Structural-parametrical Design Method of Adaptive Observers for Nonlinear Systems

Nikolay Karabutov
Moscow Technological University (MIREA), Moscow, Russia
E-mail: kn22@yandex.ru, nik.karabutov@gmail.com

Received: 02 July 2017; Accepted: 11 September 2017; Published: 08 February 2018

Abstract—The structural-parametrical method for design of adaptive observers (AO) for nonlinear dynamic systems under uncertainty is proposed. The design of AO is consisting of two stages. The structural stage allowed identifying a class of nonlinearity and its structural parameters. The solution of this task is based on an estimation of the system structural identifiability (SI). The method and criteria of the system structural identifiability are proposed. Effect of an input on the SI is showed. We believe that the excitation constancy condition is satisfied for system variables. Requirements to the input at stages of structural and parametrical design of AO differ. The parametrical design stage AO uses the results obtained at the first stage of the adaptive observer construction. Two cases of the structural information application are considered. The main attention is focused on the case of the insufficient structural information. Adaptive algorithms for tuning of parameters AO are proposed. The uncertainty estimation procedure is proposed. Stability of the adaptive system is proved. Simulation results confirmed the performance of the proposed approach.

Index Terms—Adaptive observer, Structural identifiability, Nonlinear system, Lyapunov vector function, Framework, Saturation.

I. INTRODUCTION

Design of adaptive observers is one of the rapidly developing areas of control theory. The basis of theory AO for the linear class of dynamic systems has been obtained an end of past century [1-5]. The first direction [1-5] is based on reduction of the system to a special identification representation with use of auxiliary variables in space “input-output” (non-canonical identification form). Results obtained in [1-5] are the basis for the development and generalization on the theory to new system classes. Studies in this area continue. In particular, design methods of AO are generalized on time-varying system class. Many works give to generalization of obtained results on nonlinear systems. First results on design of AO for nonlinear systems were obtained in [6]. The observer canonical form for nonlinear time-varying systems is proposed. The structure of the system nonlinear part is necessary known and depends on a set of unknown parameters. The adaptive observer application for the solution of different tasks is shown. Further development of the canonical form on the nonlinear case is given in [7, 8]. Application results obtained in [7] are given in [9]. Three adaptive nonlinear output-feedback schemes are presented in [9]. The first scheme employs the tuning functions design. The other two employ a novel estimation-based design consisting of a strengthened controller-observer pair and observer-based and swapping-based identifiers. Nonlinearities are smooth and known. The method of Lyapunov functions is applied to design of adaptive algorithms. Indirect adaptive control [10] is used to regulating system design of saturation rate. The stability of the adaptive system is proved. The adaptive gradient algorithm is applied to the tuning of an unknown parameter vector. Application of the adaptive observer is given in [11] for the control a linear system with a nonlinear parameterization of the saturation.

The design method AO for a nonlinear system based on applications B -splines is proposed in [12]. It is supposed that the nonlinear part depends on unknown constant parameters. It is showed that the proposed approach allows reducing the number of auxiliary filters. Robust design AO under the influence of disturbances and modelling errors is considered in [13]. The variation domain for system parameters is known. The structure and parameters of the nonlinear part are also known. Nonlinearity linearization of the system is fulfilled and the projective algorithm is proposed for tuning of unknown parameters.

The second direction of AO design is based on the Kalman filter theory and Luenberger structure. This direction is widely applied at design AO for nonlinear dynamic systems [14-17]. Paper [14] represents design method AO in the Luenberger canonical form for fault estimate in nonlinear systems. The nonlinearity is known and satisfies the Lipschitz condition. The fault is described by an unknown nonlinear function which is approximated on the class of known functions. Application of the extended Kalman filter with adaptive gain was considered in [15-17]. The system nonlinear part is smooth and satisfies the Lipschitz condition. The nonlinearity structure is known. Convergence estimations of adaptive algorithms are obtained. Application of neural networks (NN) for the design of AO for the nonlinear object under restrictions is considered in [18]. NN realizes the linear approximation of the system nonlinear part.
Effect of uncertainty in measurements is researched. AO in the Kalman filter form is proposed in [20]. Adaptive algorithms for filter parameters tuning are obtained as the solution of linear matrix inequalities problem. The form of nonlinearities in the system is known and they satisfy the Lipschitz condition.

So, adaptive observers are widely applied to the solution of different problems. The nonlinearity in most cases is smooth and satisfies the Lipschitz condition. The nonlinearity structure is, as a rule, supposed known. If the nonlinearity form is unknown, then it is approximated on the specified class of functions. But the systems class is for which the a priori information is incomplete or is unknown. Application of approaches considered above demands fulfillment of labor-consuming studies. The design AO is associated with the structural identifiability (SI) of nonlinear systems. This problem was formulated in [21] and obtained the generalization in [22]. SI allows making decisions on a possibility of nonlinearity identification on the basis of the available information. Studies will show that requirements to parametrical and structural identification significantly differ. This problem was not studied. Identification approach is one of the main in these conditions. But successful application of the approach depends on structural identification results.

This paper contains the solution of specified problems. We propose the structural-parametrical method for design of the adaptive observer for nonlinear dynamic systems under uncertainty. AO has the canonical form proposed in [4, 6].

The paper has the following structure. In the section II we give to problem statement. Section III contains the structural approach statement to AO design. The main attention is give to system structural identifiability estimation on the basis of virtual framework analysis. The method and criteria for estimation of the structural identifiability are proposed. We consider the case of one-valued nonlinearities. The method for estimation of a class and parameters of the nonlinearity is proposed. It is based on analysis of virtual frameworks S_v and sector sets [23]. Structural stage results are applied at the design of adaptive algorithms for AO (section IV). Information obtained at structural synthesis stage can be used in two cases. It defines the adaptive observer structure. The case 1 correspond the complete information about the nonlinearity. The Lyapunov functions method is applied to tuning algorithms synthesis of AO parameters. The case 2 correspond incomplete or approximate information about the nonlinearity. Uncertainty appearance in AO is the consequence of structural information incompleteness. The uncertainty estimation procedure based on the analysis of the current information is proposed. The stability observation system analysis is stated in the section V. Simulation results are presented in section VI. The conclusion contains inferences and discussion of the obtained results. The system adaptive observation stability proof is given in the appendix.

II. PROBLEM STATEMENT

Consider system

$$
\dot{\bar{x}} = \lambda \bar{x} + \bar{a}_\varphi + \bar{b}_r,r, \\
y = C^T \bar{x},
$$

where $\bar{x} \in R^n$ is state vector; $r \in R$ is input; $y \in R$ is output; $\varphi(y) \in R$ is nonlinear function; $\bar{A} \in R^{m \times m}$ is Frobenius matrix

$$
\bar{A} = \begin{bmatrix} 0 & I_{m-1} \\ -\bar{A}^{-1} & 0 \end{bmatrix}.
$$

$\bar{A}_v \in R^n$ is the vector of unknown parameters belonging to a limited area $G_v; \bar{A}_v \in R^n$. $\bar{A}_v = [0, \ldots, 0, \bar{a}_\varphi]^T$.

$\bar{b}_r \in R^n, \bar{b}_r = [0, \ldots, 0, \bar{b}_r]^T$ are unknown parameter vector; $I_{m-1} \in R^{(m-1) \times (m-1)}$ is identity matrix; $C \in R^m$, $C = [1 0 \ldots 0]^T$. \bar{A} is Hurwitz matrix.

Assumption 1. The input $r(t)$ is constantly excited and limited.

Assumption 2. Function $\varphi(y)$ is smooth, single-valued, and

$$
\varphi \in F_\varphi = \left\{ \kappa_1 \zeta^2 \leq \varphi(\xi) \zeta \leq \kappa_2 \xi^2, \xi \neq 0, \right. \\
\varphi(0) = 0, \kappa_1 > 0, \kappa_2 < \infty \left. \right\}.
$$

The data set for the system (1) has the form

$$
I_v = \left\{ u(t), y(t) \mid t \in J = [t_0, t_1] \right\}.
$$

Apply to y, r, φ the auxiliary system

$$
\dot{\bar{p}} = \Lambda \bar{p}_v + \bar{H}_v, \quad v = y, r, \varphi,
$$

where $\Lambda \in R^{(m-1) \times (m-1)}$ is stable diagonal matrix; $\bar{H} \in R^{m-1}$, $\bar{H}_i = 1$ ($i = [1, m-1]$). Pair (Λ, H) is controllable.

Apply the mapping $\bar{X} = TX$ to the system (1) and obtain

$$
\dot{\bar{x}} = A\bar{x} + A_\varphi \varphi + B_r r, \\
y = C^T \bar{x},
$$

where $T \in R^{m \times m}$, $A_\varphi = T^{-1} \bar{A}_\varphi, B_r = T^{-1} \bar{b}_r, A = T^{-1} \bar{A} T$.

Copyright © 2018 MECS
\[
A = \begin{bmatrix}
A_1 & \tilde{H}^T \\
\vdots & \ddots \\
0 & \ddots & \ddots
\end{bmatrix}.
\]

Apply model for the identification system (5)

\[
\begin{align*}
\dot{\hat{x}} &= A_m (\hat{x} - CC^T \hat{x}) + \hat{A}_y \hat{y} + \hat{A}_\varphi + \hat{B}_t (t) r, \\
\hat{y} &= C^T \hat{x},
\end{align*}
\]

where \(A_m \in \mathbb{R}^{m \times m} \) is the stable matrix of the form

\[
A_m = \begin{bmatrix}
-k & \tilde{H}^T \\
0 & \ddots & \ddots \\
\vdots & \ddots & \ddots & 0
\end{bmatrix},
\]

\(k > 0; \hat{A}_y \in \mathbb{R}^m, \hat{A}_\varphi \in \mathbb{R}^m, \hat{B}_t \in \mathbb{R}^n \) are vectors of tuned parameters; \(\hat{x} \in \mathbb{R}^n \) is state vector; \(\hat{y} \in \mathbb{R} \) is model output.

Use the system (4) and transform equations (5) and (6) to the form

\[
\begin{align*}
\hat{y} &= A_i^T P_y + A_i^T \varphi + B_i^T r, \\
\dot{\hat{y}} &= -k (\hat{y} - y) + A_i^T \varphi + A_i \varphi + B_i^T r,
\end{align*}
\]

where \(P_y = \begin{bmatrix} y \tilde{P}_y \end{bmatrix}^T, \varphi = \begin{bmatrix} \varphi \tilde{P}_\varphi \end{bmatrix}^T, r = \begin{bmatrix} r \tilde{P}_r \end{bmatrix}^T \).

Problem: for the system (7) satisfying to assumptions of A1 and A2 define by such laws of tuning \(\hat{A}_i (t), \hat{A}_\varphi (t) \) and \(\hat{B}_t (t) \) model (8) that

\[
\lim_{t \to +\infty} |\hat{y}(t) - y(t)| \leq \sigma_1, \quad \sigma_1 \geq 0.
\]

The design of AO is based on the implementation of two stages.

1. Structural stage (SS).
2. Parametrical stage.

SS gives to nonlinearity localization \(\varphi(y) \). The result localization is the class \(\Phi \) definition and structural parameter nonlinearity estimation. The parametrical stage based on SS gives to tuning algorithms for AO.

Next, we describe these stages.

III. STRUCTURAL STAGE

To basis of SS is structural identification \(\varphi(y) \in \Phi \).

We apply the approach and methods proposed in [21, 22]. The structural identification first step ensures the construction of framework \(S_y \). It is based on obtaining of the set \(I_{N,e} \).

A. Formation of Set \(I_{N,e} \)

The method for construction of set \(I_{N,e} \) is based on results of work [24]. Determine \(i \)-th by derivative \(y(t) \) and designate obtained variable as \(x_i \). The account \(x_i \) expands the informational set \(I_x: I_x = \{I_x, x_i\} \).

Consider the data subset \(I_x \subset I_{N,e} \) corresponding to the particular solution of the system (1) (steady state). We will form set \(I_x \) excepting a data \(I_y \). \(I_y \) is information on transition process in the system. We have \(I_x = I_{N,e} \setminus I_y \).

Apply the mathematical model

\[
\dot{\hat{x}} (t) = D^T \begin{bmatrix} 1 \ u(t) \ y(t) \end{bmatrix}^T
\]

and obtain of a linear component \(x_i \). The variable \(x_i \) is defined on the interval \(J_x = J \setminus J_y \). \(D \in \mathbb{R}^l \) is the parameter vector the model (9).

Define by the vector \(D \) as

\[
\arg \min_{D} Q(e) \rightarrow D_{opt},
\]

where \(Q(e) = 0.5 e^2 \).

Apply the model (9) \(\forall t \in I_x \). Find the forecast for variable \(x_i \) and generate the error \(e(t) = \hat{x}_i (t) - x_i (t) \) depends on the nonlinearity \(\varphi(y) \) in the system (1). We obtain set \(I_{N,e} = \{y(t), e(t) \ t \in J_x \} \) which we use on the second step of SS. Apply the designation \(y(t) \), supposing that \(y(t) \in I_{N,e} \).

Remark 1. Structure choice of the model (9) is one of structural identification stages. Modelling results show that the model (9) is applicable in object identification systems with static nonlinearities.

Remark 2. The choice of variable \(x_i \) is defined by system properties.

The next step of the structural identification is based on framework analysis \(S_y \) and \(S_\varphi \) reflecting a state of the system nonlinear part.

B. Construction of Framework \(S_y \)

Virtual frameworks (VF) \(S_y \) and \(S_\varphi \) are proposed in [25] for the analysis and design of identification systems. Development and generalization of VF on static system class is given in [26]. We present the approach to design VF proposed in [22].

Let \(\mathcal{S} \) is phase portrait of the system (1) described by function \(x_i = f_i (y) \) (\(x_i \) is first derivative \(y \)). We analyze the system (1) in the space \(\Phi = \{ y, e \} \). Call \(\Phi \) the structural space. The framework \(S_y \) described by the
function $\Gamma_{ex}(\cdot) : \{y\} \rightarrow \{e\}$ \hspace{1pt} \forall t \in J_s$ is phase portrait of the system nonlinear part. \hspace{1pt} \hfill S_{ν} can be closed. It is characteristic property of a dynamic system. We will apply to decision-making also S_{ν} -framework which is described by function $\Gamma_{ex}(\cdot) : \{k(t)\} \rightarrow \{e(t)\}$, where $k(t) \in \mathbb{R}$ is the coefficient of structural properties \cite{24, 25}

$$k(t) = \frac{e(t)}{\vert y(t)\vert}.$$

The form and features of the framework S_{ν} influence on identifiability nonlinear dynamic system. The analysis of features S_{ν} led to the introduction of the concept structural identifiability. Therefore, consider properties of the set $I_{\eta, \gamma}$ on which the framework S_{ν} is specified.

C. Structural Identifiability of System (1)

Consider properties of the set $I_{\eta, \gamma}$ ensuring the solution of the structural identification problem. First, the initial set I_η has to ensure the solution of the parameter identification problem. It means that the input $r(t)$ is to nondegenerate and constantly excited on the interval J. Secondly, the input ensures the design of the informative structure $S_{\nu}(I_{\eta, \gamma})$ (or S_{ν}) guaranteeing to make decision on nonlinear properties of the system (1).

Call the input $r(t)$ representative if the analysis S_{ν} allows make the decision about properties of the system.

Let the framework S_{ν} be closed. It to mean that area S_{ν} is not zero. Designate height of the framework S_{ν} as $h(S_{\nu})$. $h(S_{\nu})$ is the distance between two points of opposite sides of the framework S_{ν} .

Statement 1 \cite{24}. Let: 1) the linear part of the system (1) is stable, and nonlinearity $q_\gamma(.)$ satisfies the condition (2); 2) the input $r(t)$ is limited piecewise continuous and constantly excited; 3) such $\delta_s > 0$ exists that $h(S_{\nu}) \geq \delta_s$. Then the framework S_{ν} is identified (h -identified) on the set $I_{\eta, \gamma}$.

We suppose what S_{ν} have the specified property. Features of h -identifiability \cite{22}.

1. h -identifiability is a concept not of parametrical, and structural identification.
2. Parametrical identifiability requirement is basis h -identifiability.
3. h -identifiability imposes more stringent requirements to the system input.

Feature 3 means that the "bad" input can satisfy excitation constancy condition. But such input can give to so-called "insignificant" S_{ν} -framework (NS_{ν} -framework) \cite{22}. NS_{ν} -framework can be h -identified. The significance property under uncertainty gives to the identification of nonlinearity, atypical for the system.

Remark 3. Next, we will show that the "good" input can generate the S_{ν} -framework which does not give to reliable structural parameters of nonlinearity. It means that the input has to give to the framework S_{ν} with certain properties.

NS_{ν} -framework. Consider a class of nonlinear functions to which homothety operation \cite{27} is applicable.

Let $S_{\nu} = \mathcal{F}_{\nu}^l \cup \mathcal{F}_{\nu}^r$, where $\mathcal{F}_{\nu}^l, \mathcal{F}_{\nu}^r$ are left and right fragments S_{ν} . Determine for $\mathcal{F}_{\nu}^l, \mathcal{F}_{\nu}^r$ secants

$$\gamma'_l = a'y, \hspace{1pt} \gamma'_r = a'y,$$

where a', a'' are numbers calculated by means of the least-squares method (LSM).

Theorem 1 \cite{21}. Let: i) the framework S_{ν} is h -identified; ii) the framework S_{ν} has the form

$S_{\nu} = \mathcal{F}_{\nu}^l \cup \mathcal{F}_{\nu}^r$, where $\mathcal{F}_{\nu}^l, \mathcal{F}_{\nu}^r$ are left and right fragments; iii) secants for $\mathcal{F}_{\nu}^l, \mathcal{F}_{\nu}^r$ have the form (10). Then S_{ν} is NS_{ν} -framework if

$$\vert a' - a'' \vert > \delta_h,$$

where $\delta_h > 0$ is some number.

Remark 4. NS_{ν} -frameworks are characteristic for systems with many-valued nonlinearities. They are inadequate application result of input actions.

Definition 1. If the framework S_{ν} is h -identified and the condition $\vert a' - a'' \vert \leq \delta_h$ is satisfied, that S_{ν} is structurally identified or h -identified.

Let the framework S have m features. We understand features of a function f as the loss of the continuity on the interval $[0, \nu]$ flex points occurrence or extreme. These features are a sign the function nonlinearity.

Apply the model (9) and construct the framework S_{ν} in the space Θ_{ν} .

Definition 2. The model (9) is SM -identifying if the framework S_{ν} is h_S -identified.

Theorem 2 \cite{22}. Let: (i) the input $r(t)$ is constantly excited and ensures the h_S -identifiability of the system (1); (ii) the phase portrait S of the system (1) contains m
features; (iii) S_{γ}-framework is h_{δ}-identified and contains the fragments corresponding to features phase portraits S. Then the model (9) is SM-identifying.

The theorem 2 shows if the model (9) is not SM-identifying, then it is necessary to change the structure of the model (9) or informational set for its design. Another approach is proposed in [22] to estimation h_{δ}-identifiability of the system (1). It gives to solve the following problem:

- choose on the processing basis of set I_{N_S} the integral indicator allowing make the decision about insignificance S-framework.

Apply this approach to decision-making on the non-linearity class.

Consider system (1), and obtain the framework S_{γ}. Fulfil the fragmentation S_{γ}. Fragmentation conditions depend on the form S_{γ}. Consider the simplest case when the framework has the form: $S_{\gamma} = F_{S_{\gamma}}^L \cup F_{S_{\gamma}}^R$, where $F_{S_{\gamma}}^L, F_{S_{\gamma}}^R$ is left and right parts the framework S_{γ}. Functions $e'\gamma(y), e''\gamma(y)$ describe fragments $F_{S_{\gamma}}^L, F_{S_{\gamma}}^R$ where $\{e'\gamma\} \subseteq [e], \{e''\gamma\} \subseteq [e]$. Construct frequency distribution functions (histograms) H^{γ}, H''^{γ} for $F_{S_{\gamma}}^L, F_{S_{\gamma}}^R$. Obtain cumulative frequency functions $H^{\gamma'}, H''^{\gamma'}$ on basis H^{γ}, H''^{γ}.

Let $I_{\gamma} = \{\Delta e, i = 1, p\}$ is definition range of functions $H^{\gamma'}, H''^{\gamma'}$. Describe value range of functions $H^{\gamma'}, H''^{\gamma'}$ by vectors

$$L\left(H^{\gamma'}\right) = [H^{\gamma}_{p, 1}, H^{\gamma}_{p, 2}, \ldots, H^{\gamma}_{p, p}],$$
$$R\left(H''^{\gamma'}\right) = [H''^{\gamma}_{p, 1}, H''^{\gamma}_{p, 2}, \ldots, H''^{\gamma}_{p, p}],$$

where p is the quantity of pockets set on I_{γ}, Δe is pocket size.

Apply the model to the distribution description of the right fragment S_{γ}

$$\hat{R} = a_u L\left(H^{\gamma'}\right),$$

and determine by parameter a_u, applied LSM. \hat{R} is model output. The model is adequate if the parameter $a_u \in O(1)$ where $O(1)$ is neighbourhood 1. If the condition $a_u \notin O(1)$ is true, then the system (3) is h_{δ}-identified and $S_{\gamma} \neq NS_{\gamma}$. Otherwise the framework S_{γ} is insignificant.

Statement 2 [22]. Let for system (1): 1) the framework S_{γ} is obtained; 2) S_{γ} has the form $S_{\gamma} = F_{\gamma, S}^L \cup F_{\gamma, S}^R$, where $F_{\gamma, S}^L, F_{\gamma, S}^R$ are fragments of framework S_{γ} determined on the set $\{y(t)\}; 3)$ frequency distribution functions H^{γ}, H''^{γ} and cumulative frequency functions $H^{\gamma'}, H''^{\gamma'}$ are obtained for $F_{\gamma, S}^L, F_{\gamma, S}^R$; 4) the dependence between $R\left(H''^{\gamma'}\right)$ and $L\left(H^{\gamma'}\right)$ has the form (11). Then the system (1) is h_{δ}-identifed if $a_u \in O(1)$.

Introduce D_{γ}-dimension of the system (1) by analogy with fractals [22].

Definition 3. The system (1) have dimension $D_{\gamma} = a_u$ if it is h_{δ}-identified.

Definition 3 will show that dimension is close to 1 for the structurally identified system.

Estimate the nonlinearity class of the system (1) on the basis of the analysis S_{γ}.

D. Estimation Nonlinearity Class

Consider classes of one-valued $F_{\gamma, S}$ and multiple-valued $F_{\gamma, S}$ nonlinearities. These classes contain set of nonlinear functions. We will apply the approach to identification of the nonlinearity class [15, 16] based on the analysis of sector sets.

Fulfil fragmentation of the framework S_{γ}, using a subset $I_{\gamma} \subseteq I_{N_S}$. I_{γ} reflects change of the function $\chi = \varphi(y)$ in $F_{\gamma, S}$. The obtaining algorithm I_{γ} is described in [22]. We will consider case of single-valued nonlinearities.

Consider the fragment $F_{\gamma, S}^L \subset S_{\gamma}$ defined on I_{γ} for $\exists i \geq 1$, $I_{i} \subseteq I_{\gamma}$. Construct for $F_{\gamma, S}^L$ the sector set [15]. Apply the least-squares method and determine for $F_{\gamma, S}^L$ the secant

$$\overline{\gamma} = \overline{\gamma}(y(t)) = a_y(y(t) + b_y.$$ (12)

Determine by mean value $\overline{\gamma}$ for $y(t)$ on $I_{\gamma} \subseteq I_{\gamma}$. Let $\overline{\gamma}$ is the centre of $F_{\gamma, S}^L$ on $I_{\gamma} \subseteq I_{\gamma}$. Draw the perpendicular from the point $\overline{\gamma}$ to intersection with $\overline{\gamma}$ on the plane (y, e). Set constant $c > 0$ and construct straight line in the point $\alpha = (\overline{\gamma}, e(\overline{\gamma}))$

$$\overline{\gamma}_c = a_y y(t) + b_y, \overline{\gamma}_c = a_y y(t) + b_y,$$

where $a_y = a_y \pm c_y$.

Let $Sec_{\gamma}(F_{\gamma, S}^L) = (\overline{\gamma}_a, \overline{\gamma}_b)$ is the sector set for $F_{\gamma, S}^L$ and

$$Sec(F_{\gamma, S}^L) = Sec_{\gamma}(F_{\gamma, S}^L) \cup Sec_{\gamma}(F_{\gamma, S}^L),$$

where $Sec_{\gamma}(F_{\gamma, S}^L), Sec_{\gamma}(F_{\gamma, S}^L)$ are subsets $Sec(F_{\gamma, S}^L)$.
located at the left and to the right of the point α.

Construct secants

$$\mathcal{T}_{ij} = a_{ij} y(t) + b_{ij} \cdot \mathcal{T}_{i, r} = a_{i, r} y(t) + b_{i, r},$$

(13)

for each of the parts $\mathcal{FR}_{\alpha, i, r}$ of the fragment \mathcal{FR}_w belonging $\text{Sec}_{\alpha, i, r}(\mathcal{FR}_w)$ and $\text{Sec}_{\alpha, r}(\mathcal{FR}_w)$. Apply the modification of the statement from [15].

Let such $\delta_i > 0$ exist that

$$|a_{ij} - a_i| \leq \delta_i, |a_{i, r} - a_i| \leq \delta_i.$$

(14)

Theorem 3 [28]. Let: (i) frameworks $\mathcal{FR}_{\alpha, i, r}$ are described by functions $Z_{\alpha, i, r}: \{y\}_{i, r} \rightarrow \{e\}_{i, r}$; (ii) secants (12) are obtained for $\chi_{\alpha, i, r}$ in the space $\mathcal{Q}_{\alpha} = (y, e)$; (iii) the fragment \mathcal{FR}_w have the secant (13) where $\{y\}_{i, r} \subseteq \mathcal{Q}_w$, $\{e\}_{i, r} \subseteq \mathcal{Q}_w$. Then the function $\phi(y) \in \mathcal{F}_w$ if it is satisfied (14), otherwise $\phi(y) \notin \mathcal{F}_w$.

The theorem 3 shows if conditions (14) are satisfied, then Hölder-Lipschitz condition is fair for $\phi(y)$, and the homothety operation is applicable to sectors $\text{Sec}_{\alpha, i, r}(\mathcal{FR}_w)$, $\text{Sec}_{\alpha, r}(\mathcal{FR}_w)$.

We suppose that the assumption 2 will satisfy. Therefore, $\phi(y) \in \mathcal{F}_w$.

E. Nonlinearity Structure Estimation

The structural identification problem of nonlinear systems under uncertainty is difficult. General approach is not developed for its decision. Each nonlinearity class has features. They influence by form system trajectories. Detection of these features under uncertainty gives to the analysis S_{α} or S_{α}. As $\phi(y) \in \mathcal{F}_w$ apply the algorithm \mathcal{AE}_w and the theorem of 4 [22] to the estimation of structure and parameters of the nonlinearity.

So, the structural design stage of AO is finished. Go to the parametrical design stage of the adaptive observer.

IV. PARAMETRICAL STAGE

This stage is based on localization results of the nonlinearity $\phi(y)$ obtained in section III. Consider two cases of information on $\phi(y)$.

Case 1. We suppose that we have the complete information about the structure $\phi(y)$. Subtract (7) of (8) and obtain the equation for the error $e = \dot{y} - y$

$$\dot{e} = -k e + \Delta A_y \dot{y} + \Delta A_p y + \Delta B_p P,$$

(15)

where $\Delta A_y = \hat{A}_y - A_y$, $\Delta A_p = \hat{A}_p - A_p$, $\Delta A = \hat{A} - A$.

Apply Lyapunov function $V_e(t) = 0.5 e^2(t)$. Determine \dot{V}_e

$$\dot{V}_e = -ke^2 + \epsilon \left(\Delta A_y \dot{y} + \Delta A_p y + \Delta B_p P \right),$$

and obtain parameter tuning algorithms of the model (8) from the condition $\dot{V}_e \leq 0$

$$\Delta A_y = \hat{A}_y - A_y, \Delta A_p = -\Gamma_y \epsilon P,$$

(16)

$$\Delta A = \hat{A} - A, \Delta A = -\Gamma \epsilon P,$$

(18)

where $\Gamma_y \in R^{m \times m}$, $\Gamma_p \in R^{m \times m}$, $\Gamma \in R^{m \times m}$ are diagonal matrices with positive diagonal elements.

Designate the obtained adaptive system (15) - (18) as \mathcal{AS}_w.

Proposed approach differs from the results obtained in [7-10] use of the structure $\phi(y)$ which is determined at the structural identification stage under uncertainty. It allows to applying known adaptive algorithms.

Case 2. A posteriori information about $\phi(y)$ has approximate character.

Assumption 3. The structure $\phi(y)$ is specified as the set

$$\phi \in \mathcal{F}_w = \{ W \in R^* : \phi(y) = F^T (y, W) \},$$

(19)

$$W = \left[W_1^T, W_2^T \right]^T, W \in \mathcal{W},$$

where $W = \{ W \in R^* : \underline{W} \leq W \leq W_1 \}$ is the area formed posteriori; $\underline{W}, \overline{W}$ are vector borders for W. Some elements $\underline{W}, \overline{W}$ can be unknown.

(19) shows that the function $\phi(y)$ have at this stage has the form

$$\phi(y) = F^T (y, W_1) W_2,$$

(20)

where $W \in \mathcal{W}_1 \subset R^p$ is the vector of parameters $\phi(y)$.

We suppose that $W = W_1 \cup W_2$. The set $W_1 \subset R^p$ contains elements which are not tuned. Elements $W_2 \in W_2 \subset R^p$ are estimated on the basis of parameter tuning AO. The vector $F(y, W_1) \in R^p$ is formed at the structural synthesis stage AO. Explain representation (20) as the proposed parametrical concept for $\phi(y)$.

Therefore, the main difference from the case 1 is need of the current estimations obtaining for the vector W_2 and for the nonlinearity $\phi(y)$. The equation (8) is not applicable and is required to its modification.
Present model for the estimation \(\varphi(y) \) as

\[
\hat{\varphi}(y) = F^T(y, \hat{W}_1)\hat{W}_2,
\]

(21)

where \(\hat{W}_2 \in \mathbb{R}^{m} \) is the tuned parameter vector; \(\hat{W}_1 \in \mathbb{R}^{n} \) is the estimation vector for \(W_1 \) which are adjusted on iterative constraint. Next, we propose the constraint algorithm for \(W_1 \).

Apple (20), (21) and modify the adaptive model (8). Obtain the current estimation for the vector \(\hat{P}_\psi \):

\[
\hat{P}_\psi = \Lambda\hat{P}_\psi + \hat{H}\hat{\varphi}(y),
\]

(22)

and rewrite the model (8) as

\[
\dot{\hat{y}} = -k(\hat{y} - y) + \hat{A}_\psi^T \hat{P}_\psi + \hat{B}_\psi^T \hat{P}_\psi + \hat{A}_\psi^T \hat{P}_\psi + \hat{B}_\psi^T \hat{P}_\psi + \hat{A}_\psi^T \hat{P}_\psi + \hat{B}_\psi^T \hat{P}_\psi + \omega,
\]

(23)

where \(\omega = \hat{A}_\psi^T \left(\hat{P}_\psi - \hat{P}_\psi \right) = \hat{A}_\psi^T \Delta \hat{P}_\psi \).

We see that the equation (23) contains uncertainty \(\omega \). Use the approach proposed in [29] to the estimation \(\omega \). Apply numerical differentiation and obtain the estimation for \(\dot{\hat{y}} \). Designate the obtained variable as \(\hat{y}_d \). Apply model to the estimation \(\hat{y}_d \)

\[
\dot{\hat{y}}_d = \hat{A}_\psi^T \hat{P}_\psi + \hat{B}_\psi^T \hat{P}_\psi,
\]

(24)

and determined by the misalignment \(\sigma = \hat{y}_d - \hat{y}_d \). Rewrite the equation (23) as

\[
\dot{\hat{y}} = -k(\hat{y} - y) + \hat{A}_\psi^T \hat{P}_\psi + \hat{A}_\psi^T \hat{P}_\psi + \hat{B}_\psi^T \hat{P}_\psi + \sigma,
\]

(25)

where \(\sigma \) is the current estimation \(\omega \). The equation for the error \(\varepsilon \) write as

\[
\varepsilon = -k\varepsilon + \Delta A \hat{P}_\psi + \Delta A \hat{P}_\psi + \Delta B \hat{P}_\psi + \sigma.
\]

(26)

Design adaptive algorithms for parameter tuning of the model (25).

Algorithms for \(\hat{A}_\psi \), \(\hat{\dot{A}}_\psi \) have the form (16), (18). Apply the Lyapunov function \(V_\psi \) and from the condition \(\dot{V}_\psi \leq 0 \) obtain the algorithm for \(\hat{A}_\psi \)

\[
\Delta \hat{A}_\psi = \hat{A}_\psi - \Gamma_\psi \varepsilon \hat{P}_\psi,
\]

(27)

where \(\Gamma_\psi \in \mathbb{R}^{m \times m} \) is the diagonal matrix with positive diagonal elements.

Consider the Lyapunov function \(V_\psi(t) = 0.5\sigma^2(t) \). As \(\sigma = \omega \) and

\[
\Delta \hat{P}_\psi = \lambda \Delta \hat{P}_\psi + \hat{H} \dot{F^T}(y, \hat{W}_1)\Delta W_2
\]

(28)

that obtain the algorithm for tuning \(\hat{W}_2 \) from the condition \(\dot{V}_\psi \leq 0 \)

\[
\dot{\hat{W}}_2 = -\Gamma_\psi \sigma \hat{A}_\psi^T \hat{H} F,
\]

(29)

where \(\Delta \hat{P}_\psi = \hat{P}_\psi - \hat{P}_\psi \), \(\Delta W_2 = \hat{W}_2 - W_2 \), \(\Gamma_\psi = \Gamma_\psi > 0 \) is the matrix ensuring convergence of the algorithm (29).

Designate the adaptive system (16), (18), (21) - (29) as \(AS_\psi \).

Iterative constraint algorithm for the vector \(\hat{W}_1 \).

1. \(i = 0 \).
2. Let \(\hat{W}_{1,i} = W_{1,i} \), where \(W_{1,i} \in W_1 \).
3. Perform parameter tuning of the system \(AS_{\psi,w} \).
4. Check the condition \(\lim_{i \to \infty} | \hat{y}(t) - y(t) | \leq \pi_y \). If it is satisfied, then finish the algorithm work, otherwise go to the step 5.
5. \(i = i + 1 \).
6. Suppose \(\hat{W}_{1,i} = \hat{W}_{1,i} + \delta W_{1,i} \), where \(\delta W_{1,i} \) chooses from the condition \(\hat{W}_{1,i+1} \in W_1 \).
7. Go to step 3.

The case 2 has a difference from the case 1 and [7-10]. We suppose that at the structural identification stage identify the form \(\varphi(y) \). But obtained values of parameters \(\varphi(y) \) can differ from original parameters. It demands model parameterization for \(\varphi(y) \) and algorithms design for AO parameters tuning. Obtained estimations of AO parameters are the basis for tuning of the auxiliary vector \(\hat{P}_\psi \) and compensation of the appearing uncertainty. The filter structure for \(\hat{P}_\psi \) is formed a posteriori. This is the main difference of the proposed approach from [7-10].

V. STABILITY ANALYSIS

Consider the system \(AS_\psi \). Show to system trajectory limitation. Let \(\Delta K(t) = \begin{bmatrix} \Delta A_\psi(t), \Delta A_\psi(t), \Delta B_\psi(t) \end{bmatrix} \).
\[V_{\epsilon}(t) = 0.5\Delta K^T(t)\bar{\Gamma}^{-1}\Delta K(t), \quad (30) \]
\[V(t) = V_{\epsilon}(t) + V_{k}(t), \quad (31) \]

where \(\bar{\Gamma} = \Gamma_\rho + \Gamma_\tau, + \) is the direct sum of matrixes.

Theorem 4. Let: 1) functions
\[
V_{\epsilon}(t) = 0.5\varepsilon^2(t), \quad V_{k}(t) = 0.5\Delta K^T(t)\bar{\Gamma}^{-1}\Delta K(t)
\]
are positive definite and satisfies conditions
\[
\text{inf} V_{\epsilon}(\varepsilon) \rightarrow \infty, \quad \text{inf} V_{k}(\Delta K) \rightarrow \infty; \quad (2) \text{assumptions} \ 1, \ 2 \text{for the system (1) are satisfied. Then all trajectories of system } \mathcal{AS}_{t}, \text{are limited, lie in the area}
\]
\[
G_{t} = \{ (\varepsilon, \Delta K) : V(t) \leq V(t_{0}) \}
\]
and the estimation is fair
\[
\int_{t_0}^{t} 2kV_{\epsilon}(\tau) d\tau \leq V(t_{0}) - V(t).
\]

The proof of Theorem 1 is given in the appendix A. Theorem 1 shows that all trajectories of the adaptive system \(\mathcal{AS}_{t} \) are limited. Ensuring the asymptotic stability demands the imposing of additional conditions on the system. Consider these conditions.

Let \(P(t) = \begin{bmatrix} P_{\epsilon}(t) & I \end{bmatrix} \), \(l = 3m \).

Definition 4. The vector \(P \in \mathbb{R}^{m} \) is constantly excited with level \(\alpha \) or has the property \(\varphi_{E_{\alpha}} \) if
\[
\varphi_{E_{\alpha}} : P(t)P^{T}(t) \geq \alpha I_{l}
\]
is true for \(\exists \alpha > 0 \) and \(\forall t \geq t_{0} \) on some interval \(T > 0 \).

If the vector \(P(t) \) has property \(\varphi_{E_{\alpha}} \) then we will write \(P(t) \in \varphi_{E_{\alpha}} \).

The system (1) is stable, and the input \(r(t) \) is restricted. Therefore, property \(\varphi_{E_{\alpha}} \) present for the matrix \(B_{p}(t) = P(t)P^{T}(t) \) as
\[
\varphi_{E_{\alpha}, p} : \alpha I_{l} \leq B_{p}(t) \leq \alpha I_{l}, \quad \forall t \geq t_{0}, \quad (32)
\]
where \(\alpha > 0 \) some number.

Let the estimation for \(V_{k}(t) \) is fair
\[
0.5\beta_{1}(\Gamma)\Delta K(t) \leq V_{k}(t) \leq 0.5\beta_{1}(\Gamma)\Delta K(t) \quad (33)
\]
where \(\beta_{1}(\Gamma), \beta_{1}(\Gamma) \) are minimum and maximum eigenvalues of the matrix \(\Gamma \).

Proof of the exponential stability is based on ensuring \(\mathcal{M}^{*} \)-property for functions \(V_{\epsilon}(t), V_{k}(t) \) [30].

Definition 5. The non-positive quadratic form \(W(Y, X) \) has \(\mathcal{M}^{*} \)-property or \(W(Y, X) \in \mathcal{M}^{*} \), if it is representable as
\[
W(Y, X) = -c_{1}\| Y \|^{2} + c_{2}\| X \|^{2},
\]
for any \(Y \in \mathbb{R}^{n}, \ X \in \mathbb{R}^{n} \) in the restricted area \(\Omega_{D} \), where \(c_{1} \geq 0 \).

Lemma 1. \(\dot{V}_{\epsilon}(t) \) have \(\mathcal{M}^{*} \)-property
\[
\dot{V}_{\epsilon} = -kV_{\epsilon} + \frac{\alpha_{1}(\Gamma)}{k}V_{k}.
\]

The proof of Lemma 1 is given in appendix B.

Lemma 2. \(\dot{V}_{k}(t) \) have \(\mathcal{M}^{*} \)-property
\[
\dot{V}_{k} \leq -\frac{3}{4}\alpha_{2}\beta_{1}(\Gamma)V_{k} + \frac{8}{3}\varphi V_{\epsilon}.
\]

The proof of Lemma 2 is given in appendix C. Application of Lemmas 1, 2 is the basis for exponential stability proof of the adaptive system \(\mathcal{AS}_{t} \).

Apply the method of Lyapunov vector functions (LVF). Consider LVF \(V_{\epsilon,k}(t) = [V_{\epsilon}(t), V_{k}(t)]^{T} \). Let such functions \(s_{\rho}(t) \geq 0 \) exist that
\[
V_{\rho}(t) \leq s_{\rho}(t), \quad \forall (t \geq t_{0}) \& (V_{\rho}(t_{0}) \leq s_{\rho}(t_{0})).
\]
where \(\rho = \varepsilon, K \).

Then the property analysis of the adaptive system is based on the study of the following inequality system
\[
\begin{bmatrix}
\dot{V}_{\epsilon} \\
\dot{V}_{k}
\end{bmatrix} \leq
\begin{bmatrix}
-k & \alpha_{1}(\Gamma) \\
\frac{8}{3}\alpha_{2} & \beta_{1}(\Gamma)
\end{bmatrix}
\begin{bmatrix}
V_{\epsilon} \\
V_{k}
\end{bmatrix}.
\]

Apply (36) and obtain for (37) comparisons vector system
\[
\dot{S} = A_{0}S, \quad (38)
\]
where \(S = [s_{\epsilon} \ s_{k}]^{T}, \ A_{0} \in \mathbb{R}^{2,2} \) is the \(M \)-matrix [32] the form

Copyright © 2018 MECS
I.J. Intelligent Systems and Applications, 2018, 2, 1-16

\[A_v = \begin{bmatrix} -k & \frac{\bar{\alpha} \beta (\Gamma)}{k} \\ \frac{8}{3} \varphi & -\frac{3\alpha \beta (\Gamma)}{4} \end{bmatrix}, \quad S = \begin{bmatrix} s_v \\ s_w \end{bmatrix}. \]

Stability conditions of the \(M \)-matrix have the form [32]

\[-m_1(A_v) > 0, \quad m_2(A_v) > 0,\]

where \(m_1, m_2 \) are diagonal minors of the matrix \(A_v \).

These conditions have the form

\[k > 0, \quad k \geq \frac{4}{3} \sqrt{\frac{2\sigma \beta (\Gamma)}{\alpha \beta (\Gamma)}}. \]

So, the following statement is true.

Theorem 5. Let conditions be satisfied: 1) positive definite of Lyapunov functions

\[V_e(t) = 0.5\sigma^2(t), \quad V_{ek}(t) = 0.5\Delta K^T(t)\Gamma^{-1}\Delta K(t) \]

allow the infinitesimal highest limit at \(\| \Delta K(t) \| \rightarrow 0, \quad \| \alpha(t) \| \rightarrow 0 \); 2) \(P(t) \) is piecewise continuous limited and \(P(t) \in \mathcal{P}(t) \); 3) equality \(e^{\Delta K} P(t) = \bar{\theta}(\Delta K^T B_{\Delta K} \Delta K) + \varphi \) with \(\varphi \geq 0 \) fairly in the area \(O_r(O) \) where \(O = \{0, 0^m\} \subset \mathbb{R} \times \mathbb{R}^m \times \mathbb{R}^{6m} \), \(O_r \) is some neighborhood of the point \(O \); 4) \(\dot{V}_e \in \mathcal{M}^* \), \(\dot{V}_{ek} \in \mathcal{M}^* \); 5) the estimation (33) is fair for the function \(V_e(t) \); 6) the system of inequalities (37) is fair for \(\hat{V}_e, \hat{V}_{ek} \); 7) the upper solution for \(\dot{V}_{ek}(t) = [V_e(t) V_k(t)]^T \) satisfies to the equation (38) if inequality (36) for elements \(V_{ek} \) is fair. Then the system \(\mathcal{S}_{As} \) is exponentially stable with the estimation

\[V_{e,k}(t) \leq e^{\Delta(t-s_0)} S(t_0), \quad (39) \]

if

\[k > 0, \quad k \geq \frac{4}{3} \sqrt{\frac{2\sigma \beta (\Gamma)}{\alpha \beta (\Gamma)}}. \quad (40) \]

Theorem 5 shows if the vector \(P(t) \) is constantly excited, then adaptive systems \(\mathcal{S}_{As} \) gives true parameter estimations of the system (7). System parameters must satisfy the condition (40).

Consider the system \(\mathcal{S}_{As} \).

Theorem 6. Let conditions be satisfied: 1) functions

\[V_e(t) = 0.5\sigma^2(t), \quad V_{ek}(t) = 0.5\Delta K^T(t)\Gamma^{-1}\Delta K(t) \]

are positive definite and satisfies conditions

\[\inf_{H^+ \rightarrow \infty} V_e(\epsilon) \rightarrow \infty, \quad \inf_{H^+ \rightarrow \infty} V_k(\Delta K) \rightarrow \infty; \quad 2) \] assumptions 1, 2 for the system (1) are performed. Then all trajectories of the system \(\mathcal{S}_{As} \) are limited belong the area

\[G_i = \{(\epsilon, \Delta K, \Delta P) : V(t) \leq V(t_0) \}, \]

and the estimation

\[\int_0^t 2kV_e(r)dr \leq V(t_0) - V(t) \]

is fair.

The proof of Theorem 6 is given in appendix D.

Theorem 6 gives the stability estimate only for the trajectory part of the system \(\mathcal{S}_{As} \). It shows by processes limitation at the top level of the adaptive system. The process of parameter tuning on the lower level is more difficult and depends on some indicators. The accounting of these indicators is impossible on the basis of the applied criteria. The correlation analysis between these levels is admissible when imposing restrictions on adaptive system parameters. The \(\mathcal{S}_{As} \)-system is the hierarchical system and restriction obtaining gives to the LVF method.

Reduce of exponential stability conditions for the system \(\mathcal{S}_{As} \). Consider the Lyapunov vector function

\[V(t) = \left[V_e(t) V_k(t) V_{w_1}(t) V_{w_2}(t) V_{w_3}(t)\right]^T, \quad (41) \]

where \(\| \| \) is Euclidean norm.

\[V_{w_1}(t) = 0.5\Delta P_1(t), \quad V_{w_2}(t) = 0.5\Delta K^T(t)\Gamma^{-1}\Delta K(t), \]

\[V_{w_2}(t) = \Delta W_{1}^T(t)\Gamma^{-1}\Delta W_{1}(t) , \quad V_{w_3}(t) = 0.5\sigma^2(t), \]

\[V_{w_3}(t) = 0.5\sigma^2(t). \]

Let the following conditions be satisfied in the neighborhood \(O_r(O) \) of equilibrium state \(O \)

\[\sigma \Delta K^T P = \bar{\theta}_1 (\Delta K + \Delta K^T\Delta P\Delta K), \]

\[\sigma \Delta K^T \Delta P = \bar{\theta}_1 (\Delta K^T + \Delta K^T\Delta P\Delta K), \]

\[\sigma \Delta W_{1}^T F \Delta A_{\Delta K}^T \hat{R} = \bar{\theta}_1 \left(\Delta W_{1}^T FF^T\Delta W_{1} + \sigma^2 A_{\Delta K}^T \hat{R} \right), \]

\[\sigma \Delta W_{1}^T F \Delta A_{\Delta K}^T \hat{R} = -\bar{\theta}_1 \left(\Delta W_{1}^T FF^T\Delta W_{1} + \sigma^2 A_{\Delta K}^T \hat{R} \Delta A_{\Delta K}^T \right), \]

\[-\sigma \left(P_\sigma + \Delta P_\sigma \right) \Gamma_{\Delta P} \Delta P = -\bar{\theta}_1 \left[\sigma^2 + \epsilon^2 \left(P_\sigma + \Delta P_\sigma \right) \Gamma_{\Delta P} \right], \]

where \(\Delta P = \left[O^T \Delta P_\sigma O^T \right]^T \), \(\bar{\theta}_1, \bar{\theta}_2, \bar{\theta}_3, \bar{\theta}_4, \bar{\theta}_5, \bar{\theta}_6 \) are
positive numbers.

Theorem 7. Let conditions be satisfied: i) components of the positive definite vector function $V(t)$ (41) have the infinitesimal limit; ii) the vector $P(t)$ is piecewise continuous function limited and $P(t) \in \mathcal{PE}_{\omega, \sigma}$; iii) conditions (42), (43) are satisfied; iv) elements of the vector \hat{V} have \mathcal{M}^T-property; v) following conditions are true for the system \mathcal{AS}_ν

$$F \left(y, \dot{W} \right) = \alpha_z I_{n_0} \otimes \hat{P} \hat{H}^T A_\nu \geq \nu,$$

$$\|\hat{H}H\|^2 \leq \eta, \|A_\nu\|^2 \leq \eta_{\alpha} |bK|^2,$$

$$\sigma \left(A_\nu + A_\hat{v} \right)^T \left(A_\nu + A_\hat{v} \right) \leq c_{\sigma^2},$$

$$\left(P + A_\nu A_\nu^T \right)^T \Gamma_{\nu} A_{\nu} \geq c_{\nu} \|A_\nu\|^2,$$

where $\nu > 0, \eta > 0, \eta_{\alpha} > 0, c > 0, c_{\sigma} > 0, \alpha_z \geq 0$; vi) \hat{V} satisfies to the vector system of inequalities

$$\hat{V} \leq A_{\nu} \hat{V},$$

where

$$A_{\nu} = \begin{bmatrix}
-k & \mu_{x,k} & \mu_{x,p} & 0 & 0 \\
\mu_{x,k} & -\mu_{x} & \mu_{x,k} & 0 & 0 \\
0 & 0 & -\beta_{\alpha\alpha}(\Lambda) & \mu_{\beta}(\Gamma) & \beta_{\alpha\alpha}(\Lambda) \\
0 & 2q_{,k} & d\beta_1(\Gamma) & 0 & -\eta_{\alpha}\alpha \beta_1(\Gamma) + \frac{g_{,k}}{3} \sigma \\
8q_{,k} & 0 & 8q_{,p} \sigma & 0 & -\frac{1}{2} \sigma^2
\end{bmatrix}.$$
Estimate the system structural identifiability. It is determined with the possibility the identification of parameters \(\varphi(y) \). The analysis of the framework \(S \) shows that the system is \(h \)-identified. Estimate \(h_y \)-identifiability of the system.

Select in \(S_{e_y} \) fragments \(F_{e_y}^l, F_{e_y}^r \) (Fig. 2). They are marked with red and green straight lines in Fig. 2.

The SI estimation is based on the structural-frequency approach described in the section III. Determine by frequency distribution functions \(H^l, H^r \) for fragments \(F_{e_y}^l, F_{e_y}^r \). Obtain on the basis \(H^l, H^r \) cumulative frequency functions \(IH^l, IH^r \) (Fig. 3) and corresponding it the vectors \(L \left(IH^l \right), R \left(IH^r \right) \). \(d_e \) is the pocket on \(e \) in Fig. 3.

Model (11) has the form

\[
\hat{R} = -0.007 + 1.042 L \left(IH^l \right).
\]

The determination coefficient of the model (48) is 0.992. Apply the statement 2 and estimate \(h_y \)-identifiability of the system. Show to estimation results of the SI in Fig. 4. The system has dimension \(D_y = 1 \). Therefore, \(\varphi(y) \) belongs to single-valued function class.

Now determine by nonlinearity structural parameters. Apply the approach proposed in [22]. Consider the line sec
tion of the framework S_γ located between points q and v (Fig. 2). As parameter estimations in space (y,e) are not representative apply the following algorithm for finding of parameters.

Algorithm for the estimation of saturation parameters on the line section S_γ.
1. Estimate h-identifiability of the system.
2. Construct the framework S_γ.
3. Estimate the SI of the system. If the system is h-identifiable, then go to the step 4, otherwise the end of the algorithm.
4. Go to S_γ, and allocate the bottom line section F_{sv}.
5. Calculate the coefficient of structural properties on F_{sv}.
6. Consider the section $F_{sv}^+ \subset F_{sv}$ on which $k_i(t)$ and $e(t)$ have identical signs.
7. Approximate the section $F_{sv}^+ \subset S_\gamma$ the dependence

$$\hat{\dot{e}}(t) = \alpha_0^* + \alpha_1^* y(t),$$

where α_0^*, α_1^* are determined by means of LSM.
8. Calculate the average \bar{e}, \bar{k}_i for $e(t)$, $k_i(t)$ on the time gap of definition F_{sv}^+.
9. Determine by the estimation \hat{a}_i^* of true parameter a_i^* as

$$\hat{a}_i^* = \frac{\bar{e}a_i^*}{\bar{k}_i}.$$

Apply this algorithm to the angle inclination estimation \hat{h}_i^* of the upper linear part S_γ.
Algorithm results:

i) lower line section: $\bar{a}_1^* = 0.18$, $\hat{w}_1 = 1.9$;
ii) upper line section: $\bar{a}_2^* = 0.186$, $\hat{w}_2 = 2.08$.

So, we have for parameter w_{22} the area $G_{22} = [1.9, 2.08]$. As transition points in the saturation area are known, saturation levels $\phi(y)$:

1) if $y_1 = -0.5$ then $\phi(y_1) \in [-1; -0.95]$;
2) if $y_1 = 1$ then $\phi(y_1) \in [1.9; 2.08]$.

Average values in points y_1, y_2 and obtain estimations: $\hat{w}_{21} = -0.975, \hat{w}_{22} = 1.99$. The estimation for w_{22} is 1.99.

H. Parametrical Stage of Design AO

The case 1 considered in section IV gives to model (8) and is well studied. Therefore, we will consider the case 2.

Let function $\phi(y)$ have the form (20). Apply for identification $\phi(y)$ the model

$$\hat{\phi}(y) = \begin{cases} \hat{w}_1 \hat{w}_2 & \text{if } y > \hat{w}_1, \\ \hat{w}_2 y & \text{if } y \leq \hat{w}_1, \\ \hat{w}_1 \hat{w}_2 & \text{if } y \leq \hat{w}_2 \end{cases}$$

(49)

where $\hat{w}_1 \neq \hat{w}_2$. Estimations for \hat{w}_1, \hat{w}_2 are obtained at the stage of structural synthesis.

The adaptive algorithm for tuning \hat{w}_2 has the form

$$\hat{w}_2 = \begin{cases} -\gamma_2 \sigma \hat{a}_{Pw} & \text{if } y \in (-0.5; 1) \& \hat{w}_2 \not\in G_{22} \\ 0 & \text{if } y \not\in (-0.5; 1) \& \hat{w}_2 \in G_{22} \end{cases}$$

(50)

where $\gamma_2 > 0$, $\hat{a}_{Pw} \in R$ is the adjusted coefficient of the model (23).

Structure choice of the algorithm (50) is directed to compensation not smoothness effect of the function $\phi(y)$.

The input $r(t) \in \partial E_\sigma$ has the form

$$r(t) = 3\sin(0.1\pi t) + \sin(0.25\pi t).$$

(51)

![Fig.5. Frameworks S, S_γ for system steady state with the input (50)](image)

Remark 5. We applied different inputs at structural and parametrical stages. The input (51) ensures adaptation process with given quality indicators. The input (47) is constantly excited and allows identifying the function $\phi(y)$.

Frameworks S, S_γ (Fig. 5) reflect the effect of the input (51) and show the transformation of frameworks presented in Fig. 1. The SI process is complicated and demands preliminary processing of the set I_σ. The analysis S_γ does not allow obtaining acceptable estimations for W_1, W_2. These results explain the current status of the design problem AO for nonlinear systems where the principle of linearization dominates.
Structural-parametrical Design Method of Adaptive Observers for Nonlinear Systems

Apply the method presented in section IV to the uncertainty estimation ω in (23). The current estimation ω is determined as

$$\sigma(t) = \begin{cases}
\frac{\dot{y}_a(t) - y_a(t)}{y(t)} > 0.01 & \text{if } \frac{\dot{y}(t)}{y(t)} > 0.01 \\
0 & \text{if } \frac{\dot{y}(t)}{y(t)} \leq 0.01
\end{cases} \quad (52)$$

Structure choice of the algorithm for calculation $\sigma(t)$ considers remarks made for the adaptive algorithm (50).

Adaptive model (23) has the form

$$\dot{\hat{y}} = -k\epsilon + \hat{a}_y, y + \hat{a}_p, p + \hat{a}_w, \hat{p}_w + \hat{b}_p, p + \sigma \quad (53)$$

Apply algorithms (16), (18), (22), (27), (29), (49), (50), (52). Matrixes Γ_i for adaptive algorithms

$$\Gamma_y = \text{diag}(0.015; 0.0066), \quad \Gamma_e = \text{diag}(0; 0.05), \quad \Gamma_w = \text{diag}(0; 0.00375), \quad \Gamma_p = 0.03.$$

Frameworks showed in Fig. 8 give the better understanding of obtaining estimation accuracy for the variable p_e.

Change of the error ϵ and the estimation of uncertainty σ are presented in Fig. 9, 10. Fig. 10 shows that the estimation accuracy ω increases in the tuning process of AO.

Parameters tuning of AO is shown in Fig. 11 - 14. Fig. 11 presents to the tuning of parameters $\hat{a}_{p_e}, \hat{a}_{w_e}, \hat{b}_{p_e}$, and
Fig. 12 shows tuning process $\dot{\alpha}_i$. We see that tuning process finishes after 200 s.

![Tuning of parameters $\dot{\alpha}_p$, $\dot{\alpha}_w$, \dot{b}_p.](image)

Tuning of the parameter $\dot{\alpha}_i$ of the model (49) on the application basis of the algorithm (50) is shown in Fig. 13, 14. Fig. 13 reflects of nonlinear processes effect in the adaptive system on the tuning $\dot{\alpha}_i$. We see that tuning process has a nonlinear character. This inference confirms Fig. 14.

![Tuning of parameter \dot{w}_1.](image)

So, modelling results confirm the efficiency of the proposed approach to design of adaptive observers. Uncertainty influences on properties of AO. Tuning process increases:

1) under interference of local parameters when basic parameters of AO are tunings;
2) at the estimation of the nonlinearity and an unknown auxiliary p_y.

VII. CONCLUSION

The method of adaptive observer design for nonlinear dynamic systems under uncertainty is proposed. It is based on the application of structural and parametrical approaches. The structural approach gives to identification problem solution for the nonlinear part of the system. It is based on the special class analysis of framework S_{ν}. The decision about nonlinearity identifiability is to make on the basis S_{ν}. We apply the sector sets method and structural-frequency approach to the estimation of the nonlinearity class. Parameter identification of the nonlinearity from the specified class is performed on the basis of the analysis S_{ν}. The obtained structure and parameters of the nonlinearity are used at the parametrical design stage of AO.

We consider two cases of information use obtained at the structural stage. The first case corresponds the complete information about nonlinearity parameters. Algorithms for tuning of parameters AO are proposed and system identifiability stability is proved.

The second case is based on the assumption that the nonlinearity form is known (a result of the structural stage), and the set of nonlinearity parameters belongs to the specified area. The parametrized model for nonlinearity is proposed. The output of this model is the basis for the obtaining of current estimations of the auxiliary variable which is used in adaptive algorithms. This leads to the emergence of uncertainty in the adaptive system. The procedure is proposed for the estimation uncertainty. The adaptive system has the two-level structure. Interdependencies between levels influence on the parameter tuning process the adaptive system. The stability of the adaptive system is proved. Modelling results of the adaptive observer are given.

Structural identifiability and the parametrical adaptation demand variables have property of the excitation constancy (EC). We show that the requirement of EC at considered development stages of AO differ. The parametrical stage demands the application of variables having the multifire
quency form. The structural stage demands the analysis of variables have the single-frequency spectrum. Multi-
frequency complicates making decision on the nonline-
ardity class. Explain this with the fact that the nonlinear
dynamic system reacts to each harmonic of the input.
Multi-frequency complicates framework S_{m} (see Fig. 5)
and activate the appearance of fragments which insigni-
ficant framework give. Solutions of this problem are
known and we will consider them in the following publi-

cation.

APPENDIX A. PROOF OF THEOREM 4

Consider Lyapunov function $V(t)$ (31). $\dot{V}(t)$ on mo-
tions \mathcal{AS}_{δ} -system has the form

$$\dot{V} = -k\omega^{2} + \dot{V}_{k} \leq -2kv_{\epsilon}.$$ \hspace{1cm} (A.1)

Apply the condition 1) theorem 4. As $\dot{V}(t) < 0$ the
system \mathcal{AS}_{δ} is stable. Integrate $\dot{V}(t)$ on time and ob-
tain

$$V(t_{0}) - 2k \int_{t_{0}}^{t} \dot{V}(\tau)d\tau \geq V(t).$$

As $V(\epsilon, \Delta K)$ satisfies the condition 1) theorem 4,
all trajectories of the system \mathcal{AS}_{δ} lie in the area
$G = \{(\epsilon, \Delta K) : V(t) \leq V(t_{0})\}$. We have the estimation
for the \mathcal{AS}_{δ} - system

$$\int_{t_{0}}^{t} 2k\dot{V}(\tau)d\tau \leq V(t_{0}) - V(t).$$

APPENDIX B. PROOF OF LEMMA 1

Write $\dot{V}_{\epsilon}(t)$

$$\dot{V}_{\epsilon} = -k\omega^{2} + \omega\Delta K^{T}P \leq -k\omega^{2} + \|\Delta K^{T}P\|. \hspace{1cm} (B.1)$$

Apply the inequalities (33) and (31)

$$-az^{2} + b\omega \leq -\frac{a}{2}z^{2} + \frac{b^{2}}{2a}, \hspace{1cm} (B.2)$$

where $a > 0, b \geq 0, z \geq 0$. Present (B.1) as

$$\dot{V}_{\epsilon} = -k\omega^{2} + \omega\Delta K^{T}P \leq -k\omega^{2} + \|\Delta K^{T}P\| \leq$$

$$-\frac{k}{2}\omega^{2} + \frac{1}{2k}\Delta K^{T}B_{\epsilon}\Delta K \leq -k\omega^{2} + \frac{\alpha\beta(\Gamma)}{k}\dot{V}_{\epsilon}. \hspace{1cm} (B.3)$$

So, we obtain \mathcal{M}^{\prime} -property for \dot{V}_{ϵ} from (B.3).

APPENDIX C. PROOF OF LEMMA 2

Write $\dot{V}_{k}(t)$

$$\dot{V}_{k}(t) = -\epsilon\Delta K^{T}P \cdot \hspace{1cm} (C.1)$$

Let $\left\{ \forall t \geq t_{0} \right\} \& \left\{ \forall \left(\epsilon, \Delta K \right) \in O_{\epsilon}(O) \right\} \text{ the condition be satisfied}$

$$\epsilon\Delta K^{T}P = \Theta\left(\Delta K^{T}B\Delta K + \epsilon^{2} \right), \hspace{1cm} (C.2)$$

where $O = \{0, 0^{m}\} \subset R \times R^{m} \times J_{j_{0},\infty}$ is the system equilib-
rium position, $O_{\epsilon}(O) \text{ is some neighbourhood of the point}$
$t \in [0, \infty] = J_{j_{0},\infty}$. Apply (C.2) and present (C.1) as

$$\dot{V}_{k}(t) = -\Theta\left(\Delta K^{T}B\Delta K + \epsilon^{2} \right) = -\frac{3}{4}\epsilon\Delta K^{T}B\Delta K -$$

$$\Theta\left|\epsilon\right|\sqrt{\Delta K^{T}B\Delta K} \leq$$

$$\frac{3}{4}\epsilon\Delta K^{T}B\Delta K + \Theta\left|\epsilon\right|\sqrt{\Delta K^{T}B\Delta K} \leq$$

Applying inequalities (B.2), (33) and obtain

$$\dot{V}_{k}(t) \leq -\frac{3}{4}\epsilon\Delta K^{T}B\Delta K + \Theta\left|\epsilon\right|\sqrt{\Delta K^{T}B\Delta K} \leq$$

$$\frac{3}{8}\epsilon\Delta K^{T}B\Delta K + \frac{3}{4}\epsilon\omega^{2} \leq$$

So, \mathcal{M}^{\prime} -property for \dot{V}_{k} has the form

$$\dot{V}_{k} \leq -\frac{3}{4}\epsilon\alpha\beta(\Gamma)\dot{V}_{k} + \frac{8}{3}\dot{V}_{\epsilon}.$$ \hspace{1cm} (C.4)

APPENDIX D. PROOF OF THEOREM 6

The proof of the theorem 6 matches the proof of the theo-
rem 4. It is based on the use of the Lyapunov function (31).
Trajectories \mathcal{AS}_{δ} -systems according to the theorem 4 are
limited and lie in the area $G_{\epsilon} = \{(\epsilon, \Delta K) : V(t) \leq V(t_{0})\}$. As
P_{ϵ} is limited and depends on ΔP_{ϵ}, therefore, also the vector
\dot{P}_{ϵ} is limited.
REFERENCES

[1] R. L. Carrol, D. P. Lindorff, “An adaptive observer for single-input single-output linear systems,” IEEE Trans. Automat. Control, 1973, vol. AC-18, no. 5, pp. 428–435.

[2] R. L. Carrol, R. V. Monopoli, “Model reference adaptive control estimation and identification using only and output signals,” Proceedings of IFAC 6th Word congress, Boston, Cambridge, 1975, part 1, pp. 58.31–58.310.

[3] G. Kreisselmeier, “A robust indirect adaptive control approach,” Int. J. Control, 1986, vol. 43, no. 1, pp. 161–175.

[4] P. Kudva, K.S. Narendra, “Synthesis of a adaptive observer using Lyapunov direct method,” Int. J. Control, 1973, vol. 18, no. 4, pp. 1201–1216.

[5] K.S. Narendra, B. Kudva, “Simple adaptive schemes for system: identification and control,” IEEE Trans. on Syst., Man and Cybern., 1974, vol. SMCC-4, no. 6, pp. 542–560.

[6] G. Bastin, R. Gevers, “Simple adaptive observers for nonlinear time-varying systems,” IEEE Transactions on automatic control, 1988, vol. 33, no. 7, pp. 650-658.

[7] R. Marino, P. Tomei, “Global adaptive observers for nonlinear systems via filters transformations,” IEEE Transactions on Automatic Control, 1992, vol. 37, no. 8, pp. 1239–1245.

[8] R. Marino, P. Tomei, Nonlinear control design: Geometric, Adaptive & Robust. London: Prentice Hall, 1995.

[9] M. Krstić, P.V. Kokotović, “Adaptive Nonlinear Output-Feedback Schemes with Marino-Tomei Controller,” IEEE Transactions on automatic control, 1996, vol. 41, no. 2, pp. 274-280.

[10] N.E. Kahveci, P.A. Ioannou, “Indirect Adaptive Control for Systems with Input Rate Saturation,” 2008 American Control Conference, Westin Seattle Hotel, Seattle, Washington, USA June 11-13, 2008, pp. 3396-3401.

[11] A.M. Annaswamy, A-P. Loh, “Stale adaptive systems in the presence of nonlinear parameterization.” In Adaptive Control Systems, Ed. G. Feng and R. Lozano. Newnes, 1999, pp. 215-259.

[12] D. Baang, J. Stoey, J.Y. Choi, “Adaptive observer using auto-generating B-splines,” International Journal of Control, Automation, and Systems, 2007, vol. 5, no. 5, pp. 479-491.

[13] P. Garimella, B. Yao, “Nonlinear adaptive robust observer design for a class of nonlinear systems,” Proceedings of the American Control Conference Denver, Colorado June 4-6, 2003, 2003, pp. 4391-4396.

[14] N. Oueif, M. Tadjine, S. Labiod, “Adaptive observer-based fault estimation for a class of Lipschitz nonlinear systems,” Archives of control sciences, 2016, vol. 26(LXII), no. 2, pp. 245–259.

[15] G. Besançon, “An Overview on Observer Tools for Nonlinear Systems,” in Lecture Notes in Control and Information Sciences 363, Ed. M. Thoma, M. Morari. Springer, 2007, pp. 10-42.

[16] N. Boizot, and E. Busvelle, “Adaptive-Gain Observers and Applications,” in Lecture Notes in Control and Information Sciences 363, Ed. G. Besançon. Springer, 2007, pp. 10-42.

[17] N. Boizot, E. Busvelle, J-P. Gauthier, “An adaptive high-gain observer for nonlinear systems,” Automatica, 2010, vol. 46, is. 9, pp. 1483–1488.

[18] N. Hovakimyan, A.J. Calise, and V.K. Madyastha, “Adaptive observer design methodology for bounded nonlinear processes,” In Proc. 41st IEEE Conference on Decision and Control, Las Vegas, NV, Dec. 2002, pp. 4700-4705.

[19] K.S. Narendra, and K. Parthasarathy, “Identification and control of dynamical systems using neural networks,” IEEE Transactions on Neural Networks, 1990, vol. 1, pp. 4 27.

[20] J. Zhu, K. Khayati, “LMI-based adaptive observers for nonlinear systems,” International journal of mechanical engineering and mechatronics, vol. 1, is. 2, 2012, pp. 50-60.

[21] N. Karabutov, “Structural identification of dynamic systems with hysteresis,” International Journal of Intelligent Systems and Applications, 2016, vol. 8, no. 7, pp. 1-13.

[22] N. Karabutov, Frameworks in problems of structural identification systems,” International Journal of Intelligent Systems and Applications, 2017, vol. 9, no. 1, pp. 1-19.

[23] N.N. Karabutov, Structural identification of static objects: Fields, structures, methods. Moscow: Librokom, 2011.

[24] N. Karabutov, “Structural identification of nonlinear dynamical systems.” International journal intelligent systems and applications, 2015, vol. 7, no.9, pp. 1-11.

[25] N.N. Karabutov, Adaptive identification of systems: Informational synthesis. Moscow: URSS, 2006.

[26] N. Karabutov, “Structures, fields and methods of identification of nonlinear static systems in the conditions of uncertainty,” Intelligent Control and Automation, 2010, vol.1 no.2, pp. 59-67.

[27] G. Choquet, L’enseignement de la géométrie. Paris: Hermann, 1964.

[28] N. Karabutov, “Structural identification of nonlinear static system on basis of analysis sector sets,” International journal intelligent systems and applications, 2013, vol. 6, no. 1, pp. 1-10.

[29] N. Karabutov, “Adaptive observers for linear time-varying dynamic objects with uncertainty estimation,” International journal intelligent systems and applications, 2017, vol. 9, no. 6, pp. 1-14.

[30] N. Karabutov, “Adaptive observers with uncertainty in loop tuning for linear time-varying dynamical systems,” International journal intelligent systems and applications, 2017, vol. 9, no. 4, pp. 1-13.

[31] E.A. Barbashin, Lyapunov function. Moscow: Nauka, 1970.

[32] F.R. Gantmacher, The Theory of Matrices. AMS Chelsea Publishing: Reprinted by American Mathematical Society, 2000.

Authors’ Profiles

Nikolay Karabutov is the professor of department Problem Control of Moscow technological University (MIREA), Moscow, Russia. Doctor of technical sciences, professor. The research areas are the automatic control theory, identification, adaptive control and decision-making.

How to cite this paper: Nikolay Karabutov, “Structural-parametrical Design Method of Adaptive Observers for Nonlinear Systems”, International Journal of Intelligent Systems and Applications (IJISA), Vol.10, No.2, pp.1-16, 2018. DOI: 10.5815/ijisa.2018.02.01