Identification of Cerebral Infarction-Specific Antibody Markers from Autoantibodies Detected in Patients with Systemic Lupus Erythematosus

Ken-ichiro Goto1,2, Takao Sugiyama1, Ryutaro Matsumura1, Xiao-Meng Zhang2, Risa Kimura2, Emiko Arita2, Katsuro Iwase3, Eiichiro Kobayashi5, Yasuo Iwadate1, Naokatsu Sasaki2, Masahiro Mori4, Akiyuki Uzawa4, Mayumi Muto4, Satoshi Kuwabara4, Minoru Takemoto2, Kazuki Kobayashi2, Harukiyo Kawamura2, Ryoichi Ishibashi7, Ken-ichi Sakurai4, Masaki Fujimoto1, Koutaro Yokote1, Takashi Nakayama1, Jun-ya Harada8, Yoshio Kobayashi8, Mikiko Ohno9, Hiroshi Chin10, Eiichiro Nishi1, Toshio Machida10, Yo Iwata11, Seiichiro Mine11, Ikuo Kamitsukasa12, Takeshi Wada13, Akiko Aotsuka14, Kaoru Katayama15, Yuriko Kikkawa15, Kenro sunami15, Hirotaka Takizawa17, Rika Nakamura2,18, Go Tomiyoshi1,18, Natsuko Shinmen2,15, Hideyuki Kuroda18 and Takaki Hiwasa2

1Department of Orthopedics, National Hospital Organization, Chiba-East-Hospital, Chiba, Japan
2Department of Biochemistry, Chiba University, Graduate School of Medicine, Chiba, Japan
3Department of Rheumatology, Shimoshizu National Hospital, Chiba, Japan
4Department of Rheumatology, National Hospital Organization, Chiba-East-Hospital, Chiba, Japan
5Department of Neurological Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan
6Department of Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
7Department of Clinical Cell Biology and Medicine, Chiba University, Graduate School of Medicine, Chiba, Japan
8Department of Cardiovascular Medicine, Chiba University, Graduate School of Medicine, Chiba, Japan
9Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
10Department of Neurosurgery, Chiba Cerebral and Cardiovascular Center, Chiba, Japan
11Department of Cardiovascular Medicine, Chiba Cerebral and Cardiovascular Center, Chiba, Japan
12Department of Neurological Surgery, Chiba Prefectural Sawara Hospital, Chiba, Japan
13Department of Neurology, Chiba Rosai Hospital, Chiba, Japan
14Department of Internal Medicine, Chiba Aoba Municipal Hospital, Chiba, Japan
15Department of Neurosurgery, Narita Red Cross Hospital, Chiba, Japan
16Chiba Medical Center, Department of Neurosurgery, Chiba, Japan
17Port Square Kashiwado Clinic, Kashiwado Memorial Foundation, Chiba, Japan
18Medical Project Division, Research Development Center, Fujikura Kasei Co, Saitama, Japan

Corresponding author: Takaki Hiwasa, Department of Biochemistry and Genetics, Chiba University, Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba 260-8670, Japan, Tel: +81-432262541; E-mail: hiwasa_takaki@faculty.chiba-u.jp

Rec date: Jan 05, 2015; Acc date: Jan 28, 2015; Pub date: Feb 02, 2015

Copyright: © 2015 Goto K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Background: Systemic lupus erythematosus (SLE) is an autoimmune disease which may be caused by development of the autoantibodies. On the other hand, SLE is a high-risk group of atherosclerosis, so it is possible that some of autoantibodies in SLE are the result of atherosclerosis-related diseases such as cerebral infarction (CI), cardiovascular disease (CVD) and diabetes mellitus (DM).

Methods: The initial screening of autoantibodies was performed using the protein array method. AlphaLISA was used to analyze the serum antibody levels using synthetic polypeptides as antigens.

Results: After the initial screening using protein array, we identified 67 antigens that were recognized by IgG antibodies in sera of patients with SLE. In the second screening, 170 peptides derived from amino acid sequences of 67 antigens were synthesized and used as antigens for analysis of serum antibody levels by AlphaLISA. The antibody levels for ten peptides were significantly higher in the sera of patients with SLE than in those of healthy donors. Further AlphaLISA analysis of sera of patients with CI, CVD or DM revealed that the serum antibody levels for four peptides derived from SOSTDC1, CTNN1, CLDN1 and CCNG2 were elevated in patients as compared to those of healthy donors.

Conclusions: Serum antibody levels against peptide antigens of SOSTDC1, CTNN1, CLDN1 and CCNG2 are useful markers for diagnosis of the progression of CI, CVD and/or DM.

Keywords: Systemic lupus erythematosus; Cerebral infarction; Cardiovascular disease; Diabetes mellitus; Antibody biomarker
Introduction

Systemic lupus erythematosus (SLE) is a chronic inflammatory disorder characterized by damage to multiple organ systems caused by the production of many autoantibodies, generation of immune complexes, and activation of the complement system [1-3]. Dysfunction of T cells and accelerated activation of B cells in SLE patients [4] enables the development of various autoantigens such as the anti-nuclear antibody [5]. SLE-specific autoantibodies thus far reported were the anti-Sm antibody [6], anti-double-stranded DNA antibody [7], anti-U1RNP antibody [8], anti-SSA/Ro antibody [9,10] and the anti-P ribosomal protein antibody [11], yet the pathogenic role of these antibodies remains to be proven.

Accelerated atherosclerotic diseases have been recognized as major causes of mortality in SLE. In the study of large case series of patients with SLE, 6-20% and 4-15% of deaths were due to cardiovascular disease (CVD) and cerebrovascular disease, respectively [12-14]. To estimate the onset risk of accelerated atherosclerosis in SLE patients, several markers have been introduced including C-reactive protein [15], lipoprotein (a) [16], homocysteine [17], inflammatory cytokines [18,19], yet the satisfactory results have not been obtained.

On the other hand, recent studies have revealed that specific autoantibodies exist in the sera of patients with atherosclerosis, such as autoantibodies for phospholipid (Antiphospholipid syndrome) [20,21], apolipoprotein A-1 [22] and oxidized low-density lipoprotein [23]. We have also reported that the antibody levels against RPA2 were associated with the onset of ischemic stroke [24]. These antibody markers might be useful for evaluation of the onset of lethal atherosclerotic disease in patients with SLE.

In the present study, we have comprehensively screened autoantigens which were recognized by IgG antibodies in the sera of patients with SLE by the protein array method. We then selected and identified autoantigens specific for cerebral infarction (CI), CVD and/or diabetes mellitus (DM).

Materials and Methods

Patients and healthy donor sera

This study was approved by the Local Ethical Review Board of the Chiba University, Graduate School of Medicine as well as that of the National Hospital Organization, Shimosizhu Hospital and Chiba-East hospitals. Sera were collected from patients after they had given written informed consent. Each serum sample was centrifuged at 3,000 x g for 10 min, and then the supernatant was stored at -80°C until use.

The samples of SLE were obtained from Shimosizhu Hospital, and those of CI and transient ischemic attack (TIA) were obtained from Sawara Hospital, Rosai Hospital, Aoba Hospital and Chiba Medical Center. Samples of CVD and DM were obtained from Chiba University Hospital, and those of healthy donors were from Chiba University, Kashiwado Clinic and Fujikura Kasei Co.

Protein array screening

Initial screening was performed using ProtoArrays™ Human Protein Microarrays v4.0 (Thermo Fisher Scientific, Waltham, MA), which were loaded with 9,480 species of proteins. A total of 11 sera, 6 from patients and 5 from healthy donors, were used to detect antigens recognized specifically by IgG antibodies in the sera of patients.

Peptide synthesis

Three epitope sites in the candidate antigen proteins were predicted using the program ProPred (http://www.imtech.res.in/raghava/propred/). N-terminal biotinylated 15mer peptides without purification were synthesized and used in the second screening. For the third screening, synthetic peptides were purified by HPLC. The purity of each peptide was determined to be higher than 90%.

AlphaLISA (Amplified Luminescence Proximity Homogeneous Assay)

To evaluate the serum antibody levels, AlphaLISA was used. AlphaLISA was performed in 384-well microtiter plates (white opaque OptiPlate™ from Perkin Elmer) containing 2.5 μL of 1/100-diluted serum and 2.5 μL of biotinylated synthetic peptides (400 ng/mL) in AlphaLISA buffer (25 mM HEPES, pH 7.4, 0.1% casein, 0.5% Triton X-100, 1 mg/mL dextran-500, and 0.05% Proclin-300). The reaction mixture was incubated at room temperature for 6-8 h, then anti-human IgG-conjugated acceptor beads (2.5 μL at 40 μg/mL) and streptavidin-conjugated donor beads (2.5 μL at 40 μg/mL) were added and incubated at room temperature in the dark for another 1 - 14 days. The plate was read on an EnSpire Alpha microplate reader (PerkinElmer).

Statistical analyses

Fisher’s exact (two-sided) probability test and the Mann-Whitney U test were used to determine the significance of the differences between the two groups. All statistical analyses were carried out using the GraphPad Prism 5 (GraphPad Software, La Jolla, CA). P values lower than 0.05 were considered statistically significant.

Results

Initial screening of SLE-specific antigens by protein array

By using protein microarrays loading with 9,480 proteins, we examined 6 sera from SLE patients and 5 sera from healthy controls to identify SLE-associated antigens. Sixty-seven proteins such as SOSTDC1, CTNND1 were selected as antigens by reacting with more than 5 sera from SLE patients and not with any of the sera from healthy donors (Table 1). These proteins may include not only antigens specific for SLE but also those specific for the complication such as CI, CVD and DM.

Name	Protein
ZIC4	C3orf52
SDHB	DKFZp762
MGC17553	SOSTDC1
RARS2	RNPC3
IPO11	CDC45L
SLC25A24	ZNF649
OTX1	ABAT
MKRN2	CLIC5
KCNS3	H2AFY

Page 2 of 10
Table 1: List of Protein array-selected antigens recognized by serum antibodies of SLE patients.

No.	Name	Sequence	No.	Name	Sequence	No.	Name	Sequence
1	ZIC4-3	YKTSLVMRKRL	44	SIAH1-267	FAENGNLGINVTISM	87	MYBBP1A-1134	LLYWQAMKTLGVQRPK
	CTRB1			ORC3L			ERp27	
	MAPK13			MAP4K4			TUFM	
	MIER3			GLCE			UX51	
	C3orf15			ENG	HAPLN1		ETV3	
	PRKCH	C3orf157		NOLA1	RNF32			
	ANK1	MIER3		RPS15A	GLCE			
	C15orf15	ERp27		C15orf15	UX51			
	RBMS3	ETV3		CSNK1A1				
	Gene	Position	Description					
---	---------	----------	-------------					
2	ZIC4-185	FKAKYKLVNHVR	VHT	45 TAS2R13-30 INCIDWVSKREL SSV				
3	ZIC4-269	RGDCKYTHPS SLRKL	46 TAS2R13-11 KIAFSSPPAFLY KEL					
4	SDHB-238	FSLYRCHTINC TRT	47 TAS2R13-17 VKFTMTMFSLT PFTV					
5	MGC17553-17	PSKENWFQRL SQAV	48 TAS2R13-28 GNAKLQAFLL VAAK					
6	MGC23985-18	LTCYADDKPDK PDDK	49 FGFR23-6 LRLWVCALCSV CMS					
7	RARS2-2	ACGRFRAIAQ LSREY	50 FGFR23-40 IHLYTATARNY HLS					
8	RARS2-179	GLLGTFQFOLFG YEEQ	51 FGFR23-85 ITGMVSRRLY MDFR					
9	RARS2-359	QMLKIMGYDWA EROCF	52 FGFR23-131 QHYFLVSLGRA KRA					
10	RARS2-402	LRMLQNMAK ILE	53 TFAM-5 RSMVGVLSAlg SEFGA					
11	RARS2-500	QHLLHRDEVLY KSNG	54 TFAM-38 LPRWFSVLAS CPITK					
12	IPO11-52	HTLDNVRWHV LYSF	55 TFAM-231 LRTIRIKKORKG AEE					
13	IPO11-143	QRHARRALTFFY VHVT	56 CLDN1-12 ACVLSCIYIMA					
14	IPO11-215	LKVLRLTVNGF VEP	57 CLDN1-69 FRYNVTGVLWR KCHG					
15	IPO11-320	CMNLIKIVMKV NTK	58 CLDN1-177 HIIAGLCTLSV SCY					
16	IPO11-526	DQDLVVRGGAT TLK	59 MAFG-34 VRELNQHRLG SEKE					
17	IPO11-579	HVHLHNSCIVER YNM	60 CCNG2-84 LDRFALMKVK MKH					
18	IPO11-708	KIINGYFILSSTE FL	61 CCNG2-130 QCCCTASDIK MKH					
19	SLC2A24-113	OSLQTLTGLTISE VEQ	62 CCNG2-181 SLDKLEAOQKA CNKR					
20	SLC2A24-248	RSLWVRGNTN VIKA	63 CCNG2-231 KHSHKINODETEF YWR					
21	SLC2A24-389	LQGGALSSTCG QLAS	64 CCNG2-270 WIVRSRTAQNL HS					
22	SLC2A24-430	LFRRISKEGIPG FLY	65 ACTLB8-146 FFLCKTAVTLAF SAG					
23	SLC2A24-444	YRIGITPNNKVL PSF	66 ACTLB8-376 KLIASTNIMERK FSP					
24	OTX1-68	REEVALKINLPE SRV	67 APEX1-168 VTVAPNAGRG LVR					
25	MKRN2-109	LDRNLSGMAE RKTO	68 APEX1-189 DEAFRRKLKGL ASRK					

Citation: Goto K, Sugiyama T, Matsumura R, Zhang XM, Kimura R, et al. (2015) Identification of Cerebral Infarction-Specific Antibody Markers from Autoantibodies Detected in Patients with Systemic Lupus Erythematosus. J Mol Biomark Diagn 6: 219. doi: 10.4172/2155-9929.1000219
The selected useful antigen peptides are shown in bold. Numbers of peptide names represent the first amino acid number of the original proteins.

Table 2: List of amino acid sequences of synthetic peptides used for the second screening. A total of 170 peptides were predicted as epitopes from Autoantibodies Detected in Patients with Systemic Lupus Erythematosus. J Mol Biomark Diagn 6: 219. doi: 10.4172/2155-9929.1000219

Peptide Name	Sequence
SOSTDC1-156	KITVTVTACKR YLRFY
CTNN1D-21	TSVPELVPKVVA NHT
CLDN1-69	SOSTDC1-156
CCNG2-231	CTNN1D-21
TFAM-231	CLDN1-69
TOP3B-628	CCNG2-231
MYBBP1A-1134	TOP3B-628
MYBBP1A-1306	MYBBP1A-1134

Sequence	Length	Positive No.	Total No.	HD	SD	Cut-off value
1,730	2,302	5	3	2,613	884	9,176
4,518	2,053	5	3	1,799	1,739	2,505
2,532	2,606	6	6	5	5	3
3,374	433	5	5	1,799	2,505	676
1,799	433	5	5	1,799	2,505	676
2,505	2,505	5	6	6	5	3

Citation: Goto K, Sugiyama T, Matsumura R, Zhang XM, Kimura R, et al. (2015) Identification of Cerebral Infarction-Specific Antibody Markers from Autoantibodies Detected in Patients with Systemic Lupus Erythematosus. J Mol Biomark Diagn 6: 219. doi: 10.4172/2155-9929.1000219
Table 3: Comparison of serum antibody levels between HD and SLE patients examined by AlphaLISA.

	SOSTDC1-156	CTNND1-211	CLDND1-69	CCNG2-231	TFAM-231	TOP3B-628	MYBBP1A-1134	MYBBP1A-1306
HD	2,970	2,233	2,948	1,804	4,694	2,386	2,074	3,808
SD	1,187	739	1,691	442	1,392	757	703	1,060
Cut-off value	5,344	3,711	6,331	2,688	7,479	3,900	3,479	5,928
Total No.	128	128	127	128	125	128	128	128
Positive No.	6	6	3	7	5	6	6	7
Positive (%)	4.70%	4.70%	2.40%	11.90%	1.20%	13.10%	11.90%	13.10%
P (vs HD)	0.000048	0.029	-	0.109	0.089	0.045	0.065	0.042

Table 4: Comparison of serum antibody levels among HD, CI patients and CVD patients examined by AlphaLISA.

Discussion

There are various types of autoantibodies in the sera of SLE patients due to the dysfunction of T cells and the accelerated activation of B cells. Available data suggest that young women with SLE are at a substantially increased risk of AMI, congestive heart failure, and cerebrovascular accidents [12-14]. If autoantibodies develop during the progress of CI and CVD, they can be amplified in patients with SLE due to their dysregulated immune systems. Thus, we performed the first screening using SLE sera and then the second and third screenings using CI and CVD samples. Through the first screening by protein array method followed by second screening using crude peptide antigens and validation tests using three sets of control HD and patients' sera, we identified SOSTDC1, CTNND1, CLDND1 and CCNG2 as novel useful markers for the diagnosis of atherosclerosis-related diseases such as CI, CVD and DM.
Table 5: Comparison of serum antibody levels among HD, CI patients and DM patients examined by AlphaLISA.

	SOSTDC1-156	CTNND1-211	CLDND1-69	CCNG2-231	TFAM-231	TOP3B-628	MYBBP1A-1134	MYBBP1A-1306
HD	r value	P value	r value	P value	r value	P value	r value	P value
Gender	-0.079	0.0408	0.019	0.6341	-0.019	0.6226	0.057	0.1448
Age	0.182	<0.0001	0.157	<0.0001	0.102	0.0089	0.057	0.1420
Height	-0.062	0.1131	-0.054	0.1639	-0.009	0.8115	-0.028	0.4770
Weight	-0.008	0.8351	-0.125	0.0013	-0.065	0.0932	-0.044	0.2595
Body mass index	0.039	0.3227	-0.111	0.0043	-0.074	0.0586	-0.027	0.4849
Intima media thickness (IMT)	0.218	<0.0001	0.117	0.0127	0.040	0.3920	0.019	0.6819
Diabetes	0.110	0.0045	0.013	0.7397	-0.036	0.3614	0.017	0.6708
Hypertension	0.160	<0.0001	0.066	0.0919	0.038	0.3346	0.035	0.3678
Albumin/globulin ratio	0.011	0.7883	-0.005	0.9026	-0.001	0.9827	0.066	0.0962
Aspartate transaminase	0.004	0.9241	0.009	0.8197	0.016	0.6736	-0.011	0.7763
Alanine transaminase	-0.013	0.7353	0.015	0.7042	-0.051	0.1903	-0.006	0.8714
Alkaline phosphatase	0.046	0.2624	0.007	0.8733	-0.031	0.4473	-0.042	0.2991
Lactate dehydrogenase	-0.016	0.6972	0.061	0.1269	-0.015	0.7089	0.025	0.5356

Table 5: Comparison of serum antibody levels among HD, CI patients and DM patients examined by AlphaLISA.
Total bilirubin	0.046	0.2502	-0.017	0.6647	0.026	0.5049	0.015	0.7068
Choline esterase	-0.039	0.3834	0.009	0.8342	0.018	0.6893	-0.001	0.9749
gamma-GTP	0.027	0.4988	-0.004	0.9311	-0.019	0.6432	0.003	0.9400
Total protein	-0.044	0.2729	-0.073	0.0656	-0.011	0.7861	0.002	0.9596
Albumin	-0.024	0.5439	-0.065	0.0994	-0.013	0.7397	0.054	0.1743
Blood urea nitrogen	-0.019	0.6331	-0.038	0.3306	0.000	0.9816	-0.040	0.3009
Creatinin	0.010	0.7904	-0.021	0.5848	0.023	0.5547	-0.007	0.8603
Estimated glomerular filtration rate	-0.004	0.9326	0.023	0.5866	-0.010	0.8060	-0.004	0.9214
Uric acid	-0.019	0.6690	0.030	0.5104	0.011	0.7992	0.025	0.5729
Amylase	-0.084	0.0875	-0.015	0.7540	0.017	0.7362	-0.074	0.1322
Total cholesterol	-0.067	0.1131	0.033	0.4346	-0.054	0.2030	-0.022	0.5983
HDL cholesterol	-0.002	0.9599	0.000	0.9931	0.038	0.4340	0.087	0.0694
Triglyceride	-0.031	0.5086	0.013	0.7773	-0.028	0.5419	-0.035	0.4594
Na	-0.001	0.9811	0.002	0.9500	0.003	0.9370	0.077	0.0507
K	-0.025	0.5245	0.043	0.2779	0.031	0.4397	0.058	0.1393
Cl	0.005	0.8985	0.061	0.1236	0.007	0.8680	0.036	0.3583
C-reactive protein	0.047	0.3018	-0.046	0.3182	0.056	0.2241	-0.050	0.2732
LDL cholesterol	-0.119	0.0275	0.043	0.4254	-0.070	0.1940	-0.091	0.0913
White blood cell	0.015	0.7028	-0.041	0.2992	0.030	0.4382	-0.036	0.3629
Red blood cell	-0.005	0.9062	-0.049	0.2110	0.030	0.4471	-0.009	0.8185
Hemoglobin	0.013	0.7468	-0.059	0.1360	0.034	0.3896	0.007	0.8621
Hematocrit	0.017	0.6567	-0.047	0.2325	0.039	0.3262	0.031	0.4225
Mean cell volume	0.072	0.0647	0.026	0.5057	-0.005	0.896	0.049	0.2145
Mean corpuscular hemoglobin	0.050	0.1988	-0.018	0.6498	0.009	0.6220	-0.002	0.9513
Mean corpuscular hemoglobin concentration	-0.021	0.6015	-0.070	0.0737	0.019	0.6314	-0.067	0.0891
Red cell distribution width	0.021	0.5894	-0.011	0.7837	-0.002	0.9551	-0.030	0.4462
Platelet	-0.031	0.4254	-0.027	0.4944	0.027	0.4896	0.010	0.8202
Mean platelet volume	0.005	0.8969	0.025	0.5186	-0.019	0.6356	0.025	0.5217
Procalcitonin	-0.020	0.6023	-0.016	0.6912	0.035	0.3677	0.031	0.4303
Platelet distribution width	-0.002	0.9667	-0.002	0.9601	-0.037	0.3433	0.006	0.8785
Blood sugar	0.047	0.2467	0.011	0.7832	-0.069	0.0909	-0.063	0.1215
HbA1c	0.016	0.7264	0.015	0.7405	-0.067	0.1310	-0.042	0.3409
Smoking habit	0.152	<0.0001	-0.058	0.1368	-0.010	0.8047	-0.036	0.3532
Alcohol drinking habit	0.058	0.1386	-0.053	0.1762	0.029	0.4552	-0.033	0.3934
Green tea drinking habit	-0.017	0.6664	0.018	0.6377	-0.014	0.7178	0.054	0.1690
Coffee drinking habit	-0.064	0.1022	-0.005	0.8913	-0.008	0.8346	0.021	0.5904
The following information is known for these selected markers: SOSTDC1/sclerostin domain containing 1 (Accession No.: NM_015464) is a member of bone morphogenetic protein (BMP) of TGF-β superfamily [25,26]. It works as a BMP antagonist and suppresses cell proliferation, differentiation or cell death induced by BMP. BMPs also play important parts in the development of atherosclerosis [27]. CTNND1/catenin (cadherin-associated protein), delta 1 (Accession No.: NM_001085458) is a member of the Armadillo protein family and mediates the signaling from the cell-adhesion molecule cadherin onto cells [28]. CLDND1/claudin domain containing 1 (Accession No.: NM_001040181) contains the domain of claudin which is involved in tight junction, but its function is not known [29]. CCNG2/cyclin G2 (Accession No.: NM_004354): It is a member of the cyclin family and induced by DNA damaging agents [30].

Table 6: Correlation analysis between antibody marker levels and the subject’s information. Shown are correlation coefficients (r) and P values calculated by Spearman’s analysis. Significant correlations are marked in bold.

Habit	SOSTDC1-156	CTNND1-211	CLDND1-69	CCNG2-231
Chinese tea drinking habit	-0.083	0.0323	-0.025	0.5245
Working habit	-0.137	0.0005	-0.073	0.0659
Exercise habit	-0.029	0.484	-0.011	0.7888

The positivity was approximately 10% and 13% at most. Multiple factors can affect the progress of CI, CVD and DM. Spearman correlation analysis between the antibody levels and the information of the patients revealed that the levels of SOSTDC1-156 but not of CTNND1-211, CLDND1-69 or CCNG2-231 are correlated with IMT, hypertension and smoking (Table 6). Thus, the SOSTDC1-156 marker can predict atherosclerotic CI caused by hypertension and/or smoking habit. There are many causes that affect the progress of CI, and each antibody marker may be associated with a respective cause of CI. Thus, the positivity of each maker cannot be expected to particularly high. The development of an increasing number of such antibody markers may make the prediction of the onset of CI at a strong possibility.

We used the sera of patients with CI within two weeks of onset. Various antigens appear immediately after the onset of CI whereas the antibodies are not produced until two weeks later. Thus, the antibodies specifically detected in sera immediately after the onset are known to have been present prior to the onset. By measuring the levels of these antibodies, it is possible to predict the onset, i.e., serum antibody markers can be prediction markers for the onset of CI.

In most cases, CI is not induce suddenly but mediated frequently by health issues such as TIA and asymptomatic CI. When small infarctions occur, it is possible for antigens to leak out from infarction lesions. Repeated exposure to such antigens may raise the antibodies to detectable levels. In fact, the antibody levels against SOSTDC1-156 were found to be higher in TIA patients than that of those in HD (Figure 1). The antibody levels of CCNG2-231 were highly associated with DM (Table 5), and therefore, it may be useful for the early diagnosis of DM. If the levels of both SOSTDC1-156 and CCNG2-231 were high, the patient might suffer from CI caused by DM. CTNND1-211 and CLDND1-69 may contribute to diagnose CVD. Application of these biomarkers for the clinical use is very important and the early development of the diagnosis kit is expected.

Acknowledgment

The authors thank Prof. Masaki Takiguchi (Chiba University, Graduate School of Medicine) for valuable discussion. This work was partly supported by Grants-in-Aid of Japan Science and Technology Agency (Exploratory Research No. 14657335) and Ministry of Health, Labour and Welfare, and a grant from SEISHIN Medical Research Foundation.

References

1. von Mühlen CA, Tan EM (1995) Autoantibodies in the diagnosis of systemic rheumatic diseases. Semin Arthritis Rheum 24: 323-358.
2. Cozzani E, Drosera M, Gasparini G, Parodi A (2014) Serology of Lupus Erythematosus: Correlation between Immunopathological Features and Clinical Aspects. Autoimmune Dis 2014: 321359.
3. Jeltsch-David H, Muller S (2014) Neuropsychiatric systemic lupus erythematosus: pathogenesis and biomarkers. Nat Rev Neurol 10: 579-596.
4. Rahman A, Isenberg DA (2008) Systemic lupus erythematosus. N Engl J Med 358: 929-939.
5. van Bruggen MC, Walgreen B, Rijke TP, Tamboer W, Kramers K, et al. (1997) Antigen specificity of anti-nuclear antibodies complexed to nucleosomes determines glomerular basement membrane binding in vivo. Eur J Immunol 27: 1564-1569.
6. Homma M, Mimori T, Takeda Y, Akama H, Yoshida T, et al. (1987) Autoantibodies to the Sm antigen: immunological approach to clinical
aspects of systemic lupus erythematosus. J Rheumatol Suppl 14 Suppl 13: 188-193.
7. Linnik MD, Hu JZ, Heilbrunn KR, Strand V, Hurley FL, et al. (2005) Relationship between anti-double-stranded DNA antibodies and exacerbation of renal disease in patients with systemic lupus erythematosus. Arthritis Rheum 52: 1129-1137.
8. Furtado RN, Pucinelli ML, Cristo VV, Andrade LE, Sato EI (2002) Scleroderma-like nailfold capillaroscopic abnormalities are associated with anti-U1-RNP antibodies and Raynaud's phenomenon in SLE patients. Lupus 11: 35-41.
9. Yoshimi R, Ueda A, Ozato K, Ishigatsubo Y (2012) Clinical and pathological roles of Ro/SSA autoantibody system. Clin Dev Immunol 2012: 606195.
10. Fukuda MV, Lo SC, de Almeida CS, Shinjo SK (2009) Anti-Ro antibody and cutaneous vasculitis in systemic lupus erythematosus. Clin Dev Immunol 28: 301-304.
11. Bonfa E, Golombek SJ, Kaufman LD, Skelly S, Weissbach H, et al. (1987) Association between lupus psychosis and anti-ribosomal P protein antibodies. N Engl J Med 317: 265-271.
12. Symmons DP, Gabriel SE (2011) Epidemiology of CVD in rheumatic disease, with a focus on RA and SLE. Nat Rev Rheumatol 7: 399-408.
13. Skaggs BJ, Hahn BH, McMahon M (2012) Accelerated atherosclerosis in patients with SLE--mechanisms and management. Nat Rev Rheumatol 8: 214-223.
14. Ward MM (1999) Premature morbidity from cardiovascular and cerebrovascular diseases in women with systemic lupus erythematosus. Arthritis Rheum 42: 338-346.
15. Toloza SM, Uribe AG, McGwin G Jr, Alarcón GS, Fessler BJ, et al. (2004) Systemic lupus erythematosus in a multiethnic US cohort (LUMINA). Arthritis Rheum 50: 3947-3957.
16. Kawai S, Mizushima Y, Kaburaki J (1995) Increased serum lipoprotein(a) levels in systemic lupus erythematosus with myocardial and cerebral infarctions. J Rheumatol 22: 1210-1211.
17. Asanuma Y, Oser A, Shintani AK, Turner E, Olsen N, et al. (2003) Premature coronary-artery atherosclerosis in systemic lupus erythematosus. N Engl J Med 349: 2407-2415.
18. Ross R (1999) Atherosclerosis is an inflammatory disease. Am Heart J 138: S419-420.
19. Esdaile JM, Abrahamowicz M, Grodzicky T, Li Y, Panaritis C, et al. (2001) Traditional Framingham risk factors fail to fully account for accelerated atherosclerosis in systemic lupus erythematosus. Arthritis Rheum 44: 2331-2337.
20. Liang KP, Kremers HM, Crowson CS, Snyder MR, Therneau TM, et al. (2009) Autoantibodies and the risk of cardiovascular events. J Rheumatol 36: 2462-2469.
21. Veres K, Lakos G, Kerényi A, Szekanecz Z, Szegedi G, et al. (2004) Antiphospholipid antibodies in acute coronary syndrome. Lupus 13: 423-427.
22. Montecucco F, Vuilleumier N, Pagano S, Lenglet S, Bertolotto M, et al. (2011) Anti-Apolipoprotein A-1 auto-antibodies are active mediators of atherosclerotic plaque vulnerability. Eur Heart J 32: 412-421.
23. Fesmire J, Wolfson-Reichlin M, Reichlin M (2010) Effects of autoimmune antibodies anti-lyoprotein lipase, anti-low density lipoprotein, and anti-oxidized low density lipoprotein on lipid metabolism and atherosclerosis in systemic lupus erythematosus. Rev Bras Reumatol 50: 539-551.
24. Machida T, Kubota M, Kobayashi E, Iwadate Y, Saeki N, et al. (2015) Identification of stroke-associated-antigens via screening of recombinant proteins from the human expression cDNA library (SEREX). J Translat Med, in press.
25. Laurikila J, Kassai S, Pakkasjärvi L, Thesleff I, Itoh N (2003) Identification of a secreted BMP antagonist, ectodin, integrating BMP, FGF, and SHH signals from the tooth enamel knot. Dev Biol 264: 91-105.
26. Rider CC, Mulloy B (2010) Bone morphogenetic protein and growth differentiation factor cytokine families and their protein antagonists. Biochem J 429: 1-12.
27. Kim CW, Song H, Kumar S, Nam D, Kwon HS, et al. (2013) Anti-inflammatory and antithromogenic role of BMP receptor II in endothelial cells. Arterioscler Thromb Vasc Biol 33: 1350-1359.
28. Wildenberg GA, Dohn MR, Carnahan RH, Davis MA, Lobdell NA, et al. (2006) p120-catenin and p190RhoGAP regulate cell-cell adhesion by coordinating antagonism between Rac and Rho. Cell 127: 1027-1039.
29. Liu Y, Sun W, Zhang K, Zheng H, Ma Y, et al. (2007) Identification of genes differentially expressed in human primary lung squamous cell carcinoma. Lung Cancer 56: 307-317.
30. Bates S, Rowan S, Vousden KH (1996) Characterisation of human cyclin G1 and G2: DNA damage inducible genes. Oncogene 13: 1103-1109.