Tendencies in \(\text{ABO}_3 \) Perovskite and \(\text{SrF}_2, \text{BaF}_2 \) and \(\text{CaF}_2 \) Bulk and Surface \(\text{F}-\text{Center} \ Ab \text{ Initio} \) Computation at High Symmetry Cubic Structure

Roberts I. Eglitis, Juris Purans, Anatoli I. Popov and Ran Jia

Special Issue
Applied Surface Science
Edited by
Dr. Marian Zamfirescu and Dr. Ekaterina Iordanova

https://doi.org/10.3390/sym13101920
Tendencies in ABO$_3$ Perovskite and SrF$_2$, BaF$_2$ and CaF$_2$ Bulk and Surface F-Center Ab Initio Computations at High Symmetry Cubic Structure

Roberts I. Eglitis 1,*, Juris Purans 1✉, Anatoli I. Popov 1✉ and Ran Jia 1,2

1 Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV1063 Riga, Latvia; purans@cfi.lu.lv (J.P.); popov@ill.fr (A.I.P.); jiaran@jlu.edu.cn (R.J.)
2 Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
* Correspondence: rieglitis@cfi.lu.lv; Tel.: +371-26-426-703

Abstract: We computed the atomic shift sizes of the closest adjacent atoms adjoining the (001) surface F-center at ABO$_3$ perovskites. They are significantly larger than the atomic shift sizes of the closest adjacent atoms adjoining the bulk F-center. In the ABO$_3$ perovskite matrixes, the electron charge is significantly stronger confined in the interior of the bulk oxygen vacancy than in the interior of the (001) surface oxygen vacancy. The formation energy of the oxygen vacancy on the (001) surface is smaller than in the bulk. This microscopic energy distinction stimulates the oxygen vacancy segregation from the perovskite bulk to their (001) surfaces. The (001) surface F-center created defect level is nearer to the (001) surface conduction band (CB) bottom as the bulk F-center created defect level. On the contrary, the SrF$_2$, BaF$_2$ and CaF$_2$ bulk and surface F-center charge is almost perfectly confined to the interior of the fluorine vacancy. The shift sizes of atoms adjoining the bulk and surface F-centers in SrF$_2$, CaF$_2$ and BaF$_2$ matrixes are microscopic as compared to the case of ABO$_3$ perovskites.

Keywords: ab initio computations; B3PW; B3LYP; F-center; ABO$_3$ high symmetry cubic perovskites

1. Introduction

In the last 50 years, great attention has been paid to an in-depth understanding of the radiation formation of lattice defects in alkali and alkaline earth metal halides, as well as in simple and complex oxides. Several review articles were published, where both the mechanisms of their creation and the properties of the main defects were described in detail [1–5]. Lattice-point defects in these materials are traditionally called color centers and are classified into several large groups, among which electron centers, hole centers and interstitial particles are the most noticeable primary point radiation defects. As for electronic centers, F-centers are among the most intensively studied point defects in alkali and alkaline–halides. An ordinary F-center consists of one electron captured by a halogen vacancy [1,2,5]. Such F (Farbe) centers in alkali halides and alkaline–earth halides and oxides have been studied for many decades [1,2,5–12]. Thus, F-centers are defects in ionic crystals in which an anion is replaced by one or more trapped electrons. These vacancy-trapped electrons, confined and screened by the surrounding crystal lattice, thus form gap states with unique optical, electrical and magnetic properties [7–16] that are relevant to different optoelectronic devices. How efficient the formation is of point defects, including F-centers, is also the determining factor of the material radiation resistance in nuclear applications [17–21]. F-centers at surfaces, along with other anionic defects, are also relevant in catalysis [22].

The F-center in ABO$_3$ perovskites is the oxygen vacancy (V_0), which catches 2 electrons. The V_0 is the most frequent point defect in ABO$_3$ perovskites [23–27]. Bearing in mind the...
technological relevance of ABO$_3$ perovskite matrixes, as well as quantity of F-centers, which unavoidably exist in these materials and deteriorate their quality, the number of F-center studies is still insufficient [28–35]. In order to save the computer time, we performed bulk and (001) surface F-center ab initio computations in ABO$_3$ perovskites in their high-symmetry cubic phase. The SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ cubic unit cells accommodate five atoms. The coordinates (0, 0, 0) have the A atom (A = Sr, Pb, Ba or Sr). It is placed at the corner position of the cube. The Ti atom is placed in the body center position of the cube, with the following coordinates ($\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$). Finally, the three O atoms are placed in the face centered positions of the cube with the coordinates ($\frac{1}{2}$, $\frac{1}{2}$, 0), ($\frac{1}{2}$, 0, $\frac{1}{2}$) and (0, $\frac{1}{2}$, $\frac{1}{2}$). All our computed SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ perovskites at their high symmetry cubic structure belong to the space group Pm3m with the space group number 221. Our computed SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ perovskites exhibit a large variety of different structural phase transitions from the high temperature and symmetry cubic paraelectric phase as the temperature is reduced. For example, the SrZrO$_3$ exhibits a cubic perovskite-type structure. The space group (Pm3m: 221) incorporates 48 symmetry operations. The Wyckoff positions for the atoms are as follows: Sr 1a (0, 0, 0), Zr 1b (0.5, 0.5, 0.5) and O 3c (0.0, 0.5, 0.5). The SrZrO$_3$ perovskite undergoes three phase transitions: orthorhombic (Pnma), orthorhombic with another space group (Cmcm), tetragonal (I4/mcm) and cubic (Pm3m) at temperatures of approximately 970, 1100 and 1440 K, respectively. In contrast, the SrTiO$_3$ crystal has a polar soft mode, but it does not exhibit a ferroelectric phase transition and always remains in its high symmetry cubic phase. Finally, BaTiO$_3$ is a perovskite that undergoes a phase transition from a ferroelectric tetragonal phase to a paraelectric cubic phase due to heating above 403 K in temperature.

Taking into account the soaring industrial significance of SrF$_2$, BaF$_2$ and CaF$_2$ matrixes, it is only logical that there exist a lot of studies devoted to those materials [36–57]. The SrF$_2$, BaF$_2$ and CaF$_2$ unit cells are equal, and they contain three ions. The cation is located in the coordinate origin (0, 0, 0). The two anions are located at ($\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$) and ($\frac{3}{4}$, $\frac{3}{4}$, $\frac{3}{4}$). The fluorites SrF$_2$, BaF$_2$ and CaF$_2$ are the cubic Fm3m large-band-gap insulators. Their space group number is 225. The F-center in CaF$_2$ has been observed experimentally by electron-spin-resonance techniques. The F-center resonance in CaF$_2$ has been detected by Arends [58] in additionally colored crystals and associated with the optical absorption band at 3.3 eV. Nepomnyashchikh et al. [59] experimentally detected that X-ray irradiation at 77 K of undoped BaF$_2$ produces V_k and F-centers. They have absorption bands at 3.4 and 2.3 eV, respectively [59]. Finally, the experimentally measured F-center absorption energy at 4 K temperature in the SrF$_2$ crystal is equal to 2.85 eV [60]. Present-day knowledge of defects in SrF$_2$, BaF$_2$ and CaF$_2$ crystals has helped to generate the new area of high technology named defect engineering. SrF$_2$, BaF$_2$ and CaF$_2$ crystals could be the important optical materials if we can manage the photo-induced defect process [61,62].

The aim of this contribution is to report our comprehensive ab initio computation results dealing with F-centers in SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ matrixes, as well as SrF$_2$, BaF$_2$ and CaF$_2$ fluorites. Next, we analyzed our ab initio computation results and created a unified theory, which describes systematic tendencies in ab initio computations dealing with F-centers in SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ perovskite matrixes, as well as SrF$_2$, BaF$_2$ and CaF$_2$ fluorites.

2. Details of Ab Initio Computations of the F-Centers in ABO$_3$ Perovskites, as Well as in SrF$_2$, BaF$_2$ and CaF$_2$ Fluorites

We computed the F-centers in SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ perovskites, as well as SrF$_2$, BaF$_2$ and CaF$_2$ fluorites, by means of the CRYSTAL computer program package [63]. For our ab initio F-center computations, we used the B3PW hybrid exchange-correlation functional [64]. On the contrary to the plane-wave program packages [65,66], the CRYSTAL brings into play Gaussian-type functions as the basis [63]. It is worth noting that Gaussian-type functions have been intensively investigated during the last years [67,68]. For our numerical computations of F-centers in SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ perovskites, we
used the basis sets created by Piskunov et al. [69]. We bring into play the $8 \times 8 \times 8$ extension of the Pack Monkhorst mesh [70]. The ABO$_3$ perovskite F-center computations for bulk were performed employing $3 \times 3 \times 3$ extended supercell with 134 atoms and one F-center (Figure 1). It is important to note that the generalized-gradient (GGA) and local-density (LDA) approximations to the density functional theory (DFT) strongly underestimate the band gap of insulators and complex oxide materials [46,71]. From another side, the Hartree–Fock (HF) method considerably overestimate the band gap of insulators and complex oxide materials [46,71]. In order to obtain as good as possible results for the band gaps of SrF$_2$, BaF$_2$ and CaF$_2$ fluorites, as well as SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ perovskites, we performed our ab initio computations by means of the B3PW hybrid exchange-correlation functional. The B3PW functional contain a portion of exact exchange energy density from the HF method (20%). The rest of the exchange-correlation part consisted of different approaches, including both exchange and correlation. Therefore, the B3PW functional, since it is a superposition of HF and DFT methods, is much better suited for our band gap and optical property (defect level positions in the band gap) ab initio computations in SrF$_2$, BaF$_2$, CaF$_2$, SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ matrixes.

![Figure 1. F-center in the SrZrO3 bulk, computed by using 3 x 3 x 3 extended supercell.](image)

With aimed to compute the ABO$_3$ perovskite; for example, for the the SrZrO$_3$ (001) surface F-center, we selected a $3 \times 3 \times 1$ times increase in the size of the surface supercells. Namely, with aim to compute the F-center situated on the ZrO$_2$-terminated SrZrO$_3$ (001) surface, we took away the arbitrary surface oxygen atom (Figure 2).
In order to maximally exact describe the F-center, we used an extra basis function [63]. Namely, we fixed inside the oxygen vacancy auxiliary basis function [63], identical to the commonly named “ghost atom”. The formation energy of the bulk oxygen vacancy in ABO$_3$ perovskites was computed by us the using subsequent equation:

$$E_{\text{formation}}^{(F)} = E^{(\text{oxygen})} + E^{(F)} - E^{(\text{perfect})}$$ \hspace{1cm} (1)

where $E^{(\text{oxygen})}$ is our computed total energy for an oxygen atom, and $E^{(F)}$ and $E^{(\text{perfect})}$ are our computed total energies for the F-center containing and perfect ABO$_3$ crystal, respectively.

We discuss our computational methodology for F-centers in SrF$_2$, BaF$_2$ and CaF$_2$ matrixes by using the CaF$_2$ case as an example. In our F-center computations in CaF$_2$ matrix, we used a supercell consisting of 48 atoms (Figure 3). In order to produce the F-center, we removed one fluorine atom and kept the supercell charge neutral (Figure 3). To compute the fluorine vacancy with electron (F-center) formation energy in CaF$_2$ matrix, we employed the subsequent expression:

$$E_{\text{formation}}^{(F)} = E^{(\text{fluorine})} + E^{(F)} - E^{(\text{perfect})}$$ \hspace{1cm} (2)

where $E^{(\text{fluorine})}$ is our ab initio computed total energy for the isolated fluorine atom; and $E^{(F)}$ and $E^{(\text{perfect})}$ are our ab initio computed total energies for the defective (F-center containing) CaF$_2$ crystal and the perfect CaF$_2$ crystal. We utilized the Mulliken representation for the elucidation of the bond populations and the effective atomic charges [72–74].

Figure 2. Our ab initio computed F-center situated on the $3 \times 3 \times 1$ times increased in size ZrO$_2$-terminated SrZrO$_3$ (001) surface.
3. Ab Initio Computation Results for F-Centers in ABO₃ Perovskites, as Well as in SrF₂, BaF₂ and CaF₂

As an opener of our F-center computations in SrZrO₃, PbTiO₃, BaTiO₃, SrTiO₃, SrF₂, BaF₂ and CaF₂ matrices [36,42,75–79], we performed computations for the pristine crystal bulk lattice constants. Our B3PW approximation obtained bulk lattice constants for SrZrO₃ (4.163 Å), PbTiO₃ (3.936 Å), BaTiO₃ (4.008 Å), SrTiO₃ (3.904 Å), SrF₂ (5.845 Å), BaF₂ (6.26 Å) and CaF₂ (5.50 Å), and these are in a fair correspondence with the literature’s experimental information [80–94] (Table 1). For example, our computed SrTiO₃ bulk lattice constant (3.904 Å) is almost in perfect agreement with the experimentally detected SrTiO₃ bulk lattice constant (3.89845 Å). Moreover, our ab initio B3PW computed SrF₂ (5.845 Å), BaF₂ (6.26 Å) and CaF₂ (5.50 Å) bulk lattice constants are in a fair agreement with the respective experimental information (5.799, 6.20 and 5.46 Å).

Substance	Structure at Room Temperature	Band Gap (eV), Room Temperature	Transition T to Cubic Phase (K)	Experimental Lattice Constant at Cubic Phase (Å)
SrZrO₃	Orthorhombic	5.6 [80]	1433 [81]	4.154 [82]
PbTiO₃	Tetragonal	3.4 [83]	763 [84]	3.970 [85]
BaTiO₃	Tetragonal to orthorhombic	3.38 (/ / c); 3.27 (⊥ c) [86]	403 [87]	4.0037 [88]
SrTiO₃	Cubic	3.75 [89]	110 [87]	3.89845 [90]
SrF₂	Cubic	11.25 [91]	-	5.799 [92]
BaF₂	Cubic	11.00 [91]	-	6.20 [93]
CaF₂	Cubic	12.1 [91]	-	5.46 [94]

Table 1. Experimental details for pristine SrZrO₃, PbTiO₃, BaTiO₃ and SrTiO₃ perovskites, as well as SrF₂, BaF₂ and CaF₂ matrixes [80–94].

Our computation data, dealing with the atomic shifts around the bulk and (001) surface F-centers in SrZrO₃, PbTiO₃, BaTiO₃ and SrTiO₃ matrixes, are listed in Table 2.
As we can see from Table 2, all B (Zr or Ti) atoms are repulsed from the bulk and (001) surface F-centers in all four our calculated perovskites. The repulsion magnitudes for the Zr atoms from the (001) surface F-center located on the ZrO$_2$-terminated SrZrO$_3$ (001) surface (+9.17% of a_0), as well as for the Ti atoms from the F-centers located on the TiO$_2$-terminated PbTiO$_3$ and SrTiO$_3$ (001) surfaces (+9.98 and +14.0% of a_0), are considerably larger than the B atom repulsion magnitudes from the F-centers located in the bulk of SrZrO$_3$, PbTiO$_3$ and SrTiO$_3$ matrixes (+3.68, +1.63 and 7.76% of a_0, respectively). On the contrary, the Ti atom repulsion from the F-center located on the BaO-terminated BaTiO$_3$ (001) surface (0.1% of a_0) is smaller than the relevant Ti atom repulsion from the F-center located in the BaTiO$_3$ bulk matrix (1.06% of a_0) (Table 2).

Table 2. B3PW computed 3 closest adjacent atom shifts around the bulk and (001) surface F-center (in % of the a_0).

Computed Characteristics	SrZrO$_3$	PbTiO$_3$	BaTiO$_3$	SrTiO$_3$
Bulk lattice constant (Å)	4.163	3.936	4.008	3.904
Bulk oxygen vacancy in SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ perovskites				
B atom shift (% of a_0)	+3.68	+1.63	+1.06	+7.76
O atom shift (% of a_0)	−2.63	−0.88	−0.71	−7.79
A atom shift (% of a_0)	+0.46	−2.58	−0.08	+3.94
Oxygen vacancy on SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ (001) surface				
B atom shift (% of a_0)	+9.17	+9.98	+0.1	+14.0
O atom shift (% of a_0)	−4.16	−5.58	−1.4	−8.0
A atom shift (% of a_0)	+7.68	−	+1.0	−

The second nearest adjacent O atoms, both in the SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ bulk and on its (001) surfaces, always are shifted towards the F-center. Namely, the second nearest adjacent O atoms are attracted towards the bulk F-center in SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ matrixes, by (−2.63, −0.88, −0.71 and −7.79% of a_0, respectively). Even more strongly than in the bulk, the second nearest adjacent O atoms are shifted towards the (001) surface F-center in SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ perovskites by (−4.16, −5.58, −1.4 and −8.0% of a_0) (Table 2).

According to the ionic model, the net oxygen atom charge is equal to −2 e. In our B3PW computations, the oxygen atom charges in pristine SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ matrixes are considerably smaller than the classical ionic charges and equal to −1.351 e, −1.232 e, −1.388 e and −1.407 e (Table 3). Even less charge is localized inside the bulk oxygen vacancies in SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ perovskites, only −1.25 e, −0.85 e, −1.103 e and −1.10 e. Our B3PW computed oxygen vacancy formation energies are equal to 7.55, 7.82, 10.30 and 7.10 eV in SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ perovskites (Table 3 and Figure 4). Our computed band-gap widths for the SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ perovskites, containing the single bulk oxygen vacancy, at the Γ point are equal to 5.07, 2.87, 3.58 and 3.63 eV (Table 3). The oxygen-vacancy-induced defect levels are located inside the band gap, 1.12, 0.96, 0.23 and 0.69 eV below the conduction band (CB) bottom at the Γ-point (Table 3 and Figure 5).

Even less charge is confined in the (001) surface oxygen vacancies in SrZrO$_3$ (−1.10 e) and BaTiO$_3$ (−1.052 e) matrixes. The (001) surface oxygen vacancy formation energies in SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ matrixes are equivalent to 7.52, 5.99, 10.20 and 6.22 eV (Table 3). Finally, the (001) surface-oxygen-vacancy-induced defect level is situated at the Γ-point 0.93, 0.71, 0.07 and 0.25 eV below the CB at SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ matrixes (Table 3).
Table 3. B3PW computed electronic structure of the bulk and (001) surface oxygen vacancy in SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ matrixes.

Computed Characteristics	SrZrO$_3$	PbTiO$_3$	BaTiO$_3$	SrTiO$_3$
Bulk oxygen vacancy in SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ perovskites				
O atom net charge (e)	-2.0	-2.0	-2.0	-2.0
O atom charge (e) in ABO$_3$	-1.351	-1.232	-1.388	-1.407
F-center charge (e)	-1.25	-0.85	-1.103	-1.10
F-cent. format. energy (eV)	7.55	7.82	10.30	7.10
Band gap with F-cent. (eV)	5.07	2.87	3.58	3.63
F-center under CB (eV)	1.12	0.86	0.23	0.69
Oxygen vacancy on SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ (001) surface				
F-center charge (e)	-1.10	-	-1.052	-
F-cent. format. energy (eV)	7.52	5.99	10.20	6.22
F-center under CB (eV)	0.93	0.71	0.07	0.25

Figure 4. B3PW computed surface (1) and bulk (2) F-center formation energies (in eV) in SrZrO$_3$, PbTiO$_3$, BaTiO$_3$, SrTiO$_3$ and BaF$_2$ matrixes.

Figure 5. B3PW computed valence band (VB) top (1), conduction band (CB) bottom (3) as well as F-center-induced levels (2) between the VB top and CB bottom in the SrZrO$_3$, PbTiO$_3$, BaTiO$_3$, SrTiO$_3$, SrF$_2$, BaF$_2$ and CaF$_2$ bulk matrixes.
In all three pristine SrF$_2$, BaF$_2$ and CaF$_2$ fluorites, our B3PW computed fluorine atom effective charges ($-0.954 \, e$, $-0.923 \, e$ and $-0.902 \, e$) are very close to the net ionic fluorine charge equivalent to $-1.00 \, e$ (Table 4). According to our B3PW computations, even less charge is confined inside the bulk fluorine vacancy in the SrF$_2$, BaF$_2$ and CaF$_2$ matrixes ($-0.848 \, e$, $-0.801 \, e$ and $-0.752 \, e$) (Table 4). The nearest Sr atom is sifted towards the bulk fluorine vacancy in the SrF$_2$ crystal by a very small displacement size (-0.02% of a_0), whereas the nearest Ba and Ca atoms are repulsed from the bulk fluorine vacancy by ($+0.03$ and $+0.15\%$ of a_0) in the BaF$_2$ and CaF$_2$ matrixes (Table 4).

Table 4. B3PW computed atomic and electronic structure of the fluorine vacancy in SrF$_2$, BaF$_2$ and CaF$_2$ matrixes.

Computed Bulk Fluorine Vacancy Properties	SrF$_2$	BaF$_2$	CaF$_2$
B3PW computed lattice constant a_0 (Å)	5.845	6.26	5.50
F atom net charge (e)	-1.0	-1.0	-1.0
F atom charge (e) in SrF$_2$, BaF$_2$ and CaF$_2$	-0.954	-0.923	-0.902
Charge inside the fluorine vacancy (e)	-0.848	-0.801	-0.752
A atom shift (% of a_0)	-0.02	$+0.03$	$+0.15$
F atom shift (% of a_0)	-0.27	-0.23	$+0.28$
Fluorine vacancy formation energy (eV)	10.33	7.82	7.87
B3PW calc. band gap, perfect crystal (eV)	11.31	11.30	10.96
B3PW calc. band gap with F-center (eV)	11.34	11.28	10.99
Fluorine vacancy ind. level under CB (eV)	3.67	4.27	4.24
Computed (111) surface fluorine vacancy			
Ba atom shift (% of a_0)		-0.13	
F atom shift (% of a_0)		-0.37	
Charge inside the fluorine vacancy (e)		-0.790	
Fluorine vacancy formation energy (eV)		7.48	
Fluorine vacancy ind. level under CB (eV)		4.11	

The bulk fluorine vacancy formation energy in the SrF$_2$, BaF$_2$ and CaF$_2$ matrixes is equal to 10.33, 7.82 and 7.87 eV, respectively (Table 4 and Figure 4). Our computed band-gap widths for the SrF$_2$, BaF$_2$ and CaF$_2$ containing the single bulk fluorine vacancy at the Γ point are equal to 11.34, 11.28 and 10.99 eV, respectively (Table 4). The bulk-fluorine-vacancy-induced defect levels are located inside the band gap at 3.67, 4.27 and 4.24 eV, respectively, below the conduction band (CB) bottom at the Γ-point in the SrF$_2$, BaF$_2$ and CaF$_2$ matrixes (Table 4 and Figure 5).

Finally, for the fluorine vacancy located on the BaF$_2$ (111) surface, only the ($-0.790 \, e$) charge is localized inside it (Table 4). The nearest Ba atom is shifted towards the (111) surface fluorine vacancy in the BaF$_2$ matrix by (-0.13% of a_0), and the second nearest F atom is shifted towards the fluorine vacancy even more strongly, by (-0.37% of a_0). The fluorine vacancy formation energy on the BaF$_2$ (111) surface is equal to 7.48 eV (Table 4). The BaF$_2$ (111) surface-fluorine-vacancy-induced defect level is located inside the BaF$_2$ band gap, 4.11 eV below the conduction band (CB) bottom at the Γ-point (Table 4 and Figure 5).

It is worth noting that we observed in our ab initio B3PW computations strong increase of the chemical bond covalency between the F-center and its nearest neighbor cations in our calculated materials. For example, our B3PW computed chemical bond covalency between the Zr and O atoms in the pristine SrZrO$_3$ perovskite is equal to 0.100 e, but the chemical bond covalency between the Zr atoms and bulk F-center in SrZrO$_3$ is more than two times larger and equivalent to 0.244 e. The same situation, according to our B3PW computations, is also in the BaTiO$_3$ perovskite. Namely, the Ti-O chemical bond covalency in the pure BaTiO$_3$ bulk is equivalent to 0.100 e. We observed, according to our ab initio
B3PW computations, the strong increase of the chemical bond covalency between the adjacent Ti atoms and the BaTiO$_3$ bulk F-center equivalent to 0.320 e.

4. Conclusions

The shift magnitudes of the nearest-neighbor atoms around the (001) surface oxygen vacancy in SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ perovskites (Table 3), in most cases, are larger than the respective shift magnitudes of the nearest atoms around the bulk oxygen vacancy. The atomic shift amplitudes around both (001) surface and bulk oxygen vacancies in SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ perovskites (Table 3) almost always are significantly larger than the atomic shift magnitudes around the fluorine vacancy in SrF$_2$, BaF$_2$ and CaF$_2$ fluorites (Table 4).

In the SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ perovskites, the charge, as a rule, is much better localized inside the bulk oxygen vacancy than inside the (001) surface oxygen vacancy (Table 3). In ionic materials, such as, SrF$_2$, BaF$_2$ and CaF$_2$, the charge is considerably better localized (Table 4) inside the fluorine vacancy than inside the oxygen vacancy of SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ perovskites (Table 3). More than 75% of charge is localized inside the bulk and (111) surface fluorine vacancy in the SrF$_2$, BaF$_2$ and CaF$_2$ matrixes (Table 4). We obtained the strong increase of a chemical bond covalency among the F-center and its nearest adjoining cations, in comparison to the pristine crystals.

In the SrZrO$_3$, PbTiO$_3$, BaTiO$_3$ and SrTiO$_3$ perovskites, as well as BaF$_2$ fluorite, the surface-oxygen-induce or fluorine-vacancy-induced defect levels are located closer to the CB band bottom than in the bulk cases (Tables 3 and 4). The B3PW computed energy difference between the SrZrO$_3$, PbTiO$_3$, BaTiO$_3$, SrTiO$_3$ and CaF$_2$ bulk and surface oxygen or fluorine vacancies (Tables 3 and 4) triggers the vacancy segregation from the bulk towards the surface.

Our computation results for the F-center defect ground state levels in CaF$_2$, BaF$_2$ and SrF$_2$ fluorites, located at 4.24, 4.27 and 3.67 eV under the CB bottom, suggest a possible explanation of the optical absorption observed experimentally in CaF$_2$, BaF$_2$ and SrF$_2$ fluorites. According to our computations, the experimentally observed optical absorption may be due to an electron transition from the F-center ground state, located at 4.24, 4.27 and 3.67 eV under the CB, to the CB. Namely, the F-center defect band at CaF$_2$, BaF$_2$ and SrF$_2$ is located 4.24, 4.27 and 3.67 eV under the CB, which is very close to the experimentally detected optical absorption energy equal to 3.3, 2.3 and 2.85 eV, respectively.

Author Contributions: R.I.E., J.P., A.I.P. and R.J. contributed equally to the writing of the manuscript. Calculations dealing with ABO$_3$ perovskites were performed mostly by R.I.E., J.P. and A.I.P., whereas calculations dealing with SrF$_2$, BaF$_2$ and CaF$_2$ fluorites were performed mostly by R.J. All authors, R.I.E., J.P., A.I.P. and R.J. contributed substantially to the funding acquisition. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partly funded by the Latvian Council of Science project No. LZP-2020/2-0009 (for R. Eglitis), as well as the ERAF Project No. 1.1.1.1/18/A/073. We express our gratitude for the financial support from Latvian–Ukraine cooperation Project No. Latvia–Ukraine LV-UA/2021/5.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The Institute of Solid State Physics, University of Latvia (Latvia), as the Centre of Excellence has received funding from the European Unions Horizon 2020 Framework Programme H2020-WIDESPREAD01-2016-2017-Teaming Phase2 under Grant Agreement No. 739508, project CAMART2.

Conflicts of Interest: The authors declare no conflict of interests.
29. Ji, Q.; Bi, L.; Zhang, J.; Cao, H.; Zhao, X.S. The role of oxygen vacancies of ABO$_3$ perovskite oxides in the oxygen reduction reaction. *Energy Environ. Sci.* **2020**, *13*, 1408–1428. [CrossRef]

30. Su, H.Y.; Sun, K. DFT study of the stability of oxygen vacancy in cubic ABO$_3$ perovskites. *J. Mater. Sci.* **2015**, *50*, 1701–1709. [CrossRef]

31. Eglitis, R.I. Ab initio calculations of SrTiO$_3$, BaTiO$_3$, PbTiO$_3$, CaTiO$_3$, SrZrO$_3$, PbZrO$_3$ and BaZrO$_3$ (001), (011) and (111) surfaces as well as F centers, polarons, KTN solid solutions and Nb impurities therein. *Int. J. Mod. Phys. B* **2014**, *28*, 1430009. [CrossRef]

32. Crespollo, M.L.; Graham, J.T.; Agullo-Lopez, F.; Zhang, Y.W.; Weber, W.J. Real-Time Identification of Oxygen Vacancy Centers in LiNbO$_3$ and SrTiO$_3$ during Irradiation with High Energy Particles. *Crystals* **2021**, *11*, 315. [CrossRef]

33. Jiao, X.P.; Liu, T.Y.; Lu, Y.Z.; Li, Q.Y.; Guo, R.; Wang, X.L.; Xu, X. Optical Properties of the Oxygen Vacancy in KNaBo$_3$ Crystal. *J. Electrochem. Mater.* **2020**, *49*, 2137–2143. [CrossRef]

34. Eglitis, R.I.; Popov, A.I.; Purans, J.; Jia, R. First principles simulations on the aggregation of CaF$_2$ bulk and (001) surface in oxide perovskites and alkali-earth solutions. *Low Temp. Phys.* **2020**, *46*, 1206–1212. [CrossRef]

35. Gu, X.K.; Samira, S.; Nikolla, E. Oxygen Sponges for Electrocatalysis: Oxygen Reduction/Evolution on Nonstoichiometric, Mixed Metal Oxides. *Chem. Mater.* **2018**, *30*, 2860–2872. [CrossRef]

36. Shi, H.; Eglitis, R.I.; Borstel, G. Ab initio calculations of the CaF$_2$ electronic structure and F centers. *Phys. Rev. B* **2005**, *72*, 045109. [CrossRef]

37. Wen, C.; Lanza, M. Calcium fluoride as high-k dielectric for 2D electronics. *Appl. Phys. Reviews* **2021**, *8*, 021307. [CrossRef]

38. Laanaiya, M.; Bouibes, A.; Zaoui, A. Ground state properties of fluorine from DFT-hybrid functional. *J. Phys. Chem. Solids* **2021**, *187*, 110118. [CrossRef]

39. Cappellini, G.; Bosin, A.; Serra, G.; Furthmüller, J.; Bechstedt, F.; Botti, S. Electronic and Optical Properties of Small Metal Fluoride Cubes. *Phys. Scr.* **2012**, *85*, 257081. [CrossRef]

40. Liebig, A.; Hapala, P.; Weymouth, A.J.; Giessibl, F.J. Quantifying the evolution of atomic interaction of a complex surface with a functionalized atomic force microscopy tip. *Sci. Rep.* **2020**, *10*, 14104. [CrossRef]

41. Ryabochkina, P.A.; Krushchalina, S.A.; Yurlov, I.A.; Egorysheva, A.V.; Atanova, A.V.; Veselova, V.O.; Kyashkin, V.M. Blackbody radiation of solar 0.0004 Hz laser light and its quasiparticle DFT-1/2 and PSIC methods. *J. Phys. Condens. Matter* **2015**, *27*, 355602. [CrossRef]

42. Shi, H.; Chang, L.; Jia, R.; Eglitis, R.I. Ab initio calculations of MgF$_2$ (001) and (011) surface structure. *Physica B* **2010**, *405*, 2125–2127. [CrossRef]

43. Shi, H.; Eglitis, R.I.; Borstel, G. Ab initio calculations of the BaF$_2$ bulk and surface F centers. *J. Phys. Condens. Matter* **2006**, *18*, 8367–8381. [CrossRef]

44. Cappellini, G.; Bosin, A.; Serra, G.; Furthmüller, J.; Bechstedt, F.; Botti, S. Electronic and Optical Properties of Small Metal Fluoride Clusters. *ACS Omega* **2020**, *5*, 13268–13277. [CrossRef] [PubMed]

45. Pawlik, N.; Szpikowska-Sroka, B.; Goryczka, T.; Pisarski, W.A. Spectroscopic Properties of Eu$^{3+}$ Ions in Sol-Gel Materials Containing Calcium Fluoride Nanocrystals. *Phys. Stat. Sol. B* **2020**, *257*, 1900478. [CrossRef]

46. Matsusalem, F.; Marques, M.; Teles, L.K.; Filippetti, A.; Cappellini, G. Electronic properties of fluorides by efficient approximated quasiparticle DFT-1/2 and PSIC methods. *J. Phys. Condens. Matter* **2018**, *30*, 365501. [CrossRef] [PubMed]

47. Vassiliyeva, A.F.; Eglitis, R.I.; Kotomin, E.A.; Dauletbekova, A.K. Ab initio calculations of MgF$_2$ (001) and (011) surface structure. *Physica B* **2010**, *405*, 2125–2127. [CrossRef]

48. Shi, H.; Chang, L.; Jia, R.; Eglitis, R.I. Ab initio calculations of the charge transfer and aggregation of F centers in CaF$_2$. *J. Phys. Chem. C* **2012**, *116*, 4832–4839. [CrossRef]

49. Häfner, M.; Bredow, T. Mobility of F Centers in Alkali Halides. *J. Phys. Chem. C* **2021**, *125*, 9085–9095. [CrossRef]

50. Mir, A.; Zaoui, A.; Bensaid, D. The displacement effect of a fluorine atom in CaF$_2$ on the band structure. *Appl. Surf. Sci.* **2018**, *439*, 1180–1185. [CrossRef]

51. Ibraheem, A.M.; Khalafalla, M.A.H.; Eisa, M.H. First principle calculation of accurate native defect levels in CaF$_2$. *Eur. Phys. J. B* **2017**, *90*, 42. [CrossRef]

52. Shi, H.; Jia, R.; Eglitis, R.I. First-principles calculations of surface H centers in BaF$_2$. *Phys. Rev. B* **2010**, *81*, 195101. [CrossRef]

53. Andrade, A.B.; Ferreira, N.S.; Valerio, M.E.G. Particle size effects on structural and optical properties of BaF$_2$ nanoparticles. *RSC Adv.* **2017**, *7*, 26839–26848. [CrossRef]

54. Watanabe, M.; Azuma, J.; Asaka, S.; Tsujibayashi, T.; Arimoto, O.; Nakashima, S.; Itoh, H.; Kamada, M. Photostimulated detection of defect formation in BaF$_2$ under irradiation of synchrotron radiation. *Phys. Stat. Sol. B* **2013**, *250*, 396–401. [CrossRef]

55. Shi, H.; Jia, R.; Eglitis, R.I. First-principles simulations on the aggregation of F centers in BaF$_2$: R centers. *Solid State Ion.* **2011**, *187*, 1–7. [CrossRef]

56. Hoya, J.; Laborde, J.I.; Richard, D.; Renteria, M. Ab initio study of F-centers in alkali halides. *Comput. Mater. Sci.* **2017**, *139*, 1–7. [CrossRef]

57. Shi, H.; Chang, L.; Jia, R.; Eglitis, R.I. Ab initio calculations of hydroxyl impurities in CaF$_2$. *J. Phys. Chem. C* **2012**, *116*, 6392–6400. [CrossRef]

58. Arents, J. Color centers in additionally colored CaF$_2$ and BaF$_2$. *Phys. Stat. Sol. B* **1964**, *7*, 805–815. [CrossRef]

59. Nepomnyashchikh, A.I.; Radzhavbrov, A.V.; Egranov, A.V.; Ivashchenk, V.F.; Istomin, A.S. Defect formation and VUV luminescence in BaF$_2$. *Radiat. Eff. Defects Solids* **2002**, *157*, 715–719. [CrossRef]

60. Cavenett, B.C.; Hayes, W.; Hunter, I.C.; Stoneham, A.M. Magneto optical properties of F centres in alkaline earth fluorides. *Proc. R. Soc. Lond. Ser. A* **1969**, *309*, 53–68.
61. Assylbayev, R.; Lushchik, A.; Lushchik, C.; Kudryavtseva, I.; Shablonin, E.; Vasilchenko, E.; Akilbekov, A.; Zdorovets, M. Structural defects caused by swift ions in fluorite single crystals. *Opt. Mater.* **2018**, *75*, 196–203. [CrossRef]

62. Batoof, A.; Izerrouken, M.; Aisida, S.O.; Hussain, J.; Ahmad, I.; Afzal, M.Q. Effect of Ca colloids on in-situ ionoluminescence of CaF$_2$ single crystals. *Nucl. Instrum. Methods Phys. Res. B* **2020**, *476*, 40–43. [CrossRef]

63. Saunders, V.R.; Dovesi, R.; Roetti, C.; Causa, N.; Harrison, N.M.; Orlando, R.; Zicovich-Wilson, C.M. *Crystal-2009 User Manual*; University of Torino: Torino, Italy, 2009.

64. Piskunov, S.; Heifets, E.; Eglitis, R.I.; Borstel, G. Bulk properties and electronic structure of SrTiO$_3$, BaTiO$_3$, PbTiO$_3$ perovskites: An ab initio HF/DFT study. *Comput. Mater. Sci.* **2004**, *29*, 165–178. [CrossRef]

65. Monkhorst, H.J. Special points for Brillouin-zone integrations. *Phys. Rev. B* **1976**, *13*, 5188. [CrossRef]

66. Cohen, R.E. Periodic slab LAPW computations for ferroelectric BaTiO$_3$. *Phys. Rev. B* **1997**, *55*, 203–217. [CrossRef]

67. Eglitis, R.I. Ab initio calculations for SrF$_2$. *Phys. Rev. B* **2003**, *67*, 1393–1396. [CrossRef]

68. Jia, R.; Shi, H.; Borstel, G. Ab initio calculations of SrF$_2$ (001) surfaces. *Solid State Ion.* **2013**, *230*, 43–47. [CrossRef]

69. Mesquita, W.D.; Oliveira, M.C.; Assis, M.; Ribeiro, R.A.P.; Eduardo, A.C.; Teordoro, M.D.; Marques, G.E.; Júnior, M.G.; Longo, E.; Gurgel, M.F.C. Unraveling the relationship between bulk structure and exposed surfaces and its effect on the electronic structure and photoluminescent properties of BaO$_{0.5}$SrO$_{0.5}$TiO$_3$: A joint experimental and theoretical approach. *Mater. Res. Bull.* **2021**, *143*, 111442. [CrossRef]

70. Batoof, A.; Izerrouken, M.; Aisida, S.O.; Hussain, J.; Ahmad, I.; Afzal, M.Q. Effect of Ca colloids on in-situ ionoluminescence of CaF$_2$ single crystals. *Nucl. Instrum. Methods Phys. Res. B* **2020**, *476*, 40–43. [CrossRef]

71. Sokolov, M.; Eglitis, R.I.; Piskunov, S.; Zhukovskii, Y.F. Ab initio hybrid DFT calculations of BaTiO$_3$ bulk and BaO-terminated (001) surface F centers. *Comput. Condens. Matter* **2016**, *7*, 1–6. [CrossRef]

72. Lee, Y.S.; Lee, J.S.; Noh, T.W.; Byun, D.Y.; Yoo, K.S.; Yamaura, K.; Takayama-Muromachi, E. Systematic trends in the electronic structure parameters of the 4f transition-metal oxides SrMnO$_3$ (M = Zr, Ru and Rh). *Phys. Rev. B* **2003**, *67*, 113101. [CrossRef]

73. Yoshino, M.; Yukawa, H.; Morinaga, M. Modification of local electronic structures due to phase transition in perovskite-type oxides, SrBO$_3$ (B = Zr, Ru, Hf). *Mater. Trans.* **2004**, *45*, 2056–2061. [CrossRef]

74. Kennedy, B.J.; Howard, C.J.; Chakoumakos, B.C. High-temperature phase transitions in SrZrO$_3$. *Phys. Rev. B* **1999**, *59*, 4023–4027. [CrossRef]

75. Robertson, J. Band offsets of wide-band-gap oxides and implications for future electronic devices. *J. Vacuum Sci. Technol.* **2000**, *18*, 1785–1791. [CrossRef]

76. Kono, Y.; Kato, M.; Ueda, M. The crystal structure of tetragonal PbTiO$_3$ at room temperature and at 700 K. *Solid State Commun.* **1985**, *54*, 721–723. [CrossRef]

77. Elsasser, C.; French, R.H. Bulk electronic structure of SrTiO$_3$: Experiment and theory. *J. Appl. Phys.* **2001**, *90*, 6156–6164. [CrossRef]

78. Sato, M.; Sobe, H.; Ohama, N.; Okazaki, A.; Scheel, H.J.; Müller, K.A. The lattice constant vs temperature relation around the 105 K transition of a flux-grown SrTiO$_3$ crystal. *Phase Trans.* **1985**, *5*, 207–218. [CrossRef]

79. Rubloff, G.W. Far-Ultraviolet Reflectance Spectra and the Electronic Structure of Ionic Crystals. *Phys. Rev. B* **1972**, *5*, 662–684. [CrossRef]
92. Hayes, W. Crystals with the Fluorite Structure; Clarendon Press: Oxford, UK, 1974.
93. Leger, J.M.; Haines, J.; Atouf, A.; Schulte, O. High-pressure x-ray and neutron-diffraction studies of BaF$_2$: An example of a coordination number of 11 in AX$_2$ compounds. Phys. Rev. B 1995, 52, 13247. [CrossRef] [PubMed]
94. Nicolav, M. Shaped single crystals of CaF$_2$. J. Cryst. Growth 2000, 218, 62–66. [CrossRef]