Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Beneficial and Harmful Effects of Monoclonal Antibodies for the Treatment and Prophylaxis of COVID-19: Systematic Review and Meta-Analysis

Adrian V. Hernandez, MD, PhD,a,b Alejandro Piscoya, MD, MPH,b Vinay Pasupuleti, MD, PhD,c Mi T. Phan, BS,a Sreya Julakanti, PharmD,a Phirin Khen, PharmD,a Yuani M. Roman, MD, MPH,a César O. Carranza-Tamayo, MD, PhD,d Angel A. Escobedo, MD, PhD,e C. Michael White, PharmDa

aHealth Outcomes, Policy and Evidence Synthesis (HOPES) Group, University of Connecticut School of Pharmacy, Storrs, CT; bUnidad de Revisiones Sistematicas y Meta-analisis (URSIGET), Vicerrectorado de Investigacion, Universidad San Ignacio de Loyola (USIL), Lima, Peru; cCello Health, Yardley, PA; dFaculdade de Medicina, Universidade Católica de Brasília, Brasília, Brazil; eEpidemiology Unit, National Institute of Gastroenterology, La Habana, Cuba.

ABSTRACT

BACKGROUND: We systematically assessed beneficial and harmful effects of monoclonal antibodies for coronavirus disease 2019 (COVID-19) treatment, and prophylaxis in individuals exposed to severe acute respiratory syndrome coronavirus 2.

METHODS: We searched 5 engines and 3 registries until November 3, 2021 for randomized controlled trials evaluating monoclonal antibodies vs control in hospitalized or non-hospitalized adults with COVID-19, or as prophylaxis. Primary outcomes were all-cause mortality, COVID-19-related death, and serious adverse events; hospitalization for non-hospitalized; and development of symptomatic COVID-19 for prophylaxis. Inverse variance random effects models were used for meta-analyses. Grading of Recommendations, Assessment, Development, and Evaluations methodology was used to assess certainty of evidence.

RESULTS: Twenty-seven randomized controlled trials were included: 20 in hospitalized patients (n = 8253), 5 in non-hospitalized patients (n = 2922), and 2 in prophylaxis (n = 2680). In hospitalized patients, monoclonal antibodies slightly reduced mechanical ventilation (relative risk [RR] 0.74; 95% confidence interval [CI], 0.60-0.9; I² = 20%, low certainty of evidence) and bacteremia (RR 0.77; 95% CI, 0.64-0.92; I² = 7%, low certainty of evidence); evidence was very uncertain about the effect on adverse events (RR 1.31; 95% CI, 1.02-1.67; I² = 77%, very low certainty of evidence). In non-hospitalized patients, monoclonal antibodies reduced hospitalizations (RR 0.30; 95% CI, 0.17-0.53; I² = 0%, high certainty of evidence) and may slightly reduce serious adverse events (RR 0.47; 95% CI, 0.22-1.01; I² = 33%, low certainty of evidence). In prophylaxis studies, monoclonal antibodies probably reduced viral load slightly (mean difference −0.8 log10; 95% CI, −1.21 to −0.39, moderate certainty of evidence). There were no effects on other outcomes.

CONCLUSIONS: Monoclonal antibodies had limited effects on most of the outcomes in COVID-19 patients, and when used as prophylaxis. Additional data are needed to determine their efficacy and safety.

KEYWORDS: COVID-19; Meta-analysis; Monoclonal antibodies; Prophylaxis; Treatment

Funding: No funding was received for this study.

Conflicts of Interest: None for all authors.

Authorship: All authors had access to the data and a role in writing the manuscript. AVH: Conceptualization, data curation, formal analysis, methodology, project administration, resources, software, supervision, validation, writing – original draft, review & editing; AP: Conceptualization, data curation, investigation, resources, supervision, writing – original draft, review & editing; VP: Data curation, formal analysis, investigation, writing – original draft, review & editing; YMR: Conceptualization, formal analysis, investigation, resources, writing – original draft, review & editing; COC-T: Data curation, formal analysis, investigation, writing – review & editing; AAE: Data curation, formal analysis, investigation, writing – review & editing; CMW: Conceptualization, data curation, investigation, supervision, writing – original draft, review & editing.

Requests for reprints should be addressed to Adrian V. Hernandez, MD, PhD, Health Outcomes, Policy and Evidence Synthesis (HOPES) Group, University of Connecticut School of Pharmacy, 69 N Eagleville Rd U-3092, Storrs, CT 06269.

E-mail address: adrian.hernandez-diaz@uconn.edu

© 2022 Elsevier Inc. All rights reserved. • The American Journal of Medicine (2022) 135:1349–1361

https://doi.org/10.1016/j.amjmed.2022.06.019
INTRODUCTION
By March 28, 2022, approximately 1 million and 6.2 million deaths had been reported due to coronavirus disease 2019 (COVID-19) in the United States and the world, respectively.1 Several therapies have received emergency use authorization to prevent hospitalizations or death in COVID-19 patients or to prevent high-risk people from becoming infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Convalescent plasma, a therapy based on neutralizing SARS-CoV-2 virus with a previously infected person’s antibodies, was given emergency authorization; however, it did not demonstrate significant clinical benefits in systematic reviews.2,3

Monoclonal antibodies against the SARS-CoV-2 virus have a theoretical advantage over convalescent plasma in that selective antibodies against the SARS-CoV-2 virus can be created and administered to patients.4 While the anti-SARS-CoV-2 monoclonal antibody products containing casirivimab + imdevimab, bamlanivimab + etesevimab, and sotrovimab have emergency authorizations for treating mild to moderate COVID-19 infections, current use is not recommended against the omicron subvariant of SARS-CoV-2.5 However, the anti-SARS-CoV-2 monoclonal antibody bebtelovimab can be used to treat patients with mild to moderate COVID-19 disease, and tixagevimab + cilgaveimab can be used to prevent COVID-19 infection in high-risk patients, even in regions with high omicron subvariant prevalence.5

There are also monoclonal antibodies used to impede the inflammatory response to COVID-19, such as interleukin, complement, surface glycoprotein, and granulocyte-monocyte colony-stimulating factor inhibitors. Many of these anti-inflammatory monoclonal antibodies have studies assessing their efficacy or safety in COVID-19 patients, but the only one with emergency authorization is tocilizumab.5

Monoclonal antibodies have not been systematically evaluated for their efficacy and safety for the treatment of, or prophylaxis against, COVID-19. We conducted a systematic review with meta-analyses of randomized controlled trials assessing the efficacy and safety of monoclonal antibodies for the treatment or prevention of COVID-19.

MATERIALS AND METHODS
Searches
We conducted a comprehensive literature search in PubMed, Web of Science, Scopus, Embase, and Cochrane Library on November 3, 2021. Also, we searched for ongoing randomized controlled trials at www.clinicaltrials.gov, www.who.int/clinical-trials-registry-platform, and www.clinicaltrialsregister.eu/ctr-search/search. There was no time or language limitation. The PubMed strategy is available in the Supplementary Material.

CLINICAL SIGNIFICANCE
- In hospitalized patients, monoclonal antibodies slightly reduced mechanical ventilation and bacteremia.
- In non-hospitalized patients, monoclonal antibodies reduced hospitalization, and may slightly reduce serious adverse events.
- In individuals exposed to serious acute respiratory syndrome coronavirus 2, monoclonal antibodies probably reduced viral load slightly.
- There were no effects of monoclonal antibodies on all-cause mortality or COVID-19-related mortality.

Study Selection
Three reviewers (AP, VP, AVH) searched engines and websites and collected records in myendnoteweb.com. Three independent reviewers (AP, COC-T, AAE) assessed titles and abstracts for eligibility; discrepancies were resolved by discussion. We included randomized controlled trials evaluating one or more monoclonal antibody vs control, conducted in adults who were either hospitalized or non-hospitalized with polymerase chain reaction (PCR)-confirmed COVID-19 (active treatment) or in adults at high risk of developing COVID-19 due to close contact to people with PCR-confirmed COVID-19 (prophylaxis). Monoclonal antibodies of interest included anti-inflammatory (tocilizumab, sarilumab, meplazumab, canakinumab, mavrilimumab, itolizumab) and anti-spike protein of SARS-CoV-2 (bamlanivimab, bamlanivimab + etesevimab, sotrovimab, and casirivimab + imdevimab). Controls of interest were placebo, standard of care, or an active treatment. Studies were excluded if conducted in individuals <18 years old, did not report on at least one outcome, or included individuals with hepatitis B or human immunodeficiency virus infection.

Outcomes
Primary outcomes were all-cause mortality, COVID-19-related death, and serious adverse events for all populations; hospitalization for non-hospitalized individuals, and development of symptomatic COVID-19 for prophylaxis studies. Secondary outcomes included hospital stay, invasive mechanical ventilation, viral load, adverse events, and bacteremia. We used definitions provided by authors.

Data Extraction
Data extraction was completed by 2 independent reviewers (SY, PK) in a predefined Excel format (Microsoft Corporation, Redmond, Wash). Disagreements were resolved with a third reviewer (AVH). Extracted data included: 1) first author and year of publication; 2) number of participants; 3) countries involved; 4) population (hospitalized, non-hospitalized, prophylaxis); 5) monoclonal antibody type, dose, and duration; 6) control type, dose, and duration; 7) follow-up duration; 6) control type, dose, and duration; 7) follow-up
time; 8) median age; 9) male proportion; 10) comorbidities prevalence (ie, diabetes, hypertension, obesity, coronary artery disease, chronic obstructive pulmonary disease, asthma, chronic kidney disease); 11) concomitant treatments for both monoclonal antibody and control arms; 12) primary outcomes per arm; and 13) secondary outcomes per arm.

Risk of Bias Assessment
Two reviewers (SJ, PK) independently evaluated risk of bias (RoB) of randomized controlled trials using the Cochrane risk of bias tool RoB2.0. A third reviewer (AVH) resolved discrepancies. The RoB2.0 tool assesses 5 domains of bias: randomization process, deviations from intended interventions, missing outcome data, measurement of the outcome, and selection of the reported result. Judgements of bias per domain can be “low” or “high”, or can express “some concerns”. The presence of high RoB in at least one domain means the study is at high RoB; the presence of some concerns in at least one domain without a single domain at high RoB means the study has some concerns of bias.

Statistical Analyses
This systematic review was reported according to 2020 PRISMA guidelines. We primarily stratified our analyses by type of population: hospitalized and non-hospitalized COVID-19 patients, and high risk of COVID-19 infection (prophylaxis). We performed random effects meta-analyses using the inverse variance method, the Paule-Mandel method to calculate the between-study variance tau, and the Hartung-Knapp method to adjust 95% confidence intervals (CIs). Effects were reported as relative risks (RR) with their 95% CIs for dichotomous outcomes, and mean differences with their 95% CIs for continuous outcomes. Heterogeneity of effects was quantified with the I^2 statistic, with an $I^2 > 60$ defined as high heterogeneity. Three sets of subgroup analyses were prespecified: by type of drug (tocilizumab vs other) in hospitalized patients; by type of control (placebo, standard of care, active) in hospitalized patients; and by type of control in hospitalized patients of tocilizumab studies. A P for interaction < .1 was considered statistically significant for a given subgroup. We evaluated only small study effects with the

![PRISMA 2020 flowchart](image-url)
First Author, Year	Country(ies)	Population, % Vaccination	Sample Size	Monoclonal Antibody, Duration and Total Dose	Control Mean Age, Years (SD)	Male (%)	Hypertension (%)	Diabetes (%)	Heart Disease (%)	Reported Outcomes	Follow-Up Days		
Bian, 2021^1	China	Hospitalized, vaccination NA	28	Meplazumab, 5 days, 30 mg	56.5 (15.1)	57.1	32.1	10.7	10.7	Time to viral clearance, elevated aspartate aminotransferase or alanine transaminase	28		
Caricchio, 2021^12	USA, Europe	Hospitalized, vaccination NA	454	Canakimumab, 1 day, 660 mg	58.5 (14.1)	58.8	55.7	36.1	20.3	All-cause mortality, serious adverse events, adverse events, COVID-19-related death, bacteremia	28		
Cremer, 2021^13	USA	Hospitalized, vaccination NA	40	Mavrilimumab, 1 day, 420 mg	56.2 (15.7)	65.0	55.0	42.5	NA	All-cause mortality, serious adverse events, mechanical ventilation, length of stay	28		
Gordon, 2021	Australia, New Zealand, UK, Belgium, Thailand, Sri Lanka, USA, Canada, Northern Ireland, Netherlands	Hospitalized, vaccination NA	895	Tocilizumab, 1-2 days, 560-1120 mg Sarilimumab, 1 day, 400 mg	61.3 (12.7)	72.1	NA	36.4	10.8	All-cause mortality, serious adverse events, mechanical ventilation, bacteremia	21		
Hamed, 2021^15	United Arab Emirates	Hospitalized, vaccination NA	49	Tocilizumab, 1 day, 400 mg	48.5 (11.3)	81.6	22.4	42.9	NA	All-cause mortality, COVID-19-related death, mechanical ventilation, length of stay	45		
Hermine, 2021^16	France	Hospitalized, vaccination NA	416	Tocilizumab; 1-2 days, 600-1200 mg	64.4 (12.0)	67.7	NA	33.6	31.3	All-cause mortality, serious adverse events, adverse events, mechanical ventilation, bacteremia	28		
Horby, 2021^17	UK	Hospitalized, vaccination NA	131	Tocilizumab, 1-3 days, 560-960 mg	63.6 (13.7)	67.3	NA	28.4	22.6	All-cause mortality, serious adverse events, adverse events, mechanical ventilation, bacteremia	28		
Kumar, 2021^18	India	Hospitalized, vaccination NA	30	Itolizumab, 7-30 days, 280 mg	49.1 (13.0)	86.7	NA	NA	NA	All-cause mortality, serious adverse events, adverse events, mechanical ventilation, bacteremia	30		
Lescure, 2021^19	Argentina, Brazil, Canada, Chile, France, Germany, Israel, Italy, Japan, Russia, and Spain	Hospitalized, vaccination NA	416	Sarilimumab, 1 day, 400 mg	58.6 (12.9)	62.7	42.5	26.4	9.9	All-cause mortality, serious adverse events, adverse events, bacteremia	29		
Lundgren, 2021^20	USA, Denmark Singapore, Singapore	Hospitalized, vaccination NA	314	Bamlanivimab, 1 day, 7000 mg	60.7 (16.7)	58.0	49.0	28.7	4.1	All-cause mortality, adverse events, bacteremia	90		
Rashad, 2021^21	Egypt	Hospitalized, vaccination NA	149	Tocilizumab, 1-2 days, 560-1120 mg	61.8 (12.8)	56.9	47.7	28.4	12.8	All-cause mortality, mechanical ventilation	14		
Rosas, 2021^22	USA, UK, Spain	Hospitalized, vaccination NA	438	Tocilizumab, 1 day, 560 mg	60.8 (14.3)	69.9	62.1	38.1	28.1	All-cause mortality, serious adverse events, adverse events, mechanical ventilation, bacteremia, length of stay	28		
Salama, 2021^23	USA, Mexico, Kenya, South Africa, Peru, Brazil	Hospitalized, vaccination NA	389	Tocilizumab, 1 day, 560 mg	55.9 (14.5)	59.2	NA	NA	NA	All-cause mortality, serious adverse events, adverse events, mechanical ventilation, bacteremia, length of stay	28		
Salvarani, 2021^24	Italy	Hospitalized, vaccination NA	126	Tocilizumab, 1 day, 800 mg	61.6 (12.0)	61.1	44.4	15.1	NA	All-cause mortality, serious adverse events, adverse events, mechanical ventilation, bacteremia, length of stay	14		
Soin, 2021^25	India	Hospitalized, vaccination NA	180	Tocilizumab, 1-7 days, 480-960 mg	54.5 (13.4)	84.9	84.9	84.9	15.1	All-cause mortality, serious adverse events, adverse events, mechanical ventilation, bacteremia	28		
Stone, 2020^26	USA	Hospitalized, vaccination NA	243	Tocilizumab, 1 day, 560 mg	58.7 (17.3)	58.3	48.8	31.0	18.6	All-cause mortality, serious adverse events, mechanical ventilation, bacteremia	28		
First Author, Year, Reference	Acronym	Country(ies)	Population, % Vaccination	Sample Size	Monoclonal Antibody, Duration and Total Dose	Control	Mean Age, Years (SD)	Male (%)	Hypertension (%)	Diabetes (%)	Heart Disease (%)	Reported Outcomes	Follow-Up Days
-------------------------------	---------	--------------	---------------------------	-------------	---	---------	---------------------	----------	------------------	-------------	-----------------	------------------	-----------------
Veiga, 2021		Brazil	Hospitalized, vaccination NA	129	Tocilizumab, 1 day, 560 mg	Standard of care	57.4 (14.6)	68.2	49.6	32.6	10.9	All-cause mortality, serious adverse events, adverse events, mechanical ventilation, bacteremia, length of stay	28
Vlaar, 2020		Netherlands	Hospitalized, vaccination NA	30	Vilbelimab, 15-22 days, 800 mg	Placebo	60.5 (8.7)	73.3	30.0	26.7	NA	All-cause mortality, serious adverse events, COVID-19-related death, bacteremia, length of stay	28
Wang, 2021		China	Hospitalized, vaccination NA	65	Tocilizumab, 1-2 days, 500 mg	Standard of care	63.2 (10.3)	50.8	30.8	15.4	NA	Serious adverse events, adverse events, length of stay	14
Zhao H, 2021		China	Hospitalized, vaccination NA	31	Tocilizumab, 7 days, 400 mg	Active	67.0 (33.3)	52.4	42.9	9.5	14.3	Serious adverse events, adverse events, mechanical ventilation	14
Chen, 2021		USA	Non-hospitalized, vaccination NA	452	Bamlanivimab, 1 day, 3486 mg	Placebo	48 (48.3)	44.9	NA	NA	NA	Viral load	29
Dougan, 2021		USA	Non-hospitalized, vaccination NA	1035	Bamlanivimab + etesevimab, 1 day, 5600 mg	Placebo	53.8 (16.8)	48%	NA	NA	NA	All-cause mortality, serious adverse events, adverse events, COVID-19-related death, bacteremia, viral load, length of stay, COVID-19-related hospitalization	29
Gottlieb, 2021		USA	Non-hospitalized, vaccination NA	577	Bamlanivimab, 1 day, 3486 mg; Bamlanivimab + etesevimab, 1 day, 5600 mg	Placebo	44.5 (18.5)	45.4	NA	NA	NA	All-cause mortality, serious adverse events, adverse events, COVID-19-related death, mechanical ventilation, viral load, COVID-19-related hospitalization or emergency department visit*	29
Gupta, 2021		USA, Canada, Brazil, Spain	Non-hospitalized, vaccination NA	275	Sotrovimab, 1 day, 500 mg	Placebo	53.9 (54.9)	45.6	NA	22.6	0.7	All-cause mortality, serious adverse events, adverse events, mechanical ventilation	29
Weinreich, 2021		USA	Non-hospitalized, vaccination NA	583	Casirivimab + imdevimab, 1 day, 5169 mg	Placebo	43.7 (13.4)	48.7	NA	NA	NA	All-cause mortality, serious adverse events, adverse events, COVID-19-related death, viral load	29
Cohen, 2021		USA	Prophylaxis, vaccination 0%	1175	Bamlanivimab, 1 day, 4200 mg	Placebo	53.5 (47.3)	25.3	NA	NA	NA	All-cause mortality, serious adverse events, adverse events, COVID-19-related death, bacteremia, viral load	29
O’Brien, 2021		USA, Romania Moldova	Prophylaxis, vaccination 0%	1505	Casirivimab + imdevimab, 1 day, 1200 mg	Placebo	46.9 (57.5)	45.9	NA	6.8	NA	Serious adverse events, adverse events, bacteremia	28

NA = Not available.

*12 of 15 (80%) COVID-19-related hospitalizations or emergency department visits were hospitalizations.
Egger’s test when there were 10 or more studies. All analyses were performed in R 4.1.2 (www.r-project.org).

The certainty of evidence was evaluated using the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) methodology (www.gradeworkinggroup.org). The certainty of evidence per outcome was based on the evaluation of 5 aspects: RoB, inconsistency, imprecision, indirectness, and publication bias. Description of certainty of evidence was presented in summary of findings tables using GRADEpro software (McMaster University and Evidence Prime, 2021; www.gradepro.org).

RESULTS

Selection of Studies

We identified 1446 citations from databases and 20 from registries (Figure 1). After removing duplicates and title, abstract, and full text reviews, 27 randomized controlled trials met our inclusion criteria. Twenty studies were conducted in hospitalized COVID-19 patients, 31-35 5 studies in non-hospitalized COVID-19 patients, 31-35 and 2 studies in individuals at high risk of developing COVID-19. 36,37 Two trials evaluated 2 different monoclonal antibodies: Gordon et al. 14 evaluated tocilizumab and sarilumab, and Gottlieb et al. 33 evaluated bamlanivimab and bamlanivimab + etesevimab.

Table 1 displays features of the 20 trials in hospitalized COVID-19 patients. 11-30 Nine, eight, and three of the studies had monoclonal antibodies compared with standard of care, placebo, and active control, respectively. Nineteen of the 20 studies assessed anti-inflammatory monoclonal antibodies (13 tocilizumab, 2 sarilumab, and one each meplazumab, canakinumab, mavrilimumab, itolizumab, and vilobelimab) while one assessed an anti-SARS-CoV-2 virus monoclonal antibody (bamlanivimab). Nineteen trials were 2-group comparisons (monoclonal antibody vs control) while one trial14 had 3 arms (tocilizumab or sarilumab vs standard of care). The follow-up ranged from 14 to 90 days.

Table 2 Summary of Findings Table of Effects of Monoclonal Antibodies in Hospitalized COVID-19 Patients

Outcomes	Anticipated Absolute Effects (95% CI)	Relative Effect (95% CI)	Number of Participants (Studies)	Certainty of the Evidence (GRADE)	
	Risk with Standard of Care, Active Therapy or Placebo	Risk with Monoclonal Antibodies	RR 0.94 (0.80-1.11)	7800	Low
All-cause mortality follow-up:	26 per 100 (21-29)	25 per 100			
range 14-90 days					
COVID-19-related death	8 per 100 (2-14)	5 per 100	RR 0.65 (0.25-1.72)	524	Low
follow-up: range 28-45 days	19 per 100 (11-17)	14 per 100	RR 0.74 (0.60-0.92)	5807	Low
Invasive mechanical ventilation	The mean length of hospital stay was 18.1 days lower (6.1 lower to 2.38 higher)				
follow-up: range 14-45 days					
Length of hospital stay assessed with: days					
Any adverse events	22 per 100 (23-37)	29 per 100	RR 1.31 (1.02-1.67)	6628	Very low
follow-up: range 14-90 days					
Serious adverse events	6 per 100 (5-7)	6 per 100	RR 0.93 (0.80-1.08)	7831	Low
follow-up: range 14-45 days					
Bacteremia	5 per 100 (3-5)	4 per 100	RR 0.77 (0.64-0.92)	7789	Low
follow-up: range 14-90 days					

CI = confidence interval; GRADE = Grading of Recommendations, Assessment, Development, and Evaluations; MD = mean difference; RCT = randomized controlled trial; RR = relative risk.

| Risk of bias (RoB): Three RCTs were at high risk of bias, and 8 RCTs had some concerns of bias. |
| RoB: Vlaar et al14 RCT was at high risk of bias in the selection of the reported results. |
| Imprecision: 95% CI of RR 0.25-1.72. |
| RoB: Three RCTs were at high risk of bias, and 7 RCTs had some concerns of bias. |
| RoB: Two RCTs (Rosas et al22 Salama et al) had some concerns of bias, and one RCT (Veiga et al27) was at high risk of bias. |
| *Inconsistency: I^2 was 79%. |
| Imprecision: 95% CI of MD from 6.1-2.4 days. |
| RoB: Two RCTs (Zhao et al30 and Veiga et al27) were at high risk of bias, and 6 RCTs had some concerns of bias. |
| Inconsistency: I^2 was 77%. |
| RoB: Two RCTs (Veiga et al27 and Vlaar et al14) were at high risk of bias, and 8 RCTs had some concerns of bias. |
with 4 trials at 14 days, one at 21 days, 13 at 28-30 days, and 2 at >30 days.

Table 1 displays features of the 5 trials in non-hospitalized COVID-19 patients. All trials assessed anti-SARS-CoV-2 monoclonal antibodies (2 bamlanivimab, 2 bamlanivimab + etesevimab, one sotrovimab, one casirivimab + imdevimab). Four studies had 2-group comparisons (monoclonal antibody vs placebo) while one had 3 arms (bamlanivantumab or bamlanivimab + etesevimab vs placebo). All of the trials had 29 days of follow-up.

There were only 2 trials assessing the prophylactic impact of anti-SARS-CoV-2 monoclonal antibodies in high-risk patients vs placebo (Table 1). Studies assessed bamlanivimab or casirivimab + imdevimab, and had follow-up times of 29 or 28 days, respectively.

Supplementary Figure 1 (available online) shows RoB assessments of the 27 randomized trials, and 12 were found to have low RoB, 9 some concerns of bias, and 6 high RoB.

The selection of the reporting result was the item most likely to receive a high risk of bias in this literature set. There was no evidence of small study effects for all meta-analyses. Effects of monoclonal antibodies on primary and secondary outcomes are shown in Figures 2 to 4, and in Supplementary Figures 2 to 9, available online. Effects of monoclonal antibodies for pre-specified subgroups are described in the Supplement, available online, and shown in Supplementary Figures 10A1 to 10C6, available online.

Effects of Monoclonal Antibodies in Hospitalized Patients

Table 2 shows the certainty of evidence of monoclonal antibody effects in hospitalized patients. There were no differences between monoclonal antibody and controls (standard of care, placebo, or active treatment) for all-cause mortality.

![Figure 2](image-url)
Effects of monoclonal antibodies on all-cause mortality stratified by type of COVID-19 patients.
mortality (Figure 2), COVID-19-related death (Figure 3), or serious adverse events (Figure 4), with low certainty of evidence for these outcomes. For the secondary outcomes, length of stay was not different between monoclonal antibodies and controls, with very low certainty of evidence (Supplementary Figure 2, available online). Monoclonal antibodies slightly reduced mechanical ventilation (RR 0.74; 95% CI, 0.60-0.90; $I^2 = 20\%$, low certainty of evidence, Supplementary Figure 3, available online) and bacteremia (RR 0.77; 95% CI, 0.64-0.92; $I^2 = 7\%$, low certainty of evidence, Supplementary Figure 6, available online) vs controls; the evidence was very uncertain about the effect of monoclonal antibodies on adverse events (RR 1.31; 95% CI, 1.02-1.67; $I^2 = 77\%$, very low certainty of evidence, Supplementary Figure 5, available online, Table 2). Subgroup analyses in hospitalized COVID-19 patients showed differential effects for mechanical ventilation when comparing tocilizumab vs non-tocilizumab effects, and for all-cause mortality when comparing monoclonal antibody effects vs types of controls and tocilizumab effects vs types of controls (Supplementary Material, available online).

Effects of Monoclonal Antibodies in Non-Hospitalized Patients

Table 3 shows the certainty of evidence of monoclonal antibody effects in non-hospitalized patients. Monoclonal antibodies reduced hospitalizations vs placebo (RR 0.30; 95% CI, 0.17-0.53; $I^2 = 0\%$, high certainty of evidence, Supplementary Figure 7, available online) and may slightly reduce serious adverse events vs placebo (RR 0.47; 95% CI, 0.22-1.01; $I^2 = 33\%$, low certainty of evidence, Figure 4). All-cause mortality, COVID-19-related death, mechanical ventilation, length of stay, viral load, bacteremia, and adverse events were not different between monoclonal antibodies and placebo, with certainty of evidence ranging from very low to moderate (Figures 2 and 3, Supplementary Figures 2 to 6, available online).

Effects of Monoclonal Antibodies in Prophylaxis Against COVID-19

Table 4 shows the certainty of evidence of monoclonal antibody effects in trials of prophylaxis. Symptomatic COVID-19, positive SARS-CoV-2 PCR test, all-cause mortality, COVID-19-related death, adverse events, serious adverse events, and bacteremia were not different between monoclonal antibodies and placebo, with certainty of evidence ranging from very low to moderate (Supplementary Figures 5, 6, 9 and 9, available online) and Figures 2-4). Monoclonal antibodies probably reduced viral load slightly vs placebo (mean difference $-0.8 \log_{10} C_0$, 95% CI, -1.21 to -0.39, one trial, moderate certainty of evidence).

DISCUSSION

Our systematic review suggests that monoclonal antibodies had limited effects on most of the outcomes in hospitalized and non-hospitalized COVID-19 patients, and in individuals exposed to SARS-CoV-2, with certainty of evidence ranging from very low to moderate for most outcomes. In particular, there were no effects of monoclonal antibodies on all-cause mortality or COVID-19-related mortality across trials. In 20
trials of hospitalized COVID-19 patients, monoclonal antibodies slightly reduced mechanical ventilation and bacteremia, and the evidence was very uncertain about the effect on adverse events. In 5 placebo-controlled trials of non-hospitalized COVID-19 patients, monoclonal antibodies reduced COVID-19-related hospitalization, and may slightly reduce serious adverse events. In 2 placebo-controlled prophylaxis trials of individuals exposed to SARS-CoV-2, monoclonal antibodies probably reduced viral load slightly.

The anti-inflammatory monoclonal antibodies in our systematic review included inhibitors of interleukin-6 (tocilizumab, sarilumab), interleukin-1 (canakinumab), complement-5 (vilobelimab), surface glycoprotein CD-6 (itolizumab), CD-147 (meplazumab), and granulocyte-monocyte colony-stimulating factor (mavrilimumab). While more robust reductions in all-cause mortality were seen for non-tocilizumab anti-inflammatory monoclonal antibodies vs control as compared with tocilizumab vs control, whether alternative mechanisms of blocking inflammation provide superior benefits needs future verification in randomized trials. Finding a smaller magnitude of benefit for some outcomes in hospitalized patients receiving monoclonal antibodies vs standard of care than when monoclonal antibodies were compared vs placebo may suggest that the weaknesses in blinding when standard of care is used might have biased the results.

The use of anti-SARS-CoV-2 monoclonal antibodies in hospitalized COVID-19 patients has been evaluated in only one trial and the results were not promising. Unfortunately, this trial evaluated bamlanivimab alone, where the emergency authorization-approved product now contains bamlanivimab + etesevimab, so the monoclonal antibodies assessed might have been suboptimal. It is pharmacologically plausible that suppressing excessive inflammation is more important than suppressing viral replication in hospitalized patients.

In non-hospitalized COVID-19 patients, anti-inflammatory monoclonal antibodies have not been assessed and

Source	Events MAb Control	RR [95%–CI]	Favors MAb	Favors Control	Weight
Caricchio R 2021	36 225 46 223	0.78 [0.52; 1.15]			12.2%
Cremers P 2021	5 21 4 19	1.13 [0.35; 3.60]			1.8%
Gordon A 2021	0 48 5 201	0.14 [0.00; 12.85]			0.1%
Gordon A 2021	9 353 6 201	0.85 [0.31; 2.36]			2.2%
Hermine O 2021	20 63 29 67	0.73 [0.47; 1.16]			9.7%
Horby P 2021	3 2022 0 2094 7.11 [0.38; 134.52]				0.3%
Kumar S 2021	2 20 3 10 0.33 [0.07; 1.68]			0.9%	
Lescure F 2021	51 173 20 84 1.24 [0.79; 1.94]				10.0%
Rosas I 2021	103 295 55 143 0.91 [0.70; 1.18]				21.9%
Salama C 2021	38 249 25 128 0.78 [0.49; 1.23]			9.6%	
Salvarani C 2021	0 60 0 63 1.00 [0.02; 49.66]			0.2%	
Sohn A 2021	18 91 15 89 1.17 [0.63; 2.18]			5.7%	
Stone JH 2020	11 161 3 81 1.84 [0.53; 6.43]			1.5%	
Veiga V 2021	11 67 7 62 1.45 [0.60; 3.51]			3.0%	
Vlaar A 2020	9 15 7 15 1.29 [0.65; 2.54]			4.8%	
Wang D 2021	0 34 1 31 0.32 [0.01; 7.29]			0.2%	
Zhao H 2021	0 14 0 7 1.00 [0.02; 58.10]			0.1%	

Random effects model 316 3911 226 3518 0.93 [0.80; 1.08] 0 84.2%

Heterogeneity: $I^2 = 0\%$, $\chi^2 = 0$, $p = 0.73$

population = nonhospitalized

Source	Events MAb Control	RR [95%–CI]	Favors MAb	Favors Control	Weight
Dogan M 2021	7 518 5 517 1.40 [0.45; 4.37]			1.8%	
Gottlieb R 2021b	0 309 1 78 0.17 [0.01; 2.81]			0.9%	
Gottlieb R 2021be	1 112 1 78 0.70 [0.04; 10.97]			0.3%	
Gupta A 2021	7 430 26 438 0.27 [0.12; 0.63]			3.4%	
Weinreich D 2021	1 176 2 93 0.26 [0.02; 2.88]			0.4%	

Random effects model 16 1545 35 1204 0.47 [0.22; 1.01] 0 6.2%

Heterogeneity: $I^2 = 33\%$, $\chi^2 = 0.1588$, $p = 0.20$

population = prophylaxis

Source	Events MAb Control	RR [95%–CI]	Favors MAb	Favors Control	Weight
Cohen M 2021	22 588 19 587 1.16 [0.63; 2.11]			6.0%	
O’Brien M 2021	10 1311 15 1306 0.66 [0.30; 1.47]			3.6%	

Random effects model 32 1899 34 1893 0.93 [0.55; 1.58] 0 9.5%

Heterogeneity: $I^2 = 15\%$, $\chi^2 = 0.0236$, $p = 0.28$

Random effects model 364 7355 295 6615 0.90 [0.77; 1.05] 0 100.0%

Heterogeneity: $I^2 = 6\%$, $\chi^2 = 0.0113$, $p = 0.37$

Test for subgroup differences: $\chi^2 = 2.99$, df = 2 ($p = 0.22$)

Figure 4 Effects of monoclonal antibodies on serious adverse events stratified by type of COVID-19 patients.
there is pharmacologic reason to believe that they would not be effective. At this stage of the disease, the suppression of viral replication may be more effective because excessive inflammation is not commonly seen in non-hospitalized patients. In our study, we found that the anti-SARS-CoV-2 monoclonal antibodies reduced COVID-19-related hospitalization with no significant effects on all-cause mortality, COVID-19-related death, mechanical ventilation, and length of stay, but the literature base has only 5 randomized trials. Importantly, there were no increases in adverse events or serious adverse events in our systematic review, which is very promising.

In patients at high risk of developing COVID-19, the patient population assessing the impact of anti-SARS-CoV-2 monoclonal antibodies on patient outcomes is small. That means that the promising reductions in viral load, and the absence of effects on developing symptomatic or asymptomatic COVID-19 disease, all-cause mortality, COVID-19-related deaths, and bacteremia with anti-SARS-CoV-2 monoclonal antibodies are underpowered to show statistical significance. Further research in this area is encouraged, as these potential benefits could occur without increases in adverse events or serious adverse events.

In Winter 2022, the omicron variant became the dominant subvariant (99%) in the United States. The anti-SARS-CoV-2 monoclonal antibodies casirivimab + imdevimab, bamlanivimab + etesevimab, and sotrovimab were not effective against the omicron subvariant in vitro, and therapy with these drugs was therefore discouraged by the US Food and Drug Administration. This suggests that anti-SARS-CoV2 monoclonal antibodies will be even less effective than what we found in our systematic review when the omicron variant or other resistant subvariants predominate.

Our literature search was through November 3, 2021, and pre-omicron subvariant (99%) in the United States.39 The anti-SARS-CoV-2 monoclonal antibodies casirivimab + imdevimab, bamlanivimab + etesevimab, and sotrovimab were not effective against the omicron subvariant in vitro, and therapy with these drugs was therefore discouraged by the US Food and Drug Administration.5 This suggests that anti-SARS-CoV2 monoclonal antibodies will be even less effective than what we found in our systematic review when the omicron variant or other resistant subvariants predominate.

The mean length of hospital stay was lower with monoclonal antibodies compared to placebo, but this difference was not statistically significant. Further research in this area is encouraged, as these potential benefits could occur without increases in adverse events or serious adverse events.

Table 3 Summary of Findings Table of Effects of Monoclonal Antibodies in Non-Hospitalized COVID-19 Patients

Outcomes	Anticipated Absolute Effects (95% CI)	Relative Effect (95% CI)	Number of Participants (Studies)	Certainty of the Evidence (GRADE)
COVID-19-related hospitalization follow-up: median 29 days	6 per 100 (1-3) to 2 per 100	RR 0.30 (0.17-0.53)	1612 (2 RCTs)	High (GRADE)
All-cause mortality follow-up: median 29 days	1 per 100 (0-2) to 0 per 100	RR 0.30 (0.05-1.85)	2212 (4 RCTs)	Very low (GRADE)
COVID-19-related death follow-up: median 29 days	1 per 100 (0-2) to 0 per 100	RR 0.28 (0.04-1.81)	1829 (3 RCTs)	Very low (GRADE)
Invasive mechanical ventilation follow-up: median 29 days	1 per 100 (0-3) to 0 per 100	RR 0.20 (0.01-4.16)	583 (1 RCT)	Very low (GRADE)
Length of hospital stay assessed with: days follow-up: median 29 days	The mean length of hospital stay was 11.2 days lower	(9.02 lower to 1.22)	44 (1 RCT)	Low (GRADE)
Viral load reduction from baseline assessed with: log₁₀ follow-up: median 29 days	The mean viral load reduction from baseline was 1.4 lower	(1.6 lower to 0.52)	1941 (4 RCTs)	Very low (GRADE)
Any adverse events follow-up: median 29 days	16 per 100 (12-17)	RR 0.90 (0.75-1.09)	2749 (4 RCTs)	Moderate (GRADE)
Serious adverse events follow-up: median 29 days	3 per 100 (1-3)	RR 0.47 (0.22-1.01)	2749 (4 RCTs)	Moderate (GRADE)
Bacteremia follow-up: median 29 days	1 per 100 (0-3)	RR 1.33 (0.30-5.92)	1035 (1 RCT)	Low (GRADE)

CI = confidence interval; GRADE = Grading of Recommendations, Assessment, Development, and Evaluations; MD = mean difference; RR = relative risk.

Risk of bias (RoB): Weinreich et al 35 was at high risk of bias. Gupta et al 34 had some concerns of bias. **Imprecision: 95% CI was 0.01-4.16. RoB: Gupta et al 34 had high risk of bias. Imprecision: 95% CI of MD was 0.30-5.92. Risk with Placebo Risk with Monoclonal Antibodies
inflammatory monoclonal antibodies would be less likely than the anti-SARS-CoV-2 monoclonal antibodies to vary given the circulating subvariant at the time. The anti-SARS-CoV-2 monoclonal antibody bebtelovimab received an emergency authorization from the Food and Drug Administration on February 11, 2022 for the treatment of mild to moderate COVID-19, as it retained activity against the omicron variant. With the progress of research on pathogenesis of SARS-CoV-2 infection, new monoclonal antibodies (such as anti-inflammasomes or monocyte/macrophage entry inhibitors) should be evaluated in randomized trials to assess their efficacy and safety.

The increase in vaccination against SARS-CoV-2 could support earlier and more robust creation of a patient’s own antibody response to COVID-19 infection. Whether this attenuates some of the benefits of providing monoclonal antibody therapy is unknown. Importantly, there was no reporting on the proportion of fully vaccinated individuals in our included randomized controlled trials. This potential confounding factor should be assessed in future studies.

Our study had some limitations. First, most of the randomized trials were conducted in hospitalized COVID-19 patients, and effects for non-hospitalized and prophylaxis randomized trials were less conclusive. Second, certainty of evidence was low or very low for most of the outcomes in the 3 populations. Third, we did not assess effects of individual monoclonal antibodies on outcomes in non-hospitalized and prophylaxis due to the scarcity of studies; we did evaluate the effects of tocilizumab vs other monoclonal antibodies for hospitalized patients. Fourth, randomized trial data for hospitalized patients were comprised almost entirely of anti-inflammatory monoclonal antibodies, while for non-hospitalized patients and those at high risk of developing COVID-19, only anti-SARS-CoV-2 monoclonal antibody data were available. Finally, all monoclonal antibodies in non-hospitalized and prophylaxis were evaluated against placebo, but no active treatment or standard of care.

Table 4

Summary of Findings Table of Effects of Monoclonal Antibodies in Individuals Exposed to SARS-CoV-2 (Prophylaxis)

Outcomes	Anticipated Absolute Effects (95% CI)	Relative Effect (95% CI)	Number of Participants (Studies)	Certainty of the Evidence (GRADE)
Symptomatic COVID-19 assessed with: positive PCR test plus COVID-19 symptoms follow-up: median 28 days	7 per 100	5 per 100 (2-10)	2471 (2 RCTs)	⬤✤✤ Very low*
Symptomatic and asymptomatic COVID-19 assessed with: Positive PCR test with or without COVID-19 symptoms follow-up: median 28 days	18 per 100	9 per 100 (4-21)	2471 (2 RCTs)	⬤✤✤ Very low*
All-cause mortality follow-up: median 28 days	1 per 100	1 per 100 (0-3)	966 (1 RCT)	☑️ Very low
COVID-19-related death follow-up: median 28 days	1 per 100	0 per 100 (0-2)	966 (1 RCT)	☑️ Low
Viral load reduction from baseline assessed with: log10 reduction from baseline	The mean viral load was −0.39 log10 lower	MD 0.8 log10 lower	132 (1 RCT)	☑️ Moderate
Any adverse events follow-up: median 28 days	26 per 100	22 per 100 (14-33)	3792 (2 RCTs)	☑️ Very low
Serious adverse events follow-up: median 28 days	2 per 100	2 per 100 (1-3)	3792 (2 RCTs)	☑️ Moderate
Bacteremia follow-up: median 28 days	2 per 100	1 per 100 (1-2)	2680 (2 RCTs)	☑️ Moderate

CI = confidence interval; GRADE = Grading of Recommendations, Assessment, Development, and Evaluations; MD = mean difference; PCR = polymerase chain reaction; RR = relative risk.

* Risk of bias (RoB): O’Brien et al. at high risk of bias due to measurement of the outcome and selection of the reported result.

| Inconsistency: I² = 60%.
| Inconsistency: I² = 93%.
| Inconsistency: I² = 95% CI, 0.36-1.54.
| Inconsistency: I² = 95% CI, 0.23-1.17.
| Inconsistency: I² = 95% CI, 0.01-2.05.
| Inconsistency: I² = 95% CI, −1.21 to −0.39 log10.

** Imprecision: 95% CI, 0.25-2.70.

VI Imprecision: 95% CI, 0.01-2.05.

XX Imprecision: 95% CI, 0.23-1.17.

□ Imprecision: 95% CI, 0.01-2.05.

 demás
CONCLUSIONS

Monoclonal antibodies had limited effects on most of the outcomes in hospitalized and non-hospitalized COVID-19 patients, and in individuals exposed to SARS-CoV-2. There were no effects of monoclonal antibodies on all-cause mortality or COVID-19-related mortality. In hospitalized COVID-19 patients, monoclonal antibodies slightly reduce mechanical ventilation and bacteremia, and the evidence was very uncertain on adverse events. In non-hospitalized COVID-19 patients, monoclonal antibodies reduced COVID-19-related hospitalization, and may slightly reduce serious adverse events. In randomized trials of individuals exposed to SARS-CoV-2, monoclonal antibodies probably reduced viral load slightly.

Anti-inflammatory monoclonal antibodies in hospitalized COVID-19 patients and anti-SARS-CoV-2 monoclonal antibodies in non-hospitalized COVID-19 patients or those at high risk of developing COVID-19 are promising, but additional data are needed to determine their efficacy and safety.

References

1. Worldometers. COVID-19 statistics. Available at: https://www.worldometers.info/coronavirus/. Accessed March 28, 2022.
2. Jorda A, Kussmann M, Kolenchery N, et al. Convalescent plasma treatment in patients with Covid-19: a systematic review and meta-analysis. Front Immunol 2022;13:817829.
3. Piscoya A, Ng-Sueng LF, Parra Del Riego A, et al. Efficacy and harms of convalescent plasma for treatment of hospitalized COVID-19 patients: a systematic review and meta-analysis. Arch Med Sci 2021;17(5):1251–61.
4. Infectious Diseases Society of America. Anti-SARS-CoV-2 monoclonal antibodies. Available at: https://www.idsociety.org/covid-19-real-time-learning-network/therapeutics-and-interventions/monoclonal-antibodies/. Accessed March 28, 2022.
5. Food and Drug Administration. Emergency use authorization of drugs and non-vaccine biological products. Available at: https://www.fda.gov/emergency-preparedness-and-response/mcm-legal- regulatory-and-policy-framework/emergency-use-authorization#coviddrugs. Accessed March 28, 2022.
6. Sterne JAC, Savovíc J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019;366:k4898.
7. Page MJ, Moher D, Bossuyt PM, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ 2021;372:n160.
8. Veroniki AA, Jackson D, Viechtbauer W, et al. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods 2016;7(1):55–79.
9. Knapp G, Hartung J. Improved tests for a random effects meta-regression with a single covariate. Stat Med 2003;22(17):2693–710.
10. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21(11):1593–58.
11. Bian H, Zheng ZH, Wei D, et al. Safety and efficacy of meplazumab in healthy volunteers and COVID-19 patients: a randomized phase 1 and an exploratory phase 2 trial. Signal Transduct Target Ther 2021;6 (1):194.
12. Caricchio R, Abbate A, Gordeev I, et al. Effect of canakinumab vs placebo on survival without invasive mechanical ventilation in patients hospitalized with Ssevere COVID-19: a randomized clinical trial. JAMA 2021;326(3):230–9.
13. Cremer PC, Abbate A, Hudock K, et al. Mavrilimumab in patients with severe COVID-19 pneumonia and systemic hyperinflammation (MASH-COVID): an investigator initiated, multicentre, double-blind, randomised, placebo-controlled trial. Lancet Rheumatol 2021;3(6):e410–8.
14. REMAP-CAP Investigators, Gordon AC, Mouncey PR, et al. Interleukin-6 receptor antagonists in critically ill patients with Covid-19. N Engl J Med 2021;384(16):1491–502.
15. Hamed DM, Belhoul KM, Al Maazmi NA, et al. Intravenous methylprednisolone with or without tocilizumab in patients with severe COVID-19 pneumonia requiring oxygen support: a prospective comparison. J Infect Public Health 2021;14(8):985–9.
16. Hermoe O, Mariette X, Tharaux PL, et al. Effect of tocilizumab vs usual care in adults hospitalized with COVID-19 and moderate or severe pneumonia: a randomized clinical trial. JAMA Intern Med 2021;181(1):32–40.
17. RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 2021;397(10285):1637–45.
18. Kumar S, Soura RD, Nadkar M, et al. A two-arm, randomized, controlled, multi-centric, open-label phase-2 study to evaluate the efficacy and safety of Itolizumab in moderate to severe ARDS patients due to COVID-19. Expert Opin Biol Ther 2021;21(5):675–86.
19. Lesure FX, Honda H, Fowler RA, et al. Sarilumab in patients admitted to hospital with severe or critical COVID-19: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir Med 2021;9(5):522–32.
20. ACTIV-3/TICO LY-CoV555 Study Group, Lundgren JD, Grund B, et al. A neutralizing monoclonal antibody for hospitalized patients with Covid-19. N Engl J Med 2021;384(10):905–14.
21. Rashad A, Mousa S, Nafady-Hego H, Nafady A, Elgindy H. Short term survival of critically ill COVID-19 Egyptian patients on assisted ventilation treated by either Dexamethasone or Tocilizumab. Sci Rep 2021;11(1):8816.
22. Rosas IO, Bráu N, Waters M, et al. Tocilizumab in hospitalized patients with severe Covid-19 pneumonia. N Engl J Med 2021;384(16):1503–16.
23. Salama C, Han J, Yau L, et al. Tocilizumab in patients hospitalized with Covid-19 pneumonia. N Engl J Med 2021;384(1):20–30.
24. Salvareni C, Dolci G, Massari M, et al. Effect of tocilizumab vs standard care on clinical worsening in patients hospitalized with COVID-19 pneumonia: a randomized clinical trial. JAMA Intern Med 2021;181(1):24–31.
25. Soin AS, Kumar K, Choudhary NS, et al. Tocilizumab plus standard care versus standard care in patients in India with moderate to severe COVID-19-associated cytokine release syndrome (COVINTOC): an open-label, multicentre, randomised, controlled, phase 3 trial. Lancet Respir Med 2021;9(5):511–21.
26. Stone JH, Frigault MJ, Serling-Boyd NJ, et al. Efficacy of tocilizumab in patients hospitalized with Covid-19. N Engl J Med 2020;383(24):2333–44.
27. Veiga VC, Prats JAGG, Farias DLC, et al. Effect of tocilizumab on clinical outcomes at 15 days in patients with severe or critical coronavirus disease 2019: randomised controlled trial. BMJ 2021;372:n84.
28. Vlaar APJ, de Bruin S, Busch M, et al. Anti-CSA antibody IFX-1 (vilo- belimab) treatment versus best supportive care for patients with severe COVID-19 (PANAMO): an exploratory, open-label, phase 2 randomised controlled trial. Lancet Rheumatol 2020;2(12):c764–73.
29. Wang D, Fu B, Peng Z, et al. Tocilizumab in patients with moderate or severe COVID-19: a randomized, controlled, open-label, multicenter trial. Front Med 2021;15(3):486–94.
30. Zhao H, Zhu Q, Zhang C, et al. Tocilizumab combined with favipiravir in the treatment of COVID-19: a multicenter trial in a small sample size. Biomed Pharmacother 2021;133:110825.
31. Chen P, Nirula A, Heller B, et al. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. N Engl J Med 2021;384(3):229–37.
32. Dougan M, Nirula A, Azizad M, et al. Bamlanivimab plus etesevimab in mild or moderate Covid-19. N Engl J Med 2021;385(15):1382–92.
33. Gottlieb RL, Nirula A, Chen P, et al. Effect of bamlanivimab as mono-
therapy or in combination with etesevimab on viral load in patients
with mild to moderate COVID-19: a randomized clinical trial. *JAMA*
2021;325(7):632–44.
34. Gupta A, Gonzalez-Rojas Y, Juarez E, et al. Early treatment for
Covid-19 with SARS-CoV-2 neutralizing antibody sotrovimab. *N
Engl J Med* 2021;385(21):1941–50.
35. Weinreich DM, Sivapalasingam S, Norton T, et al. REGN-COV2, a
neutralizing antibody cocktail, in outpatients with Covid-19. *N Engl J
Med* 2021;384(3):238–51.
36. Cohen MS, Nirula A, Mulligan MJ, et al. Effect of bamlanivimab vs
placebo on incidence of COVID-19 among residents and staff of
skilled nursing and assisted living facilities: a randomized clinical
trial. *JAMA* 2021;326(1):46–55.
37. O’Brien MP, Forleo-Neto E, Musser BJ, et al. Subcutaneous REGEN-
COV antibody combination to prevent Covid-19. *N Engl J Med*
2021;385(13):1184–95.
38. Cantini F, Goletti D, Petrone L, Najafi Fard S, Niccoli L, Foti R.
Immune therapy, or antiviral therapy, or both for COVID-19: a sys-
tematic review. *Drugs* 2020;80(18):1929–46.
39. Takashita E, Kinoshita N, Yamayoshi S, et al. Efficacy of antibodies
and antiviral drugs against Covid-19 Omicron variant. *N Engl J Med*
2022;386(10):995–8.
40. Food and Drug Administration. Coronavirus (COVID-19) update:
FDA authorizes new monoclonal antibody for treatment of COVID-19
that retains activity against omicron variant. Available at: www.fda.
gov/news-events/press-announcements/coronavirus-covid-19-update-
fda-authorizes-new-monoclonal-antibody-treatment-covid-19-
retains#:~:text=Today%2C%20the%20U.S.%20Food%20and,activity%
against%20the%20omicron%20variant. Accessed April 1,
2022.
41. Junqueira C, Crespo Â, Ranjbar S, et al. FcγR-mediated SARS-CoV-2
infection of monocytes activates inflammation. *Nature* 2022;606
(7914):576–84.

SUPPLEMENTARY MATERIALS

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.ajmmed.2022.06.019.
SUPPLEMENTARY MATERIAL

1. PubMed search strategy
2. Supplementary Figure 1. Risk of bias of included randomized controlled trials (RCTs).
3. Supplementary Figure 2. Effects of monoclonal antibodies on length of hospital stay stratified by type of coronavirus disease 2019 (COVID-19) patients.
4. Supplementary Figure 3. Effects of monoclonal antibodies on invasive mechanical ventilation stratified by type of COVID-19 patients.
5. Supplementary Figure 4. Effects of monoclonal antibodies on viral load stratified by type of COVID-19 patients.
6. Supplementary Figure 5. Effects of monoclonal antibodies on adverse events stratified by type of COVID-19 patients.
7. Supplementary Figure 6. Effects of monoclonal antibodies on bacteremia stratified by type of COVID-19 patients.
8. Supplementary Figure 7. Effects of monoclonal antibodies on COVID-19-related hospitalization in non-hospitalized RCTs.
9. Supplementary Figure 8. Effects of monoclonal antibodies on symptomatic COVID-19 incidence in prophylaxis RCTs.
10. Supplementary Figure 9. Effects of monoclonal antibodies on symptomatic or asymptomatic COVID-19 incidence in prophylaxis RCTs.
11. Supplementary Figure 10: Subgroup analyses.
 11.1 Supplementary Figure 10A: Subgroup analyses by type of drug: tocilizumab vs other monoclonal antibodies in hospitalized patients.
 A1. All-cause mortality
 A2. COVID-19-related death
 A3. Serious adverse events
 A4. Length of hospital stay
 A5. Invasive mechanical ventilation
 A6. Adverse events
 A7. Bacteremia
 11.2 Supplementary Figure 10B: Subgroup analyses by type of control in hospitalized patients
 B1. All-cause mortality
 B2. COVID-19-related death
 B3. Serious adverse events
 B4. Length hospital stay
 B5. Invasive mechanical ventilation
 B6. Adverse events
 B7. Bacteremia
 11.3 Supplementary Figure 10C: Subgroup analyses by type of control in hospitalized patients receiving tocilizumab
 C1. All-cause mortality
 C2. Serious adverse events
 C3. Length hospital stay
 C4. Invasive mechanical ventilation
 C5. Adverse events
 C6. Bacteremia

1. PubMed search strategy

("antibodies, monoclonal"[MeSH Terms] OR ("antibodies"[All Fields] AND “monoclonal”[All Fields]) OR “monoclonal antibodies”[All Fields] OR (“monoclonal”[All Fields] AND “antibodies”[All Fields]) OR (“antibodies, neutralizing”[MeSH Terms] OR “neutralizing antibodies”[All Fields] OR (“neutralizing”[All Fields] AND “antibodies”[All Fields])) OR (“bamlanivimab”[Supplementary Concept] OR “bamlanivimab”[All Fields]) OR (“etesevimab”[Supplementary Concept] OR “etesevimab”[All Fields]) OR (“sotrovimab”[Supplementary Concept] OR “sotrovimab”[All Fields]) OR (“meplazumab”[Supplementary Concept] OR “meplazumab”[All Fields]) OR (“itolizumab”[Supplementary Concept] OR “itolizumab”[All Fields]) OR (“casirivimab”[Supplementary Concept] OR “casirivimab”[All Fields]) AND (“covid 19”[All Fields] OR “covid 19”[MeSH Terms] OR “covid 19 vaccines”[All Fields] OR “covid 19 vaccines”[MeSH Terms] OR “covid 19 serotherapy”[All Fields] OR “covid 19 serotherapy”[MeSH Terms] OR “covid 19 nucleic acid testing”[All Fields] OR “covid 19 nucleic acid testing”[MeSH Terms] OR “covid 19 serological testing”[All Fields] OR “covid 19 serological testing”[MeSH Terms] OR “covid 19 testing”[All Fields] OR “covid 19 testing”[MeSH Terms] OR “sars cov 2”[All Fields] OR “sars cov 2”[MeSH Terms] OR “severe acute respiratory syndrome coronavirus 2”[All Fields] OR “ncov”[All Fields] OR “2019 ncov”[All Fields] OR (”coronavirus”[MeSH Terms] OR “coronavirus”[All Fields] OR “cov”[All Fields])
AND 2019/11/01:3000/12/31[Date - Publication]) OR
(“coronavirus”[MeSH Terms] OR “coronavirus”[All Fields]
OR “coronaviruses”[All Fields]) OR ((“coronavirus”[MeSH Terms]
OR “coronavirus”[All Fields] OR “coronaviruses”[All Fields])
AND (“disease”[MeSH Terms] OR “disease”[All Fields]
OR “diseases”[All Fields] OR “disease s”[All Fields]
OR “diseased”[All Fields])) OR (“covid 19”[MeSH Terms]
OR “covid 19”[All Fields] OR “coronavirus disease 19”[All Fields])
OR (“severe acute respiratory syndrome”[MeSH Terms]
OR (“severe”[All Fields] AND “acute”[All Fields]
AND “respiratory”[All Fields] AND “syndrome”[All Fields]
OR “severe acute respiratory syndrome”[All Fields]
OR (“sars cov 2”[MeSH Terms] OR “sars cov 2”[All Fields]
OR “sars cov 2”[All Fields])) AND (“random allocation”
[MeSH Terms] OR (“random”[All Fields] AND “allocation”
[All Fields]) OR “random allocation”[All Fields] OR
“random”[All Fields] OR “randomization”[All Fields] OR
“randomized”[All Fields] OR “randomisation”[All Fields]
OR “randomisations”[All Fields] OR “randomise”[All Fields]
OR “randomised”[All Fields] OR “randomising”[All Fields]
OR “randomizations”[All Fields] OR “randomise”[All Fields]
OR “randomised”[All Fields] OR “randomising”[All Fields]
OR “randomness”[All Fields] OR “randoms”[All Fields]
OR “random allocation”[MeSH Terms] OR (“random”[All Fields]
AND “allocation”[All Fields]) OR “random allocation”[All Fields] OR
“random”[All Fields] OR “randomization”[All Fields] OR
“randomized”[All Fields] OR “randomisation”[All Fields]
OR “randomisations”[All Fields] OR “randomise”[All Fields]
OR “randomised”[All Fields] OR “randomising”[All Fields]
OR “randomizations”[All Fields] OR “randomise”[All Fields]
OR “randomised”[All Fields] OR “randomising”[All Fields]
OR “randomness”[All Fields] OR “randoms”[All Fields])
Supplementary Figure 1
Risk of bias of included randomized controlled trials (RCTs).

Study ID	Experimental	Comparator	Outcome	Weight
1	Tocilizumab	Standard of Care	Clinical Worsening at Day 14	1
2	Tocilizumab + Standard of Care	Standard of Care	Clinical Worsening at Day 4	1
3	Tocilizumab + Standard of Care	Placebo + Standard of Care	Mechanical ventilation or Death at 28 days	1
4	Tocilizumab + Standard of Care	Placebo + Standard of Care	Clinical Status at Day 28	1
5	Tocilizumab + Standard of Care	Placebo + Standard of Care	Mechanical ventilation or Death at 28 days	1
6	Tocilizumab	Standard of Care	In-hospital death by 21 days	1
7	Tocilizumab	Standard of Care	Mortality at 15 days	1
8	Tocilizumab	Standard of Care	All-cause mortality at 28 days	1
9	Tocilizumab	Standard of Care	Progression of COVID-19 (mild to severe)	1
10	Tocilizumab	Standard of Care	All-cause mortality	1
11	Tocilizumab	Methylprednisolone	All-cause mortality	1
12	Tocilizumab	Standard of Care	Cure rate	1
13	Tocilizumab	Fasipirase + Tocilizumab	Fasipirase Cumulative lung lesion remission rate	1
14	Tocilizumab	Placebo	Median time to virological clearance	1
15	Tocilizumab	Placebo	Survival without MV	1
16	Tocilizumab	Placebo	Change from baseline viral load at day 11	1
17	Tocilizumab	Placebo	Incidence of symptomatic COVID-19 (positive PCR w/ positive DL-60)	1
18	Tocilizumab	Placebo	Alive and not on supplemental oxygen at day 14	1
19	Tocilizumab	Placebo	Covid-19-related hospitalization or death from any cause	1
20	Tocilizumab	Placebo	Change in SARS-CoV-2 Vigs viral load at day 11	1
21	Tocilizumab	Placebo	Mortality at 30 days	1
22	Tocilizumab	Placebo	Time to clinical improvement of two or more points	1
23	Tocilizumab	Placebo	Sustained recovery during a 90-day period	1
24	Tocilizumab	Placebo	Development of symptomatic (broad term) SARS-CoV-2	1
25	Tocilizumab	Placebo	Percentage change in PaO2/FIO2 between baseline and any timepoint	1
26	Tocilizumab	Placebo	Time-weighted average change in viral load from baseline	1
27	Tocilizumab	Placebo	Hospitalization for more than 24 hours or death from all	1

Supplementary Figure 2
Effects of monoclonal antibodies on length of hospital stay stratified by type of COVID-19 patients.
Supplementary Figure 3

Effects of monoclonal antibodies on invasive mechanical ventilation stratified by type of COVID-19 patients.

Source population = hospitalized	Events	Control Total	RR [95%–CI]	Favors MAb	Favors Control	Weight
Cremer P 2021	0	21	0.19 [0.01; 3.54]			0.5%
Gordon A 2021s	6	37	0.38 [0.18; 0.81]			5.6%
Gordon A 2021t	84	242	0.82 [0.63; 1.06]			16.8%
Hamed D 2021	6	26	2.65 [0.59; 11.88]			1.7%
Hermine O 2021	11	63	0.65 [0.33; 1.27]			6.7%
Horby P 2021	215	1754	0.81 [0.68; 0.95]			20.1%
Kumar S 2021	0	20	0.10 [0.01; 1.24]			0.6%
Rashad A 2021	15	46	1.14 [0.65; 2.02]			8.3%
Rosas I 2021	51	183	0.76 [0.53; 1.09]			13.6%
Salama C 2021	20	249	0.64 [0.35; 1.20]			7.4%
Salvarani C 2021	6	60	0.37 [0.16; 0.88]			4.6%
Soin A 2021	14	91	1.04 [0.52; 2.09]			6.3%
Stone JH 2020	11	161	0.69 [0.29; 1.65]			4.5%
Veiga V 2021	4	65	0.97 [0.25; 3.71]			2.1%
Zhao H 2021	0	14	0.14 [0.01; 1.87]			0.6%

Random effects model 443 3032 525 2775 0.74 [0.60; 0.92] 99.5%

Heterogeneity: $I^2 = 20\%$, $\chi^2 = 0.0542$, $p = 0.23$

Supplementary Figure 4

Effects of monoclonal antibodies on viral load stratified by type of COVID-19 patients.

Source population = nonhospitalized	Events	Control Total	RR [95%–CI]	Favors MAb	Favors Control	Weight
Gupta A 2021	0	291	0.20 [0.01; 4.16]			0.5%

Random effects model 0 291 2 292 0.20 [0.01; 4.16] 0.5%

Heterogeneity: not applicable

Random effects model 443 3323 527 3067 0.74 [0.60; 0.91] 100.0%

Heterogeneity: $I^2 = 18\%$, $\chi^2 = 0.0476$, $p = 0.25$

Test for subgroup differences: $\chi^2 = 0.71$, df = 1 ($p = 0.40$)

Study population = prophylaxis	TE	seTE	Favors MAb	Favors Control	MD	95%–CI	Weight
Chen P 2021	-0.22	0.1900			-0.22	[-0.59; 0.15]	20.7%
Dougan M 2021	-1.20	0.1300			-1.20	[-1.45; -0.95]	22.2%
Gottlieb R 2021be	0.27	0.3700			0.27	[-0.46; 1.00]	15.3%
Weinreich D 2021	-0.41	0.1500			-0.41	[-0.70; -0.12]	21.7%

Random effects model -0.44 [-1.40; 0.52] 79.9%

Heterogeneity: $I^2 = 91\%$, $\chi^2 = 0.3146$, $p < 0.01$

Study population = prophylaxis	TE	seTE	Favors MAb	Favors Control	MD	95%–CI	Weight
Cohen M 2021	-0.80	0.2100			-0.80	[-1.21; -0.39]	20.1%

Random effects model -0.80 [-1.21; -0.39] 20.1%

Heterogeneity: not applicable

Random effects model -0.52 [-1.19; 0.15] 100.0%

Heterogeneity: $I^2 = 88\%$, $\chi^2 = 0.2478$, $p < 0.01$

Test for subgroup differences: $\chi^2 = 0.96$, df = 1 ($p = 0.33$)
Supplementary Figure 5
Effects of monoclonal antibodies on adverse events stratified by type of COVID-19 patients.

Source population	MAb Events	Control Events	RR [95%–CI]	Favors MAb	Favors Control	Weight
hospitalized	122	225	1.01 [0.85; 1.20]	![]	![]	6.7%
Caricchio R 2021	28	63	0.83 [0.58; 1.18]	![]	![]	5.7%
Horby P 2021	204	2022	0.83 [0.70; 0.99]	![]	![]	6.7%
Kumar S 2021	18	20	2.25 [1.04; 4.87]	![]	![]	3.2%
Lescure F 2021	121	173	1.07 [0.89; 1.28]	![]	![]	6.7%
Lundgren J 2021	39	163	1.20 [0.79; 1.84]	![]	![]	5.2%
Rosas I 2021	228	295	0.95 [0.86; 1.05]	![]	![]	7.0%
Salama C 2021	127	249	2.25 [1.60; 3.17]	![]	![]	5.8%
Salvarani C 2021	14	60	2.10 [0.91; 4.84]	![]	![]	3.0%
Soin A 2021	33	91	1.47 [0.93; 2.31]	![]	![]	5.0%
Veiga V 2021	29	67	1.28 [0.82; 1.99]	![]	![]	5.1%
Wang D 2021	20	34	4.56 [1.75; 11.87]	![]	![]	2.5%
Zhao H 2021	9	14	2.25 [0.65; 7.73]	![]	![]	1.8%

Random effects model 992 3476 700 3152 1.31 [1.02; 1.67] 64.3%

Heterogeneity: $I^2 = 77\%, \tau^2 = 0.1445, p < 0.01$

population	Events	Control	RR [95%–CI]	Favors MAb	Favors Control	Weight
nonhospitalized	69 518	60 517	1.15 [0.83; 1.59]	![]	![]	5.9%
Dougan M 2021	69 309	21 78	0.83 [0.54; 1.26]	![]	![]	5.2%
Gottlieb R 2021b	19 112	21 78	0.63 [0.36; 1.09]	![]	![]	4.4%
Gottlieb R 2021be	73 430	85 438	0.87 [0.66; 1.16]	![]	![]	6.1%
Gupta A 2021	2 176	2 93	0.53 [0.08; 3.69]	![]	![]	0.8%

Random effects model 232 1545 189 1204 0.90 [0.75; 1.09] 22.5%

Heterogeneity: $I^2 = 6\%, \tau^2 = 0.0026, p = 0.37$

population	Events	Control	RR [95%–CI]	Favors MAb	Favors Control	Weight
prophylaxis	118 588	111 587	1.06 [0.84; 1.34]	![]	![]	6.4%
Cohen M 2021	265 1311	379 1306	0.70 [0.61; 0.80]	![]	![]	6.8%

Random effects model 383 1899 490 1893 0.85 [0.56; 1.28] 13.2%

Heterogeneity: $I^2 = 89\%, \tau^2 = 0.0792, p < 0.01$

Random effects model 1607 6920 1379 6249 1.12 [0.93; 1.35] 100.0%

Heterogeneity: $I^2 = 77\%, \tau^2 = 0.1301, p < 0.01$

Test for subgroup differences: $\chi^2 = 6.29, df = 2 (p = 0.04)$
Supplementary Figure 6 Effects of monoclonal antibodies on bacteremia stratified by type of COVID-19 patients.

Supplementary Figure 7 Effects of monoclonal antibodies on COVID-19-related hospitalization in non-hospitalized RCTs

Supplementary Figure 8 Effects of monoclonal antibodies on symptomatic COVID-19 incidence in prophylaxis RCTs
11. Subgroup analyses

Effects of monoclonal antibodies on outcomes across pre-defined subgroups are shown in Supplementary Figures 10A1 to 10A7 (by type of drug [tocilizumab vs other monoclonal antibody] in hospitalized patients), Figures 10B1 to 10B7 (by type of control in hospitalized patients), and Figures 10C1 to 10C6 (by type of control in hospitalized patients receiving tocilizumab), all available online. In subgroup analyses of hospitalized patients, we were unable to find any significant reductions associated with tocilizumab vs control therapy for any primary or secondary outcome aside from mechanical ventilation (A5), which was reduced by 20% (RR 0.80; 95% CI, 0.70-0.91, \(I^2 = 0\), \(P \) for interaction < .01). When we assessed monoclonal antibodies other than tocilizumab vs controls, the magnitude of the reductions was larger for all-cause mortality (A1), COVID-19-related death (A2), mechanical ventilation (A5), and bacteremia (A7) than what was seen with tocilizumab vs controls, but none of the non-tocilizumab vs control assessments were significantly different (all \(P \) for interaction >0.1). However, when tocilizumab trials and the single bamlanivimab trial by Lundgren et al\(^{20}\) were removed, the trials of other anti-inflammatory monoclonal antibodies did significantly reduce all-cause mortality vs control (RR 0.64; 95% CI, 0.42-0.98, \(I^2 = 0\)).

In subgroup analyses by control group (B1-B7), monoclonal antibodies had differential effects on all-cause mortality according to the type of control, although none of the subgroup effects was significant (B1, \(P \) for interaction < .01). Subgroup analyses for other outcomes did not show differential effects of monoclonal antibodies vs types of controls (B2 to B7, all \(P \) for interaction > .1). In subgroup analyses by type of control in tocilizumab-only trials (C1-C6), monoclonal antibodies had differential effects on all-cause mortality according to the type of control, although none of the subgroup effects was significant (Figure C1, \(P \) for interaction < .01). Subgroup analyses for other outcomes did not show differential effects of monoclonal antibodies vs types of controls (C2 to C6, all \(P \) for interaction > .1).
Supplementary Figure 10A: Subgroup analyses by type of drug: tocilizumab vs. other MAbs in hospitalized patients

Supplementary Figure 10A1: All-cause mortality.

Source	MAb Control	Events Total	Events Control	RR [95%–CI]	Favors MAb	Favors Control	Weight
mabcat = other							
Caricchio R 2021		11 223	16 222	0.68 [0.32; 1.44]			3.8%
Cremer P 2021		1 21	3 19	0.30 [0.03; 2.66]			0.5%
Gordon A 2021s		10 45	71 199	0.62 [0.35; 1.11]			5.8%
Kumar S 2021		0 20	3 10	0.10 [0.01; 1.24]			0.4%
Lesure F 2021		14 173	7 84	0.97 [0.41; 2.32]			2.9%
Lundgren J 2021		9 163	5 151	1.67 [0.57; 4.86]			1.9%
Vlaar A 2020		2 15	4 15	0.50 [0.11; 2.33]			1.0%
Random effects model	47 660	109 700	0.72 [0.45; 1.15]			16.2%	
Heterogeneity: $I^2 = 4\%$, $t^2 = 0.0185$, $p = 0.39$							

mabcat = tocilizumab
Gordon A 2021t
Hamed D 2021
Hermine O 2021
Horby P 2021
Rashad A 2021
Rosas I 2021
Salama C 2021
Salvarani C 2021
Soin A 2021
Stone JH 2020
Veiga V 2021
Random effects model
Heterogeneity: $I^2 = 29\%$, $t^2 = 0.0127$, $p = 0.17$

Supplementary Figure 10A2: COVID-19-related death.

Source	MAb Control	Events Total	Events Control	RR [95%–CI]	Favors MAb	Favors Control	Weight
mabcat = other							
Caricchio R 2021		11 223	16 222	0.68 [0.32; 1.44]			73.9%
Vlaar A 2020		0 15	4 15	0.11 [0.01; 1.89]			10.8%
Random effects model	11 238	20 237	0.47 [0.11; 1.99]			84.7%	
Heterogeneity: $I^2 = 32\%$, $t^2 = 0.5338$, $p = 0.22$							

mabcat = tocilizumab
Hamed D 2021
Random effects model
Heterogeneity: not applicable

Random effects model	13 264	21 260	0.65 [0.25; 1.72]	100.0%
Heterogeneity: $I^2 = 10\%$, $t^2 = 0.1882$, $p = 0.33$				
Test for subgroup differences: $\chi^2 = 0.89$, df = 1 ($p = 0.34$)				
Supplementary Figure 10A3

Serious adverse events.

Source	MAb = other	Control	RR [95% CI]	Favors MAb	Favors Control	Weight
Caricchio R 2021	36 225	46 223	0.78 [0.52; 1.15]			14.2%
Cremer P 2021	5 21	4 19	1.13 [0.35; 3.60]			1.7%
Gordon A 2021s	0 48	5 201	0.14 [0.00; 12.85]			0.1%
Kumar S 2021	2 20	3 10	0.33 [0.07; 1.68]			0.8%
Lescure F 2021	51 173	20 84	1.24 [0.79; 1.94]			11.1%
Vlaar A 2020	9 15	7 15	1.29 [0.65; 2.54]			4.8%

Random effects model

103 502

85 552

0.97 [0.67; 1.41]

32.7%

Heterogeneity: $I^2 = 9\%$, $\tau^2 = 0.0094$, $p = 0.36$

Supplementary Figure 10A4

Length of hospital stay.

Source	MAb = tocilizumab	Control	MD [95% CI]	Favors MAb	Favors Control	Weight
Gordon A 2021	9 353	6 201	0.85 [0.31; 2.36]			2.1%
Hermine O 2021	20 63	29 67	0.73 [0.47; 1.16]			10.8%
Horby P 2021	3 2022	0 2094	7.11 [0.38; 134.52]			0.3%
Rosas L 2021	103 295	55 143	0.91 [0.70; 1.18]			33.0%
Salama C 2021	38 249	25 128	0.78 [0.49; 1.23]			10.6%
Salvarani C 2021	0 60	0 63	1.00 [0.02; 49.66]			0.1%
Soin A 2021	18 91	15 89	1.17 [0.63; 2.18]			5.8%
Stone JH 2020	11 161	3 81	1.84 [0.53; 6.43]			1.4%
Veiga V 2021	11 67	7 62	1.45 [0.60; 3.51]			2.8%
Wang D 2021	0 34	1 31	0.32 [0.01; 7.29]			0.2%
Zhao H 2021	0 14	0 7	1.00 [0.02; 58.10]			0.1%

Random effects model

213 3409

141 2966

0.91 [0.77; 1.08]

67.3%

Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = 0.76$

Supplementary Figure 10A4

Length of hospital stay.

Source	MAb = tocilizumab	Control	MD [95% CI]	Favors MAb	Favors Control	Weight
Hamed D 2021	23.27 8.9600	26 20.83 12.2200	23	2.44 [-3.63; 8.51]		11.9%
Rosas L 2021	20.25 7.4100	294 29.48 22.1500	144	-9.23 [-12.95; -5.51]		16.1%
Salama C 2021	6.25 0.7400	249 7.62 1.4800	128	-1.38 [-1.65; -1.10]		20.4%
Veiga V 2021	11.30 8.0000	65 14.70 8.2000	64	-3.40 [-6.20; -0.60]		17.7%
Wang D 2021	21.75 7.4100	34 20.50 9.6300	31	1.25 [-2.96; 5.46]		15.2%

Random effects model

668

390

-2.29 [-7.82; 3.23]

81.2%

Heterogeneity: $I^2 = 82\%$, $\tau^2 = 16.3179$, $p < 0.01$

Random effects model

689

409

-1.86 [-6.10; 2.38]

100.0%

Heterogeneity: $I^2 = 79\%$, $\tau^2 = 13.3364$, $p < 0.01$

Test for subgroup differences: $\chi^2 = 1.16$, df = 1 ($p = 0.28$)
Supplementary Figure 10A5 Invasive mechanical ventilation.

Source	MAb Events	Control Events	RR [95%–CI]	Favors MAb	Favors Control	Weight
mabcat = other						
Cremer P 2021	0	21	2	0.19 [0.01; 3.54]		0.5%
Gordon A 2021s	6	37	58	0.38 [0.18; 0.81]		5.8%
Kumar S 2021	0	20	3	0.10 [0.01; 1.24]		0.7%
Random effects model	6	78	63	0.33 [0.10; 1.05]		7.0%
mabcat = tocilizumab						
Gordon A 2021t	84	242	58	0.82 [0.63; 1.06]		16.4%
Hamed D 2021	6	26	2	2.65 [0.59; 11.88]		1.8%
Hermine O 2021	11	63	18	0.65 [0.33; 1.27]		6.9%
Horby P 2021	215	1754	273	0.81 [0.68; 0.95]		19.2%
Rashad A 2021	15	46	18	1.14 [0.65; 2.02]		8.5%
Rosas I 2021	51	183	33	0.76 [0.53; 1.09]		13.5%
Salama C 2021	20	249	16	0.64 [0.35; 1.20]		7.6%
Salvarani C 2021	6	60	17	0.37 [0.16; 0.88]		4.8%
Soin A 2021	14	91	13	1.04 [0.52; 2.09]		6.6%
Stone JH 2020	11	161	8	0.69 [0.29; 1.65]		4.7%
Veiga V 2021	4	65	4	0.97 [0.25; 3.71]		2.3%
Zhao H 2021	0	14	2	0.14 [0.01; 1.87]		0.7%
Random effects model	437	2954	462	0.80 [0.70; 0.91]		93.0%

Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = 0.49$

Test for subgroup differences: $\chi^2 = 10.36$, df = 1 ($p < 0.01$)

Supplementary Figure 10A6 Adverse events.

Source	MAb Events	Control Events	RR [95%–CI]	Favors MAb	Favors Control	Weight
mabcat = other						
Caricchio R 2021	122	225	120	1.01 [0.85; 1.20]		10.3%
Kumar S 2021	18	20	4	10.25 [1.04; 4.87]		5.2%
Lescure F 2021	121	173	55	1.07 [0.89; 1.28]		10.2%
Lundgren J 2021	39	163	30	1.20 [0.79; 1.84]		8.2%
Random effects model	300	581	209	1.13 [0.77; 1.66]		33.8%
mabcat = tocilizumab						
Hermine O 2021	28	63	36	0.83 [0.58; 1.18]		8.8%
Horby P 2021	204	2022	254	0.83 [0.70; 0.99]		10.2%
Rosas I 2021	228	295	116	0.95 [0.86; 1.05]		10.6%
Salama C 2021	127	249	29	2.25 [1.60; 3.17]		8.9%
Salvarani C 2021	14	60	7	2.10 [0.91; 4.84]		4.8%
Soin A 2021	33	91	22	1.47 [0.93; 2.31]		7.9%
Veiga V 2021	29	67	21	2.28 [0.82; 6.99]		8.0%
Wang D 2021	20	34	4	4.56 [1.75; 11.87]		4.1%
Zhao H 2021	9	14	2	2.25 [0.65; 7.73]		2.9%
Random effects model	692	2895	491	1.39 [0.93; 2.10]		66.2%

Heterogeneity: $I^2 = 83\%$, $\tau^2 = 0.2085$, $p < 0.01$

Test for subgroup differences: $\chi^2 = 7.77$, df = 1 ($p = 0.39$)

Heterogeneity: $I^2 = 77\%$, $\tau^2 = 0.1445$, $p < 0.01$
Supplementary Figure 10A7 Bacteremia

Source	MAb Total	Control Total	RR [95%–CI]	Favors MAb	Favors Control	Weight
Caricchio R 2021	23	225	0.53 [0.33; 0.85]			14.9%
Gordon A 2021s	0	48	0	0.0%		
Kumar S 2021	1	22	0.15 [0.02; 1.28]			0.9%
Lescure F 2021	40	332	1.01 [0.53; 1.94]			8.5%
Lundgren J 2021	4	163	0.93 [0.24; 3.64]			2.1%
Vlaar A 2020	3	15	0.75 [0.20; 2.79]			2.3%
Random effects model	**71**	**805**	**64**	**684**	0.67 [0.38; 1.17]	**28.6%**
Heterogeneity: $I^2 = 13\%$, $t^2 = 0.0237$, $p = 0.33$						

mabcat = tocilizumab
Gordon A 2021t
Hermine O 2021
Horby P 2021
Rosas I 2021
Salama C 2021
Salvarani C 2021
Soin A 2021
Stone JH 2020
Veiga V 2021
Random effects model
Heterogeneity: $I^2 = 12\%$, $t^2 = 0.0144$, $p = 0.33$

Supplementary Figure 10A7 Bacteremia

Source	MAb Total	Control Total	RR [95%–CI]	Favors MAb	Favors Control	Weight
Caricchio R 2021	23	225	0.53 [0.33; 0.85]			14.9%
Gordon A 2021s	0	48	0	0.0%		
Kumar S 2021	1	22	0.15 [0.02; 1.28]			0.9%
Lescure F 2021	40	332	1.01 [0.53; 1.94]			8.5%
Lundgren J 2021	4	163	0.93 [0.24; 3.64]			2.1%
Vlaar A 2020	3	15	0.75 [0.20; 2.79]			2.3%
Random effects model	**71**	**805**	**64**	**684**	0.67 [0.38; 1.17]	**28.6%**
Heterogeneity: $I^2 = 13\%$, $t^2 = 0.0237$, $p = 0.33$						

mabcat = tocilizumab
Gordon A 2021t
Hermine O 2021
Horby P 2021
Rosas I 2021
Salama C 2021
Salvarani C 2021
Soin A 2021
Stone JH 2020
Veiga V 2021
Random effects model
Heterogeneity: $I^2 = 12\%$, $t^2 = 0.0144$, $p = 0.33$

Supplementary Figure 10A7 Bacteremia
Supplementary Figure 10B Subgroup analyses by type of control in hospitalized patients.

Supplementary Figure 10B1 All-cause mortality.

Source	MAb Events	Control Events	RR [95% CI]	Favors MAb	Favors Control	Weight
Carincichio R 2021	11 223	16 222	0.68 [0.32; 1.44]			3.8%
Cremer P 2021	1 21	3 19	0.30 [0.03; 2.66]			0.5%
Lescure F 2021	14 173	7 84	0.97 [0.41; 2.32]			2.9%
Lundgren J 2021	9 163	5 151	1.67 [0.57; 4.86]			1.9%
Rosas I 2021	58 294	28 144	1.01 [0.68; 1.52]			9.8%
Salama C 2021	26 249	11 128	1.22 [0.62; 2.38]			4.5%
Stone JH 2020	9 161	3 81	1.51 [0.42; 5.42]			1.4%
Vlaar A 2020	2 15	4 15	0.50 [0.11; 2.33]			1.0%
Random effects model	**130 1299**	**77 844**	**1.00 [0.77; 1.30]**			25.8%

Heterogeneity: $I^2 = 0\%$, $t^2 = 0$, $p = 0.72$

Supplementary Figure 10B2 COVID-19-related death.

Source	MAb Events	Control Events	RR [95% CI]	Favors MAb	Favors Control	Weight
Gordon A 2021s	10 45	71 199	0.62 [0.35; 1.11]			5.8%
Gordon A 2021t	98 350	71 198	0.78 [0.61; 1.00]			16.8%
Hermine O 2021	7 63	8 67	0.93 [0.36; 2.42]			2.4%
Horby P 2021	596 2022	694 2094	0.89 [0.81; 0.97]			27.4%
Kumar S 2021	0 20	3 10	0.10 [0.01; 1.24]			0.4%
Salvarani C 2021	1 60	1 63	1.05 [0.07; 16.41]			0.3%
Soin A 2021	11 11	15 18	0.71 [0.34; 1.61]			4.9%
Veiga V 2021	14 65	6 64	2.30 [0.94; 5.61]			2.7%
Random effects model	**737 2716**	**869 2783**	**0.84 [0.58; 1.21]**			59.8%

Heterogeneity: $I^2 = 30\%$, $t^2 = 0.0778$, $p = 0.19$

Supplementary Figure 10B3 Active control.

Source	MAb Events	Control Events	RR [95% CI]	Favors MAb	Favors Control	Weight
Hamed D 2021	2 26	1 23	1.77 [0.17; 18.26]			0.4%
Rashad A 2021	32 46	33 63	1.33 [0.98; 1.80]			14.0%
Random effects model	**34 72**	**34 86**	**1.33 [0.84; 2.13]**			14.4%

Heterogeneity: $I^2 = 0$, $t^2 = 0$, $p = 0.81$

Random effects model sum 901 4087 980 3713 0.94 [0.80; 1.11] 100.0%

Heterogeneity: $I^2 = 23\%$, $t^2 = 0.0205$, $p = 0.18$

Test for subgroup differences: $\chi^2 = 13.61, df = 2 (p < 0.01)$

Source	MAb Events	Control Events	RR [95% CI]	Favors MAb	Favors Control	Weight
Carincichio R 2021	11 223	16 222	0.68 [0.32; 1.44]			73.9%
Vlaar A 2020	0 15	4 15	0.11 [0.01; 1.89]			10.8%
Random effects model	**11 238**	**20 237**	**0.47 [0.11; 1.99]**			84.7%

Heterogeneity: $I^2 = 92\%$, $t^2 = 0.5338$, $p = 0.22$

Supplementary Figure 10B4 Placebo control.

Source	MAb Events	Control Events	RR [95% CI]	Favors MAb	Favors Control	Weight
Hamed D 2021	2 26	1 23	1.77 [0.17; 18.26]			15.3%
Random effects model	**2 26**	**1 23**	**1.77 [0.17; 18.26]**			15.3%

Heterogeneity: not applicable

Random effects model sum 13 264 21 260 0.65 [0.25; 1.72] 100.0%

Heterogeneity: $I^2 = 10\%$, $t^2 = 0.1862$, $p = 0.33$

Test for subgroup differences: $\chi^2 = 0.89, df = 1 (p = 0.34)$
Supplementary Figure 10B3
Serious adverse events.

Supplementary Figure 10B4
Length of hospital stay.
Supplementary Figure 10B5 Invasive mechanical ventilation.

Source	MAb Events	Control Events	RR [95%–CI]	Favors MAb	Favors Control	Weight
control = placebo						
Cremer P 2021	0	21	0.19 [0.01; 3.54]			0.5%
Rosas I 2021	51	183	0.76 [0.53; 1.09]			13.5%
Salama C 2021	20	249	0.64 [0.35; 1.20]			7.6%
Stone JH 2020	11	161	0.69 [0.29; 1.65]			4.7%
Random effects model	82	614	0.72 [0.53; 0.96]			26.3%
Heterogeneity: $I^2 = 0\%$, $t^2 = 0$, $p = 0.80$						

control = soc						
Gordon A 2021s	6	37	0.38 [0.18; 0.81]			5.8%
Gordon A 2021t	84	242	0.82 [0.63; 1.06]			16.4%
Hermine O 2021	11	63	0.65 [0.33; 1.27]			6.9%
Horby P 2021	215	1754	0.81 [0.68; 0.95]			19.2%
Kumar S 2021	0	20	0.10 [0.01; 1.24]			0.7%
Salvarani C 2021	6	60	0.37 [0.16; 0.88]			4.8%
Soin A 2021	14	91	1.04 [0.52; 2.09]			6.6%
Veiga V 2021	4	65	0.97 [0.25; 3.71]			2.3%
Random effects model	340	2332	0.69 [0.52; 0.93]			62.7%
Heterogeneity: $I^2 = 32\%$, $t^2 = 0.0704$, $p = 0.18$						

control = active						
Hamied D 2021	6	26	2.65 [0.59; 11.88]			1.8%
Rashad A 2021	15	46	1.14 [0.65; 2.02]			8.5%
Zhao H 2021	0	14	0.14 [0.01; 1.87]			0.7%
Random effects model	21	86	1.01 [0.24; 4.16]			11.0%
Heterogeneity: $I^2 = 46\%$, $t^2 = 1.0078$, $p = 0.16$						

| **Random effects model** | 443 | 3032 | 0.74 [0.60; 0.92] | | | 100.0% |
| Heterogeneity: $I^2 = 20\%$, $t^2 = 0.0542$, $p = 0.23$ | | | | | | |

Test for subgroup differences: $\chi^2 = 0.27$, df = 2 ($p = 0.87$)

Supplementary Figure 10B6 Adverse events.

Source	MAb Events	Control Events	RR [95%–CI]	Favors MAb	Favors Control	Weight
control = placebo						
Caricchio R 2021	122	225	1.01 [0.85; 1.20]			10.3%
Lescure F 2021	121	173	1.07 [0.89; 1.28]			10.2%
Lundgren J 2021	39	163	1.20 [0.79; 1.84]			8.2%
Rosas I 2021	228	295	0.95 [0.86; 1.05]			10.6%
Salama C 2021	127	249	2.25 [1.60; 3.17]			8.9%
Random effects model	637	1105	1.20 [0.78; 1.83]			48.1%
Heterogeneity: $I^2 = 83\%$, $t^2 = 0.0987$, $p < 0.01$						

control = soc						
Hermine O 2021	28	63	0.83 [0.58; 1.18]			8.8%
Horby P 2021	204	2022	0.83 [0.70; 0.99]			10.2%
Kumar S 2021	18	20	2.25 [1.04; 4.87]			5.2%
Salvarani C 2021	14	60	2.10 [0.91; 4.84]			4.8%
Soin A 2021	33	91	1.47 [0.93; 2.31]			7.9%
Veiga V 2021	29	67	1.28 [0.82; 1.99]			8.0%
Wang D 2021	20	34	4.56 [1.75; 11.87]			4.1%
Random effects model	346	2357	1.43 [0.84; 2.42]			49.0%
Heterogeneity: $I^2 = 77\%$, $t^2 = 0.2405$, $p < 0.01$						

control = active						
Zhao H 2021	9	14	2.25 [0.65; 7.73]			2.9%
Random effects model	9	14	2.25 [0.65; 7.73]			2.9%
Heterogeneity: not applicable						

| **Random effects model** | 992 | 3476 | 1.31 [0.99; 1.71] | | | 100.0% |
| Heterogeneity: $I^2 = 77\%$, $t^2 = 0.1445$, $p < 0.01$ | | | | | | |

Test for subgroup differences: $\chi^2 = 1.25$, df = 2 ($p = 0.54$)
Supplementary Figure 10B7

Bacteremia.

Supplementary Figure 10C

Subgroup analyses by type of control in hospitalized patients receiving tocilizumab.

Supplementary Figure S10C1

All-cause mortality.
Supplementary Figure 10C2 Serious adverse events.

Supplementary Figure 10C3 Length hospital stay.
Supplementary Figure 10C4

Invasive mechanical ventilation.

Supplementary Figure 10C5

Adverse events.
Source	MAb Events	MAb Total	Control Events	Control Total	RR [95%–CI]	Favors MAb	Favors Control	Weight
Gordon A 2021	1	353	0	201	2.57 [0.07; 93.31]			0.5%
Hermine O 2021	4	63	14	67	0.30 [0.11; 0.87]			5.0%
Horby P 2021	6	2022	9	2094	0.69 [0.25; 1.94]			5.2%
Salvarani C 2021	1	60	4	63	0.26 [0.03; 2.28]			1.2%
Soin A 2021	6	91	5	89	1.17 [0.37; 3.71]			4.2%
Veiga V 2021	10	67	10	62	0.93 [0.41; 2.07]			8.3%
Random effects model	**28**	**2656**	**42**	**2576**	**0.69 [0.37; 1.29]**			**24.4%**

Heterogeneity: $I^2 = 0\%$, $Q = 0$, $p = 0.43$

Source	MAb Events	MAb Total	Control Events	Control Total	RR [95%–CI]	Favors MAb	Favors Control	Weight
Rosas I 2021	113	295	58	143	0.94 [0.74; 1.21]			50.6%
Salama C 2021	25	259	16	129	0.78 [0.43; 1.41]			14.5%
Stone JH 2020	13	161	14	81	0.47 [0.23; 0.95]			10.6%
Random effects model	**151**	**715**	**88**	**353**	**0.78 [0.34; 1.77]**			**75.6%**

Heterogeneity: $I^2 = 43\%$, $Q = 0.0511$, $p = 0.17$

Random effects model: $Q = 12\%$, $I^2 = 0.0144$, $p = 0.33$

Test for subgroup differences: $\chi^2 = 0.15$, df = 1 ($p = 0.70$)

Supplementary Figure 10C6 Bacteremia.