On Translation Invariant Quantum Markov Chains associated with Ising-XY models on a Cayley tree

Farrukh Mukhamedov1,*, Abdessatar Barhoumi2, Abdessatar Souissi3, Soueidy El Gheteb4

1Department of Mathematical Sciences, College of Science, The United Arab Emirates University, P.O. Box, 15551, Al Ain, Abu Dhabi, UAE
2Department of Mathematics, Nabeul Preparatory Engineering Institute, Campus Universitary - Mrezgua - 8000 Nabeul, Carthage University, Tunisia
3Department of Mathematics, Marsa Preparatory Institute for Scientific and Technical Studies, Carthage University, Tunisia
4Department of Mathematics, Carthage University, Tunisia

E-mail: *farrukh.m@uaeu.ac.ae

Abstract. In this paper, we consider the Ising-XY model with competing interactions on the Cayley tree of order two. This model can be seen as a non-commutative (i.e. \(J\)-XY-interactions on next-neighbor vertices) perturbation of the classical Ising model on the Cayley tree. For the considered model we establish the existence of three translation-invariant quantum Markov chains. We notice that if the \(XY\)-interactions vanish, i.e. \(J = 0\), then one gets the Ising model. If the classical Ising model vanishes in the considered model, then we obtain \(XY\)-model for which it turns out there exists only one translation invariant QMC.

1. Introduction

In [1] a quantum analogues of Markov chains were constructed and they were called by quantum Markov chains (QMC) which are defined on infinite tensor product algebras. The reader is referred to [5, 17] and the references cited therein, for recent developments of the theory and the applications.

In [3]-[6],[8, 19] it was attempted to construct quantum analogues of classical Markov fields. In [7] it has been proposed a definition of quantum Markov states and chains, which extend all known ones. We point out that one of the basic open problems in quantum probability is the construction of a theory of quantum Markov fields, that is quantum process with multi-dimensional index set. This program concerns the generalization of the theory of Markov fields (see [15],[18])) to non-commutative setting, naturally arising in quantum statistical mechanics and quantum field theory.

First attempts to investigate QMC over such trees was done in [14], such studies were related to investigation of thermodynamic limit of valence-bond-solid models on a Cayley tree [16]. The mentioned considerations naturally suggest the study of the following problem: the extension to fields of the notion of generalized QMC. In [13, 12], we have introduced a hierarchy of notions of Markovianity for states on discrete infinite tensor products of \(C^*\)-algebras and for each of these notions we constructed some explicit examples. In [21, 20, 24, 25] noncommutative
extensions of classical Markov fields, associated with Ising and Potts models on a Cayley tree, were investigated.

In this paper, we consider the Ising-XY model with competing interactions on the Cayley tree of order two. This model can be seen as a non-commutative (i.e. J-XY) interactions on next-nearest-neighbor vertices) perturbation of the classical Ising model on the Cayley tree. For the considered model we are going to establish the existence of translation invariant quantum Markov chains (see [9]). We notice that if the XY-interactions vanish, i.e. J = 0, then one gets the Ising model for which the corresponding QMC has been studied in [10], and shown the existence of the phase transition in the sense of [9]. We point out that if one considers the Ising type next neighbor interactions, then the corresponding QMC has been investigated in [22, 23]. In the present paper, we establish the existence (under some conditions) of three translation invariant QMC for the considered model. If the classical Ising model vanishes in the considered model, then we obtain XY-model for which it turns out there exists only one translation invariant QMC.

2. Preliminaries
Let $\Gamma^+_k = (L, E)$ be a semi-infinite Cayley tree of order $k \geq 1$ with the root x^0 (i.e. each vertex of Γ^+_k has exactly $k + 1$ edges, except for the root x^0, which has k edges). Here L is the set of vertices and E is the set of edges. The vertices x and y are called nearest neighbors and they are denoted by $l = (x, y)$ if there exists an edge connecting them. A collection of the pairs $< x, x_1 >, \ldots , < x_{d-1}, y >$ is called a path from the point x to the point y. The distance $d(x, y), x, y \in V$, on the Cayley tree, is the length of the shortest path from x to y.

Recall a coordinate structure in Γ^+_k: every vertex x (except for x^0) of Γ^+_k has coordinates (i_1, \ldots , i_n), here $i_m \in \{1, \ldots , k\}$, $1 \leq m \leq n$ and for the vertex x^0 we put (0). Namely, the symbol (0) constitutes level 0, and the sites (i_1, \ldots , i_n) form level n (i.e. $d(x^0, x) = n$) of the lattice (see Fig. 1).

Let us set
$$W_n = \{ x \in L : d(x, x_0) = n \}, \quad \Lambda_n = \bigcup_{k=0}^{n} W_k, \quad \Lambda_{[n,m]} = \bigcup_{k=n}^{m} W_k, \quad (n < m)$$
$$E_n = \{ (x, y) \in E : x, y \in \Lambda_n \}, \quad \Lambda_n^c = \bigcup_{k=n}^{\infty} W_k$$

For $x \in \Gamma^+_k, x = (i_1, \ldots , i_n)$ denote
$$S(x) = \{(x, i) : 1 \leq i \leq k\}.$$

Here (x, i) means that (i_1, \ldots , i_n, i). This set is called a set of direct successors of x.

Two vertices $x, y \in V$ is called one level next-nearest-neighbor vertices if there is a vertex $z \in V$ such that $x, y \in S(z)$, and they are denoted by $> x, y <$. In this case the vertices x, z, y was called ternary and denoted by $< x, z, y >$.

Let us define on Γ^+_k a binary operation $\circ : \Gamma^+_k \times \Gamma^+_k \to \Gamma^+_k$ as follows: for any two elements $x = (i_1, \ldots , i_n)$ and $y = (j_1, \ldots , j_m)$ put

$$x \circ y = (i_1, \ldots , i_n) \circ (j_1, \ldots , j_m) = (i_1, \ldots , i_n, j_1, \ldots , j_m) \quad (1)$$

and

$$x \circ x^0 = x^0 \circ x = (i_1, \ldots , i_n) \circ (0) = (i_1, \ldots , i_n). \quad (2)$$
By means of the defined operation Γ^k_+ becomes a noncommutative semigroup with a unit. Using this semigroup structure one defines translations $\tau_g : \Gamma^k_+ \to \Gamma^k_+$, $g \in \Gamma^k_+$ by

$$\tau_g(x) = g \circ x.$$

(3)

It is clear that $\tau_{(0)} = id$.

The algebra of observables B_x for any single site $x \in L$ will be taken as the algebra M_d of the complex $d \times d$ matrices. The algebra of observables localized in the finite volume $\Lambda \subseteq L$ is then given by $B_{\Lambda} = \bigotimes_{x \in \Lambda} B_x$. As usual if $\Lambda^1 \subseteq \Lambda^2 \subseteq L$, then B_{Λ^1} is identified as a subalgebra of B_{Λ^2} by tensoring with unit matrices on the sites $x \in \Lambda^2 \setminus \Lambda^1$. Note that, in the sequel, by B_{Λ^+} we denote the positive part of B_{Λ}. The full algebra B_L of the tree is obtained in the usual manner by an inductive limit

$$B_L = \bigcup_{\Lambda_n} B_{\Lambda_n}.$$

In what follows, by $S(B_{\Lambda})$ we will denote the set of all states defined on the algebra B_{Λ}.

Consider a triplet $C \subseteq B \subseteq A$ of unital C^*-algebras. Recall [2] that a quasi-conditional expectation with respect to the given triplet is a completely positive (CP) unital linear map $E : A \to B$ such that $E(ca) = cE(a)$, for all $a \in A$, $c \in C$.

Definition 2.1 ([13]). A state φ on B_L is called a forward quantum Markov chain (QMC), associated to $\{\Lambda_n\}$, if for each Λ_n, there exist a quasi-conditional expectation E_{Λ_n} with respect to the triplet $B_{\Lambda_n}^+ \subseteq B_{\Lambda_n}^c \subseteq B_{\Lambda_n}$

(4)

and a state $\varphi_{\Lambda_n}^c \in S(B_{\Lambda_n}^c)$ such that for any $n \in \mathbb{N}$ one has

$$\varphi_{\Lambda_n} | B_{\Lambda_n+1} \setminus \Lambda_n = \varphi_{\Lambda_n+1} \circ E_{\Lambda_n+1}^c | B_{\Lambda_n+1} \setminus \Lambda_n$$

(5)

and

$$\varphi = \lim_{n \to \infty} \varphi_{\Lambda_n} \circ E_{\Lambda_n} \circ E_{\Lambda_{n-1}} \circ \cdots \circ E_{\Lambda_1}^c$$

(6)

in the weak-* topology.

Note that (5) is an analogue of the DRL equation from classical statistical mechanics [15, 18, 26], and QMC is thus the counterpart of the infinite-volume Gibbs measure.

3. **Construction of Quantum Markov Chains on Cayley tree**

In this section we are going to provide a construction of a forward quantum Markov chain which contain competing interactions (see [9, 11]). In this section we recall some notations.

Let us rewrite the elements of W_n in the following order, i.e.

$$W_n := (x_{W_n}^{(1)}, x_{W_n}^{(2)}, \ldots, x_{W_n}^{(|W_n|)}).$$

In what follows, by $\circ \prod$ we denote an ordered product, i.e.

$$\circ \prod_{k=1}^n a_k = a_1 a_2 \cdots a_n,$$

where elements $\{a_k\} \subset B_L$ are multiplied in the indicated order. This means that we are not allowed to change this order.
Note that each vertex $x \in L$ has interacting vertices $\{x, (x, 1), \ldots, (x, k)\}$. Assume that each edges $< x, (x, i) > (i = 1, \ldots, k)$ operators $K_{<x,(x,i)>} \in B_x \otimes B_{(x,i)}$ is assigned, respectively. Moreover, for each competing vertices $>(x, i), (x, i + 1) <$ and $< x, (x, i), (x, i + 1) > (i = 1, \ldots, k)$ the following operators are assigned:

$$L_{>(x,i),(x,i+1)<} \in B_{(x,i)} \otimes B_{(x,i+1)<}, \quad M_{(x,(x,i),(x,i+1)<)} \in B_x \otimes B_{(x,i)} \otimes B_{(x,i+1)<}.$$

We would like to define a state on \mathcal{B}_L with boundary conditions $\omega_0 \in \mathcal{B}_L^+$ and $\{h^x \in \mathcal{B}_x^+: x \in L\}$. For each $n \in \mathbb{N}$ denote

$$A_{x,(x,1),\ldots,(x,k)} = \bigotimes_{i=1}^k K_{x,(x,i)}, \quad L_{>(x,i),(x,i+1)<} \in \bigotimes_{i=1}^k L_{>(x,i),(x,i+1)<}, \quad M_{(x,(x,i),(x,i+1)<)} \in \bigotimes_{i=1}^k M_{(x,(x,i),(x,i+1)<)}.$$

Moreover, for each competing vertices $>(x,i), (x, i + 1) <$ and $< x, (x, i), (x, i + 1) > (i = 1, \ldots, k)$ the operators $K_{m,m+1} \in \mathcal{B}_{(x,1),\ldots,(x,k)}$

$$K_{m,m+1} = \prod_{x \in \mathcal{W}_m} A_{x,(x,1),\ldots,(x,k)}, \quad 1 \leq m \leq n,$$

and triple

$$h^{1/2} = \prod_{x \in \mathcal{W}_n} (h^x)^{1/2}, \quad h_n = (h^{1/2})^n,$$

and

$$K_n := \omega_0^{1/2} \prod_{m=1}^{n-1} K_{m,m+1} h_n^{1/2}, \quad W_n := K_n K_n^*.$$

One can see that W_n is positive.

In what follows, by $\text{Tr}_L : \mathcal{B}_L \to \mathcal{B}_A$ we mean normalized partial trace (i.e. $\text{Tr}_L(1_L) = 1$, where $1_L = \otimes_{x \in \mathcal{L}} 1$), for any $\Lambda \subseteq \text{fin} L$. For the sake of shortness we put $\text{Tr}_n := \text{Tr}_{A_n}$.

Let us define a positive functional $\varphi_{w_0,h}^{(n)}$ on \mathcal{B}_A by

$$\varphi_{w_0,h}^{(n)}(a) = \text{Tr}(W_n^{1/2} (a \otimes 1_{W_{n+1}})),$$

for every $a \in \mathcal{B}_A$. Note that here, Tr is a normalized trace on \mathcal{B}_L (i.e. $\text{Tr}(1_L) = 1$).

To get an infinite-volume state φ on \mathcal{B}_L such that $\varphi_{\mathcal{B}_A} = \varphi_{w_0,h}^{(n)}$, we need to impose some constraints to the boundary conditions $\{w_0, h\}$ so that the functionals $\{\varphi_{w_0,h}^{(n)}\}$ satisfy the compatibility condition, i.e.

$$\varphi_{w_0,h}^{(n+1)} |_{\mathcal{B}_A} = \varphi_{w_0,h}^{(n)}.$$

Theorem 3.1. [11] Assume that for every $x \in L$ and triple $\{x, (x,i), (x,i+1)\}$ ($i = 1, \ldots, k-1$) the operators $K_{<x,(x,i)>}, L_{>(x,i),(x,i+1)<}, M_{(x,(x,i),(x,i+1)<)}$ are given as above. Let the boundary conditions $w_0 \in \mathcal{B}_{(0)+}$ and $h = \{h^x \in \mathcal{B}_{x+}: x \in L\}$ satisfy the following conditions:

$$\text{Tr}(\omega_0 h^{(0)}) = 1,$$

and

$$\text{Tr}_{x}(A_{x,(x,1),\ldots,(x,k)} h^x A_{x,(x,1),\ldots,(x,k)}^*) = h^x, \quad \text{for every} \ x \in L,$$

where as before $A_{x,(x,1),\ldots,(x,k)}$ is given by (7). Then the functionals $\{\varphi_{w_0,h}^{(n)}\}$ satisfy the compatibility condition (13). Moreover, there is a unique forward quantum Markov chain $\varphi_{w_0,h}$ on \mathcal{B}_L such that $\varphi_{w_0,h} = w - \lim_{n \to \infty} \varphi_{w_0,h}^{(n)}$.

Corollary 3.2. If (14),(15) are satisfied then one has $\phi_{\theta_0,\alpha}^{(n)}(a) = \text{Tr}(\mathcal{W}_n(a))$ for any $a \in \mathcal{B}_{\Lambda_n}$.

Our goal in this paper is to establish the existence of translation-invariant QMC for the considered model (see next section).

4. QMC associated with Ising-XY model with competing interactions

In this section, we define the model and formulate the main results of the paper. In what follows we consider a semi-infinite Cayley tree $\Gamma^+_x = (L, E)$ of order two. Our starting C^*-algebra is the same \mathcal{B}_L but with $\mathcal{B}_x = M_2(\mathbb{C})$ for all $x \in L$. By σ^u_x, σ^u_y, σ^u_z we denote the Pauli spin operators for at site $u \in L$. Here

$$
\mathbf{1}^{(u)} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma^u_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma^u_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma^u_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
$$

For every vertices $(u, (u, 1), (u, 2))$ we put

$$
K_{<u,(u,1)>} = \exp\{J_0\beta H_{<u,(u,1)>}\}, \quad i = 1, 2, \quad J_0 > 0, \quad \beta > 0, \quad (16)
$$

$$
L_{<(u,1),(u,2)<} = \exp\{J\beta H_{<(u,1),(u,2)<}\}, \quad J > 0, \quad (17)
$$

where

$$
H_{<u,(u,1)>} = \frac{1}{2}(\mathbf{1}^{(u)} \otimes \mathbf{1}^{(u,1)} + \sigma^u_z \otimes \sigma^{(u,1)}_z), \quad (18)
$$

$$
H_{<(u,1),(u,2)<} = \frac{1}{2}(\sigma^u_z \otimes \sigma^{(u,2)}_z + \sigma^{(u,1)}_y \otimes \sigma^{(u,2)}_y). \quad (19)
$$

Furthermore, we assume that $M_{<u,(u,1),(u,i+1)>} = \mathbf{1} (i = 1, 2, \ldots, k)$ for all $u \in L$.

The defined model is called the Ising-XY model with competing interactions per vertices $(u, (u, 1), (u, 2))$.

Remark 4.1. Note that if we take $J = 0$, then one gets the Ising model on Cayley tree which has been studied in [10] and if we take $J_0 = 0$ we get the XY-model on the interactions.

One can calculate that for $m \in \mathbb{N}$

$$
H^m_{<u,v>} = H^m_{<u,v>} = \frac{1}{2}(\mathbf{1}^{(u)} \mathbf{1}^{(v)} + \sigma^{(u)} \sigma^{(v)}), \quad (20)
$$

$$
H^{2m}_{<(u,1),(u,2)<} = H^{2m}_{<(u,1),(u,2)<} = \frac{1}{2}(\mathbf{1}^{(u,1)} \otimes \mathbf{1}^{(u,2)} - \sigma^{(u,1)}_z \otimes \sigma^{(u,2)}_z), \quad (21)
$$

$$
H^{2m-1}_{<(u,1),(u,2)<} = H^{2m-1}_{<(u,1),(u,2)<} = \mathbf{1}^{(u,1)} \otimes \mathbf{1}^{(u,2)} + \text{sinc}h(J) H^{2}_{<(u,1),(u,2)<} + (\cosh(J) - 1) H^2_{<(u,1),(u,2)<} \quad (22)
$$

Therefore, one finds

$$
K_{<u,(u,i)>} = K_0 \mathbf{1}^{(u)} \otimes \mathbf{1}^{(u,i)} + K_3 \sigma^{(u)} \otimes \sigma^{(u,i)}_z
$$

$$
L_{<(u,1),(u,2)<} = \mathbf{1}^{(u,1)} \otimes \mathbf{1}^{(u,2)} + \text{sinc}h(J) H_{<(u,1),(u,2)<} + (\cosh(J) - 1) H^2_{<(u,1),(u,2)<}
$$

where

$$
K_0 = \frac{\exp(J_0 \beta) + 1}{2}, \quad K_3 = \frac{J_0 \exp \beta - 1}{2}.
$$
Hence, from (7) for each $x \in L$ we obtain

$$A_{(u,(u,1),(u,2))} = \gamma_1 I^{(u)} \otimes I^{(u,1)} \otimes I^{(u,2)} + \gamma_2 I^u \otimes \sigma_x^{(u,1)} \otimes \sigma_x^{(u,2)}$$

$$+ \gamma_3 I^{(u)} \otimes \sigma_y^{(u,1)} \otimes \sigma_y^{(u,2)} + \delta_1 \sigma_z^{(u)} \otimes I^{(u,1)} \otimes \sigma_z^{(u,2)} + \delta_2 \sigma_z^{(u)} \otimes \sigma_z^{(u,1)} \otimes I^{(u,2)}$$

where

$$\begin{align*}
\gamma_1 &= \frac{1}{2} \exp(2J_0 \beta) + 1 + 2 \exp(J_0 \beta) \cosh(J \beta), \\
\gamma_2 &= \frac{1}{2} \exp(2J_0 \beta) \sinh(J \beta), \\
\gamma_3 &= \frac{1}{2} \exp(2J_0 \beta) + 1 - 2 \exp(J_0 \beta) \cosh(J \beta), \\
\delta_1 &= \frac{1}{2} \exp(2J_0 \beta) - 1.
\end{align*}$$

Recall that a function $\{h^u\}$ is called translation-invariant if one has $h^u = h^{u,v}$, for all $u, v \in L$. Clearly, this is equivalent to $h^u = h^v$ for all $u, v \in L$.

In what follows, we restrict ourselves to the description of translation-invariant solutions of (14),(15). Therefore, we assume that: $h^u = h$ for all $u \in L$, where

$$h = \begin{pmatrix}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{pmatrix}.$$

Then we have

$$h = \text{Tr}(u)A_{(u,(u,1),(u,2))}[I^{(u)} \otimes h \otimes h]A_{(u,(u,1),(u,2))}^*$$

$$= [C_1 \text{Tr}(h)^2 + C_2 \text{Tr}((\sigma_z h)^2)]I^{(u)} + C_3 \text{Tr}(h) \text{Tr}(\sigma_z h) \sigma_z^{(u)}.$$

where

$$\begin{align*}
C_1 &= \frac{1}{4} \exp(4J_0 \beta) + 1 + \frac{1}{2} \exp(2J_0 \beta) \cosh(2J \beta); \\
C_2 &= \frac{1}{4} \exp(4J_0 \beta) + 1 - \frac{1}{2} \exp(2J_0 \beta) \cosh(2J \beta); \\
C_3 &= \frac{1}{2} \exp(4J_0 \beta) - 1.
\end{align*}$$

Now taking into account

$$\text{Tr}(h) = \frac{h_{11} + h_{22}}{2}, \quad \text{Tr}(\sigma_z h) = \frac{h_{11} - h_{22}}{2},$$

the equation (26) is reduced to the following one

$$\begin{align*}
\text{Tr}(h) &= C_1 \text{Tr}(h)^2 + C_2 \text{Tr}((\sigma_z h)^2), \\
\text{Tr}(\sigma_z h) &= C_3 \text{Tr}(h) \text{Tr}(\sigma_z h), \\
h_{21} &= 0, h_{12} = 0.
\end{align*}$$

The obtained equation implies that a solution h is diagonal, and ω_0 could be also chosen diagonal, through the equation. In what follows, we always assume that $h_{21} = 0, h_{12} = 0$. In the next sections we are going to examine (27).

5. Existence of QMC associated with the model.

In this section we are going to solve (27), which yields the existence of QMC associated with the model.
5.1. Case $h_{11} = h_{22}$ and associate QMC
Assume that $h_{1,1} = h_{2,2}$, then (27) is reduced to
\[h_{11} = h_{22} = \frac{1}{C_1}. \]
Then putting $\alpha = \frac{1}{C_1}$ we get
\[h_\alpha = \left(\begin{array}{cc} \alpha & 0 \\ 0 & \alpha \end{array} \right) \] (28)

Proposition 5.1. The pair $(\omega_0, \{h^u = h_\alpha | u \in L\})$ with $\omega_0 = \frac{1}{\alpha} \mathbf{1}$, $h^u = h_\alpha$, $\forall u \in L$, is solution of (14), (15). Moreover, the associated QMC can be written on the local algebra $B_{L,loc}$ by:
\[\varphi_\alpha(a) = \alpha^{2n-1} \text{Tr} \left(a \prod_{i=0}^{n-1} K_{i,i+1} K_{n,0}^* \right), \quad \forall a \in B_{\Lambda_n}. \] (29)

5.2. Case $h_{11} \neq h_{22}$ and associate QMC
Assume that $h_{11} \neq h_{22}$, put $\theta = \exp(2\beta)$.
the equation (27) is reduced to
\[\left\{ \begin{array}{l}
\frac{h_{11}+h_{22}}{2} = \frac{1}{C_5}, \\
\frac{(h_{11}-h_{22})^2}{2} = \frac{C_3-C_1}{C_2 C_0^*}.
\end{array} \right. \] (30)

Lemma 5.2. Let
\[\Delta(\theta) = \frac{C_3-C_1}{C_2} = \frac{\theta^{2J_0} - \theta^{J_0}(\theta^J + \theta^{-J} - 3)}{\theta^{2J_0} - \theta^0(\theta^J + \theta^{-J} + 1)} \] (31)
Then for every $J \in \mathbb{R} \setminus \{-J_0, J_0\}$, there exists θ_0 (depend on J) such that $\Delta(\theta) > 0$, whenever $\theta \geq \theta_0$.
In the sequel let be fixed $J \in \mathbb{R} \setminus \{-J_0, J_0\}$.

Proposition 5.3. Assume that $\Delta(\theta) > 0$. Then the equation (27) has two solutions given by:
\[h = \xi_0 \mathbf{1} + \xi_3 \sigma, \] (32)
\[h' = \xi_0 \mathbf{1} - \xi_3 \sigma, \] (33)
where
\[\xi_0 = \frac{1}{C_3}, \quad \xi_3 = \frac{\Delta(\theta)}{C_3} = \frac{2\sqrt{\Delta(\theta)}}{\theta^{2J_0} - 1} \] (34)
From (14) we find that $\omega_0 = \frac{1}{\xi_3} \mathbf{1} \in B^+$. Therefore, the pairs $(\omega_0, \{h^u = h, \ u \in L\})$ and $(\omega_0, \{h^u = h', \ u \in L\})$ define two solutions of (14), (15). Hence, they define two QMC φ_1 and φ_2, respectively. Namely, for every $a \in B_{\Lambda_n}$ one has
\[\varphi_1(a) = \text{Tr}(\omega_0 K_{[0,1]} \cdots K_{[n-1,n]} h_n K_{[n-1,n]}^* \cdots K_{[0,1]}^*) \] (35)
\[\varphi_2(a) = \text{Tr}(\omega_0 K_{[0,1]} \cdots K_{[n-1,n]} h_n K_{[n-1,n]}^* \cdots K_{[0,1]}^* a). \] (36)
Hence, we have the following

Theorem 5.4. The following statements hold:
(i) if $\Delta(\theta) \leq 0$, then there is a unique translation invariant QMC φ_0;
(ii) if $\Delta(\theta) > 0$, then there are at least three translation invariant QMC φ_{α}, φ_1 and φ_2.

6. References

[1] Accardi L 1975 Funct. Anal. Appl., 9 1–8
[2] Accardi L and Cecchini C 1982 J. Funct. Anal. 45 245–273
[3] Accardi L and Fidaleo F 2005 Annali di Matematica Pur e Applicata, 184 327–346
[4] Accardi L and Fidaleo F 2003 Inf. Dim. Analysis, Quantum Probab. Related Topics 6 123–138
[5] Accardi L and Fidaleo F 2003 J. Funct. Anal. 200 324–347
[6] Accardi L and Fidaleo F 2003 In book: Proceedings Burg Conference 15–20 March 2001, W. Freudenberg (ed.) (Singapore: World Scientific) 1–20
[7] Accardi L, Fidaleo F and Mukhamedov F 2007 Inf. Dim. Analysis, Quantum Probab. Related Topics 10 165–183
[8] Accardi L and Liebscher V 1999 Infin. Dimens. Anal. Quantum Probab. Relat. Topics 2 645-661
[9] Accardi L, Mukhamedov F and Saburov M 2011 Ann. Henri Poincare 12 1109–1144
[10] Accardi L, Mukhamedov F and Saburov M 2014 J. Stat. Phys. 157 303-329
[11] Accardi L, Mukhamedov F and Souissi A 2016 J. Phys.: Conf. Ser. 697 012018.
[12] Accardi L, Mukhamedov F and Souissi A 2016 Adv. Oper. Theory 1 206–218
[13] Accardi L, Ohno H and Mukhamedov F 2010 Inf. Dim. Analysis, Quantum Probab. Related Topics 13 165–189
[14] Affleck L, Kennedy E, Lieb E H and Tasaki H 1988 Commun. Math. Phys. 115 477–528
[15] Dobrushin R L 1968 Probab. Theory Appl. 13 201–229
[16] Fannes M, Nachtergaele B and Werner R F 1992 J. Stat. Phys. 66 939–973
[17] Fannes M, Nachtergaele B and Werner R F 1992 Commun. Math. Phys. 144 443–490
[18] Georgi H-O 1988 Gibbs measures and phase transitions (Berlin: Walter de Gruyter)
[19] Liebscher V 2003 In book: Proceedings Burg Conference 15–20 March 2001, W. Freudenberg (ed.) (Singapore: World Scientific) 151–159
[20] Mukhamedov F M 2000 Theor. Math. Phys. 123 489–493
[21] Mukhamedov F M 2004 Rep. Math. Phys. 53 1–18
[22] Mukhamedov F, Barhoumi A and Souissi A 2016 Math. Phys. Anal. Geom. 19 21
[23] Mukhamedov F, Barhoumi A and Souissi A 2016 J. Stat. Phys. 163 544–567
[24] Mukhamedov F M and Rozikov U A 2004 J. Stat. Phys. 114 825–848
[25] Mukhamedov F M and Rozikov U A 2005 J. Stat. Phys. 119 427–446
[26] Rozikov U A 2013 Gibbs measures on Cayley trees, (Singapore: World Scientific)