BROWNIAN-TIME PROCESSES: THE PDE CONNECTION AND THE HALF-DERIVATIVE GENERATOR

HASSAN ALLOUBA AND WEIAN ZHENG

ABSTRACT. We introduce a class of interesting stochastic processes based on Brownian-time processes. These are obtained by taking Markov processes and replacing the time parameter with the modulus of Brownian motion. They generalize the iterated Brownian motion (IBM) of Burdzy and the Markov snake of Le Gall, and they introduce new interesting examples. After defining Brownian-time processes, we relate them to fourth order parabolic PDEs. We then study their exit problem as they exit nice domains in \mathbb{R}^d, and connect it to elliptic PDEs. We show that these processes have the peculiar property that they solve fourth order parabolic PDEs, but their exit distribution—at least in the standard Brownian-time process case—solves the usual second order Dirichlet problem. We recover fourth order PDEs in the elliptic setting by encoding the iterative nature of the Brownian-time process, through its exit time, in a standard Brownian motion. We also show that it is possible to assign a formal generator to these non-Markovian processes by giving such a generator in the half-derivative sense.

0. Introduction

Let $B(t)$ be a one-dimensional Brownian motion starting at 0 and $X^x(t)$ be an independent \mathbb{R}^d-valued continuous Markov process started at x, both defined on a probability space $(\Omega, \mathcal{F}, \{ \mathcal{F}_t \}, \mathbb{P})$. We call the process $X^x_B(t) \triangleq X^x(|B(t)|)$ a Brownian-time process (BTP). In the special case where X^x is a Brownian motion starting at x we call the process $X^x_B(t)$ a Brownian-time Brownian motion (BTBM). Excursions-based Brownian-time processes (EBTPs) are obtained from BTPs by breaking up the path of $|B(t)|$ into excursion intervals—maximal intervals (r, s) of time on which $|B(t)| > 0$—and, on each such interval, we pick an independent copy of the Markov process X^x from a finite or an infinite collection. BTPs and their close cousins EBTPs may be regarded as canonical constructions for several famous as well as interesting new processes. To see this, observe that the following processes have the one dimensional distribution $\mathbb{P}(X^x_B(t) \in dy)$:

(a) Markov snake—when $|B_t|$ increases we generate a new independent path. See Le Gall ([13], [14], and [15]) for applications to the nonlinear PDE $\Delta u = u^2$.

(b) Let $X^{x,1}(t), \ldots, X^{x,k}(t)$ be independent copies of $X^x(t)$ starting from point x. On each excursion interval of $|B(t)|$ use one of the k copies chosen at
random. When \(x = 0, X^x \) is a Brownian motion starting at 0, and \(k = 2 \)
this reduces to the iterated Brownian motion (IBM). See Burdzy \([2, 3]\). We identify such a process by the abbreviation \(k \text{EBTP} \) and we denote
it by \(X_{B,e}^{x,k}(t) \). Of course, when \(k = 1 \) we obtain a BTP.

(c) Use an independent copy of \(X^x \) on each excursion interval of \(|B(t)| \). This
is the \(k \to \infty \) limit of (b) (for a rigorous statement and proof, see the
Appendix). It is intermediate between IBM and the Markov snake. Here,
we go forward on a new independent path only after \(|B(t)| \) reaches 0. This
process is abbreviated as EBTP and is denoted by \(X_{B,e}^x(t) \).

In Sections 1 and 2 we connect \(X_B(t), X_{B,e}^{x,k}(t), \) and \(X_{B,e}^{x,k}(t) \) to new fourth order parabolic PDEs and to second and fourth order elliptic PDEs. As a special case of
our results, we get the missing connection of the IBM of Burdzy to PDEs. There
are of course other iterated processes that have been linked to different PDEs (see
\([8, 10]\), and the references therein), but none solves the IBM PDE. In Section
3 we show that, eventhough \(X_B(t) \) is not Markovian, we can still assign to it a
“generator” in the half-derivative sense, which we therefore call the half-derivative
generator.

In Section 1 the PDE connection is given by

Theorem 0.1. Let \(\mathcal{A}_f(x) = \mathbb{E}_f(X^x(s)) \) be the semigroup of the continuous
Markov process \(X^x(t) \) and \(\mathcal{A} \) its generator. Let \(f \) be a bounded measurable function in the domain of \(\mathcal{A} \), with \(D_{ij}f \) bounded and Hölder continuous for \(1 \leq i, j \leq d \).
If \(u(t, x) = \mathbb{E}_f(X_{B,e}^{x,k}(t)) \) for any \(k \in \mathbb{N} \) (as stated before \(X_{B,e}^{x,1}(t) = X_B(t) \)), or if \(u(t, x) = \mathbb{E}_f(X_{B,e}^{x,k}(t)) \), then \(u \) solves the PDE \(u \) solves the

\[
\begin{align*}
\frac{\partial}{\partial t} u(t, x) &= \mathcal{A} f(x) + \frac{1}{2} \mathcal{A}^2 u(t, x); \quad t > 0, \ x \in \mathbb{R}^d, \\
u(0, x) &= f(x); \quad x \in \mathbb{R}^d,
\end{align*}
\]

where the operator \(\mathcal{A} \) acts on \(u(t, x) \) as a function of \(x \) with \(t \) fixed. In particular,
if \(X_B(t) \) is a BTBM and \(\Delta \) is the standard Laplacian, then \(u \) solves

\[
\begin{align*}
\frac{\partial}{\partial t} u(t, x) &= \frac{\Delta f(x)}{\sqrt{8\pi t}} + \frac{1}{8} \Delta^2 u(t, x); \quad t > 0, \ x \in \mathbb{R}^d, \\
u(0, x) &= f(x); \quad x \in \mathbb{R}^d.
\end{align*}
\]

Remark 0.1. The inclusion of the initial function \(f(x) \) in the PDEs (0.1) and (0.2)
is a reflection of the non-Markovian property of our BTP. Thus the role of \(f \) here
is fundamentally different from its role in the standard Markov-PDE connection.

In Section 2, we focus on BTBMs and we take up the exit problem for \(X_B(t) \).
Towards this end, let \(G \) be a bounded open subset of \(\mathbb{R}^d \) with regular boundary \(\partial G \). Each time, we start \(X_B(t) \) at a point \(x \in G \cup \partial G \), and we let \(T^e_G := \inf \{ t \geq 0; X_B^e(t) \notin G \} \). Our first result says that if we look at the exit distribution of our
iterated process we solve the usual second order Dirichlet problem. This might
seem surprising at first, but upon reflection, we see that the iterated nature of both
our process \(X_B(t) \) and its exit time \(T^e_G \) “cancel” each other, and we are effectively
reduced to the exit distribution of an ordinary Brownian motion. For a precise
explanation of this phenomenon see the proof of Theorem 0.2. In Theorem 0.4 we
show how to “recover” the fourth order PDE in this elliptic setting.
Theorem 0.2. Let G and T^x_G be defined as above. If $u(x) = \mathbb{E}_P f(X_B^x(T^x_G))$ then u satisfies the Dirichlet problem

\begin{align}
\Delta u(x) &= 0; \quad x \in G, \\
u(x) &= f(x); \quad x \in \partial G.
\end{align}

Theorem 0.3. Let G and T^x_G be defined as above. If $u(x) = \mathbb{E}_P T^x_G$, then u satisfies

\begin{align}
\Delta^2 u(x) &= 8; \quad x \in G, \\
u(x) &= 0; \quad x \in \partial G.
\end{align}

We now show how to “encode” the iterated nature of our BTBM process in a Brownian motion so as to recover a fourth order elliptic PDE. The idea is to look at the Brownian motion X^x evaluated at the iterated exit time T^x_G (the first exit time for the iterated process $X^x(t)$); i.e., $X^x(T^x_G)$. Note that this is not the exit distribution of X^x (since $T^x_G \neq \tau^x_G = \inf \{ t \geq 0; X^x \notin G \}$ in general). The fact that T^x_G is not a stopping time with respect to the natural filtration of X^x makes it inconvenient to deal with directly, so we are led to the deterministic time that captures the desired properties of T^x_G, namely $\mathcal{T}^x = \mathbb{E}_P T^x_G$.

Remark 0.2. If $x \in \partial G$ then $T^x_G = 0$ a.s. \mathbb{P} and so $\mathcal{T}^x = \mathbb{E}_P T^x_G = 0$. Of course, by Theorem 0.3, \mathcal{T}^x satisfies (0.4). We are now ready to give the elliptic fourth order PDE connection to a Brownian motion at the expected value of the iterated exit time T^x_G.

Theorem 0.4. Assume that X^x is the outer Brownian motion in $X_B^x(t) = X^x(t)$, starting at x under \mathbb{P}, and let $\mathcal{T}^x = \mathbb{E}_P T^x_G$. Let $f \in C^4(\mathbb{R}^d; \mathbb{R})$ be biharmonic ($\Delta^2 f \equiv 0$); and assume polynomial growth for f and all of its partial derivatives of order $k \leq 4$. Then $u(x) = \mathbb{E}_P f(X^x(\mathcal{T}^x))$ satisfies

\begin{align}
\Delta^2 u(x) &= 4\Delta f(x) + \alpha(x) + \beta(x); \quad x \in G, \\
u(x) &= f(x); \quad x \in \partial G,
\end{align}

where $\alpha(x) = \nabla(\Delta f(x)) \cdot \nabla(\mathbb{E}_P [\tau^x_G])$ and $\beta(x) = 2 \sum_{1 \leq i,j \leq d} D_{ij} \Delta f(x) D_{ij} \mathbb{E}_P [\tau^x_G]^2$.

In particular, if in addition to the above assumptions on f and its partial derivatives we assume that $\nabla(\Delta f(x)) = 0$, where ∇ is the usual gradient, then $u(x) = \mathbb{E}_P f(X^x(\mathcal{T}^x))$ solves

\begin{align}
\Delta^2 u(x) &= 4\Delta f(x); \quad x \in G, \\
u(x) &= f(x); \quad x \in \partial G.
\end{align}

Remark 0.3. Comparing equation (0.5) and (0.6) with (0.2), we see that they all include the bi-Laplacian of u and the Laplacian of the function f. So that, also in the elliptic case (0.5), f plays a fundamentally different role than in the usual Brownian motion-PDE connection: it acts on $G \cup \partial G$, and not just on the boundary ∂G.

The following result attaches a formal generator to our BTPs, in the half-derivative sense. More precisely, we have

Theorem 0.5. Let X^x be the outer Markov process to our BTP, starting at $x \in \mathbb{R}^d$ under P. Suppose that the generator \mathcal{A} of X^x is given by a divergence form second order partial differential operator as in (1.1). Let \mathcal{A}_T^* be the generator of the time-reversed Markov process $\{X^x(T - t) ; 0 \leq t \leq T\}$ and suppose that $C_0^2(\mathbb{R}^d; \mathbb{R}) \supset \mathbb{D}(\mathcal{A}) \cap \mathbb{D}(\mathcal{A}_T^*)$, where $\mathbb{D}(\mathcal{A})$ and $\mathbb{D}(\mathcal{A}_T^*)$ are the domains of \mathcal{A} and \mathcal{A}_T^*, respectively. Finally, assume that condition (X10) holds. If

\begin{equation}
\mathcal{A}^{-1/2}_x f(x) \triangleq \lim_{\Delta \to 0} \frac{\mathbb{E}_P[f(X^x_{T-\Delta})] - f(X^x_T)}{\Delta}; \quad 0 < \Delta \leq t,
\end{equation}

then $\mathcal{A}^{-1/2}_x f(x)$ is given by

\begin{equation}
\frac{1}{\sqrt{2\pi}} \left[\mathcal{A} f(X^x_T) + \frac{\int_0^\infty p(0, s; 0, y)h(0, y; x, X^x_T(s))\mathcal{A}^*_y f(X^x_T(s))dy}{\int_0^\infty p(0, s; 0, y)h(0, y; x, X^x_T(s))dy} \right],
\end{equation}

where $p(s, t; x, y)$ and $h(s, t; x, y)$ are the transition densities (with respect to Lebesgue measure) of $|B(t)|$ and $X(t)$, respectively. In particular, if $\mathcal{A} = \mathcal{A}^*_T$ for all t, then $\mathcal{A}^{-1/2}_x f(x)$ is simply $\sqrt{\frac{2}{\pi}} \mathcal{A} f(X^x_T)$.

Notation. We alternate freely between the notations $X(t)$ and X^x_t for aesthetic reasons and for typesetting convenience.

1. **Proof of Theorem 0.1**

We first prove the theorem for the case of $u(t, x) = \mathbb{E}_P f(X^x_T(t))$ using the following generator computation:

\begin{equation}
\mathbb{E}_P f(X^x_T(t)) = 2 \int_0^\infty p_t(0, s) \mathcal{A} f(x) ds,
\end{equation}

where $p_t(0, s)$ is the transition density of $B(t)$. Differentiating (1.1) with respect to t and putting the derivative under the integral, which is easily justified by the dominated convergence theorem, then using the fact that $p_t(0, s)$ satisfies the heat equation we have

\[\frac{\partial}{\partial t} \mathbb{E}_P f(X^x_T(t)) = 2 \int_0^\infty \frac{\partial}{\partial t} p_t(0, s) \mathcal{A} f(x) ds \]

\[= \int_0^\infty \frac{\partial^2}{\partial s^2} p_t(0, s) \mathcal{A} f(x) ds \]

We now integrate by parts twice, and observe that the boundary terms always vanish at ∞ (as $s \not\to \infty$) and we have $(\partial / \partial s)p_t(0, s) = 0$ at $s = 0$ but $p_t(0, 0) > 0$. Thus,

\[\frac{\partial}{\partial t} \mathbb{E}_P f(X^x_T(t)) = - \int_0^\infty \frac{\partial}{\partial s} p_t(0, s) \frac{\partial}{\partial s} \mathcal{A} f(x) ds \]

\[= p_t(0, 0) \mathcal{A} f(x) + \int_0^\infty p_t(0, s) \mathcal{A}^2 \mathcal{A} f(x) ds \]
Taking the application of \mathcal{A}^2 outside the integral and writing $u(t, x) = \mathbb{E}_x f(X^x_B(t))$ we have
\[
\frac{\partial}{\partial t} u(t, x) = p_t(0, 0, x) \mathcal{A} f(x) + \frac{1}{2} \mathcal{A}^2 u(t, x),
\]
where, clearly, the operator \mathcal{A} acts on $u(t, x)$ as a function of x with t fixed. Obviously, $u(0, x) = f(x)$, so that $u(t, x) = \mathbb{E}_x f(X^x_B(t))$ solves (1.1).

To prove the result for $X^x_{B, e}(t)$ for $k \in \mathbb{N} \setminus \{1\}$, we show that $\mathbb{E}_x f(X^x_{B, e}(t)) = \mathbb{E}_x f(X^x_B(t))$. Towards this end, let $e^{-}(t)$ be the $|B(t)|$-excursion immediately preceding the excursion straddling t, $e(t)$; and condition on the event that we pick the j-th copy of X^x on $e^{-}(t)$ (uniformly from among the k available independent copies of X^x), using the independence of the choice of the process $X^{x, j}$ on $e^{-}(t)$ from $B(t)$ and from the following choice of the X^x copy, on $e(t)$, to get
\[
\mathbb{E}_x f(X^x_{B, e}(t)) = 2 \sum_{j=1}^{k} \int_0^\infty p_t(0, s, x) f(x) ds \mathbb{E}_x \{e^{-}(t)|j\} \mathbb{E}_x [f(X^x_B(t))|\text{we pick the }j\text{-th copy on }e^{-}(t)]ds
\]
\[
= 2 \sum_{j=1}^{k} \int_0^\infty p_t(0, s, x) f(x) ds = 2 \int_0^\infty p_t(0, s, x) f(x) ds = \mathbb{E}_x f(X^x_B(t)).
\]

Finally, to prove that $u(t, x) = \mathbb{E}_x f(X^x_B(t))$ solves (1.1), we use the fact (proven in the Appendix) that $X^x_{B, e} \to X^x_{B, e}$, for some subsequence $X^x_{B, e}$. Following Skorohod’s celebrated result, we may construct processes $Y^x_k \overset{d}{=} X^x_{B, e}$ and $Y \overset{d}{=} X^x_{B, e}$ on some probability space such that $Y_k \to Y$ as $k \to \infty$ a.s. uniformly in t on compact sets of \mathbb{R}_+. The result then follows since $\mathbb{E}_x f(X^x_{B, e}(t)) = \mathbb{E}_x f(X^x_B(t))$ for each k and since f is bounded and continuous.

2. Exit PDEs for $X^x_B(t)$

Throughout this section the outer process X^x is always assumed to be a Brownian motion starting at x under \mathbb{P}, and G is a bounded open subset of \mathbb{R}^d with regular boundary ∂G.

Proof of Theorem 0.2. Let
\[
\tau^x_G \overset{a.s.}{=} \inf \{t \geq 0; X^x(t) \notin G\} \text{ and } \sigma^x_B \overset{a.s.}{=} \inf \{t \geq 0; |B(t)| = \tau^x_G\},
\]
of course $\sigma^x_B = T^x_G$. We then have
\[
u(x) = \mathbb{E}_x f[X^x_B(T^x_G)] = \mathbb{E}_x f[X^x(\sigma^x_B)] \mathbb{E}_x \{|B(\sigma^x_B)| = \tau^x_G\} \mathbb{E}_x \{|B(\sigma^x_B)| = \tau^x_G\}
\]
\[
= \mathbb{E}_x f[X^x(\tau^x_G)],
\]
where the last equality in equation (2.1) follows from the obvious fact that
\[
\mathbb{P} \{|B(\sigma^x_B)| = \tau^x_G\} = 1,
\]
a fact which also clearly gives us the independence of the event $\{|B(\sigma^x_B)| = \tau^x_G\}$ from $X^x(\tau^x_G)$.

Now, $u(x) \overset{a.s.}{=} \mathbb{E}_x f[X^x(\tau^x_G)]$ is a harmonic function in G (since X^x is a Brownian motion starting at x under \mathbb{P}, and τ^x_G is its first exit time from G). It follows that $u(x)$ solves the Dirichlet problem (0.3).
We then prove the connection of the iterated exit time T^x_G to fourth order PDEs.

Proof of Theorem 0.3. Let $u(x) = \mathbb{E}_P T^x_G$ and observe that

$$T^x_G \triangleq \inf\{t \geq 0; X^x_B(t) \notin G\} = \inf\{t \geq 0; B(t) \notin [0, \tau^x_G]\},$$

where $\tau^x_G \triangleq \inf\{t \geq 0; X^x(t) \notin G\}$. Thus, conditioning on τ^x_G we easily get

$$u(x) = \mathbb{E}_P[\mathbb{E}_P[T^x_G|\tau^x_G]] = \mathbb{E}_P(\tau^x_G)^2.$$

But, from [9] and [11] we have that

$$u(x) = \mathbb{E}_P(\tau^x_G)^2$$

solves the equation

$$\Delta^2 u = 8,$$

for any smooth bounded domain G. Plainly, $u(x) = 0$ for $x \in \partial G$. We thus obtain (0.4) and this completes the proof.

We are now ready to prove Theorem 0.4.

Proof of Theorem 0.4. Let $u(x) = \mathbb{E}_P f(X^x_{\tau^x_G})$, and let τ^x_G be the first exit time for the Brownian motion X^x. Itô’s formula, applied twice gives us

$$f(X^x_{\tau^x_G}) - f(x) = \int_0^{\tau^x_G} \nabla f(X^x_s) \cdot dX^x_s + \frac{1}{2} \int_0^{\tau^x_G} \Delta f(X^x_s) ds$$

$$= \int_0^{\tau^x_G} \nabla f(X^x_s) \cdot dX^x_s + \frac{1}{2} \int_0^{\tau^x_G} \Delta f(X^x_s) ds + \int_0^{\tau^x_G} \nabla(\Delta f(X^x_r)) \cdot dX^x_r ds$$

$$= \int_0^{\tau^x_G} \nabla f(X^x_s) \cdot dX^x_s + \frac{1}{2} \int_0^{\tau^x_G} \Delta f(X^x_s) ds + \frac{1}{2} \int_0^{\tau^x_G} \nabla(\Delta f(X^x_r)) \cdot dX^x_r ds$$

$$= \int_0^{\tau^x_G} \nabla f(X^x_s) \cdot dX^x_s + \frac{1}{2} \int_0^{\tau^x_G} \Delta f(X^x_s) ds + \frac{1}{2} \int_0^{\tau^x_G} \nabla(\Delta f(X^x_r)) \cdot dX^x_r ds$$

where we used the assumption that $\Delta^2 f \equiv 0$ to get the third equality. Now, Taking expectations, we get that all the expectations involving stochastic integrals vanish.
This is because we assumed that both $\nabla f(x)$ and $\nabla(\Delta f(x))$ have polynomial growth while the density of X_T^x has exponential decay, so that

$$E_p \left[\int_0^T |\nabla f(X_t^x)|^2 ds \right] < \infty, \text{ and } E_p \left[\int_0^T |(\mathcal{F}_t - r)\nabla(\Delta f(X_t^x))|^2 dr \right] < \infty.$$

We then have

$$E_p f(X_T^x) - f(x) = \frac{1}{2} \mathcal{F} \Delta f(x). \quad (2.5)$$

Applying the bi-Laplacian to both sides of (2.5); and remembering that $u(x) = E_p f(X_T^x)$, that $\Delta^2 f \equiv 0$, and that $\mathcal{F} = E_p T^\tau_G$ (by assumption) and invoking (2.3) and (2.4), we obtain

$$\Delta^2 u(x) = \frac{1}{2} \Delta^2[\mathcal{F} \Delta f(x)] = \frac{1}{2} \Delta^2[\mathcal{F}^2 \Delta f(x)]$$

$$\quad + \nabla(\Delta f(x)) \cdot \nabla(\Delta[\mathcal{F}^2]) + \Delta(\nabla(\Delta f(x)) \cdot \nabla[\mathcal{F}^2])$$

$$= 4\Delta f(x) + \nabla(\Delta f(x)) \cdot \nabla(\Delta[\mathcal{F}^2])$$

$$\quad + \Delta(\nabla(\Delta f(x)) \cdot \nabla[\mathcal{F}^2])$$

$$= 4\Delta f(x) + \nabla(\Delta f(x)) \cdot \nabla(\Delta[\mathcal{F}^2])$$

$$+ 2 \sum_{1 \leq i,j \leq d, i \neq j} D_{ij} \Delta f(x) D_{ij} \mathcal{F}^2$$

$$= 4\Delta f(x) + \nabla(\Delta f(x)) \cdot \nabla(\Delta E_p [\tau_G^2]^2)$$

$$+ 2 \sum_{1 \leq i,j \leq d, i \neq j} D_{ij} \Delta f(x) D_{ij} E_p [\tau_G^2]^2; \quad x \in G; \quad (2.6)$$

with the convention that $\sum_{i \neq j} D_{ij} \Delta f(x) D_{ij} E_p [\tau_G^2]^2 = 0$ if $d = 1$.

Finally, as stated in Remark 0.2, $\mathcal{F}^x = 0$ whenever $x \in \partial G$, and so $u(x) = E_p f(X_T^x(\mathcal{F}^x)) = f(x)$ for every $x \in \partial G$. \[\square \]

3. The Half-Derivative Formal Generator.

In this section, we prove the formula for the half-derivative generator of our Brownian-time processes. We denote by $p(s, t; x, y)$ and $h(s, t; x, y)$ the transition densities (with respect to Lebesgue measure) of $|B(t)|$ and $X(t)$, respectively. We denote the generator of X by \mathcal{A}, and we assume that $X(0) = x_0$ is deterministic.

It is well-known that, for each fixed but arbitrary $0 < T < \infty$, the time reversed process $X_T^x = \{ X_T^x(t) = X(T - t; 0 \leq t \leq T) \}$ is still Markovian; we denote its (time-dependent) generator by \mathcal{A}_t^x. We assume for simplicity that \mathcal{A} is given by a divergence form second order partial differential operator

$$\mathcal{A} f = \sum_{i,j=1}^d \frac{\partial}{\partial x_i} \left[g^{ij}(x) \frac{\partial}{\partial x_j} f \right], \quad (3.1)$$

where d is the space dimension and $g^{ij} \in C^2(\mathbb{R}^d; \mathbb{R})$ satisfies $c < g^{ij}(x) < c^{-1}$ for some positive constant c. From Aronson’s inequality we have a constant c_1 such
that
\[(3.2) \quad h(s, t; x, y) \leq \frac{c_1}{(t-s)^{d/2}} \exp \left\{ -\frac{|x-y|^2}{c_1(t-s)} \right\}.
\]

Moreover (see, for example, [16] and [17])
\[(3.3) \quad \mathcal{A}_t^* f = \mathcal{A} f + 2 \sum_{i,j=1}^d \frac{\partial}{\partial x_i} \log h(0, t; x_0, x) g^{ij}(x) \frac{\partial}{\partial x_j} f
\]
In particular, when \(\mathcal{A} = \frac{1}{2} \Delta \), \(\mathcal{A}_t^* = \frac{1}{2} \Delta + \frac{x_0 - x}{t} \nabla \).

We assume that for every \(f \in C^2_b(\mathbb{R}^d; \mathbb{R}) \)
\[(3.4) \quad \lim_{t \searrow s} |t-s|^{-1} \left[\int h(s, t; x, y) f(y) dy - f(x) \right] = \mathcal{A} f(x),
\]
\[(3.5) \quad \lim_{s \nearrow t} |t-s|^{-1} \left[\int \frac{h(0, s; x_0, y) h(s, t; y, x) f(y)}{h(0, t; x_0, x)} dy - f(x) \right] = \mathcal{A}_t^* f(x),
\]
and without losing generality we assume that there is a constant \(0 < c_2 < \infty \) such that
\[(3.6) \quad \frac{\partial}{\partial x_i} \log h(0, t; x_0, x) \leq c_2 \frac{|x_0 - x| + c_2}{t^{c_2}}.
\]
When \(\mathcal{A} \) is the Laplacian, the above condition is easily satisfied. It is easy to deduce

Lemma 3.1. For any fixed \(f \in C^2_b(\mathbb{R}^d; \mathbb{R}) \) and \(x \in \mathbb{R}^d \), there is a constant \(0 < c_3 < \infty \) such that
\[(3.7) \quad \sup_{s<t} \left| t-s \right|^{-1} \left[\int \frac{h(0, s; x_0, y) h(s, t; y, x) f(y)}{h(0, t; x_0, x)} dy - f(x) \right] < c_3 t^{-c_2}.
\]

Proof. Since \(\int h(0, s; x_0, y) h(s, t; y, x) dy = h(0, t; x_0, x) \), then
\[
\int \frac{h(0, s; x_0, y) h(s, t; y, x) f(y)}{h(0, t; x_0, x)} dy
\]
is bounded by the same bound on \(f \). Thus, when \(s < 2^{-1} t \), \(3.7 \) is true as \((t-s) > 2^{-1} t \). So it is sufficient to consider the case where \(s \geq 2^{-1} t \). From the form of \(\mathcal{A}_t^* \) in \(3.3 \), it is easy to see that our time-reversed process has the following decomposition for fixed \(t > 0 \):
\[
E_p[X^*_t(T-t) - X^*_t(T-s)|X_t = x] = E_p \left[\int_s^t \mathcal{A} f(X_r) dr | X_t = x \right]
+ 2E_p \left[\sum_{i,j} \int_s^t \frac{\partial}{\partial x_i} \log h(0, r; x_0, X_r) g^{ij}(X_r) \frac{\partial}{\partial x_j} f(X_r) dr | X_t = x \right]
\leq (t-s) \| \mathcal{A} f \|_\infty + C E_p \left[\int_s^t \frac{|x_0 - X_r| + c_2}{t^{c_2}} dr | X_t = x \right]
\leq (t-s) \| \mathcal{A} f \|_\infty + C \int_s^t s^{-c_2} dr.
where we used Aronson’s inequality in the last step, and C is a constant depending on the C_1-norm of f, $|x_0 - x|$, c, c_1 and c_2. Dividing both sides of the last inequality by $(t - s)$ and noticing that $s > 2^{-1}t$, we get the Lemma.

We also have

Lemma 3.2. For all $f \in C^2_0(\mathbb{R}^d; \mathbb{R})$ the following convergence holds for almost every $y > 0$:

$$
\lim_{t \to s} \int_y^\infty \left\{ (t - s)^{-\frac{1}{2}} p(s, t; y, z) \left[\int \frac{h(0, z; x_0, \eta) h(z, y; \eta, \xi)}{h(0, y; x_0, \xi)} f(\eta) d\eta - f(\xi) \right] \right\} dz
= \frac{A y^* f(\xi)}{\sqrt{2\pi}}.
$$

Moreover, there is a constant c_4 such that

$$
\int_0^y \left\{ (t - s)^{-\frac{1}{2}} p(s, t; y, z) \left[\int \frac{h(0, z; x_0, \eta) h(z, y; \eta, \xi)}{h(0, y; x_0, \xi)} f(\eta) d\eta - f(\xi) \right] \right\} dz \leq c_4 y^{-c_2}
$$

Proof. By the reflection principle, the transition density of the reflecting BM $|B(s)|$ is

$$
p(s, t; y, z) = \frac{1}{\sqrt{2\pi(t - s)}} \left[\exp \left\{ \frac{|y - z|^2}{2(t - s)} \right\} + \exp \left\{ \frac{|y + z|^2}{2(t - s)} \right\} \right]
$$

By Lemma 3.1,

$$
\int_0^y (t - s)^{-\frac{1}{2}} |y - z| p(s, t; y, z) \left[\int \frac{h(0, z; x_0, \eta) h(z, y; \eta, \xi)}{h(0, y; x_0, \xi)} f(\eta) d\eta - f(\xi) \right] dz
\leq C \int_0^y (t - s)^{-\frac{1}{2}} |y - z| p(s, t; y, z) y^{-c_2} dz
\leq C \int_0^y (t - s)^{-1} |y - z| \exp \left\{ \frac{-|y - z|^2}{2(t - s)} \right\} y^{-c_2} dz
= C \int_0^{\sqrt{t - s} \cdot |y - z|} z \exp \left\{ -\frac{z^2}{2} \right\} y^{-c_2} dz
\leq C y^{-c_2},
$$

where C is a generic constant that may vary from line to line. Now, we may write for $z < y$,

$$(y - z)^{-1} \left[\int \frac{h(0, z; x_0, \eta) h(z, y; \eta, \xi)}{h(0, y; x_0, \xi)} f(\eta) d\eta - f(\xi) \right] = A y^* f(\xi) + o(y - z),$$
where \(o(y-z) \to 0 \) (as \(y-z \to 0 \)) and \(o(y-z) \leq Cy^{-2} \). On the other hand,

\[
\lim_{t \searrow s} \int_{y}^{0} (t-s)^{-\frac{1}{2}} |y-z| \rho(s, t; y, z) [\mathscr{A}_{y} f(\xi) + o(y-z)] dz = \lim_{t \searrow s} \int_{y}^{0} \frac{|y-z|}{\sqrt{2\pi(t-s)}} \exp \left\{ -\frac{|y-z|^2}{2(t-s)} \right\} [\mathscr{A}_{y} f(\xi) + o(y-z)] dz = \lim_{t \searrow 0} \int_{0/\sqrt{t-s}}^{\infty} \frac{|z|}{\sqrt{2\pi}} \exp \left\{ -\frac{|z|^2}{2} \right\} [\mathscr{A}_{y} f(\xi) + o(z\sqrt{t-s})] dz = \mathscr{A}_{y} f(\xi) \int_{0}^{\infty} \frac{|z|}{\sqrt{2\pi}} \exp \left\{ -\frac{|z|^2}{2} \right\} dz = \frac{\mathscr{A}_{y} f(\xi)}{\sqrt{2\pi}}.
\]

Thus we get the Lemma. \(\square \) \(\square \)

Similarly we have

Lemma 3.3. For all \(f \in C_{0}^{2}(\mathbb{R}^{d}; \mathbb{R}) \) the following convergence holds for almost every \(y > 0 \):

\[
\lim_{t \searrow s} \int_{y}^{\infty} (t-s)^{-\frac{1}{2}} \rho(s, t; y, z) \left[\int_{0}^{\infty} h(y, z; \xi, \eta) f(\eta) d\eta - f(\xi) \right] dz = \frac{\mathscr{A} f(\xi)}{\sqrt{2\pi}}.
\]

Proof of Theorem 3.2 Now, we easily have

\[
\mathbb{P}(X(|B(s)|) \in d\xi) = \left[\int_{0}^{\infty} p(0, s; 0, y) h(0, y; x_{0}, \xi) dy \right] d\xi.
\]

And for \(t > s \), we see that

\[
\mathbb{P}(X(|B(s)|) \in d\xi, |B(t)| \geq |B(s)|, X(|B(t)|) \in d\eta) = \left[\int_{0}^{\infty} \int_{y}^{\infty} p(0, s; 0, y) p(s, t; y, z) h(0, y; x_{0}, \xi) h(y, z; \xi, \eta) dz dy \right] d\xi d\eta,
\]

and

\[
\mathbb{P}(X(|B(s)|) \in d\xi, |B(t)| < |B(s)|, X(|B(t)|) \in d\eta) = \left[\int_{0}^{\infty} \int_{0}^{y} p(0, s; 0, y) p(s, t; y, z) h(0, y; x_{0}, \xi) \mathbb{P}[X(z) \in d\eta | X(y) \in d\xi] dz dy \right] d\xi = \left[\int_{0}^{\infty} \int_{0}^{y} p(0, s; 0, y) p(s, t; y, z) h(0, y; x_{0}, \xi) h(0, z; x_{0}, \eta) h(z, y; \xi, \eta) dz dy \right] d\xi d\eta = \left[\int_{0}^{\infty} \int_{0}^{y} p(0, s; 0, y) p(s, t; y, z) h(0, z; x_{0}, \eta) h(z, y; \eta, \xi) dz dy \right] d\xi d\eta.
\]
Thus,

\[\mathbb{E}_p[f(X(|B_t|)) \mid X(|B_s|) = \xi] = \left\{ \int_0^\infty p(0, s; 0, y)h(0, y; x_0, \xi)dy \right\}^{-1} \]

\[\int \left[\int_0^\infty \int_0^\infty p(0, s; 0, y)p(s, t; y, z)h(0, y; x_0, \xi)h(y, z; \xi, \eta)dzdy \right] f(\eta) d\eta \]

\[+ \int \left[\int_0^\infty \int_0^\infty p(0, s; 0, y)p(s, t; y, z)h(0, z; x_0, \eta)h(z, y; \eta, \xi)dzdy \right] f(\eta) d\eta \}

and so to compute

\[\lim_{t \searrow s} (t-s)^{-\frac{1}{2}} \left\{ \mathbb{E}_p[f(X(|B_t|)) \mid X(|B_s|)] - f(X(|B_s|)) \right\}, \]

we observe that

\[\lim_{t \searrow s} (t-s)^{-\frac{1}{2}} \left\{ \mathbb{E}_p[f(X(|B_t|)) \mid X(|B_s|) = \xi] - f(\xi) \right\} \]

\[= \lim_{t \searrow s} (t-s)^{-\frac{1}{2}} \left\{ \int_0^\infty p(0, s; 0, y)h(0, y; x_0, \xi)dy \right\}^{-1} \]

\[\int \left[\int_0^\infty \int_0^\infty p(0, s; 0, y)p(s, t; y, z)h(0, y; x_0, \xi)h(y, z; \xi, \eta)dzdy \right] f(\eta) d\eta \]

\[+ \int \left[\int_0^\infty \int_0^\infty p(0, s; 0, y)p(s, t; y, z)h(0, z; x_0, \eta)h(z, y; \eta, \xi)dzdy \right] f(\eta) d\eta \]

\[- f(\xi) \int_0^\infty p(0, s; 0, y)h(0, y; x_0, \xi)dy \}

\[= \lim_{t \searrow s} (t-s)^{-\frac{1}{2}} \left\{ \int_0^\infty p(0, s; 0, y)h(0, y; x_0, \xi)dy \right\}^{-1} \]

\[\int \left[\int_0^\infty \int_0^\infty p(0, s; 0, y)p(s, t; y, z)h(0, y; x_0, \xi)h(y, z; \xi, \eta)dzdy \right] f(\eta) d\eta \]

\[+ \int \left[\int_0^\infty \int_0^\infty p(0, s; 0, y)p(s, t; y, z)h(0, z; x_0, \eta)h(z, y; \eta, \xi)dzdy \right] f(\eta) d\eta \]

\[- f(\xi) \int_0^\infty p(0, s; 0, y)h(0, y; x_0, \xi)p(s, t; y, z)dydz \]
So let us consider the last term in (3.9). From Aronson’s inequality (3.2) and Lemma 3.2, when $|t|$ is bounded in (12), it is easy to see by Lemma 3.3 that

$$\lim_{t \to \infty} \left\{ \int_0^\infty (t-s)^{-\frac{\eta}{2}} |y-z| p(0, s; 0, y) p(s, t; y, z) h(0, y; x_0, \xi) \right\}^{-1} \int_0^\infty (t-s)^{-\frac{\eta}{2}} |y-z| p(0, s; 0, y) p(s, t; y, z) h(0, y; x_0, \xi)$$

(3.9)

$$|y-z|^{-1} \int_0^\infty \frac{h(0, z; x_0, \eta)}{h(0, y; x_0, \xi)} f(\eta) d\eta - f(\xi) dz dy$$

Therefore, the following half-derivative exists for every $s > 0$ and is given by:

$$\lim_{t \to \infty} \left\{ \int_0^\infty (t-s)^{-\frac{\eta}{2}} |y-z| p(0, s; 0, y) p(s, t; y, z) h(0, y; x_0, \xi) \right\}^{-1} \int_0^\infty (t-s)^{-\frac{\eta}{2}} |y-z| p(0, s; 0, y) p(s, t; y, z) h(0, y; x_0, \xi)$$

$$|y-z|^{-1} \int_0^\infty \frac{h(0, z; x_0, \eta)}{h(0, y; x_0, \xi)} f(\eta) d\eta - f(\xi) dz dy$$

$$= \frac{1}{\sqrt{2\pi}} \mathcal{A} f(\xi).$$

So let us consider the last term in (3.9). From Aronson’s inequality (3.2) and Lemma 3.2 when $|x_0 - \xi| > 0$, is bounded in $(t-s, y)$ for fixed ξ, and we may pass to the limit through the integral over \mathbb{R}_+. Thus, the following half-derivative exists for every $s > 0$ and is given by:

$$\lim_{t \to \infty} (t-s)^{-\frac{\eta}{2}} \{ B P [f(X(|B_t|)) + f(X(|B_s|)) - f(X(|B_s|))] \}$$

$$= \frac{1}{\sqrt{2\pi}} \mathcal{A} f(X(|B_s|)) + \int_0^\infty \frac{p(0, s; 0, y) h(0, y; x_0, X(|B_s|)) \mathcal{A} f(X(|B_s|)) dy}{\int_0^\infty p(0, s; 0, y) h(0, y; x_0, X(|B_s|)) dy}$$

proving Theorem [5.5].
Appendix

We now rigorize and prove our claim in statement (c), in the introduction of this paper, that $X_{B,e}^x(t)$ is the $k \to \infty$ limit of $X_{B,e}^{x,k}(t)$. This is accomplished by showing weak convergence of the process $\{X_{B,e}^{0,k}(t); 0 \leq t < \infty\}$ to $\{X_{B,e}^x(t); 0 \leq t < \infty\}$. Without losing generality, we may assume that, for each $p > 0$, there are positive constants $c_{1,p}$, $c_{2,p}$, and $c_{3,p}$ such that

\[
(A.1) \quad \mathbb{P} \left[\sup_{a \leq s \leq t \leq a + b} |X^{x,1}(t) - X^{x,1}(s)|^p > c_{1,p}b^{\frac{p}{2}} \right] \leq \exp \left\{ - \frac{c_{3,p}b}{b} \right\} \quad \forall \ a, b \geq 0.
\]

Clearly, (A.1) is true when X^x is a Brownian motion, which is α-Hölder continuous for any $\alpha < 1/2$. For a general X^x, we see that the martingale part of the diffusion process X^x is of α-Hölder continuous for any $\alpha < 1/2$, and the non-martingale part is differentiable, so it is even smoother, so (A.1) is true here as well. Now, note that the paths which do not satisfy

\[
|X^{x,1}(t) - X^{x,1}(s)|^p \leq c_{1,p}b^{\frac{p}{2}}
\]

have exponentially small probability, so they can be thrown away when $t - s$ is small.

Theorem A.1. There is a positive constant c such that for each $p > 0$, there is a positive constant $C(p)$ satisfying

\[
(A.2) \quad \mathbb{E}_p |X_{B,e}^{x,k}(s) - X_{B,e}^{x,k}(t)|^p \leq C(p)|s - t|^{p}; \quad \forall \ 0 \leq s \leq t < \infty, \forall k \in \mathbb{N},
\]

and this is enough to conclude that there is a subsequence of $\{X_{B,e}^{x,k}\}$ converging weakly to $X_{B,e}^x$, as $k \to \infty$.

Proof. Let $A_i \triangleq \left[X_{B,e}^{x,i}(s) = X_x^{x,i}(\{B(s)\}) \right]$, for $1 \leq i \leq k$ and $0 \leq s < \infty$. We then have

\[
\mathbb{E}_p \left| X_{B,e}^{x,k}(s) - X_{B,e}^{x,k}(t) \right|^p \leq \sum_{i,j=1}^k \mathbb{E}_p \left\{ 1_{A_i} 1_{A_j} \left| X_{B,e}^{x,k}(s) - X_{B,e}^{x,k}(t) \right|^p \right\}
\]

\[
= \sum_{i,j=1}^k \mathbb{E}_p \left\{ 1_{A_i} 1_{A_{ij}} \left| X_x^{x,i}(\{B(s)\}) - X_x^{x,j}(\{B(t)\}) \right|^p \right\}
\]

\[
+ \sum_{i=1}^k \mathbb{E}_p \left\{ 1_{A_i} 1_{A_{ii}} \left| X_x^{x,i}(\{B(s)\}) - X_x^{x,i}(\{B(t)\}) \right|^p \right\}
\]

\[
= k(k - 1)\mathbb{E}_p \left\{ 1_{A_{ij}} \left| X_x^{x,1}(\{B(s)\}) - X_x^{x,1}(\{B(t)\}) \right|^p \right\}
\]

\[
+ k\mathbb{E}_p \left\{ 1_{A_{ij}} \left| X_x^{x,1}(\{B(s)\}) - X_x^{x,1}(\{B(t)\}) \right|^p \right\}
\]

where the last equality follows from symmetry. From the definition of $X_{B,e}^{x,\cdot}(\cdot)$, it is easy to see that the following inclusion of events is true when $i \neq j$:

\[
\left[X_{B,e}^{x,k}(s) = X_x^{x,i}(\{B(s)\}) \right] \cap \left[X_{B,e}^{x,k}(t) = X_x^{x,j}(\{B(t)\}) \right] \subseteq \inf_{s \leq u \leq t} \left| B(u) \right| = 0 \triangleq S_{s,t}.
\]
Thus, by symmetry,
\[
\mathbb{E}_p \left[X_{B,e}^{x,k}(s) - X_{B,e}^{x,k}(t) \right]^p \leq \mathbb{E}_p \left\{ 1_{S_{r,t}} \left[X^{x,1}(|B(s)|) - X^{x,2}(|B(t)|) \right]^p \right\} \\
+ k \mathbb{E}_p \left\{ 1_{A_{1,t}} 1_{A_{1,t}} \left[X^{x,1}(|B(s)|) - X^{x,1}(|B(t)|) \right]^p \right\} \\
\leq C_1 \mathbb{E}_p \left\{ 1_{S_{r,t}} \left[X^{x,1}(|B(s)|) - x \right]^p + \left| x - X^{x,2}(|B(t)|) \right|^p \right\} \\
+ k \mathbb{E}_p \left\{ \left| X^{x,1}(|B(s)|) - X^{x,1}(|B(t)|) \right|^p \right\}
\]
(A.3)

As \(x = X^{x,1}(0) \), then by (A.1) and the remarks following it and (A.3), we obtain
\[
\mathbb{E}_p \left[X_{B,e}^{x,k}(s) - X_{B,e}^{x,k}(t) \right]^p \\
\leq C_1 \mathbb{E}_p \left\{ 1_{S_{r,t}} \left[|B(s)|^{c_2,p} + |B(t)|^{c_2,p} \right] \right\} + c_1 \rho \mathbb{E}_p \left\{ |B(s)| - |B(t)| |^{c_2,p} \right\} \\
\leq C_1 \mathbb{E}_p \left\{ 1_{S_{r,t}} \left[|B(s)|^{c_2,p} + |B(t)|^{c_2,p} \right] \right\} + c_4 \rho \mathbb{E}_p \left\{ |t - s|^{c_2,p} \right\}
\]
where \(C \) is a generic constant whose value may vary from line to line and \(c_4 \) are new constants obtained by the well-known property of Brownian motion: there is a constant \(C \) such that
\[
\mathbb{E}_p \left\{ \sup_{s_0 \leq s \leq t \leq t_0} \left| B(t) - B(s) \right|^p \right\} \left\{ \sup_{s_0 \leq s \leq t \leq t_0} \left| B(t) - B(s) \right|^p \right\} \leq C \rho \left| t_0 - s_0 \right|^\frac{p}{2} ; \quad \forall \ 0 \leq s \leq t < \infty.
\]
(A.5)

On the other hand, it is easy to see that
\[
1_{S_{r,t}} \left[|B(s)|^{c_2,p} + |B(t)|^{c_2,p} \right] \leq 2 \sup_{s \leq a \leq t} \left| B(t) - B(a) \right|^p
\]
(A.6)
Thus, (A.2) can be easily deduced from (A.4), (A.6), and (A.5).

It is well known (see, e.g. [7] and [12]) that Kolmogorov’s criterion implies that the sequence of processes \(\{ X_{B,e}^{x,k}(t); 0 \leq t < \infty \} \) is tight in law under the uniform convergence topology. It is easy to check that any limit of the convergent subsequence of \(\{ X_{B,e}^x \} \) gives the law of \(X_{B,e}^x \). Thus we proved statement (c) in Section 0.

\[\square \]

Acknowledgments.

The authors are deeply indebted to Chris Burdzy for linking them up in this project. They also like to thank Pat Fitzsimmons for bringing [11] to their attention. The first author would like to thank Chris Burdzy, Davar Khoshnevisan, and Rich Bass for their constant encouragements and Rick Durrett for fruitful discussions at the very early stages of this project. The authors would also like to thank an anonymous referee for a careful reading of our paper and for his useful comments which improved it.

References

[1] Allouba, H. (1999). Measure-valued Brownian-time processes: the PDE connection. In preparation.
[2] Burdzy, K. (1993). Some path properties of iterated Brownian motion. Seminar on Stochastic Processes 1992, Birkhäuser, 67–87.
[3] Burdzy, K. (1994). Variation of iterated Brownian motion. Workshop and conf. on measure-valued processes, stochastic PDEs and interacting particle systems. CRM Proceedings and Lecture Notes 5 35–53.

[4] Burdzy, K. and Khoshnevisan, D. (1995). The level sets of iterated Brownian motion. Séminaire de Probabilités XXIX. Lecture Notes in Math. 1613 231–236.

[5] Burdzy, K. and Khoshnevisan, D. (1998). Brownian motion in a Brownian crack. Ann. Appl. Probab. 8 no. 3 708–748.

[6] Durrett, R. (1996). Stochastic calculus. A practical introduction. Probability and Stochastics Series. CRC Press, Boca Raton, FL.

[7] Elworthy, K. D. (1982). Stochastic differential equations on manifolds, Cambridge University Press.

[8] Funaki, T. (1979). Probabilistic construction of the solution of some higher order parabolic differential equation. Proc. Japan Acad. Sci. A Math. Sci. 55 no. 5 176–179.

[9] Getoor, R. (1961). First passage times for symmetric stable processes in space. Trans. Amer. Math. Soc. 101 75–90.

[10] Hochberg, K. (1996). Composition of stochastic processes governed by higher-order parabolic and hyperbolic equations. J. Theoret. Probab. 9 no. 2 511–532.

[11] Kinateder, K., McDonald, P. and Miller, D. (1998). Exit time moments, boundary value problems, and the geometry of domains in Euclidean space. Probab. Theory Related Fields. 111 no. 4, 469–487.

[12] Kunita, H. (1990). Stochastic flows and stochastic differential equations, Cambridge University Press.

[13] Le Gall, J-F. (1993). Solutions positives de $\Delta u = u^2$ dans le disque unité. C. R. Acad. Sci. Paris Série I. 317 873–878.

[14] Le Gall, J-F. (1994). A path-valued Markov process and its connections with partial differential equations. First European Congress of Mathematics, Vol. II (Paris, 1992). Progr. Math. 120. Birkhuser, 185–212.

[15] Le Gall, J-F. (1995). The Brownian snake and solutions of $\Delta u = u^2$ in a domain. Probab. Theory Related Fields. 102 no. 3 393–432.

[16] Lyons, T. and Zheng, W. (1990). On conditional diffusion processes. Proc. Roy. Soc. Edinburgh. 115, 243–255.

[17] Zheng, W. (1995). Conditional propagation of chaos and a class of quasilinear PDE's. Ann. Probab. 23 no. 3 1389–1413.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MASSACHUSETTS AMHERST THEN INDIANA UNIVERSITY, RAWLES HALL, 831 E. 3RD STREET, BLOOMINGTON, IN 47405-7106, E-MAIL: alouba@indiana.edu

DEPARTMENT OF STATISTICS, EAST CHINA NORMAL UNIVERSITY, SHANGHAI, CHINA, AND, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA IRVINE, IRVINE, CALIFORNIA 92697-3875, E-MAIL: wzheng@math.uci.edu