Is biodegradable pin a good choice for lateral condylar fracture of humerus in children
A comparative study of biodegradable pin and Kirschner wire

Jin Li, MD, PhD, Saroj Rai, MD, PhD, Yudong Liu, MD, PhD, Renhao Ze, MD, PhD, Xin Tang, MD, PhD, Ruikang Liu, MD, Pan Hong, MD, PhD

Abstract
Introduction: Lateral condylar fracture (LCF) of the humerus in children is one of the commonest elbow injuries in children. Early recognition of the problem and appropriate management usually yields satisfactory outcomes. Closed or open reduction with Kirschner-wire (KW) is a cost-effective choice for fixation method for displaced fracture. However, various other methods, including partially threaded cannulated cancellous screw and biodegradable pin (BP), have also been used. This study aimed to investigate the efficacy of BP and compare its clinical outcomes with KW.

Material and methods: Patients with LCF admitted from January 2008 to January 2016 at our institute were reviewed retrospectively. Baseline information and clinical data were collected from Hospital Database. Patients were divided into the KW group and BP group.

Results: In all, 85 patients (male 50, female 35) in the KW group and 76 patients (male 47, female 29) in the BP group were included in this study. The average age of patients in the KW group was 5.2 years, and that of BP was 5.9 years. No nonunion or malunion was observed in either group. At the last follow-up visit, there was no statistically significant difference between the 2 groups with regard to elbow function and appearance. The incidence of long-term complications, including avascular necrosis, fistula deformity, and lateral prominence, showed no significant difference between both the groups. The incidence of hardware prominence was higher in the KW (13/85, 15.6%) than BP (2/76, 2.6%) group (P < .001).

Conclusions: Both KW and BP are safe and effective choices for LCF of the humerus in children. Both the implant designs produce satisfactory and comparable clinical outcomes. However, BP has the advantage of less hardware prominence, no need for hardware removal, and fewer long-term complications.

Abbreviations: AVN = avascular necrosis, BP = biodegradable pinning, CRPP = closed reduction and percutaneous pinning, KW = Kirschner wire, LCF = lateral condylar fracture, ORIF = open reduction and internal fixation, TMC = trimethylene carbonate.

Keywords: biodegradable pin, internal fixation, Kirschner wire, lateral condylar fracture

1. Introduction
Lateral condylar fracture (LCF) of the humerus is one of the commonest elbow injuries in children.[1,2] Early recognition of the problem and appropriate management usually yields satisfactory outcomes. Surgery is highly recommended for displaced and unstable LCF in order to avoid complications.[3] KW is a cost-effective choice for fixation, but whether it should be buried under the skin remains controversial.[4,5] Biodegradable pin (BP) has been used to treat pediatric fractures,[6–8] but certain complications, including osteolysis, loosening, and resultant secondary displacement, have been reported.[9,10] To our knowledge, this study is the first study to compare clinical
outcomes between KW and BP in head-to-head fashion for the treatment of LCF of the humerus and evaluate the possible long-term complications of BP in vivo.

2. Patients and methods

Patients with LCF of the humerus operated at our institute, from January 2008 to January 2016, were reviewed retrospectively. Inclusion criteria were: patients managed with open reduction and internal fixation (ORIF) with either the use of KW or BP, presentation within the period of 2 weeks after the trauma, availability of both the clinical and radiological data, and the follow-up period of 48 months or more. The exclusion criteria were: open or pathological fracture, concomitant injuries (fractures or dislocation), and previous elbow fracture or instrumentation.

The patient’s legal guardians were thoroughly explained about each of the procedures, including CRPP, ORIF with KW or BP, and risks and benefits of the procedures as well as implant designs, and let them choose.

The patients were divided into 2 groups, the KW group and the BP group. The KW group consisted of 85 patients, whereas the BP group consisted of 76 patients. Demographic data, including sex, age at the time of surgery, operated side, and implant material, were available for both groups. The KW group consisted of 85 patients, whereas the BP group consisted of 76 patients, including 47 males and 29 females, were included in the KW group, whereas 76 patients, including 50 males and 35 females, were included in the KW group. The two groups were not significantly different in sex and age. Eighty-five patients, including 50 males and 35 females, were included in the KW group, whereas 76 patients, including 47 males and 29 females, were included in the BP group. The average age of patients in the KW group was 5.2 years, and that of BP was 5.9 years. There was no significant difference between the groups.

The operated arm was immobilized in the long-arm posterior slab cast. The operated side was supported by a 1–0 number bioabsorbable suture in a figure of 8 fashion. The incision was closed in layers (Fig. 2).

2.5. Postoperative care and follow-up

The operated arm was immobilized in the long-arm posterior slab cast for 3 to 5 weeks. After removal of the slab, an active range of motion (ROM) exercise was encouraged. Patients were followed-up every month for the first 3 months, then every 3 months until 1 year, and then annually. The KWs were removed in 3 to 6 months after the surgery.

2.6. Statistical analysis

SPSS statistical package program (SPSS 19.0 version; SPSS Inc., Chicago, IL) was used for statistical analysis. The categorical data were analyzed using the χ² test, and the continuous data were analyzed using Student t test. Fisher exact test was used under those circumstances with fewer subjects in groups of interest. Data were presented as mean ± SD (range), median (range), or n (%). P < .05 was considered significantly different.

3. Result

As shown in Table 1, there was no significant difference between the 2 groups concerning sex and age. Eighty-five patients, including 50 males and 35 females, were included in the KW group, whereas 76 patients, including 47 males and 29 females, were included in the BP group (P = .70). The average age of patients in the KW group was 5.2 years, and that of BP was 5.9 years (P = .20). Patients in both groups were followed-up for at least 4 years, with an average of 5.4 years (4–6 years).

There was no nonunion and malunion in both groups. The fracture classification and duration form injury to surgery showed no significant difference between both groups.

As shown in Table 2, at 6-month follow-up, all patients in both groups displayed good to excellent elbow function, with no significant difference statistically (P = .81). There were no significant differences in the MEPI score and Baumann angle in both groups. However, the difference in the incidence of hardware prominence was statistically significant (P < .001).

As shown in Table 3, there was no incidence of AVN and elbow stiffness in either group. The incidence of cubitus varus deformity was also low in both the groups, which included 2.4% in the KW group and 2.6% in the BP group. There was no significant difference between the KW and BP groups regarding the incidence of fístail deformity and lateral prominence.

4. Discussion

Both KW and BP are safe and effective choices for LCF of the humerus. BP is able to produce a satisfactory clinical outcome, and is comparable to the KW, with a lower incidence of hardware prominence. Furthermore, the BP has the advantage of not needing second surgery for implant removal. Besides that, the long-term complications, including AVN, fístail deformity, and lateral prominence, showed no significant difference between 2 groups.
Figure 1. Six-year-old boy with right lateral condylar fracture treated with K-wires. (A) AP view of the elbow before surgery. (B) AP view of the elbow after the surgery. (C) Lateral view of the elbow after the surgery. (D) AP view of the elbow at 3th month follow-up. (E) AP view of the elbow after K-wire removal. (F) Lateral view of the elbow after the K-wire removal.

Figure 2. Six-year-old boy with left lateral condylar fracture treated with biodegradable pins. (A) AP view of the elbow before the surgery. (B) Lateral view of the elbow before the surgery. (C) AP view of the elbow after the surgery. (D) Lateral view of the elbow after the surgery. (E) AP view of the elbow at 1st month follow-up. (F) Lateral view of the elbow at 1st month follow-up. (G) AP view of the elbow at 4th month follow-up. (H) Lateral view of the elbow at 4th month follow-up.
Treatment choice for LCF of the humerus depends on the fracture displacement and stability. A modified classification system has been proposed by Song et al.\(^\text{[13,14]}\) to clarify the ambiguity of Jakob type I fracture. Indication for surgery includes fractures with equally displaced medial and lateral gaps (Song type III)\(^{[15]}\) and fractures with ≥ 2 mm displacement (Song type IV and V).

Closed reduction and percutaneous pinning (CRPP) is an intriguing solution with fewer complications, and it has been recommended by certain authors.\(^{[16,17]}\) However, in significantly displaced and rotated fractures, CRPP is a challenging task, which might result in prolonged operative time and excessive exposure of x-ray. Cannulated lag screw (CLS) has been reported to be associated with a lower rate of ORIF,\(^{[18]}\) but CLS usually requires secondary surgery for implant removal. Both KW and CLS found to produce satisfactory clinical outcomes for a fresh LCF of the humerus.\(^{[19]}\) However, KW is the preferred choice at our institute. ORIF with a single absorbable screw has been recommended by certain authors.\(^{[16,17]}\) However, in significantly displaced and rotated fractures, ORIF comes, and the results were consistent with the previous literature on LCF managed in acute setting.\(^{[11,16,17]}\) Since implants in both groups were buried under the skin, the superficial infection rate was as low as 2.4% and 2.6%, respectively. Raghavan et al recommended not to bury the KWs as it required a second surgery for hardware removal, and that was relatively costly in developing countries.\(^{[27]}\) However, we routinely buried the KWs under the skin. That led to a higher incidence rate (15.3%) of hardware prominence as the KW was bent to bury under the skin, whereas the BP was cut along the bony surface. Two patients in the BP group displayed implant prominence at the follow-up visit, that’s possibly because of degradation and resultant pin loosening. And both patients healed uneventfully. In younger patients, the hardware prominence might hinder functional training. However, the clinical outcomes showed no significant difference between the 2 groups at 6 months and the final follow-up visit.

At the last follow-up visit, all the patients in both groups reported good to excellent results according to Flynn criteria. Among all the patients, 92% of the patients in the BP group and 91.7% in the KW group reported excellent results.

Avascular necrosis and physeal arrest is a challenging situation usually following ORIF for neglected LCF, and there was no case of AVN in our study, possibly due to careful dissection and limited soft tissue stripping during the surgery. Fishtail deformity is a late manifestation of LCF healing.\(^{[28,29]}\) As the KW was bent to bury under the skin, the superficial infection rate was as low as 2.4% and 2.6%, respectively. Raghavan et al recommended not to bury the KWs as it required a second surgery for hardware removal, and that was relatively costly in developing countries.\(^{[27]}\) However, we routinely buried the KWs under the skin. That led to a higher incidence rate (15.3%) of hardware prominence as the KW was bent to bury under the skin, whereas the BP was cut along the bony surface. Two patients in the BP group displayed implant prominence at the follow-up visit, that’s possibly because of degradation and resultant pin loosening. And both patients healed uneventfully. In younger patients, the hardware prominence might hinder functional training. However, the clinical outcomes showed no significant difference between the 2 groups at 6 months and the final follow-up visit.

Table 1

Parameters	K-wire (n=85)	Biodegradable Pin (n=76)	P
Age, y	5.2±1.4	4.9±1.5	.20
Sex			
Male	50	47	.70
Female	35	29	
Side			
Left	51	46	.70
Right	34	30	
Jakob classification			
Type II	30	26	.89
Type III	55	50	
From injury to surgery, days	1.9±0.8	1.9±0.8	.99

Table 2

Clinical outcomes	KW (n=85)	BP (n=76)	P
Flynn criteria on 6th mo			
Excellent	68	62	.81
Good	17	14	
Fair	0	0	
Poor	0	0	
Baumann angle	17.7±5.7	17.4±5.4	.70
Carrying angle	4.8±3.4	4.3±3.1	.29
MEPS score	90.2±3.2	89.9±3.2	.49
Nonunion	0	0	>.99
Malunion	0	0	>.99
NV compromise	0	0	>.99
Exposure of implant	7 (8.2%)	2 (2.6%)	.12
Failure of implant	0	0	>.99
Revision surgery	0	0	>.99
Implant prominence	13 (15.3%)	2 (2.6%)	<.001
Superficial infection	2 (2.4%)	2 (2.6%)	.92
Pain	0	0	>.99

Table 3

Clinical outcomes	KW (n=85)	BP (n=76)	P
Flynn criteria			
Excellent	78	70	.69
Good	7	6	
Poor	0	0	
Baumann angle	16.7±3.7	16.4±3.4	.62
Carrying angle	5.8±3.2	5.3±3.3	.22
MEPS	94.2±3.6	93.9±3.7	.29
AVN	0	0	>.99
Unresolved stiffness	0	0	>.99
Cubitus varus	2 (2.4%)	2 (2.6%)	.92
Fishtail deformity	7 (8.2%)	6 (7.9%)	.95
Lateral prominence	7 (8.2%)	6 (7.9%)	.95

BP = biodegradable pinning, KW = Kirschner wire, MEPS = Mayo elbow performance score.
We undertook a retrospective investigation; therefore, our findings should be interpreted with caution. The allocation process of patients to either the KW group or BP group partly depended on the preference of the surgeon in charge, and this strategy may cause allocation bias. The follow-up was not long enough, and the long-term impact upon growth remains unclear. Besides, the biodegradable pins were more expensive (500–600 US dollars for each pin) than KW (5–10 US dollars), and it was not covered by the basic medical insurance in our province.

5. Conclusion
Both KW and BP are safe and effective choices for LCF of the humerus in children. Both the implant designs produce satisfactory and comparable clinical outcomes. However, BP has the advantage of less hardware prominence, no need for hardware removal, and fewer long-term complications. However, the biodegradable pins are more expensive as compared with Kirschner wires.

Author contributions
Conceptualization: Pan Hong.
Data curation: Xin Tang.
Formal analysis: Ruikang Liu.
Investigation: Pan Hong.
Resources: Renhao Ze.
Software: Ruikang Liu.
Writing – original draft: Pan Hong.
Writing – review & editing: Jin Li, Saroj Rai, Yudong Liu, Pan Hong.

References
[1] Mounsey EJ, Howard A, Alshryda S, Huntley JS, Banaszkiewicz PA. Evidence-based treatments of paediatric elbow fractures. Paediatric Orthopaedics. Cham, Switzerland: Springer International Publishing; 2017;305–15.
[2] Beatty JH. Fractures of the lateral humeral condyle are the second most frequent elbow fracture in children. J Orthop Trauma 2010;24:438.
[3] Ganeshalingam R, Donnan A, Evans O, et al. Lateral condylar fractures of the humerus in children: does the type of fixation matter? Bone Joint J 2018;100-B:387–95.
[4] McGonagle L, Elamin S, Wright DM. Buried or unburied K-wires for lateral condyle elbow fractures. Ann R Coll Surg Engl 2012;94:513–6.
[5] De SD, Bae DS, Waters PM. Displaced humeral lateral condyle fractures in children: should we bury the pins. J Pediatr Orthop 2012;32:573–8.
[6] Hope PG, Williamson DM, Coates CJ, et al. Biodegradable pin fixation of elbow fractures in children. A randomised trial. J Bone Joint Surg Br 1991;73:965–8.
[7] Svensson PJ, Janarv PM, Hirsch G. Internal fixation with biodegradable rods in pediatric fractures: one-year follow-up of fifty patients. J Pediatr Orthop 1994;14:220–4.
[8] So Y, Xue Y, Qin J, et al. Internal fixation with absorbable rods for the treatment of displaced radial neck fractures in children. J Pediatr Orthop 2016;36:797–802.
[9] Bostman O, Makelä EA, Södergård J, et al. Absorbable polylactide pins in internal fixation of fractures in children. J Pediatr Orthop 1993;13:242–5.
[10] Fraser RK, Cole WG. Osteolysis after biodegradable pin fixation of fractures in children. J Bone Joint Surg Br 1992;74:929–30.
[11] Tomori Y, Nanno M, Takai S. Anterolateral approach for lateral humeral condylar fractures in children: clinical results. Medicine (Baltimore) 2018;97:e12563.
[12] Schneeberger AG, Kosters MC, Steens W. Comparison of the subjective elbow value and the Mayo elbow performance score. J Shoulder Elbow Surg 2014;23:308–12.
[13] Ramro BA, Funk SS, Elliott ME, et al. The Song classification is reliable and guides prognosis and treatment for pediatric lateral condyle fractures: an independent validation study with treatment algorithm. J Pediatr Orthop 2020;40:203–9.
[14] Song KS, Waters PM. Lateral condylar humerus fractures: which ones should we fix? J Pediatr Orthop 2012;32:5–9.
[15] Greenhill DA, Funk S, Elliott M, et al. Minimally displaced humeral condyle fractures: immobilize or operate when stability is unclear? J Pediatr Orthop 2019;39:349–54.
[16] Justus C, Haruno LS, Risdan MK, et al. Closed and open reduction of displaced pediatric lateral condyle humeral fractures, a study of short-term complications and postoperative protocols. Iowa Orthop J 2017;37:163–9.
[17] Song KS, Kang CH, Min BW, et al. Closed reduction and internal fixation of displaced unstable lateral condylar fractures of the humerus in children. J Bone Joint Surg Am 2008;90:2673–81.
[18] Stein BE, Ramji AF, Hassanzadeh H, et al. Cannulated lag screw fixation of displaced lateral humeral condyle fractures is associated with lower rates of open reduction and infection than pin fixation. J Pediatr Orthop 2017;37:17–3.
[19] Li WC, Xu RJ. Comparison of Kirschner wires and AO cannulated screw internal fixation for displaced lateral humeral condyle fracture in children. Int Orthop 2012;36:1261–6.
[20] Su Y, Chen K, Qin J. Retrospective study of open reduction and internal fixation of lateral humeral condyle fractures with absorbable screws and absorbable sutures in children. Medicine 2019;98:e17850.
[21] Serbest S, Tifirkci U, Tosun HB, et al. Is there a relationship between fracture healing and mean platelet volume? Ther Clin Risk Manag 2016;12:1095–9.
[22] Serbest S, Tifirkci U, Tosun HB, et al. The irisin hormone profile and expression in human bone tissue in the bone healing process in patients. Med Sci Monit 2017;23:4278–83.
[23] Serbest S, Tifirkci U, Tosun HB, et al. Isolated posterior malleolar fracture: a rare injury mechanism. Pan Afr Med J 2015;20:123Published 2015 Feb 12.
[24] Tifirkci U, Serbest S. Periprosthetic proximal medial femoral cortical destruction caused by a femoral arterial pseudoaneurysm. Clin Interv Aging 2015;10:1967–70. Published 2015 Dec 17.
[25] Gumustas S, Tosun HB, Isyar M, et al. Femur neck fracture in young adults, is it really an urgent surgery indication: retrospective clinical study. Pan Afr Med J 2018;30:112Published 2018 Jun 12.
[26] Pace JL, Arkader A, Sousa T, et al. Incidence, risk factors, and definition for nonunion in pediatric lateral condyle fractures. J Pediatr Orthop 2018;38:257–61.
[27] Raghavan R, Jones A, Dwyer AJ. Should Kirschner wires for fixation of lateral humeral condyle fractures in children be buried or left exposed? A systematic review. Orthop Traumatol Surg Res 2019;105:739–45.
[28] Narayanan S, Shilam R, Grottke BE, et al. Fishtail deformity—a delayed complication of distal humeral fractures in children. Pediatr Radiol 2015;45:814–9.
[29] Lugman I, Kunup H. Post-traumatic fishtail deformity of distal humerus—is there a risk for refracture? BMJ Case Rep 2016;2016:bcr2016217163.
[30] Liu TJ, Wang EB, Dai Q, et al. Open reduction and internal fixation for the treatment of fractures of the lateral humeral condyle with an early delayed presentation in children: a radiological and clinical prospective study. Bone Joint J 2016;98-B:244–8.
[31] Garrett BR, Hoffman EB, Carrara H. The effect of percutaneous pin fixation in the treatment of distal femoral physeal fractures. J Bone Joint Surg Br 2011;93:689–94.
[32] Deld WJ, Silva S, Vanderhave KL. Distal femoral physeal fixation: are smooth pins really safe? J Pediatr Orthop 2014;34:134–8.
[33] Cady RB, Siegel JA, Mathien G, et al. Physeal response to absorbable polydioxanone bone pins in growing rabbits. J Biomed Mater Res 1999;48:211–5.