2-Hydroxyethylammonium [2-(2,6-dichloroanilino)-phenyl]acetate monohydrate

Nodira Obidova, Jamshid Ashurov, Lidiya Izotova* and Bakhtiyar Ibragimov

Institute of Bioorganic Chemistry, UzAS, M. Ulugbek Str., 83, 100125, Tashkent, Uzbekistan. *Correspondence e-mail: li_izotova@mail.ru

In the solid-state structure of the title compound derived from diclofenac, C₂H₈NO⁺·C₁₄H₁₀Cl₂NO₂⁻·H₂O, the asymmetric unit contains one cation, one anion and a water molecule, all in general positions. A complex network of hydrogen bonds is present in the crystal structure.

Structure description

The pharmaceutical diclofenac (D) is widely used as a non-steroidal anti-inflammatory drug, to treat pain and inflammatory diseases (Skoutakis et al., 1988; Moser et al., 1990). The Cambridge Structural Database (CSD version 5.42, last update February 2021; Groom et al., 2016) includes crystallographic data for 50 entries with the term ‘diclofenac’. Among them, there are 21 entries where diclofenac is present in the form of a salt, and in three entries, diclofenac forms salts with aliphatic amines: with (R) and (S)-phenylethylammonium (Lemmerer et al., 2010), with diethyl ammonium (Castellari et al., 2001) and with tris(2-ammonioethyl)amine (Lynch et al., 2003). In this article, we present another complex in the form of a diclofenac salt with an amino-containing compound, namely monoethanolamine. Ethanolamine is always present in significant quantities in the human and animal body with a complete protein diet. Its formation occurs during the decarboxylation of serine, and in one of the metabolic variants, it turns into glycine (the simplest aliphatic amino acid; Wishart et al., 2007). In addition, monoethanolamine is used in some cosmetic products (Knaak et al., 1997). Therefore, the interaction of these compounds seems to be interesting for investigation.

The crystal structure of the title compound has one monoethanolamine (MEA) cation, one 2-(2,6-dichloroanilino)phenylacetate anion, and one water molecule in the asymmetric unit, and crystallizes in space group P2₁/c (Fig. 1). The diclofenac anion is stabilized by one intramolecular hydrogen bond between the amino group and atom O1 of the carboxylic group: N1—H1···O1 [2.884 (3) Å, 128.9°; see
Table 1

Hydrogen-bond geometry (Å, °).	D—H · · · A	D—H	H · · · A	D · · · A	D—H · · · A
N1—H1···O1	0.86	2.27	2.884 (3)	129	
N2—H2A···O2	0.89	1.96	2.811 (4)	160	
N2—H2B···O1W	0.89	2.15	2.947 (4)	148	
N2—H2C···O1W	0.89	1.92	2.802 (3)	169	
O3—H3A···O1W	0.82	1.96	2.770 (4)	168	
O1W—H1WB···O2	0.85	1.87	2.690 (3)	161	
O1W—H1WA···O1W	0.85	2.00	2.809 (3)	158	

Symmetry codes: (i) x, y + 1, z; (ii) x, y – 1/2, –z + 1/2; (iii) x, y – 1, z; (iv) x, y + 3, z + 1/2.

gate parallel to the (100) plane, where the chains are related by the glide plane c [O1W···O1w, symmetry code: (iv) x, y + 3, z + 1/2, 2.809 (3) Å] and the inversion centre [N2···O2, symmetry code: (i) x, y + 1, z + 1, 2.811 (4) Å, Fig. 2]. The layers are linked by Y···Cg π–ring interactions, for C3···Cl and C7···Cl1 bonds, for which the X···Cg separations and y angles range from 3.533 to 3.958 Å.

In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface analysis was carried out using Crystal Explorer 17.5 (Turner et al., 2017). The Hirshfeld surface mapped over dnorm shows the expected bright-red spots near atoms O1 and O2, involved in the O···H and N···O hydrogen-bonding interactions (Fig. 3). Fingerprint plots (Fig. 4) reveal that H···H, H···C/Cl···H, H···Cl/Cl···H and O···O contacts make the greatest contributions to the surface contacts (Table 1), while H···N/N···H, C···C and O···O contacts are much less significant.

Synthesis and crystallization

To a solution of 0.1 g (0.52 mmol) of D in 4 ml of ethanol, 32 μL of monoethanolamine was added. The mixture was kept
in an ultrasonic bath (30 kHz) at 298 K for 5 min. The solution was then placed in a loosely closed bottle and kept at 298 K for 10 days. The precipitated prismatic crystals were selected for the single-crystal X-ray diffraction analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

Funding for this research was provided by: Uzbek Academy of Sciences.

References

Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.

Castellari, C., Comelli, F. & Ottani, S. (2001). Acta Cryst. C57, 437–438.

Eiter, M. C. (1990). Acc. Chem. Res. 23, 120–126.

Groom, C. R., Bruno, I. J., Lightfoot, M. F. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.

Knaak, I. B., Leung, H. W., Stott, W. T., Busch, J. & Bilsky, J. (1997). Rev. Environ. Contam. Toxicol. 149, 1–86.

Lemmerer, A., Bourne, S. A., Caira, M. R., Cotton, J., Hendricks, U., Peinke, L. C. & Trollope, L. (2010). CrystEngComm, 12, 3634–3641.

Table 2

Experimental details.

Crystal data	Chemical formula	C₂H₈NO⁺–C₆H₅ClNO₃⁻H₂O
M, a, b, c (Å)	375.24	Monoclinic, P2₁/c
Temperature (K)	293	19.1257 (10), 9.3864 (5),
		10.0502 (6)
β (°)	103.546 (6)	
V (Å³)	1754.05 (17)	
Z	4	
μ (mm⁻¹)	3.53	
Crystal size (mm)	0.31 × 0.28 × 0.1	

Data collection

| Agilent Technologies Xcalibur, Ruby |

Absorption correction

Multi-scan (CrysAlis PRO).

T_min, T_max	0.556, 1.000
No. of measured, independent and observed	12416, 3621, 2431
H-atoms treatment	H-atom parameters constrained
Δρ_max, Δρ_min (e Å⁻³)	0.40, –0.35

Diffractometer

Agilent Technologies Xcalibur.

Computer programs:

CrysAlis PRO (Agilent, 2014), SHELXT2018/2 (Sheldrick, 2015α), SHELXL2018/3 (Sheldrick, 2015β), XP (Siemens, 1994), Mercury (Macrae et al., 2020) and pubCIF (Westrip, 2010).

Lynch, D. E., Bening, A. S. & Parsons, S. (2003). Acta Cryst. E59, o1314–o1317.

Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.

Moser, P., Sallmann, A. & Wiesenberg, I. (1990). J. Med. Chem. 33, 2358–2368.

Sheldrick, G. M. (2015α). Acta Cryst. A71, 3–8.

Sheldrick, G. M. (2015β). Acta Cryst. C71, 3–8.

Siemins (1994). XP. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.

Skoutakis, V. A., Carter, C. A., Mickle, T. R., Smith, V. H., Arkin, C. R., Alassandritos, J. & Petty, D. E. (1988). Drug Intell. Clin. Pharm. 22, 850–859.

Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Wishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. Ch., Young, N., Cheng, D., Jewell, K., Arndt, D., Sawhney, S. Fung, C., Nikolai, L., Lewis, M., Coutouly, M. A., Forsythe, I., Tang, P., Shrivastava, S., Jeroncic, K., Stothard, P., Amegbey, G., Block, D., Hau, D. D., Wagner, J., Miniaci, J., Clements, M., Gebremedhin, M., Guo, N., Zhang, Y., Duggan, G. E., Macminis, G. D., Weljie, A. M., Dowlatabadi, R., Bamforth, C., Clive, D., Greiner, R., Li, L., Marrie, T., Sykes, B. D., Vogel, H. J. & Querengesser, L. (2007). Nucleic Acids Res. 35, D521–D526.
full crystallographic data

2-Hydroxyethylammonium [2-(2,6-dichloroanilino)phenyl]acetate monohydrate

Nodira Obidova, Jamshid Ashurov, Lidiya Izotova and Bakhtiyar Ibragimov

Crystal data

\[
\begin{align*}
C_9H_{16}NO^+\cdot C_{14}H_9Cl_2NO_2^-\cdot H_2O & \quad F(000) = 784 \\
M_r = 375.24 & \quad D_a = 1.421 \text{ Mg m}^{-3} \\
\text{Monoclinic, } P2_1/c & \quad \text{Cu Kα radiation, } \lambda = 1.54184 \text{ Å} \\
a = 19.1257 (10) \text{ Å} & \quad \text{Cell parameters from 2166 reflections} \\
b = 9.3864 (5) \text{ Å} & \quad \theta = 4.7-73.9^\circ \\
c = 10.0502 (6) \text{ Å} & \quad \mu = 3.53 \text{ mm}^{-1} \\
\beta = 103.546 (6)^\circ & \quad T = 293 \text{ K} \\
V = 1754.05 (17) \text{ Å}^3 & \quad \text{Prism, colourless} \\
Z = 4 & \quad 0.31 \times 0.28 \times 0.1 \text{ mm} \\
\end{align*}
\]

Data collection

Agilent Technologies Xcalibur, Ruby diffractometer

Radiation source: fine-focus sealed tube

\(\omega\) scans

Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014)

\(T_{\text{min}} = 0.356, T_{\text{max}} = 1.000\)

12416 measured reflections

Refinement

Refinement on \(F^2\)

Least-squares matrix: full

\(R[F^2 > 2\sigma(F^2)] = 0.051\)

\(wR(F^2) = 0.134\)

\(S = 1.01\)

3621 independent reflections

222 parameters

0 restraints

Primary atom site location: dual

Secondary atom site location: difference Fourier map

Hydrogen site location: mixed

H-atom parameters constrained

\(w = \frac{1}{[\sigma^2(F_c^2) + (0.0614P)^2]}\)

where \(P = (F_c^2 + 2F_s^2)/3\)

\((\Delta/\sigma)_{\text{max}} < 0.001\)

\(\Delta\rho_{\text{max}} = 0.40 \text{ e Å}^{-3}\)

\(\Delta\rho_{\text{min}} = -0.35 \text{ e Å}^{-3}\)

Special details

Refinement. All hydrogen atoms were placed in idealized positions and refined as riding to their carrier atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	\(x\)	\(y\)	\(z\)	\(U_{iso}/U_{eq}\)		
Cl1	0.46202 (4)	0.95109 (8)	0.76764 (8)	0.0441 (2)		
Cl2	0.24250 (4)	1.20690 (9)	0.40514 (9)	0.0500 (2)		
Atom	U11	U22	U33	U12	U13	U23
--------	------	------	------	------	------	------
O1	0.1500 (11)	0.9926 (2)	0.5897 (2)	0.0472 (6)		
O1W	0.07192 (13)	0.6316 (3)	0.8457 (2)	0.0558 (6)		
H1WA	0.103624	0.612215	0.917982	0.084*		
H1WB	0.085392	0.710654	0.818732	0.084*		
N1	0.30390 (13)	0.9959 (2)	0.6226 (3)	0.0379 (6)		
H1	0.269351	1.041181	0.645204	0.045*		
O2	0.08825 (11)	0.8748 (3)	0.7146 (2)	0.0592 (7)		
N2	0.03573 (14)	0.1808 (3)	0.4921 (3)	0.0446 (6)		
H2A	0.003371	0.148791	0.419647	0.054*		
H2B	0.015651	0.187499	0.563284	0.054*		
H2C	0.072670	0.120586	0.512028	0.054*		
O3	0.07091 (17)	0.3857 (3)	0.6928 (3)	0.0762 (9)		
H3A	0.073883	0.464400	0.729146	0.114*		
C2	0.42880 (15)	1.0634 (3)	0.6305 (3)	0.0327 (6)		
C14	0.14604 (15)	0.9162 (3)	0.6906 (3)	0.0371 (7)		
C1	0.35476 (15)	1.0754 (3)	0.5751 (3)	0.0322 (6)		
C12	0.26283 (14)	0.7823 (3)	0.7158 (3)	0.0342 (6)		
C7	0.30532 (15)	0.8463 (3)	0.6360 (3)	0.0342 (6)		
C8	0.34720 (15)	0.7613 (3)	0.5707 (3)	0.0382 (7)		
H8	0.374195	0.803323	0.515422	0.046*		
C6	0.33381 (16)	1.1786 (3)	0.4739 (3)	0.0359 (6)		
C13	0.21653 (15)	0.8708 (3)	0.7865 (3)	0.0383 (7)		
H13A	0.243062	0.955166	0.824815	0.046*		
H13B	0.206067	0.816317	0.861507	0.046*		
C9	0.34871 (16)	0.6146 (3)	0.5877 (3)	0.0447 (8)		
H9	0.377768	0.559121	0.546037	0.054*		
C5	0.38298 (18)	1.2604 (3)	0.4257 (3)	0.0430 (7)		
H5	0.366991	1.328721	0.358405	0.052*		
C4	0.45510 (18)	1.2404 (3)	0.4774 (3)	0.0459 (8)		
H4	0.488229	1.292653	0.442936	0.055*		
C3	0.47873 (16)	1.1423 (3)	0.5811 (3)	0.0408 (7)		
H3	0.527698	1.129421	0.617432	0.049*		
C11	0.26455 (17)	0.6344 (3)	0.7292 (3)	0.0436 (8)		
H11	0.236429	0.590723	0.781473	0.052*		
C10	0.30743 (18)	0.5508 (3)	0.6661 (3)	0.0488 (8)		
H10	0.308209	0.452307	0.676839	0.059*		
C16	0.06160 (19)	0.3234 (3)	0.4609 (4)	0.0515 (8)		
H16A	0.020800	0.385304	0.426179	0.062*		
H16B	0.088673	0.314490	0.390895	0.062*		
C15	0.1082 (2)	0.3869 (4)	0.5871 (4)	0.0593 (10)		
H15A	0.152356	0.332453	0.614785	0.071*		
H15B	0.120699	0.483999	0.568925	0.071*		

Atomic displacement parameters (Å²)

Atom	U11	U22	U33	U12	U13	U23
Cl1	0.0413 (4)	0.0418 (4)	0.0442 (4)	0.0030 (3)	0.0002 (3)	0.0044 (3)
Cl2	0.0424 (4)	0.0481 (5)	0.0552 (5)	0.0075 (3)	0.0025 (4)	0.0094 (4)
Atom	U1 (Å²)	U2 (Å²)	U3 (Å²)	U4 (Å²)	U5 (Å²)	U6 (Å²)
------	---------	---------	---------	---------	---------	---------
O1	0.0363	0.0534	0.0497	0.0053	0.0057	0.0195
O1W	0.0600	0.0558	0.0496	−0.0060	0.0087	0.0047
N1	0.0349	0.0309	0.0525	0.0053	0.0196	0.0055
O2	0.0325	0.0799	0.0625	−0.0032	0.0054	0.0235
N2	0.0409	0.0497	0.0404	0.0072	0.0037	−0.0030
O3	0.106	0.0641	0.0689	−0.0190	0.0403	−0.0214
C2	0.0376	0.0276	0.0331	0.0030	0.0087	−0.0018
C14	0.0317	0.0414	0.0364	0.0012	0.0043	−0.0003
C1	0.0351	0.0267	0.0347	0.0014	0.0080	−0.0029
C12	0.0283	0.0355	0.0351	0.0000	−0.0003	0.0050
C7	0.0300	0.0310	0.0377	0.0010	0.0002	0.0027
C8	0.0328	0.0415	0.0389	0.0001	0.0056	−0.0017
C6	0.0373	0.0322	0.0374	0.0013	0.0071	−0.0013
C13	0.0352	0.0428	0.0351	−0.0017	0.0044	0.0068
C9	0.0415	0.0377	0.0498	0.0045	0.0004	−0.0099
C5	0.057	0.0333	0.0410	−0.0019	0.0157	0.0027
C4	0.0494	0.0401	0.053	−0.0111	0.0226	−0.0036
C3	0.0346	0.0380	0.0505	−0.0056	0.0115	−0.0067
C11	0.0441	0.0387	0.0447	−0.0035	0.0039	0.0110
C10	0.052	0.0313	0.058	−0.0001	0.0025	0.0041
C16	0.059	0.0442	0.049	0.0028	0.0073	0.0046
C15	0.055	0.064	0.058	−0.0107	0.0104	−0.0099

Geometric parameters (Å, °)

Bond	Distance (Å)
Cl1—C2	1.734 (3)
C12—C6	1.741 (3)
O1—C14	1.259 (3)
O1W—H1WA	0.8501
O1W—H1WB	0.8504
N1—C1	1.396 (3)
N1—C7	1.410 (3)
N1—H1	0.8600
O2—C14	1.248 (3)
N2—C16	1.486 (4)
N2—H2A	0.8900
N2—H2B	0.8900
N2—H2C	0.8900
O3—C15	1.412 (4)
O3—H3A	0.8200
C2—C3	1.389 (4)
C2—C1	1.400 (4)
C14—C13	1.523 (4)
C1—C6	1.394 (4)
C12—C11	1.395 (4)
C12—C7	1.403 (4)
C12—C13	1.508 (4)

Bond	Angle	Torsion	Bond	Angle	Torsion
H1WA—O1W—H1WB	104.5	C14—C13—H13A	109.0		
C1—N1—C7	124.4 (2)	C12—C13—H13B	109.0		
C1—N1—H1	117.8	C14—C13—H13B	109.0		
C7—N1—H1	117.8	H13A—C13—H13B	107.8		
C16—N2—H2A	109.5	C10—C9—C8	120.3 (3)		
C16—N2—H2B	109.5	C10—C9—H9	119.8		
H2A—N2—H2B	109.5	C8—C9—H9	119.8		
C16—N2—H2C	109.5	C4—C5—C6	119.8 (3)		
H2A—N2—H2C	109.5	C4—C5—H5	120.1		
C15—O3—H3A	109.5	C5—C4—C3	120.0 (3)		
C3—C2—C1	122.1 (3)	C5—C4—H4	120.0		
C3—C2—Cl1	117.0 (2)	C3—C4—H4	120.0		
C1—C2—Cl1	120.9 (2)	C4—C3—C2	119.5 (3)		
O2—C14—O1	123.9 (3)	C4—C3—H3	120.2		
O2—C14—C13	118.9 (3)	C2—C3—H3	120.2		
O1—C14—C13	117.2 (3)	C10—C11—C12	121.4 (3)		
C6—C1—N1	121.1 (3)	C10—C11—H11	119.3		
C6—C1—C2	115.9 (3)	C12—C11—H11	119.3		
N1—C1—C2	122.8 (3)	C9—C10—C11	119.6 (3)		
C11—C12—C7	118.5 (3)	C9—C10—H10	120.2		
C11—C12—C13	120.4 (3)	C11—C10—H10	120.2		
C7—C12—C13	121.1 (3)	N2—C16—C15	110.0 (3)		
C8—C7—C12	119.7 (3)	N2—C16—H16A	109.7		
C8—C7—N1	121.6 (3)	C15—C16—H16A	109.7		
C12—C7—N1	118.7 (3)	N2—C16—H16B	109.7		
C9—C8—C7	120.4 (3)	C15—C16—H16B	109.7		
C9—C8—H8	119.8	H16A—C16—H16B	108.2		
C7—C8—H8	119.8	O3—C15—C16	109.2 (3)		
C5—C6—C1	122.5 (3)	O3—C15—H15A	109.8		
C5—C6—Cl2	118.4 (2)	O3—C15—H15B	109.8		
C1—C6—Cl2	119.1 (2)	C16—C15—H15A	109.8		
C12—C13—C14	112.7 (2)	C16—C15—H15B	109.8		
C12—C13—H13A	109.0	H15A—C15—H15B	108.3		
C7—N1—C1—C6	131.3 (3)	C2—C1—C6—C12	−176.9 (2)		
C7—N1—C1—C2	−52.7 (4)	C11—C12—C13—C14	−100.2 (3)		
C3—C2—C1—C6	−4.4 (4)	C7—C12—C13—C14	80.1 (3)		
C11—C2—C1—C6	174.1 (2)	O2—C14—C13—C12	117.9 (3)		
C3—C2—C1—N1	179.4 (3)	O1—C14—C13—C12	−61.2 (4)		
C11—C2—C1—N1	−2.1 (4)	C7—C8—C9—C10	1.8 (4)		
C11—C12—C7—C8	0.9 (4)	C1—C6—C5—C4	0.3 (5)		
C13—C12—C7—C8	−179.4 (3)	C12—C6—C5—C4	−179.8 (2)		
C11—C12—C7—N1	−179.8 (3)	C6—C5—C4—C3	−2.4 (5)		
C13—C12—C7—N1	−0.1 (4)	C5—C4—C3—C2	0.9 (5)		
C1—N1—C7—C8	−16.6 (4)	C1—C2—C3—C4	2.6 (4)		
C1—N1—C7—C12	164.1 (3)	C11—C2—C3—C4	−176.0 (2)		
C12—C7—C8—C9	−2.0 (4)	C7—C12—C11—C10	0.3 (4)		
N1—C7—C8—C9 178.7 (3) C13—C12—C11—C10 −179.3 (3)
N1—C1—C6—C5 179.3 (3) C8—C9—C10—C11 −0.5 (5)
C2—C1—C6—C5 3.0 (4) C12—C11—C10—C9 −0.5 (5)
N1—C1—C6—Cl2 −0.6 (4) N2—C16—C15—O3 −53.2 (4)

Hydrogen-bond geometry (Å, º)

D—H···A	D—H	H···A	D···A	D—H···A
N1—H1···O1	0.86	2.27	2.884 (3)	129
N2—H2A···O2i	0.89	1.96	2.811 (4)	160
N2—H2B···O1Wii	0.89	2.15	2.947 (4)	148
N2—H2C···O1iii	0.89	1.92	2.802 (3)	169
O3—H3A···O1W	0.82	1.96	2.770 (3)	168
O1W···H1W···O2	0.85	1.87	2.690 (3)	161
O1W···H1WA···O1iv	0.85	2.00	2.809 (3)	158

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, y−1/2, −z+3/2; (iii) x, y−1, z; (iv) x, −y+3/2, z+1/2.