Fatoye, Francis and Smith, Philip and Gebrye, Tadesse and Yeowell, G (2019) Real-world Persistence and Adherence with Oral Bisphosphonates for Osteoporosis - A Systematic Review. BMJ Open, 9. ISSN 2044-6055

Downloaded from: http://e-space.mmu.ac.uk/621373/
Publisher: BMJ Journals
DOI: https://doi.org/10.1136/bmjopen-2018-027049
Usage rights: Creative Commons: Attribution-Noncommercial 4.0

Please cite the published version
Real-world persistence and adherence with oral bisphosphonates for osteoporosis: a systematic review

F Fatoye, P Smith, T Gebrye, G Yeowell

ABSTRACT

Objectives This study examined patient adherence and persistence to oral bisphosphonates for the treatment of osteoporosis in real-world settings.

Methods A systematic review was completed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Medical Literature Analysis and Retrieval System Online (MEDLINE), Cumulative Index to Nursing and Allied Health Literature (CINAHL), Allied and Complementary Medicine Database (AMED), Database of Abstracts of Reviews of Effects (DARE), Health Technology Assessment (HTA) and National Health Service Economic Evaluation Database NHS EED) databases were searched for studies published in English language up to April 2018. Prospective and retrospective observational studies that used prescription claim databases or hospital medical records to examine patient adherence and persistence to oral bisphosphonate treatment among adults with osteoporosis were included. The Newcastle–Ottawa quality assessment scale (NOS) was used to assess the quality of included studies.

Results The search yielded 540 published studies, of which 89 were deemed relevant and were included in this review. The mean age of patients included within the studies ranged between 53 to 80.8 years, and the follow-up varied from 3 months to 14 years. The mean persistence of oral bisphosphonates for 6 months, 1 year and 2 years ranged from 34.8% to 71.3%, 17.7% to 74.8% and 12.9% to 72.0%, respectively. The mean medication possession ratio ranged from 28.2% to 84.5%, 23% to 50%, 27.2% to 46% over 1 year, 2 years and 3 years, respectively. All studies included scored between 6 to 8 out of 9 on the NOS. The determinants of adherence and persistence to oral bisphosphonates included geographic residence, marital status, tobacco use, educational status, income, hospitalisation, medication type and dosing frequency.

Conclusions While a number of studies reported high levels of persistence and adherence, the findings of this review suggest that patient persistence and adherence with oral bisphosphonates medications was poor and reduced notably over time. Overall, adherence was suboptimal. To maximise adherence and persistence to oral bisphosphonates, it is important to consider possible determinants, including characteristics of the patients.

INTRODUCTION

Osteoporosis is a chronic global health condition, characterised by low bone density and bone structure deterioration. About a third of men and more than half of all women experience osteoporosis during their lives. Moreover, evidence suggests that fracture-related mortality rate is higher in men than women. The first sign of osteoporosis is often a fracture of the wrist, hip and spine. Osteoporotic fractures can lead to long-term problems such as chronic pain, long-term disability and even death. The long-term problems of osteoporosis may also lead to a substantial economic burden on individuals, health systems and society. Osteoporosis is a common disease in the USA, and more than 1.5 million osteoporosis-related fractures occur each year. For example, the findings of a study of osteoporosis-related fractures in the USA indicated that patients with a diagnosis of osteoporosis and concurrent fracture ($15,942) had more than two times the annual healthcare expenditure, compared with patients with osteoporosis without a fracture ($6,746). The total cost estimates for the treatment of osteoporosis and subsequent care in the USA was around $7 billion in 2003 and this is expected to increase by...
Bisphosphonate medications for osteoporosis have been shown to increase bone strength and reduce fracture risk and can be administered orally or intravenously across a wide range of doses and dosing intervals. Bisphosphonate treatments such as etidronate, alendronate, ibandronate, risedronate and zoledronic acid are able to prevent vertebral fractures more than placebo. Prevention can be classified as primary or secondary. Primary prevention attempts to protect individuals against the onset of osteoporosis, whereas secondary prevention treats individuals living with the disease. Treatments such as alendronate, risedronate and other oral medications such as oestrogen can prevent hip fractures more than placebo. Patients treated with alendronate and zoledronic acid had better efficacy in preventing hip fracture. On the other hand, zoledronic acid was reported to lead to an increased risk of adverse events than alendronate and placebo. The clinical issues that should be considered when treating patients with osteoporosis using bisphosphonates include: the choice of which type of bisphosphonates to use, monitoring to assure the medication is taken correctly, determining the use of PROSPERO, with registration number CRD: 42017059894.

Methods
This systematic review was conducted in accordance to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guideline, a technique that addresses the eligibility, data sources, selection of studies, data extraction and data analysis. The review was registered on PROSPERO, with registration number CRD: 42017059894.

Data sources
We searched the Allied and Complementary Medicine Database, Cumulative Index to Nursing and Allied Health Literature, MEDLINE; Database of Abstracts of Reviews of Effects, Health Technology Assessment database and the Centre for Reviews and Dissemination database up to April 2018. The search terms used were persist* OR adhers* OR non-adhers* OR complian* OR discontinu* OR prescri* OR pattern* OR gap* (TITLE) AND Osteopor* OR Osteopen* OR (Bone AND loss) OR Alendron* OR Etidron* OR Ibandron* OR Risedron* OR Biphosphonat* (TITLE). All search results were exported into EndNote Web (Thomas Reuter, CA, USA) bibliography software.

Inclusion criteria
Prospective and retrospective observational studies that used prescription claims databases or patient electronic medical records or to investigate persistence and adherence to oral bisphosphonate medications in the treatment of osteoporosis or osteopenia in human adults were included. Eligible studies were required to have an abstract and article published in the English language, within a peer-reviewed source. Studies conducted in any geographical location were permitted. Randomised controlled trials (RCTs), systematic reviews, narrative literature reviews and conference papers were excluded. Further exclusion criteria were as follows; abstract unavailable, studies not yet fully completed, single case studies/reports, observational studies drawing persistence/adherence data from patient or general practitioner survey, prospective studies designed to observe changes in adherence via the introduction of a non-typical intervention or adjunct and studies containing patients aged <18 years.

Study selection
Duplicates were removed electronically and manually. Two independent researchers (PS and TG) were involved in screening the title and abstract of each study. Full-text articles were obtained and were excluded if they did not meet the inclusion criteria. Any disagreement in study selection was resolved through discussion and consultation with other members of the project team (GY and FF), where necessary. During screening, open-label extension studies of RCTs were excluded. It was considered that this design may not generate data that truly reflected a real-world pattern of persistence and adherence. Studies using data from electronic medical records, outside of addition to large-scale databases were also included provided
persistence and adherence data were determined from prescription claims data rather than extracted from supplemental patient interviews, patient-supplied pill counts or subjective questionnaires. The literature search was supplemented by screening the reference lists of included articles for further eligible studies.

Data extraction and study quality assessment

Determinants (factors that may affect or be associated with) persistence or adherence were extracted from eligible studies, including patient characteristics such as age and sex, medication, population location, time-frame of data collection and length of follow-up. The quality of the studies was assessed using the Newcastle–Ottawa quality assessment scale (NOS) for cohort studies. The NOS contains eight items, categorised into three dimensions including selection and comparability. The maximum score of NOS is nine. However, some questions within the NOS were not applicable across the eligible studies dependent on their study design. In this instance, authors determined and adjusted the NOS score to account for this, rating studies only on the number of questions that were applicable and relevant.

Data analysis

A descriptive analysis of extracted results is presented. No meta-analysis was carried out due to heterogeneity of reporting methodologies and calculations of adherence and persistence across studies.

Patient and public involvement

Patients and the general public were not involved in this study.

RESULTS

The literature search identified 540 potential articles, of which 517 were remained after the removal of duplicates. After the titles and abstracts of these publications were screened, 143 references were identified as potentially relevant and retrieved in full text. Of these, 89 were included in review (figure 1). The methodological quality of the included studies is presented (table 1). All the included studies scored between six to eight on the NOS. The geographical location of the studies included were: USA (n=37), Canada (n=7), UK (n=6), Netherlands (n=6), Denmark (n=5), Italy (n=5), Germany

Figure 1 The preferred reporting for systematic reviews and meta-analyses diagram representing the systematic literature search.

Fatoye F, et al. BMJ Open 2019;9:e027049. doi:10.1136/bmjopen-2018-027049
Table 1 Summary of studies included in this review

Reference	Type of database	Country	Time frame of data collection	Length of follow-up	Adjusted NOS scores
Abrahamsen et al	National prescription	Denmark	1995 to 2007	10 years	6/6
Blouin et al	Régie de l’assurance maladie du Québec	Canada	2002 to 2004	2 years	8/8
Blouin et al	Régie de l’assurance maladie du Québec	Canada	1998 to 2001 & 2000 to 2004	1 year	6/6
Brankin et al	General practice research database IMS disease analyser	UK	2001 to 2004	1 year	6/6
	Doctors independent network database				
Briesacher et al	MarketScan research databases	USA	2000 to 2004	1 to 3 years	6/6
Briesacher et al	MarketScan commercial claims and encounters and Medicare	N/A	2001 to 2006	1 year	6/6
Burden et al	Ontario drug benefit database	Canada	1996 to 2009	1 to 9 years	6/6
Burden et al	Ontario drug benefit database	Canada	2001 to 2012	1 year	6/6
Cadarette et al	Pennsylvania pharmaceutical assistance contract	USA	1995 to 2005	6 months	6/6
Carbonell-Abella et al	Sistema d’informacio per al desenvolupament de la investigacio en atencio primaria	Spain	2007 to 2010	1 year	8/8
Cheen et al	CITRIX patient record management system and MAXCARE prescription record system, Singapore General Hospital	Singapore	2007 to 2008	2 years	6/6
Cheng et al	Chang-Gung Memorial Hospital, Kaohsiung Medical Centre	Taiwan	2001 to 2007	2 years	8/8
Colombo and Montecucco	Aziende sanitarie locali	Italy	2008 to 2008	34 months	6/6
Copher et al	Administrative claims	USA	2002 to 2006	1 year	8/8
Cotté et al	Thales longitudinal prescription	France	2007 to 2008	1 year	8/8
Cramer et al	De-identified healthcare claims	USA	1997 to 2002	1 year	8/8
Cramer et al	Integrated Healthcare Information Services Inc.	USA	1997 to 2003	1 year	6/6
	General practice research database	UK	2001 to 2005		
	Thales	France	2000 to 2004	8/8	
Curtis et al	Linked enrolment, outpatient encounter, pharmacy and procedural billing	USA	2001 to 2004	39 months	
Curtis et al	Unidentified administrative claims	USA	1998 to 2005	3 years	6/6
Curtis et al	Unidentified administrative claims	USA	1998 to 2005	3 years	6/6
Curtis et al	Unidentified administrative claims	USA	1998 to 2005	1 year	6/6
Devine et al	Pharmacy data transaction service data warehouse	USA	2006 to 2008	1 year	8/8
Reference	Type of database	Country	Time frame of data collection	Length of follow-up	Adjusted NOS scores
-----------------	--	--------------------	------------------------------	---------------------	---------------------
Devold et al	Norwegian prescription database	Norway	2005 to 2009	5 years	8/8
Downey et al	National administrative claims	USA	2001 to 2003	1 year	6/6
Dugard et al	An unidentified database of GP records	UK	1996 to 2002	5 years	6/6
Ettinger et al	A large database was accessed through	USA	2002 to 2003	1 year	6/6
Feldstein et al	Undefined health maintenance organisation	USA	1996 to 2006	2.7 years	6/6
Gallagher et al	General practice research database	UK	1987 to 2006	2.3 years	8/8
Gold et al	IMS longitudinal prescription	USA	X to 2005	6 months	8/8
Gold et al	Unidentified pharmacy prescription	USA	1996 to 2003	2 years	6/6
Gold et al	IMS longitudinal prescription	USA	1996 to 2003	1 year	8/8
Hadji et al	IMS disease analyser patient	Germany	2004 to 2007	2 years	6/6
Hadji et al	Techniker krankenkasse	Germany	2006 to 2009	2 years	6/6
Hadji et al	IMS disease analyser patient	Germany	2001 to 2010	1 year	6/6
Halpern et al	Unidentified administrative claims	USA	2002 to 2006	18 months	8/8
Hansen et al	Danish national registers	Denmark	1996 to 2006	5.2 years	6/6
Hansen et al	Veteran affairs pharmacy service records	USA	2000 to 2004	2 years	8/8
Hawley et al	Sistema d’informazione per al desenvolupament de l’investigació en atenció primària	Spain	2006 to 2007	6 months	6/6
Hoer et al	Claims database of a statutory sickness fund	Germany	2000 to 2004	2 years	6/6
Ideguchi et al	Yokohama City University Medical Centre	Japan	2000 to 2005	5 years	6/6
Iolascon et al	Unidentified administrative prescription database	Italy	2008 to 2010	1 year	6/6
Jones et al	Ontario Drugs Database and Brogan Inc. private payer database	Canada	2003 to 2006	1 year	6/6
Kamatari et al	Pharmacy prescription database	Japan	2000 to 2005	4 years	6/6
Kertes et al	Maccabi healthcare services database	Israel	2003 to 2004	1 year	6/6
Kishimoto and Machara	Platform for clinical information statistical analysis database	Japan	2006 to 2014	8 years	6/6
Lakatos et al	National health insurance fund administration	Hungary	2004 to 2013	2 years	6/6
Landfeldt et al	Swedish prescribed drug register	Sweden	2005 to 2009	4 years	6/6
LeBlanc et al	Kaiser Permanente Northwest	USA	1997 to 2011	5 years	6/6
Li et al	General practice research database	UK	1995 to 2008	5 years	6/6
Lin et al	Unidentified health insurance database	Taiwan	2003 to 2006	1 year	6/6
Reference	Type of database	Country	Time frame of data collection	Length of follow-up	Adjusted NOS scores
------------------------	---	--	------------------------------	---------------------	---------------------
Lo et al\(^70\)	Kaiser Permanente of Northern California	USA	2002 to 2004	1 year	8/8
Martin et al\(^71\)	HealthCore integrated research database	USA	2005 to 2007	3 years	8/8
McCombs et al\(^72\)	Unidentified health insurance company, California	USA	1998 to 2001	1 year	6/6
Modi et al\(^73\)	InVision data mart database	USA	2002 to 2009	1 year	6/6
Modi et al\(^74\)	InVision data mart database	USA	2001 to 2010	2 years	6/6
Modi et al\(^75\)	Humana administrative health claims database	USA	2007 to 2013	1 year	6/6
Netelenbos et al\(^76\)	IMS health longitudinal prescription database	Netherlands	2007 to 2008	1 year	6/6
Olsen et al\(^77\)	The Danish national prescription register	Denmark	1997 to 2006	2 years	8/8
Papaioannou et al\(^78\)	The Canadian database of osteoporosis and osteopenia	Canada	1990 to 2001	3 years	8/8
Patrick et al\(^79\)	Medicare and the Pennsylvania pharmaceutical assistance contract for the elderly	USA	1996 to 2005	6 months	6/6
Penning-van Beest et al\(^80\)	PHARMO record linkage system	Netherlands	2000 to 2003	1 year	6/6
Penning-van Beest et al\(^81\)	PHARMO record linkage system	Netherlands	1999 to 2004	1 year	6/6
Penning-van Beest et al\(^82\)	PHARMO record linkage system	Netherlands	1999 to 2004	1 year	8/8
Rabenda et al\(^83\)	Belgian national social security institute	Belgium	2001 to 2004	1 year	8/8
Recker et al\(^84\)	NDC health database	USA	2002 to 2003	1 year	6/6
Reynolds et al\(^85\)	Kaiser Permanente Southern California	USA	2009 to 2011	1 year	6/6
Richards et al\(^86\)	Veterans affairs rheumatoid arthritis registry	USA	39.2 months	8/8	
Rietbrock et al\(^87\)	General practice rheumatoid arthritis registry	UK	1 year	6/6	
Roerholt et al\(^88\)	National hospital discharge register and Danish national prescriptions database, Denmark	Denmark	1997 to 2004	9 years	6/6
Roughead et al\(^89\)	Department of veterans' affairs	Australia	2001 to 2007	6/6	
Sampalis et al\(^90\)	Ontario ministry of health and long-term care databases	Canada	1996 to 2009	14 years	6/6
Scotti et al\(^91\)	Healthcare utilisation databases, Lombardy	Italy	2003 to 2010	5.3 years	8/8
Sheehy et al\(^92\)	Régie de l'assurance maladie du Québec databases	Canada	2002 to 2007	1 year	6/6
Siris et al\(^93\)	MedStat MarketScan commercial claims and encounters and Medicare databases	USA	1999 to 2003	2 years	6/6
Siris et al\(^94\)	The MarketScan commercial claims and encounters and Medicare supplemental and coordinator of benefits databases	USA	2001 to 2008	2.4 years	6/6

Continued
(n=5), Japan (n=3), Taiwan (n=3), Spain (n=2), France (n=2) and single studies from Singapore, Norway, Israel, Hungary, Sweden, Belgium and Australia (see table 1). The mean age of patients included within the studies ranged between 53 to 80.8 years and the length of follow-up ranges between 3 months and 14 years. The length of follow-up of the included studies could be stratified to 6 months (n=4), 1 year (n=37), 2 years (n=16) and ≥3 years (n=32).

The medications included in this review as primary or secondary prevention in the treatment of osteoporosis are alendronate, etidronate, risedronate, ibandronate, clodronate, zoledronate, alendronate +vitamin D and risedronate +calcium. Some of the included studies also looked at pamidronate and raloxifene.20–28 In order to measure the persistence and adherence of patients to these medications the included studies have used different techniques.20–108 Persistence was measured based on the length of treatment without a gap in refills (table 2). The permissible gap between medication refills the included studies used was typically 30 days, and sometime 60 or 90 days. On the other hand, adherence was measured by calculating the medication possession ratio (MPR).20 23–25 29 32 33 36–48 50 52 54 56 59–68 70 78 80 83 87 90 92 95 99 100 103 105 108 and proportion of days covered (PDC).21 35 79 91 105 MPR means the number of days’ supply of medication received divided by the length of the follow-up period.109

Persistence

Sixty studies assessing persistence using real-world data from 4 070 739 patients were identified (table 2). The overall mean persistence of oral bisphosphonates at 6 months,39 40 42 52 56 58 61 65 68 74 76 78 83 92 99 100 103 105 108 and 1 year,21–25 28 31 34–36 39–42 48 49 51 53 55 56 59–68 70 78 80 83 87 90 92 95 99 100 103 105 108,2 years25 27 30 34 36 42 48 53 56 59 60 64–66 68 90 94 100 103, and 3 years ranged from 34.8% to 71.3%, 17.65% to 74.80%, 12.9% to 60.60% and 21.0% to 40.0% respectively (figure 2). The 6 month persistence of ibandronate,39 52 63 68 alendronate42 61 65 68 78 92 and risedronate,39 52 61 65 68 92 ranged from 29% to 57.3%, 45.5% to 79% and 46.8% to 77%, respectively. Thirteen studies reported 1 year persistence data for alendronate (12.6% to 70.1%),22 24 28 42 62 65 66 68 78 92 99

Table 1

Reference	Type of database	Country	Time frame of data collection	Length of follow-up	Adjusted NOS scores
Soong et al96	National health insurance research database	Taiwan	2004 to 2006	1 year	6/6
Ström36	Swedish prescribed drug register	Sweden	2005 to 2009	4 years	6/6
Sunycz et al97	Thomson healthcare, MarketScan, Medicare,	USA	2000 to 2002	3 years	6/6
Tafaro et al98	General practitioner databases	Italy	2001 to 2007	300 days	6/6
Van Boven et al99	The InterAction database	Netherlands	2003 to 2011	1 year	6/6
Van den Boogaard et al100	PHARMO record linkage system	Netherlands	1996 to 2003	3 years	6/6
Wang et al101	Centres for Medicare and Medicaid services	USA	2006 to 2010	5 years	6/6
Weiss et al102	IMS longitudinal prescription database		2004 to 2006	1 year	6/6
Weycker et al103	PharMetrics patient-centric database	USA	1998 to 2003	5.5 years	6/6
Weycker et al104	Health alliance plan of Henry Ford Health System	USA	2002 to 2007	27.1 months	6/6
Yeaw et al105	PharMetrics patient-centric database	USA	2005 to 2005	1 to 2 years	6/6
Yood et al106	Unidentified health maintenance organisation	USA	1998 to 1999	18 months	6/6
Zambon et al107	Health services databases of Lombardy	Italy	2003 to 2005	3 years	6/6
Ziller et al108	IMS longitudinal prescription database	Germany	2007 to 2009	1 year	6/6

GP, general practitioner; NOS, Newcastle–Ottawa quality assessment scale; N/A, not reported.
Table 2 Persistence data for osteoporosis medications by study

Reference	Medications	Population (mean age)	Length of persistence (days)	Patient persistence
Brankin et al	Alendronate, risedronate	15330 (71.7)	233	n/a
Burden et al	Alendronate, etidronate, risedronate	451113 (75.6)	n/a	63.10%
Burden et al	Alendronate, etidronate, risedronate	337329 (75.7)	n/a	56%§, 66%†
Carbonell-Abella	Alendronate, ibandronate, risedronate	118829 (66.9)	n/a	14.1% (ibandronate daily), 56.5% (alendronate weekly), 35.8% (ibandronate monthly), 7.7% (risedronate daily), 31.2% (risedronate weekly), 40.0% (risedronate monthly)
Cheen et al	Alendronate, risedronate	798 (68.5)	n/a	69%*
Cheng et al	Alendronate	1745 (68.1)	n/a	57.1%*
Cotté et al	Alendronate, risedronate	2990 (69.9)	169	45.7%*
Cramer et al	Alendronate, risedronate, ibandronate	2741 (n/a)	196	44.6%* (daily), 58.1%* (weekly)
Cramer et al	Alendronate, risedronate	2741 (73)	204	50%‡ (weekly), 38.6%‡ (daily)
Curtis et al	Alendronate, risedronate	1158 (53)	n/a	51.4%§ (alendronate), 46.8%§ (risedronate)
Devine et al	Alendronate, ibandronate, risedronate	22363 (n/a)	189.8* (weekly), 196.3* (monthly)	n/a
Downey et al	Alendronate, risedronate	10566 (66.4)	n/a	21.3% (alendronate), 19.4% (risedronate)
Dugard et al	Not stated	254 (76.7)	n/a	74%¶
Ettinger et al	Alendronate, risedronate	211319 (n/a)	n/a	56.7%* (weekly), 39%* (daily)
Gallagher et al	Alendronate, risedronate	44531 (n/a)	n/a	58.3%§
Gold et al	Ibandronate, risedronate	234862 (n/a)	144.3§ (ibandronate), 100.1§ (risedronate)	n/a
Gold et al	Alendronate	4769 (n/a)	261*	38%* (daily), 49%* (weekly)
Gold et al	Ibandronate, risedronate	263383 (66.21)	151.54§ (ibandronate) 250.04§ (risedronate)	n/a
Hadji et al	Alendronate, clodronate, etidronate, risedronate	4147 (n/a)	145.5*	27.9%*
Hadji et al	Alendronate, clodronate, etidronate, risedronate	19752 (n/a)	n/a	26%*

Continued
Reference	Medications	Population (mean age)	Length of persistence (days)	Patient persistence		
				6 months	1 year	2 years
Hadiji et al[26]	Clodronate, ibandronate, pamidronate, zoledronate	280 (63.2)	n/a	n/a	n/a	45.6%§
Hansen et al[27]	Alendronate, other oral bisphosphonates	100556 (70.4)	1463** (alendronate) 532.9** (clodronate) 963.6** (etidronate) 1408.9** (ibandronate) 1018** (risedronate)	n/a	n/a	n/a
Hansen et al[27]	Alendronate	198 (71)	n/a	n/a	n/a	28%
Hawley et al[28]	Not stated	21385 (n/a)	n/a	45.65%	n/a	n/a
Hoer et al[28]	Alendronate, etidronate, risedronate	4451 (n/a)	n/a	71.3%*	47.3%*	14.5%*
Ideguchi et al[30]	Alendronate, etidronate, risedronate	1307 (61.3)	n/a	74.8%§	n/a	60.6%§
Iolascon et al[28]	Alendronate, risedronate, ibandronate	18515 (68.9)	n/a	12.6%* (alendronate), 15.8%* (risedronate), 21.6%* (ibandronate)	n/a	
Jones et al[31]	Alendronate, risedronate, etidronate	62897 (n/a)	n/a	72%* (alendronate weekly), 71.2%* (risedronate weekly), 56.3%* (alendronate weekly), 54.4%* (risedronate weekly)	n/a	
Kamatari et al[32]	Alendronate, risedronate	1274 (74)	n/a	42.5%* (alendronate), 44.6%* (risedronate)	n/a	
Kertes et al[33]	Alendronate, risedronate	4448 (n/a)	216*	n/a	n/a	46%*
Kishimoto and Machara[34]	Not stated	12230 (59.8)	n/a	33.2%* (daily regimen)	13.0%* (daily), 32.7%* (weekly regimen)	50.4%* (weekly regimen)
Lakatos et al[35]	Alendronate, risedronate, ibandronate	296300 (68.3)	n/a	50%†† (alendronate), 50%†† (ibandronate), 55%†† (risedronate)	35%†† (alendronate), 30%†† (ibandronate), 42%†† (risedronate)	20%††† (alendronate), 16%††† (ibandronate), 22%††† (risedronate)
Landfeldt et al[36]	Alendronate, risedronate	56586 (71)	n/a	55%†† (alendronate), 54%†† (risedronate)	38%††† (alendronate), 38%††† (risedronate)	
LeBlanc et al[37]	Not stated	14674 (71)	n/a	58%¶¶	23%‡‡	
Li et al[38]	Alendronate, etidronate, risedronate, ibandronate	66116 (71.4)	n/a	27%* (alendronate daily), 52.8%* (alendronate weekly), 56.8%* (ibandronate monthly), 37.8%* (risedronate daily), 53.1%* (risedronate weekly)	17.6%* (alendronate daily), 41.3%* (alendronate weekly), 6.5%* (ibandronate monthly), 26.4%* (risedronate daily), 41.1%* (risedronate weekly)	n/a
Lo et al[39]	Alendronate	13455 (68.8)	378†	40%†	50%†	n/a
Table 2 Continued

Reference	Medications	Population (mean age)	Length of persistence (days)	Patient persistence		
				6 months	1 year	2 years
McCombs et al[72]	Alendronate, etidronate, risedronate	3720 (69.1)	170	n/a	n/a	n/a
Modi et al[73]	Alendronate, etidronate, risedronate	75593 (64.4)	115.6*	39.30%*	n/a	n/a
Netelenbos et al[74]	Alendronate, etidronate, ibandronate, risedronate	105506 (69.2)	n/a	43.10%§§	n/a	n/a
Papaioannou et al[78]	Alendronate, etidronate	1673 (66.8)	n/a	77.6% (alendronate), 90.3% (etidronate)	70.1% (alendronate), 80.5% (etidronate)	
Penning-van Beest et al[80]	Alendronate, risedronate	2124 (71.6)	n/a	42.9%*	n/a	n/a
Rabenda et al[83]	Alendronate	54807 (n/a)	n/a	58%¶¶	40%¶¶	n/a
Richards et al[86]	Alendronate, risedronate	573 (68.7)	1176§	n/a	n/a	n/a
Retbrock et al[87]	Alendronate, risedronate	44531 (71)	n/a	58.30%	n/a	n/a
Roerholt et al[88]	Alendronate, etidronate, ibandronate	6210 (74.7)	474 (alendronate 10 mg), 1350.5 (alendronate 70 mg), 803 (etidronate)	n/a	n/a	n/a
Roughead et al[89]	Not stated	42885 (80.8)	n/a	n/a	n/a	n/a
Sampalis et al[90]	Alendronate, ibandronate, Risedronate	636114 (72)	n/a	41.0%*	41.0%*	26.6%*
Sheehy et al[92]	Alendronate	32804 (n/a)	n/a	79%***	65%***	n/a***
Siris et al[93]	Alendronate, risedronate	35357 (65.3)	n/a	n/a	n/a	20%*
Soong et al[95]	Alendronate	32604 (72.4)	n/a	48.03%*	17.6%*	n/a
Ström[96]	Alendronate, risedronate	36433 (70.2)	n/a	n/a	51.67%††	n/a
Sunyecz et al[97]	Alendronate, risedronate	32944 (64.3)	n/a	n/a	n/a	21%*3 years†
Van Boven et al[98]	Alendronate, etidronate, ibandronate, risedronate	8610 (67.5)	n/a	48.9%*	n/a	40%*3 years†
Van den Boogaard et al[100]	Alendronate, etidronate, risedronate	14760 (n/a)	n/a	43.60%	n/a	27.40%
Weiss et al[102]	Alendronate, ibandronate, risedronate	165955 (67.1)	109*	n/a	n/a	n/a
Weycker et al[103]	Alendronate, risedronate	18822 (62.2)	n/a	45.5%§(daily), 47.3% §(weekly)	19.2%§(daily)	3.7%§(daily), 3.6%§(weekly)
Yeaw et al[105]	Alendronate, ibandronate, risedronate, etidronate, pamidronate	10268 (56.9)	n/a	56%*	41%†	n/a
Out of 19 studies, that reported the 2-year persistence of oral bisphosphonates, more than 70% of them found the proportion of patients persistent to be <30%. A 3-year persistence of 21% and 40% was reported by two studies.

Adherence

We identified 55 studies that measured adherence based on real-world data from 4,033,731 patients in different countries (table 3). The minimum length of follow-up period used in the included studies to measure MPR and PDC was 3 months. The 3-month follow-up study reported the proportion of adherent patients to alendronate and risedronate as 72.8% (daily) and 80% (weekly). Few studies reported MPR that ranged between 55.6% and 90% for 6-months follow-up (table 3). Across all studies that reported MPR at 1 year, the proportion of patients adherent to medication varied from 31.7% to 72.0%.

Across six studies adherence at 2 years was less than that of adherence at 1 year, ranging from 34.5% to 47.9%. Parallel to this, six studies reported the proportion of patients who achieved MPR ≥ 80% at 3 years varied between 23% and 47.9%. Overall, adherence rates to oral bisphosphonates reduced overtime within and across studies.

Determinants of persistence and adherence

Out of the 89 studies, 55 reported at least one potential determinant of persistence and adherence to oral bisphosphonates (online supplementary file 1). The potential determinants of persistence and adherence reported in the studies included geographic residence, prior bone mineral density (BMD) test, chronic disease score, hospitalisation, medication type and frequency, age, history of fractures, race/ethnicity and number of co-medication, glucocorticoid, gender, education status, income, marital status, history of

Reference	Medications	Population (mean age)	Length of persistence (days)	Patient persistence	Adherence	Outcomes
Ziller et al	Alendronate, etidronate, risedronate	108	6 months: 208±56 (63.3)	n/a	n/a	n/a
			1 year: 239.8±18.7	n/a	n/a	n/a
			2 years: 246.4±18.7	n/a	n/a	n/a

*Persistence with no refill gaps ≥ 30 days. †Persistence with no refill gaps > 60 days. +Persistence was defined as length of time until refill gap > 12 months. #Persistence was defined as length of time until refill gap > 6 months. Other outcomes: patient persistence defined as length of time until refill gap exceeding 1.5 x prescription length, n/a means not reported.
Table 3 Adherence data for osteoporosis medications

Reference	Medication	Population (mean age)	Compliance, mean MPR		
Abrahamsen et al	Alendronate	58674 (n/a)	<5 years 5 to 10 years >10 years		
	Alendronate (92%)	Alendronate (84%)	Alendronate (76%)		
	Etidronate (92%)	Etidronate (89%)	Etidronate (88%)		
	Ibandronate (81%)	Ibandronate (75%)	Ibandronate (70%)		
	Risedronate (91%)	Risedronate (80%)	Risedronate (75%)		
Blouin et al	Alendronate	15027 (76.6)	69.7%±34.8%		
	Risedronate				
Briesacher et al	Alendronate, risdonate	17988 (61.4)	At 1 year, At 2 years, At 3 years,		
	42.9% (MPR >80%)	34.5% (MPR >80%)	30.6% (MPR >80%)		
	12.6% (MPR 60% to 79%)	10% (MPR 60% to 79%)	10% (MPR 60% to 79%)		
	10.4% (MPR 40% to 59%)	7.7% (MPR 40% to 59%)	7.2% (MPR 40% to 59%)		
	13.8% (MPR 20% to 39%)	8.2% (MPR 20% to 39%)	7.8% (MPR 20% to 39%)		
	20.4% (MPR <20%)	38.7% (MPR <20%)	44.2% (MPR <20%)		
Briesacher et al	Alendronate, ibandronate,	61125 (62.1)	At 1 year (monthly medication), At 1 year (weekly medications) At 1 year (daily medication)		
	risedronate		49% (MPR>80%)	49% (MPR >80%)	23% (MPR >80%)
	11% (MPR 60% to 79%), 11% (MPR 40% to 59%), 13% (MPR 20% to 39%)	14% (MPR 60% to 79%)	8% (MPR 60% to 79%)		
	16% (MPR <20%)	9% (MPR 40% to 59%)	11% (MPR 40% to 59%)		
	14% (MPR 20% to 39%)	16% (MPR 20% to 39%)	14% (MPR <20%)		
	14% (MPR <20%)	42% (MPR <20%)			
Burden et al	Alendronate, etidronate,	337329 (75.7)	70%*		
	risedronate				
Cadarette et al	Alendronate, risedronate	20205 (79)	49.8% (PDC ≥80%); 14.5% (PDC 51% to 79%); 35.7% (PDC <50%)		
Cheen et al	Alendronate, risedronate	798 (68.5)	78.90%		
Cheng et al	Alendronate	1745 (68.1)	At 1 year; 61.9%		
	70%*	(MPR >80%)	At 2 years, 47.9%		
Colombo and	Generic alendronate,	20711 (73)	69% to 74%		
Montecucco	branded alendronate				
Copher et al	Alendronate, ibandronate,	1587 (62.3)	48.70% (95% CI 46.2 to 51.2)		
	risedronate				
Cotté et al	Alendronate, risedronate	2990 (69.9)	79.4% (95% CI 78.2 to 80.5) (weekly medications)		
	Ibandronate	84.5% (95% CI 83.1 to 85.9) (monthly ibandronate)			
Cramer et al	Alendronate, risedronate,	2741 (n/a)	60.60%		
	ibandronate				
Cramer et al	Alendronate, risedronate	2741(73)	64%		
Curtis et al	Alendronate, risedronate	1158 (53)	73%		
Curtis et al	Alendronate, risedronate	25446 (n/a)	At 2 years, 29.4%		
	Achieved MPR >80% = 27.2%		At 3 years,		
	Achieved MPR >80% = 29.4%				

Continued
Table 3 Continued

Reference	Medication	Population (mean age)	Compliance, mean MPR
Curtis et al\(^65\)	Alendronate	101 038 (n/a)	Achieving MPR >80% = 44%
			Achieved MPR <50% = 34.9%
	Ibandronate, risedronate		
Devine et al\(^66\)	Alendronate, ibandronate, risedronate	22 363 (n/a)	62%
Devold et al\(^47\)	Alendronate	7610 (66.6)	Achieving MPR >80% = 45.5%
Downey et al\(^24\)	Alendronate, risedronate	10 566 (66.4)	60.7% (alendronate)
			58.4% (risedronate)
Dugard et al\(^48\)	Not stated	254 (76.7)	At 1 year,
			At 3 years,
			At 5 years, achieving MPR >80% = 23%
Feldstein et al\(^60\)	Alendronate, ibandronate, risedronate	1829 (72)	Achieving MPR >80% = 44%
			Achieving MPR >80% = 42%
Gold et al\(^52\)	Ibandronate, risedronate	234 862 (n/a)	83.3% (risedronate)
			79% (risedronate)
			78.5% (ibandronate)
Gold et al\(^53\)	Ibandronate, risedronate	263 383 (66.21)	74.68% (ibandronate)
			80.15% (risedronate)
Hadji et al\(^65\)	Alendronate, clodronate, etidronate, risedronate	4147 (n/a)	Achieving MPR >80% = 66.3%
			Achieving MPR <80% = 22.7%
Halpern et al\(^78\)	Alendronate, ibandronate, risedronate	21 655 (63.3)	At 6 months,
			At 18 months,
			76% (commercially insured)
			59% (commercially insured)
			68% (Medicare advantage)
			53% (Medicare advantage)
Hansen et al\(^77\)	Alendronate	198 (71)	At 12 months,
			At 2 years,
			Achieving MPR >80% = 59%
			Achieving MPR >80% = 54%
Hoer et al\(^69\)	Alendronate, etidronate, risedronate	4451 (n/a)	At 6 months,
			At 1 year,
			Achieving MPR >80% = 58.6%
			Achieving MPR >80% = 46.25%
Kishimoto and Machara\(^74\)	Not stated	12 230 (62)	At 1 year,
			At 5 years,
			38.6% (daily)
			20.8% (daily)
			70.6% (weekly)
			60.9% (weekly)
			77.7% (monthly)
LeBlanc et al\(^67\)	Not stated	14 674 (71)	94%
Lin et al\(^85\)	Alendronate	89 363 (74)	60.20%
Lo et al\(^70\)	Alendronate	13 455 (68.8)	93%
Martin et al\(^71\)	Alendronate, ibandronate, risedronate	45 939 (59.6)	At 1 year,
			At 2 years,
			At 3 years,
			58% (alendronate)
			48% (alendronate)
			42% (alendronate)
			58% (ibandronate)
			50% (ibandronate)
			46% (ibandronate)
			57% (risedronate)
			47% (risedronate)
			43% (risedronate)
Modi et al\(^75\)	Alendronate, ibandronate, risedronate	37 886 (74.1)	Achieving MPR >80% = 31.7%
Netelenbos et al\(^76\)	Alendronate	105 506	91%

Continued
upper gastrointestinal problems, tobacco use, rheumatoid arthritis, national insurance, hormone replacement therapy, clinical service use, mental disorder, diabetes and co-payments were mentioned as determinants of persistence and adherence. The relationship of these determinants to patients’ persistence and adherence to medication is described below.

Table 3

Reference	Medication	Population (mean age)	Compliance, mean MPR
Olsen et al	Alendronate, etidronate	47,176 (70.3)	Achieving MPR <50% = 28.4%
			Achieving MPR 50% to 79% = 11.8%
			Achieving MPR ≥80% = 59.8%
Penning-van Beest et al	Alendronate, risedronate	8822 (69.4)	At 3 months, achieving MPR ≥80% = 28.4%
			Daily = 60.3% Achieving MPR ≥80%, Weekly = 60.3%
			Daily = 72.8% Achieving MPR ≥80%, Weekly = 72.8%
			Daily = 50.2%
Penning-van Beest et al	Alendronate, risedronate	8822 (n/a)	Achieving MPR ≥80% = 58%
Rabenda et al	Alendronate	54,807 (n/a)	64.70%
Recker et al	Alendronate, risedronate	211,319 (n/a)	54% (daily regimen)
Richards et al	Alendronate, risedronate	573 (68.7)	69%
Sampalis et al	Alendronate, ibandronate, risedronate	636,114 (72)	72%
Siris et al	Alendronate, risedronate	35,537 (65.3)	Achieving MPR ≥80% = 43%
Siris et al	Alendronate, ibandronate, risedronate	460,584 (63.6)	53.50%
Soong et al	Alendronate	32,604 (72.44)	At 1 month, achieving MPR ≥80% = 87.6%
			Achieving MPR ≥80% = 61.8%
			Achieving MPR ≥80% = 28.2%
Suryecz et al	Alendronate, risedronate	32,944 (64.3)	55%
Tafaro et al	Alendronate, clodronate, ibandronate, risedronate	6390 (n/a)	53% (daily regimen)
Wang et al	Alendronate, ibandronate, risedronate	522,287 (n/a)	70% (weekly regimen)
			Achieving MPR <33% = 41.1%
			Achieving MPR 34% to 65% = 21.5%
			Achieving MPR >66% = 37.3%
Weycker et al	Alendronate, ibandronate, risedronate	644 (65.9)	57%
Yeaw et al	Alendronate	10,268 (56.9)	*60%
			ibandronate
Yood et al	Alendronate, etidronate	176 (63.3)	70.70%
Ziller et al	Alendronate	268,568 (63.3)	33% (alendronate 10 mg)

*Mean Proportion of Days Covered (PDC). MPR, medication possession ratio.
In the studies that have reported prior BMD test as a determinant factor, patients who have undergone prior BMD test before receiving medications have higher persistence and adherence compared with those who have not. Moreover, weekly oral bisphosphonates medication users had significantly higher mean persistence than those daily users. Before decreasing at ages 80 and above a number of studies have reported higher persistence and adherence at older ages than younger ages.

Similarly, the number of co-medications being received at baseline was associated with a marginally greater risk of discontinuing. Compared with male users of oral BP medications, female users were at lower odds of achieving adherence.

DISCUSSION

This review summarises patient persistence and adherence and their determinants with oral bisphosphonates in the treatment of osteoporosis in real-world settings. A total of 89 studies, undertaken in the USA, Canada, Europe, Asia and Australia were used to collect information on the real-world persistence and adherence with oral bisphosphonates for the treatment of osteoporosis. The analyses of these data suggest that patient persistence and adherence rates to oral bisphosphonates reduced over time following initial prescription. For example, the overall mean persistence of oral bisphosphonates at 6 months, 1 year and 2 years post-index ranged from 34.8% to 71.3%, 17.6% to 74.8% and 12.9% to 60.6%, respectively. Dosing frequency appeared to affect persistence, with 6-month persistence of oral bisphosphonates with daily, weekly and monthly medication ranging between 27% and 45.5%, 45.7% and 72% and 56.8% and 56.8%, respectively. The findings of this current review were similar to that reported by Cramer et al who found 1-year persistence to bisphosphonate therapy ranged between 17.9% to 78.0%. The review by Cramer and colleagues also reported that patients prescribed weekly oral bisphosphonates exhibited better persistence than those prescribed daily oral bisphosphonates (35.7% to 69.7% vs 26.1% to 55.7%).

High adherence rates of oral bisphosphonates may also lead to the most effective way of improving the benefit of these medications. For example, evidence suggests that the 2-year probability of fracture in females with osteoporosis may only begin to decrease as MPR exceeds 50%, and notably so after it exceeds 75%. Across all included studies that reported MPR at 6 and 12 months, the proportion of patients adherent to medication varied from 31.7% to 72.0% and 55.6% to 90.0%, respectively. Mean medication possession ratio ranged from 0.59 to 0.81 (weekly) and 0.46 to 0.64 (daily), which are similar to the findings of a previous systematic review.

Poor persistence and adherence to oral bisphosphonates, particularly in chronic asymptomatic disease such as osteoporosis, may compromise the clinical and economic effects of this class of medications among patients. In this review, 32 studies reported ≥50% persistence and adherence of alendronate, risedronate, etidronate and clodronate. The remaining 57 studies reported ≤50% of persistence or adherence. The variation of patient persistence and adherence to medication across studies may be due to a number of factors and the healthcare system of the countries included within this review. Age and medication dosing and frequency as a determinant factor of osteoporosis was reported by 29 and 32 studies, respectively. The studies included also indicated that older patients were more likely to achieve higher persistence and adherence to oral bisphosphonates and that daily users of oral bisphosphonates medications have lower persistence and adherence than weekly users. Strengths and limitations to this review are acknowledged by the authors. This review involved a systematic and rigorous search for studies relating to patient persistence and adherence using real-world data. Measuring adherence and persistence based on real-world data is beneficial as it captures the timelines and frequency of refilling and thus measures the continuity of medication use. Database-derived persistence and adherence assessment carries the advantage of being objective, quantifiable and simple. Despite these strengths, it is also important to consider the following limitations. First, the calculation of persistence and adherence across the studies was heterogeneous. As a result, it was not possible to inferentially compare these studies with each other. Second, the calculation of persistence and adherence provided in the studies may not be true values. For example, billing and coding errors may occur because data for these studies were obtained from patients in unrestricted ‘real world clinical settings’ primarily for administrative purposes. Collection and refilling of medication by patients does not guarantee that this medication was taken as directed, or at all. Third, although there are data for persistence and adherence of oral bisphosphonates from studies carried out from different geographical locations, it was not possible to identify any trends between the data and countries. Fourth, it is very difficult to capture the specific reasons for treatment discontinuation from prescription-driven or medical claim data rather than patient-derived data. The current review excluded data from randomised controlled trials to better reflect patient behaviour in the general osteoporosis population in real-life clinical practice. However, the exclusion of alternative designs such as open-label extension studies may infer an element of publication bias.

Additional studies are required to examine patient persistence or adherence in osteoporosis, including synthesis of qualitative studies to examine the reasons for discontinuation and real-world studies to examine healthcare resource use associated with osteoporosis.
medication in relation to adherence and persistence. As osteoporosis is a chronic disease, clinicians should not only take into consideration the efficacy and side effects of medications when deciding on treatment options, but also ensure that realistic patient expectations from treatment are set through patient education and counselling. The patient’s lifestyle should also be considered as this is likely to impact adherence and persistence with osteoporosis therapy.

CONCLUSIONS
This review has summarised patient persistence and adherence to oral bisphosphonates from a quality assessed studies that have used real-world data. The findings of this review suggest that real-world patient persistence and adherence with oral bisphosphonates medications is often poor and drops notably over time following the initial prescription of oral medications. However, adherence and persistence tended to be better in older patients and in patients who were prescribed weekly, rather than daily medications. To maximise adherence and persistence to oral bisphosphonates, it is important to consider their possible determinants including medication type and frequency, hospitalisation, age, history of fractures, race/ethnicity, gender, educational status and income as this may help to improve the health outcomes of patients with osteoporosis.

Contributors FF, PS, TG and GY were involved in conceptualisation and design of the study and critical review of the manuscript. FF, PS and TG performed the data extraction. All authors approved the final manuscript as submitted.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data are available.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, provided the original work is properly cited, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

REFERENCES
1. Woolf AD, Pfieger B. Burden of major musculoskeletal conditions. Bull World Health Organ 2003;81:846–56.
2. Ross PD. Osteoporosis. Frequency, consequences, and risk factors. Arch Intern Med 1996;156:1399–411.
3. Olzynski WP, Shawn Davison K, Adachi JD, et al. Osteoporosis in men: epidemiology, diagnosis, prevention, and treatment. Curr Ther Rep 2004;26:15–28.
4. Siniak M. Postural Changes in Osteoporosis: Musculoskeletal Consequences. Non-pharmacological management of osteoporosis: Springer, Cham, 2017:207–17.
5. Osrini LS, Roussulf MD, Long SR, et al. Health care utilization and expenditures in the United States: a study of osteoporosis-related fractures. Osteoporos Int 2005;16:359–71.
6. Keen RW. Burden of osteoporosis and fractures. Curr Osteoporos Rep 2003;1:66–70.
7. Burge R, Dawson-Hughes B, Solomon DH, et al. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res 2007;22:465–75.
8. Lewiecki EM. Bisphosphonates for the treatment of osteoporosis: insights for clinicians. Ther Adv Chronic Dis 2010;1:115–28.
9. Ammann P, Rizzoli R. Bone strength and its determinants. Osteoporos Int 2003;14:13–18.
10. Macagno C, Newberry MG, et al. Systematic review: comparative effectiveness of treatments to prevent fractures in men and women with low bone density or osteoporosis. Ann Intern Med 2008;148:197–213.
11. Iki M. [Primary, secondary and tertiary prevention of osteoporosis]. Clin Calcium 2006;16:1438–43.
12. Imaz J, Zegarra P, Gonzalez-Enrique J, et al. Poor bisphosphonate adherence for treatment of osteoporosis increases fracture risk: systematic review and meta-analysis. Osteoporos Int 2010;21:1943–51.
13. Diab DL, Watts NB. Bisphosphonates in the treatment of osteoporosis. Endocrinol Metab Clin North Am 2012;41:487–506.
14. Network for Excellence in Health Innovation. Network for excellence in health innovation (2015) Real world evidence: a new era for health care. innovation.http://www.nehi.net/writable/publication_files/file/issue_final.pdf
15. Burrell A, Wong P, Olliendorf D, et al. PHP46 Defining compliance/ adherence and persistence: isopor special interest working group. Value in Health 2005;8:A194–5.
16. Cramer JA, Gold DT, Silverman SL, et al. A systematic review of persistence and compliance with bisphosphonates for osteoporosis. Osteoporos International 2007;18:1023–31.
17. Kothevava P, Badamgarav E, Ryu S, et al. Systematic review and meta-analysis of real-world adherence to drug therapy for osteoporosis. Elsevier, Mayo Clinic Proceedings, 2007;1493–501.
18. Mohor D, Liberati A, Telzsf J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097.
19. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010;25:603–5.
20. Blouin J, Dragomir A, Fredette M, et al. Comparison of direct health care costs related to the pharmacologic treatment of osteoporosis and to the management of pharmacologic fractures among compliant and noncompliant users of alendronate and risedronate: a population-based study. Osteoporos Int 2009;20:1571–81.
21. Cadarette SM, Solomon DH, Katz JN, et al. Adherence to osteoporosis drugs and fracture prevention: no evidence of healthy adherer bias in a frail cohort of seniors. Osteoporos Int 2011;22:843–54.
22. Carbonell-Abella C, Pages-Castella A, Javaid MK, et al. Early (1-year) discontinuation of different anti-osteoporosis medications compared: a population-based cohort study. Calcif Tissue Int 2015;97:536–41.
23. Cheng TT, Yu SF, Hsu CY, et al. Differences in adherence to osteoporosis regimens: a 2-year analysis of a population treated under specific guidelines. Clin Ther 2013;35:1005–15.
24. Downey TW, Foltz SH, Bocuzzi SJ, et al. Adherence and persistence associated with the pharmacologic treatment of osteoporosis in a managed care setting. South Med J 2006;99:570–5.
25. Hadji P, Klein S, Häussler B, et al. The bone evaluation study (BEST): patient care and persistence to treatment of osteoporosis in Germany. Int J Clin Pharmacol Ther 2013;51:866–72.
26. Halperrn R, Becker L, Iqbal SU, et al. The association of adherence to osteoporosis therapies with fracture, all-cause medical costs, and all-cause hospitalizations: a retrospective claims analysis of female health plan enrollees with osteoporosis. J Manag Care Pharm 2011;17:25–39.
27. Hansen C, Pedersen BD, Konradsen H, et al. Anti-osteoporotic therapy in Denmark—predictors and demographics of poor refill compliance and poor persistence. Osteoporos Int 2013;24:2079–97.
28. Iolascon G, Gimigliano F, Orlando V, et al. Osteoporosis drugs in real-world clinical practice: an analysis of persistence. Aging Clin Exp Res 2013;25:137–41.
29. Abrahamsen B. Are long-term bisphosphonate users a reality? Dose years for current bisphosphonate users assessed using the danish national prescription database. Osteoporos Int 2013;24:369–72.
30. Blouin J, Dragomir A, Ste-Marie LG, et al. Discontinuation of antiresorptive therapies: a comparison between 1998-2001 and 2002-2004 among osteoporotic women. J Clin Endocrinol Metab 2007;92:887–94.
31. Brankin E, Walker M, Lynch N, et al. The impact of dosing frequency on compliance and persistence with bisphosphonates among postmenopausal women in the UK: evidence from three databases. Curr Med Res Opin 2006;22:1249–56.
32. Briesacher BA, Andrade SE, Yood RA, et al. Consequences of poor compliance with bisphosphonates. *Bone* 2007;41:882–7.
33. Briesacher BA, Andrade SE, Harold LR, et al. Adoption of once-monthly oral bisphosphonates and the impact on adherence. *Am J Med* 2010;123:275–80.
34. Burden AM, Paterson JM, Solomon DH, et al. Bisphosphonate prescribing, persistence and cumulative exposure in Ontario, Canada. *Osteoporos Int* 2012;23:1075–82.
35. Burden AM, Paterson JM, Gruneir A, et al. Adherence to osteoporosis pharmacotherapy is underestimated using days supply values in electronic pharmacy claims data. *Pharmacoepidemiol Drug Saf* 2015;24:67–74.
36. Cheen MH, Kong MC, Zhang RF, et al. Adherence to osteoporosis medications amongst Singaporean patients. *Osteoporos Int* 2012;23:1053–60.
37. Colombo GL, Montecucco CM. ‘Generic vs brand originator alendronate: analysis of persistence and compliance in five Local Healthcare Units in the Lombardy Region of Italy.’ Clinical cases in mineral and bone metabolism. *The Official Journal Of The Italian Society Of Osteoporosis, Mineral Metabolism, And Skeletal Diseases*, 2013;10:195.
38. Copher R, Buzinez P, Zarotsky V, et al. Physician perception of patient adherence compared to patient adherence of osteoporosis medications from pharmacy claims. *Curr Med Res Opin* 2010;26:777–85.
39. Cotte FE, Fardellone P, Mercier F, et al. Adherence to monthly and weekly oral bisphosphonates in women with osteoporosis. *Osteoporos Int* 2010;21:145–55.
40. Cramer JA, Amonkar MM, Hebborn A, et al. Compliance and persistence with bisphosphonate dosing regimens among women with postmenopausal osteoporosis. *Curr Med Res Opin* 2005;21:1453–60.
41. Cramer JA, Lynch NO, Gaudin AF, et al. The effect of dosing frequency on compliance and persistence with bisphosphonate therapy in postmenopausal women: a comparison of studies in the United States, the United Kingdom, and France. *Clin Ther* 2008;29:1686–94.
42. Curtis JR, Westfall AO, Allison JJ, et al. Channeling and adherence with alendronate and risedronate among chronic glucocorticoid users. *Osteoporos Int* 2006;17:1268–74.
43. Curtis JR, Westfall AO, Cheng H, et al. Risk of hip fracture after bisphosphonate discontinuation: implications for a drug holiday. *Osteoporos Int* 2008;19:1613–20.
44. Curtis JR, Westfall AO, Cheng H, et al. Benefit of adherence with bisphosphonates depends on age and fracture type: results from an analysis of 101,038 new bisphosphonate users. *J Bone Miner Res* 2008;23:1435–41.
45. Curtis JR, Xi J, Westfall AO, et al. Improving the prediction of medication compliance: the example of bisphosphonates for osteoporosis. *Med Care* 2009;47:334–41.
46. Devine J, Trice S, Finney Z, et al. A retrospective analysis of extended-intermittent dosing and the impact on bisphosphonate compliance in the US Military Health System. *Osteoporos Int* 2012;23:1415–24.
47. Devold HM, Furuk K, Skurtveit S, et al. Influence of socioeconomic factors on the adherence of alendronate treatment in incident users in Norway. *Bone* 2009;44:153–9.
48. Dugard MN, Jones TJ, Davie MW. Uptake of treatment for osteoporosis and compliance after bone density measurement in the community. *J Epidemiol Community Health* 2010;64:518–22.
49. Ettinger MP, Gallagher R, MacCloske PE. Medication persistence with weekly versus daily doses of orally administered bisphosphonates. *Endocr Pract* 2008;12:522–8.
50. Feldstein AC, Weycker D, Nichols GA, et al. Effectiveness of bisphosphonate therapy in a community setting. *Bone* 2009;44:153–9.
51. Gallagher AM, Rietbrock S, Olson M, et al. Fracture outcomes related to persistence and compliance with oral bisphosphonates. *J Bone Miner Res* 2008;23:1569–75.
52. Gold DT, Safi W, Trinh H. Patient preference and adherence: comparative US studies between two bisphosphonates, weekly risedronate and monthly ibandronate. *Curr Med Res Opin* 2006;22:2393–400.
53. Gold DT, Martin BC, Frytak JR, et al. A claims database analysis of persistence with alendronate therapy and fracture risk in post-menopausal women with osteoporosis. *Curr Med Res Opin* 2007;23:585–94.
54. Gold DT, Trinh H, Safi W. Weekly versus monthly drug regimens: 1-year compliance and persistence with bisphosphonate therapy. *Curr Med Res Opin* 2009;25:1831–9.
care setting of patients in the CANDOO database. Osteoporos Int 2003;14:808–13.

79. Patrick AR, Brookhart MA, Losina E, et al. The complex relation between bisphosphonate adherence and fracture reduction. J Clin Endocrinol Metab 2011;96:3251–9.

80. Penning-van Beest FJ, Goetsch WG, Erkens JA, et al. Determinants of persistence with bisphosphonates: a study in women with postmenopausal osteoporosis. Clin Ther 2006;28:236–42.

81. Penning-van Beest FJ, Erkens JA, Olson M, et al. Loss of treatment benefit due to low compliance with bisphosphonate therapy. Osteoporos Int 2008;19:811–8.

82. Penning-van Beest FJ, Erkens JA, Olson M, et al. Determinants of non-compliance with bisphosphonates in women with postmenopausal osteoporosis. Curr Med Res Opin 2008;24:1337–44.

83. Rabenda V, Mertens R, Fabri V, et al. Adherence to bisphosphonates therapy and hip fracture risk in osteoporotic women. Osteoporos Int 2006;22:1757–64.

84. Recker RR, Gallagher R, MacCosbe PE. Effect of dosing frequency on bisphosphonate medication adherence in a large longitudinal cohort of women. Mayo Clin Proc 2005;80:856–61.

85. Reynolds K, Muntner P, Cheetham TC, et al. Primary non-adherence to bisphosphonates in an integrated healthcare setting. Osteoporos Int 2013;24:2509–17.

86. Richards JS, Cannon GW, Hayden CL, et al. Adherence with bisphosphonate therapy in US veterans with rheumatoid arthritis. Arthritis Care Res 2012;64:1864–70.

87. Richar T, Natt G, Loo C, et al. Adherence to anti-osteoporotic therapies: role and determinants of “spot therapy”. Osteoporos Int 2013;24:2319–23.

88. van Boven JF, de Boer PT, Postma MJ, et al. Persistence with osteoporosis medication among newly-treated osteoporotic patients. J Bone Miner Metab 2013;31:562–70.

89. van den Boogaard CH, Breekveldt-Postma NS, Borggreve SE, et al. Persistent bisphosphonate use and the risk of osteoporotic fractures in clinical practice: a database analysis study. Curr Med Res Opin 2009;25:2109–16.

90. Wang Z, Ward MM, Chan L, et al. Adherence to oral bisphosphonates and the risk of subtrochanteric and femoral shaft fractures among female Medicare beneficiaries. Osteoporos Int 2014;25:2109–16.

91. Weiss TW, Henderson SC, McHorney CA, et al. Persistence across weekly and monthly bisphosphonates: analysis of US retail pharmacy prescription refills. Curr Med Res Opin 2007;23:2193–203.

92. Weycker D, Macarios D, Edelsberg J, et al. Compliance with drug therapy for postmenopausal osteoporosis. Osteoporos Int 2006;17:1645–52.

93. Weycker D, Lamerato L, Schooley S, et al. Adherence with bisphosphonate therapy and change in bone mineral density among women with osteoporosis or osteopenia in clinical practice. Osteoporos Int 2014;25:2109–16.

94. Yeaw J, Benner JS, Walt JG, et al. Comparing adherence and persistence across 6 chronic medication classes. J Manag Care Pharm 2009;15:728–40.

95. Yood RA, Emami S, Reed JI, et al. Compliance with pharmacologic therapy for osteoporosis. Osteoporos Int 2003;14:965–8.

96. Zambon A, Baio G, Mazzaglia G, et al. Discontinuity and failures of therapy with bisphosphonates: joint assessment of predictors with multi-state models. Pharmacoeconom Drug Saf 2009;17:260–9.

97. Ziller V, Kostev K, Kyvernitakis I, et al. Persistence and compliance of medications used in the treatment of osteoporosis—analysis using a large scale, representative, longitudinal German database. Int J Clin Pharmacol Ther 2012;50:315–22.

98. Hess LM, Raebel MA, Conner DA, et al. Measurement of adherence in pharmacy administrative databases: a proposal for standard definitions and preferred measures. Ann Pharmacother 2006;40:1280–8.

99. Sikka R, Xia F, Aubert RE. Estimating medication persistency using administrative claims data. Am J Manag Care 2005;11:449–57.

100. Steiner JF, Prochazka AV. The assessment of refill compliance using pharmacy records: methods, validity, and applications. J Clin Epidemiol 1997;50:105–16.