Managing plantation density through initial spacing and commercial thinning: Yield results from a 60-year-old red pine spacing trial experiment

| Journal:                  | Canadian Journal of Forest Research |
|---------------------------|-------------------------------------|
| Manuscript ID             | cjfr-2020-0246.R1                   |
| Manuscript Type:          | Article                             |
| Date Submitted by the Author: | 08-Oct-2020                         |
| Complete List of Authors: | Thiffault, Nelson; Canadian Forest Service, Canadian Wood Fiber Centre Hoepting, Michael; Canadian Forest Service, Canadian Wood Fibre Centre Fera, Jeff; Canadian Forest Service, Canadian Wood Fibre Centre Lussier, Jean-Martin; Canadian Forest Service, Canadian Wood Fiber Centre Larocque, Guy; Natural Resources Canada, |
| Keyword:                  | silviculture, stand density management, plantation, Pinus resinosa, long-term silviculture experiment |
| Is the invited manuscript for consideration in a Special Issue? : | Historical Perspectives in Forest Sciences |
Managing plantation density through initial spacing and commercial thinning: Yield results from a 60-year-old red pine spacing trial experiment

Nelson Thiffault\textsuperscript{a,}\textsuperscript{*}, Michael Hoepting\textsuperscript{b}, Jeff Fera\textsuperscript{b}, Jean-Martin Lussier\textsuperscript{a} and Guy R. Larocque\textsuperscript{c}

\textsuperscript{a}Canadian Wood Fibre Centre, Natural Resources Canada, 1055 du P.E.P.S., P.O. Box 10380, Sainte-Foy Stn., Québec, QC G1V 4C7, Canada
\textsuperscript{b}Canadian Wood Fibre Centre, Natural Resources Canada, 1219 Queen St. E., Sault Ste. Marie, ON P6A 2E5, Canada
\textsuperscript{c}Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1055 du P.E.P.S., P.O. Box 10380, Sainte-Foy Stn., Québec, QC G1V 4C7, Canada

\textsuperscript{*}Corresponding author: nelson.thiffault@canada.ca. Tel.: (418) 454-1976

Nelson Thiffault ORCID: 0000-0003-2017-6890; email: nelson.thiffault@canada.ca
Michael Hoepting ORCID: 0000-0001-5054-1946; email: michael.hoepting@canada.ca
Jeff Fera ORCID: 0000-0001-7052-1985; email: jeff.fera@canada.ca
Jean-Martin Lussier ORCID: 0000-0003-1474-6674; email: jean-martin.lussier@canada.ca
Guy R. Larocque ORCID: 0000-0001-9504-4222; email: guy.larocque@canada.ca
Abstract

We report on a 60-year-old *Pinus resinosa* spacing trial experiment located in Ontario (Canada) that included the combinations between six initial spacings (from 1.2–3.0 m) and the presence/absence of a commercial thinning (CT) regime, and their impacts on quadratic mean diameter (QMD) and stand volume yield. The CT regime, initiated at age 30, targeted a residual basal area (BA) of 38 m$^2$ ha$^{-1}$ after each of four entries. Without thinning, as initial spacing increased, QMD increased; gross and net volume production peaked in the 2.1–2.4 m spacings. With thinning, similar trends with spacing were evident for QMD, although piece sizes were larger and differences between spacing were lower. The immediate increase of average tree size caused by tree selection explained most of the differences in QMD between thinned and unthinned plots. Thinning to a common target BA resulted in similar standing volume across spacings. Cumulative gross yield was similar between spacings <2.1 m for both unthinned/thinned stands and decreased for thinned plots for wider spacings. Greater net volume production in thinned stands with the narrower spacings confirmed that mortality was captured. Lower gross and net production for wider spacings suggested that thinning resulted in under-utilized growing space.

Keywords: silviculture, stand density management, plantation, thinning, *Pinus resinosa*, long-term silviculture experiment
Introduction

Planted forests are estimated to provide about one third of the world industrial stemwood production (Jürgensen et al. 2014). This proportion has globally increased over the past two and half decades (Payn et al. 2015). In terms of fibre production, plantation forestry offers an opportunity for increased productivity compared with natural forests, a combined result of planted material that comes from breeding program strategies, optimized stocking of desired species that maximize space use, and applications of cultural treatments at many stages of stand development (Savill et al. 1997, West 2014). The high yields of planted forests are also viewed as an opportunity for achieving wood fibre production and allowing the provision of other ecosystem services (e.g. wildlife habitats, carbon sequestration, conservation) at the landscape level (Malouin et al. 2016, Messier et al. 2003, Paquette and Messier 2010, Park and Wilson 2007). The success of this zoning strategy relies, however, on the capacity of the planted areas to provide the expected timber production, both in terms of quantity and quality, so that harvesting pressure can be reduced on the remaining landscape (Tittler et al. 2012). Moreover, achieving plantation forestry objectives is dependent on substantial investments (e.g. tree breeding, nursery production, seedling delivery, handling and planting), most of which appears early in silviculture scenarios, thus increasing their pressure on financial returns. Hence, it is critical that plantation silviculture scenarios be optimized so that planted forests meet the expected production objectives.

Density control is a key element by which foresters manipulate stand growth and yield (Davis et al. 2001). In plantation forestry, stand density can be managed at the plantation initiation stage by varying the distance between the planted trees. Whereas higher planting densities result in greater volume production at the stand level because site occupancy is optimized,
individual tree size is maximized at lower density because of reduced intra-specific 
competition. This pattern of an antagonistic effect of planting density on stand wood yields 
and mean tree size has been observed for many species and many parts of the world (see 
West 2014). Stand density can also be managed later in the development of a stand through 
thinning operations. Stand thinning, either before or after trees have reached a commercial 
size, is used to concentrate the finite site environmental resources on a few, selected 
individual crop trees (Savill et al. 1997). By reducing stand density, thinning generally 
reduces intra-specific competition and increases light and nutrient availability to residual 
trees, hence improving their growth and reducing the rotation age to achieve a target tree size 
(Smith et al. 1997). Thinnings have also a harvesting function, providing intermediate income 
from small-sized products, prior to the final harvest. These are potential solutions to mitigate 
mid-term timber supply shortages at the scale of forest management units caused by major 
forest disturbances.

For many decades, red pine (Pinus resinosa Ait.) has been extensively planted in the northern 
United States and southeastern Canada (Rudolf 1990). It grows fairly rapidly compared with 
most of North American tree species and has the potential for high value products, 
particularly utility poles (Gilmore and Palik 2006). Moreover, the species presents potential 
for the rehabilitation of sites that have been degraded after decades of farming activities 
(McPherson and Timmer 2002). Many studies have investigated the short-to-long-term 
impact of establishment plantation density on red pine plantation productivity (Homagain et 
al. 2011, Larocque and Marshall 1993, Lundgren 1981, Stiell 1964, Stiell and Berry 1973), 
whereas others have documented how thinning regimes influence individual stem growth and 
stand yield (Bradford and Palik 2009, Liechty et al. 1986, Powers et al. 2010). To our 
knowledge, few have looked, however, at the long-term interactions between these
silviculture decisions, compared with other species and context such as *Pinus taeda* L. in the southern US (Baldwin Jr. et al. 2000). Optimum planting densities and thinning intensities can be derived from density management diagrams (Smith and Woods 1997), but they are generally based on assumptions derived from the observations of unmanaged stands, rather than empirical data from real stand-density management treatments. Long-term studies investigating the main and interacting effects of initial density and thinning are highly valuable (Pretzsch et al. 2018); they provide empirical data to support decision-making, and are used in growth and yield modeling (e.g. Larocque 2002).

We investigated the main and interacting long-term effects of initial planting density and a commercial thinning (CT) regime on tree- and stand-level growth development of red pine plantations established in the Great Lakes-St. Lawrence forest region of Ontario (Canada). The data we used is derived from a 60-year-old red pine plantation experiment comprising all the combinations between six initial spacings and the presence/absence of a CT regime comprising a series of thinning, combining row and crown thinning of crop trees, in addition with the harvest of small and low-vigour trees, to reach a constant residual basal area (BA) target. This experiment was at the core of studies on the effects of competition on growth efficiency and crown development (Larocque and Marshall 1993, Larocque and Marshall 1994a, b), wood density (Larocque and Marshall 1995, Larocque 1997) and development of a distance-dependent competition model (Larocque 2002).

We tested the general hypothesis that there is a multiplicative effect between density management at planting and at the CT stage to influence tree size and volume production at the stand level at the age 60 years. We posited that mean tree size, expressed in terms of...
quadratic mean diameter (QMD), would be greater in thinned than in unthinned plots, but that these differences would decrease as initial spacing increased, because:

(a) the immediate increase of the average tree size due to tree selection (also known as the “chainsaw effect”) is more important in denser plots with such a thinning prescription;

(b) the average release of the competition around the residual trees will be more pronounced in denser plots (i.e. greater reduction of intraspecific competition), because the initial competition pressure and the number of released trees per hectare are greater than with plots with lower initial density.

As a corollary, we also expected that individual tree size would increase with increasing initial spacing, but that this effect after 60 years would be less important in thinned relative to unthinned plots. At the stand level, after Langsaeter’s hypothesis (Smith et al. 1997), we expected all treatments to produce a similar cumulative gross yield, and that the thinning regime would increase net production by decreasing tree mortality.

Materials and Methods

Study region and site

We conducted the study in two red pine plantation sites, established on an abandoned farmland in 1953 and located a few hundred metres apart, near the Petawawa Research Forest (formerly the Petawawa National Forestry Institute) in Chalk River (Ontario, Canada) (46°00’N, 77°26’W). The daily average temperature is 5.6 °C, with average total rainfall of 682 mm and total snowfall of 182 cm (Environment Canada 2010). The soil of both plantation sites is a deep aeolian sand deposit providing uniform growth conditions for red pine (Penner et al. 2001). Site index is estimated at 24 m at 50 years, which is one of the highest values for this species (Buckman et al. 2006, Plonski 1974).
Study design and treatments

The experiment was originally established as a factorial design with two plantation sites to test the effects of initial spacing on planted red pine growth and yield. Ten stands of 1.6 ha in average were planted in 1953, using 2+2 bareroot stock, creating a gradient of six planting densities with initial square spacings of 1.2 m, 1.5 m, 1.8 m, 2.1 m, 2.4 m, and 3.0 m (Fig. 1). and allocated randomly to experimental stands. In 1954 (one year after planting), dead seedlings were replaced through fill-planting to maintain the target initial planting densities. In 1962, two 0.101 ha sampling plots were established for each spacing and measured periodically (see below). For spacings 1.2 m and 1.5 m, both sampling plots were located within the same planted area, as the treatment was not established in the second one.

In 1982, thinning was included in the experiment (Figs. 1 and 2). Although three thinning regimes (plus a control) were implemented overall, this paper focusses on the single thinning regime that was applied to all six spacing treatments. In the first and largest plantation site, sub-plots were created within the initial stands, with a randomized application of the thinning treatment (with or without thinning) (Fig. 1). The area of the sub-plots varied among the stands. In the second and smaller plantation site, only the 1.8 m spacing treatment was thinned, whereas the others were not. Additional 0.10 ha (0.08 ha in one instance) sampling plots were established in 1981, to have two sampling plots per combination of spacing × thinning treatments, for a total of 24 sampling plots (Fig.1). Since thinning treatments and sampling plots were not evenly distributed among the stands, the experiment setup does not qualify as a split-plot design.
The thinning regime consisted of four successive interventions maintaining a target residual basal area of 37.9 m$^2$ ha$^{-1}$ (165 pi$^2$ ac$^{-1}$) (after the recommendation of Smithers 1954). This corresponds to about 70% of the highest basal area found among the initial 12 experimental units (54.2 m$^2$ ha$^{-1}$). Variations in the thinning modalities were applied within the experimental units in regards to tree selection (row, crown, or low thinning), but these were not considered in the analysis. The thinning treatment was repeated systematically in 1992, 2002 and 2013, bringing basal area down to the same original residual basal area target value of 37.9 m$^2$ ha$^{-1}$. In the first three thinnings, all felling was done motor-manually, along with cable skidding. For the fourth thinning, a single-grip harvester was used for felling and bucking, and a forwarder extracted the logs.

**Measurements**

Tree dimensions (height, diameter-at-breast height measured at 1.3 m; DBH) were assessed before each of the thinning entries, using the permanent sampling plots (0.08 – 0.101 ha) established in each spacing treatment × thinning treatment combinations. Whereas DBH was measured for every tree in each sample plot, we measured total height on a subsample of trees (19–76% of live stems) through the range of diameters. Post-thinning metrics are based on subtracting thinned trees from pre-thinning assessments. This paper focuses on 60-year-old measurements (data collected in 2013, before and after the last thinning entry).

**Calculations and Statistical analyses**

We performed all data handling and analyses using the R statistical environment v. 3.6.1 (R Core Team 2013). We predicted the heights for the remaining stems with a height–diameter function of the form $height = 1.3 + e^a + b/(DBH + 1)$ (Wykoff et al. 1982, described in Huang et al. 1992), using a mixed effect model. We calculated the random parameter estimates ($a$ and $b$).
specific to each sampling plot and measurement year\(^1\) with the \textit{nlme} function of the \textit{nlme} package (Pinheiro et al. 2019), and applied it to predict tree height for the individuals without explicit height measurements. By doing so, the possible spacing and thinning treatment effects on the height–diameter relationship were considered in the plot-level random effect.

Top height (mean of the tallest 100 stems per hectare, in meters), basal area, quadratic mean diameter, merchantable volume and total volume were calculated for each sampling plot. Basal area (m\(^2\) ha\(^{-1}\)) was calculated for each live tree using DBH and plot area, and then at the stand-level by summing all the trees within the sampling plots. Quadratic mean diameter (cm), which represents the tree of mean BA, was calculated using BA and live stem density (stems ha\(^{-1}\)). Chainsaw effect was the difference in QMD before and immediately after each thinning, with the cumulative chainsaw effect being the sum of the effect resulting from all four thinning entries. The total volume lost to mortality was tracked starting in 1982, corresponding with the establishment of the sampling plots in the thinned stands. For each experimental unit, we calculated total standing, thinned, dead volume and cumulative gross and net volumes (m\(^3\) ha\(^{-1}\); from 1982 onwards) after each thinning entry using Zakrzewski and Penner (2013) volume equations. Cumulative gross yield was calculated as the total standing volume, plus total volume lost to mortality, plus the total volume removed during all four of the thinning entries. The cumulative net yield was the cumulative gross yield, minus the cumulative mortality volume. Based on regional market requirements, merchantable volume calculations were made based on a minimum stem length of 2.4 m (8 foot log + 0.2 m trim), a 0.2 stump height, and a minimum inside bark top diameter of 12.7 cm (5 inches).

\(^1\) See parameters for each spacing × thinning × year combination in Supplementary material
We used analyses of variance (ANOVA) to evaluate the effects of initial spacing and thinning and their interaction on QMD and standing volume, merchantable volume, cumulative volume lost to mortality, cumulative gross and net yields of the stands after the last thinning using linear models (`lm` function). Using Bartlett’s tests and standard graphical procedures (normal histograms, Q-Q plots), we examined model residuals to ensure that assumptions of homogeneity and normality were satisfied; no transformations were deemed necessary. We calculated estimated marginal means and Tukey HSD pairwise comparisons with the `emmeans` package (Lenth 2019) and used $\alpha = 0.05$ as a threshold for significance. We finally used correlation analyses to explore relationships between differences in QMD in thinned and unthinned plots and the gradient of initial spacing.

Results

At age 60, after the latest commercial thinning in fall 2013, the average top height was 27 m (range: 26.3–28.5 m). Basal area averaged 65.3 m$^2$ ha$^{-1}$ within the unthinned plots (range: 58.7–70.4 m$^2$ ha$^{-1}$) and 37.9 m$^2$ ha$^{-1}$ in the thinned plots (range: 37.2–38.3 m$^2$ ha$^{-1}$).

At the onset of the thinning regime in 1982, basal area ranged from 42 to 58 m$^2$ ha$^{-1}$, and stand density from 960 to 4366 trees ha$^{-1}$, after the gradient created by the different initial spacings$^2$. At the first thinning, the reduction in basal area to a uniform residual value led to a greater reduction in stem density in the low spacing plots, but still left a greater number of residual trees than in the wider spacings. Differences in thinning intensity and residual density among spacing treatments decreased progressively after the subsequent thinnings$^3$.

$^2$ See number of stems per hectare in Supplementary material

$^3$ See Supplementary material
The tree selection rules applied at each thinning caused an instantaneous increase in QMD, which once cumulated for the four treatments, ranged from 3.1 to 6.3 cm, in favour of the narrowest spacing (Fig. 3).

Tree level response

Initial planting density and commercial thinning interacted to influence QMD (Table 1). In unthinned plots, mean QMD did not differ significantly among initial spacings of 1.2, 1.5 and 1.8 m (Fig. 4). Without a CT regime to reduce density, a spacing of at least 2.1 m was necessary to detect a significant increase in tree diameter compared with the narrower spacings. A 9 cm gain in QMD was obtained between the 2.1 and 3 m spacings over 60 years. Without thinning, a 2.4 m initial spacing was required to reach the minimal diameter observed in thinned plots, which occurred in the 1.5 m spacing (Fig. 4).

Thinning slightly increased the number of large trees for the narrower spacings, but not much for the larger ones. In these cases, the thinning regime eliminated the smaller size classes. Thinning caused a significant increase in QMD for all initial spacings; however, differences among the levels of initial spacing were statistically different only when reaching the 2.4 m initial spacing. The difference between thinned and unthinned plots ranged from 4.9 to 9.1 cm, with a correlation of −0.78 with initial spacing. However, most of this difference was caused by the chainsaw effect, which was highly correlated with initial spacing (r = −0.87). By subtracting the chainsaw effect from the observed difference between thinned and unthinned plot, we approximated the effect of thinning on tree growth. This ranged between 1.9 and 3.9 cm, with no significant correlation with the initial spacing (r = −0.006).

---

4 See histograms of diameter distribution in Supplementary material
Stand level response

After 60 years, standing volume in the unthinned plots peaked in the 2.1 and 2.4 m treatments (910–930 m$^3$ ha$^{-1}$) and was unaffected by initial spacing in the 1.2 to 1.8 m treatments (710–750 m$^3$ ha$^{-1}$; Table 2; Fig. 5). After four thinning occurrences, total standing volume was lower than in the unthinned plots, but did not differ significantly among all spacing treatments (430–470 m$^3$ ha$^{-1}$). Similarly, merchantable volume was higher in unthinned plots than in thinned stands, with the highest volumes found in the 2.1 to 3.0 m spacing treatments ($p < 0.001$, Table 2). Merchantable volume in thinned stands was consistent across spacing treatments (Table 2).

Thinning effectively reduced mortality: on average, 15.0 m$^3$ ha$^{-1}$ across the initial spacings were lost to mortality between 1982 and 2013 (Table 2). Conversely, mortality volume in the controls was as high as 247 m$^3$ ha$^{-1}$ in the 1.2 m spacing, declined as spacing increased, and became relatively close to levels in thinned plots for the 2.4 and 3.0 m spacings (Table 2).

The cumulative harvest volume from the four thinnings only differed significantly between the 1.2 and 3.0 m spacings, with 45% more volume harvested in narrower spacings (Table 2). Cumulative gross yield was similar between thinned and unthinned plots across the range of initial spacings, with the exception of the 2.1 m treatment for which the yield in unthinned plots was over 180 m$^3$ ha$^{-1}$ greater than in thinned plots, thus triggering a significant interaction effect. The cumulative net yield was 22–40% greater for thinned plots for spacing lower than 2.1 m, and 10–15% lower beyond this threshold (Fig. 5).

Discussion
We first observed that, for all initial planting densities, mean tree size expressed in terms of quadratic mean diameter was greater in thinned than in unthinned plots. This thinning effect on individual tree size is in agreement with our predictions and confirms results reported in many density management studies (e.g. Albaugh et al. 2017, Das Gupta et al. 2020, Gauthier and Tremblay 2018). By reducing density in stands that have reached the stem exclusion stage, thinning redistributes resources to fewer individuals, hence resulting in increased growth compared with unthinned conditions (Oliver and Larson 1996). A mix of crown thinning and thinning from below was employed in all thinnings, except in 1982 when row thinning was required for the first entry in spacings narrower than 2.4 m to allow for machine circulation. This thinning method, in addition to increasing resource availability for the remaining trees, also increased the average tree size by removing the smaller and poorer quality stems (Ferguson et al. 2011). This chainsaw, or selection effect, has an immediate impact on diameter distribution (Hynynen 1995, Nogueira et al. 2015).

We expected that the positive influence of thinning on tree size would be dependent upon initial spacing. This prediction also proved true, with a significant interaction between initial planting density and the thinning treatment in driving quadratic mean diameter. We observed smaller differences in tree QMD between the thinned and unthinned plots in the larger than in the narrower initial spacings (e.g. a 44% increase in QMD in the 1.2 m spacing, compared with a 17% increase in QMD in the 3.0 m spacing). The chainsaw effect was responsible for 60–70% of the differences in QMD between thinned and unthinned plots at 60 years, with a strong correlation with initial spacing.

We further expected that individual tree size would increase with increasing initial spacing, but that this effect would be less important in thinned relative to unthinned plots. This was
also the case: QMD increased by 44\% from the 1.2 m to the 3.0 m spacing in the unthinned plots, and by 17\% in the thinned plots. Consequently, thinning tended to buffer the differences among spacings observed without thinning, an effect that was also reflected in merchantable volume.

Diameter growth is strongly affected by initial tree density and the density left after thinning (Larocque and Marshall 1993, Lundgren 1981), as cambial meristems are weak sinks for photosynthates (Kozlowski 1992) and thus, sensitive to small variation in resource levels (Lanner 1985). Hence, both the increase in initial spacing and the CT regime brought the trees closer to optimal conditions for diameter growth, thereby reducing the relative gain associated with the other treatment. Trees growing in narrower spacings were initially subjected to greater levels of intraspecific competition than trees growing in wider spacings (Newton 2015a). In principle, the CT regime increased the base level of environmental resources, reducing the relative gain associated with a reduction in initial density. Our results suggest that the thinning regime canceled the differences in resource availability among initial spacing plots: once the chainsaw effect was removed from the observed difference in QMD (thus estimating the difference in QMD caused by growth and survival after thinning), QMD was still greater for thinned plots in comparison with unthinned ones, however with little significant difference between initial spacings.

At the stand level, we expected all treatments to produce a similar cumulative gross yield (Smith et al. 1997), and that the thinning regime would have captured tree mortality. However, we observed that cumulative gross yield varied as a function of interactions between the initial planting density and the CT regime, and that some treatment combinations led to significantly greater cumulative gross yield than others. The trend towards greater
cumulative gross yield in the unthinned, 2.1 m and wider spacings than their thinned counterparts suggests that, at wider spacings, thinning to the standard 37.9 m² ha⁻¹ BA target resulted in under-utilized growing space.

Although thinning improves growth efficiency of residual trees, the treatment can also increase wind damage and tree mortality (Kuehne et al. 2016), with impacts on cumulative net yield (harvested + residual) (Moulinier et al. 2015). By examining the components of yield in unthinned stands, we observed that the 2.1 to 3.0 m initial spacings had greater standing volume and lower self-thinning mortality than the 1.2 to 1.8 m initial spacings. This, coupled with the generally larger trees, as indicated by QMD and merchantable volume, suggests that the larger spacings have produced more commercially favourable stands at age 60 years. Thinning allowed for some volume to be harvested earlier and, with the exception of plots with wider initial spacing (≥ 2.1 m), did not reduce cumulative net yield. The four thinning entries did remove more total volume in the stands with initial narrower spacings. However, given the lower value of smaller diameter trees, greater thinning harvest volume per hectare does not necessarily translate into higher value. In practice, selling small-sized red pine trees from thinnings in Eastern Canada is often challenging, because there is little demand for either pulp or sawlog for this species. For overall value, an additional consideration is that, when larger spacings are used to increase tree size, an increase in branch and knot size can be expected, which can have negative effects on product potential (Laidly and Barse 1979). Based on measurements 15 years earlier on the same study site, Penner et al. (2001) expressed the same caution and suggested that an initial spacing of 2.4 m or lower should be used to reduce the number of stems disqualified from being utility poles. Overall, it appears that the 2.1 m spacing is optimal in terms of tree size and volume production, and that the main benefit of thinning is to grow larger trees faster, although there
may be a sacrifice in cumulative volume production. Further analysis is however needed to
calculate about the economic optimality of the spacing and thinning regimes, considering
current silviculture costs and product prices. Moreover, further analytical efforts could focus
on interpreting these data using stand density management diagrams and/or relative density
estimations. Combined with information about end-products and their value, such analyses
could point to "best" density management regimes that would be useful to managers.

Our results are based on a unique long-term study that exemplifies both the challenges and
the value of long-term silviculture experiments (Pretzsch et al. 2018). Long-term silviculture
studies can present analytical limitations due to a limited number of replicates (either by
design or because they have been destroyed), incomplete designs or small experimental units,
among other factors. With this in mind, generalization and statistical inference from our
results should be made cautiously because the study only included two sampling plots
representing each of the twelve treatment combinations. For example, in thinned plots, we
observed that the 1.5 m initial spacing led to a significant decrease in mean quadratic
diameter. This effect is difficult to interpret and might be an artefact associated with the
limited number of plots. Because of this, the reader is invited to consider only the differences
of large amplitude and the general trends; interpretation of the statistical tests must be done
with a critical mind (Oksanen 2001). On the other hand, long-term silviculture experiments
offer unique occasions to accumulate empirical data to support silviculture decisions. For
example, this legacy trial offers valuable information for red pine, a high-value species. Data
from this experiment can further be used to support 1) economic analyses accounting for the
net present value of the treatments considering piece sizes, products (including carbon
sequestration), and markets (e.g. Amateis and Burkhart 2013), 2) model development (e.g.
Larocque 2002; Newton 2015b), and 3) validation of density management diagram (Smith
and Woods 1997). Further, we provide data as Supplementary material to allow meta-
analyses in the future, combining the observations from this study with others from the
scientific literature. Moreover, this legacy experiment established within a recognized and
protected research forest, provides a unique opportunity to study the long-term effects of
density management on issues not foreseen when the trial was developed, for example forest
soil and nutrition (Prescott 2014).

Acknowledgements

We express our gratitude to Will Stiell and Dennis McGuire, who established this silviculture
experiment, Craig Robinson, who supervised and conducted several measurements and
developed extensive datasets, and to all forest technicians and students who have been
involved in the preservation, maintenance and measurements over the decades. Art Groot
provided significant assistance with data synthesis and summaries for the current efforts. We
are also indebted to two anonymous reviewers and to Robert Schneider who provided
constructive comments on an earlier version of this work. The 60th year assessments were
conducted with financial support from the Canadian Forest Service, and in-kind support from
the Canadian Institute of Forestry and Atomic Energy of Canada Ltd.

References

Albaugh, T.J., Fox, T.R., Rubilar, R.A., Cook, R.L., Amateis, R.L. and Burkhart, H.E. 2017.
Post-thinning density and fertilization affect *Pinus taeda* stand and individual tree growth.
For. Ecol. Manage. 396: 207-216. doi:10.1016/j.foreco.2017.04.030.

Amateis, R.L. and Burkhart, H.E. 2013. Relating quantity, quality, and value of lumber to
planting density for loblolly pine plantations. South. J. Appl. For. 37(2): 97-101.
doi:10.5849/sjaf.12-012.

Baldwin Jr., V.C., Peterson, K.D., Clark III, A., Ferguson, R.B., Strub, M.R. and Bower,
D.R.. 2000. The effects of spacing and thinning on stand and tree characteristics of 38-year-
old Loblolly Pine. For. Ecol. Manage. 137: 91-102.
Bradford, J.B. and Palik, B.J. 2009. A comparison of thinning methods in red pine: consequences for stand-level growth and tree diameter. Can. J. For. Res. 39(3): 489-496. doi:10.1139/x08-201.

Buckman, R.E., Bishaw, B., Hanson, T.J. and Benford, F.A. 2006. Growth and yield of red pine in the Lake States. U.S. Department of Agriculture, Forest Service, North Central Research Station. General Technical Report NC-271.

Das Gupta, S., Pinno, B.D., and McCready, T. 2020. Commercial thinning effects on growth, yield and mortality in natural lodgepole pine stands in Alberta. For. Chron. 96(2): 111-120. doi:10.5558/tfc2020-016.

Davis, L.S., Johnson, K.N., Bettinger, P. and Howard, T.E. 2001. Forest Management to Sustain Ecological, Economic, and Social Values. Fourth Edition. Waveland Press, Inc., Long Grove, IL, USA.

Environment Canada. 2010. Canadian Climate Normals 1981-2010 Station Data. Available from http://climate.weather.gc.ca/climate_normals/index_e.html [accessed April 7 2018].

Ferguson, D.E., Byrne, J.C., Wykoff, W.R., Kumat, B. and Hensold, T. 2011. Response of ponderosa pine stands to pre-commercial thinning on Nez Perce and Spokane Tribal forests in the Inland Northwest, USA. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Research Paper RMRS-RP-88.

Gauthier, M.-M. and Tremblay, S. 2018. Late-entry commercial thinning effects on Pinus banksiana: growth, yield, and stand dynamics in Québec, Canada. J. For. Res. 30(1): 95-106. doi:10.1007/s11676-018-0778-3.

Gilmore, D.W. and Palik, B.J. 2006. A revised managers handbook for red pine in the north central region. U.S. Department of Agriculture, Forest Service. General Technical Report NC-264.

Homagain, K., Shahi, C., Carmean, W.H., Leitch, M. and Bowling, C.L. 2011. Growth and yield comparisons for red pine, white spruce and black spruce plantations in northwestern Ontario. For. Chron. 87(4): 494-503. doi:10.5558/tfc2011-048.

Huang, S., Titus, S.J. and Wiens, D.P. 1992. Comparison of nonlinear height–diameter functions for major Alberta tree species. Can. J. For. Res. 22(9): 1297-1304. doi:10.1139/x92-172.

Hynynen, J. 1995. Predicting the growth response to thinning for Scots pine stands using individual-tree growth models. Silva Fenn. 29(3): article id 5559. doi:10.14214/sf.a9210.

Jürgensen, C., Kollert, W. and Lebedys, A. 2014. Assessment of industrial roundwood production from planted forests. Food and Agriculture Organization of the United Nations. Planted Forests and Trees Working Paper Series FP/48/E.

Kozlowski, T.T. 1992. Carbohydrate sources and sinks in woody plants. Bot. Rev. 58(2): 107-222.
Kuehne, C., Weiskittel, A.R., Wagner, R.G. and Roth, B.E.. 2016. Development and evaluation of individual tree- and stand-level approaches for predicting spruce-fir response to commercial thinning in Maine, USA. For. Ecol. Manage. 376: 84-95.
doi:10.1016/j.foreco.2016.06.013.

Laidly, P.R. and Barse, R.G. 1979. Spacing affects knot surface in red pine plantations. U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station. Research Note NC-246.

Lanner, R.M. 1985. On the insensitivity of height growth to spacing. For. Ecol. Manage. 13(3-4): 143-148. doi:10.1016/0378-1127(85)90030-1.

Larocque, G.R., and Marshall, P.L. 1993. Evaluating the impact of competition using relative growth rate in red pine (Pinus resinosa Ait.) stands. For. Ecol. Manage. 58(1-2): 65-83. doi: 10.1016/0378-1127(93)90132-7.

Larocque, G.R. and Marshall, P.L. 1994a. Crown development in red pine stands. I. Absolute and relative growth measures. Can. J. For. Res. 24(4): 762-774. doi:10.1139/x94-101.

Larocque, G.R., and Marshall, P.L. 1994b. Crown development in red pine stands. II. Relationships with stem growth. Can. J. For. Res. 24(2): 775-784. doi: 10.1139/x94-102.

Larocque, G.R. and Marshall, P.L. 1995. Wood relative density development in red pine (Pinus resinosa Ait.) stands as affected by different initial spacings. For. Sci. 41(4): 709-728.

Larocque, G.R. 1997. Importance de différents paramètres climatiques sur la croissance et la formation du bois de pin rouge (Pinus resinosa Ait) en Ontario (Canada). Ann. Sci. For. 54: 51-63.

Larocque, G.R. 2002. Examining different concepts for the development of a distance-dependent competition model for red pine diameter growth using long-term stand data differing in initial stand density. For. Sci. 48(1): 24-34.

Lenth, R. 2019. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.3.5.1. Available online: https://CRAN.R-project.org/package=emmeans.

Liechty, H.O., Mroz, G.D. and Reed, D.D. 1986. The growth and yield responses of a high site quality red pine plantation to seven thinning treatments and two thinning intervals. Can. J. For. Res. 16(3): 513-520. doi:10.1139/x86-091.

Lundgren, A.L. 1981. The effect of initial number of trees per acre and thinning densities on timber yields from red pine plantations in the Lake States. U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station. Research Paper NC-193.

Malouin, C., Larocque, G.R., Doyle, M., Bell, F.W., Dacosta, J. and Liss, K. 2016. Considerations of ecosystem services in ecological forest management. In Ecological Forest Management Handbook. Edited by Larocque, G.R. CRC Press, Boca Raton, FL. Pp. 107-138.

McPherson, T.S. and Timmer, V.R. 2002. Amelioration of degraded soils under red pine plantations on the Oak Ridges Moraine, Ontario. Can. J. Soil Sci. 82(3): 375-388.
doi:10.4141/S01-084.
Messier, C., Bigué, B. and Bernier, L. 2003. Using fast-growing plantations to promote forest ecosystem protection in Canada. Unasylva 54(214/215): 59-63.

Moulinier, J., Brais, S., Harvey, B. and Koubaa, A. 2015. Response of boreal jack pine (Pinus banksiana lamb.) stands to a gradient of commercial thinning intensities, with and without N fertilization. Forests 6(8): 2678-2702. doi:10.3390/f6082678.

Newton, P. 2015a. Occurrence of density-dependent height repression within jack pine and black spruce populations. Forests 6(12): 2450-2468. doi:10.3390/f6072450.

Newton, P. 2015b. Evaluating the ecological integrity of structural stand density management models developed for boreal conifers. Forests 6(12): 992-1030. doi:10.3390/f6040992.

Nogueira, G.S., Marshall, P.L., Leite, H.G. and Campos, J.C.C. 2015. Thinning intensity and pruning impacts on Eucalyptus plantations in Brazil. Int. J. For. Res. 2015: 1-10. doi:10.1155/2015/168390.

Oksanen, L. 2001. Logic of experiments in ecology: Is pseudoreplication a pseudoissue? Oikos. 94(1): 27-38.

Oliver, C.D. and Larson, B.C. 1996. Forest Stand Dynamics. Updated Edition. John Wiley & Sons, Inc., New York, NY.

Paquette, A. and Messier, C. 2010. The role of plantations in managing the world’s forests in the Anthropocene. Front. Ecol. Environ. 8(1): 27-34. doi:10.1890/080116.

Park, A. and Wilson, E.R. 2007. Beautiful Plantations: can intensive silviculture help Canada to fulfill ecological and timber production objectives? For. Chron. 83(6): 825-839. doi:10.5558/tfc83825-6.

Payn, T., Carnus, J.-M., Freer-Smith, P., Kimberley, M., Kollert, W., Liu, S., Orazio, C., Rodriguez, L., Silva, L.N. and Wingfield, M.J. 2015. Changes in planted forests and future global implications. For. Ecol. Manage. 352: 57-67. doi:10.1016/j.foreco.2015.06.021.

Penner, M., Robinson, C. and Burgess, D. 2001. Pinus resinosa product potential following initial spacing and subsequent thinning. For. Chron. 77(1): 129-139. doi:10.5558/tfc77129-1.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. and R Core Team. 2019. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-140. Available online: https://cran.r-project.org/package=nlme.

Plonski, W.L. 1974. Normal yield tables (metric) for major forest species of Ontario. Ontario Ministry of Natural Resources.

Powers, M.D., Palik, B.J., Bradford, J.B., Fraver, S. and Webster, C.R. 2010. Thinning method and intensity influence long-term mortality trends in a red pine forest. For. Ecol. Manage. 260(7): 1138-1148. doi:10.1016/j.foreco.2010.07.002.
Prescott, C.E. 2014. The scientific value of long-term field trials in forest soils and nutrition research: An opportunist's perspective. Can. J. Soil Sci. 94(3): 255-262. doi: 10.4141/cjss2013-068.

Pretzsch, H., del Río, M., Biber, P., Arcangeli, C., Bielak, K., Brang, P., Dudzinska, M., Forrester, D.I., Kläßke, J., Kohnle, U., Ledermann, T., Matthews, R., Nagel, J., Nagel, R., Nilsson, U., Ningre, F., Nord-Larsen, T., Wernsdörfer, H., and Sycheva, E. 2018. Maintenance of long-term experiments for unique insights into forest growth dynamics and trends: review and perspectives. Eur. J. For. Res. 138(1): 165-185. doi: 10.1007/s10342-018-1151-y.

R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Rudolf, P.O. 1990. *Pinus resinosa* Ait. Red pine. In Silvics of North America. Vol. 1. Conifers. Handbook 654. Edited by Burns, R.H. and Honkala, B.H. U.S. Department of Agriculture, Forest Service.

Savill, P., Evans, J., Auclair, D. and Falk, J. 1997. Plantation Silviculture In Europe. Oxford University Press, New York, NY.

Smith, D.J. and Woods, M.E. 1997. Red pine and white pine density management diagrams for Ontario. Ontario Ministry of Natural Resources. SCSS Technical Report 48.

Smith, D.M., Larson, B.C., Kelty, M.J. and Ashton, P.M.S. 1997. The Practice of Silviculture: Applied Forest Ecology. Ninth Edition. John Wiley & Sons, Inc., New York, NY.

Smithers, L.A. 1954. Thinning in red and white pine stands at Petawawa Forest Experiment Station. Department of Northern Affairs and National Resources, Forestry Branch. Silvicultural Research Notes 105.

Stiell, W.M. 1964. Twenty-year growth of red pine planted at three spacings. Department of Forestry, Forest Research Branch. Publication 1045.

Stiell, W.M. and Berry, A.B. 1973. Yield of unthinned red pine plantations at the Petawawa Forest Experiment Station. Department of the Environment, Canadian Forest Service. Publication 1320.

Tittler, R., Messier, C. and Fall, A. 2012. Concentrating anthropogenic disturbance to balance ecological and economic values: applications to forest management. Ecol. Appl. 22(4): 1268-1277. doi:10.1890/11-1680.1.

West, P.W. 2014. Growing Plantation Forests. Second Edition. Springer International Publishing, New York, NY.

Wykoff, W.R., Crookston, N.L. and Stage, A.R. 1982. User's guide to the stand prognosis model. U.S. Department of Agriculture, Forest Service. General Technical Report INT-133.

Zakrzewski, W.T. and Penner, M. 2013. A comparison of tree stem taper models for use in Ontario. Ontario Forest Research Institute. Forest Research Report 177.
List of figures

Fig. 1. Schematic map of the two plantation sites and ten stands, along with the distribution of spacing and thinning treatments and sampling plots (in black) at the red pine (*Pinus resinosa*) spacing trial experiment of the Petawawa Research Forest, Chalk River (Ontario, Canada).

Fig. 2. Examples of unthinned (A) and thinned (B) experimental units at the red pine (*Pinus resinosa*) spacing trial experiment of the Petawawa Research Forest, Chalk River (Ontario, Canada). Photos were taken in 2018 (age: 65-y-old).

Fig. 3. Cumulative differences between the initial and residual quadratic mean diameter (QMD) of planted red pine (*Pinus resinosa*) for the four consecutive thinnings as a function of initial spacing at the Petawawa Research Forest, Chalk River (Ontario, Canada). This equals to the cumulative chainsaw effect, which is the change in average tree diameter directly caused by the tree selection during the thinnings. Data presented as mean ± standard error from the sample plots. Both sample plots in the 1.5 m initial spacing resulted in similar values, hence the absence of error bars.

Fig. 4. Interacting effect of initial planting density and a commercial thinning regime on quadratic mean diameter of planted red pine (*Pinus resinosa*), 60 years after plantation establishment at the Petawawa Research Forest, Chalk River (Ontario, Canada). Data presented as mean ± standard error (parameters estimates from the fixed effects of the ANOVA analysis). Values with similar letters for both unthinned and thinned sample plots are not significantly different at $\alpha = 0.05$ based on Tukey HSD pairwise comparisons.
Fig. 5. Interacting effect of initial planting density and a commercial thinning regime on cumulative gross yield of planted red pine (*Pinus resinosa*), 60 years after planting at the Petawawa Research Forest, Chalk River (Ontario, Canada). Cumulative gross yield was calculated as the total standing volume + cumulative total volume lost to mortality + cumulative total volume removed during all four of the thinning entries. Data presented as stacked bars ± standard error of the total yield. Bars with similar letters do not have statistically different cumulative gross yield at $\alpha = 0.05$ based on Tukey HSD pairwise comparisons. See Table 2 for standard error and pairwise comparisons of total standing, mortality and harvested volume.
**Table 1.** Summary of ANOVA results for the main and interacting effects of initial planting density and a commercial thinning regime on quadratic mean diameter, total volume of standing, dead and harvested trees, and cumulative gross yield, 60 years after plantation of red pine (*Pinus resinosa*) at the Petawawa Research Forest, Chalk River (Ontario, Canada).

| Fixed Effects | Num DF | Den DF | Quadratic mean diameter (cm) | Volume (m³ ha⁻¹) | Standing | Cumulative mortality | Cumulative harvest * | Cumulative gross yield | Merchantable yield |
|---------------|--------|--------|----------------------------|-----------------|----------|---------------------|---------------------|---------------------|------------------|
|               |        |        |                            |                 |          |                     |                     |                     |                  |
| Spacing (S)   | 5      | 11     | 114.9 < 0.001              | 20.5 < 0.001    | 75.4 < 0.001 | 8.3 0.011           | 10.7 < 0.001        | 23.6 < 0.001       |                  |
| Thinning (T)  | 1      | 11     | 704.8 < 0.001              | 2082.1 < 0.001  | 443.7 < 0.001 | 10.1 0.008          | 997.8 < 0.001       |                    |                  |
| S × T         | 5      | 11     | 6.3 0.004                  | 31.5 < 0.001    | 60.0 < 0.001  | 8.7 0.001           | 31.1 < 0.001        |                    |                  |

NumDF: numerator degrees of freedom. DenDF: denominator degrees of freedom. *A one-way ANOVA was used for Cumulative harvest, with NumDF = 5, DenDF = 5.
Table 2. Least squares means for thinning and initial spacing (in meters) treatments, 60 years after plantation of red pine (*Pinus resinosa*) at the Petawawa Research Forest, Chalk River (Ontario, Canada). For a given variable, values with similar letters are not significantly different at $\alpha = 0.05$ based on Tukey HSD pairwise comparisons.

| Fixed Effects | Total Volume (m$^3$ ha$^{-1}$) | Standing | Merchantable | Cumulative mortality | Cumulative thinning harvest |
|---------------|--------------------------------|----------|--------------|----------------------|---------------------------|
|               | Mean  | SE   | Diff. |
| No            |       |      |       |        |      |       |        |      |       |        |      |       |
| 1.2           | 707.0 | 13.5 | b     | 611.8  | 16.4 | b     | 246.9  | 7.9  | d     |        |      |       |
| 1.5           | 722.8 | 13.5 | b     | 616.1  | 16.4 | b     | 182.3  | 7.9  | c     |        |      |       |
| 1.8           | 751.2 | 13.5 | b     | 644.1  | 16.4 | b     | 86.2   | 7.9  | b     |        |      |       |
| 2.1           | 911.3 | 13.5 | cd    | 843.1  | 16.4 | c     | 83.3   | 7.9  | b     |        |      |       |
| 2.4           | 925.2 | 13.5 | d     | 868.4  | 16.4 | c     | 27.7   | 7.9  | a     |        |      |       |
| 3.0           | 847.8 | 13.5 | c     | 809.6  | 16.4 | c     | 12.4   | 7.9  | a     |        |      |       |
| Yes           |       |      |       |        |      |       |        |      |       |        |      |       |
| 1.2           | 469.9 | 13.5 | a     | 448.4  | 16.4 | a     | 20.4   | 7.9  | a     | 526.1  | 28.3 | b     |
| 1.5           | 459.3 | 13.5 | a     | 433.5  | 16.4 | a     | 14.0   | 7.9  | a     | 420.4  | 28.3 | ab    |
| 1.8           | 468.2 | 13.5 | a     | 444.8  | 16.4 | a     | 11.3   | 7.9  | a     | 445.8  | 28.3 | ab    |
| 2.1           | 445.1 | 13.5 | a     | 424.7  | 16.4 | a     | 6.9    | 7.9  | a     | 359.6  | 28.3 | a     |
| 2.4           | 450.3 | 13.5 | a     | 432.8  | 16.4 | a     | 11.9   | 7.9  | a     | 378.2  | 28.3 | ab    |
| 3.0           | 434.3 | 13.5 | a     | 418.4  | 16.4 | a     | 1.4    | 7.9  | a     | 286.5  | 28.3 | a     |
