Relationship between HER-2 overexpression and brain metastasis in esophageal cancer patients

Taher Abu Hejleh, Barry R DeYoung, Eric Engelman, Jeremy M Deutsch, Bridget Zimmerman, Thorvardur R Halfdanarson, Daniel J Berg, Kalpaj R Parekh, William R Lynch, Mark D Iannettoni, Sudershan Bhatia, Gerald Clamon

Taher Abu Hejleh, Eric Engelman, Jeremy M Deutsch, Thorvardur R Halfdanarson, Daniel J Berg, Gerald Clamon, Division of Hematology, Oncology and Marrow Transplantation, Department of Internal Medicine, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, C32 GH, Iowa City, IA 52242-1081, United States
Barry R DeYoung, Department of Pathology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, 5238C RCP, Iowa City, IA 52242-1081, United States
Bridget Zimmerman, Department of Biostatistics, College of Public Health, University of Iowa, 200 Hawkins Drive, N377 CPHB, Iowa City, IA 52242-1081, United States
Kalpaj R Parekh, William R Lynch, Mark D Iannettoni, Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, SE514 GH, Iowa City, IA 52242-1081, United States
Sudershan Bhatia, Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, 1624 PFP, Iowa City, IA 52242-1081, United States

Author contributions: Abu Hejleh T performed most of the work, including study design, data collection, analyzing the study results, and writing the manuscript; Engelman E and Deutsch JM participated in designing the study, data collection and editing the manuscript; Halfdanarson TR, Berg DJ and Clamon G participated in the study design, analyzing the results and editing the manuscript; DeYoung BR was involved in the study design, performed the immunohistochemistry stains for HER-2, and edited the manuscript; Zimmerman B addressed the study design, performed the statistical analysis and approved the results included in the final manuscript; Parekh KR, Lynch WR and Iannettoni MD were involved in the study concept and design, performed the surgeries (esophagectomies), edited and approved the final manuscript; Bhatia S supervised radiation delivery to the esophagus, and edited the final manuscript; all authors approved the final manuscript for publication.

Supported by The Iowa Leukemia and Cancer Research Fund at University of Iowa Hospitals and clinics

Correspondence to: Taher Abu Hejleh, MBBS, Division of Hematology, Oncology and Marrow Transplantation, Department of Internal Medicine, University of Iowa Hospitals and Clinics, 200 Hawkins Dr. C32 GH, Iowa City, IA 52242-1081, United States. taher-hejleh@uiowa.edu

Abstract

AIM: To study if HER-2 overexpression by locally advanced esophageal cancers increase the chance of brain metastasis following esophagectomy.

METHODS: We retrospectively reviewed the medical records of esophageal cancer patients who underwent esophagectomy at University of Iowa Hospitals and Clinics between 2000 and 2010. Data analyzed consisted of demographic and clinical variables. The brain metastasis tissue was assayed for HER-2 overexpression utilizing the FDA approved Dako Hercept Test®.

RESULTS: One hundred and forty two patients were reviewed. Median age was 64 years (36-86 years). Eighty eight patients (62%) received neoadjuvant chemoradiotherapy. Pathological complete and partial responses were achieved in 17 (19%) and 71 (81%) patients. Cancer relapsed in 43/142 (30%) patients. The brain was the first site of relapse in 9/43 patients (21%, 95% CI: 10%-36%). HER-2 immunohistochemistry testing of the brain metastasis tissue showed that 5/9 (56%) cases overexpressed HER-2 (3+ staining).

CONCLUSION: HER-2 overexpression might be associated with increased risk of brain metastasis in esophageal cancer patients following esophagectomy. Further studies will be required to validate this observation.

© 2012 Baishideng. All rights reserved.
Brain metastasis from locally advanced esophageal cancer as the first site of disease relapse following multimodality treatment that includes chemotherapy, radiation therapy and esophagectomy is rare\(^\text{[3,4]}\). The incidence rate of brain metastasis, thought to be around 1%-5%, is derived from case series and autopsy reports\(^\text{[6,7]}\). Although the treatment goal of locally advanced esophageal cancer is to cure the disease, there is a high rate of disease relapse, whether locally or as distant metastasis, with the majority of relapses occurring in the liver, abdomen, lungs and bone\(^\text{[8,9]}\). Urbà et al\(^\text{[9]}\), showed that 65% of patients treated with concurrent chemotherapy and radiation therapy then esophagectomy had distant metastases rather than local recurrence upon relapse.

Multiple clinical and pathological features have been identified as prognostic factors in patients who receive concurrent chemoradiotherapy and esophagectomy. Factors including pathological complete response (pCR) to neoadjuvant treatment\(^\text{[10,11]}\), lower tumor grade and stage\(^\text{[8,9]}\), and smaller tumor length\(^\text{[9]}\), are associated with favorable outcomes. Other trials showed that larger tumors and perioperative chemotherapy or radiation therapy might be associated with a higher risk of subsequent brain metastases\(^\text{[11,12]}\). In breast cancer, other risk factors such as over expression of HER-2, a membrane bound tyrosine kinase, were shown to predispose to brain metastasis (hazard ratio: 4.23, \(P = 0.0007\))\(^\text{[13,14]}\).

HER-2 is over expressed in approximately 25% of esophageal cancers\(^\text{[15,16]}\) and is associated with a worse prognosis\(^\text{[17,18]}\). HER-2 receptor status became more clinically relevant after the ToGA trial showed that targeting HER-2 positive gastric and gastroesophageal junction tumors with Trastuzumab (Herceptin), a recombinant humanized monoclonal antibody that inhibits HER-2 receptor, combined with chemotherapy improved survival in patients with metastatic disease\(^\text{[19]}\). To our knowledge, there has been no correlation identified between esophageal cancer HER-2 receptor positivity and risk of brain metastasis.
reached). Median survival for the pPR patients was 28.8 mo (95% CI: 18.7-36.0). Although Figure 2 shows a survival difference for the patients who had pCR and pPR, this was not statistically significant ($P = 0.207$).

The total number of identified relapses was 43/142 (30.3%). Median follow up time was 11.8 mo (< 1-110 mo). Initial relapses occurred in the residual esophagus, paraesophageal lymph nodes, mediastinum, liver, peritoneum, lungs, bone or brain. Frequencies of relapses at various sites are summarized in Table 2. There were 9/43 (21%) relapses in the brain (95% CI: 10%-36%) with the following characteristics: cancer stage T3N1M0 (7/9), neoadjuvant chemotherapy and radiation therapy (7/9), pCR (1/9), adenocarcinoma (7/9), squamous cell carcinoma (2/9).

HER-2 immunohistochemistry staining of the brain metastasis specimens showed that 5/9 specimens (56%) overexpressed HER-2 (3+ staining). The rest of the specimens (4/9) did not stain for HER-2 (0 staining). Figure 3 shows brain metastasis specimens with 3+ and 0 staining.

Treatment of brain relapses included surgical resection (2 patients), stereotactic radiosurgery (SRS) (1 patient), surgical resection followed by SRS to the tumor bed (3 patients), and whole brain radiation (3 patients). Survival following diagnosis of brain relapse ranged from < 1-22 mo. Two patients who had brain surgery and SRS lived longer than others (18 and 22 mo).

Table 1 Characteristics of esophageal cancer patients who underwent esophagectomy

Characteristics	n (%)
Age on diagnosis of esophageal cancer (yr)	
Median	64
Range	36-86
Sex	
Male	124 (87.3)
Female	18 (12.7)
Smoking	
< 100 cigs/life	33 (23.2)
< 10 pack-year	9 (6.3)
> 10 pack-year	87 (61.3)
Unknown	13 (9.2)
Esophageal cancer type (path report)	
Adenocarcinoma	118 (83.1)
Squamous cell carcinoma	22 (15.5)
Small cell carcinoma	1 (0.7)
GIST	1 (0.7)
T classification	
T1	18 (12.7)
T2	19 (13.4)
T3	76 (53.5)
T4	2 (1.4)
Unknown	27 (19)
N classification	
N0	49 (34.5)
N1	65 (45.8)
N2	3 (2.1)
Unknown	25 (17.6)
Neoadjuvant treatment	
Neoadjuvant treatment	88 (62)
No neoadjuvant treatment	52 (36.6)
Unknown	2 (1.4)
Response to neoadjuvant treatment	
No residual tumor (complete response)	17 (12)
Residual tumor present (partial response)	71 (50)
No neoadjuvant treatment	52 (36.6)
Unknown	2 (1.4)
Tumor grade	
Well differentiated	4 (2.8)
Moderately differentiated	67 (47.2)
Poorly differentiated	61 (43)
Unknown	10 (7)
Disease relapse	
Yes	43 (30.3)
No	91 (64.1)
Unknown	8 (5.6)

GIST: Gastrointestinal stromal tumor.

Table 2 First site of esophageal cancer relapse following esophagectomy

Relapse site	n (%)
Brain	9 (21)
Peritoneum	3 (7)
Esophageal remnants, paraesophageal lymph nodes or mediastinum (locoregional relapse)	13 (30)
Lungs	8 (19)
Liver	6 (14)
Bone	4 (9)
DISCUSSION

Esophageal cancer is potentially a curable disease if diagnosed at an early stage but fatal when widely metastatic. The current standard of care of locally advanced esophageal cancer includes neoadjuvant concurrent chemotherapy and radiation therapy followed by esophagectomy\(^{[9,20]}\). Although significant advances have been made in achieving better quality of life and survival outcomes, it is estimated that only around 20% of the patients with local disease are alive 5 years following diagnosis\(^{[21,22]}\).

Brain metastasis as the first site of disease relapse after esophagectomy for esophageal cancer is uncommon\(^{[3,4]}\). However, our study showed a higher frequency of brain relapses in locally advanced esophageal cancer patients who underwent esophagectomy compared to historical figures\(^{[3]}\). Recognizing the increased risk of brain metastasis in HER-2 positive breast cancer patients\(^{[13,14]}\) and the known overexpression of HER-2 in esophageal cancers\(^{[25,26]}\), we explored HER-2 expression status in the brain metastasis tissues obtained from esophageal cancer patients who underwent esophagectomy and relapsed in the brain. HER-2 was strongly positive in 50% of the cases which probably implies that HER-2 positivity in esophageal cancer predisposes to brain metastasis. Interestingly, in a phase I/II trial by Safran et al\(^{[23]}\) testing Trastuzumab in HER-2 positive esophageal cancer patients, 3 out of the 10 relapses that occurred were in the central nervous systems (CNS).

Treatment of CNS metastasis, regardless of the primary cancer type, often includes surgery, radiation therapy or chemotherapy. Although surgical resection or SRS of a limited number of brain metastasis resulted in survival benefit in various cancers including esophageal cancer\(^{[26-28]}\), chemotherapy treatment of CNS metastasis has been limited, primarily due to the blood brain barrier in addition to other factors\(^{[29,30]}\). Nevertheless, there have been recent advances in the chemotherapeutic management of CNS metastasis, whether parenchymal or leptomeningeal. Whereas Trastuzumab is known to be an effective treatment of metastatic HER-2 positive breast cancers, its CSF levels were reported to be low when administered intravenously\(^{[31]}\). Alternatively, intrathecal Trastuzumab showed encouraging results treating HER-2 positive breast cancer leptomeningeal metastasis\(^{[32,33]}\). Lapatinib, an oral HER-2 tyrosine kinase inhibitor that crosses the blood brain barrier, combined with Capecitabine resulted in partial and complete responses of brain metastasis from HER-2 positive breast cancers\(^{[34-37]}\).

In summary, we noticed a high incidence of brain metastasis as the first site of cancer relapse in our series of locally advanced esophageal cancer patients who underwent esophagectomy. Additionally, we observed that HER-2 overexpression might be associated with increased risk of brain metastasis. The benefits of screening brain imaging in a selected population of HER-2 positive esophageal cancer patients before going through a major surgery such as esophagectomy and utilizing HER-2 directed therapy in case of brain relapse in that same subpopulation are potential considerations that deserve further exploration in future studies. Acknowledging the limitations of a retrospective study and the small sample size, our observations need to be replicated in a larger cohort.
Applications
If subsequent larger studies support our observation of increasing risk of brain relapse from HER-2 overexpressing esophageal cancer, this will have various important implications. This subset of patients might benefit from screening brain imaging to rule out brain metastasis. This might decrease the number of futile esophagectomies which will be avoided if the patient is found to have brain metastasis before surgery. Additionally, there might be a role for biological agents, such as Trastuzumab or Lapatinib in the treatment of brain relapse from HER-2 overexpressing esophageal cancers.

Terminology
HER-2 is a membrane tyrosine kinase involved in signal transduction pathways that regulate cellular proliferation. Overexpression of HER-2 was identified in various cancers, such as esophageal, gastric and breast cancers. It correlates with an aggressive disease and worse prognosis in breast cancer. Antibodies that target HER-2, such as Trastuzumab, are available for clinical use and commonly utilized in breast cancer. Trastuzumab was also found to prolong survival in women with HER-2-positive breast cancer by reducing the risk of death compared to chemotherapy alone by 30%. Antibodies that target HER-2, such as Trastuzumab, are available for clinical use and commonly utilized in breast cancer. Trastuzumab was also found to prolong survival in women with HER-2-positive breast cancer by reducing the risk of death compared to chemotherapy alone by 30%.

REFERENCES
1. Meguid RA, Hooker CM, Taylor JT, Kleinberg LR, Cattaneo SM, Sussman MS, Yang SC, Heitmiller RF, Forastiere AA, Brock MV. Recurrence after neoadjuvant chemoradiation and surgery for esophageal cancer: does the pattern of recurrence differ for patients with complete response and those with partial or no response? J Thorac Cardiovasc Surg 2009; 138: 1309-1317
2. Yoshida S. Brain metastasis in patients with esophageal carcinoma. Surg Neurol 2007; 67: 288-290
3. Anderson LL, Lad TE. Autopsy findings in squamous-cell carcinoma of the esophagus. Cancer 1982; 50: 1587-1590
4. Mandard AM, Chasse J, Marnay J, Villedieu B, Bianco C, Roussel A, Elie H, Vernhes JC. Autopsy findings in 111 cases of esophageal cancer. Cancer 1981; 48: 329-335
5. Urba SG, Orringer MB, Turrissi A, Iannettoni M, Forastiere A, Strawderman M. Randomized trial of preoperative chemotherapy and surgery for esophageal cancer. J Clin Oncol 2001; 19: 305-313
6. Hammond ZT, Kesler KA, Ferguson MK, Battafarano RJ, Bhogaraju A, Hanna N, Govindan R, Mauer AA, Yu M, Einhorn LH. Survival outcomes of resected patients who demonstrate a pathologic complete response after neoadjuvant chemoradiation therapy for locally advanced esophageal cancer. Dis Esophagus 2006; 19: 69-72
7. Swisher SG, Hofstetter W, Komaki R, Correa AM, Erasmus J, Lee JH, Liao Z, Maru D, Mehran R, Patel S, Rice DC, Roth JA, Vaporiyan AA, Walsh GL, Ajani JA. Improved long-term outcome with chemoradiation therapy alone in patients with locoregional esophageal carcinoma. J Clin Oncol 2001; 19: 257-263
8. Kelsen DP, Ginsberg R, Pajak T, Sheahan DG, Gunderson L, Mortimer J, Estes N, Haller DG, Ajani J, Kucha W, Minsky BD, Roth JA. Chemotherapy followed by surgery compared with surgery alone for esophageal cancer: CALGB 9781. J Clin Oncol 2008; 26: 1086-1092
9. Walsh TN, Noonan N, Hollywood D, Kelly A, Keeling N, Hennessy TP. A comparison of multimodal therapy and surgery for esophageal adenocarcinoma. N Engl J Med 1996; 335: 462-467
10. Cooper JS, Guo MD, Herskovic A, Macdonald JS, Martenson JA, Al-Sarraf M, Byhardt R, Russell AH, Beittler J, Spencer S, Asbell SO, Graham MV, Leichman LL. Chemoradiotherapy of locally advanced esophageal cancer: long-term follow-up of a prospective randomized trial (RTOG 85-01). Radiation Therapy Oncology Group. JAMA 1999; 281: 1623-1627
11. al-Kassopoolees M, Moore JH, Orringer MB, Beer DG. Amplification and over-expression of the EGFR and erbB-2 genes in human esophageal adenocarcinoma. Int J Cancer 1993; 54: 213-219
12. Hardwick RH, Shepherd NA, Moogren M, Newcomb PV, Alderson D, c-erbB-2 overexpression in the dysplasia/carcinoma sequence of Barrett’s oesophagus. J Clin Pathol 1995; 48: 129-132
13. Safran H, Dipetrillo T, Akerman P, Ng T, Evans D, Steinhoff M, Benton D, Purvine J, Goldstein L, TandralVU, Kennedy T. Phase I/II study of trastuzumab, paclitaxel, cisplatin and radiation for locally advanced, HER2 overexpressing, esophageal adenocarcinoma. Int J Radiat Oncol Biol Phys 2007; 67: 405-409

Peer review
This paper presents an interesting topic about the relationship between HER-2 OVER expression and brain metastasis in esophageal cancer patients.

Hejleh TA et al. Esophageal cancer HER2 and brain relapse
Hejleh TA et al. Esophageal cancer HER2 and brain relapse

26 Flannery TW, Suntharalingam M, Regine WF, Chin LS, Krasna MJ, Shehata MK, Edelman MJ, Kremer M, Patchell RA, Kwok Y. Long-term survival in patients with synchronous, solitary brain metastasis from non-small-cell lung cancer treated with radiosurgery. *Int J Radiat Oncol Biol Phys* 2008; 72: 19-23

27 Muacevic A, Kreth FW, Horstmann GA, Schmid-Elsaesser R, Wowra B, Steiger HJ, Reulen HJ. Surgery and radiotherapy compared with gamma knife radiosurgery in the treatment of solitary cerebral metastases of small diameter. *J Neurosurg* 1999; 91: 35-43

28 Weinberg JS, Suki D, Hanbali F, Cohen ZR, Lenzi R, Sawaya R. Metastasis of esophageal carcinoma to the brain. *Cancer* 2003; 98: 1925-1933

29 Bart J, Groen HJ, Hendrikse NH, van der Graaf WT, Vaalburg W, de Vries EG. The blood-brain barrier and oncology: new insights into function and modulation. *Cancer Treat Rev* 2000; 26: 449-462

30 Cordon-Cardo C, O’Brien JP, Casals D, Rittman-Grauer L, Biedler JL, Melamed MR, Bertino JR. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. *Proc Natl Acad Sci USA* 1989; 86: 695-698

31 Pestalozzi BC, Brignoli S. Trastuzumab in CSF. *J Clin Oncol* 2000; 18: 2349-2351

32 Oliveira M, Braga S, Passos-Coeelho JL, Fonseca R, Oliveira J. Complete response in HER2+ leptomeningeal carcinomatosis from breast cancer with intrathecal trastuzumab. *Breast Cancer Res Treat* 2011; 127: 841-844

33 Platini C, Long J, Walter S. Meningeal carcinomatosis from breast cancer treated with intrathecal trastuzumab. *Lancet Oncol* 2006; 7: 778-780

34 Metro G, Foglietta J, Russillo M, Stocchi L, Vidiri A, Giannarelli D, Crino L, Papaldo P, Mottolese M, Cognetti F, Fabi A, Gori S. Clinical outcome of patients with brain metastases from HER2-positive breast cancer treated with lapatinib and capecitabine. *Ann Oncol* 2011; 22: 625-630

35 Glück S, Castellon A. Lapatinib plus capecitabine resolved human epidermal growth factor receptor 2-positive brain metastases. *Ant J Ther* 2009; 16: 585-590

36 Ekenel M, Hormigo AM, Peak S, Deangelis LM, Abrey LE. Capecitabine therapy of central nervous system metastases from breast cancer. *J Neurooncol* 2007; 85: 223-227

37 Lin NU, Diéras V, Paul D, Lossignol D, Christodoulou C, Stemmler HJ, Roché H, Liu MC, Greil R, Ciruelos E, Loibl S, Gori S, Wardley A, Yardley D, Brufky A, Blum JL, Rubin SD, Dharan B, Stepewski K, Zembryski D, Oliva C, Roychorudhury D, Paoletti P, Winer EP. Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. *Clin Cancer Res* 2009; 15: 1452-1459

S-Editor Wang JL L-Editor Roemmele A E-Editor Zheng XM