The distribution of *Triebelina raripila* and *Carinocythereis carinata* (Ostracoda) from the Middle Miocene of the Central Paratethys and their palaeogeographic implications

J. SZCZECHURA
Instytut Paleobiologii PAN, Al. Zwirki i Wigury 93, 02-089 Warszawa, Poland.

Abstract – Late Middle Miocene (Upper Badenian) strata of the Fore-Carpathian Depression of Poland yield a shallow-water ostracod fauna which contains the species *Triebelina raripila* (G. W. Müller, 1894) and *Carinocythereis carinata* (Roemer, 1838). The palaeobiogeographic distribution of the two main species suggests, that in the late Middle Miocene, Central Paratethys was still connected to the Mediterranean, although still separated from the Eastern Paratethys and from southeastern Eurasia. The continuous occurrence of *Triebelina raripila* and *Carinocythereis carinata* in the Mediterranean basins, from the Early Miocene to Recent, indicates that marine conditions existed throughout, thereby allowing them to survive the Late Miocene salinity crisis. *J. Micropalaeontol. 17*(2): 125–130, December 1998.

INTRODUCTION

Triebelina van den Bold, 1946 is an ornate bairdiid genus regarded by some authors (e.g. van Morkhoven 1963; Keij 1974, 1976; Teeter 1975; Tabuki & Nohara 1990) as being confined to tropical and subtropical, shallow marine environments, principally associated with coral reefs. Its Recent representative which lives in the Mediterranean, *Triebelina raripila* (G. W. Müller, 1894) is regarded as an endemic form. A previously unknown occurrence of this species in the Middle Miocene of the Central Paratethys and their palaeogeographic implications

In the Fore-Carpathian Depression of southern Poland, which represents the northern margin of the Central Paratethys, *Triebelina raripila* (G. W. Müller, 1894) occurs throughout the Middle Miocene. A single specimen was found in Lower Badenian (corresponding to the Serravallian) sediments outcropping in Korytnica Bay, in an outcrop situated on the southern slope of the Holy Cross Mountains (Baluk & Radwański, 1977) (Fig. 1). The Korytnica Bay Middle Miocene section consists of a variety of lithologies (e.g. sands, silts, limestones), which contain numerous miliolids. Within the same Weglin sample, remnants of calcareous algae (Chlorophyta) are found. These are related to those described by Malecki (1970) from the Sarmatian of the...
Explanation of Plate 1

figs 1–8. *Triebelina raripila* (G. W. Müller, 1894). figs 1, 3, 7. External view of right valve, ZPAL O. XL/1, 3, 7 (×73, ×68, ×69, respectively). figs 5, 8. Carapace viewed from right side, ZPAL O. XL/5, 8 (×69, ×71, respectively). figs 2, 4. External view of left valve, ZPAL O. XL/2, 4 (×69, ×68, respectively). fig. 6. Internal view of left valve, ZPAL O. XL/6, ×69. figs 9, 10. *Carinocythereis carinata* (Roemer, 1838). fig. 9. External view of male, right valve, ZPAL O. XL/9, ×53. fig. 10. External view of female, left valve, ZPAL O. XL/10, ×5. Specimens 1–7, 9, 10 are from the late Middle Miocene (Upper Badenian) of the Weglin exposure (Roztocze region, SE Poland) Specimen 8 from the beach sand near Rovinj (Adriatic Sea).
The distribution of *Triebelina raripila* and *Carinocythereis carinata* (Ostracoda)

Central Paratethys and referred by him to *Acicula*ria d’Archiac, 1843.

Only juvenile representatives of *Carinocythereis carinata* were found in the Upper Badenian (above gypsum layer), silty sediments of the Gliwice-21 borehole (depth 19.2–19.4 m, 31 m and 51 m), in Upper Silesia, southwestern Poland (Fig. 1). In the Gliwice-21 borehole, however, *Carinocythereis carinata* appears to be an allochtonous shallow-water (shelf) contaminant since it is associated with deeper-water ostracodes such as *Henryhowella asperrima* (Reuss, 1850), *Pseudocythere caudata* Sars, 1866, *Pterygoclythes jonesi* (Baird, 1850), *Kangaria abyssicola* G. W. Müller, 1894, *Clathria micenica* Szczechura, 1986, *Xylocythere carpathica* Szczechura, 1995, *Cytheropteron* sp., *Parakrithe* sp., *Krithe* sp., *Sagmatocythere* sp. and *Argillioecia* sp.

The foraminifers associated with this assemblage include representatives of *Globigerina* sp., *Uvigerina* sp. (including the *Uvigerina peregrina* Cushman group), *Pullenia* sp., *Cassidulina* sp., *Melonis pompeioides* Fichtel & Moll, *Heterolepa dutemplei* (d’Orbigny), *Hoeglundina elegans* (d’Orbigny), *Cibicides ungerianus* d’Orbigny, *Hanzawaia boweanza* d’Orbigny, *Bolivina* sp., *Bolivina* sp., *Sphaeroisoides bulloides* d’Orbigny, *Gyroidina* sp., *Epistominella* sp. and *Gavelinopsis cf. praegeri* (Heron-Allen & Earland). All these foraminifers indicate a deeper-water, temperate/cold-water, open marine environment. The suggested environment is further supported by other coexisting micro-fossils, especially frequent bolboforms (predominantly *Carinocythereis carinata*) from the Tyrrhenian Sea, mainly on outline and in the *Triebelina boldi* ornamentation of the left valve (Keij, 1976). The left valve of *Triebelina boldi* from the Lower Miocene of Portugal (Fig. 1, figs 1, 3, 5 & 7). For these reasons I agree with Nascimento (1988) and Ducasse and Cahuzauc (1997) and regard *Triebelina boldi* Keij, 1955, as a junior synonym of *Triebelina raripila* (G. W. Müller, 1894) on the other hand, regarded them as separate species.

Listed below is a complete synonymy of *Triebelina raripila* (G. W. Müller).

1894 *Bairdia raripila* G. W. Müller: 272, pl. 13, fig. 37; pl. 15, figs 5–7, 28.

1955 *Triebelina boldi* Keij: 107, pl. 14, figs 7, 8.

1965 *Triebelina boldi* Key: Moyes: 18, pl. 1, fig. 19.

1968 *Bairdia raripila* G. W. Müller; Masoli: 10, pl. 1, fig. 5; pl. 4, figs 44–46

1971 *Bairdia raripila* G. W. Müller; Barbeito-Gonzáles: 264, pl. 3, figs 1b, 2b, 3b; pl. 45, figs 24–26.

1975 *Triebelina boldi* Keij; Olteanu: 127, pl. 1, fig. 6.

1976 *Bairdia raripila* G. W. Müller; Uffenorde: 52, pl. 5, fig. 7.

1974 *Triebelina raripila* (G. W. Müller); Doruk: pl. 2:12:66; pl. 2:12:68 (Stereo-Atlas of Ostracod Shells).

1975 *Triebelina raripila* (G. W. Müller); Bonaduce, Ciampo & Masoli: 23, pl. 6, figs 11, 12.

1979a *Bairdia raripila* G. W. Müller; Yassini: 374, pl. 1, fig. 6.

1979b *Bairdia raripila* G. W. Müller; Yassini: 374, pl. 1, fig. 6.

1984 *Triebelina raripila* (G. W. Müller); Malz & Jellinek: 124, pl. 2, fig. 12.

1988 *Triebelina raripila* (G. W. Müller); Nascimento: 65, pl. 2, fig. 9.

1988 *Triebelina raripila* (G. W. Müller); Malz & Lord: 70, pl. 1, fig. 12.

1988 *Triebelina raripila* (G. W. Müller); Bonaduce, Masoli & Pugliese: pl. 1, fig. 1.

1989 *Triebelina raripila* (G. W. Müller); Lachenal: 146, pl. 1, fig. 11.

1990 *Triebelina raripila* (G. W. Müller); Römme-Doll, pl. 2, fig. 19.

1996 *Triebelina raripila* (G. W. Müller); Szczechura: pl. 1, figs 1–3.

RELATIONSHIP BETWEEN TRIEBELINA RARIPILA (MÜLLER, 1894) AND TRIEBELINA BOLDI KEIJ, 1955

Triebelina boldi Keij, 1955, originally described from the Lower Miocene of the Aquitanian Basin, differs from *Triebelina raripila* (G. W. Müller, 1894) (originally referred to as *Bairdia raripila*) from the Tertiary sea, mainly on outline and in the ornamentation of the left valve (Keij, 1976). The left valve of *Triebelina boldi* is a little higher and less elongated than in *Triebelina raripila*; the length/height ratio is 1.8–1.9 for *Triebelina boldi* while 2.0 for *Triebelina raripila*. Moreover, the ‘carina’ of the right valve of *Triebelina boldi* is less prominent than in *Triebelina raripila*. Keij (1976) also states that *Triebelina boldi* is the ancestor of *Triebelina raripila* and that both species belong to the same lineage, probably stemming from the Late Oligocene *Paranesidea* Maddocks, 1969. A similar view was adopted by Malz and Lord (1988).

A comparison of specimens from the Middle Miocene of the Fore-Carpathian Depression, referred here to *Triebelina raripila* (Pl. 1, figs 1–7), as well as those Upper Miocene specimens belonging to that species from Turkey (Doruk, 1974) and its Recent representatives from the Aegean and the Adriatic Seas (see Barbeito-González, 1971; Uffenorde, 1972; Bonaduce et al., 1975) and from my own collections (Pl. 1, fig. 8) provides evidence that length/height ratio does vary and even may overlap with those of *Triebelina boldi*. Even within Recent specimens from a single population the length/height ratio ranges between 1.6 and 2.3; at the same time, the ‘carina’ in the right valve is quite variable. Similar size variations may also be seen among specimens of the same sample from the Upper Miocene of Morocco (Pl. 1, figs 1, 3, 5 & 7). For these reasons I agree with Nascimento (1988) and Ducasse and Cahuzauc (1997) and regard *Triebelina boldi* Keij, 1955, as a junior synonym of *Triebelina raripila* (G. W. Müller, 1894).

SPATIAL AND TEMPORAL DISTRIBUTION OF TRIEBELINA RARIPILA (G. W. MÜLLER, 1894)

The distribution of fossil representatives of *Triebelina raripila* is restricted to Europe, including the Mediterranean region (Fig. 2). Its earliest record is in the Lower Miocene of France (Aquitanian Basin) (Keij, 1955; Moyes, 1965); in 1997, Ducasse and Cahuzauc described it from the Middle Miocene of the same area. It is also known from the Lower Miocene of Portugal (Nascimento, 1988). In the Middle Miocene (Badenian), this species appeared in the Central Paratethys (Olteanu, 1971; Szczechura, 1996). In the Upper Miocene of Turkey, *Triebelina raripila* is found (Doruk, 1974) as well as, in the Pliocene, being reported from the coast of Algeria (Yassini, 1979a). It is also
recorded from Pleistocene sediments from Greece (Peloponnese Peninsula) (Malz & Jellinek, 1984; Römmlt-Doll, 1990).

The distribution of living *Triebelina raripila* is restricted to the Mediterranean, where it is widely dispersed and extends along its northern coast as well as its southern coast. It is known from southern France (Reys, 1964), southwestern Italy (G. W. Müller, 1894; Puri et al., 1964), the Adriatic Sea (Masoli, 1968; Uffenorde, 1972; Bonaduce et al., 1975), coasts of Greece (Barbeito-González, 1971), western Turkey (Doruk, 1974) and Lebanon (Bonaduce et al., 1970) as well as the northern coasts of Africa: Egypt (Malz & Lord, 1988), Libya (Bonaduce & Pugliese, 1975), Tunisia (Lachenal, 1989) and Algeria (Yassini, 1979b) (cf. Fig. 2). This restricted distribution along the Mediterranean indicates a dependence on a somewhat temperate climate. According to Puri et al. (1964), Bonaduce et al. (1988), and Lachenal (1989), *T. raripila* prefers very shallow water and a sandy substrate covered with *Posidonia* and algal detritus.

SPATIAL AND TEMPORAL DISTRIBUTION OF CARINOCYTHEREIS CARINATA (ROEMER, 1838)

Carinocythereis carinata (Pl. 1, figs 9, 10), was described by Roemer (1838) as *Cytherina carinata* from the Pliocene of northern Italy. According to Carbonel (1977), this species appeared first in the late Middle Miocene of northern Italy, and in Liguria and Piedmont of the Western Alps. During the Late Miocene, its range was extended to the Mediterranean, where it still lives today (Fig. 3). *Carinocythereis carinata* entered the Atlantic coasts of Europe during the Pliocene. In addition to the distribution mentioned by Carbonel (1977), *Carinocythereis carinata* is now known to occur in the Early Miocene and the late Middle Miocene of Turkey (Gökçen, 1984; Safak & Nazik, 1994) as well as in the late Middle Miocene (Upper Badenian) of the Central Paratethys (Steininger, 1977; Sokač, 1979; Jiřiček & Říha, 1991; Szczechura 1996). From the late Middle Miocene of the Central Paratethys, it occurs in the Transcarpathian Basin of the Czech Republic (Brestenská & Jiřiček, 1978; Jiřiček, 1983), in northeastern Bulgaria (Tzankov et al., 1965) and southern Poland (Fore-Carpathian Depression) (Szczechura, 1996).

It favours a very shallow marine (littoral), sandy bottom habitat and is often associated with *Posidonia* and/or calcareous algae (Puri et al., 1964; Uffenorde, 1972; Carbonel, 1977).

DISCUSSION

Triebelina van den Bold, 1946 is represented by more than a dozen species, ranging from the Eocene to the Recent. The Recent forms are known mostly from shallow, tropical to subtropical waters in the Indo-Pacific and Atlantic Oceans, principally from coral–algal reefs. The distribution and the environmental preferences of *Triebelina raripila*, however, are different. This species prefers (today as well as in past occurrences) a rather temperate climate and a sandy marine environment with algae and/or *Posidonia*. Maddocks (1969) grouped this species, together with *Triebelina reticulopunctata* Benson, 1959 which is described from the eastern Pacific Ocean (coasts of California), as the representatives of the genus *Triebelina* known from temperate latitudes. Of interest is that Valentine (1976) found *Triebelina reticulopunctata* (a taxon very similar to *Triebelina raripila*) within the Pliocene ostracod biofacies of the southwestern part of North America, which he attributed to a warm–temperate marine climate. Hartmann (1988) mentions *Triebelina reticulopunctata* Benson, 1959 within ostracod species which have an East Pacific–Indo–West Pacific distribution; according to Hartmann (1988) this species is also known from the Eocene of France.

Of interest is that the tropical species *Triebelina sertata* Triebel, 1948 invaded the eastern areas of the Mediterranean from the Indian Ocean (McKenzie, 1986; Malz & Lord, 1988), (probably) via the Suez Canal, while *Triebelina raripila* is still restricted to the Mediterranean. This implies particular preferences of *Triebelina raripila* for its environment and explains its palaeodistribution, especially its restriction to Europe.

Provincialism of Neogene faunas in Europe has been observed by a various authors. Tzankov et al.’s (1965) examination of the Neogene microfossils (including foraminifers and ostracods) of Bulgaria allowed them to distinguish two Middle Miocene
The distribution of *Triebelina raripila* and *Carinocythereis carinata* (Ostracoda)

biogeographic provinces; viz. the north-western and north-central province, which he named ‘viennois’, and north-eastern province, named ‘crimeen-caucisen’.

Yassini’s (1986) study of Neogene palaeobiogeography of the Eastern Paratethys identified different biogeographic provinces. According to this author (Yassini, 1986, fig. 1), there were two provinces (i.e. western and eastern) within the Paratethys, with a boundary placed at the western margin of the Black Sea. The eastern province included the Eastern Paratethys, while the western province contained the Western Paratethys as well as the Central Paratethys. Yassini (1986), however, also suggested separating these provinces from the Mediterranean.

Khalaf (1986) identified provincialism for the Middle Miocene shallow-water ostracod faunas by recognizing different biofacies in the Mediterranean and in southern Eurasia.

All these observations should help us to better understand Neogene palaeogeography, and the distribution of ostracods in the Middle Miocene in particular. As such, the differences between the southwestern European and central European forms from those of the eastern parts of Europe and southeastern Eurasia are confirmed.

CONCLUSIONS

The palaeobiogeographic distribution of *Triebelina raripila* (G. W. Müller) indicates that in the Neogene (including the late Middle Miocene) this species was broadly distributed in Europe, encompassing the Central Paratethys. It was restricted (as it is now) to this broad area (now forming Europe) and is thus regarded a relict rather than an endemic form in the Mediterranean Sea.

The spatial and temporal distribution of *Carinocythereis carinata* (Roemer) supports the above conclusions concerning the extent of the late Middle Miocene marine basins, including the Central Paratethys as well as southern Europe, thus suggesting exchange of microfauna between these areas. In addition, there is a synchronous appearance of *Carinocythereis carinata* in the upper part of the Middle Miocene in the Central Paratethys and in the western Alps (northern Italy), while the first appearance of both species (i.e. shallow-water ones), occurs in the Early Miocene of the Mediterranean basins.

The above conclusions, concerning the extent of the Middle Miocene marine basins in Europe, which are based on the distribution of common, shallow-water ostracod species, are in agreement with those arrived at using deep-water ostracods as recognized in the Middle Miocene of the Central Paratethys (Szeiczchura, 1994, 1995).

The separation of the Neogene, and especially of the Middle Miocene, Paratethyan basins (including both the Central Paratethys and Eastern Paratethys) from the Mediterranean, as suggested by Benson (1976), Rögl & Steininger (1984), Briggs (1995) and others, is questioned by the present study. While these authors' suggestions may be valid for Sarmatian palaeo-geography, additional confirmation is required through further studies.

The continuous occurrence, from the Early Miocene to the Recent, of *Triebelina raripila* and *Carinocythereis carinata* in the Mediterranean basins, indicates that marine basins persisted thereby allowing these species to 'survive' the Late Miocene salinity crisis.

ACKNOWLEDGEMENTS

The author wishes to thank Dr Pierre Carbonel (Département de Géologie-Oceanographie, Université de Bordeaux 1, Talence) for his opinion on the determination of *Carinocythereis carinata*, Professor Zofia Kielan-Jaworowska (Institute of Paleobiology, Polish Academy of Sciences, Warszawa) as well as Dr Patrick De Deckker and Dr Michael A. Ayress (Department of Geology, Australian National University, Canberra) for their constructive remarks on the original manuscript. Dr Raymond Bate (Lacustrine Basin Research, Starlings) is also thanked for reading the text and offering to improve the English language.

Professor Stefan Alexandrowicz (Department of Palaeontology, Academy of Mining and Metallurgy, Kraków) provided the samples from the Gliwice borehole and Dr Janusz Baszyk and Miss Danuta Kocielska (Institute of Paleobiology, Polish Academy of Sciences, Warszawa) provided technical assistance.

REFERENCES

Baluk, W. & Radwański, A. 1977. Organic communities and facies development of the Korytnica basin (Middle Miocene; Holy Cross Mountains, Central Poland). *Acta Geol. Pol.* 27: 85–123.

Barbeito-Gonzalez, P. J. 1971. Die Ostracoden des Küstenbereiches von Naxos (Griechenland) und ihre Lebensbereiche. *Mitt. Hamburg. Zool. Mus. Inst.*, 67: 255–326.

Benson, R. H. 1976. In search of lost oceans: a paradox in discovery. In Gray, J. & Boucot, A. J. (Eds) *Historical Biogeography, Plate Tectonics, and Changing Environment, Proc. 37th Ann. Biology Colloq. and Selected Papers*, 379–389. Oregon State University Press, Corvallis.

Bonaduce, G., Brambati, A. & Masoli. M. 1970. Ostracoda and recent sediments of the Saint George Bay (Jun el Khudr, Lebanon). *Pubbl. Staz. zool. Napoli*, 38: 57–70.

Bonaduce, G., Ciampo, G. & Masoli, M. 1975. Distribution of Ostracoda in the Adriatic Sea. *Pubbl. Staz. zool. Napoli*, 40: 1–304.

Bonaduce, G. & Pugliese, N. 1975. Ostracoda from Libya. *Pubbl. Staz. Zool. Napoli*, 39: 129–135.

Bonaduce, G., Masoli, M. & Pugliese N. 1988. Remarks on the Benthic Ostracoda on the Tunisian Shelf. In Hanai, T., Ikeya, N. & Ishizaki K. (Eds) *Evolutionary biology of Ostracoda, Proceedings of Ninth International Symposium on Ostracoda, Shizuoka, Japan, 29 July–2 August 1985, Developments in Palaeontology and Stratigraphy*, 11: 469–466. Kodansha, Tokyo; Elsevier, Amsterdam.

Brestenska, E. & Jirícek, R. 1978. Ostracoden des Badenien der Zentralen Paratethys. In Brestenska, E. (Ed.) *Chronostratigraphie und Neostatotypen, Miocan M4, Badenien*. 405–439. VEDA, Bratislava.

Briggs, J. C. 1995. Neogene. In Briggs, J.C. (Ed.) *Global Biogeography: Developments in Palaeontology and Stratigraphy*, 14: 147–159. Elsevier, Amsterdam.

Carbonel, P. 1977. La conquête des milieux de plateforme continentale par l’ensemble *Carinocythereis antiquata/carinata* depuis le Miocène Moyen. In Löfler, H. & Danielpoli, D. (Eds). *Aspects of Ecology and Zoogeography of Recent and Fossil Ostracoda, Proceedings of 6th International Symposium Ostracoda, Saalfelden (Salzburg), July 30–August 8, 1974, 407–416*. Dr W. Junk b.v. Publishers, The Hague.

Doruk, N. 1974. On *Triebelina raripila* (G. W. Müller). In Sylvester-Bradley, P. C. & Siveter, D. J. (Eds) *A Stereo-Atlas of Ostracod Shells* 2: 65–68. Department of Geology University of Leicester, UK.

Ducasse, 0. & Cahuac, B. 1997. Les Ostracodes indicateurs des paléoenvironnements au Miocène moyen (Serravallien) en Aquitaine (Sud-Ouest de la France). *Rev. Micropaléont.*, 40: 141–166.

Gökçen, N. 1984. *Neomonoceratina helvetica Superzone and Carinocythereis Datumplane in Neogene sequence of Turkey. News. Strat.,* 13: 94–103.

Hartmann, G. 1988. Distribution and Dispersal of Littoral Pacific Island Ostracoda. In Hanai, T., Ikeya, N. and Ishizaki, K. (Eds) *Evolutionary Biology of Ostracoda, Proceedings of Ninth International Symposium on Ostracoda, Shizuoka, Japan, 29 July–2 August 1985, Developments in Palaeontology and Stratigraphy*, 11: 787–795. Kodansha, Tokyo; Elsevier, Amsterdam.
