Paediatric brain MRI findings following congenital heart surgery: a systematic review

Fatmah Jamal Alablani,1,2 Hoi Shan Asia Chan,1 Lucy Beishon,1 Nikil Patel,3 Alanoud Almudayni,1,2 Frances Bu’Lock 4, Emma ML Chung 1,5

ABSTRACT

Objective This systematic review aimed to establish the relative incidence of new postoperative brain MRI findings following paediatric congenital cardiac surgery.

Design To distinguish peripherative changes from pre-existing MR findings, our systematic search strategy focused on identifying original research studies reporting both presurgery and post-surgery brain MRI scans. Patient demographics, study methods and brain MR findings were extracted.

Results Twenty-one eligible publications, including two case-control and one randomised controlled trial, were identified. Pre-existing brain MRI findings were noted in 43% (513/1205) of neonates prior to surgery, mainly white matter injuries (WMI). Surgery was performed at a median age of 8 days with comparison of preoperative and postoperative MR scans revealing additional new postoperative findings in 51% (550/1075) of patients, mainly WMI. Four studies adopted a brain injury scoring system, but the majority did not indicate the severity or time course of findings. In a subgroup analysis, approximately 32% of patients with pre-existing lesions went on to develop additional new lesions post-surgery. Pre-existing findings were not found to confer a higher risk of acquiring brain lesions postoperatively. No evidence was identified linking new MR findings with later neurodevelopmental delay.

Conclusion This systematic review suggests that surgery approximately doubles the number of patients with new brain lesions.

INTRODUCTION

It has long been recognised that delivery, congenital heart disease (CHD) and open heart surgery all carry a risk to the brain, potentially negatively impacting neurodevelopmental outcomes.1 The estimated prevalence of CHD is 9 per 1000 infants,2 of which 3 per 1000 require surgical or catheter-based interventions early in life.3 Due to advances in diagnostic imaging, surgical treatment and intensive care, more children with CHD now reach adulthood.4 However, the impact of brain lesions on long-term developmental outcomes remains a cause for concern. Up to 50% of CHD infants go on to experience developmental or psycho-social issues, but whether these are linked to perioperative brain injury remains unclear.5

Paediatric brain MRI is gaining in popularity and is already being performed routinely at many centres, especially in the USA. Brain MR scans obtained before and after surgery have the potential to provide unique insights into the nature, severity and timing of brain lesions acquired around the time of surgery. Comparison of presurgery and postsurgery brain images provides a means of confidently separating surgery-induced changes from other sources of injury, especially where surgery is performed soon after delivery.6

MRI findings are commonly classified as focal ischaemic infarcts (including stroke), white matter injury (WMI) (including periventricular leukomalacia), cerebral sinovenous thrombosis (CSVT) and haemorrhage.7 The nature, location and severity of brain MRI findings can be quantified using scoring systems that include both qualitative and quantitative image assessment.8,9 The primary aim of this systematic review was to quantify the incidence of, and risk of acquiring, new MRI findings post-surgery. Secondary objectives included a preliminary exploration of factors associated with new MR findings, and whether surgery-related changes were associated with lower neurodevelopmental test scores. As the impact of surgery can only be determined by comparing presurgery and postsurgery MRI scans our inclusion criteria were limited to studies comparing presurgery and postsurgery MRI to identify new findings.

METHODS

A systematic search and data extraction was conducted and reported in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines10 to identify all studies reporting paired presurgery and postsurgery MRI scans in paediatric patients undergoing congenital cardiac surgery.

Search strategy

Our systematic review protocol was prospectively designed and registered with the PROSPERO database (Registration number: CRD42019158886). A comprehensive, systematic literature search was conducted in MEDLINE OVID and SCOPUS by two independent researchers (FA and HSAC). The search was limited to original peer-reviewed research conducted in humans and published in English between January 1990 and June 2021 (see supplemental file for search strategy).

Study eligibility criteria

After automated removal of duplicates, two researchers (FA and HSAC) independently screened study titles and abstracts for eligibility. Eligibility was assessed according to a PICO (patient-intervention-comparator-outcome) framework to extract all studies reporting preoperative and new postsurgical brain MRI findings in paediatric patients (≤16 years) undergoing congenital heart surgery (online supplemental table 1). Articles identified as eligible by either reviewer were progressed to full text review with eligibility agreed by consensus. Reference lists and citations associated with eligible articles were searched by hand for additional relevant publications. All primary peer-reviewed original research studies, including randomised controlled trials, cohort, case-control studies and case reports, were eligible for inclusion. Conference abstracts were excluded.

Data extraction and quality assessment

Quality assessment and data charting were independently conducted by two reviewers (FA and HSAC) and agreed by consensus. Data were extracted from the full text of each article using a predefined checklist. Full details of data extraction, including parameters that were not reported, and an indication of heterogeneity, are provided in online supplemental tables 2 and 3. A total of seven studies were excluded due to their cohorts representing a subset of patients published elsewhere. We were careful to ensure that patients were not ‘double-counted’ due to multiple publications. For the case-control study, only the CHD group was included (ie, not healthy controls). For the randomised controlled trial (RCT), both groups involved patients with CHD, so were included.

A modified version of the Newcastle-Ottawa Scale (NOS) for observational studies, and a five-item scale developed by Jadad et al11 for the RCT, were used to support quality assessment. Full details of our quality assessment and extraction methods are provided as an online supplemental file.

Due to the paired nature of the data, it was not appropriate to conduct a meta-analysis; findings are reported in a narrative format. Statistical analyses were performed using Prism GraphPad (V.7).

RESULTS

Our systematic search criteria returned a total of 2244 papers across two databases (online supplemental figure 1). Ten additional studies were identified by reviewing full text bibliographies. After removal of duplicate entries, and screening of abstracts and full text, 21 studies involving a total of 1277 patients were eligible for inclusion. Studies were methodologically diverse as well involving differences in patient’s CHD conditions and surgical interventions. In terms of information directly addressing our primary review aims relating to MR findings, 6 out of 21 studies provided a full set of relevant information12–17 (online supplemental table 3). Quality assessment scores suggested studies were of variable quality, ranging from a minimum of 3/7 to maximum of 7/7 for the NOS, and 3/5 based on the Jadad et al score. In six of the cohort studies, MR outcomes were not clearly reported. In two studies, it was unclear whether findings had been present preoperatively (online supplemental tables 4 and 5). For the RCT, the handling of withdrawals was not described. It was also unclear whether the person reviewing the MR images had been blinded to the intervention. However, as the aim of the RCT differed from that of our review, these issues would not have affected our findings.

Study and patient characteristics

Patient demographics, CHD condition, details of preoperative and postoperative MRI, and operative details are summarised in table 1. Data from a total of 1277 independent paediatric patients with CHD were identified for further analysis. Of these, the sex of the baby was specified for 1155 subjects, with 67% of babies reported as male. A summary of patient population characteristics shows that 35% of children were diagnosed with single ventricle abnormalities, 38% with transposition of the great arteries (TGA), 10% with two-ventricle abnormalities, 14% with other cardiac lesions and 3% with coarctation of the aorta. One study did not report the population CHD type.9 Most studies included patients with multiple types of cardiac abnormality. The majority (76%) of included patients underwent surgery involving CPB with a median CPB time of 147 (range 47–200) min.

MRI protocol

MR scan sequences exhibited significant heterogeneity between studies, as can be seen in table 2. T1-weighted and T2-weighted imaging are used in up to 90% of studies, diffusion-weighted imaging and volumetric imaging in 60% of studies, while other sequences are performed non-routinely (5%–30% of studies). Non-sedated brain MRI was performed in approximately 23% (297/1277) of patients across six studies using the ‘feed and sleep’ technique, with most patients still receiving a sedative or anaesthetic drug during their scan.

Outcomes

Qualitative brain MRI findings

Of 1205 patients who received a preoperative brain MRI in the early days of life, 513 patients (43%) had at least one pre-existing brain MRI finding at the time of their first scan. The prep scan occurred at a median (IQR) of 5 (IQR: 4.6–6) days. Of these, 203 patients were reported with WMI (40%) and 153 patients with infarcts (30%). A further 58 haemorrhage (11%) and 63 CSVT (12%) neonates were reported. In one study, ‘lesions’ in 34 patients were reported but the severity and type were not specified6 (see table 3).

A total of 1124 out of 1277 (88%) patients received a postoperative brain MRI conducted at a median (IQR) age of 13 (IQR: 7–19) days. This generated comparable paired presurgery and postsurgery MRI scans in 1075 patients, which were compared to identify new findings. Comparison of paired preop and postop MRI revealed 350 patients (49%) with new postoperative MRI findings: 301 WMI (55%), 161 infarct (29%), 50 haemorrhage (9%) and 28 with CSVT (5%). In 10 patients, the type of findings was unspecified.9 Note that, for some subjects, more
Table 1 Summary of main patient and operative characteristics

Author (year)	Study design	N (male: female)	CHD diagnosis	Gestational age at birth (weeks)	Age at surgery (days)	Age at preoperative MRI (days)	Age at postoperative MRI
McConnel (1990) USA	Cohort (pro)	28 (15: NR)	CHD	NR	NR	NR	NR
Mahle (2002) USA	Cohort (pro)	24 (16:8)	CHD	NR	NR	NR	NR
Partridge (2006) USA	Cohort (pro)	25 (16:9)	CHD	NR	NR	NR	NR
Dent (2006) USA	Cohort (pro)	22 (15:7)	CHD	39 (36–41)	4 (1, 8)	Operation day 4 (1, 8)	9.5 (5–14) days
McQuillen (2007) USA	Cohort (pro)	62 (NR)	CHD	NR	NR	NR	NR
Miller (2007) USA	Case-control (pro)	41 (29:12)	CHD	39.1 (38.2–40.0)	NR	5 (3–6)	NR
Block (2010) USA	Cohort (pro)	92 (59:33)	CHD	NR	NR	NR	NR
Kwak (2010) Korea	Cohort (pro)	11 (10:1)	CHD	NR	NR	11 (5, 46)	NR
Beca (2013) New Zealand	Cohort (pro)	153 (98:55)	CHD	38.8±1.6	7 (4–11)	NR	NR
Drury (2013) New Zealand	Cohort (pro)	18 (11:7)	CHD	NR	NR	NR	NR
Mulkey (2013) USA	Cohort (pro)	73 (46:27)	CHD	NR	NR	NR	46±11
Algra (2014) The Netherlands	RCT	37 (30:7)	CHD	NR	NR	NR	NR
Andropoulos (2014) USA	Cohort (retro)	59 (34:25)	CHD	38.4±1.2	NR	NR	NR
Bertholdt (2016) Switzerland	Case-control (pro)	30 (22:8)	CHD	39.3 (36.7–41.9)	NR	6 (1, 12)	13 (6–30)
Lynch (2014) USA	Cohort (pro)	37 (18: 19)	CHD	38.9±0.8	4.2±1.9	NR	1 week after surgery
Claessens (2018) The Netherlands	Cohort (pro)	40 (27:13)	CHD	NR	NR	9 (7–10)	NR
Peyvandi (2018) USA	Cohort (pro)	79 (55:24)	CHD	NR	NR	5 (3–7)	8 (7–10)
Claessens (2019) The Netherlands	Cohort (pro)	74 (49:25)	CHD	39.5 (38.7–40.6)	NR	NR	NR

Continued
Quantitative brain lesion scores

Four studies adopted an MRI brain lesion scoring system to quantify both the location and severity of findings. \(^9\) \(^13\) \(^22\) \(^26\) Mulkey et al.\(^9\) developed a detailed brain MRI score to predict patients with CHD likely to be at greatest risk of neurodevelopmental delay. The scoring system ascribes a numerical value to each of 11 categories of brain lesion, and accounts for severity by considering the approximate number and size of areas affected. They concluded that brain lesion scores of 7/11 or higher would be concerning for neurodevelopmental delay. Full details of other scoring systems are provided as online supplemental file.

Neurodevelopmental assessment

A total of 232 infants across 7 studies underwent neurodevelopmental assessment between 1 and 2 years by either a paediatrician or psychologist. Most studies (five studies, \(n=207\)) used the third edition of the Bayley Scales of Infant and Toddler Development, when infants reached 2 years (three studies),\(^16\) \(^17\) \(^23\) 18 months\(^27\) or 12 months of age.\(^20\) Based on these studies it is unclear whether there is any link between new postoperative MRI findings and low neurodevelopmental test scores. Neurodevelopmental risk factors are reported in a single study by Andropoulos et al.\(^20\) and full details are provided as an online supplemental file.

One study used a modified standardised assessment tool\(^21\) to examine posture, general movements, tone, primitive reflexes and muscle stretch reflexes, cranial nerves and reactivity/behaviour in 22 neonates. Preoperative neuromotor assessment was performed at a median age of 72–13 days, providing a median score of 2.5 (range 0–7). Children with preoperative brain MR lesions were found to have significantly poorer neuromotor preoperative score than neonates without brain lesions. There were no significant differences in postoperative neurodevelopment between neonates with and without either preoperative \(p=0.55\), Mann–Whitney U-test) or new postoperative brain lesions \(p=0.96\), Mann–Whitney U-test).\(^21\) However, these findings need to be interpreted with caution, as one study, with only 22 patients is likely to be underpowered.

DISCUSSION

To the best of our knowledge, this is the first systematic review to focus on understanding the incidence of perioperative brain MRI findings associated with paediatric congenital cardiac surgery. Our findings suggest that CHD is consistently associated with a high proportion of patients experiencing both presurgery

than one category of MR finding was present. Although most studies reported the number of new WMI, or acute or chronic infarcts, fewer reported findings of haemorrhage,\(^12\) \(^15\) \(^16\) \(^18\)–\(^22\) or CSVIT\(^17\) \(^22\) \(^23\) and the location and severity of new findings were rarely described in detail.

As most papers only reported totals and averages, the paired relationship between pre-existing and new findings was often unclear. Based on a more detailed analysis of 390 pairs of scans, from a subset of 7 papers providing sufficient information to deduce how many patients with pre-existing lesions went on to acquire new lesions; 32% (48/149) of paediatric patients with pre-existing lesions had additional new brain MRI findings following surgery.

Risk factors related to presurgery and new postsurgery MRI brain findings were reported in 11 studies.\(^12\) \(^14\)–\(^18\) \(^21\)–\(^23\)
and postsurgery brain MRI lesions. Based on comparison of pairs of images, just over half of neonates (51%) were reported with new brain MRI findings post-surgery, compared to 43% with pre-existing findings.

WMI was the dominant finding in both preoperative (40%) and new postoperative (55%) MRI scans. Focal infarcts were seen in 30% of patients preoperatively with additional new infarcts found in 25% of patients postoperatively. Haemorrhage and CSVT were investigated less frequently among studies. Maturational changes in the brain, clinical significance is unclear. As many MRI findings represent minor lesions, which can resolve with time, or be mitigated through neuronal plasticity and adaptions of the growing brain, clinical significance is unclear.

It is worth noting that there have been significant improvements in MR imaging equipment and image quality over the last 30 years. Only one eligible paper was published in the 1990s, limited to 15 patients; this would not have contributed strongly to the review findings. Seven papers were published up to 2010 (inclusive) and 13 papers between 2011 and 2021. When we prospectively filed the review with PROSPERO, we were keen to capture all papers relevant to the topic regardless of publication date. In future reviews it may be beneficial to limit the search to recent publications to reduce heterogeneity.

Table 2 Summary of MRI protocols adopted by the included studies

MRI protocol	Outcome of interest	Studies
GE	McConnell, Partridge, Dent, McQuillen, Block, Mulkey, Berthold, Peyvandi, Guo	
Philips	Mulkey, Algra, Andropoulos, Claessens, Claessens, Claessens	
Siemens	Mahle, Block, Beca, Drury, Lynch, Lim, Guo	
Not reported	Miller, Kwak	
Field strength	1.5 T	McConnell, Mahle, Partridge, Dent, McQuillen, Block, Beca, Drury, Mulkey, Algra, Andropoulos, Lynch, Claessens, Peyvandi, Claessens, Lim, Guo
3 T	Beca, Berthold, Claessens, Peyvandi, Claessens, Claessens, Guo	
Not reported	Miller, Kwak	
Immobilisation	General anaesthetic	Mahle, Dent, Andropoulos, Lynch
Sedation	Block, Berthold, Claessens, Peyvandi, Claessens	
Feed and sleep	Block, Berthold, Claessens, Peyvandi, Claessens, Lim	
Not reported	Miller, Partridge, McQuillen, Miller, Kwak, Beca, Drury, Mulkey, Algra, Guo	
Image review	Single blinded observer (O), radiologist (R) or neuroradiologist (N)	McConnell, Mahle, Partridge, Dent, McQuillen, Miller, Block, Kwak, Drury, Andropoulos, Peyvandi, Claessens
Not reported		
T1 weighted	Structural imaging (suppresses water and high signal intensity of fat)	McConnell, Mahle, Partridge, Dent, McQuillen, Block, Beca, Drury, Mulkey, Algra, Andropoulos, Berthold, Lynch, Claessens, Peyvandi, Claessens, Lim, Guo
T2 weighted	Detect pathology associated with oedema/fluid (high signal intensity of water)	McConnell, Mahle, Partridge, Dent, McQuillen, Block, Beca, Drury, Mulkey, Algra, Andropoulos, Berthold, Lynch, Claessens, Peyvandi, Claessens, Lim
DWI and DTI	Acute cerebral infarct and haemorrhage (Brownian motion of water molecules)	Mahle, Dent, Beca, Drury, Mulkey, Andropoulos, Berthold, Lynch, Claessens, Peyvandi, Claessens, Lim
FLAIR	High signal for lacunar Infarcts and subarachnoid haemorrhage.	Beca, Drury, Mulkey, Algra
SWI	Detects microhaemorrhages and calcium	Beca, Mulkey, Andropoulos, Lynch, Claessens, Claessens, Claessens, Lim
Proton density	Evaluates grey/white matter abnormalities (grey matter has a higher signal intensity than the white matter)	McConnell
MP-RAGE	Useful for brain tissue classification by offering excellent contrast for brain cortical segmentation	Lynch
MR-venography	Examines the veins without the overlying tissues being visible (requires contrast material to enhance the visibility of the veins).	Claessens
DWI, diffusion-weighted imaging.		
Table 3 Number of patients with preoperative and postoperative brain MRI findings

Study	MRI scans Pre	MRI scans Post	MRI scans Paired	WMI Pre	Infarct Pre	Haemorrhage Pre	CSVT Pre	Total Pre	WMI Post	Infarct Post	Haemorrhage Post	CSVT Post	Total Post	With preop findings	
McConnel et al	15	15	15	NR	1	NR	NR	1	NR	1	NR	NR	1	NR	
Mahenteal	24	21	21	4	2	1	NR	7	9	4	7	NR	20	3/12	
Partridge et al	25	25	25	4	3	2	NR	7	5	1	NR	NR	6	2/7	
Dent et al	22	15	15	1	4	2	NR	7	7	8	1	NR	11	NR	
McQuillen et al	62	53	53	11	13	5	NR	29	14	5	NR	NR	19	3/29	
Miller et al	41	36	36	4	10	2	NR	14	9	3	0	NR	11	NR	
Block et al	92	78	78	21	23	7	NR	40	24	8	1	NR	32	13/33	
Knorre et al	11	11	11	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	
Bocca et al	153	125	135	30	7	6	NR	38	57	5	3	NR	59	3/21	
Dreyer et al	18	18	18	5	NR	NR	NR	5	NR	NR	NR	NR	5	NR	
Mulkey et al	73	38	38	NR	NR	NR	NR	34	(16 type is NS)	NR	NR	5	NR	28	(23 type is NS)
Alper et al	37	36	36	18	3	5	NR	29	22	9	2	38	71	NR	
Andriopoulos et al, USA	59	59	59	12	9	4	NR	18	14	10	10	NR	28	NR	
Backholder et al, Switzerland	30	30	30	6	3	NR	NR	7	2	NR	NR	NR	2	NR	
Lynder et al	37	33	33	8	NR	NR	NR	8	16	NR	NR	NR	16	NR	
Claessen et al	40	40	40	NR	NR	NR	NR	3	30	26	8	NR	11	45	3/3
Peyvandi et al	79	73	73	16	18	NR	NR	34	22	8	NR	NR	30	NR	
Claessen et al	56	71	53	12	5	NR	NR	17	25	15	NR	NR	40	NR	
Claessen et al	100	120	100	16	48	8	57	100	37	74	21	12	124	NR	
Lim et al	45	45	45	14	4	1	NR	19	NR	1	NR	NR	1	NR	
Guo et al	186	172	161	23	NR	NR	NR	23	7	NR	NR	NR	2	NR	
Total	1205	1124	1075	205	153	58	63	442	301	161	50	28	519	48/140	

CSVT, cerebral sinovenous thrombosis; NR, not reported; WMI, white matter injury.
Heterogeneity among studies is clearly present. Although most studies reported totals for cohorts including more than one type of CHD condition, single ventricle abnormalities and TGA represented 73% of subjects. The altered neurovascular physiology in these conditions is likely to have a more significant impact on prenatal brain development than other forms of CHD, which are under-represented. Several eligible studies limited recruitment to patients with specific CHD conditions. Furthermore, our analysis did not distinguish between patients who had received cardiopulmonary bypass compared with non-bypass interventions.

Diagnostic accuracy levels are likely to differ between the selected papers due to the use of differing methods for lesion detection and classification. Few studies used a brain lesion scoring system, which makes accurate comparisons difficult without a consistent approach across studies. As MR findings may resolve with time, variations in study design, sequences adopted, and the timing of postoperative brain MRI may also be responsible for differences in brain MR findings between studies.

Future work should be directed towards systematically examining different CHD subgroups, with robust ascertainment of brain lesions to enable improved risk stratification of patients with CHD. Development of a standardised MRI brain lesion scoring system for paediatric CHD would also be beneficial. Structured neurodevelopmental follow-up programmes may be useful to help improve developmental outcomes integrated with clinical care. However, we found no evidence to support a link between either preoperative or new postoperative MR findings around the time of surgery and neurodevelopmental delay. In conclusion, this systematic review confirms the presence of preoperative brain MR findings in approximately 43% of neonates, with 51% of babies found to have additional new MR findings postoperatively.

Correction notice This article has been corrected since it first published. The open access licence type has been changed to CC BY 4.0 Unported (CC BY 4.0). Author details

1 Department of Radiology and Medical Imaging at Prince Sattam bin Abdulaziz University

2 Open access

1 Correction notice

This article has been corrected since it first published. The open access licence type has been changed to CC BY 4.0 Unported (CC BY 4.0). Author details

1 Department of Radiology and Medical Imaging at Prince Sattam bin Abdulaziz University

2 Open access

ORCID IDs

Frances Bu’Lock http://orcid.org/0000-0001-8437-017X

Emma ML Chung http://orcid.org/0000-0002-7230-1799

REFERENCES

1 Villagomez AN, Munoz FM, Peterson RL, et al. Neurodevelopmental delay: Case definition & guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine 2019;37:7623–41.

2 Boneva RS, Botts LD, Moore CA, et al. Mortality associated with congenital heart defects in the United States: trends and racial disparities, 1979-1997. Circulation 2001;103:2376–81.

3 Hoffman JE, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol 2002;39:1890–900.

4 Sommerville G, Zilli T, Crescentini C, et al. Toward a characterization of language development in children with congenital heart disease: a pilot study. Child Neuropsychol 2020;26:1–14.

5 Marino BS, Lipkin PH, Newburger JW, et al. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American heart association. Circulation 2012;126:1143–72.

6 Torres ER, Tumey TA, Dean DC, et al. Non-Pharmacological strategies to obtain usable magnetic resonance images in non-sedated infants: systematic review and meta-analysis. Int J Nurs Stud 2020;106:103551.

7 Kelly CJ, Arulkumaran S, Tristão Pereira C, et al. Neuroimaging findings in newborns with congenital heart disease prior to surgery: an observational study. Arch Dis Child 2019;104:1042–8.

8 Hinchgi KG, Mlynash M, Jansen S, et al. Prognostic value of a qualitative brain MRI scoring system after cardiac arrest. J Neuroimaging 2015;25:430–7.

9 Mulkey SB, Swarengen CJ, Melguizo MS, et al. Multi-tiered analysis of brain injury in neonates with congenital heart disease. Pediatr Cardiol 2013;34:1772–84.

10 Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PloS Med 2009;6:e1000100.

11 Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 1996;17:1–12.

12 Mahle WT, Tavani F, Zimmerman RA, et al. An MRI study of neurological injury before and after congenital heart surgery. Circulation 2002;106:10109–14.

13 Partridge SC, Vigneron DB, Charlton NN, et al. Pyramidal tract maturation after brain injury in newborns with heart disease. Ann Neurol 2006;59:640–51.

14 McQuillen PS, Barkovich AJ, Harwick SEQ, et al. Temporal and anatomic risk profile of brain injury with neonatal repair of congenital heart defects. Stroke 2007;38:736–41.

15 Block AJ, McQuillen PS, Chau V, et al. Clinically silent preoperative brain injuries do not worsen with surgery in neonates with congenital heart disease. J Thorac Cardiovasc Surg 2010;140:550–7.

16 Beca J, Gunn JK, Coleman L, et al. New white matter brain injury after infant heart surgery is associated with diagnostic group and the use of circulatory arrest. Circulation 2013;127:971–9.

17 Claessens NHP, Algra SQ, Jansen NJG, et al. Clinical and neuroimaging characteristics of cerebral sinovenous thrombosis in newborns undergoing cardiac surgery. J Thorac Cardiovasc Surg 2018;155:1150–8.

18 Dent CL, Spaeth JP, Jones BV, et al. Brain magnetic resonance imaging abnormalities after the Norwood procedure using regional cerebral perfusion. J Thorac Cardiovasc Surg 2006;131:190–7.

19 Miller SR, McQuillen PS, Harwick S, et al. Abnormal brain development in newborns with congenital heart disease. N Engl J Med 2007;357:1928–38.

20 Andropoulos DB, Ahmad HB, Haq T, et al. The association between brain injury, perioperative anesthetic exposure, and 12-month neurodevelopmental outcomes after neonatal cardiac surgery: a retrospective cohort study. Paediatr Anaesth 2014;24:266–74.

21 Berthold S, Latal B, Laimlahti R, et al. Cerebral lesions on magnetic resonance imaging correlate with preoperative neurological status in neonates undergoing cardiopulmonary bypass surgery. Eur J Cardiothorac Surg 2014;45:625–32.

22 Claessens NHP, Algra SQ, Jansen NJG, et al. Clinical and neuroimaging features of cerebral sinovenous thrombosis in neonates undergoing cardiac surgery. J Thorac Cardiovasc Surg 2018;155:1150–8.

23 Dent CL, Spaeth JP, Jones BV, et al. Brain magnetic resonance imaging abnormalities after the Norwood procedure using regional cerebral perfusion. J Thorac Cardiovasc Surg 2006;131:190–7.

24 Algras JCM, Jansen NJG, van der Tweel I, et al. Neurological injury after neonatal cardiac surgery: a randomized, controlled test of 2 perfusion techniques. Circulation 2014;129:224–33.

25 Lynch JM, Buckley EM, Schwab BJ, et al. Time to surgery and preoperative cerebral hemodynamics predict postoperative white matter injury in neonates with hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 2014;148:2181–8.

26 Guo C, Chau V, Peyvand S, et al. White matter injury in term neonates with congenital heart disease: Topology & comparison with preterm newborns. Neonatal Netw 2019;185:742–9.

27 Claessens NHP, Breur JMPI, Groenendaal F, et al. Brain microstructural development in neonates with critical congenital heart disease: an atlas-based diffusion tensor imaging study. Neuroimage Clin 2019;21:101672.
27 Lim JM, Porayette P, Marin D, et al. Associations between age at arterial switch operation, brain growth, and development in infants with transposition of the great arteries. Circulation 2019;139:2728–38.

28 McConnell JR, Fleming WH, Chu WK, et al. Magnetic resonance imaging of the brain in infants and children before and after cardiac surgery. A prospective study. Am J Dis Child 1990;144:374–8.

29 Kwak JG, Kim W-H, Kim JT, et al. Changes of brain magnetic resonance imaging findings after congenital aortic arch anomaly repair using regional cerebral perfusion in neonates and young infants. Ann Thorac Surg 2010;90:1996–2000.

30 Drury PP, Gunn AJ, Bennet L, et al. Deep hypothermic circulatory arrest during the arterial switch operation is associated with reduction in cerebral oxygen extraction but no increase in white matter injury. J Thorac Cardiovasc Surg 2013;146:1327–33.

31 Peyvandi S, Kim H, Lau J, et al. The association between cardiac physiology, acquired brain injury, and postnatal brain growth in critical congenital heart disease. J Thorac Cardiovasc Surg 2018;155:291–300.