PROGRESS IN CORRELATION FEMTOSCOPY

R. LEDNICKY

Joint Institute for Nuclear Research
Dubna, Moscow Region, 141980, Russia
Institute of Physics ASCR
Na Slovance 2, 10800 Prague, Czech Republic
E-mail: lednicky@fzu.cz

Recent results on particle momentum and spin correlations are discussed, particularly, in view of the role played by the effect of final state interaction. It is demonstrated that this effect allows for (i) correlation femtoscopy with unlike particles; (ii) study of the relative space–time asymmetries in the production of different particle species (including relative time delays); (iii) study of the particle strong interaction hardly accessible by other means (e.g., in $\Lambda\Lambda$ system).

1. Introduction

The momentum correlations of particles at small relative velocities are widely used to study space-time characteristics of the production processes, so serving as a correlation femtoscope. Particularly, for non-interacting identical particles, like photons or, to some extent, pions, these correlations result from the interference of the two–particle amplitudes due to the symmetrization requirement of quantum statistics (QS).\(^1,2a\)

The momentum QS correlations were first observed as an enhanced production of the pairs of identical pions with small opening angles (GGLP effect\(^1\)). Later on, Kopylov and Podgoretsky\(^2\) settled the basics of correlation femtoscopy; particularly, they suggested to study the interference effect in terms of the

*Work supported by grant 202/01/0779 of the Grant Agency of the Czech Republic.

aThere exists\(^2,3\) a deep analogy of the momentum QS correlations of photons with the space–time correlations of the intensities of classical electromagnetic fields used in astronomy to measure the angular radii of stellar objects based on the superposition principle (HBT effect).\(^4\) This analogy is sometimes misunderstood and the momentum correlations are mixed up with the HBT correlations in spite of their orthogonal character and the absence of the classical analogy for correlations of identical fermions.
correlation function and clarified the role of the space-time characteristics of particle production in various physical situations.

The momentum correlations of particles emitted at nuclear distances are also influenced by the effect of final state interaction (FSI)5,6 Though the FSI effect complicates the correlation analysis, it is an important source of information allowing for the coalescence femtoscopy (see, \textit{e.g.,}8 and the talk by G. Melkumov), the correlation femtoscopy with unlike particles6,7 including the access to the relative space–time asymmetries in particle production9 and a study of particle strong interaction.

The two-particle correlation function $R(p_1, p_2)$ is usually defined as a ratio of the measured two-particle distribution to the reference one obtained by mixing the particles from different events. It can be calculated5−7 as a square of the properly symmetrized stationary solution $\psi_{S+}\psi_{S-}(r^*)$ of the scattering problem averaged over the relative distance r^* of the emitters in the pair c.m.s. ($k^* = p^*_1 = -p^*_2 = Q/2$) and over the pair total spin S.

It is well known that the directional and velocity dependence of the correlation function can be used to determine both the duration of the emission process and the form of the emission region,2 as well as to reveal the details of the production dynamics (such as collective flows; see, \textit{e.g.,}10). The recent (puzzling) results on like pion correlations from BNL RHIC have been presented at this conference by M. Lisa and V. Okorokov.

2. Femtometry with unlike particles

The complicated dynamics of particle production, including resonance decays and particle rescatterings, leads to essentially non–Gaussian tail of the r^*–distribution. Therefore, due to different r^*–sensitivity of the QS, strong and Coulomb FSI effects, one has to be careful when analyzing the correlation functions in terms of simple models. Thus, the QS and strong FSI effects are influenced by the r^*–tail mainly through the suppression parameter λ while, the Coulomb FSI is sensitive to the distances as large as the pair Bohr radius $|a|$ (hundreds fm for the pairs containing pions). These problems can be at least partially overcome with the help of transport code simulations accounting for the dynamical evolution of the emission process and providing the phase space information required to calculate the QS and FSI effects on the correlation function.

Thus, in a preliminary analysis of the NA49 correlation data from central $Pb + Pb$ 158 AGeV collisions,11 the transport RQMD v.2.3 code was used. To account for a possible mismatch in $\langle r^* \rangle$, the correlation functions
were calculated with the space–time coordinates of the emission points scaled by 0.7, 0.8 and 1. The scale parameter was then fitted using the quadratic interpolation. The fits of the $\pi^+\pi^−, \pi^+p$ and π^-p correlation function indicate that RQMD overestimates the distances r^* by 10–20%.

Recently, there appeared data on $p\Lambda$ correlation functions from $Au+Au$ experiment E985 at AGS. As the Coulomb FSI is absent in this system, one avoids here the problem of its sensitivity to the r^*–tail. Also, the absence of the Coulomb suppression of small relative momenta makes this system more sensitive to the radius parameters as compared with pp correlations. In spite of rather large statistical errors, a significant enhancement is seen at low relative momentum, consistent with the known singlet and triplet $p\Lambda$ s–wave scattering lengths. In fact, using the analytical expression for the correlation function (originally derived for pn system), one gets a good fit of the combined (4, 6 and 8 AGeV) correlation function with the Gaussian radius $r_0 = 4.5 \pm 0.7$ fm, in agreement with the radii of 3–4 fm obtained from pp correlations in heavy ion collisions at GSI, AGS and SPS energies.

3. Accessing particle strong interaction

In case of a poor knowledge of the two–particle strong interaction, which is the case for exotic systems like ($M = \text{meson}) MM, MA$ or $\Lambda\Lambda$, the correlation measurements can be also used to study the latter.

In heavy ion collisions, the effective radius r_0 of the emission region can be considered much larger than the range of the strong interaction potential. The FSI contribution to the correlation function is then independent of the actual potential form. At small $Q = 2k^*$, it is determined by the s-wave scattering amplitudes $f^S(k^*)$. In case of $|f^S| > r_0$, this contribution is of the order of $|f^S/r_0|^2$ and dominates over the effect of QS. In the opposite case, the sensitivity of the correlation function to the scattering amplitude is determined by the linear term f^S/r_0.

The possibility of the correlation measurement of the scattering amplitudes has been demonstrated in a recent analysis of the NA49 $\pi^+\pi^−$ correlation data within the RQMD model. The fitted strong interaction scale, redefining the original scattering length $f_0 = 0.232$ fm, appeared to be significantly lower than unity: 0.63 ± 0.08. To a similar shift ($\sim 20\%$) point also the recent BNL data on $K_{4\pi}$ decays. These results are in agreement with the two–loop calculation in the chiral perturbation theory with a standard value of the quark condensate.
As for the ΛΛ system, the singlet ΛΛ s-wave scattering length f_0 has been recently estimated11,17 based on the NA49 data on ΛΛ correlations in Pb + Pb collisions at 158 AGeV. Using the analytical expression for the correlation function and fixing the purity of direct Λ–pairs at the estimated value of 0.16 and varying the effective radius r_0 in the acceptable range of several fm, one gets17 e.g., $f_0 = 2.4 \pm 2.1$ and 3.2 ± 5.7 fm for $r_0 = 2$ and 4 fm respectively (we use the same sign convention as for meson–meson and meson–baryon systems). Though the fit results are not very restrictive, they likely exclude the possibility of a large positive singlet scattering length comparable to that of ~ 20 fm for the two–nucleon system.

The important information is also coming from ΛΛ correlations at LEP.18 Here the effective radius r_0 is substantially smaller than the range of the strong interaction potential, so the ΛΛ correlation function is sensitive to the potential form. In fact, the observed strong decrease of the correlation function at small Q can be considered as a direct evidence for the potential core;19 particularly, the Nijmegen potential NSC97e yields a reasonable agreement with this data.

4. Accessing relative space-time asymmetries

The correlation function of two non–identical particles, compared with the identical ones, contains a principally new piece of information on the relative space-time asymmetries in particle emission.9 Since this information enters in the two-particle amplitude $\psi_S^{(+)}(\mathbf{r}^*)$ through the terms odd in $k^* \mathbf{r}^*$, it can be accessed studying the correlation functions \mathcal{R}_{++} and \mathcal{R}_{--} with positive and negative projection k^*_i on a given direction i, or, the ratio $\mathcal{R}_{++}/\mathcal{R}_{--}$. For example, i can be the direction of the pair velocity or, any of the out (x), side (y), longitudinal (z) directions. Note that in the longitudinally comoving system (LCMS), one has $r_i^* = r_i$ except for $r_x^* \equiv \Delta x^* = \gamma_t (\Delta x - v_t \Delta t)$, where γ_t and v_t are the pair LCMS Lorentz factor and velocity. One may see that the asymmetry in the out (x) direction depends on both space and time asymmetries $\langle \Delta x \rangle$ and $\langle \Delta t \rangle$. In case of a dominant Coulomb FSI, the intercept of the correlation function ratio is directly related with the asymmetry $\langle r_i^* \rangle$ scaled by the Bohr radius $a = (\mu z_1 z_2 e^2)^{-1}$: $\mathcal{R}_{++}/\mathcal{R}_{--} \approx 1 + 2 \langle r_i^* \rangle / a$.

A review of the simulation studies of the method sensitivity and the experimental results can be found elsewhere11. Here we discuss the out correlation asymmetries observed for πp and πK systems in heavy ion collisions at CERN SPS and BNL RHIC.11,20 These asymmetries are in agree-
ment with practically charge independent meson production and a negative $\langle \Delta x \rangle$ or positive $c\langle \Delta t \rangle$ on the level of several fm (assuming $m_1 < m_2$). The RHIC asymmetries seem to be overestimated by the RQMD model while the NA49 $\pi^+\pi^-$ and πp asymmetries in central $Pb + Pb$ collisions at 158 AGeV are in quantitative agreement with this model - it yields practically zero asymmetries for $\pi^+\pi^-$ system while, for $\pi^\pm p$ systems, $\langle \Delta x \rangle \approx -5.2$ fm, $\langle \Delta t \rangle \approx 2.9$ fm/c, $\langle \Delta x^* \rangle \approx -8.5$ fm. Besides, it predicts $\langle x \rangle$ increasing with particle p_t or $u_t = p_t/m$, starting from zero due to kinematic reasons. The asymmetry arises because of a faster increase with u_t for heavier particle. In fact, the hierarchy $\langle x_\pi \rangle < \langle x_K \rangle < \langle x_p \rangle$ is a signal of a universal transversal collective flow;11 one should simply take into account that the mean thermal velocity is smaller for heavier particle and thus washes out the positive shift due to the flow to a lesser extent.

5. Spin correlations

The information on the system size and the two–particle interaction can be achieved also with the help of spin correlation measurements using as a spin analyzer the asymmetric (weak) particle decay.21–23 Since this technique requires no construction of the uncorrelated reference sample, it can serve as an important consistency check of the standard correlation measurements. Particularly, for two Λ–particles decaying into the $p\pi^-$ channel, the distribution of the cosine of the relative angle θ between the directions of the decay protons in the respective Λ rest frames allows one to determine the triplet fraction $\rho_t = R_t/R$, where R_t is the triplet part of the correlation function.

The spin correlations allow also for a relatively simple test of the quantum–mechanical coherence based on Bell-type inequalities derived from the assumption of the factorizability of the two–particle density matrix, i.e. its reduction to a sum of the direct products of one–particle density matrices with the nonnegative coefficients.25 Clearly, such a form of the density matrix corresponds to a classical probabilistic description and cannot account for the coherent quantum–mechanical effects, particularly, for the production of two Λ-particles in a singlet state. Thus the suppression of the triplet $\Lambda\Lambda$ fraction observed in multihadronic Z^0 decays at LEP18 indicates a violation of one of the Bell-type inequalities, $\rho_t \geq 1/2$.
6. Conclusions

The particle momentum and, recently, also spin correlations give unique information on the space–time production characteristics including collective flows. Rather direct evidence for a strong transverse flow in heavy ion collisions at SPS and RHIC is coming from unlike particle correlation asymmetries. Being sensitive to relative time delays and collective flows, the correlation asymmetries can be especially useful to study the effects of the quark–gluon plasma phase transition. The correlations yield also a valuable information on the particle strong interaction hardly accessible by other means.

References

1. G. Goldhaber et al., Phys. Rev. 120, 300 (1960).
2. G.I. Kopylov and M.I. Podgoretsky, Sov. J. Nucl. Phys. 15, 219 (1972); M.I. Podgoretsky, Sov. J. Part. Nucl. 20, 266 (1989).
3. G.I.Kopylov and M.I.Podgoretsky, Sov. Physics JETP 42, 211 (1975).
4. R. Hanbury-Brown and R.Q. Twiss, Nature 178, 1046 (1956).
5. S.E. Koonin, Phys. Lett. B70, 43 (1977); M. Gyulassy, S.K. Kauffmann and L.W. Wilson, Phys. Rev. C20, 2267 (1979).
6. R. Lednicky and V.L. Lyuboshitz, Sov. J. Nucl. Phys. 35, 770 (1982); Proc. CORINNE 90, Nantes, France, 1990 (ed. D. Ardouin, World Sci., 1990) p. 42.
7. D.H. Boal and J.C. Shillcock, Phys. Rev. C33, 549 (1986); D.H. Boal, C.-K. Gelbke and B.K. Jennings, Rev. Mod. Phys. 62, 553 (1990).
8. V.L. Lyuboshitz, Sov. J. Nucl. Phys. 48, 956 (1988).
9. R. Lednicky et al., Phys. Lett. B373, 30 (1996).
10. S. Pratt, Phys. Rev. Lett. 53, 1219 (1984); Phys. Rev. D33, 1314 (1986); A.N. Makhlin, Yu.M. Sinyukov, Z. Phys. C39, 69 (1988); see also recent reviews: U. Wiedemann and U. Heinz, Phys. Rep. 319, 145 (1999); T. Csörgő, Heavy Ion Phys. 15, 1 (2002).
11. R. Lednicky, NA49 Note number 210 (1999); nucl-th/0112011.
12. M. Lisa et al. (E895), nucl-ex/0104012.
13. F. Wang and S. Pratt, Phys. Rev. Lett., 3138 83 (1999).
14. M. Gmitro et al., Czech. J. Phys. B36, 1281 (1986).
15. S. Pislak et al., Phys. Rev. Lett. 87, 221801 (2001).
16. G. Colangelo, J. Gasser and H. Leutwyler, Phys. Lett. B488, 261 (2000).
17. Ch. Blume (NA49), nucl-ex/0208020.
18. ALEPH Collab., Phys. Lett. B 475 (2000) 395.
19. R. Lednicky, poster at Quark Matter 2002, Nantes, France.
20. F. Retiere (STAR), nucl-ex/0111013.
21. G. Alexander, H.J. Lipkin: Phys. Lett. B 352 (1995) 162.
22. R. Lednicky, MPI-PhE/99-10 (1999).
23. R. Lednicky, V.L. Lyuboshitz: Phys. Lett. B 508 (2001) 146.