Splicing of the rSlo Gene Affects the Molecular Composition and Drug Response of Ca2+-Activated K+ Channels in Skeletal Muscle

Maria Maddalena Dinardo1,a, Giulia Camerino1,b, Antonietta Mele1, Ramon Latorre2, Diana Conte Camerino1, Domenico Tricarico1,a

1Departments of Pharmacobiology, Faculty of Pharmacy, University of Bari, Bari, Italy, 2Centro Interdisciplinario de Neurociencias de Valparaiso, Facultad de Ciencias, Universidad de Valparaiso, Valparaiso, Chile

Abstract

The molecular composition and drug responses of calcium-activated K+ (BK) channels of skeletal muscle are unknown. Patch-clamp experiments combined with transcript scanning of the Kcnma1 gene encoding the alpha subunit of the BK channel were performed in rat slow-twitch soleus (Sol) and fast-twitch flexor digitorum brevis (FDB) skeletal muscles. Five splicing products of the Kcnma1 gene were isolated from Sol and FDB: the e17, e22, +29 aa, Slo27 and Slo0 variants. RT-PCR analysis demonstrated that the expression of e22 and Slo0 were 80–90\% higher in FDB than Sol, whereas the expression of Slo27 was 60\% higher in Sol than FDB, and the +29 aa variant was equally expressed in both muscle types. No beta 1-4 subunits were detected. In Sol, a large BK current with low Ca2+ sensitivity was recorded. The BK channel of Sol also showed a reduced response to BK channel openers, such as NS1619, acetazolamide and related drugs. In FDB, a reduced BK current with high Ca2+ sensitivity and an enhanced drug response was recorded. The total BK RNA content, which was 200\% higher in Sol than in FDB, correlated with the BK currents in both muscles. Drug responses primarily correlated with e22 and Slo0 expression levels in FDB and to Slo27 expression in Sol muscle. In conclusion, phenotype-dependent BK channel biophysical and pharmacological properties correlated with the expression levels of the variants in muscles. These findings may be relevant to conditions affecting postural muscles, such as prolonged bed-rest, and to diseases affecting fast-twitch muscles, such as periodic paralysis. Down-regulation or up-regulation of the variants associated with pathological conditions may affect channel composition and drug responses.

Introduction

Ca2+-activated K+ channels (BK), which are present in virtually every cell, couple chemical signaling to electrical signaling [1–2]. All BK channels are activated by increases in the concentration of intracellular Ca2+ ions, and many can be modulated by other messengers, such as protein kinases, phosphatases, and G proteins [3–8]. By damping excitatory stimuli mediated by the entry and/or the release of Ca2+ from internal stores, BK channels control diverse physiological processes, including the regulation of vascular tone [9–12], neuronal excitability [13–14], neurotransmitter release [15–16], endocrine function [17–19], innate immunity [20], and hearing [21–22].

BK channels in native tissues exhibit a physiologically diverse array of phenotypes. At least three major post-transcriptional mechanisms are involved in generating such functional diversity: the alternative pre-mRNA splicing of the BK channel pore-forming alpha-subunit; the assembly of alpha-subunits with a family of modulatory beta-subunits; and metabolic regulation (e.g., phosphorylation). A BK channel assembles as tetramers of the pore-forming alpha-subunit and is encoded by a single gene (Kcnma1) [23].

Electrophysiological recordings in native cells have revealed Slo1 channels with different calcium sensitivities. However, the Slo1 channel is encoded by a single gene in mammals. This channel diversity is possibly due to the alternative processing of introns, which produce at least 11 splice variants expressed in different tissues and cell types [24]. This feature is evolutionarily conserved and is observed in mammals, reptiles, birds and insects [23–31]. When expressed in heterologous expression systems, channels formed by these splice variants present different calcium sensitivities and gating kinetics, resembling those found in native cells. Alternative splicing is responsible in part for the great variety of calcium sensitivities among Slo1 channels. Several of these splice variants are produced by “insertions” at the C-terminus, and one of the most studied variants is expressed under the activation of the hypothalamic-pituitary-adrenal axis (HP) [32–33]. Two splice variants produce dominant-negative subunits, which retain the channel in subcellular compartments [34–35]. One of these variants
corresponds to an insertion of 33 amino acids in S0 (SV1 subunit) to produce a natural dominant-negative subunit that reduces the expression level of Slo1 in the myometrium.

Analysis of individual alternatively spliced variants generated at distinct splice sites in different species has revealed that alternative pre-mRNA splicing can dramatically modify the functional properties of the BK channel alpha-subunit, including changes in calcium and voltage sensitivity [24–26,36–39], regulation by protein phosphorylation [40–42], and other intracellular signaling cascades [43] as well as in cell surface expression [44]. Whether this post-transcriptional mechanism is operative in skeletal muscle and contributes to the formation of functional BK channels is not currently known.

The BK channel of the neuromuscular apparatus plays a role in coupling the intracellular calcium transient in the t-tubule system with the repolarization phase of action potentials, particularly during high-frequency firing. Slow-twitching and fast-twitching skeletal muscles serve different functions, such as postural maintenance and voluntary contraction. The two muscle phenotypes can be distinguished by their contractile proteins, cellular metabolism, hormonal regulation/drug responses, and sarcolemmal ion channel activity [45]. Patch-clamp investigations have identified a BK channel population in slow-twitch muscles that exhibits functional properties different from those of BK channels present in fast-twitch muscles [43]. Whether the functional diversity of the BK channel subtypes observed in the different skeletal muscle phenotypes correlates with alternative splicing of the Slo gene or with the assembly of the accessory beta 1–4 subunits is currently unknown.

The BK channel is also a molecular target for drugs of therapeutic interest for periodic paralysis, such as acetazolamide and dichlorphenamide. Periodic paralysis is a group of neuromuscular disorders characterized by fiber depolarization and flaccid paralysis of fast-twitch muscles associated with changes in serum K⁺ ions [46]. In these disorders, acetazolamide and dichlorphenamide act by opening skeletal muscle BK channels [46]. The reasons why some patients do not respond to drug treatment or show detrimental responses are unclear [46–47]. Despite the important roles of BK channels in skeletal muscle functions, the molecular composition and the drug responsiveness of the different BK channel subtypes in slow-twitch and fast-twitch muscles are currently unknown.

In the present work, transcript scanning of the Kcnma1 gene was performed in combination with patch-clamp experiments on rat slow-twitch soleus (Sol) and fast-twitch flexor digitorum brevis (FDB) skeletal muscles to investigate the molecular composition, biophysical properties and drug responses of BK channels. RT-PCR experiments were performed for the quantitative evaluation of the identified splicing products in the two muscle phenotypes.

We have determined that the assembly of different splicing products of the alpha subunit gene leads to different BK channel phenotypes in skeletal muscles. The muscle phenotype-dependent properties and drug responses of BK channels depend on the distribution of the observed isoforms. These findings may have relevance for conditions affecting mainly postural muscles, such as prolonged bed-rest and microgravity, or conditions affecting fast-twitch muscles, such as periodic paralysis. The down-regulation or up-regulation of these variants associated with pathological conditions may alter channel composition and drug responses.
No differences in the expression of Kcnma1 were found in Sol and FDB muscles for the +29 variant. Fig. 1A shows that this variant resulted in bands of the same length and intensity for the two types of muscle, C4 is an important splice site because it is located near the Ca\(^{2+}\)-bowl, between segments S9 and S10 [30]. The resulting splice variant has a 27-amino acid insert that is most likely involved in the modulation of Ca\(^{2+}\) signaling. PCR amplicons of this site were cloned, characterized and sequenced (Fig. 1B). We isolated two products for Sol and FDB, represented by the +27 variant and the insertless variant. The +27 variant is expressed more highly in Sol, as confirmed by a second round of PCR performed with a reverse primer that anneals to the sequence of the 27-amino acid insert (Fig. 1B).

In a second step, we analyzed the variants of rat Kcnma1 at other hypothetical splice sites reported in the literature that had not been functionally characterized. In particular, we concentrated on the sites C3, C5 and C6 for the C-terminal region and on the N1 site for the N-terminal region of the Kcnma1 cDNA. Therefore, we amplified, cloned and sequenced the fragments containing these sites, and the results were aligned with the rat Kcnma1 CDS from the NCBI database (NM_031828). For the N1, C5 and C6 sites, we found no splicing of the analyzed regions, more or less equally distributed in Sol and FDB. PCR amplification of the C3 site region revealed no splicing in Sol and was not amplified in FDB, perhaps because of a polymorphism in a primer-binding site or the reduced expression of the C3 site. Therefore, we investigated the C3 site in FDB using the same primers but increasing the number of PCR cycles (Table 2). Using this approach, we found that the C3 site was amplified in FDB muscle, indicating that there was no difference in the cDNA sequence at this site in Sol and FDB muscles and that the C3 site was expressed at a lower level in FDB.

Table 1. Splicing sites and relative amino acid sequences of rat Soleus (Sol) and Flexor digitorum brevis (FDB) muscles Kcnma1 gene.

Splicing site	Isoforms	Sequence
N1	No splicing	
C1	e17	
C2	e22, +29 aa (hbr5)	KVEARBYKHDPFMH0ATPSNPHYKPVSRKLHEAIKTHLCTRMPQPLNTCPQ
C3	No splicing	
C4	rSlo0, rSlo27	AKPKGKLPLVSVNQEGNSGHILMTE
C5	No splicing	
C6	No splicing	

doi:10.1371/journal.pone.0040235.t001

Table 2. Primers used for PCR reactions.

Primer name	Nucleotide sequence (5' - 3')	Annealing temperature (Tm)
BK2Cfor	GTCCCTCCAC TAC TGT TTG	54°C
BK2Crev	GTG TTT GAG CTCATG ATA	56°C
BK1Cfor	TGACGTACAGACTCCAAAAA	58°C
BK1Crev	GGATGTTTGGGTTGAGTCCC	66°C
BK2Crev2	AGCGTGCTAGCTGCACTCAAC	66°C
BK4Cfor	ACAACCTTGAGAATTGCAAG	62°C
BK4Crev	CGTAGCACCAGCAACAGG	62°C
BK4Crev2	CAGTGGGAGCACAGCTTCA	60°C
BK6Cfor	TGACTCACAGCAACGCCCTT	60°C
BK6Crev	TACCTGTAACCAATTCTTTT	56°C
Ratbeta1for	CCCAGGAAACTGTGCAACAAT	66°C
Ratbeta1rev	GCTCAACAGTGCTCCTCTCTG	64°C
Ratbeta2for	AGAATGGATGTGAGGCAAGG	62°C
Ratbeta2rev	GAGAGTATCTGCGCTCTT	60°C
BKbeta3F	CTGGGAGCAGAGAAAGTGCTT	62°C
BKbeta3R	GACAACCTCGTTGCCAGACT	62°C
BKbeta4F	TCTGACTAACCCAAATGGC	62°C
BKbeta4R	AAGCAGTGGATGCAAGACAT	60°C

doi:10.1371/journal.pone.0040235.t002

Quantitation of Kcnma1 Splice Variants in FDB and Sol Muscles Using TaqMan qRT-PCR

To determine the isoform distribution of BK channels in slow- and fast-twitch skeletal muscles, we measured mRNA levels in Sol and FDB using real-time PCR assays with TaqMan MGB probes that could distinguish between splice variants. In particular, we focused on the three most informative splice sites: C1, C2 and C4.

We designed two probes for the C1 region: one that anneals to the nucleotide sequence that encodes the RSRK motif of the protein and another that anneals outside of this region (Table 3). The first probe characterizes the e17 variant, and the second probe characterizes the variant with the 4-amino acid insertion. The lack of amplification by the real-time PCR assay for the region with the 4-amino acid insertion confirms the absence of exon 17 in all samples tested (Fig. 2A).

We designed two probes targeting the C2 site: one specific for the e22 isoform and another specific for a 29-amino acid insertion, which we found and characterized by cloning and sequencing. Real-time PCR experiments showed that the +29 isoform was equally expressed in FDB and Sol muscles; e22 was expressed more highly in FDB (Fig. 2B).

We designed two probes against the C4 site that could distinguish the Slo27 variant with an insertion of 27 amino acids from the insertless Slo0 variant. The Slo27 variant was expressed more highly in Sol than in FDB, whereas Slo0 was more abundant in FDB than in Sol (Fig. 2C).

Real-time PCR amplification of a region of the gene that is not subject to alternative splicing demonstrated that the expression of the total BK channel was more abundant in Sol than in FDB, which is consistent with the recorded channel activity in both muscle types (Fig. 2D).

Absence of BK Channel Beta-subunits in Slow-twitch and Fast-twitch Skeletal Muscle

The properties of BK channels are influenced by accessory beta-subunits. We analyzed the cDNA of Sol and FDB to determine the presence of any of the four BK channel beta-subunits in rat skeletal muscles. The primers used in PCR reactions are reported in Table 2. None of the genes observed were amplified by this method, which likely disaffirms their expression in the FDB and Sol samples analyzed (Fig. 3A, B). This result was confirmed by
Figure 2. Differential tissue distribution of BK channel splice variant mRNA. mRNA levels of C1 (A), C2 (B) and C4 (C) splice variants in Sol and FDB expressed as a fraction of total BK channel mRNA expression in each tissue. (D) Differential tissue distribution of total BK channels. mRNA expression of total BK channels is normalized to the expression of beta-actin. Significant differences between data are evaluated by the unpaired Student’s t-test at p<0.05.

doi:10.1371/journal.pone.0040235.g002

Table 3. Primers and probes used for TaqMan™ quantitative real-time PCR (qRT-PCR) assays.

Gene/Splicing	PROBE MGBNFQ 6-FAM	PRIMER FOR	PRIMER REV
BK full lent	CAGAGTCTCTGGTTGTGTTA	GCTGGATGACATCTGTGAAGG	GCACCAATGCTGAGACAA
β-Actin	TGAAGATCAAGATCATTGCT	GAGATTACTGCCCTGTCCTCA	CTGCTTGCTGATCCACATCTG
BK C2 e22	CTCATCTCAAGCCGCC	CCTCATGCCCTCATACGT	CAGATCCCAAGAATTAAAAATGC
BK C2 87+	CATAGCACACGGCTACAC	GCAGCCGCGTCAAGGTT	GCGGTCTGCTATCCTCAACTG
BK C4 Slo27	ACCGAACTCGCTAAGC	CGGAGTCAACATCCCCATCAT	TGACTGATAACAAAGGCAAC
BK C4 Slo0	CACGGAATCTGTAAC	TCCATACACCGAGGCTCA	GTACAGCTCTGTGCTAGGGTCATC
BK C117 null	AACAGGGAGAGCCGAATA	GCTCTCTGATGAGCCCATGAGT	AAGGTGGTTCCAGGTTAATT
BK C117 full	TGGGAAACCACCTTAAAG	CGAAGCGGAAGGGAATATT	TTGCGATGAAACATCCCCATAC

doi:10.1371/journal.pone.0040235.t003
testing these primers in tissues that normally express the beta-2 subunits under investigation, such as the brain and aorta from rats. PCR analysis showed that the brain expressed all subunits except beta-1 and that the aorta selectively expressed the beta-1 subunit (Fig. 3C, D).

Muscle Phenotype-dependent Calcium Sensitivity and Drug Responses of BK Channels

In FDB and Sol fibers, patch depolarization and the internal application of micromolar concentrations of free Ca\(^{2+}\) ions to the excised patches led to the activation of BK channels. Here, we showed that Sol fibers have higher BK channel activity in the physiological range of voltages than those recorded in FDB (Fig. 4A). In FDB fibers, BK channel currents recorded at -60 mV (Vm) in the presence of 1.3\(\times\)10\(^{-6}\) M and 10\(^{-5}\) M concentrations of free Ca\(^{2+}\) ions were -0.91\(\pm\)0.02 pA/patch area and -4.51\(\pm\)0.041 pA/patch area (n = 100), respectively, and were 3.31\(\pm\)0.02/patch area and 16.2\(\pm\)0.02 pA/patch area (n = 100), respectively, at +30 mV (Vm) (Fig. 4A). These currents were sustained by 2–3 active channels per patch area. The exposure of the patches to increasing concentrations of free Ca\(^{2+}\) ions from 0 to 1.3\(\times\)10\(^{-6}\) M enhanced the channel current to 9\% at 30 mV (Vm), respectively. The increase in free Ca\(^{2+}\) ions from 1.3\(\times\)10\(^{-6}\) M to 10\(^{-5}\) M led to an enhancement of the channel currents to 4.07\(\pm\)2% and 11.7\% at -60 mV and 30 mV (Vm), respectively. This result was observed in 79% of the patches examined, indicating that most of the Sol BK channels have a lower sensitivity to Ca\(^{2+}\) ions than those of FDB fibers (Fig. 4A).

In FDB fibers, BK channel openers were tested at a concentration of 2\(\times\)10\(^{-4}\) M; with the exception of HCT and MTZ, which were not effective, all of the compounds activated BK channels, albeit with different degrees of effectiveness. BFT was the most effective drug in FDB fibers, inducing a 100% activation of the channel currents in 85% of the patches (Fig. 4B, 5A).

The effects of BFT on FDB fibers were not significantly different from those of DCP, ACTZ, NS1619, ETX and QUERC in the same patches. The BK channels activated by these drugs were also highly sensitive to Ca\(^{2+}\) ions. RESV was the least effective drug in FDB fibers, activating the low Ca\(^{2+}\)-sensitive BK channels in 15% of the patches (Fig. 4B, 5A).

In Sol fibers, RESV caused a 95% activation of the channel current, whereas BFT produced a 50% activation of the channel current at +30 mV (Vm) (Fig. 4B). ETX and RESV were the most effective drugs in activating BK channels, causing a significant channel activation compared with that observed with NS1619, BFT, DCP and ACTZ which were effective in 15–20% of the patches (Fig. 5B). QUERC, MTZ and HCT failed to activate the BK channels of Sol fibers.

A correlation analysis between the percentage of patches containing BK channels that were sensitive to BFT and the expression of e22 normalized to the full-length transcript in each FDB muscle sample showed a linear relationship, with a calculated correlation coefficient of 0.91. Correlation coefficients of 0.79, 0.72 and 0.69 were calculated for ACTZ, DCP and QUERC, respectively (Fig. 6A). Correlation coefficients of 0.66 and 0.65 were calculated for NS1619 and ETX, respectively. However, a lower correlation coefficient (0.62–0.59) was calculated between the rSlo0 expression level and the response to drugs. No correlation was found between the percentage of patches containing BK channels that were sensitive to BFT and the expression of e22 normalized to the full-length transcript.
Figure 4. Calcium response and drug response of Ca$^{2+}$-activated K$^+$ channels (BK) of flexor digitorum brevis (FDB) and soleus (Sol) fibers. (A–B) Currents were recorded during voltage steps from 0 mV holding potential, prepulse of −70 mV, to −80 mV and +80 mV (Vm) in excised macropatches with 150 mM KCl on both sides of the membrane patches and in the presence of increasing calcium concentrations in the bath. Upward deflection in the current record indicates outward currents recorded at +30 mV or +80 mV (Vm); downward deflection indicates inward currents recorded at −60 mV (Vm). C, closed channel level; O, open channel level. The currents were leak-subtracted. (A) The represented BK channel current traces of FDB and Sol fibers were obtained by an ensemble average of 16 and 18 sweeps (1 sweep/voltage membrane/patch) from 16 and 18 patches for each FDB and Sol muscle, respectively. Channel currents were recorded in the FDB and Sol fibers using pipettes of 1.9 ± 0.6 MOhm and 2.1 ± 0.4 MOhm resistance, respectively. The Ca$^{2+}$ response of the channels was evaluated at +30 mV (Vm) in the presence of increasing concentration of internal Ca$^{2+}$ ions from 0 M to 1.3 × 10^{-6} M and 10^{-5} M. The recorded currents were then normalized to I_{BKmax} which is the maximal BK current recorded at +80 mV (Vm) in the presence of 10^{-5} M concentration of free Ca$^{2+}$ ions. A maximal BK channel activation of 80% was observed in the FDB fibers in these patches in the presence of 10^{-5} M concentration of Ca$^{2+}$ ions, whereas no more than 15% activation of the BK channel current was observed in Sol fibers in the presence of 10^{-5} M free Ca$^{2+}$ ions. (B) BK channel current response to resveratrol (RESV) (2 × 10^{-4} M) and bendroflumethiazide (BFT) (2 × 10^{-4} M) recorded in fibers from FDB and Sol muscles. Single channel currents were recorded in the FDB and Sol fibers using pipettes of 3.2 MOhm and 3.4 MOhm resistance, respectively. Single channel transitions were observed in the FDB and Sol fibers at +30 mV (Vm) in the presence of 10^{-5} M free Ca$^{2+}$ ions. The N_{Popen} was higher in the Sol fiber as compared with that recorded in the FDB fiber, the number of functional channels in the patches were 3 in the FDB fiber and 5 in the Sol fiber. No difference was observed in the single channel current between the FDB and Sol fibers. The application of RESV and BFT increased the N_{Popen} of the channel without affecting single channel current. In the FDB fiber, BFT was more effective as BK opener than RESV, whereas RESV was more effective than BFT in the Sol fiber.

doi:10.1371/journal.pone.0040235.g004
containing BK channels sensitive to the drugs and the expression level of the Slo27 variant in Sol muscle, with the exception of RESV, which showed a correlation coefficient of 0.9 (Fig. 6B). ETX showed a lower correlation coefficient of 0.65. No significant correlation was found between the expression levels of the Slo27 variant in FDB and Sol muscles and drug responses.

Discussion

Identification of Alpha-subunit Variants in Slow-twitch and Fast-twitch Skeletal Muscle and Absence of Beta Subunits

Analysis of variants of the rat KCNMA1 gene at splice sites N1 and C1-6 revealed the presence of 5 different known variants in both FDB and Sol muscles, such as e17 in C1, e22 and +29 aa in C2 and rSlo27 and rSlo0 in C4, and differences in the distribution of the isoforms were found between muscle phenotypes. Indeed, quantitative RT-PCR experiments showed that e22 and rSlo0 were expressed more highly in fast-twitch than in slow-twitch muscles. However, Slo27 was expressed more highly in slow-twitch than in fast-twitch muscles. The e22 splicing isoform is known to be responsible for increased Ca$^{2+}$ and voltage sensitivity and regulation of BK channels by PKA phosphorylation in cell lines, which may account for the observed differences in Ca$^{2+}$ sensitivity between the muscle phenotypes observed in our experiments [33]. The enhanced Ca$^{2+}$ sensitivity of the BK channel in the fast-twitch muscle can be helpful for coupling fast Ca$^{2+}$ transients, which are characteristic of this muscle phenotype, with the repolarization phase of the action potential, particularly during firing.

The BK channel alpha-subunit was more abundant in slow-twitch than in fast-twitch muscle, which is consistent with the elevated recorded channel currents observed in slow-twitch muscle. It is likely that the Slo27 variant is responsible for the high expression level of BK channels in this muscle phenotype.

Because the properties of BK channels are influenced by the accessory beta-subunits (beta1-4) [48–50], we analyzed the cDNA...
of the four beta-subunits of BK channels in Sol and FDB to determine their presence in rat skeletal muscles. None of the genes observed were amplified by this method, likely excluding their expression in the samples analyzed. In contrast with other tissues in which the beta 1–4 subunits play a significant role in determining the properties of BK channels, the differences in the BK channel populations in the fast-twitch and slow-twitch muscles in our experiments are due to the differential regulation of the expression of each splicing isoform.

Pharmacological Response of BK Channels in Fast-twitch and Slow-twitch Skeletal Muscles

Analysis of drug responses by BK channels showed that BFT, ACTZ, DCP, NS1619 and QUERC were more effective on fast-twitch muscle BK channel subtypes than on slow-twitch muscle BK channel subtypes. The drug actions correlated with the expression level of the e22 and rSlo0 variants, suggesting that these isoforms can be the molecular targets for these drugs. In contrast, RESV was a weak agonist of the fast-twitch BK channel but was the most effective BK channel opener in the slow-twitch fibers. The action of RESV correlated with the expression level of the Slo27 variant in this tissue, suggesting that it may be the molecular target for this drug. The observed action of RESV as a skeletal muscle BK channel opener may help to explain the emerging use of this drug in the treatment of atrophy in human and animals [51].

Several forms of BK channels can be functionally active in fast-twitch and slow-twitch muscles, differing in their composition of the splicing isoforms. A contribution of the e22 in the fast-twitch muscle can be proposed, whereas the Slo27 variant appears to characterize the BK channel of slow-twitch muscle (Fig. 7). It should be stressed that based on the available experimental data, the contribution of the other isoforms to the functional channel properties cannot be excluded.

In conclusion, the observed muscle phenotype-dependent BK channel biophysical and pharmacological properties correlated with variant expression levels in muscles. This finding may have relevance for conditions affecting postural muscles, such as prolonged bed-rest and microgravity conditions, or for diseases affecting fast-twitch muscles, such as periodic paralysis [45–46]. An altered variant ratio associated with pathological conditions may alter BK channel composition, function and drug responses.

Materials and Methods

Muscle Preparations and Single Fiber Isolation

Adult male Wistar rats (260–300 g) (n = 6) were used for experiments. Animal care was performed in accordance to the Guide for the Care and Use of Laboratory Animals by the National Academy of Sciences. The flexor digitorum brevis (FDB) and soleus (Sol) muscles were dissected from the animals under urethane anesthesia (1.2 g/kg). After dissection, the animals were rapidly killed with an overdose of urethane according to the EU Directive 2010/63/EU for animal experiments.

Single muscle fibers were prepared from FDB (n = 6) and Sol muscles (n = 6) by enzymatic dissociation in normal Ringer’s solution. After enzymatic dissociation, the fibers were used for patch-clamp experiments. The contralateral Sol (n = 6) and FDB (n = 6) muscles from the same rats were used for molecular biology experiments.

Preparation of Total RNA and cDNA

Total RNA from rat Soleus and FDB skeletal muscles was extracted using TRIzol Reagent according to the manufacturer’s instructions (Invitrogen). RNA was treated with RNase-free DNase
(Promega), and reverse transcription was performed in 17.5-
microl. reactions containing 1X reverse transcriptase buffer
(Invitrogen), 0.5 mM of each dNTP (Roche), 1 microM random
hexamers (Amersham Biosciences), 10 units of RNasin (Promega),
10 mM DTT (Invitrogen), 4 units of Superscript II Reverse
Transcriptase (Invitrogen–Life Technologies) and 1.5 microg. of
total RNA. Reactions were incubated for 10 min at 25
°C, 50 min
at 42
°C and 15 min at 70
°C, and cDNA products were stored at
−80°C prior to analysis.

Transcript Scanning for Different Splice Variants

Transcript scanning was performed on total cDNA from rat
tissues by PCR amplification of 7 splice sites: 6 at the C-terminus
and one at the N-terminus of the Kcnma1 gene, which codes for
the alpha-subunit of the BK channel. We also determined the
presence of beta-subunits (Kcnmb1-4). The primers used for PCR
reactions are reported in Table 2. PCR amplicons were cloned
directly into the pCR2.1 TOPO vector (Invitrogen) according to
the manufacturer’s instructions. Clones were digested by EcoRI,
characterized by agarose gel electrophoresis and sequenced on
both strands by automated sequencing (BMR Genomics, Padova,
Italy).

TaqMan™ qRT-PCR

Primers and probes for TaqMan™ quantitative real-time PCR
(qRT-PCR) assays specific for each rat splice variant were
designed using Primer Express version 3.0 (Applied Biosystems)
using the available rat sequences for Kcnma1 (NM_031828) and
beta-actin (NM_031144). Fluorescently labeled TaqMan™
probes were synthesized by Applied Biosystems. The probes were
designed to amplify products encompassing each probe-annealing
site as reported in Table 3. To achieve a high level of specificity
and to avoid the detection of genomic DNA, we designed a probe
to span exon–exon junctions for each gene. Total RNA isolated
with TRIzol as described above was quantified using a spectro-
photometer (NanoDrop ND-1000, Thermo Scientific). A total of
400 ng of total RNA was used for reverse transcription. cDNA
synthesis was performed using random hexamers (annealed

![Figure 7. Schematic illustrating BK channel structure and sites of variable splicing in the BK alpha-subunit of slow-twitch soleus (Sol) and fast-twitch flexor digitorum brevis (FDB) skeletal muscles, and the related channel models. Five variants were found in the slow-twitch and fast-twitch skeletal muscles: e17 in C1, +29aa or e22 in C2, and Slo27 or Slo0 in C4 sites. These variants participate in the composition of the tetramers. The variants e22 and Slo27 characterizing the BK channels of the FDB and Sol muscle phenotypes, respectively, are shown. BK channels containing e22 variant are sensitive to bendroflumethiazide (BFT) while those containing Slo27 are sensitive to resveratrol (RESV). doi:10.1371/journal.pone.0040235.g007](image)
The BK channel currents were identified based on their voltage dependence and Ca$^{2+}$ ions. The BK channel currents were measured for each patch in the absence of internal Ca$^{2+}$ ions. The resulting ensemble BK currents were the digital average of 16 sweeps (1 sweep/voltage membrane/patch) and 18 sweeps for each FDB and Sol muscle, respectively. The criteria for including the data in the digital average were based on the stability of the seal, with a maximum noise level of 0.6 pA at 2 kHz. No correction for liquid junction potentials was made, which were estimated to be <1.9 mV under our experimental conditions. The pipette resistance was 2.0±0.2 MOhm (n = 250), while for single channel experiments the pipette resistance was 3.5±0.1 MOhm (n = 16). In inside-out patches, the BK currents were calculated by digital subtraction of the leak currents measured for each patch in the absence of internal Ca$^{2+}$ ions from the maximal open channel currents recorded in the presence of internal 1.3×10^{-6} M and 10^{-5} M concentrations of free Ca$^{2+}$ ions. The resulting ensemble BK currents were the digital average of 16 sweeps (1 sweep/voltage membrane/patch) and 18 sweeps for each FDB and Sol muscle, respectively. The criteria for including the data in the digital average were based on the stability of the seal, with a maximum noise level of 0.6 pA at 2 kHz. No correction for liquid junction potentials was made, which were estimated to be <1.9 mV under our experimental conditions.

The BK channel currents and drug actions were recorded in FDB and Sol muscle fibers during voltage steps using the excised patch-clamp technique in the presence of internal 0 M, 1.3×10^{-6} M, 10^{-5} M concentrations of free Ca$^{2+}$ ions. The drug response was evaluated at +30 mV and −60 mV. The BK channel current was recorded at 20 °C and sampled at 1 kHz (filter = 2 kHz) using an Axopatch-1D amplifier equipped with a CV-4 headstage (Axion Instruments, Foster City, CA). The voltage protocol was as follows: holding potential 0 mV, prepulse of −80 mV and test pulse from −80 mV to +80 mV in 10-mV steps. The BK channel currents were identified based on their voltage dependence and Ca$^{2+}$ response in the excised patch [50]. The currents were leak-subtracted.

The analysis of macropatch current and of the single channel parameters (single channel current, number of channels and open probability) were performed using the pClamp 10 software package (Molecular Device, U.S.A.). The criteria for accepting the data were based on the stability of the seal, with a maximum noise level of 0.6 pA at 2 kHz. No correction for liquid junction potentials was made, which were estimated to be <1.9 mV under our experimental conditions. The percentage channel activation (Effect %) observed with each drug at a fixed concentration was also evaluated as follows:

Effect % = (I BK drug - I BK control/I BK control - I BK max)×100, where Effect % is the percentage current enhancement, I_{BK} max is the maximal BK current recorded at +80 mV (Vm) in the absence of drugs, I_{BK} control is the BK current recorded in the absence of drugs at −60 mV or +30 mV (Vm) and I_{BK} drug is the BK current recorded in the presence of drug at −60 mV or +30 mV (Vm).

The percentage channel activation (Effect %) observed with increasing concentrations of Ca$^{2+}$ ions was evaluated as follows:

Effect % = (I $BK_{Ca^{2+}}$ - I $BK_{Low Ca^{2+}}$/I $BK_{Low Ca^{2+}}$ - I BK_{max})×100, where Effect % is the percentage current enhancement, I_{BK} max is the maximal BK current recorded at +80 mV (Vm) in the presence of 10^{-3} M free Ca$^{2+}$ ions, I_{BK} Low Ca$^{2+}$ is the BK current recorded in the presence of the lower free Ca$^{2+}$ ion concentration at −60 mV or +30 mV (Vm) and I_{BK} high Ca$^{2+}$ is the current recorded in the presence of the higher Ca$^{2+}$ ion concentration at −60 mV or +30 mV (Vm).

The percentage channel activation (Effect %) observed with increasing concentrations of Ca$^{2+}$ ions was evaluated as follows:

Effect % = (I $BK_{Ca^{2+}}$ - I $BK_{Low Ca^{2+}}$/I $BK_{Low Ca^{2+}}$ - I BK_{max})×100, where Effect % is the percentage current enhancement, I_{BK} max is the maximal BK current recorded at +80 mV (Vm) in the presence of 10^{-3} M free Ca$^{2+}$ ions, I_{BK} Low Ca$^{2+}$ is the BK current recorded in the presence of the lower free Ca$^{2+}$ ion concentration at −60 mV or +30 mV (Vm) and I_{BK} high Ca$^{2+}$ is the current recorded in the presence of the higher Ca$^{2+}$ ion concentration at −60 mV or +30 mV (Vm).
maximal BK channel current technically detectable in native tissues. Other conditions such as higher calcium concentration or higher membrane depolarization cause seal instability and patch rupture. Data analysis and plots were also performed using SigmaPlot software (Systat Software, Inc., San Jose, CA). The data were expressed as mean ± S.E. unless otherwise specified. The data were tested to use evaluation differences between means at p<0.05.

References
1. Latorre R, Rohrer A, Abernethy P, Alvarez O (1989) Varieties of calcium-activated potassium channels. Annu Rev Physiol 51: 385–399.
2. McManus OB, Magleby KL (1991) Accounting for the Ca2+-dependent kinetics of single large-conductance Ca2+-activated K+ channels in rat skeletal muscle. J Physiol 435: 739–777.
3. Latorre R, Gervais C, Hidalgo C (1982) Reconstitution in planar lipid bilayers of a Ca2+-dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle. Proc Natl Acad Sci USA 79: 805–809.
4. Reinhart PH, Chung S, Martin BL, Braunig DL, Levtian IB (1991) Modulation of calcium-activated potassium channels from rat brain by protein kinase A and phosphatase 2A. J Neurosci 11(6): 1627–1635.
5. Biefeldt K, Jackson MB (1994) Phosphorylation and dephosphorylation modulate a Ca2+-activated K+ channel in rat peptidergic nerve terminals. J Physiol 472(2): 241–254.
6. Pérez G, Lagrutta A, Adelman JP, Tors L (1994) Reconstitution of expressed K+ channels from Xenopus oocytes to lipid bilayers. Biophys J 66(4): 1022–1027.
7. Cui J, Yang H, Lee US (2009) Molecular mechanisms of BK channel activation.
8. Latorre R, Moreira FJ, Zaelzer C (2010) Allosteric interactions and the molecular nature of the voltage- and Ca2+-activated (BK) channel. J Physiol 588: 3141–3148.
9. Saubier M, Arntz C, Bucurenciu I, Zhao H, Zhou XB, et al. (2005) Elevated blood pressure linked to primary hyperaldosteronism and impaired vasodilation in BK channel-deficient mice. Circ Res 97(1): E53–60.
10. Brenner R, Pérez G, Bone AD, Eckman DM, Kosch JC, et al. (2000) Vasoregulation by the beta 1-subunit of the calcium-activated potassium channel. Nature 407(6806): 0.05.
11. McManus OB, Magleby KL (1991) Accounting for the Ca2+-dependent Ca2+ conductance Ca2+ channels from transverse tubule membranes isolated from rabbit skeletal muscle. Proc Natl Acad Sci USA 79: 805–809.
12. Reinhart PH, Chung S, Martin BL, Braunig DL, Levtian IB (1991) Modulation of calcium-activated potassium channels from rat brain by protein kinase A and phosphatase 2A. J Neurosci 11(6): 1627–1635.
13. Lagrutta A, Shao LR, Halvorsrud R, Borg-Graham L, Storm JF (1999) The role of BK-type calcium activated potassium (BK) channels are involved in expression, movement to the cell surface, and apical localization. Proc Natl Acad Sci U S A 101(35): 12922–12927.
14. Pyatt SJ, Glowatzki E, Trimmer JS, Aldrich RW (2004) Extrasympathetic localization of inactivating calcium-activated potassium channels in mouse inner hair cells. J Neurosci 24(45): 9469–9474.

Acknowledgments
We thank dott. Sara Sebastianelli for technical support during patch-clamp experiments. The manuscript was revised for the grammatical error and language with the help of the American Journal Expert (AJE) service.

Author Contributions
Conceived and designed the experiments: DT RL DCC. Performed the experiments: GC MMD AM. Analyzed the data: GC MMD AM. Contributed reagents/materials/analysis tools: DCC RL. Wrote the paper: DT.
45. Tricarico D, Mele A, Conte Camerino D (2005) Phenotype-dependent functional and pharmacological properties of BK channels in skeletal muscle: effects of microgravity. Neurobiol Dis 20(2): 296–302.
46. Tricarico D, Camerino DC (2011) Recent advances in the pathogenesis and drug action in periodic paralyses and related channelopathies. Front Pharmacol 2(8): 1–8.
47. Matthews E, Portaro S, Ke Q, Sud R, Haworth A, et al. (2011) Acetazolamide efficacy in hypokalemic periodic paralysis and the predictive role of genotype. Neurology 77(22): 1960–1964. Epub 2011 Nov 16.
48. Jang Z, Wallner M, Meera P, Toro L (1999) Human and Rodent maxiK channel beta subunit genes: cloning and characterization. Genomics 55: 57–67.
49. Gribkoff VK, Starrett JE Jr, Dworetzky SI (2001) Maxi-K potassium channels: form, function, and modulation of a class of endogenous regulators of intracellular calcium. Neuroscientist 7(2): 166–177.
50. Orío P, Latorre R (2005) Differential effects of beta1 and beta2 subunits on BK channel activity. J Gen Physiol 125: 393–411.
51. Shadfar S, Couch ME, McKinney KA, Weinstein LJ, Yin X, et al. (2011) Nutr Cancer 63(5): 749–762. Epub 2011 Jun 9.
52. Rogers KL, Fong WF, Redburn J, Griffin JA, Lear LH (2002) Fluorescence detection of plant extracts that affect neuronal voltage-gated Ca2+ channels. Eur J Pharm Sci 15(4): 321–330.
53. Lundquist AL, Manderfield LJ, Vanoye CG, Rogers CS, Donahue BS, et al. (2005) Expression of multiple KCNE genes in human heart may enable variable modulation of IKs. J Mol Cell Cardiol 38(2): 277–287.
54. Tricarico D, Barbieri M, Conte Camerino D (2006) Acetazolamide opens the muscular KCa2+ channel: a novel mechanism of action that may explain the therapeutic effect of the drug in hypokalemic periodic paralysis. Ann Neurol 48: 304–312.
55. Tricarico D, Barbieri M, Mele A, Carbonara G, Conte Camerino D (2004) Carbonic anhydrase inhibitors are specific openers of skeletal muscle BK channel of K+-deficient rats. FASEB J 18: 760–761.