A Strict Positivstellensatz for Enveloping Algebras

Konrad Schmüdgen

Fakultät für Mathematik und Informatik
Universität Leipzig, Augustusplatz 10, 04109 Leipzig, Germany
E-mail: schmuedgen@math.uni-leipzig.de

Abstract

Let G be a connected and simply connected real Lie group with Lie algebra \mathfrak{g}. Semialgebraic subsets of the unitary dual of G are defined and a strict Positivstellensatz for positive elements of the universal enveloping algebra $\mathcal{E}(\mathfrak{g})$ of \mathfrak{g} is proved.

AMS subject classification: Primary: 14 P 10, 17 B 35
Keywords: Positivstellensatz, enveloping algebras

1 Introduction

Positive polynomials on semialgebraic sets have been intensively studied since E. Artin’s solution of Hilbert’s 17-th problem. In the last decade a number of new representation theorems for positive polynomials, usually called ”Positivstellensätze”, have been found (see e.g. [S1], [P], [R], [PV]). Excellent surveys are given in the recent books [PD], [M] and the article [S]. In a previous paper [S3] a variant of a non-commutative Positivstellensatz for the Weyl algebra was obtained. The aim of this paper is to prove a strict Positivstellensatz for enveloping algebras of finite dimensional Lie algebras.

Let G be a connected and simply connected real Lie group with Lie algebra \mathfrak{g} and let $\mathcal{E}(\mathfrak{g})$ be the complex universal enveloping algebra of \mathfrak{g}. The algebra $\mathcal{E}(\mathfrak{g})$ is a \ast-algebra with involution determined by $x^\ast = -x$ for $x \in \mathfrak{g}$. Let 1 denote
the unit element of $\mathcal{E}(\mathfrak{g})$. Let $\{x_1, \ldots, x_d\}$ be a basis of \mathfrak{g} which will be fixed throughout this paper.

The algebra $\mathcal{E}(\mathfrak{g})$ has a canonical filtration $((\mathcal{E}_n(\mathfrak{g})))_{n \geq 0}$, where $\mathcal{E}_0(\mathfrak{g}) = \mathbb{C} \cdot 1$ and $\mathcal{E}_n(\mathfrak{g})$, $n \geq 1$, is the linear span of 1 and products z_1, \ldots, z_r with $z_1, \ldots, z_r \in \mathfrak{g}$ and $r \leq n$ (see e.g. [D], 2.3). The associated graded algebra is the polynomial algebra $\mathbb{C}[t_1, \ldots, t_d]$, where the monomial $t_1^{k_1} \cdots t_d^{k_d}$ corresponds to the element $x_1^{k_1} \cdots x_d^{k_d}$ of $\mathcal{E}(\mathfrak{g})$. For an element $c \in \mathcal{E}(\mathfrak{g})$ of degree n, we denote by $c_n(t)$ the polynomial of $\mathbb{C}[t_1, \ldots, t_d]$ corresponding to the component of c with degree n.

Set $x_0 := i \cdot 1$, where i denotes the complex unit. Then we have $x_j^* = -x_j$ for $j = 0, \ldots, d$. Define

$$a := x_0^*x_0 + x_1^*x_1 + \cdots + x_d^*x_d = 1 - x_1^2 - \cdots - x_d^2. \quad (1)$$

Let S be a right Ore subset of $\mathcal{E}(\mathfrak{g}) \setminus \{0\}$ containing a. That is, for any $s \in S$ and $z \in \mathcal{E}(\mathfrak{g})$ there are elements $s' \in S$ and $z' \in \mathcal{E}(\mathfrak{g})$ such that $sz' = zs'$. Note that such that a set S exists since $\mathcal{E}(\mathfrak{g}) \setminus \{0\}$ is a (left and right) Ore set of $\mathcal{E}(\mathfrak{g})$ (see [D], 3.6). For instance, if a belongs to the center of $\mathcal{E}(\mathfrak{g})$, then we may take the set of elements a^n, $n \in \mathbb{N}_0$, as S.

Let $f = (f_1, \ldots, f_r)$ be a finite set of hermitean elements of the enveloping algebra $\mathcal{E}(\mathfrak{g})$ such that $f_1 = 1$. Let \mathcal{K}_f and \mathcal{T}_f be the associated basic closed semialgebraic set and positive wedge, respectively, as defined by formulas (3) and (4) below.

The main result of this paper is the following

Theorem 1.1 Suppose that c is a hermitean element of the enveloping algebra $\mathcal{E}(\mathfrak{g})$ of even degree $2m$ satisfying the following assumptions:

(i) There exists $\varepsilon > 0$ such that $c - \varepsilon \cdot 1 \in \mathcal{T}_f$.

(ii) $c_{2m}(t) > 0$ for all $t \in \mathbb{R}^d$, $t \neq 0$.

If m is even, there exists an element $s \in S$ such that $s^*cs \in \mathcal{T}_f$. If m is odd, there is an $s \in S$ such that

$$\sum_{k=0}^{d} s^*x_k^*cx_k s \in \mathcal{T}_f.$$
Let \mathcal{A} be a unital complex $*$-algebra. We denote by $\sum^2(\mathcal{A})$ the set of all finite sums of squares x^*x, where $x \in \mathcal{A}$. A subset of the hermitean part $\mathcal{A}_h := \{x \in \mathcal{A} : x^* = x\}$ is called an m-admissible wedge ([S2], p.22) if \mathcal{C} is a wedge (that is, $x + y \in \mathcal{C}$ and $\lambda x \in \mathcal{C}$ if $x, y \in \mathcal{C}$ and $\lambda \geq 0$) such that the unit element is in \mathcal{C} and $z^*xz \in \mathcal{C}$ for $x \in \mathcal{C}$ and $z \in \mathcal{A}$.

2 Unitary Representations and Semialgebraic Sets of the Dual

By a unitary representation of the Lie group G we mean a strongly continuous homomorphism U of G into the group of unitary operators of a Hilbert space $\mathcal{H}(U)$. Let $\mathcal{D}^\infty(U)$ denote the vector space of C^∞-vectors of U and let dU be the associated $*$-representation of the $*$-algebra $\mathcal{E}(g)$ on the dense domain $\mathcal{D}^\infty(U)$ of $\mathcal{H}(U)$ (see [S2], Chapter 10, or [Wa], Section 4.4, for details). For $f \in \mathcal{E}(g)$ we write $dU(f) \geq 0$ when $\langle dU(f)\varphi, \varphi \rangle \geq 0$ for all vectors $\varphi \in \mathcal{D}^\infty(U)$.

For later use we restate some classical results of E. Nelson and W. F. Stinespring [NS] and of E. Nelson [N] in

Lemma 2.1 If U is a unitary representation of G, then the closure $\overline{dU(a)}$ of the operator $dU(a)$ is self-adjoint and equal to $B := I - \sum_{k=1}^d \overline{dU(x_k)^2}$. Moreover,

$$\mathcal{D}^\infty(U) = \bigcap_{n=1}^\infty \mathcal{D}(\overline{dU(a)^n}) = \bigcap_{n=1}^\infty \mathcal{D}(B^n).$$

Proof. For the self-adjointness of $\overline{dU(a)}$ and the first equality of (2) see Corollaries 10.2.4 and 10.2.7 in [S2] or Theorems 4.4.3 and 4.4.4 in [Wa]. We prove that $\overline{dU(a)} = B$. By Lemma 10.4.5 in [S2] or by Lemma 4.4.4.8 in [Wa] there is constant $c > 0$ such that

$$\|dU(x_k)\varphi\| + \|dU(x_k)^2\varphi\| \leq c\|dU(a)\varphi\|, \varphi \in \mathcal{D}^\infty(U), k = 1, \ldots, d.$$

Since $B\varphi = dU(a)\varphi$ for $\varphi \in \mathcal{D}^\infty(U)$, the preceding inequality implies that $\mathcal{D}(\overline{dU(a)}) \subseteq \mathcal{D}(B)$ and $B\varphi = dU(a)\varphi$ for $\varphi \in \mathcal{D}(\overline{dU(a)})$. Since B is a symmetric extension of the self-adjoint operator $\overline{dU(a)}$, we get $\overline{dU(a)} = B$. \hfill \Box

Let \hat{G} denote the unitary dual of G, that is, \hat{G} is the set of unitary equivalence classes of irreducible unitary representations of G. For each $\alpha \in \hat{G}$ we fix a representation U_α of the equivalence class α.

3
Definition: A subset K of \hat{G} is called semialgebraic if K is a finite Boolean combination (that is, using unions, intersections and complements) of sets $K_f = \{ \alpha \in \hat{G} : dU_\alpha(f) \geq 0 \}$ with $f \in \mathcal{E}(g)$.

For $r \in \mathbb{N}$ and an r-tuple $f = (f_1, \ldots, f_r)$ of elements $f_j \in \mathcal{E}(g)$ such that $f_1 = 1$, we define the basic closed semialgebraic set

$$
K_f = \{ \alpha \in \hat{G} : dU_\alpha(f_1) \geq 0, \ldots, dU_\alpha(f_r) \geq 0 \}
$$

and the associated positive wedges

$$
\mathcal{T}_f = \{ z = \sum_{j=1}^{k} \sum_{l=1}^{r} z_{jl}^* f_l z_{jl} ; z_{jl} \in \mathcal{E}(g), k \in \mathbb{N} \},
$$

$$
\mathcal{E}(g; f)_+ = \{ z \in \mathcal{E}(g)_h : dU_\alpha(z) \geq 0 \text{ for } \alpha \in K_f \}.
$$

Clearly, \mathcal{T} and $\mathcal{E}(g; f)_+$ are m-admissible wedges of $\mathcal{E}(g)$ such that $\mathcal{T}_f \supseteq \mathcal{E}(g; f)_+$.

If $f = (1)$, then $K_f = \hat{G}$. In this case we denote $\mathcal{E}(g; f)_+$ by $\mathcal{E}(g)_+$. From decomposition theory (see e.g. [S2]) it follows that $\mathcal{E}(g)_+$ is the set of elements $x \in \mathcal{E}(g)$ such that $dU(x) \geq 0$ for all unitary representations U of the group G.

Example 1 $G = \mathbb{R}^d$

Then g is the abelian Lie algebra \mathbb{R}^d and $\mathcal{E}(g)$ is the polynomial algebra $\mathbb{C}[x_1, \ldots, x_d]$. For each point $t = (t_1, \ldots, t_d) \in \mathbb{R}^d$ there is an irreducible unitary representation U_t of the Lie group \mathbb{R}^d on $\mathcal{H}(U_t) = \mathbb{C}$ such that $dU_t(x_j) = t_j, j = 1, \ldots, d$. Because these representations U_t exhaust the dual of \mathbb{R}^d, we can identify the dual of the Lie group \mathbb{R}^d with \mathbb{R}^d. In this manner the semialgebraic sets according to the definition given above are just the "ordinary" semialgebraic sets in semialgebraic geometry ([PD], p. 31). For an r-tuple $f = (f_1, \ldots, f_r)$ elements $f_j \in \mathbb{C}[x_1, \ldots, x_d]$ with $f_1 = 1$, let \tilde{f} be the $\binom{r}{2} + 1$-tuple of elements f_1 and $f_i f_j, i \neq j, i, j = 1, \ldots, r$. Then we have $K_f = K_{\tilde{f}}$. The wedge $\mathcal{T}_{\tilde{f}}$ is the usual preorder from semialgebraic geometry and $\mathcal{E}(g; f)_+$ is the set of real polynomials which are nonnegative on K_f. Note that for noncommutative Lie groups products $f_i f_j$ cannot be added to the wedge \mathcal{T}_f in general because the product of two noncommuting hermitean elements of $\mathcal{E}(g)$ is not even hermitean.

Example 2 $G = SU(2)$

The Lie algebra of $SU(2)$ has a basis $\{x_1, x_2, x_3\}$ satisfying the commutation relations

$$
[x_1, x_2] = x_3, [x_2, x_3] = x_1, [x_3, x_1] = x_2.
$$

(5)
The element \(a = 1 - x_1^2 - x_2^2 - x_3^2 \) generates the center of the algebra \(\mathcal{E}(g) \). The unitary dual of \(G \) consists of equivalence classes of spin \(l \) representations \(U_l \), \(l \in \frac{1}{2}\mathbb{N}_0 \). We identify \(\hat{G} \) and \(\frac{1}{2}\mathbb{N}_0 \). Set \(H = -ix_1 \). Here we only need that the operators \(dU_l(H) \) and \(dU_l(a) \) act on an orthonormal basis \(e^l_j, j = -l, -l+1, \ldots, l \), of a \((2l+1)\)-dimensional Hilbert space by

\[
dU_l(H)e^l_j = 2je^l_j, \quad dU_l(a)e^l_j = (l^2 + l + 1)e^l_j.
\]

Clearly, a polynomial \(p(H) \) in the generator \(H \) is in \(\mathcal{E}(g)_+ \) if and only if \(p(n) \geq 0 \) for all \(n \in \mathbb{Z} \). Using the relations (5) it is easily shown that \(p(H) \in \sum^2(\mathcal{E}(g)) \) if and only if there is a polynomial \(q(H) \in \mathbb{C}[H] \) such that \(p(H) = q(H) \ast q(H) \). In particular, \((H - c_1)(H - c_2) \notin \sum^2(\mathcal{E}(g)) \) if there is an integer \(n \) such that \(n \leq c_1 < c_2 \leq n + 1 \).

Let \(M = \{ l_1, \ldots, l_r \} \) be a finite set of \(\frac{1}{2}\mathbb{N}_0 \cong \hat{G} \). Put \(f_1 = g_1 = 1, f_{j+1} = 2l_j - H \) and \(g_{j+1} = -(a - l_j^2 - l_j - 1))^2 \) for \(j = 1, \ldots, r \). Then \(\mathcal{K}_f = \mathcal{K}_g = M \), so \(M \) is a semi-algebraic subset of \(\hat{G} \).

3 An Auxiliary *-Algebra

In what follows \(U \) denotes a fixed unitary representation of the Lie group \(G \) on a Hilbert space \(\mathcal{H}(U) \). In this section we define and study an auxiliary *-algebra \(\mathcal{X} \) depending on \(U \).

For notational simplicity we abbreviate

\[
X_k := dU(x_k), k = 0, \ldots, d, \quad \text{and} \quad A := dU(a).
\]

Clearly, \(\langle A\varphi, \varphi \rangle \geq \langle \varphi, \varphi \rangle \) for \(\varphi \in \mathcal{D}^\infty(U) \). Hence the inverse \(Y := A^{-1} \) exists and maps \(\mathcal{D}^\infty(U) \) onto \(\mathcal{D}^\infty(U) \) by Lemma 2.1.

Let \(\mathcal{X} \) denote the algebra of operators acting on the invariant dense domain \(\mathcal{D}^\infty(U) \) of \(\mathcal{H}(U) \) generated by the identity map \(I \equiv I_D \),

\[
Y_{kl} := X_kX_lY \quad \text{for} \quad Y_{-l,-k} := YX_lX_k \quad \text{and} \quad k, l = 0, \ldots, d. \quad (6)
\]

Clearly, \(\mathcal{X} \) is a *-algebra of operators with involution

\[
Y_{kl}^* = Y_{-l,-k}, \quad k, l = 0, \ldots, d. \quad (7)
\]
Let \mathcal{X}_0 denote two-sided $*$-ideal of \mathcal{X} generated by $Y_{k0}, k = -d, \ldots, d$. Let c_{ij}^k denote the structure constants of the Lie algebra \mathfrak{g} and set $b_{ij}^k := c_{ij}^k + c_{ik}^j$. Then we have

$$X_iX_j - X_jX_i = \sum_{k=1}^{d} c_{ij}^k X_k. \quad (8)$$

The operators Y_{kl}, X_j and $Y = -Y_{00}$ satisfy the following relations:

$$\sum_{k=0}^{d} Y_{k0}^* Y_{k0} = Y, \quad (9)$$

$$Y_{k0}^* Y_{l0} - Y_{l0}^* Y_{k0} = -i \sum_{j=1}^{d} c_{k}^j Y_{l0}^* Y_{j0} \text{ for } k, l = 1, \ldots, d, \quad (10)$$

$$Y_{k0}^* - Y_{k0} = i \sum_{j,l=1}^{d} b_{k}^j Y_{l0}^* Y_{j0} \text{ for } k = 1, \ldots, d, \quad (11)$$

$$\sum_{k,l=0}^{d} Y_{kl}^* Y_{kl} = I + i \sum_{j,k,l=1}^{d} b_{kl}^j Y_{j0}^* Y_{kl} = I - i \sum_{j,k,l=1}^{d} b_{kl}^j Y_{kl}^* Y_{j0}, \quad (12)$$

$$Y_{kl} - Y_{kl}^* \in \mathcal{X}_0, Y_{kl} - Y_{lk} \in \mathcal{X}_0 \text{ for } k, l = 0, \ldots, d, \quad (13)$$

$$Y_{x} - xY \in Y \mathcal{X}_0 = \mathcal{X}_0 Y \text{ for } x \in \mathcal{X}, \quad (14)$$

$$Y_{kl} Y_{ij} - Y_{ij} Y_{kl} \in \mathcal{X}_0 \text{ for } k, l, i, j = 1, \ldots, d, \quad (15)$$

$$Y_{kl} Y_{ij} - Y_{ki} Y_{lj} \in \mathcal{X}_0 \text{ for } k, l, i, j = 1, \ldots, d. \quad (16)$$

Note that relations (9) – (11) above have been found by W. Szymanski [Sz]. They are relations (3) – (5) in [Sz]. Setting $l = 0$ in (7) we get relations (1) – (2) in [Sz].

The relations (9) – (16) listed above are proved by straightforward algebraic manipulations using the Lie algebra commutation relation (8). Using (1), (8) and the abbreviations $b_{ij}^k = c_{ij}^k + c_{ik}^j, Y = dU(a)^{-1}$ we obtain

$$YX_k = X_k Y + \sum_{i,j=1}^{d} b_{kl}^j YX_i YX_j, \quad (17)$$

$$YX_k X_l = X_k X_l Y + \sum_{i,j=1}^{d} (b_{kl}^j YX_k X_i X_j Y + b_{kl}^j YX_i X_j X_l Y) \quad (18)$$

for $k, l = 1, \ldots, d$. All relations (9) – (16) are easily derived from (17) and (18) combined with (6). We omit the details of these verifications.
Lemma 3.1 For arbitrary numbers \(n \in \mathbb{N} \) and \(k_1, \ldots, k_{4n} \in \{0, \ldots, d\} \), we have
\[
Y^n X_{k_1} \cdots X_{k_{2n}} \in \mathcal{X} \\
Y^n X_{k_1} \cdots Y_{k_{4n}} Y^n - Y_{k_{1}k_{2}} \cdots Y_{k_{4n-1}k_{4n}} \in \mathcal{X}_0.
\]

Proof. Both equations are proved by induction on \(n \). We carry out the proof of (20). First let \(n = 1 \). By (6) and (13) we get
\[
Y X_{k_1} X_{k_2} X_{k_3} X_{k_4} Y - Y_{k_{1}k_{2}} Y_{k_{3}k_{4}} = (Y^*_{k_{2}k_{1}} - Y_{k_{1}k_{2}}) Y_{k_{3}k_{4}} \in \mathcal{X}_0.
\]
Suppose the assertion holds for \(n \). Using the abbreviations \(z_n = Y^n X_{k_1} \cdots X_{k_{4n}} Y^n \), \(z = Y X_{k_{4n+1}} \cdots X_{k_{4n+4}} Y^n \), \(y_n = Y_{k_{1}k_{2}} \cdots Y_{k_{4n-1}k_{4n}} \), \(y = Y_{k_{4n+1}k_{4n+2}} Y_{k_{4n+3}k_{4n+4}} \), \(Y = A^{-1} \) we compute
\[
Y^{n+1} X_{k_1} \cdots X_{k_{4n+4}} Y Y_{k_{1}k_{2}} \cdots Y_{k_{4n+3}k_{4n+4}} = Y z_n A^{n+1} Y^n - y_n y
\]
\[
= [Y, z_n] A^{n+1} [z, Y^n] + z_n A^n [z, Y^n] + [Y, z_n] A z + (z_n - y_n) z + y_n (z - y).
\]
(21)

From (14) we easily derive that \([z, Y^n] \in Y^n \mathcal{X}_0 \). Moreover, \([Y, z_n] \in Y \mathcal{X}_0 = \mathcal{X}_0 Y \) by (14) and \(z_n - y_n \in \mathcal{X}_0 \) and \(z - y \in \mathcal{X}_0 \) by the induction hypothesis. Using these facts and remembering that \(\mathcal{X}_0 \) is a two-sided ideal of \(\mathcal{X} \) it follows that the element in (21) belongs to \(\mathcal{X}_0 \). This proves the assertion for \(n + 1 \).

For \(z \in \mathcal{X} \) we set \(\text{Re } z := \frac{1}{2} (z + z^*) \) and \(\text{Im } z := \frac{1}{2} (z^* - z) \). Let \(\mathcal{X}_b \) be the set of all elements \(z \in \mathcal{X} \) for which there exists a positive number \(\lambda \) such that
\[
\lambda \cdot I \pm \text{Re } z \in \sum^2 (\mathcal{X}) \quad \text{and} \quad \lambda \cdot I \pm \text{Im } z \in \sum^2 (\mathcal{X}).
\]

From Lemma 2.1 ii) in [S3] it follows that a finite sum \(\sum_j z_j \) is in \(\mathcal{X}_b \) if and only if all \(z_j \) are in \(\mathcal{X}_b \). Moreover, \(\mathcal{X}_b \) is a *-algebra by Corollary 2.2 in [S3]. We shall use these two facts in the proof of Lemma 3.2 below. Following [S3] we say that the *-algebra \(\mathcal{X} \) is algebraically bounded if \(\mathcal{X} = \mathcal{X}_b \).

Lemma 3.2 The *-algebra \(\mathcal{X} \) defined above is algebraically bounded.

Proof. Recall that \(Y^* = Y = -Y_{\text{00}} \). Applying relation (9) we obtain
\[
\frac{1}{4} I - \left(\frac{1}{2} I - Y \right)^2 = Y - Y_{\text{00}}^2 = \sum_{k=1}^{d} Y_{k0} Y_{k0} \in \sum^2 (\mathcal{X}).
\]
Thus, \((\frac{1}{2}I - Y)^2 \in X_b\) and hence \(Y \in X_b\). Since \(Y \in X_b\), it follows from (12) that \(Y_{k0} \in X_b\) for \(k = 1, \ldots, d\). Using relation (12) and the fact that \(Y_{k0} = Y_{0k}\) we compute

\[
Y_{00}^2 + 2 \sum_{k=1}^{d} Y_{k0}^* Y_{k0} + \sum_{k,l=1}^{d} (Y_{kl} + \frac{i}{2} \sum_{j=1}^{d} b_{jl}^k Y_{j0})^* (Y_{kl} + \frac{i}{2} \sum_{j=1}^{d} b_{jl}^k Y_{j0})
\]

\[
= \sum_{k,l=0}^{d} Y_{kl}^* Y_{kl} - \frac{i}{2} \sum_{j,k,l=1}^{d} b_{jl}^k Y_{j0}^* Y_{kl} + \frac{i}{2} \sum_{j,k,l=1}^{d} b_{jl}^k Y_{kl}^* Y_{j0}
\]

\[
+ \frac{1}{4} \sum_{k,l=1}^{d} \left(\sum_{j=1}^{d} b_{jl}^k Y_{j0} \right)^* \left(\sum_{j=1}^{d} b_{jl}^k Y_{j0} \right)
\]

\[
= (r4) I + \frac{1}{4} \sum_{k,l=1}^{d} \left(\sum_{j=1}^{d} b_{jl}^k Y_{j0} \right)^* \left(\sum_{j=1}^{d} b_{jl}^k Y_{j0} \right).
\]

Since \(Y_{j0} \in X_b\) for \(j = 0, \ldots, d\) as just shown and \(X_b\) is a \(*\)-algebra, the right-hand side of the preceding equation belongs to \(X_b\). Therefore, \(Y_{kl} + \frac{i}{2} \sum_{j=1}^{d} b_{jl}^k Y_{j0} \in X_b\) and hence \(Y_{kl} \in X_b\) for \(k, l = 1, \ldots, d\). Hence all generators of \(X\) are in \(X_b\), so that \(X = X_b\). \(\square\)

Now we choose \(p \in \mathbb{N}\) such that \(4p \geq \text{degree } f_j\) for \(j = 1, \ldots, r\). Then, \(Y^p dU(f_j) Y^p \in X\) by (20). Let \(C_f\) denote the wedge of all finite sums of elements \(x^* x\) and \(z^* Y^p dU(f_l) Y^p z\), where \(x, z \in X\) and \(l = 1, \ldots, r\). The assertion of the next lemma is contained in [S3], Lemma 2.3. For completeness we include the short proof.

Lemma 3.3 If \(z \in X\) is not in \(C_f\), then there exists a state \(F\) of the \(*\)-algebra \(X\) such that \(F(z) \leq 0\) and \(F(x) \geq 0\) for all \(x \in C_f\).

Proof. Since \(C_f \subseteq \bigoplus_{i=1}^{2}(X)\), the unit element \(I\) of \(X\) is an internal point of the wedge \(C_f\) in the real vector space \(X_h = \{x \in X : x = x^*\}\). By the separation theorem for convex sets [K], §17, (3), there is a linear functional \(G \not\equiv 0\) on \(X_h\) such that \(G(z) \leq 0\) and \(G(x) \geq 0\) for \(x \in C_f\). Since \(G \not\equiv 0\), we have \(G(I) > 0\). Take as \(F\) the extension of the \(\mathbb{R}\)-linear functional \(G(I)^{-1} G\) on \(X_h\) to a \(\mathbb{C}\)-linear functional on \(X\). \(\square\)
4 Representations of the Auxiliary \ast-Algebra

Since the \ast-algebra \mathcal{X} is algebraically bounded by Lemma 3.2 for any \ast-representation of \mathcal{X} all representation operators are bounded. Let π be an arbitrary \ast-representation of \mathcal{X} on a Hilbert space \mathcal{H}. By [14], $\mathcal{H}_\infty := \ker \pi(Y)$ is invariant and hence reducing for the bounded \ast-representation π. Let π_∞ and π_0 denote the restrictions of π to \mathcal{H}_∞ and $\mathcal{H}_0 := \mathcal{H}_\infty^\perp$, respectively.

4.1

In this subsection we investigate the \ast-representation π_0. Since $\ker \pi_0(Y) = \{0\}$ and relations (9) – (11) hold, Lemma 1 in [Sz] applies. It is a reformulation of Nelson’s famous integrability theorem for Lie algebra representations ([N], see e.g. [S2], Theorem 10.5.6, or [Wa], Theorem 4.4.6.6) and states that there exists a π_0 such that (9) – (11) hold, Lemma 1 in [Sz] applies. It is a reformulation of Nelson’s famous integrability theorem for Lie algebra representations ([N], see e.g. [S2], Theorem 10.5.6, or [Wa], Theorem 4.4.6.6) and states that there exists a unitary representation V of the simply connected Lie group G on \mathcal{H}_0 such that

$$\overline{dV(x_k)} = -i\pi_0(Y_{k0})\pi_0(Y)^{-1}, \ k = 1, \ldots, d. \tag{22}$$

In the proof therein it is shown that $B := I - \sum_{k=1}^d \overline{dV(x_k)^2}$ is equal to the self-adjoint operator $\pi_0(Y)^{-1}$ on its domain $\pi_0(Y)\mathcal{H}_0$. By Lemma 2.1, $\mathcal{D}^\infty(V) = \cap_{n=1}^\infty \mathcal{D}(B^n) = \cap_{n=1}^\infty \pi_0(Y)^n\mathcal{H}_0$. Hence $\pi_0(Y)^{-1}$ maps $\mathcal{D}^\infty(V)$ onto $\mathcal{D}^\infty(V)$. Therefore, by (22) we have

$$dV(x_k)\varphi = -i\pi_0(Y_{k0})\pi_0(Y)^{-1}\varphi, \ \varphi \in \mathcal{D}^\infty(V), \ k = 1, \ldots, d. \tag{23}$$

Next we prove by induction on n that

$$\pi_0(Y^n X_{k_1} \cdots X_{k_{2n}})\varphi = \pi_0(Y)^n dV(x_{k_1} \cdots x_{k_{2n}})\varphi, \ \varphi \in \mathcal{D}^\infty(V), \tag{24}$$

for $k_1, \ldots, k_{2n} \in \{0, \ldots, d\}$. Since $Y^n X_{k_1} \cdots X_{k_{2n}} \in \mathcal{X}$ by (15), the left hand side of (24) is well-defined. First let $n = 1$. For $\varphi \in \mathcal{D}^\infty(V)$ we set $\psi = \pi_0(Y)^{-1}\varphi$. Using (6) and (23) we compute

$$\pi_0(Y X_{k_1} X_{k_2})\varphi = \pi_0(Y X_{k_1} X_{k_2})\pi_0(Y)\psi = \pi_0(Y X_{k_1} Y)\pi_0(Y)^{-1}\pi_0(X_{k_2} Y)\psi$$

$$= -\pi_0(Y)\pi_0(Y_{k_1,0})\pi_0(Y)^{-1}\pi_0(Y_{k_2,0})\pi_0(Y)^{-1}\varphi$$

$$= \pi_0(Y)dV(x_{k_1})dV(x_{k_2})\varphi$$

which proves (24) for $n = 1$. Suppose now that (24) is true for n. Let $\varphi \in \mathcal{D}^\infty(V)$. Set $\psi = \pi_0(Y)^{-1}\varphi, z_n = X_{k_1} \cdots X_{k_{2n}}$ and $z = X_{k_2n+1} X_{k_{2n+2}}$. Since π_0 and...
Moreover, \(\epsilon t \) denote the sign of \(\epsilon t \) for all \(k \),\(l \). From (28) it follows that there is a \(\epsilon t \) such that degree \(\epsilon t \) for all \(k \),\(l \). Combining (28) and (29) we conclude that

\[
\pi_0(Y^n z_{n_0}) \psi = \pi_0(Y^n z_{n_0}) \pi_0(zY) \psi = \pi_0(Y^n z_{n_0}) \pi_0(zY) \psi
\]

which is equation (24) for \(n + 1 \). This completes the proof of (24). Applying the involution to both sides of (24) we obtain

\[
\pi_0(X_{k_1} \cdots X_{k_{4n}} Y^n) \psi = \pi_0(Y^n) \pi_0(x_{k_1} \cdots x_{k_{4n}}) \pi_0(Y^n) \psi, \psi \in D^\infty(V),
\]

Combining (24) and (25) we conclude that

\[
\pi_0(Y^n X_{k_1} \cdots X_{k_{4n}} Y^n) \psi = \pi_0(Y^n) \pi_0(x_{k_1} \cdots x_{k_{4n}}) \pi_0(Y^n) \psi, \psi \in D^\infty(V),
\]

for \(k_1, \ldots, k_{4n} \in \{0, \ldots, d\} \). This in turn implies that

\[
\pi_0(Y^n dU(x) Y^n) \psi = \pi_0(Y^n) \pi_0(Y^n) \psi, \psi \in D^\infty(V)
\]

for all \(x \in E(g) \) such that degree \(x \leq 4n \).

4.2

In this subsection we turn to the *-representation \(\pi_\infty \) of \(X \) on \(H_\infty = ker \pi(Y) \). Since \(\pi_\infty(Y) = 0 \), it follows from (7) and (9) that

\[
\pi_\infty(Y_{k_0}) = \pi_\infty(Y_{0k}) \text{ for } k = -d, \ldots, d.
\]

Moreover, \(\pi_\infty(X_0) = \{0\} \). Therefore, by (13), (15) and (16), \(y_{kl} := \pi_\infty(Y_{kl}) \), \(k, l = 1, \ldots, d \) and \(k, l = -d, \ldots, -1 \), are pairwise commuting bounded self-adjoint operators such that \(y_{kl} = y_{lk} \) and \(y_{-k,-l} = y_{kl} \). Let \(\chi \) be a character of the abelian unital \(C^* \)-algebra \(Y \) generated by these operators (or equivalently by \(\pi_\infty(X) \)). From (12), (27) and (16) we get

\[
\sum_{k,l=1}^d y_{kl}^2 = I \text{ and } y_{kl} y_{ij} = y_{ki} y_{lj}, i, j, k, l = 1, \ldots, d.
\]

From (28) it follows that there is a \(j \in \{1, \ldots, d\} \) such that \(\chi(y_{jj}) \neq 0 \). Let \(\epsilon \) denote the sign of \(\chi(y_{jj}) \). Take \(t_j \in \mathbb{R} \) such that \(t_j^2 = \epsilon \chi(y_{jj}) \) and put \(t_k := \chi(y_{jk}) \chi(y_{jj})^{-1} t_j, k = 1, \ldots, d \). By (28) we have

\[
\epsilon t_k t_l = \epsilon \chi(y_{jk}) \chi(y_{lj}) \chi(y_{jj})^{-1} t_j t_l = \epsilon \chi(y_{kl}) \chi(y_{jj})^{-1} t_j^2 = \chi(y_{kl})
\]

(29)
for \(k, l = 1, \ldots, d \) and hence
\[
\left(\sum_{k=1}^{d} t_k^2 \right)^2 = \sum_{k,l=1}^{d} \varepsilon \chi(y_{kk}) \varepsilon \chi(y_{ll}) = \sum_{k,l=1}^{d} \chi(y_{kl}^2) = \chi(I) = 1.
\]

Since all operators \(y_{kl} \) are self-adjoint, all numbers \(t_k \) are real. Thus, for each character \(\chi \) of \(\mathcal{Y} \) there exist \(\varepsilon \in \{-1, 1\} \) and a point \(t = (t, \ldots, t_d) \) of the unit sphere \(S^d \) of \(\mathbb{R}^d \) such that (29) holds. From the Gelfand theory it follows that there are reducing subspaces \(\mathcal{H}_\pi^{\pm} \) for \(\pi_\infty \) such that \(\mathcal{H}_\infty = \mathcal{H}_\pi^{+} \oplus \mathcal{H}_\pi^{-} \) and spectral measures \(E^\pm \) over \(S^d \) on \(\mathcal{H}_\infty \) such that for \(k, l = 1, \ldots, d \),
\[
\pi_\infty(y_{kl}) = \int_{S^d} t_k t_l dE^+(t) \oplus \int_{S^d} t_k t_l dE^-(t).
\]

5 Proof of Theorem 1

Suppose first that \(m \) is even, say \(m = 2n \). Since degree \(c = 4n \), it follows from formula (20) in Lemma 3.1 that \(Y^n dU(c) Y^n \in \mathcal{X} \). The crucial step of the proof is the assertion of the following

Lemma 5.1 \(Y^n dU(c) Y^n \) belongs to the wedge \(\mathcal{C}_f \) defined in Section 3

Proof. Assume the contrary. Then, by Lemma 3.4 there exists a state \(F \) of \(\mathcal{X} \) such that \(F(Y^n dU(c) Y^n) \leq 0 \) and \(F(x) \geq 0 \) for all \(x \in \mathcal{C}_f \). Let \(\pi_F \) be the *-representation of \(\mathcal{X} \) associated with \(F \) by the GNS construction. Then there is a cyclic vector \(\varphi_F \) such that \(F(x) = \langle \pi_F(x) \varphi_F, \varphi_F \rangle, x \in \mathcal{X} \). As shown in Section 4 \(\pi_F \) decomposes into a direct sum of representations \(\pi_0 \) and \(\pi_\infty \). If \(\varphi_0 \) and \(\varphi_\infty \) are the corresponding components of \(\varphi_F \), we have
\[
F(x) = \langle \pi_0(x) \varphi_0, \varphi_0 \rangle + \langle \pi_\infty(x) \varphi_\infty, \varphi_\infty \rangle, x \in \mathcal{X}.
\]

Our next aim is to derive inequality (33) below. Let \(V \) be the unitary representation of \(G \) from Subsection 4.1.

We prove that \(dV(f_i) \geq 0 \) for \(l = 1, \ldots, r \). Let \(\psi \in \mathcal{D}^\infty(V) \). Since the *-representation \(\pi_F \) is cyclic, there is a sequence \(\{b_n; n \in \mathbb{N}\} \) of elements \(b_n \in \mathcal{X} \) such that \(\pi_0(b_n) \varphi_0 \to \pi_0(Y)^{-p} \psi \) and \(\pi_\infty(b_n) \varphi_\infty \to 0 \). From (31) we obtain
\[
F(b_n Y^p dU(f_i) Y^p b_n) =
\langle \pi_0(Y^p dU(f_i) Y^p) \pi_0(b_n) \varphi_0, \pi_0(b_n) \varphi_0 \rangle + \langle \pi_\infty(Y^p dU(f_i) Y^p) \pi_\infty(b_n) \varphi_\infty, \pi_\infty(b_n) \varphi_\infty \rangle
\to \langle \pi_0(Y^p dU(f_i) Y^p) \pi_0(Y)^{-p} \psi, \pi_0(Y)^{-p} \psi \rangle = \langle dV(f_i) \psi, \psi \rangle,
\]

11
where the last equality follows from equation (26). Since \(b_n^* Y^p dU(f_i) Y^p b_n \in C_f \) and hence \(F(b_n^* Y^p dU(f_i) Y^p b_n) \geq 0 \), we get \((dV(f_i) \psi, \psi) \geq 0 \).

Since \(\pi_F \) and hence \(\pi_0 \) are cyclic representations, \(\mathcal{H}_0 \) is separable. Since the Lie group \(G \) is connected, \(G \) is separable. Therefore, the unitary representation \(V \) on \(\mathcal{H}_0 \) can be decomposed as a direct integral \(\int_\Lambda^\oplus U_\lambda d\mu(\lambda) \) of irreducible unitary representations (see [Ki], p.127). Now we need two (known) technical results from decomposition theory (see e.g. [S2], Chapter 12, pp. 343-344 and [Nu]).

The first one states that

\[
dV = \int_\Lambda^\oplus dU_\lambda d\mu(\lambda).
\]

For a unitary representation \(W \) of \(G \), let \(\tau_W \) denote the metric locally convex topology on \(\mathcal{D}_x^\infty(W) \) given by family of seminorms \(||dW(x_1^{n_1} \cdots x_d^{n_d})|| \), where \(n_1, \ldots, n_d \in \mathbb{N}_0 \). Since \(\mathcal{H}_0 \) and hence \(\mathcal{D}_x^\infty(V) \) is separable, there is a countable dense subset \(\{\eta_n; n \in \mathbb{N}\} \) of \(\mathcal{D}_x^\infty(V) [\tau_V] \). The second result states that then \(\{\eta_\alpha(\lambda); n \in \mathbb{N}\} \) is dense in \(\mathcal{D}_x^\infty(U_\lambda) [\tau_{U_\lambda}] \) \(\mu \)-a.e.

For \(\zeta \in L_\infty(\Lambda, \mu) \), let \(M_\zeta \) denote the associated diagonalisable operator on \(\mathcal{H}_0 = \int_\Lambda^\oplus \mathcal{H}(U_\lambda)d\mu(\lambda) \). From (32) we obtain

\[
\langle dV(f_i) M_\zeta \eta_n, M_\zeta \eta_n \rangle = \int_\Lambda |\zeta(\lambda)|^2 \langle dU_\lambda(f_i)\eta_n(\lambda), \eta_n(\lambda) \rangle d\mu(\lambda)
\]

for all \(\zeta \in L_\infty(\Lambda, \mu) \). Since \(dV(f_i) \geq 0 \), the latter implies that there is a \(\mu \)-null set \(N_0 \) of \(\Lambda \) such that \(\langle dU_\lambda(f_i)\eta_n(\lambda), \eta_n(\lambda) \rangle \geq 0 \) for all \(n \in \mathbb{N} \) and all \(\lambda \in \Lambda \setminus N_0 \). From the density of \(\{\eta_n(\lambda); n \in \mathbb{N}\} \) in \(\mathcal{D}_x^\infty(U_\lambda)[\tau_{U_\lambda}] \) \(\mu \)-a.e. it follows that there is a \(\mu \)-null set \(N \) such that \(dU_\lambda(f_i) \geq 0 \) for all \(\lambda \in \Lambda \setminus N \) and \(l = 1, \ldots, r \). That is, the equivalence class of \(U_\lambda \) is in \(\mathcal{K}_f \) for all \(\lambda \in \Lambda \setminus N \). Since \(dU_\lambda(c - \varepsilon \cdot 1) \geq 0 \) for \(\alpha \in \mathcal{K}_f \) by assumption (i), from the latter and (32) we conclude that \(dV(c - \varepsilon \cdot 1) \geq 0 \).

Therefore, by (26) we have

\[
\langle \pi_0(Y^n dU(c) Y^n) \psi, \psi \rangle = \langle dV(c) \pi_0(Y)^n \psi, \pi_0(Y)^n \psi \rangle \geq \varepsilon \|\pi_0(Y)^n \psi\|^2
\]

for \(\psi \in \mathcal{D}_x^\infty(V) \) and hence

\[
\langle \pi_0(Y^n dU(c) Y^n) \varphi_0, \varphi_0 \rangle \geq \varepsilon \|\pi_0(Y)^n \varphi_0\|^2.
\]

Next we consider the second summand in (31) for \(x = Y^n dU(c) Y^n \). Let \(E(\cdot) \) denote the spectral measure \(E^+(\cdot) \oplus E^-(\cdot) \) on \(\mathcal{H}_\infty = \mathcal{H}_\infty^+ \oplus \mathcal{H}_\infty^- \). Since
\[\pi_\infty(\mathcal{X}_0) = \{0\}, \] it follows from formulas \((16), (27)\) and \((30)\) that
\[
\langle \pi_\infty(Y^n dU(c)Y^n)\varphi_\infty, \varphi_\infty \rangle = \langle \pi_\infty(Y^n dU(c_{4n})Y^n)\varphi_\infty, \varphi_\infty \rangle
= \int_{S^d} c_{4n}(t)d\langle E(t)\varphi_\infty, \varphi_\infty \rangle. \tag{34}
\]

By assumption (ii), \(c_{4n}(t) > 0\) for all \(t \in S^d\). Since \(F(Y^n dU(c)Y^n) \leq 0\), we conclude from \((31), (33)\) and \((34)\) that \(\pi_0(Y)^n\varphi_0 = 0\) and \(\langle E(\cdot)\varphi_\infty, \varphi_\infty \rangle = 0\). Therefore, \(\varphi_0 = 0\) and \(\varphi_\infty = 0\), so that \(F \equiv 0\) by \((31)\). Since \(F\) is a state on \(\mathcal{X}\), we have a contradiction. \hfill \Box

Lemma 5.2 Let \(n \in \mathbb{N}_0\). For arbitrary elements \(z_1, \ldots, z_q \in \mathcal{X}\) there exists \(s \in S := dU(S)\) such that \(z_1 A^n s, \ldots, z_q A^n s \in \mathcal{U} := dU(\mathcal{E}(g)).\)

Proof. First we prove the assertion for single elements \(z \in \mathcal{X}\) of the form \(Y_{j_1} \cdots Y_{j_k}l_k\). We use induction on \(k\). Suppose that the assertion holds for \(k\).

Let \(z = Y_{j_l}w\), where \(w = Y_{j_l}t_l \cdots Y_{j_1}t_1\). By the induction hypothesis, there is \(s' \in S\) such that \(wA^n s' \in \mathcal{U}\). Assume that \(j \leq 0, l \leq 0\). Since \(S\) is a right Ore set containing \(a\) and \(dU(a) = A\), there are elements \(s'' \in S\) and \(v \in \mathcal{U}\) such that \(AV = X_j X_{l}(wA^n s')s''\). Set \(s = s's''\). Then \(zA^n s = A^{-1} X_j X_{l}wA^n s's'' = A^{-1} AV = v \in \mathcal{U}\). The case \(j > 0, l > 0\) and the case \(k = 1\) are treated similarly.

It suffices to prove the assertion of Lemma 5.2 for element \(z_j\) of the form \(Y_{j_l}t_l \cdots Y_{j_1}t_1\) because these elements and \(I\) span \(\mathcal{X}\). We proceed by induction on \(q\). For \(q = 1\) the assertion is proved in the preceding paragraph. Suppose that the assertion is true for \(q\). Let \(z_1, \ldots, z_{q+1} \in \mathcal{X}\). Then there exist elements \(s_1, s_2 \in S\) such that \(z_1 A^n s_1 \in \mathcal{U}\) for \(l = 1, \ldots, q\) and \(z_{q+1} A^n s_2 \in \mathcal{U}\). By the right Ore property of \(S\), there are \(s_3 \in S\) and \(u \in \mathcal{U}\) such that \(s_1 s_3 = s_2 u =: s\). Then, \(s \in S\), \(z_1 A^n s = (z_1 A^n s_1) s_3 \in \mathcal{U}\) for \(l = 1, \ldots, q\) and \(z_{q+1} A^n s = (z_{q+1} A^n s_2) u \in \mathcal{U}\). \hfill \Box

Now we are able to complete the proof of Theorem 1.1. By Lemma 5.1 there exist finitely many elements \(z_{jl} \in \mathcal{X}, l = 0, \ldots, d\), such that
\[
Y^n dU(c)Y^n = \sum_j z_{j_0}^* z_{j_0} + \sum_j \sum_{l=1}^d z_{jl}^* Y^n dU(f_l) Y^n z_{jl}.
\]
Let \(s = dU(s), s \in S\). Multiplying both sides by \(A^n s\) from the right and by \((A^n s)^*\) from the left we obtain
\[
dU(s^* cs) = \sum_j (z_{j_0} A^n s)^* z_{j_0} A^n s + \sum_j \sum_{l=1}^d (Y^n z_{jl} A^n s)^* dU(f_l) Y^n z_{jl} A^n s.
\]
By Lemma 5.2 we can find $s = dU(s)$ such that $z_j A^n s \in dU(E(g))$ and $Y^p P z_l A^n s \in dU(E(g))$ for all j, l. Then the right-hand side of the preceding equation is in $dU(T_f)$. Now we choose the unitary representation U of G such that the representation dU of $E(g)$ is faithful (for instance, it suffices to take the regular representation of G). Then it follows from $dU(s^*cs) \in dU(T_f)$ that $s^*cs \in T_f$.

Finally, we suppose that m is odd. Then $c' := \sum_{k=0}^d x_k^* c x_k$ satisfy assumptions (i) and (ii) with $m' = m + 1$ even, so the assertion of Theorem 1.1 follows from the previous case.

References

[D] Dixmier, J., Algèbres Enveloppantes, Gauthier-Villars, Paris, 1974.

[Ki] Kirillov, A.A., Elements of the Theory of Representations, Springer-Verlag, Berlin, 1976.

[K] Köthe, G., Topological Vector Spaces II, Springer-Verlag, Berlin, 1979.

[M] Marshall, M., Positive Polynomials and Sums of Squares, Univ. Pisa, Dipart. Mat., Istituti Editoriali e Poligrafici Internaz., 2000.

[N] Nelson, E., Analytic vectors, Ann. Math. 70 (1959), 572 – 615.

[Nu] Nussbaum, A. E., Reduction theory for unbounded closed operators in Hilbert space, Duke Math. 31 (1964), 33 – 44.

[NS] Nelson, E. and W. F. Stinespring, Representation of elliptic operators in an enveloping algebra, Amer. J. Math. 81 (1959), 547 – 560.

[P] Putinar, M., Positive polynomials on compact semi-algebra sets, Indiana Univ. Math. J. 42 (1993), 969 – 984.

[PD] Prestel, A. and C.N. Delzell, Positive Polynomials, Springer-Verlag, Berlin, 2001.

[PV] Putinar, M. and F.-H. Vasilescu, Solving moment problems by dimensional extension, Ann. Math. 149 (1999), 1087 – 1107.

[R] Reznick, B., Uniform denominators in Hilbert’s Seventeenth problem, Math. Z. 220 (1995), 75 – 97.
[S] Scheiderer, K., *Positivity and sums of squares: A guide to some recent results*. Preprint, Duisburg, 2002.

[S1] Schmüdgen, K., *The K-moment problem for compact semi-algebraic sets*, Math. Ann. **289** (1991), 203 – 206.

[S2] Schmüdgen, K., *Unbounded Operator Algebras and Representation Theory*, Birkhäuser-Verlag, Basel, 1990.

[S3] Schmüdgen, K., *A strict Positivstellensatz for the Weyl algebra*, Preprint, Leipzig, 2004, [math.AC/0403076](http://arxiv.org/abs/math.AC/0403076)

[Sz] Szymanski, W., *Group C*-algebras as algebras of "continuous functions" with non-commuting variables*, Proc. Amer. Math. Soc. **107** (1989), 353 – 359.

[Wa] Warner, G., *Harmonic analysis on semi-simple Lie groups I*, Springer-Verlag, Berlin, 1972.