Forcing linearity numbers for coatomic modules

Peter R. Fuchs

Abstract
We show that an integer \(n \in \mathbb{N} \cup \{0\} \) is the forcing linearity number of a coatomic module over an arbitrary commutative ring with identity if and only if \(n \in \{0, 1, 2, \infty\} \cup \{q + 2 | q \text{ is a prime power}\} \).

Keywords: Homogeneous functions, Forcing linearity numbers, Coatomic modules

2010 AMS: Primary 13C05, Secondary 16D10

1. Introduction
Throughout this paper \(R \) shall denote a commutative ring with identity and \(V \) a unital right \(R \)-module. Consider the set \(M_R(V) := \{ f : V \to V | f(vr) = f(v)r \text{ for all } r, v \in V \} \). Under the operations of pointwise addition and composition of functions, \(M_R(V) \) is a near-ring with identity, called the near-ring of homogeneous functions. Note that \(M_R(V) \) contains the endomorphism ring \(\text{End}_R(V) \). The question arises how much linearity is needed on a function \(f \in M_R(V) \) to ensure that \(f \) is linear on all of \(V \), i.e. \(f \in \text{End}_R(V) \). More precisely, we say that a collection \(\{W_i | i \in I\} \) of proper submodules forces linearity on \(V \), if whenever \(f \in M_R(V) \) and \(f \) is linear on each \(W_i, i \in I \), then \(f \in \text{End}_R(V) \). Thus \(M_R(V) = \text{End}_R(V) \) if and only if the empty collection forces linearity on \(V \). The smallest number of modules which force linearity on \(V \) gives rise to the forcing linearity number of \(V \).

Definition 1.1. [3] Let \(V \) be an \(R \)-module. The forcing linearity number \(f \ln(V) \in \mathbb{N} \cup \{0, \infty\} \) of \(V \) is defined as follows:

1. If \(M_R(V) = \text{End}_R(V) \), then \(f \ln(V) = 0 \).
2. If \(M_R(V) \neq \text{End}_R(V) \), and there is some finite collection \(\{W_i | 1 \leq i \leq n\}, n \in \mathbb{N} \), of proper submodules of \(V \) which forces linearity on \(V \), but no collection of fewer than \(n \) proper submodules forces linearity, then we say that \(f \ln(V) = n \).
3. If neither 1. or 2. holds, then we say that \(f \ln(V) = \infty \).

Forcing linearity numbers have been found for several classes of rings and modules, see for example [3], [4], [5] and their references. In section 2 we determine the forcing linearity number of coatomic modules over an arbitrary commutative ring \(R \) with identity. An \(R \)-module \(V \) is called coatomic, if every proper submodule is contained in a maximal submodule of \(V \). For example a finitely generated module or a semisimple module over any ring is coatomic. For a commutative noetherian local ring, the coatomic modules have been characterized in [7].

2. Forcing linearity numbers of coatomic modules
For an \(R \)-module \(V \) and subsets \(S_1, S_2 \) of \(V \) let \((S_1 : S_2) = \{ r \in R | S_2r \subseteq S_1 \} \). For \(v \in V \) let \(\text{Ann}(v) = \{ r \in R | vr = 0 \} \).
Theorem 2.1. Let V be an R–module and let M,N be maximal submodules of $V, M \neq N$. The following are equivalent:

1. The collection $\{M,N\}$ does not force linearity.
2. $\exists w \neq 0 \in V: (M : V) = (N : V) = \text{Ann}(w)$.

Proof. $1 \Rightarrow 2$: Since $\{M,N\}$ does not force linearity on V, there exists a function $f \in M_R(V)$ such that f is linear on the submodules $M,N,$ but $f \notin \text{End}_R(V)$. Let $u,v \in V$ be such that $w := f(u+v) - f(u) - f(v) \neq 0$. Since $M \neq N$, and M,N are maximal, we have that $M + N = V$. For every $v \in V - M$, $(M : v) = (M : V)$, therefore $(M : V)$ and $(N : V)$ are maximal ideals. If $(M : V) \neq (N : V)$, then $(M : V) + (N : V) = R$, hence $r + s = 1$ for some $r \in (M : V), s \in (N : V)$. Now $wr = f(ur + vr) - f(ur) - f(vr) = f(ur) + f(vr) - f(ur) - f(vr) = 0$, since f is linear on M. Similarly, $ws = 0$, hence $w = w(1) = w(r + s) = 0$, a contradiction. Thus $(M : V) = (N : V)$, and since $(M : V) \subseteq \text{Ann}(w)$ and $(M : V)$ is a maximal ideal, it follows that $(M : V) = \text{Ann}(w)$.

$2 \Rightarrow 1$: Let $v \in V - M$. Then $(M : v) = (M : V) = \text{Ann}(w)$ and $h : V/M \rightarrow Rw, h(vr/M) := wr$ is an isomorphism. Define a function $f : V \rightarrow V$ as follows: For $m \in M, n \in N$ let

$$f(m+n) := \begin{cases} h(n/M) & \text{if } m+n \notin M \cup N \\ 0 & \text{otherwise} \end{cases}$$

Since $M + N = V$, f is defined on V. We show that f is well–defined. Suppose $m_1+n_1 = m_2+n_2, m_1,m_2 \in M, n_1,n_2 \in N$. If $m_1+n_1 \in M \cup N$, then $f(m_1+n_1) = f(m_2+n_2) = 0$. If $m_1+n_1 \notin M \cup N$, then $n_1n_2 \in M$, hence $f(m_1+n_1) = h(n_1/M) = h((m_2/M) - f(m_2+n_2)$. Next we show that f is homogeneous. Let $S := V - (M \cup N)$. If $m+n \in S$, then $h(m+n) \neq R$, hence $f(m+n) = h((m+n)/M) = h((m+n)/S)$. If $r \notin S$, then $m+n \notin S$, hence $f(m+n) = h((m+n)/M) = h((m+n)/S) = 0$. Now suppose $m+n \notin S$. Then $m+n \in M \cup N$, hence $(m+n)/M \in S$ for all $r \in R$. Thus $f(m+n) = 0 = f((m+n)/S)$. It now follows that $f \in M_R(V)$.

Since $f/M = f/N = 0$, f is linear on M and N. However, for $m \in M - N$ and $n \in N - M$, we have that $m+n \in S$, thus $f(m+n) = h(n/M) \neq 0$, since h is an isomorphism, whereas $f(m) + f(n) = 0$, so $f \notin \text{End}_R(V)$. Therefore the collection $\{M,N\}$ does not force linearity on V. \square

For an R–module V let $\text{Rad}(V)$ denote the Jacobson radical of V and let $J := \text{Rad}(R)$. Recall that an R–module V is called local, if V contains a unique maximal submodule.

Theorem 2.2. For a noncyclic coatomic module V, the following are equivalent:

1. $f \ln(V) > 2$.
2. $I := (\text{Rad}(V) : V)$ is a maximal ideal and $I = \text{Ann}(w)$ for some $0 \neq w \in V$.

Proof. $1 \Rightarrow 2$: Let M denote the collection of all maximal submodules of V. Since V is coatomic, $M \neq 0$. If there exist $M_1,M_2 \in M$ such that $(M_1 : V) \neq (M_2 : V)$, then by Theorem 2.1 the collection $\{M_1,M_2\}$ forces linearity on V. Thus $(M_1 : V) = (M_2 : V)$ for all $M_1,M_2 \in M$ and $I = \bigcap\{(M : V) | M \in M\} = (M : V)$ for all $M \in M$, hence $I = (\text{Rad}(V) : V)$ is a maximal ideal. Like in the proof of Theorem 1, we see that $I = \text{Ann}(w)$ for some $w \neq 0$.

$2 \Rightarrow 1$: Suppose that V is a local module with unique maximal submodule M. Let $v \in V - M$. If $vR \neq V$, then vR is contained in a maximal submodule, which implies $vR \subseteq M$, a contradiction. Consequently $vR = V$ for all $v \in V - M$, which contradicts our assumption that V is noncyclic. Therefore there exist at least two maximal submodules. Suppose $f \ln(V) \leq 2$. Then there exists a collection of submodules $\{S_1,S_2\}$ which forces linearity on V. Since V is coatomic, there exist maximal submodules M_1,M_2 such that $S_1 \subseteq M_1, S_2 \subseteq M_2$. Without loss of generality we may assume that $M_1 \neq M_2$ (otherwise we can choose another maximal submodule, since V is not local). Then $\{M_1,M_2\}$ also forces linearity on V. We have $(\text{Rad}(V) : V) \subseteq (M_1 : V) \neq R$. By our assumptions $(\text{Rad}(V) : V)$ is a maximal ideal, hence $(\text{Rad}(V) : V) = (M_1 : V) = (M_2 : V)$. Also, $(\text{Rad}(V) : V) = \text{Ann}(w)$ for some $0 \neq w \in V$. Therefore $\{M_1,M_2\}$ does not force linearity by Theorem 1, a contradiction. \square

Theorem 2.3. Let V be coatomic. Suppose $I := (\text{Rad}(V) : V)$ is a maximal ideal of R and there exists $0 \neq w \in V$ such that $I = \text{Ann}(w)$. Then

$$f \ln_R(V) = f \ln_R(I(V/\text{Rad}(V)))$$

Forcing linearity numbers for coatomic modules — 2/4
Proof. We first show that $f \ln_{R/I}(V/Rad(V)) \leq f \ln_{R}(V)$. Let $\{W_{i}| i \in I\}$ be a collection of proper submodules which forces linearity on V. Since V is commutative, we may assume that each $W_{i}, i \in I$, is maximal. We show that the collection $\{W_{i}/Rad(V) | i \in I\}$ forces linearity on $V/Rad(V)$. Suppose that this is not the case. Then there exists a homogeneous function $f : V/Rad(V) \to V/Rad(V)$, which is linear on each submodule $W_{i}/Rad(V), i \in I$, but not linear on $V/Rad(V)$. Let $\pi_{M} : V/Rad(V) \to V/M$ denote the projection of $V/Rad(V)$ onto V/M for a maximal submodule M. Since f is not linear, there exists a maximal submodule M of V such that $\pi_{M}f : V/Rad(V) \to V/M$ is not linear. Since I is a maximal ideal, $I = \langle M : V \rangle$, hence $w(M : V) = 0$, which implies $V/M \cong wR$. Thus we obtain a homogeneous map $f_{1} : V/Rad(V) \to wR$, which is linear on each submodule $W_{i}/Rad(V), i \in I$. If $g : V \to V$ is defined by $g(v) := f_{1}(v/Rad(V))$, then $g \in M_{R}(V)$ and linear on each $W_{i}, i \in I$, but not linear on V, a contradiction to our assumption that $\{W_{i}/Rad(V) | i \in I\}$ forces linearity on V. For the reverse inequality suppose first that $f \ln_{R/I}(V/Rad(V)) \leq 1$. Since $V/Rad(V)$ is a vector space over the field R/I, it follows from Theorem 3.1 in [3] that $\dim_{R/I}(V/Rad(V)) = 1$. Note that $Rad(V)$ is a superfluous submodule, since V is commutative. It follows that V is cyclic, hence $f \ln_{R/I}(V/Rad(V)) = 0 = f \ln_{R}(V)$. If $\dim_{R/I}(V/Rad(V)) = 2$ or $f \ln_{R/I}(V/Rad(V)) \geq 2$ and R/I is infinite, we have that $f \ln_{R/I}(V/Rad(V)) = 0$ by Theorem 3.1 in [3]. So suppose that $f \ln_{R/I}(V/Rad(V)) \geq 3$ and $|R/I| = q \in \mathbb{N}$. By [3], 3.8 and 3.10, $f \ln_{R/I}(V/Rad(V)) = q + 2$. Choose $\{r_{1}, \ldots, r_{q}\} \subseteq R$ such that $R/I = \langle r_{1}/I, \ldots, r_{q}/I \rangle$. It suffices to give a collection of $q + 2$ proper submodules which forces linearity on V. Let $\{b_{i}| i \in I\} \subseteq V$ be such that $\{b_{i}/Rad(V) | i \in I\}$ is a basis of the vector space $V/Rad(V)$. As we have seen above, $|I| \geq 3$, so we can choose pairwise different elements $i_{1}, i_{2}, i_{3} \in I$. Let (X) denote the submodule generated by a subset $X \subseteq V$, and define $S_{1} := (b_{1} + b_{2} + Rad(V), S_{2} := (b_{1} + b_{3} + b_{i}/I \notin \{i_{1}, i_{2}, i_{3}\} + Rad(V), and for $r \in \{r_{1}, \ldots, r_{q}\}$ define $S_{r} := (b_{i_{1}} + r_{b_{2}} + b_{i_{3}} + b_{i}/I \notin \{i_{1}, i_{2}, i_{3}\} + Rad(V)$. Note that all submodules are proper, since $Rad(V)$ is superfluous. Similarly as in Theorems 3.8,3.10 in [3], one can prove that the collection $\{S_{1}, S_{2}\} \cup \{S_{r} | i \in \{1, \ldots, q\}\}$ forces linearity on V. \endproof

For R local and J-nilpotent, Theorem 2.3 has been proved in [4]. Theorem 5.1. The following example shows that Theorem 2.3 is not true in general, if I is not the annihilator of some $0 \neq w \in V$.

Example 2.4. Let $R := F[[x]]$ denote the ring of formal power series over a field F and let $V := R \times R$. Since R is local with radical $J = \langle x \rangle$, $Rad(V) = VJ = \langle x \rangle \times \langle x \rangle$ and $I = \langle Rad(V) : V = \langle x \rangle \rangle$ is maximal. By [3], Corollary 2.4, $f \ln_{R}(V) = 1$. However, $f \ln_{R/I}(V/Rad(V)) = f \ln_{F}(F^{2}) = \infty$, by [3], Theorem 3.1.

Theorem 2.5. Let $n \in \mathbb{N} \cup \{0, \infty\}$. Then n is the forcing linearity number of a coatomic module over a commutative ring if and only if $n \in \{0, 1, 2, \infty\} \cup \{q + 2| q \text{ is a prime power}\}$. \endproof

Proof. It is well-known that there exist coatomic modules V over a commutative ring R such that $f \ln_{R}(V) \in \{0, 1, 2, \infty\}$, see for example [5]. If V is a cyclic module, then $M_{R}(V) = End_{R}(V)$, hence $f \ln_{R}(V) = 0$. Now suppose $f \ln_{R}(V) > 2$. By Theorem 2.2, $I = \langle Rad(V) : V \rangle$ is a maximal ideal and $I = Ann(w)$ for some $0 \neq w \in V$. By Theorem 2.3, $f \ln_{R}(V) = f \ln_{R/I}(V/Rad(V))$ and as we have remarked previously, $f \ln_{R/I}(V/Rad(V)) \in \{\infty\} \cup \{q + 2| q \text{ is a prime power}\}$. \endproof

It is not known to the author, whether Theorem 2.5 is true for every module over a commutative ring.

There is a class of rings which have the property that every right module is coatomic, or which is easily seen to be equivalent, every nonzero right module has a maximal submodule.

Definition 2.6. A ring R is called a right max–ring, if every right R–module is coatomic. See [6].

Theorem 2.7. [2] For a commutative ring R, the following are equivalent:

1. R is a max–ring.

2. J is T–nilpotent and R/J is von Neumann regular.

Theorem 2.8. Let V be a module over a commutative max–ring R. If R is not local, then $f \ln_{R}(V) \leq 2$. \endproof

Proof. Suppose that R is not local, but $f \ln_{R}(V) > 2$. Since R is a max-ring, it follows from Theorem 2.7 and from [1], Proposition 18.3 that $Rad(V) = VJ$. By Theorem 2.2, $\langle Rad(V) : V \rangle = \langle VJ : V \rangle$ is a maximal ideal. We have $J \subseteq \langle VJ : V \rangle$. Suppose that there exists an element $r \in \langle VJ : V \rangle$. Then $r \notin M$ for some maximal ideal M of R. Let R_{M}, V_{M} denote the localisations of R, V at M. By [1], Proposition 18.3, $Rad(V_{M}) = V_{M}J_{M}$. Since R is a max-ring J is T-nilpotent, thus J_{M} is T-nilpotent. It follows from Theorem 2.5 that R_{M} is a max-ring, hence $Rad(V_{M}) = V_{M}J_{M} \neq V_{M}$. So let $w/1 \in V_{M} - Rad(V_{M})$. From $r \in \langle VJ : V \rangle$, $w/1 \cdot r/1 = wr/1 \in V_{M}J_{M}$. Since $r \notin M$, $r/1$ is invertible in R_{M}, hence $w/1 \in V_{M}J_{M} = Rad(V_{M})$, a contradiction. It now follows that $J = \langle VJ : V \rangle$ is a maximal ideal of R, which contradicts our assumption that R is not local.
References

[1] C. Faith, Algebra. II. Ring theory. Grundlehren der Mathematischen Wissenschaften, No. 191. Springer-Verlag, Berlin-New York, 1976.

[2] R.M.Hamsher, Commutative rings over which every module has a maximal submodule, Proc. Amer. Math. Soc. 18 (1967), 1133–1137.

[3] C.J.Maxson, J.H.Meyer, Forcing linearity numbers, J.Algebra 223 (2000), 190–207.

[4] C.J.Maxson, A.B.Van der Merwe, Forcing linearity numbers for modules over rings with nontrivial idempotents, J.Algebra 256 (2002), 66–84.

[5] C.J.Maxson, A.B.Van der Merwe, Forcing linearity numbers for finitely generated modules, Rocky Mountain J.Math.35 (3) (2005), 929–939.

[6] A.A. Tuganbaev, Rings whose nonzero modules have maximal submodules, J.Math.Sci. (New York) 109 (2002), no.3, 1589–1640.

[7] H.Zöschinger, Koatomare Moduln, Math.Z. 170 (1980), 221–232.