Research Article

Avni Berisha*

The influence of the grafted aryl groups on the solvation properties of the graphyne and graphdiyne - a MD study

https://doi.org/10.1515/chem-2019-0083
received December 3, 2018; accepted March 22, 2019.

Abstract: The mechanism of the adsorption and grafting of diazonium cations onto the surface of graphyne and graphdiyne was investigated using Density Functional Theory (DFT). The adsorption energy (both in vacuum and water as solvent) of the phenyl diazonium cation was evaluated at three different positions of the graphyne and graphdiyne surface. Moreover, the lowest energy adsorption sites were used to calculate and plot Non-covalent Interactions (NCI). The Bond Dissociation Energy (BDE) results (up to 66 kcal/mol) for the scission of the phenyl group support the remarkable stability of the grafted layer. As both of these materials are non-dispersible in aqueous solution, in this work through the use of Molecular Mechanics (MM) and Molecular Dynamics (MD) we explored also the effect of the grafted substituted aryl groups derived from aryldiazonium salts onto the solvation properties of these materials.

Keywords: Graphyne; Graphdiyne; Grafting; Molecular Dynamics; Solvation; Aryldiazonium Salts; adsorption; bond dissociation energy; non-covalent interactions.

1 Introduction

It is now well established that the aryl diazonium cations are the most promising candidates for the surface modification of materials. The use of such molecules for the surface modification dates in the 90's from the ground-breaking work of Prof. Pinson [1]. In comparison to other molecules used for this purpose (thiols, silanes, phosphonic acids) [2] aryl diazonium salts are easy to synthesize and can be applied in a variety of materials (oxides, insulator, powders, polymers, metals, etc) a feature that is absent in the case of other molecules [3,4].

The surface modification reaction in the case of the diazonium salts is based on the attack of the very reactive aryl radical that is created upon scission of nitrogen moiety from the parent aryldiazonium cations. The formed interface (by spontaneous [5-7], electrochemical [1, 4, 10-12], sono-chemical [13], thermal [13,14] or light-driven de-diazonation [15] reactions) has been analyzed using immense number of analytical characterization methods (AFM, ToF-SIMS, XPS, RBS, IRRAS, TGA) [3,16]. The existence of the covalent binding between the grafted moiety and the material is supported both by experimental evidence [3], [16] and also using DFT calculations [9,17,18]. Up to now, to our knowledge, no existing study is focused toward the surface modification of graphyne and graphdiyne by aryl radicals derived from de-diazonation reactions of the aryldiazonium cations. In contrast, there are numerous studies were the aryldiazonium chemistry is applied for the modification of other carbon like nanomaterials [19-25]. Such study is of immense interest as graphyne and graphdiyne represent the two newest members of the very large family of nanocarbon allotropic materials that possess a lot of potential for use in the materials science. Both of these structures are one-atomic thick materials composed of sp2 and sp atoms, in which the adjacent benzene rings are linked in a huge network by one (in graphyne) or two acetylenic groups (in case of graphdiyne). Graphyne and graphdiyne are both members of the very large family of nanocarbon allotropic materials [0D (fullerenes, quantum dots, graphene dots, carbon dots, onion-like carbon, nano-diamonds), 1D (single-walled and multi-walled nanotubes, nanohorns), 2D (graphene, multilayered graphitic sheets, graphene oxide) and 3D (graphite), their surface modification using aryldiazonium salts is supposed to proceed in a similar way as with other carbon-rich nanomaterials [19, 20, 22, 24]. They are promising materials for a number of

*Corresponding author: Avni Berisha, Department of Chemistry, FNMS, University of Pristina “Hasan Pristina”, 10000 Pristina, Republic of Kosovo, E-mail: avni.berisha@uni-pr.edu

Open Access. © 2019 Avni Berisha, published by De Gruyter. This work is licensed under the Creative Commons Attribution alone 4.0 License.
applications (gas separation, lithium storage, as a possible replacement material for silicon transistor technology etc.) since they pose a number of remarkable properties (extreme hardness, very high electric conductivity, high thermal resistance, etc.). In order to gain mechanistic details, interface stability of the grafted layers derived from aryl diazonium salts and their practical utility oriented toward the tuning of solvation properties of the grafted structures DFT [26, 27], molecular mechanics [28], and molecular dynamic calculations were employed. This represents the first study that addresses the impact of surface modification and the influence of the grafted aryl groups on the solvation properties of the graphyne and graphdiyne.

2 Computational details

2.1 DFT

DFT calculations were performed using the DMol³ software (BIOVIA). The graphyne and graphdiyne models used to compute the Bond Dissociation Energy and the solvation properties are presented in Figure 1. The models consist of a central phenyl ring (in green) linked to six other groups via -C≡C-(graphyne) or -C≡C-C≡C-(graphdiyne) linkages. All electron calculations are employed for geometry optimization with the double numerical plus polarization basis set (DNP) [29]. The exchange-correlation energy is described by the Perdew–Burke–Ernzerhof functional within the generalized gradient approximation (GGA–PBE) [9,30,31].

All energy minima were characterized by performing a vibrational analysis to ensure the lack of imaginary frequencies [9],[18]. The adsorption energy (E_{ads.}) [9],[32] was calculated as:

\[
E_{\text{ads.}} = - (E_{\text{Graphyne or Graphdiyne /aryldiazonium cation}} + E_{\text{aryldiazonium cation}} - E_{\text{Graphyne or Graphdiyne}})
\]

where: \(E_{\text{Graphyne or Graphdiyne /aryldiazonium cation}}\) is the total energy of the adsorption system, \(E_{\text{Graphyne or Graphdiyne}}\) and \(E_{\text{aryldiazonium cation}}\) are the energies of the isolated Graphyne or Graphdiyne and aryl diazonium cations, respectively. The transition state (in water, using COSMO solvation model [33]) is computed using the combination of Linear Synchronous Transit (LST) and Quadratic Synchronous Transit (QST) [34]. The NCI (Non-Covalent interaction) were computed using Multiwfn software [35] from the DFT calculations [B3LYP/6-311++g (d,p)]. The same was applied also to calculate the homolytic bond dissociation energy of the phenyldiazonium cation (using the bond scan). The NCI surface is plotted using VMD (Visual Molecular Dynamics) software [36].

2.2 Molecular Mechanics / Molecular Dynamics

Model systems for bare and modified graphyne and graphdiyne structures were constructed as amorphous three-dimensional periodic boxes using the Amorphous Cell Tool in Materials Studio. The simulation cells enclosed 200 solvent molecules (either water or hexane). The steps used to compute solvation energies are presented in the Figure 2. The calculation was performed using the COMPASS II force field [37].

The total solvation free energy is calculated as the sum of three contributions: Ideal, van der Waals, and Electrostatic. The partition-coefficient Log P, was calculated using the equation:

\[
\log P = 0.434 \left(\frac{A_{\text{water}} - A_{\text{hexane}}}{RT} \right)
\]

where 0.434 corresponds to \(10 \log e\), R is the gas constant (1.987*10⁻³ kcal/mol/K), T the temperature in the simulation (298 K), and \(A_{\text{water or hexane}}\) is the solvation free energy in water or hexane.

Ethical approval: The conducted research is not related to either human or animal use.

3 Results and discussion

From the Figure 3, the adsorption energies for the phenyl diazonium cation (PhN⁺) onto the graphyne surface in
The influence of the grafted aryl groups on the solvation properties of the graphyne and graphdiyne in a vacuum are in the range from -28.72 to -24.61 kcal/mol depending on the adsorption site. In the presence of water as the solvent, the maximum adsorption energy is found for the adsorption position 3 (where the phenyldiazonium cation is flat onto the central phenyl ring of graphyne with the diazonium group oriented above the alkyne bond) with the value of -14.85 kcal/mol. The similar trend in adsorption energy is also observed for the graphdiyne structure, in this case again the maximum adsorption energy (in water) is found for the third adsorption position with the energy value of -14.62 kcal/mol.

In order to understand the adsorption details, the NCI 2D and 3D plots for the interaction of PhN$_2^+$ with both surfaces were computed (Figure 3) [35],[38]. The
result shows that the adsorption is done through the van der Waals interactions. This interaction is considerably stronger than a simple π-π stacking (for which a gas phase value for such interaction is in the case of benzene are in the range of 23 kcal/mol) [39]. Understanding the adsorption of the aryldiazonium cations is of great interest to gain insights regarding the grafting of phenyl radicals that are the product of aryldiazonium cation induced or spontaneous de-diazonation reactions [4]. It is believed that prior to the grafting reaction the adsorption of the diazonium cations takes place [4], this claim is supported by the obtained results (Figure 3 and 4).

The grafting reactions are essential for surface tuning of materials and add many interesting properties to them. For the practical applications, the grafted layers need to own certain stability. An indirect measure to assess such stability is the Bond Dissociation Energy (BDE) between the bonded aryl radical and the grafted moiety (in this case Graphene). For the BDE calculation, three different grafting positions were explored (Figure 5). The highest BDE values are obtained for the grafting position 2 with the BDE energy value of -66 kcal/mol. This value is much higher than the values obtained for the gold surface (up to -38 kcal/mol) reflecting much stronger interface stability. The BDE has similar value as in the case of grafted graphene oxide surface (when the phenyl moiety is attached directly on aromatic carbon), even though in comparison to this surface, the adsorption energy for the graphyne and graphdiyne is smaller [40].

In Figure 6 is presented the bond scission diagram for the homolytic de-diazonation of the phenylidazonium cation:

\[
\text{PhN}_2^+ \text{(aq)} \rightarrow \text{Ph}^+ \text{(aq)} + \text{N}_2\text{(aq)}
\]
Figure 5: BDEs computed in: vacuum and water (COSMO) for the bonding of phenyl- radicals on 3 distinctive grafting position onto Graphyne surface.

Figure 6: Homolytic BDE of phenyl diazonium cations.
The BDE, in this case, is 32.45 kcal/mol. From experimental studies on bulk carbon and other nanoscopic carbon, materials are known that the grafting takes place also spontaneously [6,7].

Thus, such reaction could be initiated through the instability of phenyldiazonium cation and further sustained (Figure 7) through the energy gain due to the difference between the reaction energy (-38.48 kcal/mol) and the energy barrier for the grafting reaction (34.17 kcal/mol) to take place.

The attached moieties derived from aryldiazonium cations (as calculated by Molecular Dynamics) have a certain impact on the solvation properties of graphyne (Figure 8). In this case, we took the solvation energy value of bare graphyne as zero in order to see only the effects of the grafted moieties on the solvation energy. The most pronounced effect is shown by the grafted Ph-COOH layers.

Figure 7: BDEs computed in: vacuum and water (COSMO) for the bonding of phenyl- radicals on 3 distinctive grafting position onto Graphyne surface.

Figure 8: A. The solvation energy differences for the grafted graphyne structure (with two phenyl groups) in water and hexane. B. Calculated Log P values.
4 Conclusions

The adsorption of the phenyl diazonium cation and its subsequent grafting onto graphyne and graphdiyne surface was investigated using theoretical calculations for the first time. The computed NCI surfaces point out that the adsorption takes place by van der Waals interaction. The grafted phenyl group forms a quite stable interface with the BDE in the range of 66 kcal/mol pointing out to a covalent type of bonding. Taking into account the transition state calculations for the grafting of phenyl moiety onto the graphyne structure and the BDE from the formation of the phenyl radical from the corresponding aryldiazonium cation, the spontaneous surface modification is possible to take place. The Molecular Dynamics calculation, from which solvation properties and Log P can be computed clearly evidence the possibility to tune the solvation/dispersion properties of these structures by using aryldiazonium cations that bear polar or non-polar substituents. The present study not only provides a prospect to understand the grafting of ary radicals onto graphyne and graphdiyne surface but also shows the benefits of the attached groups for tuning dispersibility of such structures.

Acknowledgments: The author gratefully acknowledges the support from the Ministry of Education, Science and Technology of Kosovo (Nr.2-5069) for providing him with the computing resources.

Conflict of interest: Authors declare no conflict of interest.

References

[1] Delamar M., Hitmi R., Pinson J., Savean J.M., Covalent Modification of Carbon Surfaces by Grafting of Functionalized Aryl Radicals Produced from Electrochemical Reduction of Diazonium Salts. J. Am. Chem. Soc., 1992, 114(14), 5883–5884.
[2] Pujari S. P., Scheres L., Marcelis A. T. M., Zuilhof H., Covalent Surface Modification of Oxide Surfaces. Angew. Chemie Int. Ed., 2014, 53(25), 6322–6356.
[3] Bélanger D., Pinson J., Electrografting: A Powerful Method for Surface Modification. Chem. Soc. Rev., 2011, 40(7), 3995–4048.
[4] Berisha A., Chehimi M., Pinson J., Podvorica F., Electrode Modification Using Diazonium Salts. Electroanalytical Chemistry. CRC Press, 2015.
[5] Combellas C., Delamar M., Kanoufi F., Pinson J., Podvorica F., Spontaneous Grafting of Iron Surfaces by Reduction of Aryldiazonium Salts in Acidic or Neutral Aqueous Solution. Application to the Protection of Iron against Corrosion, 2005.
[6] Guo K., Chen X., Freguia S., Donose B. C., Spontaneous Modification of Carbon Surface with Neutral Red from Its Diazonium Salts for Bioelectrochemical Systems. Biosens. Bioelectron., 2013, 47, 184–189.
[7] Toupin M., Bélanger D., Spontaneous Functionalization of Carbon Black by Reaction with 4-Nitrophydiazonium Cations. Langmuir, 2008, 24(5), 1910–1917.
[8] Halili I., Salihu F., Berisha A., Covalent Attachment of Phenyl and Carboxyphenyl Layers Derived from Diazonium Salts onto Activated Charcoal for the Adsorption of Pesticides. Maced. J. Chem. Chem. Eng., 2018, 37.1.
[9] Berisha A., Combellas C., Kanoufi, F., Médard, J., Decorse P., Mangeney C., Kherbouche, I., Seydou, M., Maurel, F.; Pinson, J., Alkyl-Modified Gold Surfaces: Characterization of the Au-C Bond. Langmuir, 2018, 34(38), 11264–11271.
[10] Afgnès C., Arnault J.C., Mounès F., Jousselme B., Billon M., Bidan G., Maille P., XPS study of ruthenium tris-bipyridine electrografted from diazonium salt derivative on microcrystalline boron doped diamond. Phys. Chem. Chem. Phys., 2009, 11, 11647-11654.
[11] Raczpol M., Necula L., Ionita M., Pilan L., Electrochemical reduction of aryl diazonium salts: a versatile way for carbon nanotubes functionalisation. Surf. Interface Anal., 44, 1081-1085.
[12] Stockhausen V., Trippé-Allard G., Quynh N., Ghilane J., Lacroix J-C., Grafting n-Conjugated Oligomers Incorporating 3,4-Ethylenedioxithiophene (EDOT) and Thiophene Units on Surfaces by Diazonium Electroreduction. J. Phys. Chem. C., 2015, 119, 33, 19218-19227.
[13] Mangenev C., Qin Z., Dhoumane S.A., Adenier A., Herbé F., Boudou J-P., Pinson J., Chehimi M.M., Electroless Ultrasonic Functionalization of Diamond Nanoparticles Using Aryl Diazonium Salts. Diam. Relat. Mater., 2008, 17, 11, 1881–1887.
[14] Bouriga M., Chehimi M.M., Combellas C., Decorse P., Kanoufi F., Deronzier A., Pinson J., Sensitized Photografting of Diazonium Salts by Visible Light. Chem. Mater., 2013, 25(1), 90–97.
[15] Quarels R. D., Zhai X., Kuruppu N., Hedlund J.K., Ellsworth A.A., Walker A.V., Ganno J.C., Ragains J.R., Application of visible-light photosensitization to form alkyl-radical-derived thin films on gold. Beilstein J. Nanotechnol., 2017, 8, 1863–1877.
[16] Mahouche-Chergui S., Gam-Derouich S., Menegency C., Chehimi M.M., Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces. Chem. Soc. Rev., 2011, 40, 4163-4166.
[17] Jiang D., Sumpter B., Dai S., How Do Aryl Groups Attach to a Graphene Sheet? J. Phys. Chem. B., 2006, 110(47), 23628–23632.
[18] Berisha A., Combellas C., Kanouf, F., Decorse P., Oturan N., Médard J., Seydou M., Maurel F., Pinson J., Some Theoretical and Experimental Insights on the Mechanistic Routes Leading to the Spontaneous Grafting of Gold Surfaces by Diazonium Salts. Langmuir, 2017, 33(35).
[19] Bahr J.L., Tour J.M., Highly Functionalized Carbon Nanotubes Using in Situ Generated Diazonium Compounds. Chem. Mater., 2001, 13, 11, 3823-3824.
[20] Paulus G.L.C., Wang Q.H., Strano M.S., Covalent Electron Transfer Chemistry of Graphene with Diazonium Salts. Acc. Chem. Res., 2013, 46(1), 160–170.
[21] Flavin K., Chaur M.N., Ecchegoyen L., Giordani S., Functionalization of Multilayer Fullerences (Carbon Nano-
Onions) Using Diazonium Compounds and “Click” Chemistry. Org. Lett., 2010, 12(4), 840–843.

[22] Lalauvi N., Holzinger M., Le Goff A., Cosnier S., Diazonium Functionalisation of Carbon Nanotubes for Specific Orientation of Multicopper Oxidases: Controlling Electron Entry Points and Oxygen Diffusion to the Enzyme. Chem. - A Eur. J., 2016, 22(30), 10494–10500.

[23] Salice P., Fabris E., Sartorio C., Fenaroli D., Figà V., Casaletto M.P., Cataldo S., Pignataro B., Menna E., An Insight into the Functionalisation of Carbon Nanotubes by Diazonium Chemistry: Towards a Controlled Decoration. Carbon., 2014, 74, 73–82.

[24] Schmidt G., Gallon S., Esnouf S., Bourgoin J.P., Chenevier P., Mechanism of the Coupling of Diazonium to Single-Walled Carbon Nanotubes and Its Consequences. Chem. - A Eur. J., 2009, 15(9), 2101–2110.

[25] Bahr J. L., Yang J., Kosynkin V.D., Bronikowski J.M., Smalley E.R., Tour J.M., Functionalization of Carbon Nanotubes by Electrochemical Reduction of Aryl Diazonium Salts: A Bucky Paper Electrode. J. Am. Chem. Soc., 2001, 123(27), 6536–654.

[26] Cohen A.J., Mori-Sánchez P., Yang W., Challenges for Density Functional Theory. Chem. Rev., 2012, 112(1), 289–320.

[27] Jones R. O., Density Functional Theory: Its Origins, Rise to Prominence, and Future. Rev. Mod. Phys., 2015, 87(3), 897–923.

[28] Vanommeslaeghe K., Guvench O., MacKerell A. D., Molecular Mechanics. Curr. Pharm. Des., 2014, 20(20), 3281–3292.

[29] Ding N., Chen X., Wu C.M.L., Interactions between Polybrominated Diphenyl Ethers and Graphene Surface: A DFT and MD Investigation. Environ. Sci. Nano, 2014.

[30] Perdew J.P., Burke K., Ernzerhof M., Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 1996, 77(18), 3865–3868.

[31] Seydou M., Lassoued K., Tielens F., Maurel F., Raouafi F., Diawara B., A DFT-D Study of Hydrogen Adsorption on Functionalized Graphene. RSC Adv., 2015, 5(19), 14400–14406.

[32] Mehmet V. V., Berisha A.R., Corrosion Study of Mild Steel in Aqueous Sulfuric Acid Solution Using 4-Methyl-4h-1,2,4-Triazole-3-Thiol and 2-Mercaptonicotinic Acid-an Experimental and Theoretical Study. Front Chem., 2017, 5, 61.

[33] Klamt A., The COSMO and COSMO-RS Solvation Models. Wiley Interdiscipl. Rev. Comput. Mol. Sci., 2018, 8(1), e1338.

[34] Govind N., Petersen M., Fitzgerald G., King-Smith D., Andzelm J.A., Generalized Synchronous Transit Method for Transition State Location. Comput. Mater. Sci., 2003, 28 (2), 250–258.

[35] Lu T., Chen F., Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem., 2012, 33(5), 580–592.

[36] Humphrey W., Dalke A., Schulten K., VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14 (1), 33–38.

[37] Sun H., Jin Z., Yang C., Akkermans R.L.C., Robertson S.H., Spenley N.A., Miller S., Todd S.M., COMPASS II: Extended Coverage for Polymer and Drug-like Molecule Databases. J. Mol. Model., 2016, 22(2), 47.

[38] Hobza P., Řezáč J., Introduction: Noncovalent Interactions. Chem. Rev., 2016, 116(9), 4911–4912.

[39] Sinnokrot M.O., Valeev F.E., Sherrill C. D., Estimates of the Ab Initio Limit for n–n Interactions: The Benzene Dimer. J. Am. Chem. Soc., 2002, 124(36), 10887–10893.