A NOTE ON TRACE SCALING ACTIONS
AND FUNDAMENTAL GROUPS OF C*-ALGEBRAS

NORIO NAWATA

(Communicated by Marius Junge)

Abstract. Using the Effros-Handelman-Shen theorem and Elliott’s classification theorem of AF algebras, we show that there exists a unital simple AF algebra A with unique trace such that $A \otimes K$ admits no trace scaling action of the fundamental group of A.

1. Introduction

Let M be a factor of type II$_1$ with a normalized trace. Murray and von Neumann introduced the fundamental group $F(M)$ of M in [14]. They showed that if M is hyperfinite, then $F(M) = \mathbb{R}_+^\infty$. Since then there have been many works on the computation of the fundamental groups. Voiculescu [24] showed that $F(L(F_\infty))$ of the group factor of the free group F_∞ contains the positive rationals and Radulescu proved that $F(L(F_\infty)) = \mathbb{R}_+^\infty$ in [21]. Connes [3] showed that if G is an ICC group with property (T), then $F(L(G))$ is a countable group. Popa showed that any countable subgroup of \mathbb{R}_+^∞ can be realized as the fundamental group of some factor of type II$_1$ in [15]. Furthermore, Popa and Vaes [19] exhibited a large family S of subgroups of \mathbb{R}_+^∞, containing \mathbb{R}_+^∞ itself, all of its countable subgroups, as well as uncountable subgroups with any Hausdorff dimension in $(0, 1)$, such that for each $G \in S$ there exist many free ergodic measure preserving actions of F_∞ for which the associated II$_1$ factor M has the fundamental group equal to G. In our previous paper [16] (see also [15]), we introduced the fundamental group $F(A)$ of a simple unital C*-algebra A with a normalized trace τ based on the computation of Picard groups by Kodaka [11], [12] and [13]. The fundamental group $F(A)$ is defined as the set of the numbers $\tau \otimes \text{Tr}(p)$ for some projection $p \in M_n(A)$ such that $pM_n(A)p$ is isomorphic to A. We computed fundamental groups of several C*-algebras and showed that any countable subgroup of \mathbb{R}_+^∞ can be realized as the fundamental group of a separable simple unital C*-algebra with unique trace [17].

The fundamental group of a II$_1$ factor M is equal to the set of trace scaling constants for automorphisms of $M \otimes B(H)$. We have a similar fact; that is, the fundamental group of a C*-algebra A is equal to the set of trace scaling constants for automorphisms of $A \otimes K$ [16] (see also [15]). It is of interest to know whether $A \otimes K$ admits a trace scaling action of $F(A)$. In the case where M is a factor of type II$_1$, the existence of a trace scaling (continuous) \mathbb{R}_+^∞-action on $M \otimes B(H)$ is equivalent...
to the existence of a type III_1 factor having a core isomorphic to $M \otimes B(H)$ by the continuous decomposition of type III_1 factors. (See \cite{23} and \cite{1}.) Hence this question is important in the theory of von Neumann algebras. Radulescu showed that $L(F_\infty) \otimes B(H)$ admits a trace scaling action of \mathbb{R}_+^\times in \cite{22}. Therefore there exists a type III_1 factor having a core isomorphic to $L(F_\infty) \otimes B(H)$. Popa and Vaes \cite{20} showed that there exists a II_1 factor M such that $\mathcal{F}(M) = \mathbb{R}_+^\times$ and $M \otimes B(H)$ admits no trace scaling (continuous) action of \mathbb{R}_+^\times.

In this paper we consider trace scaling actions on certain AF algebras. If A is a UHF algebra, then $A \otimes \mathbb{K}$ admits a trace scaling action of $\mathcal{F}(A)$. Using the Effros-Handelman-Shen theorem and Elliott’s classification theorem of AF algebras, we show that there exists a unital simple AF algebra A with unique trace such that $A \otimes \mathbb{K}$ admits no trace scaling action of $\mathcal{F}(A)$. Note that there exist remarkable works of the classification of trace scaling automorphisms in \cite{1}, \cite{8} and \cite{9}. But we do not consider the classification of trace scaling actions in this paper.

2. Examples

We recall some definitions in \cite{16}. Let A be a unital simple C^*-algebra with a unique normalized trace τ and Tr the usual unnormalized trace on $M_n(C)$. Put $\mathcal{F}(A) := \{\tau \otimes \text{Tr}(p) \in \mathbb{R}_+^\times \mid p \text{ is a projection in } M_n(A) \text{ such that } pM_n(A)p \cong A\}$. Then $\mathcal{F}(A)$ is a multiplicative subgroup of \mathbb{R}_+^\times by Theorem 3.1 in \cite{16}. For an additive subgroup E of \mathbb{R} containing 1, we define the positive inner multiplier group $IM_+(E)$ of E by

$$IM_+(E) = \{t \in \mathbb{R}_+^\times \mid t \in E, t^{-1} \in E, \text{ and } tE = E\}.$$

Then we have $\mathcal{F}(A) \subset IM_+(\tau_n(K_0(A)))$ by Proposition 3.7 in \cite{16}. This obstruction enables us to compute fundamental groups easily. For $x \in (A \otimes \mathbb{K})_+$, set $\hat{\tau}(x) = \sup\{\tau \otimes \text{Tr}(y) : y \in \bigcup_n M_n(A), y \leq x\}$. Define $\mathcal{M}^+_\hat{\tau} = \{x \geq 0 : \hat{\tau}(x) < \infty\}$ and $\mathcal{M}_\hat{\tau} = \text{span} \mathcal{M}^+_\hat{\tau}$. Then $\hat{\tau}$ is a densely defined (with the domain $\mathcal{M}_\hat{\tau}$) lower semicontinuous trace on $A \otimes \mathbb{K}$. Since the normalized trace on a unital C^*-algebra A is unique, the lower semicontinuous densely defined trace on $A \otimes \mathbb{K}$ is unique up to constant multiple. It is clear that for any $\alpha \in \text{Aut}(A \otimes \mathbb{K})$, $\hat{\tau} \circ \alpha$ is a densely defined (with the domain $\alpha^{-1}(\mathcal{M}_\hat{\tau}$)) lower semicontinuous trace on $A \otimes \mathbb{K}$. Therefore there exists a positive number λ such that $\hat{\tau} \circ \alpha = \lambda \hat{\tau}$, and hence $\alpha^{-1}(\mathcal{M}_\hat{\tau}) = \mathcal{M}_\hat{\tau}$. We define the set of trace scaling constants for automorphisms:

$$\mathcal{G}(A) := \{\lambda \in \mathbb{R}_+^\times \mid \hat{\tau} \circ \alpha = \lambda \hat{\tau} \text{ for some } \alpha \in \text{Aut}(A \otimes \mathbb{K})\}.$$

Then $\mathcal{F}(A) = \mathcal{G}(A)$ by Proposition 3.28 in \cite{16}. Therefore it is of interest to know whether $A \otimes \mathbb{K}$ admits a trace scaling action of $\mathcal{F}(A)$.

It is clear that if the fundamental group of A is singly generated, $A \otimes \mathbb{K}$ admits a trace scaling action of $\mathcal{F}(A)$. See \cite{16} and \cite{17} for such examples. We shall show some examples of AF algebras A such that $A \otimes \mathbb{K}$ admits a trace scaling action of $\mathcal{F}(A)$.

Example 2.1. Consider a UHF algebra $M_{2^\infty,3^\infty}$. Then the fundamental group of $M_{2^\infty,3^\infty}$ is a multiplicative subgroup generated by 2 and 3. Hence $\mathcal{F}(M_{2^\infty,3^\infty})$ is isomorphic to \mathbb{Z}^2 as a group. Since $M_{2^\infty,3^\infty} \otimes \mathbb{K}$ is isomorphic to $M_{2^\infty} \otimes \mathbb{K} \otimes M_{3^\infty} \otimes \mathbb{K}$, there exists a trace scaling \mathbb{Z}^2-action on $M_{2^\infty,3^\infty} \otimes \mathbb{K}$. In general, if A is a UHF algebra, then $\mathcal{F}(A)$ is a free abelian group (see \cite{16}) and $A \otimes \mathbb{K}$ admits a trace scaling action of $\mathcal{F}(A)$ (see also \cite{5}).
Example 2.2. Let A be a unital simple AF algebra such that $K_0(A) = \mathbb{Z} + \mathbb{Z}\sqrt{3}$, $K_0(A)_+ = (\mathbb{Z} + \mathbb{Z}\sqrt{3}) \cap \mathbb{R}_+$ and $[1]_0 = 1$. Then $\mathcal{F}(A) = \{(2 + \sqrt{3})^n : n \in \mathbb{Z}\}$ (see Proposition 3.17 and Corollary 3.18 in [16]). Consider $B = M_5 \otimes A$. Then it is easily seen that $\tau_*(K_0(B)) = \mathbb{Z}O[\frac{1}{5}] + \mathbb{Z}O[\frac{1}{5}]\sqrt{3}$ and τ_* is an order isomorphism. We shall show that $IM_+(\tau_*(K_0(B)))$ is generated by 5 and $2 + \sqrt{3}$. Since $\tau_*(K_0(B))$ is a subring of \mathbb{R}, $IM_+(\tau_*(K_0(B)))$ is a group of positive invertible elements. Define a multiplicative map N of $\mathbb{Z}O[\frac{1}{5}] + \mathbb{Z}O[\frac{1}{5}]\sqrt{3}$ to $\mathbb{Z}O[\frac{1}{5}]$ by $N(a + b\sqrt{3}) = a^2 - 3b^2$ for any $a, b \in \mathbb{Z}O[\frac{1}{5}]$. If $a + b\sqrt{3}$ is an invertible element in $\mathbb{Z}O[\frac{1}{5}] + \mathbb{Z}O[\frac{1}{5}]\sqrt{3}$, then there exists an integer n such that $N(a + b\sqrt{3}) = \pm 5^n$. Elementary computations show that $x^2 - 3y^2 \equiv 0 \mod 25$ implies $x \equiv 0 \mod 5$ and $y \equiv 0 \mod 5$. It is easy to see that no integers x and y satisfy equations $x^2 - 3y^2 = 5$, $x^2 - 3y^2 = -5$ or $x^2 - 3y^2 = -1$. There exist integers x and y that satisfy the equation $x^2 - 3y^2 = 1$. Indeed, $x = 2, y = 1$ is such an example. (See, for example, [10] and [16].) Therefore, it can be easily checked that $IM_+(\tau_*(K_0(B)))$ is generated by 5 and $2 + \sqrt{3}$. Hence we see that $\mathcal{F}(B) = \{5^n(2 + \sqrt{3})^m : n, m \in \mathbb{Z}\}$ by Proposition 3.17 in [16] and $B \otimes K$ admits a trace scaling action.

We shall show that there exists a unital simple AF algebra A with unique trace such that $A \otimes K$ admits no trace scaling action of $\mathcal{F}(A)$. Define

$$E = \left\{ \left(\frac{j + k\sqrt{3}}{5^6}, \begin{pmatrix} x \\ y \end{pmatrix} \right) \in \mathbb{R} \times \mathbb{Z}^2 \mid i, j, k, x, y \in \mathbb{Z}, x \equiv j \mod 9, y \equiv k \mod 3 \right\},$$

$$E_+ = \left\{ \left(r, \begin{pmatrix} x \\ y \end{pmatrix} \right) \in E \mid r > 0 \right\} \cup \left\{ \left(0, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right) \right\} \text{ and } [u]_0 = (1, \begin{pmatrix} 1 \\ 0 \end{pmatrix}).$$

Then there exists a simple AF algebra A with a unique normalized trace τ such that $(K_0(A), K_0(A)_+, [1]_0) = (E, E_+, u)$ by the Effros-Handelman-Shen theorem [6].

Lemma 2.3. With notation as above the fundamental group of A is equal to the multiplicative group generated by 5 and $2 + \sqrt{3}$.

Proof. Since $\tau_*(K_0(A))$ is equal to $\mathbb{Z}O[\frac{1}{5}] + \mathbb{Z}O[\frac{1}{5}]\sqrt{3}$, $\mathcal{F}(A)$ is a subgroup of $\{5^n(2 + \sqrt{3})^m : n, m \in \mathbb{Z}\}$ by an argument in Example 2.2. Define an additive homomorphism $\phi : E \to E$ by

$$\phi((r, \begin{pmatrix} x \\ y \end{pmatrix})) = (5r, \begin{pmatrix} 5 \\ 6 \end{pmatrix}) \begin{pmatrix} 9 \\ 11 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}).$$

Computations show that ϕ is a well-defined order isomorphism of E with $\phi(u) = (5, \begin{pmatrix} 5 \\ 6 \end{pmatrix})$. There exist a natural number n and a projection p in $M_n(A)$ such that $[p]_0 = (5, \begin{pmatrix} 5 \\ 6 \end{pmatrix})$ and $\tau \otimes \text{Tr}(p) = 5$. Since we have $(K_0(pM_n(A)p), K_0(pM_n(A)p)_+, [p]_0) = (E, E_+, 5, \begin{pmatrix} 5 \\ 6 \end{pmatrix}))$, there exists an isomorphism $f : A \to pM_n(A)p$ with $f_* = \phi$ by Elliott’s classification theorem of AF algebras [7]. Therefore $5 \in \mathcal{F}(A)$. Define an additive homomorphism $\psi : E \to E$ by

$$\psi((r, \begin{pmatrix} x \\ y \end{pmatrix})) = ((2 + \sqrt{3})r, \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}).$$

Then we see that $2 + \sqrt{3} \in \mathcal{F}(A)$. Consequently $\mathcal{F}(A)$ is the multiplicative group generated by 5 and $2 + \sqrt{3}$. \square
We shall consider the order automorphisms of \((E, E_+)\).

Lemma 2.4. Let \(\phi\) be an order automorphism of \((E, E_+)\). Then there exist integers \(a, b, c, d\) and a positive invertible element \(\lambda\) in \(\mathbb{Z}[\frac{1}{5}] + \mathbb{Z}[\frac{1}{5}]\sqrt{3}\) such that \(ad - bc = \pm 1\) and
\[
\phi((r, \begin{pmatrix} x \\ y \end{pmatrix})) = (\lambda r, \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}).
\]
Moreover if \(\lambda = 5\), then
\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 5 & 0 \\ 3 & 2 \end{pmatrix}, \begin{pmatrix} 5 & 0 \\ 6 & 2 \end{pmatrix} \mod 9,
\]
and if \(\lambda = 2 + \sqrt{3}\), then
\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 2 & 3 \\ 4 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 3 \\ 7 & 2 \end{pmatrix} \mod 9.
\]

Proof. We denote by \((\phi_1((r, \begin{pmatrix} x \\ y \end{pmatrix})), \phi_2((r, \begin{pmatrix} x \\ y \end{pmatrix})))) the element \(\phi((r, \begin{pmatrix} x \\ y \end{pmatrix})))\) for any \((r, \begin{pmatrix} x \\ y \end{pmatrix}) \in E\). Consider a subgroup \(F\) generated by \((0, \begin{pmatrix} 9 \\ 0 \end{pmatrix})\) and \((0, \begin{pmatrix} 0 \\ 3 \end{pmatrix})\). Then \(F\) is an \(\phi\)-invariant subgroup because \(\phi\) is an order isomorphism. Hence there exist integers \(m_1, m_2, m_3, m_4\) such that \(m_1m_4 - m_2m_3 = \pm 1\) and
\[
\phi_2((0, \begin{pmatrix} x \\ y \end{pmatrix})) = \left(\frac{m_1}{m_3}, \frac{3m_2}{m_4} \right) \begin{pmatrix} x \\ y \end{pmatrix} \text{ for any } (0, \begin{pmatrix} x \\ y \end{pmatrix}) \in F.
\]
Furthermore we see that there exists a positive invertible element \(\lambda\) in \(\mathbb{Z}[\frac{1}{5}] + \mathbb{Z}[\frac{1}{5}]\sqrt{3}\) such that
\[
\phi_1((r, \begin{pmatrix} x \\ y \end{pmatrix}))) = \lambda r. \text{ Since } 5^6\phi\left((\frac{9}{5^{17}}, \begin{pmatrix} 0 \\ 0 \end{pmatrix})\right) = \phi\left((9, \begin{pmatrix} 0 \\ 0 \end{pmatrix})\right)\text{ for any } i \in \mathbb{Z},\text{ we see that } \phi_2((9, \begin{pmatrix} 0 \\ 0 \end{pmatrix}))) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.\]
This observation and easy computations show that
\[
\phi((1, \begin{pmatrix} 1 \\ 0 \end{pmatrix}))) = (\lambda, \left(\frac{m_1}{m_3}, \frac{3m_2}{m_4} \right) \begin{pmatrix} 1 \\ 0 \end{pmatrix})\text{ and } \frac{m_1}{m_3} \in \mathbb{Z}.\]
In a similar way, we see that
\[
\phi((\sqrt{3}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}))) = (\lambda\sqrt{3}, \left(\frac{m_1}{m_3}, \frac{3m_2}{m_4} \right) \begin{pmatrix} 0 \\ 1 \end{pmatrix}).\]
It is easily seen that \(\phi\) is determined by the values of \(\phi((1, \begin{pmatrix} 1 \\ 0 \end{pmatrix}))), \phi((\sqrt{3}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}))), \phi((0, \begin{pmatrix} 9 \\ 0 \end{pmatrix})))\) and \(\phi((0, \begin{pmatrix} 0 \\ 3 \end{pmatrix})))\). Therefore there exist integers \(a, b, c, d\) and a positive invertible element \(\lambda\) in \(\mathbb{Z}[\frac{1}{5}] + \mathbb{Z}[\frac{1}{5}]\sqrt{3}\) such that \(ad - bc = \pm 1\) and
\[
\phi((r, \begin{pmatrix} x \\ y \end{pmatrix}))) = (\lambda r, \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}).
\]
Let \(\lambda = 5\); then \(a \equiv 5 \mod 9\), \(b \equiv 0 \mod 9\), \(c \equiv 0 \mod 3\) and \(d \equiv 5 \mod 3\) by the definition of \(E\). If \(ad - bc = 1\), then \(d \equiv 5^5 \mod 9\), \(-b \equiv 0 \mod 9\), \(-c \equiv 0 \mod 3\) and \(a \equiv 5^5 \mod 3\) because \(\phi\) is an isomorphism. Therefore computations show that
\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 5 & 0 \\ 3 & 2 \end{pmatrix}, \begin{pmatrix} 5 & 0 \\ 6 & 2 \end{pmatrix} \mod 9.
\]
If \(ad - bc = -1\), then \(-d \equiv 5^5 \mod 9\), \(b \equiv 0 \mod 9\), \(c \equiv 0 \mod 3\) and \(-a \equiv 5^5 \mod 3\). There does not exist an integer \(a\) such that \(a \equiv 5 \mod 9\) and \(-a \equiv 5^5 \mod 3\).
Therefore we reach a conclusion in the case $\lambda = 5$. In the case $\lambda = 2 + \sqrt{3}$, a similar argument as above proves the lemma.

Theorem 2.5. There exists a unital simple AF algebra A with unique trace such that $A \otimes \mathbb{K}$ admits no trace scaling action of $\mathcal{F}(A)$.

Proof. Let

$$E = \left\{ \left(\frac{j + k \sqrt{3}}{5^i}, \left(\begin{array}{c} x \\ y \end{array} \right) \right) \in \mathbb{R} \times \mathbb{Z}^2 \mid i, j, k, x, y \in \mathbb{Z}, x \equiv j \mod 9, y \equiv k \mod 3 \right\},$$

$$E_+ = \left\{ \left(r, \left(\begin{array}{c} x \\ y \end{array} \right) \right) \in E \mid r > 0 \right\} \cup \left\{ \left(0, \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \right) \right\} \text{ and } [u]_0 = \left(\begin{array}{c} 1 \\ 0 \end{array} \right).$$

Then there exists a simple AF algebra A with a unique normalized trace τ such that $(K_0(A), K_0(A)_+, [1_A]_0) = (E, E_+, u)$ by the Effros-Handelman-Shen theorem [6]. By Lemma 2.3, $\mathcal{F}(A) = \left\{ 5^n(2 + \sqrt{3})^m : n, m \in \mathbb{Z} \right\}$. Let α be an automorphism of $A \otimes \mathbb{K}$ such that $\tilde{\tau} \circ \alpha = 5\tilde{\tau}$ and β an automorphism of $A \otimes \mathbb{K}$ such that $\tilde{\tau} \circ \beta = (2 + \sqrt{3})\tilde{\tau}$. Then α_* and β_* are order isomorphisms of $(K_0(A), K_0(A)_+)$. Lemma 2.4 and computations show that $\alpha_* \circ \beta_* \neq \beta_* \circ \alpha_*$. Therefore $A \otimes \mathbb{K}$ admits no trace scaling action of $\mathcal{F}(A)$.

Remark 2.6. Let A be a unital simple C^*-algebra with a unique normalized trace τ. We denote by $\text{Pic}(A)$ the Picard group of A (see [2]). Assume that the normalized trace on A separates equivalence classes of projections. Then we have the following exact sequence [16] (see also [11]):

$$1 \longrightarrow \text{Out}(A) \xrightarrow{\rho_A} \text{Pic}(A) \xrightarrow{T} \mathcal{F}(A) \longrightarrow 1.$$

If $A \otimes \mathbb{K}$ admits a trace scaling action of $\mathcal{F}(A)$, then $\text{Pic}(A)$ is isomorphic to a semidirect product of $\text{Out}(A)$ with $\mathcal{F}(A)$. Example 2.1 and Example 2.2 are such examples. We do not know whether there exists a simple C^*-algebra A with a unique normalized trace τ such that the normalized trace on A separates equivalence classes of projections and $A \otimes \mathbb{K}$ admits no trace scaling action of $\mathcal{F}(A)$.

Remark 2.7. If A is a C^*-algebra in the proof of Theorem 2.5 then it can be checked that $\text{Out}(A)$ is not a normal subgroup of $\text{Pic}(A)$ by Lemma 2.4 in this paper, Proposition 1.5 in [11] and Elliott’s classification theorem of AF algebras.

References

[1] Ola Bratteli and Akitaka Kishimoto, *Trace scaling automorphisms of certain stable AF algebras, II*, J. Q. J. Math. 51 (2000), no. 2, 131–154, DOI 10.1093/qjmath/51.2.131. MR1765786 (2001j:46092)

[2] Lawrence G. Brown, Philip Green, and Marc A. Rieffel, *Stable isomorphism and strong Morita equivalence of C^*-algebras*, Pacific J. Math. 71 (1977), no. 2, 349–363. MR0463928 (57 #3866)

[3] A. Connes, *A factor of type II_1 with countable fundamental group*, J. Operator Theory 4 (1980), no. 1, 151–153. MR0587372 (81j:46009)

[4] Alain Connes and Masamichi Takesaki, *The flow of weights on factors of type III*, Tôhoku Math. J. (2) 29 (1977), no. 4, 473–575, DOI 10.2748/tmj/1178240493. MR0480760 (82a:46069a)

[5] Giulio Della Rocca and Masamichi Takesaki, *The role of groupoids in classification theory: a new approach*, The UHF algebra case, Groupoids in analysis, geometry, and physics (Boulder, CO, 1999), Contemp. Math., vol. 282, Amer. Math. Soc., Providence, RI, 2001, pp. 47–65, DOI 10.1090/conm/282/04678. MR1855242 (2002i:46049)
[6] Edward G. Effros, David E. Handelman, and Chao Liang Shen, *Dimension groups and their affine representations*, Amer. J. Math. **102** (1980), no. 2, 385–407, DOI 10.2307/2374244. MR **564479** (83g:46061)

[7] George A. Elliott, *On the classification of inductive limits of semisimple finite-dimensional algebras*, J. Algebra **38** (1976), no. 1, 29–44. MR **0397420** (53 #1279)

[8] George A. Elliott, David E. Evans, and Akitaka Kishimoto, *Outer conjugacy classes of trace scaling automorphisms of stable UHF algebras*, Math. Scand. **83** (1998), no. 1, 74–86. MR **1662080** (2000h:46076)

[9] David E. Evans and Akitaka Kishimoto, *Trace scaling automorphisms of certain stable AF algebras*, Hokkaido Math. J. **26** (1997), no. 1, 211–224. MR **1432548** (98e:46081)

[10] Michael J. Jacobson Jr. and Hugh C. Williams, *Solving the Pell equation*, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, New York, 2009. MR **246979** (2009:11003)

[11] Kazunori Kodaka, *Full projections, equivalence bimodules and automorphisms of stable algebras of unital C^*-algebras*, J. Operator Theory **37** (1997), no. 2, 357–369. MR **1452282** (98c:46149)

[12] Kazunori Kodaka, *Picard groups of irrational rotation C^*-algebras*, J. London Math. Soc. (2) **56** (1997), no. 3, 573–587, DOI 10.1112/S00246107970050243. MR **1662080** (2000h:46071)

[13] Kazunori Kodaka, *Projections inducing automorphisms of stable UHF-algebras*, Glasg. Math. J. **41** (1999), no. 3, 345–354, DOI 10.1017/S0017089599000336. MR **1720450** (2000e:46081)

[14] Florin Rădulescu, *The fundamental group of the von Neumann algebra of a free group with infinitely many generators is \mathbb{R}, J. Amer. Math. Soc. **5** (1992), no. 3, 517–532, DOI 10.2307/2152703. MR **1142260** (93a:46111)

[15] Florin Rădulescu, *A one-parameter group of automorphisms of $\mathcal{L}(F_\infty) \otimes B(H)$ scaling the trace*, C. R. Acad. Sci. Paris Sér. I Math. **314** (1992), no. 13, 1027–1032. MR **1168529** (93i:46111)

[16] Masamichi Takesaki, *Duality for crossed products and the structure of von Neumann algebras of type III*, Acta Math. **131** (1973), 249–310. MR **0438149** (55 #11068)

[17] Dan Voiculescu, *Circular and semicircular systems and free product factors*, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989), Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 45–60. MR **1035855** (92e:46124)

Department of Mathematics and Informatics, Graduate school of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba, 263-8522, Japan

Current address: Department of Arts and Sciences, Osaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka, 582-8582, Japan

E-mail address: nawata@cc.osaka-kyoiku.ac.jp