SIMPLE EXTENSIONS OF REFLECTION SUBGROUPS OF PRIMITIVE COMPLEX REFLECTION GROUPS

D. E. TAYLOR

Abstract. If G is a finite primitive complex reflection group, all reflection subgroups of G and their inclusions are determined up to conjugacy. As a consequence, it is shown that if the rank of G is n and if G can be generated by n reflections, then for every set R of n reflections which generate G, every subset of R generates a parabolic subgroup of G.

1. Introduction

The finite irreducible complex reflection groups were classified by Shephard and Todd [6] in 1954. If G is a primitive complex reflection group then, as shown by Shephard and Todd, G is either cyclic, a symmetric group $\text{Sym}(n)$ for $n \geq 5$, or one of 34 groups G_k, where $4 \leq k \leq 37$.

A reflection subgroup of G is a subgroup generated by reflections. A parabolic subgroup is the pointwise stabiliser of a subset X of V. By a fundamental theorem of Steinberg [7] (see also [5, Theorem 9.44]) a parabolic subgroup is a reflection subgroup.

If H is a reflection subgroup of G, the simple extensions of H are the subgroups $\langle H, r \rangle$, where r is a reflection and $r \notin H$.

If \mathcal{H} is a conjugacy class of reflection subgroups of G, a conjugacy class \mathcal{K} is a simple extension of \mathcal{H} if there exists $H \in \mathcal{H}$ and $K \in \mathcal{K}$ such that K is a simple extension of H.

All simple extensions of the conjugacy classes of reflection subgroups of the imprimitive complex reflection groups $G(m, p, n)$ were determined in [8]. The purpose of the present paper is to extend this result to all finite complex reflection groups by describing the simple extensions of the conjugacy classes of reflection subgroups of the groups G_k ($23 \leq k \leq 37$). For the groups G_k of rank 2 ($4 \leq k \leq 22$) every element is a reflection modulo scalars and the simple extensions can be deduced from the results of [5, Chapter 6].

The results are presented in Section 5 in the form of tables. The tables themselves were computed with the aid of the computational algebra system MAGMA [1]. Tables of conjugacy classes of the reflection subgroups of the Coxeter groups of types E_6, E_7, E_8, F_4, H_3 and H_4 can be found in [3]. Tables of conjugacy classes of parabolic subgroups of these groups also appear in [4, Appendix A].

Refer to [5] and [8] for background and terminology not otherwise explained here.

2. Notation

In his thesis Cohen [2] introduced a notation for primitive complex reflection groups of rank at least 3 which extends the standard (Cartan) notation for Coxeter groups. In this notation the complex reflection groups which are not Coxeter groups are labelled $J_3^{(4)}$, $J_3^{(5)}$, K_5, K_6,
L_3, L_4, M_3, N_4 and EN_4. In the tables which follow we shall label the conjugacy classes of reflection subgroups using this notation except that, as in [5], we use O_4 instead of EN_4.

A reflection subgroup which is the direct product of irreducible reflection groups of types T_1, T_2, \ldots, T_k will be labelled $T_1 + T_2 + \cdots + T_k$ and if $T_i = T$ for all i we denote the group by kT.

For the imprimitive reflection subgroups which occur in the tables we use the notation introduced in [5, section 7.5] rather than the Shephard and Todd notation $G(m,p,n)$. That is, $B_n^{(2p)}$ denotes the group $G(2p,p,n)$ and $D_n^{(p)}$ denotes the group $G(p,p,n)$. For consistency with the Cartan names we write B_n instead of $B_n^{(2)}$ and D_n instead of $D_n^{(2)}$. Similarly A_{n-1} denotes the symmetric group $\text{Sym}(n) \cong G(1,1,n)$. However, we use $D_2^{(m)}$ rather than $I_2(m)$ to denote the dihedral group of order $2m$.

For small values of the parameters there are isomorphisms between the groups: $B_2 \cong D_2^{(4)}$, $A_2 \cong D_2^{(3)}$, $A_3 \cong D_3$ and $B_2 \cong D_2^{(4)}$. The tables use the first named symbol for these groups. The cyclic groups of order 2 and 3 are denoted by A_1 and L_1 respectively, and L_2 denotes the Shephard and Todd group G_1.

If there is more than one conjugacy class of reflection subgroups of type T we label the conjugacy classes $T.1$, $T.2$, and so on. There is no significance to the order in which these indices occur.

Given a reflection subgroup H, the parabolic closure of H is the pointwise stabiliser of the space of fixed points of H; it is the smallest parabolic subgroup which contains H. The rank of the parabolic closure equals is equal to the rank of H. For those (conjugacy classes of) reflection subgroups H whose parabolic closure is a simple extension of H we place the parabolic closure first in the list of simple extensions and use a bold font.

The conjugacy classes of parabolic subgroups are labelled with the symbol φ.

3. Main theorem

Theorem 3.1. Suppose that H is a reflection subgroup of the finite primitive complex reflection group G and suppose that K is a simple extension of H. If K is parabolic and the rank of K is greater than the rank of H, then H is parabolic.

Proof. If G is the symmetric group $\text{Sym}(n)$, it is well known—see [8, Corollary 3.9] for a proof—that every reflection subgroup of G is parabolic. Thus in this case there is nothing to prove. If the rank of G is 1, the only parabolic subgroup is G itself and so we may suppose that $G = G_k$ for some k such that $4 \leq k \leq 37$.

If the rank of G is 2 and H is a non-parabolic reflection subgroup of rank 1, then from [5, Table D.1] G contains an element of order 4 whose square generates H. If H has a simple extension of rank 2 which is parabolic, then the simple extension is G and so G is generated by two reflections. The only possibilities for G are G_8 and G_9 but from [5, Section 6.3] neither group can be generated by two reflections one of which is the square of a reflection of order 4.

If the rank of G is at least 3, the result follows from an inspection of the tables in Section 5.

Corollary 3.2. If G is a primitive reflection group of rank n and if R is a set of n reflections which generate G, then for any subset S of R, the subgroup generated by S is a parabolic subgroup of G.

□
4. THE MAGMA CODE

In order to construct the complex reflection group \(W = G_n \), where \(4 \leq n \leq 37 \), use the MAGMA code

```magma
roots, coroots, rho, W, J := ComplexRootDatum(n);
```

In addition to \(W \) this function returns a set of roots, a set of coroots, a bijection \(\rho \) from \(\text{roots} \) to \(\text{coroots} \) and a matrix \(J \) which defines a \(W \)-invariant positive definite hermitian form. The reflection \(r \) with root \(a \) and coroot \(\rho(a) \) can be obtained via the code

```magma
r := PseudoReflection(a, rho(a));
```

Given a reflection subgroup \(H \) of \(W \), we create a sequence \(\text{extn} \) of simple extensions of \(H \) (up to conjugacy):

1. Let \(\text{orbreps} \) be a set of representatives for the orbits of the normaliser of \(H \) in \(W \) on the reflections which do not belong to \(H \).

2. For each reflection \(r \) in \(\text{orbreps} \) construct the simple extension

\[
G := \text{sub} < W | H, r >;
\]

3. If \(G \) is not conjugate in \(W \) to any simple extension already constructed, append \(G \) to \(\text{extn} \).

Identification of the type of a reflection subgroup \(H \) is carried out as follows.

1. Compute the list of indecomposable components \(L_1, L_2, \ldots, L_k \) of the root system \(L \) of \(H \); that is, \(L \) is the union of the \(L_i \), the \(L_i \) are pairwise orthogonal and the reflection subgroup of \(H \) corresponding to \(L_i \) is irreducible (as a reflection group).

2. Compute the standard name of each indecomposable component of \(H \). This is facilitated by the observation that the irreducible reflection groups \(K \) which occur in the tables are uniquely determined by the pair of integers \((n,m)\), where \(n \) is the order of \(K \) and \(m \) is the size of its line system.

3. An associative array \(\text{refgroup} \) is used to map the standard name of a reflection subgroup to the actual subgroup.

\[
\text{refgroup} := \text{AssociativeArray(Parent(""));}
\]

The full implementation of the MAGMA code is available at

http://www.maths.usyd.edu.au/u/don/

in the file \(\text{subsystems.m} \). The function \text{showTable} creates the data which is the basis for the tables in Section 5. For example

```magma
load "subsystems.m";
showTable(23);
```

displays the data

\[
\begin{array}{c|c|c}
P & A1 & [A1A1, A2, D2(5)] \\
P & A1A1 & [H3, A1A1A1] \\
P & A2 & [H3] \\
P & D2(5) & [H3] \\
P & H3 & [] \\
N & A1A1A1 & [H3] \\
\end{array}
\]
5. The tables

Table 1. Reflection subgroup classes of $G_{23} = H_3$

Class	Simple extensions
\varnothing	A_1
\varnothing	$D_2^{(5)}$, A_2, $2A_1$
\varnothing	$2A_1$
\varnothing	H_3, $3A_1$
\varnothing	A_2
\varnothing	H_3
\varnothing	$D_2^{(5)}$
\varnothing	H_3
\varnothing	$3A_1$
\varnothing	H_3

Table 2. Reflection subgroup classes of $G_{24} = J_3^{(4)}$

Class	Simple extensions
\varnothing	A_1
\varnothing	B_2, A_2, $2A_1.1$, $2A_1.2$
$2A_1.1$	B_2, $B_3.1$, $A_1 + B_2$, $A_3.1$, $3A_1.1$
$2A_1.2$	B_2, $B_3.2$, $A_1 + B_2$, $A_3.2$, $3A_1.2$
\varnothing	A_2
\varnothing	$J_3^{(4)}$, $B_3.1$, $B_3.2$, $A_3.1$, $A_3.2$
\varnothing	B_2
\varnothing	$J_3^{(4)}$, $B_3.1$, $B_3.2$, $A_1 + B_2$
$3A_1.1$	$B_3.1$, $A_1 + B_2$
$3A_1.2$	$B_3.2$, $A_1 + B_2$
$A_1 + B_2$	$J_3^{(4)}$, $B_3.1$, $B_3.2$
$A_3.1$	$J_3^{(4)}$, $B_3.1$
$A_3.2$	$J_3^{(4)}$, $B_3.2$
$B_3.1$	$J_3^{(4)}$
$B_3.2$	$J_3^{(4)}$

Table 3. Reflection subgroup classes of $G_{25} = L_3$

Class	Simple extensions
\varnothing	L_1
\varnothing	L_2, $2L_1$
\varnothing	$2L_1$
\varnothing	L_3, $3L_1$
\varnothing	L_2
\varnothing	L_3
\varnothing	$3L_1$
\varnothing	L_3
Table 4. Reflection subgroup classes of $G_{26} = M_3$

Class	Simple extensions
\varnothing L_1	$L_2, 2L_1, B_2^{(3)}, A_1 + L_1$
\varnothing A_1	$B_2^{(3)}, A_1 + L_1, A_2$
L_2	$M_3, L_3, A_2 + L_1$
$B_2^{(3)}$	$M_3, B_3^{(3)}, B_2^{(3)} + L_1$
$A_1 + L_1$	$M_3, B_3^{(3)}, B_2^{(3)} + L_1, A_1 + L_2, A_2 + L_1$
$D_3^{(3)}$	$B_3^{(3)}$
$3L_1$	$L_3, B_2^{(3)} + L_1$
$B_2^{(3)} + L_1$	$M_3, B_3^{(3)}$
$A_2 + L_1$	$M_3, B_3^{(3)}, B_2^{(3)} + L_1$
$B_3^{(3)}$	M_3
L_3	M_3
$A_1 + L_2$	M_3

Table 5. Reflection subgroup classes of $G_{27} = J_3^{(5)}$

Class	Simple extensions
\varnothing A_1	$B_2, D_2^{(5)}, A_2, 2A_1, 2A_2, 2A_1, 1, 2A_1, 2$
$2A_1, 1$	$B_2, H_3, 1, B_3, 1, A_1 + B_2, A_3, 1, 3A_1, 1$
$2A_1, 2$	$B_2, H_3, 2, B_3, 2, A_1 + B_2, A_3, 2, 3A_1, 2$
$A_2, 1$	$J_3^{(5)}, H_3, 2, B_3, 1, D_3^{(3)}, A_3, 1$
$A_2, 2$	$J_3^{(5)}, H_3, 1, B_3, 2, D_3^{(3)}, A_3, 2$
D_2	$J_3^{(5)}, H_3, 1, H_3, 2$
B_2	$J_3^{(5)}, B_3, 1, B_3, 2, A_1 + B_2$
$3A_1, 1$	$H_3, 1, B_3, 1, A_1 + B_2$
$3A_1, 2$	$H_3, 2, B_3, 2, A_1 + B_2$
$A_3, 1$	$J_3^{(5)}, B_3, 1$
$A_3, 2$	$J_3^{(5)}, B_3, 2$
$A_1 + B_2$	$J_3^{(5)}, B_3, 1, B_3, 2$
$H_3, 1$	$J_3^{(5)}$
$H_3, 2$	$J_3^{(5)}$
$B_3, 1$	$J_3^{(5)}$
$B_3, 2$	$J_3^{(5)}$
$D_3^{(3)}$	$J_3^{(5)}$
Table 6. Reflection subgroup classes of $G_{28} = F_4$

Class	Simple extensions	
\varnothing	$A_1.1$	B_2, $A_2.1$, $2A_1.1$, $2A_1.3$
\varnothing	$A_1.2$	B_2, $A_2.2$, $2A_1.2$, $2A_1.3$
\varnothing	$2A_1.1$	B_2, $(A_1 + B_2).2$, $A_3.1$, $3A_1.1$, $3A_1.2$
\varnothing	$2A_1.2$	B_2, $(A_1 + B_2).1$, $A_3.2$, $3A_1.3$, $3A_1.4$
\varnothing	$2A_1.3$	$B_3.1$, $B_3.2$, $(A_1 + B_2).2$, $(A_1 + B_2).1$, $(A_1 + A_2).1$, $(A_1 + A_2).2$, $3A_1.2$, $3A_1.3$
\varnothing	$A_2.1$	$B_3.1$, $A_3.1$, $(A_1 + A_2).1$
\varnothing	$A_2.2$	$B_3.2$, $A_3.2$, $(A_1 + A_2).2$
\varnothing	B_2	$B_3.1$, $B_3.2$, $(A_1 + B_2).1$, $(A_1 + B_2).2$
$A_3.1$	$B_3.1$, $B_4.1$, $D_4.1$, $(A_1 + A_3).1$	
$A_3.2$	$B_3.2$, $B_4.2$, $D_4.2$, $(A_1 + A_3).2$	
$3A_1.1$	$(A_1 + B_2).2$, $(2A_1 + B_2).1$, $D_4.1$, $4A_1.1$	
$3A_1.2$	$B_3.1$, $(A_1 + B_3).2$, $(A_1 + B_2).1$, $(2A_1 + B_2).1$, $(A_1 + A_3).1$, $4A_1.2$	
$3A_1.3$	$B_3.2$, $(A_1 + B_3).1$, $(A_1 + B_2).2$, $(2A_1 + B_2).2$, $(A_1 + A_3).2$, $4A_1.2$	
$3A_1.4$	$(A_1 + B_2).1$, $(2A_1 + B_2).2$, $D_4.2$, $4A_1.3$	
$(A_1 + B_2).1$	$B_3.1$, $B_4.2$, $2B_2$, $(A_1 + B_3).1$, $(2A_1 + B_2).2$	
$(A_1 + B_2).2$	$B_3.2$, $B_4.1$, $2B_2$, $(A_1 + B_3).2$, $(2A_1 + B_2).1$	
\varnothing	$(A_1 + A_2).1$	F_4, $B_4.1$, $(A_1 + B_3).1$, $2A_2$, $(A_1 + A_3).1$
\varnothing	$(A_1 + A_2).2$	F_4, $B_4.2$, $(A_1 + B_3).2$, $2A_2$, $(A_1 + A_3).2$
\varnothing	$B_3.1$	F_4, $B_4.1$, $(A_1 + B_3).1$
\varnothing	$B_3.2$	F_4, $B_4.2$, $(A_1 + B_3).2$
$4A_1.1$	$D_4.1$, $(2A_1 + B_2).1$	
$4A_1.2$	$(2A_1 + B_2).1$, $(2A_1 + B_2).2$, $(A_1 + B_3).1$, $(A_1 + B_3).2$	
$4A_1.3$	$B_4.2$, $(2A_1 + B_2).2$	
$D_4.1$	$B_4.1$	
$D_4.2$	$B_4.2$	
$(2A_1 + B_2).1$	$2B_2$, $B_4.1$, $(A_1 + B_3).2$	
$(2A_1 + B_2).2$	$2B_2$, $B_4.2$, $(A_1 + B_3).1$	
$2B_2$	$B_4.1$, $B_4.2$	
$(A_1 + A_3).1$	F_4, $B_4.1$, $(A_1 + B_3).1$	
$(A_1 + A_3).2$	F_4, $B_4.2$, $(A_1 + B_3).2$	
$(A_1 + B_3).1$	F_4, $B_4.1$	
$(A_1 + B_3).2$	F_4, $B_4.2$	
$B_4.1$	F_4	
$B_4.2$	F_4	
$2A_2$	F_4	
Table 7. Reflection subgroup classes of $G_{29} = N_4$

Class	Simple extensions	
\varnothing	A_1	B_2, A_2, $2A_1.1$, $2A_1.2$
\varnothing	$2A_1.1$	B_2, $A_1 + B_2$, $A_3.1$, $A_3.4$, $3A_1.1$, $3A_1.2$
\varnothing	$2A_1.2$	B_3, $A_1 + B_2$, $A_1 + A_2$, $A_3.2$, $A_3.3$, $3A_1.2$
\varnothing	A_2	B_3, $D_3^{(4)}$, $A_1 + A_2$, $A_3.1$, $A_3.2$, $A_3.3$, $A_3.4$
\varnothing	B_2	B_3, $D_3^{(4)}$, $A_1 + B_2$
\varnothing	$A_3.1$	$3A_1.1$, $A_1 + B_2$, $2A_1 + B_2$, $D_4.1$, $4A_1.1$
\varnothing	$3A_1.2$	B_3, $A_1 + B_2$, $A_1 + B_3$, $2A_1 + B_2$, $D_4.2$, $4A_1.2$, $A_1 + A_3$
\varnothing	$A_1 + B_2$	B_3, $2B_2$, B_4, $A_1 + B_3$, $2A_1 + B_2$, $D_4^{(4)}$
\varnothing	$A_3.4$	$D_3^{(4)}$, B_4, $D_4.1$, $D_4.2$, $D_4^{(4)}$
\varnothing	$A_3.2$	N_4, $D_4.2$, $D_4^{(4)}$, $A_4.1$
\varnothing	$A_3.3$	N_4, $D_4.2$, $D_4^{(4)}$, $A_4.2$
\varnothing	$A_1 + A_2$	N_4, B_4, $A_1 + B_3$, $A_1 + A_3$, $A_4.1$, $A_4.2$
\varnothing	B_3	N_4, B_4, $A_1 + B_3$
\varnothing	$D_3^{(4)}$	N_4, $D_4^{(4)}$
\varnothing	$4A_1.1$	$D_4.1$, $2A_1 + B_2$
\varnothing	$4A_1.2$	$D_4.2$, $2A_1 + B_2$, $A_1 + B_3$
\varnothing	$2A_1 + B_2$	B_4, $A_1 + B_3$, $D_4^{(4)}$, $2B_2$
\varnothing	$2B_2$	B_4, $D_4^{(4)}$
\varnothing	$D_4.1$	B_4, $D_4^{(4)}$
\varnothing	$D_4.2$	N_4, $D_4^{(4)}$
\varnothing	$A_1 + A_3$	N_4, $A_1 + B_3$, B_4
\varnothing	$A_1 + B_3$	N_4, B_4
\varnothing	$A_4.1$	N_4
\varnothing	$A_4.2$	N_4
\varnothing	B_4	N_4
\varnothing	$D_4^{(4)}$	N_4
Table 8. Reflection subgroup classes of $G_{30} = H_4$

Class	Simple extensions
φ	A_1, $D_2^{(5)}$, A_2, $2A_1$
φ	$2A_1$, H_3, $A_1 + D_2^{(5)}$, $A_1 + A_2$, A_3, $3A_1$
φ	A_2, H_3, $A_1 + A_2$, A_3
φ	$D_2^{(5)}$, H_3, $A_1 + D_2^{(5)}$
$3A_1$	H_3, $A_1 + H_3$, D_4, $4A_1$
φ	A_3, H_4, D_4, A_4
φ	$A_1 + A_2$, H_4, $A_1 + H_3$, A_4, $2A_2$
φ	$A_1 + D_2^{(5)}$, H_4, $A_1 + H_3$, $2D_2^{(5)}$
φ	H_3, H_4, $A_1 + H_3$

Class	Simple extensions (ranks 1, 2 and 3)
φ	A_1, B_2, A_2, $2A_1.1$, $2A_1.2$
$2A_1.2$	B_2, $(A_1 + B_2).1$, $A_3.2$, $3A_1.1$, $3A_1.2$
B_2	$B_2^{(4)}$, B_3, $D_3^{(4)}$, $(A_1 + B_2).2$, $(A_1 + B_2)^{2}$
φ	$2A_1.1$, B_3, $(A_1 + B_2).1$, $(A_1 + B_2).2$, $A_1 + A_2$, $A_3.1$, $3A_1.1$
φ	A_2, B_3, $D_3^{(4)}$, $A_1 + A_2$, $A_3.1$, $A_3.2$
φ	$B_2^{(4)}$, $B_3^{(4)}$, $A_1 + B_2^{(4)}$
$A_3.2$	B_3, $D_3^{(4)}$, $B_4.1$, $D_4^{(4)}$, $D_4.1$, $D_4.2$, $A_1 + A_3$
$3A_1.1$	B_3, $(A_1 + B_2).2$, $D_4.1$, $A_1 + B_3$, $(A_1 + A_3)$, $(2A_1 + B_2).1$, $(2A_1 + B_2)^{2}$
$3A_1.2$	B_3, $A_1 + B_2^{(4)}$, $B_4.1$, $2B_2.1$, $2B_2.2$, $D_4^{(4)}$, $A_1 + B_3$, $(2A_1 + B_2).1$
$(A_1 + B_2).1$	$B_3^{(4)}$, $D_3^{(4)}$, $B_4.1$, $B_4.2$, N_4, F_4, $B_4.1$, $B_4.2$, $A_1 + B_3$
B_3	$B_3^{(4)}$, N_4, $D_4^{(4)}$, $A_1 + D_3^{(4)}$
$D_3^{(4)}$	$B_3^{(4)}$, N_4, $D_4^{(4)}$, $A_1 + D_3^{(4)}$
φ	$A_3.1$, N_4, $D_4^{(4)}$, $A_1 + A_2$, $A_4.2$
φ	$A_1 + A_2$, N_4, F_4, $B_4.1$, $B_4.2$, $A_1 + B_3$, $A_1 + D_3^{(4)}$, $A_1 + A_3$, $2A_2$, $A_4.1$, $A_4.2$
φ	$B_3^{(4)}$, O_4, $B_4^{(4)}$, $A_1 + B_3^{(4)}$
Table 10. Reflection subgroup classes of $G_{31} = O_4$ (continued)

Class	Simple extensions (rank 4)
$4A_{1.1}$	$A_1 + B_3, (2A_1 + B_2).1, (2A_1 + B_2).2, D_{4.1}$
$4A_{1.2}$	$D_{4.2}, (2A_1 + B_2).1$
$(2A_1 + B_2).1$	$B_{4.1}, D_4^{(4)}, A_1 + B_3, 2A_1 + B_2^{(4)}, 2B_2.1, 2B_2.2$
$(2A_1 + B_2).2$	$A_1 + B_3, 2B_2.2, B_{4.2}, 2A_1 + B_2^{(4)}$
$A_1 + A_3$	$N_4, F_4, B_{4.1}, B_{4.2}, A_1 + B_3^{(4)}, A_1 + B_3$
$A_1 + B_3$	$N_4, F_4, A_1 + B_3^{(4)}, B_{4.1}, B_{4.2}$
$2B_{2.1}$	$B_{4.1}, D_4^{(4)}, B_2 + B_2^{(4)}$
$2B_{2.2}$	$B_{4.2}, B_4^{(4)}, B_2 + B_2^{(4)}$
$(2A_1 + B_2^{(4)})$	$B_4^{(4)}, A_1 + B_3^{(4)}, B_2 + B_2^{(4)}$
$B_2 + B_2^{(3)}$	$B_4^{(4)}, 2B_2^{(4)}$
$D_{4.1}$	$N_4, B_{4.2}, D_4^{(4)}$
$D_{4.2}$	$B_{4.1}, D_4^{(4)}$
$2B_2^{(4)}$	$B_4^{(4)}$
$D_4^{(3)}$	$N_4, B_4^{(4)}$
$B_{4.1}$	$N_4, B_4^{(4)}, F_4$
$B_{4.2}$	$O_4, B_4^{(4)}$
$A_1 + D_3^{(4)}$	$O_4, B_4^{(4)}, A_1 + B_3^{(4)}$
$A_1 + B_3^{(4)}$	$O_4, B_4^{(4)}$
$A_{4.1}$	O_4, N_4
$A_{4.2}$	O_4, N_4
$2A_2$	O_4, F_4
$B_4^{(4)}$	O_4
F_4	O_4
N_4	O_4

Table 11. Reflection subgroup classes of $G_{32} = L_4$

Class	Simple extensions
\varnothing	$L_1, L_2, 2L_1$
\varnothing	$2L_1$
\varnothing	L_2
\varnothing	$3L_1$
\varnothing	$L_3, L_1 + L_2, 3L_1$
\varnothing	$L_4, L_1 + L_2$
\varnothing	$4L_1$
\varnothing	$L_3, L_1 + L_3, 4L_1$
\varnothing	$L_4, L_1 + L_3$
\varnothing	$L_1 + L_2$
\varnothing	$L_4, L_1 + L_3, 2L_2$
\varnothing	$L_1 + L_3$
\varnothing	L_4
\varnothing	$2L_2$
\varnothing	L_4
Table 12. Reflection subgroup classes of $G_{33} = K_5$

Class	Simple extensions
\varnothing A1	A_2, $2A_1$
\varnothing 2A1	$A_1 + A_2$, A_3, $3A_1$
\varnothing A2	$D_3^{(3)}$, $A_1 + A_2$, A_3
\varnothing A1 + A2	$D_4^{(3)}$, $A_1 + A_3$, A_4, $2A_2$
\varnothing A3	D_4, $D_4^{(3)}$, $A_1 + A_3$, A_4
\varnothing 3A1	D_4, $A_1 + A_3$, $4A_1$
\varnothing D4	$D_4^{(3)}$, $D_4^{(3)}$
4A1	D_4, $A_1 + D_4$, $5A_1$
2A2	$D_4^{(3)}$, A_5
\varnothing A1 + A3	K_5, $A_1 + D_4$, A_5
\varnothing D4	K_5, $A_1 + D_4$
\varnothing A4	K_5, A_5
\varnothing D4	K_5
5A1	$A_1 + D_4$
A1 + D4	K_5
A5	K_5

Table 13. Reflection subgroup classes of $G_{34} = K_6$

Class	Simple extensions (ranks 1 to 4)
\varnothing A1	A_2, $2A_1$
\varnothing 2A1	$A_1 + A_2$, A_3, $3A_1$
\varnothing A2	$D_3^{(3)}$, $A_1 + A_2$, A_3
\varnothing A1 + A2	$D_4^{(3)}$, $A_1 + D_3^{(3)}$, $A_1 + A_3$, $2A_1 + A_2$, A_4, $2A_2.1$, $2A_2.2$
\varnothing A3	A_4, D_4, $D_4^{(3)}$, $A_1 + A_3$
\varnothing 3A1	A_4, $A_1 + A_3$, $2A_1 + A_2$, $4A_1$
\varnothing D4	$D_4^{(3)}$, $D_4^{(3)}$, $A_1 + D_3^{(3)}$
4A1	D_4, $A_1 + D_4$, $2A_1 + A_3$, $5A_1$
2A2.2	$D_4^{(3)}$, $A_2 + D_3^{(3)}$, $A_1 + 2A_2$, $A_5.2$
\varnothing 2A2.2	$D_5^{(3)}$, $A_2 + D_3^{(3)}$, $A_2 + A_3$, $A_5.1$, $A_5.3$
\varnothing A1 + A3	K_5, D_5, $A_1 + D_3^{(3)}$, $A_1 + D_4$, $A_2 + A_3$, $A_1 + A_4$, $2A_1 + A_3$, $A_5.1$, $A_5.2$, $A_5.3$
\varnothing 2A1 + A2	D_5, $A_1 + D_4^{(3)}$, $A_2 + A_3$, $A_1 + A_4$, $A_1 + 2A_2$, $2A_1 + A_3$
\varnothing A1 + D4	$D_5^{(3)}$, $A_2 + D_3^{(3)}$, $A_1 + D_4^{(3)}$
\varnothing D4	D_5, D_5, $A_1 + D_4$
\varnothing A4	K_5, D_5, $D_5^{(3)}$, $A_1 + A_4$, $A_5.1$, $A_5.2$, $A_5.3$
\varnothing D4	K_5, $D_5^{(3)}$, $A_1 + D_4^{(3)}$
Table 14. Reflection subgroup classes of $G_{34} = K_6$ (continued)

Class	Simple extensions (ranks 5 and 6)
$5A_1$	$A_1 + D_4$, $2A_1 + D_4$, $6A_1$
$A_2 + D_3^{(3)}$	$D_5^{(3)}$, $D_6^{(3)}$, $2D_3^{(3)}$, $A_2 + D_4^{(3)}$
$A_1 + D_4$	K_5, $A_1 + K_5$, D_6, $2A_1 + D_4$
$2A_1 + A_3$	D_5, $A_1 + K_5$, D_6, $2A_1 + D_4$, $A_1 + A_5$, $2A_3$
$A_1 + 2A_2$	$A_1 + D_4^{(3)}$, E_6, $A_2 + D_4^{(3)}$, $A_1 + A_5$, $3A_2$
$A_3.2$	K_5, E_6, $D_6^{(3)}$, $A_1 + A_5$
$\varphi A_5.1$	K_6, D_6, $D_6^{(3)}$, $A_6.1$
$\varphi A_5.3$	K_6, D_6, $D_6^{(3)}$, $A_6.2$
$\varphi A_2 + A_3$	K_6, D_6, $D_6^{(3)}$, $A_2 + D_4^{(3)}$, $2A_3$, $A_6.1$, $A_6.2$
$\varphi A_1 + A_4$	K_6, E_6, $A_1 + K_5$, $A_1 + A_5$, $A_6.1$, $A_6.2$
$\varphi A_1 + D_4^{(3)}$	K_6, $A_1 + K_5$, $D_6^{(3)}$, $A_2 + D_4^{(3)}$
φD_5	K_6, E_6, D_6
$\varphi D_5^{(3)}$	K_6, $D_6^{(3)}$
φK_5	K_6, $A_1 + K_5$
$6A_1$	$2A_1 + D_4$
$2A_1 + D_4$	$A_1 + K_5$, D_6
$3A_2$	E_6, $A_2 + D_4^{(3)}$
$2D_3^{(3)}$	$D_6^{(3)}$
$A_1 + A_5$	K_6, $A_1 + K_5$, E_6
$A_2 + D_4^{(3)}$	K_6, $D_6^{(3)}$
$2A_3$	K_6, D_6
$A_6.1$	K_6
$A_6.2$	K_6
$A_1 + K_5$	K_6
$D_6^{(3)}$	K_6
D_6	K_6
E_6	K_6
Table 15. Reflection subgroup classes of $G_{35} = E_6$

Class	Simple extensions
φA_1	A_2, $2A_1$
$\varphi 2A_1$	$A_1 + A_2$, A_3, $3A_1$
φA_2	$A_1 + A_2$, A_3
$\varphi A_1 + A_2$	$2A_1 + A_2$, $A_1 + A_3$, A_4, $2A_2$
φA_3	D_4, $A_1 + A_3$, A_4
$\varphi 3A_1$	D_4, $A_1 + A_3$, $2A_1 + A_2$, $4A_1$
$4A_1$	D_4, $2A_1 + A_3$
$\varphi 2A_1 + A_2$	D_5, $A_1 + A_4$, $2A_1 + A_3$, $A_1 + 2A_2$
$\varphi A_1 + A_3$	D_5, $A_1 + A_4$, $2A_1 + A_3$, A_5
φA_4	D_5, $A_1 + A_4$, A_5
$\varphi 2A_2$	$A_1 + 2A_2$, A_5
φD_4	D_5
$\varphi A_1 + A_3$	D_5, $A_1 + A_5$
$\varphi A_1 + 2A_2$	E_6, $A_1 + A_5$, $3A_2$
φA_4	E_6, $A_1 + A_5$
φA_5	E_6, $A_1 + A_5$
φD_5	E_6
$A_1 + A_5$	E_6
$3A_2$	E_6
Table 16. Reflection subgroup classes of $G_{36} = E_7$

Class	Simple extensions (ranks 1 to 5)
\varnothing A1	$2A_1$, A_2
\varnothing 2A1	$A_1 + A_2$, A_3, $3A_{1.1}$, $3A_{1.2}$
\varnothing A2	A_3, $A_1 + A_2$
\varnothing A1 + A2	$(A_1 + A_3).1$, $(A_1 + A_3).2$, $2A_1 + A_2$, A_4, $2A_2$
\varnothing A3	D_4, $(A_1 + A_3).1$, $(A_1 + A_3).2$, A_4
\varnothing 3A_{1.1}	D_4, $2A_1 + A_2$, $(A_1 + A_3).1$, $4A_{1.1}$, $4A_{1.2}$
\varnothing 3A_{1.2}	$(A_1 + A_3).2$, $4A_{1.2}$
4A_{1.1}	D_4, $(2A_1 + A_3).1$, $5A_1$
\varnothing 4A_{1.2}	$A_1 + D_4$, $(2A_1 + A_3).2$, $3A_1 + A_2$, $5A_1$
\varnothing (A1 + A3).1	D_5, $A_1 + D_4$, $A_1 + A_4$, $A_2 + A_3$, $(2A_1 + A_3).1$, $(2A_1 + A_3).2$, $A_5.1$
\varnothing (A1 + A3).2	$A_1 + D_4$, $(2A_1 + A_3).2$, $A_5.2$
\varnothing 2A1 + A2	D_5, $A_1 + A_4$, $A_1 + 2A_2$, $A_2 + A_3$, $3A_1 + A_2$, $(2A_1 + A_3).1$, $(2A_1 + A_3).2$
\varnothing A4	D_5, $A_1 + A_4$, $A_5.1$, $A_5.2$
\varnothing 2A2	$A_2 + A_3$, $A_1 + 2A_2$, $A_5.1$, $A_5.2$
\varnothing D4	D_5, $A_1 + D_4$
5A1	$A_1 + D_4$, $2A_1 + D_4$, $3A_1 + A_3$, $6A_1$
(2A1 + A3).1	D_5, $2A_1 + D_4$, $3A_1 + A_3$, $(A_1 + A_5).1$, $2A_3$
\varnothing (2A1 + A3).2	D_6, $A_1 + D_5$, $2A_1 + D_4$, $(A_1 + A_5).2$, $A_1 + A_2 + A_3$, $3A_1 + A_3$
\varnothing A1 + D4	D_6, $A_1 + D_5$, $2A_1 + D_4$
\varnothing A1 + A4	E_6, $A_2 + A_4$, $A_1 + D_5$, A_6, $(A_1 + A_5).1$, $(A_1 + A_5).2$
\varnothing A2 + A3	D_6, A_6, $A_1 + A_2 + A_3$, $A_2 + A_4$, $2A_3$
\varnothing A1 + 2A2	E_6, $A_1 + A_2 + A_3$, $(A_1 + A_5).1$, $(A_1 + A_5).2$, $A_2 + A_4$, $3A_2$
\varnothing 3A1 + A2	$A_1 + D_5$, $3A_1 + A_3$, $A_1 + A_2 + A_3$
\varnothing A5.1	E_6, A_6, D_6, $(A_1 + A_5).1$
\varnothing A5.2	D_6, $(A_1 + A_5).2$
\varnothing D5	E_6, D_6, $A_1 + D_5$
Table 17. Reflection subgroup classes of $G_{36} = E_7$ (continued)

Class	Simple extensions (ranks 6 and 7)
$6A_1$	$2A_1 + D_4$, $3A_1 + D_4$, $7A_1$
$2A_1 + D_4$	D_6, $A_1 + D_6$, $3A_1 + D_4$
$2A_3$	D_6, A_7, $A_1 + 2A_3$
$3A_1 + A_3$	$A_1 + D_5$, $A_1 + D_6$, $A_1 + 2A_3$, $3A_1 + D_4$
$3A_2$	E_6, $A_2 + A_5$, $(A_1 + A_5).1$
$A_1 + 2A_3$	E_7, $A_2 + A_5$, $A_1 + D_6$
$A_1 + D_5$	E_7, $A_1 + D_6$
$A_2 + A_4$	E_7, $A_2 + A_5$, A_7
$A_1 + A_2 + A_3$	E_7, $A_1 + D_6$, $A_2 + A_5$, $A_1 + 2A_3$
A_6	E_7, A_7
D_6	E_7, $A_1 + D_6$
E_6	E_7
$7A_1$	$3A_1 + D_4$
$3A_1 + D_4$	$A_1 + D_6$
$A_1 + 2A_3$	E_7, $A_1 + D_6$
$A_1 + D_6$	E_7
$A_2 + A_5$	E_7
A_7	E_7

Table 18. Reflection subgroup classes of $G_{37} = E_8$

Class	Simple extensions (ranks 1 to 4)
A_1	$2A_1$, A_2
$2A_1$	$A_1 + A_2$, $3A_1$, A_3
$2A_2$	$A_1 + A_2$, A_3
$A_1 + A_2$	$2A_1 + A_2$, $2A_2$, A_4, $A_1 + A_3$
A_3	D_4, A_4, $A_1 + A_3$
$3A_1$	D_4, $2A_1 + A_2$, $A_1 + A_3$, $4A_1.1$, $4A_1.2$
$4A_1.1$	D_4, $(2A_1 + A_3).1$, $5A_1$
$4A_1.2$	$A_1 + D_4$, $(2A_1 + A_3).2$, $3A_1 + A_2$, $5A_1$
$2A_1 + A_2$	D_5, $A_1 + A_4$, $A_1 + 2A_2$, $A_2 + A_3$, $3A_1 + A_2$, $(2A_1 + A_3).1$, $(2A_1 + A_3).2$
A_4	D_5, $A_1 + A_4$, A_5
$A_1 + A_3$	D_5, $A_1 + D_4$, $A_1 + A_4$, $A_2 + A_3$, A_5, $(2A_1 + A_3).1$, $(2A_1 + A_3).2$
D_4	D_5, $A_1 + D_4$
Table 19. Reflection subgroup classes of $G_{37} = E_8$ (continued)

Class	Simple extensions (ranks 5 and 6)
$5A_1$	$A_1 + D_4$, $3A_1 + A_3$, $2A_1 + D_4$, $4A_1 + A_2$, $6A_1$
$(2A_1 + A_3).1$	D_5, $(A_1 + A_5).1$, $2A_3.1$, $2A_1 + D_4$, $3A_1 + A_3$
$\varnothing (2A_1 + A_3).2$	D_6, $(A_1 + A_5).2$, $2A_3.2$, $2A_1 + D_4$, $3A_1 + A_3$, $A_1 + D_5$, $2A_1 + A_4$, $A_1 + A_2 + A_3$
$\varnothing A_1 + A_4$	E_6, $A_1 + D_5$, $(A_1 + A_5).1$, $(A_1 + A_5).2$, $A_2 + A_4$, $2A_1 + A_4$, A_6
$\varnothing A_1 + 2A_2$	E_6, $(A_1 + A_5).1$, $(A_1 + A_5).2$, $A_2 + A_4$, $A_1 + A_2 + A_3$, $2A_1 + 2A_2$, $3A_2$
$\varnothing A_2 + A_3$	D_6, $A_2 + D_4$, A_6, $A_2 + A_4$, $2A_3.1$, $2A_3.2$, $A_1 + A_2 + A_3$
$\varnothing 3A_1 + A_2$	$A_1 + D_5$, $A_2 + D_4$, $A_1 + A_2 + A_3$, $2A_1 + A_4$, $3A_1 + A_3$, $2A_1 + 2A_2$, $4A_1 + A_2$
$\varnothing D_5$	E_6, D_6, $A_1 + D_5$
$\varnothing A_5$	E_6, D_6, A_6, $(A_1 + A_5).1$, $(A_1 + A_5).2$
$\varnothing A_1 + D_4$	D_6, $A_2 + D_4$, $A_1 + D_5$, $2A_1 + D_4$
$6A_1$	$2A_1 + D_4$, $3A_1 + D_4$, $4A_1 + A_3$, $7A_1$
$2A_1 + D_4$	D_6, $A_1 + D_6$, $A_3 + D_4$, $2A_1 + D_5$, $3A_1 + D_4$
$3A_1 + A_3$	$A_1 + D_5$, $2A_1 + A_5$, $A_1 + D_6$, $2A_1 + D_5$, $A_3 + D_4$, $A_1 + 2A_3$, $3A_1 + D_4$, $2A_1 + A_2 + A_3$, $4A_1 + A_3$
$4A_1 + A_2$	$A_2 + D_4$, $2A_1 + D_5$, $2A_1 + A_2 + A_3$, $4A_1 + A_3$
$3A_2$	E_6, $A_2 + A_5$, $A_1 + 2A_2$
$2A_3.1$	D_6, $A_7.1$, $A_3 + D_4$, $A_1 + 2A_3$
$(A_1 + A_5).1$	E_6, $A_7.1$, $A_1 + D_6$, $2A_1 + A_5$
$\varnothing 2A_3.2$	$A_7.2$, D_7, $A_3 + A_4$, $A_3 + D_4$
$\varnothing (A_1 + A_5).2$	E_7, $A_7.2$, $A_1 + D_6$, $2A_1 + A_5$, $A_1 + E_6$, $A_1 + A_6$, $A_2 + A_5$
$\varnothing E_6$	E_7, $A_1 + E_6$
$\varnothing D_6$	E_7, D_7, $A_1 + D_6$
$\varnothing A_6$	E_7, D_7, $A_7.1$, $A_7.2$, $A_1 + A_6$
$\varnothing A_2 + A_4$	E_7, $A_7.1$, $A_7.2$, $A_3 + A_4$, $A_2 + D_5$, $A_2 + A_5$, $A_1 + A_2 + A_4$
$\varnothing A_1 + D_5$	E_7, $A_1 + D_6$, D_7, $A_1 + E_6$, $2A_1 + D_5$, $A_2 + D_5$
$\varnothing A_1 + A_2 + A_3$	E_7, $A_1 + D_6$, $A_2 + D_5$, $A_3 + A_4$, $A_1 + A_6$, $2A_1 + A_2 + A_3$, $A_1 + A_2 + A_4$, $A_2 + A_5$, $A_1 + 2A_3$
$\varnothing 2A_1 + A_4$	D_7, $2A_1 + A_5$, $A_1 + A_6$, $A_3 + A_4$, $2A_1 + D_5$, $A_1 + E_6$, $A_1 + A_2 + A_4$
$\varnothing 2A_1 + 2A_2$	$2A_1 + A_5$, $A_2 + D_5$, $A_1 + A_2 + A_4$, $A_1 + E_6$, $A_1 + 3A_2$, $2A_1 + A_2 + A_3$
$\varnothing A_2 + D_4$	D_7, $A_2 + D_5$, $A_3 + D_4$
Table 20. Reflection subgroup classes of $G_{37} = E_8$ (continued)

Class	Simple extensions (ranks 7 and 8)
$7A_1$	$3A_1 + D_4, 4A_1 + D_4, 8A_1$
$4A_1 + A_3$	$2A_1 + D_5, A_3 + D_4, 2A_1 + D_6, 2A_1 + 2A_3, 4A_1 + D_4$
$3A_1 + D_4$	$A_1 + D_6, 2A_1 + D_6, 2D_4, 4A_1 + D_4$
$2A_1 + D_5$	$D_7, A_3 + E_7, 2A_1 + D_6, A_3 + D_5$
$A_3 + D_4$	$D_7, D_8, A_3 + D_5, 2D_4$
$2A_1 + A_2 + A_3$	$A_2 + D_5, 2A_1 + D_6, A_1 + E_7, A_3 + D_5, A_1 + A_2 + A_5, 2A_1 + 2A_3$
$A_1 + 3A_2$	$A_1 + E_6, A_1 + A_2 + A_5, A_2 + E_6, 4A_2$
$2A_1 + A_5$	$A_1 + E_6, D_8, A_1 + A_7, 2A_1 + D_6, A_1 + E_7, A_1 + A_2 + A_5$
$A_1 + 2A_3$	$E_7, A_1 + D_6, A_3 + D_5, A_1 + A_7, 2A_1 + 2A_3$
$A_2 + A_5$	$E_7, A_8, A_2 + E_6, A_1 + A_2 + A_5$
$A_1 + D_6$	$E_7, D_8, A_1 + E_7, 2A_1 + D_6$
$A_7.1$	$E_7, D_8, A_1 + A_7$
$\varphi \ A_7:2$	E_8, D_8, A_8
$\varphi \ D_7$	E_8, D_8
$\varphi \ E_7$	$E_8, A_1 + E_7$
$\varphi \ A_1 + A_6$	$E_8, A_1 + A_7, A_8, A_1 + E_7$
$\varphi \ A_1 + E_6$	$E_8, A_1 + E_7, A_2 + E_6$
$\varphi \ A_3 + A_4$	$E_8, D_8, A_8, A_3 + D_5, 2A_4$
$\varphi \ A_2 + D_5$	$E_8, D_8, A_2 + E_6, A_3 + D_5$
$\varphi \ A_1 + A_2 + A_4$	$E_8, A_1 + E_7, A_2 + E_6, A_1 + A_7, A_1 + A_2 + A_5, 2A_4$

$2A_1 + 2A_3$	$2A_1 + D_6, A_1 + E_7, A_3 + D_5$
$8A_1$	$4A_1 + D_4$
$4A_1 + D_4$	$2D_4, 2A_1 + D_6$
$2A_1 + D_6$	$D_8, A_1 + E_7$
$4A_2$	$A_2 + E_6$
$2D_4$	D_8
$A_1 + A_2 + A_5$	$E_8, A_1 + E_7, A_2 + E_6$
$A_3 + D_5$	E_8, D_8
$A_1 + A_7$	$E_8, A_1 + E_7$
$2A_4$	E_8
$A_2 + E_6$	E_8
A_8	E_8
$A_1 + E_7$	E_8
D_8	E_8
REFLECTION SUBGROUPS OF PRIMITIVE REFLECTION GROUPS

REFERENCES

[1] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language. *J. Symbolic Comput.*, 24(3-4):235–265, 1997.
[2] A. M. Cohen. Finite complex reflection groups. *Ann. Sci. École Norm. Sup. (4)*, 9:379–436, 1976.
[3] J. M. Douglass, G. Pfeiffer, and G. Röhrle. On reflection subgroups of finite Coxeter groups. arXiv:1101.5893v2, 2011.
[4] M. Geck and G. Pfeiffer. *Characters of finite Coxeter groups and Iwahori-Hecke algebras*, volume 21 of *London Mathematical Society Monographs. New Series*. The Clarendon Press Oxford University Press, New York, 2000.
[5] G. I. Lehrer and D. E. Taylor. *Unitary reflection groups*, volume 20 of *Australian Mathematical Society Lecture Series*. Cambridge University Press, Cambridge, 2009.
[6] G. C. Shephard and J. A. Todd. Finite unitary reflection groups. *Canad. J. Math.*, 6:274–304, 1954.
[7] R. Steinberg. Differential equations invariant under finite reflection groups. *Trans. Amer. Math. Soc.*, 112:392–400, 1964.
[8] D. E. Taylor. Reflection subgroups of finite complex reflection groups. preprint, 2011.

School of Mathematics and Statistics, The University of Sydney, Australia 2006
E-mail address: donald.taylor@sydney.edu.au