Supplementary Information

Mimicking 2, 2′:6′, 2″:6″, 2‴-Quaterpyridine Complexes for the Light-Driven Hydrogen Evolution Reaction: Synthesis, Structural, Thermal and Physicochemical Characterizations

Sanil Rajak,a Olivier Schott,b Prabhjyot Kaur,a Thierry Maris,b Garry S. Hananb and Adam Duong*a

aDépartement de Chimie, Biochimie et physique and Institut de Recherche sur l’Hydrogène, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H7, Canada
bDépartement de Chimie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada

Contents

Section	Description	Page
I.	Fig. S1 Thermal atomic displacement ellipsoid plot of the structure of 12 grown from DMSO/EtOAc	S3
II.	Fig. S2 Thermal atomic displacement ellipsoid plot of the structure of 13 grown from DMSO/EtOAc	S3
III.	Fig. S3 Thermal atomic displacement ellipsoid plot of the structure of 14 grown from DMSO/THF	S4
IV.	Table S1 Hydrogen-bond geometry (Å, °) in structure of 12	S4
V.	Table S2 Hydrogen-bond geometry (Å, °) in structure of 13	S5
VI.	Table S3 Hydrogen-bond geometry (Å, °) in structure of 14	S5
VII.	Fig. S4 TGA curves of 6 and 12-14	S6
VIII.	Fig. S5 IR spectra of 6 and 12-14	S6
IX.	Table S4 IR data and assignments of vibrations in ligand 6 and complexes 12-14	S7
X.	Fig. S6 Cyclic voltammetry of 6, 12 and 13 in full scale	S8
XI.	Table S5 Cyclic voltammetry data of 2, 2′:6′, 2″:6″, 2‴-quaterpyridine complexes reported in literature	S8
XII.	Fig. S7 Emission spectrum of blue LED	S9
XIII.	Table S6 Emission maxima and amplitude of LED light	S9
XIV.	Fig. S8 Hydrogen evolution reaction of Co(NO$_3$)$_2$. 6H$_2$O, Ni(NO$_3$)$_2$. 6H$_2$O and Cu(NO$_3$)$_2$. 2.5H$_2$O (1 mM each) under blue light. (a) TON’s and (b) TOF’s.	S9
XV.	Fig. S9 Photosensitizer based processes in light-driven hydrogen evolution	S10
reaction

XVI. Fig. S10. Heterolytic and homolytic mechanisms of hydrogen evolution reaction catalysed by molecular photocatalyst

XVII. References

*To whom correspondence should be addressed. E-mail: adam.duong@uqtr.ca

X-ray Crystallographic data
Fig. S1. Thermal atomic displacement ellipsoid plot of the structure of 12 grown from DMSO/EtOAc. The ellipsoids of non-hydrogen atoms are drawn at 50% probability level, and hydrogen atoms are represented by a sphere of arbitrary size.

Fig. S2. Thermal atomic displacement ellipsoid plot of the structure of 13 grown from DMSO/EtOAc. The ellipsoids of non-hydrogen atoms are drawn at 50% probability level, and hydrogen atoms are represented by a sphere of arbitrary size.
Fig. S3. Thermal atomic displacement ellipsoid plot of the structure of 14 grown from DMSO/THF.

The ellipsoids of non-hydrogen atoms are drawn at 50% probability level, and hydrogen atoms are represented by a sphere of arbitrary size.

Table S1. Hydrogen-bond geometry (Å, °) in structure of 12

D—H···A	D—H	H···A	D···A	D—H···A
O1—H1A···O2	0.88	2.46	3.165 (3)	138
O1—H1A···O4	0.88	1.93	2.789 (3)	164
O1—H1A···N7	0.88	2.55	3.403 (3)	167
O1—H1B···S1	0.88	2.94	3.6667 (18)	142
O1—H1B···O5	0.88	1.86	2.727 (3)	167
N5—H5A···N3i	0.88	2.24	3.059 (3)	156
N5—H5B···O2	0.88	2.16	2.811 (3)	131
N6—H6A···O2i	0.88	2.09	2.962 (3)	173
N6—H6B···O5i	0.88	2.03	2.878 (3)	162

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1.
Table S2. Hydrogen-bond geometry (\AA, °) in structure of 13

D—H···A	D—H	H···A	D···A	D—H···A
N11—H11A···O5	0.83 (4)	2.17 (4)	2.998 (3)	172 (3)
N11—H11B···O5†	0.88 (5)	2.59 (4)	3.180 (3)	125 (3)
N11—H11B···O6†	0.88 (5)	2.19 (5)	3.051 (3)	165 (4)
N5—H5A···O2	0.85 (4)	2.24 (4)	2.957 (3)	142 (3)
N5—H5A···N11	0.85 (4)	2.54 (4)	3.153 (3)	129 (3)
N5—H5B···O9	0.79 (4)	2.19 (4)	2.954 (4)	161 (4)
N6—H6A···O10	0.87 (4)	2.06 (4)	2.926 (3)	173 (3)
N6—H6B···O4‡	0.81 (4)	2.25 (4)	3.040 (3)	165 (4)
N12—H12A···O8	0.80 (4)	2.11 (4)	2.903 (4)	170 (4)
N12—H12B···O7	0.79 (4)	2.23 (4)	2.994 (4)	162 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1.

Table S3. Hydrogen-bond geometry (\AA, °) in structure of 14

D—H···A	D—H	H···A	D···A	D—H···A
N5—H5A···O20A †	0.88	2.01	2.822 (7)	153
N5—H5A···O20B †	0.88	1.97	2.826 (16)	163
N5—H5B···O5	0.88	2.14	2.941 (4)	151
N6—H6A···O6‡	0.88	2.10	2.966 (4)	169
N6—H6B···N9‡	0.88	2.17	3.023 (4)	163
N11—H11A···N4 †	0.88	2.25	3.129 (4)	176
N11—H11B···O3	0.88	2.25	2.972 (5)	140
N11—H11B···N5	0.88	2.56	3.130 (5)	124
N12—H12A···O4‡	0.88	2.12	2.936 (4)	154
N12—H12B···O21A‡	0.88	1.96	2.800 (6)	158

Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) x−1, y, z; (iii) −x+1/2, y+1/2, −z+3/2; (iv) −x+3/2, y−1/2, −z+3/2.
Thermal analysis

![Thermogravimetric analysis (TGA) curves of 6 and 12-14](image)

Fig. S4. Thermogravimetric analysis (TGA) curves of 6 and 12-14

Infrared spectroscopy

![Infrared spectra of 6 and 12-14](image)

Fig. S5. Infrared spectra of 6 and 12-14
Table S4. IR data and assignments of vibrations for ligand 6 and complexes 12-14

	ν/cm\(^{-1}\)	6	12	13	14	Assignment***
594w	572w	579w	611w	τ (NO\(_3\))		
621w	625w	623w	625w	Triazine as well as bipyridine ring out-of-plane		
635w	648w	654w	660w	deff. γ(C-N), γ(C-C)		
702w	705vw	705vw	700w	Triazine ring out-of-plane def. γ(C-N), ω(NH\(_2\))		
711sh	729vw	720w				
750w	742vw	745vw	749w	ω(NH\(_2\))		
761sh	758w	758w	765w			
803m	800m	800s	799m			
820sh	817w	815vw	827w	Triazine ring out-of-plane def. γ(C-N), ω(C-H)		
843w	832w	831w				
914w	917w	917w	912w			
	927w			Ring breathing both triazine as well as bipyridine		
955vw	955vw	955vw	951w			
989w	991w	987w	981w			
1029w	1032w					
1045w	1044w	1040w				
1077w	1071w	1074w				
1080w		1083w				
1108s	1136w	1134w		Bipyridine ring breathing, ρ(NH\(_2\)), ρ(C-H)		
1157sh	1165w	1164w	1163w	ω(NH\(_2\)), δ(C-H), ρ(NH\(_2\))		
1198w	1203w	1201w	1201w	Triazine ring def., τ(NH\(_2\))		
1254w	1276m	1284m	1270w			
1275w	1313s	1313s	1323s	ν(C-N) aromatic amines		
1370w	1390s	1388s	1371m	ρ(C-H)		
1401m						
1439m	1423s	1418s	1417w			
1456w	1454sh	1470w	1470w	ρ(C-H)		
1482w	1481w	1480w				
1537s	1525s	1523s	1513s	Bipyridine ring breathing ν(C-C), δ(NH\(_2\))		
1567m	1568m	1574m		δ(NH\(_2\))		
1591w	1588w	1590m				
1618s	1617s	1616s	1609w	Triazine ring breathing ν(C-N), δ(NH\(_2\))		
1657w	1661m	1658w	1655w	Triazine ring breathing ν(C-N)		
	1668m					
3084w	3083w	3085w	3066sh	ν(C-H)		
3137s	3099w	3100w				
3178s	3165sh	3185w	3154sh	ν\(_2\)(NH\(_2\))		
3312s	3219m	3230s	3214s	ν\(_2\)(NH\(_2\))		
3405w	3383s	3340s	3316s	ν\(_2\)(NH\(_2\)), ν\(_3\)(NH\(_2\))		
3487m	3436m	3458s	3420m			

***Abbreviation used for the type of vibration mode. deff.: deformation; δ, γ, ρ, τ, ω: bending vibrations; ν: stretching vibration
Cyclic Voltammetry

Fig. S6. Cyclic voltammetry of 6, 12 and 13 in full scale

Table S5. Cyclic voltammetry data of 2, 2′:6′, 2″-quaterpyridine complexes reported in literature

Compound	Solvent	Eox1/2 [V]	Ered1/2 [V]	Ered2/1/2 [V]	Ered3/2 [V]	Ered4/2 [V]
Co(qtpy)(H$_2$O)$_2$(ClO$_4$)$_2$	MeCN	-0.65	-1.15	---	---	---
Ni(qtpy)(ClO$_4$)$_2$	DMF	-0.79	-1.13	-1.90	---	---
Cu(qtpy)(PF$_6$)$_2$	MeCN	0.13 (nr)	-0.24 (nr)	---	---	---

qtpy = 2, 2′:6′, 2″-quaterpyridine, nr = non-reversible
Fig. S7 Emission spectrum of blue LED.

Table S6. Emission maxima and amplitude of LED light.

Light source	Blue
$\lambda_{\text{max,em}}$ (nm)	445
$\Delta \lambda$ (nm)	90
Photon flux in μmol$_{\text{photons}}$.min$^{-1}$.cm$^{-2}$	20

a blue LED 445 nm.

b an analog power-meter PM100A (THORLABS) associated with a compact photodiode power head with silicon detector S120C is used to evaluate the photon flux for the LEDs. Photo-diode detector is placed at the same distance from the LED surface than the bottom of illuminated vial.

HER Curves of Co(II), Ni(II) and Cu(II) nitrates

Fig. S8. Hydrogen evolution reaction of Co(NO$_3$)$_2$. 6H$_2$O, Ni(NO$_3$)$_2$. 6H$_2$O and Cu(NO$_3$)$_2$. 2.5H$_2$O (1 mM each) under blue light. (a) TON’s and (b) TOF’s.
Mechanism of hydrogen evolution reactions

The mechanism of the hydrogen evolution reaction may occur by two important steps; (I) Activation of the molecular catalyst by the photosensitizer and (II) Redox photocatalytic hydrogen evolution.

Step I

A

\[
\text{hv} \quad \text{Ru}(II) \quad \text{Ru}(II)^* \quad \text{D} \quad \text{D}^+ \quad \text{M}(I) \quad \text{M}(II) \quad \text{Reductive Quenching}
\]

B

\[
\text{hv} \quad \text{Ru}(II) \quad \text{Ru}(II)^* \quad \text{M}(II) \quad \text{M}(I) \quad \text{Oxidative Quenching}
\]

Fig. S9. Photosensitizer based processes in light-driven hydrogen evolution reaction

In step I, activation of the molecular photocatalyst can take place either by reductive or oxidative quenching pathways from the excited photosensitizer (PS*). Visible light is used to for the excitation of the photosensitizer where, in the process of reductive quenching (A), the excited PS* accept an electron from the sacrificial electron donor (SED) and shares it with the molecular catalyst, during this course, the oxidation state of Ru(II) does not change. In the process of oxidative quenching (B), the excited PS* oxidizes and donates its electron to the molecular catalysts and then abstracts an electron from the SED, this process involves redox changes in Ru(II) PS.

In step II, at the photocatalytic centre, the hydrogen evolution can occur by two different mechanisms.
Step II

Fig. S10. Heterolytic and homolytic mechanisms of hydrogen evolution reaction catalysed by molecular photocatalyst

In heterolytic mechanism (C), H₂ is evolved by the protonation of the intermediate metal hydride. In the catalytic cycle, the two electrons are transferred either consecutively or alternatively. The H₂ evolution in the alternative homolytic pathway (D) happens by the reductive elimination of two metal hydride intermediates. In both the mechanisms, the metal salts of +II oxidation state undergoes one electron reduction before protonation takes place.³

References

1. K-M. Lam, K-Y. Wong, S-M. Yang and C-M. Che, J. Chem. Soc. Dalton Trans., 1995, 7, 1103-1107.
2. E. C. Constable, S. M. Elder, M. J. Hannon, A. Martin, P. R. Raithby and D. A. Tocher, J. Chem. Soc. Dalton Trans., 1996, 12, 2423-2433.
3. Artero, V.; Chavarot-Kerlidou, M.; Fontecave, M., Angew. Chem. 2011, 50 (32), 7238-7266.