Correction to: Effects of a robot-aided somatosensory training on proprioception and motor function in stroke survivors

I.-Ling Yeh1, Jessica Holst-Wolf2, Naveen Elangovan2, Anna Vera Cuppone3, Kamakshi Lakshminarayan4, Leonardo Cappello5,6, Lorenzo Masia7 and Jürgen Konczak2

Correction to: J NeuroEngineering Rehabil (2021) 18:77
https://doi.org/10.1186/s12984-021-00871-x

Following the publication of the original article [1], the author name ‘Leonardo Cappello’ has been misspelled as ‘Leonardo Capello’.

The original article has been corrected.

Author details
1 Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore. 2 Human Sensorimotor Control Laboratory, School of Kinesiology, University of Minnesota, Minneapolis, USA. 3 Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genoa, Italy. 4 Department of Neurology and School of Public Health, University of Minnesota, Minneapolis, USA. 5 The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy. 6 Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy. 7 Institut für Technische Informatik, Universität Heidelberg, Heidelberg, Germany.

Accepted: 12 July 2022
Published online: 18 July 2022

Reference
1. Yeh I-L, Holst-Wolf J, Elangovan N, Cuppone AV, Lakshminarayan K, Cappello L, Masia L, Konczak J. Effects of a robot-aided somatosensory training on proprioception and motor function in stroke survivors. J NeuroEng Rehabil. 2021;18:77. https://doi.org/10.1186/s12984-021-00871-x.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.