A STUDY OF SPUTUM CONVERSION IN NEW SMEAR POSITIVE PULMONARY TUBERCULOSIS CASES AT THE MONTHLY INTERVALS OF 1ST, 2ND & 3RD MONTH UNDER DIRECTLY OBSERVED TREATMENT, SHORT COURSE (DOTS) REGIMEN

Bawri S1, Ali S2, Phukan C3, Tayal B4, Baruwa P5

ABSTRACT
Aims and Objectives: To determine sputum conversion rate at monthly intervals of 1st, 2nd and 3rd month in new smear positive cases (cat-1) under treatment under RNTCP. Material and Methods: The study was conducted at DOTS Center, Gauhati Medical College and Hospital; Guwahati between July 2005 to June 2006. The study is a prospective study and consists of 100 cases of new smear positive pulmonary tuberculosis cases (category 1) irrespective of age and sex. Results and Observations: The age & sex distribution of 100 patients showed that majority of the patients (74%) belonged to 2nd, 3rd and 4th decades & 75% were males and 25% were female with male to female ratio 3:1 respectively. The chest x-ray of 100 Smear Positive patients shows that only 60 (60%) patients had x-ray evidence of pulmonary Koch. In the present study, sputum conversion i.e. from smear positive to smear negative at the end of the 1st month is 71%, at the end of 2nd month is 84% and at the end of 3rd month is 92%. Summary & conclusion: In conclusion, the overall sputum conversion rate under Directly Observed Treatment, Short Course (DOTS) chemotherapy in 100 sputum smear positive Pulmonary Tuberculosis in DOTS centre, Gauhati Medical College & Hospital was 92%. The chest x-ray evidence of pulmonary Koch in 100 patients is 60%. The sputum conversion at the end of 1st month is 71%, at the end of 2nd month it is 84% and at the end of 3rd month the same is 92%. In the present study, the infectivity decreases from the baseline with significant P value for sputum conversion of 3+, 2+ and 1+ sputum positivity. Directly Observed Treatment is an effective intervention for improving adherence to tuberculosis treatment programme in a resource-poor country. A significant decrease in conversion rate was observed with the initial high grade smear positive cases.

More Prospective studies on larger number of patients are necessary to substantiate our findings in this study.

Lung India 2008; 25 : 118-123

Key words: Sputum Conversion, 1st, 2nd & 3rd Month, DOTS & RNTCP.

INTRODUCTION
Tuberculosis remains a major public health problem worldwide. It has been estimated that someone in the world is newly infected with TB every year, nearly 1% of the world population is infected with TB every year and overall, one third of the world population is infected with Mycobacterium TB1,2,3. In March 1993, the WORLD HEALTH ORGANISATION (WHO) took an unprecedented step & declared TB as a “Global Emergency”4,5. This was the first time, the WHO had ever singled out a disease in this manner, According to an estimate by the WHO, between 1999 and the year 2020 nearly one billion more people will be newly infected, 200 million will get sick and 70 million will die from TB if control measures are not strengthened4. The DOTS–Directly Observed Treatment Short Course Chemotherapy strategy for TB control represents one of the major public health strategies of the recent times which have resulted in importance therapeutic breakthrough, not only in our own country, but also all over the world. 8 out of 10 patients under DOTS regimen are cured. Nation wide DOTS covers 632 district and 1114 million people under RNTCP all over the country6,7,8. Pulmonary TB comprises of about 85% of all new TB cases in INDIA and they are responsible for the spread of the infection, therefore Pulmonary TB is epidemiologically important and become the topmost priority from public perspective.

AIMS AND OBJECTIVES
1. To determine sputum conversion rate at monthly intervals of 1st, 2nd and 3rd month of treatment and to compare with second month sputum conversion rate in new smear positive cases (cat-1) under RNTCP.
2. To co-relate x-ray proved TB in smear positive cases.
3. To determine the sputum positivity in different age and sex distribution.

MATERIAL AND METHODS
The study was conducted at DOTS Center, Gauhati Medical College and Hospital; Guwahati between July 2005 to June 2006. The study is a prospective study and consists of 100 cases of smear positive pulmonary tuberculosis cases (category 1) irrespective of age and sex.

1Post Graduate, Deptt. of Medicine, 2Prof., Deptt. of Medicine, 3Asst. Prof., 4Junior Resident, Deptt. of Medicine; 5HOD & Professor, Deptt. of Chest & TB, Gauhati Medical College, Guwahati, Assam. Correspondence: Dr. Pranab Baruwa, H. No. 52, MRD Road, New Guwahati-781 020. E-mail: baruwapranab@yahoo.com
Received: October 2007
Accepted: January 2008

118
Inclusion criteria:

Newly diagnosed smear positive pulmonary tuberculosis cases (category 1, excluding the seriously ill extra pulmonary tuberculosis cases).

Exclusion criteria:
- Seriously ill extra pulmonary category 1 cases.
- Category II and category III patients.
- Patients lost to follow up.

Drug regimens:

The selected patients were administered antituberculosis drugs under DOTS regimen according to category I i.e. $2H_3R_3Z_3E_3$ & $4H_3R_3$.

Three sputum samples are collected over two consecutive days:
- Three sputum specimens (spot—morning—spot) are collected over 2 consecutive days
- Spot sample on the first day.
- One early morning sample on second day and
- One spot sample on the second day.

Follow up of the cases and smear examination:

Two sputum specimens (spot—morning) are taken each time for follow-up sputum smear examinations at specified intervals: at the end of the 1st month, at the end of 2nd month and at the end of 3rd month. The intensive phase of treatment consisting of $H3R3Z3E3$ is continued for another 4 weeks if the patients are positive at the end of 2nd month as per DOTS.

Results and Observations:

The age & sex distribution of 100 patients showed that majority of the patients (74%) belonged to 2nd, 3rd and 4th decades with mean age of 34 years and standard deviation of 16 years (table1) & 75% were males and 25% were female with male to female ratio 3:1 respectively. The chest x-ray of all the 100 Smear Positive patients was done and it was found that only 60 (60%) patients had X-ray evidence suggestive of pulmonary Koch. The correlation between the X-ray and the sputum positivity was observed which shows cavitations, parenchymal and both involvement involving more than one segment in 60% patients with X-ray evidence of pulmonary TB in new sputum smear positive cases in the present study.

Table I : Age distribution of patients

Age in years (Range)	No. of patients (%)
11-20	15(15%)
21-30	43(43%)
31-40	16(16%)
41-50	10(10%)
51-60	6(6%)
61-70	8(8%)
71-80	2(2%)
Total	100(100%)

To calculate P value at the end of 1st month for the 3+ sputum positivity 42 patients at baseline are taken as variable 1 and respective sputum conversion form 3+ → 2+(12 patients), 3+ → 1+(9 patients), 3+ → scanty (0 patient) and 3+ → N (21 patients) at the end of 1st month are taken as variable 2. Calculated t value and P value for 3+ at the end of 1st month is 7.275 and 0.005 (<0.05), respectively.
To calculate P value for 3+ sputum positivity at the end of 2nd month, 21 patients whose sputum remains positive of grading 2+, 1+ (12+9 patients respectively) from 3+ at the end of 1st month is taken as variable 1 and sputum conversion from 3+ → 2+ (7 patients), 3+ → 1+ (4 patients), 3+ → scanty (4 patients) and 3+ → N (7 patients) is taken as variable 2. Calculated t value & P value is 15.280 and 0.001 (<0.05) respectively.

To calculate P value at the end of 3rd month for 3+ sputum positivity, 14 patients whose sputum remains positive of grading 2+, 1+, Scanty (7+4+3 patients respectively) from 3+ at the end of 2nd month is taken as variable 1 and sputum conversion from 3+ → 2+ (3 patients), 3+ → 1+ (4 patients), 3+ → scanty (1 patients) and 3+ → N (6 patients) is taken as variable 2. Calculated t value and P value is 10.088 and 0.002 (<0.05) respectively.

To calculate P value for 2+ sputum positivity, 21 patients of 2+ sputum positivity at baseline is taken as variable 1 and total patient whose sputum is converted from 2+ → 1+ and 2+ → SC at the end of 1st month (5 patients), at the end of 2nd month (2 patients) and at the end of 3rd month (0 patient) is taken as variable 2. Calculated t value and P value is 12.847 and .006 (<0.05) respectively.

To calculate P value for 1+ sputum positivity, 26 patients at baseline of 1+ sputum positivity is taken as variable 1 and total patient whose sputum is converted from 1+ → scanty and 1+ → Negative at the end of 1st month, at the end of 2nd month is taken as variable 2. Calculated t value and P value is 16.33 and .039 (<0.05) respectively.

Table IV: Paired samples test result of sputum conversion.

Variable	T value	Mean	Mean Difference	Standard Error	t observer	df	P value
Pair 1: month 1 vs. month 2	-3.357	12.0	1.508	1.717	1.905	30	0.001
Pair 2: month 2 vs. month 3	3.357	12.0	1.508	1.717	1.905	30	0.001
Pair 3: month 1 vs. month 3	-3.357	12.0	1.508	1.717	1.905	30	0.001
Pair 4: baseline vs. month 1	-3.357	12.0	1.508	1.717	1.905	30	0.001

* = month, ** = positivity. (Data calculated using SPSS software)

SPUTUM CONVERSION

In the present study, sputum conversion i.e. from smear positive to smear negative at the end of the 1st month, 2nd month & 3rd month is 71%, 84% and 92% respectively (fig 2).
had their sputum converted to smear negative at the end of intensive phase including patients whose sputum was positive at the end of the 2nd month but negative at the end of 3rd month divided by the number of smear positive patients stated on treatment. The ratio is multiplied by 100 for obtaining percentage.

In the present study of 100 smear positive pulmonary tuberculosis cases, 84(84%) patients at the end of 2nd month and 92 (92%) patient at the end of 3rd month were smear negative.

92
Sputum conversion Rate = --------- x 100 = 92%.
100

DISCUSSION

AGE & SEX DISTRIBUTION

The age & sex distribution of 100 patients showed that majority of the patients (74%) belonged to 2nd, 3rd and 4th decades with mean age of 34 years and standard deviation of 16 years & 75% were males and 25% were female with male to female ratio 3:1 respectively. As per WHO Report 2006(country file INDIA), Age and sex distribution provided for a subset of new smear-positive cases notified in 2004 showed that maximum cases reported varies from 1st decade to 4th decade and with male predominantly affected. The present study also shows the same result.

CHEST X-RAY EVIDENCE

The chest x-ray of all the 100 Smear Positive patients was done and it was found that only 60 (60%) patients had X-ray evidence suggestive of pulmonary Koch. The correlation between the X-ray and the sputum positivity was observed which shows cavitations, parenchymal and both involvement involving more than one segment in 60% patients with X-ray evidence of pulmonary TB in new smear positive cases. According to Toman et al., microscopy (98%) is a more specific test than X-ray (50%) for TB diagnosis and Microscopy (98%) is more objective and reliable than X-ray (70%). There is considerable overlaps between primary and post-primary TB on a chest X-ray. But the following points favor post-primary TB: predilection for upper lobe involvement, propensity for cavitations & rarity of lymphadenopathy. According to Fraser et al., a typical fibroproductive lesion may look inactive but show active granulomatous inflammation and contain viable bacilli. According to Woodring et al., more than one segment is involved, cavitations occurs in 40%-87% cases and mixed exudative and fibroproductive lesion is the commonest finding (79%). Endobronchial spread is seen in a CXR in 19% to 58% cases & by HRCT in up to 98% cases.

SPUTUM CONVERSION

The best way to monitor the treatment results of a pulmonary smear positive case is to check for the conversion of sputum from smear positive to smear-negative. In the present study, among 100 cases of sputum positive pulmonary tuberculosis (category-I) patients, 71 (71%) patients become smear negative at the end of the 1st first month, 84 (84%) patients become smear negative at the end of 2nd month and 92 (92%) patient become smear negative at the end of 3rd month. The present study match with the study of Baruwa et al. (April 2005) which shows sputum conversion of 68% at the end of 1st month. The study done by Baruwa et al. was also same four drugs in fixed dose combination in sputum Positive Indian Patients and included 175 patients. (Fig.3).

The present study shows infectivity decreases from baseline at the end of 1st month, 2nd month and 3rd month. At the end of 1st month, 42 patients whose sputum was positive of 3+ grading for AFB microscopy examination, 21 (50%) patients become sputum smear negative, 12 (29%) patient’s sputum converted from 3+ to 2+ grading and 9 (21%) patients sputum converted from 3+ to 1+ grading. P value calculated using the variables is .005 (<.05, significant) with 95% confidence interval of 17.71 to 4.5.28 and standard error mean of 4.3301. At the end of 2nd month, among remaining 21 patients whose sputum was positive at the end of 1st month from 3+, 7 (16.5%) patients remained 2+ sputum positive, 4 (10%) patient’s sputum converted from 3+ to 1+ grading, 3 (7%) patient’s sputum converted from 3+ to scanty and 7 (16.5%) patients were sputum smear negative. P value calculated using the variables is .001 (< .05, significant) with the 95% confidence interval of 12.46 to 19.03 and standard error mean of 1.03. At the end of 3rd month, 14 patients whose sputum was positive at the end of 2nd month from 3+, 3 (7%) patient’s sputum remained 2+, 4 (10%) patient’s sputum converted from 3+ to 1+, 1 (2.5%) patient’s sputum converted from 3+ to scanty and 6 (14%) patient were sputum smear negative. Calculated P value using the variables is .002 (<.05, significant) with 95% confidence interval of 7.18 to 6 to 13.81 and standard error mean of 1.04.

For 21 patients, where sputum smear positivity was 2+ at the baseline, sputum conversion of 5 (24%) patient converted from 2+ to 1+ and 16 (76%) patients were smear negative at the end of 1st month. Among 5 patients, 2 (10%) patient’s sputum converted from 2+ to scanty and 3 (14%) patients were sputum smear negative at the end of 2nd month. The remaining 2 (10%) patient’s sputum smear turned negative at the end of 3rd month. With 21 patients at baseline and patient’s sputum conversion from 2+ at 1st month, 2nd month and 3rd month, calculated P values is
Among 26(26%) patient of 1+ sputum smear positivity at baseline, 3(12%) patients were sputum converted from 2+ to scanty and 23(88%) patients were sputum smear negative at the end of 1st month. The remaining 3(12%) patient’s sputum smear turned negative at the end of 2nd month. Using the variables, P values is .039 (<0.05, significant) with 95% confidence interval of 5.440 to 43.559 and standard error mean of 1.50.

All 11(100%) patient of scanty sputum smear positivity at baseline turned negative at the end of 1st month.

Rutta et al27 from Tanzania (July 2001) showed sputum conversion after the 2 month intensive phase was 88%.

Rieder et al28 from Paris (April 1996) showed sputum conversion of 75.0% with a range from 61.7% to 90.9% in patients with initially strongly and weakly positive smear respectively after the 2 month intensive phase. In the study, it was concluded sputum smear results at two months strongly predict bacteriologic results beyond three months of treatment, and thus identify cases that might benefit from a prolongation of the intensive phase.

Lienhardt et al29 from Gambia (September, 1998) observed sputum smear conversion at the end of 2 months after the start of treatment in 90% of smear positive cases and was more likely occurs if the initial bacterial load in the sputum was low.

The present study is comparable with study of Rutta E et al 27 (January 2001), Rieder HL et al 28 (April 1996) and Lienhardt C et al 29 (September, 1998).

In the present study, 8(19.5%) patients whose sputum smear examination was positive of 3+ grading at baseline remained positive at the end of 3rd month of grading 2+ [3(7%) patients], 1+ [4(10%) patients] and scanty [1(2.5%) patients].

Rajpal et al30 from New Delhi (2002) reveals that patients with 3+ sputum smear grading not only require extension of treatment in the intensive phase more often than those with scanty, 1+ or 2+ grading but also have significantly higher failure rate.

Singla et al31 from New Delhi in (2003) concluded that age group 41-60 years and more than 60 years. Presence of numerous bacilli on initial sputum smear examination, and multiple cavitary disease were the significant factors associated with persistent sputum positivity at the end of 2 months of treatment ($P < 0.0001$).

Zhao et al32 from China (1997) reveals 95% patients’ sputum converted in the third month of treatment. They concluded sputum conversion during the third month of treatment is an important predictor of treatment success, failure to convert predicts treatment failure.

Singla et al33 from New Delhi (2005) in the study, highest grading of sputum smear examination was recorded. Sputum conversion rates among patients graded as 3+ and rest of the patients (combined graded sputum 1+ and 2+) at the end of two months were 62.2% and 76.8% respectively (P < 0.0001), and at the end of three months were 81.3% and 89.5% respectively (P < 0.0001). They concluded that smear positive patients with heavy bacillary load showed statistically significant poor sputum conversion rates at two and three months and higher failure rates as compared to patient with lesser bacillary load.

The present study is comparable with study of Rajpal et al30 (2002), Singla et al31 (2003) and Singla et al33 (2005).

Sputum conversion rate:

In the present study, sputum conversion at the end of 1st month is 71%, at the end of 2nd month in 84% and at the end of 3rd month is 92%. Sputum conversion rate of the present study calculated is 92%.

Summary & conclusion:-

- In conclusion, the overall sputum conversion rate under Directly Observed Treatment, Short Course (DOTS) chemotherapy in 100 sputum smear positive Pulmonary Tuberculosis in DOTS centre, Gauhati Medical College & Hospital was 92%.
- The chest x-ray evidence of pulmonary Koch in present study in 100 category-1 new smear positive pulmonary TB patients is 60%.
- In the present study, age distribution of 100 patients showed that majority of the 74 (74%) patients belonged to 2nd, 3rd and 4th decades with mean age of 34 years and standard deviation of 16 years. Sex distribution results showed 75 (75%) were male and 25 (25%) were female with a sex ratio of 3:1.
- The sputum conversion at the end of 1st month is 71%, at the end of 2nd month it is 84% and at the end of 3rd month the same is 92%.
- In the present study, the infectivity decreases from the baseline with significant P value for sputum conversion of 3+, 2+ and 1+ sputum positivity. Directly Observed Treatment is an effective intervention for improving adherence to tuberculosis treatment programme in a resource-poor country.
- A significant decrease in conversion rate was observed with the initial high grade smear positive cases.
More Prospective studies on larger number of patients are necessary to substantiate our findings in this study.

(Received thesis grant from RNTCP. Authors thankful to RNTCP for providing thesis grant)

REFERENCES

1. Raviglione MC, Snider DE Jr, Kochi A. Global epidemiology of tuberculosis: morbidity and mortality of a worldwide epidemic. JAMA 1995; 273:220-6.
2. Murray GDL. Styblo K. rouillon a. Tuberculosis in developing countries burden. Intervention and cost. Bull Int Union Tuberc Lung Dis 1990;35:35-35.
3. Murray CJL, Styblo K, Rouillon A. Tuberculosis in developing countries burden, intervention and cost. Bull Int Union Tuberc Lung Dis 1990;65:6-24.
4. WHO, TB fact sheet
5. WHO Report on the TB epidemic. TB a global emergency. WHO/TB/94.77. Geneva: World Health Organisation; 1994.
6. TB India 2005 RNTCP Status Report.
7. TB India 2006, RNTCP Status Report.
8. RNTCP Performance Report (Assam & India).
9. Tuberculosis Research Centre, Chennai, Annual Report 2003-2004.
10. Managing the Revised National Tuberculosis Control Programme in your area - A Training Course, Modules 5-9.
11. Revised national tuberculosis control programme (RNTCP). manual for laboratory technicians.
12. Mc Adams HP, Erasmus J, Winter JA. Radiologic manifestations of pulmonary TB. Radiol Clin North Am 1995; 3:655-78.
13. Fraser RG, Pare JA, Fraser RS, Generoux GP. In: Diagnosis of diseases of the chest. Vol II, 3rd edition. Philadelphia: W.B. Saunders and Company; 1989 p.882-933.
14. Woodring JH, Vandiviere HM, Fried AM, Dillon ML, Williams TD, Melvin IG. Update: the radiologic features of pulmonary TB. AJR Am J Roentgenol 1986; 156: 497-506.
15. Hadlock HP, Park SK, Awe RJ, Rivera M. Unusual radiographic findings in adult pulmonary TB. AJR Am J Roentgenol 1980; 134:1015-8.
16. Matthew JI, Matarase SL, Carpenter JL. Endobronchial TB simulating lung cancer. Chest 1984; 86:642-4.
17. Arora VK, Singla N, Sarin R. Profile of geriatric patients under DOTS in Revised National Tuberculosis Control Programme. Indian J Chest Dis Allied Sci 2003; 45 : 231-235.
18. Conception F, Ang, RMT, Myrna T. Mendoza, M.D. and Tessa Tan Torres. M.D. Accuracy of AFB Smear Techniques at the Health Center Level (Phil J Microbiol Infect Dis 1997; 26(4):153-155).
19. Frimpong EH, Adukpo R, Owasu-Darko K. Evaluation of two novel Zielh-Neelsen methods for tuberculosis diagnosis. West Afr J Med. 2005 Oct-Dec; 24(4):316-20.
20. Fujiiki A, Giango C & Endo S Quality control of sputum smears examination in Cebu Province. : Int J Tuberc Lung Dis 2002, 6(1), 39-46.
21. Gothi, G.D. et al (1979). Ind. J. Tuberculosis, 26 (3) 121.
22. Gopi PG, Chandrasekaran V, Subramani R, Santha T, Thomas A, Selvakumar N, Narayanan PR Association of conversion & cure with initial smear grading among new smear positive pulmonary tuberculosis patients treated with Category I regimen. Indian J Med Res. 2006 Jun; 123(6):807-14.
23. Mathew P, Kuo YH, Vazirani B, Eng RH, Weinstein MP. Are three sputum acid-fast bacillus smears necessary for discontinuing tuberculosis isolation? J Clin Microbiol. 2002 Sep; 40(9):3482-4.
24. VK Dhingra, Nishi Aggarwal, S Rajpal, JK Aggarwal, SN Gaur. Validity and Reliability of Sputum Smear Examination as Diagnostic and Screening Test for Tuberculosis. Indian J Allergy Asthma Immunol 2003; 17(2): 67-69
25. Warren Jr, Bhattacharya M, De Almeida KN, Traks K, Peterson LR A minimum 5.0 ml of sputum improves the sensitivity of acid-fast smear for Mycobacterium tuberculosis. Am J Respir Crit Care Med. 2000 May; 161(5):1359-62.
26. Baruwa P, Prasad R, Jagannath K, Thakker R.M. Efficacy of a four-fixed dose combination in sputum positive Indian patients with pulmonary tuberculosis. Indian medical Gazette April 2005.
27. Rutta E, Kipingili R, Lukonge H, Assea S, Mitsilale E, Rwechungura S. Treatment outcome among Rwandan and Burundian refugees with sputum smear-positive tuberculosis in Ngara, Tanzania. Int J Tuberc Lung Dis. 2001 Jul; 5(7):628-32.
28. Rieder HI. Sputum smear conversion during directly observed treatment for tuberculosis. Tuber Lung Dis. 1996 Apr; 77(2):124-9.
29. Lienhardt C, Manneh K, Bouchier V, Lahai G, Milligan PJ, McAdam KP. Factors determining the outcome of treatment of adult smear-positive tuberculosis cases in The Gambia. Int J Tuberc Lung Dis. 1998 Sep. 2(9):712-8.
30. Sanjay Rajpal, Dhingara VK & Aggarwal JK. Sputum grading as predictor of treatment outcome in pulmonary tuberculosis.Ind J Tub 2002; 49, 139-141.
31. Singla R., Osman M. M.; Khan N.; AI-Sharif N.; Al-Sayegh M. O.; Shaikh M. A.,Factors predicting persistent sputum smear positivity among pulmonary tuberculosis patients 2 months after treatment , Int J Tuberc Lung Dis. 2003 Jan;7(1):58-64.
32. Zhao FZ, Levy MH, Wen S. Sputum microscopy results at two and three months predict outcome of tuberculosis treatment. Int J Tuberc Lung Dis. 1998 Oct;2(10):862-3.
33. Singla R, Singla N, Sarin R, Arora VK, L.R.S. Influence of pre-treatment bacillary load on treatment outcome of pulmonary tuberculosis patients receiving DOTS under revised national tuberculosis control programme. Indian J Chest Dis Allied Sci. 2005 Jan-Mar; 47(1):19-23.