Pavlov, Dmitri
Numerable open covers and representability of topological stacks.
(English)
Toplogy Appl. 318, Article ID 108203, 28 p. (2022)

Summary: We prove that the class of numerable open covers of topological spaces is the smallest class that contains covers with pairwise disjoint elements and numerable covers with two elements, closed under composition and coarsening of covers. We apply this result to establish an analogue of the Brown-Gersten property for numerable open covers of topological spaces: a simplicial presheaf on the site of topological spaces satisfies the homotopy descent property for all numerable open covers if and only if it satisfies it for numerable covers with two elements and covers with pairwise disjoint elements. We also prove a strengthening of these results for manifolds, ensuring that covers with two elements can be taken to have a specific simple form. We apply these results to deduce a representability criterion for stacks on topological spaces similar to arXiv:1912.10544. We also use these results to establish new simple criteria for chain complexes of sheaves of abelian groups to satisfy the homotopy descent property. This article is available at arXiv:2203.03120v2.

MSC:

- 54-XX General topology
- 55-XX Algebraic topology
- 57-XX Manifolds and cell complexes

Keywords:

- simplicial presheaves; numerable covers

Full Text: DOI arXiv

References:

[1] Tukey, John W., Convergence and Uniformity in Topology, Annals of Mathematics Studies, vol. 2 (1940) · Zbl 0025.09102
[2] Eilenberg, Samuel, Singular homology theory, Ann. Math. (2), 45, 3, 407-447 (1944) · Zbl 0061.40603
[3] Dieudonné, Jean, Une généralisation des espaces compacts, J. Math. Pures Appl., 23, 65-76 (1944) · Zbl 0060.39508
[4] Stone, Arthur H., Paracompactness and product spaces, Bull. Am. Math. Soc., 54, 10, 977-983 (1948) · Zbl 0032.31403
[5] Weil, André, Sur les théorèmes de de Rham, Comment. Math. Helv., 26, 119-145 (1952) · Zbl 0047.16702
[6] Miyazaki, Hiroshi, The paracompactness of CW-complexes, Tohoku Math. J. (2), 4, 3, 309-313 (1952) · Zbl 0049.12502
[7] Michael, Ernest, A note on paracompact spaces, Proc. Am. Math. Soc., 4, 5, 831-838 (1953) · Zbl 0052.18701
[8] Hurewicz, Witold, On the concept of fiber space, Proc. Natl. Acad. Sci., 41, 11, 956-961 (1955) · Zbl 0067.15902
[9] Milnor, John, Construction of universal bundles, II, Ann. Math. (2), 63, 3, 430-436 (1956) · Zbl 0071.17401
[10] Morita, Kiiti, Paracompactness and product spaces, Fundam. Math., 50, 3, 223-236 (1962) · Zbl 0099.17401
[11] Dold, Albrecht, Partitions of unity in the theory of fibrations, Ann. Math. (2), 78, 2, 223-255 (1963) · Zbl 0203.25402
[12] Morita, Kiiti, Products of normal spaces with metric spaces, Math. Ann., 154, 4, 365-382 (1964) · Zbl 0117.39803
[13] Spanier, Edwin H., Algebraic Topology (1966), McGraw-Hill · Zbl 0145.43303
[14] Dieudonné, Jean, Algebraic Topology (1974), McGraw-Hill · Zbl 0185.27302
[15] Dold, Albrecht, Lectures on Algebraic Topology, Die Grundlehren der Mathematischen Wissenschaften, Die Grundlehren der Mathematischen Wissenschaften, Classics in Mathematics, vol. 200 (1995), Springer: Springer, Reprint · Zbl 0872.55001
[16] Greub, Werner; Halperin, Stephen; Vanstone, Ray, Connections, curvature, and cohomology. Volume I. De Rham cohomology of manifolds and vector bundles, Pure Appl. Math., 47 (1972) · Zbl 0322.58001
[17] Brown, Kenneth S.; Gersten, Stephen M., Algebraic K-theory as generalized sheaf cohomology, Lect. Notes Math., 341, 266-292 (1973) · Zbl 0291.18017
[18] Bourbaki, Nicolas, Topologie Générale. Chapitres 5 à 10, Actual. Sci. Ind., 1235, Article Hermann pp. (1974)
[19] May, J. Peter, Classifying spaces and fibrations, Mem. Am. Math. Soc., 1, 135 (1975) · Zbl 0321.55033
[20] Bengel, Gunter; Schapira, Pierre, Décomposition microlocale analytique des distributions, Journ. Equ. Dériv. Partielles, 1-2 (1978)
[21] Bott, Raoul; Tu, Loring W., Differential Forms in Algebraic Topology, Graduate Texts in Mathematics, vol. 82 (1982), Springer

[22] Mardešić, Sibe; Segal, Jack, Shape Theory, North-Holland Mathematical Library, vol. 26 (1982) · Zbl 0996.54002

[23] Jardine, J. Frederick, Simplicial presheaves, J. Pure Appl. Algebra, 47, 1, 35-87 (1987) · Zbl 0624.18007

[24] Hoshina, Takao, Extensions of mappings II. (Topics in general topology.), N.-Holl. Math. Libr., 41, 41-80 (1989) · Zbl 0719.54014

[25] Breslin, Glen E., Sheaf Theory, Graduate Texts in Mathematics, vol. 170 (1997), Springer · Zbl 0874.55001

[26] Hirschowitz, André; Simpson, Carlos, Descente pour les n-champs · Zbl 0877.14035

[27] Morel, Fabien; Voevodsky, Vladimir, \(\mathbf{A}^1 \)-homotopy theory of schemes, Publ. Math. IHES, 90, 1, 45-143 (1999) · Zbl 0983.14007

[28] Johnstone, Peter T., Sketches of an Elephant. A Topos Theory Compendium. II, Oxford Logic Guides, vol. 44 (2002) · Zbl 1071.18002

[29] Dugger, Daniel; Hollander, Sharon; Isaksen, Daniel C., Hypercovers and simplicial presheaves, Math. Proc. Camb. Philos. Soc., 136, 1, 9-51 (2004) · Zbl 1045.55007

[30] Toën, Bertrand; Vezzosi, Gabriele, Segal topoi and stacks over Segal categories · Zbl 1145.14003

[31] Husemöller, Dale; Joachim, Michael; Jurčo, Branislav; Schottenloher, Martin, Basic Bundle Theory and K-Cohomology Invariants, Lecture Notes in Physics, vol. 726 (2008), Springer · Zbl 1135.19001

[32] Sati, Hisham; Schreiber, Urs; Stasheff, Jim, \((L_{\mathbf{\infty}}) \)-Algebra Connections and Applications to String- and Chern-Simons n-Transport, (Quantum Field Theory, Competitive Models.), 303-424 (2009), Birkhäuser · Zbl 1183.83099

[33] Voevodsky, Vladimir, Homotopy theory of simplicial sheaves in completely decomposable topologies, J. Pure Appl. Algebra, 214, 8, 1384-1398 (2010) · Zbl 1194.55020

[34] Fiorenza, Domenico; Schreiber, Urs; Stasheff, Jim, Čech cocycles for differential characteristic classes: an \(\mathbb{G} \)-Lie theoretic construction, Adv. Theor. Math. Phys., 16, 1, 149-250 (2012) · Zbl 1420.57074

[35] Picado, Jorge; Pultt, Alexei; Scott, Jonathan, Frames and Locales, Frontiers in Mathematics (2012), Birkhäuser · Zbl 1231.06018

[36] Lurie, Jacob, Higher topos theory (April 9, 2017)

[37] Pavlov, Dmitri, Question 261195 (revision 1) on MathOverflow (February 2, 2017)

[38] Berwick-Evans, Daniel; Boavida de Brito, Pedro; Pavlov, Dmitri, Classifying spaces of infinity-sheaves

[39] Sati, Hisham; Schreiber, Urs, Equivariant principal \(\mathbb{G} \)-bundles · Zbl 1450.81055

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.