Comparative Dosimetric Evaluation of Intensity Modulated Radiation Therapy versus Conventional Radiotherapy in Postoperative Radiotherapy of Breast Cancer

Pooja Khullar*, Niloy Ranjan Datta, G Venkadamanickam, Charu Garg and Sujeet Sinha
Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India

Abstract

Aim: To dosimetrically compare and evaluate Intensity Modulated Radiation Therapy (IMRT) versus conventional five field radiotherapy (5FCRT) in postmastectomy radiotherapy (PMRT).

Material and Methods: This study included 25 consecutive patients for PMRT. Target volumes (chest wall, axilla, supraclavicular regions [SCF]) and normal structures (lungs, heart, spinal cord, opposite breast) were delineated on the planning CT scans. For each patient, one IMRT and one 5FCRT plan were generated for 50 Gy and corresponding dose volume histograms were compared. Differences in means of each set of variables were tested for significance.

Results: CTV and PTV of chest wall, IMC, axilla level I, II, III and SCF were evaluated by variables $D_{95\%}$, $V_{98\%}$, $D_{2\%}$, $V_{10\%}$, homogeneity index (HI). Coverage of the PTV given chest wall was significantly better with IMRT than conventional. The HI was more with conventional 0.6+0.2, IMRT 0.1+0.1, p<0.001. PTY of axilla and SCF, $D_{98\%}$ were better with IMRT than conventional. In IMRT HI was 0.1+0.1 while 0.4+0.2 conventional p<0.02. In lung V_{20} of the ipsilateral lung with IMRT was significantly lower than that of the conventional. In heart $D_{33\%}$ by IMRT was 17.3 + 10.0 Gy and 33.2+11.3 Gy in conventional (p<0.001). Mean dose received by opposite breast was 5.8 + 1.8 Gy by IMRT and 2.0+1.0 Gy by conventional p<0.001.

Conclusion: IMRT technique is superior to the conventional technique due to its better chest wall, axilla and SCF coverage. IMRT significantly reduced heart, lung and spinal cord doses as compared with conventional technique.

Keywords: Comparative; Dosimetric; IMRT; Conventional; Radiotherapy; Breast cancer

Introduction

Breast cancer is the commonest cancer among females in Delhi and Mumbai and other urban based registries [1]. Various treatment options available for carcinoma breast are surgery, radiotherapy and systemic chemotherapy. Radiation therapy offers an improvement in overall survival and post mastectomy radiation therapy has been reported to reduce the 15 year isolated loco-regional recurrence rate from 29% to 8% in node positive subjects with a 5% reduction in mortality rate [2]. Patients treated with conservative surgery and irradiation resulted in pneumonitis in 1% of the treated patient with local radiation therapy only while it increased to 4% in local-regional irradiation [3] and cardiac toxicity like myocardial infarction to 2% of women with left sided radiation compared with 1% of women with right sided radiation therapy [4]. Unique technical problems are posed in conventional methods of irradiation to the different regional lymph node drainage areas, supraclavicular nodes, internal mammary nodes and axillary nodes, as they are present at different sites at varying depth. Supraclavicular nodes usually lie at 0.5 to 1 cm depth, infraclavicular axillary apical nodes at 1 cm depth, internal mammary nodes at 0.7 to 5.3 cm depth and central axillary nodes at depth of 6-7 cm [5]. Various conventional methods, like 5 field method, extended tangents are used to encompass these regions and also to minimize the inadvertent doses to the adjacent normal structures lungs, heart, spinal cord and contralateral breast. Intensity Modulated Radiation Therapy (IMRT) is expected to minimize dose to normal tissue while delivering optimum dose to the tumor bed and regional lymphatics. IMRT treatment allows the delivery of dose distributions with concave isodose profiles so that radiosensitive normal tissues close to, or even within the concavity of tumor may be spared from radiation injury. With better target coverage IMRT possibly would yield an improvement in loco-regional disease control [6]. There is a paucity of studies comparing standard conventional 5 field technique with IMRT for postoperative radiation therapy in breast cancer. Therefore, this study attempts to compare the different doses to clinical target volume and organs at risk in both these methods.

Material and Methods

Twenty five consecutive patients referred to the radiation department for postoperative radiotherapy following mastectomy and adjuvant chemotherapy and who opted for IMRT treatment were included in this study. Patients with unilateral stage II or III breast cancer were eligible for this study. Ineligibility criteria included bilateral breast cancer and previous history of radiation. This study was approved by the Institutional Review Board and appropriate informed consent was obtained from patients before treatment.
All cases were treated with IMRT with 6MV photon, however, for the purpose of dosimetric comparison standard 5 field radiation treatment plan was generated with 6 MV photon energy to supraclavicular, axillary field, internal mammary (first 3 intercostal spaces) and chest wall for each of these 25 cases. The target volumes and organs at risk were kept constant as for the IMRT plan.

CT simulation and Target delineation: Patient was taken on an immobilization board with both arms above head. Universal bolus placed on the operated site of the patient. Orif cast was made. CT compatible linear markers placed on the midaxillary line, in the inframammary fold of the contralateral breast, midline. 5 mm thick sections taken of the area of interest plus 5 cm margin cranio-caudally. The DICOM (Digital Imaging and Communications in Medicine) images from the CT scan is transferred to the contouring station (Nucletron Oncentra Anatomy modeling or Siemens Coherence Oncologist work station). For each patient the following target and organ at risk were contoured, CTV for chest wall (CTV CW) is defined medially at the lateral edge of the sternum, inferiorly at the inframammary fold and superiorly at the inferior edge of the medial head of the clavicle. The CT compatible markers placed at the mid axillary line, mid line and in the contralateral inframammary fold at the time of CT scan also aid in contouring. CTV for internal mammary chain (CTV CW) start from the superior aspect of the medial 1st rib and caudally up to visible internal mammary vessel (approximately 1 to 3 intercostal spaces). CTV (chest wall + internal mammary node) is extended uniformly by 5 mm to form PTV chest wall (PTV CW) to account for the effect of set up error and intrafracton motion because of respiration as recommended by the ICRU 50:25. CTV for Supraclavicular fossa (CTV SCF), cranially field start below the cricoid cartilage and caudally end at junction of brachioceph.-axillary or caudal edge clavicle head. Inferior border abut the superior border of PTV of chest wall. The medial border follows the medial border of sternocleidomastoid muscle to the thyrocricoid. The lateral border is at the level of the coracoid process, just medial to the humeral head. For axillary lymph nodes, the field is extended laterally to cover at two thirds of humeral head. The thyroid and trachea are excluded mediad. Axilla Level I (CTV AXL1), cranially start from axillary vessels cross the lateral edge of the pectoral minor muscle. Caudally, it extends up to the insertion of the pectoral major muscle into ribs. Laterally, it extends from the medial border of the lattismus dorsi muscle to reach medially up to the lateral border of the pectoral minor muscle. Axilla Level II (CTV AXL2), cranially it starts from axillary vessels crossing the medial edge of pectoral minor muscle while caudally, up to axillary vessels crossing the lateral edge of pectoral minor muscle. Laterally it extends from the lateral border of the pectoral minor muscle to reach the medially the medial border of the pectoral minor muscle. Axilla Level III (CTV AXL3), cranially the region starts from insertion of the pectoral minor muscle to the cricoids and then caudally up to axillary vessels crossing the medial edge of pectoral minor muscle. Laterally, it starts from medial border of pectoral minor muscle and medially up to the thoracic inlet. CTV for supraclavicular fossa and axilla extended uniformly by 5 mm to form PTV for supraclavicular fossa and axilla (PTV AXL & SCF) The organs at risk were contoured and considered for evaluation include lung, heart, contralateral breast, spinal cord.

IMRT Planning: Dose prescription to the clinical target volume and the planning target volume was 50 Gy in 25 weeks in 25 fraction at 2 Gy per fraction. The planning was done by the inverse planning (Plato Sunrise, Nucletron) system by the medical physicists. In IMRT plans, optimization of the number of beams and gantry angles was undertaken. The beam energy was preselected by the planner and remained fixed during the optimization process (Dmin and Dmax) and are set for the entire volumes. The inverse planning for IMRT optimized to give an ideal fluence profile which was subsequently translated into MLC sequences for delivering the dose. The inverse planning, calculated the leaves sequencing for the step and shoot IMRT delivery. The optimal plan respecting the doses prescribed was finalized.

Dosimetry Evaluation: The various parameters that were used to evaluate the target volumes are, D_{50\%}-dose to which 98% of the PTV is irradiated, D_{2\%}, dose to which 50% of the PTV is irradiated, D_{max}, maximum dose to which at least 2% of the PTV irradiated, \(V_{50\%}\) -Volume of PTV receiving less than 95% of the prescription dose, \(V_{105\%}\) -Volume of PTV receiving more than 105% of the prescription dose, \(V_{107\%}\) -Volume of PTV receiving more than 107% of the prescription dose, D_{mean}. The determination of average, the median and modal doses is based on the calculation of the dose at each one of large number of discrete point, Homogeneity index (HI) HI=D_{98\%}/D_{50\%}

An HI of zero indicates that the absorbed-dose distribution is almost homogeneous. D_{50\%} is suggested as the normalization value because reporting of D_{50\%} is strongly recommended in Level 2 reporting [7] Evaluation parameters for organs at risks were,\(V_{20 Gy}\) Volume of organ receiving 20 Gy of dose, \(V_{2 Gy}\) Volume of organ receiving 5 Gy of dose, D_{33%}-Dose to which 33% of organ is irradiated, D_{66\%}-Dose to which 66% of organ is irradiated, D_{1000 Gy}-Dose to which 100% of organ is irradiated. IMC can be treated by photon (as in our study), or a combination of electron & photon. The use of electrons for IMC minimizes the dose to deeper structures, particularly heart. However, it is resource-intensive,due to more complicated treatment planning and delivery. Junctioning between the photon and electron match-line contributes to the increased dose in homogeneity. In this study, we compared the IMC treated by photons in both IMRT and conventional technique.

Conventional Planning: In the conventional method, the supraclavicular axillary field the medial border drawn 1 cm over the midline and extended superiorly to the thyrocricoid groove, the lateral border extended laterally to cover at least two third of the humeral head. The lower border at the level of the second costal cartilage. Posterior Axillary boost, the superior border follows the spine of scapula, superiolateral border bisect the humeral head, the inferior border match the lower border of the supraclavicular field anteriorly with not more than 1 cm overlap. Internal Mammary Nodes, medial border drawn at the midline, superior border abuts the inferior border of the supraclavicular field, lateral border 5-6 cm lateral to the mid line, inferior border at xiphoid.In tangential fields median field abutting the lateral border of the internal mammary field. The lateral field aligned with the mid axillary line. The superior border abuts the lower border of the supraclavicular field. The inferior border 2-3 cm below the inframammary fold. Patient, disease and treatment variables were summarized as means and standard deviations or as proportions or percentages.

Statistical analysis was performed to compare doses of conventional therapy with doses given in IMRT by using 't' test for comparison of means between all the parameter of the 2 groups. All statistical computations were carried out using SPSS Version 16.0 for Windows (Chicago, USA).
Results

Dosimetrically compare and evaluate Intensity Modulated Radiation Therapy versus conventional radiotherapy techniques to the various clinical target volumes and planning target volumes in supraclavicular and axillary lymph node regions, Internal mammary lymph node and chest wall regions, doses to various organs at risk are Ipsilateral lung, Heart, Contralateral lung, Spinal cord and Contralateral breast.

The patient characteristics were showed in Table 1. The mean age of patients was 52.20 (range, 28-69) years. A total of 4 to 7 beams were used to deliver the IMRT plans. In the most of the patients, 3 to 4 beams were placed from the ipsilateral side and 1 to 3 beams were delivered from the contralateral side. Comparison of dose and volume parameters for target volumes and OARs by IMRT Plan and conventional plan is shown in Tables 2 and 3. The coverage of the CTV given chest wall was significantly better with IMRT than conventional techniques. The homogeneity index was more with conventional technique (Mean+SD: conventional technique 0.6+0.2, IMRT 0.1+0.0, p<0.001), IMC in conventional treatment plans a cold spot was seen at the junction of tangential and internal mammary fields because of the two separate fields used to cover both the target regions. IMRT plans showed a more uniform dose coverage with no cold spot. There was an improvement in the coverage of PTV chest wall and PTV axilla and supraclavicular nodes. Organs at risk, V 20 of the ipsilateral lung with IMRT 49.2+3.5% was significantly lower than that of the conventional technique 59.8% + 7.4% (p<0.001). (Table 3). Dose received to 33% of the volume of the heart (D 33%) by IMRT was 17.3+10.0 Gy and 33.2+11.3Gy in conventional technique (p<0.001). Mean dose received by opposite breast was 5.8+1.8 Gy by IMRT and 2.0+1.0Gy by conventional technique p<0.001 (Table 3). In the conventional plans the Dmax of the spinal cord ranged from 46.9 Gy to as high as 64.3 Gy. (Table 3).

Parameter	IMRT	Conventional						
	Range	Mean+SD	Range	Mean+SD	p value	Favors		
CTV IMC D95%	44.5 Gy	53.3 Gy	47.7 + 1.8 Gy	37.1 Gy	51.7 Gy	47.7 + 3.5 Gy	NS	Equivocal
CTV IMC D2%	51.0 Gy	64.8 Gy	53.4 + 2.8 Gy	52.0 Gy	67.9 Gy	56.5 + 4.5 Gy	p<0.01	IMRT
CTV IMC D50%	47.2 Gy	53.4 Gy	50.7 + 1.4 Gy	50.0 Gy	57.2 Gy	52.4 + 1.5 Gy	p<0.001	IMRT
CTV IMC HI	0.1	0.29	0.1 + 0.1	0	0.3	0.1 + 0.1	p<0.02	IMRT
CTV IMC Dmean	48.4 Gy	54.7 Gy	50.9 + 1.5 Gy	50.6 Gy	55.1 Gy	52.8 + 1.1 Gy	p<0.001	IMRT
CTV IMC V 0.75%	0.00%	33.00%	4.0 + 7.7%	0.00%	8.40%	2.1 + 2.8 %	NS	Equivocal
CTV IMC V+10%	0.00%	59.80%	19.6 + 16.1%	8.00%	95.90%	64.2 + 23.0 %	p<0.001	IMRT
CTV IMC V+15%	0.00%	43.20%	8.1 + 11.3%	0.00%	82.50%	39.5 + 21.7 %	p<0.001	IMRT
CTV AXL1 D95%	45.2 Gy	50.4 Gy	49.0 + 1.0 Gy	36.0 Gy	49.3 Gy	44.2 + 2.9 Gy	p<0.001	IMRT
CTV AXL1 D2%	49.3 Gy	57.2 Gy	55.0 + 1.3 Gy	51.8 Gy	88.4 Gy	71.7 + 10.6 Gy	p<0.001	IMRT
CTV AXL1 D50%	47.3 Gy	53.4 Gy	51.6 + 1.3 Gy	46.3 Gy	56.0 Gy	51.0 + 2.0 Gy	NS	Equivocal
CTV AXL1 HI	0	0.2	0.1 + 0.1	0	0.8	0.5 + 0.2	p<0.001	IMRT
CTV AXL1 Dmean	48.3 Gy	53.8 Gy	52.7 + 0.7 Gy	47.5 Gy	55.8 Gy	52.1 + 2.0 Gy	NS	Equivocal
CTV AXL1 V+5%	0.00%	15.70%	0.1 + 0.1%	0.00%	47.80%	16.2 + 13.3%	p<0.001	IMRT

Table 1: Patient disease and characteristics.
Table 2: Comparison of dose and volume parameters of CTV IMC, CTV AXILLA1, CTV AXILLA2, CTV AXILLA3, CTV CW and CTV SCF by IMRT and conventional plan.

Parameter	CTV AXL1 V_{>105%}	CTV AXL1 V_{>107%}	CTV AXL2 D_{ave}						
Dose (Gy)	4.90%	4.90%	4.90%	4.90%	4.90%	4.90%	4.90%	4.90%	4.90%
V_{<95%}	56.20%	56.20%	56.20%	56.20%	56.20%	56.20%	56.20%	56.20%	56.20%
V_{>105%}	39.3 + 9.9%	39.3 + 9.9%	39.3 + 9.9%	39.3 + 9.9%	39.3 + 9.9%	39.3 + 9.9%	39.3 + 9.9%	39.3 + 9.9%	39.3 + 9.9%
V_{>107%}	4.90%	4.90%	4.90%	4.90%	4.90%	4.90%	4.90%	4.90%	4.90%
Dose (Gy)	34.5 + 20.5%	34.5 + 20.5%	34.5 + 20.5%	34.5 + 20.5%	34.5 + 20.5%	34.5 + 20.5%	34.5 + 20.5%	34.5 + 20.5%	34.5 + 20.5%

Table: J Nucl Med Radiat Ther, Cancer Radiation Therapy, ISSN:2155-9619. JNMRT, an open access journal.
Table 3: Comparison of dose and volume parameters of ipsilateral and contralateral lung, heart, spinal cord and opposite breast by IMRT and conventional plan.

Parameter	IMRT	Conventional	p value	Favors				
Ipsilateral lung V₂₀	Mean±SD	Mean±SD	p value	Favors				
Minimum	Maximum	Minimum						
41.00%	56.70%	49.2 ± 3.5%	<0.001	IMRT				
Ipsilateral lung V₅	70.50%	97.0 ± 6.1%	90.10%	100.00%	NS	Equivocal		
Ipsilateral lung D_{33%}	25.7 Gy	39.9 Gy	25.5 Gy	48.7 Gy	59.8 ± 5.1 Gy	p<0.001	IMRT	
Ipsilateral lung D_{66%}	7.2 Gy	23.8 Gy	14.5 ± 3.4 Gy	10.1 Gy	30.3 Gy	16.5 ± 5.3 Gy	p<0.001	IMRT
Ipsilateral lung V₅	0.1 Gy	3.8 ± 2.5 Gy	0.2 Gy	99.8 Gy	7.2 ± 19.3 Gy	NS	Equivocal	
Ipsilateral lung D_{33%}	0.0%	1.20%	0.2 ± 0.3%	0.0%	9.50%	2.7 ± 2.3%	p<0.001	IMRT
Ipsilateral lung V₂₀	2.10%	12.2 ± 7.1%	0.70%	9.7 ± 5.3%	NS	Equivocal		
Ipsilateral lung D_{33%}	1.7 Gy	3.8 ± 2.3 Gy	1.9 Gy	5.3 Gy	2.8 ± 0.8 Gy	p=0.043	Conventional	
Ipsilateral lung D_{66%}	0.0 Gy	1.9 ± 0.8 Gy	1.3 Gy	3.2 Gy	1.9 ± 0.45 Gy	NS	Equivocal	
Heart D_{95%}	4.2 Gy	17.3 ± 10.1 Gy	4.7 Gy	44.0 Gy	33.2 ± 11.3 Gy	p<0.001	IMRT	
Heart D_{100%}	0.0 Gy	9.4 ± 9.3 Gy	1.6 Gy	35.9 Gy	13.1 ± 12.6 Gy	NS	Equivocal	
Heart D_{120%}	0.0 Gy	6.7 Gy	0.2 Gy	5.6 Gy	2.1 ± 1.5 Gy	NS	Equivocal	
S cord D_{max}	3.0 Gy	39.5 ± 7.1 Gy	46.9 Gy	64.3 Gy	55.7 ± 5.2 Gy	p<0.001	IMRT	
Opposite breast D_{mean}	1.6 Gy	5.8 ± 1.8 Gy	0.6 Gy	5.4 Gy	2.0 ± 1.1 Gy	p<0.001	conventional	

Discussion

In the present study, target volume was contoured as CTV CW, CTV IMC, PTV CW, CTV axilla 1, CTV axilla 2, CTV axilla 3, CTV SCF and PTV axilla & SCF. According to the ICRU–83, the parameters evaluated for the target volume were D_{98%}, D_{2%}, D_{50%} and HI while additional dose volume parameters in order to draw a comparison from the literature were V_{95%}, V_{105%}, V_{107%} and V_{110%} [7].

Comparison of dose and volume parameters for target volume and OAR with IMRT plan and standard plan of different studies is shown in Table 4. In our study target volume coverage of the D₉₅ was better in IMRT as compared to conventional except in CTV IMC. Dogan et al. showed the D₉₅ for PTV breast was 50 Gy in 3DCRT and IMRT. PTVLtSCN D₉₅ was 43.7+2.8 and 50.7+0.5 in 3DCRT and IMRT which was significantly different. PTVLtAXN D₉₅ was 25.9+11.4 and 50.3+1.0 in 3DCRT and IMRT which was significantly different [8]. Ahmed et al. 95% volume received a median dose of 48.83Gy in IMRT compared to 45.59cGy in standard plan (p=0. 00419) [9].

![Table 3: Comparison of dose and volume parameters of ipsilateral and contralateral lung, heart, spinal cord and opposite breast by IMRT and conventional plan.](image-url)

Structure	Parameters	IMRT	Standard plan	p value	
Beckham et al. [10]	PTV	H1, CI	0.95, CI 0.91	0.74, CI 0.48	<0.001, <0.001
Chen-Shou Chui et al. [11]	PTV (%)	V100, D5	93.34, 107.6	88.23, 109.5	0.003, 0.15
Dogan et al. [8]	PTVLtBreast	D66, D2, H1	50 ± 0.0, 55.4 ± 1.6, 10.8 ± 3.2	50 ± 0.0, 56.3 ± 1.8, 12.7 ± 3.6	49.8 ± 4.2, 46.6 ± 1.3, 54.2 ± 4.2,10.4 ± 3.9
PTVLlIMN	D66, D90, D2, H1	50.3 ± 0.8, 49.5 ± 0.8, 54.2 ± 0.8, 7.9 ± 2.1	49.8 ± 4.2, 46.6 ± 1.3, 54.2 ± 4.2, 10.4 ± 3.9		
PTVLiscn	D66, D90, D2, H1	50.3 ± 0.8, 49.5 ± 0.8, 54.2 ± 0.8, 7.9 ± 2.1	49.8 ± 4.2, 46.6 ± 1.3, 54.2 ± 4.2, 10.4 ± 3.9		

*significant
In the present study, homogeneity index was more in a conventional plan, in standard plan (p<0.0002) [16]. Barnett et al. showed mean decrease of 2.3% in the volumes receiving >107% in IMRT [16]. In present study, cold spot V95 was more in conventional plan than IMRT, except in CTV IMC. Similarly, Barnett et al. reported a mean decreased 3.9% in the IMC volumes receiving <95%, in IMRT [13].

In the present study, D2% was more in conventional plan. Hong et al. reported that the isodose level encompassing 5% of the PTV (D5), was reduced from 113% in the standard plan to 108% in the IMRT plan and the maximum dose decreased from 121% to 113% [17]. In the present study, homogeneity index was more in a conventional plan, and IMRT plan was more homogenous. Beckham et al. showed that the IMRT plan significantly improved the Homogeneity index (0.95 vs 1.3% for CRT to 10.8+3.2 for 6-field IMRT. The average PTVLtSCN HI volume caused higher dose to lung as compared to other studies, in 3D-SCF and axillary lymph nodes, so that irradiation of large target volume caused higher dose to lung as compared to other studies, in which only breast or chest wall was treated. IMC and other regional lymph were treated in only a few studies.

In the present study, the mean dose received by opposite breast was 5.83Gy+1.87 by IMRT and 2.04 Gy+1.05 by conventional technique (p<0.001). Beckham et al. showed mean dose (Gy) at IMRT was 4.3 Gy and 2.9 in conventional (p<0.001) [10]. For the contralateral breast Chen-Shou Chui et al. showed the averaged mean dose and D2% were 2.5% and 1.4% (p<0.0006) and 5.5% and 4.6% (p<0.007), for the three-field wedge and three-field IMRT techniques, respectively [11]. In the present study conventional plans the Dmax of the spinal cord ranged from 46.9 Gy to as high as 64.3 Gy. A closer look at the plans showed that such high dose was due to the junction of the supraclavicular field with the IMC field. No such hot spot were evident in the IMRT planning the Dmax of spinal cord ranging from 3 Gy to 49.4 Gy. Krueger et al. reported dose to the spinal cord, in IMRT was 6.7+3.3 Gy and 7+1.3 in conventional plan [12].

With regard to the target volume, the standard tangents technique delivered the hot spots to the overlapping area, which was consistent with report by van der Laan et al. [18]. The biggest disadvantage of this technique was that it failed to irradiate the IMN adequately for some patients, which was similar to report by Severin et al. [19]. With regard to the normal tissue, the heart is an important normal organ at risk for breast cancer patients, as previous reports have shown an increase in cardiac mortality due to irradiation techniques [20]. Therefore, limiting the dose to the heart for these patients becomes critical. Since the suggestion of a threshold dose of 30 Gy for cardiac effects [21]. Results of this study showed that the heart dose was the lower with the IMRT technique. Another critical structure is ipsilateral lung. The incidence of symptomatic pneumonitis after RT with standard tangents technique is generally less than 5% [22]. Techniques covering IMN irradiated at least 10% more lung volume than the techniques not covering IMN [23]. This could result in higher pneumonitis rates for some patients which radiated IMN [24]. IMRT had the lower mean lung dose compared with the conventional technique while giving adequate coverage to IMN. The ipsilateral lung V20 with the IMRT was significantly lower than that conventional. IMN in conventional treatment plans a cold spot was seen at the junction of tangential and internal mammary fields because of the two separate fields used to cover both the target regions. On the other hand the IMRT plans showed a more uniform dose coverage with no cold spot. In our study, the IMRT not only reduced the mean lung dose, but also decreased the V50, compared with conventional technique. The utilization of IMRT resulted in significantly improved target coverage and dose homogeneity as compared to 5 field plans.

Table 4: Comparison of dose and volume parameters of target volume with different studies by IMRT plan and conventional plan.

Study	Technique	Target Volume	V95% (cm²)	D2% (Gy)	D90% (Gy)	D5% (Gy)	V107% (Gy)	HI	p
Krueger et al. [12]	CW	Minimal dose	43.7 ± 1.1 Gy	42.8 ± 2.1 Gy	50.3 ± 0.6th, 50.6 + 0.7th, 54.6 + 1.3, 8.6 + 2.2th	50.2 ± 0.8th, 50.6 ± 0.9, 54.4 + 1.5, 8.4 + 2.7th	43.7 +2.8, 42.2 + 6.2, 56.2 +3.2, 24.9 +9.6	25.9 ± 11.4, 28.4 + 16.7, 56.0 + 2.6, 60.1 + 25.5	p = 0.04
Barnett et al. [13]	IMC	Absolute volume >107%	10.5 (30.3)	132.7 (91.7)	47.3 ± 0.6, 52.4 ± 0.5, 50.7 ± 0.4, 96.1 ± 1.7A	1.3 ± 0.1BB, 0.11 ± 0.02B	44.5 (72.3)	180.8 (107.8)	47.3 ± 0.4, 53.2±0.6, 50.6 ± 0.6, 96.2 ± 1.6A, 2.0 ± 0.5Aa, 0.13 ± 0.02A

CI, all were more in IMRT plan than conventional except in CTV IMC, where only breast or chest wall was treated. IMC and other regional lymph nodes were treated in only a few studies.
Conclusions

IMRT technique is superior to the conventional due to its better chest wall, axilla and SCF coverage. Cold spots and hot spot were less in the IMRT technique. IMRT significantly reduced heart, lung and spinal cord doses as compared with conventional techniques. IMRT seems to provide the optimum balance between the chest wall and regional node coverage and normal tissue sparing and treatment complexity. Long term follow up is needed to determine whether the improvements in dose homogeneity will translate into improvements in disease control and reduction in toxicity.

References

1. Manoharan N, Tyagi BB, Raina V (2009) Cancer incidences in urban Delhi - 2001-05. Asian Pac J Cancer Prev 10: 799-806.
2. Clarke M, Collins R, Darby S, Davies C, Elphinstone P, et al. (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366: 2087-2106.
3. Lingos TI, Recht A, Vicini F, Abner A, Silver B, et al. (1991) Radiation pneumonitis in breast cancer patients treated with conservative surgery and radiation therapy. Int J Radiat Oncol Biol Phys 21: 355-360.
4. Paszat LF, Mackillop WJ, Groome PA, Schulze K, Holowaty E (1999) Mortality from myocardial infarction following postlumpectomy radiotherapy for breast cancer: a population-based study in Ontario, Canada. Int J Radiat Oncol Biol Phys 43: 755-762.
5. Fletcher GH (1980) Breast In: Radiotherapy in management of non disseminated breast cancer. Philadelphia PA: Lea & Febiger: 527-579.
6. Cutting C, Dearnaley DP, Webb S (2000) Intensity modulated radiation therapy: a clinical review. Br J Radiol 73: 459-469.
7. [No authors listed] (2010) Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT): Contents. J ICRU 10: NP.
8. Dogan N, Cuttinio L, Lloyd R, Bump EA, Arthur DW (2007) Optimized dose coverage of regional lymph nodes in breast cancer: the role of intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 68: 1238-1250.
9. Ahmed RS, De Los Santos JF, Fivesh JB, Keene K S, Popple R A (2008) An IMRT technique to increase therapeutic ratio of breast irradiation in patients with early-stage breast cancer: limiting second malignancies. Med Dosim 33: 71-77.
10. Beckham WA, Popescu CC, Patenaude VV, Wai ES, Olivotto IA (2007) Is multibeam IMRT better than standard treatment for patients with left-sided breast cancer? Int J Radiat Oncol Biol Phys 69: 918-924.
11. Chui CS, Hong L, McCormick B (2005) Intensity-modulated radiotherapy technique for three-field breast treatment. Int J Radiat Oncol Biol Phys 62: 1217-1223.
12. Krueger EA, Faass BA, McShan DL, Marsh R, Pierce LJ (2003) Potential gains for irradiation of chest wall and regional nodes with intensity modulated radiotherapy. Int J Radiat Oncol Biol Phys 56: 1023-1037.
13. Barnett GC, Wilkinson J, Moody AM, Wilson CB, Sharma R, et al. (2009) A randomized controlled trial of forward-planned radiotherapy (IMRT) for early breast cancer: baseline characteristics and dosimetry results. Radiother Oncol 92: 34-41.
14. Jin GH, Chen LX, Deng XW, Liu XW, Huang Y, Huang XB (2013) A comparative dosimetric study for treating left-sided breast cancer for small breast size using five different radiotherapy techniques conventional tangential field, field-in-field, Tangential-IMRT, Multi-beam IMRT and VMA. Radiation Oncology 8: 89.
15. Landau D, Adams EJ, Webb S, Ross G (2001) Cardiac avoidance in breast radiotherapy: a comparison of simple shielding techniques with intensity-modulated radiotherapy, Radiother Oncol 60: 247-253.
16. Li JS, Freedman GM, Price R, Wang L, Anderson P, et al. (2004) Clinical implementation of intensity-modulated tangential beam irradiation for breast cancer. Med Phys 31: 1023-1031.
17. Hong L, Hunt M, Chui C, Spirou S, Forster K, et al. (1999) Intensity-modulated tangential beam irradiation of the intact breast. Int J Radiat Oncol Biol Phys 44: 1155-1164.
18. Van der Laan HP, Dolma WV, Van’t Veld AA, Bijl HP, Langendijk JA (2005) Comparison of normal tissue dose with three-dimensional conformal techniques for breast cancer irradiation including the internal mammary nodes. Int J Radiat Oncol Biol Phys 63: 1522-1530.
19. Severin D, Connors S, Thompson H, Rathee S, Stavrev P, et al. (2003) Breast radiotherapy with inclusion of internal mammary nodes: a comparison of techniques with three-dimensional planning. Int J Radiat Oncol Biol Phys 55: 633-644.
20. Lohr E, El-Haddad M, Dobler B, Grau R, Wertz HJ, et al. (2009) Potential effect of robust and simple IMRT approach for left-sided breast cancer on cardiac mortality. Int J Radiat Oncol Biol Phys 74: 73-80.
21. Venables K, Miles EA, Deighton A, Aird EG, Hoskin PJ (2004) Irradiation of the heart during tangential breast treatment: a study within the START trial. Br J Radiol 77: 137-142.
22. Pierce SM, Recht A, Lingos TI, Abner A, Vicini F, et al. (1992) Long-term radiation complications following conservative surgery (CS) and radiation therapy (RT) in patients with early stage breast cancer. Int J Radiat Oncol Biol Phys 23: 915-925.
23. Arthur DW, Armfield MR, Warwicke LA, Morris MM, Zwicker RD (2000) Internal mammary node coverage: an investigation of presently accepted techniques. Int J Radiat Oncol Biol Phys 48: 139-146.
24. Kahán Z, Csenki M, Varaga Z, Szil E, Cserháti A, et al. (2007) The risk of early and late lung sequelae after conformal radiotherapy in breast cancer patients. Int J Radiat Oncol Biol Phys 68: 673-681.