Search for chargino–neutralino pair production in final states with three leptons and missing transverse momentum in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector

ATLAS Collaboration

CERN, 1211 Geneva 23, Switzerland

Abstract A search for chargino–neutralino pair production in three-lepton final states with missing transverse momentum is presented. The study is based on a dataset of $\sqrt{s} = 13$ TeV pp collisions recorded with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 139 fb^{-1}. No significant excess relative to the Standard Model predictions is found in data. The results are interpreted in simplified models of supersymmetry, and statistically combined with results from a previous ATLAS search for compressed spectra in two-lepton final states. Various scenarios for the production and decay of charginos ($\tilde{\chi}^\pm_1$) and neutralinos ($\tilde{\chi}^0_2$) are considered. For pure higgsino $\tilde{\chi}^\pm_1 \tilde{\chi}^0_2$ pair-production scenarios, exclusion limits at 95% confidence level are set on $\tilde{\chi}^0_2$ masses up to 210 GeV. Limits are also set for pure wino $\tilde{\chi}^\pm_1 \tilde{\chi}^0_2$ pair production, on $\tilde{\chi}^0_2$ masses up to 640 GeV for decays via on-shell W and Z bosons, up to 300 GeV for decays via off-shell W and Z bosons, and up to 190 GeV for decays via W and Standard Model Higgs bosons.

1 Introduction

Supersymmetry (SUSY) [1–6] postulates a symmetry between bosons and fermions, and predicts the existence of new partners for each Standard Model (SM) particle. This extension offers a solution to the hierarchy problem [7–11] and provides a candidate for dark matter as the lightest supersymmetric particle (LSP), which will be stable in the case of conserved R-parity [12].

This paper describes a search for direct production of charginos and neutralinos, mixtures of the SUSY partners of the electroweak gauge and Higgs (h) bosons, decaying to three charged leptons, and significant missing transverse momentum (p_T^{miss}, of magnitude E_T^{miss}). The search uses the full Run 2 dataset of proton–proton collisions recorded between 2015 and 2018 with the ATLAS detector at the CERN Large Hadron Collider (LHC). Protons were collided at a centre-of-mass energy \sqrt{s} of 13 TeV and the dataset corresponds to an integrated luminosity of 139 fb^{-1}[13]. Similar searches at the LHC have been reported by the ATLAS [14–20] and CMS collaborations [21–27].

Previous results are extended by analysing the full ATLAS Run 2 dataset, improving the signal selection strategies – particularly for intermediately compressed mass spectra, and exploiting improved particle reconstruction performance. Significant gains in lepton identification and isolation performance follow from updates in the electron reconstruction as well as from the use of a novel multivariate discriminant [28]. Furthermore, the new results are statistically combined with a previous ATLAS search [18] targeting compressed mass spectra and two-lepton final states. Finally, the paper reports updated results for a previous ATLAS search which observed excesses of three-lepton events in the partial, 36 fb^{-1}, Run 2 dataset [15]. The original analysis using the Recursive Jigsaw Reconstruction (RJR) technique [29,30] is repeated using the full Run 2 dataset, and no significant excesses relative to the SM expectation are observed. A related follow-up search emulating the RJR technique with conventional laboratory-frame variables, also using the full Run 2 dataset, was published in Ref. [16]. The updated RJR results are not included in the combination with the new results, as they are not statistically independent and not competitive with the results of the new search optimised for the full Run 2 dataset.

Section 2 introduces the target SUSY scenarios, while a brief overview of the ATLAS detector is presented in Sect. 3, followed by a description of the dataset and Monte Carlo simulation in Sect. 4. After a discussion of the event reconstruction and physics objects used in the analysis in Sects. 5, 6 covers the general analysis strategy, including the definition of signal regions, background estimation techniques, and systematic uncertainties. This is followed by Sect. 7, with details specific to the on-shell WZ selection and the
Wh selection, and Sect. 8, with details specific to the off-shell WZ selection. Results are presented in Sect. 9, together with the interpretation in the context of relevant SUSY scenarios. Section 10 reports the follow-up RJR analysis, and finally Sect. 11 summarises the main conclusions.

2 Target scenarios

The bino, the winos, and the higgsinos are respectively the superpartners of the $U(1)_Y$ and $SU(2)_L$ gauge fields, and the Higgs field. In the minimal supersymmetric extension of the SM (MSSM) [31,32], $M_1, M_2,$ and μ are the mass parameters for the bino, wino, and higgsino states, respectively. Through mixing of the superpartners, chargino ($\tilde{\chi}^\pm_{1,2}$) and neutralino ($\tilde{\chi}^0_{1,2,3,4}$) mass eigenstates are formed. These are collectively referred to as electroweakinos, and the subscripts indicate increasing electroweakino mass. If the $\tilde{\chi}^0_1$ is stable, e.g. as the lightest supersymmetric particle (LSP) and with R-parity conservation assumed, it is a viable dark-matter candidate [33,34].

Two physics scenarios are considered in this search. In the first scenario, referred to as the ‘wino/bino scenario’, mass parameters $|M_1| < |M_2| < |\mu|$ are assumed such that the produced electroweakinos have a wino and/or bino nature, with the $\tilde{\chi}^\pm_1$ and $\tilde{\chi}^0_2$ being bino dominated, and the $\tilde{\chi}^0_1$ LSP being bino dominated. Such a hierarchy is typically predicted by either a class of models in the framework of gaugino mass unification at the GUT scale (including mSUGRA [35,36] and eMSSM [37]), or a MSSM parameter space where the discrepancy between the measured muon anomalous magnetic moment [38], and its SM predictions [39] can be explained [40–42]. When the mass-splitting between $\tilde{\chi}^\pm_1$ and $\tilde{\chi}^0_1$ is 15–30 GeV, this hierarchy is also motivated by the fact that the LSP can naturally be a thermal-relic dark-matter candidate that was depleted in the early universe through co-annihilation processes to match the observed dark-matter density [43–45]. These models are poorly constrained by dark-matter direct-detection experiments, and collider searches constitute the only direct probe for $|\mu| > 800$ GeV [46].

The second scenario, referred to as the ‘higgsino scenario’, considers a triplet of higgsino-like states ($\tilde{\chi}^\pm_1, \tilde{\chi}^0_2, \tilde{\chi}^0_1$) to be the lightest SUSY particles. This type of scenario is motivated by naturalness arguments [47,48], which suggest that $|\mu|$ should be near the weak scale [49–52], while M_1 and/or M_2 can be larger. The mass-splitting between the light higgsino states are determined by the magnitude of M_1 or M_2 relative to $|\mu|$. For the higgsino scenario this paper considers the regime where the mass-splitting between $\tilde{\chi}^0_2$ and $\tilde{\chi}^0_1$ is about 5–60 GeV, corresponding to cases where the wino and bino states are moderately decoupled ($M_1, M_2 > 0.5$ TeV).

Simplified SUSY models [53–55] for the two scenarios are considered for optimisation of the selections and interpretation of the results. For the wino/bino scenario, the $\tilde{\chi}^\pm_1$ and $\tilde{\chi}^0_2$ are assumed to be mass degenerate and purely wino, while the $\tilde{\chi}^0_1$ is purely bino. The product of the two signed neutralino eigenmass parameters $m_{\text{eig}}(\tilde{\chi}^0_2) \times m_{\text{eig}}(\tilde{\chi}^0_1)$ can be either positive or negative, and the two cases are referred to as the wino/bino ‘(+)-’ or ‘(−)-’ scenario, respectively. For the higgsino scenario, the $\tilde{\chi}^\pm_1$, $\tilde{\chi}^0_2$, and $\tilde{\chi}^0_1$ are purely higgsino states, and the mass of the $\tilde{\chi}^\pm_1$ is assumed to be exactly the mean of the $\tilde{\chi}^0_1$ and $\tilde{\chi}^0_2$ masses. In both scenarios, all other SUSY particles are assumed to be heavier, such that they do not affect the production and decay of the $\tilde{\chi}^\pm_1$ and $\tilde{\chi}^0_2$.

The search targets direct pair production of the lightest chargino and the next-to-lightest neutralino, $\tilde{\chi}^\pm_1 \tilde{\chi}^0_2$, decaying into a pair of $\tilde{\chi}^0_1$ LSPs via an intermediate state with a W boson and a Z boson (WZ mediated), or a W boson and an SM Higgs boson (Wh mediated). Final states with three light-flavour leptons (electrons or muons, referred to as ‘leptons’ in the rest of this paper) are explored. One lepton originates from a leptonic decay of a W boson, and two leptons come from the direct decay of a Z boson or the indirect decay of a Higgs boson. The signatures are also characterised by the presence of E_T^{miss} originating from the LSPs, and this E_T^{miss} component is enhanced when hadronic initial-state radiation (ISR) is present, due to recoil between the $\tilde{\chi}^\pm_1 \tilde{\chi}^0_2$ system and the jets.

The following three simplified model scenarios of $\tilde{\chi}^\pm_1 \tilde{\chi}^0_2$ pair production, as illustrated in Fig. 1, are considered with dedicated selections:

- **On-shell WZ selection:** $\tilde{\chi}^0_2 \rightarrow Z \tilde{\chi}^0_1$ with 100% branching ratio, where $\Delta m(\tilde{\chi}^0_2, \tilde{\chi}^0_1) \gtrsim m_Z$, for the wino/bino (+) scenario.
- **Off-shell WZ selection:** $\tilde{\chi}^0_2 \rightarrow Z^{(*)} \tilde{\chi}^0_1$ with 100% branching ratio, where $\Delta m(\tilde{\chi}^0_2, \tilde{\chi}^0_1) < m_Z$, for the wino/bino (+), the wino/bino (−), and the higgsino scenarios.
- **Wh selection:** $\tilde{\chi}^0_2 \rightarrow h \tilde{\chi}^0_1$ with 100% branching ratio, where $\Delta m(\tilde{\chi}^0_2, \tilde{\chi}^0_1) > m_h$, for the wino/bino (+) scenario.

A 100% branching ratio is assumed for $\tilde{\chi}^\pm_1 \rightarrow W^{(*)} \tilde{\chi}^0_1$ for all models. Unless otherwise indicated, mass splitting Δm refers to $\Delta m(\tilde{\chi}^0_2, \tilde{\chi}^0_1)$ in the rest of this paper. For the considered Wh-mediated scenarios, the Higgs boson has SM properties and branching fractions; and three-lepton final states

1 The mixing matrix used to diagonalise the neutral electroweakino states can be complex, even in the absence of CP violation, but can be made real at the cost of introducing negative mass eigenstates. The sign will affect the couplings and thus the distributions in the decay under consideration. For additional discussion of this, see Ref. [56] and Appendix A of Ref. [57].
are expected with one lepton coming from the W boson and the remaining two from Higgs boson decays via WW, ZZ or ττ.

For \(\tilde{\chi}_1^+ \tilde{\chi}_2^0 \) pair production with decays via WZ to 3ℓ final states, in the wino/bino (+) scenario, limits were previously set at the LHC for \(\tilde{\chi}_1^+ / \tilde{\chi}_2^0 \) masses up to 500 GeV for massless \(\tilde{\chi}_1^0 \), up to 200 GeV for \(\Delta m \sim m_Z \), and up to 240 GeV for 50 GeV < \(\Delta m < m_Z \) [21]. Limits for mass splittings \(\Delta m < 50 \) GeV were set in 2ℓ final states for \(\tilde{\chi}_1^+ / \tilde{\chi}_2^0 \) masses up to 250 GeV[18]. For decays via Wh to 3ℓ final states (including hadronically decaying \(\tau \)-leptons), limits reached 150 GeV for massless \(\tilde{\chi}_1^0 \), and as high as 145 GeV for a \(\tilde{\chi}_1^0 \) mass of 20 GeV[17].

For the higgsino scenario, the most stringent limits for 5 GeV < \(\Delta m < 55 \) GeV were set by ATLAS using 2ℓ final states [18] where \(\tilde{\chi}_2^0 \) masses up to 130–190 GeV are excluded depending on \(\Delta m \). For \(\Delta m > 55 \) GeV the best limits were reported by LEP [58–63,63–67], excluding \(\tilde{\chi}_1^0 \) masses up to 103.5 GeV.

3 ATLAS detector

The ATLAS detector [68] is a general-purpose particle detector with almost 4\(\pi \) solid angle coverage around the interaction point.\(^2\) It consists of an inner tracking system surrounded by a superconducting solenoid, sampling electromagnetic and hadronic calorimeters, and a muon spectrometer encompassing superconducting toroidal magnets.

\(^2\) ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates \((r, \phi)\) are used in the transverse plane, \(\phi \) being the azimuthal angle around the z-axis. Pseudorapidity is defined in terms of the polar angle \(\theta \) as \(\eta = -\ln \tan(\theta/2) \). Angular distance is measured in units of \(\Delta R \equiv \sqrt{\Delta \eta^2 + (\Delta \phi)^2} \). Rapidity is defined by \(\eta = \frac{1}{2} \ln((E + p_T)/(E - p_T)) \), where \(E \) is the energy and \(p_T \) is the longitudinal component of the momentum along the beam direction.

The inner detector (ID) reconstructs charged-particle tracks in the pseudorapidity range \(|\eta| < 2.5 \), using silicon pixel and microstrip subsystems followed by a transition radiation tracker. For \(\sqrt{s} = 13 \) TeV data-taking an additional innermost layer, the insertable B-layer [69,70], was added to the pixel tracker to improve tracking performance and flavour identification of quark-initiated jets. The ID is immersed in a 2 T axial magnetic field provided by the surrounding thin, superconducting solenoid.

Beyond the ID a high-granularity lead/liquid-argon (LAr) electromagnetic sampling calorimeter (ECAL) and a steel/scintillator-tile hadronic sampling calorimeter cover \(|\eta| < 3.2 \) and \(|\eta| < 1.7 \) respectively. In the forward regions a copper/LAr endcap calorimeter extends the hadronic coverage to \(1.7 < |\eta| < 3.2 \), while copper/LAr and tungsten/LAr forward calorimeters are used for electromagnetic and hadronic measurements in the \(3.1 < |\eta| < 4.9 \) region. The muon spectrometer (MS) surrounds the calorimeters and comprises three layers of trigger and high-precision tracking chambers spanning \(|\eta| < 2.4 \) and \(|\eta| < 2.7 \), respectively. A magnetic field is provided by a system of three superconducting air-core toroidal magnets with eight coils each.

Events of interest are selected using a two-level trigger system [71] consisting of a custom hardware-based first-level (L1) trigger followed by a software-based high-level trigger (HLT). The L1 trigger accepts events from the 40 MHz bunch crossings at a rate below 100 kHz, which the high-level trigger reduces in order to record events to disk at about 1 kHz.

4 Data and Monte Carlo simulated event samples

This analysis exploits the full Run 2 \(\sqrt{s} = 13 \) TeV pp dataset recorded by the ATLAS experiment during stable beam conditions between 2015 and 2018. The LHC collided protons with bunch-crossing intervals of 25 ns, and the average number of interactions per crossing in data was \(\langle \mu \rangle = 34 \). After applying beam, detector and data-quality requirements [72],
the dataset corresponds to a total integrated luminosity of 139 fb$^{-1}$ [13], with an uncertainty in the integrated luminosity of 1.7%, obtained using the LUCID-2 detector [73] for the primary luminosity measurements.

The expected contributions of SM processes and $\tilde{\chi}_1^±\tilde{\chi}_0^0$ SUSY signals are estimated using Monte Carlo (MC) simulation. The MC samples are used in the optimisation of event selection criteria, as well as for yield prediction and the estimation of systematic uncertainties in the yield prediction. The yield prediction for the dominant WZ background is improved by extracting normalisation factors from data in dedicated control regions, as discussed in Sect. 6.2. The background contribution from events with one or more misidentified or non-prompt leptons is estimated using a data-driven method also outlined in Sect. 6.2. For all other processes, the MC-predicted yields are used directly. The samples are produced including an ATLAS detector simulation [74] based on GEANT4 [75], or a faster simulation using a parameterised calorimeter response [76] and GEANT4 for all other detector systems. Simulated events are reconstructed in the same way as data events. Details of the MC simulation, including the generators used for the matrix element (ME) calculation and the parton shower (PS), hadronisation and underlying event (UE) modelling, the parton distribution function (PDF) sets used in the ME and PS, the set of tuned parameter values used as the UE tune, and the order of the cross-section calculations used for yield normalisation are given in Table 1 and briefly discussed below.

The SUSY $\tilde{\chi}_1^±\tilde{\chi}_0^0 \rightarrow WZ/WH \rightarrow 3\ell$ signal samples were generated from leading-order (LO) matrix elements with up to two additional partons using MadGraph 2.6 and Pythia 8.2, for both the wino/bino and the higgsino scenarios. MadSpin [125] was used to model off-shell WZ decays. The ME–PS matching was done using the CKKW-L prescription [126,127], with the matching scale set to one quarter of the $\tilde{\chi}_1^±/\tilde{\chi}_0^0$ mass. Samples were generated for $\tilde{\chi}_1^±/\tilde{\chi}_0^0$ masses between 100 GeV and 850 GeV, and mass splittings Δm between 5 GeV and 850 GeV. Only $\tilde{\chi}_1^±/\tilde{\chi}_0^0$ decays via bosons, which in turn decay leptonically via SM branching fractions, are considered. For the Wh samples, only Higgs boson decays via WW, ZZ and $\tau\tau$ were generated, with cross section times branching fractions corrected to match the SM Higgs branching fractions [109]. The generated signal events are required to have at least two leptons for the on-shell WZ samples, and at least three leptons for the off-shell WZ samples and the Wh samples; hadronically decaying τ-leptons are not considered in the requirement.

The only difference between the two wino/bino scenarios (positive or negative $m_{\text{eig}}(\tilde{\chi}_2^0) \times m_{\text{eig}}(\tilde{\chi}_1^0)$) is the mass line-shape of the Z boson from the $\tilde{\chi}_2^0$ decay, particularly when $\Delta m < m_Z$ and the Z boson is off-shell. The samples were generated for the (+) scenario and a reweighting in m_{Z^\pm}, based on an analytic function presented in Ref. [128], was used to simulate the (−) scenario.

Inclusive production cross sections are computed at next-to-leading order (NLO) plus next-to-leading-log (NLL) precision [79–84]. For wino production the computation is performed in the limit of mass-degenerately $\tilde{\chi}_1^±$ and $\tilde{\chi}_0^0$, and with light $\tilde{\chi}_1^0$, while for higgsino production a partially degenerate case is considered, with the $\tilde{\chi}_1^±$ mass equal to the mean of the $\tilde{\chi}_1^0$ and $\tilde{\chi}_0^0$ masses; all the other supersymmetric particles (sparticles) are assumed to be heavy and decoupled. For production at a centre-of-mass energy of $\sqrt{s} = 13$ TeV, the wino (higgsino) $\tilde{\chi}_1^±\tilde{\chi}_0^0$ cross section ranges between 22.67 ± 0.97 pb (12.22 \pm 0.26 pb, $\Delta m = 80$ GeV) and 3.42 ± 0.41 fb (87.2 \pm 3.2 fb, $\Delta m = 20$ GeV) for $\tilde{\chi}_0^0$ masses between 100 GeV and 850 (320) GeV, with the higgsino cross section depending additionally on Δm.

Diboson, triboson and Z+jets processes were simulated with the SHERPA 2.2 generator. ME–PS matching and merging is based on Catani–Seymour dipole factorisation [122,129,130], using improved CKKW matching [131,132] extended to NLO accuracy using the MEPS@NLO prescription [130–133], and including NLO virtual QCD corrections for the ME [134,135]. The diboson samples cover dilepton masses down to 4 GeV for $p_T^{\ell_1}, p_T^{\ell_2} > 5$ GeV, and down to $m_{\ell\ell} > 2m_{\ell} + 250$ MeV if $p_T^{\ell_1}, p_T^{\ell_2} > 5$ GeV and any of $m_{\ell\ell} > 4$ GeV, $p_T^{\ell_1} > 20$ GeV, or $E_{\text{T}}^{\text{miss}} > 50$ GeV are satisfied. The standard multiboson samples do not include Higgs boson production. An alternative triboson sample including off-shell contributions and leptonically decaying $h \rightarrow VV$ (with $V = W$ or Z) contributions is used in the off-shell WZ selection, where W^*Z^* decays are targeted and off-shell triboson processes are non-negligible in the estimation of the SM background; dilepton masses down to 4 GeV are considered in the sample.

The $t\bar{t}$, single-top tW, t-channel, s-channel and $t\bar{t}h$ processes were modelled using POWHEG Box 2 + PYTHIA 8. The h_{damp} parameter was set to 1.5 times the top-quark mass [136]. The samples were generated employing the five-flavour scheme (four-flavour in case of single-top t-channel), and a diagram removal scheme [137] was used in the case of tW to remove interference and overlap with $t\bar{t}$ production. Other top-quark processes ($t\bar{t}V, t\bar{t}Z, t\bar{t}W, t\bar{t}VV, t\bar{t}\ell\ell$ ($t \rightarrow Wb + (\gamma^*/Z \rightarrow \ell\ell)$), 3-top and 4-top) were modelled using MADGRAPH5_AMC@NLO 2 + PYTHIA 8. Samples of Higgs boson production via gluon fusion, vector-
Table 1 Monte Carlo simulation details by physics process. The table lists the event generators used for ME and PS calculations, the accuracy of the ME calculation, the PDF sets and UE parameter tunes used, and the order in α_s of cross-section calculations used for yield normalisation (‘–’ if the cross section is taken directly from MC simulation).

Process	Event generator	ME accuracy	ME PDF set	Cross-section normalisation
$\tilde{\chi}_1^\pm \tilde{\chi}_2^0$	MADGRAPH 2.6 [77]	0,1,2j@LO	NNPDF2.3lo [78]	NLO+NLL [79–84]
Diboson [85]	SHERPA 2.2.2 [86]	0, 1j@NLO + 2,3j@LO	NNPDF3.0lo [87]	–
Triboson [85]	SHERPA 2.2.2	0j@NLO + 1,2j@LO	NNPDF3.0lo	–
Triboson (alternative) [85]	SHERPA 2.2.1	0,1j@LO	NNPDF2.3lo	–
Z+jets [88]	SHERPA 2.2.1	0,1,2j@NLO + 3,4j@LO	NNPDF3.0lo	NNLO [89]
$t\bar{t}$ [90]	POWHEG Box 2 [91–93]	NLO	NNPDF3.0lo	NNLO+NLL [94–100]
tW [101]	POWHEG Box 2	NLO	NNPDF3.0lo	NNLO+NLL [102,103]
single-t (t-channel [104], s-channel [105])	POWHEG Box 2	NLO	NNPDF3.0lo	NLO [106,107]
$t\bar{t}h$ [108]	POWHEG Box 2	NLO	NNPDF3.0lo	NLO [109]
$t\bar{t}V, tZ, tWZ$	MADGRAPH5_aMC@NLO 2.3	NLO	NNPDF3.0lo	–
$t\bar{t}\ell\ell (t \rightarrow Wb + (p^* / Z \rightarrow \ell\ell))$ [110]	MADGRAPH5_aMC@NLO 2.3	LO	NNPDF2.3lo	–
$t\bar{t} V V$, 3-top, 4-top	MADGRAPH5_aMC@NLO 2.2	LO	NNPDF2.3lo	–
Higgs (ggF)	POWHEG Box 2	NNLO+NNLL	NNPDF3.0lo	NNLO+NLO(EWK) [109,111–116]
Higgs (VBF)	POWHEG Box 2	NNLO+NLL	NNPDF3.0lo	NNLO+NLO(EWK) [109,117–119]
Higgs (Vh)	POWHEG Box 2	NLO	NNPDF3.0lo	NNLO+NLO(EWK) [109]

Process	PS and hadronisation	PS PDF set	UE tune
$\tilde{\chi}_1^\pm \tilde{\chi}_2^0$	PYTHIA 8.2 [120]	NNPDF2.3lo	A14 [121]
Diboson, triboson, Z+jets	SHERPA 2.2.2	default SHERPA	default SHERPA
Triboson (alternative)	SHERPA 2.2.1	default SHERPA	default SHERPA
$t\bar{t}$, tW, single-t, $t\bar{t}h$	PYTHIA 8.2	NNPDF2.3lo	A14
$t\bar{t} V, tZ, tWZ, t\bar{t}\ell\ell$	PYTHIA 8.2	NNPDF2.3lo	A14
$t\bar{t} V V$, 3-top, 4-top	PYTHIA 8.1	NNPDF2.3lo	A14
Higgs (ggF, VBF, Vh)	PYTHIA 8.2	CTEQ6L1 [123]	AZNLO [124]

j jet, LO leading order, NLO next-to-leading order, NNLO next-to-next-to-leading order, NNNLO next-to- next-to-next-to-leading order, NLL next-to-leading-log, NNLL next-to-next-to-leading-log, EWK electroweak
boson fusion and associated production were generated using POWHEG BOX 2 + PYTHIA 8.

All background and signal samples make use of EVTGEN 1.6.0 and 1.2.0 [138] for the modelling of b- and c-hadrons, except those generated using SHERPA. The effect of additional interactions in the same and neighbouring bunch crossings (pile-up) was included by overlaying simulated minimum-bias interactions onto each hard-scatter process. The simulation was done using PYTHIA 8.2 with the A3 tune [139] and the NNPDF2.3lo set of PDFs, and the samples were reweighted such that the pile-up distribution matches the one in data.

5 Event reconstruction and preselection

The strategy for event reconstruction and preselection is defined here, where a common approach has been adopted for all regions in the analysis, unless specified otherwise. Further selection specific to individual regions is discussed in Sects. 6 to 8.

Events are chosen for the Wh and on-shell WZ selections using dilepton triggers and for the off-shell WZ selection using single-lepton, dilepton and trilepton triggers [140,141]. The off-shell WZ selection is complemented at high $E_{\text{T}}^{\text{miss}}$ with softer-lepton events selected using $E_{\text{T}}^{\text{miss}}$ triggers [142]. The lepton triggers use various p_T thresholds, depending on the lepton type, quality and multiplicity. To ensure trigger efficiencies are well understood in the analysis phase space, tighter quality and p_T requirements are applied to fully reconstructed signal leptons, as defined below. Single-electron triggers are not used, to facilitate looser signal-lepton identification criteria. The number of leptons in the event that activate the trigger must be at least as many as the number of leptons required in the trigger, and electrons (muons) activating the trigger must have a fully calibrated p_T above 18 GeV (27.3, 14.7 or 6.5 GeV, for increasing trigger-lepton multiplicity). For events selected by a $E_{\text{T}}^{\text{miss}}$ trigger, an offline requirement of $E_{\text{T}}^{\text{miss}} > 200$ GeV is imposed to similarly ensure well-understood trigger efficiencies in the analysis phase space.

Events are required to have at least one reconstructed pp interaction vertex [143,144] with a minimum of two associated tracks with $p_T > 500$ MeV. In events with multiple vertices, the primary vertex is defined as the one with the highest $\sum p_T^2$ of associated tracks.

The primary objects used in this analysis are electrons, muons and jets. To be considered, reconstructed objects must satisfy ‘baseline’ loose identification criteria; to be selected for the analysis regions, they must also survive a second, tighter set of ‘signal’ identification requirements. Additionally, a lepton ‘anti-ID’ requirement is defined, corresponding to leptons that satisfy the baseline criteria but not the signal criteria. These anti-ID leptons are used in the $Z + jets$ background estimation in Sect. 6.2. Hadronically decaying τ-leptons are not considered in the analysis, and the term ‘lepton’ always refers to electrons or muons in this document.

Electron candidates are reconstructed from three-dimensional clustered energy deposits in the electromagnetic calorimeter (ECAL), matched to an ID track [145]. Muon candidates are reconstructed by matching MS tracks or track segments to ID tracks [146]. Electron and muon candidates are calibrated in situ [145,146], using $Z \rightarrow ee$, $J/\psi \rightarrow ee$, $Z \rightarrow \mu\mu$ and $J/\psi \rightarrow \mu\mu$ decays. Baseline electrons are required to have $p_T > 4.5$ GeV and fall within the acceptance of the ID ($|\eta| < 2.47$). They are further required to satisfy the calorimeter- and tracking-based ‘Loose and B-layer likelihood’ identification [145]. Baseline muons must have $p_T > 3$ GeV and $|\eta| < 2.5$, and satisfy Medium identification criteria [146]. To suppress pile-up, both the baseline electrons and baseline muons are required to have a trajectory consistent with the primary vertex, i.e. $|z_0 \sin \theta| < 0.5$ mm.

Jet candidates are reconstructed from topological energy clusters in the electromagnetic and hadronic calorimeters [147], grouped using the anti-k_T algorithm [148,149] with radius parameter $R = 0.4$. After subtracting the expected energy contribution from pile-up following the jet area technique [150], the jet energy scale (JES) and resolution (JER) are corrected to particle level using MC simulation, and then calibrated in situ using Z-jets, γ+jets and multijet events [151,152]. Baseline jets must then have $p_T > 20$ GeV, and fall within the full calorimeter acceptance ($|\eta| < 4.5$).

Photon candidates are reconstructed from energy clusters in the ECAL provided they have no matched track, or have one or more matched tracks consistent with photon conversion origin. Baseline photons, while not used in the signal regions, are included in the calculation of missing transverse momentum, and used in SM background estimation validation. They are required to have $p_T > 25$ GeV, fall inside the ECAL strip detector acceptance ($|\eta| < 2.37$), but outside the ECAL transition region ($|\eta| \in [1.37, 1.52]$). Candidates must also satisfy Tight identification criteria [145].

Ambiguities may exist between reconstructed objects. To prevent single detector signatures from being identified as multiple objects, the following overlap removal procedure is applied to baseline leptons and jets. First, all electrons sharing an ID track with a muon are discarded to remove bremsstrahlung from muons that is followed by a photon conversion. Second, all jets separated from remaining electrons by less than $\Delta R = 0.2$ are removed. Also, all jets within

5 The transverse impact parameter, d_0, is defined as the distance of closest approach in the transverse plane between a track and the beam-line. The longitudinal impact parameter, z_0, corresponds to the z-coordinate distance between the point along the track at which the transverse impact parameter is defined and the primary vertex.
\(\Delta R = 0.4 \) of a muon and associated with fewer than three tracks with \(p_T \geq 500 \text{ MeV} \) are removed. Finally, electrons or muons separated from surviving jets by less than \(\Delta R = 0.4 \) are discarded to reject non-prompt leptons from decays of \(b \)- and \(c \)-hadrons.

The missing transverse momentum is defined as the negative vector sum of the transverse momenta of all baseline objects (electrons, muons, jets, and photons) and an additional soft term \([153]\). The soft term is constructed from all tracks that pass basic quality requirements and are associated with the primary vertex, but are not associated with any baseline object. In this way, the \(p_T^{\text{miss}} \) is adjusted for the calibration of the contributing objects, while maintaining robustness against pile-up \([154]\). Additionally, an ‘object-based \(E_T^{\text{miss}} \) significance’ \([155]\) is defined as \(\sqrt{|p_T^{\text{miss}}|^2/(\sigma_L^2(1-\rho_{LT}))} \). The \(p_T \) resolution of the contributing objects, at a given \(p_T \) and \(|\eta| \), is determined from parameterised Monte Carlo simulation which well reproduces the resolution measured in data. The quantity \(\sigma_L \) denotes the \(p_T \) resolution of the system, and \(\rho_{LT} \) is a correlation factor between the resolutions of the \(p_T \) components parallel (\(L \)) and perpendicular (\(T \)) to \(p_T^{\text{miss}} \).

The \(E_T^{\text{miss}} \) significance is used to discriminate events where the \(E_T^{\text{miss}} \) arises from undetected particles in the final state or from events where the \(E_T^{\text{miss}} \) arises from poorly measured particles (and jets). It is also useful in discriminating between signal events with large \(E_T^{\text{miss}} \) and e.g. Z + jets events with medium-to-low \(E_T^{\text{miss}} \).

To ensure high-quality object measurement and selection purity for the analysis regions, leptons and jets must satisfy additional tighter ‘signal’ criteria and isolation requirements to be selected. Signal jets are selected within \(|\eta| < 2.8 \), and must satisfy \textit{Loose} quality criteria to reject contamination from non-collision backgrounds or noise bursts \([156]\).

In order to suppress jets originating from pile-up, signal jet candidates with \(p_T < 120 \text{ GeV} \) and \(|\eta| < 2.5 \) (within the ID acceptance) are further required to satisfy the \textit{Medium} working point of the track-based jet vertex tagger (JVT) \([150,157]\). For jets with \(|\eta| < 2.5 \) a multivariate discrimi-

\[T \]

\[\text{hadrons, or hadrons and jets wrongly identified as leptons, collectively referred as fake or non-prompt (FNP) leptons. The criteria rely on isolation energy variables calculated as } \sum p_T \text{ of tracks or calo-clusters within a certain size of cone around the lepton candidate; the energy of the lepton candidate itself is not considered in this calculation. The isolation working points used in this analysis are based on those described in Refs. [145,146], including updates to } \text{improve the performance under the increased pile-up conditions encountered during 2017 and 2018 data-taking. The choice of isolation working points is optimised per selection region and per lepton-flavour to account for different levels of contribution from the FNP lepton background. The } \text{Tight} \text{ working point is used for both electrons and muons in the on-shell WZ and Wh selections, while the looser working point } \text{Gradient (Loose)} \text{ is employed for electrons (muons) in the off-shell WZ selection to maintain a reasonable efficiency down to low } p_T. \]

To further suppress FNP lepton backgrounds in the off-shell WZ selection, a dedicated multivariate discriminant ‘non-prompt lepton BDT’ \([28]\) is used to tighten the requirements on the lepton with the lowest \(p_T \) (which is commonly also the most FNP-like lepton of the three), after selecting exactly three baseline leptons in the event. The discriminant uses eight input variables including the isolation information, combined lepton and track quantities, and the \(b \)-jet likelihood calculated from the energy deposits and tracks in a cone around the lepton using the \(\text{DLimu} \) or \(\text{RNNIP} \) algorithms \([159]\). The non-prompt lepton BDT selection is designed to maintain 70–90% efficiency for real leptons, for lepton \(p_T \) below 20 GeV, with a rejection factor of 2–3 for FNP leptons passing the isolation selection. Figure 2 shows the combined signal lepton selection efficiency (including the reconstruction, identification, isolation, vertex association and non-prompt BDT selection) for the leptons from \(Z \) and jets events, as well as the differential probability for a \(Z + \text{jets} \) event to be accompanied by a FNP lepton satisfying the signal lepton selection criteria.

To account for small efficiency differences between simulation and data, simulated events are corrected with scale factors covering lepton reconstruction, identification, isolation and trigger efficiencies, as well as jet pile-up rejection and flavour-tagging efficiencies.

A common preselection is applied for all search regions requiring exactly three signal leptons. Events are also required to have exactly three baseline leptons. This additional baseline requirement ensures orthogonality with other ATLAS SUSY analyses \([18,160,161]\) and facilitates statistical combinations; it also simplifies the FNP lepton background estimation. Muons in the region \(2.5 < |\eta| < 2.7 \) are exceptionally included in this count if they satisfy all other baseline muon criteria, in order to harmonise with the definition applied in the other analyses.
6 Analysis strategy

The selections in this paper – while targeting different simplified model scenarios – all consider final states with exactly three leptons, possible ISR jets, and simplified model scenarios – all consider final states with exactly three leptons, possible ISR jets, and E_T^{miss}. Therefore, a common approach is used throughout most steps of the analyses. The on-shell WZ, off-shell WZ, and Wh selections are optimised independently.

This section describes the general analysis strategy, introducing the common parts of the search region definitions (Sect. 6.1), the background estimation (Sect. 6.2), and the uncertainty treatment (Sect. 6.3). The statistical methods used are outlined in Sect. 6.4. Further details specific to either the on-shell WZ selection and the Wh selection, or the off-shell WZ selection, are then discussed in dedicated Sects. 7 and 8.

6.1 Search regions

Event selections enriched in signal (signal regions or SRs) are designed independently for the three targeted models, i.e. for the on-shell WZ, off-shell WZ or Wh selections. All the SRs are optimised to the wino/bino (+) scenario, maximising the expected sensitivity using benchmark signal samples. The SRs of the on-shell WZ selection, SR^{WZ}, are optimised for $\tilde{\chi}_1^\pm/\tilde{\chi}_2^0$ signals with WZ-mediated decays and mass splittings near or above the Z-boson mass, $\Delta m \gtrsim m_Z$, while the SRs of the off-shell WZ selection, SR^{offWZ}, target W^*Z^*-mediated decays and mass splittings $\Delta m < m_Z$. The SRs of the Wh selection, SR^{Wh}, are optimised for Wh-mediated decays and veto Z-boson candidates.

For SRs targeting $W^{(*)}Z^{(*)}$-mediated scenarios, two leptons are assigned to the $Z^{(*)}$-boson candidate by selecting a same-flavour opposite-charge-sign (SFOS) lepton pair in the event, and the remaining lepton is assigned to the $W^{(*)}$ boson (labelled W lepton or ℓ_W). If more than one SFOS lepton pair is present in the event, the invariant mass $m_{\ell\ell}$ of the SFOS lepton pairs is used to select which pair is assigned to the $Z^{(*)}$-boson candidate. The on-shell WZ selection selects the SFOS lepton pair with $m_{\ell\ell}$ nearest the Z-boson mass, m_{Z}^{\min}, while the off-shell WZ selection selects the SFOS lepton pair with the smallest $m_{\ell\ell}$.

In Wh-mediated scenarios, the opposite-sign leptons are the indirect product of the Higgs boson decay and can be of either the same or different flavour. Two subsets of SRs are defined depending on lepton flavour composition: the $\text{SR}^{\text{Wh}}_{\text{SFOS}}$ target events with at least one SFOS pair (using $m_{\ell\ell}^{\min}$-based lepton assignment), and the $\text{SR}^{\text{Wh}}_{\text{DFOS}}$ target complementary events without a SFOS lepton pair.

For events with at least one SFOS lepton pair the transverse mass, m_T, is constructed using the W lepton and the E_T^{miss}, and assuming the SM WZ event hypothesis: $m_T = \sqrt{2p_T^{\ell_W}E_T^{\text{miss}}(1 - \cos(\Delta\phi))}$, where $\Delta\phi$ is the separation in the transverse plane between the lepton and the E_T^{miss}. This exploits the difference between SM WZ, which has a Jacobian peak with a sharp cut-off at $m_T \sim m_W$ (the W-boson mass), and the targeted signals, which have relatively flat distributions.

For the initial SR segmentation, events with at least one SFOS lepton pair are divided into three $m_{\ell\ell}$ slices: below, above, and near the W-boson mass.
in, and above the Z-boson mass window, defined as \(m_{\ell\ell} \in [75, 105] \) GeV. The \(\text{SR}^{\circ \ell \omega} \) and \(\text{SR}^{\circ WZ} \) use the first and second slice, respectively, while the \(\text{SR}^{\theta \phi FOS} \) use the first and third slice. The \(\text{SR}^{\omega} \) are orthogonal to the \(\text{SR}^{\circ \omega} \) and the \(\text{SR}^{\phi FOS} \) through the \(m_{\ell\ell} \) selection. The \(\text{SR}^{\circ \omega} \) and \(\text{SR}^{\phi FOS} \) can overlap, but are never used in the same interpretation. The \(\text{SR}^{\phi FOS} \) are orthogonal to all other SRs through lepton flavour composition.

For the final selection, a few key discriminating variables are used to further segment and refine the SRs. The \(\text{SR}^{\omega} \) and \(\text{SR}^{\phi} \) have a shared binning strategy aside from the \(m_{\ell\ell} \) range, while \(\text{SR}^{\circ \phi FOS} \) binning focuses on \(m_{\ell\ell}^{\min} \) and properties of more compressed \(\chi_{1}^{\pm} \chi_{2}^{0} \) signals. Ultimately, 20, 31, 19, and 2 SR bins are defined for the \(\text{SR}^{\omega}, \text{SR}^{\circ \omega}, \text{SR}^{\phi FOS}, \) and \(\text{SR}^{\theta \phi FOS} \), respectively. The complete definitions of these nominal SRs are further detailed per selection in subsequent Sects. 7.1 (\(\text{SR}^{\omega} \) and \(\text{SR}^{\phi} \)) and 8.1 (\(\text{SR}^{\circ \omega} \)). The bins within each subset are explicitly disjoint, and are statistically combined when calculating the constraints on the target models. A more detailed overview of the fit configuration is given in Sect. 6.4. Additionally, discovery-oriented inclusive SRs are designed by grouping sets of adjoining nominal-SR bins in order to facilitate quantifying the size of data excesses in a model-independent manner. The inclusive-SR definitions are discussed in Sect. 9.1.

6.2 Background estimation

The dominant SM background in most of the SRs in this analysis is from SM \(WZ \) events with only leptonic decays, followed in importance by \(t\bar{t} \) and \(Z + \text{jets} \) processes associated with at least one FNP lepton. In \(\text{SR}^{\phi FOS} \) SM Higgs, triboson and \(t\bar{t} \) production are the dominant processes.

A partially data-driven method is used for the estimation of the \(WZ \) background, which produces three real and prompt leptons. The background is predicted using MC simulation samples and normalised to data in dedicated control regions (CRs). This normalisation improves the estimation in the phase space of the selections, and constrains the systematic uncertainties. The CRs are designed to be both orthogonal and similar to the SRs, whilst also having little signal contamination; this is achieved by taking the SR definitions and inverting some of the selection criteria. Dedicated validation regions (VRs) are defined kinematically in between the CRs and SRs, and are used to assess the quality of the background estimation and its extrapolation to the SRs. The final estimation of the yields and uncertainties is performed with a simultaneous fit to the CRs and SRs, as discussed in Sect. 6.4.

The \(t\bar{t} \) background is predicted using MC simulation samples and validated in VRs. It is dominated by decays with a dileptonic final state and an additional lepton from a \(b \)- or \(c \)-hadron decay. As the MC modelling is found to be of good quality, no additional corrections are applied to the MC events. Rare SM processes, including multiboson and Higgs boson production, top-pair production in association with a boson, and single-top production, are estimated from MC simulation in all analysis regions.

The \(\left(Z/g的事情 \rightarrow \ell \ell \right) + \left(\text{jets}/\gamma \right) \) background has two prompt leptons and one FNP lepton from jets or photons. In the rest of this document, ‘\(Z + \text{jets} \)’ is used to refer to this set of processes. As there are no invisible particles in these processes at tree level, the observed \(E_{T}^{\text{miss}} \) is mostly due to mismeasured leptons and/or jets, or due to the \(E_{T}^{\text{miss}} \) soft term. The FNP leptons originate from a mix of sources, including light-flavour jets faking leptons, electrons from photon conversion, and non-prompt leptons from \(b \)- or \(c \)-hadron decays. Such FNP leptons often arise from instrumental effects, hadronisation, and the underlying event, all of which are challenging to model reliably in simulation. Therefore a data-driven method, referred to as the ‘fake-factor method’ [162, 163], is used to estimate the \(Z + \text{jets} \) background. The fake factor (FF) is defined as the ratio of the probability for a given lepton candidate to pass the signal lepton requirements to that to fulfil the anti-ID requirements. This is measured using data in a control region, \(\text{CRFF} \), designed to target \(Z + \text{jets} \) events with FNP leptons whose sources are representative of those expected in the SRs. Exactly three baseline leptons and at least one SFOS lepton pair are required in \(\text{CRFP} \). The \(Z \)-boson candidate in the event is identified as the SFOS pair yielding the invariant mass closest to the \(Z \)-boson mass, and the remaining lepton is tagged as the FNP lepton candidate. The two leptons from the \(Z \)-boson candidate must activate the dilepton trigger to ensure there is no selection bias from FNP leptons. The \(Z + \text{jets} \) prediction in a given region is obtained by applying the FFs to the events in its corresponding ‘anti-ID region’. This region is defined by the same selection criteria as used for the nominal region with three signal leptons, except that at least one of the leptons is anti-ID instead of signal. Each event in the anti-ID region is scaled by a weight based on the FF assigned to each anti-ID lepton in the region. The FFs are derived separately per lepton flavour and are parameterised as a function of lepton \(p_{T} \) and leptons and \(E_{T}^{\text{miss}} \) in the event, depending on the analysis selection. In both the FF measurement and the FF application procedure, contributions from processes other than \(Z + \text{jets} \) are subtracted using MC simulation samples.

While sharing a common approach, the estimation and validation procedures for the main SM backgrounds were optimised independently for the different selections, which each target a different primary phase-space region with different relative background composition and importance. Details are given in Sect. 7.2 (\(\text{CR}^{\gamma WZ}/\text{VR}^{WZ} \)) and Sect. 8.2 (\(\text{CR}^{\circ \omega}/\text{VR}^{\circ \omega} \)).
6.3 Systematic uncertainties

The analysis considers uncertainties in the predicted yields of signal or background processes due to instrumental systematic uncertainties as well as statistical uncertainties and theoretical systematic uncertainties of the MC simulated samples. Uncertainties are assigned to the yield in each region, except for WZ processes constrained in CRs, in which case they are assigned to the acceptance in each SR relative to that in the CR. The uncertainty treatment is largely common to the on-shell WZ, Wh and off-shell WZ selections; exceptions are discussed in Sects. 7.2 (SR^{WZ} and SR^{th}) and 8.2 (SR^{offWZ}). Relative uncertainties are illustrated in a breakdown per SR in the same sections.

The dominant instrumental uncertainties are the jet energy scale (JES) and resolution (JER). The jet uncertainties are derived as a function of p_T and η of the jet, as well as of the pile-up conditions and the jet flavour composition of the selected jet sample. They are determined using a combination of simulated samples and studies in data, such as measurements of the jet p_T balance in dijet, $Z+\text{jet}$ and $\gamma+\text{jet}$ events [151,152,164]. Another significant instrumental uncertainty is that in the modelling of E_T^{miss}, evaluated by propagating the uncertainties in the energy and momentum scale of each of the objects entering the calculation, as well as the uncertainties in the E_T^{miss} soft-term resolution and scale [153]. Other instrumental uncertainties concerning the efficiency of the trigger selection, flavour-tagging and JVT, as well as reconstruction, identification, impact parameter selection and isolation for leptons, are found to have minor impact. Each experimental uncertainty is treated as fully correlated across the analysis regions and physics processes considered.

For the processes estimated using the MC simulation, the predicted yield is also affected by different sources of theoretical modelling uncertainty. All theoretical uncertainties are treated as fully correlated across analysis regions, except those related to MC statistics. The uncertainties for the dominant background processes, WZ, ZZ, and $t\bar{t}$, are derived using MC simulation samples. For the WZ background, which is normalised to data in CRs, these uncertainties are implemented as transfer factor uncertainties that reflect differences in the SR-to-CR or VR-to-CR ratio of yields, and therefore provide an uncertainty in the assumed shape of MC distributions across analysis regions. The uncertainties related to the choice of QCD renormalisation and factorisation scales are represented by three Gaussian nuisance parameters in the fit (see Sect. 6.4): the first varies the renormalisation scale up and down, where a one-sigma deviation represents varying that scale up or down by a factor of two, while the factorisation scale is fixed to its nominal value; the second varies the factorisation scale in the same way while fixing the renormalisation scale; and the third nuisance coherently varies both the renormalisation and factorisation scales. There is no nuisance parameter to account for anti-correlated configurations of the renormalisation and factorisation scales, as these are deemed unphysical. For the WZ and ZZ samples, the uncertainties due to the resummation and matching scales between ME and PS as well as the PS recoil scheme are evaluated by varying the corresponding parameters in SHERPA.

For $t\bar{t}$, modelling uncertainties at ME and PS level are determined by comparing the predictions of nominal and alternative generators, considering POWHEG BOX versus MadGraph5_AMC@NLO and Pythia8 versus HERWIG7 [165,166]. Uncertainties in the $t\bar{t}$ prediction due to ISR and final-state radiation (FSR) uncertainties are evaluated by varying the relevant generator parameters. The uncertainties associated with the choice of PDF set (NNPDF [78,87]) and the uncertainty in the strong coupling constant, α_s, are also considered for the major backgrounds. Uncertainties in the cross section of 13%, 12%, 10% and 20% are applied for minor backgrounds tW, tZ, $t\bar{t}h$, and triboson, respectively [109]; for all other rare top processes a conservative uncertainty of 50% is applied.

The data-driven $Z+\text{jets}$ estimation is subject to the statistical uncertainty due to the limited data sample size in CRFF or in the anti-ID regions used when applying the FF method, the uncertainty due to varying choice of parameterisation, and the uncertainty in the subtraction of non-$Z+\text{jets}$ processes. The uncertainties are evaluated by considering the variations in the FF and propagating the effects to the estimated yields. The prescription applied for the estimation in the off-shell WZ selection is different from that in the on-shell WZ and Wh selections, reflecting the higher presence of $Z+\text{jets}$ in SR^{offWZ}. Details are included in Sects. 7.2 and 8.2.

Uncertainties in the expected yields for SUSY signals are estimated by varying by a factor of two the MadGraph5_AMC@NLO parameters corresponding to the renormalisation, factorisation and CKKW-L matching scales, as well as the Pythia8 shower tune parameters. The overall uncertainties in the signal acceptance range from 5% to 20% depending on the analysis region. Uncertainties are smallest in jet-veto regions and slightly larger for higher E_T^{miss} and jet-inclusive regions. This uncertainty estimates match the results of a dedicated study using data and MC $Z \rightarrow \mu\mu$ events in Ref. [18].

In the following results, the uncertainties related to experimental effects are grouped and shown as ‘Experimental’ uncertainty. This uncertainty is applied for all processes whose yield is estimated from simulation. The ‘Modelling’ uncertainty groups the uncertainties due to the theoretical uncertainties, including the WZ transfer factor uncertainties. The ‘Fakes’ group represents the uncertainties for FNP background processes whose yield is estimated from data. ‘MC stat’ stands for the statistical uncertainties of the simulated event samples. Finally, the ‘Normalisation’ group describes
the uncertainties related to the normalisation factors derived from the CRs.

6.4 Statistical analysis

Final background estimates are obtained by performing a profile log-likelihood fit [167], implemented in the HistFitter [168] framework, simultaneously on all CRs and SRs relevant to a given interpretation. The statistical and systematic uncertainties are implemented as nuisance parameters in the likelihood; Poisson constraints are used to estimate the uncertainties arising from limited numbers of events in the MC samples or in the data-driven $Z +$ jets estimation, whilst Gaussian constraints are used for experimental and theoretical systematic uncertainties. Neither the VRs, which solely serve to validate the background estimation in the SRs, nor the CRs used for data-driven $Z +$ jets estimation, are included in any of the fits.

Three types of fit configuration are used to derive the results.

- A ‘background-only fit’ is performed considering only the CRs and assuming no signal presence. The normalisation of the WZ background is allowed to float and is constrained by the WZ CRs. The normalisation factors and nuisance parameters are adjusted by maximising the likelihood. The background prediction as obtained from this fit is compared with data in the VRs to assess the quality of the background modelling, as well as in the SRs. The significance of the difference between the observed and expected yields is calculated with the profile likelihood method from Ref. [169], adding a minus sign if the yield is below the prediction.

- A ‘discovery fit’ is performed to derive model-independent constraints, setting upper limits on the new-physics cross section. The fit considers the target single-bin SR and the associated CRs, constraining the backgrounds by following the same method as in the background-only fit. Considering only one SR at a time avoids introducing a dependence on the signal model, which may arise from correlations across multiple SR bins. A signal contribution is allowed only in the SR, and a non-negative signal-strength parameter assuming generic beyond-the-SM (BSM) signals is derived.

- An ‘exclusion fit’ is performed to set exclusion limits on the target models. The backgrounds are again constrained by following the same method as in the background-only fit, considering the CRs and the SRs, and the signal contribution to each region participating in the fit is taken into account according to the model predictions.

For each discovery or exclusion fit, the compatibility of the observed data with the signal-plus-background hypotheses is checked using the CLs prescription [170], and limits on the cross section are set at 95% confidence level (CL).

Following the independent optimisation of the CRs and SRs, the simultaneous fits are performed separately for the different selections: once for the on-shell WZ and Wh selections combined, and once for the off-shell WZ selection. The results are presented in Sect 9.

The new results of the on-shell and off-shell WZ searches, as well as the results of a previous ATLAS search for electroweak SUSY with compressed mass spectra [18], are statistically combined and interpreted in the simplified models discussed in Sect. 1. Exclusion limits are calculated by statistically combining the results from the signal regions of the contributing searches, which are designed to be orthogonal. The combination is implemented in the pyhf framework [171,172], which was validated against the HistFitter framework [173]. The results are presented in Sect. 9.2.

7 On-shell WZ and Wh selections

The following subsections discuss the implementation specific to the on-shell WZ selection and the Wh selection, expanding on the general strategy outlined in Sect. 6. The selection is applied on top of the common preselection as defined in Sect. 5, and the SRs are optimised to the wino/bino (+) scenario.

7.1 Search regions

The SR^{WZ} and SR^{Wh} selections as introduced in Sect. 6.1 are further refined, taking into consideration differences in signal and background kinematics and composition. Driven by the p_T thresholds of the dilepton triggers used in this selection, the leading and sub-leading leptons in the event must satisfy $p_T > 25, 20\text{ GeV}$, while the third lepton must satisfy $p_T > 10\text{ GeV}$. To reduce SM backgrounds with little to no real E_T^{miss}, events are required to have $E_T^{miss} > 50\text{ GeV}$. To suppress the contribution of $t\bar{t}$ events and single-boson production in association with a $t\bar{t}$ pair, events with at least one b-jet are rejected.

To reduce the contribution from processes with low-mass dilepton resonances, events are vetoed if they contain a SFOS lepton pair with an invariant mass below 12 GeV. Additionally, in events with a SFOS pair, the three-lepton invariant mass $m_{3\ell}$ is required to be inconsistent with the mass of a Z boson, $|m_{3\ell} - m_Z| > 15\text{ GeV}$, in order to suppress contributions from asymmetric photon conversions from the $Z +$ jets process with $Z \rightarrow \ell\ell\gamma^(*)$ and $\gamma^(*) \rightarrow \ell\ell$, where one of the leptons is out of acceptance.

Events with at least one SFOS lepton pair are divided into three $m_{3\ell}$ bins, in order to separate processes that include a Z boson in the decay chain from processes where a SM
of the presence of a massive χ_1^0, which carries most of the transverse momenta of the boosted $\chi_1^+\chi_2^0$ system. Therefore H_T^{lep}, the scalar p_T sum of the three selected leptons, is required to be less than 350 GeV. The H_T categorisation is applied in regions with $m_{ll} < 105$ GeV. Finally, in the high-mass off-peak region ($m_{ll} \geq 105$ GeV), only jet-veto events are considered. The full set of 20 SRWZ and 19 SRWh signal regions is summarised in Tables 3 and 4.

In the SRWh regions, events are required to have one same-flavour same-charge-sign (SFSS) lepton pair as well as a third lepton which has a different flavour and opposite sign to the SFSS pair, and is referred to as the DFOS lepton. After this selection, $t\bar{t}$ production dominates the SM background and is minimised by keeping events with low jet multiplicity ($n_{jets} < 3$). These are then further split into two SR bins, one with $n_{jets} = 0$ (SR$^{Wh}_{-1}$) and the other satisfying $n_{jets} \in [1, 2]$ (SR$^{Wh}_{-2}$). Due to the presence of the χ_1^0, signals tend to have higher E_T^{miss} significance than the SM background, and therefore the events are required to have E_T^{miss} significance > 8. The third lepton in $t\bar{t}$ production usually arises from a heavy flavour quark decay and is typically lower in p_T than the third lepton in the SUSY signal scenarios. To reduce this contribution the lower bound on the third lepton’s p_T is increased to 15 and 20 GeV in the SR$^{Wh}_{-1}$ and SR$^{Wh}_{-2}$ regions, respectively. Angular proximity between leptons coming from a Higgs-boson decay is used for further event separation, using the variable $\Delta R_{OS,near}$, defined as the ΔR between the DFOS lepton and the SFSS lepton nearest in ϕ. The signal is expected to populate the lower range in $\Delta R_{OS,near}$, while the SM background tends to have a flatter distribution. Events in SR$^{Wh}_{-1}$ are required to satisfy $\Delta R_{OS,near} < 1.2$. To suppress the higher $t\bar{t}$ contribution in the SR$^{Wh}_{-2}$, a tighter selection on $\Delta R_{OS,near}$ is imposed. A complete summary of the selection criteria in SRWh is presented in Table 5.

For the WZ-mediated $\chi_1^+\chi_2^0$ signal sample with NLSP mass of 600 GeV and massless χ_1^0, the SR$^{W_{1j}}_1$ and SR$^{W_{1j}}_2$ regions have selection acceptance times efficiency values of 2.0×10^{-3} and 3.0×10^{-3}, respectively. For the Wh-mediated $\chi_1^+\chi_2^0$ signal sample with NLSP mass of 200 GeV and massless χ_1^0, the SRWh regions have selection acceptance times efficiency values of 2.0×10^{-3} and 3.0×10^{-3}, respectively.

Variable	Common selection requirements		
n_{lep}, n_{lep}^signal	$= 3$		
Trigger	dilepton		
$p_T^{\ell_1}, p_T^{\ell_2}, p_T^{\ell_3}$ [GeV]	$> 25, 20, 10$		
E_T^{miss} [GeV]	> 50		
n_{jet}	$= 0$		
Resonance veto m_{ll} [GeV]	> 12		
n_{SFSS}	≥ 1		
m_{ll} [GeV]	$\in [75, 105]$		
$	m_{3\ell} - m_Z	$ [GeV]	> 15

Table 2: Summary of the common selection criteria applied in the SRs of the on-shell WZ and Wh selections. In rows where only one value is given it applies to all regions. ‘-’ indicates no requirement is applied for a given variable/region.
Table 3: Summary of the selection criteria for the SRs targeting events with at least one SFOS lepton pair and \(m_{\ell\ell} \in [75, 105] \text{ GeV} \), for the on-shell WZ search regions. Region selections are binned by \(m_T \) (rows) and \(E_T^{\text{miss}} \) for the two sets of regions, where each set has different \(n_{\text{jets}} \) and \(H_T \) requirements. \(\text{SRWZ}^{\text{SR}} \) common selection criteria are applied (Table 2).

Variable	Selection requirements	
\(m_{\ell\ell} \)	\(m_{\ell\ell} \in [75, 105] \text{ GeV}, n_{\text{jets}} = 0 \)	
\(m_T \) [GeV]	\(E_T^{\text{miss}} \) [GeV]	
\([100, 160] \)	\(\text{SRWZ}^{\text{SR}} -1 \): [50, 100] \(\text{SRWZ}^{\text{SR}} -2 \): [100, 150]	\(\text{SRWZ}^{\text{SR}} -3 \): [150, 200] \(\text{SRWZ}^{\text{SR}} -4 \): > 200
\(> 160 \)	\(\text{SRWZ}^{\text{SR}} -5 \): [50, 150] \(\text{SRWZ}^{\text{SR}} -6 \): [150, 200] \(\text{SRWZ}^{\text{SR}} -7 \): [200, 300] \(\text{SRWZ}^{\text{SR}} -8 \): > 350	

Table 4: Summary of the selection criteria for the SRs targeting events with at least one SFOS lepton pair and \(m_{\ell\ell} \not\in [75, 105] \text{ GeV} \), for the WH search regions. Region selections are binned by \(m_T \) (rows) and \(E_T^{\text{miss}} \) for the three sets of regions, where each set has different \(m_{\ell\ell}, n_{\text{jets}}, \) and \(H_T \) requirements. \(\text{SRWZ}^{\text{CR}} \) common selection criteria are applied (Table 2).

Variable	Selection requirements
\(m_{\ell\ell} \)	\(m_{\ell\ell} \leq 75 \text{ GeV}, n_{\text{jets}} = 0 \)
\(m_T \) [GeV]	\(E_T^{\text{miss}} \) [GeV]
\([0, 100] \)	\(\text{SRWZ}^{\text{CR}} -1 \): [50, 100] \(\text{SRWZ}^{\text{CR}} -2 \): [100, 150] \(\text{SRWZ}^{\text{CR}} -3 \): > 150
\([100, 160] \)	\(\text{SRWZ}^{\text{CR}} -4 \): [50, 100] \(\text{SRWZ}^{\text{CR}} -5 \): > 100
\(> 160 \)	\(\text{SRWZ}^{\text{CR}} -6 \): [50, 100] \(\text{SRWZ}^{\text{CR}} -7 \): > 100

Table 5: Summary of the selection criteria for the SRs targeting events with a DFOS lepton pair, for the WH selection. \(\text{SRWZ}^{\text{DFOS}} \) common selection criteria are applied (Table 2).

Variable	Selection requirements
\(m_{\ell\ell} \)	\(m_{\ell\ell} \geq 105 \text{ GeV}, n_{\text{jets}} = 0 \)
\(m_T \) [GeV]	\(E_T^{\text{miss}} \) [GeV]
\([0, 100] \)	\(\text{SRWZ}^{\text{DFOS}} -1 \): [50, 100] \(\text{SRWZ}^{\text{DFOS}} -2 \): [100, 150] \(\text{SRWZ}^{\text{DFOS}} -3 \): > 150
\([100, 160] \)	\(\text{SRWZ}^{\text{DFOS}} -4 \): [50, 100] \(\text{SRWZ}^{\text{DFOS}} -5 \): > 100
\(> 160 \)	\(\text{SRWZ}^{\text{DFOS}} -6 \): [50, 100] \(\text{SRWZ}^{\text{DFOS}} -7 \): > 100

7.2 Background estimation

The normalisation of the WZ background is measured in CRs characterised by moderate values of the \(E_T^{\text{miss}} \) and \(m_T \) variables. The CRs contain only events with at least one SFOS pair with an invariant mass of \(75 < m_{\ell\ell} < 105 \text{ GeV} \), targeting on-shell decays. Additional requirements of \(50 < E_T^{\text{miss}} < 100 \text{ GeV} \) and \(20 < m_T < 100 \text{ GeV} \) improve the WZ purity, the upper bound on \(m_T \) at 100 GeV also ensures orthogonality between the WZ CRs and \(\text{SRWZ}^{\text{WZ}} \). To address the possible mis-modelling of the jet multiplicity in the WZ simulated samples, the cross-section normalisation factor is extracted separately in each jet multiplicity and \(H_T \) category, using \(\text{CRWZ}^{\text{WZ}} \), \(\text{CRWZ}^{\text{WZ}}_{\text{low}-H_T} \), and \(\text{CRWZ}^{\text{WZ}}_{\text{high}-H_T} \). The estimation is cross-checked in kinematically similar, orthogonal VRs: \(\text{VRWZ}^{\text{WZ}} \), \(\text{VRWZ}^{\text{WZ}}_{\text{low}-H_T} \), and \(\text{VRWZ}^{\text{WZ}}_{\text{high}-H_T} \). A summary of the selection criteria defining the WZ CRs and VRs is presented in Table 6. The WZ purity is about 80% in all CRs and VRs. The signal contamination is almost negligible in the CRs and increases to 10% in the VRs.

Performing the simultaneous background-only fit for the on-shell WZ and WH selections, normalisation factors for WZ of \(1.07 \pm 0.02 \) (\(\text{CRWZ}^{\text{WZ}}_{\text{WZ}} \)), 0.94 \pm 0.03 (\(\text{CRWZ}^{\text{WZ}}_{\text{WZ}} \)) and 0.85 \pm 0.05 (\(\text{CRWZ}^{\text{WZ}}_{\text{WZ}} \)) are found.

A good description of the \(m_T \) and \(E_T^{\text{miss}} \) distributions in the WZ simulation is crucial in this analysis, especially in the
The tail of the m_T distribution is a result of, in decreasing order of importance: the use of a wrong pair of leptons to compute the mass of the Z-boson candidate and the m_T of the W-boson candidate (‘mis-pairing’ of the leptons), the E_T^{miss} resolution, and the W-boson width. The prediction of lepton mis-pairing in simulation is validated in a control sample in data similar to the one used to calculate the cross-section normalisation factor, but only allowing events with a SFOS pair of different flavour than the W lepton. The Z-boson candidate can then be identified unambiguously, and a mis-paired control sample is obtained using the DFOS pair in the $m_{\ell\ell}$ computation and using the third lepton to calculate m_T. Finally, the modelling of the m_T and E_T^{miss} distributions is validated in a $W+\gamma$ control sample. The $W+\gamma$ and WZ processes have very similar m_T shapes because their production mechanisms are similar, with the exception that the FSR production diagram of $W+\gamma$ is much more common than the corresponding diagram in WZ, which is doubly suppressed due to the mass of the Z boson and its weak coupling to leptons. Furthermore, a photon is a good proxy for a leptonically decaying Z boson since photons and leptons are reconstructed with comparable resolutions, and no large extra mismeasurements are expected. The enhancement of the FSR diagram in the $W+\gamma$ process leads to differences in the m_T distribution shapes between WZ and $W+\gamma$. When a photon is radiated, leptons lose energy, resulting in a lower m_T. In order to use the $W+\gamma$ m_T shape to validate the WZ MC prediction, the FSR contribution in the $W+\gamma$ control region has to be suppressed. This is done by placing threshold requirements on the p_T of the photon, $p_T^\gamma > 50$ GeV, and the separation between the lepton and the photon, $\Delta R(\ell, \gamma) > 0.4$, in $W+\gamma$ events, as FSR photons are expected to be close to the lepton radiating them and also tend to have low p_T. The distribution shapes of m_T and E_T^{miss}, as well as other kinematic variables, are compared in data and MC events in the $W+\gamma$ region. The m_T distribution in the validation region with mis-paired leptons and the $W+\gamma$ validation region are shown in Fig. 3. Good agreement in both control samples is observed and no extra corrections or scale factors are applied to correct the m_T distribution for the WZ background.

The $t\bar{t}$ MC modelling is validated in VRs, enhancing the $t\bar{t}$ contribution by requiring a DFOS lepton pair and using a moderate $E_T^{miss} > 50$ GeV selection. The main VR, VR_{WWZ}^{incl}, requires the presence of one or two b-jets, further increasing the $t\bar{t}$ contribution. To validate the modelling in the $n_{jets} = 0$ region as well, an additional VR inclusive in b-jets, VR_{WWZ}^{incl}, is considered, with a E_T^{miss} significance < 8 requirement to ensure orthogonality with the SR_{WWZ}^{incl} regions. The $t\bar{t}$ purity is about 80% in the VR_{WWZ}^{incl} and 72% in the VR_{WWZ}^{incl}. The selection requirements for the $t\bar{t}$ VRs are summarised in Table 7.

The $Z +$ jets estimation uses the FF method as described in Sect. 6.2. For measurement region CR_{WWZ}^{incl}, the Z-boson candidate mass must be compatible with the Z-boson mass within 15 GeV, and low E_T^{miss} and m_T are required to minimise WZ contributions. The typical value of FFs varies from 0.2 to 0.4, depending on the lepton p_T and η. The $Z +$ jets estimation is then validated in VR_{WWZ}^{incl}, considering the intermediate E_T^{miss} range closer to, but orthogonal to, the SRs, and adding a m_3 lower bound to reduce WZ contamination. The selection criteria for CR_{WWZ}^{incl} as well as those of VR_{WWZ}^{incl} are summarised in Table 7.

Figure 3 presents the m_T distribution in VR_{WWZ}^{incl} and the E_T^{miss} distribution in VR_{WWZ}^{incl}, showing good agreement between the observed data and the estimated background. The comparisons between the expected and observed yields in the CR_{WWZ}^{incl} and all VR_{WWZ}^{incl} are given in Fig. 4.

The systematic uncertainties considered in the on-shell WZ and the Wh SRs follow the approach discussed in Sect. 6.3. The relative composition of FNP muons is similar.
Fig. 3 Distributions of m_T showing the data and the pre-fit expected background in (top left) the mis-paired lepton validation region and (top right) the $W+\gamma$ validation region, used to validate the WZ background. Distributions of (bottom left) m_T in $\text{VRW}_{Z\rightarrow}\text{VR}_{WZ}$ high-H_T and (bottom right) E_T^{miss} in VR_{ttWZ}, showing the data and the post-fit expected background in each region. The last bin includes overflow. The ‘Others’ category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.

Table 7 Summary of the selection criteria for the CRs and VRs for $t\bar{t}$ and $Z+jets$, for the on-shell WZ and Wh selections. The corresponding anti-ID regions used for the $Z+jets$ prediction follow the same selection criteria, except that at least one of the leptons is anti-ID instead of signal. ‘–’ indicates no requirement is applied for a given variable/region.

Variable	$\text{VRW}_{Z\rightarrow}$	VR_{WZ} incl	CRFF$^{\text{gg}}$	VRFF$^{\text{gg}}$		
n_{lep}, n_{lep}	$= 3$	$= 3$	$= 3$	$= 3$		
n_{SFOS}	$= 0$	$= 0$	≥ 1	≥ 1		
Trigger	dilepton	dilepton	dilepton	dilepton		
n_{b-jets}	$\in [1, 2]$	–	$= 0$	$= 0$		
$	m_{\ell\ell} - m_Z	$ [GeV]	–	–	< 15	< 15
$p_T^{\ell_1}$, $p_T^{\ell_2}$ [GeV]	–	–	> 25, > 20	–		
E_T^{miss} [GeV]	> 50	> 50	$\in [20, 50]$	$\in [50, 100]$		
E_T^{miss} significance	–	–	< 8	–		
m_T [GeV]	–	–	< 20	< 20		
$m_{3\ell}$ [GeV]	–	–	$\in [105, 160]$	–		

between the CRFF$^{\text{gg}}$ and SR$^{\text{gg}}$, whereas for FNP electrons the main source in the SR$^{\text{gg}}$ is photon conversions, while in the CRFF$^{\text{gg}}$ the heavy-flavour decay contribution dominates. An additional source of uncertainty that is considered accounts for the different FNP lepton compositions in the CRFF$^{\text{gg}}$ and SR$^{\text{gg}}$. This uncertainty arises from the method’s performance.
in the simulation (closure) in various regions of parameter space and is given by the differences between the estimated and simulated yields of events in the given region. In the DFOS region where the triboson contribution becomes dominant, the uncertainties related to the QCD renormalisation and factorisation scales are also evaluated for this background component, in the same way as previously described for diboson and t\bar{t}. A summary of the considered systematic uncertainties is presented in Fig. 5, with uncertainties grouped as discussed in Sect. 6.3.

Bin-to-bin fluctuations in the statistical uncertainty as well as the experimental uncertainty reflect the difference in expected yields in the various search regions, which varies by an order of magnitude. These uncertainties become the dominant ones in \(SR_{\text{offWZ}}-3-4, 6-8\), 11–12 and 15–16 of the on-shell WZ selection, and \(SR_{\text{offWZ}}-5, SR_{\text{offWZ}}-14, \) and \(SR_{\text{offWZ}}-19\) of the Wh selection, due to limited number of MC events at high \(E_\text{T}^{\text{miss}}\) and \(m_T\). Although the FNP lepton uncertainty is negligible in the majority of the search bins, its relative size reaches 30% in \(SR_{\text{offWZ}}-2\), due to the small number of events in the corresponding anti-ID sample.

8 Off-shell WZ selection

The following subsections discuss the implementation specific to the off-shell WZ selection, expanding on the general strategy outlined in Sect. 6. The selection is applied on top of the common preselection as defined in Sect. 5, and the SRs are optimised to the wino/bino (+) scenario.

8.1 Search regions

The \(SR_{\text{offWZ}}^{\text{offWZ}}\) selection targets the off-shell WZ region by requiring \(m_{\ell\ell}^{\text{min}} < 75\) GeV. The \(m_{\ell\ell}^{\text{max}}\) is the largest SFOS lepton pair invariant mass in the event, and the double requirement helps to maximally suppress combinatorial backgrounds with an on-shell Z boson. Further variables used in the off-shell WZ selection assume \(m_{\ell\ell}^{\text{min}}\)-based lepton assignment to the Z*- and W*-boson candidates unless otherwise indicated. The common event selection vetoes events with a b-jet to reduce contamination from t\bar{t}, requires the three leptons to be well separated in \(\text{min}/\Delta 3\ell\), and requires a lower bound on \(m_{\ell\ell}^{\text{min}}\) of 1 GeV to remove events with collimated leptons for which FNP lepton background estimation is challenging. Finally, \(m_{\ell\ell}^{\text{min}}\) mass ranges of [3.0, 3.2] and [9, 12] GeV are vetoed to avoid contributions from \(J/\psi\) and \(\Upsilon\) resonance backgrounds associated with a FNP lepton, except in the jet-inclusive high \(E_\text{T}^{\text{miss}}\) regions \((E_\text{T}^{\text{miss}} > 200\) GeV) where the contribution is negligible.

Preselected events are further divided into four categories based on the multiplicity of jets with \(p_T > 30\) GeV \((n_{\text{jets}}^{\text{offWZ}})\), and on \(E_\text{T}^{\text{miss}}\). Jet-veto categories \(SR_{\text{offWZ}}-0j\) and \(SR_{\text{offWZ}}-0j\) reject events containing jets and select low and high \(E_\text{T}^{\text{miss}}\), respectively. Jet-inclusive categories \(SR_{\text{offWZ}}-nj\)
and $S_{\text{SRoffWZ}_{\text{high}}}$ require at least one jet and also separate the events with low and high E_T^{miss}. As the E_T^{miss} is harder in the jet-inclusive categories, due to the recoil between the $\chi_1^{-}\chi_1^{+}$ system and the jets, the boundary between the low and high E_T^{miss} bins is set at 50 GeV for the jet-veto categories and at 200 GeV for the jet-inclusive categories. The $S_{\text{SRoffWZ}_{\text{low}}}$, $S_{\text{SRoffWZ}_{\text{high}}}$ and $S_{\text{SRoffWZ}_{\text{0j}}}$ primarily target signals with moderate mass splitting ($\Delta m \sim [40, 90]$ GeV), and rely mostly on moderate kinematics and lepton triggers. The $S_{\text{SRoffWZ}_{\text{high}}}$ also target signals with highly compressed mass spectra ($\Delta m \lesssim 40$ GeV) – resulting in events with very soft leptons – by exploiting events with large E_T^{miss} recoiling against hard hadronic activity. Initial lepton p_T requirements are kept as loose as possible, $p_T > 10$ GeV for $S_{\text{SRoffWZ}_{\text{low}}}$, $S_{\text{SRoffWZ}_{\text{0j}}}$ and $S_{\text{SRoffWZ}_{\text{0j}}}$, and $p_T > 4.5$ (3.0) GeV for e (μ) in $S_{\text{SRoffWZ}_{\text{0j}}}$; however, the selection is restricted by the trigger requirements (Sect. 5) and some further requirements are applied in the bin-by-bin SR optimisation as discussed in the following.

Further common selection criteria are applied to reduce the contamination from $Z + \text{jets}$. First, a lower bound is set to ensure E_T^{miss} significance > 1.5 or 3.0, depending on the SR category. For $S_{\text{SRoffWZ}_{\text{low}}}$, events are then treated separately for different flavours of the lepton from the W-boson decay (ℓ_W), selected using $m_{\ell\ell}^{\text{miss}}$-based lepton assignment to best capture the SM background topology for rejection. To suppress the contribution from $Z(\rightarrow \ell\ell\ell\ell) \rightarrow \ell\ell\ell\ell$ caused by bremsstrahlung from prompt electrons and subsequent photon conversions, if ℓ_W is an electron, the trilepton invariant mass $m_{3\ell}$ is required to be off the Z-boson peak ($|m_{3\ell} - m_Z| > 20$ GeV), and the minimum angular distance between all SFOS lepton pairs must be within $\min \Delta R_{\text{SFOS}} \in [0.6, 2.4]$, with $\min \Delta R_{\text{SFOS}}$ defined as $\min[\Delta R(\ell_i, \ell_j); \text{for all SFOS lepton pairs } (\ell_i, \ell_j)]$. The common selection criteria and categorisation are summarised in Table 8.

The primary discriminant in S_{SRoffWZ} is $m_{\ell\ell}^{\text{min}}$. This variable serves as a proxy for the mass splitting of the targeted signals, and displays a characteristic kinematic edge at their mass-splitting value: $m_{\ell\ell}^{\text{min}} = \Delta m$, as demonstrated in Fig. 6. A shape fit over the $m_{\ell\ell}^{\text{min}}$ spectrum is performed in each SR category. Seven $m_{\ell\ell}^{\text{min}}$ bins are defined with boundaries at 1, 12, 15, 20, 30, 40, 60 and 75 GeV, and labelled ‘a’ to ‘g’; the $m_{\ell\ell}^{\text{min}}$-bin labels are added to the region names as defined above. Signal regions ‘a’–‘g’ are dropped everywhere except in $S_{\text{SRoffWZ}_{\text{high}}}$, to avoid low-mass resonance backgrounds.

A second, similar kinematic edge is present in transverse mass m_{T2} [174, 175], reflecting the kinematic constraint originating from the $\tilde{\chi}_1^{\pm} \rightarrow W^* \tilde{\chi}_1^0$ decay chain. In this selection, m_{T2} is constructed by assigning the dilepton system providing $m_{\ell\ell}^{\text{min}}$ to one visible particle leg, and the remaining lepton (ℓ_3) to the other leg:

$$m_{T2}^{\text{min}} \equiv m_{\ell\ell}^{\text{min}} - m_{\ell_3}^{\text{min}}$$

$$= \min_{q_T} \left(\max \left[m_T \left(\ell_1^{\ell_1}, q_T, m_\chi \right), m_T \left(\ell_2^{\ell_1}, p_T^{\text{miss}} - q_T, m_\chi \right) \right] \right),$$

where the transverse mass m_T in this m_{T2} formula is defined by

$$m_T \left(p_T^{\ell_1}, q_T, m_\chi \right) = \sqrt{m_\gamma^2 + (m_\gamma^2 + 2 \sqrt{p_T^{\ell_1}^2 + m_\gamma^2})^2} - p_T^{\ell_1} - q_T.$$

A hypothesised mass m_γ is assigned to each invisible particle leg, corresponding to the $\tilde{\chi}_1^0$ mass; m_γ is fixed to 100 GeV in this selection.6 The kinematic edge for signals appears at m_{T2}^{min} for low-mass resonance backgrounds.

6 The dependency of the performance on hypothetical invisible particle mass m_γ is generally small except when assuming $m_\gamma \sim 0$ GeV for...
Table 8 Summary of the common selection criteria applied in the SRs of the off-shell WZ selection. In rows where only one value is given it applies to all regions. '-' indicates no requirement is applied for a given variable/region.

Variable	Common selection requirements			
	SR_{offWZ}^{low, nj}	SR_{offWZ}^{low, -nj}	SR_{offWZ}^{high, -nj}	SR_{offWZ}^{high, -nj}
n_lep, $n_\text{lep}^{\text{background}}$				
m_ℓ^min [GeV]				
E_T^miss [GeV]				
p_T^miss, p_T^ℓ, p_T^ℓ [GeV]				
$m_\ell - m_\ell^\text{fit}$ [GeV]				
ΔR_{SFOS}				

Resonance veto m_{T2}^{\min} [GeV] ≠ [3, 3.2], ≠ [9, 12] -

| Trigger | (multi-)lepton | E_T^miss | (multi-)lepton $|| E_T^\text{miss}$ |
|--|----------------|------------------|--------------------------------------|
| n_min | = 0 | ≥ 1 | = 0 |
| E_T^miss [GeV] | < 50 | < 200 | > 50 |
| p_T^miss, p_T^ℓ, p_T^ℓ [GeV] | > 10 | > 3.0 | > 3.0 |
| $m_\ell - m_\ell^\text{fit}$ [GeV] | > 20 ($\ell W = e$ only) | - | - |
| ΔR_{SFOS} | [0.6, 2.4] | ($\ell W = e$ only) | - |

Fig. 6 Distributions of (left) m_{T2}^{\min} and (right) m_{T2}^{100} showing the expected SM background as well as signals with various mass splittings $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = m(\tilde{\tau}_2^0) = 200$ GeV, for a selection of exactly three baseline and signal leptons. The distributions are normalised to unity. Signals demonstrate a cut-off in both variables matching the mass splitting, while backgrounds do not. The dominant background in this selection is WZ, with the Z-boson mass peak visible in both distributions.

$n_{\text{T2}}^{100} = \Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) + 100$ GeV as illustrated in Fig. 6. To take advantage of this feature, a sliding cut is applied per m_{T2}^{\min} bin, requiring m_{T2}^{100} to be smaller than the upper m_{T2}^{\min} bin edge + 100 GeV. SM backgrounds can exceed the boundary and are suppressed, while a large fraction of the signal contribution targeted by a given bin is retained. The cut is particularly effective in the lowest m_{T2}^{\min} bins, targeting the smallest mass splittings: e.g. in $SR_{\text{offWZ}}^{\text{high, -nj}} (m_{T2}^{\min} \in [1, 12]$ GeV) the total background is reduced by a factor of three following $m_{T2}^{100} < 112$ GeV, while the efficiency for $\Delta m = 10$ GeV signals is > 95%.

Event selection is tightened further by employing various background rejection criteria, optimised separately for each SR_{offWZ} category and each m_{T2}^{\min} bin. The discriminat-
ing variables used and the detailed bin-by-bin cut values are summarised in Table 9.

In order to reduce the FNP lepton background contributions from $Z + \text{jets}$ and $i\ell$, lepton p_T thresholds are raised in $SR_{\text{offWZ}}^{\text{low, -nj}}$ and $SR_{\text{offWZ}}^{\text{high, -nj}}$. In these same three categories, the transverse mass $m_{\ell\ell}^{\text{min}}$ is used to suppress the SM WZ contribution; the $m_{\ell\ell}^{\text{min}}$ variable is con-
Table 9 Summary of the selection criteria for SRs for the off-shell WZ selection. SReffFWZ common selection criteria are applied (Table 8). ‘–’ indicates no requirement is applied for a given variable/region, while × is marked for regions that aren’t considered.

Variable	Selection requirements											
\(m_{\ell\ell}^{\text{min}} \) [GeV]	a	b	c	d	e	f1	f2	g1	g2			
\(m_T \) [GeV]	\(\times\)	< 60	< 60	< 60	< 60	< 60	-	-	-			
\(m_{T100}^{\text{min}} \) [GeV]	\(\times\)	< 50	< 50	< 50	< 60	< 60	> 90	> 60	> 90			
\(m_{T2}^{100} \) [GeV]	\(\times\)	< 115	< 120	< 130	-	-	-	-	-			
\(\Delta R_{\text{SFOS}} \)	\(\times\)	< 1.6	< 1.6	< 1.6	-	-	-	-	-			
\(p_T^{100}\) [GeV]	> 10	> 10	> 10	> 10	> 15	> 15	> 15	> 15	> 15			
\(p_{T,\text{lep}}	/E_T^{\text{miss}}	\)	\(\times\)	< 1.1	< 1.1	< 1.1	< 1.3	< 1.4	< 1.4	< 1.4	< 1.4
\(m_{3\ell}^{\text{min}} \) [GeV]	\(\times\)	-	-	-	-	> 100	> 100	> 100	> 100			
\(p_T^{100}\) [GeV]	< 1.0	< 1.0	< 1.0	< 1.0	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2			
\(m_{T2}^{100} \) [GeV]	< 112	< 115	< 120	< 130	< 140	< 160	< 160	< 175	< 175			
\(p_T^{100}\) [GeV]	\(\times\)	> 25, > 15, > 10	-	-	-	-	-	-	-			
\(p_T^{100}\) [GeV]	< 0.2	< 0.2	< 0.3	< 0.3	< 0.3	< 1.0	< 1.0	< 1.0	< 1.0			

In SReffFWZ, the selection on \(\Delta R_{\text{SFOS}} \) is tightened in the low \(m_{T2}^{\text{min}} \) range, exploiting the topology with a relatively boosted \(Z^* \) in the target signatures, and a lower bound on \(m_{3\ell}^{\text{min}} \) applied for the high \(m_{\ell\ell}^{\text{min}} \) range to reject the SM background peaking at \(m_{3\ell} \sim m_Z \). The ratio of the magnitude of a vectorial \(p_T^{\text{lep}} \) sum of the three leptons, \(|p_T^{\text{lep}}|/E_T^{\text{miss}} \), is labelled \(|p_T^{\text{lep}}|/E_T^{\text{miss}} \) and represents the extent to which the transverse momentum of the hard-scatter \(\tilde{\chi}_1^\pm \tilde{\chi}_2^0 \) system, recoiling against ISR jets, is converted into leptons as opposed to \(E_T^{\text{miss}} \). Due to the presence of a massive \(\tilde{\chi}_1^0 \), contributing to the \(E_T^{\text{miss}} \) signal, leptons tend to populate lower parts of the \(|p_T^{\text{lep}}|/E_T^{\text{miss}} \) spectrum than SM backgrounds, particularly for the compressed signals in the high \(E_T^{\text{miss}} \) regions where the \(E_T^{\text{miss}} \) is almost fully generated by the ISR jets.

A tight upper bound \(|p_T^{\text{lep}}|/E_T^{\text{miss}} \) is therefore imposed in the low \(m_{T2}^{\text{min}} \) bins of SReffFWZ. After applying the selection criteria, for the wino/bino (+) model \(\tilde{\chi}_1^\pm \tilde{\chi}_2^0 \) signal sample with NLSP masses of 200 GeV and a mass splitting of \(\Delta m = 20 \) GeV, the SReffFWZ low/ET-0j, SReffFWZ low/ET-nj, SReffFWZ high/ET-0j, and SReffFWZ high/ET-nj regions (taking the union of the bins inside each region) have acceptance times efficiency values of \(2.2 \times 10^{-5}\), \(1.1 \times 10^{-5}\), \(3.4 \times 10^{-6}\), and \(6.0 \times 10^{-5}\), respectively. Similarly, for a mass splitting of \(\Delta m = 60 \) GeV, values of \(1.6 \times 10^{-4}\), \(1.7 \times 10^{-4}\), \(2.8 \times 10^{-4}\), and \(7.9 \times 10^{-5}\) are found. The acceptance times efficiency values for the wino/bino (−) and higgsino model signal samples are typically 15–55% and 20–60% lower, depending on the region.

8.2 Background estimation

The selection criteria for the CRs and the VRs for WZ estimation are summarised in Table 10. An on-shell \(Z \) boson \((m_{\ell\ell} \in [81, 101] \text{GeV}) \) is required to ensure orthogonality to the SReffFWZ, and an upper bound on \(E_T^{\text{miss}} \) ensures orthogonality to the SRWZ. A lower bound on \(m_T \) is applied to suppress the \(Z + \text{jets} \) background. The CRs are further split into two...
Table 10 Summary of the selection criteria for the CRs and VRs for WZ and $t\bar{t}$, for the off-shell WZ selection. In rows where only one value is given it applies to all regions. ‘–’ indicates no requirement is applied for a given variable/region.

Variable	CRWZ$_{\text{offWZ}}^{\text{S1j}}$	CRWZ$_{\text{offWZ}}^{\text{S2j}}$	VRWZ$_{\text{offWZ}}^{\text{S1j}}$	VRWZ$_{\text{offWZ}}^{\text{S2j}}$	VRWZ$_{\text{offWZ}}^{\text{S1j-loops}}$	VRtt$_{\text{offWZ}}^{\text{S1j}}$		
$n_{\text{lep}}^{\text{baseline}}, n_{\text{lep}}^{\text{signal}}$	3	3	3	3	3	3		
n_{SPOS}	≥ 1							
Trigger	(multi-lepton $		E_T^{\text{miss}}$)					
$\min \Delta R_{\ell\ell}$	> 0.4	> 0.4	> 0.4	> 0.4	> 0.4	> 0.4		
$n_{\text{b-jets}}$	0	0	0	0	0	0		
$m_{\ell\ell}$ [GeV]	$\in [81, 101]$							
E_T^{miss} [GeV]	< 50	< 80	< 80	< 80	< 80	< 80		
m_T [GeV]	≤ 50							
$m_{\ell\ell}$ [GeV]	≥ 1							
E_T^{miss} significance	> 1.5	> 1.5	> 1.5	> 1.5	> 1.5	> 1.5		
m_T [GeV]	≥ 60	≥ 30						
$m_{\ell\ell}$ [GeV]	$\in [12, 75]$							
Resonance veto $m_{\ell\ell}^{\text{min}}$ [GeV]	$\geq 3, 3.2]$							
$p_T^{\ell}, p_T^{\ell}, p_T^{\ell}$ [GeV]	> 10	> 10	> 10	> 10	> 10	> 10		
$\min \Delta R$	$[0.6, 2.4]$	$[0.6, 2.4]$	$[0.6, 2.4]$	$[0.6, 2.4]$	$[0.6, 2.4]$	$[0.6, 2.4]$		
$m_{3\ell} - m_Z$ [GeV]	> 20	> 20	> 20	> 20	> 20	> 20		
$m_{\text{W/offWZ}}$ [GeV]	> 75	> 75	> 75	> 75	> 75	> 75		
$\Delta R (\ell, E_T^{\text{miss}})$	> 2.6	> 2.6	> 2.6	> 2.6	> 2.6	> 2.6		
$	\mathbf{p}_T^{\ell}	/ E_T^{\text{miss}}$	> 0.3	> 0.3	> 0.3	> 0.3	> 0.3	> 0.3

Table 11 Summary of the selection criteria for the CRs and VRs for $Z +$ jets, for the off-shell WZ selection. The corresponding anti-ID regions used for the $Z +$ jets prediction follow the same selection criteria, except that at least one of the leptons is anti-ID instead of signal. ‘–’ indicates no requirement is applied for a given variable/region.

Variable	CRFZ$_{\text{offWZ}}$	CRtt$_{\text{anti-ID}}$	VRFF$_{\text{S1j}}$	VRFF$_{\text{S2j}}$	VRFF$_{\text{S1j-loops}}$		
$n_{\text{lep}}^{\text{baseline}}, n_{\text{lep}}^{\text{signal}}$	3	3	3	3	3		
n_{SPOS}	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1		
$n_{\text{b-jets}}$	0	0	0	0	0		
$m_{\ell\ell}$ [GeV]	$\in [81, 101]$	$\in [81, 101]$	$\in [81, 101]$	$\in [81, 101]$	$\in [81, 101]$		
E_T^{miss} [GeV]	< 50	< 80	< 80	< 80	< 80		
m_T [GeV]	≤ 50	≤ 50	≤ 50	≤ 50	≤ 50		
$m_{\ell\ell}$ [GeV]	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1		
E_T^{miss} significance	> 1.5	> 1.5	> 1.5	> 1.5	> 1.5		
$p_T^{\ell}, p_T^{\ell}, p_T^{\ell}$ [GeV]	> 10	> 10	> 10	> 10	> 10		
$\min \Delta R$	$[0.6, 2.4]$	$[0.6, 2.4]$	$[0.6, 2.4]$	$[0.6, 2.4]$	$[0.6, 2.4]$		
$	\mathbf{p}_T^{\ell}	/ E_T^{\text{miss}}$	> 0.3	> 0.3	> 0.3	> 0.3	> 0.3
Fig. 7 Example kinematic distributions after the background-only fit, showing the data and the post-fit expected background, in regions of the off-shell WZ selection. The figure shows (top left) the $m_{\text{min}}^{\ell\ell}$ distribution in $\text{CRWZ}_{0j}^{\text{offWZ}}$, (top right) the $|p_{\text{lep}}^T|/E_T^{\text{miss}}$ distribution in $\text{VRWZ}_{0j}^{\text{lowmll}}$, (bottom left) the E_T^{miss} distribution in $\text{VRt\bar{t}}_{0j}^{\text{offWZ}}$, and (bottom right) the $m_{\text{min}}^{\ell\ell}$ distribution in $\text{VRFF}_{0j}^{\text{offWZ}}$. The last bin includes overflow. The ‘Others’ category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The slope change in the bottom left E_T^{miss} distribution illustrates the selection extension with E_T^{miss} triggered events, which start contributing at $E_T^{\text{miss}} \gtrsim 200$ GeV bins ($\text{CRWZ}_{0j}^{\text{offWZ}}$ and $\text{CRWZ}_{nj}^{\text{offWZ}}$), based on the absence or presence of jets, to constrain WZ events without or with hard ISR jets separately with individual normalisation factors.

Three validation regions are defined in the region with $m_{\ell\ell}^{\text{min}}, m_{\ell\ell} < 75$ GeV, similar to $\text{SR}_{\text{offWZ}}^{\text{low}}$. First, $\text{VRWZ}_{0j}^{\text{offWZ}}$ and $\text{VRWZ}_{nj}^{\text{offWZ}}$ are designed to validate the WZ estimation in the $\text{SR}_{\text{offWZ}}^{\text{lowE_{T}}}$. A window around the Jacobian peak ($m_T \in [60, 90]$ GeV) is selected to enhance WZ, as well as to ensure the orthogonality with respect to the SRs. Further kinematic selection criteria similar to those in $\text{SR}_{\text{offWZ}}^{\text{lowE_{T}}}$ are applied. Two additional variables are employed in the $\text{VRWZ}_{0j}^{\text{offWZ}}$ to suppress the signal contamination in the region. The W-boson mass, $m_{\text{reco WZ}}$, is reconstructed assuming the WZ topology and balanced longitudinal momenta of the W and Z bosons, and $\Delta R(\ell_W, E_T^{\text{miss}})$ is defined by $\sqrt{\eta_{\ell_W}^2 + \Delta \phi(\ell_W, E_T^{\text{miss}})^2}$ where leptons are assigned according to the $m_{\ell\ell}^{\text{min}}$ approach, and ℓ_W is the lepton associated with the W boson. Since $m_{\text{reco WZ}}$ peaks around m_W with a long tail to higher masses for WZ background, while signals tend to have a flatter distribution, $m_{\text{reco WZ}} > 75$ GeV is found to effectively reduce signal contamination.

In the very low $m_{\ell\ell}^{\text{min}}$ region, $\text{VRWZ}_{0j}^{\text{offWZ}}$ is used to validate the WZ estimation in the $\text{SR}_{\text{offWZ}}^{\text{highE_{T}}}$. This region has the low-mass resonance veto applied and a lower bound on $|p_{\text{lep}}^T|/E_T^{\text{miss}}$ to ensure orthogonality with the SRs. Other kinematic cuts are loosened relative to $\text{SR}_{\text{highE_{T}}}$, or removed entirely, to increase the number of data events in the region. The WZ purity is $85–90\%$ in the CRs and 70–
Comparison of the observed data and expected SM background yields in the CRs and VRs of the off-shell WZ selection. The SM prediction is taken from the background-only fit. The ‘Others’ category contains the single-top, WW, triboson, Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the significance of the difference between the observed and expected yields, calculated with the profile likelihood method from Ref. [169], adding a minus sign if the yield is below the prediction.

Breakdown of the total systematic uncertainties in the background prediction for the SRs of the off-shell WZ selection.

Table 11. The Z-boson candidate is selected by requiring $|m_{\ell\ell} - m_Z| < 15$ GeV, and $E_{T}^{miss} < 40$ GeV and $m_T < 30$ GeV are applied to reject contamination from WZ. Additionally, $m_{3\ell} > 105$ GeV is applied to suppress $Z \rightarrow 4\ell$. To increase the number of FNP lepton candidates at high p_T, the overlap removal procedure described in Sect. 5 is modified for this FF measurement so that muons overlapping with jets are always kept. Finally, a jet veto is applied except for events where the FNP lepton candidate is a muon with $p_T > 30$ GeV, in which case $n_{jets} \leq 1$ is required in order to account for the special muon-vs-jet overlap-removal treatment applied to this region.

The FFs are derived separately per lepton flavour of FNP lepton candidates and per signal lepton criterion, i.e. with or without applying the non-prompt BDT, and are parameterised as a function of lepton p_T and E_{T}^{miss} in the event. Typical FF values are 0.2–0.4 (0.2–0.6) without the BDT applied, and 0.05–0.2 (0.07–0.2) when applying the BDT, for electrons (muons) in a p_T range of 4.5–30 (3.0–30) GeV. The parameterisation in E_{T}^{miss} is used to reflect the variation of FNP lepton source with E_{T}^{miss}, which is required in order to model the shape of fake E_{T}^{miss} correctly. Typically the fraction of FNP leptons originating from heavy-flavour decays varies with E_{T}^{miss}, in the range 20–30% (60–70%) for electrons (muons), because of the neutrinos from the leptonic b-/c-decays.

The contribution of non-Z + jets processes is subtracted using MC simulated samples. A small normalisation correction is applied to the $t\bar{t}$ events in the simulated anti-ID.
region to account for the different anti-ID lepton efficiencies in data and MC simulation. Normalisation factors are derived separately depending on the b-flavour and the b-jet multiplicity in the event. They are measured using the data events in a $t\bar{t}$-enriched control region, $\text{CR}_{t\bar{t}}$, and are found to be between 0.88 and 0.95. The $\text{CR}_{t\bar{t}}$, selection requires there to be no SFOS lepton pair in the event, as well as $p_{T}\ell_{j} > 10$ GeV and $E_{T}^{\text{miss}} > 50$ GeV to enhance the $t\bar{t}$ purity.

Two sources of uncertainty specific to the estimation in $\text{SR}^{\text{off-WZ}}$ are considered in addition to those described in Sect. 6.3. The FF parameterisation uncertainty is evaluated from the effect of using a different E_{T}^{miss} binning ($E_{T}^{\text{miss}} < 50$ GeV, 50% larger bin size), or a 3D parameterisation in lepton p_{T}, E_{T}^{miss} and lepton η, additionally taking into account the dependency on lepton η. The impact on the $Z + \text{jets}$ background yields in the CRs is $\sim 5\%$, and 1–7% in the SRs/VRs. The uncertainty from disabling the muon-vs-jet overlap removal procedure in the FF measurement region is assessed by comparing those FFs with alternative FFs measured with muon-vs-jet overlap removal applied for events with a FNP muon candidate of $p_{T} < 30$ GeV. The variation in the estimated $Z + \text{jets}$ yields in the SRs/CRs/VRs is found to be 5–15%.

The yields predicted by the FF method are cross-checked in dedicated VRs enriched in FNP lepton backgrounds, as summarised in Table 11. The E_{T}^{miss} significance selection is inverted with respect to the SRs to ensure orthogonality. First, $\text{VRFF}^{\text{off-WZ}}_{\ell\ell}$ and $\text{VRFF}^{\text{off-WZ}}_{\ell\ell}$ are designed to validate the yields in $\text{SR}^{\text{off-WZ}}_{\ell\ell},0\text{j}$ and $\text{SR}^{\text{off-WZ}}_{\ell\ell},-n\text{j}$, respectively, while $\text{VRFF}^{\text{off-WZ}}_{\ell\ell},n\text{j}$ aims to cross-check the modelling of FNP leptons with $p_{T} < 10$ GeV specifically. The $Z + \text{jets}$ purity is

Regions	$\text{SR}^{\text{on-WZ}}_{-1}$	$\text{SR}^{\text{on-WZ}}_{-2}$	$\text{SR}^{\text{on-WZ}}_{-3}$	$\text{SR}^{\text{on-WZ}}_{-4}$	$\text{SR}^{\text{on-WZ}}_{-5}$	$\text{SR}^{\text{on-WZ}}_{-6}$	$\text{SR}^{\text{on-WZ}}_{-7}$
Observed	331	31	3	2	42	7	3
Fitted SM	314 ± 33	35 ± 6	4.1 ± 1.0	1.2 ± 0.5	58 ± 5	8.0 ± 0.9	5.8 ± 1.0
WZ	294 ± 31	32 ± 5	3.7 ± 0.9	0.9 ± 0.5	48 ± 4	7.1 ± 0.8	5.0 ± 0.9
ZZ	12.1 ± 3.1	0.66 ± 0.35	0.08 ± 0.04	0.04 ± 0.02	2.3 ± 0.6	0.12 ± 0.04	0.08 ± 0.03
$t\bar{t}$	2.8 ± 0.8	0.36 ± 0.26	0.04 ± 0.01	0.00±0.01	1.4 ± 0.4	0.00±0.01	0.04 ± 0.02
Z + jets	0.01 ± 0.01	0.14 ± 0.14	0.05 ± 0.06	0.06 ± 0.04	2.8 ± 2.3	0.3 ± 0.4	0.26 ± 0.17
$t\bar{t}+X$	0.16 ± 0.06	0.13 ± 0.05	0.03 ± 0.04	0.01 ± 0.01	0.10 ± 0.06	0.05 ± 0.03	0.01 ± 0.01
Others	5.1 ± 0.8	1.1 ± 0.4	0.21 ± 0.06	0.17 ± 0.06	3.2 ± 0.5	0.38 ± 0.11	0.34 ± 0.10

Regions	$\text{SR}^{\text{on-WZ}}_{-8}$	$\text{SR}^{\text{on-WZ}}_{-9}$	$\text{SR}^{\text{on-WZ}}_{-10}$	$\text{SR}^{\text{on-WZ}}_{-11}$	$\text{SR}^{\text{on-WZ}}_{-12}$	$\text{SR}^{\text{on-WZ}}_{-13}$	$\text{SR}^{\text{on-WZ}}_{-14}$
Observed	1	77	11	0	0	111	19
Fitted SM	0.8 ± 0.4	90 ± 20	13.4 ± 2.4	0.5 ± 0.4	0.49 ± 0.24	89 ± 11	16.0 ± 1.4
WZ	0.44 ± 0.32	77 ± 19	11.3 ± 2.4	0.37 ± 0.31	0.38 ± 0.22	72 ± 9	13.4 ± 1.3
ZZ	0.01 ± 0.01	1.9 ± 0.9	0.24 ± 0.13	0.01 ± 0.01	0.01 ± 0.01	5.8 ± 2.8	0.39 ± 0.18
$t\bar{t}$	0.00±0.01	3.3 ± 0.9	0.45 ± 0.28	0.00±0.01	0.00±0.01	6.0 ± 1.4	0.24 ± 0.17
Z + jets	0.28 ± 0.20	4 ± 5	0.2 ± 0.4	0.02 ± 0.03	0.02 ± 0.03	0.02 ± 0.03	0.02 ± 0.03
$t\bar{t}+X$	0 ± 0	1.3 ± 0.4	0.40 ± 0.14	0.05 ± 0.04	0.02 ± 0.01	1.6 ± 0.5	0.56 ± 0.16
Others	0.08 ± 0.06	2.3 ± 0.5	0.79 ± 0.22	0.08 ± 0.05	0.08 ± 0.03	3.5 ± 0.7	1.37 ± 0.33

Regions	$\text{SR}^{\text{on-WZ}}_{-15}$	$\text{SR}^{\text{on-WZ}}_{-16}$	$\text{SR}^{\text{on-WZ}}_{-17}$	$\text{SR}^{\text{on-WZ}}_{-18}$	$\text{SR}^{\text{on-WZ}}_{-19}$	$\text{SR}^{\text{on-WZ}}_{-20}$
Observed	5	1	13	9	3	1
Fitted SM	2.8 ± 0.6	1.30 ± 0.27	13.7 ± 2.6	9.2 ± 1.3	2.3 ± 0.4	1.09 ± 0.13
WZ	2.3 ± 0.6	1.07 ± 0.24	10.2 ± 1.9	6.7 ± 0.8	1.58 ± 0.24	0.87 ± 0.12
ZZ	0.07 ± 0.04	0.04 ± 0.03	0.13 ± 0.06	0.10 ± 0.04	0.02 ± 0.01	0.02 ± 0.01
$t\bar{t}$	0.00±0.01	0.00±0.01	0.77 ± 0.32	0.45 ± 0.26	0.00±0.01	0.00±0.00
Z + jets	0.02 ± 0.02	0.07 ± 0.08	1 ± 1	0.7 ± 1.0	0.25 ± 0.34	0.02 ± 0.02
$t\bar{t}+X$	0.07 ± 0.03	0.00±0.00	0.53 ± 0.17	0.33 ± 0.10	0.07 ± 0.04	0.03 ± 0.02
Others	0.37 ± 0.11	0.12 ± 0.04	1.1 ± 0.8	0.9 ± 0.7	0.27 ± 0.07	0.18 ± 0.05
Table 13 Observed and expected yields after the background-only fit in the SRs for the Wh selection. The normalisation factors of the WZ sample are extracted separately for the $0\ell j$, low-H_T, and high-H_T regions, and are treated separately in the combined fit. The ‘Others’ category contains the single-top, WW, $t\bar{t}+X$ and rare top processes. Combined statistical and systematic uncertainties are presented.

Regions	SR_{Wh}^{th}-1	SR_{Wh}^{th}-2	SR_{Wh}^{th}-3	SR_{Wh}^{th}-4	SR_{Wh}^{th}-5	SR_{Wh}^{th}-6	SR_{Wh}^{th}-7
Observed	152	14	8	47	6	15	19
Fitted SM	136 ± 13	13.5 ± 1.7	4.3 ± 0.9	50 ± 5	4.3 ± 0.7	20.2 ± 2.1	16.0 ± 2.1
WZ	107 ± 12	10.2 ± 1.7	3.8 ± 0.8	32 ± 4	2.7 ± 0.6	12.3 ± 1.6	10.8 ± 1.7
$t\bar{t}$	10.3 ± 2.5	1.6 ± 0.6	0.13 ± 0.12	7.7 ± 1.9	0.74 ± 0.34	3.5 ± 1.0	2.5 ± 0.7
$Z +$ jets	2.5 ± 2.9	0.00 ± 0.0000	0.00 ± 0.0000	2.0 ± 1.6	0.00 ± 0.0000	0.00 ± 0.0000	0.00 ± 0.0000
Higgs	5.7 ± 0.6	0.69 ± 0.07	0.20 ± 0.03	3.12 ± 0.31	0.26 ± 0.05	1.29 ± 0.14	0.81 ± 0.09
Triboson	1.9 ± 0.5	0.22 ± 0.07	0.07 ± 0.02	1.4 ± 0.4	0.28 ± 0.09	0.61 ± 0.18	0.83 ± 0.24
Others	8.6 ± 1.9	0.84 ± 0.11	0.08 ± 0.05	4.0 ± 0.5	0.23 ± 0.24	2.54 ± 0.22	1.11 ± 0.15

Regions	SR_{Wh}^{th}-8	SR_{Wh}^{th}-9	SR_{Wh}^{th}-10	SR_{Wh}^{th}-11	SR_{Wh}^{th}-12	SR_{Wh}^{th}-13	SR_{Wh}^{th}-14
Observed	113	184	28	5	82	16	4
Fitted SM	108 ± 13	180 ± 17	31 ± 4	6.6 ± 0.9	90 ± 11	18.7 ± 2.6	2.5 ± 0.7
WZ	54 ± 6	127 ± 13	19.3 ± 2.3	5.3 ± 0.8	47 ± 6	6.8 ± 1.7	1.26 ± 0.26
$t\bar{t}$	21 ± 6	33 ± 10	8.2 ± 2.3	0.7 ± 0.5	28 ± 8	8.0 ± 2.2	0.9 ± 0.5
$Z +$ jets	19 ± 10	2.3 ± 1.9	1.0 ± 1.3	0.10 ± 0.21	2.1 ± 3.1	1.2 ± 0.7	0.00 ± 0.12
Higgs	1.91 ± 0.19	3.63 ± 0.35	0.67 ± 0.06	0.15 ± 0.02	2.98 ± 0.25	0.61 ± 0.07	0.07 ± 0.07
Triboson	0.79 ± 0.24	1.4 ± 0.4	0.41 ± 0.13	0.12 ± 0.05	1.6 ± 0.5	0.56 ± 0.18	0.13 ± 0.05
Others	11.1 ± 2.2	12.2 ± 2.2	1.8 ± 0.4	0.22 ± 0.05	9.0 ± 1.1	1.6 ± 0.7	0.10 ± 0.05

Regions	SR_{Wh}^{th}-15	SR_{Wh}^{th}-16	SR_{Wh}^{th}-17	SR_{Wh}^{th}-18	SR_{Wh}^{th}-19	SR_{Wh}^{th}-1	SR_{Wh}^{th}-2
Observed	51	5	37	7	4	10	10
Fitted SM	46 ± 7	9.8 ± 1.6	43 ± 7	12.6 ± 1.7	1.8 ± 0.4	4.5 ± 0.8	7.0 ± 2.3
WZ	18.9 ± 2.2	3.9 ± 0.8	35 ± 6	9.8 ± 1.6	1.44 ± 0.32	0.44 ± 0.14	1.05 ± 0.20
$t\bar{t}$	18 ± 6	3.2 ± 1.3	1.00 ± 0.34	0.33 ± 0.17	0.00 ± 0.01	1.0 ± 0.6	1.7 ± 1.1
$Z +$ jets	0.00 ± 0.12	0.00 ± 0.12	0.00 ± 0.12	0.00 ± 0.12	0.00 ± 0.12	0.00 ± 0.20	2.5 ± 2.0
Higgs	2.06 ± 0.23	0.36 ± 0.05	1.02 ± 0.12	0.44 ± 0.05	0.05 ± 0.05	1.59 ± 0.22	0.96 ± 0.11
Triboson	1.5 ± 0.4	0.53 ± 0.17	2.5 ± 0.7	1.3 ± 0.4	0.2 ± 0.1	0.66 ± 0.15	0.64 ± 0.16
Others	5.0 ± 0.6	1.8 ± 0.5	3.0 ± 0.7	0.73 ± 0.15	0.14 ± 0.05	0.81 ± 0.09	0.21 ± 0.07

in the VRs is 50–80%, while the contamination from signals is negligible.

Performing the background-only fit, WZ normalisation factors of 1.06 ± 0.03 (CR$_{WZ_{off}}$) and 0.93 ± 0.03 (CR$_{WZ_{on}}$) are determined. Examples of kinematic distributions in the CRs and VRs, demonstrating good agreement, are presented in Fig. 7. Observed and expected yields for all CRs and VRs are summarised in Fig. 8.

The systematic uncertainties considered in the off-shell WZ selection are summarised in Fig. 9, grouped as discussed in Sect. 6.3. As the expected yields can vary by an order of magnitude throughout the regions, bin-to-bin fluctuations are expected in both the statistical and experimental uncertainty; these uncertainties are often dominant in bins with limited MC statistics in the phase space of the selection. The FNP lepton uncertainty is naturally more important in bins with larger FNP lepton background contributions, and can fluctuate in bins with few events in the corresponding anti-ID sample, such as $SR_{WZ_{off}}^{-0\ell j}$. The modelling uncertainty is larger in the presence of ISR jets and at higher values of E_T^{miss}; the fluctuation in $SR_{WZ_{off}}^{-njj}$ originates from the effect of the QCD scale uncertainty on the WZ background.

9 Results

The observed data in the on-shell WZ, off-shell WZ, and Wh SRs are compared with the background expectation obtained from the background-only fits described in Sect. 6.4. The results are summarised in Tables 12 and 13 as well as visualised in Figs. 10 and 11 for the SR_{Wh} and SR_{WZ} regions, and in Tables 14 and 15 and Fig. 12 for the $SR_{WZ_{off}}$. Post-fit distributions of key kinematic observables are shown for the
Fig. 10 Comparison of the observed data and expected SM background yields in the SRs of the on-shell WZ selection. The SM prediction is taken from the background-only fit. The ‘Others’ category contains the single-top, WW, triboson, Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. Distributions for wino/bino ($\chi^{\pm}_{1}/\chi^{0}_{2} \rightarrow WZ$) signals are overlaid, with mass values given as $(m(\chi^{\pm}_{1}), m(\chi^{0}_{2}))$ GeV. The bottom panel shows the significance of the difference between the observed and expected yields, calculated with the profile likelihood method from Ref. [169], adding a minus sign if the yield is below the prediction.

Fig. 11 Comparison of the observed data and expected SM background yields in the SRs of the Wh selection. The SM prediction is taken from the background-only fit. The ‘Others’ category contains the single-top, WW, $t\bar{t}+X$ and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. Distributions for wino/bino ($\chi^{\pm}_{1}/\chi^{0}_{2} \rightarrow Wh$) signals are overlaid, with mass values given as $(m(\chi^{\pm}_{1}), m(\chi^{0}_{2}))$ GeV. The bottom panel shows the significance of the difference between the observed and expected yields, calculated with the profile likelihood method from Ref. [169], adding a minus sign if the yield is below the prediction.

To illustrate the sensitivity to various $\chi^{\pm}_{1}/\chi^{0}_{2}$ signals throughout the regions, representative signal MC predictions are overlaid on the figures. The sensitivity to WZ-mediated models, when the mass difference between the $\chi^{\pm}_{1}/\chi^{0}_{2}$ and χ^{0}_{1} is large, is driven by the SRWZ with large m_T and E_T^{miss} values. On the other hand, when the mass splitting is close to the Z-boson mass, the sensitivity is dominated by the high H_T region and moderate m_T and E_T^{miss} bins of the $n_{jets} = 0$ and $n_{jets} = 1$.

SRWZ and SRoffWZ regions in Fig. 13 and for the SRoffWZ regions in Fig. 14.
Table 14 Observed and expected yields after the background-only fit in SR_{offWZ}. The normalisation factors of the WZ sample are extracted separately for 0j and nj, and are treated separately in the combined fit.

Region	$\text{SR}_{\text{offWZ}}^{0jb}$	$\text{SR}_{\text{offWZ}}^{0jc}$	$\text{SR}_{\text{offWZ}}^{0jd}$	$\text{SR}_{\text{offWZ}}^{0je}$	$\text{SR}_{\text{offWZ}}^{0jf1}$	$\text{SR}_{\text{offWZ}}^{0jf2}$
Observed	25	42	77	101	33	7
Fitted SM events	32 ± 4	44 ± 4	54 ± 4	91 ± 6	32.2 ± 2.5	5.9 ± 1.1
WZ	7.6 ± 0.9	13.8 ± 1.3	16.3 ± 1.9	25.6 ± 1.8	20.1 ± 1.5	4.9 ± 1.0
$Z Z$	5.5 ± 1.3	7.4 ± 1.2	9.6 ± 1.6	21.8 ± 3.2	2.7 ± 1.1	0.43 ± 0.14
$Z + \text{jets}$	19.1 ± 3.2	22.7 ± 3.4	26.5 ± 3.5	40 ± 5	7.2 ± 1.7	0.00 ± 0.00
$\bar{t} \bar{t}$	0.05	0.18 ± 0.11	0.17	0.22 ± 0.11	0.4 ± 0.08	0.29 ± 0.08
$\bar{t} \bar{t} + X$	0.007 ± 0.019	0.002 ± 0.002	0.009 ± 0.019	0.019 ± 0.026	0.02 ± 0.02	0.010 ± 0.00
Others	0.045 ± 0.031	0.30 ± 0.12	1.3 ± 0.6	1.9 ± 0.6	1.4 ± 0.4	0.51 ± 0.18

Region	$\text{SR}_{\text{offWZ}}^{0jl1}$	$\text{SR}_{\text{offWZ}}^{0jl2}$	$\text{SR}_{\text{offWZ}}^{0jl}$	$\text{SR}_{\text{offWZ}}^{0jn1}$	$\text{SR}_{\text{offWZ}}^{0jn2}$	$\text{SR}_{\text{offWZ}}^{0jn}$
Observed	34	6	13	17	14	
Fitted SM events	34.7 ± 2.8	6.3 ± 1.1	3.5 ± 0.6	8.0 ± 1.2	13.5 ± 1.5	18.2 ± 3.4
WZ	21.4 ± 2.1	5.2 ± 1.0	1.62 ± 0.30	3.2 ± 0.6	6.0 ± 0.8	8.6 ± 1.3
$Z Z$	4.7 ± 1.4	0.45 ± 0.14	0.45 ± 0.13	0.72 ± 0.22	1.00 ± 0.28	1.4 ± 0.9
$Z + \text{jets}$	6.6 ± 1.6	0.001 ± 0.020	0.12 ± 0.5	3.7 ± 0.9	4.5 ± 1.2	3.3 ± 1.3
$\bar{t} \bar{t}$	0.8 ± 0.4	0.36 ± 0.21	0.15 ± 0.13	0.28 ± 0.14	1.5 ± 0.4	3.3 ± 0.9
$\bar{t} \bar{t} + X$	0.039 ± 0.025	0.003 ± 0.003	0.030 ± 0.013	0.052 ± 0.019	0.24 ± 0.06	0.33 ± 0.07
Others	1.16 ± 0.27	0.27 ± 0.09	0.006 ± 0.004	0.14 ± 0.34	0.21 ± 0.06	1.3 ± 0.13

Region	$\text{SR}_{\text{offWZ}}^{1jl1}$	$\text{SR}_{\text{offWZ}}^{1jl2}$	$\text{SR}_{\text{offWZ}}^{1jl}$	$\text{SR}_{\text{offWZ}}^{1jn1}$	$\text{SR}_{\text{offWZ}}^{1jn2}$	$\text{SR}_{\text{offWZ}}^{1jn}$
Observed	25	20	22	12		
Fitted SM events	23.4 ± 2.5	17.9 ± 1.9	17.0 ± 3.5	12.4 ± 1.9		
WZ	11.1 ± 1.2	9.4 ± 1.1	10.0 ± 1.2	7.3 ± 1.3		
$Z Z$	4.0 ± 1.6	0.66 ± 0.25	1.1 ± 0.64	0.34 ± 0.11		
$Z + \text{jets}$	2.2 ± 1.4	0.000 ± 0.14	1.8 ± 1.1	0.00 ± 0.6		
$\bar{t} \bar{t}$	4.6 ± 1.1	5.7 ± 1.2	3.0 ± 0.8	2.9 ± 0.7		
$\bar{t} \bar{t} + X$	0.44 ± 0.09	0.72 ± 0.11	0.36 ± 0.08	0.44 ± 0.09		
Others	1.0 ± 0.4	1.4 ± 0.9	0.71 ± 0.21	1.4 ± 0.6		

low H_{ℓ} regions. For the Wh-mediated scenarios the sensitivity is driven by $\text{SR}_{\text{Wh}}^{0\ell}$ and $\text{SR}_{\text{Wh}}^{0\ell}$ regions, with $\text{SR}_{\text{Wh}}^{0\ell}$-1 contributing the most.

For the WZ-mediated models targeted with the $\text{SR}_{\text{Wh}}^{0\ell}$, with mass differences between the X_{1}^{\pm}, X_{2}^{0} and X_{1}^{0} smaller than the Z-boson mass, the sensitivity to signals with different Δm depends on the $m_{\ell\ell}^{\text{min}}$ range of the bins. The bins with larger (smaller) $m_{\ell\ell}^{\text{min}}$ values are sensitive to signals with larger (smaller) mass splittings; for the lowest mass-splitting signals, only $\text{SR}_{\text{Wh}}^{-\ell}$-nja has sensitivity.

No significant deviation from the SM background prediction is found in any of the SRs, and none of the deviations agree with any of the benchmark signal hypotheses. The maximum deviation of the data from the background expectation is in $\text{SR}_{\text{Wh}}^{0\ell}$ with a 2.3σ data excess, followed by a 2.1σ deficit in $\text{SR}_{\text{Wh}}^{0\ell}$, a 2.0$\sigma$ excess in $\text{SR}_{\text{Wh}}^{0\ell}$-1, and a 2.0$\sigma$ deficit in $\text{SR}_{\text{Wh}}^{-\ell}$-5; the significances are computed following the profile likelihood method in Ref. [169].

9.1 Model-independent limits on new physics in inclusive regions

Model-independent upper limits and discovery p-values in the SRs are derived by performing the discovery fits as described in Sect. 6.4. The set of single-bin signal regions used in the fits, referred to as ‘inclusive SRs’, is constructed by logically grouping adjoining, disjoint, nominal SRs of the on-shell WZ, Wh and off-shell WZ selections. Multiple, sometimes overlapping, regions are defined to capture signatures with different unknown $m_{\ell\ell}^{\text{min}}$ shapes and jet multiplicities inclusively. Based on the best expected discovery sensitivity and using a number of signal points covering both the WZ- and Wh-mediated scenarios and different

\[\text{Springer} \]
Region	$\text{SR}_{\text{high}, -0j}$	$\text{SR}_{\text{high}, -0jc}$	$\text{SR}_{\text{high}, -0jd}$	$\text{SR}_{\text{high}, -0je}$	$\text{SR}_{\text{high}, -0j1}$
Observed	1	4	11	13	37
Fitted SM events	1.5 ± 0.7	4.3 ± 0.8	14.0 ± 1.6	11.5 ± 1.6	35.7 ± 3.2
WZ	0.20 ± 0.27	1.5 ± 0.5	6.0 ± 0.9	6.1 ± 1.1	20.5 ± 2.1
ZZ	0.5 ± 0.5	0.31 ± 0.12	1.8 ± 0.8	0.89 ± 0.24	3.1 ± 1.0
$Z + \text{jets}$	0.81 ± 0.31	1.7 ± 0.4	4.4 ± 1.0	1.1 ± 0.8	4.3 ± 1.4
$\ell \ell$	0.05 ± 0.05	0.45 ± 0.17	0.64 ± 0.28	1.8 ± 0.6	4.4 ± 1.0
$\ell \ell + X$	0.003 ± 0.003	0.009 ± 0.009	0.029 ± 0.015	0.08 ± 0.04	0.11 ± 0.05
Others	0.014 ± 0.014	0.34 ± 0.3	1.1 ± 0.4	1.6 ± 0.4	3.3 ± 0.8

Region	$\text{SR}_{\text{high}, -0j2}$	$\text{SR}_{\text{high}, -0j1}$	$\text{SR}_{\text{high}, -0j2}$	$\text{SR}_{\text{high}, -nja}$	$\text{SR}_{\text{high}, -njb}$
Observed	14	43	17	3	2
Fitted SM events	25.5 ± 2.4	39.5 ± 3.0	21 ± 7	6.0 ± 1.6	1.4 ± 0.6
WZ	16.0 ± 2.3	26.4 ± 2.2	15 ± 7	3.8 ± 1.2	0.57 ± 0.18
ZZ	0.95 ± 0.35	3.0 ± 0.9	0.58 ± 0.17	0.044 ± 0.023	0.009 ± 0.005
$Z + \text{jets}$	0.000 ± 0.000	3.4 ± 1.3	0.000 ± 0.000	1.5 ± 0.8	0.5 ± 0.5
$\ell \ell$	4.4 ± 1.0	4.3 ± 0.9	3.1 ± 0.7	0.6 ± 0.5	0.144 ± 0.14
$\ell \ell + X$	0.109 ± 0.030	0.16 ± 0.05	0.09 ± 0.04	0.16 ± 0.06	0.014 ± 0.025
Others	4.0 ± 1.0	2.3 ± 0.8	2.0 ± 0.5	0.038 ± 0.030	0.22 ± 0.22

Region	$\text{SR}_{\text{low}, -njc}$	$\text{SR}_{\text{low}, -njd}$	$\text{SR}_{\text{low}, -nj}$	$\text{SR}_{\text{low}, -nje}$	$\text{SR}_{\text{low}, -njf}$
Observed	2	2	2	11	4
Fitted SM events	2.1 ± 0.8	5.4 ± 1.4	3.0 ± 1.1	9.9 ± 2.5	6.8 ± 1.8
WZ	1.25 ± 0.25	2.5 ± 0.4	1.31 ± 0.25	4.5 ± 0.7	3.7 ± 0.6
ZZ	0.020 ± 0.011	0.014 ± 0.013	0.029 ± 0.014	0.081 ± 0.033	0.050 ± 0.020
$Z + \text{jets}$	0.04 ± 0.04	0.7 ± 0.8	0.0±0.4	0.06±0.6	0.004 ± 0.00
$\ell \ell$	0.6 ± 0.5	1.3 ± 0.8	1.2 ± 1.0	3.4 ± 2.0	2.5 ± 1.6
$\ell \ell + X$	0.027 ± 0.023	0.08 ± 0.08	0.09 ± 0.04	0.31 ± 0.08	0.21 ± 0.07
Others	0.14 ± 0.14	0.8 ± 0.6	0.33 ± 0.21	1.0 ± 0.4	0.3 ± 0.4

mass splittings, 12 inclusive SRs are formed by merging SR_{VZ} and SR_{WH} regions, creating incSR_{VZ} and incSR_{WH}, respectively. They are summarised in Table 16. Similarly, 17 inclusive SRs are formed by merging SR_{offVZ} regions, creating $\text{incSR}_{\text{offVZ}}$. Their definitions are summarised in Table 17. For $\text{incSR}_{\text{offVZ}}$, contiguous jet-veto regions are merged with jet-inclusive regions, as the $m_{\ell\ell}^{\text{min}}$ shape of a signal is assumed to be insensitive to jet multiplicity. The SR_{offVZ} and SR_{offWH} regions are kept separate, while the $\text{SR}_{\text{offVZ}, -nj}$ regions are considered separately for $m_{\ell\ell}^{\text{min}} < 20$ GeV, as this selection provides the best sensitivity to low-mass-splitting models.

The 95% CL upper limits on the generic BSM cross section are calculated by performing a discovery fit for each target SR and its associated CRs, using pseudo-experiments. Results are reported in Tables 18 and 19 for the on-shell WZ and Wh analysis selections (off-shell WZ selection). The tables list the observed (N_{obs}) and expected (N_{exp}) yields in the inclusive SRs, the upper limits on the observed (S_{obs}), and expected (S_{exp}) number of BSM events, and the visible cross section (σ_{vis}) reflecting the product of the production cross section, the acceptance, and the selection efficiency for a BSM process; the p-value and significance (Z) for the background-only hypothesis are also presented.

9.2 Constraints on WZ- and Wh-mediated models

Constraints on the target simplified models are derived using the nominal SRs discussed in Sects. 7.1 and 8.1. The results are statistically combined with the previous results for the electroweakino regions (SR–E) of the two-lepton search targeting compressed mass spectra [18], referred to as the compressed selection. Model-dependent 95% CL exclusion limits are calculated by performing the exclusion fits as...
Comparison of the observed data and expected SM background yields in the SRs of the off-shell WZ selection. The SM prediction is taken from the background-only fit. The ‘Others’ category contains the single-top, WW, triboson, Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. Distributions for wino/bino ($\tilde{\chi}^\pm_1 \to W^{*}Z^*$) signals are overlaid, with mass values given as $(m(\tilde{\chi}^\pm_1), m(\tilde{\chi}^0_2))$ GeV. The bottom panel shows the significance of the difference between the observed and expected yields, calculated with the profile likelihood method from Ref. [169], adding a minus sign if the yield is below the prediction described in Sect. 6.4. When performing the combination, common experimental uncertainties are treated as correlated between regions and processes. Theoretical uncertainties of the background and signal are treated as correlated between regions only, while statistical uncertainties are considered uncorrelated between regions and processes.

All regions of the on-shell WZ, off-shell WZ, and compressed selections were explicitly designed to be orthogonal, allowing a statistical combination of the results. The on-shell and off-shell WZ selections are orthogonal due to the m_{ll} and E_{T}^{miss} requirements, while the off-shell WZ and compressed selections are orthogonal by lepton multiplicity. Results are combined where greater exclusion power is expected over the individual results, ignoring contributions from search regions that do not add sensitivity in a given region of phase space. This approach results in multiple pairwise combinations of the on-shell and off-shell WZ selections, and the off-shell WZ and compressed selections, in bands of the $(\Delta m, m(\tilde{\chi}^0_2))$ plane.

Four separate fits are performed to obtain constraints for the following simplified models:

- the wino/bino (+) WZ-mediated model combining the on-shell WZ, off-shell WZ, and compressed selections,
- the wino/bino (+) Wh-mediated model using the Wh selection only,
- the wino/bino (−) WZ-mediated model combining the off-shell WZ and compressed selections,
- the higgsino WZ-mediated model combining the off-shell WZ and compressed selections.

For the WZ-mediated model in the wino/bino (+) scenario, only the SR_{WZ} are sensitive for mass splittings Δm above 100 GeV. Conversely, the SR_{offWZ} dominate the intermediate mass-splitting region, with sensitivity in the $\Delta m = [5, 100]$ GeV range. In the most compressed region, the SR_{E} are important, driving the result for Δm below 10 GeV and adding sensitivity up to $\Delta m = 50$ GeV. Given these contributions, the Δm range is split into five bands to make optimal use of the different channels, and the combination considers respectively the SR_{E} only, the SR_{WZ} and SR_{offWZ}, the SR_{offWZ} only, the SR_{offWZ} and SR_{WZ}, and the SR_{WZ} only. In the wino/bino (−) an higgsino scenarios, the on-shell WZ selection is not considered, and only three bands are defined for the combination. The exact Δm ranges used are illustrated for the different scenarios in Fig. 15.

Expected and observed exclusion contours are reported as a function of the $\tilde{\chi}^0_1$ and $\tilde{\chi}^0_2$ masses, and shown in Fig. 16 (WZ-mediated model) and Fig. 17 (Wh-mediated model). The combined results are shown together with the individual contributions. For each mass point, a CL$_{s}$ value is derived to assess the probability of compatibility between the observed data and the signal-plus-background prediction obtained by the exclusion fit. For the WZ-mediated model, the results are obtained by statistically combining the SR_{WZ},
Fig. 13 Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the on-shell WZ and Wh selections. The figure shows (top left) the $\Delta R_{\text{OS,near}}$ distribution in SRWh$_{\text{DFOS-1}}$, (top right) the 3rd leading lepton’s p_T in SRWh$_{\text{DFOS-2}}$, and the (bottom left) E_T^{miss} and (bottom right) m_T distributions in SRWZ$_{\text{0j}}$ (with all SR-i bins of SRWZ$_{\text{0j}}$ summed). The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes overflow. The ‘Others’ category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes, except in the top panels, where triboson and Higgs production contributions are shown separately, and $t\bar{t}+X$ is merged into Others. Distributions for wino/bino (+) $\tilde{\chi}^{\pm}_1/\tilde{\chi}^0_2 \rightarrow WZ/Wh$ signals are overlaid, with mass values given as $(m(\tilde{\chi}^{\pm}_1), m(\tilde{\chi}^0_1))$ GeV. The bottom panel shows the ratio of the observed data to the predicted yields. Ratio values outside the graph range are indicated by a red arrow. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Fig. 14 Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the off-shell WZ selection. The figure shows the $m_{\ell\ell}^{\text{min}}$ distribution in (top left) $\text{SR}_{\text{offWZ}}^{\text{low}/0j}$, (top right) $\text{SR}_{\text{offWZ}}^{\text{low}/nj}$ and (bottom left) $\text{SR}_{\text{offWZ}}^{\text{high}/0j}$, and the $p_{T}^{\ell}/E_{T}^{\text{miss}}$ distribution in (bottom right) $\text{SR}_{\text{offWZ}}^{\text{high}/nj}$. The contributing $m_{\ell\ell}^{\text{min}}$ mass bins within each SR$_{\text{offWZ}}$ category are summed. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes overflow. The ‘Others’ category contains backgrounds from single-top, $W W$, triboson, Higgs and rare top processes. Distributions for wino/bino ($\tilde{\chi}^{\pm}_1/\tilde{\chi}^{0}_2 \rightarrow WZ$) signals are overlaid, with mass values given as $(m(\tilde{\chi}^{\pm}_1), m(\tilde{\chi}^{0}_2))$ GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties at the increased collision centre-of-mass energy, larger data sample, and improved analysis techniques.

Expected and observed exclusion contours are also derived for the $W Z$-mediated model in the wino/bino (−) and higgsino scenarios, shown in Fig. 16 (bottom panels) as a function of the $\tilde{\chi}^{\pm}_1$ and $\tilde{\chi}^{0}_2$ masses. The results are obtained by statistically combining the SR$_{\text{offWZ}}$ and SR-E contributions, following the prescription outlined above.

In the wino/bino (−) scenario, shown in Fig. 16 (bottom left), observed (expected) lower limits for equal-mass $\tilde{\chi}^{\pm}_1/\tilde{\chi}^{0}_2$ are set at values up to 310 (300) GeV for mass splittings Δm around 80 GeV, and up to 250 (250) GeV for Δm around 40 GeV. For Δm of 10–20 GeV, the impact of the combination of the off-shell WZ and compressed results is the largest, and raises the expected limit to $\tilde{\chi}^{\pm}_1/\tilde{\chi}^{0}_2$ masses of 270 GeV, with the observed limit still showing a mild deficit similar to that visible in the compressed contribution. At a $\tilde{\chi}^{\pm}_1/\tilde{\chi}^{0}_2$ mass of 100 GeV, the observed (expected) exclusion extends down to $\Delta m = 1$ (1.5) GeV.

In the higgsino scenario, shown in Fig. 16 (bottom right), with the $\tilde{\chi}^{\pm}_1$ mass between that of the $\tilde{\chi}^{0}_1$ and $\tilde{\chi}^{0}_2$, limits are set for mass splittings Δm up to 60 GeV. For Δm between 30 and 60 GeV, observed (expected) limits extend to around 150–210 (160–215) GeV. The impact of the combination of the off-shell WZ and compressed results is largest in the $\Delta m = 15–30$ GeV range, improving on the individual result by up to 15 GeV. Below $\Delta m = 20$ GeV, the result is dominated by the compressed contribution, and limits extend down to $\Delta m = 2$ GeV.

Fig. 16 Expected and observed exclusion contours are also derived for the $W Z$-mediated model in the wino/bino (−) and higgsino scenarios, shown in Fig. 16 (bottom panels) as a function of the $\tilde{\chi}^{\pm}_1$ and $\tilde{\chi}^{0}_2$ masses. The results are obtained by statistically combining the SR$_{\text{offWZ}}$ and SR-E contributions, following the prescription outlined above.
within 2\sigma. The obtained observed (expected) limits show an improvement of up to 40 (80) GeV compared to the previous Run 1, 8 TeV, ATLAS search [17].

10 Recursive Jigsaw Reconstruction selection and results

To follow up on an earlier ATLAS search performed using the Recursive Jigsaw Reconstruction (RJR) technique with the 2015–2016, 36 fb\(^{-1}\) dataset [15], the search in this paper includes two signal regions in which the original search observed excesses of three-lepton events. The original search in the two regions is repeated following the same methods.

Table 16 Summary of the selection criteria for the inclusive SRs in the on-shell WZ and Wh selections

\(m_{\ell\ell}^{\text{min}} \) [GeV]	\(\text{incSR}^{\text{offSR}WZ} - nj \)	\(b \)	\(c \)	\(\chi \)
\([1, 12]\)	\([12, 15]\)	\([1, 20]\)	\([15, 20]\)	

| \(\text{SR}^{\text{offSR}WZ} - n\) |
|---|---|---|---|
| \(a\) | \(b\) | \(c\) | \(\chi\) |

Table 17 Summary of the selection criteria for the inclusive SRs in the off-shell WZ selection

\(m_{\ell\ell}^{\text{min}} \) [GeV]	\(\text{incSR}^{\text{offSR}WZ} - nj[a] \)	\(b \)	\(c \)
\([12, 15]\)	\([12, 20]\)	\([12, 20]\)	

\(\text{SR}^{\text{offSR}WZ} - nj[a] \)	\(\text{SR}^{\text{offSR}WZ} - nj[a] \)	\(\text{SR}^{\text{offSR}WZ} - nj[a] \)
\(a\)	\(b\)	\(c\)

The obtained results for the wino/bino (−) and higgsino scenarios complement the previous compressed result using two-lepton final states as well. These results from the off-shell WZ selection in three-lepton final states make full use of the larger data sample and target a novel phase space in the intermediately compressed \(\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0)\) region. The new results extend the exclusion by up to 100 GeV in \(\tilde{\chi}_2^0\) mass.

For the wino/bino (+) Wh-mediated model, observed (expected) lower limits for equal-mass \(\tilde{\chi}_1^0/\tilde{\chi}_2^0\) are set at values up to 190 (240) GeV for \(\tilde{\chi}_0^0\) masses below 20 GeV, as shown in Fig. 17. The observed exclusion is weaker than the expected exclusion, which is explained by the mild excess found in \(\text{SR}^{\text{offSR}WZ}\) the limits are, however, compatible
Table 18 Observed (N_{obs}) yields after the discovery fit and expected (N_{exp}) after the background-only fit, for the inclusive SRs of the on-shell WZ and WH selections. The third and fourth columns list the 95% CL upper limits on the visible cross section (σ_{vis}^{95}) and on the number of signal events (N_{obs}^{95}). The fifth column (χ_{exp}^{95}) shows the 95% CL upper limit on the number of signal events, given the expected number (and $\pm 1\sigma$ excursions of the expectation) of background events. The last two columns indicate the CL$_b$ value, i.e. the confidence level observed for the background-only hypothesis, and the discovery p-value ($p(s = 0)$). If the observed yield is below the expected yield, the p value is capped at 0.5.

SR	N_{obs}	N_{exp}	σ_{vis}^{95} [fb]	N_{obs}^{95}	χ_{exp}^{95}	CL$_b$	$p(s = 0)$ (Z)
incSRME-1	34	38 \pm 5	0.10	14	16$^{+7}_{-4}$	0.32	0.50 (0.00)
incSRME-2	2	1.2 \pm 0.5	0.04	5.0	4.0$^{+1.0}_{-0.7}$	0.76	0.23 (0.73)
incSRME-3	4	6.5 \pm 1.1	0.03	4.8	6.5$^{+2.6}_{-1.8}$	0.19	0.50 (0.00)
incSRME-4	25	31 \pm 6	0.09	12	15$^{+7}_{-4}$	0.25	0.50 (0.00)
incSRME-5	1	5.2 \pm 1.1	0.03	3.9	5.8$^{+2.2}_{-1.4}$	0.03	0.50 (0.00)
incSRME-6	23	16.4 \pm 1.4	0.12	17.0	10.3$^{+3.9}_{-3.0}$	0.93	0.07 (1.48)
incSRME-tphos-7	174	150 \pm 14	0.41	58	38$^{+3.1}_{-1.1}$	0.90	0.10 (1.27)
incSRME-tphos-8	53	55 \pm 5	0.12	17	18$^{+7}_{-5}$	0.42	0.50 (0.00)
incSRME-tphos-9	34	36 \pm 4	0.10	14	15$^{+6}_{-4}$	0.40	0.50 (0.00)
incSRME-tphos-10	56	55 \pm 7	0.16	22	21$^{+6}_{-8}$	0.55	0.41 (0.22)
incSRME-tphos-11	41	45 \pm 6	0.11	16	18$^{+7}_{-5}$	0.34	0.50 (0.00)
incSRME-tphos-12	18	11.5 \pm 4.1	0.12	17.0	10.5$^{+12.2}_{-9.7}$	0.92	0.07 (1.48)

Table 19 Observed (N_{obs}) yields after the discovery fit and expected (N_{exp}) after the background-only fit, for the inclusive SRs of the off-shell WZ selection. The third and fourth columns list the 95% CL upper limits on the visible cross section (σ_{vis}^{95}) and on the number of signal events (N_{obs}^{95}). The fifth column (χ_{exp}^{95}) shows the 95% CL upper limit on the number of signal events, given the expected number (and $\pm 1\sigma$ excursions of the expectation) of background events. The last two columns indicate the CL$_b$ value, i.e. the confidence level observed for the background-only hypothesis, and the discovery p-value ($p(s = 0)$). If the observed yield is below the expected yield, the p value is capped at 0.5.

SR	N_{obs}	N_{exp}	σ_{vis}^{95} [fb]	N_{obs}^{95}	χ_{exp}^{95}	CL$_b$	$p(s = 0)$ (Z)
incSRME-tphos-1nja	3	6.0 \pm 1.6	0.03	4.6	6.3$^{+12.4}_{-2.0}$	0.16	0.50 (0.00)
incSRME-tphos-1nb	2	1.4 \pm 0.6	0.03	4.8	4.0$^{+1.6}_{-0.7}$	0.71	0.30 (0.53)
incSRME-tphos-1ncj1	7	9.5 \pm 2.2	0.05	7.0	8.4$^{+2.9}_{-2.2}$	0.28	0.50 (0.00)
incSRME-tphos-1ncj2	2	2.1 \pm 0.8	0.03	4.7	4.6$^{+11.1}_{-1.8}$	0.52	0.50 (0.00)
incSRME-tphos-b	31	36 \pm 4	0.09	12	15$^{+6}_{-5}$	0.25	0.50 (0.00)
incSRME-tphos-b	3	3.0 \pm 0.9	0.04	5.4	5.2$^{+2.0}_{-1.3}$	0.53	0.50 (0.00)
incSRME-tphos-c	86	88 \pm 7	0.17	23	24$^{+9}_{-1.8}$	0.44	0.50 (0.00)
incSRME-tphos-c	9	9.3 \pm 1.5	0.06	7.7	7.7$^{+14.1}_{-1.8}$	0.50	0.50 (0.00)
incSRME-tphos-d	202	184 \pm 12	0.37	51	37$^{+14}_{-11}$	0.84	0.16 (0.99)
incSRME-tphos-e1	332	308 \pm 17	0.49	68	49$^{+19}_{-15}$	0.84	0.16 (1.00)
incSRME-tphos-e2	298	269 \pm 15	0.50	69	46$^{+17}_{-14}$	0.90	0.10 (1.29)
incSRME-tphos-f1	479	457 \pm 22	0.56	78	62$^{+22}_{-20}$	0.77	0.23 (0.75)
incSRME-tphos-f2	277	272 \pm 13	0.33	46	42$^{+7}_{-12}$	0.60	0.37 (0.34)
incSRME-tphos-g1	620	593 \pm 28	0.69	96	74$^{+29}_{-22}$	0.77	0.21 (0.79)
incSRME-tphos-g2	418	408 \pm 20	0.46	64	57$^{+23}_{-15}$	0.65	0.32 (0.47)
incSRME-tphos-g3	288	285 \pm 16	0.35	48	47$^{+19}_{-12}$	0.55	0.38 (0.30)
incSRME-tphos-g4	141	136 \pm 10	0.25	35	31$^{+13}_{-8}$	0.64	0.35 (0.39)
Fig. 15 Illustration of the selections considered for the combined result for each scenario, dependent on Δm.

Scenario	$\Delta m(\tilde{\chi}^0_1, \tilde{\chi}^0_2)$ [GeV]
ATLAS	
wino/bino (+)	
on-shell WZ	[50, 100]
off-shell WZ	[100, 200]
compressed	[200, 300]
wino/bino (-)	
off-shell WZ	[100, 200]
compressed	[200, 300]
higgsino	
off-shell WZ	[100, 200]
compressed	[200, 300]

Fig. 16 Exclusion limits obtained for the WZ-mediated models in the (top left and right) wino/bino (+) scenario, (bottom left) the wino/bino (-) scenario, and (bottom right) the higgsino scenario. The expected 95% CL sensitivity (dashed black line) is shown with $\pm 1\sigma_{\text{exp}}$ (yellow band) from experimental systematic uncertainties and statistical uncertainties in the data yields, and the observed limit (red solid line) is shown with $\pm 1\sigma_{\text{theory}}$ (dotted red lines) from signal cross-section uncertainties. The statistical combination of the on-shell WZ, off-shell WZ, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (top left) onto the $m(\tilde{\chi}^\pm_1, \tilde{\chi}_1^0)$ vs $m(\tilde{\chi}_2^0)$ plane or (top right and bottom) onto the $m(\tilde{\chi}^0_2)$ vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb$^{-1}$ dataset [17], and (bottom right) the LEP lower $\tilde{\chi}_1^\pm$ mass limit [58]. The pale blue line in the top right panel represents the mass-splitting range that yields a dark-matter relic density equal to the observed relic density, $\Omega h^2 = 0.1186 \pm 0.0020$ [176], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and $\tan \beta$ is chosen such that the lightest Higgs boson’s mass is consistent with the observed value of the SM Higgs [45]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Fig. 17 Exclusion limits obtained for the \(Wh \)-mediated model in the wino/bino (+) scenario, calculated using the \(Wh \) SRs and projected onto the \(m(\tilde{\chi}^\pm_1, \tilde{\chi}^0_2) \) vs \(m(\tilde{\chi}^0_1) \) plane. The expected 95% CL sensitivity (dashed black line) is shown with \(\pm 1\sigma_{\text{exp}} \) (yellow band) from experimental systematic uncertainties and statistical uncertainties in the data yields, and the observed limit (red solid line) is shown with \(\pm 1\sigma_{\text{theory}} \) (dotted red lines) from signal cross-section uncertainties. The light grey area denotes the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb\(^{-1} \) dataset [17] updated to use the full Run 2 dataset. The \(\text{SR3} \ell^-\text{Low} \) region targets low-mass wino/bino (+) \(\tilde{\chi}^\pm_1 \tilde{\chi}^0_2 \) production, while the \(\text{SR3} \ell^-\text{ISR} \) region targets wino/bino (+) \(\tilde{\chi}^\pm_1 \tilde{\chi}^0_2 \) production in association with ISR and mass differences \(\Delta m \) near the \(Z \)-boson mass. The excesses in \(\text{SR3} \ell^-\text{Low} \) and \(\text{SR3} \ell^-\text{ISR} \) observed in the 36 fb\(^{-1} \) result correspond to local significances of 2.1\(\sigma \) and 3.0\(\sigma \), respectively.

Fig. 18 Comparison of the observed data and expected SM background yields in the CRs and VRs of the RJR selection. The SM prediction is taken from the background-only fit. The ‘FNP leptons’ category contains backgrounds from \(tt, tW, WW \) and \(Z + \text{jets} \) processes. The ‘Others’ category contains backgrounds from Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the significance of the difference between the observed and expected yields, calculated with the profile likelihood method from Ref. [169], adding a minus sign if the yield is below the prediction.
Table 20 Observed and expected yields after the background-only fit in the SRs for the RJR selection. The ‘FNP leptons’ category contains backgrounds from $t\bar{t}$, tW, W^+W^- and $Z +$ jets processes. The ‘Others’ category contains backgrounds from Higgs and rare top processes. Combined statistical and systematic uncertainties are presented.

Region	$SR3\ell$-Low	$SR3\ell$-ISR
Observed	53	25
Fitted SM	49 ± 14	17 ± 4
Diboson	47 ± 14	16 ± 4
FNP leptons	1.36 ± 0.29	0.83 ± 0.27
Triboson	0.40 ± 0.14	0.14 ± 0.06
Others	0.052 ± 0.029	0.41 ± 0.21

ity, in the centre-of-mass frame) are considered. Using the reconstructed leptons, jets, and missing transverse momentum as inputs, the algorithm assigns each particle to a parent sparticle. ISR jets are selected by minimising the invariant mass of the system formed by the candidate jets and the sparticle system, in the centre-of-mass frame. The algorithm then determines the smallest Lorentz-invariant configuration of the particles’ four-momenta guaranteeing a non-negative mass parameter for the invisible particles. Finally, object or frame momenta and derived variables can be considered in each of the different frames of each decay tree.

The search in the RJR selection regions follows a similar strategy for background estimation, systematic uncertainty treatment, and statistical interpretation to that outlined for the on-shell WZ, off-shell WZ, and Wh selections in Sect. 6. For the search in $SR3\ell$-Low ($SR3\ell$-ISR), the SM diboson background is taken from MC simulation samples and normalised to a dedicated control region $CR3\ell$-VV ($CR3\ell$-ISR-VV) and validated in a validation region $VR3\ell$-VV ($VR3\ell$-ISR-VV). The selection criteria for each of the regions follow the original search [15], except for an additional jet-veto ($n_{jets} = 0$) in $CR3\ell$-VV and $VR3\ell$-VV which guarantees the orthogonality between the low-mass and ISR regions. The FNP lepton background component, including $t\bar{t}$, tW, WW and $Z +$ jets SM background contributions, is estimated in a data-driven way using the matrix method [177]. The method derives the number of events with one or two FNP leptons by relating the yields for tighter (signal tagged) and looser (baseline tagged) lepton identification criteria. The result is a function of the real-lepton identification efficiencies and the FNP lepton misidentification probabilities. The remaining SM backgrounds, including multiboson and Higgs boson production, and top-pair production in association with a boson, are estimated from MC simulation in all analysis regions. Beyond the treatment of experimental and theoretical systematical uncertainties following the general strategy in Sect. 6.3, uncertainties are assigned to the matrix-method FNP lepton background estimation, accounting for limited numbers of events in the measurement region, potentially different compositions (heavy flavour, light flavour, or conversions) between SRs and CRs, and the uncertainty from the subtraction of prompt-lepton contributions using MC simulation samples.

Performing the background-only fit, diboson normalisation factors of 0.92 ± 0.07 ($CR3\ell$-VV) and 0.92 ± 0.05 ($CR3\ell$-ISR-VV) are determined. Observed and expected yields for all CRs and VRs are summarised in Fig. 18 and a summary of the considered systematic uncertainties is presented in Fig. 19, grouped as discussed in Sect. 6.3.

The observed data in $SR3\ell$-Low and $SR3\ell$-ISR are compared with the background expectation obtained by the background-only fit. The results are reported in Table 20 and post-fit distributions of key observables for the SRs are shown in Fig. 20. For the low-mass RJR selection, Fig. 20 shows the leading lepton’s transverse momentum, p_T^{L}, and the leading lepton’s transverse momentum sum, H_{PP}, of the three visible particles (the leptons) and the invisible particles (the LSPs and the neutralino), in the pair-produced parent sparticle–sparticle (PP) frame and assuming the standard decay tree. For the ISR RJR selection, Fig. 20 shows the vector sum of the transverse momenta of all objects, p_T^{CM}, and the fraction of the total momentum of the sparticle system carried by the invisible system, R_{ISR}, in the centre-of-mass (CM) frame and assuming the ISR decay tree. Good agreement with the background-only hypothesis is observed in both SRs. The deviations from the SM expectation as found in the 36 fb$^{-1}$ result are reduced and no longer significant when including the additional 103 fb$^{-1}$ of data from the 2017–2018 datasets.

Model-independent results for $SR3\ell$-Low and $SR3\ell$-ISR are shown in Table 21. The 95% CL upper limits on the generic BSM cross section are calculated by performing a discovery fit for each target SR and its associated CR, using pseudo-experiments. The table lists the upper limits on the observed (S_{obs}^{95}) and expected (S_{exp}^{95}) number of BSM events in the inclusive SRs, and the visible cross section (σ_{vis}^{95}) reflecting the product of the production cross section, the acceptance, and the selection efficiency for a BSM process; the p-value and significance (Z) for the background-only hypothesis are also presented.

11 Conclusion

Results of a search for chargino–neutralino pair production decaying via WZ, W^*Z^* or Wh into three-lepton final states are presented. A dataset of $\sqrt{s} = 13$ TeV proton–proton collisions corresponding to an integrated luminosity of 139 fb$^{-1}$, collected by the ATLAS experiment at the CERN LHC, is used. Events with three light-flavour charged leptons and missing transverse momentum are preselected,
and three selections are developed with a signal region strategy optimised for chargino–neutralino signals decaying via $WZ, W^+ Z^-$ and Wh, respectively. A fourth selection targeting the chargino–neutralino signals decaying via WZ using the Recursive Jigsaw Reconstruction technique is also studied, to follow up on the excesses observed in the previous ATLAS result using the same method and event selection. In all the selections the data are found to be consistent with predictions of the Standard Model. The results are interpreted for simplified models with wino or higgsino production. A statistical combination is performed to include the result of an ATLAS search probing the final state with two soft leptons using the same dataset.

Assuming a simplified model with wino production decaying to a bino LSP, exclusion limits at 95% confidence level are placed on the minimum $\tilde{\chi}_1^+ / \tilde{\chi}_2^- m$ mass, extending the reach of the previous searches [14–18,21]. Limits are set at 640 GeV for the WZ-mediated model signals in the limit of massless $\tilde{\chi}_1^0$,}

Table 21 Results of the discovery fit for the SRs of the RJR selection, calculated using pseudo-experiments.

SR	σ_{95}^{vis} [fb]	S_{95}^{obs}	S_{95}^{exp}	CL$_b$	$p(s = 0)$ (Z)
$\text{SR3}\ell-\text{Low}$	0.24	$33 \pm 10_{-8}^{+8}$	$30 \pm 10_{-8}^{+8}$	0.61	0.39 (0.28)
$\text{SR3}\ell-\text{ISR}$	0.14	19	12	0.89	0.09 (1.32)
improving by about 140 GeV; and at 300 GeV for mass-splittings between $\tilde{\chi}_1^±/\tilde{\chi}_2^0$ and $\tilde{\chi}_1^0$ close to m_Z, improving by about 100 GeV. In the case of a mass splitting of 5–90 GeV, $\tilde{\chi}_1^±/\tilde{\chi}_2^0$ masses up to 200–300 GeV for the WZ-mediated model are excluded. The limit extends down to a smallest mass splitting of 2 GeV for a $\tilde{\chi}_1^±$ mass of 100 GeV. The dependency on a model parameter – the sign of the $m_{\text{eig}}(\tilde{\chi}_2^0) \times m_{\text{eig}}(\tilde{\chi}_1^0)$ product – is also tested, and comparable limits are found for the two scenarios. For the $W\tilde{W}$-mediated model signals, the limit on the minimum $\tilde{\chi}_1^±/\tilde{\chi}_2^0$ mass is set at 190 GeV, for $\tilde{\chi}_1^0$ masses below 20 GeV.

Limits are also set for simplified models with a higgsino LSP triplet, for the first time including results from three-lepton final states, which increases sensitivity to scenarios with moderate mass splittings. Combined with the two-lepton analysis targeting compressed mass spectra, the exclusion limits at 95% confidence level are placed on the minimum mass splitting of 2 GeV for a $\tilde{\chi}_1^±$ mass of 100 GeV. The limits at 95% confidence level are placed on the minimum mass splitting of 2 GeV for a $\tilde{\chi}_1^±$ mass of 100 GeV. The dependency on a model parameter – the sign of the $m_{\text{eig}}(\tilde{\chi}_2^0) \times m_{\text{eig}}(\tilde{\chi}_1^0)$ product – is also tested, and comparable limits are found for the two scenarios. For the $W\tilde{W}$-mediated model signals, the limit on the minimum $\tilde{\chi}_1^±/\tilde{\chi}_2^0$ mass is set at 190 GeV, for $\tilde{\chi}_1^0$ masses below 20 GeV.

Acknowledgements We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; STSC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CIF, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; Minciencias, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNNRF and DROS, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST; Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; JINR; MES of Russia and NRC KI, Russian Federation; MESST, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; COST, ERC, ERDF, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir, Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSSN and GIF, Israel; Norwegian Financial Mechanism 2014-2021, Norway; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDCG (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [178].

Data Availability Statement This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All ATLAS scientific output is published in journals, and preliminary results are made available in Conference Notes. All are openly available, without restriction on use by external parties beyond copyright law and the standard conditions agreed by CERN. Data associated with journal publications are also made available: tables and data from plots (e.g. cross section values, likelihood profiles, selection efficiencies, cross section limits, ...) are stored in appropriate repositories such as HEPDATA (http://hepdata.cedar.ac.uk/). ATLAS also strives to make additional material related to the paper available that allows a reinterpretation of the data in the context of new theoretical models. For example, an extended encapsulation of the analysis is often provided for measurements in the framework of RIVET (http://rivet.hepforge.org/).]

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Funded by SCOAP3.

References

1. Y. Goland, E. Likhman, Extension of the algebra of Poincare group generators and violation of P invariance. JETP Lett. 13, 323 (1971). [PismaZh. Eksp. Teor. Fiz. 13, 452 (1971)]
2. D. Volkov, V. Akulov, Is the neutrino a goldstone particle? Phys. Lett. B 46, 109 (1973)
3. J. Weiss, B. Zumino, Supergauge transformations in four dimensions. Nucl. Phys. B 70, 39 (1974)
4. J. Weiss, B. Zumino, Supergauge invariant extension of quantum electrodynamics. Nucl. Phys. B 78, 1 (1974)
5. S. Ferrara, B. Zumino, Supergauge invariant Yang-Mills theories. Nucl. Phys. B 79, 413 (1974)
6. A. Salam, J. Strathdee, Super-symmetry and non–Abelian gauges. Phys. Lett. B 51, 353 (1974)
7. L. Girardello, M.T. Grisaru, Soft breaking of supersymmetry. Nucl. Phys. B 194, 65 (1982)
8. N. Sakai, Naturalness in supersymmetric GUTS. Z. Phys. C 11, 153 (1981)
9. S. Dimopoulos, S. Raby, F. Wilczek, Supersymmetry and the scale of unification. Phys. Rev. D 24, 1681 (1981)
10. L.E. Ibáñez, G.G. Ross, Low-energy predictions in supersymmetric grand unified theories. Phys. Lett. B 105, 439 (1981)
11. S. Dimopoulos, H. Georgi, Softly broken supersymmetry and SU(5). Nucl. Phys. B 193, 150 (1981)
12. G.R. Farrar, P. Fayet, Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry. Phys. Lett. B 76, 575 (1978)
13. ATLAS Collaboration, Luminosity determination in pp collisions at $\sqrt{s} = 13$ TeV using the ATLAS detector at the LHC. ATLASS-CONF-2019-021 (2019). https://cds.cern.ch/record/2677054
14. ATLAS Collaboration, Search for electroweak production of supersymmetric particles in final states with two or three leptons...
15. ATLAS Collaboration, Search for chargino-neutralino production using recursive jigsaw reconstruction in final states with two or three charged leptons in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector. Phys. Rev. D 98, 092012 (2018). arXiv:1806.02293 [hep-ex]

16. ATLAS Collaboration, Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector. Phys. Rev. D 101, 072001 (2020). arXiv:1912.08479 [hep-ex]

17. ATLAS Collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in $\sqrt{s} = 8$ TeV pp collisions with the ATLAS detector. JHEP 04, 169 (2014). arXiv:1402.7029 [hep-ex]

18. ATLAS Collaboration, Searches for electroweak production of supersymmetric particles with compressed mass spectra in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector. Phys. Rev. D 101, 052005 (2020). arXiv:1911.12606 [hep-ex]

19. ATLAS Collaboration, Search for chargino and neutralino production in final states with a Higgs boson and missing transverse momentum $\sqrt{s} = 13$ TeV with the ATLAS detector. Phys. Rev. D 100, 012006 (2019). arXiv:1812.09432 [hep-ex]

20. ATLAS Collaboration, Search for direct production of electroweakinos in final states with missing transverse momentum and a Higgs boson decaying into photons in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector. JHEP 10, 005 (2020). arXiv:2004.10894 [hep-ex]

21. CMS Collaboration, Combined search for electroweak production of charginos and neutralinos in proton-proton collisions at $\sqrt{s} = 13$ TeV. JHEP 03, 160 (2018). arXiv:1801.03957 [hep-ex]

22. CMS Collaboration, Search for new phenomena in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum in pp collisions at $\sqrt{s} = 13$ TeV. JHEP 03, 076 (2018). arXiv:1709.08908 [hep-ex]

23. CMS Collaboration, Search for supersymmetry with a compressed mass spectrum in the vector boson fusion topology with 1-lepton and 0-lepton final states in proton-proton collisions at $\sqrt{s} = 13$ TeV. JHEP 08, 150 (2019). arXiv:1905.13059 [hep-ex]

24. CMS Collaboration, Search for new physics in events with two soft oppositely charged leptons and missing transverse momentum in proton-proton collisions at $\sqrt{s} = 13$ TeV. Phys. Lett. B 782, 440 (2018). arXiv:1801.01846 [hep-ex]

25. CMS Collaboration, Search for electroweak production of charginos and neutralinos in multi-lepton final states in proton-proton collisions at $\sqrt{s} = 13$ TeV. JHEP 03, 166 (2018). arXiv:1709.05406 [hep-ex]

26. CMS Collaboration, Search for electroweak production of charginos and neutralinos in WH events in proton-proton collisions at $\sqrt{s} = 13$ TeV. JHEP 11, 029 (2017). arXiv:1706.09933 [hep-ex]

27. CMS Collaboration, Search for supersymmetry with Higgs boson to diphoton decays using the razor variables at $\sqrt{s} = 13$ TeV. Phys. Lett. B 779, 166 (2018). arXiv:1709.00384 [hep-ex]

28. ATLAS Collaboration, Evidence for the associated production of the Higgs boson and a top quark pair with the ATLAS detector. Phys. Rev. D 97, 072003 (2018). arXiv:1712.08891 [hep-ex]

29. P. Jackson, C. Ragan, M. Santoni, Particles in motion: Analyzing compressed SUSY scenarios with a new method of event reconstruction. Phys. Rev. D 95, 035031 (2017). arXiv:1607.08307 [hep-ph]

30. P. Jackson, C. Ragan, Recursive jigsaw reconstruction: HEP event analysis in the presence of kinematic and combinatoric ambiguities. Phys. Rev. D 96, 112007 (2017). arXiv:1705.10733 [hep-ph]

31. P. Fayet, Supersymmetry and weak, electromagnetic and strong interactions. Phys. Lett. B 64, 159 (1976)
138. ATLAS Collaboration, The Pythia 8 A3 tune description of ATLAS minimum bias and inelastic measurements incorporating the Donnachie-Landshoff diffractive model. ATL-PHYS-PUB-2016-017 (2016). https://cds.cern.ch/record/2206965

140. ATLAS Collaboration, Performance of electron and photon triggers in ATLAS during LHC Run 2. Eur. Phys. J. C 80, 47 (2020). arXiv:1909.00761 [hep-ex]

141. ATLAS Collaboration, Performance of the ATLAS muon triggers in Run 2. JINST, 15, P09015 (2020). arXiv:2004.13447 [hep-ex]

142. ATLAS Collaboration, Performance of electron and photon triggers in ATLAS during LHC Run-2 data taking. JHEP, 08, 080 (2020). arXiv:2005.09554 [hep-ex]

143. ATLAS Collaboration, Vertex Reconstruction Performance of the ATLAS Detector at $\sqrt{s} = 13$ TeV. ATL-PHYS-PUB-2015-026 (2015). https://cds.cern.ch/record/2037717

144. ATLAS Collaboration, Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton-proton collisions at the LHC. Eur. Phys. J. C 77, 332 (2017). arXiv:1611.01235 [hep-ex]

145. ATLAS Collaboration, Electron and photon performance measurements with the ATLAS detector using the 2015-2017 LHC proton-proton collision data. JINST 14, P12006 (2019). arXiv:1908.00005 [hep-ex]

146. ATLAS Collaboration, Muon reconstruction and identification efficiency in ATLAS using the full Run 2 pp collision data set at $\sqrt{s} = 13$ TeV (2020). arXiv:2012.00578 [hep-ex]

147. ATLAS Collaboration, Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1. Eur. Phys. J. C 77, 490 (2017). arXiv:1603.02934 [hep-ex]

148. M. Cacciari, G.P. Salam, G. Soyez, The anti-k_T jet clustering algorithm. JHEP 04, 063 (2008). arXiv:0802.1189 [hep-ph]

149. M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys. J. C 72, 1896 (2012). arXiv:1111.6097 [hep-ph]

150. ATLAS Collaboration, Performance of pile-up mitigation techniques for jets in pp collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector. Eur. Phys. J. C 76, 581 (2016). arXiv:1510.03823 [hep-ex]

151. ATLAS Collaboration, Jet energy scale measurements and their systematic uncertainties in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector. Phys. Rev. D 96, 072002 (2017). arXiv:1703.09665 [hep-ex]

152. ATLAS Collaboration, Jet energy scale and resolution measured in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector (2020). arXiv:2007.02605 [hep-ex]

153. ATLAS Collaboration, E_T^{miss} performance in the ATLAS detector using 2015-2016 LHC pp collisions. ATL-CONF-2018-023 (2018). https://cds.cern.ch/record/2625233

154. ATLAS Collaboration, Performance of missing transverse momentum reconstruction with the ATLAS detector using proton-proton collisions at $\sqrt{s} = 13$ TeV. Eur. Phys. J. C 78, 903 (2018). arXiv:1802.08168 [hep-ex]

155. ATLAS Collaboration, Object-based missing transverse momentum significance in the ATLAS Detector. ATL-PHYS-PUB-2018-038 (2018). https://cds.cern.ch/record/2630948

156. ATLAS Collaboration, Selection of jets produced in 13 TeV proton-proton collisions with the ATLAS detector. ATL-CONF-2015-029 (2015). https://cds.cern.ch/record/2037702

157. ATLAS Collaboration, Tagging and suppression of pileup jets with the ATLAS detector. ATL-CONF-2014-018 (2014). https://cds.cern.ch/record/1700870

158. ATLAS Collaboration, ATLAS b-jet identification performance and efficiency measurement with $t\bar{t}$ events in pp collisions at $\sqrt{s} = 13$ TeV. Eur. Phys. J. C 79, 970 (2019). arXiv:1907.05120 [hep-ex]

159. ATLAS Collaboration, Optimisation and performance studies of the ATLAS b-tagging algorithms for the 2017-18 LHC run, ATL-PHYS-PUB-2017-013 (2017). https://cds.cern.ch/record/2273281

160. ATLAS Collaboration, Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in $\sqrt{s} = 13$ TeV pp collisions using the ATLAS detector. Eur. Phys. J. C 80, 123 (2020). arXiv:1908.08215 [hep-ex]

161. ATLAS Collaboration, Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two b-jets in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector. Eur. Phys. J. C 80, 691 (2020). arXiv:1909.09226 [hep-ex]

162. ATLAS Collaboration, Measurement of the WW cross section in $\sqrt{s} = 7$ TeV pp collisions with the ATLAS detector and limits on anomalous gauge couplings. Phys. Lett. B 712, 289 (2012). arXiv:1203.6232 [hep-ex]

163. ATLAS Collaboration, Prospects for Higgs boson searches using the $H \rightarrow W^+ W^-$ decay mode with the ATLAS detector at 10 TeV. ATL-PHYS-PUB-2010-005 (2010). https://cds.cern.ch/record/1270568

164. ATLAS Collaboration, Determination of jet calibration and energy resolution in proton-proton collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector. Eur. Phys. J. C 80, 1104 (2020). arXiv:1910.04482 [hep-ex]

165. M. Bahr et al., Herwig++ physics and manual. Eur. Phys. J. C 58, 639 (2008). arXiv:0803.0883 [hep-ph]

166. J. Bellm et al., Herwig 7.0/Herwig++ 3.0 release note. Eur. Phys. J. C 76, 196 (2016). arXiv:1512.01178 [hep-ph]

167. G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C 71, 1554 (2011). arXiv:1007.1727 [physics.data-an]. Erratum: Eur. Phys. J. C 73, 2501 (2013)

168. M. Baak et al., HistFitter software framework for statistical data analysis. Eur. Phys. J. C 75, 153 (2015). arXiv:1410.1280 [hep-ex]

169. R.D. Cousins, J.T. Linnemann, J. Tucker, Evaluation of three methods for calculating statistical significance when incorporating a systematic uncertainty into a test of the background-only hypothesis for a Poisson process. Nucl. Instrum. Methods A 595, 480 (2008). arXiv:physics/0702156

170. A.L. Read, Presentation of search results: the CLs technique. J. Phys. G 28, 2693 (2002)

171. L. Heinrich, M. Feickert, G. Stark, K. Cranmer, pyfh: pure-Python implementation of HistFactory Statistical models. J. Open Source Softw. 6, 2823 (2021)

172. L. Heinrich, M. Feickert, G. Stark, scikit-hep/pyhf: v0.5.2 (2020). https://doi.org/10.5281/zenodo.4018115

173. ATLAS Collaboration, Reproducing searches for new physics with the ATLAS experiment through publication of full statistical likelihoods, ATL-PHYS-PUB-2019-029 (2019). https://cds.cern.ch/record/2684863

174. C.G. Lester, D.J. Summers, Measuring masses of semi-invisibly decaying particles pair produced at hadron colliders. Phys. Lett. B 463, 99 (1999). arXiv:hep-ph/9906349

175. A. Barr, C. Lester, P. Stephens, A variable for measuring masses at hadron colliders when missing energy is expected; m_T^2: the truth behind the glamour. J. Phys. G 29, 2343 (2003). arXiv:hep-ph/0304226

176. N. Aghanim et al., Planck 2015 results. XI. CMB power spectrum. J. Cosmol. Astropart. Phys. 03, 018 (2016). arXiv:1502.02038 [astro-ph.CO]

177. ATLAS Collaboration, Measurement of the top quark-pair production cross section with ATLAS in pp collisions at $\sqrt{s} = 7$ TeV. Eur. Phys. J. C 71, 1577 (2011). arXiv:1012.1792 [hep-ex]

178. ATLAS Collaboration, ATLAS Computing Acknowledgements, ATL-SOFT-PUB-2021-003. https://cds.cern.ch/record/2776662
Granada, Spain; (g) Dep Física and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal; (h) Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic

Czech Technical University in Prague, Prague, Czech Republic

Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA

(a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile; (b) Universidad de la Serena, La Serena, Chile; (c) Department of Physics, Universidad Andres Bello, Santiago, Chile; (d) Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile; (e) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

Universidade Federal de São João del Rei (UFSJ), São João del Rei, Brazil

Department of Physics, University of Washington, Seattle, WA, USA

Department of Physics and Astronomy, University of Sheffield, Sheffield, UK

Department of Physics, Shinshu University, Nagano, Japan

Department Physik, Universität Siegen, Siegen, Germany

Department of Physics, Simon Fraser University, Burnaby, BC, Canada

SLAC National Accelerator Laboratory, Stanford, CA, USA

Department of Physics, Royal Institute of Technology, Stockholm, Sweden

Departments of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA

Department of Physics and Astronomy, University of Sussex, Brighton, UK

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan

(a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

Department of Physics, Technion, Israel Institute of Technology, Haifa, Israel

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloníki, Greece

International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Tomsk State University, Tomsk, Russia

Department of Physics, University of Toronto, Toronto, ON, Canada

(a) TRIUMF, Vancouver, BC, Canada; (b) Department of Physics and Astronomy, York University, Toronto, ON, Canada

Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan

Department of Physics and Astronomy, Tufts University, Medford, MA, USA

Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

Department of Physics, University of Illinois, Urbana, IL, USA

Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia-CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver, BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany

Department of Physics, University of Warwick, Coventry, UK

Waseda University, Tokyo, Japan

Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison, WI, USA

Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven, CT, USA

a Also at Borough of Manhattan Community College, City University of New York, New York, NY, USA
b Also at Bruno Kessler Foundation, Trento, Italy
c Also at Center for High Energy Physics, Peking University, Beijing, China
d Also at Centro Studi e Ricerche Enrico Fermi, Rome, Italy
e Also at CERN, Geneva, Switzerland
f Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
g Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Geneva, Switzerland
h Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain
i Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece
j Also at Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
k Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY, USA
l Also at Department of Physics, Ben Gurion University of the Negev, Beer Sheva, Israel
m Also at Department of Physics, California State University, East Bay, USA
n Also at Department of Physics, California State University, Fresno, USA
o Also at Department of Physics, California State University, Sacramento, USA
p Also at Department of Physics, King’s College London, London, UK
q Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
r Also at Department of Physics, University of Fribourg, Fribourg, Switzerland
s Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
t Also at Faculty of Physics, Sofia University, ‘St. Kliment Ohridski’, Sofia, Bulgaria
u Also at Giresun University, Faculty of Engineering, Giresun, Turkey
v Also at Graduate School of Science, Osaka University, Osaka, Japan
w Also at Hellenic Open University, Patras, Greece
x Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
y Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
z Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
aa Also at Institute of Particle Physics (IPP), Victoria, Canada
ab Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
ac Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia
ad Also at Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid, Spain
ae Also at Department of Physics, Istanbul University, Istanbul, Turkey
af Also at Joint Institute for Nuclear Research, Dubna, Russia
ag Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
ah Also at National Research Nuclear University MEPhI, Moscow, Russia
ai Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
aj Also at The City College of New York, New York, NY, USA
ak Also at TRIUMF, Vancouver, BC, Canada
al Also at Universita di Napoli Parthenope, Naples, Italy
am Also at University of Chinese Academy of Sciences (UCAS), Beijing, China
an Also at Yeditepe University, Physics Department, Istanbul, Turkey
a Deceased