Correction: An Aqueous Extract of *Fagonia cretica* Induces DNA Damage, Cell Cycle Arrest and Apoptosis in Breast Cancer Cells via FOXO3a and p53 Expression

Matt Lam, Kirsten Wolff, Helen Griffiths, Amtul Carmichael

In our article entitled “An Aqueous Extract of *Fagonia cretica* Induces DNA Damage, Cell Cycle Arrest and Apoptosis in Breast Cancer Cells via FOXO3a and p53 Expression” (1), we described the effects of plant material from Pakistan that we referred to as *Fagonia cretica*. Linnaeus in *Species Plantarum* (2) described three species, namely, *cretica*, *arabica* and *hispanica*, while we now have over 160 names published in the genus (3, 4). The circumscription of species in *Fagonia* is reported to be complex due to variability of morphological characters (3, 4).

After the publication of our article it was raised to our attention that in light of the widespread distribution of *F. indica* and the absence from Pakistan of the more narrowly distributed species *F. cretica* the plant material we used in our studies in order to establish if the material originated from *F. indica* or *F. cretica*. These additional analyses have confirmed that the material used in the study originated from *F. indica*.

The methodology for the analyses was as follows: DNA was extracted from batches of plant material using a Qiagen DNAeasy Plant minikit, following manufacturer’s instructions. The chloroplast trnLeu intragenic spacer was amplified using primers trnL-c and trnL-d (6), and the rDNA Internal Transcribed Spacer region was amplified using primers ITS4 and ITS5 (7). Amplification, purification and sequencing were performed as described by Houston and Wolff (8). Sequencing was carried out with the Big Dye Terminator cycle sequencing kit v. 3.1 (Applied Biosystems) according to manufacturer’s instructions. Sequencing products were purified using a Genetix column purification and the sequences of these samples were visualised using an ABI 3100 automated sequencer (Applied Biosystems).

The resulting sequences, both trnL (439 bases) and ITS (489 bases), were blasted to sequences available on GenBank and showed the highest similarity with those of *F. indica* and of *F. paulayana*, while being clearly different from those for *F. cretica* (Table 1). The alignment shows that for trnL the query sample differed from *F. indica* only for the number of repeats in two A-repeats, and one nucleotide substitution with *F. paulayana* (Table 1). The trnL sequence differed from the *F. cretica* sequences for 12 substitutions and 6 insertions/deletions (Table 2). The ITS query sample differed from *F. indica* and *F. paulayana* for 1 and 3 substitutions, respectively, while the difference with *F. cretica* was 36 substitutions and 1 insertion/deletion (Table 3). The alignment of ITS showed ambiguities at certain positions; this is most likely due to a well-known phenomenon of incomplete sequence conversion between the rDNA paralogy, causing intra-individual sequence diversity. Beier et al. (4) describe that *F. indica* and *F. paulayana* occur sympatrically and cannot be distinguished on the basis of sequence data, but that a single morphological character (persistence of sepals) discriminates the two species.

We conclude that *F. indica* or its sister species *F. paulayana* is the genetic identity of the plant material being commonly referred to as *F. cretica* in Pakistan and which has cytotoxic activity towards breast cancer cells. We conclude that it is more likely to be *F. indica* than *F. paulayana* for three reasons. Firstly, our ITS sequence was more similar to that of *F. indica*. Secondly, the trnL sequence only had repeat number differences with *F. indica*, which is a more likely evolutionary step than the substitution that was found in the comparison with *F. paulayana*. Thirdly, the distribution of *F. indica* encompasses the region of origin of our samples. The article title, abstract and main text should therefore refer to *F. indica* and not *F. cretica*. The active compound has now been isolated and is undergoing molecular characterization.

We are grateful to Dr. Schori, an expert plant systematist, who alerted us to the likely misidentification of the species.

Kirsten Wolff was responsible for the additional DNA analyses described in this Correction and she has been added as a co-author. The author list should therefore be revised to read as follows:

Matt Lam, Kirsten Wolff, Helen Griffiths, Amtul Carmichael. Dr. Wolff is affiliated at School of Biology, Newcastle University and has no competing interests in relation to this work.
Species	Similarity	Genbank nr	Species	Similarity	Genbank nr
F. indica	99%	AY641593.1	F. indica	99%	AY641631.1
F. indica	99%	Y3000769.1	F. paulayana	99%	AY641652.1
F. indica	99%	AY641592.1	F. indica	99%	AY641630.1
F. paulayana	99%	AY641607.1	F. subinermis	99%	AY641642.1
F. paulayana	98%	AY641606.1	F. paulayana	99%	AY641650.1
F. subinermis	98%	AY641610.1	F. indica	99%	AY641632.1
F. mahrawa	96%	AY641600.1	F. paulayana	99%	AY641654.1
F. lahovarii	96%	AY641596.1	F. mahrawa	98%	AY641639.1
F. hadramautica	95%	AY641590.1	F. gypsophila	98%	AY641627.1
F. gypsophila	95%	AY641589.1	F. lahovarii	97%	AY641635.1
F. acerosa	95%	AY641579.1	F. latistipulata	97%	AY641636.1
F. indica	95%	Y3000770.1	F. scabra	97%	AY641645.1
F. harpago	95%	AY641591.1	F. charoides	97%	AY641621.1
F. longisina	94%	AY641599.1	F. minutistipula	96%	AY641641.1
F. latistipulata	94%	AY641598.1	F. longisina	96%	AY641637.1
F. brugueri	94%	AY641582.1	F. glutinosa	96%	AY641626.1
F. minutistipula	93%	AY3000771.1	F. brugueri	96%	AY641619.1
F. cretica	92%	AJ387942.1	F. olivieri	96%	AY641646.1
F. densa	92%	AY641587.1	F. mollis	95%	AY641643.1
F. laevis	92%	AY641594.1	F. brugueri	95%	AY641620.1
F. villosa	92%	AY641611.1	F. rangei	95%	AY641647.1
F. mollis	92%	AY641601.1	F. harpago	95%	AY641629.1
F. laevis	92%	AY641595.1	F. acerosa	95%	AY641617.1
F. scabra	92%	AY3000768.1	F. kuntii	95%	AY641638.1
F. charoides	91%	AY641583.1	F. laevis	95%	AY641634.1
F. orientalis	91%	AY641603.1	F. laevis	95%	AY641633.1
F. rangei	91%	AY641609.1	F. palmeri	95%	AY641653.1
F. cretica	91%	AY641585.1	F. orientalis	94%	AY641648.1
F. arabica	91%	AY641580.1	F. boveana	94%	KF850598.1
F. scita	91%	AY641586.1	F. pachycantha	94%	AY641651.1
F. pachycantha	90%	AY641604.1	F. pachycantha	94%	AY641649.1
F. pachycantha	90%	AY3000772.1	F. villosa	94%	AY641640.1
F. zilloides	90%	AY641612.1	F. hadramautica	94%	AY641628.1
			F. arabica	93%	AY641618.1
			F. chilensis	93%	AY641622.1
			F. densa	93%	AY641625.1
			F. cretica	93%	AY641624.1
			F. scoparia	90%	AY641644.1
			F. cretica	90%	AY641623.1

doi:10.1371/journal.pone.0040152.t001
Table 2. Aligned sequences of the trn-Leu gene intron for our query sample and a selection of the most similar sequences and most distant sequences within the genus *Fagonia* available at Genbank.

10	20	30	40	50	60	
trnL intron query	GTGATCAGT	TCAATTCAG	AGAACCCTCG	GAATTAGAAA	TGGGCAATCCC	TGAGCCAAT
AJ387943 F.indica	GTGATCAGT	TCAATTCAG	AGAACCCTCG	GAATTATAAA	TGGGCAATCCC	TGAGCCAAT
XY41592 F.indica	-------CTT	TCAATTCAG	AGAANCCCTG	GAATTAGAAA	TGGGCAATCCC	TGAGCCAAT
XY41608 F.paulayana	GTGATCAGT	TCAATTCAG	AGAACCCTCG	GAATTATAAA	TGGGCAATCCC	TGAGCCAAT
XY41600 F.subinermi	GTGATCAGT	TCAATTCAG	AGACCCCTCG	GAATTAGAAA	TGGGCAATCCC	TGAGCCAAT
XY41596 F.lahovarii	------GATCAGT	TCAATTCAG	AGAACCCTCG	GAATTAGAAA	TGGGCAATCCC	TGAGCCAAT
AJ387942 F.cretica	GTGATCAGT	TCAATTCAG	AGAACCCTCG	GAATTAGAAA	TGGGCAATCCC	TGAGCCAAT

70	80	90	100	110	120	
trnL intron query	CCTGTATCC	TAAAAAAAA	AAAAAGAA	TCAATTA---	---TAAATC	AAAAGTAA
AJ387943 F.indica	CCTGTATCC	TAAAAAAAA	AAAAAGAA	TCAATTA---	---TAAATC	AAAAGTAA
XY41592 F.indica	CCTGTATCC	TAAAAAAAA	AAAAAGAA	TCAATTA---	---TAAATC	AAAAGTAA
XY41608 F.paulayana	CCTGTATCC	TAAAAAAAA	AAAAAGAA	TCAATTA---	---TAAATC	AAAAGTAA
XY41610 F.subinermi	CCTGTATCC	TAAAAAAAA	AAAAAGAA	TCAATTA---	---TAAATC	AAAAGTAA
XY41596 F.lahovarii	------GATCAGT	TCAATTA---	AAAAAGAA	TCAATTA---	---TAAATC	AAAAGTAA
AJ387942 F.cretica	CCTGTATCC	TAAAAAAAA	AAAAAGAA	TCAATTA---	---TAAATC	AAAAGTAA

130	140	150	160	170	180	
trnL intron query	AAAAAAAA	GGTAGTGGC	AGAGACTCAA	TGGAGCTGT	TCTAAAAAAT	GGAGTTGACT
AJ387943 F.indica	AAAAAAAA	GGTAGTGGC	AGAGACTCAA	TGGAGCTGT	TCTAAAAAAT	GGAGTTGACT
XY41592 F.indica	AAAAAAAA	GGTAGTGGC	AGAGACTCAA	TGGAGCTGT	TCTAAAAAAT	GGAGTTGACT
XY41608 F.paulayana	AAAAAAAA	GGTAGTGGC	AGAGACTCAA	TGGAGCTGT	TCTAAAAAAT	GGAGTTGACT
XY41610 F.subinermi	AAAAAAAA	GGTAGTGGC	AGAGACTCAA	TGGAGCTGT	TCTAAAAAAT	GGAGTTGACT
XY41596 F.lahovarii	AAAAAAAA	GGTAGTGGC	AGAGACTCAA	TGGAGCTGT	TCTAAAAAAT	GGAGTTGACT
AJ387942 F.cretica	AAAAAAAA	GGTAGTGGC	AGAGACTCAA	TGGAGCTGT	TCTAAAAAAT	GGAGTTGACT

190	200	210	220	230	240	
trnL intron query	ACTGATTAC	GTTAGCAAG	TCAAGGACTG	TTGACATCGA	AACTTTTTC	A-------GG
AJ387943 F.indica	ACTGATTAC	GTTAGCAAG	TCAAGGACTG	TTGACATCGA	AACTTTTTC	A-------GG
XY41592 F.indica	ACTGATTAC	GTTAGCAAG	TCAAGGACTG	TTGACATCGA	AACTTTTTC	A-------GG
XY41608 F.paulayana	ACTGATTAC	GTTAGCAAG	TCAAGGACTG	TTGACATCGA	AACTTTTTC	A-------GG
XY41610 F.subinermi	ACTGATTAC	GTTAGCAAG	TCAAGGACTG	TTGACATCGA	AACTTTTTC	A-------GG
XY41596 F.lahovarii	ACTGATTAC	GTTAGCAAG	TCAAGGACTG	TTGACATCGA	AACTTTTTC	A-------GG
AJ387942 F.cretica	ACTGATTAC	GTTAGCAAG	TCAAGGACTG	TTGACATCGA	AACTTTTTC	A-------GG

250	260	270	280	290	300	
trnL intron query	ATACCTTTT	TTTCTATCAA	ACTCTAAAA	TAAAATATAT	AAGACTTT	TAAATATT
AJ387943 F.indica	ATACCTTTT	TTTCTATCAA	ACTCTAAAA	TAAAATATAT	AAGACTTT	TAAATATT
XY41592 F.indica	ATACCTTTT	TTTCTATCAA	ACTCTAAAA	TAAAATATAT	AAGACTTT	TAAATATT
XY41608 F.paulayana	ATACCTTTT	TTTCTATCAA	ACTCTAAAA	TAAAATATAT	AAGACTTT	TAAATATT
XY41610 F.subinermi	ATACCTTTT	TTTCTATCAA	ACTCTAAAA	TAAAATATAT	AAGACTTT	TAAATATT
XY41596 F.lahovarii	ATACCTTTT	TTTCTATCAA	ACTCTAAAA	TAAAATATAT	AAGACTTT	TAAATATT
AJ387942 F.cretica	ATACCTTTT	TTTCTATCAA	ACTCTAAAA	TAAAATATAT	AAGACTTT	TAAATATT

310	320	330	340	350	360	
trnL intron query	GGAATTAATT	GGAAGTGGA	GAAAGATCA	AATAGATTT	TACCAATTC	TTTACTCCAA
AJ387943 F.indica	GGAATTAATT	GGAAGTGGA	GAAAGATCA	AATAGATTT	TACCAATTC	TTTACTCCAA
Table 2. Cont.

| | 310 | 320 | 330 | 340 | 350 | 360 | 370 | 380 | 390 | 400 | 410 | 420 | 430 | 440 | 450 | 460 | 470 | 480 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| AY641592 F.indica | GGAATTAATT | GGAAGTTGAA | GAAAGAATCA | AATATGATTT | TATCAAATCA | TTACTCCAA | GGAATTAATT | GGAAGTTGAA | GAAAGAATCA | AATATGATTT | TATCAAATCA | TTACTCCAA | GGAATTAATT | GGAAGTTGAA | GAAAGAATCA | AATATGATTT | TATCAAATCA | TTACTCCAA |
| AY641608 F.paulayana | GGAATTAATT | GGAAGTTGAA | GAAAGAATCA | AATATGATTT | TATCAAATCA | TTACTCCAA | GGAATTAATT | GGAAGTTGAA | GAAAGAATCA | AATATGATTT | TATCAAATCA | TTACTCCAA | GGAATTAATT | GGAAGTTGAA | GAAAGAATCA | AATATGATTT | TATCAAATCA | TTACTCCAA |
| AY641610 F.subinermi | GGAATTAATT | GGAAGTTGAA | GAAAGAATCA | AATATGATTT | TATCAAATCA | TTACTCCAA | GGAATTAATT | GGAAGTTGAA | GAAAGAATCA | AATATGATTT | TATCAAATCA | TTACTCCAA | GGAATTAATT | GGAAGTTGAA | GAAAGAATCA | AATATGATTT | TATCAAATCA | TTACTCCAA |
| AY641608 F.mahrana | GGAATTAATT | GGAAGTTGAA | GAAAGAATCA | AATATGATTT | TATCAAATCA | TTACTCCAA | GGAATTAATT | GGAAGTTGAA | GAAAGAATCA | AATATGATTT | TATCAAATCA | TTACTCCAA | GGAATTAATT | GGAAGTTGAA | GAAAGAATCA | AATATGATTT | TATCAAATCA | TTACTCCAA |
| AY641596 F.lahovarii | GGAATTAATT | GGAAGTTGAA | GAAAGAATCA | AATATGATTT | TATCAAATCA | TTACTCCAA | GGAATTAATT | GGAAGTTGAA | GAAAGAATCA | AATATGATTT | TATCAAATCA | TTACTCCAA | GGAATTAATT | GGAAGTTGAA | GAAAGAATCA | AATATGATTT | TATCAAATCA | TTACTCCAA |
| AJ387942 F.cretica | GGAATCAATT | GGAAGTTTAA | GAAAGAATCA | AATATGATTT | TATCAAATCA | TTACTCCAA | GGAATCAATT | GGAAGTTTAA | GAAAGAATCA | AATATGATTT | TATCAAATCA | TTACTCCAA | GGAATCAATT | GGAAGTTTAA | GAAAGAATCA | AATATGATTT | TATCAAATCA | TTACTCCAA |

trnL intron query

	430	440	450	460	470	480
AY641592 F.indica	TCTATATGTC	AATATTGACA	ACAATGAAAT	TTATAGTGAG	AGGAAAATCC	GTCGATTTTA
AY641608 F.paulayana	TCTATATGTC	AATATTGACA	ACAATGAAAT	TTATAGTGAG	AGGAAAATCC	GTCGATTTTA
AY641610 F.subinermi	TCTATATGTC	AATATTGACA	ACAATGAAAT	TTATAGTGAG	AGGAAAATCC	GTCGATTTTA
AY641600 F.mahrana	TCTATATGTC	AATATTGACA	ACAATGAAAT	TTATAGTGAG	AGGAAAATCC	GTCGATTTTA
AY641596 F.lahovarii	TCTATATGTC	AATATTGACA	ACAATGAAAT	TTATAGTGAG	AGGAAAATCC	GTCGATTTTA
AJ387942 F.cretica	TCTATATGTC	AATATTGACA	ACAATGAAAT	TTATAGTGAG	AGGAAAATCC	GTCGATTTTA

	490	
AY641592 F.indica	TCAATGTGGA	GGGT
AY641608 F.paulayana	TCAATGTGGA	GGGT
AY641610 F.subinermi	TCAATGTGGA	GGGT
AY641600 F.mahrana	TCAATGTGGA	GGGT
AY641596 F.lahovarii	TCAATGTGGA	GGGT
AJ387942 F.cretica	TCAATGTGGA	GGGT

doi:10.1371/journal.pone.0040152.t002
Table 3. Aligned sequences of the rDNA Internal Transcribed Spacer for our query sample and a selection of the most similar sequences and most distant sequences within the genus *Fagonia* available at Genbank.

query ITS	10	20	30	40	50	60
AGAGCATACC						
CTTCTCGA	CTTCTCGA	CTTCTCNGA	CTTCTCGA	CTTCTCNGA	CTTCTCGA	
GTGTCGGAG	GTGTCGGAG	GTGTCGGGAG	GTGTCGGGAG	GTGTCGGGAG	GTGTCGGGAG	
GGAGACTTCC	GGAGACTTCC	GGAGACTTCC	GGAGACTTCC	GGAGACTTCC	GGAGACTTCC	
TGACATTATA	TGACATTATA	TGACATTATA	TGACATTATA	TGACATTATA	TGACATTATA	
ACGAACCCCG	ACGAACCCCG	ACGAACCCCG	ACGAACCCCG	ACGAACCCCG	ACGAACCCCG	

query ITS	70	80	90	100	110	120
GCGTGAAAAA	GCGTGAAAAA	GCGTGAAAAA	GCGTGAAAAA	GCGTGAAAAA	GCGTGAAAAA	
CGCCAAGGAA	CGCCAAGGAA	CGCCAAGGAA	CGCCAAGGAA	CGCCAAGGAA	CGCCAAGGAA	
AACAAACAAA	AACAAACAAA	AACAAACAAA	AACAAACAAA	AACAAACAAA	AACAAACAAA	
AAA-GGAGAC	AAA-GGAGAC	AAA-GGAGAC	AAA-GGAGAC	AAA-GGAGAC	AAA-GGAGAC	
TGCGTTCGCG	TGCGTTCGCG	TGCGTTCGCG	TGCGTTCGCG	TGCGTTCGCG	TGCGTTCGCG	
TGGCCTCCTT	TGGCCTCCTT	TGGCCTCCTT	TGGCCTCCTT	TGGCCTCCTT	TGGCCTCCTT	

query ITS	130	140	150	160	170	180
TGATTGAAT	TGATTGAAT	TGATTGAAT	TGATTGAAT	TGATTGAAT	TGATTGAAT	
CAAATGACT	CAAATGACT	CAAATGACT	CAAATGACT	CAAATGACT	CAAATGACT	
CTCGCCAACG	CTCGCCAACG	CTCGCCAACG	CTCGCCAACG	CTCGCCAACG	CTCGCCAACG	
GATATCTCGG	GATATCTCGG	GATATCTCGG	GATATCTCGG	GATATCTCGG	GATATCTCGG	
CTCCTGCATC	CTCCTGCATC	CTCCTGCATC	CTCCTGCATC	CTCCTGCATC	CTCCTGCATC	
GATGAAGAAC	GATGAAGAAC	GATGAAGAAC	GATGAAGAAC	GATGAAGAAC	GATGAAGAAC	

query ITS	190	200	210	220	230	240
TGCATTGAAT	TGCATTGAAT	TGCATTGAAT	TGCATTGAAT	TGCATTGAAT	TGCATTGAAT	
CAAATGACT	CAAATGACT	CAAATGACT	CAAATGACT	CAAATGACT	CAAATGACT	
CTCGCCAACG	CTCGCCAACG	CTCGCCAACG	CTCGCCAACG	CTCGCCAACG	CTCGCCAACG	
GATATCTCGG	GATATCTCGG	GATATCTCGG	GATATCTCGG	GATATCTCGG	GATATCTCGG	
CTCCTGCATC	CTCCTGCATC	CTCCTGCATC	CTCCTGCATC	CTCCTGCATC	CTCCTGCATC	
GATGAAGAAC	GATGAAGAAC	GATGAAGAAC	GATGAAGAAC	GATGAAGAAC	GATGAAGAAC	

PLOS ONE | www.plosone.org 5 July 2014 | Volume 9 | Issue 7 | e102655
query	ITS	Ay641631 F.indica	Ay641630 F.indica	Ay641632 F.indica	Ay641652 F.paulayana	Ay641650 F.paulayana	Ay641654 F.paulayana	Ay641642 F.subinermi	Ay641639 F.mahran	Ay641627 F.gypsophil	Ay641635 F.lahovarii	Ay641636 F.latistipu	Ay641641 F.minutisti	Ay641624 F.cretica	Ay641623 F.cretica
190	GTGCGAAT	GCGATCTGG	GTGGAATGG	CAGATCCAG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG
200	GTGCGAAT	GCGATCTGG	GTGGAATGG	CAGATCCAG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG
210	GTGCGAAT	GCGATCTGG	GTGGAATGG	CAGATCCAG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG
220	GTGCGAAT	GCGATCTGG	GTGGAATGG	CAGATCCAG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG
230	GTGCGAAT	GCGATCTGG	GTGGAATGG	CAGATCCAG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG
240	GTGCGAAT	GCGATCTGG	GTGGAATGG	CAGATCCAG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG
250	GTGCGAAT	GCGATCTGG	GTGGAATGG	CAGATCCAG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG
260	GTGCGAAT	GCGATCTGG	GTGGAATGG	CAGATCCAG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG
270	GTGCGAAT	GCGATCTGG	GTGGAATGG	CAGATCCAG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG
280	GTGCGAAT	GCGATCTGG	GTGGAATGG	CAGATCCAG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG
290	GTGCGAAT	GCGATCTGG	GTGGAATGG	CAGATCCAG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG
300	GTGCGAAT	GCGATCTGG	GTGGAATGG	CAGATCCAG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG
310	GTGCGAAT	GCGATCTGG	GTGGAATGG	CAGATCCAG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG
320	GTGCGAAT	GCGATCTGG	GTGGAATGG	CAGATCCAG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG
330	GTGCGAAT	GCGATCTGG	GTGGAATGG	CAGATCCAG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG
340	GTGCGAAT	GCGATCTGG	GTGGAATGG	CAGATCCAG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG
350	GTGCGAAT	GCGATCTGG	GTGGAATGG	CAGATCCAG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG
360	GTGCGAAT	GCGATCTGG	GTGGAATGG	CAGATCCAG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG	TGGACGATCG
	310	320	330	340	350	360									
---	-----	-----	-----	-----	-----	-----									
AY641623 F.cretica	CGCTCCCCAC	TCACAATAGA	TTTGGTGAGT	GTATGATGGT	CTCCCTGTAG	CTATATTTGC									
AY641631 F.indica	TTGTGGTGGT	CCTAAACATG	AGTCTCTGGG	CGGAATTGTA	CCACGCTCTT	AGGTTGTCGA									
AY641630 F.indica	TTGTGGTGGT	CCTAAACATG	AGTCTCTGGG	CGGAATTGTA	CCACGCTCTT	AGGTTGTCGA									
AY641632 F.indica	TTGTGGTGGT	CCTAAACATG	AGTCTCTGGG	CGGAATTGTA	CCACGCTCTT	AGGTTGTCGA									
AY641652 F.paulayana	TTGTGGTGGT	CCTAAACATG	AGTCTCTGGG	CGGAATTGTA	CCACGCTCTT	AGGTTGTCGA									
AY641650 F.paulayana	TTGTGGTGGT	CCTAAACATG	AGTCTCTGGG	CGGAATTGTA	CCACGCTCTT	AGGTTGTCGA									
AY641654 F.paulayana	TTGTGGTGGT	CCTAAACATG	AGTCTCTGGG	CGGAATTGTA	CCACGCTCTT	AGGTTGTCGA									
AY641642 F.subinermi	TTGTGGTGGT	CCTAAACATG	AGTCTCTGGG	CGGAATTGTA	CCACGCTCTT	AGGTTGTCGA									
AY641639 F.mahrana	TTGTGGTGGT	CCTAAACATG	AGTCTCTGGG	CGGAATTGTA	CCACGCTCTT	AGGTTGTCGA									
AY641627 F.gypsophil	TTGTGGTGGT	CCTAAACATG	AGTCTCTGGG	CGGAATTGTA	CCACGCTCTT	AGGTTGTCGA									
AY641635 F.lahovarii	TTGTGGTGGT	CCTAAACATG	AGTCTCTGGG	CGGAATTGTA	CCACGCTCTT	AGGTTGTCGA									
AY641636 F.latistipu	TTGTGGTGGT	CCTAAACATG	AGTCTCTGGG	CGGAATTGTA	CCACGCTCTT	AGGTTGTCGA									
AY641641 F.minutisti	TTGTGGTGGT	CCTAAACATG	AGTCTCTGGG	CGGAATTGTA	CCACGCTCTT	AGGTTGTCGA									
AY641624 F.cretica	TTGTGGTGGT	CCTAAACATG	AGTCTCTGGG	CGGAATTGTA	CCACGCTCTT	AGGTTGTCGA									
AY641623 F.cretica	TTGTGGTGGT	CCTAAACATG	AGTCTCTGGG	CGGAATTGTA	CCACGCTCTT	AGGTTGTCGA									
	370	380	390	400	410	420									
query ITS	AACCCTGAAG	GATCGTGTGC	CCATTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA									
AY641631 F.indica	AACCCTGAAG	GATCGTGTGC	CCATTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA									
AY641630 F.indica	AACCCTGAAG	GATCGTGTGC	CCATTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA									
AY641632 F.indica	AACCCTGAAG	GATCGTGTGC	CCATTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA									
AY641652 F.paulayana	AACCCTGAAG	GATCGTGTGC	CCATTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA									
AY641650 F.paulayana	AACCCTGAAG	GATCGTGTGC	CCATTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA									
AY641654 F.paulayana	AACCCTGAAG	GATCGTGTGC	CCATTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA									
AY641642 F.subinermi	AACCCTGAAG	GATCGTGTGC	CCATTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA									
AY641639 F.mahrana	AACCCTGAAG	GATCGTGTGC	CCATTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA									
AY641627 F.gypsophil	AACCCTGAAG	GATCGTGTGC	CCATTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA									
AY641635 F.lahovarii	AACCCTGAAG	GATCGTGTGC	CCATTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA									
AY641636 F.latistipu	AACCCTGAAG	GATCGTGTGC	CCATTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA									
AY641641 F.minutisti	AACCCTGAAG	GATCGTGTGC	CCATTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA									
AY641624 F.cretica	AACCCTGAAG	GATCGTGTGC	CCATTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA									
AY641623 F.cretica	AACCCTGAAG	GATCGTGTGC	CCATTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA									
	430	440	450	460	470	480									
query ITS	TGTCGATCT	ACCTTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA										
AY641631 F.indica	TGTCGATCT	ACCTTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA										
AY641630 F.indica	TGTCGATCT	ACCTTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA										
AY641632 F.indica	TGTCGATCT	ACCTTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA										
AY641652 F.paulayana	TGTCGATCT	ACCTTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA										
AY641650 F.paulayana	TGTCGATCT	ACCTTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA										
AY641654 F.paulayana	TGTCGATCT	ACCTTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA										
AY641642 F.subinermi	TGTCGATCT	ACCTTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA										
AY641639 F.mahrana	TGTCGATCT	ACCTTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA										
AY641627 F.gypsophil	TGTCGATCT	ACCTTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA										
AY641635 F.lahovarii	TGTCGATCT	ACCTTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA										
AY641636 F.latistipu	TGTCGATCT	ACCTTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA										
AY641641 F.minutisti	TGTCGATCT	ACCTTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA										
AY641624 F.cretica	TGTCGATCT	ACCTTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA										
AY641623 F.cretica	TGTCGATCT	ACCTTTTA-G	CCATAGAGAG	GAACTTGCAA	CCCTAGAGCA										

Table 3. Cont.
References

1. Lam M, Carmichael AR, Griffiths HR (2012) An Aqueous Extract of Fagonia cretica Induces DNA Damage, Cell Cycle Arrest and Apoptosis in Breast Cancer Cells via FOXO3a and p53 Expression. PLoS ONE 7(6): e40152. doi:10.1371/journal.pone.0040152

2. Muller-Wille S, Reeds K (2007) A translation of Carl Linnaeus’s introduction to Genera plantarum (1737). Studies in history and philosophy of biological and biomedical sciences 38:563-72

3. Beier BA (2005) A revision of the desert shrub Fagonia (Zygophyllaceae). Systematics and Biodiversity 3:221-63

4. Beier BA, Nylander JA, Chase MW, Thulin M (2004) Phylogenetic relationships and biogeography of the desert plant genus Fagonia (Zygophyllaceae), inferred by parsimony and Bayesian model averaging. Molecular phylogenetics and evolution 33:91-108

5. Nasit E, Ali SI. Eds. Flora of West Pakistan http://www.tropicos.org/Name/34660187?projectId=32

6. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17:1105–1109

7. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M., Gelfand, D., Sninsky, J., White, T., (Eds.), PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego.

8. Houston K, Wolff K (2012) Rhinanthus minor population genetic structure and subspecies: Potential seed sources of a keystone species in grassland restoration projects. Perspectives in Plant Ecology, Evolution and Systematics 14:423–433