Around the Carnot theorem

Dorde Baralić
Mathematical Institute SASA
Belgrade, Serbia

Abstract

We study the Carnot theorem and the configuration of points and lines in connection with it. It is proven that certain significant points in the configuration lie on the same lines and same conics. The proof of an equivalent statement formulated by Bradley is given. An open conjecture, established by Bradley, is proved using the theorems of Carnot and Menelaus.

1 Introduction

Carnot’s theorem can be considered as a generalization of Ceva’s theorem. The theorem of Carnot gives a necessary and sufficient condition for two points on each side of a triangle to form a conic.

Theorem 1.1 (Carnot’s theorem). Let $\triangle ABC$ be a triangle and let A_1, A_2 be the points on the line BC, B_1, B_2 on the line CA and C_1 and C_2 on the line AB. The points A_1, A_2, B_1, B_2, C_1 and C_2 lie on the same conic C if and only if

$$
\frac{AC_1}{C_1B} \cdot \frac{AC_2}{C_2B} \cdot \frac{BA_1}{A_1C} \cdot \frac{BA_2}{A_2C} \cdot \frac{CB_1}{B_1A} \cdot \frac{CB_2}{B_2A} = 1.
$$

In Section 2 we give a classical proof of Carnot’s theorem, using the theorems of Menelaus and Pascal. This proof can be found in [2]. We also study some natural points and lines involved in the configuration and its relations to the side lines of triangle $\triangle ABC$. Theorems 2.2 and 2.4 summarize these results. These theorems are generalizations of classical Euclidean theorems for incircle of a triangle.

In Section 3 we give an synthetic proof of the following statement (see Figure 1) which was the first time formulated in [1]:

Theorem 1.2 (Bradley’s theorem). There is a conic D such that the lines $AA_1, AA_2, BB_1, BB_2, CC_1$ and CC_2 are tangents of D if and only if the points A_1, A_2, B_1, B_2, C_1 and C_2 lie on the same conic C.

Our goal is to prove an equivalent statement, Corollary 3.1 which together with the Poncelet Triangle theorem implies Bradley’s theorem.

In the paper [1], Bradley formulated the following conjecture (see Figure 2):

This research was supported by the Grant 174020 of the Ministry for Education and Science of the Republic of Serbia and Project Math Alive of the Center for Promotion of Science, Serbia and Mathematical Institute SASA.
Theorem 1.3 (Bradley’s theorem about quadrilaterals). Let $ABCD$ and $PQRS$ be quadrilateral which are in axial perspective, that is $T = AB \cap PQ$, $U = BC \cap QR$, $V = CD \cap S$, $W = DA \cap SP$ are collinear. The other twelve intersections of the sides of the quadrilaterals are marked with notation exemplified by $13 = AB \cap RS$, $42 = DA \cap QR$ etc, in such way that number 1 corresponds to the sides AB and PQ, 2 to BC and QR, 3 to CD and RS and 4 to DA and SP. Then there exist four conics C_1, C_2, C_3 and C_4 such that the points 23, 24, 32, 34, 42, 43 lie on conic C_1, the points 13, 14, 31, 34, 42, 43 lie on conic C_2, the points 12, 14, 21, 24, 41, 42 lie on conic C_3 and 12, 13, 21, 23, 31, 32 lie on conic C_4.

This theorem is proved in Section 4.
Theorems of Ceva, Menelaos and Carnot are used in [6] as ‘prototheorems’ to build new theorems that involve lines and conics. It is shown in [6] and [5] that any oriented triangulated 2-manifold can be a frame. This procedure works for theorems studied in this paper as well. Deep relation among classical projective geometry and more advanced topics in mathematics and computer science is explained in *Perspectives on Projective Geometry*, an inspirative book by Jürgen Richter-Gerbert. [5]. Software ‘Cinderella’ developed by Ulrich Kortenkamp and Jürgen Richter-Gerbert is used as experimental tool for discovering new results about Carnot’s configuration.

2 Carnot’s theorem

We start this section with proof of the Carnot theorem.

![Figure 3: The Carnot theorem](image)

Proof of Carnot’s theorem: Let the points \(A_1, A_2, B_1, B_2, C_1 \) and \(C_2 \) lie on the same conic \(\mathcal{C} \) and let \(L \) be the intersection of the lines \(A_1C_1 \) and \(AC \), \(M \) the intersection of the lines \(B_1C_2 \) and \(BC \) and \(N \) the intersection of the lines \(A_2B_2 \) and \(AB \), Figure 3. By the Pascal theorem, the points \(L, M \) and \(N \) lie on the same line, and from the Menelaos theorem the following holds:

\[
\frac{AL}{LC} \cdot \frac{CM}{MB} \cdot \frac{BN}{NA} = -1. \quad (2)
\]

Applying the Menelaos theorem three times for the lines \(\triangle A_1C_1, B_1C_2 \) and \(A_2B_2 \) \(\triangle ABC \), we obtain:

\[
\frac{AL}{LC} \cdot \frac{CA_1}{A_1B} \cdot \frac{BC_1}{C_1A} = -1, \quad (3)
\]

\[
\frac{AB_1}{B_1C} \cdot \frac{CM}{MB} \cdot \frac{BC_2}{C_2A} = -1, \quad (4)
\]
Multiplying the relations (3), (4) and (5) and division by (2), yields the relation (1).

In the opposite direction, the proof is similar. By the Menelas theorem, the relations (3), (4) and (5) hold. From the relations (3), (4), (5) and (1) one can easily deduce the relation (2), so by the converse of the Menelas theorem, the points L, M and N lie on the same line. The converse of the Pascal theorem then implies that the points A_3, A_4, D_3 and D_4 lie on the line BC.

Theorem 2.1. The points B_3, B_4, E_3 and E_4 lie on the line CA, the points C_3, C_4, F_3 and F_4 lie on the line AB and the points A_3, A_4, D_3 and D_4 lie on the line BC.

Proof: We shall prove that B_3 lie on the line CA.

Let R be the intersection of A_1C_2 and AC and R' the intersection of the lines F_1D_2 and AC.

From the Menelaos theorem for the line A_1C_2, we obtain:
\[
\frac{CR}{RA} = -\frac{C_2B}{AC_2} \cdot \frac{A_1C}{BA_1}.
\]

Let X be the intersection point of the lines AA_2 and CC_1. The Menelaos theorem for the line F_1D_2 and $\triangle AXC$ yields:
\[
\frac{CR'}{R' A} : \frac{AD_2}{D_2X} : \frac{XF_1}{F_1C} = -1.
\]
From the Carnot theorem for the conic C and $\triangle AXC$ we obtain:
\[
\frac{\overrightarrow{AD_2}}{D_2X} \cdot \frac{\overrightarrow{AA_2}}{A_2X} \cdot \frac{\overrightarrow{XF_1}}{F_1C} \cdot \frac{\overrightarrow{XC_1}}{C_1A} \cdot \frac{\overrightarrow{CB_1}}{B_1A} \cdot \frac{\overrightarrow{CB_2}}{B_2A} = 1. \tag{8}
\]
By the Law of Sines we have:
\[
\overrightarrow{A_2X} \sin \angle A_2XC = \overrightarrow{A_2C} \sin \angle BCC_1
\]
and
\[
\overrightarrow{C_1C} \sin \angle BCC_1 = \overrightarrow{C_1B} \sin \beta.
\]
From these two equations one can deduce:
\[
\overrightarrow{A_2X} \cdot \overrightarrow{C_1C} \sin \angle A_2XC = \overrightarrow{A_2C} \cdot \overrightarrow{C_1B} \sin \beta. \tag{9}
\]
Similarly, the following equality holds:
\[
\frac{\overrightarrow{AA_2}}{A_2X} \cdot \frac{\overrightarrow{XC_1}}{C_1C} = \frac{\overrightarrow{BA_2}}{A_2C} \cdot \frac{\overrightarrow{AC_1}}{C_1B}. \tag{10}
\]
From (9) and (10) (using the equality $\angle C_1XA = \angle A_2XC$) we conclude that:
\[
\frac{\overrightarrow{AA_2}}{A_2X} \cdot \frac{\overrightarrow{XC_1}}{C_1C} = \frac{\overrightarrow{BA_2}}{A_2C} \cdot \frac{\overrightarrow{AC_1}}{C_1B}. \tag{11}
\]
Now, from the relations (7), (8) and (11) we have:
\[
\overrightarrow{CR} = \overrightarrow{BA_2} \cdot \overrightarrow{AC_1} \cdot \overrightarrow{CB_1} \cdot \overrightarrow{CB_2}.
\]
But, the Carnot relation [1] implies
\[
\frac{\overrightarrow{CR}}{R'A} = -\frac{\overrightarrow{C_2B}}{AC_2} \cdot \frac{\overrightarrow{A_1C}}{BA_1},
\]
and $R = R' \equiv B_3$.

The proof for the other points is analogous. \Box

From Pascal’s theorem the following theorem is true (see Figure 5):

Theorem 2.2. The following 8 triples of points (A_3, B_3, C_3), (D_3, E_3, C_4), (A_3, E_4, F_3), (D_3, B_3, F_4), (A_4, E_3, F_4), (D_4, E_3, C_3), (D_4, B_4, F_3), and (A_4, B_4, C_4) are collinear.

In the sequel, we encounter the relations of higher order. We use the theorem of Carnot to prove that certain points in the configuration lie on the same conic.

Theorem 2.3. The points D_3, D_4, E_3, E_4, F_3 and F_4 lie on the same conic D.

Proof: From the proof of Theorem 2.1 we also deduce that:
\[
\frac{\overrightarrow{CE_3}}{E_3A} = -\frac{\overrightarrow{C_1B}}{AC_1} \cdot \frac{\overrightarrow{A_1C}}{BA_1} \cdot \frac{\overrightarrow{AF_3}}{F_3B} - \frac{\overrightarrow{A_1C}}{BA_1} \cdot \frac{\overrightarrow{B_1C}}{CB_1} \cdot \frac{\overrightarrow{BD_3}}{D_3C} = -\frac{\overrightarrow{B_1A}}{CB_1} \cdot \frac{\overrightarrow{C_1B}}{AC_1}.
\]
Then the following holds by $[1]
\frac{CE_3}{E_3A} \cdot \frac{CE_4}{E_4A} \cdot \frac{AF_3}{F_3B} \cdot \frac{AF_4}{F_4B} \cdot \frac{BD_3}{D_3C} \cdot \frac{BD_4}{D_4C} = 1.$

By the converse of Carnot’s theorem, the points D_3, D_4, E_3, E_4, F_3 and F_4 lie on the same conic.

In the same fashion we prove that:

Theorem 2.4. The following 4 sextuples of the points $(D_3, D_4, E_3, E_4, F_3, F_4)$, $(A_3, A_4, B_3, B_4, F_3, F_4)$, $(A_3, A_4, E_3, E_4, C_3, C_4)$ and $(D_3, D_4, B_3, B_4, C_3, C_4)$ are the sextuples of the points lying on the same conic.
3 Bradley’s Theorem

In this section we give an elementary proof of the Bradley’s conjecture [1]. The first proof, given by Zoltán Szilasi in [7], used barycentric coordinates. We use different approach and prove several other interesting things about Carnot’s configuration.

Let X_1 be the intersection points of the lines AA_1 and BB_1, X_2 of BB_1 and CC_1 and X_3 of CC_1 and AA_1. Let Y_1 be the intersection points of the lines AA_2 and BB_2, Y_2 of BB_2 and CC_2 and Y_3 of CC_2 and AA_2.

Define T_2 as the intersection point of the lines X_1Y_3 and X_3Y_1. The points T_3 and T_1 are defined analogously.

Theorem 3.1. T_2 lies on the line BC, T_3 on CA and T_1 on AB.

Proof: Let T' be the intersection point of the lines X_3Y_1 and BC and let T'' be the intersection point of the lines X_1Y_3 and BC.

By the Menelaos theorem applied at $\triangle ABA_1$ and the line BC_2 we obtain:

$$\frac{AX_3}{X_3A_1} = -\frac{CB}{A_1C} \cdot \frac{AC_1}{C_1B}.$$ \hfill (12)

The same reasoning for $\triangle ACA_2$ and the line CC_1 we obtain:

$$\frac{A_2Y_1}{Y_1A} = -\frac{B_2C}{A_2B} \cdot \frac{BA_2}{C_2B}.$$ \hfill (13)

Then from the Menelaos theorem for $\triangle AA_1A_2$ and the line X_1Y_3 we get:

$$\frac{A_1T}{T'A_2} = -\frac{AB_2}{AC_1} \cdot \frac{A_1C}{B_2C} \cdot \frac{C_1B}{BA_2}.$$ \hfill (12)
In the same fashion we prove that:

\[
\frac{\overrightarrow{A_1T'}}{T''A_2} = \frac{\overrightarrow{AC_2}}{AB_1} \cdot \frac{\overrightarrow{B_1C}}{A_2C} \cdot \frac{\overrightarrow{BA_1}}{C_2B}.
\] (13)

By the relation (1) we conclude that:

\[
\frac{\overrightarrow{A_1T'}}{T'A_2} = \frac{\overrightarrow{A_1T''}}{T''A_2},
\]

so \(T' \equiv T'' \equiv T_2 \).

For the points \(T_1 \) and \(T_3 \) the proof is analogous. \(\square \)

Since the points \(T_2, B \) and \(C \) are collinear, by the converse of Pascal’s theorem for the hexagon \(X_3Y_1Y_2Y_3X_1X_2 \) we get (see Figure 8):

![Figure 8: Corollary 3.1](image)

Corollary 3.1. The points \(X_1, X_2, X_3, Y_1, Y_2 \) and \(Y_3 \) lie on the same conic.

An immediate consequence of this fact is (see Figure 9):

Corollary 3.2. The points \(T_1, T_2 \) and \(T_3 \) lie on the same line.

Bradley’s theorem [1.2] directly follows from Corollary 3.1 and the Poncelet triangle theorem [1.4 Theorem 5, p.184-185], see Figure 10.

4 Proof of Theorem 1.3

In this section we give the proof of Theorem 1.3. The proof illustrates a nice application of the Menelaus and the Carnot theorems.

Proof: We prove that the points \(23, 24, 32, 34, 42, 43 \) lie on conic \(C_1 \). The proof for other points is analogous.

Let \(X \) be the intersection point of the lines \(AD \) and \(BC \). We apply the Menelaus theorem for \(\triangle XDC \) and the lines \(SW, RU, SV \) and \(VW \) and get:
\[
\frac{\overrightarrow{XW}}{\overrightarrow{WD}} \cdot \frac{\overrightarrow{D(34)}}{\overrightarrow{(34)C}} \cdot \frac{\overrightarrow{C(24)}}{\overrightarrow{(24)X}} = -1,
\]
(14)

\[
\frac{\overrightarrow{X(41)}}{\overrightarrow{(41)D}} \cdot \frac{\overrightarrow{D(32)}}{\overrightarrow{(32)C}} \cdot \frac{\overrightarrow{CU}}{\overrightarrow{UX}} = -1,
\]
(15)

\[
\frac{\overrightarrow{X(43)}}{\overrightarrow{(43)D}} \cdot \frac{\overrightarrow{DV}}{\overrightarrow{VC}} \cdot \frac{\overrightarrow{C(23)}}{\overrightarrow{(23)X}} = -1,
\]
(16)

\[
\frac{\overrightarrow{DW}}{\overrightarrow{WX}} \cdot \frac{\overrightarrow{XU}}{\overrightarrow{UC}} \cdot \frac{\overrightarrow{CV}}{\overrightarrow{VD}} = -1.
\]
(17)
After multiplication of (14), (15), (16) and (17), we obtain:

\[
\frac{\overrightarrow{D(34)}}{(34)C} \cdot \frac{\overrightarrow{C(24)}}{(24)X} \cdot \frac{\overrightarrow{X(41)}}{(41)D} \cdot \frac{\overrightarrow{D(32)}}{(32)C} \cdot \frac{\overrightarrow{X(43)}}{(43)D} \cdot \frac{\overrightarrow{C(23)}}{(23)X} = 1.
\]

From the converse of Carnot’s theorem it follows that the points 23, 24, 32, 34, 42, 43 lie on the same conic. □

Acknowledgements

This research is done during my stay in Switzerland. The author wishes to thank his friends the Hajdin family: Katarina, Rade, Nikola, Luka and Matija for generous hospitality and support.

References

[1] C. Bradley, Problems requiring proofs, available http://people.bath.ac.uk/masgcs/Article182.pdf 2011

[2] J. L. S. Hatton, The Principles of Projective Geometry Applied to the Straight Line and Conic, Cambridge University Press 1913.

[3] A. Ostermann and G. Wanner, Geometry by Its History, Springer, 2012.

[4] V. V. Prasolov and V. M. Tikhomirov, Geometry, American Mathematical Society, 2001.
[5] J. Richter-Gebert, *Perspectives on Projective Geometry*, Springer-Verlag Berlin Heidelberg, 2011.

[6] J. Richter-Gebert, *Meditations on Ceva’s Theorem*, In The Coxeter Legacy: Reflections and Projections (Eds. Chandler Davis & Eric Ellers, American Mathematical Society, Fields Institute), 227–254, 2006.

[7] Z. Szilasi, Two applications of the theorem of Carnot, *Annales Mathematicae et Informaticae* 40 (2012), 135-144.

DORDE BARALIĆ, Mathematical Institute SASA, Kneza Mihaila 36, p.p. 367, 11001 Belgrade, Serbia
E-mail address: djbaralic@mi.sanu.ac.rs