β1Pix exchange factor stabilizes the ubiquitin ligase Nedd4-2 and plays a critical role in ENaC regulation by AMPK in kidney epithelial cells

Pei-Yin Ho, Hui Li, Tengis S. Pavlov, Roland D. Tuerk, Diego Tabares, René Brunisholz, Dietbert Neumann, Alexander Staruschenko, and Kenneth R. Hallow

From the Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, the Division of Hypertension and Vascular Research, Henry Ford Health System, Detroit, Michigan 48202, the Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, the Department of Biology, Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland, the Functional Genomics Center, ETH Zurich, 8097 Zurich, Switzerland, and the Department of Pathology, School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands

Our previous work has established that the metabolic sensor AMP-activated protein kinase (AMPK) inhibits the epithelial Na⁺ channel (ENaC) by promoting its binding to neural precursor cell–expressed, developmentally down-regulated 4-2, E3 ubiquitin protein ligase (Nedd4-2). Here, using MS analysis and in vitro phosphorylation, we show that AMPK phosphorylates Nedd4-2 at the Ser-444 (Xenopus Nedd4-2) site critical for Nedd4-2 stability. We further demonstrate that the Pak-interacting exchange factor β1Pix is required for AMPK-mediated inhibition of ENaC-dependent currents in both CHO and murine kidney cortical collecting duct (CCD) cells. Short hairpin RNA–mediated knockdown of β1Pix expression in CCD cells attenuated the inhibitory effect of AMPK activators on ENaC currents. Moreover, overexpression of a β1Pix dimerization–deficient mutant unable to bind 14-3-3 proteins (Δ602–611) increased ENaC currents in CCD cells, whereas overexpression of WT β1Pix had the opposite effect. Using additional immunoblotting and co-immunoprecipitation experiments, we found that treatment with AMPK activators promoted the binding of β1Pix to 14-3-3 proteins in CCD cells. However, the association between Nedd4-2 and 14-3-3 proteins was not consistently affected by AMPK activation, β1Pix knockdown, or overexpression of WT β1Pix or the β1Pix-Δ602–611 mutant. Moreover, we found that β1Pix is important for phosphorylation of the aforementioned Nedd4-2 site critical for its stability. Overall, these findings elucidate novel molecular mechanisms by which AMPK regulates ENaC. Specifically, they indicate that AMPK promotes the assembly of β1Pix, 14-3-3 proteins, and Nedd4-2 into a complex that inhibits ENaC by enhancing Nedd4-2 binding to ENaC and its degradation.

ENaC2 is apically expressed in many salt-reabsorbing epithelia. In the aldosterone-sensitive distal nephron of the kidney and colonic epithelia, ENaC is a critical regulator of sodium balance, blood volume, and blood pressure. ENaC also plays an important role in fluid reabsorption at the air–liquid interface in distal lung airways, which determines the rate of mucociliary transport. ENaC appears to form a heterotrimeric channel composed of three subunits (α, β, and γ), each of which contains two transmembrane domains, cytosolic amino and carboxyl termini, and an extracellular loop. Abnormal ENaC activity is a characteristic feature in patients with type 1 pseudohypoaldosteronism, Liddle syndrome, and cystic fibrosis.

ENaC expression and activity at the apical membrane are regulated by Nedd4-2, a member of the E6-associated protein C Terminus (HECT) family of E3 ubiquitin ligases, which, in turn, is regulated by several kinases, including serum- and glucocorticoid-induced kinase 1 (SGK-1) and PKA. Nedd4-2 directly binds to PY motifs on the C termini of ENaC subunits, promoting ENaC ubiquitination, internalization, and degradation. SGK1 and PKA activate ENaC largely through a mechanism involving phosphorylation of xNedd4-2 predominantly at residues Ser-338, Thr-363, and Ser-444, which appears to enhance the association of Nedd4-2 with 14-3-3 scaffolding proteins and thereby prevent Nedd4-2-mediated degradation of ENaC.
AMPK is a Ser/Thr kinase that exists as a heterotrimer comprised of a catalytic α-subunit and regulatory β- and γ-subunits. AMPK is known as a key homeostatic regulator of energy balance at the cellular and systemic levels. A reduction in the energy charge of the cell (increased AMP or ADP or reduced ATP) or increased calcium, osmotic, or oxidative stress elicits AMPK activation during conditions of metabolic and other cellular stresses (15, 16). Phosphorylation of Thr–172 within the α subunit accounts for most of the activation of AMPK by upstream kinases, such as liver kinase B1 (LKB1) or CaMKII-calmodulin-dependent kinase-β (17, 18). Besides being an energy sensor, AMPK also plays an important role in apoptosis, cell growth, gene transcription, and protein synthesis (19). In recent years, reports regarding the roles of AMPK in renal physiology and disease, such as podocyte function, renal hypertrophy, ischemia, inflammation, diabetes, and polycystic kidney disease, have rapidly escalated (20–25). We and others have also demonstrated that AMPK regulates a variety of ion transport proteins (16), including inhibition of ENaC by promoting Nedd4–2 interaction with β-ENaC and enhancing Nedd4–2–dependent ubiquitination, internalization, and degradation of the channel (26–28).

Several small G proteins, including K-Ras, Rho A, and Rab11, have been shown to regulate ENaC activity (29–31). Given that G protein activation relies on the coordinated action of guanine nucleotide exchange factors (GEFs), GEFs could be involved in ENaC modulation. p21-activated kinase (PAK)–interacting exchange factor β (Bβ1) is a member of the diffuse B cell lymphoma family of Rho-GEFs, existing in two major isoforms, β1Pix and β2Pix. In kidneys, β1Pix has emerged as a main Pix isoform (32, 33) and contains a Dbl homology domain, a pleckstrin homology domain, and an Src homology 3 domain for binding PAK through a proline-rich region. β1Pix also has a GIT1 (G protein–coupled receptor kinase interactor 1) binding domain and a leucine zipper domain responsible for β1Pix dimerization (34, 35). By using tagged 14-3-3 proteins (36) and tandem affinity purification and LC-MS methods (37), dimeric β1Pix was found to bind to dimeric 14-3-3 proteins. Of note, we previously discovered β1Pix to be a critical regulatory co-factor in the endothelin-1 (ET–1)–dependent regulation of ENaC via Nedd4–2 and 14-3-3 proteins (38).

In this study, we show that AMPK inhibits ENaC by direct phosphorylation of xNedd4–2 at Ser–444 (equivalent to Ser–328 of mNedd4–2), a site we previously showed enhances Nedd4–2 stability (14). Through ENaC current recordings in Chinese hamster ovary (CHO) cells and in mouse polarized CCD cells, we also demonstrate that β1Pix expression and function are required for ENaC inhibition by AMPK. Treatment with AMPK activators increases the binding of β1Pix to 14-3-3 proteins in two distinct CCD cell lines. Moreover, β1Pix knockdown inhibits mNedd4–2 phosphorylation at Ser–328, reducing Nedd4–2 protein expression. Overall, our results suggest that functional β1Pix is critical for Nedd4–2 stability and AMPK may enhance Nedd4–2–dependent ENaC degradation by promoting the formation of a β1Pix–Nedd4–2–14-3-3 protein complex. These findings shed new light on the molecular mechanisms by which AMPK regulates ENaC.

Results

AMPK phosphorylates Nedd4–2 at Ser–444

Our previous work has shown that AMPK could phosphorylate Nedd4–2 in vitro and in intact cells (27). To identify the AMPK phosphorylation site(s) on Nedd4–2, purified GST-xNedd4–2 was expressed in Escherichia coli and then subjected to in vitro phosphorylation in the presence of purified active AMPK holoenzyme and [γ-32P]ATP. Phosphorylation site mapping of tryptic fragments was performed by MALDI-TOF MS and solid-phase sequencing as described previously (39). We found that AMPK phosphorylated xNedd4–2 at Ser–444 (Fig. 1, A and B). AMPK phosphorylation at this site was confirmed by comparing [γ-32P]ATP incorporation into the WT with a Ser-to-Ala mutant (S444A) Nedd4–2 in vitro, where significantly reduced 32P incorporation was observed in the S444A mutant compared with WT Nedd4–2 (Fig. 1C).

Functional β1Pix is required for ENaC inhibition by AMPK

It has been reported that phosphorylated Ser–444 on xNedd4–2 could serve as a binding site for 14-3-3 proteins, which may act to sequester Nedd4–2 and thereby prevent its interaction with ENaC (11, 40). Our previous study also showed that a Nedd4–2 mutant (S444A) has a dramatically shorter cellular half-life than WT Nedd4–2, but this property is not dependent on binding to 14-3-3s (14). Because Ser–444 is also phosphorylated by other kinases besides AMPK, including SGK1, PKA, and IκB kinase-β (IKKβ), which have opposite effects on ENaC expression (9–11, 41, 42), we reasoned that AMPK phosphorylation of Nedd4–2 alone could not account for the ENaC regulation. As it has been demonstrated that β1Pix is involved in long-term ENaC inhibition by ET-1 through impairing 14-3-3β binding to Nedd4–2 (38), we hypothesized that β1Pix may also play an important role in AMPK-dependent ENaC inhibition. To examine this hypothesis, ENaC was co-expressed with either WT or a dimerization-deficient deletion tract (∆602–611) mutant of β1Pix in CHO cells. AICAR treatment (1 mM) was used to activate AMPK (43). Representative current sweeps evoked by a voltage ramp from +60 to −100 mV (holding potential at 40 mV) recorded in whole-cell patch-clamp mode are shown before and after treatment with amiloride (10 μM), an inhibitor of ENaC (Fig. 2A). As summarized in Fig. 2B, either AICAR treatment or co-expression of WT β1Pix significantly decreased ENaC-dependent currents. However, there was no apparent additive effect between WT β1Pix overexpression and AICAR treatment. These effects were prevented with co-expression of the β1Pix-∆602–611 mutant. Besides using the AMPK activator, we also co-expressed ENaC with either pTracer vector alone (control), a dominant-negative (DN) AMPK-α1–K45R mutant, or a constitutively active (CA) AMPK-γ1–R70Q mutant in CHO cells to modulate AMPK activity. As shown in Fig. 2C, CA-AMPK inhibited the ENaC current relative to DN-AMPK and control, but this inhibition was prevented in cells overexpressing the dimerization-deficient ∆602–611 β1Pix mutant. Together, these findings suggest that AMPK inhibits ENaC activity via β1Pix. This mechanism requires functional dimeric β1Pix, which is known to be required for β1Pix binding to 14-3-3 proteins (44).
Overexpression of WT versus mutant β, Pix modulates ENaC currents in polarized mpkCCD_{c14} cells

To examine whether the inhibitory effect of β, Pix on ENaC currents can also be observed in more physiologically relevant mouse kidney cortical collecting duct epithelial cells, V5-tagged WT β, Pix or β, Pix-Δ602–611 was stably transduced into mpkCCD_{c14} cells (45) for inducible overexpression with a Tet-On system. After cells polarized on Transwells were exposed to doxycycline (Dox, 2 μg/ml) for 3 days, amiloride-sensitive ENaC currents were measured using an epithelial volt-ohm–meter (EVOM). Overexpression of WT β, Pix had the opposite effect (Fig. 3A), consistent with the results found in CHO cells. After EVOM measurements, cells were harvested to confirm the expression of V5-tagged WT β, Pix or β, Pix-Δ602–611 by immunoblotting (Fig. 3B). WT β, Pix and β, Pix mutant expression levels were ~63 and 12% of the endogenous β, Pix levels, respectively, as determined by comparing total cellular β, Pix levels with or without Dox treatment by immunoblotting (data not shown). The lower overexpression level of the β, Pix mutant, which we observed in several different mutant clones generated, may result from its instability because the mutant is unable to dimerize and bind to 14-3-3 proteins.

AMPK-dependent interplay of β, Pix, Nedd4-2, and 14-3-3 proteins in polarized mpkCCD_{c14} cells with overexpression of WT versus mutant β, Pix

To examine how β, Pix is involved in AMPK-regulated ENaC inhibition, we also tested whether AMPK modulation alters the associations between β, Pix, Nedd4-2, and 14-3-3 proteins. Inducible β, Pix construct–expressing mpkCCD_{c14} cells were polarized on Transwell plates, followed by exposure to doxycycline for 3 days and then combined treatment with the AMPK activators AICAR (1 mM) and A769662 (100 μM) (AA) versus vehicle for 1 day. Cells were then lysed, and immunoblotting for various proteins was performed on a small sample of the whole-cell lysate (Fig. 4A, top panel, Input), whereas the remaining cell lysate was subjected to immunoprecipitation (IP) with a pan-14-3-3 protein antibody. Immunoblotting was then performed to detect co-immunoprecipitated V5 (β, Pix) and Nedd4-2 (Fig. 4A, bottom panel). Neither overexpression of WT β, Pix nor the β, Pix-Δ602–611 mutant affected AMPK
activation (Fig. 4B). In cells overexpressing WT β₁Pix, AMPK activators significantly enhanced the binding of β₁Pix to 14-3-3 proteins (Fig. 4, A and C). As expected, the β₁PixΔ602–611 mutant was unable to bind to 14-3-3 proteins. However, the association between Nedd4-2 and 14-3-3 proteins was not significantly altered by AMPK activation and/or overexpression of the WT or the β₁PixΔ602–611 mutant in these cells (Fig. 4, D and E).

Inhibition of ENaC currents by AMPK is blunted with β₁Pix knockdown in mCCDcl1 cells

To further confirm the importance of β₁Pix in ENaC inhibition by AMPK, β₁Pix was stably knocked down in mCCDcl1 cells, which have a higher Nedd4-2 abundance relative to mpkCCDf14 cells (46). Using lentiviral constructs, either scrambled control shRNA or shRNA directed against β₁Pix, stable cell lines were achieved with 45% knockdown of β₁Pix compared with control cells (Fig. 5D). ENaC currents were measured in control and β₁Pix knockdown cells before and during combined treatment with AA versus vehicle (control) for 4 and 24 h (Fig. 5, A and B). Although ENaC current inhibition caused by AA treatment was observed in both control and β₁Pix knockdown cells, in β₁Pix knockdown cells, the decrease of ENaC current was significantly reduced by 55% and 45% at 4 and 24 h, respectively, relative to control cells (Fig. 5C), without any difference in AA treatment–induced AMPK activation between the two cell lines (see below). Together, these results suggest that β₁Pix acts as a negative regulator of ENaC downstream of AMPK.

Involvement of β₁Pix in Nedd4-2 regulation with AMPK modulation in mCCDcl1 cells

Compared with mpkCCDf14 cells, mCCDcl1 cells have a higher Nedd4-2 abundance relative to total Nedd4, so we reasoned that performing immunoprecipitation and immunoblotting assays with mCCDcl1 cells could provide a better opportunity to detect differences in the interaction between β₁Pix, Nedd4-2 and 14-3-3 proteins as a function of AMPK activation.
AMPK regulation of ENaC via β,Pix

Figure 3. Inducible V5-tagged WT β,Pix or β,PixΔ602–611 expression modulates ENaC activity in stably transfected mpkCCDc14 cells. A, EVOM studies were performed in the absence (−) or presence (+) of Dox induction (2 µg/ml) for 3 days. We observed a difference in average basal ENaC currents between WT β,Pix and β,PixΔ602–611–expressing cells (36.7 ± 1.5 and 72.3 ± 0.7 µA/cm², respectively). These differences may be because measurements were performed on two separate cell lines isolated after lentiviral transduction with β,Pix constructs, and there appears to be slight “leakage” of WT β,Pix expression even in the absence of doxycycline treatment. B, after current measurements, cells were lysed to confirm the expression of V5-tagged WT β,Pix or β,PixΔ602–611 by Western blotting. Data are mean ± S.E., with p values shown for the indicated comparisons.

Discussion

We and others showed previously that AMPK is a negative regulator of the ENaC activity in oocytes and polarized epithelial cells (26–28). ENaC inhibition is mediated by decreasing its expression level at the plasma membrane rather than through a change of single channel properties (open probability or conductance) (26). AMPK typically controls its downstream effectors through phosphorylation of target proteins. However, there is no evidence that ENaC subunits are directly phosphorylated by or interact with AMPK. With the presence of a Liddle’s-type mutation (β-mENaC–Y618A), a role of the C-terminal tail of β-ENaC in AMPK-related inhibition was revealed, implying the involvement of the E3 ubiquitin ligase Nedd4-2 (26).

We previously demonstrated that AMPK phosphorylates Nedd4-2 both in vitro and in an intact cellular milieu (27). The association of Nedd4-2 with β-ENaC was enhanced with AMPK activation. A ubiquitin ligase–deficient Nedd4-2 mutant blocked the AMPK inhibitory effect on ENaC, as did addition of the deubiquitinating enzyme Usp2–45, suggesting that Nedd4-2-mediated ubiquitination is necessary for ENaC inhibition (27, 28). In this study, we found that Ser-444 on xNedd4-2 is an AMPK phosphorylation site (Fig. 1). Phosphorylation at Ser-444 has been revealed previously to be critical for Nedd4-2 cellular stability and its association with 14-3-3 (14). This phosphorylation event by AMPK is the first key step in our current simplified working model for how ENaC regulation by AMPK occurs via Nedd4-2 (Fig. 7). However, Ser-444 is a shared phosphorylation site targeted by several other kinases.
such as SGK1, PKA, and IKKβ (10, 42), leading to the hypothesis that, besides Nedd4-2, other molecules may be critical for ENaC regulation by AMPK. Our earlier work studying the mechanism of ENaC regulation by ET-1 demonstrated that the guanine nucleotide exchange factor 1Pix inhibits ENaC expression through the 14-3-3/Nedd4-2 pathway (38). The results from this study show that treatment with an AMPK activator inhibits ENaC-dependent current, an effect that is also observed with overexpression of WT βPix (Fig. 2). We also found that there was no synergistic or additive inhibitory effect observed with combined WT-βPix overexpression and AICAR treatment, suggesting that βPix and AMPK are components of the same regulatory pathway for ENaC. Moreover, ENaC inhibition caused by either AMPK or Nedd4-2 overexpression can be abolished with coexpression of the βPix-Δ602–611 mutant (39). The importance of βPix in AMPK-dependent ENaC regulation was also demonstrated in two distinct polarized mouse kidney principal cell lines, mpkCCDc14 and mCCDcl1, with either overexpression of WT βPix or βPix-Δ602–611 or with βPix knockdown in this study. Our data further revealed that βPix knockdown blunts ENaC inhibition caused by combined AICAR and A769662 treatment without affecting AMPK activation. Taken together, these results indicate that βPix is a downstream mediator of AMPK and suggest that its dimerization and binding to 14-3-3 proteins are necessary for ENaC regulation.

As phospho-Ser/phospho-Thr binding proteins, 14-3-3s regulate proliferative, survival, apoptotic, and stress signaling by interacting with a diverse array of binding partners (48). Of note, 14-3-3 proteins are critical for suppressing mTOR complex 1 (mTORC1) activity under conditions of cell stress. AMPK has been shown to inhibit mTORC1 through stimulating the Rheb-GAP (GTPase-activating protein) activity of TSC2 and by phosphorylating Raptor, an mTORC1 scaffolding protein that recruits downstream substrates of mTOR (49, 50). Phosphorylation of Raptor at Ser-722 and Ser-792 by AMPK mediates 14-3-3 binding and is required for mTORC1 inactiva-
Recent work has established a new role of 14-3-3 proteins in ENaC regulation. Phosphorylation of Nedd4-2 by SGK1 has been reported to enhance the association between Nedd4-2 and 14-3-3 proteins and maintain Nedd4-2 in an inactive (sequestered) state, thereby causing a phosphorylation-dependent inhibition of the interaction between Nedd4-2 and ENaC (10, 51). In our previous study of ENaC regulation by ET-1, recruitment of 14-3-3 by Pix appeared to prevent the association between Nedd4-2 and 14-3-3, promoting the ubiquitination and degradation of ENaC (38). Although ET-1 has been reported to induce Pix translocation and Cdc42 activation via a PKA-dependent pathway in primary human mesangial cells (52), Rac1 and Cdc42 were not involved in Pix-dependent ENaC inhibition in CHO cells, suggesting that the GEF activity of Pix is not required for ENaC suppression (38). Pix is up-regulated in primary human mesangial cells with ET-1 treatment for 24 h (53). However, in this study, there was no significant change in Pix expression in polarized renal epithelial cells with AMPK activation for 24 h. Importantly, we found that AMPK activation increases the association between Pix and 14-3-3 proteins in both CCD cell lines (Fig. 7, step 2) but does not inhibit the binding of Nedd4-2 to 14-3-3 proteins in either cell line (Figs. 4 and 6) under conditions when AMPK inhibits ENaC (Fig. 5). Specifically, in mCCDcl1 cells, the association between Nedd4-2 and 14-3-3 proteins was not significantly affected either by AMPK activators or by overexpression of WT or mutant Pix (Fig. 4, D and E). In contrast, AMPK activation in mCCDcl1 cells promoted Nedd4-2 binding to 14-3-3 proteins, and Pix knockdown blunted this increased Nedd4-2 association with 14-3-3s (Fig. 6, D–F). Moreover, as shown in Fig. 6, D–F, Pix is required for the phosphorylation and cellular stability of Nedd4-2 (Fig. 7, step 3). Taken together, our findings indicate that AMPK decreases ENaC activity through a Pix/Nedd4-2–14-3-3–dependent mechanism that differs from the proposed mechanism of ET-1–dependent ENaC inhibition, although the final regulatory step featuring enhanced Nedd4-2–ENaC interaction with subsequent ENaC ubiquitination and degradation is the same (Fig. 7, step 4).

Pix is well-known as a regulator of cell motility, functioning as a GEF for Cdc42 and Rac1 and a binding partner to the PAK family of Cdc42/Rac1-activated kinases (54). Pix has related roles in promoting membrane ruffling (55), focal complex disassembly facilitating migration (56), and maintenance of epi-

Figure 5. βPix knockdown blunts ENaC inhibition by AMPK. A and B, mCCDcl1 cells were stably transduced with either a scrambled control shRNA (A) or shRNA directed against βPix (B). EVOM studies were performed on polarized cells before and after AA treatment for 4 and 24 h (*, p < 0.05, ENaC current differences of AA-treated cells versus nontreatment controls at the indicated time points). C, comparisons of the percent change in ENaC current following 4 and 24 h of AA treatment between control and βPix knockdown cells. βPix knockdown significantly reduced the ENaC current inhibition induced by treatment with AMPK activators. D, after equivalent short-circuit current measurements, cells were lysed to verify the knockdown efficiency of βPix by immunoblotting. Data shown are mean ± S.E. Asterisks indicate significant difference versus the control treatment at the same time point. p values are also indicated for comparisons in the absence (−) or presence (+) of βPix knockdown.
 AMPK regulation of ENaC via β1Pix

Figure 6. β1Pix regulates AMPK-dependent Nedd4-2–14-3-3 association and Nedd4-2 cellular stability in mCCDcl1 cells. A, representative immunoblot (Input) and co-IP results of β1Pix, Nedd4-2, and 14-3-3 proteins in total lysates from polarized mCCDcl1 cells with or without β1Pix knockdown after 24-h treatment with or without AMPK activators (AA). Ab, antibody. B, summary graph of the ratio of pAMPK-α (Thr-172) to total AMPK-α and β1Pix protein expression levels. IB, immunoblot. C, summary graph of the co-immunoprecipitated β1Pix (left panel) or Nedd4-2 (right panel) with 14-3-3 proteins under the indicated conditions. D, immunoblot analysis of Nedd4-2 protein expression in cells with or without β1Pix knockdown and with or without AA treatment. E, 14-3-3 analysis of Nedd4-2 mRNA in cells with or without β1Pix knockdown and with or without AA treatment. F, phosphorylation of Nedd4-2 (Ser-328) in cells with or without β1Pix knockdown and with or without AA treatment. G, Nedd4-2 cellular stability in control versus β1Pix knockdown cells. Cells were treated with cycloheximide (100 μg/ml) and harvested at different time points (*, p = 0.008 for comparison of control and β1Pix knockdown at the 2-h time point). Immunoblot assays were performed to detect changes in cellular Nedd4-2 protein abundance. Data are mean ± S.E. (p values for the indicated comparisons with significant differences are shown).

The effects of β1Pix on 14-3-3 proteins and Nedd4-2 downstream of AMPK likely have broader implications for the regulation of additional membrane transport proteins besides ENaC. Specifically, Nedd4-2 is known to regulate a growing list of transport proteins through a direct binding and ubiquitination mechanism similar to that originally characterized for ENaC including voltage-gated Na+, K+, and Ca2+ channels; Cl− channels; human organic anion transporters; and gluta-

mate transporters in the brain (62). Moreover, it has already been shown that many of these transport proteins are also regulated by AMPK, so it is reasonable to propose that the mechanisms uncovered in this study may be generalizable to the numerous transport proteins that are regulated by AMPK and Nedd4-2. Additional studies to test whether β1Pix is a critical component in the regulation of these transport proteins in the kidney and other important organs like the heart, lung, and brain are thus warranted.

In summary, this study describes a novel function of β1Pix as a positive regulator of Nedd4-2 stability and a β1Pix/Nedd4-2–14-3-3 protein–dependent mechanism of AMPK-regulated ENaC inhibition. Our findings support a model whereby AMPK activation enhances Nedd4-2 cellular stability via β1Pix and induces ENaC degradation by enhancing the association of β1Pix, 14-3-3 proteins, and Nedd4-2 into a complex and further strengthening the phosphorylation of Nedd4-2 (Fig. 7). Future work will focus on investigating the mechanisms of how AMPK

thelial cell polarization (57, 58) and survival (59). Besides cell migration and survival, several studies reported that β1Pix is critical for cellular transformation and in vivo tumorigenesis, as it can sequester the c-Cbl ubiquitin ligase and prevent the ubiquitination and degradation of various growth factor receptors, including epidermal growth factor receptor, VEGFR2, and IGF1R (60, 61). Here we further demonstrate a novel role of β1Pix in AMPK-dependent ENaC regulation, suggesting the involvement of β1Pix in the regulation of the E3 ubiquitin ligase Nedd4-2 during metabolic stress conditions.
AMPK regulation of ENaC via β,PIX

Basolateral

Figure 7. Proposed model for the roles of Ned4-2 and β,PIX in the regulation of ENaC by AMPK. Activation of AMPK promotes AMPK-mediated phosphorylation of Ned4-2 at Ser-328 (1) and also promotes the binding of β,PIX to the Ned4-2–14-3-3 complex (2). β,PIX association with Ned4-2 enhances Ned4-2 stability by helping to maintain Ned4-2 phosphorylation at Ser-328 (3), which ultimately enhances the association of Ned4-2 with ENaC (4) and thereby induces ENaC ubiquitination and degradation.

promotes the binding of β,PIX to 14-3-3, leading to an increase of ENaC ubiquitination by Ned4-2.

Experimental procedures

Reagents and chemicals

All chemicals used were purchased from Sigma or Thermo Fisher Scientific unless otherwise noted. [γ-32P]ATP was obtained from MP Biomedicals (Santa Ana, CA). Recombinant active human AMPK holoenzyme (α1-T172D, β1, γ1) was synthesized and purified as described previously (63). 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) and 8-(4-chloro-1-naphthalenyl)-1-piperidinecarboxylic acid (NPC) were obtained from EMD Millipore. The bacteria were harvested after 24 h for elution of GST-xNedd4-2. Purified GST-xNedd4-2 was phosphorylated in vitro with active AMPK holoenzyme, separated by SDS-PAGE, and stained with colloidal Coomassie Blue, and radioactive gel bands were excised. Tryptic digestion, peptide extraction, purification by reverse-phase chromatography, and MALDI-TOF MS analysis were performed by following the reported procedures (67). Selected radioactive peptides were sequenced by solid-phase Edman degradation (68).

Mass spectrometry and Edman sequencing

WT GST-xNedd4-2 was expressed in E. coli Rosetta 2 cells (EMD Millipore). The bacteria were harvested after 24 h for elution of GST-xNedd4-2. Purified GST-xNedd4-2 was phosphorylated in vitro with active AMPK holoenzyme, separated by SDS-PAGE, and stained with colloidal Coomassie Blue, and radioactive gel bands were excised. Tryptic digestion, peptide extraction, purification by reverse-phase chromatography, and MALDI-TOF MS analysis were performed by following the reported procedures (67). Selected radioactive peptides were sequenced by solid-phase Edman degradation (68).

In vitro phosphorylation

HEK-293 cells were transiently transfected according to the manufacturer’s protocol using Lipofectamine 2000 (Invitrogen) to express FLAG-tagged WT xNedd4-2 or xNedd4-2 S444A. Cells were lysed 2 days after transfection, and the FLAG-tagged xNedd4-2 (WT and S444A) were immunoprecipitated from cell lysates using the M2 anti-FLAG mAb (Sigma) coupled to protein A/G agarose. In vitro phosphorylation was performed using purified active AMPK holoenzyme with [γ-32P]ATP labeling, as described previously (27). After SDS-PAGE and transfer to nitrocellulose membranes, immunoblotting for expression of the FLAG-tagged xNedd4-2 was first performed and quantified using
a Versadoc Imager with Quantity One software (Bio-Rad). After the chemiluminescent signal decayed, phosphorylated bands on the membrane were identified by exposure of the same membrane to a phosphoscreen, and the detected bands were quantitated using the same image analysis software. The intensity of each phosphoscreen band was corrected by subtracting the local background in the same lane.

Electrophysiology

A portable epithelial volt-ohm-meter (World Precision Instruments, Sarasota, FL) was used to measure equivalent short-circuit currents across polarized cell monolayers. The electrode was calibrated by placing it into growth medium for 90 min prior to measurement of the potential difference and resistance across the filter. The current was calculated by using the potential difference across the filter divided by the resistance normalized to the surface area to obtain readings measured in microamperes per square centimeter (69). Whole-cell macroscopic patch clamp current recordings of mENaC expressed in CHO cells were made under voltage clamp conditions using our previously described methods (38). Cells were seeded on glass coverslips and then transiently transfected with the bicistronic pTracer plasmid to express GFP and AMPK-α1–K45R, AMPK-γ1–R70Q, or empty vector (65). Whole-cell patch clamping was performed on GFP-positive cells 1–3 days after transfection.

Co-immunoprecipitation assays

To examine the association between β1Pix, Ned4-2, and 14-3-3 proteins with AMPK modulation, cells were harvested and lysed in ice-cold IP lysis buffer (1% Triton X-100, 2 mM EDTA (pH 8.0), in Dulbecco’s PBS with Ca²⁺ and Mg²⁺) after AICAR and A769662 treatment versus vehicle, as indicated, for 24 h. Precleared lysates were incubated with the pan-14-3-3 antibody (1:100) coupled to protein A/G beads (Thermo Fisher Scientific) overnight at 4 °C. Immunoprecipitation in the absence of the pan-14-3-3 antibody was also performed as a no-antibody control. After three washes with lysis buffer, the immunoprecipitation samples were eluted in sample buffer and, along with the cell lysate samples, subjected to immunoblotting to detect β1Pix, Ned4-2, and 14-3-3 proteins. Relative binding was quantified by dividing the co-IP protein signal by the signal for that protein in the cell lysate, which was then corrected for the amount of immunoprecipitated protein for that condition.

Immunoblotting

Lysis and immunoblotting of cell lysates for Ned4-2 (EMD Millipore), pNed4-2 (S328) (Abcam), V5 tag (Cell Signaling Technology), β1Pix (EMD Millipore), phospho-AMPK α (Thr-172, Cell Signaling Technology), AMPK pan α (Cell Signaling Technology), 14–3–3 proteins (Santa Cruz Biotechnology), and β-actin (Sigma) were performed as described previously (25, 38). Gradient gels (4–12%) were used for SDS-PAGE. IRDye® goat anti-rabbit and anti-mouse IgG Dylight 800 and 680 were obtained from LI-COR Biotechnology (Lincoln, NE). Membranes were scanned with an Odyssey Fc imaging system (LI-COR). Bands were quantified by using Image Studio Lite software (LI-COR) on unprocessed raw data files. To compare immunoblotting and co-IP results for specific conditions across multiple replicate experiments, we analyzed the data through the “normalization by sum of the replicate” technique, as described previously (70). Briefly, each data point from an individual group on a blot was divided by the sum of all raw data on the same blot. The data were then further normalized to the average calculated with all of the control group values from all experiments.

RNA extraction and real-time quantitative reverse transcriptase PCR

Total RNA was extracted using the PureLink™ RNA Mini Kit (Invitrogen), and 0.5–μg aliquots were reverse-transcribed using the Maxima First Strand cDNA Synthesis Kit (Thermo Scientific) according to the manufacturer’s instructions. First-strand cDNA, 1 μl of the 40-μl reverse transcription reaction product, was amplified using PowerUp SYBR Green Master Mix (Applied Biosystems) with primers of Ned4-2 (forward, 5’-AATGACCTGGGCCTTCTT-3’; reverse, 5’-GTAAAACGTGCGGCCATC-3’) or glyceraldehyde-3-phosphate dehydrogenase (forward, 5’-TCAGGCTCATTT CCTGGATAGCA-3’; reverse, 5’-TAGGCCCTCTTGT CTCAGT-3’). Quantitative real-time RT-PCR was conducted with the ViiATM 7 real-time PCR system (Applied Biosystems) at 95 °C for 20 s, followed by 40 cycles at 95 °C for 1 s and 60 °C for 20 s. All samples were run in triplicate. The expression of Ned4-2 was defined from the threshold cycle, and relative expression levels were calculated using the 2^ \(-\Delta\DeltaCT\) method. Glyceraldehyde-3-phosphate dehydrogenase was used as a reference gene for normalization.

Cycloheximide chase assay

mCCD_c1 cells with or without β1Pix knockdown were treated with 100 μg/ml cycloheximide and then chased at 37 °C for 0 to 4 h. At the appropriate chase time, cells were rinsed twice with cold PBS and lysed in radioimmuneprecipitation assay buffer supplemented with phosphatase and protease inhibitors. Proteins were resolved by SDS-PAGE and immunoblotted with anti-Ned4-2 WW2 antibody. The detected bands were then quantitated by using Image Studio Lite software (LI-COR).

Statistical analysis

All summarized data are reported as mean ± S.E. Statistical analyses were performed using corresponding t tests and one-way analysis of variance with post hoc Bonferroni corrections for multiple comparisons. In all cases, p < 0.05 was considered significant.
AMPK regulation of ENaC via βPix

Acknowledgments—We thank Dr. Nuria Pastor-Soler for feedback. We also thank Dr. Bernard Rossier (University of Lausanne, Lausanne, Switzerland) for providing mCCD1c cells and Dr. Andrey Sorokin (Medical College of Wisconsin) for providing the βPix plasmids used in this study.

References

1. Garty, H., and Palmer, L. G. (1997) Epithelial sodium channels: function, structure, and regulation. Physiol. Rev. 77, 359–396 CrossRef Medline
2. Rossier, B. C., Pradervand, S., Schild, L., and Hummler, E. (2002) Epithelial sodium channel and the control of sodium balance: interaction between genetic and environmental factors. Annu. Rev. Physiol. 64, 877–897 CrossRef Medline
3. Rossier, B. C. (2004) The epithelial sodium channel: activation by membrane-bound serine proteases. Proc. Am. Thorac. Soc. 1, 4–9 CrossRef Medline
4. Canessa, C. M., Schild, L., Buell, G., Thorens, B., Gautschi, I., Horisberger, J. D., and Rossier, B. C. (1994) Amiloride-sensitive epithelial Na⁺ channel is made of three homologous subunits. Nature 367, 463–467 CrossRef Medline
5. Kellenberger, S., and Schild, L. (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol. Rev. 82, 735–767 CrossRef Medline
6. Bhalla, V., and Hallows, K. R. (2008) Mechanisms of ENaC regulation and clinical implications. J. Am. Soc. Nephrol. 19, 1845–1854 CrossRef Medline
7. Kamynina, E., and Staub, O. (2002) Concerted action of ENaC, Nedd4-2, and Sgk1 in transepithelial Na⁺ channel cell surface expression. J. Biol. Chem. 279, 5042–5046 CrossRef Medline
8. Snyder, P. M., Steines, J. C., and Olson, D. R. (2004) Relative contribution of Nedd4 and Nedd4-2 to ENaC regulation in epithelia determined by RNA interference. J. Biol. Chem. 279, 283, F377–F387 CrossRef Medline
9. Debonneville, C., Flores, S. Y., Kamynina, E., Plant, P. J., Tauxe, C., Thomas, M. A., Münster, C., Cziraki, A., Pratt, J. H., Horisberger, J. D., Pearce, D., Loffing, J., and Staub, O. (2001) Phosphorylation of Nedd4-2 by β1Regl regulates epithelial Na⁺ channel cell surface expression. EMBO J. 20, 7052–7059 CrossRef Medline
10. Ichimura, T., Yamamura, H., Sasamoto, K., Tominaga, Y., Taoka, M., Kakiuchi, K., Shinkawa, T., Takahashi, N., Shimada, S., and Isobe, T. (2004) AMP-activated kinase regulates ubiquitin ligase neural precursor cell-expressed, developmentally down-regulated protein 4-2 by inducing interaction with 14-3-3. Mol. Endocrinol. 19, 3073–3084 CrossRef Medline
11. Hallows, K. R., Bhalla, V., Oyster, N. M., Wijngaarden, L. A., Li, H., Chien, A., Hallows, K. R., and Bhalla, V. (2011) Neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2) regulation by 14-3-3 protein binding at canonical serum and glucocorticoid kinase 1 (SGK1) phosphorylation sites. J. Biol. Chem. 286, 37830–37840 CrossRef Medline
12. Hallows, K. R., Bhalla, V., Oyster, N. M., Wijngaarden, M. A., Lee, J. K., Li, H., Chien, A., Hallows, K. R., and Bhalla, V. (2011) Neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2) regulation by 14-3-3 protein binding at canonical serum and glucocorticoid kinase 1 (SGK1) phosphorylation sites. J. Biol. Chem. 286, 37830–37840 CrossRef Medline
13. Hardie, D. G., Carling, D., and Carlson, M. (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 67, 821–855 CrossRef Medline
14. Pastor-Soler, N., and Hallows, K. R. (2012) AMP-activated protein kinase regulation of kidney tubular transport. Curr. Opin. Nephrol. Hypertens. 21, 523–533 CrossRef Medline
15. Stein, S. C., Woods, A., Jones, N. A., Davison, M. D., and Carling, D. (2000) The regulation of AMP-activated protein kinase by phosphorylation. Biochem. J. 345, 437–443 CrossRef Medline
16. Woods, A., Johnstone, S. R., Dickerson, K., Leiper, F. C., Fryer, L. G., Neumann, D., Schlattner, U., Wallimann, T., Carlson, M., and Carling, D. (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004–2008 CrossRef Medline
17. Hallows, K. R., Bhalla, V., and Dammayanthi, K. (2009) AMP-activated protein kinase in kidney disease. Contrib. Nephrol. 167, 125–138 CrossRef Medline
18. Kamynina, E., and Staub, O. (2002) Concerted action of ENaC, Nedd4-2, and Sgk1 in transepithelial Na⁺ channel. Am. J. Physiol. Renal Physiol. 283, F377–F387 CrossRef Medline
19. Snyder, P. M., Steines, J. C., and Olson, D. R. (2004) Relative contribution of Nedd4 and Nedd4-2 to ENaC regulation in epithelia determined by RNA interference. J. Biol. Chem. 279, 5042–5046 CrossRef Medline
20. Polverino, O., Zhao, Z. S., Ng, C. P., and Lim, L. (2001) βPix interacts with the ENaC β1 subunit. J. Biol. Chem. 276, 21095–21100 CrossRef Medline
21. Woods, A., Johnstone, S. R., Dickerson, K., Leiper, F. C., Fryer, L. G., Neumann, D., Schlattner, U., Wallimann, T., Carlson, M., and Carling, D. (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004–2008 Medline
22. Hallows, K. R., Bhalla, V., and Dammayanthi, K. (2009) AMP-activated protein kinase in kidney disease. Contrib. Nephrol. 167, 125–138 CrossRef Medline
23. Hallows, K. R., Bhalla, V., Oyster, N. M., Wijngaarden, M. A., Lee, J. K., Li, H., Chien, A., Hallows, K. R., and Bhalla, V. (2011) Neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2) regulation by 14-3-3 protein binding at canonical serum and glucocorticoid kinase 1 (SGK1) phosphorylation sites. J. Biol. Chem. 286, 37830–37840 CrossRef Medline
24. Hallows, K. R., Bhalla, V., Oyster, N. M., Wijngaarden, M. A., Lee, J. K., Li, H., Chien, A., Hallows, K. R., and Bhalla, V. (2011) Neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2) regulation by 14-3-3 protein binding at canonical serum and glucocorticoid kinase 1 (SGK1) phosphorylation sites. J. Biol. Chem. 286, 37830–37840 CrossRef Medline
25. Hallows, K. R., Bhalla, V., Oyster, N. M., Wijngaarden, M. A., Lee, J. K., Li, H., Chien, A., Hallows, K. R., and Bhalla, V. (2011) Neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2) regulation by 14-3-3 protein binding at canonical serum and glucocorticoid kinase 1 (SGK1) phosphorylation sites. J. Biol. Chem. 286, 37830–37840 CrossRef Medline
26. Hallows, K. R., Bhalla, V., Oyster, N. M., Wijngaarden, M. A., Lee, J. K., Li, H., Chien, A., Hallows, K. R., and Bhalla, V. (2011) Neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2) regulation by 14-3-3 protein binding at canonical serum and glucocorticoid kinase 1 (SGK1) phosphorylation sites. J. Biol. Chem. 286, 37830–37840 CrossRef Medline
27. Hallows, K. R., Bhalla, V., Oyster, N. M., Wijngaarden, M. A., Lee, J. K., Li, H., Chien, A., Hallows, K. R., and Bhalla, V. (2011) Neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2) regulation by 14-3-3 protein binding at canonical serum and glucocorticoid kinase 1 (SGK1) phosphorylation sites. J. Biol. Chem. 286, 37830–37840 CrossRef Medline
region to promote microvillus-like structures and membrane ruffles. *J. Cell Sci.* **114**, 4239–4251 Medline

33. Staruschenko, A., and Sorokin, A. (2012) Role of βPix in the kidney. *Front. Physiol.* **3**, 154 Medline

34. Bagrodia, S., Bailey, D., Lenard, Z., Hart, M., Guan, J. L., Fremont, R. T., Taylor, S. J., and Cerione, R. A. (1999) A tyrosine-phosphorylated protein that binds to an important regulatory region on the cdc42 family of p21-activated kinase-binding proteins. *J. Biol. Chem.* **274**, 22393–22400 CrossRef Medline

35. Kim, S., Lee, S. H., and Park, D. (2001) Leucine zipper-mediated homodimerization of the p21-activated kinase-interacting factor, βPix: implication for a role in cytoskeletal reorganization. *J. Biol. Chem.* **276**, 10581–10584 CrossRef Medline

36. Jin, J., Smith, F. D., Stark, C., Wells, C. D., Fawcett, J. P., Kulkarni, S., Metalnikov, P., O'Donnell, P., Taylor, P., Taylor, L., Zouman, A., Wodgett, J. R., Langeberg, L. K., Scott, J. D., and Pawson, T. (2004) Proteinomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. *Curr. Biol.* **14**, 1436–1450 CrossRef Medline

37. Angrand, P. O., Segura, I., Volkel, P., Ghidelli, S., Terry, R., Brajenovic, M., Vintersten, K., Klein, R., Superti-Furga, G., Drewes, G., Kuster, B., Bouwmeester, T., and Acker-Palmer, A. (2006) Transgenic mouse proteomics identifies new 14-3-3-associated proteins involved in cytoskeletal rearrangements and cell signaling. *Mol. Cell. Proteomics* **5**, 2211–2227

38. Pavlov, T. S., Chahdi, A., Ilatovskaya, D. V., Levchenko, V., Vandewalle, A., Pochynyuk, O., Sorokin, A., and Staruschenko, A. (2010) Endothelin-1 inhibits the epithelial Na⁺ channel through βPix14-3-3-Nedd4-2. *J. Am. Soc. Nephrol.* **21**, 833–843 CrossRef Medline

39. Alzamora, R., Al-Bataineh, M. M., Liu, W., Gong, F., Li, H., Thali, R. F., Joho-Auchli, Y., Brunisholz, R. A., Satlin, L. M., Neumann, D., Hallows, K. R., and Pastor-Soler, N. M. (2013) AMP-activated protein kinase regulates the vacuolar H⁺-ATPase via direct phosphorylation of the Ab subunit (ATP6V1A) in the kidney. *Am. J. Physiol. Renal Physiol.* **305**, F943–F956 CrossRef Medline

40. Staub, O., and Verrey, F. (2005) Impact of Nedd4 proteins and serum and glucocorticoid-induced kinases on epithelial Na⁺ transport in the distal nephron. *J. Am. Soc. Nephrol.* **16**, 3167–3174 CrossRef Medline

41. Liang, X., Peters, K. W., Butterworth, M. B., and Frizzell, R. A. (2006) 14–3–3 isoforms are induced by aldosterone and participate in regulation of epithelial sodium channels. *J. Biol. Chem.* **281**, 16323–16332 CrossRef Medline

42. Edinger, R. S., Lebowitz, J., Li, H., Alzamora, R., Wang, H., Johnson, J. P., and Hallows, K. R. (2009) Functional regulation of the epithelial Na⁺ channel by βK kinase-β occurs via phosphorylation of the ubiquitin ligase Nedd4-2. *J. Biol. Chem.* **284**, 150–157 CrossRef Medline

43. Corton, J. M., Gillespie, J. G., Hawley, S. A., and Hardie, D. G. (1995) 5-Aminoisimidazole-4-carboxamide ribonucleoside: a specific method for activating AMP-activated protein kinase in intact cells? *Eur. J. Biochem.* **229**, 558–565 CrossRef Medline

44. Chahdi, A., and Sorokin, A. (2008) Protein kinase A-dependent phosphorylation modulates βPix guanine nucleotide exchange factor activity through 14-3-3β binding. *Mol. Cell. Biol.* **28**, 1679–1687 CrossRef Medline

45. Bens, M., Vallet, V., Cluzeaud, F., Pascual-Letallec, L., Kahn, A., Rafestin-Oblin, M. E., Rossier, B. C., and Vandewalle, A. (1999) Corticosteroid-dependent sodium transport in a novel immortalized mouse collecting duct principal cell line. *J. Am. Soc. Nephrol.* **10**, 923–934 Medline

46. Gaeggeiler, H. P., Gonzalez-Rodriguez, E., Jaeger, N. F., Loffing-Cueni, D., Norregaard, R., Loffing, J., Horisberger, J. D., and Rossier, B. C. (2005) Mineralocorticoid versus glucocorticoid receptor occupancy mediating aldosterone-stimulated sodium transport in a novel renal cell line. *J. Am. Soc. Nephrol.* **16**, 878–891 CrossRef Medline

47. Gleason, C. E., Friandt, G., Cheng, C. J., Ng, M., Kidwai, A., Rashmi, P., Lang, F., Baum, M., Palmer, L. G., and Pearce, D. (2015) mTORC2 regulates renal tubule sodium uptake by promoting ENaC activity. *J. Clin. Invest.* **125**, 117–128 CrossRef Medline

48. Morrison, D. K. (2009) The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. *Trends Cell Biol.* **19**, 16–23 CrossRef Medline

49. Inoki, K., Zhu, T., and Guan, K. L. (2003) TSC2 mediates cellular energy response to control cell growth and survival. *Cell* **115**, 577–590 CrossRef Medline

50. Gwinn, D. M., Shackelford, D. B., Egan, D. F., Mihaylova, M. M., Mery, A., Vasquez, D. S., Turk, B. E., and Shaw, R. J. (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. *Mol. Cell* **30**, 214–226 CrossRef Medline

51. Nagaki, K., Yamamura, H., Shimada, S., Saito, T., Hisanaga, S., Taoka, M., Isole, T., and Ichimura, T. (2006) 14–3–3 mediates phosphorylation-dependent inhibition of the interaction between the ubiquitin E3 ligase Nedd4-2 and epithelial Na⁺ channels. *Biochemistry* **45**, 6733–6740 CrossRef Medline

52. Chahdi, A., Miller, B., and Sorokin, A. (2005) Endothelin-1 induces βPix translocation and Cdc42 activation via protein kinase A-dependent pathway. *J. Biol. Chem.* **280**, 578–584 CrossRef Medline

53. Chahdi, A., and Sorokin, A. (2008) Endothelin-1 couples βPix to p66Shc: role of βPix in cell proliferation through FOXO3a phosphorylation and p27kip1 down-regulation independently of Akt. *Mol. Biol. Cell* **19**, 2609–2619 CrossRef Medline

54. Manser, E., Loo, T. H., Koh, C. G., Zhao, Z. S., Chen, X. Q., Tan, L., Lim, L., Leung, T., and Lim, L. (1998) PKA kinases are directly coupled to the PKA family of nucleotide exchange factors. *Mol. Cell* **1**, 183–192 CrossRef Medline
modulates cystic fibrosis transmembrane conductance regulator activity in lung submucosal cells. J. Biol. Chem. 278, 998–1004 CrossRef Medline
66. Hartley, J. L., Temple, G. F., and Brasch, M. A. (2000) DNA cloning using in vitro site-specific recombination. Genome Res. 10, 1788–1795 CrossRef Medline
67. Tuerk, R. D., Auchli, Y., Thali, R. F., Scholz, R., Wallimann, T., Brunisholz, R. A., and Neumann, D. (2009) Tracking and quantification of 32P-labeled phosphopeptides in liquid chromatography matrix-assisted laser desorption/ionization mass spectrometry. Anal. Biochem. 390, 141–148 CrossRef Medline
68. Djouder, N., Tuerk, R. D., Suter, M., Salvioni, P., Thali, R. F., Scholz, R., Vahtomeri, K., Auchli, Y., Rechsteiner, H., Brunisholz, R. A., Viollet, B., Mäkelä, T. P., Wallimann, T., Neumann, D., and Krek, W. (2010) PKA phosphorylates and inactivates AMPKα to promote efficient lipolysis. EMBO J. 29, 469–481 CrossRef Medline
69. Mohan, S., Bruns, J. R., Weixel, K. M., Edinger, R. S., Bruns, J. B., Kleyman, T. R., Johnson, J. P., and Weisz, O. A. (2004) Differential current decay profiles of epithelial sodium channel subunit combinations in polarized renal epithelial cells. J. Biol. Chem. 279, 32071–32078 CrossRef Medline
70. Degasperi, A., Birtwistle, M. R., Volinsky, N., Rauch, J., Kolch, W., and Kholodenko, B. N. (2014) Evaluating strategies to normalise biological replicates of Western blot data. PLoS ONE 9, e87293 CrossRef Medline