Ruthenium-Catalyzed Hydrogenative Degradation of End-of-Life Poly(lactide) to Produce 1,2-Propanediol as Platform Chemical

Tim-Oliver Kindler, Christoph Alberti, Elena Fedorenko, Nicolo Santangelo, and Stephan Enthaler[a]

The chemical recycling of end-of-life polymers can add some value to a future circular economy. In this regard, the hydrogenative degradation of end-of-life PLA was investigated to produce 1,2-propanediol as product, which is a useful building block in polymer chemistry. In more detail, the commercially available Ru-MACHO-BH complex was applied as catalyst to degrade end-of-life PLA efficiently to 1,2-propanediol under mild conditions. After investigations of the reaction conditions a set of end-of-life PLA goods were subjected to degradation.

The impact of plastics on mankind or human life is impressively underlined by countless applications and numerous advantages compared to other materials.[1,2] Nevertheless, a significant amount of the plastics is accessed from fossil resources and after the obligations are fulfilled the plastic waste is mainly converted to greenhouse gas carbon dioxide via incineration processes, which creates numerous negative issues.[3] A fossil resources-free and “carbon dioxide-neutral” alternative is created by the use of polymers based on renewable resources.[4] The starting materials are derived from biosynthesis, which converts carbon dioxide, water and energy to useful precursors.[5] For instance one important representative is poly(lactide) (PLA, 1) which is based on lactic acid derived from biological processes.[6] Lactic acid can either be polymerized to PLA via polycondensation reaction or by initial conversion to lactide, which can be transformed to PLA via ring opening polymerization (ROP).[7] A key benefit of poly(lactide) is the near carbon neutral performance, even if the polymer is incinerated, due to the integration of atmospheric carbon dioxide in biosynthesis.[8] Furthermore, the polymer is to some extent biodegradable, which causes less environmental problems, but it is not applicable in current industrial composting plants, because of the time needed to accomplish complete degradation.[9] However, even if the advantages of plastics from renewable resources are obvious, conflicts can arise from restricted cultivation area and competition with food production and energy production.[10] Therefore the recycling of end-of-life PLA goods can be useful option to solve some of the issues. In this regard the chemical recycling presents an interesting tool for allowing an efficient recycling.[11] In more detail, the polymer is converted to low-molecular weight chemicals in a depolymerization/ degradation step, which can be either applied as monomer or as monomer precursor to regenerate the polymer or produce other polymers in a polymerization step.[12] In consequence a recycling of the chemical functions is feasible. However, currently the implementation of chemical recycling lacks in cost efficiency, high energy demand and toleration of impurities and additives.[13]

Different approaches for the chemical recycling of end-of-life PLA have been accounted so far. For instance alcoholysis, pyrolysis and hydrogenation have been reported.[14,15,16,17,18] Recently Westhues et al. and Krall et al. reported a hydrogenative degradation reaction based on Ruthenium catalysis to yield 1,2-propanediol (2) as low-molecular weight chemical, which can be applied as building block for different types of polymers (Scheme 1).[17,18,19] Both systems require addition of acid or base, high hydrogen pressures and long reaction times. Recently, we have demonstrated the potential of the Ru-MACHO-BH complex 6 in the hydrogenative depolymerization of poly(bisphenol A carbonate), which allowed transformations e. g. acid/base-free conditions, at lower temperatures, low hydrogen pressure and within short times (Scheme 1).[20] Based on that initial study we investigated herein the capability of complex 6 in the hydrogenative degradation of end-of-life PLA.

The optimization of the reaction conditions of EoPLA degradation was studied with end-of-life transparent cups of PLA. For this purpose, pieces of the sample (68.2 µmol of 1[a] based on the monomeric unit) together with the Ruthenium catalyst 6 (0.5 mol%) in respect to 1[a]) were dissolved in THF under argon atmosphere and the mixture was transferred to an autoclave. Initially, the autoclave was pressurized with 45 bar of H₂. Subsequently the autoclave was stirred and heated to 140°C for 6 hours (Table 1, entry 1). Afterward, the reaction mixture was concentrated under vacuum and an aliquot was subjected to an NMR analysis. The 1H NMR spectrum revealed a singlet at 1.09 ppm (CH₃; 3H, d, J = 6.4 Hz), 3.33 ppm (CH₃; 1H, dd, J = 11.1 Hz, J = 7.8 Hz), 3.56 ppm (CH₂; 1H, dd, J = 11.1 Hz, J = 3.1 Hz) and 3.84 ppm (CH, 1H, m). The obtained data are in accordance with an authentic sample of 1,2-propanediol; therefore 2 was produced as major compound.[21]
Table 1. Ruthenium-catalyzed hydrogenative degradation of poly(lactide) (1a) - optimization of the reaction conditions.

Entry	Catalyst loading [mol %]	T [°C]	t [h]	p [bar]	Yield 2 [%][d]
1	0.5	140	6	45	>99
2	0.5	140	3	45	>99
3	0.5	140	1	45	33
4	0.25	140	3	45	32
5	0.1	140	3	45	<1
6	0	140	3	45	<1
7	0.5	120	3	45	67
8	0.5	100	3	45	4
9	0.5	140	3	30	95
10	0.5	140	3	20	<1
11[1]	0.5	140	1	45	<1
12[1]	0.2	140	1	45	<1

[a] Reaction conditions: poly(lactide) (1a) (68.2 μmol based on the repeating unit of 1a), 6 (0–0.5 mol%), 0–0.341 μmol based on the repeating unit of 1a), THF (1.0 mL), 100–140 °C, 1–6 h, 20–45 bar H₂. [b] The yield was determined by 1H NMR. [c] Toluene as solvent. [d] Hexane as solvent.

The NMR yield of 2 was determined by relating the integrals of the methyl group at 1.09 ppm from 2 with those of leftover polymer/oligomer at 1.57 ppm. This in regard, an NMR yield of >99% was calculated (Table 1, entry 1). Comparing the obtained result with the performance of Ruthenium-based hydrogenation catalysts (Scheme 1, 4 and 5) revealed the formation of 2 within shorter reaction times (4: 48 h; 5: 16 h; 6: 3 h), lower or same temperature (4: 160 °C; 5: 140 °C; 6: 140 °C), and at lower hydrogen pressure (4: 55.1 bar; 5: 90 bar; 6: 45 bar).[17,18]

However, compared with complex 5 (0.05 mol%) a higher catalyst loading of 0.5 mol% is required. Subsequently, the reaction time was reduced to 3 h revealing the same yield of 2 (Table 1, entry 2). A further reduction to one hour showed a yield of 33% (Table 1, entry 3). In the next experiments the catalyst loading was studied by gradually reducing the loading from 0.5 mol% to 0.1 mol% (Table 1, entries 4–6).

At 0.25 mol% loading a diminished yield of 32% of 2 was noticed, while at lower loading or without any catalyst no product formation was detected. Next the influence of reaction temperature was investigated (Table 1, entries 7–8). A good yield of 67% of 2 was obtained at 120 °C, while at lower temperatures only minor amounts of product 2 were realized. A reduction of the hydrogen pressure to 20 bar revealed an inactivity of the catalyst (Table 1, entries 9 and 10). Moreover, the solvent THF was replaced by toluene or hexane, but no product formation was observed (Table 1, entries 11 and 12).

Based on the results of the optimization study, the following reaction conditions were selected for further experiments: 0.5 mol% of catalyst 6, 140 °C, 45 bar H₂, and 3 h reaction time (Table 1, entry 1). Next a set of PLA containing end-of-life goods were subjected to hydrogenative degradation (Table 2). First different transparent and colourless products were tested (Table 2, entries 1–6). In most cases excellent conversion of PLA was detected, while NMR yields of 65–73% were realized (Table 2, entries 2–6). Noteworthy, for calculation of the yield it was assumed that the goods are composed of 100% PLA, since the number/amount of additives is unknown. Moreover, a transparent cup was tested, which has been used, washed and dried (Table 2, entry 6). Here a good conversion of 78% of 1 and a good yield of 73% of 2 was obtained. Moreover, dyed PLA products were hydrogenated (Table 2, entries 7–14). Excellent conversion of PLA was found for most products, while in case of 1i a low conversion and for 1m no conversion was detected (Table 2, entries 9 and 13). However, the obtained yields for 2 are to some extend lower compared with transparent parent products. After successful degradation of the used cups 1a under the optimized conditions, a scale up was carried out with 0.5 g of 1a (Scheme 2). Here product 2 was obtained in >99% NMR yield and in 89% isolated yield after distillation.[22]
Next the simultaneous hydrogenative depolymerization/ degradation was studied (Scheme 3). In this regard, a mixture of end-of-life PLA and end-of-life poly(bisphenol A carbonate) (7) was reacted with hydrogen in the presence of complex 6.\(^{[27]}\) Both polymers were converted to the corresponding monomer in good to excellent yields. On the other hand, a mixture of PLA 1a and poly(propylene carbonate) (9) was subjected to hydrogenative depolymerization/ degradation.\(^{[23]}\) Noteworthy, both polymers were converted to product 2 in excellent yield.

In addition, a consecutive degradation approach of PLA and poly(oxyethylene) (10) was investigated in accordance to Klankermayer and co-worker (Scheme 4).\(^{[24]}\) In this regard, end-of-life PLA is converted to 2, which is required for the degradation of 10 to produce a cyclic acetal, which can be useful chemical, e.g. as monomer for new polymers.\(^{[24]}\)

In more detail, 1a was depolymerized with hydrogen in the presence of catalytic amounts of complex 6 to form 2 in > 99% yield. After 3 hours the excess of hydrogen was released and into the reaction mixture poly(oxyethylene) 10 (monomeric ratio 1a:10 1:1) and catalytic amounts of bismuth(III) triflate (5 mol%) was added.\(^{[25]}\) After 2 hours at refluxing conditions (oil bath temperature: 90 °C) 4-methyl-1,3-dioxolane (11) was obtained in 90% yield.

Acknowledgements

Financial support from the Universit"at Hamburg (UHH) is gratefully acknowledged. We thank Prof. Dr. Axel Jacobi von Wangelin, Dr. Dieter Schaarschmidt and Bernhard Gregori (all UHH) for general discussions and support. We thank the "Molek"ulmemory" group (UHH) and Kevin Schl"utter (UHH) for support.
Conflict of Interest

The authors declare no conflict of interest.

Keywords: green chemistry · catalysis · polymers · recycling · degradation

[1] H.-G. Elias, *An Introduction to Plastics*, Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim, 2003.

[2] Plastics are typically composed of polymers and often other substances e.g. fillers, plasticizers, colorants.

[3] a) A. Tukker, *Plastics: Feedstock Recycling, Chemical Recycling and Incineration*, Smithers Rapra Press, 1997; b) R. C. Thompson, S. H. Swain, C. J. Moore, F. S. vom Saal, Philos. Trans. R. Soc. London Ser. B 2009, 364, 1973; c) S. M. Al-Salem, P. Lettieri, J. Baeyens, *Journal of Hazardous Materials*, 2010, 177, 1125.

[4] a) W. Groot, *Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, And Application*, John Wiley & Sons, 2010; b) L. T. Lim, R. Auras, M. Rubino, *Progr. Polym. Sci.* 2006, 33, 820; c) I. A.Ignatyev, W. Thielemans, B. Vander Beke, *ChemSusChem* 2014, 7, 1579.

[13] a) I. A. Ignatyev, W. Thielemans, B. Vander Beke, *ChemSusChem* 2014, 7, 1579.

[14] a) S. R. Andersson, M. Hakkarainen, S. Inkinen, A. Södergård, A.-C. Albertsson, *Biomacromolecules* 2011, 10, 1607; b) H. Tsuji, K. Ikariash, *Polym. Degrad. Stab.* 2004, 85, 647; c) K. Makino, M. Arakawa, T. Kondo, *Chem. Pharm. Bull.* 1985, 33, 1195; d) H. Tsuji, *Tetrahedron* 2002, 42, 1789; e) H. Tsuji, T. Yamada, J. Wood, *Polym. Sci.* 2003, 41, 40; f) X. Wang, Y. Qi, X. Wang, Y. F. Liu, S. Y. Su, L. Polyam. Degrad. Stab. 2014, 110, 65; g) F. Iniguez-Franco, R. Auras, K. Dolan, S. Selke, D. Holmes, M. Rubino, H. Soto-Valdez, *Polym. Degrad. Stab.* 2018, 149, 28; h) M. Faisal, T. Saeki, M. Tsuchi, H. Dairden, K. Fujii, *WIT Trans. Environ.* 2006, 92, 225.

[15] a) R. Petrus, D. Bykowski, P. Sobota, ACS Catal. 2016, 6, 5222; b) L. A. Roman-Ramirez, P. Mckeown, M. D. Jones, *Wood. ACS Catal.* 2019, 9, 409; c) F. A. Leibfarth, N. Moreno, A. P. Hawker, J. D. Shand, *J. Polym. Sci. Part A* 2012, 50, 4814; d) K. Hiroa, Y. Nakatsuchi, H. Ohara, *Polym. Degrad. Stabil.* 2010, 95, 925; e) D. Bykowski, A. Grala, P. Sobota, *Sustainable Chem. Eng.* 2018, 6, 15127; f) C. Alberti, N. Damps, R. R. R. Meilner, S. Enthaler, *ChemistrySelect* 2019, 4, 6845; g) K. Song, X. Zhang, H. Wang, F. Liu, S. Yu, S. Liu, *Polym. Degrad. Stab.* 2013, 98, 2760; h) C. Alberti, N. Damps, R. R. R. Meilner, N. Hofmann, D. Rijono, S. Enthaler, *Adv. Sci. *2019, DOI: 10.1002/advs.201900987; i) P. Mckeown, L. A. Roman-Ramirez, S. Bates, J. Wood, *M. D. Jones. ChemSusChem* 2019, 12, 5233.

[16] a) L. Dai, R. Liu, C. Si, *Green Chem.* 2010, 12, 1777; b) H. Tsuji, F. Kondoh, *Polym. Degrad. Stabil.* 2017, 141, 77; c) H. Tsuji, Y. Jiang, K. Tanaka, L. Zhang, L. Hao, Y. Sun, T. Deng, *RSC Adv.* 2015, 5, 50477; d) W. Cui, T. Hai, A. Joachimiak, P. N. Golyshin, *Chem. Rev.* 2010, 110, 1378.

[17] a) C. Alberti, S. Eckelt, S. Enthaler, *Chem. Commun.* 2012, 48, 1111; b) H. Tsuji, F. Kondoh, *Chem. Commun.* 2014, 50, 4884–4887.

[18] see also a) I. A. Shuklov, N. V. Dubrovina, J. Schulze, W. Tietz, K. Kühlein, *Chem. Eur. J.* 2010, 16, 925; e) D. Bykowski, A. Grala, P. Sobota, *Polym.* 2013, 10, 5727.

[19] a) C. Alberti, S. Eckelt, S. Enthaler, *ChemistrySelect* 2019, 4, 12268–12271; b) T.-O. Kindler, C. Alberti, J. Sundermeier, S. Enthaler, *ChemistryOpen* 2019, DOI: 10.1002/201900319.

[20] The NMR data were compared with the NMR data of an authentic racemere. "The NMR data were compared with the NMR data of an authentic racemere" (a)

[21] [20] a) C. Alberti, S. Eckelt, S. Enthaler, *Chem. Commun.* 2012, 48, 1111; b) H. Tsuji, F. Kondoh, *Chem. Commun.* 2014, 50, 4884–4887.

[22] 2 was obtained in an optical purity of 10%; therefore to some extent racemeration took place. \(\alpha_{\text{IR}} = 2.2°\) (c = 1 g/100 mL, CHCl\(_3\), 20 °C); \(\alpha_{\text{IR}} = 2.2°\) (c = 0.5 g/100 mL, CHCl\(_3\), 20 °C; wavelength: 589.3 nm, 20 °C); L. L. Welbes, R. C. Scarrow, A. S. Borovik, J. Wood, *Chem. Commun.* 2012, 48, 1111.

[23] 9 was also converted to 2 in the absence of 1a.

[24] K. Beydoun, J. Klankermayer, *ChemSusChem* 2020, 13, 488.

[25] The consecutive degradation of 1n and 10 was also performed one-pot in an autoclave under an atmosphere of hydrogen, but no formation of product 11 was observed.

[26] https://sustainabledevelopment.un.org/ (07.02.2020).