INTRODUCTION

Natural products are important sources for biologically active drugs\(^1\). There has been an increasing interest in the medicinal plants as natural products in different parts of the world\(^2\). Medicinal plants containing high antioxidant properties play an important role in the prevention of various degenerative diseases in the society. The medicinal value of these plants depends on bioactive phytochemical constituents in the human body. Some of the most important bioactive phytochemical constituents include alkaloids, flavonoids, essential oils, tannins and saponins\(^3\). Phenolics are commonly found in medicinal plants and their biological effects, include antioxidant activity. Due to synthetic antioxidants such as butylated hydroxyl anisole (BHA), butylated hydroxyl toluene (BHT), and tert-butyl hydroquinone (TBHQ), which are widely used in food industry and cosmetic, have been growing concern over the possible carcinogenic effects\(^4\). Thus interest in natural antioxidant has increased considerably. Nowadays, it is well known that natural antioxidants extracted from herbs and spices have high antioxidant properties and are used in many food applications\(^5\). Natural antioxidants from plant sources are potent and safe due to their harmless nature; wild herbs have their antioxidant properties \(^6\). Various plants are proposed to be antioxidants as their essential oils contain phenylpropanoids in high contents. Essential oils of plant genus Ocimum belonged to family Lamiaceae. It is collectively called as Basil, is a diverse and rich source of aromatic essential oil. The species such as Ocimumbasilicum L., O canum Sims., O gratissimum L. and Ocimum sanctum L. are composed of interesting phenyl-propanes e.g. eugenol, methyl eugenol and methyl chavicol. Essential oils of these plants have been broadly used as culinary herbs, as pharmaceutical agents because of their antimicrobial, antiemetic, antidiabetic, anti-fertility, antiasthmatic, antistress and anticancer activity\(^7\).

Figure 1: Ocimumcanum- Wild basil, from Yamasaki Lab. Plant Photo Gallery, by kind permission from Kazuo Yamasaki

Ocimum canum Sims (Hairy Basil) is a traditional medicinal plant distributes throughout Odisha and it is commonly known as KalaTulsi in Odia; it is an unusual mint-like flavor. The plant branches out from its base, with angle stems and open foliage. The plant shows a pungent, aromatic flavor and is commonly cultivated for culinary
purposes. *O. canum* is used specially for treating various types of diseases and lowering blood glucose and also treats cold, fever, parasitic infestations on the body and inflammation of joints and headaches. Essential oil from the leaves of *O. canum* possesses antibacterial and insecticidal properties. It is used in ritual as an incense as well to protect the home and welcome newborns into the world. It is an unusual and very useful addition to the medicinal garden. The hairy leaves and decorative flowers are very aromatic and form a lush mound about 2 feet in height. This annual plant grows well in full sun, well-drained soil and plenty of heat. The plant branches from the base and has an angled stems and oval pubescent leaves. Its leaves are tiny and fuzzy and have violet or white flowers, having a sweet scent resembling that of the clove. The leaves of the *Ocimum canum* are opposite and toothed. It is irregular and occurs in crowded whorls. The *Ocimum canum* has a small corolla. These plants have intense floral-fruity aromas. The oil of the *Ocimum canum* is composed of Linalool. The seeds may provide fiber or reduce constipation.

MATERIALS AND METHODS

2.1. Plant collection

Leaves of *Ocimum canum* were collected in the month of December 2011 from its natural habitat from nearby Mohuda village, Berhampur, Ganjam district of Odisha. The plant was authenticated from Department of Botany, Khalikote College, Berhampur, Odisha. The leaves were cleaned and dried under the shade to avoid degradation of volatile oil. The leaves were dried in hot air oven at 55°C for 3 days and at 40°C for the next 4 days.

2.2. Extraction

The dried leaves were coarsely powdered and extracted with a mixture of methanol: water (7:3, v/v) by a Soxhlet apparatus at 50°C. The solvent was completely removed and obtained dried crude extract which was used for investigation. Further the extracts were subjected for the phytochemical study as well as pharmacological screening.

2.3. Phytochemical screening

Phytochemical screenings were performed using standard procedures.

1) **Test for alkaloids:** To the extract dilute hydrochloric acid will be added and filtered. The filtrate will be treated with various alkaloidal reagents

 a) *Mayer’s test:* The filtrate will be treated with Mayer’s reagent: appearance of cream colour indicates the presence of alkaloids.

 b) *Dragendorff’s test:* The filtrate will be treated with Dragendorffs reagent: appearance of reddish brown precipitate indicates the presence of alkaloids.

 c) *Hager’s test:* The filtrate when treated with Hager’s reagent, appearance of yellow colour precipitate indicates the presence of alkaloids.

2) **Test for carbohydrates and reducing sugar:**

 The small quantities of the filtrate will be dissolved in 4ml of distilled water and filtered. The filtrate will be subjected to

 a) *Molisch’s test:* A small portion of the filtrate will be treated with Molisch’s reagent and sulphuric acid. Formation of a violet ring indicates the presence of carbohydrates.

 b) *Fehling’s test:* The extract will be treated with Fehling’s reagent A and B. The appearance of reddish brown colour precipitate indicates the presence of reducing sugar.

 c) *Benedict’s test:* The extract will be treated with Benedict’s reagent; appearance of reddish orange colour precipitate indicates the presence of reducing sugar.

 d) *Barfoed’s test:* The extract will be treated with barfoed’s reagent and heated. Appearance of reddish orange colour precipitate indicates the presence of non-reducing sugars.

3) **Test for steroids:**

 Lieberman-burchard’s test: The extract will be treated with 3ml of acetic anhydride, few drops of glacial acetic acid followed by a drop of concentrated sulphuric acid. Appearance of bluish green colour indicates the presence of steroids.

4) **Test for proteins:**

 a) *Biuret test:* The extract will be treated with copper sulphate solution, followed by addition of sodium hydroxide solution; appearance of violet colour indicates the presence of proteins.

 b) *Millon’s test:* The extract will be treated with Millon’s reagent; appearance of pink colour indicates the presence of proteins.

5) **Test for tannins:**

 The extract will be treated with 10% lead acetate solution; appearance of white precipitate indicates the presence of tannins.

6) **Test for phenolic compounds:**

 a) The extract will be treated with neutral ferric chloride solution; appearance of violet colour indicates the presence of phenolic compounds.

 b) The extract will be treated with 10% sodium chloride solution; appearance of cream colour indicates the presence of phenolic compounds.

7) **Test for flavonoids:**

 a) 5ml of extract will be hydrolyzed with 10% sulphuric acid and cooled. Then, it will be extracting with diethyl ether and divided in to three portions in three separate test tubes. 1ml of diluted sodium carbonate, 1ml of 0.1N sodium hydroxide, and 1ml of strong ammonia solution will be added to the first, second and third test tubes respectively. In each test tube, development of yellow colour demonstrated the presence of flavonoids.

 b) Shimoda’s test: The extract will be dissolved in alcohol, to which few magnesium turnings will beaded followed by concentrated HCL drop wise and heated, and appearance of magenta colour shows the presence of flavonoids.
The extract was treated with 25 ml of absolute alcohol, and filtered. The filtrate will examine for its swelling properties.

When a pinch the extract was treated with glacial acetic acid and few drops of ferric chloride solution, followed by the addition of conc. Sulphuric acid, formation of ring at the junction of two liquids indicates the presence of glycosides.

Foam test About 1 ml of the extract was diluted to 20 ml of with distilled water and shaken well in a test tube. The formation of foam in the upper part of test tube indicates the presence of saponins.

The substance was warmed with tin and thionyl chloride. Pink colour indicates the presence of triterpenoids.

To the Methanol solution of DPPH (1 mM) an equal volume of the extract dissolved in alcohol was added at various concentrations from 250 to 2000 μg/ml in a final volume of 1.0 ml. An equal amount of alcohol was added to the control. After 20 min, absorbance was recorded at 517 nm. Experiment was performed in triplicate.

To the reaction mixture containing 0.3 ml of ABTS radical, 1.7 ml phosphate buffer and 0.5 ml extract was added at various concentrations from 250 to 2000 μg/ml. Blank was carried out without drug. Absorbance was recorded at 734 nm. Experiment was performed in triplicate.

Sodium nitroprusside (5μM) in standard phosphate buffer solution was incubated with different concentration of the test extracts dissolved in standard phosphate buffer (0.025M, pH 7.4) and the tubes were incubated at 25 °C for 5 hr. After 5 h, 0.5 ml of incubation solution was removed and diluted with 0.5 ml Griess reagent (prepared by mixing equal volume of 1% sulphanilamide in 2% phosphoric acid and 0.1% naphthylethylene di-amine di-hydrochloride in water). The absorbance of chromophore formed was read at 546 nm. The control experiment was also carried out in similar manner, using distilled water in the place of extracts. The experiment was performed in triplicate and % scavenging activity was calculated using the formula:-

$$100 - \frac{100 \times \text{sample absorbance}}{\text{blank absorbance}}$$

The activity was compared with ascorbic acid, which was used as a standard antioxidant.

Alkaline DMSO was used as a super oxide generating system. To 0.5 ml of different concentrations of the test compound, 1 ml of alkaline DMSO and 0.2 ml of NBT 20 mM in phosphate buffer pH 7.4 was added. The experiment was performed in triplicate.

The reaction mixture containing 1 ml O-Phenanthroline, 2 ml Ferric chloride, and 2 ml extract at various concentrations ranging from 250 to 2000 μg/ml in a final volume of 5 ml was incubated for 10 minutes at ambient temperature. The absorbance at 510 nm was recorded. Ascorbic acid was added instead of extract and absorbance obtained was taken as equivalent to 100% reduction of all ferric ions. Blank was carried out without extract. Experiment was performed in triplicate.

The scavenging capacity for hydroxyl radical was measured according to the modified method of Halliwell et al., (1987). Stock solutions of EDTA (1mM), FeCl$_3$ (10 mM), ascorbic acid (1mM), H$_2$O$_2$ (10mM) and deoxyribose (10mM) were prepared in distilled deionized water. The assay was performed by adding 0.1 ml of EDTA 0.01 ml of FeCl$_3$, 0.1 ml of H$_2$O$_2$, 0.36 ml of deoxyribose, 1.0 ml of plant extract (250-2000 μg/ml), 0.33 ml of phosphate buffer (50 mM, pH 7.4) and 0.1ml of ascorbic acid in sequence. The mixture was then incubated at 37°C for 1 hr. About 1.0 ml portion of the incubated mixture was mixed with 1.0 ml of 10% TCA and 1.0 ml of 0.5% TBA to develop the pink chromogen, measured at 532 nm. The hydroxyl radicals scavenging activity was calculated using the following equation:-

$$\%\text{Inhibition} = \frac{[A_0-A_1]}{A_0} \times 100$$

Where, A_0 was the absorbance of the control (blank) and A_1 was the absorbance in the presence different concentrations of the extract.

The reaction mixture containing 1 ml O-Phenanthroline, 2 ml Ferric chloride, and 2 ml extract at various concentrations ranging from 250 to 2000 μg/ml in a final volume of 5 ml was incubated for 10 minutes at ambient temperature. The absorbance at 510 nm was recorded. Ascorbic acid was added instead of extract and absorbance obtained was taken as equivalent to 100% reduction of all ferric ions. Blank was carried out without extract. Experiment was performed in triplicate.

The scavenging activity of deoxyribose degradation assay

This activity was determined according to a method suggested by B. Halliwell and groupwith minor changes. Aliquot of 50-mM H$_2$O$_2$ and various concentrations (0–2000 μg/mL) of samples were mixed (1: 1 v/v) and incubated for 30 minutes at room temperature. After incubation, 90μl of the H$_2$O$_2$-sample solution was mixed with 10 μl HPLC-grade methanol and 0.9-μL FOX reagent was added (previously prepared by mixing 9
volumes of 4.4-mM Ascorbic acid in HPLC-grade methanol with 1 volume of 1-mM xylene orange and 2.56-mM ammonium ferrous sulfate in 0.25-M H$_2$SO$_4$. The reaction mixture was then vortexed and incubated at room temperature for 30 min. The absorbance of ferric-xylene orange complex was measured at 560 nm. All tests were carried out three times and sodium pyruvate was used as the reference compound.

2.5 Statistical analysis

The experimental results were expressed as mean ± SEM of three replicates. Where applicable, the data were subjected to one way analysis of variance (ANOVA) and two way analysis of variance (ANOVA). All these analyses were done by Graph Pad Prism Software program (version 5). P values < 0.05 were regarded as significant.

3. RESULTS AND DISCUSSION

3.1 Phytochemical screening

Phytochemical screening of the extracts revealed the presence of carbohydrates, flavonoids and tannins.

3.2 Antioxidant assays

DPPH radical scavenging assay

The proton radical scavenging action is known to be one of the various mechanisms for measuring antioxidant activity.

The DPPH test provides information on their activity of the test compounds with a stable free radical. This assay determines the scavenging of stable radical species of DPPH by antioxidants. The degree of reduction in absorbance measurement by Ocimum canum is indicative of the radical scavenging (antioxidant) power of the plant. The study showed that the hydro-alcoholic extract have the proton-donating ability and can serve as free radical inhibitors or scavenger, acting possibly as primary antioxidant.

S. No	Phytoconstituents	Ethanol	Aqueous
1	Alkaloids	-	-
2	Carbohydrates	+	+
3	Glycosides	-	-
4	Phytoesters	-	-
5	Fixed oils	-	-
6	Saponins	-	-
7	Tannins	+	-
8	Protein and amino acids	-	-
9	Gums and mucilage	-	-
10	Flavonoids	+	+
11	Terpenoids	+	+

+ = presence, – = absence.

![Figure 2](image_url)

Figure 2: Study on DPPH scavenging activity in *Ocimum canum* leaves at 517 nm

![Figure 3](image_url)

Figure 3: Study on ABTS scavenging activity in *Ocimum canum* leaves at 405 nm

ABTS radical scavenging activity

ABTS, a protonated radical, has characteristic absorbance maxima at 734 nm which decreases with the scavenging of the proton radicals (Mathew and Abraham 2006). The scavenging of the ABTS+ radical by the *O. canum* was found to be much higher than that of DPPH radical.

Nitric oxide scavenging

Sodium nitroprusside serves as a chief source of free radicals. The absorbance of the chromophore formed
during diazotization of the nitrite with sulphanilamide and subsequent coupling with naphthyl-ethylene-diamine is used as the marker for NO scavenging activity. *O. canum* leaf extract possess significant free radical scavenging action against nitric oxide (NO) induced release of free radicals at the concentrations between 250-2000 µg/mL.

![Nitric oxide scavenging activity in *O. canum* leaves](image1)

Figure 4: Study on Nitric oxide scavenging activity in *Ocimum canum* leaves at 546 nm

Superoxide radical scavenging activity

Superoxide radical scavenging activity exhibited by the hydro-alcoholic extract of *Ocimum canum* at different concentration showed that the superoxide scavenging activity of *Ocimum canum* was less as compared to the standard. The probable mechanism may be due to the non-inhibitory effect of hydro-alcoholic extract of the leaf towards generation of superoxides in the reaction mixture.

![Superoxide ion scavenging activity in *O. canum* leaves](image2)

Figure 5: Study on Superoxide ion scavenging activity in *Ocimum canum* leaves at 560 nm

Iron chelating activity assay

O-phenanthroline quantitatively forms complexes with Fe$^{2+}$ which get disrupted in the presence of chelating agents. The hydro-alcoholic extract of *Ocimum canum* interfered with the formation of a ferrous-o-phenanthroline complex, thereby suggesting that the extracts had metal chelating activity. This study suggests that *Ocimum canum* possess antioxidant activity.

![Iron chelating activity in *O. canum* leaves](image3)

Figure 6: Study on Iron chelating activity in *Ocimum canum* leaves at 510 nm

Hydroxyl Radical Scavenging Activity

The hydroxyl radical scavenging activity is measured as the percentage inhibition of hydroxyl radicals generated in the Fenton's reaction mixture by studying the competition between deoxyribose and the extract for hydrogen radicals generated from Fe$^{2+}$/ascorbate/EDTA/H$_2$O$_2$ systems. The hydroxyl radicals attack deoxyribose which eventually results in TBARS formation. From the present results, it is observed that the leaf extract of *O. canum* have better hydroxyl radical scavenging activity as reflected in terms of percentage inhibition.
Hydroxyl Radical Scavenging Activity in *Ocimum canum* leaves

![Graph](Image)

Figure 7: Study on Hydroxyl Radical Scavenging Activity in *Ocimum canum* leaves

Total reduction capability

Reducing power assay measures the electron-donating capacity of an antioxidant. The reduction of the ferric ion (Fe$^{3+}$) to ferrous ion (Fe$^{2+}$) is measured by the intensity of the resultant blue-green solution which absorbs at 700 nm, and an increased absorbance is indicative of higher reducing power. The reducing power of the extract increased progressively over the concentration range studied. Extract solutions at 1000µg/ml had comparable reducing power to Ascorbic acid at 250 µg/ml. These findings suggest that the *Ocimum canum* hydro-alcoholic extract is capable of donating electrons, and could therefore react with free radicals or terminate chain reactions.

Scavenging Activity of Hydrogen Peroxide

The scavenging of hydrogen peroxide by the standard (ascorbic acid) and extract after incubation for 10 minutes increased with increased concentration. *Ocimum canum* hydro-alcoholic extracts exhibited higher hydrogen peroxide scavenging activity than ascorbic acids at similar concentrations. While hydrogen peroxide itself is not very reactive, it can generate the highly reactive hydroxyl radical (OH) through the Fenton reaction (*Equation 1*). Thus, the scavenging of hydrogen peroxide is an important antioxidant defense mechanism.

$$\text{Fe}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \text{OH} + \text{OH}^- \quad (\text{Equation 1})$$

The decomposition of hydrogen peroxide to water involves the transfer of electrons as in *Equation 2*.

$$\text{H}_2\text{O}_2 + 2\text{H}^+ + 2\text{e}^- \rightarrow 2\text{H}_2\text{O} \quad (\text{Equation 2})$$

The scavenging of hydrogen peroxide by phenolic compounds has been attributed to their electron-donating ability. The hydro-alcoholic OC extracts have high electron-donating abilities, and 68.21 ± 0.35% scavenging was achieved with concentrations of hydro-alcoholic extracts at 2000 µg/ml. In comparison, the hydrogen peroxide scavenging activity of ascorbic acid at 2000 µg/ml were found to be 98.79 ± 0.28.

![Graph](Image)

Figure 8: Study on Total reduction capability in *Ocimum canum* leaves at 700 nm

![Graph](Image)

Figure 9: Study on Scavenging Activity of Hydrogen Peroxide in *Ocimum canum* leaves at 560 nm
CONCLUSIONS

The present study clearly indicates that Ocimum canum a rich source of phyto-constituents having immense antioxidant potential. Ocimum canum rich in flavonoids, thus the results indicate that hydro-alcoholic leaf extract of Ocimum canum have potent antioxidant activity, achieved by scavenging abilities observed against DPPH, ABTS, Nitric oxide, Superoxide, Iron chelating, Hydroxyl radical, Reducing power assay and Hydrogen Peroxide.

REFERENCES

1. Saleh I. Alqasoumi, Mohammad S. Al-Dosari, Abdulmalik M.; AlSheikh and Maged S. Abdel-Kader. Evaluation of the Hepatoprotective Effect of Fumaria parviflora and Monordicabalamsina from Saudi Folk Medicine against Experimentally Induced Liver Injury in Rats. Research Journal of Medicinal Plant.2009;3: 9-15

2. Gazzaneo, I., Paiva de Lucena, R.F. and Paulino de Albuquerque, U. In vitro antioxidant activities of Ocimum species: Ocimumbasilicum and Ocimumsanctum, J. Ethnobiol. Ethnome, 2005; 1: 9.

3. Krishnaiah, D., Devi, T., Bono,A. and Sarbatly, R.: J. Med. Plants Res, 2009;3(2): 67-72

4. Ito N., Fukushima S., Hasegawa A., Shibata M. and Ogiso T.Carcinogenicity of butylatedhydroxyanisole in F 344 rats. J. Natl Cancer Inst,1983;70, 343-347.

5. Hirasa K. and Takemasa M. Spice Science Technology. Marcel Dekker: New York.1998.

6. Lee Koon, J. and Min, D.B. Comp. Rev. Food. Sci. Food Safety, 2004;3: 21-27

7. Makker, P.N., Tait, L., Shekhar, M.P.V. Inhibition of breast tumor growth and angiogenesis by a medicinal herb Ocimumgratissimum. Int. J. Cancer,2007;121, 884–894.

8. Ngassoum, M .B.Ousmaila, H., Ngumo, L.T., Maponmetsem, P.M.,Jirovetz, L., Buchbauer, G., Aroma compounds of essential oils of two varieties of the spice plant OcimumcanumSinufrom northern Cameroon. J. Food Comp. Anal.2004;17, 197–204.

9. Bassole, I.H.N., Guelbeogo, W.M., Nebie, R., Costantini, C., Sagne, N.F., Kabore, Z.I., Traore, S.A.,Ovicidal and larvicidal activity against Aedesaegypti and Anopheles gambiaycomplex mosquitoes of essential oils extracted from three spontaneous plants of Burkina Faso. Parasitology.2003;45, 23–26.

10. Gupta V., Sharma M. Screening of three Indian medicinal plants extracts for antioxidant activity. International Journal of Institutional Pharmacy and Life Sciences,July-August 2011; 1(1): 118-137

11. Sofowora A, Medicinal plants and Traditional Medicine in Africa. Spectrum Books, Ibadan. 1993.

12. Trease GE and Evans WC, Pharmacognosy, BailliereTindall, London, 13th edition 1989; P176-180.

13. Mathew, S. and T.E. Abraham, In-vitro antioxidant activity and scavenging effect of Cinnamomumverum leaf extract assayed by different methodologies. Food. Chem. Toxicol, 2006;44: 198-206

14. Halliwell B, Gutteridge JMC, Aruoma OI. The deoxyribose method: a simple "test tube" assay for determinants for reactions of hydroxyl radicals. Anal. Biochem, 1987; 165: 215-219.

15. M. Oyaizu, Studies on products of browning reactions: antioxidant activities of products of browning reaction prepared from glucoseamine. Japanese Journal of Nutrition, 1986;vol,44, 307–315.

16. H. F. Long, P. J. Evans, and B. Halliwell, Hydrogen peroxide in human urine: implications for antioxidant defense and redox regulation, Biochemical and Biophysical Research Communications, 1999;vol. 262 (3), 605–609.

17. Harvey J, Paige SM. The Instat Guide to choosing and interpreting statistical tests: A manual for Graph pad Instat, Version 3s. San Diego, CA USA. 1998

18. N Balasundram, T Yew Ai, R Sambanthamurthi, K Sundram and S Samman, Antioxidant properties of palm fruit extracts, Asia Pac J Clin Nutr, 2005; 4 (4):319-324