Errata for *Zeta integrals, Schwartz spaces and local functional equations*

Wen-Wei Li

January 14, 2020

The numbering below follows the published version in the Lecture Notes in Mathematics, No. 2228 published in 2018 by Springer (ISBN: 978-3-030-01287-8). These corrections are incorporated into the arXiv version ≥ 5 (arXiv:1508.05594).

Page 47, line -8 In the description of the topology on $C_\Omega(X^+)$ appeared an undefined norm $\|\cdot\|$ on the fibers of E over Ω. It suffices to take any continuous family over Ω of such norms, and the choice is irrelevant for the topology, as Ω is compact.

Page 99, (7.4) $G \hookrightarrow X^+_\mathfrak{p}$.

Page 108, Lemma 7.4.5 The proof of the first assertion is incorrect, and the second assertion is unnecessary. This Lemma is only used in the proof of Theorem 7.4.7 (page 111). Specifically, I used it to argue that for any fundamental weight ϖ of G with respect to a Borel pair (B,T), the defining equation $f_\varpi \in F[X^+]$ of the color D_ϖ in X^+ satisfies

$$v_{\partial X}(tf_\varpi) = 0,$$

so that $tf_\varpi \in F[X]$ (recall that X is normal and ∂X is a prime divisor) and it cuts out $D_\varpi \subset X$. Below is a corrected argument for it.

Since $t \in F[X^+] \subset F(X)$ is a uniformizer for ∂X (Lemma 7.2.5, 7.2.6), our goal is to prove $v_{\partial X}(f_\varpi) = -1$ for each fundamental weight ϖ.

Write $\mathbb{G}_m = \text{Spec } F[s,s^{-1}]$. By the proof of Lemma 7.2.6, for $g \in M_\text{ab} \times G \times G$ in general position we have

$$v_{\partial X}(f_\varpi) = \text{ord}_{s=0}(f_\varpi(c(s)g)) \cdot i(c(0), \partial X \cdot c; X)$$

$$= \text{ord}_{s=0}(f_\varpi(x_0(1,\mu(s))g)) \cdot i(c(0), \partial X \cdot c; X),$$

where the base point $x_0 \in X^+(F)$, the morphism $c : \mathbb{G}_m \to X^+$ and $\mu : \mathbb{G}_m \to G$ are defined in the cited proof, namely $c(s) = sx_0(1,\mu(s))$. Here we used the fact that f_ϖ is invariant under M_ab-action. For the same reason, it suffices to take $g = (1,g_1,g_2)$ with generic $g_1,g_2 \in G$.

1
In the proof of Lemma 7.2.6, the local intersection number \(i(c(0), \partial X \cdot c; X) \) has been shown to be 1.

By Lemma 7.2.3, we identify \(X^+ \) with \(\mathbb{G}_m \times G \) so that \(x_0 = (1, 1) \); the \(\mathbb{G}_m \times G \times G \)-action is also specified there. Let \(\rho \) be the (right) \(G \)-representation of highest weight \(\varpi \); take vectors \(v_\varpi \) and \(\tilde{v}_{-\varpi} \) in \(\rho \) and \(\tilde{\rho} \), with weights \(\varpi \) and \(-\varpi \) respectively such that \(\langle \tilde{v}_{-\varpi}, v_\varpi \rangle = 1 \). Then

\[
\delta(s,g_1,g_2) := \langle \tilde{\rho}(g_2)\tilde{v}_{-\varpi}, \rho(\mu(s)^{-1})\rho(g_1)v_\varpi \rangle \in s^{-1}F[s],
\]

and \(\text{ord}_{s=0}(\delta(s,g_1,g_2)) \) for generic \((g_1,g_2)\) equals actually

\[
\inf_{(g_1,g_2) \in G^2} \text{ord}_{s=0}(\delta(s,g_1,g_2)), \quad \text{which is } \geq -1.
\]

Taking \(g_1 = 1 = g_2 \), the right hand side does attain \(-1\). This completes the proof of \(v_{\partial X}(f_\varpi) = -1 \).

Alternatively, if the right hand side is \(\geq 0 \) then \(f_\varpi \in F[X] \) and is invariant under the \(\mathbb{G}_m \)-dilation on \(X \). This would imply the constancy of \(f_\varpi \) by Lemma 7.4.5. Contradiction.

1See N. Bourbaki, *Lie groups and Lie algebras*, Chapters 7—9, pp.206–207.