AUTOIMMUNE AND INFLAMMATORY DISEASES BIOMARKERS

Monika1*, Neelam Verma2, Kulwinder Singh2
1Dept. of Biotechnology, Mata Gujri College, Fatehgarh Sahib-140406, Punjab, India.
2Dept. of Biotechnology, Punjabi University, Patiala-147001, Punjab, India.

E-mail of Corresponding Author: monika187@rediffmail.com

Abstract
One of the major challenges facing the healthcare industry is how to personalize, or tailor healthcare products and services to individuals' unique genetic and biomarker make-ups. Biomarkers are characteristics that can be objectively measured and evaluated. They provide information about normal or patho-physiological processes to detect or define disease progression or to predict or quantify therapeutic responses. Once these footprints have been identified and measured, they can then be used to personalize or tailor treatment plans, products and services to each individual's unique makeup and background. Biomarkers enable early diagnosis, guide molecularly targeted therapy and monitor the activity and therapeutic responses across these diseases. Development of new, predictive safety and efficacy biomarkers is expected to reduce the time and cost of drug development. This review summarizes the integration and use of biomarkers in drug development, regulation and clinical practice with special emphasis on autoimmune and inflammatory diseases biomarkers.

Keywords: Autoimmune diseases, Biomarker, Drug development, Inflammatory diseases, Personalized medicine

1. Introduction
Autoimmune diseases are a family of more than 80 chronic and often disabling illnesses that develop when underlying defects in the immune system lead the body to attack its own organs, tissues and cells. Since cures are not yet available for most autoimmune diseases, patients face a lifetime of illness and treatment. They often endure debilitating symptoms, loss of organ function, reduced productivity at work, and high medical expenses. And because most of these diseases disproportionately afflict women, and are among the leading causes of death for young and middle-aged women, they impose a heavy burden on patients’ families and on society.

Autoimmune diseases are commonly considered complex immune disorders. While many autoimmune diseases are rare, collectively these diseases afflict millions of patients. 5–8% of the US population suffers from this group of chronic, debilitating diseases. Despite their clinical diversity, they have one similarity, namely the dysfunction of the immune system. It is suspected that genetic defects play a role in the etiology of these diseases. Modern high throughput technologies, like mRNA micro arrays have enabled researchers to investigate diseases at a genome-wide level. In contrast to classical inherited genetic diseases like sickle cell anemia, autoimmune diseases are not caused by the defect of a single gene but by the dysfunction of the complex interaction of a group of genes. Although no autoimmune disease has been completely analyzed, there has been tremendous success in recent years in identifying major players in the development of autoimmune diseases.

The factors that trigger an autoimmune disease are still unknown. Studies with monogenetic twins have revealed that genetic influences only account for 25–40% of the disease risk making gene environment interactions or environmental influences the predominant factors. The environmental influences are very diverse rendering research in this area extremely difficult. These influences may be toxic substances like mercury in one case and ultraviolet light or even certain nutrients in another. Moreover, several bacteria, viruses or hormones are among the suspected triggers of autoimmune disorders.

Main autoimmune and inflammatory diseases include asthma, allergic rhinitis, alopecia areata, atopic dermatitis, autoimmune hepatitis, autoimmune pancreatitis, autoimmune urticaria, autoimmune uveitis, celiac disease, chronic obstructive pulmonary disease/emphysema, Crohn’s disease, dermatomyositis, diabetes mellitus type 1, graft versus host disease,
Graves' disease, Hashimoto's thyroiditis, irritable bowel syndrome, juvenile idiopathic arthritis, lupus erythematosus, multiple sclerosis, myasthenia gravis, myositis, pemphigus vulgaris, polymyositis, primary biliary cirrhosis, psoriasis, psoriatic arthritis, rheumatoid arthritis, solid organ transplant rejection, Sjogren's syndrome, ulcerative colitis and vasculitis.

2. Biomarkers and personalized medicine

A biomarker, as defined by the Food and Drug Administration (FDA) of the United States, is any “characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention”\(^{34}\). Biomarkers are characteristics that can be objectively measured and evaluated. They provide information about normal or pathophysiological processes to detect or define disease progression or to predict or quantify therapeutic responses. Traditional biomarkers have encompassed surrogate physiological measurements such as heart rate, blood pressure and performance status, imaging such as chest X-rays and mammograms, and individual protein molecules such as prostate-specific antigen (PSA) and carcinoembryonic antigen (CEA)\(^{12}\).

With the recent explosion of high-performance ‘omic’ technologies – genomics, proteomics and metabolomics, among others – the rate at which biomarker candidates are being discovered is now faster than ever. During the discovery phase, single or multiple platforms are used to identify potential candidate biomarkers in a given patient population, typically from a small geographical area. This quest involves selection of patients with clear clinical phenotypes, and standardized operating protocol-driven collection and processing of single or multiple time point samples for analysis\(^{36}\). In the case of multiplatform ‘omic’ biomarker discovery, data within each platform are analyzed using suitable, tiered statistical methods to identify differentially expressed genes, proteins or metabolites in normal subjects versus patients in cohorts, from baseline status throughout the course of illness, addressing patients with different stages of disease. Bioinformatical tools are also applied in parallel to other strategies to help deduce potential functional or pathway associations among candidate biomarkers. It is not always practical to pursue validation of all candidate biomarkers identified during the discovery stage. Thus, it is important from both time and cost point-of-views to establish parameters for scientifically rational, statistically sound, evidence-based selection or rejection of biomarker candidates\(^{37,38,39}\). Only the ‘best’ candidates should move forward into the validation stage. The decision to move a candidate biomarker forward is not only dependent on its statistical or bioinformatical significance, but also largely based on its potential to contribute cost-effectively to disease management or prevention\(^{40}\).

Biomarker validation is currently a lengthy and complex process. Not surprisingly with the availability of ‘omic’ platforms, candidate biomarker discovery now commonly outruns the rate at which the candidates are being validated. This situation has created a bottleneck in the biomarker development and translation process\(^{45,41}\). The FDA classifies (pharmacogenomic) biomarkers as exploratory or valid. Valid biomarkers are further classified as ‘probable’ or ‘known’, depending on the level of confidence they attain during the validation process. Biomarkers that are measured in an analytical test system with well-established performance characteristics and for which there is widespread agreement in the medical or scientific community about the physiological, toxicological, pharmacological or clinical significance of the results are known valid biomarkers and biomarkers that are measured in an analytical test system with well-established performance characteristics and for which there is a scientific framework or body of evidence that appears to elucidate the physiological, toxicological, pharmacological or clinical significance of the test results are probable valid biomarkers\(^{45}\).

The US FDA, recognizing the continued divergence of increasing resources going into drug development and the decrease in output (productivity), issued a white paper entitled “Innovation or Stagnation, Challenge and Opportunity on the Critical Path to New Medical Products” in March 2004\(^4\). The document details why the agency believes drug development is stagnating and proposes a series of opportunities to increase productivity. A key prospect described in detail in the Critical Path document, and illustrated with a series of concrete proposals in the list of opportunities\(^5,6\), is the use of biomarkers in drug development. Effective
integration of biomarkers into clinical development programs (to enrich a responder population or identify patients at risk for an adverse event) may facilitate new medical product development and promote personalized medicine. Personalized medicine allows pharmacists to practice true patient-centered care as they help patients learn what they really want to know about their treatment instead of just what pharmacists’ think is best. Having more complete data when pharmacists meet with patients allows them to make better treatment decisions. Personalized medicine is a process of lifelong, self-directed learning aimed at providing the best possible patient care using the clinically important available information about diagnosis, prognosis, therapy, and other clinical and health care issues. The important elements of personalized practice include: a) collection of evidence; b) categorize the level of evidence; c) critically appraise the evidence for its validity and applicability; d) applying results of appraisal in clinical practice; and e) clinical outcome. Single nucleotide polymorphisms (SNPs) are now recognized as the main cause of human genetic variability and are already a valuable resource for mapping complex genetic traits. Thousands of DNA variants have been identified that are associated with diseases and traits. By combining these genetic associations with phenotypes and drug response, personalized medicine will tailor treatments to the patients' specific genotype. Although whole genome sequences are not used in regular practice today, there are already many examples of personalized medicine in current practice. Chemotherapy medications such as trastuzumab and imatinib target specific cancers, a targeted pharmacogenetic dosing algorithm is used for warfarin (International Warfarin Pharmacogenetics Consortium) and the incidence of adverse events is reduced by checking for susceptible genotypes for drugs like abacavir, carbamazepine and clozapine. Biomarkers have been used in drug development and treatment monitoring for a long time. However, development of new, predictive safety and efficacy biomarkers is expected to reduce the time and cost of drug development. 3.1 Preclinical Development: In preclinical/animal toxicology studies, the goal of using novel qualified predictive safety biomarkers is to assist in selecting drug candidates that are more likely to be tolerated in humans thereby reducing cost and time required for preclinical safety evaluation. The qualification of novel biomarkers requires a concerted effort of a team of experts, with expertise in areas including pharmacology/toxicology, clinical pharmacology, clinical medicine, biostatistics and other relevant disciplines. Qualifying preclinical (and also clinical) safety biomarkers for regulatory purposes is likely to be more feasible in collaborative approach that includes representation from industry, academia and government. An example of such collaboration is the Predictive Safety Testing Consortium (PSTC), which includes 16 different pharmaceutical companies and is led by the C-Path Institute. The initial focus of PSTC is on preclinical biomarkers. 3.2 Clinical Development: Biomarkers can be used in early or late drug development for enrichment of patient populations to increase the odds of detecting a phenotypic or clinical efficacy signal. For example, data from early
clinical trials that enroll patients with poor metabolizer (PM) genotypes in early phases of clinical trials to evaluate dose–concentration–response relationships in patients with different genotypes can inform the study design of later-phase clinical studies. In later stages of development, stratification approaches might be employed for looking at response in subgroups of patients.

In most cases, proper validation of the clinical utility of a biomarker requires a prospectively designed randomized clinical trial (RCT). This applies to the biomarkers intended to identify a sensitive subpopulation in testing a new molecular-targeted therapy, as well as to the biomarkers that are designed to select between existing treatment options. The choice of the appropriate RCT design depends on the strength of the preliminary data for the biomarker. If there is compelling evidence that the potential benefit from a new therapy is limited to the biomarker-positive subgroup, then the most efficient way to evaluate the new therapy is with an enrichment design in which the biomarker is assessed in all patients, but randomization is restricted to the biomarker-positive patients. If several new therapies and their corresponding biomarkers are available for testing in a given disease setting, efficiency can be further increased by combing the evaluations in a single multi-arm RCT. This RCT would use the biomarkers to direct patients to the appropriate biomarker-defined component, in which they are randomized between the appropriate new and control treatments. Use of interim monitoring with this approach would allow for the independent stopping of each of the components for efficacy or inefficacy as soon as the corresponding question is answered. Often a biomarker to separate patients into putative biomarker-positive (sensitive) and biomarker-negative (non-sensitive) subgroups is available. However, there is no compelling evidence that the benefit of the new therapy is limited to the biomarker-positive subset. The most efficient approach is then the biomarker-stratified design in which all patients are randomized regardless of biomarker status, but the analysis plan is structured for testing treatment effect dependence on the biomarker.

It has proven very difficult to establish robust clinical trial endpoints based on biomarkers. A perfect trial-level surrogate endpoint would be one for which the surrogate (e.g. biomarker) could be substituted for a definitive trial endpoint in a new trial and that trial would reach the same conclusion regarding treatment effect. To make this assessment, usually a meta-analytic approach is needed where data are analyzed from a series of trials in which both the putative surrogate endpoint and the definitive trial endpoint were measured. The series of trials allows for proper inference about whether the surrogate endpoint could be used reliably in a new trial conducted in a similar patient group, with therapies having mechanisms of action similar to the therapies used in the previous trials.

Despite the difficulties in establishing that a biomarker is a reliable surrogate endpoint, biomarker measurements made during and after therapy may still be helpful in understanding how a therapy is interacting with its target or may give earlier indication of the likely effectiveness of a therapy than more traditional clinically based outcome measures, particularly in the setting of cytostatic agents. Even if the biomarker endpoints do not replace more conventional clinical endpoints in clinical trials, they might, for example, be useful as early indicators of treatment efficacy that could be used in the conduct of screening trials. The drug development community will also have to accept that phase II trials may need to be somewhat larger and more complex and more randomized phase II trials may be needed to fully evaluate the potential of biomarkers for their usefulness in the conduct of phase III trials and ultimately for clinical decision-making. For example, to get an early indication of whether a kinase inhibitor may be effective only in patients with a mutated target, one may want to perform a phase II study both in patients with the wild-type target and the mutated target to assess whether there is evidence for differential efficacy. With greater investment and more rational approaches to biomarker research in earlier stages of drug development, greater rewards await at the end.

3.3 Post marketing: The usefulness of a biomarker may also be discovered in studies carried out as Phase IV commitments (or long after the drug approval). Serious and rare adverse effects of drugs are often observed only after marketing of the drug, since premarketing clinical trials are limited in the number of patients being studied. For example, post-marketing study of monoclonal antibody (mAb) therapy for the treatment of autoimmune diseases, particularly those treated with...
natalizumab, efalizumab and rituximab suggested that bioenergetic parameters such as iATP may assist in risk stratification under mAb immunotherapy. Progressive multifocal leukoencephalopathy (PML) is an opportunistic central nervous system (CNS) infection that typically occurs in a subset of immunocompromised individuals. An increasing incidence of PML has recently been reported in patients receiving monoclonal antibody (mAb) therapy for the treatment of autoimmune diseases, particularly those treated with natalizumab, efalizumab and rituximab. Intracellular CD4+-ATP-concentration (iATP) functionally reflects cellular immunocompetence and inversely correlated with risk of infections during immunosuppressive therapy. Ideally, biomarkers that predict adverse events would be available to screen patients before prescribing the drug.

4. Biomarkers of autoimmune and inflammatory diseases

The identification, qualification, and application of diagnostic and prognostic biomarkers remain the holy grail of the current omics paradigm. Biomedical researchers keep a watchful eye for any gene, protein, or metabolite expressions that could serve as biomarkers indicative of early disease phenotypes and sub phenotypes, or predictive of disease progression and outcome. More highly desirable are biomarkers that can be tagged to drug targets and therapy. We have summarized some of the putative and validated biomarkers of autoimmune and inflammatory diseases in Table 1.

Table 1 Examples of putative and validated biomarkers of autoimmune and inflammatory diseases.

Name	Other Names	Involvement in disease
Ribonuclease, RNase A family, 3	Ribonuclease 3, Eosinophil cationic protein	Asthma⁶¹, Allergic rhinitis⁸²
Interleukin 5	T-cell replacing factor	Asthma⁴³
Interleukin 13 receptor, alpha 2	Interleukin-13-binding protein	Asthma⁴⁴
ADAM metallopeptidase domain 33	Disintegrin and metalloproteinase domain-containing protein 33	Asthma²⁵
interleukin 4	B-cell stimulatory factor 1	Asthma⁴⁶
leukotriene C4 synthase	Leukotriene-C(4) synthase	Asthma⁴⁷
Adenosine A1 receptor		Asthma⁴⁸
signal transducer and activator of transcription 6	IL-4 Stat	Asthma⁴⁹
Type IV phosphodiesterase	cAMP-specific 3',5'-cyclic phosphodiesterase	Asthma²⁸
C-C chemokine receptor type 4	K5-5	Asthma¹, Atopic dermatitis¹⁰³
E-selectin	Endothelial leukocyte adhesion molecule 1	Asthma²²
High affinity interleukin-8 receptor B	CXCR-2	Asthma, COPD⁷⁷
Interferon gamma	Immune interferon	Asthma⁴⁴
Interleukin-17A	Cytotoxic T-lymphocyte-associated antigen 8	Asthma⁵
Peroxisome proliferator-activated receptor gamma	Nuclear receptor subfamily 1 group C member 3	Asthma and COPD³⁵, Atopic dermatitis and Psoriasis¹⁰²
Histamine H4 receptor	G-protein coupled receptor	Asthma, Allergic rhinitis⁷⁷
L-selectin	Lymph node homing receptor	Asthma⁸
Prostaglandin E2 receptor, EP3 subtype	Prostanoid EP3 receptor	Asthma⁹
Glucocorticoid receptor	Nuclear receptor subfamily 3 group C member 1	Asthma⁴⁰, COPD³⁵
Beta-1 adrenergic receptor	Beta-1 adrenoreceptor	Asthma⁴¹
Beta-2 adrenergic receptor	Beta-2 adrenoreceptor	Asthma⁴²
Histamine H1 receptor		Asthma⁴³
Prostaglandin D2 receptor	Prostanoid DP receptor	Asthma, Allergic rhinitis³⁴
Tyrosine-protein kinase ITK/TSK	T-cell-specific kinase, Tyrosine-protein kinase Lyk, Kinase EMT	Asthma²⁵
Tyrosine-protein kinase	Spleen tyrosine kinase	Asthma, Allergic rhinitis³⁶
5. Future outlook and opportunities

Much of current biomarker development efforts are aimed at identifying noninvasive ways of monitoring progression and diagnosing clinical events in relation to current or new therapeutic agents. While interventions during later stages of disease development can still provide significant impact on patient management, the cost of medical care can be quite high and the pathological condition may have already become irreversible. Moreover, no solution is yet available that efficiently retrieves and processes biomarker information pertaining to autoimmune and inflammatory diseases. The bioinformatics community does many things, but we can roughly summarize most activities as either building algorithms or building databases. We are developing a freely accessible online database which will be the one of the first efforts to build an easily accessible and comprehensive literature-derived database covering known autoimmune and inflammatory disease biomarkers. Database will allow users to link autoimmune and inflammatory diseases to protein, gene or carbohydrate biomarkers through the use of search tools. It will support various types of data searches and application tools to analyze sequence and structure features of potential and validated biomarkers. It is believed that this approach will help alleviate stagnation and foster innovation in the development of new medical products, and, ultimately, lead to more personalized medicine in autoimmune and inflammatory diseases. The coming few years will see many breakthroughs in this regard.

References
1. Food and Drug Administration (US). Challenge and opportunity on the critical path to new medical products. US Department of Health and Human Services; 2004.
2. Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 2004; 3: 711-715.
3. Guengerich FP. Mechanisms of Drug Toxicity and Relevance to Pharmaceutical Development. Drug Metab Pharmacokinet 2011; 26: 3-14.
4. Food and Drug Administration (US). Innovation or Stagnation? Critical Path Opportunities Report. US Department of Health and Human Services; 2006.
5. Food and Drug Administration (US). Innovation or Stagnation? Critical Path Opportunities List. US Department of Health and Human Services; 2006.
6. Buckman S, Huang SM, Murphy S. Medical product development and regulatory science for the 21st century: the critical path vision and its impact on health care. Clin Pharmacol Ther 2006; 81: 141-144.
7. Lesko LJ. Paving the critical path: how can clinical pharmacology help achieve the vision? Clin Pharmacol Ther 2007; 81: 170-177.
8. Lesko LJ. Personalized medicine: elusive dream or imminent reality? Clin Pharmacol Ther 2007; 81: 807-816.
9. Woodcock J. The prospects for “Personalized Medicine” in drug development and drug therapy. Clin Pharmacol Ther 2007; 81: 164-169.
10. Marrer E, Dieterie F. Promises of biomarkers in drug development: a reality check. Chem Biol Drug Des 2007; 69: 381-394.
11. Sistare D, DeGeorge JJ. Preclinical predictors of clinical safety: opportunities for improvement. Clin Pharmacol Ther 2007; 82: 210-214.
12. Wilson CL, Schultz S, Waldman SA. Cancer biomarkers: Where medicine, business, and public policy intersect. Biotechnology Healthcare 2007: 1-7.
13. Thomas K, Juliane F, Heinz-Theodor M, Anne G. The Autoimmune Disease Database: a dynamically compiled literature-derived database. BMC Bioinformatics 2006: 7:325.
14. National Institutes of Health. The NIH Autoimmune Diseases Research Plan. US Department of Health and Human Services; 2003.
15. Baker M. In biomarker we trust? Nat Biotechnol 2005; 23: 297-304.
16. Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 2006; 24: 971-983.
17. The Autoimmune Diseases Coordinating Committee. Progress in Autoimmune Diseases Research: Report to Congress. US Department of Health and Human Services; 2005.
18. Sistare D, DeGeorge JJ. Preclinical predictors of clinical safety: opportunities for improvement. Clin Pharmacol Ther 2007; 82: 210-214.
19. The Food and Drug Administration (FDA) and the European Medicines Agency (EMA). Predictive Safety Testing Consortium. Critical Path Institute (C-Path); 2006.
20. Goodsaid FM, Frueh FW, Mattes W. The predictive safety testing consortium: a synthesis of the goals, challenges and accomplishments of the critical path. Drug Discov Today 2007; 4: 47-50.
21. Marken PA. Personalized Medicine: Are We Preparing Our Students for the Knowledge Revolution? Am J Pharm Educ 2011; 75: 48.
22. Sackett DL, Strus SE, Richardson WS, Rosenberg WMC, Haynes RB. Evidence-based medicine: how to practice and teach EBPM. 2nd ed. Edinburgh: Harcourt Brace; 2000.
23. Donaldson LJ, Donaldson RJ. Essential public health. 2nd ed. (revised). Plymouth: Petroc Press; 2003. p. 204-206.
24. Collins FS, Guyer MS, Charkravarti A. Variations on a theme: cataloging human DNA sequence variation. Science 1997; 278:1580-1581.
25. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 2009; 106: 9362-9367.
26. McGuire AL, Burke W. An unwelcome side effect of direct-to-consumer personal genome testing: raiding the medical commons. JAMA 2008; 300: 2669-2671.
27. Gambacorti-Passerini C. Part I: Milestones in personalised medicine–imatinib. Lancet Oncol 2008; 9: 600.
28. Hudis CA. Trastuzumab–mechanism of action and use in clinical practice. N Engl J Med 2007; 357: 39-51.
29. Klein TE, Altmann RB, Eriksson N, Gage BF, Kimmel SE, Lee MT, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 2009; 360: 753–764.
30. Sagreiya H, Berube C, Wen A, Ramakrishnan R, Mir A, Hamilton A, et al. Extending and evaluating a warfarin dosing algorithm that includes CYP4F2 and pooled rare variants of CYP2C9. Pharmacogenet Genomics 2010; 20: 407-413.
31. Dettling M, Cascorbi I, Ogen-Rhein C, Schaub R. Clozapine-induced agranulocytosis in schizophrenic Caucasians: confirming clues for associations with human leukocyte class I and II antigens. Pharmacogenomics J 2007; 7: 325-332.
32. Ferrell PB, McLeod HL. Carbamazepine, HLA-B*1502 and risk of Stevens-Johnson syndrome and toxic epidermal necrolysis: US FDA recommendations. Pharmacogenomics 2008; 9: 1543-1546.
33. Hetherington S, Hughes AR, Mosteller M, Shortino D, Baker KL, Spreen W, et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 2002; 359: 1121-1122.
34. Atkinson AJ, Colburn WA, DeGruttola VG, DeMets DL, Downing GJ, Hoth DF, et al. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin Pharmacol Ther 2001; 69: 89-95.

35. Djeraba Z, Arroul-Lammali A, Medjberoer O, Belguendouz H, Hartani D, Lahlou-Boukoffla OS, et al. Nitric oxide, biomarker of experimental autoimmune uveitis induced by S antigen. J Fr Ophtalmol 2010; 33: 693-700.

36. Moore RE, Kirwan J, Doherty MK, Whitfield PD. Biomarker discovery in animal health and disease: The application of postgenomic technologies. Biomark Insights 2007; 2: 185-196.

37. Hunt SM, Thomas MR, Sebastian SK, Harcourt RL, Sloane AJ, et al. Optimal replication and the importance of experimental design for gel-based quantitative proteomics. J Proteome Res 2005; 4: 809-819.

38. Lee JW, Figeys D, Vasilcescu J. Biomarker assay translation from discovery to clinical studies in cancer drug development: Quantification of emerging protein biomarkers. Adv Cancer Res 2007; 96: 269-298.

39. Listgarten J, Emili A. Statistical and computational methods for comparative proteomic profiling using liquid chromatography-tandem mass spectrometry. Mol Cell Proteomics 2005; 4: 419-434.

40. Bast RC Jr, Lilja H, Urban N, Rimm DL, Fritsche H, Gray J, et al. Translational crossroads for biomarkers. Clin Cancer Res 2005; 11: 6103-6108.

41. Benowitz S. Biomarker boom slowed by validation concerns. J Natl Cancer Inst 2004; 96: 1356-1357.

42. Sohn J, Chae JB, Lee SY, Kim SY, Kim JG. A novel therapeutic target in inflammatory uveitis: transglutaminase 2 inhibitor. Korean J Ophthalmol 2010; 24: 29-34.

43. Malamut G, El Machhour R, Montcuquet N, Martin-Lanneree S, Dusanter-Fourt I, Verkarre V, et al. IL-15 triggers an antiapoptotic pathway in human intraepithelial lymphocytes that is a potential new target in celiac disease-associated inflammation and lymphomagenesis. J Clin Invest 2010; 120: 2131-2143.

44. Korponay-Szabo IR, Sulkane S, Halttunen T, Maurovn F, Rossi M, Mazzarella G, et al. Tissue transglutaminase is the target in both rodent and primate tissues for celiac disease-specific autoantibodies. J Pediatr Gastroenterol Nutr 2000; 31: 520-527.

45. Goodsaid F, Frueh F. Biomarker qualification pilot process at the US Food and Drug Administration. AAPS J 2007; 9: E105-108.

46. Shashi A, Felix WF, Lawrence JL, Shiew-Mei H. Integration and use of biomarkers in drug development, regulation and clinical practice: a US regulatory perspective. Biomarkers Med 2008; 2: 305-311.

47. Boris F, Edward LK. Biomarker-adaptive clinical trial designs. Pharmacogenomics 2010; 11: 1679–1682.

48. Simon R, Maitournam A. Evaluating the efficiency of targeted designs for randomized clinical trials. Clin Cancer Res 2004; 10: 6759–6763.

49. Ratain MJ, Glassman RH. Biomarkers in phase I oncology trials: signal, noise, or expensive distraction? Commentary on Goulart et al. Clin Cancer Res 2007; 13: 6545–6548.

50. Korn EL, Albert PS, McShane LM. Assessing surrogates as trial endpoints using mixed models. Stat Med 2005; 24: 163–182.

51. Buyse M, Molensberghs G, Burzykowski T, Renard D, Geys H. The validation of surrogate endpoints in meta-analyses of randomized experiments. Biostatistics 2000; 1: 49–67.

52. Rubinstein L, Crowley J, Ivy P, LeBlanc M, Sargent D. Randomized phase II designs. Clin Cancer Res 2009; 15: 1883-1890.

53. Dhani N, Tu D, Sargent DJ, Seymour L, Moore MJ. Alternate endpoints for screening phase II studies. Clin Cancer Res 2009; 15: 1873-82.

54. Lisa MM, Sally H, Alex AA. Effective Incorporation of Biomarkers into Phase II Trials. Clin Cancer Res 2009; 15: 1898–1905.

55. Haghikia A, Perrech M, Pula B, Ruhrmann S, Potthoff A, Brockmeyer NH, et al. Functional energetics of CD4+ cellular immunity in monoclonal antibody-associated progressive multifocal leukoencephalopathy in autoimmune disorders. PLoS One 2011; 6: e18506.

56. Van Vollenhoven RF. New and Future Agents in the Treatment of Rheumatoid Arthritis. Discov Med 2010; 9: 319-27.

57. Cassidy JT, Petty RE. Juvenile Rheumatoid Arthritis. In: Cassidy JT, Petty RE, editors. Textbook of Pediatric Rheumatology. Philadelphia: Saunders; 2001. p. 218–238.

58. De Marco R, Locatelli F, Cerveri I, Bugiani M, Marinoni A, Giammanno G. Incidence and remission of asthma: a retrospective study on the natural history of asthma in Italy. J Allergy Clin Immunol 2002; 110: 228–235.

59. Hagen A, Gorenoi V, Schonermark MP. Specific immunotherapy (SIT) in the treatment of allergic rhinitis. GMS Health Technol Assess 2010; 6: Doc 01.

60. Morrison RS, Veenstra TD. Biomarker discovery: Has it been worth it so far? Proteomics Clin Appl 2008; 2: 1375–1376.

61. Mehta H, Busse WW. Eosinophilia as a therapeutic target in allergic disease. Compr Ther 1994; 20: 651-657.

62. Cheng KJ, Wang SQ, Xu YY, Liu HY. Serum ECP levels in patients with allergic rhinitis and chronic rhinosinusitis. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2009; 44:1001-1005.
Review Article

Monika et al

63. Van Oosterhout AJ, Savelkoul HF. Interleukin 5 as a drug target in allergy and asthma. Trends Pharmacol Sci 1995; 16: 37-38.

64. Blease K, Jakubzick C, Westwick J, Lukacs N, Kunkel SL, Hogaboam CM. Therapeutic effect of IL-13 immunoneutralization during chronic experimental fungal asthma. J Immunol 2001;166: 5219-5224.

65. Powell RM, Hamilton LM, Holgate ST, Davies DE, Holloway JW. ADAM33: a novel therapeutic target for asthma. Expert Opin Ther Targets 2003; 7: 485-494.

66. Borish LC, Nelson HS, Corren J, Bensch G, Busse WW, Whitmore JB, et al. Efficacy of soluble IL-4 receptor for the treatment of adults with asthma. J Allergy Clin Immunol 2001; 107: 963-970.

67. Penrose JF, Baldasarro MH. Leukotriene C4 synthase: a candidate gene for the aspirin-intolerant asthmatic phenotype. Allergy Asthma Proc 1999; 20: 353-360.

68. Hayes ES. Adenosine receptors and cardiovascular disease: the adenosine-1 receptor (A1) and A1 selective ligands. Cardiovasc Toxicol 2003; 3: 71-88.

69. Nagashima S, Hondo T, Nagata H, Ogiyama T, Maeda J, Hoshii H, et al. Novel 7H-pyrrolo[2,3-d]pyrimidine derivatives as potent and orally active STAT6 inhibitors. Bioorg Med Chem 2001; 34:34s-40s.

70. Osamu K, Hideo K, Shigeki M, Katsuo I. Effect of CysLT1 as a novel therapeutic target for allergic asthma. Curr Drug Targets 2006; 5: 1019-1024.

71. Perros F, Hoogsteden HC, Coyle AJ, Lambrecht BN, Hammad H. Blockade of CCR4 in a humanized model of asthma reveals a critical role for DC-derived CCL17 and CCL22 in attracting Th2 cells and inducing airway inflammation. Allergy 2009; 64: 995-1002.

72. Beeh KM, Beier J, Meyer M, Buhl R, Zahlten R, Wolff G. Bimosiomase, an inhaled small-molecule pan-selectin antagonist, attenuates late asthmatic reactions following allergen challenge in mild asthmatics: a randomized, double-blind, placebo-controlled clinical cross-over-trial. Pulm Pharmacol Ther 2006; 19: 233-241.

73. Hay DW, Sarau HM. Interleukin-8 receptor antagonists in pulmonary diseases. Curr Opin Pharmacol 2001; 1: 242-247.

74. Kumar RK, Webb DC, Herbert C, Foster PS. Interferon-gamma as a possible target in chronic asthma. Inflamm Allergy Drug Targets 2006; 5: 253-256.

75. Ivanov S, Linden A. Interleukin-17 as a drug target in human disease. Trends Pharmacol Sci 2009; 30: 95-103.

76. Belvisi MG, Hele DJ. Peroxisome proliferator-activated receptors as novel targets in lung disease. Chest 2008; 134: 152-157.

77. Liu C, Ma X, Jiang X, Wilson SJ, Hofstra CL, Blevitt J, et al. Cloning and pharmacological characterization of a fourth histamine receptor (H(4)) expressed in bone marrow. Mol Pharmacol 2001; 59: 420-426.

78. Fiscus LC, Van Herpen J, Steeber DA, Tedder TF, Tang ML. L-Selectin is required for the development of airway hyperresponsiveness but not airway inflammation in a murine model of asthma. J Allergy Clin Immunol 2001; 107: 1019-1024.

79. Park HW, Shin ES, Lee JE, Kim SH, Kim SS, Chang YS, et al. Association between genetic variations in prostaglandin E2 receptor subtype EP3 gene (Ptger3) and asthma in the Korean population. Clin Exp Allergy 2007; 37: 1609-1615.

80. Roth M, Black JL. Transcription factors in asthma: are transcription factors a new target for asthma therapy? Curr Drug Targets 2006; 7: 589-595.

81. Liggett SB. Pharmacogenetics of beta-1- and beta-2-adrenergic receptors. Pharmacology 2000; 61: 167-73.

82. Rabe KF, Schmidt DT. Pharmacological treatment of asthma today. Eur Respir J Suppl 2001; 34:34s-40s.

83. Miyamoto K, Iwase M, Nyui M, Arata S, Sakai Y, Gabazza EC, et al. Histamine type 1 receptor deficiency reduces airway inflammation in a murine asthma model. Int Arch Allergy Immunol 2006; 140: 215-222.

84. Spik I, Brenchon C, Angeli V, Staumont D, Fleury S, Capron M, et al. Activation of the prostaglandin D2 receptor DP2/CRTH2 increases allergic inflammation in mouse. J Immunol 2005; 174: 3703-3708.

85. Mueller C, August A. Attenuation of immunological symptoms of allergic asthma in mice lacking the tyrosine kinase ITK. J Immunol 2003; 170: 5056-5063.

86. Ulanova M, Duta F, Puttagunta L, Schreiber AD, Befus AD. Spleen tyrosine kinase (Syk) as a novel target for allergic asthma and rhinitis. Expert Opinion on Therapeutic Targets 2005; 9: 901-921.

87. Hartl D, Lee CG, Da Silva CA, Chupp GL, Elias JA. Novel biomarkers in asthma: chemokines and chitinase-like proteins. Curr Opin Allergy Clin Immunol 2009; 9: 60-66.

88. Choi GS, Shin SY, Kim JH, Lee HY, Palikhe NS, Ye YM, et al. Serum lactoferrin level as a serologic biomarker for allergic rhinitis. Clin Exp Allergy 2010; 40: 403-410.

89. Shirasaki H. Cysteinyl leukotriene receptor CysLT1 as a novel therapeutic target for allergic rhinitis treatment. Expert Opin Ther Targets 2008; 12: 415-423.
90. Makino Y, Noguchi E, Takahashi N, Matsumoto Y, Kubo S, Yamada T, et al. Apolipoprotein A-IV is a candidate target molecule for the treatment of seasonal allergic rhinitis. J Allergy Clin Immunol 2010; 126: 1163-1169.

91. Turino GM, Ma S, Lin YY, Cantor JO, Luissetti M. Matrix Elastin: A Promising Biomarker for COPD. Am J Respir Crit Care Med 2011; 184: 637-641.

92. Papaioannou AI, Loukides S, Minas M, Kontogianni K, Bakakos P, Gourgoulianis KI, et al. Exhaled breath condensate pH as a biomarker of COPD severity in ex-smokers. Respir Res 2011; 12: 67.

93. Sin DD, Pahlavan PS, Man SF. Surfactant protein D: a lung specific biomarker in COPD? Ther Adv Respir Dis 2008; 2: 65-74.

94. Forth R, Montgomery H. ACE in COPD: a therapeutic target? Thorax 2003; 58: 556-558.

95. Marwick JA, Chung KF. Glucocorticoid insensitivity as a future target of therapy for chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2010; 5: 297-309.

96. Muroski ME, Roycik MD, Newcomer RG, Vanden Steen PE, Opdenakker G, Monroe HR, et al. Matrix metalloproteinase-9/gelatinase B is a putative therapeutic target of chronic obstructive pulmonary disease and multiple sclerosis. Curr Pharm Biotechnol 2008; 9: 34-46.

97. Fernandes LB, Henry PJ, Goldie RG. Rho kinase as a therapeutic target in the treatment of asthma and chronic obstructive pulmonary disease. Ther Adv Respir Dis 2007; 1: 25-33.

98. Dimitropoulou C, Drakopanagiotakis F, Catravas JD. Estrogen as a new therapeutic target for asthma and chronic obstructive pulmonary disease. Drug News Perspect 2007; 20: 241-252.

99. Ricciardolo FL, Nijkamp FP, Folkerts G. Nitric oxide synthase (NOS) as therapeutic target for asthma and chronic obstructive pulmonary disease. Curr Drug Targets 2006; 7: 721-735.

100. Antoniu SA. Histone deacetylase pathway: an evolving therapeutic target in chronic obstructive pulmonary disease. Expert Opin Ther Targets 2006; 10: 329-332.

101. McNamara PS, Smyth RL. Interleukin-9 as a possible therapeutic target in both asthma and chronic obstructive airways disease. Drug News Perspect 2005; 18: 615-621.

102. Villarrubia VG, Vidal-Asensi S, Perez-Banasco V, Cuevas-Santos J, Cisterna-Cancer R. Lipid nutrition and the epidermal barrier: The connection between immune-mediated inflammatory diseases and peroxisome proliferator-activated receptors, a new therapeutic target in psoriasis and atopic dermatitis. Actas Dermosifiliogr 2010; 101: 585-599.

103. Wakugawa M, Nakamura K, Kakinuma T, Tamaki K. CC Chemokine Receptor 4 as a Possible Target for Therapy of Atopic Dermatitis. Drug News Perspect 2002; 15: 175-179.

104. Barreto SG, Bazargan M, Zotti M, Hussey DJ, Sukocheva OA, Peiris H, et al. Galanin receptor 3--a potential target for acute pancreatitis therapy. Neurogastroenterol Motil 2011; 23: e141-151.

105. Habtezion A, Kwan R, Yang AL, Morgan ME, Akhtar E, Wanski SP, et al. Heme oxygenase-1 is induced in peripheral blood mononuclear cells of patients with acute pancreatitis: a potential therapeutic target. Am J Physiol Gastrointest Liver Physiol 2011; 300: G12-20.

106. Orcu N, Ozutemiz O, Nart D, Yuce G, Celik HA, Ilter T. Inhibition of renin-angiotensin system in experimental acute pancreatitis in rats: a new therapeutic target? Exp Toxicol Pathol 2010; 62: 353-360.

107. Thomas PS. Tumour necrosis factor-alpha: the role of this multifunctional cytokine in asthma. Immunol Cell Biol 2001; 79: 132-140.

108. Malleo G, Mazzon E, Siriwardena AK, Cuzzocrea S. TNF-alpha as a therapeutic target in acute pancreatitis--lessons from experimental models. ScientificWorldJournal 2007; 7: 431-448.

109. Wood NJ. Pancreas: NGAL is a potential early diagnostic and prognostic biomarker of severe acute pancreatitis. Nat Rev Gastroenterol Hepatol 2010; 7: 589.