Search for Majorana fermions (MFs), the particles that are their own antiparticles and are governed by non-Abelian exchange statistics [1, 2], has intensified in recent years. The hybrid semiconductor-superconductor nanostructured systems [3–6] are believed to be the most likely systems hosting such exotic fermions [7], and have quite naturally received considerable attention by various experimental groups [8–12]. Experimental efforts have also focused on the ferromagnetic atomic chain [13], which is in close proximity to a conventional superconductor. A promising route for realizing the MFs [2, 3] is the observation of the topological superconducting phase in a one-dimensional semiconductor wire with large Rashba spin-orbit (SO) coupling [14], proximity coupled to an s-wave superconductor. By tuning the chemical potential of the system in the gap region created by an applied magnetic field, the system is effectively rendered spinless and the MFs are expected to reside at the edges of the wire, akin to Kitaev’s original p-wave superconductor chain model [13]. In addition to discovering the telltale signs of this long sought-after particle, as it was pointed out earlier by various authors, one major impetus for discovering the MFs lies in their potential use in topological quantum computation [16–18] because of their unconventional Abelian exchange statistics [1, 2] has intensified in recent years.
and σ_z are the Pauli spin matrices. We take as the basis states the eigenstates of H_{SP} for $B = 0$ and $\alpha = 0$ [24].

In doing so we can cast the many-body Hamiltonian H into the second quantized form and diagonalize it to get the eigenstates and the eigenvectors [25].

The proximity induced superconductivity potential can then be written directly in this basis $H_{\text{PSC}} = \Delta \sum_n (c_{n\uparrow}^\dagger c_{n\downarrow}^\dagger + c_{n\downarrow}^\dagger c_{n\uparrow}^\dagger)$, where for brevity we write $n = \{n_e, l_e\}$, where n_e and l_e are electron radial and angular quantum numbers. The pairing potential strength Δ is taken to be real. In order to evaluate the eigensates of quantum numbers. The pairing potential strength Δ is [26].

The eigenstates and the eigenvectors [23]. In doing so we can cast the many-body Hamiltonian H can then be written directly in this basis H into the second quantized form and diagonalize it to get the many-body matrix $H_{\text{PSC}} = H + H_{\text{SC}}$ we again use the exact diagonalization procedure to diagonalize H_{PSC} in even and odd sectors [23]. For example, for the odd sector we diagonalize H_{PSC} for a system with non-constant number of electrons, namely $1, 3, \ldots N_e$ electron number basis. A similar procedure is employed for the even sector as well. This gives us the possibility to obtain the low-lying energy states and the wave functions both for even and odd sector very accurately. A major advantage of using the exact diagonalization scheme in a QR over that in a quantum wire is that the convergence is much better here without the requirement of an induced gap in the spectrum [23].

We employ several different approaches to identify the signatures of topological superconductivity and the existence of well separated MFs in the system. In condensed matter physics, isolated MFs are zero-energy quasiparticle excitations and they do not carry a charge [5]. Therefore adding a non-local electron which is comprised of two well separated MFs will not alter both the total energy and the charge of the system. Even in the case of the system without boundaries, where isolated MFs usually reside, the phase transition between the trivial and non-trivial (topological) superconducting states results in closing of the superconducting bulk gap. Based on this premise the first parameter which is used for identifying the phase transition between two superconducting phases and the appearance of isolated MFs is the energy difference between the odd and even sector [25].

$$\Delta E = |E_{\text{odd}} - E_{\text{even}}|.$$ \hspace{1cm} (3)

This quantity is expected to vanish in the topological phase, but remains finite for the ordinary superconducting state [23]. The next parameter is the charge difference between even and odd sector ΔN, which is equal to the mean electron number difference between the two sectors. In order to calculate this parameter we first calculate the particle densities in each sector

$$\rho_{\text{even,odd}}(r) = \int dr_2 dr_3 \ldots dr_{N_e} \left| \Psi \left(r, r_2, \ldots, r_{N_e} \right) \right|^2,$$ \hspace{1cm} (4)

where $\Psi \left(r_1, r_2, \ldots, r_{N_e} \right)$ is the wave function of the system in odd and even sector based on the parity of N_e.

It is known that for a semiconductor quantum wire in the topological superconducting phase, changing the parameters of the system, such as the chemical potential or the magnetic field strength, results in a change of the ground state parity. For a finite size wire this is accompanied by a jump of the total electron number and the charge due to the jump is spread along the wire and has an oscillating behavior [28]. Therefore we first calculate the difference between the particle densities in odd and even sector $\Delta \rho(r) = \rho_{\text{odd}}(r) - \rho_{\text{even}}(r)$ and compare our results for the ring with those of a quantum wire. The charge difference between odd and even sector ΔN is the cumulative difference between particle densities, i.e., $\Delta N = \int \text{d} r \Delta \rho(r)$. Finally, we can also calculate the MF probability distributions directly, using the proce-
bare electron mass, where \(c \) creation and annihilation operators \(a \) in terms of the electron charge difference is distributed in the ring. In fact, this difference in odd and even sectors is very small, but is not equal to zero. The contour plot in Fig. 4 shows how this difference in odd and even sectors is presented for the chemical potential \(\mu = 2.8 \) meV. The figure clearly illustrates that there is a range of the magnetic field from 0.4 T to 0.7 T where the energies of even and odd sectors are very close to each other and have very similar behavior. The absolute value of the difference of these energies against the magnetic field is presented as an inset. In the range \(B = 0.4 - 0.7 \) T the energy difference has the oscillatory behavior. In Fig. 1 (b), the absolute value of the difference of even and odd sectors ground state energies are presented against the chemical potential for three different values of the magnetic field. Again it is clear from the figure that there is a range of the chemical potential from 2.5 to 3 meV where the energy difference is very small and also has an oscillatory behavior. It should also be noted that starting from the value of the chemical potential \(\mu = 2.8 \) meV the dependence of the energy difference against \(\mu \) is almost independent of the magnetic field. All of these facts are the first signatures of the presence of Majorana fermions in our semiconductor QR.

In order to confirm that we indeed have signatures of Majorana fermions in our QR we have presented in Fig. 2 the absolute difference of the average electron numbers of even and odd sector ground states versus (a) the magnetic field and (b) the chemical potential. Figure 2 clearly shows that for \(\mu = 2.8 \) meV and \(B = 0.48 \) T the average electron numbers of even and odd sector ground states are approximately equal to each other. This is another strong indication for the presence of Majorana fermions in our QR. The probability distribution of the Majorana fermion inside the QR is presented in Fig. 3 for \(\mu = 2.8 \) meV and \(B = 0.48 \) T, obtained using Eq. (5). As it can be seen from the figure, two Majorana peaks are highly separated from each other by the angular coordinate \(\varphi \), but both of them are in the central part of the ring. For the first peak \(\varphi = \pi/2 \) while for the second peak \(\varphi = 3\pi/2 \). Interestingly, the very presence of a central barrier of the ring (not present in a quantum wire or a quantum dot \([29]\)) prevents overlap of two MFs while being so close.

Finally, in Fig. 4 the contour plot of the difference between the single-particle densities of the many-body states in odd and even sectors is presented for the parameter values \(B = 0.48 \) T and \(\mu = 2.8 \) meV. As we see in Fig. 2, for these parameters the mean electron number difference in odd and even sectors is very small, but is not equal to zero. The contour plot in Fig. 4 shows how this charge difference is distributed in the ring. In fact, this figure indicates that it is mostly localized in the center part of the ring in the \(\rho \) direction but is spread through whole ring region in the \(\varphi \) direction and has the oscillatory behavior. This result is in accord with the result for a semiconductor wire \([21]\), which once more confirms that the obtained results are in fact signatures of the emergence of topological superconductivity and isolated MFs. In Fig. 4 the screened Coulomb interaction is included.
FIG. 3: Majorana fermion probability distribution inside the ring for $B = 0.48$ T and $\mu = 2.8$ meV.

FIG. 4: The difference between the single-particle densities of the many-body states in odd and even sector for $B = 0.48$ T and $\mu = 2.8$ meV.

in the calculation. We have done similar calculations for the non-interacting case and have seen that interaction does not play a major role in the observed distribution, which is also the case in a quantum wire [26].

In conclusion, we have studied here the electronic states in a few-electron semiconductor quantum ring with a strong SOI and proximity coupled to an s-wave superconductor. We have shown that there are very strong signatures of the presence of Majorana fermions in such a system. In particular, we have shown that for the entire ranges of the magnetic field and for certain values of the chemical potential, the differences of the ground state energies and the average electron numbers for odd and even sectors is close to zero and have the oscillatory behavior. Further, we have shown that for certain values of the chemical potential and the magnetic field, two Majorana fermions are largely separated from each other in the angular coordinate, but both of them are located in the center of the ring. We believe that in many ways, few-electron quantum rings are more appropriate for locating the MFs than the quantum wires or quantum dots. Optical spectroscopy or magneto-transport measurements on quantum rings [21] can provide important information on the energy spectrum. There were some theoretical studies of Majorana fermions and topological phase transitions in ‘superconducting’ rings [30–32], but finding appropriate materials in that case would be a major challenge. On the other hand, semiconductor quantum rings containing a few electrons are in fact, available in the laboratories, and we believe that signatures of Majorana fermions could be finally observed in such a system.

The work has been supported by the Canada Research Chairs Program of the Government of Canada and by the Armenian State Committee of Science Research grant (Project No. 13YR-1C0014).

[1] E. Majorana, Nuovo Cimento 14, 171-184 (1937).
[2] F. Wilczek, Nat. Phys. 5, 614 (2009).
[3] Y. Oreg, G. Rafael and F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010).
[4] R.M. Lutchyn, J.D. Sau and S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010).
[5] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).
[6] M. Leijnse and K. Flensberg, Semicon. Sci. Technol. 27, 124003 (2012).
[7] Other possibilities include the Pfaffian states in the fractional quantum Hall effect that can carry the zero energy Majorana fermions [N. Read and D. Green, Phys. Rev. B 61, 10267 (2000), G. Moore, and N. Read, Nucl. Phys. B 360, 362 (1991)]. See also, T. Chakraborty and V. Apalkov, in Physics of Graphene (Springer, New York, 2014), edited by H. Aoki and M.S. Dresselhaus, Ch. 8; V.M. Apalkov and T. Chakraborty, Phys. Rev. Lett. 107, 186805 (2011); V.M. Apalkov and T. Chakraborty, Phys. Rev. Lett. 97, 126801 (2006); Phys. Rev. Lett. 105, 036801 (2010).
[8] V. Mourik, K. Zuo, S.M. Frolov, S.R. Plissard, E.P.A.M. Bakkers and L.P. Kouwenhoven, Science 336, 1003(2012).
[9] M.T. Deng, C.L. Yu, G.Y. Huang, M. Larsson, P. Caroff and H.Q. Xu, Nano Lett. 12, 6414 (2012).
[10] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum and H. Shtrikman, Nature Phys. 8, 887 (2012).
[11] H.O.H. Churchill, V. Fatemi, K. Grove-Rasmussen, M.T. Deng, P. Caroff, H.Q. Xu and C.M. Marcus, Phys. Rev. B 87, 241401 (2013).
[12] M.T. Deng, C.L. Yu, G.Y. Huang, M. Larsson, P. Caroff
and H. Q. Xu, Sci. Rep. 4, 7261 (2014).
[13] S. Nadj-Perge, I.K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A.H. MacDonald, B.A. Bernevig, A. Yazdani, Science 346, 602 (2014).
[14] Y.A. Bychkov and E.I. Rashba, J. Phys. C. 17, 6039 (1984).
[15] A.Y. Kitaev Phys. Usp. 44, 131 (2001).
[16] C. Nayak, S.H. Simon, A. Stern, M. Freedman and S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[17] A. Stern, Ann. Phys. 323, 204-249 (2008).
[18] J. Alicea, Y. Oreg, G. Rafael, F. von Oppen and M.P.A. Fisher, Nature Phys. 7, 412 (2011).
[19] Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959).
[20] M. Büttiker, Y. Imry, R. Landauer, Phys. Lett. A 96, 365 (1983).
[21] A. Lorke, et al. Phys. Rev. Lett. 84, 2223 (2000). U.F. Keyser, C. Fühner, S. Borck, R.J. Haug, M. Bichler, G. Abstreiter, and W. Wegscheider, Phys. Rev. Lett. 90, 196601 (2003); A. Fuhrer, S. Lüscher T. Ihn, T. Heinzel1, K. Ensslin, W. Wegscheider, and M. Bichler, Nature 413, 822 (2001).
[22] T. Chakraborty, Adv. in Solid State Phys. 43, 79,(2003); S. Viefers, P. Koskinen, P. Singh Deo, M. Manninen, Physica E 21, 1 (2004); P. Pietiläinen and T. Chakraborty, Solid State Commun. 87, 809 (1993); T. Chakraborty and P. Pietiläinen, Phys. Rev. B 50, 8460 (1994).
[23] A. Ghazaryan, T. Chakraborty, Phys. Rev. B 92, 115138 (2015).
[24] A. Ghazaryan, A. Manaselyan, T. Chakraborty, Physica E 66, 157 (2015).
[25] E.M Stoudenmire, J. Alicea, O. Starykh and M.P.A. Fisher, Phys. Rev B 84, 014503 (2011).
[26] G. Ben-Shach, A. Haim, I. Appelbaum, Y. Oreg, A. Yacoby and B.I. Halperin, Phys. Rev. B 91, 045403 (2015).
[27] T. Chakraborty and P. Pietiläinen, Phys. Rev. Lett. 95, 136603 (2005); P. Pietiläinen and T. Chakraborty, Phys. Rev. B 73, 155315 (2006).
[28] C. Fasth, A. Fuhrer, L. Samuelson, V.N. Golovach and D. Loss, Phys. Rev. Lett 98, 266801 (2007).
[29] P.A. Maksym, and T. Chakraborty, Phys. Rev. Lett. 65, 108 (1990); T. Chakraborty, Quantum Dots: A survey of the properties of artificial atoms (Elsevier, New York, 1999).
[30] F. Pientka, A. Romito, M. Duckheim, Y. Oreg, F. Oppen, New Journal of Physics 15, 025001 (2013).
[31] B. Rosenstein, I. Žutić, Phys. Rev. B 91, 144505 (2015).