Original Research Article

Diurnal Activity Patterns of Burchell’s Zebra (*Equus quagga*, Gray 1824) in Yabello Wildlife Sanctuary, Southern Ethiopia

Reta Regassa*

Biology (Dryland Biodiversity Management), Hawassa, Ethiopia P.O.Box 115

*Corresponding author.

Abstract

A study on the diurnal activity pattern of Burchell’s zebra (*Equus quagga*, Gray 1824) was carried out in the Yabello Wildlife Sanctuary, Southern Ethiopia during October 2009 to March 2010 including wet and dry seasons. Scan sampling methods were used to collect the data. Peaks in daily activity occurred in early morning, mid day and late afternoon. Data on activity time budget were analyzed by assessing time allocated for different activities at different hours of the day as well as different seasons. Differences in seasonal and hourly time budget were tested using one way ANOVA, followed by Tukey multiple comparison test. The time devoted to grazing was peaked during the dry season and gradually decreased during the wet season. There was a significant difference in the amount of hours devoted to different activities (*t* = 76.44, *p* < 0.05). The proportions of time budget varied between two seasons. Grazing accounted for more than 55.5%. Peak activities were observed early morning and late afternoon hours with resting peak during the mid-day.

Keywords

Activity pattern, *Equus quagga*, Ethiopia, Oromiya, Yabello sanctuary

Introduction

The plains zebra (*Equus quagga*) is considered one of Africa’s most adaptable and successful grazers (Estes, 1991). Zebras are primarily grazers and have dental adaptations for feeding on grasses (Moehlman, 2003). Burchell’s Zebras are predominantly grazers but, will occasionally browse, eating primarily grasses, and focusing more on quantity rather than quality of food (Bauer et al., 1994). They graze for up to sixteen hours a day due to the ineffective way they digest food (Hack and Rubenstein, 1998). The grasses required by the zebra are abundant and evenly distributed which means lack of competition while foraging. Females also do not compete while foraging because it reduces the amount of time spent grazing and thus, reduces their reproductive success. Zebra must go to a water source once a day, which is where aggressive encounters are more likely to occur (Rubenstein, 1993). Burchell’s zebra is a diurnal species. Its activity patterns can vary depending on seasons, the animal’s sex, age or reproductive state. According to Kamler et al. (2007) and Joubert (1972), there are many factors that can influence the activity pattern of
Materials and methods

The Study Area

Yabello Wildlife Sanctuary (4° 37' to 5° 12' N and 38° 09' to 38° 37' E) is one of the protected areas and Wildlife Sanctuaries in southern Ethiopia. It has an area of 2496 km² located in the Borena Zone of the Oromia Region, east of the town of Yabello and it has an approximate North-South distance of 65 km and 48 km East-West with an average altitude between 1800 to 2000m above sea level. The area is not fenced and the boundary is not clearly demarcated.

Borana lowland is mostly covered with East African evergreen and semi-evergreen bushland and thickets along the high lying areas with relatively higher rainfall (Agrotec-C, 1974). The commonest habitat inside the Yabello Sanctuary is savanna woodland dominated by various species of thorny acacia (Acacia tortilis, A. brevispica, A. horrida, and A. drepanolobium) and Commiphora, and broad leaved Terminalia and Combretum (Borghesio and Giannetti, 2005). In addition, small patches of juniper (Juniperus procera) forest can also be found in high altitude just outside the boundaries of the sanctuary, although grazing and logging threaten its persistence (Borghesio et al., 2004).

The present study identifies three major types of habitats such as: Acacia woodland, bushland and grassland. The rain fall regime in Borana dry lands is bimodal with two rainfall seasons. The main rainy season, known as the long rainy season is between March and May with the peak in April, and short rainy season is between September and November, with peak in October. The mean annual rain fall for the period 2000-2009 was 612.36 mm. The peak mean monthly rainfall was in April (152.9mm) and October (127.6mm). The least mean monthly rainfall was in January (17.6mm). The hottest months were from January to February and temperature fluctuates between 27.9 to 28.9°C. The weather remains pleasant between June-August. The mean annual maximum temperature was 28.9°C and the mean annual minimum temperature was 12.2°C.

Methods

A study on diurnal activity pattern of Burchell’s zebra was carried out in the Yabello Wildlife Sanctuary, Southern Ethiopia from October 2009 to March 2010 including wet and dry seasons. Observations on diurnal activity pattern of Burchell’s zebra were made using unaided eye and/or 8x30 binoculars. Observation was facilitated by the animal’s preference for short grass areas during the wet season and tall grass during the dry season and by selecting a strategic site on the hill; this enabled observation of more than one group. Scan sampling methods were used as adopted by Martin and Bateson (1993) and Altmann (1974). The activities recorded were grazing,
walking, standing, resting, grooming and other activities. The latter included all activities that did not feature strongly in the general activity pattern such as playing, fighting, suckling and urinating.

The activity of each individual zebra in each group under observation was recorded and ticked on the sheet at ten minutes intervals. When unique activity was observed, it was recorded on a separate notebook. If the observed animals in the field disappeared from view, the time interval that the animals being observed out of sight was recorded. When the out of sight period was with longer duration than the duration of the common activities, it was deleted from the sample and duration of the sample period was deleted accordingly. The time budget and habitat association were analyzed using SPSS 15.0 for window.

Results and discussion

The time budget of Burchell’s zebra was recorded in each hour of the day during a sample of 20 days (10 in dry and 10 in wet seasons) over 6 months of the study period. A total of 1440 observations were taken between 0600 to 1800h. The activities were recorded every 10 minutes and six observation unit per hour. Data on the various activity patterns recorded in the study period were grouped in to form six major activities: grazing, walking, standing, resting/lying in the open or in the shade, grooming and other activities.

Grazing

There was an observed increase in the amount of time spent grazing during the 0600-1000h and 1500-1800h both in dry and wet seasons. Grazing activity remained at similar levels during the 0600-1100 h and 1400-1800h with a decrease observed during the 1200-1300h time period during dry seasons. During the wet season, the animals significantly allocated more time to grazing at 0900h than 1200h, 1100 and 1300h. In addition, time allocated for grazing at 0900h was significantly higher than 800h, 1500h, and 1800h. There were two peaks in grazing during wet season, one between 0600-100h and the other is 1400-1800h. Over the dry season, grazing showed two peaks one is in the early morning between 0600-1000h and the other is in the late afternoon between 1400-1800h. The differences in the time devoted for each activity during different hours of the day during dry and wet season were significantly different for grazing, standing, walking and resting (p < 0.05), but there was no significant difference between, grooming and others (p>0.05). The time devoted to grazing during the dry season was significantly greater (t=13.183, p<0.05) than the wet season. Multiple pair-wise comparisons using the Tukey test indicated that Burchell’s zebras spent more time in grazing in dry season than in wet season, and more time grazing during the time period. The difference in time allocation among six activity categories was statistically significant for grazing, standing, walking and resting (F=67.512, d.f.=11,p<0.05) during dry season and (F= 47.532, d.f.=11, p<0.05) during the wet season. The total time budget for each activity also showed significant difference for grazing, standing, walking and resting (t= 69.265, p=0.001, t =19.058, p<0.004, t=22.572, p=0.03, t= 16.357, p<0.002) over the two seasons, respectively (Table 1).

Table 1. Comparison of the different activities between dry and wet season using ANOVA.

Activity	F-value	P-value
Grazing	13.183	0.000
Standing	2.218	0.000
Walking	14.227	0.00
Resting	23.346	0.003
Grooming	2.144	0.144
Others	0.185	0.667

Walking

The animals walk for shorter distances and recommence grazing after 2-6 minutes. The adult male, which is used as a guard often initiate the harem for walking when they were disturbed. Walking showed two peaks during the dry and wet seasons, respectively. Over the dry season, walking peaked in the early morning between 0700-900h and in the late afternoon 1500–1800h and during the wet season, it peaked early in the morning 0600-1000h and late afternoon at 1400-1800h.
The maximum time allocated to walking throughout the day during the wet season was 14% while over the dry season it was 9%. There was significant difference in time allocated to walking in both seasons (p< 0.05). Tukey multiple comparison tests indicated that time allocation for walking was significantly lower at 1200h and 1300h compared to 1400h and 1500h. The majority of the walking activity during the wet and dry seasons was during the cooler periods 0600- 1000h and 1500- 1800h of the day. The level of walking activity was at maximum during the 0600-1000h and 1500-1800h time periods and decreased during the 1100-1400h time period. The maximum time allocated for walking throughout the day among the Burchell’s zebras during the wet season was 24% (0600h) while over the dry season it was 14%(0800 and 1500h).

Standing

In the study areas, when the Burchell’s zebras were not grazing, they spend most of the time standing. Standing was the second frequent activity of Burchell’s zebra next to grazing during the dry season, but the third frequent activity during the wet season next to grazing and walking. They were engaged in standing during the hottest part of the day during dry season. The time allocated to standing varies significantly with time of the day both in the wet and dry seasons (p < 0.05).

Resting

Resting was frequent during the hottest part of the day and the zebras remained in the bush and Acacia woodland spending more than 30 minutes. Resting was increased in the middle of the day from1200h-1400h. Data shows that Burchell’s zebra were engaged more in resting for an extended time in the wet season than in the dry season. In the study area adult zebras were never seen resting, but the young zebras spent more time in resting than adults.

Grooming

The time allocated to grooming did not vary significantly with time of the day either in the wet season or dry season. The maximum time allocated to grooming throughout the day in the dry season was 8 % (0800h) while over the wet season it was 7%, 8% and 6.5% at 1200h, 1300h and 1700h respectively. However, there was no significant difference in time allocated to grooming (p > 0.05) for both dry and wet seasons.

During the wet and dry seasons, an increase in social activity was observed during the 1200 -1400h time period. This can probably be attributed to the aggregation of Burchell’s zebra under available acacia woodland shades, thus allowing a greater opportunity for interaction. Levels of social activity were higher during the wet season throughout the time period with peaks in the mid day from 1100-1300h. Over the dry season social activities were allocated less time at 1100 and 1200h as compared to 0700 and 0800h, but more time was allocated at 0900h, 1000h, 1300 and 1600h respectively.

Burchell’s zebras spent 58 % of their time grazing, 16 % standing, 10% walking, 6% resting, 4% grooming and 7% other activities in the dry season, while in the wet season, 53% in grazing, 10% in standing, 14% in walking, 10% in resting, 5% in grooming and 8% in other activities. In the dry season grazing and standing were allocated significantly more time than other activities. Where as in the wet season, grazing and walking were allocated significantly more time than other activities.

The variation in trends between the time allocated for grazing, walking, standing, resting, grooming and other activities of Burchell’s zebra of different age and sex categories in the three periods of the day showed significant differences (p<0.05). The time allocated for different activities also showed significant differences (t =76.4, p=0.004) during the wet and dry seasons.

The pattern of diurnal grazing was inversely correlated with walking, standing, resting, grooming and others (r = -0.178, p < 0.01; r = -0.631, p< 0.01; r = -0.472, p < 0.01; r = -0.210, p< 0.01; r = -0.428, p <0.01) respectively, reaching a peak in the morning and afternoon periods during dry and wet seasons. The result
of correlation analysis using Karl Pearson Correlation Coefficient showed statistically significant positive correlation between the pattern of diurnal resting and standing (r = 0.29, p< 0.01). The time allocated to walking activity was inversely correlated with standing, resting and grooming (r = -0.313, r = -0.370, r = -0.207), respectively, during the wet and dry seasons. Standing activity also inversely correlated to grazing and walking (r = -0.631, r = -0.313), respectively. Furthermore, the time devoted to resting and grooming activities during different hours of the day were inversely correlated with grazing and walking (r = -0.472, r = -0.370, r = -0.210, r = -0.207), respectively. The diurnal activity budgets of other activities were inversely correlated with grazing (r = -0.428).

Out of the total 1440 observations Burchell’s zebras were observed in the grassland (48.2%), woodland (39.9%) and bushland (11.8%). There was no significant change (t=4.32, p>0.05) in the pattern of habitat association of Burchell’s zebra at Yabello wildlife Sanctuary. However, their habitat preference differed significantly in the morning, mid-day and afternoon (t= 39.167, p<0.05). They spent most (57.9%) of the morning hour in the grassland while most (55.4%) of the mid-day hours in the woodland. In the afternoon 52.4% was spent in the grassland and 39.9% in the woodland. Habitat preference was impact on daily time budget of Burchell’s zebra. (t = 117 df=5 p<0.05). Time of the day was also associated with activity patterns of Burchell’s zebras (t =232.245, df =11, P< 0.05).

Livestock abundance

Livestock is the most commonly observed animal in the Sanctuary. The increased number of livestock around the sanctuary was one of the important factors affecting the activity patterns and time budget of Burchell’s zebras in Yabello Wildlife Sanctuary. Thousands of livestock competes directly for food with Burchell’s zebras and other wildlife in the Sanctuary. Livestock distribution throughout the Sanctuary increased especially during the wet and late dry seasons, when the grasses were at grazable size. During the wet season, the number of livestock counted inside the Sanctuary was 6110 and during the dry season, these were only 4053.

Bush encroachment

Several native Acacia species among which A. drepannolobium, A. orfota, A. mellifera and many others were observed to be an emerging rampant species replacing some of the valuable species at Yabello Wildlife Sanctuary. Due to its rapid expansion, A. drepannolobium was the most serious problem in the area. It had been observed during the field survey that this species had formed a pure stand replacing all other species that used to grow in the area.

Variations were observed in the activity patterns and time budget of Burchell's zebras during dry and wet seasons at different time of the day. There was significant differences in the amount of hours devoted to different activities (t=76.4, p< 0.05). Burchell's zebra devoted more time to grazing than any other activities during both seasons. Grazing was observed to be lowest at midday. The possible reason may be the influence of temperature which affects the turgidity of plants which in turn affects the plants' palatability. Grazing activity was minimum during the wet season. Decrease in grazing time with increase food availability during the wet season has been observed. The difference in the distribution of time budgets of the wet and dry season may lead to the conclusion that temperature and food availability seem to be the determinant factors governing the activities of Burchell’s zebra. Seasonal variations in daily activities were perhaps related to temperature, rainfall and ground plant biomass in reedbuck (Roberts and Dunbar, 1991).

Resting reached a peak between 1200h-1400h. No periods of rest were observed early in the morning and in the late afternoon. Resting is high during the midday in the dry season as the activities are affected by temperature. This behaviour was significantly different between wet and dry seasons. Around the middle of the day, Burchell’s zebras remain standing or resting/lying down about 35% and 25% in dry and wet seasons, respectively under the shade.
of Acacia woodland to escape the intense heat of the day. The distribution of day time activity for Burchell’s zebras in Yabello Wildlife Sanctuary with increased activities of grazing and walking concentrated in the early morning and late afternoon and a major resting/lying period during the middle of the day is similar to that observed elsewhere (Joubert, 1972; Sandra, 2009; Beekman and Prins, 1989; Gakahu, 1984; Grogan, 1978). The present study in Yabello Wildlife Sanctuary indicates that Burchell’s zebra spent most of its time for grazing as evident from the activity time budget. Standing and walking were other major components of activity of the zebra. Grazing peak was in the morning from 0600 to 1000 hrs and after noon from 1400-1800hrs.

Activity patterns of animals are determined by numerous factors. Biotic environmental factors such as light and temperature may influence optimum daily and seasonal activity patterns (Nielsen, 1983; Patterson et al., 1999). Body mass, human disturbance, social behaviour, predator avoidance, prey acquisition and competition also may affect activity in different forms (Rocowitz, 1997). Hence, important time when animals are active may be important for understanding their ecological niche and hence to develop conservation plans for imperiled species (Hwang and Garshelis, 2007). The common trend in the diurnal activity patterns of Burchell’s zebra at Yabello Wildlife Sanctuary was generally to rest more in the middle of the day, and to graze more in the morning and afternoon.

Much of the time is generally spent feeding in mammalian herbivores (Beekman and Prins, 1989). Grazing equidae spend up to 18 hours of their time per day to graze (Fowler and Miller, 2003; Houpt et al., 1986; Pratt et al., 1986; Crowell-Davis et al., 1983; Sweeting et al., 1984). Three studies on Plains zebra shows that they devote around 60-70% of their time (out of a 24-h period) to grazing (Beekman and Prins, 1989; Gakahu, 1984; Grogan, 1978). The time devoted to grazing was peaked during the dry season and gradually decreased during the wet season. The increased in grazing time with decreasing food availability in the dry season has been reported for several African grazers (Owen-Smith, 1982).

In the present study, the annual mean proportion of time spent grazing by Burchell’s zebras at Yabello Wildlife Sanctuary was estimated to be 55.5%. This is in line with the findings of Kivai (2006) in which Grevy's zebras spent most of their time feeding than other activities in Northern Kenya; Rubeinstein et al. (2004) obtained similar results in behavioral study of Grevy’s and Plains zebras in Lewa Wildlife Conservancy and Moehlman (1998) where the adult Feral Asses spent 30.7% to 57.6% of their time feeding. This finding was contradicts with the findings of Degu (2007) where Grevy's zebras spent more time for vigilance than any other activities in Chew Bahir, Southern Ethiopia.

Burchell’s zebras were standing most in the mid day; this may be due to the hot temperature. Standing was least in the afternoon, probably due to the higher need of grazing. This is consistent with Sandra (2009) in which Burchell's zebras were standing most in the midday and least in the afternoon. The activity budget of an animal varies in response to both internal and external factors that influence its survival strategy (Knoop and Owen-Smith, 2006). The diurnal activity of Burchell's zebras depend on variation in climatic condition. Seasonal changes affect the timing of grazing and resting (lying down) activities. The foraging efficiency of ungulates may also be influenced by factors such as the time of day, temperature, season, vegetation type and reproductive status (Wobeser, 2006; Neuhaus and Ruckstuhl, 2002). Reta and Solomon (2013) reported that Burchell’s zebra showed high preference for open grassland habitats and the distribution of the animal varied according to the season.

The activity pattern of Burchell's zebra in the study area was highly influenced by human activity, livestock over grazing and encroachments. Overgrazing increases competition for pastures especially during dry seasons. Ubiquitous presence of thousands of livestock competes on the same area with Burchell’s zebra for food especially at
Government cattle ranch in the Yabello Wildlife Sanctuary. Grazing activity was become more difficult for Burchell’s zebras when livestock arrived and occupied the more suitable habitat were transformed into unsuitable habitat which forced zebras to feed on lower quality pastures.

Some authors propose that there are four factors which influence ungulate activity budgets: seasonal changes of a pasture’s biomass and quality (Moncorps et al., 1997); temperature variations throughout daytime hours and seasons (Shi et al., 2003); yearly life cycle (growth and reproduction (Duncan, 1980; Maher, 1991) and livestock movements and human activity (Schaller, 1998). Bush encroachment are the most serious problem that affects the time budget of Burchell’s zebras in the study area to date. In the Borana rangelands of southern Ethiopia, a progressive increase in bush encroachment and loss of grass cover is associated with changes in patterns of livestock grazing (Bille et al., 1983; Coppock, 1994). Heavy livestock grazing in turn has reduced the herbaceous vegetation cover (Coppock, 1993).

Grazing was the dominant activity of the zebras, although the time spent in grazing differed significantly between the seasons. It occupied most of the time and, together with walking, standing and resting accounted for at least 90% of all diurnal activities. Diurnal grazing behaviour was strongly biphasic, with animals showing strong avoidance of energy consuming activities such as grazing and walking during the hottest period of the day. Such activities increased in the early morning and late afternoon hour and correlated with lower ambient temperatures. Energy conserving activities, such as resting and standing showed a strong inverse correlation with grazing and walking.

Acknowledgements

We thank the department of biology, Addis Ababa University for logistic and financial support and Oromiya Forest and Wildlife Agency, for allowing us to carry out the study in the Yabello Wildlife Sanctuary. Great thanks also go to indigenous people of the study area and the staff of the sanctuary for the support they offered during fieldwork.

References

Altmann, J., 1974. Observational study of behavior: sampling methods. Behav. 43, 227-269.
Agroteck-C, 1974. Southern range lands livestock development in imperial Ethiopian government. Project 3, 1-3.
Bauer, I.E., McMorro, J., Yalden, D.W., 1994. The historic ranges of three equid species in North-East Africa quantitative comparison of environmental tolerances. J. Biogeogr. 21, 169-182.
Beekman, J.H., Prins, H.H.T., 1989. Feeding strategies of sedentary large herbivores in East Africa, with emphasis on the African buffalo, Syncera caffer. Afr. J. Ecol. 27, 129-147.
Bille, J.C., Esfete, A., Corra, M., 1983. Ecology and ecosystems of the Borana deep wells area. JEPSS Res. Rep No. 13. ILCA (International Livestock Center for Africa), Addis Ababa.
Borghesio, L., Giannetti, F., Ndang’ang’a K., Shimelis, A., 2004. The present conservation status of Juniperus woodland in the South Ethiopian Endemic Bird Areas. Afr. J. Ecol. 42, 137-143.
Borghesio L., Giannetti, F., 2005. Habitat degradation threatens the survival of the Ethiopian bush crow Zavattariornis stresemanni. Oryx 39, 44-49.
Coppock, D.L., 1993. Vegetation and pastoral dynamics in the southern Ethiopian rangelands: Implications for theory and management. In: Range Ecology at Disequilibrium, New Models of Natural Variability and Pastoral Adaptation in African Savannas, Pp.42-61. (Behnke, R.H., Scoones, I., Kerven, C. eds). Overseas Development Institute and International Institute for Environment and Development, London.
Coppock, D.L., 1994. The Borana Plateau of Southern Ethiopia: Synthesis of Pastoral Research. Development and Change, 1980-1991. ILCA (International Livestock Center for Africa), Addis Ababa.
Crowell-Davis SL., Houpt, K.A., Carneval, J., 1985. Feeding and drinking behaviour of mares and foals with free access to pasture and water. J. Anim. Sc. 60(4), 883-889.

Degu, T. L., 2007. Grevy’s zebra (Equus grevyi, Oustalet, 1882) Challenges of Survival in the Pastoralist Dominated Arid Ecosystems of Chew Bahir and Sarite, Southern Ethiopia. M.Sc Thesis, Addis Ababa University, Addis Ababa.

Delany, M.J., Happold, D.C.D., 1979. Ecology of African Mammals. Longman, New York.

Duncan, P., 1980. Time-budgets of Camargue horses. II. Time-budgets of adult horses and weaned sub-adults. Behav. 72, 26–49.

Estes, R.D., 1991. The behavior guide to African mammals, including hoofed mammals, carnivores, primates. University of California Press, Berkeley.

Folwer, M., Miller, R.E., 2013. Zoo and wild Animal Medicine, St Louis, USA, Saunders.

Gakahu, C., 1984. Feeding Ecology of Plains Zebra in Amboseli National Park. University of Nairobi Press, Nairobi.

Grogan, P., 1978. Feeding Ecology of Plains Zebra in the Serengeti. M.Sc. Thesis, Texas A and M University, Texas.

Hack, M.A., Rubenstein, D.I., 1998. Zebra zones. Nat. Hist. 107, 26-30.

Houpt, K.A., O’connell, M.A., Houpt, T.A., Carbonaro, D.A., 1986. Night-time behaviour of stabled and pastured peri-parturient ponies. Appl. Anim. Behav. Sci. 15, 103-111.

Jarman, M.V., Jarman, P.J., 1973. Daily activity of impala. E. Afr. Wildl. J. 11, 75-92.

Joubert, E., 1972. Activity patterns shown by Hartmann Zebra (Equus zebra hartmannae) in South West Africa with reference to climatic factors. Madoqua. Ser. 5, 33-52.

Kamler, J.P., Jedrzejewska, B., and Jedrzejewska, W., 2007. Activity patterns of red deer in Bialowieza National Park. J. Mamm. 88, 508-514.

Kivai, S. M., 2006. Feeding ecology and diurnal activity pattern of the Grevy’s zebra (Equus grevyi, Oustalet, 1882) in Samburu Community Lands, Kenya. MSc Thesis, Addis Ababa University, Addis Ababa.

Leuthold, W., 1977. African ungulates. Springer-Verlag, New York.

Leuthold, B. M., and Leuthold, W., 1978. Day time activity patterns of gerenuk and giraffe in Tsavo National Park, Uganda. E. Afr. Wildl. J. 16, 231-243.

Maher, C.R., 1991. Activity budgets and mating system of male pronghorn antelope at Sheldon National Wildlife Refuge, Nevada. J. Mammal. 72, 739–744.

Martin P., Bateson, P., 1993. Measuring Behavior: An Introductory Guide, 2nd edn. Cambridge University Press, Cambridge.

Moehlman, P. D., 2003. Grizmek’s Animal Life Encyclopedia. Mammals IV. Detroit, the Gale Group, Inc. 15.

Moncorps, S., Bousses, P., Re´ale, D., Chapuis, J. L., 1997. Diurnal time budget of the mouflon (Ovis musimon) on the Kerguelen archipelago: influence of food resources, age, and sex. Can. J. Zool. 75, 1828–1834.

NMAE, 2009. Annual Rainfall and temperature of Yabello Town during 2000–2009. National meteorological Agency of Ethiopia, Addis Ababa.

Neuhaus, P., Ruckstuhl, K.E., 2002. The link between sexual dimorphism, activity budgets, and group cohesion: the case of the plains zebra (Equus burchelli). Can. J. Zool. 80, 1437–1441.

Norton, P. M., 1981. Activity patterns of klipspringers in two areas of the Cape Province. S. Afr. J. Wildl. Res. 11, 126-134.

Owen-Smith, N., 1982. Factors Influencing the Consumption of Plant Products by Herbivores. Springer-Verlag, Berlin.

Pratt, R. M., Putman, R. J., Ekins, J. R., Edwards, P. J., 1986. Use of habitat by free-ranging cattle and ponies in the New Forest, Southern England. J. Appl. Ecol. 23(2), 539-557.

Reta, R., Solomon, Y., 2013. Distribution, abundance and population status of Burchell’s zebra (Equus quagga) in Yabello Wildlife Sanctuary, Southern Ethiopia. J. Ecol. Nat. Environ. 5(3), 40-49.

Rubenstein, D. I., 1993. Science and pursuit of a sustainable world. Ecol. Appl. 3, 585-587.

Rubenstein, D., Kirathe, J., Oguge, N., 2004. Competitive Relationship between Grevy’s
and Plains zebras. Samburu CRI Annual report 2004. Earth watch Institute, Nairobi.

Sandra, B., 2009. Diurnal behaviour of mother-young pairs of Plains zebras (Equus burchelli) in Maasai Mara National Reserve, Kenya. Swedish University of Agricultural Sciences Student report 281. Department of Animal Environment and Health. Ethology and Animal Welfare programme. ISSN 1652-280X.

Schaller, G.B., 1998. Wildlife of the Tibetan Steppe. University of Chicago Press, Chicago.

Shi, J.B., Dunber, R.I.M., Buckland, D., Miller, D., 2003. Daytime activity budgets of feral goats (Capra hircus) on the Isle of Rum: influence of season, age, and sex. Can. J. Zool. 81, 803–815.

Sweeting, M.P., Houpt, C.E., Houpt, K.A., 1984. Social facilitation of feeding and time budgets in stable ponies. J. Anim. Sci. 60, 369-374.

Wobeser, G.A., 2006. Essentials of Disease in Wild Animals. Blackwell Publishing, Oxford, UK.