A Divergence Formula for Randomness and Dimension

(Short Version)

Jack H. Lutz*
Department of Computer Science, Iowa State University, Ames, IA 50011 USA.
lutz@cs.iastate.edu.

If $S$ is an infinite sequence over a finite alphabet $\Sigma$ and $\beta$ is a probability measure on $\Sigma$, then the dimension of $S$ with respect to $\beta$, written $\dim^\beta(S)$, is a constructive version of Billingsley dimension that coincides with the (constructive Hausdorff) dimension $\dim(S)$ when $\beta$ is the uniform probability measure. This paper shows that $\dim^\beta(S)$ and its dual $\text{Dim}^\beta(S)$, the strong dimension of $S$ with respect to $\beta$, can be used in conjunction with randomness to measure the similarity of two probability measures $\alpha$ and $\beta$ on $\Sigma$. Specifically, we prove that the divergence formula

$$\dim^\beta(R) = \text{Dim}^\beta(R) = \frac{\mathcal{H}(\alpha)}{\mathcal{H}(\alpha) + \mathcal{D}(\alpha||\beta)}$$

holds whenever $\alpha$ and $\beta$ are computable, positive probability measures on $\Sigma$ and $R \in \Sigma^\omega$ is random with respect to $\alpha$. In this formula, $\mathcal{H}(\alpha)$ is the Shannon entropy of $\alpha$, and $\mathcal{D}(\alpha||\beta)$ is the Kullback-Leibler divergence between $\alpha$ and $\beta$.

1 Introduction

The constructive dimension $\dim(S)$ and the constructive strong dimension $\text{Dim}(S)$ of an infinite sequence $S$ over a finite alphabet $\Sigma$ are constructive versions of the two most important classical fractal dimensions, namely, Hausdorff dimension [7] and packing dimension [20, 19], respectively. These two constructive dimensions, which were introduced in [11, 1], have been shown to have the useful characterizations

$$\dim(S) = \liminf_{w \to S} \frac{K(w)}{|w| \log |\Sigma|}$$

and

$$\text{Dim}(S) = \limsup_{w \to S} \frac{K(w)}{|w| \log |\Sigma|},$$

where the logarithm is base-2 [15, 1]. In these equations, $K(w)$ is the Kolmogorov complexity of the prefix $w$ of $S$, i.e., the length in bits of the shortest program that prints the string $w$. (See [9] for details.) The numerators in these equations are thus the algorithmic information content of $w$, while the denominators are the “naive” information content of $w$, also in bits. We thus understand (1.1) and (1.2) to say that $\dim(S)$ and $\text{Dim}(S)$ are the lower and upper information densities of the sequence $S$. These constructive dimensions and their analogs at other levels of effectivity have been investigated extensively in recent years [8].

*This research was supported in part by National Science Foundation Grants 9988483, 0344187, 0652569, and 0728806 and by the Spanish Ministry of Education and Science (MEC) and the European Regional Development Fund (ERDF) under project TIN2005-08832-C03-02.
The constructive dimensions $\dim(S)$ and $\text{Dim}(S)$ have recently been generalized to incorporate a probability measure $\nu$ on the sequence space $\Sigma^\infty$ as a parameter [13]. Specifically, for each such $\nu$ and each sequence $S \in \Sigma^\infty$, we now have the constructive dimension $\dim^\nu(S)$ and the constructive strong dimension $\text{Dim}^\nu(S)$ of $S$ with respect to $\nu$. (The first of these is a constructive version of Billingsley dimension [2].) When $\nu$ is the uniform probability measure on $\Sigma^\infty$, we have $\dim^\nu(S) = \dim(S)$ and $\text{Dim}^\nu(S) = \text{Dim}(S)$. A more interesting example occurs when $\nu$ is the product measure generated by a nonuniform probability measure $\beta$ on the alphabet $\Sigma$. In this case, $\dim^\nu(S)$ and $\text{Dim}^\nu(S)$, which we write as $\dim^\beta(S)$ and $\text{Dim}^\beta(S)$, are again the lower and upper information densities of $S$, but these densities are now measured with respect to unequal letter costs. Specifically, it was shown in [13] that

$$\dim^\beta(S) = \liminf_{w \to S} \frac{K(w)}{J_\beta(w)} \quad (1.3)$$

and

$$\text{Dim}^\beta(S) = \limsup_{w \to S} \frac{K(w)}{J_\beta(w)}, \quad (1.4)$$

where

$$J_\beta(w) = \sum_{i=0}^{|w|-1} \log \frac{1}{\beta(w|i)}$$

is the Shannon self-information of $w$ with respect to $\beta$. These unequal letter costs $\log(1/\beta(a))$ for $a \in \Sigma$ can in fact be useful. For example, the complete analysis of the dimensions of individual points in self-similar fractals given by [13] requires these constructive dimensions with a particular choice of the probability measure $\beta$ on $\Sigma$.

In this paper we show how to use the constructive dimensions $\dim^\beta(S)$ and $\text{Dim}^\beta(S)$ in conjunction with randomness to measure the degree to which two probability measures on $\Sigma$ are similar. To see why this might be possible, we note that the inequalities

$$0 \leq \dim^\beta(S) \leq \text{Dim}^\beta(S) \leq 1$$

hold for all $\beta$ and $S$ and that the maximum values

$$\dim^\beta(R) = \text{Dim}^\beta(R) = 1 \quad (1.5)$$

are achieved if (but not only if) the sequence $R$ is random with respect to $\beta$. It is thus reasonable to hope that, if $R$ is random with respect to some other probability measure $\alpha$ on $\Sigma$, then $\dim^\beta(R)$ and $\text{Dim}^\beta(R)$ will take on values whose closeness to 1 reflects the degree to which $\alpha$ is similar to $\beta$.

This is indeed the case. Our first main theorem says that the divergence formula

$$\dim^\beta(R) = \text{Dim}^\beta(R) = \frac{\mathcal{H}(\alpha)}{\mathcal{H}(\alpha) + \mathcal{D}(\alpha||\beta)} \quad (1.6)$$

holds whenever $\alpha$ and $\beta$ are computable, positive probability measures on $\Sigma$ and $R \in \Sigma^\infty$ is random with respect to $\alpha$. In this formula, $\mathcal{H}(\alpha)$ is the Shannon entropy of $\alpha$, and $\mathcal{D}(\alpha||\beta)$ is the Kullback-Leibler divergence between $\alpha$ and $\beta$. When $\alpha = \beta$, the Kullback-Leibler divergence $\mathcal{D}(\alpha||\beta)$ is 0, so (1.6) coincides with (1.5). When $\alpha$ and $\beta$ are dissimilar, the Kullback-Leibler divergence $\mathcal{D}(\alpha||\beta)$ is large, so the right-hand side of (1.6) is small. Hence the divergence formula tells us that, when $R$ is $\alpha$-random, $\dim^\beta(R) = \text{Dim}^\beta(R)$ is a quantity in $[0, 1]$ whose closeness to 1 is an indicator of the similarity between $\alpha$ and $\beta$. 


The proof of (1.6) serves as an outline of our other, more challenging task, which is to prove that the divergence formula (1.6) also holds for the much more effective finite-state $\beta$-dimension $\dim_{FS}^\beta(R)$ and finite-state strong $\beta$-dimension $\text{Dim}_{FS}^\beta(R)$. (These dimensions are generalizations of finite-state dimension and finite-state strong dimension, which were introduced in [5, 1], respectively.)

With this objective in mind, our second main theorem characterizes the finite-state $\beta$-dimensions in terms of finite-state data compression. Specifically, this theorem says that, in analogy with (1.3) and (1.4), the identities

$$\dim_{FS}^\beta(S) = \inf_C \liminf_{w \to S} \frac{|C(w)|}{I_\beta(w)}$$  

(1.7)

and

$$\dim_{FS}^\beta(S) = \inf_C \limsup_{w \to S} \frac{|C(w)|}{I_\beta(w)}$$  

(1.8)

hold for all infinite sequences $S$ over $\Sigma$. The infima here are taken over all information-lossless finite-state compressors (a model introduced by Shannon [18] and investigated extensively ever since) $C$ with output alphabet 0, 1, and $|C(w)|$ denotes the number of bits that $C$ outputs when processing the prefix $w$ of $S$. The special cases of (1.7) and (1.8) in which $\beta$ is the uniform probability measure on $\Sigma$, and hence $I_\beta(w) = |w| \log |\Sigma|$, were proven in [5, 1]. In fact, our proof uses these special cases as “black boxes” from which we derive the more general (1.7) and (1.8).

With (1.7) and (1.8) in hand, we prove our third main theorem. This involves the finite-state version of randomness, which was introduced by Borel [3] long before finite-state automata were defined. If $\alpha$ is a probability measure on $\Sigma$, then a sequence $S \in \Sigma^\infty$ is $\alpha$-normal in the sense of Borel if every finite string $w \in \Sigma^*$ appears with asymptotic frequency $\alpha(w)$ in $S$, where we write

$$\alpha(w) = \prod_{i=0}^{|w|-1} \alpha(w[i]).$$

Our third main theorem says that the divergence formula

$$\dim_{FS}^\beta(R) = \text{Dim}_{FS}^\beta(R) = \frac{\mathcal{H}(\alpha)}{\mathcal{H}(\alpha) + \mathcal{D}(\alpha||\beta)}$$  

(1.9)

holds whenever $\alpha$ and $\beta$ are positive probability measures on $\Sigma$ and $R \in \Sigma^\infty$ is $\alpha$-normal.

Acknowledgments. I thank Xiaoyang Gu and Elvira Mayordomo for useful discussions.

References

[1] K. B. Athreya, J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Effective strong dimension, algorithmic information, and computational complexity. SIAM Journal on Computing, 37:671–705, 2007.
[2] P. Billingsley. Hausdorff dimension in probability theory. Illinois Journal of Mathematics, 4:187–209, 1960.
[3] E. Borel. Sur les probabilités dénombrables et leurs applications arithmétiques. Rend. Circ. Mat. Palermo, 27:247–271, 1909.
[4] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons, Inc., second edition, 2006.
[5] J. J. Dai, J. I. Lathrop, J. H. Lutz, and E. Mayordomo. Finite-state dimension. Theoretical Computer Science, 310:1–33, 2004.
[6] H. Eggleston. The fractional dimension of a set defined by decimal properties. *Quarterly Journal of Mathematics*, Oxford Series 20:31–36, 1949.

[7] F. Hausdorff. Dimension und äusseres Mass. *Mathematische Annalen*, 79:157–179, 1919. English translation.

[8] J. M. Hitchcock. Effective Fractal Dimension Bibliography, http://www.cs.uwyo.edu/~jhitchco/bib/dim.shtml (current October, 2008).

[9] M. Li and P. M. B. Vitányi. *An Introduction to Kolmogorov Complexity and its Applications*. Springer-Verlag, Berlin, 1997. Second Edition.

[10] J. H. Lutz. Dimension in complexity classes. *SIAM Journal on Computing*, 32:1236–1259, 2003.

[11] J. H. Lutz. The dimensions of individual strings and sequences. *Information and Computation*, 187:49–79, 2003.

[12] J. H. Lutz. A divergence formula for randomness and dimension. Technical Report cs.CC/0811.1825, Computing Research Repository, 2008.

[13] J. H. Lutz and E. Mayordomo. Dimensions of points in self-similar fractals. *SIAM Journal on Computing*, 38:1080–1112, 2008.

[14] P. Martin-Löf. The definition of random sequences. *Information and Control*, 9:602–619, 1966.

[15] E. Mayordomo. A Kolmogorov complexity characterization of constructive Hausdorff dimension. *Information Processing Letters*, 84(1):1–3, 2002.

[16] C. P. Schnorr. A unified approach to the definition of random sequences. *Mathematical Systems Theory*, 5:246–258, 1971.

[17] C. P. Schnorr. A survey of the theory of random sequences. In R. E. Butts and J. Hintikka, editors, *Basic Problems in Methodology and Linguistics*, pages 193–210. D. Reidel, 1977.

[18] C. E. Shannon. A mathematical theory of communication. *Bell System Technical Journal*, 27:379–423, 623–656, 1948.

[19] D. Sullivan. Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. *Acta Mathematica*, 153:259–277, 1984.

[20] C. Tricot. Two definitions of fractional dimension. *Mathematical Proceedings of the Cambridge Philosophical Society*, 91:57–74, 1982.