The unitary gas in an isotropic harmonic trap: symmetry properties and applications

Félix Werner and Yvan Castin
Laboratoire Kastler Brossel, École Normale Supérieure,
24 rue Lhomond, 75231 Paris Cedex 05, France
(Dated: November 12, 2018)

PACS numbers: 03.75.Ss, 05.30.Jp

Strongly interacting degenerate Fermi gases with two spin components are studied in present experiments with ultra-cold atoms [1]; by tuning the interaction strength between the atoms of different spin states via a Feshbach resonance, one can even reach the so-called unitary limit [2], where the interaction strength in the s-wave channel reaches the maximal amplitude allowed by quantum mechanics in a gas. More precisely, this means that the s-wave scattering amplitude between two particles reaches the value
\[f_s = -\frac{1}{ik} \]
for the relative momenta \(k \) that are relevant in the gas, in particular for \(k \) of the order of the Fermi momentum \(k_F \) of the particles. This implies that the s-wave scattering length \(a \) is set to infinity (which is done in practice by tuning an external magnetic field). This also implies that \(k |r_c| < 1 \), where \(r_c \) is the effective range of the interaction potential, a condition well satisfied in present experiments on broad Feshbach resonances.

The maximally-interacting gas defined by these conditions is called the unitary quantum gas [2]. It has universal properties since all the details of the interaction have dropped out of the problem. Theoretically, for spin 1/2 fermions with equal populations in the two spin states, equilibrium properties have been calculated in the thermodynamical limit in the spatially homogeneous case using Monte-Carlo methods; at finite temperature [3,4], and at zero temperature with a fixed node approximation [5]. In practice, the unitary gases produced experimentally are stored in essentially harmonic traps, which rises the question of the effect of such an external potential. In this paper, we consider a specific aspect of this question: restricting to perfectly isotropic harmonic traps, but with no constraint on the relative spin populations, we show that the unitary quantum gas admits interesting symmetry properties that have measurable consequences on its spectrum and on the many-body wavefunctions. These properties imply that there is a mapping between the \(N \)-body eigenfunctions in a trap and the zero-energy \(N \)-body eigenfunctions in free space; the \(N \)-body problem is separable in hyperspherical coordinates; and there exist relations between the moments of the trapping potential energy and those of the total energy at thermal equilibrium.

A unitary Bose gas was not produced yet. This is related to the Efimov effect [6]: when three bosons interact with a short range potential of infinite scattering length, an effective three-body attraction takes place, leading in free space to the existence of weakly bound trimers. This effective attraction generates high values of \(k \) so that the unitarity condition Eq. (1) is violated. It also gives a short life time to the gas by activating three-body losses due to the formation of deeply bound molecules \(\mathcal{P} \leq \mathcal{D} \). In an isotropic harmonic trap, for three bosons, there exist efimovian states [10,11], but there also exist eigenstates not experiencing the Efimov effect [11,12]. These last states are universal (in the sense that they depend only on \(h \), the mass \(m \) and the trapping frequency \(\omega \)) and they are predicted to be long-lived [12]. The results of the present paper apply to all universal states, fermionic or bosonic, but do not apply to the efimovian states.

I. OUR MODEL FOR THE UNITARY GAS

The physical system considered in this paper is a set of \(N \) particles of equal mass \(m \) (an extension to different masses is given in Appendix A). The particles are of arbitrary spin and follow arbitrary statistics; the Hamiltonian is supposed to be spin-independent so that the \(N \)-body wavefunction \(\psi \) that we shall consider corresponds to a given spin configuration [13]. The particles are trapped by the same isotropic harmonic potential of frequency \(\omega \). We collect all the positions \(\vec{r}_i \) of the particles in a single 3\(N \) component vector:
\[\vec{X} \equiv (\vec{r}_1, \ldots, \vec{r}_N). \]

Its norm
\[X = \| \vec{X} \| = \sqrt{\sum_{i=1}^N r_i^2} \]
(3)
is called the hyperradius. We will also use the unit vector
\[\vec{n} \equiv \frac{\vec{X}}{X} \]
Therein): when the distance between the particles is assumed to be at the unitary limit defined in Eq. (1), one can then eliminate of the center of mass variables), and this is related to a SO(2,1) hidden symmetry of the problem. As shown by Rosch and Pitaevskii [20], the existence of such a scaling and gauge time dependent solution is related to a SO(2,1) hidden symmetry of the problem. This we rederive in the next subsection.

B. Scaling solution in a time dependent trap

We now assume that the trap frequency \(\omega \), while keeping a fixed value \(\omega(0) \) for all times \(t < 0 \), has an arbitrary time dependence at positive times. Let us assume that, at \(t \leq 0 \), the system is in a stationary state of energy \(E \). Then at positive times the wavefunction of the system will be deduced from the \(t = 0 \) wavefunction by the combination of gauge and scaling transform [19]:

\[
\psi(\vec{X}, t) = \frac{e^{-i E t}/h}{\lambda(t)^{3N/2}} e^{im \bar{\lambda}(t)/2h \bar{\lambda}(t)} \psi(\vec{X}/\lambda(t), 0)
\]

where the time dependent scaling parameter obeys the Newton-like equation

\[
\dot{\lambda} = \frac{\omega^2(0)}{\lambda^3} - \omega^2(t) \lambda
\]

with the initial conditions \(\lambda(0) = 1, \dot{\lambda}(0) = 0 \). We also introduced an effective time \(\tau \) given by

\[
\tau(t) = \int_0^t \frac{dt'}{\lambda^2(t')}
\]

This result may be extended to an arbitrary initial state as follows:

\[
\psi(\vec{X}, t) = \frac{1}{\lambda(t)^{3N/2}} e^{im \bar{\lambda}(t)/2h \bar{\lambda}(t)} \tilde{\psi}(\vec{X}/\lambda(t), \tau(t)).
\]

where \(\tilde{\psi} \) evolves with the \(t < 0 \) Hamiltonian (i.e. in the unperturbed trap of frequency \(\omega(0) \)).

As shown by Rosch and Pitaevskii [24], the existence of such a scaling and gauge time dependent solution is related to a SO(2,1) hidden symmetry of the problem. This we rederive in the next subsection.

C. Raising and lowering operators, and SO(2,1) hidden symmetry

We consider the following gedanken experiment: one perturbs the gas in an infinitesimal way by modifying the
trap frequency in a time interval \(0 < t < t_f\). After the excitation period \((t > t_f)\), the trap frequency assumes its initial value \(\omega(0)\). The scaling parameter then slightly deviates from unity, \(\lambda(t) = 1 + \delta \lambda(t)\) with \(|\delta \lambda| \ll 1\). Linearizing the equation of motion Eq.(12) in \(\delta \lambda\), one finds that \(\delta \lambda\) oscillates as

\[
\delta \lambda(t) = e^{-2i\omega t} + e^{i\omega t},
\]

where we set \(\omega = \omega(0)\) to simplify the notation. The gedanken experiment has therefore excited an undamped breathing mode of frequency \(2\omega\) [21].

We now interpret this undamped oscillation in terms of a property of the \(N\)-body spectrum of the system. Expanding Eq.(11) to first order in \(\delta \lambda(t)\) leads to

\[
\psi(\bar{X},t) = e^{i\alpha} \left[e^{-iE t/\hbar} - e^{-i(\bar{E}+2\hbar \omega)t/\hbar} L_+ \right. + e^{i(\bar{E}-2\hbar \omega)t/\hbar} L_- \left. \right] \psi(\bar{X},0) + O(\varepsilon^2) \]

(16)

(the phase \(\alpha\) depends on the details of the excitation procedure). This reveals that the initial stationary state \(E\) was coupled by the excitation procedure to other stationary states of energies \(E \pm 2\hbar \omega\). Remarkably, the wavefunction of these other states can be obtained from the initial one by the action of raising and lowering operators:

\[
L_+ = -\frac{3N}{2} + \hat{D} + \frac{H}{\hbar \omega} - m\omega X^2/\hbar
\]

(17)

\[
L_- = -\frac{3N}{2} - \hat{D} + \frac{H}{\hbar \omega} - m\omega X^2/\hbar.
\]

(18)

Repeated action of \(L_+\) and \(L_-\) will thus generate a ladder of eigenstates with regular energy spacing \(2\hbar \omega\).

The hidden \(SO(2,1)\) symmetry of the problem then results from the fact that \(H, L_+, L_-\) have commutation relations equal (up to numerical factors) to the ones of the Lie algebra of the \(SO(2,1)\) group, as was checked in [21]:

\[
[H, L_+] = 2\hbar \omega L_+
\]

(19)

\[
[H, L_-] = -2\hbar \omega L_-
\]

(20)

\[
[L_+, L_-] = -4 \frac{H}{\hbar \omega}
\]

(21)

From the general theory of Lie algebras, one may form the so-called Casimir operator which commutes with all the elements of the algebra, that is with \(H\) and \(L_{\pm}\); it is given by [21]:

\[
\hat{C} = H^2 - \frac{1}{2}(\hbar \omega)^2(L_+ L_- + L_- L_+).
\]

(22)

Consider a ladder of eigenstates; as we will show later, the hermiticity of \(H\) implies that this ladder has a ground energy step, of value \(E_0\). Within this ladder, the Casimir invariant assumes a constant value,

\[
C = E_0(E_0 - 2\hbar \omega).
\]

(23)

D. Virial theorem

Another application of the existence of raising and lowering operators is the virial theorem for the unitary gas. For a given eigenstate of \(H\) of energy \(E\) and real wavefunction \(\psi, L_- |\psi\rangle\) is either zero (if \(\psi\) is the ground step of a ladder) or an eigenstate of \(H\) with a different energy. Assuming that \(H\) is hermitian, this implies \(\langle L_- |\psi\rangle = 0\), and leads to [21]:

\[
\langle \psi |H|\psi\rangle = 2 \langle \psi |H_{\text{trap}}|\psi\rangle.
\]

(24)

At thermodynamical equilibrium, one thus has

\[
\langle H\rangle = 2 \langle H_{\text{trap}}\rangle,
\]

(25)

that is the total energy is twice the mean trapping potential energy.

This virial theorem is actually also valid for an anisotropic harmonic trap (this result is due to Frédéric Chevy). One uses the Ritz theorem, stating that an eigenstate of a hermitian Hamiltonian is a stationary point of the mean energy. As a consequence, the function of \(\lambda\)

\[
E(\lambda) = \frac{\langle \psi_\lambda |H|\psi_\lambda\rangle}{\langle \psi_\lambda |\psi_\lambda\rangle}
\]

(26)

satisfies \((dE/d\lambda)(\lambda = 1) = 0\), which leads to the virial theorem. This relies simply on the scaling properties of the harmonic potential, irrespective of its isotropy.

The proportionality between \(\langle H\rangle\) and \(\langle H_{\text{trap}}\rangle\) resulting from the virial theorem was checked experimentally [22].

III. MAPPING TO ZERO-ENERGY

FREE-SPACE EIGENSTATES

Usually, the presence of a harmonic trap in the experiment makes the theoretical analysis more difficult than in homogenenous systems. Here we show that, remarkably, the case of an isotropic trap for the unitary gas can be mapped exactly to the zero-energy free-space problem (which remains, of course, an unsolved many-body problem).

More precisely, all the universal \(N\)-body eigenstates can be put in the unnormalized form:

\[
|\psi_{\nu,q}\rangle = (L_+)^q e^{-\bar{X}^2/2a_{\nu}^2} |\psi_0^{(q)}\rangle
\]

(27)

and have an energy

\[
E_{\nu,q} = (\nu + 2q + 3N/2) \hbar \omega
\]

(28)

where \(q\) is a non-negative integer, \(L_+\) is the raising operator defined in Eq.(17), and \(\psi_0^{(q)}\) is a zero-energy eigenstate of the free-space problem which is scale-invariant:

\[
\psi_0^{(q)}(\bar{X}/\lambda) = \psi_0^{(q)}(\bar{X})/\lambda^q
\]

(29)
for all real scaling parameter λ, ν being the real scaling exponent \cite{22}. We also show that the reciprocal is true, that is each zero-energy free-space eigenstate which is scale-invariant with a real exponent ν generates a semi-infinite ladder of eigenstates in the trap, according to Eq. \cite{27,28}. We note that Eq. \cite{25} generalizes to excited states a relation obtained in \cite{24} for the many-body ground state.

A. From a trap eigenstate to a free-space eigenstate

We start with an arbitrary eigenstate in the trap. By repeated action of L_- on this eigenstate, we produce a sequence of eigenstates of decreasing energies. According to the virial theorem Eq. \cite{21}, the total energy of a universal state is positive, since the trapping potential energy is positive. This means that the sequence produced above terminates. We call ψ the last non-zero wavefunction of the sequence, an eigenstate of H with energy E that satisfies $L_- |\psi\rangle = 0$. To integrate this equation, we use the hyperspherical coordinates (X, \vec{n}) defined in Eq. \cite{34}. Noting that the dilatation operator is simply $\hat{D} = X \cdot \partial_X$ in hyperspherical coordinates, we obtain:

$$\psi(X) = e^{-X^2/2a^2 X} X^{E/(\hbar \omega) - 3N/2} f(\vec{n}).$$

(30)

Then one defines

$$\psi^0(X) \equiv e^{-X^2/2a^2 X} \psi(X).$$

(31)

One checks that this wavefunction obeys the contact conditions Eq. \cite{6}, since X^2 varies quadratically with r_{ij} at fixed \vec{r}_{ij} and $\{\vec{r}_k, k \neq i, j\}$. ψ^0 is then found to be a zero-energy eigenstate in free space, by direct insertion into Schrödinger’s equation. But one has also from Eq. \cite{10,31}:

$$\psi^0(X) = X^{E/(\hbar \omega) - 3N/2} f(\vec{n}).$$

(32)

so that ψ^0 is scale-invariant, with a real exponent ν related to the energy E by Eq. \cite{28}. This demonstrates Eq. \cite{27,28} for $q = 0$, that is for the ground step of each ladder.

One just has to apply a repeated action of the raising operator L_+ on the ground step wavefunction to generate a semi-infinite ladder of eigenstates: this corresponds to $q > 0$ in Eq. \cite{27,28}. Note that the repeated action of L_+ cannot terminate since $L_+ |\psi\rangle = 0$ for a non-zero ψ implies that ψ is not square-integrable.

B. From a free-space eigenstate to a trap eigenstate

The reciprocal of the previous subsection is also true: starting from an arbitrary zero-energy free-space eigenstate that is scale-invariant, one multiplies it by the Gaussian factor $\exp(-X^2/2a^2 X)$, and one checks that the resulting wavefunction is an eigenstate of the Hamiltonian of the trapped system, obeying the contact conditions \cite{27,28}. Applying L_+ then generates the other trap eigenstates.

C. Separability in hyperspherical coordinates

Let us reformulate the previous mapping using the hyperspherical coordinates (X, \vec{n}) defined in Eq. \cite{34}. A free-space scale-invariant zero-energy eigenstate takes the form $\psi^0(X) = X^\nu f_\nu(\vec{n})$, and the universal eigenstates in the trap have an unnormalized wavefunction

$$\psi_{\nu,q}(X) = X^\nu e^{-X^2/2a^2 X} L^{(\nu-1+3N/2)}_q(X^2/a^2_{in}) f_\nu(\vec{n}),$$

(33)

where $L^{(\cdot)}_q$ is the generalized Laguerre polynomial of degree q. This is obtained from the repeated action of L_+ in Eq. \cite{27} and from the recurrence relation obeyed by the Laguerre polynomials:

$$(q+1)L^{(s)}_{q+1}(u)-(2q+s+1-u)L^{(s)}_q(u)+(q+s)L^{(s)}_{q-1}(u) = 0.$$ (34)

We have thus separated out the hyperradius X and the hyperangles \vec{n}. The hyperangular wavefunctions $f_\nu(\vec{n})$ and the exponents ν are not known for $N \geq 4$. However, we have obtained the hyperradial wavefunctions, i.e. the X dependent part of the many-body wavefunction. A more refined version of these separability results can be obtained by first separating out the center of mass (see Appendix C), but this is not useful for the next Section.

IV. MOMENTS OF THE TRAPPING POTENTIAL ENERGY

A. Exact relations

As an application of the above results, we now obtain the following exact relations on the statistical properties of the trapping potential energy, relating its moments to the moments of the full energy, when the gas is at thermal equilibrium. For the definition of the trapping potential energy, see Eq. \cite{6}.

At zero temperature, its moments as a function of the ground state energy E_0 are given by:

$$\langle (H_{\text{trap}})^q \rangle = E_0 (E_0 + \hbar \omega) \ldots (E_0 + (n-1)\hbar \omega)/2^n.$$ (35)

At finite temperature T, the first moment is given by the virial theorem

$$\langle H_{\text{trap}} \rangle = \langle H \rangle/2$$

(36)

and the second moment by

$$\langle (H_{\text{trap}})^2 \rangle = \left[\langle H^2 \rangle + \langle H \rangle \hbar \omega \cdot \cotanh \left(\frac{\hbar \omega}{k_B T} \right) \right]/4.$$ (37)
B. Derivation

The zero temperature result Eq. (33) follows directly from Eq. (33): for \(q = 0 \), the Laguerre polynomial is constant so that the probability distribution of \(X \) is a power law times a Gaussian; the moments are then given by integrals that can be expressed in terms of the \(\Gamma \) function.

For finite \(T \), the idea of our derivation is the following: the hyperradial part of the \(N \)-body wavefunction \(\psi_{\nu,q} \) is known from Eq. (33); and thus the probability distribution of \(X \) in the state \(|\psi_{\nu,q}\rangle \) is known, in terms of \(\nu, q \). While the thermal distribution of \(q \) is simple, the one of \(\nu \) is not, but \(\nu \) is related to the total energy by Eq. (28).

We need the intermediate quantities:

\[
B_{n,p} = \int_0^\infty du e^{-u} u^{s+n} \frac{L_q(u)}{L_q(u)}
\]

where \(s \geq 0; \ n, q \) are non-negative integers; and \(p \) is an integer of arbitrary sign. These quantities can be calculated with the \(n = 0 \) ‘initial’ condition \(B_{0,p} = \delta_{0,p} \) and the recurrence relation

\[
B_{n+1,p} = -(q + p + 1)B_{n,p+1} + [2(q + p) + s + 1] B_{n,p} - (q + p + s) B_{n,p-1}
\]

which follows from the recurrence relation Eq. (33) on Laguerre polynomials.

This allows to calculate the moments of the trapping energy in the step \(q \) of a ladder of exposant \(\nu \), using Eq. (33):

\[
\frac{\langle \psi_{\nu,q}|X^{2n}\psi_{\nu,q}\rangle}{\langle \psi_{\nu,q}|\psi_{\nu,q}\rangle} = B_{n,0} a_{n,0}^{2n}.
\]

Here we have set

\[
s = \nu - 1 + 3N/2
\]

in accordance with Eq. (33).

Assuming thermal equilibrium in the canonical ensemble, the thermal average can be performed over the statistically independent variables \(q \) and \(s \). The moments of \(q \) are easy to calculate, because of the ladder structure with equidistant steps:

\[
\langle q^n \rangle = \frac{\sum_{q=0}^{+\infty} q^n e^{-q \hbar \omega / k_B T}}{\sum_{q=0}^{+\infty} e^{-q \hbar \omega / k_B T}}.
\]

The moments of \(s \) are not known exactly but they can be eliminated in terms of the moments of the total energy \(E \) and of the moments of \(q \) using the relation \(E = (s + 1 + 2q) \hbar \omega \). This leads to the exact relations Eq. (34).

\[
\langle \psi_{\nu,q}|X^{2n}\psi_{\nu,q}\rangle
\]

and the internal hyperangular coordinates become:

\[
R = \sqrt{\sum_{i=1}^{N} \frac{m_i}{m} (\tilde{r}_i - \tilde{C})^2}
\]

\[
\tilde{\Omega} = \left(\sqrt{\frac{m_1}{m} \tilde{r}_1 - \tilde{C}} \right) \cdots \left(\sqrt{\frac{m_N}{m} \tilde{r}_N - \tilde{C}} \right).
\]
With these modified definitions, all the results of this paper remain valid.

APPENDIX B: SCALE INVARIANCE OF THE ZERO-ENERGY FREE-SPACE EIGENSTATES

In this appendix, we show that the zero-energy free-space eigenstates of the Hamiltonian may be chosen as being scale-invariant, that is as eigenstates of the dilatation operator \hat{D}, under conditions ensuring the hermiticity of the Hamiltonian.

Consider the zero-energy eigensubspace of the free-space Hamiltonian. This subspace is stable under the action of \hat{D}. If one assumes that \hat{D} is diagonalizable within this subspace, the corresponding eigenvectors form a complete family of scale invariant zero-energy states. If \hat{D} is not diagonalizable, we introduce the Jordan normal form of \hat{D}.

Let us start with the case of a Jordan normal form of dimension two, written as

$$\text{Mat}(\hat{D}) = \begin{pmatrix} \nu & 1 \\ 0 & \nu \end{pmatrix},$$

in the sub-basis $|e_1\rangle, |e_2\rangle$. The ket $|e_1\rangle$ is an eigenstate of \hat{D} with the eigenvalue ν. We assume that the center of mass motion is at rest, with no loss of generality since it is separable in free space. Using the internal hyperspherical coordinates $(R, \vec{\Omega})$ defined in Appendix C, we find that \hat{D} reduces to the operator $R\partial_R$. Integrating $R\partial_R e_1 = \nu e_1$ leads to

$$e_1(\vec{X}) = R^{\nu} \phi_1(\vec{\Omega}).$$

The ket $|e_2\rangle$ is not an eigenstate of \hat{D} but obeys $R\partial_R e_2 = \nu e_2 + e_1$, which, after integration, gives

$$e_2(\vec{X}) = R^{\nu} \log R \phi_1(\vec{\Omega}) + R^{\nu} \phi_2(\vec{\Omega}).$$

One can assume that ϕ_1 and ϕ_2 are orthogonal on the unit sphere (by redefining e_2 and ϕ_2). It remains to use the fact that both e_1 and e_2 are zero-energy free-space eigenstates. From the form of the Laplacian in hyperspherical coordinates in $d = 3N - 3$ dimensions, see Eq. (C4), the condition $\Delta_\vec{X} e_1 = 0$ leads to

$$T_{\vec{\Omega}} \phi_1 = -\nu (\nu + d - 2) \phi_1.$$

The condition $\Delta_\vec{X} e_2 = 0$ then gives $T_{\vec{\Omega}} \phi_2 = -\nu (\nu + d - 2) \phi_2 - (2\nu + d - 2) \phi_1$, which leads to the constraint $2\nu = 1 - d/2$.

At this stage, for this 'magic' value of ν, it seems that there may exist non scale-invariant zero-energy eigenstates.

To proceed further, one has to check for the hermiticity of the free space Hamiltonian. This requires a reasoning at arbitrary, non zero energy. We use the fact that the following wavefunction obeys the contact conditions,

$$\psi(\vec{X}) = u(R) R^{\nu} \phi_1(\vec{n}),$$

where $u(R)$ is a function with no singularity, except maybe in $R = 0$. Using again the expression of the Laplacian in internal hyperspherical coordinates, one finds that ψ is an eigenstate of the free-space Hamiltonian if $u(R)$ is an eigenstate of

$$\hat{h} = -\frac{\hbar^2}{2m} (\partial^2_R + R^{-1} \partial_R).$$

One checks that Hermiticity of the free-space Hamiltonian for the wavefunction ψ implies hermiticity of \hat{h} for the 'wavefunction' $u(R)$. Note that \hat{h} is simply the free-space Hamiltonian for $2D$ isotropic wavefunctions. It is hermitian over the domain of wavefunctions $u(R)$ with a non-infinite limit in $R = 0$. Including the ket $|e_2\rangle$ in the domain of the N-body free-space Hamiltonian amounts to allowing for ‘wavefunctions’ $u(R)$ that diverge as $\log R$ for $R \to 0$: this breaks the Hermiticity of \hat{h}, since this leads to a (negative energy) continuum of square integrable eigenstates of \hat{h},

$$u_{\kappa}(R) = K_0(\kappa R)$$

with eigenenergy $-\hbar^2 \kappa^2 / 2m$, for all $\kappa > 0$. Here $K_0(x)$ is a modified Bessel function of the second kind. Hermiticity may be restored by a filtering of this continuum, adding the extra contact condition $u(R) = \log(R/l) + o(1)$ for $R \to 0$, but the introduction of the fixed length l breaks the universality of the problem and is beyond the scope of this paper. We thus exclude e_2 from the domain of the Hamiltonian.

This discussion may be extended to Jordan forms of higher order. For example, a Jordan form of dimension 3 generates a ket $|e_3\rangle$ such that $(\hat{D} - \nu) e_3 = e_2$. But e_2 must be excluded from the domain of the Hamiltonian by the above reasoning. Since we want the domain to be stable under \hat{D}, e_3 must be excluded as well.

As a conclusion, to have a free-space N-body Hamiltonian that is both hermitian and universal (i.e. with a scale-invariant domain) forces to reject the non scale-invariant zero-energy eigenstates, of the form Eq. (B3).

APPENDIX C: SEPARABILITY IN INTERNAL HYPSERSHPERICAL COORDINATES

We develop here a refined version of the separability introduced in subsection III.C. First, we separate out the center of mass coordinates. Then we obtain the separability in hyperspherical coordinates relative to the internal variables of the gas, which allows to derive an effective repulsive $N - 1$ force and to get a lower bound on the energy slightly better than the one $E > 0$ ensuing from the virial theorem.
Let us introduce the following set of coordinates:

\[\vec{C} = \sum_{i=1}^{N} \vec{r}_i / N \]

(C1)

is the position of the center of mass (CM);

\[R = \sqrt{\sum_{i=1}^{N} (\vec{r}_i - \vec{C})^2} \]

(C2)

is the internal hyperradius; and

\[\vec{\Omega} = \left(\frac{\vec{r}_1 - \vec{C}}{R}, \ldots, \frac{\vec{r}_N - \vec{C}}{R} \right) \]

(C3)

is a set of dimensionless internal coordinates that can be parametrized by \(3N - 4 \) internal hyperangles. In these coordinates, the Hamiltonian decouples as \(H = H_{CM} + H_{\text{int}} \) with

\[H_{CM} = -\frac{\hbar^2}{2Nm} \Delta \vec{C} + \frac{1}{2} \frac{Nm^2 C^2}{2m} \]

(C4)

\[H_{\text{int}} = -\frac{\hbar^2}{2m} \left[\partial_R^2 + \frac{3N-4}{R} \partial_R + \frac{1}{R^2} T_\Omega \right] + \frac{1}{2} \frac{m\omega^2 R^2}{2m} \]

(C5)

where \(T_\Omega \) is the Laplacian on the unit sphere of dimension \(3N - 4 \). The contact conditions do not break the separability of the center of mass valid in a harmonic trap, so that the stationary state wavefunction may be taken of the form

\[\psi(\vec{X}) = \psi_{CM}(\vec{C}) \psi_{\text{int}}(R, \vec{\Omega}). \]

(C6)

One can show \(^{27}\) that there is separability in internal hyperspherical coordinates:

\[\psi_{\text{int}}(R, \vec{\Omega}) = \Phi(R) \phi(\vec{\Omega}). \]

(C7)

This form may be injected into the internal Schrödinger equation

\[H_{\text{int}} \psi_{\text{int}} = E_{\text{int}} \psi_{\text{int}}. \]

(C8)

One finds that \(\phi(\vec{\Omega}) \) is an eigenstate of \(T_\Omega \), with an eigenvalue that we call \(-\Lambda\). Note that the contact conditions Eq.\(^{10}\)) put a constraint on \(\phi(\vec{\Omega}) \) only \(^{27}\). The equation for \(\Phi(R) \) reads:

\[-\frac{\hbar^2}{2m} \left(\partial_R^2 + \frac{3N-4}{R} \partial_R \right) \Phi + \left(\frac{\hbar^2 \Lambda}{2mR^2} + \frac{1}{2} \frac{m\omega^2 R^2}{2m} \right) \Phi = E_{\text{int}} \Phi. \]

(C9)

A useful transformation of this equation is obtained by the change of variable:

\[\Phi(R) \equiv R^{\frac{5-3N}{2}} F(R), \]

(C10)

resulting in

\[-\frac{\hbar^2}{2m} \left(\partial_R^2 + \frac{1}{R} \partial_R \right) F + \left(\frac{\hbar^2 s_R^2}{2mR^2} + \frac{1}{2} \frac{m\omega^2 R^2}{2m} \right) F = E_{\text{int}} F(R), \]

(C11)

where \(s_R \) is such that

\[s_R^2 = \Lambda + \frac{(3N-5)^2}{2}. \]

(C12)

Formally, the equation for \(F \) is Schrödinger’s equation for a particle of zero angular momentum moving in 2D in a harmonic potential plus a potential \(\propto s_R^2 / R^2 \).

For \(s_R^2 \geq 0 \), one can choose \(s_R \geq 0 \). Assuming that there is no \(N \)-body resonance, \(F(R) \) is bounded for \(R \to 0 \) \(^{31}\). The eigenfunctions of Eq.\(^{C11}\)) can then be expressed in terms of the generalized Laguerre polynomials:

\[F(R) = R^{s_R} L_q^{s_R} (R^2 / a_{ho}) e^{-R^2 / 2a_{ho}}. \]

(C13)

with the spectrum:

\[E_{\text{int}} = (s_R + 1 + 2q) \hbar \omega. \]

(C14)

This gives a lower bound on the energy of any universal \(N \)-body eigenstate:

\[E \geq \frac{5}{2} \hbar \omega \]

(C15)

for \(N > 2 \) and in the absence of a \(N \)-body resonance.

For a complex \(s_R^2 \), the effective 2D Hamiltonian is not hermitian and this case has to be discarded. For \(s_R^2 < 0 \), Whittaker functions are square integrable solutions of the effective 2D problem for all values \(E_{\text{int}} \) so that, again, the problem is not hermitian. One may add extra boundary conditions to filter out an orthonormal discrete subset (as was done for \(N = 3 \) bosons \(^{11,12,22,33}\)) but this breaks the scaling invariance of the domain and generates non-universal states beyond the scope of the present paper.

To make the link with the approach of Section III, we note that

\[F(R) = R^{s_R} \]

(C16)

is a solution of the effective 2D problem \(^{C11}\) for \(\omega = 0, E_{\text{int}} = 0 \). Thus a solution of the internal problem Eq.\(^{C8}\) at zero energy in free space is given by

\[\psi_{\text{int}}(R, \Omega) = R^{(5-3N)/2 + s_R} \phi(\vec{\Omega}). \]

(C17)

Multiplying this expression by \(C \Omega_i^m (\vec{C} / C) \), one recovers the \(\psi_{\nu}^\nu \)’s of Section III with

\[\nu = \frac{5-3N}{2} + s_R + l. \]

(C18)
case, the wavefunction $\psi(r_1, \ldots, r_N)$ is antisymmetric for the permutation of the positions of the N_1 first particles and also antisymmetric for the permutation of the last N_2 particles.

[14] In the context of cold atoms, hyperspherical coordinates were used e.g. in J. L. Bohn, B. D. Esry, and C. H. Greene, Phys. Rev. A 58, 584 (1998); O. Sorensen, D. V. Fedorov, A. S. Jensen, Phys. Rev. A 66, 032507 (2002).

[15] M. Olshanii, L. Pricoupenko, Phys. Rev. Lett. 88, 010402 (2002).

[16] D.S. Petrov, C. Salomon, G. V. Shlyapnikov, Phys. Rev. A 71, 012708 (2005); D.S. Petrov, C. Salomon, G. V. Shlyapnikov, Phys. Rev. Lett. 93, 090404 (2004); D. S. Petrov, Phys. Rev. A 67, 010703(R) (2003).

[17] For three bosons, this holds only in the subspace of universal states.

[18] This can be seen using the Hellmann-Feynman theorem, valid for Hermitian Hamiltonians: taking the derivative with respect to λ of $\langle \psi|H|\psi\rangle = E/\lambda^2$, one gets $-2E/\lambda^3 = \langle \psi|dH/d\lambda|\psi\rangle = 0$, in contradiction with $E < 0$.

[19] Y. Castin, Comptes Rendus Physique 5, 407 (2004).

[20] L. P. Pitaevskii, A. Rosch, Phys. Rev. A 55, R853 (1997).

[21] For a real ψ normalized to unity, one finds $\langle \psi|D\psi\rangle = -3N/2$, from the identity $\psi^* \cdot \nabla \psi = \text{div} \left(\frac{i}{2} \nabla \psi^2 \right) - \nabla^2 \psi^2$ and Ostrogradsky’s theorem.

[22] J. E. Thomas, J. Kinast, and A. Turlapov, Phys. Rev. Lett. 95, 120402 (2005).

[23] There are in general several zero-energy free-space eigenstates with the same exponent ν, so that our notation ψ_ν is abusive.

[24] S. Tan, cond-mat/0412764

[25] This holds also when the exponent ν of the free-space eigenstate is not real, in which case the Hamiltonian is not hermitian since the resulting eigenenergy in the trap is complex. This happens for the Efimov states of 3 bosons, which can be written as a sum of scale-invariant states.

[26] This example the fact that the present algebra is meaningful for universal states only.

[27] To obtain Eq. (15), consider $\psi_2 \equiv R^\nu u(R)\phi_2(\hat{\Omega})$. This wavefunction satisfies the contact conditions. It thus belongs to the domain of H (for an appropriate $u(R)$). Since $H\phi_1 = 0$, hermiticity of H implies $\langle \psi_1, H \psi_2 \rangle = 0$; which leads to the result.

[28] To establish this fact, one needs the following lemma: if $\psi(\hat{X})$ obeys the contact conditions, so does $u(R)\psi(\hat{X})$, where $u(R)$ is a function with no singularity, except maybe in $R = 0$. This lemma results from the fact that $R^2 = R^2_0 + O(r^4_0)$, where R^2_0 is a nonzero constant in the $r_{ij} \to 0$ limit, so that $u(\hat{R}) = u(R_0) + O(r^4_0)$. We assume here $N \geq 3$; in this case, R_0 is different from zero since the contact conditions apply for $\hat{R}_{ij} \neq \hat{r}_k$, whatever $k \neq i,j$.

[29] P.M. Morse, H. Feshbach, Methods of Theoretical Physics, part II, p. 1665 (Mc Graw-Hill, 1953).

[30] The whole algebra of section IIII may be reproduced for the internal problem, with the modified raising and lowering operators: $L_{\pm} \equiv \pm \left(\frac{\Delta}{2} + R \hat{r}_j \right) \mp \frac{m}{\hbar} \Delta R^2$.

[31] The absence of N-body resonance corresponds to the simi-
ple boundary condition: (i) $F(R)$ bounded for $R \to 0$. For $0 < s_R < 1$, N-body resonances can be taken into account by the modified boundary condition: (ii) $F(R) = A R^{s_R} [R^{-2s_R} - \epsilon l^{-2s_R}] + O(R^{-s_R + 2})$, where $l \in [0, +\infty]$ and $\epsilon = \pm 1$ are fixed. If one is not exactly on the N-body resonance, one has $l < \infty$, which breaks scale invariance, thus invalidating the results of this paper. Exactly on the N-body resonance (e.g. when the energy of the N-body bound state in free space vanishes), one has $l = \infty$, which preserves scale invariance: all the results of this paper remain valid; one must only replace s_R by $-s_R$ in Equations (C13,C14,C16,C17,C18), and Eq. (C15) becomes $E \geq 3/2\hbar\omega$. For $s_R = 0$, N-body resonances can be taken into account by the modified boundary condition: (iii) $F(R) = A \log(R/l) + o(1)$, where $l \in [0, +\infty]$ is fixed. If one is not exactly on the N-body resonance, one has $l < \infty$, which breaks scale invariance, thus invalidating the results of this paper. Being exactly on the N-body resonance corresponds to taking the limit $l \to \infty$ in (iii), which is equivalent to (i): the results of this paper then remain valid. For $s_R \geq 1$, the wavefunction $F(R) = R^{-s_R}$ is not square integrable near $R = 0$ in 2 dimensions, so that the description of N-body resonances becomes more complicated (see [32] for the case $N = 2$).

[32] L. Pricoupenko, Phys. Rev. A 73, 012701 (2006); L. Pricoupenko, Phys. Rev. Lett. 96, 050401 (2006).
[33] G. S. Danilov, Sov. Phys. JETP 13, 349 (1961).