Some Rarita-Schwinger Type Operators

Charles F. Dunkl, Junxia Li, John Ryan and Peter Van Lancker

Abstract

In this paper we study a generalization of the classical Rarita-Schwinger type operators and construct their fundamental solutions. We give some basic integral formulas related to these operators. We also establish that the projection operators appearing in the Rarita-Schwinger operators and the Rarita-Schwinger equations are conformally invariant. We further obtain the intertwining operators for other operators related to the Rarita-Schwinger operators under actions of the conformal group.

Keywords: Clifford algebra, Almansi-Fischer decomposition, conformal transformations, inner product.

Classification: Primary 30G35; Secondary 53C27

1 Introduction

In representation theory for $O(n)$ and $SO(n)$, one considers functions $f : U \to \mathcal{H}_k$ where U is a domain in \mathbb{R}^n and \mathcal{H}_k is the space of harmonic polynomials homogeneous of degree k. Such spaces are invariant under actions of $O(n)$. If one refines to the covering group $Spin(n)$ of $SO(n)$, one replaces spaces of harmonic polynomials with spaces of homogeneous polynomial solutions to the Euclidean Dirac equation arising in Clifford analysis. See [BDS]. Clifford analysis is the study of and applications of Dirac type operators. In this context the Rarita-Schwinger operators arise. See [BSSV1] [BSSV2] [Va1] [Va2] [LRV1] [LRV2] [LR]. The Rarita-Schwinger operators are generalizations of the Dirac operator which in turn is a natural generalization of the Cauchy-Riemann operator. Rarita-Schwinger operators are also known as Stein-Weiss operators after [SW]. We denote a Rarita-Schwinger operator by R_k, where $k = 0, 1, \cdots, m, \cdots$. When $k = 0$ we have the Dirac operator.

Here we start by constructing the Rarita-Schwinger operators and their fundamental solutions. This is based on the fundamental solution of the Dirac operator. Next, we give a summary of results on Rarita-Schwinger operators appearing in [BSSV1], giving detailed proofs and extending some of those results. We present a more detailed and alternative approach to that given in [BSSV1]. This includes a Stokes’ Theorem, Borel-Pompeiu Formula, Cauchy’s Integral Formula and a Cauchy Transform. We also obtain intertwining operator for R_k under actions of the conformal group, together with intertwining operators for the kernels to the Rarita-Schwinger operators, and the conformal invariance of Cauchy’s Theorem and Cauchy’s Integral Formula.
All of this ultimately helps to build the basics of Rarita-Schwinger type operators, including a theory of Rarita-Schwinger operators on examples of conformally flat manifolds. See for instance [LRV1, LRV2, LR].

2 Preliminaries

A Clifford algebra, Cl_n, can be generated from \mathbb{R}^n by considering the relationship

$$x^2 = -\|x\|^2$$

for each $x \in \mathbb{R}^n$. We have $\mathbb{R}^n \subseteq Cl_n$. If e_1, \ldots, e_n is an orthonormal basis for \mathbb{R}^n, then $x^2 = -\|x\|^2$ tells us that $e_ie_j + e_je_i = -2\delta_{ij}$. Let $A = \{j_1, \ldots, j_r\} \subseteq \{1, 2, \ldots, n\}$ and $1 \leq j_1 < j_2 < \cdots < j_r \leq n$. An arbitrary element of the basis of the Clifford algebra can be written as $e_{j_1} \cdots e_{j_r}$. Hence for any element $a \in Cl_n$, we have $a = \sum_A a_A e_A$, where $a_A \in \mathbb{R}$. For $a \in Cl_n$, we will need the following anti-involutions:

- **Reversion:**
 $$\tilde{a} = \sum_A (-1)^{|A|(|A|-1)/2} a_A e_A,$$
 where $|A|$ is the cardinality of A. In particular, $e_{j_1} \cdots e_{j_r} = e_{j_r} \cdots e_{j_1}$. Also $\tilde{ab} = \tilde{b}\tilde{a}$ for $a, b \in Cl_n$.

- **Clifford conjugation:**
 $$\bar{a} = \sum_A (-1)^{|A|(|A|+1)/2} a_A e_A$$
 satisfying $\overline{e_{j_1} \cdots e_{j_r}} = (-1)^r e_{j_r} \cdots e_{j_1}$ and $\overline{ab} = \overline{b}\overline{a}$ for $a, b \in Cl_n$.

For each $a = a_0 + \cdots + a_1 \cdots e_1 \cdots e_n \in Cl_n$ the scalar part of $\bar{a}a$ gives the square of the norm of a, namely $a_0^2 + \cdots + a_i^2$. The Pin and Spin groups play an important role in Clifford analysis. The Pin group can be defined as

$$Pin(n) := \{a \in Cl_n : a = y_1 \cdots y_p : y_1, \ldots, y_p \in S^{n-1}, p \in \mathbb{N}\}$$

and is clearly a group under multiplication in Cl_n.

Now suppose that $y \in S^{n-1} \subseteq \mathbb{R}^n$. Look at $yxy = yx^\parallel y + yx^\perp y = -x^\parallel y + x^\perp y$ where $x^\parallel y$ is the projection of x onto y and $x^\perp y$ is perpendicular to y. So yxy gives a reflection of x in the y direction. By the Cartan–Dieudonné Theorem each $O \in O(n)$ is the composition of a finite number of reflections. If $a = y_1 \cdots y_p \in Cl_n$, then

$$Oa = \tilde{a} = \tilde{y_1} \cdots \tilde{y_p} \circ \cdots \circ \tilde{y_p} \circ \cdots \circ \tilde{y_1}$$
\(Pin(n)\), then \(\tilde{a} := y_p \ldots y_1\) and \(ax\tilde{a} = O_a(x)\) for some \(O_a \in O(n)\). Choosing \(y_1, \ldots, y_p\) arbitrarily in \(S^{n-1}\), we see that the group homomorphism
\[
\theta : Pin(n) \rightarrow O(n) : a \mapsto O_a
\]
with \(a = y_1 \ldots y_p\) and \(O_a(x) = ax\tilde{a}\) is surjective. Further \(-ax(-\tilde{a}) = ax\tilde{a}\), so \(1, -1 \in \ker(\theta)\). In fact \(\ker(\theta) = \{\pm 1\}\). The Spin group is defined as
\[
Spin(n) := \{a \in Pin(n) : a = y_1 \ldots y_p \text{ and } p \text{ even}\}
\]
and is a subgroup of \(Pin(n)\). There is a group homomorphism
\[
\theta : Spin(n) \rightarrow SO(n)
\]
which is surjective with kernel \(\{1, -1\}\). See [P] for details.

The Dirac Operator in \(\mathbb{R}^n\) is defined to be
\[
D := \sum_{j=1}^n e_j \frac{\partial}{\partial x_j}.
\]
Note \(D^2 = -\Delta_n\), where \(\Delta_n\) is the Laplacian in \(\mathbb{R}^n\).

Let \(\mathcal{M}_k\) denote the space of \(Cl_n\)-valued polynomials, homogeneous of degree \(k\) and such that if \(p_k \in \mathcal{M}_k\) then \(Dp_k = 0\). Such a polynomial is called a left monogenic polynomial homogeneous of degree \(k\). Note if \(h_k \in \mathcal{H}_k\), the space of \(Cl_n\)-valued harmonic polynomials homogeneous of degree \(k\), then \(Dh_k \in \mathcal{M}_{k-1}\).

But \(D(p_k - 1)(u) = (-n - 2k + 2)p_k(u)\), so
\[
\mathcal{H}_k = \mathcal{M}_k \bigoplus u\mathcal{M}_{k-1}, h_k = p_k + up_{k-1}.
\]
This is the so-called Almansi-Fischer decomposition of \(\mathcal{H}_k\). See [BDS], [R2].

Note that if \(Df(u) = 0\) then \(\tilde{f}(u)\tilde{D} = -\tilde{f}(u)D = 0\). So we can talk of right monogenic polynomials, homogeneous of degree \(k\) and we obtain by conjugation a right Almansi-Fischer decomposition,
\[
\mathcal{H}_k = \overline{\mathcal{M}_k} \bigoplus \overline{\mathcal{M}_{k-1}}u,
\]
where \(\overline{\mathcal{M}_k}\) stands for the space of right monogenic polynomials homogeneous of degree \(k\).

3 The Rarita-Schwinger Operator \(R_k\)

Suppose \(U\) is a domain in \(\mathbb{R}^n\). Consider a function of two variables
\[
f : U \times \mathbb{R}^n \rightarrow Cl_n
\]
such that for each \(x \in U, f(x, u) \) is a left monogenic polynomial homogeneous of degree \(k \) in \(u \). Consider the action of the Dirac operator:

\[
D_x f(x, u).
\]

As \(\text{Cl}_n \) is not commutative then \(D_x f(x, u) \) is no longer monogenic in \(u \) but it is still harmonic and homogeneous of degree \(k \) in \(u \). So by the Almansi-Fischer decomposition, \(D_x f(x, u) = f_{1,k}(x, u) + u f_{2,k-1}(x, u) \) where \(f_{1,k}(x, u) \) is a left monogenic polynomial homogeneous of degree \(k \) in \(u \) and \(f_{2,k-1}(x, u) \) is a left monogenic polynomial homogeneous of degree \(k - 1 \) in \(u \). Let \(P_k \) be the left projection map

\[
P_k : \mathcal{H}_k \rightarrow \mathcal{M}_k,
\]

then \(R_k f(x, u) \) is defined to be \(P_k D_x f(x, u) \). The left Rarita-Schwinger equation is defined to be (see [BSSVI])

\[
R_k f(x, u) = 0.
\]

We also have a right projection \(P_{k,r} : \mathcal{H}_k \rightarrow \overline{\mathcal{M}}_k \), and a right Rarita-Schwinger equation \(f(x, u) D_x P_{k,r} = f(x, u) R_k = 0 \). Since

\[
D_x f(x, u) = p_k(x, u) + u p_{k-1}(x, u) \quad \text{and} \quad D_u u p_{k-1}(x, u) = -(n + 2k - 2) p_{k-1}(x, u),
\]

we have \(u p_{k-1}(x, u) = -\frac{1}{n + 2k - 2} u D_u D_x f(x, u) \). Thus \((1 - P_k) D_x f(x, u) = u p_{k-1}(x, u) = -\frac{1}{n + 2k - 2} u D_u D_x f(x, u) \). Hence

\[
P_k D_x f(x, u) = \frac{1}{n + 2k - 2} u D_u D_x f(x, u) + D_x f(x, u) = \left(\frac{u D_u}{n + 2k - 2} + 1 \right) D_x f(x, u).
\]

So we obtain that \(P_k = \left(\frac{u D_u}{n + 2k - 2} + 1 \right) \) and \(R_k = \left(\frac{u D_u}{n + 2k - 2} + 1 \right) D_x \). See [BSSVI].

It is crucial to ask if there are any non-trivial solutions to this equation. First for any \(k \)-monogenic polynomial \(p_k(u) \) we have trivially \(R_k p_k(u) = 0 \). In particular the reproducing kernel of \(\mathcal{M}_k \) is annihilated by \(R_k \). We now produce a representation of this reproducing kernel. Consider the fundamental solution \(G(u) = \frac{1}{\omega_n \| u \|^n} \) to the Dirac operator \(D \), where \(\omega_n \) is the surface area of the unit sphere, \(\mathbb{S}^{n-1} \).

Consider the Taylor series expansion of \(G(v - u) \) and restrict to the \(k \)th order terms in \(u_1, \ldots, u_n \) \((u = u_1 e_1 + \ldots + u_n e_n) \). These terms have as vector valued coefficients

\[
\frac{\partial^k}{\partial v_1^{k_1} \ldots \partial v_n^{k_n}} G(v) \quad (k_1 + \ldots + k_n = k).
\]
As $G(v)$ is a solution to the Dirac equation, $DG(v) = \sum_{i=1}^{n} e_j \frac{\partial G(v)}{\partial v_j} = 0$, we can replace $\frac{\partial}{\partial v_1}$ by $-\sum_{j=2}^{n} e_j \frac{\partial}{\partial v_j}$. Doing this each time $\frac{\partial}{\partial v_1}$ occurs and collecting like terms we obtain a finite series of polynomials homogeneous of degree k in u

$$\sum_{\sigma} P_{\sigma}(u) V_{\sigma}(v)$$

where the summation is taken over all permutations of monogenic polynomials $(u_2 - u_1 e_1^{-1} e_2), \ldots, (u_n - u_1 e_1^{-1} e_n)$, each term in the summation contains j_2 copies of $(u_2 - u_1 e_1^{-1} e_2), \ldots, j_n$ copies of $(u_n - u_1 e_1^{-1} e_n)$, and

$$P_{\sigma}(u) = \frac{1}{k!} \Sigma (u_{i_1} - u_1 e_1^{-1} e_{i_1}) \ldots (u_{i_k} - u_1 e_1^{-1} e_{i_k}), V_{\sigma}(v) = \frac{\partial^k G(v)}{\partial v_2^{j_2} \ldots \partial v_n^{j_n}}$$

$j_2 + \ldots + j_n = k$, and $i_k \in \{2, \ldots, n\}$. Here summation is taken over all permutations of the monomials without repetition. See [BDS]. Note that this series is the sum of the k-th order terms in the Taylor expansion of $G(v - u)$ and consequently it is a vector.

Now $\int_{S^{n-1}} V_{\sigma}(u) u P_{\mu}(u) dS(u) = \delta_{\sigma,\mu}$ where $\delta_{\sigma,\mu}$ is the Kronecker delta and μ is a set of $n - 1$ non-negative integers summing to k. See [BDS]. Following [BDS] it can be seen that the polynomial P_{σ} is left monogenic and the set of all such polynomials, homogeneous of degree k, forms a basis for the right Cl_n module \mathcal{M}_k. Consequently, the expression

$$Z_k(u, v) := \sum_{\sigma} P_{\sigma}(u) V_{\sigma}(v) v$$

is the reproducing kernel of \mathcal{M}_k with respect to integration over S^{n-1} (see [BDS]). Further as $Z_k(u, v)$ does not depend on x,

$$R_k Z_k = 0.$$

Note that $V_{\sigma}(v) v$ on S^{n-1} extends to $V_{\sigma}(-v^{-1}) G(v)$ on \mathbb{R}^n and this function is a right monogenic polynomial in v and it is homogeneous of degree k. See [BDS] and elsewhere.

We may ask if there are any solutions to $R_k f = 0$ that depend on x. To do this we look at the interaction of the operator R_k with conformal transformations.

4 Conformal transformations

We first establish the invariance properties of the projection operator P_k.

4.1 Conformal invariance of the projection P_k

Let $P_{k,w}$ and $P_{k,u}$ be the projections with respect to w and u respectively.

4.1.1 Orthogonal transformations

Let $x = ay_\bar{a}$, and $u = aw_\bar{a}$.

Lemma 1. \[P_{k,w}a f(ay_\bar{a}, aw_\bar{a}) = a P_{k,u} f(x, u), \text{ where } a \in \text{Pin}(n). \]

Proof Let $f(x, u) = f_1(x, u) + u f_2(x, u)$, where $f_1(x, u)$ and $f_2(x, u)$ are monogenic polynomials homogeneous of degree k and $k - 1$ in u. So $P_{k,u} f(x, u) = f_1(x, u) = f_1(ay_\bar{a}, aw_\bar{a})$ and $a f(ay_\bar{a}, aw_\bar{a}) = a f_1(ay_\bar{a}, aw_\bar{a}) + a aw_\bar{a} f_2(ay_\bar{a}, aw_\bar{a}) = a f_1(ay_\bar{a}, aw_\bar{a}) + w a f_2(ay_\bar{a}, aw_\bar{a})$.

Further as $a f_1(ay_\bar{a}, aw_\bar{a})$ and $a f_2(ay_\bar{a}, aw_\bar{a})$ are monogenic polynomials homogeneous of degree k and $k - 1$ in w respectively, we have $P_{k,w} a f(ay_\bar{a}, aw_\bar{a}) = a f_1(ay_\bar{a}, aw_\bar{a}) = a P_{k,u} f(x, u).$ \blacksquare

4.1.2 Inversion

Let $x = y^{-1}, u = \frac{y w y}{\|y\|^2}$.

Lemma 2. \[P_{k,w} \frac{y}{\|y\|^n} f(y^{-1}, \frac{y w y}{\|y\|^2}) = \frac{y}{\|y\|^n} P_{k,u} f(x, u). \]

Proof Since $f(x, u) = f_1(x, u) + u f_2(x, u)$, by substitution we have

$$f(y^{-1}, \frac{y w y}{\|y\|^2}) = f_1(y^{-1}, \frac{y w y}{\|y\|^2}) + \frac{y w y}{\|y\|^2} f_2(y^{-1}, \frac{y w y}{\|y\|^2}).$$

Now multiplying both sides of the above equation by $\frac{y}{\|y\|^n}$, one gets

$$\frac{y}{\|y\|^n} f(y^{-1}, \frac{y w y}{\|y\|^2}) = \frac{y}{\|y\|^n} f_1(y^{-1}, \frac{y w y}{\|y\|^2}) + \frac{y w y}{\|y\|^n \|y\|^2} f_2(y^{-1}, \frac{y w y}{\|y\|^2})$$

$$= \frac{y}{\|y\|^n} f_1(y^{-1}, \frac{y w y}{\|y\|^2}) - w \frac{y}{\|y\|^n} f_2(y^{-1}, \frac{y w y}{\|y\|^2}).$$

Now Let $P_{k,w}$ act on the previous equation. We have

$$P_{k,w} \frac{y}{\|y\|^n} f(y^{-1}, \frac{y w y}{\|y\|^2}) = \frac{y}{\|y\|^n} f_1(y^{-1}, \frac{y w y}{\|y\|^2}) = \frac{y}{\|y\|^n} f_1(x, u) = \frac{y}{\|y\|^n} P_{k,u} f(x, u),$$

which follows from the facts that $\frac{y}{\|y\|^n} f_1(y^{-1}, \frac{y w y}{\|y\|^2})$ and $\frac{y}{\|y\|^n} f_2(y^{-1}, \frac{y w y}{\|y\|^2})$ are monogenic and homogeneous of degree k and $k - 1$ in w. \blacksquare
4.1.3 Translations

Let \(x = y + a, a \in \mathbb{R}^n \). In order to keep the homogeneity of \(f(x, u) \) in \(u \), \(u \) does not change under translation. So we have

Lemma 3. \(P_k f(x, u) = P_k f(y + a, u) \), where \(x = y + a \).

4.1.4 Dilations

Let \(x = \lambda y \), where \(\lambda \in \mathbb{R}^+ \). It is obvious to observe that \(P_k \) is invariant under dilation.

Lemma 4. \(P_k f(x, u) = P_k f(\lambda y, u) \), where \(x = \lambda y \).

Hence \(P_k \) is conformally invariant.

Ahlfors [A] and Vahlen [V] show that given a Möbius transformation \(y = \phi(x) \) on \(\mathbb{R}^n \cup \{\infty\} \) it can be expressed as \(y = (ax + b)(cx + d)^{-1} \) where \(a, b, c, d \in Cl_n \) and satisfy the following conditions:

i. \(a, b, c, d \) are all products of vectors in \(\mathbb{R}^n \).

ii. \(ab, cd, bc, da \in \mathbb{R}^n \).

iii. \(a \bar{d} - b \bar{c} = \pm 1 \).

When \(c = 0 \), \(\phi(x) = (ax + b)(cx + d)^{-1} = axd^{-1} + bd^{-1} = \pm ax\bar{a} + bd^{-1} \). Now assume \(c \neq 0 \), then \(\phi(x) = (ax + b)(cx + d)^{-1} = ace^{-1} \pm (cx\bar{c} + d\bar{c})^{-1} \), this is the so-called Iwasawa decomposition. Using this notation and the conformal weights, \(f(\phi(x)) \) is changed to \(J(\phi, x)f(\phi(x)) \), where \(J(\phi, x) = \frac{cx + d}{\|cx + d\|^n} \). Note when \(\phi(x) = x + a \) then \(J(\phi, x) \equiv 1 \). Now using the Iwasawa decomposition, we get the following result:

Theorem 1. \(P_{k,w} J(\phi, x)f(\phi(x), \frac{(cx + d)w(cx + d)}{\|cx + d\|^2}) = J(\phi, x)P_{k,u} f(\phi(x), u) \), where \(u = \frac{(cx + d)w(cx + d)}{\|cx + d\|^2} \) and where \(P_{k,w} \) and \(P_{k,u} \) are the projections with respect to \(w \) and \(u \) respectively.

Note that if the Möbius transformation is either translation or dilation then \(u = w \). This explains why in Lemma 4 the term \(u \) is not multiplied by \(\lambda \).

Lemmas 1 and 2 and Theorem 1 establish intertwining relationships for the projection operator, \(P_k \), under actions of the conformal group.
4.2 Conformal invariance of the Rarita-Schwinger operator R_k

Now let us establish the intertwining operators for R_k and the conformal invariance of the equation $R_k f = 0$. Let $R_{k,u}$ and $R_{k,w}$ be the Rarita-Schwinger operators with respect to u and w respectively.

We will need the following. If we have the Möbius transformation $y = \phi(x)$ and D_x is the Dirac operator with respect to x and D_y is the Dirac operator with respect to y then $D_x = J_{-1}(\phi, x)^{-1}D_y J_1(\phi, x)$, where $J_{-1}(\phi, x) = \frac{cx + d}{\|cx + d\|^{n+2}}$ and $J_1(\phi, x) = J(\phi, x) = \frac{cx + d}{\|cx + d\|^n}$. See [R1].

4.2.1 Orthogonal transformations $O \in O(n), a \in Pin(n)$

Theorem 2. If $x = ay\bar{a}$, $u = aw\bar{a}$, then $aR_{k,u} f(x, u) = R_{k,w} \bar{a} f(ay\bar{a}, aw\bar{a})$.

Proof

$$R_{k,u} f(x, u) = P_{k,u} D_x f(x, u) = P_{k,u} a^{-1} D_y \bar{a} f(ay\bar{a}, u)$$

Therefore, by Lemma 1

$$aP_{k,u} a^{-1} D_y \bar{a} f(ay\bar{a}, u) = P_{k,w} a a^{-1} D_y \bar{a} f(ay\bar{a}, aw\bar{a}) = R_{k,w} \bar{a} f(ay\bar{a}, aw\bar{a}) . \ $$

In fact, Theorem 2 tells us that if $R_k f(x, u) = 0$ then $R_k \bar{a} f(ay\bar{a}, aw\bar{a}) = 0$.

4.2.2 Inversion

Let $x = y^{-1}, (=\frac{-y}{\|y\|^2})$.

Theorem 3. Set $u = \frac{yw y}{\|y\|^2}$, then $\frac{y}{\|y\|^n+2} R_{k,u} f(x, u) = R_{k,w} G(y) f(y^{-1}, \frac{yw y}{\|y\|^2})$.

Proof

$$R_{k,u} f(x, u) = P_{k,u} D_x f(x, u) = P_{k,u} G_{-1}(y)^{-1} D_y G(y) f(y^{-1}, u),$$

where $G_{-1}(y) = y\|y\|^n$.

Therefore by Lemma 2,

$$G_{-1}(y) P_{k,u} G_{-1}(y)^{-1} D_y G(y) f(y^{-1}, u)$$

$$= P_{k,w} G_{-1}(y) G_{-1}(y)^{-1} D_y G(y) f(y^{-1}, \frac{yw y}{\|y\|^2}) = R_{k,w} G(y) f(y^{-1}, \frac{yw y}{\|y\|^2}). \ $$

Consequently, if $R_k f(x, u) = 0$, then $R_k G(y) f(y^{-1}, \frac{yw y}{\|y\|^2}) = 0$.

8
4.2.3 Dilations

Let $x = \lambda y, \lambda \in \mathbb{R}^+$. $R_k f(x, u) = R_k f(\lambda y, u)$ and if $R_k f(x, u) = 0$ then $R_k f(\lambda y, u) = 0$.

4.2.4 Translations

Let $x = y + a, a \in \mathbb{R}^n$. In order to preserve homogeneity of polynomials in u, $f(x, u)$ is transformed under a translation by a to $f(y + a, u)$ (Note: otherwise the action of the Vahlen matrices is not correct). So $R_k f(x, u) = 0$ implies $R_k f(y + a, u) = 0$, where $x = y + a$.

Now using the Iwasawa decomposition of $(ax + b)(cx + d)^{-1}$, we obtain intertwining operators for R_k:

Theorem 4.

$$R_{k,x,w} J_1(\phi, x) \psi(\phi(x), \frac{(cx + d)w(cx + d)}{\|cx + d\|^2}) = J_{-1}(\phi, x) R_{k,y,u} \psi(y, u),$$

where $y = \phi(x)$, $u = \frac{(cx + d)w(cx + d)}{\|cx + d\|^2}$, $R_{k,x,w} = P_{k,w} D_x$ and $R_{k,y,u} = P_{k,u} D_y$.

Consequently, we obtain that $R_k f(x, u) = 0$ implies

$$R_k J(\phi, x) f(\phi(x), \frac{(cx + d)w(cx + d)}{\|cx + d\|^2}) = 0,$$

where $u = \frac{(cx + d)w(cx + d)}{\|cx + d\|^2}$. For this last formula see also [BSSV1].

5 A Kernel for R_k and Some Basic Integral Formulas

Now applying inversion from the left we obtain that if $R_k Z_k(u, v) = 0$ then $R_k G(x) Z_k(\frac{ux}{\|x\|^2}, v) = 0$. That is,

$$F_k(x, u, v) = \frac{x}{\|x\|^n} Z_k(\frac{ux}{\|x\|^2}, v) = \frac{x}{\|x\|^{n+2k}} Z_k(xux, v)$$

is a non-trivial solution to $R_k f(x, u) = 0$ on $\mathbb{R}^n \setminus \{0\}$. Note that this function is monogenic in u.

Similarly, applying inversion from the right we obtain that

\[Z_k(u, \frac{xvx}{\|x\|^2}) \frac{x}{\|x\|^n} = Z_k(u, xvx) \frac{x}{\|x\|^n + 2k} \]

is a non-trivial solution to \(f(x, v)R_k = 0 \) on \(\mathbb{R}^n \setminus \{0\} \). In fact, \([\text{BSSV1}]\), this function is \(F_k(x, u, v) \), and, up to a constant, \(F_k(x, u, v) \) is the fundamental solution of \(R_k \). One proof of this statement is given in the following. Let \(M_k \) denote the space of left monogenic polynomials homogeneous of degree \(k \) and suppose \(a \in \text{Pin}(n) \), then

\[l_\tilde{a} : M_k \rightarrow M_k : f(u) \rightarrow \tilde{a}f(au) \]

is an isomorphism. Similarly, let \(\overline{M}_k \) denote the space of right monogenic polynomials homogeneous of degree \(k \) then

\[r_\tilde{a} : \overline{M}_k \rightarrow \overline{M}_k : f(u) \rightarrow f(au) \tilde{a} \]

is also an isomorphism. Using these isomorphisms it may be seen that for each \(a \in \text{Pin}(n) \) then \(\pm \tilde{a}Z_k(au, av) \tilde{a} \) is also the reproducing kernel for \(M_k \). We choose the plus sign when \(a \in \text{Spin}(n) \) and the minus sign when \(a \in \text{Pin}(n) \setminus \text{Spin}(n) \). Now consider a non-zero vector \(x \in \mathbb{R}^n \), then \(\frac{x}{\|x\|} \in \text{Pin}(n) \). So we have

\[Z_k(u, v) = -\frac{x}{\|x\|}Z_k(\frac{xux}{\|x\|^2}, \frac{xvx}{\|x\|^2}) \frac{x}{\|x\|} \]

that is,

\[-\frac{x}{\|x\|}Z_k(\frac{xux}{\|x\|^2}, \frac{xvx}{\|x\|^2}) \frac{x}{\|x\|} \]

is also the reproducing kernel for \(M_k \). Now we look at the fundamental solution of \(R_k \) which has the representation \(Z_k(u, \frac{xvx}{\|x\|^2}) \frac{x}{\|x\|^n} \).

Then using the previous equality, we get

\[Z_k(u, \frac{xvx}{\|x\|^2}) \frac{x}{\|x\|^n} = -\frac{x}{\|x\|}Z_k(\frac{xux}{\|x\|^2}, \frac{xvx}{\|x\|^2}) \frac{x}{\|x\|} \frac{x}{\|x\|^n} = -\frac{x}{\|x\|^n}Z_k(\frac{xux}{\|x\|^2}, v) \]

Further suppose \(\mu \) is a \(Cl_n \) valued measure on \(\mathbb{R}^n \) with compact support, \([\mu] \). It follows for suitable choices of \(\mu \) the integral \(\int_{[\mu]} F_k(x, u, v)d\mu \) defines a solution to \(R_kf = 0 \) on \((\mathbb{R}^n \setminus [\mu]) \times \mathbb{R}^n \).

5.1 Stokes’ Theorem

We first build Stokes’ Theorem for the Rarita-Schwinger operator. This is based on Stokes’ Theorem for the Dirac operator.

Theorem 5. *(Stokes’ Theorem for the Dirac operator, [BDS]*)

Let \(\Omega \) and \(\Omega' \) be domains in \(\mathbb{R}^n \) and suppose the closure of \(\Omega \) lies in \(\Omega' \). Further
suppose the closure of Ω is compact and $\partial \Omega$ is piecewise smooth. Let $f,g \in C^1(\Omega', Cl_n)$. Then
\[
\int_{\partial \Omega} g(x,u) d\sigma_x f(x,u) = \int_{\Omega} [(g(x,u)D_x f(x,u) + g(x,u)(D_x f(x,u))] dx^n,
\]
where $dx^n = dx_1 \wedge \cdots \wedge dx_n$, $d\sigma_x = n(x) d\sigma(x)$, σ is scalar Lebesgue measure on $\partial \Omega$ and $n(x)$ is unit outer normal vector to $\partial \Omega$. We may write $n(x)$ as $\sum_{i=1}^n n_i(x)e_i$, where $n_i(x)$ are scalar-valued functions.

$g(x,u)D_x$ means D_x acts from the right on $g(u,x)$.

Definition 1. For any Cl_n-valued polynomials $P(u), Q(u)$, the inner product $(P(u), Q(u))_u$ with respect to u is given by
\[
(P(u), Q(u))_u = \int_{S^{n-1}} P(u)Q(u) dS(u).
\]

This inner product differs slightly from the Fischer inner product in [BSSV1]. There the inner product is $\int_{S^{n-1}} R(u)Q(u) dS(u)$ for a Cl_n valued polynomial $R(u)$. If we place $R(u) = \overline{P(u)}$ we see that, as the conjugation $-$ is an isomorphism, the two inner products are equivalent. For any $p_k \in M_k$, one obtains (see [BDS])
\[
p_k(u) = (Z_k(u,v), p_k(v))_v = \int_{S^{n-1}} Z_k(u,v)p_k(v) dS(v).
\]

Using Stokes’ Theorem for the Dirac operator, we can obtain the basic formulas related to the Rarita-Schwinger operators.

Lemma 5. Suppose p_k is a left monogenic polynomial homogeneous of degree k and p_{k-1} is a left monogenic polynomial homogeneous of degree $k-1$ then
\[
\int_{S^{n-1}} \tilde{p}_{k-1}(u)up_k(u) dS(u) = 0.
\]

Outline Proof: As we are integrating over the unit sphere the previous integral can be written as
\[
\int_{S^{n-1}} \tilde{p}_{k-1}(u)n(u)p_k(u) dS(u).
\]
By the Clifford-Cauchy Theorem [BDS] this integral vanishes. □

We now have
Theorem 6. (Rarita-Schwinger Stokes’ Theorem) [BSSV1] Let \(\Omega' \) and \(\Omega \) be as in Theorem 5. Then for \(f, g \in C^1(\Omega', \mathcal{M}_k) \), we have

\[
\int_{\partial \Omega} (g(x,u)d\sigma_x f(x,u))_u = \int_{\Omega} (g(x,u)R_k, f(x,u))_u dx^n + \int_{\Omega} (g(x,u), R_k f(x,u))_u dx^n.
\]

Further

\[
\int_{\partial \Omega} (g(x,u)d\sigma_x f(x,u))_u = \int_{\partial \Omega} (g(x,u), P_k d\sigma_x f(x,u))_u
\]

\[
= \int_{\partial \Omega} (g(x,u) d\sigma_x P_k, f(x,u))_u.
\]

Outline Proof: The first identity is obtained by first applying Stokes’ Theorem to the integral \(\int_{\partial \Omega} (g(x,u)d\sigma_x f(x,u))_u \) to obtain

\[
\int_{\Omega} (g(x,u)D, f(x,u))_u + (g(x,u), Df(x,u))_u dx^n.
\]

Both \(g(x,u)D \) and \(Df(x,u) \) have an Almansi-Fischer decomposition with respect to \(u \). So applying Lemma 5 with respect to \(u \) and Definition 1 and these Almansi-Fischer decompositions give the result.

The second collection of identities again arise by applying the Almansi-Fischer decomposition \(d\sigma_x f(x,u) \) and \(g(x,u)d\sigma_x \) respectively, and then applying Definition 1 and Lemma 5 with respect to \(u \).

Now if both \(f(x,u) \) and \(g(x,u) \) are solutions of \(R_k \), then we have the following result:

Corollary 1. (Cauchy’s Theorem)
If \(R_k f(x,u) = 0 \) and \(g(x,u)R_k = 0 \) for \(f, g \in C^1(\Omega', \mathcal{M}_k) \), then

\[
\int_{\partial \Omega} (g(x,u), P_k d\sigma_x f(x,u))_u = 0.
\]

Let \(S \) be a hypersurface in \(\mathbb{R}^n \) and \(y = \phi(x) = (ax + b)(cx + d)^{-1} \). Now look at Cauchy’s Theorem:

\[
0 = \int_S (g(y,u), P_k d\sigma_y f(y,u))_u = \int_S (g(y,u), P_k n(y)f(y,u))_u d\sigma(y)
\]

\[
= \int_{\phi^{-1}(S)} \left(g(\phi(x), u), P_k \bar{J} (\phi, x) n(x) J(\phi, x)f(\phi(x), u) \right)_u d\sigma(x)
\]

\[
= \int_{\phi^{-1}(S)} \int_{\mathbb{S}^{n-1}} g(\phi(x), u) P_k, w \bar{J} (\phi, x) n(x) J(\phi, x)f(\phi(x), u) dS(u) d\sigma(x).
\]
Set \(u = \frac{(cx + d)w(cx + d)}{\|cx + d\|^2} \), since \(P_{k,u} \) can interchange with \(\tilde{J}(\phi, x) \), the previous equation equals

\[
0 = \int_{\phi^{-1}(S)} g(\phi(x), \frac{(cx + d)w(cx + d)}{\|cx + d\|^2}) \tilde{J}(\phi, x) P_{k,u} n(x) J(\phi, x) f(\phi(x)),
\]

\[
\frac{(cx + d)w(cx + d)}{\|cx + d\|^2} dS(w) d\sigma(x)
\]

\[
= \int_{\phi^{-1}(S)} (g(\phi(x), \frac{(cx + d)w(cx + d)}{\|cx + d\|^2}) \tilde{J}(\phi, x), P_{k,u} d\sigma_x J(\phi, x)
\]

\[
f(\phi(x), \frac{(cx + d)w(cx + d)}{\|cx + d\|^2})) w.
\]

Therefore, Cauchy’s Theorem is conformally invariant under Möbius transformations.

We now wish to introduce the Borel-Pompeiu Theorem from [BSSV1]. First we will need:

Lemma 6. Suppose \(h_k : \mathbb{R}^n \rightarrow Cl_n \) is a harmonic polynomial homogeneous of degree \(k \) and \(n > 2 \). Suppose \(u \in S^{n-1} \) then

\[
\frac{1}{\omega_n} \int_{S^{n-1}} h_k(xux) dS(x) = c_k h_k(u),
\]

where \(c_k = \frac{n - 2}{n - 2 + 2k} \).

The proof follows from [DX] (Proposition 2.2.3 on page 34).

Proof Fix \(u \in S^{n-1} \), suppose \(h_k : \mathbb{R}^n \rightarrow Cl_n \) is a harmonic polynomial homogeneous of degree \(k \). Now compute

\[
I(h_k) = \frac{2}{\omega_n} \int_{(x,u) > 0} h_k(u - 2 \langle x, u \rangle x) dS(x),
\]

note \(xux = u - 2 \langle x, u \rangle x \) is the reflection of \(u \) in the mirror \(x^\perp \) (where \(\int_{(x,u) > 0} dS(x) = \frac{1}{2} \int_{S^{n-1}} dS(x) = \frac{\omega_n}{2} \), and \(\|x\| = 1 \)). Since \(xux = u - 2 \langle x, u \rangle x \) is invariant under \(x \rightarrow -x \) we have

\[
I(h_k) = \frac{1}{\omega_n} \int_{S^{n-1}} h_k(u - 2 \langle x, u \rangle x) dS(x).
\]
By rotation invariance assume \(u = (0, \cdots, 0, 1) \). Any harmonic homogeneous polynomial of degree \(k \) has an expression

\[
h_k(y) = \sum_{j=0}^{k} \|y\|^{k-j} P_{k-j}^{j+n/2-1} \left(\frac{y_n}{\|y\|} \right) h_{j}(y_1, \cdots, y_{n-1}),
\]

where \(h_j \) is harmonic and homogeneous of degree \(j \) and the normalized Gegenbauer polynomial is

\[
P_{m}^{\lambda}(t) = \sum_{i=0}^{m} \frac{(-m)_i (m+2\lambda)_i}{(\lambda + \frac{1}{2})_i i!} \left(\frac{1-t}{2} \right)^i.
\]

In the coordinate system \(y = (y' \sin \theta, \cos \theta) \) with \(0 \leq \theta \leq \pi \) and \(y' \in S^{n-2} \) the integral is

\[
\int_{S^{n-1}} h_k(y) dS(x) = c' \int_0^\pi \sin^{n-2} \theta d\theta \int_{S^{n-2}} h_k(y' \sin \theta, \cos \theta) dS_{n-2}(y').
\]

Set \(u = (0, \cdots, 0, 1) \) and \(x = (x' \sin \theta, \cos \theta) \) with \(x' \in S^{n-2} \), then

\[
u = 2 \langle x, u \rangle x = (-2x' \cos \theta \sin \theta, 1 - 2 \cos^2 \theta).
\]

Thus

\[
\int_{S^{n-1}} h_k(u-2 \langle x, u \rangle x) dS(x)
\]

\[
= \sum_{j=0}^{k} c' \int_0^\pi P_{k-j}^{j+n/2-1} (1 - 2 \cos^2 \theta) \sin^{n-2} \theta d\theta \int_{S^{n-2}} h_k(-2x' \cos \theta \sin \theta) dS_{n-2}(x')
\]

\[
= \sum_{j=0}^{k} c' \int_0^\pi P_{k-j}^{j+n/2-1} (1 - 2 \cos^2 \theta)(-2 \cos \theta \sin \theta)^j \sin^{n-2} \theta d\theta \int_{S^{n-2}} h_k(x') dS_{n-2}(x')
\]

\[
= h_{k_0} c' \int_0^\pi P_{k}^{n/2-1} (1 - 2 \cos^2 \theta) \sin^{n-2} \theta d\theta.
\]

The integrals equal zero for \(j > 0 \), by the orthogonality property of harmonics. Next set \(t = \cos \theta \) and \(dt = -\sin \theta d\theta \), then

\[
\int_0^\pi P_k^\lambda (1 - 2 \cos^2 \theta) \sin^{n-2} \theta d\theta = \int_{-1}^1 P_k^\lambda (1 - 2t^2)(1 - t^2)^{\lambda - \frac{1}{2}} dt
\]

\[
= \sum_{i=0}^{k} \frac{(-k)_i (k + 2\lambda)_i}{(\lambda + \frac{1}{2})_i i!} \int_{-1}^1 t^{2i} (1 - t^2)^{\lambda - \frac{1}{2}} dt
\]

\[
= \sum_{i=0}^{k} \frac{(-k)_i (k + 2\lambda)_i}{(\lambda + \frac{1}{2})_i i!} B(i + \frac{1}{2}, \lambda + \frac{1}{2})
\]

\[
= \frac{\Gamma(\frac{1}{2}) \Gamma(\lambda + \frac{1}{2})}{\Gamma(\lambda + 1)} \sum_{i=0}^{k} \frac{(-k)_i (k + 2\lambda)_i (\frac{1}{2})_i}{(\lambda + \frac{1}{2})_i i! (\lambda + 1)i}.
\]
The Saalschütz summation formula (for \(-k + a + b + 1 = c + d\)) is
\[
\binom{3F_2}{-k, a, b; c, d; 1} = \frac{(c - a)_k(d - a)_k}{(c)_k(d)_k}.
\]

\[
\int_0^{\pi} P_k^\lambda(1 - 2\cos^2 \theta) \sin^{n-2} \theta d\theta = \frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{\lambda + \frac{1}{2}}{2}\right)}{\Gamma(\lambda + 1)} \frac{(\lambda)_k(\lambda + 1)_k}{\Gamma(\lambda + 1)} \frac{\lambda}{\lambda + k}.
\]

The normalizing constant is (now \(\lambda = \frac{n}{2}\))
\[
c_n' = \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} \text{ and }
1 \omega_n \int_{\mathbb{S}^{n-1}} h_k(u - 2\langle x, u \rangle x) dS(x) = \frac{n}{n-1+k} h_{k_0} = c_k h_{k_0},
\]

and \(h_k(0, 0, \ldots, 1) = h_{k_0}\), where \(c_k = \frac{n - 2}{n - 2 + 2k}\). ■

We now introduce
\[
E_k(x, u, v) := \frac{1}{\omega_n c_k} F_k(x, u, v).
\]

Theorem 7. (Borel-Pompeiu Theorem) Let \(\Omega'\) and \(\Omega\) be as in Theorem 5 and \(y \in \Omega\). Then for \(f \in C^1(\Omega', \mathcal{M}_k)\)
\[
f(y, u) = \int_{\partial \Omega} \left(E_k(x - y, u, v), P_{k, v}d\sigma_x f(x, v)\right)_v - \int_{\Omega} \left(E_k(x - y, u, v), R_{k, v}f(x, v)\right)_v dx^n.
\]

Proof Here we will use the representation
\[
E_k(x - y, u, v) = \frac{1}{\omega_n c_k} Z_k(u, (x - y)v(x - y)) \frac{x - y}{\|x - y\|^n},
\]

and \(R_{k, v}\) is the Rarita-Schwinger operator with respect to \(v\). Consider a ball \(B(y, r)\) centered at \(y\) with radius \(r\) such that \(B(y, r) \subset \Omega\). By Stokes’ Theorem, we have
\[
\int_{\Omega} \left(E_k(x - y, u, v), R_{k, v}f(x, v)\right)_v dx^n
\]
\[
= \int_{\Omega \setminus B(y, r)} \left(E_k(x - y, u, v), R_{k, v}f(x, v)\right)_v dx^n + \int_{B(y, r)} \left(E_k(x - y, u, v), R_{k, v}f(x, v)\right)_v dx^n.
\]

The second integral tends to zero as \(r\) tends to zero. This follows from the degree of homogeneity of \(E_k(x - y, u, v)\). Now applying Stokes’ Theorem to the first
integral, one gets
\[\int_{\Omega \setminus B(y,r)} (E_k(x - y, u, v), R_{k,v} f(x, v))_v dx^n \]
\[= \int_{\partial \Omega} (E_k(x - y, u, v), P_{k,v} d\sigma_x f(x, v))_v - \int_{\partial B(y,r)} (E_k(x - y, u, v), P_{k,v} d\sigma_x f(x, v))_v. \]

Now let us look at
\[\int_{\partial B(y,r)} (E_k(x - y, u, v), P_{k,v} d\sigma_x f(x, v))_v dx^n = \int_{\partial B(y,r)} (E_k(x - y, u, v), P_{k,v} d\sigma_x f(y, v))_v \]
\[+ \int_{\partial B(y,r)} (E_k(x - y, u, v), P_{k,v} d\sigma_x [f(x, v) - f(y, v)])_v. \]

Since the second integral on the right hand side tends to zero as \(r \) goes to zero, we only need to deal with the first integral.
\[\int_{\partial B(y,r)} (E_k(x - y, u, v), P_{k,v} d\sigma_x f(y, v))_v \]
\[= \int_{\partial B(y,r)} \int_{\mathbb{S}^{n-1}} E_k(x - y, u, v) P_{k,v} d\sigma_x f(y, v) dS(v) \]
\[= \int_{\partial B(y,r)} \int_{\mathbb{S}^{n-1}} \frac{1}{\omega_n c_k} Z_k \left(u, \frac{(x - y)v(x - y)}{\|x - y\|^2} \right) \frac{x - y}{\|x - y\|} P_{k,v} \frac{y - x}{\|x - y\|^n} f(y, v) dS(v) d\sigma(x), \]
where \(n(x) \) is the unit outer normal vector and \(d\sigma(x) \) is the scalar measure on \(\partial B(y, r) \). Now \(n(x) \) here is \(\frac{y - x}{\|y - x\|} \). Hence the previous integral becomes
\[\frac{1}{\omega_n c_k} \int_{\partial B(y,r)} \int_{\mathbb{S}^{n-1}} Z_k \left(u, \frac{(x - y)v(x - y)}{\|x - y\|^2} \right) \frac{x - y}{\|x - y\|} P_{k,v} \frac{y - x}{\|x - y\|^n} f(y, v) dS(v) d\sigma(x). \]

By equation (1) this integral becomes
\[\frac{1}{\omega_n c_k} \int_{\partial B(y,r)} \int_{\mathbb{S}^{n-1}} Z_k \left(u, \frac{(x - y)v(x - y)}{\|x - y\|^2} \right) \frac{x - y}{\|x - y\|} P_{k,v} \frac{y - x}{\|x - y\|^n} f(y, v) dS(v) d\sigma(x) \]
\[= \frac{1}{\omega_n c_k} \int_{\partial B(y,r)} \int_{\mathbb{S}^{n-1}} Z_k(u, \frac{(x - y)v(x - y)}{\|x - y\|^2}) f(y, v) d\sigma(x) dS(v) \]
\[\int_{\mathbb{S}^{n-1}} Z_k(u, v) f(y, v) dS(v) = f(y, u). \]
Theorem 8. ([BSSV1]) (Cauchy’s Integral Formula) If $R_k f(x, v) = 0$, then for $y \in \Omega$,

$$f(y, u) = \int_{\partial \Omega} (E_k(x - y, u, v), P_k d\sigma_x f(x, v))_v$$

$$= \int_{\partial \Omega} (E_k(x - y, u, v)d\sigma_x P_k f(x, v))_v.$$

We now show the conformal invariance of Cauchy’s Integral Formula. We start with inversion.

Since

$$x^{-1} - y^{-1} = -y^{-1}(x - y)x^{-1} = -x^{-1}(x - y)y^{-1}$$

$$= \frac{-x}{\|x\|^2}(x - y) \frac{y}{\|y\|^2} = \frac{-y}{\|y\|^2}(x - y) \frac{x}{\|x\|^2},$$

$$E_k(x^{-1} - y^{-1}, u, v) = G(x^{-1} - y^{-1})Z_k \left(\frac{(x^{-1} - y^{-1})u(x^{-1} - y^{-1})}{\|x^{-1} - y^{-1}\|^2}, v \right)$$

$$= -G(y)^{-1}G(x - y)G(x)^{-1}Z_k \left(\frac{(x - y)yuy(x - y)x}{\|x\|^2\|y\|^2\|x - y\|^2}, v \right)$$

$$= -G(y)^{-1}G(x - y)G(x)^{-1} \frac{-x}{\|x\|}Z_k \left(\frac{(x - y)yuy(x - y)}{\|y\|^2\|x - y\|^2}, \frac{xvx}{\|x\|^2} \right) \frac{x}{\|x\|}$$

$$= G(y)^{-1}G(x - y)Z_k \left(\frac{(x - y)u'(x - y)}{\|x - y\|^2}, \frac{xvx}{\|x\|^2} \right) x\|x\|^{n-2}, \text{ set } u' = \frac{yuy}{\|y\|^2}$$

$$= -G(y)^{-1}G(x - y)Z_k \left(\frac{(x - y)u'(x - y)}{\|x - y\|^2}, \frac{xvx}{\|x\|^2} \right) G(x)^{-1}$$

$$= -G(y)^{-1}E_k(x - y, u', v')G(x)^{-1},$$

where $u' = \frac{yuy}{\|y\|^2}$ and $v' = \frac{xvx}{\|x\|^2}$.

Now consider

$$E_k(axa - aya, u, v) = G(a(x - y)â)Z_k \left(\frac{a(x - y)âua(x - y)â}{\|a(x - y)â\|^2}, v \right)$$

$$= aG(x - y)âZ_k \left(\frac{a(x - y)âua(x - y)â}{\|x - y\|^2}, v \right)$$

$$= \pm aG(x - y)âaZ_k \left(\frac{âa(x - y)âua(x - y)âa}{\|x - y\|^2}, âva \right) â$$

17
Multiplying both sides of the previous equation by $J_k \left(\frac{(x - y)u'(x - y)}{\|x - y\|^2}, \tilde{a}v \right)$, set $u' = \tilde{a}u$.

Thus, by the fact that $\sigma = 0$, we get

$$f(y', u) = \int_S \left(E_k(x' - y', u, v), P_k n(x') f(x', v) \right) d\sigma(x')$$

$$= \int_S \int_{\mathbb{S}^{n-1}} E_k(x' - y', u, v) P_k n(x') f(x', v) dS(v) d\sigma(x').$$

Using the Iwasawa decomposition, one gets

$$E_k(\phi(x) - \phi(y), u, v) = J(\phi, y)^{-1} E_k(x - y, u', v') J(\phi, x)^{-1},$$

where $u' = \frac{(cy + d)u(cy + d)}{\|cy + d\|^2}$, $v' = \frac{(cx + d)v(cx + d)}{\|cx + d\|^2}$, and ϕ is the Möbius transformation.

Suppose S is a smooth hypersurface lying in \mathbb{R}^n. Let $x' = \phi(x)$ and $y' = \phi(y)$, now let us consider Cauchy’s Integral Formula

$$f(\phi(x), u) = \int_{\phi^{-1}(S)} \int_{\mathbb{S}^{n-1}} J(\phi, y)^{-1} E_k(x - y, u', v') J(\phi, x)^{-1} P_k n(x') J(\phi, x) f(x', v) dS(v) d\sigma(x')$$

Multiplying both sides of the previous equation by $J(\phi, y)$, we obtain

$$J(\phi, y) f(\phi(y), \frac{(cy + d)u'(cy + d)}{\|cy + d\|^2}) = \int_{\phi^{-1}(S)} \int_{\mathbb{S}^{n-1}} E_k(x - y, u', v') P_k n(x) J(\phi, x) f(\phi(x), \frac{(cx + d)v'(cx + d)}{\|cx + d\|^2}) dS(v) d\sigma(x).$$
where \(u = \frac{(cy + d)u'(cy + d)}{\|cy + d\|^2} \) and \(v = \frac{(cx + d)v'(cx + d)}{\|cx + d\|^2} \).

Therefore, Cauchy’s Integral Formula is conformally invariant.

Now if the function \(\psi \) has compact support in \(\Omega \), then by the Borel-Pompeiu Theorem we have the following formula:

Theorem 9. \[\int \int_{\mathbb{R}^n} -(E_k(x - y, u, v), R_k \psi(x, v))_u dx^n = \psi(y, u) \] for each \(\psi \in C_0^\infty(\mathbb{R}^n, \mathcal{M}_k) \).

Similarly, we get a Cauchy transform for the Rarita-Schwinger operator \(R_k : \)

Definition 2. For a domain \(\Omega \subset \mathbb{R}^n \) and a function \(f : \Omega \times \mathbb{R}^n \to Cl_n \), where \(f(x, u) \) is monogenic in \(u \), the Cauchy (or \(T_k \)-transform) of \(f \) is formally defined to be

\[
(T_k f)(y, v) = - \int \int_{\Omega} (E_k(x - y, u, v), f(x, u))_u dx^n, \quad y \in \Omega.
\]

Theorem 10. \(R_k T_k \psi = \psi \) for \(\psi \in C_0^\infty(\mathbb{R}^n, \mathcal{M}_k) \). i.e

\[
R_k \int \int_{\mathbb{R}^n} (E_k(x - y, u, v), \psi(x, u))_u dx^n = \psi(y, v).
\]

Proof For each fixed \(y \in \mathbb{R}^n \), let \(R(y) \) be a bounded rectangle in \(\mathbb{R}^n \) centered at \(y \). Then

\[
R_k \int \int_{\mathbb{R}^n \setminus R(y)} (E_k(x - y, u, v), \psi(x, u))_u dx^n = 0.
\]

Now consider

\[
\frac{\partial}{\partial y_i} \int \int_{R(y)} (E_k(x - y, u, v), \psi(x, u))_u dx^n
\]

\[
= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int \int_{R(y)} (E_k(x - y, u, v) - E_k(x - y - \varepsilon e_i, u, v), \psi(x, u))_u dx^n
\]

If we translate the rectangle by \(\varepsilon \) in \(-e_i\) direction, then the derivative will be shifted from \(E_k \) to \(\psi \). Hence the previous integral becomes

\[
\int \int_{R(y)} (E_k(x - y, u, v), \psi(x, u) - \psi(x + \varepsilon e_i, u))_u dx^n + \frac{1}{\varepsilon} \int \int_{(R(y + \varepsilon e_i) \setminus R(y)) \cup (R(y) \setminus R(y + \varepsilon e_i))} (E_k(x - y, u, v), \psi(x, u) - \psi(x + \varepsilon e_i, u))_u dx^n
\]
When ε tends to zero, the integral is equal to
\[
\int \int_{R(y)} (E_k(x - y, u, v), \frac{\partial \psi(x, u)}{\partial x_i})_u dx^n + \int_{\partial R_1(y) \cup \partial R_2(y)} (E_k(x - y, u, v), \psi(x, u))_u d\sigma(x)
\]
where $\partial R_1(y)$ and $\partial R_2(y)$ are the two faces of $R(y)$ with normal vectors $\pm e_i$. So
\[
D_y \int \int_{R(y)} (E_k(x - y, u, v), \psi(x, u))_u dx^n = \int \int_{R(y)} \sum_{i=1}^{n} e_i(E_k(x - y, u, v), \frac{\partial \psi(x, u)}{\partial x_i})_u dx^n + \int_{\partial R(y)} n(x)(E_k(x - y, u, v), \psi(x, u))_u d\sigma(x).
\]
When the volume of $R(y)$ tends to zero, the first integral tends to zero by the homogeneity of the kernel E_k. So we shall concentrate attention on the integral
\[
P_k \int_{\partial R(y)} n(x)(E_k(x - y, u, v), \psi(x, u))_u d\sigma(x).
\]
This is equal to
\[
P_k \int_{\partial R(y)} \int_{S^{n-1}} n(x)E_k(x - y, u, v)\psi(x, u)dS(u)d\sigma(x),
\]
which in turn is equal to
\[
P_k \int_{\partial R(y)} \int_{S^{n-1}} n(x)E_k(x - y, u, v)\psi(y, u)dS(u)d\sigma(x)
\]
\[+P_k \int_{\partial R(y)} \int_{S^{n-1}} n(x)E_k(x - y, u, v)(\psi(x, u) - \psi(y, u))dS(u)d\sigma(x).
\]
But the last integral on the right side of the above formula tends to zero as the surface area of $\partial R(y)$ tends to zero. Hence we are left with
\[
P_k \int_{\partial R(y)} \int_{S^{n-1}} n(x)E_k(x - y, u, v)\psi(y, u)dS(u)d\sigma(x).
\]
By Stokes’ Theorem this is equal to
\[
P_k \int_{\partial B(y, r)} \int_{S^{n-1}} n(x)E_k(x - y, u, v)\psi(y, u)dS(u)d\sigma(x).
\]
In turn this is equal to
\[
 P_k \int_{\partial B(y,r)} \frac{1}{\omega_n c_k} \int_{\mathbb{S}^{n-1}} \frac{y - x}{\|x - y\|} \frac{x - y}{\|x - y\|^2} Z_k \left(\frac{(x - y)u(x - y)}{\|x - y\|^2}, v \right) \psi(y, u) dS(u)d\sigma(x)
\]
\[
= P_k \int_{\partial B(y,r)} \frac{1}{\omega_n c_k} \int_{\mathbb{S}^{n-1}} \frac{1}{r^{n-1}} Z_k \left(\frac{(x - y)u(x - y)}{\|x - y\|^2}, v \right) \psi(y, u) dS(u)d\sigma(x).
\]
By Lemma 6, the integral becomes \(P_k \int_{\mathbb{S}^{n-1}} Z_k(u, v) \psi(y, u) dS(u) = P_k \psi(y, v) = \psi(y, v). \)

Now we may establish the intertwining operators for the convolution operator \(E_k \ast . \) More precisely we shall show that:

Theorem 11. If \(\psi \in C_0^\infty(\mathbb{R}^n, \mathcal{M}_k), \) then
\[
 J_1(\phi, y) \int_{\mathbb{R}^n} \left(E_k(x' - y', u, v), \psi(x', v) \right)_v d(x')^n
\]
\[
= \int_{\mathbb{R}^n} \left(E_k(x - y, u', w), \tilde{J}_1(\phi, x), \psi(\phi(x), w) \right)_w dx^n,
\]
where \(x' = \phi(x), y' = \phi(y), u = \frac{(cy + d)u'(cy + d)}{\|cy + d\|^2} \) and \(v = \frac{(cx + d)w(cx + d)}{\|cx + d\|^2}. \)

Alternatively,
\[
 J_1(\phi, -)E_k \ast \psi = E_k \tilde{J}_1(\phi, -) \ast \psi.
\]

Proof First consider inversion, let \(\phi(x) = x^{-1}, \phi(y) = y^{-1}. \) Then
\[
\int_{\mathbb{R}^n} \left(E_k(x^{-1} - y^{-1}, u, v), \psi(x^{-1}, v) \right)_v d(x^{-1})^n
\]
\[
= \int_{\mathbb{R}^n} \int_{\mathbb{S}^{n-1}} E_k(x^{-1} - y^{-1}, u, v) \psi(x^{-1}, v) dS(v) d(x^{-1})^n
\]
\[
= \int_{\mathbb{R}^n} \int_{\mathbb{S}^{n-1}} Z_k \left(u, \frac{(x^{-1} - y^{-1})v(x^{-1} - y^{-1})}{\|x^{-1} - y^{-1}\|^2} \right) \frac{x^{-1} - y^{-1}}{\|x^{-1} - y^{-1}\|^2} \psi(x^{-1}, v) dS(v) d(x^{-1})^n.
\]
Since
\[
x^{-1} - y^{-1} = -y^{-1}(x - y)x^{-1} = -x^{-1}(x - y)y^{-1} = \frac{-x}{\|x\|^2} \frac{y}{\|y\|^2} = \frac{-y}{\|y\|^2} \frac{x}{\|x\|^2},
\]
\[
Z_k \left(u, \frac{(x^{-1} - y^{-1})v(x^{-1} - y^{-1})}{\|x^{-1} - y^{-1\|^2}} \right) = Z_k \left(u, \frac{y(x - y)xvx(x - y)y}{\|x\|^2\|y\|^2\|x - y\|^2} \right)
\]
\[
= -\frac{y}{\|y\|} Z_k \left(\frac{yuv}{\|y\|^2}, \frac{(x - y)w(x - y)}{\|x - y\|^2} \right) \frac{y}{\|y\|}, \text{ set } w = \frac{xvx}{\|x\|^2}.
\]
Now the previous integral becomes
\[
\int \int_{\mathbb{R}^n} \int_{S^{n-1}} \frac{y}{\|y\|} Z_k \left(\frac{yuy}{\|y\|^2}, \frac{(x-y)w(x-y)}{\|x-y\|^2} \right) \frac{y}{\|y\|} y \|y\|^{n-2} G(x-y)x \|x\|^{n-2} \\
\psi(\phi(x), v) \frac{1}{\|x\|^{2n}} \text{d}S(v) \text{d}x^n
\]
\[
= \int \int_{\mathbb{R}^n} \int_{S^{n-1}} -y \|y\|^{n-2} Z_k \left(\frac{yuy}{\|y\|^2}, \frac{(x-y)w(x-y)}{\|x-y\|^2} \right) G(x-y) \frac{x}{\|x\|^{n+2}} \psi(\phi(x), v) \text{d}S(v) \text{d}x^n
\]
\[
= \int \int_{\mathbb{R}^n} \int_{S^{n-1}} -y \|y\|^{n-2} E_k(x-y, u', w)) \frac{x}{\|x\|^{n+2}} \psi(\phi(x), v) \text{d}S(v) \text{d}x^n,
\]
where \(u' = \frac{yuy}{\|y\|^2}, w = \frac{xvx}{\|x\|^2} \). Then the previous integral is
\[
\int \int_{\mathbb{R}^n} \int_{S^{n-1}} -y \|y\|^{n-2} E_k(x-y, u', w)) \frac{x}{\|x\|^{n+2}} \psi(\phi(x), \frac{xwx}{\|x\|^2}) \text{d}S(w) \text{d}x^n
\]
Now multiplying both sides of the equation by \(\frac{y^{-1}}{\|y\|^{n-2}} \), we obtain
\[
\frac{y}{\|y\|^n} \int \int_{\mathbb{R}^n} (E_k(x^{-1} - y^{-1}, u, v), \psi(x^{-1}, v)) \text{d}(x^{-1})^n
\]
\[
= \int \int_{\mathbb{R}^n} \left(E_k(x - y, u', w) \frac{x}{\|x\|^{n+2}}, \psi(\phi(x), \frac{xwx}{\|x\|^2}) \right) \text{d}x^n,
\]
where \(u = \frac{yuy}{\|y\|^2} \) and \(v = \frac{xwx}{\|x\|^2} \).

Next, consider orthogonal transformations. We will apply similar arguments used to establish the equation under inversion. Let \(\phi(x) = ax\tilde{a} \) and \(\phi(y) = ay\tilde{a} \), where \(a \in Pin(n) \). Then
\[
\int \int_{\mathbb{R}^n} (E_k(ax\tilde{a} - ay\tilde{a}, u, v), \psi(\phi(x), v)) \text{d}(ax\tilde{a})^n
\]
\[
= \int \int_{\mathbb{R}^n} (E_k(a(x - y)\tilde{a}, u, v), \psi(\phi(x), v)) \text{d}(ax\tilde{a})^n
\]
\[
= \int \int_{\mathbb{R}^n} \int_{S^{n-1}} Z_k(u, \frac{a(x-y)\tilde{a}v(x-y)\tilde{a}}{\|x-y\|^2}) \frac{a(x-y)\tilde{a}}{\|x-y\|^n} \psi(\phi(x), v) \text{d}S(v) \text{d}x^n
\]
\[
= \pm \int \int_{\mathbb{R}^n} \int_{S^{n-1}} aZ_k(\tilde{a}u, \frac{(x-y)\tilde{a}v(x-y)}{\|x-y\|^2}) \tilde{a} \frac{a(x-y)\tilde{a}}{\|x-y\|^n} \psi(\phi(x), v) \text{d}S(v) \text{d}x^n.
\]
Set $w = \bar{a}v$, then $v = aw\bar{a}$. Hence the integral becomes
\[
\int\int_{\mathbb{R}^n} \int_{\mathbb{S}^{n-1}} aZ_k(\bar{a}ua, \frac{(x-y)w(x-y)}{\|x-y\|^2}) \frac{(x-y)\bar{a}}{\|x-y\|^n} \psi(\phi(x), v) dS(v) dx^n
\]
\[
= \int\int_{\mathbb{R}^n} \int_{\mathbb{S}^{n-1}} aE_k(x-y, u', w)\bar{a}\psi(\phi(x), aw\bar{a}) dS(aw\bar{a}) dx^n,
\]
where $u' = \bar{a}ua$ and $v = aw\bar{a}$. By the Iwasawa decomposition of $\phi(x) = (ax + b)(cx + d)^{-1}$, we obtain
\[
J_1(\phi, y) \int\int_{\mathbb{R}^n} (E_k(x'-y', u, v), \psi(x', v))_v d(x')^n
\]
\[
= \int\int_{\mathbb{R}^n} (E_k(x-y, u', w)\bar{J}_{-1}(\phi, x), \psi(\phi(x), w))_w dx^n,
\]
where $J_1(\phi, x) = J(\phi, x) = \frac{cx + d}{\|cx + d\|^n}$, $J_{-1}(\phi, x) = \frac{cx + d}{\|cx + d\|^{n+2}}$, $x' = \phi(x)$, $y' = \phi(y)$, $u = \frac{(cy + d)u'(cy + d)}{\|cy + d\|^2}$ and $v = \frac{(cx + d)w(cx + d)}{\|cx + d\|^2}$. Alternatively,
\[
J_1(\phi, -)E_k \psi = E_k\bar{J}_{-1}(\phi, -) \psi. \quad \blacksquare
\]

References

[A] L. V. Ahlfors, Old and new in Möbius groups, Ann. Acad. Sci. Fenn. Ser. A I Math., 9 (1984) 93-105.

[BDS] F. Brackx, R. Delanghe, and F. Sommen, Clifford Analysis, Pitman, London, 1982.

[BSSV1] J. Bureš, F. Sommen, V. Souček, P. Van Lancker, Rarita-Schwinger Type Operators in Clifford Analysis, J. Funct. Anal. 185 (2001), No.2, 425-455.
[BSSV2] J. Bureš, F. Sommen, V. Souček, P. Van Lancker, *Symmetric Analogues of Rarita-Schwinger Equations*, Annals of Global Analysis and Geometry 21 (2002), 215-240.

[DSS] R. Delanghe, F. Sommen, and V. Souček, *Clifford Analysis and Spinor Valued Functions*, Kluwer Academic, Dordrecht, 1992.

[DX] C. Dunkl and Y. Xu, *Orthogonal Polynomials of Several Variables*, Cambridge University Press, Cambridge, 2001.

[LRV1] J. Li, Carmen Vanegas and John Ryan, *Rarita-Shwinger Type Operators on Cylinders*, Advances in Applied Clifford Algebra, 22, 2012, 771-788.

[LRV2] J. Li, Carmen Vanegas and John Ryan, *Rarita-Shwinger Type Operators on the Sphere*, to appear.

[LR] J. Li and John Ryan, *Some operators associated to Rarita-Shwinger type operators*, accepted for publication in Complex Variables and Elliptic Equations.

[P] I. Porteous, *Clifford algebra and the classical groups*, Cambridge University Press, Cambridge, 1995.

[R1] J. Ryan, *Conformally coinvariant operators in Clifford analysis*, Z. Anal. Anwendungen, 14, 1995, 677-704.

[R2] J. Ryan, *Iterated Dirac operators in \(C^n \)*, Z. Anal. Anwendungen, 9, 1990, 385-401.

[S] V. Souček, *Conformal invariance of higher spin equations*, in "Proc. Symp. Analytical and Numerical methods in Clifford Analysis, Seiffen 1996," 175-186.

[Su] A. Sudbery, *Quaternionic Analysis*, Mathematical Procedings of the Cambridge Phil. Soc., (1979), 85, 199-225.

[SW] E. M. Stein, G. Weiss, *Generalizations of the Cauchy-Riemann equations and representations of the rotation group*, Amer. J. Math, 90 (1968), 163-196.

[Va1] P. Van Lancker, *Higher spin fields on smooth domains*, in Clifford Analysis and Its Applications, Eds. F. Brackx, J.S.R. Chisholm and V. Souček, Kluwer, Dordrecht 2001, 389-398.

[Va2] P. Van Lancker, *Rarita-Schwinger fields in the half Space*, Complex Variables and Elliptic Equations, 51, 2006, 563-579.
[V] K. Th. Vahlen, *Über Bewegungen und komplexe Zahlen*, (German) Math. Ann., 55(1902), No.4 585-593.

Charles F. Dunkl
Department of Mathematics, University of Virginia, Charlottesville, VA 22904-4137, USA. Email:cfd5z@virginia.edu

Junxia Li
Department of Mathematics, University of Arkansas, Fayetteville, AR 72701, USA. Email:jxl004@uark.edu

John Ryan
Department of Mathematics, University of Arkansas, Fayetteville, AR 72701, USA. Email:jryan@uark.edu

Peter Van Lancker
Faculty of Applied Engineering Sciences, University College of Gent, Member of Gent University, Schoonmeerstaat 52, 9000 Gent, Belgium. Email:Peter.VanLancker@hogent.be