Cellular automaton for chimera states

Vladimir García-Morales

Departament de Termodinàmica, Universitat de València - E-46100 Burjassot, Spain

received 11 February 2016; accepted in final form 13 April 2016 published online 26 April 2016

PACS 89.75.Fb – Structures and organization in complex systems
PACS 05.45.Ra – Coupled map lattices
PACS 05.45.Xt – Synchronization; coupled oscillators

Abstract – A minimalistic model for chimera states is presented. The model is a cellular automaton (CA) which depends on only one adjustable parameter, the range of the nonlocal coupling, and is built from elementary cellular automata and the majority (voting) rule. This suggests the universality of chimera-like behavior from a new point of view: already simple CA rules based on the majority rule exhibit this behavior. After a short transient, we find chimera states for arbitrary initial conditions, the system spontaneously splitting into stable domains separated by static boundaries, some synchronously oscillating and the others incoherent. When the coupling range is local, nontrivial coherent structures with different periodicities are formed.

Copyright © EPLA, 2016

Chimera states arise in sets of identical oscillators as a result of their stable grouping into two separated subsets, one of them synchronously oscillating, the other incoherent. This phenomenon was first pointed out in a network of oscillators under a symmetric nonlocal coupling [1,2]. Chimera states were then experimentally discovered in populations of coupled chemical oscillators [3] and in optical coupled-map lattices realized by liquid-crystal light modulators [4]. Great theoretical [5–36] and experimental [37–45] interest followed. Chimera states may also describe some aspects of the dynamical behavior of social systems [46], power grids [47], epileptic seizures [48] and the unihemispheric sleep of birds and dolphins [49]. This motivates the need of simple models, reduced to the barest essentials, to describe the underlying mechanisms behind their formation. Cellular automata (CAs) [22,50–57] hold promise for that goal: Chimera states were found in a three-level CA of Zykov-Mikhailov type [58]. Boolean phase oscillators, realized with electronic logic circuits, were also shown to support transient chimeras [44].

In this letter we regard chimera states as an experimental fact of nature rather than a feature of certain systems of differential equations or maps. We then formulate a simple CA model for chimera states, describing a possible universal mechanism behind their spontaneous emergence out of any initial condition. We sketch a general mathematical approach to show how CAs can be regarded as approximations (shadowings) of maps of coupled oscillators. Although we do not attempt here to connect our specific CA model to any such map, we hypothesize that the latter should exist [59,60]. Chimeras are here modelled as specific instances of domain formation in spatially extended systems, a behavior that is statistically robust to small perturbations and which is ubiquitously found in nature. The chimera states encountered here are of the weak type [30,31] and are stable and coexist with synchronously oscillating domains separated by static walls. The model depends on one free parameter only, \( \xi \in \mathbb{N} (\xi \geq 1) \), whose physical meaning is the neighborhood radius (nonlocal coupling range). When \( \xi \) is small, nontrivial coherent structures are formed. However, when \( \xi \) is sufficiently large, incoherent domains of thickness \( d \geq \xi + 1 \) arise.

We first show how any map on a ring of \( N \) spatially coupled oscillators can be approximated by a CA. Let \( \varphi^j_t \in [0,2\pi) \) denote the phase of the oscillator at location \( j \), \( j \in [0,N-1] \) and discrete time \( t \). We assume that the evolution of the phases in the torus \( T^N \) is governed by

\[
\varphi^j_{t+1} = F\left( \varphi^j_t + \xi, \varphi^j_t - \xi, \ldots, \varphi^1_t, \ldots, \varphi^N_t - \xi \right),
\]

where \( F: T^N \to [0,2\pi) \) is a continuous nonlinear function that couples the oscillators within a range \( \xi \). We assume that the oscillators are identical (same natural frequency \( \omega \)) and indistinguishable, i.e. that eq. (1) is invariant, modulo \( N \), to an arbitrary permutation of the labels [30]. A specific instance is considered in, e.g., [16].

A rigorous definition of a chimera state has been recently given in [30,31]. Oscillators \( i \) and \( j \) are frequency synchronized if \( \Omega_{ij} \equiv \lim_{t \to \infty} (\varphi^i_t - \varphi^j_t)/t = 0 \) [30]. A flow-invariant \( \omega \)-limit set on the torus \( T^N \), \( [0,2\pi)^N \) is a weak
chimera state if there exist three oscillators $i$, $j$ and $k$ such that $\Omega_{ij} \neq 0$ and $\Omega_{ik} = 0$ [30]. In this work we provide a construction that is shown to support weak chimera states. We first explain how (approximately) map the dynamics on the torus $T^N$ to the shift space $A^N$ [61] of a CA. Here $A$ denotes the set of integers in $[0, p - 1]$ with $p \in \mathbb{N}$ ($p \geq 2$) being the alphabet size.

Since $\frac{2\pi}{p} \in [0, 1)$ is a real number, we can expand it in a base (radix) $p \geq 2, p \in \mathbb{N}$ as

$$\varphi_j^i = \lim_{D \to \infty} \sum_{m=1}^{D} p^{-m} d_p \left( -m, \frac{\varphi_j^i}{2\pi} \right),$$

where we have introduced the digit function [62-64]

$$d_p(k,x) = [x/p^k] - p \lfloor x/p^{k+1} \rfloor$$

for any $x \in \mathbb{R}, k \in \mathbb{Z}$. Here $\lfloor \ldots \rfloor$ denotes the floor (lower closest integer) function and we have $0 \leq d_p(k,x) \leq p - 1$. If we now expand in radix $p$ both sides of eq. (1), terms with same powers of $p$ are equal because the radix-$p$ representation is unique for any rational number. Arising from eq. (1) we thus have a set of equations

$$d_p \left( -m, \frac{1}{2\pi} \varphi_{j+1}^i \right) = d_p \left( -m, \frac{1}{2\pi} F \left( \varphi_{j+\xi,1}^i, \ldots, \varphi_{j-\xi,1}^i \right) \right),$$

where $m \in [1, D]$, $m \in \mathbb{Z}$. A CA approximation of eq. (1) is obtained by considering only the dynamical behavior of the first digit after the radix point ($m = 1$) of the phases.

If we then take $\varphi_j^i \approx 2\pi d_p(-1, \varphi_j^{i+1})/p$ and define

$$x_j^i \equiv d_p \left( -1, \frac{1}{2\pi} \varphi_j^i \right),$$

$$f \left( x_j^{i+\xi}, \ldots, x_j^{-\xi} \right) \equiv d_p \left( -1, \frac{1}{2\pi} F \left( \varphi_{j+\xi,1}^i, \ldots, \varphi_{j-\xi,1}^i \right) \right),$$

we obtain a CA dynamics

$$x_{j+1}^i = f \left( x_j^{i+\xi}, x_j^{i+\xi-1}, \ldots, x_j^{i-\xi}, x_j^{-\xi} \right)$$

with $x_j^i \in [0, p-1]$. The above approximation becomes more accurate as $p$ is increased. Since $x_j^i = d_p(0, x_j^i)$, if we take, e.g., $p = 8$ we have

$$d_8(0, x_j^i) = x_j^i - 8 \lfloor x_j^i/8 \rfloor = x_j^i - 2 \lfloor x_j^i/2 \rfloor + \frac{3}{2} \lfloor x_j^i/2 \rfloor - 4 \lfloor x_j^i/4 \rfloor + 4 \lfloor x_j^i/4 \rfloor - 8 \lfloor x_j^i/8 \rfloor = d_2(0, x_j^i) + 2d_2(0, x_j^i/2) + 4d_2(0, x_j^i/4).$$

Hence, if we define

$$y_{it}^{(h,j)} \equiv d_2 \left( 0, x_j^{i+2h} \right), \quad h = 0, 1, 2,$$

we observe that at $t$ and $j$ we can write $x_j^i = y_{it}^{(0,j)} + 2y_{it}^{(1,j)} + 4y_{it}^{(2,j)}$ where each $y_{it}^{(h,j)} (h = 0, 1, 2)$ is either zero or one. We shall call the specific value of $h$ the layer of the CA. At $t+1$ we have, similarly

$$x_{j+1}^i = y_{it+1}^{(0,j)} + 2y_{it+1}^{(1,j)} + 4y_{it+1}^{(2,j)}.$$

Thus, the local transformation $x_j^i \rightarrow x_{j+1}^i$ on 8 symbols is equivalent to a local transformation $(y_{it}^{(0,j)}, y_{it}^{(1,j)}, y_{it}^{(2,j)}) \rightarrow (y_{it+1}^{(0,j)}, y_{it+1}^{(1,j)}, y_{it+1}^{(2,j)})$ on triples of Boolean variables. From eqs. (5) and (6), we have

$$y_{it+1}^{(h,j)} = d_2 \left( 0, \frac{1}{2^h} f \left( x_j^{i+\xi}, \ldots, x_j^{-\xi} \right) \right)$$

so that, in general, all layers $h$ are nonlinearly coupled within the neighborhood of radius $\xi$.

Our guiding principle now is to identify at the CA level a nonlocal coupling among the $x_j^i$'s that leads the oscillators to split into two groups (clustering) and that is also able to adopt a different form on each group. A most simple way of achieving this is, e.g., to make the coupling of the layers $h$ entirely dependent on the value $y_{it}^{(0,j)}$ of layer $h = 0$ only. Thus, when $y_{it}^{(0,j)} = 0 (x_j^i \text{ odd})$, let the coupling be synchronizing and when $y_{it}^{(0,j)} = 1 (x_j^i \text{ even})$ let it be desynchronizing. We now formulate our CA model for chimera-like behavior. Although we discuss the model at the CA level only, we hypothesize that there should exist a coupled map lattice from which the model is an approximation [59]. Let $x_j^i \in [0, 7]$. Then, at time $t+1$,

$$x_{j+1}^i = f_{it}^{(0,j)} + 2 \left( 1 - f_{it}^{(0,j)} \right) f_{it}^{(1,j)} + 4f_{it}^{(0,j)} f_{it}^{(2,j)},$$

where the $f_{it}^{(h,j)} \in \{0, 1\} \ (h = 0, 1, 2)$ are given by

$$f_{it}^{(0,j)} \equiv H \left( -\frac{1}{2} + \frac{1}{2\xi + 1} \sum_{k=-\xi}^{\xi} y_{it}^{(0,j+k)} \right),$$

$$f_{it}(1,j) \equiv 1 - H \left( -\frac{1}{2} + \frac{1}{2\xi + 1} \sum_{k=-\xi}^{\xi} y_{it}^{(1,j+k)} \right),$$

$$f_{it}^{(2,j)} \equiv d_2 \left( 0, 1 + y_{it}^{(2,j+1)} + y_{it}^{(2,j)} + y_{it}^{(2,j-1)} \right).$$

Here the $y_{it}^{(h,j)}$'s are obtained from eqs. (6) and $H(x)$ is the Heaviside function ($H(x) = 0$ for $x < 0, H(0) = \frac{1}{2}$ and $H(x) = 1$ for $x > 0$). The model evolves as follows. From an initial condition $x_0^i$, specified at every $j \in [0, N-1]$, the $y_{it}^{(h,j)}$'s are calculated from eq. (6). Then, they are inserted in eqs. (10) to (12) so that the $f_{it}^{(h,j)}$'s are obtained. By replacing them in eq. (9), $x_j^i$ is calculated. This process is iterated $t$ times to yield $x_j^i, \forall j$. By comparing eqs. (7) and (9) we observe that

$$y_{it+1}^{(0,j)} = d_2(0, x_{j+1}^i) = f_{it}^{(0,j)} = d_2(0, x_{j+1}^i/2),$$

$$y_{it+1}^{(1,j)} = d_2(0, x_{j+1}^i/2) = (1 - f_{it}^{(0,j)}) f_{it}^{(1,j)},$$

$$y_{it+1}^{(2,j)} = d_2(0, x_{j+1}^i/4) = f_{it}^{(0,j)} f_{it}^{(2,j)}.$$
Fig. 1: Ten iterates of the majority rule, eq. (16), for a ring of $N = 200$ sites starting from a random initial condition (which is the same for all panels) for the values of $\xi$ indicated in the figure.

These equations specify the couplings within layers of the CA in eq. (9). Layer $h = 0$ is decoupled from layers $h = 1$ and $h = 2$ at every $t$ and $j$ but it influences those layers. The spatiotemporal behavior of the layer $h = 0$ is thus, independent of the other layers, and is dictated by eqs. (10) and (13) as

$$y_{t+1}^{(0),j} = H\left(-\frac{1}{2} + \frac{1}{2\xi + 1} \sum_{k=-\xi}^{\xi} y_t^{(0),j+k}\right).$$  \hspace{1cm} (16)

This is the majority (voting) rule $[51,66-69]$. The evolution of eq. (16) for a random initial condition of zeros and ones is shown in fig. 1 for the values of $\xi$ indicated. It is well known that the majority rule has stable spatial fixed points $[51,67-69]$. Indeed, Agur $[70]$ found that the number of such stable fixed points $F(N,\xi)$ is given by

$$F(N,\xi) = 2 + \frac{\lfloor \frac{N}{2\xi + 1} \rfloor}{2N - 2\xi} (N - 2\xi) \left(2\xi + 1\right).$$ \hspace{1cm} (17)

We see that $F(N,\xi)$ decreases by increasing $\xi$ for fixed $N$. She also showed that the thickness $d$ of the spatial domains satisfies $d \geq \xi + 1$ so that $\xi$ is, indeed, a rigorous lower bound for $d$ $[70]$. These facts are all observed in fig. 1: After a short transient the system converges to a spatial fixed point were the size of the domains is larger for $\xi$ large. If $\xi = \lfloor N/2 \rfloor$ with $N$ odd (i.e. if $N = 2\xi + 1$), the neighborhood of site $j$ coincides with the whole ring in which case we have a global coupling. There are only two fixed points in this case (all sites “0” or all sites “1”), as is simply obtained from eq. (17), since $F(N,\lfloor N/2 \rfloor) = 2$.

A useful measure of the robustness of the fixed points is the system’s resilience $R(N,\xi)$ given by $[70,71]$:

$$R(N,\xi) = 1 - \frac{F(N,\xi)}{2^N}.$$ \hspace{1cm} (18)

This quantity measures the probability that a fixed point remains unaltered if a single bit is changed $[70]$. We see that $R(N,\xi)$ is larger for $\xi$ large, which means that the domains are more robust to perturbations as $\xi$ is increased.

In domains where $y_t^{(0),j} = 0$, layer $h = 2$ is in the quiescent state ($y_t^{(2),j} = 0$, from eq. (15)). In layer $h = 1$, $y_t^{(1),j} = f_t^{(1),j}$ from eq. (14), and eq. (11) reduces to

$$y_{t+1}^{(1),j} = 1 - H\left(-\frac{1}{2} + \frac{1}{2\xi + 1} \sum_{k=-\xi}^{\xi} y_t^{(1),j+k}\right).$$ \hspace{1cm} (20)

This CA is similar to the majority rule above, but generates oscillations between values “0” and “1”, having no fixed points. It is trivial to show that eq. (20) has a 2-cycle once one has shown that the majority rule, eq. (16), has a fixed point. Indeed, by noting that $H(-x) = 1 - H(x)$, and iterating eq. (20) twice, we find $x_{t+2} = 1 - H\left(-\frac{1}{2} + \frac{1}{2\xi + 1} \sum_{k=-\xi}^{\xi} x_t^{j+k}\right)$, which is equal to two iterate of eq. (16). Thus, at the fixed point of eq. (16), we have a 2-cycle of eq. (20). In fig. 2(A) the spatiotemporal evolution of this rule is shown for several different values of $\xi$. Domains are formed as in the majority rule case (compare with fig. 1), but each individual site, instead of being at a fixed point, synchronously oscillates in phase with all sites within its own domain. Equation (21) can be considered as a toy model for phase clusters in the absence of phase interactions.

Fig. 2: (Color online) (A) Spatiotemporal evolution of eq. (20), for values of $\xi$ indicated in the figure $N = 200$ and 20 time steps. The initial condition is the same as in fig. 1. (B) Spatiotemporal evolution of Wolfram’s rule 105, eq. (21) for $N = 200$, 95 time steps and for a simple initial condition of a single site with value “1” surrounded by zeroes (left panel) and a generic initial condition (right panel) that is the same as in fig. 1.
balance, as was described for the Belousov-Zhabotinsky reaction under global feedback [72] and for electrochemical systems under galvanostatic constraint [73].

In domains where \( y^{(0),j}_t = 1 \) we have, from eq. (14), that layer \( h = 1 \) is quiescent \( (y^{(1),j}_t = 0) \) and layer \( h = 2 \) is active. We have \( y^{(2),j}_{t+1} = f_t^{(2),j} \) from eq. (15) and, hence, eq. (12) becomes

\[
y^{(2),j}_{t+1} = d_2 \left( 0, 1 + y^{(2),j+1}_t + y^{(2),j}_t + y^{(2),j-1}_t \right).
\]

This is the Wolfram CA rule 105. It has positive left \( \lambda_L = 1 \) and right \( \lambda_R = 1 \) Lyapunov exponents (see table 6, p. 541 in [74]) and, thus, it rigorously qualifies as a chaotic CA. Rules of this kind were considered in pioneering works on spatiotemporal intermittency [75,76] and their triangular structures strikingly resemble those encountered in the complex Ginzburg-Landau equation [77–79] in the regime of spatiotemporal chaos. Furthermore, rule 105 is a totalistic additive CA rule that depends only on the sum over neighborhood values and, hence, it is directly related to a discretized version of the Laplacian (diffusion) operator. The rule has also a homogeneous 2-cycle as possible solution. However, for a generic initial condition, the spatiotemporal evolution of the rule is incoherent. In fig. 2(B) we show \( y^{(2),j}_t \) obtained from eq. (21) for a simple initial condition consisting of a single site with value “1” surrounded by zeroes (left panel) and an arbitrary initial condition (right panel) that is the same as in fig. 1. Although a nested regular pattern is observed in the former case, incoherent behavior is found in the latter one.

We now study the spatiotemporal evolution of the CA, eq. (9). In fig. 3, \( x^j_t \) as obtained from eq. (9), is shown for \( \xi = 30 \) (A), 7 (B) and 1 (C), for \( N = 200 \) and 400 time steps and for an initial condition \( x^j_0 = a^j + 2a^j + 4a^j \), where \( a^j \in \{0,1\} \) as is in fig. 1. The rightmost panel is a detail of panel (C). The color code for the site values corresponding to synchronized and incoherent domains is also shown. The values \( x^j_t = 3, 4, 6, 7 \) do not occur in the trajectory.

Fig. 3: (Color online) Spatiotemporal evolution of \( x^j_t \) provided by eq. (9) for \( \xi = 30 \) (A), 7 (B) and 1 (C), for \( N = 200 \) and 400 time steps and for an initial condition \( x^j_0 = a^j + 2a^j + 4a^j \), where \( a^j \in \{0,1\} \) as is in fig. 1. The rightmost panel is a detail of panel (C). The color code for the site values corresponding to synchronized and incoherent domains is also shown. The values \( x^j_t = 3, 4, 6, 7 \) do not occur in the trajectory.
in fig. 3(C), complex coherent structures with well-defined periodicity are observed. In the rightmost panel of fig. 3 a detail of panel (C) is shown, where bands with thickness of \( d = 9 \) and 10 sites contain structures with periods \( T = 12, 14 \) and 62, respectively, all these coherent structures coexisting with the uniformly oscillating background of period 2. In all cases, \( d > \xi = 1 \). We note that, because of the finiteness of the dynamics, the period of any structure is bounded above by \( T \leq 2^d \), where the equality would only hold if the dynamics were ergodic (which is not). For the chimera state in panel (A) of fig. 3 we would expect the pattern to be repeated before \( \sim 2^{10} \) time steps (we have continued the simulation finding no periodicity for any reasonable computation time).

The dynamical behavior of the model is summarized in fig. 4. Panel (A) shows a detail of fig. 3(C) for the first 20 iteration steps. The spatiotemporal evolution of the layers \( \mathbf{d}_2(0, x_t^j) \) (B), \( \mathbf{d}_2(0, x_t^j/2) \) (C) and \( \mathbf{d}_2(0, x_t^j/4) \) (D).

There are \( 8^{p+1} \) CAs in rule space with \( p = 8 \) and range \( 2\xi + 1 \), all described by eq. (5) or, equivalently, by [64]

\[
x_{t+1}^j = \mathbf{d}_8 \left( \sum_{k=-\xi}^{\xi} 8^{k+1} x_t^{j+k}, R \right),
\]

where \( R \in [0, 8^{2\xi+1} - 1] \) (a non-negative integer) is the Wolfram code of the CA rule. The CA model constructed in this paper belongs to this set and can be easily shown to have a huge Wolfram code located within the interval \( 8^{2\xi+1} - 2 < R < 8^{2\xi+1} - 1 \). Even for \( \xi = 1 \), this is an enormous number. The general method presented in [64] (layer decomposition) and illustrated in this letter, makes it possible to systematically address such CAs in rule space.

In this article we have shown how a CA approximation can be constructed from any model of coupled phase oscillators. We have then presented a minimalistic CA model for chimera states and we have shown that they agree with a recent rigorous definition of chimeras [30,31]. The main advantage of our model is that, owing to its simplicity, many features (domain size, transient duration, etc.) are estimated as a function of the only control parameter, the coupling range \( \xi \). Under global coupling no chimera states of the kind described here are possible. Recently, chimera states under global coupling have been experimentally found in electrochemical systems [42] and modeled employing a modified complex Ginzburg-Landau equation [42,80,81] and Stuart-Landau oscillators [33,34,42]. However, in these models the mechanism leading to the emergence of chimeras is different, since it is caused by the presence of a global constraint that introduces nontrivial correlations.

Two anonymous referees are gratefully acknowledged for their helpful suggestions and stimulating remarks.

REFERENCES

[1] Kuramoto Y. and Battogtokh D., Nonlin. Phenom. Complex Syst., 5 (2002) 380.
[2] Abrams D. M. and Strogatz S. H., Phys. Rev. Lett., 93 (2004) 174102.
[3] Tinsley M. R., Nkomo S. and Showalter K., Nat. Phys., 8 (2012) 662.
[4] Hagerstrom A. M., Murphy T. E., Roy R., Hövel P., Omelchenko I. and Schöll E., Nat. Phys., 8 (2012) 658.
[5] Abrams D. M. and Panaggio M. J., Nonlinearity, 28 (2015) R67.
[6] Abrams D. M., Mirollo R. E., Strogatz S. H. and Wiley D. A., Phys. Rev. Lett., 101 (2008) 084103.
[7] Sethia G. C., Sen A. and Atay F. M., Phys. Rev. Lett., 100 (2008) 144102.
[8] Laing C. R., Physica D, 238 (2009) 1569.
[9] Motter A. E., Nat. Phys., 6 (2010) 164.
[10] Martens E. A., Laing C. R. and Strogatz S. H., Phys. Rev. Lett., 104 (2010) 044101.
[11] Olmi S., Politi A. and Torcini A., EPL, 92 (2010) 60007.
[12] Bordyugov G., Pikovsky A. and Rosenblum M., Phys. Rev. E, 82 (2010) 035205.
[13] Sheeba J. H., Chandrasekar V. K. and Lakshmanan M., Phys. Rev. E, 81 (2010) 046203.
[14] Wolfrum M. and Omelchenko O. E., Phys. Rev. E, 84 (2011) 015201.
[15] Laing C. R., Physica D, 240 (2011) 1960.
[16] Omelchenko I., Maistrenko Y., Hövel P. and Schöll E., Phys. Rev. Lett., 106 (2011) 234102.
[17] Omelchenko I., Riemenschneider B., Hövel P., Maistrenko Y. and Schöll E., Phys. Rev. E, 85 (2012) 026212.
