Leptospira and Bats: Story of an Emerging Friendship
Muriel Dietrich, Kristin Mühldorfer, Pablo Tortosa, Wanda Markotter

To cite this version:
Muriel Dietrich, Kristin Mühldorfer, Pablo Tortosa, Wanda Markotter. Leptospira and Bats: Story of an Emerging Friendship. PLoS Pathogens, 2015, 10.1371/journal.ppat.1005176. hal-01235917

HAL Id: hal-01235917
https://hal.science/hal-01235917v1
Submitted on 2 Dec 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Leptospira and Bats: Story of an Emerging Friendship

Muriel Dietrich1,*, Kristin Mühldorfer2, Pablo Tortosa3, Wanda Markotter1

1 Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa, 2 Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany, 3 UMR PIMIT, Université de la Réunion, CNRS 9192, INSERM 1187, IRD 249, Reunion Island, Sainte Clotilde, France

* muriel.dietrich@gmail.com

A growing number of recent studies have highlighted bats as a reservoir for Leptospira bacteria, pointing out the potential role of bats in the epidemiology of the most widespread zoonotic disease in the world [1]. Because leptospirosis is a largely neglected disease, a number of unanswered questions remain about the ecology and evolution of Leptospira, especially those associated with bats. Here we summarize what has been recently learned about this emerging but enigmatic host–pathogen association. We show how this system can provide exciting new opportunities to obtain insights into the evolutionary ecology of bat-borne pathogens and propose future directions to disentangle the role of bats in human leptospirosis.

What Do We Know, Briefly, about Leptospirosis and Leptospira?

Leptospirosis is a bacterial disease of humans and animals caused by pathogenic spirochetes of the genus Leptospira. In humans, leptospirosis is an important (re-)emerging zoonosis of global public health concern [1], although tropical regions display the highest human incidence [2]. Over 500,000 human cases of severe leptospirosis are thought to occur each year worldwide, with a mortality rate of over 10%. Asymptomatic or subclinical human infections are common, making leptospirosis likely far more prevalent than currently diagnosed or recognized [3].

Leptospiroses are complex of highly diversified bacteria comprising 22 species that include pathogenic (Leptospira interrogans, L. kirschneri, L. borgpetersenii, L. mayottensis, L. santarosai, L. noguchii, L. weilii, L. alexanderi, L. kmetyi, and L. alstonii), intermediate (i.e., species of unclear pathogenicity: L. borgpetersenii, L. fainei, L. inadai, L. licerasiae, L. wolffii), and saprophytic (i.e., free-living and generally considered not to cause disease: L. biflexa, L. idonii, L. meyeri, L. terpstrae, L. vanthielli, L. wolbachii, L. yanagawa) species [4]. Alongside genetic characterization, serological classification (based on bacterial cell surface antigens) differentiates nearly 300 Leptospira serovars, of which more than 200 are considered pathogenic [5]. However, serovars are not indicative of the taxonomic relation among strains because one serovar may belong to more than one species (e.g., L. interrogans serovar Hardjo and L. borgpetersenii serovar Hardjo) and multiple serovars occur within the same species [6]. A wide variety of mammals can be infected, but rodents are recognized as significant reservoir hosts. Pathogenic and intermediate leptospiroses reside in the kidneys of infected animals and are spread through the excretion of urine into the environment [1]. Thus, contaminated soil or water as well as direct contact with infected animals are the main sources of leptospirosis.
To What Extent Are Bats Infected with *Leptospira*?

Growing scientific interest in bats as reservoirs of pathogens and the global importance of human leptospirosis have led to the emergence of investigations on the presence of *Leptospira* in wild bats during the last few years (Fig 1). Different techniques such as dark-field microscopy, serology by Microscopic Agglutination Test (MAT), PCR detection, and bacterial culture have been used. To date, *Leptospira* infection has been evidenced in over 50 bat species belonging to 8 of the 9 investigated bat families, encompassing various geographical regions in the tropics and subtropics [7–30] as well as Europe, although to a limited extent (Fig 2) [31,32]. *Leptospira* prevalence and seroprevalence in bat populations vary according to bat species and location. Given that bat sampling is often opportunistic, small sample sizes may account for the bias observed in the results. Moreover, a recent study revealed that the prevalence of *Leptospira* excretion in bat urine is highly variable over time, ranging from 6% to 45% within the same colony over a five-month period [20]. Thus, infection dynamics leading to variations in *Leptospira* shedding should be taken into account when bat populations are monitored for prevalence.

Which *Leptospira* Infect Bats, and When?

There is increasing evidence that bats are infected by highly diverse leptospires, especially in tropical regions with high bat species richness [8,16,19]. Based on genetic identification, bats are infected by at least four species, i.e., *L. interrogans*, *L. borgpetersenii*, *L. kirschneri*, *L. fainei*, and likely yet-undescribed genetic clades (Fig 2) [8,19,28]. The use of multilocus sequence analysis has largely improved our view of *Leptospira* diversity in bats and has shown strong host specificity [19] as well as coinfection with multiple *Leptospira* [16,28]. The evolution of bat-borne *Leptospira* diversity and host specificity is probably linked to both cospeciation and host-switching events [33] but also to ecological features such as colony density, feeding behavior, and migration [34]. According to whole-genome [35] and field-based studies [36], which suggest that different *Leptospira* species have evolved towards different modes of transmission, bat species roosting in high-density colonies may be, for example, primarily infected by *Leptospira* dependent on host-to-host transmission, such as hypothesized for *L. borgpetersenii* [35].

Dynamics of *Leptospira* infection in bat populations remains largely overlooked. Bat roosting behavior is thought to favor *Leptospira* transmission via urine [20]. Indeed, the reproduction and aggregation behavior of bats within their roosts have been shown to be linked to
active *Leptospira* transmission, leading to high rates of infection in maternity colonies [20]. As demonstrated for RNA viruses, increased prevalence during seasonal bat reproduction may thus be associated with higher risk of spillover [37–40]. However, based on current research, there is very little evidence to disentangle whether bat-borne *Leptospira* persist within the host and/or in the environment, as well as whether they are maintained in nature by perpetuation within and between bat colonies [38]. Field monitoring of *Leptospira* excretion in natural bat populations suggests that bats may develop an immune response after acute infection and then stop excreting *Leptospira* [20]. In contrast, observation of natural *Leptospira*-infected bats in Denmark showed that leptospires are able to colonize the renal tubules of bats followed by continuous excretion in urine up to five months. This would indicate that chronic infection may occur in bats [31], as already characterized in chronic asymptomatic animal carriers such as rats [41].

What Is the Public Health Risk of Bat-Borne *Leptospira*?

Because of their abundance and spatial distribution, bats may contribute to the global maintenance and dissemination of pathogenic leptospires. However, the role of bats as carriers of strains of leptospires associated with human leptospirosis remains uncertain. Direct transmission of bat-borne *Leptospira* to humans has already been suggested, but never evidenced, following a case of serologically confirmed human leptospirosis after bat exposure [42]. Contact with urine and contaminated water is the main form of disease transmission. Human encroachment into bat habitats as well as increasing urbanization, which facilitates bat roosting in artificial structures, are likely to increase the opportunity for bat-borne *Leptospira* spillover [34]. Indeed, evidence of leptospiral infection of kidneys has already been reported in bats roosting in schools and houses [10,16].
Indirect transmission of bat-borne *Leptospira* to humans may also occur through spillover between bat-borne *Leptospira* and other animal hosts, in particular ground-dwelling species such as rodents that reside or forage under bat roosts [8,13,15]. Such transmission between bats and rodents has already been suggested, as *L. interrogans*, a typical rodent-borne *Leptospira* species, has been evidenced in insectivorous and frugivorous bats [8,16]. Elucidating the ecological conditions that may favor bat-borne *Leptospira* transmission thus represents a major challenge for public health.

What Are Future Directions for Research into Bat-Borne *Leptospira*?

The widespread pattern and enigmatic features of *Leptospira* infection in bats represent a challenging opportunity to study the evolutionary ecology of bat-borne infectious agents of possible importance for public health. While other studies mostly focus on viruses, the study of transmission cycles involving bats and bacterial pathogens in particular will provide an original system to understand general patterns of bat-borne pathogen epidemiology.

As a model system, continued research on the ecology of host and bacteria is necessary. It has been recently shown that *Leptospira* excretion in bats can be highly dynamic [20], but ecological factors that drive spatial and temporal variations of infection remain uncertain. For example, what are the roles of environmental factors such as weather seasonal patterns in the transmission dynamics of *Leptospira* in bat populations? Is *Leptospira* infection in bats maintained through epidemic episodes during the bat reproductive season in maternity colonies, or does it persist endemically within any single local population? Do males play a particular role in dispersing *Leptospira* among colonies compared to phylopatric females? Some of these questions can be addressed using long-term data sets by monitoring bat population dynamics, *Leptospira* excretion, and immune response in bat colonies. Noninvasive urine sampling should be preferred, as it allows the collection of a high number of samples while limiting the disturbance of colonies [20]. This will require the validation of urine shedding as a good proxy of renal infection, as recently demonstrated in rats [43]. Parallel investigation of rodent populations in the vicinity of bat colonies would be necessary to assess potential exchanges between these two animal hosts, as already shown for other infectious agents such as paramyxoviruses [44,45].

Improvement of bacterial culture from noninvasive bat samples (such as urine) would be a crucial step for understanding *Leptospira*–bat associations. First of all, it would improve genetic characterization of bat-borne strains and thus provide a more comprehensive picture of *Leptospira* evolution in bats. Secondly, bacterial isolates would allow experimental studies to investigate chronic manifestations in bats, as already demonstrated for rodents [4], as well as the assessment of the survival of bat-borne *Leptospira* in soil and water, in order to determine the role of environment as a source of infection. Animal models would further enable assessment of host specificity and virulence of bat-borne strains and the potential for possible spillovers. Finally, the development of serological diagnostic tests, designed to express a narrow specificity towards bat-borne *Leptospira* and to determine the burden of acute and asymptomatic *Leptospira* infection in humans from bat origin.

References

1. Adler B (2015) *Leptospira* and Leptospirosis. *Curr Topics Microbiol* 387: 1–293.
2. Pappas G, Papadimitriou P, Siozopoulou V, Christou L, Akritidis N (2008) The globalization of leptospirosis: worldwide incidence trends. *Int. J Infect Dis* 12: 351–357. PMID: 18055545
3. Ganoza CA, Matthias MA, Saito M, Cespedes M, Gotuzzo E, et al. (2010) Asymptomatic renal colonization of humans in the peruvian Amazon by *Leptospira*. *PLoS Neglect Trop Dis* 4: e612.
4. Ko AI, Goarter C, Picardeau M (2009) Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen. Nat Rev Microbiol 7: 736–747. doi: 10.1038/nrmicro2008 PMID: 19756012

5. Cerqueira GM, Picardeau M (2009) A century of Leptospira strain typing. Infect Genet Evol 9: 760–768. doi: 10.1016/j.meegid.2009.06.009 PMID: 19540362

6. Bharti AR, Nally JE, Ricaldi JN, Matthias MA, Díaz MM, et al. (2003) Leptospirosis: a zoonotic disease of global importance. Lancet Infect Dis 3: 757–771. PMID: 14652202

7. Bunnell JE, Hice CL, Watts DM, Montreuil V, Tesh RB, et al. (2000) Detection of pathogenic Leptospira spp. infections among mammals captured in the Peruvian Amazon basin inferred by bayesian phylogenetic analysis of 16S rDNA sequences. Am J Trop Med Hyg 63: 255–258. PMID: 11421373

8. Matthias MA, Díaz MM, Campos KJ, Calderon M, Willig MR, et al. (2005) Diversity of bat-associated Leptospira in the Peruvian Amazon inferred by bayesian phylogenetic analysis of 16S rDNA sequences. Am J Trop Med Hyg 73: 964–974. PMID: 16282313

9. Zetun C, Hoffmann J, Silva R, Souza L, Langoni H (2009) Leptospira spp. and Toxoplasma gondii antibodies in Vampire bats (Desmodus rotundus) in Botucatu region, Brazil. J Venom Anim Toxins incl Trop Dis 15: 546–552.

10. Bessa TAF, Spichler A, Chapola EGB, Husch AC, de Almeida MF, et al. (2010) The contribution of bats to leptospirosis transmission in Sao Paulo City, Brazil. Am J Trop Med Hyg 82: 315–317. doi: 10.4269/ajtmh.2010.09-0227

11. Ramirez NN, Alege EA, De Biasio MB, Bastiani CE (2014) Deteccción de leptospirosas patógenas en tejido renal de murciélagos de Corrientes, Argentina. Rev Vet 25: 16.

12. Emanuel ML, Mackerras IM, Smith DJW (1964) The epidemiology of leptospirosis in North Queensland. J Hyg 62: 451–484. PMID: 14244080

13. Smythe LD, Field HE, Barnett L, Smith CS, Sohnt MF, et al. (2002) Leptospiral antibodies in flying foxes in Australia. J Wildlife Dis 38: 182–186.

14. Cox TE, Smythe LD, Leung LK-P (2005) Flying foxes as carriers of pathogenic Leptospira species. J Wildl Dis 41: 753–757.

15. Tulsiani SM, Cobbold RN, Graham GC, Dohtn MF, Burns M, et al. (2011) The role of fruit bats in the transmission of pathogenic leptospirae in Australia. Ann Trop Med Parasitol 105: 71–84. doi: 10.1179/136485911X1289938417501 PMID: 21294951

16. Lagadec E, Gomard Y, Guenier V, Dietrich M, Pascalis H, et al. (2012) Pathogenic Leptospira spp. in bats, Madagascar and Union of the Comoros. Emerg Infect Dis 18: 1696–1698. doi: 10.3201/eid1810.111886 PMID: 23017768

17. Desvars A, Naze F, Benneveau A, Cardinale E, Michaut A (2013) Endemicity of leptospirosis in domestic and wild animal species from Reunion Island (Indian Ocean). Epidemiol Infect 141: 1154–1165. doi: 10.1017/S0950268812002075 PMID: 22998941

18. Desvars A, Naze F, Yvonc'h G, Cardinale E, Picardeau M, et al. (2012) Similarities in Leptospira serogroup and species distribution in animals and humans in the Indian ocean island of Mayotte. Am J Trop Med Hyg 87: 134–140. doi: 10.4269/ajtmh.2012.12-0102 PMID: 22764304

19. Dietrich M, Wilkinson DA, Soanimaiala V, Goodman SM, Dellagi K, et al. (2014) Diversification of an emerging pathogen in a biodiversity hotspot: Leptospira in endemic small mammals of Madagascar. Mol Ecol 23: 2783–2796. doi: 10.1111/mec.12777 PMID: 24784171

20. Dietrich M, Wilkinson DA, Beniali A, Lagadec E, Ramasindrazana B, et al. (2015) Leptospirosis and Paramyxovirus infection dynamics in a bat maternity enlightens pathogen maintenance in wildlife. Environ Microbiol: in press.

21. Collier WA, Mochtara A (1939) Een serologisch afwijkende leptospira-stam uit der nier eener vleermuis. Gen Tschr Ned Ind 79: 226–231.

22. Alston JM, Broom JC (1958) Leptospirosis in Man and Animals. E. & S. Livingstone. Edinburgh, UK.

23. Van Peenen PFD, Light RH, Sulianti Saroso J (1971) Leptospirosis in wild mammals of Indonesia—Recent surveys. Se Asian J Trop Med 2: 496–502.

24. Thayaparan S, Robertson IAN, Amraan F, Ut LSU, Abdullah MT (2013) Serological Prevalence of Leptospira in endemic small mammals from Malaysia. Borneo J Res Sc Technol 2: 71–74.

25. Mgodie GF, Mbugi HA, Mwamphi GG, Ndanga D, Nkwama EL (2014) Seroprevalence of Leptospira spp. and Toxoplasma gondii antibodies in Vampire bats (Desmodus rotundus) in Botucatu region, Brazil. J Venom Anim Toxins incl Trop Dis 15: 546–552.

26. Everard CR, Fraser-Chanpong GM, Bhagwandin LJ, Race MW, James AC (1983) Leptospires in wildlife from Trinidad and Grenada. J Wildlife Dis 19: 192–199.
27. Sebek Z, Sixl W, Reimuther F, Valova M, Scewewics W, et al. (1989) Results of serological examination for leptospirosis of domestic and wild animals in the Upper Nile province (Sudan). J Hyg Epid Microb Im 33: 337–345.

28. Ogawa H, Koizumi N, Ohnuma A, Mutemwa A, Hang BM, et al. (2015) Molecular epidemiology of pathogenic Leptospira spp. in the straw-colored fruit bat (Eidolon helvum) migrating to Zambia from the Democratic Republic of Congo. Infect Genet Evol 32: 143–147. doi: 10.1016/j.meegid.2015.03.013 PMID: 25791930

29. Harkin KR, Hays M, Davis R, Moore M (2014) Use of PCR to Identify Leptospira in Kidneys of Big Brown Bats (Eptesicus fuscus) in Kansas and Nebraska, USA. J Wildlife Dis 50: 651–654.

30. Jobbins SE, Alexander KA (2015) Evidence of Leptospira sp. infection among a diversity of African wildlife species: beyond the usual suspects. Trans R Soc Trop Med Hyg: 349–351. doi: 10.1093/trstmh/trv007 PMID: 25669841

31. Fennestad KL, Borg-Petersen C (1972) Leptospirosis in Danish wild mammals. J Wildlife Dis 8: 343–351.

32. Tagi-Zade TA, Mardanly AS, Akhmedov IB, Alekperov FP, Gasanov SN (1970) Examination of bats for leptospirosis in the territory of Azerbaijan SSR. Zhurnal Mikrobiol Epidemiol i Immunobiol 9: 118–121.

33. Lei BR, Olival KJ (2014) Contrasting patterns in mammal-bacteria coevolution: Bartonella and Leptospira in bats and rodents. PLoS Neglect Trop 8: e2738.

34. Hayman DTS, Bowen RA, Cryan PM, McCracken GF, O’Shea TJ, et al. (2013) Ecology of zoonotic infectious diseases in bats: current knowledge and future directions. Zoonoses Public Health 60: 2–21.

35. Bulach DM, Zuermer RL, Wilson P, Seemann T, McGrath A, et al. (2006) Genome reduction in Leptospira borgpeterseni reflects limited transmission potential. P Natl Acad Sci USA 103: 14560–14565.

36. Cosson J-F, Picardeau M, Mielcarek M, Tatard C, Chaval Y, et al. (2014) Epidemiology of Leptospira Transmitted by Rodents in Southeast Asia. PLoS Neglect Trop 8: e2902.

37. Amman BR, Carroll SA, Reed ZD, Sealy TK, Balinandi S, et al. (2012) Seasonal Pulses of Marburg Virus Circulation in Juvenile Rousettus aegyptiacus Bats Coincide with Periods of Increased Risk of Human Infection. PLoS Pathog 8: e1002877. doi: 10.1371/journal.ppat.1002877 PMID: 23055920

38. Plowright RK, Eby P, Hudson PJ, Smith IL, Westcott D, et al. (2015) Ecological dynamics of emerging bat virus spillover. P Roy Soc B Biol Sci 282.

39. Field H, Crameri G, Kung NV, Wang LF (2012) Ecological aspects of hendra virus. Curr Topics Microbiol 359: 11–23.

40. Khan SU, Islam MA, Rahman MZ, Island A, Sazzad HMS, et al. (2013) Nipah virus shedding among Pteropus bats in the context of human outbreak in Bangladesh, 2012. ASTMH 62nd Annual Meeting, 13–17 November, Washington, DC.

41. Monahan AM, Callanan JJ, Nally JE (2009) Review paper: Host-pathogen interactions in the kidney during chronic leptospirosis. Vet Pathol 46: 792–799. doi: 10.1354/vp.08-VP-0265-N-REV PMID: 19429975

42. Vashi NA, Reddy P, Wayne DB, Sabin B (2010) Bat-associated leptospirosis. J Gen Intern Med 25: 162–164. doi: 10.1007/s11606-009-1210-7 PMID: 20012224

43. Costa F, Wunder EA, Oliveira D De, Bisht V (2015) Patterns in Leptospira Shedding in Norway Rats (Rattus norvegicus) from Brazilian Slum Communities at High Risk of Disease Transmission. PLoS Neglect Trop 9: e0003819.

44. Wilkinson DA, Mélade J, Dietrich M, Ramasindrazana B, Soarimalala V, et al. (2014) Highly Diverse Morbillivirus-Related Paramyxoviruses in Wild Fauna of the Southwestern Indian Ocean Islands: Evidence of Exchange between Introduced and Endemic Small Mammals. J Virol 88: 8268–8277. doi: 10.1128/JVI.01211-14 PMID: 24829336

45. Drexler JF, Corman VM, Müller MA, Maganga GD, Vallo P, et al. (2012) Bats host major mammalian paramyxoviruses. Nat Comm 3: 796.