ELECTRON-PHONON SCATTERING
IN TOPOLOGICAL INSULATORS

Sébastien Giraud

in collaboration with Reinhold Egger

arXiv:1103.0178

Institut für Theoretische Physik IV
Universität Düsseldorf, Germany

11 April 2011
Motivation

- What limits the surface conductivity and the integrity of surface quasi-particles?
- Large static dielectric constant ($\epsilon \approx 50$ to 200) \rightarrow drastic reduction of direct Coulomb interaction or charged impurity potentials.
- Consequences of the electron-phonon coupling on the TI surface state?
Motivation

- What limits the surface conductivity and the integrity of surface quasi-particles?
- Large static dielectric constant ($\epsilon \approx 50 \text{ to } 200$) \rightarrow drastic reduction of direct Coulomb interaction or charged impurity potentials.
- Consequences of the electron-phonon coupling on the TI surface state?

Outline

- Model Hamiltonian for the surface state coupled to phonons
- Quasi-particle decay rate
- Surface resistivity
Effective model for surface electronic states

- Effective model Hamiltonian to describe the bulk of 3D TI – Bi$_2$Te$_3$ or Bi$_2$Se$_3$. Bulk gap: $\Delta_b \simeq 0.3$ eV, proposed by Zhang *et al.*, *Nat. Phys.* 5, 438 (2009).

- For a semi-infinite setup $z > 0$, with Dirichlet boundary condition at $z = 0$, the surface-state wave function is:

- Projection of the bulk Hamiltonian onto the surface state

\[H_e = \sum_{k,s=\pm} \epsilon_{ks} c^\dagger_{ks} c_{ks}, \quad \epsilon_{ks} = s v_F |k| - \mu, \]

where $v_F \simeq 4.36 \times 10^5$ m/s and $k = (k_x, k_y)$ is the surface momentum. Helical operators $c_k = (c_{k+}, c_{k-})^T$ are connected to the usual spinful operators $d_k = (d_{k\uparrow}, d_{k\downarrow})^T$ by the unitary transformation:

\[c_k = U_k d_k, \quad U_k = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{i\theta_k/2} & ie^{-i\theta_k/2} \\ e^{i\theta_k/2} & -ie^{-i\theta_k/2} \end{pmatrix}, \quad \tan \theta_k = k_y/k_x. \]
Effective model for surface electronic states

- Effective model Hamiltonian to describe the bulk of 3D TI – Bi$_2$Te$_3$ or Bi$_2$Se$_3$.
 bulk gap: $\Delta_b \simeq 0.3$ eV proposed by Zhang et al., Nat. Phys. 5, 438 (2009)

- For a semi-infinite setup $z > 0$, with Dirichlet boundary condition at $z = 0$, the surface-state wave function is:

 \[\chi(z) \simeq 1.86 \text{ nm}, \text{ for Bi}_2\text{Te}_3 \]

 Liu et al., Phys. Rev. B 82, 045122 (2010)

- Projection of the bulk Hamiltonian onto the surface state

 \Rightarrow massless 2D Dirac Hamiltonian:

 \[
 H_e = \sum_{k,s=\pm} \epsilon_{ks} c_{ks}^\dagger c_{ks}, \quad \epsilon_{ks} = s v_F |k| - \mu,
 \]

 where $v_F \simeq 4.36 \times 10^5$ m/s and $k = (k_x, k_y)$ is the surface momentum.

 Helical operators $c_k = (c_{k+}, c_{k-})^T$ are connected to the usual spinful operators $d_k = (d_{k\uparrow}, d_{k\downarrow})^T$ by the unitary transformation:

 \[
 c_k = U_k d_k, \quad U_k = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{i\theta_k/2} & i e^{-i\theta_k/2} \\ e^{i\theta_k/2} & -i e^{-i\theta_k/2} \end{pmatrix}, \quad \tan \theta_k = k_y/k_x.
 \]
Effective model for surface electronic states

- Effective model Hamiltonian to describe the bulk of 3D TI – Bi_2Te_3 or Bi_2Se_3.

 bulk gap: $\Delta_b \simeq 0.3$ eV proposed by Zhang et al., Nat. Phys. 5, 438 (2009)

- For a semi-infinite setup $z > 0$, with Dirichlet boundary condition at $z = 0$, the surface-state wave function is:

 $\chi(z) \approx 1.86$ nm, for Bi_2Te_3

 Liu et al., Phys. Rev. B 82, 045122 (2010)

- Projection of the bulk Hamiltonian onto the surface state

 \Rightarrow massless 2D Dirac Hamiltonian:

 $$H_e = \sum_{k, s = \pm} \epsilon_{ks} c_{ks}^{\dagger} c_{ks}, \quad \epsilon_{ks} = s v_F |k| - \mu,$$

 where $v_F \simeq 4.36 \times 10^5$ m/s and $k = (k_x, k_y)$ is the surface momentum. Princeton (2009)

 Helical operators $c_k = (c_{k+}, c_{k-})^T$ are connected to the usual spinful operators $d_k = (d_{k\uparrow}, d_{k\downarrow})^T$ by the unitary transformation:

 $$c_k = U_k d_k,$$

 $$U_k = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{i\theta_k/2} & i e^{-i\theta_k/2} \\ e^{i\theta_k/2} & -i e^{-i\theta_k/2} \end{pmatrix}, \quad \tan \theta_k = k_y/k_x.$$
Acoustic phonon modes in a half space

- Isotropic elastic continuum theory for the displacement field u:
 \[\frac{\partial^2 u}{\partial t^2} = c_i^2 \triangle u + (c_i^2 - c_t^2) \text{grad div } u, \quad c_i \simeq 2800 \text{ m/s}, \quad c_t \simeq 1600 \text{ m/s} \]
 in the half-space $z > 0$ with stress free boundary condition at $z = 0$.

- 4 types of phonon modes labeled by surface momentum $\mathbf{q} = (q_x, q_y)$ and frequency Ω:
 - horizontal shear mode ($\lambda = H$): $\perp \mathbf{q}$ and $e_z \rightarrow$ divergence-free
 - longitudinal mode ($\lambda = L$): extended state, $\Omega > c_i q$.
 - transverse mode ($\lambda = T$): extended state, $\Omega > c_t q$.
 - Rayleigh surface wave ($\lambda = R$): localized state, $\Omega = c_R q$, $c_R \simeq 0.92 c_t$.

- Noninteracting phonon Hamiltonian:
 \[H_p = \sum_{\Lambda} \Omega_{\Lambda} (b_{\Lambda}^\dagger b_{\Lambda} + 1/2). \]
 where $\Lambda = (\lambda, \mathbf{q}, \Omega)$ and b_{Λ} is a bosonic operator.
Acoustic phonon modes in a half space

- Isotropic elastic continuum theory for the displacement field \mathbf{u}:
 \[\frac{\partial^2 \mathbf{u}}{\partial t^2} = c_i^2 \Delta \mathbf{u} + (c_i^2 - c_l^2) \text{grad} \text{div} \mathbf{u}, \quad c_l \approx 2800 \text{ m/s}, \quad c_t \approx 1600 \text{ m/s} \]

 in the half-space $z > 0$ with stress free boundary condition at $z = 0$.

- 4 types of phonon modes labeled by surface momentum $\mathbf{q} = (q_x, q_y)$ and frequency Ω:
 - horizontal shear mode ($\lambda = H$): $\perp \mathbf{q}$ and $\mathbf{e}_z \to$ divergence-free
 - longitudinal mode ($\lambda = L$): extended state, $\Omega > c_l q$.
 - transverse mode ($\lambda = T$): extended state, $\Omega > c_t q$.
 - Rayleigh surface wave ($\lambda = R$): localized state, $\Omega = c_R q$, $c_R \approx 0.92 c_t$.

Noninteracting phonon Hamiltonian:

\[H_p = \sum_{\Lambda} \Omega_{\Lambda} \left(b_{\Lambda}^\dagger b_{\Lambda} + 1/2 \right). \]

where $\Lambda = (\lambda, \mathbf{q}, \Omega)$ and b_{Λ} is a bosonic operator.
Acoustic phonon modes in a half space

- Isotropic elastic continuum theory for the displacement field u:
 $$\frac{\partial^2 u}{\partial t^2} = c_l^2 \Delta u + (c_l^2 - c_t^2) \text{grad div } u,$$
 where $c_l \simeq 2800 \text{ m/s}$, $c_t \simeq 1600 \text{ m/s}$

 in the half-space $z > 0$ with stress free boundary condition at $z = 0$.

- 4 types of phonon modes labeled by surface momentum $q = (q_x, q_y)$ and frequency Ω:
 - horizontal shear mode ($\lambda = H$): $\perp q$ and $e_z \rightarrow$ divergence-free
 - longitudinal mode ($\lambda = L$): extended state, $\Omega > c_l q$.
 - transverse mode ($\lambda = T$): extended state, $\Omega > c_t q$.
 - Rayleigh surface wave ($\lambda = R$): localized state, $\Omega = c_R q$, $c_R \simeq 0.92 c_l$.

- Noninteracting phonon Hamiltonian:
 $$H_p = \sum_{\Lambda} \Omega_{\Lambda} (b^{\dagger}_{\Lambda} b_{\Lambda} + 1/2).$$

 where $\Lambda = (\lambda, q, \Omega)$ and b_{Λ} is a bosonic operator.
Acoustic phonon modes in a half space

▶ Isotropic elastic continuum theory for the displacement field \(\mathbf{u} \):
\[
\frac{\partial^2 \mathbf{u}}{\partial t^2} = c_l^2 \nabla \mathbf{u} + (c_l^2 - c_t^2) \nabla \cdot \mathbf{u}, \quad c_l \simeq 2800 \, \text{m/s}, \quad c_t \simeq 1600 \, \text{m/s}
\]
in the half-space \(z > 0 \) with stress free boundary condition at \(z = 0 \).

▶ 4 types of phonon modes labeled by surface momentum \(\mathbf{q} = (q_x, q_y) \) and frequency \(\Omega \):

- horizontal shear mode (\(\lambda = H \)): \(\perp \mathbf{q} \) and \(e_z \rightarrow \text{divergence-free} \)
- longitudinal mode (\(\lambda = L \)): extended state, \(\Omega > c_l q \).
- transverse mode (\(\lambda = T \)): extended state, \(\Omega > c_t q \).
- Rayleigh surface wave (\(\lambda = R \)): localized state, \(\Omega = c_R q, \quad c_R \simeq 0.92 c_t \).

\[\lambda = L \]
\[\lambda = T \]

▶ Noninteracting phonon Hamiltonian:
\[
H_p = \sum_{\Lambda} \Omega_{\Lambda} (b_{\Lambda}^\dagger b_{\Lambda} + 1/2).
\]

where \(\Lambda = (\lambda, \mathbf{q}, \Omega) \) and \(b_{\Lambda} \) is a bosonic operator.
Acoustic phonon modes in a half space

- Isotropic elastic continuum theory for the displacement field \mathbf{u}:
 \[\frac{\partial^2 \mathbf{u}}{\partial t^2} = c_l^2 \nabla \mathbf{u} + (c_l^2 - c_t^2) \nabla \cdot \mathbf{u}, \quad c_l \simeq 2800 \text{ m/s}, \quad c_t \simeq 1600 \text{ m/s} \]
in the half-space $z > 0$ with stress free boundary condition at $z = 0$.

- 4 types of phonon modes labeled by surface momentum $\mathbf{q} = (q_x, q_y)$ and frequency Ω:
 - horizontal shear mode ($\lambda = H$): $\perp \mathbf{q}$ and $e_z \rightarrow$ divergence-free
 - longitudinal mode ($\lambda = L$): extended state, $\Omega > c_l q$.
 - transverse mode ($\lambda = T$): extended state, $\Omega > c_t q$.
 - Rayleigh surface wave ($\lambda = R$): localized state, $\Omega = c_R q$, $c_R \simeq 0.92 c_t$.

- Noninteracting phonon Hamiltonian:
 \[H_p = \sum_{\Lambda} \Omega_{\Lambda} (b^\dagger_{\Lambda} b_{\Lambda} + 1/2). \]
where $\Lambda = (\lambda, \mathbf{q}, \Omega)$ and b_{Λ} is a bosonic operator.
Acoustic phonon modes in a half space

- Isotropic elastic continuum theory for the displacement field u:
 \[
 \frac{\partial^2 u}{\partial t^2} = c_i^2 \Delta u + (c_l^2 - c_i^2) \text{grad div } u, \quad c_l \simeq 2800 \text{ m/s}, \quad c_t \simeq 1600 \text{ m/s}
 \]
 in the half-space $z > 0$ with stress free boundary condition at $z = 0$.

- 4 types of phonon modes labeled by surface momentum $q = (q_x, q_y)$ and frequency Ω:
 - horizontal shear mode ($\lambda = H$): $\perp q$ and $e_z \to$ divergence-free
 - longitudinal mode ($\lambda = L$): extended state, $\Omega > c_l q$.
 - transverse mode ($\lambda = T$): extended state, $\Omega > c_t q$.
 - Rayleigh surface wave ($\lambda = R$): localized state, $\Omega = c_R q$, $c_R \simeq 0.92 c_t$.

- Noninteracting phonon Hamiltonian:
 \[
 H_p = \sum_{\Lambda} \Omega_{\Lambda} (b_{\Lambda}^\dagger b_{\Lambda} + 1/2).
 \]
 where $\Lambda = (\lambda, q, \Omega)$ and b_{Λ} is a bosonic operator.
Electron-phonon coupling

- The electron-phonon coupling is dominated by the deformation potential:

\[H_{ep} = \alpha \int d\mathbf{r} \, n(\mathbf{r}) \, \text{div} \, U(\mathbf{r}), \]

where \(n(\mathbf{r}) \) is the local electron density.

For \(\text{Bi}_2\text{Te}_3 \), \(\alpha \simeq 35 \text{ eV} \). Huang and Kaviany, \textit{PRB} 77, 125209 (2008) strong coupling constant!

- In the second quantized formalism:

\[H_{ep} = \frac{\alpha}{\sqrt{A}} \sum_{\lambda q\Omega} M_{q\Omega}^{(\lambda)} \sum_{k,\sigma=\uparrow,\downarrow} d_{k+q,\sigma}^\dagger d_{k\sigma} b_{\lambda q\Omega} + \text{h.c.}, \]

where \(\lambda = L, T, R \) only, the coupling matrix elements \(M_{q\Omega}^{(\lambda)} \) may be calculated analytically and \(d_{k\sigma} \) has to be expressed in function of helical operators \(c_{k\sigma} \).

- Total Hamiltonian: \(H = H_e + H_p + H_{ep} \).

- For the numerics, published values for \(\text{Bi}_2\text{Te}_3 \). No free parameters!
Electron-phonon coupling

- The electron-phonon coupling is dominated by the deformation potential:

\[H_{ep} = \alpha \int dr \, n(r) \text{div} \, U(r), \]

where \(n(r) \) is the local electron density.

For \(\text{Bi}_2\text{Te}_3 \), \(\alpha \simeq 35 \text{ eV} \). Huang and Kaviany, *PRB 77*, 125209 (2008) strong coupling constant!

- In the second quantized formalism:

\[H_{ep} = \frac{\alpha}{\sqrt{A}} \sum_{\lambda q \Omega} M^{(\lambda)}_{q \Omega} \sum_{k, \sigma=\uparrow, \downarrow} d_{k+q, \sigma}^\dagger d_{k\sigma} b_{\lambda q \Omega} + \text{h.c.}, \]

where \(\lambda = L, T, R \) only, the coupling matrix elements \(M^{(\lambda)}_{q \Omega} \) may be calculated analytically and \(d_{k\sigma} \) has to be expressed in function of helical operators \(c_{k\sigma} \).

- Total Hamiltonian: \(H = H_e + H_p + H_{ep} \).

- For the numerics, published values for \(\text{Bi}_2\text{Te}_3 \). No free parameters!
Electron-phonon coupling

- The electron-phonon coupling is dominated by the deformation potential:

$$H_{ep} = \alpha \int d\mathbf{r} \ n(\mathbf{r}) \ \text{div} \ U(\mathbf{r}),$$

where \(n(\mathbf{r}) \) is the local electron density.

For \(\text{Bi}_2\text{Te}_3 \), \(\alpha \simeq 35 \text{ eV} \). Huang and Kaviany, *PRB 77*, 125209 (2008) strong coupling constant!

- In the second quantized formalism:

$$H_{ep} = \frac{\alpha}{\sqrt{A}} \sum_{\lambda q \Omega} M_{q \Omega}^{(\lambda)} \sum_{k, \sigma = \uparrow, \downarrow} d_{k+q, \sigma}^\dagger d_{k\sigma} b_{\lambda q \Omega} + \text{h.c.},$$

where \(\lambda = L, T, R \) only, the coupling matrix elements \(M_{q \Omega}^{(\lambda)} \) may be calculated analytically and \(d_{k\sigma} \) has to be expressed in function of helical operators \(c_{ks} \).

- Total Hamiltonian: \(H = H_e + H_p + H_{ep} \).

- For the numerics, published values for \(\text{Bi}_2\text{Te}_3 \). No free parameters!
Electron-phonon coupling

- The electron-phonon coupling is dominated by the deformation potential:

\[H_{ep} = \alpha \int d\mathbf{r} \, n(\mathbf{r}) \text{div} \, U(\mathbf{r}), \]

where \(n(\mathbf{r}) \) is the local electron density.

For Bi\(_2\)Te\(_3\), \(\alpha \simeq 35 \) eV. Huang and Kaviany, PRB 77, 125209 (2008) strong coupling constant!

- In the second quantized formalism:

\[H_{ep} = \frac{\alpha}{\sqrt{A}} \sum_{\lambda q \Omega} M^{(\lambda)}_{q \Omega} \sum_{\mathbf{k}, \sigma = \uparrow, \downarrow} d_{\mathbf{k} + q, \sigma}^{\dagger} d_{\mathbf{k} \sigma} b_{\lambda q \Omega} + \text{h.c.}, \]

where \(\lambda = L, T, R \) only, the coupling matrix elements \(M^{(\lambda)}_{q \Omega} \) may be calculated analytically and \(d_{\mathbf{k}\sigma} \) has to be expressed in function of helical operators \(c_{\mathbf{k}s} \).

- Total Hamiltonian: \(H = H_e + H_p + H_{ep} \).

- For the numerics, published values for Bi\(_2\)Te\(_3\). No free parameters!
Quasi-particle decay rate – lifetime broadening measurable by ARPES!

- To lowest order in H_{ep}, the self-energy for a helical state $s = \pm$ is:

$$\Sigma_s(k, \omega) = \lambda, q, \Omega_s \pm \lambda, 0, 0$$

- The contribution from mode λ to the decay rate $\Gamma^{(\lambda)}$ may be written as:

$$\Gamma^{(\lambda)}(k, \omega) = \sum_{\nu = \pm} \alpha^2 \int_0^\infty d\Omega \; F^{(\lambda \nu)}_{ks, \omega}(\Omega) \left[n_B(\Omega) + n_F(\Omega + \nu \omega) \right]$$

where $F^{(\lambda \nu)}_{ks, \omega}(\Omega)$ is the Eliashberg function.

- On-the-shell $\omega = \epsilon_{ks}$

- $\mu = 0.05$ eV
Quasi-particle decay rate – lifetime broadening measurable by ARPES!

To lowest order in H_{ep}, the self-energy for a helical state $s = \pm$ is:

$$
\Sigma_s(k, \omega) = \lambda, q, \Omega \quad + \quad \lambda, 0, 0
$$

$$
D_{\lambda q \Omega}^{0}(\omega) = \frac{2\Omega}{\omega^2 - \Omega^2}
$$

The contribution from mode λ to the decay rate $\Gamma^{(\lambda)}$ may be written as:

$$
\Gamma^{(\lambda)}(k, \omega) = \sum_{\nu = \pm} \alpha^2 \int_0^\infty d\Omega \ F_{k_s, \omega}^{(\lambda \nu)}(\Omega) [n_B(\Omega) + n_F(\Omega + \nu \omega)]
$$

where $F_{k_s, \omega}^{(\lambda \nu)}(\Omega)$ is the Eliashberg function.

Sébastien Giraud (Uni. Düsseldorf)
Electron-phonon scattering in TI
11 April 2011 6 / 10

on-the-shell $\omega = \epsilon_{k_s}$

$\mu = 0.05$ eV
Quasi-particle decay rate – lifetime broadening measurable by ARPES!

To lowest order in H_{ep}, the self-energy for a helical state $s = \pm$ is:

\[
\Sigma_s(k, \omega) = \lambda, q, \Omega \rightarrow \lambda, 0, 0 \quad \frac{\mathcal{D}_{\lambda q \Omega}^0(\omega)}{\omega^2 - \Omega^2}
\]

The contribution from mode λ to the decay rate $\Gamma^{(\lambda)}$ may be written as:

\[
\Gamma^{(\lambda)}_{s}(k, \omega) = \sum_{\nu = \pm} \alpha^2 \int_0^\infty d\Omega \ F_{k s, \omega}^{(\lambda \nu)}(\Omega) \left[n_B(\Omega) + n_F(\Omega + \nu \omega) \right]
\]

where $F_{k s, \omega}^{(\lambda \nu)}(\Omega)$ is the Eliashberg function.

on-the-shell $\omega = \epsilon_{k s}$

$\mu = 0.05$ eV
Quasi-particle decay rate – lifetime broadening measurable by ARPES!

- To lowest order in H_{ep}, the self-energy for a helical state $s = \pm$ is:

$$\Sigma_s(k, \omega) = \lambda, q, \Omega \quad \text{and} \quad \mathcal{D}_{\lambda q \Omega}^{0}(\omega) = \frac{2\Omega}{\omega^2 - \Omega^2}$$

- The contribution from mode λ to the decay rate $\Gamma^{(\lambda)}$ may be written as:

$$\Gamma^{(\lambda)}_s(k, \omega) = \sum_{\nu = \pm} \alpha^2 \int_0^{\infty} d\Omega \ F_{k_s, \omega}^{(\lambda \nu)}(\Omega) \left[n_B(\Omega) + n_F(\Omega + \nu \omega) \right]$$

where $F_{k_s, \omega}^{(\lambda \nu)}(\Omega)$ is the Eliashberg function.

on-the-shell $\omega = \epsilon_{k_s}$

$\mu = 0.05$ eV
Quasi-particle decay rate – lifetime broadening

\[T_{BG} = 2k_F c_R / k_B = 3.9 \text{ K} \]

\[\sim \text{ maximal phonon momentum is } 2k_F \]

\[\mu = 0.05 \text{ eV, } T_F = 580 \text{ K} \]
Quasi-particle decay rate – lifetime broadening

\[\Gamma_k(T) = \frac{28\zeta(3)C}{\pi} \frac{\alpha^2 c_R k_F^3}{\rho_M v_F c_l^4} \left(\frac{T}{T_{BG}} \right)^3 \]

\[T_{BG} = 2k_F c_R / k_B = 3.9 \, \text{K} \]

\[\sim \text{maximal phonon momentum is } 2k_F \]

\[\lambda = R + L + T \]
\[\lambda = R \]
\[\lambda = L \]
\[\lambda = T \]
Quasi-particle decay rate – lifetime broadening

\[\Gamma_{k_F}(T) = \frac{28\zeta(3)C}{\pi} \frac{\alpha^2 e_R c_R^3 k_F^3}{\rho M v_F c_i^4} \left(\frac{T}{T_{BG}} \right)^3 \]

\[T_{BG} = 2k_F c_R / k_B = 3.9 \text{ K} \]

\[\mu = 0.05 \text{ eV}, \ T_F = 580 \text{ K} \]

\[\sim \text{ maximal phonon momentum is } 2k_F \]
Quasi-particle decay rate – lifetime broadening

\[\Gamma_k(T) = \frac{28\zeta(3)C}{\pi} \frac{\alpha^2 e^3 c_R^3 k_F^3}{\rho_M v_F c_l^4} \left(\frac{T}{T_{BG}} \right)^3 \]

\[T_{BG} = 2k_F c_R / k_B = 3.9 \text{ K} \]

\[\sim \text{maximal phonon momentum is } 2k_F \]

For \(T = 0 \), \(\Gamma_k \sim |k - k_F|^3 \)

\[\mu = 0.05 \text{ eV}, \ T_F = 580 \text{ K} \]
Phonon contribution to the surface resistivity

► Quasiclassical Boltzmann transport theory as employed for graphene:

\[\rho = \frac{2}{e^2 v_F^2 D(\mu)} \frac{1}{\langle \tau \rangle}, \quad \langle \tau \rangle = \frac{\int d\epsilon (-\partial_\epsilon n_F) D(\mu + \epsilon) \tau(\epsilon)}{\int d\epsilon (-\partial_\epsilon n_F) D(\mu + \epsilon)}, \]

with \(D(E) = |E|/(2\pi v_F^2) \) the density of states.

→ valid for \(G_Q\rho \ll 1 \) (\(G_Q = e^2/h \)), i.e. \(|\mu|\langle \tau \rangle \gg 1 \).

► The inverse of the electron-phonon transport scattering time \(1/\tau(\epsilon) \) is obtained by the Fermi’s golden rule as a sum over independent phonon mode contributions, with a “transport” Eliashberg function:

\[\frac{1}{\tau(\epsilon_{ks})} = \sum_{\lambda,\nu = \pm} \alpha^2 \int_0^\infty d\Omega \mathcal{F}_{ks}^{(\lambda \nu)}(\Omega) \nu n_B(\nu \Omega) \frac{1 - n_F(\epsilon_{ks} + \nu \Omega)}{1 - n_F(\epsilon_{ks})}. \]
Phonon contribution to the surface resistivity

- Quasiclassical Boltzmann transport theory as employed for graphene:

\[\rho = \frac{2}{e^2 v_F^2 D(\mu)} \frac{1}{\langle \tau \rangle}, \quad \langle \tau \rangle = \frac{\int d\epsilon (-\partial_\epsilon n_F) D(\mu + \epsilon) \tau(\epsilon)}{\int d\epsilon (-\partial_\epsilon n_F) D(\mu + \epsilon)}, \]

with \(D(E) = |E|/(2\pi v_F^2) \) the density of states.

\[\Rightarrow \text{valid for } G_Q \rho \ll 1 \ (G_Q = e^2/h), \ i.e. \ |\mu|\langle \tau \rangle \gg 1. \]

- The inverse of the electron-phonon transport scattering time \(1/\tau(\epsilon) \) is obtained by the Fermi’s golden rule as a sum over independent phonon mode contributions, with a “transport” Eliashberg function:

\[\frac{1}{\tau(\epsilon_{ks})} = \sum_{\lambda,\nu=\pm} \alpha^2 \int_0^\infty d\Omega \ F^{(\lambda\nu)}_{ks}(\Omega) \nu n_B(\nu\Omega) \frac{1 - n_F(\epsilon_{ks} + \nu\Omega)}{1 - n_F(\epsilon_{ks})}. \]
Phonon contribution to the surface resistivity

\[\rho (\Omega) \]

\[T (K) \]

\[\lambda = R \]
\[\lambda = L \]
\[\lambda = T \]
\[\lambda = R + L + T \]

\[T_{BG} = 2k_F c_R / k_B = 3.9 \, K \]
\[\mu = 0.05 \, eV, \; T_F = 580 \, K \]
Phonon contribution to the surface resistivity

\[\rho = \frac{1488 \zeta(5) C}{\pi} \frac{\alpha^2 c_R^3 k_F^2}{\rho_M v_F^2 c_i^4} \left(\frac{T}{T_{BG}} \right)^5 \frac{h}{e^2} \]

\[T_{BG} = 2k_F c_R/k_B = 3.9 \text{ K} \]

\[\mu = 0.05 \text{ eV}, \quad T_F = 580 \text{ K} \]
Phonon contribution to the surface resistivity

\[\rho \sim T^5 \]

Graphene: \(\rho \sim T^4 \)
2D electron gas: \(\rho \sim T^7 \)
Bulk 3D metals: \(\rho \sim T^5 \)

\[
\rho = \frac{1488\zeta(5) C}{\pi} \frac{\alpha^2 c^3 R k^2_F}{\rho_M v_F^2 c^4_l} \left(\frac{T}{T_{BG}} \right)^5 \frac{h}{e^2}
\]

\[
T_{BG} = 2k_F c_R/k_B = 3.9 \text{ K}
\]
\[
\mu = 0.05 \text{ eV}, \ T_F = 580 \text{ K}
\]
Conclusion and outlook

- Analytically tractable low-energy theory of the surface state in TI coupled to phonons.

- Temperature dependent contribution of phonons to the decay rate and surface resistivity.

- Physics near the Dirac point? Superconducting instabilities?