Food Name	Food Type	Fermentation	Type	Origin	Incubation Time	Medium	Microflora	Source
kimchi	vegetable (many kinds)	acid	Asia	1 month	undergarments and pork	Lactic acid bacteria (LAB)	Em et al., 1986	
sauerkraut	vegetable (krauts)	acid	Europe	weeks to months	salted and packed in jars with brine	Enterobacteriacea, LAB, yeasts	Han et al., 1991, Kwon et al., 1971	
puffed (aged black tea)	vegetable (leaves)	acid	Asia	weeks to months	salted and packed in jars with brine	Aspergillus, Pantothium, Rhizopus, and Saccharomyces spp.	Wang et al., 2013, Li et al., 2013	
grape leaves	vegetable (leaves)	acid	Europe/Mediterranean East	weeks to months	sealed	LAB		
seni	vegetable (leaves)	acid	India, Nepal	weeks	dried and packed in jars	LAB, yeasts, fungi	Voogt et al., 2013, Ruy and Giannini, 2008	
gari	vegetable (leaves)	acid	East Asia	several days	grilled, placed in burlap sacks	Leucosporidium, LAB, yeasts	Caloglu et al., 1996	
gari	vegetable (leaves)	acid	East Asia	several days	steamed, ground, placed in barrels	LAB, Phaffiomyces	Caloglu et al., 1996, Bieger and Young, 1953	
sonoran	vegetable (leaves)	acid	Sonoran America	months	water fermentation	LAB	Wargon, 1979, Sorrenti et al., 2013	
nedi	vegetable (leaves)	alkali	Japan	1 day	steamed, water immersion	LAB	Rii and Sakamoto, 2005, Oda et al., 2013	
kimchee	vegetable (leaves)	alkali	Korea	1/3 day	sealed, boiled, wrapped	LAB, yeasts	Seo et al., 1990, Maeda et al., 1989	
sbi	vegetable (leaves)	acid	India	20 h	ground, mixed with water	Leucosporidium maritimum, yeasts	Bullard and Satelina, 1976	
tempuyog	vegetable (leaves)	acid	Indonesia	1 day	sealed, boiled, wrapped	Rhizopus sp., Bacillus	Nakashima et al., 1993, Endo and Ion, 2001	
soy sauce	vegetable (leaves)	alkali + acid	Asia	1 year	sealed and boiled, then bottled	Aspergillus, LAB and yeasts	Yagi and Yano, 1974, Chai and Ling, 1999	
miso	vegetable (leaves)	alkali	Southeast Asia	days to years	sealed, boiled, placed in layers	Leucosporidium mesenteroides, yeasts	Bullard and Satelina, 1976, Fleming and Cichewi, 2001	
kimchee	vegetable (leaves)	alkali	Korea	1 day	sealed, boiled, wrapped	LAB, yeasts and fungi	Arakawa et al., 2000	
dawadeewa	vegetable (leaves)	alkali	East Africa	days to years	boiled, ground, packed in pots	LAB, yeasts and fungi	Schirren and Wenslau, 1998, Schirren and Ron, 2014	
donagorai	vegetable (leaves)	alkali	East Africa	days to years	boiled, ground, packed in pots	LAB, yeasts and fungi	Ron, 2015	
meat	meat	alcohol	Asia, Europe	months to years	boiled, packed in jars	LAB, yeasts and fungi	Ron, 2015	
fish	fish	alcohol	Asia, Europe	weeks to months	boiled, packed in jars	LAB, yeasts and fungi	Ron, 2015	
kelp	fish	alcohol	Asia, Europe	12-48 h	boiled, placed in sealed containers	LAB, Monosporium, Phialophora, fungi	Ron, 2015, Graham and Weeks, 2015	
ham	meat	alcohol	Asia, Europe	months to years	boiled, placed in sealed containers	LAB, Monosporium, yeasts, molds	Ron, 2015, Graham and Weeks, 2015	
jamon	meat	alcohol	North America	days	boiled, chopped, and sealed with fat	*	Ron, 2015, Graham and Weeks, 2015	
brie	cheese	acid	France	5 days	ripened and aged	LAB, yeasts, molds	Ron, 2015, Graham and Weeks, 2015, Orskov et al., 2015	
cheddar	cheese	acid	England	weeks to months	aged, packed in jars	LAB, yeasts, molds	Ron, 2015, Graham and Weeks, 2015, Orskov et al., 2015	
cheese	cheese	acid	Europe, Central Asia, N. Africa	days to years	heat, stored, sealed	LAB, mesophilic bacteria, yeasts, molds	Ron, 2015, Graham and Weeks, 2015	

* Unavailable information

Where possible, descriptions are based on non-commercial/industrialized methods. Location origin descriptions are more or less geographically specific depending on available information.
Supplementary References

1. Avallone, S., Guyot, B., Brillouet, J. M., Olguin, E., & Guiraud, J. P. (2001). Microbiological and biochemical study of coffee fermentation. Current Microbiology, 42(4), 252–256.
2. Bamforth, C. W. (2008). Food, Fermentation and Micro-organisms. John Wiley & Sons.
3. Başoğlu, F., Şahı̇n, İ., Korukluoğlu, M., Uylaser, V., & Akpinar, A. (1996). A research on the effects of fermentation type and additives on quality and preservation and development of adequate technique in brined vine-leaves production. Turkish Journal of Agriculture and Forestry, 20(6), 535–545.
4. Battcock, M., Azam-Ali, S., & Food and Agriculture Organization of the United Nations. (1998). Fermented Fruits and Vegetables: A Global Perspective. Food & Agriculture Org.
5. Bilger, L. N., Young, H. Y., & Others. (1935). A Chemical Investigation of the Fermentations Occurring in the Process of Poi Manufacture. US Government Printing Office.
6. Campbell-Platt, G. (1994). Fermented foods—a world perspective. Food Research International, 27(3), 253–257.
7. Chaves-López, C., Serio, A., Martuscelli, M., Paparella, A., Osorio-Cadavid, E., & Suzzi, G. (2011). Microbiological characteristics of kumis, a traditional fermented Colombian milk, with particular emphasis on enterococci population. Food Microbiology, 28(5), 1041–1047.
8. Chou, C.-C., & Ling, M.-Y. (1998). Biochemical changes in soy sauce prepared with extruded and traditional raw materials. Food Research International, 31(6), 487–492.
9. Cutler, H. C., & Cardenas, M. (1947). CHICA, A NATIVE SOUTH AMERICAN BEER. Botanical Museum Leaflets, Harvard University, 13(3), 33–60.
10. Dakwa, S., Sakyi-Dawson, E., Diako, C., Annan, N. T., & Amoa-Awua, W. K. (2005). Effect of boiling and roasting on the fermentation of soybeans into dawadawa (soy-dawadawa). International Journal of Food Microbiology, 104(1), 69–82.
11. Danilović, B., & Savić, D. (2017). Microbial ecology of fermented sausages and dry-cured meats. Fermented Meat Products: Health Aspects, 127–166.
12. Deshpande, S. S. (2000). Fermented Grain Legumes, Seeds and Nuts: A Global Perspective. Food & Agriculture Org.
13. Dirar, H. A. (1992). Sudan’s fermented food heritage. Applications of Biotechnology to Traditional Fermented Foods," Ed. by Board on Science and Technology for International Development, National Academy Press, Washington, 27–34.
14. Elizaquível, P., Pérez-Cataluña, A., Yépez, A., Aristimuño, C., Jiménez, E., Cocconcelli, P. S., Vignolo, G., & Aznar, R. (2015). Pyrosequencing vs. culture-dependent approaches to analyze lactic acid bacteria associated to chicha, a traditional maize-based fermented beverage from Northwestern Argentina. International Journal of Food Microbiology, 198, 9–18.
15. Elnabi, A. (2008). Microbiology and Chemical Composition of Fermented Bone Based Food (Dodery) from Darfur-Sudan. Unpublished Dissertation. U of K.
16. Escalante, A., Giles-Gómez, M., Hernández, G., Córdova-Aguilar, M. S., López-Munguía, A., Gosset, G., & Bolívar, F. (2008). Analysis of bacterial community during the fermentation of pulque, a traditional Mexican alcoholic beverage, using a polyphasic approach. International Journal of Food Microbiology, 124(2), 126–134.

17. Escalante, A., Giles-Gómez, M., & Moreno-Terrazas, R. (n.d.). Pulque fermentation. Content.taylorfrancis.com.

18. Feiner, G. (2016). Chapter 7 - Fermented Salami: Non-Heat Treated. In Salami (pp. 111–176). Academic Press.

19. Fischer, M. M., Egli, I. M., Aeberli, I., Hurrell, R. F., & Meile, L. (2014). Phytic acid degrading lactic acid bacteria in teF-injera fermentation. International Journal of Food Microbiology, 190, 54–60.

20. Fleming, H. P., McFeeters, R. F., & Humphries, E. G. (1988). A fermentor for study of sauerkraut fermentation. Biotechnology and Bioengineering, 31(3), 189–197.

21. Gubag, R., Omoloso, D. A., & Owens, J. D. (1996). Sapal: a traditional fermented taro [Colocasia esculenta (L.) Schott] corm and coconut cream mixture from Papua New Guinea. International Journal of Food Microbiology, 28(3), 361–367.

22. Halm, M., Lillie, A., Sørensen, A. K., & Jakobsen, M. (1993). Microbiological and aromatic characteristics of fermented maize doughs for kenkey production in Ghana. International Journal of Food Microbiology, 19(2), 135–143.

23. Hudson, J. A., Hasell, S., Whyte, R., & Monson, S. (2001). Preliminary microbiological investigation of the preparation of two traditional Maori foods (Kina and Tiroi). Journal of Applied Microbiology, 91(5), 814–821.

24. Iglesias, A., Pascoal, A., Choupina, A. B., Carvalho, C. A., Feás, X., & Estevinho, L. M. (2014). Developments in the fermentation process and quality improvement strategies for mead production. Molecules, 19(8), 12577–12590.

25. Innocente, N., Biasutti, M., Rita, F., Brichese, R., Comi, G., & Iacumin, L. (2016). Effect of indigenous Lactobacillus rhamnosus isolated from bovine milk on microbiological characteristics and aromatic profile of traditional yogurt. LWT - Food Science and Technology, 66, 158–164.

26. Jeyaram, K. (2009). Traditional fermented foods of Manipur. Indian Journal of Traditional Knowledge. 8(1),115-121.

27. Jiménez, E., Yépez, A., Pérez-Cataluña, A., Ramos Vásquez, E., Zúñiga Dávila, D., Vignolo, G., & Aznar, R. (2018). Exploring diversity and biotechnological potential of lactic acid bacteria from tocosh - traditional Peruvian fermented potatoes - by high throughput sequencing (HTS) and culturing. LWT - Food Science and Technology, 87, 567–574.

28. Jónsdóttir, G., & Leifsdóttir, K. (2009). Kennsluefni í matvalafæði ætlað 9.-10. bekk í heimilisfæði. http://skemman.is/handle/1946/3893

29. Kabak, B., & Dobson, A. D. W. (2011). An introduction to the traditional fermented foods and beverages of Turkey. Critical Reviews in Food Science and Nutrition, 51(3), 248–260.

30. Kang, B.-S., Lee, J.-E., & Park, H.-J. (2014). Qualitative and quantitative prediction of volatile compounds from initial amino acid profiles in Korean rice wine (makgeolli) model. Journal of Food Science, 79(6), C1106–C1116.

31. Kobayashi, T., Kimura, B., & Fujii, T. (2000). Strictly anaerobic halophiles isolated from canned Swedish fermented herrings (Surströmming). International Journal of Food Microbiology, 54(1-2), 81–89.

32. Koşar, M., Küpeli, E., Malyer, H., Uylaşer, V., Türkben, C., & Başer, K. H. C. (2007). Effect of Brining on Biological Activity of Leaves of Vitis vinifera L. (Cv. Sultani Çekirdeksiz) from Turkey. Journal of Agricultural and Food Chemistry, 55(11), 4596–4603.

33. Omar, N., & Ampe, F. (2000). Microbial community dynamics during production of the Mexican fermented maize dough pozol. Applied and Environmental Microbiology, 66(9), 3664–3673.

34. Lee, C.-H. (1986). Kimchi; Korean Fermented Vegetable Foods. Journal of the Korean Society of Food Culture, 1(4), 395–402.
35. Lodolo, E. J., Kock, J. L. F., Axcell, B. C., & Brooks, M. (2008). The yeast Saccharomyces cerevisiae—the main character in beer brewing. FEMS Yeast Research, 8(7), 1018–1036.
36. Lopetcharat, K., Choi, Y. J., Park, J. W., & Daeschel, M. A. (2001). FISH SAUCE PRODUCTS AND MANUFACTURING: A REVIEW. Food Reviews International, 17(1), 65–88.
37. Lv, H.-P., Zhang, Y.-J., Lin, Z., & Liang, Y.-R. (2013). Processing and chemical constituents of Pu-erh tea: A review. Food Research International, 53(2), 608–618.
38. McGovern, P. E., Zhang, J., Tang, J., Zhang, Z., Hall, G. R., Moreau, R. A., Nuñez, A., Butrym, E. D., Richards, M. P., Wang, C.-S., Cheng, G., Zhao, Z., & Wang, C. (2004). Fermented beverages of pre- and proto-historic China. Proceedings of the National Academy of Sciences of the United States of America, 101(51), 17593–17598.
39. McIver, R. C., Brooks, R. I., & Reineccius, G. A. (1982). Flavor of fermented fish sauce. Journal of Agricultural and Food Chemistry, 30(6), 1017–1020.
40. Murooka, Y., & Yamshita, M. (2008). Traditional healthful fermented products of Japan. Journal of Industrial Microbiology & Biotechnology, 35(8), 791–798.
41. Nile, S. H. (2015). The nutritional, biochemical and health effects of makgeolli—a traditional Korean fermented cereal beverage. Journal of the Institute of Brewing. Institute of Brewing, 121(4), 457–463.
42. Nout, M. J. R., & Kiers, J. L. (2005). Tempe fermentation, innovation and functionality: update into the third millenium. Journal of Applied Microbiology, 98(4), 789–805.
43. Odunfa, S. A. (1981). Microorganisms associated with fermentation of African locust bean (Parkia filicoidea) during iru preparation. Journal of Plant Foods, 3(4), 245–250.
44. Oyedeji, O., Ogunbanwo, S. T., & Onilude, A. A. (2013). Predominant lactic acid bacteria involved in the traditional fermentation of fufu and ogi, two Nigerian fermented food products. Food and Nutrition Sciences, 4(11), 40.
45. Padhye, V. W., & Salunkhe, D. K. (1978). Biochemical Studies on black gram (Phaseolus mung L.) 111. Fermentation of the black gram and rice blend and its influence on the in vitro digestibility of the proteins. Journal of Food Biochemistry, 2(4), 327–347.
46. Park, J.-N., Fukumoto, Y., Fujita, E., Tanaka, T., Washio, T., Otsuka, S., Shimizu, T., Watanabe, K., & Abe, H. (2001). Chemical Composition of Fish Sauces Produced in Southeast and East Asian Countries. Journal of Food Composition and Analysis: An Official Publication of the United Nations University, International Network of Food Data Systems, 14(2), 113–125.
47. Rai, A. K., Tamang, J. P., & Palni, U. (2010). Microbiological studies of ethnic meat products of the Eastern Himalayas. Meat Science, 85(3), 560–567.
48. Ramalhosa, E., Gomes, T., Pereira, A. P., Dias, T., & Estevinho, L. M. (2011). Mead production: tradition versus modernity. Advances in Food and Nutrition Research, 63, 101–118.
49. Rattagool, P. (1985). Fermented fish products of South East Asia. Trop Sci, 25, 61–73.
50. Ray, R. C., & Sivakumar, P. S. (2009). Traditional and novel fermented foods and beverages from tropical root and tuber crops. International Journal of Food Science & Technology, 44(6), 1073–1087.
51. Robinson, R. K., Tamime, A. Y., & Wszolek, M. (2002). Microbiology of fermented milks. Dairy Microbiology Handbook: The Microbiology of Milk and Milk Products, 468.
52. Saono, S., Hull, R. R., & Dhamcharee, B. (1986). Concise handbook of indigenous fermented foods in the ASCA countries. Indonesian Institute of Sciences.

53. Sarkar, P. K., & Tamang, J. P. (1994). The influence of process variables and inoculum composition on the sensory quality of kinema. Food Microbiology, 11(4), 317–325.

54. Sarkar, P., Tamang, J. P., Cook, P. E., & Owens, J. (1994). Kinema—a traditional soybean fermented food: proximate composition and microflora. Food Microbiology, 11(1), 47–55.

55. Sastraatmadja, D. D., Tomita, F., & Kasai, T. (2002). Production of High-Quality Oncom, a Traditional Indonesian Fermented Food, by the Inoculation with Selected Mold Strains in the Form of Pure Culture and Solid Inoculum. Journal of the Graduate School of Agriculture, Hokkaido University, 70(2), 111–127.

56. Schwan, R. F., & Fleet, G. H. (2014). Cocoa and Coffee Fermentations. CRC Press.

57. Schwan, R. F., & Wheals, A. E. (2004). The microbiology of cocoa fermentation and its role in chocolate quality. Critical Reviews in Food Science and Nutrition, 44(4), 205–221.

58. Seifu, E. (2013). Chemical composition and microbiological quality of Metata Ayib: a traditional Ethiopian fermented cottage cheese. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 20(1), 93.

59. Şengül, M. (2006). Microbiological characterization of Civil cheese, a traditional Turkish cheese: microbiological quality, isolation and identification of its indigenous Lactobacilli. World Journal of Microbiology & Biotechnology, 22(6), 613–618.

60. Sharma, A., & Sarkar, P. K. (2015). Microbial diversity in Ethno-fermented foods of Indian Himalayan Region. ENVIS Bulletin Himalayan Ecology, 23, 85.

61. Skára, T., Axelsson, L., Stefánssón, G., Ekstrand, B., & Hagen, H. (2015). Fermented and ripened fish products in the northern European countries. Journal of Ethnic Foods, 2(1), 18–24.

62. Solieri, L., & Giudici, P. (2009). Vinegars of the World. In L. Solieri & P. Giudici (Eds.), Vinegars of the World (pp. 1–16). Springer Milan.

63. Sroka, P., & Tuszyński, T. (2007). Changes in organic acid contents during mead wort fermentation. Food Chemistry, 104(3), 1250–1257.

64. Stamer, J. R., Stoyla, B. O., & Dunckel, B. A. (1971). Growth rates and fermentation patterns of lactic acid bacteria associated with the sauerkraut fermentation. Journal of Milk and Food Technology, 34(11), 521–525.

65. Steinkraus, K. H. (1994). Nutritional significance of fermented foods. Food Research International, 27(3), 259–267.

66. Stewart, R. B., & Getachew, A. (1962). Investigations of the nature of Injera. Economic Botany, 16(2), 127–130.

67. Tamang, J. P., & Sarkar, P. K. (1993). Sinki: a traditional lactic acid fermented radish tap root product. The Journal of General and Applied Microbiology, 39(4), 395–408.

68. Teramoto, Y., Sato, R., & Ueda, S. (2005). Characteristics of fermentation yeast isolated from traditional Ethiopian honey wine, ogol. African Journal of Biotechnology, 4(2), 160–163.

69. Thapa, N., Pal, J., & Tamang, J. P. (2004). Microbial Diversity in Ngari, Hentak and Tunaget, Fermented Fish Products of North-East India. World Journal of Microbiology & Biotechnology, 20(6), 599.

70. Uno, T., Itoh, A., Miyamoto, T., Kubo, M., Kanamaru, K., Yamagata, H., Yasufuku, Y., & Imaishi, H. (2009). Ferulic Acid Production in the Brewing of Rice Wine (Sake). Journal of the Institute of Brewing. Institute of Brewing, 115(2), 116–121.
71. Valadez-Blanco, R., Bravo-Villa, G., Santos-Sánchez, N. F., Velasco-Almendarez, S. I., & Montville, T. J. (2012). The Artisanal Production of Pulque, a Traditional Beverage of the Mexican Highlands. Probiotics and Antimicrobial Proteins, 4(2), 140–144.

72. Vegas, C., Mateo, E., González, A., Jara, C., Guillamón, J. M., Poblet, M., Torija, M. J., & Mas, A. (2010). Population dynamics of acetic acid bacteria during traditional wine vinegar production. International Journal of Food Microbiology, 138(1-2), 130–136.

73. Wacher, C., Cañas, A., Bárezana, E., Lappe, P., Ulloa, M., & Owens, J. D. (2000). Microbiology of Indian and Mestizo pozol fermentations. Food Microbiology, 17(3), 251–256.

74. Wang, Q., Peng, C., & Gong, J. (2011). Effects of enzymatic action on the formation of theabrownin during solid state fermentation of Pu-erh tea. Journal of the Science of Food and Agriculture. https://onlinelibrary.wiley.com/doi/abs/10.1002/jsfa.4480

75. Werge, R. W. (1979). Potato Processing In The Central Highlands Of Peru Vol-7. MPKV; Maharastra. http://14.139.56.90/bitstream/1/2056030/1/MPKV-654.pdf

76. Westby, A., & Twiddy, D. R. (1992). Characterization ofgari andfu-fu preparation procedures in Nigeria. World Journal of Microbiology & Biotechnology, 8(2), 175–182.

77. Wu, J. J., Ma, Y. K., Zhang, F. F., & Chen, F. S. (2012). Biodiversity of yeasts, lactic acid bacteria and acetic acid bacteria in the fermentation of “Shanxi aged vinegar”, a traditional Chinese vinegar. Food Microbiology, 30(1), 289–297.

78. Yong, F. M., & Wood, B. J. B. (1974). Microbiology and Biochemistry of Soy Sauce Fermentation. In D. Perlman (Ed.), Advances in Applied Microbiology (Vol. 17, pp. 157–194). Academic Press.

79. Yoshizawa, K. (1999). Sake: Production and flavor. Food Reviews International, 15(1), 83–107.