Proteomic analysis of cerebrospinal fluid in amyotrophic lateral sclerosis

YAN CHEN¹, XIAO-HUI LIU², JIAN-JUN WU¹, HUI-MING REN¹, JIAN WANG¹, ZHENG-TONG DING¹ and YU-PING JIANG¹

¹Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040; ²Institute of Biomedical Science, Fudan University, Shanghai 200032, P.R. China

Received March 26, 2015; Accepted November 5, 2015

DOI: 10.3892/etm.2016.3210

Abstract. The present study used comparative proteomic analysis of cerebrospinal fluid (CSF) in amyotrophic lateral sclerosis (ALS) patients in order to identify proteins that may act as diagnostic biomarkers and indicators of the pathogenesis of ALS. This analysis was performed using isobaric tags for relative and absolute quantitation (iTRAQ) technology, coupled with 2-dimensional liquid chromatography/mass spectrometry. Database for Annotation, Visualization and Integrated Discovery software was utilized for bioinformatic analysis of the data. Following this, western blotting was performed in order to examine the expression of 3 candidate proteins in ALS patients compared with healthy individuals [as a normal control (NC) group] or patients with other neurological disease (OND); these proteins were insulin-like growth factor II (IGF-2), glutamate receptor 4 (GRIA4) and leucine-rich α-2-glycoprotein 1 (LRG1). Clinical data, including gender, age, disease duration and ALS functional rating scale (ALSFRS-R) score, were also collected in the ALS patients. Multiple linear regression analysis was performed between the clinical data and the results of western blot analysis. A total of 248 distinct proteins were identified in the ALS and NC groups, amongst which a significant difference could be identified in 35 proteins; of these, 21 proteins were downregulated and 14 were upregulated. These differentially-expressed proteins were thus revealed to be associated with ALS. The western blot analysis confirmed a proportion of the data attained in the iTRAQ analysis, revealing the differential protein expression of IGF-2 and GRIA4 between the ALS and NC groups. IGF-2 was significantly downregulated in ALS patients (P=0.017) and GRIA4 was significantly upregulated (P=0.016). These results were subsequently validated in the 35-patient ALS and OND groups (P=0.002), but no significant difference was identified in LRG1 expression between these groups. GRIA4 protein expression was higher in male than female patients and was positively correlated with the ALSFRS-R score, meaning that GRIA4 expression was negatively correlated with the severity of ALS, while IGF-2 and LRG1 expression did not correlate with any clinical data. The present study thus demonstrated that GRIA4 expression levels, as a marker of severity, may be used as a reference for the timing of treatment, and that IGF-2 may serve as an effective biomarker of ALS progression.

Introduction

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease specifically affecting the upper and lower motor neurons. Due to frequent early misdiagnosis, patients do not benefit from early drug intervention and clinical drug studies have been largely unsuccessful; a correct, early diagnosis of ALS is therefore crucial.

Such a clinical diagnosis, and study of the pathogenesis of ALS, could occur through analysis of changes to the cerebrospinal fluid (CSF) proteins. Insulin-like growth factor-1, vascular endothelial growth factor, transactive response DNA-binding protein 43, monocyte chemotactic protein 1 and other proteins have been reported as possible diagnostic indicators of ALS (1-4), but a definitive diagnostic indicator has yet to be established.

CSF quantitative proteomics, including differential in gel electrophoresis (DIGE) and isotope-coded affinity tags, have been reported in studies on Alzheimer's disease and Parkinson's disease (5,6), but have not been widely used to investigate ALS. In 2005, a study by Ranganathan et al (7) was the first to investigate the CSF in ALS patients using surface-enhanced laser desorption/ionization (SELDI) technology and proteomics; three proteins, cystatin C, transthyretin and a carboxy-terminal fragment of the neuroendocrine protein 7B2, were screened and validated for their sensitivity and specificity as biomarkers. Other previous studies examined the CSF of ALS with two-dimensional gel electrophoresis, DIGE and SELDI (8,9), but use of isobaric tags for relative and absolute quantitation (iTRAQ) technology in this context has not been reported, to the best of our knowledge.

The present study compared the CSF protein expression of ALS patients and healthy [normal control (NC) group]...
patients using iTRAQ labeling and 2-dimensional liquid chromatography/tandem mass spectrometry (2D LC-MS/MS) technology, screened the resulting proteins and verified their differential expression by western blotting, in order to determine the most effective biomarkers for ALS diagnosis.

Patients and methods

Patients

ALS-A group. A total of 35 patients with ALS who presented to Huashan Hospital between March 2008 and October 2010 were selected for the study. Informed consent was obtained from all patients, or their families. Tension headache sufferers were selected as the normal control (NC) group. The other neurological disease (OND) group consisted of patients who, during clinical diagnosis, were subjected to a lumbar puncture; these patients suffered from conditions such as chronic non-inflammatory peripheral neuropathy, Parkinson's disease, spastic paraplegia and hydrocephalus. Patient ages ranged between 30 and 75 years old.

ALS-B group. A total of 10 cases of ALS were randomly selected from the ALS-A group and used to screen additional proteins.

CSF sample collection. Under fasting conditions, each patient was treated with the 2 ml local anesthetic lidocaine hydrochloride injection (2%; Shanghai Harvest Pharmaceutical Co., Ltd., Shanghai, China) and subjected to a lumbar puncture, from which 8-10 ml of CSF was collected. A volume of 4-5 ml of CSF was immediately centrifuged at 2,000 x g for 10 min; the resulting supernatant was collected and placed in 1.5 ml Eppendorf tubes (Eppendorf AG, Hamburg, Germany) at -80°C. The remaining CSF was used for biochemical and immunological detection, as subsequently described.

Determination of protein concentration using iTRAQ and 2D LC-MS/MS. Following the removal of 22 high-abundance proteins, including albumin and IgG, using ProteoMiner low abundance protein enrichment kits (Bio-Rad Laboratories, Inc., Hercules, CA, USA), protein quantification was conducted using a Protein Assay reagent kit (Bio-Rad Laboratories, Inc., Hercules, CA, USA) based on Bradford methods, according to manufacturer’s protocol. iTRAQ labeling was performed according to the manufacturer's protocol (Applied Biosystems Life Technologies, Foster City, CA, USA). Briefly, 100 µg CSF proteins from the ALS and NC groups were precipitated with cold acetone (ratio of acetone:sample, 5:1) for 1 h at -20°C and resuspended in 20 µl dissolution buffer, respectively. Following centrifugation at 2,000 x g for 15 min and disposal of the supernatant, the precipitant was dissolved into 20 ul iTRAQ solution and 1 ul 1% sodium dodecyl sulfate (SDS). Subsequently, 1 ul cysteine sealing reagent was added for 10 min at room temperature. Proteins were trypsinized (Sigma-Aldrich, St. Louis, MO, USA) at 37°C overnight (ratio of enzyme:protein, 1:20). Peptides were labeled with iTRAQ regents for 1 h at room temperature. iTRAQ regents 113 and 118 were used to label the peptides from the NC and ALS groups, respectively. Following this, samples were mixed, desalted with Sep-Pak Vac C18 cartridges (Waters Corporation, Milford, MA, USA) and dried in a vacuum concentrator.

2D LC-MS/MS analysis. High-performance liquid chromatography and time-of-flight mass spectrometry (API QSTAR XL Hybrid LC-MS/MS; Applied Biosystems Life Technologies) were used for protein separation and analysis. For 2D LC-MS/MS analysis, the iTRAQ-labeled mixed peptides were fractionated using strong cation exchange (SCX) chromatography on a 20AD HPLC system (Shimadzu Corporation, Kyoto, Japan) with a polysulfoethyl column (2.1x100 mm; 5 µm; 200 Å; The Nest Group, Inc., Southborough, MA, USA). Peptide mixture was reconstituted in Buffer A (SCXA), which contained 10 mM KH2PO4 in 25% acetonitrile (pH 2.6; Thermo Fisher Scientific, Waltham, MA, USA), and loaded onto the column. Peptides were separated at a flow rate of 200 µl/min for 60 min with a gradient of 0-80% Buffer B (Buffer A supplemented with 350 mM KCl in Buffer A. Absorbances of 214 nm and 280 nm were identified by tandem mass spectrometry. A total of 20 SCX fractions were collected.

Protein identification. All data from tandem mass spectrometry were obtained from the UniProtKB/Swiss-Prot database using ProteinPilot 3.0 software (AB Sciex, Framingham, MA, USA), and the identification and quantification results were recorded. Search parameters were as follows: At least 1 matching peptide, a confidence interval (CI) of the peptide of >95% (P<0.05) and results in accordance with the peak of the spectrum.

Protein annotation and classification. The Database for Annotation, Visualization and Integrated Discovery (DAVID) was used for functional annotation of proteins and gene ontology (GO) was used to classify these proteins, including their involvement in biological processes, as cellular components and their molecular function.

Differential expression of proteins. Western blotting was performed to analyze differential protein expression in the CSF between the ALS-B and NC groups, in order to verify the iTRAQ results. A total of 1 ml CSF sample was added into a 3 kD ultrafiltration centrifugal tube (EMD Millipore, Billerica, CA, USA) for desalination and concentration. Protein concentrations were subsequently measured via the Bradford method using Bio-Rad protein assay reagent (Bio-Rad Laboratories, Inc.). A total of 20 µg protein was separated by 12% SDS polyacrylamide gel electrophoresis followed by electro-blotting onto a polyvinylidene difluoride membrane. The membrane was subsequently incubated with 5% nonfat dry milk in Tris-buffered saline at room temperature for 2 h, in order to block non-specific binding. Following this, the membrane was incubated with the following primary antibodies: Rabbit anti-human insulin-like growth factor II (IGF-2; l:1,250; ab9574); mouse anti-human leucine-rich α-2-glycoprotein 1 (LRG1; l:1,800; ab57992); and rabbit anti-human glutamate receptor 4 (GRIA4; 1:500; ab61171; all Abcam, Cambridge, UK), diluted in blocking buffer overnight at 4°C. The membrane was subsequently incubated with horseradish peroxidase-conjugated AffiniPure goat anti-rabbit (KC-RB-035) and anti-mouse (KC-MM-035) immunoglobulin G (H+L) secondary antibodies (both 1:5,000; Shanghai Kangcheng Biotechnology Co., Ltd., Shanghai, China) diluted with nonfat dry milk and Tris-buffered saline and Tween 20 (TBST). After rinsing three times with TBST, the western blot protein band
Table I. Proteins analyzed in the present study.

Unused ProtScore (CL, %)	Proteins detected, n	Proteins prior to grouping, n	Distinct spectra, n	Spectra identified, n	% of total spectra
>2.0 (99)	211	285	18106	37075	33.8
>1.3 (95)	248	347	19568	38823	35.4
>0.47 (66)	294	448	21271	40761	37.2

*Cutoff applied at an unused protein score of >1.3. CL, confidence level.

Table II. Proteins in ALS and NC groups by cerebrospinal fluid.

Protein name	iTRAQ ratio (ALS/NC)	Accession no.		
Serum albumin	0.9262	sp	P02768I	
Complement C4-A	1.0317	sp	P0C0L4	
Complement C3	1.0003	sp	P01024I	
Transthyretin	1.0717	sp	P02766I	
α-1-antitrypsin	0.7250	sp	P01009I	
α-2-macroglobulin	0.9938	sp	P01023I	
Serotransferrin	0.8150	sp	P02787I	
Fibronectin	1.0084	sp	P02751I	
Apolipoprotein A1	1.0930	sp	P02647I	
Ig γ1 chain C region	0.9304	sp	P01857I	
Apolipoprotein E	1.1323	sp	P02649I	
Gelsolin	1.0509	sp	P06396I	
Apolipoprotein A-IV	1.1446	sp	P06727I	
Clusterin	1.0969	sp	P10909I	
Cystatin C	1.0671	sp	P01034I	
Vitamin D-binding protein	0.8710	sp	P02774I	
Contactin-1	1.0430	sp	P012860I	
Complement factor	1.0036	sp	P08603I	
Pigment epithelium-derived factor	0.9803	sp	P36955I	
Secretogranin-1	1.0670	sp	P05060I	
Ceruloplasmin	0.8720	sp	P00450I	
Serum albumin	1.0588	sp	P01042I	
Haptoglobin	0.6926	sp	P00738I	
Secretogranin-3	1.1640	sp	P08603I	
Antithrombin-III	0.8452	sp	P01008I	
Chromogranin-A	1.0098	sp	P010645I	
α-1-B glycoprotein	0.9835	sp	P04217I	
β-Ala-His dipeptidase	1.1591	sp	P096KN2I	
Neuronal cell adhesion molecule	1.0097	sp	P02765I	
Ig γ2 chain C region	1.0383	sp	P01859I	
Monocyte differentiation antigen CD14	0.8775	sp	P08571I	
Fibrinogen α chain	1.0375	sp	P02671I	
α-1-antichymotrypsin	0.9855	sp	P01011I	
Neurosecretory protein VGF	1.0510	sp	P015240I	
α-2-HS-glycoprotein	1.0036	sp	P02765I	
Angiotensinogen	1.0014	sp	P01019I	
Ig α1 chain C region	1.0096	sp	P01876I	
Collagen α-1(I) chain	1.0412	sp	P02452I	
Plasminogen	0.8738	sp	P00747I	
Kininogen-1	0.8529	sp	P01042I	
Fibulin-1	0.9324	sp	P23142I	
Protein name	iTRAQ ratio (ALS/NC)	Accession no.		
--------------	----------------------	---------------		
Hemoglobin subunit β	1.4623	sp	P68871	
Prostaglandin-H2 D-isomerase	0.9310	sp	P41222	
N-acetyllactosaminide β-1,3-N-acetylg glucosaminyltransferase	1.0294	sp	O43505i	
Neuronal pentraxin receptor	1.0815	sp	O95502i	
Hemopexin	0.8432	sp	P02790	
Retinol-binding protein 4	0.9796	sp	P02753i	
Apolipoprotein D	0.9616	sp	P05090	
Ectonucleotide pyrophosphatase/phosphodiesterase family member 2	0.9689	sp	Q13822	
β-2-glycoprotein 1	0.9413	sp	P02749i	
Carboxypeptidase E	1.0193	sp	P16870	
Collagen α-2(I) chain	1.0000	sp	P08123	
Calsyntenin-1	1.1224	sp	O94985	
Vitronectin	0.8401	sp	P04004i	
Nucleobindin-1	1.0513	sp	Q02818	
Ig µ chain C region	0.8467	sp	P01871i	
Ig κ chain C region	1.0135	sp	P01834i	
Ig γ3 chain C region	0.9289	sp	P01860i	
Extracellular superoxide dismutase (Cu-Zn)	1.0356	sp	P08294	
Cathepsin D	0.9478	sp	P07339	
Afamin	1.0176	sp	P43652i	
Complement component C7	0.9460	sp	P10643i	
Apolipoprotein A-II	1.2524	sp	P02652	
Contactin-2	1.0433	sp	Q02246i	
Inter-α-trypsin inhibitor heavy chain	1.0549	sp	P13591i	
Neural cell adhesion molecule 1	1.0091	sp	P01842i	
EGF-containing fibulin-like extracellular matrix protein	0.9392	sp	P01805i	
Ig λ chain C regions	1.0045	sp	P01842i	
Complement component C9	0.7597	sp	P02748i	
Neural cell adhesion molecule L1-like protein	1.0405	sp	P000533i	
Procollagen C-endopeptidase enhancer 1	1.0410	sp	Q15113i	
Mimecan	0.9845	sp	P20774i	
Fibrinogen β chain	1.0713	sp	P02675i	
Hemoglobin subunit α	1.5451	sp	P69905i	
ProSAAS	1.0492	sp	Q9UHG2i	
Neuronal pentraxin-1	1.1167	sp	Q15818i	
β-2-microglobulin	1.0138	sp	P61769i	
Collagen α-1(VI) chain	1.0602	sp	P12109i	
Neural cell adhesion molecule 2	0.9561	sp	P01842i	
Leucine-rich α-2-glycoprotein	0.6430	sp	P02750i	
Insulin-like growth factor-binding protein 2	0.9574	sp	P18065i	
Insulin-like growth factor-binding protein 6	0.9883	sp	P24592i	
Protein kinase C-binding protein NELL2	0.9929	sp	Q99435i	
Keratin, type II cytoskeletal 1	0.9729	sp	P04264i	
Dickkopf-related protein 3	1.0396	sp	Q9UBP4i	
Ig κ chain V-III region	0.9945	sp	P01623i	
Complement C1r subcomponent	0.9240	sp	P00736i	
Prothrombin	0.9113	sp	P00734i	
Dystroglycan	1.0292	sp	Q14118i	
Tetranectin	0.9282	sp	P05452i	
α-2-antiplasmin	0.9126	sp	P08697i	
Complement factor B	0.8143	sp	P00751i	
Protein name	iTRAQ ratio (ALS/NC)	Accession no.		
--	-----------------------	-------------------		
Cartilage acidic protein 1	1.0590	sp	Q9NQ79	
Peptidylglycine α-amidating monoxygenase	0.8763	sp	P19021	
Major prion protein	1.0478	sp	P04156	
Zinc-α-2-glycoprotein	0.7912	sp	P25311	
Neuroendocrine protein 7B2	1.1447	sp	P05408	
Multiple epidermal growth-factor-like domains 8	0.9706	sp	Q7Z7M0	
Insulin-like growth factor-binding protein 7	1.0327	sp	Q16270	
SPARC	0.8425	sp	P09486	
Trypsin-1	1.2077	sp	P07477	
Secretogranin-2	0.9307	sp	P13521	
Voltage-dependent calcium channel subunit α2δ-1	0.9343	sp	P54289	
Pyruvate kinase isoymes M1/M2	1.0611	sp	P14618	
Cadherin 13	1.0163	sp	P55290	
GM2 Ganglioside activator	1.0083	sp	P17900	
Fibrinogen γ chain	1.0925	sp	P06390	
Extracellular matrix protein 1	1.0849	sp	P16610	
Collagen α-1(XVIII) chain	1.0000	sp	P39060	
Cadherin-2	1.0560	sp	P19022	
Semaphorin 7A	0.9433	sp	P07532	
Ig κ chain V-II region GM607	0.9526	sp	P06390	
Ig λ chain V-III region LOI	0.7060	sp	P01617	
Transmembrane protein 132A	1.1680	sp	Q24JP5	
Metalloprotease inhibitor 2	0.9855	sp	P16035	
Osteopontin	1.0354	sp	P10451	
Kallikrein-6	0.9713	sp	Q92876	
Sex hormone-binding globulin	0.6051	sp	P04278	
Actin, cytoplasmic 1	0.8566	sp	P06709	
Ig γ-4 chain C region	1.1808	sp	P01861	
Protein FAM3C	0.9182	sp	Q92520	
Chorionic somatomammotropin hormone	0.5234	sp	P01243	
Keratin, type I cytoskeletal 9	0.9161	sp	P35527	
Limbic system-associated membrane protein	0.9398	sp	Q13449	
Phospholipid transfer protein	1.1687	sp	P55058	
Ig heavy chain V-III region BRO	0.9650	sp	P01766	
SPARC-like protein 1	0.9325	sp	Q14515	
Fructose-bisphosphate aldolase	0.9490	sp	Q14075	
N-acetylmuramoyl-L-alanine amidase	0.9820	sp	Q96PD5	
Complement C1s subcomponent	0.9598	sp	P09871	
Ig κ chain V-IV region B17	0.8581	sp	P06314	
Lumican	1.0259	sp	P51884	
Opioid-binding protein/cell adhesion molecule	0.8758	sp	Q14982	
Ribonuclease pancreatic	0.7527	sp	P07998	
Ig κ chain V-III region CLL	0.8486	sp	P04207	
Immunoglobulin superfamily member 8	0.8751	sp	Q969P0	
78-kDa glucose-regulated protein	0.9751	sp	P10211	
Protein AMBP	0.7950	sp	P02760	
Coagulation factor V	1.0938	sp	P12259	
Histidine-rich glycoprotein	0.9048	sp	P04196	
Ig heavy chain V-III region KOL	0.9839	sp	P01772	
L-lactate dehydrogenase B chain	0.9649	sp	P07195	
Complement component C6	0.9164	sp	P13671	
Ephrin type-A receptor 4	0.9178	sp	P54764	
Table II. Continued.

Protein name	iTRAQ ratio (ALS/NC)	Accession no.		
Cerebellin-3	1.0609	sp	Q6UW01	
Proenkephalin A	1.0079	sp	P01210	
Insulin like growth factor binding protein 4	0.8461	sp	P22692	
Apolipoprotein C-III	1.1181	sp	P02656	
Trypsin -3	1.1478	sp	P35030	
Transforming growth factor-β-induced protein ig-h3	1.0709	sp	Q15582	
IgG Fe-binding protein	1.0775	sp	Q9Y6R7	
Plasma serine protease inhibitor	0.9604	sp	P05154	
Coagulation factor XII	0.9422	sp	P00748	
Biotinidase	1.2970	sp	P43251	
Ig κ chain V-III region VG (Fragment)	1.09987	sp	P04433	
Collagen α-3(VI) chain	0.9422	sp	P00748	
Neuroserpin	1.0459	sp	Q99574	
Keratin, type I cytoskeletal 10	0.8858	sp	P13645	
Fibulin-5	0.9587	sp	Q9UBX5	
Receptor-type tyrosine-protein phosphatase S	1.1670	sp	Q13332	
Complement factor I	0.8627	sp	P05156	
Ig heavy chain V-III region TRO	1.1189	sp	P01762	
Basement membrane-specific heparan sulfate proteoglycan core protein	0.9080	sp	P98160	
α-1 acid glycoprotein 1	0.7355	sp	P02763	
Chitinase-3-like protein 1	0.9904	sp	P36222	
Cell adhesion molecule 3	0.8572	sp	Q08380	
Galectin-3-binding protein	0.9876	sp	Q08380	
Ig heavy chain V-III region POM	1.0712	sp	P01774	
Endonuclease domain-containing 1 protein	1.0166	sp	P01776	
Ig λ chain V-I region HA	1.0838	sp	P01779	
Complement C1q subcomponent subunit B	1.0301	sp	P02746	
Leucine-rich repeat-containing protein 4B	1.0174	sp	Q9NT99	
Peroxiredoxin-2	1.6278	sp	P32119	
Glyceraldehyde-3-phosphate dehydrogenase	1.2506	sp	P04406	
Serum paraoxonase/arylesterase 1	0.8635	sp	P27169	
Calcium/calcmodulin-dependent protein kinase type II α chain	1.1677	sp	Q9UQM7	
Fibrillin-1	0.2204	sp	P35555	
Complement C2	0.9405	sp	P00681	
Cell growth regulator with EF hand domain protein 1	1.3740	sp	P02746	
Myopalladin	0.6801	sp	Q86TC9	
Neuronal growth regulator 1	1.0667	sp	P7Z3B1	
Serum amyloid A-4 protein	1.0645	sp	P43026	
Protocadherin Fat 2	1.1409	sp	Q9NYQ8	
Cathepsin F	1.1142	sp	Q9UBX1	
DNA repair protein RAD50	0.9463	sp	Q92878	
α-enolase	1.1591	sp	P06733	
Insulin-like growth factor II	0.4053	sp	P01344	
Ig λ chain V-III region SH	1.0399	sp	P01714	
Reelin	1.1149	sp	P78509	
Pregnancy-specific β-1-glycoprotein 1	0.7522	sp	P11464	
Retinoic acid receptor responder protein 2	1.0850	sp	Q99969	
Lymphocyte antigen 6H	1.0322	sp	Q94772	
Receptor-type tyrosine-protein phosphatase N2	1.0020	sp	Q92932	
Multimerin-2	1.0029	sp	Q9H8L6	
Table II. Continued.

Protein name	iTRAQ ratio (ALS/NC)	Accession no.		
Apolipoprotein L1	0.9537	sp	O14791	
Ig κ chain V-I region Roy	a	sp	P01608	
Neurofascin	1.0305	sp	O94856	
V-type proton ATPase	0.8780	sp	Q15904	
Heparin cofactor 2	1.0087	sp	P05546	
Plasma glutamate carboxypeptidase	1.0663	sp	Q9Y646	
Hypoxia upregulated protein 1	1.0213	sp	Q9Y4L1	
Ig κ chain V-I region Ka	0.9834	sp	P01603	
Protein DJ-1	1.2886	sp	Q99497	
Laminin subunit γ-1	0.8128	sp	P1047	
Cell surface glycoprotein MUC18	0.7681	sp	P43121	
Neuroendocrine convertase 2	1.2290	sp	P16519	
Inter-α-trypsin inhibitor heavy chain H5	0.9165	sp	Q86UX2	
Exostosin-like 2	0.9342	sp	Q9UBQ6	
Metalloproteinase inhibitor 1	1.0673	sp	P01033	
Immunoglobulin J chain	1.0429	sp	P01591	
Ig κ chain V-I region BAN	a	sp	P04430	
Ig κ chain V-I region DEE	1.0241	sp	P01597	
Ig κ chain V-I region Wes	0.8814	sp	P01611	
Serum amyloid A-1 protein	0.6516	sp	P02735	
Glutamate receptor 4	1.3098	sp	P48058	
Amyloid β A4	1.0164	sp	P05067	
Zinc finger protein	0.9751	sp	B1APH4	
Nidogen-2	1.0441	sp	P14112	
72-kDa type IV collagenase	0.8378	sp	P08253	
WAP, kazal, immunoglobulin, Kunitz and NTR domain-containing protein 2	1.0204	sp	Q8TEU8	
Kallistatin	0.8933	sp	P29622	
45-kDa calcium-binding protein	1.0575	sp	Q9BKRK5	
Tissue α-L-fucosidase	1.1211	sp	P04066	
protein Cut A	1.0521	sp	O60888	
Ig heavy chain V-I region	0.9126	sp	P06326	
Ig heavy chain V-I region	0.9126	sp	P06326	
γ-glutamyl hydrolase	1.2209	sp	Q92820	
Complement component C8 γ chain	0.9202	sp	P07360	
Phosphatidyethanolamine-binding protein 1	1.1293	sp	P30086	
Thy-1 membrane glycoprotein	0.7535	sp	P04216	
Cell adhesion molecule 4	0.9868	sp	Q8NFZ8	
Sjogren syndrome/scleroderma autoantigen 1	0.9615	sp	O60232	
Uncharacterized protein C6orf170	1.1061	sp	Q96NH3	
N-acetylglucosamine-1-phosphotransferase subunit γ	1.0938	sp	Q9UJJ9	
Testican-2	1.2140	sp	Q92563	
Fructose-bisphosphate aldolase C	a	sp	P09972	
Lysozyme C	0.8222	sp	P61626	
V-type proton ATPase subunit D	1.2915	sp	Q9Y5K8	
Coagulation factor XI	a	sp	P03951	
Complement C1q subcomponent subunit C	0.8441	sp	P02747	
Dermcidin	0.7257	sp	P81605	
Ig κ chain V-II region RPMI 6410	0.7960	sp	P06310	
Hemoglobin subunit δ	a	sp	P06310	
Titin	0.9960	sp	Q8WZ42	
Tumor protein 63	0.7445	sp	Q9H3D4	
was detected using chemiluminescence, and the gray scales of the bands were quantified using software Image Lab 3.0 (Bio-Rad Laboratories, Inc.).

Statistical analysis. SPSS17.0 (SPSS, Inc., Chicago, IL, USA) was used for statistical analyses, GraphPad Prism 4 (GraphPad Software, Inc., La Jolla, CA, USA) was used to draw graphs and ProteinPilot 3.0 was used to detect the protein threshold [where Unused ProtScore >1.3 (95% CI)]. An error (ProtScore) of 2.0 indicated a credible identified protein; an error of >1.2 or <0.8 indicated an identifiable significant difference (P<0.05).

All data were normally distributed when examined with a one-sample Kolmogorov-Smirnov test. A t-test was used to compare two groups and data are expressed as the mean ± standard deviation; P<0.05 was considered to indicate a statistically significant difference.

Correlation analysis used multiple linear regression analysis and the disaggregated data was assigned a conversion score, as follows: i) Gender: male, 1; and female, 2; ii) diagnostic level: diagnosed, 1; suspected, 2; suspected and clinically supported, 3; iii) involvement: medullary, 1; cervical, 2; and lumbar, 3.

Results

Clinical data. The average ages of the ALS-B and NC groups were 52.7±12.13 and 51.1±10.62 years old, respectively, and there were 6 men and 4 women in each group. No significant difference in age or gender balance between these groups was identified (P>0.05).

The average ages of the ALS-A and OND groups were 52.80±11.98 and 51.17±12.44 years old, respectively, and there were 22 men and 13 women in the ALS-A group,
Table IV. Increased proteins in ALS group.

Protein	Ratio of ALS vs. control	Accession no.		
Peroxiredoxin-2	1.6278	sp	P32119	
Glutamate receptor 4	1.3097	sp	P02735	
Apolipoprotein A-II	1.2523	sp	P48058	
Hemoglobin subunit α	1.5451	sp	P69905	
Trypsin-1	1.2076	sp	P69905	
Biotinidase	1.2970	sp	P43251	
Hemoglobin subunit β	1.4623	sp	P68871	
Glyceraldehyde-3-phosphate dehydrogenase	1.2505	sp	P04406	
Cell growth regulator with EF hand domain protein 1	1.3748	sp	Q99674	
Protein DJ-1	1.2886	sp	Q99497	
Neuroendocrine convertase 2	1.2294	sp	P16519	
γ-glutamyl hydrolase	1.2209	sp	Q92820	
Testican-2	1.2140	sp	Q92563	
V-type proton ATPase subunit D	1.2915	sp	Q9Y5K8	

ALS, amyotrophic lateral sclerosis.

Figure 1. Sample data of 3 differentially-expressed proteins. GIVEECFR, ALGLDLSGNR and LQNIQIIVSVGK are enzyme-specific peptides. IGF-2, insulin-like growth factor II; GRIA4, glutamate receptor 4; LRG1, leucine-rich α-2-glycoprotein 1; iTRAQ, isobaric tags for relative and absolute quantitation.

and 11 men and 7 women in the OND group. No significant difference was identified in age or gender balance between these groups (P>0.05). The protein concentration of CSF was 350.46±110.09 mg/l in the ALS-A group and 377.56±85.85 mg/l in the control group, with no significant difference revealed between the two (P>0.05).

CSF protein identification. iTRAQ and 2D-LC-MS/MS analyses were performed and used to analyze the protein content of the CSF in the ALS and NC groups. A total of 248 proteins were identified, and their names, the iTRAQ ratio (where available) and the UniProtKB/Swiss-Prot database accession number of 243 of these proteins are provided (95% CI; Tables I and II).

Analyses of differential protein expression. A total of 35 differentially-expressed proteins were compared between the ALS and NC groups; of these, 14 were upregulated and 21 were downregulated (Tables III and IV). These proteins had a ProtScore between the values of >1.2 and <0.8, corresponding to P<0.05.

Sample data of specific differentially-expressed proteins. IGF-2 and LRG1 protein expression was decreased in the experimental groups, whereas GRIA4 expression was increased (Fig. 1).

DAVID results and the classification of proteins by biological role. The function of all identified proteins was analyzed using
GO in conjunction with DAVID software. The most common biological roles of CSF proteins were in acute inflammation, damage response, protein maturation, inflammation, defense response, complement activation and other associated immune pathways (Fig. 2).

Classification by cellular localization. The most common localization of CSF proteins relative to cells included the extracellular domain, extracellular space, extracellular matrix and protein-lipid complexes (Fig. 3).

Classification by molecular function. The most common molecular functions of CSF proteins were endopeptidase, peptidase, enzyme and serine-type endopeptidase inhibitors, and antigen-, calcium- and heparin-binding proteins (Fig. 4).

Western blotting. A total of 3 candidate proteins were randomly selected to be examined by western blot analysis in the ALS and the NC groups (Fig. 5); of these, IGF-2 was revealed to be significantly downregulated and GRIA4 was significantly upregulated in the ALS group when compared with the normal control group (P<0.05; Table V), but LRG1 expression was not significantly altered (P=0.224; Table V). These proteins were also examined by western blot analysis in the ALS-A and OND groups, again demonstrating a significant downregulation of IGF-2 and a significant upregulation of GRIA4 in the ALS group compared with the OND group (P<0.01; Table VI), but no significant difference in LRG1 expression between these groups (P=0.196; Table VI).

Correlation between GRIA4 and gender. GRIA4 expression in the ALS-A group was significantly higher in male patients than in female patients (765,483±583,227 and 319,766±224,242, respectively; r=-0.574; P=0.003; Fig. 6).

GRIA4 expression in the ALS-A group was also positively correlated with ALS clinical scores (r=0.487; P=0.017), indicating a negative correlation with clinical severity (Fig. 7).

Discussion

In the present study, 248 different low-abundance proteins were identified in human CSF and the details of these proteins were established in ALS patients. All proteins were subjected to GO analysis with DAVID software and were classified according to their involvement in biological processes, their cellular localization and their molecular function. Data indicated that the primary roles of these proteins were in the acute inflammatory response and injury response, that the proteins were predominantly localized to extracellular regions and that the majority of these proteins were endopeptidase and peptidase inhibitors. These data aid the understanding of CSF protein profiles in patients with ALS, and provide possible biomarkers of the disease. A screening of 35 of these proteins revealed significant differences in protein expression between the ALS and NC groups, primarily in inflammation-associated proteins, neurotrophic factors and signal transduction proteins.

IGF-2, GRIA4 and LRG1 were randomly selected to verify their differential expression in ALS patients using western blot analysis. Consistent with the results of the proteomic analysis, IGF-2 and GRIA4 expression was altered in the CSF of ALS patients, but there was no significant difference in LRG1 expression between the ALS and NC groups; this led to the conclusion that additional verification of the altered protein expression reported in the present study is necessary to confirm these proteomic results.

To confirm the expression specificity of IGF-2, GRIA4 and LRG1, expression levels of these proteins were compared in patients with ALS and patients with OND; IGF-2 expression
was significantly decreased, but GRIA4 expression was significantly increased.

Alterations to protein expression are complex with regard to disease progression, age, gender and duration of illness; it was thus important to examine the correlation between alterations to protein expression and clinical features. Clinical data of 35 ALS patients was collected and were subjected to multiple linear regression analysis to reveal any confounding factors. The clinical data in the present study revealed a higher male incidence of ALS (male to female ratio, 1.7:1), which was in support of a previous study; the 2009 European epidemiological study revealed a similar ratio of 1.4:1 (10). The present results demonstrated a correlation of GRIA4 expression with

Table V. Western blotting results of ALS-B and NC groups.

Protein	Molecular weight, KDa	ALS group (n=10)	NC group (n=10)	P-value
IGF-2	7.5	225700±126090	436857±212550	0.017*
GRIA4	102	715730±432220	305796±130600	0.016*
LRG1	38	1278000±702040	1807000±115500	0.224

Data are presented as the mean ± standard deviation. *P<0.05 vs. NC group. ALS, amyotrophic lateral sclerosis; NC, normal control; IGF-2, insulin-like growth factor II; GRIA4, glutamate receptor 4; LRG1, leucine-rich α-2-glycoprotein 1.

Table VI. Western blotting results of ALS-A and OND groups.

Protein	ALS group (n=35)	OND group (n=18)	P-value
IGF-2	222200±123648	452500±255620	0.002*
GRIA4	608502±519012	200100±150810	0.002*
LRG1	1097255±961025	746070±703690	0.196

Data are presented as the mean ± standard deviation. *P<0.01 vs. OND group. ALS, amyotrophic lateral sclerosis; OND, other neurological disease; IGF-2, insulin-like growth factor II; GRIA4, glutamate receptor 4; LRG1, leucine-rich α-2-glycoprotein 1.

Figure 5. Western blot analysis of the three candidate proteins, glutamate receptor 4 (GRIA4), leucine-rich α-2-glycoprotein 1 (LRG1) and insulin-like growth factor II (IGF-2). NC, normal control; ALS, amyotrophic lateral sclerosis; OND, other neurological disease.

Figure 6. Correlation between GRIA4 and clinical features. GRIA4, glutamate receptor 4.

Figure 7. Correlation of ALS value with GRIA4. ALS, amyotrophic lateral sclerosis; GRIA4, glutamate receptor 4; ALSFRS, ALS functional rating scale.
gender; male GRIA4 levels were 2.5-fold those of female levels (P<0.01).

To the best of our knowledge, the association between glutamate receptor levels and clinical characteristics has not been studied; however, glutamate excitotoxicity damage is widely recognized in the pathogenesis of ALS. Fiszman et al (11) reported no significant correlation between glutamate ligand concentration in the CSF of patients with different severities of ALS, suggesting that glutamate is involved in the occurrence of ALS and not in the severity of the disease. Excitotoxicity of glutamate also requires the presence of a glutamate receptor, meaning that high expression of glutamate receptors may be responsible for the neuronal toxicity injury induced by glutamate. As the concentration of glutamate is increased in the CSF of ALS patients (11), and GRIA4 expression was increased in ALS in the current study, the high incidence of ALS may be associated with the expression of GRIA4.

In the present study, the ALS score was estimated using the ALSFRS-R scale; a lower score on this scale corresponded to more severe disease. A multivariate analysis indicated that GRIA4 expression was positively correlated with the ALS score, revealing a negative correlation with the severity of the disease. However, ALS patients with mild symptoms were selected, defined in accordance with a previous scoring system attributing a score >25 to less severe ALS and scores of <25 to moderate and severe phases of ALS (12). As the glutamate concentration is significantly increased in the CSF of ALS patients (7), glutamate is likely to be involved in the pathogenesis of the disease. From the present results, it was concluded that GRIA4 expression is likely to be involved in the pathogenesis of ALS, resulting in a negative feedback regulatory mechanism to subsequently reduce its expression. The glutamate receptor antagonist, riluzole, is effective in the early treatment of ALS (13). In conjunction with the present report suggesting the early-stage overexpression of GRIA4, these data indicate that early treatment with anti-glutamate-associated drugs may prove a useful therapeutic measure.

The multivariate analysis examining IGF-2 and LRG1 expression and the clinical data revealed no significant correlations. This may be attributable to the sample size of the present study being too small or too few clinical factors being included. Based on the standard deviation values, the expression levels of IGF-2 and LRG1 were relatively balanced, as compared with the standard deviation of the GRIA4 expression levels, which suggested that IGF-2 may be a valuable biomarker of ALS with higher credibility due to fewer interference factors.

In summary, GRIA4 expression varied based on gender and may be reflective of ALS severity, providing a meaningful reference value for the timing of treatment. Furthermore, IGF-2 may prove an effective diagnostic marker of ALS.

Acknowledgements

The present study was supported by the Scientific Research Foundation of Huashan Hospital, Fudan University (Dr Yan Chen; 2007). The authors would like to thank staff from the Institute of Biomedical Science (Fudan University, Shanghai, China) for providing technical support.

References

1. Corbo M, Lunetta C, Magni P, Doizio E, Ruscica M, Adobbati L and Silani V: Free insulin-like growth factor (IGF)-1 and IGF-binding proteins-2 and -3 in serum and cerebrospinal fluid of amyotrophic lateral sclerosis patients. Eur J Neurol 17: 398-404, 2010.
2. Devos D, Moreau C, Lassalle P, Perez T, De Seze J, Brunaud-Daniel V, Destée A, Tonnel AB and Just N: Low levels of the vascular endothelial growth factor in CSF from early ALS patients. Neurology 62: 2127-2129, 2004.
3. Kasai T, Tokuda T, Ishigami N, Susayama H, Foulds P, Mitchell DJ, Mann DM, Allsop D and Nakagawa M: Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neuropathol 117: 35-62, 2009.
4. Nagata T, Nagano I, Shiote M, Narai H, Murakami T, Hayashi T, Shoji M and Abe K: Elevation of MCP-1 and MCP-1/VEGF ratio in cerebrospinal fluid of amyotrophic lateral sclerosis patients. Neurol Res 29: 772-776, 2007.
5. Zhang J, Goodlett DR, Quinn JF, Peskind E, Kaye JA, Zhou Y, Pan C, Yi E, Eng J, Wang Q, et al: Quantitative proteomics of cerebrospinal fluid from patients with Alzheimer disease. J Alzheimers Dis 7: 125-133, discussion 173-180, 2005.
6. Jin J, Meredith GE, Chen L, Zhou Y, Xu J, Shie FS, Lockhart P and Zhang J: Quantitative proteomic analysis of mitochondrial proteins: Relevance to Lewy body formation and Parkinson's disease. Brain Res Mol Brain Res 134: 119-138, 2005.
7. Ranganathan S, Williams E, Ganchev P, Gopalakrishnan V, Lacomis D, Urbinelli L, Newhal K, Cudkowicz ME, Brown RH Jr and Bowser R: Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis. J Neurochem 95: 1461-1471, 2005.
8. Ryberg H, An J, Darko S, Lustgarten JL, Jaffa M, Gopalakrishnan V, Lacomis D, Cudkowicz M and Bowser R: Discovery and verification of amyotrophic lateral sclerosis biomarkers by proteomics. Muscle Nerve 42: 104-111, 2010.
9. Ekegren T, Hannieder J and Bergquist J: Clinical perspectives of high-resolution mass spectrometry-based proteomics in neuroscience: Exemplified in amyotrophic lateral sclerosis biomarker discovery research. J Mass Spectrom 43: 559-571, 2008.
10. Logroscino G, Traynor BJ, Hardiman O, Chio A, Mitchell D, Swingler RJ, Milul A, Benn E and Beghi E; EURALS: Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg Psychiatry 81: 385-390, 2009.
11. Fiszman ML, Ricart KC, Latini A, Rodriguez G and Sica RE: In vitro neurotoxic properties and excitatory aminoacids concentration in the cerebrospinal fluid of amyotrophic lateral sclerosis patients. Relationship with the degree of certainty of disease diagnoses. Acta Neurol Scand 121: 120-126, 2010.
12. Hzecka J: Cerebrospinal fluid Flt3 ligand level in patients with amyotrophic lateral sclerosis. Acta Neurol Scand 114: 205-209, 2006.
13. Miller RG, Mitchell JD, Lyon M and Moore DH: Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev 1: CD001447, 2007.