Some characterizations of special curves in the Euclidean space E^4

Melih Turgut
Department of Mathematics,
Buca Educational Faculty
Dokuz Eylül University,
35160 Buca, Izmir, Turkey.
email: Melih.Turgut@gmail.com

Ahmad T. Ali*
King Abdul Aziz University,
Faculty of Science,
Department of Mathematics,
PO Box 80203, Jeddah, 21589,
Saudi Arabia.
email: atali71@yahoo.com

Abstract. In this work, first, we give some characterizations of helices and ccr curves in the Euclidean 4-space. Thereafter, relations among Frenet-Serret invariants of Bertrand curve of a helix are presented. Moreover, in the same space, some new characterizations of involute of a helix are presented.

1 Introduction

In the local differential geometry, we think of curves as a geometric set of points, or locus. Intuitively, we are thinking of a curve as the path traced out by a particle moving in E^4. So, investigating position vectors of the curves is a classical aim to determine behavior of the particle (curve).

Natural scientists have long held a fascination, sometimes bordering on mystical obsession for helical structures in nature. Helices arise in nanosprings, carbon nanotubes, α–helices, DNA double and collagen triple helix, the double helix shape is commonly associated with DNA, since the double helix is

2010 Mathematics Subject Classification: 53A04
Key words and phrases: classical differential geometry, Frenet-Serret frame, Bertrand curves, helix, involute-evolute curve couples, ccr curves.

*Permanent address: Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City, 11448, Cairo, Egypt.
structure of DNA [3]. This fact was published for the first time by Watson and Crick in 1953 [25]. They constructed a molecular model of DNA in which there were two complementary, antiparallel (side-by-side in opposite directions) strands of the bases guanine, adenine, thymine and cytosine, covalently linked through phosphodiesterase bonds. Each strand forms a helix and two helices are held together through hydrogen bonds, ionic forces, hydrophobic interactions and van der Waals forces forming a double helix, lipid bilayers, bacterial flagella in Salmonella and E. coli, aerial hyphae in actinomycete, bacterial shape in spirochetes, horns, tendrils, vines, screws, springs, helical staircases and sea shells (helico-spiral structures) [4, 5].

Helix is one of the most fascinating curves in science and nature. Also we can see the helix curve or helical structures in fractal geometry, for instance hyperhelices [23]. In the field of computer aided design and computer graphics, helices can be used for the tool path description, the simulation of kinematic motion or the design of highways, etc. [26]. From the view of differential geometry, a helix is a geometric curve with non-vanishing constant curvature κ and non-vanishing constant torsion τ [2]. The helix may be called a circular helix or W-curve [12, 17].

It is known that straight line ($\kappa(s) = 0$) and circle ($\tau(s) = 0$) are degenerate-helix examples [13]. In fact, circular helix is the simplest three-dimensional spirals. One of the most interesting spiral examples are k-Fibonacci spirals. These curves appear naturally from studying the k-Fibonacci numbers $\{F_k,n\}_{n=0}^\infty$ and the related hyperbolic k-Fibonacci function. Fibonacci numbers and the related Golden Mean or Golden section appear very often in theoretical physics and physics of the high energy particles [7, 8]. Three-dimensional k-Fibonacci spirals was studied from a geometric point of view in [9].

Indeed, in Euclidean 3-space E^3, a helix is a special case of the general helix. A curve of constant slope or general helix in Euclidean 3-space is defined by the property that the tangent makes a constant angle with a fixed straight line called the axis of the general helix. A classical result stated by Lancret in 1802 and first proved by de Saint Venant in 1845 (see [22] for details) says that: A necessary and sufficient condition that a curve be a general helix is that the ratio κ/τ is constant along the curve, where κ and τ denote the curvature and the torsion, respectively.

The notation of a generalized helix in E^3 can be generalized to higher dimensions in the same definition is proposed but in E^n, i.e., a generalized helix as a curve $\psi : R \to E^n$ such that its tangent vector forms a constant angle with a given direction U in E^n [20].

Two curves which, at any point, have a common principal normal vector
are called Bertrand curves. The notion of Bertrand curves was discovered by J. Bertrand in 1850. Bertrand curves have been investigated in \mathbb{E}^n and many characterizations are given in [10]. Thereafter, by theory of relativity, investigators extend some of classical differential geometry topics to Lorentzian manifolds. For instance, one can see, Bertrand curves in \mathbb{E}^n_1 [6], in \mathbb{E}^3_1 for null curves [1], and in \mathbb{E}^4_1 for space-like curves [27]. In the fourth section of this paper, we follow the same procedure as in [27].

In this work, first, we aim to give some new characterizations of helices and ccr curves in terms of recently obtained theorems. Thereafter, we investigate relations among Frenet-Serret invariants of Bertrand curve couples, when one of is helix, in the Euclidean 4-space. Moreover, we observe that Bertrand curve of a helix is also a helix; and cannot be a spherical curve, a general helix and a 3-type slant helix, respectively. We also express some characterizations of involute of a helix. We hope these results will be helpful to mathematicians who are specialized on mathematical modeling.

2 Preliminaries

To meet the requirements in the next sections, here, the basic elements of the theory of curves in the space \mathbb{E}^4 are briefly presented (A more complete elementary treatment can be found in [11]).

Let $\alpha : I \subset \mathbb{R} \to \mathbb{E}^4$ be an arbitrary curve in the Euclidean space \mathbb{E}^4. Recall that the curve α is said to be of unit speed (or parameterized by arclength function s) if $\langle \alpha'(s), \alpha'(s) \rangle = 1$, where $\langle \ldots \rangle$ is the standard scalar (inner) product of \mathbb{E}^4 given by

$$\langle \xi, \zeta \rangle = \xi_1\zeta_1 + \xi_2\zeta_2 + \xi_3\zeta_3 + \xi_4\zeta_4,$$

for each $\xi = (\xi_1, \xi_2, \xi_3, \xi_4), \zeta = (\zeta_1, \zeta_2, \zeta_3, \zeta_4) \in \mathbb{E}^4$. In particular, the norm of a vector $\xi \in \mathbb{E}^4$ is given by

$$\|\xi\| = \sqrt{\langle \xi, \xi \rangle}.$$

Let $\{T(s), N(s), B(s), E(s)\}$ be the moving frame along the unit speed curve α. Then the Frenet-Serret formulas are given by [10, 21]

$$\begin{bmatrix}
T' \\
N' \\
B' \\
E'
\end{bmatrix} =
\begin{bmatrix}
0 & \kappa & 0 & 0 \\
-\kappa & 0 & \tau & 0 \\
0 & -\tau & 0 & \sigma \\
0 & 0 & -\sigma & 0
\end{bmatrix}
\begin{bmatrix}
T \\
N \\
B \\
E
\end{bmatrix}.$$ (1)
Here T, N, B and E are called, respectively, the tangent, the normal, the binormal and the trinormal vector fields of the curve and the functions $\kappa(s), \tau(s)$ and $\sigma(s)$ are called, respectively, the first, the second and the third curvature of a curve in E^4. Also, the functions $H_1 = \frac{\tau}{\kappa}$ and $H_2 = \frac{\kappa}{\sigma}$ are called Harmonic Curvatures of the curves in E^4, where $\kappa \neq 0, \tau \neq 0$ and $\sigma \neq 0$. Let $\alpha : I \subset \mathbb{R} \rightarrow E^4$ be a regular curve. If tangent vector field T of α forms a constant angle with unit vector U, this curve is called an inclined curve or a general helix in E^4. Recall that, a curve $\psi = \psi(s)$ is called a 3-type slant helix if the trinormal lines of α make a constant angle with a fixed direction in E^4 [24]. Recall that if a regular curve has constant Frenet curvatures ratios, (i.e., $\frac{\tau}{\kappa}$ and $\frac{\sigma}{\tau}$ are constants), then it is called a ccr-curve [16]. It is worth noting that: the W-curve, in Euclidean 4-space E^4, is a special case of a ccr-curve.

Let $\alpha(s)$ and $\alpha^*(s)$ be regular curves in E^4. $\alpha(s)$ and $\alpha^*(s)$ are called Bertrand Curves if for each s_0, the principal normal vector to α at $s = s_0$ is the same as the principal normal vector to $\alpha^*(s)$ at $s = s_0$. We say that $\alpha^*(s)$ is a Bertrand mate for $\alpha(s)$ if $\alpha(s)$ and $\alpha^*(s)$ are Bertrand Curves.

In [14] Magden defined in the same space, a vector product and gave a method to establish the Frenet-Serret frame for an arbitrary curve by the following definition and theorem:

Definition 1 Let $a = (a_1, a_2, a_3, a_4)$, $b = (b_1, b_2, b_3, b_4)$ and $c = (c_1, c_2, c_3, c_4)$ be vectors in E^4. The vector product in E^4 is defined by the determinant

$$a \wedge b \wedge c = \begin{vmatrix}
 e_1 & e_2 & e_3 & e_4 \\
 a_1 & a_2 & a_3 & a_4 \\
 b_1 & b_2 & b_3 & b_4 \\
 c_1 & c_2 & c_3 & c_4
\end{vmatrix},$$

(2)

where e_1, e_2, e_3 and e_4 are mutually orthogonal vectors (coordinate direction vectors) satisfying equations

$$e_1 \wedge e_2 \wedge e_3 = e_4, \quad e_2 \wedge e_3 \wedge e_4 = e_1, \quad e_3 \wedge e_4 \wedge e_1 = e_2, \quad e_4 \wedge e_1 \wedge e_2 = e_3.$$

Theorem 1 Let $\alpha = \alpha(t)$ be an arbitrary regular curve in the Euclidean space E^4 with above Frenet-Serret equations. The Frenet apparatus of α can be written as follows:

$$T = \frac{\alpha'}{||\alpha'||},$$

$$N = \frac{||\alpha'||^2 \alpha'' - \langle \alpha', \alpha'' \rangle \alpha'}{||\alpha'||^2 \alpha'' - \langle \alpha', \alpha'' \rangle \alpha'||}.$$
Some characterizations of special curves

\[B = \mu E \wedge T \wedge N, \]
\[E = \mu \frac{T \wedge N \wedge \alpha'''}{||T \wedge N \wedge \alpha'''||}, \]
\[\kappa = \frac{||\alpha'||^2 \alpha'' - \langle \alpha', \alpha'' \rangle \alpha'||}{||\alpha'||^4}, \]
\[\tau = \frac{||T \wedge N \wedge \alpha''|| ||\alpha'||}{||\alpha'||^2 \alpha'' - \langle \alpha', \alpha'' \rangle \alpha'||}, \]
\[\sigma = \frac{\langle \alpha^{(IV)}, E \rangle}{||T \wedge N \wedge \alpha'''|| ||\alpha'||}. \]

and

where \(\mu \) is taken \(-1\) or \(+1\) to make \(+1\) the determinant of \([T, N, B, E]\) matrix.

3 Some new results of helices and ccr curves

In this section we state some related theorems and some important results about helices and ccr curves:

Theorem 2 Let \(\alpha = \alpha(s) \) be a regular curve in \(E^4 \) parameterized by arclength with curvatures \(\kappa, \tau \) and \(\sigma \). Then \(\alpha = \alpha(s) \) lies on the hypersphere of center \(m \) and radius \(r \in \mathbb{R}^+ \) in \(E^4 \) if and only if

\[\rho^2 + \left(\frac{1}{\tau} \frac{d\rho}{ds} \right)^2 + \frac{1}{\sigma^2} \left[\rho \tau + \frac{d}{ds} \left(\frac{1}{\tau} \frac{d\rho}{ds} \right) \right]^2 = r^2, \]

where \(\rho = \frac{1}{\kappa} \) [16].

Theorem 3 Let \(\alpha = \alpha(s) \) be a regular curve in \(E^4 \) parameterized by arclength with curvatures \(\kappa, \tau \) and \(\sigma \). Then \(\alpha \) is a generalized helix if and only if

\[H_2 + \sigma H_1 = 0, \]

where \(H_1 = \frac{\kappa}{\tau} \) and \(H_2 = \frac{1}{\sigma} H_1' \) are the Harmonic Curvatures of \(\alpha \) [15].

Theorem 4 Let \(\alpha = \alpha(s) \) be a regular curve in \(E^4 \) parameterized by arclength with curvatures \(\kappa, \tau \) and \(\sigma \). Then \(\alpha \) is a type 3-slant helix (its second binormal vector \(E \) makes a constant angle with a fixed direction \(U \)) if and only if

\[\tilde{H}_2 + \sigma \tilde{H}_1 = 0, \]

where \(\tilde{H}_1 = \frac{\sigma}{\tau} \) and \(\tilde{H}_2 = \frac{1}{\kappa} \tilde{H}_1' \) are the Anti-Harmonic Curvatures of \(\alpha \) [18].
With the aid of the above theorems, one can easily obtain the following important results:

Theorem 5 Let \(\alpha = \alpha(s) \) be a helix in \(E^4 \) with non-zero curvatures.
1. \(\alpha \) can not be a generalized helix
2. \(\alpha \) can not be a \(\beta \)-type slant helix
3. If \(\alpha \) lies on the hypersphere \(S^3 \), then, the sphere's radius is equal to \(\sqrt{\tau^2 + \sigma^2} \).

Theorem 6 Let \(\alpha = \alpha(s) \) be a ccr curve in \(E^4 \) with non-zero curvatures \(\kappa(s) \), \(\tau(s) = a \kappa(s) \) and \(\sigma(s) = b \kappa(s) \). Then
1. \(\alpha \) can not be a generalized helix
2. \(\alpha \) can not be a \(\beta \)-type slant helix
3. If \(\alpha \) lies on the hypersphere \(S^3 \), then, if and only if, the following equation is satisfied:

\[
f^2 + \frac{\tau^2}{4a^2} + \frac{f}{4a^2b^2}(2a^2 + f'')^2 = r^2, \tag{6}
\]

where the function \(f = f(s) = \rho^2(s) = \frac{1}{\kappa^2(s)} \).

4 Bertrand curve of a helix

In this section we investigate relations among Frenet-Serret invariants of Bertrand curve of a helix in the space \(E^4 \).

Theorem 7 Let \(\delta = \delta(s) \) be a helix in \(E^4 \). Moreover, \(\xi \) be Bertrand mate of \(\delta \). Frenet-Serret apparatus of \(\xi \), \(\{T_\xi, N_\xi, B_\xi, E_\xi, \kappa_\xi, \tau_\xi, \sigma_\xi\} \), can be formed by Frenet apparatus of \(\delta \) \(\{T, N, B, E, \kappa, \tau, \sigma\} \).

Proof. Let us consider a helix (W-curve, i.e.) \(\delta = \delta(s) \). We may express

\[
\xi = \delta + \lambda N. \tag{7}
\]

We know that \(\lambda = c = \text{constant} \) (cf. [11]). By this way, we can write that

\[
\frac{d\xi}{ds_E} \frac{ds_E}{ds} = T_\xi \frac{ds_E}{ds} = (1 - \lambda \kappa) T + \lambda \tau B.
\]

So, one can have

\[
T_\xi = \frac{(1 - \lambda \kappa) T + \lambda \tau B}{\sqrt{(1 - \lambda \kappa)^2 + (\lambda \tau)^2}}, \tag{8}
\]
Some characterizations of special curves

\[\frac{d\xi}{ds} = \left\| \xi' \right\| = \sqrt{(1 - \lambda \kappa)^2 + (\lambda \tau)^2}. \] \hspace{1cm} (9)

In order to determine relations, we differentiate:

\[\xi'' = \left[\kappa - \lambda (\kappa^2 + \tau^2) \right] N + (\lambda \tau \sigma) E, \]
\[\xi''' = \kappa \left[\lambda (\kappa^2 + \tau^2) - \kappa \right] T + \tau (\kappa - \lambda (\kappa^2 + \tau^2 + \sigma^2)) B, \]
\[\xi^{(IV)} = l_1 N + l_2 E \] \hspace{1cm} (10)

where

\[l_1 = \kappa^3 (\lambda \kappa - 1) + \lambda \tau^2 (2 \kappa^2 + \tau^2 + \sigma^2), \]
and

\[l_2 = \tau \sigma (\kappa - \lambda (\kappa^2 + \tau^2 + \sigma^2)). \]

Using the above equations, we can form

\[\left\| \xi' \right\|^2 \xi'' - \langle \xi', \xi'' \rangle \xi' = K^2 \left[(\kappa - \lambda (\kappa^2 + \tau^2)) N + (\lambda \tau \sigma) E \right], \]

where

\[K = \sqrt{(1 - \lambda \kappa)^2 + (\lambda \tau)^2}. \]

Therefore, we obtain the principal normal and the first curvature, respectively,

\[N_\xi = \frac{1}{L} \left[(\kappa - \lambda (\kappa^2 + \tau^2)) N + (\lambda \tau \sigma) E \right], \] \hspace{1cm} (11)

and

\[\kappa_\xi = \frac{L}{K^2}, \] \hspace{1cm} (12)

where

\[L = \sqrt{[\kappa - \lambda (\kappa^2 + \tau^2)]^2 + (\lambda \tau \sigma)^2}. \]

Now, we can compute the vector form \(T_\xi \wedge N_\xi \wedge \xi''' \) as the following:

\[T_\xi \wedge N_\xi \wedge \xi''' = \frac{1}{MK} \begin{vmatrix} T & N & B & E \\ 1 - \lambda \kappa & 0 & \lambda \tau & 0 \\ 0 & \kappa - \lambda (\kappa^2 + \tau^2) & 0 & \lambda \tau \sigma \\ l_1 & 0 & l_2 & 0 \end{vmatrix} = \frac{M}{K} \left[\lambda \tau \sigma N - (\kappa - \lambda (\kappa^2 + \tau^2)) E \right], \]

where

\[M = \tau \left[\lambda (\kappa^2 + \tau^2 + \sigma^2) - \kappa (1 + \lambda^2 \sigma^2) \right]. \]
Since, we have
\[E_\xi = -\frac{1}{L} \left[\lambda \tau \sigma N - [\kappa - \lambda(\kappa^2 + \tau^2)]E \right]. \quad (13) \]

By this way, we have the third curvature as follows:
\[\tau_\xi = \frac{M}{K^2 L}. \quad (14) \]

Besides, considering last equation of Theorem 1, one can calculate
\[\sigma_\xi = \frac{\kappa \sigma}{L}. \quad (15) \]

Now, to determine the third vector field of Frenet frame, we write
\[E_\xi \wedge T_\xi \wedge N_\xi = -\frac{1}{K L^2} \begin{vmatrix} T & N & B & E \\ 0 & \lambda \tau \sigma & 0 & \lambda(\kappa^2 + \tau^2) - \kappa \\ 1 - \lambda \kappa & 0 & \lambda \tau & 0 \\ 0 & \kappa - \lambda(\kappa^2 + \tau^2) & 0 & \lambda \tau \sigma \end{vmatrix}. \]

So we obtain:
\[B_\xi = -\frac{1}{K} [\lambda \tau T + (1 - \lambda \kappa)B]. \quad (16) \]

It is worth to note that \(\mu = 1 \).

Considering obtained equations, we get:

Theorem 8 Let \(\delta = \delta(s) \) be a helix in \(E^4 \). Moreover, let \(\xi \) be a Bertrand mate of \(\delta \). Then
1. \(\xi \) is also a helix.
2. \(\xi \) can not be a generalized helix.
3. \(\xi \) can not be a 3-type slant helix.
4. If \(\xi \) lies on the hypersphere \(S^3 \), then, the sphere’s radius is equal to
\[\frac{\sqrt{\tau_\xi^2 + \sigma_\xi^2}}{\kappa \sigma} = \frac{\sqrt{\tau^2 + (1 - \lambda \kappa)^2 \sigma^2}}{\kappa \sigma}. \]

5 **Involute-evolute curve of a helix**

In this section, first we correct the computations in the paper [19] and then we obtain new results:
Theorem 9 Let $\xi = \xi(s)$ be involute of δ. Let δ be a helix in E^4. The Frenet apparatus of ξ, $\{T_\xi, N_\xi, B_\xi, E_\xi, \kappa_\xi, \tau_\xi, \sigma_\xi\}$, can be formed by Frenet apparatus of $\delta \{T, N, B, E, \kappa, \tau, \sigma\}$ and take the following form.

\[
T_\xi = N, \quad N_\xi = \frac{-\kappa T + \tau B}{\sqrt{\kappa^2 + \tau^2}}, \quad B_\xi = -E, \quad E_\xi = \frac{\tau T + \kappa B}{\sqrt{\kappa^2 + \tau^2}},
\]

(17)

and

\[
\kappa_\xi = \frac{\sqrt{\kappa^2 + \tau^2}}{\kappa |c - s|}, \quad \tau_\xi = \frac{\tau \sigma}{\kappa \sqrt{\kappa^2 + \tau^2} |c - s|}, \quad \sigma_\xi = -\frac{\sigma}{\sqrt{\kappa^2 + \tau^2} |c - s|},
\]

(18)

where

\[
\frac{ds_\xi}{ds} = \kappa |c - s|.
\]

(19)

Proof. The proof of the above theorem is similar as the proof of the previous theorem.

Theorem 10 Let ξ and δ be unit speed regular curves in E^4. ξ be involute of δ. Then

1. ξ cannot be a helix.
2. ξ is a ccr-curve.
3. ξ cannot be a generalized helix.
4. ξ cannot be a 3-type slant helix.
5. ξ cannot be lies on the hypersphere S^3.

Proof. The proof of points 1, 2, 3 and 4 are obviously. In the following we will proof the point 5:

Integrating the equation (19), we have

\[
|c - s| = \sqrt{\frac{2s_\xi}{\kappa}},
\]

which leads to

\[
\kappa_\xi = \frac{A_1}{\sqrt{s_\xi}}, \quad \tau_\xi = \frac{A_2}{\sqrt{s_\xi}}, \quad \sigma_\xi = \frac{A_3}{\sqrt{s_\xi}},
\]

(20)

where

\[
A_1 = \sqrt{\frac{\kappa^2 + \tau^2}{2\kappa}}, \quad A_2 = -\frac{\tau \sigma}{2\kappa (\kappa^2 + \tau^2)}, \quad A_3 = -\frac{\sigma \sqrt{\kappa}}{\sqrt{2(\kappa^2 + \tau^2)}}.
\]
Then if the evolute \(\xi \) lies in the hypersphere the equation (6) must be satisfied. Substituting \(f = \frac{s_\xi}{A_1^2} \), \(\kappa_\xi = \frac{A_2}{\sqrt{s_\xi}} \), \(B_1 = \frac{r_\xi}{\kappa_\xi} \), and \(B_2 = \frac{s_\xi}{\kappa_\xi} \) in the equation (6), we have

\[
\frac{s_\xi (B_1^2 + B_2^2)}{A_1^2 B_1^2} + \frac{1}{4A_1^2 B_1^2} = r^2,
\]

which is contradiction because the radius \(r \) of the sphere must be constant and the coefficient of \(s_\xi \) can not be equal zero. The proof is completed. ■

Acknowledgement

The first author would like to thank Tübitak-Bideb for their financial supports during his PHD studies.

References

[1] H. Balgetir, M. Bektas, J. Inoguchi, Null Bertrand curves in Minkowski 3-space and their characterizations, *Note di matematica* 23 (2004), 7–13.

[2] M. Barros, General helices and a theorem of Lancret, *Proc. Amer. Math. Soc.*, 125 (1997), 1503–1509.

[3] Ç. Camcu, K. ˙Ilarslan, L. Kula, H.H. Hacisalihoğlu, Harmonic curvatures and generalized helices in \(\mathbb{E}^n \), *Chaos, Solitons and Fractals*, 40 (2009), 2590–2596.

[4] N. Chouaieb, A. Goriely, J. H. Maddocks, Helices, *PNAS*, 103 (2006), 398–403.

[5] T. A. Cook, *The curves of life*, Constable, London, 1914; Reprinted (Dover, London, 1979).

[6] N. Ekmekci, K. İlarslan, On Bertrand curves and their characterization, *Differential Geometry - Dynamical Systems*, 3 (2001), 17–24.

[7] M. S. El Naschie, Notes on superstrings and the infinite sums of Fibonacci and Lucas numbers, *Chaos Solitons Fractals*, 12 (2001), 1937–1940.

[8] M. S. El Naschie, Experimental and theoretical arguments for the number and mass of the Higgs particles, *Chaos Solitons Fractals*, 23 (2005), 1901–1908.
Some characterizations of special curves

[9] S. Falcon, A. Plaza, On the 3-dimensional k-Fibonacci spirals, *Chaos Solitons Fractals*, 38 (2008), 993–1003.

[10] H. Gluck, Higher curvatures of curves in Euclidean space, *Amer. Math. Monthly*, 73 (1996), 699–704.

[11] H.H. Hacisalihoğlu, *Differential geometry I*, Ankara University Faculty of Science Press, 2000.

[12] K. Ilarslan, O. Boyacioglu, Position vectors of a spacelike W-curve in Minkowski space \mathbb{E}^3_1, *Bull. Korean Math. Soc.*, 44 (2007), 429–438.

[13] W. Kühnel, *Differential Geometry: curves - surfaces - manifolds*. Wiesbaden, Braunchweig, 1999.

[14] A. Mağden, *Characterizations of some special curves in \mathbb{E}^4*, Dissertation, Dept. Math. Ataturk University, Erzurum, Turkey, 1990.

[15] A. Mağden, On the curves of constant slope, *YYÜ Fen Bilimleri Dergisi*, 4 (1993), 103–109.

[16] J. Monterde, Curves with constant curvature ratios, *Bulletin of Mexican Mathematic Society*, 3a serie 13 (2007), 177–186.

[17] J. Monterde, Salkowski curves revisited: A family of curves with constant curvature and non-constant torsion, *Comput. Aided Geomet. Design*, 26 (2009), 271–278.

[18] M. Önder, M. Kazaz, H. Kocayiğit, O. Kilic, B_2-slant helix in euclidean 4-space \mathbb{E}^4, *Int. J. Contemp. Math. Sci.*, 3 (2008), 1433–1440.

[19] E. Özyılmaz, S. Yılmaz, Involute-evolute curve couples in the euclidean 4-Space, *Int. J. Open Problems Compt. Math.*, 2 (2009), 168–174.

[20] M. C. Romero-Fuste, E. Sanabria-Codesal, *Generalized helices, twistings and flattenings of curves in n-space*, 10th School on Differential Geometry (Portuguese) (Belo Horizonte, 1998), Math Contemp., 17 (1999), 267–280.

[21] A. Sabuncuoglu, H. H. Hacisalihoğlu, On higher curvature of a curve, *Communications de la Fac. Sci. Uni. Ankara*, 24 (1975), 33–46.

[22] D.J. Struik, *Lectures in classical differential geometry*, Addison-Wesley, Reading, MA, 1961.
[23] C. D. Toledo-Suarez, On the arithmetic of fractal dimension using hyper-helices, *Chaos Solitons Fractals*, 39 (2009), 342–349.

[24] M. Turgut and S. Yilmaz, Characterizations of some special helices in E^4, *Sci. Magna*, 4 (2008), 51–55.

[25] J. D. Watson, F. H. Crick, *Molecular structures of nucleic acids*, Nature, 171 (1953), 737–738.

[26] X. Yang, High accuracy approximation of helices by quintic curve, *Comput. Aided Geom. Design*, 20 (2003), 303–317.

[27] S. Yilmaz, M. Turgut, Relations among Frenet apparatus of space-like Bertrand W-curve couples in Minkowski space-time, *Int. Math. Forum*, 3, (2008), 1575–1580.

Received: July 29, 2009; Revised: April 11, 2010