Isoflavones and soyasaponins in the germ of Korean soybean [Glycine max (L.) Merr.] cultivars and their compound-enhanced BMP-2-induced bone formation

Kwang-Sik Lee1,2, So-Yeun Woo1, Mi-Ja Lee1, Hyun Young Kim1, Hyeonmi Ham1, Dong-Jin Lee2, Sik-Won Choi3 and Woo Duck Seo1*

Abstract
Soybeans are used worldwide as food and as a healthy ingredient. Specifically, soy germ (SG) has received considerable attention owing to its abundant nutritional and biological components. This study aimed to elucidate the contents of isoflavone and soyasaponin of SG in 24 Korean soybean cultivars and the osteogenic activity of individual compounds. The isoflavone content in the SG ranged from 1110.9 to 3131.1 mg/100 g, and the soyasaponin content in SG ranged from 1173.5 to 3582.3 mg/100 g. The isoflavone and soyasaponin content depended on soybean cultivars. All isoflavone and soyasaponin compounds enhanced bone morphogenetic protein-2-mediated osteoblast differentiation in a dose-dependent manner, especially soyasaponin Ab. In conclusion, our results suggest that Seonpung cultivar with high soyasaponin Ab is beneficial for developing functional materials.

Keywords: Soy germ, Isoflavone, Soyasaponin, Osteoblast, BMP-2

Introduction
Soybeans [Glycine max (L.) Merr.] are cultivated worldwide because they are rich in primary metabolites such as proteins and oils. In addition, soybeans contain many secondary metabolites such as isoflavones, soyasaponins and tocopherols [6]. Soybean seeds structurally consist of the seed coat, cotyledon, and germ [14]. The isoflavone and soyasaponin content of the germ is higher than that of the seed coat and cotyledon [1, 5, 21].

Isoflavones are divided into aglycones (daidzein, glycine, and genistein), β-glycoside (daidzin, glycitin, and genistin), acetyl-glycoside (acetyl-daidzin, acetyl-glycitin, and acetyl-genistin), and malonyl-glycosides (malonyldaidzin, malonyl-glycitin, and malonyl-genistin) [12].

Soyasaponins are oleanane-type triterpenoid saponins. Soyasaponins are divided into soyasaponin A group, B group, E group and DDMP group [10, 17, 18]. The compounds of the soyasaponin A group are known to exhibit various biological activities such as bone health, anti-obesity, and anti-oxidant activities [3, 7, 15]; the compounds of the soyasaponin B group are known to exhibit various biological activities such as bone health, anti-inflammatory, anti-cancer, hepatoprotective and renin inhibitory activities [8, 11, 13, 19, 23].

However, until now, the effect of individual isoflavone and soyasaponin compounds on osteoblast differentiation has not been simultaneously studied. Therefore, we determined isoflavone and soyasaponin contents in soy germ (SG) and investigated the effect of isoflavones such as anti-oxidant, anti-cancer, anti-diabetic, and bone health [4, 16, 20, 22].

Soyasaponins are known to exhibit biological activities such as anti-oxidant, anti-cancer, anti-diabetic, and bone health [4, 16, 20, 22].

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
and soyasaponins on BMP-2-dependent osteoblast differentiation.

Materials and methods

Chemicals and reagents

Water, acetonitrile and methanol (HPLC grade) were purchased from Fisher Scientific (Fair Lawn, NJ, USA). Aglycones (daidzein, glycitein, and genistein) and β-glycoside (daidzin, glycitin, and genistin) were purchased from Sigma-Aldrich (Saint Louis, MO, USA). Acetyl-glycosides (acetyl-daidzin, acetyl-glycitin, and acetyl-genistin) and malonyl-glycosides (malonyl-daidzin, malonyl-glycitin, and malonyl-genistin) were purchased from Nacalai tesque (Nijo Karasuman Nakagyo, Kyoto, Japan). Soyasaponin Aa, soyasaponin Ab, soyasaponin Ac, soyasaponin Ba, soyasaponin Bc, soyasaponin Bc', soyasaponin Bd, and soyasaponin Be were purchased from ChemFaces (Wuhan, Hubei, China). Soyasaponin Bb was purchased from Chromadex (Irvine, CA, USA). Recombinant human bone morphogenetic protein-2 (rhBMP-2) was purchased from R&D Systems (Minneapolis, MN, USA). Penicillin, streptomycin, cell culture medium and fetal bovine serum (FBS) were purchased from Invitrogen Life Technologies (Carlsbad, CA, USA). All other chemicals and solvents used in the current study were of analytical grade.

Preparation of soybean cultivars, SG and SG extract

Twenty-four soybean [Glycine max (L.) Merr.] cultivars were grown on the experimental field at the National Institute of Crop Science, Jeonbuk, Korea, and harvested in 2018. The separation of SG was conducted using the previously published method [9] with some modifications. Soybean seeds were crushed using a grinder and cotyledon, and the seed coat was removed using a sieve to separate the SG. To make the SG extract, each SG was dried in a freeze-dryer and then ground. Ground SG was defatted using hexane, and the defatted sample (1 g) was extracted using MeOH (40 mL) for 24 h at room temperature. The extract was centrifuged at 5000 rpm for 10 min at 4 °C, and the supernatant was filtered through a regenerated cellulose syringe filter (0.2 μm). The filtered solution was transferred into a 2 mL vial for the analysis of isoflavones and soyasaponins.

Isoflavone analysis

Isoflavone analysis was conducted using an ultra-high performance liquid chromatography (UHPLC, Dionex Ultimate 3000, Thermo Scientific) instrument equipped with a HALO C18 (2.7 μm, 2.1 mm × 100 mm) column. The mobile phases A and B were 0.1% acetic acid in water and 0.1% acetic acid in acetonitrile, respectively. The solvent flow rate was 0.3 mL/min, and the column temperature was set to 35 °C. The gradient was programmed as 0–2 min, 10% B; 3 min, 30% B; 5 min, 90% B; 6–39 min, 90% B; and 40 min, 10% B, held for 5 min before returning to the initial condition. After the injection of 1.3 μL of the sample, eluted isoflavones were detected at 254 nm using a diode array detector (DAD, Thermo Scientific). The calibration curve was plotted by peak area versus the concentration of isoflavones. To prepare the standard stock solution, 12 isoflavones were dissolved in DMSO at the concentration of 1 mg/mL. The stock solution was serially diluted to make the standard solution (3.125, 6.25, 12.5, 25, and 50 μg/mL).

Soyasaponin analysis

Soyasaponins analysis was conducted using a UHPLC (Dionex Ultimate 3000, Thermo Scientific) instrument equipped with an Acclaim™ RSLC Polar Advantage II (2.2 μm, 2.1 mm × 150 mm) column. The mobile phases A and B were 0.1% acetic acid in water and 0.1% acetic acid in acetonitrile, respectively. The solvent flow rate was 0.5 mL/min, and the column temperature was set to 40 °C. The gradient was programmed as 0–1 min, 20% B; 5 min, 30% B; 35 min, 45% B; 40–42 min, 90% B; and 43 min, 20% B, held for 7 min before returning to the initial conditions. After the injection of 1.3 μL of the sample, eluted soyasaponins were detected using a charged aerosol detector (CAD, Corona Veo, Thermo Scientific). The setting for CAD were as follows: gas, nitrogen; power function, 1.3; pressure, 61 psi; filter, 10 s; gain, 100 pA; evaporation temperature, 50 °C; and data collection rate, 10 Hz. The calibration curve was plotted as the peak area versus the concentration of soyasaponins. To prepare the standard stock solution, 10 soyasaponins were dissolved in DMSO at the concentration of 1 mg/mL. The stock solution was serially diluted to make the standard solution (6.25, 12.5, 25, 50, and 100 μg/mL).

Osteoblast cell Culture and differentiation

All cell experiments were performed as previously described [3] with some modifications. Mouse mesenchymal precursor C2C12 cells were purchased from the American Type Collection (Manassas, VA, USA). C2C12 cells were maintained in an alpha minimum essential medium (α-MEM) containing 100 U/mL penicillin, 100 μg/mL streptomycin, and 10% FBS. To differentiate C2C12 into osteoblasts, the cells were seeded and allowed to attach and grow for 1 d; then which the medium was replaced with a differentiation medium (α-MEM containing 5% FBS and 100 ng/mL rhBMP-2). The medium was changed every 3 d.
Cultivar	Aglycone	β-glycoside	Acetyl-glycoside	Malonyl-glycoside	Total (mg/100 g)*				
	Daidzin	Glycitin	Genistein	Daidzin	Glycitin	Genistein	Malonyl-daidzin	Malonyl-glycitin	Malonyl-genistein
Daewpung2ho	7.5 ± 0.1bc	4.4 ± 0.1a	4.0 ± 0.01j	24.1 ± 8.0a	537 ± 15.6a	115 ± 2.9a	224 ± 13bc	24.5 ± 17.0a	7.7 ± 0.1c
Saegeum	4.5 ± 0.36gh	ndf	4.9 ± 0.1j	114.9 ± 23.5j	334 ± 65.3j	658 ± 12.4ef	152.2 ± 27hi	19.7 ± 5.4bcd	6.7 ± 0.7efg
Jungmo3012	6.2 ± 0.2de	nd	5.2 ± 0.0f	134 ± 8.7efg	319 ± 18.6cd	669 ± 4.1ef	186 ± 0.4ef	22.6 ± 1.1b	7.3 ± 0.2cd
Daewpung	4.4 ± 0.2gh	0.2 ± 0.2 fg	5.1 ± 0.1g	124.2 ± 21.4gh	380 ± 5.9bg	72.6 ± 1.4de	19.7 ± 0.2def	27.1 ± 0.4a	8.8 ± 0.1a
Taexeon	9.5 ± 0.0a	1.9 ± 0.1c	5.5 ± 0.0d	141.9 ± 15.3de	212 ± 1.5hijk	570 ± 0.6ghij	24.1 ± 0.3b	21.4 ± 0.3bc	7.6 ± 0.2c
Miso	5.4 ± 0.1ef	4.7 ± 0.1k	169.1 ± 20c	118 ± 1.3m	44 ± 0.2k	24.3 ± 0.4b	9.2 ± 0.1k	63 ± 0.1f	133 ± 0.8ghi
Seonpung	4.4 ± 0.0gh	nd	5.1 ± 0.0h	111 ± 2.4hi	280 ± 4.9ef	62.4 ± 0.9ghij	17.8 ± 0.5f	19.0 ± 2.2cd	7.5 ± 0.1c
Pungsannamu1	6.6 ± 0.3cd	nd	5.0 ± 0.0e	151 ± 0.33d	187 ± 0.9jkl	54.4 ± 0.1ij	20.8 ± 0.1cd	124 ± 0.0ghi	6.5 ± 0.2fg
Socheongna	7.4 ± 0.9bc	nd	5.3 ± 0.0ef	176 ± 0.8bc	167 ± 0.9jkl	63.3 ± 0.2ghij	28.7 ± 0.6a	13.3 ± 0.1ghi	8.6 ± 0.06ab
CheongjaRho	6.6 ± 0.4cd	nd	149.5 ± 21.2de	204 ± 2.72ijkl	62.4 ± 8.9ghij	20.3 ± 2.1d	10.7 ± 0.8jkl	6.9 ± 0.6edf	113 ± 0.10bcd
CheongjaRho3ho	6.8 ± 0.0cd	nd	5.3 ± 0.0e	185.9 ± 3.2b	165 ± 2.7jkl	78.7 ± 2.3cd	16.5 ± 0.2ghj	8.3 ± 0.3ikl	5.8 ± 0.1hij
Shinhwu	5.2 ± 0.6ghg	nd	nd	116.7 ± 3.0h	305 ± 7.6cdde	76.1 ± 1.4cd	16.5 ± 0.6ghj	17.4 ± 0.2def	8.6 ± 0.2ab
Taekwang	8.0 ± 1.1b	1.1 ± 0.0d	nd	121.8 ± 2.3ghj	196.3 ± 3.2kl	51.7 ± 1.1jk	18.3 ± 0.4efg	17.9 ± 0.4defd	6.4 ± 0.0fg
Haewon	5.3 ± 1.1ghf	6.0 ± 1.1e	nd	77.1 ± 0.3ikl	291 ± 10.7de	84.0 ± 0.2c	11.2 ± 0.0k	15.8 ± 0.0efg	7.2 ± 0.0cde
Haepum	5.3 ± 1.1gf	0.3 ± 0.2f	5.7 ± 0.0c	886 ± 2.0jk	254 ± 5.0gfh	78.2 ± 1.7cd	12.1 ± 0.3jk	15.0 ± 0.3fgh	8.2 ± 0.1n
Jipung	4.3 ± 0.3h	nd	74.7 ± 5.6jkl	278 ± 14.1ef	50.6 ± 2.4hihj	15.2 ± 1.0hi	19.9 ± 1.1bck	7.6 ± 0.4cjk	6.5 ± 0.6efg
Seonyu	8.1 ± 0.7b	nd	69.9 ± 0.0a	135.0 ± 3.9efd	109.5 ± 2.8mh	103.2 ± 4.1bj	120 ± 0.2jk	9.4 ± 0.3jkkl	8.2 ± 0.1n
Daechan	4.4 ± 0.1ghk	nd	97.7 ± 2.0i	239.5 ± 8.0gihj	55.9 ± 0.0ikj	15.4 ± 0.00hj	18.6 ± 0.1cde	7.3 ± 1.1c	673.2 ± 2.8ijjk
Saegeon	7.9 ± 0.6b	2.4 ± 0.1b	60.0 ± 0.0b	85.3 ± 2.6gkh	247 ± 7.6ghij	65.0 ± 1.3efd	121 ± 0.3jk	13.5 ± 0.2ghij	6.3 ± 0.1bc
Daewon	nd	nd	80.8 ± 3.9kl	2380 ± 1.10ghj	559.2 ± 2.3hihj	136 ± 1.0j	200 ± 1.5bcd	7.5 ± 0.0c	573.1 ± 2.13k
Cheongmin	5.2 ± 0.2ghg	nd	nd	115.0 ± 2.1h	97.6 ± 0.0m	40.1 ± 0.3j	216 ± 0.5cd	98.0 ± 0.2j	62 ± 1.0ghij
Hwangkeumvl	6.6 ± 1.1cd	nd	nd	138.6 ± 6.5def	129.6 ± 3.8m	64.7 ± 2.9feg	106.0 ± 4k	6.7 ± 0.11l	5.1 ± 0.0g
Chamol	nd	1.0 ± 0.2d	nd	54.5 ± 0.3m	224.7 ± 5.2ghij	50.1 ± 0.2ck	6.7 ± 0.11l	11.2 ± 0.1ijk	5.3 ± 0.0jkl
Swoodanbaek	4.8 ± 0.09gh	nd	nd	68.4 ± 0.2lm	116.9 ± 2.1m	37.4 ± 0.5l	112 ± 0.4jkl	9.5 ± 0.1jkl	5.6 ± 0.1jkl

The mean values in the same column indicated by the same letter are not significantly different at the level of 0.05 according to Duncan's multiple range test.
a All values are shown as the mean ± standard deviation of three independent experiments.
b nd: not detected
Table 2 Soyasaponin content of soy germ in 24 soybean cultivars

Cultivar	Ac	Bc	Bd	Aa	Be	Ab	Bc	Ba	Bb	Total (mg/100 g)	
Seonpung	nd	nd	nd	nd	nd	nd	3478.1 ± 81.3a	nd	35.6 ± 0.0b	68.6 ± 0.9def	35.82 ± 82.2a
Daepung	nd	nd	nd	nd	nd	nd	2467.3 ± 42.8b	nd	36.1 ± 0.3b	73.4 ± 1.9 cd	2576.9 ± 44.9b
Taeseon	nd	nd	nd	nd	nd	nd	2195.2 ± 30.1a	nd	129.9 ± 2.2i	136.5 ± 8.1a	2507.0 ± 41.1bc
Pungsansanmul	nd	nd	nd	nd	nd	nd	23988.6 ± 117.7bc	nd	26.7 ± 0.5efgh	44.2 ± 0.3ji	2469.7 ± 12.5bc
Daepung2ho	nd	nd	nd	nd	nd	nd	2283.6 ± 57.9bc	nd	32.2 ± 0.3c	72.0 ± 1.3cdce	2387.8 ± 59.5bc
Socheongja	nd	nd	nd	nd	nd	nd	2174.2 ± 23.9b	nd	102.4 ± 1.1i	49.5 ± 1.1hi	2354.2 ± 26.3c
Jinpung	nd	nd	nd	nd	nd	nd	2254.8 ± 120.7c	nd	30.2 ± 0.6cd	61.6 ± 1.3defgh	2346.6 ± 118.7c
Cheongje2ho	nd	nd	nd	nd	nd	nd	2020.4 ± 258.3d	nd	28.7 ± 2.4de	59.9 ± 8.6efgh	2109.0 ± 269.2d
Taekwang	nd	nd	nd	1831.6 ± 30.7c	nd	111.0 ± 2.4i	31.6 ± 1.1c	81.5 ± 0.6c	2055.7 ± 34.8de	1905.2 ± 0.7def	
Daechan	nd	nd	nd	nd	nd	nd	1822.2 ± 0.1e	nd	26.8 ± 0.2efgh	56.2 ± 0.8fgghi	1886.5 ± 121.1ef
Chamol	nd	nd	nd	nd	nd	nd	1794.5 ± 115.2e	nd	32.0 ± 1.4c	60.0 ± 4.5efghi	1821.5 ± 2.8f
Miso	nd	nd	nd	nd	nd	nd	1731.4 ± 4.2e	nd	30.3 ± 0.5cd	59.8 ± 9.0efghi	1572.6 ± 11.5g
Cheongmiin	nd	nd	nd	nd	nd	nd	1481.2 ± 10.5f	nd	29.8 ± 0.0cd	61.6 ± 1.0defghi	1568.6 ± 58.5g
Haepum	nd	nd	nd	nd	nd	nd	1509.2 ± 57.4f	nd	23.1 ± 0.2i	36.3 ± 0.9j	1520.8 ± 45.6gh
Jungmo3012	nd	nd	nd	nd	nd	nd	14420.0 ± 43.4 fg	nd	25.6 ± 0.7efghi	53.2 ± 1.5ghi	1517.8 ± 7.63gh
Hwangkeumol	nd	nd	nd	nd	nd	nd	1430.0 ± 67.0 fg	nd	28.4 ± 0.4defghi	59.4 ± 8.2efghi	1517.8 ± 7.63gh
Seonyu	nd	nd	nd	nd	nd	nd	1407.4 ± 13.9 fg	nd	32.3 ± 0.2c	71.0 ± 1.5cdde	1510.6 ± 15.2gh
Saegeum	nd	nd	nd	nd	nd	nd	1364.2 ± 260.8 fg	nd	35.4 ± 5.0b	99.9 ± 20.1b	1499.5 ± 285.9gh
Haewon	nd	nd	nd	nd	nd	nd	1418.8 ± 25.0 fg	nd	25.5 ± 0.3ghi	49.9 ± 0.7ghi	1494.2 ± 26.0gh
Soyeon	nd	nd	nd	nd	nd	nd	1367.2 ± 8.6 fg	nd	25.8 ± 0.1efghi	55.8 ± 0.2ghi	1448.9 ± 8.9gh
Daewon	nd	nd	nd	nd	nd	nd	13267.1 ± 41.7 fg	nd	28.5 ± 0.4defghi	64.7 ± 2.0defghi	1420.0 ± 44.1gh
Cheongja3ho	nd	nd	nd	nd	nd	nd	12640.4 ± 23.0gfh	nd	25.9 ± 0.1efghi	49.1 ± 2.9hi	1339.0 ± 20.0hi
Shinwa	nd	nd	nd	nd	nd	nd	1237.9 ± 31.6gfh	nd	27.6 ± 0.2defghi	62.7 ± 2.0defghi	1328.2 ± 33.8hi
Saedanbaek	nd	nd	nd	nd	nd	nd	1095.3 ± 20.1 h	nd	25.4 ± 0.1hi	52.8 ± 1.6ghi	1173.5 ± 21.6i

The mean values in the same column indicated by the same letter are not significantly different at the level of 0.05 according to Duncan's multiple range test

a All values are shown as the mean ± standard deviation of three independent experiments

b nd: not detected

Alkaline phosphatases (ALP) staining and activity assay
The ALP activity of C2C12 cells was assessed using ALP staining and an ALP activity detection kit (Sigma-Aldrich, St. Louis, MO, USA). Briefly, C2C12 cells were cultured under osteogenic differentiation conditions in the presence of the vehicle, isoflavones, or soyasaponins. After differentiation for 3 d, the cells were washed twice with PBS, fixed with 10% formalin in PBS for 5 min, rinsed with deionized water, and stained with the ALP staining kit or measured using the one-step PNPP substrate solution (Thermo Scientific, Waltham, MA, USA).

Cell viability assay
The C2C12 cells were plated on 96-well plates (three replicate plates) at the density of 2.5 × 10^5 cells/well (C2C12 cells). After the treatment with the indicated concentrations of isoflavones and soyasaponins, the cells were incubated for 3 d, and cell viability was measured using the Cell Counting Kit 8 (CCK-8) according to the manufacturer’s protocol. The CCK-8 assay kit was purchased from Dojindo Molecular Technologies (Rockville, MD, USA).

Statistical analysis
All quantitative values are presented as the mean ± standard deviation. Each experiment was performed three times. Several figures show the results from one representative experiment. Statistical differences were analyzed via Student’s t test and Duncan’s multiple-range test using the statistical analysis software (SAS) enterprise guide 7.1 (SAS Institute Inc., Cary, NC, USA).

Results and discussion
Isoflavone content in the germ of soybean cultivars
Isoflavone analysis in the germ of 24 Korean soybean cultivars was performed by UHPLC-DAD. Twelve isoflavones were detected in the SG (Additional file 1: Fig. S1). The total isoflavone content ranged from 1110.9 to 3131.1 mg/100 g and the highest total isoflavone content
was in the Daepung2ho cultivar, whereas the lowest one was in the Saedanback cultivar. Among isoflavones, β-glycoside (daidzin, glycitin, and genistin) and malonyl-glycoside (malonyl-daidzin, malonyl-glycitin, and malonyl-genistin) isoflavones were the major compound in SG (Table 1). The range of isoflavone content has been reported to depend on soybean cultivars [5].

Fig. 1 Isoflavones enhance osteoblast differentiation. a C2C12 cells were cultured for 3 d with BMP-2 (100 ng/mL) with either the vehicle (DMSO) or the indicated concentration of isoflavones. Osteoblast differentiation was visualized by ALP staining. b The ALP activity was determined by measuring absorbance at 405 nm. ###p < 0.001 (versus control); ***p < 0.001 (versus BMP-2-treated group). c The effects of isoflavones on the C2C12 cell viability were evaluated by the CCK-8 assay. The data are shown as the mean ± SD and are representative of the three experiments.
Soyasaponin content in the germ of soybean cultivars

Soyasaponin analysis in the germ of 24 Korean soybean cultivars was performed by UHPLC-CAD. Only four compounds out of 10 soyasaponin standards were detected (Additional file 1: Fig. S2); the total soyasaponin contents ranged from 1173.5 to 3582.3 mg/100 g; soyasaponin Aa content ranged from 1831.6 to 2195.2 mg/100 g; soyasaponin Ab content ranged from 102.4 to 3478.1 mg/100 g; soyasaponin Ba content ranged from 23.1 to 45.4 mg/100 g, and soyasaponin Bb contents ranged from 36.3 to 136.5 mg/100 g. The highest total soyasaponin content was in the Seonpung cultivar, whereas the lowest content was in the Saedanback cultivar (Table 2). These various ranges of soyasaponin content have been reported to depend on soybean cultivars [5]. The content of soyasaponins Ab and Aa was high in the total soyasaponin content and the soyasaponin phenotype in SG was largely divided into Aa and Ab (Table 2). These results were similar to those that have been previously reported [1, 2].
Isoflavone and soyasaponin in SG stimulate BMP-2-induced osteoblast differentiation in C2C12 cells

To study the effects of isoflavone and soyasaponin in SG on BMP-2-mediated osteogenesis, C2C12 cells were incubated with various concentrations of 12 isoflavones and 4 soyasaponins, followed by BMP-2 (100 ng/mL). As shown in Figs. 1a and 2a, isoflavones and soyasaponins induced ALP expression in a dose-dependent manner in the presence of BMP-2. Consistent with this result, isoflavones and soyasaponins considerably enhanced the BMP-2-stimulated ALP activity in a dose-dependent manner (Figs. 1b and 2b), especially soyasaponin Ab. Isoflavones and soyasaponins did not show cytotoxicity (Figs. 1c and 2c).

Our study determined that Seonpung cultivar had a higher concentration of soyasaponin Ab than that in other cultivars (Table 2). The results suggest that Seonpung cultivar is promising functional food materials for preventing and improving bone loss disorders including osteoporosis. Further research is needed to examine the soyasaponin Ab content in Seonpung cultivar according to various environmental factors because phytochemicals are influenced by the environmental factors [1].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s13765-020-00508-y.

Additional file 1: Figure S1. Chemical structures and representative chromatograms of isoflavones in the germ of 24 soybean cultivars analyzed by UHPLC-DAD. (a) Chemical structures of isoflavones, (b) isoflavone standards, and (c) Daepung2ho cultivar. The number of peaks is as follows: 1, daidzin; 2, glycilitin; 3, genistin; 4, 6″O-malonyl-daidzin; 5, 6″O-malonyl-glycilitin; 6, 6″O-acetyl-daidzin; 7, 6″O-malonyl-genistin; 8, 6″O-acetyl-glycilitin; 9, daidzein; 10, glycitin; 11, 6″O-acetyl-genistin; and 12, genistin. Figure S2. Chemical structures and representative chromatograms of soyasaponins in the germ of 24 soybean cultivars analyzed by UHPLC-CAD. (A) Chemical structures of soyasaponins, (b) soyasaponin standards, and (C) Taeeseon cultivar in soyasaponin Aa phenotype. (d) Daepung2ho cultivar in soyasaponin Ab phenotype. The number of peaks is as follows: 1, soyasaponin Ac; 2, soyasaponin Bc; 3, soyasaponin Bd; 4, soyasaponin Aa; 5, soyasaponin Be; 6, soyasaponin Ab; 7, soyasaponin Bc; 8, soyasaponin Ba; 9, soyasaponin Bb; 10, soyasaponin Bb'. Figure S3. Calibration curve for soyasaponin standards analyzed by UHPLC-CAD. Table S1. Extraction efficiency of soy germ extract in 24 soybean cultivars

Acknowledgements
This work was carried out with the support of Cooperative Research Program for Agriculture Science and Technology Development (Project title: Evaluation and identification of metabolites and database from up-land crop, Project No. PJ01348301) Rural Development Administration, Republic of Korea.

Authors' contributions
KSL contributed to the writing of the manuscript and performed the majority of data analysis. SWY performed the osteblast differentiation study. MJL, HYK, and HMH performed minor experiments and prepared raw materials. DJL and SWC contributed to the discussion of experimental results. WDS planned and led this research. All authors read and approved the final manuscript.

Funding
No funding was received.

Availability of data and materials
All data generated or analyzed during this study are included in this published article and its Additional file 1.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Laboratory of Crop Resource Development, Division of Crop Foundation, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Wanju-Gun S5365, Republic of Korea. 2 Department of Crop Science and Biotechnology, Dankook University, Cheonan 31116, Korea. 3 Forest Biomaterials Research Center, National Institute of Forest Science (NIFS), Jinju 52817, Korea.

Received: 13 February 2020 Accepted: 26 April 2020
Published online: 14 May 2020

References
1. Berhow MA, Kong SB, Vermillion KE, Duval SM (2006) Complete quantification of group A and group B soyasaponins in soybeans. J Agric Food Chem 54(6):2035–2044
2. Chittisankul WT, Takada Y, Takahashi Y, Ito A, Itabashi M, Varanyanond W, Kikuchi A, Ishimoto M, Tsukamoto C (2018) Saponin composition complexities in hypocotyls and cotyledons of nine soybean varieties. LWT Food Sci Technol 89:93–103
3. Choi CW, Choi SW, Kim HJ, Lee KS, Kim SH, Kim SL, Do SH, Seo WD (2018) Germinated soy germ with increased soyasaponin Ab improves BMP-2-induced bone formation and protects against in vivo bone loss in osteoporosis. Sci Rep 8(1):1–12
4. Dai J, Li Y, Zhou H, Chen J, Chen M, Xiao Z (2013) Genistin promotion of osteogenic differentiation through BMP2/SMAD/RUNK2 signaling. Int J Biol Sci 9(10):1089–1098
5. Hubert J, Berger M, Daydé J (2005) Use of a simplified HPLC – UV analysis for soyasaponin B determination: study of saponin and isoflavone variability in soybean cultivars and soy-based health food products. J Agric Food Chem 53(10):3923–3930
6. Kim EH, Ro HM, Kim SL, Kim HS, Chung IM (2012) Analysis of isoflavone, phenolic, soyasapogenol, and tocopherol compounds in soybean [Glycine max (L.) Merrill] germplasms of different seed weights and origins. J Agric Food Chem 60(23):6045–6055
7. Kim HJ, Choi EJ, Kim HS, Choi CW, Choi SW, Kim SL, Seo WD, Do SH (2018) Soyasaponin Ab alleviates postmenopausal obesity through browning of white adipose tissue. J Funct Foods 57:453–464
8. Kim SH, Yuk HJ, Ryu HW, Oh SR, Song DY, Lee KS, Park KL, Choi SW, Seo WD (2019) Biofunctional soyasaponin Bb in peanut (Arachis hypogaea L.) sprouts enhances bone morphogenetic protein-2-dependent osteogenic differentiation via activation of runt-related transcription factor 2 in C2C12 cells. Phytother Res 33(5):1490–1500
9. Kim SL, Lee JE, Kwon YU, Kim WH, Jung GH, Kim DW, Lee CK, Lee YY, Kim MJ, Kim YH, Hwang TY, Chung IM (2013) Introduction and nutritional evaluation of germinated soy germ. Food Chem 136(2):491–500
10. Kudou S, Tonomura M, Tsukamoto C, Uchida T, Sakabe T, Tamura N, Okubo K (1993) Isolation and structural elucidation of DDMP conjugated soyasaponins as genuine saponins from soybean seeds. Biosci Biotechnol Biochem 57(4):546–550
11. Lee IA, Park YJ, Yeo HK, Han MJ, Kim DH (2010) Soyasaponin I attenuates TNBS-induced colitis in mice by inhibiting NF-kB pathway. J Agric Food Chem 58(20):10929–10934
12. Lee SJ, Seguin P, Kim JJ, Moon HH, Ro HM, Kim EH, Seo SH, Kang EY, Jk Ahn, Chung IM (2010) Isoflavonoids in Korean soybeans differing in seed coat and cotyledon color. J Food Compost Anal 23(2):160–165
13. Lijie Z, Ranran F, Xuaying L, Yutang H, Bo W, Tao M (2016) Soyasaponin Bb protects rat hepatocytes from alcohol-induced oxidative stress by inducing heme oxygenase-1. Pharmacogn Mag 12(48):302–306
14. Liu KS (2012) Soybeans: chemistry, technology, and utilization. Verlag, Springer, p 4
15. Liu X, Chen K, Zhu L, Liu H, Ma T, Xu Q, Xie T (2018) Soyasaponin Ab protects against oxidative stress in HepG2 cells via Nrf2/HO-1/NQO1 signaling pathways. J Funct Foods 45:110–117
16. De La Parra C, Castillo-Pichardo L, Cruz-Collazo A, Cubano L, Redis R, Calin GA, Dharmawardhane S (2016) Soy isoflavone genistein-mediated down-regulation of miR-155 contributes to the anticancer effects of genistein. Nutr Cancer 68(1):154–164
17. Shiraiwa M, Kudo S, Shimoyamada M, Harada K, Okubo K (1991) Composition and structure of ”group A saponin” in soybean seed. Agric Biol Chem 55(2):315–322
18. Shiraiwa M, Harada K, Okubo K (1991) Composition and structure of ”group B saponin” in soybean seed. Agric Biol Chem 55(4):911–917
19. Takahashi S, Hori K, Shinbo M, Hiwatashi K, Gotoh T, Yamada S (2008) Isolation of human renin inhibitor from soybean: soyasaponin I is the novel human renin inhibitor in soybean. Biosci Biotechnol Biochem 72(12):3232–3236
20. Valsecchi AE, Franchi S, Panerai AE, Rossi A, Sacerdote P, Colleoni M (2011) The soy isoflavone genistein reverses oxidative and inflammatory state, neuropathic pain, neurotrophic and vasculature deficits in diabetes mouse model. Eur J Pharmacol 650(2–3):694–702
21. Yue X, Abdallah AM, Xu Z (2010) Distribution of isoflavones and antioxidant activities of soybean cotyledon, coat and germ. J Food Process Preserv 34(5):795–806
22. Zhang T, Wang F, Xu HX, Yi L, Qin Y, Chang H, Mi MT, Zhang QY (2013) Activation of nuclear factor erythroid 2-related factor 2 and PPARy plays a role in the genistein-mediated attenuation of oxidative stress-induced endothelial cell injury. Br J Nutr 109(2):223–235
23. Zhang W, Popovich DG (2010) Group B oleanane triterpenoid extract containing soyasaponins I and III from soy flour induces apoptosis in Hep-G2 cells. J Agric Food Chem 58(9):5315–5319

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.