Synthesis of ZnO: Sb thin films Dropped on glass and Porous Silicon for CO Gas Sensing

Rashid Hashim Jabbar¹, Shurooq Jasim Jabbar², Warqa Adnan Shakir³, Mudar Ahmed Abdulsattar⁴, Israa Hadi Hilal⁵

¹,³,⁴,⁵Ministry of Science and Technology, Baghdad, Iraq.
²Ministry of Education, Baghdad, Iraq
Correspondence: Rashid Hashim Jabbar, Ministry of Science and Technology, Baghdad, Iraq.
Email: Rasheed2045@gmail.com

Abstract. Membranes Structural properties have been studied using XRD and compare the different values of the average crystallite size by using correction equations. undoped ZnO and ZnO: Sb for (0.5 - 2) % membranes has been dropped on glass and p-type porous silicon (PS) substrate at 400 °C to use it as a sensor for CO gas. The crystal growth of the films that were deposited on the PS was not uniform due to the nature of the PS surface and due to the breakage of the crystal structure of the membrane material. the sensitivity of membranes dropped on (PS) for CO gas was higher than on glass substrate.

Keywords: ZnO: Sb; PS; membranes; CO.

1. Introduction
Zinc Oxide (ZnO) is a Transparent Conductive Oxide (TCO), has 60 meV exciton energy, an energy gap of 3.37 eV approximately [1-3]. ZnO It is a semiconductor of the negative type (n-type) [1,4]. These specifications attracted scientists to use it in many areas of scientific and industrial research, which made it suitable in manufacturing: optical and electronic devices, solar cells, gas sensors, television screens, manufacture UV lasers and Light Emitted Diodes (LEDs) [5-8]. It is possible to use different elements and add them with ZnO as doping that can affect its properties as Al, Cu, Mg, F, and Ga, which leads to different results in element transparency and conductivity, in other studies the energy gap decreases[1]. Some studies show that doping with Sb, F, As resulted in obtaining substances with good electrical properties, which led to an interest in these elements in doping [8-10]. Several techniques can be used to precipitate inlaid ZnO films, such as chemical vapor, spray pyrolysis, frequency magnetron sputtering, Chemical Vapor Deposition (CVD) [11,12].

2. Materials and method
By using heating analysis at 400 °C of aqueous zinc nitrate solution (Zn (NO₃)₂:6H₂O) with a molar concentration of 0.1 M, the zinc oxide compound can be obtained. PS was manufactured by the electrochemical etching cell, PS was used as bases for deposition of zinc oxide membrane with antimony in ratios (0.5, 1, 1.5, and 2)% in addition to pure zinc oxide, the
following thermochemical decomposition equation shows the precipitation of zinc oxide on porous silicon bases [13]:

\[2\text{Zn(NO}_3\text{)}_2 \rightarrow 2\text{ZnO} \downarrow + 4\text{NO}_2 \uparrow + \text{O}_2 \uparrow \quad \text{... (1)} \]

Figure (1, a) shows the electrochemical etching cell used to prepared the PS by applying a current of 35 m Amp. for 25 minutes and hydrofluoric acid at a concentration of 50% plus 50% ethanol. Figure (1, b) clear an optical photograph of the top view of p-PS before and after dropping the undoped ZnO membranes.

3. Results and Discussion
When depositing membranes on the glass substrates, we notice from figure (2, a) that the preferential plane 002 is the plane in which crystal uniformity appears, and this plane is perpendicular to the direction of the substrate on which the films were deposited. The increase in the antimony concentration led to an increase in the crystal size, and it reached its maximum value when the doping ratio was ZnO: Sb (1%) and that means the lower proportions of the antimony lead to improving the crystal structure and filling the gaps within the composition of the material that makes up the membrane. The continued increase in the amount of antimony caused a small decrease in the crystal size, and the reason for this is that the antimony did not continue to increase the improvement of the crystal size, but rather its effect appeared to increase the defects of the material, which led to the breakage of the crystal structure of the membrane material and decreased crystallinity in the preferential direction 002, as shown in the Table (1).

![Fig.1](image1.png)

(a) Electrochemical etching cell, (b) Top view of an optical photograph of p-PS before and after dropping.

![Fig.2](image2.png)

(a) XRD of ZnO and ZnO: Sb for (0.5-2) % deposited on, (a): glass, (b): Porous silicon (PS) substrates.
When the membranes are deposited on the bases of (PS), we notice as shown in figure (2, b) that the undoped ZnO and ZnO: Sb (0.5, 1, 1.5, 2)% membranes have no clear growth, which means that the type of substrate has a clear effect on the growth of preferential planes in the films, and the apparent reflection at the angle (2θ = 28.44 deg.) refers to level (111) for the silicon material that was used in the manufacture of porous silicon, but rather clear, which means that the type of base has a clear effect on the growth of preferential levels in the films, and the apparent reflection at the angle (2θ = 28.44 deg.) refers to the plane (111) for the silicon material that was used in the manufacture of porous silicon [14-18].

The crystallite size D can be calculated by using Sherrer's equation [19]:

$$D = \frac{k\lambda}{\beta_D \cos(\theta)} \quad \ldots (2)$$

Where $k = 2\sqrt{\ln(2)/\pi} = 0.94$ called (Scherer's constant), $(\lambda = 0.15406 \text{ nm})$ is the wavelength of the occurrence beam of XRD, β_D is referring to the intrinsic Full Width at Half Maximum (FWHM) of XRD peak, and θ is the angle of Bragg's diffraction of the own XRD top [20-24].

In the circumstance, measured arc XRD is alike to Lorentz function and income the form $\frac{1}{1+kx^2}$, the improvement is given by the next association, which was so-called (Scherer's correction) [25]:

$$\beta_D = \beta_m - \beta_i \quad \ldots (3)$$

β_m is the measured Full Width at Half Maximum of the highest, β_i is the instrumental expansion which is equal to 0.11 deg. for the used XRD instrument. By recompense equation (3) in the association (2) we get:

$$D = \frac{k\lambda}{(\beta_m - \beta_i) \cos(\theta)} \quad \ldots (4)$$

In the situation measured XRD curve is comparable to the Gauss purpose which takings the formula $e^{-k^2x^2}$ the correctness to be advanced because of the prodigious resemblance between this meaning and the deflection arcs; it was recommended by Warren in the formula [26]:

$$\beta_D^2 = \beta_m^2 - \beta_i^2 \quad \ldots (5)$$

Eq. (5) is named (Warren Correction). By recompense equation (5) in the relationship (2) we get:

$$D = \frac{k\lambda}{\cos(\theta) \sqrt{\beta_m^2 - \beta_i^2}} \quad \ldots (6)$$

Warren has recommended an affiliation receipt into the version of the geometric sense by multiplying eq. (3) by eq. (5) which is:

$$\beta_D = \sqrt{(\beta_m - \beta_i)(\beta_m^2 - \beta_i^2)} \quad \ldots (7)$$

Recompense equation (7) in the association (2) we get [26, 27]:

$$D = \frac{k\lambda}{\cos(\theta) \sqrt{(\beta_m - \beta_i)(\beta_m^2 - \beta_i^2)}} \quad \ldots (8)$$
Table 1. 2θ, FWHM, and Average crystallite size measured by equations: (2, 4, 6, and 8) for undoped ZnO, ZnO: Sb for (0.5 - 2)% deposited on the glass substrate.

hkl	Samples	2θ (deg.)	FWHM (deg.)	The average crystallite size (nm)			
				eq. (2)	eq. (4)	eq. (6)	eq. (8)
002	ZnO	34.4802	0.2782	31	52	34	42
	ZnO: Sb (0.5) %	34.4652	0.2032	43	93	51	69
	ZnO: Sb (1) %	34.4626	0.178	49	128	62	89
	ZnO: Sb (1.5) %	34.4638	0.1808	48	123	61	86
	ZnO: Sb (2) %	34.4636	0.2085	42	88	49	66

4. Sensing of CO Gas.

ZnO sensitivity is due to the reduction of gases, such as the absorption of oxygen from the surface of the membrane, which leads to the carbon dioxide molecules interacting with the previously adsorbed oxygen species, as in the equation [28]:

$$\text{CO} + \text{O}^-(\text{ads}) \rightarrow \text{CO}_2(g) + e^- \quad \ldots \quad (9)$$

This leads to a reduction in the oxygen attentiveness in the superficial of the membrane, and the bound electrons are released due to the anions, which causes the membrane resistance to decrease as shown in figure (3) [28]:

![Fig.3. mechanism of the sensitivity to carbon monoxide.](image)

Due to the volume surface of (PS), the substrate is larger than glass, the area of interaction between CO gas and membranes material, the sensitivity for CO gas of the membranes dropped on PS is higher than the sensitivity of the membranes dropped on the glass substrate, as clear in the figure (4).

![Fig.4. sensitivity vs. exposure time of CO gas for undoped ZnO, ZnO: Sb for (0.5 - 2)% deposited on, (a): glass substrate, (b): Porous silicon (PS) substrates.](image)
In figure (4. a), the increase of Sb concentrations led to a smooth increasing of the membranes dropped on the glass substrate, but the sensitivity is jumped rapidly for (1.5 and 2) % of Sb doping concentrations, which clear the influence of doping and surface area of PS.

5. Conclusions:
The average crystallite size of the membranes was Nanostructure, preferential plane 002 is the plane in which crystal uniformity appears in XRD measurements for undoped ZnO, ZnO: Sb dropped on the glass substrate, but there are no uniform growth or crystalline for the membranes which dropped on (PS) due to the breakage of the crystal structure of membranes materials. In general, the sensitivity of ZnO, ZnO: Sb dropped on (PS) substrate for CO gas is higher than the glass substrate.

References.
[1] J. S. Nyarige, S. Waita, J. Simiyu, S. Mureramanzi, and B. Aduda, “Structural and Optical Properties of Phosphorous and Antimony doped ZnO thin films Deposited by Spray Pyrolysis : A Comparative Study,” vol. 4, no. 11, pp. 149–154, 2017.
[2] B. Ghanbari Shohany, L. Motevalizadeh, and M. Ebrahimizadeh Abrishami, “Investigation of ZnO thin-film sensing properties for CO2 detection: effect of Mn doping,” J. Theor. Appl. Phys., vol. 12, no. 3, pp. 219–225, 2018.
[3] A. Hend, “Effect of annealing temperature on the optical properties of Sb-ZnO thin films prepared using co-sputtering technique,” Int. J. Phys. Sci., vol. 13, no. 11, pp. 187–195, 2018.
[4] O. Celik, Ş. Baturay, and Y. S. Ocak, “Sb doping influence on structural properties of ZnO thin films,” Mater. Res. Express, vol. 7, no. 2, pp. 1–7, 2020.
[5] J. A. De Campos et al., “Electrical and Raman scattering studies of ZnO:P and ZnO:Sb thin films,” J. Nanosci. Nanotechnol., vol. 10, no. 4, pp. 2620–2623, 2010.
[6] B. Schumm et al., “Combination of zinc oxide and antimony doped tin oxide nanocoatings for glazing application,” Coatings, vol. 8, no. 7, pp. 1–13, 2018.
[7] M. Hannas, A. Manut, N. H. A. Rahman, A. B. Rosli, and M. Rusop, “Effect of annealing temperature on electrical and optical properties of ZnO thin films prepared by sol gel method,” Proc. - RSM 2013 2013 IEEE Reg. Symp. Micro Nano Electron., no. April, pp. 227–230, 2013.
[8] A. Battal and B. Düzgün, “Structural and morphological properties of SnO2:Sb:F thin films produced by spray pyrolysis technique at various substrate temperatures,” MSUJ .of Sci., vol. 7, no. 2, pp. 673–682, 2019.
[9] A. S. Puzikov, N. V. Lyanguzov, and E. M. Kaidashev, “Pulsed laser deposition and investigation of antimony-doped ZnO films,” J. Phys. Conf. Ser., vol. 541, no. 1, pp. 1–5, 2014.
[10] L. Mai et al., “From Precursor Chemistry to Gas Sensors: Plasma-Enhanced Atomic Layer Deposition Process Engineering for Zinc Oxide Layers from a Nonpyrophoric Zinc Precursor for Gas Barrier and Sensor Applications,” Small, vol. 16, no. 22, pp. 1–12, 2020.
[11] H. P. Dang, Q. H. Luc, T. Le, and V. H. Le, “The Optimum Fabrication Condition of p-Type Antimony Tin Oxide Thin Films Prepared by DC Magnetron Sputtering,” J. Nanomater., vol. 2016, no. 11, pp. 24–30, 2016.
[12] F. Rahman, “Zinc oxide light-emitting diodes : a review,” Opt. Eng., vol. 58, no. 1, pp. 1–20, 2020.
[13] R. H. Jabbar, I. H. Hilal, and F. Y. Hammadi, “Synthesis of ZnO : Al thin films Deposited on Porous Silicon for CO Gas Sensing Synthesis of ZnO : Al thin films Deposited on Porous Silicon for CO Gas Sensing,” J. Phys. Conf. Ser., vol. 1660, no. 012040, pp. 1–8, 2020.
[14] R. H. Jabbar, I. H. Hilal, W. A. Shakir, and M. A. Abdulsattar, “Characteristics of B doped ZnO thin films deposited on n and p-type porous silicon for NH3 and CO gas sensing,” J. Adv. Pharm. Educ. Res., vol. 9, no. 4, pp. 24–28, 2019.
[15] R. H. Jabbar, I. H. Hilal, and M. A. Abdulsattar, “Synthesis of ZnO : B thin films Dropped on Porous Silicon for H 2 Gas Sensing,” Mater. Sci. Eng., vol. 928, no. 072035, pp. 1–9, 2020.
[16] A. Jesche et al., “X-Ray diffraction on large single crystals using a powder diffractometer,” Philos. Mag., Vol. 96, pp. 1-9, June 2016.
[17] N.V. Satriuk et al., “X-ray diffraction investigation of GaN layers on Si (111) (and Al2O3 (0001) substrates,” Semicond. Phys. Quantum Electron. Optoelectron., V. 16, pp. 265-272, 2013.
[18] C. Tsai et al., “Growth and characterization of textured well-faceted ZnO on planar Si(100), planar Si(111), and textured Si(100) substrates for solar cell applications,” Beilstein J. Nanotechnol., vol. 8, pp. 1939–1945, 2017.
[19] J. L. Zhao et al., “Highly (002)-oriented ZnO film grown by ultrasonic spray pyrolysis on ZnO-seeded Si (100) substrate”, J. Mater. Res., Vol. 21, No. 9, pp. 2185-2189, Sep. 2006.
[20] A. F. Saleh et al., "Structural and morphological studies of NiO thin films prepared by Rapid thermal oxidation method", International Journal of Application or Innovation in Engineering Management, Vol. 2, Issue 1, pp. 1017-1022, January 2013.
[21] V. Von. et al., “Structure and Activity of Copper/Zinc Oxide Catalysts studied using X-ray Diffraction and Absorption Spectroscopy”, PhD. Thesis, Berlin 2001.
[22] C. S. Rayana and M.G. Norton, "X-ray Diffraction A Practical Approach", Plenum Press, New York, pp. 207-221, 1998.
[23] B. D. Cullity and S. R. Stock, "Elements of X-ray Diffraction, 3rd Edition," Prentice-Hall, Upper Saddle River, NJ, Ch. 5, pages 167 and Ch. 14, pp. 385-402, 2001.
[24] M., E.J. and P. Scardi, "Diffraction Analysis of the Microstructure of Materials," Springer Series in Materials Science Vol. 68, Springer-Verlag, Berlin Heidelberg New York, 2004.
[25] L., I., P. Lamparter, J. Xu and E.J. Mittemeijer, "XRD Line Broadening Analysis with Ball Milled Palladium," Materials Science Forum 443-444, pp.119-122, 2004.
[26] J. Kaur, P. Kumar, T. S. Sathiaraj and R. Thangara, "Structural, optical and fluorescence properties of wet chemically synthesized ZnO: Pd2+ nanocrystals", Kaur et al. International Nano Letters, 3:4, 2013.
[27] S. E. Boeshore et al., "Aluminum Nitride Thin Films on Titanium: Piezoelectric Transduction on a Metal Substrate," university of California September 2006.
[28] Ronak Ali et al 2020 J. Phys.: Conf. Ser. 1530 012156.