Presence of RD149 Deletions in *M. tuberculosis* Central Asian Strain1 Isolates Affect Growth and TNFα Induction in THP-1 Monocytes

Akbar Kanji, Zahra Hasan, Mehnaz Tanveer, Raunaq Mahboob, Sana Jafri, Rumina Hasan*

Department of Pathology and Microbiology, Aga Khan University, Karachi, Pakistan

Abstract

Central Asian Strain 1 (CAS1) is the prevalent *Mycobacterium tuberculosis* genogroup in South Asia. CAS1 strains carry deletions in RD149 and RD152 regions. Significance of these deletions is as yet unknown. We compared CAS1 strains with RD149 and concurrent RD149-RD152 deletions with CAS1 strains without deletions and with the laboratory reference strain, *M. tuberculosis* H37Rv for growth and for induction of TNFα, IL6, CCL2 and IL10 in THP-1 cells. Growth of CAS1 strains with deletions was slower in broth (RD149; p = 0.024 and RD149-RD152; p = 0.025) than that of strains without deletions. CAS1 strains with RD149 deletion strains further showed reduced intracellular growth (p = 0.013) in THP-1 cells as compared with strains without deletions, and also as compared with H37Rv (p = 0.007) and with CAS1 RD149-RD152 deletion strains (p = 0.029). All CAS1 strains induced higher levels of TNFα and IL10 secretion in THP-1 cells than H37Rv. Additionally, CAS1 strains with RD149 deletions induced more TNFα secretion than those without deletions (p = 0.013). CAS1 RD149 deletion strains from extrapulmonary sources showed more rapid growth and induced lower levels of TNFα and IL6 secretion in THP-1 cells than isolates from pulmonary sources. This data suggests that presence of RD149 reduces growth and increases the induction of TNFα in host cells by CAS1 strains. Differences observed for extrapulmonary strains may indicate an adaptation which increases potential for dissemination and tropism outside the lung. Overall, we hypothesise that RD149 deletions generate genetic diversity within strains and impact interactions of CAS1 strains with host cells with important clinical consequences.

Introduction

Molecular epidemiological studies have suggested an association between *Mycobacterium tuberculosis* strains and geographical locations [1]. Predominant *M. tuberculosis* clades from the Indian subcontinent include Central Asian strains (CAS) defined by absence of spacers 4–7 and 23–34 [2,3]. Within the CAS strains, CAS1_DEHLL (ST26) has been identified as being the most widespread (39%) in Pakistan [4]. Reasons underlying successful transmission of CAS genogroup strains in South Asia are unknown. Large sequence polymorphisms (LSPs) or regions of difference (RD) are identified as deletions or large sequence polymorphisms in *M. tuberculosis* strains.

Amongst *M. tuberculosis* isolates from Pakistan, deletions in RD149 are reported in 39.8% and concurrent RD149 and RD152 in 18.8% of CAS1 strains [5]. The impact of RD149 and RD152 deletions on *M. tuberculosis* biology is as yet unclear. RD149 region is known to consist of probable phage proteins (Rv1572c-Rv1585c), although the role of phage proteins has not been defined. RD152 region also consists of putative transposases (Rv1756c, Rv1764) along with virulence factor, *plcD* (Rv1755c) [6,7]. Both RD149 and RD152 deletions are also known to be characteristic of Beijing genogroup strains which are prevalent worldwide, thought to be highly virulent [7] and also associated with multi-drug resistance [4,8]. Clinical presentations of tuberculosis have been shown to differ depending on the infective *M. tuberculosis* strain group; Euro-American strains are associated with increased lung consolidation, while the meningitis caused by the East Asian/Beijing lineage was associated with younger adults, more rapid disease progression and fewer leucocytes in the cerebrospinal fluid (CSF) [9].

In vitro studies have shown that virulent *M. tuberculosis* Beijing clinical isolates grow more rapidly than H37Rv in murine and human macrophages as well as in THP-1 cell line model [8,10,11].

M. tuberculosis infection of macrophages has been shown to induce both proinflammatory cytokines; Tumor necrosis factor alpha (TNFα), Interleukin 2 (IL2) and Interleukin 6 (IL6) as well as downregulatory cytokine; Interleukin 10 (IL10) [12]. TNFα is essential for macrophage activation and granuloma formation [13,14]. The release of TNFα in human macrophages infected with *M. tuberculosis* has the dual effect of increasing antimycobacterial activity by activating macrophages and inducing granuloma formation, while excess TNFα results in host cell necrosis and dissemination of mycobacteria [15]. TNFα also increases the expression of chemokine CCL2 (monocyte chemoattrac-tant protein (MCP-1)) by macrophages [16]. CCL2 plays a role in granuloma formation [17] and is reported to contribute...
RD149 Deletions Affect Growth and TNFα Induction

It is known that RD1 encodes for highly antigenic proteins thought to play an important role in immunomodulation of the host by *M. tuberculosis* [24]. These and smaller deletions in *M. tuberculosis* may contribute to adaptation of strains for improved interactions with the host. These include a polymorphism in the *pks 15/1* gene which encodes for a phenol glycolipid whereby the mutation in the glycolipid results in immunosuppression of host responses. A previous study has shown that deletion of *Rv1519* in CH, an outbreak strain belonging to the CAS2 lineage resulted in a higher secretion of immunosuppressive IL10 and IL6, contributing to its persistence in the human population [25].

This study explored the biological relevance of RD149 and of concurrent RD149 and RD152 deletions on CAS1 strains. In *vitro* broth growth of the CAS1 strains with RD149 and concurrent RD149–152 deletions was compared with that of CAS1 strains without deletions and with H37Rv. Intracellular growth of these strains was investigated using the human acute monocytic cell line (THP-1) [26,27,28]. *Mycobacterium*-induced TNFα, IL6, CCL2 and IL10 secretion was also determined.

Materials and Methods

Ethics Statement

Approval for this study was taken from the Ethics Review Committee of the Aga Khan University, Pakistan.

Mycobacterial strain selection

M. tuberculosis isolates used in this study were obtained from diagnostic specimens submitted to the clinical laboratory at the Aga Khan University and stored in the strain bank. All strains were subcultured once on Middlebrook 7H10 agar before being stored in aliquots in glycerol peptone broth (GPB) on beads at −70°C. Central Asian Strain1 (ST26) strains (n = 133) from the strain bank at the Aga Khan University previously screened for RD deletions were included [5]. Of these 53 had RD149 deletions alone and 25 strains showed concurrent RD149 and RD152 deletions [5]. From this latter pool, strains with RD149 (n = 9) and with concurrent RD149 and RD152 (n = 9) were randomly selected for this study along with 3 CAS1 strains without deletions in RD149 or RD152 regions. Each strain culture was established from a fresh aliquot of each stored strain. *M. tuberculosis* H37Rv reference strain obtained from American Type Culture Collection (ATCC) was used as a control.

Growth in broth

Growth in broth was assessed using radiometric methods; Study strains were grown in 7H9 broth medium supplemented by 5% ADC (Difco Laboratories, Detroit, MI, USA). The strains were then inoculated onto Middlebrook 7H10 agar (Becton Dickinson, USA) incubated at 37°C for 4 to 5 days. Growth was monitored by measuring the McFarland (approx cell density is 1.5 × 10^8/ml).

The bacterial suspension was diluted (1:100) to a final concentration of 1.5 × 10^6/ml. 0.1 ml of the final concentration was added to BACTEC 12B medium culture vials (Becton Dickinson, USA) containing 14C-labelled fatty acid substrate and incubated at 37°C for up to 37 days [29,30]. The growth in broth for days 0 to 37 is mentioned in Figure S1. As peak growth was observed at Day 2 for all strains measurements at this interval were used for further analysis.

Intracellular growth

M. tuberculosis were first grown in Middlebrook 7H9 broth medium supplemented by 5% ADC (Difco Laboratories, Detroit, MI, USA) at 37°C to mid-logarithmic phase (OD_560 nanom = 0.5). Aliquots of mycobacteria at a stock concentration of 2 × 10^6 CFU/ml in 7H9 broth medium containing 15% glycerol were stored at −70°C for use in monocyte infection assays as described previously [22].

The THP-1 monocyte cell line was obtained from the ATCC, USA. THP-1 cells grown in RPMI 1640 (Gibco BRL) supplemented with 10% fetal calf serum, 10 mmol/L HEPES and 2 mmol/L glutamine at 37°C in 5% CO_2 [31]. THP-1 cells were plated at (2 × 10^5 cells/ well) 48 well tissue culture plates. The cells were differentiated by addition of 20 ng/ml Phorbol Ester Myristate (PMA, Sigma) and 5 ng/ml recombinant human interferon gamma (rhIFNγ, Endogen) for 24 hrs.

M. tuberculosis inoculum for infection was prepared as described previously [31]. Briefly, THP-1 cells (2 × 10^5/well) infected with *M. tuberculosis* (2 × 10^5 CFU/ml) for 3 h (T0), the supernatants were collected and monolayers washed thoroughly with phosphate buffer saline (PBS) to remove extracellular adherent mycobacteria. For the T0 wells, THP-1 cells were lysed with 100 μl of 0.5% Triton X-100 and lysate plated on 7H10 agar plates for enumeration by colony forming unit (CFUs) counts.

Fresh RPMI medium was added to the remaining wells until harvested. Cell supernatants were collected at days 1 and 3 for cytokine measurements, were filtered using 0.2 μm filters, aliquoted and stored at −80°C until used. Cell lysates were plated for CFUs at 1, 3, 5 and 7 days post-infection. The intracellular growth pattern observed for each strain is depicted in Figure S2. The largest change in growth was observed between days 0 and 3. Therefore, analysis of intracellular growth for each strain was calculated using the ratio of growth at day3/day 0 for each isolate.

Measurement of Cytokines and Chemokines

Cytokines (TNFα, IL6 and IL10) standards and monoclonal antibody pairs for capture and detection obtained from Endogen (Rockford, IL, USA) were used to obtain a dose response curve with a range of detection from 3.9–1000 pg/ml using a sandwich ELISA technique as described previously. Each well was measured in duplicate. Chemokine, (CCL2) standards and monoclonal antibody pairs for capture and detection obtained from R&D Systems (Abingdon, UK) were used to obtain a dose response curve with a range of detection from 6.25–1000 pg/ml for CCL2. All measurements were carried out according to the manufacturer’s instructions and as reported previously [31,32].

Statistical analysis

Non-parametric statistical analysis was performed using the Statistical Package for Social Sciences software (SPSS version 17.0). The analyzed variables for growth indices and CFU/ml were compared using Mann-Whitney U Tests. While the
analyzed variables for cytokine analysis was compared using one way ANOVA (Tukey, Post Hoc analysis) and Kruskal Wallis Test.

Results

Mycobacterium tuberculosis strains were isolated from both male (n = 9) as well as female (n = 12) patients, Table 1. The median ages of male (24.5 y) and female (24 y) patients was comparable, p = 0.36 as analysed using the Mann-Whitney U Test.

CAS1 clinical strains show variable growth in broth

Growth of CAS1 strains with deletions was slower in broth (RD149, p = 0.024; and RD149-RD152, p = 0.025) than that of strains without deletions. Comparison of CAS1 strains with *M. tuberculosis* H37Rv showed that while CAS1 strains without deletion strains grew more rapidly in broth as compared with *M. tuberculosis* H37Rv (p = 0.036), growth of H37Rv was faster than that of CAS1 strains with RD149 deletions (p = 0.04), Figure 1. When assessed individually however, the growth of deletion strains showed variability; One strain with RD149; and 3 strains with concurrent RD149-RD152 deletions grew faster, whereas 6 strains with RD149 and 3 strains with RD149-RD152 grew slower than the laboratory reference strain H37Rv (Figure 2).

![Figure 1. CAS1 strains with RD149 and concurrent RD149-RD152 deletions show slower growth in broth as compared with CAS1 (without deletions). The graph depicts the growth in broth of *M. tuberculosis* strains H37Rv, CAS1 (without deletions, n = 3), CAS1 strains with RD149 (n = 9) and concurrent RD149-RD152 (n = 9) deletions. Growth in broth was calculated as a ratio of growth at day 2/day 0. The box and whiskers plot represent the data between 10th and 90th quartiles, with the horizontal line indicating the median value. * denotes significantly reduced growth (p<0.05) as compared with CAS1 (without deletions). 'p' denotes significantly reduced growth (p<0.05) as compared with H37Rv using the Mann-Whitney U test. Δ denotes deletions. doi:10.1371/journal.pone.0024178.g001](#)

Table 1. Characteristics of *Mycobacterium tuberculosis* CAS1 genotype strains used in the study.

No	ID	Age	Gender	Strain	Source	RD deletion
1	Reference			H37Rv	ATCC	none
2	CAS1a	55	Male	CAS1 (ST26)	Sputum	none
3	CAS1b	16	Female	CAS1 (ST26)	Sputum	none
4	CAS1c	36	Female	CAS1 (ST26)	Sputum	none
5	S1	23	Female	CAS1 (ST26)	Sputum	RD149
6	S2	18	Female	CAS1 (ST26)	Sputum	RD149
7	S5	70	Male	CAS1 (ST26)	Sputum	RD149
8	S6	20	Female	CAS1 (ST26)	Sputum	RD149
9	EP1	27	Male	CAS1 (ST26)	Sputum	RD149
10	EP2	5	Male	CAS1 (ST26)	Sputum	RD149
11	EP4	39	Female	CAS1 (ST26)	Sputum	RD149
12	EP7	29	Male	CAS1 (ST26)	Urine	RD149
13	EP10	25	Female	CAS1 (ST26)	CSF	RD149
14	S3	35	Female	CAS1 (ST26)	Sputum	RD149-RD152
15	S4	20	Male	CAS1 (ST26)	Sputum	RD149-RD152
16	S7	47	Female	CAS1 (ST26)	Sputum	RD149-RD152
17	S8	20	Male	CAS1 (ST26)	Sputum	RD149-RD152
18	S9	18	Female	CAS1 (ST26)	Sputum	RD149-RD152
19	S10	22	Male	CAS1 (ST26)	Sputum	RD149-RD152
20	EP6	17	Female	CAS1 (ST26)	CSF	RD149-RD152
21	EP8	52	Male	CAS1 (ST26)	CSF	RD149-RD152
22	EP9	60	Male	CAS1 (ST26)	CSF	RD149-RD152

Central Asian Strain 1, CAS1 (ST26) as identified by SpolDB4.0. Source of samples: Sputum, Cerebrospinal Fluid (CSF), Urine and American Type Culture Collection.

'None' denotes strains which had no deletions in RD149 and RD152 regions. doi:10.1371/journal.pone.0024178.t001

Increased TNFα and IL10 induction in CAS1 deletion strains

To investigate association between the presence of deletions and the capacity of *M. tuberculosis* strains to elicit host cytokine activation. TNFα, IL6, IL10 and CCL2 secretion by THP-1 cells infected with CAS1 strains was measured. Significantly higher levels of TNFα induction was noted by CAS1 strains; CAS1 without deletions (p = 0.006), strains with RD149 (p = 0.005) and with concurrent RD149 and RD152 (p<0.001) as compared to *M. tuberculosis* H37Rv. Within CAS1 strains though, isolates with RD149 deletions induced significantly higher levels of TNFα as compared to strains without deletions, (p = 0.013), Figure 4A.

In comparison to *M. tuberculosis* H37Rv, CAS1 strains also induced higher levels of IL10; CAS1 without deletions (p = 0.005), strains with RD149 (p = 0.002) and strains with concurrent RD149-RD152 deletions (p<0.001), Figure 4B.

Induction of IL6 and CCL2 by the study strains was investigated. However, no differences were detected between IL6 induction by CAS1 strains and H37Rv, or between strains with and without deletions; IL6 levels induced by the study strains were
as follows: CAS1 (without deletion); 554 pg/ml, CAS1 strains with RD149 deletions; 326 pg/ml, CAS1 strains with concurrent RD149 and RD152 deletions; 542 pg/ml and *M. tuberculosis* H37Rv; 680 pg/ml. Similarly, CCL2 levels were comparable in all the strains tested: CAS1 (without deletion); 1474 pg/ml, CAS1 with RD149 deletions; 1958 pg/ml, CAS1 with concurrent RD149-RD152 deletions; 1958 pg/ml and *M. tuberculosis* H37Rv; 680 pg/ml. Similarly, CCL2 levels were comparable in all the strains tested: CAS1 (without deletion); 1474 pg/ml, CAS1 with RD149 deletions; 1958 pg/ml, CAS1 with concurrent RD149-RD152 deletions; 1958 pg/ml and *M. tuberculosis* H37Rv; 680 pg/ml.

Figure 2. Differential growth of CAS1 strains with RD149 and concurrent RD149-RD152 deletions. The graph depicts the growth in broth of CAS1 strains without deletions (CAS1, n = 3), CAS1 with RD149 deletions (n = 9) and CAS1 strains with concurrent RD149-RD152 deletions (n = 9) as compared with the laboratory strain *M. tuberculosis* H37Rv. The bar graph represents the median and 95% confidence interval (CI) of each strain. ‘*’ denotes significantly reduced growth (p<0.05) as compared with H37Rv. ‘#’ denotes significantly increased growth (p<0.05) as compared with H37Rv using the Mann-Whitney U test. Δ denotes deletions; ND denotes no deletions.

doi:10.1371/journal.pone.0024178.g002

Figure 3. CAS1 strains with RD149 deletions show reduced intracellular growth within THP-1 monocytes. THP-1 (2×10⁵ cells) were infected with *M. tuberculosis* strains (2×10⁵ CFU/ml) and mycobacteria were quantitated at 0 and 3 days. Data is presented as the median of each group as shown by a horizontal bar. ‘*’ denotes significantly reduced growth (p<0.05) as compared with *M. tuberculosis* H37Rv; CAS1 (without deletions) and CAS1 with concurrent RD149-RD152 deletions using Mann-Whitney U test. Δ denotes deletions.

doi:10.1371/journal.pone.0024178.g003
RD152 deletions; 2183.5 pg/ml and *M. tuberculosis* H37Rv; 1270 pg/ml.

Differential intracellular growth of strains from pulmonary and extrapulmonary sources

To investigate whether the source; pulmonary or extrapulmonary had any bearing on strain virulence, growth and cytokine activation in response to strains was compared. No difference was observed in growth rates or activation of host cytokines between pulmonary or extrapulmonary strains of CAS1 or CAS1 with concurrent RD149 and RD152 deletions. In contrast, extrapulmonary strains with RD149 deletions showed increased intracellular growth (p = 0.015) and induced lower levels of TNFα (p = 0.01), CCL2 (p = 0.003) and IL6 (p = 0.008) secretion in THP-1 monocytes as compared with strains from pulmonary sources, Table 2.

Discussion

This study showing that presence of RD149 deletions in *M. tuberculosis* CAS1 strains is associated with reduced growth (in broth and *in vitro* macrophages) and with increase in proinflammatory TNFα suggests a role of RD149 in causing phenotypic diversity within these strains.

Earlier studies on growth characteristics of *M. tuberculosis* strains have hypothesized that faster growth of clinical strains such as Beijing in comparison to the laboratory reference H37Rv may contribute to their success in the establishment of disease [8]. Faster growth in broth seen amongst CAS1 strains without deletions as compared with H37Rv in this study may thus be contributing to the success of these strains. However, the presence of RD149 either singly or concurrent with RD152 appears to influence this advantage.

We found that the optimal time period to study intra-strain growth differences was at 3 days post-stimulation. At this time point, CAS1 strains with RD149 deletions showed reduced intracellular growth in THP-1 macrophages as compared with H37Rv, with CAS1 strains (without deletions) and with CAS1 with concurrent RD149-RD152 deletions. This difference was not present at the later 5 day time point. However, the intracellular growth difference observed at the earlier time point is important as it likely to represent early events in mycobacterium-host cell interactions such as, uptake into the phagosome followed by sorting within endosomal compartments of the host cell [33]. Early events post uptake and entry into the macrophage are key to determining phagosome biogenesis and outcome of the infection. Therefore, variations between strains which affect intracellular

![Figure 4. The CAS1 strains with RD149 and concurrent RD149-RD152 deletions induced increased TNFα secretion in THP-1 monocytes. THP-1 (2 × 10⁵ cells) were infected with *M. tuberculosis* strains (2 × 10⁵ CFU/ml) and cytokine levels in infected cell supernatants tested for TNFα (18 h) and IL10 (72 h) post infection. '*' (p < 0.05) denotes significantly increased cytokine secretion as compared with *M. tuberculosis* H37Rv. '#*' (p < 0.05) denotes significantly increased cytokine secretion as compared with CAS1 (without deletions) using Kruskal-Wallis test. A horizontal bar indicates median values of each group. Graphs depict cytokines induced by H37Rv, CAS1 (without deletions), CAS1 with RD149 and concurrent RD149-RD152 deletions. Δ denotes deletions. A, TNFα and B, IL10. doi:10.1371/journal.pone.0024178.g004](https://www.plosone.org/doi/10.1371/journal.pone.0024178.g004)
growth even in an interim period through retardation of the mycobacterial phagosome may well impact host immune response and therefore the outcome of infection.

All CAS1 strains investigated induced higher TNF-α as well as IL10 levels in THP-1 cells than the laboratory strain H37Rv. Our data is consistent with reports of increased TNF-α and IL10 induction in THP-1 monocytes by clinical strains including the Beijing genotype [8]. The present study shows that all CAS1 strains investigated induced higher TNF-α secretion in TNF-α-dependent apoptosis [35] and pathogen killing, it may also contribute to the dissemination of the bacillus due to TNF-α driven necrosis [36]. It is therefore possible to hypothesize that increased induction of the down-modulatory IL10 together with proinflammatory TNF-α by CAS1 strains may thus contribute to skewing the host immune response towards a down-modulatory phenotype which would facilitate intra-macrophage growth of the strain.

CAS1 strains with RD149 deletions induce lower TNF-α levels as compared to CAS1 strains without deletions. Clinical isolate CDC1551 strain have been shown to induce higher TNF-α responses in monocytes but to persist for shorter periods than the more virulent Beijing strain [37]. Similarly, avirulent Mycobacterium sp. is reported to induce higher TNF-α secretion than the virulent strains [34]. Therefore, the reduced intracellular growth and increased TNF-α secretion of CAS1 strains with RD149 deletions may be suggestive of a decrease in virulence among the deletion strains. CAS1 strains with RD149 deletions induce lower TNF-α levels as compared to CAS1 strains without deletions. Clinical isolate CDC1551 strain have been shown to induce higher TNF-α responses in monocytes but to persist for shorter periods than the more virulent Beijing strain [37]. Similarly, avirulent Mycobacterium sp. is reported to induce higher TNF-α secretion than the virulent strains [34]. Therefore, the reduced intracellular growth and increased TNF-α secretion of CAS1 strains with RD149 deletions may be suggestive of a decrease in virulence among the deletion strains.

Beijing strains have been shown to differ in their ability to induce cytokines in both in vitro and in animal models [22,38]. Differences between Beijing strains have been attributed to variation in the production of lipids including Phenolic glycolipids (PGL); strains with mutations in the pks15/1 gene induce higher levels of cytokine-dependent Th1-type protective immune responses such as TNF-α [7,39]. Recent studies have identified variations in the transcriptome profiles of M. tuberculosis strains from different lineages suggesting, that genetic variations may impact phenotypic patterns of clinical strains [40]. It is likely therefore that the differences observed in responses to CAS1 strains could be due to inter-strain variations perhaps even due to the presence of RD deletions.

RD149 and RD152 are associated with mobile genetic elements e.g., prophage and hot spots for IS6110 insertion, respectively [41]. The Rv 1759c gene (wog2) within RD152 region is a member of the PE family, polymorphic CG-repetitive sequences (PGRS) subfamily of glycine rich proteins which are putative virulence factors for M. tuberculosis [41]. The combined effect of RD149 and RD152 deletions may differ from that of RD149 deletion strains due to difference in strain properties which result from the variable antigenic profile of strains as a result of their differing presentations. This may subsequently affect uptake and intracellular growth of strains hence, the differential outcome of infections with RD149 strains from that of strains with RD149-RD152.

Within CAS1 strains with RD149 deletions, those from extrapulmonary sites grew faster and induced lower levels of TNF-α, CCL2 and IL10 as compared with pulmonary strains. This is consistent with trends from a previous study showing that extrapulmonary M. tuberculosis strains grow faster and induce less TNF-α secretion in human monocyte derived macrophages [42].

To date, there is little data on the role of RD149 and RD152 deletions in either the virulence or the epidemiology of TB. The current study comparing clinical strains with and without RD deletions suggests that observed differences in growth and host cytokine modulation are associated with deletions in RD149. We hypothesize that the variations observed in the virulence patterns of M. tuberculosis clinical isolates may be affected by the acquisition of RD149 deletions and may further be dependent on the location of the deletions on the bacterial chromosome. This is important since the data suggests that these deletions may have an impact on pathogenesis and therefore on clinical outcome of TB infection.

Supporting Information

Table 2. Comparison of growth characteristics and cytokine activation of CAS1 strains from pulmonary and extrapulmonary sources with RD149 and concurrent RD149-RD152 deletions.

Groups	Strains with RD149 deletions	Strains with concurrent RD149-RD152 deletions				
Growth in broth[^1]	Pul(n = 4)	Epul(n = 5)	Pvalue	Pul(n = 6)	Epul(n = 3)	Pvalue
1.56	1.1	0.373	1.82	1.26	0.201	
Growth in THP-1 cells[^2]	1.31	1.58	0.015[^3]	1.6	1.597	0.19
TNF-α (pg/ml)	4153	3164	0.01[^7]	3092	3008	0.767
CCL2 (pg/ml)	2489.5	1306	0.003[^3]	2250	1392	0.153
IL6 (pg/ml)	620.5	314	0.008[^4]	663.5	450	0.051
IL10 (pg/ml)	10.82	14.33	0.643	18.1	36	1.00

CAS1: Central Asian Strain 1 (ST26); Pul (pulmonary source); Epul (extrapulmonary source).

[^1]: denotes a significant difference between strains with deletions when compared between median values of Pul and Epul, p<0.05 using Mann-Whitney U test.

[^2]: denotes a growth ratio of strain calculated as growth at day 2/ initial growth at day 0.

[^3]: denotes intracellular growth calculated as CFU/ml at day 3/CFU/ml at day 0.

doi:10.1371/journal.pone.0024178.t002
at days: 0, 2, 7, 12, 17, 22, 27, 32 and 37. Data shown is the mean of two independent experiments with 'y' error bars indicating standard deviation is illustrated in Figure S1. All experiments were performed in triplicate and the data presented is the mean of 3 experiments. (TIF)

Figure S2 Intracellular growth of M. tuberculosis growth in THP-1 monocytes. The THP-1 cells (2 x 10^5 cells/well) were infected with M. tuberculosis H37Rv at (2 x 10^6) CFU/ml and cultured for up to 7 days. Graph depicts mycobacterial numbers harvested from cells upon lysis of infected mononuclears at 0, 1, 3 and 5 days post infection. The intracellular growth (log10) was measured for H37Rv, CAS1 strains (without deletions), CAS1 strains: S1, S2, S3, S6, EP1, EP2, EP4, EP7 and EP10 with RD149 deletions and CAS1 strains: S3, S4, S7, S8, S9, S10, EP6, EP8 and EP9 with concurrent RD149-RD152 deletions at days 0, 1, 3 and 5. Data shown is the mean of three independent experiments with 'y' error bars indicating standard deviation is illustrated in Figure S2. All experiments were performed in triplicate and the data presented is the mean of 3 experiments. (TIF)

Acknowledgments

We are grateful to Dr. Rabia Hussain from Department of Pathology and Microbiology, AKU, Pakistan for advice at the initial stage of this work, Mr. Iqbal Azam, Community Health Sciences, AKU, and Pakistan for statistical support. We thank the faculty and staff of the Clinical Microbiology, especially Mr. Tanveer Ahsan, Mr. Khalid Wahab, Ms. Muniba Islam and Ms. Musarat Ashraf and Juma Research Laboratories, of the Aga Khan University Hospital, Karachi for their support in this study.

Author Contributions

Conceived and designed the experiments: AK ZH RH. Performed the experiments: AK RM SJ. Analyzed the data: AK ZH. Contributed reagents/materials/analysis tools: AK MT RM SJ. Wrote the paper: AK ZH RH.

References

1. Sola C, Filliol I, Gutierrez MC, Mokrousov I, Vincent V, et al. (2001) Spoligotype database of Mycobacterium tuberculosis: bibliographic distribution of shared types and epidemiologic and phylogenetic perspectives. Emerg Infect Dis 7: 390–396.

2. Banu S, Gordon SV, Palmer S, Islam MR, Ahmed S, et al. (2004) Genotypic analysis of Mycobacterium tuberculosis in Bangladesh and prevalence of the Beijing strain. J Clin Microbiol 42: 674–682.

3. Goyal M, Saunders NA, van Embden JD, Young DB, Shaw RJ (1997) Differentiation of Mycobacterium tuberculosis isolates by spoligotyping and IS6110 restriction fragment length polymorphism. J Clin Microbiol 35: 647–651.

4. Tanveer M, Hasan Z, Siddiqui AR, Ali A, Kanji A, et al. (2008) Genotyping and drug resistance patterns of M. tuberculosis strains in Pakistan. BMC Infect Dis 8: 171.

5. Kanji A, Hasan Z, Tanveer M, Ali A, Hussain R, et al. (2011) Occurrence of RD149 and RD152 deletions in M. tuberculosis strains from Pakistan. Journal of Infection 75: 379–385.

6. Lasunskaia E, Ribeiro SC, Manicheva O, Gomes LL, Suffys PN, et al. Emerging mycobacterial resistance to tuberculosis treatment. J Clin Microbiol 42: 674–682.

7. Monahan EM, Betts J, Banerjee DK, Butcher PD (2001) Differential expression of mycobacterial proteins following phagocytosis by macrophages. Microbiology 147: 459–471.

8. Monahan EM, Betts J, Banerjee DK, Butcher PD (2001) A deletion defining a common Asian lineage of Mycobacterium tuberculosis associates with immune subversion. Proc Natl Acad Sci U S A 103: 15584–15589.

9. Tanveer M, Hasan Z, Kanji A, Hussain R (2006) M. leprae inhibits apoptosis in infected alveolar macrophages. J Immunol 167: 799–806.

10. Wong KC, Leong WM, Law HK, Ip KA, Lam JT, et al. (2007) Molecular characterization of clinical isolates of Mycobacterium tuberculosis and their association with phenotypic virulence in human macrophages. Clin Vaccine Immunol 14: 1279–1284.

11. Giacomini E, Iora E, Ferroni L, Mirtinien M, Fattorini L, et al. (2001) Infection of macrophages and dendritic cells with Mycobacterium tuberculosis induces a differential cytokine gene expression that modulates T cell response. J Immunol 166: 7033–7041.

12. Aarestrup FM, Sampaio EP, de Moraes MO, Albuquerque EC, Castro AP, et al. (2000) Experimental Mycobacterium leprae infection in BALB/c mice: effect of Mycobacterium tuberculosis genotype and the clinical phenotype of Mycobacterium tuberculosis. J Clin Microbiol 46: 1363–1368.

13. Thwaites G, Caws M, Chau TT, Daza A, Lan NT, et al. (2008) Relationship between Mycobacterium tuberculosis genotype and the clinical phenotype of mycobacterial infection. Infect Dis 7: 390–396.

14. Bean AG, Roach DR, Briscoe H, France MP, Korner H, et al. (1999) Structural and cytokine profiles of Mycobacterium tuberculosis strains with different transmission dynamics. J Infect Dis 191: 453–460.

15. Mootoo A, Stylianou E, Arias MA, Reljic R (2009) TNF-alpha in tuberculosis: a cytokine with a split personality. Inflamm Allergy Drug Targets 8: 53–62.

16. Reddy MV, Andersen B, Gangadharam PR (1994) Rapid radiometric (BACTEC) method. Tuber Lung Dis 75: 127–131.

17. Zhang M, Gong J, Yang Z, Saunter B, Cave MD, et al. (1999) Enhanced capacity of a widespread strain of Mycobacterium tuberculosis to grow in human macrophages. J Infect Dis 179: 1213–1217.

18. Tanveer M, Hasan Z, Sa A, Lan NT, et al. (2008) Relationship between Mycobacterium tuberculosis genotype and the clinical phenotype of Mycobacterium tuberculosis isolates. Infect Immun 76: 674–682.

19. Jamil B, Shahid F, Hasan Z, Nasir N, Razzazi T, et al. (2007) Interferon gamma/IL10 ratio defines the disease severity in pulmonary and extra pulmonary tuberculosis. Tuberculosis (Edinb) 87: 279–287.

20. Murray PJ, Young RA (1999) Increased antimycobacterial immunity in interleukin-10-deficient mice. Infect Immun 67: 3087–3095.

21. Zhang M, Gong J, Yang Z, Saunter B, Cave MD, et al. (1999) Enhanced capacity of a widespread strain of Mycobacterium tuberculosis to grow in human macrophages. J Infect Dis 179: 1213–1217.

22. Theus SA, Cave MD, Eisenach KD (2004) Activated THP-1 cells: an attractive model for the assessment of intracellular growth rates of Mycobacterium tuberculosis isolates. Infect Immun 72: 1169–1173.

23. Theus SA, Cave MD, Eisenach KD (2004) Activated THP-1 cells: an attractive model for the assessment of intracellular growth rates of Mycobacterium tuberculosis isolates. Infect Immun 72: 1169–1173.

24. Warren RM, Sampson SL, Richardson M, Van Der Spuy GD, Lombard CJ, et al. (2000) Mapping of IS6110 flanking regions in clinical isolates of Mycobacterium tuberculosis demonstrates genome plasticity. Mol Microbiol 37: 1405–1416.

25. Newton SM, Smith RJ, Wilkinson KA, Nicol MP, Garton JN, et al. (2006) A deletion defining a common Asian lineage of Mycobacterium tuberculosis associates with immune subversion. Proc Natl Acad Sci U S A 103: 15584–15589.

26. Monahan EM, Betts J, Banerjee DK, Butcher PD (2001) Differential expression of mycobacterial proteins following phagocytosis by macrophages. Microbiology 147: 459–471.

27. Reddy MV, Andersen B, Gangadharam PR (1994) Rapid assessment of mycobacterial growth inside macrophages and mice, using the radiometric (BACTEC) method. Tuberc Lung Dis 75: 127–131.

28. Tanveer M, Hasan Z, Kanji A, Hussain R, Hasan R (2009) Reduced TNF-alpha induction in developing countries 5: 106–113.

29. Newton SM, Smith RJ, Wilkinson KA, Nicol MP, Garton JN, et al. (2006) A deletion defining a common Asian lineage of Mycobacterium tuberculosis associates with immune subversion. Proc Natl Acad Sci U S A 103: 15584–15589.

30. Monahan EM, Betts J, Banerjee DK, Butcher PD (2001) Differential expression of mycobacterial proteins following phagocytosis by macrophages. Microbiology 147: 459–471.

31. Tanveer M, Hasan Z, Sa A, Lan NT, et al. (2008) Relationship between Mycobacterium tuberculosis genotype and the clinical phenotype of Mycobacterium tuberculosis. J Clin Microbiol 46: 1363–1368.

32. Hasan Z, Ashraf M, Tayyebi A, Hussain R (2009) Reduced TNF-alpha induction in developing countries 5: 106–113.

33. Tanveer M, Hasan Z, Sa A, Lan NT, et al. (2008) Relationship between Mycobacterium tuberculosis genotype and the clinical phenotype of Mycobacterium tuberculosis. J Clin Microbiol 46: 1363–1368.

34. Newton SM, Smith RJ, Wilkinson KA, Nicol MP, Garton JN, et al. (2006) A deletion defining a common Asian lineage of Mycobacterium tuberculosis associates with immune subversion. Proc Natl Acad Sci U S A 103: 15584–15589.

35. Keane J, Remold HG, Kornfeld H (2000) Virulent Mycobacterium tuberculosis evade apoptosis of infected alveolar macrophages. J Immunol 164: 2627–2630.
36. Behar SM, Divangahi M, Remold HG. Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy? Nat Rev Microbiol 8: 668–674.
37. Manca C, Tsenova I, Barry CE, 3rd, Bergold A, Freeman S, et al. (1999) Mycobacterium tuberculosis CDC1551 induces a more vigorous host response in vivo and in vitro, but is not more virulent than other clinical isolates. J Immunol 162: 6740–6746.
38. Theus S, Eisenach K, Fomukong N, Silver RF, Cave MD (2007) Beijing family Mycobacterium tuberculosis strains differ in their intracellular growth in THP-1 macrophages. Int J Tuberc Lung Dis 11: 1087–1093.
39. Constant P, Perez E, Malaga W, Lanelle MA, Saurel O, et al. (2002) Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. J Biol Chem 277: 38148–38158.
40. Homolka S, Niermann S, Russell DG, Rohde KH (2010) Functional genetic diversity among Mycobacterium tuberculosis complex clinical isolates: delineation of conserved core and lineage-specific transcriptomes during intracellular survival. PLoS Pathog 6: e1000988.
41. Espitia C, Laclette JP, Mondragon-Palomino M, Amador A, Campuzano J, et al. (1999) The PE-PGRS glycine-rich proteins of Mycobacterium tuberculosis: a new family of fibronectin-binding proteins? Microbiology 145((Pt 12)): 3487–3495.
42. Garcia de Viedma D, Lorenzo G, Cardona PJ, Rodriguez NA, Gordillo S, et al. (2005) Association between the infectivity of Mycobacterium tuberculosis strains and their efficiency for extrarrespiratory infection. J Infect Dis 192: 2059–2065.