The Association of PRKRAP1 Pseudogene with Acute Lymphoblastic Leukemia Risk

Yavuz C1, Oguz FS1*, Cınar CK1, Ciftci HS1, Kivanc D2, Karakas Z3, Dorak MT2

1Istanbul University, Istanbul Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey
2Kingston University, School of Life Sciences, Pharmacy and Chemistry, London, UK
3Istanbul University, Istanbul Faculty of Medicine, Department of Hematology and Oncology, Division of Pediatrics, Istanbul, Turkey

*Correspondence should be addressed to Fatma Savran Oguz; oguzsf@gmail.com, oguzsf@istanbul.edu.tr

Received date: March 16, 2021, Accepted date: April 14, 2021

Copyright: © 2021 Yavuz C, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Objective: Acute Lymphoblastic Leukemia (ALL) consists of excessive proliferation of lymphoblasts. The frequency of Human Leukocyte Antigen (HLA)-DR53 (DRB4) homozygosity and allele was found to be higher in male childhood ALL cases. The aim of this study was to identify the HLA-DR53 allele frequency; interferon-inducing double chain ribonucleic acid binding protein kinase A pseudogene 1 (PRKRAP1) positivity; rs2395185 allele and genotype frequencies in ALL patients.

Materials and Methods: Sixty ALL patients and 40 healthy controls were studied. HLA’s were analyzed using the PCR-SSP. The PRKRAP1 positivity have been identified by PCR and rs2395185 genotypes were determined by TaqMan assay using real-time PCR.

Results: PRKRAP1 positivity was shown to be specific to HLA-DRB4 haplotype in the whole group. We observed that HLA-DRB1*04, DRB1*07 alleles were higher in male patients (43.5%, 25.0%) compared with female patients (25.0%, 21.4%). The prevalence of rs2395185 T allele, HLA-DRB4 allele and HLA-DRB4 homozygous in childhood ALL patients were significantly higher in males compared with the females (p:0.044, p:0.007, p:0.045, respectively).

Conclusion: The molecular mechanism of PRKRAP1 pseudogenesis, which we have confirmed to be specific for HLA-DRB4 (DR53) haplotypes, in a newly identified specific transcription map can be investigated and its relationship with ALL can be determined.

Keywords: Acute lymphoblastic leukemia, HLA-DR53, HLA-DRB4, PRKRAP1, Genetic polymorphism, Genotype frequencies, Pseudogenesis

Introduction and Aim

Acute lymphoblastic leukemia (ALL) is the deterioration of the maturation period of lymphoblasts, and the uncontrolled excessive reproduction of the abnormal cells. In addition to gene rearrangements, chromosome number abnormalities (Down syndrome, etc.), and genetic locations, being male, Caucasian ethnicity, having a sibling diagnosed with leukemia, exposure to radiation, having received chemotherapy or radiotherapy, and exposure to some toxins and chemical substances such as benzene may be counted as the ALL risk factors.

The Human Leukocyte Antigen (HLA) genes that were shown to be associated with various immune diseases are localised on the short arm (6p21) of the chromosome 6. The individuals carrying the HLA-DRB1*04, HLA-DRB1*07 or HLA-DRB1*09 alleles which are encoded by the HLA Class II genes in this gene group also carry the HLA-DRB4 (HLA-DR53) haplotype [1]. The frequency of HLA-DRB4, and HLA-DRB4*01 homozygous was found to be higher specific to boys in childhood ALL in other studies associated with the HLA-DR haplotypes [2,3].

rs2395185 is located in the intergenic region of the HLA-DR sub-region (between the HLA-DRA and -DQA1 genes). Thymine (T) allele variant is the indicator of HLA-DRB4 haplotype [1]. rs2395185 was found to be protective...
against Hodgkin’s lymphoma; and a risk factor for ALL, lung cancer, rheumatoid arthritis, and asthma in previous studies [4-8].

HLA-DRB4 haplotypes are rich for pseudogenes whose biologic roles have not yet been completely understood. Pseudogenes were found located in HLA-DRB4 region, located between HLA-DRA and HLA-DQA1 [9]. PRKRA (Protein Kinase, Interferon Inducible Double Stranded Ribonucleic Acid Dependent Activator; PRKRA) gene is located in this region, and was suggested to be a pseudogene owing to not including an exon [10]. The pseudogenes specific to HLA-DRB4 family was suggested to be able to transcribe after demonstrating that the pseudogenes in HLA-DRB4 region had a 70% transcription rate [9-11].

The aim of the present study was to identify the HLA-DRB4 frequency in ALL patients, and to compare the PRKRA positivity and rs2395185 variant allele (thymine) positivity with the HLA-DRB4 allele frequency.

Material and Method

Patient, and control group

Sixty ALL patients below 18 years whose HLA typing were studied for hemopoietic stem cell transplant, and 40 healthy individuals over 18 years with no consanguineous relationship with one another between 2008 and 2015 were included in the study. 46 were male (76.7%), and the age interval was between 1-17 years (7.93 ± 4.8 years), and 14 were female (23.3%), and the age interval was between 1-17 years (7.93 ± 4.8 years) in the patient group. 19 were male (47.5%), and the age interval was between 21-41 years (29.11 ± 5.1 years), and 21 were female (52.5%), and the age interval was between 21-41 years (28.95 ± 5.5 years) in the control group.

DNA isolation

DNA isolations were performed using the salting out method after peripheral blood samples were drawn from patients and healthy individuals into 7 mL EDTA tubes. The samples were stored at -20°C before use.

HLA Typing

The HLA typings (HLA-DRB1/3/4/5 loci) of the patients and healthy individuals included in the study were performed at low resolution level using the polymerase chain reaction- Sequence Specific Primer (PCR-SSP) (Olerup) method.

PRKRAP1 presence/absence determination

The DNA products obtained by PCR using the primers specific to internal control sequence (TAPA) together with PRKRAP1 gene were screened under ultraviolet light using the 1.5% agarose gel electrophoresis.

The her6l (5'-TGGTTCATTACAGGAATTTGG-3'), and her3r(5'CAAAGAAGAGCCTAAGGACC-3') oligonucleotides specific to PRKRAP1 gene were synthesized [10,12]. We aimed to reproduce the region of 1.2 kb at chromosome 6 using the PCR with the use of the her6l and her3r main primers. The 5'-TCATGCCCCCTCCCAACC-3' and 3'-CCCACCTCTCTACCCCGTG-5' primers of TAPA were also purchased as the internal control primer together with the main primers.

rs2395185 typing

10 µl precision®FAST2X Q-PCR master mix, 1 µl rs2395185 primer/TaqMan probe mix, and 4 µl RNase/DNase free water were used for the real time PCR genotyping reaction mix component content. 15 µL was added to the 0.1 mL PCR reaction tubes from the Q-PCR experiment plate well, and the final volume in all wells were completed to 20 µL with the inclusion of 5 µL DNA sample with a DNA concentration of 0.2-2ng/µL (1-10ng in total). The fluorescent readable Rotor Gene Q (Qiagen) was used as the real time PCR device using the VIC and ROX channels. The amplification protocol was arranged as the enzyme activation for 2 min at 95°C; 10 cycle lasting 10 seconds denaturation at 95°C, elongation for 60 seconds at 60°C, and 50 cycles of 10 seconds denaturation at 95°C, and elongation (data collection) for 60 seconds at 68°C.

Statistical methods

The statistical analysis of the obtained data were performed using the Statistical Package for the Social Sciences (SPSS 21.0) software program. Descriptive analyses, and descriptive statistical methods were used. The Chi-square test was used for identifying the statistical significance of the differences between the counts in groups. The Student’s t test was used in the numerical comparisons between two groups with normal distribution, and Mann-Whitney test was used in the comparison of two groups with nonnormal distribution. Kruskal-Wallis test was used in the numerical comparisons in non-normal distribution data, and in the comparison of multiple groups.

Results

No statistical difference was detected between the patient and control groups for HLA-DRB1 alleles (p>0.05). DRB1*04, DBA1*07, and DRB1*11 alleles were the most frequently detected alleles in both groups. HLA-DRB1*13 allele was found statistically significantly higher in female patients (p=0.007) (Table 1).

DRB4 (DR53) positivity had no statistically significant difference between the patient (83.3%, n=50), and control.
Yavuz C, Oguz FS, Cınar CK, Ciftci HS, Kivanc D, Karakas Z, et al. The Association of Prkrap1 Pseudogene with Acute Lymphoblastic Leukemia Risk. J Clin Haematol. 2021; 2(1): 18-23.

Groups (72.5%, n=29), however, DRB4 positivity was significantly higher in male patients (p=0.044) (Table 2). Particularly the DRB4 (DR53) homozygosity was statistically higher in male patients (37%, n=17) compared with female patients (7.1% n=1) (p=0.045). There was no statistically significant difference in DRB4 homozygosity rates between the male and female individuals in the control group (p>0.05).

PRKRAP1 pseudogene positivity in the whole sample was specific to HLA-DRB4 haplotype. All samples positive for PRKRAP1 (n=79) were also positive for DRB4. PRKRAP1 gene positivity was detected in only DR53 haplotype carrier individuals in both patient, and control groups, however the gene positivity was not detected in individuals with no DR53 haplotype carrier. PRKRAP1 gene positivity was detected higher in male patients compared with female patients (p=0.044), and no significance was detected between sexes in the control group (p>0.05) (Table 2).

Variant rs2395185 homozygosity (TT) was detected in HLA-DR53 homozygous (n_patient=28, n_control=22) and heterozygous (n_patient=22, n_control=7) samples, however wild-type rs2395185 homozygous (GG) was detected in samples which involved no HLA-DR53 in the study (n_patient=10, n_control=11). Wild/variant type rs2395185 heterozygous (GT) was detected in HLA-DR53/51, and HLA-DR53/52 heterozygous samples. rs2395185 GT genotype was found significantly higher in the patient group compared with the control group (p=0.045) (Table 3). T allele was found significant in male patients compared with the female patients (p=0.044) (Table 2).

HLA-DR	ALL Male Patients	ALL Female Patients	Control Group
	n=46 Frequency	n=14 Frequency	n=40 Frequency
DRB1*01	0 (0.0%)	0 (0.0%)	1 (1.3%)
DRB1*03	4 (4.3%)	0 (0.0%)	1 (1.3%)
DRB1*04	40 (43.5%)	7 (25.0%)	38 (47.5%)
DRB1*07	23 (25.0%)	6 (21.4%)	12 (15.0%)

Table 1: Distribution of HLA-DRB1 alleles.

Patients (n=60)	DR53 (+)	DR53 (-)	PRKRA (+)	PRKRA (-)	rs2395185 T allele (+)	rs2395185 T allele (-)	P
n %	n %	n %	n %	n %	n %	n %	
Male (n=46)	41 89.1	5 10.9	41 89.1	5 10.9	41 89.1	5 89.1	0.044
Female (n=14)	9 64.3	5 35.7	9 64.3	5 35.7	9 64.3	5 64.3	

Table 2: Presence/absence of DR53, PRKRA and rs2395185 T allele in patients.
Discussion

HLA Class II genes are the highly polymorphic gene regions [13,14]. The HLA alleles encoded by HLA genes may function as protective or as a risk factor in immune diseases.

HLA-DRB1*04 allele was detected to be specifically higher in childhood ALL [3]. HLA-DRB3 haplotype (especially HLA-DRB1*12 and HLA-DRB1*13 alleles) was less frequently detected in patients. HLA-DRB3 homozygosity was detected to be a protective factor in childhood ALL [2]. In the present study, HLA-DRB1*04 allele frequency showed no significant difference in the patient group compared with the control group, and in males compared with females in the study.

Relationships between HLA class II alleles and childhood leukemia have been reported in a number of studies. Malcolm Taylor et al. It has been reported that this association may be due to an imbalance of HLA allele-restricted peptide binding and T cell activation in the pathogenesis of childhood leukemia, or its binding to an MHC-dependent “leukemia gene” [15]. HLA-DRB1*07, a member of the DRB4 haplotypic group, is associated with childhood ALL and Burkitt’s lymphoma [16]. Some studies in literature reported that in four different populations, germ-cell testis tumors have shown associations with HLA-DRB1*07 [17-19] or *04 [20] both of which belong to the HLA-DRB4 family. Dorak et al. reported that a striking feature of the DRB4 haplotypic relationship in childhood ALL is strong male specificity [3]. And also in some studies in the literature, a similar gender effect has been reported in different genes such as NQO1*2 and del GSTT for children with ALL [21].

The HLA-DRB4 frequency was found significantly higher in male patients compared with the female patients in our study. HLA-DRB4 homozygous was found significantly higher in male patients compared with the female patients. Our study supports the studies which showed that HLA-DRB4 homozygosity was a risk factor for childhood ALL in males.

The HLA-DRB4 carrying haplotypes were found to have uncharacterised additional DNA of 160kb in the comparison with the HLA-DRB3 carrying haplotypes in the major histocompatibility complex gene maps [13,22,23]. Newly described pseudogenes whose biologic roles has yet not been completely discovered were detected located on the HLA-DRB4 region between HLA-DRA, and HLA-DQA1 [9]. PRKRAP1 was accepted as a pseudogene as not having an exon sequence, and was suggested to be a residual inactive gene in the HLA Class II region [10,12]. Pseudogenes were suggested to be nonfunctional old gene residues, however the transcription map studies showed that pseudogenes had a high rates of transcription as 70% in the PGF cell line of the HLA-DRB5 family. The results obtained from this study suggested that the pseudogenes specific to HLA-DRB4 family may also be transcribed [9,11]. The active copy of the PRKRA gene is localised on chromosome 2 (2q31.2).

It was observed in individuals who carry the homozygotic or heterozygotic HLA-DRB1*04, HLA-DRB1*07 and HLA-DRB1*09 alleles of PRKRAP1 pseudogene bant in both patients and control groups or in individuals who carry these alleles with the heterozygotic other HLA-DRB1 alleles in our study. The absence of band in individuals having no HLA-DR53 haplotype showed that PRKRAP1 pseudogene was carried specific to HLA-DR53, and specific to HLA-DRB1*04, HLA-DRB1*07, and HLA-DRB1*09 alleles.

Data from DbSNP for rs2395185 located in the region of HLA-DRA (chr6: 32433167) shows alternative versions of alleles in the FWD (plus) helix, G / T. 29% of people have the variant allele T. Studies have determined that rs2395185, which is positively and negatively associated with many diseases, is a strong risk factor specific to men only as an HLA-DRB4 marker in childhood ALL [5,24]. We found rs2395185 variant homozygous (TT) in HLA-DRB4 homozygous or HLA-DRB4 heterozygous samples which jointly carried the alleles HLA-DRB1*04, HLA-DRB1*07, HLA-DRB1*09. rs2395185 variant/wild type heterozygosity (TG) was detected in samples carrying one of the alleles of HLA-DRB1*04, HLA-DRB1*07, and HLA-DRB1*09. rs2395185 wild type homozygosity (GG) was found in all samples which carried no HLA-DR53 haplotypes. Our study was not designed to re-examine the previously reported HLA-DRB4/rs2385185 association in childhood ALL, but similar results were obtained in our small sample.

SNP rs2395185	Patients (n=60)	Controls (n=40)	p
Variant homozygous (TT)	28 46.7	22 55	0.540
Variant/wild type heterozygous (TG)	22 36.7	7 17.5	0.045
Wild Type homozygous (GG)	10 16.6	11 27.5	0.217

Table 3: Comparison of rs2395185 genotypes between patients and controls.
We anticipate that the additional DNA of 160 kb in HLA-DRB4 haplotypes whose characterisation has yet not been performed might have a role in the basis of the association of ALL that is associated with HLA-DRB4. We suggest that the complete sequencing of HLA-DRB4 haplotypes, and mapping of the pseudogene-specific transcription of the region in future studies may provide an insight into the possible molecular mechanism of HLA-DRB4 association with ALL.

In several studies, it is shown that PRKRA (interferon-inducible double-stranded RNA-dependent protein kinase activator A) is a protective protein which regulates the adaptation of cells to ER stress and virus-stimulated signaling pathways by activating PKR. There is a hypothetical notion that PKRA and HLA-DRB4 alleles will contribute to the pathogenesis of virally derived ALL [25-27].

Conclusion

HLA-DRB4 allele, and HLA-DRB4 homozygosity was found significantly higher in childhood ALL patients in males, and PRKRAP1 pseudogene presence showed a strong correlation with HLA-DRB4 haplotypes.

Ethics Committee Approval

This study was approved by the ethics committee of the Istanbul University Faculty of Medicine (Ethics no: 2016/347-11/03/2016/05).

Conflict of Interest Statement

The authors of this paper have no conflicts of interest.

Author Contributions

All authors contributed to the study conception and design. Material preparation data collection and analysis were performed by Çağla Yavuz, Hayriye Senturk Ciftci, and Demet Kivanc. Lab work was performed by Çağla Yavuz, Literature search was performed by Çağla Yavuz. The first draft of the manuscript was written by Çağla Yavuz, Fatma Savran Oguz, and Cigdem Cinar Kekik. Critically reviewed and edited by Fatma Savran Oguz, Zeynep Karakas, M. Tevfik Dorak, Cigdem Cinar Kekik, and Hayriye Senturk Ciftci. All authors read and approved the final manuscript.

Acknowledgement

This study was supported by Istanbul University Scientific Research Projects Unit (2017) Project No: 23378.

References

1. Kennedy AE, Singh SK, Dorak MT. Re: Genome-Wide Association Study of Classical Hodgkin Lymphoma and Epstein–Barr Virus Status—Defined Subgroups. Journal of the National Cancer Institute. 2012 Jun;104(11):884-5.

2. Dorak MT, Oguz FS, Yalman N, Diler AS, Kalayoglu S, Anak S, et al. A male-specific increase in the HLA-DRB4 (DR53) frequency in high-risk and relapsed childhood ALL. Leukemia Research. 2002 Jul;1(1):651-6.

3. Dorak MT, Lawson T, Machulla HK, Darke C, Mills KI, Burnett AK. Unravelling an HLA-DR association in childhood acute lymphoblastic leukemia. Blood, The Journal of the American Society of Hematology. 1999 Jul;15(94)(2):694-700.

4. Silverberg MS, Cho JH, Rioux JD, McGovern DP, Wu J, Annese V, et al. Ulcerative colitis—risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study. Nature Genetics. 2009 Feb;41(2):216-20.

5. Kennedy AE, Kamdar KY, Lupo PJ, Okcu MF, Scheurer ME, Dorak MT. Genetic markers in a multi-ethnic sample for childhood acute lymphoblastic leukemia risk. Leukemia & Lymphoma. 2015 Jan;56(1):169-74.

6. Lan Q, Hsiung CA, Matsuo K, Hong YC, Seow A, Wang Z, et al. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia. Nature Genetics. 2012 Dec;44(12):1330-5.

7. Li X, Ampileford EJ, Howard TD, Moore WC, Torgerson DG, Li H, et al. Genome-wide association studies of asthma indicate opposite immunopathogenesis direction from autoimmune diseases. Journal of Allergy and Clinical Immunology. 2012 Oct;130(4):861-8.

8. Urayama KY, Jarrett RF, Hjalgrim H, Diepstra A, Kamatani Y, Chabrier A, et al. Genome-wide association study of classical Hodgkin lymphoma and Epstein–Barr virus status—defined subgroups. Journal of the National Cancer Institute. 2012 Feb;8;104(3):240-53.

9. Dorak MT. HLA-DR53 fact file. Accessed 14.07.2013. HLA-DR53 Fact File [M.Tevfik DORAK]-M.Tevfik DORAK Website: http://www.dorak.info/hla-hla-dr53.html

10. Chida S, Hohjoh H, Tokunaga K. Molecular analyses of the possible RNA-binding protein gene located in the human leukocyte antigen (HLA)—DR subregion. Gene. 1999 Nov;15;240(1):125-32.

11. Vandiedonck C, Taylor MS, Lockstone HE, Plant K, Taylor JM, Durrant C, et al. Pervasive haplotypic variation in the spliceo-transcriptome of the human major histocompatibility complex. Genome Research. 2011 Jul
Yavuz C, Oguz FS, Cınar CK, Ciftci HS, Kivanc D, Karakas Z, et al. The Association of Prkrap1 Pseudogene with Acute Lymphoblastic Leukemia Risk. J Clin Haematol. 2021; 2(1): 18-23.

12. Chida S, Hohjoh H, Hirai M, Tokunaga K. Haplotype-specific sequence encoding the protein kinase, interferon-inducible double-stranded RNA-dependent activator in the human leukocyte antigen class II region. Immunogenetics. 2001 Jan;52(3):186-94.

13. Kendall E, Todd JA, Campbell RD. Molecular analysis of the MHC class II region in DR4, DR7, and DR9 haplotypes. Immunogenetics. 1991 Nov;34(6):349-57.

14. Dunham I, Sargent CA, Dawkins RL, Campbell RD. An analysis of variation in the long-range genomic organization of the human major histocompatibility complex class II region by pulsed-field gel electrophoresis. Genomics. 1989 Nov 1;5(4):787-96.

15. Taylor M, Hussain A, Urayama K, Chokkalingam A, Thompson P, Trachtenberg E, et al. The human major histocompatibility complex and childhood leukemia: an etiological hypothesis based on molecular mimicry. Blood Cells, Molecules, and Diseases. 2009 Mar 1;42(2):129-35.

16. Jones EH, Biggar RJ, Nkrumah FK, Lawler SD. Study of the HLA system in Burkitt’s lymphoma. Human Immunology. 1980 Oct 1;1(3):207-10.

17. Dewolf WC, Einarson ME, Yunis EJ, Lange PH. HLA and testicular cancer. Nature. 1979 Jan;277(5693):216-7.

18. Oliver RT, Stephenson C, Parkinson MC, Forman D, Atkinson A, Bodmer J, et al. Germ cell tumours of the testicle: A model for MHC influence on human malignancy. Lancet. 1986; 28;1(8496):1506.

19. Aiginger P, Kuzmits R, Kratzig C, Schwarz HP, Zielinski CC, Kühlböck J, et al. HLA antigens and germ-cell tumours. Lancet (London, England). 1987 Jan 1;1(8527):276-7.

20. Ozdemir E, Kakehi Y, Mishina M, Ogawa O, Okada Y, Ozdemir D, et al. High-resolution HLA-DRB1 and DQB1 genotyping in Japanese patients with testicular germ cell carcinoma. British Journal of Cancer. 1997 Nov;76(10):1348-52.

21. Bolufer P, Collado M, Barragan E, Cervera J, Calasanz MJ, Comoler D, et al. The potential effect of gender in combination with common genetic polymorphisms of drug-metabolizing enzymes on the risk of developing acute leukemia. Haematologica. 2007 Mar 1;92(3):308-14.

22. MHC Sequencing Consortium. Complete sequence and gene map of a human major histocompatibility complex. Nature. 1999 Oct;401(6756):921-3.

23. Campbell RD, Trowsdale J. Map of the human MHC. Immunology Today. 1993 Jul 1;14(7):349-52.

24. Kennedy AE, Singh SK, Scheurer ME, Okcu MF, Dorak MT. 146-P: Association of HLA-linked lymphoma risk markers with childhood lymphoblastic leukemia. Human Immunology. 2012; 73: 49-167.

25. Huang K, Qi G, Sun Z, Liu X, Xu X, Wang H, et al. Ctenopharyngodon idella IRF2 and ATF4 down-regulate the transcriptional level of PRKRA. Fish & Shellfish Immunology. 2017 May 1;64:155-64.

26. Lee ES, Yoon CH, Kim YS, Bae YS. The double-strand RNA-dependent protein kinase PKR plays a significant role in a sustained ER stress-induced apoptosis. FEBS Letters. 2007 Sep 4;581(22):4325-32.

27. Tseng YY, Liao GR, Sen GC, Lin FY, Hsu WL. Regulation of PACT-mediated protein kinase activation by the Ov20. o protein of Orf virus. Journal of Virology. 2015 Nov 15;89(22):11619-29.