Development of the software application for the building information models in augmented reality mode visualization

A Konyagin, L Shilova *
Moscow State University of Civil Engineering, 129337, 26, Yaroslavskoye Highway, Moscow, 1293337, Russia

E-mail: ShilovaLA@mgsu.ru

Abstract. The paper presents the developing an augmented reality application procedure using the building information models. The augmented reality applications current state is analyzed, the choice of operating system for the application implementation is justified. The application server and mobile parts are presented. The scheme of client interaction with the server at the framework level is described. The proposed application is focused on the end user performing the repair of engineering networks.

Introduction
Currently, the approach to organizing the construction process has changed dramatically, primarily due to the modern technologies, the ever-increasing computing power of computers, and the software development. Thus, mobile devices, which computing power, the abundance of specialized sensors and the development of mobile operating systems, allow to effectively manage the construction object entire life cycle, from the planning stage to its decommissioning. The aim of the presented research work is to develop a mobile application for visualizing building information models using augmented reality on a smartphone running Android OS to reduce the time needed to repair engineering networks of buildings. At the same time, such promising technologies as visualization or, in other words, augmented reality, are actively developing.

To achieve this goal, it is necessary to analyze the existing problems of the introduction and application of augmented reality technology in construction tasks and in the operation of building structures; to identify the features of software development to ensure convenience and functionality during working with augmented reality; to design the architecture and develop a mobile application.

Today, great attention is paid to the issues of information modeling of construction objects, a number of works are devoted to the study of the features of the introduction of information modeling technologies [1-12], as well as the problems of the development of augmented reality technologies in construction [14-22].

The augmented reality (AR) technology allows to provide the contextual information to the end user by superimposing it in the multilayered visual images form on real-world objects in real time. Thus, the considered technology main task is reduced to expanding the information interaction of the user with the environment.
From the interaction with the consumer point of view, there are currently two classes of mobile applications using AR technology. These are the standalone applications that do not involve user interaction and are used to provide reference information about the object. Interactive application is built on the interaction with the user, which can customize the type of an additional layer of data and obtain various data on the object under consideration.

According to the mobility degree, there are stationary systems designed to work in one place (without moving) and mobile able to work in a dynamic mode with different objects of the surrounding real world.

At the same time, according to the realized functional value for the consumer, the augmented reality applications can be divided into the following classes:

Applications providing a visual search and suggest navigation prompts at the user’s request. Context information about an object or person in the field of view can be obtained using the applications that provide recognition [23-24].

Human 2.0 is an augmented reality application for providing step-by-step instructions for accomplishing a specific task.

Applications such as “screen-mirror / lens” suggest the virtual objects imposition on the real world’s environment image for the virtual object spatial characteristics’ better understanding [23-24].

Applications such as product visualization for contextual tasks are usually used in industrial enterprises to solve engineering or design problems [23-24].

Thus, the development of such applications can identify the following problems:

1. If an application depends on location, it needs to be able to determine the user’s location, consider the errors, because augmented reality enriches the real environment and is in close interaction with it, so we need to give accurate information. Also, a very important factor is the user positioning, where the camera focus is directed, because according to the augmented reality definition, it must be able to interact with the three-dimensional space, again, in order to show the reliable information [24].

2. If the application is context sensitive, then the augmented reality should be closely related to the real environment. In this case, the following problems arise: reliability, relevance, redundancy of the context provided.

3. If the applications use the recognition technologies, a wide range of problems arise with the ability to recognize the numbers, letters, images, as well as each element of the environment.

4. The applications require various resources in the form of mapped model files, label data. That fact makes them inflexible and before each application use it is required to conduct preparatory activities in the form of preparation and loading of these resources into the device’s memory.

Methods and Methodology
The operating system choice
During the software application development, the question of choosing an operating system arises. To achieve the goal set in the research work, preference is given to the operating system – Android according to the static data of using this OS (Table 1) [25].

Thus, in case we select the minimum API level of 19, the application will work on any of the Android devices. In addition, there are several platforms for the implementation of augmented reality AR applications on the Android operating system.

The different platforms comparison is presented in Table 2. This information allows to select the most appropriate one.

The architectural pattern
An architectural pattern is a common, reusable solution for common problems in software architecture. Architectural patterns are similar to software design patterns, but have a wider coverage.
After analyzing such indicators as functionality, cost and quality of documentation, we can conclude that AR-Core is the most suitable SDK for developing an application using augmented reality. In one year, AR-Core from Google turned from a beta version, which worked only on a pair of flagship smartphones into a completely stable version, which already supports more than 30 models of devices, among which low-end models are starting to appear.

Now, the best choice in terms of the devices functional-number is API 19, which covers more than 96% of all devices, but if we work with augmented reality, it is more expedient to use an API of at least 27, in which case the range of all smartphones which computing power is covered enough for AR-Core to work.

Table 1. The usage statistics for Android different versions

Version of Android	Code name	Year	API	Distribution
2.3.2-2.3.7	Gingerbread	2010	10	0.2%
4.0.3-4.0.4	Ice Cream Sandwich	2011	15	0.3%
4.1.x	Jelly Bean	2012-2013	16	1.1%
4.2.x			17	1.5%
4.3			18	0.4%
4.4	KitKat	2013	19	7.6%
5.0	Lollipop	2014-2015	21	3.5%
5.1			22	14.4%
6.0	Marshmallow	2015	23	21.3%
7.0	Nougat	2016	24	18.1%
7.1			25	10.1%
8.0	Oreo	2017	26	14.0%
8.1			27	7.5%
9.0	Pie	2018	28	10.4%
10.0	Q	2019	29	-

Table 2. The characteristics of platforms for AR implementation

Parameter	Wikitude	ARCore	Vuforia	MapST	Kudan	EasyAR	ARToolKit	Xing	NyARToolKit
Maximum Recognition distance (m)	2.4 / 5	1.0 / 3	1.2 / 3	0.5 / 0.9	0.7 / 5	0.9 / 2.7	3 / 3	0.5 / 1	3 / 3
Recognition of a fixed marker	6	9	10	7	8	7	8	4	8
Moving marker recognition	6	6	6	6	7	3	6	3	6
Minimum Recognition angle (Deg.)	10	50	30	30	35	35	10	45	10
Minimum marker visibility for successful recognition	100%	75%	20%	50%	10%	10%	100%	25%	100%
2D Recognition	✓	✓	✓	✓	✓	✓	✓	✓	✓
3D Recognition	✓	✓	✓	✓	✓	✓	✓	✓	✓
Geolocation	✓	✓	-	-	-	-	-	-	-
Cloud recognition	✓	✓	-	-	-	-	-	-	-
SLAM	✓	✓	✓	✓	✓	✓	✓	-	-

Results

Designing and developing a client-server mobile application for visualizing a building object in augmented reality mode includes designing a client-server mobile application, the architecture of which is shown in Fig. 1 and server and mobile parts.
Figure 1. The framework for client-server interaction at the framework level

Figure 2 shows the interaction scheme between the client and the server.

The structure of the project using the MVC design pattern (server part) is shown in Fig. 3a, in Fig. 3b the mobile part is presented. MvcConfig is the class that contains the settings for the Spring Controller MVC. WebSecurityConfig is the class that contains Spring security settings. DownloadController is the class that handles GET model requests via REST. MainController is a class that processes the main pages of a web application.
Figure 3. The structure of the project

Summary
The algorithm of the developed application is considered. The application installed on a mobile device: Scan a QR code; get model ID from it; the applications contact the server and request a model with this ID; a model is received; a model in augmented reality with reference to the location of the QR code is displayed.

The developed application can be used in architectural and construction design of various enterprises. So, for example, by unloading information about engineering networks from any CAD product, during the repair period it is possible to accurately determine their location.

In addition, by completely unloading building information model, it is possible to make a presentation (visualization) of a construction object for the consumers.

References
[1] Love P E D, Zhou J, Matthews J 2019 Project controls for electrical, instrumentation and control systems (Enabling role of digital system information modelling, A.C.) 103 202-2012 DOI: 10.1016/j.autcon.2019.03.010.
[2] Charef R, Emmitt S, Alaka H, Fouchal F Building Information Modelling adoption in the European Union (An overview, J. Build. Eng.) DOI: 10.1016/j.jobe.2019.100777.

[3] Wang H, Pan Y, Luo X 2019 Integration of BIM and GIS in sustainable built environment (A review and bibliometric analysis, A.C.) 103 41-52 DOI: 10.1016/j.autcon.2019.03.005.

[4] Tan T, Chen K, Xue F, Lu W 2019 Barriers to Building Information Modeling (BIM) implementation in China’s prefabricated construction (An interpretive structural modeling (ISM) approach, J. Clean. Prod.,) 219 949-959 DOI: 10.1016/j.jclepro.2019.02.141.

[5] Dixit M K, Venkatraj V, Ostadalimakhmalbaf M, Pariafsai F, Lavy S 2019 Integration of facility management and building information modeling (BIM) (A review of key issues and challenges, F.) 37 455-483 DOI: 10.1108/F-03-2018-0043.

[6] Pezeshki Z, Soleimani A, Darabi A 2019 Application of BEM and using BIM database for BEM (A review, J. Build. Engin.) 23 1-17. DOI: 10.1016/j.jobe.2019.01.021.

[7] Tang S, Shelden, D R, Eastman C M, Pishdad-Bozorgi P, Gao X 2019 A review of building information modeling (BIM) and the internet of things (IoT) devices integration (Present status and future trends, A.C.) 101 127-139.

[8] Ozturk G B, Yitmen I 2019 Conceptual Model of Building Information Modelling Usage for Knowledge Management in Construction Projects (IOP Conf. Series: Mater. Scien. and Engin.) 471 022043 DOI: 10.1088/1757-899X/471/2/022043.

[9] Hwang B-G, Zhao X, Yang K W 2019 Effect of BIM on Rework in Construction Projects in Singapore (Status Quo, Magnitude, Impact, and Strategies, J. of Cons. Engin. and Manag.) 145 04018125 DOI: 10.1061/(ASCE)CO.1943-7862.0001600.

[10] Raouf A M I, Al-Ghamdi S G 2019 Building information modelling and green buildings: challenges and opportunities (Arch. Engin. and Des. Manag.) 15 1-28. DOI: 10.1080/17452007.2018.1502655.

[11] Kamel E, Memari A M 2019 Review of BIM’s application in energy simulation: Tools, issues, and solutions, (A.C.) 97 164-180. DOI: 10.1016/j.autcon.2018.11.008.

[12] Tchouanguem Djuedja J F, Karray F, Magniont C, Abanda F H 2019 Interoperability challenges in building information modelling (bim) (Proc. of the I-ESA Conf.) 9 275-282. DOI: 10.1007/978-3-030-13693-2_23.

[13] Banfi F, Brumana R, Stanga C A 2019 A content-based immersive experience of basilica of sant’ambrogio in milan (From 3d survey to virtual reality, ISPRS) 42 (2/W11) 159-166 DOI: 10.5194/isprs-archives-XLI-L2-2-W11-159-2019.

[14] Uimonen M, Hakkarainen M 2018 Accessing BIM-Related Information through AR (Adj. Proc IEEE) 8699282 399-400 DOI: 10.1109/ISMAR-Adjunct.2018.00115.

[15] Boriskina Y 2019 BIM technologies’ effect on transformation of a property life cycle (E3S Web of Conferences) 91 08030. DOI: 10.1051/e3scconf/20199108030.

[16] Acharya D, Ramezani M, Khoshelham K, Winter S 2019 BIM-Tracker: A model-based visual tracking approach for indoor localisation using a 3D building model (ISPRS) 150 157-171. DOI: 10.1016/j.isprsjprs.2019.02.014.

[17] De Amicis R, Riggio M, Shahbaz Badr, A Sanchez C A, Prather E A 2019 Cross-reality environments in smart buildings to advance STEM cyberlearning (Inter. J. on Inter. Design and Manuf.) 13 (1) 331-348. DOI: 10.1007/s12008-019-00546-x.

[18] Templin T, Brzezinski G, Rawa M 2019 Visualization of Spatiooral Building Changes Using 3D Web GIS (IOP Conf. Ser.: Earth and Envrir. Scie.) 221 (1) 012084. DOI: 10.1088/1755-1315/221/1/012084.

[19] Carneiro J, Rossetti R J F, Silva D C, Oliveira E C 2018 BIM, GIS, IoT, and AR/VR Integration for Smart Maintenance and Management of Road Networks (A Review, IEEE Inter. Smart Cities Conf., ISC2) 8656978. DOI: 10.1109/ISC2.2018.8656978.
[20] Sydora C, Stroulia E 2018 Augmented reality on building information models (9th Inter. Conf. on Inf., Intell., Sys. and App., IISA) 8633637 DOI: 10.1109/IISA.2018.8633637.
[21] Yu Z, Peng H, Zeng X, Xing H, Zhou Z, Smarter Z 2018 Construction site management using the latest information technology (Proc. of the Ins. of Civ. Eng.: Civ. Eng.) 172 (2) 89-95. DOI: 10.1680/jcien.18.00030.
[22] Min X 2018 BIM combined with ar technology application in practical teaching (ESAIC) 8530389 169-172 DOI: 10.1109/ESAIC.2018.00046.
[23] Yakovlev B S, Pustov S I 2013 Classification and promising directions for the use of augmented reality technology (News of TSU. Tech.scien.) 3.
[24] Shuldoeva S G, Shokhalevich F V 2013 Application development augmented reality (Actual prob. of scien. of the XXI cen.) 2 111-117.
[25] Information on https://www.android.com

Acknowledgements. This study was performed with the financial support of the RF Ministry of Education and Science, President Grant #NSh-3492.2018.8