We propose the method for the evaluation of results of scientific research on topics related to the calculation of the results of scientific activity. The method is based on determining a number of real coefficients, which determine the citation index of a scientist in the publications by other scientists. The basis of the method is the calculation of the scientific activity by solving a system of linear algebraic equations. In this case, the metric space of the given system consists of the constructed coefficients. The proposed method, in contrast to other known methods of calculating the indices of citation, does not lose information about any citation of the author and of any publication.

We proposed the method, based on the construction of vectors of scalar evaluations for each scientist in a multidimensional metric space. This method implies construction of the ideal point to the vector of scalar evaluations of the given scientist. The proposed methods for the evaluation of results of scientific research activity might be used to build the modules for automated systems of evaluation of the results of the work of scientists, effectiveness of conducting scientific research by higher educational institutions.

Keywords: citation index, evaluation of scientific research activity, bibliometric indicators, integrated evaluation.

References
1. Lizunov, P., Biloshchyt'skyi, A., Biloshchyt'ska, S. (2011). Vector project management of higher educational establish-
METHOD OF FUNCTIONING OF INTELLIGENT AGENTS, DESIGNED TO SOLVE ACTION PLANNING PROBLEMS BASED ON ONTOLOGICAL APPROACH (p. 11-17)

Vasyl Lytvyn
Lviv Polytechnic National University, Lviv, Ukraine
ORCID: http://orcid.org/0000-0002-9676-0180

Victoria Vysotska
Lviv Polytechnic National University, Lviv, Ukraine
ORCID: http://orcid.org/0000-0001-6417-3689

Petro Pukach
Lviv Polytechnic National University, Lviv, Ukraine
ORCID: http://orcid.org/0000-0002-0359-5025

Miroslava Vovk
Lviv Polytechnic National University, Lviv, Ukraine
ORCID: http://orcid.org/0000-0002-7818-7755

Dmytro Uhryn
Chernivtsi faculty of the National Technical University “Kharkiv Polytechnic Institute”, Chernivtsi, Ukraine
ORCID: http://orcid.org/0000-0003-4858-4511

The problem of operation of intelligent agents of action planning with the use of ontological approach was studied. Operation of intelligent agents is possible based on the knowledge of the subject area, in other words, the knowledge base is used. Ontologies became the standard of knowledge base. Therefore, there arises the problem of development of methods and means of operation of intelligent systems based on ontologies, in particular intelligent agents of action planning.

The method of functioning of intelligent agents of action planning based on ontologies was developed. For this purpose, weights of importance of concepts and relationships were introduced to the structure of ontology. These weights are used for finding a path in the space of states. The space of states itself is built by using the language of requests to ontology. Optimization problem, which assigns the rational behavior of an intelligent agent, is two-criterial. To solve it, we chose the method of the main component, if objective functions may be evaluated, or the method of complex criterion, if these functions are impossible to evaluate.

Dimensionality of the space of states depends on the completeness of the ontology and behavior effectiveness of an intelligent agent depends on the relevance of ontology. With this aim, in the course of automated development of ontology, we developed a method for evaluation of reliability of information sources that are used for developing ontologies. As a result of the studies, it was found that this approach allows us to increase operational efficiency of intelligent agents, if the process of ontology development is relevant to the needs of a subject domain.

The developed approach may serve as a base for constructing a unified methodology for development of intelligent agents of action planning if ontology of a subject domain is the central component of this software complex.

Keywords: ontology, intelligent agent, natural language processing, concept, space of states, action planning.

References
1. Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge Acquisition, 5 (2), 199–220. doi: 10.1006/knaq.1993.1008
2. Guarino, N. (1995). Formal ontology, conceptual analysis and knowledge representation. International Journal of Human-Computer Studies, 43 (3-6), 625–640. doi: 10.1006/ijhc.1995.1066
3. Sowa, J. F. (1992). Conceptual graphs as a universal knowledge representation. Computers & Mathematics with Applications, 12 (2-3), 95–124. doi: 10.1016/0898-1221(92)90137-7
4. Bulskov, H., Knappe, R., Andreasen, T. (2004). On Querying Ontologies and Databases. Lecture Notes in Computer Science, 29 (2-3), 75–93. doi: 10.1016/0898-1221(92)90137-7
5. Cali, A., Gottlob, G., Pernici, A. (2010). Advanced processing for ontological queries. Proceedings of the VLDB Endowment, 3 (1-2), 554–565. doi: 10.14778/1920841.1920912
6. Galopin, A., Bouard, J., Pereira, S., Seroussi, B. (2015). An Ontology-Based Clinical Decision Support System for the Management of Patients with Multiple Chronic Disorders. Stud Health Technol Inform, 216, 275–279.
7. Zhao, T. (2014). An Ontology-Based Decision Support System for Interventions based on Monitoring Medical Conditions on Patients in Hospital Wards. University of Agder, 125.
8. Ugon, A., Sedki, K., Kotti, A., Seroussi, B., Philippe, C., Ganascia, J. G. et. al. (2016). Decision System Integrating Preferences to Support Sleep Staging. Studies in health technology and informatics, 228, 514–518.
9. Rospocher, M., Serafini, L. (2013). An Ontological Framework for Decision Support. Lecture Notes in Computer Science, 239–254. doi: 10.1007/978-3-642-37986-3_16
10. Rospocher, M., Serafini, L. (2012). Ontology-centric decision support. Proceedings of the International Conference on Semantic Technologies Meet Recommender Systems & Big Data (SeRSy'12), 919, 61–72.
11. Lytvyn, V. V. (2011). Bazy znan’ intelektual’nykh system pidtrymky pryynyattya rishen’. Lviv: Vydavnytstvo Lvivs’koyi politekhniky, 240.
12. Sutton, R. S., Barto, A. G. (2016). Reinforcement Learning: An Introduction. Cambridge, Massachusetts, London, 334.
13. Van Otterlo, M., Wiering, M. (2012). Reinforcement Learning and Markov Decision Processes. Reinforcement Learning, 3–42. doi: 10.1007/978-3-642-27645-3_1
14. Lytvyn, V., Tsmots, O. (2013). The process of managerial decision making support within the early warning system. Actual Problems of Economics, 11 (149), 222–229.
15. Chen, J., Dosyn, D., Lytvyn, V., Sachenko, A. (2016). Smart Data Integration by Goal Driven Ontology Learning. Advances in Intelligent Systems and Computing, 283–292. doi: 10.1007/978-3-319-47898-2_29
16. Lytvyn, V., Dosyn, D., Smolarz, A. (2013). An ontology based intelligent diagnostic systems of steel corrosion protection. Elektronika konstrukcje, technologie, zastosowania, 54 (8), 22–24.
17. Dong, W., Liu, W., Bennamoun, M. (2012). Ontology learning from text. ACM Computing Surveys, 44 (4), 1–36. doi: 10.1145/2333112.2333115
18. Lytvyn, V., Vysotska, V., Pukach, P., Bobyk, I., Pakholok, B. (2016). A method for constructing recruitment rules based on the analysis of a specialist’s competences. Eastern-European Journal of Enterprise Technologies, 6 (2 (84)), 4–14. doi: 10.15587/1729-4061.2016.85454
19. Montes-y-Gomez, M., Gelbukh, A., Lopez-Lopez, A. (2000). Comparison of Conceptual Graphs. MICAI 2000: Advances in Artificial Intelligence, 548–556. doi: 10.1007/10720076_50
20. Lytvyn, V., Uhryn, D., Fityo, A. (2016). Modeling of territorial community formation as a graph partitioning problem. Eastern-European Journal of Enterprise Technologies, 1 (4 (79)), 47–52. doi: 10.15587/1729-4061.2016.80848

21. Lytvyn, V., Vysotska, V., Chyrurn, L., Dosyn, D. (2016). Methods based on ontologies for information resources processing. LAP Lambert Academic Publishing, Saarbrücken, Germany, 324.

22. Basyuk, T. (2015). The main reasons of attendance falling of internet resource. 2015 Xth International Scientific and Technical Conference “Computer Sciences and Information Technologies” (CSIT). doi: 10.1109/stc-csit.2015.7325440

23. Burov, E. (2014). Complex ontology management using task models. International Journal of Knowledge-Based and Intelligent Engineering Systems, 18 (2), 111–120. doi: 10.3233/kes-140291

24. Lytvyn, V., Vysotska, V., Veres, O., Rishnyak, I., Rishnyak, H. (2016). Classification Methods of Text Documents Using Ontology Based Approach. Advances in Intelligent Systems and Computing, 229–240. doi: 10.1007/978-3-319-45991-2_15

25. Lytvyn, V., Pukach, P., Bolyk, L., Vysotska, V. (2016). The method of formation of the status of personality understanding based on the content analysis. Eastern-European Journal of Enterprise Technologies, 5 (2 (83)), 4–12. doi: 10.15587/1729-4061.2016.77174

26. Lytvyn, V., Vysotska, V., Veres, O., Rishnyak, I., Rishnyak, H. (2016). Content linguistic analysis methods for textual documents classification. 2016 Xth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). doi: 10.1109/stc-csit.2016.7589903

27. Serednytskyi, Y., Banakhevych, Y., Drahiliev, A. (2005). Suchasna proty korozijnja izolyatsiya v truboprovidnomu transporti. Chep. 3. Lviv-Kyiv, 288.

DOI: 10.15587/1729-4061.2017.103550

REALIZATION OF INFORMATION TECHNOLOGY OF CHARACTER RECOGNITION BASED ON COMPETING CELLULAR AUTOMATA (p. 18-24)

Ivan Myroniv
Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
ORCID: http://orcid.org/0000-0002-8618-9881

Vladimir Zhikharevich
Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
ORCID: http://orcid.org/0000-0003-4882-2954

Sergey Ostapov
Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
ORCID: http://orcid.org/0000-0002-4139-4152

We examined the possibility of applying cellular automata to solve the problem on recognition of text characters. For this purpose, we introduced the notion of competing cellular automata and developed algorithms of their functioning and interaction. In order to implement the proposed algorithms, we created modeling software. It allowed us to evaluate effectiveness of the cellular-automaton algorithms to conduct experiments on text character recognition using the English alphabet and to demonstrate a number of advantages in comparison with other methods.

We investigated a description of the solution to the problem on selecting the structural attributes in the images of text characters, which directly affect the quality of recognition. In the present work, it is proposed to use a set of cellular automata constructed on the diagrams of states of Moore and Mealy machines for each type of cellular automata, to determine the end points, junctions and cycles in characters. We considered operation of the modeling program.

The advantages of the given technology are the simplicity of rules of interaction, easy parallelization of the process of recognition, the possibility of recognition of distorted and partially overlapping characters. We compared performance quality and efficiency of the commercially available system ABBYY FineReader, which has demonstrated high performance indicators of the developed recognition technology.

Keywords: competing cellular automaton, moving cellular automaton, a Moore machine, transition graph.

References
1. Zhang, P., Bui, T. D., Suen, C. Y. (2007). A novel cascade ensemble classifier system with a high recognition performance on handwritten digits. Pattern Recognition, 40 (12), 3415–3429. doi: 10.1016/j.patcog.2007.03.022
2. Lauer, E., Suen, C. Y., Bloch, G. (2007). A trainable feature extractor for handwritten digit recognition. Pattern Recognition, 40 (6), 1816–1824. doi: 10.1016/j.patcog.2006.10.011
3. Savas, B., Elden, L. (2007). Handwritten digit classification using higher order singular value decomposition. Pattern Recognition, 40 (3), 993–1003. doi: 10.1016/j.patcog.2006.08.004
4. Zhelekov, S. Yu. (2010). Obrobka ta analiz zobrazen’ v zadachakh mashynnoho zoru. Moscow: Fizmatkntha, 672.
5. Potapov, A. A., Pahomov, A. A., Nikitin, S. A., Gulyaev, Yu. V. (2008). Novovesnye metody obrabotki izobrazheniy. Moscow: Fizmatlit, 496.
6. Wolfram, S. (2002). A New Kind of Science. Wolfram Media, Inc., 1197.
7. Oliveira, C. C., de Oliveira, P. P. B. (2008). An Approach to Searching for Two-Dimensional Cellular Automata for Recognition of Handwritten Digits. Lecture Notes in Computer Science, 462–471. doi: 10.1007/978-3-540-88636-5_44
8. Suyasov, D. I. (2010). Vydelenie strukturalnih priznakov izobrazheniy simvolov na osnove kletchnyh avtomatov s metkami. Programmnuye i apparaturnye, 4, 39–45.
9. Wu, H., Zhou, J., Gong, X., Wen, Y., Li, B. (2011). A new JPEG image watermarking algorithm based on cellular automata. Journal of Information & Computational Science, 8 (12), 2431–2439.
10. Belan, S. N. (2011). Specialized cellular structures for image contour analysis. Cybernetics and Systems Analysis, 47 (5), 695–704. doi: 10.1007/s10559-011-9349-8
11. Myroniv, I. V., Ostapov, S. E., Myroniv, I. V. (2010). Rozrobka ta doslidzhennya alhorytmu rozpiзнannya symvoliv tekstu na osnovi konkuryuyuchkh klytynnykh avtomat. Naukovyy visnyk Chernivets’koho natsional’noho universytetu imeni Yuriy Fedkovycha. Seriya: Komp’yuterni systemy ta komponenty, 1 (2), 47–52.
12. Zhikharevich, V. V., Ostapov, S. E., Myroniv, I. V. (2016). Analiz metodiv rozpiznannya symvoliv tekstu. Radioelektronni i komp’yuterni systemy, 5, 137–142.
13. Zhikharevich, V. V., Myroniv, I. V., Ostapov, S. E. (2015). Alhorytm rozpiznannya symvoliv tekstu na osnovi konkuryuyuchkh klytynnykh avtomat. Radioelektronika, Informatyka, Upravlinnya, 4 (35), 31–45.
14. Myroniv, I., Zhikharevich, V., Ostapov, S. (2016). Development of the character recognition software on the base cellular automata. Engineer of XXI Century, 229–240.
The review of gender components of the social-spatial content of the safe city of Kharkiv was carried out using GIS mapping on the “Secondary city” platform. The following tasks are proposed: firstly, in the light of the modern concepts of a safe city, to analyze the characteristics of urban areas with the use of feminist optics; secondly, to identify the main methods of geo-research of the safety component; thirdly, to develop gender-sensitive geo-information maps of Kharkiv through explication of the problem of urban infrastructure security. The theoretical basis of scientific research is logical-analytical structural analysis, as well as geo-information methods of spatial analysis on the platform ArcGISOnline. The gendered context of urban space security is revealed. Structural and logical analysis of the phenomenon of “safe city” in the context of sustainable development goals is provided. Geo-information layers for the interactive map of Kharkiv with gender-sensitive security parameters of urban locations have been developed.

Geolocation potential for identifying the safety/hazard coordinates of urban locations and assessing the quality of the urban environment, in general, are covered. Gender-segregated and gender-sensitive spatial data necessary to carry out gender monitoring of city security are visualized. The developed GIS layers for the map of Kharkiv are able to play an integrating role of the catalyst for the city’s gender mainstreaming and allow the local executive authorities to efficiently perform information and analytical processes to develop appropriate solutions (generation of gender segregated data, data management and exchange, remote zoning) and others.

A “model of multi-criteria evaluation of gender-sensitive content” to improve the processes of “content management” of urban infrastructure projects and programs is developed. The model integrates PMBoK requirements for the project content management and specific gender GIS requirements for the content of the infrastructure project. It is noted that the application of the proposed model allows making effective design decisions by integrating gender parameters in the project database in the format of GIS mapping.

Keywords: safe city, gender, GIS, requirements tracking matrix, urban projects, content management.

References
1. Wong, E. (2010). Gender Equality for Smarter Cities: Challenges and Progress. Nairobi: UNON, Publishing Services Section, 42.
2. Creating safe public spaces. UN Women. Available at: http://www.unwomen.org/ru/what-we-do/ending-violence-against-women/creating-safe-public-spaces
3. Safe cities free from violence against women and girls (2012). UN Women and ICRW, 16. Available at: http://www.icrw.org/wp-content/uploads/2016/10/Baseline-Research-of-Safe-Cities-programme-(1)[smallpdf.com].pdf
4. Sustainable Development Goals. Available at: http://www.un.org/sustainabledevelopment/sustainable-development-goals/
5. Fesenko, T., Fesenko, G. (2016). E-readiness evaluation modeling for monitoring the national e-government programme (by the example of Ukraine). Eastern-European Journal of Enterprise Technologies, 3 (3 (81)), 28–35. doi: 10.15587/1729-4061.2016.71606
6. Van den Berg, L., Mingardo, G., Pol, P. M. J. (2006). The Safe City: Safety and Urban Development in European Cities. Hants: Ashgate Publishing Limited, 31.
7. Lenormand, M., Ramasco, J. J. (2016). Towards a Better Understanding of Cities Using Mobility Data. Built Environment, 42 (3), 356–364. doi: 10.2148/benv.42.3.356
8. Whitzman, C., Legacy, C., Andrew, C., Kłodawsky, F., Shaw, M., Visvanath, K. (Eds.) (2013). Building Inclusive Cities. Women’s Safety and the Right to the City. London: Routledge, 240.
9. Fesenko, G. (2015). Urban anthropologichniy diskurs filosofii bezpiki. Gileya, 92, 166–170. Available at: http://eprints.kname.edu.ua/39773/1/1-Fesenko%20G.pdf
10. Fesenko, T. N., Fesenko, H. H., Fesenko, T. H. (2015). «Hendernyy okulyaryy» dlya urbanistiv. Henderny zhurnal «Ya», 2 (38), 4–6. Available at: http://eprints.kname.edu.ua/43802/1/Fesenko%20G_.pdf
11. Fesenko, G. (2014). Filosofiya miista u henderniy interpretyatsiyi prostoziy. Lyudynoznavchyi studiyi, 30, 56–68. Available at: http://ddpu.drohobych.net/filos_lud/wp-content/uploads/2016/04/2014_7.pdf
12. Fesenko, G. (2013). Gender mainstreaming and the Politics of Space. E-International Relations (E-1R), 2013/06/04/gender-urban-development-and-the-politics-of-space/
13. Fesenko, G. (2013). Hendernyy audyt yak praktyka staloho rozvytku mist. Henderna polityka mist: istoriya ta suchasnist’. Kharkiv: KhNMU, 41–42.
14. Fesenko, G. (2015). Herrnhutorialnyy lokatsiyi v urbani-zovannomu prostorii. Hendernyy zhurnal «Ya», 2 (38), 4–6. Available at: http://eprints.kname.edu.ua/43802/1/Fesenko%20G..pdf
15. Fesenko, G. (2015). Hendernyy zhurnal «Ya», 2 (38), 4–6. Available at: http://eprints.kname.edu.ua/43802/1/Fesenko%20G_.pdf
16. Fesenko, T. G. (2017). Gender mainstreaming as a knowledge component of urban project management. Strategic Management Department, NTU «KhPI», 3 (1225), 21–29. doi: 10.20998/2413-3000.2017.1225.4
17. Horelli, L. (2002). Gender mainstreaming urban planning and development – experiences of women’s place based politics. Madrid: Escuela Tecnica Superior de Arquitectura, 16.
18. Sandberg, L., Romhblom, M. (2016). Imaging the ideal city planning the gender-equal city in Umea, Sweden. Gender, Place & Culture, 23 (12), 1750–1762. doi: 10.1080/0966369X.2016.1249346
19. Fesenko, T. G., Minayev, D. M., Belyats’kyy, O. V., Uaschev, I. S. (2013). Implementatsiya hendernykh pidkhivid u munitsyupal’nyh program rozvytku zhytlovo-komunal’nogo hospodarstva. Henderna polityka mist: istoriya ta suchasnist’. Kharkiv: KhNUMH im. O. M. Beketova, 4, 238–240.
20. Marusic, B. G. (2010). Analysis of patterns of spatial occupancy in urban open space using behaviour maps and GIS. URBAN DESIGN International, 16 (1), 36–50. doi: 10.1057/udi.2010.20

21. Wallin, S., Horelli, L. (2012). Playing with the glocal through participatory e-planning. The Journal of Community Informatics, 8 (3). Available at: http://ci-journal.net/index.php/ciej/article/view/883/934

22. Kwan, M.-P. (2002). Is GIS for Women? Reflections on the critical discourse in the 1990s. Gender, Place & Culture, 9 (3), 271–279. doi: 10.1080/096636902200003888

23. Pavlovskaya, M., Martin, K. S. (2007). Feminism and Geographic Information Systems: From a Missing Object to a Mapping Subject. Geography Compass, 1 (3), 583–606. doi: 10.1111/j.1749-8198.2007.0028.x

24. Hnatyuk, S. Suchasna veh-kartohrafiya ta yiyi vykorystyan-nya u poperedzhenni y likvidatsiyi naslidkov nadzvychnykh sytuatsiy (crisis mapping). Analitychna zapsyka. Nataliona’nyy instytut stratehichnykh doslidzhenu. Available at: http://www.niss.gov.ua/articles/806/

25. Kharkiv, Ukraine: Secondary cities. Available at: https://second-arycities.state.gov/kharkiv/#10/49.9804/36.2487

26. Survey123 for ArcGIS: Smarter Forms, Smarter Field Work. Available at: https://survey123.arcgis.com/

27. ArcGISOnline. Available at: https://www.arcgis.com/home/index.html

28. A Guide to the project management body of knowledge (PM-BOK Guide) (2013). USA: Project Management Institute, 589.

DOI: 10.15587/1729-4061.2017.103340

MODELING OF SOFTWARE DEVELOPMENT PROCESS WITH THE MARKOV PROCESSES (p. 35-38)

Tamara Savchuk
Vinnitsa National Technical University, Vinnitsa, Ukraine
ORCID: http://orcid.org/0000-0002-6162-0206

Natalia Pryimak
Vinnitsa National Technical University, Vinnitsa, Ukraine
ORCID: http://orcid.org/0000-0002-9123-5635

The comparative analysis of the existing research on the application of formal approaches to the software development process modeling is performed. Based on the analysis, the urgency of modeling of the software development process as a Markov random process is substantiated. An information model of association rule mining and application in software development is developed. The information model represents the process and can be used in the design of appropriate information technology. The research, which determined the number of steps needed to develop one software component and the whole software is carried out.

The levels of detail of the software development process such as the level, representing the development of the software, which is a finite set of software components; the level, representing a detailed description of the stages of development of a particular component; the level, representing a detailed description a certain stage of development of a particular component are identified. For each level, the relevant stages of software development are described. Modeling of the software development process with the Markov chains is conducted. This will allow using a single mathematical tool to represent the corresponding process at different levels of detail.

Keywords: Markov processes, Markov chains, software development, association rule mining.

References

1. Herbsleb, J. D., Moitra, D. (2001). Global software development. IEEE Software, 18 (2), 16–20. doi: 10.1109/52914732

2. Aho, A. V., Ullman, J. D. (1972). The Theory of Parsing, Translation, and Compiling. Vol. 1. New Jersey: Prentice Hall, 147–151.

3. Peterson, J. L. (1981). Petri net theory and the modeling of systems. New Jersey: Prentice Hall, 310.

4. Harel, D. (1987). Statecharts: a visual formalism for complex systems. Science of Computer Programming, 8 (3), 231–274. doi: 10.1016/0167-6423(87)90035-9

5. uz Zaman, Q., Sindhu, M. A., Nadeem, A. (2015). Formalizing a Use Case to a Kripke Structure. Software Engineering and Applications/ 831: Advances in Power and Energy Systems. doi: 10.2316/p.2015.829-017

6. Stirling, C. (1991). Modal and temporal logics. GB.: University of Edinburgh, Department of Computer Science, 23–30.

7. Sindhu, M. (2013). Algorithms and Tools for Learning-based Testing of Reactive Systems. Stockholm, 19.

8. Fraser, G., Wotawa, F. (2007). Using model-checkers to generate and analyze property relevant test-cases. Software Quality Journal, 16 (2), 161–183. doi: 10.1007/s11219-007-9031-6

9. Dranidis, D., Tigka, K., Kefalas, P. (2003). Formal modelling of use cases with X-machines. Proceedings of the 1st South-Eastern European Workshop on Formal Methods, SEEEFM’03, 72–83.

10. Holcombe, M. (1988). X-machines as a basis for dynamic system specification. Software Engineering Journal, 3 (2), 69. doi: 10.1016/0267-8326(88)90009

11. Kolesnikova, E. V., Negri, A. A. (2013). Transformatziia kognitivnykh kart v modeli markovskih protsesov dlya proektov sobytii prigrazhenni programnnogo obespechenia. Managing the development of complex systems, 15, 30–35.

12. Koskin, K. V., Makeev, S. A., Fomenko, G. V. (2011). Kognitivnie modeli upravleniia zhilishchno-komunalnym hozaystvom kak aktivnyi sistemoy. Managing the development of complex systems, 5, 17–19.

13. Tihonov, V. I., Mironov, M. A. (1977). Markovskie procesy. Moscow: Sovietsk radio, 488.

14. Markov, A. V. (2011). Sovokupnoe ispolzovanie setey Petri UML diagram pri razrabotke programmnogo obespechenia. Sbornik nauchnyh trudov NGTU, 2 (64), 85–94.

15. Meier, P., Kouny, S., Koziolek, H. (2011). Automated Transformation of Component-Based Software Architecture Models to Queuing Petri Nets. 2011 IEEE 19th Annual International Symposium on Modelling, Analysis, and Simulation of Computer and Telecommunication Systems. doi: 10.1109/mascots.2011.23

16. Jie, T. W., Ameeen, M. A. (2015). A Model Driven method to represent Free Choice Petri Nets as Sequence Diagram. 2015 4th International Conference on Software Engineering and Computer Systems (ICSECS). doi: 10.1109/cses.2015.7333104

17. Singh, H., Pal, P. (2013). Software Reliability Testing using Monte Carlo Methods. International Journal of Computer Applications, 69 (4), 41–44. doi: 10.5120/11834-7554

18. Martin, R. (2003). Agile Software Development: Principles, Patterns, and Practices. New Jersey: Prentice Hall, 102–103.

19. What are the Software Development Life Cycle (SDLC) phases? Available at: http://istqbexamcertification.com/what-are-the-software-development-life-cycle-sdlc-phases/

20. Gorban, I. (2003). Teorii imovirnostii i matematychna statistyka dla naukovych pratsivnykiv ta inzheneriv. Kyiv: 90–110.
Abstract and References. Information technology, industry control systems

Development of a System to Control the Motion of Electric Transport Under Conditions of Iron-Ore Mines (p. 39-47)

Oleg Sinchuk
Kryvyi Rih National University, Kryvyi Rih, Ukraine
ORCID: http://orcid.org/0000-0002-7621-9979

Igor Kozakevich
Kryvyi Rih National University, Kryvyi Rih, Ukraine
ORCID: http://orcid.org/0000-0003-4472-4783

Vladislav Fedotov
Kryvyi Rih National University, Kryvyi Rih, Ukraine
ORCID: http://orcid.org/0000-0002-6536-5591

Albert Somochkyn
Kryvyi Rih National University, Kryvyi Rih, Ukraine
ORCID: http://orcid.org/0000-0002-3592-7899

Vadim Serebreinikov
Donetsk National University of Economics and Trade named after M. I. Tugan-Baranovsky, Kryvyi Rih, Ukraine
ORCID: http://orcid.org/0000-0002-5490-5601

Based on the study of properties of an electric train as a control object, it has been proven that considerable speed fluctuations and shock loads caused by the presence of elasticity and gaps in the coupling devices take place during the train acceleration and stoppage. These loads cause current fluctuations in armature of the traction DC motors of electric locomotives, which adversely affects their service life. By studying the mathematical description of the dynamic system consisting of an electric locomotive and a set of wagons, a model was synthesized that allows one to investigate the processes taking place in this system when motion and coupling device parameters alter.

On the basis of the mathematical dependencies obtained, an algorithm was developed that enables parametric optimization of the system from the point of view of minimizing collisions of the train wagons during acceleration and braking. A characteristic feature of the algorithm that distinguishes it from existing ones is that the "locomotive – wagons" complex is considered with taking into account presence of elastic coupler and gaps between the train elements. The problem of eliminating dynamic loads caused by oscillating processes of the "locomotive – wagons" complex was solved which made it possible to conduct an analytical construction of a system for optimal control of the material handling processes of electric transport in conditions of iron ore mines. Application of this system makes it possible to optimally perform high-speed loading of wagons with raw materials and their unloading. It is expected that application of this approach thru shortening the time spent in shifting the wagons for their loading will increase productivity of the mine transport by 20–30 %.

Keywords: dynamic forces, wagon coupling, eigenvalues, control constraints, breaking distance.

References
1. Shydlovsky, A. K., Pivnyak, H. H., Rohoza, M. V. (2007). Heoekonomika ta heopoliytika Ukraїnii. Dnipropetrovsk: Natsional'nyyhirnychi university, 282.
2. Babets', Y. S., Mel'nykova, I. Ya., Hrebenuk, S. Ya., Lobov, S. P.; Babets', Ye. S. (Ed.) (2015). Doslidzhennya tekhniko-ekonomichnykh pokaznykivhirnychodubuvnykh pidpryemstvUkraїny ta efektyvnosti yikh roboty v umovah zmin john hirnykturystyky svitovoho rynku zaliznyh rovyny rovyny. Kryvyy Rih: vyd. R. A. Kozlov, 391.
3. Babec, E. K., Shtan'ko, L. A., Salganik, V. A., Mel'nikova, I. E. et. al. (2011). Shornik tekhniko-ekonomicheskih pokazateley gornodobyvayushchih predpriyatiyatimolodosty 2009–2010 gg.; Analiz mirovoi kon’yunktury svitovogo rynka ZHRS 2004–2011 gg. Kryvov Rog: Vidavnichiy dim, 329.

4. Dechevsky, L. T., Siebzig, G., Korondi, P. (2016). Optimizing the automation of an iron ore production line – A case study. Part I: Optimal automated logistics. 2016 IEEE International Power Electronics and Motion Control Conference (PEMC). doi: 10.1109/pepmc.2016.7752087
5. Dechevsky, L. T., Siebzig, G., Korondi, P. (2016). Optimizing the automation of an iron ore production line – A case study. Part II: Optimal automated quality control. 2016 IEEE International Power Electronics and Motion Control Conference (PEMC). doi: 10.1109/pepmc.2016.7752088
6. Yang, L., He, Z. (2016). Game and Strategy of China in the World’s Negotiation of Iron Ore Price. 2016 International Conference on Industrial Informatics – Computing Technology, Intelligent Technology, Industrial Information Integration (ICIICII). doi: 10.1109/icici.2016.0099
7. Sinchuk, O., Sinchuk, I. O., Chernaya, V. O. (2012). Protection system of AC mine electric locomotive from the emergencies. Russian Electrical Engineering, 83 (4), 225–229. doi: 10.3103/s1068371212040116
8. Sinchuk, O., Kozakevich, I., Kalmus, D., Siyanko, R. (2017). Examining energy-efficient recuperative braking modes of traction asynchronous frequency-controlled electric drives. Eastern-European Journal of Enterprise Technologies, 1 (1 (85)), 50–56. doi: 10.15587/1729-4061.2017.91912
9. Debelyy, V. L., Debelyy, L. L., Mel’nikov, S. A. (2006). Osnovnye napravleniya razvitiya shchitnogo kommutativnogo transporta. Ugol’ Ukrainy, 6, 30–31.
10. Bundell, G. A. (2010). Application of a max-min-plus discrete event model to the operation of a heavy-haul iron-ore railway. The 7th International conference on informatics and systems. 1–10.
11. Ferrer-Coll., J., Angskog, P., Chihlo, J., Stenumgaard, P. (2012). Characterisation of electromagnetic properties in iron-mine production tunnels. Electronics Letters, 48 (2), 62. doi: 10.1049/el.2011.3133
12. Ekmän, J., Wisten, A. (2009). Experimental Investigation of the Current Distribution in the Couplings of Moving Trains. IEEE Transactions on Power Delivery, 24 (1), 311–318. doi: 10.1109/tpwr.2008.2005668
13. Pu Guangyue, Wu Jiande, An Jian, Wang Jian, Ba Hao, Wang Xiaodong, (2010). The design and application of the ore pulp water treatment in pipeline transport of refined iron ore. 2010 Third International Symposium on Knowledge Acquisition and Modeling, doi: 10.1109/kam.2010.5646215
14. Kozakevych, I. A. (2014). Adaptyvnyy sposib komsensatsiyi nelininykh vlastyostey invertora napravyh dlya bezdashchukovo vektornoho kurvannya na nyz’kykh chastotakh obervit. Elektromekhanichni in enerhobiheryhaychiy sysyem, 1, 19–25.
15. Djeqhader, Y., Zellouma, L., Labar, H., Toufouiti, R., Chelli, Z. (2015). Study and filtering of harmonics in a DC electri-
Optimization of manufacturing processes is the main tool that can provide access to the maximum financial efficiency of the enterprise. At the same time, this important tool for maximizing the resource efficiency is practically not used by enterprises due to the complexity and imperfection of the theory of optimal control, which manifests itself by its contradictory nature. The way out can be found by applying the method of practical determination of the optimal trajectory which was developed in the framework of this study. The advantage of the method is that it ensures determination of the optimal trajectory for those production processes which show intermediate results incomparable with each other both quantitatively and qualitatively.

For example, to evaluate effectiveness of the operational processes associated with heating fluids, melting steel, crushing iron ore, etc. the costs and time after nonlinearly at the intermediate stages. At the same time, qualitative parameters of the output product change which makes it impossible to use a direct method for estimating quantitative parameters of the output product at intermediate stages of the conversion process.

The proposed method provides a two-stage process of optimization. In this case, completion of the first stage of optimization quickly transfers control to a zone close to the optimum in an automatic mode. The further search process just corrects the control trajectory if external conditions permit it.

Thus, the proposed practical method of searching for the optimal control trajectory is essentially robust.

Keywords: optimal trajectory, practical optimization method, two-stage optimization, search optimization.

References

1. Bellman, R. E. (2003). Dynamic Programming. Princeton University Press, 401.
2. Thomas, A. W. (2011). Optimal control theory with applications in economics. The MIT Press, 362. doi: 10.7551/mitpress/9780262015738.001.0001
3. Lober, J. (2016). Analytical Approaches for Optimal Trajectory Tracking. Springer Theses, 119–193. doi: 10.1007/978-3-319-46574-6_4
4. Kulej, M. (2011) Operations research. Business Information Systems, 70.
5. Grad, S.-M. (2016). Duality for Multiobjective Semidefinite Optimization Problems. Operations Research Proceedings, 189–195. doi: 10.1007/978-3-319-28697-6_27
6. Kasperski, A., Zielinski, P. (2016). Robust Discrete Optimization Problems with the WOWA Criterion. Operations Research Proceedings, 271–277. doi: 10.1007/978-3-319-28697-6_38
7. Shapoval, A. A., Mos'pan, D. V., Dragobetskii, V. V. (2016). Ensuring High Performance Characteristics For Explosion-Welded Bimetals. Metallurgist, 60 (3-4), 313–317. doi: 10.1007/s11015-016-0292-9
8. Rodrigues, V. P., Pigosso, D. C. A., McAloone, T. C. (2016). Process-related key performance indicators for measuring sustainability performance of eodesign implementation into production development. Journal of Cleaner Production, 139, 416–428. doi: 10.1016/j.jclepro.2016.08.040
9. Gregory, J., Olivares, A., Staffetti, E. (2012). Energy-optimal trajectory planning for the Pendubot and the Acrobat. Optimal Control Applications and Methods, 34 (3), 275–295. doi: 10.1002/oca.2020
10. Ju, B.-F., Bai, X., Chen, J., Ge, Y. (2013). Design of Optimal Fast Scanning Trajectory for the Mechanical Scanner of Measurement Instruments. Scanning, 36 (2), 185–193. doi: 10.1002/sca.21084
11. Gasparetto, A., Zanotto, V. (2010). Optimal trajectory planning for industrial robots. Advances in Engineering Software, 41 (4), 548–556. doi: 10.1016/j.advengsoft.2009.11.001
A procedure for constructing a computer-integrated system for automating the technological process of processing associated petroleum gas has been developed. Development of the technological process according to the proposed procedure makes it possible to identify and overcome the difficulties encountered in solving the problems of technological calculation and synthesis of an automatic control system. Difficulties are exacerbated by the influence of heavy disturbances in the flow and concentration of associated petroleum gas.

Using the procedure, a technological process for processing associated petroleum gases along with an automatic control system has been developed. The technological process was adapted to use in medium oil fields, such as Ukrainian, which are characterized by low bulks and territorial dispersion. This makes it economically inexpedient to design large gas processing plants operating at a fixed load and gas concentration, which are common in the main oil-producing countries. Therefore, the technological process ensures production of methane and propane-butane of a required quality in the conditions of deviation of composition, concentration and flow rate of the streams incoming from wells in a wide range.

The automatic process control system has a two-level structure. The upper level is used to ensure operability at heavy disturbances, which is achieved by changing the operation conditions. The lower level ensures stabilization of the process for small disturbances. Two alternative implementations of the automatic control system based on PID controllers and linear quadratic regulator (LQR) were considered. The results of simulation made in HYSYS program show advantages of the cascade system of the proposed structure based on PID controllers. The control system ensures operability in conditions of deviation of gas flow by ±30 %, when the mole fraction of the gas components alters by 30–50 % and when the gas temperature deviates by ±15 °C from the values of working conditions.

Keywords: distillation, methane, propane-butane, automatic control system, computer-integrated automation.

References
1. Kovaleko, D. R. (2009). Houdsrudvinnoe rehulyrovanye dobuchy nefty haza v Rossyy Trudy ynstytuta houdsravstva y prava RAN, 4, 274–285.
2. Provornii, I. A. (2013). Sovremennoe sostoyanie y kluchevie problemy utylizatsyy poputnogo neftianoho haza v Rossyy. Yntersepk Ho–Sybyr, 3 (1), 59–63.
3. Lukyn, A. E. (2014). Uhlodoroindnii potensial bolshykh lyubyn y prava RAN, 4, 274–285.
4. Lymarenko, O. M., Khalitova, L. A. (2014). Ways to improve the use of natural gas in Ukraine. Technology audit and production reserves, 2 (1 (16)), 21–26. doi: 10.15587/2312-8372.2014.71550
5. Khan, M. I. (2017). Falling oil prices: Causes, consequences and policy implications. Journal of Petroleum Science and Engineering, 149, 409–427. doi: 10.1016/j.petrol.2016.10.048
6. Mariano, M. M. (Ed.) (2015). Introduction to software for chemical engineers. Boca Raton, FL: USA: CRC Press, 603.
7. Pavlushenko, V. S., Stopakevych, A. A., Stopakevych, A. A. (2016). Ynformatsyonno-vichyslytelnaia systema poektirovanye tekhnoloicheskoko protsesa utylizatsyy uleksyloho haza v netanol y systemi eho avtomatyatsyy. Vestnyk KhNU, 243 (6), 226–230.
8. Roy, P. S., Amin, M. R. (2011). Aspen-HYSYS Simulation of Natural Gas Processing Plant. Journal of Chemical Engineering, 26 (1), 62–65. doi: 10.3329/jcej.v26i1.10186
9. Ramzan, N., Naveed, S., Tahir, F. M. (2013). Simulation of natural gas processing plant for b umpless shift. NFC-IEFR Journal of Engineering & Scientific Research, 1, 151–156.
10. Bhran, A. A. E.-K., Hassanean, M. H., Helal, M. G. (2016). Maximization of natural gas liquids production from an existing gas plant. Egyptian Journal of Petroleum, 25 (3), 333–341. doi: 10.1016/j.ejpe.2015.08.003
11. Rao, K. N. M. (2015). HYSYS and Aspen Plus in Process Design: A Practical Approach. FRG: Lambert Academic Publishing, 380.
12. Kooijman, H. A., Tayor, R. (2000). The ChemSep book. Norderstedt: Books on Demand, 541.
13. Stopakevych, A. O. (2015). Razrabotka modely y prohrammnikh sredstv dla sozdanya robastnoi sistemy upravleniya teploobennym kom. Avtomatyzatsiia tehnolohichnykh i biznes-protsessiv, 7 (3), 51–60.
14. Al-Malah, K. (2014). MATLAB Numerical Methods with Chemical Engineering Applications. USA, N.Y.: McGraw Hill Professional, 419.
15. Luyben, W. L. (2013). Distillation design and control using Aspen simulation. New York and Hoboken, NJ: AIChE and John Wiley & Sons, Inc., 510.
16. Cantrell, J. G., Elliott, T. R., Luyben, W. L. (1995). Effect of Feed Characteristics on the Controllability of Binary Distillation Columns. Industrial & Engineering Chemistry Research, 34 (9), 3027–3036. doi: 10.1021/ie00048a014
17. Luyben, W. L. (Ed.) (1992). Practical distillation control. N.Y.: Van Nostrand Reihold, 560. doi: 10.1007/978-1-4757-0277-4
18. Skogestad, S. (2007). The Dos and Don’ts of Distillation Column Control. Chemical Engineering Research and Design, 85 (1), 13–23. doi: 10.1205/cherd06133
19. Rueda, L., Edgar, T., Eldridge, R. (2004). On-line parameter estimation and control for a pilot scale distillation column. AIChE annual meeting, 3–17.
20. Rueda, L. (2005). Modeling and control of multicomponent distillation systems separating highly non-ideal mixtures. Austin, TX: UT, 184.
21. Berge, J. (2005). Software for Automation: Architecture, Integration, and Security. USA, NC, Chapel Hill: ISA, 325.
22. Stopakevich, A. A. (2013). Sistemnyj analiz i teoriya slozhnyh sistem. Odessa: Astroprint, 350.
23. Stopakevich, A. A., Stopakevich, A. A. (2016). Design of robust controllers for plants with large dead time. Eastern-European Journal of Enterprise Technologies, 1 (2 (79)), 48–56. doi: 10.15587/1729-4061.2016.59107
24. Stopakevich, A. A. (2015). Robust control system design of crude oil atmospheric distillation column. Eastern-European Journal of Enterprise Technologies, 5 (2 (77)), 49–57. doi: 10.15587/1729-4061.2015.50964
25. Leont’ev, V. S., Sharikov, Yu. V. (2012). Metodologiya modernizaci i tekhnicheskogo perevozheniya rektifikacionnyh kompleksov neftekhimicheskih predpriatij. Neftegazovoe delo, 1, 187–199.
26. Szabo, L., Nemeth, S., Szeifert, F. (2012). Three level control of a distillation column. Engineering, 04 (10), 675–681. doi: 10.4236/eng.2012.410086
27. Stopakevich, A. A., Stopakevich, A. A. (2015). Sintez i issledovanie cifrovyh sistem supervizornogo upravleniya kolonnoj rektifikaci nefti. Avtomatizaciia tehnologicheskikh i biznes – processov, 7 (4), 24–33.
28. Mehrpooya, M., Hejazi, S. (2015). Design and Implementation of Optimized Fuzzy Logic Controller for a Nonlinear Dynamic Industrial Plant Using Hysys and Matlab Simulation Packages. Industrial & Engineering Chemistry Research, 54 (44), 11097–11105. doi: 10.1021/acs.iecr.5b02076