Cu(I)-Catalyzed Alkynylation of Quinolones

Aitor Maestro, Sebastien Lemaire,* and Syuzanna R. Harutyunyan*

ABSTRACT: Herein we report the first alkynylation of quinolones with terminal alkynes under mild reaction conditions. The reaction is catalyzed by Cu(I) salts in the presence of a Lewis acid, which is essential for the reactivity of the system. The enantioselective version of this transformation has also been explored, and the methodology has been applied in the synthesis of the enantioenriched tetrahydroquinoline alkaloid cuspareine.

Quinolone (A) derivatives such as ciprofloxacin B are well known as broad-spectrum bactericidal agents1−6 (Figure 1), which consequently has prompted the development of several methods for their synthesis.7−9 However, molecules with abundant sp3 carbons in their structure, such as dihydroquinolone derivatives, are becoming increasingly attractive for the development of potential drug candidates.10

In this context, dihydroquinolone derivative C has been reported as a 5-HT6 serotonin receptor,11 and other dihydroquinolones have been shown to be crucial intermediates in the production of martinellic acid D12−14 and (+)-angustureine E.15−17 Therefore, the development of new efficient methodologies for the synthesis of dihydroquinolones would improve the chemical toolbox for the synthesis of biologically relevant molecules.

During the last couple of decades, several examples of dihydroquinoline synthesis based on the functionalization of quinolones have been reported. These quinolone functionalizations, including Pd- and Rh-catalyzed arylations (Scheme 1a)18−20 and, more recently, Cu(I)-catalyzed alkylations using organomagnesium and organoaluminum reagents (Scheme 1b),15,21 afford 4-oxo-2,3-dihydroquinolines. Despite this progress with arylations and alkylations, alkynylation of quinolones have not been reported. We were interested in exploring alkynylation reactions of quinolones to extend the structural variety of functionalized dihydroquinolones. The synthesis of two alkynylated 4-oxo-2,3-dihydroquinolines has been previously described,22,23 making use of 4-alkoxyquinolines and alkynylmagnesium bromides or organozinc chlorides as nucleophiles in a lengthy multistep procedure. The limited...
scope of readily available alkynylmagnesium bromides and the lengthy multistep procedure limit the potential of this method. On the contrary, the use of readily available and structurally diverse terminal alkynes as pronucleophiles, along with the mild reaction conditions, offers an attractive strategy for the synthesis of structurally diverse quinolone derivatives. Several examples of this approach, including Cu(I)-catalyzed alknylations of (thio)chromones and quinolines and allylic alkylation of terminal alkynes, have been published during the last several years, but the direct Cu(I)-catalyzed alknylation of quinolones has not been accomplished so far.

Herein we report the first example of the direct Cu(I)-catalyzed alknylation of 4-quinolones with terminal alkynes as pronucleophiles (Scheme 1c). This methodology offers a new path for functionalizing quinolones with an alkynyl moiety that complements the existing synthetic routes toward 4-oxo-2,3-dihydroquinolines.

At the start of this work, the optimization studies were carried out for the alknylation reaction between Cbz-protected quinolone 1a and phenylacetylene 2a in the presence of base DIPEA and catalytic amounts of Cu(I) salt. On the basis of our group’s experience with Lewis-acid-promoted Cu(I)-catalyzed conjugate additions, we evaluated the effect of several Lewis acids to enhance the electrophilicity of the quinolone substrate 1a. Excellent conversion to the desired addition product 3a was observed in the presence of a stoichiometric amount of tert-butyldimethylsilyl triflate (TBDMSCOF) after stirring overnight (Table 1, entry 1).

Table 1. Optimization of Cu(I)-Catalyzed Alknylation

entry	Lewis acid	protecting group	t (h)	conv. (%)
1	TBDMSCOF	Cbz (1a)	18	>99
2	TBDMSCOF	Cbz (1a)	4	96
3	TBDMSCOF	H (1b)	18	0
4	TBDMSCOF	Bn (1c)	18	0
5	TBDMSCOF	Boc (1d)	18	0
6"	TBDMSCOF	Cbz (1a)	18	20
7"	TBDMSCOF	Cbz (1a)	18	0
8	TBDMSCOF	Cbz (1a)	18	0
9	TBMSBr	Cbz (1a)	18	10
10	TBMSBr	Cbz (1a)	18	10
11	TBMSOTf	Cbz (1a)	18	30
12	TESOTf	Cbz (1a)	18	63
13	BF3·Et2O	Cbz (1a)	18	0

"Reaction conditions: quinolone 1 (0.1 mmol), CuI (10 mol %), toluene (1 mL), alkynyl 2a (1.3 equiv), DIPEA (1.6 equiv), LA (1.2 equiv). b Conversion was determined by 1H NMR with respect to the quinolone. c No CuI was used.

No conversion was observed when unprotected or benzyl-protected quinolones were used (entries 3 and 4). Moreover, replacing the Cbz protecting group on the quinolone substrate by a Boc group resulted in a significant drop in the conversion (entry 5). Further studies confirmed that the presence of a copper salt and a stoichiometric amount of a Lewis acid are mandatory to promote the reaction to completion. No conversion of quinolone was observed in the absence of copper salt or using only a catalytic amount of a Lewis acid (entries 6–8). With silyl-based Lewis acids other than TBDMSOTf, a lower substrate conversion was obtained (entries 9–13). Only traces of the addition product 3a were obtained when trimethylsilyl halides were used instead (entries 9 and 10). The use of stronger silicon-based Lewis acids such as trimethylsilyl (TMS) and triethylsilyl (TES) triflates resulted in moderate reaction rates (entries 11 and 12), whereas the boron-based Lewis acid BF3·Et2O did not improve the reaction outcome either (entry 13). The superiority of TBDMSOTf over other explored silyl triflates can be rationalized by the higher stability of a possible TBDMS-enolate intermediate formed during the reaction.

Having the optimized conditions in hand (entry 1), we moved to study the scope of the reaction. For this purpose, various alkynes and quinolones were tested (Scheme 2).

The reaction was successfully extended to several aromatic terminal alkynes bearing electron-donating and electron-withdrawing groups and four-, three-, and two-substituted aromatic rings (3ab–3aj). An excellent yield was also obtained with heteroaromatic alkyne 3ak. Similar results were obtained when using cyclopropyl-, isobutyl-, and ester-substituted alkynes (3al–3an). Surprisingly, the linear terminal alkyne 1-pentynyl was unreactive under the optimized reaction conditions (3ao). The limited reactivity of alkyl alkynes and the lack of reactivity of linear alkynes are consistent with the literature observations in other Cu-catalyzed reactions. Various quinolones can be used with this catalytic system. Excellent yields were obtained for quinolones both with activating and with deactivating groups present in the quinolone ring (3eg–3ig) and for those with disubstituted substrates (3jg and 3kg).

Next, we envisaged that the use of a copper salt in combination with a chiral ligand could lead to enantioinduction through the binding of the chiral copper complex to the quinolone. After some optimization, we found that the copper complex of chiral diphosphine ligand BPE catalyzes the alknylation of several quinolone substrates with enantioselectivities in the range of 50–82% ee (Scheme 3), thus confirming the feasibility of the catalytic asymmetric synthesis of these molecules.

The robustness of the methodology was tested by scaling up the synthesis of 3aa to 1 mmol (Scheme 4). Moreover, the selective deprotection of the Cbz group was successfully performed under basic conditions to afford dihydroquinolin-4-one 4 in 83% yield.

The hydrogenation of 3ap with Pd on activated carbon under acidic conditions followed by the methylation of the nitrogen atom afforded the Hancock alkaloid (+)-cuspareine (δ) without racemization, allowing the determination of the absolute configuration of the stereogenic carbon by comparing the optical rotation of cuspareine with literature data.

In summary, an efficient methodology for the alkylation of quinolones with readily available terminal alkynes has been accomplished. This methodology tolerates the presence of
several functional groups in both the quinolone and alkyne reagents and complements the previously developed arylation and alkylation reactions of quinolones. We have also demonstrated the feasibility of an enantioselective version and applied the current methodology to the synthesis of the enantioenriched Hancock alkaloid (+)-cuspareine. Further studies are under way, aiming to improve the enantioselective variant and shed light on the underlying mechanism.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.2c00020.

Full experimental procedures, characterization data, NMR spectra, and chiral HPLC (PDF)

AUTHOR INFORMATION

Corresponding Authors
Sebastien Lemaire — Janssen Pharmaceutica, Chemical Process Research & Development, B-2340 Beerse, Belgium; orcid.org/0000-0002-9343-0493; Email: Slemaire@its.jnj.com
Syuzanna R. Harutyunyan — Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands; orcid.org/0000-0003-2411-1250; Email: S.Harutyunyan@rug.nl

Author
Aitor Maestro — Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands; Present Address: EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, U.K.; orcid.org/0000-0003-4726-9675

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge financial support from The Netherlands Organization for Scientific Research (NWO-LIFT and NWO-VICI to S.R.H.)
REFERENCES

(1) Andriole, V. T. The Quinolones: Prospects. In The Quinolones; Elsevier, 2000.
(2) Pham, T. D. M.; Ziora, Z. M.; Blaskovich, M. A. T. Quinolone Antibiotics. Medchemcomm 2019, 10, 1719–1739.
(3) Bisacchi, G. S. Origins of the Quinolone Class of Antibacterials: An Expanded “Discovery Story.” J. Med. Chem. 2015, 58, 4874–4882.
(4) Mitscher, L. A. Bacterial Topoisomerase Inhibitors: Quinolone and Pyridone Antibacterial Agents. Chem. Rev. 2005, 105, 559–592.
(5) Aldred, K. J.; Kerns, R. J.; Osheroff, N. Mechanism of Quinolone Action and Resistance. Biochemistry 2014, 53, 1565–1574.
(6) Kgoro, S. K.; Maagaard, M.; Feinberg, J. B.; Perner, A.; Gluud, C.; Jakobsen, J. C. The Effects of Adding Quinolones to Beta-Lactam Antibiotics for Sepsis. Acta Anaesthesiol. Scand. 2021, 65, 1023–1032.
(7) Ghosh, P.; Das, S. Synthesis and Functionalization of 4-Quinolones — A Progressing Story. Eur. J. Org. Chem. 2019, 2019, 4466–4516.
(8) Singh, G.; Devi, V.; Monga, V. Recent Developments in the Synthetic Strategies of 4-Quinolones and Its Derivatives. Chemistry 2020, 25, 14100–14129.
(9) Selinoforester, B.; Tanbakouchian, A.; Larijani, B.; Mahdavi, M. Ullmann-Goldberg and Buchwald-Hartwig C–N Cross-Couplings: Synthetic Methods to Potentially Pharmaceutical N-Heterocycles. Asian J. Org. Chem. 2021, 10, 1319–1344.
(10) Lovering, F.; Bikker, J.; Humblet, C. Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J. Med. Chem. 2009, 52, 6752–6756.
(11) Park, C. M.; Choi, J. Il; Choi, J. H.; Kim, S. Y.; Park, W. K.; Seong, C. M. 1-(Arylsulfonyl)-2,3-Dihydro-1H-Quinolin-4-One Derivatives as 5-HT₆ Serotonin Receptor Ligands. Bioorg. Med. Chem. Lett. 2011, 21, 698–703.
(12) Davies, S. G.; Fletcher, A. M.; Lee, J. A.; Lorkin, T. J. A.; Roberts, P. M.; Thomson, J. E. Asymmetric Synthesis of (−)-Martinellic Acid. Org. Lett. 2013, 15, 2050–2053.
(13) Pappopulla, M.; Aponick, A. Enantioselective Total Synthesis of (−)-Martinellic Acid. Angew. Chem., Int. Ed. 2015, 54, 15827–15830.
(14) Ma, D.; Xia, C.; Jiang, J.; Zhang, J. First Total Synthesis of Martinellic Acid, a Naturally Occurring Bradykinin Receptor Antagonist. Org. Lett. 2001, 3, 2189–2191.
(15) Guo, Y.; Harutyuny, S. R. Highly Enantioselective Catalytic Addition of Grignard Reagents to N-Heterocyclic Acceptors. Angew. Chem., Int. Ed. 2019, 58, 12950–12954.
(16) Berthold, D.; Breit, B. Asymmetric Total Syntheses of (−)-Angustureine and (−)-Cuspareine via Rhodium-Catalyzed Hydroamination. Org. Lett. 2020, 22, 565–568.
(17) Davies, S. G.; Fletcher, A. M.; Houlsby, J. T. T.; Roberts, P. M.; Thomson, J. E.; Zimmer, D. The Hancock Alkaloids (−)-Cuspareine, (−)-Galpinine, (−)-Galpine, and (−)-Angustureine: Asymmetric Syntheses and Corrected 1 H and 13 C NMR Data. J. Nat. Prod. 2018, 81, 2731–2742.
(18) Shintani, R.; Yamagami, T.; Kimura, T.; Hayashi, T. Asymmetric Synthesis of 2-Aryl-2,3-Dihydro-4-Quinolones by Rhodium-Catalyzed 1,4-Addition of Arylzinc Reagents in the Presence of Chlorotrimethylsilane. Org. Lett. 2005, 7, 5317–5319.
(19) Zhang, X.; Chen, J.; Han, F.; Cun, L.; Liao, J. Rhodium-Catalyzed Enantioselective Conjugate Addition of Sodium Tetraarylborates to 2,3-Dihydro-4-Pyrones and 4-Quinolones by Using (R,R)-1,2-Bis(Tert-Butyldimethyl)silyl)Benzene as a Ligand. Eur. J. Org. Chem. 2011, 2011, 1443–1446.
(20) Holder, J. C.; Marziale, A. N.; Gatti, M.; Mao, B.; Stoltz, B. M. Palladium-Catalyzed Asymmetric Conjugate Addition of Arylboronic Acids to Heterocyclic Acceptors. Chem.—Eur. J. 2013, 19, 74–77.
(21) Kingsbury, A.; Brough, S.; McCarthy, A. P.; Lewis, W.; Woodward, S. Conjugate Addition Routes to 2-Alkyl-2,3-Dihydroquinolin-4(1H)-ones and 2-Alkyl-4-Hydroxy-1,2-Dihydroquinoline-3-Carboxylates. Eur. J. Inorg. Chem. 2020, 2020, 1011–1017.
(22) Wendeborn, S. Solid Phase Synthesis of Substituted 2,3-Dihydroquinolin-4-Os. Synlett 2000, 2000 (1), 45–48.