An uncommon intramedullary tumor: Primary medullary cone melanoma

Ricardo Malcata Nogueira1, Luis Santos Cardoso1, Lino Fonseca1, Pedro Branco1, Miguel Correia1, Pedro Roque1, Catarina Araújo2

Departments of 1Neurosurgery and 2Pathological Anatomy, Centro Hospitalar e Universitário de Lisboa Central, Rua José António Serrano, Lisboa, Lisbon, Portugal.

E-mail: *Ricardo Malcata Nogueira - ricardo.jm.nogueira@gmail.com; Luis Santos Cardoso - luiscscardoso@mail.com; Lino Fonseca - dafonsecalino@gmail.com; Pedro Branco - pmbranco@gmail.com; Miguel Correia - miguelmedinacorreia@gmail.com; Pedro Roque - pedro_roque@vodafone.pt; Catarina Araújo - catarina.p.araujo@gmail.com

*Corresponding author: Ricardo Malcata Nogueira, Department of Neurosurgery, Centro Hospitalar Universitário Lisboa Central, R. José António Serrano, Lisbon-1150-199, Lisbon, Portugal. ricardo.jm.nogueira@gmail.com

Received : 13 June 2020
Accepted : 25 June 2020
Published : 18 July 2020

DOI
10.25259/SNI_352_2020

Quick Response Code:

INTRODUCTION

Primary CNS melanoma is rare and accounts for only 1% of all melanomas according to the World Health Organization classification.1,2 Primary intramedullary melanoma are even less frequently encountered, and there are only a few such cases in the literature.3,4

Patients present with symptoms reflecting the level of the intramedullary lesion. Complaints typically include somatic pain, myelopathy/motor deficits, sensory changes/pin levels, and sphincter dysfunction.1,4 They occur most frequently in the thoracic followed by the cervical cord.3 Since they are so rare, the recommended treatment is difficult to define, and the prognosis remains unclear.4

Here, we present a case of an intramedullary primary melanoma in a 68-year-old male who presented with paraparesis and a T10/T11 sensory level who did well following gross total tumor excision.
CASE REPORT

A 68-year-old man presented with lumbar pain of 2 months duration that progressed to paraparesis with sphincter incontinence over the last week.

The neurologic examination confirmed the lower extremity motor strength of 3/5, bilateral Babinski signs, and a relative pin level at T10.

The lumbar CT-scan [Figure 1] showed a hyperdense intramedullary tumor arising from the conus medullaris at the L1 vertebrae level. No MR was done due to the patient's pacemaker device.

Through a D12–L2 laminectomy and midline myelotomy, tumor was excised at the conus medullaris level; it was readily dissected and full resected exhibiting an excellent cleavage plane. It was soft, black, and had an intratumoral hematoma. Intraoperatively, there were no changes in the in the motor evoked potentials or somatosensory evoked potential. Watertight dural closure was achieved, and a laminoplasty was performed.

Postoperatively, the patient partially recovered muscular strength, the pain disappeared and he started a rehabilitation program, but did not regain urinary continence [Figure 2].

Notably, a positron emission tomography (PET)-SCAN, with tumor markers, ophthalmological, and dermatological examinations were performed, but no other primary tumor was identified. Further, primary malignant melanoma was confirmed with histopathology and immunohistochemical (e.g., positive immunoreactivity for S100 protein and Melan A) [Figure 3].

The patient refused radiation therapy and chemotherapy and was lost to follow-up at 3 months.

DISCUSSION

The case presented was remarkable because the melanoma presented as an intramedullary lesion in the conus. Only, 27 similar intramedullary melanoma cases can be found in the literature [Table 1].

Although MR is study of choice, here it could not be done due to the patient’s pacemaker. The CT however showed a hyperdense lesion in the conus, suggestive of hemorrhage. Subsequent surveillance imaging is also recommended looking for recurrence of tumors and/or metastatic disease (e.g., MR, CT, and PET-CT)

Figure 1: (a) Lumbosacral computed tomography showing a central hyperdense image at L1 level suggestive of an intradural lesion occupying almost all the canal with no extension to the foramen and with no bone lesion associated; sagittal plane, (b) pre-operative, coronal plane (c) pre-operative, axial plane.

Figure 2: (a) Lumbosacral computed tomography showing a post-operative laminoplasty and excision of the previous lesion; sagittal plane (b) post-operative, axial plane.
Table 1: Summary of published cases of intramedullary primary melanoma.

Author	Gender	Age	Level	MR	Removal	Adjuvant Treatment	Metastasis	Follow-up	
Hirano y Carton, 1960	M	42	T8–T9	ND	Total	60 Gy	No	6m. Dead	
Bergdal & al, 1972	M	45	T6–T9	ND	Partial	50 Gy	No	3m. Dead	
Hayward, 1976	M	69	Thoracic	ND	Partial	Rt	No	NR	
Larson et al., 1987	M	73	T6–T8	ND	Partial	50 Gy	No	7y. Alive	
	F	63	T9	ND	Partial	60 Gy	No	13y. Dead	
	F	67	T9–T11	ND	Partial	45 Gy	No	NR	
	F	57	C1–C3	ND	Partial	50 Gy	No	30m. Dead	
Magni et al., 1996	M	64	T8	T1 hyperintense, T2 hypointense,	Total	No	Recurrence at 18m	18m. Alive	
				with enhancement Gd					
Francois et al., 1998	M	62	T10	T1 hyperintense, T2 hypointense,	Total	No	Brain	15m. Dead	
				with enhancement Gd					
Salpietro et al., 1998	F	79	T9–T10	T1 hyperintense with irregular	Parcial	44 Gy	Brain	15m. Alive	
				enhancement Gd					
Salpietro et al., 1998	F	67	C3	T1 and T2 hyperintense with	Parcial	Whole-brain and spine Rt	No	12m. Alive	
				enhancement Gd					
Vaquero et al., 1998	F	69	T10–T11	T1 hyperintense, T2 hypointense,	Parcial	50 Gy	No	9m. Alive	
				with hyperintense areas with Gd					
Bidzinski et al., 2000	M	36	C6–C7	T1 and T2 hyperintense	Total	30 Gy	No	48m. Alive	
Farrokh et al., 2001	F	80	T12–L1	T1 hyperintense, T2 hypointense,	Parcial	No	No	9m. Alive	
				with enhancement Gd					
Denaro et al., 2007	M	68	T8–T9	T1 hyperintense, T2 hypointense,	Total	Interferon alpha-2	No	12m. Alive	
				with hyperintense areas with Gd					
Nishihara et al., 2009	M	31	T6	ND	Parcial	Rt 50 Gy, interferon beta, intrathecal	Brain	21y. Dead	
						dacarbazine. Recurrence: Whole-brain Rt			
						30 Gy+15 Gy with interferon beta			
Kim et al., 2010	F	34	T4	T1 hyperintense, T2 hypointense,	Total	No	36m. Alive		
				with enhancement Gd					
Kolasa et al., 2010	F	57	T10	T1 hyperintense, Gd enhancement	Total	Chemotherapy	Recurrence at 13m	13m. Alive	
Perrini et al., 2010	F	81	T10–T11	T1 hyperintense, T2 hypointense,	Total	No	6m. Alive		
				with enhancement Gd					
Liubinas et al, 2010	F	59	T11	T1 hyperintense, T2 hypointense,	Total	36 Gy	7m. Alive		
Fuld et al., 2011	M	62	C2–C3	T1 hyperintense, T2 hypointense,	Total	30 Gy	1m. Alive		
				with hyperintense areas with Gd					
				T2 isoointense with hyperintense					
Trinh et al., 2014	F	75	T11–L1	T1 isoointense with Gd	NR	Rt	NR	NR	
Getinalp et al., 2014	F	47	T9–L1	T1 hyperintense, T2 iso-hypointense,	Total	No	9m. Alive		
				with enhancement Gd					
Wu y Xu, 2016	M	51	Medula-C2	T1 hyperintense, T2 hypointense,	Total	Rt	Brain and recurrence	10m. Dead	
				with enhancement Gd					
Yislenz Narvaez	M	49	T7–T8	T1 hyperintense, T2 hypointese	Parcial	50 Gy	No	20m. Alive	
Martínez et al, 2017	F	47	T9–T10	T1 hyperintense, T2 hypointense,	Total	No	NR	NR	
				with enhancement Gd					
Current case	M	68	L1	No	Total	No	No	3m. Alive	
	F	59	L5	T1 hyperintense, T2 hypointense,	11 partial	18 Rt (0–60 gy)	No	8/28	3m. Alive
		Avg.		with enhancement Gd				Avg 34m	

C: Cervical, F: Female, Gy: Greys, l: Lumbar, M: Male, m: Months, ND: No described, NR: No related, MR: Magnetic resonance, Rt: Radiotherapy, T: Thoracic
As the diagnosis must be pathologically and immunohistologically confirmed, the patient in this study underwent gross total excision; this is preferred over biopsy or partial excision where feasible.[3,7]

Postoperatively, it is imperative to carry out dermatological, ophthalmological, and gastrointestinal examinations, along with a PET scanning to determine whether the intramedullary mass was primary or metastatic.[1,2]

Postoperative radiotherapy and/or chemotherapy are often recommended but there is no, clear evidence regard their efficacy.[7,6]

CONCLUSION

Primary intramedullary spinal melanoma is very rare and unpredictable pathology and surgery remains the first choice of treatment with gross total resection utilizing microsurgical techniques and intraoperative monitoring.[3,8]

Declaration of patient consent

Patient's consent not required as patients identity is not disclosed or compromised.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Chatterjee R, Nascimento FA, Heck KA, Ropper AE, Sabichi AL. Primary spinal cord melanoma-an uncommon entity. Can J Neurol Sci 2019;46:348-50.
2. Iga T, Iwanami A, Funakoshi T, Mikami S, Tsuji O, Nagoshi N, et al. Multifocal primary melanoma of the cervical spinal cord successfully treated by tumorectomy: A case report. Spinal Cord Ser Cases 2018;4:24.
3. Liang W, Yao N, Fang J, Yang J, Xu Y. Clinical features and long-term outcomes of primary spinal malignant melanoma: A single center experience. J Neurooncol 2017;135:513-9.
4. Narváez-Martínez Y, Ossa N, López-Martos R, Cohn-Reinoso C, Castellví-Juan M, Martin-Ferrer S. Intramedullary primary melanoma: Case report and literature review. Neurocirugia 2017;28:190-6.
5. Sharm A, Sinha VD. Primary spinal cord melanoma of intradural extramedullary origin. J Neurosci Rural Pract 2019;10:522-5.
6. Wu L, Xu Y. Primary spinal intramedullary malignant melanoma involving the medulla oblongata. Spine J 2016;16:188-91.
7. Wuerdeman M, Douglass S, Abda RB, Krasnokutsky CM. A rare case of primary spinal cord melanoma. Radiol Case Rep 2018;13:424-6.
8. Zhang M, Liu R, Xiang Y, Mao J, Li G, Ma R, et al. Primary spinal cord melanoma: A case report and a systemic review of overall survival. World Neurosurg 2018;114:408-20.

How to cite this article: Nogueira RM, Cardoso LS, Fonseca L, Branco P, Correia M, Roque P, et al. An uncommon intramedullary tumor: Primary medullary cone melanoma. Surg Neurol Int 2020;11:200.