CONNECTION AND DISPERSION OF COMPUTATION

KOBAYASHI, KOJI

Abstract. In this paper, we describe the impact on the computational complexity of Connection and Dispersion of CNF. In previous paper [1], we told about structural differences in the P-complete problems and NP-complete problems. In this paper, we clarify the CNF’s dispersion and HornCNF’s connection, and shows the difference between CNFSAT HornSAT. First we focus on the MUC decision problem. We clarify the relationship between MUC and the classifying of the truth value assignment. Next, we clarify the clauses correlation and orthogonal by using the two inner product of clauses. Because HornMUC has higher orthogonal, its orthogonal MUC is polynomial size. Because MUC has higher correlation, its orthogonal MUC is not polynomial size. And, HornMUC whereas only be a large polynomial is at most its size even if orthogonal than orthogonal high, MUC will be fit to size polynomial in the size and orthogonalized using HornCNF more highly correlated shown. So $$DP \neq P$$, and $$NP \neq P$$.

1. CNF’s classification and CNFSAT

We show the relationship between CNFSAT and CNF’s classification. We show the relationship between MUC decision problem and CNFSAT. And We show the relationship that determined by the CNF. And We show the relationship between CNF’s classification and MUC decision problem.

1.1. MUC decision problem. Describes the MUC decision problem. MUC decision problem is the problem to decide the CNF is MUC (Minimum Unsatisfiable Core) or not. MUC is the unsatisfiable CNF. And it changes MUC to satisfiable CNF that remove one of the MUC’s clause. MUC decision problem is combination problem of coNP-complete and P-complete problem. And HornCNF’s MUC decision problem is P-complete because of $$P = coP$$.

The relationship between the DP-complete and P-complete is;

Theorem 1. If $$P \neq DP$$ then $$P \neq NP$$. So if we can not reduce MUC decision problem to HornMUC decision problem in polynomial time, then $$P \neq NP$$.

Proof. If $$P = NP$$ then $$NP = coNP$$ and $$P = DP$$. So MUC decision problem can reduce HornMUC decision problem in polynomial time. So take the contrapositive, if we can not reduce MUC decision problem to HornMUC decision problem in polynomial time, then $$P \neq NP$$. □

1.2. CNF classification. Describe the relationship that define the CNF. CNF clauses value corresponds to either true or false. Clauses are the rules that maps each truth value assignment to truth value. This is equivalence relation that classify each truth values to equivalent class.
Definition 2. Clauses equivalence relation is the truth value assignments relation that equal the clauses value. Similarly, CNF equivalence relation is the truth value assignments relation that equal the all clauses value set.

I will use the term “CNF classification” to the truth value assignments equivalence class of CNF, and “CNF equivalence class” to the equivalence class of CNF classification. And “Logical value assignment” to the set of the clauses values. And “Cyclic value assignment” to the logical value assignment that have only one false value clause, and “All true assignment” to the logical value assignment that have no false value. Number of cyclic value assignment matches the number of the clauses. All true assignment is only one. The combined truth value assignment and logical value assignment is the truth value table of the clauses. Especially, I will use the term “Logical value table” to the truth value table.

1.3. CNF classification and MUC decision problem. MUC decision problem is a matter to determine the truth as an input CNF, can be thought as the problems dealing with CNF classification. The problem is the decision problem that the logical value assignment includes all the cyclic value assignment and excludes all true assignment. So MUC decision problem can be divided into two calculations, CNF classification and decision of the logical value assignments.

CNF classification includes the difference of MUC decision problem and Horn-MUC decision problem. In decision of logical value assignment, There is no difference between MUC decision problem and HornMUC decision problem. And these can be determined in polynomial time either. Especially, all logical value assignments is cyclic value assignment, the decision of logical value assignment can determined in polynomial time of the number of the clauses.

Theorem 3. Decision of logical value assignment can be done in polynomial time either MUC decision problem or HornMUC decision problem. Thus, the difference in computational complexity of the MUC decision problem and HornMUC decision problem will appear in size of the logic value assignments of CNF classification.

Proof. The decision of logical value assignment of MUC decision problem and Horn-MUC decision problem is the computation that the logical value assignment includes all cyclic value assignment and excludes all true assignment. We can determine the decision by determine the all logical value assignment. Thus, We can determine the decision only the polynomial time of the logical value assignment.

And we can handle in polynomial time of the logical value assignment that reduce from MUC decision problem and HornMUC decision problem. So, if they have the computation complexity difference between MUC decision problem and HornMUC decision problem, the difference included in CNF classification.

Therefore, What has to be noticed is the CNF classification.

2. MUC as Periodic function

In view of periodic function, let us then consider MUC. CNF clauses classification have the periodicity in truth value table. Thus, we can deal with CNF as periodic function.

The truth table grows larger the type of variables included in the clauses, and truth value assignment is changed and the clause is false by variable’s positive and negative. Thus, in periodic function of clauses, variable is cycle and variable’s
positive/negative is phase. And CNF is the periodic function that put many clauses periodic function. Clauses is the notation in the frequency domain, logical value table is the notation in the time domain.

Definition 4. I will use the term “Clause cycle” to the number of the variables in clauses. The number of Clause cycle is equal to the number of all cases of change the clauses variable’s positive/negative.

I will use the term “Clause phase” to the positive/negative configuration of the variables in clauses. Clause phase is the position of the truth value assignment that the clause make false in truth value table. The clause phase difference of two clauses is equal the minimum Hamming distance of these truth value assignment that make these clauses false.

In MUC, there is a equivalence that makes only each clause false, and the truth value assignment does not belong to the false equivalence of other clauses. In other words, the equivalence class is not a combination of other clauses of MUC. Thus, between the clause and the other clauses, there is the orthogonal that could not save the logical value in transposition. To put it the other way round, any false clause in the same equivalence can transpose another clause each other. Thus, between the clause and the another, there is the correlation that can save the logical value in transposition.

Theorem 5. Each clauses of the MUC have the orthogonality that can not replace with a combination of other clauses in the MUC. If MUC have the equivalence class that have some false clauses, the clauses have the correlation that can replace each other.

Proof. We prove the clauses orthogonality of MUC using proof by contradiction. We assume Clauses C_1 without orthogonality is included in the MUC. Because C_1 does not have the orthogonality, the truth value assignments that C_1 is false will be false in another clauses. But this is inconsistent with the terms of the MUC (there are truth value assignment clause that clause is false). Thus From the proof by contradiction, clauses of MUC have orthogonality.

It is clear that the clauses have the correlation if the clauses have the same equivalence class. □

Logic value assignment of MUC and orthogonality/correlation has a deep relationship. Logical value Assignment represents the relationship between the some clauses which is false in truth value assignment. In other words, the same value clauses in same logical value assignment have correlation. To put it the other way round, the different value clauses in same logical value assignment have orthogonality. In addition, there are the cyclic value assignment to each clauses in MUC, there must also be orthogonal of the each clauses. Therefore, to increase the orthogonality between MUC clauses, it is necessary that all logical value assignment is cyclic value assignment in MUC.

Theorem 6. All clauses in MUC that all logical value assignment is cyclic value assignment is orthogonal. And any truth value assignment is false at only one clause.

Proof. It is clear from the definition of the cyclic value assignment. □

In addition, MUC is the CNF that is false of all truth value assignment, and there is always a clause corresponding to the equivalence classes. In other words, MUC is complete system based on the equivalence classes of the truth value assignment.
Theorem 7. MUC is complete system based on the equivalence classes of the truth value assignment.

Proof. It is clear from the definition of the equivalence classes of the truth value assignment. □

Thus, MUC thats all logical value assignments are cyclic value assignments is complete orthogonal function.

Theorem 8. MUC thats all logical value assignments are cyclic value assignments is complete orthogonal function. And every clauses are orthogonal basis of the complete orthogonal function. I will use the term “Orthogonal MUC” to the MUC.

Proof. Judging from the above[7] this is clear. □

Thus, by reducing logical value assignments to all cyclic value assignments with keeping the orthogonality, we can express the MUC size in the number of clauses.

3. Orthogonalization of MUC

We reduce MUC to orthogonal MUC under the constraints of the HornMUC. First, we define the two inner product of clauses, and define the orthogonality of clauses. Secondly, we clarify the limitations HornMUC. And we show how to reduce the MUC to the orthogonal MUC.

And we show that we can reduce HornMUC to orthogonal MUC in polynomial time from its connectivity, and can not reduce MUC.

I will use the term “Fact clause” to the HornCNF’s clauses that include only positive variable. “Goal clause” to the HornCNF’s clauses that include only negative variable. “Rule clause” to the HornCNF’s clauses that is not fact clause and goal clause. “Case clause” to the HornCNF’s clauses that is fact clauses and rule clauses.

3.1. Clauses inner product and inner harmony. Let us start with defining the inner product and inner harmony, and considering the the these orthogonality. However, considering the duality of the conjunction and disjunction, and consider the dual inner product.

Definition 9. I will use the term “Inner product” as follow;
\[
\langle C_1, C_2 \rangle = \langle C_1 \perp C_2 \rangle = \langle C_1 (x_i) \land C_2 (x_i) \rangle = \exists x_i (C_1 (x_i) \land C_2 (x_i))
\]

I will use the term “Inner harmony” as the duality of the inner product.
\[
\langle C_1, C_2 \rangle^d = \langle C_1 \lor C_2 \rangle = \langle C_1 (x_i) \lor C_2 (x_i) \rangle = \land (C_1 (x_i) \lor C_2 (x_i))
\]
\[
= \bar{x}_i (C_1 (x_i) \lor C_2 (x_i)) = x_i (C_1 (x_i) \lor C_2 (x_i))
\]
\[
\lor () , \land () \text{ is the disjunction and conjunction of all truth value assignment value.}
\]

It also defines the inner product and inner harmony of more than two. And it also defines the inner product and inner harmony of CNF.

Also, we can define the orthogonality of inner product and inner harmony.

depending on whether that is false in the inner section and can be determined for each of the orthogonality. Defined as follows: Note that the duality of inner product replace true and false.

Definition 10. When the inner product is false, the clauses are orthogonal at inner product. I will use “\(C_1 \perp C_2\)” to orthogonal at inner product. Orthogonal CNF at inner product is unsatisfiable CNF.
When the inner harmony is true, the clauses are orthogonal at inner harmony. I will use “$C_1 \lor C_2$” to orthogonal at inner harmony. Orthogonal CNF at inner harmony is the CNF that all logical value assignment are cyclic value assignment.

I will use term “Clauses orthogonalization” to reducing two clauses to orthogonal clauses at inner harmony.

When the inner harmony is orthogonal, the CNF that include these clauses are orthogonal at inner harmony. I will use “$C_1 \lor C_2$” to orthogonal at inner harmony.

3.2. HornMUC constraints. Describes the HornMUC’s constraints. HornMUC is the CNF that each clauses have at most one positive variables. This restrict the phase difference of clauses. Therefore, it is also restrict the inner harmony.

First, we show the restriction of the phase difference in the HornMUC clauses.

Theorem 11. Phase difference between the two clauses of HornMUC would be at most one. In other words, HornMUC clauses are connected together.

Proof. We assume that HornMUC have two clauses $C_1 = (x_1 \lor \overline{x_2} \cdots), C_2 = (x_2 \lor \overline{x_1} \cdots)$. These clauses are true when $T = (x_1, x_2 \cdots) = (\bot, \bot \cdots)$. Thus, HornMUC must include the clause that is false at truth value assignment T. But in order to satisfy this condition, HornCNF include $(x_1 \lor x_2)$ or be false regardless (x_1, x_2). This is contradicts the assumption that HornMUC include C_1, C_2. Thus From the proof by contradiction, HornMUC do not include the clauses these phase differnet more than two. □

We can see from the HornMUC restrict what the structure of HornCNF is restricted. HornMUC’s phase difference is at most one, HornMUC structure has been connected not only at whole but also each part. Thus, HornMUC can not construct the structure with the non-connected part. HornMUC constitutes a partial order of phases. And clause cycle do not affect to the HornMUC’s partial order.

Theorem 12. HornMUC can not construct the structure with the non-connected part. And HornMUC constitutes a partial order of phases.

Proof. Shows the HornMUC’s connection. From mentioned above all clauses are connecting or crossing. We assume that there are HornMUC that can be divided into two subsets of non-connected to each other. We assume that we can split the HornMUC into two subsets that is not connected. The subsets have no common variables or have only common negative variables. But if the subsets have no common variables, HornMUC’s unsatisfiability do not change to delete one of these subset. So, This is contradicts the assumption of HornMUC. And if the subsets have only common negative variables, HornMUC’s unsatisfiability do not change to delete the clauses that include that negative variables. So, from the proof by contradiction, we can not divide HornMUC into two subsets of non-connected to each other.

Shows the HornMUC’s structure of partially ordered. About HornCNF’s upper clause C_U and lower clause C_L;

$\cdots \geq C_U \geq C_k \geq C_{k-1} \geq \cdots \geq C_1 \geq C_L \geq \cdots$

$\iff \cdots \geq (x_U \lor \overline{x_K} \cdots) \geq (x_k \lor \overline{x_{k-1}} \cdots) \geq \cdots \geq (x_1 \lor \overline{x_L} \cdots) \geq (x_L \lor \cdots) \geq \cdots$

It is clear that reflexive is satisfied. It is clear that transitivity is satisfied from HornCNF’s constraints (clause include at most one positive variable.)
We can see the antisymmetric from the following:
\[\forall C_1, C_2 ((C_1 \leq C_2) \land (C_2 \leq C_1))\]
\[= \forall F_{i=1,2,3,4} (\forall x_1, x_2 ((x_1 \lor F_1) \land (x_2 \lor \overline{x_1} \lor \overline{x_2}) \land (x_1 \lor \overline{x_2} \lor F_4)))\]
\[= \forall x_1, x_2 ((x_1 = x_2) \land (x_2 \lor \overline{x_1}) \land (x_1 \lor \overline{x_2}))) = \forall x_1, x_2 (x_1 = x_2)\]
\[F_{i=1,2,3,4} : CNF\]
So HornMUC clauses constitutes a partial order.

This constrain HornMUC’s inner harmony. HornMUC constitutes a partial order from empty clause leading to fact clause, rule clause, goal clause, and finally empty clause. Thus, we can split the HornMUC, we can only cut into upper and lower part of this partial order.

Theorem 13. When we split the HornMUC, we can only cut into upper and lower part of this partial order. Each part is a partial order. Cutting clause exist only one part.

Proof. It is clear that HornMUC is a partial order. □

For example, if you divide the \((x_0) \lor \overline{x_0}\) by MUC;
\[(x_0 \land (\overline{x_0} \lor x_1) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_3) \land (x_2 \lor \overline{x_3})) \lor (\overline{x_2} \lor x_3)\]
\[(\overline{x_0} \lor x_1)\]
is divide to \((\overline{\overline{x_0}} \lor x_1 \lor x_2 \lor x_3)\) and \((\overline{x_0} \lor x_1 \lor \overline{x_2} \lor \overline{x_3})\).

But because HornMUC can not be greater than the distance of two clauses, we can not divide any clauses.

3.3. Clause Orthogonalization by using HornMUC. Describes the way to Orthogonalize clause by using HornMUC. For mentioned above [123], we are constrained when split MUC by using HornMUC because of HornMUC’s partial order. And we must cut the clauses when we orthogonalize clauses to orthogonal part and correlation part.

For example, if you orthogonalize \((x_0 \lor \overline{x_1} \lor \overline{x_2})\) and \((x_0 \lor x_3 \lor x_4)\), we must cut follows;
\[(x_0 \lor \overline{x_1} \lor \overline{x_2}) \land (x_0 \lor x_3 \lor x_1) \land (x_0 \lor x_3 \lor x_4 \lor \overline{x_1})\]
\[= (x_0 \lor \overline{x_1} \lor \overline{x_2}) \land (x_0 \lor x_3 \lor x_1) \land (x_0 \lor x_3 \lor x_4 \lor \overline{x_1})\]
\[\land (x_0 \lor x_3 \lor x_4 \lor \overline{x_1} \lor x_2) \land (x_0 \lor x_3 \lor x_4 \lor \overline{x_1} \lor \overline{x_2})\]
\[= (x_0 \lor \overline{x_1} \lor \overline{x_2}) \land (x_0 \lor x_3 \lor x_4 \lor x_1) \land (x_0 \lor x_3 \lor x_4 \lor \overline{x_1} \lor x_2)\]
repeat that cutting target clause to orthogonal part and correlation part. And finally correlation clause is absorbed to another clauses which match base clause. In addition, this reduction is added only HornMUC, so we can keep CNF’s satisfies possibility.

Definition 14. I will use term “Clause cut” to divide clause by using HornMUC.

Theorem 15. By cutting correlation clauses to orthogonal part and correlation part, we can orthogonalize the clauses.

Proof. It is clear that we can achieved by generalizing the above procedure. So I omit. □

3.4. HornMUC Orthogonalization. Describes that we can reduce HornMUC to orthogonalize MUC in polynomial time. For mentioned above [123], we can reduce HornMUC to orthogonalize MUC by cutting all correlation parts. And we can reduce more easier HornMUC to orthogonalize MUC by using HornCNF’s constraint.
Specifically, we can reduce that we cut the clause at the negative variable correspond to the positive variable of lower clause that is nearer from fact clause. Thus, we can absorb every cutting.

For example to Orthogonalize \((x_0) \land (\overline{x_0} \lor x_1) \land (\overline{x_1} \lor x_2) \land (\overline{x_2})\), cutting \((\overline{x_1} \lor x_2)\) at \(x_0\), cutting \((\overline{x_2})\) at \(x_0\), and cutting \((\overline{x_0} \lor x_2)\) at \(x_1\).

\[
\begin{align*}
(x_0) \land (\overline{x_0} \lor x_1) \land (\overline{x_1} \lor x_2) \land (\overline{x_2}) & = (x_0) \land (\overline{x_0} \lor x_1) \land (\overline{x_0} \lor x_1 \lor x_2) \land (x_0 \lor \overline{x_1} \lor x_2) \land (x_0 \lor x_2) \\
& = (x_0) \land (\overline{x_0} \lor x_1) \land (\overline{x_0} \lor x_1 \lor x_2) \land (\overline{x_1} \lor x_2) \\
& = (x_0) \land (\overline{x_0} \lor x_1) \land (\overline{x_0} \lor x_1 \lor x_2) \land (\overline{x_0} \lor x_1) \land (\overline{x_0} \lor x_2) \\
& = (x_0) \land (\overline{x_0} \lor x_1) \land (\overline{x_0} \lor x_1 \lor x_2) \land (\overline{x_0} \lor x_1 \lor x_2) \\
& = (x_0) \land (\overline{x_0} \lor x_1) \land (\overline{x_0} \lor x_1 \lor x_2) \land (\overline{x_0} \lor x_1 \lor x_2)
\end{align*}
\]

Because the number of clauses do not increase and the number of variables in each clauses increase at most polynomial size, so this reduction increase at most polynomial size. And HornMUC clauses constitutes a partial order and it is enough to orthogonalize each clause at lower clauses. So the reduction HornMUC to orthogonal MUC takes at most polynomial time.

Theorem 16. We can reduce HornMUC to orthogonal MUC at most polynomial size and time.

Proof. It is clear that we can achieved by generalizing the above procedure. So I omit. \(\square\)

Theorem 17. The clauses and variables of the orthogonal MUC that reduced from Horn MUC constitute total order.

Proof. From the above procedure, the clause of orthogonal MUC include the negative variable that’s positive variable is included in the lower clauses. So, all clauses have order, and orthogonal MUC constitute total order. \(\square\)

Theorem 18. If we can not reduce MUC to orthogonal MUC in polynomial time by using clause cutting, then \(P \neq NP\).

Proof. From the above [14] if MUC is HornMUC, then we can reduce the MUC to orthogonal MUC by using clause cutting in polynomial time and size. And if \(P = NP\), then we can reduce MUC to HornMUC in polynomial time and size. So, if \(P = NP\) and we can reduce MUC to HornMUC in polynomial time, then we can reduce the MUC to orthogonal MUC in polynomial time and size.

Taking the contrapositive, if we can not reduce MUC to orthogonal MUC in polynomial time and size, then \(P \neq NP\) or we can not reduce MUC to HornMUC in polynomial time and size. So, from the above [1] if we can not reduce MUC to orthogonal MUC in polynomial time and size by using clause cutting, then \(P \neq NP\). \(\square\)

3.5. **MUC Orthogonalization.** Describes that we can not reduce MUC to orthogonalize MUC in polynomial time. Unlike HornMUC, MUC can be set to any phase difference between the clauses. So MUC clauses have high disparition and correlation. But for mentioned above [12] HornMUC connected each clauses. So we must use many HornMUC each other to cut every disparate areas to orthogonal part and correlation part. And because of HornMUC’s connection, we can not use same HornMUC to cut different areas.
For example to this, we think MUC include follow clauses;
\[
O_3 (x_0, x_1, x_2) \land E_3 (x_3, x_4, x_5)
\]
\[
O_3 (x_0, x_1, x_2) = (x_0 \lor x_1 \lor x_2) \land (x_0 \lor \overline{x_1} \lor \overline{x_2}) \land (\overline{x_0} \lor x_1 \lor \overline{x_2}) \land (\overline{x_0} \lor \overline{x_1} \lor x_2)
\]
\[
E_3 (x_3, x_4, x_5) = (\overline{x_3} \lor x_4 \lor x_5) \land (\overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) \land (x_3 \lor \overline{x_4} \lor x_5) \land (x_3 \lor x_4 \lor \overline{x_5})
\]

In other words, \(O_3 \) is true when it contains an odd trues in truth value assignment, \(E_3 \) is true when it contains even trues in truth value assignment. \(O_3 \) and \(E_3 \) divide the truth value assignment. So if we want to orthogonalize the MUC that include \(O_3 \) and \(E_3 \), we must cut every area by using every other HornCNF. This orthogonalize MUC is the MUC that expanded to CNF;
\[
O_3 (x_0, x_1, x_2) \land (E_3 (x_3, x_4, x_5) \lor ((\overline{x_0} \lor \overline{x_1} \lor \overline{x_2}) \land (\overline{x_0} \lor x_1 \lor x_2) \land (x_0 \lor \overline{x_1} \lor x_2) \land (x_0 \lor x_1 \lor \overline{x_2}))
\]

Theorem 19. When we orthogonalize CNF that disparted some area, We must cut each area by using every another HornMUC.

Proof. To assume that we can orthogonalize two area by using one HornMUC. This time, there is other closure area between the divided area. From assuming, we can orthogonalize these area by using one HornMUC. But we must cross the HornMUC at the closure that divided area. This is contradicts the assumption that we can orthogonalize by using one HornMUC. Thus, From the proof by contradiction, we can not orthogonalize two area by using one HornMUC. \(\square \)

As a example, let us construct the MUC that have many divided area amount of non-polynomial size of MUC. We should notice that the truth value assignments having same even-odd of true value do not connect each other.

By combining proper \(O_3 \) and \(E_3 \) above, it is possible to configure the CNF that is true when the truth value assignment having same even-odd of true value. For example;
\[
O_4 (x_0, x_1, x_2, x_3) = O_3 (x, x_0, x_1) \land E_3 (x, x_2, x_3)
\]
This CNF is true only if the truth value having odd of true value. This can be extended easily for any number of variables.
\[
O_{n+1} (x_0, \cdots, x_n) = O_n (x, x_0, \cdots, x_{n-2}) \land E_3 (x, x_{n-1}, x_n)
\]
Number of \(O_n \) clause is polynomial size of variables. And truth value assignment having odd of true value is amount of half of all truth value assignment, and every truth value assignment having same even-odd of true value do not connect each other. So \(O_n \) have many divided area amount of non-polynomial size. And there is MUC that we can not reduce to orthogonal MUC in polynomial size.

Theorem 20. there is MUC that we can not reduce to orthogonal MUC in polynomial size by using HornMUC.

Proof. For mentioned above examples, there is CNF that divide the truth value assignment into the same even-odd of true value. And these CNF can be a part of the MUC. So there is the MUC that divided area amount of non-polynomial size. For mentioned above [19] we must cut each area to orthogonalize MUC. So there is MUC that we can not reduce to orthogonal MUC in polynomial size. \(\square \)

4. DP is not P and NP is not P

Describes the difference between MUC decision problem and HornMUC decision problem. For mentioned above [3] the difference of the MUC decision problem and HornMUC decision problem will appear in CNF classification. And orthogonal basis of inner harmony is different between MUC and HornMUC. For mentiond above
all HornMUC have polynomial size orthogonal basis. But for mentioned above there is MUC that have non-polynomial size orthogonal basis. All orthogonal MUC’s clause is orthogonal basis, and correspond to the equivalence class. So we can not reduce MUC to HornMUC in polynomial size. So $DP \neq P$. And for mentioned above $NP \neq P$.

References

[1] Koji Kobayashi, Symmetry and Uncountability of Computation. 2010, 2010arXiv1008.2247K
[2] C. H. Papadimitriou and M. Yannakakis. The complexity of facets (and some facets of complexity), Journal of Computer and System Sciences 28:244-259, 1984.