Unlocking the Constraints of Cyanobacterial Productivity: Acclimations Enabling Ultrafast Growth

Hans C. Bernstein,a,b Ryan S. McClure,b Eric A. Hill,b Lye Meng Markillie,c William B. Chrisler,b Margjie F. Romine,b Jason E. McDermott,b Matthew C. Posewitz,b Donald A. Bryant,b,c Allan E. Konopka,b,h James K. Fredrickson,b Alexander S. Beliaevb

Chemical and Biological Signature Science, Pacific Northwest National Laboratory, Richland, Washington, USAa; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USAa; Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USAa; Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado, USAa; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USAa; Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USAa; Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USAa; The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USAa

ABSTRACT Harnessing the metabolic potential of photosynthetic microbes for next-generation biotechnology objectives requires detailed scientific understanding of the physiological constraints and regulatory controls affecting carbon partitioning between biomass, metabolite storage pools, and bioproduct synthesis. We dissected the cellular mechanisms underlying the remarkable physiological robustness of the euryhaline unicellular cyanobacterium Synechococcus sp. strain PCC 7002 (Synechococcus 7002) and identify key mechanisms that allow cyanobacteria to achieve unprecedented photoautotrophic productivities (∼2.5-h doubling time). Ultrafast growth of Synechococcus 7002 was supported by high rates of photosynthetic electron transfer and linked to significantly elevated transcription of precursor biosynthesis and protein translation machinery. Notably, no growth or photosynthesis inhibition signatures were observed under any of the tested experimental conditions. Finally, the ultrafast growth in Synechococcus 7002 was also linked to a 300% expansion of average cell volume. We hypothesize that this cellular adaptation is required at high irradiances to support higher cell division rates and reduce deleterious effects, corresponding to high light, through increased carbon and reductant sequestration.

IMPORTANCE Efficient coupling between photosynthesis and productivity is central to the development of biotechnology based on solar energy. Therefore, understanding the factors constraining maximum rates of carbon processing is necessary to identify regulatory mechanisms and devise strategies to overcome productivity constraints. Here, we interrogate the molecular mechanisms that operate at a systems level to allow cyanobacteria to achieve ultrafast growth. This was done by considering growth and photosynthetic kinetics with global transcription patterns. We have delineated putative biological principles that allow unicellular cyanobacteria to achieve ultrahigh growth rates through photophysiological acclimation and effective management of cellular resource under different growth regimes.

The typical range of doubling times for well-characterized unicellular cyanobacteria (e.g., Synechocystis sp. strain PCC 6803 and Synechococcus elongatus PCC 7942) is between 7 and 12 h (8, 9). Several hypotheses concerning mechanisms constraining cyanobacterial growth rates have been proposed; these include spatial restrictions within the cell that limit diffusion processes (10) as well as metabolic costs that determine partitioning of cellular resources and resulting fitness (11, 12). The optimization model, developed to simulate the partitioning of material and energy within a photoautotrophic cell (11), has extended the concept of growth as a function of proteome allocation between adaptation to niche-specific environments and cell division resources. An important implication of this is the ability to minimize the requirement for niche-adaptive responses that may be a key for cyano-
bacteria to redirect energy and nutrients efficiently toward the biosynthesis of biomass (13). This also holds significance for understanding regulatory switches governing central metabolism and secondary biosynthetic pathways, which are primary targets for bioengineering of cyanobacteria (14, 15).

In this study, we systematically dissected the growth and photophysiological performance of *Synechococcus* sp. strain PCC 7002 (hereafter *Synechococcus* 7002), a fast-growing euryhaline unicellular cyanobacterium (16) that has become a promising biotechnological platform (17–20). Although the physiological behavior of *Synechococcus* 7002 has been investigated under a wide range of irradiance, temperature, and salinity conditions (1, 9, 21–23), there is still a paucity of information concerning principles underlying cyanobacterial growth efficiency and robustness. The photosynthetic potential, thresholds of inhibition, and growth are not explicitly equivalent, and significant variation is expected between different environments (24). Herein, we compared the growth and photosynthetic rates of *Synechococcus* 7002 across varied incident irradiance and dissolved O₂ with a slower growing unicellular cyanobacterium, *Cyanothece* sp. strain ATCC 51142 (hereafter *Cyanothece* 51142) (25). *Cyanothece* 51142 was chosen as a comparative organism because it is a well-characterized strain that is amenable to continuous cultivation (15, 17, 26). The growth rates of *Cyanothece* 51142 are similar, compared to those displayed by other model cyanobacterial strains, such as *Synechocystis* strain 6803, and *Synechococcus elongatus* strain 7942 (8, 9). The irradiance-dependent response was further investigated through global RNA sequencing analysis to correlate the ultrafast growth with the photophysiological dynamics and gene expression of *Synechococcus* 7002. Through integration of state-of-the-art cultivation with photophysiological kinetic analyses and transcriptomic measurements, this genome study provides a new level of insight into the mechanisms guiding the energy and resource partitioning in cyanobacteria and sheds light on the phenomenon of ultrafast photoautotrophic growth.

RESULTS

Ultrafast growth under high irradiance. Optically thin (optical density at 730 nm [OD₇₃₀] of 0.082 ± 0.003) cultures of *Synechococcus* 7002 and *Cyanothece* 51142 were grown under turbidostat control to maintain nutrient-replete steady states operating at the maximum specific growth rate obtainable for a given environmental condition (27, 28). Under these conditions, *Synechococcus* 7002 displayed specific growth rates (μ) that increased with irradiance to a maximum value of 0.20 ± 0.01 h⁻¹. Growth was not inhibited even at the highest incident irradiance (Iᵢ), 760 μmol photons · m⁻² · s⁻¹, examined in this study (Fig. 1A). In contrast, specific growth rates for *Cyanothece* 51142 reached a maximum of 0.07 ± 0.01 h⁻¹ at 430 μmol photons · m⁻² · s⁻¹ and then declined at higher irradiances. The μ-Iᵢ relationships displayed saturating and/or peak functional trends similar to typical photosynthesis-to-irradiance (P-I) curves (see Fig. S1 in the supplemental material) (29, 30).

The steady-state net specific rates of photosynthesis (qₚₒ₂) followed a similar increase as μ (Fig. 1B). Net O₂ production by *Synechococcus* 7002 reached and sustained a maximum value of 9.1 ± 0.2 mmol O₂ · h⁻¹ · gₕFW⁻¹ (AFDW stands for ash-free weight [dry weight]), while *Cyanothece* 51142 cultures peaked at 2.8 ± 0.1 mmol O₂ · h⁻¹ · gₕFW⁻¹ and subsequently decreased at higher irradiances. These results confirm that unlike *Synechococcus* 7002, *Cyanothece* 51142 is susceptible to photoinhibition during steady-state growth at Iₒ of >430 μmol photons · m⁻² · s⁻¹. The observed effects on growth occurred at low dissolved O₂ concentrations (≤8.0 and ≤2.5 μM for *Synechococcus* 7002 and *Cyanothece* 51142, respectively).

Based on the growth and photosynthetic relationships with Iₒ, the physiological responses can be categorized into two distinguishable regimes: (i) a “light-limited” regime, characterized by an increasing linear response to Iₒ and (ii) a “light-saturated” regime, which varied from asymptotic growth in *Synechococcus* 7002 to inhibition in *Cyanothece* 51142. The two regimes were separated by a “transitional” phase defined here as the responses at or near the theoretical saturating irradiance Iₒ (31). The observed bimodal behavior was further supported by net growth-to-photosynthesis yields that are proxies for the photosynthetic quotient (Q) (Cmmol biomass/mmol of O₂), which was defined here as the ratio of the net rate of carbon fixation into biomass to the net rate of oxygenic photosynthesis. For *Synechococcus* 7002, the photosynthetic quotients were higher during light-limited growth (Qₗₒₜ = 1.3 ± 0.3) than light-saturated growth (Qₛₒₜ = 0.6 ± 0.1) (Fig. 1C). In contrast, the Q values calculated for growth of *Cyanothece* 51142 varied only from 1.3 ± 0.2 to 1.1 ± 0.4 during light-limited and light-saturated conditions, respectively (Fig. 1D). These results show that Q is greatest during light-limited growth of *Synechococcus* 7002 and also indicate that more redundant is required to support fast growth at higher incident irradiances. The same cannot be concluded for *Cyanothece* 51142, as much slower (>3-fold) growth rates are supported by an effectively constant amount of net oxygenic photosynthesis regardless of whether Iₒ is limiting or saturating (i.e., inhibiting) relative to growth.

Photosynthetic performance as a function of growth phase and irradiance. interrogation of the photosynthetic apparatus via chlorophyll (chlorophyll a [Chl a]) fluorescence techniques identified further differences between how *Synechococcus* 7002 and *Cyanothece* 51142 acclimate to increasing irradiance. As a general trend, the parameters associated with photosystem performance and photosynthetic electron transfer demonstrated distinct bimodal distributions as a function of light availability (i.e., limited versus saturated regimes). The most remarkable difference between *Synechococcus* 7002 and *Cyanothece* 51142 was the contrasting trends of cyclic electron flow (rate of cyclic electron transport [rCEF]), determined by postillumination fluorescence (Fig. 2A). *Synechococcus* 7002 displayed a positive rCEF rate trend across all Iₒ values, with the exception of the highest illumination (760 μmol photons · m⁻² · s⁻¹). In contrast, the rCEF rates in *Cyanothece* 51142 followed both growth and photosynthetic trends and displayed three distinct phases: a fast increase in rCEF associated with light-limited growth (Iₒ < 430 μmol photons · m⁻² · s⁻¹), deceleration during the transition Iₒ (~430 μmol photons · m⁻² · s⁻¹), and steep decline under light-saturated conditions (Iₒ > 430 μmol photons · m⁻² · s⁻¹) associated with inhibition of growth and photosynthesis.

The maximum relative rate of electron transport (rETRₘₐₓ) (Fig. 2B) shifted from a positive trend to a negative trend at the transition from light-limited to light-saturated growth for both cyanobacteria. This result indicates that the photosynthetic potential increased with increasing growth under light-limited regimes but leveled off and even decreased under light-saturated growth. Notably, the rETRₘₐₓ values measured in *Synechococcus*
7002 were approximately 3-fold higher than those displayed by *Cyanothece* 51142. Furthermore, the relative maximal quantum yield of photochemistry ($\frac{\Delta F}{F_0}$) was the highest during light-limited growth and decreased with increasing I_i for both cyanobacteria (Fig. 2C). It should be noted that some of the photosynthesis parameters measured for *Synechococcus* 7002 (e.g., rCEF and $\frac{\Delta F}{F_0}$) during the steady state corresponding to the highest I_i (760 μmol photons \cdot m$^{-2}$ \cdot s$^{-1}$) deviated from the predominant trends observed during light-saturated growth (see Fig. S2 in the supplemental material).

Growth tolerance to increasing O$_2$ tension. To further define the boundaries of cyanobacterial growth robustness and to simu-
late the effects of elevated O₂ tensions that can occur under intense photosynthetic activity, the steady-state turbidostat-grown cultures were subjected to increasing partial O₂ pressure (pO₂). While growth of both *Synechococcus* 7002 (Fig. 3A) and *Cyanothec* 51142 (Fig. 3B) was inhibited by O₂ to a greater degree under high irradiance relative to low irradiance, there were stark differences between the sensitivities of the two organisms to elevated pO₂. *Synechococcus* 7002 was much more resistant to the increasing pO₂ levels, with only a 28% decline in growth rate at a pO₂ of 0.78 (840 μM) and I_i of 760 μmol photons · m⁻² · s⁻¹. In contrast, the growth rates of *Cyanothec* 51142 decreased severely with increasing O₂ tension under the same irradiance. At a pO₂ of 0.78 and I_i of 760 μmol photons · m⁻² · s⁻¹, growth of *Cyanothec* 51142 was nearly completely (~98%) inhibited. Interestingly, growth rates for *Cyanothec* 51142 increased in response to increasing pO₂ values up to 0.1 (107 μM), but only at irradiances of <400 μmol photons · m⁻² · s⁻¹.

Transcriptional responses reveal potential mechanisms of growth robustness. The *Synechococcus* 7002 gene-level responses to light-controlled growth were further interrogated by RNA sequencing. Hierarchical clustering of relative transcript abundances (reads per kilobase per million reads [RPKM]) across a 2,732-gene data set identified four major clusters, whose eigenvalues aligned with the growth and photosynthetic performance of *Synechococcus* 7002 across the irradiance scale (Fig. 4; see Table S1 in the supplemental material). Of the four clusters, cluster I contained the largest group of transcripts (29.6%), the relative abundance of which increased in direct proportion with growth rate. Cluster I was functionally enriched (P < 0.05) for genes involved in translation (i.e., ribosomal proteins and tRNA aminoacylation), purine biosynthesis, iron-sulfur cluster assembly, and ATP synthesis (Table 1; Table S2). In concert with the putative upregulation of growth-related functions, there was also a broad increase in transcripts involved in amino acid biosynthesis, protein folding, and iron transport and acquisition. Cluster I also contained genes involved in central carbon metabolism reactions such as the anaplerotic pathways containing bifunctional fructose-1,6-bisphosphatase-II/sedoheptulose-bisphosphatase regulated by photosystem I (PS I) activity (32). Furthermore, reflecting an increased demand for CO₂ as an electron sink, the relative mRNA levels of genes of the NADH-plastoquinone oxidoreductase complex involved in CO₂ uptake (*ndhD3, ndhF3*, and

FIG 3 Relative responses of specific growth rate to combinatorial increases in oxygen tension (i.e., partial pressures, pO₂) and incident irradiance. Data are represented as the percent decrease from the baseline growth obtained by sparging the cultures with 2% CO₂ in N₂. (A) *Synechococcus* 7002 oxygen stress profile containing low-light (LL), medium-light (ML), and high-light (HL) conditions corresponding to incident irradiance values of 99, 132, and 760 μmol photons m⁻² s⁻¹. (B) *Cyanothec* 51142 oxygen stress profile reporting LL, ML, and HL conditions corresponding to incident irradiance values of 131, 395, and 790 μmol photons m⁻² s⁻¹.

FIG 4 Hierarchical clustering of relative transcript abundances in *Synechococcus* 7002 during steady-state turbidostat growth as a function of incident irradiance. The major clusters of coexpressed genes are color coded as follows. Cluster I genes are shown in black (809 genes), cluster II genes are shown in dark blue (724 genes), cluster III genes are shown in green (648 genes), and cluster IV genes are shown in light blue (551 genes). The full 2,732-gene list of the relative expression values at each steady state is given in Table S1 in the supplemental material. (B) The eigenvector profiles of the four main clusters of differentially expressed genes. The same color coding used for panel A is used for panel B.
cupS) (33) were elevated in response to increasing irradiance. While not displaying significant functional enrichment within cluster I, the relative transcript abundance of genes involved in peptidoglycan biosynthesis (mreB and mreC) and cell division (minCDE) increased with growth rate. Remarkably, confocal microscopic analysis of Synechococcus 7002 turbidostat cultures revealed that the average cell volume changed proportionally with growth rate (Fig. 5). Specifically, the transition of Synechococcus 7002 from light-limited (Ii = 66 μmol photons \cdot m^{-2} \cdot s^{-1}) to light-saturated growth (Ii = 395 μmol photons \cdot m^{-2} \cdot s^{-1}) resulted in doubling of the average cell volume from 4.84 to 9.69 μm³.

Gene expression levels in cluster II, which contained 26% of the total transcripts, were inversely correlated with the growth rate (Fig. 4 and Table 1; see Table S3 in the supplemental material). Table 1 Functional enrichment of irradiance-regulated genes of Synechococcus 7002

Role or system and cluster	Functional category	% genes a	Ratio b	P value c
Main role				
I	Translation	13.1	2.5	4.36E-13
II	Amino acid metabolism	5.6	1.8	1.33E-03
III	Cell motility and adherence	1.7	2.6	1.01E-02
IV	Glycan biosynthesis and metabolism	3.8	1.7	3.43E-02
Subrole				
I	Ribosomal proteins: synthesis and modification	6.8	3.1	1.27E-09
II	tRNA biogenesis	2.5	3.3	1.73E-04
III	Iron-sulfur clusters	0.9	3.5	1.89E-02
IV	Peptidases	4.0	1.8	1.28E-02
V	Photosynthesis-antenna proteins	1.7	2.2	2.94E-02
VI	Surface structures and assembly platforms	1.4	2.5	2.64E-02
VII	Plasmid functions	1.4	2.2	4.82E-02
VIII	RNA degradation	1.2	2.6	4.31E-02
IX	Protein modification and repair	0.9	3.0	3.95E-02
X	Riboflavin metabolism	0.8	3.5	3.78E-02
XI	Toxin-antitoxin systems	4.9	1.7	2.54E-02
XII	Two-component systems	3.4	1.7	4.09E-02
XIII	Polysaccharide and lipopolysaccharide metabolism	2.7	2.4	7.89E-03
Subsystem				
I	Ribosome large subunit	3.7	3.7	5.13E-07
II	Ribosome small subunit	2.3	3.6	9.03E-05
III	tRNA aminoaclation	2.3	3.6	9.03E-05
IV	Purine biosynthesis from ribose-5-phosphate	1.1	2.7	2.80E-02
V	F/F ATPase AtpABCDEFGH	1.1	3.6	7.02E-03
VI	Iron-sulfur cluster assembly SUF system	0.7	3.4	3.13E-02
VII	Photosystem II main subunits	1.0	3.4	1.74E-02
VIII	Photosystem I other common subunits	0.6	4.4	4.32E-02
IX	P-type pilus	0.6	4.4	4.32E-02
X	High-affinity urea uptake system UrtABCDE	0.6	3.9	4.97E-02
XI	Polysaccharide biosynthesis	3.1	2.9	9.04E-04
XII	Polymorphic toxins	1.8	2.2	3.37E-02
XIII	Nickel-dependent hydrogenase	1.8	4.5	8.20E-04
XIV	N-type Na translocation ATPase	1.3	4.5	4.91E-03
XV	Glycolipid biosynthesis	0.9	4.8	1.45E-02
XVI	Light-independent protochlorophyllide reductase	0.7	5.8	1.98E-02
XVII	T2bSS type IVa pilus complex	0.7	3.9	4.67E-02
XVIII	Pentose phosphate pathway oxidative phase	0.5	5.8	4.49E-02
XIX	Polyphosphate kinase/exopolysphosphatase system	0.5	5.8	4.49E-02

a The percentage of genes of a given function within a given functional category.
b The percentage of a particular functional category within the cluster versus the percentage of genes of that functional category within the genome as a whole.
c The P value represents the probability that the number of genes associated with a specific pathway/regulon occurs by chance.

FIG 5 Increase in average cell volumes of Synechococcus 7002 cells as a function of irradiance-driven specific growth rates. The volumes were calculated for steady-state cultures grown at Ii values of 66 (A), 98 (B), and 395 (C) μmol photons \cdot m^{-2} \cdot s^{-1} and represent an average of 104, 107, and 65 individual cell measurements, respectively. The cells were visualized by autofluorescence (red) and SYBR gold (green). Micrograph images representative of each condition were standardized by the bar.
This cluster was functionally enriched in genes encoding photosystems I and II antenna proteins and contained most of the critical genes required for photosynthesis. Among other transcripts were those encoding key putative signal transduction and regulatory proteins such as the thioredoxin-responsive regulator of photosynthesis and carbon fixation (pedR), the ferric uptake regulator (fur), and the positive phototaxis signal transduction system (pixL-pixGH), which was downregulated in excess light. Notably, the increase in specific growth rates was associated with a relative decline in transcript abundance of Synechococcus 7002 group 2 and 3 RNA polymerase σ factors, which are typically required for the expression of stress-induced pathways or niche-adaptive protein functions (34).

The eigengene profiles of clusters III and IV exhibited minima and maxima, respectively, at the steady state associated with the transition from light-limited to light-saturated growth (Iₜ of ≈ 164 μmol photons · m⁻² · s⁻¹). Cluster III (Fig. 4 and Table 1; see Table S4 in the supplemental material), which contained 23% of the expressed genome, included genes associated with photodamage and stress responses, including PS I and PS II stability and repair. Among the genes displaying increased relative mRNA abundance during light-saturated growth were two carboxysome structural genes (ccmK2 and ccmK4), the carboxic anhydrase gene (ccaa), the RuBisCO subunits (rbcSL), and the CO₂ fixation transcriptional regulator (ccmR). The genes encoding the core subunits of the Ndh-1 complex of Synechococcus 7002 (ndhHIJK and ndhA-ndhB-ndhCG) along with the NdhD1 subunit responsible for cyclic electron transfer around PS I also showed irradiance-dependent increases under light-saturating conditions (33). Cluster IV, containing 20.2% of the transcriptome, exhibited gene expression trends inverse to cluster III; its eigengene displayed increase under light-limiting conditions and then decreased for each successive steady state within the light-saturated regime (Fig. 4, Table 1, and Table S5). Cluster IV was functionally enriched for polysaccharide and glycolipid biosynthesis, the oxidative branch of the pentose phosphate pathway, nickel-iron hydrogenase biogenesis, and genes involved in electron transport processes such as cyclic electron flow at low light intensities (psaE) (35) and oxidative phosphorylation (coaAB and sucC). While many of these pathways can serve as potential reductant sinks (36), they were downregulated under light-saturating conditions, suggesting the presence of alternative mechanisms of reductant partitioning and oxidative stress mitigation in Synechococcus 7002.

DISCUSSION

This study yields insight into an important biological principle, which allows unicellular cyanobacteria to achieve ultrafast growth by having ultrahigh growth rates and manage cellular resource under different irradiance-controlled growth regimes. Herein, we provide direct evidence that the bimodal transition around the theoretical saturating irradiance (Iₜ) extends not only to the adjustment of the photosynthesis and growth rates but is also coupled to regulation of specific metabolic reactions and cellular functions. The mechanisms by which Synechococcus 7002 mitigates the negative effects of high irradiance that typically inhibit the growth and photosynthesis processes of unicellular cyanobacteria are likely to have broader implications for understanding the metabolic and regulatory underpinnings of photosynthetic growth (2, 3).

Consistent increases in relative transcript abundance with increasing irradiance was observed for genes encoding translational machinery, amino acid and nucleotide biosynthesis, the ATPase complex, and the anaplerotic pathways of central carbon metabolism (Fig. 4, cluster I; see Table S2 in the supplemental material). At the same time, the irradiance-driven increase in the relative growth rate of Synechococcus 7002 coincided with the broad decrease in transcripts encoding light acquisition machinery and photosystem I and II reaction centers. These coupled transcriptional responses suggest that the level of resources expended for biomass (i.e., protein synthesis) and energy (ATP) synthesis continue to increase with irradiance, while biomass production and net photosynthesis rates are essentially constant due to increased resource expenditure required.

Furthermore, our data provide direct experimental support to earlier calculations (11) positing that energy demand increases to sustain growth, even when growth is light saturated, across increasing irradiance inputs. Reduced net growth-to-photosynthesis yields (Qlim > Qsat) during light-replete steady states (Fig. 2) confirm that, while Synechococcus 7002 growth is not inhibited at the high-Iₜ treatments, the ratio of biomass production to energy acquisition decreases once irradiance exceeds an optimum observed near Iₜ. This is most likely due to the decrease in the optical cross section of the photosynthetic apparatus, as Synechococcus 7002 transitions from light-limited to light-saturated growth (1). This transition has negative effects upon the quantum efficiencies of PS II, and in other oxygenic phototrophs, it is linked to increased photo-inhibition. Here, we suggest that the reduction in antenna size also allows the cells to redirect carbon and energy fluxes toward biosynthetic processes which fuel cell division. Notably, this metabolic redistribution in Synechococcus 7002 occurs in conjunction with a tripling in average cell volume (Fig. 5), a physiological phenomenon that is known to also occur in heterotrophic organisms (i.e., Salmonella enterica serotype Typhimurium) in response to increased rate of division (37). These increases in cell mass and size are thought to accommodate the changes in the number of nuclei/cell and can relieve molecular crowding that limits cell growth (11). To that end, removing physical constraints may increase the intracellular capacity needed to accommodate the biosynthetic machinery supporting higher growth rates and alleviate photoinhibition through increased reductant sequestration capacities.

This mechanistic concept is further corroborated by the absence of observed photo-inhibition within the Synechococcus 7002 steady states (Fig. 3), as increases in irradiance correlated with the generally decreased mRNA levels of known light-sensitive photosystem reaction centers (psbAD and psaAB). Interestingly, Synechococcus 7002 may be unusual, as the lack of elevated transcription of psb genes under increasing irradiance contrasts with other transcriptional studies of various slower-growing cyanobacteria exposed to differential and/or stress-inducing light regimes (38–42). The signatures of PS II inhibition were also not observed in the Chl a fluorescence analyses performed on Synechococcus 7002 (data not shown). For example, the relative maximum rate of electron transport (rETₚmax) increased through the light-limited regime and showed no significant change during light-saturated steady-state growth (transitional saturated states). Furthermore, the regulation of genes mediating reactive oxygen species (ROS) scavenging does not occur uniformly at the transcriptional level. This is consistent with previous gene expression studies (23, 43, 44), which suggested that lack of strong concerted upregulation of...
stress response machinery under high irradiance levels may reflect other mechanisms employed by Synechococcus 7002 for dealing with excess reductant to avoid photo inhibition.

A key observation in support of the above conclusion is based on substantially elevated levels of rCEF displayed by Synechococcus 7002 under saturating high irradiances (Fig. 2), indicating reduction of the plastoquinone (PQ) pool from electron donors not associated with PS II (22). While the exact mechanisms and role of CEF are not fully understood in cyanobacteria, it is postulated that this process contributes to balancing reductant and ATP pools, especially under low irradiance levels (45). Interestingly, psaE and ndhHJ genes, encoding the PS I subunit and PQ-oxydoreductase, respectively, which were previously implicated in CEF (35, 46), displayed maximum relative expression only during the transitional steady state but were downregulated at saturating irradiances (cluster IV in Table S5 in the supplemental material). In contrast, genes encoding the core subunits of the Ndh-1 complex along with the NdhD1 subunit requisite for cyclic electron transfer around PS I (ndhHJK and ndhA-ndhB-ndhCG) showed irradiance-dependent increase in abundance under light-saturating conditions (cluster III in Table S4). Thus, our data implicate new genes (i.e., ndhHJK and ndhA-ndhB-ndhCG) with potentially important roles in the cyclic electron transport of Synechococcus 7002 that are inherently linked to its ability to effectively partition reductant fluxes and avoid detrimental effects of oxidative stress using multiple strategies.

In summary, a coordinated, functionally grouped gene expression was observed which broadly supports inferences about the role that transcriptional regulation may play in processes such as photosynthesis, carbon fixation, electron transport, and stress response. Interestingly, the kinetics of growth and photosynthesis revealed bimodal growth regimes with respect to carbon uptake to chemical energy production continues to increase even when the growth and photosynthetic rates were essentially constant, showing strong evidence for an increased energy requirement with increasing light energy input. Only a few other studies have ever demonstrated distinct saturating and/or inhibition kinetics of specific growth rate as a function of irradiance (47–50). Finally, this study sets a benchmark for the entire range of irradiances to effectively eliminate self-shading. Incident and transmitted irradiance was measured with six opposing 2π quantum sensors (LI-210SA photometric sensor; LI-COR Biosciences, Lincoln, NE) and intercalibrated with a 4π submerged quantum sensor (LI-193SA spherical underwater quantum sensor; LI-COR Biosciences). Hence, scalar incident irradiance (Ii) is reported here as quanta incident to the center of the reactor and has been confirmed to be both axially and radially isotropic within the liquid culture volume. In situ photosynthesis-to-irradiance curves (P-I curves) were generated by temporarily stopping flow and subsequently increasing the Ii output of the LEDs over 5-min intervals while concurrently data logging the dissolved O2 (DO) response within the culture volume (see photosynthesis calculations below).

Microscopic analysis. Microscopic images were acquired on a Zeiss LSM 710 scanning confocal laser microscope (Carl Zeiss MicroImaging GmbH, Jena, Germany) equipped with a W Plan-Apochromatic 63×/1.0 M27 objective. The Synechococcus 7002 cells were visualized by phycocyanin autofluorescence measured at 640 nm. Images were processed with Velocity (PerkinElmer, Waltham, MA) and used to obtain the cell size and Volocity (PerkinElmer, Waltham, MA) and used to obtain the cell size measurements made along the major and minor axis. Cell volumes were calculated using the equation for an ellipsoid, \(V = \frac{4}{3} \pi a b c \), where \(a \) is the diameter of the minor axis and \(b \) is the diameter of the major axis.

RNA isolation and sequencing. Cells from a steady-state turbidostat cultures were collected via centrifugation at 7,000 rpm for 5 min at 4°C, flash frozen in liquid nitrogen, and stored at −80°C. Total RNA extraction was performed using standard methodology (54). The quality and integrity of the RNA was assessed on an Agilent 2100 bioanalyzer, and only samples with integrity numbers between 8 and 10 were selected. Template cDNA was prepared using the Applied Biosystems SOLiD total RNA-Seq (transcriptome sequencing) kit (Life Technologies, Carlsbad, CA) according to the manufacturer’s protocol. Sequencing was carried out using the SOLID 5500XL protocol (Life Technologies). The 50-base sequence reads were mapped to the genomes of Synechococcus 7002 (GenBank accession number NC_010475), and gene expression levels were determined using the Rockhopper software package as previously described (55). Genes that showed expression values in the bottom 20% of genes at each Ii level for which mRNA was collected were removed from analysis. Hierarchical clustering was performed in the MatLab Bioinformatics Toolbox (MathWorks, Inc.) to identify six distinct profiles of genes with similar expression profiles across irradiance-controlled steady states. Gene expression values (reads per kilobase per million reads [RPKM]) were transformed to log base 2 values and standardized (mean = 0 and standard deviation = 1). Genes in each of the six clusters (profiles) chosen for further analysis...
were examined to determine whether certain functions were enriched in a given module. Enrichment is defined as the percentage of genes within the profile for which a function has been assigned being significantly higher than the percentage of genes of the same function in the entire genome with a P value of <0.05 according to Fisher exact test.

Photosynthetic performance. Chl a fluorescence measurements were performed on samples obtained from steady-state turbidostat cultures using pulse amplitude-modulated fluorometry (PAM) in a DUAL-PAM-100 instrument equipped with a photodiode detector and RG665 filter (Walz GmbH, Effeltrich, Germany). Samples were dark adapted for 1 min prior to analyses. Red measuring light (620 nm) was pulsed at the lowest power at 1,000 Hz in the dark and at 10,000 Hz during actinic illumination at 98 μmol photons·m⁻²·s⁻¹ with 635-nm light. Transient fluorescent changes were measured after fluorescence induction through the following: (i) a 200-ms saturating pulse (2,000 μmol photons·m⁻²·s⁻¹), (ii) 5 s of only far-red light (730 nm), (iii) another 15 s of actinic light, and (iv) 30 s of darkness. The rate of change (rise) of postillumination fluorescence occurring in the dark during step iv results from reduction of plastoquinone (PQ) from NAD(P)H or other reductant accumulated during illumination and was interpreted as a proxy for the rate of cyclic electron transport (rCEF) around PS I (22, 56). Calculations for determining the relative electron transport rates (rETR = PAR × ΔF/Fm′) have been previously described (57, 58). Rapid light curves were generated by evaluating rETR as a function of increasing PAR values (1-min step intervals). The maximum values and initial slopes (rETRmax and α), respectively, were determined and interpreted as the relative photosynthetic capacity and relative maximal photosynthetic quantum yield of photochemistry, respectively (58).

Calculations and regression. The net rate of O₂ production was calculated from the steady-state mass balance through the bioreactor control volume (equation 1).

\[
q_{O_2,x} = D \left([O_2]_x - [O_2]^* \right) + k_m \left(k_{j,k} [O_2]^* - [O_2]^* \right)
\]

The specific rate of O₂ production (qO₂,x) multiplied by the biomass concentration (x) is interpreted here as the net rate of O₂ production during photosynthesis (22) and is a function of the dilution rate (D), the lumped mass transfer coefficient (kₘ), 0.83 min⁻¹, dissolved O₂ concentration ([O₂]s), and Henry’s law partitioning coefficient (H₂O₂ = 1.08 mM atm⁻¹). The specific rate of biomass production (qₓ; g C mol⁻¹·gramAFDW⁻¹) was calculated by assuming the molecular weight of dry biomass to be 24.59 gAFDW·C mol⁻¹ (59). Parameterization and curve fitting were performed via nonlinear least-squares regression using the fit function in MatLab with a weighted fit option. All saturating and photoinduction curves of growth and photosynthesis were fit with equation 2, where the inhibition index (β) was simplified from the form originally reported by Platt et al. (60) to more clearly represent the theoretical irradiance threshold of inhibition; parameters Iₗ and Iₓ are the scalar incident and theoretical saturating irradiances, respectively.

\[
R = R_{max} \left[1 - \exp \left(-\frac{I}{I_x} \right) \right] \exp \left(-\frac{I}{\beta} \right)
\]

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00949-16/-/DCSupplemental.

ACKNOWLEDGMENTS

We acknowledge Matthew Melnicki, Victoria Work, and Leo Kucek who assisted with the analyses of turbidostat samples. The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RL01830.

This research was supported by the Genomic Science Program, Office of Biological and Environmental Research (OBER), U.S. Department of Energy (DOE), and is a contribution of the Pacific Northwest National Laboratory (PNL) and Biofuels Scientific Focus Areas. A significant portion of the research was performed using the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE OBER and located at PNNL. The genome annotation and bioinformatics efforts used customized processes and resources developed and supported by the Foundation Scientific Focus Area at PNNL. H.C.B. is grateful for support given by the Linus Pauling Distinguished Postdoctoral Fellowship, a Laboratory Directed Research and Development Program of PNNL.

REFERENCES

1. Raven JA. 2011. The cost of photoinhibition. Physiol Plant 142:87–104.
2. Arnon DI, Whatley FR, Allen MB. 1954. Photosynthesis by isolated chloroplasts. II. Photosynthetic phosphorylation, the conversion of light into phosphate bond energy. J Am Chem Soc 76:6324–6329. http://dx.doi.org/10.1021/ja01653a025.
3. Calvin M, Benson AA. 1948. The path of carbon in photosynthesis. Science 107:476–480. http://dx.doi.org/10.1126/science.107.2784.476.
4. Cooksey R, Bartoszewski J, Wildner G, Sczepaniak A. 2008. Ribulose-1,5-bisphosphate carboxylase/oxygenase from thermophilic cyanobacterium Thermosynechococcus elongatus. Photosynth Res 95:101–109. http://dx.doi.org/10.1007/s11120-007-9240-7.
5. MacKenzie TDB, Campbell DA. 2005. Cyanobacterial acclimation to rapidly fluctuating light is constrained by inorganic carbon status. J Phycol 41:801–811. http://dx.doi.org/10.1111/j.1222-479X.2005.00096.x.
6. Bailey S, Melis A, Mackey KR, Cardol P, Finazzi G, van Dijken G, Berg GM, Arrigo K, Shragger J, Grossman A. 2008. Alternative photosynthetic electron flow to oxygen in marine Synechococcus. Biochim Biophys Acta 1777:269–276. http://dx.doi.org/10.1016/j.bbabio.2008.01.002.
7. Raven JA, Larkum AW. 2007. Are there ecological implications for the proposed energetic restrictions on photosynthetic oxygen evolution at high oxygen concentrations? Photosynth Res 94:31–42. http://dx.doi.org/10.1007/s11120-007-9211-z.
8. Vemmass WF, Rutherford AW, Hansson O. 1988. Site-directed mutagenesis in photosystem II of the cyanobacterium Synechocystis sp. PCC 6803: donor D is a tyrosine residue in the D2 protein. Proc Natl Acad Sci U S A 85:8477–8481. http://dx.doi.org/10.1073/pnas.85.22.8477.
9. Mori T, Binder B, Johnson CH. 1996. Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 hours. Proc Natl Acad Sci U S A 93:10183–10188. http://dx.doi.org/10.1073/pnas.93.19.10183.
10. Hagemann M. 2011. Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35:87–123. http://dx.doi.org/10.1111/j.1574-6976.2010.00234.x.
11. Burnap RL. 2015. Systems and photosystems: cellular limits of autotrophic productivity in cyanobacteria. Front Bioeng Biotechnol 3. http://dx.doi.org/10.3389/fbioe.2015.00001.
12. Molenar D, van Berlo R, de Ridder D, Teusink B. 2009. Shifts in growth strategies reflect tradeoffs in cellular economics. Mol Syst Biol 5:323. http://dx.doi.org/10.1038/msb.2009.82.
13. Nogales J, Gudmundsson S, Knight EM, Palsson BO, Thiele I. 2012. Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis. Proc Natl Acad Sci U S A 109:2678–2683. http://dx.doi.org/10.1073/pnas.1117907109.
14. Nogales J, Gudmundsson S, Thiele I. 2013. Toward systems metabolic engineering in cyanobacteria: opportunities and bottlenecks. Bioengineered 4:158–163. http://dx.doi.org/10.4161/bioe.22792.
15. Vu TT, Hill EA, Kucek LA, Konopka AE, Belaev AS, Reed JL. 2013. Computational evaluation of Synechococcus sp. PCC 7002 metabolism for chemical production. Biotechnol J 8:619–630. http://dx.doi.org/10.1002/biot.201200315.
16. Nomura CT, Sakamoto T, Bryant DA. 2006. Roles for heme–copper oxidases in extreme high-light and oxidative stress response in the cyanobacterium Synechococcus sp. PCC 7002. Arch Microbiol 185:471–479. http://dx.doi.org/10.1007/s00203-006-0107-7.
Molecular Controls of Cyanobacterial Ultrafast Growth

17. Aikawa S, Nishida A, Ho S-H, Chang J-S, Hasunuma T, Kondo A. 2014. Glycogen production for biofuels by the euryhaline cyanobacteria Synechococcus sp. strain PCC 7002 from an oceanic environment. Biotechnol Biofuels 7:88. http://dx.doi.org/10.1186/1754-6834-7-88.

18. Ruffing AM. 2014. Improved free fatty acid production in cyanobacteria with Synechococcus PCC 7002 as host. Front Biotechnol Biotechnol 2:17. http://dx.doi.org/10.3389/fbioe.2014.00017.

19. Zess EK, Begemann MB, Pfleger BF. 2016. Construction of new synthetic biology tools for the control of gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002. Biotechnol Bioeng 113:424–432. http://dx.doi.org/10.1002/bit.25713.

20. Jacobsen JH, Frigaard NU. 2014. Engineering of photosynthetic manni-tol biosynthesis from CO2 in a cyanobacterium. Metab Eng 21:60–70. http://dx.doi.org/10.1016/j.ymben.2013.11.004.

21. Cohen A, Sendersky E, Carmeli S, Schwarz R. 2014. Collapsing aged culture of the cyanobacterium Synechococcus elongatus produces compound(s) toxic to photosynthetic organisms. PLoS One 9:e900747. http://dx.doi.org/10.1371/journal.pone.0100747.

22. Beliaev AS, Romine MF, Serres M, Bernstein HC, Linggi BE, Markillie MD, Bryant DA, Wiles HS, Fredrickson JK, Konopka A. 2014. Inference of interactions in cyanobacterial–heterotrophic co-cultures via transcriptome sequencing. ISME J 8:2243–2255. http://dx.doi.org/10.1038/ismej.2014.69.

23. Ludwig M, Bryant DA. 2012. Synechococcus sp. strain PCC 7002 transcriptome: acclimation to temperature, salinity, oxidative stress, and mixotrophic growth conditions. Front Microbiol 3:354. http://dx.doi.org/10.3389/fmicb.2012.00354.

24. Wünschmann G, Brand JF. 1992. Rapid turnover of a component required for photosynthesis explains temperature dependence and kinetics of photoinhibition in a cyanobacterium, Synechococcus 6301. Planta 186:426–433. http://dx.doi.org/10.11007/bf00195324.

25. Reddy KJ, Haskell JB, Sherman DM, Sherman LA. 1993. Unicellular, aerobic nitrogen-fixing cyanobacteria of the genus Cyanothece. J Bacteriol 175:1284–1292.

26. Melnick MR, Pinchuk GE, Hill EA, Kucek LA, Fredrickson JK, Konopka A, Beliaev AS. 2012. Sustained H2 production driven by photosynthetic water splitting in a unicellular cyanobacterium. mBio 3:e00197-12. http://dx.doi.org/10.1128/mBio.00197-12.

27. Bernstein HC, Kesaano M, Koll M, Smith T, Gerlach R, Carlson RP, Miller CD, Peyton BM, Cooksey KE, Gardiner RD, Sims RC. 2014. Direct measurement and characterization of active photosynthesis zones inside wastewater remediation and biofuel producing microagal biofilms. Bioreour Technol 156:206–215. http://dx.doi.org/10.1016/j.biortech.2014.01.001.

28. Melnick MR, Pinchuk GE, Hill EA, Kucek LA, Stolyar SM, Fredrickson JK, Konopka AE, Beliaev AS. 2013. Feedback-controlled LED photobio- reactor for photosynthetic microbially mediated studies of cyanobacteria. Bioreour Technol 134:127–133. http://dx.doi.org/10.1016/j.biortech.2013.01.079.

29. Gilbert M, Wilhelm C, Richter M. 2000. Bio-optical modelling of oxygen evolution using in vivo fluorescence: comparison of measured and calculated photosynthesis/irradiance (PI) curves in four representative phyto-plankton species. J Plant Physiol 157:307–314. http://dx.doi.org/10.1016/s0176-6618(00)00528-6.

30. MacIntyre HL, Kana TM, Anning T, Geider RJ. 2002. Photoaccommodation of photosynthesis and photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol 38:17–38. http://dx.doi.org/10.1111/j.1529-8817.2002.00094.x.

31. Sakshaug E, Bricaud A, Dandonneau Y, Falkowski PG, Kiefer DA, Legendre L, Morel A, Parslow J, Takahashi M. 1997. Parameters of photosynthesis: definitions, theory and interpretation of results. J Plankton Res 19:1637–1670. http://dx.doi.org/10.1093/plankt/19.11.1637.

32. Buchanan BB, Schürmann P, Wolskiak RA, Jacquot J-P. 2005. The ferrodivo/thierryoxin system: from discovery to molecular structures and beyond, p 859 – 866. In Papageorgiou GC, Govindjee (ed), Chlorophyll a fluorescence: A signature of photosynthesis. Springer, Dordrecht, The Netherlands.

33. Van Liere L, Mur LR. 1979. Growth kinetics of Oscillatoria agardhii. In: Nutrient- and light-limited growth of Synechococcus sp. strain PCC 7002. Front Microbiol 241: http://dx.doi.org/10.3389/fmicb.2011.00041.

34. Zhu Y, Graham JE, Ludwig M, Xiong W, Alvey RM, Shen G, Bryant DA. 2005. Roles of xanthophyll carotenoids in protection against photoinhibition and oxidative stress in the cyanobacterium Synechocystis sp. strain PCC 7002. Arch Biochem Biophys 504:86–99. http://dx.doi.org/10.1016/j.abb.2010.07.007.

35. Mullineaux CW. 2014. Electron transport and light-harvesting switches in cyanobacteria. Front Plant Sci 5:72. http://dx.doi.org/10.3389/fpls.2014.00007.

36. Kramer DM, Avenson TJ, Kazanawa A, Cruz JA, Ivanov B, Edwards GE. 2004. The relationship between photosynthetic electron transfer and its regulation, p 251–278. In Papageorgiou GC, Govindjee (ed), Chlorophyll a fluorescence: A signature of photosynthesis. Springer, Dordrecht, The Netherlands.

37. Lee DY, Rhee G. 1999. Kinetics of growth and death in Anabaena flos-aquae (Cyanobacteria) under light limitation and supersaturation. J Phycol 35:600–709. http://dx.doi.org/10.1046/j.1529-8817.1999.3540700.x.

38. Laws EA, Bannister TT. 1980. Nutrient- and light-limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytol plankton growth in the ocean. Limnol Oceanogr 25:457–473. http://dx.doi.org/10.1093/lo/25.2.457.

39. Lee SY, Rhee G. 1999. Kinetics of growth and death in Anabaena flos-aquae (Cyanobacteria) under light limitation and supersaturation. J Phycol 35:600–709. http://dx.doi.org/10.1046/j.1529-8817.1999.3540700.x.

40. Laws EA, Bannister TT. 1980. Nutrient- and light-limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytol plankton growth in the ocean. Limnol Oceanogr 25:457–473. http://dx.doi.org/10.1093/lo/25.2.457.

41. Sakamoto T, Bryant DA. 2002. Synergistic effect of high-light and low temperature on cell growth of the Δ12 fatty acid desaturase mutant in Synechocystis sp. PCC 7002. Photosynth Res 72:231–242. http://dx.doi.org/10.1023/A:1005754823218.

42. Stevens S, Patterson C, Myers J. 1973. The production of hydrogen peroxide by blue-green algae: a survey. J Phycol 9:427–430.

43. Pinchuk GE, Hill EA, Geydebrekht OV, De Ingenis J, Zhang X, Osterman A, Scott JH, Reed SB, Romine MF, Konopka AE, Beliaev AS, Fredrickson JK, Reed JL. 2010. Constraint-based model of Shawnella oneidensis MR-1 metabolism: a tool for data analysis and hypothesis gen-
eration. PLoS Comput Biol 6:e1000822. http://dx.doi.org/10.1371/journal.pcbi.1000822.

54. Beliaev AS, Klingeman DM, Klappenbach JA, Wu L, Romine MF, Tiedje JM, Nealson KH, Fredrickson JK, Zhou J. 2005. Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors. J Bacteriol 187:7138–7145. http://dx.doi.org/10.1128/JB.187.20.7138-7145.2005.

55. McClure R, Balasubramanian D, Sun Y, Bobrovskyy M, Sumby P, Genco CA, Vanderpool CK, Tjaden B. 2013. Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res 41:e140. http://dx.doi.org/10.1093/nar/gkt444.

56. Deng Y, Ye J, Mi H. 2003. Effects of low CO2 on NAD(P)H dehydrogenase, a mediator of cyclic electron transport around photosystem I in the cyanobacterium Synechocystis PCC6803. Plant Cell Physiol 44:534–540. http://dx.doi.org/10.1093/pcp/pcg067.

57. Sukenik A, Beardall J, Kromkamp J, Kopecký J, Masojídek J, van Bergeijk S, Gabai S, Shaha M, Yamshon A. 2009. Photosynthetic performance of outdoor Nannochloropsis mass cultures under a wide range of environmental conditions. Aquat Microb Ecol 56:297–308. http://dx.doi.org/10.3354/ame01309.

58. Schreiber U. 2004. Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In Papageorgiou GC, Govindjee (ed), Chlorophyll a fluorescence: A signature of photosynthesis. Springer, Dordrecht, The Netherlands.

59. Roels JA. 1980. Application of macroscopic principles to microbial metabolism. Biotechnol Bioeng 22:2457–2514. http://dx.doi.org/10.1002/bit.260221202.

60. Platt T, Gallegos C, Harrison W. 1981. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701.