Transfer Learning from Speech Synthesis to Voice Conversion with Non-Parallel Training Data

Mingyang Zhang, Member, IEEE, Yi Zhou, Student Member, IEEE, Li Zhao, and Haizhou Li, Fellow, IEEE

Abstract—This paper presents a novel framework to build a voice conversion (VC) system by learning from a text-to-speech (TTS) synthesis system, that is called TTS-VC transfer learning. We first develop a multi-speaker speech synthesis system with sequence-to-sequence encoder-decoder architecture, where the encoder extracts robust linguistic representations of text, and the decoder, conditioned on target speaker embedding, takes the context vectors and the attention recurrent network cell output to generate target acoustic features. We take advantage of the fact that TTS system maps input text to speaker independent context vectors, and reuse such a mapping to supervise the training of latent representations of an encoder-decoder voice conversion system. In the voice conversion system, the encoder takes speech instead of text as input, while the decoder is functionally similar to TTS decoder. As we condition the decoder on speaker embedding, the system can be trained on non-parallel data for any-to-any voice conversion. During voice conversion training, we present both text and speech to speech synthesis and voice conversion networks respectively. At run-time, the voice conversion network uses its own encoder-decoder architecture. Experiments show that the proposed approach outperforms two competitive voice conversion baselines consistently, namely phonetic posteriorgram and variational autoencoder methods, in terms of speech quality, naturalness, and speaker similarity.

Index Terms—transfer learning, text-to-speech (TTS), autoencoder, context vector, non-parallel, voice conversion (VC).

I. INTRODUCTION

VOICE Conversion (VC) takes speech of the source speaker as input and generates speech that sounds from a target speaker while maintaining the linguistic content. It is an enabling technology for many innovative applications, such as personalized or expressive speech synthesis [1], [2], speech enhancement [3], normalization of impaired speech [4], [5], speech-to-singing conversion [6], [7] and dubbing of movies and games. In general, voice conversion techniques are broadly grouped into parallel and non-parallel methods according to their use of training data [8]. Parallel voice conversion requires source-target pair of speech samples of the same linguistic content, while non-parallel voice conversion is trained on unpaired speech data.

Parallel voice conversion can be formulated as a regression problem where a mapping function is estimated between source and target spectral features. Successful techniques include Gaussian mixture model (GMM) [9]–[11], frequency warping [12]–[14], and recently deep neural networks (DNN) [15]–[19]. Other techniques, such as sparse representation [20]–[22], and two-step adaptation [23]–[25], are studied to reduce the training data size. Non-parallel voice conversion techniques are certainly more attractive as parallel data is not easily available in practice. There has been prior work on finding the optimal segments from unpaired source and target training data, such as frame mapping [26]–[28], clustering [29]–[31] and generative adversarial network methods [32]–[33].

Speech carries speaker-independent linguistic information as well as speaker characteristics and speaking style. If we can disentangle linguistic features from speaker representation and re-compose them, we would be able to synthesize an input linguistic content in any given target voice. Variational autoencoder (VAE) [36], [37] represents a successful attempt in this direction. It is built of an encoder-decoder neural network, where the encoder learns a latent space to represent the speaker-independent linguistic information, while the decoder reconstructs the target speech features by conditioning on a given speaker representation. The success of this framework is based on two assumptions: 1) the latent space only captures speaker-independent linguistic representation without a trace of the speaker information; 2) by conditioning on target speaker representation, a decoder is capable of generating the desired acoustic features for a target speaker. Unfortunately, the latent codes in VAE are not trained to associate with linguistically motivated sound units. While VAE methods are effective in disentanglement, the lack of linguistic grounding could be a limitation for its performance.

The recent advances in deep learning approaches open up new possibilities beyond the traditional parallel and non-parallel voice conversion paradigms. One is able to transfer knowledge from external resources, such as automatic speech recognition (ASR) and text-to-speech (TTS) synthesis, to voice conversion systems. Phonetic PosterioGram (PPG) draws a lot of attention in non-parallel voice conversion, that is an intermediate result from a speaker-independent ASR system, representing the posterior probability of phonetic classes of a speech frame [38]. The PPG-based voice conversion techniques [25], [39], [40] is an effective way to leverage ASR knowledge, that is learnt from a large speech corpus. Despite their success, PPG techniques still suffer from some inherent limitations. For example, the quality of PPG highly depends on the ASR system that is neither optimized for speech synthesis nor voice conversion.

Text-to-speech and voice conversion share a common goal to generate natural speech. However, TTS systems are usually
trained with large speech corpora, while voice conversion systems face limited training data constraint. Therefore, transfer learning from TTS to voice conversion is naturally motivated in practice. Generally speaking, a neural TTS is trained to address two research problems, one is the ability to generate effective intermediate representations from the input text, another is the ability to align the attention to the intermediate representations to bridge between encoder and decoder. In short, the former is referred to as feature mapping, the latter is referred to as alignment. There is a general belief that voice conversion can benefit from TTS in one way or another. For feature mapping, voice conversion can learn from TTS to produce phonetically motivated intermediate representations, which are speaker-independent; For alignment, voice conversion can benefit from the learned TTS for natural speech rendering and text-to-speech alignment.

Park et al. [41] proposed a transcription-guided speech encoder as part of a sequence-to-sequence TTS model for any-to-many voice conversion, which requires both text and speech as input during run-time inference. On the other hand, Luong et al. [42] proposed to bootstrap a voice conversion system from a pre-trained speaker-adaptive TTS model, where both voice conversion and TTS share a common decoder. This method only handles feature mapping yet leaves the alignment task to an external system. Zhang et al. [43] proposed an architecture for joint training of voice conversion and text-to-speech. By taking text as an additional input, the voice conversion system improves voice quality during run-time inference. However, it relies on large parallel training data. Huang et al. [44] proposed a transformer architecture with TTS pre-training. The idea is to transfer knowledge from a pre-trained TTS model to a voice conversion model benefiting from large-scale, easily accessible TTS corpora. Though it attempts to handle alignment issues such as the conversion of articulation and prosody, this technique only works for parallel training data.

Building on the success of the prior studies on speech disentanglement and TTS-VC transfer learning, in this paper, we study a novel transfer learning technique from TTS to voice conversion. We adopt Tacotron-2 as the TTS framework [45]. In a two-step training strategy, we first train a standard multi-speaker Tacotron-2 on a large database. We then transfer the TTS knowledge to an encoder-decoder architecture for voice conversion. We hypothesize that, 1) the context vector generated by the text encoder in a TTS system is speaker-independent representing the linguistic information; 2) the decoder in a TTS system, that constructs target acoustic features by conditioning on target speaker embedding, also works for voice conversion.

The main contributions of this paper include: 1) a novel transfer learning framework from TTS to voice conversion; 2) an integrated solution that benefits from transfer learning and speaker disentanglement; 3) an effective solution that deals with both feature mapping and alignment for voice conversion with non-parallel training data.

This paper is organized as follows. We introduce the related work that motivates our research in Section II. We formulate the proposed TTS-VC transfer learning framework in Section III. We present the experiments and discuss the results in Section IV. Section V concludes the study.

II. RELATED WORK

A. Tacotron-2

Tacotron is an end-to-end text-to-speech (TTS) system [46] that has a sequence-to-sequence encoder-decoder architecture with attention mechanism [47]. Tacotron-2 is an updated version of Tacotron [45], as illustrated in Fig. 1. It includes an encoder that maps an input text sequence to a fixed-dimensional state vector, an attention-based decoder [48] that predicts a mel-spectrogram, and a neural vocoder [49] that reconstructs speech waveform from the predicted mel-spectrogram. For rapid turn-around, we simply use Griffin-Lim algorithm [50] to generate speech samples from mel-spectrogram for all models since vocoder is not the focus of this paper.

The input to the encoder is a sequence of characters, which are first encoded into character embeddings. These embedded vectors are then processed by a stack of convolutional layers with batch normalization [51]. The outputs of convolutional layers are taken by a bi-directional Long Short-Term Memory (LSTM) layer to produce text encoding.

The decoder is an auto-regressive recurrent neural network (RNN) that predicts a mel-spectrogram from the text encoding. A location-sensitive attention mechanism is used to summarize the text encoding into a sequence of fixed-length context vectors. At each prediction time step, the previous predicted spectral frame and the current context vector are both used as the input to the decoder to predict the target spectral frame. All spectral frames form an output mel-spectrogram.
B. Linguistic Representation

In Tacotron-2 training, a text encoder converts an input sentence to a stack of fixed-dimension text encodings. Then the location-sensitive attention in Fig. 1 learns to align the text encodings with a sequence of target spectral frames and generates the context vectors as a result. The context vectors are obtained by multiplying the alignment weights with text encodings. Fig. 2a shows an example of the alignment between input text characters and mel-spectrogram learned by the attention mechanism.

With a trained Tacotron-2, a ground truth text-speech alignment can be obtained by providing input text to the encoder on one hand, and all target spectral frames to the decoder on the other in a teacher-forcing mode. Fig. 2b shows a sequence of generated 512-dimensional context vectors, and Fig. 2c shows its corresponding 80-dimensional mel-spectrogram. We note that the length of the context vector sequence is the same as that of the corresponding mel-spectrogram.

As text encodings are derived to represent input text, that seeks to represent linguistic information. Context vectors are weighted sums over encoder time steps of the text encodings, that could be influenced by the mel-spectrogram, or acoustic features, via the decoder. However, such influence from acoustic features is minimum. It is generally considered that context vectors represent speaker-independent linguistic features. This is especially true when we train a multi-speaker TTS using an encoder-decoder architecture, where the decoder is conditioned on speaker embedding. In this case, the encoder-decoder architecture seeks to disentangle speaker from linguistic content.

What is important is that the context vectors are associated with input characters and optimized for speech synthesis task during the decoder training. In other words, they are linguistically motivated and serve as an ideal candidate of intermediate representation for encoder-decoder style voice conversion. Park et al. make use of context vectors from a TTS system as the linguistic features, that improve non-parallel voice conversion.

C. Leveraging Knowledge from Speech Synthesis

Traditionally, voice conversion operates at the signal level, while speech synthesis involves phonetic representation. Studies show that the use of linguistically informed features improves voice conversion. There have been studies to couple voice conversion with TTS training, that seeks to improve the training and run-time inference of voice conversion by adhering to linguistic content. However, such techniques usually require a large training corpus.

Zhang et al. proposed to improve the sequence-to-sequence model by using text supervision during training. A multi-task learning structure is designed which adds auxiliary classifiers to the middle layers of the sequence-to-sequence model to predict linguistic labels as a secondary task. The linguistic labels can be obtained with external alignment tools. With the linguistic label objective, the encoder and decoder are expected to generate meaningful intermediate representations which are linguistically informed. The text transcripts are only required during training. Zhang et al., and Luong et al. proposed joint training of TTS and VC by sharing a common decoder. Park et al. proposed to use the context vectors in Tacotron system as speaker-independent linguistic representation to guide the voice conversion.

Transfer learning is a technique to utilize knowledge from previously learned tasks and apply them to newer, related ones. A typical transfer learning involves pre-training of a base model, reusing the pre-trained model as the starting point for a model on the second task of interest, and refining the second model on input-output pair data for the second task. In a TTS-VC transfer learning scenario, usually we have significantly more data for TTS, and we would like to generalize the learned knowledge from TTS training for VC, which has significantly less training data. Huang et al. proposed a technique to use a trained TTS decoder as the starting point of a VC decoder to train an encoder-decoder VC system. The study was focused on conversion of a specific source-target pair with parallel training data. It doesn’t aim to disentangle speaker and linguistic information. Nonetheless, it represents a successful attempt in TTS-VC transfer learning.

All the studies suggest that voice conversion benefits from linguistically informed intermediate representations, and point to a direction for more studies on how voice conversion can benefit from TTS systems without involving large training data. TTS-VC transfer learning becomes a natural choice that will be the focus of this paper.
D. Speaker Disentanglement and Voice Cloning

Speaker disentanglement and voice cloning with autoencoder\cite{56, 57} represents one of the successful techniques in voice conversion with non-parallel training data, where the encoder learns to disentangle speaker representation from speaker-independent linguistic representation, and the decoder reconstructs target speech with linguistic features, conditioning on target speaker representation. A speaker encoder is usually used to generate such speaker representation, e.g. speaker embeddings. Successful examples include i-vector\cite{56}, x-vector, and d-vector\cite{57}.

With speaker disentanglement, the decoder is able to reconstruct speech for any target speakers unseen during training, that we call voice cloning. Voice cloning has also been a successful technique in speech synthesis that takes text as input and generates voice of unseen speakers, when given a few speech samples\cite{58}, \cite{59}. As the idea of voice cloning with speaker embeddings are proven effective in both TTS and VC, a common network architecture certainly facilitates the TTS-VC transfer learning.

III. TTS-VC TRANSFER LEARNING

Voice conversion is typically a research problem with scarce training data, however, deep learning techniques are typically data driven, that rely on big data. This is actually the strength of deep learning in voice conversion. Deep learning opens up many possibilities to benefit from abundantly available training data, so that the voice conversion task can focus more on learning the mapping of speaker characteristics. For example, we wouldn’t like the voice conversion task to infer low level detail during speech reconstruction, a neural vocoder can learn from a large database to do so\cite{60}. We wouldn’t like the voice conversion task to learn how to represent an entire phonetic system of a spoken language either, a general purpose acoustic model from a speech recognition or synthesis system can learn from a large database to do a better job.

The formulation of transfer learning aims to achieve just that. By leveraging the large database, we free up the conversion network from using its capacity to represent low level detail and general information, but instead, to focus on the high level semantics necessary for speaker identity conversion.

In this section, we will describe the proposed TTS-VC transfer learning architecture and a two-step training scheme. Fig. 3 illustrates the architecture of our proposed model and the loss function adopted during model training.

A. Pre-training of the Multi-Speaker TTS model

An encoder-decoder TTS model offers two useful properties: 1) The TTS decoder is trained to produce linguistic features from the text that is assumed speaker independent; 2) A multi-speaker TTS decoder provides a way to combine speaker-independent linguistic features and speaker embedding to produce speech in target voice. From voice conversion point of view, we would like to disentangle speaker-independent linguistic features from source speech and re-compose them with target speaker embedding to generate speech in target voice. The linguistic features and the decoder mechanism are the knowledge that voice conversion would like to learn from.

Tacotron-2 model was firstly studied for single speaker TTS\cite{45}. To train a multi-speaker Tacotron model, we consider the use of the speaker embedding and where to apply the speaker embedding. We adopt the same speaker verification network\cite{61} as in\cite{52} to generate a fixed-dimensional speaker embedding vector. In\cite{52}, speaker embedding is applied on encoder output before the attention mechanism, hence, the resulting context vectors are speaker dependent. In this paper, we would like to generate context vectors that are sufficiently speaker independent. Therefore, we propose to incorporate speaker embeddings only after the attention mechanism as the controlling input to the TTS decoder. In this way, the encoder-decoder TTS architecture serves as a disentangling mechanism, which uses context vectors to represent speaker-independent linguistic features, and speaker embedding to represent the speaker’s voice identity.

As shown in Fig. 3 the text encoder transform a sequence of text characters \(X_T = \{x_1^T, x_2^T, \ldots, x_M^T\}\) to a sequence of fixed-dimension embedding vectors:

\[
O_T = \text{Encoder}_{T}(X_T) = \{o_1^T, o_2^T, \ldots, o_M^T\}
\]

where \(M\) denotes the length of the text sequence.

With the attention mechanism, we can obtain an alignment between the text embeddings and the mel-spectrogram features, that is described by a weight matrix \(W\). The context vectors \(H_T\) can be obtained by applying the weight matrix on the text embeddings:

\[
H_T = W \times O_T = \{h_1^T, h_2^T, \ldots, h_N^T\}
\]

where \(N\) denotes the length of the mel-spectrum frames. During training, we feed all mel-spectrum frames to the pre-net in a teacher-forcing mode, where \(N\) is the length of the training utterance. At run-time inference, \(N\) is predicted by the decoder.

The decoder takes the concatenation of context vectors \(H_T\) and speaker embedding \(z\) to generate the mel-spectrum features, \(Y_S\):

\[
\hat{Y}_S = \text{Decoder}(\text{concat}(H_T, z)) = \{\hat{y}_1^S, \hat{y}_2^S, \ldots, \hat{y}_S^S\}
\]

The loss function is defined as the mean square error (MSE) between the ground truth mel-spectrogram \(Y_S\) and the predicted one \(\hat{Y}_S\):

\[
Loss_{MSE} = \text{MSE}(Y_S, \hat{Y}_S) = \frac{1}{N} \sum_{n=1}^{N} ||Y_S^n - \hat{Y}_S^n||^2
\]
Fig. 3: Diagram of the proposed TTS-VC transfer learning architecture. The upper panel is a Tacotron TTS pipeline, and the lower panel is a voice conversion pipeline. X_T denotes input text, Y_S and \hat{Y}_S are target mel-spectrogram and the mel-spectrogram generated by the pipelines; O_T denotes text encoding, H_T denotes the context vectors from TTS pipeline, H_S denotes the context vectors equivalents from VC pipeline; z denotes speaker embedding.

B. Transfer Learning from TTS to VC

We propose an encoder-decoder voice conversion framework similar to those in [36], [44], [62] in terms of the system architecture. The VC encoder seeks to generate speaker-independent linguistic features from input spectral features, while the VC decoder reconstructs the mel-spectrum features from the linguistic features, conditioning on a speaker code. Studies show that voice conversion benefits from explicit phonetic modeling that ensure adherence to linguistic content during conversion [41], [42].

The question is how to establish the correspondence between input mel-spectrum features and the speaker-independent linguistic features. The PPG-based voice conversion techniques [25], [39], [40] require an external ASR system to work along side during training and inference. The autoencoder-style voice conversion frameworks learn the latent codes in an unsupervised manner, therefore, they are either speaker independent or phonetically motivated. Others rely on an explicit temporal alignment process [63].

Unlike the prior work, we propose to use the linguistic features, i.e. context vectors, from a trained TTS model, that are phonetically motivated, to serve as the supervision target of the VC latent code during training. By doing this, VC benefits from explicit phonetic modeling that ensure adherence to linguistic content during conversion [41], [42].

The linguistic features from a trained TTS model can be used as supervision targets of the VC latent code during training. By doing this, VC benefits from explicit phonetic modeling that ensure adherence to linguistic content during conversion [41], [42].

A loss function is introduced to minimize the distance between a VC latent code H_S and context vector H_T:

$$\text{Loss}_{\text{Cont}} = \text{MSE}(H_S, H_T) = \frac{1}{N} \sum_{n=1}^{N} ||h^S_n - h^T_n||^2$$

(6)

In this work, the VC decoder is similar to the TTS decoder functionally, that takes the concatenation of the linguistic features H_S and the speaker embedding z to generate the mel-spectrum features \hat{Y}_S:

$$\hat{Y}_S = \text{Decoder}(\text{concat}(H_S, z)) = \{\hat{y}^1_S, \hat{y}^2_S, ..., \hat{y}^N_S\}$$

(7)

The TTS decoder is trained with the TTS pipeline, that takes H_T as input. We propose to use the TTS decoder as the VC decoder and the VC encoder is trained to produced TTS latent codes. However, there could be a potential mismatch between the TTS decoder and H_S. To minimize such mismatch, we use the TTS decoder as initialization, and refine the VC decoder through an adaptation process, with the same loss function as Eq. (4).

To summarize, the speech encoder and decoder are trained with the joint loss function as formulated in Eq. (4) and (6).

$$\text{Loss}_{\text{Joint}} = \text{Loss}_{\text{Cont}} + \text{Loss}_{\text{Mel}} = \frac{1}{N} \sum_{n=1}^{N} (||h^S_n - h^T_n||^2 + ||y^S_n - \hat{y}^S_n||^2)$$

(8)
The training procedure seeks to learn to disentangle linguistic information from speaker information and to optimize the representations for speech generation.

During the transfer learning, we use the same data as those for TTS pre-training. The difference is that the text transcript is no longer required in VC training. No additional speech data is required either.

C. Zero-shot Run-time Inference

Once the TTS-VC transfer learning is completed, the voice conversion pipeline is able to perform voice conversion independently without involving the attention mechanism of TTS. During inference, both the source and the target speaker might be unseen speakers, that is referred to as any-to-any voice conversion. The proposed framework is able to perform such any-to-any voice conversion without further system training, that is also called zero-shot run-time inference.

To convert an utterance from source to target, we only need a speech sample, e.g. one utterance, from the target speaker. We use the speech sample to obtain a speaker embedding z_t from a speaker verification network. The run-time inference stage can be formulated as:

$$\hat{Y} = \text{Decoder}(\text{concat}(\text{Encoder}_s(Y), z_t))$$ \hspace{1cm} (9)

where Y denotes the source mel-spectrogram and \hat{Y} denotes the converted target mel-spectrogram.

D. Spectral and Prosodic Mapping

Traditionally voice conversion is performed by an analysis-mapping-reconstruction pipeline, where source speech is first decomposed into vocoding parameters such as spectral features, F_0 and aperiodicity indicators. Individual vocoding parameters are then mapped from source to target by respective conversion models. Statistical model, regression model, and deep learning model are commonly used. Recently, end-to-end TTS shows that it is possible to predict both spectral and prosodic features from a latent representation by a decoder [64]. This suggests that voice conversion can also be done in the same way if we are able to characterize the input speech with similar latent representation. In this paper, with TTS-VC transfer learning, we adopt the strategy in end-to-end TTS to decode mel-spectrogram directly, that contains both spectral and prosodic information. The decoder is followed by Griffin-Lim algorithm to reconstruct a speech signal.

E. Comparison with other VC systems

The proposed TTS-VC transfer learning framework, denoted as TTL-VC for short, represents a new way to leverage TTS knowledge. It employs a simple architecture to couple with TTS for knowledge transfer and an independent voice conversion pipeline for inference. To draw a clear distinction between TTL-VC and other prior work, we provide a comprehensive comparison in terms of data requirement, system configuration, and application scenarios in Table I. The four systems in Table I are discussed in Section II as the prior work. They represent the recent progress in TTS-assisted voice conversion. From Table I we note that TTL-VC is unique in many ways. With transfer learning, TTL-VC doesn’t rely on TTS encoder during run-time inference, it is trained solely on the TTS training data without the need of additional training data; With disentangled latent codes, TTL-VC is able to perform any-to-any voice conversion without involving model re-training or adaptation for unseen speakers.

The four systems in Table I do not employ transfer learning, furthermore, they have different requirements about training data. Therefore, a direct comparison of their performance is not meaningful. Instead, we benchmark the proposed TTL-VC with three competing systems, as summarized in Table II that share the same decoding strategy, as formulated in Eq. (9), and are trained on the same dataset for a fair comparison.

IV. EXPERIMENTS

A. Experimental Setup and Model Architecture

The three competing baselines in Table I include a multi-speaker TTS model, a PPG-VC model and a VAE-VC model. They represent the state-of-the-art voice conversion performance. They also share the same idea, that is to use speaker-independent linguistic features as the latent codes, in order to support any-to-any voice conversion.

The speaker verification network used to generate speaker embedding [64] is a 3-layer LSTM network with 768 hidden units followed by a linear projection layer with a size of 256. The resulting d-vector serves as speaker embedding z_t for all systems in Table I. Next, we briefly describe the experimental setup in this comparative study.

1) TTS-VC Transfer Learning (TTL-VC): We employ a two-step training scheme for TTL-VC system.

First, a multi-speaker TTS (MS-TTS) is trained as a teacher model, that follows Tacotron-2 architecture [45] as illustrated in the upper panel of Fig. 3. The encoder converts input text to a sequence of 512-dimensional character embeddings. These embeddings pass through 3 1-dimensional convolutional layers, each containing 512 filters with 5 kernel size, followed by batch normalization [51] and GELUs activation [65]. The convolutional layer output is taken by a single bi-directional LSTM layer with 512 hidden units. The pre-net of the decoder contains 2 uni-directional LSTM layers with 1024 hidden units. The linear projection layer outputs the 80-dimensional mel-spectrogram. The post-net contains 5 1-dimensional convolutional layers each containing 512 filters with 5 kernel size, followed by batch normalization and tanh activation.

Second, the voice conversion pipeline in TTL-VC takes speech as input and generates speech as output, that is illustrated in the lower panel of Fig. 3, where input and output speech is represented as 80-dimensional mel-spectrum features. We conduct the transfer learning as discussed in Section III.B. The VC encoder is trained to generate context vectors that are similar to those in TTS pipeline; the VC decoder is trained to take the context vectors and speaker embedding z_t to recompose the target speech. Both encoder and decoder adopt LSTM architecture. No attention mechanism is involved.
TABLE I: The properties of voice conversion systems that leverage TTS knowledge. TTL-VC transfer learning supports flexible voice conversion task (from one unseen speaker to another) at run-time, while keeping minimum data requirement (non-parallel training data, no adaptation for unseen speakers, only speech is required during inference).

VC application	TTS involved during inference	additional training data for VC	VC inference input	source-target training data	TTS-VC transfer learning
any-to-many	yes	no	text and speech	no	Park et al. [44]
any-to-one	yes	no	decoder	no	Liou et al. [42]
many-to-one	yes	no	decoder	yes	Zhang et al. [43]
one-to-one	no	no	speech	yes	Huang et al. [44]
any-to-any	no	yes	speech	no	TTL-VC

TABLE II: Performance benchmarking between TTL-VC and three competitive baselines. All systems are trained on the same multi-speaker non-parallel dataset, and share a similar decoding architecture that takes latent linguistic features, conditioning on speaker embedding, to generate target speech. Notes: MS-TTS and TTL-VC use text transcripts of speech data during training; MS-TTS takes text as input, while others take speech as input.

	latent code	latent code training	training data	decoder	inference input
MS-TTS	phonetic context vectors	supervised	text-speech pair	autoregression w/ attention	text
PPG-VC	phonetic posteriogram	supervised	PPG-decoded speech	autoregression w/o attention	speech
VAE-VC	Gaussian distribution	unsupervised	speech only	framework mapping w/o attention	speech
TTL-VC	phonetic context vectors	supervised	text-speech pair	autoregression w/o attention	speech

in voice conversion pipeline as it only performs a framewise mapping, thus no temporal alignment is required.

2) Multi-speaker TTS model (MS-TTS): The MS-TTS model is the teacher model in TTL-VC. We note that MS-TTS is not a voice conversion system, it takes the text and speaker embedding as input, and generates mel-spectrum features as output. We adopt it as a baseline for two reasons.

First, while the MS-TTS system shares the same decoder architecture as TTL-VC, its context vectors \(\mathbf{H}_t \) are produced only from the text without influence from any source speaker. We expect that the synthesized speech to be highly similar to that of target speaker; Second, by comparing the prosodic patterns between MS-TTS and TTL-VC, we would like to observe whether the attention mechanism in MS-TTS has an advantage over the framewise mapping in TTL-VC.

3) PPG-VC model: An ASR system is trained with the Kaldi toolkit [66]. We first process the input speech into a sequence of 40-dimensional MFCC features with 12.5 ms frame shift. The ASR system then converts the speech feature sequence into a phonetic posteriogram (PPG) sequence, where a PPG frame represents the probability distribution over 132 phonetic classes. In PPG-VC, a pre-trained ASR serves as the encoder. Only the VC decoder is involved in the training. The VC decoder is similar to the TTS decoder in Tacotron-2 [45]. The decoder LSTM layer takes PPG frames as input, and generate 80-dimensional mel-spectrum as output.

We adopt the PPG-VC model as one of the baseline models because it shares a similar encoder-decoder architecture as TTL-VC. Furthermore, PPG-based VC systems represent state-of-the-art performance in recent voice conversion challenges (VCC) [67].

4) VAE-VC model: We consider the proposed TTL-VC as an extension to the variational autoencoder (VAE) based voice conversion framework [36, 37]. VAE is known for its ability in speaker disentanglement, that is inherited by TTL-VC. However, TTL-VC uses TTS context vectors as the supervision target of VC encoders, that is different from VAE training where latent code is trained in an unsupervised manner. Simply speaking, VAE-VC resembles the lower panel of Fig. 3, except that \(\text{Loss}_{\text{Cont}} \) is not imposed during the training of encoder-decoder pipeline. Just like TTL-VC, VAE-VC takes 80-dimensional mel-spectrum as input and generates mel-spectrum features as output.

In VAE-VC, the encoder LSTM layer is followed by two linear projection layers with the size of 512, one for mean vector, the other for the logarithm variance vector of the Gaussian probability distribution. According to the mean and variance, the final encoder output is sampled from the probability distribution through a reparameterization trick [68]. The decoder takes the encoder output as input and generates the 80-dimensional mel-spectrum features. Unlike Tacotron-2 TTS or TTL-VC, the VAE decoder performs frame-wise mapping without autoregression. Therefore, the decoder only contains LSTM layers, linear projection and post-net.

With the same training data, the difference between TTL-VC and VAE-VC lies in transfer learning. The former takes advantage of TTS knowledge, while the latter doesn’t. We introduce VAE-VC as a baseline to observe the benefit of TTS knowledge transfer.

B. Database and Feature Extraction

All systems in Table II are trained on the same dataset from LibriTTS database [69]. We use the train-clean-360 subset of the database that contains 191.29 hours of speech data from a total of 904 speakers, that consist of 430 female and 474 male speakers. The audio files are recorded at 24kHz sampling rate.

For system evaluation, we use speech data from the VCC2018 [67]. We use the evaluation subset of the dataset that contains 8 source speakers (4 female speakers and 4 male speakers) and 4 target speakers (2 female speakers and 2 male speakers). Each speaker provides 35 utterances. Each source-target group, namely Female-Female, Female-Male, Male-Male, and Male-Female, has 4 speakers as the sources and 2
speakers as the targets, consisting of a total of 280 conversion pairs. The audio files are recorded at 22.05kHz sampling rate.

We train a speaker verification network as speaker encoder on AISHELL2 [70] corpus. AISHELL2 contains 1,000 hours of speech data from 1,991 speakers, including 845 male speakers and 1,146 female speakers. We obtain an equal error rate (EER) of 2.31% for speech samples, each having 3 seconds on average, on a test set of 63.8 hours that consists of 200 unseentospeakers. Using the speaker encoder, we derive a speaker embedding z_s from 5 seconds of speech sample for all 12 speakers in VCC 2018 database, and visualize them in Fig. 4 using t-distributed stochastic neighbor embedding (t-SNE) algorithm [71]. We observe a clear clustering of speech samples by speakers.

All speech data is resampled to 16kHz for PPG extraction. The acoustic features are extracted with 12.5ms frame shift and 50ms frame length. The ASR model contains 4 bidirectional layers. Followed by a softmax layer, the 256-dimensional acoustic features are extracted from the reconstructed waveform and MCCs are not readily available in the converted speech samples.

As mel-spectrogram features are adopted as acoustic features, F_0 and MCCs are not readily available in the converted acoustic features. We extract F_0 and 25-dimensional MCCs from the reconstructed waveform using WORLD vocoder [73] for evaluation purpose. To account for the temporal difference, dynamic time warping is performed between the converted utterance and the target reference to compute MCD and F_0 RMSE, where F_0 RMSE is calculated only on the voiced frames in the reference utterances.

TABLE III summarizes the MCD and RMSE evaluation as an average over the 280 conversion pairs (4 source speakers \times 2 target speakers \times 35 utterances) for each source-target gender group, and 70 utterances (2 target speakers \times 35 utterances) for MS-TTS speech synthesis. It is observed that TTL-VC outperforms all other voice conversion models consistently for both MCD and F_0 RMSE. We note that female speakers have a higher F_0 variance than male speakers, that is reflected in the F_0 RMSE of MS-TTS samples, and generated speech for female target speakers. For both male and female target speakers, TTL-VC shows a clear advantage in prosodic mapping. We are glad to see that TTL-VC significantly outperforms TTS systems, which suggests that TTL-VC not only delivers the exact linguistic content but also with improved prosody over TTS output.

The F_0 RMSE is defined as

$$RMSE[H_2] = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\hat{F}_0_i - F_0_i)^2}, \quad (11)$$

where N is the number of frames, \hat{F}_0_i and F_0_i are the corresponding F_0 values at the i^{th} frame of the converted and reference speech, respectively.

C. Results and Discussion

1) Objective Evaluation: We evaluate the systems in terms of mel-cepstrum distortion (MCD) and root mean square errors of F_0 (RMSE) between converted and reference speech utterances. MCD is defined as

$$MCD[dB] = 10\log_{10} \left(\frac{1}{D} \sum_{d=1}^{D} (\hat{Y}_d - Y_d)^2 \right), \quad (10)$$

where D is the mel-cepstral coefficients (MCCs) feature dimension, \hat{Y}_d and Y_d are the d^{th} coefficients of the converted and original MCCs, respectively. A lower MCD value accounts for a lower distortion [72].

![Fig. 4: Visualization of the speaker embedding clusters using t-SNE for 12 speakers (SF1-4, SM1-4, TF1, TF2, TM1, and TM2) in VCC 2018 dataset.](image-url)
providing speaker-independent prosodic patterns for target speech generation. This could be explained by the fact that the prosodic pattern of a sentence is a modulation between speaker-independent components, e.g. prosodic phrasing, intonation, and speaker-dependent components, e.g. accent, pitch level. Source speech provides essential speaker-independent components for the reconstruction of pitch contour, while text input doesn’t.

To visualize the effect, Fig. 5 takes a male-female example to compare the spectrogram and F_0 of natural speech and generated speech from various models. We have three observations, 1) The duration of the TTS synthesized speech is predicted by an attention mechanism, it differs from that of either source or target natural speech. PPG-VC, VAE-VC and TTL-VC generate speech that has the same duration as the source because they perform the framewise mapping. 2) The F_0 prosodic patterns of both PPG-VC and VAE-VC are closer to the source, with F_0 RMSE being 52.75 and 70.48 respectively, than to the target, with F_0 RMSE being 56.56 and 93.37 respectively. This suggests that both PPG and VAE latent features highly influenced by the source speaker. 3) The F_0 prosodic pattern of TTL-VC is closer to the target (F_0 RMSE = 18.26) than to the source (F_0 RMSE = 122.29). This suggests that the context vectors are rather speaker independent, that allow the decoder to recompose speech well for target speaker using target speaker embedding. The observations in Fig. 5 are consistent with the performance statistics in Table III.

2) Subjective Evaluation: Subjective evaluations are performed through listening tests by human subjects. Both AB and XAB preference tests were conducted to assess speech quality and speaker similarity, respectively. In addition, to study listeners’ preferences across all experimental systems, we further conducted best-worst scaling (BWS) and mean opinion score (MOS) tests [74] on speaker similarity and speech quality, respectively. 20 samples were randomly selected from the converted samples of each experimental system and provided to 15 participants for all the tests. All listeners are university students and staff members, where English is their official language of instruction.

- AB preference tests: A and B were speech samples randomly selected from different systems. The listeners were asked to choose the sample having higher quality

1The generated speech samples for all the source-target group pairs of each system are available at https://arkhamimp.github.io/TTL-VC/
TABLE IV: Best-worst scaling test results for converted samples from four models and the average. All Best% or Worst% over four models sum to 100%.

Source-Target	Model	Best%	Worst%
Female-Female (VC)	VAE-VC	10.48	27.27
	PPG-VC	7.62	60.01
	TTL-VC	44.76	5.45
Text-Female (MS-TTS)		37.14	7.27
Female-Male (VC)	VAE-VC	3.31	52.73
	PPG-VC	7.94	30.91
	TTL-VC	51.65	5.45
Text-Male (MS-TTS)		37.09	10.91
Male-Male (VC)	VAE-VC	33.63	14.81
	PPG-VC	1.72	64.81
	TTL-VC	38.79	1.85
Text-Male (MS-TTS)		25.86	18.53
Male-Female (VC)	VAE-VC	5.88	29.32
	PPG-VC	0.00	63.79
	TTL-VC	42.86	5.17
Text-Female (MS-TTS)		51.26	1.72
Average	VAE-VC	13.32	31.03
	PPG-VC	4.32	54.88
	TTL-VC	44.52	4.48
	MS-TTS	37.84	9.61

and naturalness. We have three comparison sets, where 7 samples were evaluated by each listener. The results are illustrated in Fig. 6. First, by comparing TTL-VC with PPG-VC, we observe that TTL-VC receives most of the preference votes for all source-target pairs. This suggests that context vectors outperform PPG as linguistic features; Second, by comparing TTL-VC with VAE-VC, we observe that TTL-VC also significantly outperforms VAE-VC for all pairs. This suggests that context vectors outperform VAE latent codes as well. Last, when we focus on the comparison between TTL-VC and MS-TTS, it is found that TTL-VC outperforms baseline MS-TTS in Male-Male and Male-Female conversions, while it performs slightly worse than MS-TTS in Female-Female and Female-Male conversions. Overall, TTL-VC outperforms other competing VC models and performs comparably with MS-TTS on average.

- XAB preference tests: X was the reference target speech sample; A and B were speech samples randomly selected from different systems. The listeners were asked to listen both samples, and choose the one more similar to the target speaker. For each comparison pair, 7 sets of samples were evaluated by each listener on average. The results are illustrated in Fig. 7. By comparing TTL-VC with the competing models, we observe that TTL-VC obviously outperforms PPG-VC and VAE-VC for all speaker pairs in terms of speaker similarity; furthermore, TTL-VC and MS-TTS are on a par with each other.
- BWS tests: We presented 4 samples of the same content from all four experimental systems to the listeners. The listeners were asked to pick the best and worst sample from the four. 20 scaling sets were evaluated by each listener. The detailed results are illustrated in Table IV. Overall, TTL-VC receives the highest best votes (44.52%) and the lowest worst votes (4.48%) respectively.

Fig. 6: AB test between TTL-VC and other models for four source-target groups.

Fig. 7: XAB test between TTL-VC and other models for four source-target groups.

Fig. 8: MOS results of four models for four source-target groups and the average result.
The results indicate that the performance of all four experimental systems is ranked in the descending order as: TTL-VC, MS-TTS, VAE-VC and PPG-VC.

- MOS tests: The listeners were asked to rate the speech quality and naturalness of the converted speech on a 5-point scale. A higher score indicates better quality. For each experimental system, 20 samples were rated by each listener. The average results are illustrated in Fig. 8. We find that TTL-VC receives the highest MOS score (3.07) among all systems after the natural target speech (4.71), that slightly outperforms MS-TTS (3.05). With slight variations in different speaker pairs, we could rank the systems from high to low performance in the following order, TTL-VC, MS-TTS, VAE-VC, and PPG-VC. The observation is consistent with that in other listening tests.

We observe that the proposed TTL-VC system clearly outperforms VAE-VC and PPG-VC baselines in terms of speech quality, naturalness, and speaker similarity. In both MOS and BWS tests, it is encouraging to see that TTL-VC could successully learn from TTS to achieve TTS quality without the need of text input at run-time inference.

V. Conclusion

This paper presents a novel strategy for TTS-VC transfer learning, which has a simpler run-time inference system architecture, yet achieves consistently higher performance than other systems of similar architecture. We have demonstrated the effectiveness of the transfer learning algorithm and the system architecture. It is particularly encouraging that we observe that the proposed system not only provides high quality spectral mapping, but also prosodic rendering.

References

[1] A. Kain and M. W. Macon, “Spectral voice conversion for text-to-speech synthesis,” in Proc. ICASSP, vol. 1, May, pp. 285–288 vol.1.

[2] Chung-Hsien Wu, Chi-Chun Hsia, Te-Hsien Liu, and Jing-Fa Wang, “Voice conversion using duration-embedded bi-HMMs for expressive speech synthesis,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 14, no. 4, pp. 1109–1116, 2006.

[3] T. Toda, M. Nakagiri, and K. Shikano, “Statistical voice conversion techniques for body-conducted unvoiced speech enhancement,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 20, no. 9, pp. 2505–2517, Nov 2012.

[4] K. Nakamura, T. Toda, H. Sawaotari, and K. Shikano, “Speaking-aid systems using GMM-based voice conversion for electrolytrealgual speech,” Speech Communication, vol. 54, no. 1, pp. 134 – 146, 2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0167639311001142.

[5] L.-W. Chen, H.-Y. Lee, and Y. Tsa, “Generative adversarial networks for unpaired voice transformation on impaired speech,” in Proc. INTERSPEECH, 2019, pp. 719–723. [Online]. Available: http://dx.doi.org/10.21437/INTERSPEECH.2019-1265.

[6] T. L. Nwe, M. Dong, P. Chan, X. Wang, B. Ma, and H. Li, “Voice conversion: From spoken vowels to singing vowels,” in IEEE International Conference on Multimedia and Expo, 2010, pp. 1421–1426.

[7] T. Saitou, M. Goto, M. Unoki, and M. Akagi, “Speech-to-singing synthesis: Converting speaking voices to singing voices by controlling acoustic features unique to singing voices,” in IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2007, pp. 215–218.

[8] A. Mouchtaris, Y. Agiomyrgiannakis, and Y. Stylianou, “Conditional vector quantization for voice conversion,” in IEEE ICASSP, vol. 4, 2007, pp. IV–505.

[9] T. Toda, A. W. Black, and K. Tokuda, “Voice conversion based on maximum-likelihood estimation of spectral parameter trajectory,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 8, pp. 2222–2235, 2007.

[10] K. Takamichi, T. Toda, A. W. Black, and S. Nakamura, “Modulation spectrum-constrained trajectory training algorithm for gmm-based voice conversion,” in Proc. ICASSP, 2015, pp. 4859–4863.

[11] K. Tanaka, S. Hara, M. Abe, M. Sato, and S. Minagi, “Speaker dependent approach for enhancing a glossectomy patients speech via gmm-based voice conversion,” in Proc. INTERSPEECH, 2017, pp. 3384–3388. [Online]. Available: http://dx.doi.org/10.21437/INTERSPEECH.2017-3441.

[12] X. Tian, Z. Wu, S. W. Lee, and E. S. Chng, “Correlation-based frequency warping for voice conversion,” in Proc. ISCSLP, IEEE, 2014, pp. 211–215.

[13] X. Tian, Z. Wu, S. W. Lee, N. Q. Hy, M. Dong, and E. S. Chng, “System fusion for high-performance voice conversion,” Proc. INTERSPEECH, vol. 2015-January, pp. 2759–2763, 2015.

[14] X. Tian, S. W. Lee, Z. Wu, E. S. Chng, and H. Li, “An exemplar-based approach to frequency warping for voice conversion,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 25, no. 10, pp. 1863–1876, 2017.

[15] L.-h. Chen, Z.-h. Ling, L.-j. Liu, and L.-r. Dai, “Voice Conversion Using Deep Neural Networks With Layer-Wise Generative Training,” IEEE Transactions on Audio, Speech and Language Processing, vol. 22, no. 12, pp. 1859–1872, 2014.

[16] T. Nakashika, R. Takashima, T. Takiguchi, and Y. Ariki, “Voice conversion in high-order eigen space using deep belief nets,” in INTERSPEECH, no. August, pp. 369–372, 2013.

[17] S. H. Mohammad and A. Kain, “Voice conversion using deep neural networks with speaker-independent pre-training,” in IEEE SLT, 2014, pp. 19–23.

[18] L. Sun, S. Kang, K. Li, and H. Meng, “Voice conversion using deep bidirectional long short-term memory based recurrent neural networks,” in IEEE ICASSP, 2015, pp. 4869–4873.

[19] M. Zhang, B. Sisman, L. Zhao, and H. Li, “Deepconversion: Voice conversion with limited parallel training data,” Speech Communication, vol. 122, pp. 31 – 43, 2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0167639320302290.

[20] Z. Wu, T. Virtanen, E. S. Chng, and H. Li, “Exemplar-based sparse representation with residual compensation for voice conversion,” IEEE/ACM Transactions on Audio, Speech and Language Processing, vol. 22, no. 10, pp. 1506–1521, 2014.
M. Abe, S. Nakamura, K. Shikano, and H. Kuwabara, "Voice conversion framework with tandem feature sparse representation and speaker-adapted wavenet vocoder," in *Proc. INTERSPEECH*, 2018, pp. 1978–1982. [Online]. Available: http://dx.doi.org/10.21437/INTERSPEECH.2018-1131

B. Sisman, M. Zhang, and H. Li, “A voice conversion framework using Transformer with text-to-speech pretraining,” *arXiv preprint arXiv:1912.06813*, 2019.

J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen, Y. Zhang, Y. Wang, R. Skerry-Ryan, R. A. Saurous, Y. Agiomyrgiannakis, and Y. Wu, “Natural tts synthesis by conditioning wavenet on mel spectrogram predictions,” in *IEEE ICASSP*, 2018, pp. 4779–4783.

Y. Wang, R. Skerry-Ryan, D. Shum, Y. Wu, R. J. Weiss, N. Jaitly, Z. Yang, Y. Xiao, Z. Chen, S. Bengio et al., “Tacotron: Towards end-to-end speech synthesis,” *arXiv preprint arXiv:1703.10135*, 2017.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and translate,” *arXiv preprint arXiv:1409.0473*, 2014.

J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, “Attention-based models for speech recognition,” in *Advances in Neural Information Processing Systems 28*, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds. Curran Associates, Inc., 2015, pp. 577–585. [Online]. Available: http://papers.nips.cc/paper/5847-attention-based-models-for-speech-recognition.pdf

A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw audio,” *arXiv preprint arXiv:1609.03499*, 2016.

D. Griffin and J. Lim, “Signal estimation from modified short-time fourier transform,” *IEEE Transactions on Acoustics, Speech, and Signal Processing*, vol. 23, no. 6, pp. 283–285, 1975.
[64] R. Skerry-Ryan, E. Battenberg, Y. Xiao, Y. Wang, D. Stanton, J. Shor, R. Weiss, R. Clark, and R. A. Saurous, “Towards end-to-end prosody transfer for expressive speech synthesis with tacotron,” in Proc. of Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80. Stockholmsmssan, Stockholm Sweden: PMLR, 10–15 Jul 2018, pp. 4693–4702. [Online]. Available: http://proceedings.mlr.press/v80/skerry-ryan18a.html

[65] D. Hendrycks and K. Gimpel, “Bridging nonlinearities and stochastic regularizers with gaussian error linear units,” CoRR, vol. abs/1606.08415, 2016. [Online]. Available: http://arxiv.org/abs/1606.08415

[66] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al., “The kaldi speech recognition toolkit,” in IEEE ASRU, no. EPFL-CONF-192584, 2011.

[67] J. Lorenzo-Trueba, J. Yamagishi, T. Toda, D. Saito, F. Villavicencio, T. Kinnunen, and Z. Ling, “The voice conversion challenge 2018: Promoting development of parallel and nonparallel methods,” in Proc. Odyssey: The Speaker and Language Recognition Workshop, 2018, pp. 195–202. [Online]. Available: http://dx.doi.org/10.21437/Odyssey.2018-28

[68] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013. Available: http://arxiv.org/abs/1312.6114

[69] H. Zen, V. Dang, R. Clark, Y. Zhang, R. J. Weiss, Y. Jia, Z. Chen, and Y. Wu, “LibriTTS: A Corpus Derived from LibriSpeech for Text-to-Speech,” in Proc. INTERSPEECH, 2019, pp. 1526–1530. [Online]. Available: http://dx.doi.org/10.21437/INTERSPEECH.2019-2441

[70] J. Du, X. Na, X. Liu, and H. Bu, “AISHELL-2: Transforming Mandarin ASR Research Into Industrial Scale,” arXiv preprint arXiv:1808.10583, 2018.

[71] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[72] R. Kubichek, “Mel-cepstral distance measure for objective speech quality assessment,” in Proc. of IEEE PucRim, vol. 1, 1993, pp. 125–128 vol.1.

[73] M. Morise, F. Yokomori, and K. Ozawa, “World: A vocoder-based high-quality speech synthesis system for real-time applications,” IEICE Transactions on Information and Systems, vol. E99.D, no. 7, pp. 1877–1884, 2016.

[74] B. Sisman, H. Li, and K. C. Tan, “Sparse representation of phonetic features for voice conversion with and without parallel data,” in IEEE ASRU, 2017, pp. 677–684.

Mingyang Zhang received the B.Eng. degree in Electrical and Electronic Information Engineering from Nanjing University of Posts and Telecommunications, Nanjing, China, in 2014. He is currently working toward the Ph.D. degree in Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education, Southeast University, Nanjing, China. He is also with the Department of Electrical & Computer Engineering at the National University of Singapore for a research attachment. In 2018, he had a research internship in the National Institute of Informatics, Tokyo, Japan. His current research interests include speech synthesis and voice conversion.

Li Zhao received the B.E. degree from the Nanjing University of Aeronautics and Astronautics, China, in 1982, the M.S. degree from Suzhou University, China, in 1988, and the Ph.D. degree from the Kyoto Institute of Technology, Japan, in 1998. He is currently a Professor with Southeast University, China. His research interests include automatic speech recognition, speaker and language recognition, and natural language processing. Prior to joining NUS, he taught in the University of Hong Kong (1988-1990) and South China University of Technology (1990-1994). He was a Visiting Professor at CRIN in France (1994-1995), Research Manager at the Apple-ISIS Research Centre (1996-1998), Research Director in Lernout & Haupstein Asia Pacific (1999-2001), Vice President in InfoTalk Corp. Ltd. (2001-2003), and the Principal Scientist and Department Head of Human Language Technology in the Institute for Infocomm Research, Singapore (2003-2016). Dr Li served as the Editor-in-Chief of IEEE/ACM Transactions on Audio, Speech and Language Processing (2015-2018), a Member of the Editorial Board of Computer Speech and Language (2012-2018). He was an elected Member of IEEE Speech and Language Processing Technical Committee (2013-2015), the President of the International Speech Communication Association (2015-2017), the President of Asia Pacific Signal and Information Processing Association (2015-2016), and the President of Asian Federation of Natural Language Processing (2017-2018). He was the General Chair of ACL 2012, INTERSPEECH 2014 and ASRU 2019. Dr Li is a Fellow of the IEEE and the ISCA. He was a recipient of the National Infocomm Award 2002 and the Presidents Technology Award 2013 in Singapore. He was named one of the two Nokia Visiting Professors in 2009 by the Nokia Foundation, and Bremen Excellence Chair Professor in 2019.

Yi Zhou received the B.Eng. degree in Electrical and Electronic Engineering from Nanyang Technological University (NTU), Singapore, in 2015. She is currently a research scholar working toward the Ph.D. degree in Human Language Technology Lab, Department of Electrical & Computer Engineering at the National University of Singapore (NUS). Her research interest is cross-lingual voice conversion.

Haizhou Li (M91-SM01-F14) received the B.Sc., M.Sc., and Ph.D degree in electrical and electronic engineering from South China University of Technology, Guangzhou, China in 1984, 1987, and 1990 respectively. Dr Li is currently a Professor at the Department of Electrical and Computer Engineering, National University of Singapore (NUS). His research interests include automatic speech recognition, speaker and language recognition, and natural language processing. Prior to joining NUS, he taught in the University of Hong Kong (1988-1990) and South China University of Technology (1990-1994). He was a Visiting Professor at CRIN in France (1994-1995), Research Manager at the Apple-ISIS Research Centre (1996-1998), Research Director in Lernout & Hauspie Asia Pacific (1999-2001), Vice President in InfoTalk Corp. Ltd. (2001-2003), and the Principal Scientist and Department Head of Human Language Technology in the Institute for Infocomm Research, Singapore (2003-2016). Dr Li served as the Editor-in-Chief of IEEE/ACM Transactions on Audio, Speech and Language Processing (2015-2018), a Member of the Editorial Board of Computer Speech and Language (2012-2018). He was an elected Member of IEEE Speech and Language Processing Technical Committee (2013-2015), the President of the International Speech Communication Association (2015-2017), the President of Asia Pacific Signal and Information Processing Association (2015-2016), and the President of Asian Federation of Natural Language Processing (2017-2018). He was the General Chair of ACL 2012, INTERSPEECH 2014 and ASRU 2019. Dr Li is a Fellow of the IEEE and the ISCA. He was a recipient of the National Infocomm Award 2002 and the Presidents Technology Award 2013 in Singapore. He was named one of the two Nokia Visiting Professors in 2009 by the Nokia Foundation, and Bremen Excellence Chair Professor in 2019.