T cell Immune Pathways Current and Future Implementation in Cancer Immunotherapy

Reham M El Shabrawy1,*, Mariam A Maged2, Nehal A Mahmoud3 and Nehal M El Shabrawy4

1Assistant professor of Medical Microbiology and Immunology, Egypt
2Assistant professor of Internal Medicine, Allergy and clinical Immunology, Egypt
3Assistant professor of Internal Medicine, Allergy and Clinical Immunology, Egypt
4Lecturer of Medical Microbiology and Immunology, Egypt

Abstract

T cells are central players in cancer immune response. The discovery of T cell immune pathways has revealed several inhibitory and stimulatory pathways that affect the differentiation and activation of T cell. These pathways represent ideal candidates that can be targeted to augment in-vivo T cell immune response against tumors. In this mini review we will try to reveal some inhibitory and stimulatory T cell immune pathways to which efforts of those interested in cancer immunotherapy can be directed.

Keywords: Immunotherapy; T cell; Immune pathways

Background

Tumor immunotherapy exceeds radiotherapy and chemotherapy in the fact that it considered the most tumor-specific therapy; it is characteristically effective in metastatic tumors, which is a real challenge facing current tumor therapies. Additionally, it confers long-lasting memory, which cannot be induce by other therapeutic approaches [1]. T cell is the major cell orchestrating the anti-tumor immune response. For a T cell to be activated and differentiated, it should receive activating signal not only from the T cell receptor but also from other co-stimulatory molecules [2]. On the other hand, to maintain a balanced immune system other molecule are involved in the inhibition of the activated T cell after the end of an immune response. Understanding these pathways can help in influencing the activity of T cell and thus provide other options for cancer immunotherapy [3].

Inhibition of the Inhibitory Pathways (Check Point Inhibitors)

Programmed Death-1 (PD-1) pathway blockade

Programmed death-1 (PD-1) is an important immune checkpoint receptor on cytotoxic T cells. The PD-1 receptor has two ligands, programmed death ligand-1 (PD-L1) and programmed death ligand-2 (PD-L2). Upregulation of the PD-1 receptor plays a key role in T-cell exhaustion [4]. T-cell exhaustion occurs as a result of repeated exposure to tumor antigen, this repeated exposure steadily increases the activity of PD-1 [5] and hence decrease the ability of T cells to respond and eventually T cell survival is affected [6]. Exhausted Tumor-infiltrating T cells are characterized by up-regulation of PD-1 and other inhibitors of immune function, decreased production of cytokines, decreased cell-signaling molecules that help guide the immune response and impaired ability to kill tumor [7].

Available anti-PD-1 checkpoint inhibitors include Pembrolizumab, Nivolumab, and Atezolizumab, are currently licensed for use in advanced melanoma, renal cell carcinoma, Hodgkin lymphoma, and bladder cancer [1]. Preclinical studies suggest that complete inhibition of PD-1 signaling through both PD-L1 and PD-L2 is more effective in restimulating T-cell exhaustion than inhibiting PD-L1 alone [8].

Cytotoxic T-lymphocyte Antigen 4 (CTLA-4 pathway) blockade

Under normal conditions, activation of T-cells requires two signals; the first is the binding of the T-cell receptor (TCR) to the major histocompatibility complex (MHC) on antigen-pre-
senting the cells (APCs). And the second is the interaction between CD28, the primary costimulatory receptor on T cells, binds and CD80, and CD86 on APCs [9]. Inhibition of T-cell occurs when Cytotoxic T-lymphocyte antigen 4 (CTLA-4), an immune checkpoint receptor, is expressed on the surface of activated T cells. It competes with CD28 and has a greater affinity for CD80/86. Binding of CTLA-4 to CD80/86 inhibits T-cell activation and preserve immune balance to avoid the immune system overactivity. CTLA-4 can also be found on regulatory T cells (Tregs), the key drivers for T-cell activity suppression [10].

In the tumor microenvironment, tumor cells utilize the CTLA-4 pathway to suppress the initiation of an immune response. Therefore, it inhibits T-cell activation and a causes reduced ability to proliferate into memory T cells. CTLA-4 signaling decreases the ability of memory T-cells to sustain a response, damaging a key element of durable immunity [11]. Additionally, T-cell activity is suppressed by the continuous expression of CTLA-4 on Tregs. Inhibition of CTLA-4 restores antitumor immunity and restore the immune response through the increased accumulation, function, and survival of not only T cells, but also memory T-cells, as well as the depletion of Tregs [12]. A novel approach to regulate the degree of immune activity is to increase the depletion of Tregs. A CTLA-4 antibody with a modified Fc region can bind to Tregs, therefore, identify them for elimination by other immune cells. As shown in mouse models, the increased depletion of Tregs can improve cytotoxic T-cell activation and antitumor activity [12].

An approach aims to improve the specificity of CTLA-4 blockade is by reducing antibody binding outside of the tumor microenvironment. This includes the use of pro-antibodies (anti-CTLA-4 that have been masked with a protein) the masking protein can be removed by enzymes that are either highly expressed by or only present on tumor cells. Pro-antibodies are, therefore, active primarily at the tumor site [13]. Currently, available anti-CTLA-4 include Iplimumab, Combination of ipilimum and, nivolumab [1]. Major adverse effects of using check point inhibitors are autoimmunity: for example, acute-onset type 1 diabetes, lesions in pituitary and inflammatory reactions, especially in the colon, lung, and liver. PD-L1 blockers exhibit fewer side effects than CTLA4 blockers. Side effects can be controlled by anti-inflammatory and hormonal replacement if needed. Non-response to check point inhibitors can occur as a result of: tumors which have relatively few somatic mutations encoding neoantigens because fewer tumor-specific T-cells will respond, tumors with sparse inflammatory cell infiltration, down-regulation of PD-L1 receptor, selective growth of tumor clones that express other inhibitory check points [14]. Preclinical data indicate that limiting antibody binding to the tumor microenvironment may prevent an immune attack of healthy cells, yet still enable an antitumor response [13].

Lymphocyte-Activation Gene 3 (LAG-3) blockade

Lymphocyte-activation gene 3 (LAG-3) is an immune checkpoint receptor expressed on the surface of both activated cytotoxic T cells and regulatory T cells (Tregs) as a result of repeated exposure to tumor antigen [15]. LAG-3 binds MHC on APCs, activation of LAG-3 negatively regulate T-cell proliferation and the development of lasting memory T cells and lead to cell exhaustion. Exhausted T cells have an impaired ability to fight tumor cells, which may result in tumor growth. T cells co-expressing both LAG-3 and PD-1 may show an even greater degree of exhaustion compared with those expressing LAG-3 alone [16]. LAG-3 can also trigger the immunosuppressive activity of Tregs. In cancer, Tregs expressing LAG-3 gather at tumor sites and show potent suppression of cytotoxic T cells. Increased LAG-3 expression has been associated with poorer prognosis in multiple tumor types [17]. In preclinical studies, when the PD-1 pathway is blocked, LAG-3 may be upregulated to maintain tumor growth. Inhibition of both LAG-3 and other checkpoint pathways may synergistically increase T-cell antitumor activity compared with inhibition of either pathway alone [15].

T-cell Immunoreceptor with Immunoglobulin and ITIM domains (TIGIT) blockade

T-cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) is an immune checkpoint receptor expressed on the surface of cytotoxic memory, and regulatory T cells (Tregs), as well as natural killer (NK) cells. TIGIT has two ligands: CD155 (PVR) and CD112 (Nectin2). On cytotoxic T-cells and NK cells, the interaction of TIGIT with either of its ligands suppresses immune activation [18]. When TIGIT is expressed on Tregs, this interaction enhances their ability to suppress the immune response [19]. Experimental data showed that inhibition of TIGIT signaling increases the proliferation and function of cytotoxic T-cells [20].

T-cell Immunoglobulin and Mucin-3 (TIM-3) blockade

T-cell immunoglobulin and mucin-3 (TIM-3) are immune checkpoint receptor involved in the suppression of both innate and adaptive immune cells. It is expressed on a wide range of immune cells, including cytotoxic T cells, Tregs, NK cells, APC like DCs. TIM-3 can suppress effector cells through the interaction with a broad array of ligands: carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), galectin-9, phosphatidylserine (PS), and high mobility group box 1 (HMGB1) [21]. Experimental data suggest that the blockade of TIM-3 may rescue NK-cell activity, stimulates tumor antigen processing, and reactivates exhausted T cells, restoring their proliferation and function. TIM-3 is usually co-expressed with other immune checkpoint receptors, and preclinical studies indicate that co-blockade of TIM-3 and another immune checkpoint receptor may further reinvigorate exhausted T cells [22].

Killer Cell Immunoglobulin-like Receptors (KIRs) cell pathway

Killer cell Immunoglobulin-like Receptors (KIRs) are expressed on the surface of NK cells. They are inhibitory immune checkpoint receptors that stop NK cells from killing normal cells. Nearly every normal cell expresses the ligand for inhibitory KIRs. Tumor cells upregulate the ligand for inhibitory KIRs, to appear as normal cells and escape detection by NK cells. In preclinical studies, blockade of inhibitory KIRs, however, has been shown to help restore NK cell-mediated immune activity [23].
Immune Pathways: Stimulation of the Activating Pathways

CD137: Potentiator of innate and adaptive immunity

CD137, or 4-1BB, is an activating receptor that appears on both natural killer (NK) cells and T cells. It plays an important role in both innate and adaptive immunity; it also plays a critical role in the development of memory T cells. It is suggested that activation of CD137 signaling can stimulate both cytotoxic T-cell and NK-cell activity and generate a lasting memory response [24].

Glucocorticoid-Induced TNFR-Related Protein (GITR)

Upon activation of T-cells, an activating receptor known as Glucocorticoid-induced TNFR-related protein (GITR) is expressed. GITR acts as a costimulatory receptor that enhances cell reproduction and the generation of cancer-killing activity [25]. It is expected that activation of GITR signaling can help enhance immunity through the activation of cytotoxic T cells and inhibition of Treg activity [26].

Inducible T-cell co-Stimulator (ICOS)

Inducible T-cell co-stimulator (ICOS) is a receptor expressed on the surface of activated cytotoxic T cells, other types of T-cells, and NK cells. They are similar in structure to CTLA4. However, it has an opposing function. This receptor when interacts with its ligand, B7RP-1 which is expressed on APCs and DCs and macrophage, leads to activation of cytotoxic T-cells, as well as the survival of memory T-cells; additionally, it may enhance the function of NK cells [27]. Experiments have shown that stimulation of ICOS during CTLA-4 blockade was shown to enhance T-cell activity. Also, mouse models demonstrate that ICOS expression may enhance the antitumor response of NK cells [28].

CD40-CD40L: Activates and amplifies T-cell stimulation

CD40 is an activating receptor expressed on the surface of activated cytotoxic T cells and regulatory T cells (Tregs). It plays a dual role in the immune response, both activating and amplifying T-cell responses.

A. **Activation:** On cytotoxic T cells, CD40 binds to its ligand (CD40L), resulting in stimulatory signals that promote T-cell reproduction, function, and survival.

B. **Amplification:** On Tregs, CD40-CD40L signaling blocks the ability of Tregs to suppress T cells and reduces Treg generation, thus amplifies the T-cell activation [29].

Signaling Lymphocytic Activation Molecule Family member 7 (SLAMF7)

Signaling Lymphocytic Activation Molecule Family member 7 (SLAMF7) is an activating receptor expressed on the surface of virtually all NK cells meanwhile, SLAMF7 is not expressed on solid tissues or hematopoietic stem cells [30]. Engagement of SLAMF7 activates NK yet normal spare cells. NK cells kill tumor cells, released tumor antigens are then uptake by APC, which further stimulate T cytotoxic cells and memory cells. Ongoing research aims to understand how NK cell activation through SLAMF7 impacts long-term immunity [31].

References

1. Hu-Beskovsk S, Chmielewski B, Raia A (2017) Cancer immunotherapy in manual of clinical oncology. In: Chmielewski and Territo M (Eds.), Wolter Kluwer. (8th edn), South Holland, Netherlands, pp.11-4.24.

2. Gomuny JJ, Weyand CM (2008) T-cell co-stimulatory pathways in autoimmunity. Arthritis Res Ther 10(Suppl 1): S3.

3. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, et al. (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7): 1027-1034.

4. Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, et al. (2001) Autoimmune dilated cardiomyopathy in PD-1 receptor deficient mice. Science 91(3502): 319-322.

5. Blattman JN, Wherry EJ, Ha SJ, van der Most RG, Ahmed R (2009) Impact of epitope escape on PD-1 expression and CD8 T-cell exhaustion during chronic infection. J Virol 83(9): 4386-4394.

6. Fuller MJ, Zajac AJ (2003) Ablation of CD8 and CD4 T cell responses by high viral loads. J Immunol 170(1): 477-486.

7. Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, et al. (2009) Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114(8): 1537-1544.

8. Hobb W, Maas F, Aidiy N, de Witte T, Schoap N, et al. (2010) siRNA silencing of PD-L1 and PD-L2 on dendritic cells augments expansion and function of minor histocompatibility antigen–specific CD8+ T cells. Blood 116(22): 4501-4511.

9. Chen DS, Mellman I (2013) Oncology meets immunology: The cancer-immunity cycle. Immunity 39(1): 1-10.

10. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyata Y, et al. (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322(5899): 271-275.

11. Chambers CA, Sullivan TJ, Truong T, Allison JP (1998) Secondary but not primary T cell responses are enhanced in CTLA-4-deficient CD8+ T cells. Eur J Immunol 28(10): 3137-3143.

12. Selby MJ, Engelhardt JJ, Quigley M, Henning KA, Chen T, et al. (2013) Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res 1(1): 32-42.

13. Chen IJ, Chuang CH, Hisheh YC, Yun Lu, Wei Lin, et al. (2017) Selective antibody activation through protease-activated pro-antibodies that mask binding sites with inhibitory domains. Sci Rep 7(1): 11587.

14. Abbas AK, Andrew HL, Shiv P (2018) Immunity to tumors in cellular and molecular Immunology. In: Abbas AK, Andrew HL, Shiv P (Eds.), Elsevier (9th edn), Amsterdam, Netherlands, pp. 379-416.

15. Huang CT, Workman CJ, Flies D, Pan X, Marson AL, et al. (2004) Role of LAG-3 in regulatory T cells. Immunity 21(4): 503-513.

16. Gedding SR, Wilson KA, Xie Y, Harris KM, Baxi A, et al. (2013) Restoring immune function of tumor specific CD8 T cells during recurrence of melanoma. J Immunol 190(9): 4899-4909.

17. Yang ZH, Kim HJ, Villasboas JC, Chen YP, Price-Troska T, et al. (2017) Expression of LAG-3 defined exhaustion of intratumoral PD-1+ T cells and correlates with poor outcome in follicular lymphoma. Oncotarget 8(37): 61425-61439.

18. Stanjevsky N, Simic H, Arapovic J, Toporik A, Levy O, et al. (2009) The interaction of TIGIT with PVR and PVR/L2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci USA 106(42): 17858-17863.
19. Joller N, Lozano E, Burkett PR, Patel B, Xiao S, et al. (2014) Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40(4): 569-581.

20. Chauvin JM, Pagliano O, Fourcade J, Sun Z, Wang H, et al. (2015) TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients. J Clin Invest 125(5): 2046-2058.

21. Anderson AC, Joller N, Kuchroo VK (2016) Lag-3, Tim-3, and TIGIT: Coinhibitory receptors with specialized functions in immune regulation. Immunity 44(5): 989-1004.

22. Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, et al. (2010) Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 207(10): 2175-2186.

23. Romagné F, André P, Spee A, Zahn S, Anfossi N, et al. (2009) Preclinical characterization of 1-7F9, a novel human anti-KIR receptor therapeutic antibody that augments natural killer-mediated killing of tumor cells. Blood 114(13): 2667-2677.

24. Willoughby JE, Kerr JR, Rogel A, Tanban VY, Buchan SL, et al. (2014) Differential impact of CD27 and 4-1BB costimulation on effector and memory CD8+ T cell generation following peptide immunization. J Immunol 193(1): 244-251.

25. Tone M, Tone Y, Adams E, Yates SF, Frewin MR, et al. (2003) Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells. Proc Natl Acad Sci USA 100(25): 15059-15064.

26. Cohen AD, Schaer DA, Liu C, Li Y, Hirschhorn-Cymmerman D, et al. (2010) Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation. PLoS One 5(5): e10436.

27. Burmeister Y, Lischko T, Dahler AC, Mages HW, Lam KP, et al. (2008) ICOS controls the pool size of effector-memory and regulatory T cells. J Immunol 180(2): 774-782.

28. Fan X, Quezada SA, Sepulveda MA, Sharma P, Allison JP (2014) Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy. J Exp Med 211(4): 715-725.

29. Bansal-Pakala P, Halteman BS, Cheng MH, Croft M (2004) Costimulation of CD8+ T cell responses by OX40. J Immunol 172(8): 4821-4825.

30. Hsi E, Steinle R, Balasa B, Szmania S, Draksharapu A (2008) CS1, a Potent new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res 14(9): 2775-2784.

31. Mocikat R, Braumüller H, Gumi A, Egeter O, Ziegler H, et al. (2003) Natural killer cells activated by MHC class Ilow targets prime dendritic Cells to induce protective CD8+ T cell responses. Immunity 19(4): 561-569.