ON THIRD-ORDER JACOBSTHAL POLYNOMIALS AND THEIR PROPERTIES

GAMALIEL CERDA-MORALES

Received 11 February, 2020

Abstract. Third-order Jacobsthal polynomial sequence is defined in this study. Some properties involving this polynomial, including the Binet-style formula and the generating function are also presented. Furthermore, we present the modified third-order Jacobsthal polynomials, and derive adaptations for some well-known identities of third-order Jacobsthal and modified third-order Jacobsthal numbers.

2010 Mathematics Subject Classification: 11B37; 11B39; 11B83

Keywords: recurrence relation, modified third-order Jacobsthal numbers, third-order Jacobsthal numbers

1. INTRODUCTION

The Jacobsthal numbers have many interesting properties and applications in many fields of science (see, [1]). The Jacobsthal numbers \(J_n \) \(n \geq 0 \) are defined by the recurrence relation

\[
J_0 = 0, \quad J_1 = 1, \quad J_{n+2} = J_{n+1} + 2J_n, \quad n \geq 0.
\]

(1.1)

Another important sequence is the Jacobsthal–Lucas sequence. This sequence is defined by the recurrence relation \(j_{n+2} = j_{n+1} + 2j_n \), where \(j_0 = 2 \) and \(j_1 = 1 \).

In Cook and Bacon’s work [5] the Jacobsthal recurrence relation is extended to higher order recurrence relations and the basic list of identities provided by A. F. Horadam [9] is expanded and extended to several identities for some of the higher order cases. In fact, the third-order Jacobsthal numbers, \(\{J_n^{(3)}\}_{n \geq 0} \), and third-order Jacobsthal–Lucas numbers, \(\{j_n^{(3)}\}_{n \geq 0} \), are defined by

\[
J^{(3)}_{n+3} = J^{(3)}_{n+2} + J^{(3)}_{n+1} + 2J^{(3)}_n, \quad J^{(3)}_0 = 0, \quad J^{(3)}_1 = J^{(3)}_2 = 1, \quad n \geq 0,
\]

(1.2)

and

\[
j^{(3)}_{n+3} = j^{(3)}_{n+2} + j^{(3)}_{n+1} + 2j^{(3)}_n, \quad j^{(3)}_0 = 2, \quad j^{(3)}_1 = 1, \quad j^{(3)}_2 = 5, \quad n \geq 0,
\]

(1.3)

respectively.

Some of the following properties given for third-order Jacobsthal numbers and third-order Jacobsthal–Lucas numbers are used in this paper (for more details, see...
Note that Eqs. (1.7) and (1.11) have been corrected in [3], since they have been wrongly described in [5]. Then, we have

\[3J_n^{(3)} + J_n^{(3)} = 2^{n+1}, \]
\[J_n^{(3)} - 3J_n^{(3)} = 2J_{n-3}, \quad n \geq 3, \] (1.4)
\[J_{n+2}^{(3)} - 4J_n^{(3)} = \begin{cases} -2 & \text{if } n \equiv 1 \pmod{3} \\ 1 & \text{if } n \neq 1 \pmod{3} \end{cases}, \]
\[J_{n+1}^{(3)} + J_n^{(3)} = 3J_{n+2}^{(3)}, \] (1.5)
\[J_n^{(3)} - J_{n+2}^{(3)} = \begin{cases} 1 & \text{if } n \equiv 0 \pmod{3} \\ -1 & \text{if } n \equiv 1 \pmod{3} \\ 0 & \text{if } n \equiv 2 \pmod{3} \end{cases}, \] (1.6)
\[(J_{n-3}^{(3)})^2 + 3J_n^{(3)}J_n^{(3)} = 4^n, \] (1.7)
\[\sum_{k=0}^n J_k^{(3)} = \begin{cases} J_{n+1}^{(3)} & \text{if } n \neq 0 \pmod{3} \\ J_{n+1}^{(3)} - 1 & \text{if } n \equiv 0 \pmod{3} \end{cases}, \] (1.8)
\[(J_n^{(3)})^2 - 9(J_n^{(3)})^2 = 2^{n+2}J_{n-3}^{(3)}, \quad n \geq 3. \] (1.9)

Using standard techniques for solving recurrence relations, the auxiliary equation, and its roots are given by

\[x^3 - x^2 - x - 2 = 0; \quad x = 2, \quad \text{and } x = -\frac{1 \pm i\sqrt{3}}{2}. \]

Note that the latter two are the complex conjugate cube roots of unity. Call them \(\omega_1 \) and \(\omega_2 \), respectively. Thus the Binet formulas can be written as

\[J_n^{(3)} = \frac{2}{7}2^n - \frac{3 + 2i\sqrt{3}}{21} \omega_1^n - \frac{3 - 2i\sqrt{3}}{21} \omega_2^n \] (1.10)

and

\[J_n^{(3)} = \frac{8}{7}2^n + \frac{3 + 2i\sqrt{3}}{7} \omega_1^n + \frac{3 - 2i\sqrt{3}}{7} \omega_2^n, \] (1.11)

respectively. Now, we use the notation

\[Z_n = \frac{A\omega_1^n - B\omega_2^n}{\omega_1 - \omega_2} = \begin{cases} 2 & \text{if } n \equiv 0 \pmod{3} \\ -3 & \text{if } n \equiv 1 \pmod{3} \\ 1 & \text{if } n \equiv 2 \pmod{3} \end{cases}, \] (1.12)

where \(A = -3 - 2\omega_2 \) and \(B = -3 - 2\omega_1 \). Furthermore, note that for all \(n \geq 0 \) we have

\[Z_{n+2} = -Z_{n+1} - Z_n, \quad Z_0 = 2, \quad Z_1 = -3. \] (1.13)
From the Binet formulas (1.12), (1.13) and Eq. (1.14), we have

\[J_n^{(3)} = \frac{1}{7} (2^{n+1} - Z_n) \] and \[j_n^{(3)} = \frac{1}{7} (2^{n+3} + 3Z_n) . \] (1.16)

A systematic investigation of the incomplete generalized Jacobsthal numbers and the incomplete generalized Jacobsthal–Lucas numbers was featured in [6]. In [7], Djordjević and Srivastava introduced the generalized incomplete Fibonacci polynomials and the generalized incomplete Lucas polynomials. In [8], the authors investigated some properties and relations involving generalizations of the Fibonacci numbers. In [10], Raina and Srivastava investigated the a new class of numbers associated with the Lucas numbers. Moreover they gave several interesting properties of these numbers.

In this paper, we introduce the third-order Jacobsthal polynomials and we give some properties, including the Binet-style formula and the generating functions for these sequences. Some identities involving these polynomials are also provided.

2. THE THIRD-ORDER JACOBSTHAL POLYNOMIAL, BINET’S FORMULA AND THE GENERATING FUNCTION

The principal goals of this section will be to define the third-order Jacobsthal polynomial and to present some elementary results involving it.

For any variable quantity \(x \) such that \(x^3 \neq 1 \). We define the third-order Jacobsthal polynomial, denoted by \(\{ J_n^{(3)}(x) \} \), This sequence is defined recursively by

\[J_{n+3}(x) = (x-1)J_{n+2}(x) + (x-1)J_{n+1}(x) + xJ_n^{(3)}(x), \quad n \geq 0, \quad (2.1) \]

with initial conditions \(J_0^{(3)}(x) = 0, \ J_1^{(3)}(x) = 1 \) and \(J_2^{(3)}(x) = x-1 \).

In order to find the generating function for the third-order Jacobsthal polynomial, we shall write the sequence as a power series where each term of the sequence correspond to coefficients of the series. As a consequence of the definition of generating function of a sequence, the generating function associated to \(\{ J_n^{(3)}(x) \} \), denoted by \(\{ j(t) \} \), is defined by

\[j(t) = \sum_{n \geq 0} J_n^{(3)}(x)t^n. \]

Consequently, we obtain the following result:

Theorem 1. The generating function for the third-order Jacobsthal polynomials \(\{ J_n^{(3)}(x) \} \) is

\[j(t) = \frac{t}{1-(x-1)t-(x-1)t^2-xt^3}. \]

Proof. Using the definition of generating function, we have

\[j(t) = J_0^{(3)}(x) + J_1^{(3)}(x)t + J_2^{(3)}(x)t^2 + \cdots + J_n^{(3)}(x)t^n + \cdots . \]

Multiplying both sides of this identity by \(-(x-1)t, -(x-1)t^2\) and by \(-xt^3\), and then from Eq. (2.1), we have
\[
(1 - (x - 1)t - (x - 1)t^2 - xr^3)j(t)
\]
\[
= J_0^{(3)}(x) + (J_1^{(3)}(x) - (x - 1)J_0^{(3)}(x))t + (J_2^{(3)}(x) - (x - 1)J_1^{(3)}(x) - (x - 1)J_0^{(3)}(x))t^2
\]
\]
\[
(2.2)
\]

and the result follows.

The following result gives the Binet-style formula for \(J_n^{(3)}(x)\).

Theorem 2. For \(n \geq 0\), we have

\[
J_n^{(3)}(x) = \frac{x^{n+1}}{x^2 + x + 1} - \frac{\omega_1^{n+1}}{(x - \omega_1)(\omega_1 - \omega_2)} + \frac{\omega_2^{n+1}}{(x - \omega_2)(\omega_1 - \omega_2)},
\]

where \(\omega_1, \omega_2\) are the roots of the characteristic equation associated with the respective recurrence relations \(T^3 + \lambda + 1 = 0\).

Proof. Since the characteristic equation has three distinct roots, the sequence \(J_n^{(3)}(x) = a(x)x^n + b(x)x_1^n + c(x)x_2^n\) is the solution of the Eq. (2.1). Considering \(n = 0, 1, 2\) in this identity and solving this system of linear equations, we obtain a unique value for \(a(x), b(x)\) and \(c(x)\), which are, in this case, \((x^2 + x + 1)a(x) = x, (x - \omega_1)(\omega_1 - \omega_2)b(x) = -\omega_1\) and \((x - \omega_2)(\omega_1 - \omega_2)c(x) = \omega_2\). So, using these values in the expression of \(J_n^{(3)}(x)\) stated before, we get the required result.

We define the modified third-order Jacobsthal polynomial sequence, denoted by \(\{K_n^{(3)}(x)\}_{n \geq 0}\). This sequence is defined recursively by

\[
K_{n+3}^{(3)}(x) = (x - 1)K_{n+2}^{(3)}(x) + (x - 1)K_{n+1}^{(3)}(x) + xK_n^{(3)}(x),
\]

with initial conditions \(K_0^{(3)}(x) = 3, K_1^{(3)}(x) = x - 1\) and \(K_2^{(3)}(x) = x^2 - 1\).

We give their versions for the third-order Jacobsthal and modified third-order Jacobsthal polynomials.

For simplicity of notation, let

\[
Z_n(x) = \frac{1}{\omega_1 - \omega_2} \left((x - \omega_2)\omega_1^{n+1} - (x - \omega_1)\omega_2^{n+1} \right),
\]

\[
Y_n = \omega_1^n + \omega_2^n.
\]

Then, we can write

\[
J_n^{(3)}(x) = \frac{1}{x^2 + x + 1} \left(x^{n+1} - Z_n(x) \right)
\]

and

\[
K_n^{(3)}(x) = x^n + Y_n.
\]

Then, \(Z_n(x) = -Z_{n-1}(x) - Z_{n-2}(x), Z_0(x) = x\) and \(Z_1(x) = -(x + 1)\).

Furthermore, we easily obtain the identities stated in the following result:
Proposition 1. For a natural number \(n \) and \(m \), if \(J_n^{(3)}(x) \) and \(K_n^{(3)}(x) \) are, respectively, the \(n \)-th order Jacobi and modified third-order Jacobi polynomials, then the following identities are true:

\[
K_n^{(3)}(x) = (x - 1)J_n^{(3)}(x) + 2(x - 1)J_{n-1}^{(3)}(x) + 3xJ_{n-2}^{(3)}(x), \quad n \geq 2, \quad (2.5)
\]

\[
J_n^{(3)}(x)J_m^{(3)}(x) + J_{n+1}^{(3)}(x)J_{m+1}^{(3)}(x) + J_{n+2}^{(3)}(x)J_{m+2}^{(3)}(x) = \frac{1}{(x^2 + x + 1)^2} \left\{ \begin{array}{l}
- x^{n+1} \left((1 - x^2)Z_n(x) + x(1 - x)Z_{n+1}(x) \right) \\
- x^{m+1} \left((1 - x^2)Z_m(x) + x(1 - x)Z_{m+1}(x) \right) \\
+ x^2 + x + 1 (\omega_1^2 \omega_2^2 + \omega_1^2 \omega_2^3)
\end{array} \right\}, \quad (2.6)
\]

\[
\left(J_n^{(3)}(x) \right)^2 + \left(J_{n+1}^{(3)}(x) \right)^2 + \left(J_{n+2}^{(3)}(x) \right)^2 = \frac{1}{(x^2 + x + 1)^2} \left\{ \begin{array}{l}
- 2x^{n+2} \left((1 - x^2)Z_n(x) + x(1 - x)Z_{n+1}(x) \right) \\
+ 2(x^2 + x + 1)
\end{array} \right\}, \quad (2.7)
\]

and \(Z_n(x) \) as in Eq. (2.4).

Proof. (2.5): To prove Eq. (2.5), we use induction on \(n \). Let \(n = 2 \), we get

\[
(x - 1)J_2^{(3)}(x) + 2(x - 1)J_1^{(3)}(x) + 3xJ_0^{(3)}(x) = (x - 1)(x - 1) + 2(x - 1)
\]

\[
= x^2 - 1 = K_2^{(3)}(x).
\]

Let us assume that \(K_n^{(3)}(x) = (x - 1)J_n^{(3)}(x) + 2(x - 1)J_{n-1}^{(3)}(x) + 3xJ_{n-2}^{(3)}(x) \) is true for all values of \(m \) less than or equal to \(n \) for \(n \geq 2 \). Then,

\[
K_{n+1}^{(3)}(x) = (x - 1)K_n^{(3)}(x) + (x - 1)K_{n-1}^{(3)}(x) + xK_{n-2}^{(3)}(x)
\]

\[
= (x - 1) \left\{ (x - 1)J_n^{(3)}(x) + 2(x - 1)J_{n-1}^{(3)}(x) + 3xJ_{n-2}^{(3)}(x) \right\}
\]

\[
+ (x - 1) \left\{ (x - 1)J_{n-1}^{(3)}(x) + 2(x - 1)J_{n-2}^{(3)}(x) + 3xJ_{n-3}^{(3)}(x) \right\}
\]

\[
+ x \left\{ (x - 1)J_{n-2}^{(3)}(x) + 2(x - 1)J_{n-3}^{(3)}(x) + 3xJ_{n-4}^{(3)}(x) \right\}
\]

\[
= (x - 1)J_{n+1}^{(3)}(x) + 2(x - 1)J_n^{(3)}(x) + 3xJ_{n-1}^{(3)}(x).
\]

(2.6): Using the Binet formula of \(J_n^{(3)}(x) \) in Theorem 2, we have

\[
J_n^{(3)}(x)J_m^{(3)}(x) + J_{n+1}^{(3)}(x)J_{m+1}^{(3)}(x) + J_{n+2}^{(3)}(x)J_{m+2}^{(3)}(x)
\]

\[
= \frac{1}{(x^2 + x + 1)^2} \left\{ \begin{array}{l}
(x^{n+1} - Z_n(x)) (x^{m+1} - Z_m(x)) \\
+ (x^{n+2} - Z_{n+1}(x)) (x^{m+2} - Z_{m+1}(x)) \\
+ (x^{n+3} - Z_{n+2}(x)) (x^{m+3} - Z_{m+2}(x))
\end{array} \right\}.
\]
Then, we obtain
\[
J_{n}^{(3)}(x)J_{m}^{(3)}(x) + J_{n+1}^{(3)}(x)J_{m+1}^{(3)}(x) + J_{n+2}^{(3)}(x)J_{m+2}^{(3)}(x)
= \frac{1}{(x^2 + x + 1)^2} \left\{ \begin{array}{l}
(1 + x^2 + x^4) \cdot x^{n+m+2} \\
- x^{n+1} \left(Z_m(x) + xZ_{m+1}(x) + x^2Z_{m+2}(x) \right) \\
- x^{m+1} \left(Z_n(x) + xZ_{n+1}(x) + x^2Z_{n+2}(x) \right) \\
+ Z_n(x)Z_m(x) + Z_{n+1}(x)Z_{m+1}(x) + Z_{n+2}(x)Z_{m+2}(x) \\
\end{array} \right\}
= \frac{1}{(x^2 + x + 1)^2} \left\{ \begin{array}{l}
(1 + x^2 + x^4) \cdot x^{n+m+2} \\
- x^{n+1} \left((1 - x^2)Z_m(x) + x(1 - x)Z_{m+1}(x) \right) \\
- x^{m+1} \left((1 - x^2)Z_n(x) + x(1 - x)Z_{n+1}(x) \right) \\
+ (x^2 + x + 1)(\omega_0^m\omega_1^n + \omega_0^n\omega_1^m) \\
\end{array} \right\}
\]

Then, we obtain the Eq. (2.7) if \(m = n \) in Eq. (2.6).

3. Some identities involving this type of polynomials

In this section, we state some identities related with these type of third-order polynomials. As a consequence of the Binet formula of Theorem 2, we get for this sequence the following interesting identities.

Proposition 2 (Catalan-like identity). For a natural numbers \(n, s \), with \(n \geq s \), if \(J_n^{(3)}(x) \) is the \(n \)-th third-order Jacobsthal polynomials, then the following identity
\[
J_{n+s}^{(3)}(x)J_{n-s}^{(3)}(x) - \left(J_n^{(3)}(x) \right)^2
= \frac{1}{(x^2 + x + 1)^2} \left\{ \begin{array}{l}
x^{n+1} \left(x^s - x^{-s} \right) X_sZ_{m+1}(x) \\
-x^{n+1} \left(2 + x^sX_{s+1} - x^{-s}X_{s-1} \right) Z_n(x) \\
- (x^2 + x + 1)^2X_s^2 \\
\end{array} \right\}
\]
is true, where \(Z_n(x) \) as in Eq. (2.4), \(X_n = \frac{\omega_0^n - \omega_1^n}{\omega_0 - \omega_1} \) and \(\omega_1, \omega_2 \) are the roots of the characteristic equation associated with the recurrence relation \(x^2 + x + 1 = 0 \).

Proof. Using the Eq. (2.4) and the Binet formula of \(J_n^{(3)}(x) \) in Theorem 2, we have
\[
J_{n+s}^{(3)}(x)J_{n-s}^{(3)}(x) - \left(J_n^{(3)}(x) \right)^2
= \frac{1}{(x^2 + x + 1)^2} \left\{ \begin{array}{l}
\left(x^{n+s+1} - Z_{n+s}(x) \right) \left(x^{n-s+1} - Z_{n-s}(x) \right) \\
- (x^{n+1} - Z_n(x))^2 \\
\end{array} \right\}
= \frac{1}{(x^2 + x + 1)^2} \left\{ \begin{array}{l}
- x^{n+1} \left(x^sZ_{n-s}(x) + x^{-s}Z_{n+s}(x) - 2Z_n(x) \right) \\
+ Z_{n+s}(x)Z_{n-s}(x) - (Z_n(x))^2 \\
\end{array} \right\}
\]
Using the following identity for the sequence \(Z_n(x) \):
\[
Z_{n+s}(x) = X_sZ_{n+1}(x) - X_{s-1}Z_n(x),
\]
where \(X_s = \frac{\alpha_s - \omega^2_s}{\omega_3 - \omega_2} \) and \(X_{-s} = -X_s \). Then, we obtain
\[
J_{n+3}(x)J_{n-x}(x) - \left(J_n^{(3)}(x) \right)^2 = \frac{1}{(x^2 + x + 1)^2} \left\{ x^{x+1} (x^3 - x^{-s}) X_s Z_{n+1}(x) - x^{x+1} (x^1 X_{x+1} - x^{-1} X_{x-1} - 2) Z_n(x) \right\}.
\]
Hence the result holds.

Note that for \(s = 1 \) in the Catalan-like identity obtained, we get the Cassini-like identity for the third-order Jacobsthal polynomial. Furthermore, for \(s = 1 \), the identity stated in Proposition 2, yields
\[
J_{n+1}^{(3)}(x)J_{n-1}^{(3)}(x) - \left(J_n^{(3)}(x) \right)^2 = \frac{1}{(x^2 + x + 1)^2} \left\{ x^{x+1} (x^3 - x^{-1}) X_1 Z_{n+1}(x) - x^{x+1} (x^1 X_{1+1} - x^{-1} X_{1-1} - 2) Z_n(x) \right\}.
\]
and using \(X_0 = 0 \) and \(X_1 = 1 \) in Proposition 2, we obtain the following result.

Proposition 3 (Cassini-like identity). For a natural numbers \(n \), if \(K_n^{(3)} \) is the \(n \)-th third-order Jacobsthal numbers, then the identity
\[
J_{n+1}^{(3)}(x)J_{n-1}^{(3)}(x) - \left(J_n^{(3)}(x) \right)^2 = \frac{1}{(x^2 + x + 1)^2} \left\{ x^n \left((x^2 - 1) Z_{n+1}(x) + x(x+2) Z_n(x) \right) \right\}
\]
is true.

The d’Ocagne-like identity can also be obtained using the Binet formula and in this case we obtain

Proposition 4 (d’Ocagne-like identity). For a natural numbers \(m, n \), with \(m \geq n \) and \(J_n^{(3)}(x) \) is the \(n \)-th third-order Jacobsthal polynomial, then the following identity
\[
J_{m+1}^{(3)}(x)J_{n-x}(x) - J_m^{(3)}(x)J_{n+1}^{(3)}(x) = \frac{1}{(x^2 + x + 1)^2} \left\{ x^{m+1} (Z_{m+1}(x) - xZ_m(x)) - x^{n+1} (Z_{n+1}(x) - xZ_n(x)) + (x^2 + x + 1) X_{m-n} \right\}
\]
is true.

Proof. Using the Eq. (2.4) and the Theorem 2, we get the required result.

In addition, some formulae involving sums of terms of the third-order Jacobsthal polynomial sequence will be provided in the following proposition.
Proposition 5. For a natural numbers m, n, with $n \geq m$, if $J^{(3)}_n(x)$ and $K^{(3)}_n(x)$ are, respectively, the n-th third-order Jacobsthal and modified third-order Jacobsthal polynomials, then the following identities are true:

\[
\sum_{s=m}^{n} J^{(3)}_s(x) = \frac{1}{3(x-1)} \left\{ (3x-2)J^{(3)}_n(x) + (2x-1)J^{(3)}_{n-1}(x) + xJ^{(3)}_{n-2}(x) - J^{(3)}_{m+2}(x) + (x-2)J^{(3)}_{m+1}(x) + (2x-3)J^{(3)}_m(x) \right\}, \quad (3.1)
\]

\[
\sum_{s=0}^{n} K^{(3)}_s(x) = \frac{1}{x-1} \left\{ \begin{array}{ll}
\sum_{s=0}^{n} x^{s+1} + \omega_1 x^{s+1} - 1 & \text{if } n \equiv 0 \pmod{3} \\
\omega_1 x^{s+1} + \omega_2 x^{s+1} - 2 & \text{if } n \equiv 1 \pmod{3} \\
\omega_1 x^{s+1} - \omega_2 x^{s+1} - 1 & \text{if } n \equiv 2 \pmod{3}
\end{array} \right., \quad (3.2)
\]

Proof. (3.1): Using Eq. (2.1), we obtain

\[
\sum_{s=m}^{n} J^{(3)}_s(x) = J^{(3)}_m(x) + J^{(3)}_{m+1}(x) + J^{(3)}_{m+2}(x) + \sum_{s=m+3}^{n} J^{(3)}_s(x)
\]

\[
= J^{(3)}_m(x) + J^{(3)}_{m+1}(x) + J^{(3)}_{m+2}(x) + (x-1) \sum_{s=m+2}^{n} J^{(3)}_s(x)
\]

\[
+ (x-1) \sum_{s=m+1}^{n-2} J^{(3)}_s(x) + x \sum_{s=m}^{n-3} J^{(3)}_s(x)
\]

Then,

\[
\sum_{s=m}^{n} J^{(3)}_s(x) = (3x-2) \sum_{s=m}^{n} J^{(3)}_s(x) - (x-2)J^{(3)}_{m+1}(x) - (2x-3)J^{(3)}_m(x)
\]

\[- (3x-2)J^{(3)}_n(x) - (2x-1)J^{(3)}_{n-1}(x) - xJ^{(3)}_{n-2}(x).
\]

Finally, the result in Eq. (3.1) is completed.

(3.2): As a consequence of the Eq. (2.4) of Theorem 2 and

\[
\sum_{s=0}^{n} Y_s = \sum_{s=0}^{n} \left(\omega_1^s + \omega_2^s \right)
\]

\[
= \frac{\omega_1^{n+1} - 1}{\omega_1 - 1} + \frac{\omega_2^{n+1} - 1}{\omega_2 - 1}
\]

\[
= \frac{1}{3} (Y_n - Y_{n+1}) + 1
\]

we have

\[
\sum_{s=0}^{n} K^{(3)}_s(x) = \sum_{s=0}^{n} x^{s+1} + \sum_{s=0}^{n} Y_s
\]

\[
= \frac{x^{n+1} - 1}{x - 1} + \frac{1}{3} (Y_n - Y_{n+1}) + 1
\]
\[= \frac{1}{x-1} \begin{cases}
 x^n + 2x - 3 & \text{if } n \equiv 0 \pmod{3} \\
 x^n + x - 2 & \text{if } n \equiv 1 \pmod{3} \\
 x^n + 1 & \text{if } n \equiv 2 \pmod{3}
\end{cases}. \]

Hence, we obtain the result. \(\square\)

For example, if \(n \equiv 0 \pmod{3} \) we have that \(x^n + 2x - 3 \) is divisible by \(x - 1 \).

For negative subscripts terms of the sequence of modified third-order Jacobsthal polynomial we can establish the following result:

Proposition 6. For a natural number \(n \) and \(x^3 \neq 0 \) the following identities are true:

\[K^{(3)}_{-n}(x) = K^{(3)}_n(x) + x^{-n} - x^n, \quad (3.3) \]

\[\sum_{s=0}^{3n} K^{(3)}_{-s}(x) = \frac{1}{x-1} (3x - 2 - x^{-3n}). \quad (3.4) \]

Proof. (3.3): Since \(Y_{-n} = Y_n \), using the Binet formula stated in Theorem 2 and the fact that \(\omega_1 \omega_2 = 1 \), all the results of this Proposition follow. In fact,

\[K^{(3)}_{-n}(x) = x^{-n} + Y_{-n} = x^{-n} + x^n + Y_n - x^n = K^{(3)}_n(x) + x^{-n} - x^n. \]

So, the proof is completed.

(3.4): The proof is similar to the proof of Eq. (3.1) using Eq. (3.3). \(\square\)

4. Conclusion

Sequences of polynomials have been studied over several years, including the well-known Tribonacci polynomial and, consequently, on the Tribonacci-Lucas polynomial. In this paper, we have also contributed for the study of third-order Jacobsthal and modified third-order Jacobsthal polynomials, deducing some formulae for the sums of such polynomials, presenting the generating functions and their Binet-style formula. It is our intention to continue the study of this type of sequences, exploring some their applications in the science domain. For example, a new type of sequences in the quaternion algebra with the use of these polynomials and their combinatorial properties.

Acknowledgements

The author also thanks the suggestions sent by the reviewer, which have improved the final version of this article.
REFERENCES

[1] P. Barry, “Triangle geometry and Jacobsthal numbers,” Irish Math. Soc. Bulletin, vol. 51, no. 1, pp. 45–57, 2003.
[2] G. Cerda-Morales, “Identities for third order Jacobsthal quaternions,” Adv. Appl. Clifford Algebr., vol. 27, no. 2, pp. 1043–1053, 2017, doi: 10.1007/s00006-016-0654-1.
[3] G. Cerda-Morales, “Dual third-order Jacobsthal quaternions,” Proyecciones Journal of Mathematics, vol. 37, no. 4, pp. 731–747, 2018.
[4] G. Cerda-Morales, “On the third-order Jacobsthal and third-order Jacobsthal–Lucas sequences and their matrix representations,” Mediterr. J. Math., vol. 16, no. 2, pp. 1–12, 2019, doi: 10.1007/s00009-019-1319-9.
[5] C. K. Cook and M. R. Bacon, “Some identities for Jacobsthal and Jacobsthal–Lucas numbers satisfying higher order recurrence relations,” Ann. Math. Inform, vol. 41, no. 1, pp. 27–39, 2013.
[6] G. B. Djordjević and H. M. Srivastava, “Incomplete generalized Jacobsthal and Jacobsthal–Lucas numbers,” Mathl. Comput. Modelling, vol. 42, pp. 1049–1056, 2005, doi: 10.1016/j.mcm.2004.10.026.
[7] G. B. Djordjević and H. M. Srivastava, “Some generalizations of the incomplete Fibonacci and the incomplete Lucas polynomials,” Adv. Stud. Contemp. Math., vol. 11, pp. 11–32, 2005.
[8] G. B. Djordjević and H. M. Srivastava, “Some generalizations of certain sequences associated with the Fibonacci numbers,” J. Indonesian Math. Soc., vol. 12, pp. 99–112, 2006.
[9] A. F. Horadam, “Jacobsthal representation numbers,” Fibonacci Q., vol. 34, no. 1, pp. 40–54, 1996.
[10] R. K. Raina and H. M. Srivastava, “A class of numbers associated with the Lucas numbers,” Mathl. Comput. Modelling, vol. 25, no. 7, pp. 15–22, 1997, doi: 10.1016/S0895-7177(97)00045-9.

Author’s address

Gamaliel Cerda-Morales
Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Blanco Viel 596, Valparaíso, Chile
E-mail address: gamaliel.cerda.m@mail.pucv.cl