Proton asymmetry from non-mesonic weak decay in light hypernuclei

Outline

- Motivation
- Analysis results
 - s-shell ($^5_\Lambda$He)
 - p-shell ($^{12}_\Lambda$C, $^{11}_\Lambda$B)
- Summary

Tomofumi Maruta
Department of Physics
Univ. of Tokyo
KEK-PS E462/E508 Collaboration
Asymmetry measurement of decay proton

Asymmetry: Volume of the asymmetric emission from N:

$$N(\theta) = N_0 (1 + A \cos \theta)$$

$$= N_0 (1 + \alpha P \cos \theta)$$

Asymmetry Parameter

$$A = \frac{r - 1}{1 + (r - 1)}$$

$$r = \frac{N(\theta^+)}{N(\theta^-)}$$

$$\phi_K > 0$$

$$\phi_K < 0$$

Difference of acceptance & efficiency is canceled out!

$r = \left\{ \frac{N(\theta^+(+\phi)) \times N(\theta^-(0))^{1/2}}{N(\theta^+(-\phi)) \times N(\theta^-(+\phi))} \right\}$
Motivation

Present status

	Asymmetry Parameter
Previous experiments	
$^5_\Lambda$He : 0.24 ± 0.22	Theoretical prediction
$^{12}_\Lambda$C, $^{11}_\Lambda$B : -1.3 ± 0.4	$-0.6 \sim -0.7$

The aim of E462/E508 experiment

- Precise measurement of Asymmetry parameter
- with high statistics
- with np back-to-back events
- $\Delta p \rightarrow np$
Event selection ($\bar{\Lambda}$He)

6Li mass spectra

- Inclusive: 5.2×10^4 events
- π^--coin: 3.2×10^3 events
- p-coin: 1.7×10^3 events

$E_p > 30$ MeV

Particle identification

Systematic error

π^- gate

$g.s.$ contamination

π^- gate

P^- gate
Instrumental Asymmetry

(π, pC) reaction : Only Strong Interaction

Asymmetry = 0 expected

	Horizontal Scattering Angle	^6Li target	^{12}C target		
Proton	2 < $	\theta	$ < 6°	-0.000 ± 0.002	0.000 ± 0.002
	6 < $	\theta	$ < 9°	0.003 ± 0.002	-0.003 ± 0.003
	9 < $	\theta	$ < 15°	0.003 ± 0.002	0.001 ± 0.002
Pion	2 < $	\theta	$ < 6°	-0.001 ± 0.001	-0.002 ± 0.002
	6 < $	\theta	$ < 9°	0.003 ± 0.001	0.002 ± 0.002
	9 < $	\theta	$ < 15°	0.000 ± 0.001	-0.003 ± 0.002

Instrumental Asymmetry < 0.3%
Procedure for α_{NM} calculation
($\bar{P}He$)

\[A_\pi = \alpha_\pi P_\Lambda \varepsilon \]

- Polarization of Λ
- Estimated from mesonic decay

\[A_\pi : \text{Asymmetry of } \pi \]
\[\alpha_\pi : \text{Asymmetry Parameter of mesonic decay} \]
\[(=-0.642 \pm 0.013) \]
\[P_\Lambda : \text{Polarization of Lambda} \]
\[\varepsilon : \text{Attenuation factor} \]

\[A_p = \alpha_p^{NM} P_\Lambda \varepsilon \]

- Asymmetry Parameter of Proton

We can calculate α_p^{NM} without theoretical help.
Asymmetry parameter of $^5\Lambda$He

Preliminary

$\alpha_p^{NM} = 0.07 \pm 0.08^{+0.08}_{-0.00}$

Theory: $-0.6 \sim -0.7$
np coincidence analysis

np angular correlation

back-to-back events

Scattering Angle	$N_{\text{upper}}/N_{\text{lower}}$	Asymmetry	Asymmetry Parameter			
$6 <	\theta	< 15^\circ$	23/26	30/19	0.18±0.12	0.31±0.22
$^{12}_{\Lambda}C$ Hypernuclear mass spectra

- Inclusive:
 - $^{12}_{\Lambda}C$: 6.7×10^4 events
 - $^{11}_{\Lambda}B$: 1.2×10^3 events

- N, α decay
- LH
- Proton decay
- ΛB decay
- $^{11}_{\Lambda}B + p$
 - 8.1 MeV
 - 6.3 MeV
 - 2.5 MeV
 - 0.0 MeV
- M1 transition
- Depolarized effect
- $E_p > 30$ MeV
Polarization of Λ

Itonaga et al.
Prog. of Theo. Phys. Supp. 117 (1994) 14

M1 transition reduces polarization of Λ

If assuming polarization is proportional to scattering angle.

P_Λ	Kaon Scattering angle		
	$2^\circ \sim 6^\circ$	$6^\circ \sim 9^\circ$	$9^\circ \sim 15^\circ$
$^{12}_{\Lambda C}$	0.04	0.08	0.12
$^{11}_{\Lambda B}$	0.04	0.07	0.12
Asymmetry of p-shell hypernuclei

Estimation of the contamination from other energy levels.

Pion coincidence

Proton coincidence

Blue : 6~9
Red : 9~15
Asymmetry parameter of $^{12}\Lambda C, ^{11}\Lambda B$

Preliminary

$$\alpha_p^{\text{NM}} = -0.24 \pm 0.26$$

Blue : $^{12}_{\Lambda} C$: $\alpha^{\text{NM}} = -0.44 \pm 0.32$

Red : $^{11}_{\Lambda} B$: $\alpha^{\text{NM}} = 0.11 \pm 0.44$
Comparison with recent results

\[\Lambda^5_{\Lambda} \text{He} \quad \Lambda^{12}_{\Lambda} \text{C}, \Lambda^{11}_{\Lambda} \text{B} \]

Theoretical prediction

Unphysical region
Summary

- We performed precise α_{p}^{NM} measurements of $^5\Lambda\text{He}$ (s-shell) and $^{12}\Lambda\text{C}$, $^{11}\Lambda\text{B}$ (p-shell) hypernuclei.

- Slightly positive $\alpha_{p}^{\text{NM}} (0.07 \pm 0.08^{+0.08}_{-0.00})$ of s-shell hypernuclei was confirmed and α_{p}^{NM} of np back-to-back event also supports this tendency (0.31 ± 0.22).

- In the case of p-shell hypernuclei, our result (- $0.24 \pm 0.26^{+0.08}_{-0.00}$) contradicts large negative α_{p}^{NM} which obtained previous experiment with several times higher statistics.

- Theoretical calculation is inconsistent with our results, it means new reaction mechanism are required.
Spare OHP
Summary

Asymmetry parameter of NMWD

- **s-shell**
 \(^5\text{He}, \Lambda : \text{E}462 \)
 \[0.07 \pm 0.08 \pm 0.08 - 0.00 \]
 (preliminary)

- np back-to-back:
 \[0.31 \pm 0.22 \]
 (preliminary)

- **p-shell**
 \(^{12}\Lambda\text{C}, ^{11}\Lambda\text{B}, \Lambda : \text{E}508 \)
 \[-0.24 \pm 0.26 \pm 0.08 - 0.00 \]
 (preliminary)

Large discrepancy

Theoretical prediction

\(\pm 0.6 \sim -0.7 \)

(s/p-shell hypernuclei)
Asymmetry measurement of decay proton

Asymmetry: Volume of the asymmetric emission from NM

\[
N(\theta) = 1 \pm A \cos \theta = 1 + \Lambda \alpha P \cos \theta
\]

Asymmetry Parameter

Decay counter Acceptance

\[|\theta| > 0.7\]

Difference of acceptance & efficiency is canceled out!
Setup

(KEK-PS K6 beamline & SKS)

Solid angle: 26%
9(T)+9(B)+8(S)%

Charged particle:
- TOF (T2→T3)
- tracking (PDC)

Neutral particle:
- TOF (target→NT)
- T2/T3 VETO

Decay arm

N: 20cm×100cm×5cm
T3: 10cm×100cm×2cm
T2: 4cm×16cm×0.6cm
Charged particle ID

- E VS. TOF
- E VS. dE/dx
- T2 energy loss (MeVee)
- TOF (1/β)
- Total E

Diagram showing charged particle identification with T4, T3, PDC, T2, and target, along with energy and time-of-flight plots.
$^5\Lambda\text{He spectrum (E462)}$

$^{12}\Lambda\text{C spectrum (E508)}$

$^5\Lambda\text{He gate}$

$^{12}\Lambda\text{C gate}$

$^{11}\Lambda\text{B gate}$

π

p

d
Production of Polarized hypernuclei

E462/E508 experiment 1.05GeV/c π^+ beam is injected.

Distribution of Λ polarization in the $n(\pi^+, K^+)\Lambda$ reaction.

In large scattering angle, Λ is much...
Significance of asymmetry measurement

If assuming initial S state

Initial state	Final state	Amplitude	Isospin	Parity
1S_0	1S_0	a	1	No
	3P_0	b	1	Yes
3S_1	1S_1	c	0	No
	3D_1	d	0	No
	1P_1	e	0	Yes
	3P_1	f	1	Yes

$$\alpha_p^{NM} = \frac{\sqrt{3}/2[-ae + b(c - \sqrt{2}d)/\sqrt{3} + (\sqrt{2}c + d)f]}{1/4\{a^2 + b^2 + 3(c^2 + d^2 + e^2 + f^2)\}}$$

We can know the Interference between states with different Isospin and Parity.

$$\Gamma_n / \Gamma_p = \frac{2(a^2 + b^2 + f^2)}{a^2 + b^2 + c^2 + d^2 + e^2 + f^2} \quad \text{(Applying } \Delta I=1/2 \text{ rule)}$$
Theoretical and Experimental data

Theoretical calculation

	s-shell$_\alpha$(\(^5\)He)	p-shell$_\alpha$(\(^{12}\)C, \(^{11}\)B)	
Γ_n/Γ_p	α_{NM}	Γ_n/Γ_p	α_{NM}
Sasaki et al.[2]			
OPE	0.133	-0.441	
$\pi+K$	0.450	-0.362	
$\pi+K+DQ$	0.701	-0.678	
Parreño et al.[3]			
OPE	0.086	-0.252	
$\pi+K$	0.288\sim0.498	-0.572\sim-0.606	
OME	0.343\sim0.457	-0.675\sim-0.682	
BNL 1991[4]	0.93\pm0.55	1.33\pm1.12	
KEK-E160[5][6]		1.87\pm0.67	-1.3\pm0.4
KEK-E278[7][8]	1.97\pm0.67	0.24\pm0.22	
KEK-E307[9]		1.17\pm0.22	
Estimation of Attenuation Factor

To estimate the attenuation factors (ε), I checked angle distribution of decay particles.

Decay Proton

Mean = 0.899

Decay Pion

Mean = 0.894

Attenuation Factor (ε) = ~0.9
Summary

- We performed precise α_{p}^{NM} measurements of $^5_\Lambda$He(s-shell)/$^{12}_\Lambda$C, $^{11}_\Lambda$B(p-shell) hypernuclei.

- Slightly positive α_{p}^{NM} ($0.07 \pm 0.08^{+0.08}_{-0.00}$) of s-shell hypernuclei was confirmed and α_{p}^{NM} of np back-to-back event also supports this tendency (0.31 ± 0.22).

- In the case of p-shell hypernuclei, our result ($-0.24 \pm 0.26^{+0.08}_{-0.00}$) contradicts large negative α_{p}^{NM} which obtained previous experiment with several times higher statistics.
Spare OHP
(for E462 experiment)
Proton Energy Dependence

Energy Spectrum of decay Proton

| $6 < |\theta_\kappa| < 15^\circ$ | 30~60MeV | 60~85MeV | 85MeV~ |
|-------------------------------|----------|----------|--------|
| | $-0.07 \pm 0.15^{+0.04}_{-0.00}$ | $0.17 \pm 0.14^{+0.09}_{-0.00}$ | $0.11 \pm 0.15^{+0.09}_{-0.00}$ |
Energy of decay Particle $^5_{\Lambda}He$ gate

π^- Energy

31 MeV

p Energy

32 MeV
Proton energy dependence

Preliminary

Very small even at highest energy data!

Energy of Decay Proton (MeV)
Spare OHPs
(for E508 experiment)
Asymmetry of p-shell hypernuclei

Scattering Angle	Horizontal	$^{12}_\Lambda$C	$^{11}_\Lambda$B	
$2<	\theta	<6^\circ$	-0.040± 0.071	0.060± 0.059
$6<	\theta	<9^\circ$	0.017± 0.080	-0.084± 0.069
$9<	\theta	<15^\circ$	-0.094± 0.076	-0.158± 0.065

- All the regions, Asymmetry is very strong.
Statistical comparison with E160

Event Type	E160 Events	Scale Factor	E508 Events
$^{12}\Lambda C$ event	246 events	$\times 11$	2779 events
$^{11}\Lambda B$ event	393 events	$\times 5$	2122 events
Total	**639 events**	**$\times 8$**	**4901 events**

p-coin spectrum
Polarization of Λ (E160)

At the time of E160, transition probability to 2^- wasn’t known. So they calculated by changing it from 0% to 100%.

E160 result

$P_\Lambda(\theta_K=14^0)$	Asymmetry	
$^{12}_\Lambda C$	0.06 ~ 0.09	- 0.01± 0.11
$^{11}_\Lambda B$	0.16 ~ 0.21	- 0.19± 0.10
LH	0.15 ~ 0.26	- 0.24± 0.09

P_Λ of $^{12}_\Lambda C$ to 2^-:
- $0.02 ~ 0.03$
- $0.03 ~ 0.05$
- $0.05 ~ 0.07$

P_Λ of $^{11}_\Lambda B$ to 2^-:
- $0.06 ~ 0.08$
- $0.09 ~ 0.12$
- $0.13 ~ 0.17$
Asymmetry Parameter $\@ E160 \ P_\Lambda$

Preliminary

\[\alpha_{\text{NM}}^{\Lambda} = -0.11 \pm 0.30 \pm 0.08 \]

Blue : $^{12}\Lambda\mathrm{C} : \alpha_{\text{NM}}^{\Lambda} = -0.78 \pm 0.66$

Red : $^{11}\Lambda\mathrm{B} : \alpha_{\text{NM}}^{\Lambda} = 0.07 \pm 0.33$
Comparison with E160

PID function

Energy spectrum

E160
Spare OHPs
(others)
Neutral particle analysis

- Good γ n separation
- Good S/N ratio (~15)

Resolution for neutron counter
σ ~ 11 MeV (around 80 MeV)

Width of γ peak

1 / β spectra (5ΛHe gate)

Constant background → very small

Decay modes:
Λ → n π₀
Λ → n n
Λ → pπ⁻
Λ → p p

Neutron gate

Threshold 2 MeVee

Neutron energy scale (MeV)