Epigenetic changes have been associated with ageing and cancer. Identifying and interpreting epigenetic changes associated with such phenotypes may benefit from integration with protein interactome models. We here develop and validate a novel integrative epigenome-interactome approach to identify differential methylation interactome hotspots associated with a phenotype of interest. We apply the algorithm to cancer and ageing, demonstrating the existence of hotspots associated with these phenotypes. Importantly, we discover tissue independent age-associated hotspots targeting stem-cell differentiation pathways, which we validate in independent DNA methylation data sets, encompassing over 1000 samples from different tissue types. We further show that these pathways would not have been discovered had we used a non-network based approach and that the use of the protein interaction network improves the overall robustness of the inference procedure. The proposed algorithm will be useful to any study seeking to identify interactome hotspots associated with common phenotypes.
interactome, targeting specific molecular pathways, in the same way that gene expression and copy-number changes also appear to target specific molecular pathways (see e.g. Ref. 31).

To address our hypothesis we collected DNA methylation data sets generated using the Illumina Infinium platform32, focusing our attention on gene promoter regions and on age as the phenotype of interest. Although other genomic regions may be more predictive of gene expression33, we here restrict to promoter regions since to date most of the data sets with available age information have been generated with the Infinium 27k platform, which by definition is restricted to CpGs in the promoter regions. Our focus on age is further justified by the following. First, there is now substantial evidence that age-associated DNAm changes can be common to many different tissue types6–7. Moreover, while studies have reported individual genes and pathways that undergo age-associated changes in gene expression8–11, consistency of age-associated gene expression changes appears to be very weak12 in comparison to the changes observed at the DNA methylation level. Indeed, recent studies have reported tissue independent DNAm based age-predictors13,14. Second, it has already been demonstrated that age-associated DNAm changes do not happen randomly across the genome6–7. For instance, while most of the genome undergoes age-associated hypomethylation, promoters of high CpG density upstream of key developmental and tumour suppressor genes undergo preferential hypermethylation with age4–7. It is therefore natural to investigate age-associated DNAm changes in the context of the human interactome, since this may help identify specific molecular pathways or functional gene modules that underpin the aging process and which may indicate the risk of future disease. Thus, the second key question which we address here is whether specific molecular pathways are targeted by age-associated aberrant DNA methylation and whether this is tissue specific or not.

Results

Integration of DNA methylation with a protein interaction network. We first aimed to demonstrate that integration of DNA methylation with a protein interaction network (PIN) can make biological sense. To show this, we integrated Illumina Infinium DNA methylation beadarray data covering 27,000 CpGs32 with a human protein interaction network of over 10,000 proteins45. The main Illumina Infinium data sets used are listed in Table 1. The integration was done by assigning to each protein in the network the methylation profile of the CpG closest to the transcription start site of the corresponding gene (Methods). The resulting networks contained on the order of 8000 genes/proteins and over 100,000 interactions. We observed that the integration led to methylation profiles of neighboring genes in the network being on average more highly correlated (as assessed over normal tissue samples) than those of non-neighbors (SI Fig. S1). Interestingly, this effect was of a magnitude comparable to that seen in gene expression studies (SI & SI Fig. S1). These findings indicated to us that the built integrated networks can be exploited to extract biologically meaningful information.

A spin-glass (SPG) algorithm to detected differential methylation interactome hotspots. We next wanted to assess if differential methylation associated with a given phenotype of interest targets specific regions of the protein interaction network (a property we call modularity). To address this, one must search the interactome for connected subnetworks where the association with the phenotype is stronger than in the rest of the network. These subnetworks we interchangeably call "hotspots" or "EpiMods" (Epigenetic Modules). To find hotspots associated with cancer and age, one could adapt a number of previously published algorithms including jActive Modules48, BioNet49 or DEGAS50. However, we also wanted to explore other algorithmic alternatives, and so we here considered a computationally very efficient spin-glass (SPG) module detection algorithm45 (Methods, Fig. 1). The efficiency of the spin-glass algorithm stems from a local greedy implementation which maximises a relative weight density (called modularity) centred around specific seeds46,47, and where, in our case, the weight edges reflect the combined strength of association of each gene’s DNAm profile with the phenotype of interest (Fig. 1, Methods). The seeding strategy used is described in Methods. The statistical significance of any inferred modules was assessed further using a permutation scheme (1000 permutations) in which the node statistics were randomly permuted over the network followed by recomputation of the modularity values (Methods). Those modules with an adjusted P-value < 0.05 were declared as hotspots/EpiMods.

Dataset	Type	Number	Characteristic	Phenotype	Ref
LBC1	Cervix LBC	48	24N + 24CIN2+	N/CIN2+	GSE37020
OVC1	Ovary	177	72G + 105P	outcome (G/P)	GSE20080
CVX	Cervix	63	15N + 48C	N/C	GSE30759
ENDO	Endometrium	87	23N + 64C	N/C	GSE33422
UKOPS	WB	261	148N + 113C	50–84	GSE19711
T1D	WB	187	187N	24–74	GSE20067
ALSc	WB	92	92N	34–88	GSE41037
FCTX	Brain	133	133N	16–101	GSE15745
TCTX	Brain	127	127N	15–101	GSE15745
SKIN	Skin	50	50N	18–72	EMTAB-202
BUCCAL	Saliva	84	84N	21–55	GSE28746
CD4TC	Blood	24	CD4+ Tcells	16–69	GSE20242
CD14MC	Blood	26	CD14+ Monocytes	16–69	GSE20242
MSC	Bone marrow	8	MSC	21–85	GSE17448
HPC	Blood	12	HPC CD34+	0–41	EMTAB-487
An attractive feature of the spin-glass algorithm is its simplicity in that it is characterised by just one main free parameter, c, which can be tuned on simulated and training data to optimize a complex trade-off between the number of inferred modules, their sizes, the average overlap between the modules and a GSEA enrichment quality metric (SI Fig. S2). In fact, the sizes of the inferred modules is key since we observed that in general small modules (sizes <10) did not lead to significant modularity values, while very large modules (>200) were non-unique and highly redundant. We found that the optimal parameter choice was $c < 0.5$, since at this value, modules in the desired size range 10–100 genes were generated (SI Fig. S2).

Benchmarking of the spin-glass algorithm. In order to further justify the use of the local greedy spin-glass (SPG) algorithm, we compared it to two other but closely related module detection methods: an agglomerative fast greedy (FG) non-local algorithm and a non-greedy non-local spectral decomposition (SD) algorithm (SI Methods). These other algorithms attempt to maximise a modularity score similar to that of the spin-glass algorithm, but differ substantially in the inference procedure, allowing us to assess both the impact of “greediness” and locality. To provide an independent and objective assessment of these algorithms, we compared their ability to detect (i) biological modules on the interactome defined by gene expression modules from the Molecular Signatures Database (MSigDB), and (ii) modules generated by a simulation model (Methods). In both scenarios, the spin-glass algorithm at our previously determined optimal parameter ($c = 0.5$) performed markedly better in finding modules that overlapped more strongly with the known biological and simulated modules (SI Fig. S3).

We also decided to benchmark our algorithm on real data. We applied it to four data sets (LBC1, OVC1, CVX, ENDO, Table 1) in order to find cancer diagnostic (LBC1, CVX, ENDO) and prognostic (OVC1) EpiMods. Consistent with the results obtained on simulated...
data, we observed that the spin-glass algorithm detected, on average, smaller sized modules and a substantially higher fraction of modules with significant modularity than as assessed using the random permutation scheme described earlier (Table 2). In line with this, the modularities were also higher for the spin-glass algorithm (Table 2 & SI Fig. S4). Thus, all these results demonstrate that the spin-glass algorithm (tuned with $\gamma = 0.5$) is more powerful than the other closely related module detection algorithms.

Table 2 | Comparison of the spin-glass (SPG) algorithm to the other two module detection algorithms, spectral decomposition (SD) and fast-greedy (FG)
in data sets LBC1, OVC1, CVX and ENDO. The SPG algorithm was ran here with 100 seeds in all data sets. Columns label the number of modules of size \(\geq 10\) (nMod), the average size of these modules (AvSize), the fraction of these with significant modularity values $f(P < 0.05)$, and the average modularity of the modules (AvMod).

	nMod	AvSize	$f(P < 0.05)$	AvMod
LBC1	21	208	**0.52**	1.58
SPG	22	211	0.25	1.27
SD	14	502	0.36	1.18
FG	23	108	**0.22**	1.57
OVC1	29	262	0.10	1.43
SD	13	593	0.08	1.44
FG	24	44	**0.50**	3.51
CVX	36	129	0.09	2.20
SD	17	434	0.29	2.60
FG	30	99	**0.63**	3.08
ENDO	24	301	0.33	1.81
SD	9	809	0.11	1.57

Indeed, we observed that 10/12 (83%) were also retrieved in the healthy subset, indicating that the algorithm is robust to subsampling and that the majority of these EpiMods reflect changes that are observed in normal tissue. We note that fewer EpiMods (8 at a FDR < 0.05, i.e. 4 fewer) would have been discovered had we applied the EpiMod algorithm to only the 148 healthy samples.

Since the spin-glass algorithm is of a greedy nature, the resulting inferred modules could represent spurious artefacts. Thus, it is key to validate the inferred age-EpiMods on independent data, and thus also demonstrate that the algorithm can make robust findings. As validation, we used data from 187 independent whole blood samples from type-I-diabetics (T1D) data set, (Table 1). We thus asked if the hotspot nature of the 12 age-EpiMods is also recapitulated in this independent data set. We note that this constitutes a stringent validation whereby we assess if the precise EpiMods of the discovery set are associated with age in the test set more strongly than randomly picked genes from the network. Remarkably, of the original 12 age-EpiMods, 6 (50%) validated as hotspots in the T1D data set (Fig. 2D, Fig. 3A). To assess the significance of this further, we randomly redefined 12 EpiMods on the network (matched for module size and local topology, see SI Methods) and found that on average (as estimated over 100 randomisations) only 2% of the 12 random age-EpiMods are expected false positives. Thus, none of the 6 validated age-EpiMods are likely to be false positives. Reassuringly, these 6 age-EpiMods attained significant or marginally significant age-modularity scores in an additional whole blood data set (ALSc, Table 1, Fig. 3B). Importantly, we also checked that the directionality and significance of individual age-EpiMod members was validated for 6 of the 12 age-EpiMods in the independent data (SI Fig. S6, Fig. 3A). We also constructed predictive age methylation scores in the test set samples, using only significant EpiMod members in the discovery set, and these scores correlated with age in 10 of the 12 age-EpiMods (SI Fig. S7, Fig. 3A). Using either method, 10 of the 12 age-EpiMods (83%) validated in terms of their constituent members being associated with age and with the same directionality as in the discovery set. Together, all these results indicated to us that age-EpiMods in blood tissue exist.

Biological significance of age-EpiMods.

Given that proteins involved within a given cellular process are more likely to be connected and to form communities in the network$^{51–54}$, we performed a GSEA on each of the 6 age-EpiMods that validated in whole blood tissue to ascertain their biological significance (SI Table S2). Each of these age-EpiMods was strongly enriched for specific biological functions, which were also largely unique to each module (Table 3, SI Table S2). One of the EpiMods, consisting of 19 genes, was strongly enriched for transcription factors and PolyComb Group gene Targets (PCGTs)55, which are genes that are repressed in stem cells by the PRC2 complex (SI Table S2, Fig. 2C). Another two EpiMods (FZD2 & GRIA2) were highly enriched for genes in the WNT/beta-Catenin signaling and glutamate receptor pathways, respectively (Table 3). Two further EpiMods (CD247 & LCK), which were significantly larger in size, were highly enriched for genes implicated in immune response pathways.

Tissue specific and tissue-independent age-EpiMods.

Next, we wanted to determine the tissue-specificity of the 12 age-EpiMods identified in the original discovery set. We collected additional DNAm data sets from other normal tissue types, including skin, buccal, brain and fractionated purified blood cell types (CD4+ T-cells and CD14+ monocytes) (Table 1)$^{51–54,56}$. Correlations of the age-EpiMods with age in these additional data sets was assessed using three different complementary evaluation frameworks, as done on the independent whole blood data sets. Two of these evaluations assess the consistency of directionality and significance of individual EpiMod members without regard to the network
structure, while the third evaluation assesses specifically the network hotspot nature of the age-EpiMods. Thus, for each age-EpiMod in each data set we obtained three different P-values to assess validation at various levels. Remarkably, we observed that the three age-EpiMods with seeds SOX8, GRIA2 and FZD2 were largely tissue independent, validating across most, if not all, of the other normal tissue types (Fig. 3C–F). These age-EpiMods also correlated with age in purified CD4+ T-cells and more marginally so in CD14+ monocytes (Fig. 3G–H), further supporting the view that these associations are not driven by changes in cell-type composition. In contrast, the immune response age-EpiMods showed more variability and were not consistently validated across other normal tissue types (Fig. 3C–F), suggesting that these may be driven by changes in cell type composition. Supporting this view, the age-EpiMods generally did not validate in the purified blood cell types (Fig. 3G–H), and they exhibited strong overlaps with markers of granulocytes and lymphocytes (Binomial test $P < 10^{-5}$)46. Venn diagrams summarising the degree of tissue-specificity of the age-EpiMods illustrate that most of the 12 age-EpiMods are indeed specific to blood (Fig. 4A), with only SOX8, GRIA2, FZD2 age-EpiMods being largely tissue independent (Fig. 4C). The tissue specificity of detected age-associated changes in DNA methylation was further confirmed at the level of individual top ranked GAMPs within each data set and tissue type (Fig. 4B & 4D).

Although the validations demonstrate overall consistency in terms of directionality and significance of the age-associations of EpiMod members, we next wanted to determine if it is the same EpiMod members driving the significance across all data sets, or if the significance is driven by different genes in different data sets. We focused on the three age-EpiMods SOX8, GRIA2 and FZD2, since these were validated in most data sets. Heatmaps of the age-associated t-statistics revealed striking consistency (Fig. 5). For instance, in the SOX8 module, UTC1, POUSF3 and FOXD3 all showed the same directional age-associated methylation patterns in the three large whole blood data sets (Fig. 5A). Similarly, in the FZD2 module, many genes (e.g. SFRP1, FZD2, ROR2, DKK1, FZD9, WNT3A) showed consistent associations across most data sets (Fig. 5C). In contrast, in the GRIA2 module, fewer genes showed consistent associations (Fig. 5B).

The observation that the age-EpiMods SOX8, GRIA2 and FZD2, validated across multiple tissue types including purified CD4+ T-cells which have a high-turnover rate, suggests that the observed age-associated changes must be due to underlying changes in the long-lived stem cell populations. We first tested this in mesenchymal stem cells (MSC) from the bone marrow of 8 patients spanning a wide age range26. As before, we tested the association with age using the 3 different aforementioned methods. The hotspot nature was recapitulated marginally for GRIA2 ($P = 0.07$) and FZD2 ($P = 0.07$), while...
the directionality and significance of the age-associations of individual genes was validated in the case of the SOX8 and FZD2 modules (SI Fig. S8), clearly implicating the specific genes in these modules as undergoing age-associated DNAm changes in stem cells. We also analysed 12 samples of hematopoietic progenitor (HPC) cells (7 from cord blood and 5 samples all with ages ≥ 28). However, in this set the hotspot nature of the three age-EpiMods was not observed, possibly due to a narrower age-range and the fact that all samples were relatively young (under the age of 41). In spite of this, the linear age correlation test P-values still showed marginal trends towards significance for the same two modules (SOX8, FZD2) that validated in mesenchymal stem cells (SI Fig. S9).

EpiMod algorithm outperforms non-network based approach. Having established the existence of a number of biologically significant age-EpiMods, we next wanted to assess the importance of the EpiMod algorithm itself in making this discovery. To assess this, we compared the EpiMod method to a simple non-network based approach. First, we performed a simple GSEA on a number of top-ranked GAMPs from the discovery set, where the number of genes used for the GSEA was matched to the number of unique EpiMod members making up the original 12 age-EpiMods. Not unexpectedly, two of the key functional terms, namely WNT-signaling and glutamate receptors, were not picked out by the non-network based GSEA (Fisher-test P $= 0.24$ (WNT) and P $= 0.19$ (Glutamate receptors)).

Table 3 | Biological significance of the 6 validated age-EpiMods derived in whole blood tissue. We list the seed (GAMP) defining the EpiMod, the size of the EpiMod, a significantly enriched biological function, the Benjamini-Hochberg false discovery rate (FDR) and example genes making up the EpiMod.

age-EpiMod	Size	Function	FDR	Example genes
FZD2	33	WNT & β-catenin signaling	$< 10^{-5}$	FZD2, SFRP1, WNT3A
SOX8	19	PCGTs, TF-activity	$< 10^{-5}$	SOX8, UTF1, POLS1
GRIA2	15	Glutamate receptors	< 0.001	GRIA2, GRIA3, GRIP1
LCK	169	T-cell activation	$< 10^{-5}$	LCK, IL2RG, IL2RB
CD247	83	T-cell activation	$< 10^{-5}$	CD247, CD3E, IL2
PLAT	11	Complement/Coagulation	< 0.01	PLAT, F10, F3
To further demonstrate the power of the EpiMod strategy, we next selected, from the 12 age-EpiMods in the discovery cohort, those EpiMod members which were significant \((P < 0.05)\) while also discarding the 12 GAMPs which were used to seed these EpiMods. There were a total of 75 significant EpiMod genes. We posited that these genes would constitute more robust markers of age-associated differential methylation than those we would identify using a non-network based approach. We thus

Figure 4 | Venn diagrams illustrating consistency of GAMPs and age-Epimods found within tissues and between tissues. (A) Diagram illustrating age-EpiMods validated at the 5% level (node-weight permutation) in UKOPS, T1D and ALSc whole blood data sets. (B) Overlaps between top 100 ranked GAMPs in four separate blood datasets. (C) Overlaps in modules validated at the 5% level using Fisher combined independent probability across different tissue types. (D) Overlaps between top 100 ranked GAMPs across tissue types using UKOPS, SKIN, BUC and FCTX as representatives for whole blood, skin, buccal and brain respectively. Note the considerably lower consistency in (D) than in (B).

Figure 5 | Heatmaps of age-associated regression statistics of age-EpiMod member genes across whole blood (UKOPS, T1D, ALSc), brain (FCTX, TCTX), skin and buccal (BUC) data sets. (A) SOX8-module. (B) GRIA2-module. (C) FZD2-module.
compared the absolute t-statistics of these significant EpiMod genes in three independent whole blood data sets, to the corresponding statistics for a random selection of significant GAMPs from the discovery set. Across the three independent test data sets, we observed that significant EpiMod genes from the UKOPS discovery set generally attained higher absolute statistics (preserving the same directionality as in the discovery set) than the genes used for benchmarking (combined Fisher test $P < 0.001$, Fig. 6). Thus, we can conclude that the EpiMod algorithm allows improved biological interpretation of age-associated changes in DNA methylation without compromising the robustness of the identified age-associated markers, and this is important in light of recent reports questioning the value of network-based methods.

Discussion

Here we have explored the integration of DNAm profiles with a human interactome and have demonstrated that hotspots of differential methylation associated with phenotypes such as cancer and age exist. In order to identify the hotspots we adapted a powerful module detection algorithm (the spin-glass SPG algorithm). The algorithm was tested extensively, optimized and benchmarked against two closely related module detection algorithms (FG & SD), demonstrating its superiority (SI Figs. S2–S4). Three key aspects of the algorithm are worth emphasizing. First, it is computationally efficient and scalable to large networks thanks to a local greedy implementation. Second, the implementation used does not seriously compromise the robustness of the inference procedure: indeed, we were able to infer hotspots of differential methylation which then validated as network hotspots in completely independent data (Fig. 2), thus demonstrating that the algorithm can make robust findings. Third, the algorithm has a tunable parameter that directly controls the sizes of the inferred modules. This is important since we observed that the size of an inferred module influenced the probability of the module being a false positive (Table 2).

Given the improved performance of the SPG algorithm against FG and SD, we also wondered how it would compare to some of the other module detection algorithms. Thus, we compared SPG to three popular algorithms: jActiveModules, BioNet and DEGAS (see Methods for details of parameter choices). Like SPG, jActiveModules allows for a local search strategy centred around selected seeds, thus allowing for a direct comparison, while BioNet and DEGAS perform the module search recursively and globally, respectively. The comparison of these algorithms showed that BioNet and DEGAS only identified a relatively small number of significant modules, with high robustness observed only in the case of BioNet (SI Fig. S10). jActiveModules and SPG both identified similar number of significant modules, with a similar fraction of modules identified in the training set validating in the test sets (SI Fig. S10). We also point out these two algorithms inferred distinct modules. For instance, the GRIA2 module, which was validated by SPG in all data sets considered here, was not detected and not clearly validated using jActiveModules. Thus, we can see that the spin-glass algorithm used here compares favourably to some of the existing module detection algorithms.

In our main analysis, where we focused on age as the phenotype of interest and on whole blood tissue, we were able to validate age-EpiMods in several independent whole blood data sets, supporting the view that DNAm changes do not occur randomly in the context of the human interactome. Using DNAm data from other normal tissues, we showed that the majority of the hotspots/Epimods were tissue-specific (Figs. 3–4), but also found three age-EpiMods which validated independently of tissue type (Figs. 3–5). Two of these age-EpiMods (SOX8, FZD2) were significantly enriched for transcription factors and PCGTs, implicating specific stem cell differentiation pathways. These particular age-EpiMods were also seen to correlate with age in mesenchymal stem cells. As with the age-PCGT signature we had derived previously and which has been shown to be largely tissue-independent (see also Ref. 5,60), the observation made here that members of these EpiMods consistently correlate with age in a variety of different tissue and cell types is a clear indication that these age-associated epigenetic modules represent generic age-epigenetic phenomena not driven by changes in cell-type composition. The third tissue-independent age-EpiMod was highly enriched for G-protein and glutamate receptors.

It is of interest to discuss further the potential biological significance of these three age-EpiMods. One of the most consistently age-correlated genes in the SOX8 EpiMod was UTF1. A recent study has shown that UTF1 is a chromatin-associated protein necessary for stem cell differentiation. Hence, the observation that UTF1’s promoter region becomes consistently hypermethylated with age could imply that the differentiation capacity of adult stem cells is compromised with age. A second independent observation is that UTF1 expression is a stronger marker of efficient iPSC reprogramming than other traditional markers (e.g. OCT4)39. Interestingly, it has been observed that the efficiency and safety of iPSC reprogramming decreases with the age of the adult differentiated cells used40,41. Thus, lower expression of UTF1 as a result of age-associated hypermethylation could potential contribute to this observation. To test if gene expression of UTF1 decreases with age will require access to large sample collections of CD34+ HPCs from human donors, as DNAm profiles derived from mice or other model organisms are unlikely to capture the age cumulative effects of environmental stressors which humans are exposed to naturally and which are assumed to underlie the observed age-associated changes in DNA methylation. Indeed, in a genome-wide study using MeDIP-Seq, we did not observed major changes in DNAm comparing HPCs from young and old mice (personal communication, data not shown). Our EpiMod analysis also
implicated other factors which may play similar or analogous roles to UTFG, such as for instance SOX8 itself. The age-EpiMod FZD2 implicated many members of the WNT/beta-Catenin signalling pathway (e.g. SFRP1, FZD2, FZD9, WNT3A) all of which appear to become consistently hypermethylated with age. This is another striking finding, since the WNT-signalling pathway has been the subject of intensive study in ageing42–46. In fact, these studies indicate that WNT signalling activity is increased with age potentially increasing stem cell self-renewal function whilst blocking differentiation. However, another study reported that WNT target gene expression in osteoblast precursors decreases with age, albeit this too is an observation made in mice46. These relations are further complicated by the fact that we observe simultaneous hypermethylation in the promoters of important receptors (e.g. FZD2, FZD9) and that of SFRP1, which is a key negative regulator of the WNT-pathway. Hence, although promoter hypermethylation and silencing of SFRP1 is often observed in cancer and preneoplastic lesions32,50, it is unclear what the effect of this may be in the background of promoter FZD2 & FZD9 hypermethylation. The functional significance of the FZD2 age-EpiMod is therefore unclear and analysis of large-scale gene expression data sets did not reveal a consistent pattern (data not shown). The third tissue-independent age-EpiMod involved glutamate receptors (e.g. GRIA2) and the prolactin releasing hormone receptor PRLR. Strikingly, these two genes showed strong promoter age-associated hypermethylation across almost all of the data sets analysed. Interestingly, there are reports documenting that glutamate receptors play an important role in dietary restriction, ageing and possibly also in modulating age-associated immunosenescence31,32.

Besides the three age-EpiMods discussed above, two others (TNKI, LAMBI) (SI Table S1) are of particular interest, although their validation was not consistent across the different data sets and tissues. The TNKI age-EpiMod was a fairly large module consisting of 446 genes, hence why the age-modularity was not validated in other data sets. However, this module did validate in terms of the directional consistency and significance of individual regression statistics (SI Fig. S6 & S7). Interestingly, TNKI is a late-onset Alzheimer’s disease gene as determined by a recent meta-analysis of GWAS studies51. The LAMBI age-EpiMod was strongly enriched for laminins, including besides LAMBI, also LAMA1, LAMA4, LAMA3, LAMC3 (SI Table S1), which are a family of extracellular matrix glycoproteins implicated in cell adhesion and differentiation, and which we have found to be associated with early stages of cervical cancer (data not shown).

It is important to emphasize that the discovery of the three tissue-independent age-EpiMods implicating key molecular pathways was only made possible through an integrative interactome-epigenome strategy. Indeed, previous meta-analysis studies on age-associated DNAm changes (e.g. Ref. 34) have not reported the existence or importance of the SOX8, FZD2 and GRIA2 age-EpiMod members. Reinforcing this, we found that an ordinary GSEA on a matched number of top ranked GAMPs in the discovery UKOPS cohort yielded non-significant odds ratios of enrichment for the WNT-signalling and glutamate receptor pathways. We also showed that genes significantly associated with age and which were implicated by the EpiMod analysis defined more robust age-associated DNAm markers (Fig. 6). These results therefore attest to the power of an integrative network strategy since it simultaneously facilitates biological interpretation while also identifying more robust markers, especially if these markers are associated with relatively small effect sizes.

In summary, we have shown that differential methylation interactome hotspots exist, and specifically, have discovered tissue-independent age-epigenetically deregulated hotspots enriched for stem cell differentiation pathways. The integrative network algorithm developed here could help elucidate the biological and clinical significance of epigenetic changes associated with common diseases.

Methods

The protein interaction network. We downloaded the Human Protein Reference Database (HPRD) interaction network from Pathway Commons (http://www.pathwaycommons.org; 13th June 2012). The HPRD network used here consisted of approximately 10,000 proteins with over 200,000 documented interactions. When restricted to the genes annotated on the Infinium 27k array and with probes passing quality control criteria, the resulting networks contained typically on the order of 8000 nodes and just over 100,000 interactions (edges).

Integration and edge weighting scheme. For each gene g represented in a methylation dataset, denote the methylation state of the probe nearest to the transcription start site by β_g. Given a phenotype of interest, denote by t_g the statistic (usually, a t-statistic) resulting from the statistical test correlating the phenotype to β_g. In the case of age, we used linear regressions t-statistics, while in normal/cancer comparisons we used a two-sided t-test. This allows us to attach a weight w_g between every pair of genes g and h in the underlying protein interaction network (PIN):

$$w_{gh} = \frac{|t_g - t_h|}{2\sigma_{\text{max}}}$$

where σ_{max} is the maximum absolute t-statistic assigned by the test to any gene. Note that if g and h do not interact we set $w_{gh} = 0$. This yields a weighting of each edge between 0 and 1, with larger weights denoting two neighbors both significantly associated with the phenotype of interest.

Identifying hotspots of alterations using a greedy spin-glass algorithm. With the choice of edge weighting regime above, the task is to search the network for subnetworks of exceptionally large average weight density ("modules" or "hotspots") in relation to the network as a whole. The average weight density of a subnetwork we call modularity49.

In order to identify the hotspots we adopted a greedy spin-glass algorithm46, which allows community detection in weighted networks specified by a weighted adjacency matrix W. The justification for using this algorithm is as follows. First, we sought an algorithm that would allow flexibility in the level of mutual exclusivity of the inferred modules. Since proteins often lie in many distinct functional pathways, the algorithm must allow for some overlap between the inferred modules. On the other hand, the algorithm must also avoid inferring modules of very high overlap since this represents unwanted redundancy. One of the attractive features of the spin-glass algorithm is its simplicity in that it is characterized by only 1 main free tunable parameter, called γ, with $0 \leq \gamma \leq 1$45, which, as we show here, directly controls the average size and hence overlap/redundancy of the inferred modules. Secondly, inference of modules in large-scale networks can be computationally demanding and involve $O(W^2)$. The greedy approach is attractive because it offers the scalability and computational efficiency needed for our application. The stability of the modules inferred using a greedy approach can always be tested a posteriori using validation/test data sets, a strategy that we also adopt here. Importantly, the spin-glass algorithm allows for a greedy approach by starting the search of modules from seed nodes, defined as the nodes with the largest statistics, or alternatively as those with the largest average weights (i.e the average over nearest neighbors). Both seed choices are possible, although the former leads to less redundancy in the sense that seeds are more spread out across the network. The top number of genes ranked by largest absolute modularity were declared as seeds. In the case of the data sets and phenotypes considered here, we typically focused on the top 100 seeds because these always passed an FDR control threshold of 0.05 based on their univariate P-values. It is important to point out here that not all seeds lead to modules of higher-than-average modularity, since some seeds may represent isolated nodes of association.

In detail, the spin-glass algorithm reduces the problem of community/module detection into finding the ground state of an infinite-ranged Potts spin glass49. Briefly, communities/modules are found via a Hamiltonian

$$H(\sigma) = -\sum_{i\neq j} W_{ij} \delta(\sigma_i, \sigma_j)$$

where σ_i denotes the community that node i belongs to, W_{ij} is the weighted adjacency matrix of the network, and where $\delta(\sigma_i, \sigma_j)$ describes the probability of an edge between nodes i and j according to some appropriate null model. In the above expression, $\delta(\sigma_i, \sigma_j)$ is the Kronecker delta and $\gamma > 0$ is the tunable parameter of the algorithm. It can be shown that this Hamiltonian rewards internal edges (e.g. those within an inferred subnetwork, or equivalently within the same spin state) as well as non-edges between subnetworks, while also penalizing internal non-edges and edges between different subnetworks46. The choice of parameter γ controls the relative energy contributions of edges and non-edges occurring both internally and externally of the inferred subnetworks49. An alternative expression for the Hamiltonian is in terms of adhesion coefficients, α_{rs},

$$H(\{s\}) = \sum_{r,s} m_{rs} \delta(s, \sigma_r)$$

where r and s denote the spin states (i.e communities), and where the adhesion coefficient between spin states r and s is defined by

$$\alpha_{rs} = m_{rs} - \gamma |E(E_{rs})|$$

In the above, m_{rs} denotes the number of edges between r and s and the second term denotes the expectation of this number under the null model. Thus, minimization of...
analyses. Briefly, to estimate the GSEA quality score we first computed
also exhibiting minimal overlap. In comparison, module statistics in this same validation set.
modules which are significant at the 5% level, as
node attributes (i.e the absolute t-statistics) change between permutations, thus
fixed in this procedure and are not inferred de novo. In other words, only the assigned
counting the fraction of permutations which lead to higher modularities. We note
network would yield the wrong null distribution to compare to since the edge weights
of the resulting modules and an overall GSEA enrichment metric. This strategy
where
Statistical significance and external validation of modules is important. It is easy to establish the statistical significance of the modularity values associated with the inferred communities or modules. The modularity M of each community C is simply the total weight of all edges in C, i.e.

M(C) = \sum_{x,y \in C} w_{xy}^p \quad \text{where} \quad \text{where} \quad C \text{ has edge weights } w_{xy} \text{ and nodes } V(C). \text{ Permuting the edge weights over the network would yield the wrong null distribution to compare to since the edge weights themselves already contain the topological nearest neighbor information. Instead of this, we compare the distribution of modularity values with the ones expected by permuting the absolute t-statistics among nodes. By performing 1000 permutations, we can thus assess the statistical significance of the observed modularity values by counting the fraction of permutations which lead to higher modularities. We note that the modules inferred previously, i.e from the unpermuted node statistics, are kept fixed in this procedure and are not inferred de novo. In other words, only the assigned node attributes (i.e the absolute t-statistics) change between permutations, thus yielding an adjusted P-value for each separate module. We refer to the resulting modules which are significant at the 5% level, as EpiMods.

To validate the EpiMods in external data we used two complementary strategies designed to test different aspects of the EpiMods. To validate the significance and directionality of the DNAmethylation changes associated with the gene members of the EpiMods, we generated starburst scatterplots, comparing the t-statistics of differential methylation in the discovery set against the corresponding t-statistics in the validation set. Comparing the node statistics of the EpiMods validated hotspot genes to methylation in the network, we computed the modularities in the validation set, and then tested the significance of these modularities against random permutations of the node statistics in this same validation set.

Availability. We have implemented the EpiMod algorithm as an executable R-script which is freely available on request, or from http://code.google.com/p/epimods/.

1. Jones, P. & Baylin, S. B. The fundamental role of epigenetic events in cancer. Nature Rev Cancer 3, 165–176 (2003).
2. Feinberg, A. P., Ohlsson, R. & Henikoff, S. The epigenetic progenitor origin of human cancer. Nature Rev Genet 7, 21–33 (2006).
3. Christensen, B. C. et al. Aging and environmental exposures alter tissue-specific dna methylation dependent upon cpg island context. Proc Natl Acad Sci USA 102, 15545–15550 (2005).
4. Maheshwi, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell (2012).
5. Baldiacci, L. & Eshler, W. B. Cancer and ageing: a nexus at several levels. Nat Rev Cancer 5, 655–662 (2005).
6. Hoeijmakers, J. H. DNA damage, aging, and cancer. N Engl J Med 361, 1475–1485 (2009).
7. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102, 15545–15550 (2005).
8. Christensen, B. C. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell (2012).
9. Baldiacci, L. & Eshler, W. B. Cancer and ageing: a nexus at several levels. Nat Rev Cancer 5, 655–662 (2005).
10. Hoeijmakers, J. H. DNA damage, aging, and cancer. N Engl J Med 361, 1475–1485 (2009).
11. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102, 15545–15550 (2005).
12. Chuang, H. Y., Lee, E., Liu, Y. T., Lee, D. & Ideker, T. Network-based classification of breast cancer metastasis. Mol Syst Biol 3, 140 (2007).
13. Uldits, I. & Shamir, R. Identification of functional modules using network topology and high-throughput data. BMC Syst Biol 1, 8 (2007).
14. Beisser, D., Klau, G. W., Danekar, T., Miller, T. & Dittrich, M. T. Bionet: an r-package for the functional analysis of biological networks. Bioinformatics 26, 1129–1130 (2010).
15. Bhadhwaj, N. & Lu, H. Correlation between gene expression profiles and protein-protein interactions within and across genomes. Bioinformatics 21, 2730–2738 (2005).
16. Bhadhwaj, N. & Lu, H. Co-expression among constituents of a motif in the protein-protein interaction network. J Bioinform Comput Biol 7, 1–17 (2009).
17. Pujan, M. A. et al. Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet 39, 1338–1349 (2007).
18. Dittrich, M. T., Klau, G. W., Rosenwael, A., Danekar, T. & Miller, T. Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics 24, 1223–1231 (2008).
19. Taylor, I. W. et al. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Mol Syst Biol 4, 137 (2008).
20. Bandyopadhyay, S. & Ewals revising of genetic networks in response to dna damage. Science 330, 1385–1389 (2010).
21. Uldits, I., Krishnamurthy, A., Karp, R. M. & Shamir, R. Degas: de novo discovery of dys-regulated pathways in human diseases. PLoS One 5, e13367 (2010).
22. Schramm, G., Nandakumar, K. & Konig, R. Regulation patterns in signaling networks of cancer. BMC Syst Biol 4, 162 (2010).
23. Teschendorf, A. E. & Severini, S. Increased entropy of signal transduction in the cancer metastasis phenotype. BMC Syst Biol 4, 104 (2010).
24. Li, J. et al. Identification of high-quality cancer prognostic markers and metastasis network modules. Nat Commun 3, 14 (2012).
25. Califano, A. Rewiring makes the difference. Mol Syst Biol 7, 463 (2011).
26. Ideker, T. & Krogan, N. J. Differential network biology. Mol Syst Biol 8, 565 (2012).
27. Wang, J. et al. Noa: a novel network ontology analysis method. Nucleic Acids Res 39, e87 (2011).
28. Beisser, D. et al. Robustness and accuracy of functional modules in integrated network analysis. Bioinformatics 28, 1887–1894 (2012).
29. Backes, C. et al. An integer linear programming approach for finding deregulated subgraphs in regulatory networks. Nucleic Acids Res 40, e43 (2012).
30. Liu, H. et al. Prioritizing cancer-related genes with aberrant methylation based on a weighted protein-protein interaction network. BMC Syst Biol 5, 158 (2011).
31. TCGA. Comprehension characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).
32. Bibikova, M. et al. 2009. Epigenomics 1, 177–200 (2009).
33. Irizarry, R. A. et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific cpg island shores. Nat Genet 41, 178–186 (2009).
34. Horvath, S. et al. Aging effects on dna methylation modules in human brain and blood tissue. Genome Biol 13, R97 (2012).
35. Lee, C. K., Weinrich, R. & Prolla, T. A. Gene-expression profile of the aging brain in mice. Nat Genet 25, 294–297 (2000).
36. Fraser, H. B., Ralston, P. S., Eisen, M. B. Aging and gene expression in the primate brain. PLoS Biol 3, e274 (2005).
37. Zahn, J. M. et al. Agemap: a gene expression database for aging in mice. PLoS Genet 3, e201 (2007).
38. Magalhaes, I. P., Curado, I. & Church, G. M. Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics 25, 875–881 (2009).
39. Edwards, M. G. et al. Gene expression profiling of aging reveals activation of a p35-mediated transcriptional program. BMC Genomics 8, 80 (2007).
40. Cao, K., Chen-Plotkin, A. S., Plotkin, J. B. & Wang, L. S. Age-correlated gene expression profiles identifies common signatures of aging. Bioinformatics 25, 875–881 (2009).
41. Harries, L. W. et al. Advancing age is associated with gene expression changes resembling mitosis inhibition: evidence from two human populations. Mech Ageing Dev 133, 556–562 (2012).
42. Koch, C., Painter, W. & Epigenetic-ageing signature to determine age in different tissues. Aging (Albany NY) 3, 1018–1027 (2011).
43. Bockland, S. et al. Epigenetic predictor of age. PLoS ONE 6, e14821 (2011).
44. Cerami, E. et al. Pathway commons, a web resource for biological pathway data. Nucleic Acids Res 39, D685–D690 (2011).
58. Bocker, M. T.
57. Bork, S.
56. Palmer, C., Diehn, M., Alizadeh, A. A. & Brown, P. O. Cell-type specific gene

Acknowledgements
J.W. was supported by an EPSRC/BBSRC CoMPLEX PhD studentship. A.E.T. was supported by a Heller Research Fellowship. S.B. was supported by the Wellcome Trust (WT084071) and a Royal Society Wolfson Research Merit Award (WM100023). We would like to thank Gareth Wilson of the Medical Genomics group at the UCL Cancer Institute for sharing data and Martin Widschwendter for discussions.

Author contributions
J.W. and A.E.T. performed the statistical analyses. A.E.T. devised the study. S.B. and X.W. contributed data and/or ideas. J.W. and A.E.T. wrote the manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/ scientificreports

Competing financial interests: The authors declare no competing financial interests.

License: This work is licensed under a Creative Commons Attribution-NoCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

How to cite this article: West, J., Beck, S., Wang, X. & Teschendorff, A.E. An integrative network algorithm identifies age-associated differential methylation interactome hotspots targeting stem-cell differentiation pathways. Sci. Rep. 3, 1630; DOI:10.1038/srep01630 (2013).