Relação da capacidade para caminhar longas distâncias e para subir e descer escadas com a qualidade de vida relacionada à saúde de idosos com osteoartrite sintomática de joelhos

Relationship between the ability to walk long distances and to climb up and down stairs with the health-related quality of life of older adults with symptomatic knee osteoarthritis

Resumo

Objetivo: Investigar a relação entre capacidade física e qualidade de vida relacionada à saúde (QVRS) em idosos com osteoartrite sintomática de joelho (OAJ). Método: Estudo observacional em 67 idosos (55 mulheres e 12 homens) com OAJ executaram: Timed Up and Go o (TUG); Teste de Levantar e Sentar da Cadeira em 30 segundos (TLS30); Teste de Subir e Descer Escada (TSDE); Teste de Caminhada Rápida de 40m (TCR40); Teste de Caminhada de Seis Minutos (TC6). A QVRS foi medida usando o Western Ontario McMaster Universities Osteoarthritis Index (WOMAC). Regressões lineares uni e multivariada foram utilizadas para explorar a relação entre as variáveis. Resultados: Os pacientes eram predominantemente mulheres, com sobrepeso, inativas, não deprimidas, OAJ bilateral e dor intensa. Na QVRS, os domínios apresentaram baixo desempenho se comparados a indivíduos saudáveis. Foi observada uma associação entre o TLS30, TSDE, TCR40 e TC6 com dor e função física e uma associação do TSDE e TC6 com rigidez (R²=0,064 a 0,304, p<0,05). Na análise multivariada, IMC, sexo e comprometimento bilateral foram considerados como covariáveis independentes, resultando em associações significativas do TC6 e IMC com a dor (β[TC6]=-0,022, IC95% -0,033 a -0,010; β[IMC]=0,121, IC95% 0,005 a 0,237) e rigidez (β[TC6]=-0,009, IC95% -0,016 a -0,001; β[IMC]=0,076, IC95% 0,000 a 0,151) e do TSDE (β=0,229, IC95% 0,121 a 0,336) e sexo (β=10,724, IC95% 2,985 a 18,463) com função física. Conclusão: Os resultados sugerem associação positiva entre o TSDE e função física e associações negativas entre capacidade física no TC6 na dor e de rigidez.

Palavras-chave: Idoso. Qualidade de Vida. Osteoartrite de Joelho. Desempenho Físico. Funcional.

Financiamento da pesquisa: Este estudo foi apoiado pela Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (Código Financeiro CAPES 001). O JLQD é bolsista de Pesquisa em Fisioterapia (Tier 2) do Conselho Nacional de Desenvolvimento Científico e Tecnológico (Processos: 312136 / 2018-8). Os autores declaram não haver conflito na concepção deste trabalho.

Correspondência/Correspondence
Camila Cadena de Almeida
cadenacamila@gmail.com

Recebido: 10/01/2022
Aprovado: 13/07/2022

http://dx.doi.org/10.1590/1981-22562021024.220007.pt
INTRODUÇÃO

A osteoartrite do joelho (OAJ) afeta anualmente cerca de 86,7 milhões de indivíduos¹. Pacientes com OAJ muitas vezes experimentam dor em repouso e durante o movimento, rigidez, articulações aparentemente aumentadas, crepitação, movimento restrito, fraqueza muscular e atrofia². Além disso, indivíduos com OAJ gastam aproximadamente dez segundos para descer escada, 12 segundos para subir escada e nove segundos para realizar TUG, em comparação a cinco, sete e cinco segundos para indivíduos saudáveis realizarem as mesmas atividades, respectivamente³.

Durante a progressão da OAJ, indivíduos com risco elevado de quedas, comportamento sedentário, maior número de comorbidades, maior IMC, sintomas depressivos, menor força de preensão manual e mulheres experimentam aumentos na deterioração da qualidade de vida relacionada à saúde (QVRS)⁴. Em relação à fisiologia da OA, a dor parece ser determinante para a capacidade física desses indivíduos, sendo capaz de prever até 60% da capacidade de caminhar longas distâncias e 48% da QVRS⁵.

Coletivamente, esses fatores sugerem a potencial significância da capacidade física como indicador da QVRS em idosos com OAJ. A avaliação do aumento da QVRS também pode ser utilizada para medir o sucesso em programas de intervenção, uma vez que indivíduos com maior QVRS parecem ser fisicamente mais ativos⁶. A combinação de caminhadas curtas e longas, levantar da cadeira e subir escadas mostrou-se adequada para monitorar a funcionalidade desses indivíduos⁷.

Considerando que indivíduos com OAJ apresentam menor QV em relação a indivíduos comparados, independentemente do instrumento de avaliação, a inclusão da QV como primeiro passo para o manejo global do OAJ⁸ e a falta de estudos, dentro do conhecimento dos autores nas principais bases de dados, que avaliaram concomitantemente as principais atividades diárias de transferência realizadas por essa população, entendida como capacidade física global, a combinação dessas atividades foi incluída no presente estudo para investigar uma possível relação entre esses fatores. Nosso objetivo foi investigar a relação entre capacidade física e qualidade de vida relacionada à saúde (QVRS) em idosos com OAJ. Hipotetizamos que a capacidade física global avaliada por meio da capacidade de caminhar distâncias curtas e longas,
levantar da cadeira e subir escadas estaría associada aos diferentes domínios da QVRS de idosos com OAJ sintomática. Esperamos também encorajar outros pesquisadores a investigar este importante assunto.

MATERIAIS E MÉTODO

Este foi um estudo de corte transversal. O recrutamento e a coleta de dados foram realizados entre agosto de 2017 e março de 2020. O recrutamento foi realizado convenientemente por meio de listas de espera para fisioterapia e atendimento geriátrico, distribuição de panfletos e informações em redes sociais e sites locais. A coleta de dados foi realizada no Laboratório de Desempenho Funcional Humano da Universidade de Brasília - Campus Ceilândia. Este projeto de pesquisa foi aprovado pelo Comitê de Ética e Pesquisa da Faculdade de Ciências da Saúde - CEP/FS da Universidade de Brasília - UnB (CAEE 62256516.2.0000.0030). Todos os participantes do estudo forneceram um formulário de consentimento informado por escrito. Os dados foram relatados de acordo com as recomendações do Strengthening the Reporting of Observational Studies in Epidemiology (STROBE).

Realizamos uma análise secundária dos dados obtidos a partir de um ensaio clínico randomizado em andamento. O protocolo deste estudo foi previamente detalhado e registrado no Registro Brasileiro de Ensaios Clínicos - REBEC (RBR-875ZSW). O estudo incluiu homens e mulheres idosos residentes nas regiões oeste e sudoeste de Brasília. Os critérios de inclusão foram: (i) idade ≥ 60 anos; (ii) diagnóstico clínico de OAJ uni ou bilateral de acordo com os critérios da American College of Rheumatology (ACR); e (iii) dor média ≥ quatro em uma escala numérica. Os participantes foram excluídos se: (i) apresentassem alguma restrição médica que impedisse o procedimento de avaliação (alterações cardiorespiratórias, neurológicas e musculoesqueléticas), (ii) cirurgia prévia de joelho ou quadril, (iii) não conseguiu andar sem ajuda; (iv) ter realizado tratamento fisioterapêutico nos três meses anteriores à investigação; (v) apresentou infiltração ou procedimento intramuscular com corticoide ou outras medicações no joelho (seis meses anteriores); (vi) pontuação inferior a 18 pontos no Mini-Exame do Estado Mental no caso de participantes declarados analfabetos e inferior a 24 pontos para aqueles com escolaridade.

A coleta de dados foi realizada em dois dias por um único examinador treinado, com duração aproximada de uma hora e meia. No primeiro dia, os participantes responderam às características clínicas e ao questionário WOMAC. Os testes físico-funcionais foram realizados no segundo dia. Foram avaliadas as seguintes informações: idade em anos completos, sexo (feminino ou masculino), comprometimento articular (OAJ unilateral ou bilateral), prática de exercício físico (Ativo: ≥150 minutos por semana de exercício de intensidade moderada; Inativo: <150 minutos semanais de exercício físico de intensidade moderada, estado cognitivo (escore total de 15 itens - GDS), percepção da dor (Escala de Classificação Numérica - NRS) e número de medicamentos prescritos. De acordo com o IMC, os participantes foram categorizados em baixo peso (abaixo de 22 kg/m²), eutrófico (entre 22 e 27 kg/m²) ou sobrepeso (acima de 27 kg/m²). A identificação de sintomas depressivos permitiu classificar os participantes como não deprimidos (0 a 5 pontos), com sintomas depressivos leves (6 a 10 pontos) ou com sugestão de depressão grave (11 a 15 pontos). A percepção de dor na NRS maior ou igual a 6 foi caracterizada como intensa.

A qualidade de vida relacionada à saúde (variável dependente) foi avaliada por meio do WOMAC (Western Ontario and McMaster Universities Osteoarthritis), traduzido e validado para a população brasileira. Trata-se de um questionário de autorrelato que avalia três domínios da QVRS: dor, rigidez e atividade física. A pontuação para os itens é expressa por meio de uma escala Likert, com uma classificação que varia de: nenhuma = 0, baixo = 1, moderada = 2, grave = 3 e muito grave = 4. A pontuação máxima em cada seção utilizada neste estudo foi expressa através da soma dos itens de cada domínio, com pontuações mais altas indicando dor mais significativa (0-20 pontos), rigidez (0-8 pontos) e disfunção física (0-68 pontos).
A capacidade física (variáveis independentes ou explicativas) foi avaliada por meio dos cinco testes recomendados pelo OARSI: (i) Timed Up and Go (TUG); (ii) Teste levantar e sentar na Cadeira de 30 Segundos (30CST); (iii) Subida de Escada (SCT); (iv) Caminhada Rápida de 40m (40FPWT); (v) Caminhada de seis minutos (TC6). Com exceção do TC6, todas as avaliações foram realizadas em ambiente silencioso, controlado e climatizado. Os indivíduos foram orientados a não ingerir café no dia do teste físico e a manter suas atividades regulares e medicações.

Para a avaliação do TUG, cada participante foi posicionado inicialmente sentado em uma cadeira colocada no final de uma pista de 3m. Ao ouvir a palavra “vai”, o participante caminhava em velocidade confortável até a marca de 3m, virava, caminhava de volta e sentava novamente. Os participantes não foram autorizados a usar as mãos para ajudá-los a se levantar. O valor médio de um estudo prévio para indivíduos obesos com OAJ é de aproximadamente 8,9 segundos.

Para a avaliação do 30CST, os participantes sentaram-se no meio de uma cadeira sem braços, com as costas retas, os pés afastados na largura dos ombros e os braços cruzados sobre os ombros. Ao ouvir a palavra “vai”, o participante se levantava e sentava novamente o mais rápido que podia por 30 segundos. Um baixo número de repetições (>12) implicou em baixo desempenho de potência muscular.

O teste SCT foi adaptado para um conjunto de duas etapas. Os participantes iniciavam a subida de escada voltadas para a frente e na palavra “vai”, subiam dois degraus (altura 40cm; largura do degrau 16cm) e desciam os dois degraus voltados para trás, nove vezes enquanto eram cronometrados. Os participantes foram autorizados a usar o apoio do terapeuta, se necessário. Mais tempo para completar o teste implicou em baixa força da parte inferior do corpo e desempenho de equilíbrio.

O teste 40FCWT foi aplicado em um corredor de 10m com início e fim marcados. Na palavra “vai”, os participantes começaram a andar rápido, sem correr, caminharam 10m, caminharam de volta e repetiram o percurso até completarem 40m. Mais tempo para realizar o teste implicou em desempenho ruim de velocidade de caminhada.

Para o TC6, os pacientes caminharam a maior distância possível em 6 minutos em um corredor silencioso de 30m, parcialmente coberto, e a distância percorrida foi registrada. Também foi fornecido um aviso de um minuto, juntamente com a frase “Você está indo bem, mantenha o ritmo”. O valor médio de um estudo anterior para indivíduos obesos com OAJ é descrito em aproximadamente 299 metros.

As possíveis variáveis de confusão (BIAS) como idade, sexo, IMC, comprometimento articular, exercício físico e sintomas depressivos foram controladas incluindo-os como covariáveis na análise dos dados. Para garantir um modelo preditivo preciso, a recomendação de aproximadamente dez indivíduos por variável foi considerada na análise de regressão linear.

As análises estatísticas foram realizadas por meio de estatística descritiva (média, desvio padrão, frequência absoluta e percentual) para as medidas de características clínicas, QVRS e capacidade física. Nenhuma imputação foi feita para dados ausentes. Nos casos de participantes com dados ausentes, os dados foram analisados por exclusão pareada para que os dados disponíveis pudessem ser incluídos nas análises e, assim, o risco de viés minimizado.

A correlação de Pearson foi calculada considerando cada domínio da QVRS (WOMAC) e medidas de capacidade física. Correlações de Pearson ou Spearman foram calculadas entre covariáveis contínuas e QVRS. Além disso, o teste t de Student independente ou o teste U de Mann Whitney foi utilizado para comparar os escores dos domínios da QVRS entre os grupos de covariáveis categóricas. Correlações ou comparações de medidas de capacidade física e covariáveis com valor de p ≤0,05 foram consideradas significativas.

Medidas de capacidade física que apresentaram correlação significativa (p≤0,05) com os domínios da QVRS foram escolhidas para a análise de regressão linear univariada para identificar uma possível relação entre cada um dos preditores (capacidade física) e a variável de saída (QVRS). Quaisquer medidas de capacidade física identificadas como preditores
significativos de QVRS nessas análises (p≤0,05) foram incluídas na análise de regressão múltipla.

Os preditores restantes foram então colocados em um modelo de regressão linear múltipla para determinar se a importância desses testes na explicação de possíveis variações nos domínios WOMAC foi mantida quando incluídos com os demais. Foram realizadas quatro regressões lineares múltiplas entre cada domínio da QVRS e as medidas de capacidade física (variáveis independentes) que já eram significativas na regressão simples. As covariáveis significativas (p<0,05) nas análises de correlação ou comparação foram incluídas nas análises de regressão múltipla como variáveis de ajuste. Para cada análise, foram respeitados os princípios de independência entre resíduos (Durbin-Watson), normalidade dos resíduos, presença de homocedasticidade e ausência de multicolinearidade entre as variáveis (VIF <10 e Tolerância> 0,1) e, portanto, foram garantidos pressupostos para a realização da regressão pelo método passo a passo. As análises foram realizadas pelo método stepwise-forward. As variáveis não identificadas como preditivas foram removidas e apresentado o modelo com maior valor de R² ajustado ou que explicasse maior percentual da variável de saída. Foi considerado um nível de significância de 5%.

RESULTADOS

Inicialmente foram contatados 188 participantes. Após a aplicação dos critérios de inclusão/exclusão, 67 foram considerados elegíveis para participar do estudo e incluídos nas análises finais (Figura 1). Resumidamente, os participantes da pesquisa foram predominantemente mulheres, com idade entre 60 e 83 anos, com sobrepeso, inativos, sem sintomas depressivos e com comprometimento bilateral do joelho associado a dor intensa. As características clínicas dos participantes e os dados de QVRS e capacidade física estão resumidos na Tabela 1. Dados completos foram fornecidos por 60 participantes, com dados parciais disponíveis para os outros 7. Dois indivíduos não tinham informação de IMC, dois indivíduos não tinham informação do nível de atividade física e sete indivíduos não tinham informação sobre o número de medicamentos em uso.

Figura 1. Fluxograma de estudo, Brasília, 2020.
Tabela 1. Variáveis demográficas, físicas e de desempenho funcional dos participantes. (n=67), Brasília, 2020.

Variáveis	Amostra total	Feminino (n=55)	Masculino (n=12)
Idade (anos)*	68,8 (5,8)	68,36 (5,69)	70,50 (6,028)
Sexo (feminino)*	82,1 (55)	-	-
IMC (Kg/m²)*	30,38 (7,98)	30,60 (8,66)	29,43 (3,99)
Abaixo do peso*	1,5 (1)	0,0 (0)	25,0 (3)
Eutrófico*	16,9 (11)	15,1 (8)	25,0 (3)
Excesso de peso*	81,5 (53)	84,9 (45)	66,7 (8)
Comprometimento articular (bilateral)*	73,1 (49)	78,2 (43)	50,0 (6)
Prática de exercício físico (ativo)*	79,1 (53)	84,9 (45)	66,7 (8)
Número de medicamentos*	4,07 (2,2)	4,10 (2,074)	3,91 (2,844)
MEEM (pontuação)*	21,4 (5,9)	21,02 (6,317)	23,67 (3,367)
NRS (0-10)*	7,7 (2,2)	7,83 (2,193)	7,50 (2,431)
GDS (pontuação total)*	5,04 (3,19)	5,51 (3,090)	2,92 (2,906)
Não deprimido*	62,7 (42)	56,4 (31)	91,7 (11)
Depressão leve*	28,4 (19)	34,5 (19)	0,0 (0)
Depressão grave*	9,1 (6)	9,1 (5)	8,3 (1)
Capacidade física			
TUG (s)*	13,03 (11,05 – 16,07)	13,06 (11,07 – 16,04)	12,55 (10,45 – 19,54)
30CTS (número de repetições)*	7 (5 – 9)	7 (5 – 8)	8,50 (6,50 – 11,00)
SCT (s)*	77 (63,05 – 95,05)	81,02 (67,56 – 100,72)	55,32 (42,03 – 76,54)
40FPWT (s)*	37,07 (32,09 – 43,09)	39,05 (33,55 – 44,52)	30,28 (26,54 – 35,01)
TC6M (m)*	371,00 (317,00 – 430,00)	365,00 (316,00 – 418,00)	445,00 (410,00 – 524,50)
WOMAC			
Dor (0-20)*	10,00 (7,00 – 13,00)	10,00 (8,00 – 13,50)	8,50 (5,00 – 10,50)
Rígidez (0-8)*	2,00 (0,00 – 4,00)	3,00 (0,00 – 4,00)	1,50 (0,00 – 2,00)
Função física (0-68)*	31,00 (17,00 – 41,00)	33,00 (26,50 – 41,50)	15,00 (9,50 – 22,00)

Notas: * Média (desvio padrão). **Mediana (P25% – P75%). † Porcentagem (frequência absoluta). MEEM: Miniavaliação do Estado Mental. NRS: Escala Numérica de Avaliação. GDS: Escala de Depressão Geriátrica. TUG: Timed Up and Go. SCT: Teste de Subir Escadas. 30CST: Teste de levantar e sentar da Cadeira de 30 Segundos. 40FPWT: Teste de caminhada acelerado de 40m. TC6: Teste de caminhada de seis minutos. WOMAC: Western Ontario and McMaster Universities Osteoarthritis Index

Os coeficientes de correlação entre WOMAC e capacidade física são apresentados na Tabela 2. Nas análises de comparação, foram observadas diferenças significativas entre homens e mulheres em todos os domínios; dor (diferença média = -2,93, [IC 95% -5,54 a -0,33], p = 0,028), rigidez (Z = -2,11, p = 0,034) e atividade física (diferença média = -16,71, [IC 95% -24,96 a -8,47]), p<0,001. Diferenças nos escores também foram observadas no domínio atividade física (diferença média=9,49, F=0,009, p=0,015) entre os grupos de acordo com o comprometimento da articulação do joelho (uni ou bilateral). Não houve diferença significativa entre indivíduos fisicamente ativos ou inativos.

Nas análises de regressão linear univariada, observou-se associação da capacidade física nos testes 30CST, SCT, 40FPWT e TC6 com os domínios dor e atividade física, e associação da capacidade física nos testes SCT e TC6 com o domínio rigidez do WOMAC (Tabela 3).

No entanto, na análise multivariada ajustada, observou-se que a capacidade física no TC6 (β =-0,22; t = -3,88; p<0,001) influenciada pelo IMC (β =0,121; t = 2,08; p=0,041) explicou 24,7 % do domínio dor [F(2,62) = 10,19; p<0,001; R²=0,247]. Um total de 14,1% [F(2,62)=5,09; p=0,009; R²=0,141] do domínio rigidez foi explicado pelo TC6 (β=-
0,009; t=-2,37; p=0,021) influenciado pelo IMC ($\beta=0,076$; $t=2,00$; $p=0,049$). A medida de capacidade física no SCT ($\beta=0,229$; $t=4,25$; $p<0,001$) influenciada pelo sexo ($\beta=10,724$; $t=2,77$; $p=0,007$) também foi observada e explicou 39,5% do domínio atividade física [$F(2,62)=20,26$; $p<0,001$; $R^2=0,395$] (Tabela 4).

Tabela 2. Associação entre escores de capacidade física e domínios WOMAC:

Variáveis independentes	Dor	Rígidez	Função física			
	r	p	r	p	r	p
30CST	0,254^a	0,038	-	-	0,259^a	0,034
SCT	0,42^b	<0,001	0,252^b	0,04	0,552^b	<0,001
40FPWT	0,329^a	0,007	-	-	0,397^a	0,001
TC6	0,389^a	0,001	0,279^a	0,022	0,445^a	<0,001

Legenda: ^aCorrelação de Pearson; ^bCorrelação de Spearman

Tabela 3. Regressão univariada, incluindo capacidade física como variável independente e QVRS como variável dependente:

Variável dependente	Variável independente	Regressão univariada		
		R^2 (R^2_{adj})	Beta (CI 95%)	valor p
WOMAC – Dor	TUG	0,014 (-0,015)	-0,010 (-0,197 a 0,176)	0,913
	30CST	0,064 (0,050)	-0,367 (-0,714 a -0,020)	0,038
	SCT	0,180 (0,168)	0,064 (0,030 a 0,098)	<0,001
	40FPWT	0,108 (0,094)	0,111 (0,032 a 0,189)	0,007
	TC6	0,151 (0,138)	-0,019 (-0,031 a -0,008)	0,001
WOMAC- Rígidez	TUG	0,020 (0,005)	0,064 (-0,047 a 0,174)	0,252
	30CST	0,017 (0,002)	-0,113 (-0,326 a 0,100)	0,293
	SCT	0,064 (0,049)	0,023 (0,001 a 0,044)	0,040
	40FPWT	0,035 (0,021)	0,038 (-0,011 a 0,087)	0,127
	TC6	0,078 (0,064)	-0,008 (-0,015 a -0,001)	0,022
WOMAC- Função física	TUG	0,001 (-0,014)	0,079 (-0,557 a 0,715)	0,806
	30CST	0,067 (0,053)	-1,279 (-2,461 a -0,097)	0,034
	SCT	0,304 (0,293)	0,284 (0,178 a 0,391)	<0,001
	40FPWT	0,158 (0,145)	0,455 (0,195 a 0,716)	0,001
	TC6	0,198 (0,186)	-0,076 (-0,114 a -0,038)	<0,001
Após análise, foi possível estabelecer três equações para todos os domínios da QVRS do WOMAC:

(i) Domínio dor = 14.436 + (-0.022* TC6) + (0.121* IMC)

(ii) Domínio rigidez = 3.729 + (-0.009* TC6) + (0.076* IMC)

(iii) Domínio função física = -8.674 + (0.229 * SCT) + (10.724 * sexo)

TC6 = desempenho no teste de caminhada de seis minutos em metros (m); IMC = Índice de Massa Corporal em Kg/m²; SCT = desempenho no teste de subida de escada em segundos (s); Sexo = 1 para homens e 2 para mulheres.

DISCUSSÃO

O estudo examinou a associação entre capacidade física e qualidade de vida relacionada à saúde em idosos com OAJ sintomática. Os resultados mostraram que a QVRS diminuiu juntamente com a piora da capacidade de caminhar longas distâncias e subir escadas, mesmo quando foram consideradas as influências do IMC e do sexo. Esses dados ajudarão no estabelecimento de estratégias de reabilitação para auxiliar na melhora da função em pacientes com OAJ.

Embora alguns estudos tenham investigado a relação individual entre essas habilidades e a QVRS percebida, os autores não têm conhecimento de nenhum estudo nas principais bases de dados...
que avaliasssem concomitantemente as principais atividades diárias de transferência realizadas por essa população, entendida como capacidade física global. Descobrimos que a capacidade de caminhar longas distâncias ajustadas pelo IMC explicou 22,3% da QVRS no domínio dor dos idosos com OAJ sintomática. Nossos achados revelaram que os participantes com menor IMC caminharam maiores distâncias e relataram maior QVRS em relação ao domínio dor. Juhakoski e colaboradores (2008) também identificaram essa associação entre o domínio dor da QVRS e uma maior distância percorrida, independente do IMC em participantes com OA de quadril unilateral ou bilateral.

A capacidade de caminhar longas distâncias é reduzida em idosos (> 65 anos) com diagnóstico de OAJ, e vários fatores podem impactar nessa atividade, principalmente sobrepeso e dor no joelho. Em relação ao excesso de peso, o aumento do peso corporal pode sobrecarregar e diminuir os movimentos articulares, favorecendo a diminuição do nível de atividade desses indivíduos, aumento da dor local e redução da capacidade física, não apenas para caminhar longas distâncias, mas também para levantar da cadeira e subir escadas. Em pacientes com OA de joelho, a distância percorrida, IMC, duração da dor no joelho (anos), satisfação com a vida, velocidade de caminhada, desempenho em pé e caminhada (TUG), instabilidade relatada e amplitude de movimentos de flexão e extensão do joelho mostraram uma relação linear com o domínio dor da QVRS.

Observamos que a capacidade de caminhar longas distâncias juntamente com o IMC também explicou 11,3% do domínio rigidez da QVRS. Esse achado demonstrou que idosos com menor IMC e que podiam caminhar distâncias maiores apresentaram maior QVRS no domínio rigidez. Em pacientes com OAJ, a rigidez articular está presente durante a manhã, após longos períodos na mesma posição, e persiste durante a caminhada, levando à alteração do ciclo da marcha. Em pacientes com OA unilateral de joelho, a rigidez articular pode ser 13% maior no membro sintomático em relação ao assintomático. Nesses pacientes, a carga assintomática do joelho também pode aumentar em até 41%, levando a um maior ângulo de flexão do joelho na fase de aceitação de peso e contribuindo para aproximadamente 70% da variação da rigidez junto com as forças de contato do joelho. Poucos estudos investigaram essas relações; no entanto, a piora no componente de rigidez também parece estar relacionada a outros fatores, como idade ≥ 65 anos, IMC ≥ 25 kg/m², sexo feminino e instabilidade do joelho relatada.

Também descobrimos que a capacidade de subir escadas e o sexo explicaram aproximadamente 38% do domínio atividade física dos idosos do estudo. Esse achado demonstrou que homens mais velhos com OAJ sintomática e com maior capacidade de subir escadas também apresentaram maior QVRS no domínio atividade física. Esses achados estão de acordo com o estudo realizado por Topp et al. (2000), que também encontraram associação entre a capacidade de subir escadas e a QVRS, explicando aproximadamente 50% do domínio atividade física da QVRS em idosos com diagnóstico clínico de OAJ. Essa capacidade é muitas vezes limitada independentemente do grau de comprometimento (levé ou moderado) e tem sido relatada como influenciada pelo sexo, uma vez que as mulheres apresentam pior capacidade física em relação aos homens com comprometimento equivalente. Além desses dois determinantes avaliados no nosso estudo, a presença de dor, mesmo em intensidade leve, também demonstrou relação com o domínio atividade física, mesmo em indivíduos sem diagnóstico de OAJ. Após ajuste para IMC, força muscular e ansiedade, a dor explicou entre 36 e 60% da capacidade física.

O comprometimento da capacidade física pode comprometer a capacidade de realizar tarefas dinâmicas, favorecendo o sedentarismo e afetando negativamente a QVRS. Nossos achados demonstraram que a avaliação da capacidade de caminhar longas distâncias e subir escadas usando medidas rápidas, simples e acessíveis fornece uma estimativa dos domínios de dor, rigidez e atividade física da QVRS. A maioria dos determinantes de QVRS identificados no presente estudo caracterizam fatores modificáveis. Consequentemente, programas de reabilitação que visem melhorar a QVRS desses pacientes devem considerar a promoção de intervenções para aumentar a capacidade de caminhar longas distâncias e subir escadas, associadas à redução de peso. Dentre
várias intervenções disponíveis, um programa de exercícios padronizado é considerado adequado para redução da dor e rigidez, contribuindo assim para o aumento da funcionalidade e da QVRS. Outro fator importante a ser considerado é o número de medicamentos em uso, a polifarmácia, pois o número de medicamentos parece afetar negativamente o nível de atividade física dos indivíduos com OAJ. Por fim, a avaliação de outros fatores relacionados às capacidades físicas, como a função muscular dos membros inferiores, pode elucidar mecanismos associados à redução do desempenho físico e da QVRS em indivíduos com OAJ.

Nosso estudo tem algumas limitações. Primeiro, a inclusão de apenas idosos sintomáticos com dor intensa (NRS>7) impede a generalização de nossos achados para a população idosa assintomática e sintomática com OA de dor leve. Em segundo lugar, outros fatores que também podem alterar a percepção da dor e a QVRS são a má qualidade do sono, o estado psicológico e a catastrofização da dor, que não foram levados em consideração em nosso estudo. Um estudo adicional de pacientes com OAJ para avaliar esses componentes (qualidade do sono, estado psicológico e catastrofização da dor) é necessário. Terceiro, embora a percepção média de dor de nossos participantes fosse grave, eles não foram categorizados em grupos de acordo com a intensidade da dor (levemente moderada ou grave). Considerando que a dor sozinha pode explicar até 30% do domínio função física da QVRS, isso pode ter influenciado nossos resultados. Mais estudos devem considerar pontos de corte para dor. Quarto, embora tenhamos verificado dois principais determinantes da QVRS em idosos com OAJ sintomática, uma avaliação longitudinal definiria melhor a causalidade. Quinto, não foi utilizada a circunferência de massa muscular da panturrilha. Por fim, o baixo número de sujeitos.

CONCLUSÃO

Observou-se uma associação positiva entre a capacidade de caminhar longas distâncias e subir escadas e a qualidade de vida relacionada à saúde. Alguns aspectos, como índice de massa corporal e sexo também podem exercer influência negativa nessa associação. Este estudo deve ser entendido como um passo inicial para descrever a relação entre QVRS e capacidade funcional, auxiliando também os profissionais de saúde a ampliar sua compreensão sobre as condições modificáveis e não modificáveis que acometem pacientes com osteoartrite de joelho. Intervenções para melhorar a capacidade de andar e subir escadas, como treino de marcha, atividades aeróbicas ao ar livre e treinamento de degraus e escadas, podem melhorar não apenas o equilíbrio, a força e a percepção corporal, mas também a qualidade de vida de idosos que sofrem de osteoartrite sintomática do joelho, pois indivíduos obesos e do sexo feminino podem ter dificuldades.

REFERÊNCIAS

1. Cui A, Li H, Wang D, Zhong J, Chen Y, Lu H. Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. EClinicalMedicine [Internet]. 2020 Dec;29–30:100587. Available from: https:/ /linkinghub.elsevier.com/retrieve/pii/S258953702030331X

2. Zeng CY, Zhang ZR, Tang ZM, Hua FZ. Benefits and Mechanisms of Exercise Training for Knee Osteoarthritis. Front Physiol [Internet]. 2021 Dec 16;12. Available from: https://www.frontiersin.org/articles/10.3389/fphys.2021.794062/full

3. Hortobágyi T, Garry J, Holbert D, Devita P. Aberrations in the control of quadriceps muscle force in patients with knee osteoarthritis. Arthritis Care Res (Hoboken). 2004;51(4):562–9.

4. Imagama S, Ando K, Kobayashi K, Seki T, Hamada T, Machino M, et al. Impact of comorbidity rates of lumbar spondylosis, knee osteoarthritis, and osteoporosis on physical QOL and risk factors for poor physical QOL in middle-aged and elderly people. Mod Rheumatol [Internet]. 2020;30(2):402–9. Available from: http://dx.doi.org/10.1080/14397595.2019.1601839
5. Yázigi F, Espanha M, Marques A, Teles J, Teixeira P. Predictors of walking capacity in obese adults with knee osteoarthritis. Acta Reumatol Port. 2018;2018(4):256–63.

6. Oliveira AMI, Peccin MS, Silva KNG, Teixeira LEPP, Trevisani VFM. Impacto dos exercícios na capacidade funcional e dor em pacientes com osteoartrite de joelhos: ensaio clínico randomizado. Rev Bras Reumatol [Internet]. 2012 Dec;52(6):876–82. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0482-50042012000600006&lng=pt&nrm=iso&tlng=en

7. Vitaloni M, Bemden AB van, Contreras, Sciortino RM, Scotton, Deborah, et al. Global oa management begins with quality of life assessment in knee oa patients: a systematic review. Osteoarthr Cartil. 2019;27:S229–30.

8. Almeida C, Azvedo K, Cacho T, Garcia Leal JL, Montanini G, Silva DN, et al. The effects of electroanalgesia on knee osteoarthritis: study protocol for a randomized, triple-blind, placebo-controlled trial. Clin Trials Degener Dis [Internet]. 2019;4(3). Available from: http://www.clinicaltrials.com/text.asp?2019/4/3/0/267996

9. Altmann R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, et al. Development of criteria for the classification and reporting of osteoarthritis: Classification of osteoarthritis of the knee. Arthritis Rheum. 1986;29(8):1039–49.

10. Lourenço RA, Veras RP. Mini-Exame do Estado Mental: características psicométricas em idosos ambulatoriais Mini-Mental State Examination: psychometric characteristics in elderly outpatients

11. World Health Organization. Principled Promotion of Health: Implementing Five Guiding Health Promotion Principles for Research-Based Prevention and Management of Diabetes. Societies. 2013;7(2):10.

12. World Health Organization. Principled Promotion of Health: Implementing Five Guiding Health Promotion Principles for Research-Based Prevention and Management of Diabetes. Societies. 2013;7(2):10.

13. Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M, et al. Development and validation of a geriatric depression screening scale: A preliminary report. J Psychiatr Res [Internet]. 1982 Jan;17(1):37–49. Available from: https://linkinghub.elsevier.com/retrieve/pii/0022395682900334

14. Lipschitz D. Screening for nutritional status in the elderly. Prim Care. 1994;21:55–67.

15. Paradela EMP, Lourenço RA, Veras RP. Validação da escala de depressão geriátrica em um ambulatório geral. Rev Saúde Pública [Internet]. 2005 Dec;39(6):918–23. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0034-89102005000600008&lng=pt&nrm=iso&tlng=en

16. Kapstad H et al. Cutpoints for mild, moderate and severe pain in patients with osteoarthritis of the hip or knee ready for joint replacement surgery. BMC Musculoskeletal. 2008;97–9.

17. Fernandes MI. Translation and validation of the specific quality of life questionnaire for osteoarthritis WOMAC (Western Ontario McMaster Universities) for portuguese language [Internet]. Universidade Federal de São Paulo (UNIFESP); 2003. Available from: http://repositorio.unifesp.br/handle/11600/19401

18. Bennell K, Dobson F, Hinman R. Measures of physical performance assessments: Self-Paced Walk Test (SPWT), Stair Climb Test (SCT), Six-Minute Walk Test (6MWT), Chair Stand Test (CST), Timed Up & Go (TUG), Sock Test, Lift and Carry Test (LCT), and Car Task. Arthritis Care Res. 2011;63(SUPPL. 11):350–70.

19. Gomes-Neto M, Araujo AD, Junqueira IDA, Oliveira D, Brasileiro A, Arcanjo FL. Estudo comparativo da capacidade funcional e qualidade de vida entre idosos com osteoartrite de joelho obesos e não obesos. Rev Bras Reumatol [Internet]. 2016;56(2):126–30. Available from: http://dx.doi.org/10.1016/j.rbr.2015.05.004

20. Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and cox regression. Am J Epidemiol. 2007;165(6):710–8.

21. Akhavan NS, Ormsbee L, Johnson SA, George KS, Foley EM, Elam ML, et al. Functionality in Middle-aged and Older Overweight and Obese Individuals with Knee Osteoarthritis. Healthcare. 2018;6(3):74.

22. Davis HC, Blue MNM, Hirsch KR, Luke-Harkey BA, Anderson KC, Smith-Ryan AE, et al. Body Composition Is Associated With Physical Performance in Individuals With Knee Osteoarthritis. JCR J Clin Rheumatol. 2020;26(3):109–14.

23. Juhakoski R, Tenhonen S, Anttonen T, Kauppinen T, Arokoski JP. Factors Affecting Self-Reported Pain and Physical Function in Patients With Hip Osteoarthritis. Arch Phys Med Rehabil. 2008;89(6):1066–73.

24. Maly MR, Costigan PA, Olney SJ. Mechanical factors relate to pain in knee osteoarthritis. Clin Biomech. 2008;23(6):796–805.
25. Gustafson JA, Gorman S, Fitzgerald GK, Farrokhi S. Alterations in walking knee joint stiffness in individuals with knee osteoarthritis and self-reported knee instability. Gait Posture [Internet]. 2016 Jan;43:210–5. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0966636215008930

26. Gustafson JA, et al. Dynamic knee joint stiffness and contralateral knee joint loading during prolonged walking in patients with unilateral knee osteoarthritis. Gait Posture [Internet]. 2019 Feb;68:44–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0966636218317752

27. Marot V, Murgier J, Carrozzi A, Reina N, Monaco E, Chiron P, et al. Determination of normal KOOS and WOMAC values in a healthy population. Knee Surgery, Sport Traumatol Arthrosc [Internet]. 2019;27(2):541–8. Available from: http://dx.doi.org/10.1007/s00167-018-5153-6

28. Topp R, Woolley S, Khuder S, Hornyak J, Bruss A. Predictors of Four Functional Tasks in Patients with Osteoarthritis of the Knee. Orthop Nurs [Internet]. 2000 Sep;19(5):49–58. Available from: http://journals.lww.com/00006416-200019050-00009

29. Iijima H, Shimoura K, Aoyama T, Takahashi M. Biomechanical characteristics of stair ambulation in patients with knee OA: A systematic review with meta-analysis toward a better definition of clinical hallmarks. Gait Posture [Internet]. 2018;62(March):191–201. Available from: https://doi.org/10.1016/j.gaitpost.2018.03.002

30. Logerstedt DS, Zeni J, Snyder-Mackler L. Sex Differences in Patients With Different Stages of Knee Osteoarthritis. Arch Phys Med Rehabil [Internet]. 2014 Dec;95(12):2376–81. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022202X1370834

31. Nur H, Sertkaya BS, Tuncer T. Determinants of physical functioning in women with knee osteoarthritis. Aging Clin Exp Res. 2018;30(4):299–306.

32. Pricila Pessoa Damiani. Desempenho funcional e qualidade de vida em idosas com osteoartrite de joelho. Vol. 1. Universidade Federal de Santa Catarina-UFSC, 2018.

33. Goh SL, Persson MSM, Stocks J, Hou Y, Lin J, Hall MC, et al. Efficacy and potential determinants of exercise therapy in knee and hip osteoarthritis: A systematic review and meta-analysis. Ann Phys Rehabil Med [Internet]. 2019(82018). Available from: https://doi.org/10.1016/j.rehab.2019.04.006

34. Briani RV, Ferreira AS, Pazzinatto MF, Pappas E, De Oliveira Silva D, Azevedo FM de. What interventions can improve quality of life or psychosocial factors of individuals with knee osteoarthritis? A systematic review with meta-analysis of primary outcomes from randomised controlled trials. Br J Sports Med. 2018;52(16):1031–8.

35. Thanoo N, Gilbert AL, Trainor S, Semanik PA, Song J, Lee J, et al. The Relationship between Polypharmacy and Physical Activity in Those with or at Risk of Knee Osteoarthritis. J Am Geriatr Soc. 2020 Sep;68(9):2015–20.