Diagnostic accuracy of cardiac computed tomographic angiography and transesophageal echocardiography in evaluation of patients with prosthetic paravalvular leakage

Amr Youssef Hassan MD1 | Hossam Ibrahim Kandil MD1 | Mohamed Ali Salem MD2 | Ahmed Shehata Mohamed MD1 | Hussien Heshmat Kassem MD1

1 Department of Cardiovascular medicine, Cairo University Hospital, Cairo, Egypt
2 Department of Radiology, Cairo University Hospital, Cairo, Egypt

Abstract

Purpose: Computed Tomography (CT) scan has been well addressed to provide diagnostic information for patients with prosthetic heart valve (PHV) dysfunction. However, its role in the assessment of patients with prosthetic paravalvular leakage (PVL) has not been studied thoroughly. So, this study was conducted to assess the feasibility, reproducibility, and accuracy of CT for diagnosis of prosthetic PVL using surgical findings as the reference standard.

Materials and methods: This was a prospective cohort study that was conducted on 26 consecutive patients with suspected prosthetic PVL who underwent both transesophageal echocardiography (TEE) and 64-slice ECG-gated CT. The gold standard was the intraoperative findings. Surgery was performed on 26 patients.

Results: There was an excellent degree of agreement between CT and intraoperative findings for diagnosis, localization of prosthetic PVL. The perimeter of prosthetic PVL measured by CT was strongly correlated with echocardiographic severity of PVL by TEE (Spearman’s Correlation Coefficient, \(r = .83, p = .0014 \)).

Conclusion: This study demonstrates that cardiac CT showed comparable diagnostic accuracy to TEE and intraoperative findings for the detection, localization, and assessment of severity of prosthetic PVL. Moreover, CT was shown to be useful in detection of other findings related to prosthetic cardiac valves.

Keywords

ECG gated computed tomography, prosthetic heart valve dysfunction, prosthetic paravalvular leakage, transesophageal echocardiography

1 INTRODUCTION

Paravalvular leakage (PVL) has an estimated prevalence of 2%–10% after aortic valve replacement and 7%–17% after mitral valve replacement (MVR).1,2 Although most PVLs are asymptomatic, but an estimated 1%–5% of patients with PVLs showed serious adverse outcome including reoperation, cardiac and noncardiac deaths, and recurrent admissions with heart failure symptoms.3–5

Both transthoracic echocardiography (TTE) and transesophageal echocardiography (TEE) are commonly used as the first-line imaging modalities for PVL detection. TEE can be of additional diagnostic value, especially for Prosthetic PVL in the mitral position.6,7

However, imaging distortions from acoustic shadowing have been considered as a major limitation for echocardiography in prosthetic valve evaluation, another limitation worth mentioning is the semi-invasive nature of TEE.
Cardiac computed tomography (CT) has received attention for its role in the evaluation of prosthetic valves dysfunction. Although cardiac CT had a role diagnostic value in the diagnosis and guidance of successful transcatheter closure of mitral PVL, Diagnostic performance of cardiac CT for detection of prosthetic PVL has not been studied in detail.9–12

The purposes of our study were to assess the feasibility, reproducibility, and diagnostic accuracy of CT compared to TEE for the diagnosis of prosthetic PVL using surgical findings as the reference standard.

2 METHODS

2.1 “Institutional review board approval and informed consent were obtained.”

From March 2017 to March 2019, we prospectively enrolled all patients with clinically suspected prosthetic paravalvular dysfunction (e.g., suspected prosthetic heart valve [PHV] obstruction, endocarditis or paravalvular leak referred to the echocardiography laboratory). A total of 80 patients with suspected prosthetic valve dysfunction were enrolled. Twenty-six patients with prosthetic significant PVL were included in the study, whereas fifty-four patients were excluded as mentioned in Figure 1.

2.2 Exclusion criteria

1. Patients who refused to participate in the study and refused to sign consent.
2. The contraindications to multidetector CT angiography include pregnancy and contrast allergy.
3. Patients whose labs revealed renal impairment (Renal impairment defined as Estimated GFR <45 ml/min/1.73 m², or serum creatinine >1.3 mg/dl).
4. Patients presented with hemodynamic instability or requiring emergency surgery.
5. Patients with PHVs are known to have beam hardening artefacts (containing cobalt-chrome alloy rings, e.g., Björk-Shiley and pyrolytic carbon tilting-disk PHVs) that prevent diagnostic assessment.

2.3 Study population characteristics

All patients were subjected to the following work-up on initial presentation.

Clinical history including age, gender, comorbidities, previous heart valve surgeries, time since last valve surgery, symptoms suggestive of congestive heart failure, symptoms suggestive of infective endocarditis (i.e., fever, sepsis, previous antibiotic treatment before clinical presentation).

Physical examination included blood pressure, heart rate, temperature, auscultations for prosthetic valve sounds (mitral, aortic, or both), murmurs of regurgitant lesions across prosthetic or native valves.

Laboratory workup included complete blood count, C reactive protein (CRP), serology for Brucella, Bartonella, Coxiella, Aspergillus, blood culture and sensitivity, kidney function tests including blood urea nitrogen and serum creatinine.

2.4 Complete transthoracic and transesophageal echocardiography

All echocardiographic studies were conducted with a Philips iE33 ultrasound system and X7-2t transesophageal transducer (Philips Medical Systems, Andover, MA, USA). Standard views for combined TTE and TEE were acquired by experienced non-invasive cardiologists. Cardiac chambers quantification was done according to the American Society
of Echocardiography for assessment of cardiac chambers including calculation of left ventricle end-diastolic and end-systolic volume and diameter, septal and posterior wall thickness, right-sided chamber volume and dimensions, aortic and left atrium diameter. Assessment of prosthetic cardiac valves was done according to the American Society of Echocardiography for assessment of prosthetic cardiac valves. TEE was done for better assessment of prosthetic cardiac valves specifically looking for:

- Paravalvular leak: Location, number, size of defect, severity of regurgitant jets depending on criteria for assessment prosthetic cardiac valves in American Society of Echocardiography.

For assessment of PVL across mitral prosthesis, we specifically focused on the presence of a regurgitant jet using continuous-wave Doppler. The severity of PVL was assessed semiquantitatively using the maximal widths of the vena contracta; mild, moderate, and large PVL were defined with widths of 1–2, 3–6, and >7 mm, respectively. In addition, the presence of occult mitral prosthesis regurgitation was suspected when the following signs were present: flow convergence downstream of the prosthesis during systole, increased mitral valve gradients (>2 m/s), and increased mean gradient (>5–7 mm Hg) or unexplained or new worsening of pulmonary arterial hypertension.

For assessment of aortic prosthetic PVL: we specifically focused on the presence of regurgitant jet seen in the long axis view. The severity of PVL was assessed semiquantitatively using the maximal widths of the vena contracta; mild, moderate, and large PVL were defined with widths of 1–2, 3–6, and >6 mm, respectively. Also, we assessed the percentage of regurgitant jet width across the LVOT.

- Other abnormalities of prosthetic cardiac valves including:
 a. Abscess: defined as irregularly shaped, inhomogeneous paravalvular masses within peri-annular region, myocardium, or pericardium.
 b. Pseudo-aneurysm: defined as a space with communication with the cardiac chambers or the aortic root.
 c. Vegetation: defined as irregularly oscillating masses, adherent to and distinct from the endocardium.
 d. Fistula: defined as a continuation between the chambers of the left and right heart.
 e. Prosthesis dehiscence: defined as a rocking motion of a prosthetic valve with an excursion >15° in any one plane.

2.5 CT acquisition and image reconstruction

All the cardiac computed tomographic angiography studies were done with the Aquilion 64 machine (Toshiba Medical Systems, Nasu, Japan) which provides 64-sections for optimal imaging. Our 64-section multidetector CT protocol was based on retrospectively ECG gated CT aortography protocols. Raw data were reconstructed into 10 equally spaced datasets within the R-R interval of the cardiac cycle and were loaded simultaneously into the dedicated cardiac analysis software (Vitrea vital image). The imaging planes were aligned parallel with and perpendicular to the valve leaflets as well as in plane with the valve in three perpendicular imaging planes.

For contrast material-enhanced imaging, we planned the acquisition from 2 cm above the carina (including the ascending aorta) to the apex to achieve complete imaging of the heart. When desired, the scanning range was reduced in the craniocaudal direction to reduce radiation exposure.

For anatomic assessment, the best systolic and diastolic reconstruction phases were selected. Images were reconstructed from 0% to 90% of the RR Interval with 10% intervals for subsequent off-line analysis. The optimal systolic reconstruction windows were at 30% and 35% for assessment of the mitral prosthetic PVL. While the optimal diastolic reconstruction window was at 75% for assessment of aortic prosthetic PVL. For dynamic evaluation, cine images in the plane perpendicular to the valve leaflets were recorded after appropriate alignment and windowing.

All CT analyses were performed by two experienced radiologists who were blinded to the results of TTE and TEE. CT image quality was assessed and those patients who had bad image quality (presence of severe artifacts and non-diagnostic for appropriate evaluation of the prosthetic valves) were excluded.

The proposed report included several items:

Ø PHV:
 o Type: Mechanical or biological.
 o Position: Mitral or aortic and/or both.
 o Anatomical PHV assessment.
 o Paravalvular regurgitation presence and location. We also measured the para-prosthetic anatomical regurgitant orifice area to determine the accuracy and reproducibility of Cardiac CT in assessment of prosthetic paravalvular regurgitation. The size of the PVL was assessed by measuring the perimeter on long-axis views and area on the short-axis view. When CT image quality was suboptimal and not assessable for PVL evaluation, PVL was considered absent for the purpose of data analysis.
 o Other prosthetic valves abnormalities: Vegetations, abscess, Pseudoaneurysm, thrombus.
 o Dynamic PHV assessment.
 o Normal opening and closing angle: Frame-by-frame analysis of a single cardiac cycle was the basics for defining opening and closing valve angles by CT. For single-leaflet valves, a valve was defined as stuck when motion of one valve leaflet was absent. For bileaflet valves, opening and closing angles were measured between the two leaflets in the fully open and closed positions. Prosthetic valve obstruction was diagnosed when motion of a leaflet or leaflets was persistently restricted, with a calculated opening angle of more (for bileaflet valve) or less (for disk valves) than the values for a normal valve, as specified by the manufacturer.
2.6 Surgical data

Twenty-six patients with significant prosthetic PVL had undergone cardiac surgery. For patients who had undergone redo-surgery, the presence of a PVL orifice was confirmed by inspection on the surgical view. All the patients had intraoperative TEE for identification and assessment of severity of prosthetic PVL and other abnormalities of the cardiac valves. Intraoperative TEE was performed after redo valve surgery to confirm function of the seated prosthesis and that there was no residual prosthetic PVL.

The surgical data that were reported by the surgeon during the open-heart surgery were considered the gold standard for comparing the diagnostic accuracy of TEE and cardiac computed tomographic angiography.

Surgical data included all the following:

1. Paravalvular regurgitation: presence, location, and severity.
2. PHV Function: Opening and closure of the prosthetic valve during cardiopulmonary bypass surgery.
3. Other abnormalities: Vegetations, abscess, Pseudoaneurysm, thrombus.

2.7 Statistical analysis

Data were coded and entered using the statistical package SPSS (Statistical Package for the Social Science; SPSS Inc, Chicago, IL, USA) version 22. Data were described using the mean, standard deviation in continuous variables and using frequency (count) and relative frequency (percentage) for categorical data. Categorical variables are presented in numbers (percentages).

The agreements on the presence and location of PVL between CT and surgical findings and between TEE and surgical findings were analyzed using Cohen’s kappa statistics. The correlation between the size of prosthetic PVL on CT (area and perimeter) and the severity on TTE or TEE was analyzed using Spearman’s correlation coefficient. Probability values <.05 were considered statistically significant. The diagnostic performance of CT and echocardiography for diagnosing prosthetic PVL was assessed using surgical findings as the standard reference.

3 Results

3.1 Patient population

Eighty patients with suspected PHV dysfunction were enrolled. Twenty-six patients were eventually included in the study as shown in Figure 1.

3.2 Population characteristics

Our study populations had a mean age of 41 ± 12 years, with almost three-quarters of patients were males.

Variable	No. (%)
Mean age (years)	41 ± 12
Gender	
Male	19 (73%)
Female	7 (27%)
Prosthetic site	
Mitral	10 (38%)
Aortic	8 (31%)
Both	8 (31%)
Prosthetic type	
Mechanical	26 (100%)
Duration from last surgery	
Less than 1 year	14 (54%)
More than 1 year	12 (46%)
Blood culture:	
Positive	8 (31%)
Negative	7 (27%)
Not done	11 (42%)
Serology:	
Positive	10 (39%)
Negative	5 (19%)
Not done	11 (42%)
Mean Hemoglobin level (g/dl)	9.0 ± 2.09
Mean Total leucocytic count (10^3/mm)	10.6 ± 6.02
Mean creatinine (mg/dl)	.82 ± .27
Mean CRP level (mg/L)	53.16 ± 6.89
Mean ESR level (mm/h)	66.5 ± 36.0

Heart failure symptoms (dyspnea at rest, orthopnea, and paroxysmal nocturnal dyspnea) were the most common presenting symptoms, followed by symptoms suggestive of infective endocarditis (fever, embolic manifestations).

Table 1 summarized the results of laboratory workup for enrolled patients.

3.3 Prosthetic paravalvular leakage

3.3.1 Paravalvular leakage presence

CT versus TEE for diagnosing presence of PVL.

There was excellent agreement between CT and TEE for diagnosing the presence of PVL (agreement k: .96).

In this study, there was one patient who was diagnosed to have PVL across aortic prosthesis by TEE which was not revealed by MCTA and was proved intraoperatively that the patient did not have PVL.
TABLE 2 Agreement analysis between CT and TEE for Paravalvular leakage presence and location

Variables	CT (no.)	TEE (no.)	Agreement (κ)
PVL presence	25	26	.96
PVL location			
Anteromedial (mitral)	2	2	1
Posteromedial (mitral)	1	1	1
Anterolateral (mitral)	3	3	1
Posterolateral (mitral)	6	6	1
Anterior occluder (aorta)	8	9	.96
Posterior occluder (aorta)	5	5	1

Sensitivity, specificity of TEE and CT for detecting presence of PVL are 100%, 95% and 100%, 100%, respectively.

CT and TEE versus surgery

There was excellent agreement between TEE and CT versus surgery (Gold standard) for diagnosing presence of PVL with agreement κ: .95 and 1.0, respectively, as shown in Table 2.

CT had better diagnostic accuracy as compared to TEE in diagnosis of aortic prosthetic PVL with sensitivity and specificity of 100%, 100% for CT and 95%, 100% for TEE, respectively. In our study, TEE incorrectly diagnosed aortic prosthetic PVL in one patient with large aortic root abscess, on the other hand, CT excluded the presence of PVL across the aortic prosthesis (finding confirmed intraoperatively).

Tachycardia and/or acoustic shadowing of mechanical prosthesis may explain the limitation of TEE in assessment of the PVL presence in this patient.

3.3.2 Paravalvular leakage site and location

The localization of PVL on the surgical field was done in all patients who had undergone surgery for PVL. Figure 2 illustrated localization and severity assessment of aortic prosthetic PVL by both imaging modalities compared to intraoperative finding (Gold standard). CT accurately identified the location of PVL in 25 patients (100%). TEE correctly identified the location of the PVL in 24 of 25 patients (96%). The weighted kappa values for agreement of PVL location with the surgical field were 1 for CT and .94 for TEE as shown in Table 2.

Both CT and TEE correctly revealed the location of PVL in 24 patients, although, in one patient with aortic prosthetic PVL, TEE incorrectly predicted the location due to the acoustic shadowing caused by the mitral prosthesis in this patient.

3.4 Paravalvular leakage severity

The perimeter of prosthetic PVL measured on CT was a mean of .63 ± .15 cm, while the vena contracta as a semiquantitative measure for assessment of the prosthetic PVL measured by TEE was a mean of .62 ± .2.

Figure 3 illustrated quantitative methods used in both imaging modalities to assess severity of mitral prosthetic paravalvular leak in patient presented with heart failure symptoms. Table 3 showed a strong correlation between the perimeter of prosthetic PVL measured by CT and echocardiographic severity of PVL by TEE (Spearman’s Correlation Coefficient, \(r = .83, p = .0014 \)).

3.5 Other abnormalities

CT had lower sensitivity (75%) for detection of vegetation as compared to TEE (88%), both being compared to intraoperative findings as shown in Table 4. On the other hand, both modalities had 100% specificity for diagnosis presence of vegetation.

Both imaging modalities diagnosed aortic root abscess in seven patients with specificity of 100%.

Occluder malfunction of prosthetic valves were evaluated by both echocardiography (TTE and TEE) and cardiac computed tomographic angiography. The intraoperative assessment of occluder motion was considered the gold standard. The specificity of both modalities for diagnosing occluder malfunction was 100% as shown in Table 4.

4 DISCUSSION

Our study demonstrated that cardiac CT showed comparable diagnostic accuracy to TEE and intraoperative findings for the detection and assessment of severity of prosthetic PVL. It also demonstrated the role of cardiac CT in diagnosis of peri-annular findings.

4.1 Paravalvular leakage presence

CT had better diagnostic accuracy as compared to TEE in diagnosis of aortic prosthetic PVL with sensitivity and specificity were 100%, 100% for CT and 95%, 100% for TEE, respectively. In our study, TEE incorrectly diagnosed aortic prosthetic PVL in one patient with large aortic root abscess, on the other hand, CT excluded the presence of PVL across the aortic prosthesis (finding confirmed intraoperatively).

This patient had undergone surgery for persistent infection due to a large aortic root abscess that was not responding to antibiotic therapy.

The diagnostic accuracy for PVL presence in our study was closely correlated to the findings of Hara et al. who reported perfect agreements between MDCT, Echocardiography, and surgical findings in aortic prosthetic regurgitation (APR). 16 Sensitivity and specificity of both imaging modalities in diagnosis of PVL were closely correlated to that reported by Suh et al. who studied diagnostic performance of both CT and echocardiography compared with surgical findings as the standard reference for detection of mitral
PVL with sensitivity and specificity were 96.9% and 97.8% respectively for CT, 96.2% and 95.8%, respectively, for TEE.17

Our Study was different from the above-mentioned studies being prospective, on the other hand, Suh et al. was a retrospective one. In our study, we enrolled patients with either aortic and/or mitral prosthetic PVL, while Hara et al. and Suh et al. studied aortic and mitral prosthetic PVL, respectively.16,17

4.2 Paravalvular leakage location

In our study, cardiac CT provided accurate information on PVL anatomy comparable to TEE. Also, CT may have additional value to TEE when TEE image quality was not satisfactory for evaluation because of acoustic shadows. In one patient, TEE could not detect or correctly predict the location of PVL, CT correctly identified the PVL location.
And this highlighted the importance of preprocedural imaging plays in providing information regarding PVL anatomy and location.

4.3 Paravalvular leakage severity

Considering that the major determinant of surgery is severity of PVL, the size of PVL on CT can be useful information in deciding the neces-

Variable	Defect size by CT (mm)	Spearman's Correlation, r	\(p \)-Value*
Severity by TEE	.83		.0014

*\(p \)-Value < .05 statistically significant.
TABLE 4 Diagnostic performances of echocardiography and CT for the demonstration of prosthetic valve dysfunction as compared with surgical findings

Variables	Echocardiography	CT
Vegetation	7 (TP)	0 (FP)
	1 (FN)	6 (TP)
	18 (TN)	2 (FN)
	16 (TN)	
Abscess	7 (TP)	0 (FP)
	0 (FN)	7 (TP)
	19 (TN)	0 (FN)
	19 (TN)	
Pseudoaneurysm	0 (TP)	0 (FP)
	1 (TP)	0 (FP)
	25 (TN)	0 (FN)
	25 (TN)	
Occluder malfunction	1 (TP)	0 (FP)
	0 (FN)	1 (TP)
	25 (TN)	0 (FN)
	25 (TN)	

Abbreviations: FN, false negative; FP, false positive; TN, true negative; TP, true positive.

4.4 Prosthetic valve endocarditis and periannular findings

TEE had better diagnostic accuracy as compared to CT in detection of vegetation. The limited temporal resolution of the CT and small-sized vegetations were considered common reasons for missing vegetations by CT. Inconsistent with our findings, Fagman et al. and Habets et al. concluded the complementary role of CT to TEE for diagnosis of vegetation.19,20

Both CT and TEE diagnosed presence of aortic root abscess in seven patients with sensitivity of 100% and specificity of 100% for both modalities (Intraoperative findings were considered the gold standard). These results were closely correlated to Feuchtner et al. results which revealed that the diagnostic performance of CT for the detection of abscesses/pseudoaneurysms combined was sensitivity 100%, specificity 100% by CT and sensitivity 89%, specificity 100% by TEE.15

4.5 Occluder function

Both imaging modalities had an excellent agreement for diagnosing occluder malfunction with sensitivity and specificity of 100%.

In our study, CT overcame the limitation of acoustic shadowing of mechanical prosthesis and helped identification of thrombus on mechanical prosthesis in mitral position as cause of prosthesis malfunction.

These findings were strongly correlated with findings of Konen et al. and LaBounty et al. (Evaluation of mechanical prosthesis and opening angle with MDCT).21,22

4.6 Limitations of the study

The study had a relatively small sample size. We excluded patients with ball and cage prosthesis due to heavy beam artefacts interfering with CT image interpretation. 3D echo was not performed for all enrolled patients, however, there were specific limitations for 3D echo as the need for optimal image quality (limited in postoperative patients), several artifacts (dropout and stitches) that may be misinterpreted as valvular perforations and periprosthetic leaks in 3D echo.24-27 In our study, we exclusively enrolled patients with mechanical valves because of limited availability of bio-prosthetic valves.

5 CONCLUSION

This study demonstrates that cardiac CT showed comparable diagnostic accuracy to TEE and intraoperative findings for the detection, localization, and assessment of severity of prosthetic PVL. Moreover, CT was shown to be useful in detection of other findings related to prosthetic cardiac valves.

ORCID
Amr Youssef Hassan MD https://orcid.org/0000-0002-7621-4246

REFERENCES

1. Hammermeister K, Sethi GK, Henderson WG, Grover FL, Oprian C, Rahimtoola SH. Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the Veterans Affairs randomized trial. J Am Coll Cardiol. 2000;36:1152-1158. doi:10.1016/j.jacc.2000.1152-8
2. Ionescu A, Fraser AG, Butchart EG. Prevalence and clinical significance of incidental paraprosthetic valvar regurgitation: a prospective study using transoesophageal echocardiography. Heart. 2003;89:1316-1321. doi:10.1136/heart.89.11.1316
3. Cho JJ, Moon J, Shim CY, et al. Different clinical outcome of paravalvular leakage after aortic or mitral valve replacement. Am J Cardiol. 2011;107:280-284. doi:10.1016/j.amjcard.2010.09.014
4. Dávila-Román VG, Waggoner AD, Kennard ED, et al. Artificial Valve Endocarditis Reduction Trial echocardiography study. Prevalence and severity of paravalvular regurgitation in the Artificial Valve Endocarditis Reduction Trial (AVERT) echocardiography study. J Am Coll Cardiol. 2004;44:1467-1472. doi:10.1016/j.jacc.2003.12.060
5. Rallidis LS, Moysakis IE, Ikonomidou I, Nihoyannopoulos P. Natural history of early aortic paraprosthetic regurgitation: a five-year follow-up. Am Heart J. 1999;138(2):351-357. doi:10.1016/S0002-8703(99)70124-9
6. Flachskampf FA, Hoffmann R, Franke A, et al. Does multiplane transesophageal echocardiography improve the assessment of prosthetic valve regurgitation?. J Am Soc Echocardiogr. 1995;8:70-78. doi:10.1016/S0894-7317(95)80036-0
7. Daniel LB, Grigg LE, Weisel RD, Rakowski H. Comparison of transthoracic and transesophageal assessment of prosthetic valve dysfunction. Echocardiography. 1990;7:83-95. doi:10.1111/j.1540-8175.1990.tb00352.x

Inconsistent with our findings, Feuchtner et al. reported role of CTA for identification of cause of prosthesis malfunction using surgery as the reference standard.23
9. Habets J, Meijer TS, Meijer RC, Mali WP, Vonken EJ, Budde RP. CT attenuation measurements are valuable to discriminate pledges used in prosthetic heart valve implantation from paravalvular leakage. Br J Radiol. 2012;85:e616-e621. doi:10.1259/bjr/29602784

10. Ruiz CE, Jelin V, Kronzon I, et al. Clinical outcomes in patients undergoing percutaneous closure of periprosthetic paravalvular leaks. J Am Coll Cardiol. 2011;58:2210-2217. doi:10.1016/j.jacc.2011.03.074

11. Habets J, Tanis W, van Herwerden LA, et al. Cardiac computed tomographic angiography results in diagnostic and therapeutic change in prosthetic heart valve endocarditis. Int J Cardiovasc Imaging. 2014;30(2):377-387. doi:10.1007/s10554-013-0335-2

12. Konen E, Goitein O, Feinberg MS, et al. The role of ECG-gated MDCT in the evaluation of aortic and mitral mechanical valves: initial experience. Am J Roentgenol. 2008;191(1):26-31. doi:10.2214/AJR.07.2951

13. LaBounty TM, Agarwal PP, Chughtai A, et al. Evaluation of mechanical heart valve size and function with ECG-gated 64- MDCT. Am J Roentgenol. 2009;193(5):W389-96. doi:10.2214/AJR.08.2178

14. Feuchtner GM, Stolzmann P, Dichtl W, et al. Multislicecomputed tomography in infective endocarditis: comparison with transesophageal echocardiography and intraoperative findings. J Am Coll Cardiol. 2009;53(5):436-444. doi:10.1016/j.jacc.2008.01.077

15. Feuchtner GM, Stolzmann P, Dichtl W, et al. Multislicecomputed tomography in infective endocarditis: comparison with transesophageal echocardiography and intraoperative findings. J Am Coll Cardiol. 2009;53(5):436-444. doi:10.1016/j.jacc.2008.01.077

16. Habets J, Tanis W, van Herwerden LA, et al. Cardiac computed tomography angiography results in diagnostic and therapeutic change in prosthetic heart valve endocarditis. Int J Cardiovasc Imaging. 2014;30(2):377-387. doi:10.1007/s10554-013-0335-2

17. Suh YJ, Hong GR, Han K, et al. Assessment of mitral paravalvular leakage after mitral valve replacement using cardiac computed tomography: comparison with surgical findings. Circ Cardiovasc Imaging. 2016;9(6):e004153. doi:10.1161/CIRCIMAGING.115.004153

18. Montorsi P, Cavoretto D, Repossini A, et al. Valve design characteristics and cine-fluoroscopic appearance of five currently available bileaflet prosthetic heart valves. Am J Card Imaging. 1996;10(1):29-41.

19. Fagman E, Perrotta S, Bech-Hansen Q, et al. ECG-gated computed tomography: a new role for patients with suspected aortic prosthetic valve endocarditis. Eur Radiol. 2012;22(11):2407-2414. doi:10.1007/s00330-012-2491-5

20. Habets J, Tanis W, van Herwerden LA, et al. Cardiac computed tomography angiography results in diagnostic and therapeutic change in prosthetic heart valve endocarditis. Int J Cardiovasc Imaging. 2014;30(2):377-387. doi:10.1007/s10554-013-0335-2

21. Konen E, Goitein O, Feinberg MS, et al. The role of ECG-gated MDCT in the evaluation of aortic and mitral mechanical valves: initial experience. Am J Roentgenol. 2008;191(1):26-31. doi:10.2214/AJR.07.2951

22. LaBounty TM, Agarwal PP, Chughtai A, et al. Evaluation of mechanical heart valve size and function with ECG-gated 64- MDCT. Am J Roentgenol. 2009;193(5):W389-96. doi:10.2214/AJR.08.2178

23. Feuchtner G, Plank F, Mueller S, et al. Cardiac CTA for evaluation of prosthetic valve dysfunction. JACC Cardiovasc Imaging. 2017;10(1):91-93. http://doi.org/10.1016/j.jcmg.2016.08.008

24. Le HT, Hangiandreou N, Timmerman R, et al. Imaging artifacts in echocardiography. Anesth Analg. 2016;122(3):633-646. doi:10.1213/ANE.0000000000001085

25. Faletra FF, Ramamurthi A, Dequarti MC, et al. Artifacts in three-dimensional transesophageal echocardiography. J Am Soc Echocardiogr. 2014;27(5):453-462. doi:10.1016/j.echo.2014.02.003

26. Mahmood F, Jeganathan J, Saraf R, et al. A practical approach to an intraoperative three-dimensional transesophageal echocardiography examination. J Cardiothorac Vasc Anesth. 2016;30(2):470-490. doi:10.1053/j.jvca.2015.10.014

27. Saxena P, Malouf JF, Click R, et al. 3D echocardiography in cardiac surgery. J Card Surg. 2014;29(1):51-54. doi:10.1111/jocs.12256