OUTFLOWS FROM MASSIVE YOUNG STELLAR OBJECTS AS SEEN WITH THE INFRARED ARRAY CAMERA

HOWARD A. SMITH, J. L. HORA, AND M. MARENGO
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138; hsmith@cfa.harvard.edu
AND
JUDITH L. PIPHER
Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627

Received 2006 January 18; accepted 2006 February 10

ABSTRACT

The bipolar outflow from the massive star-forming cluster in DR 21 is one of the most powerful known, and in IRAC images the outflow stands out by virtue of its brightness at 4.5 μm (band 2). Indeed, IRAC images of many Galactic and extragalactic star formation regions feature prominent band 2 morphologies. We have analyzed archival ISO SWS spectra of the DR 21 outflow and compare them to updated H2 shocked and UV excitation models. We find that H2 line emission contributes about 50% of the flux of the IRAC bands at 3.6, 4.5, and 5.8 μm, and is a significant contributor to the 8.0 μm band as well, and confirm that the outflow contains multiple excitation mechanisms. Other potentially strong features, in particular Brα and CO emission, have been suggested as contributing to IRAC fluxes in outflows, but they are weak or absent in DR 21; surprisingly, there also is no evidence for strong PAH emission. The results imply that IRAC images can be a powerful detector of, and diagnostic for, outflows caused by massive star formation activity in our Galaxy, and in other galaxies as well. They also suggest that IRAC color-color diagnostic diagrams may need to take into account the possible influence of these strong emission lines. IRAC images of the general ISM in the region, away from the outflow, are in approximate, but not precise, agreement with theoretical models.

Subject headings: infrared: ISM — ISM: individual (DR 21) — ISM: jets and outflows — ISM: molecules — stars: formation

Online material: color figures

1. INTRODUCTION

DR 21 contains one of the most massive star formation regions and molecular outflows in our galaxy. It is an excellent test bed for studying the conditions of massive star formation and for comparing competing ideas about the formation and subsequent evolution of massive new stars and their environments, for example, the relative roles of cloud collisions and fragmentation in these processes. The extended DR 21 nebula consists of a filamentary ridge of massive star-forming clusters that stretch from DR 21 (main) northward to W75N, and includes clusters around the bright maser source DR 21(OH). Along with the rest of the Cyg X complex in which it is embedded, DR 21 appears as part of a shell-like structure around the supermassive Cyg OB2 association. This association lies in the direction of a tangent to the Orion arm of the Galaxy, and as a result its distance is relatively difficult to estimate. T. M. Dame, using CO and H I maps of the galaxy, estimates the distance to Cyg OB2 as 1.7 kpc (2005, private communication; Butt et al. 2003). We adopt this value for DR 21 even though the most commonly used distance in the past literature has been 3 kpc. We thus revise downward a number of earlier estimates of luminosity, etc., so as to scale accurately to this closer distance.

The giant molecular outflow in DR 21 is one of the most powerful outflows in our Galaxy. An estimated driving force (estimated from the H2 lines) of ~5.5 x 1049 dynes (Garden et al. 1986) exceeds the driving force of the Orion IrC2 outflow by almost a factor of 6 (Cabrit & Bertout 1986). The outflow velocity of about 60 km s⁻¹ or more drives a mass estimated at >3000 M☉. The energy of the flow is in excess of 2 x 10⁴⁸ ergs; the luminosity of the 2 μm H2 flow alone has been calculated to be 1800 L☉, and, as we show below, the 2 μm lines are not even the brightest ones. Cyganowski et al. (2003) claim evidence for a second “highly collimated” flow perpendicular to the main one. In part because of the distance to DR 21, and also because of the high extinction there, our understanding of the complex has been somewhat limited. That DR 21 has regions of very high extinction was shown by Chandler et al. (1993a, 1993b), who use the CS line observations and 1.3 mm dust, respectively, to conclude that clumps exist with column densities as high as N(H + H₂) > 3 x 10²⁴ cm⁻²; C18O observations (Wilson & Mauersberger 1990) had provided estimates that were also substantial but about 10 times less. Adjusting to the closer distance of 1.7 kpc and converting to visual extinctions give an estimate in places of AV ~ 1000. Spitzer Infrared Spectrograph (IRS) data on the embedded young protostar find a very deep CO₂ absorption also consistent with this estimate (H. A. Smith et al. 2006, in preparation). The Infrared Astronomical Satellite (IRAS) detected a very bright point source near the apparent source of the massive outflow, but identifying the actual source of the flow, a massive young stellar object (YSO), has proved elusive. Previous studies of the outflow region identified a source “IRS 1” as the driver for the outflow, but Infrared Array Camera (IRAC) images find no point source coincident with the IRAS location. Instead, we find one overwhelmingly strong 8.0 μm (band 4) point source located about 10'' from the position of the K-band star first dubbed IRS 1 (Davis & Smith 1996). This IRAC source was undetected at K; it is a young ~O7 star with LIR ~ 1.5 x 10²⁵ L☉, apparently still accreting from its envelope. A full description of the source and its environment is in H. A. Smith et al. (2006, in preparation). It is this source that is thought to power the immense bipolar outflow from the cloud.
2.1 Observations and Analysis

2.1. IRAC Observations of the Outflow

The original DR 21 IRAC observations were taken as an Early Release Observation (ERO) and published in Marston et al. (2004). We repeated those observations in HDR and subarray modes in regions around the bright point source and the outflow that had suffered from saturation effects. (See the Spitzer Observer’s Manual ver. 6.0 for details of these observing modes, which read out the data in much shorter time intervals.) A full description of the point source and its nature will be presented elsewhere (H. A. Smith et al. 2006, in preparation). The data analyzed here were processed in pipeline S11.0.2. Figure 1 shows the IRAC 3.6/4.5/8.0 μm (bands 1, 2, and 4, respectively) color composite of the western lobe of the outflow region.

Davis & Smith (1996) obtained high-resolution, high signal-to-noise ratio (S/N) images of the H2 1–0 S(1) line emission from DR 21. It was this same Davis & Smith paper that most convincingly identified a bright 2 μm star as the source of the outflow. As we show in more detail (H. A. Smith et al. 2006, in preparation), this is an erroneous identification, and the actual driving star is located about 15 pc away; it is not apparent in any K-band images but dominates the entire region at 8 μm. Davis & Smith used a narrowband (Δλ = 0.02 μm) filter centered at 2.12 μm to obtain their H2 image, and also a wide-band K filter, and subtracted the scaled K-band image from the narrowband image to produce the line map. Their spatial resolution was 0'0.63 pixel⁻¹. In Figure 2 we superimpose contours of their 1–0 S(1) image on our (lower resolution) IRAC 4.5 μm (band 2) image. There is a nearly exact correspondence between the H2 peaks and filaments and the 4.5 μm structures. This close correspondence across the ~1 pc length of the flow suggests that the conclusions we draw from an analysis of the smaller ISO SWS field can be safely generalized to the entire shocked outflow. Superimposed on the image is the placement of the ISO SWS beam for the primary spectral observation, TDT 04402144—it is this region of the shock that we analyze in detail below.

2.2. Infrared Space Observatory’s Short Wavelength Spectrometer Observations

ISO SWS obtained seven sets of observations of the DR 21 “west lobe” in addition to another 15 observations of varying quality centered elsewhere around the region. Wright et al. (1997) published an initial SWS analysis of the outflows in a short abstract and concluded that a combination of multiple shock components and some UV excitation were probably at work. S98 analyzed and published the results from one of the outflow observations, TDT 34700904, in their meticulous analysis of the H2 emission from DR 21 West. That SWS observation, which was not a full-wavelength scan but rather a set of individual line scans, covered and obtained data on five of the H2 lines: the 0–0 S(1) at 17.03 μm, and four that fall in the IRAC coverage: the 0–0 S(5) and 0–0 S(7) lines, and the 1–1 S(7) and 1–1 S(9) lines. We analyzed that data set and are in agreement with all of their line fluxes except for the flux in the 0–0 S(7) line, for which we measure a value 22% larger, more than the uncertainty in the data; we use our value below and note that the difference may be due to our use of a more recent pipeline processing and calibration. Based on the observed line strengths, and combined with 2 μm observations of H2, S98 concluded that the excitation in the DR 21 outflow could not be produced by a simple C- or J-shock, and a range of shock strengths was needed. This conclusion was in contrast to the results of Fernandes et al. (1997), who relied on ground-based observations (only) to argue that the H2 lines in the DR 21 outflow were best fit by a PDR model with an FUV field in the range of 2 < g < 3 and preshocked density n ≳ 3 × 10⁴ cm⁻³. Smith & Rosen (2005) extended the Fernandes et al. analysis to simulate the expected images from IRAC observations under a wide range of shocked conditions.

We examined all seven sets of ISO SWS observations of the DR 21 west lobe outflow in an effort to try to understand the IRAC images more precisely. None of the SWS scans provided full, contiguous coverage. TDT 04402042 emphasized wavelengths over 10 μm, TDT 04402144 (Fig. 3 shows this spectral scan in the 7–9.5 μm interval) was contiguous from about 6.5 to 9.5 μm, and TDT 19301741 consisted of a series of some 21 short line scans between 2.2 and 36 μm. All these TDTs were taken at different epochs and included slightly different portions of the brightest part of the outflow, but all were centered roughly on the same part of the outflow, differing in location only by about 10″ (the latter TDT also used a larger beam size, 20″ × 33″). The new observation we use most, TDT 04402144, was centered 9.4″ to the northeast of the S98 slit and was rotated clockwise by 56°. None of these differences have any substantial effect on our rather general conclusions. The new TDTs we analyze here provide high-S/N fluxes on four additional H2 lines in the IRAC wavelength coverage beyond the five analyzed in the S98 study: the 0–0 S(9) and 0–0 S(11) lines, the 1–1 S(5) line, and the 1–0 O(5) line. In addition, SWS detected the weak hydrogen recombination line Brα line at 4.052 μm and set useful limits on some others.

2.3. The Strong H2 Features

The SWS spectral scan of the bright outflow over the 7–8.8 μm interval is presented in Figure 3. The H2 0–0 S(4) and S(5) lines clearly dominate this interval. For all of the lines we calculate their corresponding fluxes in IRAC by converting each of the

1 See http://ssc.spitzer.caltech.edu/documents/som/som60.pdf.
observed line strengths into a flux density in the appropriate IRAC band using the IRAC instrumental response procedures as described in the IRAC Data Handbook (§ 5.2). The Handbook, version 2.0, contains some significant errors in the Photometry and Calibration section (§ 5). In particular, the expression for converting flux into flux density (p. 41) is missing a wavelength ratio and should read $F = F_{\nu,0}(\Delta \nu/\lambda_0)/R_l$, and the Handbook, Table 5.2, lists inaccurate values for the bandwidth $\Delta \nu$ to be used in this expression; they are about 30%–40% too high in the version 2.0 table. We have used the corrected values (B. Reach 2006, private communication), as they appear in the new version of the Handbook (ver. 3.0). The flux density in the H_2 0–0 $S(4)$ line, converted to what it contributes to the IRAC 8.0 μm band, is 38.0 mJy. The 0–0 $S(5)$ line at 6.907 μm contributes another 66.0 mJy, making a total line flux density in the 8.0 μm band of 104 ± 10 mJy. All of the observed H_2 lines detected by ISO SWS observations are listed in Table 1.

The results confirm that in the outflow region of DR 21 the H_2 lines contribute significantly to the IRAC band fluxes. We find that in the 4.5, 5.8, and 8.0 μm bands the ISO SWS observed line strengths alone account for between 13%–30% of the total measured IRAC fluxes (Table 2) in the outflow region studied by SWS (as indicated on Fig. 2); this value drops to about 6% for the 3.6 μm band. The slight uncertainties in the respective ISO measurements, for example, due to the slight rotations in the SWS beam between the different TDT observations of different lines, do not appreciably alter any of our conclusions. Figure 4 plots the measured IRAC flux densities summed over the region equivalent to the ISO SWS beam (diamonds), along with the contributions from the observed ISO SWS H_2 lines in those IRAC bands (triangles).

2.4. The Faint Continuum and PAH Features

Particularly worthy of notice in the mid-infrared (mid-IR) spectrum shown in Figure 3 (top) is the extremely faint continuum on which the H_2 lines sit, only about 0.93 ± 0.06 Jy. The complete spectrum shown in Figure 3 (top) is the extremely faint continuum on which the H_2 lines sit, only about 0.93 ± 0.06 Jy. The complete
absence of any characteristic sign of polycyclic aromatic hydrocarbon (PAH) emission features in the spectrum is striking. For comparison, Figure 3 (bottom) shows the spectrum of the bright region in DR 21 around the driving source about 4000 away. Here the strong PAH features completely dominate the spectrum, and the H2 0–0 S(4) line, although present, is a peripheral feature. We were able to investigate the strength of the 3.4 μm PAH feature in the outflow as well, since two of the seven sets of SWS scans of the outflow did have marginally usable subscans over the this feature. In one scan (TDT 04402144) we were just able to detected the presence of this feature at 3 σ, at a level of (1.2 ± 0.4) × 10^{-19} W cm^{-2}; it was undetectable in the others due to high noise. Figure 3 (bottom) of the main DR 21 cluster also shows clearly the emission lines from \([\text{Ar} \scriptstyle{\ II}]\) 6.985 μm, \([\text{Ar} \scriptstyle{\ III}]\) 8.991 μm, and the He \(\scriptstyle{\ II}\) 12–10 line at 7.46 μm, that are excited by the embedded O star (H. A. Smith et al. 2006, in preparation).

The absence of PAH emission in the outflow was a surprise. It is well known that PAH features are weak or absent in the immediate vicinity of active galactic nuclei (AGNs) (e.g., Risaliti 2004; Lutz 2000), in some compact H\(\scriptstyle{\ II}\) regions (Roelfsema et al. 1996), and in some planetary nebulae (Bernard-Salas & Tielens 2005). The reasons for these differences in PAH emission are not well understood. Strong ultraviolet radiation (energies over about 50 eV) will destroy PAHs (e.g., Risaliti 2004), for example, in the region of AGNs; dehydrogenated PAH species have weaker C-H bands (the 3.4 and 11.2 μm in particular; Pauzat et al. 1997; Verstrase et al. 2001); and large PAHs (\(N_{\text{carbon}} > 100\)) have dominant 6–16 μm features, while small ones dominate at 3.3 μm (Schutte et al. 1993). The ionization state is also a key parameter for PAHs. Hudgins & Allamandola (2004) provide extensive laboratory data that indicate the 5.8 and 8.0 μm band PAH features are comparatively very weak in neutral species but are strong in ionized PAHs. The example here of DR 21 West shows that PAH emission can change dramatically over only a few tenths of a parsec, as the environment changes from the neighborhood of a hot young massive star to the outflow of a rapidly moving shock. While it is clear that several types of processes are able to destroy or modify the PAH molecules in a way consistent with our observations, we cannot tell from our data alone which of these potential scenarios is the correct explanation. We will return to this general problem in the context of the general interstellar medium (ISM) in J. L. Hora et al. (2006, in preparation). For completeness, we note

Fig. 2.—IRAC 4.5 μm band image, with the K-band H\(\scriptstyle{\ II}\) 1–2 S(1) line emission map overlaid in contours (from C. Davis 2005, private communication). There is a very close correspondence between the H\(\scriptstyle{\ II}\) structures and the 4.5 μm band knots. The ISO SWS 14′ × 20′ field of view is outlined in black. [See the electronic edition of the Journal for a color version of this figure.]

OUTFLOWS FROM MASSIVE YSOs SEEN WITH IRAC

No. 2, 2006
that the zodiacal light contribution to the four bands at the epochs of observation is small; it is estimated by Spitzer as being 0.2, 1.0, 9.3, and 26.9 mJy, respectively, for bands 1–4.

2.5. The Unseen Features: Brα and CO

IRAC images of star formation regions and other nebulosity-rich objects often reveal strong 4.5 μm band emission, which is easily spotted as bright green nebulosity in three-color IRAC images in which the 4.5 μm band is coded (typically) as green.

Churchwell et al. (2004), in their analysis of reflection nebula RCW 49, see just such bright 4.5 μm band emission. They conclude that the atomic hydrogen Brα line at 4.052 μm provides about 20% of the nonstellar flux in the 4.5 μm band, dominating the extended emission in that source. In the case of DR 21, however, we measure the Brα line with SWS to be (1.6 ± 0.4) × 10^{-16} W m^{-2}, making it among the weakest of the emission lines in the outflow within the 4.5 μm band window, and 10 times weaker than the H2 0–0 S(9) line. No other hydrogen recombination lines are seen in the SWS spectra of the outflow lobe. We conclude that “green nebulosity,” insofar as it resembles shocked outflows like DR 21, signifies the presence of H2, not Brα.

Geballe & Garden (1987, 1990) used the United Kingdom Infrared Telescope to obtain spectra of the Orion shocked outflow at 4.74 μm, the wavelength of the CO 1–0 (P) line. They find it has a strength about 10^4 of the strength of the H2 0–0 S(9) line there and conclude, in agreement with some earlier observers, that shocked CO is an important contributor to the emission in the Orion outflow. Van Dishoeck et al. (1998) and Rosenthal et al. (2000) published an ISO SWS scan of the Orion IRCe2 region, which includes the region studied by Geballe & Garden; they reported seeing CO emission in the 4.4–4.8 μm region. In the ISO SWS scans of the DR 21 West outflow, however, no CO lines are

![Table 1](image1)

Table 1

Fluxes of the ISO SWS–Observed H2 Lines

Line ID	Wavelength (μm)	Observed flux (10^{-15} W m^{-2})	Flux Contribution to IRAC Bands (mJy)
0–0 S(4)	8.0250	4.80 ± 0.16	38.0
0–0 S(5)	6.9091	11.5 ± 1.6	66.0
1–1 S(7)	5.8111	0.13 ± 0.02	1.1
0–0 S(7)	5.5115	6.50 ± 0.19	45.5
1–1 S(9)	4.9533	0.15 ± 0.02	0.91
0–0 S(9)	4.6947	1.81 ± 0.08	13.0
0–0 S(11)	4.181	1.18 ± 0.2	7.2
1–0 O(5)	3.235	0.54 ± 0.04	2.6

![Figure 4](image2)

Figure 4. Comparison of the measured and modeled flux densities. The observed IRAC flux densities in the DR 21 outflow, measured in the same beam as the ISO SWS spectral observations, are plotted as diamonds; the observed SWS line fluxes per band, converted to IRAC flux densities, are plotted as triangles. The plus signs show the fit of a combined shock plus UV excitation model; each of these was normalized to one strong, observed line as described in the text; the residual flux is from the continuum. The 3σ statistical uncertainties for all of the observations are approximately the same sizes as the data markers. [See the electronic edition of the Journal for a color version of this figure.]
detected to a limit of about 3×10^{-16} W m$^{-2}$—less than about 16% of the nearby H$_2$ 0–0 S(9) line.

3. MODELS of the H$_2$ EMISSION

3.1. Shock and PDR Models of the Outflow

There are about 140 emission lines of H$_2$ in the IRAC bands whose strengths, depending on the model details, are within 1% of the strength of the strongest line in each excitation case. M. Kaufman and M. Wolfire have provided us with their as yet unpublished results of updated PDR and shock models (Kaufman et al. 2005; see also Kaufman & Neufeld 1996 and Wolfire et al. 1990). Figure 5 plots the brightest H$_2$ lines in the IRAC bands for the case of a preshocked density of 1×10^4 cm$^{-3}$ moving with one of three different velocities, 20 km s$^{-1}$ (asterisks), 30 km s$^{-1}$ (triangles), and 40 km s$^{-1}$ (diamonds). As might be expected, the strongest velocities produce by far the strongest line emission. It is also notable that the strongest velocities have the least flux variation in line fluxes across the IRAC bands, whereas the weaker velocities produce emission lines whose contributions between the IRAC bands vary much more substantively.

Fernandes et al. (1997), in their earlier analyses of ground-based observations of the DR 21 outflow, concluded that the DR 21 H$_2$ line ratios were best fit by PDR models because of the strength of the lines originating from the upper state $v = 2, 3,$ and 4 levels; these are preferentially populated via nonthermal mechanisms, although there they also found a low-excitation shocked component. Figure 6 plots the brightest 90% of the bright H$_2$ lines predicted by M. Wolfire and M. Kaufman in the IRAC bands for five different cases of density n and ultraviolet flux g (where g is the log of the flux in units of the local interstellar FUV radiation, taken as 2×10^{11} photons s$^{-2}$ m$^{-2}$). The strongest emission obviously comes from the most dense, highest UV regions, with the 8.0 μm band encompassing the brightest lines and the 3.6 μm band the faintest ones. However, it is noteworthy that there are many more detectable lines in the shorter bands, whose cumulative contributions can be substantial.

The four new H$_2$ lines in DR 21 we present here, the 0–0 S(9), 0–0 S(11), 1–1 S(5), and 1–0 O(5) lines, and the limits we can set to some lines not seen, allow us to make additional statements about the excitation mechanisms. Fernandes et al. (1997) concluded from their data that the most likely dominant excitation in DR 21 is from an FUV field with 2 $\leq g \leq 3$ and a preshock density of $n \geq 3 \times 10^3$ cm$^{-3}$. The PDR model most analogous to the model parameters we have ($n = 3, g = 3$) predicts in that case a strength for the 4–3 $O(3)$ line at 3.3765 μm (one of the strongest discriminating H$_2$ lines) of 1.0×10^{-18} W m$^{-2}$. We set a limit from our analysis of the ISO SWS spectrum that is about 50 times fainter, thereby ruling out this case. Higher densities or UV flux values will reduce the predicted line flux ratio, and in the case of $n = 5, g = 4$ the 4–3 $O(3)$ line is about 150 times weaker, consistent with the new observational limit. However, in this case the longer wavelength lines, including the $v = 0$ pure rotational series, become very bright. We conclude that the most likely average PDR situation is more consistent with an $n = 4, g = 4$, and we take this as our baseline UV case for modeling. The IRAC lines also add some additional consistency to the shock models. S98 concluded a mixture of C and J shocks were present. For our purposes, a shock with density of 10^4 cm$^{-3}$ and a velocity of 30 km s$^{-1}$ gives reasonable fits. In the more rapid shocks the relative contribution of H$_2$ lines to the 4.5 μm band lines is increasingly dominant, in part because this band (and the 3.6 μm band) includes a considerably larger number of weaker lines that are excited more effectively only at higher velocities, as was seen in the UV-excited scenario. But the higher velocity shocks are also intrinsically brighter.

The contribution of the observed H$_2$ lines to the IRAC band flux densities are listed in Table 1. We wanted to estimate the total contribution of the H$_2$ emission to the IRAC bands, because the ISO SWS scans were relatively sparse, in bands 1 and 2 especially. The ISO IRAC image (Fig. 1), as well as the 2 μm image (Fig. 2), show that the shocked H$_2$ emission in the outflow encompassed by the beam of ISO SWS includes many small knots. The calculated H$_2$ line brightness tables by M. Kaufman must therefore be corrected by appropriate, and somewhat uncertain, dilution factors when comparing absolute model flux predictions to the SWS observations presented in the tables. To make our estimate, we therefore normalized a shock model with density of 10^4 cm$^{-3}$ and a velocity of 30 km s$^{-1}$ to the strong, observed 0–0 S(4) line, and we scaled a $n = 4, g = 4$ UV-excitation component to the strong, observed 1–1 S(7) line—a line that is very weak in all shocked models. We then calculated the contribution of all of the H$_2$ lines to the IRAC bands from this combined model. The results are plotted in Figure 4 as plus signs. As expected, the modeled lines add considerable flux density, especially in the 3.6 μm band. When taking into account the H$_2$ lines that were not observed...
directly by ISO SWS, the H₂ lines contribute about 50% of the total flux in IRAC 3.6, 4.5, and 5.8 μm bands; in the 8.0 μm band the lines contribute about 20% of the flux.

Some of the individual, observed line fluxes do not match the intensities predicted by this simple, two-component, normalized model, especially in the short-wavelength band. Adding other C-shock components from higher density regions could provide a solution, since at higher densities (as noted earlier) it is precisely the 3.6 and 4.5 μm fluxes that are most increased. S98 concluded that it was not possible to use a single shock model to explain the ISO SWS and ground-based lines they measured. Instead, they propose that a combination of C-type bow shocks with “wide flanks,” together with localized extinction, can provide a consistent picture of the region. Alternatively, some component of low-density PDR emission might accomplish the same thing, but would require a larger filling factor and a more careful analysis to explain the absence of the 4–3 O(3) line. Our own data do not allow us to say much more the details of modeling, but neither will adjustments alter our main conclusion: that the H₂ lines play a major role in determining the IRAC fluxes and consequently the colors of the IRAC images.

3.2. The Character of the ISM in DR 21 as Determined by IRAC

Up to now we have analyzed the outflow in the region of the observed ISO SWS beam treated as an averaged whole. There is every reason to suspect, however, that additional details of the shock’s structure can be revealed in the relative IRAC colors of the various knots and filaments. Figure 7 shows an IRAC color–color plot with all of the pixels in the giant outflow (gray points) and in the surrounding, unshocked nebculosity (black circles), given in magnitudes in order to be most useful for comparison with point-source colors. The uncertainties in the colors of the fainter, diffuse nebculosity are larger than those in the bright knots, but do not affect our conclusions.

The colors of the emission of the outflow itself form a narrow locus of points stretching from a [3.6]–[4.5] color of 1.5 mag in the top left of the color-color plot, down to a [5.8]–[8.0] color of 1.8 in the lower center. This locus is roughly the same as that produced by shocked H₂ lines alone, with preshock density of 1 × 10⁴ cm⁻³, when the range of velocities varies from 20 to 40 km s⁻¹; the top left portion corresponds to those lines originating from the fastest material. When the outflow is subdivided in smaller regions and their colors are separately considered, it is apparent that this range of colors is roughly the same in each zone. It is already clear from the work of S98 that multiple shock components are present; the variable colors across the flow simply confirm that complex and changing conditions are present.

There is one region in the outflow that is different from the others: the faintest part of the outflow—viz., the region at the western tip—is lacking in the reddest [3.6]–[4.5] gas, and instead has gas whose color lies only between about 0.6 and 1.2 mag. We do not have spectra of the western tip, but we note that decreasing the preshock velocity by about 10 km s⁻¹ will decrease the cumulative line flux ratio in these bands in the most probable, low-density case, by a factor of ~5. It does so largely by reducing the 4.5 μm band line emission. Although the line contributions to this band and the 3.6 μm band are only about 50% of the total flux in the bands, the changes will bring the color closer to that observed. Increasing the densities by a factor of 10 can accomplish about the same thing in the higher velocity cases.

The background nebculosity, away from the massive strong outflow, is also of considerable interest, and we have also examined its IRAC colors. Figure 7 plots the colors of the nonoutflow nebculosity. The IRAC images away from the outflow are obviously less “green” in appearance when weighed with the customary three-band combinations, meaning less intense H₂ emission in the 4.6 μm band. Since the total flux densities are also much smaller away from the flow, we have averaged these nebular regions over much larger areas than were used in the outflow itself. All of the nonoutflow, nebulous regions are characterized by very modest reddening in the 3.6 and 4.5 μm bands—typically a color less than [3.6] – [4.5] < 0.4 mag; this is in contrast to values of 1.0 or greater in the outflow region. Red [3.6]–[4.5] colors are as strong an indicator of shock activity as strong 4.5 μm emission. In contrast, the [5.8]–[8.0] colors of the diffuse nebculosity are virtually indistinguishable from the average colors in the outflow itself. Within the diffuse material there is a slight tendency for faint material to be even redder than brighter nebculosity, perhaps suggesting that UV, which excites the PAH emission there, plays a more dominant role in these regions. Draine & Li (2001) provide detailed quantitative models for the ISM in which they include PAH, silicate grain, and carbonaceous grain emission. Their Table 5 provides estimated, normalized flux densities for a range of seven values of the UV radiation field strength, ΧMMP between 0.3 and 10⁴. The IRAC colors of all these seven scenarios are about the same: [3.6] – [4.5] ≈ 0.35, [5.8] – [8.0] ≈ 2.1.

The points are considerably bluer in [3.6]–[4.5], by a factor of at least 60%, than all but the bluest of nebular regions in our image; the band [5.8]–[8.0] color is about 0.25 mag redder than we observe. A more complete discussion of the IRAC properties of the ISM, including a more detailed analysis of the ISM in the DR 21 region, will be presented in J. L. Hora et al. (2006, in preparation).

4. CONCLUSIONS

Spitzer IRAC color images of star formation regions, typically coded with the 4.5 μm band as green, often show dramatic
swaths of green nebulosity. In the case of the massive outflow in DR 21, that “green monster” is seen largely thanks to the strong lines of shocked or UV-pumped H2. Because the 4.5 μm band lacks strong PAH features such as can dominate the 5.8 and 8.0 μm bands, when composite IRAC images are scaled down (and corrected for bright point sources) so that the bright PAH regions do not overwhelm the image, the outflows show up as green nebulosity.

The ISO SWS spectra of the DR 21 western outflow lobe have allowed us to determine not only that H2 is the overwhelming contributor to the outflow emission lines, they also enable us (in agreement with earlier analyses) to conclude that some combination of modest velocity C-shocks—in a medium whose preshock density is between 104 and 105 cm−3, coupled with some UV excitation in a region of similar density and a UV field characterized by g = 4—are the mechanisms responsible. We have not only found that the H2 emission in the outflow is strong—we have found that the continuum emission is very weak. The implications, to be discussed further in the larger context of the DR 21 star formation complex and sources (H. A. Smith et al. 2006, in preparation), is that neither dust nor hot PAH molecules are abundant in this outflow. The ISO SWS spectra of the outflow contain no strong PAH features, no CO band head emission, and only very weak Brγ emission.

IRAC color-color diagrams of the emission from regions across the outflow confirm the conclusions from the individual band flux analyses. In particular, the short-wavelength colors in the flow are consistently redder than are the colors of the nonoutflow, nonshocked ISM. Combined with shock models, the colors indicate that the shock at the western tip is likely to involve slower, denser material. The colors of the background nebulosity, away from the massive strong outflow, are characterized by very modest reddening between the 3.6 and 4.5 μm bands. They are mild disagreement with theoretical predictions for ISM colors in both [3.6]−[4.5] and [5.8]−[8.0] colors.

IRAC images have made it relatively easy for scientists to spot small regions of the 4.5 μm band activity in otherwise large and complex fields. While the Spitzer IRS spectrometer cannot see the H2 lines below 5 μm, its sensitive performance ought to enable a self-consistent picture to emerge from the other, longer wavelength H2 lines that do fall in its windows. Both the strength of the 4.5 μm band and the [3.6]−[4.5] color are useful diagnostics of H2 emission. The overall results indicate that IRAC images can be a powerful indicator of outflows caused by star formation activity. The results also suggest that IRAC color-color diagnostic diagrams for the nebulosity in star formation regions may sometimes need to take into account the possible influence of these strong H2 emission lines, especially in cases when a large, extended emission is seen around an optically thick point source. It remains to be determined to what extent the ~140 H2 emission lines across the IRAC bands contribute to the IRAC images of other star formation regions (or for that matter of other bright nebulae, like planetary nebulae, objects that are already known to be strong H2 emitters).

We gratefully thank Mark Wolfire and Michael Kaufman for providing us with their latest calculations of the H2 line strengths. We also thank Chris Davis for providing unpublished data on his 2 μm H2 images. H. A. S. acknowledges partial support from NASA grant NAG5-10654. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology under NASA contract 1407. Support for the IRAC instrument was provided by NASA through contract 9605411-3 by JPL. This work is also based in part on observations made with ISO, an ESA project with the participation of NASA and ISAS.

REFERENCES

Kaufman, M. J., & Neufeld, D. A. 1996, ApJ, 456, 611

Kaufman, M. J., Wolfire, M. G., & Hollenbach, D. J. 2005, preprint

Lutz, D. 2000, NewA Rev., 44, 241

We mention the following for completeness:

Churchwell, E., et al. 2004, ApJS, 154, 322

Cyganski, C. J., Reid, M. J., Fish, V. L., & Ho, P. T. P. 2003, ApJ, 596, 344

Davis, C. J., & Smith, M. D. 1996, A&A, 310, 961

Draine, B. T. 1993a, ApJ, 412, L71

Draine, B. T. & Li, A. 2001, ApJ, 551, 807

Eisenhauer, F., Brandl, B., & Rieke, M. 2004, ApJ, 610, 752

Fernandes, A. L. J., Brand, P. W. J. L., & Burton, M. G. 1997, MNRAS, 290, 216

Garden, R. P., Geballe, T. R., Gatley, I., & Nadeau, D. 1986, MNRAS, 220, 203

Garden, R. P., Russell, A. P. G., & Burton, M. G. 1990, ApJ, 354, 232

Geballe, T. R., & Garden, R. P. 1987, ApJ, 317, L107

Hedin, G. M. & Allamandola, L. J. 2004, in ASP Conf. Ser. 309, Astrophysics of Dust, ed A. N. Witt, G. C. Clayton, & B. T. Draine (San Francisco: ASP), 665

Kaib, M. J., & Neufeld, D. A. 1996, ApJ, 456, 611

Kaufman, M. J., Wolfire, M. G., & Hollenbach, D. J. 2005, preprint

Lutz, D. 2000, NewA Rev., 44, 241

Marston, A. P., et al. 2004, ApJS, 154, 333

Pauzat, F., Talbi, D., & Bellinger, Y. 1997, A&A, 319, 318

Risaliti, G. 2004, in IAU Symp. 222, The Interplay among Black Holes, Stars and ISM in Galactic Nuclei, ed. T. Storchi-Bergmann, L. C. Ho, & H. R. Schmitt (Cambridge: Cambridge Univ. Press), 361

Roelfsema, P. R., et al. 1996, A&A, 315, L289

Roueché, F., Bertoldi, F., & Drapatz, S. 2000, A&A, 356, 705

Schutte, W. A., Tielens, A. G. M., & Allamandola, L. J. 1993, ApJ, 415, 397

Smith, M. D., Eisloeffel, J., & Davis, C. J. 1998, MNRAS, 297, 687 (S98)

Smith, M. D., & Rosen, A. 2005, MNRAS, 357, 1370

van Dishoeck, E. F., Wright, C. M., Cernicharo, J., Gonzalez-Alfonso, E., de Graauw, T., Helmich, F. P., & Vandenbussche, B. 1998, ApJ, 502, L173

Verstraete, L., et al. 2001, A&A, 372, 981

Wilson, T. L., & Mauersberger, R. 1990, A&A, 239, 305

Wolfire, M. G., Tielens, A. G. M., & Hollenbach, D. 1990, ApJ, 358, 116

Wright, C. M., Timmerman, R., & Drapatz, S. 1997, in Proc. First ISO Workshop on Analytical Spectroscopy, ed. A. M. Heras et al. (Noordwijk: ESA), 311