1^* + w_1 w_2^*}{1 + w_1^2 w_2^2} \]

Suppose that \(\Sigma \) is a cdf which corresponds to \(\mu(\alpha) \). A famous theorem of Szego (see Theorem 8.1 of [30]) asserts that

\[\prod_{n=1}^{\infty} (1-|\alpha_n|^2) = \exp \left(\frac{1}{2\pi} \int \log(\Sigma') d\theta \right) \]
Consequently $\alpha \in l^2$ if and only if $\int \log(\Sigma')d\theta > -\infty$. In particular $\alpha \in l^2$ implies that $\Sigma' > 0$ a.e. [Leb] and hence Σ is strictly increasing. But $\alpha \in l^2$ does not imply that Σ is continuous (see Section 2.7 of [30], especially Example 2.7.5). This should be compared with the situation for root subgroup coordinates: in this case $w \in l^2$ easily implies $\sum_{n>0}1 < \infty$, and hence $\Sigma(w)$ is continuous, but it can easily happen that Σ is not strictly increasing. For root subgroup coordinates we also know that if the phases of the w_n are i.i.d. and uniform, then $w \in l^2$ does not imply that Σ is continuous (see Section 2.7 of [30], especially Example 2.7.5). This explains the middle vertical arrows in (8.1).

Suppose that

$$\mu(\alpha) = e^{f(z)} + \mu_s, \quad f(z) = \sum_{n=-\infty}^{\infty} f_n z^n$$

where μ_s is perpendicular to the Lebesgue class. Another famous theorem of Szego (with a refinement due to Ibragimov) asserts that if $\mu_s = 0$, then

$$\prod_{n=1}^{\infty} (1 - |\alpha_n|^2)^n = \exp\left(- \sum_{k=1}^{\infty} k|f_k|^2\right)$$

(see Chapter 6 of [30]). This implies a positive answer to the Verblunsky analogue of Question 3 (which explains the right most vertical arrows in (8.1).

Corollary 2. $\alpha \in w^{1/2}$ if and only if a cdf for $\mu(\alpha)$ belongs to $W^{1+1/2}Homeo(S^1)$.

Szego’s theorem (8.5), and a further consideration involving volume, suggests that (an appropriate probabilistic extension of) the map $M : f \rightarrow \alpha$ might induce an equality of the two probability measures

$$M_* \left(\prod_{k=1}^{\infty} \frac{\beta}{\pi} e^{-\beta|f_k|^2} d\lambda(f_k) \right) = \prod_{n=1}^{\infty} \frac{nb}{\pi} (1 - |\alpha_n|^2)^{n-1} d\lambda(\alpha_n)$$

where $\beta > 0$ and $b = 1+\beta$. The former measure is essentially so called multiplicative chaos. The striking feature is the shift in exponent, which arises from the following volume calculation: for finite N, on a certain domain D_N,

$$\chi_{D_N} \prod_{n=1}^{N} d\lambda(\alpha_n) = \prod_{n=1}^{N} (1 - |\alpha_n|^2)^{n-1} d\lambda(\alpha_n)$$

(This will appear elsewhere). If (8.6) is correct, then for the measures on the right hand side of (8.6), the Verblunsky analogue of the measures in Subsection 0.5 there are two potential phase transitions, $b = 1$, and a conjectural transition at $b = 1+\sqrt{2}$ ($\beta = \sqrt{2}$) identified in [3].

9. **Appendix: Smoothness Conditions for Homeomorphisms of S^1**

For a map $\sigma : S^1 \rightarrow S^1$ which is 1-1 and onto, the inverse is also 1-1 and onto. For such a map, if σ is continuous, then the inverse is also continuous. However given a more general smoothness condition S for self-maps of S^1, the set of homeomorphisms of S^1 satisfying condition S may or may not form a subgroup. We are interested in filtering homeomorphisms in terms of groups, and hence we will want to impose bi-conditions on homeomorphisms and their inverses (We will say that
a homeomorphism is bi-S to mean that the homeomorphism and its inverse satisfy condition S). In this appendix we recall important examples. The most interesting examples are of groups which arise because they fix some kind of geometric structure.

9.1. Holder Type Conditions. (1) For $s = 0$ and for $s \geq 1$, $C^s \text{Homeo}(S^1)$ is the topological group of orientation preserving homeomorphisms of S^1 which, together with their inverses, are C^s.

(2) For fixed $0 < s < 1$, C^s is not closed with respect to composition, and hence $C^s \text{Homeo}(S^1)$ fails to be a group (e.g. $f(x) = x^3$ is a bi-$C^{1/3}$ homeomorphism of \mathbb{R} and $f \circ f(x) = x^9$ is not a bi-$C^{1/3}$ homeomorphism). Thus it is problematic, in the group theoretic category, to filter homeomorphisms by Holder smoothness in the range $0 < s < 1$. The set of bi-Holder continuous homeomorphisms, $C^{0+} \text{Homeo}(S^1)$, does form a group.

(3) $\phi \in \text{Homeo}(S^1)$ is quasisymmetric if there is a constant M such that
\[\frac{1}{M} \leq \frac{|\phi(e^{i(\theta+t)}) - \phi(e^{i\theta})|}{|\phi(e^{i\theta}) - \phi(e^{i(\theta-t)})|} \leq M \]
for all θ, t (see e.g. chapter 16 of [12]). There are other characterizations: ϕ is quasisymmetric if and only if it can be extended to a homeomorphism of the disk which is quasiconformal, if and only if it stabilizes the critical Sobolev class $W^{1/2}(S^1)$ (To properly formulate this, it is essential to note that a $W^{1/2}$ equivalence class of measurable functions has a preferred representative which is defined off of a set of logarithmic capacity zero, and quasisymmetric maps preserve capacity; see [25]).

The inverse of a quasisymmetric homeomorphism is also quasisymmetric. The set $QS(S^1)$ of quasisymmetric homeomorphisms of S^1 is a group, and it is also naturally a Banach manifold, but it is not a topological group. Any quasisymmetric homeomorphism is Holder continuous of order s, where $s = 1/K$ and the homeomorphism has a K-quasiconformal extension to Δ.

The conditions for homeomorphisms which we have considered are summarized as: for $s > 1$
\[bi - C^s \subset bi - C^1 \subset QS \subset bi - \text{Holder} \subset C^0 \]
There is a sharp transition at $s = 1$.

9.2. Sobolev Type Conditions. (4) For $S = W^{1,L_1}$, the set $AC(S^1)$ of bi-absolutely continuous homeomorphisms is a group (The inverse of an absolutely continuous homeomorphism is not necessarily absolutely continuous, hence the condition on the inverse is essential). $AC(S^1)$ is the group of homeomorphisms which fix the Lebesgue class $|d\theta|$ of S^1. As a consequence this group acts unitarily on half-densities (of the Lebesgue class) on the circle with finite norm.

(5) For $s > 3/2$, $W^s \text{Homeo}(S^1)$, the set of orientation preserving homeomorphisms of S^1 which, together with their inverses, are $W^s := W^{s,L_2}$ (smooth of order s in the L^2 Sobolev sense), is a topological group. More generally, for a compact d-manifold X, the set of homeomorphisms of X which are smooth of order s in the L^2 Sobolev sense is a topological group, provided $s > 1 + d/2$; see [11].

(6) For $s = 3/2$, the critical L^2 Sobolev case, a subtle adjustment in the definition is apparently required (We do not know how to show by example that this is
essential, but this seems certain). Define
\[W^{1+1/2} \text{Homeo} := \{ \sigma \in AC(S^1) : \ln(\Sigma') \in W^{1/2,L^2} \} \]
This is a topological group.

To summarize the group conditions that are most important for us, analogous to (9.2), there are inclusions
\[W^{1+s,L^2} \to W^{1+1/2,L^2} \to QS \to C^{0+} \to \text{Homeo}(S^1) \]
where \(s > 1/2 \). For \(L^2 \)-Sobolev exponents there is a sharp transition at \(s = 1/2 \), analogous to the transition for Holder exponents at \(s = 1 \).

References

[1] H. Airault, P. Malliavin, and A. Thalmaier, Brownian measures on Jordan-Virasoro curves associated to the Weil-Petersson metric. J. Funct. Anal. 259 (2010), no. 12, 3037-3079.
[2] L. Ahlfors, Complex Analysis, McGraw-Hill (1966).
[3] K. Astala, P. Jones, A. Kupianen, and Saksman, Random conformal weldings. Acta Math. 207 (2011), no. 2, 203-254.
[4] P. Billingsley, Convergence of Probability Measures, John Wiley and Sons (1968).
[5] C. Bishop, Conformal welding and Koebe’s theorem, Ann. Math. 166, no. 3 (2007) 613-656.
[6] A. Chavez and D. Pickrell, Werner’s conformally invariant measure on self-avoiding loops on Riemann surfaces and welding, SIGMA Symmetry Integrability Geom. Methods Appl. 10 (2014), 081, 42 pages.
[7] K. Clancey and I. Gohberg, Factorization of Matrix Functions and Singular Integral Operators, Operator Theory: Advances and Applications, Vol.3, Birkhäuser (1981).
[8] S. Donaldson, Riemann Surfaces, Oxford Graduate Texts in Mathematics, 22 (2011).
[9] P. Duren, Univalent Functions, Springer (1983).
[10] P. Ebenfelt, D. Khavinson, and H. S. Shapiro. Two-dimensional shapes and lemniscates. Complex analysis and dynamical systems IV, Contemp. Math, 553, Amer. Math. Soc. (2011).
[11] Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math. (2) 92 (1970) 102-163.
[12] F. Gardiner and N. Lakic, Quasiconformal Teichmüller Theory, Mathematical Surveys and Monographs, Vol. 76, Amer. Math. Soc. (1999).
[13] E. Ghys, Groups acting on the circle. Enseign. Math. (2) 47 (2001), no. 3-4, 329-407.
[14] P. Griffith and J. Harris, Principles of Algebraic Geometry, John Wiley and Sons (1978)
[15] E. Grong, P. Gumenyuk and A. Vasiliev, Matching univalent functions and conformal welding, Annales Academiae Scientiarum Fennicae, Mathematica Volume 34 (2009) 303314.
[16] E. Hille, Analytic Function Theory, Vol. II, Chelsea (1973).
[17] F. Jones, Lebesgue Integration on Euclidean Space, Jones and Bartlett (1993).
[18] P. Jones and S. Smirnov, Removability theorems for Sobolev functions and quasiconformal maps, Volume 38, Number 2 (2000) 263-279.
[19] V. Kac and D. Peterson, Defining relations of certain infinite-dimensional groups. The mathematical heritage of lie Cartan (Lyon, 1984). Asterisque 1985, Numero Hors Serie, 165-208.
[20] Y. Katznelson, S. Nag, and D. Sullivan, On conformal welding homeomorphisms associated to Jordan curves, Annales Academiae Scientiarum Fennicre Series A. I. Mathematica Volumen 15 (1990) 293-306.
[21] A. A. Kirillov and Yuriev, Representations of the Virasoro algebra by the orbit method, JGP Vol. 5, no. 3 (1998).
[22] M. Kontsevich and Y. Suhov, On Malliavin measures, SLE, and CFT, Proc. Steklov Inst. Math. 258 (2007) 100-146.
[23] J. Milnor, Remarks on infinite dimensional Lie groups. Relativity, groups and topology, II (Les Houches, 1983), North-Holland, Amsterdam (1984) 1007-1057.
[24] R. Moody and A. Pianzola, Triangular Lie Algebras, Wiley (1995).
[25] S. Nag and D. Sullivan, Teichmüller theory and the universal period mapping via quantum calculus and the \(H^{1/2} \) space on the circle. Osaka J. Math. 32, no. 1 (1995) 1-34.
[26] D. Pickrell, Invariant measures for unitary forms of Kac-Moody Lie groups, Memoir of the Amer. Math. Soc., Vol. 146, No. 693 (2000).
[27] D. Pickrell, Loops in SU(2) and factorization, J. Funct. Anal. 260 (2011) 2191-2221.
[28] B. Polletta and D. Pickrell, Loops in compact Lie groups and factorization, J. Lie Th., Vol. 20 (2010) 93-112.
[29] A. Pressley and G. Segal, Loop Groups, Oxford Mathematical Monographs, Clarendon Press (1986).
[30] B. Simon, Orthogonal polynomials on the unit circle, part 1: classical theory, Colloquium Publications, Vol. 54, Amer. Math. Soc. (2004).
[31] L. Takhtajan and L-P. Teo, Weil-Petersson metric on the universal Teichmuller space. Mem. Amer. Math. Soc. 183 (2006).
[32] W. Werner, The conformally invariant measure on self-avoiding loops, J. Amer. Math. Soc. 21, No. 1 (2008) 137-169.
[33] M. Younsi, Shapes, fingerprints, and rational lemniscates, Proc. Amer. Math. Soc., Vol. 144, No. 3 (2016) 1087-1093.
[34] A. Zygmund, Trigonometric Series, Vol. I and II, Cambridge University Press (1977).