Propranolol is one of the first medications of the beta-blocker used for antihypertensive drugs. This study reports the facile route for the synthesis of propranolol and its novel derivatives. Herein, propranolol synthesis proceeded from 1-naphthol and isopropylamine under mild and less toxic conditions. Novel propranolol derivatives were designed by reactions of propranolol with benzoyl chloride, pyridinium chlorochromate, and n-butyl bromide through esterification, oxidation-reduction, and alkylation, respectively. The isolation and purity of compounds were conducted using column chromatography and thin-layer chromatography. Mass spectrometry and 1H-NMR spectroscopy were applied to identify new compounds structure. Propranolol derivatives from 2-chlorobenzoyl chloride (compound 3), 2-fluorobenzoyl chloride (compound 5), and especially acetic anhydride (compound 6) manifested high yields and significantly increased water solubility. Six semisynthetic propranolol derivatives promise to improve antioxidative and biological activities.

1. Introduction

Methods for the synthesis of propranolol were investigated by using enzymes to resolve intermediate compounds [8–10]. However, the enzyme strategy did not show effective manufacturing because of several limitations, i.e., multistep, low overall yields (lower than 30%), and use of hazardous and costly reagents [10, 11]. Besides, the hydrogenation of the chiral metal of the intermediate by polymer-supported reagent was used [12]. Nevertheless, the methods used to catalyze metal salts are often complex and costly. In addition, the synthesis efficiency and the selectivity of propranolol are
2. Methods and Experiment

2.1. Chemical Materials. Sulphuric acid, iodine, chloroform, dichloromethane, tetrahydrofuran (THF), potassium carbonate, 2-fluorobenzoyl chloride, 2-bromobenzoyl chloride, 2-chlorobenzoyl chloride, 1-naphthol, isopropylamine, and epichlorohydrin were purchased from Sigma Aldrich. Thin-layer chromatography (TLC) silica gel 60 F\textsubscript{254} was bought from Merck (Germany). Water and ethanol (HPLC grade) were used without additional purification. Other chemicals were used as the highest possible quality as received. Glassware was cleaned using an acidic solution of HNO\textsubscript{3} : HCl (1 : 3 v/v) and then washed several times with deionized water.

2.2. Methods of Characterization

2.2.1. Thin-Layer Chromatography (TLC). 5\textmu L of sample and standard solutions was dropped on a TLC plate, which was immersed in ethyl acetate : hexane system (mobile phase) at different ratios. The moving of the mobile phase was finished until it reached the highest limitation of the TLC plate. The separated TLC plate was dried at room temperature (RT) for 30 min and observed under visible light or UV light.

2.2.2. Column Chromatography (CC). The CC method was applied for fractionation and purification of the synthesized products by using columns filled with silica gel of 230–400 mesh and glass columns with different diameters of 1.5, 2, and 5 cm and lengths of 30 and 40 cm. The mobile phase of hexane : ethyl acetate at different ratios was used to separate propranolol and its desired derivatives.

2.2.3. Mass Spectrometry (MS). The determination and detection of fragments and molecular ions from propranolol and its derivatives were carried out by MicroOTOF-Q 10187 mass spectrometer (Bruker, Germany).

2.2.4. Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR). The structure of propranolol and its derivatives was identified by 1H-NMR spectra recorded on a Bruker Ultrashield 500 spectrometer (Germany).

2.3. Synthesis of Propranolol Derivatives. To enhance the antioxidation and biological activity, target moieties at C-13 and N-15 of propranolol were investigated for further reactions. New derivatives were produced by reactions from propranolol with benzoyl chloride (esterification), with pyridinium chlorochromate (oxidation-reduction), and with n-butyl bromide (alkylation) (Figure 1).

2.3.1. Synthesis of Propranolol from 1-Naphthol and Isopropylamine. Propranolol was synthesized from reaction between 1-naphthol and isopropylamine according to reactions described in Figure 2. Typically, 1.25 g of 1-naphthol (8.67 mM) was dissolved in 10 mL of ethanol : water (9 : 1), followed by adding 0.5 g of KOH into the above mixture under stirring for 30 min. Next step, 4 mL of epichlorohydrin (0.05 M) was drop-down until the color of the mixture changed to orange-yellow. After every 30 min of the reaction, the formation of propranolol and its derivatives was determined by TLC. The solvent of the reaction mixture was evaporated and the yellow-brown compound of oil form was obtained. Then, 50 mL of diethyl ether was added to the resulting product under shake condition, and the water was removed by Na\textsubscript{2}SO\textsubscript{4} anhydrous. Next, the reaction mixture were isolated by CC using the mobile phase of hexane : ethyl acetate (H : E) 6 : 4, resulting in collecting of 1.05 g (5.25 mM) of 2-(naphthalen-1-yloxy) methyl oxirane (1a). Besides, two compounds of 1b were also obtained (Figure 2).

1.05 g of compound 1a dissolved in 10 mL of methanol was added to 15 mL of isopropylamine (12 mM) and stirred at 45°C until obtaining the yellow-brown solution (48 h) and solution was cooled to 5°C. Then, 1.5 mL of HCl (2 M) was dropped slowly into the resulting mixture, followed by adding NaOH (2 M) until white precipitate appeared. The precipitate was washed by water, isolated by CC using a mixture of H : E = 5 : 5. Finally, 0.738 g of 1-(isopropylamino)-3-(naphthalen-1-yloxy) propan-2-ol (compound 2) or propranolol was collected (Figure 2).

2.3.2. Synthesis of Propranolol with 2-Chlorobenzoyl Chloride, 2-Bromobenzoyl Chloride, and 2-Fluorobenzoyl Chloride (Compounds 3, 4, and 5). Briefly, 200 mg of propranolol (0.77 mM) was dissolved in 10 mL CHCl\textsubscript{3} at RT. Then, 300 mg of 2-chlorobenzoyl chloride (1.71 mM) or 300 mg (1.37 mM) of 2-bromobenzoyl chloride or 300 mg (1.89 mM) of 2-fluorobenzoyl chloride was added to the propranolol mixture. Each reaction mixture was stirred and refluxed at

not high [10, 13]. Thus, the development of propranolol derivatives to improve biopharmaceutical and therapeutic features, as well as to reduce the first level of metabolism, is absolutely necessary. To minimize the extent of the first-pass conjugation, many prodrugs of propranolol have been synthesized in the investigation of new high-acting lipophilic derivatives. Amongst them, homologous acyl ester prodrugs of propranolol, e.g., O-acetyl and O-propionyl carboxylic acid ester, were discovered with higher bioavailability and lipophilicity than those of propranolol [14–16].
2.3.5. Synthesis of Propranolol with n-Butyl Bromide (Compound 8). 1.06 g of K2CO3, 0.2 g of the propranolol (0.77 mM), and 210 mg of n-butyl bromide (1.54 mM) were put in 10 mL of acetonitrile under stirring for 30 min. The reaction proceeded for 24 h at RT. The reaction mixture was isolated using CC with mobile phase of D : M 8 : 2. 130 mg of the compound 8 was collected (Figure 6).

2.4. Aqueous Solubility Procedure. Aqueous solubility was measured for each compound in phosphate buffered saline (PBS, pH 7.4) [17]. Briefly, each equivalent was incubated at a final concentration of 200 µM in 2% DMSO with the appropriate aqueous medium under shaking for 24 h at RT. The compound identification was done via HPLC with photodiode array detection.

3. Results and Discussion

3.1. Other Propranolol Synthesis Methods. As shown in Figure 7(a), (S)-propranolol was prepared by using Zn(NO3)2/(+)-tartaric acid for the resolution of the terminal epoxide. This method was conducted at 75°C in enantio-selectivity through a kinetic resolution of intermediate α-naphthyl glycidyl ether [10]. However, methods of using metal salts as a catalyst for the synthesis of propranolol are often complicated and costly. Besides, there was low selectivity in isomer separation (S)-propranolol. The nucleophilic ring opening of epoxides was preceded by the perchloric acid supported silica matrix (HClO4–SiO2). Besides, microwave-assisted HClO4–SiO2 system was investigated for efficient and cost-effective synthesis processing [18] (Figure 7(b)).

3.2. Results of Mass Spectrometry and 1H-NMR Spectra

3.2.1. 2-((Naphthalen-1-yl)-oxy)methyl)oxirane (Compound 1a). Brownish-yellow oil form, 1H-NMR (500 MHz, CDCl3), 2.86 (dd, J = 5.0, 2.7 Hz, 1H), 2.98 (dd, J = 5.0, 4.1 Hz, 1H), 3.51 (ddt, J = 5.7, 4.2, 2.8 Hz, 1H), 4.14 (dd, J = 11.0, 5.6 Hz, 1H), 4.40 (dd, J = 11.0, 3.0 Hz, 1H), 6.84–8.41 (7H, m) of naphthalene.

HRMS (ESI-MS, m/z), (M + Na)+, [C16H21NO2 + Na]+, theory: 223.0748, experimental: 223.0748.

3.2.2. Two Isomers of 1-Chloro-3-(naphthalen-1-yl)-oxy propan-2-ol and 2-Chloro-3-(naphthalen-1-yl)-oxypropan-1-ol (Compound 1b). 1H-NMR (500 MHz, CDCl3), 3.87 (dd, J = 11.3, 5.7 Hz, 1H), 3.94 (dd, J = 11.3, 5.0 Hz, 1H), 4.35–4.26 (m, 2H), 4.41 (p, J = 5.3 Hz, 1H), 6.80–6.45 (m, 4H), 4.76 (p, J = 5.3 Hz, 1H), 6.90–8.33 (7H, m) of naphthalene.

HRMS (ESI-MS, m/z), (M + Na)+, [C15H13ClO2 + Na]+, theory: 260.1628, experimental: 260.0748.

3.2.3. Propranolol (Compound 2). White powder, yield: 70.3%, 1H-NMR (500 MHz, CDCl3), 1.16 (dd, J = 6.3, 1.5 Hz, 6H), 2.91 (dd, J = 12.3, 8.3 Hz, 2H), 3.06 (dd, J = 12.2, 3.5 Hz, 1H), 4.20–4.14 (m, 1H), 4.27–4.21 (m, 2H), 6.85–8.27 (7H) of naphthalene.

HRMS (ESI-MS, m/z), (M + Na)+, [C16H21NO2 + Na]+, theory: 282.1469, experimental: 259.1666.

3.2.4. Two Isomers of 2-Chloro-N-(2-hydroxy-3-(naphthalen-1-yl)-oxy)propyl)-N-isopropylbenzamide and 1-(Isopropylamino)-3-(naphthalene-1-yl)-oxopropyl 2-Chlorobenzoate (Compound 3). White amorphous powder,
Figure 2: The scheme illustrates the synthesis reaction of propranolol from 1-naphthol and isopropylamine.

Figure 3: The scheme describes the synthesis of propranolol with (i) 2-chlorobenzoyl chloride; (ii) 2-bromobenzoyl chloride; (iii) 2-fluorobenzoyl chloride, at conditions of CHCl₃ and NaHCO₃ at 50°C for 24 h.
yield: 68.0%, 1H-NMR (500 MHz, CDCl$_3$), 1.11–1.36 (dd, J = 22.8, 6.6 Hz, 12H), 3.85–3.70 (m, 4H), 3.94 (ddd, J = 30.5, 14.6, 8.1 Hz, 2H), 4.18 (ddd, J = 24.2, 9.5, 7.7 Hz, 2H), 4.31 (dd, J = 9.4, 4.5 Hz, 2H), 4.49–4.40 (m, 1H), 6.91–8.25 (11H) of naphthalene and 2-chlorobenzoyl.

HRMS (ESI-MS, m/z), $[\text{M+Na}^+]$, $\text{C}_{23}\text{H}_{24}\text{ClNO}_3+\text{Na}^+$, theory: 420.1329, experiment: 397.14.

3.2.5. Two Isomers of 2-Bromo-N-(2-hydroxy-3-(naphthalene-1-yloxy)propyl)-N-isopropylbenzamide and 1-(Isopropylamino)-3-(naphthalene-1-yloxy)propan-2-yl 2-Bromobenzoate (Compound 4).

White amorphous powder, yield: 73.1%, 1H-NMR (500 MHz, CDCl$_3$), 1.10–1.39 (dd, J = 6.6 Hz, 312H), 3.69–3.85 (m, 4H), 3.94 (ddd, J = 39.7, 14.6, 8.0 Hz, 2H), 4.19 (ddd, J = 33.1, 9.5, 7.7 Hz, 2H), 4.32

Figure 4: The scheme describes the synthesis of propranolol with anhydride acetic at conditions of CHCl$_3$ and NaHCO$_3$ at 45°C for 24 h.

Figure 5: The scheme describes the synthesis process between propranolol and pyridinium chlorochromate in presence of CH$_2$Cl$_2$, at 40°C for 20 h.

Figure 6: The scheme describes the synthesis of propranolol with n-butyl bromide (compound 8) at conditions of CH$_3$CN for 24 h.
Figure 7: (a) Synthesis of propranolol used a catalyst of tartaric acid and metal salts; (b) ring opening of epoxides employing thiophenol under microwave conditions and synthesis of propranolol using silica perchloric acid catalyst.

(dd, J = 9.4, 4.5 Hz, 2H), 4.39–4.51 (m, 2H), 6.91–8.25 (1H, m) of naphthalene and 2-chlorobenzoyl.

HRMS (ESI-MS, m/z), (M + Na)\(^{+}\)\((79/81)\)Br, [C23H24BrNO3+Na]\(^{+}\)\((79/81)\)Br, theory: 464.0834/466.0813.

3.2.6. Two Isomers of 2-Fluoro-N-(2-hydroxy-3-(naphthalene-1-yloxy)propyl)-N-isopropylbenzamide and 1-(Isopropylamino)-3-(naphthalene-1-yloxy)propyl)-N-isopropylacetamide and 1-(Isopropylamino)-3-(naphthalene-1-yloxy)propan-2-yl Fluorobenzoate (Compound 5). Dark blue liquid, yield: 57.4%, 1H-NMR (500MHz, CDCl\(_3\)), 0.86–1.40 (m, 12H), 3.65 (d, J = 5.8 Hz, 2H), 4.11 (dd, J = 9.6, 6.1 Hz, 2H), 4.29–4.18 (m, 2H), 4.52 (d, J = 3.8 Hz, 2H), 6.69–8.28 (m, 20H) of naphthalene and 2-chlorobenzoyl.

HRMS (ESI-MS, m/z), (M + H)\(^{+}\), [C23H18NO3+H]\(^{+}\), theory: 382.1820, experiment: 381.4488.

3.2.7. Two Isomers of N-(2-Hydroxy-3-(naphthalene-1-yloxy)propyl)-N-isopropylacetamide and 1-(Isopropylamino)-3-(naphthalene-1-yloxy)propan-2-yl Acetate (Compound 6). White amorphous powder, yield: 58.0%, 1H-NMR (500 MHz, CDCl\(_3\)), 1.24 (dd, J = 8.8, 6.2 Hz, 6H), 1.33 (dd, J = 17.3, 6.7 Hz, 6H), 2.14–2.25 (6H, m), 3.43 (1H, dd, J = 14.3, 6.9 Hz), 3.83 (1H, dd, J = 14.4, 5.3 Hz), 4.06 (1H, p, J = 6.5 Hz), 4.19–4.36 (2H, m), 6.81–8.21 (1H, m, H-9).

HRMS (ESI-MS, m/z), (M + H)\(^{+}\), [C16H18NO3+H]\(^{+}\), theory: 302.1748, experiment: 301.1700.

3.2.8. 1-(Isopropylamino)-3-(naphthalene-1-yloxy)propan-2-one (Compound 7). White amorphous powder, yield: 90.2%, 1H-NMR (500 MHz, CDCl\(_3\)), 1.50 (dd, J = 9.5, 6.4 Hz, 6H), 3.33–3.25 (m, 1H), 3.41 (d, J = 13.1 Hz, 1H), 3.53–3.46 (m, 1H), 4.12 (dd, J = 9.6, 5.6 Hz, 1H), 4.22 (dd, J = 9.5, 3.9 Hz, 1H), 6.81–8.21 (1H, m, H-9).

HRMS (ESI-MS, m/z), (M + H)\(^{+}\), [C16H19NO2 + H]\(^{+}\), theory: 258.3349, experiment: 257.3326.

3.2.9. 1-(Butyl(isopropylamino)-3-(naphthalene-1-yloxy)propan-2-ol (Compound 8). Brownish-yellow liquid, yield: 65.5%, 1H-NMR (500 MHz, CDCl\(_3\)), 0.98 (t, J = 7.3 Hz, 2H), 1.15 (d, J = 6.7 Hz, 2H), 1.06 (d, J = 6.6 Hz, 2H), 1.27 (t, J = 6.2 Hz, 2H), 1.44–1.33 (m, 2H), 1.58–1.50 (m, 1H), 2.57 (dt, J = 8.1, 6.0 Hz, 1H), 2.79–2.66 (m, 1H), 3.17–3.07 (m, 1H), 4.21–4.12 (m, 2H), 4.25 (p, J = 4.1 Hz, 1H).

HRMS (ESI-MS, m/z), (M + H)\(^{+}\), [C22H29NO2 + H]\(^{+}\), theory: 340.4787, experiment: 339.4764.

3.3. Reaction Mechanisms. Propranolol has been synthesized according to the drug manufacturing process from 1-naphthol and isopropylamine. Besides the formation of propranolol, two intermediate compounds \(1a\) and \(1b\) also were found. From the pristine propranolol, seven new derivatives have been synthesized from the compound (2) to (8), in which every compound of \(3, 4, 5,\) and \(6\) produced only two isomers, different from the theory of 3 isomers (as shown in Table 1). The new compounds structures were confirmed by MS and \(^1\)H-NMR spectra, indicating that these compounds were entirely suitable. The propranolol derivatives were obtained in high yields from 57.4% to 90.2%.

The mechanism of the esterification reactions for formation compounds \(3, 4,\) and \(5\) is very close. The OH group of propranolol is reacted with the activating group (Cl/Br/F) replaced by the alcohol moiety. The reaction continues by either an addition–elimination through attack of the incoming nucleophile at the sp\(^3\) carbon atom or an elimination–addition chain. Cl/Br/F is a good leaving group to maximize the efficiency of the esterification protocol by minimizing electron donation to the carbonyl functional group. Besides, when anhydrides are employed in the esterification reaction, 50% of the acid component is lost because only one of the acid moiety is transformed to the desired ester. Therefore, this approach was used for simple, inexpensive carboxylic acids with a low degree of functionalization, including acetic anhydride (compound 6) [19, 20].

In the oxidation reaction of propranolol using pyridinium chlorochromate, the first step is the attack of oxygen on the chromium to form the Cr-O bond. Secondly, a proton on the OH is transferred to one of the oxygen atoms of the chromium, possibly through the intermediacy of the
Table 1: Summary of propranolol derivatives.

Structure	Name
![Structure](image1.png)	1a. 2-((Naphthalen-1-yloxy)methyl)oxirane
![Structure](image2.png)	2. Propranolol
![Structure](image3.png)	1b. 2-Chloro-3-(naphthalen-1-yloxy)propan-1-ol
![Structure](image4.png)	1b. 1-Chloro-3-(naphthalen-1-yloxy)propan-2-ol
![Structure](image5.png)	3. 2-Chloro-N-(2-hydroxy-3-(naphthalen-1-yloxy)propyl)-N-isopropylbenzamide
![Structure](image6.png)	3. 1-(Isopropylamino)-3-(naphthalen-1-yloxy)propan-2-yl 2-chlorobenzoate
![Structure](image7.png)	4. 2-Bromo-N-(2-hydroxy-3-(naphthalen-1-yloxy)propyl)-N-isopropylbenzamide
![Structure](image8.png)	4. 1-(Isopropylamino)-3-(naphthalen-1-yloxy)propan-2-yl 2-bromobenzoate
![Structure](image9.png)	5. 2-Flouro-N-(2-hydroxy-3-(naphthalen-1-yloxy)propyl)-N-isopropylbenzamide
![Structure](image10.png)	5. 1-(Isopropylamino)-3-(naphthalen-1-yloxy)propan-2-yl 2-fluorobenzoate
Table 1: Continued.

Chemical Structure	Name
![Structure 1](image1.png)	N-(2-Hydroxy-3-(naphthalen-1-yloxy)propyl)-N-isopropylacetamide
![Structure 2](image2.png)	1-(Isopropylamino)-3-(naphthalen-1-yloxy)propan-2-yl acetate
![Structure 3](image3.png)	1-(Isopropylamino)-3-(naphthalen-1-yloxy)propan-2-one hydrate
![Structure 4](image4.png)	1-(Butyl(isopropyl)amino)-3-(naphthalen-1-yloxy)propan-2-ol

Figure 8: Continued.
pyridinium salt. A chloride ion is then displaced to form what is known as a chromate ester. The C=O double bond is formed when a base removes the proton on the carbon adjacent to the oxygen. It is also necessary for pyridine to be used as the base here, but only very small amounts of the deprotonated component would be found under such acidic conditions. The electrons from the C-H bond move to form the C=O bond of compound 7, and in the process, the Cr-O bond is broken, and Cr(VI) becomes Cr(IV) as shown in Figure 8(a) [21].

N of propranolol functions as the nucleophile and attacks the electrophilic C of n-butyl bromide, displacing the bromide and creating the new C-N bond. Then the base (excess amine) deprotonates the positive N (ammonium) center, creating the alkylation product [22], so-called compound 8 (Figure 8(b)).

3.4. Solubility of Propranolol Derivatives. The water solubility of these propranolol derivatives was investigated (as shown in Table 2). The water solubility of propranolol was 61.7 μg/mL. In contrast, new derivatives from acetone and n-butyl groups were slightly less soluble due to the involvement of hydrophilic functional supplement groups. Propranolol derivatives from 2-chlorobenzoyl chloride (3), 2-fluorobenzoyl chloride (5), and especially acetic anhydride (6) showed a significant increase toward water solubility compared to propranolol. The water solubility of other compounds was not much changed compared to that of propranolol.

4. Conclusions

Polypharmacology remains one of the significant difficulties in drug improvement, and it initiates novel avenues to create the next generation of drugs. A route for the synthesis of propranolol has been developed under simple, inexpensive, and mild reaction conditions. Remarkably, we successfully synthesized seven novel propranolol derivatives at the C-13 and N-15 of propranolol, obtained in high yields. The water solubility of compounds 3, 5, and 6, corresponding to products of propranolol with 2-chlorobenzoyl chloride, 2-fluorobenzoyl chloride, and acetic anhydride, was improved significantly. The present study shows that the synthesized propranolol derivatives represent promising new compounds to enhance antioxidative, biological activities and the need for investigation in the near future.

Data Availability

The data used to support the findings of this study are included in the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this article.
Acknowledgments

This research was funded by Duy Tan University, Da Nang city, Vietnam, and Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant no. 104.05-2019.03.

References

[1] S. Hardison, W. Wan, and K. M. Dodson, “The use of propranolol in the treatment of subglottic hemangiomas: a literature review and meta-analysis,” *International Journal of Pediatric Otorhinolaryngology*, vol. 90, pp. 175–180, 2016.

[2] S. A. Steenen, A. J. Van Wijk, G. J. Van der Heijden, R. Van Westhoven, J. De Lange, and A. De Jongh, “Propranolol for the treatment of anxiety disorders: systematic review and meta-analysis,” *Journal of Psychopharmacology (Oxford, England)*, vol. 30, no. 2, pp. 128–139, 2016.

[3] A. V. Srinivasan, “Propranolol: a 50-year historical perspective,” *Annals of Indian Academy of Neurology*, vol. 22, no. 1, pp. 21–26, 2019.

[4] R. Čížmáriková, L. Habala, J. Valentová, and M. Markuliak, “Survey of pharmacological activity and pharmacokinetics of selected β-adrenergic blockers in regard to their stereocchemistry,” *Applied Sciences*, vol. 9, no. 4, p. 625, 2019.

[5] W. H. Frishman, “Beta-adrenergic receptor blockers in hypertension: alive and well,” *Progress in Cardiovascular Diseases*, vol. 59, no. 3, pp. 247–252, 2016.

[6] P.-Y. Chang, W.-Y. Huang, C.-L. Lin et al., “Propranolol reduces cancer risk: a population-based cohort study,” *Medicine*, vol. 94, no. 27, Article ID e1097, 2015.

[7] E. M. Yee, E. Pasquier, G. Iskander, K. Wood, D. S. Black, and N. Kumar, “Synthesis of novel isoflavene-propranolol hybrids as anti-tumor agents,” *Bioorganic & Medicinal Chemistry*, vol. 21, no. 7, pp. 1652–1660, 2013.

[8] S. Batra and R. Bhushan, “Methods and approaches for determination and enantioseparation of (RS)-propranolol,” *Biomedical Chromatography*, vol. 33, no. 1, Article ID e4370, 2019.

[9] M. Sasaki, P. E. North, J. Elsey et al., “Propranolol exhibits activity against hemangiomas independent of beta blockade,” *Npj Precision Oncology*, vol. 3, no. 1, p. 27, 2019.

[10] N. Singh, A. Kumar, and R. Singh, “Concise synthesis of (S)-(-)-propranolol: using acid catalysed kinetic resolution,” *Journal of Chemical and Pharmaceutical Research*, vol. 4, no. 12, pp. 5111–5113, 2012.

[11] X. Wu, A. Noda, H. Noda, and Y. Imamura, “Side-chain metabolism of propranolol: involvement of monoamine oxidase and aldehyde reductase in the metabolism of N-desisopropylpropranolol to propranolol glycol in rat liver, Comparative biochemistry and physiology,” *Toxicology & Pharmacology: CBP*, vol. 129, no. 4, pp. 361–368, 2001.

[12] A. Gharib, M. Jahangir, and M. Roshani, “Synthesis of (S)-(-)-Propranolol by using Cs2.5H0.5PW12O40 nanocatalyst as green, eco-friendly, reusable, and recyclable catalyst, synthesis and reactivity in inorganic, metal-organic,” *Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry*, vol. 45, no. 3, pp. 350–355, 2015.

[13] S. A. M. Yassin and K. F.-A. Samarrai, “Ratio spectrum derivative quantitative analysis of propranolol and diazepam in combind pharmaceutical mixtures,” *International Journal of Research in Pharmaceutical Sciences*, vol. 10, no. 4, pp. 3657–3664, 2019.