ANNIHILATION OF $\text{tor}_{\mathbb{Z}_p}(G_{K,S}^{ab})$
FOR REAL ABELIAN EXTENSIONS K/\mathbb{Q}

GEORGES GRAS

Abstract. Let K be a real abelian extension of \mathbb{Q}. Let p be a prime number, S the set of p-places of K and $G_{K,S}$ the Galois group of the maximal $S \cup \{\infty\}$-ramified pro-p-extension of K (i.e., unramified outside p and ∞). We revisit the problem of annihilation of the p-torsion group $T_K := \text{tor}_{\mathbb{Z}_p}(G_{K,S}^{ab})$ initiated by us and Oriat then systematized in our paper on the construction of p-adic L-functions in which we obtained a canonical ideal annihilator of T_K in full generality (1978–1981). Afterwards (1992–2014) some annihilators, using cyclotomic units, were proposed by Solomon, Belliard–Nguyen Quang Do, Nguyen Quang Do–Nicolas, All, Belliard–Martin. In this text, we improve our original papers and show that, in general, the Solomon elements are not optimal and/or partly degenerated. We obtain, whatever K and p, an universal non-degenerated annihilator in terms of p-adic logarithms of cyclotomic numbers related to L_p-functions at $s = 1$ of primitive characters of K (Theorem 9.4). Some computations are given with PARI programs; the case $p = 2$ is analyzed and illustrated in degrees 2, 3, 4 to test a conjecture.

Contents

1. Introduction 2
2. Notations and reminders on p-ramification theory 3
3. Kummer theory and Spiegel involution 3
3.1. Kummer theory 4
3.2. Spiegel involution 5
4. Stickelberger elements and cyclotomic numbers 6
4.1. General definitions 6
4.2. Norms of Stickelberger elements and cyclotomic numbers 7
4.3. Multiplicators of Stickelberger elements 10
5. Annihilation of radicals and Galois groups 10
5.1. Annihilation of $\text{Rad}_n/L_n^{\times p^n}$ 10
5.2. Computation of $S_{L_n}(c)$* or $S'_{L_n}(c)$* – Annihilation of T_K 12
5.3. Experiments for cyclic cubic fields with $p \equiv 1$ (mod 3) 13
6. Experiments and heuristics about the case $p = 2$ 15
6.1. Quadratic fields 15
6.2. A family of cyclic quartic fields of composite conductor 16
6.3. Cyclic cubic fields of prime conductors 19
6.4. Cyclic quartic fields of prime conductors 19

Date: July 5, 2018; September 18, 2018.
1991 Mathematics Subject Classification. 11R37, 11R29, 11R42, 11S15.
Key words and phrases. class field theory; abelian p-ramification; annihilation of p-torsion modules; p-adic L-functions; Stickelberger’s elements; cyclotomic units.
1. Introduction

Let K/\mathbb{Q} be a real abelian extension of Galois group G_K. Let p be a prime number, S the set of p-places of K, and $G_{K,S}$ the Galois group of the maximal S-ramified in the ordinary sense (i.e., unramified outside p and ∞, whence totally real if $p = 2$) pro-p-extension of K.

We revisit the classical problem of annihilation of the so-called $\mathbb{Z}_p[G_K]$-module $T_K := \text{tor}_{\mathbb{Z}_p}(G_{K,S}^{ab})$, as dual of $H^2(G_{K,S}, \mathbb{Z}_p(0))$. This was initiated by us [12] (1979) and improved by Oriat [22] (1981). Then in our paper [13] (1978/79) on the construction of p-adic L-functions (via an “arithmetic Mellin transform” from the “Spiegel involution” of suitable Stickelberger elements) we obtained incidentally a canonical ideal annihilator A_K of T_K in full generality, but our purpose, contrary to the present work, was the semi-simple case with p-adic characters and the annihilation of the isotopic components; this aspect has then been outdated by the “principal theorems” of Ribet–Mazur–Wiles–Kolyvagin–Greither (refer for instance to the bibliography of [15]), and many other contributions.

Afterwards some annihilators, using cyclotomic units, were proposed by Solomon [26] (1992), Belliard–Nguyen Quang Do [5] (2005), Nguyen Quang Do–Nicolas [21] (2011), All [1] (2013), Belliard–Martin [4] (2014), using techniques of Sinnott, Rubin, Thaine, Coleman, from Iwasawa’s theory.

In this text, we translate into english some parts of the above 1978–1981’s papers, written in french with tedious classical techniques, then we show that, in general, the Solomon elements Ψ_K are often degenerated regarding the annihilator A_K, even for cyclic fields, and explain the origin of this gap due to trivialization of some Euler factors.

We obtain, whatever K and p (Theorem 9.4), an universal non-degenerated annihilator A_K, in terms of p-adic logarithms of cyclotomic numbers, perhaps the best possible regarding these classical methods, but probably too
general to cover all the possible Galois structures of \mathcal{T}_K, which raises the question of the existence of a better theorem than Stickelberger’s one. Indeed, if the semi-simple case is now completely solved, the non-semi-simple case is far to be known. Numerical experiments show in this case that the results are far to give the precise Galois structure of \mathcal{T}_K (e.g., in direction of its Fitting ideal), moreover, it seems to us that many (all ?) papers are based on the classical reasoning with Kummer’s theory and Leopoldt’s Spiegel involution applied to Stickelberger’s elements, even translated into Iwasawa’s theory, without practical analysis of the results (e.g., with extensive numerical illustrations). So, there is some difficulties to compare these various contributions.

Thus, we perform some computations given with PARI programs [23] to analyse the quality of such annihilators, which is in general not addressed by papers dealing with Iwasawa’s theory. We consider in a large part the case $p = 2$, illustrated in degrees 2, 3, 4 to test the Conjecture 5.7.

2. Notations and reminders on p-ramification theory

Let K be a real abelian number field of degree d, of Galois group G_K, and let $p \geq 2$ be a prime number; we denote by S the set of prime ideals of K dividing p. Let $G_{K,S}$ be the Galois group of the maximal $S \cup \{\infty\}$-ramified pro-p-extension of K and let $H^{	ext{pr}}_K$ be the maximal abelian $S \cup \{\infty\}$-ramified pro-p-extension of K. To simplify, we put $G_{K,S} = G_K$ and (e.g., [8, Chapter III, § (c)]):

$$\mathcal{T}_K := \operatorname{tor}_{\mathbb{Z}_p}(G_K) = \operatorname{Gal}(H^{	ext{pr}}_K/K_\infty)$$

where $K_\infty = K\mathbb{Q}_\infty$ is the cyclotomic \mathbb{Z}_p-extension of K; so:

$$G_K \simeq \mathbb{Z}_p \bigoplus \mathcal{T}_K$$

since, in the abelian case, Leopoldt’s conjecture is true.

We denote by F an extension of K such that $H^{	ext{pr}}_K$ is the direct compositum of K_∞ and F over K, then by \mathcal{O}_K^∞ the subgroup of the p-class group \mathcal{O}_K corresponding, by class field theory, to $\operatorname{Gal}(H_K/K_\infty \cap H_K)$, where H_K is the p-Hilbert class field. We have (where \sim means “equality up to a p-adic unit”):

$$\# \mathcal{O}_K^\infty \sim \frac{\# \mathcal{O}_K}{[K_\infty \cap H_K : K]} \sim \# \mathcal{O}_K \cdot \frac{[K \cap \mathbb{Q}_\infty : \mathbb{Q}]}{e_p} \cdot \frac{2}{\#(-1) \cap N_{K/\mathbb{Q}}(U_K)},$$

where e_p is the ramification index of p in K/\mathbb{Q} [8, Theorem III.2.6.4], and U_K is defined as follows:

For each $p | p$, let K_p be the p-completion of K and \mathfrak{p} the corresponding prime ideal of the ring of integers of K_p; then let:

$$U_K := \left\{ u \in \bigoplus_{p | p} K_p^\times, \ u = 1 + x, \ x \in \bigoplus_{p | p} \mathfrak{p} \right\} \quad \& \quad W_K := \operatorname{tor}_{\mathbb{Z}_p}(U_K),$$

the \mathbb{Z}_p-module (of \mathbb{Z}_p-rank $d = [K : \mathbb{Q}]$) of principal local units at p and its torsion subgroup, respectively; by class field theory this gives in the diagram:

$$\operatorname{Gal}(H^{	ext{pr}}_K/H_K) \simeq U_K/\mathcal{E}_K \quad \& \quad \operatorname{Gal}(H^{	ext{pr}}_K/K_\infty H_K) \simeq \operatorname{tor}_{\mathbb{Z}_p}(U_K/\mathcal{E}_K),$$
where \(\overline{E}_K \) is the closure of the group \(E_K \) of \(p \)-principal global units of \(K \) (i.e., units \(\epsilon \equiv 1 \pmod{\prod_{p|p} p} \)):

\[
T_K = \text{tor}_{\mathbb{Z}_p}(G_K)
\]

\[
K_{\infty} \# \mathcal{O}_{K}^\infty K_{\infty}H_K \# \mathcal{R}_K \cdot \# \mathcal{W}_K
\]

\[
K_{\infty} \cap H_K H_K \cong U_K/E_K
\]

\[
G_K F
\]

For any field \(k \), let \(\mu_k \) be the group of roots of unity of \(k \) of \(p \)-power order. Then \(W_K = \bigoplus_{p \mid p} \mu_{K_p} \). We have the following exact sequence defining \(\mathcal{W}_K \) and \(\mathcal{R}_K \) via the \(p \)-adic logarithm log (\cite[Lemma III.4.2.4]{8} or \cite[Lemma 3.1 & § 5]{9}):

\[
1 \to \mathcal{W}_K := W_K/\mu_K \longrightarrow \text{tor}_{\mathbb{Z}_p}(U_K/\overline{E}_K)
\]

\[
\log \longrightarrow \text{tor}_{\mathbb{Z}_p}(\log(U_K)/\log(\overline{E}_K)) =: \mathcal{R}_K \to 0.
\]

The group \(\mathcal{R}_K \) is called the normalized \(p \)-adic regulator of \(K \) and makes sense for any number field (see the above references in \cite{9} for more details and the main properties of these invariants).

It is clear that the annihilation of \(T_K \) mainly concerns the group \(\mathcal{R}_K \) since the \(p \)-class group is in general trivial (and so for \(p \) large enough) and because the regulator may be non-trivial with large valuations and unpredictable \(p \) (see \cite{11} for some conjectures and \cite{10} giving programs of fast computation of the group structure of \(T_K \) for any number field given by means of polynomials).

Definition 2.1. A field \(K \) is said to be \(p \)-rational if the Leopoldt conjecture is satisfied for \(p \) in \(K \) and if the torsion group \(T_K \) is trivial (\cite[Section III, § 2]{14}, then \cite[Theorem IV.3.5]{8}, \cite{10}, and bibliographies for the history and properties of \(p \)-rationality).

This has deep consequences in Galois theory over \(K \) since \(T_K \) is the dual of \(H^2(G_{K,S}, \mathbb{Z}_p(0)) \). \cite{18}.

3. Kummer theory and Spiegel involution

3.1. Kummer theory.
We denote by \(\mathbb{Q}_n, n \geq 0 \), the \(n \)th stage in \(\mathbb{Q}_\infty \) so that \([\mathbb{Q}_n : \mathbb{Q}] = p^n \). Let \(n_0 \geq 0 \) be defined by \(K \cap \mathbb{Q}_\infty =: \mathbb{Q}_{n_0} \).

Let \(n \geq n_0 \). We denote by \(K_n \) the compositum \(K \mathbb{Q}_n \) and by \(F_n \) the compositum \(FK_n = F \mathbb{Q}_n \) (in other words, \(K = K_{n_0}, F = F_{n_0} \)). Then we have the group isomorphism \(\text{Gal}(F_n/K_n) \cong T_K \) for all \(n \geq n_0 \).

Put \(q = p \) (resp. 4) if \(p \neq 2 \) (resp. \(p = 2 \)). Let \(L = K(\mu_q) \) and \(M = F(\mu_q) \); then put \(L_n := LK_n \) for all \(n \geq n_0 \).
Let $M_n := F_n(\mu q)$ (whence $L = L_{n_0}$, $M = M_{n_0}$). For $p \neq 2$, the degrees $[L_n : K_n] = [M_n : F_n]$ are equal to a divisor δ of $p - 1$ independent of $n \geq n_0$ (δ is even since K is real). For $p = 2$, $\delta = 2$. In any case, one has, for $n \geq n_0$:

$$L_n = K(\mu q^n).$$

All this is summarized by the following diagram:

![Diagram](image)

Lemma 3.1. Let f_K be the conductor of K. Then the conductor f_{L_n} of L_n (for $n \geq n_0$) is equal to $\text{lcm}(f_K, q^n)$. Thus for n large enough (explicit), $f_{L_n} = q^n f'$, with $p \nmid f'$. If $p \nmid f_K$, then $f_{L_n} = q^n f_K$ for all $n \geq n_0 + e$.

Proof. A classical formula (see, e.g., [8, Proposition II.4.1.1]).

Lemma 3.2. Let p^e, $e \geq 0$, be the exponent of T_K. Then, for all $n \geq n_0 + e$, the restriction $T_K \to \text{Gal}(F_n/K_n)$ is an isomorphism of G_K-modules and $T_K \simeq \text{Gal}(M_n/L_n)$.

Proof. The abelian group $G_K := \text{Gal}(H^{fr}_K/K)$ is normal in $\text{Gal}(H^{fr}_K/Q)$, then $(G_K)^{p^{n-n_0}}$ is normal; but $(G_K)^{p^{n-n_0}}$ fixes F_n which is Galois over Q. In other words, G_K, as well as $\text{Gal}(K_n/Q)$ or $\text{Gal}(K_{\infty}/Q)$, operate by conjugation in the same way since G_K is abelian; if F is clearly non-unique, then F_{n_0+e} is canonical, being the fixed field of $(G_K)^{p^e}$. Then $\text{Gal}(M_n/L_n) \simeq \text{Gal}(F_n/K_n)$ is trivially an isomorphism of G_K-modules.

The use of the extension F is not strictly necessary but clarifies the reasoning which needs to work at any level $n \geq n_0 + e$ to preserve Galois structures.

The extension M_n/L_n (of exponent p^e) is a Kummer extension for the “exponent” q^n since L_n contains the group μq^n and since $n \geq n_0 + e$.

Let $G_n := \text{Gal}(L_n/Q)$ and let, for $n \geq n_0 + e$,

$$\text{Rad}_n := \{w \in L_n^\times, q^n\sqrt{w} \in M_n\}$$
be the radical of M_n/L_n. Then we have the group isomorphism:

$$\text{Rad}_n/L_n^\times \simeq \text{Gal}(M_n/L_n).$$

In some sense, the group Rad_n/L_n^\times does not depend on $n \geq n_0 + e$ since the canonical isomorphism $\text{Gal}(M_n/h/L_n+h) \simeq \text{Gal}(M_n/L_n)$ gives $L_n+h(\sqrt[n]{\text{Rad}_n}) = M_n+h$; the map $\text{Rad}_n/L_n^\times \rightarrow \text{Rad}_n/h/L_n^\times$ is an isomorphism for any $h \geq 0$. In other words, as soon as $n \geq n_0 + e$, we have:

$$\text{Rad}_n \subseteq L_n^\times \simeq \text{Rad}_n^h \cdot L_n^\times.$$

3.2. Spiegel involution

The structures of $(\mathbb{Z}/q^np^n)[G_n]$-modules of the Galois group $\text{Gal}(M_n/L_n)$ and Rad_n/L_n^\times are related via the “Spiegel involution” defined as follows: let $\omega_n : G_n \rightarrow \mathbb{Z}/q^np^n$ be the character of Teichmüller of level n defined by:

$$\zeta^s = \zeta^{\omega_n(s)}, \text{ for all } s \in G_n \text{ and all } \zeta \in \mu_{q^np^n}.$$

The Spiegel involution is the involution of $(\mathbb{Z}/q^np^n)[G_n]$ defined by:

$$x := \sum_{s \in G_n} a_s \cdot s \mapsto x^* := \sum_{s \in G_n} a_s \cdot \omega_n(s) \cdot s^{-1}.$$

Thus, if s is the Artin symbol $\left(\frac{L_n}{a}\right)$, then $\left(\frac{L_n}{a}\right)^* \equiv a \cdot \left(\frac{L_n}{a}\right)^{-1} \pmod{q^np^n}$.

For the convenience of the reader we prove once again the very classical:

Lemma 3.3. Let $n \geq n_0 + e$ where $p^{n_0} = [K \cap \mathbb{Q}_\infty : \mathbb{Q}]$ and p^e is the exponent of \mathcal{T}_K. The annihilators A_n of $\text{Gal}(M_n/L_n)$ (thus of \mathcal{T}_K) in $(\mathbb{Z}/q^np^n)[G_n]$ are the images of the annihilators S_n of Rad_n/L_n^\times by the Spiegel involution and inversely. An annihilator A_n of \mathcal{T}_K only depends on its projection $A_{K,n}$ in $(\mathbb{Z}/q^np^n)[G_K]$.

Proof. To simplify, put $\overline{\text{Rad}} := \text{Rad}_n/L_n^\times$, $\mathcal{T} := \text{Gal}(M_n/L_n) \simeq \mathcal{T}_K$. Let:

$$\lambda : \overline{\text{Rad}} \times \mathcal{T} \longrightarrow \mu_{q^np^n},$$

$$\overline{w}, \tau \mapsto (\sqrt[n]{\overline{w}})^{\tau^{-1}};$$

then λ is a non-degenerated $\mathbb{Z}/q^np^n\mathbb{Z}$-bilinear form such that:

$$\lambda(\overline{w}^s, \tau) = \lambda(\overline{w}, \tau^s^*), \text{ for all } s \in G_n,$$

where $s^* = \omega_n(s) \cdot s^{-1}$ (see e.g., [8 Corollary I.6.2.1]).

Let $S_n = \sum_{s \in G_n} a_s \cdot s \in (\mathbb{Z}/q^np^n)[G_n]$; then, for all $(\overline{w}, \tau) \in \overline{\text{Rad}} \times \mathcal{T}$ we have:

$$\lambda(\overline{w}^s, \tau) = \prod_{s \in G_n} \lambda(\overline{w}, \tau)^{a_s} = \prod_{s \in G_n} \lambda(\overline{w}, \tau^s)^{a_s} = \lambda(\overline{w}, \tau^S_n^*).$$

So, if S_n annihilates $\overline{\text{Rad}}$, then $\lambda(\overline{w}, \tau^S_n^*) = 1$ for all \overline{w} & τ; since λ is non-degenerated, $\tau^{S_n^*} = 1$ for all $\tau \in \mathcal{T}$. Whence the annihilation of \mathcal{T} by $A_n = S_n^*$ (without any assumption on K nor on p), then by the projection $A_{K,n}$ since $\text{Gal}(L_n/K)$ acts trivially on $\text{Gal}(M_n/L_n)$. \hfill \Box

Remarks 3.4. (i) As we have mention, the radical Rad_n does not depend really on the field L_n for $n \geq n_0 + e$; so, if we consider the radical of the maximal p-ramified abelian p-extension of L_n, of exponent q^np^n:

$$\text{Rad}_n' := \{w' \in L_n^\times; \ L_n(\sqrt[n]{w'})/L_n \text{ is } p\text{-ramified}\},$$
we obtain a group whose \(p \)-rank tends to infinity with \(n \); this is due mainly to the \(\mathbb{Z}_p \)-rank of the compositum of the \(\mathbb{Z}_p \)-extensions of \(L_n \) (totally imaginary) and from the less known \(\mathcal{T}_{L_n} \) which contains \(\mathcal{T}_{K_n} \). But since \(\mathcal{T}_K \) is annihilated by \(1 - s_\infty \), \(\text{Rad}_n(L_n^\times \mathbb{Q}_n^p) \) is annihilated by \((1 - s_\infty)^* = 1 + s_\infty \) which means that only the “minus part” of \(\text{Rad}_n'(L_n^\times \mathbb{Q}_n^p) \) is needed, which eliminates the huge “plus” part containing in particular all the units. Thus \(\text{Rad}_n \) is essentially given by the “relative” \(S'_n \)-units of \(L_n \) \((S'_n \) being the set of \(p \)-places of \(L_n \)) and generators of some “relative” \(p \)-classes of \(L_n \).

(ii) In the case \(p = 2 \), let \(\mathcal{T}_{K,\text{res}} := \text{tor}_{\mathbb{Z}_2} \left(\mathcal{G}_{K,S}^{\text{res,ab}} \right) \), where \(\mathcal{G}_{K,S}^{\text{res}} \) is the Galois group of the maximal abelian \(S \)-ramified (i.e., unramified outside 2 but possibly complexified) pro-2-extension of \(K \) and let \(\text{Rad}_n^{\text{res}} \) the corresponding radical \(\{ w \in L_n^\times, \sqrt[4]{2}w \in M_n^{\text{res}} \} \), where \(M_n^{\text{res}} \) is analogous to \(M_n \) for the restricted sense. We observe that in the restricted sense, we have the exact sequence \(\left[8, \text{Theorem III.4.1.5} \right] 0 \to \left(\mathbb{Z}/2\mathbb{Z} \right)^d \to \mathcal{T}_{K,\text{res}} \to \mathcal{T}_K \to 1 \), then a dual exact sequence with radicals. As in \(\left[2 \right] \), one may consider more general ray class fields and find results of annihilation with suitable Stickelberger or Solomon elements.

4. Stickelberger elements and cyclotomic numbers

4.1. General definitions. Let \(f \geq 1 \) be any modulus and let \(\mathbb{Q}_f \) be the corresponding cyclotomic field \(\mathbb{Q}(\mu_f) \).\(^1\) Let \(L \) be a subfield of \(\mathbb{Q}_f \).

(i) We define (where all Artin symbols are taken over \(\mathbb{Q} \)):

\[
S_{\mathbb{Q}_f} := - \sum_{a=1}^{f} \left(\frac{a - \frac{1}{2}}{f} \right) \cdot \left(\frac{\mathbb{Q}_f}{a} \right)^{-1},
\]
and the restriction:

\[
S_L := \text{N}_{\mathbb{Q}_f/L}(S_{\mathbb{Q}_f}) := - \sum_{a=1}^{f} \left(\frac{a - \frac{1}{2}}{f} \right) \cdot \left(\frac{L}{a} \right)^{-1}
\]
to \(L \) of \(S_{\mathbb{Q}_f} \), where \(a \) runs through the integers \(a \in [1, f] \) prime to \(f \). In this case, one must precise the relation between \(f \) and the conductor \(f_L \) of \(L \).

We know that the properties of annihilation of ideal classes need to multiply \(S_L \) by an element of the ideal annihilator of the group \(\mu_f \) (or \(\mu_{2f} \)), which is generated by \(f \) (or \(2f \)) and the multiplicators:

\[
\delta_c := 1 - c \cdot \left(\frac{\mathbb{Q}_f}{c} \right)^{-1},
\]
for \(c \) odd, prime to \(f \). This shall give integral elements in the group algebra.

(ii) Then we define in the same way:

\[
\eta_{\mathbb{Q}_f} := 1 - \zeta_f \& \eta_L := \text{N}_{\mathbb{Q}_f/L}(1 - \zeta_f), \ f \neq 1,
\]
where \(\zeta_f \) is a primitive \(f \)th root of unity for which we assume the coherent definitions \(\zeta_f^{n'} = \zeta_m \) if \(f = m' \cdot m \).

It is well known that if \(f \) is not a prime power, then \(\eta_f \) is a unit, otherwise, \(\text{N}_{\mathbb{Q}_f/k}(1 - \zeta_f) = \ell \) if \(f = \ell^r \cdot \ell, \ \ell \geq 2 \) prime, \(r \geq 1 \).

\(^1\)Such modulus are conductors of the corresponding cyclotomic fields, except for an even integer not divisible by 4; but this point of view is essential to establish the functional properties of Stickelberger elements and cyclotomic numbers. So, if \(f \) is odd, we distinguish, by abuse, the notations \(\mathbb{Q}_f \) and \(\mathbb{Q}_2f \) despite their equality.
Definition 4.1. Since \(\frac{f - a}{f} - \frac{1}{2} = -\left(\frac{a}{f} - \frac{1}{2} \right) \), \(S_{Q^f} = S'_{Q^f} \cdot (1 - s_{\infty}) \) and \(S_L = S'_L \cdot (1 - s_{\infty}) \), where \(s_{\infty} := \left(\frac{Q^f}{-1} \right) \) is the complex conjugation, and where:
\[
S'_{Q^f} := - \sum_{a=1}^{\frac{f}{2}} \left(\frac{a}{f} - \frac{1}{2} \right) \cdot \left(\frac{Q^f}{a} \right)^{-1} \quad \& \quad S'_L := - \sum_{a=1}^{\frac{f}{2}} \left(\frac{a}{f} - \frac{1}{2} \right) \cdot \left(\frac{L}{a} \right)^{-1}.
\]

4.2. Norms of Stickelberger elements and cyclotomic numbers. Let \(f \geq 1 \) and \(m \) be any modulus and let \(Q^f \) and \(Q^m \subseteq Q^f \) be the corresponding cyclotomic fields. Let \(N_{Q^f/Q^m} \) be the restriction map:
\[
Q[\text{Gal}(Q^f/Q)] \rightarrow Q[\text{Gal}(Q^m/Q)],
\]
or the usual arithmetic norm in \(Q^f/Q^m \). Consider as above:
\[
S_{Q^f} := - \sum_{a=1}^{f} \left(\frac{a}{f} - \frac{1}{2} \right) \cdot \left(\frac{Q^f}{a} \right)^{-1} \quad \& \quad \eta_{Q^f} := 1 - \zeta_f (f \neq 1).
\]
We have, respectively:
\[
N_{Q^f/Q^m}(S_{Q^f}) = \prod_{\ell|f, \ell|m} \left(1 - \left(\frac{Q^m}{\ell} \right)^{-1} \right) \cdot S_{Q^m},\tag{4.1}
\]
\[
N_{Q^f/Q^m}(\eta_{Q^f}) = (\eta_{Q^m}) \prod_{\ell|f, \ell|m} \left(1 - \left(\frac{Q^m}{\ell} \right)^{-1} \right) \text{ if } m \neq 1.\tag{4.2}
\]
As we have explained in the previous footnote, if \(m \) is odd, then we have:
\[
N_{Q^{2m}/Q^m}(S_{Q^{2m}}) = \left(1 - \left(\frac{Q^m}{2} \right)^{-1} \right) \cdot S_{Q^m}, \quad N_{Q^{2m}/Q^m}(\eta_{Q^{2m}}) = \eta_{Q^m} \left(1 - \left(\frac{Q^m}{2} \right)^{-1} \right),
\]
where the “norms” \(N_{Q^{2m}/Q^m} \) are of course the identity. For instance one verifies immediately that \(S_{Q^6} = \frac{1}{2}(1 - s_{\infty}) \) and \(S_{Q^3} = \frac{1}{6}(1 - s_{\infty}) \), but since 2 is inert in \(Q^3/Q \), \(1 - \left(\frac{Q^3}{2} \right)^{-1} = 1 - s_{\infty} \) and one must compute \((1 - s_{\infty})S_{Q^3} = \frac{1}{6}(1 - s_{\infty})^2 = \frac{1}{3}(1 - s_{\infty}) \) as expected. We have \(S_{Q^2} = 0 \) and \(S_{Q^1} = -\frac{1}{2} \).

If \(L \) (imaginary or real), of conductor \(f \), is an extension of \(k \), of conductor \(m \mid f \), let \(S_L := N_{Q^f/L}(S_{Q^f}) \) and \(\eta_L := N_{Q^f/L}(\eta_{Q^f}) \), then:
\[
N_{L/k}(S_L) = \prod_{\ell|f, \ell|m} \left(1 - \left(\frac{k}{\ell} \right)^{-1} \right) \cdot S_k,
\]
\[
N_{L/k}(S'_L) = \prod_{\ell|f, \ell|m} \left(1 - \left(\frac{k}{\ell} \right)^{-1} \right) \cdot S'_k \quad \text{(mod } (1 + s_{\infty}) \cdot Q[G_k])\),
\]
\[
N_{L/k}(\eta_L) = (\eta_k) \prod_{\ell|f, \ell|m} \left(1 - \left(\frac{k}{\ell} \right)^{-1} \right) \text{ if } m \neq 1 \text{ (i.e., } k \neq Q)\).
\]
If \(f = \ell^r, \ell \text{ prime}, r \geq 1 \), then \(N_{Q^f/Q}(\eta_{Q^f}) = \ell \), otherwise \(N_{Q^f/Q}(\eta_{Q^f}) = 1 \).

This implies that \(N_{L/k}(S_L) = 0 \) (resp. \(N_{L/k}(\eta_L) = 1 \)) as soon as there exists a prime \(\ell \mid f \), \(\ell \nmid m \), totally split in \(k \). In particular, if \(k \) is real, the formula is valid for the infinite place and \(N_{L/k}(S_L) = 0 \) (of course, if \(L \neq Q \) is real, \(S_L = 0 \)).

For the classical proofs, we consider by induction the case \(f = \ell \cdot m \), with \(\ell \) prime and examine the two cases \(\ell \mid m \) and \(\ell \nmid m \); the case of Stickelberger elements been crucial for our purpose, we give again a proof (a similar reasoning will be detailed for the Theorem [7.2]).
To simplify, put \(S_{Qf} =: S_f \), \(S_{Qm} =: S_m \), and consider:

\[
S_f = -\sum_{a=1}^{f} \left(\frac{a}{f} - \frac{1}{2} \right) \cdot \left(\frac{Q^f}{a} \right)^{-1},
\]

for \(f = \ell \cdot m \), \(\ell \nmid m \), where \(a \) runs through the integers \(a \in [1, f] \) prime to \(f \).

Put \(a = b + \lambda \cdot m \), \(b \in [1, m] \), \(\lambda \in [0, \ell - 1] \); since \(a \) must be prime to \(f \), \(b \) is automatically prime to \(m \) but we must exclude \(\lambda^* \in [0, \ell - 1] \) such that:

\[
b + \lambda^* \cdot m = b' \cdot \ell, \ b' \in [1, m] \quad (b' \ell \text{ is necessarily prime to } m).
\]

We then have:

\[
N_{Qf/Qm}(S_f) = -\sum_{b} \left(\frac{Q^m}{b} \right)^{-1} \sum_{\lambda \neq \lambda^*_b} \left(\frac{b + \lambda m}{\ell m} - \frac{1}{2} \right) \cdot \left(\frac{Q^m}{b} \right)^{-1}
= -\sum_{b} \left(\frac{Q^m}{b} \right)^{-1} \sum_{\lambda \neq \lambda^*_b} \left(\frac{b}{\ell m} + \frac{\lambda \ell}{2} - \frac{1}{2} \right)
= -\sum_{b} \left(\frac{Q^m}{b} \right)^{-1} \left(\frac{\ell - 1}{\ell} \cdot \frac{b}{m} - \frac{\ell - 1}{2} \right) - \sum_{\lambda \neq \lambda^*_b} \left(\frac{Q^m}{b} \right)^{-1} \left(\frac{\ell (\ell - 1)}{2} - \lambda^* \right)
= -\left(1 - \frac{1}{\ell} \right) \sum_{b} \left(\frac{Q^m}{b} \right)^{-1} \frac{b'}{m} + \frac{1}{\ell} \sum_{\lambda \neq \lambda^*_b} \left(\frac{Q^m}{b} \right)^{-1} \lambda^*_b.
\]

Since the correspondence \(b \mapsto b' \ell \) is bijective on the set of elements prime to \(m \) in \([1, m]\), one has, with \(\lambda^*_b = \frac{b' \cdot \ell - b}{m} \) and \(\left(\frac{Q^m}{b} \right) = \left(\frac{Q^m}{b'} \right) \left(\frac{Q^m}{\ell} \right) \):

\[
\frac{1}{\ell} \sum_{b} \left(\frac{Q^m}{b} \right)^{-1} \lambda^*_b = \sum_{b} \left(\frac{Q^m}{b} \right)^{-1} \frac{b'}{m} - \frac{1}{\ell} \sum_{b} \left(\frac{Q^m}{b} \right)^{-1} \frac{b}{m}
= \left(\frac{Q^m}{\ell} \right)^{-1} \sum_{b} \left(\frac{Q^m}{b} \right)^{-1} \frac{b'}{m} - \frac{1}{\ell} \sum_{b} \left(\frac{Q^m}{b} \right)^{-1} \frac{b}{m}
= \left(\frac{Q^m}{\ell} \right)^{-1} - \frac{1}{\ell} \sum_{b} \left(\frac{Q^m}{b} \right)^{-1} \frac{b}{m}.
\]

Thus we obtain:

\[
N_{Qf/Qm}(S_f) = -\left(1 - \frac{1}{\ell} \right) \sum_{b} \left(\frac{Q^m}{b} \right)^{-1} \frac{b}{m} + \left(\left(\frac{Q^m}{\ell} \right)^{-1} - \frac{1}{\ell} \right) \sum_{b} \left(\frac{Q^m}{b} \right)^{-1} \frac{b}{m}
= -\left(1 - \left(\frac{Q^m}{\ell} \right)^{-1} \right) \sum_{b} \left(\frac{Q^m}{b} \right)^{-1} \frac{b}{m}.
\]

But \(\frac{1}{2} \sum_{b} \left(\frac{Q^m}{b} \right)^{-1} \left(1 - \left(\frac{Q^m}{\ell} \right)^{-1} \right) = 0 \); so replacing \(\frac{b}{m} \) by \(\frac{b}{m} - \frac{1}{2} \) we get:

\[
N_{Qf/Qm}(S_f) = \left(1 - \left(\frac{Q^m}{\ell} \right)^{-1} \right) \cdot S_m.
\]

Then it is easy to compute that if \(\ell \mid m \), any \(\lambda \in [0, \ell - 1] \) is suitable, giving:

\[
N_{Qf/Qm}(S_f) = S_m.
\]

The case of cyclotomic elements \(n_f \) is exactly the same, replacing the additive setting by the multiplicative one.
4.3. **Multiplier of Stickelberger elements.** The conductor of \(L_n \), \(n \geq n_0 \), is \(\mathfrak{f}_L = 1.0_{n_0} (f_K, q^{n_0}) \) (Lemma 3.1). So in general \(\mathfrak{f}_L = q^{n_0} \cdot f' \) with \(p \nmid f' \), except if \(f_K \) is divisible by a large power of \(p \) in which case one must take \(n \) large enough in the practical computations (write \(f_K = q^{n_0} + r f' \), \(r \geq 0 \), and take \(n \geq n_0 + r \)). In some formulas we shall abbreviate \(f_L \) by \(f_n \).

Let \(c \) be an (odd) integer, prime to \(f_n \), and let:

\[
S_{L_n}(c) := \left(1 - c \left(\frac{L_n}{c} \right)^{-1} \right) \cdot S_{L_n}.
\]

Then \(S_{L_n}(c) \in \mathbb{Z}[G_n] \) as we have explain; indeed, we have:

\[
S_{L_n}(c) = -\frac{1}{f_n} \sum_a \left[a \left(\frac{L_n}{a} \right)^{-1} - ac \left(\frac{L_n}{a} \right) \left(\frac{L_n}{c} \right)^{-1} \right] + \frac{1-c}{2} \sum_a \left(\frac{L_n}{a} \right)^{-1}.
\]

Let \(a'_c \in [1, f_n] \) be the unique integer such that \(a'_c \cdot c \equiv a \pmod{f_n} \) and put \(a'_c = a + \lambda^n_c(f_n) \), \(\lambda^n_c(\in) \in \mathbb{Z} \); then, using the bijection \(a \mapsto a'_c \) in the second summation and the fact that \(\left(\frac{L_n}{a'_c} \right) = \left(\frac{L_n}{a} \right) \), this yields:

\[
S_{L_n}(c) = -\frac{1}{f_n} \sum_a \left[a \left(\frac{L_n}{a} \right)^{-1} - a'_c \cdot c \left(\frac{L_n}{a'_c} \right) \left(\frac{L_n}{c} \right)^{-1} \right] + \frac{1-c}{2} \sum_a \left(\frac{L_n}{a} \right)^{-1} = \sum_a \left(\lambda^n_c(a) + \frac{1-c}{2} \right) \left(\frac{L_n}{a} \right)^{-1} \in \mathbb{Z}[G_n].
\]

Lemma 4.2. We have the relations \(\lambda^n_{f_n-a}(c) + \frac{1-c}{2} = -(\lambda^n_{a}(c) + \frac{1-c}{2}) \) for all \(a \in [1, f_n] \) prime to \(f_n \). Then:

\[
S'_{L_n}(c) := \sum_{a=1}^{f_n/2} \lambda^n_{a}(c) + \frac{1-c}{2} \left(\frac{L_n}{a} \right)^{-1} \in \mathbb{Z}[G_n]
\]

is such that \(S_{L_n}(c) = S'_{L_n}(c) \cdot (1-s_{\infty}) \), whence \(S_{L_n}(c)^* = S'_{L_n}(c)^* \cdot (1+s_{\infty}) \).

Proof. By definition, the integer \((f_n-a)'_c \) is in \([1, f_n] \) and congruent modulo \(f_n \) to \((f_n-a) c^{-1} \equiv -ac^{-1} \equiv -a'_c \pmod{f_n} \); thus \((f_n-a)'_c = f_n - a'_c \) and

\[
\lambda^n_{f_n-a}(c) = \frac{(f_n-a)'_c c - (f_n-a)}{f_n} = \frac{(f_n-a'_c c - (f_n-a)}{f_n} = c - 1 - \lambda^n_{a}(c),
\]

whence \(\lambda^n_{f_n-a}(c) + \frac{1-c}{2} = -(\lambda^n_{a}(c) + \frac{1-c}{2}) \) and the result.

The multiplicator \(\delta_c := (1 - c \left(\frac{L_n}{c} \right)^{-1} \) has a great importance since the image of \(\delta_c \) by the Spiegel involution is \(\delta^*_c := 1 - \left(\frac{L_n}{c} \right) \pmod{qp^n} \); the order of the Artin symbol of \(c \) shall be crucial.

5. **Annihilation of radicals and Galois groups**

5.1. **Annihilation of \(\text{Rad}_{n/L_n}q^{n_0} \).** We begin with the classical property of annihilation of class groups of imaginary abelian fields by modified Stickelberger elements \(S_{L_n}(c) = \delta_c \cdot S_{L_n} \). Before let’s give two technical lemmas. Recall that \(S_{L_n}(c) = S'_{L_n}(c) \cdot (1-s_{\infty}) \) and that, from §4.2, the \(S_{L_n}, S_{L_n}(c) \) and \(S'_{L_n}(c) \pmod{(1+s_{\infty})\mathbb{Z}[G_n]} \) form coherent families in \(\lim_{n \geq n_0 + e} \mathbb{Q}[G_n] \) for the “norm” since \(f_L \) and \(f_{L_n+h} \) are divisible by the same prime numbers for all \(h \geq 0 \).
Lemma 5.1. Let $\zeta \in \mu_{qp^n}$, $n \geq n_0 + e$. If $\zeta \in \text{Rad}_n$ (or Rad^res_n when $p = 2$) then $\zeta = 1$.

Proof. If $\zeta \neq 1$ with $L_n(\sqrt[n]{\zeta}) \subseteq M_n$ (or M^res_n), we would have $L_n(\sqrt[n]{\zeta}) = L_{n+h}$, where $h \geq 1$ since $\sqrt[n]{\zeta}$ is of order $\geq qp^{n+1}$ and since $\mu_{qp} \cap L_n^\times = \mu_{qp^n}$, which is absurd because of the linear disjonction $L_{n+h} \cap M_n = L_n$ (or $L_{n+h} \cap M^\text{res}_n = L_n$).

Lemma 5.2. Let $w_0 \in \text{Rad}_n$ be real. Then $w_0^2 \in L_n^{\times qp^n}$.

Proof. Since K is real, we know that $1 - s_\infty$ annihilates the $(\mathbb{Z}/qp^n\mathbb{Z})[G_n]$-module $\text{Gal}(M_n/L_n)$, thus $1 + s_\infty$ annihilates $\text{Rad}_n/L_n^{\times qp^n}$ and $w_0^{1 + s_\infty} = w_0^2 \in L_n^{\times qp^n}$ (this does not work for the restricted sense since the minus part of T_K^res is of order 2^d).

Theorem 5.3. Let p^e be the exponent of $T_K := \text{tor}_{p^e}(G_{K,S}^{ab})$ (p-ramification in the ordinary sense). For $p = 2$, let $2^{e_{\text{res}}}$ be the exponent of $T_K^{\text{res}} := \text{tor}_{2^e}(G_{K,S}^{\text{res}ab})$, where $G_{K,S}^{\text{res}ab}$ is the Galois group of the maximal S-ramified in the restricted sense (i.e., unramified outside 2 but complexified) pro-2-extension of K and let $\text{Rad}^{\text{res}}_n$ be the corresponding radical.

(i) $p > 2$. For all $n \geq n_0 + e$, the $(\mathbb{Z}/qp^n\mathbb{Z})[G_n]$-module $\text{Rad}_n/L_n^{\times qp^n}$ is annihilated by $S^\prime_{L_n}(c)$. Thus, $S^\prime_{L_n}(c)^\ast$ annihilates T_K.

(ii) $p = 2$, ordinary sense. The annihilation occurs with $2S_{L_n}(c)$ and with $4S^\prime_{L_n}(c)$. Thus $2S_{L_n}(c)^\ast$ and $4S^\prime_{L_n}(c)^\ast$ annihilate T_K.

(iii) $p = 2$, restricted sense. For all $n \geq n_0 + e_{\text{res}}$, the $(\mathbb{Z}/42^n\mathbb{Z})[G_n]$-module $\text{Rad}_n^{\text{res}}/L_n^{\times 42^n}$ is annihilated by $2S_{L_n}(c)$; thus $2S_{L_n}(c)^\ast$ annihilates T_K^{res}.

Proof. Let $w \in \text{Rad}_n$; since $L_n(\sqrt[n]{w})/L_n$ is p-ramified, $(w) = a^{qp^n} \cdot b$ where a is an ideal of L_n, prime to p, and b is a product of prime ideals p_n of L_n dividing p. Let $p_n | b$ and consider $p_{S_{L_n}(c)}$; one can replace $S_{L_n}(c)$ by its restriction to the decomposition field k (possibly $k = \mathbb{Q}$) of p in the abelian extension L_n/\mathbb{Q}, which gives rise to the Euler factor $1 - \left(\frac{k}{p}\right)^{-1}$, since k, of conductor prime to p, is strictly contained in L_n of conductor $qp^n f'$ for $n \geq n_0 + e$; so this factor is 0 and $b^{S_{L_n}(c)} = 1$.

From the principality of the ideal $a^{S_{L_n}(c)}$ (Stickelberger’s theorem) there exists $\alpha_n \in L_n^\times$ and a unit ε_n of L_n such that:

$$w^{S_{L_n}(c)} = \alpha_n^{qp^n} \cdot \varepsilon_n.$$ \hspace{1cm} (5.1)

We see that $\varepsilon_n^{1 + s_\infty}$ is the qp^nth power of a unit of L_n: consider $\varepsilon_n^{1 + s_\infty}$ in (5.1) with the fact that $S_{L_n}(c) = S_{L_n}(c)(1 - s_\infty)$. Since the \mathbb{Z}-rank of the groups of units of L_n and L_n^+ (the maximal real subfield of L_n) are equal, a power ε_n^N of ε_n is a real unit; so $\varepsilon_n^{1 + s_\infty}$ is a torsion element and $\varepsilon_n^2 = \varepsilon_n^{1 + s_\infty} \varepsilon_n^{1 - s_\infty}$ is equal, up to a qp^nth power, to a p-torsion element of the form $\zeta' \in \text{Rad}_n$.

Thus $\zeta' = 1$ (Lemma 5.1) and $\varepsilon_n^2 \in L_n^{\times qp^n}$.

(i) Case $p \neq 2$. We deduce from the above that $\varepsilon_n \in L_n^{\times qp^{n+1}}$. We have $w^{S_{L_n}(c)(1 - s_\infty)} = \beta_n^{qp^{n+1}}$; but $\beta_n^{1 + s_\infty} = 1$ (the property is also true for $p = 2$ since the result is a totally positive root of unity in L_n^+, but the proof only works taking the square of the relation (5.1) using ε_n^2, and there exists...
\(\gamma_n \in L_n^\times \) such that \(\beta_n = \gamma_n^{1-s_\infty} \), and \(w^{S_{L_n}(c)} \cdot \gamma_n^{-p^{n+1}} = w_0 \), a real number in the radical, thus a \(p^{n+1} \)th power (Lemma 5.2) (as above, the proof for \(p = 2 \) only works taking once again the square of this relation to get \(w_0^2 \)).

Other proof for any \(p \geq 2 \): since \(T_K \) is annihilated by \(1-s_\infty \), \(\text{Rad}_n/L_n^{\times qp^n} \) is annihilated by \(1+s_\infty \), thus \(w_1^{-1-s_\infty} \in w_2 \cdot L_n^{\times qp^n} \) for all \(w \in \text{Rad}_n \), and \(w^{S_{L_n}(c)} = w^2S_{L_n}(c) \) up to \(L_n^{\times qp^n} \).

(ii) Case \(p = 2 \) in the ordinary sense (so \(L_n^+ = K_n \)). The result is obvious taking the square in the previous computations giving \(\varepsilon_n^2 \) instead of \(\varepsilon_n \) for the annihilation with \(2S_{L_n}(c) \), then \(w_0^2 \) for the annihilation with \(4S_{L_n}(c) \).

(iii) Case \(p = 2 \) in the restricted sense. The proof is in fact contained in the same relation \((w) = a^{\cdot \cdot 2n} \cdot b \), for all \(w \in \text{Rad}_{a}^\text{res} \), where \(a \) is an ideal of \(L_n \), prime to 2, and \(b \) is a product of prime ideals \(p_n \) of \(L_n \) dividing 2, then the relation (5.1), \(n \geq n_0 + e. \) \(\square \)

5.2. Computation of \(S_{L_n}(c)^* \) or \(S'_{L_n}(c)^* \) – Annihilation of \(T_K \). From the expressions (4.3) and (4.4) of \(S_{L_n}(c) \), the image by the Spiegel involution is:

\[
S_{L_n}(c)^* \equiv \sum_{a=1}^{f_n} \left[\lambda_a^n(c) + \frac{1-c}{2} \right] a^{-1} \left(\frac{L_n}{a} \right) (\mod qp^n),
\]

which defines a coherent family \((S_{L_n}(c))^* \) for all \(c \in \lim_{n \geq n_0 + e} \mathbb{Z}/qp^n \mathbb{Z}[G_n] \) of annihilators of the Galois groups \(\text{Gal}(M_n/L_n) \simeq T_K \). In the case \(p \neq 2 \), one may use equivalently \(S'_{L_n}(c)^* \) with the half summation.

Since the operation of \(\text{Gal}(L_n/K) \) on \(\text{Gal}(M_n/L_n) \) is trivial, by restriction of \(S_{L_n}(c)^* \) to \(K \) (see Lemma 3.3), one obtains a coherent family of annihilators of \(T_K \) denoted \((A_{K,n}(c))^* \) for all \(c \in \lim_{n \geq n_0 + e} \mathbb{Z}/qp^n \mathbb{Z}[G_K] \), whose \(p \)-adic limit:

\[
A_K(c) := \lim_{n \to \infty} A_{K,n}(c) = \lim_{n \to \infty} \sum_{a=1}^{f_n} \left[\lambda_a^n(c) + \frac{1-c}{2} \right] a^{-1} \left(\frac{K}{a} \right) \in \mathbb{Z}_p[G_K]
\]

is a canonical annihilator of \(T_K \) that we shall link to \(p \)-adic \(L \)-functions; of course, it is sufficient to know its coefficients modulo the exponent \(p^f \) of \(T_K \) and in a programming point of view, the element \(A_{K,n_0+e}(c) \) annihilates \(T_K \) knowing that [10] Program I, §3.2] gives the group structure of \(T_K \).

Remark 5.4. Let \(a_{L_n} := \sum_{a=1}^{f_n} a^{-1} \left(\frac{L_n}{a} \right) \equiv \left[\sum_{a=1}^{f_n} \left(\frac{L_n}{a} \right) \right]^{-1} \) \(* \); we have:

\[
a_{L_n} := \sum_{a=1}^{f_n/2} a^{-1} \left(\frac{L_n}{a} \right) + (f_n-a)^{-1} \left(\frac{L_n}{f_n-a} \right) \equiv \sum_{a=1}^{f_n/2} a^{-1} \left(\frac{L_n}{a} \right) (1-s_\infty)(\mod f_n)
\]

which annihilates \(T_K \) and is such that \(N_{L_n/K}(a_{L_n}) \equiv 0 (\mod qp^n) \) since \(K \) is real. We shall neglect such expressions and use the symbol \(\equiv, \) where \(A \equiv B \mod p^{n+1} \) will mean \(A = B + \mu \cdot p^{n+1} + \nu \cdot \sum_{a=1}^{f_n} a^{-1} \left(\frac{K}{a} \right), \) in the group algebra \(\mathbb{Z}_p[G_K] \), \(\mu, \nu \in \mathbb{Z}_p \) (we put the modulus \(p^{n+1} \) instead of \(qp^n \) to cover, subsequently, the case \(p = 2 \); moreover, \(p^{n+1} \) annihilates \(T_K \) since \(n \geq n_0 + e \)). By abuse, we still denote \(A_K(c) = \lim_{n \to \infty} \sum_{a=1}^{f_n} \lambda_a^n(c) a^{-1} \left(\frac{K}{a} \right). \)

Thus, we have obtained:
Theorem 5.5. Let \(c \) be any integer prime to \(2p \) and to the conductor of \(K \). Assume \(n \geq n_0 + e \) and let \(f_n \) be the conductor of \(L_n \); for all \(a \in [1, f_n] \), prime to \(f_n \), let \(\alpha'_c \) be the unique integer in \([1, f_n] \) such that \(\alpha'_c \cdot c \equiv a \pmod{f_n} \) and put \(\alpha'_c \cdot c - a = \lambda^n_a(c) f_n, \lambda^n_a(c) \in \mathbb{Z} \).

Let \(A_{K, n}(c) := \sum_{a=1}^{f_n} \lambda^n_a(c) a^{-1} \left(\frac{K}{a} \right) \) and put \(A'_{K, n}(c) = A'_{K, n}(c) \cdot (1 + s_{\infty}) \) where

\[
A'_{K, n}(c) = \sum_{a=1}^{f_n} \lambda^n_a(c) a^{-1} \left(\frac{K}{a} \right).
\]

Let \(A_K(c) := \lim_{n \to \infty} \left[\sum_{a=1}^{f_n} \lambda^n_a(c) a^{-1} \left(\frac{K}{a} \right) \right] \) and put \(A_K(c) := A'_{K}(c) \cdot (1 + s_{\infty}) \).

(i) For \(p \neq 2 \), \(A'_{K}(c) \) annihilates the \(\mathbb{Z}_p[G_K] \)-module \(\mathcal{T}_K \).

(ii) For \(p = 2 \), the annihilation is true for \(2 \cdot A_K(c) \) and \(4 \cdot A'_K(c) \).

In practice, when the exponent \(p^e \) is known, one can use \(n = n_0 + e \) and the annihilators \(A_{K, n}(c) \) or \(A'_{K, n}(c) \), the annihilator limit \(A_K(c) \) being related to \(p \)-adic \(L \)-functions of primitive characters, thus giving the other approach than Solomon one, that we shall obtain in Theorem 9.4.

Remark 5.6. We have proved in a seminar report (1977) that for \(p = 2 \), \(S'_L(c) \) annihilates \(\mathcal{L}_L/\mathcal{L}^0_L \), where \(\mathcal{L}_L \) is the 2-class group of \(L_n \) and where \(\mathcal{L}^0_L \) is generated by the classes of the \textit{invariant ideals} in \(L_n/K_n \).

This shows that some 2-classes may give an obstruction; but \(\text{Rad}_n \) is particular as we have explained in Remark 3.4. In [15], Greither gives suitable statements about Stickelberger’s theorem for \(p = 2 \), using the main theorems of Iwasawa’s theory about the orders \(\frac{1}{2}L_2(1, \chi) \) of the isotypic components.

From this, as well as some numerical experiments, and the roles of \(\varepsilon_n \) and \(w_0 \) in the above reasonings, we may propose the following conjecture:

Conjecture 5.7. Let \(p = 2 \) and let \(K \) be a real abelian number field linearly disjoint from the cyclotomic \(\mathbb{Z}_2 \)-extension. Put \(A_K(c) = A'_K(c) \cdot (1 + s_{\infty}) \) (see formula of Theorem 5.5). Then \(A'_K(c) \) annihilates \(\mathcal{T}_K \).

If there exists, in the class of \(A'_K(c) \) modulo \(\sum_{\sigma \in G_K} \sigma \), an element of the form \(2 \cdot A'_K(c), A'_K(c) \in \mathbb{Z}_p[G_K] \), one may ask if \(A'_K(c) \) does annihilate \(\mathcal{T}_K \).

We shall give a counterexample for the annihilation of \(\mathcal{T}_K \) by \(A'_K(c) \) (see §6.5.5), but we ignore if this may be true under some assumptions.

5.3. Experiments for cyclic cubic fields with \(p \equiv 1 \pmod{3} \). To simplify we suppose \(f_K \) prime. The first part of the program gives a defining polynomial. A second part computes the \(p \)-adic valuation of \# \(\mathcal{T}_K \) using [10, Program I, §3.2] and gives \(A_K(c) = \Lambda_0 + \Lambda_1 \sigma^{-1} + \Lambda_2 \sigma^{-2} \) modulo a power of \(p \), after the choice of \(c \), prime to \(2p f_K \), with an Artin symbol of order 3; in the program \(p^{\text{ex}} \) is the exponent \(p^e \) of \(\mathcal{T}_K \) and \(f_n \) the conductor of \(L_n \). The parameters \(nt \) must be > ex.

```plaintext
{p=7;nt=8;forprime(f=7,10^4,if(Mod(f,3)!1,next);
  for(b=1,sqrt((4*f)/27),if(vf==2 & Mod(bb,3)==0,next);
    A=4*f-27*bb*bb;
    if(issquare(A, &aa)==1,if(Mod(aa,3)==1,aa=aa));
    P=x^3+x^2+(1-f)/3*x+(f*(aa-3)+1)/27;K=bnfinit(P,1);Kpn=bnrinit(K,p^nt);
    C5=component(Kpn,5);Hpn0=component(C5,1);Hpn=component(C5,2);
    h=component(component(component(K,p^nt),1),2);L=List;ex=0;
    i=component(matsize(Hpn),2);R=0;for(k=1,i-1,co=component(Hpn,i-k+1);
```
if(Mod(co,p)==0,R=R+1;val=valuation(co,p);if(val>ex,ex=val);listinsert(L,p^val,1));Hpn1=component(Hpn,1);
vptor=valuation(Hpn0/Hpn1,p);if(vptor>1,S0=0;S1=0;S2=0;
pN=p*p^ex;nu=(f-1)/3;fn=pN*f;z=znprimroot(f);
zz=lift(z);t=lift(Mod((1-zz)/f,2*p));c=zz+t*f;
for(a=1,fn/2,if(gcd(a,fn)!=1,next);
asurc=lift(a*Mod(c,fn)^-1);
lambda=(asurc*c-a)/fn;
u=Mod(lambda*a^-1,pN);
a0=lift((a*z^0)^nu);a1=lift((a*z^2)^nu);a2=lift((a*z)^nu);
if(a0==1,S0=S0+u);if(a1==1,S1=S1+u);if(a2==1,S2=S2+u));
L0=lift(S0);L1=lift(S1);L2=lift(S2);
j=Mod(y,y^2+y+1);Y=L0+j*L1+j^2*L2;nj=valuation(norm(Y),p);
print(f," ",P," vptor="vptor," T_K="L," A= ",L0," ",L1," ",L2," ",nj))})

Let's give a partial table for \(p = 7 \) and \(13 \), in which \(vptor \):= \(v_p(\#T_K) \); one sees that, as expected, all the examples give \(nj = vptor \) since \(T_K \) is a finite \(\mathbb{Z}_7[j] \)-module which may be decomposed with two 7-adic characters:

\(f \)	\(P \)	\(vptor \)	\(T_K \)	coefficients	\(nj \)
\(313 \)	\(x^3+x^2-104*x+371 \)	\(2 \)[7,7]	[41, 41, 48]	2	
\(577 \)	\(x^3+x^2-192*x+171 \)	\(2 \)[49]	[183, 17, 280]	2	
\(823 \)	\(x^3+x^2-274*x+61 \)	\(3 \)[343]	[761, 419, 437]	3	
\(883 \)	\(x^3+x^2-294*x+1439 \)	\(2 \)[7,7]	[14, 0, 35]	2	
\(1051 \)	\(x^3+x^2-350*x-2608 \)	\(2 \)[49]	[4, 247, 309]	2	
\(1117 \)	\(x^3+x^2-372*x+2565 \)	\(2 \)[7,7]	[7, 7, 42]	2	
\(1213 \)	\(x^3+x^2-404*x+629 \)	\(2 \)[49]	[45, 313, 268]	2	
\(1231 \)	\(x^3+x^2-410*x-1003 \)	\(2 \)[49]	[247, 73, 273]	2	
\(1237 \)	\(x^3+x^2-412*x+1741 \)	\(2 \)[49]	[108, 336, 128]	2	
\(1297 \)	\(x^3+x^2-432*x-1345 \)	\(2 \)[49]	[277, 62, 14]	2	
\(1327 \)	\(x^3+x^2-442*x-344 \)	\(2 \)[49]	[217, 340, 251]	2	
\(1381 \)	\(x^3+x^2-460*x-1739 \)	\(4 \)[343,7]	[1738, 2186, 2361]	4	
\(1567 \)	\(x^3+x^2-522*x-4759 \)	\(2 \)[49]	[219, 137, 78]	2	

For \(f = 33199, \) \(P = x^3+x^2-11066 x+238541, \) \(T_K \simeq \mathbb{Z}/7\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}, \) \(h = 14, \) and the annihilator is equivalent, modulo \(1 + \sigma + \sigma^2 \), to \(A = \sigma - 2. \)

For \(f = 20857, \) \(P = x^3+x^2-6952 x+210115, \) \(T_K \simeq \mathbb{Z}/7^2\mathbb{Z} \times \mathbb{Z}/7^2\mathbb{Z}, \) \(h = 1, \) and the annihilator is equivalent to \(A = 7^2(\sigma - 3) \) where \(\sigma - 3 \) is invertible modulo 7.

For \(f = 1381, \) \(T_K \simeq \mathbb{Z}/7^3\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}, \) \(h = 1, \) \(A = 1738+2186\sigma+2361\sigma^2 \) is equivalent to \(7 \cdot (448+623 \sigma) \) and 448 + 623 \sigma operates on \(T^2_K \simeq \mathbb{Z}/7^2\mathbb{Z} \) as \(\sigma - 18 \) modulo \(7^2 \) where 18 is of order 3 modulo 7 as expected.

For \(f = 39679, \) \(T_K \simeq \mathbb{Z}/7^3\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}, \) \(h = 7, \) and one finds the annihilator \(A = 7^2(\sigma - 4) \) where \(\sigma - 4 \) is not invertible (\(N_{Q(j)}/Q(j-4) = 21 \)).

For \(p = 13, \) the same program gives the following similar results:
6. Experiments and heuristics about the case $p = 2$

Conjecture 5.7 gives various possibilities of annihilation, depending on the choice of $A_{K,n}(c)$, $A'_{K,n}(c)$ or else, and of the degree of K/\mathbb{Q}, odd, even, or a 2th power. We shall give some illustrations with quadratic, quartic and cubic fields.

6.1. Quadratic fields. Although the order of \mathcal{T}_K is known and given by $\frac{1}{2}L_2(1,\chi)$ (for $K \neq \mathbb{Q}(\sqrt{2})$), we give the computations for the quadratic fields K of conductor $f \geq 5$ with $A'_{K,n}(c)$ ($a \in [1, f_n/2]$) instead of $A_{K,n}(c)$ to test the conjecture; the computation of the Artin symbols is easily given by PARI with $\text{kronecker}(f,a) = \pm 1$. The modulus $f_n = \text{l.c.m.}(f_K, 4 \cdot 2^n)$ is computed exactly and we take $n = e + 2$.

From the annihilator $A' = a_0 + a_1 \cdot \sigma$ (in (L_0, L_1)), we deduce, modulo the norm, an equivalent annihilator denoted by abuse $A' = a_1 - a_0 \in \mathbb{Z}$.

One finds $A' \equiv 2 \cdot \#T_K \pmod{2^{2+e}}$ for all $f \neq 8$ (only case with $K \cap \mathbb{Q}_\infty \neq \mathbb{Q}$) in this interval; then the class group is given (be careful to take nt large enough for the computation of the structure of T_K):

```plaintext
(p=2;nt=18;bf=5;Bf=10^4;for(f=bf,Bf,v=valuation(f,2);M=f/2^v;if(core(M)!=M,next);if((v==1||v>3)||(v==0 & Mod(M,4)!=1)|| (v==2 & Mod(M,4)==1),next);P=x^2-f;K=bnfinit(P,1);Kpn=bnrinit(K,p^nt); C5=component(Kpn,5);Hpn0=component(C5,1);Hpn=component(C5,2); h=component(component(component(K,8),1),2);L=List;ex=0; i=component(matsize(Hpn),2);for(k=1,i-1,co=component(Hpn,i-k+1); if(Mod(co,p)==0,val=valuation(co,p);if(val>ex,ex=val); listinsert(L,p^val,1)));Hpn1=component(Hpn,1); vptor=valuation(Hpn0/Hpn1,p);tor=p^vptor;S0=0;S1=0;w=valuation(f,p); pN=p^2*p^w; for(cc=2,10^2,if(gcd(cc,p*f)!=1,next);c=cc;break); for(a=1,fn/2,if(gcd(a,fn)!=1,next);asurc=lift(a*Mod(c,fn)^-1); lambda=(asurc*c-a)/fn; u=Mod(lambda*p^-1,pN); s=kronecker(f,a);if(s==1,S0=S0+u);if(s==-1,S1=S1+u)); L0=lift(S0);L1=lift(S1); A=L1-L0;if(abs(A)!=0,A=p^valuation(A,p));print(f, " P=",P, " \(1,0\) \(A'=1\) tor=1 T_K=[], Cl_K=[]))
```

6.2. Conductor $f_K=8$ $P=x^2-8$ $(1,0)$ $A'=1$ tor=1 T_K=[], Cl_K=[]

6.3. Conductor $f_K=508$ $P=x^2-508$ $(223,479)$ $A'=256$ tor=128 T_K=[128] Cl_K=[]

6.4. Conductor $f_K=1160$ $P=x^2-1160$ $(2,6)$ $A'=4$ tor=2 T_K=[2] Cl_K=[2,2]

6.5. Conductor $f_K=1185$ $P=x^2-1185$ $(1640,1640)$ $A'=0$ tor=1024 T_K=[2,512] Cl_K=[2]

6.6. Conductor $f_K=1189$ $P=x^2-1189$ $(2,6)$ $A'=4$ tor=2 T_K=[2] Cl_K=[2]

6.7. Conductor $f_K=1196$ $P=x^2-1196$ $(4,20)$ $A'=16$ tor=8 T_K=[8] Cl_K=[2]

6.8. Conductor $f_K=1201$ $P=x^2-1201$ $(7752,3656)$ $A'=4096$ tor=2048 T_K=[2048] Cl_K=[]
Lemma 6.2. \[\text{formula:} \]

The following result may help to precise the annihilations (see [14, Theorem IV.3.3, Exercise IV.3.3.1]):

\[\text{formula:} \]

Remarks 6.1. (i) For \(f = 1160 \), one sees that \(\#\mathcal{O}_K^\infty = \frac{1}{2} \#\mathcal{O}_K \) (indeed, \(-1\) is norm in \(K/Q \), cf. (2.1)).

(ii) It seems that for all the conductors, \(A' \) is of the form \(2^h (1 + \sigma) \) up to a 2-adic unit, where \(h \geq 0 \) takes any value and can exceed the exponent.

(iii) For \(f \) prime, the annihilator of \(\mathcal{T}_K \), given by the Theorem [14, Theorem IV.3.3] or by any Solomon’s type element, is related to its order:

\[\frac{1}{2} L_2(1, \chi) \sim \frac{1}{2} \sum_{a=1}^f \chi(a) \log(1 - \zeta_f^a) = \frac{1}{2} \left[\log(\eta_K) - \log(\eta_K') \right], \]

where \(\eta_K = N_{\mathbb{Q}/K}(1 - \zeta_f) \) (here the character \(\chi \) is primitive modulo \(f \) since \(K = k_\chi \)). The following program verifies (at least for these kind of prime conductors with trivial class group) that we have \(\eta_K \cdot \varepsilon = \pm \sqrt{f} \), where \(\varepsilon \) is the fundamental unit of \(K \) or its inverse (the program gives in \(N_0 \) and \(N_1 \) the conjugates of \(\eta_K \) and gives \(\varepsilon \) in \(\mathbb{E} \):

\[\{f=1201;N0=1;N1=1;x=exp(2*I*Pi/f);z=znprimroot(f);E=quadunit(f);zk=1; \]

for \((k=1,(f-1)/2,zk=zk*z^2;N0=N0*(1-X^lift(zk));N1=N1*(1-X^lift(zk*z))); \]

print(N0*E, " ",N1/E)\}

We find \(N_0 \varepsilon = N_1 \varepsilon^{-1} \approx 34.65544690 = \sqrt{1201} \), which implies that:

\[\frac{1}{2} L_2(1, \chi) \sim \frac{1}{2} \left(2 \log(\varepsilon) \right) = \log(\varepsilon). \]

A direct computation gives \(\log(\varepsilon) \sim 2^{12} \) as expected since \(\#\mathcal{T}_K = 2^{11} \) with \(\#\mathcal{R}_K \sim 2^{10} \) [9, Proposition 5.2] and \(\#\mathcal{W}_K = 2 \) since 2 splits in \(K \). Same kind of result with \(f = 1217 \).

6.2. A family of cyclic quartic fields of composite conductor. We consider a conductor \(f \) product of two prime numbers \(q_1 \) and \(q_2 \) such that \(q_1 - 1 \equiv 2 \pmod{4} \) and \(q_2 - 1 \equiv 0 \pmod{8} \). So there exists only one real cyclic quartic field \(K \) of conductor \(f \) which is found eliminating the imaginary and non-cyclic fields; the quadratic subfield of \(K \) is \(k = \mathbb{Q}(\sqrt{q_1}) \).

The program is written with \(A'_{K,n}(c) \) and gives all information for \(k \) and \(K \).

The following result may help to precise the annihilations (see [14, Theorem 2] or [8, Theorem IV.3.3, Exercise IV.3.3.1]):

Lemma 6.2. Let \(k \) be a totally real number field and let \(K/k \) be a Galois \(p \)-extension with Galois group \(g \) of order \(p^r \). Then we have the fixed point formula:

\[\#\mathcal{T}_K^p = \#\mathcal{T}_k \cdot p^h, \]

where \((\not \mid p \) being the ramified primes in \(K/k \)):

\[h := \min(n_0 + r; \ldots, \nu_l + \varphi_l + \gamma_l, \ldots) - (n_0 + r) + \sum_{l \mid p} e_l, \]

with:

\[p^{v_l} := p\text{-part of } q^{-1}\log(\ell), \text{ where } \ell \cap \mathbb{Z} =: \ell \mathbb{Z}, \]

\[p^{\ell_1} := p\text{-part of the residue degree of } \ell \text{ in } K/Q, \]

\[p^{\nu_l} := p\text{-part of the number of prime ideals } \ell \text{ in } K/k, \]

\[p^{s_l} := p\text{-part of the ramification index of } \ell \text{ in } K/k. \]

In such families of cyclic quartic fields, \(h = \sum_{l \mid p} e_l \).
6.2.1. **The program.** In the present family, \(h = 2 \) (resp. 3) if \(q \) is inert (resp. splits) in \(k/Q \).

\[
\begin{align*}
(p=2; n=18; & \text{forprime}(q=17, 100, \text{if} (\text{Mod}(q, 8) \neq 1, \text{next}); \text{P}=x^2-qq; \\
& k=\text{bnfinit}(\text{P}, 1); \text{K}=\text{bnrinit}(k, p^n); \text{H} = \text{component}(\text{component}(\text{K}, 5), 2); \\
& \text{Lk}=\text{List}(i=\text{component}(\text{matsize}(\text{H}), 2); \\
& \text{for}(j=1, i, \text{C}=\text{component}(\text{H}, j+1); \text{if} (\text{Mod}(\text{C}, p) = 0, \\
& \text{listinsert}(\text{Lk}, p^{\text{valuation}(\text{C}, p)}, 1)); \text{forprime}(q=5, 100, \\
& \text{if} (\text{valuation}(q-1, 2) = 2, \text{next}); \text{f}=q; \text{P}=\text{polsubcyclo}(f, 4); \\
& \text{for}(j=1, 7, \text{P} = \text{component}(\text{component}(\text{P}, 2), j); \text{K}=\text{bnfinit}(k, p^n); \\
& \text{C5}=\text{component}(\text{component}(\text{K}, 5), 2); \text{L}=\text{List}(i=\text{ex}=0; \\
& i=\text{component}(\text{matsize}(\text{P}), 2); \text{for}(k=1, i, \text{co}=\text{component}(\text{P}, i-k+1); \\
& \text{if} (\text{Mod}(\text{co}, p) = 0, \text{val} = \text{valuation}(\text{co}, p); \text{if} (\text{val} > \text{ex}, \text{ex} = \text{val}); \\
& \text{listinsert}(\text{L}, p^{\text{valuation}(\text{co}, p)}, 1))); \\
& h = \text{znprimroot}(q); z = \text{znprimroot}(qq); \text{for}(cc=3, f, \text{if}(\text{gcd}(cc, p*f) \neq 1, \text{next}); \\
& \text{cz}=\text{lift}((cc*z)^d); \text{czz}=\text{lift}((cc*zz)^d); \text{if} (\text{cz} \neq 1 \text{ or } \text{czz} \neq 1, \text{next}); \\
& \text{c}=\text{cc}; \text{break}); \text{cm}=\text{lift}(\text{Mod}(\text{c}, f)^{-1}); \text{for}(a=1, f/2, \text{if} (\text{gcd}(a, f) \neq 1, \text{next}); \\
& \text{if} (\text{a} \neq 1, \text{V} = \text{valuation}(\text{norm}(\text{a}), 2)); \\
& \text{print}(f, "\text{component} \text{factor}(f)\)); \\
\end{align*}
\]

\[
\begin{align*}
f & = \[5, 17\] h = [2] P = x^4-x^3-23*x^2+86 \text{ tor}=16 \text{ Nni}=16 \\
A & = [41, 2+1, 1*0] q=5 \text{ q}=17 \text{ T_k}=\text{List}(\text{[2]}); \text{K}=[4, 2, 2] \\
f & = [13, 17] h = [2] P = x^4-x^3-57*x^2+664 \text{ tor}=32 \text{ Nni}=32 \\
A & = [21, 2*1, 2*3, 2*3] q = 17 \text{ T_k}=[4, 4, 2] \\
f & = [17, 29] h = [2] P = x^4-x^3-125*x^2+3452 \text{ tor}=16 \text{ Nni}=16 \\
A & = [43, 2*1, 1*0, 2*1] q = 17 \text{ T_k}=[4, 2, 2] \\
f & = [17, 37] A = [10] \text{ P}=x^4-x^3-159*x^2+5662 \text{ tor}=16 \text{ Nni}=16 \\
A & = [4*1, 2*3, 8*1, 2*7] q=37 \text{ q}=17 \text{ T_k}=[4, 2, 2] \\
f & = [17, 53] h = [2, 2] P = x^4-x^3-227*x^2+11714 \text{ tor}=32 \text{ Nni}=32 \\
A & = [21, 2*5, 2*3, 2*7] q=53 \text{ q}=17 \text{ T_k}=[4, 4, 2] \\
f & = [17, 61] h = [2] P = x^4-x^3-261*x^2+15556 \text{ tor}=16 \text{ Nni}=16 \\
A & = [21, 8*1, 2*5, 4*3] q=61 \text{ q}=17 \text{ T_k}=[4, 2, 2] \\
f & = [5, 41] h = [2] P = x^4-x^3-56*x^2-100*x+160 \text{ tor}=256 \text{ Nni}=32 \\
A & = [21, 3, 2*45, 2*59, 2*27] q=5 \text{ q}=41 \text{ T_k}=[16] \text{ K}=[32, 4, 2] \\
f & = [13, 41] h = [2] P = x^4-x^3-138*x^2-264*x+1472 \text{ tor}=256 \text{ Nni}=32 \\
A & = [21, 2*7, 2*51, 2*5] q=13 \text{ q}=41 \text{ T_k}=[16] \text{ K}=[32, 4, 2] \\
f & = [29, 41] h = [2] P = x^4-x^3-302*x^2-592*x+8032 \text{ tor}=1024 \text{ Nni}=128 \\
A & = [4*21, 4*5, 4*15, 4*15] q=29 \text{ q}=41 \text{ T_k}=[16] \text{ K}=[32, 8, 4]
\end{align*}
\]
6.2.2. The case $f = 5 \cdot 73$. One may try to find a contradiction to Conjecture with the $A'_{K,n}(c)$ given by the above data. One sees that $\frac{1}{2} A'_{K,n}(c)$ is not always in $\mathbb{Z}[G_K]$, but modulo the norm we have an annihilator of the form $2 \cdot A'_{K,n}(c)$, and similarly we may ask under what condition $A''_{K,n}(c)$ annihilates T_K.

For $f = 5 \cdot 73$, $P = x^4 - x^3 - 100 x^2 + 187 x + 1389$, for which we have $T_K \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $\text{Cl} = 2$, $A'_{K,n}(c) = 5 + 9 \sigma + 15 \sigma^2 + 3 \sigma^3$, giving:

$$A''_{K,n}(c) = \frac{1}{2} [5 + 9 \sigma + 15 \sigma^2 + 3 \sigma^3 - 3(1+\sigma+\sigma^2+\sigma^3)] \equiv 1 - \sigma + 2 \sigma^2 \pmod{4}$$

without obvious contradiction since $\#T_K^2 = 8$ (i.e., $T_K^2 = T_K$) and $\#T_K^{G_K} = 4$ (Lemma 6.2). Moreover, we deduce from this that $N_{K/k}(T_K) = T_k$.
6.3. Cyclic cubic fields of prime conductors. The following program gives, for \(p = 2 \) and for cyclic cubic fields of prime conductor \(f \), the group structure of \(T_K \) in \(L \) (from \([10] \S 3.2\)); recall that in all such programs, the parameter \(nt \) must be large enough regarding the exponent of \(T_K \), then the (conjectural) annihilator \(A'_{K,n}(c) \), reduced modulo \(1 + \sigma + \sigma^2 \); it is equal, up to an invertible element, to a power of 2 (2 is inert in \(\mathbb{Q}(j) \)):

\[
\begin{align*}
&f=2; \text{nt}=12; \text{forprime}(f=10^4,2*10^4, \text{if}(\text{Mod}(f,3)!=1, \text{next}); P=\text{polsubcyclo}(f,3); \\
&K=\text{bnfinit}(P,1); Kpn=\text{bnrinit}(K,p^\text{nt}); C5=\text{component}(Kpn,5); \\
&Hpn0=\text{component}(C5,1); Hpn=\text{component}(C5,2); L=\text{List}; ex=0; \\
&i=\text{component}(\text{matsize}(Hpn),2); \text{for}(k=1,i-1, \text{co}=\text{component}(Hpn,i-k+1); \\
&\text{if}(\text{Mod}(\text{co},p)==0, \text{val}=\text{valuation}(\text{co},p); \text{if}(\text{val}>ex,ex=\text{val}); \\
&\text{listinsert}(L,p^\text{val},1)); Hpn1=\text{component}(Hpn,1); \\
&vptor=\text{valuation}(Hpn0/Hpn1,p); \text{if}(vptor>2, S0=0; S1=0; S2=0; pN=p^2*p^ex; \\
&D=(f-1)/3; fn=pN*f; zznprimroot(f); zz=lift(z); t=lift(Mod((1-zz)/f,p)); \\
&c=zz+t*f; \text{for}(a=1,fn/2, \text{if}(\text{gcd}(a,fn)!=1, \text{next}); \text{asurc}=\text{lift}(a*Mod(c,fn)^{-1}); \\
&\lambda=\text{asurc}; \text{u}=\text{Mod}(\lambda*a^{-1},pN); \\
&a0=\text{lift}((a*z0)^D); a1=\text{lift}((a*z2)^D); a2=\text{lift}((a*z3)^D); \\
&\text{if}(a0==1, S0=1; S1=1; S2=1; S3=1); \text{if}(a2==1, S2=1; S3=1); \\
&L0=\text{lift}(S0); L1=\text{lift}(S1); L2=\text{lift}(S2); L3=\text{lift}(S3); \text{Y}=\text{valuation}(\text{A}(A,2); \text{print}(f, courant, p, \text{A}, \text{L}))}
\end{align*}
\]

f	P	A	L
10399	\(x^3+3x^2-3466x+7703 \)	4	[4,4]
10513	\(x^3+x^2-3504x-80989 \)	8	[8,8]
10753	\(x^3+x^2-3584x-76864 \)	4	[4,4]
10771	\(x^3+x^2-3590x-26728 \)	4	[4,4]
10903	\(x^3+x^2-3634x+26248 \)	8	[8,8]
10939	\(x^3+x^2-3646x+46592 \)	16	[16,16]
10957	\(x^3-x^2-3652x-39364 \)	4	[4,4]
11149	\(x^3-x^2+3716x+39228 \)	4	[2,2,2,2]
12757	\(x^3+x^2+2452x+103001 \)	4	[4,4]
13267	\(x^3+x^2+4422x+96800 \)	16	[16,16]
13297	\(x^3+x^2+4432x+94064 \)	4	[4,4]
13309	\(x^3+x^2+4436x+100064 \)	4	[4,4]
13591	\(x^3+x^2+4530x-63928 \)	8	[8,8]

6.4. Cyclic quartic fields of prime conductors. Let’s give the same program for prime conductors \(f \equiv 1 \pmod{8} \), with the annihilator \(A_{K,n}(c) \):

\[
\begin{align*}
&f=2; \text{nt}=18; d=4; \text{forprime}(f=5,500, \text{if}(\text{Mod}(f,2+d)!=1, \text{next}); P=\text{polsubcyclo}(f,d); \\
&K=\text{bnfinit}(P,1); Kpn=\text{bnrinit}(K,p^\text{nt}); C5=\text{component}(Kpn,5); Hpn0=\text{component}(C5,1); \\
&Hpn=\text{component}(C5,2); L=\text{List}; ex=0; \\
&i=\text{component}(\text{matsize}(Hpn),2); \text{for}(k=1,i-1, \text{co}=\text{component}(Hpn,i-k+1); \\
&\text{if}(\text{Mod}(\text{co},p)==0, \text{val}=\text{valuation}(\text{co},p); \text{if}(\text{val}>ex,ex=\text{val}); \\
&\text{listinsert}(L,p^\text{val},1)); Hpn1=\text{component}(Hpn,1); \\
&vptor=\text{valuation}(Hpn0/Hpn1,p); \text{if}(vptor>2, S0=0; S1=0; S2=0; S3=0; pN=p^2*p^ex; \\
&D=(f-1)/d; fn=pN*f; zznprimroot(f); zz=lift(z); t=lift(Mod((1-zz)/f,p)); \\
&c=zz+t*f; \text{for}(a=1,fn, \text{if}(\text{gcd}(a,fn)!=1, \text{next}); \text{asurc}=\text{lift}(a*Mod(c,fn)^{-1}); \\
&\lambda=\text{asurc}; \text{u}=\text{Mod}(\lambda*a^{-1},pN); \\
&a0=\text{lift}((a*z0)^D); a1=\text{lift}((a*z2)^D); a2=\text{lift}((a*z3)^D); a3=\text{lift}((a*z4)^D); \\
&\text{if}(a0==1, S0=0; S1=0; S2=0; S3=0; S4=0); \text{if}(a2==1, S2=0; S3=0; S4=0); \\
&\text{if}(a4==1, S4=0); L0=\text{lift}(S0); L1=\text{lift}(S1); L2=\text{lift}(S2); L3=\text{lift}(S3); \text{Y}=\text{valuation}(\text{A}(A,2); \text{print}(f, courant, p, \text{A}, \text{L}))}
\end{align*}
\]
One gets the following examples (with $\text{vptor} > 1$ and where $2^{N_{\text{ini}}}$ is the norm of $L_0 - L_2 + (L_1 - L_3)\sqrt{T}$ with $A_{K,n}(c) = L_0 + L_1\sigma + L_2\sigma^2 + L_3\sigma^3$, given in $A = [L_0, L_1, L_2, L_3]$); then the list L gives the structure of \mathcal{T}_K:

f	P	A	L	$2^{N_{\text{ini}}}$
17	$x^4 + x^3 - 6x^2 + 2 - x + 1$	$[4, 6, 0, 6]$	$[4]$	16
41	$x^4 + x^3 - 15x^2 + 18x - 4$	$[90, 28, 102, 100]$	$[32]$	16
73	$x^4 + x^3 - 27x^2 + 2 - 41x + 2$	$[4, 4, 0, 0]$	$[2, 2, 2]$	32
89	$x^4 + x^3 - 33x^2 + 39x + 8$	$[4, 4, 0, 0]$	$[2, 2, 2]$	32
97	$x^4 + x^3 - 36x^2 + 91x - 61$	$[8, 10, 12, 2]$	$[4]$	16
113	$x^4 + x^3 - 42x^2 + 120x - 64$	$[16, 28, 8, 12]$	$[2, 2, 8]$	64
137	$x^4 + x^3 - 51x^2 + 214x - 236$	$[26, 8, 30, 16]$	$[16]$	16
193	$x^4 + x^3 - 72x^2 - 205x - 49$	$[6, 0, 14, 12]$	$[4]$	16
233	$x^4 + x^3 - 87x^2 + 335x - 314$	$[4, 0, 0, 4]$	$[2, 2, 2]$	32
241	$x^4 + x^3 - 90x^2 - 497x - 739$	$[6, 0, 6, 4]$	$[4]$	16
257	$x^4 + x^3 - 96x^2 + 2 - 16x + 256$	$[28, 20, 20, 60]$	$[2, 4, 16]$	128
281	$x^4 + x^3 - 105x^2 + 212x^2 + 236$	$[4, 4, 0, 0]$	$[2, 2, 2]$	32
313	$x^4 + x^3 - 11x^2 + 2 + 450x - 324$	$[78, 12, 106, 108]$	$[32]$	16
337	$x^4 + x^3 - 126x^2 + 2 + 316x + 104$	$[28, 12, 28, 28]$	$[2, 2, 8, 256]$	
353	$x^4 + x^3 - 132x^2 + 2 + 684x - 928$	$[112, 60, 80, 68]$	$[2, 2, 32]$	64
401	$x^4 + x^3 - 150x^2 + 2 + 25x + 625$	$[14, 4, 6, 8]$	$[4]$	16
409	$x^4 + x^3 - 153x^2 + 2 - 230x + 648$	$[22, 8, 26, 24]$	$[8]$	16
433	$x^4 + x^3 - 162x^2 + 2 + 839x - 1003$	$[2, 4, 10, 0]$	$[4]$	16
449	$x^4 + x^3 - 168x^2 + 2 + 477x + 335$	$[10, 4, 10, 8]$	$[4]$	16
457	$x^4 + x^3 - 171x^2 + 2 + 1114x - 2044$	$[76, 10, 28, 30]$	$[32]$	16

6.5. Detailed example of annihilation. The case of the cyclic quartic field K of conductor $f = 3433$ is particularly interesting:

6.5.1. Numerical data. We have $P = x^4 + x^3 - 1287 x^2 - 12230 x + 3956$ and $\mathcal{T}_K \simeq \mathbb{Z}/2^{7} \mathbb{Z}$, knowing that the quadratic subfield $k = \mathbb{Q}(\sqrt{3433})$ is such that $\mathcal{T}_k \simeq \mathbb{Z}/2^6 \mathbb{Z}$:

```
{P=x^4+x^3-1287*x^2-12230*x+3956;K=bnfinit(P,1);p=2;nt=18;
 Kpn=bnrinit(K,p^nt);Hpn=component(component(Kpn,5),2);L=List;
i=component(matsize(Hpn),2);for(k=1,i-1,c=component(Hpn,i-k+1);
 if(Mod(c,p)==0,listinsert(L,p^valuation(c,p),1)));print("Structure: ",L)}
```

```
Structure: List([128])
```

The class group of K is trivial and its three fundamental units are:

```
{P=x^2-3433;K=bnfinit(P,1);p=2;nt=18;Kpn=bnrinit(K,p^nt);
 Hpn=component(component(Kpn,5),2);L=List;i=component(matsize(Hpn),2);for(k=1,i-1,c=component(Hpn,i-k+1);
 if(Mod(c,p)==0,listinsert(L,p^valuation(c,p),1)));print("Structure: ",L)}
```

```
Structure: List([64])
```

The class group of K is trivial and its three fundamental units are:

```
[227193/338*x^3-6613325/338*x^2-93274465/338*x+14925255/169,
 34349/169*x^3+1388772/169*x^2+10559389/169*x-3491425/169,
 702763697418125/338*x^3-677429229869394661/338*x^2
-83238272983560888143/338*x+13065197272033438434/169]
```

6.5.2. Annihilation from $A_{K,n}(c)$. We have computed $A_{K,n}(c)$ and obtained:

$$A_{K,n}(c) = A_K \equiv 8 \cdot 13 + 2 \cdot 21 \cdot 16 \cdot 7 \cdot 23 \cdot 2 \cdot 3 \cdot 3 \mod 2^7.$$

Let h be a group generator of \mathcal{T}_K (order 2^7) and let h_0 be a generator of \mathcal{T}_k (order 2^6); it is easy to prove that one may suppose $h^2 = j_K/k(h_0)$.
(injectivity of the transfer map $j_{K/k}$) and $h_0^2 = h_0$. We put $j_{K/k}(h_0) =: h_0$ for simplicity. Then it follows that

$$h^{A_K} = h_0^{413 + 21 \sigma + 87 \sigma^2 + 23 \sigma^3} = 1.$$

Since $h_0^2 = h_0$, we obtain $h^{A_K} = h_0^{413 + 87 + (21 + 23) \pi} = h_0^{427 + 11 \pi} = 1$; giving, modulo the norm $1 + \pi$, $h_0^{4(27-11)} = h_0^{6} = 1$, as expected.

6.5.3. **Annihilation from $A_{K,n}(c)$**. There is (by accident?) no numerical obstruction for an annihilation by $A'_K := A'_{K,n}(c)$, with the same program replacing “for(a = 1, fn, ...)” by “for(a = 1, fn/2, ...)”. Then it follows that the program gives $h^{A'_K} = h_0^{413 + 21 \sigma + 815 \sigma^2 + 23 \sigma^3} = 1$. Since the restriction of A_K' to k is A'_k (no Euler factors), we get:

$$h_0^{A'_K} = h_0^{413 + 815 + (21 + 23) \pi} = h_0^{443 + 411 \pi} = 1$$

which is equivalent, modulo the norm, to the annihilation by $4 \cdot 43 - 4 \cdot 11 = 27$ for a cyclic group of order 2^6.

Now we may return to the annihilation of h; since $h^{1+\sigma^2} \in j_{K/k}(T_k)$ we put $h^{1+\sigma^2} = h_0^t$. Then, with $u = 13$, $v = 21$, $w = 15$, $z = 23$, we have:

$$h^{4u + \sigma \cdot w + 8w \sigma^2 + z \sigma^3} = h_0^{2u + 4w \sigma^2} h_0^{(v + \sigma^2) \sigma}$$

$$= h_0^{2u + 4w + 23 t \sigma} h_0^{(v - z) \sigma} = h_0^{2 \cdot 43 + 23 t \sigma} h_0^{-2 \sigma}$$

$$= h_0^{2 \cdot 43 + (23 t - 1) \sigma} = h_0^{2 \cdot 43 - 23 t + 1} = h_0^{87 - 23 t} = 1$$

so necessarily $87 - 23 t \equiv 0 \pmod{2^6}$, giving $t \equiv 1 \pmod{2^6}$. So we can write:

$$h^{1+\sigma^2} = j_{K/k}(h_0).$$

6.5.4. **Direct study of the G_K-module structure of T_k**. We consider T_k only given with the following information: h is a group generator such that $h^2 = h_0$, a generator of $j_{K/k}(T_k)$; $h^\sigma = h^x$, $x \in \mathbb{Z}/2^7 \mathbb{Z}$, whence $h_0^\sigma = h_0^{-1}$, giving $x \equiv -1 \pmod{2^6}$. The relation $h^{\sigma^2 + 1} = h^{x^2 + 1} = h^2 = h_0$ gives again $t = 1$ in the previous notation $h^{\sigma^2 + 1} = h_0^t$. Moreover, $h^{\sigma^2 - 1} = h^{x^2 - 1} = 1$, which is in accordance with Lemma [6.2] and gives $T_K^g = T_K$.

If we take into account these theoretical informations for the “annihilators” A_K and A'_K we find no contradiction, but we do not know if $x = -1$ or $x = -1 + 2^6$ (modulo 2^7). The prime 2 splits in k, is inert in K/k and the class number of K is 1; so we have $W_K \simeq W_k \simeq \mathbb{Z}/2\mathbb{Z}$ and $T_K = \text{tor}_{\mathbb{Z}_2}(U_K/\mathbb{E}_K)$; then the result about x depends on the exact sequence [22.2]:

$$1 \rightarrow \mathbb{Z}/2\mathbb{Z} \rightarrow T_K \simeq \mathbb{Z}/2^7\mathbb{Z} \xrightarrow{\log} \text{tor}_{\mathbb{Z}_2}(\log(U_K)/\log(E_K)) =: R_K \rightarrow 0,$$

knowing the units and then the structure of the regulator R_K.

6.5.5. **About the case $f_K = 233$**. The field K is defined by the polynomial $P = x^4 + x^3 - 87 x^2 + 335 x - 314$ for which $T_K \simeq (\mathbb{Z}/2\mathbb{Z})^3$ and $T_k \simeq \mathbb{Z}/2\mathbb{Z}$.

In this case an annihilator is $A_K = 4 \cdot (1 + \sigma^3)$, which shows that $A'_K = 2 \cdot (1 + \sigma^3)$ is also suitable. Then $A'_K = \frac{1}{2} A'_K$ should be equivalent to $1 - \sigma$.

Since 2 splits completely in K, we have $T_K = \mathbb{W}_K \simeq (\mathbb{Z}/2\mathbb{Z})^3$ and in the same way, $T_k = \mathbb{W}_k \simeq \mathbb{Z}/2\mathbb{Z}$, for which the Galois structures are well-known:
in particular, $1 - \sigma$ does not annihilate T_K (the class of $(1, -1, 1, -1)$ is invariant). Another proof: use Lemma 6.2 giving here $\# T_K^{G_K} = 2$.

7. p-adic Measures and Annihilations

To establish (in Section 9) a link with the values of p-adic L-functions, $L_p(s, \chi)$, at $s = 1$, we shall refer to [13, Section II] using the point of view of explicit p-adic measures (from pseudo-measures in the sense of [24]) with a Mellin transform for the construction of $L_p(s, \chi)$ and the application to some properties of the λ invariants of Iwasawa’s theory.

But since we only need the value $L_p(1, \chi)$, instead of $L_p(s, \chi)$, for $s \in \mathbb{Z}_p$, we can simplify the general setting, using a similar computation of $S_{L_n}(c)^*$, directly in $\mathbb{Z}[G_n]$, given by Oriat in [22, Proposition 3.5].

7.1. Definition of A_{L_n} and $A_{L_n}(c)$. Let $n \geq n_0 + c$, where $T_K^{G_K} = 1$, and put $\varphi_n := \varphi(qp^n) = (p - 1) \cdot p^n$ if $p \neq 2$, $\varphi_n = 2n^{p-1}$ otherwise.

We consider (where c is odd and prime to f_n and where a runs through the integers in $[1, f_n]$, prime to f_n):

$$A_{L_n} := \frac{-1}{f_n \varphi_n} \sum_a a^{\varphi_n} \left(\frac{L_n}{a} \right) \quad \& \quad A_{L_n}(c) := \left[1 - e^{\varphi_n} \left(\frac{L_n}{c} \right) \right] A_{L_n}.$$

(7.1)

For now, these elements, or more precisely their restrictions to K, are not to be confused with the restrictions $A_{K, n}(c)$ of $S_{L_n}(c)^*$ defined in §5.2 even we shall prove that they are indeed equal; but such an expression is more directly associated to L_p-functions. Then:

$$A_{L_n}(c) = \left[1 - e^{\varphi_n} \left(\frac{L_n}{c} \right) \right] \frac{-1}{f_n \varphi_n} \sum_a a^{\varphi_n} \left(\frac{L_n}{a} \right)$$

$$\equiv \frac{-1}{f_n \varphi_n} \left[\sum_a a^{\varphi_n} \left(\frac{L_n}{a} \right) - \sum_a a^{\varphi_n} c^{\varphi_n} \left(\frac{L_n}{a} \right) \left(\frac{L_n}{c} \right) \right]$$

(in the same way, use a'_c such that $a'_c \cdot c = a \pmod{f_n}$, $1 \leq a'_c \leq f_n$)

$$\equiv \frac{-1}{f_n \varphi_n} \left[\sum_a a^{\varphi_n} \left(\frac{L_n}{a} \right) - \sum_a a'_c^{\varphi_n} c^{\varphi_n} \left(\frac{L_n}{a'_c} \right) \left(\frac{L_n}{c} \right) \right]$$

$$\equiv \frac{1}{f_n \varphi_n} \sum_a \left[(a'_c \cdot c)^{\varphi_n} - a^{\varphi_n} \right] \left(\frac{L_n}{a} \right).$$

Lemma 7.1. We have $(a'_c \cdot c)^{\varphi_n} - a^{\varphi_n} \equiv 0 \pmod{f_n \varphi_n}$.

Proof. By definition, $a'_c \cdot c = a + \lambda_a^n(c)f_n$ with $\lambda_a^n(c) \in \mathbb{Z}$. Consider:

$$A := \frac{(a'_c \cdot c)^{\varphi_n} - a^{\varphi_n}}{f_n \varphi_n}$$

$$= \frac{\left[a^{\varphi_n} + \lambda_a^n(c)f_n \varphi_n a^{\varphi_n - 1} + \lambda_a^n(c)^2 f_n^2 \varphi_n (\varphi_n - 1) a^{\varphi_n - 2} + \cdots \right] - a^{\varphi_n}}{f_n \varphi_n}$$

$$\equiv \lambda_a^n(c)a^{\varphi_n - 1} + \lambda_a^n(c)^2 f_n \frac{(\varphi_n - 1)}{2} a^{\varphi_n - 2}$$

$$\equiv \lambda_a^n(c)a^{\varphi_n - 1} \equiv \lambda_a^n(c)a^{-1} \pmod{p^{n+1}},$$

since $a^{\varphi_n} \equiv 1 \pmod{qp^n}$.
When $p = 2$, one must take into account the term $\lambda_a^n(c) f_n \frac{\varphi_n - 1}{2} a^{-\varphi_n - 2} \sim \frac{1}{2} \lambda_a^n(c) f_n$, in which case the congruence is with the modulus p^{n+1} (which is sufficient since for $n \geq n_0 + e$, this modulus annihilates \mathcal{T}_K for any p).

We have obtained for all $n \geq n_0 + e$:

$$A_{L_n}(c) \equiv \sum_{a=1}^{f_n} \lambda_a^n(c) \cdot a^{-1} \left(\frac{L_n}{a} \right) \equiv S_{L_n}(c),$$

thus giving again, by restriction to K, the annihilator $A_{K,n}(c) \in \mathbb{Z}_p[G_K]$ of \mathcal{T}_K such that (for all $n \geq n_0 + e$) $A_{K,n}(c) \equiv \sum_{a=1}^{f_n} \lambda_a^n(c) a^{-1} \left(\frac{K}{a} \right)$.

7.2. Nomic properties of the \mathcal{A}_L — Euler factors.

Theorem 7.2. [13 Proposition II.2 (iv)]. Let K be of conductor $f = ml$ where m is the conductor of a subfield k of K and where $\ell \neq p$ is a prime number. For $n \geq n_0$, let $L_n := K(\mu_{q^n})$ and the analogous field l_n for k, of conductors f_n and m_n, respectively; recall that $\varphi_n = \varphi(q^n)$.

Let $A_{L_n} := \sum_{a=1}^{f_n} a^{\varphi_n} \left(\frac{L_n}{a} \right)$ and $A_{l_n} := \sum_{b=1}^{m_n} b^{\varphi_n} \left(\frac{l_n}{b} \right)$. Then:

$$N_{L_n/l_n}(A_{L_n}) \equiv \left(1 - \ell^\varphi_n 1 - \frac{1}{\ell} \left(\frac{L_n}{\ell} \right) \right) A_{l_n}, \text{ resp., } N_{L_n/l_n}(A_{L_n}) \equiv A_{l_n},$$

if $\ell \nmid m$, resp., $\ell | m$ (congruences modulo $p^{n+1} \mathbb{Z}_p[G_n] + (1 - s_\infty) \mathbb{Z}_p[G_n]$).

Proof. Suppose first that $\ell \nmid m$, so $f_n = lm_n$.

Put $a = b + \lambda m_n$, $\lambda \in [0, \ell - 1]$, $b \in [1, m_n]$ prime to m_n; since $a \in [1, f_n]$ is prime to f_n, b is prime to m_n and $\lambda \neq \lambda^*_b$ such that $b + \lambda^*_b m_n =: b'_\ell, \ell, b'_\ell \in \mathbb{Z}$. Thus $a^{\varphi_n} = (b + \lambda m_n)^{\varphi_n} \equiv b^{\varphi_n} + b^{\varphi_n - 1} \lambda m_n \varphi_n \pmod{m_n \varphi_n p^{n+1}}$. Then:

$$N_{L_n/l_n}(A_{L_n}) \equiv \frac{-1}{\ell m_n \varphi_n} \sum_{b, \lambda \neq \lambda^*_b} b^{\varphi_n} + b^{\varphi_n - 1} \lambda m_n \varphi_n \left(\frac{L_n}{b} \right)$$

$$\equiv \frac{-\ell - 1}{\ell m_n \varphi_n} \sum_{b} b^{\varphi_n} \left(\frac{L_n}{b} \right) - \frac{1}{\ell} \sum_{b, \lambda \neq \lambda^*_b} b^{\varphi_n - 1} \lambda \left(\frac{L_n}{b} \right)$$

$$\equiv \left(1 - \frac{1}{\ell} \right) A_{l_n} - \frac{1}{\ell} \sum_{b, \lambda \neq \lambda^*_b} b^{\varphi_n - 1} \lambda \left(\frac{L_n}{b} \right)$$

$$\equiv \left(1 - \frac{1}{\ell} \right) A_{l_n} - \frac{1}{\ell} \sum_{b} b^{\varphi_n - 1} \left(\frac{L_n}{b} \right) \left(\sum_{\lambda \neq \lambda^*_b} \lambda \right)$$

$$\equiv \left(1 - \frac{1}{\ell} \right) A_{l_n} - \frac{1}{\ell} \sum_{b} b^{\varphi_n - 1} \left(\frac{L_n}{b} \right) \left(\frac{(\ell - 1)}{2} - \lambda^*_b \right).$$

We remark that $\lambda^*_b = \lambda^n_b(\ell)$ is relative to the writing $b'_\ell \cdot \ell = b + \lambda^*_b(\ell) m_n$ and that $b^{\varphi_n - 1} \equiv b^{-1} \pmod{p^{n+1}}$, whence using $\sum_{b} b^{-1} \left(\frac{L_n}{b} \right) \equiv 0$:

$$N_{L_n/l_n}(A_{L_n}) \equiv \left(1 - \frac{1}{\ell} \right) A_{l_n} + \frac{1}{\ell} \sum_{b} \lambda^*_b \cdot b^{-1} \left(\frac{L_n}{b} \right).$$

2For $\ell = 2$ and m odd, $f = 2m$ is not a conductor stricto sensu, but the following computations are exact and necessary with the modulus m_n and $f_n = 2m_n$: then if $f = 2^k \cdot m$ (odd, $k \geq 2$), the second case of the theorem applies and shall give the Euler factor $(1 - 2^{\varphi_n} \frac{1}{\ell} \left(\frac{L_n}{\ell} \right)) \equiv (1 - \frac{1}{2} \left(\frac{L_n}{\ell} \right))$. If $p | f$ and $p \nmid m$, there is no Euler factor for p since m_n and f_n are divisible by p; in other words, these computations and the forthcoming ones are, by nature, not “primitive” at p.
But as we know (see relations \(7.1 \) and \(7.2 \)), \(\sum_b \lambda_b^* b^{-1} \left(\frac{ln}{b} \right) \cong \mathcal{A}_{ln}(\ell) \); so
\(N_{Ln,Ln}(\mathcal{A}_{Ln}) \cong \left(1 - \frac{1}{\ell}\right)\mathcal{A}_{Ln} + \frac{1}{\ell} \mathcal{A}_{ln}(\ell) \): since \(\mathcal{A}_{ln}(\ell) \cong \left(1 - \ell^{\varphi_n} \left(\frac{ln}{\ell} \right) \right) \mathcal{A}_{ln} \),
we get \(N_{Ln,Ln}(\mathcal{A}_{Ln}) \cong \left(1 - \ell^{\varphi_n} \frac{1}{\ell} \left(\frac{ln}{\ell} \right) \right) \mathcal{A}_{ln} \).

The case \(\ell \mid m \) is obtained more easily from the same computations. \(\Box \)

Of course, for all \(h \geq 0 \) we get:
\[N_{Ln+h,Ln}(\mathcal{A}_{Ln+h}) \cong \mathcal{A}_{Ln} , \]
which expresses the coherence of the family \((\mathcal{A}_{Ln})_n \) in the cyclotomic tower.

Corollary 7.3. (i) Let \(K/k \) be an extension of fields of conductors \(f_K \) and \(f_k \), respectively. Multiplying by \(\left[1 - c^{\varphi_n} \left(\frac{ln}{c} \right) \right] = N_{Ln/Ln}[1 - c^{\varphi_n} \left(\frac{Ln}{c} \right)] \) to get elements in the algebras \((\mathbb{Z}/p^{n+1}\mathbb{Z})[\text{Gal}(\mathbb{L}_n/\mathbb{Q})] \) and \((\mathbb{Z}/p^{n+1}\mathbb{Z})[\text{Gal}(\mathbb{L}_n/\mathbb{Q})] \), one obtains \(N_{Ln/Ln}(\mathcal{A}_{Ln}(c)) \cong \prod_{f_K \neq f_k} 1 - \frac{1}{\ell} \left(\frac{ln}{\ell} \right) \mathcal{A}_{ln}(c) \).

(ii) Let \(\mathcal{A}_{K,n}(c) \) and \(\mathcal{A}_{k,n}(c) \) be the restrictions of \(\mathcal{A}_{Ln}(c) \) and \(\mathcal{A}_{ln}(c) \) to \(K \) and \(k \), respectively; then \(N_{K/k}(\mathcal{A}_{K,n}(c)) \cong \prod_{f_K \neq f_k} 1 - \frac{1}{\ell} \left(\frac{k}{\ell} \right) \mathcal{A}_{k,n}(c) \).

(iii) The family \((\mathcal{A}_{K,n})_n = (N_{Ln/K}(\mathcal{A}_{Ln}))_n \) defines a pseudo-measure denoted \(\mathcal{A}_K \) by abuse, such that the measure \((\mathcal{A}_{K,n}(c))_n \) defines the element \(\mathcal{A}_K(c) = \left(1 - \left(\frac{k}{c} \right) \right) \mathcal{A}_K \in \mathbb{Z}_p[G_K] \) and gives the main formula:
\[N_{K/k}(\mathcal{A}_K(c)) \cong \prod_{f_K \neq f_k} 1 - \frac{1}{\ell} \left(\frac{k}{\ell} \right) \mathcal{A}_K(c) . \]

Remarks 7.4. (i) In a numerical point of view, we only need a minimal value of \(n \), and we shall write (e.g., for \(n = e \) when \(K \cap \mathbb{Q}_\infty = \mathbb{Q} \)):
\[\mathcal{A}_{K,e}(c) \cong \sum_{\sigma \in G_K} \left[\sum_{a_n, (\frac{a_n}{c}) = \sigma} \lambda_n^\sigma(c) a_n^{-1} \right] . \]

Then the next step shall be to interprète the limit, \(\Lambda_n^\sigma(c) \), of the coefficients \(\Lambda_n^\sigma(c) = \sum_{a_n, (\frac{a_n}{c}) = \sigma} \lambda_n^a(c) a_n^{-1} \), for \(n \to \infty \), giving an equivalent annihilator, but with a more canonical interpretation.

(ii) In [12][13][22][28][29][30][19][27][21][11][2][4], some limits are expressed by means of \(p \)-adic logarithms of cyclotomic numbers/units of \(\mathbb{Q}_\ell \) as expressions of the values at \(s = 1 \) of the \(p \)-adic \(L \)-functions of \(K \) (for instance, in [29], Theorem 2.1) a link between Stickelberger elements and cyclotomic units is given following Iwasawa and Coleman). But these results are obtained with various non-comparable techniques; this will be discussed later.

(iii) In the relation \(\mathcal{A}_K(c) := \left[1 - \left(\frac{k}{c} \right) \right] \mathcal{A}_K \), the choice of \(c \) must be such that the integers \(1 - \chi(c) \) be of minimal \(p \)-adic valuation for the characters \(\chi \) of \(K \). But \(1 - \chi(c) \) is invertible if and only if \(\chi(c) \) is not a root of unity of \(p \)-power order.

8. **Remarks about Solomon’s annihilators**

We shall give two examples: one giving the same annihilator as our’s, and another giving a Solomon annihilator in part degenerated, contrary to \(\mathcal{A}_K(c) \).
8.1. Cubic field of conductor 1381 and Solomon’s Ψ_K. We have (see the previous table of §5.3) $P = x^3 + x^2 - 460x - 1739$ and the classical program gives the class number in h, the group structure of T_K (in L) and the units in E:

\begin{verbatim}
{P=x^3+460*x+1739;K=bnfinit(P,1);p=7;nt=8;Kpm=bnrinit(K,p\^nt);r=1;
 Hpn=component(component(Kpm,5),2);C8=component(K,8);E=component(C8,5);
 h=component(component(C8,1),1);L=List;i=component(matsize(Hpn),2);
 for(k=1,i-1,c=component(Hpn,1-k);if(Mod(c,p)==0,
 listinsert(L,p\^valuation(c,p),1)));print(L);print("h","",L,"E"="",E)}

h=1 List([343, 7])
E=[245/13*x^2-460*x+1739, 147/13*x^2+3479/13*x+11259/13]

So, the class group is trivial, $T_K = R_K \simeq \mathbb{Z}/7^3 \mathbb{Z} \times \mathbb{Z}/7^2\mathbb{Z}$ and the cyclotomic units are the fundamental units. Then we shall use a definition of the automorphism σ to define the Galois operation on the units:

\begin{verbatim}
{P=x^3 + x^2 - 460*x - 1739;print(nfgaloisconj(P))}
[x, -1/13*x^2 - 2/13*x + 302/13, 1/13*x^2 - 11/13*x - 315/13]

From $\varepsilon = \frac{245}{13}x^2 - \frac{4606}{13}x - \frac{21522}{13}$ and $\sigma : x \mapsto -\frac{1}{13}x^2 - \frac{2}{13}x + \frac{302}{13}$, one gets:

$\varepsilon = \varepsilon_1 = \frac{245}{13}x^2 - \frac{4606}{13}x - \frac{21522}{13}$,
$\varepsilon^\sigma = \varepsilon_2 = \frac{147}{13}x^2 + \frac{3479}{13}x + \frac{11259}{13}$,
$\varepsilon^\sigma_2 = \varepsilon_3 = \frac{-392}{13}x^2 + \frac{1127}{13}x + \frac{175948}{13}$.

The second unit given by PARI is $\frac{147}{13}x^2 + \frac{3479}{13}x + \frac{11272}{13} = -\varepsilon^\sigma$. The order of ε modulo $p = 7$ is 114. We compute $A_i := \varepsilon_i^{114}$ modulo 7^6, $i = 1, 2, 3$, then $L_i := A_i - 1$:

\begin{verbatim}
{P=x^3+460*x+1739;
 E1=Mod(245/13*x^2-460*x+1739,7^6);
 E2=Mod(147/13*x^2+3479/13*x+11259/13,7^6);
 E3=Mod(-392/13*x^2+1127/13*x+175948/13,7^6);
 L1=lift(E1);L2=lift(E2);L3=lift(E3);
 print((L1,L2,L3))}

L1 = 17542x^2 + 48608x + 81879 = 7^2(358x^2 + 992x + 1671) = 7^2\alpha_1,
L_2 = 62867x^2 + 8333x + 33761 = 7^2(1283x^2 + 17x + 689) = 7^2\alpha_2,
L_3 = 37240x^2 + 68208x + 2009 = 7^2(760x^2 + 1392x + 41) = 7^2\alpha_3,

giving $\frac{1}{7}\log(\varepsilon_i) \equiv 7\alpha_i - \frac{1}{2}3\alpha_i^2 \pmod{7^4}$:

$\frac{1}{7}\log(\varepsilon) \equiv 791x^2 + 2142x + 378 = 7(113x^2 + 306x + 54) \pmod{7^4}$,
$\frac{1}{7}\log(\varepsilon^\sigma) \equiv 2121x^2 + 119x + 364 = 7(303x^2 + 17x + 52) \pmod{7^4}$,
$\frac{1}{7}\log(\varepsilon^\sigma_2) \equiv 1890x^2 + 140x + 1659 = 7(270x^2 + 20x + 237) \pmod{7^4}$.

So, the Solomon annihilator $\frac{1}{p} \sum_{\sigma \in G_K} \log(\varepsilon^\sigma) \cdot \sigma^{-1}$ of T_K is (modulo 7^3 and up to a 7-adic unit):

$\Psi_K \equiv 7 \cdot [15x^2 + 12x + 5 + (9x^2 + 17x + 3)\sigma^{-1} + (25x^2 + 20x + 41)\sigma^{-2}]$.
\end{verbatim}
Then we have the Solomon annihilator:
\[k/\eta \quad \text{equivalent to } 448 + 623 \sigma \]
Our annihilator, given by the previous table, is 1738 + 2186 \sigma.
So \(T \) annihilator of \(T \): then one expects annihilators
\[K \]
m Since, from the formula (4.2) (which applies since \(8.2. \))
the perfect identity of the two results shows that no information has been
lost for this particular case, whatever the method (but in the case of cyclic
fields of prime degree, there is not any Euler factor).

8.2. Cyclic quartic field of conductor \(37 \cdot 45161 \) and Solomon’s \(\Psi_K \).
Let \(K \) be a real cyclic quartic field of conductor \(f \) such that the quadratic
subfield \(k \) has conductor \(m \mid f \), with for instance \(f = \ell m \), \(\ell \) prime split in
\(k/\mathbb{Q} \). We take \(p \equiv 1 \pmod{4} \), \(p \nmid f \).

Put \(\eta_f := 1 - \zeta_f \), \(\eta_m := 1 - \zeta_m \), \(\eta_K := N_{\mathbb{Q}^f/K}(\eta_f) \), \(\eta_k := N_{\mathbb{Q}^m/k}(\eta_m) \).

Then we have the Solomon annihilator:
\[\Psi_K = \frac{1}{p} \sum_{\sigma \in G_K} \log(\eta_K^\sigma) \cdot \sigma^{-1}. \]
Since, from the formula [412] (which applies since \(m \neq 1 \)), one has \(N_{\mathbb{Q}^f/\mathbb{Q}^m}(\eta_f) = \eta_m^{-1 + \left(\frac{m}{\mathbb{Q}}\right)} \), i.e., \(N_{K/k}(\eta_K) = \eta_k^{1 - \left(\frac{m}{\mathbb{Q}}\right)} = 1 \), we get (with \(G_K = \{1, \sigma, \sigma^2, \sigma^3\} \)):
\[\Psi_K = \frac{1}{p} \left(\log(\eta_K) + \log(\eta_K^\sigma) \cdot \sigma^{-1} + \log(\eta_K^{\sigma^2}) \cdot \sigma^{-2} + \log(\eta_K^{\sigma^3}) \cdot \sigma^{-3} \right) \]
\[= \frac{1}{p} \left(\log(\eta_K) + \log(\eta_K^{\sigma}) \cdot \sigma^{-1} - \log(\eta_K) \cdot \sigma^{-2} - \log(\eta_K^{\sigma}) \cdot \sigma^{-3} \right) \]

So, in this particular situation, one has:
\[(8.1) \quad \Psi_K = \frac{1}{p} \left(\log(\eta_K) + \log(\eta_K^{\sigma}) \cdot \sigma^{-1} \right) \cdot (1 - \sigma^2). \]

Suppose that \(T_K \) is equal to the transfer of \(T_k \) (many examples are available),
then \(T_K \) is annihilated by \((1 - \sigma^2) \), whatever the structure of \(T_k \); but
one expects annihilators \(A_K \) such that \(N_{K/k}(A_K) = A_k \) be a non-trivial
annihilator of \(T_k \).

For instance, define \(K \) by \(x = \sqrt{\ell \sqrt{m} + a} \) where \(m = a^2 + b^2 \), \(b = 2b' \).
This gives the polynomial \(P = x^4 - \ell m x^2 + \ell^2 mb'^2 \). The following program
gives many examples with non-trivial \(T_k \) (with \(m \) prime, \(p = 5 \)):
\[
\begin{align*}
(p=5; & \text{forprime}(m=1,10^5,\text{if} \left(\text{Mod}(m,20)=1, \text{next} \right); P=x^2-m; K=\text{bnfinit}(P,1); nt=12; \\
 & Kpn=\text{bnrinit}(K,p^{nt}); Hpn=\text{component}(\text{component}(Kpn,5),2); L=\text{List}; \\
 & i=\text{component}(\text{matsize}(Hpn),2); R=0; \text{for}(k=1,i-1,c=\text{component}(Hpn,i-k+1); \\
 & \text{if} \left(\text{Mod}(c,p)=0, R=R+1; \text{listinsert}(L,p^*\text{valuation}(c,p),1) \right); \text{if}(R>0, \\
 & \text{print(\"m=",m," structure",L))})}
\end{align*}
\]
For \(m = 45161 \), one obtains \(T_k \simeq \mathbb{Z}/5^5\mathbb{Z} \); then \(a = 205, b' = 28 \). Now we find some primes \(\ell \) with the following program:

\[
\begin{align*}
(p&=5;m=45161;bprim=28;\text{forprime}(ell=7,10^3,\text{if(Mod(ell,4)!=1,next));}
\text{P=\texttt{x}^4-ell*m*\texttt{x}^2+ell^2*m*bprim^2;} \\
K=\texttt{bnfinit}(P,1);nt=12;Kpn=\texttt{bnrinit}(K,p^nt);Hpn=\texttt{component(component(Kpn,5),2);} \\
L=\texttt{List};i=\texttt{component(matsize(Hpn),2)};\text{for}(k=1,i-1,c=\texttt{component(Hpn,i-k+1)};\text{if(Mod(c,p)==0,}
\text{listinsert}(L,p^\text{valuation(c,p)},1))); \\
\text{print("ell="ell," m="m," P="P," structure",L));}
\end{align*}
\]

Giving the following examples (for which \(T_k \) is a direct factor in \(T_K \)):

\[
\begin{align*}
\ell=13 & \quad P=x^4-587093*x^2+5983651856, \quad \text{structure } [3125] \\
\ell=17 & \quad P=x^4-767737*x^2+10232398736, \quad \text{structure } [3125,5,5] \\
\ell=37 & \quad P=x^4-1670957*x^2+48471120656, \quad \text{structure } [3125] \\
\ell=997 & \quad P=x^4-45025517*x^2+35194105312016, \quad \text{structure } [3125,25]
\end{align*}
\]

We consider the case \(\ell = 37 \), \(P = x^4 - 1670957 x^2 + 48471120656 \) for which PARI gives the following information that may be used by the reader:

\[
\begin{align*}
\text{nfgaloisconj}(x^4-1670957*x^2+48471120656)= & \quad [-x, x, -1/212380*x^3 + 43593/5740*x, 1/212380*x^3 - 43593/5740*x] \\
\{P=x^4-1670957*x^2+48471120656;K=\texttt{bnfinit}(P,1);p=5;nt=8;Kpn=\texttt{bnrinit}(K,p^nt);r=1;Hpn=\texttt{component(component(Kpn,5),2)};C8=\texttt{component}(C8,5);E=\texttt{component}(C8,5);h=\texttt{component}(component(C8,1),1);L=\texttt{List};i=\texttt{component(matsize(Hpn),2)};R=0;\text{for}(k=1,i-1,c=\texttt{component(Hpn,i-k+1)};\text{if(Mod(c,p)==0,R=R+1;++listinsert}(L,p^\text{valuation(c,p),1}));\text{print("h="h," L",print("E="E))} \\
\}
\end{align*}
\]

\(h=2 \quad \text{List([3125])} \)

Now, consider the annihilator \(A_{K,n}(c) =: A_K \); since \(T_K \simeq T_k \), we get \(T_K^{A_K} \simeq T_K^{N_{K/k}(A_K)} \), where (see Corollary 7.3):

\[
N_{K/k}(A_{K,n}(c)) \cong \left(1 - \frac{1}{\ell} \left(\frac{k}{\ell} \right) \right) A_{K,n}(c).
\]

Then \(\ell = 37 \equiv 2 \pmod{5} \) splits in \(k \) and \(1 - \frac{1}{\ell} \left(\frac{k}{\ell} \right) = 1 - \frac{1}{5} \) is invertible modulo 5.

So \(A_K \) acts on \(T_K \) as \(A_{K,n}(c) \) on \(T_k \); we can use the program for quadratic fields and \(p > 2 \) (of course the bounds \(Bf, Bf \) may be arbitrary):

\[
\begin{align*}
\{p&=5;nt=8;bf=45161;Bf=45161;\text{for}(f=bf,Bf,v=\text{valuation}(f,2);M=f/2^v;}
\text{if(core(M)!=M,next);if((v==1||v>3)||(v==0 \& \text{Mod}(M,4)!=1)||(v==2 \& \text{Mod}(M,4)==1),next);P=\texttt{x}^2-f;K=\texttt{bnfinit}(P,1);Kpn=\texttt{bnrinit}(K,p^nt);C5=\texttt{component}(Kpn,5);Hpn0=\texttt{component}(C5,1);Hpn=\texttt{component}(C5,2);h=\texttt{component}(component(component(K,8),1),2);L=\texttt{List};ex=0;\text{i=component(matsize(Hpn),2);for}(k=1,i=1,c=\texttt{component}(Hpn,i-k+1);\text{if(Mod(c,p)==0,}
\text{val=valuation(co,p);if(val>ex,ex=val);}
\text{listinsert}(L,p^val,1));Hpn1=\texttt{component}(Hpn,1);vptor=\texttt{valuation}(Hpn0/Hpn1,p);tor=p^vptor;S0=0;S1=0;pN=p*p^ex;fn=pN*f;\text{for}(cc=2,10^2,\text{if}(gcd(cc,fn)!=1 \& \text{kronecker}(f,cc)!=1,next);c=cc;break);\text{for}(a=1,fn/2,\text{if}(gcd(a,fn)!=1,\text{next});asurc=\texttt{lift}(a*\texttt{Mod}(c,fn)^{-1});\lambda=\texttt{kronecker}(f,a);\text{if(s=1,S0=S0+u);if(s=-1,S1=S1+u));L0=\texttt{lift}(S0);L1=\texttt{lift}(S1);A=\texttt{lift}(L0);if(A==0,A=p^\text{valuation}(A,p));\text{print(f," P="P," L0="L0," L1="L1," A="A," tor="tor," T_K="T_K," Cl_K="Cl_K,"h));}\}
\end{align*}
\]
The class group of k being trivial, the fundamental unit ε is the cyclotomic one and is such that $\varepsilon^4 = 1 + 5^9 \cdot \alpha$, α prime to 5, which confirms that:

$$
\Psi_k \sim \frac{1}{5}(\log(\varepsilon) + \log(\varepsilon/\sigma)) = \frac{1}{5}\log(\varepsilon)(1 - \sigma)
$$
equivalent (modulo the norm) to $\frac{2}{5}\log(\varepsilon)$ and $\Psi_k = A_k$ as expected. Meanwhile, the Solomon annihilator Ψ_K does not give Ψ_k by restriction, but 0.

9. **About the annihilator $A_K(c)$ and the primitive $L_p(1, \chi)$**

9.1. **Galois characters v.s. Dirichlet characters.** Let f_K be the conductor of K. In most formulas, the characters χ of K must be primitive of conductor $f_\chi | f_K$, whence Dirichlet characters on $(\mathbb{Z}/f_\chi \mathbb{Z})^\times$ such that $\chi \left(\left(\frac{Q/L}{a} \right) \right)$ makes sense for $a \in \mathbb{Z}$, prime to f_χ, but not necessarily for $\chi \left(\left(\frac{Q/K}{a} \right) \right)$ if a prime ℓ divides both a and f_K but not f_χ. This is an obstruction to consider them as Galois characters over $\mathbb{Z}_p[G_K]$ for instance, whence defined on $(\mathbb{Z}/f_K \mathbb{Z})^\times$; so we shall introduce the corresponding Galois character of G_K, denoted $\psi_\chi =: \psi$. A Galois character ψ of G_K is also a character of $G_n = \text{Gal}(L_n/\mathbb{Q})$ whose kernel fixes K, so $\psi(a)$ ($a \in [1, f_n]$ prime to f_n) is the image by ψ of the Artin symbol $\left(\frac{L_n}{a} \right)$ whence of $\left(\frac{K}{a} \right)$.

Any non-primitive writing $\psi(A_K)$, for $A_K \in \mathbb{Z}_p[G_K]$, may introduce a product of Euler factors. Indeed, let k_χ be the subfield fixed by the kernel of $\psi = \psi_\chi$ (then χ is a primitive character of k_χ but not necessarily of K); then, $\psi(A_K) = \psi(N_{K/k_\chi}(A_K)) = \chi(\mathcal{E}_{k_\chi}) \cdot \chi(A_{k_\chi})$ in which $\chi(\mathcal{E}_{k_\chi})$ may be non-invertible (or 0).

9.2. **Expression of $\psi(A_K(c))$.** Let ψ be any Galois character of K considered as Galois character of $\text{Gal}(L_n/\mathbb{Q})$, for $n \geq n_0 + e$. We then have the following result about the computation of the annihilator $A_K(c) =: \sum_{\sigma \in G_K} \Lambda_\sigma(c) \cdot \sigma$ (given explicitly by the Theorem 5.3), without any hypothesis on K and p:

Lemma 9.1. The expression $\psi(A_K(c))$ is the product of the multiplicator $1 - \psi(\left(\frac{L_{\infty}}{c} \right))$ by the non-primitive value $L_p(1, \psi)$. In other words, one has:

$$
\psi(A_K(c)) = (1 - \psi(c)) \cdot L_p(1, \psi)
= (1 - \psi(c)) \cdot \prod_{\ell | f_K, \ell \nmid pf_\chi} (1 - \chi(\ell)\ell^{-1}) \cdot L_p(1, \chi).
$$

Proof. This comes from the classical construction of p-adic L-functions [13], Propositions II.2, II.3, Définition II.3, II.4, and Remarques II.3, II.4], then [7, page 292]. Thus we obtain, using the computations of the §7.1 the link between the limit (for $n \to \infty$):

$$
\psi(A_K(c)) = \sum_{\sigma \in G_K} \Lambda_\sigma(c) \cdot \psi(\sigma) \quad \text{(cf. Remark 7.2(i))},
$$
of $\psi(A_{L_n}(c)) = \psi(A_{K,n}(c)) = \sum_{\sigma \in G_K} \Lambda_\sigma^n(c) \psi(\sigma)$, and the value at $s = 1$ of the L_p-function of the primitive character χ associated to ψ. \qed
Remark 9.2. Note that in the various calculations in §7.1 \(\varphi_n = \varphi(qp^n) \) when \(n \to \infty \) plays the role of \(1 - s \) when \(s \to 1 \) in the construction of \(p \)-adic \(L_p \)-functions by reference to Bernoulli numbers.

For all primitive Dirichlet character \(\chi \neq 1 \) of \(K \), of modulus \(f_\chi \) (or \(pf_\chi \) if \(p \nmid f_\chi \), and for all \(p \geq 2 \), we have the classical formulas of the value at \(s = 1 \) of the \(p \)-adic \(L \)-functions (see for instance [30] Theorem 5.18), where
\[
\tau(\chi) = \sum_{(a,f_\chi)=1} \chi(a) \zeta_{f_\chi}^a
\]
where the Euler factor \(1 - \lambda(p)p^{-1} \) illustrates the fact that for \(L_p \)-functions, any character \(\chi \) is considered modulo \(pf_\chi \) when \(p \nmid f_\chi \).

From the Coates formula [6] and classical computations (see also some details in [11] §2.2) we recall that \(\#T_K \sim [K \cap \Q_\infty : \Q] \cdot \prod_{\chi \neq 1} \frac{1}{2} L_p(1,\chi) \) (up to a \(p \)-adic unit), thus \(\#T_K \sim \prod_{\chi \neq 1} \frac{1}{2} L_p(1,\chi) \) if \(K \cap \Q_\infty = \Q \) (i.e., \(n_0 = 0 \)). Moreover, we know that in the semi-simple case, one obtains the orders of the isotypic components of \(T_K \) by means of the \(\frac{1}{2} L_p(1,\chi) \); but the whole Galois structure of \(T_K \) is more precise that the set of those given by the components \(T_K^{\sigma} \), where the \(e_\sigma \) are the corresponding \(p \)-adic idempotents.

Remark 9.3. Let \(\chi \) be a primitive Dirichlet character of conductor \(f_\chi \neq 1 \). We define the “modified Solomon element” of \(\Z_p[G_{f_\chi}] \):
\[
\Psi_{f_{\chi}} := -\left(1 - \frac{\lambda(p)}{p}\right) \cdot \frac{\tau(\chi)}{f_\chi} \sum_{\tau \in G_{f_{\chi}}} \log(\eta_{f_{\chi}}^\tau) \cdot \tau^{-1}.
\]
Whence \(L_p(1,\chi) = \chi(\Psi_{f_{\chi}}) \) (\(\chi \neq 1 \) primitive). Put:
\[
C_\chi := -\left(1 - \frac{\lambda(p)}{p}\right) \cdot \frac{\tau(\chi)}{f_\chi}.
\]
When \(p \nmid f_\chi \), \(\tau(\chi) \) is invertible and \(C_\chi \cdot \log(\eta_{f_{\chi}}^\tau) \sim \frac{1}{p} \cdot \log(\eta_{f_{\chi}}^\tau) \sim \Psi_{f_{\chi}} \) (the original Solomon element); when \(p \mid f_\chi \), the factor \(\frac{1}{p} \) in \(C_\chi \) is replaced, ahead the logarithms, by the quotient \(\frac{1}{\tau(\chi)} \) having the suitable \(p \)-valuations. For instance, if \(d \) is prime and \(p \) unramified, \(\frac{1}{p} \sum_{\sigma \in G_K} \log(\eta_{f_{\chi}}^\sigma) \cdot \sigma^{-1} \) annihilates \(T_K \).

9.3. The annihilator \(A_K(c) \) and the \(\Psi_{f_{\chi}} \). The following statement does not assume any hypothesis on \(K \) and \(p \) and gives again the known results of annihilation (e.g., semi-simple case, but also the point of view of [22]):

Theorem 9.4. Let \(K \) be a real abelian number field, of degree \(d \), of Galois group \(G_K \) and of conductor \(f_\chi \). Let \(A_K(c) = \lim_{n \to \infty} A_{K,n}(c) \in \Z_p[G_K] \) annihilating \(T_K \) (cf. Theorem 5.3). Then we have (where each \(\chi \) is the primitive Dirichlet character associated to the Galois character \(\psi \) of \(G_K \)):
\[
A_K(c) = \frac{1}{d} \sum_{\sigma \in G_K} \left[\sum_{\psi \neq 1} \psi^{-1}(\sigma)(1 - \psi(c)) \cdot \prod_{\ell \mid f_\chi} \left(1 - \frac{\chi(\ell)}{\ell}\right) \cdot \chi(\Psi_{f_\chi}) \right] \cdot \sigma,
\]
with \(\Psi_{f_{\chi}} = -\left(1 - \frac{\lambda(p)}{p}\right) \cdot \frac{\tau(\chi)}{f_\chi} \sum_{\tau \in G_{f_{\chi}}} \log(\eta_{f_{\chi}}^\tau) \cdot \tau^{-1} \).

Thus, \(T_K \) is annihilated by the ideal \(\mathfrak{a}_K \) of \(\Z_p[G_K] \) generated by the \(A_K(c) \), \(c \in \Z \), prime to \(2p f_\chi \).
Proof. For all Galois character ψ of G_K, Lemma [9.1] leads to the identity:

$$
\psi(A_K(c)) = \sum_{\sigma \in G_K} \Lambda_\sigma(c) \cdot \psi(\sigma)
$$

$$
= (1 - \psi(c)) \cdot \prod_{\ell | f_K, \ell \nmid p f_K} (1 - \chi(\ell) \ell^{-1}) \cdot L_p(1, \chi)
$$

$$
= (1 - \psi(c)) \cdot \prod_{\ell | f_K, \ell \nmid p f_K} (1 - \chi(\ell) \ell^{-1}) \cdot \chi(\Psi_k)
$$

with $\psi_1(A_K(c)) = 0$ for the unit character ψ_1.

Since the matrix $(\psi(\sigma))_{\psi,\sigma}$ is invertible with inverse $\frac{1}{d} \left(\psi^{-1}(\sigma)\right)_{\psi,\sigma}$, this yields $\Lambda_\sigma(c) = \frac{1}{d} \sum_{\psi} \psi^{-1}(\sigma) \psi(A_K(c)) = \frac{1}{d} \sum_{\psi} \psi^{-1}(\sigma)(1 - \psi(c)) \cdot L_p(1, \psi)$.

Whence the result using the expression of $L_p(1, \psi)$ in Lemma [9.1].

9.4. A cyclic quartic field K of conductor $37 \cdot 45161$. We recall from §8.2 that $m = 45161$ is totally ramified in K, that $\ell = 37$ splits in the quadratic subfield $k = \mathbb{Q}(\sqrt{m})$ and is ramified in K/k; then $p = 5$ totally splits in K. We have $\mathcal{T}_k \simeq \mathbb{Z}/5^5 \mathbb{Z}$.

Denote the four characters by $\psi_1, \psi_2, \psi_4 & \psi_4^{-1}$ (orders 1, 2, 4, respectively) and let $G_K = \{1, \sigma^2, \sigma, \sigma^{-1}\}$ with σ of order 4. We shall put $\psi_4(\sigma) = i$, and so on by conjugation and the relation $\psi_2 = \psi_4^2$.

Then, using the modified Solomon elements Ψ_k, Ψ_K (expressions (8.1), (8.2)):

$$
\Psi_k = 5^5 \cdot u \quad \text{&} \quad \Psi_K = \frac{u}{5} (\log(A) + \log(B)) (1 - \sigma^2),
$$

where u and v are p-adic units, $A & B = A^\sigma$ are the two independent units of K of relative norm 1.

We have to compute the coefficients $\psi^{-1}(\sigma)(1 - \psi(c))$, which gives the array:

ψ	ψ_1	ψ_2	ψ_4	ψ_4^{-1}
ψ_1	0	1 · 2	1 · (1 - i)	1 · (1 + i)
σ^2	0	1 · 2	-1 · (1 - i)	-1 · (1 + i)
σ	0	-1 · 2	-i · (1 - i)	i · (1 + i)
σ^{-1}	0	-1 · 2	i · (1 - i)	-i · (1 + i)

Then the terms $\prod_{\ell | f_K, \ell \nmid p f_K} (1 - \chi(\ell) \ell^{-1}) \cdot \chi(\Psi_k)$ have the following values, depending on the character ψ in the summation of the theorem:

- $5^5 \cdot u$ for ψ_2, since $1 - \chi_2(\ell) \ell^{-1} = 1 - 37^{-1} \sim 1$,
- $\frac{2v}{5} (\log(A) + i \log(B)) \quad \text{&} \quad \frac{2v}{5} (\log(A) - i \log(B))$, for ψ_4 & ψ_4^{-1}.

We obtain, up to a p-adic unit, using the coefficients of the above array:

$$
A_K(c) = \left[\frac{v}{5} [\log(A) + \log(B)] + 5^5 \cdot u \right] + \left[\frac{v}{5} [- \log(A) - \log(B)] + 5^5 \cdot u \right] \cdot \sigma^2 +
$$

$$
\left[\frac{v}{5} [- \log(A) + \log(B)] - 5^5 \cdot u \right] \cdot \sigma + \left[\frac{v}{5} [\log(A) - \log(B)] - 5^5 \cdot u \right] \cdot \sigma^{-1}
$$

$$
= 5^5 u \cdot (1 - \sigma)(1 + \sigma^2)
$$

$$
+ v \left[\frac{1}{5} [\log(A) + \log(B)] - \frac{1}{5} [\log(A) - \log(B)] \cdot \sigma \right] \cdot (1 - \sigma^2).
$$
We give A, one of the two units of relative norm 1 (the other being $B = A^\sigma$):

$$37721679757897549540206020601122950024838552528473263956906961891321756$$

$$935666033880097414072613343385538964199960251752277854265043908228068622$$

$$071287/424760*x^3 -$$

$$86300597221474999644983736681515586234260744435208071103751902684142476539$$

$$93753982107489210386872883566811184234798179933725052575447796376125480$$

$$7708541/7585*x^{-2} -$$

$$30105840170304381565148772086224467560672968667512448673843942808587682$$

$$00324938550605088262234049232685807258542997079887400411162925713036023$$

$$3002284111/11480*x +$$

$$1377537799603201440690663979811248941262878083882463847036211136571725449$$

$$454295610577597473167363605023060819015472459426493930683936045056394190$$

$$29007385081/410$$

So it is easy to compute $A^4 - 1$, congruent modulo 5^8 to:

$$5 \cdot \alpha = 317056 \cdot x^3 + 260605 \cdot x^2 + 260934 \cdot x + 182595,$$

whence $\log(A) \sim 5 \cdot \alpha$. The decompositions into prime ideals of 5 (which is totally split in K/\mathbb{Q}) and of $5 \cdot \alpha$ give respectively for the 5-places:

$$[[5, [-3, -2, 2, 2], 1, 1, [3, 4, 1, 1]], 1]$$

$$[[5, [-1, -2, -2, -2], 1, 1, [1, 1, 1, 1]], 1]$$

$$[[5, [-3, -2, 2, 2], 1, 1, [3, 4, 1, 1]], 2]$$

$$[[5, [-1, -2, -2, -2], 1, 1, [1, 1, 1, 1]], 2]$$

Dividing by 5, we find that $\frac{1}{5} \log(A) \sim \pi_1 \cdot \pi_2$ then $\frac{1}{5} \log(A'^\sigma) \sim (\pi_1 \cdot \pi_2)^\sigma = \pi_3 \cdot \pi_4$, where the π_i are integers with valuation 1 at the four prime ideals dividing 5; thus the coefficient:

$$U - V \cdot \sigma = \frac{1}{5} \log(AB) - \frac{1}{5} \log(A'B^{-1})$$

$$\sim u \cdot \pi_1 \cdot \pi_2 + u' \cdot \pi_3 \cdot \pi_4 - (u \cdot \pi_1 \cdot \pi_2 - u' \cdot \pi_3 \cdot \pi_4) \cdot \sigma,$$

of $1 - \sigma^2$ in $A_K(c)$ is such that:

$$U^2 + V^2 \equiv 2(u^2 \cdot \pi_1^2 \cdot \pi_2^2 + u'^2 \cdot \pi_3^2 \cdot \pi_4^2) \pmod{5}$$

is 5-adically invertible. So $A_K(c) = 5^5 u(1-\sigma)(1+\sigma^2)w(1-\sigma^2)$, u, w invertible. This gives the optimal annihilation of both T_k (since $T_k = j_{K/k}(T_K)$), and the relative factor $T_K^* = 1$, as kernel of the relative norm 1 + σ^2 in K/k, since the operation is given by $U - V \cdot \sigma$ which is invertible.

9.5. A cyclic quartic field K of conductor $2^2 \cdot 16212 \cdot 677$. Let $K = \mathbb{Q}(x)$ where $x = \sqrt{677 \cdot 1621 + 39\sqrt{1621}}$. This field is also defined by $P = x^4 - 1097417x^2 + 18573782725$. The conjugates of x are given by:

$$\text{nfgaloisconj}(P) = [-x, x, -1/132015*x^3+1571/195*x, 1/132015*x^3-1571/195*x]$$

We still consider the case $p = 5$. The prime $\ell = 677$ splits in the quadratic subfield $k = \mathbb{Q}(\sqrt{1621})$, the ramified prime 2 does not split in k; the class number of k is 1 and that of K is 4, so we obtain a trivial 5-class group and the following group structures giving, here, a non-trivial relative T_K^*:

$$T_k \simeq \mathbb{Z}/5\mathbb{Z}, \quad T_K \simeq \mathbb{Z}/5^2\mathbb{Z} \times \mathbb{Z}/5^3\mathbb{Z}.$$
we compute that $\frac{1}{5} \cdot \log(\varepsilon) \sim 5^2 \sim \Psi_k$ as expected since $\mathcal{T}_k = \mathcal{R}_k$.

The cyclotomic units A and $B = A^\sigma$ of K, of relative norm 1, are too large to be given here, but we can work with some representatives modulo a large power of 5. As in the previous example, we have to compute (up to 5-adic units since the Euler factors for 2 and 677 are invertible):

\begin{equation}
(9.1) \quad \left[\frac{1}{5} \left[\log(A) + \log(B) \right] - \frac{1}{5} \left[\log(A) - \log(B) \right] \cdot \sigma \right] \cdot (1 - \sigma^2).
\end{equation}

We see that $\log(A)$ is of the form $5 \cdot \alpha$, where α is a 5-adic unit, and that $\frac{1}{5} \left[\log(A) - \log(B) \right]$ and $\frac{1}{5} \left[\log(A) + \log(B) \right]$ are 5-adically invertible, so we consider for instance:

$$C := \frac{\log(A) + \log(B)}{\log(A) - \log(B)} \equiv 13 \cdot 5^2 x^3 + 5^3 x^2 + 19 \cdot 5^2 x + 57 \pmod{5^4}$$

and we verify that, despite the denominators 5, $\frac{3}{5} \cdot x^3 - \frac{1}{5} \cdot x$ is an integer of K (congruent to x^3 modulo 5 as given by $\text{nfgaloisconj}(P)$) so that:

$$C \equiv 5^3 \cdot 3 \cdot \left(\frac{3}{5} x^3 - \frac{1}{5} x + x^2 \right) + 57 \pmod{5^4}.$$

Since the exponent of \mathcal{T}_K is 5^3, we obtain that the coefficient $U - V \cdot \sigma$ (in (9.1)) is equal to $(57 - \sigma) \cdot (1 - \sigma^2)$; thus the whole annihilator is:

$$\mathcal{A}_K(c) \equiv 5^2 \cdot u \cdot (1 - \sigma)(1 + \sigma^2) + v \cdot (57 - \sigma) \cdot (1 - \sigma^2) \pmod{5^4}.$$

So, on the factor \mathcal{T}_K the annihilator $\mathcal{A}_K(c)$ acts as the order 5^2 of \mathcal{T}_k, and on the relative submodule \mathcal{T}_K^*, it acts as $57 - \sigma$, which is very satisfactory since 57 is of order 4 modulo 5^3 (note that $57^2 + 1 = 5^3 \cdot 26$).

These examples show that $\mathcal{A}_K(c)$ takes into account the whole structure of \mathcal{T}_K; but when the Euler factor is not a p-adic unit because of a prime $\ell \equiv 1 \pmod{p}$ which splits in k and is ramified in K/k, the annihilator is probably not optimal.

It should be useful to know if the annihilators, given more recently in the literature, have best properties or not in this point of view, which is not easy since numerical tests are absent (to our knowledge).

9.6. Ideal of annihilation for arbitrary real abelian number fields.

We do not make any assumption on p and G_K, nor on the decomposition of the primes $\ell \mid f_K$ in the real abelian extension K/Q.

If K/Q is cyclic, one can choose c (prime to $2pf_K$) such that for all $\psi \neq 1$, $1 - \psi(c)$ is non-zero with minimal p-adic valuation; this valuation is 0 as soon as d is not divisible by p, taking $\left(\frac{\mathfrak{f}_K}{c} \right)$ as a generator of G_K. Since in the non-cyclic case, this is impossible, we can consider the augmentation ideal $\mathcal{I}_K = \langle 1 - \left(\frac{\mathfrak{f}_K}{c} \right) \rangle$, c prime to $2pf_K$ of G_K and the ideal:

$$\mathcal{I}_K \cdot \mathcal{A}_K$$

which annihilates \mathcal{T}_K. It is clear, from Corollary 7.3, that the pseudo-measure \mathcal{A}_K does not depend on \mathcal{I}_K and that any choice of $\delta_K \in \mathcal{I}_K$ is such that $\delta_K \mathcal{A}_K \in \mathbb{Z}_p[G_K]$.

In a p-group G_K of p-rank r, $\delta_K = \sum_{i=1}^r \lambda_i \cdot (1 - \sigma_i)$, where the generators σ_i are suitable Artin symbols of integers c_i prime to $2pf_K$; then the characters ψ may be written $\psi = \prod_{i=1}^r \psi_i$, with obvious definition of the ψ_i, so that $\psi(\delta_K) = \sum_{i=1}^r \psi(\lambda_i) \cdot (1 - \psi_i(\sigma_i)) = \sum_{i=1}^r \psi(\lambda_i) \cdot (1 - \xi_i)$, where the ξ_i are
roots of unity of \(p \)-power order. So we can minimize the \(p \)-adic valuations of the \(\psi(\delta_K) \) to obtain the best annihilator.

For instance, if \(K \) is the compositum of two cyclic cubic fields and \(p = 3 \), whatever the choice of \(\delta_K = \lambda_1 (1 - \sigma_1) + \lambda_2 (1 - \sigma_2) \), \(\lambda_1, \lambda_2 \) prime to 3, where \(\sigma_1, \sigma_2 \) are two generators of \(G_K \), then \(\psi(\delta_K) \sim 1 - j \) for 6 characters and \(\psi(\delta_K) \sim 3 \) for 2 other characters \(\psi \neq 1 \). So the result depends on the structures of the \(T_k \) of the 4 cubic subfields \(k \) of \(K \).

Remarks 9.5. (i) Let \(k \) be a subfield of \(K \) and let \(j_{K/k} \) be the “transfer map” \(T_k \to T_K \). Then, for \(\delta_K A_K \), we get:

\[
(j_{K/k}(T_k))^{\delta_K A_K} = j_{K/k}(T_k^{N_{K/k}(\delta_K A_K)}) \simeq T_k^{N_{K/k}(\delta_K A_K)} = T_k^E_{\lambda_k A_k};
\]

indeed, this comes from the injectivity of the transfer since the Leopoldt conjecture is true in abelian extensions (see e.g., [8, Theorem IV.2.1]); then if the product of Euler factors \(E \) conjecture is true in abelian extensions (see e.g., [8, Theorem IV.2.1]); then if the product of Euler factors \(E \) conjecture is true in abelian extensions (see e.g., [8, Theorem IV.2.1]); then if the product of Euler factors \(E \) then \(\psi(\delta_K) \sim 1 - j \) for 6 characters and \(\psi(\delta_K) \sim 3 \) for 2 other characters \(\psi \neq 1 \). So the result depends on the structures of the \(T_k \) of the 4 cubic subfields \(k \) of \(K \).

(ii) The \(G_K \)-module \(T_K \) gives rise to the following submodules or quotients-modules which have interesting arithmetical meaning and are of course annihilated by the \(\delta_K A_K \):

- The submodule \(\mathcal{O}_K^\infty := \text{Gal}(K_\infty H_K/K_\infty) \) isomorphic to a sub-module of \(\mathcal{O}_K \). Note that if \(p \) is unramified in \(K/\mathbb{Q} \) and if (for \(p = 2 \)) \(-1 \) is not a local norm at 2, then \(\mathcal{O}_K^\infty \simeq \mathcal{O}_K \) (cf. (2.1)), which explains that, in general, one says that the \(p \)-class group is annihilated by the annihilators of \(T_K \).

- The module \(\mathcal{W}_K \) and the normalized \(p \)-adic regulator \(\mathcal{R}_K \) defining the exact sequence (2.2).

- The Bertrandias–Payan module \(\mathcal{B}_K := T_K/\mathcal{W}_K \) for which the fixed field \(H_K^{bp} \) in \(H_K^{pr} / K_\infty \) is the compositum of the \(p \)-cyclic extensions of \(K \) which are embeddable in \(p \)-cyclic extensions of arbitrary large degree.

Then some “logarithmic objects” defined and studied by Jaulent (see [16], [17], § 2.3, Schéma] and [3]), in a theoretical and computational point of view:

- The logarithmic class group \(\tilde{\mathcal{O}}_K := \text{Gal}(H_K^c/K_\infty) \) (\(H_K^c \) is the maximal abelian locally cyclotomic pro-\(p \)-extension of \(K \)), defining the exact sequence \(1 \to \tilde{\mathcal{O}}_K \to \tilde{\mathcal{O}}_K \to \mathcal{O}_K^{S_\infty} \to 1 \) (\(\mathcal{O}_K^{S_\infty} := \mathcal{O}_K / \mathcal{O}_K(S) \) is the \(p \)-group of \(S \)-classes of \(K \) and \(\tilde{\mathcal{O}}_K^{[p]} \) the subgroup generated by \(S \)).

- The “logarithmic regulator” \(\tilde{\mathcal{R}}_K \) as quotient of the group of “semi-local logarithmic units” by the “global logarithmic units”.

3For some \(C_K := \text{Gal}(H_K^c/K), H_K^c \subseteq H_K^{pr} \), we put \(C_K^{\infty} := \text{Gal}(K_\infty H_K^c/K_\infty) \).
10. Conclusion

This elementary study, especially with the help of numerical computations, shows that the broad generalizations of $\mathbb{Z}_p[G_K]$-annihilations, that come from values of partial ζ-functions, with various base fields (see, e.g., [19, 20, 21, 25] among many others), may be difficult to analyse, owing to the fact that the results are not so efficient (especially in the non semi-simple and/or the non-cyclic cases), and that some degeneracies may occur because of Euler factors as soon as the p-adic pseudo-measures that are used are of “Stickelberger’s type” like Solomon’s elements or cyclotomic units.

Moreover, Iwasawa’s techniques give more elegant formalism but do not avoid the question of Euler factors.

Depending on whether one deals with imaginary or real fields, the suitable object to be annihilated is not defined in an unique way as shown by the context of the present paper about the G_K-module T_K. Moreover, roughly speaking, some objects are relative to the values $L_p(0, \chi)$ (order of some component of the p-class group of some non-real “mirror field”), while some other are relative to the values $L_p(1, \chi)$ (groups T_K), and it is well known that the points “$s = 0$” and “$s = 1$” are mysteriously independent, giving sometimes abundant “Siegel zeros” near 1, as explained by Washington in many papers (see [11] and its bibliography), whence an unpredictable order of magnitude of the annihilators.

References

[1] T. All, On p-adic annihilators of real ideal classes, J. Number Theory 133 (2013), no. 7, 2324–2338. [https://doi.org/10.1016/j.jnt.2012.12.013]

[2] T. All, Gauss sums, Stickelberger’s theorem, and the Gras conjecture for ray class groups (2015). [https://arxiv.org/abs/1502.01578]

[3] K. Belabas and J-F. Jaulent The logarithmic class group package in PARI/GP, Publ. Math. Fac. Sci. Besançon (Théorie des Nombres) (2016), 5–18. [http://pmb.univ-fcomte.fr/2016/Belabas_Jaulent.pdf]

[4] J-R. Belliard and A. Martin, Annihilation of real classes (2014), 10 pp. [http://jrbelliard.perso.math.cnrs.fr/BM1.pdf]

[5] J-R. Belliard and T. Nguyen Quang Do, On modified circular units and annihilation of real classes, Nagoya Math. J. 177 (2005), 77–115. [https://doi.org/10.1017/S0027763000009065]

[6] J. Coates, p-adic L-functions and Iwasawa’s theory, Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press, London (1977), 269–353.

[7] J. Fresnel, Nombres de Bernoulli et fonctions L p-adiques, Séminaire Delange–Pisot–Poitou (Théorie des nombres), Tome 7, (1965-1966), no. 2, Exposé no. 14, 1–15. [http://www.numdam.org/item?id=SDPP_1965-1966__7_2_A3_0]

[8] G. Gras, Class Field Theory: from theory to practice, corr. 2nd ed., Springer Monographs in Mathematics, Springer, 2005, xiii+567 pages. [https://www.researchgate.net/publication/268005797]

[9] G. Gras, The p-adic Kummer-Leopoldt Constant: Normalized p-adic Regulator, Int. J. Number Theory, 14 (2018), no. 2, 329–337. [https://doi.org/10.1142/S1793042118500203]

[10] G. Gras, On p-rationality of number fields. Applications – PARI/GP programs, Publ. Math. Fac. Sci. Besançon (Théorie des Nombres), Années 2017/2018 (to appear). [https://arxiv.org/pdf/1709.06388.pdf]

[11] G. Gras, Heuristics and conjectures in direction of a p-adic Brauer–Siegel theorem (2018), Math. Comp. (to appear) [https://doi.org/10.1090/mcom/3395]
[12] G. Gras, *Annulation du groupe des ℓ-classes généralisées d’une extension abélienne réelle de degré premier ℓ*, Annales de l’institut Fourier 29 (1979), no 1, 15–32.
http://www.numdam.org/item?id=AIF_1979__29_1_A5_0

[13] G. Gras, *Sur la construction des fonctions L p-adiques abéliennes*, Séminaire Delange–Pisot–Poitou (Théorie des nombres), Tome 20 (1978–1979), no. 2, Exposé no. 22, 1–20. http://www.numdam.org/item?id=SDPP_1978-1979__20_2_A1_0

[14] G. Gras, *Remarks on K2 of number fields*, Jour. Number Theory 23(3) (1986), 322–335. https://www.degruyter.com/view/j/crll.1982.issue-333/crll.1982.333.86/crll.1982.333.86.xml
https://www.degruyter.com/view/j/crll.1983.issue-343/crll.1983.343.64/crll.1983.343.64.xml

[15] C. Greither, *Class groups of abelian fields, and the Main Conjecture*, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 3, 449–499.
http://www.numdam.org/article/AIF_1992__42_3_449.pdf

[16] J-F. Jaulent, *Théorie ℓ-adique globale du corps de classes*, J. Théorie des Nombres de Bordeaux 10 (1998), no. 2, p. 355–397.
http://www.numdam.org/article/JTNB_1998__10_2_355.pdf

[17] J-F. Jaulent *Note sur la conjecture de Greenberg*, J. Ramanujan Math. Soc. (2017).
http://jrms.ramanujanmathsociety.org/in-publication/in-publication-list/note-sur-la-conjecture-de-greenberg

[18] T. Nguyen Quang Do, *Sur la Zp-torsion de certains modules galoisiens*, Ann. Inst. Fourier 36 (1986), no. 2, 27–46.
http://www.numdam.org/article/AIF_1986__36_2_27.pdf

[19] T. Nguyen Quang Do, *Conjecture principale équivariante, idéaux de Fitting et annihilateurs en théorie d’Iwasawa*, Journal de Théorie des Nombres de Bordeaux 17 (2005), 643–668. http://www.numdam.org/article/JTNB_2005__17_2_643_0.pdf

[20] A. Nickel, *Annihilating wild kernels* (2017). https://arxiv.org/abs/1703.09088

[21] T. Nguyen Quang Do and Vérasile Nicolas, *Nombres de Weil, sommes de Gauss et annihilateurs galoisiens*, Amer. J. Math. 133 (2011), no. 6, 1533–1571.
http://www.jstor.org/stable/41302045

[22] B. Oriat, *Annulation de groupes de classes réelles*, Nagoya Math. J. 81 (1981), 45–56.
https://projectecll.org/download/pdf_1/euclid.nmj/1118786304

[23] The PARI Group, *PARI/GP, version 2.9.0*, Université de Bordeaux (2016).
http://pari.math.u-bordeaux.fr/http://www.sagemath.org/fr/telecharger.html

[24] J-P. Serre, *Sur le résidu de la fonction zêta p-adique d’un corps de nombres*, C.R. Acad. Sci. Paris 287 (1978), Série I,183–188.

[25] P. Snaith, *Relative Kn, annihilators, Fitting ideals and the Stickelberger phenomena*, Proceedings of the London Mathematical Society 90 (1992), no. 3, 545–590.
https://doi.org/10.1112/S0002948X94015163

[26] D. Solomon, *On a construction of p-units in abelian fields*, Invent. Math. 109 (1992), no. 2, 329–350. http://eudml.org/doc/144024

[27] D. Solomon, *Some New Maps and Ideals in Classical Iwasawa Theory with Applications*, https://arxiv.org/pdf/0905.4336.pdf (2009), 36 pp..

[28] F. Thaine, *On the ideal class groups of real abelian number fields*, Ann. of Math. second series 128 (1988), no. 1, 1–18. http://www.jstor.org/stable/1971460

[29] T. Tsuji, *The Stickelberger Elements and the Cyclotomic Units in the Cyclotomic Zp-Extensions*, J. Math. Sci. Univ. Tokyo 8 (2001), 211–222.
http://www.ms.u-tokyo.ac.jp/journal/pdf/jms080203.pdf

[30] L.C. Washington, *Introduction to cyclotomic fields*, Graduate Texts in Math. 83, Springer enlarged second edition 1997.

VILLA LA GARDETTE, CHEMIN CHÂTEAU GAGNIÈRE F–38520 LE BOURG D’OISANS, FRANCE, https://www.researchgate.net/profile/Georges_Gras
E-mail address: g.mn.gras@wanadoo.fr