Research article

Soil bacterial communities of Sahara and Gibson deserts: Physiological and taxonomical characteristics

Andrey A. Belov¹*, Vladimir S. Cheptsov¹,² and Elena A. Vorobyova¹,²

¹ Soil Science Faculty, Lomonosov Moscow State University, Moscow, Russia
² Space Research Institute, Russian Academy of Sciences, Moscow, Russia

* Correspondence: Email: and.ant.be@gmail.com; Tel: +79175844407.

Supplementary

Table S1. Taxonomic affiliation of isolated strains.

Sample, temperature of culturing	Strain	Isolation media	GenBank accession number	The most closely related sequences in GenBank	Taxonomic affiliation
Gibson Desert, Australia, 25 °C	KBP.AS.1	GPY	MH734536	Micrococcus aloeverae	
				KY622923—99.7%	
				Micrococcus yunnanensis	
				MH298518—99.7%	
				Micrococcus yunnanensis	
				KY622921—99.5%	Micrococcus sp.
				Janibacter indicus	
				MF948904—100%	
				Janibacter melonis	
				NR_025805—100%	
				Janibacter anophelis	
				NR_043218—100%	Janibacter sp.

Continued on next page
Sample, temperature of culturing	Strain	Isolation media	GenBank accession number	The most closely related sequences in GenBank	Taxonomic affiliation
Gibson Desert, Australia, 25 °C	KBP.AS.3	GPY	MH734578	*Micrococcus aloeverae* KY622923—99.7% *Micrococcus yunnanensis* MH298518—99.7% *Micrococcus yunnanensis* KY622921—99.5%	*Micrococcus sp.*
Gibson Desert, Australia, 25 °C	KBP.AS.4	GPY	MH734587	*Microbacterium oxydans* KX369591—99.8% *Microbacterium oxydans* KF975411—99.8% *Microbacterium oxydans* AJ717356—99.8%	*Microbacterium oxydans*
Gibson Desert, Australia, 25 °C	KBP.AS.5	GPY	MH734597	*Agrococcus sp.* KP238419—99.9% *Agrococcus jenensis* NR_026275—99.9% *Agrococcus citreus* NR_041542—99.6%	*Agrococcus sp.*
Gibson Desert, Australia, 25 °C	KBP.AS.6	GPY	MH734599	*Bacillus pumilus* JQ353824—99.5% *Bacillus safensis* MH160088—99.5% *Bacillus safensis* MH671851—99.5%	*Bacillus sp.*
Gibson Desert, Australia, 25 °C	KBP.AS.7	GPY	MH734600	*Rhodococcus sp.* KF441597—99.8% Uncultured *Rhodococcus sp.* KF504096—99.8% *Rhodococcus sp.* FR772123—99.8%	*Rhodococcus sp.*
Gibson Desert, Australia, 25 °C	KBP.AS.8	GPY	MH734601	*Bacillus safensis* MG645269—100% *Bacillus pumilus* LT906438—100% *Bacillus zhangzhouensis* NR_148786—100%	*Bacillus sp.*

Continued on next page
Sample, temperature of culturing	Strain	Isolation media	GenBank accession number	The most closely related sequences in GenBank	Taxonomic affiliation
Gibson Desert, Australia, 25 °C	KBP.AS.9	GPY	MH734602	Microbacterium aurantiacum	Microbacterium aurantiacum
				NR_116476—99.6%	
				Microbacterium aurantiacum	
				NR_116476—99.6%	
				Microbacterium kitamiense	
				NR_037048—99.3%	
Gibson Desert, Australia, 25 °C	KBP.AS.10	GPY	MH734538	Microbacterium aurantiacum	Microbacterium aurantiacum
				NR_116476—99.6%	
				Microbacterium aurantiacum	
				NR_116476—99.6%	
				Microbacterium kitamiense	
				NR_037048—99.3%	
Gibson Desert, Australia, 25 °C	KBP.AS.11	GPY	MH734539	Aurantimonas altamirensis	Aureimonas altamirensis
				EU442517—99.9%	
				Aurantimonas altamirensis	
				NR_043764—99.8%	
				EU442517—99.9%	
				Aurantimonas altamirensis	
				NR_043764—99.8%	
Gibson Desert, Australia, 25 °C	KBP.AS.12	GPY	MH734541	Microbacterium lacus	Microbacterium sp.
				KX082876—99.7%	
				Microbacterium aurum	
				KJ127516—99.5%	
				Microbacterium lacus	
				HM209729—99.1%	
Gibson Desert, Australia, 25 °C	KBP.AS.13	GPY	MH734548	Brevundimonas vesicularis	Brevundimonas sp.
				MG966304—99.9%	
				Brevundimonas vesicularis	
				NR_113586—99.5%	
				Brevundimonas nasdae	
				MG650163—99.9%	
Gibson Desert, Australia, 25 °C	KBP.AS.14	GPY	MH734551	Paenibacillus glucanolyticus	Paenibacillus glucanolyticus
				KC789782—99.9%	
				Paenibacillus glucanolyticus	
				CP015286—99.7%	
				Paenibacillus glucanolyticus	
				NR_113748—99.6%	
Sample, temperature of culturing	Strain	Isolation media	GenBank accession number	The most closely related sequences in GenBank	Taxonomic affiliation
----------------------------------	--------	----------------	--------------------------	---	----------------------
Gibson Desert, Australia, 25 °C	KBP.AS.15	GPY	MH734552	*Bacillus drentensis* NR_118438—99.6% *Bacillus infantis* NR_043267—99.4% *Bacillus infantis* MH130045—99.6%	*Bacillus* sp.
Gibson Desert, Australia, 25 °C	KBP.AS.16	GPY	MH734553	*Agrococcus sp.* KC160778.1—100% *Agrococcus sp.* EU584505—100% *Agrococcus citreus* NR_041542—100%	*Agrococcus citreus*
Gibson Desert, Australia, 25 °C	KBP.AS.18	GPY	MH734559	*Bacillus subtilis* NR_116187—99.9% *Bacillus subtilis* CP019663—99.6% *Bacillus tequilensis* MH010390—99.8%	*Bacillus* sp.
Sahara Desert, Egypt, 25 °C	KBP.AS.19	GPY	MH734566	*Bacillus litoralis* MF101139—100% *Bacillus niabensis* KC788148—100% *Bacillus halosaccharovorans* NR_109116—99.7%	*Bacillus* sp.
Sahara Desert, Egypt, 25 °C	KBP.AS.20	GPY	MH734569	*Microvirga sp.* KX444133—99.1% *Microvirga soli* KX247636—99.1% *Microvirga aerilata* NR_114298—98.0%	*Microvirga soli*
Sahara Desert, Egypt, 25 °C	KBP.AS.21	GPY	MH734570	*Arthrobacter sp.* JX949321—97.8% *Arthrobacter agilis* JQ684255.1—97.6% *Arthrobacter sp.* KC986992—97.4%	*Arthrobacter* sp.

Continued on next page
Sample, temperature of culturing	Strain	Isolation media	GenBank accession number	The most closely related sequences in GenBank	Taxonomic affiliation
Sahara Desert, Egypt, 25 °C	KBP.AS.22	GPY	MH734571	Microvirga sp. KX444133—99.4%	Microvirga soli
				Microvirga soli KX247636—99.4%	
				Microvirga soli KX247636—99.4%	
Sahara Desert, Egypt, 25 °C	KBP.AS.23	GPY	MH734572	Planomicrobium okeanokoites HQ848119—99.8%	Planomicrobium okeanokoites
				Planomicrobium okeanokoites HQ848112—99.8%	
Sahara Desert, Egypt, 25 °C	KBP.AS.24	GPY	MH734573	Pseudarthrobacter phenanthenivorans NR_074770—99.6%	Pseudarthrobacter sp.
				Pseudarthrobacter phenanthenivorans CP002379—99.6%	
				Arthrobacter phenanthenivorans NR_042469—98.5%	
Sahara Desert, Egypt, 25 °C	KBP.AS.25	GPY	MH734574	Arthrobacter sp. KJ191025—99.8%	Arthrobacter sp.
				Arthrobacter parietis JF505951—99.7%	
				Arthrobacter parietis NR_042252—99.7%	
Sahara Desert, Egypt, 25 °C	KBP.AS.26	GPY	MH734575	Paenibacillus glucanolyticus CP028366—99.5%	Paenibacillus glucanolyticus
				Paenibacillus glucanolyticus MG051308—99.5%	
				Paenibacillus glucanolyticus MG051307—99.5%	
Sahara Desert, Egypt, 25 °C	KBP.AS.27	GPY	None	Was identified using morpho-phisiological method.	Bacillus sp.
Sahara Desert, Egypt, 25 °C	KBP.AS.28	GPY	MH734576	Streptomyces sp. KM067288—97.6%	Streptomyces sp.
				Uncultured actinobacterium clone H127	
				GQ504259—97.6%	
				Streptomyces sp. EU847137—97.6%	

Continued on next page
Sample, temperature of culturing	Strain	Isolation media	GenBank accession number	The most closely related sequences in GenBank	Taxonomic affiliation
Sahara Desert, Egypt, 25 °C	KBP.AS.29	GPY	MH734577	*Arthrobacter agilis* KC788154—99.5%	*Arthrobacter agilis*
				Arthrobacter agilis KC788153—99.5%	
				Arthrobacter agilis KC788098—99.5%	
Sahara Desert, Egypt, 25 °C	KBP.AS.30	GPY	MH734579	*Bacillus psychrosaccharolyticus* MF101012—99.2%	*Bacillus psychrosaccharolyticus*
				Bacillus psychrosaccharolyticus NR_113992—99.1%	
				Bacillus muralis NR_042083—96.3%	
Sahara Desert, Egypt, 25 °C	KBP.AS.31	GPY	MH734580	*Kocuria polaris* HG515399—99.7%	*Kocuria sp.*
				Kocuria himachalensis LC113906—99.0%	
Sahara Desert, Egypt, 25 °C	KBP.AS.32	GPY	MH734581	*Planomicrobium sp.* KU951464.1—99.4%	*Planomicrobium sp.*
				Planomicrobium sp. MF041832.1—99.1%	
				Planomicrobium chinense KC842235—98.9%	
Sahara Desert, Egypt, 25 °C	KBP.AS.33	GPY	MH734582	*Planomicrobium stackebrandii* LC076757—99.5%	*Planomicrobium sp.*
				Planomicrobium soli NR_134133.1—99.7%	
				Planomicrobium okeanokoites NR_113593—99.2%	
Sahara Desert, Egypt, 25 °C	KBP.AS.34	GPY	MH734537	*Arthrobacter sp.* KM507593—99.7%	*Arthrobacter sp.*
				Arthrobacter sp. JX949321.2—99.7%	
				Arthrobacter sp. JX949321.2—99.6%	

Continued on next page
Sample, temperature of culturing	Strain	Isolation media	GenBank accession number	The most closely related sequences in GenBank	Taxonomic affiliation
Sahara Desert, Egypt, 25 °C	KBP.AS.35	GPY	MH734583	*Dietzia cinnamena* NR_116686—100% *Dietzia papillomatosis* NR_116687—99.9% *Dietzia lutea* CP015449—98.9%	*Dietzia* sp.
Sahara Desert, Egypt, 25 °C	KBP.AS.36	GPY	MH734584	*Micrococcus aloeverae* NR_134088—100% *Micrococcus luteus* LS483396—99.8% *Micrococcus endophyticus* KY933306—99.8%	*Micrococcus* sp.
Sahara Desert, Egypt, 25 °C	KBP.AS.37	GPY	MH734585	*Kocuria assamensis* KT989850—99.9% *Kocuria palustris* NR_026451—99.9% *Kocuria assamensis* NR_132604—99.7%	*Kocuria* sp.
Sahara Desert, Egypt, 25 °C	KBP.AS.38	GPY	MH734586	*Micrococcus luteus* JN545040—99.5% *Micrococcus luteus* MH211276—99.1% *Micrococcus sp.* MG214549—99.1%	*Micrococcus* sp.
Sahara Desert, Egypt, 25 °C	KBP.AS.41	CM	MH734588	*Micrococcus cohnii* NR_117194—100% *Micrococcus cohnii* KP974711—100% *Micrococcus sp.* GQ169069—100%	*Micrococcus cohnii*
Sahara Desert, Egypt, 25 °C	KBP.AS.42	CM	MH734589	*Arthrobacter crystallopoietes* CP018864—99.8% *Arthrobacter crystallopoietes* JN393316—99.8% *Arthrobacter crystallopoietes* KU285616—99.8%	*Arthrobacter crystallopoietes*

Continued on next page
Sample, temperature of culturing	Strain	Isolation media	GenBank accession number	The most closely related sequences in GenBank	Taxonomic affiliation
Sahara Desert, Egypt, 25 °C	KBP.AS.43	CM	MH734590	Arthrobacter crysallopoietes KC778371—99.9%	Arthrobacter crysallopoietes
				Arthrobacter crysallopoietes CP018864—99.8%	
				Arthrobacter globiformis NR_112192—97.6%	
Sahara Desert, Egypt, 25 °C	KBP.AS.44	CM	MH734591	Bacillus safensis MG645269—100%	Bacillus sp.
				Bacillus pumilus LT906438—100%	
				Bacillus zhanghouensis NR_148786—100%	
Sahara Desert, Egypt, 25 °C	KBP.AS.45	CM	MH734592	Microbacterium nematophilum KF499505—98.9%	Microbacterium sp.
				Microbacterium sp. MG719566—98.8%	
				Microbacterium kyungheense MF373498—98.9%	
Sahara Desert, Egypt, 25 °C	KBP.AS.46	CM	MH734593	Pseudomonas putida MG846038—99.8%	Pseudomonas putida
				Pseudomonas putida MH636786—99.5%	
				Pseudomonas putida MH620727—99.5%	
Sahara Desert, Egypt, 25 °C	KBP.AS.47	CM	MH734595	Sphingopyxis chilensis KY393080—99.7%	Sphingopyxis sp.
				Sphingopyxis panaciterra NR_112561—98.6%	
				Sphingopyxis chilensis NR_024631—99.1%	
Sahara Desert, Egypt, 25 °C	KBP.AS.48	CM	MH734596	Bacillus subtilis HQ111353—99.9%	Bacillus sp.
				Bacillus velezensis KY694464—99.9%	
Sahara Desert, Egypt, 25 °C	KBP.AS.50	CM	MH734598	Pseudomonas putida MG846038—99.8%	Pseudomonas putida
				Pseudomonas putida MH580215—99.3%	
				Pseudomonas putida MH580208—99.3%	

Continued on next page
Sample, temperature of culturing	Strain	Isolation media	GenBank accession number	The most closely related sequences in GenBank	Taxonomic affiliation
Gibson Desert, Australia, 10 °C	KBP.AS.119 CM	MH734540		*Streptomyces sp.* KX573860—99.6%	*Streptomyces sp.*
				Streptomyces caniferus NR_116636—99.5%	
				Streptomyces glebosus NR_117951—99.4%	
	KBP.AS.120 CM	MH734542		*Glutamicibacter nicotianae* MG813752—99.5%	*Glutamicibacter sp.*
				Glutamicibacter nicotianae MG813750—99.5%	
				Glutamicibacter arilaitensis MG788347—99.5%	
	KBP.AS.123 CM	MH734543		*Brevibacillus agri* KY818990—100%	*Brevibacillus sp.*
				Brevibacillus brevis KJ782629—100%	
				Brevibacillus reuszeri NR_113802—99.3%	
	KBP.AS.125 CM	MH734544		*Bacillus subtilis* KX281183.1—99.4%	*Bacillus*
				Bacillus subtilis KR999950.1—99.3%	
				Bacillus subtilis KR233009.1—99.1%	
	KBP.AS.127 CM	MH734545		*Rhodococcus fascians* MH605375—98.5%	*Rhodococcus sp.*
				Rhodococcus cerastii MF777046—98.5%	
				Rhodococcus fascians MF974596—98.5%	
	KBP.AS.128 CM	MH734546		*Pseudochrobactrum asaccharolyticum* NR_042474.1—100%	*Pseudochrobactrum sp.*
				Pseudochrobactrum kiredjianiae NR_042519—100%	
	KBP.AS.129 CM	MH734547		*Sphingobacterium mizutaii* LT906468—99.0%	*Sphingobacterium mizutaii*
				Sphingobacterium mizutaii MF179537—99.0%	

Continued on next page
Sample, temperature of culturing	Strain	Isolation media	GenBank accession number	The most closely related sequences in GenBank	Taxonomic affiliation
Gibson Desert, Australia, 10 °C	KBP.AS.131	CM	MH734549	*Rhodococcus fascians* MH605375—99.0%	*Rhodococcus* sp.
				Rhodococcus cerastii MF777046—99.0%	
				Rhodococcus sp. MF664191—99.0%	
	KBP.AS.132	CM	MH734550	*Bacillus aryabhattai* MG430234—98.5%	*Bacillus* sp.
				Bacillus sp. KC236676—98.5%	
				Bacillus megaterium JQ831622—98.5%	
	KBP.AS.174	GPY	MH734554	*Brevibacterium epidermidis* KY992553—99.7%	*Brevibacterium* sp.
				Brevibacterium sediminis NR_153678—99.7%	
				Brevibacterium siliguriense LT629766—99.6%	
	KBP.AS.175	GPY	MH734555	*Brevibacterium sp.* HQ202806—100%	*Brevibacterium* sp.
				Brevibacterium sp. DQ448693—100%	
				Brevibacterium sp. MG819325—99.8%	
	KBP.AS.176	GPY	MH734556	*Micrococcus sp.* JX239759—99.5%	*Micrococcus* sp.
				Micrococcus sp. AM990848—99.3%	
				Micrococcus luteus MG859501—99.3%	
	KBP.AS.177	GPY	MH734557	*Paracoccus sp.* MH173273—100%	*Paracoccus* sp.
				Paracoccus carotini faciens MG988838—100%	
				Paracoccus marcusii NR_044922—100%	

Continued on next page
Sample, temperature of culturing	Strain	Isolation media	GenBank accession number	The most closely related sequences in GenBank	Taxonomic affiliation
Gibson Desert, Australia, 10 °C	KBP.AS.179	GPY	MH734558	Bacillus cereus GQ495663—100% Bacillus wiedmannii NR_152692—100% Bacillus thuringiensis MG645258—100% Bacillus anthracis LC379953—100%	Bacillus sp.
Sahara Desert, Egypt, 10 °C	KBP.AS.183	GPY	MH734560	Massilia sp. KY635898—99.3% Massilia suwonensis NR_116872—99.0% Massilia niabensis NR_044571—98.8%	Massilia sp.
Sahara Desert, Egypt, 10 °C	KBP.AS.184	GPY	MH734561	Micrococcus sp. KT583428—100% Micrococcus sp. FJ457288—99.8% Micrococcus sp. FJ015031—99.8%	Micrococcus sp.
Sahara Desert, Egypt, 10 °C	KBP.AS.185	GPY	MH734562	Arthrobacter agilis KR085874. – 99.0% Arthrobacter agilis JQ825269.1—99.0% Arthrobacter agilis KC788152—99.0%	Artrobacter agilis
Sahara Desert, Egypt, 10 °C	KBP.AS.186	GPY	MH734603	Micrococcus sp. JX239759—99.5% Micrococcus sp. AM990848—99.3% Micrococcus aloeverae MH553939—99.3%	Micrococcus sp.
Sahara Desert, Egypt, 10 °C	KBP.AS.187	GPY	MH734563	Leucobacter sp. KY623368—99.6% Leucobacter aridicollis KR827428—99.6% Leucobacter aridicollis KC764981—99.6%	Leucobacter sp.

Continued on next page
Sample, temperature of culturing	Strain	Isolation media	GenBank accession number	The most closely related sequences in GenBank	Taxonomic affiliation
Sahara Desert, Egypt, 10 °C	KBP.AS.188	GPY	MH734564	*Stenotrophomonas* sp. MH703457—99.0%	*Stenotrophomonas* malthophilia
				Stenotrophomonas malthophilia MF536870—99.0%	
				Stenotrophomonas malthophilia MF774134—99.0%	
Sahara Desert, Egypt, 10 °C	KBP.AS.189	GPY	MH734565	*Pseudarthrobacter phenanthrenivorans* NR_074770—99.7%	*Pseudarthrobacter* sp.
				Pseudarthrobacter phenanthrenivorans CP002379—99.7%	
				Pseudarthrobacter phenanthrenivorans NR_042469—99.6%	
Sahara Desert, Egypt, 10 °C	KBP.AS.190	GPY	MH734567	*Leucobacter* sp. KP152582—99.3%	*Leucobacter* sp.
				Leucobacter aridicollis KJ742507—99.3%	
				Leucobacter aridicollis KR827428—99.2%	
Sahara Desert, Egypt, 10 °C	KBP.AS.465	CM	MH734594	*Bacillus licheniformis* MG607364—99.7%	*Bacillus* sp.
				Bacillus subtilis CP029052—99.6%	
				Bacillus licheniformis MH482980—99.6%	

Table S2. The primers used for 16S rRNA gene amplification and sequencing.

GenBank accession number	Strain	Taxonomic affiliation	Primers used for the amplification	Primers used for the sequencing
MH734536	KBP.AS.1	*Micrococcus* sp.	27f + Un1492r	1100r
MH734568	KBP.AS.2	*Janibacter* sp.	27f + Un1492r	1100r
MH734578	KBP.AS.3	*Micrococcus* sp.	27f + Un1492r	1100r
MH734587	KBP.AS.4	*Microbacterium oxydans*	341f + 805r	537r
MH734597	KBP.AS.5	*Agrococcus* sp.	27f + Un1492r	1100r
MH734599	KBP.AS.6	*Bacillus* sp.	341f + 805r	805r
MH734600	KBP.AS.7	*Rhodococcus* sp.	27f + 537r	537r
MH734601	KBP.AS.8	*Bacillus* sp.	27f + Un1492r	1100r

Continued on next page
GenBank accession number	Strain	Taxonomic affiliation	Primers used for the amplification	Primers used for the sequencing
MH734602	KBP.AS.9	*Microbacterium aurantiacum*	27f + Un1492r	1100r
MH734538	KBP.AS.10	*Microbacterium aurantiacum*	27f + Un1492r	1100r
MH734539	KBP.AS.11	*Aureimonas altamirensis*	27f + Un1492r	1100r
MH734541	KBP.AS.12	*Microbacterium* sp.	27f + Un1492r	1100r
MH734548	KBP.AS.13	*Brevundimonas* sp.	27f + Un1492r	1100r
MH734551	KBP.AS.14	*Paenibacillus glucanolyticus*	27f + Un1492r	1100r
MH734552	KBP.AS.15	*Bacillus* sp.	27f + Un1492r	1100r
MH734553	KBP.AS.16	*Agrococcus citreus*	27f + 537r	537r
MH734559	KBP.AS.18	*Bacillus* sp.	27f + Un1492r	1100r
MH734566	KBP.AS.19	*Bacillus* sp.	27f + Un1492r	1100r
MH734569	KBP.AS.20	*Microvirga soli*	27f + Un1492r	1100r
MH734570	KBP.AS.21	*Arthrobacter* sp.	27f + 537r	537r
MH734571	KBP.AS.22	*Microvirga soli*	63f + 1387r	1100r
MH734572	KBP.AS.23	*Planomicrobium okeanokoites*	27f + Un1492r	1100r
MH734573	KBP.AS.24	*Pseudarthrobacter* sp.	27f + Un1492r	1100r
MH734574	KBP.AS.25	*Arthrobacter* sp.	63f + 1387r	1100r
MH734575	KBP.AS.26	*Paenibacillus glucanolyticus*	341f + 805r	805r
None	KBP.AS.27	*Bacillus* sp.	Identified by morphology	
MH734576	KBP.AS.28	*Streptomyces* sp.	341f + 805r	805r
MH734577	KBP.AS.29	*Arthrobacter agilis*	341f + 805r	805r
MH734579	KBP.AS.30	*Bacillus psychrosaccharolyticus*	27f + Un1492r	1100r
MH734580	KBP.AS.31	*Kocuria* sp.	63f + 1387r	1100r
MH734581	KBP.AS.32	*Planomicrobium* sp.	341f + 805r	805r
MH734582	KBP.AS.33	*Planomicrobium* sp.	27f + Un1492r	1100r
MH734537	KBP.AS.34	*Arthrobacter* sp.	63f + 1387r	1100r
MH734583	KBP.AS.35	*Dietzia* sp.	63f + 1387r	1100r
MH734584	KBP.AS.36	*Micrococcus* sp.	63f + 1387r	1100r
MH734585	KBP.AS.37	*Kocuria* sp.	27f + Un1492r	1100r
MH734586	KBP.AS.38	*Micrococcus* sp.	27f + Un1492r	1100r
MH734588	KBP.AS.41	*Micrococcus cohnii*	27f + 537r	537r
MH734589	KBP.AS.42	*Arthrobacter crystalliopoietes*	63f + 1387r	537r
MH734590	KBP.AS.43	*Arthrobacter crystalliopoietes*	27f + Un1492r	1100r
MH734591	KBP.AS.44	*Bacillus* sp.	27f + Un1492r	1100r
MH734592	KBP.AS.45	*Microbacterium* sp.	27f + Un1492r	1100r
MH734593	KBP.AS.46	*Pseudomonas putida*	341f + 805r	805r
MH734595	KBP.AS.47	*Sphingopyxis* sp.	63f + 1387r	1100r
MH734596	KBP.AS.48	*Bacillus* sp.	27f + Un1492r	1100r
MH734598	KBP.AS.50	*Pseudomonas putida*	341f + 805r	805r
MH734540	KBP.AS.119	*Streptomyces* sp.	63f + 1387r	1100r
MH734542	KBP.AS.120	*Glutamicibacter* sp.	341f + 805r	805r

Continued on next page
GenBank accession number	Strain	Taxonomic affiliation	Primers used for the amplification	Primers used for the sequencing
MH734543	KBP.AS.123	*Brevibacillus* sp.	27f + 537r	537r
MH734544	KBP.AS.125	*Bacillus* sp.	27f + 537r	537r
MH734545	KBP.AS.127	*Rhodococcus* sp.	63f + 1387r	1100r
MH734546	KBP.AS.128	*Pseudochrobactrum* sp.	27f + 537r	537r
MH734547	KBP.AS.129	*Sphingobacterium mizutaii*	27f + 537r	537r
MH734549	KBP.AS.131	*Rhodococcus* sp.	63f + 1387r	1100r
MH734550	KBP.AS.132	*Bacillus* sp.	63f + 1387r	1100r
MH734554	KBP.AS.174	*Brevibacterium* sp.	27f + Un1492r	1100r
MH734555	KBP.AS.175	*Brevibacterium* sp.	27f + 537r	537r
MH734556	KBP.AS.176	*Micrococcus* sp.	341f + 805r	805r
MH734557	KBP.AS.177	*Paracoccus* sp.	27f + Un1492r	805r
MH734558	KBP.AS.179	*Bacillus* sp.	27f + Un1492r	1100r
MH734560	KBP.AS.183	*Massilia* sp.	27f + Un1492r	1100r
MH734561	KBP.AS.184	*Micrococcus* sp.	27f + 537r	537r
MH734562	KBP.AS.185	*Artrobacter agilis*	341f + 805r	805r
MH734563	KBP.AS.186	*Micrococcus* sp.	341f + 805r	805r
MH734564	KBP.AS.187	*Leucoacter sp*	27f + Un1492r	1100r
MH734565	KBP.AS.188	*Stenotrophomonas maltophilia*	63f + 1387r	1100r
MH734566	KBP.AS.189	*Pseudarthrobacter* sp.	63f + 1387r	1100r
MH734567	KBP.AS.190	*Leucobacter* sp.	27f + Un1492r	1100r
MH734594	KBP.AS.465	*Bacillus* sp.	341f + 805r	805r

Amplification program for 341f + 805r primer pair: Amplification program for 63f + 1387r primer pair: Amplification program for 27f + Un1492r and 27f + 541r primer pairs

1. 95 °C 3:00
2. 95 °C 0:40
3. 55 °C 0:40
4. 72 °C 0:40
Go to step 2 4×
5. 95 °C 0:30
6. 55 °C 0:30
7. 72 °C 0:30
Go to step 6 23×
8. 1. 72 °C 5:00

Table S3. Physiological characteristics of isolates.

Strain	Sample, temperature of culturing	Temperature, °C	pH	Maximum salt concentrations at which growth is possible, %					
				NaCl, %	KCl, %	MgSO₄, %	NaHCO₃, %	Mg(ClO₄)₂, %	
KBP.AS.1	Gibson Desert, Australia, 25 °C	25–37	6–12	15	10	20	10	15	5
KBP.AS.2	Gibson Desert, Australia, 25 °C	10–25	6–8	<2	2	<2	<2	5	
KBP.AS.3	Gibson Desert, Australia, 25 °C	25–37	6–12	15	10	20	10	2	5
KBP.AS.4	Gibson Desert, Australia, 25 °C	10–25	3–8	<2	<2	<2	<2	5	
KBP.AS.5	Gibson Desert, Australia, 25 °C	25–45	4–10	15	10	20	2	2	
KBP.AS.6	Gibson Desert, Australia, 25 °C	25–37	6–12	15	10	20	2	5	
KBP.AS.7	Gibson Desert, Australia, 25 °C	25–37	5–11	15	10	20	2	5	
KBP.AS.8	Gibson Desert, Australia, 25 °C	10–25	3–8	<2	<2	10	2	5	
KBP.AS.9	Gibson Desert, Australia, 25 °C	25–37	6–12	15	10	20	2	2	
KBP.AS.10	Gibson Desert, Australia, 25 °C	25–37	5–12	15	10	20	5	5	
KBP.AS.11	Gibson Desert, Australia, 25 °C	25–37	6–11	15	10	20	2	5	
KBP.AS.12	Gibson Desert, Australia, 25 °C	25–37	5–12	15	10	20	2	5	
KBP.AS.13	Gibson Desert, Australia, 25 °C	10–50*	3–8	15	15	20	<2	1	
KBP.AS.14	Gibson Desert, Australia, 25 °C	25–45	3–8	15	15	20	<2	1	
KBP.AS.15	Gibson Desert, Australia, 25 °C	25–50	3–8	15	15	20	<2	2	
KBP.AS.16	Gibson Desert, Australia, 25 °C	25–37	6–12	15	15	15	2	5	
KBP.AS.18	Gibson Desert, Australia, 25 °C	10–50*	3–8	15	15	20	<2	2	
KBP.AS.19	Sahara Desert, Egypt, 25 °C	25–37	4–8	15	15	20	<2	<0,5	
KBP.AS.20	Sahara Desert, Egypt, 25 °C	25–25	3–8	15	15	20	<2	<0,5	
KBP.AS.21	Sahara Desert, Egypt, 25 °C	25–50	3–8	15	15	20	<2	2	
Strain	Sample, temperature of culturing	Temperature, °C	pH	Maximum salt concentrations at which growth is possible, %					
---------	----------------------------------	-----------------	----	---					
				NaCl, %	KCl, %	MgSO₄, %	NaHCO₃, %	Mg(ClO₄)₂, %	
KBP.AS.22	Sahara Desert, Egypt, 25 °C	10–37	3–8	15	15	15	<2	1	
KBP.AS.23	Sahara Desert, Egypt, 25 °C	25–37	5–12	10	15	20	2	2	
KBP.AS.24	Sahara Desert, Egypt, 25 °C	25–37	5–12	10	15	20	2	5	
KBP.AS.25	Sahara Desert, Egypt, 25 °C	25–37	6–12	10	15	15	5	5	
KBP.AS.26	Sahara Desert, Egypt, 25 °C	25–37	6–12	10	15	20	2	5	
KBP.AS.27	Sahara Desert, Egypt, 25 °C	25–37	6–12	10	10	15	10	2	
KBP.AS.28	Sahara Desert, Egypt, 25 °C	25–37	6–12	10	15	15	5	5	
KBP.AS.29	Sahara Desert, Egypt, 25 °C	10–25	6–8	<2	2	<2	<2	0.5	
KBP.AS.30	Sahara Desert, Egypt, 25 °C	25–37	6–12	10	15	20	2	5	
KBP.AS.31	Sahara Desert, Egypt, 25 °C	10–25	3–8	<2	2	15	<2	5	
KBP.AS.32	Sahara Desert, Egypt, 25 °C	25–25	6–8	<2	<2	<2	<2	<0.5	
KBP.AS.33	Sahara Desert, Egypt, 25 °C	10–25	5–8	<2	<2	<2	<2	<0.5	
KBP.AS.34	Sahara Desert, Egypt, 25 °C	25–25	6–8	<2	<2	<2	<2	<0.5	
KBP.AS.35	Sahara Desert, Egypt, 25 °C	25–25	6–8	<2	<2	<2	<2	<0.5	
KBP.AS.36	Sahara Desert, Egypt, 25 °C	25–25	6–8	<2	<2	<2	<2	<0.5	
KBP.AS.37	Sahara Desert, Egypt, 25 °C	25–50	3–8	2	5	20	2	5	
KBP.AS.38	Sahara Desert, Egypt, 25 °C	10–25	6–8	<2	<2	<2	<2	5	
KBP.AS.41	Sahara Desert, Egypt, 25 °C	10–37	4–10	10	10	20	2	5	
KBP.AS.42	Sahara Desert, Egypt, 25 °C	10–45	3–12*	10	20	20	5	2	

Continued on next page
Strain	Sample, temperature of culturing	Temperature °C	pH	Maximum salt concentrations at which growth is possible, %				
				NaCl, %	KCl, %	MgSO₄, %	NaHCO₃, %	Mg(ClO₄)₂, %
KBP.AS.43	Sahara Desert, Egypt, 25 °C	25–37	6–8	5	10	20	<2	2
KBP.AS.44	Sahara Desert, Egypt, 25 °C	10–45	4–10	10	10	20	2	5
KBP.AS.45	Sahara Desert, Egypt, 25 °C	10–37	5–8	5	10	20	<2	2
KBP.AS.46	Sahara Desert, Egypt, 25 °C	10–37	4–9	2	2	20	<2	0.5
KBP.AS.47	Sahara Desert, Egypt, 25 °C	10–37	4–9	5	5	20	<2	2
KBP.AS.48	Sahara Desert, Egypt, 25 °C	25–37	6–8	5	10	20	<2	2
KBP.AS.50	Sahara Desert, Egypt, 25 °C	10–37	4–8	5	10	20	<2	2
KBP.AS.119	Gibson Desert, Australia, 10 °C	25–25	6–8	<2	<2	<2	<2	<0.5
KBP.AS.120	Gibson Desert, Australia, 10 °C	10–37	4–10	5	5	10	2	2
KBP.AS.123	Gibson Desert, Australia, 10 °C	10–37	4–8	5	10	20	<2	2
KBP.AS.125	Gibson Desert, Australia, 10 °C	10–45	4–8	5	10	20	<2	2
KBP.AS.127	Gibson Desert, Australia, 10 °C	25–37	4–8	5	5	20	<2	2
KBP.AS.128	Gibson Desert, Australia, 10 °C	10–45	4–8	5	10	20	<2	2
KBP.AS.129	Gibson Desert, Australia, 10 °C	10–37	4–8	5	10	20	<2	2
KBP.AS.131	Gibson Desert, Australia, 10 °C	10–45	4–8	5	10	20	<2	2
KBP.AS.132	Gibson Desert, Australia, 10 °C	25	5–10	10	10	20	<2	2
KBP.AS.174	Gibson Desert, Australia, 10 °C	10–25	5–9	2	2	<2	<2	0.5
KBP.AS.175	Gibson Desert, Australia, 10 °C	10–25	5–9	2	2	<2	<2	0.5
KBP.AS.176	Gibson Desert, Australia, 10 °C	10–25	5–9	<2	2	<2	<2	0.5

Continued on next page
Strain	Sample, temperature of culturing	Temperature °C	pH	Maximum salt concentrations at which growth is possible, %				
				NaCl, %	KCl, %	MgSO₄, %	NaHCO₃, %	Mg(ClO₄)₂, %
KBP.AS.177	Gibson Desert, Australia, 10 °C	10–25	6–8	<2	2	<2	<2	<0,5
KBP.AS.179	Gibson Desert, Australia, 10 °C	10–25	3–8	<2	2	<2	2	0,5
KBP.AS.183	Sahara Desert, Egypt, 10 °C	10–25	6–8	<2	<2	<2	<2	<0,5
KBP.AS.184	Sahara Desert, Egypt, 10 °C	10–25	6–8	<2	<2	<2	<2	<0,5
KBP.AS.185	Sahara Desert, Egypt, 10 °C	25–37	6–8	<2	<2	10	<2	5
KBP.AS.186	Sahara Desert, Egypt, 10 °C	10–25	4–8	<2	<2	<2	<2	0,5
KBP.AS.187	Sahara Desert, Egypt, 10 °C	10–45	5–10	5	10	20	2	5
KBP.AS.188	Sahara Desert, Egypt, 10 °C	25–37	3–8	<2	5	20	<2	5
KBP.AS.189	Sahara Desert, Egypt, 10 °C	25–25	6–8	<2	<2	<2	<2	<0,5
KBP.AS.190	Sahara Desert, Egypt, 10 °C	10–45	4–12*	5	10	20	5	2
KBP.AS.465	Sahara Desert, Egypt, 10 °C	25–25	6–8	<2	<2	<2	<2	<0,5

*: Strains characterised with widest temperature or pH ranges of growth.

Table S4. Antibiotic resistance spectra of isolates

Strain	Sample, temperature of culturing	Amp	Chl	Rif	Tet	Kan	Dox	Ceph
KBP.AS.1	Gibson Desert, Australia, 25 °C	S	R	S	S	S	S	R
KBP.AS.2	Gibson Desert, Australia, 25 °C	S	S	S	S	S	S	S
KBP.AS.3	Gibson Desert, Australia, 25 °C	S	S	S	S	S	S	R
KBP.AS.4	Gibson Desert, Australia, 25 °C	S	S	S	S	S	S	S
KBP.AS.5	Gibson Desert, Australia, 25 °C	R	S	S	S	S	S	S
KBP.AS.6	Gibson Desert, Australia, 25 °C	S	S	S	S	S	S	R
KBP.AS.7	Gibson Desert, Australia, 25 °C	S	S	S	R	S	S	R
KBP.AS.8	Gibson Desert, Australia, 25 °C	S	S	S	S	S	S	S
KBP.AS.9	Gibson Desert, Australia, 25 °C	S	S	S	S	S	S	R
KBP.AS.10	Gibson Desert, Australia, 25 °C	S	R	S	R	S	R	S
KBP.AS.11	Gibson Desert, Australia, 25 °C	S	S	S	R	S	S	R

Continued on next page
Strain	Sample, temperature of culturing	Amp	Chl	Rif	Tet	Kan	Dox	Ceph
KBP.AS.12	Gibson Desert, Australia, 25 °C	S	S	S	R	R	S	R
KBP.AS.13	Gibson Desert, Australia, 25 °C	R	S	S	S	S	S	R
KBP.AS.14	Gibson Desert, Australia, 25 °C	R	S	S	S	S	S	R
KBP.AS.15	Gibson Desert, Australia, 25 °C	R	S	S	R	S	R	R
KBP.AS.16	Gibson Desert, Australia, 25 °C	S	R	S	R	S	S	R
KBP.AS.18	Gibson Desert, Australia, 25 °C	R	S	S	S	S	S	S
KBP.AS.19	Sahara Desert, Egypt, 25 °C	S	S	S	S	S	S	R
KBP.AS.20	Sahara Desert, Egypt, 25 °C	S	S	S	R	S	S	S
KBP.AS.21	Sahara Desert, Egypt, 25 °C	S	S	S	R	S	R	S
KBP.AS.22	Sahara Desert, Egypt, 25 °C	R	S	S	S	S	S	R
KBP.AS.23	Sahara Desert, Egypt, 25 °C	S	R	S	S	S	S	R
KBP.AS.24	Sahara Desert, Egypt, 25 °C	S	S	S	R	S	S	R
KBP.AS.25	Sahara Desert, Egypt, 25 °C	S	S	S	S	S	S	R
KBP.AS.26	Sahara Desert, Egypt, 25 °C	S	R	S	R	S	S	S
KBP.AS.27	Sahara Desert, Egypt, 25 °C	S	S	S	R	S	S	R
KBP.AS.28	Sahara Desert, Egypt, 25 °C	S	S	S	S	S	S	R
KBP.AS.29	Sahara Desert, Egypt, 25 °C	S	S	S	S	S	S	S
KBP.AS.30	Sahara Desert, Egypt, 25 °C	S	R	S	R	S	S	R
KBP.AS.31	Sahara Desert, Egypt, 25 °C	S	S	S	S	S	S	S
KBP.AS.32	Sahara Desert, Egypt, 25 °C	S	S	S	S	S	S	S
KBP.AS.33	Sahara Desert, Egypt, 25 °C	S	S	S	S	S	S	S
KBP.AS.34	Sahara Desert, Egypt, 25 °C	S	S	S	S	S	S	S
KBP.AS.35	Sahara Desert, Egypt, 25 °C	S	S	S	S	S	S	S
KBP.AS.36	Sahara Desert, Egypt, 25 °C	S	S	S	S	S	S	S
KBP.AS.37	Sahara Desert, Egypt, 25 °C	R	S	S	S	S	S	S
KBP.AS.38	Sahara Desert, Egypt, 25 °C	S	S	S	S	S	S	S
KBP.AS.41	Sahara Desert, Egypt, 25 °C	R	S	S	S	S	S	S
KBP.AS.42	Sahara Desert, Egypt, 25 °C	S	R	S	S	S	S	R
KBP.AS.43	Sahara Desert, Egypt, 25 °C	R	S	S	S	S	S	R
KBP.AS.44	Sahara Desert, Egypt, 25 °C	R	R	S	S	S	S	R
KBP.AS.45	Sahara Desert, Egypt, 25 °C	S	S	S	S	S	S	R
KBP.AS.46	Sahara Desert, Egypt, 25 °C	S	S	S	S	S	S	R
KBP.AS.47	Sahara Desert, Egypt, 25 °C	R	R	R	R	R	R	R
KBP.AS.48	Sahara Desert, Egypt, 25 °C	R	S	S	S	S	S	R
KBP.AS.50	Sahara Desert, Egypt, 25 °C	R	R	S	S	R	S	R
KBP.AS.119	Gibson Desert, Australia, 10 °C	R	R	S	S	S	S	S
KBP.AS.120	Gibson Desert, Australia, 10 °C	S	S	S	S	S	S	S
KBP.AS.123	Gibson Desert, Australia, 10 °C	S	S	S	S	S	S	S
KBP.AS.125	Gibson Desert, Australia, 10 °C	S	S	S	S	S	S	R
KBP.AS.127	Gibson Desert, Australia, 10 °C	R	S	S	S	S	S	S
KBP.AS.128	Gibson Desert, Australia, 10 °C	S	S	S	S	S	S	S

Continued on next page
Strain	Sample, temperature of culturing	Amp	Chl	Rif	Tet	Kan	Dox	Ceph
KBP.AS.129	Gibson Desert, Australia, 10 °C	S	S	S	S	S	S	S
KBP.AS.131	Gibson Desert, Australia, 10 °C	S	S	S	S	S	S	R
KBP.AS.132	Gibson Desert, Australia, 10 °C	S	S	S	S	S	S	S
KBP.AS.174	Gibson Desert, Australia, 10 °C	R	S	S	S	S	S	S
KBP.AS.175	Gibson Desert, Australia, 10 °C	R	S	S	S	S	S	S
KBP.AS.176	Gibson Desert, Australia, 10 °C	R	S	S	S	S	S	S
KBP.AS.177	Gibson Desert, Australia, 10 °C	S	S	S	S	S	S	S
KBP.AS.179	Gibson Desert, Australia, 10 °C	S	S	S	S	S	S	S
KBP.AS.183	Sahara Desert, Egypt, 10 °C	S	S	S	S	S	S	S
KBP.AS.184	Sahara Desert, Egypt, 10 °C	R	S	S	S	S	S	S
KBP.AS.185	Sahara Desert, Egypt, 10 °C	S	S	S	S	S	S	S
KBP.AS.186	Sahara Desert, Egypt, 10 °C	S	S	S	S	S	S	S
KBP.AS.187	Sahara Desert, Egypt, 10 °C	R	R	S	R	R	R	S
KBP.AS.188	Sahara Desert, Egypt, 10 °C	R	S	S	S	S	S	S
KBP.AS.189	Sahara Desert, Egypt, 10 °C	R	S	S	S	S	S	S
KBP.AS.190	Sahara Desert, Egypt, 10 °C	S	R	S	S	S	S	R
KBP.AS.465	Sahara Desert, Egypt, 10 °C	R	S	S	S	S	S	S

R: Resistant strain; S: Sensitive strain; Amp: Ampicillin (100 mkg/ml); Chl: Chloramphenicol (100 mkg/ml); Rif: Rifampicin (100 mkg/ml); Tet: Tetracycline (100 mkg/ml); Kan: Kanamycin (100 mkg/ml); Dox: Doxycycline (100 mkg/ml); Ceph: Cephalixin (100 mkg/ml).

Figure S1. Taxonomic structure of the Gibson desert soil culturable bacterial communities: (I) community isolated at 25 °C, (II) community isolated at 10 °C. Each strain of the ones combined in the “others” group accounted for about 1% of the number of cultured bacteria in the community. This group includes Acinetobacter sp., Agrococcus citreus, Agrococcus jenensis, Bacillus sp., Brevibacillus sp., Brevundimonas sp., Glutamicibacter sp., Microbacterium oxidans, Microbacterium sp., Paenibacillus glucanolyticus, Pseudochrobactrum sp., Sphingobacterium mizutaii, Streptomyces sp.
Figure S2. Taxonomic structure of the Sahara desert soil culturable bacterial communities: (I) community isolated at 25 °C, (II) community isolated at 10 °C. Each strain of the ones combined in the “others” group accounted for about 1% of the number of cultured bacteria in the community. This group includes *Arthrobacter agilis*, *Arthrobacter crystallopoietes*, *Bacillus psychrosaccharolyticus*, *Dietzia cinnamena*, *Micrococcus cohnii*, *Micrococcus luteus*, *Micrococcus* sp., *Planomicrobium okeanokoites*, *Pseudomonas putida*, *Sphingomonas echinoides*, *Sphingomonas* sp., *Sphingopyxis* sp., *Streptomyces* sp.
Figure S3. Phylogenetic analysis of 16S rRNA genes of the strains isolated from desert soils which were sequenced using 1100r primer. The tree was constructed using the Neighbor-Joining method with the use of the most closely related sequences from GenBank. The number of taxa—82. The number of significant characters—640. The number of bootstrap replicates—500. Confidence values of branching are given for cases of 50% and higher. Circles indicate strains isolated from the Sahara desert, triangles—the Gibson desert; green and blue colours indicate strains isolated at 25 and 10 °C, respectively. The scale under the tree indicates the number of phylogenetically significant changes of nucleotides.
Figure S4. Phylogenetic analysis of 16S rRNA genes of the strains isolated from desert soils which were sequenced using 537r primer. The tree was constructed using the Neighbor-Joining method with the use of the most closely related sequences from GenBank. The number of taxa—45. The number of significant characters—342. The number of bootstrap replicates—500. Confidence values of branching are given for cases of 50% and higher. Circles indicate strains isolated from the Sahara desert, triangles—the Gibson desert; green and blue colours indicate strains isolated at 25 and 10 °C, respectively. The scale under the tree indicates the number of phylogenetically significant changes of nucleotides.
Figure S5. Phylogenetic analysis of 16S rRNA genes of the strains isolated from desert soils which were sequenced using 805r primer. The tree was constructed using the Neighbor-Joining method with the use of the most closely related sequences from GenBank. The number of taxa—40. The number of significant characters—382. The number of bootstrap replicates—500. Confidence values of branching are given for cases of 50% and higher. Circles indicate strains isolated from the Sahara desert, triangles—the Gibson desert; green and blue colours indicate strains isolated at 25 and 10 °C, respectively. The scale under the tree indicates the number of phylogenetical significant changes of nucleotides.