Prym Subvarieties P_λ of Jacobians via Schur correspondances between curves

Yashonidhi PANDEY
Chennai Mathematical Institute,
Plot No H1, Sipcot IT Park, Padur Post Office,
Siruseri 603103, India
Email: ypandey@cmi.ac.in

Abstract: Let $\pi : Z \to X$ be Galois cover of smooth projective curves with Galois group W a Weyl group of a simple Lie group G. For a dominant weight λ, we consider the intermediate curve $Y_\lambda = Z/\text{Stab}(\lambda)$. One can realise a Prym variety $P_\lambda \subset \text{Jac}(Y_\lambda)$ and we denote φ_λ the restriction of the principal polarisation of $\text{Jac}(Y_\lambda)$ upon P_λ. For two dominant weights λ and μ, we construct a correspondence $\Delta_{\lambda\mu}$ on $Y_\lambda \times Y_\mu$ and calculate the pull-back of φ_μ by $\Delta_{\lambda\mu}$ in terms of φ_λ.

Résumé: Soit $\pi : Z \to X$ un revêtement Galoisien de courbes projectives lisses de groupes de Galois W un groupe de Weyl d’une groupe de Lie G. Pour un poids dominant λ, on considère la courbe intermédiaire $Y_\lambda = Z/\text{Stab}(\lambda)$. On réalise la variété de Prym $P_\lambda \subset \text{Jac}(Y_\lambda)$ et on note φ_λ la restriction de la polarisation principale du $\text{Jac}(Y_\lambda)$ à P_λ. Pour deux poids dominants λ et μ, on construit une correspondance $\Delta_{\lambda\mu}$ sur le produit des courbes $Y_\lambda \times Y_\mu$. On calcule le pull-back de φ_μ par $\Delta_{\lambda\mu}$ en termes de φ_λ.

1. Introduction

Let G be a simple Lie group of type A, D, or E. Let us begin by recalling some constructions done in [Méringol] [3], [Kanev] [5] [4], [Lange-Pauly] [6] and [Lange-Recillas] [9]. We consider a Galois cover of smooth projective curves $\pi : Z \to X$ with Galois group the Weyl group W of G. To a dominant weight λ of G, one can associate an integral, symmetric correspondence

$$K_\lambda \subset Y \times Y,$$

known as the Kanev correspondence on the curve $Y = Z/\text{Stab}(\lambda)$. This correspondence satisfies a relation with the Schur correspondence S_λ defined using the Schur projector in the ring $\text{End}(\Lambda \otimes_\mathbb{Z} \mathbb{Q})$. We study the Prym subvariety of $\text{Jac}(Y)$ defined as

$$P_\lambda = \text{im}(S_\lambda) \subset \text{Jac}(Y).$$

It can also be realised as $\text{im}(K_\lambda)|_{\text{Prym}(Y/X)}$ and is isogenous to the Donagi-Prym variety $\text{Prym}(\pi, \Lambda)_\eta$. Recall that for two dominant weights λ and μ the Prym varieties P_λ and P_μ are known to be isogenous - see
and in section 10.1 we construct an explicit correspondence $\Delta_{\lambda\mu}$ giving explicit isogenies

$$\Delta_{\lambda,\mu} : P_\lambda \to P_\mu; \quad \Delta_{\mu,\lambda} : P_\mu \to P_\lambda$$

using the galois cover

$$\begin{align*}
Z & \xleftarrow{\phi_\lambda} Y_\lambda \\
& \xleftarrow{\psi_\lambda} X \\
& \xrightarrow{\phi_\mu} Y_\mu \\
& \xrightarrow{\psi_\mu} Z
\end{align*}$$

Actually the construction of the correspondence as well as other results of this paper are all valid in a more general setting which we now describe. Recall a theorem of Springer [2] which says that any irreducible representation V of a Weyl group W is induced from a rational irreducible representation. Let $\Lambda \subset V$ be some lattice invariant under the action of the Weyl group. Indeed the most important example is that of the Cartan subalgebra \mathfrak{h} of the Lie group corresponding to W and of the weight lattice $\Lambda \subset \mathfrak{h}$. Let $\lambda \in \Lambda$ be any element. Then in the situation of a Galois étale cover $\pi : Z \to X$, we can again consider for $\text{Stab}(\lambda) \subset W$ an intermediate curve $Y = Z/\text{Stab}(\lambda)$ and for two such curves Y_λ and Y_μ we show the construction of the correspondence. To use suggestive notation, we use Λ for the weight lattice and call λ and μ as weights.

We also show the equalities (Corrolary 5.16)

$$\Delta_{\mu,\lambda}\Delta_{\lambda,\mu} = [N]_{P_\lambda}; \quad \Delta_{\lambda,\mu}\Delta_{\mu,\lambda} = [N]_{P_\mu},$$

where $[N]$ denotes the multiplication by the integer

$$\frac{|W|^2(\lambda, \lambda)(\mu, \mu)}{|\text{Stab}(\lambda)||\text{Stab}(\mu)|(\dim(V))^2}.$$

In the context of abelianisation one takes V as \mathfrak{h}-the Cartan subalgebra.

In section 3, we define the Prym varieties P_V and P_{λ}. We show in proposition 3.8 that the pull-back of the principal polarisation on $\text{Jac}(Z)$ to $\prod_{V \in \chi(W)} P_V$ splits. In proposition 3.11 we show that the isotypical component P_V is isogenous to a product of Prym varieties P_{λ} and that the pull-back of the polarisation splits on the product $\prod_{i=1}^n P_{\lambda_i}$ for any choice of an orthogonal basis $\lambda_1, \ldots, \lambda_n$ of V.
In section 4 we define a rational correspondence $S_{\lambda,\mu}$ on $Y_\lambda \times Y_\mu$ as

$$\frac{1}{|\text{Stab}(\lambda)\text{Stab}(\mu)|}(\phi_\lambda \times \phi_\mu)_*(S_\lambda \circ S_\mu).$$

It can be described as follows

$$S_{\lambda,\mu} : Y_\lambda \rightarrow \text{Div}_\mathbb{Q}(Y_\mu)$$

where $z \in Z$ satisfying $\phi_\lambda(z) = y_1$ and $\{g_1, \ldots, g_d\}$ is a system of right coset representatives of $\text{Stab}(\mu)$ in W and W acts upon the curve Z by monodromy.

Notice that if $\lambda_2 = \lambda_1$, this correspondence resembles the Schur correspondence S_λ defined in [Lange-Pauly] [6]. In that paper, S_λ is related to the Kanev correspondence [Kanev] [5] by theorem 3.5

$$S_\lambda = |H|^2(K_\lambda - \Delta + ((\lambda, \lambda) + 1)T).$$

In [7] the authors Lange and Kanev remark that the generalisation of the Kanev correspondence denoted $\Delta_{\lambda,\mu}$ for two weights λ and μ over an arbitrary curve in immediate. It is integral. Then we relate the two correspondences in theorem 5.14 by the relation

$$\Delta_{\lambda,\mu} = S_{\lambda,\mu} + rT$$

where T is the trace correspondence and for some $r \in \mathbb{Q}$. In particular, $S_{\lambda,\mu}$ and $\Delta_{\lambda,\mu}$ induce the same isogeny from P_λ to P_μ. As the calculations with $S_{\lambda,\mu}$ employing Schur type relations are easier, we obtain the following formulae for the exponent of the isogeny

$$\Delta_{\mu,\lambda} \Delta_{\lambda,\mu} = K_{\mu,\lambda} K_{\lambda,\mu} = N$$

by the proposition 4.13 and the corollary 5.16. The corollary 5.16 simplifies the proof of theorem 6.5 in [Kanev] [4].

Let φ_μ denote the principal polarisation on $\text{Jac}(Y_\mu)$. In section 6, We show in Corrolary 6.4 that the pull-back of φ_μ by $\Delta_{\lambda,\mu}$ is equal to $[N] \varphi_\lambda$. Then in section 7, we calculate the integer $[N]$ for all couples of fundamental weights for all Lie Algebras. In section 8, we use the correspondence $\Delta_{\lambda,\mu}$ to give precise descriptions of some isogenies in the context of Abelianisation. More precisely, let $H^1(Z, T)^W$ denote T–bundles on Z that are W–invariant for the twisted action. Associated to a dominant weight λ, we have an evaluation map ev_λ with values in $\text{Jac}(Z)$ that associates to T–bundles the line bundle obtained by weight λ acting as character of T. The line bundles in the image
of ev_λ can be endowed with a canonical $\text{Stab}(\lambda)$ linearisation and thus descend to the intermediate curve Y_λ. Consider the diagram,

$$
\begin{array}{ccc}
H^1(Z,T)^{W_{\text{ev}_\lambda}} & \xrightarrow{\text{ev}_\mu} & P_\lambda \\
\downarrow_{\Delta_{\lambda,\mu}} & & \downarrow_{\Delta_{\lambda,\mu}} \\
P_\mu & \xrightarrow{\text{Jac}(Y_\mu)} & \text{Jac}(Y_\lambda)
\end{array}
$$

We prove in proposition [8.2] the equality

$$
\Delta_{\lambda,\mu} \text{ev}_\lambda = \frac{|W|}{\dim(V)} \frac{(\lambda,\lambda)(\mu,\mu)}{|H_\lambda||H_\mu|} \text{ev}_\mu.
$$

Moreover, we construct an inverse isogeny

$$
\delta : P_\lambda \rightarrow H^1(Z,T)^W
$$

to the isogeny ev_λ of [8.2]. We obtain

$$
\delta \text{ev}_\lambda = [M],
$$

where M is the exponent of the group $P(G)/Z[W]$. I wish to thank my advisor Christian Pauly for his advices and help in the preparation of this paper and my thesis.

2. Correspondences between algebraic curves

Definition 2.1. A correspondence D between two algebraic curves C_1 et C_2 is a divisor D on the product $C_1 \times C_2$. Two correspondences D et D' between C_1 et C_2 are equivalent if there exists divisors D_1 and D_2 on C_1 and C_2 respectively such that

$$
D' = D + D_1 \times C_2 + C_1 \times D_2.
$$

To a correspondence D we denote by $\gamma_D : \text{Jac}(C_1) \rightarrow \text{Jac}(C_2)$ the associated map and by γ_D' the dual isogeny obtained by the Rosati involution. We denote by $\text{Corr}(C_1, C_2)$ the isomorphism classes of correspondences between C_1 and C_2.

Theorem 2.2 (Theorem 11.5.1 Birkenhake-Lange [10]). The map $D \mapsto \gamma_D$ induces an isomorphism $\text{Corr}(C_1, C_2) \rightarrow \text{Hom}(\text{Jac}(C_1), \text{Jac}(C_2))$.

In the case, $C_1 = C_2 = C$, this theorem allows to translate the ring structure and the Rosati involution on $\text{End}(\text{Jac}(C))$ to $\text{Corr}(C)$. We denote by $\tau : C \times C \rightarrow C \times C$ the map which switches the two factors.

Proposition 2.3. Let D be a correspondence on a curve C. We have

$$
\gamma_{\tau^*D} = \gamma_D'.
$$

In particular, if the correspondence D is symmetric, then the endomorphism γ_D is symmetric with respect to the Rosati involution.
3. Schur projectors, abelian subvarieties of Jacobian and decomposition

Let \(W \) be an arbitrary finite group. We denote by \(\mathbb{C}[W] \) the group algebra associated to the group \(W \). We have a decomposition of algebras

\[
\mathbb{C}[W] = \bigoplus_{\omega \in \chi(W)} \text{End}(V_\omega)
\]

where \(V_\omega \) is the complex irreducible representation corresponding to characters \(\omega \) and \(\chi(W) \) is the set of irreducible characters de-\(W \).

Following [3], we denote by \((C)\) the condition upon a finite group \(W \) that all its irreducible representations are absolutely irreducible. Recall absolute irreducibility means that all the irreducible representations can be obtained after extension of scalars from a rational irreducible representation. The Weyl group satisfies this condition according to a theorem of Springer [2]. We thus have,

Proposition 3.1. Let \(V \) be an irreducible representation of a group \(W \) satisfying the condition \((C)\) over a field of \(k \) of characteristic zero. We have a canonical isomorphims upto scalars of \(V \) with its dual \(V^* \).

Equivalently we have a non-degenerate symmetric \(G \)-invariant bilinear form on \(V \times V \rightarrow k \) unique upto scalars.

Proof. By the condition \((C)\) we may assume that the field \(k \) is the rationals \(\mathbb{Q} \) and that \(V \) is defined over \(\mathbb{Q} \). Now the character of \(V^* \), the dual of \(V \), is \(\overline{\chi_V} \) where \(\chi_V \) denotes the character of \(V \). Since \(V \) is defined over \(\mathbb{Q} \), therefore the character takes values in \(\mathbb{Q} \) and thus \(\chi_{V^*} = \overline{\chi_V} = \chi_V \). Thus \(V \) is isomorphic to \(V^* \). Since it is irreducible, thus upto scalars there is only one isomorphism by Schur’s lemma. The existence of a bilinear form satisfying the said properties is standard. \(\square \)

Remark 3.2. The Cartan-Subalgebra \(\mathfrak{h} \) of a semi-simple simple group \(G \) is also an irreducible representation of the Weyl group \(W \) of \(G \). In this paper, we shall often consider \(\mathfrak{h} \) as being induced from a rational irreducible representation of \(W \). Moreover the bilinear form of the above proposition is the celebrated Cartan-Killing form. In particular, for a Weyl groups any of its irreducible representation can be endowed with a symmetric non-degenerate \(W \)-invariant bilinear form and is isomorphic to its dual representation. However, the bilinear form may not be positive or negative definite unlike the Cartan-Killing form.

Let \(V \) be an irreducible representation of \(W \) defined over \(\mathbb{Q} \).
Definition 3.3. The Schur projector is the element

\[\tilde{p}_V = \sum_{g \in W} \text{tr}_V(g)g \in Q[W] \]

where \(\text{tr}_V(g) \) denotes the trace endomorphism of \(V \) induced from multiplication by \(g \).

The element \(\tilde{p}_V \) satisfies the relation

\[\tilde{p}_V^2 = \frac{|W|}{\dim(V)} \tilde{p}_V. \]

Therefore, \(p_V = \frac{\dim(V)}{|W|} \tilde{p}_V \) is an idempotent in \(C[W] \). The action of \(p_V \) on a \(W \)-module is that of projection upon the isotypical component of \(V \).

Let \((,): V \times V \to C \) be a \(W \)-invariant bilinear form on \(V \). It is unique up to scalars.

For \(\lambda \in V \setminus \{0\} \), we denote

\[h_\lambda = \sum_{g \in W} (\lambda g, \lambda)g. \]

According to Lange-Recillas [9] the element \(H_\lambda = \frac{\dim(V)}{|W|} h_\lambda \) is an idempotent of \(C[W] \). The action of \(H_\lambda \) of \(V \) is that of projection on the line generated by \(\lambda \) in \(V \).

Let \(V \) admit \((\lambda_1, \cdots, \lambda_d) \) as a basis. We get the formulae

\[p_V = H_{\lambda_1} + \cdots + H_{\lambda_d}. \]

Theorem 3.4. [10] Let \((A,L)\) be a polarised abelian variety. There is a bijective correspondence between the sub abelian varieties of \(A \) and the idempotents in the ring \(\text{End}(A) \otimes_{\mathbb{Z}} \mathbb{Q} \) that are symmetric with respect to the Rosati involution. The bijection is given by associating to an idempotent \(u \), the subvariety \(\text{im}(u) \) and to an abelian subvariety \(B \) we associate the composition of the maps

\[A \xrightarrow{\phi_L} \hat{A} \xrightarrow{i_B} \hat{B} \xrightarrow{\psi_L} B \xrightarrow{i_B} A. \]

where \(i_B \) denotes the inclusion of \(B \) in \(A \) and \(\psi_L|B = q\phi_L^{-1} \) denotes the isogeny dual to \(\phi_L|B \).

We shall use the above theorem to define subvarieties of \(\text{Jac}(Z) \) when the curve \(Z \) admits an action by a group \(W \) satisfying the hypothesis \((C)\).

Let \(\rho : W \to \text{GL}(V) \) be a rational representation, that is defined over \(\mathbb{Q} \). The Schur projector \(p_V \) induces an element denoted \(\rho_V \) in \(\text{End}_{\mathbb{Q}}(\text{Jac}(Z)) \) by the action of \(W \) on the curve \(Z \).
Definition 3.5. We denote $P_V = \text{im}(\tilde{p}_V)$ and $P_\lambda = \text{im}(H_\lambda)$ the sub abelian varieties of the Jacobian of Z.

The decomposition of the group algebra $\mathbb{C}[W]$ and that of the Schur projector gives us the following theorem.

Theorem 3.6 (3 Thm 2.5). Let W be a finite group satisfying the condition (C). The abelian varieties $\text{Jac}(Z)$ and $\prod_{V \in \chi(W)} P_V$ are isogenous. Moreover, ([3 Prop 4.5]) the abelian variety P_V is isogenous to the product $[P_\lambda]^{\text{dim}(V)}$.

More generally, we have the *isotypical decomposition* of an abelian variety A unique upto permutation of factors (cf. [9] Proposition 1.1) and decomposition in terms of *generalised Prym varities* or Prym-Donagi varities (cf. [11] Formula 5.3).

The group W acts on the curve Z on the right. Thus it can act on the $\text{Jac}(Z)$ as $(g, D) \mapsto Dg$ where D denotes a divisor in $\text{Jac}(Z)$. But we rather choose the action to be given by pull-back of line bundles on Z

$$G \times \text{Jac}(Z) \rightarrow \text{Jac}(Z) \quad (g, D) \mapsto Dg^{-1}$$

Notice that pull-back will be an action on the right.

Proposition 3.7. Let Z be a smooth projective curve. Let $g \in \text{Aut}(Z)$, and let us also denote by g the automorphism on $\text{Jac}(Z)$ induced by g. Then g preserves the principal polarisation on $\text{Jac}(Z)$. The following diagram commutes

$$
\begin{array}{ccc}
\text{Jac}(Z) & \longrightarrow & \widehat{\text{Jac}(Z)} \\
\downarrow g^{-1} & & \downarrow \hat{g} \\
\text{Jac}(Z) & \longrightarrow & \widehat{\text{Jac}(Z)}
\end{array}
$$

Proof. The image of the Abel-Jacobi map $\text{Sym}^{g_z^{-1}}(Z) \rightarrow \text{Pic}^{g_z^{-1}}(Z)$ is preserved by g. This image is the Riemann theta divisor Θ which induces the principal polarisation on $\text{Jac}(Z)$. Let $\Theta \subset \text{Jac}(Z)$ be a divisor representing the principal polarisation on $\text{Jac}(Z)$. Then $g^*\Theta$ is the translate $T^*_\alpha \Theta$ of Θ for a certain $\alpha \in \text{Jac}(Z)$. The isomorphism between $\text{Jac}(Z)$ and $\widehat{\text{Jac}(Z)}$ given by Θ is

$$\Theta : \text{Jac}(Z) \rightarrow \widehat{\text{Jac}(Z)} \quad z \mapsto T^*_\alpha \Theta - \Theta.$$

So let $g \in \text{Aut}(Z)$. Let us compute the composition

$$\begin{aligned}
\text{Jac}(Z) & \rightarrow^\Theta \widehat{\text{Jac}(Z)} \stackrel{\hat{g}}{\longrightarrow} \widehat{\text{Jac}(Z)} \rightarrow^{\Theta^{-1}} \text{Jac}(Z).
\end{aligned}$$
Now g seen as an element of $\text{Aut}(\text{Jac}(Z))$ transforms the divisor $T^*_x\Theta - \Theta$ into $g^*(T^*_x\Theta - \Theta)$. Now we have
$$g^*(T^*_x\Theta - \Theta) = (T_xg)^*\Theta - g^*\Theta = \{gT_{g^{-1}(x)}\}^*\Theta - g^*\Theta = T^*_x\Theta - g^*\Theta - g^*\Theta.$$
By the equality $g^*\Theta = T^*_\alpha\Theta$, the expression becomes
$$T^*_x\Theta - g^*\Theta = \hat{\chi}_V[T^*_x\Theta - \Theta],$$
where χ denotes the irreducible representations of W. The pull-back of the principal polarisation on $\text{Jac}(Z)$ splits.

Proposition 3.8. Let Z be a curve admitting an action by a Weyl group W. Consider the decomposition
$$\prod_{V \in \chi(W)} P_V \rightarrow \text{Jac}(Z).$$
where $\chi(W)$ denotes the irreducible representations of W. The pull-back of the principal polarisation on $\text{Jac}(Z)$ splits.

Proof. For an irreducible representation V, the inclusion $i_V : P_V \rightarrow \text{Jac}(Z)$ is the same as multiplication by $\chi_V = \frac{|\dim(V)|}{|G|} \sum_{g \in W} \text{tr}(g)g$ and thus
$$\hat{i}_V = \sum_{g \in W} \text{tr}(g)\hat{g}.$$
For two irreducible representations U and V of W, let us compute the composition
$$\text{Jac}(Z) \xrightarrow{\chi_U} P_U \xrightarrow{i_U} \text{Jac}(Z) \xrightarrow{\Theta} \hat{\text{Jac}(Z)} \xrightarrow{\hat{\chi}_V} \hat{P}_U.$$
Let $p \in P_V$. It is mapped to $\Theta(p) = [T^*_p\Theta - \Theta]$ which goes to $\hat{\chi}_U[T^*_p\Theta - \Theta]$.
$$\hat{\chi}_U = \sum_{g \in W} \text{tr}(g)\hat{g}.$$
By linearity, this sum by th proposition 3.7 is equal to
$$[T^*_x\Theta - \Theta],$$
where $x = \sum_{g \in W} \text{tr}(U(g)p^{-1})$. As irreducible representations of Weyl groups are self dual we have the equalities
$$\text{tr}_U(g^{-1}) = \text{tr}_{U^*}(g) = \text{tr}_{U^*}(g) = \text{tr}_U(g),$$
so $x = \chi_U(p)$. Now let $p = \chi_V(z)$. Thus $x = \chi_U\chi_V(z)$, but $\chi_U\chi_V = 0 \in \mathbb{C}[W]$ as χ_V and χ_U project on the isotypical component of V and U respectively. Thus the pull-back of the polarisation on $\text{Jac}(Z)$ splits.

Proposition 3.9. For any simple Lie algebra \mathfrak{g}, we can find weights ν_i perpendicular to eachother with respect to the Cartan-Killing form and forming a basis for the Cartan-subalgebra \mathfrak{h} over \mathbb{C}.

Proof. We can take for w_1 the first fundamental weight ϖ_1. For w_2 we can take $\varpi_2 - \frac{(\varpi_2, \varpi_1)}{(\varpi_1, \varpi_1)}\varpi_1$ and so on. Then we clear the denominators and call these vectors v_i. □

Remark 3.10. An analogous statement can be made for any irreducible representation of the Weyl group.

Proposition 3.11. Let Z be a curve admitting an action by a Weyl group W. Let V be an irreducible representation of V defined over \mathbb{Q} and let $\{v_i\}_{i=1,\ldots,n}$ form an orthogonal basis of V. Consider the morphism from

$$\prod_{i=1,\ldots,n} P_{v_i} \rightarrow \text{Jac}(Z).$$

The pull-back of the principal polarisation on $\text{Jac}(Z)$ to the product of Prym varieties P_{v_i} splits.

Proof. The inclusion of $i_v : P_v \in \text{Jac}(Z)$ is the same as S_v/q_v where q_v denotes the exponent of S_v. Thus we also have

$$\hat{i}_v = \frac{S_v}{q_v}.$$

So let us compute the composition

$$\text{Jac}(Z) \xrightarrow{S_{v_1}} P_{v_1} \xrightarrow{S_{v_1}/q_1} \text{Jac}(Z) \xrightarrow{\Theta} \text{Jac}(Z) \xrightarrow{S_{v_2}/q_2} P_{v_2}.$$

Let $p \in P_{v_1}$. It is mapped to $\Theta(p) = [T_p^* \Theta - \Theta]$ which goes to $\hat{S}_{v_2}[T_p^* \Theta - \Theta]$. Now $\hat{S}_{v_2} = \sum_{g \in W} (v_2 g, v_2) \hat{g}$. Thus the sum becomes

$$\sum_{g \in W} (v_2 g, v_2) \hat{g} [T_p^* \Theta - \Theta].$$

By linearity and the theorem of square, this sum by the proposition 3.7 is equal to

$$[T_p^* \Theta - \Theta],$$

where $x = \sum_{g \in W} (v_2 g, v_2) pg^{-1}$. Now by the symmetry of the Cartan-Killing form we have

$$x = \sum_{g \in W} (v_2 g, v_2) pg^{-1} = \sum_{g \in W} (v_2, v_2 g^{-1}) pg^{-1} = S_{v_2} p.$$

Let $p = S_{v_1}(z)$. Then by lemma 4.3 and the orthogonality of v_1 and v_2 we get $S_{v_2} p = 0$. Thus the composition of arrows is zero, that is the polarisation splits. □
4. SCHUR CORRESPONDENCE FOR TWO DOMINANT WEIGHTS λ_1 ET λ_2

We consider the following situation. Let $\pi : Z \to X$ be a Galois cover of smooth projective curves with Galois group W. Let λ_1 and λ_2 be two dominant weights. We write $H_i = \text{Stab}(\lambda_i)$ in W and $Y_i = Z/H_i$.

Let $\rho : W \to \text{GL}_\mathbb{Q}(V)$ be an irreducible representation of W on \mathbb{Q} satisfying the condition (C) [cf. [3]] that all its irreducible representations are absolutely irreducible. Let $(,)$ be a bilinear symmetric negative definite form on V.

In the following we consider right actions of W on Z and V. Moreover, the action of the fundamental group $\pi_1(X)$ on the curve Z and Y_i by monodromy is on the right.

For $i = 1, 2$ we introduce the correspondences on Z

$$S_{\lambda_i} : \text{Jac}(Z) \to \text{Jac}(Z), \quad z \mapsto \sum_{g \in W} (\lambda_i g, \lambda_i) z^g.$$

We have $S_{\lambda_i} \in \text{End}_\mathbb{Q}(\text{Jac}(Z))$. We denote $P_{\lambda_i} = \text{im}(S_{\lambda_i})$. According to [9], we have

$$S_{\lambda_i}^2 = \frac{|W| (\lambda_i, \lambda_i)}{\dim(V)^2} S_{\lambda_i}.$$

We now turn to a useful technical lemma.

Lemma 4.1 (Merindol, [3]). Let W be a group satisfying the hypothesis (C). Let V be an irreducible representation of W and denote by $(,)$ a symmetric non-degenerate W–invariant bilinear form on V unique up to scalars. Let F be a form

$$F : V \times V \times V \times V \to \mathbb{Q}$$

satisfying

$$F(aw, b, c, dw) = F(a, bw, cw, d) = F(a, b, c, d)$$

for all $a, b, c, d \in V$ and $h \in W$. Then there exists a constant $q \in \mathbb{Q}$ such that we have for all $(a, b, c, d) \in V^4$,

$$F(a, b, c, d) = q(a, d)(c, d).$$

Lemma 4.2. Let V be an irreducible representation of a group W satisfying condition (C). Suppose that V admits a positive-definite bilinear
form $(,)$. For $\lambda_i \in V$, where $i = 1, \ldots, 4$, define $B(\lambda_1, \lambda_2, \lambda_3, \lambda_4) = \sum_{h \in W}(\lambda_1 h, \lambda_2)(\lambda_3, \lambda_4 h)$. We have the equality

$$B(\lambda_1, \lambda_2, \lambda_3, \lambda_4) = \frac{|W|}{\dim(V)^2}(\lambda_1, \lambda_4)(\lambda_2, \lambda_3).$$

Proof. Notice that such sums satisfy the conditions of lemma 4.1. So there exists a constant $q \in \mathbb{Q}$ such that the above sum equals $q(\lambda_1, \lambda_4)(\lambda_2, \lambda_3)$. To calculate the constant we may take an orthonormal basis μ_1, \ldots, μ_n of V since the form is positive-definite. Expressing the bilinear form and the matrix $m(h)$ of $h \in W$ in terms of the orthonormal basis, we obtain

$$B(\mu_i, \mu_j, \mu_j, \mu_i) = \sum_{h \in W} m(h)_{i,i}m(h)_{j,j} = q(\mu_i, \mu_i)(\mu_j, \mu_j) = q.$$

Summing over all couples of basis vectors, we get

$$\dim(V)^2q = \sum_{i,j} \sum_{h \in W} m(h)_{i,i}m(h)_{j,j} = \sum_{h \in W} \chi_V(h)^2 = |W|.$$

We thus get the value of q.

Lemma 4.3. We have the equality

$$S_{\lambda_2}S_{\lambda_1}(z) = \frac{|W|(\lambda_1, \lambda_2)}{\dim(V)^2} \sum_{t \in W}(\lambda_1 t, \lambda_2)z^t.$$

Proof. We have,

$$S_{\lambda_2}S_{\lambda_1}(z) = S_{\lambda_2}(\sum_{g \in W}(\lambda_1 g, \lambda_1)z^g) = \sum_{h \in W} \sum_{g \in W}(\lambda_2 h, \lambda_2)(\lambda_1 g, \lambda_1)z^{gh}.$$

We put $t = gh$ and expressing $g = th^{-1}$, the sum becomes

$$\sum_{t \in W} \sum_{h \in W}(\lambda_2 h, \lambda_2)(\lambda_1 t, \lambda_1 h)z^t$$

which by [9] Corollaire 3.3 (or the lemmas 4.1 and 4.2) is equal to

$$\frac{|W|(\lambda_1, \lambda_2)}{\dim(V)^2} \sum_{t \in W}(\lambda_2, \lambda_1 t)z^t.$$

□

This formulae is not symmetric in λ_1 and λ_2. Let us recall the following geometric configuration
Definition 4.4. Let $A \in \text{Corr}(Z \times Z)$ be a correspondence over Z. Let Y_1 and Y_2 be quotients of Z. Then A induces a correspondence \overline{A} over $Y_1 \times Y_2$ defined by

$$\overline{A}(y_1) = \sum_{z \in Z, \phi_1(z) = y_1} \phi_2(A(z)).$$

In fact, $\overline{A} : \text{Jac}(Y_1) \to \text{Jac}(Y_2)$ is defined by the composition of maps

$$\overline{A} : \text{Jac}(Y_1) \xrightarrow{\phi_1^*} \text{Jac}(Z) \xrightarrow{A} \text{Jac}(Z) \xrightarrow{\text{Nm}_{\phi_2}} \text{Jac}(Y_2).$$

Proposition 4.5. Let $z_0 \in Z$ be a point in the fiber of ϕ_1 over $y \in Y_1$. Fix a system of left representatives $\{g_i\}_{i=1,\ldots,d}$ of H_2 in W. We have the equality

$$S_{\lambda_2} \circ S_{\lambda_1}(y) = \frac{|W||H_1||H_2|(\lambda_1, \lambda_2)}{\dim(V)^2} \sum_{i=1,\ldots,d} (\lambda_1 g_i, \lambda_2) \phi_2(z_0 g_i).$$

Proof. We have

$$\overline{A}(y) = \sum_{z \in \phi_1^{-1}(y)} \phi_2(S_{\lambda_2}S_{\lambda_1}(z))$$

By lemma 4.3, we get

$$= \frac{|W|}{\dim(V)^2}(\lambda_2, \lambda_1) \sum_{z \in \phi_1^{-1}(y)} \sum_{s \in W} (\lambda_1 s, \lambda_2) \phi_2(zs)$$

and fixing $z_0 \in \phi_1^{-1}(y)$, we get

$$= \frac{|W|}{\dim(V)^2}(\lambda_2, \lambda_1) \sum_{h_1 \in H_1} \sum_{s \in W} (\lambda_1 s, \lambda_2) \phi_2(z h_1 s)$$
putting $h_1 s = t$ and $q = \frac{|W|}{\dim(Y)^2}$, we get

$$= q(\lambda_1, \lambda_2) \sum_{h_1 \in H_1} \sum_{t \in W} (\lambda_1 h_1^{-1} t, \lambda_2) \phi_2(z_0 t)$$

$$= q(\lambda_1, \lambda_2) \sum_{t \in W} (\sum_{h_1 \in H_1} \lambda_1 h_1^{-1}, \lambda_2 t^{-1}) \phi_2(z_0 t)$$

$$= q(\lambda_1, \lambda_2) |H_1| \sum_{i=1, \ldots, d} \sum_{h_2 \in H_2} (\lambda_1 h_2, \lambda_2 h_2) \phi_2(z_0 g_i)$$

The above proposition motivates the following definition.

Definition 4.6. We define the Schur correspondence S_{λ_2, λ_1} for two weights λ_1 and λ_2 on $Y_1 \times Y_2$ as

$$\frac{1}{|H_1||H_2|} (\phi_1 \times \phi_2)_* (S_{\lambda_2} \circ S_{\lambda_1}).$$

We fix a system of left coset representatives of H_2 in W

$$W = \bigsqcup_{i=1}^d H_2 g_i.$$

The Schur correspondence for two weights S_{λ_1, λ_2} can be described as

$$S_{1,2} : \text{Jac}(Y_1) \rightarrow \text{Jac}(Y_2)$$

$$y_1 \mapsto \sum_{i=1}^d (\lambda_1 g_i, \lambda_1) \phi_2(z^{g_i})$$

where $z \in Z$ with $\phi_1(z) = y_1$. Here the action of g on z is through monodromy.

Remark 4.7. Since the correspondence $S_{1,2}$ only differs from S_{λ_2, λ_1} by a constant, so it is independant of the choices of the point z in the fiber of ϕ_1 and the system of coset representatives of H_2 in W made.

Remark 4.8. For the definition of $S_{2,1}$, one would have to fix a system of right representatives of H_1 in W giving the decomposition $W = \prod_{i=1}^{d'} H_1 g'_i$. The numbers d' and d of the definition 4.6 need not be equal in general for a couple of weights λ_1 and λ_2.

Remark 4.9. This proposition generalises for two weights λ_1 and λ_2 the proposition 3.1 of [6]. Indeed, if $\lambda_1 = \lambda_2 = \lambda$, then $A = S_{\lambda}$ and $S_{1,2}(y_1) = \sum_{i=1}^d (\lambda g_i, \lambda) \phi(z^{g_i})$ and $H_1 = H_2 = H$.

□
Proposition 4.10. Let $\phi : Z \to Y$ be a covering of smooth projective curves. Let $\phi^* : \text{Jac}(Y) \to \text{Jac}(Z)$ and $\text{Nm} : \text{Jac}(Z) \to \text{Jac}(Y)$ be the pull-back and norm homomorphisms respectively. We have
$$\hat{\phi}^* = \text{Nm}_\phi, \quad \hat{\text{Nm}}_\phi = \phi^*$$
where $\hat{\phi}^*$ and $\hat{\text{Nm}}_\phi$ are maps dual to ϕ^* and Nm respectively.

Proof. It suffices to prove $\hat{\text{Nm}}_\phi = \phi^*$. The other relation follows by taking duals. We have the following commutative diagram
$$
\begin{array}{ccc}
Z & \xrightarrow{\alpha_{z_0}} & \text{Jac}(Z) \\
\downarrow{\phi} & & \downarrow{\text{Nm}_\phi} \\
Y & \xrightarrow{\alpha_{y_0}} & \text{Jac}(Y)
\end{array}
$$
where z_0 and y_0 are such that $\phi(z_0) = y_0$ and
$$\alpha_{z_0} : Z \to \text{Jac}(Z) \quad z \mapsto z - z_0.$$

By applying the functor Jac we obtain $\hat{\text{Nm}}_\phi = \phi^*$ by the following commutative diagram
$$
\begin{array}{ccc}
\hat{\text{Jac}(Z)} & \xrightarrow{\hat{\alpha}_{z_0}} & \hat{\text{Jac}(Z)} \\
\phi^* \downarrow & & \hat{\text{Nm}_\phi} \downarrow \\
\hat{\text{Jac}(Y)} & \xrightarrow{\hat{\alpha}_{y_0}} & \hat{\text{Jac}(Y)}
\end{array}
$$

Corollary 4.11. The Schur correspondence $S_\lambda \in \text{End}(\text{Jac}(Z))$ is symmetric under the Rosati involution.

Proof. We have $\hat{S}_\lambda(z) = \sum_{g \in W} (\lambda g, \lambda) z^{g^{-1}}$ which by proposition 3.7 is equal to
$$\sum_{g \in W} (\lambda, \lambda g^{-1}) z^{g^{-1}} = S_\lambda(z).$$

Let us also denote by $S_{1,2} : \text{Jac}(Y_1) \to \text{Jac}(Y_2)$ the morphisms between the jacobians induced by the correspondence $S_{1,2}$. Recall that $P_{\lambda_i} \subset \text{Jac}(Y_i)$ is the image of the endomorphism of $\text{Jac}(Y_i)$ induced by the Schur correspondence S_{λ_i}.

Proposition 4.12. The morphism $S_{1,2}$ maps P_{λ_1} to P_{λ_2}. We also have the relation

$$S_{1,2} = S_{2,1}.$$

Proof. We denote by \tilde{q} the constant $q = \frac{\dim(V)^2}{|H_1||H_2||W(\lambda_1,\lambda_2)|}$. By proposition 4.11 we have the relations

$$S_{1,2} = \tilde{q}S_{\lambda_2}S_{\lambda_1} \quad S_{2,1} = \tilde{q}S_{\lambda_1}S_{\lambda_2}.$$

We shall omit the constant \tilde{q} to ease notation. So we get $\text{im}(S_{1,2}) = \text{im}(S_{\lambda_2}S_{\lambda_1}) \subset \text{im}(S_{\lambda_1}) = P_{\lambda_2}$. Now $S_{\lambda_2}S_{\lambda_1}$ is by definition the composition of the homomorphisms

$$S_{\lambda_2}S_{\lambda_1} : \text{Jac}(Y_1) \xrightarrow{\phi_1^*} \text{Jac}(Z) \xrightarrow{S_{\lambda_1}} \text{Jac}(Z) \xrightarrow{S_{\lambda_2}} \text{Jac}(Z) \xrightarrow{\text{Nm}_{\phi_2}} \text{Jac}(Y_2).$$

Taking duals for the sequence (4) and using the relations $\text{Nm}_{\phi_1} = \phi_1^*$, $\tilde{S}_{\lambda_1} = S_{\lambda_1}$ and $\tilde{\phi}_1^* = \text{Nm}_{\phi_1}$ we obtain that

$$\tilde{S}_{\lambda_2}S_{\lambda_1} : \text{Jac}(Y_2) \xrightarrow{\phi_2^*} \text{Jac}(Z) \xrightarrow{S_{\lambda_2}} \text{Jac}(Z) \xrightarrow{S_{\lambda_1}} \text{Jac}(Z) \xrightarrow{\text{Nm}_{\phi_1}} \text{Jac}(Y_1)$$

which coincides with the definition of the morphism $S_{\lambda_1}S_{\lambda_2}$. Thus $\tilde{S}_{1,2} = S_{2,1}$. \qed

4.1. Calculation of the Schur correspondence in the ring of endomorphisms.

Proposition 4.13. We have the relations $S_{2,1}S_{1,2} = [N] \in \text{End}(P_{\lambda_1})$ and $S_{1,2}S_{2,1} = [N] \in \text{End}(P_{\lambda_2})$ where $[N]$ denotes the multiplication by the integer $N = \frac{|W|^2(\lambda_1,\lambda_1)(\lambda_2,\lambda_2)}{|H_1||H_2|(\dim(V))^2}$.

Proof. We denote $\tilde{q} = \frac{\dim(V)}{|H_1||H_2||W(\lambda_1,\lambda_2)|}$ and $q = \frac{|W|}{\dim(V)}$. Let us omit q as in the last proposition. We have

$$S_{2,1}S_{1,2} : \text{Jac}(Y_1) \xrightarrow{\phi_1^*} \text{Jac}(Z) \xrightarrow{S_{\lambda_1}} \text{Jac}(Z) \xrightarrow{S_{\lambda_2}} \text{Jac}(Y_2).$$

Now the composition of $\phi_2^*\text{Nm}_{\phi_2}$ restricted to the variety $P_{\lambda_2} \subset \text{Jac}(Y_2) \subset \text{Jac}(Z)$ coincides with the multiplication by $\text{deg}(\phi_2) = |H_2|$. On the other hand, according to [3] Corollaire 3.3 (a) and (c), we have $S_{\lambda_2} = q(\lambda_2,\lambda_2)S_{\lambda_2}$ and $S_{\lambda_1}S_{\lambda_2}S_{\lambda_1} = q^2(\lambda_1,\lambda_2)^2S_{\lambda_1}$. Moreover, S_{λ_1} operated on P_{λ_1} as multiplication by $q(\lambda_1,\lambda_1)$ and $\text{Nm}_{\phi_1}\phi_1^*$ operates on P_{λ_1} as multiplication by $\text{deg}(\phi_1) = |H_1|$. In this way, multiplying the factors we get $S_{2,1}S_{1,2}$ operates on P_{λ_1} as multiplication by $\frac{|W|^2(\lambda_1,\lambda_1)(\lambda_2,\lambda_2)}{|H_1||H_2|(\dim(V))^2}$. \qed
Remark 4.14. This proposition generalises for two weights the lemma 3.8 of [6] since for \(\lambda_1 = \lambda_2 \) and \(S_{1,2} + \lambda_1 S_{2,1} = S_{2,1} \) and \(S_{\lambda_2}^2 = \bar{e}S_\lambda \).

5. The distinguished form for Schur correspondences

We start by an observation that the trace correspondence between two curves \(Y_1 \) and \(Y_2 \) induce the zero isogeny when restricted to the Prym variety \(P_\lambda \).

Definition 5.1. Let \(T \) denote the trace correspondence on \(Y_1 \) and \(Y_2 \), i.e. given as the composition of

\[
T : \text{Jac}(Y_1) \xrightarrow{\text{Nm}_{\phi_1}} \text{Jac}(X) \xrightarrow{\phi_2^*} \text{Jac}(Y_2)
\]

\[
t : \quad Y_1 \rightarrow \text{Jac}(Y_2)
\]

\[
y_1 \mapsto \sum_{y_2 \in \psi_2^{-1}(\psi_1(y_1))} y_2
\]

We denote \(\phi_T \) the morphism from \(\text{Jac}(Y_1) \) to \(\text{Jac}(Y_2) \) induced by \(T \).

Proposition 5.2. We have \(T|_{P_{\lambda_i}} = 0 \) for \(i = 1, 2 \).

Proof. We have \(T S_{\lambda_1} = (\phi_2^* \text{Nm}_{\phi_1}) \circ S_{\lambda_1} = \phi_2^* (\text{Nm}_{\phi_1} S_{\lambda_1}) \). Now

\[
\text{Nm}_{\phi_1} S_{\lambda_1}(z) = \pi \left(\sum_{g \in W} (\lambda g, \lambda) z^g \right) = \left(\sum_{w \in W} \lambda w, \lambda \right) \pi(z) = 0
\]

because \(\sum_{g \in W} \lambda g \) is a \(W \)-invariant vector of the Cartan-subalgebra \(\mathfrak{h}^* \) and is thus 0. \(\square \)

Remark 5.3. An immediate consequence of the last proposition is that for all \(\alpha \in \mathbb{Q} \), the endomorphisms \(S_{1,2} + \alpha T \) and \(S_{1,2} \) induce the same isogeny in \(\text{Hom}_\mathbb{Q}(P_{\lambda_1}, P_{\lambda_2}) \). It is desirable to use integral correspondences. So we may try to find a \(\alpha \in \mathbb{Q} \) such that

\[
(\lambda_1 g, \lambda_2) + \alpha \in \mathbb{Z} \forall g \in W
\]

since \((S_{1,2} + \alpha t)(y_1) = S_{1,2}(y_1) + \alpha t(y_1) =

\sum_{i=1}^{d} (\lambda_2 g_i, \lambda_1) \phi_2(z^{g_i}) + \alpha \sum_{i=1}^{d} \phi_2(z^{g_i}) = \sum_{i=1}^{d} [(\lambda_2 g_i, \lambda_1) + \alpha] \phi_2(z^{g_i}).
\]

This happens if and only if \((\lambda_2 g - \lambda_2 g', \lambda_1) \in \mathbb{Z} \forall g, g' \in W \). By the \(W \)-invariance of \((, \) it suffices that \(M_g = (\lambda_2 g - \lambda_2 g', \lambda_1) \in \mathbb{Z} \) since \(M_g - M_{g'} = (\lambda_2 g - \lambda_2 g', \lambda_1) \).

This motivates the following definition.
Definition 5.4. We say that $(\cdot,\cdot)_{\lambda_1,\lambda_2}$ is the distinguished bilinear form for a couple of weights (λ_1, λ_2) if

$$(\lambda_2 g - \lambda_2, \lambda_1) \in \mathbb{Z} \quad \forall \quad g \in W$$

and if $(\cdot,\cdot)'$ is another bilinear form satisfying the aforesaid property then $(\cdot,\cdot)' = k(\cdot)$ for some $k \in \mathbb{Z} \setminus \{0\}$.

Remark 5.5. We observe that this condition is independant of the order of λ_1 and λ_2 because

$$(\lambda_2 g - \lambda_2, \lambda_1) = (\lambda_1 g^{-1} - \lambda_1, \lambda_2).$$

Remark 5.6. If we take $\lambda_1 = \lambda_2$, we find the condition of Kanev [5].

Remark 5.7. For this distinguished form $S_{1,2}$ and $S_{2,1}$ are isogenies between \mathcal{P}_{λ_1} and \mathcal{P}_{λ_2}.

5.1. Geometrical construction of the isogeny $\Delta_{1,2}$. In [4], Kanev constructs a geometrical and integral correspondence, both in the one and two weight case, with the key idea of defining the distinguished form $(\lambda_1 w, \lambda_2 w')$ by the intersection pairing. In the one weight case, this correspondence has been generalised to an arbitrary base curve in Lange-Pauly [6]. In the introduction of [7], Lange and Kanev remark that this correspondence can immediately be generalised, in the two weight case also, to an arbitrary base curve. So the question of comparison of the isogenies between Prym varieties induced by the Schur correspondence $S_{1,2}$ defined algebraically and the Kanev Correspondence $\Delta_{1,2}$ defined geometrically arises. We shall show in theorem 5.14 that they satisfy a relation. This generalises the theorem 3.5 of [6] which shows that they satisfy a relation in one weight case. This implies that these correspondences induce the same isogenies between the Prym varieties. So we obtain nothing new.

For the construction of the Kanev correspondence we refer to [4] section 3,4,6, [6] and [7]. Let us take up Kanev’s notation and introduce it only so much as to prove the theorem 5.14. Let L be a lattice endowed with a $W-$action and a fix a bilinear form (\cdot) on L. Kanev in [4] section 4 constructs a new lattice $N(L, \lambda) = L \oplus \mathbb{Z}$ associated to any element $\lambda \in L$. One extends the $W-$action and the bilinear form, denoted (\cdot), from L to $N(L, \lambda)$. Then in section 6, he defines a bigger lattice N such that for all weights λ of L, there exists a $W-$equivariant embedding of $N(L, \lambda)$ into N. The lattice N can also be endowed with a $W-$action and a bilinear form B which will imitate the intersection pairing and these extend the action and bilinear forms on $N(L, \lambda)$ (cf. Proposition 6.3 [4]).
Using the notation of the preceding sections, let us recall the following commutative diagram

\[
\begin{array}{ccc}
Z & \xrightarrow{\phi_1} & Y_1 \\
\downarrow{\phi_2} & & \downarrow{\psi_1} \\
X & \xrightarrow{\psi_2} & Y_2
\end{array}
\]

Let \(U \) be the open subset \(X \setminus \{ \text{the ramification points of } \pi, \psi_1 \text{ and } \psi_2 \} \). We fix a point \(\xi_0 \in U \) and \(z_0 \in Z \) such that \(\pi(z_0) = \xi_0 \). For \(i = 1, 2 \) we denote by \(\mu_i \) the \(W \)-equivariant bijections between the fibers of \(\psi_i \) and the orbit of \(\lambda_i \) with \(\phi_i(z_0) \) as the point chosen in the fiber of \(\psi_i(\xi_0) \). While in the one weight case, any point may be chosen in the fiber of \(\psi \), in the two weight case a compatible choice of points must be made in the fiber of \(\psi_1 \) and \(\psi_2 \). So we choose rather a point in the fiber of \(\pi \). As per [4] section 4.1, we denote by \(\pi_i : N(\Lambda, \lambda_i)_Q \to L_Q \) the \(W \)-equivariant maps inducing \(W \)-equivariant bijections between the “lines” in \(N(L, \lambda_i) \) and the orbit of weight \(\lambda_i \) in \(L_Q \).

Let us fix a bilinear form \((,)\) on \(L_Q \) such that the weight lattice \(P \) be contained in the dual lattice \(L^* \). We denote by \(b_1 \) the symmetric bilinear form

\[
b_1 : P/L \times P/L \to Q/Z.
\]

We can find a lattice \(K \) endowed with a symmetric integral bilinear form \(B_2 \) such that there exist \(K_1 \) satisfying the following conditions

1. \(K \subset K_1 \subset K^* \) where \(K^* \) is the dual lattice of \(K \) with respect to \(B_2 \)
2. there exists an isomorphism \(\gamma : P/L \to K_1/K \)
3. for all \(\bar{\lambda}, \bar{\mu} \in P/L \), we have

\[
b_2(\gamma(\bar{\lambda}), \gamma(\bar{\mu})) = -b_1(\bar{\lambda}, \bar{\mu})
\]

where \(b_2 \) denotes the form induced upon \(K_1/K \) by \(B_2 \).

In [5] section 7.6, the construction of the lattice \(K \) is explained. We shall admit the construction of such a lattice.

Definition 5.8. We define \(N \subset P \oplus K_1 \) as

\[
N = \{(\lambda, \eta) | \gamma(\lambda \mod L) = \eta \mod K\}
\]

Definition 5.9. We define an action of \(W \) on \(P \oplus K_1 \) as follows

\[
W \times P \oplus K_1 \to P \oplus K_1 \\
(w, (\lambda, \eta)) \mapsto (\lambda w, \eta)
\]
Definition 5.10. We denote by B the symmetric bilinear form
\[B : (P \oplus K_1) \times (P \oplus K_1) \rightarrow \mathbb{Q} \]
for \((\lambda_1, \eta_1), (\lambda_2, \eta_2)\) we have \((\lambda_1 \lambda_2) + B_2(\eta_1, \eta_2)\)

Proposition 5.11 ([4] Proposition 6.3). The following propositions hold

1. The lattice N is invariant under W-action.
2. The bilinear form B takes integral values on N.
3. For $\lambda \in P$, there exists a lattice $N'(L, \lambda) \subset N$ isomorphic to $N(L, \lambda)$ as a $\mathbb{Z}[W]$-module.
4. There exists $m \in \mathbb{Z}$ such that the restriction of B to $N'(L, \lambda)$ is equal to $(\cdot, \cdot)_m$.

By the proposition 5.11 we embed $N(L, \lambda_1)$ and $N(L, \lambda_2)$ in N. Let \(\{l_1, \ldots, l_d\}\) and \(\{l'_1, \ldots, l'_d\}\) be the orbits of \((0,1) = l_1\) in $N(L, \lambda_1)$ and \((0,1) = l'_1\) in $N(L, \lambda_2)$ respectively.

Definition 5.12. We define the correspondence $\Delta_{1,2}$ between the curves Y_1 and Y_2 by
\[\Delta_{1,2} : Y_1 \rightarrow \text{Div}(Y_2) \]
for \(y \mapsto \sum_{j=1}^e B(\pi_1^{-1}(\mu_1(y)), l'_j) \mu_2^{-1}(\pi_2(l'_j)) \)

The verification that the definition of $\Delta_{1,2}$ is independent of the path and of the point $z \in Z$ chosen follows from the W-invariance of the bilinear form B (cf. Lemma 3.2 [6]).

Remark 5.13. The correspondence $\Delta_{1,2}$ is integral by the proposition 5.11. It may not be effective. The correspondence $S_{1,2}$ is not necessarily integral.

Theorem 5.14. We have the equality
\[\Delta_{1,2} = S_{1,2} + (B(l_1, l'_1) - (\lambda_1, \lambda_2)) \overline{T} \]
where \overline{T} is the trace correspondence between the curves Y_1 and Y_2.

Proof. It suffices to verify the relation for $y \in Y_1$ such that $\pi_1^{-1}(\mu_1(y)) = l_1$. By the proof of the proposition 5.11 (3), we see that l_1 is of the form $(\lambda_1, \eta_1) \in N'(L, \lambda_1)$ and l'_1 is of the form $(\lambda_2, \eta_2) \in N'(L, \lambda_2)$. Thus $B(l_1, l'_1) = B(l_1, l'_1 w_j) = B((\lambda_1, \eta_1), (\lambda_2, \eta_2) w_j) = B((\lambda_1, \eta_1), (\lambda_2 w_j, \eta_2)) = (\lambda_1 | \lambda_2 w_j) + B_2(\eta_1, \eta_2) = (\lambda_1 | \lambda_2 w_j - \lambda_2) + B_2(\eta_1, \eta_2) = (\lambda_1 | \lambda_2 w_j - \lambda_2) + B((\lambda_1, \eta_1), (\lambda_2, \eta_2)) = (\lambda_1 | \lambda_2 w_j - \lambda_2) + B(l_1, l'_1)$. Thus, we obtain
\[B(l_1, l'_1 w_j) - (\lambda_1, \lambda_2 w_j) = B(l_1, l'_1) - (\lambda_1, \lambda_2) \]
for all \(w_j \in W \). Let us write this difference as \(r \in \mathbb{Q} \). We have

\[
\Delta_{1,2}(y) = \sum_{j=1}^{e} B(\pi_1^{-1}(\mu_1(y)), l'_j) \mu_2^{-1}(\pi_2(l'_j)) = \sum_{j=1}^{e} B(l_1, l'_j w_j) \mu_2^{-1}(\pi_2(l'_j w_j))
\]

\[
= \sum_{j=1}^{e} (\lambda_1, \lambda_2 w_j) \mu_2^{-1}(\pi_2(l'_j w_j)) + rT = k_{1,2}(y) + rT
\]

by the \(W \)-equivariance of \(\mu_2 \) and \(\pi_2 \).

Corollary 5.15. The correspondence \(\Delta_{1,2} \) induces the same isogeny as the correspondence \(S_{1,2} : P_{\lambda_1} \to P_{\lambda_2} \).

Proof. The relation \(\Delta_{1,2} = S_{1,2} + rT \) implies this assertion because by the proposition 5.2 \(T \) acts trivially on \(P_{\lambda_1} \).

Corollary 5.16. We have \(\Delta_{2,1} \circ \Delta_{1,2} = [N] \in \text{End}(P_{\lambda_1}) \) where \(N \) is the integer

\[
\frac{|W|^2(\lambda_1, \lambda_1)(\lambda_2, \lambda_2)}{|H_1||H_2| \dim(V)^2}
\]

of the proposition 4.13.

Proof. We have \(\Delta_{2,1} \circ \Delta_{1,2} = (S_{2,1} + rT)(S_{1,2} + rT) = S_{2,1} S_{1,2} + rS_{2,1} T + rTS_{1,2} + rrT^2 \). We conclude by the propositions 5.2, 4.12 and 4.13.

6. Comparison result

Definition 6.1. Let \(A \) be an abelian variety. For a line bundle \(L \) on \(A \), we denote \(\varphi_L : A \to \hat{A} \) the map \(a \mapsto T_a^* L \otimes L^{-1} \).

Definition 6.2. For a smooth projective curve \(Y \), we denote the principal polarisation

\[
\alpha : \text{Jac}(Y) \to \hat{\text{Jac}(Y)}.
\]

Proposition 6.3. Let \(Y_1 \) and \(Y_2 \) be two smooth projective curves. Let \(P_i \subset \text{Jac}(Y_i), i = 1, 2 \) be sub-abelian varieties. Let \(\varphi_i \) be the restriction of the principal polarisation \(\alpha_i \) on \(\text{Jac}(Y_i) \) to \(P_i \). Let \(\phi : \text{Jac}(Y_1) \to \text{Jac}(Y_2) \) be a homomorphism such that \(\phi \) restricted to \(P_1 \), denoted \(\overline{\phi} \), be an isogeny with values in \(P_2 \). We denote by \(\overline{\phi} : \text{Jac}(Y_2) \to \text{Jac}(Y_1) \) the composition of

\[
\text{Jac}(Y_2) \xrightarrow{\alpha_2} \hat{\text{Jac}(Y_2)} \xrightarrow{\overline{\phi}} \hat{\text{Jac}(Y_1)} \xrightarrow{\alpha_1^{-1}} \text{Jac}(Y_1)
\]

and by \(\overline{\phi} \) the restriction of \(\overline{\phi} \) to \(P_2 \). Then \(\overline{\phi} \) takes values in \(P_1 \). Suppose that there exists an integer \(N \) such that \(\overline{\phi} \phi \overline{\phi} \) be multiplication by \(N \) in \(P_1 \), then we have the equalities

\[
\overline{\phi} \varphi_2 = [N] \varphi_1, \quad \overline{\phi} \varphi_1 = [N] \varphi_2.
\]
Proof. The map $\overline{\phi}$ takes values in P_1 because it is the isogeny dual to ϕ. We have the following commutative diagram

\[
\begin{array}{ccc}
\text{Jac}(Y_1) & \xrightarrow{\phi} & \text{Jac}(Y_2) \\
\downarrow{\phi} & & \downarrow{\phi} \\
P_1 & \xrightarrow{\varphi_1} & P_2 \\
\downarrow{\alpha_1} & & \downarrow{\alpha_2} \\
\hat{P}_1 & \xleftarrow{\widehat{\phi}} & \hat{P}_2 \\
\downarrow{\widehat{i}_P} & & \downarrow{\widehat{i}_P} \\
\text{Jac}(Y_1) & \xleftarrow{\phi} & \text{Jac}(Y_2)
\end{array}
\]

We have $\overline{\phi} \varphi_2 = \overline{\phi} \varphi_2 \overline{\phi}$. Now $\varphi_2 = i_P \alpha_2 i_P$, $i_P \overline{\phi} = \phi i_P$, and $\overline{\phi} i_P = i_P \phi$. So we obtain $\overline{\phi} \varphi_2 = i_P \phi \alpha_2 i_P \phi$. Now one has $[N] = \phi \phi = \alpha_1^{-1} \phi \alpha_2 \phi i_P$. From which we conclude that $[N] \alpha_1 = \phi \alpha_2 \phi i_P$. Thus $\overline{\phi} \varphi_2 = [N] i_P \alpha_1 i_P = [N] \varphi_1$. The other relation is proved similarly.

Corollary 6.4. We have $\Delta_{\lambda, \mu} \varphi_\mu = [N] \varphi_\lambda$ and $\Delta_{\mu, \lambda} \varphi_\lambda = [N] \varphi_\mu$.

Proof. This follows by combining proposition 6.3 and corollary 5.16.

7. Application to the calculation of polarisation

In this section we calculate the integer $N = N_{\lambda_1, \lambda_2} = \frac{|W|^2 (\lambda_1, \lambda_1) (\lambda_2, \lambda_2)}{|H_1| H_2 (\dim(V))}$ for various couples of fundamental weights.

Example 1. A_n: We have $(,)_{\omega_i \omega_j} = (,)_{C-K}$. We have $|W| = (n+1)!$, $|H_1| = k!(n+1-k)!$, $|H_2| = l!(n+1-l)!$, $\dim(V) = n$, $(\lambda_1, \lambda_1) = \frac{-k (n+1-k)}{n+1}$, and $(\lambda_2, \lambda_2) = \frac{l (n+1-l)}{n+1}$. We deduce that $N = C^{k-1} C^{l-1}_{n-1}$. We remark that when $k = 1$ and $l = n$, we have $N = 1$. Thus the prym varieties P_{ω_1} and P_{ω_n} are isomorphic.

Example 2. B_l. We have $(,)_{\omega_i \omega_j} = (,)_{C-K}$ for $i, j < l$ and $(,)_{\omega_i \omega_1} = 2(,)_{C-K}$. We have $|W| = 2^l l!$. We have $|H_{\omega_i}| = i! (l-i)! 2^{l-i}$ for $i < l$ and $|H_{\omega_l}| = l!$. We have $(\omega_i, \omega_i)_{\omega_i, \omega_j} = 2 i$ for $i < l$ and $(\omega_{l}, \omega_{l})_{\omega_i, \omega_1} = l/2 \times 2$. Thus we get that

$$N_{\omega_i, \omega_j} = \begin{cases} 2^{i+j} C_{l-1}^{i-1} C_{l-1}^{j-1} & i, j < l \\ 2^{i+l+2} C_{l-1}^{i-1} & i, j = l \end{cases}$$
Example 3. C_l. We have $(,)_{\varpi_i, \varpi_j} = (,)_{C_{-K}}$. We have $|W| = 2^l l!$. We have $(\varpi_i, \varpi_i) = i$ for all i. We have $|H_{\varpi_i}| = i!(l-i)!2^{l-i}$. Thus we get that

$$N_{\varpi_i, \varpi_j} = 2^{i+j}C_{i-1}^{i-1}C_{j-1}^{j-1}.$$

Example 4. D_l. We have $(,)_{\varpi_i, \varpi_j} = (,)_{C_{-K}}$ for all i, j. We have $|W| = l!2^{l-1}$. We have $|H_{\varpi_i}| = i!(l-i)!2^{n-i-1}$ for $i \leq l-2$, $|H_{\varpi_{l-1}}| = (l-1)!$ and $|H_{\varpi_l}| = l!$. We have $(\varpi_i, \varpi_i) = i$ for $i \leq l-2$ and $(\varpi_{l-1}, \varpi_{l-1}) = (\varpi_1, \varpi_l) = l/4$. Thus we get that

$$N_{\varpi_i, \varpi_j} = \begin{cases} 2^{i+j}C_{i-1}^{i-1}C_{j-1}^{j-1}, & i, j \leq l-2 \\ 2^{l-3+j}C_{i-1}^{l-1}, & i \leq l-2, j = l - 1 \\ 2^{l-3+i}C_{i-1}^{l-1}, & i \leq l-2, j = l \\ 2^{l-3}l, & i = l-1, j = l \end{cases}$$

8. Applications to Abelianisation

In this section we consider a simple Lie Group G of type A, D, E.

Proposition 8.1 (Lange-Pauly). Let Z denote a smooth projective curve admitting a free action by a group W. Let T denote a torus in an algebraic group G and λ a weight. The canonical evaluation map $ev_\lambda : H^1(Z, T)^W \rightarrow \text{Jac}(Z)$ from W–invariant T–bundles on Z to line bundles on Z lifts to $\text{Jac}(Z/\text{Stab}(\lambda))$ i.e the line bundles in the image can be endowed with a canonical $\text{Stab}(\lambda)$–linearisation.

The lift is denoted by \tilde{ev}_λ.

Proposition 8.2. Consider the diagram

$$H^1(Z, T)^W \xrightarrow{e\tilde{ev}_\lambda} P_\lambda \xrightarrow{i_{\lambda, \mu}} \text{Jac}(Y_\lambda) \xrightarrow{\Delta_{\lambda, \mu}} \text{Jac}(Y_\mu)$$

If $(\lambda, \mu) \neq 0$ then we have the equality

$$\Delta_{\lambda, \mu}e\tilde{ev}_\lambda = \frac{|W|}{\dim(V)} (\lambda, \lambda) \frac{(\mu, \mu)}{|H_\lambda||H_\mu|} e\tilde{ev}_\mu.$$

Proof. Put $q = \frac{|W|}{\dim(V)}$. By proposition 4.3 and corollary 5.15, denoting by $S_{\lambda, \mu}$ and $\Delta_{\lambda, \mu}$ the isogenies that these correspondences induce, we have

$$S_{\mu}S_{\lambda} \frac{\dim(V)^2}{|W|(\lambda, \mu)|H_\lambda||H_\mu|} = S_{\lambda, \mu} = \Delta_{\lambda, \mu}.$$
For ease of notation, let us calculate rather with $S_{\mu}S_{\lambda}$. We have

$$S_{\mu}S_{\lambda}(E \times \lambda \mathbb{C}^*) = q(\lambda, \mu)(E \times \lambda \mathbb{C}^*)(\sum_{s \in W}(\lambda s, \mu)s) = q(\lambda, \mu)E \times \sum_{w \in W}(\lambda s, \mu)\lambda s \mathbb{C}^*.$$

We denote $\gamma = \sum_{s \in W}(\lambda s, \mu)s$. Now, for any weight κ, let us calculate (γ, κ). We have

$$(\gamma, \kappa) = \sum_{s \in W}(\lambda s, \mu)(\lambda s, \kappa)$$

which by lemma 4.2 is equal to $q(\lambda, \lambda)(\mu, \mu)$.

Thus extending μ to a basis of V with other vectors orthogonal to μ, we get that

$$\gamma = q(\lambda, \lambda)(\mu, \mu).$$

Thus $S_{\mu}S_{\lambda}(E \times \lambda \mathbb{C}^*) = q^2(\lambda, \mu)(\lambda, \lambda)(\mu, \mu)E \times \mu \mathbb{C}^*$ which is equivalent to the assertion in the proposition. \(\square\)

Proposition 8.3. $\Delta_{2,3}\Delta_{1,2} = |W|/(\langle \lambda_2, \lambda_3 \rangle)^2 \Delta_{1,3}$.

Proof. The map $\tilde{\ev}_\lambda$ is surjective onto the Prym variety P_λ. So it suffices to take a T-bundle $E \in H^1(Z, \mathcal{T})^W$ and compare $\Delta_{2,3}\Delta_{1,2}\tilde{\ev}_{\lambda_1}(E)$ with $\tilde{\ev}_{\lambda_3}(E)$. By proposition 8.2 we get the desired result. \(\square\)

Let $P(G)$ denote the weight lattice of G. We have a canonical bijection

$$H^1(Z, \mathcal{T}) \rightarrow \text{Hom}(P(G), \text{Pic}(Z)).$$

Now the group W acts on the curve Z and therefore on line bundles on Z. It also acts on the weight lattice $P(G)$. The W-equivariant homomorphisms correspond to W-invariant T-bundles on Z for the twisted action.

Proposition 8.4. Let M denote the exponent of the group $P(G)/\mathbb{Z}[W]\lambda$. We have an inverse isogeny δ_λ to $\tilde{\ev}_\lambda$ such that $\delta \tilde{\ev}_\lambda = [M]$ in $H^1(Z, \mathcal{T})^W$.

Proof. Let $L \in P_\lambda$. We define $\psi_L : \mathbb{Z}[W]\lambda \rightarrow \text{Pic}(Z)$ as the unique W-equivariant map sending λ to L. Now identifying $H^1(Z, \mathcal{T})^W$ with $\text{Hom}_W(P(G), \text{Pic}(Z))$ we get δ as the composition of $\psi_L[M]$. \(\square\)
Corollary 8.5. We have an isogeny between the Prym varieties $\bar{ev}_\mu \delta_\lambda : P_\lambda \to P_\mu$. Let M_λ (resp. M_μ) denote the exponent of $P(G)/\mathbb{Z}[W]\lambda$ (resp. $P(G)/\mathbb{Z}[W]\mu$). We have

$$\bar{ev}_\lambda \delta_\mu \bar{ev}_\mu \delta_\lambda = [M_\mu M_\lambda].$$

Proof. It is immediate from the proposition 8.4. \hfill \Box

Corollary 8.6. Consider the diagram

$$\begin{array}{ccc}
H^1(Z, T)^W & \to & P_\lambda \\
\downarrow \delta_\mu & & \downarrow \delta_\mu \\
\Delta_{\lambda, \mu} & \to & P_\mu
\end{array}$$

We have the equality

$$\delta_\mu \Delta_{\lambda, \mu} = \frac{|W| (\lambda, \lambda) (\mu, \mu) M_\mu}{\dim(V) H_\lambda H_\mu |M_\lambda|} \delta_\lambda.$$\hfill

Proof. Calculating $\delta_\mu (\Delta_{\lambda, \mu} \bar{ev}_\lambda) \delta_\lambda$ by proposition 8.2 and applying proposition 8.4 we get the desired result. \hfill \Box

9. Open problems

In view of proposition 3.8 and 3.11 one would like to calculate the translation subgroups of the restriction of the principal polarisations on $\text{Jac}(Z)$ to the Prym varieties P_V and P_λ. One would also like to calculate the Mumford Theta groups of a line bundle representing these restricted polarisations and the Weil pairing induced on its associated translation subgroups.

One would like to compute the kernel of $\bar{ev}_\mu : H^1(Z, T)^W \to P_\mu$ of the proposition 8.2 for μ arbitrary. The reason is that one could then compute the restriction of the principal polarisation φ_μ on $\text{Jac}(Y_\mu)$ to P_μ as follows. Let Λ denote the lattice associated to an irreducible representation defined over \mathbb{Q} of a Weyl group W. Then there are elements $\lambda \in \Lambda$ such that \bar{ev}_λ be an isomorphism. This can be seen as follows. One has $\ker(\bar{ev}_\lambda) \subset \ker(ev_\lambda)$ where

$$ev_\lambda : H^1(Z, T)^W \to \text{Jac}(Z)$$

and $T = \text{Hom}(\Lambda, \mathbb{C}^*)$. By Lange-Pauly [6] proposition 5.2 one has

$$\ker(ev_\lambda) = \text{Hom}_W(\Lambda/\mathbb{Z}[W]\lambda, \text{Jac}(Z))$$

and one has many weights λ for which $\mathbb{Z}[W]\lambda = \Lambda$. (A list is given in [6] Theorem 8.1). Then one can calculate the kernel of $\Delta_{\lambda, \mu} : P_\lambda \to P_\mu$
by proposition 8.2. Now by the general theory \cite{1} Chapter 23, for the inclusion
\[
\{0\} \subset \ker(\Delta_{\lambda,\mu}) \subset \ker(\Delta_{\lambda,\mu}) \perp \subset K(\Delta_{\lambda,\mu}^*(\varphi_\mu|P_\mu))
\]
one obtains
\[
\ker(\Delta_{\lambda,\mu}) \perp / \ker(\Delta_{\lambda,\mu}) = K(\varphi_\mu|P_\mu)
\]
and by corollary 6.4 one can compute \(K(\Delta_{\lambda,\mu}^*(\varphi_\mu|P_\mu))\).

Recall that the proof of the computation of the dimension of Verlinde Spaces in \cite{BNR} for \(\text{SL}(n)\) consisted of two parts - namely, the abelianisation part and the computation of the restriction of the principal polarisation on the Jacobian of the spectral curve \(X_s\) to the Prym variety \(\text{Prym}(X_s/X)\). So for a general reductive group \(G\), it seems interesting to compute \(K(\varphi_\mu|P_\mu)\) for all weights \(\mu\) to extend this proof technique.

One can describe the kernel of \(\tilde{e}_\mu\) geometrically as follows. Recall by Proposition 6.6 \cite{6}, for \(E_T \in H^1(\mathbb{Z}, T)^W\) the bundle \(E_T \times_T N\) admits a canonical \(W\)–linearisation. Let \(C_\mu\) denote the one dimensional representation upon which \(T\) acts by character \(\mu\). We denote by \(V(\lambda)\) the isotypical component of \(\lambda\) in \(\text{ResInd}_T^N(C_\mu)\). The proof of Proposition 6.11 in \cite{6} shows that \(E_N \times V(\lambda)\) admits a \(\text{Stab}(\mu)\) linearisation. Now the linearisations on \(e_\mu(E)\) and \(E_N \times V(\lambda)\) do not necessarily preserve the natural inclusion \(e_\mu(E) \hookrightarrow E_N \times V(\lambda)\). The kernel of \(e_\mu\) consists of those \(T\)–bundles in \(\ker(ev_\mu)\) such that the linearisations respect the inclusion.

References

\cite{1} Mumford, David, *Abelian varieties*, Tata Institute of Fundamental Research Studies in Mathematics, No. 5, Published for the Tata Institute of Fundamental Research, Bombay, 1970.

\cite{2} Springer, T. A., *A construction of representations of Weyl groups*, Inventiones Mathematicae, Volume 44, 1978, Number 3, Pages 279–293.

\cite{3} Mérindol, Jean-Yves, *Variétés de Prym d’un revêtement galoisien*, Journal für die Reine und Angewandte Mathematik, Volume 461, 1995, Pages 49–61.

\cite{4} Kanev, Vassil, *Spectral curves and Prym-Tjurin varieties. I*, Abelian varieties (Egloffstein, 1993), Pages 151–198, de Gruyter, Berlin, 1995.

\cite{5} Kanev, Vassil, *Spectral curves, simple Lie algebras, and Prym-Tjurin varieties*, Theta functions—Bowdoin 1987, Part 1 (Brunswick, ME, 1987), Proc. Sympos. Pure Math., Volume 49, Pages 627–645, Amer. Math. Soc.

\cite{6} Lange, Herbert and Pauly, Christian, *Polarizations of Prym varieties for Weyl groups via Abelianization*, Journal of the European Mathematical Society, to appear.

\cite{7} Lange, Herbert and Kanev, Vassil, *Polarization type of isogenous Prym-Tjurin Varieties* ; Preprint (2007), Contemp. Math., to appear.
[8] Beauville, Arnaud and Narasimhan, M. S. and Ramanan, S., *Spectral curves and the generalised theta divisor*, Journal für die Reine und Angewandte Mathematik, Volume 398, 1989, 169–179

[9] Lange, H. and Recillas, S., *Polarizations of Prym varieties of pairs of coverings*, Archiv der Mathematik, Volume 86, 2006, 2, 111–120,

[10] Birkenhake, Christina and Lange, Herbert, *Complex abelian varieties*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Volume 302, Second edition, Springer-Verlag, Berlin, 2004

[11] Donagi, Ron, *Decomposition of spectral covers*, Journées de Géométrie Algébrique d’Orsay (Orsay, 1992), Astérisque, 218, 1993, 145–175