Bioremediation Options for Heavy Metal Pollution

Meena Kapahi,1,2 *Sarita Sachdeva*1

1 Department of Biotechnology, Manav Rachna International Institute of Research and Studies, Faridabad, India
2 Department of Chemistry, Manav Rachna University, Faridabad, India

Corresponding author:
Meena Kapahi
meenakapahi@mru.edu.in
Tel. 9810101328

Introduction

Heavy metal pollution is a serious concern due to hazardous impacts at even very small concentrations. Heavy metals are non-biodegradable, bioaccumulate in tissues and are biomagnified along with the trophic levels.1 Weathering of geological bedrock and volcanic eruptions can discharge heavy metals into the surrounding environment.2 The type of heavy metals released from the rock substratum depends on its composition and other factors such as the inherent chemistry of the bedrock/soil, climate, nature, and composition of the soil and other anthropogenic activities in the region.2,3 Subsequent releases and the entry of heavy metals into the food chain depends on their concentration and uptake by the local flora and fauna. Atmospheric deposition has also been reported to be one of the major causes of deposits in urban and sub-urban areas. Heavy metal sources can be categorized as shown in Figure 1.

Heavy metal pollution occurs directly from industries (tannery, electroplating, dyeing, mining), agricultural fields, sewage sludge, and waste treatment plants. Recent studies have established that the long-term use of untreated wastewater from industrial sources can adversely affect water quality, making it unfit for human consumption.2 Untreated industrial wastewater is often colored, frothy, and contains hazardous chemicals including heavy metals, toxic dyes, acids, alkalis, and other toxic chemicals.4 The resulting pollution leads to hazardous impacts on the health of occupants/residents and occupational health hazards for workers.5 The electroplating industry releases hazardous wastewater laden with heavy metals.6 Heavy metals such as chromium (Cr) and nickel (Ni) discharged in untreated effluents by electroplating plants have been reported to surpass permissible limits.6–10 Heavy metals like copper (Cu), Cr, iron (Fe), manganese (Mn), and zinc (Zn) are present in tannery wastewater.11 Various studies have analyzed the quality of industrial wastewater and groundwater supplies in terms of heavy metals compared with standards for discharge of environmental pollutants (Table 1).

Various reports have demonstrated that industrial wastewater contains heavy metals beyond permissible limits...
for drinking water or surface/irrigation water. Wastewater containing heavy metals (above permissible levels) is used to irrigate fields in various parts of India. Application of heavy metal-contaminated water in agricultural fields has led to their bioaccumulation in crops and associated food chains. Indirect heavy metal pollution results from contaminated surface or groundwater and rainwater. Rivers are one of the most important resources for fresh water and are severely affected by pollution sources. According to the report ‘Status of trace and toxic metals in Indian rivers’, out of 414 river water quality stations across various rivers in India, 57 stations have been found to contain two or more heavy metals beyond permissible limits. The situation demands immediate action and remediation of contaminated water.

Abbreviations
- As: arsenic
- Cd: cadmium
- Cr: chromium
- Cu: copper
- Fe: iron
- Hg: mercury
- Mn: manganese
- Ni: nickel
- Pb: lead
- Zn: zinc

Table 1 — Sources of Heavy Metal Contamination in Water

Element	Source of Heavy Metal	Reference	12	13	14	15	16	17	18	19	20	21	22
As	Textile mill effluent	x											
Cd	Electroplating												
	industry wastewater												
	sample												
Cr	Ganga river water												
	quality												
Cu	Ground water												
	quality												
Fe	Water supply												
Hg	Irrigation water												
Mn	Lake water												
Ni	Irrigation water												
Pb	Lake water												
Zn	Irrigation water												

x indicates the concentration of heavy metals found above permissible limits;

- * is the concentration of heavy metals found below permissible limits.

Bureau of Indian Standards for drinking water (BIS-10500-2012): Accepted value in mg/L (permissible limits in the absence of alternate source in mg/L) – As, 0.01 (0.05); Cd, 0.003 (no relaxation); Cu, 0.05 (1.5); Pb, 0.01 (no relaxation); Hg, 0.001 (no relaxation); Fe, 0.3 (no relaxation); Ni, 0.02 (no relaxation); Cr, 0.05 (no relaxation); Zn, 5 (15); Mn, 0.1 (0.3).

World Health Organization standards for surface waters (μg/L): As, 10; Cr, 50; Cd, 3; Cu, 2000; Ni, 70; Pb, 10; Hg, 0.1.

Abbreviations: As, arsenic; Cd, cadmium; Cr, chromium; Cu, copper; Fe, iron; Hg, mercury; Mn, manganese; Ni, nickel; Pb, lead; Zn, zinc.
rivers. The chances of exposure to heavy metals have increased due to increased use in the technology, domestic, industrial, and agricultural sectors. Heavy metals' effects depend largely upon their chemical nature. Inorganic arsenic (As) compounds are readily absorbed and interfere to a greater extent with cellular reactions compared to the organic forms due to their poor cellular absorption. Heavy metals have been reported to attach themselves to protein binding sites and remove the original metals, causing toxicity and cellular malfunctioning.

Different exposure routes, including dermal (through the skin), ingestion (food or drink), and inhalation (as dust or fume) have been studied, along with the effects of heavy metals, mechanism of toxic action, impacts, and conventional and bioremediation techniques. A number of studies have examined various bioremediation techniques including algae, bacteria, and fungi as biosorbents. The current study aims to provide insight into the environmental occurrence and sources of heavy metals as published in the scientific literature.

Methods
The present study was conducted by searching databases from different libraries: Google Scholar, Medline and Scopus. Studies, irrespective of the place/area of research, were restricted to publications available in English and those published in the last twenty years. The search outcomes were collected, studied and thoroughly mined as applicable to the study objectives. Observations across studies were compared with standards for the discharge of heavy metals.

A total of 301 articles or records were searched in various databases. Most of the articles were identified from electronic bibliographic sources. After the initial adjustment with duplicates (n = 29), 271 articles were further screened on the basis of title (n = 15), relevance (n = 15), and availability of full text (n = 07). Articles related to biosorption with biomass and phytoremediation were discarded (n = 19). The remaining articles (n = 215) were assessed for eligibility and included in the study (Figure 2).

Results
Table 2 demonstrates some of the toxic heavy metals, their occurrence/applications, exposure routes and toxicity mechanisms.

Discussion
Rapid population growth has created excessive pressure on terrestrial and aquatic ecosystems, leading to increasing exploitation/extraction of water, food, and water resources. Apart from anthropogenic discharge of heavy metals, natural sources contribute significantly to heavy metal pollution. Their occurrence in soil and release due to soil weathering is an important source of heavy metal pollution. Arsenic is present in various igneous and sedimentary rocks in high concentrations. Approximately 45,000 tons of As is reported to be released by coal sources. Many countries, including India, Pakistan, Australia, Canada, Nepal, and Japan are severely impacted by As occurrence. Arsenic contamination from geogenic sources has been found throughout West Bengal, India. The bioavailability of heavy metals and their effects further depend on the
Toxic heavy metals	Environmental occurrences	Anthropogenic sources/commercial applications	Exposure routes	Effects	Toxicity and mechanisms	References
As	Low concentrations in all environmental segments; released through soil erosion and volcanic eruptions	Coal combustion; pesticide formulations; smoking; wood preservative; metal refining; drugs/medicines to treat amoebic dysentery and syphilis; veterinary drugs to treat against parasitic diseases	Dermal; ingestion of contaminated food and water; inhalation of contaminated dust; accidental and occupational exposure; wood preservation; pesticide application and manufacturing; glass manufacturing	Carcinogenic; cardiovascular and neurobehavioral disorders; diabetes	Enzymatic biotransformation of inorganic As to its intermediate monomethylarsonic acid, a potential carcinogen; As(V) has the potential to inactivate approximately 200 enzymes; As(V) can substitute phosphate; inhibit repair mechanisms of DNA; cellular respiration inhibition DNA damage; interruption of protein and nucleic acid synthesis; blocking repair mechanisms; initiation of cellular multiplication; complex formation with metallothionein causing nephrotoxicity	2,27-29
Cadmium	Earth’s crust, especially sedimentary rocks and water; small amounts in crustaceans, potatoes, leafy vegetables, mushrooms, etc.	Production of batteries, alloys, pigments, fertilizers, pesticides; welding; mining; combustion of fossil fuels and municipal wastes; recycling of electronic and cadmium-plated waste	Ingestion of contaminated food; inhalation (smoking); occupational exposure	Acute and chronic exposures lead to lung and stomach cancer; ingestion leads to vomiting, pain, nausea, renal injury, consciousness loss, coma; acute inhalation damages lung tissues and causes chest pain, fever, tachycardia; in vitro/vivo studies have reported genotoxic effects in animals; cadmium exposure leads to chromosomal aberrations; chromosomal damage; multi-organ dysfunction including liver, kidney, lungs and heart; kidney toxicity leads to irreversible proteins loss in urine; osteo-toxicity due to bone resorption or inhibiting bone formation; osteoporosis; anemia	Cr(VI) causes chromosomal aberrations and DNA strand breaks	2,30-35
Cr	Low concentrations in all environmental segments (Cr(II) to Cr(VI) forms)	Metal processing; dyeing; leather tanning; pigments; chrome plating; wood preservation; metallurgy; welding; boilers and cooking systems as anti-corrosives	Ingestion of Cr contaminated food items and water; inhalation; dermal		Cr(VI) is the main toxic form; dermatitis; kidney damage; asthma; allergies; respiratory tract cancer; inhalation causes ulcers of nose; ingestion causes severe gastrointestinal; cardiovascular, renal, respiratory and neurological disorders; carcinogenic	2,36,37
Lead	Occurs in earth’s crust (soil)	Lead batteries, soldered metal products; X-ray shields; glass manufacturing, paints and pigments; ammunition; coal combustion	Ingestion of contaminated water and food; inhalation of leaded dust	Anemia, appetite loss; systemic toxicity has multi-organ effects: kidney, liver and central nervous system, reproductive and gastrointestinal systems	Mimics calcium and inhibits body calcium metabolism and cycling; interrupts synthesis and repair of DNA and tumor suppressor proteins	2,38
Mercury	Environmental occurrence in water, soil and air	Electrical industries (switches, batteries); paint industry; dentistry; mining	Ingestion, inhalation and dermal	Absorbed by the gastrointestinal tract and crosses blood-brain and placental barriers; accumulates in the kidneys, liver and the nervous tissue; displays neurotoxic, gastrointestinal toxicity and nephrotoxic effects	Bonds covalently with proteins and exhausts antioxidants	2

Abbreviation: DNA, deoxyribonucleic acid.

Table 2 — Environmental Occurrence, Routes of Exposure and Toxicity Profile of Toxic Heavy Metals
metal, its physico-chemical properties and lipid solubility which imparts a characteristic toxicological property. Features like age, nutritional status, trophic interactions and physiological adaptations of organisms play an important role in their toxicity. With absorption, a metal is distributed in body tissues and tends to persist in the body in organs such as bones, liver and kidneys for a prolonged time. Heavy metals have been reported to affect cellular fractions and organelles. With increasing awareness regarding the persistence, nature and deleterious effects of heavy metals, there has been growing interest in the development of technologies to remediate this contamination.

Heavy metals removal through conventional techniques

Conventional techniques like adsorption, electro-dialysis, precipitation and ion exchange used to remove heavy metals have limitations. The process of chemical precipitation involves adding anions for precipitating metals as suspended particles, which are then removed. This process is not specific and cannot remove heavy metals at low concentrations. Through the ion exchange process, heavy metals can be removed to the level of parts per billion. However, it’s a non-specific, pH-sensitive and expensive method. The method of reverse osmosis makes use of membranes. These conventional techniques have drawbacks such as slow and inefficient removal, generation of contaminated sludge requiring careful disposal, high cost and energy involved in the processes, and blockage of membranes. There is a need for a cheap and effective technology to remove heavy metals with an eco-friendly approach. There has been increasing interest in the use of biological agents for heavy metal removal as an alternative to these methods.

Bioremediation

Microorganisms are ubiquitously present in nature and play a crucial role in elemental biogeochemical cycles of metal transformations between soluble and insoluble species. Metal-microbe interactions can have beneficial or harmful consequences. Apart from the nature of the microbes and chemistry of metals involved, these transformations are dependent on other environmental factors like pH, moisture, temperature, presence of other ions, humic colloidal substances and other living organisms and their competitors which play an important part in microbial colonization and biofilm formation.

Bioremediation is a technique for removing/converting harmful contaminants like heavy metals into less harmful substances; and/or removing toxic elements from the contaminated environment; or degrading organic substances and ultimate mineralization of organic substances into carbon dioxide, water, nitrogen gas, etc., employing dead or alive biomass. The process of bioremediation can be applied...
to soil and water media through in- and ex-situ techniques. A brief description of the different techniques of bioremediation for various contaminants is given in Figure 3.

The in-situ process does not involve excavation or removal and does not disturb the soil structure. It can make use of stimulation of indigenous microbial flora (intrinsic) or introduction of microorganisms (engineered) bioremediation. The type and the nature of contaminants, degree of contamination, soil type or site geochemistry and geographical location are some factors to be considered for this technique. Contaminants may get adsorbed on soil particles and become unavailable for bioremediation. During bioremediation there are other challenges, like microbial competition and death after inoculation, temperature, and moisture condition of the media.

High temperature increases the solubility of contaminants and hence their mobilization. In-situ treatment generally involves pumping oxygen/nutrients (bioventing/biostimulation) into the soil. The texture also plays an important part during bioventing and biostimulation. In coarse-textured soils, it is easier to pump and disperse oxygen and nutrients compared to fine-textured soils. Fine soils like clay retain moisture in their numerous smaller pores with high surface area and prevent oxygen from dispersing uniformly throughout the contaminated soil. However, this process may not be suitable for all types of soils when natural conditions (like temperature) become limiting. Higher sorption capacity by microbial cells compared to clay particles has been indicated by various reports. Indigenous species isolated from contaminated sites has been reported to demonstrate exceptional resistance and biosorption efficiency towards heavy metals. Two indigenous strains, AK1 and AK9, belonging to the genus of Pseudomonas, have been isolated from As-contaminated water of the Ganga basin. The strains have been reported to be resistant towards As and other heavy metals, like silver (Ag), cadmium (Cd), cobalt (Co), Cr, Cu, mercury (Hg), Ni, and lead (Pb). Ex-situ technique involves the transport of contaminated soil and water from the contaminated area to another site for further treatment. It may be classified as a solid-phase technique (for land treatment), slurry-phase and pile techniques (for a mixed medium containing solid and liquid phases in bioreactors). It uses techniques like bioreactors, biopiles, and land farming. For the slurry-phase technique, contaminated soil is mixed with water along with other additives in a bioreactor. However, the efficiency of the bioreactor depends on biosorbent (live/dead), optimal conditions required for microbial growth and adaptability of biomass to the configuration of the bioreactor.

Mercury removal from synthetic wastewater using a bioreactor has been reported. The wastewater bioremediation is dependent on various factors like pH. The pH affects their bioavailability by influencing the solution chemistry through processes like complexation, hydrolysis, redox and precipitation. Microbial biomass surface area and pretreatment processes (modifying the surface area) tend to influence the bioremediation process. Microbial biomass may be required to be immobilized in matrices like alginate and silica gel to develop a suitable commercial biosorbent with appropriate strength and porosity. Encapsulation imparts physicochemical stability and heat resistance. Encapsulated Agrobacterium sp. in alginate with nano-particles of Fe has shown an excellent adsorption capacity for continuously five cycles. Poor selectivity and difficulties in reusing biomass are some of the limitations of the process. Bioremediation has also been mediated through microbial biofilms having high resistance and tolerance for metal ions. Rhodotorula sp. have a removal efficiency of up to 95.39%.

Biosorbent materials

Selecting an efficient, highly selective and economical biosorbent is a major concern. The biosorbent should be easily available or should demonstrate quick growth. The efficiency of the biosorbent depends on the experimental requirements and pretreatment of the bioagent. There have been many reports on wastewater treatment using various biosorbents. Various types of biological agents have been employed for remediation in ex- and in-situ conditions. These include agro-wastes like wheat/rice straw, tea/coffee/yeast waste, cotton waste, etc. Microorganisms (bacteria, fungi, yeast or algae) sourced from their natural habitats can be excellent biosorbents. These biosorbents can absorb heavy metals at very low concentrations. The functional groups like amide, amine, carbonyl, carboxyl, etc. facilitate the removal of heavy metals. Microorganisms possess characteristic enzymatic profiles required specifically for heavy metal resistance. However, steric and conformational factors along with the number and availability of reactive sites affect the biosorption process. Microorganisms like fungi convert heavy metals into less toxic compounds and utilize them for their growth; e.g., Pleurotus sp., Klebsiella oxytoca, etc. display metal binding capacity. Cephalosporium aphidicola has been found to be effective in lead-contaminated soil. Some of the most commonly used
biosorbents are shown below in Table 3.

Bioremediation mechanisms

Microorganisms adapt to and resist heavy metals in highly contaminated areas. Extra-cellular polymeric substances present on the biomass cell wall can attach to heavy metals by mechanisms like proton exchange or micro-precipitation of metals. Biomass surfaces have a negative charge because of the presence of carboxyl, amino, phosphoryl, and sulfo groups as potential ion exchange sites and metal sinks. The process of bioremediation takes place through various mechanisms like redox process, adsorption, complexation, ion-exchange, precipitation, and electrostatic attraction.

Microorganisms may initiate metal mobilization/immobilization by redox reactions; and hence, impact bioremediation processes. Heavy metals like Fe, As, Cr, and Hg undergo oxidation and reduction cycles. Bioremediation is facilitated by converting an element from its insoluble and stationary form in sediments into its mobile and soluble phase. Mobilization can also have deleterious impacts when toxic metal ions are redistributed and released from their solid phase from sediments into the solution phase. This increases their bioavailability and heavy metals can reach microbial metabolic systems. The bacteria reduces Hg(II) to the elemental and more volatile form of Hg(0). Microbial reduction can also enhance the solubility of ions like Fe(III) and As(V) by reducing them to Fe(II) and As(III), respectively, and can facilitate leaching from soil. Studies have reported bacteria from different natural aquifers which can transform As. Pokhrel and Viraraghavan employed Aspergillus niger to remove As(V) and As(III). Heavy metal biomethylation is an important process in soil and water and may modify toxicity, volatility, and mobility of heavy metals. It also serves as an important means of detoxification as volatile methylated species can be removed from cells. Dimethymercury and alkyl arsines, the methylated products of Hg and As, respectively, are volatile and evaporate and are lost from soil. The organic matter fraction of soil serves as the methyl donor. Yet another indirect mechanism of metal mobilization involves the microbial decomposition of organic matter, which accelerates the release of these ions. Schizophyllum commune has been found to release heavy metals along with dissolved organic matter. Excretion of metabolites like carboxylic acids and amino acids by microbes is an important mechanism of chelating metal ions.

Microbes perform metal immobilization and act as sinks for metals by adopting different mechanisms (ex- or in-situ) like biosorption, bioaccumulation, bioconversion and/or inter/intracellular precipitation (as oxalates of Zn, Cu, Co, Cd, Ni) operating in different ways. By immobilization, an element can be easily removed from its aqueous phase in groundwater or wastewater. Bacterial oxidation of As(III) to As(V) makes them immobilized and retained by the sediments. Methanothermobacter thermautotrophicus has been employed to reduce Cr(VI) to Cr(III) and immobilize it in hydroxide-/oxide-forms. Bacterial reduction and immobilization for Cr(VI) has also been reported for Bacillus cereus and Shewanella sp. Cellular structures like the cell wall and plasma membrane act as barriers and check the entry of metal ions into cells.
Biosorption and bioaccumulation

Biosorption and bioaccumulation are attractive options to substitute conventional methods for heavy metal remediation. Bioaccumulation involves heavy metal uptake by living biomass (metabolism dependent/active uptake) and is characterized by the uptake of contaminants by living biomass/cells. Employing living biomass for remediation may not be a viable option owing to highly toxic metals which can accumulate in cells and interrupt metabolic activities resulting in cell death. However, dead biomass (biosorption) remains unaffected by toxicity, does not require any growth/nutritional medium and is flexible to environmental conditions. Heavy metals are adsorbed on the surface in a passive mode without involving energy expenditure (independent of metabolism) until equilibrium is achieved. Therefore, biosorption is advantageous, compared to active uptake/bioaccumulation, as it is metabolism independent, however is it largely dependent on the biomass/biosorbent type and contaminants involved. For these advantages, microbial biomasses of fungi, algae or yeast have been utilized for bioremediation for in-situ processes. Heavy metal bioremediation in the form of metallic nanoparticles with the help of bacteria and the use of genetically modified microorganisms as a part of the bioremediation process have also been reported.

Intracellular sequestration is the concentration of metal ions within the microbial cells. It involves complexation of heavy metal ions

Bacterial species	As	Cd	Cr	Co	Cu	Hg	Ni	Pb	Zn	Reference
Arthrobacter sp.		X								117
Bacillus sp.		X								118
Bacillus sp.,										119
Aneurinibacillus sp.										
Bacillus laterosporus	X		X							120
Corynebacterium glutamicum									X	121
Desulfovibrio desulfuricans								X	X	122
Bacillus sp.,								X	X	123
Pseudomonas sp.,										
Micrococcus sp.										
Bacillus licheniformis	X									124
Geobacter										125
metallireducens										
Geobacter sulfurreducens	X									126
B. licheniformis		X								127
Klebsiella planticola									X	103
Micrococcus luteus								X	X	128
Pseudomonas aeruginosa										102,129
Pseudomonas fluorescens	X	X	X	X	X	X	X			130
Pseudomonas putida	X	X		X	X	X				131,132
P. aeruginosa										115
P. aeruginosa	X									133
Rhizopus arrhizus										134
Rhodopseudomonas palustris										135
Streptococcus equisimilis										136
Staphylococcus xylosus					X					137
Vibrio harveyi									X	138

Abbreviations: As, arsenic; Cd, cadmium; Cr, chromium; Co, cobalt; Cu, copper; Fe, iron; Hg, mercury; Mn, manganese; Ni, nickel; Pb, lead; Zn, zinc.

Table 4 — Biosorption by Bacterial Species
Algal species	As	Cd	Cr	Co	Cu	Fe	Hg	Mn	Ni	Pb	Zn	Reference
Asparagopsis sp.	x	x										141
Codium sp., *Spirogyra*												
sp., *Chondrus sp.*, *Fucus sp.*, *Ascothillum*												
sp.												
Ceramium virgatum	x											142
Chlamydomonas reinhardtii				x								143
Chlorella vulgaris	x		x	x	x							144
C. vulgaris	x			x								145
C. vulgaris,					x							146
Scenedesmus armatus												
Chlorella kessleri	x											147
Corallina mediterranea,	x	x	x									148
Galaxaura oblongata,												
Jania rubens,												
Pterocladia capillacea												
Cladophora fascicularis						x						149
Caulerpa fastigiata												150
Caulerpa lentillifera	x											151
Spirogyra hyalina	x	x	x	x	x	x						152
Fucus vesiculosus	x			x								153
F. vesiculosus	x											154
Isochrysis galbana												155
Pithophora oedogonia						x						156
Sargassum polyctenum												157
Sargassum sp., *Padina sp.*,												158
sp., *Ulva sp.*, *Gracillaria*												
sp.												
Scenedesmus quadricula	x											159
Schizosaccharomyces pombe												160
S. hyalina	x	x	x									161
Spirogyra sp.	x	x	x									162
Spirulina platensis	x											163
Ulva fascia					x							164
Ulva lactuca, *Jania rubens*,												165
Sargassum asperifolium												

Abbreviations: As, arsenic; Cd, cadmium; Cr, chromium; Co, cobalt; Cu, copper; Fe, iron; Hg, mercury; Mn, manganese; Ni, nickel; Pb, lead; Zn, zinc.
due to surface interactions and their subsequent transport into the cell.66 Extra-cellular sequestration comprises a concentration of metal ions in the periplasm or their complexation as insoluble precipitates. Cadmium precipitation has been reported in \textit{Pseudomonas aeruginosa} and \textit{Klebsiella planticola}.102,103

Bacterial bioremediation

Bacteria are ubiquitously present in the environment. Bacteria are found in different shapes, including rods (\textit{Bacillus}), cocci (\textit{Streptococcus}), filamentous (\textit{Actinomyces}) and spiral (\textit{Vibrio cholera}). Biosorption by bacteria is an inexpensive and efficient technique to remove pollutants, including non-biodegradable elements, like heavy metals, from wastewater. Bacterial biomass can be living or non-living cells. Bacterial species have adapted and developed mechanisms for metals ions resistance and remediation for their survival.106 Heavy metal ions bioremediation by bacterial agents has been widely researched.105-109 Bacterial biomass accomplishes the rapid removal of metals such as Cu, Zn, Pb, Cd, and Cr.108 Biosorption efficiency depends on heavy metal ions and bacterial species (owing to their different cellular structures in terms of peptidoglycans like N-acetylmuramic acid and poly-N-acetylglucosamine).42 The bacterial cell wall is the primary physical contact linking metal ions and the bacterial biomass. The overall negative charge due to anionic functional groups (like amine, hydroxyl, carboxyl, sulphate, phosphate) present in Gram-positive bacteria (in peptidoglycan, teichoic acids, and teichuronic acids) and in Gram-negative bacteria (in peptidoglycan, lipopolysaccharides, and phospholipids) imparts metal-binding capacity on or within the cell wall.111 The heavy metal removal by dead biomass cells is extracellular. Functional groups, including carboxyl, phosphonate, amine and hydroxyl groups on the cell wall are responsible for these interactions.102,103

The carboxyl groups can bind Cd on the surface by complexation.114 The amino groups have displayed efficient removal of Cr by chelation and electrostatic interactions.115 Bacterial species need to be exposed to the contaminants for enzymatic induction before using them for bioremediation. There is a minimum requirement of contaminant concentration to initiate enzymatic expression necessary for the process.116 Species like \textit{Pseudomonas}, \textit{Desulfovibrio}, \textit{Bacillus}, and \textit{Geobacter} have been used for bioremediation (Table 4).

Algal bioremediation (phycoremediation)

Different species of algae are present in large amounts in marine ecosystems. Algae are autotrophic organisms, have low nutritional requirements and generate vast biomass.79 Among the three algal groups; i.e., Phaeophyta, Rhodophyta and Chlorophyta (i.e. brown, green and red, respectively), brown algae have been reported to possess better biosorption capacity (phycoremediation). Metal ion biosorption varies with the kind and structure of the algal biomass, charge and chemical constitution of the heavy metal ion.113,114 Different algae, in live or dead forms, have been used, as single or in combination, in batch or column, for in-situ remediation. The presence of amine, hydroxyl, carboxyl, sulphate, and phosphate are potential metal sites in algal proteins, which operate by complex formation methods during heavy metal remediation.79,141 Calcium, magnesium, and sodium ions present in the cell wall get replaced by heavy metal ions via ion exchange. Table 5 depicts various types of algae as biosorbents.

Fungal bioremediation (mycoremediation)

Fungi are known for their pervasive presence in the natural environment and are exploited extensively in industrial applications.166 Fungi are adapted (in terms of their morphology, ecology and metabolism) according to environmental conditions and are responsible for processes like decomposition and nutrient cycling under natural conditions.167 They have been reported to withstand and survive under stress conditions of moisture, nutrients, pH, etc. Mycoremediation involves use of fungus (live or dead) for the removal of contaminants from different environmental segments.168,169 Mycoremediation is a cost-effective process and does not leave harmful waste products. Hence, it poses a complete solution because of the full mineralization of the pollutants in nature.129 The success of mycoremediation depends on the identification and usage of a suitable fungal species for the target heavy metal or other contaminants. Fungi have the ability to accumulate heavy metals in their fruit bodies in an efficient manner, making them unavailable or decreasing their concentration in the media.173 The future availability of heavy metals and other contaminants in the media depend upon the life of the fungi, chemical behavior of the elements and presence or absence of the fungi after sequestration. \textit{Saccharomyces cerevisiae} has been reported to sequester up to 65–79% of Pb and Cd from polluted soil.172 The process of biosorption involves fungal cell walls (having chitin, proteins, glucans, lipids, pigments, polysaccharides) and functional groups like hydroxyl, carboxyl, amino, sulphate, or phosphate and is mediated through interactions.
Table 6 — Bioremediation by Fungal Species

Fungal species	As	Cd	Cr	Co	Cu	Fe	Hg	Mn	Ni	Pb	Zn	Reference
Agaricus bisporus, Pleurotus ostreatus							X					185
A. bisporus								X				184
Alternaria alternata, Penicillium aurantiogriseum									X			185
Aspergillus sp.											X	186
Aspergillus flavus, Aspergillus fumigatus, Paecilomyces sp., Cladosporium sp., Mucor sp.												187
A. flavus, A. gracilis, A. penicillioides, A. restrictus, Sterigmatomyces halophilus												188
Aspergillus sp., Rhizopus sp.									X			189
Aspergillus sp., Penicillium sp.											X	190
Schizophyllum commune												191
P. ostreatus											X	192
Pleurotus ferulae												193
P. ostreatus											X	194
Pleurotus florida												195
Trichoderma viride												196
Rhizopus nigricans											X	197
Rhizopus arrhizatus												198
Penicillium coffeae											X	199
A. flavus, A. fumigatus, Helminthosporium sp., Cladosporium sp., Mucor sp.												200
Penicillium janthinellum												201
Termitomyces clypeatus												202
Talaromyces helicus											X	203
Trichoderma viride												204

Abbreviations: As, arsenic; Cd, cadmium; Cr, chromium; Co, cobalt; Cu, copper; Fe, iron; Hg, mercury; Mn, manganese; Ni, nickel; Pb, lead; Zn, zinc.
like adsorption, ion-exchange and complexation.173-175 \textit{Aspergillus} sp. have been reported to remove Cr from tannery wastewater; it removed 65\% of the Cr from the wastewater as compared to 85\% from the synthetic medium.176

The phylum basidiomycetes includes wood-decaying species (white- and brown-rot fungi), mushrooms and other fungi.177 Mushrooms have played an important role in the human diet throughout history due to their nutritional and medicinal properties. Besides their use as food, they are used for mycoremediation due to their potential for heavy metal uptake. Metal uptake in mushrooms is affected by contact time, age of mycelia and fructification.178 Some edible wild varieties of mushrooms can accumulate heavy metals over their background concentrations.179 Heavy metals scatter disproportionately in the mushroom fruiting body.180,181 Different species of white-rot fungi, including \textit{Pleurotus ostreatus} and \textit{Termitomyces clypeatus} have been reported to degrade persistent pollutants (Table 6).181,182

Recommendations

The unregulated discharge of industrial effluents in agricultural fields or water bodies increases their chances of entering the food chain through crops and aquatic animals and subsequent bioaccumulation. Various in-situ and ex-situ methods of bioremediation suitable to different environmental conditions have been investigated and recommended.204-207 The design, development, and application of these techniques require careful selection of biological agents. Extensive research is being carried out using specific strains of microorganisms for bioremediation. Microorganisms carry out redox reactions; and hence, impact the bioremediation processes by metal mobilization/immobilization. Manganese(II)-oxidizing \textit{Bacillus} sp. strain indirectly oxidizes Cr(III) into the mobile and bioavailable form of Cr(VI) by producing oxidized Mn.208 The process of heavy metal bioremediation is more efficient using different microbial strains concurrently instead of only a single species.63 Advances in genetic engineering and optimization techniques suggest that the future of these technologies is promising.209,210 Genetically modified microorganisms may have a better bioremediation potential for various contaminants. In addition, the potential of agricultural and industrial waste biomass as bioremediators on a lab/commercial scale is currently being tested; e.g., sugarcane bagasse, coconut shell waste, rice husk, and beer waste yeast.211-214 The biosorption capacity of various biosorbents is improved after various physical and chemical modifications and further research is needed in order to use these biosorbents on a commercial scale across industries. The bioremediation approach requires a holistic and inclusive method for systematic, feasible and sustainable strategies which can be easily customized for each scenario. Moreover, there is an urgent need for coordination at all levels, including research organizations, the general public, governmental institutions, and industries.215

Conclusions

Heavy metal pollution occurs from various anthropogenic and natural sources. Heavy metals, due to their non-biodegradable and hazardous nature, should be removed from the environment. Industrial wastewater discharged into environmental segments, such as soil and rivers, requires immediate intervention by governmental agencies, regular monitoring and remediation using appropriate methods. Conventional methods of treatment have limitations and should be replaced by efficient, cost-effective and eco-friendly techniques such as bioremediation employing biological agents. Adopting an appropriate biosorbent in terms of efficiency and economy is a major concern. Microorganisms carry out redox reactions; and hence, impact the bioremediation processes by metal mobilization/immobilization. Metal-microbe interaction influences microbial processes, such as their growth, colonization and microbial biofilm formation for remediation. Further research is needed translating these lab scale options into industrial applications (e.g. microbial films) considering factors such as appropriate and adapted microorganisms/ appropriate biomass waste and/or mixtures of different kinds of microbial biomass with conventional technologies and suitable conditions in ex- or in-situ environments.

Acknowledgements

This study was funded as part of employment.

Copyright Policy

This is an Open Access article distributed in accordance with Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/).

References

1. Gray JS. Biomagnification in marine systems: the perspective of an ecologist. Mar Pollut Bull [Internet]. 2002 [cited 2019 Aug 21];45(1-12):46-52. Available from: https://doi.org/10.1016/S0025-326X(01)00323-X

2. Wuana RA, Okeimen FE. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Sch Res Notices. 2011 [cited 2019 June 1].
13. Tchounwou PB, Teyiou CG, Patolla AK, Sutton DJ. Heavy metal toxicity and the environment. Exp Suppl. 2012;101:33-64.

14. Kaushik P, Garg VK, Singh B. Effect of textile effluents on growth performance of wheat cultivars. Bioresource Technol. 2005 Jul [cited 2019 Aug 21];96(10):1189-93. Available from: https://doi.org/10.1016/j.biortech.2004.09.020 Subscription required to view.

15. Tyagi S, Sarma K. Assessment of groundwater quality in different land uses in Ghaziabad District of Uttar Pradesh, India. Environ We Int J Sci Tech [Internet]. 2018 Jul-Dec [cited 2019 Aug 21];13(2):99-117. Available from: http://www.ewjst.org/issues/vol13/vol13_files/vol132.htm

16. Siddiqui WA, Sharma RR. Assessment of the impact of industrial effluents on groundwater quality in Okhla industrial area, New Delhi, India. E-J Chem [Internet]. 2009 [cited 2019 Aug 21];6(51):541-6. Available from: http://dx.doi.org/10.1155/2009/525707

17. Srivastava S, Sharma YK. Arsenic occurrence and accumulation in soil and water of eastern districts of Uttar Pradesh, India. Environ Monit Assess [Internet]. 2013 Jun [cited 2019 Aug 21];185(6):4995-5002. Available from: https://doi.org/10.1007/s10661-012-2920-6 Subscription required to view.

18. Sharma RK, Agrawal M, Marshall F. Heavy metal contamination in vegetables grown in wastewater irrigated areas of Varanasi, India. Bull Environ Contam Toxicol [Internet]. 2006 Aug [cited 2019 Aug 21];77(2):312-8. Available from: https://doi.org/10.1007/s00128-006-1065-0 Subscription required to view.

19. Rai PK, Tripathi BD. Heavy metals in industrial wastewater, soil and vegetables in Lohta village, India. Toxicol Environ Chem [Internet]. 2008 [cited 2019 Aug 21];90(2):247-57. Available from: https://doi.org/10.1080/02772240701458584 Subscription required to view.

20. Singh R, Verma RS, Yadav Y. Use of industrial waste water for agricultural purpose: Pb and Cd in vegetables in Bikaner city, India. Curr World Environ [Internet]. 2012 [cited 2019 Aug 21];7(2):287. Available from: http://dx.doi.org/10.12944/CWE.7.2.14

21. Lokeshwar H, Chandrappa GT. Impact of heavy metal contamination of Bellandur lake on soil and cultivated vegetation. Curr Sci [Internet]. 2006 Sep 10 [cited 2019 Aug 21];91(5):622-7. Available from: https://www.jstor.org/stable/24094365 Subscription required to view.

22. Puttaiah ET, Kiran BR. Heavy metal transport in a sewage-fed lake of Karnataka, India. Proceedings of Taal: The 12th World Lake Conference; 2007 Oct 28-Nov 2; Jaipur, Rajasthan, India. Japan: International Lake Environment Committee; 2008. p. 347-54.

23. Adesiyun IM, Bisi-Johnson M, Aladesanmi OT, Okoh AI, Ogungbọnọnkọ AO. Concentrations and human health risk of heavy metals in rivers in Southwest Nigeria. J Health Poll [Internet]. 2018 Sep [cited 2019 Aug 21];8(19):Article 180907 [14 p.]. Available from: https://doi.org/10.5696/2156-9614-8.19.180907

24. Status of trace and toxic metals in Indian rivers [Internet]. New Delhi, India: Central Water Commission; 2018 Apr [cited 2019 Feb 6]. 251 p. Available from: http://www.indiaenvironmentportal.org.in/files/file/status_trace_toxic_materials_indian_rivers.pdf

25. Akter KF, Owens G, Davey DE, Naidu R. Arsenic speciation and toxicity in biological systems. Rev Environ Contam Toxicol. 2005;184:97-149.

26. Jaiaskanth M, Tieten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014 Jun;7(2):60-72.

27. Chung JY, Yu SD, Hong YS. Environmental source of arsenic exposure. J Prev Med Public Health [Internet]. 2014 Sep [cited 2019 Aug 21];47(5):253-7. Available from: https://doi.org/10.3961/jpmp.h.14.036

28. Ferguson JE, Gavis J. A review of the arsenic cycle in natural waters. Water Res [Internet]. 1972 Nov [cited 2019 Aug 21];6(11):1259-74. Available from: https://doi.org/10.1016/0043-1354(72)90052-8 Subscription required to view.

29. Singh N, Kumar D, Sahu AP. Arsenic in the environment: effects on human health and possible prevention. J Environ Biol. 2007 Apr;28(2 Suppl):359-65.

30. Singh KK, Singh AK, Hasan SH. Low cost biosorbent 'wheat bran' for the removal of cadmium from wastewater: kinetic and equilibrium studies. Bioresource Technol [Internet]. 2005 Nov [cited 2019 Aug 21];96(10):1189-93. Available from: https://doi.org/10.1016/j.biortech.2004.09.020 Subscription required to view.

31. Health risks of heavy metals from long-range transboundary air pollution [Internet]. Copenhagen, Denmark: World Health Organization; 2007 [cited 2019 Feb 6]. 144 p. Available from: http://www.euro.who.int/document/E91044.pdf

32. Draft final review of scientific information on cadmium. Nairobi, Kenya: United Nations Environment Programme, Chemicals Branch; 2008.

33. Cadmium: environmental health criteria 134 [Internet]. Geneva, Switzerland: World Health Organization; 1992 [cited 2019 Feb 6]. 130 p. Available from: http://www.inchem.org/documents/ehc/ehc/ehc134.htm
34. Rani A, Kumar A, Lal A, Pant M. Cellular mechanisms of cadmium-induced toxicity: a review. Int J Environ Health Res [Internet]. 2014 Aug [cited 2019 Aug 21];24(4):378-99. Available from: https://doi.org/10.1080/09603123.2013.835032 Subscription required to view.

35. Coone SG, Coombs AJ, Morrison EV, Heggland SJ. Cadmium induces apoptosis in the human osteoblast-like cell line Saos-2. J Toxicol Environ Health A [Internet]. 2007. [cited 2019 Aug 21];70(7):575-81. Available from: https://doi.org/10.1080/15287390600882663 Subscription required to view.

36. Gadd GM. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiol [Internet]. 2010 Mar [cited 2019 Aug 21];156(3):609-43. Available from: https://doi.org/10.1099/mic.0.037143-0

37. Chen YM, Hao YJ. Microbial chromium (VI) reduction. Crit Rev Environ Sci Technol [Internet]. 1998 [cited 2019 Aug 21];28(3):219-51. Available from: https://doi.org/10.1080/10643389891254214 Subscription required to view.

38. Toxicological profile for lead. Atlanta, GA: Agency for Toxic Substances and Disease Registry; 1999.

39. Mahimairaja S, Bolan NS, Adriano DC, Robinson B. Arsenic contamination and its risk management in complex environmental settings. Adv Agron [Internet]. 2005 [cited 2019 Aug 21];86:1-82. Available from: https://doi.org/10.1016/S0065-2113(05)86001-8 Subscription required to view.

40. Basu A, Saha D, Saha R, Ghosh T, Saha B. A review on sources, toxicity and remediation technologies for removing arsenic from drinking water. Res Chem Intermed [Internet]. 2014 Feb [cited 2019 Aug 21];40(2):447-85. Available from: https://doi.org/10.1080/15593366.2013.787250 Subscription required to view.

41. Gray NF. Water technology: an introduction for environmental scientists and engineers. London, UK: Hodder Headline Group; 1999. p. 473-4.

42. Hassan SH, Awad YM, Kabir MI, Oh SE, Joo JH. Bacterial biosorption of heavy metals. In: Biotechnology cracking new pastures. New Delhi, India: MD Publications Pvt. Ltd.; 2010. Jan 1. p. 79-110.

43. Aziz HA, Adlan MN, Ariffin KS. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by high quality limestone. Bioreour Technol [Internet]. 2008 Apr [cited 2019 Aug 21];99(6):1578-83. Available from: https://doi.org/10.1016/j.biortech.2007.04.007

44. Gunatilake SK. Methods of removing heavy metals from industrial wastewater. J Multidiscip Eng Stud. 2015 Nov;1(1):12-8.

45. Ayangbenro AS, Babalola OO. A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health [Internet]. 2017 Jan [cited 2019 Aug 21];14(1):Article 94 [16 p.]. Available from: https://doi.org/10.3390/ijerph14010094

46. Firdous AI. Bioaccumulation and bio-absorptions of heavy metals by the mushroom from the soil. J Med Chem Drug Discov. 2017;2(3):25-33.

47. Ahalya N, Ramachandara TV, Kanamadi RD. Biosorption of heavy metals. Res J Chem Environ. 2003 Dec;7(4):71-9.

48. Adams JA, Reddy KR. Extent of benzene biodegradation in saturated soil column during air sparging. Groundw Monit Remediat [Internet]. 2003 Aug [cited 2019 Aug 21];23(3):85-94. Available from: https://doi.org/10.1111/j.1745-6922.2003.tb00886.x Subscription required to view.

49. Azubuike CC, Chikere CB, Opara T, Okpokwasili GC. Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol [Internet]. 2016 Nov [cited 2019 Aug 21];32(11):Article 180 [18 p.]. Available from: https://doi.org/10.1007/s11274-016-2137-x

50. Hazen TC. In situ: groundwater bioremediation. In: Timmis KN, editor. Handbook of hydrocarbon and biodegradation in saturated soil column during air sparging. Groundw Monit Remediat [Internet]. 2003 Aug [cited 2019 Aug 21];23(3):85-94. Available from: https://doi.org/10.1111/j.1745-6922.2003.tb00886.x Subscription required to view.

51. Hazen TC. In situ: groundwater bioremediation. In: Timmis KN, editor. Handbook of hydrocarbon and lipid microbiology. Berlin, Germany: Springer; 2010. p. 2583-94.

52. Philip JC, Atlas RM. Bioremediation of contaminated soils and aquifers. In: Atlas RM, Philip JC, editors. Bioremediation: applied microbial solutions for real-world environmental cleanup. Washington, DC: American Society for Microbiology Press; 2005. p. 139-236.

53. Bouchez T, Patrouer D, Dabert P, Juretschko S, Dore J, Delgenes P, Moletta R, Wagner M. Ecological study of a bioaugmentation failure. Environ Microbiol [Internet]. 2000 Apr [cited 2019 Aug 21];2(2):179-90. Available from: https://doi.org/10.1046/j.1462-2920.2000.00091.x Subscription required to view.

54. Liu W, Luo Y, Teng Y, Li Z, Christie P. Possible mechanisms of cadmium-induced toxicity: a review. Int J Environ Health Res [Internet]. 2005 Jul [cited 2019 Aug 21];7(7):909-15. Available from: https://doi.org/10.1111/j.1462-2920.2005.00804.x

55. Perfumo A, Banat IM, Marchant R, Vezzulli L. Thermally enhanced approaches for bioremediation of hydrocarbon-contaminated soils. Chemosphere [Internet]. 2007 Jan [cited 2019 Aug 21];66(1):179-84. Available from: https://doi.org/10.1016/j.chemosphere.2006.05.066 Subscription required to view.

56. Morley GE, Gadd GM. Sorption of toxic metals by fungi and clay minerals. Mycol Res [Internet]. 1995 Dec [cited 2019 Aug 21];99(12):1429-38. Available from: https://doi.org/10.1016/S0953-7562(09)80789-2 Subscription required to view.

57. Satyapal GK, Mishra SK, Srivastava A, Ranjan RK, Prakash K, Haque R, Kumar N. Possible bioremediation of arsenic toxicity by isolating indigenous bacteria from the middle Gangetic plain of Bihar, India. Biotechnol Rep (Amst). 2018 Feb 8;17:117-25.

58. Tak IK. Role of biotools in restoration of freshwater ecosystems. In: Qadri H, Bhat RA, Mehmoood MA, Dar GH, editors. Fresh water pollution dynamics and remediation. Singapore: Springer, Singapore; 2020. p.123-42.

59. Fomina M, Gadd GM. Biosorption: current perspectives on concept, definition and application. Bioreour Technol [Internet]. 2014 May [cited 2019 Aug 21];160:3-14. Available from: https://doi.org/10.1016/j.biortech.2013.12.102 Subscription required to view.

60. Sinha A, Pant KK, Khare SK. Studies on mercury bioremediation by alginate immobilized mercury tolerant Bacillus cereus cereus cells. Int Biodeterior Biodegrad [Internet]. 2012 Jul [cited 2019 Aug 21];71:1-8. Available from: https://doi.org/10.1016/j.ibiod.2011.12.014 Subscription required to view.

61. Esposito A, Pagnanelli F, Lodi A, Solisio C, Veglio F. Biosorption of heavy metals by Sphaerotilus natans: an equilibrium study at different pH and biomass concentrations. J Multidiscip Eng [Internet]. 2019 Aug [cited 2019 Aug 21];99(1):1-11. Available from: https://doi.org/10.1016/j.jhazmat.2019.08.033 Subscription required to view.

62. Gupta R, Ahuja P, Khan S, Saxena RK, Mohapatra M. Microbial biosorbents: meeting challenges of heavy metal pollution in aqueous solutions. Curr Sci. 2000 Apr;78(8):967-73.

63. Wang J, Chen C. Biosorbents for heavy metals removal and their future. Biotechnol Adv [Internet].
Toxicity and bioremediation of heavy metals

Kapahi, Sachdeva

Bioremediation techniques—classification based on site location and contaminants—soil to mobilize or to immobilize? J Hazard Mater. 2014 Feb 15 [cited 2019 Aug 21];280:141-66. Available from: https://doi.org/10.1016/j.jhazmat.2013.12.018 Subscription required to view.

Wengel M, Kothe E, Schmidt CM, Heide K, Gleixner G. Degradation of organic matter from black shales and charcoal by the wood-rotting fungus Schizophyllum commune and release of DOC and heavy metals in the aqueous phase. Sci Total Environ. 2006 Aug 15 [cited 2019 Aug 21];367(1):383-93. Available from: https://doi.org/10.1016/j.scitotenv.2005.12.012 Subscription required to view.

Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP. Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci. 2016;7:Article 303 [14 p.].

Gadd GM. Bioremediation potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol. 2000 Jun [cited 2019 Aug 21];11(3):271-9. Available from: https://doi.org/10.1016/S0958-1669(00)00995-1 Subscription required to view.

Azwubiye CC, Chikere CB, Okepokwasili GC. Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol. [Internet]. 2016 Nov [cited 2019 Aug 22];32(11):180. Available from: https://doi.org/10.1007/s11274-016-2137-x Subscription required to view.

Singh R, Dong H, Liu D, Zhao L, Marts AR, Farquhar E, Tierney DL, Almquist CB, Briggs BR. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermotrophicus. Geoschim Cosmochim Acta. 2015 Jan 1;148:442-456.

Chen Z, Huang Z, Cheng Y, Pan D, Pan X, Yu M, Pan Z, Lin Z, Guan X, Wu Z. Cr(VI) uptake mechanism of Bacillus cereus. Chemosphere [Internet]. 2012 Apr [cited 2019 Aug 22];87(3):211-6. Available from: https://doi.org/10.1016/j.chemosphere.2011.12.050 Subscription required to view.

Middleton SS, Latmani RB, Mackey MR, Ellisman MH, Tebo BM, Cridle CS. Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth. Biotechnol Bioeng. 2003 Sep 20 [cited 2019 Aug 22];83(6):627-37. Available from: https://doi.org/10.1002/bit.10725 Subscription required to view.

Igiri BE, Okoduwa SI, Idoko GO, Akabuogu EP, Adeyi AO, Ejioju IK. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol [Internet]. 2018 [cited 2019 Aug 22];2018:Article 256038 [16 p.]. Available from: https://doi.org/10.1155/2018/256038 Subscription required to view.

Velasquez I, Dussan J. Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J Hazard Mater [Internet]. 2009 Aug 15 [cited 2019 Aug 22];167(1-3):713-6. Available from: https://doi.org/10.1016/j.jhazmat.2009.01.044 Subscription required to view.

Ahluwalia SS, Goyal D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol [Internet]. 2007 Sep [cited 2019 Aug 22];98(12):2243-57. Available from: https://doi.org/10.1016/j.biortech.2005.12.006 Subscription required to view.

Klaus-Joerger T, Joerger R, Olsson E, Granqvist C. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol. 2001 Jan [cited 2019 Aug 22];19(1):15-20. Available from: https://doi.org/10.1016/S0167-7799(00)01514-6 Subscription required to view.

Poirier I, Hammann P, Kuhn L, Bertrand P, Leung WC, Chua H, Lo WH. Bioremediation of nickel, chromium and zinc by MerP expressing recombinant Escherichia coli. J Hazard Mater [Internet]. 2008 Oct 1 [cited 2019 Aug 22];158(1):100-6. Available from: https://doi.org/10.1016/j.jhazmat.2008.01.032 Subscription required to view.

Tuzen M, Soygi KO, Usta C, Soyak M. Pseudomonas aeruginosa immobilized multiwall carbon nanotubes as biosorbent for heavy metal ions. Bioresour Technol [Internet]. 2008 Apr [cited 2019 Aug 22];99(6):1563-70. Available from: https://doi.org/10.1016/j.biortech.2007.04.013 Subscription required to view.

Leung WC, Chua H, Lo WH. Biosorption of heavy metals by bacteria isolated from activated sludge. Appl Biochem Biotechnol [Internet]. 2001 Mar [cited 2019 Aug 22];91(1-9):171-84. Available from: https://doi.org/10.1023/A:101385/ABAB91-93/1-9171 Subscription required to view.

Ozer A, Ozer D. Comparative study of the
biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats. J Hazard Mater [Internet]. 2003 Jun 27 [cited 2019 Aug 22];100(1-3):219-29. Available from: https://doi.org/10.1016/S0304-3894(03)00109-2 Subscription required to view.

111. Sherbet GV. The Biophysical characterisation of the cell surface. London: Academic press; 1978. 414 p.

112. Doyle RJ, Matthews TH, Streips UN. Chemical basis for selectivity of metal ions by the Bacillus subtilis cell wall. J Bacteriol [Internet]. 1980 Jul [cited 2019 Aug 22];143(1):471-80. Available from: https://jb.asm.org/content/143/1/471.long

113. van der Wal A, Norde W, Zehnder AJ, Lyklema J. Determination of the total charge in the cell walls of Gram-positive bacteria. Colloids Surf B Biointerfaces [Internet]. 1997 Jun [cited 2019 Aug 22];9(1-2):81-100. Available from: https://doi.org/10.1016/S0927-7756(96)01340-9 Subscription required to view.

114. Yee N, Fein J. Cd adsorption onto bacterial surfaces: a universal adsorption edge? Geochim Cosmochim Acta [Internet]. 2001 Jul [cited 2019 Aug 22];65(13):2037-42. Available from: https://doi.org/10.1006/gcza.2000.06.005 Subscription required to view.

115. Kang SY, Lee JU, Kim KM. Biosorption of Cr(III) and Cr(VI) onto the cell surface of Pseudomonas aeruginosa. Biochem Eng J [Internet]. 2007 Aug [cited 2019 Aug 22];36(1):54-8. Available from: https://doi.org/10.1016/j.bej.2006.06.005 Subscription required to view.

116. Adenipekun CO, Lawal R. Uses of mushrooms in bioremediation: a review. Biotechnol Mol Biol Rev. 2012 Sep;7(3):62-8.

117. Hasan SH, Srivastava P. Batch and continuous biosorption of Cu(2+) by immobilized biomass of Arthrobacter sp. J Environ Manage [Internet]. 2009 Aug [cited 2019 Aug 22];90(11):3313-21. Available from: https://doi.org/10.1016/j.jenvman.2009.05.005 Subscription required to view.

118. Tunali S, Cabuk A, Akar T. Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem Eng J [Internet]. 2006 Jan [cited 2019 Aug 22];115(3):203-11. Available from: https://doi.org/10.1016/j.cej.2005.09.023 Subscription required to view.

119. Dey U, Chatterjee S, Mondal NK. Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation. Biotechnol Rep [Internet]. 2016 Jun [cited 2019 Aug 22];10:1-7. Available from: https://doi.org/10.1016/j.btre.2016.02.002

120. Zouboulis AI, Loukiodou MX, Matis KA. Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem [Internet]. 2004 Apr [cited 2019 Aug 22];39(8):909-16. Available from: https://doi.org/10.1016/S0032-9592(03)00200-0 Subscription required to view.

121. Choi SR, Yun YS. Lead biosorption by waste biomass of Corynebacterium glutamicum generated from lysis fermentation process. Biotechnol Lett [Internet]. 2004 Feb [cited 2019 Aug 22];26(4):331-6. Available from: https://doi.org/10.1023/B:BILE.0000015453.20708.fc Subscription required to view.

122. Kim IH, Choi JH, Joo JO, Kim YK, Choi JW, Oh BK. Development of a microbe-zeolite carrier for the effective elimination of heavy metals from seawater. J Microbiol Biotechnol [Internet]. 2015 Sep [cited 2019 Aug 22];25(9):1542-6. Available from: http://www.jmb.or.kr/journal/viewJournal.html?doi=10.4014/jmb.1504.04067

123. Rani MJ, Hemambika B, Hemapriya J, Rajeshkannan V. Comparative assessment of heavy metal removal by immobilized and dead bacterial cells: a biosorption approach. Glob J Environ Res. 2010;4(1):23-30.

124. Zhou M, Liu Y, Zeng G, Li X, Xu W, Fan T. Kinetic and equilibrium studies of Cr(VI) biosorption by dead Bacillus licheniformis biomass. World J Microbiol Biotechnol [Internet]. 2007 Jan [cited 2019 Aug 22];23(1):43-4. Available from: https://doi.org/10.1007/s11274-006-9191-8 Subscription required to view.

125. Lee KY, Bosch J, Meckenstock RU. Use of metal-reducing bacteria for bioremediation of soil contaminated with mixed organic and inorganic pollutants. Environ Geochem Health [Internet]. 2012 Jan [cited 2019 Aug 22];34 Suppl 1:135-42. Available from: https://doi.org/10.1007/s10653-011-9406-2 Subscription required to view.

126. He Y, Gong Y, Su Y, Zhang Y, Zhou X. Bioremediation of Cr (VI) contaminated groundwater by Geobacter sulfurreducens: environmental factors and electron transfer flow studies. Chemosphere [Internet]. 2019 Apr [cited 2019 Aug 22];221:793-801. Available from: https://doi.org/10.1016/j.chemosphere.2019.01.039 Subscription required to view.

127. Samarth DP, Chandekar CJ, Bhadekar RK. Biosorption of heavy metals from aqueous solution using Bacillus licheniformis. Int J Pure Appl Sci Technol. 2012;10(2):12-9.

128. Puyen ZM, Villagrana E, Maldonado J, Diestra E, Esteve I, Sole A. Biosorption of lead and copper by heavy-metal tolerant Micrococcus luteus de2008. Bioresour Technol [Internet]. 2012 Dec [cited 2019 Aug 22];126:233-7. Available from: https://doi.org/10.1016/j.biotech.2012.09.036 Subscription required to view.

129. Chellaiah, E. Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a minireview. Appl Water Sci [Internet]. 2018 Oct [cited 2019 Aug 22];8(6):Article 154 [10 p]. Available from: https://doi.org/10.1007/s13281-018-0796-5

130. Lopez A, Lázaro N, Priego J, Marques A. Effect of pH on the biosorption of nickel and other heavy metals by Pseudomonas fluorescens 4F39. J Ind Microbiol Biotechnol [Internet]. 2000 Feb [cited 2019 Aug 22];24(2):146-51. Available from: https://doi.org/10.1023/A:1001361026391 Subscription required to view.

131. Pardo R, Herguedas M, Barrado E, Vega M. Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Anal Bioanal Chem [Internet]. 2003 May [cited 2019 Aug 22];376(1):26-32. Available from: https://doi.org/10.1007/s00216-003-1843-z Subscription required to view.

132. Chen XC, Wang YP, Lin Q, Shi JY, Wu WX, Chen YX. Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1. Colloids Surf B Biointerfaces [Internet]. 2005 Dec 10 [cited 2019 Aug 22];46(2):101-7. Available from: https://doi.org/10.1016/j.colsurfb.2005.10.003 Subscription required to view.

133. Tariq A, Ullah U, Asif M, Sadiq I. Biosorption of arsenic through bacteria isolated from Pakistan. Int Microbiol [Internet]. 2019 Mar [cited 2019 Aug 22];22(1):59-68. Available from: https://doi.org/10.1007/s10123-018-0028-8 Subscription required to view.

134. Preetha B, Viruthagiri T. Batch and continuous biosorption of chromium(VI) by Rhizopus arrhizus. Sep Purif Technol [Internet]. 2007 Oct [cited 2019 Aug 22];57(1):126-33. Available from: https://doi.org/10.1016/j.seppur.2007.03.015 Subscription required to view.

135. Gao R, Wang Y, Zhang Y, Tong J, Dai W. Cobalt(II) bioaccumulation and distribution in Rhodosporidium palustris. Biotechnol Biotechnol Equip [Internet]. 2017 [cited 2019 Aug 22];31(3):527-34. Available from: https://doi.org/10.1080/13102818.2017.1292148
136. Goyal N, Jain SC, Banerjee UC. Comparative studies on the microbial adsorption of heavy metals. Adv Environ Res [Internet]. 2003 Jan [cited 2019 Aug 22];7(2):311-9. Available from: https://doi.org/10.1016/S1093-0199(02)00004-7 Subscription required to view.

137. Aryan M, Ziaogova M, Liakopoulou-Kyriakides M. Study on arsenic biosorption using Fe(III)-treated biomass of Staphylococcus xylosus. Chem Eng J [Internet]. 2010 Aug [cited 2019 Aug 22];162(1):178-85. Available from: https://doi.org/10.1016/j.cej.2010.05.026 Subscription required to view.

138. Mire CE, Tourjee JA, O’Brien WF, Ramanujachary KV, Hecht GB. Lead precipitation by Vibrio harveyi: evidence for novel quorum-sensing interactions. Appl Environ Microbiol [Internet]. 2004 Feb [cited 2019 Aug 22];70(2):855-64. Available from: https://doi.org/10.1128/AEM.70.2.855-864.2004

139. Brinza L, Dring M, Gavrilescu M. Marine micro and macro algal species as biosorbents for heavy metals. Environ Eng Manag J. 2007 May/ Jun;6(3):237-51.

140. Oyedepo TA. Biosorption of lead (II) and copper (II) metal ions on Calotropis procera (Ait.). Sci J Pure Appl Chem [Internet]. 2011 [cited 2019 Aug 22]; 7 (p.). Available from: https://www.sjpajb.org/index.html

141. Romera E, Gonzalez F, Ballester A, Blazquez MI, Munoz JA. Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol [Internet]. 2007 Dec [cited 2019 Aug 22];99(17):3344-53. Available from: https://doi.org/10.1016/j.biortech.2006.09.026 Subscription required to view.

142. Sari A, Tuzen M. Biosorption of cadmium(II) from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. J Hazard Mater [Internet]. 2008 Sep 15 [cited 2019 Aug 22];157(2-3):448-54. Available from: https://doi.org/10.1016/j.jhazmat.2008.01.008 Subscription required to view.

143. Tuzun I, Bayramoglu G, Yalcin E, Basaran G, Celik G, Arica MY. Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II) and Pb(II) ions onto microalgae Chlamydomonas reinhardti. J Environ Manage [Internet]. 2005 Oct [cited 2019 Aug 22];77(2):85-92. Available from: https://doi.org/10.1016/j.jenvman.2005.01.028 Subscription required to view.

144. Klimmek S, Stan JJ, Wilke A, Bunke G, Buchholz R. Comparative analysis of the biosorption of cadmium, lead, nickel, and zinc by algae. Environ Sci Technol [Internet]. 2001 Oct [cited 2019 Aug 22];35(21):4283-8. Available from: https://doi.org/10.1021/es010063x Subscription required to view.

145. Goher ME, El-Manem AM, Abdel-Satar AM, Ali MH, Hussain AM, Napiorkowska-Krzebiek A. Biosorption of some toxic metals from aqueous solution using non-living algal cells of Chlorella vulgaris. J Elementology. 2016;21(3):703-14.

146. Kwaszcz-Kozlowska A, Slavik-Dembczak L, Banka B. Phycoremediation of wastewater: heavy metal and nutrient removal processes. Environ Prot Nat Resour [Internet]. 2014 [cited 2019 Aug 22];25(4):51-4. Available from: https://doi.org/10.2478/epnr-2014-0026

147. Horvathova H, Kadukova J, Stolko M. Biosorption of Cu$^{2+}$ and Zn$^{2+}$ by immobilized algae biomass of Chlorella kessleri. Acta Metall Slovaca. 2009;15(4):255-63.

148. Ibrahim WM. Biosorption of heavy metal ions from aqueous solution by red macroalgae. J Hazard Mater [Internet]. 2011 Sep 15 [cited 2019 Aug 22];192(3):1827-35. Available from: https://doi.org/10.1016/j.jhazmat.2011.07.019 Subscription required to view.

149. Deng L, Su Y, Su H, Wang X, Zhu X. Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. J Hazard Mater [Internet]. 2007 May 8 [cited 2019 Aug 22];143(1-2):220-5. Available from: https://doi.org/10.1016/j.jhazmat.2006.09.009 Subscription required to view.

150. Sarada B, Prasad MK, Kumar KK, Murthy CV. Cadmium removal by macro algae Caulerpa fastigiata: characterization, kinetic, isotherm and thermodynamic studies. J Environ Chem Eng [Internet]. 2014 Sep [cited 2019 Aug 22];2(3):1533-42. Available from: https://doi.org/10.1016/j.jece.2014.07.016 Subscription required to view.

151. Apiratikul R, Pavasant P. Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Biosourc Technol [Internet]. 2008 May [cited 2019 Aug 22];99(8):2766-77. Available from: https://doi.org/10.1016/j.biortech.2007.06.036 Subscription required to view.

152. Kumar JJ, Oommen C. Removal of heavy metals by biosorption using freshwater alga Spirogyra hyalina. J Environ Biol. 2012 Jan;33(1):27-31.

153. Mata YN, Blazquez ML, Ballester A, Gonzalez F, Munoz JA. Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus. J Hazard Mater [Internet]. 2009 Apr 30 [cited 2019 Aug 22];163(2-3):555-62. Available from: https://doi.org/10.1016/j.jhazmat.2008.07.015 Subscription required to view.

154. Ahmady-Ashchin S, Mohammadi M. Biosorption of copper ions by marine brown alga Fucus vesiculosus. J Biol Environ Sci. 2011;5(15):121-7.

155. Kadimpati KK, Mondhithoka KP, Bheemaraju S, Challa VR. Entrapment of marine microalgae, Isochrysis galbana, for biosorption of Cr(III) from aqueous solution: isotherms and spectroscopic characterization. Appl Water Sci [Internet]. 2013 Mar [cited 2019 Aug 23];3(1):85-92. Available from: https://doi.org/10.1007/s13201-012-0062-1

156. Kumar D, Singh A, Gaur JP. Mono-component versus binary isotherm models for Cu(II) and Pb(II) sorption from binary metal solution by the green alga Pithophora oedogonia. Biosourc Technol [Internet]. 2008 Nov [cited 2019 Aug 23];99(17):8280-7. Available from: https://doi.org/10.1016/j.biortech.2008.03.008 Subscription required to view.

157. Senthilkumar R, Vijayaraghavan K, Jegan J, Velan M. Batch and column removal of total chromium from aqueous solution using Sargassum poly cystum. Environ Prog Sust Energy [Internet]. 2010 Oct [cited 2019 Aug 23];29(3):334-41. Available from: https://doi.org/10.1002/ep.10416 Subscription required to view.

158. Sheng PX, Ting YP, Chen JP, Hong L. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interface Sci [Internet]. 2004 Jul 1 [cited 2019 Aug 23];275(1):131-41. Available from: https://doi.org/10.1016/j.jcis.2004.01.036 Subscription required to view.

159. Bayramoglu G, Arica Y. Construction a hybrid biosorbent using Scenedesmus quadricauda and Cal-ginate for biosorption of Cu(II), Zn(II) and Ni(II); kinetics and equilibrium studies. Bioreor Technol [Internet]. 2009 Jan [cited 2019 Aug 23];100(1):186-93. Available from: https://doi.org/10.1016/j.biortech.2008.05.050 Subscription required to view.

160. Subhashini S, Kalippan S, Velan M. Removal of heavy metal from aqueous solution using Schizosaccharomyces pombe in free and alginate immobilized cells. 2nd International Conference on Environmental Science and Technology (ICEST); 2011 Feb 26-28; Singapore. Singapore: IACSIT Press; 2011. p. 107-11.

161. Kumar JJ, Oommen C. Removal of heavy metals by biosorption using freshwater alga Spirogyra hyalina. J Environ Biol. 2012 Jan;33(1):27-31.

162. Rajfur M, Klos A, Waclawek M. Sorption
