The Pseudo-hyperresolution and Applications

Nguyễn Thế Cường

31st March 2018

Abstract

Homological algebra techniques can be found in almost all modern areas of mathematics. Many interesting problems in mathematics can be formulated, computed, or can find their equivalence in terms of Ext-groups. For instance, important (co)homology theories, such as the Mac Lane cohomology for rings or the Hochschild and cyclic homology of commutative algebras can be defined as Ext-groups in suitable functor categories; homotopical invariants can also gain information from homological data with the help of the unstable Adams spectral sequence, whose input takes the form of Ext-groups in the category of unstable modules over the Steenrod algebra. Therefore, the constructions of explicit injective (projective) resolutions in an abelian category is of great importance. In this article, we introduce a new method, called Pseudo-hyperresolution, to study such constructions. This method originates in the category of unstable modules, and aims at building explicit resolutions for the reduced singular cohomology of spheres. In particular, for all integers \(n \geq 0 \), we can describe a large range of the minimal injective resolution of the sphere \(S^n \) based on the Bockstein operation of the Steenrod algebra. Moreover, many classical constructions in algebraic topology, such as the algebraic EHP sequence or the Lambda algebra can be recovered using the Pseudo-hyperresolution method. A particular connection between spheres and the infinite complex projective space is also established. Despite its origin, Pseudo-hyperresolution generalizes to all abelian categories. In particular, many explicit resolutions of classical strict polynomial functors can be reunified in view of Pseudo-hyperresolution. As a consequence, we recover the global dimension of the category of homogeneous strict polynomial functors of finite degree as well as the Mac Lane cohomology of finite fields.

1 Introduction

Singular cohomology plays an important role in algebraic topology and a great deal of effort was put into developing a suitable framework to study this cohomology theory. In the process, Steenrod [31] defined the notion of a stable cohomology operation, which led to the construction of the algebra that bears his name. The singular cohomology of a topological space admits a natural action of the Steenrod algebra satisfying an extra axiom that Steenrod called the instability condition. He then introduced the notion of an unstable module that captures this particular property. It was in the language of unstable modules that many important results in homotopy theory found their solutions, e.g., the Segal conjecture [7], the Sullivan conjecture [27], the Serre conjecture [21], the Kuhn realization conjecture [20], etc. As their name suggests, unstable modules are an important tool in studying unstable homotopy theory, and in particular, to study the homotopy groups of topological spaces. Among all the interesting spaces in topology, the spheres are the most fundamental and important. From the categorical point of view, we should not just focus on the objects themselves, but the maps between them as well. To this end, in algebraic topology, we seek to classify the set of continuous maps between spheres up to continuous deformation. The importance of this classification is not just aesthetical, but also from the fact that it is connected to many other areas in mathematics, such as geometric topology, algebra, and algebraic geometry. For example, the groups of differential structures on spheres is determined by the stable homotopy groups of spheres (see, e.g., [19]). Another example is the theory of topological modular forms (see, e.g., [17]), which relates certain parts of the stable homotopy groups of spheres to the moduli stack of elliptic curves. However, the homotopy groups of spheres are a hugely intractable object even though their cohomology groups are elementary. One of the most powerful tool in studying the homotopy groups of spheres is the unstable Adams spectral sequence - as it was introduced by Massey and Peterson in [25], generalized by Bousfield and Curtis in [4], and generalized further by Bousfield and Kan in [5] - which passes from homological information to homotopical information. In fact, it reduces the computations of the homotopy groups of spheres to that of certain Ext-groups in the category \(\mathcal{U} \) of unstable modules:

\[
E_2^{s,t}(S^n) = \text{Ext}^s_{\mathcal{U}}(\tilde{H}^s(S^n; \mathbb{Z}/p), \tilde{H}^t(S^t; \mathbb{Z}/p)) \Rightarrow \pi_{t-s}(S^n)^p.
\]
Therefore, the understanding of the minimal injective resolution of $\tilde{H}^* (S^t; \mathbb{Z}/p)$ is of vital importance, and is one of the primary goals of this article. Our approach to this problem relies on the simple structure of $\tilde{H}^* (S^t; \mathbb{Z}/p)$: it is an \mathbb{N}–graded \mathbb{F}_p–vector space, concentrated in degree t and isomorphic to \mathbb{F}_p in that degree, and therefore is denoted by $\Sigma^t \mathbb{F}_p$. Moreover, the tensor product with $\Sigma^t \mathbb{F}_p$ defines an exact functor $\Sigma^t : \mathcal{U} \to \mathcal{U}$, called the t–th suspension functor (we simply write Σ when $t = 1$ and call it the suspension functor). Now, it is well-known that $\Sigma^t \mathbb{F}_p$ is an injective unstable module for $t = 0$ and $t = 1$. This suggests that the construction of the minimal injective resolution of $\Sigma^t \mathbb{F}_p$ should be carried out by induction on t and this is what we are going to do. In fact, as the suspension functor Σ is exact and $\Sigma (\Sigma^t) = \Sigma^{t+1}$, then by applying this functor to an injective resolution of $\Sigma^t \mathbb{F}_p$ we obtain an acyclic cochain complex that admits $\Sigma^{t+1} \mathbb{F}_p$ as its only nontrivial cohomology. Even though this resulting complex is no longer an injective resolution, each of its terms is the suspension of an injective unstable module. On the other hand, such an unstable module has a simple injective resolution induced by the Mahowald exact sequences. It turns out that these resolutions suffice to construct an explicit injective resolution for $\Sigma^{t+1} \mathbb{F}_p$ with the help of the Pseudo-hyperresolution method, which is the solution to the following general question.

Question 1. Let \mathcal{C} be an abelian category with enough injective objects and let $M \in \mathcal{C}$ be the only nontrivial cohomology of a certain cochain complex $(A^k, \partial^k)_{k \geq 0}$. Suppose that A^k admits an explicit injective resolution in \mathcal{C} for all $k \geq 0$. Then, is it possible to construct an explicit injective resolution for M, based on these given resolutions of all A^k?

The pseudo-hyperresolution method, as it will be introduced in Section [4] plays an essential role in the present paper. So let recall how it is formulated. An easy way to describe the pseudo-hyperresolution method is to use the Poincaré power series of (co)chain complexes. That is, given a (co)chain complex $(A^k, \partial^k)_{k \geq 0}$, we define its power series $P(A^k, \partial^k)$ as

$$P(A^k, \partial^k) := \sum_{k=0}^{\infty} t^k [A^k],$$

where $[A^k]$ denotes the corresponding class of A^k in the Grothendieck group of \mathcal{C}. The answer to Question 1 now goes as follows.

Pseudo-hyperresolution. Denote by $(I^{k,\bullet}, \partial^{k,\bullet})$ the given injective resolution of A^k for all integers $k \geq 0$. Then, there exists an injective resolution $(J^{\bullet, \delta})$ of M such that

$$P(J^{\bullet, \delta}) = \sum_{k=0}^{\infty} t^k P(I^{k,\bullet}, \partial^{k,\bullet}).$$

Note that, when the length of the (co)chain complex in play is finite, the resulting pseudo-hyperresolution is well-known to algebraists: this resolution is identical to the one obtained using the successive cone technique. However, for infinite-length complexes, algebraists have to use the mapping telescope technique, which yields more complicated resolutions than those induced by the pseudo-hyperresolution method.

Before explaining why the pseudo-hyperresolution method is useful in studying unstable modules, let recall some basic facts about these objects. Note that, most of the methods we use throughout this article works for all prime characteristics. Some particular methods are only treated in characteristic 2, but there is no difficulty extending to all prime characteristics. However, special care is required in dealing with odd prime characteristics. Therefore, they will be studied separately in a subsequent article. Moreover, when it comes to concrete examples and recalls, we always restrict the attention to characteristic 2 for ease of exposition.

The mod 2 Steenrod algebra is the quotient of the free associative unital graded \mathbb{F}_2–algebra generated by the symbols Sq^k of degree $k \geq 0$, subject to the Adem relations. An unstable module M is an \mathbb{N}–graded module over the Steenrod algebra such that for all elements $x \in M$ of degree n, then $Sq^k x = 0$ for all integers $k > n$. This particular property of the Steenrod action is verified by the singular cohomology of a space but not that of a spectrum, whence the appellation unstable. There are two typical families of injective unstable modules. The first one consists of the singular cohomology of elementary abelian 2–groups and the second one consists of the injective envelope $J(n)$ (also known as the n–th Brown-Gitler module) of the reduced singular cohomology of the sphere S^n for all integers $n \geq 0$. The discovery of the first family is not trivial. It is the essential key to the Segal and Sullivan conjectures, two of the great highlights in algebraic topology in the late 1980’s and 1990’s, which led to the establishment of a whole new area within the subject. In fact, Carlsson [7] observed the injectivity of the cohomology $H^* (B\mathbb{Z}/p; \mathbb{F}_p)$ of the classifying space of \mathbb{Z}/p for $p = 2$. Miller [24] then extended this result to all prime p. In [23], Lannes and Zarati made a spectacular contribution to the theory of unstable modules by showing that the tensor product $H^* (BV; \mathbb{F}_2) \otimes J(n)$ remains injective in \mathcal{U} for all elementary abelian p–groups V and all integers $n \geq 0$. Finally, the full characterization of injective unstable modules was achieved in [22], which
Proposition 2.6. Let \((n)\) general, the pseudo-hyperresolution method fails to provide information about differentials. However, in this case, the morphism between two Brown-Gitler modules \(a \) large range. This is carried out with the help of the Bockstein operation of the Steenrod algebra. In fact, recall that the pseudo-hyperresolution method allows to construct for each integer \(n \geq 1\) an explicit injective resolution, then so is its suspension. For instance, the reduced singular cohomology of spheres and that of the infinite complex projective space are such objects. Let \(n \) discuss about the former first.

As \(H^*(S^1; \mathbb{F}_2) \cong J(1)\), and \(\Sigma^* H^*(S^n; \mathbb{F}_2) \cong H^*(S^{n+1}; \mathbb{F}_2) \cong \Sigma^{n+1} \mathbb{F}_2\) for all integers \(n \geq 1\), then the pseudo-hyperresolution method allows to construct for each integer \(n \geq 1\) an explicit injective resolution of \(\Sigma^n \mathbb{F}_2\). In general, the pseudo-hyperresolution method fails to provide information about differentials. However, in this particular case, we have enough control on the resulting resolution of \(\Sigma^n \mathbb{F}_2\) allowing to obtain the minimal one in a large range. This is carried out with the help of the Bockstein operation of the Steenrod algebra. In fact, recall that a morphism between two Brown-Gitler modules \(J(n)\) and \(J(m)\) is determined by a Steenrod operation \(\theta\). As the square power of \(Sq^1\) is trivial, then the sequence \(J(n) \circ Sq^1\) is a complex, which is very close to being exact.

Proposition 2.6. Let \(n \geq 1\) be an integer. Then, the sequence

\[
J(n+2) \oplus \mathcal{J}(n+2) \xrightarrow{(\bullet, 0 \quad 0)} J(n+1) \oplus \mathcal{J}(n+1) \xrightarrow{(\bullet, 0 \quad 0)} J(n) \oplus \mathcal{J}(n)
\]

is exact, where

\[
\mathcal{J}(n) = \begin{cases} J(2k) & \text{if } n+1 = 4k, \\ 0 & \text{otherwise}. \end{cases}
\]

It turns out that this particular long exact sequence agrees with the minimal injective resolution of \(\Sigma^t \mathbb{F}_2\) in a large area:

Theorem 8.3. Let \(n, s, t \geq 0\) be three integers such that \(s > \lfloor n/2 \rfloor\), where \(\lfloor \cdot \rfloor\) denotes the integral part of a number. Then, we have

\[
\Ext^s_{\mathcal{U}}(\Sigma^n \mathbb{F}_2, \Sigma^t \mathbb{F}_2) \cong \begin{cases} \mathbb{F}_2 & \text{if } n = t - s, \\ \mathbb{F}_2 & \text{if } t - s - 1 \equiv 0(4) \text{ and } t - s - 1 = 2n, \\ 0 & \text{otherwise}. \end{cases}
\]

In other words, in this case, the \(s\)-th term of the minimal injective resolution of \(\Sigma^t \mathbb{F}_2\) is isomorphic to

\[
J(t-s) \oplus \mathcal{J}(t-s).
\]

An alternative way to compute \(\Ext^s_{\mathcal{U}}(\Sigma^n \mathbb{F}_2, \Sigma^t \mathbb{F}_2)\) relies on the fact that \(\Hom_{\mathcal{U}}(\Sigma^n \mathbb{F}_2, J(k))\) is isomorphic to \(\mathbb{F}_2\) if \(k = n\) and is trivial otherwise. Therefore, \(\Ext^s_{\mathcal{U}}(\Sigma^n \mathbb{F}_2, \Sigma^t \mathbb{F}_2)\) is isomorphic to \(\mathbb{F}_2^d\), where \(d\) is the number of copies of direct summands of the form \(J(n)\) in the \(s\)-th term of the minimal injective resolution of \(\Sigma^n \mathbb{F}_2\). Because the pseudo-hyperresolution method passes information from the minimal injective resolution of \(\Sigma^n \mathbb{F}_2\) to that of the minimal injective resolution of \(\Sigma^{n+1} \mathbb{F}_2\), then by using Mahowald short exact sequences - which is the algebraic analogue of the James fibrations - we recover the algebraic EHP sequence.

Theorem 9.4. There exists a long exact sequence

\[
E^2_{s-2,t}(S^{2n+1}) \xrightarrow{L^p} E^2_{s,t}(S^n) \xrightarrow{E} E^2_{s,t+1}(S^{n+1}) \xrightarrow{H} E^2_{-1,t}(S^{2n+1})
\]

for all integers \(n \geq 0\) and \(s \geq 2\), where \(E^2_{s,t}(S^n)\) stands for \(\Ext^s_{\mathcal{U}}(\Sigma^n \mathbb{F}_2, \Sigma^t \mathbb{F}_2)\).

In fact, the algebraic EHP sequence exists in a much more general form. Recall that the suspension functor \(\Sigma\) admits a left adjoint, denoted by \(\Omega\). Having observed that the left-derived functors of \(\Omega\), denoted by \(\Omega_{M, N}\) for all integers \(s \geq 0\), are trivial in homological degrees greater than 1, Bousfield showed that there existed an exact sequence

\[
\Ext^s_{\mathcal{U}}(\Omega_1 M, N) \to \Ext^s_{\mathcal{U}}(\Omega M, N) \to \Ext^s_{\mathcal{U}}(M, \Sigma N) \to \Ext^{s+1}_{\mathcal{U}}(\Omega_1 M, N)
\]

for all integers \(s \geq 2\) and all unstable modules \(M, N\). His proof might be well-known to experts, but is not available in the literature. (As pointed out to the author by Hans-Werner Henn, only a compact explanation can...
be found in [27].) Following Singer’s instruction [30], we also recover Bousfield’s proof. Thanks to the generous permission of Bousfield, we give a detailed account of his approach in Section [10].

Another application of the pseudo-hyperresolution method that we discuss in this article is the construction of the Lambda algebra. In stead of studying the minimal injective resolution, we construct for each integer \(t \geq 0 \) a particular injective resolution of \(\Sigma^t F_2 \). These resolutions fit together into a direct systems of which the limit is endowed with the structure of a bigraded differential algebra, which is isomorphic to the Lambda algebra. This construction can then be considered as a special injective resolution of \(\Sigma^\infty F_2 \).

Proposition 6.14. There exists a bigraded differential algebra \((A, d)\) such that

\[
H^{r,s}(A, d) \cong \lim_{n} \text{Ext}_{n}^r(\Sigma^n F_2, \Sigma^{n+s} F_2) .
\]

We now turn to the case of the reduced singular cohomology of the infinite complex projective space. Recall that it is isomorphic to the augmentation ideal of the polynomial algebra on one variable of degree 2. As the cohomology \(H^* (\mathbb{Z}/2; F_2) \) of the classifying space of \(\mathbb{Z}/2 \) is isomorphic to the polynomial algebra on one variable of degree 1, we obtain the following short exact sequence.

\[
0 \to \Sigma^t \tilde{H}^* (\mathbb{C} P^\infty; F_2) \to \Sigma^t \tilde{H} (\mathbb{Z}/2; F_2) \to \Sigma^{t+1} H^* (\mathbb{C} P^\infty; F_2) \to 0.
\]

As a result, \(\Sigma^t \tilde{H}^* (\mathbb{C} P^\infty; F_2) \) is the only nontrivial cohomology of the acyclic cochain complex

\[
\tilde{H} \to \tilde{H}^t \to \cdots \to \tilde{H}^{t+k} \to \tilde{H}^{t+k+1} \to \cdots ,
\]

where \(\tilde{H} \) stands for \(\tilde{H} (\mathbb{Z}/2; F_2) \) and \(H \) stands for \(H^* (\mathbb{Z}/2; F_2) \). As a consequence, we obtain the spectral sequence

\[
E^q_{2,k} := \left\{ \begin{array}{ll}
\text{Ext}^q_{\text{lim}}(\Sigma^n F_2, \Sigma^{n+k} H) & \text{if } k \geq 1, \\
\text{Ext}^q_{\text{lim}}(\Sigma^n F_2, \Sigma^2 H) & \text{if } k = 0.
\end{array} \right. \implies \text{Ext}^{q+k}_{\text{lim}}(\Sigma^n F_2, \Sigma^t \tilde{H}^* (\mathbb{C} P^\infty; F_2)) .
\]

Moreover, because of the characterization of injective unstable modules (see, e.g., [22]), then the tensor product of an explicit injective resolution of \(\Sigma^{t+k} F_2 \) with \(H \) (or \(\tilde{H} \)) yields an explicit injective resolution of \(\Sigma^{t+k} H \) (or \(\Sigma^{t+k} \tilde{H} \)). Therefore, in view of pseudo-hyperresolution method, \(\Sigma^t \tilde{H}^* (\mathbb{C} P^\infty; F_2) \) admits an explicit injective resolution. By inspecting this resolution, we show that the spectral sequence \((1.2)\) collapses at the \(E_2 \)-term, giving rise to the isomorphism

\[
\text{Ext}^*_{\text{lim}}(\Sigma^n F_2, \Sigma^t \tilde{H}^* (\mathbb{C} P^\infty; F_2)) \cong \text{Ext}^*_{\text{lim}}(\Sigma^n F_2, \Sigma^2 H) \oplus \bigoplus_{m=1}^s \text{Ext}^{*+m}_{\text{lim}}(\Sigma^n F_2, \Sigma^{t+m} H) .
\]

As \(H \) is isomorphic to \(\tilde{H} \oplus F_2 \) and \(\text{Hom} (\Sigma^n F_2, \tilde{H} \oplus J(k)) \cong 0 \) for all integers \(n, k \geq 0 \), then we obtain the following \(F_2 \)-isomorphism.

Theorem 11.3. For all integers \(s \geq 0 \), we have

\[
\text{Ext}^s_{\text{lim}}(\Sigma^n F_2, \Sigma^t \tilde{H}^* (\mathbb{C} P^\infty; F_2)) \cong \bigoplus_{m=1}^s \text{Ext}^{*+m}_{\text{lim}}(\Sigma^n F_2, \Sigma^{t+m} F_2) .
\]

The intrigued readers might wonder what is the interest in studying such a relation. Here is the reason. Because, on the one hand, there exists a spectral sequence

\[
E^s_{2,t} := \text{Ext}^s_{\text{lim}}(\Sigma^n F_2, \Sigma^t \tilde{H}^* (\mathbb{C} P^\infty; F_2)) \implies \pi_{t-s} (\text{Map}_* (\mathbb{C} P^\infty, \mathbb{S}^n)) ,
\]

where \((-)^{\wedge}\) denotes the profinite completion of a topological space, and on the other hand, the mapping space \(\text{Map}_* (\mathbb{C} P^\infty, \mathbb{S}^n) \) is contractible (see, e.g., [55] [29]), then the isomorphism \((1.4)\) is of interest as it might give new information about the groups \(\text{Ext}_{\text{lim}}^s (\Sigma^n F_2, \Sigma^t F_2) \).

Despite its origin, pseudo-hyperresolution generalizes to all abelian categories. Of particular interest is the category of strict polynomial functors, which is closely related to the category of unstable modules (see, e.g., [16] [33]). The notion of a strict polynomial functor, as it is introduced in [15], plays a central role in the proof of Friedlander and Suslin that for a finite group scheme \(G \) and a finite dimensional rational module \(M \), then \(H^* (G; k) \) is an algebra of finite type and \(H^* (G; M) \) is a module of finite type over \(H^* (G; k) \), where \(k \) is a finite field. A strict polynomial functor is a functor from the category of \(k \)-vector spaces of finite dimension to the category of \(k \)-vector spaces such that for all couple of \(k \)-vector spaces \((V, W)\), the structural morphism from
\[\text{Hom}_k (V, W) \] to \[\text{Hom}_k (F(V), F(W)) \] is a scheme morphism. Here, we identify a \(k \)-vector space \(V \) with the affine scheme \(\text{Spec} (S^*(V^2)) \), where \((-)^\sharp \) denotes the \(k \)-linear dual and \(S^* \) denotes the symmetric algebra. Let \(\text{Sch}/k \) denote the category of schemes over \(k \). Because

\[\text{Hom}_{\text{Sch}/k} (\text{Spec} (S^*(X^2)), \text{Spec} (S^*(Y^2))) \cong S^*(X^2) \otimes Y \]

for all \(k \)-vector spaces \(X \) and \(Y \), then we define a scheme map \(p : X \to Y \) to be homogeneous of degree \(d \) if it belongs to \(S^d (X^2) \otimes Y \). And then, a strict polynomial functor is defined to be homogeneous of degree \(d \) if its structural morphisms are homogeneous of the same degree. Denote by \(\mathcal{P}_k \) the full subcategory of homogeneous strict polynomial functors of degree \(d \). Then, \(\mathcal{P}_k \cong \bigoplus_{d \geq 0} \mathcal{P}_{k,d} \). In this article, we focus on the applications of the pseudo-hyperresolution method to strict polynomial functors in characteristic 2.

Typical examples of strict polynomial functors are given by the symmetric powers \(S^n \), the exterior powers \(\Lambda^n \), and the divided power \(\Gamma^n \) for all integers \(n \geq 0 \). The category \(\mathcal{P}_2 \) is well-known for its computability as the injective and the projective objects are well understood. Each injective strict polynomial functor is isomorphic to a direct sum of functors of the form \(S^{\lambda_1} \otimes S^{\lambda_2} \otimes \cdots \otimes S^{\lambda_k} \), and each projective one is isomorphic to a direct sum of functors of the form \(\Gamma^{\lambda_1} \otimes \Gamma^{\lambda_2} \otimes \cdots \otimes \Gamma^{\lambda_k} \), where \((\lambda_1, \lambda_2, \ldots, \lambda_k) \in \mathbb{N}^\times k \). Now, the pseudo-hyperresolution method finds its place in the category of strict polynomial functors because of the Koszul exact sequences, which connect the exterior power functors to the symmetric and the divided ones:

\[
\begin{array}{cccccccc}
0 & \to & \Lambda^n & \to & \Lambda^{n-1} \otimes S^1 & \to & \Lambda^2 \otimes S^2 & \to & \cdots & \to & \Lambda^1 \otimes S^{n-1} & \to & S^n & \to & 0 \\
0 & \to & \Gamma^n & \to & \Gamma^{n-1} \otimes \Lambda^1 & \to & \Gamma^2 \otimes \Lambda^2 & \to & \cdots & \to & \Gamma^1 \otimes \Lambda^{n-1} & \to & \Lambda^n & \to & 0.
\end{array}
\]

As \(S^1 = \Gamma^1 = \Lambda^1 \), then these functors are both injective and projective. Therefore, an easy induction on \(d \) using the pseudo-hyperresolution method allows to construct for each integer \(d \geq 1 \) an explicit (projective) injective resolution of \(\Lambda^d \). Similarly, we can construct for each integer \(d \geq 0 \) an explicit injective resolution of \(\Gamma^d \) and an explicit projective resolution of the functor \(S^d \). These resolutions allow to show that the injective dimension of a projective strict polynomial functor of degree \(d \) is bounded by \(2d - 2k \) and the projective dimension of an injective one is also bounded by the same number, where \(k \) is the number of nontrivial \(2 \)-adic digits of \(d \). This concludes the global dimension of the category \(\mathcal{P}_{F_2,d} \).

Theorem 5.19 Let \(d \geq 1 \) be an integer and let \(\sum_{i=1}^{n} 2^{n_i} \) be its \(2 \)-adic expression. Then, the global dimension of \(\mathcal{P}_d \) is \(2d - 2k \).

One of the most fundamental notion in the theory of strict polynomial functors is the Frobenius twist. Let \(I = \Gamma^1 \), then we define the Frobenius twist of \(I \), denoted by \(I^{(1)} \), as the strict polynomial functor that associates an \(F_2 \)-vector space \(V \) to the \(F_2 \)-vector space \(V^{(1)} \), which is obtained from \(V \) by base change along the Frobenius map \(F_2 \to F_2, x \to x^2 \). Then, we define the Frobenius twist of a functor \(F \), denoted by \(F^{(1)} \), as the precomposition \(F \circ I^{(1)} \). The Frobenius twist is of great importance in studying strict polynomial functors for many reasons that will recall in Section 5. For instance, as the Frobenius twist is exact, then it induces the morphism

\[
\text{Ext}^*_\mathcal{P}_2 \left(I^{(r)}, I^{(r)} \right) \to \text{Ext}^*_\mathcal{P}_2 \left(I^{(r+1)}, I^{(r+1)} \right)
\]

for all integers \(r \geq 0 \). Here \(I^{(r)} \) is defined recursively by \(I^{(r)} = (I^{(r-1)})^{(1)} \). The colimit of \(\text{Ext}^*_\mathcal{P}_2 \left(I^{(r)}, I^{(r)} \right) \) with respect to the direct system induced by the morphisms \(\mathcal{P}_2 \to \mathcal{P}_2 \) is of great interest as it is isomorphic to the Mac Lane cohomology \(\text{HML}^* (F_2) \) of the field \(F_2 \) (see, e.g., [13]). It follows that the computation of \(\text{HML}^* (F_2) \) can be deduced from that of \(\text{Ext}^*_\mathcal{P}_2 \left(I^{(r)}, I^{(r)} \right) \) for all integers \(r \geq 0 \), which, in turn, can be carried out by constructing explicit injective resolutions of \(I^{(r)} \). Now, recall that the Frobenius twist plays a similar role to the injective strict polynomial functors as the suspension functor does to injective unstable modules. In fact, the Frobenius twist of an injective object of \(\mathcal{P}_2 \) is no longer injective, but admits an explicit injective resolution thanks to the following exact sequence:

\[
0 \to S^{d(1)} \to S^{2d} \to S^{2d-1} \otimes S^1 \to S^{2d-2} \otimes S^2 \to \cdots \to S^1 \otimes S^{2d-1} \to S^{2d} \to 0.
\]

Therefore, in view of pseudo-hyperresolution method, \(I^{(r)} \) has an explicit injective resolution for all integers \(r \geq 1 \). This allows to show that

\[
\text{Ext}^k_\mathcal{P}_2 \left(I^{(r)}, I^{(r)} \right) \cong \begin{cases} F_2 & \text{if } 2 \mid k, \text{ and } k \leq 2^{r+1} - 2, \\ 0 & \text{otherwise,} \end{cases}
\]

which allows recovery of the Mac Lane cohomology of \(F_2 \):
Theorem 5.10. We have

\[\text{HML}^k(F_2, I) \cong \begin{cases} F_2 & \text{if } 2 \mid k, \\ 0 & \text{otherwise}. \end{cases} \]

The paper is organized as follows:

Section 2 recalls basic facts about the Steenrod algebra and unstable modules. We also give a brief account of the Brown-Gitler modules and show how to fit them together into the long exact sequence that we call the Bockstein sequence.

Section 3 introduces the notion of a graph representation of complexes, which facilitates the presentation of our exposition.

Section 4 is at the heart of the present paper as it settles down the notion of a pseudo-hyperresolution. We begin this section with a simple example that motivates our study, and generalize the idea to the most general context.

Section 5 aims at providing applications of the pseudo-hyperresolution method in functor homology. It is in this section that we recover the Mac Lane cohomology of finite fields as well as the global dimension of the category of homogeneous strict polynomial functors of finite degree.

Section 6 covers the construction of the Lambda algebra. It will be carried out with the help of the graph representation of complexes that we introduce in Section 3.

Sections 7 and 8 deal with the minimal injective resolution of the reduced singular cohomology of spheres. This will be done by studying the Bockstein sequence introduced in Section 2.

Section 9 provides our approach to the algebraic EHP sequence and Section 10 recalls that of Bousfield.

Section 11 studies the minimal injective resolution of the infinite complex projective space and its relation to that of spheres.

2 The Steenrod algebra and Brown-Gitler modules

The Steenrod algebra. The mod 2 Steenrod algebra \(A_2\) is the quotient of the free associative unital graded \(F_2\)–algebra generated by the symbols \(Sq^k\) of degree \(k \geq 0\), subject to the Adem relations:

\[Sq^i Sq^j = \sum_{t=0}^{[\frac{j}{2}]} \binom{(j-t)-1}{i-2t} Sq^{i+j-t} Sq^t \]

for all integers \(i \leq 2j\), and \(Sq^0 = 1\) \[31, 28\]. Here, \([-\] \]) stands for the integral part of a number.

An \(\mathbb{N}\)–graded \(A_2\)–module \(M\) is called unstable if \(Sq^k x = 0\) for all \(x \in M^n\) and all \(k > n\). We denote by \(\mathcal{U}\) the category of unstable modules. Serre \[29\] introduced the notions of admissible and excess. A monomial

\[Sq^{i_1} Sq^{i_2} \ldots Sq^{i_k} \]

is called admissible if \(i_j \geq 2i_{j+1}\) for all \(k - 1 \geq j \geq 1\) and \(i_k \geq 1\); the excess of this operation is defined by

\[e\left(Sq^{i_1} Sq^{i_2} \ldots Sq^{i_k}\right) = 2i_1 - \left(\sum_{j=1}^{k} i_j\right). \]

The set of admissible monomials and \(Sq^0\) is an \(F_2\)–basis of \(A_2\).

Projective unstable modules. Recall that the functor that associates an unstable module with the \(F_2\)–vector space of its elements of degree \(n\) is representable and we denote by \(F(n)\) the representing unstable module. Hence, \(F(n)\) is freely generated by an element \(\tau_n\) of degree \(n\). Therefore, if \(M\) is an unstable module, then the morphism

\[\bigoplus_{n} \bigoplus_{x \in M^n} F(n) \to M, \quad \tau_n \mapsto x \]

is surjective. It follows that the modules \(F(n), n \geq 0\), form a system of projective generators of \(\mathcal{U}\).

Brown-Gitler modules. The category \(\mathcal{U}\) also has enough injective objects. The Brown-Gitler module \(J(n)\) is the unstable injective hull of the mod 2 reduced cohomology \(\Sigma^n F_2\) of the sphere \(S^n\). It is a coyclic unstable module, cogenerated by an element of degree \(n\). The modules \(J(n), n \geq 0\), are injective satisfying
The suspension functor Σ admits a right adjoint, denoted by $\tilde{\Sigma}$. Let M be the endofunctor of U which associates a homogeneous element $x \in M^n$ of an unstable module M with the element $Sq^{[x]}x$. The action of the Steenrod algebra on Φ is determined by λ_n for all integers n, we denote by Φ the morphism defined by:

$$\lambda_n : \Phi M \to M, \quad \Phi x \mapsto Sq^n x.$$

The morphism λ_n is natural in M. There exists a right adjoint $\tilde{\Phi}$ of Φ [28]. Therefore, adjoint to λ_n, there exists a morphism $\tilde{\lambda}_n : M \to \tilde{\Phi} M$, natural in M. An unstable module M is reduced if λ_n is injective (this is slightly different for odd prime characteristic, see, e.g., [28]). It is called nilpotent if for all $x \in M^n$, there exists an integer $n_x \geq 1$ such that $Sq^{n_x} x = 0$. By definition, there is no nontrivial morphism from a nilpotent unstable module to a reduced one.

The suspension functor and Mahowald’s short exact sequences.

Let M be the endofunctor of U which associates a homogeneous element $x \in M^n$ of an unstable module M with the element $Sq^{[x]}x$. The action of the Steenrod algebra on Φ is determined by λ_n for all integers n, we denote by Φ the morphism defined by:

$$\lambda_n : \Phi M \to M, \quad \Phi x \mapsto Sq^n x.$$

The morphism λ_n is natural in M. There exists a right adjoint $\tilde{\Phi}$ of Φ [28]. Therefore, adjoint to λ_n, there exists a morphism $\tilde{\lambda}_n : M \to \tilde{\Phi} M$, natural in M. An unstable module M is reduced if λ_n is injective (this is slightly different for odd prime characteristic, see, e.g., [28]). It is called nilpotent if for all $x \in M^n$, there exists an integer $n_x \geq 1$ such that $Sq^{n_x} x = 0$. By definition, there is no nontrivial morphism from a nilpotent unstable module to a reduced one.

The suspension functor and Mahowald’s short exact sequences.

Let Σ be the endofunctor of U which associates a homogeneous element $x \in M^n$ of an unstable module M with the element $Sq^{[x]}x$. The action of the Steenrod algebra on Φ is determined by λ_n for all integers n, we denote by Φ the morphism defined by:

$$\lambda_n : \Phi M \to M, \quad \Phi x \mapsto Sq^n x.$$

The morphism λ_n is natural in M. There exists a right adjoint $\tilde{\Phi}$ of Φ [28]. Therefore, adjoint to λ_n, there exists a morphism $\tilde{\lambda}_n : M \to \tilde{\Phi} M$, natural in M. An unstable module M is reduced if λ_n is injective (this is slightly different for odd prime characteristic, see, e.g., [28]). It is called nilpotent if for all $x \in M^n$, there exists an integer $n_x \geq 1$ such that $Sq^{n_x} x = 0$. By definition, there is no nontrivial morphism from a nilpotent unstable module to a reduced one.

The suspension functor and Mahowald’s short exact sequences.

Let Σ be the endofunctor of U which associates a homogeneous element $x \in M^n$ of an unstable module M with the element $Sq^{[x]}x$. The action of the Steenrod algebra on Φ is determined by λ_n for all integers n, we denote by Φ the morphism defined by:

$$\lambda_n : \Phi M \to M, \quad \Phi x \mapsto Sq^n x.$$

The morphism λ_n is natural in M. There exists a right adjoint $\tilde{\Phi}$ of Φ [28]. Therefore, adjoint to λ_n, there exists a morphism $\tilde{\lambda}_n : M \to \tilde{\Phi} M$, natural in M. An unstable module M is reduced if λ_n is injective (this is slightly different for odd prime characteristic, see, e.g., [28]). It is called nilpotent if for all $x \in M^n$, there exists an integer $n_x \geq 1$ such that $Sq^{n_x} x = 0$. By definition, there is no nontrivial morphism from a nilpotent unstable module to a reduced one.

The suspension functor and Mahowald’s short exact sequences.

Let Σ be the endofunctor of U which associates a homogeneous element $x \in M^n$ of an unstable module M with the element $Sq^{[x]}x$. The action of the Steenrod algebra on Φ is determined by λ_n for all integers n, we denote by Φ the morphism defined by:

$$\lambda_n : \Phi M \to M, \quad \Phi x \mapsto Sq^n x.$$

The morphism λ_n is natural in M. There exists a right adjoint $\tilde{\Phi}$ of Φ [28]. Therefore, adjoint to λ_n, there exists a morphism $\tilde{\lambda}_n : M \to \tilde{\Phi} M$, natural in M. An unstable module M is reduced if λ_n is injective (this is slightly different for odd prime characteristic, see, e.g., [28]). It is called nilpotent if for all $x \in M^n$, there exists an integer $n_x \geq 1$ such that $Sq^{n_x} x = 0$. By definition, there is no nontrivial morphism from a nilpotent unstable module to a reduced one.

The suspension functor and Mahowald’s short exact sequences.

Let Σ be the endofunctor of U which associates a homogeneous element $x \in M^n$ of an unstable module M with the element $Sq^{[x]}x$. The action of the Steenrod algebra on Φ is determined by λ_n for all integers n, we denote by Φ the morphism defined by:

$$\lambda_n : \Phi M \to M, \quad \Phi x \mapsto Sq^n x.$$

The morphism λ_n is natural in M. There exists a right adjoint $\tilde{\Phi}$ of Φ [28]. Therefore, adjoint to λ_n, there exists a morphism $\tilde{\lambda}_n : M \to \tilde{\Phi} M$, natural in M. An unstable module M is reduced if λ_n is injective (this is slightly different for odd prime characteristic, see, e.g., [28]). It is called nilpotent if for all $x \in M^n$, there exists an integer $n_x \geq 1$ such that $Sq^{n_x} x = 0$. By definition, there is no nontrivial morphism from a nilpotent unstable module to a reduced one.
Corollary 2.4. Let \(\sum_{i=1}^{d} 2^{j_i} \) be the 2-adic expression of \(n \). Then, we have

\[
J(n)^n = \mathbb{F}_2 \langle x_0^n \rangle , \\
J(n)^d = \mathbb{F}_2 \left\langle \prod_{i=1}^{d} x_{j_i} \right\rangle , \\
J(n)^m = 0 \text{ if either } m > n \text{ or } d > m.
\]

The Bockstein long exact sequence. Because the square of the Bockstein operation is trivial, the sequence \((J(n), \bullet Sq^1 : J(n + 1) \to J(n))^{n \geq 1}\) is a complex, which is close to being exact. In fact, we can modify this complex to obtain an exact sequence.

Definition 2.5 (The Bockstein sequence). Let \((\mathcal{B}_k, \beta_k) \) be the following complex:

\[
\mathcal{B}_n = \begin{cases}
J(4k - 1) \oplus J(2k) & \text{if } n = 4k - 1 \text{ and } n > 0, \\
J(n) & \text{if } n \not\equiv 0(4) \text{ and } n > 0, \\
0 & \text{otherwise}.
\end{cases}
\]

\[
\beta_n = \begin{cases}
\bullet Sq^1 & \text{if } n = 4k - 1 \text{ and } n > 0, \\
\bullet Sq^2 & \text{if } n = 4k \text{ and } n > 0, \\
0 & \text{if } 0 \leq n, \\
\bullet Sq^1 & \text{otherwise}.
\end{cases}
\]

We call this complex the Bockstein sequence of Brown-Gitler modules.

Proposition 2.6. The Bockstein sequence is exact.

Proof. We observe that an element \(x \in J(n) \) belongs to \(\text{Ker} (\bullet Sq^1 : J(n) \to J(n - 1)) \) if and only if there exists an admissible Steenrod operation

\[
\theta = Sq^{2k_1} Sq^{k_2} \cdots Sq^{k_m}
\]

such that \(e(\theta) \leq |x|, 4k_1 < n \), and \(\theta x = x_0^n \). Remark that \(e(\theta) = |x| \) if and only if \(n = 4k_1 \). Therefore,

\[
e(Sq^1 \theta) \leq |x| \text{ if } 4 \nmid n,
\]

\[
e(Sq^1 \theta) > |x| \text{ otherwise}.
\]

It means that if \(n \) is not divisible by 4, then

\[
\text{Ker} (\beta_n) = \text{Im} (\beta_{n-1}).
\]

It remains to show that

\[
\text{Ker} (\beta_{-4k+1}) = \text{Im} (\beta_{-4k})
\]

for all integers \(k \geq 1 \). This amounts to saying that all element of \(J(2k) \subset \mathcal{B}_{4k-1} \) is a co-boundary. But this comes from the surjectivity of the map \(\bullet Sq^{2k} : J(4k) \to J(2k) \), which is a direct consequence of Theorem 2.1. \(\square \)

3 Graph representation of complexes

In this section, we introduce the notion of graph representation of complexes. In other words, we show how to associate a complex with an appropriate graph with respect to a certain decomposition.

3.1 Graph representation

In all abelian category, a morphism between two direct sums of objects can be represented by matrix: let

\[
f : \bigoplus_{i=1}^{n} M_i \to \bigoplus_{j=1}^{m} N_j
\]

be such a morphism, then we represent \(f \) as an \(m \times n \) matrix \(M_f = \{ f_{ij} \} \), where \(f_{ij} \) denotes the induced morphism \(M_j \to N_i \). It is sometimes convenient to represent such a morphism as a bipartite graph with two disjoint sets of vertices \(M, N \) indexed by \(M_i \) and \(N_j \) respectively, and the edges are determined by the matrix \(M_f \).
Example 3.1. The morphism

\[
\begin{pmatrix}
\cdot Sq^1 & 0 \\
\cdot Sq^2,1 & \\
0 & \cdot Sq^3 \\
\end{pmatrix}
: J(7) \oplus J(6) \to J(6) \oplus J(4) \oplus J(3)
\]

is represented as follows:

\[\text{Diagram with vertices and edges representing the morphism.}\]

Definition 3.2. Let \((C^k, \partial^k)\) be a cochain complex. Suppose that each \(C^k\) admits a decomposition

\[C^k \cong \bigoplus_{\alpha \in A_k} C^k_{\alpha}\] \hspace{1cm} (3.1)

and denote by \(M_{\alpha^k}\) the corresponding matrix representing \(\partial^k\). Then, the graph associated with \((C^k, \partial^k)\) with respect to the decomposition \[(3.1)\] is defined as follows:

1. The set of vertices is the disjoint union of \(V_k\) indexed by \(A_k\):
 \[V_k := \{v_{\alpha}^k | \alpha \in A_k\}.\]

2. The set of edges is the disjoint union of \(E_k\) containing edges from \(V_k\) to \(V_{k+1}\) determined by the matrix \(M_{\alpha^k}\):
 \[E_k := \left\{ \left[v_{\alpha}^k, v_{\beta}^{k+1} \right] | 0 \neq \partial_{\beta,\alpha}^k : C^k_{\alpha} \to C^{k+1}_{\beta} \right\}. \]

We write \([v_{\alpha}^k, v_{\beta}^{k+1}] = \partial_{\beta,\alpha}^k\), with the convention that \([v_{\alpha}^k, v_{\beta}^{k+1}] = 0\) means there is no edge between \(v_{\alpha}^k\) and \(v_{\beta}^{k+1}\).

3.2 Graph representation of resolutions

We now consider some particular complexes of unstable modules and their graph representation.

Definition 3.3 (BG modules and BG complexes). A BG module is a direct sum of Brown-Gitler modules, and a complex of BG modules is called a BG complex.

Definition 3.4. Let \(f : \bigoplus_{\alpha \in A} J(n_{\alpha}) \to \bigoplus_{\beta \in B} J(m_{\beta})\) be a morphism between BG modules, and let

\[M_f = \{f_{\beta,\alpha} : J(n_{\alpha}) \to J(m_{\beta})\}\]

be its representing matrix. We define \(\bar{f}\) to be the morphism with the same source and target as those of \(f\), but the representing matrix is obtained from that of \(f\) by identifying all \(f_{\beta,\alpha}\) with 0 whenever \(f_{\beta,\alpha}\) is not the identity map \(\cdot Sq^0\).

The following lemma is straightforward.

Lemma 3.5. Let \((I^*, \partial^*)\) be a BG complex, then so is \((I^*, \bar{\partial}^*)\).

Definition 3.6. Under the same hypothesis as that of Lemma 3.5, we denote by \(G(I^*, \bar{\partial}^*)\) the associated graph with respect to the decomposition of \(I^*\) as direct sum of Brown-Gitler modules. We define \(R(I^*, \bar{\partial}^*)\) to be the bigraded \(\mathbb{F}_2\)-vector space generated by the vertices of \(G(I^*, \bar{\partial}^*)\), where \(v \in V_r(G(I^*, \bar{\partial}^*))\) is of bidegree \((r, s)\) if \(v\) is indexed by a direct summand of the form \(J(s)\). We call this the BG degree of \(v\) and denote it by \(|v| = (|v|_1, |v|_2)\), where \(|v|_1 = r\) and \(|v|_2 = s\).

We now show how to relate Ext-groups of unstable modules to the graph representation of resolutions. The following lemma is the key to our construction of the Lambda algebra in Section 6.
Lemma 3.7. Let \(M \) be a finite unstable module. Then, \(M \) admits an injective resolution \((I^*, \partial^*)\) of finite length such that each \(I^k \) is a finite BG module for all \(k \geq 0 \). Moreover, we have

\[
H^{r,s}(R(I^*, \partial^*)) \cong \text{Ext}^r_{\mathcal{U}}(\Sigma^sF_2, M)
\]

for all integers \(r, s \geq 0 \).

Proof. Denote by \(d(M) \) the least degree \(n \) such that \(M^k = 0 \) for all \(k > n \). The existence of such an injective resolution \((I^*, \partial^*)\) can be proved by induction on the degree \(d(M) \). We now show that the isomorphism (3.2) holds. Indeed, for all integers \(r, s \geq 0 \), we have

\[
\text{Ext}^r_{\mathcal{U}}(\Sigma^sF_2, M) \cong H^r\text{Hom}_{\mathcal{U}}(\Sigma^sF_2, (I^*, \partial^*))
\]

\[
\cong H^r\text{Hom}_{\mathcal{U}}(\Sigma^sF_2, (I^*, \partial^*))
\]

\[
\cong H^{r-s}(R(I^*, \partial^*))
\]

whence the conclusion. \(\square \)

4 Pseudo-hyperresolutions

Constructing resolutions is one of the most basic problems in homological algebra. This section aims to study a certain class of objects whose resolutions can be made explicit. We begin with some elementary examples which are the origin of the present paper.

Recall that the groups \(\text{Ext}^*_{\mathcal{U}}(\Sigma^nF_2, \Sigma^nF_2) \) are of interest because of the unstable Adams spectral sequence computing the 2-component of the homotopy groups of spheres. Therefore, it is natural to search for explicit injective resolutions of \(\Sigma^nF_2 \) in the category \(\mathcal{U} \). The cases \(n = 0 \) and \(n = 1 \) are trivial since \(\Sigma^nF_2 \cong J(n) \) in these cases. As a result, the Mahowald short exact sequence

\[
0 \rightarrow \Sigma J(1) \rightarrow J(2) \rightarrow J(1) \rightarrow 0
\]

(4.1)

is an injective resolution of \(\Sigma^2F_2 \). In order to construct an injective resolution for \(\Sigma^3F_2 \), we apply the suspension functor \(\Sigma \) to the sequence (4.1) and then obtain another exact sequence. But, this is no longer a resolution. However, we have the following commutative diagram.

\[
\begin{array}{c}
\Sigma^2J(1) \rightarrow \Sigma J(2) \rightarrow \Sigma J(1) \rightarrow 0 \\
\downarrow \Sigma(\cdot Sq^1) \downarrow \downarrow \downarrow \\
J(3) \rightarrow J(2) \rightarrow J(1) \\
0 \rightarrow J(1)
\end{array}
\]

(4.2)

Consequently, the total complex of the commutative square (4.2) is an injective resolution of \(\Sigma^3F_2 \).

The above examples lead to the following question.

Question 2. Let \(M \) be an object in an abelian category \(\mathcal{C} \) such that:

- The category \(\mathcal{C} \) has enough projective (injective) objects.
- There exists an acyclic complex in \(\mathcal{C} \) such that its only nontrivial (co-)homology is isomorphic to \(M \), and that each term of the complex admits an explicit projective (injective) resolution.

Is it possible to construct an explicit resolution for \(M \)?

The construction of an explicit resolution for such an object \(M \) is the main goal of this section, and the results are stated in Propositions 4.4 and 4.5.

Throughout this section, a complex refers to a cohomological one unless otherwise stated.
4.1 The local-to-global principle

The construction of an explicit resolution for such an object \(M \) in Question 2 will be carried out by a local-to-global principle. In other words, for all integers \(n \geq 0 \), we construct an acyclic complex \((I^k(n), \partial^k(n)) \) such that:

1. The only nontrivial cohomology of this complex is \(M \).
2. The term \(I^k(n) \) is injective for all \(k \leq n \).
3. We have \(I^k(n) = I^k(n+1) \) for all \(k \leq n \).

Therefore, by letting \(n \) tend to infinity, we obtain an injective resolution of \(M \). Before formulating the principle, we need the following key lemma.

Lemma 4.1. In an abelian category, if the sequence

\[
E_1 \xrightarrow{f_1} E_2 \oplus M \xrightarrow{(g_1, g_2 \circ id)} E_3 \oplus M \xrightarrow{f_3} E_4
\]

is exact at \(E_2 \oplus M \) and \(E_3 \oplus M \), then the sequence

\[
E_1 \xrightarrow{f_1} E_2 \xrightarrow{g_1 + g_2 \circ g_3} E_3 \xrightarrow{f_3} E_4
\]

is exact at \(E_2 \) and \(E_3 \).

Proof. Note that the diagram

\[
\begin{array}{ccc}
0 & \rightarrow & M \\
E_1 \xrightarrow{f_1} E_2 \oplus M \xrightarrow{(id, 0)} E_3 \oplus M \xrightarrow{(id, g_2)} E_4 \\
E_1 \xrightarrow{f_1} E_2 \xrightarrow{g_1 + g_2 \circ g_3} E_3 \xrightarrow{f_3} E_4 \\
\end{array}
\]

is commutative, and each of its columns is exact. As the first two upper rows are exact at the second and the third terms, then so is the last row. \(\square \)

The argument now goes as follows.

Lemma 4.2. In an abelian category with enough injective objects, let \((M^k, \tau^k : M^k \rightarrow M^{k+1}, k \geq 0) \) be an acyclic complex, and let \(M \) be its only nontrivial cohomology. Denote by \(I^k \) an injective object containing \(M^k \) and by \(p^k \) the induced projection \(I^k \rightarrow I^k/M^k \). Then, for all integers \(k \geq 0 \), there exist morphisms

\[
\theta^k : I^k \rightarrow I^{k+1}, \quad \delta^k : \frac{I^k}{M^k} \rightarrow I^{k+2}, \quad \omega^k : \frac{I^k}{M^k} \rightarrow \frac{I^{k+1}}{M^{k+1}}
\]

such that the morphisms \(\left(\frac{\theta^k\delta^k\omega^k}{p^k} \right) \) for all integers \(k \geq 1 \), denoted by \(\partial \), and \(\left(\frac{\partial^k}{p^k} \right) \), denoted by \(\partial^0 \), make the sequence

\[
0 \rightarrow M \rightarrow I^0 \xrightarrow{\partial^0} I^1 \oplus \frac{I^0}{M^0} \xrightarrow{\partial^1} \cdots \xrightarrow{\partial^t} I^{t+1} \oplus \frac{I^t}{M^t} \xrightarrow{\partial^{t+1}} \cdots
\]

an exact complex.

Proof. For all integers \(k \geq 0 \), denote by \(i^k \) the inclusion \(M^k \rightarrow I^k \). Because \(I^k \) is injective for all integers \(k \geq 0 \), the \(\tau^k \) gives rise to a morphism \(\theta^k : I^k \rightarrow I^{k+1} \) such that

\[
\theta^k \circ i^k = i^{k+1} \tau^k.
\]

As \(\theta^{k+1} \circ \theta^k \circ i^k \) is trivial for all integers \(k \geq 0 \), there exists a morphism \(\delta^k : I^k/M^k \rightarrow I^{k+2} \) such that

\[
\delta^k \circ p^k = \theta^{k+1} \circ \theta^k.
\]

Denote by

\[
\omega^k : \frac{I^k}{M^k} \rightarrow \frac{I^{k+1}}{M^{k+1}}
\]
the morphism induced by \(\theta^k \) for all integers \(k \geq 0 \). Then, \((\rho^k, k \geq 0)\) is a morphism of complexes:

\[
\left(I^k, \theta^k, k \geq 0 \right) \rightarrow \left(\frac{I^k}{M^k}, \omega^k, k \geq 0 \right).
\]

Denote by \(K^l \) the direct sum \(I^l \oplus I^{l+1} \) for all integers \(l \geq 1 \), and by \(K^0 \) the module \(I^0 \). Then, the morphisms

\[
\beta^0 = \left(\phi^0, \phi^0 \right), \quad \beta^l = \left(\phi^{l+1}, \phi^{l+1} \right), \quad l \geq 1,
\]

make \((K^l, \beta^l : K^l \rightarrow K^{l+1}, l \geq 0)\) a complex. Denote by \(H^l \) the direct sum \(I^{l+1} \oplus I^l / M^l \) for all integers \(l \geq 1 \), and denote by \(H^0 \) the module \(I^0 / M^0 \). Then, the morphisms

\[
\gamma^0 = \left(\phi^0 \right), \quad \gamma^k = \left(\phi^{k+1}, \phi^{k+1} \right), \quad k \geq 1,
\]

make \((H^k, \gamma^k, k \geq 0)\) a complex. For all integers \(k \geq 1 \), we fix:

\[
\eta^0 = \iota^0, \quad \eta^k = \left(\iota^k \right), \quad \chi^0 = \rho^0, \quad \chi^k = \left(\rho^{k+1}, \rho \right).
\]

Then, the sequence

\[
0 \rightarrow M^k \xrightarrow{\eta^k} K^k \xrightarrow{\chi^k} H^k \rightarrow 0
\]

is exact for all integers \(k \geq 0 \). Since \((\eta^l, l \geq 0)\) and \((\chi^l, l \geq 0)\) are morphisms of complexes we obtain the double complex

\[
\begin{array}{cccccc}
K^0 & \beta^0 & K^1 & \beta^1 & \cdots & \beta^{n-2} & K^{n-1} & \beta^{n-1} & \cdots \\
\downarrow \gamma^0 & \downarrow \gamma^1 & \downarrow \gamma^1 & \cdots & \downarrow \gamma^{n-2} & \downarrow \gamma^{n-1} & \cdots \\
H^0 & \chi^0 & H^1 & \chi^1 & \cdots & \chi^{n-2} & H^{n-1} & \chi^{n-1} & \cdots \\
\end{array}
\]

(4.4)

where all the columns are acyclic. As the sequence \((M^k, \tau^k : M^k \rightarrow M^{k+1}, k \geq 0)\) is also acyclic, using standard spectral sequence arguments for double complexes, it is straightforward that the total complex of the double complex (4.3) is acyclic and its only nontrivial cohomology is \(M \). By applying Lemma 4.1 to this acyclic sequence, we obtain the exact sequence 4.3.

By the same method, we can prove the following generalized version of Lemma 4.2 which does not require complexes to be bounded below.

Corollary 4.3. In an abelian category with enough injectives, let \((M^k, \tau^k : M^k \rightarrow M^{k+1})\) be a complex. Denote by \(I^k \) an injective object containing \(M^k \), and denote by \(p^k \) the induced projection \(I^k \rightarrow I^k / M^k \). Then, for all integers \(k \), there exist morphisms

\[
\theta^k : I^k \rightarrow I^{k+1}, \quad \delta^k : \frac{I^k}{M^k} \rightarrow I^{k+2}, \quad \omega^k : \frac{I^k}{M^k} \rightarrow \frac{I^{k+1}}{M^{k+1}},
\]

such that the morphisms \((\phi^k, \delta^{-1-1})\), denoted by \(\phi^k \), make the sequence

\[
\cdots \xrightarrow{\delta^{-l-1}} I^l \bigoplus \frac{I^{l-1}}{M^{l-1}} \xrightarrow{\theta^l \delta^l} I^{l+1} \bigoplus \frac{I^{l+1}}{M^{l+1}} \xrightarrow{\delta^{l+1}} \cdots
\]

(4.5)

a complex. Moreover, the compositions

\[
M^k \hookrightarrow I^k \xrightarrow{\left(\rho^k, \omega^k \right)} I^k \bigoplus I^{k-1} / M^{k-1}
\]

form a morphism of complexes, which induces isomorphisms on cohomology groups.
4.2 The construction

The following proposition is a strengthening of Lemma 4.2.

Proposition 4.4. In an abelian category with enough injectives, let \((M^l, \tau^l : M^l \to M^{l+1}, l \geq 0)\) be an acyclic complex, and denote by \(M\) its only nontrivial cohomology. For all \(l \geq 0\), let \((I^l, \partial^l : I^l \to I^{l+1}, k \geq 0)\) be an acyclic complex such that its only nontrivial cohomology is \(M^l\), and \(I^{l,t}\) is injective for all \(k > t \geq 0\), and \(I^{l,k}\) is the quotient \(I^{l,k-1}/\text{Im}(\partial^{l,k-2})\). Then, there exist morphisms

\[
\partial^l : I^l \to I^{l+1,l-1}
\]

such that the morphisms

\[
\partial^l = \begin{pmatrix}
\partial^{0,l} & 0 & \cdots & 0 \\
\partial^{0,l} & \partial^{1,l-1} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\partial^{0,l} & \partial^{1,l-1} & \cdots & \partial^{l,0}
\end{pmatrix}
\]

make the sequence

\[
0 \to M \to I^{0,0} \xrightarrow{\partial^0} I^{0,1} \oplus I^{1,0} \xrightarrow{\partial^1} \cdots \xrightarrow{\partial^l} I^{m,n} \xrightarrow{\partial^{l+1}} \cdots (4.6)
\]

exact.

Proof. We proceed by induction on \(k\). The case \(k = 1\) is proved in Lemma 4.2. Suppose that the lemma is true for all \(k < q\). We show that it is also true for \(k = q\). Denote by \(J^{l,q-1}\) the quotient \(I^{l,q-2}/\text{Im}(\partial^{l,q-3})\). By induction hypothesis, there exists an exact sequence:

\[
M \longrightarrow I^{0,0} \longrightarrow I^{0,1} \oplus I^{1,0} \longrightarrow \cdots \longrightarrow \bigoplus_{m+n=l+1} \bigoplus_{0 \leq n < q-1} I^{m,n} \oplus J^{l,q+2,q-1} \longrightarrow \cdots
\]

Because the sequence

\[
0 \longrightarrow \bigoplus_{m+n=l+1} \bigoplus_{0 \leq n < q-1} I^{m,n} \oplus J^{l,q+2,q-1} \longrightarrow \bigoplus_{m+n=l+1} \bigoplus_{0 \leq n < q-1} I^{m,n} \oplus J^{l,q+2,q-1} \longrightarrow I^{l,q+2,q} \longrightarrow 0
\]

is exact, then, according to Lemma 4.2 the complex

\[
0 \longrightarrow M \longrightarrow I^{0,0} \xrightarrow{\partial^0} I^{0,1} \oplus I^{1,0} \xrightarrow{\partial^1} \cdots \xrightarrow{\partial^l} I^{m,n} \xrightarrow{\partial^{l+1}} \cdots
\]

is exact. We can then conclude the proposition.

Note that, in the exact sequence (4.6), the first \(k - 1\) terms are injective. Let \(k\) tend to infinity, we obtain an injective resolution of \(M\).

Definition-Proposition 4.5 (Pseudo-hyperresolution). In an abelian category with enough injective objects, let \((M^k, \tau^k : M^k \to M^{k+1}, k \geq 0)\) be an acyclic complex, and let \(M\) be its only nontrivial cohomology. For all integers \(k \geq 0\), let \((I^{k,t}, \partial^{k,t})_{t \geq 0}\) be an injective resolution of \(M^k\). Then, there exist morphisms

\[
\partial^{k,t} : I^{k,t} \to I^{k+l+1,t-1}
\]

such that the morphisms

\[
\partial_k = \begin{pmatrix}
\partial^{0,k} & 0 & \cdots & 0 \\
\partial^{0,k} & \partial^{1,k-1} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\partial^{0,k} & \partial^{1,k-1} & \cdots & \partial^{k,0}
\end{pmatrix}
\]

for \(0 \leq k \leq n\).
make the complex

\[I^{0,0} \xrightarrow{\partial^0} I^{0,1} \bigoplus I^{1,0} \xrightarrow{\partial^1} \cdots \bigoplus I^{m,n} \xrightarrow{\partial^{k+1}} \cdots \]

an injective resolution of \(M \). This resolution, denoted by \(\mathcal{P}(M,I^{*,*}) \), is called the pseudo-hyperresolution of \(M \) with respect to the resolutions \((I^{k,t},\partial^{k,t})_{t \geq 0}\).

Because of Corollary 4.3 we also have a generalized version of Proposition 4.3.

Corollary 4.6. In an abelian category with enough injectives, let \((M^k,\tau^k : M^k \to M^{k+1}) \) be a complex. Moreover, for all integers \(k \), let \((I^{k,t},\partial^{k,t})_{t \geq 0}\) be an injective resolution of \(M^k \). Then, there exist morphisms

\[\partial^{k,t}_t : I^{k,t} \to I^{k+1,t-i} \]

such that the morphisms

\[\partial_k = \begin{pmatrix}
\partial^{0,k} & 0 & \cdots & 0 \\
\partial^{0,k} & \partial^{1,k-1} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\partial^{0,k} & \partial^{1,k-1} & \cdots & \partial^{k,0}
\end{pmatrix} \]

make the following sequence

\[
\cdots \xrightarrow{\partial^{k-1}} \bigoplus_{m+n=k} I^{m,n} \xrightarrow{\partial^k} \bigoplus_{m+n=k+1} I^{m,n} \xrightarrow{\partial^{k+1}} \cdots
\]

a complex, and the compositions

\[M^k \hookrightarrow I^{k,0} \hookrightarrow \bigoplus_{m+n=k} I^{m,n} \]

form a morphism of complexes, which induces isomorphisms on cohomology groups.

Therefore, in all abelian categories, each cochain complex is quasi-isomorphic to a complex of injective objects. Here, recall that two complex are quasi-isomorphic if there exists a morphism between them that induces isomorphisms on cohomology groups.

Remark 4.7. The technical point we used in the proof of Lemma 4.2 is similar to the mapping telescope technique in triangulated categories introduced by Böckstedt and Neeman [3]. Then, the intrigued readers might ask what is the advantage of introducing the notion of a pseudo-hyperresolution? The answer lies in the use of Lemma 3.1; this makes our method different from that of Böckstedt and Neeman. In fact, when the length of the complex in play is infinite, the resulting resolution we obtained is more compact and, hence, more computable. To illustrate the value of the pseudo-hyperresolution method, we will give an application for infinite-length complexes in Section 11.

Dually, we can construct the so-called pseudo-hyper projective resolutions.

Corollary 4.8. In an abelian category with enough projective objects, let \((N^k,\pi^k : N^k \to N^{k+1}) \) be an acyclic complex, and denote by \(N \) be its only nontrivial homology. For all \(k \geq 0 \), let \((P_{k,t},\partial_{k,t+1} : P_{k,t+1} \to P_{k,t})_{t \geq 0}\) be a projective resolution of \(N^k \). There exist morphisms

\[\partial^{k,t}_{k,t} : P_{k,t} \to P_{k-i,t+i} \]

such that the morphisms

\[\partial_k = \begin{pmatrix}
\partial_{0,k} & \partial^{1,k-1} & \cdots & \partial^{k-2,k-1} & \partial^{k-1,0} \\
0 & \partial_{1,k-1} & \cdots & \partial^{k-2,k-1} & \partial^{k-1,0} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \partial_{k-1,0} & \partial^{0,0}
\end{pmatrix} \]

make the following sequence

\[
\cdots \xrightarrow{\partial^{k+2}} \bigoplus_{m+n=k+1} P_{m,n} \xrightarrow{\partial^{k+1}} \bigoplus_{m+n=k+2} P_{m,n} \xrightarrow{\partial^k} \bigoplus_{m+n=k} P_{m,n} \xrightarrow{\partial^0} \bigoplus_{m+n=k-1} P_{m,n} \xrightarrow{\partial_{k-1,0}} P_{0,0}
\]

a projective resolution of \(N \). This resolution, denoted by \(\mathcal{P}(N,P^{*,*}) \), is called the pseudo-hyperresolution of \(N \) with respect to the resolutions \((P_{k,t},\partial_{k,t+1} : P_{k,t+1} \to P_{k,t})_{t \geq 0}\).
Remark that each term of the pseudo-hyperresolution of an object in an abelian category is explicit. However, in general, it is difficult to determine the differentials of this resolution. Therefore, it is convenient to the notion of a Poincaré series of a complex.

Definition 4.9 (Poincaré series of complexes). In an abelian category, let \((C_\bullet, \partial_\bullet)\) be a complex. Then, we denote by \(H(t, C_\bullet)\) the series

\[
H(t, C_\bullet) := \sum_i [C_i] t^i,
\]

where \([C_i]\) denotes the corresponding class of \(C_i\) in the Grothendieck group of the category.

The following lemmas are straightforward.

Lemma 4.10. In an abelian category, let \((C_\bullet, \partial_\bullet)\) and \((D_\bullet, \delta_\bullet)\) be two complexes. Then, we have

\[
H(t, C_\bullet \oplus D_\bullet) = H(t, C_\bullet) + H(t, D_\bullet).
\]

Moreover, if the category is monoidal, then we have

\[
H(t, C_\bullet \otimes D_\bullet) = H(t, C_\bullet) \cdot H(t, D_\bullet).
\]

Lemma 4.11. Under the same hypothesis as that of Corollary 4.8, we have

\[
H(t, \mathcal{P}(N, P_\bullet)) = \sum_{r,s \geq 0} P_{r,s} t^r s.
\]

5 Functor homology

The main purpose of this section is to provide two simple applications of the pseudo-hyperresolution method in functor homology:

1. Constructing explicit resolutions of certain strict polynomial functors and use them to compute the Mac Lane cohomology of \(F_2\) (see Theorem 5.10).

2. Computing the global dimension of the category of homogeneous strict polynomial functors of finite degree (see Theorem 5.19).

5.1 Mac Lane cohomology of finite fields

Following the works \[10, 11, 12\] of Eilenberg and Mac Lane on the homology of the spaces that bear their names, Mac Lane introduces in \[24\] the notion of the cohomology of a ring with coefficients in a bimodule. Jibladze and Pirashvili extend this notion for more general coefficients (see \[18\]). In what follow, we recall the definition of Mac Lane cohomology and show how to use the pseudo-hyperresolution method to compute the Mac Lane cohomology of the finite field \(F_2\).

5.1.1 Ordinary functors and strict polynomial functors

Let \(R\) be a ring and denote by \(\mathcal{F}(R)\) the category of functors from the category of projective \(R\)-modules of finite rank to the category of \(R\)-modules. Denote by \(I\) the inclusion functor that associates a projective \(R\)-module of finite rank \(V\) with itself. Then, following \[18\], we define the Mac Lane cohomology of \(R\) with coefficients in a functor \(F \in \mathcal{F}(R)\) as follows:

\[
\text{HML}^* (R, F) := \text{Ext}_{\mathcal{F}(R)}^* (I, F).
\]

Taking \(F = I\), we recover the original Mac Lane cohomology of the ring \(R\) with coefficients in \(R\), with the obvious structure of \(R - R\)-bimodule (see \[24\]).

In fact, Ext-groups in \(\mathcal{F}(R)\) can capture more than just the Mac Lane cohomology. When \(R\) is a finite field \(k\) of characteristic \(p\), we write \(\mathcal{F}_k\) for \(\mathcal{F}(k)\). If \(F \in \mathcal{F}_k\), then structure morphism

\[
F\otimes_k k^n : \text{Hom}_k (k^n, k^n) \to \text{Hom}_k (F (k^n), F (k^n))
\]

turns \(F (k^n)\) into a \(k [GL_n(k)]\)-module. Therefore, the evaluation on \(k^n\) yields a natural morphism

\[
\text{Ext}_{\mathcal{F}_k}^* (F, G) \to \text{Ext}_{k[GL_n(k)]}^* (F (k^n), G (k^n)).
\]
The canonical inclusion
\[\text{GL}_n(k) \to \text{GL}_{n+1}(k), \quad M \mapsto \begin{pmatrix} M & 0 \\ 0 & 1 \end{pmatrix}, \]
along with the splitting projection \(k^{n+1} \to k^n \) onto the first \(n \) coordinates, induces a natural map
\[\text{Ext}^*_k(\text{GL}_{n+1}(k)) \left(F \left(k^{n+1} \right), G \left(k^{n+1} \right) \right) \to \text{Ext}^*_k(\text{GL}_n(k)) \left(F \left(k^n \right), G \left(k^n \right) \right) \]
As \(n \) tends to infinity, this map stabilizes, and we denote by \(\text{Ext}^*_k(\text{GL}_\infty(k)) (F, G) \) the stable value. Under some mild conditions on \(F \) and \(G \) (namely, \(F, G \) are polynomial in the sense of Eilenberg and Mac Lane [11]), the induced map
\[\text{Ext}^*_\mathcal{F} (F, G) \to \text{Ext}^*_k(\text{GL}_\infty(k)) (F, G) \]
is an isomorphism (see, e.g., [2][13]). Recall that if \(M, N \) are \(k[\text{GL}_n(k)] \)–modules, then \(\text{Hom}_k(M, N) \) is endowed with an action of \(\text{GL}_n(k) \), and, moreover, there is an isomorphism
\[\text{Ext}^*_k(\text{GL}_\infty(k)) (F, G) \cong H^* (\text{GL}_n(k), \text{Hom}_k(M, N)) \).
So, Ext-groups in \(\mathcal{F}_k \) can capture the stable cohomology of \(\text{GL}_n(k) \). Now, if we consider the affine algebraic group scheme \(\text{GL}_n.k \) instead, i.e., the functor that associates a \(k \)–algebra \(A \) with \(\text{GL}_n(A) \), then it is natural to ask whether there exists a suitable category that is related to \(\text{GL}_n.k \)–modules the way \(\mathcal{F}_k \) does to \(\text{GL}_n(k) \)–modules. In [15], Friedlander and Suslin introduce the category \(\mathcal{P}_k \) of strict polynomial functors, resolving in the affirmative this question. A strict polynomial functor \(F \) is a functor from the category of \(k \)–vector spaces of finite dimension to the category of \(k \)–vector spaces such that the structure morphism
\[F_{V,W} : \text{Hom}_k(V, W) \to \text{Hom}_k(F(V), F(W)) \tag{5.1} \]
is a polynomial map. Here, a polynomial map between two \(k \)–vector spaces \(X \) and \(Y \) is a morphism between two schemes \(\text{Spec} (S^* (X^2)) \) and \(\text{Spec} (S^* (Y^2)) \), where \(S^* (X^2) \) is the symmetric algebra on the \(k \)–linear dual \(X^2 \). Let \(\text{Sch}/k \) denote the category of schemes over \(k \). Because
\[\text{Hom}_{\text{Sch}/k} (\text{Spec} (S^* (X^2)), \text{Spec} (S^* (Y^2))) \cong S^* (X^2) \otimes Y, \]
then we define a polynomial map \(p : X \to Y \) to be homogeneous of degree \(d \) if it belongs to \(S^d (X^2) \otimes Y \). And then, a strict polynomial functor is homogeneous of degree \(d \) if its structure morphisms (5.1) are homogeneous polynomial maps of the same degree. Denote by \(\mathcal{P}_{k,d} \) the full subcategory of homogeneous strict polynomial functors of degree \(d \). Then, \(\mathcal{P}_k \cong \bigoplus_{d \geq 0} \mathcal{P}_{k,d} \).
As the evaluation on \(k \) of a morphism of schemes over \(k \) yields a set theoretic map, a strict polynomial functor \(F \), with structural morphisms \((F(V), F_{V,W}(k)) \) gives rise to an ordinary functor \(F \in \mathcal{F}_k \), with structural morphisms \((F(V), F_{V,W}(k)) \). We obtain in this way an exact forgetful functor \(\mathcal{O} : \mathcal{P}_k \to \mathcal{F}_k \).
Let \(G \in \text{Sch}/k \), then a representation of \(G \) (or a \(G \)–module) is a \(k \)–vector space, endowed with a natural transformation \(G \to \text{GL}_M \), where \(\text{GL}_M \) is the functor that associates a \(k \)–algebra \(A \) with the group \(\text{GL}_A (A \otimes_k M) \) of invertible \(A \)–linear endomorphisms of \(A \otimes_k M \). Evaluation on \(k \) yields an exact forgetful functor \(\mathcal{O} : \text{GL}_{n,k} \to \text{GL}_n(k) \) – mod, and we have a commutative diagram
\[\begin{array}{c}
\mathcal{P}_k \\
\text{ev} \\
\text{GL}_{n,k} \text{ – mod} \\
\text{ev} \\
\text{GL}_n(k) \text{ – mod}
\end{array} \xrightarrow{\mathcal{O}} \mathcal{F}_k \]
If \(F, G \in \mathcal{P}_k \) are homogeneous of degree less than \(n \), then it follows from [15] that the evaluation on \(k^n \) induces a natural isomorphism
\[\text{Ext}^*_\mathcal{F} (F, G) \to \text{Ext}^*_k (\text{GL}_{n,k}) (F(k^n), G(k^n)). \]
As the forgetful functors shown in the diagram (5.2) are exact, we obtain the commutative square
\[\begin{array}{cc}
\text{Ext}^*_\mathcal{F} (F, G) \\
\text{Ext}^*_\mathcal{F} (F, G) \\
\text{Ext}^*_k (\text{GL}_{n,k}) (F(k^n), G(k^n)) \\
\text{Ext}^*_k (\text{GL}_{n,k}) (F(k^n), G(k^n))
\end{array} \xrightarrow{\text{ev}} \begin{array}{c}
\mathcal{P}_k \\
\text{ev} \\
\text{GL}_{n,k} \text{ – mod} \\
\text{ev} \\
\text{GL}_n(k) \text{ – mod}
\end{array} \xrightarrow{\mathcal{O}} \mathcal{F}_k \]
According to the work of Cline, Parshall, Scott, and van der Kallen [5], Ext-groups of \(GL_n(\mathbb{k})\)–modules can be computed via that of \(GL_{n,\mathbb{k}}\)–modules, with the help of the Frobenius twist. The square [5,9] allows to establish similar relations between Ext-groups in \(\mathcal{F}_k\) and that of strict polynomial functors. Let recall briefly about this fact.

Given an integer \(r \geq 1\), we denote by \(I^{(r)}\) the strict polynomial functor defined as the intersection of the kernel of \(\mathcal{F}_k\)–morphisms \(S^r \rightarrow S^k \otimes S^{p-r}\) for all \(0 < k < p\), induced by the comultiplication of the graded Hopf algebra \(S^r\) (to be recalled in Subsection 5.1.2). The nontrivial strict polynomial functor \(I^{(r)}\) is homogeneous of degree \(p^r\). Therefore, \(I^{(r)}\) and \(I^{(s)}\) are not isomorphic if \(r \neq s\). However, if \(k\) is perfect, then the forgetful functor sends \(I^{(r)}\) to the inclusion functor \(I\) for all \(r \geq 1\). The Frobenius twist of a strict polynomial functor \(F\), denoted by \(F^{(r)}\), is defined as \(F \circ F^{(r)}\), isomorphic to \(F \circ I^{(r)}\).

The relation between Ext-groups in \(\mathcal{F}_k\) and in \(\mathcal{F}_k\) now goes as follows.

Theorem 5.1 ([13]). Let \(\mathbb{k}\) be a perfect field, and let \(F, G \in \mathcal{F}_k\) be two homogeneous strict polynomial functors of degree \(d\), which is less than the cardinal of \(\mathbb{k}\). If \(r\) is big enough with respect to \(i\), then the natural morphism

\[
\text{Ext}_i^{(r)} (F, G) \rightarrow \text{Ext}_i^{(r)} (F, G)
\]

is an isomorphism.

In particular, we have the following corollary.

Corollary 5.2. If \(r\) is big enough with respect to \(i\), then the natural morphism

\[
\text{Ext}_i^{(r)} (F, G) \rightarrow \text{Ext}_i^{(r)} (F, G)
\]

is an isomorphism.

Therefore, we can compute the Mac Lane cohomology \(HM^r (\mathbb{F}_2, I)\) via \(\text{Ext}^{(r)} (I^{(r)}, I^{(r)})\). In [15], Friedlander and Suslin compute these groups by constructing explicit injective resolution for \(I^{(r)}\), using the method pioneered by Franjou, Lannes, and Schwartz [14].

5.1.2 Injective resolutions of twisted strict polynomial functors

We begin with some basic homological algebra of strict polynomial functors. Throughout this subsection, we restrict our attention to the case \(\mathbb{k} = \mathbb{F}_2\), and we shorten \(\mathcal{F}_{2,n}\) to \(\mathcal{F}_n\).

Definition 5.3. An exponential strict polynomial functor is a graded functor \(F^{\ast} = \{F^0, F^1, F^2, \ldots, F^n, \ldots\}\), where \(F^m \in \mathcal{F}_n\), together with natural isomorphisms

\[
F^0 (V) = \mathbb{F}_2, \quad F^m (V \oplus W) \cong \bigoplus_{i=0}^n F^i (V) \otimes F^{n-i} (W)
\]

for all integers \(n > 0\) and all \(\mathbb{F}_2\)–vector spaces \(V, W\).

Typical examples of exponential functors are given by the symmetric algebra \(S^*\), the exterior algebra \(\Lambda^*\), and the divided power algebra \(\Gamma^*\). For all exponential strict polynomial functor \(F^*\) and all \(\mathbb{F}_2\)–vector space \(V\), the addition map \(+ : V \oplus V \rightarrow V\) and the diagonal map \(\Delta : V \rightarrow V \oplus V\) give rise to the natural maps

\[
F^n (V) \otimes F^n (V) \rightarrow F^{n+m} (V \oplus V) \rightarrow F^{n+m} (V),
\]

\[
F^{n+m} (V) \rightarrow F^{n+m} (V \oplus V) \rightarrow F^n (V) \otimes F^n (V),
\]

and then define natural product and coproduct operations

\[
\text{mult} : F^n \otimes F^m \rightarrow F^{n+m}, \quad \text{comult} : F^{n+m} \rightarrow F^n \otimes F^m.
\]

Remark that \(S^1 = \Lambda^1 = \Gamma^1 = I\). Let \(F^*, G^* \in \{S^*, \Lambda^*, \Gamma^*\}\), then we define \(\kappa_{F^*, G^*} \in \{S^*, \Lambda^*, \Gamma^*\}\) as the composition map

\[
F^d \otimes G^e \xrightarrow{\text{comult} \otimes \text{Id}_G} F^{d-1} \otimes F^1 \otimes G^e = F^{d-1} \otimes G_1 \otimes G^e \xrightarrow{\text{Id} \otimes \text{mult}} F^{d-1} \otimes G^{e+1},
\]

Following [14], we have two exact sequences:

Theorem 5.4. The complexes \(\left\{\Gamma^n \otimes \Lambda^{d-n}, \kappa_{\Gamma^n, \Lambda^{d-n}}^{\Lambda^n} \mid 0 \leq n \leq d\right\}\) and \(\left\{\Lambda^n \otimes S^{d-n}, \kappa_{\Lambda^n, S^{d-n}}^{\Lambda^n} \mid 0 \leq n \leq d\right\}\) are exact.
Let \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_m) \in \mathbb{N}^m \), and let \(F^* = (F^0, F^1, F^2, \ldots, F^n, \ldots) \), where \(F^n \in \mathcal{P}_n \), be an exponential strict polynomial functor. We denote by \(F^\lambda \) the tensor product
\[
F^\lambda_1 \otimes F^\lambda_2 \otimes \cdots \otimes F^\lambda_m.
\]
Recall that the symmetric power functors \(S^d, d \geq 0 \), are injective in \(\mathcal{P}_Z \), and the tensor product of injective strict polynomial functors remains injective. Moreover, the set \(\{ S^\lambda \mid \lambda \in \mathbb{N}^m, m \geq 1 \} \) forms a system of injective cogenerators of \(\mathcal{P}_Z \). According to [14], the Frobenius twist of \(S^d \) admits the following explicit injective resolution.

Theorem 5.5 ([14] Section 2]). For all integers \(d \geq 1 \), the complex \((S^n \otimes S^{d-n}, \kappa_{S^n,S^{d-n}}^n, 0 \leq d \leq n) \) is an injective resolution of \(S^{(1)} \). Throughout this article, we denote this complex by \(\mathcal{F}(d, 1) \).

Because the tensor product of injective strict polynomial functors is again injective, then \(S^{(1)} \) admits
\[
\mathcal{F}(\lambda, 1) := \mathcal{F}(\lambda_1, 1) \otimes \mathcal{F}(\lambda_2, 1) \otimes \cdots \otimes \mathcal{F}(\lambda_m, 1)
\]
as an injective resolution. Since the Frobenius twist is exact, the pseudo-hyperresolution method is a suitable way to construct injective resolutions of \(S^{(r)} \) for all integers \(r \geq 1 \).

Let \(\mathcal{F} \) denote the class of all resolutions that are direct sums of resolutions of the form \(\mathcal{F}(\lambda, 1) \). Hence, for all injective strict polynomial functors \(J, J^{(1)} \) has a unique injective resolution belonging to \(\mathcal{F} \). Given an injective resolution \(\mathcal{J}^* \) of a strict polynomial functor \(F \), in this paragraph, we denote by \(\mathcal{P}(F^{(1)}, J^{(1)}) \) the pseudo-hyperresolution of \(F^{(1)} \) with respect to the collection of resolutions of \(J^{(1)} \) coming from \(\mathcal{F} \).

We define:
\[
\mathcal{F}(d, r) := \begin{cases}
\mathcal{F}(d, 1) & \text{if } r = 1, \\
\mathcal{P}(S^d, \mathcal{F}(d, r-1)^{(1)}) & \text{if } r > 1.
\end{cases}
\]

The following lemma is straightforward.

Lemma 5.6. The complex \(\mathcal{F}(d, r) \) is an injective resolution of \(S^{(r)} \) for all integers \(r \geq 1 \). Moreover, the length of \(\mathcal{F}(d, r) \) is \((2^{r+1} - 2) d \).

We say that \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_m) \in \mathbb{N}^m \) is divisible by \(n \) if \(\lambda_k \) is divisible by \(n \) for all \(1 \leq k \leq m \). Remark that, if \(\lambda \) is divisible by \(2^r \), then the \(s \)-th term of the resolution \(\mathcal{F}(\lambda, 1) \) contains a factor of the form \(S^n \) such that \(2^{r+1+1}|n \) if and only if \(2^{r+1}|s \). Otherwise, no factor of this form can appear in \(\mathcal{F}(\lambda, 1) \). A simple induction on \(n \) using the pseudo-hyperresolution method shows that a similar property for \(\mathcal{F}(d, n) \) also holds.

Lemma 5.7. If \(d \) is divisible by \(2^r \), then the \(s \)-th term of the resolution \(\mathcal{F}(d, n) \) contains a direct summand of the form \(S^\lambda \) such that \(2^{n+s+1}|\lambda \) if and only if \(2^{n+r}|s \). Otherwise, no direct summand of this form can appear in \(\mathcal{F}(d, n) \).

In particular, when \(d = 1 \), we obtain the following result.

Corollary 5.8. The resolution \(\mathcal{F}(1, n) \) is of length \(2^{n+1} - 2 \). Denote by \(\mathcal{F}(1, n)^* \) the \(s \)-th term of this resolution. Then, \(\mathcal{F}(1, n)^{2k} \) contains a unique direct summand of the form \(S^{2^n} \) for all \(0 \leq k \leq 2^n - 1 \), and \(\mathcal{F}(1, n)^{2k+1} \) contains no direct summand of this form.

Recall that, for all \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_m) \in \mathbb{N}^m \), we have
\[
\text{Hom}_{\mathcal{P}_2} \left(F^{(r)}, S^\lambda \right) \cong \begin{cases}
\text{Hom}_{\mathcal{P}_2} \left(F, S^{(\frac{\lambda_1}{2^r}, \frac{\lambda_2}{2^r}, \ldots, \frac{\lambda_m}{2^r})} \right) & \text{if } 2^r|\lambda, \\
0 & \text{otherwise}.
\end{cases}
\]

Therefore, if \(F \) is a homogeneous strict polynomial functor of degree \(d \), then there is no nontrivial differentials in the complex \(\text{Hom}_{\mathcal{P}_2} \left(F^{(r)}, \mathcal{F}(d, r) \right) \).

Corollary 5.9. For all homogeneous strict polynomial functor \(F \) of degree \(d \), we have
\[
\text{Hom}_{\mathcal{P}_2} \left(F^{(r)}, \mathcal{F}(d, r) \right) \cong \text{Ext}^1_{\mathcal{P}_2} \left(F^{(r)}, S^{(r)} \right).
\]

In particular, we have
\[
\text{Ext}^k_{\mathcal{P}_2} \left(I^{(r)}, I^{(r)} \right) \cong \begin{cases}
\mathbb{F}_2 & \text{if } 2|k, \text{ and } k \leq 2^{r+1} - 2, \\
0 & \text{otherwise}.
\end{cases}
\]

Following Corollary 5.2, we obtain the main result of this subsection.

Theorem 5.10 ([6, 13, 15]). We have:
\[
\text{HML}^k \left(\mathbb{F}_2, I \right) \cong \begin{cases}
\mathbb{F}_2 & \text{if } 2|k, \\
0 & \text{otherwise}.
\end{cases}
\]
5.2 Global dimension of homogeneous strict polynomial functors

It is known that each homogeneous strict polynomial functor of finite degree is of finite projective (injective) dimension (see [11, 41]). In this subsection, we will use the pseudo-hyperresolution method to show that the global dimension of the category \mathcal{P}_d is $2d - 2$ for all $d \geq 0$.

5.2.1 Resolutions of classical strict polynomial functors

In this paragraph, we will construct explicit resolutions of the classical exponential strict polynomial functors $\Lambda^*, \Gamma^*,$ and S^*. First, we fix the following notations. Let $F^* = \{F^0, F^1, F^2, \ldots, F^n, \ldots\}$, where $F^n \in \mathcal{P}_n$, be an exponential strict polynomial functor. We denote:

$$A(d, s) := \left\{ (n_1, n_2, \ldots, n_s) \mid n_1 \geq 1, \sum_{i=1}^s n_i = d \right\},$$

(5.4)

$$F(d, s) := \bigoplus_{A(d, s)} F(n_1, n_2, \ldots, n_s).$$

(5.5)

Recall that the divided power functors $\Gamma^d, d \geq 0$, are projective in $\mathcal{P}_{\mathbb{Z}_2}$, and the tensor product of projective strict polynomial functors remains projective. Moreover, the set $\{\Gamma^N \mid \lambda \in \mathbb{N}^m, m \geq 1\}$ forms a system of projective generators of $\mathcal{P}_{\mathbb{Z}_2}$. We will use Theorem 5.4 to construct explicit injective and projective resolutions of Λ^d. We refer the reader to [51] for the definition of Λ^d. In fact, for $d = 1$ and $d = 2$, the complex $\left[\Gamma^m \otimes \Lambda^{d-n}, \kappa_{\Gamma^d, \Lambda^d} \right]_{0 < n \leq d}$ is a projective resolution of Λ^d. In general, we construct a canonical projective resolution of Λ^d as follows. We denote by Λ_d the set of canonical projective resolution $C_{proj}(\Lambda^n)$ of Λ^n for all $n \leq d$, which is defined recursively as follows:

$$\Lambda_2 := \left\{ \left(\Gamma^n \otimes \Lambda^{d-n}, \kappa_{\Gamma^d, \Lambda^d} \right) \middle| 0 < n \leq d, 1 \leq d \leq 2 \right\},$$

$$\Lambda_d := \Lambda_{d-1} \bigsqcup \left\{ \operatorname{Proj} \left(\Lambda^d, \left\{ \Gamma^{d-s} \otimes C_{proj}(\Lambda^s) \right\} \right) \right\}.$$

A simple induction on d yields the following result.

Lemma 5.11. For all integers $d \geq 1$, we have

$$H \left(t, C_{proj}(\Lambda^d) \right) = \sum_{s=0}^{d-1} \Gamma(d, d-s)t^s.$$

(See [51] for the definition of $\Gamma(d, d-s)$.)

Similarly, we construct a canonical injective resolution for Λ^d as follows. We denote by Inj_d the set of canonical injective resolution $C_{inj}(\Lambda^n)$ of Λ^n for all $n \leq d$, which is defined recursively by:

$$\operatorname{Inj}_2 := \left\{ \left(\Lambda^n \otimes S^{d-n}, \kappa_{\Lambda^n, S^d} \right) \middle| 0 \leq n \leq d, 1 \leq d \leq 2 \right\},$$

$$\operatorname{Inj}_d := \operatorname{Inj}_{d-1} \bigsqcup \left\{ \operatorname{Inj} \left(\Lambda^d, \left\{ C_{inj}(\Lambda^n) \otimes S^{d-s} \right\} \right) \right\}.$$

A simple induction on d yields the following result.

Lemma 5.12. For all $d \geq 1$, we have

$$H \left(t, C_{inj}(\Lambda^d) \right) = \sum_{s=0}^{d-1} S(d, d-s)t^s.$$

(See [51] for the definition of $S(d, d-s)$.)

Now, using the complex $\left[\Gamma^n \otimes \Lambda^{d-n}, \kappa_{\Gamma^d, \Lambda^d} \right]_{0 < n \leq d}$, the set Inj_d, and the pseudo-hyperresolution method, we can define a set Γ_d of canonical injective resolution $C_{inj}(\Gamma^n)$ of Γ^n for all $n \leq d$ as follows:

$$\Gamma_1 := \left\{ \left(\Gamma^n \otimes \Lambda^{d-n}, \kappa_{\Gamma^d, \Lambda^d} \right) \middle| d = 1 \right\},$$

$$\Gamma_d := \Gamma_{d-1} \bigsqcup \left\{ \operatorname{Proj} \left(\Gamma^d, \left\{ C_{inj}(\Gamma^n) \otimes C_{inj}(\Lambda^{d-s}) \right\} \right) \right\}.$$

Induction on d gives rise to the following lemma.
Remark 5.15. Lemma 5.13 and 5.14 signify that

5.3 Global dimension of strict polynomial functors

For all integers \(d \geq 1\), we have

\[
H(t, C_{maj}(\Gamma^d)) = \sum_{s=0}^{d-1} S(d, d - s)t^{2s}(1 + t)^{d-s-1}.
\]

Similarly, using the complex \(\left(\Lambda^n \otimes S^{d-n}, \kappa_{\Lambda^n \otimes S^n}^{n,d-n} \right| 0 \leq n \leq d\)\), the set \(\Gamma_d\), and the pseudo-hyperresolution method, we can define a set \(S_d\) of canonical projective resolution \(C_{proj}(S^n)\) of \(S^n\) for all \(n \leq d\) as follows:

\[
S_1 := \left\{ \left(\Lambda^n \otimes S^{d-n}, \kappa_{\Lambda^n \otimes S^n}^{n,d-n} \right| 0 < n \leq d \right\}, \quad d = 1
\]

\[
S_d := S_{d-1} \bigcup \left\{ \mathcal{P}(S^d, \{ C_{proj}(\Lambda^{d-s}) \otimes C_{proj}(S^s) \} | 0 \leq s \leq d - 1 \} \right\}.
\]

Induction on \(d\) gives rise to the following lemma.

Lemma 5.14. For all \(d \geq 1\), we have:

\[
H(t, C_{proj}(\Gamma^d)) = \sum_{s=0}^{d-1} \Gamma(d, d - s)t^{2s}(1 + t)^{d-s-1}.
\]

Remark 5.15. Lemma 5.13 and 5.14 signify that

\[
\dim_{maj}(\Gamma^d) \leq 2d - 2, \quad \dim_{proj}(\Gamma^d) \leq 2d - 2.
\]

5.3 Global dimension of strict polynomial functors

The following lemma is a direct consequence of Corollary 5.14.

Lemma 5.16. For all integers \(n \geq 1\), we have

\[
\Ext_{\mathcal{P}_d}^{2n+1-2}(S^{2n}, \Gamma^{2n}) \cong \mathbb{F}_2.
\]

Hence, \(S^{2n}\) is of projective dimension \(2^{n+1} - 2\), and \(\Gamma^{2n}\) is of injective dimension \(2^{n+1} - 2\).

Proof. Denote \(2^n\) by \(d\). In view of Corollary 5.14, \(\Ext_{\mathcal{P}_d}^{2d-2}(S^d, \Gamma^d)\) is isomorphic to the cokernel of the map

\[
f : \Hom_{\mathcal{P}_d}(\Gamma(d, 2), \Gamma^d) \to \Hom_{\mathcal{P}_d}(\Gamma^d, \Gamma^d).
\]

If this cokernel was trivial, then \(\Gamma^d\) would be a direct summand of \(\Gamma(d, 2)\), whence a contradiction. Therefore, \(\Coker(f)\) is nontrivial. But, on the other hand, \(\Hom_{\mathcal{P}_d}(\Gamma^d, \Gamma^d) \cong \mathbb{F}_2\), then the lemma follows from Remark 5.15. \qed

Corollary 5.17. Let \(d \geq 1\) be an integer and let \(\sum_{i=1}^{k} 2^{n_i}\) be its \(2^-\text{adic expression}\). Let \(I \in \mathcal{P}_d\) be an injective strict polynomial functors, and let \(P \in \mathcal{P}_d\) be a projective one. Then, we have

\[
\dim_{maj}P \leq 2d - 2k, \quad \dim_{proj}I \leq 2d - 2k.
\]

In particular, let \(\lambda = (2^{n_1}, 2^{n_2}, \ldots, 2^{n_k})\), then we have:

\[
\dim_{maj}\Gamma^\lambda = 2d - 2k, \quad \dim_{proj}S^\lambda = 2d - 2k.
\]

Proof. The corollary follows from Lemma 5.16 and from the fact that the morphism \(\Gamma^\lambda \to \Gamma^d\) induced by the multiplication of \(\Gamma^\lambda\) is a splitting projection. \qed

Corollary 5.17 can be extended to all strict polynomial functors.

Lemma 5.18. Let \(d \geq 1\) be an integer and let \(\sum_{i=1}^{k} 2^{n_i}\) be its \(2^-\text{adic expression}\). Let \(F \in \mathcal{P}_d\) be an arbitrary strict polynomial, then

\[
\dim_{maj}F \leq 2d - 2k, \quad \dim_{proj}F \leq 2d - 2k.
\]
Proof. It is sufficient to show that
\[
\text{Ext}^{s}_{\mathcal{P}_{d}}(G,F) = 0, \text{ for all } s > 2d - 2 \text{ and all } G \in \mathcal{P}_{d},
\]
\[
\text{Ext}^{s}_{\hat{\mathcal{P}}_{d}}(F,G) = 0, \text{ for all } s > 2d - 2 \text{ and all } G \in \hat{\mathcal{P}}_{d}.
\]
But these computations can be carried out by induction on injective and projective dimensions of \(F \), using Corollary 6.17. \(\square \)

Theorem 5.19 (\cite{[3]}). Let \(d \geq 1 \) be an integer and let \(\sum_{i=1}^{k} 2^{n_{i}} \) be its \(2 \)-adic expression. Then, the global dimension of \(\mathcal{P}_{d} \) is \(2d - 2k \).

6 The Lambda algebra

This section aims at giving a new construction of the Lambda algebra, using the pseudo-hyperresolution method.

6.1 Iterated suspensions of Brown-Gitler modules

For all integers \(n \geq 0 \), the Mahowald short exact sequence
\[
0 \to \Sigma J(n) \xrightarrow{\delta_{n}} J(n+1) \xrightarrow{\cdot 2^{n+1}} J\left(\frac{n+1}{2}\right) \to 0
\]
yields an injective resolution for \(\Sigma J(n) \). Since the functor \(\Sigma \) is exact, applying it to an injective resolution of \(\Sigma^{m} J(n) \) induces an acyclic sequence such that its unique nontrivial cohomology is \(\Sigma^{m+1} J(n) \). Therefore, the pseudo-hyperresolution method allows to construct an injective resolution of \(\Sigma^{m+1} J(n) \) from that of \(\Sigma^{m} J(n) \).

Definition 6.1. Let \(B = \bigoplus_{A} J(n_{a}) \) be a BG module, we define:
\[
\text{Aug} (B) := \bigoplus_{A} J(1+n_{a}).
\]

A reformulation of Lemma 4.2 gives rise to the following proposition.

Proposition 6.2 (Pseudo-hyperresolution for the suspension of BG complexes). Let \((B^{k}, \tau^{k} : B^{k} \to B^{k+1}, \kappa \geq 0) \) be a BG complex. Denote by \(p^{k} \) the canonical projection \(\text{Aug} (B^{k}) \to \tilde{\Phi} (\text{Aug} (B^{k})) \) induced by the natural transformation \(Id \to \tilde{\Phi} \). Then, for all integers \(k \geq 0 \), there exist morphisms
\[
\theta^{k} : \text{Aug} (B^{k}) \to \text{Aug} (B^{k+1}),
\]
\[
\delta^{k} : \tilde{\Phi} (\text{Aug} (B^{k})) \to \tilde{\Phi} (\text{Aug} (B^{k+2})),
\]
\[
\omega^{k} : \tilde{\Phi} (\text{Aug} (B^{k})) \to \tilde{\Phi} (\text{Aug} (B^{k+1})),
\]
such that the morphisms \((\theta^{k}, \theta^{k-1}, \omega^{k-1}) \) for all \(k \geq 1 \), denoted by \(\theta^{k} \), and \((\varphi^{0}, \varphi^{0}) \), denoted by \(\theta^{0} \), make the sequence
\[
0 \to \text{Aug} (B^{0}) \xrightarrow{\theta^{0}} \text{Aug} (B^{1}) \bigoplus \tilde{\Phi} (\text{Aug} (B^{0})) \xrightarrow{\partial^{1}} \cdots \xrightarrow{\partial^{k}} \text{Aug} (B^{k+1}) \bigoplus \tilde{\Phi} (\text{Aug} (B^{k})) \xrightarrow{\partial^{k+1}} \cdots
\]
a complex that we denote by \(\mathcal{G} (B^{k}, \tau^{k}) \). It is acyclic provided that \((B^{k}, \tau^{k}) \) is acyclic either, and in this case, the only nontrivial cohomology of \(\mathcal{G} (B^{k}, \tau^{k}) \) is the suspension of that of \((B^{k}, \tau^{k}) \).

Corollary 6.3. Denote by \(J^{\ast}_{u} \) the acyclic complex where \(J^{\ast}_{u} = J(n) \) and \(J^{\ast}_{u} \) is trivial for all integers \(k \geq 1 \). Then, \(\mathcal{G} (J^{\ast}_{u}) \) is an injective resolution of \(\Sigma^{m} J(n) \). Hereafter, we denote this resolution by \(\mathcal{G} (m,n) \).

Definition 6.4. For all integers \(m, n \geq 0 \), each term of \(\mathcal{G} (m,n) \) is a direct sum of Brown-Gitler modules. Denote by \(G(m,n) \) the graph associated with \(\mathcal{G} (m,n) \) with respect to this decomposition, and \(V_{r} (G(m,n)) \), \(E_{r} (G(m,n)) \) are shortened to \(V_{r} (m,n) \), \(E_{r} (m,n) \) respectively. (See Section 3 for the definition of graph representation.)

Definition-Proposition 6.5. For all integers \(m, n \geq 0 \), we have:
1. There exists a canonical inclusion of graphs \(i_{m,n} : G(m,n) \to G(m+1,n) \) corresponding to the inclusion of complexes \(\Sigma \mathcal{G} (m,n) \to \mathcal{G} (m+1,n) \).
2. The set \(V_{0}(m,n) \) contains a unique vertex, denoted by \(p_{m,n} \), corresponding to \(J(m+n) \).
3. For all integers \(r \geq 0 \) and all \(v \in V_r(m,n), w \in V_{r+1}(m,n) \), then either \([v,w] = \bullet Sq^k \) for some integer \(k \geq 0 \), or \([v,w] = 0\). Hereafter, for the sake of simplicity, we write \([v,w] = Sq^k \) instead of \([v,w] = \bullet Sq^k \).

4. For all vertices \(v \in V_r(m,n) \), there exists a unique collection of vertices

\[
\begin{align*}
&v_i \notin V_r(m,n), 0 \leq i \leq r, \\
&v_0 = p_{m+n}, v_r = v, \\
&[v_i, v_{i+1}] = Sq^{k_i}, \\
&[v_i, w] \neq Sq^{k_i}, \forall v_{i+1} \neq w, \\
&2k_0 > n, \\
&2k_{i+1} > k_i, r - 2 \geq i \geq 0, \\
&m + n - \sum_{i=0}^{r-1} k_i \geq k_{r-1},
\end{align*}
\]

forming a path from \(p_{m+n} \) to \(v \), and such a path is called an \textit{admissible path}. In this case, we say that \(v \) is of bidegree \((r, \sum_{i=0}^{r-1} k_i) \). We call this the \textit{Lambda bidegree} of \(v \) and denote it by \(\|v\| = (\|v\|_1, \|v\|_2) \), where \(\|v\|_1 = r \) and \(\|v\|_2 = \sum_{i=0}^{r-1} k_i \).

5. The set \(E(m,n) \) of edges of \(G(m,n) \) can be defined as the colimit of the increasing sequence of sets

\[
E^0(m,n) \subset E^1(m,n) \subset \cdots \subset E^r(m,n) \subset \cdots
\]

as follows. Denote by \(E^0(m,n) \) the set of all edges induced by the admissible paths. Suppose that we have defined \(E^r(m,n) \). We now define \(E^{r+1}(m,n) \). For all vertices \(v \in V_r(m,n) \) and \(w \in V_{r+1}(m,n) \), consider the sum of all products \([v, u] [u, w] \) over all \(u \in V_{r+1}(m,n) \), where \([v, u], [u, w] \) belong to \(E^r(m,n) \). Recall that this is a sum of products of Steenrod operations of the form \(Sq^s \). Then, we can write this sum in terms of admissible monomials \(\sum_{[i_1, i_2] \in A} Sq^{i_1} Sq^{i_2} \). Let \(z \in V_{r+1}(m,n) \) such that \([v, z] = Sq^{i_1} \) belongs to \(E^0(m,n) \), then we connect \(z \) to \(w \) by the edge \([z, w] = Sq^{i_2} \). We now define \(E^{r+1}(m,n) \) as the union of \(E^r(m,n) \) with these new edges.

\textbf{Proof.} The proof is carried out by induction on \(m \). The case \(m = 1 \) is straightforward as \(G(1,n) \) is the graph corresponding to the Mahowald short exact sequence of \(\Sigma J(n) \). Suppose that the proposition is proved for all \(m < k \), where \(k \geq 2 \) is a certain integer. We now verify the case \(m = k \). By definition, we have

\[G(k,n)^s \cong \text{Aug} (G(k-1,n))^s \oplus \Phi (\text{Aug} (G(k-1,n)))^{s-1} \]

for all integers \(s \geq 0 \), with the convention that \(\Phi (\text{Aug} (G(k-1,n)))^{-1} = 0 \). Here, the upper index \(s \) signifies the \(s \)-th term of the complex. Therefore, \(G(k,n)^0 \cong \text{Aug} (G(k-1,n))^0 \) and, hence, following the induction hypothesis, the set \(V_0(k,n) \) contains a unique vertex, denoted by \(p_{k,n} \), corresponding to \(J(k+1) \). \textbf{This verifies the point (2).} Moreover, the morphisms

\[\Sigma G(k-1,n)^s \rightarrow \text{Aug} (G(k-1,n))^s \leftrightarrow G(k,n)^s, \]

for all \(s \geq 0 \), induce a canonical inclusion \(\Sigma G(k-1,n) \rightarrow G(k,n) \). As the graph of \(\Sigma G(k-1,n) \) and that of \(G(k-1,n) \) are identical, we get an inclusion \(G(k-1,n) \hookrightarrow G(k,n) \). \textbf{This concludes the proof of the point (1).}

Remark that, in view of Proposition 6.2, if \(\tau^s \) is represented by a matrix with coefficients of the form \(\bullet Sq^s \), then so are \(\theta^s, \delta^s, \) and \(\omega^s \). Therefore, each edge of \(E_r(k,n) \) is also labeled by a Steenrod operation of the form \(Sq^s \) for some integer \(s \). \textbf{Then, the point (3) holds.}

We also observe that the vertices of \(G(k,n) \) that do not belong to the image of \(G(k-1,n) \) correspond to \(\Phi (\text{Aug} (G(k-1,n)))^0 \). \textbf{Then, the induction hypothesis and the Mahowald short exact sequences take care of the points (4) and (5).}

\textbf{Remark 6.6.} 1. The bigrading structure of \(G(m,n) \) is different from that of the general associated graph of a BG complex (see Definition 5.10). We make such a modification so that the canonical inclusion \(i_{m,n} \) from \(G(m,n) \) to \(G(m+1,n) \) is of bidegree \((0,0) \).

2. Let \(k \geq 1 \) be an integer. Then, for all integers \(m, n \) such that \(m + n \geq 2k \), the inclusion \(i_{m,n} \) of \(G(m,n) \) into \(G(m+1,n) \) is an isomorphism on the area of bidegrees \((r,s)\) for all \(s \leq k \). It is obvious that this is an isomorphism on the set of vertices. What is less evident is that it is also bijective on the set of edges. But, this is a consequence of the instability condition: the morphism \(\bullet Sq^q : J(t+q) \rightarrow J(t) \) is nontrivial if and only if \(q \leq t \). In fact, Proposition 5.7 shows that all the edges of \(G(m+1,n) \) that are not in the image of \(i_{m,n} \) must have a vertex belonging to \(\Phi (\text{Aug} (G(m,n)))^0 \), which is not in the area of consideration.
Therefore, using Lemma 6.9 with an appropriate changing of bidegrees, we obtain the following stabilization result:

Proposition 6.7. Let \(k \geq 1 \) be an integer. Then, for all for all integers \(m, n, s \) such that \(m + n \geq 2k \), and that \(s \geq m + n - k \), the morphism

\[
\Ext^*_{U} \left(\Sigma^m F_2, \Sigma^{m+s} J(n) \right) \to \Ext^*_{U} \left(\Sigma^{m+1} F_2, \Sigma^{m+s+1} J(n) \right)
\]

induced by the suspension \(\Sigma \) is an isomorphism.

Definition 6.8. For all integers \(n \geq 1 \), we denote by \(G(n) \) the limit of the system

\[
\cdots \longrightarrow G(m, n) \longrightarrow G(m + 1, n) \longrightarrow G(m + 2, n) \longrightarrow \cdots
\]

The following description of \(G(n) \) follows from Proposition 6.5.

Lemma 6.9. For all integers \(n \geq 0 \), the set of vertices of \(G(n) \) is the disjoint union of \(V_r(n) \), and the set of edges is the disjoint union of \(E_r(n) \), where \(r \geq 0 \), such that:

1. The set \(V_0(n) \) contains a unique vertex, denoted by \(p_n \).
2. For all integers \(r \geq 1 \), each edge of \(E_r(n) \), from \(v \in V_r(n) \) to \(w \in V_{r+1}(n) \), corresponds to a morphism of the form \(\bullet Sq^k \) for some integer \(k \geq 0 \), and we label this edge by \(Sq^k \). If there is no edge from \(v \) to \(w \), then we write \([v, w] = 0 \).
3. For all vertices \(v \in V_r(n) \), there exists a unique collection of vertices

\[
\{ v_i \} \quad \text{such that } v_0 = p_{m+n}, v_r = v, \quad [v_i, v_{i+1}] = Sq^{k_i}, \quad [v_i, w] \neq Sq^{k_i}, \forall w \neq v_{i+1},
\]

where \(2k_i > n \), \(2k_{i+1} > k_i, 0 \leq i \leq r - 2 \), \(m + n - \sum_{i=0}^{r-1} k_i \geq k_{r-1} \).

forming a path from \(p_{m+n} \) to \(v \), and such a path is called an admissible path. We also say that \(v \) is of Lambda bidegree \(\| v \| = (\| v \|_1, \| v \|_2) = \left(r, \sum_{i=0}^{r-1} k_i \right) \).

In particular, \(V_1(1) \) consists of vertices \(\{ \lambda_i | 0 \leq i, [p_1, \lambda_i] = Sq^{i+1} \} \).

Remark 6.10. In Lemma 6.9, we do not describe the set of edges because it can be obtained by taking the colimit of the sets \(E(m, n) \). And thanks to the point (2) of Remark 6.6 in practice, the computations concerning \(G(n) \) will always be carried out using the model \(G(m, n) \) for some suitable integer \(m \geq 0 \).

6.2 The Lambda algebra

In this paragraph, we will show that there exists an appropriate product \(\times \) on \(G(1) \) such that \((G(1), \times) \) is the Lambda algebra.

Definition 6.11. We define \(\mathbb{T} \) to be the free bigraded algebra over \(F_2 \) generated by the symbols \(\lambda_i \) of bidegree \((1, i+1)\) for all integers \(i \geq 0 \), and \(\Lambda \) to be the bigraded \(F_2 \)-vector space generated by the set of vertices of \(G(1) \), where we take into account the Lambda bidegree as defined in Lemma 6.9.

Lemma 6.12. The \(F_2 \)-vector space \(\Lambda \) is endowed with a structure of right \(\mathbb{T} \)-module, defined as follows:

\[
x \lambda_i = \sum_{[x,y]=Sq^{i+1}} y
\]

for all vertices \(x \) of \(G(1) \). Moreover, the \(\mathbb{T} \)-linear morphism

\[
g : \mathbb{T} \longrightarrow \Lambda
\]

\[
\alpha \longmapsto p_1 \alpha
\]

is an epimorphism, and the set

\[
\{ p_1 \lambda_{k_1} \lambda_{k_2} \ldots \lambda_{k_n} | 2k_i \leq k_{i+1}, 1 \leq i \leq n - 1 \}
\]

forms an \(F_2 \)-basis of \(\Lambda \).
Proof. It is straightforward that the action law \((6.4)\) defines the structure of a right \(T\)-module for \(\Lambda\). We now show that \(g\) is surjective. Indeed, for all vertices \(v \in V_r(1)\), there exists a unique admissible path

\[
\begin{cases}
 v_i & v_i \in V_r(1), 0 \leq i \leq r, \\
 v_0 = p_1, v_r = v, \\
 [v_i, v_{i+1}] = Sq^k, \\
 [v_i, w] \neq Sq^k, \forall w \neq v_{i+1}, \\
 2k_0 > n, \\
 2k_{i+1} > k_i, r - 2 \geq i \geq 0
\end{cases}
\]
connecting \(p_1\) and \(v\). Hence, we have

\[v = p_1\lambda_{k_{n-1}}\lambda_{k_{n-2}} \ldots \lambda_{k_{r-1}}.\]

Then, this concludes that \(g\) is surjective.

Lemma 6.13. The kernel of \(g : T \to \Lambda\) is the two-sided ideal generated by:

\[\lambda_a \lambda_b = \sum_{2a + 2b > 3n + 1 \geq 6b + 4} \left(\frac{a - 2i - 1}{i - 2b - 1}\right) \lambda_1 \lambda_{a+b+i}\] (6.3)

for all integers \(a, b\) such that \(a \geq 2b + 1\).

Proof. Recall that the set

\[\{ p_1 \lambda_{k_1} \lambda_{k_2} \ldots \lambda_{k_n} : 2k_i \leq k_{i+1}, 1 \leq i \leq n - 1\}\]
forms an \(F_2\)-basis of \(\Lambda\). We now show how to express \(p_1 \lambda_{a} \lambda_{b}\) as a linear combination of this basis for all \(a \geq 2b + 1\). Let \(A\) be the set

\[\{ v \in V_2(1) : [p_1 \lambda_a, v] = Sq^{k+1}\}\].

then

\[p_1 \lambda_{a} \lambda_{b} = \sum_{v \in A} v.\]

By definition of \(G(1)\) as the colimit of \(G(m, 1), m \geq 1\), then \(p_1 \lambda_a \in G(m, 1)\) if and only if \(m \geq 2a + 1\). Moreover, for all \(w \in V_2(1)\) such that \([p_1 \lambda_a, w] \neq 0\), then \(w \in V_2(m, 1)\) for all \(m \geq 2a + 1\), and \([p_1 \lambda_a, w] \neq 0\) in \(G(m, 1)\). In particular, when \(m = 2a + 1\), then \(p_1 \lambda_a\) corresponds to a direct summand of the form \(J(a+1)\) of \(\Phi\) (Aug \((\mathcal{A}(k - 1, n))0\). Therefore, an element \(w \in V_2(2a + 1, 1)\), with \([p_1 \lambda_a, w] = Sq^{k+1}\), where \(a \geq 2b + 1\), exists if and only if \(w\) is defined by the admissible form \(p_1 \lambda_j \lambda_j\) such that \(Sq^{a+1} Sq^{k+1}\) appears in the expression of \(Sq^{a+1} Sq^{k+1}\) as linear combination of admissible Steenrod monomials. Hence, it follows from the Adem relations that we have

\[p_1 \lambda_{a} \lambda_{b} = \sum_{2a + 2b > 3n + 1 \geq 6b + 4} \left(\frac{a - 2i - 1}{i - 2b - 1}\right) p_1 \lambda_i \lambda_{a+b+i}\]
for all \(a \geq 2b + 1\). Now, let \(x = p_1 \lambda_{a_1} \lambda_{a_2} \ldots \lambda_{a_k}\) and denote by \(m < k\) the first index such that \(a_m \geq 2a_{m+1} + 1\). Then, by the same method, we have

\[p_1 \lambda_{a_1} \lambda_{a_2} \ldots \lambda_{a_k} = p_1 \lambda_{a_1} \lambda_{a_2} \ldots \lambda_{a_{m-1}} \left(\sum_{3i = 6a_{m+1} + 3}^{2a_{m+2} + 2a_{m+1} - 2} \left(\frac{a_m - 2i - 1}{i - 2a_{m+1} - 1}\right) \lambda_i \lambda_{a+b+i}\right) \lambda_{a_{m+2}} \lambda_{a_{m+3}} \ldots \lambda_{a_k}.\]

As a result, the kernel of \(g\) is the two-sided ideal generated by the relations (6.3).

It follows from Lemma \[5.7\] and Proposition \[6.7\] that \(\Lambda\) is endowed with a differential graded module structure with explicit homology.
Definition-Proposition 6.14. Let \(d : \Lambda \to \Lambda \) be the \(\mathbb{F}_2 \)-linear map defined by:

\[
d(x) = \sum_{[x,v]=Sq^0} v
\]

for all vertices \(x \in V_r(1) \). Then, \((\Lambda, d)\) is a differential graded \(\mathbb{F}_2 \)-vector space. Moreover, we have

\[
H^{r,*}(\Lambda, d) \cong \lim_{n} \text{Ext}^r_n(\Sigma^n \mathbb{F}_2, \Sigma^{n+*} \mathbb{F}_2).
\]

We will actually prove that \((\Lambda, d)\) is a differential graded algebra.

Definition 6.15. Denote by \(X^* \) the exact sequence where \(X^0 = X^1 = J(1), \partial^0 = \cdot Sq^0 \) and \(X^k \) is trivial for all \(k \geq 2 \). Then \(H^m(X^*) \) is an exact sequence that we denote by \(X_m \). We denote by \(G(X_m) \) the associated graph with respect to the decomposition of the terms of \(X_m \) as direct sum of Brown-Gitler modules.

Remark 6.16. 1. For all integers \(m \geq 1 \), we have

\[
V_r(G(X_m)) = V_r(m,1) \bigsqcup V_{r-1}(m,1),
\]

\[
E_r(G(X_m)) = E_{r,r+1}(m,1) \bigsqcup E_{r-1}(m,1) \bigsqcup F_r,
\]

where

\[
F_r := \{ [v,v] = Sq^0 | v \in V_r(m,1) \subset V_r(G(X_m)) \}.
\]

2. For all integers \(m \geq 1 \), we have

\[
H(t,G(X_m)) = (1 + t)H(t,G(m,1)).
\]

Similar to the construction of \(\Lambda \), we have the following result.

Proposition 6.17. There exist canonical inclusions of graphs \(G(X_m) \to G(X_{m+1}) \) corresponding the the inclusion of complexes \(\Sigma X_m \to X_{m+1} \). Denote by \(X \) the colimit of

\[
\cdots \to G(X_{m-1}) \to G(X_m) \to G(X_{m+1}) \to \cdots,
\]

and by \(\mathbb{L} \) the \(\mathbb{F}_2 \)-vector space generated by the vertices of \(X \). Then, \(\mathbb{L} \) is an associative bigraded algebra generated by the symbols \(\lambda_i \) of bidegree \((1, i + 1) \) for all integers \(i \geq -1 \), subject to the relations

\[
\lambda_a \lambda_b = \sum_{2a+2b > 3i+1 \geq 0} \left\langle \frac{a - 2i - 1}{i - 2b - 1} \right\rangle \lambda_i \lambda_{a+b-i},
\]

for all integers \(a, b \) such that \(a \geq 2b + 1 \).

We now show that \((\Lambda, d)\) is a differential algebra.

Lemma 6.18. The algebra \(\Lambda \) is a subalgebra of \(\mathbb{L} \). Moreover, we have

\[
d(\alpha) = \alpha \lambda_{-1} - \lambda_{-1} \alpha.
\]

for all \(\alpha \in \Lambda \subset \mathbb{L} \). Hence, \((\Lambda, d)\) is a differential algebra.

Proof. For all \(\alpha \in \Lambda \) of bidegree \((r,s) \), we have:

\[
\alpha \lambda_{-1} = \sum_{[\alpha,v] = Sq^0} v
\]

\[
= \left(\sum_{[\alpha,v] = Sq^0} v \right) + \left(\sum_{v \in V_{r+1}(1)} v \right)
\]

\[
= d(\alpha) + \lambda_{-1} \alpha.
\]

The lemma follows.
Definition 6.19. For all integers \(m, n \geq 0\), let \(\Lambda(m, n)\) denote the bigraded \(\mathbb{F}_2\)-vector space generated by the vertices \(V(m, n)\) of the graph \(G(m, n)\), where the bidegree of the generator associated with a vertex \(v\) of bidegree \((r, s)\) in \(G(m, n)\) is \((r, m + n - s)\).

Remark 6.20. 1. It is obvious that the law

\[
x\lambda_i = \sum_{[x, y] = Sq^{q+1}} y
\]

for all vertices \(x\) of \(G(m, n)\) defines an action of \(\mathbb{T}\) on \(\Lambda(m, n)\). Moreover, this action is unstable in the following sense: \(x\lambda_i = 0\) for all generators \(x\) of bidegree \((r, s)\) such that \(2i + 2 > s\). Using a similar argument as that in the proof of Lemma 6.13, we can show that this action passes to the quotient \(\Lambda\) and yields a structure of right \(\Lambda\)-module for \(\Lambda(m, n)\).

2. We can also define a \(\mathbb{F}_2\)-linear map \(\partial^{m,n}: \Lambda(m, n) \to \Lambda(m, n)\) by:

\[
\partial^{m,n}(x) = \sum_{[x, v] = Sq^{q}} v
\]

for all vertices \(x \in V(m, n)\). In fact, we have

\[
\partial^{m,n}(p_m, n\theta) = p_{m,n}d(\theta),
\]

where \(d\) is the differential of \(\Lambda\).

7 Minimal resolutions and finite exact sequences of BG modules

The Bockstein sequence, as it is defined in Definition 2.5, plays an important role in the rest of the present paper. This section is devoted to study the interaction between the pseudo-hyperresolution method and the iterated suspensions of the Bockstein sequence. In fact, we will prove that this sequence is saturated with respect to the pseudo-hyperresolution method, in the sense of Proposition 6.8.

Let \(\mathcal{C}\) be an abelian category with enough injective objects, and let \(M\) be an object of \(\mathcal{C}\). Recall that an injective resolution \((I^j, \partial^j, i \geq 0)\) of \(M\) is minimal if \(I^0\) is the injective hull of \(M\), \(I^1\) is the injective hull of \(I^0/M\), and \(I^j\) is that of \(I^{j-1}/\text{Im}(\partial^{j-2})\) for all \(j \geq 2\). The following lemma is classical and is left to the readers.

Lemma 7.1. Let \(M\) and \(N\) be two objects of an abelian category \(\mathcal{C}\). Moreover, let \((I^j, \partial^j, i \geq 0)\) be a minimal injective resolution of \(M\), and let \((J^j, \delta^j, i \geq 0)\) be an injective resolution of \(M \oplus N\). Then a split projection \(M \oplus N \to M\) gives rise to a split projection of complexes \(\{\alpha^j: J^j \to I^j, i \geq 0\}\).

As a consequence, minimal injective resolutions are unique up to isomorphisms.

Let denote by \(\text{Ch}(\mathcal{C})\) the category of cochain complexes \((C^i, \partial^i, i \geq 0)\) of objects in \(\mathcal{C}\).

Definition 7.2 (Extension of complexes). If

\[
0 \to (C^i, \partial^i, i \geq 0) \xrightarrow{\alpha^i} (D^i, \delta^i, i \geq 0) \xrightarrow{\beta^i} (E^i, \eta^i, i \geq 0) \to 0
\]

is a short exact sequence of cochain complexes, then \((D^i, \delta^i, i \geq 0)\) is called an extension of \((C^i, \partial^i, i \geq 0)\) by \((E^i, \eta^i, i \geq 0)\).

Definition 7.3. A complex \((C^i, \partial^i, i \geq 0)\) is called 0–simple if there exists an integer \(n\) such that \(\partial^n\) is an isomorphism, and \(C^i\) is trivial for all \(i \neq n, n + 1\). A complex \((C^i, \partial^i, i \geq 0)\) is called \(n\)-simple if it is an extension of a \((n - 1)\)-simple complex by another one of type 0–simple. A complex is called simple if it is \(k\)-simple for some \(k\).

An easy induction on the height of BG modules yields:

Lemma 7.4. If

\[
0 \to C^0 \xrightarrow{\partial^0} C^1 \xrightarrow{\partial^1} \cdots \xrightarrow{\partial^k} C^{k+1} \to 0
\]

is an exact sequence of BG modules of finite height, then it is simple.

In what follows, we characterize minimal resolutions of finite unstable modules.

Proposition 7.5. Let \(M\) be a finite unstable module and \((I^k, \partial^k, k \geq 0)\) be an injective resolution of \(M\). Then this resolution is minimal if and only if every induced morphism

\[
J(r) \subseteq I^n \xrightarrow{\partial^n} I^{n+1} \to J(s)
\]

is not an isomorphism.
Proof. Suppose that there exist an isomorphism

\[J(r) \leftrightarrow I^n \xrightarrow{\partial^n} I^{n+1} \to J(r), \]

then following Lemma \text{4.3} the resolution \((I^k, \partial^k, k \geq 0)\) is an extension of another resolution of \(M\) by an exact 0–simple sequence and hence cannot be minimal.

Vice versa, let \((J^k, \partial^k, k \geq 0)\) be the minimal resolution of \(M\). Then there exists a split projection of complexes \(\alpha^i : P^i \to J^i\). The kernel of this projection is therefore a finite exact sequence of BG modules. Hence Lemma \text{4.3} and the proposition hypothesis imply the triviality of this kernel. Then, \((\alpha^i, i \geq 0)\) is an isomorphism of complexes. \hfill \Box

Corollary 7.6. Let \(M\) be a finite unstable module and \(I := (I^k, \partial^k, k \geq 0)\) be an injective resolution of \(M\). Denote by \(C\) its maximal simple sub-complex. Then the quotient \(I/C\) is the minimal injective resolution of \(M\).

Definition 7.7. Let \(I := (I^k, \partial^k)\) be a complex of BG modules. We denote by \(A(I)\) the quotient \(I/C\) of \(I\) by its maximal simple sub-complex.

In the rest of this section, we study an interesting interaction of general exact sequences of BG modules with the pseudo-hyperresolution procedure. Recall that the Bockstein sequence is defined in Definition 2.5.

Proposition 7.8. For all integers \(n \leq -1\), denote by \((I^m_*, \partial^m_*)\) the minimal injective resolution of \(\Sigma^k \mathcal{B}_n\). Then, we have an equivalence of exact sequences:

\[A(\mathcal{P}(\Sigma^k \mathcal{B}_*, I^m_*)) \cong \mathcal{B}_{-k}. \]

Proof. The case \(k = 1\) is straightforward as the minimal injective resolution of \(\Sigma^k \mathcal{B}_n\) is given by Mahowald short exact sequences. Suppose that the result is true for all \(k \leq m\), we prove that it still holds for \(k = m + 1\).

For all \(s \leq -1\), denote by \(J^{s,*}\) the minimal injective resolution of \(\Sigma^m A(\mathcal{P}(\Sigma^m \mathcal{B}_*, I^s_*))_s\). We will prove that

\[A(\mathcal{P}(\Sigma A(\mathcal{P}(\Sigma^m \mathcal{B}_*, I^m_*)), J^{s,*})) \cong A(\mathcal{P}(\Sigma^{m+1} \mathcal{B}_*, I^{s+1}_*)), \]

(7.1)

Let \(\alpha \leq -1\), then

\[A(\mathcal{P}(\Sigma A(\mathcal{P}(\Sigma^m \mathcal{B}_{\geq \alpha}, I^m_*)), J^{s,*})) \cong A(\mathcal{P}(\Sigma^{m+1} \mathcal{B}_{\geq \alpha}, I^{s+1}_*)), \]

as they are both isomorphic to the minimal injective resolution of \(\Sigma^{m+1}\ker(\beta_\alpha)\). Let \(\alpha\) tends to \(-\infty\), we get the isomorphism \(\text{7.1}\). Therefore, we have:

\[A(\mathcal{P}(\Sigma^{m+1} \mathcal{B}_*, I^{s+1}_*)) \cong A(\mathcal{P}(\Sigma A(\mathcal{P}(\Sigma^m \mathcal{B}_{\geq m}, I^m_*)), J^{s,*})), \]

\[\cong A(\mathcal{P}(\Sigma A(\mathcal{P}(\Sigma^m \mathcal{B}_{-m}, I^m_*)), J^{s,*})), \]

\[\cong A(\mathcal{P}(\Sigma \mathcal{B}_{-m}, J^{s,*})), \]

\[\cong \mathcal{B}_{-m-1}. \]

The proposition follows. \hfill \Box

8
Resolutions of spheres

Recall that the Ext-groups \(\text{Ext}^s_t(\Sigma^s \mathbb{F}_2, \Sigma^t \mathbb{F}_2)\), where \(s, t, n \geq 0\), are of interest because of the unstable Adams spectral sequence converging to the homotopy groups of spheres. One of the most basic way to compute these groups relies on the construction of the minimal injective resolution of \(\Sigma^t \mathbb{F}_2\) for all integers \(t \geq 0\). That is what we are going to do in this section. In fact, we will compare the minimal injective resolution of \(\Sigma^t \mathbb{F}_2\) with the Bockstein sequence, and show that they agree in a certain specific area. The keys to this result are Proposition \text{7.8} and the injective dimension of \(\Sigma^m J(n)\) for all integers \(m, n \geq 0\).

8.1
Injective dimension

This section aims at studying the injective dimension of \(\Sigma^m J(n)\) for all integers \(m \geq 0\) and \(n \geq 2\). To be more precise, we will show that this dimension is bounded by \([m + n]/2\), where \([-]\) denotes the integral part of a number. The intrigued reader might wonder why we do not consider the case \(n = 1\). Here is the reason: this case does not follow the same rule as that of the cases \(n \geq 2\). The injective resolution \(G_{m,1}\) of \(\Sigma^m J(1)\) is of length \(m\), and, actually, we will show that \(m\) is the injective dimension of \(\Sigma^m J(1)\).

Lemma 8.1. For all integers \(m \geq 0, n \geq 2\), then the injective dimension of \(\Sigma^m J(n)\) is bounded by \([m + n]/2\).
Proof. We proceed by induction on m. The case $m = 0$ is trivial. Suppose that we have proved the cases $m < k$, we now verify the case $m = k$. But, it follows from the exact sequence

$$0 \to \Sigma^k J(n) \to \Sigma^{k-1} J(n+1) \to \Sigma^{k-1} J \left(\frac{n+1}{2} \right) \to 0$$

that

$$\dim_{\text{inj}} \Sigma^k J(n) = \dim_{\text{inj}} \Sigma^{k-1} J(n+1) \leq \left\lceil \frac{n+k}{2} \right\rceil$$

if n is even, and that

$$\dim_{\text{inj}} \Sigma^k J(n) \leq \max \left\{ \dim_{\text{inj}} \Sigma^{k-1} J(n+1), \dim_{\text{inj}} \Sigma^{k-1} J \left(\frac{n+1}{2} \right) \right\}$$

$$\leq \max \left\{ \left\lceil \frac{n+k}{2} \right\rceil, \left\lceil \frac{k-1 + \frac{n+1}{2}}{2} \right\rceil \right\} \leq \left\lceil \frac{n+k}{2} \right\rceil$$

if n is odd. This concludes the proof of the lemma.

8.2 Resolution of spheres

In this subsection, we will prove that $\Sigma^n F_2$ is of injective dimension $n - 1$, and we also describe a large part of its minimal injective resolution.

Theorem 8.2. Given an integer $n \geq 0$ and denote by $(I^k, \partial^k, k \geq 0)$ the minimal injective resolution of $\Sigma^n F_2$. Then, $I^k = 0$ for all $k > n - 1$, and for all $k > \lfloor n/2 \rfloor$, the resolution coincides with the Bockstein sequence as follows:

$$I^k \cong R_{k-n}.$$

Proof. This is a direct consequence of Proposition 7.8. Recall that, for all integers $m \leq -1$, we denote by (I^m, \cdot, ∂^m) the minimal injective resolution of $\Sigma^m R_m$. Then, we have an equivalence of exact sequences:

$$A \left(P \left(\Sigma^k R_k, I^k \cdot \cdot \right) \right)_s \cong R_{s-k}.$$

Now, it follows from Lemma 8.1 that

$$\dim_{\text{inj}} R_m \leq \left\lceil \frac{k-m}{2} \right\rceil$$

for all $m \leq -1$. Hence, we have

$$R_{s-k} \cong A \left(P \left(\Sigma^k R_k, I^k \cdot \cdot \right) \right)_s$$

$$\cong I_k^{s,k}$$

for all $s > \lfloor k + 1/2 \rfloor$. Remark that $I_k^{s,k}$ is the minimal injective resolution of $\Sigma^k J(1)$, which is isomorphic to $\Sigma^{k+1} F_2$, then replacing k by $n - 1$ concludes the proof of the theorem.

Corollary 8.3. Let n, t be nonnegative integers and $s > \lfloor n/2 \rfloor$. Then:

$$\text{Ext}^s_{\text{lin}} \left(\Sigma^n F_2, \Sigma^n F_2 \right) \cong \left\{ \begin{array}{ll}
F_2 & \text{if } t = n - s, \\
F_2 & \text{if } n - s - 1 \equiv 0(4) \text{ and } n - s - 1 = 2t, \\
0 & \text{otherwise.}
\end{array} \right.$$

9 Algebraic EHP sequences

In this section, we focus on computing extensions groups of unstable modules using the pseudo-hyper resolution method. We then show how to connect these groups by long exact sequences.
9.1 Extensions groups of unstable modules

The $J(n)$ form a system of co-generators for the category \mathcal{U}. But we can even say more about the classification of injective unstable modules after the work of Lannes and Schwartz. Before going further, recall that there exist other interesting injective unstable modules beside Brown-Gitler modules. These are given by the cohomologies $H^* \left(B(\mathbb{Z}/2)^{\otimes d}; \mathbb{F}_2 \right)$. Lannes and Zarati observe that the tensor products between these modules and Brown-Gitler modules remain injective. Latter, Lannes and Schwartz prove that an indecomposable injective module must be a tensor product of the form $L \otimes J(n)$, where L denotes a certain indecomposable direct summand of $H^* \left(B(\mathbb{Z}/2)^{\otimes d}; \mathbb{F}_2 \right)$. Since the category \mathcal{U} is locally noetherian, we get:

Theorem 9.1 ([22]). Each indecomposable injective unstable module is a tensor product of the form $L \otimes J(n)$ between an indecomposable direct summand of a certain $H^* \left(B(\mathbb{Z}/2)^{\otimes d}; \mathbb{F}_2 \right)$ and a Brown-Gitler module $J(n)$. Every injective unstable module splits into a direct sum between a BG module and a direct sum of modules of the form $L \otimes J(n)$ where L is a direct summand of $H^* \left(B(\mathbb{Z}/2)^{\otimes d}; \mathbb{F}_2 \right)$ for some d.

The module $H^* \left(B\mathbb{Z}/2; \mathbb{F}_2 \right)$ has several amazing properties that we will recall now. It is reduced. The functor $\otimes H^* \left(B\mathbb{Z}/2; \mathbb{F}_2 \right)$ admits a left adjoint in \mathcal{U} which is denoted by T. Because

$$H^* \left(B\mathbb{Z}/2; \mathbb{F}_2 \right) \cong \tilde{H}^* \left(B\mathbb{Z}/2; \mathbb{F}_2 \right) \oplus \mathbb{F}_2$$

then $T \cong \tilde{T} \oplus \mathbb{F}_2$ where \tilde{T} is left adjoint to $\otimes \tilde{H}^* \left(B\mathbb{Z}/2; \mathbb{F}_2 \right)$. Moreover, if M is a finite unstable module then $TM = 0$. Therefore:

Lemma 9.2. Let M be a finite unstable module and L be a direct summand of $\tilde{H}^* \left(B\mathbb{Z}/2; \mathbb{F}_2 \right)^{\otimes d}$ for some d. Then

$$\text{Hom}_\mathcal{U}(M, L \otimes J(n)) = 0$$

for very n.

Remark 9.3. Let M be an unstable module. Denote by (I^*, ∂^*) its minimal injective resolution. For each I^j, denote by B^j the BG module part and by R^j the other. It follows from Lemma 9.2 that (B^*, ∂^*) is a sub-complex of (I^*, ∂^*). It also follows that if N is a finite unstable module then

$$\text{Ext}^*_\mathcal{U}(N, M) \cong H^*\text{Hom}_\mathcal{U}(N, B^*) .$$

We will now study the extension groups $\text{Ext}^*_\mathcal{U}(N, \Sigma^k M)$ using the pseudo-hyper resolution method. Let us recall how to use this method to construct an injective resolution of $\Sigma^k M$ from (I^*, ∂^*). The minimal injective resolution of $\Sigma^k J(n)$ is denoted by $B(k, n)$. If L is a direct summand of $\tilde{H}^* \left(B\mathbb{Z}/2; \mathbb{F}_2 \right)^{\otimes d}$ then $L \otimes B(k, n)$ is the minimal injective resolution for $L \otimes \Sigma^k J(n)$. Hence there is no BG module part for this resolution. Now using the pseudo-hyper resolution method with respect to these minimal injective resolutions, we get an injective resolution for $\Sigma^k M$. Denote this resolution by $M(k)$ and by $MB(k)$ the pseudo-hyper complex obtain from $\Sigma^k B^*$ using the same method. What we have shown so far is that $MB(k)$ is the BG module part of $M(k)$. Therefore, we have

$$\text{Ext}^*_\mathcal{U}(N, \Sigma^k M) \cong H^*\text{Hom}_\mathcal{U}(N, MB(k)) .$$

We write $B(k)$ for the quotient of $MB(k)$ by its maximal simple sub-complex. Hence:

$$\text{Ext}^*_\mathcal{U}(\Sigma^k \mathbb{F}_2, \Sigma^k M) \cong \text{Hom}_\mathcal{U}(\Sigma^k \mathbb{F}_2, B(k)^s) .$$

We now show how to connect these groups in long exact sequences.

9.2 Algebraic EHP sequences

Fix M and $B(t)$ as in the previous sub-section. We index all the direct summands isomorphic to $J(n)$ of $B(t)^s$ by the set $A_{(t,n,s)}$, then:

$$\text{Ext}^*_\mathcal{U}(\Sigma^t \mathbb{F}_2, \Sigma^t M) \cong \text{Hom}_\mathcal{U} \left(\bigoplus_{A_{(t,n,s)}} J(n) \right) .$$

From the construction of $\mathcal{G}(B(t))$ (see Proposition [22]), the sum of all the direct summands $J(n)$ of $\mathcal{G}(B(t))^s$ is

$$B_{(n,t+1,s)} := C_{(n,t+1,s)} \bigoplus D_{(n,t+1,s)}$$
where
\[C_{(n,t+1,s)} := \bigoplus_{A_{(t,n-1,s)}} J(n), \]
\[D_{(n,t+1,s)} := \bigoplus_{A_{(t,n-1,s-1)}} J(n). \]

Let \(X \in \{ C_{(n,t+1,s)}, D_{(n,t+1,s)} \} \) and \(Y \in \{ C_{(n,t+1,s+1)}, D_{(n,t+1,s+1)} \} \), we denote by \(\partial_{X,Y}^s \) the composition
\[X \mapsto \mathcal{G}(B(t))^s \xrightarrow{\partial^s} \mathcal{G}(B(t))^{s+1} \mapsto Y. \]

Therefore the maps
\[\partial_{DA}^s := \begin{pmatrix} \partial_{C_{(n,t+1,s)}, D_{(n,t+1,s+1)}, C_{(n,t+1,s+1)}}^s \\ \partial_{D_{(n,t+1,s)}, D_{(n,t+1,s+1)}, D_{(n,t+1,s+1)}}^s \end{pmatrix} \]
make \(\{ B_{(n,t+1,s)}, \partial_{DA}^s \} \) a complex. Remark that the BG algorithm shows that
\[\partial_{DA}^s := \begin{pmatrix} 0 & \partial_{D_{(n,t+1,s)}, C_{(n,t+1,s+1)}}^s \\ 0 & 0 \end{pmatrix}. \]

Hence
\begin{align*}
\text{Ext}_U^s (\Sigma^n F_2, \Sigma^{r+1} M) & \cong H_s \text{Hom}_U (\Sigma^n F_2, \mathcal{G}(B(t))), \\
& \cong H_s \text{Hom}_U (\Sigma^n F_2, B_{(n,t+1,s)}), \\
& \cong \ker \left(\left(\partial_{D_{(n,t+1,s)}, C_{(n,t+1,s+1)}}^s \right) \right) \bigoplus \text{coker} \left(\left(\partial_{D_{(n,t+1,s-1)}, C_{(n,t+1,s)}}^s \right) \right).
\end{align*}

We will now explicit the morphisms \(\left(\partial_{D_{(n,t+1,s)}, C_{(n,t+1,s+1)}}^s \right) \). The source of this morphism is described as follows:
\[\text{Hom}_U (\Sigma^n F_2, D_{(n,t+1,s)}) \cong \text{Hom}_U \left(\Sigma^n F_2, \bigoplus_{A_{(t,n-1,s-1)}} J(n) \right), \]
\[\cong \text{Hom}_U \left(\Sigma^{n-1} F_2, \bigoplus_{A_{(t,n-1,s-1)}} J(2n-1) \right), \]
\[\cong \text{Ext}_U^{s-1} (\Sigma^{n-1} F_2, \Sigma^t M). \]

And the target is:
\[\text{Hom}_U (\Sigma^n F_2, C_{(n,t+1,s+1)}) \cong \text{Hom}_U \left(\Sigma^n F_2, \bigoplus_{A_{(t,n-1,s+1)}} J(n) \right), \]
\[\cong \text{Hom}_U \left(\Sigma^{n-1} F_2, \bigoplus_{A_{(t,n-1,s+1)}} J(n-1) \right), \]
\[\cong \text{Ext}_U^{s+1} (\Sigma^{n-1} F_2, \Sigma^t M). \]

Therefore
\[\left(\partial_{D_{(n,t+1,s)}, C_{(n,t+1,s+1)}}^s \right) : \text{Ext}_U^{s-1} (\Sigma^{n-1} F_2, \Sigma^t M) \rightarrow \text{Ext}_U^{s+1} (\Sigma^{n-1} F_2, \Sigma^t M). \]

We denote by \(P^s \) the morphisms \(\left(\partial_{D_{(n,t+1,s)}, C_{(n,t+1,s+1)}}^s \right) \) and then we obtain the following exact sequences:
\[0 \rightarrow \ker (P^{s-1}) \rightarrow \text{Ext}_U^{s-2} (\Sigma^{2n+1} F_2, \Sigma^t M) \rightarrow \text{Ext}_U^{s} (\Sigma^n F_2, \Sigma^t M) \rightarrow \text{coker} (P^{s-1}) \rightarrow 0, \]
\[0 \rightarrow \text{coker} (P^{s-1}) \rightarrow \text{Ext}_U^{s} (\Sigma^{2n+1} F_2, \Sigma^{t+1} M) \rightarrow \ker (P^{s}) \rightarrow 0. \]

We can now conclude:
Theorem 9.4 (Algebraic EHP sequences). There exist a long exact sequence for each \(n \):
\[\ldots \xrightarrow{H} E_{2}^{s-2,t} (S^{2n+1}, M) \xrightarrow{E} E_{2}^{s,t} (S^n, M) \xrightarrow{E} E_{2}^{s,t+1} (S^{n+1}, M) \xrightarrow{H} E_{2}^{-1,t} (S^{2n+1}, M) \xrightarrow{P} \ldots \quad (9.1) \]
where \(E_{2}^{s,t} (S^n, M) \) stands for \(\text{Ext}_U^s (\Sigma^n F_2, \Sigma^t M) \).
9.3 A special case

This section studies the special case of EHP sequence for \(n = 2^k \). In particular we show that in this case the morphisms \(P \) are trivial.

Lemma 9.5. If \(n = 2^k \) then the morphism \(\partial_{\Sigma}^{n} : \bigoplus_{A(2^{k}, t + 1, s + 1)} J(2^{k})_{\omega} \to \bigoplus_{A(2^{k}, t + 1, s + 1)} J(2^{k})_{s} \).

Proof. Recall that

\[
\partial_{\Sigma}^{n} : \bigoplus_{A(2^{k}, t + 1, s + 1)} J(2^{k})_{\omega} \to \bigoplus_{A(2^{k}, t + 1, s + 1)} J(2^{k})_{s}.
\]

Suppose that this morphism is not trivial then there must exist an identity coefficient in the matrix form. The first item of the BG algorithm assures that in this case, the Steenrod square \(Sq^{2^{k}} \) can be factorized as a product of other Steenrod operations. This cannot be true since \(Sq^{2^{k}} \) is indecomposable. Therefore \(\partial_{\Sigma}^{n} \) is trivial.

We get the following consequence:

Theorem 9.6 (James splitting). There are short exact sequences

\[
0 \to E_{2}^{s,t} \left(S^{2^k-1}, M\right) \to E_{2}^{s,t+1} \left(S^{2^k}, M\right) \to E_{2}^{s-1,t} \left(S^{2^k+1-1}, M\right) \to 0
\]

for every \(k \).

10 Bousfield’s proof on the existence of algebraic EHP sequences

An interesting fact about the algebraic EHP sequence: it can be derived in a completely abstract way. That is, it can be derived without the construction of special projective or injective resolutions and without any computation whatsoever. Bousfield explained to me how to do this, about 45 years ago. Here is the key idea. One has a “loop functor” on the category of unstable Steenrod modules. It is left adjoint to the suspension. This functor is right exact, and has non-trivial left-derived functors. The key is to notice that these left-derived functors are zero, in homological degrees greater than one. The existence of the long-exact EHP sequence follows immediately.

William M. Singer, Private communication [30]

Let \(M \) and \(N \) be two unstable modules. In this section, we prove that there exists a long exact sequence of Ext-groups

\[
\text{Ext}^{s-2}_{\Sigma} (\Omega_{1}M, N) \to \text{Ext}^{s}_{\Sigma} (\Omega M, N) \to \text{Ext}^{s}_{\Sigma} (M, \Sigma N) \to \text{Ext}^{s+1}_{\Sigma} (\Omega_{1}M, N)
\]

for all integers \(s \geq 2 \), where \(\Omega \) is the left adjoint of the suspension functor \(\Sigma \) and \(\Omega_{k} \) is the \(k \)-th left-derived functor of \(\Omega \).

The loop functor of unstable modules

Recall that the Frobenius twist of unstable modules exists under the form of the double functor \(\Phi \), defined in Section 2. The operator \(S_{Q_{0}} \), which associates an element \(x \) of degree \(n \) of a certain unstable module \(M \) with \(S_{Q^{n}}x \), defines an \(\mathcal{A}_{2} \)-linear morphism \(\lambda_{M} : \Phi M \to M \). It is classical that both kernel and cokernel of this morphism are a suspension of an unstable module, which can be described explicitly according to the following proposition.

Proposition 10.1. Let \(M \) be an unstable module. Then, the cokernel of \(\lambda_{M} \) is a suspension, and we denote by \(\Sigma M \) the unstable module such that \(\Sigma \Omega M \cong \text{Coker} (\lambda_{M}) \). Then, \(\Omega \) defines an endofunctor of unstable modules which is also a left adjoint of \(\Sigma \). Let \(\Omega_{k} M \) be the \(k \)-th left-derived functor of \(\Omega \) for all integers \(k \) \geq 0, then we have

\[
\Sigma \Omega_{k} M \cong \begin{cases}
\text{Ker} (\lambda_{M}) & \text{if } k = 1, \\
0 & \text{if } k > 1.
\end{cases}
\]

Proof. An unstable module \(N \) is isomorphic to \(\Sigma Q \) for some \(Q \in \mathcal{U} \) if and only if \(S_{Q_{0}} \) acts trivially on \(N \). Then, it is evident that the cokernel of \(\lambda_{M} \) is a suspension of some unstable module that we denote by \(\Omega M \). This is a
well-defined endofunctor of \mathcal{U} as λ_M is natural on M. And since both Φ and Id are exact, it follows that Ω is right exact. In order to show that Ω is left adjoint to Σ, it suffices to show that

$$\text{Hom}_U(\Omega P, N) \cong \text{Hom}_U(P, \Sigma N)$$

for all unstable modules P, N such that P is projective. But this is a direct consequence of the following well-known short exact sequence (see, e.g., [28]).

$$0 \to \Phi F(n) \xrightarrow{\lambda(F(n))} F(n) \xrightarrow{\sigma(F(n))} \Sigma F(n - 1) \to 0,$$

where $\sigma(F(n))$ is defined by $\iota_n \mapsto \Sigma \iota_{n-1}$.

Now, to study the left-derived functors of Ω, let $(P_i, \partial_i : P_{i+1} \to P_i)_{i \geq 0}$, abbreviated as P_\bullet, be a projective resolution of M. Because, on the one hand, $\Sigma \Omega P_\bullet$ splits into an exact sequence of complexes

$$0 \to \Phi P_\bullet \xrightarrow{\lambda P_\bullet} P_\bullet \xrightarrow{\sigma P_\bullet} \Sigma \Omega P_\bullet \to 0,$$

and, on the other hand, Φ is exact, then the homology groups of $\Sigma \Omega P_\bullet$ are trivial, in degrees greater than one, and there is a short exact sequence,

$$0 \to H_1(\Sigma \Omega P_\bullet) \to \Phi M \xrightarrow{\lambda M} M \xrightarrow{\sigma M} \Sigma \Omega M \to 0,$$

connecting the homology groups of degrees 0 and 1. As Σ is exact, we have:

$$\text{Ker}(\lambda_M) \cong \Sigma \Omega_1 M.$$

The proposition follows. \qed

Remark 10.2.

- For all unstable module M, the morphism λ_M is trivial. Therefore,

$$\Omega \Sigma M \cong M, \quad \forall M \in \mathcal{U}.$$

- The loop of σ_M is the identity of ΩM. As the loop functor Ω is right exact, then $\Omega \lambda_M$ is trivial.

- Fix $\{P_i, \partial_i : P_{i+1} \to P_i, i \geq 0\}$ a projective resolution of M. Denote by C the co-kernel $\text{Coker}(\Omega \partial_1)$. Then $\{\Omega P_i, \Omega \partial_i : \Omega P_{i+1} \to \Omega P_i, i \geq 1\}$ is a projective resolution of C. Moreover, C fits in the short exact sequence:

$$0 \to \Omega_1 M \to C \xrightarrow{\Omega P_1} \frac{\Omega P_1}{\text{Ker}(\Omega \partial_0)} \to 0.$$

Because Ω is right exact, $\Omega P_1/\text{Ker}(\Omega \partial_0)$ is isomorphic to the kernel of the morphism $\Omega P_0 \to \Omega M$.

- If $\Omega_1 M$ is trivial, then ΩP_\bullet is a projective resolution of ΩM.

Bousfield’s sequences

Let N be an unstable module. Let M be an unstable module and $\{P_i, \partial_i : P_{i+1} \to P_i, i \geq 0\}$, abbreviated as P_\bullet, be a projective resolution of M. Since ΩP_0 is projective, the long exact sequence of Ext-groups associated with the short exact sequence

$$0 \to \frac{\Omega P_1}{\text{Ker}(\Omega \partial_0)} \to \Omega P_0 \to \Omega M \to 0$$

splits into an exact sequence

$$0 \to \text{Hom}_U(\Omega M, N) \to \text{Hom}_U(\Omega P_0, N) \to \text{Hom}_U(\frac{\Omega P_1}{\text{Ker}(\Omega \partial_0)}, N) \to \text{Ext}_U^1(\Omega M, N) \to 0,$$

and isomorphisms

$$\text{Ext}_U^s \left(\frac{\Omega P_1}{\text{Ker}(\Omega \partial_0)}, N\right) \cong \text{Ext}_U^{s+1}(\Omega M, N),$$

for all $s \geq 1$. Now, because $\{\Omega P_i, \Omega \partial_i : \Omega P_{i+1} \to \Omega P_i, i \geq 1\}$ is a projective resolution of C (see Remark 10.2), then for every $s \geq 1$ we have:

$$\text{Ext}_U^s(C, N) \cong H^{s+1}(\text{Hom}_U(\Omega P_\bullet, N), (\Omega \partial_\bullet)^+) \cong \text{Ext}_U^{s+1}(M, \Sigma N).$$
Therefore, the long exact sequence of Ext-groups associated with the short exact sequence
\[
0 \to \Omega_1 M \to C \to \frac{\Omega P_1}{\text{Ker}(\Omega \delta_1)} \to 0
\]
is the general algebraic long-exact EHP sequence.

Theorem 10.3 (Bousfield’s proof). For all unstable modules M and N, there exists a long exact sequence
\[
\cdots \to \text{Ext}^{s-2}_{\Omega_1}(\Omega M, N) \to \text{Ext}^s_{\Omega_1}(\Omega M, N) \to \text{Ext}^s_{\Omega_1}(M, \Sigma N) \to \text{Ext}^{s-1}_{\Omega_1}(\Omega_1 M, N) \to \cdots
\]
of Ext-groups, where $s \geq 2$.

Let M be $\Sigma^n \mathbb{F}_2$ and N be $\Sigma^t \mathbb{F}_2$. If $n \geq 1$, then the morphism $\lambda_M : \Phi M \to M$ is trivial. Therefore,
\[
\Omega M \cong \Sigma^{n-1} \mathbb{F}_2,
\]
\[
\Omega_1 M \cong \Sigma^{2n-1} \mathbb{F}_2.
\]

A reformulation of Bousfield’s long exact sequence, in this case, yields the algebraic EHP sequence for S^n.

Theorem 10.4. For every positive integer n, there exists a long exact sequence
\[
\cdots \to \mathcal{H} \to E^{s-2,t}_{2}(S^{2n+1}) \to E^{s-1,t}_{2}(S^{n+1}) \to E^{s-1,t+1}_{2}(S^{2n+1}) \to \cdots,
\]
where $E^{s,t}_{2}(S^n) := \text{Ext}^s_{\Omega_1}(\Sigma^n \mathbb{F}_2, \Sigma^t \mathbb{F}_2)$.

Application

In this subsection, we use the loop functor Ω to study a special case of the algebraic EHP sequence.

If $\{C_i, \partial_i : C_{i+1} \to C_i, i \geq 0\}$ is a complex, denote by $C_i[1]$ the complex:
\[
\begin{align*}
C_{i}[1] & = \begin{cases}
C_{i-1} & \text{if } i \geq 1, \\
0 & \text{if } i = 0,
\end{cases} \\
\partial[1] & = \begin{cases}
\partial_{i-1} & \text{if } i \geq 1, \\
0 & \text{if } i = 0.
\end{cases}
\end{align*}
\]

Let M be an unstable module such that $\Omega_1 M$ is trivial. Fix $\{P_\bullet, \partial_\bullet : P_{i+1} \to P_i, i \geq 0\}$, abbreviated as P_\bullet, a projective resolution of M, and fix $\{Q_\bullet, \delta_\bullet : Q_{i+1} \to Q_i, i \geq 0\}$, abbreviated as Q_\bullet, a projective resolution of ΦM.

The natural transformation $\lambda : \Phi \to \text{Id}$ gives rise to a morphism of complexes: $\lambda_{P_\bullet} : \Phi P_\bullet \to P_\bullet$. On the other hand, the identity of ΦM yields a morphism of complexes: $\omega : Q_\bullet \to \Phi P_\bullet$. Therefore, the composition map $\omega \circ \lambda_{P_\bullet}$ makes the following diagram commute:
\[
\begin{array}{c}
\xymatrix{
Q_\bullet &
\ar[d]
&
P_\bullet \\
\Phi M &
\ar[d]
&
M \\
&
\omega \circ \lambda_{P_\bullet} \\
&
\lambda_M \\
& \Omega_1 M
\end{array}
\]

Now, we can consider $\omega \circ \lambda_{P_\bullet} : Q_\bullet \to P_\bullet$ as a double complex with two non-trivial columns Q_\bullet and P_\bullet. Denote by T_\bullet the total complex of this double complex. As these columns, Q_\bullet and P_\bullet, are acyclic, the homology groups of T_\bullet are computed as follows.
\[
\begin{align*}
H_i(T_\bullet) & \cong
\begin{cases}
\text{Coker}(\lambda_M) & \text{if } i = 0, \\
\text{Ker}(\lambda_M) & \text{if } i = 1, \\
0 & \text{otherwise}.
\end{cases}
\end{align*}
\]

Since $\Omega_1 M$ is trivial, T_\bullet is a projective resolution of $\Sigma \Omega M$. We now compute ΩT_\bullet. It follows from Remark 10.2 that the morphism $\Omega(\omega \circ \lambda_{P_\bullet})$ is trivial. We then have:
\[
\Omega T_\bullet \cong \Omega P_\bullet \bigoplus \Omega Q_\bullet[1].
\]

We also deduce from Remark 10.2 that ΩP_\bullet is a projective resolution of ΩM, and ΩQ_\bullet is a projective resolution of $\Omega \Phi M$.

Lemma 10.5. Let M be an unstable module such that $\Omega_1 M$ is trivial. For all unstable module N, we have an isomorphism of Ext-groups
\[
\text{Ext}^s_{\Omega_1}(\Sigma \Omega M, \Sigma N) \cong \text{Ext}^s_{\Omega_1}(\Omega M, \Sigma N) \bigoplus \text{Ext}^{s-1}_{\Omega_1}(\Omega \Phi M, N),
\]
for all $s \geq 0$. (Here, by convention, the Ext-groups of degree -1 are trivial.)
Then, in view of Proposition 4.5, there exist morphisms B resolution s is the minimal injective resolution of Σ for all integers $s \geq 1$, and let (\cdot, Σ, Σ) be the differential $\Phi H \cong H^* (\Sigma T \Sigma, \Sigma N)$.

$\Omega \Phi M \cong \Sigma \Phi \Omega M$

for all unstable modules M. Then, applying Lemma 10.5 to $M = \Phi^s F(1)$, we recover Theorem 9.6.

11 Infinite complex projective space

This section aims at studying a particular relation between the infinite complex projective and spheres, which is a direct consequence of the following result in view of pseudo-hyperresolution method.

Lemma 11.1. Denote by \mathcal{H} the cohomology $H^* (B\mathbb{Z}/2; \mathbb{F}_2)$ of the classifying space of $\mathbb{Z}/2$. Then, we have

$$\Phi \mathcal{H} \cong H^* (\mathcal{C}P^\infty; \mathbb{F}_2),$$

$$\Omega \mathcal{H} \cong \Phi \mathcal{H}.$$

Proof. The lemma follows from the fact that H is isomorphic to the polynomial algebra $\mathbb{F}_2 [u]$ on one variable of degree 1 whereas $H^* (\mathcal{C}P^\infty; \mathbb{F}_2)$ is the polynomial algebra $\mathbb{F}_2 [t]$ on one variable of degree 2. \hfill \Box

Remark 11.2. Denote by \mathcal{H} the reduced cohomology $H^* (B\mathbb{Z}/2; \mathbb{F}_2)$. Then, we have two short exact sequences

$$0 \longrightarrow \Phi H \longrightarrow H \longrightarrow \Sigma \Phi H \longrightarrow 0,$$

$$0 \longrightarrow \Phi H \longrightarrow H \longrightarrow \Sigma \Phi H \longrightarrow 0.$$

As a result, we have the following long exact sequences

$$0 \longrightarrow \Phi H \longrightarrow H \longrightarrow \Sigma \Phi H \longrightarrow \Sigma^2 \Phi H \longrightarrow \cdots \longrightarrow \Sigma^d \Phi H \longrightarrow \cdots,$$

$$0 \longrightarrow \Phi H \longrightarrow H \longrightarrow \Sigma \Phi H \longrightarrow \Sigma^2 \Phi H \longrightarrow \cdots \longrightarrow \Sigma^d \Phi H \longrightarrow \cdots.$$

Theorem 11.3. For all integers $s \geq 0$, we have

$$\text{Ext}_H^s (\Sigma^n \mathbb{F}_2, \Sigma^k \Phi H) \cong \bigoplus_{m+q=s} \text{Ext}_H^q (\Sigma^n \mathbb{F}_2, \Sigma^{k+m} \mathbb{F}_2).$$

(11.1)

Proof. Following Remark 11.2, there is a long exact sequence

$$0 \longrightarrow \Sigma^k \Phi H \longrightarrow \Sigma^k H \longrightarrow \Sigma^{k+1} H \longrightarrow \Sigma^{k+2} H \longrightarrow \cdots \longrightarrow \Sigma^{k+d} H \longrightarrow \cdots$$

for all integers $k \geq 0$. In accordance with Section 9, we denote by $B(s, 1)$ the minimal injective resolution of $\Sigma^s \mathbb{F}_2$ for all integers $s \geq 0$. As $H \otimes J(n)$ is an injective unstable module for all integers $n \geq 0$, then $H \otimes B(s, 1)$ is the minimal injective resolution of $\Sigma^n H$ for all integers $s \geq 0$. Let $B(s, 1)$ denote the t–th term of the resolution $B(s, 1)$, and let $d_t^{l,t}$ be the differential

$$H \otimes B (k - 1 + l, 1)^t \longrightarrow H \otimes B (k - 1 + l, 1)^{t+1}.$$

Then, in view of Proposition 11.5, there exist morphisms

$$d_t^{l,t} : H \otimes B (k - 1 + l, 1)^t \longrightarrow H \otimes B (k - 1 + l + i, 1)^{t-i}$$

such that the morphisms

\[
\partial^l = \begin{pmatrix}
\partial^{0,l}_0 & 0 & \cdots & 0 \\
\partial^{0,l}_1 & \partial^{1,l-1}_1 & \cdots & \partial^{1,l-1}_0 \\
\vdots & \vdots & \ddots & \vdots \\
\partial^{l-1,l-1}_1 & \partial^{l-2,l-1}_2 & \cdots & \partial^{l-2,l-2}_0 \\
\partial^{l,l}_1 & \partial^{l-1,l-1}_2 & \cdots & \partial^{l-1,l-2}_0 \\
\end{pmatrix}
\]

(11.2)

make the sequence

\[
H \otimes B (k-1,1)^0 \xrightarrow{\partial^l} H \otimes B (k-1,1)^1 \bigoplus H \otimes B (k,1)^0 \xrightarrow{\partial^l} \cdots \bigoplus H \otimes B (k-1+m,1)^n \xrightarrow{\partial^{l+1}} \cdots
\]

(11.3)

an injective resolution of \(\Sigma^k \Phi H\). It follows from Remark 9.3 that

\[
\text{Ext}^s_U (\Sigma^n F_2, \Sigma^k \Phi H) \cong \text{Ext}^s_U (\Sigma^n F_2, B^s),
\]

where \(B^s\) is the BG part of the resolution (11.3). It is evident that

\[
B^s \cong \bigoplus_{n+m=s} B (k-1+m,1)^n.
\]

By abuse of notation, we adopt the notation (11.2) for the induced differentials of \(B^s\). Because a morphism between two BG modules cannot factorize via a direct sum of tensor products of the form \(H \otimes J(n)\), then the induced differential \(\partial^l\) of \(B^s\) has the following simple form

\[
\partial^l = \begin{pmatrix}
\partial^{0,l}_0 & 0 & \cdots & 0 \\
0 & \partial^{1,l-1}_1 & \cdots & \partial^{1,l-1}_0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \partial^{l-1,l-1}_0 \\
0 & 0 & \cdots & \partial^{l-1,l-2}_0 \\
\end{pmatrix}
\]

Therefore, \(B^s\) is the direct sum of the resolution \(B (s,1)\) with some appropriate shifting. This conclude the isomorphism (11.1).

\[\Box\]

Acknowledgements

This research was supported through the programme 'Oberwolfach Leibniz Fellows' by the Mathematisches Forschungsinstitut Oberwolfach (MFO) in 2016. It is a great pleasure for the author to express his sincere thanks to all members of the MFO for their hospitality during his three-month visit in Oberwolfach, where the present work was accomplished. The author enjoyed various discussions with Professor Singer about the algebraic EHP sequence and would like to thank him for pointing out Bousfield’s proof and for providing references concerning the Lambda algebra. The acknowledgements also go to Professor Bousfield for his generous permission for exhibiting his approach to the construction of the algebraic EHP sequence. Part of this work was conducted during the author’s PhD thesis [32] at University Paris 13, and he is grateful to his advisor, Professor Schwartz, for his guidance and his constant supports. The author also takes advantage of this occasion to thank Professor Touzé for pointing out to him the similarity between the approach of the present paper to functor homology and the original ones in [15] and [34], and for showing him the existence of the mapping telescope technique [3].

References

[1] Kaan Akin and David A. Buchsbaum. Characteristic-free representation theory of the general linear group. II. Homological considerations. *Adv. in Math.*, 72(2):171–210, 1988.

[2] Stanislaw Betley. Stable \(K\)-theory of finite fields. *K-Theory*, 17(2):103–111, 1999.

[3] Marcel Bökstedt and Amnon Neeman. Homotopy limits in triangulated categories. *Compositio Math.*, 86(2):209–234, 1993.
[4] A. K. Bousfield and E. B. Curtis. A spectral sequence for the homotopy of nice spaces. *Trans. Amer. Math. Soc.*, 151:457–479, 1970.

[5] A. K. Bousfield and D. M. Kan. *Homotopy limits, completions and localizations*. Lecture Notes in Mathematics, Vol. 304. Springer-Verlag, Berlin-New York, 1972.

[6] Lawrence Breen. Extensions du groupe additif. *Inst. Hautes Études Sci. Publ. Math.*, 48:39–125, 1978.

[7] Gunnar Carlsson. G. B. Segal’s Burnside ring conjecture for $(\mathbb{Z}/2)^k$. *Topology*, 22(1):83–103, 1983.

[8] E. Cline, B. Parshall, L. Scott, and Wilberd van der Kallen. Rational and generic cohomology. *Invent. Math.*, 39(2):143–163, 1977.

[9] S. Donkin. On Schur algebras and related algebras. I. *J. Algebra*, 104(2):310–328, 1986.

[10] Samuel Eilenberg and Saunders Mac Lane. On the groups of $H(\Pi, n)$. I. *Ann. of Math. (2)*, 58:55–106, 1953.

[11] Samuel Eilenberg and Saunders Mac Lane. On the groups $H(\Pi, n)$. II. Methods of computation. *Ann. of Math. (2)*, 60:49–139, 1954.

[12] Samuel Eilenberg and Saunders MacLane. On the groups $H(\Pi, n)$. III. *Ann. of Math. (2)*, 60:513–557, 1954.

[13] Vincent Franjou, Eric M. Friedlander, Alexander Scorichenko, and Andrei Suslin. General linear and functor cohomology over finite fields. *Ann. of Math. (2)*, 150(2):663–728, 1999.

[14] Vincent Franjou, Jean Lannes, and Lionel Schwartz. Autour de la cohomologie de Mac Lane des corps finis. *Invent. Math.*, 115(3):513–538, 1994.

[15] Eric M. Friedlander and Andrei Suslin. Cohomology of finite group schemes over a field. *Invent. Math.*, 127(2):209–270, 1997.

[16] Nguyen Dang Ho Hai. Foncteurs polynomiaux stricts et modules instables sur l’algèbre de Steenrod. *J. Algebra*, 324(4):860–874, 2010.

[17] M. J. Hopkins. Algebraic topology and modular forms. In *Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002)*, pages 291–317. Higher Ed. Press, Beijing, 2002.

[18] Mamuka Jibladze and Teimuraz Pirashvili. Cohomology of algebraic theories. *J. Algebra*, 137(2):253–296, 1991.

[19] Michel A. Kervaire and John W. Milnor. Groups of homotopy spheres. I. *Ann. of Math. (2)*, 77:504–537, 1963.

[20] Nicholas J. Kuhn. On topologically realizing modules over the Steenrod algebra. *Ann. of Math. (2)*, 141(2):321–347, 1995.

[21] Jean Lannes and Lionel Schwartz. À propos de conjectures de Serre et Sullivan. *Invent. Math.*, 83(3):593–603, 1986.

[22] Jean Lannes and Lionel Schwartz. Sur la structure des A-modules instables injectifs. *Topology*, 28(2):153–169, 1989.

[23] Jean Lannes and Saïd Zarati. Sur les U-injectifs. *Ann. Sci. École Norm. Sup. (4)*, 19(2):303–333, 1986.

[24] Saunders Mac Lane. Homologie des anneaux et des modules. In *Colloque de topologie algébrique, Louvain, 1956*, pages 55–80. Georges Thone, Liège; Masson & Cie, Paris, 1957.

[25] W. S. Massey and F. P. Peterson. The mod 2 cohomology structure of certain fibre spaces. *Memoirs of the American Mathematical Society*, No. 74. American Mathematical Society, Providence, R.I., 1967.

[26] C. A. McGibbon. A note on Miller’s theorem about maps out of classifying spaces. *Proc. Amer. Math. Soc.*, 124(10):3241–3245, 1996.

[27] Haynes Miller. The Sullivan conjecture on maps from classifying spaces. *Ann. of Math. (2)*, 120(1):39–87, 1984.
[28] Lionel Schwartz. *Unstable modules over the Steenrod algebra and Sullivan’s fixed point set conjecture*. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1994.

[29] Jean-Pierre Serre. Cohomologie modulo 2 des complexes d’Eilenberg-MacLane. *Comment. Math. Helv.*, 27:198–232, 1953.

[30] William M. Singer. Private communication. January 2016.

[31] N. E. Steenrod. *Cohomology operations*. Lectures by N. E. Steenrod written and revised by D. B. A. Epstein. Annals of Mathematics Studies, No. 50. Princeton University Press, Princeton, N.J., 1962.

[32] Nguyen The Cuong. Some homological algebra computations in the category of unstable modules. PhD thesis, Université Paris 13, July 2014.

[33] Nguyen The Cuong. Homogeneous strict polynomial functors as unstable modules. *J. Algebra*, 450:616–628, 2016.

[34] Burt Totaro. Projective resolutions of representations of GL(n). *J. Reine Angew. Math.*, 482:1–13, 1997.

[35] A. Zabrodsky. On phantom maps and a theorem of H. Miller. *Israel J. Math.*, 58(2):129–143, 1987.