The strongest bounds on active-sterile neutrino mixing after Planck data\footnote{Based on observations obtained with Planck, an ESA science mission with instruments and contributions directly funded by ESA Member States, NASA, and Canada. (http://www.esa.int/Planck).}

Alessandro Mirizzi,1 Gianpiero Mangano,2 Ninetta Saviano,1,2,3 Enrico Borriello,1 Carlo Giunti,4 Gennaro Miele,2,3 and Ofelia Pisanti2,3

1II Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
2Istituto Nazionale di Fisica Nucleare - Sezione di Napoli, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy
3Dipartimento di Fisica, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy
4Department of Physics, University of Torino and INFN, Via P. Giuria 1, I-10125 Torino, Italy

Light sterile neutrinos can be excited by oscillations with active neutrinos in the early universe. Their properties can be constrained by their contribution as extra-radiation, parameterized in terms of the effective number of neutrino species N_{eff}, and to the universe energy density today $\Omega_\nu h^2$. Both these parameters have been measured to quite a good precision by the Planck satellite experiment. We use this result to update the bounds on the parameter space of (3+1) sterile neutrino scenarios, with an active-sterile neutrino mass squared splitting in the range $(10^{-5} - 10^{-2}) \text{eV}^2$. We consider both normal and inverted mass orderings for the active and sterile states. For the first time we take into account the possibility of two non-vanishing active-sterile mixing angles. We find that the bounds are more stringent than those obtained in laboratory experiments. This leads to a strong tension with the short-baseline hints of light sterile neutrinos. In order to relieve this disagreement, modifications of the standard cosmological scenario, e.g. large primordial neutrino asymmetries, are required.

PACS numbers: 14.60.St, 14.60.Pq, 98.80.-k 26.35.+c

I. INTRODUCTION

Light sterile neutrinos have been advocated as a possible solution to some puzzling results found in neutrino oscillations, see \cite{1} for a recent review. In particular, $m \sim \mathcal{O}(1) \text{eV}$ sterile neutrinos mixing with the active states have been proposed to solve different anomalies observed in short-baseline neutrino experiments, in the $\nu_\mu \rightarrow \nu_e$ oscillations in LSND \cite{2} and MiniBoone \cite{3,4} experiments, and in ν_τ and ν_e disappearance revealed by the Reactor Anomaly \cite{5} and the Gallium Anomaly \cite{6}, respectively. Scenarios with one (dubbed “3+1”) or two (“3+2”) sub-eV sterile neutrinos \cite{7–9} have been proposed to fit the different data. On the other hand, lighter sterile neutrinos with $\Delta m^2 \sim 10^{-5} \text{eV}^2$ can explain the absence of the upturn in the solar neutrino energy spectrum \cite{10}.

The main theoretical motivations for these states are perhaps not so strong, though light sterile neutrinos with a sizable mixing emerge in several models (see, e.g., \cite{11,12} and references therein). In any case, since their discovery would point towards new physics, their role is relevant enough to justify an open mind attitude and a close looking for any, yet tiny, evidence for new effects beyond the too much successful Standard Model.

The hunt for sterile neutrinos in laboratory experiments is currently open. Different techniques have been proposed to search for these particles (see, e.g., \cite{13,14}). Indeed, since every experimental measurement has its own systematic uncertainties and its own recognized or un-recognized loop holes, in order to corner the sterile neutrino parameter space it is worth using as many handles as possible (see, e.g., \cite{15,16}). In this respect, cosmology is one of the most powerful tools (see, e.g., \cite{17,18}). Adding exotic contribution to the radiation content in the universe, usually expressed in terms of the effective number of excited neutrino species, N_{eff}, has in fact, a big impact on both the Cosmic Microwave Background (CMB) anisotropy map \cite{19,22}, and the Big Bang Nucleosynthesis (BBN) nuclear species yields \cite{23,24}. The standard expectation for this parameter is $N_{\text{eff}} = 3.046$ \cite{25}. If low-mass sterile neutrinos exist and mix with active flavors, they can be thermally excited by the interplay of oscillations and collisions, producing a larger value of N_{eff}. Cosmological constraints on sterile neutrinos based on their contribution to the extra-radiation have been presented in several papers, see e.g. \cite{18,26,28}.

In the last few years, a possible cosmological hint in favor of light sterile neutrinos (see e.g. \cite{29,30}) was found by combining the result in the best fit of WMAP, SDSS II-Baryon Acoustic Oscillations and Hubble Space Telescope
(HST) data, yielding a 68 % C.L. range on $N_{\text{eff}} = 4.34^{+0.88}_{-0.88} \pm 19$ for a ΛCDM universe. The recent results of WMAP-9 [20], SPT [21] and ACT [22], exploiting the damping tail features at high multipoles, have weakened this evidence to less than 2-σ.

A recent breakthrough in constraining the dark radiation content in the early universe is represented by the first data release of the Planck experiment [31], a satellite with unprecedented sensitivity in the high multipole range. Indeed, one of the main result of this new CMB anisotropy map is the quite accurate estimate of the relativistic degrees of freedom at recombination epoch, $N_{\text{eff}} = 3.30 \pm 0.27$ at 68 % C.L., a result obtained combining Planck, WMAP, Baryon Acoustic Oscillation and high multipole CMB data [31]. Within 1-σ this is compatible with the standard expectation, but still leaves room for almost an extra neutrino species at 95 % C.L. Moreover, combining the Planck data with the Hubble constant H_0 measurement from HST, the best-fit increases to $N_{\text{eff}} = 3.62 \pm 0.25$ at 68 % C.L. This would amount to a 2.3-σ signal for extra-radiation, and different models producing a moderate amount of extra-radiation have been proposed (see e.g., [32–37]). However, there is clearly a tension between the Planck and HST determination of H_0 in the ΛCDM model, and at the moment possible systematic effects in the astrophysical determination of H_0 cannot be excluded. Therefore, in the following we will present our bounds on sterile neutrinos, using the determination of N_{eff} without the inclusion of HST data.

The measured value of N_{eff} is not the only cosmological parameter that can be used to constrain massive neutrinos. Indeed, above $m \sim O(1)$ eV, sterile neutrinos become non-relativistic at the CMB epoch. Therefore, their contribution to the standard radiation becomes sub-dominant for larger masses [38]. However, they contribute to the energy density in the Universe today, $\Omega_{\nu}h^2$, which for fully thermalized non-relativistic neutrinos, is directly proportional to their number density, i.e.

\[\Omega_{\nu}h^2 = \frac{\sum m_{\nu}}{94.1 \text{ eV}} , \]

where h is the Hubble constant in units of 100 km s$^{-1}$ Mpc$^{-1}$. Planck analysis provides also joint constraints on N_{eff} and $\sum m_{\nu}$ in different models for active and sterile neutrinos. In particular, assuming the existence of a thermalized massive sterile neutrino together with two massless active neutrinos and a massive one with mass fixed by the atmospheric mass splitting (i.e. $m \sim 0.06$ eV), one would get as bound combining Planck, WMAP, Baryon Acoustic Oscillation and high multipole CMB data,

\[N_{\text{eff}} < 3.80 , \]
\[m_{\nu}^{\text{eff}} < 0.42 \text{ eV} , \]

at 95 % C.L. (see Eq. (83) of Ref. [31]), where the effective sterile neutrino mass is $m_{\nu}^{\text{eff}} = 94.1 \times \Omega_{\nu}h^2$ eV. This mass bound strengthens the previous one obtained in [29] using WMAP, SDSS-II-Baryon Acoustic Oscillations and Hubble Space Telescope (HST) data.

These new cosmological data are the motivation of this paper, where we present an update of the cosmological bounds on light sterile neutrinos. We focus on (3+1) scenarios, considering a broad range for active-sterile neutrino mass splitting, which cover the regions where laboratory hints emerge. We have chosen to consider a minimal scenario (one extra sterile state only), and not to cover the (3+2) case, where it seems harder to fit the neutrino mass bound from large scale structure [29, 39, 50]. This case also appears to be disfavored by Planck results unless one considers large neutrino asymmetries to suppress the sterile neutrino production, see e.g. [27, 28, 41].

The outline of our work is as follows. In Sec. II we present the setup of the flavor evolution in the (3+1) scenarios we are considering. In Sec. III we show the bound on the sterile neutrino parameter space coming from the extra-radiation content N_{eff} and from the energy density $\Omega_{\nu}h^2$. Finally, in Sec. IV we summarize our results and we conclude.

II. SETUP OF THE FLAVOR EVOLUTION

A. (3+1) mixing schemes

We consider one single light sterile neutrino ν_s, which mixes with the active neutrino states ν_e, ν_μ, ν_τ. The flavor eigenstates ν_s are related to the mass eigenstates ν_i via a unitary matrix $U = U(\theta_{12}, \theta_{13}, \theta_{23}, \theta_{14}, \theta_{24}, \theta_{34})$ [42] where we order the flavor eigenstates in such a way that if all mixing angles are vanishing we have $(\nu_e, \nu_\mu, \nu_\tau, \nu_s) = (\nu_1, \nu_2, \nu_3, \nu_4)$. In the following we fix the values of the three active mixing angles to the current best-fit from global analysis of the different active neutrino oscillation data [43], $\sin^2 \theta_{12} = 0.307$, $\sin^2 \theta_{23} = 0.398$, and $\sin^2 \theta_{13} = 0.0245$. Concerning the mixing angles between active and sterile neutrinos we choose as representative range $10^{-5} \lesssim \sin^2 \theta_{i4} \lesssim 10^{-1}$ (i=1,2,3).
The 4ν mass spectrum is parameterized as \(M^2 = \text{diag}(m_1^2, m_1^2 + \Delta m_{21}^2, m_1^2 + \Delta m_{31}^2, m_1^2 + \Delta m_{41}^2) \). We consider a hierarchical mass spectrum, obtained setting \(m_1 = 0 \). This is consistent with the scenario considered by Planck, to obtain the constraint on the sterile neutrino mass. The solar and the atmospheric mass-square differences are given by \(\Delta m_{21}^2 = m_2^2 - m_1^2 = 7.54 \times 10^{-5} \text{ eV}^2 \) and \(|\Delta m_{31}^2| = |m_3^2 - m_1^2| = 2.43 \times 10^{-3} \text{ eV}^2 \), respectively [43]. Depending on the sign of \(\Delta m_{31}^2 \) and \(\Delta m_{41}^2 \) we define an active normal mass hierarchy (NH, \(\Delta m_{31}^2 > 0 \)) or an active inverted mass hierarchy (IH, \(\Delta m_{31}^2 < 0 \)) and a sterile normal mass hierarchy (SNH, \(\Delta m_{41}^2 > 0 \)) or a sterile inverted mass hierarchy (SIH, \(\Delta m_{41}^2 < 0 \)). In our study we consider the following ranges \(10^{-5} \leq \Delta m_{41}^2/\text{eV}^2 \leq 10^2 \) in SNH and \(10^{-5} \leq |\Delta m_{41}^2|/\text{eV}^2 \leq 10^{-2} \) in SIH. Note that in SIH larger values of \(|\Delta m_{41}^2| \) are disfavored due to the cosmological bounds on the neutrino masses [20, 31]. The different combinations of the active and sterile mass orderings are shown in Fig. 1.

B. Active-sterile neutrinos kinetic equations

The neutrino (antineutrino) ensemble in a medium, as in the early universe plasma, is described in terms of a 4×4 momentum-dependent density matrix \(\varrho_p (\varrho_{\bar{p}}) \). To solve the full set of momentum dependent equations of motion [44] turns out to be a computationally demanding task (see, e.g., [28, 41] for recent studies). Since our aim is to perform an extensive scan of the sterile neutrino parameter space, in order to carry out a more treatable numerical analysis, we will consider the averaged-momentum approximation, based on the ansatz, \(\varrho_p (\varrho_{\bar{p}}) \rightarrow f_{FD}(p) \rho(T) \) (see [46]) where \(\rho(T) \) is the density matrix for the mean thermal momentum \(\langle p \rangle = 3.15 T \), and \(f_{FD}(p) \) is the Fermi-Dirac neutrino equilibrium distribution, and similarly for antineutrinos.

The evolution equation for the momentum-averaged density matrix \(\rho \), describing the neutrino system, is the following [46, 46]:

\[
\frac{d\rho}{dt} = \{\Omega, \rho\} + C[\rho],
\]

and a similar expression holds for the antineutrino matrix \(\bar{\rho} \). The evolution in terms of the comoving observer proper time \(t \) can be easily recast in function of the temperature \(T \) (see [43] for a detailed treatment). The first term on the
the temperature T corresponding to the NH-SIH scenario with three resonances; Δm^2 of Fig. 1: Δm^2 scenario with zero resonances. For Δm^2 right-hand side of Eq. (3) describes the flavor oscillations Hamiltonian,

$$\Omega = \frac{M^2}{2} \left(\frac{1}{\rho} \right) + \sqrt{2} G_F \left[-\frac{8\rho}{3} \left(\frac{E_{\ell}}{m_W} + \frac{E_{\nu}}{m_{\tilde{Z}}} \right) + N_{\nu} \right],$$

where $M^2 = U^\dagger M^2 U$ is the neutrino mass matrix, while the terms proportional to the Fermi constant G_F encode the matter effects in the neutrino oscillations. In particular, the term E_{ℓ} is related to the energy density of e^\pm pairs, E_{ν} to the energy density of ν and $\bar{\nu}$, and N_{ν} is the $\nu - \bar{\nu}$ interaction term proportional to the neutrino asymmetry. In the following, we will consider the most conservative scenario, with zero neutrino asymmetries, or as small as the baryon asymmetry, $\eta_B \sim 6 \cdot 10^{-10}$. Finally, the last term in the righthand side of Eq. (3) is the order G_F^2 collisional term.

The matter terms can induce Mikheyev-Smirnov-Wolfenstein (MSW)-like resonances [47] when they become of the same order of the neutrino mass-squared splitting. In the sterile sector resonances are associated with the three different active-sterile mass splittings Δm^2_{4i} and with the different θ_{14} mixing angles. In particular, the resonance condition can be satisfied (in both neutrino and antineutrino sectors) only for $\Delta m^2_{4i} < 0$ [48, 49]. When more than one Δm^2_{4i} is negative, multiple resonances can occur, affecting the sterile neutrino production. Therefore, the resonance pattern is strongly dependent on the active and sterile neutrino mass ordering (see Fig. 1).

An example of a possible resonance pattern is shown in Fig. 2, where we represented the evolution as function of the temperature T of the sterile neutrino density matrix element ρ_{ss} for $\sin^2 \theta_{14} = 10^{-2}$ for different values of the Δm^2_{41} mass splitting. In particular we take three representative values, corresponding to different resonance schemes of Fig. 1: $\Delta m^2_{41} = 10^{-5}$ eV2, corresponding to the NH-SNH scenario with two resonances; $\Delta m^2_{41} = -10^{-5}$ eV2 corresponding to the NH-SIH scenario with three resonances; $\Delta m^2_{41} = 5 \times 10^{-2}$ eV2 corresponding to the NH-SHN scenario with zero resonances. For $\Delta m^2_{41} = 10^{-5}$ eV2 (continuous curve) the two resonances are associated with Δm^2_{43} and Δm^2_{42}, which are negative. The first one is at $T \approx 6.5$ MeV between ν_4 and $\nu_{2,3}$ associated with Δm^2_{43}, and the second one at $T \approx 3.5$ MeV between ν_4 and $\nu_{1,2,3}$ associated with Δm^2_{42}. For $\Delta m^2_{41} = -10^{-5}$ eV2 (dashed curve) we also have a further resonance at $T \approx 2.5$ MeV between ν_4 and $\nu_{1,2,3}$. Finally, for $\Delta m^2_{41} = 5 \times 10^{-2}$ eV2 since all the mass splitting between active and sterile neutrinos are positive, there are no resonances.

III. COSMOLOGICAL BOUNDS ON ACTIVE-STERILE ν MIXING

Our cosmological bounds on sterile neutrinos are obtained exploiting the Planck 95% C.L. on N_{eff} and $\Omega_{\nu} h^2$ from Eq. (2). In terms of the neutrino density matrix these are given by

$$N_{\text{eff}} = \frac{1}{2} \text{Tr}[\rho + \bar{\rho}],$$

$$\Omega_{\nu} h^2 = \frac{1}{2} \frac{\sqrt{\Delta m_{41}^2 (\rho_{ss} + \bar{\rho}_{ss})}}{94.1 \text{ eV}}.$$
The bound on N_{eff} extends also to small sterile neutrino masses, comparable to the ones given by the two active mass splittings. However, since the bounds on N_{eff} given by Planck are rather insensitive to the active and sterile neutrino mass pattern [31], we will refer to the value of Eq. 2 also in the cases of small sterile neutrino mass. The calculation of $\Omega_{\nu} h^2 < 4.5 \times 10^{-3}$ assumes as dominant contribution the one given by the only sterile neutrino mass much larger than the active neutrino ones, in agreement with the Planck analysis. Therefore, this bound is insensitive to the active mass hierarchy. We present our exclusion plots in the planes $(\Delta m_{41}^2, \sin^2 \theta_{14})$.

Since the results as a function of $\sin^2 \theta_{34}$ and $\sin^2 \theta_{24}$ are very similar, we omit to present the $\sin^2 \theta_{34} \neq 0$ case. In Figure 3 we consider NH, while in Figure 4 we refer to IH. In each of these Figures, the upper Panels a), b) refer to the the SNH case, while the lower Panels c), d) are for SIH case. Left panels refer to the exclusion plots in the plane $(\Delta m_{21}^2, \sin^2 \theta_{24})$ for different values of $\sin^2 \theta_{24}$, while right panels refer to the plane $(\Delta m_{41}^2, \sin^2 \theta_{24})$ for different values of $\sin^2 \theta_{14}$. In all the cases, $\sin^2 \theta_{34}$ is fixed to zero. The excluded regions from N_{eff} are those on the right or at the exterior of the black contours, while the ones from $\Omega_{\nu} h^2$ are above the red contours. We show the exclusion plots at 95 % C.L. We now discuss the different panels of Figure 3 and 4 in more details.

Active Normal hierarchy (Figure 3)

Sterile Normal hierarchy.

Panel a) We discuss at first the bound on N_{eff}. The most conservative limit corresponds to $\sin^2 \theta_{24} = 0$, where for $\Delta m_{21}^2 \gtrsim 10^{-7} \text{ eV}^2$ the exclusion contour is a straight line in this plane. We cut the bound at $\Delta m_{41}^2 \sim 10^{-1} \text{ eV}^2$, since for higher masses sterile neutrinos would almost be non-relativistic at the CMB epoch, with a smaller contribution to the extra-radiation. However, as we will discuss later, this mass region can be strongly constrained using the bound coming from $\Omega_{\nu} h^2$. As evident from Fig. 1 lowering the value of Δm_{21}^2 one triggers first a $\nu_4 - \nu_3$ resonance (when $\Delta m_{21}^2 < \Delta m_{41}^2$) and then also a $\nu_4 - \nu_2$ resonance (when $\Delta m_{21}^2 < \Delta m_{31}^2$) which is the dominant one. These produce the changes of the slope in the exclusion plot. Increasing the value of $\sin^2 \theta_{24}$, the constraint on the parameter space becomes stronger. Large values of $\sin^2 \theta_{24}$ would dominate the sterile neutrino production and this excludes regions otherwise permitted if only $\sin^2 \theta_{14}$ were non-zero. In particular, the only part that remains open is the transition region between the efficient non-relativistic production range at large Δm_{41}^2 and the one of resonant production at small Δm_{21}^2.

Finally, we represent with a rectangle in the lower part of the plot, the region of parameters corresponding to a light sterile neutrino with $\Delta m_{41}^2 \sim 10^{-5} \text{ eV}^2$ and $\sin^2 \theta_{14} \sim 10^{-4} - 10^{-3}$, suggested to solve the problem of the upturn of the solar neutrino spectrum [10]. We realize that this region is excluded if $\sin^2 \theta_{24} > 10^{-3}$.

Passing now to the bounds from $\Omega_{\nu} h^2$, again the most conservative limit is for $\sin^2 \theta_{24} = 0$. In this case, values of $\Delta m_{41}^2 \gtrsim 10^{-1} \text{ eV}^2$ are excluded for $\sin^2 \theta_{14} \gtrsim 10^{-2}$, since the sterile neutrinos are fully thermalized. For smaller values of $\sin^2 \theta_{14} \gtrsim 10^{-2}$ the bound becomes less constraining, due to the incomplete thermalization of the sterile species, allowing e.g. $\Delta m_{41}^2 \lesssim 1 \text{ eV}^2$ for $\sin^2 \theta_{14} \lesssim 10^{-4}$. The bound becomes more stringent increasing the value of $\sin^2 \theta_{24}$. In particular, for $\sin^2 \theta_{24} \gtrsim 10^{-2}$, $\Delta m_{41}^2 \gtrsim 10^{-1} \text{ eV}^2$ is excluded independently on the value of $\sin^2 \theta_{14}$, since sterile neutrinos would be always produced with thermal abundances.

For comparison, we also show the slice at $\sin^2 \theta_{24} = 10^{-2}$ of the 95 % C.L., for the allowed region obtained from the global analysis of short-baseline oscillation data [3, 50] (filled region in the upper right part of the plot denoted by SBL). We observe that it is completely ruled out by the cosmological bound from $\Omega_{\nu} h^2$. We also plot the 90 % C.L. expected sensitivity of the KATRIN experiment (measuring the spectrum of electrons from tritium beta decay) after 3-years of data taking [51]. Also this region would be already excluded.

Panel b) The description of the exclusion plot is analogous to the one of Panel a), with the roles of θ_{14} and θ_{24} interchanged. In particular, the region of resonant sterile neutrino production is at $\Delta m_{41}^2 \sim 10^{-3} \text{ eV}^2$ when a $\nu_4 - \nu_3$ resonance is efficient. Also the bound coming from $\Omega_{\nu} h^2$ is comparable to the one shown in Panel a).

It is also shown the slice at $\sin^2 \theta_{14} = 10^{-1.5}$ of the 95 % C.L. allowed region obtained from the global analysis of short-baseline oscillation data [7, 50], which is another view of the SBL region shown in Panel a), and the exclusion curve obtained from the combined analysis of the data of ν_μ and $\bar{\nu}_\mu$ disappearance experiments. One realizes that also in this case the region is excluded by the cosmological limit from $\Omega_{\nu} h^2$.

Sterile Inverted hierarchy.

Panels c) and d) We consider only $|\Delta m_{31}^2| < 10^{-2} \text{ eV}^2$ due to the cosmological bound on active neutrino masses. Since $\Delta m_{41}^2 < 0$ an additional $\nu_{14} - \nu_1$ resonance is present. This leads to an increase in the production of sterile...
neutrinos, with respect to the SNH case. Therefore, the excluded regions in the parameter space for the same values of the mixing angles are larger than the corresponding ones in the upper panels.

Active Inverted hierarchy (Figure 4)

Sterile Normal hierarchy.

Panels a) and b) From Fig. 1 it results that there can be only a single resonance for $\Delta m_{41}^2 < \Delta m_{21}^2$. Therefore, comparing the exclusion plots from N_{eff} with the corresponding ones in Fig. 3 one realizes that the constraint is less stringent. In particular, in Panel b) the change in the slope in the exclusion plot is at $\Delta m_{41}^2 \sim \Delta m_{21}^2 \sim 10^{-4} \text{ eV}^2$, i.e. at a smaller value with respect to Fig. 3. Concerning the bound from $\Omega_\nu h^2$, since it occurs in a region where Δm_{41}^2 is much larger than the active mass splittings, it is independent on the mass hierarchy and so it is the same as in Fig. 3.

Sterile Inverted hierarchy.

Panels c) and d) In this case, looking at Fig. 1 we realize that for $|\Delta m_{41}^2| > |\Delta m_{21}^2|$ three resonances are possible as in the NH case shown in the Fig. 3, while for $|\Delta m_{31}^2| < |\Delta m_{34}^2|$ only two resonances occur. Therefore, for $|\Delta m_{41}^2| \lesssim 10^{-4} \text{ eV}^2$ the constraint from N_{eff} becomes less stringent than in the corresponding case in the NH scenario, while it is comparable for larger mass splittings.
IV. CONCLUSIONS

In this paper we have exploited the very recent measurement of N_{eff} and $\Omega_{\nu} h^2$ provided by the Planck experiment to update the cosmological bounds on $(3+1)$ sterile neutrino scenarios under the assumption of vanishing or very small neutrino asymmetries, of the order of the baryonic one. At this regard, for the first time it is shown how the constraints change if two active-sterile mixing angles are considered.

We find that the sterile neutrino parameter space is severely constrained, and the excluded area from the bound on $\Omega_{\nu} h^2$ covers the region accessible by current and future laboratory experiments. Moreover, from the results of our analysis we conclude that there is a tension with the sterile neutrino hints from short-baseline experiments. In particular, in the scenario we considered sterile neutrinos with $m \sim \mathcal{O}(1)$ eV would be excluded at more than 4-σ. Notice that combining Planck findings with other data might further strengthen the bounds on N_{eff}. For example, adding to the analysis the primordial deuterium determination of Ref. [52], compared with the BBN theoretical expectation as function of baryon density and N_{eff}, leads to $N_{\text{eff}} \approx 3.56$ at 95 % C.L. [31]. This means that future ^2H measurements reducing the present spread of different Quasar Absorption System results would lead to stronger bounds on sterile neutrino mixing parameters.

In order to reconcile the laboratory signals in favor of extra sterile neutrino degrees of freedom with the cosmological bounds one should introduce some extra parameters in the so far extremely successful standard cosmological model, as for example, large neutrino–antineutrino asymmetries, $L_\nu = (n_\nu - n_{\bar{\nu}})/n_\gamma \gtrsim 10^{-2}$ [28, 41, 46], which might inhibit the sterile neutrino production in the early universe. After all, the fact that a completely satisfactory model of everything might not yet achieved is welcome, as it would continue to trigger the curiosity of physicists to look for what is, hopefully, beyond the corner.

FIG. 4: Active inverted mass hierarchy III. Exclusion plots for the active-sterile neutrino mixing parameter space for SNH (upper panels) and SIH (lower panels) cases from N_{eff} (black curves) and $\Omega_{\nu} h^2$ (red curves) at 95 % C.L. The contours refer to different values of $\sin^2 \theta_{14}$: $\sin^2 \theta_{14} = 0$ (continuous curves), $\sin^2 \theta_{14} = 10^{-2}$ (dotted curves), $\sin^2 \theta_{14} = 10^{-1.5}$ (dot-dashed curves). (see the text for details).
Acknowledgements

We warmly thank Pasquale Dario Serpico for stimulating this project with useful discussions. A.M. and N.S. thank Jan Hamann for useful discussions on Planck data. The work of E. B., A.M. and N.S. was supported by the German Science Foundation (DFG) within the Collaborative Research Center 676 “Particles, Strings and the Early Universe”. C.G., G. M., G. M., and O.P. acknowledge support by the Istituto Nazionale di Fisica Nucleare I.S. FA51.

[1] K. N. Abazajian, et al., “Light Sterile Neutrinos: A White Paper,” arXiv:1204.5379 [hep-ph].
[2] A. Aguilar-Arevalo et al. [LSND Collaboration], “Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam,” Phys. Rev. D 64, 112007 (2001) [hep-ex/0104049].
[3] A. A. Aguilar-Arevalo et al. [The MiniBooNE Collaboration], “Event Excess in the MiniBooNE Search for $\bar{\nu}_\mu \to \bar{\nu}_e$ Oscillations,” Phys. Rev. Lett. 105, 181801 (2010) [arXiv:1007.1150 [hep-ex]].
[4] A. A. Aguilar-Arevalo et al. [MiniBooNE Collaboration], “Improved Search for $\bar{\nu}_\mu \to \bar{\nu}_e$ Oscillations in the MiniBooNE experiment,” Phys. Rev. D 83, 112007 (2011) [arXiv:1101.2755 [hep-ex]].
[5] G. Mention, et al., “The Reactor Antineutrino Anomaly,” Phys. Rev. D 83, 073006 (2011) [arXiv:1101.2755 [hep-ex]].
[6] M. A. Acero, C. Giunti and M. Laveder, “Limits on nue and anti-mu(e) disappearance from Gallium and reactor experiments,” Phys. Rev. D 78, 073009 (2008) [arXiv:0711.4222 [hep-ph]].
[7] C. Giunti, M. Laveder, Y. F. Li, Q. Y. Liu and H. W. Long, “Update of Short-Baseline Electron Neutrino and Antineutrino Disappearance,” Phys. Rev. D 86, 113014 (2012) [arXiv:1207.4755 [hep-ph]].
[8] J. Kopp, P. A. N. Machado, M. Maltoni and T. Schwetz, “Sterile Neutrino Oscillations: The Global Picture,” JHEP 1005, 050 [arXiv:1303.3011 [hep-ph]].
[9] J. M. Conrad, C. M. Ignarra, G. Karagiorgi, M. H. Shaevitz and J. Spitz, “Sterile Neutrino Fits to Short Baseline Neutrino Oscillation Measurements,” Adv. High Energy Phys. 2013, 163897 (2013) [arXiv:1307.4201 [hep-ex]].
[10] P. C. de Holanda and A. Y. Smirnov, “Solar neutrino spectrum, sterile neutrinos and additional radiation in the Universe,” Phys. Rev. D 83, 113011 (2011) [arXiv:1102.5627 [hep-ph]].
[11] A. Merle, “keV Neutrino Model Building,” arXiv:1302.2625 [hep-ph].
[12] M. Duerr, P. F. Perez and M. Lindner, “A Left-Right Symmetric Theory with Light Sterile Neutrinos,” arXiv:1306.0568 [hep-ph].
[13] U. Kose [on behalf of NESSiE Collaboration], “NESSiE: The Experimental Sterile Neutrino Search in Short-Base-Line at CERN,” arXiv:1304.7127 [physics.ins-det].
[14] C. Rubbia, A. Guglielmi, F. Pietropaolo and P. Sala, “Sterile neutrinos: the necessity for a 5 sigma definitive clarification,” arXiv:1304.2047 [hep-ph].
[15] A. Palazzo, “Testing the very-short-baseline neutrino anomalies at the solar sector,” Phys. Rev. D 83, 113013 (2011) [arXiv:1105.1765 [hep-ph]].
[16] M. -R. Wu, T. Fischer, G. Martinez-Pinedo and Y. -Z. Qian, “Are Light Sterile Neutrinos Consistent with Supernova Explosions?,” arXiv:1305.2382 [astro-ph.HE].
[17] S. Hannestad and G. Raffelt, “Cosmological mass limits on neutrinos, axions, and other light particles,” JCAP 0404, 008 (2004) [hep-ph/0312154].
[18] M. Cirelli, G. Marandella, A. Strumia and F. Vissani, “Probing oscillations into sterile neutrinos with cosmology, astrophysics and experiments,” Nucl. Phys. B 708, 215 (2005) [hep-ph/0403158].
[19] E. Komatsu et al. [WMAP Collaboration], “Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation,” Astrophys. J. Suppl. 192, 18 (2011) [arXiv:1001.4338 [astro-ph.CO]].
[20] G. Hinshaw, et al., “Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results,” arXiv:1212.5226 [astro-ph.CO].
[21] Z. Hou, et al., “Constraints on Cosmology from the Cosmic Microwave Background Power Spectrum of the 2500-square degree SPT-SZ Survey,” arXiv:1212.6267 [astro-ph.CO].
[22] J. L. Sievers, et al., “The Atacama Cosmology Telescope: Cosmological parameters from three seasons of data,” arXiv:1301.0824 [astro-ph.CO].
[23] G. Mangano and P. D. Serpico, “A robust upper limit on N_{eff} from BBN, circa 2011,” Phys. Lett. B 701, 296 (2011) [arXiv:1103.1261 [astro-ph.CO]].
[24] J. Hamann, S. Hannestad, G. G. Raffelt and Y. Y. Y. Wong, “Sterile neutrinos with eV masses in cosmology: How disfavoured exactly?,” JCAP 1109, 034 (2011) [arXiv:1108.4136 [astro-ph.CO]].
[25] M. Mangan, G. Miele, S. Pastor, T. Pinto, O. Pisanti and P. D. Serpico, “Relic neutrino decoupling including flavor oscillations,” Nucl. Phys. B 729, 221 (2005) [hep-ph/0506164].
[26] A. D. Dolgov and F. L. Villante, “BBN bounds on active sterile neutrino mixing,” Nucl. Phys. B 679, 261 (2004) [hep-ph/0308083].
[27] Y. Z. Chu and M. Cirelli, “Sterile neutrinos, lepton asymmetries, primordial elements: How much of each?,” Phys. Rev. D 74, 085015 (2006) [astro-ph/0608206].
[28] S. Hannestad, I. Tamborra and T. Tram, “Thermalisation of light sterile neutrinos in the early universe,” JCAP 1207, 025 (2012) [arXiv:1204.5861 [astro-ph.CO]].
[29] J. Hamann, S. Hannestad, G. G. Raffelt, I. Tamborra and Y. Y. Y. Wong, “Cosmology seeking friendship with sterile neutrinos,” Phys. Rev. Lett. 105, 181301 (2010) [arXiv:1006.5276 [hep-ph]].

[30] M. C. Gonzalez-Garcia, M. Maltoni and J. Salvado, “Robust Cosmological Bounds on Neutrinos and their Combination with Oscillation Results,” JHEP 1008, 117 (2010) [arXiv:1006.3795 [hep-ph]].

[31] P. A. R. Ade et al. [Planck Collaboration], “Planck 2013 results. XVI. Cosmological parameters,” arXiv:1303.5076 [astro-ph.CO].

[32] M. Cicoli, J. P. Conlon and F. Quevedo, “Dark Radiation in LARGE Volume Models,” Phys. Rev. D 87, 043520 (2013) [arXiv:1208.3562 [hep-ph]].

[33] P. Di Bari, S. F. King and A. Merle, “Dark Radiation or Warm Dark Matter from long lived particle decays in the light of Planck,” arXiv:1303.6267 [hep-ph].

[34] E. Di Valentino, A. Melchiorri and O. Mena, “Dark Radiation candidates after Planck,” arXiv:1304.5981 [astro-ph.CO].

[35] M. Archidiacono, N. Fornengo, C. Giunti, S. Hannestad and A. Melchiorri, “Sterile Neutrinos: Cosmology vs Short-BaseLine Experiments,” arXiv:1302.6720 [astro-ph.CO].

[36] N. Saviano, A. Mirizzi, O. Pisanti, P. D. Serpico, G. Mangano and G. Miele, “Multi-momentum and multi-flavour active-sterile neutrino oscillations in the early universe: role of neutrino asymmetries and effects on nucleosynthesis,” Phys. Rev. D 87, 073006 (2013) [arXiv:1302.1200 [astro-ph.CO]].

[37] M. Maltoni, T. Schwetz and J. W. F. Valle, “Status of four neutrino mass schemes: A Global and unified approach to current neutrino oscillation data,” Phys. Rev. D 65, 093004 (2002) [hep-ph/0112103].

[38] G. Sigl and G. Raffelt, “General kinetic description of relativistic mixed neutrinos,” Nucl. Phys. B 406, 423 (1993).

[39] A. D. Dolgov, S. H. Hansen, S. Pastor, S. T. Petcov, G. G. Raffelt and D. V. Semikoz, “Cosmological bounds on neutrino degeneracy improved by flavor oscillations,” Nucl. Phys. B 632, 363 (2002) [hep-ph/0201287].

[40] A. Mirizzi, N. Saviano, G. Miele and P. D. Serpico, “Light sterile neutrino production in the early universe with dynamical neutrino asymmetries,” Phys. Rev. D 86, 053009 (2012) [arXiv:1206.1046 [hep-ph]].

[41] L. Wolfenstein, “Neutrino Oscillations In Matter,” Phys. Rev. D 17, 2369 (1978); S. P. Mikheev and A. Yu. Smirnov, “Resonance Enhancement Of Oscillations In Matter And Solar Neutrino Spectroscopy,” Yad. Fiz. 42, 1441 (1985) [Sov. J. Nucl. Phys. 42, 913 (1985)].

[42] M. Fornengo, C. Giunti, S. Hannestad and A. Melchiorri, “Sterile Neutrinos: Cosmology vs Short-BaseLine Experiments,” arXiv:1302.6720 [astro-ph.CO].

[43] A. Esmaili and O. L. G. Peres, “KATRIN Sensitivity to Sterile Neutrino Mass in the Shadow of Lightest Neutrino Mass,” Phys. Rev. D 85, 117301 (2012) [arXiv:1203.2632 [hep-ph]].

[44] M. Pettini and R. Cooke, “A new, precise measurement of the primordial abundance of Deuterium,” MNRS 425 (4), 2477 (2012) [arXiv:1205.3785 [astro-ph.CO]].