Estimating Young Moduli in Sands from the Normalized N_{60} Blow Count

A. Conde de Freitas, M. Pacheco, B.R. Danziger

Abstract. This paper presents statistical correlations between the static Young modulus E_s and the normalized SPT penetration resistance N_{60} (corresponding to 60% of the theoretical energy of the SPT test) for preliminary estimation of settlements in sedimentary sands. The correlations have been established through the statistical interpretation of many experimental studies available in the literature, based on power regression analyses. Equations and charts are presented to estimate the mean value E_s and related statistical limits of E_s as a function of N_{60}. The obtained correlations have been used to compare the calculated settlements of a rigid raft bearing on a multi-layered sand deposit (comprising distinct relative densities) with the measured settlements in eight points underneath the raft.

Keywords: sand compressibility, normalized SPT, Young modulus, correlations.

1. Introduction

The use of seismic tests to obtain correlations between the shear wave velocity V_s and N_{spr} is widely used in foundation engineering. However, most of the published correlations do not provide the statistical inferences used to support the published results. Also, many of these correlations do not take into consideration normalized N_{60} blow counts, causing a large scatter of the data compiled from different countries.

Hanumantharao & Ramana (2008) compiled several correlations between V_s and N_{spr} (uncorrected) worldwide for different soil types. It is well known that the low amplitude shear modulus (G_{max}) is directly related to the shear wave velocity and to the density of the soil through which the wave travels (Richart et al., 1970). Thus, G_{max} is estimated by measuring the shear wave velocity and the soil density to predict the stress-strain behavior of soils under low amplitude dynamic excitation. Unfortunately the use of seismic tests is not yet widespread in Brazil, while the SPT is still the most used technique for site investigation there and in many other countries, what supports the development of several correlations between V_s and N_{spr} worldwide.

Anbazhagan & Sitharam (2010) developed recent relationships between V_s and N_{spr} and pointed out that better correlations could be obtained by correlating N_{spr} and G_{max} also to the overburden stress.

The most common relationship between V_s to N_{spr} is of the type given by Eq. 1, although Eq. 2 is also commonly used. In both equations A, B and C are regression constants and N may represent either N_{spr} or N_{60}.

$$V_s = A \cdot N^B$$ (1)

$$V_s = C + A \cdot N^B$$ (2)

The correlations compiled by Hanumantharao & Ramana (2008) for sands have been used to form the database of the present paper, along with further correlations by Ohsaki & Iwasaki (1973), Jafari et al. (2002), Athanassopoulos (1995), Wride & Robertson (1997), Wride et al. (2000) and Robertson et al. (2000). In this paper, a power regression analysis (Eq. 1) is used to relate statistically V_s to N_{60}. It is worth noting that the velocity of the shear wave can be determined reliably by seismic field tests such as crosshole, downhole, uphole, seismic piezocone, seismic refraction, among others. The velocity V_s and all parameters related to V_s are limited to small strains, of the order of 10^{-4}% (Barros, 1997).

Hanumantharao & Ramana (2008) mention that the measured shear wave velocities obtained from different field methods differ only by the order of 10 to 15%. This may be regarded as negligible when compared to the uncertainties to estimate dynamic moduli and make feasible the use of correlations between V_s and N_{spr} even when V_s is determined by different field techniques. Giachetti et al. (2006) and Moura (2007) reported a difference of only 6.7% in the average shear wave velocity determined by downhole and crosshole tests in a fine clayey sand from the region of Bauru (State of São Paulo, Brazil).

Starting from published correlations between V_s and N_{spr}, regression equations relating G_{max} and E_{max} (small strain dynamic Young modulus) to V_s are readily obtained by well known equations of the classical theory of elasticity. Further correlations between E_{max} and the static Young modulus E_s, according to Buzdugan (1972), enable the final correlations

A. Conde de Freitas, Visiting Professor, Departamento de Estruturas e Fundações, Faculdade de Engenharia do Estado do Rio de Janeiro, Maracanã, R.J., Brazil. e-mail: alessandra.conde@uol.com.br.

M.P. Pacheco, Professor, Departamento de Estruturas e Fundações, Faculdade de Engenharia do Estado do Rio de Janeiro, Maracanã, R.J., Brazil. e-mail: marcus.pacheco@terra.com.

B.R. Danziger, Associate Professor, Departamento de Estruturas e Fundações, Faculdade de Engenharia do Estado do Rio de Janeiro, Maracanã, R.J., Brazil. e-mail: burdanzig@uerj.br.

Submitted on March 15, 2011; Final Acceptance on April 3, 2012; Discussion open until September 30, 2012.

Soils and Rocks, São Paulo, 35(1): 89-98, January-April, 2012. 89
between the static Young modulus \(E_s \) and the corrected \(N_{60} \) blow count for sands, as proposed in this paper.

2. Regression Equations Relating \(E_{\text{max}} \) to \(N_{60} \)

Hanumantharao & Ramana (2008) compiled several correlations between \(V_s \) and \(N_{SPT} \) for clayey and sandy soils. In the present paper, however, emphasis is given only to correlations in sands, according to Table 1. Wride et al. (2000) and Robertson et al. (2000) summarized the Canlex research project (Canadian Liquefaction Experiment) whose main objective was the study of soil liquefaction in saturated sandy soil. From the Canlex database some correlations between shear wave velocity \(V_s \) and \(N_{60} \) have been established and presented in the research report from different sites, also included in Table 1. The fourth column in Table 1 refers to the range of \(N_{SPT} \) corresponding to the sands investigated by each author. The fifth column refers to the range of \(N_{60} \) for the correlations established in the Canlex research project.

Selection of appropriate correction factors are required to convert \(N_{SPT} \) into \(N_{60} \) to normalize the correlations in Table 1 according to the actual energy delivered during the SPT test in each country. Several authors have proposed correction factors to account for the actual energy transmitted to the rods in the SPT test (De Mello, 1971; Kovacs et al., 1977; Palacios, 1977; Schmertmann & Palacios, 1979; Belincanta, 1985; Danziger et al., 2008, among others). The ISSMFE (1989) established 60% of the theoretical potential energy as the international reference. Therefore, \(N_{SPT} \) should be converted to \(N_{60} \) by the expression:

\[
N_{60} = N_{SPT} \frac{E}{E_{60}} \quad (3)
\]

In Eq. 3 \(E \) represents the actual energy delivered to the rods in the SPT test and \(E_{\text{max}} \) refers to 60% of the theoretical potential energy of the SPT hammer. If the energy \(E \) is measured, the above expression should be used. Otherwise, an estimated value for \(E \) based on past experience is required. Therefore, correcting \(N_{SPT} \) is essential to compare correlations from different countries. Décourt (1989) pointed out that the energy just below the anvil \((E) \) can be obtained as:

\[
E = e_1 e_2 e_3 \quad (4)
\]

where \(e_1, e_2, e_3 \), are the efficiencies (or correction factors). The efficiency factor \(e_1 \) relates the kinetic energy just before the impact, being mainly dependent on the way the hammer is lifted and released. Values of \(e_1 \) suggested by Décourt (1989) are shown in Fig. 1.

The factor \(e_2 \) is the ratio between the energy just below the anvil and the kinetic energy just before the impact and it is dependent on the anvil mass (Skempton, 1986). Figure 2 summarizes the main results (Décourt, 1989).

Table 1 - Correlations between \(V_s \) and \(N_{SPT} \) in sands (adapted from Hanumantharao & Ramana, 2008), including other data.

Author	\(V_s \) (m/s)	Country	\(N_{SPT} \) range	\(N_{60} \) range
Ohta et al. (1972)*a	87.0\(N_{SPT}^{0.36} \)	Japan	1 to 50	
Ohsaki & Iwasaki (1973)	59.0\(N_{SPT}^{0.47} \)	Japan	1 to 50	
JRA (1980)*b	80.0\(N_{SPT}^{0.53} \)	Japan	1 to 50	
Seed et al. (1983)	56.4\(N_{SPT}^{0.30} \)	USA	1 to 50	
Sykora & Stokoe (1983)	106.7\(N_{SPT}^{0.27} \)	USA	1 to 50	
Lee (1990)	57.0\(N_{SPT}^{0.49} \)	USA	1 to 50	
Massey – Fraser River Delta(*c)	92.9\(N_{60}^{0.25} \)	Canada	9 to 21	
Kidd – Fraser River Delta(*c)	83.7\(N_{60}^{0.25} \)	Canada	13 to 43	
J-Pit – Syncrude(*c)	92.8\(N_{60}^{0.25} \)	Canada	2 to 29	
LL Dam – HVC Mine(*c)	102.9\(N_{60}^{0.25} \)	Canada	2 to 7	
Highmont Dam – HVC Mine(*c)	95.4\(N_{60}^{0.25} \)	Canada	3 to 13	

*a*from Ohsaki & Iwasaki (1973). *b*from Jafari et al. (2002). *(c)*CANLEX Research.
Figure 2 - Efficiency factor e_i as a function of the anvil mass (Décourt, 1989).

The efficiency factor e_i is due to the rod length. According to Schmertmann & Palacios (1979) the driving energy would only be fully transmitted to the rods if they had a minimum critical length. This would occur because in most cases the first compression wave pulse is reflected in the lower end of the sampler as a tension wave. Therefore the tension wave induces a separation between the hammer and the rods, preventing further transfer of energy. Recent researches, however, have shown that the subsequent (secondary) impacts in the same blow contribute to full energy transmission, indicating that the energy just below the anvil is independent of the length of the rod stem, and thus the factor e_i should be taken as unity.

Odebrecht (2003) and Odebrecht et al. (2005) have shown that the potential energy resulting from the penetration of the sampler should be added to the nominal potential energy, which is significant mostly in case of small rod lengths in soft clays and loose sands.

Aoki & Cintra (2000) pointed out that the energy producing the sampler penetration (which is associated to the N value) is the one that reaches the sampler, and not the one below the anvil. Thus, the corresponding energy loss over the rods should also be taken into account. Thus another factor e_i that quantifies the energy loss over the rods should also be included in Eq. 4. Unfortunately, very few data is available about this factor (e.g., Cavalcante, 2002; Odebrecht, 2003; Johnsen & Jagello, 2007). It turns out that the only reliable way to quantify the SPT energy losses is by proper measurement of the actual energy delivered to the sampler. In this paper, N_{60} values are assigned according to average correction factors C reported by Décourt et al. (1989), as shown in Table 2. For example, the value $C = 1.05$ (USA) in Table 2 refers to the average value for 0.75 (donut/rope-cathead); 1.00 (safety/hope/cathead) and 1.40 (safety/free fall). The correction factor C is given by:

$$C = \frac{E}{E_{60}}$$

$$N_{60} = C \cdot N_{SPT}$$

For the Brazilian SPT, Décourt (Table 2) proposed:

$$N_{60} = 1.20 \cdot N_{SPT}$$

Further research based on actual energy measurements on the SPT hammers mostly used in Brazil (e.g., Belincanta, 1985, 1998; Cavalcante, 2002; Odebrecht, 2003) has indicated:

$$N_{60} = 1.37 \cdot N_{SPT}$$

Equations 7 and 8 are used in Session 3 to enable correlations for practical application in Brazil. Hanumantharao & Ramana (2008) pointed out that most correlations may produce acceptable V_s predictions for N_{SPT} values up to 40. According to the Authors experience in settlement predictions based on N_{SPT}, the correlations above require good engineering judgment for N_{SPT} > 30 and should be avoided for N_{SPT} above 50 or below 4.

To relate E_{max} to N_{60}, the following equations of the classical theory of elasticity are used:

$$E_{max} = 2 \cdot G_{max} \cdot (1 + \nu)$$

$$G_{max} = V_s^2 \cdot \rho$$

From Eqs. 9 and 10:

$$E_{max} = 2 \left(\frac{V_s^2 \cdot \gamma}{g} \right) (1 + \nu)$$

In the equations above ν is the Poisson ratio, ρ the soil unit mass, γ the soil unit weight and g the acceleration of gravity. Equation 11 enables to relate E_{max} to N_{60} by assigning a power regression curve to V_s (Eq. 1). Therefore, each pair $N_{60} \times E_{max}$ (for each regression equation in Table 1) is plotted in Fig. 3 for all integer N_{SPT} and N_{60} values according to the ranges given by the two last columns of Table 1. N_{SPT} values are corrected to N_{60} according to Table 2. The points in Fig. 3 have been plotted by assigning $\nu = 0.3$, $\gamma = 18 \text{kN/m}^2$ and $g = 9.8 \text{ m/s}^2$ in Eq. 11.

According to Conde de Freitas (2010) the soil specific weight increases only moderately with N_{60}, with minor

| Table 2 - Correction factors C – (adapted from Décourt et al., 1989). |
|-----------------|--------|
| Country | C |
| Argentina | 0.75 |
| Brazil | 1.20 |
| China | 1.00 |
| Colombia | 0.83 |
| Japan | 1.27 |
| Paraguay | 1.20 |
| U.K. | 0.92 |
| U.S.A. | 1.05 |
| Venezuela | 0.72 |

Soils and Rocks, São Paulo, 35(1): 89-98, January-April, 2012.
impact on Eqs. 9, 10 and 11. Therefore, a constant value $\gamma = 18 \text{kN/m}^3$ was assigned throughout this work.

Attention should be pointed out that Eqs. 9 and 10 have been derived from the classical theory of elasticity that assumes a constant modulus for soil mass. Such a simplification is only justified in the proposed correlations as long as its use has been conceived as preliminary settlement estimations.

To fit a regression power curve through the 357 points in Fig. 3a, a transformed linear regression analysis is carried out by plotting $\log(N_{60}) \times \log(E_{\text{max}})$, as in Fig. 3b (Conde de Freitas, 2010). The desired regression power curve in Fig. 3a is readily determined by mapping back the linear regression curve (Fig. 3b) into the original plot ($N_{60} \times E_{\text{max}}$), producing:

$$E_{\text{max}} = 24975 \cdot N_{60}^{0.75} \text{ (kPa)}$$ (12)

For comparison, an alternative relationship between N_{60} (uncorrected) and E_{max} is readily obtained from Eq. 13 below, widely used in the oil industry in Brazil for design of foundations for machinery (Petrobras, 2008; Machado, 2010):

$$G_{\text{max}} = 12000 \cdot N_{60}^{0.80} \text{ (kPa)}$$ (13)

From Eqs. 9 and 13:

$$E_{\text{max}} = 31200 \cdot N_{60}^{0.80} \text{ (kPa)}$$ (14)

Equations 12 and 14 are compared in Session 3 to estimate the static Young modulus E_s, the main objective of this paper. Experimental data by Machado (2010) has confirmed the adequacy of Eq. 13 to estimate the shear modulus G_{max} for design of foundations for machinery.

Statistical limits for the points in Fig. 3a have been determined in Fig. 4 (Conde de Freitas, 2010) according to Neter et al. (1982); Pacheco & Lima (1996), for n standard deviations about the mean regression curve (n ranging from 0.5 to 2).

3. Static Young Moduli

Equations 12 and 14 are applicable to engineering problems related to small strains, as in dynamic analyses of foundations for machinery. For static problems, however, a reduction factor is to be applied to the dynamic modulus E_{max} to estimate the corresponding static Young modulus E_s. Laboratory tests on reconstituted samples in sands indicate that the dynamic shear modulus may be reduced more than tenfold for shear deformations of 10^{-3} to 1% (Barros, 1997; Moura, 2007). According to Kulhawy & Mayne (1990); Moura (2007), the shear modulus for static loads is about 5 to 10% G_{max}. A similar reduction is also reported by Sitharam et al. (2004), Fig. 5. Therefore it is important to keep in mind that estimates of E_s (or G_s) should be made according to the range of shear deformation expected for each problem under consideration (Silveira et al., 2006).

![Figure 3](image-url)

Figure 3 - (a). N_{60} vs. E_{max} points for sands and corresponding power regression curve and (b). Transformed linear regression $\log(N_{60})$ vs. $\log(E_{\text{max}})$ (Conde de Freitas, 2010).

![Figure 4](image-url)

Figure 4 - Statistical limits for E_{max} from the points in Fig. 3a (adapted from Conde de Freitas, 2010).

![Figure 5](image-url)

Figure 5 - Shear modulus vs. shear deformation for Ahmedabad sand for two relative densities (Sitharam et al., 2004).
Buzdugan (1972) summarized the range of variation of dynamic (E_{max}) and static (E_s) Young moduli (Table 3) for foundation design. An average ratio $E_{\text{max}}/E_s = 3$ is inferred from Table 3 to estimate E_s from Eqs. 12 and 14 in sands. This ratio is recommended only to well-designed foundations whose applied pressure is far from failure, as expected in large dimension foundations like rafts, tanks and silos. The ratio E_{max}/E_s is expected to increase for smaller safety factors (larger shearing strains) and therefore good engineering judgment and experience are required for practical use of the correlations proposed herein. Furthermore, the ratio E_{max}/E_s increases for clayey soils (Buzdugan, 1972). Therefore, the ratio $E_{\text{max}}/E_s = 3$ as well the correlations presented in this paper should also be restricted to sedimentary pure sands with negligible amount of fines, considering that even small percentages of fines are likely to produce higher E_{max}/E_s ratios.

The regression curves in Fig. 4 ($N_{60} \times E_{\text{max}}$) are converted into $N_{60} \times E_s$ in Fig. 6 for $E_{\text{max}}/E_s = 3$. The corresponding mean power curve in Fig. 6 (determined from Eq. 12) is given by:

$$E_s = 8325 \cdot N_{60}^{0.75} \text{ (kPa)} \quad (15)$$

For comparison, the static modulus E_s estimated from Eq. 14 for $E_{\text{max}}/E_s = 3$ is:

$$E_s = 10400 \cdot N_{60}^{0.80} \text{ (kPa)} \quad (16)$$

For practical applications using the Brazilian SPT, curve (a) in Fig. 6 is obtained from Eq. 16 for $C = 1.20$ (Eq. 7), as:

$$E_s = 8988 \cdot N_{60}^{0.80} \text{ (kPa)} \quad (17)$$

Alternatively, curve (b) in Fig. 6 is obtained from Eq. 16 for $C = 1.37$ (Eq. 7), as:

$$E_s = 8084 \cdot N_{60}^{0.80} \text{ (kPa)} \quad (18)$$

Curve (a) in Fig. 6 is very close to the curve corresponding to 1.0 standard deviations above the mean curve, whereas curve (b) nearly coincides with the curve corresponding to 0.5 standard deviations above the mean curve. The good agreement between curves (a), (b) and the mean curve given by Eq. 15 seems to indicate that the regression curves in Fig. 6 provide a simple and reasonable statistical procedure to estimate E_s in addition to providing a simple way to account for the uncertainty in the predictions (varia-

Soil type	Young Modulus (x10^5 N/m^2)	E_{max}/E_s
(1) Loose sand (rounded grains)	400 800 1500 3000	3.75 3.75
(2) Loose sand (angular grains)	500 800 1500 3000	3.00 3.75
(3) Medium dense sand (rounded grains)	800 1600 2000 5000	2.50 3.13
(4) Medium dense sand (angular grains)	1000 2000 2000 5000	2.00 2.50
(5) Clean gravel (no sand fraction)	1000 2000 3000 8000	3.00 4.00
(6) Gravel (angular grains)	1500 3000 3000 8000	2.00 2.67
Lower and upper mean E_{max}/E_s	2.71 3.30	3.00

Table 3 - Ranges of static and dynamic moduli for sands (adapted from Buzdugan, 1972).

Figure 6 - Static moduli E_s for sands ($E_{\text{max}}/E_s = 3$), adapted from Conde de Freitas (2010).
tions of \(n \) standard deviations about the mean). Equations 15, 17 and 18 indicate that the static Young modulus \(E_s \) can be expressed in round numbers by:

\[E_s = 8000 \cdot N_{60}^{0.66} \text{ (kPa)} \] (19)

It should be pointed out that the Young modulus \(E_s \) increases with depth in nearly normally consolidated sand deposits and this can be easily accounted for in FE modeling. In the present study, however, the variation of \(E_s \) with depth was modeled by Eq. 19 after subdividing the sand deposit into several thin layers represented by individual average \(N_{60} \) values which account indirectly for the overconsolidated condition.

4. Settlement Analysis of a Raft on Multilayered Sand Deposit

The following is an application of Eq. 19 to predict the settlements of an instrumented nearly rigid raft bearing on a sedimentary sand deposit investigated by Lopes et al. (1994), and Lopes (2000). Those authors describe the measured settlement of a raft foundation during a period up to 3 years after completion of the structure. The raft supports the building housing a diesel power generator and applies to the soil a net uniform pressure \(p = 123 \text{ kN/m}^2 \) (building + generator). The raft dimensions (16.6 m x 27.0 m) and the instrumentation points are shown in Fig. 7 (Lopes et al., 1994).

The sand deposit has been subdivided into six layers whose deformation parameters have been assigned in Table 4 according to the normalized \(N_{60} \) blow count obtained from Fig. 8.

The soil profile is subdivided into six moderately inclined sand layers interpreted from the SPT boring logs, as depicted in Fig. 9 (input geometry to the finite element program Plaxis 3-D Foundation). The raft bears on top of the sand deposit above which was placed a 4-m high fill. The water table is assumed to coincide with the base of the raft (4 m below the fill surface). The Young modulus for each sand layer is estimated by Eq. 19 taking the average normalized \(N_{60} \) blow counts in Table 4. Other input parameters to the numerical analysis are listed in Table 5.

\[\gamma_s \text{ is the total (saturated) unit weight, } \gamma_n \text{ the natural (non saturated) unit weight, } \nu \text{ the Poisson ratio, } c \text{ the cohesion and } \phi \text{ the friction angle.} \]

In Table 5, \(\gamma_s \) is the total (saturated) unit weight, \(\gamma_n \) the natural (non saturated) unit weight, \(\nu \) the Poisson ratio, \(c \) the cohesion and \(\phi \) the friction angle.

Figure 10 shows the displacement contours at a longitudinal cross section passing through the center of the raft. The measured and the calculated displacements at the instrumentation points are shown in Table 6. It is seen that the calculated values are in reasonably good agreement with
the measured results at the instrumentation points, whereas the average settlement (15.06 mm) coincide.

Equation 19 may also be useful to estimate the oedometric modulus E_0 in sands. From the theory of elasticity:

$$E_0 = \frac{E_s}{1+\nu} \left(1 - \frac{c}{c_{45}}\right)$$

(20)

Combining Eqs. 19 and 20 for $\nu = 0.3$:

$$E_0 \simeq 135 \cdot E_s = 10800 \cdot N_{60}^{0.80}$$

(21)

Equation 22 below and Eq. 21 are used to estimate the one-dimensional settlement (r) of the 6-layer sand in Fig. 9 under the raft pressure $\Delta p = 123$ kN/m2.

$$r = \sum_{i=1}^{n} \frac{\Delta p \cdot h_i}{E_0}$$

(22)

The thicknesses h_i, the oedometric moduli E_0 and the settlement r_i for each sand layer are shown in Table 7. The estimated total settlement is $r = 22.87$ mm. This is higher than the average measured settlement of 15.06 mm due to the assumption of infinite loading and also because Eq. 22 does not consider the confinement provided by the 4-m high fill and the stiffness of the raft (both accounted for in the FEM analysis).

To account for those effects, the following equation from the theory of elasticity modified by Barata (1962, 1984, 1986) is used:

$$r = \frac{\lambda \cdot c_s \cdot \Delta p \cdot B \cdot (1+\nu)^2 \cdot I}{E_s}$$

(23)

The following values are plugged in Eq. 23 (Barata, 1962, 1984, 1986); $\lambda = 0.96$ (Mindlin’s coefficient); $c_s = 1.09$ (shape factor, rigid foundation); $\Delta p = 123$ kN/m2; $B = 16.6$ m (foundation width); $\nu = 0.3$ (Poisson ratio); $I = 0.63$ (influence factor accounting for a rigid boundary about 12 m below the raft); $E_s = 61500$ kN/m2 (weighted mean static Young modulus, according to Table 4). The settlement estimated by Eq. 23 is $r = 19.9$ mm. This is about 33% higher than the average FEM predictions (which coincided with the average measured settlement) and 15% lower than the estimated 1-D settlement.

The settlements estimated by the three models above are superimposed on Burland and Burbidge chart in Fig. 11

Table 5 - Input parameters for the FEM analysis (program Plaxis 3-D Foundation).

Layer	γ_i (kN/m3)	γ_i (kN/m3)	E_i (kN/m2)	ν	c (kN/m3)	ϕ (°)
Fill	-	18	20000	0.30	5	30
Sand 1	20	-	95000	0.30	1	37
Sand 2	20	-	80000	0.30	1	35
Sand 3	20	-	50000	0.30	1	35
Sand 4	19	-	24000	0.35	1	30
Sand 5	19	-	34000	0.35	1	30
Sand 6	20	-	77000	0.30	1	35
Residual	18	-	200000	0.30	20	37
Raft (concrete)	25	-	2.5 x 107	0.20	linear elastic	

Table 6 - Measured vs. calculated settlements.

Point	Measured (mm)	Calculated (3-D FEM analysis)	Deviation from mean settlement (%)
A	19.5	14.5	33.20
B	17.5	15.5	13.28
C	12.5	14.0	-9.96
D	9.8	12.0	-14.61
E	20.0	16.5	23.24
F	17.5	18.0	-3.32
G	13.7	17.0	-21.91
H	10.0	13.0	-19.92
Average	15.06	15.06	
Considering that Burland and Burbidge chart provides an upper bound for the expected settlements, the results shown in Fig. 11 seem to indicate the adequacy of the estimated Young moduli according to Eq. 19 to calculate the raft settlements.

5. Conclusions

This paper presents correlations between the static Young modulus E_s and the normalized penetration resistance N_{60} for pure sands, aiming at preliminary settlement predictions. The proposed correlations can also be extended to preliminary estimates of the oedometric modulus E_o in pure sands.

The correlations in this paper are limited to the statistical interpretation of several results published in the literature. Therefore, practical application of equations and charts presented in this paper should be supported further by load tests and other in-situ tests. Eq. 19 is generally suited to applied pressures sufficiently far from failure, as expected in well-designed rafts and foundations for tanks and silos where reasonably low static shearing strains result. For higher shearing strains, it is recommended to select E_s values below the mean trend equation in Fig. 6. In contrast, E_s values above the mean trend curve should be used with increased caution and only when supported by load tests.

The proposed correlations have been used to predict satisfactorily the settlements of a nearly rigid raft supporting the structure of a diesel power generator on sedimentary sand. Good predictions have been obtained by 3-D FEM analysis taking E_s values from Eq. 19. Reasonable predictions have also been achieved by one-dimensional calculations using the oedometric modulus E_o (Eqs. 21 and 22) and the elasticity equation modified by Barata (Eq. 23). The results coming from the three models plotted satisfactorily on Burland and Burbidge chart, indicating that the proposed correlations are useful for preliminary estimation of settlements in sedimentary sands.

References

Anbazhagan, P. & Sitharam, T.G. (2010) Relationship between low strain shear modulus and standard penetration test N values. Geotechnical Testing Journal, ASTM, v. 33:2, p. 1-15.

Aoki, N. & Cintra, J.C.A. (2000) The application of energy conservation Hamilton’s principle to the determination of energy efficiency in SPT tests. Proc. 6th International Conference on the Application of Stress-Wave Theory to Piles, São Paulo, pp. 457-460.

Athanasopoulos, G.A. (1995) Empirical correlations Vso - NSPT for soils of Greece: A comparative study of reliability. Proc. 7th Int. Conf. on Soil Dyn. Earthquake Enng. Computation Mechanics Publications, Southampton, pp. 19-25.

Barata, F.E. (1962) An attempt to rationalize the problem of allowable bearing pressure of shallow foundations (in Portuguese). Tese de Livre Docência, Escola Nacional de Engenharia, Universidade do Brasil.

Barata, F.E. (1984) Propriedades Mecânicas dos Solos: Uma Introdução ao Projeto de Fundações. 1ª ed. Livros Técnicos e Científicos, Rio de Janeiro, 152 pp.

Barata F.E. (1986) Settlements of Buildings on Shallow Foundations on Soil of Drained Behavior Considering the Structural Rigidity (in Portuguese). Tese de Con-

Table 7 - Deformation parameters for the sand deposit.

Layer	Average thickness (m)	Normalized blow count N_{60}	Oedometric modulus E_o (kN/m2)	1-D settlement (mm) (*)
Sand 1	3	22	128045	2.88
Sand 2	2	18	109054	2.26
Sand 3	2	10	68143	3.61
Sand 4	2	4	32739	7.51
Sand 5	2	6	45284	5.43
Sand 6	1	17	104180	1.18
Σ				22.87

(*) Eqs. (21), (22).

(Burland & Burbidge, 1985; Sivakugan & Pacheco, 2011).
curso para Professor Titular, Departamento de Construção Civil, Escola de Engenharia, UFRJ, Rio de Janeiro, 77 pp.

Barros, J.M.C. (1997) Dynamic shear modulus in tropical soils (in Portuguese). Tese de Doutorado, Escola Politécnica, Universidade de São Paulo, São Paulo, 637 pp.

Belincanta, A. (1985) Dynamic Energy in SPT: Results from a Theoretical-Experimental Investigation (in Portuguese). Dissertação de MSc, EPUSP, São Paulo, 217 pp.

Belincanta, A. (1998) Evaluation of the Factors Intervening the Penetration Resistance of the SPT (in Portuguese). Tese de DSc, Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 141 pp.

Burland J.B. & Burbidge, M.C. (1985) Settlement of foundations on sand and gravel. ICE proceedings, Part 1, v. 78:6, p. 1325-1381.

Buzdugan, G. (1972) Dynamique des Foundations de Machines. Éditions Eyrolles, Paris, 438 pp.

Cavalcante, E.H. (2002) Theoretical – Experimental Investigation of the SPT. In: Proceedings of the IV Panamerican Conference on Soil Mechanics and Foundation Engineering, Porto Rico, v. 4, pp. 2405-2416.

Conde de Freitas, A. (2010) Contribution to the Study of the 3D Installation and Group Effect of Piles in Sands (in Portuguese). Tese de MSc, Programa de Pós-Graduação em Engenharia Civil, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 231 pp.

Danziger, F.A.B.; Danziger, B.R. & Cavalcante, E.H. (2008) Reflections Concerning the Energy in SPT and the Significance of the N Value in Particular Circumstances (in Portuguese). Proc. XIV Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica, Cobramseg, Búzios, 11 pp.

Décourt, L. (1989) The standard penetration test - State-of-the-art. Proc. XII ICSMFE, Rio de Janeiro, v. 4, pp. 2405-2416.

Décourt, L.; Belincanta, A. & Quaresma Filho, A.R. (1989) Brazilian experience on SPT supplementary contributions by the brazilian society of soil mechanics. Proc. XII ICSMFE, Rio de Janeiro, pp. 49-54.

De Mello, V.F.B. (1971) Standard penetration test. In: Proceedings of the IV Panamerican Conference on Soil Mechanics and Foundation Engineering, Porto Rico, v. 1, pp. 1-86.

Giachetti, H.L.; Mio, G. De; Dourado, J.C. & Malagutti Filho, W. (2006) Comparison of the results of downhole and cross-hole seismic tests in the experimental research field in UNESP, Bauru (in Portuguese). Proc. XIII Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica - Cobramseg, Curitiba, pp. 669-674.

Hanumantharao, C. & Ramana, G.V. (2008) Dynamic soil properties for microzonation of Delhi, India. J. Earth Syst. Sci., v. 117:2, p. 719-730.

ISSMFE (1989) International Reference Test Procedure for the Standard Penetration Test (SPT). In: Report of the ISSMFE - TC 16 - Technical Committee on Penetration Testing of Soils, with Reference Test Procedures - CPT- SPT - DP - WST - pp. 17-19.

Jafari, M.K.; Shafife, A. & Razmkhah, A. (2002) Dynamic properties of fine grained soils in south of Tehran. Soil Dyn. Earthquake Engg., v. 4:1, p. 25-35.

Kulhawy, F.H. & Mayne P.H. (1990) Manual on Estimating Soil Properties for Foundation Design. Cornell University, New York, 308 pp.

Lee, S.H.H. (1990) Regression models of shear wave velocities. Journal of Chinese Institute of Engineers, v. 13:5, p. 519-532.

Lopes, F.R; Sousa, O.S.N. & Soares, J.E. (1994) Long-term settlement of a raft foundation on sand. Geotechnical Engineering, v. 107:1, p. 11-16.

Lopes, F.R. (2000) Design of raft foundations on Winkler springs. Hemsley, J.A. (ed) Design Application of Raft Foundation, chap. 5, Thomas Telford, London, pp. 127-154.

Machado, F.G. (2010) Study of the Behavior of Foundations Submitted to Vibration Machines (in Portuguese). Dissertação de Mestrado, COPPE, UFRJ, Rio de Janeiro, 149 pp.

Moura, A.S. (2007) Evaluation of Shallow Foundation Design Methodology of Aerogenerators Embedded in Dense Sand (in Portuguese). Tese de Doutorado, publicação G.TD-051/07, Departamento de Engenharia Civil, Universidade de Brasília, Brasília, 323 pp.

Neter, J.; Wasserman, W. & Whitmore, G.A. (1982) Applied Statistics, 2nd ed. Allyn and Bacon Inc., Boston 743 pp.

Odebrecht, E. (2003) SPT Energy Measurements (in Portuguese). Tese de D.Sc., UFRGS, Porto Alegre, 230 pp.

Odebrecht, E.; Schnaid, F.; Rocha, M.M. & Bernardes, G.P. (2005) Energy efficiency for standard penetration tests. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, v. 131:10, p. 1252-1263.

Ohsaki, Y. & Iwasaki, R. (1973) Dynamic shear moduli and Poisson’s ratio of soil deposits. Soils and Foundation, v. 13:4p. 61-73.

Pacheco, M.P. & Lima, L.S.A. (1996) An statistical criteria for investigation of geotechnical tests (in Portuguese). Solos e Rochas, v. 19:3. p. 177-188.

Palacios, A. (1977) Theory and Measurements of Energy Transfer During Standard Penetration Test Sampling. Ph.D. Thesis, University of Florida, Gainesville, 391 pp.
Petrobrás (2008) N 1848 REV. B– Design of Machine Foundations. CONTEC – SC-04. 51 pp. Projeto de Fundações de Máquinas.

Richart, F.E.; Hall, J.R. & Woods, R.D. (1970) Vibrations of Soils and Foundations, Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 414 pp.

Robertson, P.K.; Wride, C.E.; List, B.R.; Atukorala, U.; Biggar, K.W.; Byrne, P.M.; Campanella, R.G.; Cathro, D.C.; Chan, D.H.; Czajewski, K.; Finn, W.D.L.; Gu, W.H.; Hammamji, Y.; Hofmann, B.A.; Howie, J.A.; Hughes, J.; Imrie, A.S.; Konrad, J.-M.; Küpper, A.; Law, T.; Lord, E.R.F.; Monahan, P.A.; Morgenstern, N.R.; Phillips, R.; Piché, R.; Plewes, H.D.; Scott, D.; Sego, D.C.; Sobkowicz, J.; Stewart, R.A.; Watts, B.D.; Woeller, D.J.; Youd, T.L. & Zavodni, Z. (2000) The CANLEX project: summary and conclusions. Canadian Geotechnical Journal, v. 37:3 p. 563-591.

Schmertmann, J.H. & Palácios, A. (1979) Energy dynamics of SPT. Journal of the Soil Mechanics and Foundation Division, ASCE, v. 105:GT8, p. 909-926.

Seed, H.B.; Idriss, I.M.; Arango, I. (1983) Evaluation of liquefaction potential using field performance data. Journal of Geotechnical Engineering, v. 109:3, p. 458-482.

Silveira, R.M. da S.; Barros, J.M. de C. & Amaral, C. dos S. (2006) Shear Modulus Decrease with Deformation of a Remoulded Marine Clay (in Portuguese). Proc. XIII Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica - Cobramseg, Curitiba, 6 pp.

Sitharam, T.G.; Govindaraju, L. & Sridharan, A. (2004) Special section: Geotechnics and Earthquake Hazards Dynamic properties and liquefaction potential of soils. Department of Civil Engineering, Indian Institute of Science, Bangalore, India. Current Science, v. 87:10 p. 1370-1378.

Sivakugan, N. & Pacheco, M. (2011) Design of shallow foundations. Das, B. (ed), Geotechnical Engineering Handbook, Chapter 3, Ross Publishers, Florida, pp. 302-355.

Skempton, A.W. (1986) Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation. Géotechnique, v. 36:3, p. 425-447.

Sykora D.W. & Stokoe K.H. (1983) Correlations of in situ measurements in sands of shear wave velocity, soil characteristics, and site conditions. In: University of Texas. Geotechnical Engineering Report: GR 83-33, Austin, 484 pp.

Wride, C.E. & Robertson, P.K. (1997) CANLEX, The Canadian Liquefaction Experiment. 5 volumes. Bi Tech Publishers Ltd, Canada, 1082 pp.

Wride, C.E.; Robertson, P.K.; Biggar, K.W.; Campanella, R.G.; Hofmann, J.M.O.; Hughes, J.M.O.; Kupper, A. & Woeller, D.J. (2000) Interpretation of in situ test results from the CANLEX sites. 2000. Canadian Geotechnical Journal, v. 37, p. 505-529.