Psoriasis, cardiovascular risk factors and metabolic disorders: sex-specific findings of a population-based study

W. Sondermann,1,* D.A. Djedieu Deudjui,2, A. Körber,2 U. Slomiany,2 T.J. Brinker,4,5 R. Erbel,2 S. Moebus2

1Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
2Institute of Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
3Hautärzte RÜ 143, Essen, Germany
4National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
5Department of Dermatology, University Hospital of Heidelberg, Heidelberg, Germany

*Correspondence: W. Sondermann. E-mail: wiebke.sondermann@uk-essen.de

Abstract

Background Scientific evidence suggests an association between psoriasis and cardiovascular and metabolic diseases. However, there are hardly any sex-specific results from population-based studies reporting the prevalence of cardiovascular risk factors in patients with psoriasis and point estimates of the association between psoriasis and cardiovascular and metabolic disorders.

Objective Aims are to evaluate the sex-specific prevalence of psoriasis and cardiovascular risk factors, and to estimate sex-specific associations between psoriasis and diabetes type 2 (DM) and metabolic syndrome (MetS).

Methods We used data of 3723 participants (45–75 years, 54.1% women) without coronary heart disease and missing data (psoriasis, DM, MetS) from the Heinz Nixdorf Recall study. Standardized information on health outcomes and risk factors was assessed. We performed descriptive statistics and multiple regression analyses to calculate prevalence rate ratios (PR) and 95% confidence intervals (95% CI).

Results The prevalence of psoriasis was 3.8% (n = 143), with no differences between sex. We observed more often metabolic and cardiovascular risk factors in women with psoriasis compared to women without psoriasis. Interestingly, in men, this pattern was partly reversed. Multiple regression analyses revealed distinctly elevated PRs for DM for both women and men with psoriasis (fully adjusted PR: 2.43; 95% CI: 1.17–5.07, resp. 1.16–3.76). Regarding the MetS, the results were inconsistent, showing a positive association between psoriasis and MetS in women (1.84; 1.14–2.98), but a negative association in men, even though with a wide 95% CI (0.69; 0.42–1.12).

Conclusion The results of our cross-sectional, population-based analysis show a distinct association between psoriasis and DM, whereas for the MetS the results contrasted between men and women, translating in women with MetS showing a higher and in men a lower chance to be psoriatic. Our results emphasize the urgent need for sex-specific research, studying the effects of psoriasis on metabolic disorders as well as effective sex tailored prevention measures.

Conflict of interests

WS received travel expenses for attending meetings and/or (speaker) honoraria from Abbvie, Almirall, Bristol-Myers Squibb, Celgene, Janssen, LEO Pharma, Lilly, MSD, Novartis, Pfizer, Roche, Sanofi Genzyme and UCB.
AK received travel expenses for attending meetings and/or (speaker) honoraria from MSD, Pfizer, Biogen, Abbvie, Novartis, LEO Pharma, Janssen, Celgene, Lilly, Almirall, Beiersdorf and Grünenthal. The other authors declare no conflict of interests.

Funding source

The German Ministry of Education and Science [BMBF project: 01EG0401, 01GI0856, 01GI0860, 01GS0820, WB2-C, 01ER1001D, 01GI0205], the Deutsche Forschungsgemeinschaft [DFG project: SI 236/8-1, SI 236/9-1, SI 236/10-1, JO 170/8-1, ER155/6-1, KN885/3-1, HO 3314/2-1, HO 3314/2-1, ER155/6-2, HO 3314/2-3, EI 969/2-3, INST 58219/32-1, PE 2309/2-1], the Ministry of Innovation, Science and Research, North Rhine-Westphalia.
Introduction

Psoriasis is a chronic inflammatory cutaneous disease with a prevalence of 2–4% in industrialized countries.1–3 It is a prototypical T-helper (Th) 1 and Th17 inflammatory disease that is classified as an immune-mediated inflammatory disease (IMID) of the skin.4 A substantial body of evidence suggests that patients with IMIDs are at a higher risk of developing systemic comorbidities, e.g. cardiovascular disease (CVD), metabolic syndrome (MetS) and diabetes mellitus (DM) since they harbour shared genetic risks and similar inflammatory pathways.4,5

In psoriasis, Th 1- and Th 17-inflammatory cytokines, such as Interleukin (IL)-17, IL-23 and tumour necrosis factor-α, are increased in the skin and in the blood. These proinflammatory mediators have multiple effects on different processes such as immune cell trafficking, angiogenesis, insulin signalling, adipogenesis and lipid metabolism. Thus, the metabolic aspects of chronic Th1- and Th17-inflammation in psoriasis have the potential to influence other conditions such as atherosclerosis, obesity and diabetes. Reciprocally, proinflammatory cytokines and hormones produced in conditions like obesity, atherosclerosis and diabetes may impact the pathogenesis of psoriasis by promoting a proinflammatory state that elevates the susceptibility to the development or worsening of existing psoriasis.4

A large number of epidemiological studies not only have shown an increased prevalence of cardiovascular risk factors, hypertension6–11 and CVD,12–15 like myocardial infarction and cerebrovascular disease6,14,16–20 in psoriasis, but also have identified psoriasis as an independent risk factor for developing CVD.12,21

Furthermore, a large body of evidence revealed that psoriasis is related to obesity7,22–25 and especially central obesity.26,27 Accordingly, psoriasis patients are more likely to suffer from insulin resistance compared to normal controls28 and various studies have found that the prevalence rate (PR) of DM is higher in patients with psoriasis.6,7,11,29,30 Metabolic syndrome is a highly prevalent, multifaced condition characterized by a constellation of abnormalities that include abdominal obesity, hypertension, dyslipidemia and elevated blood glucose.31 Various studies could show that psoriasis is associated with an increased prevalence of MetS7,22,32–34 and that the association increases with disease severity.35–37

It is well known that cardiovascular risk factors and metabolic disorders are unequally distributed between men and women. In general, CVD risk is lower in women than in men.29 Women, especially younger women, have better cardiovascular risk profile compared with same-aged men including a lower prevalence of dysglycemia, dyslipidemia and hypertension.39–42 However, sex-specific results from population-based studies reporting (i) the prevalence of cardiovascular risk factors in patients with psoriasis; and (ii) point estimates of the association between psoriasis and metabolic disorders are extremely scarce and indicate the presence of sex variations in the risk of MetS among individuals with psoriasis with female psoriatics harbouring a higher risk.32

Thus, aims are (i) to evaluate in a population-based cohort without prevalent CVD the sex-specific prevalence of psoriasis and cardiovascular risk factors; and (ii) to estimate sex-specific associations between psoriasis and diabetes disorders, here diabetes type 2 (DM) and MetS.

Patient and methods

Study design and population

We used baseline data from the Heinz Nixdorf Recall (Risk factors, Evaluation of Coronary Calcium and Lifestyle) study, a population-based, ongoing cohort study in the highly urbanized Ruhr Area in Western Germany. Rationale and design of the study have been described in detail.43 Briefly, 3723 men (45.9%) and women (54.1%) aged 45–75 years, randomly selected from mandatory lists of residents of Essen, Bochum and Mülheim, were recruited between 2000 and 2003. The baseline response was 56%.44 The study has been approved by the institutional local ethics committees and comprises extended quality management procedures, including a certification according to DIN ISO 9001:2000/2008. Informed consent has been obtained from all participants.

Data assessment

Standardised computer assisted face-to-face interviews (CAPI) were performed at the study centre located in Essen by trained and certified study personnel. Interviewed data included information for medical history, family history of coronary heart disease, smoking and socio-economic status. Ascertainment of current use of medication was performed by the brown bag method by asking participants to bring along all medication taken in the last 7 days. Current medications were coded according to the Anatomical Therapeutic Chemical (ATC) Classification Index. Participants were classified as having psoriasis if they reported in CAPI to ever have received a physician diagnosis of psoriasis or reported the intake of any medications listed in Table 1.

Diabetes mellitus was defined by self-reported, physician-diagnosed diabetes or intake of glucose-lowering drugs or in case of (i) a fasting glucose of ≥7.0 mmol/L or a random blood glucose ≥11.1 mmol/L measured on the survey day.45 A total of 79% of the study participants were in a fasting state >8 h. MetS was defined according to the most widely used definition for the diagnosis of MetS from the AHA/NHLBI.46

Blood pressure was measured using an automated oscillometric blood pressure device (Omron, Omron Healthcare, Inc., Bannockburn, IL, USA, HEM-705CP-E) with participants in sitting position, using the mean of the second and third value of three measurements.44,47,48 According to the definition of the European Society of Hypertension and the European Society of Cardiology 2013 and in accordance with the Seventh Joint National
Committee for Prevention Detection and Treatment of High Blood Pressure (JNC 7) guidelines, blood pressure levels above 140/90 mmHg were defined as hypertension. Additionally, the verified intake of antihypertensive medication lead to categorization of these participants as having hypertension.49,50

Standardized measures of body weight to the nearest 0.1 kg and height to the nearest 0.5 cm with participants in light underwear without shoes were used for calculating the body mass index [BMI (kg/m²)]. Waist circumference was measured according to standard operation procedures.

The smoking variables included indicator variables for current regular smoker and former smoker (cessation of smoking more than 1 year ago). Socio-economic status was assessed through educational attainment using total years of formal education, classified into ≤10 and >10 years of education.

Venous blood samples were obtained from participants while they were sitting. Enzymatic methods were used to determine total cholesterol (T-C), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG). High sensitive C-reactive protein (hs-CRP) and glyced haemoglobin (HbA1c) were measured by immunonephelometry (Dade Behring, Germany). All analyses have been done within 12 h at one central laboratory (University Hospital of Essen, Germany).

Descriptive statistics were done according to standard methods. Additionally, we stratified all data to sex. To estimate PR ratios, sex-specific log-binomial regression analysis (PROC GENMOD) were performed with psoriasis as outcome and diabetes, respective MetS as exposure variable. In all regression analyses, three models were fitted: for diabetes a crude model, an age-adjusted model; and a model additionally adjusted for smoking, blood pressure, BMI, physical activity, socio-economic status, triglycerides and intake of lipid-lowering drugs. For Mets a crude model, an age-adjusted model; and a model additionally adjusted for smoking, socio-economic status and physical activity was fitted.

All statistical analyses were performed using SAS version 9.4. We calculated and reported 95% confidence intervals (CI) to assess the precision of our estimates because our goal was estimation and not significance testing.51,52 We wish to avoid publication bias by preferential reporting of significant results.

Results

A diagnosis of psoriasis (n = 130) and/or intake of psoriasis relevant medication (n = 13) was reported by 3.8% (n = 143) of the study participants, differing not between men (3.9%) and women (3.8%). Characteristics of the entire study population and results stratified by diagnosis of psoriasis and sex are presented in Fig. 1. Mean age of the whole cohort was 59 years (±8 years). In women, the prevalence of psoriasis decreased with increasing age, whereas in men we observed a roughly U-shaped pattern (45–54 years: 34%; 55–64: 27%; 65–75: 39%).

Overall, the prevalence of hypertension was 35.3%. Hypertension in men with psoriasis was more prevalent compared to men without psoriasis (49.3% vs 43.1%), whereas in women no differences could be observed (29% vs 28.3%). Interestingly, intake of antihypertensive medication was similar between men with psoriasis (31.8%) and without psoriasis (30%), whereas intake of antihypertensives was more often reported by females with psoriasis (36.2%) compared to females without psoriasis (31.7%).

Looking at smoking, we found less female non-smokers and more female ex-smokers in the psoriasis group compared to women without psoriasis (44.7% vs 55.8%, resp. 34.2% vs 22.3%). On the other hand, we could not observe any differences in men in regard to actual and former smoking behaviour between the psoriasis and the non-psoriasis group (31.3% vs 30.8%).

A waist circumference above the upper limit according to the 2004 MetS-definition (men: ≥102 cm, women: ≥88 cm) was distinctly more often observed in women with psoriasis than in women without psoriasis (61.8% vs 42.6%). Surprisingly, in men this pattern was rather the other way around: men without psoriasis more often had an elevated waist circumference than men with psoriasis (35.8% vs 31.3%). Accordingly, we found similar results in regard to obesity (BMI > 30) with strikingly

Table 1 List of pharmacological/therapeutic subgroups (5th level) to identify participants with psoriasis

Chemical substance	ATC code
Fumaric acid	D05AX01
Fumaric acid, combinations	D05BX51
Acitretin	D05BB02
Methotrexate	L01BA01, L04AX03
Methoxsalen	D05BA02, D05AD02
Ciclosporin	L04AD01
Adalimumab	L04AB04
Etanercept	L04AB01
Infliximab	L04AB02
Efalizumab	L04AA21
Dithranol	D05AC01
Dithranol, combinations	D05AC51
Tars	D05AA
Calcipotriol	D05AX02
Calcipotriol, combinations	D05AX52
Tacalcitol	D05AX04
Calcitriol	D05AX03

ATC code, Anatomical Therapeutic Chemical (ATC) Classification System.
more obese women with psoriasis (39.5%) than without (25.4%), and no difference in men (23.9% vs 23.6%).

Corresponding to the sex-specific pattern of the prevalence of obesity, we found a higher share of women with psoriasis with increased triglycerides compared to women without psoriasis (26.5% vs 17.8%), whereas in men this pattern was again rather the other way around (24.2% vs. 30.3%). However, distinctly less women with psoriasis reported intake of lipid-lowering drugs.

![Figure 1](image-url)
Figure 1 Study population characteristics. (a) Study population characteristics of the entire cohort. (b) Study population characteristics of men with and without psoriasis. (c) Study population characteristics of women with and without psoriasis. BMI, body mass index; HDL, high-density lipoprotein; mmHg, millimetres/mercury; mmol/L, millimoles per litre.
drugs (2.9%) compared to women without psoriasis (9.5%), whereas in men this difference could not be observed (11.1% vs 8.7%).

Same results can be reported with respect to increased blood glucose levels (fasting glucose > 5.5 mmol/L), with a higher share of women with psoriasis than without psoriasis performing increased blood glucose levels (54.1% vs 47.4%). In contrast, men with psoriasis were less likely to have increased blood glucose levels compared to men without psoriasis (60.3% vs 66.9%).

In respect to MetS, the sex-specific pattern described above is particularly clear, which means we measured MetS strikingly more often in women than without psoriasis (36.8% vs 25.4%) and the other way around strikingly less often in men with than without psoriasis (26.9% vs 38.3%).

Surprisingly to these results, we observed no sex differences in regard to diabetes and psoriasis, with remarkably higher prevalences of diabetes in both men and women with psoriasis (women: 11.8% vs 5.3%; men 11.9% vs 8%). Correspondingly, intake of antidiabetics was reported more often by women and men with psoriasis (5.8% and 9.5%) compared to women and men without psoriasis (3.7% and 6%). An overview of the main sex-specific results according to the prevalence of psoriasis is summarized in Table 2.

Results of the regression analyses

Table 3a depicts the PR of the regression analyses for the exposure diabetes. All models revealed substantially increased PR for diabetes in women and men with psoriasis (age-adjusted PR women: 2.32, 95% CI: 1.25–4.31; men: 1.69, 95% CI: 1.00–2.85; fully adjusted PR women: 2.43, 95% CI: 1.17–5.07; men: 2.09, 95% CI: 1.16–3.76). Further adjustments for smoking, blood pressure, BMI, physical activity, triglycerides and intake of lipid-lowering drugs. Adjustment sets (b): Model 1: crude, Model 2: age, Model 3: Model 2 + smoking, blood pressure, body mass index, physical activity, socio-economic status, triglycerides and intake of lipid-lowering drugs. Adjustment sets (b): Model 1: crude, Model 2: age, Model 3: Model 2 + smoking, socio-economic status and physical activity. CI, confidence interval; PR, prevalence rate ratio.

Model	PR	95% CI	PR	95% CI
Model 1	0.69	0.43–1.09	1.65	1.06–2.56
Model 2	0.67	0.42–1.06	1.82	1.16–2.86
Model 3	0.69	0.42–1.12	1.84	1.14–2.98

59% CI: 1.16–2.86; fully adjusted PR: 1.84, 95% CI: 1.14–2.98. According to the descriptive results, the PRs in men showed an inverse association with distinct decreased PRs psoriasis in men with MetS. However, with less confidence than the results in women (age-adjusted PR men: 0.67, 95% CI: 0.42–1.06; fully adjusted PR men: 0.69, 95% CI: 0.42–1.12). Similar to the regression analyses of diabetes further adjustments for smoking, socio-economic status and physical activity did not change the outcomes substantially (data not shown).

Discussion

There is solid epidemiological evidence linking psoriasis to cardiovascular risk factors and an increased risk of developing cardiovascular and metabolic diseases.53–55 The results of our study show the presence of considerable sex differences in cardiometabolic risk factors among individuals with psoriasis. In the female group, nearly all cardiometabolic risk factors were more prevalent in women suffering from psoriasis. Unexpectedly, in men, this pattern was the other way around.

It is well known that cardiovascular risk factors and metabolic disorders are unequally distributed between men and women.56,57 The underlying mechanisms explaining sex-specific differences are not fully understood up to now, but are currently being researched intensively.58 So far, differences are mainly explained by biological conditions between women and men, which are foremost due to differences in gene expression from the sex chromosomes and subsequent differences in sexual hormones leading to differences in gene expression and function in the cardiovascular system.59

However, it is not yet clear to what extent sex may alter the association between psoriasis and cardiometabolic disorders. Sex-specific results from population-based studies with focus on

Table 2 Summary of sex-specific results

Higher prevalence with psoriasis than without psoriasis	Women	Men	
Waist circumference	Hypertension		
Obesity	DM		
Elevated triglycerides	Intake of antidiabetics and lipid-lowering drugs		
Elevated blood glucose		DM	
MetS		Intake of antihypertensives and antidiabetics	

BMI, body mass index; DM, diabetes mellitus; MetS, metabolic syndrome.
the prevalence of cardiovascular risk factors in patients with psoriasis as well as sex-specific associations between psoriasis and metabolic disorders are rare. To the best of our knowledge, there is only one paper reporting comprehensive sex- and age-specific results in a population-based study. The Tromsø study by Danielsen and co-workers is a Norwegian cross-sectional study performed between 2007 and 2008 including 10 521 participants aged 30–79 years. In this study, the prevalence of MetS and its components by psoriasis status was reported by age-stratified analyses (30–44, 45–59 and 60–79 years). In the Tromsø study, 10% of the participants reported ever experiencing psoriasis with a mainly mild course. It is well known that the Scandinavian region has one of the highest psoriasis prevalences in the world. In the following, our results will primarily be discussed in comparison with the results of Danielsen et al.

In our study, overall 25.8% of the women had MetS, which comes close to reported prevalences of MetS in women of other German studies (18–23%). The prevalence of MetS was more prevalent in women with psoriasis than without (36.8% resp. 25.4%), which was also observed in the Tromsø study. Similar to MetS, we observed more women with psoriasis having diabetes (12%) than those without psoriasis (5%). Similar results were reported by Cohen et al. performing a cross-sectional study by using a large medical data set of the Clalit Health Services in Israel. The data set includes 16 851 patients with psoriasis and 74 987 subjects without psoriasis. As in our study, women with psoriasis more often had diabetes than women without psoriasis (12% resp. 9%). The higher prevalence of diabetes in the female control group might be due to the special health service data.

In Germany, the reported prevalence of MetS in men ranges between 24% and 32%, which is slightly lower, than the observed prevalence of 37.9% in our study. Contrary to women, men with psoriasis less often had MetS than men without psoriasis (27% vs. 38%). In the Tromsø study, men with psoriasis had an approximately 35% increased risk of MetS regardless of age (OR 1.35, 95% CI 1.1–1.6), which is in contrast to our data, as our results suggest a negative association between MetS and psoriasis in men (fully adjusted PR: 0.69, 95% CI: 0.42–1.12).

In men with psoriasis, the prevalence of DM was slightly higher compared to men without psoriasis (12% vs 8%). Similar results are reported in the study by Cohen et al., with a diabetes prevalence of 12% in men with psoriasis and 9% without psoriasis.

Strengths and limitations

Strengths of our study are the population-based approach, the comprehensive data assessment, including computer-based personal interviews as well as standardized medical examinations including a high data quality. Our study is not without limitations. Diagnosis of psoriasis was only based on self-report which is not without concern. However, self-report of data is a widely used method in epidemiological studies of skin diseases and it is well known that the addition of ‘to ever have received a medical diagnosis of psoriasis’ considerably increases the validity of the self-reports. Further, the reported intake of antipsoriatic medication may be prone to error, since some antipsoriatic substances (e.g. methotrexate) are also used for treatment of other indications like rheumatic diseases, e.g. rheumatoid arthritis. However, in our study, only 13 participants were identified via current use of certain medication and in only five cases patients reported to take substances which are not exclusively used for treatment of psoriasis. There are two limitations regarding the cohort of the psoriasis patients. Firstly, the absolute number of 143 participants suffering from psoriasis is rather small. However, all participants ran through a face-to-face evaluation ensuring a high data quality and, apart from the Tromsø study, there are hardly any other comparable sex-specific results available up to now. Secondly, participants included in this study were 45 years of age or older so that the age range of younger patients suffering from psoriasis is not reflected in this population. In the Tromsø study, men with psoriasis had an increased risk of MetS regardless of age. However, younger male psoriasis patients were shown to have a higher risk for cardiovascular disorders like myocardial infarction. Thus, gathering of sex-specific population-based data also on younger psoriasis patients would be interesting maybe in a next step.

Another limitation of our study is that the Psoriasis Area and Severity Index (PASI) was not investigated so that we cannot make a statement on disease severity in our cohort.

Conclusion

The results of our cross-sectional analysis showed a distinct association between psoriasis and metabolic and cardiovascular disorders in men and women. The comparison of both sexes is essential for the identification of protective or maladaptive mechanisms. A knowledge of such mechanisms in gene transcription, intracellular signalling, organelle function and interorgan crosstalk could reveal new targets that may be used for the activation or inhibition of specific aspects of the cardiovascular system that are linked to sex hormones or other differences between men and women. The reasons behind the unexpected comparably low cardiometabolic risk in males with psoriasis compared to males without psoriasis in our cohort urgently need to be examined in further studies.

In sum, our results emphasize the crucial need for sex-specific analyses, when further studying the effects of psoriasis on metabolic and cardiovascular disorders. As a near-term consequence, there may be a benefit from targeted screening of metabolic and cardiovascular disorders among individuals with psoriasis with a special focus on women.
Acknowledgements
The authors thank the Heinz Nixdorf Foundation, Germany, for their generous support of this study. The study was also supported by the German Ministry of Education and Science [BMBF project: 01EG0401, 01GI0856, 01GI0860, 01GS0820_WB2-C, 01ER1001D, 01GI0205], the Deutsche Forschungsgemeinschaft [DFG project: SI 2368/1-1, SI 2369/1-1, SI 236/10-1, JO 170/8-1, ER155/6-1, KN885/3-1, HO 3314/2-1, HO 3314/2-1, ER155/6-2, 01ER1001D, 01GI0205], the Deutsche Forschungsgemeinschaft project: 01EG0401, 01GI0856, 01GI0860, 01GS0820_WB2-C, their generous support of this study. The study was also supported by the Heinz Nixdorf Foundation, Germany, for their generous support of this study. The authors thank all study participants, the investigative group and the study personnel of the Heinz Nixdorf Recall study.

References
1 Reich K, Thaci D, Mrowietz U, Kamps A, Neureither M, Lugger T. Efficacy and safety of fumaric acid esters in the long-term treatment of psoriasis: a retrospective study (FUTURE). J Dermatol Treat 2008; 19: 403–406.
2 Rachakonda TD, Schupp CW, Armstrong AW. Psoriasis prevalence among adults in the United States. J Am Acad Dermatol 2014; 70: 512–516.
3 Gelfand JM, Weinstein R, Porter SB, Neumann AL, Berlin JA, Margolis DJ. Prevalence and treatment of psoriasis in the United Kingdom: a population-based study. Arch Dermatol 2005; 141: 1537–1541.
4 Davidovici BB, Sattar N, Prinz J et al. Psoriasis and systemic inflammatory diseases: potential mechanistic links between skin disease and comorbid conditions. J Invest Dermatol 2016; 130: 1785–1796.
5 Muller-Ladner U, Alten R, Heiligenhaus A et al. “TRECID”, TNFalpha related chronic inflammatory diseases - a new multiple diseases bridging concept. Dtsch Med Wochenschr 2009; 134: 2132–2136.
6 Kaye JA, Li L, Jick SS. Incidence of risk factors for myocardial infarction and other vascular diseases in patients with psoriasis. Br J Dermatol 2008; 159: 895–902.
7 Miller IM, Ellervik C, Yazdanyar S, Jemec GB. Meta-analysis of psoriasis, cardiovascular disease, and associated risk factors. J Am Acad Dermatol 2013; 69: 1014–1024.
8 Phan C, Sigal ML, Jhafa M et al. Metabolic comorbidities and hypertension in psoriasis patients in France. Comparisons with French national databases. Ann Dermatol Venereol 2016; 143: 264–274.
9 Armesto S, Coto-Segura P, Osuna CG, Cambior PM, Santos-Juanes J. Psoriasis and hypertension: a case-control study. J Eur Acad Dermatol Venereol 2012; 26: 785–788.
10 Cohen AD, Weitzman D, Dreher J. Psoriasis and hypertension: a case-control study. Acta Derm Venereol 2010; 90: 23–26.
11 Qureshi AA, Choi HK, Setty AR, Curhan GC. Psoriasis and the risk of diabetes and hypertension: a prospective study of US female nurses. Arch Dermatol 2009; 145: 379–382.
12 Benson MM, Frishman WH. The heartbreak of psoriasis: a review of cardiovascular risk in patients with psoriasis. Cardiol Rev 2015; 23: 312–316.
13 Coussement AF, Pritzker MR, Duprez DA. Cardiovascular risk and psoriasis: beyond the traditional risk factors. Am J Med 2014; 127: 12–18.
14 Armstrong EL, Harskamp CT, Armstrong AW. Psoriasis and major adverse cardiovascular events: a systematic review and meta-analysis of observational studies. J Am Heart Assoc 2013; 2: e000062.
15 Balci DD, Balci A, Karazincir S et al. Increased carotid artery intima-media thickness and impaired endothelial function in psoriasis. J Eur Acad Dermatol Venereol 2009; 23: 1–6.
16 Gelfand JM, Dommoch ED, Shin DB et al. The risk of stroke in patients with psoriasis. J Invest Dermatol 2009; 129: 2411–2418.
17 Ahlheoff O, Gislasen G, Lamberts M et al. Risk of thromboembolism and fatal stroke in patients with psoriasis and nonvalvular atrial fibrillation: a Danish nationwide cohort study. J Intern Med 2015; 277: 447–455.
18 Samarasekera EJ, Neilson JM, Warren RB, Parnham J, Smith CH. Incidence of cardiovascular disease in individuals with psoriasis: a systematic review and meta-analysis. J Invest Dermatol 2013; 133: 2340–2346.
19 Xu T, Zhang YH. Association of psoriasis with stroke and myocardial infarction: meta-analysis of cohort studies. Br J Dermatol 2012; 167: 1345–1350.
20 Chiang CH, Huang CC, Chan WL et al. Psoriasis and increased risk of ischemic stroke in Taiwan: a nationwide study. J Dermatol 2012; 39: 279–281.
21 Lai YC, Yew YW. Psoriasis as an independent risk factor for cardiovascular disease: an epidemiologic analysis using a national database. J Cutan Med Surg 2016; 20: 327–333.
22 Miller IM, Ellervik C, Zarchi K et al. The association of metabolic syndrome and psoriasis: a population- and hospital-based cross-sectional study. J Eur Acad Dermatol Venereol 2015; 29: 490–497.
23 Miller IM, Skabby T, Ellervik C, Jemec GB. Quantifying cardiovascular disease risk factors in patients with psoriasis: a meta-analysis. Br J Dermatol 2013; 169: 1180–1187.
24 Setty AR, Curhan G, Choi HK. Obesity, waist circumference, weight change, and the risk of psoriasis in women: Nurses’ Health Study II. Arch Intern Med 2007; 167: 1670–1675.
25 Correia B, Torres T. Obesity: a key component of psoriasis. Acta Biomed 2015; 86: 121–129.
26 Duarte GV, Silva LP. Correlation between psoriasis’ severity and waist-to-height ratio. An Bras Dermatol 2014; 89: 846–847.
27 Lee A, Smith SD, Hong E, Garnett S, Fischer G. Association between pediatric psoriasis and waist-to-height ratio in the absence of obesity: a multicenter Australian Study. JAMA Dermatol 2016; 152: 1314–1319.
28 Geldenloove M, Storgaard H, Holst JF, Vilsboll T, Knop FK, Skov L. Patients with psoriasis are insulin resistant. J Am Acad Dermatol 2015; 72: 699–705.
29 Lonnberg AS, Skov L, Skytte KA, Kvikly KO, Pedersen OB, Thomsen SF. Association of psoriasis with the risk for type 2 diabetes mellitus and obesity. JAMA Dermatol 2016; 152: 761–767.
30 Dubreuil M, Rho YH, Man A et al. Diabetes incidence in psoriatic arthritis, psoriasis and rheumatoid arthritis: a UK population-based cohort study. Rheumatology (Oxford) 2014; 53: 346–352.
31 Goldenberg R, Pumphrey Z. Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Can J Diabetes 2013; 37 (Suppl 1): S8–S11.
32 Danielsen K, Wilsaard T, Olsen AO et al. Elevated odds of metabolic syndrome in psoriasis: a population-based study of age and sex differences. Br J Dermatol 2015; 172: 419–427.
33 Rodriguez-Zuniga MJM, Cortez-Franco F, Quijano-Gomero E. Association of psoriasis and metabolic syndrome in Latin America: a systematic review and meta-analysis. Actas Dermosifiliogr 2017; 108: 326–334.
34 Parodi A, Aste N, Calvieri C et al. Metabolic syndrome prevalence in psoriasis: a cross-sectional study in the Italian population. Am J Clin Dermatol 2014; 15: 371–377.
35 Langan SM, Seminara NM, Shin DB et al. Prevalence of metabolic syndrome in patients with psoriasis: a population-based study in the United Kingdom. J Invest Dermatol 2012; 132: 556–562.
36 Malikc Sajihbegovic E, Hadzigradic N, Cucksic AJ. Psoriasis and metabolic syndrome. Med Arch 2015; 69: 85–87.
37 Singh S, Young P, Armstrong AW. Relationship between psoriasis and metabolic syndrome: a systematic review. G Ital Dermatol Venereol 2016; 151: 663–677.
38 Kim SH, Reaven G. Sex differences in insulin resistance and cardiovascular disease risk. J Clin Endocrinol Metab 2013; 98: E1716–E1721.
39 Ervin RB. Prevalence of metabolic syndrome among adults 20 years of age and older, by sex, age, race and ethnicity, and body mass index: United States, 2003–2006. Natl Health Stat Rep, 2009; 1:7.
40 Moran A, Jacobs DR Jr, Steinberger J et al. Changes in insulin resistance and cardiovascular risk during adolescence: establishment of differential risk in males and females. Circulation 2008; 117: 2361–2368.
41 Willeit J, Kiechl S, Egger G et al. The role of insulin in age-related sex differences of cardiovascular risk profile and morbidity. Atherosclerosis 1997; 130: 183–189.
42 Moebus S, Balijepalli C, Losch C et al. Age- and sex-specific prevalence and ten-year risk for cardiovascular disease of all 16 risk factor combinations of the metabolic syndrome - A cross-sectional study. Cardiovasc Diabetol 2010; 9: 34.
43 Schmermund A, Mohlenkamp S, Stang A et al. Assessment of clinically silent atherosclerotic disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middle-aged subjects: rationale and design of the Heinz Nixdorf RECALL Study. Risk Factors, Evaluation of Coronary Calcium and Lifestyle. Am Heart J 2002; 144: 212–218.
44 Stang A, Moebus S, Mohlenkamp S et al. Algorithms for converting random-zero to automated oscillometric blood pressure values, and vice versa. Am J Epidemiol 2006; 164: 85–94.
45 Moebus S, Stang A, Mohlenkamp S et al. Association of impaired fasting glucose and coronary artery calcification as a marker of subclinical atherosclerosis in a population-based cohort—results of the Heinz Nixdorf Recall Study. Diabetologia 2009; 52: 81–89.
46 Moebus S, Hanisch JU, Aidelburger P, Bramlage P, Wasem J, Jockel KH. Impact of 4 different definitions used for the assessment of the prevalence of the Metabolic Syndrome in primary healthcare: the German Metabolic and Cardiovascular Risk Project (GEMCAS). Cardiovasc Diabetol 2007; 6: 22.
47 Lehmann N, Erbel R, Mahabadi AA et al. Accelerated progression of coronary artery calcification in hypertension but not prehypertension. J Hypertens 2016; 34: 2233–2242.
48 Erbel R, Lehmann N, Mohlenkamp S et al. Subclinical coronary atherosclerosis predicts cardiovascular risk in different stages of hypertension: result of the Heinz Nixdorf Recall Study. Hypertension 2012; 59: 44–53.
49 Mancia G, Fagard R, Narkiewicz K et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 2013; 34: 2159–2219.
50 Chobanian AV, Bakris GL, Black HR et al. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 2003; 42: 1206–1252.
51 Sterne JA, Davey Smith G. Sifting the evidence—what’s wrong with significance tests? BMJ 2001; 322: 226–231.
52 Lash TL. Heuristic thinking and inference from observational epidemiology. Epidemiology 2007; 18: 67–72.
53 Puig L. Cardiometabolic comorbidities in psoriasis and psoriatic arthritis. Int J Mol Sci 2017; 19: pii: E58.
54 Yeung H, Takeshita I, Mehta NN et al. Psoriasis severity and the prevalence of major medical comorbidity: a population-based study. JAMA Dermatol 2013; 149: 1173–1179.
55 Augustin M, Glæske G, Radtke MA, Christophers E, Reich K, Schafer I. Epidemiology and comorbidity of psoriasis in children. Br J Dermatol 2010; 162: 633–636.
56 Regitz-Zagrosek V, Kararigas G. Mechanistic pathways of sex differences in cardiovascular disease. Physiol Rev 2017; 97: 1–37.
57 Rochlani Y, Pothineni NV, Mehta JL. Metabolic syndrome: does it differ between women and men? Cardiovasc Drugs Ther 2015; 29: 329–338.
58 Ventura-Clapier R, Dworatzek E, Seeland U et al. Sex in basic research: concepts in the cardiovascular field. Cardiovasc Res 2017; 113: 711–724.
59 Regitz-Zagrosek V, Oertelt-Prigione S, Prescott E et al. Gender in cardiovascular diseases: impact on clinical manifestations, management, and outcomes. Eur Heart J 2016; 37: 24–34.
60 Danielsen K, Olsen AO, Wilsgaard T, Furborg AS. Is the prevalence of psoriasis increasing? A 30-year follow-up of a population-based cohort. Br J Dermatol 2013; 168: 1303–1310.
61 Danielsen K, Duvetorp A, Iversen L et al. Prevalence of psoriasis and psoriatic arthritis and patient perceptions of severity in Sweden, Norway and Denmark: results from the Nordic patient survey of psoriasis and psoriatic arthritis. Acta Derm Venereol 2019; 99: 18–25.
62 Grundy SM. Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 2008; 28: 629–636.
63 Cohen AD, Dreijer J, Shapiro Y et al. Psoriasis and diabetes: a population-based cross-sectional study. J Eur Acad Dermatol Venereol 2008; 22: 585–589.
64 Love TJ, Qureshi AA, Karlson EW, Gelfand JM, Choi HK. Prevalence of the metabolic syndrome in psoriasis: results from the National Health and Nutrition Examination Survey, 2003–2006. Arch Dermatol 2011; 147: 419–424.
65 Jensen P, Thyssen JP, Zachariae C, Hansen PR, Linneberg A, Skov L. Cardiovascular risk factors in subjects with psoriasis: a cross-sectional general population study. Int J Dermatol 2013; 52: 681–683.
66 Olsen AO, Grjibovski A, Magnus P, Tambs K, Harris JR. Psoriasis in Norway as observed in a population-based Norwegian twin panel. Br J Dermatol 2005; 153: 346–351.
67 Gelfand JM, Stern RS, Nijsten T et al. The prevalence of psoriasis in African Americans: results from a population-based study. J Am Acad Dermatol 2005; 52: 23–26.
68 Gelfand JM, Neimann AL, Shin DB, Wang X, Margolis DJ, Troxel AB. Risk of myocardial infarction in patients with psoriasis. JAMA 2006; 296: 1735–1741.