INTRODUCTION

Gastric cancer (GC) is the fourth most frequent cancer and is the second leading cause of cancer-related death worldwide[1]. Histologically, gastric tumors are divided into intestinal and diffuse types according to the Lauren classification[2]. The intestinal type of GC mostly progresses through the successive steps of normal gastric mucosa, leading to acute and chronic gastritis, atrophic gastritis, intestinal metaplasia, dysplasia, and finally a gastric tumor[3]. In contrast, the sequence of events in the development of diffuse type GC is poorly understood, although a subset of diffuse type GC appears to develop independently of atrophic gastritis or intestinal metaplasia[4,5]. Differences in the clinicopathological characteristics between these two histological types indicate that development occurs through distinct molecular pathways[6-10]. Each histological type is a consequence of a progressive accumulation of different genetic and epigenetic alterations.

Epigenetics refers to a number of modifications in the chromatin structure that affect gene expression without altering the primary sequence of DNA, and these changes lead to transcriptional activation or silencing of the gene. Interestingly, epigenetic modifications of DNA can also increase mutagenesis and influence the interactions between DNA and carcinogens and ultraviolet light[11]. Epigenetic modifications play a central role in gastric car-
DNA methylation refers to the addition or subtraction of a methyl moiety at the 5 position of the cytosine ring within CpG dinucleotides that are usually located in CpG-rich regions or CpG islands and around the gene promoter. DNA methylation in gene promoter regions represses transcription of their downstream genes associated with the suppression of gene expression[5]. However, methylation in gene bodies does not block transcription and is sometimes associated with active transcription[10]. Methylation status is controlled by DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B)[11]. DNMT1 maintains the existing methylation patterns following DNA replication, whereas DNMT3A and DNMT3B target unmethylated CpGs to initiate methylation and are highly expressed during embryogenesis and minimally expressed in adult tissues[12]. Another DNA methyltransferase family member, DNMT3L, interacts with DNMT3A and DNMT3B to facilitate methylation of retrotransposons[13]. Many studies have shown that overexpression of DNA methyltransferases is closely related to tumorigenesis, although the role of DNMT3L in cancer is still unclear (Table 1). In addition, *H. pylori* infection may increase DNA methyltransferase activity through upregulation of the epidermal growth factor and its receptor or via the release of inflammatory mediators, such as nitric oxide[14]. In particular, DNMT1 overexpression has been associated with EBV infection in GC[15-17].

DNA methylation has also been implicated in the regulation of higher order chromatin structure, the maintenance of genome integrity, and stable patterns of gene expression. These biological effects of DNA methylation are, at least in part, mediated by proteins that preferentially bind to methylated DNA[18]. Methylated DNA is specifically recognized by a set of proteins called methyl-CpG-binding proteins (MBPs), which belong to three different structural families: methyl-CpG binding domain proteins (MBDs), Kaiso domain proteins, and SET and RING finger-associated domain (SRA) domain proteins[19,20]. MBD family proteins (MeCP2, MBD1, MBD2, MBD3 and MBD4) bind methylated CpG (5mCpG) through a conserved protein motif called the methyl-CpG binding domain[21,22]. Over the last decade, proteins that utilize different structures to recognize and bind DNA or its components have been identified. In 2001, Prokhortchouk et al[23] identified Kaiso proteins, which bind methylated DNA through a zinc finger motif. Other MBPs including UHRF1 and UHRF2 were identified, and these proteins use the SRA to bind SmtCpG[24,25].

In cancer, the roles of MBPs are related to their functions as transcriptional repressors or chromatin remodelers (Table 1)[26,27]. However, a few studies have reported MBPs in GC (Table 1). Mutations in MBD4 have been found in gastric tumors in association with microsatellite instability[28,29]. MBD4 encodes a protein that interacts with the mismatch repair protein hMLH1. Therefore, it has been postulated that mutations in MBD4 may result in mismatch repair deficiency[30].

The processes of DNA methylation and histone modification often involve dynamic interactions that either repress or inhibit epigenetic changes. Thus, histone modification can also alter chromatin remodeling, and this is a possible mechanism for decreased gene expression[31,32].

The nature of the interaction between DNA and histones, which are composed of pairs of the four core proteins H2A, H2B, H3, and H4, alters the accessibility of DNA transcription sites to RNA polymerase II and other transcription factors. The interaction between histones and DNA is thought to be under epigenetic control, because specific amino acid residues on specific histone core proteins are subjected to post-translational modifications, such as acetylation, methylation, phosphorylation, ubiquitination, sumoylation, proline isomerization, and ADP ribosylation[33,34]. Histone acetylation and methylation are the only modifications that have been clinically associated with pathological epigenetic disruption in cancer cells[35]. In this review, we focus on histone methylation modifications.

Histones can be mono-, di-, or trimethylated at lysine and arginine residues by histone methyltransferases (HMTs) or demethylated by histone demethylases (HDMTs). Depending on the residue and the level of methylation, the chromatin may be transcriptionally active or inactive. In general, trimethylation at H3K4 and H3K36 or monomethylation at H3K27, H3K9, H4K20, H3K79, and H2BK5 is associated with transcriptional activation. In contrast, trimethylation at H3K27, H3K9, and H4K20 or monomethylation at H3K27, H3K9, H4K20, H3K79, and H2BK5 is associated with transcriptional repression[36].

A growing number of studies have analyzed the HMTs and HDMs in tumor cells, whereas few genes involved in histone methylation activity have been described for GC (Table 1). EZH2, an HMT that plays a role in trimethylation of H3K27 and leads to silencing of important genes in carcinogenesis, is overexpressed in several types of cancer, including GC[37,38]. Cai et al[39] reported that EZH2 plays an important role in the multistep process of intestinal-type GC. In addition, Fuji et al[40] demonstrated that silencing of EZH2 by siRNA resulted in a lower H3K27me3 protein level in GC cells.
Table 1 Methylation machinery in gastric cancer

Gene	Function	Alteration in cancer	Ref.
DNMT1	Maintenance of methylation	Upregulation	Kanai et al [80]
	Repression of transcription	Mutation	Fang et al [89]
			Ding et al [89]
			Yang et al [89]
			Mutze et al [87]
			Ding et al [89]
			Fan et al [89]
			Yang et al [89]
DNMT3A	De novo methylation during embryogenesis	Upregulation	Ding et al [89]
	Imprint establishment	Mutation	Su et al [96]
DNMT3B	De novo methylation during embryogenesis	Upregulation	Hu et al [88]
	Repeat methylation	Mutation	Yang et al [89]
McCP2	Transcription repression	Upregulation	Wada et al [80]
MBD1	Transcription repression	Upregulation	-
MBD2	Transcription repression DNA demethylase	Downregulation	Kanai et al [80]
MBD3	Transcription repression, but requires MBD2 to recruit it to methylated DNA	Downregulation	-
MBD4	Transcription repression DNA repair Glycosylase domain, repair of deaminated 5-methyl C	Downregulation	-
Kaiso	Transcription repression	Upregulation	Ogden et al [80]
G9a	Histone methyltransferase	Gene Repression	Lee et al [80]
PRDM2	Histone methyltransferase	Underexpression	Oshimo et al [85]
SLZI2	Histone methyltransferase	Uproegulation	Pan et al [96]
BMI1	Histone methyltransferase	Uproegulation	Yoo et al [87]
			Liu et al [88]
			Xiao et al [96]
			Lu et al [96]
			Zhang et al [81]
			Li et al [92]
			Takahata et al [92]
			Mattioli et al [84]
			Varambally et al [85]
			Fujii et al [89]
			Cai et al [90]
			Chok et al [90]
			Zhou et al [80]
			Hudlebusch et al [87]
NSD2/MMMSET	Histone methyltransferase	Uproegulation	-
SLIV38H1-2	Histone methyltransferase	Translocation	Li et al [86]
LSD1/BHC110	Histone demethylase	Polymorphism	Magee et al [80]
JARID1A-D	Histone demethylase	Downregulation	Zeng et al [89]
JARID2A	Histone demethylase	Upregulation	Li et al [88]
JARID3A	Histone demethylase	Uproegulation	-
JARID3A-C	Histone demethylase	Downregulation	-

DNMT: DNA methyltransferase; EVH1: Domain containing 1; EZH2: Enhancer of zeste homolog2; JARID: Jumonji, AT-rich interactive-domain; JMJD: JmjC domain-containing histone demethylase 1; JMJD: Jumonji domain containing 2; LSD1: Lysine specific demethylase; MBD: Methyl-CpG-binding domain; NSD2: Nuclear receptor-binding SET-domain protein 2; PRMT: Protein arginine methyltransferase 1; RIZ1: Retinoblastoma protein-interacting zinc finger 1; SLIV38H: Suppressor of variation 3-9 homolog.

Among the HDTs, RBP2 is a newly identified member of the JARID family of proteins, and RBP2 specifically targets tri- and dimethylated H3K4 for demethylation in cancer [84,85]. Zeng et al [81] reported that RBP2 is overexpressed in GC and suggested that HDT inhibition by targeting RBP2 may be an anticancer strategy.

DNA METHYLATION

DNA methylation contributes to cancer mainly through DNA hypo- or hypermethylation. DNA hypomethylation, which refers to the loss of DNA methylation, affects chromosomal stability and increases aneuploidy [32]. DNA hypermethylation, which refers to the gain of methylation at a locus originally unmethylated, usually results in stable transcriptional silencing, which functions in regulating gene expression [33,34].

Global DNA hypomethylation is usually considered one of the hallmarks of cancer cells, because aberrant hypermethylation-vulnerable genes are overlapped by
Table 2 Aberrant DNA methylation in gastric cancer

Gene	Role	Aberrant methylation	Ref.
ABCR1	Multidrug resistance	Hyper	Poplawski et al (223)
ADAM23	Tissue cell invasion and metastasis	Hyper	Takada et al (224), Watanabe et al (225), Kim et al (226)
ALDH2	Oxidative pathway of alcohol metabolism	Hyper	Balassiano et al (227)
APC	Tissue cell invasion and metastasis	Hyper	Bernal et al (228), Ksiaa et al (229), Shin et al (230), Geddert et al (230)
ARPC1B (p41ARC)	Cell morphology	Hyper	Maekita et al (231), Shin et al (232)
BNNP3	DNA repair	Hyper	Murai et al (233), Hiraki et al (234), Sugita et al (235)
BRCA1	DNA repair	Hyper	Bernal et al (236), Ryan et al (237)
CAV1	Tissue cell invasion and metastasis	Hyper	Yamashita et al (238)
CDH1	Tissue invasion and metastasis	Hyper	Leal et al (239), Bernal et al (240), Borges et al (241), Takara et al (242)
CHFR	Cell cycle regulation	Hyper	Oki et al (243), Hiraki et al (244), Hu et al (245)
DAPK	Apoptosis	Hyper	Bernal et al (246), Zou et al (247), Hu et al (248)
FHT	Apoptosis	Hyper	Leal et al (249), Bernal et al (250)
FLNC	Cell morphology	Hyper	Kim et al (251), Shi et al (252)
GATA4/5	Transcriptional factor	Hyper	Akiyama et al (253), Weng et al (254)
HAND1	Cell differentiation	Hyper	Maekita et al (255), Shin et al (256), Shi et al (257)
HRAS	Signal transduction	Hyper	Fang et al (258), Luo et al (259)
IGBP3	Cell cycle regulation	Hyper	Gijek et al (260), Ryan et al (261), Chen et al (262)
LOX	Tissue cell invasion and adhesion	Hyper	Maekita et al (263), Shin et al (264), Tamura et al (265)
MGMT	DNA repair	Hyper	Bernal et al (266), Hibi et al (267), Ksiaa et al (268), Zou et al (269)
MLF1	Cell differentiation	Hyper	Schneider et al (270), Hiraki et al (271), Shi et al (272)
MLH1	DNA repair	Hyper	Watanabe et al (273), Shi et al (274), Yamashita et al (275)
MOS	Cell cycle regulation	Hyper	Bernal et al (276), Poplawski et al (277), Hiraki et al (278), Kim et al (279)
MTHFR	DNA synthesis	Hyper	Shin et al (280)
MYC	Cell cycle regulation	Hyper	Balassiano et al (281), Geddert et al (282)
PI4ARF	Cell cycle regulation	Hyper	Fang et al (283), Luo et al (284)
P16	Cell cycle regulation	Hyper	Balassiano et al (285), Geddert et al (286)
PRDM5	Cell differentiation	Hyper	Watanabe et al (287), Shi et al (288)
RAR-beta 2	DNA binding	Hyper	Bernal et al (289), Ksiaa et al (290)
RASSF1A/RASSF2	DNA repair	Hyper	Zou et al (291), Guo et al (292), Shin et al (293)
RORA	Cell cycle regulation	Hyper	Watanabe et al (294), Yamashida et al (295)
RPRM	Cell cycle regulation	Hyper	Bernal et al (296), Schneider et al (297)
RUNX3	Signal transduction	Hyper	Bernal et al (298), Sasaki et al (299), Lee et al (300), Zou et al (301), Hiraki et al (302), Tamura et al (303), Hu et al (304), Fan et al (305)
SHP1	Signal transduction	Hyper	Bernal et al (306), Ksiaa et al (307)
TERT	Cell senescence	Hyper	Kang et al (308), Wang et al (309), Gijek et al (310)
TFF1	Repair gene	Hyper	Carvalho et al (311), Ryan et al (312)
THBD	Inflammation response	Hyper	Maekita et al (313), Shin et al (314)
THIST1	Cell differentiation	Hyper	Kang et al (315), Schneider et al (316)

ARCB1: ATP-binding cassette, sub-family B (MDR/TAP), member 1; ADAM23: ADAM metallopeptidase domain 23; ALDH2: Aldehyde dehydrogenase 2 family (mitochondrial); APC: Adenomatous polyposis coli; ARPC1B (p41ARC): Actin related protein 2/3 complex, subunit 1B; 41kDa; BNNP3: Adenovirus EIB 19kDa interacting protein 3; BRCA1: Breast cancer 1 gene; CAV1: Cavin 1; CDH1: Cadherin 1; CHFR: Checkpoint with forkhead and ring finger domains; DAPK: Dapk death associated protein kinase; FHT: Fragile histidine triad gene; FLNC: Filamin C, gamma; GATA4/5: GATA binding protein 4/5; GSTP1: Glutathione S-transferase pi 1; HAND1: Heart and neural crest derivatives expressed 1; HRAS: v-Ha-ras Harvey rat sarcoma viral oncogene homolog; IGBP3: Insulin-like growth factor; binding protein 3; LOX: Lysyl oxidase; MGMT: O-6-methylguanine-DNA methyltransferase; MLF1: Myeloid leukemia factor 1; MLH1: MutL homolog 1; MOG: Moloney murine sarcoma viral oncogene homolog; MTHFR: Methylenetetrahydrofolate reductase (NADPH); MYC: v-myc myelocytomatosis viral oncogene homolog (avian); PI4ARF: Cyclin-dependent kinase inhibitor 2A; PI6: Cyclin-dependent kinase inhibitor 2A; PRDM5: Protein domain containing 5; RAR-beta 2: Retinoic acid receptor β 2 gene; RASSF1A/RASSF2: Ras association (RasGDS/AF-6) domain family member 1/member 2; RORA: RAR-related orphan receptor A; RPRM: TP53 dependent G; arrest mediator candidate; RUNX3: Runx-related transcription factor 3; SHP1: Hematopoietic cell-specific protein-tyrosine phosphatase; TERT: Telomerase reverse transcriptase; TFF1: Trefoil factor 1; TFF2: Tissue factor pathway inhibitor 2; THBD: Thrombomodulin; THIST1: Twist homolog 1.
Calcagno DQ et al. Methylation in gastric carcinogenesis

genes targeted by hypomethylation\cite{53,54}. Compare et al\cite{57} suggested that global DNA hypomethylation may be implicated in GC associated with *H. pylori* infection at an early stage. At the individual gene level, DNA hypomethylation is often associated with activation of proto-oncogenes.

In GC, few studies have shown promoter hypomethylation associated with the activation of proto-oncogenes (Table 2). In particular, Shin et al\cite{59} reported that the hypomethylation of the *MOS* promoter in *GC* was associated with tumor invasion, lymph node metastasis, and the diffuse type. A number of genes involved in cell cycle regulation, tumor cell invasion, DNA repair, chromatin remodeling, cell signaling, transcription, and apoptosis are known to be silenced by hypermethylation in *GC* (Table 2).

Multiple reports have been published regarding gene hypermethylation in both intestinal and diffuse types of *GC*. Interestingly, the methylation profile differs between the intestinal and diffuse types of *GC*\cite{54}.

The epithelial cadherin gene *CDH1*, which is a well-studied gene involved in cancer, is downregulated in gastric tumors and is hypermethylated more frequently in the diffuse type than in the intestinal type of *GC*. Loss of *CDH1* during tumor progression has led to the notion that this is a tumor suppressor gene\cite{10,60}. In addition, mapping of the *CDH1* promoter has revealed a positive association between hypermethylation and older age, as well as a significant correlation between DNA hypermethylation and the A allele of the -160 C→A polymorphism. The A allele has been described to increase the risk of developing *GC* in association with the methylation status\cite{55}.

Unlike the *CDH1* gene, the *P16* gene is hypermethylated mainly in the intestinal type of *GC*\cite{54,62,63}. This epigenetic mark was recently associated with tumor location and *H. pylori* infection in *GC*\cite{54}.

Other studies have also described a number of genes that are silenced by hypermethylation in association with *H. pylori* or EBV infection: *APC*, *SHP1*, p14, and *CDH1*\cite{53,54,55,56-57}. According to Chan et al\cite{59}, the eradication of *H. pylori* infection significantly reduces the methylation index of the *CDH1* promoter. In contrast, it has been shown that a portion of the aberrant DNA methylation induced by *H. pylori* infection may persist even after the infection has disappeared\cite{59,70}. Shin et al\cite{59} observed that the methylation levels in *MOS* remained significantly increased in patients with previous *H. pylori* infection compared with *H. pylori*-negative subjects.

Moreover, hypermethylation of several gene promoters has also been observed in the premalignant stages of *GC*, suggesting that aberrant methylation occurs early during gastric carcinogenesis\cite{59,71-72}. For example, the methylation levels of the catalytic subunit of the telomerase gene (*hTERT*) promoter are increased during gastric carcinogenesis. Wang et al\cite{59} reported that the *hTERT* promoter was more methylated in *GC* than in precancerous lesions and non-neoplastic gastric tissues. Therefore, it has been suggested that the degree of methylation of the *hTERT* promoter may be useful in the early diagnosis of *GC* and/or may have an impact on the anti-telomerase strategy for cancer therapy. Other studies, however, showed that methylation of the *hTERT* promoter and resultant gene expression were opposite to the general model of regulation by DNA methylation, which is usually dependent on the CpG islands studied\cite{56,73}.

Recently, aberrant hypermethylation of the newly associated metastatic suppressor gene *RECK* was found to be associated with *GC* development and may also be useful for early diagnosis and treatment\cite{58}. These abovementioned findings lead to the possibilities that epigenetic alterations may also occur at different stages of gastric tumorigenesis.

HISTONE METHYLATION

Histone modifications leading to gene expression alterations have been described in several cancer types, but the methylation status of chromatin is still unclear for *GC*. Using the ChIP-on-chip technique, Zhang et al\cite{74} identified candidate genes with significant differences in *H3K27me3* in *GC* samples compared to adjacent non-neoplastic gastric tissues. These genes included oncogenes, tumor suppressor genes, cell cycle regulators, and genes involved in cell adhesion. Moreover, these investigators demonstrated that higher levels of *H3K27me3* produce gene expression changes in *MMP15*, *UNC5B*, and *SHH*.

In 2011, Kwon et al\cite{79} showed that *LAMB3* and *LAMC2* were overexpressed in *GC* samples in comparison with non-neoplastic adjacent tissue samples. Furthermore, these researchers demonstrated that overexpression of these genes was a result of the enrichment of *H3K4me3* in the gene promoter. Using immunohistochemistry, Park et al\cite{80} showed that higher levels of *H3K9me3*, which is a repressive mark, was associated with higher *T* stage, lymphovascular invasion, and recurrence in gastric tumors. They also observed that the level of *H3K9me3* was correlated with patient survival, because stronger methylation corresponded to a worse prognosis and intermediate methylation to an intermediate prognosis.

Taken together with results from previous studies, these results have suggested that histone methylation results in a worse prognosis by inactivating certain tumor suppressor genes\cite{74,81}. Moreover, Li et al\cite{80} used GC cell lines to demonstrate that the PRC1 member CBX7 initiated trimethylation of *H3K9* at the *P16* locus through recruitment and/or activation of the HMT SUV39H2 to the target locus. This finding links two repressive epigenetic landmarks, *H3K9me3* formation and PRC1 binding within the silenced domains in euchromatin, and builds up a full pathway for epigenetic inactivation of *P16* by histone modifications.

Recently, Angrisano et al\cite{80} reported that *H. pylori* infection is followed by activation of *iNOS* gene expression, chromatin changes at the *iNOS* promoter (including decreased *H3K9* methylation and increased *H3K4* methylation), and selective release of MBD2 from the *iNOS*
promoter in a GC cell line.

METHYLATION INHIBITOR DRUGS

The silencing of cancer-related genes by DNA methylation and chromatin modification are reversible and may represent a viable epigenetic therapeutic target. In the last decade, drugs that modify chromatin or DNA methylation status have been used alone or in combination in order to affect therapeutic outcomes. Specially, cytosine analogs (5-azacytidine and 5-aza-2'-deoxycytidine) are powerful mechanism-based inhibitors of DNA cytosine methylation. These cytosine analogs are incorporated into the DNA of replicating cells after the drugs have been metabolized to the appropriate dNTP. After incorporation into the DNA, the analogs interact with DNA methyltransferases to form covalent intermediates, and this interaction inhibits DNA methylation in subsequent rounds of DNA synthesis. Both drugs have been approved by the US Food and Drug Administration for use in hematological malignancy treatment.

In GC, surgery remains the primary curative treatment for gastric tumors. Currently, adjuvant and neo-adjuvant therapies are accepted; however, so-called epigenetic therapy has not yet been used in treatment of GC patients.

In the past few years, epigenetic screening techniques using treatment with a demethylating agent have been developed to identify genes with epigenetic aberrations in GC cell lines. Zheng et al. treated a GC cell line with 5-aza-2'-deoxycytidine and performed DNA methylation array analysis of these cells with six normal mucosal samples from healthy patients. These results revealed 82 hypermethylated gene promoters. These authors investigated 15 candidate genes by methylation-specific PCR and confirmed five highly methylated promoters: BAX141696, WT1, CYP2B1, KCNA4, and FAM84A. All of these, except FAM84A, also showed DNA hypermethylation in serum of GC patients, suggesting that serum DNA offers a readily accessible biosource for methylation analysis.

A similar study conducted by Jee et al. described 11 selected genes and validated the genes in three GC cell lines and in non-neoplastic gastric tissue by bisulfate sequencing. Differential DNA hypermethylation was observed in GPX1, IGFBP6, IRF7, GPX3, TFPI2, and DMRT1 promoter regions in GC cells but not in non-neoplastic tissues. Moreover, a poor survival rate was observed in those individuals with higher methylation status at the TFPI2 gene. TFPI2 is a serine protease inhibitor, which negatively regulates the enzymatic activities of trypsin, plasmin, and a tissue factor complex. Therefore, it has been proposed that this gene inactivation may be implicated in human carcinogenesis and metastasis.

CONCLUSION

In summary, aberrant DNA methylation and histone modification play a crucial role in gastric carcinogenesis. Thus, the recognition of the methylation machinery, genes with aberrant methylation status, and histone methylation levels in gastric carcinogenesis exemplified in this review allow us to contemplate the possibility of dealing with the aforementioned oncological issue in a new way that may have a significant impact on the therapy and management of GC.

REFERENCES

1. **Jemal A**, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. *CA Cancer J Clin* 2011; 61: 69-90 [PMID: 21268855 DOI: 10.3322/caac.20707]
2. **Lauren P**. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. *Acta Pathol Microbiol Scand* 1965; 64: 31-49 [PMID: 14320675]
3. **Correa P**, Haenszel W, Cuello C, Tannenbaum S, Archer MS. A model for gastric cancer epidemiology. *Lancet* 1975; 2: 58-60 [PMID: 49653]
4. **Humar B**, Guilford P. Hereditary diffuse gastric cancer: a manifestation of lost cell polarity. *Cancer Sci* 2009; 100: 1151-1157 [PMID: 19432899 DOI: 10.1111/j.1349-7006.2009.01163.x]
5. **Carneiro F**, Huntsman DG, Smyrk TC, Owen DA, Seruca R, Pharoah P, Caldas C, Sobrinho-Simões M. Model of the early development of diffuse gastric cancer in E-cadherin mutation carriers and its implications for patient screening. *J Pathol* 2004; 203: 681-687 [PMID: 15141583 DOI: 10.1002/path.1564]
6. **Tahara E**. Genetic pathways of two types of gastric cancer. *IARC Sci Publ* 2004; (157): 327-349 [PMID: 15055305]
7. **Calcagno DQ**, Guimarães AC, Leal MF, Seabra AD, Khayat AS, Pontes TB, Assumpção PP, de Arruda Cardoso Smith M, Burbano RR. MYC insertions in diffuse-type gastric adenocarcinoma. *Anticancer Res* 2009; 29: 2479-2483 [PMID: 19596917]
8. **Calcagno DQ**, Leal MF, Assumpcao PP, Smith MA, Burbano RR. MYC and gastric adenocarcinoma carcinogenesis. *World J Gastroenterol* 2008; 14: 5962-5968 [PMID: 18932273]
9. **Calcagno DQ**, Leal MF, Seabra AD, Khayat AS, Chen ES, Demachki S, Assumpção PP, Faria MH, Rabenhorst SH, Ferreira MV, de Arruda Cardoso Smith M, Burbano RR. Interrelationship between chromosome 8 aneuploidy, C-MYC amplification and increased expression in individuals from northern Brazil with gastric adenocarcinoma. *World J Gastroenterol* 2006; 12: 6207-6214 [PMID: 17036997]
10. **Calcagno DQ**, Leal MF, Taken SS, Assumpção PP, Demachki S, Smith Mdo A, Burbano RR. Aneuploidy of chromosome 8 and C-MYC amplification in individuals from northern Brazil with gastric adenocarcinoma. *Anticancer Res* 2005; 25: 4069-4074 [PMID: 16309200]
11. **Pfeifer GP**, Tang M, Denissenko MF. Mutation hotspots and DNA methylation. *Curr Top Microbiol Immunol* 2000; 249: 1-19 [PMID: 10802935]
12. **Gigek CO**, Chen ES, Calcagno DQ, Wsnieski F, Burbano RR, Smith MA. Epigenetic mechanisms in gastric cancer. *Epidemiol Genomics* 2012; 4: 279-294 [PMID: 22690644]
13. **Ferrasi AC**, Pinheiro NA, Rabenhorst SH, Caballero OL, Rodrigues MA, de Carvalho F, Leite CV, Ferreira MV, Barros MA, Pardini MI. Helicobacter pylori and EBV in gastric carcinomas: methylation status and microsatellite instability. *World J Gastroenterol* 2010; 16: 312-319 [PMID: 20082476]
14. **Schneider BG**, Peng DF, Camargo MC, Piazzuelo MB, Sicinski LA, Mera R, Romero-Gallo J, Delgado AG, Bravo LE, Wilson KT, Peek RM, Correa P, El-Rifai W. Promoter DNA hypermethylation in gastric biopsies from subjects at high and low risk for gastric cancer. *Int J Cancer* 2010; 127: 2588-2597 [PMID: 20718033 DOI: 10.1002/ijc.25274]
Shin CM, Kim N, Jung Y, Park JH, Kang GH, Park WY, Kim JS, Jung HC, Song IS. Genome-wide DNA methylation profiles in noncancerous gastric mucosa with regard to Helicobacter pylori infection and the presence of gastric cancer. Helicobacter 2011; 16: 179-188 [PMID: 21856603 DOI: 10.1111/j.1537-2473.2011.01838.x]

Matsusaka K, Kaneda A, Nagae G, Ushiku T, Kikuchi Y, Hino R, Uozaki H, Seto Y, Takada K, Aburatani H, Furukayama M. Classification of Epstein-Barr virus-positive gastric cancers by definition of DNA methylation epigenotypes. Cancer Res 2011; 71: 7187-7197 [PMID: 21990320 DOI: 10.1158/0008-5472.CAN-11-2349]

Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science 2001; 293: 1068-1070 [PMID: 11498573 DOI: 10.1126/science.1063852]

Baylin SB, Ohm JE. Epigenetic gene silencing in cancer - a mechanism for early oncocgenic pathway addiction? Nat Rev Cancer 2006; 6: 107-116 [PMID: 16491070 DOI: 10.1038/nrc1799]

Kim H, Park J, Jung Y, Song SH, Han SW, Oh DY, Im SA, Bang YJ, Kim TY. DNA methyltransferase 3-like affects promoter methylation of thymine DNA glycosylase independently of DNMT1 and DNMT3B in cancer cells. Int J Oncol 2010; 36: 1563-1572 [PMID: 20428781]

Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation of multiple CpG islands in gastric cancers with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers with poorer tumor differentiation and frequent DNA hypermethylation. J Pathol 2010; 223: 2766-2774 [PMID: 19339266 DOI: 10.1111/j.1600-0612.2009.01530.x]

Sanson OJ, Maddison K, Clarke AR. Mechanisms of disease: methyl-binding domain proteins as potential therapeu- tic targets in cancer. Nat Clin Pract Oncol 2007; 4: 305-315 [PMID: 17464338 DOI: 10.1038/ncponc0812]

Lopez-Serra L, Ballestar E, Ropero S, Setien F, Billard LM, Fragas MF, Lopez-Nieva P, Alaminos M, Guerrero D, Dante R, Esteller M. Unmasking of epigenetically silenced candidate tumor suppressor genes by removal of methyl-CpG-binding domain proteins. Oncogene 2008; 27: 3556-3566 [PMID: 18223687 DOI: 10.1038/sj.oncj.1211022]
Recent progress in the study of methylated genes in gastric cancer.

Cai GH, Wang K, Miao Q, Peng YS, Chen XY. Expression of polycomb protein EZH2 in multi-stage tissues of gastric carcinogenesis. J Dig Dis 2010; 11: 88-93 [PMID: 20402834 DOI: 10.1111/j.1751-2980.2010.00320.x]

Fujii J, Kato I, Ito Y, Ochiai S. Enhancer of zonetic homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylations. J Biol Chem 2008; 283: 17324-17332 [PMID: 18430739 DOI: 10.1074/jbc.M802242200]

Christensen J, Agger K, Cloos PA, Pasini D, Rose S, Sennels L, Rappaport J, Hansen KH, Salcini AE, Helin K. RBP2 belongs to a family of demethylases, specific for tri- and dimethylated lysine 4 on histone 3. Cell 2007; 128: 1063-1076 [PMID: 17320161 DOI: 10.1016/j.cell.2007.02.003]

Lopez-Bigas N, Kiesel TA, Dewaal DC, Holmes KB, Volkert TL, Gupta S, Love J, Murray RA, Yang HJ, Cho SI, Lee HS, Kim JS, Jung HY. Global genome-wide analysis of the H3K4 histone demethylase RBP2 reveals a transcriptional program controlling differentiation. Mol Cell 2008; 31: 520-530 [PMID: 1872178 DOI: 10.1016/j.molcel.2008.07.004]

Zeng J, Ge Z, Wang L, Li Q, Wang N, Bjorkholm M, Jia J, Xu D. The histone demethylase RBP2 is overexpressed in gastric cancer and its inhibition triggers senescence of cancer cells. Gastroenterology 2010; 138: 981-992 [PMID: 1985045]

Gaudet F, Hodgson J, Eden A, Jackson-Grusby L, Daumenman J, Gray JW, Leonard H, Jaenisch R. Induction of tumor suppressor genes in the p53 null mouse. Cell 2003; 103: 499-492 [PMID: 1270357 DOI: 10.1126/science.1085558]

Esteller M, Corn GC, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res 2001; 61: 3225-3229 [PMID: 11309270]

Selaru FM, David S, Meltzer SJ, Hamilton JP. Epigenetic events in gastrointestinal cancer. Ann J Gastroenterol 2009; 104: 1910-1912 [PMID: 19661933 DOI: 10.1038/ajg.2008.145]

Yoshida T, Yamashita S, Takamura-Enya T, Niwa T, Ando T, Enomoto S, Katakawa K, Tatematsu M, Ichinose Y, Nakazawa K, Oda I, Gotoda T, Ushijima T. Persistence of a component of DNA methylation in gastric mucosa after Helicobacter pylori eradication. J Gastroenterol 2010; 45: 37-44 [PMID: 18158559 DOI: 10.1038/labinvest.37.00707]

Kang GH, Shin HY, Jung HY, Kim WH, Ro JY, Ryu MG. CpG island methylation in premalignant stages of gastric cancer. Cancer Res 2001; 61: 2847-2851 [PMID: 11306456]

Kang GH, Lee S, Kim JS, Jung HY. Profile of aberrant CpG island methylation along the multistep pathway of gastric carcinogenesis. Lab Invest 2003; 83: 635-641 [PMID: 12746473]

Jang BG, Kim WH. Molecular pathology of gastric carcinoma. Pathobiology 2011; 79: 302-310 [PMID: 22104201 DOI: 10.1159/000321037]

Zou XP, Zhang B, Zhang XQ, Chen M, Cao J, Liu WJ. Promoter hypermethylation of multiple genes in early gastric adenocarcinoma and precancerous lesions. Hum Pathol 2009; 40: 1534-1542 [PMID: 19695681 DOI: 10.1016/j.humpath.2009.01.029]

Wang YC, Yu JH, Geng X, Zhang WM. Preliminary study on the alternative splicing pattern of human telomerase reverse transcriptase gene during gastric carcinogenesis. Zhongguo Ya Xue Yi Chuan Xue Za Zhi 2009; 26: 141-147 [PMID: 19350055 DOI: 10.3760/cma.j.issn.1003-9406.2009.02.007]

Guilleret I, Yan P, Grange F, Braunschweig R, Bosman FT, Benhattar J. Hypermethylation of the human telomerase catalytic subunit (hTERT) gene correlates with telomerase activity. Int J Cancer 2002; 101: 335-341 [PMID: 12209657 DOI: 10.1002/1097-0215(20020105)101:1<335::AID-IJC2>3.0.CO;2-P]

Gigek CO, Leal MF, Silva PN, Lisboa LC, Lima EM, Calcagno DQ, Assumpção PP, Burbano RR, Smith Mde A. hTERT methylation and expression in gastric cancer. Biomarkers 2009; 14: 630-636 [PMID: 20001710 DOI: 10.1080/1354750090325912]

Du YY, Dai DQ, Yang Z. Role of RECK methylation in gastric cancer and its clinical significance. World J Gastroenterol 2010; 16: 904-908 [PMID: 20145471]

Zhang L, Zhong K, Dai Y, Zhou H. Genome-wide analysis of histone H3 lysine 7 trimethylation by ChIP-chip in gas-
Calcano DQ et al. Methylation in gastric carcinogenesis

J Gastroenterol 2004; 10: 3394-3398 [PMID: 15262354]

Ding WJ, Fang JY, Chen XY, Peng YS. The expression and clinical significance of DNA methyltransferase proteins in human gastric cancer. Dig Dis Sci 2008; 53: 2063-2069 [PMID: 18253830 DOI: 10.1007/s10620-007-9145-2]

Yang J, Wei X, Wu Q, Xu Z, Gu D, Jin Y, Shen Y, Huang H, Fan H, Chen J. Clinical significance of the expression of DNA methyltransferase proteins in gastric cancer. Mol Med Report 2011; 4: 1139-1143 [PMID: 21887466 DOI: 10.3892/mmr.2011.578]

Mutue K, Langer R, Schumacher F, Becker K, Ott K, Novotny A, Hapfelmeier A, HÖfler H, Keller G. DNA methyltransferase 1 as a predictive biomarker and potential therapeutic target for chemotherapy in gastric cancer. Eur J Cancer 2011; 47: 1817-1825 [PMID: 21458988 DOI: 10.1016/j.ejca.2011.02.024]

Fan H, Liu D, Qiu X, Qiao F, Wu Q, Su X, Zhang F, Song Y, Zhao Z, Xie W. A functional polymorphism in the DNA methyltransferase-3A promoter modifies the susceptibility in gastric cancer but not in esophageal carcinoma. BMC Med 2010; 8: [PMID: 20128808 DOI: 10.1186/1741-7015-8-12]

Su X, Li C, Qiao F, Qiu X, Huang W, Wu Q, Zhao Z, Fan H. Expression pattern and clinical significance of DNA methyltransferase 3B variants in gastric carcinoma. Oncol Rep 2010; 23: 819-826 [PMID: 20127025]

Hu J, Fan H, Liu D, Zhang S, Zhang F, Xu H. DNMT3B promoter polymorphism and risk of gastric cancer. Dig Dis Sci 2010; 55: 1011-1016 [PMID: 19517237 DOI: 10.1007/s10620-009-0851-3]

Wada R, Akiyama Y, Hashimoto Y, Fukamachi H, Yuasa Y. mIR-212 is downregulated and suppresses methyl-Cpg-binding protein McCP2 in human gastric cancer. Int J Cancer 2010; 127: 1106-1114 [PMID: 20020497 DOI: 10.1002/ijc.25126]

Kanai Y, Ushijima S, Nakanishi Y, Hirohashi S. Reduced mRNA expression of the DNA demethylase, MBD2, in human colorectal and stomach cancers. Biochem Biophys Res Commun 1999; 264: 962-966 [PMID: 10544038 DOI: 10.1006/ bbrc.1999.1613]

Ogden SR, Wroblewski LE, Weydig C, Romero-Gallo J, O’Brien DP, Israel DA, Krishna US, Fingleton B, Reynolds AB, Wesseler S, Peek RM. p120 and Kaiso regulate Helicobacter pylori-induced expression of matrix metalloproteinase-7. Mol Cell Bio 2008; 19: 4110-4121 [PMID: 18653349 DOI: 10.1091/mcb.E08-03-0203]

Lee SH, Kim J, Kim WH, Lee YM. Hypoxic silencing of tumour suppressor RUNX3 by histone modification in gastric cancer cells. Oncogene 2009; 28: 184-194 [PMID: 18850007 DOI: 10.1038/onc.2008.377]

Oshima Y, Oue N, Miyata Y, Nakayama H, Kitadai Y, Yoshida K, Chayama K, Yasui W. Frequent epigenetic inactivation of RIZ1 by promoter hypermethylation in human gastric carcinoma. Int J Cancer 2004; 110: 212-218 [PMID: 15066964 DOI: 10.1002/ijc.20090]

Pan KF, Lu YY, Liu WG, Zhang L, You WC. Detection of frameshift mutations of RIZ in gastric cancers with microsatellite instability. World J Gastroenterol 2004; 10: 2719-2722 [PMID: 15309726]

Yoo EJ, Park SY, Cho NY, Kim N, Lee HS, Kang GH. Helicobacter pylori-infection-associated CpG island hypermethylation in the stomach and its possible association with polypycr compressive marks. Virchows Arch 2008; 452: 515-524 [PMID: 18335257 DOI: 10.1007/s00428-008-0596-7]

Liu JJ, Song LB, Zhang X, Guo BH, Feng Y, Li XX, Liao WT, Zeng MS, Huang KH. Bmi-1 expression predicts prognosis for patients with gastric carcinoma. J Surg Oncol 2008; 97: 267-272 [PMID: 18041745 DOI: 10.1002/jso.20934]

Xiao J, Deng C. Knockdown of Bmi-1 impairs growth and invasiveness of human gastric cancer cells. Oncol Rep 2009; 17: 613-620 [PMID: 19806792]

Lu YW, Li J, Guo WJ. Expression and clinicopathological significance of Mel-18 and Bmi-1 mRNA in gastric carcinoma.
Caldecq DQ et al. Methylation in gastric carcinogenesis
Calcagno DQ et al. Methylation in gastric carcinogenesis

cells. Infect Agent Cancer 2010; 5: 27 [PMID: 2194482 DOI: 10.1186/1747-9378-5-27]

135 Yamashita S, Tsujino Y, Moriguchi K, Tatematsu M, Ushijima T. Chemical genomic screening for methylation-silenced genes in gastric cancer cell lines using 5-aza-2’-deoxycytidine treatment and oligonucleotide microarray. Cancer Sci 2006; 97: 64-71 [PMID: 16367923 DOI: 10.1111/j.1349-7006.2006.01316.x]

136 Leal M, Lima E, Silva P, Assumpção P, Calcagno D, Payao S, Burbano RR, Smith M. Promoter hypermethylation of CDH1, FHT, MTAP and PLAGL1 in gastric adenocarcinoma in individuals from Northern Brazil. World J Gastroenterol 2007; 13: 2568-2574 [PMID: 17552003]

137 Al-Moundhri MS, Al-Nabhani M, Tarantini L, Baccarelli A, Rusiecki JA. The prognostic significance of whole blood global and specific DNA methylation levels in gastric adenocarcinoma. PLoS One 2010; 5: e15585 [PMID: 21203466 DOI: 10.1371/journal.pone.0015585]

138 Oki E, Zhao Y, Yoshida R, Masuda T, Ando K, Sugiyama M, Tokunaga E, Morita M, Kakeji Y, Maehara Y. Checkpoint with forkhead-associated and ring finger promoter hypermethylation correlates with microsatellite instability in gastric cancer. World J Gastroenterol 2009; 15: 2520-2525 [PMID: 19469003]

139 Hiraki M, Kitajima Y, Sato S, Mitsuno M, Koga Y, Nakamura J, Hashiguchi K, Nozoh H, Miyazaki K. Aberrant gene methylation in the lymph nodes provides a possible marker for diagnosing micrometastasis in gastric cancer. Ann Surg Oncol 2010; 17: 1177-1186 [PMID: 19957042 DOI: 10.1245/s10434-009-0815-8]

140 Hu SL, Kong XY, Cheng ZD, Sun YB, Shen G, Xu WP, Wu L, Xu XC, Jiang XD, Huang DB. Promoter methylation of p16, Runx3, DAPK and CHFR genes is frequent in gastric carcinoma. Tumori 2010; 96: 726-733 [PMID: 21302620]

141 Shi J, Zhang G, Yao D, Liu W, Wang N, Ji M, He N, Shi B, Hou P. Prognostic significance of aberrant gene methylation in gastric cancer. Ann J Cancer Res 2012; 2: 116-129 [PMID: 22206050]

142 Akiyama Y, Watkins N, Suzuki H, Jair KW, van Engeland M, Esteller M, Sakai H, Ren CY, Yusa Y, Herman JG, Baylin SB. GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer. Mol Cell Biol 2003; 23: 8429-8439 [PMID: 14612389 DOI: 10.1128/MCB.23.23.8429-8439.2003]

143 Wen XZ, Akiyama Y, Pan KF, Liu ZJ, Lu ZM, Zhou J, Gu LX, Dong CX, Zhu BD, Ji JF, You WC, Deng DJ. Methylation of GATA-4 and GATA-5 and development of sporadic gastric carcinomas. World J Gastroenterol 2010; 16: 1201-1208 [PMID: 20222162 DOI: 10.3748/wjg.v16.i10.1201]

144 Fang JY, Zhu SS, Xiao SD, Jiang SJ, Shi Y, Chen XY, Zhou XM, Qian LF. Studies on the hypomethylation of c-myc, c-Ha-ras oncogenes and histopathological changes in human gastric carcinoma. J Gastroenterol Hepatol 1996; 11: 1079-1082 [PMID: 8985834]

145 Luo J, Li YN, Wang F, Zhang WM, Geng X. S-adenosylmethionine inhibits the growth of cancer cells by reversing the hypomethylation status of c-myc and H-ras in human gastric cancer and colon cancer. Int J Biol Sci 2010; 6: 784-795 [PMID: 21152119]

146 Giegek CO, Leal MF, Lisboa LC, Silva PN, Chen ES, Lima EM, Calcagno DQ, Assumpção PP, Burbano RR, Smith Mde A. Insulin-like growth factor binding protein-3 gene methylation and protein expression in gastric adenocarcinoma. Growth Horm IGF Res 2010; 20: 234-238 [PMID: 20192400 DOI: 10.1016/j.ghir.2010.02.005]

147 Chen HY, Zhu BH, Zhang DJ, Peng JJ, Chen JH, Liu FK, He YL. High CpG island methylator phenotype is associated with lymph node metastasis and prognosis in gastric cancer. Cancer Sci 2012; 103: 73-79 [PMID: 22017425 DOI: 10.1111/j.1349-7006.2011.01219.x]

148 Tamura G, So K, Miyoshi H, Honda T, Nishizuka S, Motoyama T. Quantitative assessment of gene methylation in neoplastic and non-neoplastic gastric epithelium using methylation-specific DNA microarray. Pathol Int 2009; 59: 895-899 [PMID: 20021617 DOI: 10.1111/j.1440-1827.2009.02458.x]

149 Hibi K, Sakata M, Yokomizo K, Kitamura YH, Sakuraba K, Shirahata A, Goto T, Mizukami H, Saito M, Ishibashi K, Kigawa G, Nemoto H, Sanada Y. Methylation of the MGMT gene is frequently detected in advanced gastric carcinoma. Anticancer Res 2009; 29: 5053-5055 [PMID: 20044616]

150 Kim HG, Lee S, Kim DY, Ryu SY, Joo JK, Kim JC, Lee KH, Lee JH. Aberrant methylation of DNA mismatch repair genes in elderly patients with sporadic gastric carcinoma: A comparison with younger patients. J Surg Oncol 2010; 101: 28-35 [PMID: 19894224 DOI: 10.1002/jso.21432]

151 Dong CX, Deng DJ, Fan KF, Zhang L, Zhang Y, Zhou J, You WC. Promoter methylation of p16 associated with Helicobacter pylori infection in precancerous gastric lesions: a population-based study. Int J Cancer 2009; 124: 434-439 [PMID: 18821580 DOI: 10.1002/jic.23891]

152 Shu XS, Geng H, Li L, Ying J, Ma C, Wang Y, Poon FF, Wang X, Ying Y, Yeo W, Srivastava G, Tsao SW, Wu J, Sung J, Huang S, Chan AT, Tao Q. The epigenetic modifier PRDM5 functions as a tumor suppressor through modulating WNT/β-catenin signaling and is frequently silenced in multiple tumors. PLoS One 2011; 6: e22746 [PMID: 22287297 DOI: 10.1371/journal.pone.0027346]

153 Guo W, Dong Z, Chen Z, Yang Z, Wen D, Kuang G, Gao Y, Shan B. Aberrant CpG island hypermethylation of RASSF1A in gastric cardia adenocarcinoma. Cancer Invest 2009; 27: 495-469 [PMID: 19160099 DOI: 10.1080/07357900802620828]

154 Sakakura C, Hamada T, Miyagawa K, Nishio M, Miyashita A, Nagata H, Ida H, Yazumi S, Otsuji E, Chiba T, Ito K, Ito Y. Quantitative analysis of tumor-derived methylated RUNX3 sequences in the serum of gastric cancer patients. Anticancer Res 2009; 29: 2619-2625 [PMID: 19596937]

155 Fan XY, Hu XL, Han TM, Wang NN, Zhu YM, Hu W, Ma ZH, Zhang CJ, Xu X, Ye ZY, Han CM, Pan WS. Association between RUNX3 promoter methylation and gastric cancer: a meta-analysis. BMC Gastroenterol 2011; 11: 92 [PMID: 21867527 DOI: 10.1186/1471-230X-11-92]

156 Carvalho R, Kayademir T, Soares P, Caneio P, Sousa S, Oliveira C, Leistenschneider P, Seruca R, Gott P, Blin N, Carneiro F, Machado JC. Loss of heterozygosity and promoter methylation, but not mutation, may underlie loss of TFF1 in gastric carcinoma. Lab Invest 2002; 82: 1319-1326 [PMID: 12357966]