Research Paper

Current evidence on the adoption of indicator condition guided testing for HIV in western countries: A systematic review and meta-analysis

S.J. Bogers, S.H. Hulstein, M.F. Schim van der Loef, G.J. de Bree, P. Reiss, J.E.A.M van Bergen, S.E. Geerlings, on behalf of the HIV Transmission Elimination Amsterdam (H-TEAM) Consortium

1. Introduction

In our global efforts to complete the ‘last mile’ towards ending the HIV epidemic, timely diagnosis remains an important challenge. In the European Union/European Economic Area (EU/EEA), an estimated half of all new cases. [1] These figures are of particular concern, as late presentation is associated with higher morbidity, mortality, and onward transmission of HIV. [2,3]

In the last decade, growing evidence on the potential role of indicator condition guided testing for HIV to improve timely testing has emerged. Indicator conditions (ICs) are defined as conditions that are either (1) AIDS-defining, (2) associated with an undiagnosed HIV prevalence of >0.1%, the cut-off for cost-effective screening for HIV, [4,5] or (3) conditions where failure to identify an HIV infection may have significant adverse implications for the patient. [6] In 2007 the...
The main objective of this systematic review was to assess the proportion of patients presenting with indicator conditions that are tested for HIV (i.e. the HIV test ratio). The secondary objective was to assess the outcomes of this testing strategy (i.e. the percentage positive).

2. Methods

2.1. Protocol and guidelines

The protocol for this review was published at PROSPERO (supplementary appendix 1), and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (supplementary appendix 2).

2.2. Review topics

Seven ICs from various medical specialties were selected for inclusion: tuberculosis (TB), cervical cancer (CC) or cervical intraepithelial neoplasia (CIN) grade 2+, vulvar cancer (VC) or vulvar intraepithelial neoplasia (VIN) grade 2+, malignant lymphoma, hepatitis B (HBV), hepatitis C (HCV), and peripheral neuropathy (PN). These ICs were selected as they are diagnosed and managed by various medical specialties (i.e. pulmonology, gynecology, hematology, gastroenterology/ hepatology and neurology), ensuring a wide scope of the extent to which IC-guided testing is adopted, and they can all be objectively diagnosed using diagnostic tests.

2.3. Search strategy

With assistance of a clinical librarian, Ovid MEDLINE and Embase were searched for studies published up to November 20th, 2020. The search contained terms for HIV testing, the selected ICs, and the term ‘indicator condition’ (supplementary appendix 3). No language or date restrictions were applied. Additionally, all articles referring to the HIDES studies, [8,9] and abstracts identified in Embase were included for screening.

2.4. Selection criteria

Studies reporting HIV test ratios among patients ≥18 years (directly available or through calculation with presented data), all settings (e.g. primary care (PC), hospital care, registry surveillance), and all publication types (e.g. research article, abstract, correspondence) were eligible for inclusion. Only studies performed in Western countries (Western Europe, USA, Canada, Australia, New Zealand, and Japan) were included, as HIV epidemiology and the standard of healthcare are comparable in these countries. No language restrictions were applied. Studies among persons known HIV positive, with unconfirmed disease (e.g. suspected TB), or conditions not meeting the IC definition (e.g. latent TB infection), and studies with a sample size <10 per subgroup per IC were excluded. Studies with data on HIV testing before 2009 only were excluded, as IC-guided testing was globally implemented around 2009.

2.5. Selection process

Search results were exported through an EndNote database (version 19.1, Thomson Reuters, Philadelphia, USA) and duplicates were removed. All titles and abstracts were screened for inclusion by SJB, and 10% were independently screened by SHH. A maximum of 2.5% discrepancy was allowed for. Differences were resolved through discussion, and, if needed, SEG was consulted as a third reviewer to resolve differences of opinion. If after discussion the discrepancy remained >2.5%, all titles and abstracts would be screened by SHH. Subsequently, the full text of all selected references was assessed for...
eligibility by both reviewers. Differences were again resolved through discussion. For all eligible abstracts, subsequent full-text publications were searched for.

2.6. Data extraction

For data extraction, a form in Microsoft Excel (Version 2016, Microsoft Corporation, USA) was used. The form was piloted in the first 10% of eligible studies, and adjusted accordingly. Data extraction was independently performed by SJB and SHH and discrepancies were resolved through discussion, with consultation of SEG as a third reviewer, if needed. Type of publication (i.e. full-text peer-reviewed article or ‘other publication types’, including abstracts, short communications, and correspondence), first author, year, title, setting, aim, recruitment site, definition of the IC and of being HIV tested, inclusion and exclusion criteria, number of subjects, number tested for HIV, and data on the percentage positive were extracted, supplementary appendix 4. When HIV test ratios were presented separately by sex or time periods (e.g. before and after intervention), they were extracted separately. Missing data were requested from authors if needed.

2.7. Quality assessment

Risk of bias assessment per included full-text study was performed independently by SJB and SHH using an adaptation of the Joanna Briggs checklist for prevalence studies, with consultation of SEG as a third reviewer, if needed. [26] The item on statistical analysis was dropped as it was deemed not relevant, and an item on objective measurement of being HIV tested was added (supplementary appendix 5). Risk of bias was scored out of 10. Discrepancies were resolved by discussion. No risk of bias was assessed for the other publication types (including abstracts, short communications, and correspondence), as insufficient information was available in these publications.

2.8. Statistical analysis

HIV test ratios, percentage positive, and quality assessments per reference were reported by IC. Summary statistics across studies were reported as medians with interquartile ranges (IQR). Test ratios and positivity were pooled by IC, regardless of publication type and assessed risk of bias. A random effects-model for proportions by Nyaga et al. was used. [27] As considerable heterogeneity between studies was expected due to the broad inclusion criteria. No limit for heterogeneity as expressed by the I2 statistic was used. Results were reported as estimated proportions (ES) and 95% confidence intervals (CI) and displayed as forest plots. In sensitivity analyses, pooling of test ratio was performed using only low risk of bias full-text articles, and stratified by sex. A risk of bias score of ≥7/10 was chosen as cut-off for low risk by the researchers. Additionally, meta-regression analyses of the HIV test ratio per study by date of data collection (as a continuous variable) were performed to assess whether HIV test ratio varied by time, overall and by IC. For date of data collection, the midpoint of reported periods were taken. Permutted tests with an iteration of 1000 were used to confirm the findings. Analyses were performed using STATA 15 (StataCorp LLC, College Station, USA).

2.9. Role of funding sources

The funders of this study had no role in the study's design, conduct, analysis and interpretation of results, the writing of the report, or the decision to publish.

3. Results

A total of 3405 records, including 992 abstracts and 62 records referencing the HIDES studies were identified through the search. Eighty-three were excluded because they were duplicates and 3219 based on title/abstract. Less than 2.5% discrepancy was found between the two screening authors during independent screening (5/341, 1.5%), which was resolved through discussion. Of the remaining 103 references, 46 were excluded based on full-text screening.

Of the 57 included references reporting on one or more IC, 23 were full-text articles and 34 were other publication types including abstracts, short communications, and correspondence (Fig. 1). Three of the 57 included citations reported on four or five of selected ICs, two reported on three ICs, ten reported on two ICs and 42 reported on one. Most included records (28/57) reported on HIV testing in TB patients (Table 1). No records on HIV testing in VC/VIN2+ patients or PN patients were eligible for inclusion. Most records were from the UK (24), followed by the USA (14) and Canada (5). Twenty-four records had included data from prior to 2009. There was considerable variation between records in how ‘tested for HIV’ was defined; 37% of studies (21) had defined a timeframe for being tested, using varying timeframes. Forty percent (23) described how HIV testing was defined, but did not define a timeframe, and 23% (13) described no definition of ‘HIV tested’, despite HIV test ratios being reported.

3.1. Tuberculosis

Of 16 included full-text articles on TB, eight were performed in a hospital/TB clinic setting, seven in the setting of a TB registry database, and one in the PC setting. Median number of study subjects was 603 (IQR 340–1355). HIV test ratios ranged from 44% to 95% in the hospital/registry setting, and was 8% in the PC setting. Median positivity percentage was 4.9% (IQR 4.4%–5.8%). Risk of bias was low; 77% of full-text references (13/16) had a low risk assessment (7/10 or higher). Across the 12 included other publication types, median number of subjects was 219 (IQR 28–463) and median HIV test ratio was 72% (IQR 56%–92%), Table 2.

3.2. Hepatitis B and C

Of three full-text references on HBV, one was performed in the PC setting, and the other two in hospitals. Median number of subjects was 3091 (IQR 71–9746). HIV test ratios were 23% and 74% in the hospital setting, and 29% in the PC setting. Median positivity was 2.6% (IQR 1.2%–3.9%). No studies were scored high risk of bias. Across the nine included other publications, median number of subjects was 157 (IQR 88–385) and median HIV test ratio was 46% (IQR 45%–60%).

Of five full-text references on HCV, one was performed in the PC setting, and the others in hospitals. Median number of subjects was 624 (IQR 165–5305). HIV test ratios ranged from 14% to 83% in the hospital setting, and was 29% in the PC setting. Median positivity was 4.7% (IQR 3.0%–6.4%). One study was scored high risk of bias. Across the 13 included other publications, median number of subjects was 384 (IQR 88–756) and median HIV test ratio 56% (IQR 45%–62%).

Two full-text references and one abstract did not distinguish between HBV and HCV. The full-text studies reported HIV test ratios of 13% and 87%, the abstract reported 21%, Table 2.

3.3. Cervical carcinoma or CIN2+

Of six full-text references on CC/CIN2+, one was performed in the PC setting, one in the context of a cancer surveillance program, and four in hospitals. Median number of subjects was 489 (IQR 245–583). The HIV test ratio was 2% in the PC setting. HIV test ratios ranged from 1% to 14% in four studies in the hospital/surveillance setting, and the fifth reported 76%, but risk of bias was deemed high. Of four
3.4. Malignant lymphoma

Of four full-text references on malignant lymphoma, one was performed in the PC setting, the others in hospitals. Median number of subjects was 869 (IQR 276–1629). HIV test ratios ranged from 6% to
89% in the hospital setting, and was 3% in the PC setting. Median positivity percentage was 3.6% (IQR 1.4%–8.3%). One study was high risk of bias. Across seven included other publications, median number of subjects was 179 (IQR 135–281) and median HIV test ratio was 32% (IQR 13%–75%), Table 2.

3.5. Pooled results

Meta-analyses of HIV test ratios by IC, including all publication types, regardless of risk of bias were performed. Heterogeneity between studies within ICs was very large, with the I² test for heterogeneity exceeding 95% in all analyses. The overall estimated proportion (ES) tested for HIV was 0.49 (95% CI 0.43–0.54). By IC, this proportion was highest in TB; ES 0.72 (0.63–0.80), followed by HCV (ES 0.49, 0.40–0.57), HBV (ES 0.43, 0.35–0.56), and cervical carcinoma or CIN2+ (ES 0.29, 0.13–0.57). Lowest test ratios were observed in CC/CIN2+ (ES 0.12, 0.01–0.31), Fig. 2. A sensitivity analysis including only low risk of bias full-text publications showed lower proportions, with an overall ES of 0.49 (0.29–0.52), and 0.48 (0.01–0.59), 0.38 (0.07–0.71), 0.37 (0.10–0.69), 0.21 (0.00–0.87), 0.12 (0.02–0.27), and 0.05 (0.02–0.09) for TB, HCV, HBV, malignant lymphoma, HBV/HCV, and CC/CIN2+, respectively. Five studies reported HIV test ratios stratified by sex; four on TB, and one on HBV, HCV, and malignant lymphoma. When pooling studies among TB patients by sex, overall ES were similar in women (ES 0.49, 0.13–0.85) and men (ES 0.53, 0.15–0.89).

Meta-analyses of HIV positivity by IC, including all publication types, regardless of risk of bias were performed. Heterogeneity between studies within ICs was large for most ICs (e.g. I² test for heterogeneity 96% for HBV/HCV), but low for CC/CIN2+ (I²=0%). The overall estimated positivity ranged between 0% (CC/CIN2+) and 5% (TB) (supplementary appendix 6).

Meta-regression analyses showed no significant association between date of data collection and overall HIV test ratio (β=1.05%, 95%CI=−0.96%–3.06%, p = 0.30). When stratified by IC, a significant association was observed in studies on CC/CIN2+ only (β=6.14%, 95%CI=0.75%–11.53%, p = 0.03). However, this association was largely influenced by the most recent study, that reported the highest test ratio, but was also deemed high risk of bias. [9] In a sensitivity analysis excluding high risk of bias studies, this association was lost (β=0.47%, 95%CI=−2.86%–3.79%, p = 0.72).

4. Discussion

This systematic review provides an overview of the adoption of IC-guided testing in seven selected ICs in Western countries. Results show a large variation in HIV test ratios per IC, but overall HIV test ratios are low. The highest test ratios were observed in TB patients, followed by patients with HCV, HBV, and malignant lymphoma, respectively. Lowest test ratios were observed in patients with CC/CIN2+. No data on the extent of IC-guided testing in patients with VC/VIN2+ and PN was found.

Large differences in HIV test ratios between studies concerning the same IC were observed. Some outliers were studies with a high risk of bias, but among studies with low risk of bias, considerable variation was still observed. An explanation may be the difference in design of studies and how being tested for HIV was defined: some studies assessed evidence of any HIV testing, while others had a set timeframe around IC diagnosis to assess IC-guided testing. Another explanation could be the difference in setting between studies. For example, in malignant lymphoma, the lowest test ratio was observed in a study performed in a PC setting, while the highest ratio was observed in a study performed in a comprehensive cancer center. Variation was also observed within countries. Among TB patients in Canada, an audit performed in the province of Manitoba showed much lower HIV test ratios than one in Alberta (50% versus 91%, respectively [28,29]). This discrepancy is probably due to the ‘opt out’ HIV testing procedure for TB patients in Alberta, which was not used in Manitoba, suggesting its effectiveness to optimize HIV testing. Two studies performed among HCV patients in Denmark also showed very different results, with an HIV test ratio of 58% in one university hospital, [30] compared to 83% in 18 Danish hospitals. [31] This discrepancy might be due to an increase in HIV test ratio over time, attributed to national efforts to increase HIV testing in risk groups. As the latter study concerned a later period (2002–2015) than the former (1996–2011). However, we found no association between data collection period and HIV test ratio in meta-regression analyses, suggesting that adherence to this testing strategy has not improved over time, and underlining the urgency of implementing strategies to improve IC-guided testing for HIV.

When comparing HIV test ratio before- and after interventions to increase HIV testing, some studies reported an improvement, [32,33] while others did not. [34,35] One UK study showed that HIV test ratios among patients with TB, HCV, cervical carcinoma and malignant lymphoma were lower in 2009–2010 than in 2008–2009 despite educational and promotional efforts by the researchers. [35] Studies showed that a universal HIV testing policy among TB patients yielded higher HIV test ratios than a selective testing policy based on risk-assessment, [36] a result in line with the high success rate of the ‘opt out’ testing procedure for TB patients in Alberta. [29]

HIV positivity was highest among TB patients, followed by HCV, HBV, and malignant lymphoma, respectively, but again large variation was observed. Among CC/CIN2+ patients, one study reported a positivity of 0.2%, [9] while positivity was 0% in the others. However, in view of the small number of studies and the low test ratios, this should not be interpreted as HIV screening not being cost-effective among CC/CIN2+ patients [4,5].

This review confirms previous reporting on missed opportunities for earlier diagnosis through IC-guided testing. A barrier to optimal
Study Characteristics	Summary of Findings	Risk of Bias Score						
Tuberculosis								
Anderson (2013) [33]	Retrospective cohort study in UK TB clinics – before cohort implementation	July 2009 - June 2010	All TB cases of all ages from 5 London clinics were included	Patients notified as having TB disease	Uptake of HIV testing	Before: 510/557 (91.6%)	NA	7/10
Augusti (2016) [19]	Cross-sectional cohort in primary care, Spain	January 2010 - August 2012	Patients aged 16–65 years were included; known HIV positive patients excluded	Using either their ICD-10 codes or a positive laboratory result	HIV test within 4 months of diagnosis date	Men: 112/1287 (8.7%)	Men: 0/112 (0%)	9/10
Basham (2018) [28]	Audit of a Canadian provincial tuberculosis program	2008 - 2010	All active TB cases of all ages in the TB registry	Active TB	HIV test recorded in TB registry database	Women: 63/840 (7.5%)	Women: 1/63 (1.6%)	9/10
Basham (2019) [39]	Audit of First Nations tuberculosis program in Canada	2008 - 2012	First Nations of all ages recorded in the TB registry	Recorded TB in registry	HIV test recorded in TB registry database	95/149 (63.8%)	NA	8/10
Clark (2013) [40]	Retrospective cohort to assess HIV testing in TB surveillance database in US	2008 - 2010	Living patients with TB of all ages	Reported TB cases surviving with TB	Known (positive or negative) or unknown (refused testing/not offered testing) HIV status	208/273 (76.2%)	12/208 (5.8%)	7/10
Clerk (2013) [41]	Cross-sectional study on HIV testing in TB patients in the UK	NA	TB cases of all ages were included	Confirmed active TB cases	NA	27/31 (87.1%)	NA	6/10
Gardner (2012) [42]	Retrospective cohort after implementation of opt-out HIV testing in US TB clinic	June 2010 - June 2011	Excluded: Patients <14 years, known HIV positive, no chart available, diagnosed prior to study period	New TB cases presenting at the clinic	Tested for HIV in the clinic after presentation	458/939 (48.8%)	1/458 (0.2%)	9/10
Gupta (2011) [35]	First audit of IC-guided testing in UK general hospital	First audit: August 2008 - July 2009	Patients of all ages testing positive for TB	Patients tested positive for tuberculosis	HIV testing was double checked using the electronic pathology records system and a separate database of HIV testing	First audit: 19/25 (76.0%)	NA	7/10
Long (2014) [29]	Retrospective cohort of tuberculosis patients in Canada	2003 – 2012	Patients of all ages in the TB registry	Persons meeting the Canadian case definition for TB	Already known or newly diagnosed with HIV	1317/1453 (90.6%)	74/1317 (5.6%)	8/10
Post (2015) [43]	Retrospective cohort among patients with tuberculosis in Australia	2009	Patients of all ages with TB	Microbiologically confirmed TB and patients that were treated for TB without microbiological confirmation	HIV status was categorised as known or unknown (not tested or declined testing)	2009: 56/80 (70.0%)	2009: 3/56 (5.4%)	6/10

(continued on next page)
Tuberculosis articles	Reference (year)	Design and setting	Included study period	Population and exclusion criteria	IC definition	HIV tested definition	HIV test ratio (%)**	Positivity ratio (%)**	Risk of bias score*
Raben (2015) [9]	Retrospective cohort on HIV testing in ICs in Europe	May 2013	Patients in participating centres, >18 and <65 years of age, not known HIV positive, presenting within the previous year/last 100 + patients	Participants with tuberculosis	Participating centres reviewed retrospectively how many patients presenting with the IC were tested for HIV	2010: 79/100 (79.0%) 2011: 5/79 (6.3%) 2012: 56/73 (76.7%) 2013: 61/70 (87.1%) 1041/1401 (74.3%)	46/1041 (4.4%)	2/10	
Ribeiro (2018) [44]	Retrospective cohort study on HIV screening of TB patients in Portugal	2008 - 2014	Notified TB cases of all ages in the Portuguese Tuberculosis Surveillance System	Notified TB	HIV testing done from one month before to six months after date of TB diagnosis	Women: 169/356 (47.5%) Men: 226/422 (51.6%)	Women: 7/10	8/10	
Rivest (2014) [45]	Retrospective cohort on HIV-TB co-infection and predictors of HIV screening among incident TB cases in Canada	2004 - 2009	Incident TB cases of all ages reported to the TB reporting database	Cases confirmed by culture or diagnosed on the basis of clinical and radiological signs	HIV testing from one month before to six months after date of TB diagnosis	Men: 226/422 (53.6%)	Women: 226/422 (11.5%)	8/10	
Roy (2013) [36]	Cluster randomised controlled trial on the impact of implementing universal HIV testing in TB patients in the UK	September 2009 - March 2010	Patients of all ages in centres using a selective HIV testing policy, not known HIV infected.	All patients seen and diagnosed with TB in participating centres	The date the HIV test was conducted was recorded and these patients were classified as having “accepted” the test	Women (selective testing): 269/417 (64.5%)	Women: 111/149 (74.5%)	7/10	
Sewell (2014) [46]	Retrospective cohort in a UK TB clinic	January 2009 - July 2012	TB patients of all ages at a TB medical outpatient service	Clinical or laboratory TB diagnosis	Tested < 3 months of attending the clinic or starting TB treatment	Men (universal testing): 152/198 (76.8%) 389/410 (94.9%) 27/389 (6.9%)	Men: 101/214 (47.2%)	9/10	
William (2011) [47]	Audit on HIV testing in TB patients after HIV testing guideline implementation in the UK	April 2008 - March 2009	Patients <18 years, private patients, on chemoprophylaxis, non TB mycobacteria were excluded.	TB patients in the database	HIV testing in the six months prior to and following TB notification	Women: 76 / 193 (39.4%)	Women: NA	9/10	

Other publication types*** (continued on next page)
Reference (year)	Design and setting	Included study period	Population and exclusion criteria	IC definition	HIV tested definition	HIV test ratio (%)**	Positivity ratio (%)**	Risk of bias score*
Aguayo (2010) [48]	Retrospective study on Extrapulmonary TB in Spain	NA	NA	Extrapulmonary tuberculosis	NA	11/20 (55.0%)	NA	
Hubbard (2020) [49]	Retrospective study on HBV and HCV prevalence in TB in a US hospital	September 2016 - May 2019	Adult cases of active or latent TB	positive QuantiFERON-TB Gold In-Tube test	Tested for HIV	375/453 (82.8%)	22/375 (5.9%)	
Patel (2019) [50]	Retrospective study on mortality risk factors and delays in TB mortality cases in New Mexico, US	2007 - 2017	NA	TB mortality cases	Offered HIV testing	48/83 (57.8%)	NA	
Perch (2013) [51]	Retrospective cohort on HIV testing in TB in Denmark	2009 (Total study included 2007 - 2009)	Notified TB of all ages cases were included	All cases of notified tuberculosis in database	HIV tested within the audit period	204/324 (63.0%)	8/204 (3.9%)	
Phillips (2010) [52]	Audit of IC-guided testing in UK hospital	October 2008 - November 2009	Patients of all ages with tuberculosis	Confirmed mycobacterium tuberculosis Active tuberculosis	HIV screened	447/472 (94.7%)	15/447 (3.4%)	
Potter (2014) [53]	Audit on HBV, HCV and HIV infection among new TB cases in UK	2013	Patients of all ages with active TB	Active tuberculosis	HIV tested	412/526 (78.3%)	67/412 (16.3%)	
Qasim (2012) [54]	Audit on diagnosis and management of TB patients in the UK	January 2009 - December 2010	Patients with a positive Acid-Fast Bacillus test	A positive Acid-Fast Bacillus test	NA	21/21 (100%)		
Reina (2015) [55]	Cross-sectional study on unknown HIV status in TB patients in Portugal	2006 - 2012	TB cases reported	Registered tuberculosis cases	Known HIV status	6804/7683 (88.8%)	NA	
Ricci (2010) [56]	Audit on HIV testing and coinfection in TB patients in Italy	2004 - 2009	Patients with tuberculosis	Culture-confirmed cases of tuberculosis	Tested for HIV at any time	412/526 (78.3%)	67/412 (16.3%)	
Stolagiewicz (2015) [57]	Audit to quantify the local prevalence of HIV in patients with TB in the UK	2014	Patients diagnosed with or treated for TB	Diagnosed or treated for tuberculosis	Tested for HIV	114/114 (100%)	3/114 (2.6%)	
Thorburn (2012) [58]	Audit on HIV testing in TB patients in the UK	2010 (before implementation multidisciplinary TB meeting)	Confirmed TB cases in 2010	Confirmed TB cases	HIV tested in the year before or after TB diagnosis	2010: 141/234 (60.3%)	2010: 7/141 (5.0%)	
		2011 (after implementation multidisciplinary TB meeting)	Confirmed TB cases in 2011			2011: 81/105 (77.1%)	2011: 2/81 (2.5%)	
Vas (2012) [59]	Audit on HIV testing in TB patients in a UK hospital	2009	Patients attending the chest clinic with TB	NA	Patients offered and accepted an HIV test	9/34 (26.5%)	NA	

Hepatitis B

Reference (year)	Design and setting	Included study period	Population and exclusion criteria	IC definition	HIV tested definition	HIV test ratio (%)	Positivity ratio (%)	Risk of bias score*
Augusti (2016) [19]	Cross-sectional cohort in primary care, Spain	January 2010 - August 2012	Patients aged 16–65 years were included; known HIV	Using either their ICD-10 codes or a positive laboratory result	HIV test within 4 months of diagnosis date	Men: 1792/6034 (29.7%)	Men: 27/1792 (1.5%)	9/10

(continued on next page)
Tuberculosis Full-text articles Reference (year)	Design and setting	Included study period	Population and exclusion criteria	IC definition	HIV tested definition	HIV test ratio (%)**	Positivity ratio (%)**	Risk of bias score*	
Gupta (2011)[35] First audit of IC-guided testing in UK general hospital	First audit: August 2008 - July 2009	Patients of all ages testing positive for HBV	Patients with a positive hepatitis B surface antigen test	HIV testing was double checked using the electronic pathology records system and a separate database of HIV testing	Women: 1058/3712 (28.5%)	Women: 8/1058 (0.8%)	First audit: 6/27 (22.2%)	First audit: NA	7/10
Hallager (2018)[31] Retrospective cohort study on HIV coinfection among HBV and HCV patients in 18 hospitals in Denmark	Re-audit: August 2009 - June 2010	Patients registered in the Danish hepatitis database of 16 years or older	Positive HBV surface antigen	HIV antibody/antigen tests performed before or within 6 months of database enrolment	2287 / 3091 (74.0%)	89/2287 (3.9%)	2287 / 3091 (74.0%)	89/2287 (3.9%)	9/10
Ireland (2018)[61] Retrospective cross-sectional study on HIV testing in HBV patients in the UK	January 2002 - July 2015	HBV patients in the clinic	Hepatitis B virus (HBV) surface antigen positive	HIV tested on the same day or within 6 months following HBV diagnosis	7315/16,086 (45.5%)	NA	7315/16,086 (45.5%)	NA	
Lander (2014)[62] Audit on HIV testing in HBV and HCV patients in a hepatitis clinic in the UK	September 2012 - August 2013	HBV patients in the clinic	NA	Uptake of HIV testing in the clinic during the audit time period	205/362 (56.6%)	NA	205/362 (56.6%)	NA	
Lynn (2014)[63] Audit on HIV testing in HBV patients in the Rochester Epidemiology Project (REP) in the US	1994 - 2010	HBV patients in the REP cohort	NA	All HIV screening tests and their results	273/607 (45.0%)	NA	273/607 (45.0%)	NA	
Pavlides (2011)[64] Audit on HIV testing in HBV patients in the UK	October 2008 - September 2009	HBV patients	HBV surface antigen positive	Whether these patients had an HIV test	63/99 (63.6%)	6/63 (9.5%)	63/99 (63.6%)	6/63 (9.5%)	
Phillips (2010)[52] Audit on HIV testing in indicator conditions in the UK	October 2008 - November 2009	HBV patients at one hospital	Confirmed HBV infection	HIV tests taken within the same time period as inclusion	2/32 (6.3%)	NA	2/32 (6.3%)	NA	
Su (2015)[66]	2012	NA	Offered HIV screening		362/385 (94.0%)	NA	362/385 (94.0%)	NA	

(continued on next page)
Table 2 (Continued)
Tuberculosis
Full-text articles
Reference (year)
Design and setting
Included study period
Population and exclusion criteria
IC definition
HIV tested definition
HIV test ratio (%)**
Positivity ratio (%)**
Risk of bias score*
Vas (2012) [59]
Audit on HBV treatment and care at an Asian health center in the US
2009
New patients presenting with chronic hepatitis B
NA
Patients attended the gastroenterology clinic with HBV
NA
Patients offered and accepted an HIV test
2/25 (8.0%)
NA
Hepatitis C
Full-text articles
Reference (year)
Design and setting
Included study period
Population and exclusion criteria
IC definition
HIV tested definition
HIV test ratio (%)
Positivity ratio (%)
Risk of bias score*
Augusti (2016) [19]
Cross-sectional cohort in primary care, Spain
January 2010 - August 2012
Patients aged 16–65 years were included; known HIV positive patients excluded
NA
Using either their ICD-10 codes or a positive laboratory result
HIV test within 4 months of diagnosis date
Men: 1995/6333 (31.5%)
Men: 67/1995 (1.1%)
Women: 828/3493 (23.7%)
Women: 18/828 (2.2%)
Bolther (2014) [30]
Cross-sectional cohort at a university hospital and outpatient clinics in Denmark
1996 - 2011
HCV patients of all ages; Patients no longer registered at the clinic were excluded
Chronic HCV patients with HCV RNA positive test outcome
HIV screening performance within 180 days of the HCV diagnosis
HIV testing was double checked using the electronic pathology records system and a separate database of HIV testing
First audit: 360/624 (57.7%)
First audit: NA
Gupta (2011) [35]
First audit of IC-guided testing in UK general hospital
First audit: August 2008 - July 2009
Patients of all ages testing positive for HCV
Patients with a positive hepatitis C antibody test
HIV screening performance within 180 days of the HCV diagnosis
HIV testing was double checked using the electronic pathology records system and a separate database of HIV testing
First audit: 18/93 (19.4%)
First audit: NA
Hallager (2018) [31]
Retrospective cohort study on HIV coinfection among HBV and HCV patients in 18 hospitals in Denmark
January 2002 - July 2015
Patients registered in the Danish hepatitis database of 16 years or older
HCV-RNA before or within 6 months after enrolment in the database
HIV antibody/antigen tests performed before or within 6 months of enrolment in the database
Pathology lab data
4400/5305 (82.9%)
281/4400 (6.4%)
5 / 11 (45.5%)
4/10
King (2019) [67]
Intervention study among patients with an IC admitted to an acute General Medicine Unit in Australia
July 2017 - October 2017
Patients recently HIV tested, known HIV positive and had no alternative explanation for the IC were excluded
Hepatitis C antibody positive
Pathology lab data
5 / 11 (45.5%)
NA
4/10
Other publication types***
Reference (year)
Design and setting
Included study period
Population and exclusion criteria
IC definition
HIV tested definition
HIV test ratio (%)
Positivity ratio (%)
Risk of bias score*
Cowan (2020) [68]
Retrospective review of testing and care of HCV mono- and HIV co-infected patients in a US emergency department
June 2018 - December 2019
Patients aged 18 years or older with active HCV infection, triaged to the ED and able to provide consent for testing
HCV viral load positive
Known HIV status
386/427 (90.4%)
56/386 (14.5%)
(continued on next page)
Table 2 (Continued)

Tuberculosis
Fleischer (2018)
Gilbert (2011)
Ireland (2018)
Lander (2014)
Lynn (2014)
Oraka (2016)
Pavlides (2011)
Perera (2011)
Phillips (2010)
Sterling (2017)
Tunney (2018)
Vas (2012)
Hepatitis B or C
Full-text articles
Reference (year)
Cayuelas Redondo
Reference (year)

prompt in primary healthcare in Spain
Raben (2015) [9]
Other publication types* Reference (year)
Adlington (2014) [32]
Cervical carcinoma or cervical intraepithelial neoplasia grade 2 +
Alldredge (2020) [74]
Augusti (2016) [19]
Gupta (2011) [35]

(continued on next page)
Tuberculosis Full-text articles	Design and setting	Included study period	Population and exclusion criteria	IC definition	HIV tested definition	HIV test ratio (%)**	Positivity ratio (%)**	Risk of bias score*
Hwang (2015)[75]	Re-audit of IC-guided testing in UK general hospital	Re-audit: August 2009 - June 2010	Patients treated at a large comprehensive cancer center	Patients with cervical cancer who received systemic cancer therapy	HIV-1/2 antibody test and/or confirmatory Western blot testing after registration at the center.	23 / 245 (9.4%)	0/23 (0%)	10/10
McGee-Avila (2020)[76]	Retrospective study on patterns of HIV testing and determinants of non-receipt of HIV testing among women with cervical cancer in the New Jersey Medicaid program, US	January 2012 - December 2014	Patients with cervical cancer aged 21–64 years. Cases identified postmortem, non-New Jersey residence at diagnosis and with previous primary cancer or known HIV positive were excluded.	Primary, histologically confirmed invasive cervical cancer	Tested at any point during the study period	78/242 (32.2%)	NA	10/10
Raben (2015)[9]	Retrospective cohort on HIV testing in ICs in Europe	May 2013	Patients in participating centres, ≥18 and <65 years of age, not known HIV positive, presenting within the previous year/last 100+ patients	Patients with cervical cancer	Tested 6 months before diagnosis to 6 months after diagnosis of cervical cancer Participating centres reviewed retrospectively how many patients presenting with the IC were tested for HIV	33/242 (13.6%)	1/444 (0.2%)	2/10
Butler (2014)[77]	Retrospective cohort study on HIV testing in patients with CIN 2+ in the UK	July 2012 - June 2013	Patients with CIN2+ at colposcopy, not known to be HIV positive	Cervical intraepithelial neoplasia grade 2 and above at colposcopy	The most recent HIV test at the service prior to their attendance for colposcopy (last 3 years)	34/94 (36.2%)	NA	NA
Lebari (2012)[78]	Retrospective review of HIV testing in patients with AIDS defining malignancies in the UK	March 2007 - July 2011	Patients referred or initially diagnosed with cervical cancer	NA	Tested for HIV	1/64 (1.6%)	NA	NA
Mosimann (2014)[79]	Retrospective cohort study on HIV testing rates among patients treated for AIDS defining cancers and HL in Switzerland	January 2002 - July 2012	Patients aged ≥18 years treated for invasive cervical cancer	Invasive cervical cancer	HIV tested within 90 days before and 90 days after the cancer diagnosis date	6/57 (10.5%)	0/6 (0%)	NA

** (continued on next page)
Reference (year)	Design and setting	Included study period	Population and exclusion criteria	IC definition	HIV tested definition	HIV test ratio (%)	Positivity ratio (%)	Risk of bias score*
Full-text articles Augusti (2016) [19]	Cross-sectional cohort in primary care, Spain	January 2010 - August 2012	Patients aged 16–65 years were included; known HIV positive patients excluded	Using either their ICD-10 codes or a positive laboratory result	HIV test within 4 months of diagnosis date	Patients with HL 0/86 (0%)	Patients with HL NA 9/10	9/10
Gupta (2011) [35]	First audit of IC-guided testing in UK general hospital	First audit: August 2008 - July 2009	Patients of all ages with lymphoma	Patients with a positive pathology sample for lymphoma	HIV testing was double checked using the electronic pathology records system and a separate database of HIV testing	First audit: 3/42 (7.1%)	NA 7/10	7/10
Hwang (2015) [75]	Retrospective cohort on HIV testing in patients with cancer at the initiation of therapy at a large US comprehensive cancer center	January 2004 - April 2011	Patients treated at a large comprehensive cancer center. Patients on oral chemotherapy and enrolled in clinical trials were excluded	Patients with NHL on systemic cancer therapy	HIV-1/2 antibody test and/or confirmatory Western blot testing after registration at the center.	NNL: 1439/1628 (88.4%)	NNL: 23/1439 (1.6%)	10/10
Raben (2015) [9]	Retrospective cohort on HIV testing in ICs in Europe	May 2013	Patients in participating centres, >18 and <65 years of age, not known HIV positive, presenting within the previous year/last 100+ patients	Patients with HL on systemic cancer therapy	Participating centres reviewed retrospectively how many patients presenting with the IC were tested for HIV	HL: 322/356 (90.4%)	HL: 2/322 (0.6%)	2/10
Other publication types* Bishin (2017) [80]	Longitudinal cohort study to assess treatment guidelines for diffuse large B-cell lymphoma in the US	2005 - 2016	All patients diagnosed and treated for diffuse large B-cell lymphoma	Diffuse large B-cell lymphoma	HIV serology testing	165/179 (92.2%)	NA	
Bowman (2010) [81]	Cohort study on HIV testing in lymphoma patients in the UK	6 month pilot period (date not reported)	All lymphoma patients seen in the 6 month pilot period at the study site	NA	NA	27/214 (12.6%)	0/27 (0%)	
Buxton (2011) [82]	Cross-sectional study to assess treatment in	2009	All patients newly diagnosed with lymphoma	New lymphoma diagnosis	NA	91/281 (32.4%)	3/91 (3.3%)	

(continued on next page)
Reference (year)	Design and setting	Included study period	Population and exclusion criteria	IC definition	HIV tested definition	HIV test ratio (%)**	Positivity ratio (%)**	Risk of bias score*
Datta (2015) [83]	Audit on treatment in Primary Central Nervous System lymphoma patients in the UK	2008 - 2013	All patients with Primary Central Nervous System lymphoma, excluding metastatic disease	Biopsy-proven Primary Central Nervous System lymphoma	HIV status	1/20 (5%)	NA	
Davies (2018) [84]	Audit on HIV testing in lymphoma patients in the UK	2016 - 2017	All patients newly diagnosed with lymphoma	New lymphoma diagnosis	Tested for HIV at first clinic/specialist review	101/135 (74.8%)	0/101 (0%)	
Lebari (2012) [78]	Retrospective review of HIV testing in patients with AIDS defining malignancies in the UK	March 2007 - July 2011	Patients referred or initially diagnosed with Non-Hodgkin's lymphoma	NA	Tested for HIV	34/158 (21.5%)	NA	
Mosimann (2014) [79]	Retrospective cohort study on HIV testing rates among patients treated for AIDS defining cancers and HL in Switzerland	January 2002 - July 2012	Patients aged ≥ 18 years treated for HL	Hodgkin's Lymphoma	HIV tested within 90 days before and 90 days after the cancer diagnosis date	HL: 79/133 (59.4%)	HL: 0/79 (0%)	
			Patients aged ≥ 18 years treated for NHL	Non-Hodgkin lymphoma		NHL: 392/653 (60.0%)	NHL: 4/392 (1.0%)	

* Risk of bias was assessed for all included full-text references using an adapted version of the Joanna Briggs Institute checklist for prevalence studies, and scored out of 10. A risk of bias score of ≥7/10 was considered low risk by the researchers.

** If articles reported data on HIV test ratio and positivity ratio by subgroup (e.g. sex, before and after intervention), then the data of that article are provided by subgroup here.

*** Including abstracts, short communications, and correspondence.

CIN = cervical intraepithelial neoplasia; DAA = direct-acting antivirals; ED = emergency department; HBV = hepatitis B virus; HCV = hepatitis C virus; HL = Hodgkin's lymphoma; IC = indicator condition; ICD-10 = 10th revision of the International Classification of Diseases and Related Health Problems; NA = not reported/not applicable; NHL = Non-Hodgkin lymphoma; PCR = Polymerase chain reaction; REP = Rochester Epidemiology Project; RNA = ribonucleic acid; TB = tuberculosis.
IC-guided testing might be the large number of ICs, the large variety in types of conditions and the many medical specialties involved. This variety requires tailored strategies to assure routine IC-guided testing is implemented across ICs. Moreover, an evaluation of IC-guided HIV testing recommendations in specialty guidelines in the UK and Europe revealed that the majority of IC guidelines do not recommend HIV testing, and physicians are not always aware of current HIV testing recommendations. [18,37] This is supported by the observation that the highest HIV test ratio were found in TB, HBV and HCV; HIV testing is recommended most prominently in the specialty guidelines for these conditions, and as pulmonologists and gastroenterologists commonly collaborate with infectious disease specialists, they may be more likely to focus on possible underlying HIV. Adoption of HIV testing in specialty guidelines and creating awareness of this strategy among involved specialties is an important first step to optimize testing. [38] As educational interventions to optimize testing showed varying results, additionally implementing previously proven successful strategies, such as opt-out testing or universal testing without detailed pre-test discussion, as described in the studies mentioned earlier, [29,36] is likely more effective than only educating involved medical professionals on IC-guided testing. In addition, sustained effect must be aimed for when designing interventions. For example, a digital case note prompt suggesting HIV testing when the patient has an IC diagnosis lead to a significant increase in HIV test ratios during the intervention period in two studies, but the effect was lost when the prompts were deactivated. [24,34] Thus, continuous implementation of a combination of the aforementioned strategies would likely be most effective.
Hepatitis B and C

Study	ES (95% CI)	HIV test ratio
Hepatitis B		
Phillips (2010) *	0.06 (0.02, 0.20)	2 / 32
Gupta (2011) Before intervention	0.22 (0.11, 0.41)	6 / 27
Gupta (2011) After intervention	0.23 (0.13, 0.37)	10 / 44
Pavlides (2011) *	0.64 (0.54, 0.72)	63 / 99
Perera (2011) *	0.80 (0.50, 0.70)	53 / 88
Vas (2012) *	0.08 (0.02, 0.25)	2 / 25
Lander (2014) *	0.57 (0.51, 0.62)	205 / 362
Lynn (2014) *	0.45 (0.41, 0.49)	273 / 607
Deshpande (2015) *	0.48 (0.38, 0.54)	72 / 157
Su (2016) *	0.94 (0.91, 0.96)	362 / 385
Augusti (2016)	0.29 (0.28, 0.30)	2850 / 9746
Hallager (2018)	0.74 (0.72, 0.76)	2287 / 3091
Ireland (2018) *	0.45 (0.45, 0.46)	7315 / 16086
Subtotal (I² = 99.57%, p = 0.00)	0.45 (0.35, 0.56)	

Hepatitis C		
Phillips (2010) *	0.28 (0.20, 0.39)	25 / 88
Gilbert (2011)	0.51 (0.50, 0.52)	8183 / 15981
Gupta (2011) Before intervention	0.19 (0.13, 0.29)	18 / 93
Gupta (2011) After intervention	0.07 (0.03, 0.15)	5 / 72
Pavlides (2011) *	0.50 (0.40, 0.60)	51 / 102
Perera (2011) *	0.43 (0.34, 0.54)	40 / 92
Vas (2012) *	0.03 (0.01, 0.17)	1 / 29
Bohner (2014)	0.58 (0.54, 0.62)	360 / 624
Lander (2014) *	0.56 (0.44, 0.66)	40 / 72
Lynn (2014) *	0.57 (0.54, 0.60)	553 / 965
Augusti (2016)	0.29 (0.26, 0.30)	2823 / 9926
Oraka (2016) *	0.65 (0.60, 0.69)	248 / 384
Sterling (2017) *	0.62 (0.59, 0.66)	472 / 756
Fleischer (2018) *	0.57 (0.52, 0.61)	252 / 445
Hallager (2018)	0.83 (0.82, 0.84)	4400 / 5305
Ireland (2018)	0.45 (0.45, 0.46)	14587 / 32114
Tunney (2018) *	0.66 (0.49, 0.79)	23 / 35
King (2019)	0.45 (0.21, 0.72)	5 / 11
Cowan (2020)	0.90 (0.87, 0.93)	386 / 427
Subtotal (I² = 99.67%, p = 0.00)	0.49 (0.40, 0.57)	

Hepatitis B or C		
Adlington (2014) * First time period	0.26 (0.15, 0.41)	10 / 39
Adlington (2014) * Second time period	0.17 (0.09, 0.31)	7 / 41
Raben (2015)	0.87 (0.85, 0.88)	2325 / 2681
Cayuelas Redondo (2019) Before intervention	0.08 (0.02, 0.24)	2 / 26
Cayuelas Redondo (2019) During intervention	0.29 (0.13, 0.53)	5 / 17
Cayuelas Redondo (2019) After intervention	0.05 (0.01, 0.23)	1 / 21
Subtotal (I² = 98.50%, p = 0.00)	0.27 (0.00, 0.71)	

Heterogeneity between groups: p = 0.603
Overall (I² = 99.65%, p = 0.00); 0.45 (0.39, 0.51)

Fig. 2. Continued.
A major strength of this review is the variety of settings and countries included. Second, by including not only published full-text articles, but also other publication types, we gained a more comprehensive picture of actual IC-guided HIV testing practices. Although the retrospective design of included studies posed a potential risk of bias, most full-text studies were assessed as low risk of bias. We further addressed this possible limitation in a sensitivity analysis including only full-text articles with low risk of bias and found lower estimated proportions, suggesting that the IC-guided HIV test ratio outside study settings might be even lower. Very large heterogeneity was observed in the meta-analyses by IC, probably reflecting true heterogeneity across settings and Western countries. Thus, exact inferences on HIV test ratios by ICs could not be made, but conclusions can be drawn from the heterogeneity itself; testing practices are both inconsistently reported and inconsistently adopted. These findings should be considered when evaluating efforts to improve HIV testing strategies. Finally, a selection of only seven ICs was included in this review. Although not all ICs were included, it is unlikely that the HIV test ratios in other ICs will be much higher, as well-established and guideline-supported ICs such as TB and HCV were included in this study, and it is evident that even in those improvement is still needed.

This systematic review shows that a decade after its introduction, IC-guided testing for HIV is still insufficiently implemented in Western countries. Lessons on effective strategies from ICs with the highest test ratios, such as universal testing strategies, should be used to design effective implementation strategies for optimal IC-guided testing, to reduce underdiagnosis and late presentation of HIV.

Funding

The H-TEAM initiative, of which this review is a project, is being supported by Aidsfonds (Grant No. 2013169), Stichting Amsterdam Dinner Foundation, Bristol-Myers Squibb International Corp. (study number: AI424–541), Gilead Sciences Europe Ltd (Grant No. PA-HIV-PREP-16-0024), Gilead Sciences (protocol numbers: CO-NL-276-4222, CO-US-276-1712), Janssen Pharmaceutica (reference number: PHNL/JAN/0714/0005b/1912(de), M.A.C AIDS Fund, ViIV Healthcare (PO numbers: 3000268822, 3000747780) and ZonMw (Grant No. 522002003). This review is further funded by Aidsfonds (Grant No. P-42702). The funders of the study had no role in the study design or execution.

Data sharing statement

The datasets generated and/or analysed during the current study are available from the corresponding author upon reasonable request.

Contributors statement

Geerlings acquired financial support for the project leading to this publication. Geerlings, Schim van der Loeff, van Bergen and Bogers were involved in the conceptualisation and design of methodology of the study. Bogers performed the literature search. Bogers and Hulstein performed data curation including screening of search results, data extraction, and performing quality assessments. Bogers analysed the data and designed the figures. Schim van der Loeff performed quality controls and validation on all data analyses. De Bree and Reiss provided commentary and revisions on the original draft. All authors were involved in the interpretation of the data and the preparation of the final manuscript.

Declaration of Competing Interest

Dr. Bogers reports grants from Aidsfonds, grants from H-TEAM, during the conduct of the study; and this work is partially funded by H-TEAM, a consortium of all actors involved in hiv-care and prevention in Amsterdam, with the ultimate goal to pursue the end of new hiv-infections in Amsterdam. The H- team is sponsored by a mix of
organisations, including the Municipality, AIDS-funds, and several pharmaceutical companies (www.hteam.nl). There are no personal fees or payment involved. H-TEAM is not involved in the design or conduct of this work. S.H.H. Hulstein has nothing to disclose. Dr. Schim van der Loeff reports other from Merck, non-financial support from Stichting Pathologie Onderzoek en Ontwikkeling (SPOO), outside the submitted work. Dr. de Bree reports grants from AIDS Fonds, grants from Stichting AmsterdamDiner Foundation, grants from Gilead Sciences, grants from Janssen Pharmaceutica, grants from ViiV Healthcare, grants from ZonMW, grants from M.A.C AIDS Fund, during the conduct of the study; grants and other from Gilead Sciences, outside the submitted work. Dr. Reiss reports grants from AIDS Fonds, grants from Stichting AmsterdamDiner Foundation, grants from Gilead Sciences, grants from Janssen Pharmaceutica, grants from ViiV Healthcare, grants from ZonMW, grants from M.A.C AIDS Fund, during the conduct of the study; grants and other from Gilead Sciences, outside the submitted work. Dr. van Bergen reports grants from RIVM: national institute for public health and the environment, during the conduct of the study; and reports being a member of the board of the H-TEAM, a consortium of all actors involved in HIV-care and prevention in Amsterdam, with the ultimate goal to pursue the end of new HIV-infections in Amsterdam. The H-team is sponsored by a mix of organisations, including the Municipality, AIDS-funds, and several pharmaceutical companies (www.hteam.nl). There are no personal fees or payment involved. Dr. Geerlings reports grants from Aidsfonds, during the conduct of the study.

Acknowledgements

We gratefully acknowledge René Spijker, MSc, for his collaboration and support in designing and conducting the search, and dr. Miranda Langendam for her collaboration and support. Finally, the authors thank the H-TEAM consortium (supplementary appendix 7).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.eclinm.2021.100877.

References

[1] European Centre for Disease Prevention and Control. HIV/AIDS surveillance in Europe 2019 –2018 data. Denmark: Copenhagen; 2018 https://www.ecdc.europa.eu/sites/default/files/documents/hiv-surveillance-report-2019.pdf Accessed 17 November 2020.
[2] Girardi E, Sabin CA, Monforte AD. Late diagnosis of HIV infection: epidemiological features, consequences and strategies to encourage earlier testing. J Acquir Immune Defic Syndr 2007;46(Suppl 1):S3–8.
[3] Mocroft A, Lundgren JD, Sabin ML, et al. Risk factors and outcomes for late presentation for HIV-positive persons in Europe: results from the Collaboration of Observational HIV Epidemiological Research Europe Study (COHERE). PLoS Med 2013;10(9):e1001510.
[4] Sanders GD, Bayoumi AM, Sundaram V, et al. Cost-effectiveness of screening for HIV in the era of highly active antiretroviral therapy. N Engl J Med 2005;352(6):570–85.
[5] Paltiel AD, Weinstein MC, Kimmel AD, et al. Expanded screening for HIV in the United States— an analysis of cost-effectiveness. N Engl J Med 2005;352(6):586–95.
[6] HIV in Europe. HIV indicator conditions: guidance for implementing HIV testing in adults in health care settings. Denmark: Copenhagen; 2014 http://www.hiveurope.eu/Portals/0/Documents/Guidance.pdf?ver=2014-01-29-113626-000 Accessed 13 October 2020.
[7] World Health Organization. Guidance on provider-initiated HIV testing and counselling in health facilities. Geneva, Switzerland: World Health Organization; 2007 Report No.: ISBN 978 92 4 159556 8.
[8] Sullivan AK, Raben D, Reekie J, et al. Feasibility and effectiveness of indicator condition-guided testing for HIV: results from HIDES I (HIV indicator diseases across Europe study), PLoS ONE 2013;8(1):e52845.
Basham CA, Elias B, Fanning A, Orr P. Tuberculosis among northern Manitoba First Nations, 2008–2012: program performance on- and off-reserve. Can J Public Health 2019;8:08.

Clark IT, Lobato MN, Gutierrez J, Sosa LE. HIV status among patients with tuberculosis and HIV testing practices by Connecticut health care providers. J Int Assoc Provid AIDS Care 2013;12(4):261–5.

Clark N, Antunes G, Williams J, Dibble W. Improving the uptake of HIV testing in patients with tuberculosis. Int J Tuberc Lung Dis 2018;22(10):1271–9.

Gardner A, Naureckas C, Beckwith C, Losikoff P, Martin C, Carter EJ. Experiences in implementation of routine human immunodeficiency virus testing in a US tuberculosis clinic. Int J Tuberc Lung Dis 2012;16(9):1241–6.

Hoss J, Goldberg H, Kaushal G, Basrani KA, Ferson MJ. HIV testing rates and co-infection among patients with tuberculosis in south-eastern Sydney, 2008–2013. Med J Aust 2015;202(5):255–7.

Ribiero L, Gomes M, Gao R, Duarte R. HIV screening of tuberculosis patients in Portugal: what are we missing? Int J Tuberc Lung Dis 2018;22(10):1271–9.

River P, Snyavskaya L, Brassard P. Burden of HIV and tuberculosis co-infection in Montreal, Quebec. Can J Public Health 2014;105(4):e263–7.

Sewell J, Capocci S, Johnson J, et al. Expanded blood borne virus testing in a tuberculosis clinic: A cost and yield analysis. Int J Infect Dis 2015;70(4):317–23.

William ST, Taylor R, Osman H. Changes in HIV testing rates among patients with tuberculosis in a large multiethnic city in the United Kingdom in 2008/09. HIV Med 2010;1:57.

Ayagoo C, Leon L, Sanchez A, Reguera A. Analysis of Extrapulmonary Tuberculosis (ETB) Registered in a Spanish hospital. Retrospective study 1999–2009. Intern Med J 2010;40:66. (abstr).

Hubbard A, Garcia E, Chitnis A, Wong R. High prevalence of HIV, Hbv, and Hcv Co-infection: an urban: safety-net hospital experience. Chest 2020;158:A329. (abstr).

Fate R, Makareza A, Fortune D, et al. Factors associated with high mortality during TB treatment in New Mexico: 2007–2017. Am J Respir Crit Care Med 2019;198(9):92. (abstr).

Perch M, Andersen P, Kok-Jensen A. HIV testing of patients diagnosed with tuberculosis increased in Denmark during the period from 2007 to 2009. HIV Med 2013;14:42–3.

Phillips M, Page I, Sweeney J, Flegg P, Palmer R, Wise A. A year on from UK national guidelines: an audit of HIV testing in patients diagnosed with a clinical indicator disease. HIV Med 2010;1:111–2. (abstr).

Porter JL, Hyams C, Shaukat M, et al. Should screening for chronic viral hepatitis in patients with tuberculosis be introduced to nice guidelines? Thorax 2014;69: A159. (abstr).

Quasim M, Nadama R, Adeleye O. Clinical study: diagnosis and management of tuberculosis patients as diagnosed by clinical excellence (NICE) United Kingdom guidelines. American journal of respiratory and critical care medicine conference: American Thoracic Society International Conference, ATS, 185; 2012.

Berna S, Silva C, Correas AM, Duarte R. HIV screening in tuberculosis patients, in the northern region of Portugal. European respiratory journal conference: European respiratory society annual congress, 46; 2015.

Ricci A, Buell F, Pinsi G, et al. Reported HIV-status in TB patients attended in a infectious diseases department in Brescia. Infection 2010;38:68. (abstr).

Stolarzewsicz N, Goodman A, Milburn H, Breen A. Rates of HIV infection falling in patients with TB in inner London? HIV Med 2015;16:42–3. (abstr).

Thorburn F. The impact of a multi-disciplinary meeting on the rates of HIV in testing in TB patients. HIV Med 2012:13:64. (abstr).

Vlasov S, Morgan E, Padmanabhan G, Bradley B, Williams M, Thornton-Chan J. HIV testing in TB and Hepatitis services in a district general hospital. HIV Med 2012:13:65. (abstr).

Deshpande K, St R, Roberts E, et al. Tenofovir therapy for hepatitis B may be commonly prescribed without HIV testing. J Acquir Immune Defic Syndr 2016;72(2); e53–4.

Ireland C, Ogaz D, Kirwan P, et al. HIV testing in persons diagnosed with hepatitis B and C. HIV Med 2018;19;3:54–5.

Lander M, Tohani A, Dias A, O’Connell R. Assessing HIV testing in hepatitis: an audit of HIV testing uptake in a specialist hepato cellular clinic in an area of high prevalence for hepatitis B and C. HIV Med 2014:15:96–7. (abstr).

Lynn AM, Larson J, Leise MD. Population-based HIV screening rates in patients with viral hepatitis. Gastroenterology 2014;146(5);S1003. (abstr).

Pavilides M, Madhotra R, Raza MM. HIV testing in patients with hepatitis B and C infection in the United Kingdom. Clin Microbiol Infect 2011;17:5802–53. (abstr).

Philpott J, Lallanani C, Gillard N, Unwin S. HIV testing in patients with hepatitis B (HIV Med 2011;12:41–2 (abstr).

Su C, Bannister N, Huang V. Evaluation of chronic hepatitis B treatment and assessment of chronic hepatitis B care at an Asian community health center in New York City. 2012. Hepatology 2015;62:933A. (abstr).

Smit SM, Hardtj J, Brown N, Keenan D, Falderon Y. Linkage outcomes for HIV/HCV Co-infected and HIV mono-infected patients participating in an emergency department screening program. Ann Emerg Med 2020;76:549. (abstr).

Fleisher I, Goby A, Nicholas W, et al. HCV antibody positive patients in a large healthcare system: HIV testing rates and compliance with CDC guidelines. Gastroenterology 2018;154:51201. (abstr).

Gilbert M, Barrios R, Wong E, et al. Use of provincial laboratory and surveillance data to inform strategies for expanding provider-initiated HIV testing and to assess their impact. Can J Infect Dis Med Microbiol 2021;20:808 (abstr).
[71] Oraka E, Abara W, Pitasi M, Van Handel M, DiNenno E. Prevalence of HIV testing among adults with a hepatitis C diagnosis: findings from the national health and nutrition examination survey 1999-2014. Sex Transm Dis 2016;43:5217. (abstr).

[72] Sterling RK, Amador J, Stewart P, et al. HIV testing in patients starting HCV treatment and factors associated with adherence to AASLD-IDSA guidelines. Hepatology 2017;66:531A-2A (abstr).

[73] Tunney R, Saxon C. Characteristics and audit of the management of all new hepatitis C diagnoses made in a level 3 genitourinary medicine clinic over the last 5 years. HIV Med 2018;19:5148. (abstr).

[74] Aldredge J, Leaf MC, Patel P, et al. Prevalence and predictors of HIV screening in invasive cervical cancer: a 10 year cohort study. Int J Gynecol Cancer 2020;30(6):772–6.

[75] Hwang JP, Granwehr BP, Torres HA, et al. HIV testing in patients with cancer at the initiation of therapy at a large US comprehensive cancer center. J Oncol Pract/Am Soc Clin Oncol 2015;11(5):384–90.

[76] McGee-Avila JK, Doose M, Nova J, Kumar R, Stroup AM, Tsui J. Patterns of HIV testing among women diagnosed with invasive cervical cancer in the New Jersey Medicaid Program. Cancer Causes Control 2020;31(10):931–41.

[77] Butler M, Black C, Cumming J, Groom T, Fargie F. HIV testing in patients with cervical intraepithelial neoplasia grade 2 and above: a clinical indicator disease. HIV Med 2014;15:105. (abstr).

[78] Lebari D, Kaczmarcki E. HIV testing in cancer: experience from a tertiary oncology hospital. HIV Med 2012;13:34. (abstr).

[79] Mosimann V, Cavassini M, Hugli O, et al. Patients with AIDS-defining cancers are not universally screened for HIV: a 10-year retrospective analysis of HIV-testing practices in a Swiss university hospital. HIV Med 2014;15(10):631–4.

[80] Bishai A, Vishnu P, Mandelson M, Aboulafia DM. Guidelines in clinical practice: appraisal of quality metrics in the management of newly diagnosed diffuse large b-cell lymphoma based on the American Society of hematology practice improvement module. Blood Conference: 59th Annual Meeting of the. American Society of Hematology, ASH; 2017.

[81] Bowman CA, Olarinde O, Wright J. Routine HIV testing in lymphoma patients - Overcoming the challenges. HIV Med 2010;1:59–60 (abstr).

[82] Buxton JK, Davidson XL, Davies JM, Scott PM, Tucker J. South East Scotland experience of HIV testing in patients newly diagnosed with lymphoma. J R College Phys Edinburgh 2011;41(3):284.

[83] Datta S, Lee R, Webb T, Ismail A, Jung A. 5 years experience of primary central nervous system lymphoma (PCNSL): a retrospective pilot audit. Neurosurgery and psychiatry conference: association of British neurologists, ABN. J Neurol 2015;86(11) (abstr).

[84] Davies D, Ishimwe P, Roberts M. A single centre's experience of HIV testing in patients with lymphoma. HIV Med 2018;19:5127. (abstr).