Supermassive black holes in galactic bulges

Yu-Qing Lou1,2,3⋆ and Yan-Fei Jiang1⋆

1Department of Physics and Tsinghua Centre for Astrophysics (THCA), Tsinghua University, Beijing 100084, China
2Department of Astronomy and Astrophysics, the University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA
3National Astronomical Observatories, Chinese Academy of Sciences, A20, Datun Road, Beijing 100021, China

Accepted 2008 August 28. Received 2008 August 23; in original form 2008 June 6

ABSTRACT
Growing evidence indicate supermassive black holes (SMBHs) in a mass range of \(M_{\text{BH}} \sim 10^6–10^{10} \ M_\odot \) lurking in central stellar bulges of galaxies. Extensive observations reveal fairly tight power laws of \(M_{\text{BH}} \) versus the mean stellar velocity dispersion \(\sigma \) of the host stellar bulge. Together with evidence for correlations between \(M_{\text{BH}} \) and other properties of host bulges, the dynamic evolution of a bulge and the formation of a central SMBH should be linked. In this Letter, we reproduce the empirical \(M_{\text{BH}}–\sigma \) power laws based on our recent theoretical analyses (Lou & Wang; Wang & Lou; Lou, Jiang & Jin) for a self-similar general polytropic quasi-static dynamic evolution of bulges with self-gravity and spherical symmetry, and present a sensible criterion of forming a central SMBH. The key result is \(M_{\text{BH}} = L \sigma^{1-(1-n)} \), where \(2/3 < n < 1 \) and \(L \) is a proportional coefficient characteristic of different classes of host bulges. By fitting and comparing several empirical \(M_{\text{BH}}–\sigma \) power laws, we conclude that SMBHs and galactic bulges grow and evolve in a coeval manner and most likely there exist several classes of galactic bulge systems in quasi-static self-similar evolution and that to mix them together can lead to an unrealistic fitting. Based on our bulge-SMBH model, we provide explanations for intrinsic scatter in the relation and a unified scenario for the formation and evolution of SMBHs in different classes of host bulges.

Key words: black hole physics – hydrodynamics – galaxies: bulges – galaxies: evolution – galaxies: nuclei – quasars: general.

1 INTRODUCTION
It is now widely accepted that supermassive black holes (SMBHs) within a mass range of \(10^6 \sim 10^{10} \ M_\odot \) (\(M_\odot = 2 \times 10^{33} \ \text{g} \) is the solar mass) form at the centres of spiral and elliptical galaxies (e.g. Lynden-Bell 1969; Kormendy & Richstone 1995; Kormendy 2004). Observationally, SMBH masses \(M_{\text{BH}} \) correlate with the various properties of spiral galaxy bulges or elliptical galaxies, including bulge luminosities (e.g. Kormendy & Richstone 1995; Magorrian et al. 1998; Marconi & Hunt 2003), stellar bulge masses \(M_{\text{bulge}} \) (e.g. Magorrian et al. 1998; Marconi & Hunt 2003; Häring & Rix 2004), \(M_{\text{BH}} \) versus \(M_{\text{bulge}} \) relations in active [active galactic nuclei (AGN)] and inactive galaxies (e.g. Wandel 1999; McLure & Dunlop 2002; Wandel 2002), galaxy light concentrations, or equivalently the Sérsic index (Sérsic 1968) of surface brightness profile (e.g. Graham et al. 2001; Graham & Driver 2007), inner core radii (e.g. Lauer et al. 2007), spiral arm pitch angles (e.g. Seigar et al. 2008), bulge gravitational binding energies (e.g. Aller & Richstone 2007) and mean stellar velocity dispersions \(\sigma \) (e.g. Ferrarese & Merritt 2000; Gebhardt et al. 2000; Tremaine et al. 2002; Ferrarese & Ford 2005; Hu 2008). These empirical correlations strongly suggest a physical link between SMBHs and their host bulges (e.g. Springel, Di Matteo & Hernquist 2005; Li, Haiman & MacLow 2007).

Among these empirical relations, \(M_{\text{BH}} \) and \(\sigma \) correlate tightly in a power law with an intrinsic scatter of \(\lesssim 0.3 \) dex (e.g. Novak, Faber & Dekel 2006). This relation was explored theoretically (e.g. Silk & Rees 1998; Blandford 1999; Fabian 1999) before observations (e.g. Ferrarese & Merritt 2000; Gebhardt et al. 2000) and the emphasis was on outflow effects for galaxies. The idea was further elaborated by King (2003). A model of singular isothermal sphere with rotation (Adams, Graff & Richstone 2001) was proposed for the \(M_{\text{BH}}–\sigma \) relation. This relation was also studied in a semi-analytic model (Kauffmann & Haehnelt 2000) with starbursts while SMBHs being formed and fuelled during major mergers. Accretion of collisional dark matter on to SMBHs may also give the \(M_{\text{BH}}–\sigma \) relation (e.g. Ostriker 2000; see Haehnelt 2004 for a review). There are also numerical simulations to model feedback from SMBHs and stars on host galaxies.

Observationally, there are two empirical types of galactic bulges: classical bulges (spiral galaxies with classical bulges or elliptical galaxies) and pseudo-bulges (e.g. Kormendy et al. 2004; Drory & Fisher 2007). While SMBHs in classical bulges are formed after

⋆E-mail: louyq@tsinghua.edu.cn (Y-QL); lou@oddjob.uchicago.edu (Y-QL); jiangyanfei1986@gmail.com (Y-FJ); yanfeij@princeton.edu (Y-FJ)
major mergers, pseudo-bulges do not show obvious merger signatures. Interestingly, pseudo-bulges also manifest a $M_{\text{BH}}-\sigma$ power law yet with a different exponent (e.g. Kormendy & Gebhardt 2001; Hu 2008).

Self-similar dynamics of a conventional polytropic gas sphere has been studied earlier (e.g. Yahil 1983; Suto & Silk 1988; Lou & Wang 2006, hereafter LW06, and references therein). LW06 obtained novel self-similar quasi-static dynamic solutions which approach singular polytropic spheres (SPS) after a long time. Such polytropic dynamic solutions have been further generalized and applied to study protostar formation, ‘champagne flows’ in HII regions, stellar core collapse, rebound shocks and the formation of compact stellar objects in a single fluid model (LW06; Lou & Wang 2007; Wang & Lou 2007, 2008; Lou & Cao 2008; Hu & Lou 2008) as well as galaxy clusters in a two-fluid model (Lou, Jiang & Jin 2008, hereafter LJJ). Here, we take such quasi-static solutions in a general polytropic fluid to describe long-time evolution of host stellar bulges and the formation of central SMBHs and to establish $M_{\text{BH}}-\sigma$ power laws.

2 A POLYTROPIC SELF-SIMILAR DYNAMIC MODEL FOR $M_{\text{BH}}-\sigma$ POWER LAWS

For the dynamic evolution of a stellar bulge in a galaxy, we adopt a few simplifying assumptions. First, we treat the stellar bulge as a spherical polytropic fluid as the typical age $\sim 10^9$ yr of galactic bulges is long (e.g. Frogel 1988; Gnedin, Norman & Ostriker 1999) that they are continuously adjusted and relaxed. Stellar velocity dispersions produce an effective pressure P against the self-gravity as in the Jeans equation (e.g. Binney & Tremaine 1987). Secondly, the total mass of the interstellar medium in a galaxy is $\sim 10^2-10^6 M_{\odot}$ (e.g. Gnedin et al. 1999), only 10^2-10^4 of the total bulge mass. Although gas densities in broad- and narrow-line regions of AGN are high, the filling factor is usually small ($\sim 10^{-3}$; Osterbrock & Ferland 2006) and the gas breaks into clumpy clouds. Thus, gas is merged into our stellar fluid as an approximation. Thirdly, the diameter of broad-line regions of AGN is only ~ 0.1 pc (Osterbrock & Ferland 2006) and the disc around a SMBH is even smaller while a galactic bulge size is ≥ 1 kpc. We thus ignore small-scale structures around the central SMBH of a spherical bulge. Finally, as rotation curves of galaxies show (e.g. Binney & Tremaine 1987), the effect of dark matter halo in the innermost region (around several kpc) of a galaxy may be neglected. So, the dark matter is not included as we study the bulge dynamics.

Hydrodynamic equations of a general polytropic bulge model with spherical symmetry are mass conservation

$$\frac{\partial M}{\partial t} + u \frac{\partial M}{\partial r} = 0 \quad \text{and} \quad \frac{\partial M}{\partial r} = 4\pi r^2 \rho, \quad (1)$$
or equivalently

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial r} \left(r^2 \rho u \right) = 0, \quad (2)$$

radial momentum conservation (LW06; Wang & Lou 2008)

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial r} = - \frac{1}{\rho} \frac{\partial P}{\partial r} - \frac{G M}{r^2}, \quad (3)$$

and ‘specific entropy’ conservation along streamlines (LJJ)

$$\left(\frac{\partial}{\partial t} + u \frac{\partial}{\partial r} \right) \left(\frac{P}{\rho^\gamma} \right) = 0, \quad (4)$$

where r is radius and t is time; $M(r, t)$ is the enclosed mass and $u(r, t)$ is the bulk radial flow speed; $P(r, t)$ is the effective pressure

and $\rho(r, t)$ is the mass density; γ is the polytropic index for the stellar bulge fluid and G is the gravitational constant. As the bulk flow of stellar fluid is slow, we invoke the novel self-similar quasi-static solutions (LW06; LJJ) to model the bulge dynamic evolution under spherical symmetry. We use a self-similar transformation (LW06; LJJ) to solve the general polytropic fluid equations (1)–(4), namely

$$r = K^{1/2} t^{\alpha}, \quad \rho = \frac{\alpha(x)}{4\pi G K^{3/2 + \alpha}}, \quad u = K^{1/2} t^{\alpha-1} v(x),$$

$$P = \frac{K^{1/2} t^{\alpha-2} m(x)}{4\pi G K^{3/2 + \alpha}}, \quad (5)$$

Here, x is the independent dimensionless similarity variable while K and n are two scaling indices; $\alpha(x)$ is the reduced mass density and $v(x)$ is the reduced radial flow speed; $\beta(x)$ is the reduced pressure and $m(x)$ is the reduced enclosed mass; reduced variables α, β, v and m are functions of x only. We require $n > 2/3$ for a positive mass.

By transformation (5), we readily construct self-similar quasi-static dynamic solutions from the general polytropic fluid equations (1)–(4) that approach the SPS as the leading term for small x. The properties of such asymptotic solutions to the leading order (LW06; LJJ; Wang & Lou 2008) are summarized below. Both initial ($t \to 0^+$) and final ($t \to +\infty$) mass density profiles scale as $\sim r^{-2n}$; accordingly, the bulge-enclosed mass profile is $M \propto r^{3-2n}$. As $r \to 0^+$ or $t \to +\infty$, the density and enclosed mass profiles are

$$M = \frac{n A K^{1/n}}{(3n - 2)^{3(n-2)/n}}, \quad \rho = \frac{A}{4\pi G} K^{1/n} r^{-2n}, \quad (6)$$

where $A = \left[n^{-q}/[2(2 - n)(3n - 2)] \right]^{1/(q + y - 2)}$ and $q = 2(n + y - 2)/(3n - 2)$. For either $x \to 0^+$ or $x \to +\infty$, the reduced velocity $v \to 0$, which means at a time t, for either $r \to 0^+$ or $r \to +\infty$ the flow speed $u \to 0$, or at a radius r, when t is short or long enough, the radial flow speed $u \to 0$. Our model describes a self-similar bulge evolution towards a nearly static configuration after a long time lapse, appropriate for galactic bulges at the present epoch.

As the effective pressure P results from stellar bulge velocity dispersion, we readily derive the mean velocity dispersion σ in a bulge. By specific entropy conservation along streamlines, we relate P with ρ and M (LJJ) and derive the P profile from our quasi-static solutions. We then take the local stellar velocity dispersion as $\sigma_L(r, t) = (\gamma P/\rho)^{1/2}$. The asymptotic expression when $t \to +\infty$ for the local stellar velocity dispersion in our model is therefore

$$\sigma_L(r) = \gamma^{1/2} K^{1/2} t^{1/2} y^{q/2} A^{(q+y-2)/2} r^{(n-1)/n}. \quad (7)$$

To compare with observations, we derive the spatially averaged stellar velocity dispersion σ within the bulge. The bulge boundary is taken as the radius r_e where ρ drops to a critical bulge mass density value ρ_c, indistinguishable from the environment. Practically, the mean velocity dispersion σ is usually estimated within the half-light radius which is less than the outer bulge photometric radius. As σ decreases with increasing r by equation (7), the mean σ would be higher within the half-light radius. In principle, the environmental density for different bulges is not the same and it is difficult to give the density exactly. Here, we take a reasonable critical density ρ_c as the criterion to define the boundary of a bulge, which means when the density of a bulge drops to the critical density ρ_c, we define the domain within this radius r_e as the bulge. For a class of bulges with the same n, ρ_c is regarded as a constant. So the difference

1 Here, n is not the Sésic index of surface brightness profile.
in ρ_c reflects different environments of the bulges with different parameter n. One can readily show that within r_c
\begin{equation}
\sigma = \frac{3}{4\pi r_c} \int_0^{r_c} \sigma_4(4\pi/2)dr = \left[\frac{3n+\epsilon/2}{2(4\pi/2)}\right]^{1/2} (4\pi G \rho_c)^{1-n/2} A^{3n/4} K^{1/2} = Q K^{1/2}.
\end{equation}

This relation is particularly satisfying on the intuitive ground. A SMBH forms at the centre of a galactic bulge that evolves in a self-similar quasi-stationary manner. Such a SMBH was formed by the core collapse of collections of stars and gas towards the bulge centre and grows rapidly by matter accretion at an earlier phase (e.g. Lynden-Bell 1969; Hu et al. 2006; see Haehnelt 2004, and references therein for a review of the joint formation of SMBHs and galaxies). As the growth time-scale for SMBHs is only $\sim 10^8$ yr, our quasi-static solutions describe the relatively quiescent phase of Galactic bulges after the formation of SMBHs as a longer history of bulge evolution. The stellar fluid made up of stars and condensed gas clouds has a slow bulk flow speed towards the central SMBH, sustaining a reservoir of mass accretion for the circumnuclear torus and/or disc on smaller scales. Besides, there have been observational evidence to show that stars torn up by the tidal force of the SMBH may account for the observed X-rays at the centre of bulges (e.g. Zhao, Haehnelt & Rees 2002; Komossa 2004; Komossa et al. 2004, 2008), which presents a scenario of how our stellar fluid being accreted by a central SMBH.

We now introduce the criterion of forming a SMBH in a spherical stellar bulge. A SMBH mass M_{BH} and its Schwarzschild radius r_s are related by $M_{BH} = f r_s c^2/(2G)$, where c is the speed of light and f is an adjustable factor of order unity. According to equation (6), the mass enclosed within the radius r is $M \propto r^{3-2n}$. At a certain radius $r = r_s = [(3n-2) f c^2/(2n A K^n)]^{1/(3n-2)}$ where it happens $M = r_s c^2/(2G)$, a SMBH forms. Only those quasi-static bulges with $n < 1$ can form central SMBHs as shown in Fig. 1; we then derive $M_{BH} = [f c^2/(2G)] [(3n-2) f c^2/(2n A K^n)]^{1/(2n-2)} K^{1/(2n-2)}$ and the power law below
\begin{equation}
M_{BH} = \left(\frac{n A}{3n-2}\right)^{n/(2n-2)} \left(\frac{2}{f c^2}\right)^{(3n-2)/(2n-2)} \times \frac{Q^{1/n-1}}{G} \sigma^{1/(1-n)} \equiv \mathcal{L} \sigma^{1/(1-n)},
\end{equation}

where the coefficient $\mathcal{L} $ thus defined depends on $f c^2, G, n, \gamma, \rho_c$ and the power-law exponent $1/(1-n) > 3$ because of the requirement $2/3 < n < 1$. Other researchers have their own criteria, which differ from ours, to define the black holes in their models to give a $M_{BH} - \sigma$ relation (e.g. Adams et al. 2001).

While the $M_{BH} - \sigma$ power law is very tight with intrinsic scatter $\lesssim 0.3$ dex for SMBHs and host bulges (e.g. Novak, Faber & Dekel 2006), such scatter is large enough to accommodate different exponents in the $M_{BH} - \sigma$ relation (e.g. Ferrarese & Merritt 2000; Gebhardt et al. 2000; Tremaine et al. 2002). By relation (equation 9), we have a natural interpretation for intrinsic scatters in the observed $M_{BH} - \sigma$ power law. In our model, all bulges with the same n lie on a straight line with the exponent $1/(1-n)$ as shown in Fig. 2. For a fixed n, different bulges are represented by different K values in self-similar transformation (equation 5), leading to different M_{BH} and σ. However, for bulges with different n values, they lie on the different lines. For elliptical galaxies or bulges in spiral galaxies, they appear to eventually take the self-similar evolution described above with a certain n value. But pseudo-bulges may take on different n values. Observationally, we cannot determine a priori the specific n value for a bulge but simply attempt to fit all bulges with a single exponent, which then leads in part to intrinsic scatter in the observed $M_{BH} - \sigma$ power law.

To show this, we fit three published $M_{BH} - \sigma$ power laws in Fig. 2. The first one is $M_{BH} = 1.2 \times 10^8 M_\odot$

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig1.pdf}
\caption{The criterion of forming a central SMBH in a self-similar quasi-stationary evolution in a general polytropic formulation (LW06, LJ07). The enclosed mass power law is $M \propto r^{3.37}$ with $n = 0.751$ (solid curve). Meanwhile, we draw a straight dashed line $M = f r c^2/(2G)$ with $f = 1$ for the mass of the central SMBH versus the Schwarzschild radius r. Here at $r_s = 7.2 \times 10^7$ km, the straight line intersects the enclosed mass power-law curve for a $2.45 \times 10^7 M_\odot$ SMBH. The region within $r_s = 7.2 \times 10^7$ km is the SMBH in this example. A self-similar general polytropic quasi-static solution of $n < 1$ can thus form a SMBH at the stellar bulge centre by this criterion.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig2.pdf}
\caption{Power law $M_{BH} - \sigma$ relations in our general polytropic model for quasi-static self-similar bulge evolution and the formation of a central SMBH. Three indices $n = 0.7537, 0.7512$ and 0.7333 are adopted for three different classes, namely, solid line (Hu 2008), dashed line (Tremaine et al. 2002) and dotted line (Gebhardt et al. 2000), of $M_{BH} - \sigma$ power law (9). Given n, we calculate the SMBH mass M_{BH} and the mean stellar velocity dispersion σ for a certain K value in self-similar transformation (5). A bulge has different mean velocity dispersion σ for different K values. Each bulge–SMBH system is represented by a point in this plot. All such systems of same n lie on a straight line, while systems of different n values correspond to different lines in our model.}
\end{figure}
Supermassive black holes in galactic bulges

3 CONCLUSIONS AND DISCUSSION

On the basis of a self-similar quasi-static dynamic evolution of a general polytropic sphere (LW06, LJH), we establish $M_{BH} = \mathcal{L} \sigma^{1/(1 - n)}$ with $2/3 < n < 1$ by equation (9). Our first conclusion is $1/(1 - n) > 3$ which appears consistent with the observations so far. Secondly, uncertainties in the formation criterion of a SMBH [i.e. factor f in $M_{BH} = f_{s} r_{s} c^{2}/(2G)$] and in the choice of r_{c} and thus ρ_{c} will not change the power-law form of equation (9) and the n value but will only affect the value of coefficient \mathcal{L}. Thirdly, the tight $M_{BH}-\sigma$ power laws and other relations among the SMBH mass M_{BH} and the known properties of host stellar bulges strongly suggest coeval growths of SMBHs and galactic bulges (e.g. Kauffmann & Haehnelt 2000; Page et al. 2001; Haehnelt 2004; Hu et al. 2006). Fourthly, in our model, while forming a SMBH at the bulge centre (e.g. by core collapse of gas and stars or by merging), the spherical general polytropic bulge evolves in a self-similar quasi-static phase for a long time. We then reproduce well-established empirical $M_{BH}-\sigma$ power laws. Different energetic processes appear to give rise to different scaling index n values, which finally determines the slope of the $M_{BH}-\sigma$ relations in a logarithmic presentation.

Besides classical bulges and pseudo-bulges, there are also ‘core’ elliptical galaxies (i.e. those with apparent ‘cores’ of relatively flat brightness; Lauer et al. 1995; Hu 2008), thought to have formed by ‘dry’ mergers (i.e. almost without gas). A steeper $M_{BH}-\sigma$ relation exists in these galaxies as compared to that for classical bulges (e.g. Lauer et al. 1995; Laine et al. 2003; Lauer et al. 2007).

This can also be accommodated in our unified scenario that all hosts of SMBHs may finally evolve into self-similar quasi-static phase with different scaling parameters (i.e. different index n for the slope and different ρ_{c} for the normalization of the $M_{BH}-\sigma$ relation). While these bulges can be of quite different kinds in galaxies, they have these similar tight relations and we thus provide a unified self-similar dynamic framework to model the relatively quiescent evolution phase of SMBH host bulges and the growth of SMBH masses. As the observed $M_{BH}-\sigma$ relation for classical bulges is tight, the elliptical and spiral galaxies appear to take on close n values for merging processes.

In our model, n is a key scaling index to determine the exponent of the $M_{BH}-\sigma$ power law. The smaller the value of n is, the steeper the density profile is and the smaller the index of the $M_{BH}-\sigma$ relation is. If SMBHs are formed by collapse of stars and gas and a less steeper density distribution may provide a more effective mechanism to form SMBHs, then we conclude that for a certain value of velocity dispersions,4 the smaller the mass of an initially formed SMBH is, the smaller the value of n is.

After a long lapse, our quasi-static solutions approach the general static SPS solution as the leading term that is independent of the time-scale. So, all the described relations here are nearly independent of time, as long as the systems have evolved for a long enough time. It is not obvious to decide when the host bulges began to take the described self-similar evolution. But even if we take different times in our model, our results would remain largely the same. The only difference is that for an early time, we may have a chance to observe ongoing accretion shocks within the region of stellar bulges. Such shocks are characterized by a rapid inner density rise of several times and a rapid inner rise of stellar velocity dispersions depending on the strength of ongoing accretion shocks.

4 The mean velocity dispersion $\sigma = Q K^{1/2}$ is not sensitive to n values.
ACKNOWLEDGMENTS

We thank referee A. Wandel for suggestions to improve the manuscript. This work was supported, in part, by Tsinghua Centre for Astrophysics (THCA), the National Natural Science Foundation of China (NSFC) grants 10373009 and 10533020, the National Basic Science Talent Training Foundation (NSFC J0630317), the National Scholarship from the Ministry of Education at Tsinghua University, and the Yangtze Endowment and the SRFDP 20050003088 from the Ministry of Education at Tsinghua University. Kind hospitalities of Institut für Theoretische Physik und Astrophysik der Christian-Albrechts-Universität Kiel and of the International Center for Relativistic Astrophysics (ICRA) and ICRA Network (ICRANet) are gratefully acknowledged.

REFERENCES

Adams F. C., Graff D. S., Richstone D. O., 2001, ApJ, 551, L31
Aller M. C., Richstone D. O., 2007, ApJ, 665, 120
Binney J., Tremaine S., 1987, Galactic Dynamics. Princeton Univ. Press, New Jersey
Blandford R. D., 1999, in Merritt D. R., Valluri M., Sellwood J. A., eds, ASP Conf. Ser. Vol. 182, Galaxy Dynamics. Astron. Soc. Pac., San Francisco, p. 87
Drory N., Fisher D. B., 2007, ApJ, 664, 640
Fabian A. C., 1999, MNRAS, 308, L39
Ferrarese L., Ford H., 2007, ApJ, 664, L64
Gnedin N. Y., Norman M. L., Ostriker J. P., 1999, Proc. AIP Conf. Ser. Vol. 470, p. 48
Graham A. W., Driver S. P., 2007, ApJ, 655, 77
Graham A. W., Erwin P., Caon N., Trujillo I., 2001, ApJ, 563, L11
Graham A. W., 2008a, ApJ, 680, 143
Graham A. W., 2008b, PASA, in press
Haehnelt M. G., 2004, Coevolution of Black Holes and Galaxies from the Carnegie Observatories Centennial Symposia. Cambridge Univ. Press, Cambridge, p. 405
Haering N., Rix H.-W., 2004, ApJ, 604, L89
Hu J., 2008, MNRAS, 386, 2242
Hu R. Y., Lou Y.-Q., 2008, MNRAS, preprint (arXiv:0808.2009H)
Hu J., Hu J., Shen Y., Lou Y.-Q., Zhang S. N., 2006, MNRAS, 365, 345
Kauffmann G., Haehnelt M., 2000, MNRAS, 311, 576
King A., 2003, ApJ, 596, L27
Komossa S., 2004, in Storchi-Bergmann T., Ho L. C., Schmitt H. R., Proc. IAU Symp. 222, The Interplay among Black Holes, Stars and ISM in Galactic Nuclei. Cambridge Univ. Press, Cambridge, p. 45
Komossa S., Halpern J., Hasinger G., Santos-Lleo M., Predehl P., 2004, ApJ, 603, L17
Komossa S. et al., 2008, ApJ, 678, L13
Kormendy J., 2004, in Ho L. C., ed., Carnegie Obs. Astrophys. Ser. Vol. 1, Coevolution of Black Holes and Galaxies. Cambridge Univ. Press, Cambridge, p. 1
Kormendy J., Richstone D., 1995, ARA&A, 33, 581
Kormendy J., Gebhardt K., 2001, in Wheeler J. C., Martel H., eds, 20th Texas Symp. Relativistic Astrophysics, Am. Inst. Phys., New York, p. 363
Laine S., van der Marel R. P., Lauer T. R., Postman M., O’Dea C. P., Owen F. N., 2003, AJ, 125, 478
Lauer T. R. et al., 1995, AJ, 110, 2622
Lauer T. R. et al., 2007, ApJ, 662, 808
Li Y., Haiman Z., MacLow M. M., 2007, ApJ, 663, 61
Lou Y.-Q., Wang W. G., 2006, MNRAS, 372, 885 (LW06)
Lou Y.-Q., Wang W. G., 2007, MNRAS, 378, L54
Lou Y.-Q., Jiang Y. F., Jin C. C., 2008, MNRAS, 386, 835 (LJJ)
Lynden-Bell D., 1969, Nat, 223, 69
Magorrian J. et al., 1998, AJ, 115, 2285
Marconi A., Hunt L. K., 2003, ApJ, 589, L21
McLure R. J., Dunlop J. S., 2002, MNRAS, 331, 795
Novak G. S., Faber S. M., Dekel A., 2006, ApJ, 637, 96
Osterbrock D. E., Ferland G. J., 2006, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, 2nd edn. University Science Books
Ostriker J. P., 2000, Phys. Rev. Lett., 84, 5258
Page M. J., Stevens J. A., Carrera F. J., 2001, Sci., 294, 2516
Seigar M. S., Kennicutt R. C., Lacy C. H. S., 2008, ApJ, 678, 93
Sérsic J.-L., 1968, Atlas de Galaxias Australes. Observatorio Astronomico, Cordoba
Silk J., Rees M. J., 1998, A&A, 331, L1
Springel V., Di Matteo T., Hernquist L., 2005, MNRAS, 361, 776
Suto Y., Silk J., 1988, ApJ, 326, 527
Tremaine S. et al., 2002, ApJ, 574, 740
Wandel A., 1999, ApJ, 519, L39
Wandel A., 2002, ApJ, 565, 762
Wang W. G., Lou Y.-Q., 2007, Ap&SS, 311, 363
Wang W. G., Lou Y.-Q., 2008, Ap&SS, 315, 135
Yahil A., 1983, ApJ, 265, 1047
Zhao H. S., Haehnelt M. G., Rees M. J., 2002, New Astron., 7, 385

This paper has been typeset from a \LaTeX file prepared by the author.