Hardy and BMO spaces associated to divergence form elliptic operators

Steve Hofmann · Svitlana Mayboroda

Abstract Consider a second order divergence form elliptic operator L with complex bounded measurable coefficients. In general, operators based on L, such as the Riesz transform or square function, may lie beyond the scope of the Calderón–Zygmund theory. They need not be bounded in the classical Hardy, BMO and even some L^p spaces. In this work we develop a theory of Hardy and BMO spaces associated to L, which includes, in particular, a molecular decomposition, maximal and square function characterizations, duality of Hardy and BMO spaces, and a John–Nirenberg inequality.

Mathematics Subject Classification (2000) 42B30 · 42B35 · 42B25 · 35J15

S. Hofmann was supported by the National Science Foundation.

S. Hofmann
Department of Mathematics, University of Missouri at Columbia, Columbia, MO 65211, USA
e-mail: hofmann@math.missouri.edu

S. Mayboroda
Department of Mathematics, The Ohio State University, 231 W 18th Avenue, Columbus, OH 43210, USA
e-mail: svitlana@math.ohio-state.edu

Present Address:
S. Mayboroda
Department of Mathematics, Purdue University, W. Lafayette, IN 47907-2067, USA
e-mail: svitlana@math.purdue.edu
1 Introduction and statement of main results

Extensive study of classical real-variable Hardy spaces in \mathbb{R}^n began in the early 1960s with the fundamental paper of Stein and Weiss [27]. Since then these classes of functions have played an important role in harmonic analysis, naturally continuing the scale of L^p spaces to the range of $p \leq 1$. Although many real-variable methods have been developed (see especially the work of Fefferman and Stein [17]), the theory of Hardy spaces is intimately connected with properties of harmonic functions and of the Laplacian.

For instance, Hardy space $H^1(\mathbb{R}^n)$ can be viewed as the collection of functions $f \in L^1(\mathbb{R}^n)$ such that the Riesz transform $\nabla \Delta^{-1/2} f$ belongs to $L^1(\mathbb{R}^n)$. One also has alternative characterizations of $H^1(\mathbb{R}^n)$ by the square function and the non-tangential maximal function associated to the Poisson semigroup generated by Laplacian. To be precise, fix a family of non-tangential cones $\Gamma(x) := \{(y, t) \in \mathbb{R}^n \times (0, \infty) : |x - y| < t\}, x \in \mathbb{R}^n$, and define

$$S^\Delta f(x) = \left(\int \int_{\Gamma(x)} \left| t \nabla e^{-t\sqrt{\Delta}} f(y) \right|^2 \frac{dydt}{t^{n+1}} \right)^{1/2}, \quad (1.1)$$

$$N^\Delta f(x) = \sup_{(y, t) \in \Gamma(x)} \left| e^{-t\sqrt{\Delta}} f(y) \right|. \quad (1.2)$$

Then $\|N^\Delta f\|_{L^1(\mathbb{R}^n)}$ and $\|S^\Delta f\|_{L^1(\mathbb{R}^n)}$ give equivalent norms in the space $H^1(\mathbb{R}^n)$, that is

$$\|N^\Delta f\|_{L^1(\mathbb{R}^n)} \approx \|S^\Delta f\|_{L^1(\mathbb{R}^n)} \approx \|f\|_{H^1(\mathbb{R}^n)}.$$

Consider now a general elliptic operator in divergence form with complex bounded coefficients. Let A be an $n \times n$ matrix with entries

$$a_{jk} : L^\infty(\mathbb{R}^n) \rightarrow \mathbb{C}, \quad j = 1, \ldots, n, \quad k = 1, \ldots, n, \quad (1.4)$$

satisfying the ellipticity condition

$$\lambda |\xi|^2 \leq \Re e A\xi \cdot \bar{\xi} \quad \text{and} \quad |A\xi \cdot \bar{\zeta}| \leq \Lambda |\xi||\zeta|, \quad \forall \xi, \zeta \in \mathbb{C}^n, \quad (1.5)$$