COGEX at RTE3

Marta Tatu and Dan Moldovan
Language Computer Corporation
Richardson, Texas, 75080
United States
marta,moldovan@languagecomputer.com

Abstract

This paper reports on LCC’s participation at the Third PASCAL Recognizing Textual Entailment Challenge. First, we summarize our semantic logical-based approach which proved successful in the previous two challenges. Then we highlight this year’s innovations which contributed to an overall accuracy of 72.25% for the RTE 3 test data. The novelties include new resources, such as eXtended WordNet KB which provides a large number of world knowledge axioms, event and temporal information provided by the TARSQI toolkit, logic form representations of events, negation, coreference and context, and new improvements of lexical chain axiom generation. Finally, the system’s performance and error analysis are discussed.

1 Introduction

Continuing a two-year tradition, the PASCAL Network organized the Third Recognizing Textual Entailment Challenge1 (RTE 3) to further the research on reasoning systems able to decide whether the meaning of one text (the entailed hypothesis, H) can be inferred from another text (the entailing text, T). Among this year’s challenges, approximately 15% of the (T, H) pairs contained long texts (more details in Section 5.1).

We approach the textual entailment problem as a logical implication between meanings (Fowler et al., 2005; Tatu et al., 2006). Our system transforms the two text snippets into three-layered semantically-rich logic form representations, generates an abundant set of lexical, syntactic, semantic, and world knowledge axioms and, iteratively, searches for a proof for the entailment between the text T and a possibly relaxed version of the hypothesis H. A pair is labeled as positive if the score of the found proof (reflecting H’s degree of relaxation) is above a threshold learned on the training data. Figure 1 summarizes our approach to RTE.

2 Cogex’s Innovations for RTE 3

2.1 EXtended WordNet Knowledge Base

eXtended WordNet Knowledge Base (XWN-KB) is the result of our ongoing research which captures and stores the rich world knowledge encoded in WordNet’s glosses into a knowledge base. In XWN-KB, the glosses have been transformed into a set of semantic relations using a semantic parser whose output has been verified by human annotators. Fig. 2 displays the semantic relations derived for Nobel laureate’s definition. Our system used this representation for QA Dev pair 579 and QA Test pair 582.

2.2 TARSQI Toolkit

The TARSQI project (Temporal Awareness and Reasoning Systems for Question Interpretation)3 (Verhagen et al., 2005) builds a modular system which detects, resolves and normalizes time expressions (both absolute and relative times) - GUTime tagger; marks events and their grammatical features -

1http://www.pascal-network.org/Challenges/RTE3
2Table 6 lists the pairs referenced throughout the paper.
3http://www.timeml.org/site/tarsqi
The Pet passport alone can be [used]_{e1:occurrence} to [enter]_{e2:occurrence} the UK, but it will not [sufce]_{e3:occurrence} to [enter]_{e4:occurrence} many countries. For instance, Guatemala, like almost every country, [demands]_{e5:occurrence} that all imported pets have a rabies vaccination, but will not [accept]_{e6:occurrence} the Pet passport as proof of [said]_{e7:reporting} vaccination.

| modality: (e1:can); tense: (e2:infinite), (e3:future), (e4:infinite), (e5:present), (e6:future), (e7:past); polarity: (e5:negative), (e6:negative); slink: modal(e1, e2), modal(e5, e6), factive(e6, e7); tlink: before(e1, e2), before(e5, e6), before(e4, e5), before(e6, e7), before(e2, e3), before(e2, e4). |

Table 1: TARSQI’s Treatment of IE Dev pair 63’s T

Table 2: XWN-KB Treatment of Nobel laureate

2.4 Negation
Recently, the logic representation of sentences with negated concepts was altered to mark as negated the entire scope of the negation. For example, the logic form of IE Dev pair 90’s H: Kennon did not participate in the WWII, formerly equal to Kennon_{NN(x1)} & -participate_{VB(e1,x1,x3)} & in_{IN(e1,x2)} & WWII_{NN(x2)} & _conflict_{NE(x2)} & AGT_{SR(x1,e1)} became Kennon_{NN(x1)} & WWII_{NN(x2)} & _conflict_{NE(x2)} & -(exists e1 (participate_{VB(e1,x1,x3)} & in_{IN(e1,x2)} & AGT_{SR(x1,e1)})) which is closer to the meaning of the English text snippet. For Run #1 (with TARSQI output), we only used the polarity information attached to the identified events and negated the event’s predicate.

2.5 Coreference Resolution
In order to cope with the long text pairs, we added in our processing pipeline a dedicated pronominal coreference resolution module which replaced the inter-sentential resolution processing we used until now. The new tool combines Hobbs algorithm (Hobbs, 1978) and the Resolution of Anaphora Procedure (RAP) algorithm (Lappin and Leass, 1994). For the RTE task, it is very important to have tight connections between the predicates of

Figure 1: Cogex’s Architecture

Figure 2: XWN-KB Treatment of Nobel laureate

Evita; identifies subordination constructions introducing modality information - Slinket; adds temporal relations between events and temporal expressions - GUTFenLINK; and computes temporal closures - SputLink. We used the information provided by the TARSQI toolkit (Run #1) as an alternative to our event detection and temporal expression identification and normalization modules (Run #2). Table 1 shows TARSQI’s output for IE Dev pair 63’s T.

The following sections present innovations related to the logic form knowledge representation.

2.3 Logic Representation of Events
For events, the logic representation of their describing concept was augmented with a special predicate (event_{EV(e1)}). When we made use of TARSQI’s output (Run #1), the event predicate was replaced by the class of the event (occurrence_{EV(e1)}, state_{EV(e1)}, reporting_{EV(e1)}, etc.).

23
long texts. For example, for QA Dev pair 409, resolving the pronoun he to George H.W. Bush is a step needed to correctly label the pair. But IE Dev pair 92 requires more advanced anaphora resolution which corefers the team and the Kinston Indians.

3 Natural Language Axiom Improvements

3.1 XWN Lexical Chains

In order to take advantage of XWN-KB, we implemented few changes in our lexical chain axioms generation module. The most significant refinement is the one axiom-per-chain relation approach. Previously, the system was generating one axiom for the entire lexical chain, but, given the diversity of semantic relations which link the WordNet concepts and the difficulty to reduce an entire semantically rich chain to one implication which captures its meaning, a remodeling of our axiom generation module was required. Therefore, for each relation in the best lexical chain found between one of T’s constituents and one of H’s constituents, an axiom is created. For each semantic relation, we created a set of axiom templates to be used during the axiom generation process. Several examples of axiom templates are shown in Table 2. Therefore, a lexical chain is broken down into several axioms whose relations are combined by the logic prover as it sees fit. For instance, the chain oil_company#n#1 agent sell#v#1 entailment trade#v#1 is translated into the axioms:

\[
\text{entailment } \begin{array}{c}
\text{oil_company#n#1} \\
\text{agent} \\
\text{sell#v#1}
\end{array}
\]

\[
\text{trade#v#1}
\]

\[
\text{oil_company#n#1} \rightarrow \text{sell_VB}(e1,x1,x2) \quad & \text{AGENT_SR}(x1,e1) \quad \text{n(e1)} \rightarrow \text{v(e1,x1,x2)} \\
\text{v(e1,x1,x2)} \rightarrow \text{n(x1)}: \text{v(e1,x1,x2)} \rightarrow \text{n(e1)}
\]

\[
\text{CAUSE} \quad \text{v1}(e1,x1,x2) \rightarrow \text{v2}(e2,x2,x3) \quad & \text{CAUSE_SR}(e1,e2)
\]

\[
\text{AGENT} \quad \text{n1}(x1) \rightarrow \text{n2}(x2) \quad & \text{AGENT_SR}(x1,x2)
\]

\[
\text{PERTAIN} \quad \text{a}(x1,x2) \rightarrow \text{n}(x1)
\]

Semantic Relation	Axiom Templates
ISA	n1(x1) \rightarrow n2(x1); v1(e1,x1,x2) \rightarrow v2(e1,x1,x2)
DERIVATION	n(x1) \rightarrow v(e1,x1,x2) & AGENT_SR(x1,e1); n(e1) \rightarrow v(e1,x1,x2)
	v(e1,x1,x2) \rightarrow n(x1): v(e1,x1,x2) \rightarrow n(e1)
CAUSE	v1(e1,x1,x2) \rightarrow v2(e2,x2,x3) & CAUSE_SR(e1,e2)
AGENT	n1(x1) \rightarrow n2(x2) & AGENT_SR(x1,x2)
PERTAIN	a(x1,x2) \rightarrow n(x1)

Table 2: Semantic Relation - Axiom Template mapping

We also changed the subset of senses considered when lexical chains are built. Previously, this subset contained the first \(k \) (\(k = 3 \)) senses for each content word. For this year’s challenge, we changed the sense selection mechanism and we used the cluster of WordNet senses to which the fine-grained sense assigned by the Word Sense Disambiguation system corresponds. We used the coarse-grained sense inventory for WordNet 2.1 released for Task #7 in SemEval-2007\(^4\). This clustering was created automatically with the aid of a methodology described in (Navigli, 2006). For example, the 10 WordNet senses for the noun bank are mapped into 3 clusters.

3.2 NLP Axioms

In addition to the syntactic re-writing rules which break down complex syntactic structures, including complex nominals and coordinating conjunctions, we added a new type of NLP axioms which links a named entity to its set of aliases. For IE Dev pair 35, the link between the Central Intelligence Agency mentioned in \(T \) and \(H \)'s CIA is very important.

We also added a deeper analysis of multi-word human named entities which marks last names (Hawking), first (male/female) names (Stephen), titles (Prime Minister) and names for human entities found in WordNet (Tony Blair). This fine classification has three goals: (1) to mark human entities with the gender information (used by the pronominal coreference module); (2) to prevent lexical chains to use first names of human entities as their source or target (Elizabeth as part of Elizabeth Alexandra Mary should not be mapped to \{Elizabeth#1, Elizabeth II#1\} or \{Elizabeth#2, Elizabeth I#1\} - QA Dev pair 407); (3) to create more precise NLP axioms for human entities denoting noun compounds. These axioms follow rules such as title(x1) & last_name(x2) & nn_NNC(x3,x1,x2) \rightarrow last_name(x3) & title(x3), title(x1) & first_name(x2) & last_name(x3) & nn_NNC(x4,x1,x2,x3) \rightarrow nn_NNC(x4,x2,x3), etc. For IR Dev pair 287, the

\(^4\)nlp.cs.swarthmore.edu/semeval
axiom Prime Minister NN(x6) & Giulio NN(x7)
& Andreotti NN(x8) & nn NNC(x9,x6,x7,x8) &
human NE(x9) -> Andreotti NN(x9) expresses
the equivalence between Prime Minister Giulio
Andreotti and Andreotti. During the processing of
the development set, the prover used 75 axioms of
this type. During testing, 112 axioms proved to be
useful in finding proofs.

4 Named Entity Check

Based on the guidelines for judging whether T en-
tails or not H, hypotheses that introduce entities
which cannot be derived from T are not entailed by
the text (the pair is labeled as NO). Therefore, we
created a proof’s score adjustment module which
deducts points for each pair whose H contains at
least one named entity not-derivable from T. Once
the prover used the loaded axioms to derive all the
possible information from the text, this named en-
tity check is performed. We note that the named en-
tity heuristic is not equivalent with the removal of
a named entity predicate from the hypothesis in the
relaxation stage which can also occur if the syntac-
tic constraints in which the named entity participates
are not satisfied. For instance, for IR Dev pair 387,
Puncheon Lama is a new entity introduced by the
hypothesis without any connection to the text.

5 Experiments and Results

5.1 Experimental Data

The RTE 3 data set was derived with four NLP ap-
plications in mind: Information Extraction (IE), In-
fornation Retrieval (IR), Question Answering (QA),
and Multi-document Summarization (SUM). Statis-
tics for this year’s dataset are shown in Table 3. On
average, the long texts contain twice the number of
words found in texts from pairs marked as short.

5.2 Cogex’s Performance

Table 4 details our submission results for Run #1
(TARSQI’s events, temporal expressions and event-
event and event-time relations) and Run #2 (LCC’s
event, temporal expressions and event-time relations)\(^5\). The two runs do not differ significantly. The

\(^5\)A, AvgP, P, R and F stand for accuracy, average precision,
precision, recall, and f-measure, respectively.

Dataset	True	False	Overall
IE	105 (8)	95 (11)	200 (19)
IR	87 (23)	113 (31)	200 (54)
QA	106 (22)	94 (13)	200 (35)
SUM	112 (5)	88 (4)	200 (9)
Test	410 (58)	390 (59)	800 (117)
Development	412 (78)	388 (57)	800 (135)

Table 3: Data split between true and false classes. The number of pairs with long text is shown in parenthesis.

Task	A	AvgP	P	R	F
Run #1					
IE	63.50	61.44	59.20	98.10	73.84
IR	78.00	78.83	76.54	71.26	73.81
QA	87.50	87.81	87.85	88.68	88.26
SUM	61.80	61.54	58.99	93.75	72.41
Test	72.25	69.42	67.41	88.78	76.63
Dev	76.37	72.12	75.17	80.82	77.89

| Run #2 |
IE	64.50	56.26	60.12	96.19	73.99
IR	75.50	77.65	75.00	65.52	69.94
QA	85.00	87.40	81.67	92.45	86.73
SUM	62.00	58.16	60.47	92.86	73.12
Test	71.75	67.97	67.16	87.80	76.11
Dev	74.12	71.28	71.95	81.55	76.45

Table 4: Results for Run #1 and Run #2

extra information captured in the logic representa-
tions used in Run #1 (as compared with Run #2)
was not the focus of the entailment; the understand-
ing it brings was not exercised during the entailment
recognition process. For the IR and QA tasks, Run
#1 results are better when compared to Run #2’s. For
these tasks, the performance of the system is much
higher when compared with the results obtained for
IE and SUM. Even tough the thresholds learned for
these two tasks best separate the positive from the
negative pairs on the development set, they prove to
be fairly low for the test set. Almost all positive IE
and SUM pairs are identified as such (very high re-
call for both tasks), but a lot of negatives are also la-
beled as positives (low precision, smaller accuracy).

5.3 Named Entity Heuristic Impact

Table 5 details the interaction between the prover
(Run #1) and the named entity heuristic\(^6\). The

\(^6\)Coverage shows the number of pairs for which the heuristic fired. H's A, C's A and C+H's A indicate, respectively, the
named entity heuristic accuracy, Cogex's and the prover's when
heuristic fires for 167 pairs, while only 154 of them are true negative entailments (92.21% accuracy). The prover’s accuracy for the same subset of pairs is 65.86%. The maximum overall improvement in accuracy that the heuristic can bring is 5.5%, but, because of the way the heuristic penalizes the proof scores, its overall improvement is 4.12%.

Task	Coverage	H's A	C's A	C+H's A
IE	19	100.00	42.10	100.00
IR	56	94.64	73.21	94.64
QA	59	94.91	77.96	94.91
SUM	33	78.78	45.45	45.45
Test	167	92.21	65.86	85.63

Table 5: NE heuristic’s performance for Run #1

In theory, the named entity check should not fail. But, in practice, its performance is influenced by the knowledge that the prover collects and, if this information is not complete, then the heuristic fails. For example, for QA Dev pair 419, H mentions number three and because the prover cannot infer it as the cardinality of the elementary particles mentioned in T, the heuristic fires incorrectly.

5.4 Error Analysis

Some of the sources of errors are:

Lexical chains For IR Test pair 377, black_plague can be derived from T’s plague only if we allow lexical chains with more than 2 HYPONYMY relations \(\text{plague} \rightarrow \text{bubonic_plague} \rightarrow \text{black_plague} \). This restriction on lexical chains was added last year. However, in this year’s data this restriction was detrimental as shown in the above example.

Named entity heuristic Some of the errors introduced by the named entity heuristic are debatable. For example, IR Test pair 355’s hypothesis introduces the named entity German which cannot be derived from the text. Similarly, for QA Test pairs 495 and 496, the name Christian Democratic Union cannot be inferred from the text’s mention of Christian Democrat party. On the other hand, pairs for which the score adjustment introduced by the named entity heuristic did not change the label assigned by the prover include SUM Test pair 656 whose hypothesis mentions US without it being derivable from the text (unless we consider the adjective domestic).

World Knowledge For SUM Test pair 744, the system fails to infer nearly half a million dollars from $480,350. Similarly, the system failed to entail died in 1970 from the biographical markings “(1890-1970)” for QA Test pair 486.

High word overlap SUM pairs have a high degree of word-overlap between T and H and detection of the non-entailment requires careful processing. SUM Test pair 666’s text contains an extra adverbial phrase which changes the label of the pair.

Reports and Modality Even though reporting verbs (X said that Y) and modalities (X may Y, X tried to Y) should influence the validity of the statement they modify, most Y clauses are considered true in the RTE data (SUM Dev pair 756, IR Dev pair 295, IE Dev pair 148 are just few examples). Therefore, our solutions for representing\(^7\) or checking these modifiers\(^8\) failed to bring any improvement on the development set and were not included in the processing of the test set.

But, for IE Test pair 172, T’s main verb is qualified by threatened which is not present in H. For SUM Test pair 672, cited strong volume gains does not entail makes strong profits.

6 Conclusion

The XWN-KB is an invaluable resource for recognizing textual entailment. Its impact in RTE 3 was significant. However, we are still exploring ways of fully exploiting this resource. The use of the TARSQI toolkit did not impact the performance because the temporal knowledge was not exercised in this year’s task. Contrary to our expectations, the representation of modality had a negative impact on the performance. This is perhaps due to incorrect representation. For our system, the introduction of long texts did not cause significant problems. The system is robust enough to handle longer texts.

\(^{7}\)Our representation for X said Y which prevents the entailment that Y is \((X(x1) \& _\text{report}_\text{CTXT}(c1,x1)) \rightarrow (Y(e1))\)

\(^{8}\)We attempted to penalize proofs which infer the second argument of an MODAL slink without entailing the first. Pairs IE Dev 191 and IR Dev 203 fall in this category, but have different gold annotation labels.
A leading human rights group on Wednesday identified Poland and Romania as the likely locations in eastern Europe of secret prisons where al-Qaeda suspects are interrogated by the Central Intelligence Agency.

CIA secret prisons were located in Eastern Europe.

Some large Russian oil companies, including Lukoil, Zarubezhneft, the state-owned oil company, and Alpha Eco, the trader, were implicated by the report.

Zarubezhneft trades in oil.

A decision to allow the exiled Italian royal family to return to Italy may be granted amid the discovery that the head of the family, Prince Vittorio Emanuele, addressed the president of Italy properly. He has called President Ciampi “our president, the president of all Italians”.

Italian royal family returns home.

Italy’s highest court has upheld a court verdict that partially cleared former Prime Minister Giulio Andreotti of having colluded with the Mafia.

Andreotti is accused of Mafia collusion.

A leading human rights group on Wednesday identified Poland and Romania as the likely locations in eastern Europe of secret prisons where al-Qaeda suspects are interrogated by the Central Intelligence Agency.

Central Intelligence Agency.

Discovery of the top quark, if confirmed, completes one set of subatomic building blocks whose existence is predicted by the prevailing theory, called the Standard Model, of the particles and forces that determine the fundamental nature of matter and energy. In the whimsical lexicon of modern physics, the elementary particles are called quarks, leptons and bosons.

Quarks, leptons, and bosons are the three elementary particles of physics according to the Standard Model.

Hindu Holy Men boycotted festivals during their pilgrimage to the Ganges.

Hindu Holy Men boycotted festivals during their pilgrimage to the Ganges.

US tobacco income has risen.

Philip Morris cited strong volume gains in Germany, Italy, France, Spain, central and eastern Europe, the Far East, Japan, Korea, Argentina and Brazil.

Philip Morris makes strong profits also in Europe.

Before reconstruction began, the Reichstag was wrapped by the Bulgarian artist Christo and his wife Jeanne-Claude in 1995, attracting millions of visitors.

Christo wraps German Reichstag.

Thus, China’s President repeatedly sent letters and envoys to the Dalai Lama and to the Tibetan Government asking that Tibet “join” the Republic of China.

Dalai Lama and the government of the People’s Republic of China are in dispute over Panchen Lama’s reincarnation.

Boys and girls will be segregated during sex education in junior high school.

Boys and girls will be segregated in junior high school.

Children of a fellow Pole who comes among you to fulfill the needs of his own heart.”

The contaminated pills contained metal fragments ranging in size from “macrodots” to portions of wire one-third of an inch long, the FDA said.

The contaminated pills included metal fragments ranging in size from “macrodots” to portions of wire one-third of an inch long, the FDA said.

Wilkins departed Milan in 1987.

Wilkins departed Milan in 1987.

Thus, China’s President repeatedly sent letters and envoys to the Dalai Lama and to the Tibetan Government asking that Tibet “join” the Republic of China.

Thus, China’s President repeatedly sent letters and envoys to the Dalai Lama and to the Tibetan Government asking that Tibet “join” the Republic of China.

Wilkins and his family settled quickly in Milan, and Wilkins was allowed to leave in 1987 to join French outfit Paris Saint-Germain.

Wilkins departed Milan in 1987.

A. Fowler, B. Hauser, D. Hodges, I. Niles, A. Novischi, and J. Stephan. 2005. Applying COGEX to Recognize Textual Entailment. In Proceedings of the PASCAL Challenges Workshop.

J. Hobbs. 1978. Resolving Pronoun References. Lingua, 44:311–338.

S. Lappin and H. Leass. 1994. An Algorithm for Pronominal Anaphora Resolution. Computational Linguistics, 20(4):535–561.

R.Navigli. 2006. Meaningful Clustering of Senses Helps Boost Word Sense Disambiguation Performance. In Proceedings of COLING-ACL 2006.

M. Tatu, B. Iles, J. Slavick, A. Novischi, and D. Moldovan. 2006. COGEX at the Second Recognizing Textual Entailment Challenge. In Proceedings of the Second PASCAL Challenges Workshop on Recognising Textual Entailment, Venice, Italy.

M. Verhagen, I. Mani, R. Sauri, R. Knippen, J. Littman, and J. Pustejovsky. 2005. Automating Temporal Annotation with TARSQI. In Proceedings of ACL 2005. Demo Session.

Table 6: Examples of RTE 3 pairs. D# and T# refer to the # pair from the dev and the test set, respectively

Id	Tag	Pair Text and Hypothesis
D35	YES	T: A leading human rights group on Wednesday identified Poland and Romania as the likely locations in eastern Europe of secret prisons where al-Qaeda suspects are interrogated by the Central Intelligence Agency. H: CIA secret prisons were located in Eastern Europe.
D92	YES	T: The Kinston Indians are a minor league baseball team in Kinston, North Carolina. The team, a Class A affiliate of the Cleveland Indians, plays in the Carolina League. H: Kinston Indians participate in the Carolina League.
D191	YES	T: Though Wilkins and his family settled quickly in Milan, and Wilkins was allowed to leave in 1987 to join French outfit Paris Saint-Germain, Wilkins departed Milan in 1987. H: Wilkins departed Milan in 1987.
D196	YES	T: Some large Russian oil companies, including Lukoil, Zarubezhneft, the state-owned oil company, and Alpha Eco, the trader, were implicated by the report. H: Zarubezhneft trades in oil.
D203	NO	T: A decision to allow the exiled Italian royal family to return to Italy may be granted amid the discovery that the head of the family, Prince Vittorio Emanuele, addressed the president of Italy properly. He has called President Ciampi “our president, the president of all Italians”. H: Italian royal family returns home.
D287	YES	T: Italy’s highest court has upheld a court verdict that partially cleared former Prime Minister Giulio Andreotti of having colluded with the Mafia. H: Andreotti is accused of Mafia collusion.
D387	NO	T: Italy’s highest court has upheld a court verdict that partially cleared former Prime Minister Giulio Andreotti of having colluded with the Mafia. H: Andreotti is accused of Mafia collusion.
D409	YES	T: George H. W. Bush served this country not only as President but also as Vice President. Member of Congress, United Nations Ambassador, chief of the U.S. Liaison Office to the People’s Republic of China, Director of the Central Intelligence Agency and also, as a naval aviator in World War II. Coming back from the war, he married his sweetheart, Barbara Pierce of Rye, New York, and later that year made his first civilian adult decision when he made the appropriate choice of moving to Texas, where he lived the rest of his life. H: The name of George H. W. Bush’s wife is Barbara.
D579	YES	T: Salma Hayek drew a crowd in Veracruz, Mexico, at the July 8 premiere of ‘Nobody Writes to the Colonel’, a movie based on a short novel by Nobel laureate Gabriel Garcia Marquez. H: Gabriel Garcia Marquez is a Nobel prize winner.
D956	YES	T: The contaminated pills included metal fragments ranging in size from “macrodots” to portions of wire one-third of an inch long, the FDA said. H: The contaminated pills included metal fragments ranging in size from “macrodots” to portions of wire one-third of an inch long, the FDA said.
D172	NO	T: This year thousands of Hindi Holy Men, also known as sadhus, threatened to boycott festivals during their pilgrimage to the Ganges, where their rituals involve washing away their sins by bathing in the water. H: Hindi Holy Men boycotted festivals during their pilgrimage to the Ganges.
D355	YES	T: Before reconstruction began, the Reichstag was wrapped by the Bulgarian artist Christo and his wife Jeanne-Claude in 1995, attracting millions of visitors. H: Christo wraps German Reichstag.
D377	YES	T: The U.S. enjoyed incredibly long immunity from the dreaded plague that used to sweep Europe. H: Black plague swept Europe.
D495	YES	T: Former German Chancellor Helmut Kohl said Thursday he will not break pledges he made to campaign contributors by publicly disclosing their names even though his Christian Democrat party has directed him to reveal their identities. H: The name of Helmut Kohl’s political party is the Christian Democratic Union.
D501	YES	T: Pope John Paul II arrived Saturday in the birthplace of the Solidarity movement that he sparked with his first papal visit 20 years ago, offering Poles “the greeting of a fellow Pole who comes among you to fulfill the needs of his own heart.” H: Pope John Paul II was born in Poland.
D565	NO	T: On the domestic tobacco front, operating income rose by 12 per cent to Dollars 914m, with “slightly higher unit volume”. H: US tobacco income has risen.
D666	NO	T: Boys and girls will be segregated during sex education in junior high school. H: Boys and girls will be segregated in junior high school.
D672	NO	T: Philip Morris cited strong volume gains in Germany, Italy, France, Spain, central and eastern Europe, the Far East, Japan, Korea, Argentina and Brazil. H: Philip Morris makes strong profits also in Europe.
D725	YES	T: After years of battling between oil companies, the Ecuadorian government decided to collaborate with indigenous groups. H: The Ecuadorian government collaborated with indigenous groups.