Hamilton cycles
in line graphs of 3-hypergraphs

Tomáš Kaiser\(^1\) \hspace{1cm} Petr Vrána\(^1\)

Abstract
We prove that every 52-connected line graph of a rank 3 hypergraph is Hamiltonian. This is the first result of this type for hypergraphs of bounded rank other than ordinary graphs.

1 Introduction

We refer the reader to Section 2 for any definitions not included in this introduction.

It is easy to see that there are graphs of arbitrarily high vertex-connectivity that do not admit a Hamilton cycle. On the other hand, in some classes of graphs, sufficient connectivity implies Hamiltonicity. One example is the class of planar graphs (4-connected planar graphs are Hamiltonian by a classic result of Tutte [17]). For claw-free graphs, a conjecture of Matthews and Sumner [13] states that vertex-connectivity greater than or equal to 4 is sufficient as well.

Conjecture 1.1. Every 4-connected claw-free graph is Hamiltonian.

Conjecture 1.1 is open, with the following being currently the best general result of this form.

Theorem 1.2 ([10]). All 6-connected claw-free graphs are Hamiltonian.

If we restrict Conjecture 1.1 to line graphs (which form a subclass of the class of claw-free graphs), we obtain the following conjecture of Thomassen [16]. (See also [3] for an extensive account of problems related to Conjectures 1.1 and 1.3.)

\(^1\)Department of Mathematics and European Centre of Excellence NTIS (New Technologies for the Information Society), University of West Bohemia, Pilsen, Czech Republic. E-mail: \{kaisert,vranap\}@kma.zcu.cz. Supported by project GA20-09525S of the Czech Science Foundation.
Conjecture 1.3. Every 4-connected line graph is Hamiltonian.

Ryjáček [14] proved that Conjectures 1.1 and 1.3 are in fact equivalent. He introduced a closure technique which shows that for any positive integer \(k \), all \(k \)-connected claw-free graphs are Hamiltonian if and only if all \(k \)-connected line graphs are.

It is natural to ask if an analogue of Theorem 1.2 could be proved for \(K_{1,r+1} \)-free graphs, where \(r \geq 3 \). This is not known, although the question has been around for quite some time. Jackson and Wormald [9, p. 142] asked whether every \((r + 1)\)-connected \(K_{1,r+1} \)-free graph is Hamiltonian, where \(r \geq 3 \). Chen and Schelp [4] noted that a conjecture of Chvátal [5] would imply that every \(2r \)-connected \(K_{1,r+1} \)-free graph is Hamiltonian; however, this particular conjecture of Chvátal (‘every 2-tough graph is Hamiltonian’) has since been disproved [1].

A positive result on a weaker version of the problem for \(r = 3 \) is established in [15]: 6-connected \(K_{1,4} \)-free graphs which, in addition, contain no induced copy of \(K_{1,4} + e \) (the simple graph with degree sequence 1, 1, 2, 2, 4), are Hamiltonian.

By analogy with claw-free graphs, one might guess that the problem of Hamiltonicity of \(K_{1,r+1} \)-free graphs could be reduced to the special case of line graphs of hypergraphs of rank \(r \). This may be so, but no extension of Ryjáček’s technique that would accomplish this task is known. Still, line graphs of hypergraphs of rank \(r \) are a natural starting point for an investigation of \(K_{1,r+1} \)-free graphs.

Even for this class of graphs, no analogue of Theorem 1.2 is known. The following conjecture has recently been proposed in [7]:

Conjecture 1.4. For any \(r \geq 2 \), there is an integer \(\phi(r) \) such that every \(\phi(r) \)-connected line graph of a rank \(r \) hypergraph is Hamiltonian.

A stronger form of the conjecture in [7] includes the statement that \(\phi(r) = 2r \) works.

Li et al. [12] recently found a close relation between line graphs of rank 3 hypergraphs and Conjecture 1.3. They showed the latter conjecture to be equivalent to the statement that every 4-connected line graph of a rank 3 hypergraph is Hamilton-connected (that is, for any two vertices \(u, v \), it has a Hamilton path joining \(u \) to \(v \)).

In this note, we establish Conjecture 1.4 in the first open case, \(r = 3 \). We use a result of DeVos et al. [6] on disjoint \(T \)-connectors as our main tool.

Theorem 1.5. If \(G \) is the line graph of a rank 3 hypergraph and \(G \) is 52-connected, then \(G \) is Hamiltonian.
The method easily extends to Hamilton-connectedness, at the price of a slight increase in the constant (from 52 to 54). To keep our notation and terminology simpler, we prove Theorem 1.5 just for Hamiltonicity.

2 Preliminaries

Our terminology mostly follows Bondy and Murty [2]. Graphs may contain parallel edges but no loops.

Given a graph H, we say that a graph G is H-free if G contains no induced copy of H. Claw-free is used as a synonym for $K_{1,3}$-free.

A hypergraph consists of a vertex set V and a multiset E of hyperedges, each of which is a nonempty subset of V. The rank of a hypergraph \mathcal{H} is the maximum cardinality of a hyperedge of \mathcal{H}. A hypergraph of rank r is also referred to as an r-hypergraph.

The line graph $L(\mathcal{H})$ of a hypergraph $\mathcal{H} = (V, E)$ has E as its vertex set, with an edge linking e and f ($e, f \in E$) whenever e and f intersect. Observe that if \mathcal{H} has rank r, then $L(\mathcal{H})$ is $K_{1,r+1}$-free.

3 Tools

3.1 T-connectors

Let T be an arbitrary set of vertices of a graph G. We say that T is k-edge-connected in G if for any $s_1, s_2 \in T$, G contains k edge-disjoint paths from s_1 to s_2. By Menger’s Theorem, T is k-edge-connected if and only if G contains no edge-cut X such that $|X| < k$ and at least two components of $G - X$ contain vertices of T.

Let P be a path in G. Following [18], we define the operation of short-cutting P as deleting all edges of P and then adding an edge joining the end vertices of P. A path in G is a T-path if its end vertices belong to T and none of its other vertices are in T. A T-connector in G is the union of a family of edge-disjoint T-paths in G such that short-cutting them one by one, we obtain a graph whose induced subgraph on T is connected. Observe that all the vertices of a T-connector C whose degree in C is odd belong to T.

DeVos et al. [6, Theorem 1.6] proved the following result on edge-disjoint T-connectors (see also [11, 18]).

Theorem 3.1 ([6]). For $k \geq 1$, if $T \subseteq V(G)$ is $(6k + 6)$-edge-connected in G, then G contains k edge-disjoint T-connectors.
3.2 Hamiltonicity of line graphs of 3-hypergraphs

A well-known result of Harary and Nash-Williams [8] characterises graphs whose line graph is Hamiltonian. We use an extension of this result to 3-hypergraphs, given in [12]. (A more general extension, valid for all hypergraphs, was found in [7].)

Let \(H \) be a 3-hypergraph. The incidence graph \(IG(H) \) of \(H \) is the bipartite graph with vertex set \(V(H) \cup E(H) \) and edges of the form \((v,e)\), where \(v \in V(H) \), \(e \in E(H) \) and \(v \in e \). The vertices of \(IG(H) \) belonging to \(E(H) \) are called white, the other vertices are black. Note that each white vertex of \(IG(H) \) has degree 2 or 3.

A closed walk \(Q \) in a graph \(G \) is a sequence \(v_0, e_0, v_1, \ldots, e_{k-1}, v_k \), such that \(e_i \) is an edge of \(G \) with end vertices \(v_i \) and \(v_{i+1} \) \((0 \leq i \leq k-1)\) and \(v_k = v_0 \). Each of the vertices \(v_i \) is said to be visited by \(Q \) (as many times as it appears in \(Q \)); similarly, an edge \(e_i \) is said to be traversed by \(Q \) (again with possible multiplicity). A closed trail is a closed walk visiting each edge at most once.

Let \(v_i \) be a vertex visited once by the above walk. The predecessor edge of \(v_i \) is defined to be \(e_{i-1} \) (with subtraction modulo \(k \)). Similarly, the successor edge of \(v_i \) is \(e_i \) if \(i < k \), and \(e_0 \) otherwise.

Given an arbitrary set \(W \) of vertices of degree 2 or 3 in \(G \), a closed \(W \)-quasitrail in \(G \) is a closed walk which traverses each edge at most twice, and if an edge \(e \) is traversed twice, then it has an end vertex \(w \in W \) such that \(w \) is visited once and \(e \) is both the predecessor edge and the successor edge of \(w \). A closed \(W \)-quasitrail in \(G \) is dominating if it visits at least one vertex in every edge of \(G \).

We will use the following characterisation of 3-hypergraphs with Hamiltonian line graphs, which follows from [12, Corollary 7].

Theorem 3.2 ([12]). Let \(H \) be a 3-hypergraph and let \(W \) be the set of white vertices of its incidence graph \(IG(H) \). The line graph \(L(H) \) of \(H \) is Hamiltonian if and only if \(IG(H) \) contains a dominating closed \(W \)-quasitrail.

As remarked above, hypergraphs of arbitrary rank whose line graph is Hamiltonian were recently characterised in [7].

4 Proof of Theorem 1.5

Let \(L(H) \) be the line graph of a 3-hypergraph \(H \). Suppose that \(L(H) \) is 52-connected; in fact, it is enough if \(L(H) \) is 18-connected and its minimum

1This graph is denoted by \(Gr(H) \) in [12]. Since the same symbol is used in [13] with a slightly different meaning, we opt for the alternative \(IG(H) \).
degree is at least 52. We prove that $L(H)$ is Hamiltonian.

Consider the graph $IG(H)$ and recall that every vertex of H is a black vertex of $IG(H)$. Let us call such a vertex of $IG(H)$ heavy if its degree is at least 18. Since the minimum degree of $L(H)$ is at least $52 > 3 \cdot 17$, every hyperedge of H contains a heavy vertex. Therefore, every white vertex of $IG(H)$ is adjacent to a heavy vertex. Let T be the set of heavy vertices of $IG(H)$.

Lemma 4.1. The set T is 18-edge-connected in $IG(H)$.

Proof. For the sake of a contradiction, consider an edge-cut X in $IG(H)$ of size less than 18 that separates two vertices $s_1, s_2 \in T$. Each edge e of $IG(H)$ corresponds to a hyperedge e' of H; let $X' \subseteq E(H)$ be the set of the (fewer than 18) corresponding hyperedges for the edges in X. Removing the hyperedges in X', we separate s_1 from s_2 in H. We claim that X' is a vertex cut in $L(H)$; to prove this, we need to show that at least two components of $H - X'$ contain at least one hyperedge each.

But this is not hard. Since s_1 is heavy, it is incident with at least 18 hyperedges in H, and at most 17 of these hyperedges can be in X'. Thus, at least one hyperedge e_1 containing s_1 is a hyperedge of $H - X'$. Similarly, there is a hyperedge $e_2 \notin X'$ containing s_2. Then, in $L(H)$, e_1 and e_2 are two vertices separated by the vertex cut X' of size less than 18, so $L(H)$ is not 18-connected contrary to the assumption. \[\square\]

Lemma 4.2. The graph $IG(H)$ contains a closed trail visiting every vertex in T.

Proof. By Lemma 4.1 and Theorem 3.1, $IG(H)$ contains two edge-disjoint T-connectors, say A_1 and A_2. It is a standard observation that $A_1 \cup A_2$ contains a connected subgraph C with all degrees even such that C covers all vertices in T. To prove it, let B be the set of vertices of A_1 with odd degree in A_1. Then $|B|$ is even, and by the definition of T-connector, $B \subseteq T$. We partition B in pairs arbitrarily, and join each of the pairs by a path in A_2. The symmetric difference D of all these paths is a subgraph of A_2, and by a simple parity argument, the set of odd degree vertices of D is precisely B. Now $A_1 \cup D$ is the desired subgraph C. Since every vertex of $IG(H)$ has even degree in C and C is connected, there is a closed trail traversing precisely the edges in C. \[\square\]

Let R be a closed trail obtained from Lemma 4.2. We aim to use Theorem 3.2 to prove that R gives rise to a Hamilton cycle in $L(H)$. Let W be the set of white vertices of $IG(H)$. We now construct a closed dominating W-quasitrail from R.

5
Consider a white vertex \(w \) of \(IG(H) \) not visited by \(R \). The vertex \(w \) is adjacent to a heavy vertex \(v \), and every heavy vertex is traversed by \(R \). Let us insert in \(R \) a detour to \(w \) immediately following the visit to \(v \). That is, an occurrence of \(v \) in \(R \) will be changed to \(v, vw, w, wv, v \). Repeating this operation for each unvisited white vertex (choosing one heavy neighbour arbitrarily if there are more than one), we obtain a closed walk visiting each white vertex, and therefore dominating all edges of \(IG(H) \). In fact, the resulting walk is a closed dominating \(W \)-quasitrail, so Theorem 3.2 implies that \(L(H) \) is Hamiltonian. The proof is complete.

Acknowledgment

We thank two anonymous reviewers for their helpful comments.

References

[1] D. Bauer, H. J. Broersma and H. J. Veldman, Not every 2-tough graph is Hamiltonian, *Discrete Applied Mathematics* 99 (2000), 317–321.

[2] A. Bondy and U. S. R. Murty, *Graph Theory*, Springer, New York, 2008.

[3] H. J. Broersma, Z. Ryjáček and P. Vrána, How many conjectures can you stand? A survey, *Graphs and Combinatorics* 28 (2012), 57–75.

[4] G. Chen and R. H. Schelp, Hamiltonicity for \(K_{1,r} \)-free graphs, *Journal of Graph Theory* 20 (1995), 423–439.

[5] V. Chvátal, Tough graphs and hamiltonian circuits, *Discrete Mathematics* 5 (1973), 215–228.

[6] M. DeVos, J. McDonald and I. Pivotto, Packing Steiner trees, *Journal of Combinatorial Theory, Series B* 119 (2016), 178–213.

[7] X. Gu, H.-J. Lai and S. Song, On hamiltonian line graphs of hypergraphs, *Journal of Graph Theory* (2022), 1–15. https://doi.org/10.1002/jgt.22791

[8] F. Harary and C. St. J. A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs, *Canadian Mathematical Bulletin* 8 (1965), 701–709.

[9] B. Jackson and N. C. Wormald, \(k \)-walks of graphs, *Australasian Journal of Combinatorics* 2 (1990), 135–146.
[10] T. Kaiser and P. Vrána, Hamilton cycles in 5-connected line graphs, European Journal of Combinatorics 33 (2012), 924–947.

[11] L. C. Lau, An approximate max-Steiner-tree-packing min-Steiner-cut theorem, Combinatorica 27 (2007), 71–90.

[12] B. Li, K. Ozeki, Z. Ryjáček, P. Vrána: Thomassen’s conjecture for line graphs of 3-hypergraphs. Discrete Mathematics 343(6) (2020), 111838.

[13] M. M. Matthews and D. P. Sumner, Hamiltonian results in $K_{1,3}$-free graphs, Journal of Graph Theory 8 (1984), 139–146.

[14] Z. Ryjáček, On a closure concept in claw-free graphs, Journal of Combinatorial Theory Series B 70 (1997), 217–224.

[15] Z. Ryjáček, P. Vrána and S. Wang, Closure for $\{K_{1,4}, K_{1,4} + e\}$-free graphs Journal of Combinatorial Theory Series B 134 (2019), 239–263.

[16] C. Thomassen, Reflections on graph theory, Journal of Graph Theory 10 (1986), 309–324.

[17] W. T. Tutte, A theorem on planar graphs, Transactions of the American Mathematical Society 82 (1956), 99–116.

[18] D. B. West and H. Wu, Packing of Steiner trees and S-connectors in graphs, Journal of Combinatorial Theory, Series B 102 (2012), 186–205.