The dynamical additivity and the strong dynamical additivity of quantum operations

Lin Zhang and Junde Wu

Department of Mathematics, Zhejiang University, Hangzhou, People’s Republic of China
E-mail: linyz@zju.edu.cn and wjd@zju.edu.cn

Received 12 April 2011, in final form 29 June 2011
Published 20 July 2011
Online at stacks.iop.org/JPhysA/44/325306

Abstract
In this paper, firstly, by using the methods of entropy-preserving extensions of quantum states, the dynamical additivity of bi-stochastic quantum operations is characterized. Next, we show that if quantum operations are local operations and have some orthogonality, then the strong dynamical additivity is true, too.

PACS numbers: 02.10.Ud, 03.67.−a, 03.65.Yz

1. Introduction
In this paper, we always assume that \mathcal{H} is an N-dimensional complex Hilbert space. Let $\mathbf{L}(\mathcal{H})$ be the set of all linear operators from \mathcal{H} to \mathcal{H}. A state ρ of some quantum system, described by \mathcal{H}, is a positive semi-definite operator of trace one, in particular, for each unit vector $|\psi\rangle \in \mathcal{H}$, the operator $\rho = |\psi\rangle \langle \psi|$ is said to be a pure state. The set of all states on \mathcal{H} is denoted by $D(\mathcal{H})$. If X, Y $\in \mathbf{L}(\mathcal{H})$, then $\langle X, Y \rangle = \text{Tr}(X^\dagger Y)$ defines an inner product on $\mathbf{L}(\mathcal{H})$, which is called the Hilbert–Schmidt inner product. The following fact is often used.

Let $S, T \in \mathbf{L}(\mathcal{H} \otimes \mathcal{H})$ be two positive semi-definite operators. Denote $S_1 = \text{Tr}_2(S)$, $T_1 = \text{Tr}_2(T)$, $S_2 = \text{Tr}_1(S)$ and $T_2 = \text{Tr}_1(T)$. Then $S_1, T_1, S_2, T_2 \in \mathbf{L}(\mathcal{H})$ are all positive semi-definite operators. If $S_1T_1 = S_2T_2 = 0$, then S and T are said to be bi-orthogonal (see [7]).

Let $\{ |i\rangle \}$ be the standard basis of \mathcal{H}. For each $P = \sum_{i,j} p_{ij} |i\rangle \langle j| \in \mathbf{L}(\mathcal{H})$, if we denote $\text{vec}(P) = \sum_{i,j} p_{ij} |ij\rangle$, then we can define a linear map vec from $\mathbf{L}(\mathcal{H})$ to $\mathcal{H} \otimes \mathcal{H}$. Moreover, if \mathcal{H}_A and \mathcal{H}_B are two Hilbert spaces and $\{ |m\rangle \}$ and $\{ |\mu\rangle \}$ are their standard bases, respectively, then we can also define a map vec that describes a change of the standard basis from $\mathbf{L}(\mathcal{H}_A \otimes \mathcal{H}_B)$ to $\mathcal{H}_A \otimes \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_B$, that is, $\text{vec}(|m\rangle \langle n| \otimes |\mu\rangle \langle \nu|) = |mn\rangle \otimes |\mu\nu\rangle$. Moreover, if $X \in \mathbf{L}(\mathcal{H}_A)$ and $Z \in \mathbf{L}(\mathcal{H}_B)$, then $\text{vec}(X \otimes Z) = \text{vec}(X) \otimes \text{vec}(Z)$ (see [14]).

1 Author to whom any correspondence should be addressed.
Let $T(\mathcal{H})$ denote the set of all *linear super-operators* from $L(\mathcal{H})$ to $L(\mathcal{H})$. For each $\Phi \in T(\mathcal{H})$, it follows from the Hilbert–Schmidt inner product of $L(\mathcal{H})$ that there is a linear super-operator $\Phi^\dagger \in T(\mathcal{H})$ such that $\langle \Phi(X), Y \rangle = \langle X, \Phi^\dagger(Y) \rangle$ for any $X, Y \in L(\mathcal{H})$. Φ^\dagger is said to be the *dual super-operator* of Φ.

We say that $\Phi \in T(\mathcal{H})$ is *completely positive* (CP) if for each $k \in \mathbb{N}$, $\Phi \otimes \mathbb{1}_{M_k(\mathbb{C})} : L(\mathcal{H}) \otimes M_k(\mathbb{C}) \to L(\mathcal{H}) \otimes M_k(\mathbb{C})$ is positive, where $M_k(\mathbb{C})$ is the set of all $k \times k$ complex matrices. It follows from the famous theorems of Choi [2] and Kraus [9] that Φ can be represented in the following form: $\Phi = \sum_j \text{Ad}_{M_j}$, where $\{M_j\}_{j=1}^n \subseteq L(\mathcal{H})$, that is, $\Phi(X) = \sum_{j=1}^n M_j X M_j^\dagger$, $X \in L(\mathcal{H})$. Throughout this paper, \dagger means the adjoint operation of an operator. Moreover, if $\{M_j\}_{j=1}^n$ is pairwise orthogonal, then $\Phi = \sum_j \text{Ad}_{M_j}$ is said to be a canonical representation of Φ. In [2, 8], it was proved that each quantum operation has a canonical representation.

The so-called *quantum operation* of \mathcal{H} is just a trace non-increasing CP map: $\Phi \in T(\mathcal{H})$; moreover, if Φ is CP and trace-preserving, then it is called *stochastic*; if Φ is stochastic and unit-preserving, then it is called *bi-stochastic*.

The famous *Jamiołkowski isomorphism* $J : T(\mathcal{H}) \rightarrow L(\mathcal{H} \otimes \mathcal{H})$ transforms each $\Phi \in T(\mathcal{H})$ into an operator $J(\Phi) \in L(\mathcal{H} \otimes \mathcal{H})$, where $J(\Phi) = \Phi \otimes \mathbb{1}_{\mathcal{H} \otimes \mathcal{H}}(\text{vec}(\mathbb{1}_{\mathcal{H}}) \text{vec}(\mathbb{1}_{\mathcal{H}})')$. If $\Phi \in T(\mathcal{H})$ is CP, then $J(\Phi)$ is a positive semi-definite operator; in particular, if Φ is stochastic, then $\frac{1}{n} J(\Phi)$ is a state on $\mathcal{H} \otimes \mathcal{H}$, we denote the state by $\rho(\Phi)$ (see [1]).

The information encoded in a quantum state $\rho \in D(\mathcal{H})$ is quantified by its *von Neumann entropy* $S(\rho) = -\text{Tr}(\rho \log_2 \rho)$. If $\Phi \in T(\mathcal{H})$ is a stochastic quantum operation, then we denote the von Neumann entropy $S(\rho(\Phi))$ of $\rho(\Phi)$ by $S(\Phi)$ and call it the *map entropy*; $S(\Phi)$ describes the decoherence induced by the quantum operation Φ.

Let Φ, Λ and Ψ be three stochastic quantum operations of \mathcal{H}. Studying the behavior of map entropy of composition of stochastic quantum operations is an important and interesting problem. In [12], Roga et al showed that if Φ is bi-stochastic, then one has the *dynamical subadditivity*:

$$S(\Phi \circ \Psi) \leq S(\Phi) + S(\Psi).$$

Moreover, if Φ, Λ and Ψ are all bi-stochastic, then the *strong dynamical subadditivity* holds:

$$S(\Phi \circ \Lambda \circ \Psi) + S(\Lambda) \leq S(\Phi \circ \Lambda) + S(\Lambda \circ \Psi).$$

In [6], the main results described the structure of states that saturate the inequality of strong subadditivity of quantum entropy. Now, we study the saturation problems of the dynamical subadditivity and the strong dynamical subadditivity. Firstly, by using the methods of entropy-preserving extensions of quantum states, a nice characterization of dynamical additivity of bi-stochastic quantum operations is obtained. Next, we show that if Φ, Λ and Ψ are some special local operations [3, 4] and have some orthogonality, then the strong dynamical additivity is true, too.

2. Entropy-preserving extensions of quantum states and the dynamical additivity

The technique of quantum state extension without changing entropy is a very important and useful tool. It is employed by Datta to construct an example which shows equivalence of the positivity of quantum discord and strong subadditivity for quantum-mechanical systems. Based on this fact, Datta obtained that zero discord states are precisely those states which satisfy the strong additivity for quantum-mechanical systems. For the details, refer to [5]. In what follows, we will use it to give a characterization of dynamical additivity of map entropy.
For each state ρ on \mathcal{H}, we preserve entropy and extend ρ to a state on $\mathcal{H} \otimes \mathcal{H}$, that is, if $\{|i\rangle\}$ is a basis of \mathcal{H} and $\rho = \sum_{i,j=1}^{N} \rho_{i,j} |i\rangle \langle j|$, then $\tilde{\rho} = \sum_{i,j=1}^{N} \rho_{i,j} (|i\rangle \langle j| \otimes |i\rangle \langle j|)$ is a state on $\mathcal{H} \otimes \mathcal{H}$, and $S(\tilde{\rho}) = S(\rho)$.

In fact, by the spectral decomposition theorem, $\rho = \sum \lambda_k |x_k\rangle \langle x_k|$, where $\lambda_k \geq 0$ and $\{|x_k\rangle\}$ is an orthonormal set of \mathcal{H}. This implies that $\rho_{i,j} = \langle i|\rho|j\rangle = \sum_k \lambda_k \langle i|x_k\rangle \langle x_k|j\rangle = \sum_k \lambda_k x^{(i)}_k x^{(j)}_k$. Note that $\{|x_k\rangle\}$ is an orthonormal set of \mathcal{H}, so $\sum_{i=1}^{N} x^{(i)}_k x^{(j)}_k = \delta_{km}$. Now, $$\tilde{\rho} = \sum_{i,j=1}^{N} \left(\sum_k \lambda_k x^{(i)}_k x^{(j)}_k \right) |i\rangle \langle j| \otimes |i\rangle \langle j| = \sum_k \lambda_k \left(\sum_{i,j=1}^{N} x^{(i)}_k x^{(j)}_k |i\rangle \langle j| \otimes |i\rangle \langle j| \right)$$ $$= \sum_k \lambda_k \left(\sum_{i=1}^{N} x^{(i)}_k |i\rangle \langle i| \right) \left(\sum_{i=1}^{N} x^{(i)}_k |i\rangle \langle i| \right) = \sum_k \lambda_k \operatorname{vec}(X_k) \operatorname{vec}(X_k)^\dagger,$$

where $\operatorname{vec}(X_k) = \sum_{i=1}^{N} x^{(i)}_k |i\rangle$ is a basis $\mathcal{H} \otimes \mathcal{H}$. Moreover, it is easy to show that $\operatorname{vec}(X_k)^\dagger \operatorname{vec}(X_k) = \delta_{km}$; thus, $\tilde{\rho}$ is a state on $\mathcal{H} \otimes \mathcal{H}$. That $S(\tilde{\rho}) = S(\rho)$ is clear.

Let $\Lambda \in \mathcal{T}(\mathcal{H})$ be stochastic. If Λ has two Kraus representations $\Lambda = \sum_{\mu=1}^{d_1} A_{\mu} \rho_{\mu}$ and $\rho \in \mathcal{D}(\mathcal{H})$, take two Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 such that $\dim \mathcal{H}_1 = d_1$, $\dim \mathcal{H}_2 = d_2$; $\{|m\rangle\}$ and $\{|\mu\rangle\}$ are the bases of \mathcal{H}_1 and \mathcal{H}_2, respectively. Define $$\gamma_1(\Lambda) = \sum_{m,n=1}^{d_1} \operatorname{Tr}(S_m \rho S_n^\dagger) |m\rangle \langle n|, \quad \gamma_2(\Lambda) = \sum_{\mu,\nu=1}^{d_2} \operatorname{Tr}(T_\mu \rho T_\nu^\dagger) |\mu\rangle \langle \nu|,$$ then γ_1 and γ_2 are the states on \mathcal{H}_1 and \mathcal{H}_2, respectively, and $S(\gamma_1(\Lambda)) = S(\gamma_2(\Lambda))$.

In fact, without loss of generality, we may assume that $d_1 = d_2 = d$. Then there exists a $d \times d$ unitary matrix $U = [u_{m\mu}]$ such that for each $1 \leq m \leq d$, $S_m = \sum_{\mu=1}^{d} u_{m\mu} T_\mu$. Thus,

$$\sum_{m,n=1}^{d} \operatorname{Tr}(S_m \rho S_n^\dagger) |m\rangle \langle n| = \sum_{m,n=1}^{d} \operatorname{Tr} \left(\left(\sum_{\mu=1}^{d} u_{m\mu} T_\mu \right) \rho \left(\sum_{\mu=1}^{d} u_{n\mu} T_\mu \right)^\dagger \right) |m\rangle \langle n| = U \left[\sum_{\mu,\nu=1}^{d} \operatorname{Tr}(T_\mu \rho T_\nu^\dagger) |\mu\rangle \langle \nu| \right] U^\dagger.$$

Let $V : \mathcal{H}_1 \longrightarrow \mathcal{H}_2$ be a unitary operator such that $V |m\rangle = |\mu\rangle$. Then $$\sum_{m,n=1}^{d} \operatorname{Tr}(S_m \rho S_n^\dagger) |m\rangle \langle n| = UV \left[\sum_{\mu,\nu=1}^{d} \operatorname{Tr}(T_\mu \rho T_\nu^\dagger) |\mu\rangle \langle \nu| \right] V^\dagger U^\dagger,$$

which implies that γ_1 and γ_2 are unitary equivalent and thus the conclusion follows (see [11]).

For each stochastic $\Lambda \in \mathcal{T}(\mathcal{H})$ and $\rho \in \mathcal{D}(\mathcal{H})$, we denote $S(\rho; \Lambda)$ by $S(\gamma(\Lambda))$; it follows from the above discussion that $S(\rho; \Lambda)$ is well defined [10]. Moreover, it is easy to see that if $\rho = \frac{1}{d} \mathbb{I}$, then $S(\rho; \Lambda) = S(\Lambda)$ (see [12]).

It follows from above that if Φ and $\Psi \in \mathcal{T}(\mathcal{H})$ are two bi-stochastic quantum operations, then $\Phi = \sum_{n=1}^{N^2} Ad_{S_n}$ and $\Psi = \sum_{n=1}^{N^2} Ad_{T_n}$ are their canonical representations, respectively. Taking an N^2-dimensional complex Hilbert space \mathcal{H}_0, for each $\rho \in \mathcal{D}(\mathcal{H})$, we define $$\gamma(\Phi \circ \Psi) = \sum_{m,n,\mu,\nu=1}^{N^2} \operatorname{Tr}(S_m T_{\mu} \rho (S_n T_{\nu}^\dagger) |m\mu\rangle \langle n\nu|,$$

then $\gamma(\Phi \circ \Psi)$ is a state on $\mathcal{H}_0 \otimes \mathcal{H}_0$, and $\rho = \frac{1}{N^2} \mathbb{I}$ and $S(\gamma(\Phi \circ \Psi)) = S(\Phi \circ \Psi)$, that is, $S(\rho, \Phi \circ \Psi) = S(\Phi \circ \Psi)$.

Our main result in this section is as follows.

Theorem 2.1. Let $\Phi, \Psi \in T(\mathcal{H})$ be two bi-stochastic quantum operations, and $\Phi(\rho) = \sum_{m=1}^{N^2} Ad_{S_m}$ and $\Psi(\rho) = \sum_{\mu=1}^{N^2} Ad_{T_\mu}$ be their canonical representations, respectively. Then $S(\Phi \circ \Psi) = S(\Phi) + S(\Psi)$ if and only if $\text{Tr}(S_m T_\mu (S_n T_\nu)^\dagger) = \frac{1}{N} \text{Tr}(S^\dagger_m S^n_n) \text{Tr}(T^\dagger_\mu T^n_\nu)$, i.e. $(S_n T_\nu, S_m T_\mu) = \frac{1}{N} (S_n, S_m) (T_\nu, T_\mu)$ for all $m, n, \mu, \nu = 1, \ldots, N^2$.

Proof. The Jamiołkowski isomorphisms of Φ and Ψ are $J(\Phi) = \sum_{m=1}^{N^2} \text{vec}(S_m) \text{vec}(S^\dagger_m)$ and $J(\Psi) = \sum_{\mu=1}^{N^2} \text{vec}(T_\mu) \text{vec}(T^\dagger_\mu)$, respectively, where $\langle \text{vec}(S_m), \text{vec}(S_n) \rangle = s_m \delta_{mn}$ and $\langle \text{vec}(T_\mu), \text{vec}(T_\nu) \rangle = t_\mu \delta_{\mu\nu}$. For each $\rho \in D(\mathcal{H})$, let

$$
\gamma(\Phi \circ \Psi) = \sum_{m,n,\mu,\nu=1}^{N^2} \text{Tr}(S_m T_\mu \rho (S_n T_\nu)^\dagger) |m\mu\rangle \langle n\nu|,
$$

$$
\gamma(\Phi) = \sum_{m,n=1}^{N^2} \text{Tr}(S_m \rho (S_n)^\dagger) |m\rangle \langle n| \otimes |\mu\rangle \langle \nu|,
$$

Then we have

$$
\gamma(\Psi) = \sum_{\mu,\nu=1}^{N^2} \text{Tr}(T_\mu \rho T_\nu^\dagger) |\mu\rangle \langle \nu| = \text{Tr}_1(\gamma(\Phi \circ \Psi)),
$$

$$
\gamma(\Phi) = \sum_{m,n=1}^{N^2} \text{Tr}(S^\dagger_m \rho S^n_n) |m\rangle \langle n| = \text{Tr}_2(\gamma(\Phi \circ \Psi)).
$$

Note that when $\rho = \frac{1}{N} \mathbb{1}$, $S(\gamma(\Phi \circ \Psi)) = S(\Phi \circ \Psi), S(\gamma(\Psi)) = S(\Psi)$ and $S(\gamma(\Phi)) = S(\Phi)$. Thus, we have

$$
S(\Phi \circ \Psi) = S(\Phi) + S(\Psi) \iff S(\gamma(\Phi)) + S(\gamma(\Psi)) = S(\gamma(\Phi \circ \Psi))
$$

$$
\iff \gamma(\Phi \circ \Psi) = \gamma(\Phi) \otimes \gamma(\Psi)
$$

$$
\iff \text{Tr}(S_m T_\mu (S_n T_\nu)^\dagger) = \frac{1}{N} \text{Tr}(S^\dagger_m S^n_n) \text{Tr}(T^\dagger_\mu T^n_\nu)
$$

$$
= \frac{s_m t_\mu}{N} \delta_{mn} \delta_{\mu\nu}(\forall m, n, \mu, \nu = 1, \ldots, N^2).
$$

3. Bi-orthogonal decomposition and strong dynamical additivity

In order to study the strong dynamical additivity, we need the following bi-orthogonality and bi-orthogonal decomposition of quantum operations.

Let $\Phi, \Psi \in T(\mathcal{H})$ be CP maps. If their Jamiołkowski isomorphisms $J(\Phi)$ and $J(\Psi)$ are bi-orthogonal, then Φ and Ψ are said to be bi-orthogonal. If $J(\Phi)$ can be represented as a sum $\sum_k D_k$ of a pairwise bi-orthogonal positive semi-definite operator D_k, then we say that Φ has a bi-orthogonal decomposition.

If $\Phi = \sum_\mu Ad_{M_\mu}, \Psi = \sum_\nu Ad_{N_\nu}$, then Φ and Ψ are bi-orthogonal if and only if $M^\dagger_\mu N_\nu = 0$ and $M_\mu N^\dagger_\nu = 0$ for all μ and ν if and only if $\Phi \circ \Psi^\dagger = 0$ and $\Phi^\dagger \circ \Psi = 0$ if and only if $\Phi \circ \Phi^\dagger = 0$ and $\Psi^\dagger \circ \Phi = 0$. 4
In fact, note that \(J(\Phi) = \sum_{\mu} \text{vec}(M_{\mu})\text{vec}(M_{\mu})^\dagger \) and \(J(\Psi) = \sum_{\nu} \text{vec}(N_{\nu})\text{vec}(N_{\nu})^\dagger \); it follows from \(\text{Tr}_2(J(\Phi))\text{Tr}_2(J(\Psi)) = \sum_{\mu,\nu} M_{\mu}\text{vec}(N_{\nu})^* = 0 \), \(\text{Tr}_1(J(\Phi))\text{Tr}_1(J(\Psi)) = \sum_{\mu,\nu} M_{\mu}\text{vec}(N_{\nu})^* = 0 \) that both \(J(\Phi) \) and \(J(\Psi) \) are bi-orthogonal if and only if \(M_{\mu}|_{\Phi_{1n}} = 0 \) and \(M_{\mu}|_{\Phi_{2n}} = 0 \) for all \(\mu \) and \(\nu \) if and only if \(M_{\mu}|_{\nu} = 0 \) and \(M_{\nu}|_{\mu} = 0 \) for all \(\mu \) and \(\nu \).

Moreover, if \(J(\Phi) \) can be represented as a sum \(\sum_{k} D_k \) of pairwise bi-orthogonal positive semi-definite operators, now, we can decompose each \(D_k \) by the spectral decomposition theorem as

\[
D_k = \sum_{i} d_k^{(i)} \text{vec}(\vec{M}_k^{(i)})\text{vec}(\vec{M}_k^{(i)})^\dagger = \sum_{i} \text{vec}(M_i^{(k)}\text{vec}(M_i^{(k)})^\dagger),
\]

where \(M_i^{(k)} \in \mathcal{L} \left(\mathcal{H} \right) \), \(\text{vec}(M_i^{(k)}) = \sqrt{d_k^{(i)}} \text{vec}(\vec{M}_k^{(i)}) \) and \(M_i^{(k)} = \vec{M}_k^{(i)} \delta_{ij} \), then \(\Phi_k = \sum_{i} \text{vec}(M_i^{(k)}) \) is obtained from \(J(\Phi_k) = D_k \). Since \(\text{Tr}_2D_k = \sum_{i} M_i^{(k)}M_i^{(k)}^\dagger \) and \(\text{Tr}_1D_k = \sum_{i} [M_i^{(k)}M_i^{(k)}]^\dagger \), it follows form the bi-orthogonality of \(\{D_k\} \) that \(M_i^{(k)}M_j^{(k)} = 0 \) and \(M_j^{(k)}M_i^{(k)} = 0 \) for any \(i \neq j \) and all sub-indices \(i, j \). This implies that \(\Phi_m \circ \Phi_n = 0 \) and \(\Phi_m \circ \Phi_n = 0 \) if \(m \neq n \).

Hence, \(\Phi \) has a bi-orthogonal decomposition if and only if \(\Phi = \sum_{k} \Phi_k \), where \(\{\Phi_k\} \) is a collection of CP maps in \(\mathcal{T} \left(\mathcal{H} \right) \) and \(\Phi_m \circ \Phi_k = 0 \) and \(\Phi_m \circ \Phi_n = 0 \) for all \(m \neq n \).

It follows from above and by proposition 1 in [13] that

(i) Let \(\Phi_i, \Psi \in \mathcal{T} \left(\mathcal{H} \right) \) be all CP maps, \(i = 1, 2 \), and \(\Phi_1 \) and \(\Phi_2 \), and \(\Psi_1 \) and \(\Psi_2 \) be bi-orthogonal. Then for any CP map \(\Lambda \in \mathcal{T} \left(\mathcal{H} \right) \), \(\Phi_1 \circ \Lambda \circ \Psi_1 \) and \(\Phi_2 \circ \Lambda \circ \Psi_2 \) are also bi-orthogonal.

(ii) If \(\Phi, \Psi \in \mathcal{T} \left(\mathcal{H} \right) \) are CP and bi-orthogonal, then for any positive semi-definite operators \(X, Y \in \mathcal{L} \left(\mathcal{H} \right) \), \(\Phi(X) \) and \(\Psi(Y) \) are orthogonal.

Our main result in this section is as follows.

Theorem 3.1. Assume that \(\Phi, \Lambda, \Psi \in \mathcal{T} \left(\mathcal{H} \right) \) are all bi-stochastic, and the following conditions hold:

(i) \(\mathcal{H} = \bigoplus_{k=1}^K \mathcal{H}_k^L \otimes \mathcal{H}_k^R \), where \(\dim \mathcal{H}_k^L = \dim \mathcal{H}_k^R = \mathcal{N} \); and \(\bigoplus_{k=1}^K d_k^Ld_k^R = \mathcal{N} \),

(ii) \(\Phi = \bigoplus_{k=1}^K \Phi_k^L \otimes Ad_{U_k^L} \), \(\Lambda = \bigoplus_{k=1}^K \Lambda_k^L \otimes \Lambda_k^R \), and \(\Psi = \bigoplus_{k=1}^K Ad_{U_k^R} \otimes \Psi_k^R \),

that is, \(\Phi_k = \bigoplus_{k=1}^K \otimes \Phi_k^L \otimes \Lambda_k^L \otimes \Lambda_k^R \), \(\Psi_k = \bigoplus_{k=1}^K \otimes Ad_{U_k^L} \otimes \Psi_k^R \), and \(\bigoplus_{k=1}^K \otimes \Lambda_k^L \otimes \Lambda_k^R \) are bi-stochastic, \(V_k^L \in \mathcal{L} \left(\mathcal{H}_k^L \right) \) are unitary operators, \(U_k^L \in \mathcal{L} \left(\mathcal{H}_k^L \right) \) are unitary operators, and \(V_k^R \in \mathcal{L} \left(\mathcal{H}_k^R \right) \) are unitary operators.

Then we have the following strong dynamical additivity, that is,

\[
\mathcal{S} \left(\Phi \circ \Lambda \circ \Psi \right) = \mathcal{S} \left(\Lambda \right) + \mathcal{S} \left(\Phi \circ \Lambda \circ \Psi \right).
\]

Proof. Since

\[
\Phi \circ \Lambda \circ \Psi = \sum_{k=1}^K \Phi_k \circ \Lambda_k^L \circ Ad_{U_k^L} \otimes Ad_{U_k^R} \circ \Lambda_k^R \circ \Psi_k^R
\]
is a bi-orthogonal decomposition of $\Phi \circ \Lambda \circ \Psi$, so we have
\[
\rho(\Phi \circ \Lambda \circ \Psi) = \sum_{k=1}^{K} \lambda_k \rho(\Phi_k^L \circ \Lambda_k^L \circ \text{Ad}(\Lambda_k^R \circ \Psi_k^R)),
\]
where $\lambda_k = \frac{1}{2}d_k^{L}d_k^{R}$ for each k and $\sum_{k=1}^{K} \lambda_k = 1$. Thus,
\[
S(\Phi \circ \Lambda \circ \Psi) = H(\lambda) + \sum_{k=1}^{K} \lambda_k S(\Phi_k^L \circ \Lambda_k^L \circ \text{Ad}(\Lambda_k^R \circ \Psi_k^R))
\]
\[
= H(\lambda) + \sum_{k=1}^{K} \lambda_k S(\Phi_k^L \circ \Lambda_k^L) + \sum_{k=1}^{K} \lambda_k S(\Lambda_k^R \circ \Psi_k^R).
\]
Similarly,
\[
S(\Phi \circ \Lambda) = H(\lambda) + \sum_{k=1}^{K} \lambda_k S(\Phi_k^L \circ \Lambda_k^L) + \sum_{k=1}^{K} \lambda_k S(\Lambda_k^R),
\]
\[
S(\Lambda \circ \Psi) = H(\lambda) + \sum_{k=1}^{K} \lambda_k S(\Lambda_k^L) + \sum_{k=1}^{K} \lambda_k S(\Lambda_k^R \circ \Psi_k^R),
\]
\[
S(\Lambda) = H(\lambda) + \sum_{k=1}^{K} \lambda_k S(\Lambda_k^L) + \sum_{k=1}^{K} \lambda_k S(\Lambda_k^R),
\]
where $H(\lambda) = -\sum_{k=1}^{K} \lambda_k \log_2 \lambda_k$ is the Shannon entropy of $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_K)$. It follows from these equalities that $S(\Phi \circ \Lambda) + S(\Lambda \circ \Psi) = S(\Lambda) + S(\Phi \circ \Lambda \circ \Psi)$.

4. Concluding remarks

If the entropy $S(\Phi)$ of a stochastic quantum operation Φ is used to describe the capability of inducing noise induced by Φ, then theorem 2.1 shows that the capability of inducing noise by the composite operation $\Phi \circ \Psi$ can be separated into two parts induced by operations Φ and Ψ if and only if the conditions of theorem 2.1 are satisfied. In general, the dynamical subadditivity inequality is strict without the conditions in theorem 2.1, for example, let dim (\mathcal{H}) = 3, P is a project operator and dim ($P(\mathcal{H})$) = 2, $\Phi = \Psi = \text{Ad}_P + \text{Ad}_{4-P}$, then the conditions of theorem 2.1 are not satisfied, so $S(\Phi \circ \Psi) < S(\Phi) + S(\Psi)$. Moreover, one can use the nonnegative quantity $S(\Phi) + S(\Psi) - S(\Phi \circ \Psi)$ to express some correlation between Φ and Ψ; we will discuss this problem later.

Acknowledgments

The authors wish to express their thanks to the referees for their valuable comments and suggestions. This project is supported by Natural Science Foundations of China (10771191 and 10471124).

References

[1] Bengtsson I and Życzkowski K 2006 Geometry of Quantum States (Cambridge: Cambridge University Press)
[2] Choi M D 1975 Completely positive linear maps on complex matrices Linear Algebra Appl. 10 285–90
[3] Chiribella G, D’Ariano G M and Perinotti P 2009 Theoretical framework for quantum networks Phys. Rev. A 80 022339
[4] D’Ariano G M, Facchini S and Perinotti P 2011 No signaling, entanglement breaking, and localizability in bipartite channels Phys. Rev. Lett. 106 010501

[5] Datta A 2010 A condition for the nullity of quantum discord arXiv:1003.5256v1 [quant-ph]

[6] Hayden P, Jozsa R, Petz D and Winter A 2004 Structure of states which satisfy strong subadditivity of quantum entropy with equality Commun. Math. Phys. 246 359–74

[7] Herbut F 2004 On mutual information in multipartite quantum states and equality in strong subadditivity of entropy J. Phys. A: Math. Gen. 37 3535–42

[8] Kraus K 1971 General state changes in quantum theory Ann. Phys. 64 311–35

[9] Kraus K 1993 States, Effects, and Operations: Fundamental Notions of Quantum Theory (Berlin: Springer)

[10] Lindblad G 1991 Quantum entropy and quantum measurements Quantum Aspects of Optical Communication (Lecture Notes in Physics vol 378) ed C Bendjaballah et al (Berlin: Springer) p 36

[11] Petz D 2008 Quantum Information Theory and Quantum Statistics, Theoretical and Mathematical Physics (Berlin: Springer)

[12] Roga W, Fannes M and Życzkowski K 2008 Composition of quantum states and dynamical subadditivity J. Phys. A: Math. Theor. 41 035305

[13] Skowronek L 2011 Cones with a mapping cone symmetry in the finite-dimensional case Linear Algebra Appl. 435 361–70

[14] Watrous J 2008 Theory of Quantum Information (Waterloo: University of Waterloo) (http://www.cs.uwaterloo.ca/~watrous/quant-info)