Local Synchronization of Resting-State Dynamics Encodes Gray’s Trait Anxiety

Tim Hahn1*, Thomas Dresler2,3, Martin Pyka4, Karolien Notebaert5, Andreas J. Fallgatter3

1 Department of Cognitive Psychology II, Johann Wolfgang Goethe University, Frankfurt am Main, Germany, 2 Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany, 3 Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany, 4 Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany, 5 Research Center of Marketing and Consumer Science, Katholieke Universiteit Leuven, Leuven, Belgium

Abstract

The Behavioral Inhibition System (BIS) as defined within the Reinforcement Sensitivity Theory (RST) modulates reactions to stimuli indicating aversive events. Gray’s trait Anxiety determines the extent to which stimuli activate the BIS. While studies have identified the amygdala-septo-hippocampal circuit as the key-neural substrate of this system in recent years and measures of resting-state dynamics such as randomness and local synchronization of spontaneous BOLD fluctuations have recently been linked to personality traits, the relation between resting-state dynamics and the BIS remains unexplored. In the present study, we thus examined the local synchronization of spontaneous fMRI BOLD fluctuations as measured by Regional Homogeneity (ReHo) in the hippocampus and the amygdala in twenty-seven healthy subjects. Correlation analyses showed that Gray’s trait Anxiety was significantly associated with mean ReHo in both the amygdala and the hippocampus. Specifically, Gray’s trait Anxiety explained 23% and 17% of resting-state ReHo variance in the left amygdala and the left hippocampus, respectively. In summary, we found individual differences in Gray’s trait Anxiety to be associated with ReHo in areas previously associated with BIS functioning. Specifically, higher ReHo in resting-state neural dynamics corresponded to lower sensitivity to punishment scores both in the amygdala and the hippocampus. These findings corroborate and extend recent findings relating resting-state dynamics and personality while providing first evidence linking properties of resting-state fluctuations to Gray’s BIS.

Introduction

As a theory of personality firmly rooted in neurobiology, Gray’s Reinforcement Sensitivity Theory (RST; [1]) has grown into one of the most influential theories of personality, strongly influencing research in a number of disciplines including psychology, pharmacology, animal research, and neuroscience [2]. The RST postulates behavior to be mediated by the activity of three motivational systems: the Fight-Flight System, the Behavioral Approach System (BAS), and the Behavioral Inhibition System (BIS). The latter is triggered by signals of punishment or non-reward, which then leads to an inhibition of motor-activity and increased levels of arousal and attention (for a partially revised version of the theory, see [3]). Defined to reflect trait sensitivity to punishment, Gray’s trait Anxiety determines the extent to which aversive stimuli activate the BIS [4].

Clinically, heightened trait Anxiety (heightened BIS responsiveness) has been linked to emotional states of anxiety, subjectively experienced as worry and rumination, and a sense of possible danger/loss. Also, a number of mental disorders including depression, anxiety disorders, and psychosomatic illnesses have been associated with extreme BIS responsiveness [2].

To date, only few neuroimaging studies directly shed light on the neural underpinnings of Gray’s trait Anxiety: Barros-Loscertales et al. [5] were able to show that increased grey matter volume in the amygdala and the hippocampus was associated with increased trait sensitivity to punishment scores. Confirming this evidence in large sample, Cherbuin et al. [6] showed an association between a measure of BIS responsiveness and hippocampal volume while failing to find such an association with amygdala volume. Similarly, Hahn et al. [7] showed that variance in functional connectivity between the amygdala and the hippocampus during monetary loss anticipation can in part be attributed to individual differences in Gray’s trait Anxiety. This provides evidence that Gray’s trait Anxiety is associated with the functional dynamics of the amygdala-septo-hippocampal (SHS)-circuit during loss anticipation, which thereby displays a core property of the BIS. Unlike these approaches, further evidence is only indirect, showing higher amygdala and hippocampus activity following fearful faces and aversive pictures in subjects scoring higher on measures such as state or trait anxiety [8–10].

More recently, it has been shown that resting-state randomness is associated with Gray’s Sensitivity to Reward [11]. Similarly, Wei et al. [12] showed an association between Regional Homogeneity (ReHo; [13]) – a measure of local synchronization in resting-state BOLD fluctuations – and personality: Both neuroticism and extraversion traits were negatively correlated with ReHo in a distributed network of brain regions.
While this evidence clearly links resting-state fluctuations to personality traits, resting-state dynamics potentially associated with the BIS have not yet been explored. Here, we therefore investigate associations between Gray’s trait Anxiety and resting-state temporal dynamics of the amygdala-SHS circuit. Specifically, we explore the associations of the BIS with local resting-state synchronization as measured by ReHo in the amygdala and the hippocampus.

Materials and Methods

1. Participants

Twenty-eight healthy subjects participated in the present study. One subject had to be excluded due to excessive head motion (>1.5 mm/degree in any direction). The remaining sample consisted of 14 females and 13 males with a mean age of 25.5 years (SD = 3.38). All were recruited from the local community through advertisements. The participants reported no first-degree relative with a neurologic or mental disorder, 2. had no history of dependence on illicit drugs and alcohol, 3. were currently not taking any psychotropic medication, and 4. had no sensorimotor deficits or other neurological disorders. Written informed consent was obtained after detailed explanation of the study protocol. The study was approved by the Ethics Committee of the University of Würzburg, and all procedures involved were in accordance with the latest version (sixth revision) of the Declaration of Helsinki.

2. Psychometric Testing

All participants completed the Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ; [14]) in its German version (Hewig, J. and Hagemann, D. (2002). Der SPSR-Fragebogen von Torrubia, Avila, Molto und Caseras – unpublished German translation. University of Trier; personal communication). The SPSRQ is a 48-item self-report measure of Gray’s trait Anxiety and impulsivity dimensions. It consists of two scales, representing sensitivity to reward (SR) to measure impulsivity and sensitivity to punishment (SP) to measure anxiety. They are particularly designed to measure Gray’s concepts by linking SR to the BAS and SP to the BIS. The two scales show test-retest reliabilities of 0.87 and 0.89 for the reward and the punishment scale, respectively. In accordance with Gray’s theory, orthogonality of the scales has been confirmed, while good construct validity has also been shown [15].

3. Resting-state fMRI Acquisition

All subjects were scanned for 5 minutes. No specific instructions were given except to relax and hold still. Head movements were minimized by using a cushioned head fixation device. Imaging was performed using a 1.5 T Siemens Magnetom Avanto TM-system MRI scanner (Siemens, Erlangen, Germany) equipped with a standard 12 channel head coil. In a single session, twenty-four 4-mm-thick, interleaved axial slices (in-plane resolution: 3.28 x 3.28 mm) oriented at the AC-PC transverse plane were acquired with a 1 mm interslice gap, using a T2*-sensitive single-shot EPI sequence with following parameters: repetition time (TR; 2000 ms), echo time (TE; 40 ms), flip angle (90°), matrix (64 x 64), field of view (FOV; 210 x 210 mm²), and number of volumes (150). The first six volumes were discarded to account for magnetization saturation effects.

4. fMRI Resting-state Parameters

All analyses were conducted using the REST toolbox [16] with the Data Processing Assistant for Resting-State fMRI (DPARSEFA; V2.1) with default parameters. First resting-state data was slice time corrected and head motion correction was applied. After head-motion correction, the fMRI images were normalized to the Montreal Neurological Institute (MNI) template. After preprocessing, the time series for each voxel was detrended and bandpass-filtered (0.01–0.08 Hz) to reduce low-frequency drift and physiological high frequency respiratory and cardiac noise. Individual ReHo maps were generated by calculating Kendall's coefficient, i.e. concordance of the time series of a given voxel with those of its nearest neighbors (26 voxels) in a voxel-wise analysis. The resulting ReHo maps were then spatially smoothed with a Gaussian kernel of 6 x 6 x 6 mm full-width at half-maximum.

Based on the considerations concerning the BIS outlined above and in accordance with previous work [7], we focus all analyses on the amygdala and the hippocampus. ReHo was calculated for each voxel in the amygdala and the hippocampus. Both regions of interest (ROIs) were defined using voxel masks from the AAL atlas as implemented in SPM [17].

5. Second-level Correlation Analyses

We correlated (Pearson correlation) SP scores with ReHo mean over the amygdala and the hippocampus, respectively. In the additional exploratory voxel-wise whole-brain analysis correlating ReHo at each voxel with the psychometric score, False Discovery Rate (FDR) correction as implemented in SPM5 was applied with an α-level of 5%.

Results

Correlation analyses showed that SP-scores were significantly associated with ReHo in both the amygdala (r = −.48; p < .012) and the hippocampus (r = −.41; p < .035; Figure 1). SP scores explained 23% and 17% of ReHo variance in the amygdala and the hippocampus, respectively. Further analyses considering the hemispheres separately showed similar results for the left (r = −.48; p < .012) and right amygdala (r = −.39; p < .046) and the left hippocampus (r = −.44; p < .022), while revealing a trend for the right hippocampus (r = −.34; p < .087).

ReHo was not significantly associated with SR-scores for either ROI (p > .15). In addition, a whole-brain analysis correlating ReHo at each voxel with the psychometric scores yielded no significant results.

Discussion

In this study, we explored the association between local synchronization of resting-state dynamics as measured by ReHo and Gray’s trait Anxiety as defined by the RST. We found individual differences in Gray’s trait Anxiety to be associated with ReHo in areas previously associated with BIS functioning, namely the amygdala and the hippocampus. Specifically, higher ReHo in resting-state neural dynamics in both regions corresponded to lower sensitivity to punishment scores. To our knowledge, this constitutes the first evidence linking properties of resting-state fluctuations to the BIS.

From these findings, the question arises, how the neurophysiological underpinnings of ReHo are associated with Gray’s trait Anxiety. Recently, it has been speculated that ReHo mirrors the degree of coherence of spontaneous neural activity [18]. Following this line of thought, individuals with higher scores in Gray’s trait Anxiety would show less coherent neural firing during rest than participants with lower scores. While this idea has been articulated previously [11], research directly linking neuronal coherence at rest to personality is missing. Supporting the idea, however, strong
References

1. Gray JA (1982) The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system. Oxford: Oxford University Press.
2. Corr PJ (2008) The Reinforcement Sensitivity Theory of Personality. Cambridge: Cambridge University Press.
3. Gray JA, McNaughton N (2000) The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system. Oxford: Oxford University Press.
4. Gray JA (1991) The neuropsychology of temperament. In: Strelau J, Angleitner A, editors. Explorations in temperament. New York: Plenum. 105–128.
5. Barros-Loscertales A, Meseguer V, Sanjuán A, Belloch V, Parcer MA, et al. (2006) Behavioral Inhibition System activity is associated with increased amygdala and hippocampal gray matter volume: A voxel-based morphometry study. NeuroImage 33: 1011–1015.
6. Cherbuin N, Windsor TD, Anstey KJ, Mallor J, Meslin C, et al. (2008) Hippocampal volume is positively associated with behavioural inhibition (BIS) in a large community-based sample of mid-life adults: the PATH through life study. Social Cognitive Affective Neuroscience 3: 262–269.
7. Hahn T, Dresler T, Phelan MM, Ehls H, Ernst LH, et al. (2010) Functional amygdala-hippocampus connectivity during anticipation of aversive events is associated with Gray's trait “sensitivity to punishment”. Biological psychiatry 68: 459–464.
8. Bishop SJ, Duncan J, Lawrence AD (2004) State anxiety modulation of the amygdala response to unattended threat-related stimuli. Journal of Neuroscience 24: 10364–10368.
9. Edin A, Kleimenhagen KC, Dufman JT, Rogan MT, Hen R, et al. (2004) Individual differences in trait anxiety predict the response of the basolateral amygdala to unexpectedly processed fearful faces. Neuron 44: 1043–1055.
10. Most SB, Chun MM, Johnson MB, Kiehl KA (2006) Attentional modulation of the amygdala varies with personality. NeuroImage 31: 934–944.
11. Hahn T, Dresler T, Ehlers AC, Pyka M, Dieler AC, et al. (2012) Randomness of resting-state brain oscillations encodes Gray’s personality trait. Neuroimage 59: 1842–1845.

12. Wei LQ, Duan XJ, Yang Y, Liao W, Gao Q, et al. (2011) The synchronization of spontaneous BOLD activity predicts extraversion and neuroticism. Brain Research 1419: 66–75.

13. Zang Y, Jiang T, Lu Y, He Y, Tian L. (2004) Regional homogeneity approach to fMRI data analysis. NeuroImage 22: 394–400.

14. Torrubia R, Avila C, Molto J, Caseras X (2003) The Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ) as a measure of Gray’s anxiety and impulsivity dimensions. Personality and Individual Differences 31: 837–862.

15. Sava FA, Sperneac A-M (2006) Sensitivity to reward and sensitivity to punishment rating scales: A validation study on the Romanian population. Personality and Individual differences 41: 1445–1456.

16. Song XW, Dong ZY, Long XY, Li SF, Zuo XN, et al. (2011) REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PloS One 6; e25031.

17. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, et al. (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15: 273–299.

18. Wu T, Long X, Zang Y, Wang L, Hallett M, et al. (2009) Regional homogeneity changes in patients with Parkinson’s disease. Human Brain Mapping 30: 1502–1510.

19. Basar E, Hari R, Lopes da Silva FH, Schurmann M (1997) Brain Alpha activity—new aspects and functional correlates (special issue). International Journal of Psychophysiology 26: 1–482.

20. Basar E (1998) I. Brain Oscillations: Principles and Approaches. Brain Function and Oscillations. Berlin, Heidelberg: Springer.

21. Nierhaus T, Schon T, Becker R, Ritter P, Villringer A (2009) Background and evoked activity and their interaction in the human brain. Magnetic Resonance Imaging 27: 1140–1150.

22. Mennes M, Kelly C, Zuo XN, Di Martino A, Biswal BB, et al. (2010) Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity. NeuroImage 50: 1690–1701.

23. Chu SE, Park CR, Lim SL, Park EH, Lee YH, et al. (2005) EEG and personality dimensions: A consideration based on the brain oscillatory systems. Personality and Individual Differences 39: 669–681.

24. Northoff G, Qin P, Nakao T (2010) Rest-stimulus interaction in the brain: a review. Trends in Neurosciences 33: 277–284.