Publications search optimization: Comparison of a homegrown —API approach versus manual publication searches at an NCI designated cancer center

Colin Cernik
University of Kansas Medical Center, USA

John Fife
Jeffrey Thompson
Lisa Harlan-Williams
Dinesh Pal Mudaranthakam
University of Kansas Cancer Center, USA

Abstract

One measure of research productivity within the University of Kansas Cancer Center (KU Cancer Center) is peer-reviewed publications. Considerable effort goes into searching, capturing, reviewing, storing, and reporting cancer-relevant publications. Traditionally, the method of gathering relevant information to the publications is done manually. This manuscript describes the efforts to transition KU Cancer Center’s publication gathering process from a heavily manual to a more automated and efficient process. To achieve this transition in the most customized and cost-effective manner, a homegrown, automated system was developed using open source API among other software. When comparing the automated and the manual processes over several years of data, publication search and retrieval time dropped from an average of 59 h to 35 min, which would amount to a cost savings of several thousand dollars per year. The development and adoption of an automated publications search process can offer research centers great potential for less-error prone results with a savings in time and cost.

Keywords
data mining, IT healthcare evaluation, databases and data mining, health information on the Web, text mining

Corresponding author:
Dinesh Pal Mudaranthakam, Department of Biostatistics and Data Science, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
Email: dmudaranthakam@kumc.edu

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Introduction

All NCI designated cancer centers must contend with publications’ search strategies.\(^1\) A 2018 poll of cancer center administrators and IT professionals found that some centers spend as many as 85 h a month on publications data management.\(^2\) Most cancer centers in the poll spend an average of 13 h a month, while the more technically sophisticated cancer centers spend between 1 to 3 h a month searching, retrieving, and verifying publications. Of the cancer centers polled, 34% were using a homegrown system, 17% NIH systems, and 13% vendor systems.

Homegrown systems are any set of tools and processes developed, deployed, and managed directly by cancer centers for the capture, storage, verification, and reporting of publications.\(^3\) These can include Application Programming Interface (API) that can automatically interact with Entrez, the NIH information retrieval system containing PubMed. Additionally, homegrown systems can include an ensemble of locally managed databases for storage and retrieval, as well as custom-built web tools to allow for publication review and verification.

According to a 2018 survey\(^4\) of nearly 300 managers at various businesses, 62% responded that there are processes in their work that could be automated. From that same survey, 55% of managers spend about 8 h a week on “administrative tasks rather than strategic, high-value initiatives.”\(^5\) This response can also be heard throughout academic institutions as there is usually a great amount of time spent to integrate such a system.\(^2\) To better understand and appreciate the opportunities and benefits of a homegrown, automated publication process, it is helpful to detail the manual publication process.

The KU Cancer Center is a matrix cancer center with consortium members spread across four different campuses. The current publications search process requires manual time and labor and uses a combination of NIH and locally managed tools. At the start of each calendar year, saved searches are set up for all KU Cancer Center members using MyNCBI, an NIH search tool and notification system within PubMed. MyNCBI can be scheduled to deliver email notifications for new publications with any level of frequency the user requires. KU Cancer Center receives MyNCBI notifications on a weekly basis.

Each publication is then reviewed by querying the PMID number against the locally managed KU Cancer Center SQL Server database. A query match indicates that the publication already exists in the database. Thus, the MyNCBI notice is disregarded. A query that returns no results indicates that the publication does not currently exist in the database. At this point, a review is conducted to determine if the publication is a correct match by PI name and institutional affiliation.

This vetting occurs by opening the hyperlink within the MyNCBI email and viewing the PubMed citation. When more information is required, the citation is then imported into EndNote where citation meta data can be viewed to verify that a publication belongs to a PI affiliated with the KU Cancer Center. Vetted publications are then entered into a local SQL Server database. This manual process requires several hours per work throughout the calendar year.

Clearly there is a real administrative need for efficiency in publications searches. Several studies suggest that there is promise in piloting an automated search process. Choong et al. described an internally developed automatic citation method that, when compared to a manual search process, was accurate in identifying and retrieving citations.\(^5\) According to Ongenaert and Dehaspe, automated publications searches and text mining can bring results with increased speed and selectivity.\(^6\) While initial implementation costs for an automated search system may be high, Padilla et al. found that an automated search method, targeting cancer related publications authored by educational trainees, retrieved 20% more publications than a manual search.\(^7\) This paper examines the KU Cancer Center’s effort to leverage the obvious advantages of an automated publications search system.
Methods and material

Figure 1 describes both the process the manual and automated and how they vary. There is a paradigm shift for the data manager, instead of manually keeping track of every publication and weeding the false positives he or she now can just focus on reviewing a single list or source of truth that is generated by the automated R script.

In response to this heavy workload, Scientific Citation Data Mining Search (SCiDS) was developed. SCiDS was developed using R, which utilizes the “easyPubMed” package to call the APIs from PubMed to retrieve the publications. Figure 2 demonstrates the pseudo code as well as the architecture of SCiDS. A membership list for a calendar year is supplied as the input file. The program then searches PubMed for all the publications for the corresponding member.

As a validation check, the program makes sure the full name matches along with the affiliation of the member. This process is repeated for every member included on the membership list. Once the entire list of members has been searched, all the publications found are documented to a file, which is then reviewed and validated before finalization. A pilot test was run on the research membership lists for calendar years 2016 through 2019. The PMIDs from the automated results were then compared to PMIDs from the manually gathered list to see what was and was not caught. Both methods were limited to full published papers. Initially, parameters included variables such as title,
authors, the author’s affiliation, and the PMID. Any duplicate articles from the automated list were checked and removed.

As described in Figure 2, the custom R macro is automated, to run at a fixed frequency utilizing the dynamic KU cancer center members list as the input. Figure 3 depicts a mock Pseudo Code that was utilized to build the algorithm. Based on the authors full name all the publications that have been indexed are retrieved and housed into a excel file which is then imported into a SQL database. Our data scientist would use the newly populated information to perform the final vetting process before freezing and generating the list of publications for a given calendar year.

Results

After optimizing the R code to quickly search for publications and related information such as publisher and impact factor, the process was run for the member lists in each year from January 2016 to August 2019. This was done to verify the publications found for those years and comparing them to an already established list.

A significant reduction in time spent searching was seen. On average it took roughly 35 min, across four different runs, to generate the list of publications that would take at least 60 h on an average manually as represented in Table 1. A cost analysis was done to examine the differences in cost of creating these lists using time and median yearly salary for a data analyst. Not only is there significant time being saved but cost as well. Across cancer centers nationally that use a manual method, the potential for cost saving is substantial.

In many cases, SCiDS was able to capture more publications than the manual approach. From this, new publications could be added to the already established list. The automated list tends to capture about three-fourths, on average, of the manually created lists, using PubMed alone. There
are publications that can be found on other scientific publication search engines such as Web of Science and Google Scholar, but not on PubMed. Sensitivity was measured by comparing the percentage of articles from the automated lists that were also on the manually gathered lists. Results of our sensitivity analysis are represented in Table 2.

Discussion

Certain metrics come with difficulties to obtain with an automated process. It is common that the Journal Impact Factor (JIF) cannot be obtained until sometime after research is published since JIFs are calculated and updated every year. One future goal is to develop an improved and automated way of obtaining JIFs for each publication. When it comes to common names, having their middle name when applicable is helpful in narrowing down specific members. Ideally, having researchers submit their ORCIDs, a unique identifier for scientific researchers, for their work would increase the process greatly since there would not have to be a need to rely solely on searching names. Future mandating of ORCIDs by NIH will help this process. Integrating a new system always does not come quickly and usually has some form of challenges, but an automated process like this is a step forward for a more efficient workflow.

Since SCiDS mainly utilizes PubMed, it misses out on publications that can only be found on other search engines such as Web of Science and Google Scholar. Adding these to SCiDS is a future goal. Additionally, SCiDS would be utilized more often to keep up with the most up to date publications, additionally the list that is produced by SCiDS would be more precise in that there would be less of a chance of adding duplicate publications. By filtering the data on an annual basis, this would also reduce the chance of adding publications that are not relevant to the cancer members. This would make verifying the list go faster since the data analyst would not have to sift anywhere from 500 to even 800 publications. Even in the early stages, SCiDS has shown that it can drastically reduce the time spent searching for member publications in an efficient manner. Also, because SCiDS uses API and homegrown coding, additional modules can be built that could improve publication verification and incorporated value-added information such as JIFs.
Acknowledgements

We would like to extend our gratitude to KU Cancer Center Leadership for the indispensable guidance and advice they have provided on the design and development of SCiDS.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study was supported by the National Cancer Institute (NCI) Cancer Center Support Grant P30 CA168524 and used the Biostatistics and Informatics Shared Resource (BISR).

ORCID iDs

John Fife https://orcid.org/0000-0001-7000-6414
Dinesh Pal Mudaranthakam https://orcid.org/0000-0001-9767-1158

References

1. National Institutes of Health. Cancer Center Support Grants (CCSGs) for NCI-designated Cancer Centers (P30), 2016, https://cancercenters.cancer.gov/
2. Porter AL and Cunningham SW. Tech mining exploiting new technologies for competitive advantage. Hoboken, NJ: John Wiley & Sons Inc., 2005.
3. William M, Michael T and Mahendra Y. Comparative methods of CCSG data collection. In: Proceedings from cancer center administrators forum – Information Technology (CCAF – IT), Portland, OR, 16 March 2018. Cancer Center Administrators Forum.
4. Cory A. formstack [Internet]. Cory A (ed.) BLASTmedia, 2018. https://www.formstack.com/blog/2018/report-workflow-automation-2018/ (accessed 2019).
5. Choong MK, Galgani F, Dunn AG, et al. Automatic evidence retrieval for systematic reviews. J Med Internet Res 2014; 16(10): e223.
6. Ongenaert M and Dehaspe L. Integrating automated literature searches and text mining in biomarker discovery. BMC Bioinform 2010; 11: O5.
7. Padilla LA, Desmond RA, Brooks CM, et al. Automated literature searches for longitudinal tracking of cancer research training program graduates. J Cancer Educ 2018; 33(3): 564–568.
8. Team RC. R: a language and environment for statistical computing. Vienna, Austria: R Core Team, 2014, http://www.R-project.org/.
9. Damiano F. easyPubMed: search and retrieve scientific publication records from PubMed 2019, https://cran.r-project.org/web/packages/easyPubMed/index.html.
10. National Institutes of Health. Requirement for ORCID iDs for Individuals Supported by Research Training, Fellowship, Research Education, and Career Development Awards Beginning in FY 2020, 2019, https://grants.nih.gov/grants/guide/notice-files/NOT-OD-19-109.html.
11. Reed C. Build vs. Buy. In: Proceedings from cancer center administrators forum - Information Technology (CCAF - IT), Portland, OR, 2018. Cancer Center Administrators Forum.