Supplement of

Influence of atmospheric in-cloud aqueous-phase chemistry on the global simulation of SO₂ in CESM2

Wendong Ge et al.

Correspondence to: Junfeng Liu (jfliu@pku.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.
Table S1. Description of all model simulations.

No.	Case name	Location in the paper	Chemistry \(^a\)	\([\text{Fe}^{3+}]\) (µM)	pH
1	Original	Sect. 3.1, 3.2, 3.3	\(a + b\)		
2	Improved	Sect. 3.2, 3.3, 5.1	\(a + c + d + e + f + g + h\)	5 calculated \(^b\)	
3	HO\(_x\)-chem	Sect. 4	\(a + c + d + e\)		
4	Fe-chem	Sect. 4	\(a + c + d + f\)	5 calculated	
5	N-chem	Sect. 4	\(a + c + d + g\)		
6	Carbonate-chem	Sect. 4	\(a + c + d + h\)		
7	Fe01	Sect. 5.1	\(a + c + d + e + f + g + h\)	0.1 calculated	
8	Fe1	Sect. 5.1	\(a + c + d + e + f + g + h\)	1 calculated	
9	Fe20	Sect. 5.1	\(a + c + d + e + f + g + h\)	20 calculated	
10	Fe100	Sect. 5.1	\(a + c + d + e + f + g + h\)	100 calculated	
11	pH3	Sect. 5.2	\(a + c + d + e + f + g + h\)	5 3	
12	pH4	Sect. 5.2	\(a + c + d + e + f + g + h\)	5 4	
13	pH5	Sect. 5.2	\(a + c + d + e + f + g + h\)	5 5	
14	pH6	Sect. 5.2	\(a + c + d + e + f + g + h\)	5 6	
15	HO\(_x\)-pH3	Sect. 5.2	\(a + c + d + e\)		3
16	HO\(_x\)-pH4	Sect. 5.2	\(a + c + d + e\)		4
17	HO\(_x\)-pH5	Sect. 5.2	\(a + c + d + e\)		5
18	HO\(_x\)-pH6	Sect. 5.2	\(a + c + d + e\)		6
19	Fe-pH3	Sect. 5.2	\(a + c + d + f\)	5 3	
20	Fe-pH4	Sect. 5.2	\(a + c + d + f\)	5 4	
21	Fe-pH5	Sect. 5.2	\(a + c + d + f\)	5 5	
22	Fe-pH6	Sect. 5.2	\(a + c + d + f\)	5 6	
23	N-pH3	Sect. 5.2	\(a + c + d + g\)		3
24	N-pH4	Sect. 5.2	\(a + c + d + g\)		4
25	N-pH5	Sect. 5.2	\(a + c + d + g\)		5
26	N-pH6	Sect. 5.2	\(a + c + d + g\)		6
27	Org-chem	Sect. 5.3	\(a + c + d + i\)		

\(^a\) The chemical mechanisms corresponding to different letters are: a. the default MOZART-4 chemistry used in CAM4, b. default parameterized aqueous-phase oxidation reactions of SO\(_2\) used in CAM4, c. gas-aqueous phase transfer equilibria in Table 1a, d. aqueous ionization equilibria, e. HO\(_x\)-chemistry, f. Fe-chemistry, g. N-chemistry, and h. carbonate chemistry in Table 1b, and i. Organic chemistry in Tables S2a and S2b.

\(^b\) The pH values in these simulations are calculated by gas-aqueous phase transfer equilibria in Table 1a and aqueous ionization equilibria in Table 1b.
Table S2a: Gas-aqueous phase transfer equilibria of organic chemistry.

No.	Reactions	k_1	k_2	Reference
1a^c	HCHO(g) → CH$_2$(OH)$_2$^c	30	0.04	(Davidovits et al., 2006)
2b	CH$_2$(OH)$_2$ → HCHO(g)	3.0 × 103	-7.2 × 101	(Betterton and Hoffmann, 1988)
3a	CH$_3$OOH (g) → CH$_3$OOH	48	3.8 × 103	(Davidovits et al., 1995)
4b	CH$_3$OOH → CH$_3$OOH (g)	6	-5.32 × 103	(Lind and Kok, 1994)
5a	CH$_3$C(O)OOH (g) → CH$_3$C(O)OOH	76	0.019	(Herrmann et al., 2000)
6b	CH$_3$C(O)OOH → CH$_3$C(O)OOH (g)	6.69 × 102	-5.89 × 103	(Lind and Kok, 1994)
7a	CH$_3$OH (g) → CH$_3$OH	32	1.5 × 102	(Davidovits et al., 1995)
8b	CH$_3$OH → CH$_3$OH (g)	2.2 × 102	-5.39 × 103	(Betterton, 1992)
9a	CH$_2$OH(g) → CH$_3$OH	46	8.2 × 103	(Davidovits et al., 1995)
10b	CH$_3$OH → CH$_3$OH (g)	1.9 × 102	-6.29 × 103	(Betterton, 1992)
11a	CH$_3$CHO (g) → CH$_3$CH(OH)$_2$	44	0.03	(Herrmann et al., 2000)
12b	CH$_3$CH(OH)$_2$ → CH$_3$CHO (g)	11.4	-6.3 × 103	(Betterton and Hoffmann, 1988)
13a	CH$_3$O$_2$ (g) → CH$_3$O$_2$	47	3.8 × 103	(Herrmann et al., 2000)
14b	CH$_3$O$_2$ → CH$_3$O$_2$ (g)	6	-5.64 × 103	(Jacob, 1986)

a Reaction rate constant $k = \frac{3 D g LWC}{a r^2}$. The unit is s$^{-1}$. Gas phase diffusion coefficient $D_g = \frac{9.45 \times 10^{17}}{[M]} \sqrt{T(0.03472 + \frac{1}{k_1})}$. LWC is the volume mixing ratio of cloud liquid water. $A = 1 + \left(1 + 1.3 \left(\frac{1}{k_2} - 1\right)\right)$, $\lambda = \frac{0.71 + 1.3\beta}{1 + \beta}$, $\beta = 4.54 \times 10^{-15} \sqrt{V_g^2 + V_{air}^2}$, $V_g = \sqrt{\frac{R T}{\gamma M}}$, $V_{air} = \sqrt{\frac{R T}{28.8 R}}$, $R = 8.31 \times 10^7$ is the ideal gas constant (multiplied by a factor to keep V_g and V_{air} in the unit of cm s$^{-1}$), r is the radius of cloud droplets in cm, [M] is the number density of air in the unit of molecules cm$^{-3}$, T is atmospheric temperature in Kelvin. k_1 is the molar mass (g mol$^{-1}$). k_2 is the mass accommodation coefficients. All the formulas above refer to (Shao et al., 2019; Liang and Jacobson, 1999).

b Reaction rate constant $k = \frac{k_{n-1}}{0.082 r LWC C}$. The unit is s$^{-1}$. $C = k_3 \exp \left(-k_2 \left(\frac{1}{7} - \frac{1}{296}\right)\right)$, k_{n-1} is the rate constant of its reverse reaction with c. LWC is as in c. k_1 is Henry’s law constants (M atm$^{-1}$) at 298 K. k_2 is ΔH (J mol$^{-1}$) / R (J mol$^{-1}$ K$^{-1}$). ΔH is the enthalpy of dissolution. All the formulas above refer to (Liang and Jacobson, 1999).

c All species are liquid species by default, and gas species are marked with (g). The same below.
No.	Reactions	$k_{298}, M^{-1} s^{-1}$	$E_u/R, K$	Reference
15	HCHO + H$_2$O \rightarrow CH$_2$(OH)$_2$	0.18	-4030	(Bell and Evans, 1966)
16	CH$_3$(OH)$_2$ \rightarrow HCHO + H$_2$O	5.1×10^3		(Bell and Evans, 1966)
17	CH$_3$CHO + H$_2$O \rightarrow CH$_3$CH(OH)$_2$	1.4×10^4	-2500	(Bell et al., 1956)
18	CH$_3$CH(OH)$_2$ \rightarrow CH$_3$CHO + H$_2$O	5.69×10^3		(Bell et al., 1956)
19	CH$_3$(OH)$_2$ + HSO$_3^-$ \rightarrow HOCH$_2$SO$_3^-$ + H$_2$O	790	2990	(Olson and Hoffmann, 1989)
20	HOCH$_2$SO$_3^-$ + H$_2$O \rightarrow CH$_2$(OH)$_2$ + HSO$_4^-$	3.95×10^{-6}	2990	(Olson and Hoffmann, 1989)
21	CH$_3$(OH)$_2$ + SO$_2^+$ \rightarrow HOCH$_2$SO$_3^-$ + OH$^-$	2.5×10^7	2450	(Jacobi et al., 1997)
22	HOCH$_2$SO$_3^-$ + OH$^-$ \rightarrow CH$_2$(OH)$_2$ + SO$_2^+$	3.7×10^3	4500	(Deister et al., 1986; Munger et al., 1986)
23	NO$_3^-$ + CH$_3$OOH \rightarrow NO$_2^+$ + H$^+$ + CH$_3$O$_2$	4.9×10^6	2000	(Herrmann et al., 2000)
24	HOCH$_2$SO$_3^-$ + OH $\xrightarrow{0.5 H_2O}$ H$_2$O + HO$_2$ + HCOOH + HSO$_3^-$	3×10^8		(Buxton, 1994)
25	HOCH$_2$SO$_3^-$ + SO$_4^-$ \rightarrow SO$_2^+$ + H$^+$ + HCHO + SO$_3^-$	2.8×10^6		(Buxton, 1994)
26	HOCH$_2$SO$_3^-$ + NO$_3^-$ \rightarrow NO$_2^+$ + H$^+$ + HCHO + SO$_3^-$	4.2×10^6		(Herrmann and Zellner, 1998)
27	HSO$_4^-$ + CH$_3$OOH $\xrightarrow{H^+}$ SO$_2^+$ + 2 H$^+$ + CH$_3$OH	1.8×10^7	3800	(Lind et al., 1987)
28	HSO$_4^-$ + CH$_3$(C)OOH $\xrightarrow{H^+}$ H$_2$O + HO$_2$ + HCOOH + HSO$_3^-$	4.8×10^7	3900	(Lind et al., 1987)
29	SO$_4^-$ + CH$_3$OOH \rightarrow SO$_2^+$ + H$^+$ + CH$_3$O$_2$	2.8×10^7		(Herrmann et al., 2000)
30	CH$_3$OH + OH $\xrightarrow{0.4}$ H$_2$O + HO$_2$ + HCHO	1.0×10^9	580	(Elliot and Meckraken, 1989)
31	CH$_3$OH + SO$_4^-$ $\xrightarrow{0.4}$ SO$_2^+$ + H$^+$ + HO$_2$ + HCHO	9.0×10^6	2190	(Clifton and Huie, 1989)
32	CH$_3$OH + NO$_3^-$ $\xrightarrow{0.4}$ NO$_2^+$ + H$^+$ + HO$_2$ + HCHO	5.4×10^5	4300	(Herrmann and Zellner, 1998)
33	CH$_3$OH + CO$_2^-$ $\xrightarrow{0.4}$ CO$_2^+$ + H$^+$ + HO$_2$ + HCHO	2.6×10^5	4500	(Chen et al., 1973; Zellner et al., 1996)
34	C$_2$H$_5$OH + OH $\xrightarrow{0.4}$ H$_2$O + HO$_2$ + CH$_3$CHO	1.9×10^9		(Buxton et al., 1988)
35	C$_3$H$_6$O + SO$_4^-$ $\xrightarrow{0.4}$ SO$_2^+$ + H$^+$ + HO$_2$ + CH$_3$CHO	4.1×10^7	1760	(Clifton and Huie, 1989)
36	C$_3$H$_6$O + NO$_3^-$ $\xrightarrow{0.4}$ NO$_2^+$ + H$^+$ + HO$_2$ + CH$_3$CHO	2.2×10^6	3300	(Herrmann and Zellner, 1998)
37	C$_3$H$_6$O + CO$_2^-$ $\xrightarrow{0.4}$ CO$_2^+$ + H$^+$ + HO$_2$ + CH$_3$CHO	1.5×10^4		(Kuz'min, 1972)
38	CH$_3$(OH)$_2$ + OH $\xrightarrow{0.4}$ H$_2$O + HO$_2$ + HCOOH	1.0×10^9	1020	(Hart et al., 1964; Chin and Wine, 1994)
39	CH$_3$(OH)$_2$ + SO$_4^-$ $\xrightarrow{0.4}$ SO$_2^+$ + H$^+$ + HO$_2$ + HCOOH	1.4×10^7	1300	(Buxton et al., 1990)
40	CH$_3$(OH)$_2$ + NO$_3^-$ $\xrightarrow{0.4}$ NO$_2^+$ + H$^+$ + HO$_2$ + HCOOH	1.0×10^6	4500	(Exner et al., 1993)
41	CH$_3$(OH)$_2$ + CO$_2^-$ $\xrightarrow{0.4}$ CO$_2^+$ + H$^+$ + HO$_2$ + HCOOH	1.3×10^4		(Zellner et al., 1996)
42	CH$_3$CH(OH)$_2$ + OH $\xrightarrow{0.4}$ H$_2$O + HO$_2$ + CH$_3$COOH	1.2×10^9		(Schuchmann and Vonsonntag, 1988)
43	CH$_3$CHO + OH $\xrightarrow{0.5 H_2O}$ H$_2$O + HO$_2$ + CH$_3$COOH	3.6×10^9		(Schuchmann and Vonsonntag, 1988)
44	CH$_3$CH(OH)$_2$ + SO$_4^-$ $\xrightarrow{0.4}$ SO$_2^+$ + H$^+$ + HO$_2$ + CH$_3$COOH	1×10^7		(Herrmann et al., 2000)
45	CH$_3$CH(OH)$_2$ + NO$_3^-$ $\xrightarrow{0.4}$ NO$_2^+$ + H$^+$ + HO$_2$ + CH$_3$COOH	1.9×10^6		(Zellner et al., 1996)
\[
\begin{align*}
46 & \quad \text{CH}_3\text{CH(OH)}_2 + \text{CO}_3^{2-} \overset{\Delta}{\rightarrow} \text{CO}_2^{3-} + \text{H}^+ + \text{HO}_2 + \text{CH}_3\text{COOH} & 1 \times 10^4 & \text{(Herrmann et al., 2000)} \\
47 & \quad \text{CH}_3\text{COO}^- + \text{SO}_4^{2-} \overset{\Delta}{\rightarrow} \text{SO}_2^{3-} + \text{CH}_3\text{O}_2 + \text{CO}_2 & 2.8 \times 10^7 & 1210 & \text{(Reese et al., 1997; Huie and Clifton, 1999)} \\
48 & \quad \text{CH}_3\text{COO}^- + \text{NO}_3^- \overset{\Delta}{\rightarrow} \text{NO}_5^- + \text{CH}_3\text{O}_2 + \text{CO}_2 & 2.9 \times 10^6 & 3800 & \text{(Exner et al., 1997)} \\
49 & \quad \text{CH}_3\text{COO}^- + \text{CO}_3^{2-} \overset{\Delta}{\rightarrow} \text{CO}_2^{3-} + \text{CH}_3\text{O}_2 + \text{CO}_2 & 580 & \text{(Zellner et al., 1996)} \\
50 & \quad \text{CH}_3\text{O}_2 + \text{CH}_3\text{O}_2 \rightarrow \text{CH}_3\text{OH} + \text{HCHO} + \text{O}_2 & 1.7 \times 10^8 & 2200 & \text{(Herrmann et al., 1999)} \\
51 & \quad \text{CH}_3\text{O}_2 + \text{HSO}_4^- \rightarrow \text{CH}_3\text{OH} + \text{SO}_4^{2-} & 5 \times 10^5 & \text{(Herrmann et al., 1999)} \\
52 & \quad \text{CO}_3^{2-} + \text{CH}_3\text{OOH} \rightarrow \text{HCO}_3^- + \text{CH}_3\text{O}_2 & 4.3 \times 10^5 & \text{(Herrmann et al., 2000)} \\
53 & \quad \text{CH}_3\text{O}_2 + \text{O}_2 \overset{\text{H}_2\text{O}}{\rightarrow} \text{CH}_3\text{OOH} + \text{OH}^- + \text{O}_2 & 5.0 \times 10^7 & 1050 & \text{(Jacob, 1986)} \\
54 & \quad \text{CH}_3\text{OOH} + \text{OH} \rightarrow \text{CH}_3\text{OH} + \text{OH}^- & 1.9 \times 10^7 & 1850 & \text{(Jacob, 1986)} \\
55 & \quad \text{CH}_3\text{OOH} + \text{OH} \rightarrow \text{CH}_3\text{O}_2 + \text{H}_2\text{O} & 2.7 \times 10^7 & 1700 & \text{(Jacob, 1986)} \\
56 & \quad \text{HOCH}_2\text{SO}_3^- + \text{OH} \overset{\Delta}{\rightarrow} \text{CH}_2(\text{OH})_2 + \text{SO}_4^- & 2.6 \times 10^8 & 1500 & \text{(Olson and Fessenden, 1992)} \\
57 & \quad \text{OH} + \text{HOCH}_2\text{SO}_3^- \rightarrow \text{SO}_2^{3-} + \text{H}^+ + \text{HCHO} & 1 \times 10^9 & \text{(Jacob, 1986)} \\
58 & \quad \text{CH}_2(\text{OH})_2 + \text{FeO}^{2+} \overset{\Delta}{\rightarrow} \text{Fe}^{3+} + \text{HCOOH} + \text{HO}_2 + \text{OH}^- & 400 & 5350 & \text{(Jacobsen et al., 1998)} \\
59 & \quad \text{CH}_3\text{O}_2 + \text{HO}_2 \rightarrow \text{CH}_3\text{OOH} + \text{O}_2 & 4.3 \times 10^5 & 3000 & \text{(Jacob, 1986)} \\
60 & \quad \text{HOCH}_2\text{SO}_3^- + \text{OH} \rightarrow \text{CH}_2(\text{OH})_2 + \text{SO}_4^- & 1.4 \times 10^9 & 1500 & \text{(Jacob, 1986)} \\
\end{align*}
\]

\(n = \text{reaction order} - 1\). The units are \(s^{-1}\) for first-order reactions and \(M^{-1} s^{-1}\) for second-order reactions. Reaction rate constant \(k = k_{298} \exp\left(-\frac{E_a}{R \left(\frac{1}{T} - \frac{1}{298}\right)}\right)\).
Figure S1: The relative differences in global seasonally averaged surface SO₂ mixing ratios between the Improved case and the Original case in 2015 after the incorporation of detailed in-cloud aqueous-phase chemical mechanisms (%). DJF, MAM, JJA and SON represent December-January-February, March-April-May, June-July-August and September-October-November, respectively, the same below.

Figure S2: The global seasonal average ratio of net chemical loss rates of surface SO₂ between the Improved case and the Original case in 2015 after the incorporation of detailed in-cloud aqueous-phase chemical mechanisms.
Figure S3: Scatter plots for monthly average SO$_2$ mixing ratios (ppbv) in EU, US, CN and JK in 2015. The black and red points represent the Original and Improved simulations, respectively. Five blue dashed lines indicate 4:1, 2:1, 1:1, 1:2 and 1:4, respectively. “Ori : Obs” and “Imp : Obs” represent the linear regression slopes of “Original case-Observation” and “Improved case-Observation”, respectively. The corresponding monitoring networks are (a) EMEP, (b) EPA, (c) CNEMC and (d) EANET.
Figure S4: Regional monthly-averaged mixing ratios (ppbv) of SO$_2$ in EU, US, CN and JK in 2015. The black, red and green lines represent the Observed, Original-simulated and Improved-simulated mixing ratios, respectively. The blue columns represent the relative differences (%) between Original and Improved simulations. The corresponding monitoring networks are (a) EMEP, (b) EPA, (c) CNEMC and (d) EANET.
Figure S5: The relative differences (%) in global seasonally averaged surface SO$_2$ mixing ratios in 2015 with the incorporation of HO$_x$-chemistry, Fe-chemistry, N-chemistry and carbonate chemistry individually, from top to bottom (case 3-6 – case 1).

Figure S6: The differences in global seasonally averaged surface SO$_2$ mixing ratios (unit: ppbv) in 2015 after changing the soluble [Fe$^{3+}$] concentration levels from 5 μM to 0.1 (top), 1, 20 and 100 μM (bottom) with the detailed aqueous-phase chemical mechanisms (case 7-10 – case 2).
Figure S7: The differences in global seasonally averaged surface SO$_2$ mixing ratios (unit: ppbv) in 2015 at different pH values on the basis of the Improved case with the overall detailed in-cloud aqueous-phase chemical mechanisms (case 11–14 – case 2). The pH values from top to bottom are 3, 4, 5 and 6. [Fe$^{3+}$] is set to 5 μM.

Figure S8: The differences in global seasonally averaged surface SO$_2$ mixing ratios (unit: ppbv) in 2015 at different pH values after the incorporation of N-chemistry individually (case 23–26 – case 5). The pH values from top to bottom are 3, 4, 5 and 6, respectively.
Figure S9: The differences in global seasonally averaged surface SO$_2$ mixing ratios (unit: ppbv) in 2015 at different pH values after the incorporation of HO$_x$-chemistry individually (case 15–18 – case 3). The pH values from top to bottom are 3, 4, 5 and 6, respectively.

[Fe$^{3+}$] is set to 5 μM.

Figure S10: The differences in global seasonally averaged surface SO$_2$ mixing ratios (unit: ppbv) in 2015 at different pH values after the incorporation of Fe-chemistry individually (case 19–22 – case 4). The pH values from top to bottom are 3, 4, 5 and 6, respectively. [Fe$^{3+}$] is set to 5 μM.
Figure S11: The differences in global seasonally averaged surface SO$_2$ mixing ratios (unit: ppbv) in 2015 with the incorporation of organic chemistry (case 27 – case 3).
References

Bell, R. P. and Evans, P. G.: Kinetics of the dehydration of methylene glycol in aqueous solution, Proc. R. Soc. London A 291, 297–323, 1966.

Bell, R. P., Rand, M. H., and Wynnejones, K. M. A.: Kinetics of the Hydration of Acetaldehyde, T Faraday Soc, 52, 1093-1102, 10.1039/t9565201093, 1956.

Betterton, E. A.: Henry’s law constants of some environmentally important aldehydes, in: Gaseous Pollutants: Characterization and Cycling, edited by: Nriagu, J. O., Wiley, New York, 1–50, 1992.

Betterton, E. A. and Hoffmann, M. R.: Henry's Law Constants of Some Environmentally Important Aldehydes, Environmental Science & Technology, 22, 1415-1418, 10.1021/es00177a004, 1988.

Buxton, G. V.: Mechanisms for chemical reactions in cloud droplets, in: Transport and Transformation of Pollutants in the Troposphere, Proceedings of EUROTRAC Symposium '94: SPB Academic Publishing, The Hague, The Netherlands, 978–983, 1994.

Buxton, G. V., Salmon, G. A., and Wood, N. D.: A pulse radiolysis study of the chemistry of oxysulfur radicals in aqueous solution, in: Proceedings of the Fifth European Symposium: Physico-Chemical Behaviour of Atmospheric Pollutants, edited by: restelli, G., and Angeletti, G., Kluwer, Dordrecht, 245–250, 1990.

Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B.: Critical-Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen-Atoms and Hydroxyl Radicals (OH/O$_3^-$) in Aqueous-Solution, J Phys Chem Ref Data, 17, 513-886, 10.1063/1.555805, 1988.

Chen, S., Cope, W. V., and Hoffman, M. Z.: Behavior of CO$_3^+$ radicals generated in the flash photolysis of carbonatoamines complexes of cobalt(III) in aqueous solutions, J. Phys. Chem., 77, 1111-1116, 1973.

Chin, M. and Wine, P. H.: A temperature-dependent competitive kinetics study of the aqueousphase reactions of OH radicals with formate, formic acid, acetate, acetic acid and hydrated formaldehyde, in: Aquatic and Surface Photochemistry, edited by: Helz, G. R., Zepp, R. G., and Crosby, D. G., Lewis Publishers, Boca Raton, 85–96, 1994.

Clifton, C. L. and Huije, R. E.: Rate Constants for Hydrogen Abstraction Reactions of the Sulfate Radical, SO$_4^{2-}$/Alcohols, Int J Chem Kinet, 21, 677-687, 10.1002/kin.550210807, 1989.

Davidovits, P., Hu, J. H., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: Entry of gas molecules into liquids, Faraday Discussions, 100, 65-81, 10.1039/fd9950000065, 1995.

Davidovits, P., Kolb, C. E., Williams, L. R., Jayne, J. T., and Worsnop, D. R.: Mass accommodation and chemical reactions at gas-liquid interfaces, Chemical Reviews, 106, 1323-1354, 2006.

Deister, U., Neeb, R., Helas, G., and Warneck, P.: Temperature-Dependence of the Equilibrium CH$_3$(OH)$_2$ + HSO$_3^-$ = CH$_3$(OH)SO$_4^-$ + H$_2$O in Aqueous-Solution, J Phys Chem-Us, 90, 3213-3217, 10.1021/j100405a033, 1986.

Elliot, A. J. and Mecracken, D. R.: Effect of Temperature on O$^-$ Reactions and Equilibria - a Pulse-Radiolysis Study, Radiat Phys Chem, 33, 69-74, 1989.

Exner, M., Herrmann, H., and Zellner, R.: Rate Constants for the Reactions of the NO$_3^-$ Radical with HCOOH/HCOO$^-$ and CH$_3$COOH/CH$_3$COO$^-$ in Aqueous-Solution between 278 and 328 K, J Atmos Chem, 18, 359-378, 10.1007/Bf00712451, 1994.

Exner, M., Herrmann, H., Michel, J. W., and Zellner, R.: Laser pulse initiated measurements of NO$_3^-$ reactions with S(IV) and organic compounds in aqueous solutions, , in: Photo-oxidants: Precursors and Products, edited by: Borrell, P. M., Borrell, P., Cvitaš, T., and Seiler, W., Proceedings of EUROTRAC Symposium '92, SPB Academic Publishing, The Hague, The Netherlands, 615–618, 1993.

Hart, E. J., Thomas, J. K., and Gordon, S.: A review of the radiation chemistry of single-carbon compounds and some reactions of the hydrated electron in aqueous solution, Radiat. Res. Suppl., 4, 74–88, 1964.

Herrmann, H. and Zellner, R.: Reactions of NO$_3^-$ radicals in aqueous solution, in: N-Centered Radicals, John Wiley and Sons Ltd, 1998.

Herrmann, H., Reese, A., Ervens, B., Wicktor, F., and Zellner, R.: Laboratory and modelling studies of tropospheric multiphase conversions involving some C1 and C2 peroxy radicals, Phys Chem Earth Pt B, 24, 287-290, 1999.

Herrmann, H., Ervens, B., Jacobi, H. W., Wolke, R., Nowacki, P., and Zellner, R.: CAPRAM2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry, J Atmos Chem, 36, 231-284, 10.1023/A:1006318622743, 2000.
Huie, R. E. and Clifton, C. L.: Temperature-Dependence of the Rate Constants for Reactions of the Sulfate Radical, SO_4^-, with Anions, J Phys Chem-Us, 94, 8561-8567, 10.1021/j100386a015, 1990.

Jacob, D. J.: Chemistry of OH in Remote Clouds and Its Role in the Production of Formic-Acid and Peroxymonosulfate, J Geophys Res-Atmos, 91, 9807-9826, 10.1029/JD091iD09p09807, 1986.

Jacobi, H. W., Herrmann, H., and Zellner, R.: A laser flash photolysis study of the decay of Cl-atoms and Cl$_2^-$ radical anions in aqueous solution at 298 K, Ber Bunsen Phys Chem, 101, 1909-1913, 10.1002/bbpc.19971011217, 1997.

Jacobsen, F., Holcman, J., and Sehested, K.: Reactions of the ferryl ion with some compounds found in cloud water, Int J Chem Kinet, 30, 215-221, 1998.

Kuz'min, V. A.: Reactions of the CO$_3^-$ and SiO$_3^-$ radical anions, High Energy Chem., 6, 338–339, 1972.

Lind, J. A. and Kok, G. L.: Correction to ‘Henry’s law determinations for aqueous solutions of hydrogen peroxide, methylhydroperoxide and peroxyacetic acid’, J. Geophys. Res., 99, 21119, 1994.

Lind, J. A., Lazrus, A. L., and Kok, G. L.: Aqueous Phase Oxidation of Sulfur(IV) by Hydrogen-Peroxide, Methylhydroperoxide, and Peroxyacetic Acid, J Geophys Res-Atmos, 92, 4171-4177, 10.1029/JD092iD04p04171, 1987.

Munger, J. W., Tiller, C., and Hoffmann, M. R.: Identification of Hydroxymethanesulfonate in Fog Water, Science, 231, 247-249, 10.1126/science.231.4735.247, 1986.

Olson, T. M. and Fessenden, R. W.: Pulse-Radiolysis Study of the Reaction of OH Radicals with Methanesulfonate and Hydroxymethanesulfonate, J Phys Chem-Us, 96, 3317-3320, 1992.

Olson, T. M. and Hoffmann, M. R.: Hydroxalkylsulfonate Formation - Its Role as a S(IV) Reservoir in Atmospheric Water Droplets, Atmospheric Environment, 23, 985-997, 10.1016/0004-6981(89)90302-8, 1989.

Reese, A., Herrmann, H., and Zellner, R.: Kinetics and spectroscopy of organic peroxyl radicals (RO$_2$) in aqueous solution, Proceedings of Eurotrac Symposium '96 - Transport and Transformation of Pollutants in the Troposphere, Vol 1, 377-381, 1997.

Schuchmann, M. N. and Vonsonntag, C.: The Rapid Hydration of the Acetyl Radical - a Pulse-Radiolysis Study of Acetaldehyde in Aqueous-Solution, J Am Chem Soc, 110, 5698-5701, 1988.

Zellner, R., Herrmann, H., Exner, M., Jacobi, H.-W., Raabe, G., and Reese, A.: Formation and Reactions of Oxidants in the Aqueous Phase, in: Heterogeneous and Liquid Phase Processes, Springer, Berlin, 146-152, 1996.