Abstract—In this letter, we investigate consensus control of fractional-order multi-agent systems with the order within \((0, 1)\) via sampled-data control. A new scheme to design distributed controllers with rigorous analysis is presented by utilizing the unique properties of fractional-order calculus, namely hereditary and infinite memory. It is established that global boundedness of all closed-loop signals is ensured and asymptotic consensus is realized. Simulation studies are conducted to illustrate the effectiveness of the proposed control method and verify the obtained results.

Index Terms—Sampled-data control, fractional-order, multi-agent systems, consensus.

I. INTRODUCTION

MULTI-AGENT systems are widely studied in the past decades because of their applications in various areas such as formation control, distributed sensor network, and so on [1]–[3]. Generally, the target of distributed consensus control is to achieve an agreement for the states of all the systems connected in a network by designing a suitable controller for each agent depending on locally available information from itself and its neighbors.

Recently, consensus control problems for integer-order multi-agent systems have been broadly investigated, see for examples [4]–[12], and references therein. As for the consensus control problem of fractional-order multi-agent systems, it is first studied in [13], where the conditions for achieving consensus in terms of network structure and the number of agents are provided. In [14], a consensus protocol with switching order is raised to increase convergence speed over an undirected graph. Consensus involving communication delays is addressed in [15]. Observer-based leader-following consensus problem is investigated in [16], where the leader is described as a second-order integer model while the observers designed for the followers are fractional-order systems with order \(\alpha \in (0, 2)\). Consensus for incommensurate nonlinear fractional-order multi-agent systems with system uncertainties and external disturbances is addressed in [17].

All the works above are studied with continuous control, which requires control signals to be updated and transmitted continuously. In comparison with continuous control, sampled-data control for continuous-time systems, which can be found in for example [18] and [19], possesses various of benefits such as low cost and be more practical in implementation. Many research works for integer-order multi-agent systems with sampled-data control have also been done and a survey on this topic is provided in [20]. However, results on sampled-data control of fractional-order multi-agent systems are still limited. The consensus problem of such systems with directed graph via sampled-data control is investigated in [21]–[25]. In [26], the consensus of linear fractional-order multi-agent systems is studied over a communication topology without requiring its coupling structure to be Laplacian. Event-triggering sampled-data control of fractional-order multi-agent systems is proposed in [27], in which the networked graph for the agents is assumed to be undirected. Consensus of nonlinear fractional-order multi-agent systems is investigated in [28] via event-triggered control.

From the definitions of fractional integral and derivative reviewed in Section II, it can be observed that they can both be treated as weighted integral, which reveals the properties of fractional-order calculus: hereditary and infinite memory. Due to these unique properties, the initial values and the “history” of the variables in the entire interval of integration play extremely important roles in solving fractional-order equations. It is noted that such properties are not considered in the existing literature on sampled-data control of fractional-order multi-agent systems mentioned above. Instead, by dividing the entire time interval to sampling intervals, the solutions of fractional-order equations at the beginning of each sampling interval are used as the new initial values for this sampling interval. As a result, the closed-loop fractional-order systems obtained are transformed to discrete-time systems, where the evolution of one-step-forward states only relies on the current states and current control input. However, when taking the properties of fractional-order calculus into account, the evolution should also depend on the previous control signals at all the discrete-time sampling instants starting from the initial time \(t_0\).

Motivated by the discussions above, we address the consensus issue with the consideration of such unique properties...
of fractional-order calculus. With our proposed control design scheme, it is shown that the closed-loop system is globally stable and asymptotic consensus for fractional-order multi-agent systems is achieved. Different from existing research works, the resulting fractional-order system is rigorously analyzed by considering time evolution of the system states which depends on their initial values at t_0 and also all the previous control signals. A new challenge that is to establish the global boundedness of the proposed distributed controllers which contain all the previous control inputs is overcome in this letter. Simulation studies illustrate the effectiveness of the proposed control scheme and also reveal its accuracy on achieving asymptotic consensus compared to an existing approach. In summary, the main contribution of this letter is to consider the unique hereditary and infinite memory properties of fractional-order calculus and design a sampled-data-based control that can realize asymptotic consensus for fractional-order multi-agent systems and ensure global stability in the sense that all signals in the closed-loop systems remain globally bounded.

The rest of this letter is organized as follows. Preliminaries are provided and the class of fractional-order multi-agent systems considered is described in Section II. In Section III, the design of distributed controllers is presented in detail with analysis. In Section IV, the scheme is illustrated by simulation studies with comparison to that in [21]. Finally, this letter is concluded in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

Definition 1 [29]: The fractional integral of an integrable function $f(t)$ with $\alpha \in \mathbb{R}^+$ and initial time t_0 is

$$J_0^\alpha f(t) = \frac{1}{\Gamma(\alpha)} \int_{t_0}^{t} (t-\tau)^{\alpha-1} f(\tau) d\tau$$

(1)

where $\Gamma(z) = \int_0^{\infty} e^{-z}\tau^{z-1} d\tau$ is the well-known Gamma function, $z \in \mathbb{C}$. One of the significant properties of Gamma function is [30]: $\Gamma(z+1) = z\Gamma(z)$, $\Gamma(n+1) = n\Gamma(n) = n(n-1)\Gamma(n-1) = \cdots = n!$, $\Gamma(-n) = \infty$, where $n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$.

Definition 2 [29]: The Caputo fractional derivative of a function is defined as

$$D_0^\alpha f(t) = \frac{d}{dt} J_0^{m-\alpha} f(t)$$

$$= \frac{1}{\Gamma(m-\alpha)} \int_{t_0}^{t} f^{(m)}(\tau) (t-\tau)^{\alpha-m+1} d\tau$$

(2)

where $m-1 < \alpha < m \in \mathbb{Z}^+$. From (2) we can observe that the Caputo derivative of a constant is 0.

The initial values are needed in order to obtain the unique solution for fractional differential equation $D_0^\alpha x(t) = f(x,t)$, $(m-1 < \alpha < m \in \mathbb{Z}^+ \text{ and } t \geq t_0)$. According to [29], [31] and [32], fractional differential equations with Caputo-type derivative have initial values that are in-line with integer-order differential equations, i.e., $x(t_0), x'(t_0), \ldots, x^{(m-1)}(t_0)$, which contain specific physical interpretations. Therefore, Caputo-type fractional systems are frequently employed in practical analysis.

Definition 3 [33]–[35]: For fractional nonautonomous system $D_0^\alpha x_i(t) = f_i(x,t)$, $i = 1, 2, \ldots, n$, where $0 < \alpha < 1$, initial condition $x(t_0) = [x_1(t_0), x_2(t_0), \ldots, x_n(t_0)]^T \in \mathbb{R}^n$, $f_i(x,t) : [t_0, \infty) \times \Omega \rightarrow \mathbb{R}^n$ is locally Lipschitz in x and piecewise continuous in t (which insinuates the existence and uniqueness of the solution to the fractional systems [29]), D_0^α denotes Caputo fractional derivative and $\Omega \subseteq \mathbb{R}^n$ stands for a region that contains the origin $x = [0,0,\ldots,0]^T$, the equilibrium $x^* = [x_1^*\ldots,x_n^*]^T$ of this system is defined as $D_0^\alpha x^* = f_i(x^*,t)$ for $t \geq t_0$.

Lemma 1 [36]: If $x(t) \in \mathbb{R}^n$ satisfies

$$C_{\alpha} D_0^\alpha x(t) = f(x,t), \quad x(t_0) = x_0,$$

(3)

where $0 < \alpha < 1$ and $f(x,t) \in L_1([t_0,T])$, then it also satisfies the Volterra fractional integral

$$x(t) = x_0 + \frac{1}{\Gamma(\alpha)} \int_{t_0}^{t} (t-\tau)^{\alpha-1} f(x(\tau), \tau) d\tau,$$

(4)

with $t_0 \leq t \leq T$ and vice versa.

Lemma 2: For $\forall j \in \mathbb{Z}^+$ and $0 < \alpha < 1$, the following results hold

1) $0 < \lvert (j+1)^\alpha - 2j^\alpha + (j-1)^\alpha \rvert < 1$,
2) $\lim_{j \to \infty} \{ (j+1)^\alpha - 2j^\alpha + (j-1)^\alpha \} = 0.$

Proof: Define

$$f(j) = (j+1)^\alpha - 2j^\alpha + (j-1)^\alpha$$

(5)

and

$$g(s) = s^\alpha - (s-1)^\alpha.$$

(6)

It can be shown from (6) that, for $\forall s \in \mathbb{R}_+$,

$$g(s) > 0,$$

$$\frac{dg(s)}{ds} = \alpha s^{\alpha-1} - (s-1)^{\alpha-1} - \alpha (s-1)^{\alpha-1} < 0.$$

(7)

From (7), we can obtain that $g(s)$ is monotonically decreasing and $\lim_{s \to \infty} g(s) = 0$, which further implies that $f(j) = [g(j+1) - g(j)] < 0$ and it will monotonically tend to 0 as j tends to ∞. Additionally, it can be easily checked that $\lvert f(1) \rvert < 1$ for $0 < \alpha < 1$ and $\lvert f(j+1) \rvert < \lvert f(j) \rvert$.

B. Problem Formulation

In this letter, Caputo-type definition of the fractional derivatives is utilized. A group of N fractional-order agents are governed by

$$C_{\alpha} D_0^\alpha x_i(t) = u_i(t), \quad \text{for } i = 1, 2, \ldots, N$$

(8)

where the fractional-orders of all the states are equal to $\alpha \in (0,1)$, $x_i \in \mathbb{R}$ and $u_i \in \mathbb{R}$ represent the measurable state and control input of the i-th agent, respectively.

Remark 1: All the agents in this letter are in one-dimensional space for convenience. The results established can be easily extended to n-dimensional space by applying the Kronecker product.

The control problem is to design distributed controller u_i for each agent described in (8) to achieve the following objectives: 1) all the signals in the closed-loop systems are globally bounded; 2) asymptotic consensus for fractional-order
systems (8) is ensured, i.e., \(\lim_{\gamma \to 0} \|x_i(t) - x_j(t)\| = 0 \), for all \(i, j = 1, 2, \ldots, N \), and additionally, \(\lim_{\gamma \to 0} x_i(t) = \frac{\sum_{j=1}^{N} x_j(t)}{N} \).

Suppose that the communications among the \(N \) agents can be represented by a directed graph \(\mathcal{G} \triangleq (\mathcal{V}, \mathcal{E}) \) where \(\mathcal{V} = \{1, 2, \ldots, N\} \) means the set of indexes (or vertices) corresponding to each agent, \(\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V} \) is the set of edges between two distinct agents. An edge \((i, j) \in \mathcal{E}\) denotes that agent \(j \) can obtain information from agent \(i \), but not necessarily vice versa. In this case, agent \(i \) is a neighbor of agent \(j \) if \((i, j) \notin \mathcal{E}\) and \(i \notin \mathcal{N}_i \) since self edges \((i, i)\) are not allowed. \(A = [a_{ij}] \in \mathbb{R}^{N \times N} \) is the connectivity matrix with \(a_{ij} = 1 \) if \((j, i) \in \mathcal{E}\) and \(a_{ij} = 0 \) if \((j, i) \notin \mathcal{E}\) defined.

Throughout this letter, the diagonal elements \(a_{ii} = 0 \). An indegree matrix \(\Delta \) is introduced as \(\Delta = \text{diag}\{\Delta_i\} \in \mathbb{R}^{N \times N} \) with \(\Delta_i = \sum_{j \in \mathcal{N}_i} a_{ij} \) being the \(i \)-th row sum of \(A \). Therefore, the Laplacian matrix of \(\mathcal{G} \) is defined as \(\mathcal{L} = \Delta - A \). A digraph is strongly connected if there is a directed path that connects any two arbitrary nodes of the graph and is balanced if for all \(i \in \mathcal{V}, \sum_{j \neq i} a_{ij} = \sum_{j \neq i} a_{ji} \).

Notations: \(\|\cdot\| \) is the Euclidean norm of a vector. \(I_N \) denotes an identity matrix with dimension equals to \(N \). \(I_N = [1, 1, \ldots, 1]^T \in \mathbb{R}^N \).

Assumption 1: The digraph \(\mathcal{G} \) is strongly connected and balanced.

III. Distributed Controller Design and Stability Analysis

A. Distributed Controller Design

To achieve the above objectives, distributed controller is designed for each local agent based on periodic sampled-data control technology. The sampling instants are described by a discrete-time sequence \(\{t_k\} \) with \(t_0 < t_1 < \cdots < t_k < \cdots \) and \(t_{k+1} - t_k = h \), where \(h > 0 \) is the sampling period.

For \(t \in [t_k, t_k+1) \), let \(x(t) = [x_1(t), x_2(t), \ldots, x_N(t)]^T \) and \(u_0 = [u_{1,0}, u_{2,0}, \ldots, u_{N,0}]^T \) where \(u_{i,0} \) denotes the control signal for the \(i \)-th agent within this time interval. According to Lemma 1, the value of \(x(t_1) \) can be computed as follows:

\[
x(t_1) = x(t_0) + \frac{1}{\Gamma(\alpha)} \int_{t_0}^{t_1} (t_1 - \tau)^{\alpha-1} u_0 \, d\tau
\]

By designing the controller for the \(i \)-th agent as:

\[
u_{i,0} = \gamma \sum_{j \in \mathcal{N}_i} a_{ij} (x_j(t_0) - x_i(t_0)) ,
\]

where \(\gamma > 0 \), the closed-loop systems in this sampling period can be expressed as:

\[
x(t_1) = x(t_0) - \gamma \mathcal{L} x(t_0) \frac{h^\alpha}{\Gamma(\alpha+1)} .
\]

Now for \(t \in [t_k, t_{k+1}) (k \in \mathbb{Z}^+) \), define \(u_k = [u_{1,k}, u_{2,k}, \ldots, u_{N,k}]^T \). Since the fractional-order derivative of \(x \) depends on all the historical values of \(u \), thus not only the value of \(u \) at present instant but also all of its previous values are needed to determine the future behavior of fractional-order system. Therefore, \(x(t_{k+1}) \) should be expressed in terms of \(x(t_0) \) and \(u_j (j = 0, 1, \ldots, k) \) as follows:

\[
x(t_{k+1}) = x(t_0) + \frac{1}{\Gamma(\alpha)} \int_{t_0}^{t_t} (t_{k+1} - \tau)^{\alpha-1} u_0 \, d\tau + \cdots
\]

\[
+ \frac{1}{\Gamma(\alpha)} \int_{t_k}^{t_{k+1}} (t_{k+1} - \tau)^{\alpha-1} u_k \, d\tau
\]

\[
x(t_k) + \sum_{l=1}^{k} [(l+1)h^\alpha - 2lh^\alpha + (l-1)h^\alpha] u_{l-1} \frac{h^l}{\Gamma(\alpha+1)}
\]

\[
+ \frac{u_k}{\Gamma(\alpha+1)} h^\alpha .
\]

Then based on (12), we design the distributed controller for the \(i \)-th agent as:

\[
u_{i,k} = \gamma \sum_{j \in \mathcal{N}_i} a_{ij} (x_j(t_k) - x_i(t_k))
\]

\[
- \sum_{l=1}^{k} [(l+1)^{\alpha} - 2l^{\alpha} + (l-1)^{\alpha}] u_{l-1} ,
\]

which results in the following closed-loop systems:

\[
x(t_{k+1}) = x(t_k) - \gamma \mathcal{L} x(t_k) \frac{h^\alpha}{\Gamma(\alpha+1)} .
\]
Therefore, \(u_{2,k} = |f(1)|u_{1,(k-1)} + |f(2)|u_{1,(k-2)} + \cdots + |f(k)|u_{1,0} \). Clearly, \(u_{2,k} \) is designed in such a way that the control signals at earlier time instants are less weighted. For example, the weight \(|f(k)|\) of \(u_{1,0} \) will tend to 0 as \(k \) increases. This is reasonable for practical situations of fractional-order systems. It can be observed from (11) and (14) that our designed distributed controllers allow us to analyze the stability of the closed-loop systems in the same way as that of the integer-order discrete-time closed-loop systems, which will be demonstrated in the next subsection.

B. Stability Analysis

Our main result is presented in the following theorem, where a stability criterion is given.

Theorem 1: Consider the closed-loop systems consisting of fractional systems (8) and sampled-data based distributed controllers (10) and (13). All the signals in the closed-loop systems are globally bounded and asymptotic consensus is achieved, i.e., \(\lim_{t \to \infty} |x_i(t) - x_j(t)| = 0, \forall i, j = 1, 2, \ldots, N \), if the design parameters \(h \) and \(\gamma \) satisfy
\[
0 < \gamma \frac{h^\alpha}{\Gamma(\alpha + 1)} < \frac{1}{\Delta_{\text{max}}}
\]
and
\[
\beta = 1 - \gamma \lambda_2(L_s) \frac{h^\alpha}{\Gamma(\alpha + 1)},
\]
where \(\lambda_2(L_s) \) represents the second smallest eigenvalue of \(L_s \). Moreover, since the digraph is balanced, asymptotic average-consensus can be achieved, i.e., \(\lim_{t \to \infty} x_i(t) = \frac{\sum_{j=1}^N x_j(t_0)}{N} \).

Proof: As mentioned above, the main challenge is how to achieve global stability of the resulting systems in the presence of the second term on the right-hand side of (12). For this purpose, an additional control action is proposed in (13), in order to compensate for the effects of this term. However, with this new control term which is the weighted sum of previous control signals, it is difficult to show the boundedness of control inputs. To overcome this difficulty, we first establish the following relationship
\[
\|u_k\| \leq \|u_0\|, \text{ for all } k \geq 0.
\]

Now we define error vectors as
\[
e(t_k) = Lx(t_k), \quad k \in \mathbb{N}_0.
\]
Then the proof of (18) is completed through mathematical induction as detailed below.

Step 1: According to (10), (13) and (19), \(u_0 \) and \(u_1 \) can be respectively expressed as follows
\[
\begin{align*}
\dot{u}_0 & = -\gamma e(t_0), \\
\dot{u}_1 & = -\gamma e(t_1) + |f(1)|u_0.
\end{align*}
\]
Therefore, we have
\[
\begin{align*}
\|u_1\| & = \| - \gamma e(t_1) + |f(1)|u_0 \| \\
& \leq \gamma \| e(t_1) \| + |f(1)| \cdot \| u_0 \| \\
& \leq \gamma \beta \| e(t_0) \| + |f(1)| \cdot \| u_0 \| \\
& = [\beta + |f(1)|] \cdot \| u_0 \|.
\end{align*}
\]
By design, \(\gamma \) and \(h \) in such a way that \([\beta + |f(1)|] \leq 1 \), then we have \(\|u_1\| \leq \|u_0\| \).

Step 2: Assuming that \(\|u_k\| \leq \|u_0\| \) holds for \(k > 1 \). According to (13) and (19), \(\|u_{k+1}\| \) can be expressed as
\[
\|u_{k+1}\| = \| - \gamma e(t_{k+1}) + \sum_{l=1}^{k+1} |f(l)|u_{k+1-l} \|
\]
\[
\leq \gamma \| e(t_{k+1}) \| + \sum_{l=1}^{k+1} |f(l)| \cdot \| u_{k+1-l} \|.
\]
Since \(\|e(t_{k+1})\| \leq \beta \| e(t_k) \| \leq \cdots \leq \beta^{k+1} \| e(t_0) \| \), therefore (23) becomes
\[
\|u_{k+1}\| \leq \gamma \beta^{k+1} \| e(t_0) \| + \sum_{l=1}^{k+1} |f(l)| \cdot \| u_{k+1-l} \|.
\]
Since for \(1 \leq l \leq k+1, \| u_{k+1-l} \| \leq \| u_0 \| \) holds, hence
\[
\|u_{k+1}\| \leq \beta \| e(t_0) \| + \sum_{l=1}^{k+1} |f(l)| \cdot \| u_0 \|
\]
\[
= \left[\beta^{k+1} + \sum_{l=1}^{k+1} |f(l)| \right] \cdot \| u_0 \|.
\]
If \(\gamma \) and \(h \) are chosen to satisfy (16), then we have (18). According to Lemma 2, \(|f(l)| < 1 \) for all \(l \in \mathbb{Z}^+ \) and it will monotonically tend to 0 as \(l \to \infty \). Hence it is worth noting that Lemma 2 is the premise that (16) holds for all \(k \geq 0 \). Since \(\|u_0\| = \gamma \| e(t_0) \| \) is bounded, therefore the global boundedness of all control signals is guaranteed.

Furthermore, (14) can be rewritten as
\[
\dot{x}(t_{k+1}) = Px(t_k)
\]
where \(P = I_N - \gamma \frac{h^\alpha}{\Gamma(\alpha + 1)} \cdot \) is Perron matrix of digraph \(G \) with \(\gamma \frac{h^\alpha}{\Gamma(\alpha + 1)} \) treated as an integrated gain. Under condition (15), all the eigenvalues of \(P \) are within the unit circle, which further implies the global boundedness of \(x(t) \).

Also, from (14) it can be noticed that the \(i \)-th agent in the closed-loop systems is described as
\[
\dot{x}_i(t_{k+1}) = x_i(t_k) + \gamma \frac{h^\alpha}{\Gamma(\alpha + 1)} \sum_{j \in N_i} a_{ij} \left(x_j(t_k) - x_i(t_k) \right).
\]
Hence, under Assumption 1, the proof of the condition (15) for reaching asymptotic consensus follows from that [37, Th. 2] and thus the theorem is proved.

Remark 4: From (22) and (24), it can be seen that \(\beta \) is a lower bound of the decaying rate of \(\| e(t_0) \| \). For the case of a strongly connected unbalanced digraph, \(\beta \) is redefined as follows:
\[
\beta = \sqrt{\max_{p=0} e^T P^T Pe}.
\]
Fig. 1. States of (29).

Fig. 2. $\|u\|^2$ of controllers in this letter and in [21].

Fig. 3. Value of $[\beta^{k+1} + \sum_{l=1}^{k+1} |f(l)|]$ under the proposed control scheme.

Fig. 4. Mean absolute error r with proposed scheme and scheme in [21].

is revealed that the proposed controller can achieve asymptotic consensus in a more precise way.

Consider a group of five fractional-order agents with the following dynamics

$$C^\alpha_t D^\alpha_t x_i(t) = u_i(t), \quad i = 1, 2, \ldots, 5, \quad (29)$$

where $\alpha = 0.9$ and initial values of states are $x(t_0) = [4.5, 5, 6, 1.5, -1]^T$. The connection weights of the graph are $a_{14} = a_{15} = a_{21} = a_{23} = a_{31} = a_{32} = a_{42} = a_{43} = a_{54} = 1$ and other entries of A are equal to zero.

Based on (15) to (17), the designed control parameter and sampling period are respectively selected as $\gamma = 0.15$ and $h = 0.85s$. The simulation results are shown in Fig. 1 to Fig. 3. From Fig. 1, asymptotic consensus and average-consensus are realized with $\lim_{t \to \infty} x_i(t) = x_{\text{final}} = \frac{\sum_{i=1}^{5} x_i(t_0)}{5} = 3.2$. The value of $\|u\|^2$ can be observed from Fig. 2, which shows the boundedness of all control signals. Furthermore, for the purpose of verifying the condition for ensuring all the control signals are globally bounded, the value of $[\beta^{k+1} + \sum_{l=1}^{k+1} |f(l)|]$ is given in Fig. 3, from which it can be noticed that inequality (16) holds for $\forall k \in \mathbb{N}_0$ with the selected design parameters.

To better illustrate the accuracy and effectiveness of our proposed control algorithm, a comparative simulation study between the control scheme in [21] and in this letter is implemented under the same control parameters. The mean absolute error $r(t) = \frac{1}{5} \sum_{i=1}^{5} |x_i(t) - x_{\text{final}}|$ with the proposed scheme and control method in [21] are displayed in Fig. 4. It can be seen from Fig. 1 and Fig. 4 that the mean absolute error with control scheme in [21] is larger compared to that with the control scheme in this letter. Furthermore, as can be observed in Fig. 2, the control signals under the control scheme in [21] share similar magnitude with our proposed control inputs. Besides, by comparing the areas under the solid line and dash line in Fig. 2, it can be noticed that the accumulated control efforts in the proposed scheme are comparable to those in [21], which exemplifies the effectiveness of the proposed schemes. All these results verify our theoretical results established. More importantly, we have provided solid analysis of the fractional-order system by taking its hereditary and infinite memory properties into account.
V. Conclusion

In this letter, a distributed consensus sampled-data based control scheme for multi-agent systems with fractional-order \(\alpha \in (0, 1) \) is proposed. By taking the hereditary and infinite memory properties of fractional-order calculus into account, a new control scheme is designed to not only ensure system stability, but also achieve asymptotic consensus. Simulation results also illustrate the accuracy and effectiveness of the proposed control algorithm. Since the proposed controller contains the weighted sum of all the previous control signals while the current control input has weaker relation with older control signal, thus in practice, finite recent steps of control signals might be applied for computing the current control signal to reduce the required signal storage space and ensure certain performance accuracy in the meantime, which further indicates an interesting future topic to investigate the finite-dimensional sampled-data control of fractional-order multi-agent systems and its trade-off between control performance and storage size. Moreover, as mentioned in Remark 4, it is a meaningful future research direction to extend our result to the fractional-order multi-agent system over an unbalanced digraph.

References

[1] J. A. Fax and R. M. Murray, “Information flow and cooperative control of vehicle formations,” IEEE Trans. Autom. Control, vol. 49, no. 9, pp. 1465–1476, Sep. 2004.
[2] J. Cortés and F. Bullo, “Coordination and geometric optimization via distributed dynamical systems,” SIAM J. Control Optim., vol. 44, no. 5, pp. 1543–1574, 2005.
[3] W. Yu, G. Chen, Z. Wang, and W. Yang, “Distributed consensus filtering in sensor networks,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 39, no. 6, pp. 1568–1577, Dec. 2009.
[4] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Trans. Autom. Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.
[5] W. Wang, J. Huang, C. Wen, and H. Fan, “Distributed adaptive control for consensus tracking with application to formation control of non-holonomic mobile robots,” Automatica, vol. 50, no. 4, pp. 1254–1263, Apr. 2014.
[6] W. Wang, C. Wen, and J. Huang, “Distributed adaptive asymptotically consensus tracking control of non-linear multi-agent systems with unknown parameters and uncertain disturbances,” Automatica, vol. 77, pp. 133–142, Mar. 2017.
[7] L. Cheng, Z.-G. Hou, M. Tan, and X. Wang, “ Necessary and sufficient conditions for consensus of double-integrator multi-agent systems with measurement noises,” IEEE Trans. Autom. Control, vol. 56, no. 8, pp. 1958–1963, Aug. 2011.
[8] L. Cheng, Y. Wang, W. Ren, Z.-G. Hou, and M. Tan, “On convergence rate of leader-following consensus of linear multi-agent systems with communication noises,” IEEE Trans. Autom. Control, vol. 61, no. 11, pp. 3586–3592, Nov. 2016.
[9] J. Huang, C. Wen, W. Wang, and Y.-D. Song, “Adaptive finite-time consensus control of a group of uncertain nonlinear mechanical systems,” Automatica, vol. 51, pp. 292–301, Jan. 2015.
[10] J. Huang, Y.-D. Song, W. Wang, C. Wen, and G. Li, “Smooth control design for adaptive leader-following consensus control of a class of high-order nonlinear systems with time-varying reference,” Automatica, vol. 83, pp. 361–367, Sep. 2017.
[11] F. Chen, Z. Chen, L. Xiang, Z. Liu, and Z. Yuan, “Reaching a consensus via pinning control,” Automatica, vol. 45, no. 5, pp. 1215–1220, May 2009.
[12] M. Zheng, C.-L. Liu, and F. Liu, “Average-consensus tracking of sensor network via distributed coordination control of heterogeneous multi-agent systems,” IEEE Control Syst. Lett., vol. 3, no. 1, pp. 132–137, Jan. 2019.
[13] Y. Cao, Y. Li, W. Ren, and Y. Chen, “Distributed coordination of networked fractional-order systems,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 40, no. 2, pp. 362–370, Apr. 2010.
[14] W. Sun, Y. Li, C. Li, and Y. Chen, “Convergence speed of a fractional order consensus algorithm over undirected scale-free networks,” Asian J. Control, vol. 13, no. 6, pp. 936–946, May 2011.
[15] J. Shen and J. Cao, “Necessary and sufficient conditions for consensus of delayed fractional-order systems,” Asian J. Control, vol. 14, no. 6, pp. 1690–1697, Feb. 2012.
[16] W. Yu, Y. Li, G. Wen, X. Yu, and J. Cao, “Observer design for tracking consensus in second-order multi-agent systems: Fractional order less than two,” IEEE Trans. Autom. Control, vol. 62, no. 2, pp. 894–900, Feb. 2017.
[17] M. Shahvahidi, M.-B. Naghibi-Sistani, and H. Modares, “Distributed consensus control for a network of incommensurate fractional-order systems,” IEEE Control Syst. Lett., vol. 3, no. 2, pp. 481–486, Apr. 2019.
[18] L.-S. Hu, T. Bai, P. Shi, and Z. Wu, “Sampled-data control of networked linear control systems,” Automatica, vol. 43, no. 5, pp. 903–911, May 2007.
[19] B. Chen, Z. Wang, and T. Huang, “Stabilization for sampled-data systems under noisy sampling interval,” Automatica, vol. 63, pp. 162–166, Jan. 2016.
[20] X. Ge, Q.-L. Han, D. Ding, X.-M. Zhang, and B. Ning, “A survey on recent advances in distributed sampled-data cooperative control of multi-agent systems,” Neurocomputing, vol. 275, pp. 1684–1701, Jan. 2018.
[21] Z. Yu, H. Jiang, C. Hu, and J. Yu, “Necessary and sufficient conditions for consensus of fractional-order multiagent systems via sampled-data control,” IEEE Trans. Cybern., vol. 47, no. 8, pp. 1892–1901, Aug. 2017.
[22] H. Su, Y. Ye, X. Chen, and H. He, “Necessary and sufficient conditions for consensus in fractional-order multiagent systems via sampled-data control,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 2, pp. 365–369, Feb. 2020.
[23] Y. Ye and H. Su, “Consensus of delayed fractional-order multiagent systems with intermittence sampled data,” IEEE Trans. Ind. Inform., vol. 16, no. 6, pp. 3828–3837, Jun. 2020.
[24] J. Chen, B. Chen, and Z. Zeng, “Synchronization and consensus in networks of linear fractional-order multi-agent systems via sampled-data control,” IEEE Trans. Neural Netw. Learn. Syst., early access, May 21, 2019, doi: 10.1109/TNNLS.2019.2915653.
[25] H. Liu, G. Xie, and Y. Gao, “Consensus of fractional-order double-integrator multi-agent systems,” Neurocomputing, vol. 340, pp. 110–124, May 2019.
[26] Y. Ye, H. Su, J. Chen, and Y. Peng, “Consensus in fractional-order multi-agent systems with intermittence sampled data over directed networks,” IEEE Trans. Circuits Syst. I, vol. 67, no. 2, pp. 365–369, Feb. 2020.
[27] Y. Chen, G. Wen, Z. Peng, and A. Rahmani, “Consensus of fractional-order multi-agent system via sampled-data event-triggered control,” J. Franklin Institute, vol. 356, no. 17, pp. 10241–10259, Nov. 2019.
[28] W. Wang and Y. Yang, “Leader-following consensus of nonlinear fractional-order multi-agent systems via event-triggered control,” Int. J. Syst. Sci., vol. 48, no. 3, pp. 571–577, 2017.
[29] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. San Diego, CA, USA: Academic, 1999.
[30] D. Xue, Fractional-Order Control Systems: Fundamentals and Numerical Implementations, vol. 1. Berlin, Germany: De Gruyter, 2017.
[31] C. Li and W. Deng, “Remarks on fractional derivatives,” Appl. Math. Comput., vol. 187, no. 2, pp. 777–784, Apr. 2007.
[32] B. Bandopadhyay and S. Kamal, Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach, vol. 317. Cham, Switzerland: Springer, 2019.
[33] Y. Li, Y. Chen, and I. Podlubny, “Mittag-Leffler stability of fractional order nonlinear dynamic systems,” Automatica, vol. 45, no. 8, pp. 1965–1969, Aug. 2009.
[34] Y. Li, Y. Chen, and I. Podlubny, “Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability,” Comput. Math. Appl., vol. 59, no. 5, pp. 1810–1821, Mar. 2010.
[35] F. Zhang, C. Li, and Y. Chen, “Asymptotical stability of nonlinear fractional differential system with Caputo derivative,” Int. J. Differ. Equ., vol. 12, Aug. 2011, Art. no. 635165.
[36] V. Lakshmikantham, S. Leela, and J. V. Devi, Theory of Fractionaldynamic Systems. Cambridge, U.K.: CSP, 2009.
[37] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1, pp. 215–233, Jan. 2007.