Abstract We eliminate 38 infinite families of possible principal graphs as part of the
classification of subfactors up to index 5. A number-theoretic result of Calegari-Morrison-
Snyder, generalizing Asaeda-Yasuda, reduces each infinite family to a finite number of
cases. We provide algorithms for computing the effective constants that are required for
this result, and we obtain 28 possible principal graphs. The Ostrik d-number test and an
algebraic integer test reduce this list to 7 graphs in the index range $(4, 5)$ which actually
occur as principal graphs.

AMS Classification 46L37; 18D10

Keywords subfactors, principal graphs, fusion categories, cyclotomic numbers

1 Introduction

This is the fourth and final paper in the classification of subfactors to index 5. This extends
the previous classifications to $3 + \sqrt{3}$ by [Jon83, Ocn88, GdlHJ89, Izu91, Pop93, Pop94,
Haa94, EK98, Bis98, AH99, KO02, AY09, BMPS09]. This paper uses number theoretic
techniques of [dBG91, CG94, ENO05, Ost09, CMS10] to eliminate 38 infinite families of
possible principal graphs.

The following theorem is the main result of this series of papers.

Theorem 1.1 There are exactly ten subfactor planar algebras other than Temperley-
Lieb with index between 4 and 5: the Haagerup planar algebra and its dual [AH99], the
extended Haagerup planar algebra and its dual [BMPS09], the Asaeda-Haagerup planar
algebra and its dual [AH99], the 3311 Goodman-de la Harpe-Jones planar algebra and its
dual [GdlHJ89, Oka91], and Izumi’s self-dual 2221 planar algebra [Izu01] and its complex
conjugate.

Up to this point in this series, we have proved the following.

Theorem 1.2 (From [MS10, MPPS10, IJMS]) Any exception to the above result must
be a translate of one of an explicit finite list of graph pairs (which we call the vines, see
Definition 2.1 and Table A).

The point of this paper is to automate a theorem of Calegari-Morrison-Snyder [CMS10] to
obtain results like those of Bisch [Bis98] and Asaeda-Yasuda [AY09] on a large scale and in
a uniform manner. We apply this machinery to eliminate all 38 vines from [MS10] in the
main theorem below. The relevant notation is explained at the beginning of Subsection 2.1.
Theorem 1.3 Suppose (Γ, v) is a vine from the list in Table A, and $\Gamma_{|\Gamma|+j}$ is the translation of Γ at v by j. If $\Gamma_{|\Gamma|+j}$ is the principal graph of a non-A_∞ subfactor with index in $(4, 5)$, then Γ, j are in the following table (v is always the leftmost vertex). Corresponding subfactors have been constructed for each allowed graph.

#	Vine Γ	Translates	Constructed in
4	Γ_4	$j = 0$	[Izu01]
7	Γ_7	$j = 0$ and 4	[AH99] and [BMPS09]
9	Γ_9	$j = 0$ and 4	[AH99] and [BMPS09]
21	Γ_{21}	$j = 2$	[AH99]
25	Γ_{25}	$j = 2$	[AH99]

As mentioned above, the primary tool for the proof is Theorem 1.0.3 of [CMS10]. They prove that given a vine (Γ, v), one can compute an $N(\Gamma) \in \mathbb{N}$ such that Γ_n is not a principal graph for all $n > N(\Gamma)$, where Γ_n is the translation of Γ at v with n vertices. A similar approach was used in [AY09] to eliminate translates of the Haagerup family (Vines 7 and 9) as possible principal graphs.

The structure of this paper is as follows:

In Section 2, we give the background necessary for this paper. Subsection 2.1 explains how we obtained the list of vines in Table A. In Subsection 2.2, we recall material from [CMS10] used to calculate effective constants to eliminate the vines listed in Table A. Finally, Subsection 2.3 recalls material from [Ost09] on d-numbers.

In Section 3, we give algorithms for explicitly computing $N(\Gamma)$, along with algorithms for the cyclotomic test (Algorithm 3.6) and the Ostrik d-number test (Algorithm 3.7) used to eliminate Γ_n for most $n \leq N(\Gamma)$. Using these algorithms, we prove Theorem 1.3 in Subsection 3.3. Necessary data for the proof is found in Tables A, B, and C.

Bundled with the arXiv source of this article are two Mathematica notebooks, named EliminatingVinesContent.nb and EliminatingVinesCode.nb, which contain all relevant calculations for what follows. These make use of a package called FusionAtlas; see [MS10] for a terse tutorial on its use. The most computationally intensive step in our calculations is determining if a certain equation holds for an nth root of unity for all n less than an explicit, large bound. While each computation can be done by hand, the number of calculations necessitates the use of a computer.

We would like to thank Scott Morrison, Emily Peters, and Noah Snyder for many helpful conversations, for proofreading the manuscript, and for useful programs in the FusionAtlas. We would also like to thank Vaughan Jones for hosting several Bodega Bay Planar Algebra Programming Camps. Both authors would like to acknowledge support from NSF grants DMS 0401734 and DMS 0856316 and from DOD-DARPA grant HR0011-11-1-0001. The second author was also supported by an NSF Graduate Research Fellowship.
2 Background

2.1 Vines

Definition 2.1 A vine is a pair \((\Gamma, v)\) where \(\Gamma\) is a finite, connected, bipartite graph with \(|\Gamma|\) vertices and \(v\) is a vertex of \(\Gamma\).

Note that \([MS10]\) defined a vine as a pair of graphs with dual data. Our definition differs as the obstructions we use in this paper only deal with one graph at a time without dual data.

Definition 2.2 For a vine \((\Gamma, v)\), let \(\Gamma_n\) denote the sequence of graphs obtained by adding a 2-valent tree of length \(n - |\Gamma|\) to \(\Gamma\) at \(v\). When \(\Gamma\) is a principal graph and \(v\) is the initial vertex, then the initial vertex of \(\Gamma_n\) is the vertex at the end of the attached 2-valent tree, i.e., \(\Gamma_n\) is the translation of \(\Gamma\) at \(v\) by \(n - |\Gamma|\). For example, \(\Gamma\) translated by \(j\) at \(v\) is denoted \(\Gamma|\Gamma|+j\).

A vine \((\Gamma, v)\) gives an infinite family \((\Gamma_n)\) of possible principal graphs of subfactors. We say a vine \((\Gamma, v)\) has been eliminated if we can reduce this infinite family to only finitely many possible principal graphs. When we refer to a (numbered) vine from Table A, the distinguished vertex \(v\) is the leftmost vertex.

Example 2.3 Haagerup’s classification of principal graphs of subfactors to index \(3 + \sqrt{3}\) shows that the principal graph pair must be a translate of one of the following pairs of vines:

- Vines 7 and 9,
- Vines 10 and 11, and
- Vines 21 and 25.

Asaeda-Yasuda eliminated Vine 9, and hence the first pair, in \([AY09]\) using number theory. Bisch eliminated Vine 11, and hence the second pair, in \([Bis98]\) by showing the nonexistence of a consistent set of fusion rules. In his classification, Haagerup announced the elimination of the third vine pair. Part two of this series \([MPPS10]\) includes a proof of this result; we also eliminate these vines in Theorem 1.3.

Each of the results mentioned in the above example used different techniques. To uniformly eliminate the vines in Table A, we use results of Calegari-Morrison-Snyder \([CMS10]\).

2.2 Background from Calegari-Morrison-Snyder

By \([dBG91, CG94, ENO05]\), the dimension of any object in a fusion category must be an algebraic integer in a cyclotomic field. The even part of the standard invariant of a finite-depth subfactor \(A \subset B\) is a fusion category; hence the index \([B: A] = \dim(A L^2(B)_A)\) is a cyclotomic integer. By \([Jon86]\), if \(A \subset B\) is finite-depth with principal graph \(\Gamma\), then \([B: A] = \|\Gamma\|^2\), and thus the square of the Frobenius-Perron eigenvalue of \(\Gamma\) is a cyclotomic integer. In fact, more is true; the square of every multiplicity-one eigenvalue of the adjacency matrix of \(\Gamma\) is a cyclotomic integer by Lemma 3.0.7 of \([CMS10]\). Using this result, combined with some number-theoretic techniques \([Cas69, Lox72, GHM09]\), Calegari-Morrison-Snyder obtained the following theorem.
Theorem 2.4 (From [CMS10]) Given a vine (Γ, v) such that Γ_n is not A_n or D_n for $n > |\Gamma|$, there are constants $K(\Gamma)$ and $|R|$ which can be effectively computed directly from (Γ, v) such that Γ_n is not a principal graph whenever
\[n > 4K(\Gamma) + 9|R|. \] (2.1)

This paper provides the machinery for implementing the above theorem on the large scale required for recent classification results. Table A contains a list of 38 vines and the constants required for the application of Theorem 2.4. Table A is obtained from the list V_∞ in Theorem 6.1 of [MS10]. The list V_∞ contains pairs of graphs with dual data; we forget the dual data, uncouple the graphs, remove duplicates and translates, and order the vines by increasing depth.

We use Mathematica to automate the algorithms given in Section 3 to calculate $K(\Gamma)$ and an upper bound R on $|R|$ directly from Γ. Hence Γ_n is not a principal graph whenever n is larger than
\[N(\Gamma) = 4K(\Gamma) + 9R \geq 4K(\Gamma) + 9|R|. \] (2.2)

In practice, we find $\|\Gamma_n\|^2$ is not cyclotomic for most n much smaller than $N(\Gamma)$. This leads to the interesting question of whether the bounds in Equations (2.1) and (2.2) can be improved.

We recall material from [CMS10] which is essential in calculating the constants $K(\Gamma)$ and R from Equation (2.2). The notation used here will be used throughout Section 3.

Let (Γ, v) be a vine such that Γ_n is not A_n or D_n for $n > |\Gamma|$. Let M_n denote the adjacency matrix of Γ_n, and let $P_n \in \mathbb{Z}[x]$ denote the characteristic polynomial of M_n. Note $\deg(P_n) = n$ as Γ_n has n vertices.

Remark 2.5 As Γ_n is bipartite, $r \in \mathbb{R} \setminus \{0\}$ is an eigenvalue of M_n if and only if $-r$ is, in which case they occur with the same multiplicity.

Lemma 2.6 (From [CMS10]) Let $x = t + t^{-1}$, and write $P_n(x) = F_n(t) \in \mathbb{Z}[t, t^{-1}]$.

1. The matrix M_n is symmetric and the roots of $P_n(x)$ are all real.
2. The polynomials P_n satisfy the recurrence
 \[P_n(x) = xP_{n-1}(x) - P_{n-2}(x). \] (2.3)
3. There is a fixed Laurent polynomial $A \in \mathbb{Z}[t, t^{-1}]$ such that
 \[F_n(t)\left(t - t^{-1} \right) = t^n A(t) - t^{-n} A(t^{-1}). \] (2.4)

Remark 2.7 If $A \in \mathbb{Z}[t, t^{-1}]$, then the sequence $[t^n A(t) - t^{-n} A(t^{-1})]_{n \in \mathbb{N}}$ satisfies Recurrence (2.3).

We use the letter λ to refer to a root of $P_n(x)$ and the letter ρ to refer to the corresponding roots of $F_n(t)$, where $\lambda = \rho + \rho^{-1}$.

Lemma 2.8 (From [CMS10]) Let $K(\Gamma) = \sum \rho^4$ such that ρ is a root of F_n for n sufficiently large compared to $\deg(A)$. The constant $K(\Gamma)$ is well defined since the sum of the 4th powers of the roots of F_n depends only on the first four coefficients of F_n, which is independent of n for n sufficiently large.
Algorithm 3.2 computes $K(\Gamma)$ and determines which n are “sufficiently large” in the preceding lemma. We now define R.

Definition 2.9 (From [CMS10]) Let $R = R_1 \cup R_2 \cup R_3$, where the R_i’s are the (multi)sets of roots with multiplicity of $P_n(x)$ given by:

1. R_1 is the roots of the form $\zeta + \zeta^{-1}$, where ζ is a root of unity.
2. R_2 is the set of roots which appear with multiplicity ≥ 2.
3. R_3 is the set of roots equal to $\lambda^2 - 2$ for $\lambda = 1 + 2 \cos(2\pi/7)$ or $2 \cos(\pi/30) + 2 \cos(13\pi/30)$.

Algorithm 3.4 computes R, an upper bound for $|R|$ independent of n. The following definitions and results will be useful for bounding the size of R_2.

Definition 2.10 A polynomial $B \in \mathbb{Z}[t]$ with nonzero constant term is called self-reciprocal if $B(t) = \pm t^{\deg(B)} B(t^{-1})$.

Remark. The minimal polynomial over \mathbb{R} for $r \in \mathbb{C}$ is self-reciprocal when $|r| = 1$.

Lemma 2.11 (From [CMS10]) Factor $A(t) = t^{-s} B(t) C(t)$, where $s \geq 0$, and B, C are polynomials with nonzero constant term such that B is a maximal self-reciprocal polynomial factor of A (so C has no roots on the unit circle). Then there is a $d > s$ such that whenever $n \geq d$,

\[(2(n - s) + \deg(B))|C(t)| - |C'(t)| - |C'(t^{-1})| > 0, \tag{2.5}\]

so every repeated root of F_n on the unit circle is a root of B.

In practice, we calculate this d by increasing n until Inequality (2.5) is satisfied, which we verify numerically. This is only necessary for some vines (see Subsection 3.2), and we compute an upper bound for d for these vines in Table C.

Finally, we will make use of:

Theorem 2.12 (Descartes’ rule of signs) Suppose $A \in \mathbb{R}[t, t^{-1}]$. List the coefficients of A by descending power of t (excluding zeroes), and let $\text{SignChanges}(A)$ be the number of sign changes in the list. Let r be the number of positive roots of A, counted with multiplicity. Then $r \leq \text{SignChanges}(A)$ and $r = \text{SignChanges}(A) \mod 2$.

2.3 Background on d-numbers

The algorithms of Section 3 are not sufficient to eliminate all of the graphs obtained from the vines in Table A. We recall material from [Ost09] to eliminate some exceptional graphs in Subsection 3.3.

Definition 2.13 An algebraic integer α is called a d-number if the following condition holds:

Let $p(x) = x_n + a_1 x_{n-1} + \cdots + a_n$ be the minimal polynomial of α over \mathbb{Q} (so $a_i \in \mathbb{Z}$). Then for any $i = 1, \ldots, n$, the number $(a_i)^n$ is divisible by $(a_n)^i$.

5
Definition 2.14 Given a fusion category \(C \), its \underline{global dimension} is
\[
\sum_{\text{simple } X \in C} \dim_{FP}(X)^2
\]
where \(\dim_{FP} \) is the Frobenius-Perron dimension.

Theorem 2.15 (Corollary 1.3 of [Ost09]) The global dimension of a fusion category is a \(d \)-number.

Algorithm 3.7, the Ostrik \(d \)-number test, uses this theorem as an obstruction to possible principal graphs.

3 Algorithms

3.1 The general case

In this section, we give algorithms for computing \(K(\Gamma) \) and \(R \) for vines. These algorithms rely on basic linear algebra and results from [CMS10, GHM09]. We also explain the cyclotomic test and Ostrik \(d \)-number test, two powerful obstructions for possible principal graphs.

We will use the notation and results of Subsection 2.2. All algorithms will be applied to a fixed vine \((\Gamma, v)\).

Definition 3.1 By Equation (2.4), if \(A \) is written in descending monomial order
\[
A(t) = a_r t^r + \cdots + a_s t^s,
\]
and if \(n > s \geq 0 \), then the analytic part of \((t - t^{-1}) F_n(t)\) is given by \(t^n A(t) \) and the principal part of \((t - t^{-1}) F_n(t)\) is given by \(-t^{-n} A(t^{-1})\). For \(n > s \), we say \((t - t^{-1}) F_n(t)\) is separated, and \(s \) is the \underline{separation constant} for \(\Gamma \).

This separation allows us to calculate \(K(\Gamma) \), as if \(n \geq s \) then \(n \) is “sufficiently large” for Lemma 2.8. We use this to give an algorithm to calculate \(A, K(\Gamma) \) and the separation constant \(s \).

Algorithm 3.2 (Separation)

(1) We begin by computing \(A \):

 (a) Set \(k = |\Gamma| + 1 \).

 (b) Let \(C_k \) be the Laurent polynomial obtained from the analytic part of \(G_k \) by multiplying by \(t^{-k} \). We call \(C_k \) the candidate for \(A \).

 (c) If \(C_k \neq C_{k+1} \) (so \(G_k \) is not yet separated), increase \(k \) by 1 and return to (b).

 (d) Now \(C_k = C_{k+1} \). If \(F_{|\Gamma|+j}(t) \neq t^{|\Gamma|+j} C_k(t) - t^{-|\Gamma|+j} C_k(t^{-1}) \) for \(j = 1 \) or 2, increase \(k \) by 1 and return to (b).

 (e) Now \(C_k = C_{k+1} \) and \(F_{|\Gamma|+j}(t) = t^{|\Gamma|+j} C_k(t) - t^{-|\Gamma|+j} C_k(t^{-1}) \) for \(j = 1 \) and 2, so \(A = C_k \) by Recurrence (2.3) and Remark 2.7.

This process terminates since some \(A \) exists by Lemma 2.6.
(2) Calculate s as in Definition 3.1. Observe that this is the same s as in Lemma 2.11.

(3) Numerically calculate $K(\Gamma) = \sum \rho^4$ such that ρ is a root of F_n for $n = s + 1$. Note that a numerical calculation suffices as $K(\Gamma)$ is an integer.

The algorithm to compute R uses the following lemma, which is based on a lemma from [CMS10].

Lemma 3.3 Suppose $C(t) \in \mathbb{Z}[t]$ is as in Lemma 2.11 (C has no self-reciprocal factors), $\gamma \in \mathbb{N}$, $c = \deg(C)$, and $\zeta_k = e^{\pi i/k}$. Set $H_n(t) := t^{2n-\gamma}C(t) \mp t^cC(t^{-1})$.

1. If $H_n(\zeta_k) = 0$, then $k \leq 2Lc$ where L is the product of primes p less than or equal to $2(\# \text{monomial summands of } C(t))$. Note L is independent of n.
2. $H_n(\zeta_k) = 0$ for some n if and only if $H_m(\zeta_k) = 0$ for some $1 \leq m \leq \hat{k}$ where $\hat{k} = k$ if k is odd and $\hat{k} = k/2$ if k is even.
3. Let $S = \{k : \zeta_k \text{ is a root of some } H_n\}$. The number of roots of unity ζ satisfying $H_n(\zeta) = 0$ is periodic in n with period $\text{LCM}\{\hat{k} | k \in S\}$.

Proof

1. This follows immediately from Theorem 2.1 of [GHM09].

2. Suppose that $H_n(\zeta_k) = 0$. Then $H_m(\zeta_k) = 0$ if and only if k divides $2(n - m)$ if and only if $n = m \mod \hat{k}$.

3. Note that S is finite by (1). The rest follows from (2). □

Algorithm 3.4 Calculate R as follows:

1. Factor $A(t) = t^{-s}B(t)C(t)$ as in Lemma 2.11.

2. Compute an upper bound on d from Lemma 2.11 by finding an n for which Inequality (2.5) holds. This requires human intervention: we numerically graph the function on the left hand side of the inequality (see Section 3.2 and Table C).

3. Set $\alpha = n - s - b + c$ and $\beta = 2(n - s) + b + c$ so that

$$ (t - t^{-1})F_n(t) = t^\alpha B(t) \left(t^{\beta}C(t) \mp t^cC(t^{-1}) \right). $$

4. Solve $B(t) = 0$.
 (a) Let r_1 be the number of complex conjugate pairs of solutions which are roots of unity, as complex conjugates yield the same root of $P_n(x)$.
 (b) Let r_2 be the number complex conjugate pairs of solutions which are repeated roots.
(5) We now bound the number of roots of unity which are zeroes of
\[H_n(t) := t^3 C(t) + t^6 C(t^{-1}) \]
for some \(n \geq s \), but not equal to \(\pm 1 \). We use Lemma 3.3 with \(\gamma = b + c - 2s \).

(a) Compute the \(L \) of Lemma 3.3.

(b) Compute \(S = \{ k \mid \zeta_k \text{ is a root of some } H_n \} \) as follows: for all \(k \leq 2Lc \), check if \(H_n(\zeta_k) = 0 \) for \(3 \leq n \leq k \). In fact, by Remark 10.1.8 of [CMS10], we need only check \(k \) such that \(k \) divides \(mL \) for some \(m \leq 4c \).

(c) Let \(\ell = \text{LCM}\{k \mid k \in S\} \).

(d) For \(i = 1, \ldots, \ell \), let \(r_{3,i} \) be the number of roots of unity which are roots of \(F_i \). Set \(r_3 = \max\{r_{3,i} \mid i = 1, \ldots, \ell\} \).

(6) Set \(r_4 = 2 \text{SignChanges}(A) + 1 \)

(7) Set \(R = r_1 + r_2 + r_3 + r_4 \).

Lemma 3.5 The number \(R \) calculated in Algorithm 3.4 satisfies \(R \geq |R| \) when \(n \geq d > s \).

Proof First, by Lemma 3.3, note that \(r_1 + r_3 \geq |R_1 \setminus \{\pm 1\}| \), where we treat these sets with multiplicity (we remove all occurrences of \(\pm 1 \) from \(R_1 \)).

As \(n \geq d \), Lemma 2.11 assures us that all repeated roots of \(F_n(t) \) on the circle are in fact roots of \(B(t) \), so \(r_2 \) bounds the number of repeated roots of \(P_n(x) \) corresponding to roots of \(F_n(t) \) on the circle.

Suppose now that \(x_0 = t_0 + t_0^{-1} \) is a repeated root of \(P_n(x) \) for \(t_0 \in \mathbb{R} \). Then

1. \(-x_0 \) is a root of \(P_n(x) \) with multiplicity \(m \) by Remark 2.5, and
2. \(t_0, t_0^{-1} \) and \(-t_0, -t_0^{-1} \) are all roots of \(F_n(t) \) with multiplicity \(m \) by the definition of \(F_n(t) \).

Hence to count all repeated roots of \(P_n(x) \) which are of the form \(x_0 = t_0 + t_0^{-1} \) for \(t_0 \in \mathbb{R} \), it suffices to count only the repeated roots of \(F_n(t) \) in \([-1, 1]\). This is equal to the number of positive repeated roots of \(F_n(t) \) plus the multiplicity of \(-1\) as a root of \(F_n(t) \).

We use Descartes’ rule of signs to overcount the positive repeated roots of \(F_n(t) \) along with the exceptional roots \(R_3 \). From Definition 3.1, for all \(n \geq s \)
\[\text{SignChanges}((t - t^{-1})F_n(t)) = 2 \text{SignChanges}(A(t)) + 1, \]
so \(F_n(t) \) has at most \(2 \text{SignChanges}(A) = r_4 - 1 \) repeated positive roots on the real line.

Now there are 3 cases depending on the multiplicity of \(-1\) as a root of \(F_n(t) \), which is equal to the multiplicity of \(-2\) as a root of \(P_n(x) \). However, recall \(\pm 2 \) occur with the same multiplicity for \(P_n(x) \) by Remark 2.5, so \(\pm 1 \) occur with the same multiplicity for \(F_n(t) \).

Case 1: Suppose \(\pm 1 \) are not roots of \(F_n(t) \). Hence \(r_1 + r_3 \geq |R_1| \), and \(r_2 + r_4 \geq |R_2 \cup R_3| \).

Case 2: Suppose \(\pm 1 \) are roots of \(F_n(t) \) with multiplicity \(\geq 1 \). Then \(\pm 1 \) are roots of \(B \) by Lemma 2.11. Hence \(r_1 + r_2 + r_3 + r_4 \geq |R_1 \cup R_2 \cup R_3| \).

8
Case 3: Suppose ± 1 are roots of $F_n(t)$ with multiplicity 1. Then ± 1 is not necessarily a root of B. Recall that $r_4 = 2 \text{SignChanges}(A) + 1$ overcounts the positive real roots of F_n by 1, which accounts for the possibility that -1 is not a root of B. So once again, $r_1 + r_2 + r_3 + r_4 \geq |R_1 \cup R_2 \cup R_3|$.

Hence $\mathcal{R} = r_1 + r_2 + r_3 + r_4 \geq |R_1 \cup R_2 \cup R_3| = |\mathcal{R}|$. \hfill \Box

Remark. Since $\lambda_i^2 - 2 > 3$ for $i = 1, 2$, any possible subfactor with principal graph that could have $\lambda_i^2 - 2$ as a root of $P_n(x)$ must have index greater than 9. Hence $R_3 = \emptyset$ for all vines considered in this paper.

Remark. Note that if A has only one sign change, then we may skip Steps 2, 4b, and 6 in Algorithm 3.4 (see Subsection 3.2), and $\mathcal{R} = r_1 + r_3$.

After computing $K(\Gamma)$ and \mathcal{R}, we set $N(\Gamma) = 4K(\Gamma) + \mathcal{R}$ by Equation (2.2). To eliminate most of the Γ_n for $n \leq N(\Gamma)$, we use the following:

Algorithm 3.6 (Cyclotomic Test) Let α be an algebraic integer and let $M > 0$.

1. Calculate the minimal polynomial $P(x)$ of α.
2. Calculate the list L of the primes $\leq M$ which do not divide the discriminant of $P(x)$.
3. If L is empty,
 a. The algorithm terminates, and α passes the cyclotomic test with upper bound M.
 b. Otherwise, pick the smallest $p \in L$. If $P(x)$ does not have uniform degree irreducible factors mod p,
 i. Then α is not a cyclotomic integer by Theorem 4.6 of [Nar04], and we say α fails the cyclotomic test for prime p.
 ii. Otherwise, replace L with $L \setminus \{p\}$ and return to (3).

Remark. If Γ is a bipartite graph and $\|\Gamma\|^2$ fails the above test, then Γ is not a principal graph by [ENO05, Corollary 8.54]. Some exceptional graphs which are not principal graphs pass the cyclotomic test with $M = 200$ and presumably have cyclotomic square norm (see Tables A and B). Hence the cyclotomic test is not sufficient for the proof of Theorem 1.3, and we need a few alternate obstructions.

Algorithm 3.7 (Ostrik d-number Test) Suppose (Γ, \ast) is a bipartite graph with distinguished even vertex \ast.

1. Calculate the Frobenius-Perron dimensions of Γ.
2. Calculate $\sum_{\text{even } v} \dim(v)^2$, the global even dimension of Γ.
3. If it is not a d-number, then (Γ, \ast) fails the Ostrik d-number test.

Remark. If (Γ, \ast), a bipartite graph with distinguished even vertex, fails the above test, then (Γ, \ast) is not a principal graph by Theorem 2.15. There are examples of graphs which are not principal graphs which pass both the cyclotomic test for $M = 200$ and the Ostrik d-number test, e.g., Vine 32 translated by 1 (see Remark 3.14).
3.2 The Salem case

Algorithm 3.4 will compute R for any vine. In practice, the bound is often bad, and a modest simplification produces a better result with fewer and faster computations. Consider the following:

Example 3.8 Let Γ be Vine 18: \[
\begin{array}{c}
\end{array}
\]. We calculate that

\[
A(t) = -\frac{1}{t^{15}} - \frac{2}{t^{13}} - \frac{4}{t^{11}} - \frac{6}{t^{9}} - \frac{7}{t^{7}} - \frac{6}{t^{5}} - \frac{3}{t^{3}} + t
\]

\[
= t^{-15} (t^2 + 1) \left(t^{14} - t^{12} - 2t^{10} - 4t^8 - 3t^6 - 3t^4 - t^2 - 1 \right)
\]

Hence $C(t) = t^{14} - t^{12} - 2t^{10} - 4t^8 - 3t^6 - 3t^4 - t^2 - 1$, and one calculates (numerically) that the d of Lemma 2.11 is greater than 245.

This example motivates partitioning the vines based on Salem numbers.

Definition 3.9 A real algebraic integer $\alpha > 1$ is called a Salem number if all its Galois conjugates have modulus ≤ 1, and at least one conjugate has modulus 1.

If $A(t) = t - D(t^{-1})$ where $D \in \mathbb{Z}[t]$ is a polynomial with nonnegative coefficients, then for $n > s$, the separation constant, $F_n(t)$ has exactly two sign changes. By Descartes’ rule of signs 2.12, $F_n(t)$ has either 0 or 2 positive roots. We know that $P_n(x)$ has only real roots, so the other roots of $F_n(t)$ lie on the circle. Without loss of generality, $t_n > 1 > t_n^{-1}$, and t_n is often Salem, with some small exceptions. Now all Galois conjugates of t_n are roots of multiplicity one, and all other roots of $F_n(t)$ are roots of unity by the following.

Fact 3.10 Suppose $|r| = 1$, and all of r’s Galois conjugates lie on the circle. Then r is a root of unity.

Thus as long as $n > s$ (and $\|\Gamma_n\|$ is not an exceptional root in R_3), $R = R_1$ as all repeated roots must be roots of unity. This discussion motivates the following definition.

Definition 3.11 A vine is called Salem if $A(t) = t - D(t^{-1})$ where $D \in \mathbb{Z}[t]$ has nonnegative coefficients.

Of the vines in Table A, only 8 are not Salem: 22, 26, 27, 29, 33, 34, 36, and 37.

For the non-Salem vines, a simple numerical calculation in Table C shows that Inequality (2.5) is satisfied if $n \geq 200$. Hence $200 \geq d$ from Lemma 2.11, and since $N(\Gamma) > 200$ for all non-Salem vines, we do not include d in Table A. (In fact, we calculated $70 \geq d$, but the graphs in Table C are much clearer using a worse upper bound.)
3.3 Proof of Theorem 1.3

Theorem 3.12 Suppose Γ is one of the 38 vines in the second column of Table A. Then columns 3 and 4 give the s and $K(\Gamma)$ computed by Algorithm 3.2, column 5 gives R computed by Algorithm 3.4, and column 6 gives $N(\Gamma) = 4K(\Gamma) + 9R$ obtained from Equation (2.2). Thus Γ_n is not a principal graph for all $n > N(\Gamma)$.

For all $j + |\Gamma| \leq N(\Gamma)$, except for those j’s appearing in the final “Exceptions” column, $\Gamma_{|\Gamma|+j}$ fails the cyclotomic test for one of the primes p given in column 6.

Hence starting with the 38 vines appearing in Table A, only 28 exceptional graphs can be principal graphs.

Proposition 3.13 Of the 28 exceptional graphs, the 15 graphs in Table B fail the Ostrik d-number test (Algorithm 3.7). The minimal polynomials of the global even dimensions of the graphs are given in column 3.

Remark 3.14 The exceptional graph given by Vine 32 translated by $j = 1$ is not a principal graph. Morrison and Ostrik have shown that for any fusion ring consistent with the even part of this graph, there is a formal codegree which does not lie in the field generated by the Frobenius-Perron dimensions (this cannot happen by a corollary of Lemma 3.1 in [Ost09]). This proof will appear in a future paper. Note that the norm squared of Vine 32 translated by $j = 1$ is exactly 5, so this argument is not essential to the proof of Theorem 1.3.

Proposition 3.15 Consider Vines 1, 2, and 3 translated by $j = 0$. For these three graphs, the dimension of $V_{3,1}$, the bottom vertex at depth 3, is not an algebraic integer. Thus these graphs are not principal graphs of subfactors (all the Frobenius-Perron dimensions of a multi-fusion ring are graph norms, and hence algebraic integers). The pertinent information is listed in the following table:

Vine #	Minimal polynomial of dim($V_{3,1}$)
1	$3x^4 - 8x^2 + 1$
2	$2x^4 - 18x^2 + 3$
3	$2x^4 - 18x^2 + 3$

Proof of Theorem 1.3 From Theorem 3.12, Propositions 3.13 and 3.15, and Remark 3.14, we have exactly 9 graphs which remain as possible principal graphs, seven of which are listed in Theorem 1.3. The remaining two are Vines 5 and 6 translated by one:

and ,

which are principal graphs of subfactors at index 5 corresponding the the inclusion of groups $A_4 \subset A_5$. □

11
Table of vines and effective constants

#	Vine	s	$K(\Gamma)$	\mathcal{R}	$N(\Gamma)$	p	Exceptions
1	![Vine 1](image1)	6	10	4	76	179,181	$j = 0, 1$
2	![Vine 2](image2)	6	12	3	75	41,43	$j = 0, 1$
3	![Vine 3](image3)	12	10	6	94	41,43	$j = 0, 1$
4	![Vine 4](image4)	10	10	6	94	29,31	$j = 0$
5	![Vine 5](image5)	10	14	7	119	59,61	$j = 0$
6	![Vine 6](image6)	14	10	9	121	59,61	$j = 0$
7	![Vine 7](image7)	8	6	7	87	41,43	$j = 0, 4$
8	![Vine 8](image8)	10	14	5	101	37,41	None
9	![Vine 9](image9)	12	2	9	89	41,43	$j = 0, 4$
10	![Vine 10](image10)	12	6	7	87	59	$j = 0, 2$
11	![Vine 11](image11)	10	4	6	70	59	$j = 0, 2$
12	![Vine 12](image12)	14	10	11	139	73,79	$j = 0$
13	![Vine 13](image13)	12	8	10	122	73,79	$j = 0$
14	![Vine 14](image14)	18	10	9	121	37,41	None
15	![Vine 15](image15)	16	6	11	123	73,79	$j = 0, 2$
16	![Vine 16](image16)	18	10	11	139	103,107	None
17	![Vine 17](image17)	12	10	7	103	43,47	None
18	![Vine 18](image18)	16	10	12	148	59,61	None
19	![Vine 19](image19)	14	8	11	131	59,61	None
20	![Vine 20](image20)	14	8	8	104	5,7	None
21	![Vine 21](image21)	12	6	8	96	37,41	$j = 2$
22	![Vine 22](image22)	16	18	17	225	47,53	None
23	![Vine 23](image23)	16	10	9	121	5,7	None
24	![Vine 24](image24)	14	8	8	104	5,7	None
25	![Vine 25](image25)	18	6	11	123	37,41	$j = 2$
26	![Vine 26](image26)	30	22	24	304	47,53	None
---	---	---	---	---	---	---	
27							
28							
29							
30							
31							
32							
33							
34							
35							
36							
37							
38							
B Table of exceptional graphs which fail the Ostrik d-number test

Vine #	Translation	Minimal polynomial of global even dimension
1	$j = 1$	$x^2 - 32x + 56$
2	$j = 1$	$x^2 - 63x + 105$
3	$j = 1$	$x^2 - 63x + 105$
10	$j = 0$	$x^2 - 65x + 275$
10	$j = 2$	$x^3 - 338x^2 + 2535x - 4225$
11	$j = 0$	$x^2 - 65x + 275$
11	$j = 2$	$x^3 - 338x^2 + 2535x - 4225$
12	$j = 0$	$x^3 - 108x^2 + 1377x - 4617$
13	$j = 0$	$x^3 - 108x^2 + 1377x - 4617$
15	$j = 0$	$5x^3 - 143x^2 + 676x - 845$
15	$j = 2$	$x^2 - 156x + 792$
28	$j = 2$	$x^3 - 684x^2 + 8505x - 26163$
29	$j = 2$	$x^3 - 684x^2 + 8505x - 26163$
30	$j = 2$	$x^3 - 684x^2 + 8505x - 26163$
31	$j = 2$	$x^3 - 684x^2 + 8505x - 26163$
Table of numerical calculations for d’s of non-Salem vines

The second column of the following table is the graph of the left hand side of (2.5):

$$(2(200 - s) + \deg(B))|C(t)| - |C'(t)| - |C'(t^{-1})|$$

for $n = 200$ and $t = e^{i\theta}$ for $0 \leq \theta \leq 2\pi$ on a logarithmic scale. As the graphs are clearly positive, we have $d \leq 200$ as in Lemma 2.11. Note that $200 < N(\Gamma)$ for all non-Salem vines in Table A.

#	Graph	#	Graph
22		33	
26		34	
27		36	
29		37	
References

[AH99] Marta Asaeda and Uffe Haagerup, Exotic subfactors of finite depth with Jones indices $(5 + \sqrt{13})/2$ and $(5 + \sqrt{17})/2$, Comm. Math. Phys. 202 (1999), no. 1, 1–63, MR1686551 DOI:10.1007/s002200050574 arXiv:math.OA/9803044 MR MR1686551 (2000c:46120)

[AY09] Marta Asaeda and Seidai Yasuda, On Haagerup’s list of potential principal graphs of subfactors, Comm. Math. Phys. 286 (2009), no. 3, 1141–1157, MR2472028 DOI:10.1007/s00220-008-0588-0 arXiv:0711.4144. MR MR2472028

[Bis98] Dietmar Bisch, Principal graphs of subfactors with small Jones index, Math. Ann. 311 (1998), no. 2, 223–231, MR1625762 DOI:http://dx.doi.org/10.1007/s002080050185. MR

[BMPS09] Stephen Bigelow, Scott Morrison, Emily Peters, and Noah Snyder, Constructing the extended Haagerup planar algebra, 2009, arXiv:0909.4099, to appear Acta Mathematica.

[Cas69] John W. S. Cassels, On a conjecture of R. M. Robinson about sums of roots of unity, J. Reine Angew. Math. 238 (1969), 112–131, MR0246852. MR MR0246852 (40 #121)

[CG94] Antoine. Coste and Terry Gannon, Remarks on Galois symmetry in rational conformal field theories, Phys. Lett. B 323 (1994), no. 3-4, 316–321, MR1266785 DOI:10.1016/0370-2693(94)91226-2. MR

[CMS10] Frank Calegari, Scott Morrison, and Noah Snyder, Cyclotomic integers, fusion categories, and subfactors, 2010, With an appendix by Victor Ostrik. To appear in Communications in Mathematical Physics. arXiv:1004.0665.

[dBG91] Jan de Boer and Jacob Goeree, Markov traces and II$_1$ factors in conformal field theory, Comm. Math. Phys. 139 (1991), no. 2, 267–304, MR1120140 euclid.cmp/1104203304. MR

[EK98] David E. Evans and Yasuyuki Kawahigashi, Quantum symmetries on operator algebras, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1998, MR1642584. MR 1642584 (99m:46148)

[ENO05] Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), no. 2, 581–642, MR2183279 DOI:10.4007/annals.2005.162.581 arXiv:math.QA/0203060. MR2183279 (2006m:16051)

[GlHJ89] Frederick M. Goodman, Pierre de la Harpe, and Vaughan F. R. Jones, Coxeter graphs and towers of algebras, Mathematical Sciences Research Institute Publications, vol. 14, Springer-Verlag, New York, 1989, MR999799. MR MR999799 (91c:46082)

[GHM09] Benedict H. Gross, Eriko Hironaka, and Curtis T. McMullen, Cyclotomic factors of Coxeter polynomials, J. Number Theory 129 (2009), no. 5, 1034–1043, MR2516970. MR

[Izu91] Masaki Izumi, Application of fusion rules to classification of subfactors, Publ. Res. Inst. Math. Sci. 27 (1991), no. 6, 953–994, MR1145672 DOI:10.2977/prims/1195169007. MR

[Izu01] ________, The structure of sectors associated with Longo-Rehren inclusions. II. Examples, Rev. Math. Phys. 13 (2001), no. 5, 603–674, MR1832764 DOI:10.1142/S0129055X01000818. MR
[Jon83] Vaughan F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1–25, MR696688 DOI:10.1007/BF01389127. MR MR696688 (84d:46097)

[Jon86] Vaughan F. R. Jones, Subfactors of II_1 factors and related topics, Proceedings of the International Congress of Mathematicians (Berkeley), 1986, pp. 939–947.

[KO02] Alexander Kirillov, Jr. and Viktor Ostrik, On a q-analogue of the McKay correspondence and the ADE classification of sl_2 conformal field theories, Adv. Math. 171 (2002), no. 2, 183–227, MR1936496 arXiv:math.QA/0101219 DOI:10.1006/aima.2002.2072. MR1936496 (2003j:17019)

[Lox72] J. H. Loxton, On the maximum modulus of cyclotomic integers, Acta Arith. 22 (1972), 69–85, MR0309896. MR MR0309896 (46 #9000)

[MPPS10] Scott Morrison, David Penneys, Emily Peters, and Noah Snyder, Classification of subfactors of index less than 5, part 2: triple points, 2010, arXiv:1007.2240.

[MS10] Scott Morrison and Noah Snyder, Subfactors of index less than 5, part 1: the principal graph odometer, 2010, arXiv:1007.1730.

[Nar04] Wladyslaw Narkiewicz, Elementary and analytic theory of algebraic numbers, third ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004, MR2078267 (preview at google books). MR 2078267 (2005c:11131)

[Ocn88] Adrian Ocneanu, Quantized groups, string algebras and Galois theory for algebras, Operator algebras and applications, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 136, Cambridge Univ. Press, Cambridge, 1988, MR996454, pp. 119–172. MR MR996454 (91k:46068)

[Oka91] Shingo Okamoto, Invariants for subfactors arising from Coxeter graphs, Current topics in operator algebras (Nara, 1990), World Sci. Publ., River Edge, NJ, 1991, pp. 84–103. MR 1193932 (94c:46127)

[Ost09] Victor Ostrik, On formal codegrees of fusion categories, Math. Research Letters 16 (2009), no. 5, 895–901, arXiv:0810.3242.

[Pop93] Sorin Popa, Markov traces on universal Jones algebras and subfactors of finite index, Invent. Math. 111 (1993), no. 2, 375–405, MR1198815 DOI:10.1007/BF01231293. MR MR1198815 (94c:46128)

[Pop94] ______, Classification of amenable subfactors of type II, Acta Math. 172 (1994), no. 2, 163–255, MR1278111 DOI:10.1007/BF02392646. MR MR1278111 (95f:46105)

This paper is available online at arXiv:1010.3797.