Diet-resistant obesity is characterized by a distinct plasma proteomic signature and impaired muscle fiber metabolism

AB Thrush1, G Antoun1, M Nikpay2, DA Patten1,3, C DeVlugt1, J-F Mauger3, BL Beauchamp3, P Lau3, R Reshke3, E Doucet4, P Imbeault4, R Boushel5, D Gibbons3, J Hager6, A Valsesia6, RS Slack3, OY Al-Dirbashi7,8, R Dent9,10, R McPherson2,10 and M-E Harper1,10

Centre, University of Ottawa Heart Institute, Ottawa, Ontario, Canada; 3Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; 6Nestle Institute of Health Sciences, Lausanne, Switzerland; 7Newborn Screening Ontario, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada; 8Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates and 9Ottawa Hospital Weight Management Clinic, Ottawa, Ontario, Canada.

Received 21 July 2017; revised 11 October 2017; accepted 30 October 2017; accepted article preview online 20 November 2017 advance online publication, 6 February 2018

E-mail: mharper@uottawa.ca

INTRODUCTION

Weight loss response in clinical obesity treatment programs is highly variable1,2 and there is growing evidence of important biological factors that contribute to inherent differences in oxidative metabolism, and/or adaptation to energy restriction.3–7 In previous analyses of over 3400 patient records in the Ottawa Hospital Weight Management Program (OHWMP), we documented a two to threefold difference in weight loss response in diet-resistant obese women compared to diet-sensitive individuals.1,2,7,8

Here, age-, sex- and initial body weight-matched adherent patients in the upper versus lower quintiles for weight loss in the first 6 weeks of meal-replacement are defined as obese diet-sensitive (ODS) and obese diet-resistant (ODR), respectively. Using these criteria, ODS patients were found to have a higher proportion of type I muscle fibers; muscle fiber hypertrophy; increased expression of genes involved in oxidative metabolism; higher proton leak in isolated mitochondria and primary myotubes2,8,9 and greater expression of OXPHOS genes in whole blood prior to diet intervention.10 Moreover, patients defined as ODR in the meal-replacement program demonstrate impaired weight loss in response to bariatric surgery.11 These findings are consistent with the hypothesis that capacity for weight loss has an important biological basis.

With the goal of elucidating possible mechanisms, we have interrogated metabolic responses in a newly recruited group of closely matched ODS and ODR individuals under resting fasting conditions and in response to a defined high fat meal (HFM). We report distinct differences in muscle fiber fatty acid-supported respiration, maximal oxidative phosphorylation and circulating protein biomarkers.

BACKGROUND/OBJECTIVES: Inter-individual variability in weight loss during obesity treatment is complex and poorly understood. Here we use whole body and tissue approaches to investigate fuel oxidation characteristics in skeletal muscle fibers, cells and distinct circulating protein biomarkers before and after a high fat meal (HFM) challenge in those who lost the most (obese diet-sensitive; ODS) vs the least (obese diet-resistant; ODR) amount of weight in a highly controlled weight management program.

SUBJECTS/METHODS: In 20 weight stable-matched ODS and ODR women who previously completed a standardized clinical weight loss program, we analyzed whole-body energetics and metabolic parameters in vastus lateralis biopsies and plasma samples that were obtained in the fasting state and 6 h after a defined HFM, equivalent to 35% of total daily energy requirements.

RESULTS: At baseline (fasting) and post-HFM, muscle fatty acid oxidation and maximal oxidative phosphorylation were significantly greater in ODS vs ODR, as was reactive oxygen species emission. Plasma proteomics of 1130 proteins pre and 1, 2, 5 and 6 h after the HFM demonstrated distinct group and interaction differences. Group differences identified S-formyl glutathione hydratase, heat shock 70 kDa protein 1A/B (HSP72), and eukaryotic translation initiation factor 5 (eIF5) to be higher in ODS vs ODR. Group-time differences included aryl hydrocarbon interacting protein (AIP), peptidylprolyl isomerase D (PPID) and tyrosine protein-kinase Fgr, which increased in ODR vs ODS over time. HSP72 levels correlated with muscle oxidation and citrate synthase activity. These proteins circulate in exosomes; exosomes isolated from ODS plasma increased resting, leak and maximal respiration rates in C2C12 myotubes by 58%, 21% and 51%, respectively, vs those isolated from ODR plasma.

CONCLUSIONS: Findings demonstrate distinct muscle metabolism and plasma proteomics in fasting and post-HFM states corresponding in diet-sensitive vs diet-resistant obese women.

International Journal of Obesity (2018) 42, 353–362; doi:10.1038/ijo.2017.286

MATERIALS/SUBJECTS AND METHODS

Participants

This study was approved by the Ottawa Health Science Network Research Ethics Board and participants provided informed written consent. These included weight stable, sedentary, non-smoking, non-diabetic females, with BMI > 30 kg m−2. During the first 12 weeks of the 26 week program, participants consume 900 kcal day−1 of Optifast liquid meals (Nestlé Health Sciences). Rate of weight loss, corrected for age, initial body mass

1Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; 2Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, Ontario, Canada; 3Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; 4School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada; 5School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada; 6Nestle Institute of Health Sciences, Lausanne, Switzerland; 7Newborn Screening Ontario, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada; 8Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates and 9Ottawa Hospital Weight Management Clinic, Ottawa, Ontario, Canada. Correspondence: Professor M-E Harper, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd, Ottawa, Ontario K1H8M5, Canada.

E-mail: mharper@uottawa.ca

10These authors contributed equally to this work.

11These authors contributed equally to this work.

Received 21 July 2017; revised 11 October 2017; accepted 30 October 2017; accepted article preview online 20 November 2017 advance online publication, 6 February 2018
 internacional
RESULTS

Anthropometry and weight loss characteristics

Prior to enrollment in the weight loss program, there were no differences in age, body mass or BMI. Following 6 weeks of dietary restriction, ODS women lost 44% more weight compared to ODR (ODR vs ODS: 69 ± 0.5 kg vs 11.5 ± 0.6 kg, P < 0.001; Table 1). At the time of the HFM challenge, age, body mass, BMI, waist circumference, body fat mass and lean mass were similar between ODS and ODR (Table 1). As in a previous study, there were no differences between groups in daily physical activity (Table 1).

Following the HFM, whole-body O2 consumption, CO2 production and TEE increased over time to a similar extent in the two groups (Figures 1a, b and e; P < 0.0001, effect of time, e; effect of time vs time 0). As expected, lipid utilization increased over time, whereas reliance on carbohydrate decreased (Figures 1c and d; P < 0.01).

Plasma FA, TAG, glucose and insulin all increased over time, but were not different between groups. Plasma FA initially dropped (0–2 h) after the HFM then levelled-off, and began to increase at 4 h (Figure 1f; P < 0.0001), whereas TG, glucose and insulin increased in both groups and began to decline at ~4 h, coinciding with the rise in FA (Figures 1g, i and d; P < 0.0001).

Metabolic characteristics of skeletal muscle fibers

For the first time, we have investigated oxidative processes in isolated muscle fibers of ODS and ODR patients, and compared group responses to a HFM. Following the HFM, FA-supported respiration was significantly increased in both groups (Figure 2a; P < 0.001) and tended to be higher in ODS vs ODR fibers (P = 0.09). We also probed for differences in activity of the electron transport complexes and observed a post-meal increase in complex I (P₀MPC), that occurred in both groups (Figure 2b; P < 0.01). Importantly, the maximal oxidative phosphorylation rate through complex I, II and ETF (P₀ETF) was greater in ODS vs ODR (Figure 2c; P < 0.05) with a group difference following the meal. When we used traditional OXPHOS substrates, we also found higher respiration in ODS (Figure 2d; P = 0.06). Moreover, maximal OXPHOS capacity was greater in ODS vs ODR fibers (Figure 2e; P < 0.05). Non-phosphorylating respiration measured in the presence of malate and pyruvate, and in the presence of oligomycin did not differ between groups.

We then sought to determine if differences in fiber energetics were related to mitochondrial content. However there was no difference in OXPHOS protein levels (Figure 2f), citrate synthase activity (Figure 2g) or muscle fiber COX activity (Figure 2i) between ODS and ODR. We also measured β-HAD activity, as a marker of FA oxidative capacity, and there were no differences between groups (Figure 2h). Moreover, when we normalized FA-supported maximal OXPHOS and uncoupled respiration to COX activity, rates remained higher in ODS vs ODR (Figures 2j–l, P < 0.05). Altogether, these findings demonstrate greater FA-driven respiration and OXPHOS system activity in fibers of ODS vs ODR that are not due to differences in mitochondrial content.

As the formation of mitochondrial supercomplexes promotes electron flow through the ETS,24 we measured supercomplexes in skeletal muscle. There were no differences between groups or in response to the HFM (Supplementary Figure 1). Thus, differences in muscle energetics between groups and following the HFM are not due to changes in ETS supercomplexes.

FA oxidation

As circulating acylcarnitines can be indicative of disordered FA oxidation,25 we measured plasma acylcarnitines at baseline and after the HFM. Short (C2–C4), medium (C6–C10) and long chain (C12–C18) acylcarnitines changed over time (Figures 3a–c; P < 0.01, effect of time), with an initial increase at 15 min. Medium chain acylcarnitines were significantly affected by the HFM (Figure 3b; ODR 15 min vs 2, 3, 4, 5 h, P < 0.05; ODS 15 min vs 3 h, 5 h, P < 0.05) and peaked again at 6 h in ODR (6 h vs 3 h, P < 0.05) but not in ODS. The AUC for long chain acylcarnitines was lower in ODS (P = 0.06) suggesting that FA oxidation is more complete in ODS.

We then assessed FA oxidation in cultured primary myotubes from ODS and ODR individuals with or without glucose pre-treatment (Figures 3d–h). As expected, glucose pre-incubation decreased FA oxidation (Figures 3d–h). Complete, incomplete (acid soluble product (ASP) in the media+ASP in the cells) and total FA oxidation were similar between groups. Interestingly, in ODR cellular ASP and incomplete FA oxidation did not differ in the presence of glucose (Figures 3e and f) indicative of reduced metabolic flexibility.

Oxidative stress

A similar HFM was reported to increase muscle ROS.15 Interestingly, we found that ROS emissions were higher in ODS vs ODR, with no HFM effect (Figure 3i). We also assessed ROS in primary myotubes following 24 h of 500 μM palmitate exposure. Palmitate increased ROS (overall effect), and in ODS specifically (Figure 3j), consistent with observed increases in ROS in ODS ex vivo muscle (above).

As a measure of oxidative damage, protein carbonyls did not differ in muscle (group or HFM effects), but the HFM increased carbonylation in adipose in both groups (Supplementary Figure 2; P < 0.05).

Two-way ANOVA, significantly different compared to before meal-replacement within group, P < 0.01, *P < 0.001 two-tailed unpaired t-test. Body fat distribution, P < 0.05, two-tailed unpaired t-test. Data are mean ± s.e.m., n = 10.

Table 1. Anthropometric characteristics before 6 weeks following meal-replacement and at the time of biopsy

	ODR	ODS
N	10	10
Age (years)	44 ± 2	43 ± 2
Mass (kg)	104.8 ± 6.9	100.3 ± 3.9
BMI (kg m⁻²)	37.7 ± 2.0	37.8 ± 1.1
Mass (kg)	98.0 ± 6.5	88.6 ± 3.4**
BMI (kg m⁻²)	35.2 ± 1.5	33.2 ± 1.0**
% Weight loss	6.5 ± 0.2	11.7 ± 0.2****
Age (yr)	48 ± 2	52 ± 2
Mass (kg)	100.9 ± 7.3	93.2 ± 5.9
BMI (kg m⁻²)	37.1 ± 2.0	35.6 ± 1.7
Waist circumference (cm)	113.9 ± 4.7	112.1 ± 4.2
Body fat (%)	49.8 ± 1.8	47.4 ± 1.2
Fat mass (kg)	46.7 ± 4.1	42.5 ± 3.1
Lean mass (kg)	45.4 ± 2.3	46.9 ± 3.1
Respiratory quotient	0.79 ± 0.02	0.80 ± 0.02
V̇O₂ (l min⁻¹)	23.0 ± 0.1	22.3 ± 0.01
V̇CO₂ (l min⁻¹)	18.0 ± 0.1	18.0 ± 0.01
Resting metabolic rate (kcal day⁻¹)	1584 ± 85	1604 ± 86
Physical activity (kcal)	1222 ± 216	1121 ± 191
TDEE (kcal day⁻¹)	3087 ± 213	3004 ± 216
HOMA-IR	9.2 ± 1.9	13.1 ± 2.9

*International Journal of Obesity (2018) 353 – 362

Diet-resistant obesity and impaired metabolism
AB Thrush et al
Figure 1. Whole-body response to the high fat meal in ODS and ODR individuals. Whole-body VO₂ (a), VCO₂ (b), carbohydrate utilization (c), lipid utilization (d) and total energy expenditure (e) at baseline and in response to the HFM. Plasma fatty acids (f), triglyceride (TG; g, h) glucose and (i) insulin at baseline (0 min) and following a high fat meal in ODR and ODS individuals. Two-way ANOVA, significant effect of time, f–i: \(P < 0.0001 \); a–d: \(P < 0.01 \). (e) Total energy expenditure, Significant effect of time \(P < 0.05 \), post hoc significantly different from baseline within group. Data are mean ± s.e.m., \(n = 9–10 \).

Figure 2. Skeletal muscle mitochondrial respiration but not content is increased in ODS compared to ODR prior to and in response to the high fat meal. Mitochondrial respiration was measured in permeabilized muscle fibers of ODS and ODR individuals pre and post the high fat meal. (a) State 3 fatty acid-supported respiration with 2 mM malate (M), 200 \(\mu \)M octanoylcarnitine and 5 mM ADP (PMO3). Two-way ANOVA, \(P = 0.09 \), effect of group, *\(P < 0.05 \) significant effect of meal. (b) State 3 complex I respiration with electron supply from 2 mM malate, 5 mM pyruvate (P), 10 mM glutamate (g) (PMPG3). *\(P < 0.05 \), significant effect of meal. (c) Maximal oxidative phosphorylation with electron supply to complex I and II with substrate M, OC, P, G and 10 mM succinate (S)+ADP (PMPGS3). *\(P < 0.05 \) two-way ANOVA, significant effect of group, a post hoc significantly different between groups. (d) Maximal oxidative phosphorylation with electron supply to complex I and II with substrate M, P, G, S (PMPGS3), \(P = 0.06 \), two-way ANOVA, effect of group. (e) Maximal oxidative phosphorylation with electron supply to complex I and II with substrate M, PG, S (PMPGS3), \(P = 0.06 \), two-way ANOVA, effect of group. (f) Expression of electron transfer system proteins (complex I, II, III, IV, V), (g) citrate synthase activity and (h) beta HAD activity in skeletal muscle of ODR and ODS at baseline. (i) COX activity in permeabilized muscle fibers of ODS and ODR was measured with 5 mM TMPD maintained in a reduced state by 5 mM ascorbate and reducing cytochrome C as the substrate. (j) FA-supported respiration expressed per COX activity. *Two-way ANOVA, significant effect of group, *\(P < 0.01 \), significant effect of meal, post hoc significantly different between ODS and ODR. (k) Maximal oxidative phosphorylation (PMPGS3) expressed per COX activity. *\(P < 0.05 \) two-way ANOVA significant effect of group. (l) Maximal oxidative phosphorylation (PMPGS3) expressed per COX activity. *\(P < 0.05 \) two-way ANOVA significant effect of group and meal. Data are mean ± s.e.m.
Plasma proteomic biomarkers

To potentially identify biomarkers of diet responsiveness, we conducted proteomic analyses of 1130 proteins in plasma collected at baseline, 1, 2, 5 and 6 h after the HFM. QQ plots of P-values for the group effects, and group-time interaction effects are shown in Figures 4a and e, respectively. Local false discovery rate and Q-values are available in Supplementary Table 1. After correction for multiple testing, proteins differing between groups (regardless of the fasted or fed states) included S-formyl glutathione hydrolase (esterase D), heat shock 70 kDa protein 1 A/B (heat shock protein 72; HSP72), and eukaryotic translation initiation factor 5 (group effect, Figures 4b–i). Moreover, plasma aryl hydrocarbon receptor-interacting protein (AIP; also known as ARA9, part of the acryl hydrocarbon receptor protein complex), peptidylprolyl isomerase D (PPID; also known as cyclophilin D) and tyrosine protein-kinase Fgr (FGR) increased in ODR following the treatment to test metabolic flexibility. (N = 5) Data are mean ± s.e.m. Two-way ANOVA, line above graph indicates significant effect of glucose *P < 0.05, **P < 0.01, ***P < 0.001. (d) ASP in the media, post hoc effect of glucose ODR **P < 0.01, ODS ***P < 0.001 (e) ASP in the cell, post hoc effect of glucose, ODS *P < 0.05; (f) Incomplete FA oxidation, post hoc effect of glucose, ODS P < 0.01; (g) Complete FA oxidation to CO2 production, post hoc effect of glucose ODR, *P < 0.05, ODS ***P < 0.001; and (h) total FA oxidation, post hoc effect of glucose ODR **P < 0.05, ODS ***P < 0.001. (i) Oligomycin-induced H2O2 emission in skeletal muscle of ODS and ODR pre and post-HFM. *P < 0.05 Two-way ANOVA, significant effect of group (N = 7–8). (j) ROS emission in myotubes derived from ODS and ODR with and without 24 h 500 μM palmitate treatment. Two-way ANOVA *P < 0.05 significant effect of treatment. A P < 0.05 post hoc significant difference from control condition within ODS n = 5.

Effects of plasma exosomes on muscle cell energetics

As HSP72 and the other identified proteins circulate in exosomes, which are biologically potent,27–30 and our results demonstrated a FA oxidation defect in ODR vs ODS muscle (Figures 2a and 3), we investigated the ability of plasma exosomes from ODS and ODR to elicit effects on FA metabolism in a well characterized muscle cell line. Exosome size distribution and the median size analyses demonstrated successful isolation of exosomes21–33 and no differences in size or plasma concentration between groups (Figures 5a and b; Supplementary Figure 4). Differentiated C2C12 myotubes were treated with exosomes from 1.0 ml of fasting (0 h) or fed (5 h post-HFM) plasma. Exosomes from ODS fasting plasma elicited resting, leak, and maximal oxygen consumption rates (OCRs) that were 58%, 21%, and 51% higher, respectively, as compared to exosomes from fasting ODR plasma (Figure 5c). In contrast, resting glycolysis rates were higher in ODS than ODR by 67% (Figure 5d). When OCRs were plotted against extracellular acidification rates (ECARs) to delineate the metabolic profile of cells, myotubes treated with fasting ODS exosomes are clearly less glycolytic and have a greater oxidative flexibility than the cells treated with the fasting ODR exosomes (Figure 5e). Interestingly, although exosomes isolated from the plasma taken 5 h after the HFM caused some stimulation of oxidative and glycolytic activities.

Figure 3. FA metabolism and oxidative stress in ODS and ODR. Plasma (a) short, (b) medium and (c) long chain acylcarnitine content and area under the curve (AUC) in ODS and ODR at baseline and in response to the HFM. Two-way ANOVA, Bonferroni post hoc, significant effect of time **P < 0.01; ***P < 0.001. Data are mean ± s.e.m. (n = 9). (d–h) FA oxidation in myotubes derived from ODR and ODS ± glucose pre-treatment to test metabolic flexibility. (N = 5) Data are mean ± s.e.m. Two-way ANOVA, line above graph indicates significant effect of glucose *P < 0.05, **P < 0.01, ***P < 0.001. (d) ASP in the media, post hoc effect of glucose ODR **P < 0.01, ODS ***P < 0.001 (e) ASP in the cell, post hoc effect of glucose, ODS *P < 0.05; (f) Incomplete FA oxidation, post hoc effect of glucose, ODS P < 0.01; (g) Complete FA oxidation to CO2 production, post hoc effect of glucose ODR, *P < 0.05, ODS ***P < 0.001; and (h) total FA oxidation, post hoc effect of glucose ODR **P < 0.05, ODS ***P < 0.001. (i) Oligomycin-induced H2O2 emission in skeletal muscle of ODS and ODR pre and post-HFM. *P < 0.05 Two-way ANOVA, significant effect of group (N = 7–8). (j) ROS emission in myotubes derived from ODS and ODR with and without 24 h 500 μM palmitate treatment. Two-way ANOVA *P < 0.05 significant effect of treatment. A P < 0.05 post hoc significant difference from control condition within ODS n = 5.

Figure 4. Effects of plasma exosomes on muscle cell energetics. Exosome size distribution and the median size analyses demonstrated successful isolation of exosomes21–33 and no differences in size or plasma concentration between groups (Figures 5a and b; Supplementary Figure 4). Differentiated C2C12 myotubes were treated with exosomes from 1.0 ml of fasting (0 h) or fed (5 h post-HFM) plasma. Exosomes from ODS fasting plasma elicited resting, leak, and maximal oxygen consumption rates (OCRs) that were 58%, 21%, and 51% higher, respectively, as compared to exosomes from fasting ODR plasma (Figure 5c). In contrast, resting glycolysis rates were higher in ODS than ODR by 67% (Figure 5d). When OCRs were plotted against extracellular acidification rates (ECARs) to delineate the metabolic profile of cells, myotubes treated with fasting ODS exosomes are clearly less glycolytic and have a greater oxidative flexibility than the cells treated with the fasting ODR exosomes (Figure 5e). Interestingly, although exosomes isolated from the plasma taken 5 h after the HFM caused some stimulation of oxidative and glycolytic activities.
in the C2C12 cells, there were no differences between ODS and ODR groups (Figures 5f–h).

DISCUSSION

Here we have further interrogated the complex biology underlying weight loss variability in obesity. We focused on mechanisms in plasma and skeletal muscle related to fuel oxidation and metabolic flexibility in vivo and in vitro. We demonstrate that both FA-supported muscle respiration and maximal oxidative phosphorylation are greater in ODS vs ODR individuals under fasting, resting conditions, and following a high fat meal. These differences are independent of muscle mitochondrial content and oxidative phosphorylation supercomplex assembly. Seeking possible plasma markers of diet sensitivity vs resistance we surveyed 1130 circulating proteins before and at several time points after the HFM and identified several proteins that were either different between groups or exhibited different post-meal trajectories. HSP72 was positively correlated with muscle fiber respiration and citrate synthase activity. Given that all of the identified proteins circulate in exosomes, another key finding is that plasma exosomes from ODS stimulate oxidative metabolism in muscle cells to a greater extent than those from ODR.

In permeabilized muscle fibers in which mitochondrial structures remain intact and highly functional, we demonstrate that FA-supported respiration, oxidative phosphorylation with NADH- and FADH₂-mediated electron supply through complexes I and II and the maximal capacity of the ETS were higher in ODS muscle. In addition, NADH-driven respiration through complex I is acutely increased following a HFM, consistent with the control of mitochondrial oxidative capacity through acute processes, such as post-translational modifications. Differences in mitochondrial respiration are often ascribed to differences in mitochondrial content. Despite the use of various well recognized techniques, we observed no difference in mitochondrial content. Mitochondrial ETS proteins interact to form supercomplexes, and dysfunctional supercomplexes are associated with aging, cardiovascular disease and type 2 diabetes, which may be related to oxidative stress. In the current study, muscle mitochondrial supercomplex were not different between ODS and ODR. Thus the observed differences in mitochondrial respiration (group and meal effects) may be a result of post-translational modification of ETS proteins, which will require further study.

Consistent with a lower capacity for FA oxidation in ODR muscle, plasma long chain acylcarnitines and peak medium chain...
acylcarnitines (15 min, 6 h) were higher in ODR than ODS. Acylcarnitines are intermediary metabolites of FA oxidation. Circulating acylcarnitines can be indicative of FA oxidation dysfunction and plasma and skeletal muscle acylcarnitine profiles can be abnormal in obesity. Owing to the tissue constraints, we were unable to measure muscle acylcarnitines. We did however observe metabolic inflexibility in primary myotubes of ODR individuals. Indeed, FA-supported respiration in permeabilized muscle fibers was also lower in ODR. Taken together, findings indicate that FA metabolism is impaired in skeletal muscle of ODR individuals.

Plasma proteomics revealed that FGR, PPID and AIP increased in ODR following the HFM. FGR, a Src kinase, interacts with succinate dehydrogenase and aconitase. Redox sensitive Src kinases and tyrosine kinases have been found in mitochondria and can be activated by H2O2 or oxidative stress. Src kinase is decreased in cardiac tissue in sepsis and associated with decreased tyrosine phosphorylation and activity of OXPHOS proteins. PPID (cyclophilin D) is an important regulator of mitochondrial physiology and interacts with proteins including glycogen synthase kinase 3, adenine nucleotide translocator, F1F0 ATP synthase and the mitochondrial permeability transition pore (MPTP). MPTP has a key role in apoptosis as well as calcium handling and metabolism and the PPID locus is linked to serum metabolite levels. Finally, AIP (ARA9) is part of the aryl hydrocarbon receptor protein complex (AHR), which influences cell cycle, death, xenobiotic metabolism, and mitochondrial function, potentially through its interaction with ATP5a1. The unique increases in the levels of these circulating proteins in ODS, and the absence of responses in ODR may contribute at least in part to the observed differences in muscle mitochondrial metabolism following the HFM.

Proteomics also revealed that esterase D, eIF5 and HSP72 are higher in ODS vs ODR. Esterase D is also referred to as S-formyl glutathione hydrolase, and is thought to hydrolyze a formyl group from S-formyl glutathione yielding glutathione. Glutathione redox is impaired in aging and many metabolic disorders.

Figure 5. Differential metabolic effects of ODS and ODR plasma-derived exosomes on differentiated myotubes. Cellular respiration and extracellular acidification was measured in 7 day differentiated C2C12 myotubes in response to exosomes isolated from plasma samples pre- (ODS n = 9, ODR n = 9) and 5 h post- (ODS n = 9, ODR n = 8) HFM. (a) Representative Zetaview analysis of the size distribution of the vesicles. (b) Median sizes of the exosomes for ODS and ODR groups. (c, f) Cellular oxygen consumption rates (OCR) at rest, following oligomycin injection (3 μM proton leak), and FCCP injection (2 μM maximal respiration) with exosomes isolated from fasted (0 h) or post-HFM (5 h) respectively. (d, g) Extracellular acidification rates (ECAR) at rest, and following oligomycin and FCCP injection (maximal glycolysis) with exosomes isolated from fasted (0 h) or post-HFM (5 h) respectively. (e, h) Graph illustrating the metabolic flexibility from resting OCR and ECAR (left data points) and following oligomycin and FCCP injection (right data points). Data are mean ± s.e.m., n = 8–9, *P < 0.05, **P < 0.01.
and out of cells, HSP72 turnover is high, and this is controlled by controls protein turnover and chaperones proteins within cells in plasma and its correlation with skeletal muscle oxidative metabolism.

ODS and ODR, despite the profound difference observed stimulated proton leak uncoupling; proton leak was previously enhanced FA oxidation, whereas ODR exosomes enhanced altered myotube FA metabolism. Fasting plasma exosomes from and found that exosomes from ODS vs ODR groups differentially support the possibility of its active excretion from muscle.60

It has also been proposed that HSP72 may act as a myokine, thereby supporting the possibility of its active excretion from muscle.58 Interestingly, we did not find any difference in skeletal muscle HSP72 expression between ODS and ODR, despite the profound difference observed in plasma and its correlation with skeletal muscle oxidative capacity. Previous studies have found skeletal muscle HSP72 levels to be low in physiological states characterized by mitochondrial dysfunction (that is, type 2 diabetes). Some studies that have shown skeletal muscle HSP72 to be low in physiological states characterized by mitochondrial dysfunction, measured mRNA but not protein levels. As HSP72 is a stress-induced protein that controls protein turnover and chaperones proteins within cells and out of cells, HSP72 turnover is high, and this is controlled through HSP72 ubiquitination.59 Thus differences may be more apparent at the mRNA level, than the protein level. It has also been proposed that HSP72 may act as a myokine, thereby supporting the possibility of its active excretion from muscle.58

Unfortunately, due to tissue constraints we were unable to measure HSP72 mRNA expression. On the basis of the high proportion of total body mass that is skeletal muscle (~40%), and on prior research that links oxidative metabolites and skeletal muscle HSP72 levels,65,67,58 we feel that skeletal muscle is a likely source of plasma HSP72 in the current study. Further studies will need to be conducted to decipher the main source of plasma HSP72.

As proof-of-concept we then explored how these proteins (which circulate in exosomes) might affect muscle metabolism, and found that exosomes from ODS vs ODR groups differentially altered myotube FA metabolism. Fasting plasma exosomes from ODS enhanced FA oxidation, whereas ODR exosomes enhanced glycolysis, despite excess palmitate in the medium. ODS exosomes stimulated proton leak uncoupling; proton leak was previously found to be higher in isolated muscle mitochondria and in primary myotubes of ODS vs ODR.2,5 However, we did not detect increased leak on ODS vs ODR permeabilized myofibers herein, an observation possibly due to differences in tissue preparation and incubation conditions.

Treatment of C2C12 cells with exosomes from the 5 h post-HFM time point resulted in a similar metabolic phenotype between groups; the effect of the group seems to be overpowered by the effect of the meal. Given the distinct differences in the circulating proteome following the meal, it is quite likely that different mechanisms are involved. Future studies should focus on the proteome, microRNA and mRNA content of the ODS and ODR exosomes, in fasted and fed states.

Skeletal muscle accounts for about 20% of total resting energy expenditure,61 which may explain in part why no measurable difference was observed in resting and postprandial whole-body energetics between ODR and ODS individuals despite marked differences in skeletal muscle metabolism observed.2,9,12

Undoubtedly, detection of differences in whole-body energy expenditure between ODS and ODR require longer time frames than the 30 min used here. It may be that differences in whole-body energy metabolism could be detected during exercise; this will be pursued in an upcoming study.

We also sought to investigate ROS and oxidative stress and observed higher ROS emission and glutathione-S transferase in ODS and increased ROS emission response to palmitate in primary myotubes from ODS, suggesting that ODS may have a greater capacity to respond to ROS compared to ODR. Contrary to Anderson et al.15 who found increased ROS emission 4 h following a HFM, we did not find increased oxidative stress following the HFM in either group. However, at 6 h we may have missed the maximal effect of the HFM; indeed, plasma TG and insulin began to decline at 4 h.

In summary, we provide novel insights into the biology underlying weight loss resistance, including lower muscle fiber oxidative characteristics independent of mitochondrial content or supercomplex assembly and metabolic inflexibility (cellular FA oxidation, plasma acylcarnitines). Multiple differences in the plasma proteome provide exciting clues relevant to diet resistance, and provide potentially useful biomarkers to predict weight loss success. In particular, greater HSP72 correlated with muscle respiration. Finally, the differential effects of plasma exosomes from ODS vs ODR on muscle cell metabolism are consistent with the possibility that factors circulating in exosomes could contribute to weight loss variability and lead to novel therapeutic approaches.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

We are deeply grateful to the study participants in this research. We thank J Quizi, M Pasqua, Dr F McMurray, H Doelle and A Beninato for assistance with laboratory and clinical protocols. ABT was supported by a Canadian Institutes of Health Research (CIHR) postdoctoral fellowship, GA by a Vanier Canada Graduate Scholarship and BB by a Natural Sciences and Engineering Research Council scholarship. This study was funded by CIHR (MOP57810, MOP136936).

REFERENCES

1 Dent R, McPherson R, Harper ME. Variability in weight loss in highly compliant women on a controlled dietary regimen. Obes Res 1999; 7(Suppl 1): 98S.

2 Harper ME, Dent R, Monemdjou S, Bezaire V, Van Wyck L, Wells G et al. Decreased mitochondrial proton leak and reduced expression of uncoupling protein 3 in skeletal muscle of obese diet-resistant women. Diabetes 2002; 51: 2459–2466.

3 Tremblay A, Lepage C, Panahi S, Couture C, Drapeau V. Adaptations to a diet-based weight-reducing programme in obese women resistant to weight loss. Clin Obes 2015; 5: 145–153.

4 Doucet E, St-Pierre S, Almeras N, Despres JP, Bouchard C, Tremblay A. Evidence for the existence of adaptive thermogenesis during weight loss. Br J Nutr 2001; 85: 715–723.

5 Leibel RL, Rosenbaum M, Hirsch J. Changes in energy expenditure resulting from altered body weight. N Engl J Med 1995; 332: 621–628.

6 Rosenbaum M, Leibel RL. Adaptive thermogenesis in humans. Int J Obes 2010; 34(Suppl 1): 547–555.

7 Thrush AB, Dent R, McPherson R, Harper ME. Implications of mitochondrial uncoupling in skeletal muscle in the development and treatment of obesity. FEBS J 2013; 280: 5015–5029.

8 Genitz MF, Ghosh S, Kavasarla N, Hill B, Tour A, Seifert EL et al. Distinct skeletal muscle fiber characteristics and gene expression in diet-sensitive versus diet-resistant obesity. J Lipid Res 2010; 51: 2394–2404.

9 Thrush AB, Zhang R, Chen W, Seifert EL, Quizi JK, McPherson R et al. Lower mitochondrial proton leak and decreased glutathione redox in primary muscle.
Diet-resistant obesity and impaired metabolism
AB Thrusell et al.

30 Colombo M, Moita C, van Niel G, Kowal J, Vigeneron J, Benaroch P et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlighting the heterogeneity of extracellular vesicles. J Cell Sci 2013; 126(Pt 24): 5553–5565.

31 DeLany JP, Dube JJ, Standley RA, Distefano G, Goodpaster BH, Stefansonic-Racic M et al. Racial differences in peripheral insulin sensitivity and mitochondrial capacity in the absence of obesity. J Clin Endocrinol Metab 2014; 99: 4307–4314.

32 Kristensen JM, Skov V, Persson SJ, Ortenblad N, Wojtaszewski JF, Beck-Nielsen H et al. A PGC-1alpha and muscle fibre type-related decrease in markers of mitochondrial oxidative metabolism in skeletal muscle of humans with inherited insulin resistance. Diabetologia 2014; 57: 1006–1015.

33 Ritov VB, Menshikova EV, Hj, J Ferrell RE, Goodpaster BH, Kelley DE. Deficiency of subsarcomeral mitochondria in obesity and type 2 diabetes. Diabetes 2005; 54: 8–14.

34 Gomez LA, Monette JS, Chavez JD, Maier CS, Hagen TM. Supercomplexes of the mitochondrial electron transport chain decline in the aging rat heart. Arch Biochem Biophys 2009; 490: 30–35.

35 Rosca MG, Vazquez EJ, Kerner J, Parland W, Chandler MP, Stanley W et al. Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res 2008; 80: 30–39.

36 Antoun G, McMurray F, Thrush AB, Patten DA, Peixoto AC, Slack RS et al. Impaired mitochondrial oxidative phosphorylation and supercomplex assembly in rectus abdominis muscle of diabetic obese individuals. Diabetologia 2015; 58: 2861–2866.

37 Manaranza E, Barbero G, Falasca AI, Lenaz G, Genova ML. Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid Redox Signal 2013; 19: 2915–2925.

38 Koves TR, Usher JR, Noland BC, Stentz D, Moserdel M, Ilkayeva O et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 2008; 7: 45–56.

39 Thyfault JP, Creg MG, Zheng Z, Zwetsloot TJ, Taspock EB, Koves TR et al. Contraction of insulin-resistant muscle normalizes insulin action in association with increased mitochondrial activity and fatty acid catabolism. Am J Physiol Cell Physiol 2007; 292: C729–C739.

40 Baker PR, 2nd, Boyle KE, Koves TR, Ilkayeva OR, Muiozo DM, Hound JA et al. Metabolomic analysis reveals altered skeletal muscle amino acid and fatty acid handling in obese humans. Obesity 2015; 23: 981–988.

41 Aguer C, Mccoin CS, Knotts TA, Thrush AB, Ono-Moore K, McPherson R et al. Acylcarnitines: potential implications for skeletal muscle insulin resistance. FASEB J 2015; 29: 336–345.

42 Salvi M, Monrice NA, Brunati AM, Toninello A. Identification of the flavoprotein succinate dehydrogenase and aconitase as in vitro mitochondrial substrates of Fgr tyrosine kinase. FEBS Lett 2007; 581: 5579–5585.

43 Hebert-Chatelan E. Src kinases are important regulators of mitochondrial functions. Int J Biochem Cell Biol 2013; 45: 90–98.

44 Salvi M, Brunati AM, Bordin L, La Rocca N, Clari G, Toninello A. Characterization and location of Src-dependent tyrosine phosphorylation in rat brain mitochondria. Biochim Biophys Acta 2002; 1589: 181–195.

45 Zaidi BS, Martinez B, Yao X, Mass D, Ma L, Wolf SE et al. Sepsis-induced cardiac mitochondrial dysfunction involves altered mitochondrial-localization of tyrosine kinase Src and tyrosine phosphatase SHP2. PLoS One 2012; 7: e43424.

46 Giorgio V, Soriano ME, Basso E, Bissetto E, Lippe G, Forte MA et al. Cyclophilin D in mitochondrial pathophysiology. Biochim Biophys Acta 2010; 1797: 1113–1118.

47 Kwong JO, Molkentin JD. Physiological and pathological roles of the mitochondrial permeability transition pore in the heart. Cell Metab 2015; 21: 206–214.

48 Illig T, Gieger C, Zhai G, Romisch-Margl W, Wang-Sattler R, Prehn C et al. A genome-wide perspective of genetic variation in human metabolism. Nat Genet 2010; 42: 137–141.

49 Hopkinson DA, Mestriner MA, Cortner J, Harris E, Esterase D. A new human polymorphism. Ann Hum Genet 1973; 37: 119–137.

50 Mailloux RJ, McBride SL, Harper ME. Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics. Trends Biochem Sci 2013; 38: 592–602.

51 Mailloux RJ, Xuan JY, McBride S, Maharsy W, Thorn S, Holsterman CE et al. Mitochondrodoxin-2 is required to control oxidative phosphorylation in cardiac muscle by mediating deglutationreaction reactions. J Biol Chem 2014; 289: 14812–14828.

52 Go YM, Jones DP. Redox theory of aging: implications for health and disease. Clin Sci 2017; 131: 1669–1688.

53 Benjamin U, McMillan DR. Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res 1998; 83: 117–132.
57 Bruce CR, Carey AL, Hawley JA, Febbraio MA. Intramuscular heat shock protein 72 and heme oxygenase-1 mRNA are reduced in patients with type 2 diabetes: evidence that insulin resistance is associated with a disturbed antioxidant defense mechanism. *Diabetes* 2003; **52**:2338–2345.

58 Henstridge DC, Bruce CR, Drew BG, Tory K, Kolonics A, Estevez E et al. Activating HSP72 in rodent skeletal muscle increases mitochondrial number and oxidative capacity and decreases insulin resistance. *Diabetes* 2014; **63**:1881–1894.

59 Qian SB, McDonough H, Boellmann F, Cyr DM, Patterson C. CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70. *Nature* 2006; **440**:551–555.

60 Henstridge DC, Whitham M, Febbraio MA. Chaperoning to the metabolic party: The emerging therapeutic role of heat-shock proteins in obesity and type 2 diabetes. *Mol Metab* 2014; **3**:781–793.

61 Elia M. The inter-organ flux of substrates in fed and fasted man, as indicated by arterio-venous balance studies. *Nutr Res Rev* 1991; **4**:3–31.

Supplementary Information accompanies this paper on International Journal of Obesity website (http://www.nature.com/ijo)