Isospin Violations in the Pion-Nucleon System

J. Piekarewicz

Supercomputer Computations Research Institute,
Florida State University, Tallahassee, FL 32306
(March 31, 2022)

Abstract

We examine the effect of isospin-violating meson-nucleon coupling constants on low-energy pion-nucleon scattering. We compute the couplings in the context of a nonrelativistic quark model. The difference between the up and down constituent masses induces a coupling of the neutral pion to the proton that is slightly larger than the corresponding one for the neutron. This difference generates a large isospin-violating correction—proportional to the isospin-even contribution arising from the nucleon Born terms—to the charge-exchange ($\pi^- p \rightarrow \pi^0 n$) amplitude. In contrast to the isospin-conserving case, this correction is not cancelled by σ-meson exchange; in our model there is no isospin-violating $NN\sigma$ coupling at $q^2 = 0$. As a result, we find a violation of the triangle identity consistent with the one reported by Gibbs, Ai, and Kaufmann from a recent analysis of pion-nucleon data.

PACS number(s): 11.30.-j, 13.75.Gx
I. INTRODUCTION

Low energy pion-nucleon (πN) scattering is one of the best available tools for testing small violations to approximate symmetries of nature. Such violations are expected to be amplified in low-energy πN scattering because of the constraints imposed on the symmetry-conserving amplitudes by chiral symmetry. At low energies (i.e., in the soft-pion limit) the pions couple very weakly to the nucleons as a direct consequence of chiral symmetry. Thus, although the violations to the symmetry might be small, they must be considered relative to intrinsically small symmetry-conserving amplitudes.

An example of such a scenario has been reported recently by Gibbs, Ai, and Kaufmann [1]. They have analyzed low-energy pion-nucleon data in search of isospin violations. From very precise data on elastic ($\pi^\pm p$) and charge-exchange ($\pi^- p \to \pi^0 n$) reactions they have extracted πN scattering amplitudes from which they have computed violations to the “triangle identity”

$$D \equiv f(\pi^- p \to \pi^0 n) - \frac{1}{\sqrt{2}} \left[f(\pi^+ p) - f(\pi^- p) \right].$$

(1)

They observed a large isospin violation—of the order of 7%—even after accounting for Coulomb effects and hadronic mass differences. This is particularly interesting since isospin-breaking mechanisms, having their origin in the up-down quark mass difference and electromagnetic effects, are expected to be present at the $\sim 1\%$ level.

Evidence for the loss of isospin symmetry in the nucleon-nucleon (NN) system is well documented. The difference in the pp and nn scattering lengths [2], the Nolen-Schiffer anomaly [3,4], and the neutron-proton analyzing-power difference [5–7] are all well known examples. Most theoretical efforts directed at understanding isospin-violating observables in the NN system proceed from a two-body interaction constrained from fits to two-nucleon data and incorporate isospin-violating corrections from a variety of sources. These can be classified as arising from: (i) isovector-isoscalar mixing in the meson propagator—such as ρ-ω mixing, (ii) isospin-breaking in the nucleon wave function—through the neutron-proton mass difference, and (iii) isospin-breaking in the meson-nucleon and photon-nucleon vertices—as in the case of electromagnetic scattering. It is important to note that all these isospin-breaking mechanisms also operate in the pion-nucleon system. Thus, a clear understanding of their role in NN scattering could be of great value to the analysis of low-energy πN data. A particularly important—and timely—example is ρ-ω mixing. Naively, one would expect large violations to the triangle identity (also known as the “triangle discrepancy”) to arise from ρ-ω mixing because of the strong $NN\omega$ and $\pi\pi\rho$ couplings. Note, however, that in computing near-threshold πN observables it is the mixing amplitude near $q^2 = 0$ that is relevant. The traditional mechanism of ρ-ω mixing, with the mixing amplitude fixed at the on-shell point, has been called recently into question [8]. Indeed, a large number of calculations using a variety of models have found a value of the ρ-ω mixing amplitude at $q^2 = 0$ that is strongly suppressed relative to its on-shell value [9–13]. Moreover, for models in which the vector mesons couple to conserved currents, the ρ-ω mixing amplitude is identically zero at $q^2 = 0$ [9,13]. Thus, we believe that ρ-ω mixing should play a small role in low-energy pion-nucleon scattering.

Removing ρ-ω mixing as a viable source of isospin-breaking has important phenomenological consequences; on-shell ρ-ω mixing accounts for a substantial fraction of the neutron-
proton analyzing-power difference at 183 MeV \[5,14,15\]. Hence, if ρ-ω mixing is no longer important at $q^2 \lesssim 0$, additional sources of isospin violation must be found. In a recent study of hadronic structure Dmitrašinović and Pollock have computed isospin-violating corrections to the electroweak form factors of the nucleon \[16\]. Motivated by their findings we have investigated new sources of charge-symmetry violation in the NN potential which resulted from isospin-violating meson-nucleon coupling constants \[17\]. The resulting class IV contribution to the charge-symmetry-breaking NN potential is comparable in magnitude and identical in sign to the one obtained from on-shell ρ-ω mixing. We showed that this new contribution—without on-shell ρ-ω mixing—is consistent with the measured value of ΔA at 183 MeV \[18\]. It is the purpose of this paper to estimate the effect of isospin-violating meson-nucleon coupling constants on low-energy pion-nucleon scattering.

II. LOW-ENERGY PION-NUCLEON SCATTERING

We approach the study of low-energy pion-nucleon scattering in a conventional way; we include contributions arising from the (s- and u-channel) nucleon Born terms and from (t-channel) meson exchanges \[19\]. These contributions—particle-exchange poles—give a good representation of the amplitude when the poles are close to the physical region, such as in low-energy πN scattering in the chiral ($m_\pi \to 0$) limit. The linear σ-model \[20\] and Quantum Hadrodynamics (QHD-II) \[21\] are appropriate theoretical frameworks to generate these tree-level contributions. The models differ, at tree level, in the allowed t-channel exchanges and, hence, in the prediction of low-energy πN parameters. However, as we shall see, they generate the same isospin-violating contributions in our model.

The πN scattering matrix can be written in terms of two sets (one for each isospin combination) of two Lorentz invariant amplitudes (A and B) which contain all dynamical information about the reaction \[19\]

\[
\mathcal{T} = \left[A^{(+)}(s,t) + \frac{1}{2}(\bar{k} + \bar{k}')B^{(+)}(s,t) \right] - \left[A^{(-)}(s,t) + \frac{1}{2}(k + k')B^{(-)}(s,t) \right] (\mathbf{T} \cdot \mathbf{\tau}) .
\]

(2)

Note, the Lorentz invariant amplitudes are written in terms of the relevant Mandelstam variables ($t \equiv q^2$)

\[
\begin{align*}
 s &= (p + k)^2 = (p' + k')^2 , \\
 t &= (k - k')^2 = (p' - p)^2 , \\
 u &= (p - k')^2 = (p' - k)^2 ,
\end{align*}
\]

(3a)

(3b)

(3c)

where $k(k')$ and $p(p')$ are the initial(final) four-momenta of the pion and nucleon, respectively. The Mandelstam variables are related by $s + t + u = 2m_\pi^2 + 2M^2$. We have also introduced pion (\mathbf{T}) and nucleon ($\mathbf{\tau}$) isospin matrices [note, $(T_a)_{bc} \equiv -i\epsilon_{abc}$]. Isospin invariance, which is still assumed unbroken, allows for only two isospin combinations: isospin even [denoted by (\pm)] and isospin odd [denoted by (\mp)]. The connection to the reaction amplitudes is given through the following relations:

\[
\begin{align*}
 \mathcal{T}(\pi^+ p \to \pi^+ p) &= \mathcal{T}^{(+)} - \mathcal{T}^{(-)} , \\
 \mathcal{T}(\pi^- p \to \pi^- p) &= \mathcal{T}^{(+)} + \mathcal{T}^{(-)} , \\
 \mathcal{T}(\pi^- p \to \pi^0 n) &= -\sqrt{2} \mathcal{T}^{(\mp)} .
\end{align*}
\]

(4a)

(4b)

(4c)
From these, the triangle identity [see Eq. (11)] follows by inspection.

The partial-wave decomposition of the scattering amplitude is simplest if carried out after the Lorentz-invariant scattering matrix has been evaluated between on-shell spinors in the center-of-mass (CM) frame. Thus, as an operator in the spin space of the nucleon the \(\pi N \) scattering amplitude can be written as,

\[
\hat{f}(\pm) = f_1^{(\pm)}(W, \theta) + f_2^{(\pm)}(W, \theta) \frac{(\sigma \cdot k')(\sigma \cdot k)}{k^2},
\]

where the connection to the Lorentz-invariant amplitudes is given through the relations

\[
f_1^{(\pm)}(W, \theta) = \left(\frac{E_k + M}{8\pi W} \right) \left[A^{(\pm)}(s, t) + (W - M)B^{(\pm)}(s, t) \right], \quad (6a)
\]

\[
f_2^{(\pm)}(W, \theta) = \left(\frac{E_k - M}{8\pi W} \right) \left[-A^{(\pm)}(s, t) + (W + M)B^{(\pm)}(s, t) \right]. \quad (6b)
\]

Here \(\theta \) denotes the CM scattering angle and \(W = (\epsilon_k + E_k) \) is the total energy of the system in the CM frame; it is written in terms of the individual pion \((\epsilon_k) \) and nucleon \((E_k) \) contributions. Finally, by introducing the partial-wave amplitudes \(f_l^{\pm} \), appropriate for scattering in a total angular-momentum channel \(j = l \pm 1/2 \), the amplitudes \(f_1 \) and \(f_2 \) can be expanded in a partial-wave series:

\[
f_1^{(\pm)}(W, \theta) = \sum_l \left[f_{l+}^{(\pm)}(W)P_l(\cos \theta) - f_{l-}^{(\pm)}(W)P_{l-1}(\cos \theta) \right], \quad (7a)
\]

\[
f_2^{(\pm)}(W, \theta) = \sum_l \left[f_{l+}^{(\pm)}(W) - f_{l-}^{(\pm)}(W) \right]P_l(\cos \theta). \quad (7b)
\]

We compute the Lorentz invariant amplitudes \(A \) and \(B \) in the linear sigma model [19]. The connection to other models, specifically to QHD, will be done below. At tree-level, the amplitudes receive contribution from only three Feynman diagrams: the two nucleon Born terms and \(\sigma \)-meson exchange. That is,

\[
A^{(+)}(s, t) = -\frac{g_{\pi NN}^2}{M} \frac{m_\sigma^2 - m_\pi^2}{|k| \to 0} \frac{2}{M} \left(1 - \frac{m_\pi^2}{m_\sigma^2} \right), \quad (8a)
\]

\[
A^{(-)}(s, t) = 0, \quad (8b)
\]

\[
B^{(+)}(s, t) = -\frac{g_{\pi NN}^2}{s - M^2} + \frac{g_{\pi NN}^2}{u - M^2} \to \frac{g_{\pi NN}^2}{Mm_\pi} \left(1 - \frac{m_\pi^2}{4M^2} \right)^{-1}, \quad (8c)
\]

\[
B^{(-)}(s, t) = -\frac{g_{\pi NN}^2}{s - M^2} - \frac{g_{\pi NN}^2}{u - M^2} \to \frac{g_{\pi NN}^2}{2M^2} \left(1 - \frac{m_\pi^2}{4M^2} \right)^{-1}. \quad (8d)
\]

where the limit follows from evaluating the amplitudes at threshold: \(t = 0, s = (M + m_\pi)^2 \), and \(u = (M - m_\pi)^2 \). The extraction of the \(\pi N \) scattering lengths, defined by

\[
a_0^{(\pm)} = \lim_{|k| \to 0} f_1^{(\pm)} = \frac{1}{4\pi(1 + m_\pi/M)} \left[A^{(\pm)} + m_\pi B^{(\pm)} \right], \quad (9)
\]

is now straightforward. We obtain,
\[a_{0}^{(+)} = \frac{1}{4\pi(1 + m_\pi/M)} \frac{g_{NN\pi}^2}{M} \left[\left(1 - \frac{m_\pi^2}{m_\sigma^2} \right) - \left(1 - \frac{m_\pi^2}{4M^2} \right)^{-1} \right] \xrightarrow{m_\pi \to 0} 0, \quad (10a) \]

\[a_{0}^{(-)} = \frac{1}{4\pi(1 + m_\pi/M)} \frac{g_{NN\pi}^2}{M} \left(\frac{m_\pi}{2M} \right) \left(1 - \frac{m_\pi^2}{4M^2} \right)^{-1} \xrightarrow{m_\pi \to 0} 0. \quad (10b) \]

The \(\sigma \)-exchange contribution is a direct consequence of the underlying chiral symmetry of the model; it is essential for effecting the sensitive cancellation of the isospin-even scattering length. Indeed, each individual contribution to \(a_{0}^{(+)} \) is approximately two orders of magnitude larger than the experimental value. Instead, the isospin-odd scattering length vanishes in the chiral limit without the need for sensitive cancellations; in the linear \(\sigma \) model no additional t-channel exchanges are included.

A model that allows for additional t-channel exchanges is QHD-II [21]. Note, even though QHD-II is not a chiral model, a reasonable description of low-energy \(\pi N \) scattering has been achieved through a “fine tuning” of parameters [21,22]. A potentially important (t-channel) isospin-breaking contribution to \(\pi N \) scattering might come via \(\rho \)-meson exchange. Indeed, recently we have computed a large isospin violation in the \(NN\rho \) coupling constant [17]. This, combined with the large isospin-conserving \(\pi\pi\rho \) coupling, could have a substantial impact on the triangle discrepancy. However, as we shall see below, in our model all isospin violations arising from the vector-meson sector must vanish as \(q^2 \to 0 \).

III. ISOSPIN-VIOLATING MESON-NUCLEON COUPLING CONSTANTS

In this section we concentrate on isospin violations to the triangle identity which arise, exclusively, from isospin-violating meson-nucleon coupling constants. Additional isospin-breaking mechanisms, particularly those associated with Coulomb effects and hadronic mass differences, have been treated elsewhere [1]. Recently, we have estimated the effect of isospin-violating meson-nucleon coupling constants on the \(NN \) potential [17]. We have reported a large contribution from vector-meson exchange to the class IV nucleon-nucleon potential. The isospin-violating couplings that we have computed emerged from evaluating matrix elements of quark currents between nucleon states; the violations are driven by the up-down quark mass difference.

The isospin violations that we have computed arise on rather general grounds; we have assumed that the vector mesons (\(\omega \) and \(\rho \)) couple to appropriate isospin components of the quark electromagnetic current. Moreover, at \(q^2 = 0 \) our results are insensitive to the quark-momentum distribution; they depend merely on the spin and flavor structure of the nucleon wave function. As a result, some important constraints emerge at \(q^2 = 0 \). In particular, only isospin violations in the tensor (or anomalous) couplings are allowed at \(q^2 = 0 \); the vector couplings are “protected” by gauge invariance and remain unchanged. However, since all tensor-driven contributions to \(\pi N \) scattering vanish in the soft-pion limit (\(q_\mu \to 0 \)) isospin-violating vector-meson-nucleon coupling constants can not contribute to the triangle discrepancy. Moreover, there is no contribution from \(\rho-\omega \) mixing at \(q^2 = 0 \), [3,13]. Note that, contrary to the claim of Ref. [23], the momentum-dependence of the \(\rho-\omega \) mixing amplitude can not be absorbed into the vertex without violating gauge invariance. Thus, in our model, all three sources of isospin breaking in the vector-meson sector must vanish at \(q^2 = 0 \). In
our model, there is no isospin-violating $NN\sigma$ coupling either; the $NN\sigma$ vertex, which has the same nonrelativistic limit as the timelike component of the vector, is also protected at $q^2 = 0$.

However, there is no symmetry that protects the $NN\pi$ coupling at $q^2 = 0$. We are interested in computing the coupling of the neutral pion to the nucleon in a nonrelativistic quark model. At $q^2 = 0$ the coupling is determined from the spin and flavor content of the nucleon wave function. In contrast, the isospin-violating coupling of the nucleon to the charged pions is sensitive to the quark momentum distribution and, therefore, more uncertain [4]. It seems, however, that under reasonable assumptions the quark model is able to generate isospin-violating ($NN\pi^\pm$) couplings of comparable strength as those obtained in conventional hadronic treatments based on the neutron-proton mass difference. Presumably, these effects have been included in Ref. [1].

The most general form for the on-shell $NN\pi^0$ vertex function consistent with Lorentz covariance and parity invariance is given by

$$g_{NN\pi}\Lambda_{NN\pi}^5 = g_{NN\pi}\left[g_\pi\gamma^5\right].$$

Here $g_{NN\pi}$ is the isospin-conserving $NN\pi$ coupling constant known phenomenologically from fits to NN phase shifts and to the properties of the deuteron: $g_{NN\pi}^2/4\pi = 14.21$ [24,25]. The isospin-violating component is assumed to emerge from evaluating matrix elements of a flavor odd, pseudoscalar quark current between nucleon states, i.e.,

$$\langle N(p',s') | \left[\frac{1}{5} \bar{u}\gamma^5 u - \frac{1}{5} \bar{d}\gamma^5 d \right] | N(p,s) \rangle = \bar{U}(p',s')\Lambda_{NN\pi}^5 U(p,s).$$

Here $U(p,s)$ denotes an on-shell nucleon spinor of mass M_N, momentum p and spin s. Moreover, the constituent quarks are assumed elementary as no quark form factors are introduced. The coupling constants are computed at $q^2 = 0$ by examining the nonrelativistic reduction of Eq. (12); this is the essence of the quark-pion model of Mitra and Ross [26]. In particular, in this limit the derivation closely resembles that which is used in computing the nucleon magnetic moments [27]. We obtain,

$$\frac{g_p^\pi}{2M_p} = \frac{4}{3} \left(\frac{+1/5}{2m_u} \right) - \frac{1}{3} \left(\frac{-1/5}{2m_d} \right) = \frac{4}{30m_u} + \frac{1}{30m_d},$$

$$\frac{g_n^\pi}{2M_n} = \frac{4}{3} \left(\frac{-1/5}{2m_d} \right) - \frac{1}{3} \left(\frac{+1/5}{2m_u} \right) = -\frac{4}{30m_d} - \frac{1}{30m_u},$$

where m_u and m_d are the up and down constituent quark masses. Alternatively, one can construct nucleon isoscalar and isovector combinations:

$$\frac{g_p^\pi}{2M_p} \frac{1}{2}(1 + \tau_z) + \frac{g_n^\pi}{2M_n} \frac{1}{2}(1 - \tau_z) = \frac{1}{6m} \left(\frac{3 \Delta m}{10m} + \tau_z \right) \equiv \frac{1}{2M} \left(g_0 + g_1^\pi \tau_z \right).$$

Note that we have introduced the following definitions:

$$M \equiv \frac{1}{2}(M_n + M_p) ; \quad m \equiv \frac{1}{2}(m_d + m_u) ; \quad \Delta m \equiv (m_d - m_u).$$
The above relations are correct to leading order in $\Delta m/m$. Moreover, they reveal an isospin-violating component (g_0^π) in the $NN\pi^0$ coupling constant. In particular, by selecting $m = M/3 = 313$ MeV and $\Delta m = 4.1$ MeV [28] we obtain:

$$g_0^\pi = \frac{3}{10} \frac{\Delta m}{m} \approx 0.004.$$ \hfill (16)

Ultimately, this isospin-violation can be traced back to the up-down quark mass difference; the up quark, which is lighter, generates a stronger coupling of the neutral pion to the proton than to the neutron. Note that the isospin breaking computed in the quark model is substantially larger—by about a factor of six—than in the nucleon model of Ref. [29] where the scale of the breaking is set by the neutron-proton mass difference. In contrast, for the coupling of the nucleon to charged pions both models seem to generate an isospin violation of comparable strength [4].

Incorporating the isospin-violating correction from g_0^π into the evaluation of the triangle discrepancy is straightforward. First, the elastic $\pi^\pm p$ amplitudes remain unchanged. Second, it modifies the charge-exchange (CEX) amplitude $f(\pi^- p \rightarrow \pi^0 n)$ through a simple renormalization of the nucleon Born terms; the s-channel, which has a neutron in the intermediate state, gets reduced relative to the u-channel, which contains a proton in the intermediate state. Thus, in computing the charge-exchange amplitude one must use an isospin-odd contribution given by [see Eq. (8d)]:

$$\tilde{B}^{(-)}(s, t) \equiv -\frac{g_{NN\pi}^2 (1 - g_0^\pi)}{s - M^2} - \frac{g_{NN\pi}^2 (1 + g_0^\pi)}{u - M^2} = B^{(-)}(s, t) - g_0^\pi B^{(+)}(s, t).$$ \hfill (17)

Note that the “small” isospin-odd contribution $B^{(-)}$ is being corrected by the “large” isospin-even term $B^{(+)}$. Indeed, at threshold $|B^{(+)} / B^{(-)}| = 2M/m_\pi \approx 14$. Now, however, there is no cancellation due to chiral symmetry; there is no isospin-violating $NN\sigma$ coupling at $q^2 = 0$. Using the above expression for $\tilde{B}^{(-)}$ we compute the value of the triangle discrepancy at threshold. We obtain,

$$D = -\sqrt{2} \frac{g_{NN\pi}^2 g_0^\pi}{4\pi M} \frac{1}{(1 + m_\pi /M)(1 - m_\pi^2 /4M^2)} \xrightarrow{m_\pi \rightarrow 0} -\sqrt{2} \frac{g_{NN\pi}^2 g_0^\pi}{4\pi M}. \quad (18)$$

This generates an isospin violation to the triangle identity of $D = -0.0145$ fm. The s-wave contribution to the triangle discrepancy shows a very weak energy dependence. Indeed, its contribution at $T_{lab} = 40$ MeV is $D = -0.014$ fm; we obtain a much smaller effect from the p-waves: 1.3×10^{-4} fm and -2.0×10^{-4} fm for the 1^+ and 1^- partial waves, respectively. This result is in good agreement with the value reported recently by Gibbs, Ai, and Kaufmann of $D = -0.012 \pm 0.003$ fm from the s-wave alone or $D = -0.011 \pm 0.003$ fm for the sum of s and p waves at 40 MeV [1].

IV. CONCLUSIONS

We have examined violations to the triangle identity that arise from isospin-violating meson-nucleon coupling constants. In our model, gauge invariance precludes the contribution from vector-meson exchanges at $q^2 = 0$; these include ρ-ω mixing as well as isospin-violating
$NN\omega$ and $NN\rho$ coupling constants. There is no symmetry, however, that protects the $NN\pi^0$ coupling at threshold. We have computed isospin violations in the $NN\pi^0$ coupling using a nonrelativistic quark model. We have obtained a larger coupling of the neutral pion to the proton than to the neutron as a result of the up quark being lighter than the down quark. The observed isospin violation is about a factor of six larger than the one computed in nucleon models where the breaking is generated by the neutron-proton mass difference. These results were used to modify the relative weights of the s- and u-channel contributions to the charge-exchange reaction $\pi^-p \to \pi^0n$.

The isospin violation in the CEX amplitude became proportional to the large isospin-even amplitude $B^{(+)}$; this amplitude does not vanish in the chiral limit. In chiral models, such as the linear σ model used here, the large contribution from $B^{(+)}$ to the isospin-even scattering length is cancelled by an almost equally large and opposite contribution $[A^{(+)}]$ arising from σ-meson exchange. However, in our model all isospin violations in the $NN\sigma$ coupling must vanish at $q^2 = 0$. As a result, we obtained a large violation to the triangle identity: $D = -0.014$ fm. This value is in good agreement to the one reported from a recent analysis of high-quality πN data which yielded $D = -0.012 \pm 0.003$ fm [1].

A particularly interesting test of this mechanism could be a comparison of the “mirror” reactions $\pi^-p \to \pi^0n$ and $\pi^+n \to \pi^0p$ [1]. For the first case, namely, the one treated here, it was the s-channel that was suppressed relative to the u-channel. In contrast, it is the s-channel—now with a proton in the intermediate state—that becomes enhanced in the $\pi^+n \to \pi^0p$ reaction. One could quantify this isospin violation by measuring the difference of these two amplitudes, i.e.,

$$\widetilde{D} \equiv f(\pi^-p \to \pi^0n) - f(\pi^+n \to \pi^0p).$$

Note that the difference between the $pp\pi^0$ and $nn\pi^0$ coupling constants, alone, gives $\widetilde{D} = 2D \approx -0.029$ fm. This value should be compared to a charge-exchange scattering length of $a_0 = -0.19$ fm—it represents an isospin violation of 15%.

Undoubtedly, much work remains to be done before a clear understanding of the underlying mechanism behind the large isospin violation reported in Ref. [1] will emerge. Yet, we believe that isospin violations in the $NN\pi^0$ coupling constant are likely to play an important role in the final analysis.

ACKNOWLEDGMENTS

I thank S. Gardner, C.J. Horowitz, and B.D. Serot for many helpful conversations. This work was supported by the DOE under Contracts Nos. DE-FC05-85ER250000 and DE-FG05-92ER40750.
REFERENCES

[1] W.R. Gibbs, Li Ai, and W.B. Kaufmann, Phys. Rev. Lett. 74, 3740 (1995).
[2] I. Šlaus, Y. Akaishi, and H. Tanaka, Phys. Rep. 173, 257 (1989).
[3] J.A. Nolen and J.P. Schiffer, Ann. Rev. Nucl. Sci. 19, 471 (1969).
[4] G.A. Miller, B.M.K. Nefkens, and I. Šlaus, Phys. Rep. 194, 1 (1990).
[5] L.D. Knutson et al., Nucl. Phys. A508, 185c (1990); Phys. Rev. Lett. 66, 1410 (1991);
S.E. Vigdor et al., Phys. Rev. C 46, 410 (1992).
[6] R. Abegg et al., Phys. Rev. Lett. 56, 2571 (1986); Phys. Rev. D39, 2464 (1989).
[7] R. Abegg et al., TRIUMF preprint TRI-PP-94-96.
[8] T. Goldman, J.A. Henderson, and A.W. Thomas, Few-Body Systems 12, 123 (1992); Mod. Phys. Lett. A7, 3037 (1992).
[9] J. Piekarewicz and A.G. Williams, Phys. Rev. C 47, R2462 (1993).
[10] T. Hatsuda, E.M. Henley, T. Meissner, and G. Krein, Phys. Rev. C 49, 452 (1994).
[11] G. Krein, A.W. Thomas, and A.G. Williams, Phys. Lett. B 317, 293 (1993).
[12] K.L. Mitchell, P.C. Tandy, C.D. Roberts, and R.T. Cahill, Phys. Lett. B 335, 282 (1994).
[13] H.B. O’Connell, B.C. Pearce, A.W. Thomas, and A.G. Williams, Phys. Lett. B 336, 1 (1994).
[14] G.A. Miller, A.W. Thomas, and A.G. Williams, Phys. Rev. Lett. 56, 2567 (1986).
[15] A.G. Williams, A.W. Thomas, and G.A. Miller, Phys. Rev. C 36, 156 (1987).
[16] V. Dmitrašinović and S.J. Pollock, U. of Colorado preprint UC/NPL-116 and hep-ph/9504414.
[17] S. Gardner, C.J. Horowitz, and J. Piekarewicz, Florida State University preprint FSU-SCRI-95-37 and nucl-th/9505001.
[18] S. Gardener, C.J. Horowitz, and J. Piekarewicz, in preparation.
[19] D.K. Campbell, Nuclear Physics with Heavy Ions and Mesons, Vol 2., Course 7, R. Balian, M. Rho, and G. Ripka, eds. (North-Holland, Amsterdam 1978).
[20] M. Gell-Mann and M. Lévy, Nuovo Cimento 16, 705 (1960).
[21] B.D. Serot and J.D. Walecka, Adv. in Nucl. Phys. 16, J.W. Negele and E. Vogt, eds. (Plenum, N.Y. 1986).
[22] T. Matsui and B.D. Serot, Ann. Phys. (N.Y.) 144, 107 (1982).
[23] Thomas D. Cohen and Gerald A. Miller, nucl-th/9506023.
[24] R. Machleidt, K. Holinde, and Ch. Elster, Phys. Rep. 149, 1 (1987).
[25] R. Machleidt, in Advances in Nuclear Physics, v. 19, eds. J.W. Negele and E. Vogt (Plenum, New York, 1989).
[26] A.N. Mitra and M. Ross, Phys. Rev. 158, 1630 (1967).
[27] Donald H. Perkins, Introduction to High Energy Physics, Addison Wesley (London), 1982.
[28] D. B. Lichtenberg, Phys. Rev. D 40, 3675 (1989).
[29] C.-Y. Cheung, E.M. Henley, and G.A. Miller, Nucl. Phys. A348, 365 (1980).