Cervical disc herniation causing Brown-Sequard syndrome
Case report and review of literature (CARE-compliant)

Yuqing Zeng, MDa, Haiyong Ren, MDa, Junming Wan, MDa, Jianwei Lu, MDa, Fuhua Zhong, MDa, Shu Deng, MD\textsuperscript{b,∗}

Abstract

\textbf{Rationale:} Brown-Sequard syndrome (BSS) is manifested as ipsilateral motor deficit and contralateral sensory loss. BSS caused by herniated cervical disc is extremely rare and easily be misdiagnosed, and clinical features of this problem were not fully understood.

\textbf{Patient concerns:} A 57-year-old man presented with a 3-month history of weakness in his right arm, and he experienced progressive right hemiparesis at 2 days before admission, along with contralateral deficit in sensation of pain and temperature below T2.

\textbf{Diagnoses:} Magnetic Resonance Imaging (MRI) showed severe cord compression due to a large paracentral extradural C4-C5 cervical disc herniation (CDH).

\textbf{Interventions:} Subtotal cervical corpectomy, decompression, and fusion through anterior approach were performed. The patient recovered rapidly after surgery.

\textbf{Outcomes:} Complete recovery of sensory and motor functions was obtained at a 4-months follow-up after surgery.

\textbf{Lessons:} Our case, along with a review of the literature, highlights that careful medical history inquiries, detailed neurologic examinations, and cervical spinal MRI scans are essential for diagnosis of CDH caused BSS. Prompt surgical decompression according to individual condition is commonly warranted. Early diagnosis with prompt surgical decompression could lead to favorable recovery.

\textbf{Abbreviations:} BSS = Brown-Sequard syndrome, CDH = cervical disc herniation, IDH = intradural disc herniation, MRC = Medical Research Council, MRI = magnetic resonance imaging.

\textbf{Keywords:} Brown-Sequard syndrome, cervical spine, disc herniation, surgical decompression

1. Introduction

Brown-Sequard syndrome (BSS) is caused by hemi-compression or herniation of the spinal cord, which is characterized by ipsilateral loss of motor function, deep sensation and crude touch, as well as contralateral loss of pain and temperature sensitivity.[1,2] The syndrome is mostly seen in traumatic injuries and spinal cord neoplasms. A herniated cervical disc is an exceptional cause of BSS with rare cases.

In 1928, Stookey reported the first case of BSS produced by cervical disc herniation (CDH).[3] BSS caused by CDH is rare and often be delayed or incorrectly diagnosed.[4-6] The patient might initially be admitted into the medical ward for suspected cerebrovascular accidents as the manifestation of hemiparesis. Although a number of cases had been reported, clinical features of this problem were not fully understood, and no consensus was reached for the choice of treatment strategies. Herein we report a case of BSS resulted from C4-C5 cervical herniated cervical discs, along with a review of the pertinent literature.

2. Case report

A 57-year-old man presented with a 3-month history of weakness in his right arm, and he experienced progressive right hemiparesis at 2 days before admission, along with contralateral deficit in sensation of pain and temperature below T2. He claimed no history of trauma. Upon physical examination, he demonstrated reduced neck mobility. No atrophy was shown on either side. Muscle power was measured by Medical Research Council (MRC) grading, and neurological evaluation revealed motor weakness in the right arm (MRC Grade 3/5) and lower limb (MRC Grade 1/5). Spasticity and hyperreflexia were also revealed in the right lower extremities. Reduced sensation of pain and temperature below T2 was noted on the left side. These findings were consistent with the diagnosis of BSS.

Magnetic Resonance Imaging (MRI) of the cervical spine showed a large central and right-sided extradural C4-C5 CDH severely compressing the spinal cord, associated with spinal stenosis (Fig. 1A and B). Computed tomography (CT) scan revealed evidence of spondylosis at C5-C7 vertebrae and posterior vertebral osteophyte of C5 and C6 (Fig. 1C). No ossified posterior longitudinal ligament was showed.

∗ Correspondence: Shu Deng, No.54 Youdian Road, Hangzhou, Zhejiang Province, P.R. China (e-mail: dengshu918@163.com).

The authors have no conflicts of interest to disclose.

a Department of Orthopaedics, Tongde Hospital of Zhejiang Province, b The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China.

Copyright © 2018 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Medicine (2018) 97(37):e12377
Received: 10 May 2018 / Accepted: 22 August 2018
http://dx.doi.org/10.1097/MD.0000000000012377
We made prompt preoperative preparations and performed the surgery the day after admission. Subtotal vertebrectomy of the C5 and titanium mesh cages filled with autogenous bone were carried out for reconstruction through anterior approach (Fig. 1D and E). The patient was immobilized in a rigid cervical collar for 8 weeks postoperatively. After the operation, the patient recovered rapidly in 4 days. The motor power of right lower limb improved to MRC Grade 3, significant relief in pain and temperature sensation on the left side of the body was acquired. At 3 months follow-up, motor power of right upper and lower extremities improved to MRC Grade 4. The patient could walk independently without limitation on daily activities. 4 months after surgery, he had a normal motor and sensory function.

3. Discussion
Rare cases of BSS resulting from CDH have been reported. According to our knowledge, 69 cases have been reported in the
Table 1

Reported Cases in the Literature.

N	Reference	Age	Sex	Location	Level	Symptom Duration	History of Trauma	Surgery	Recovery
1	Stookey, 1928 [3]	44 M	ED	C3-C4	NR	N	N	LAM	NR
2		52 M	ED	C5-6	NR	N	N	LAM	NR
3	Düerig et al., 1977 [7]	52 M	ID	C5-6	2MTH	Y	LAM	INCR	
4	Roda et al., 1982 [8]	52 M	ID	C4-5	1D	N	LAM	INCR	
5	Eisenberg et al., 1986 [9]	43 M	ID	C5-6	4D	Y	LAM	INCR	
6	Schneider et al., 1988 [10]	50 F	ID	C5-6	1D	N	ACD	INCR	
7		61 M	ED	C5-7	4MTH	N	ACD	INCR	
8		46 F	ED	C4-5,C5-6	13MTH	N	ACD+LAM	INCR	
9		65 F	ID	C5-6	5WK	Y	ACD	CR	
10	Clatterbuck et al., 2000 [17]	40 M	ID	C4-C5	5WK	N	ACD+LAM	INCR	
11		39 M	ED	C5-6	8MTH	N	ACD	INCR	
12		44 F	ED	C5-6	9WK	N	ACD	INCR	
13		45 M	ID	C6-7	15MTH	N	AOF	INCR	
14		41 F	ED	C5-6	3D	N	ACD+LAM	CR	
15		35 F	ED	C5-6	NR	Y	ACD	CR	
16		55 M	ED	C4-5	NR	Y	ACD	CR	
17		64 M	ED	C5-6	6MTH	N	ACF	CR	
18		39 M	ED	C5-6	1MTH	N	ACD	CR	
19		54 M	ED	C5-6	3MTH	N	ACD	INCR	
20		36 M	ED	C5-6	9MTH	N	ACD	CR	
21		46 M	ED	C5-6	2WK	N	ACD	CR	
22		44 F	ED	C5-6	6WK	Y	ACD	CR	
23		44 M	ED	C5-6	45D	NR	ACD	CR	
24		35 M	ED	C5-6	2WK	N	ACD	INCR	
25		56 M	ED	C5-6	8D	N	AF	CR	
26		47 M	ED	C5-6	2WK	N	AF	CR	
27		45 M	ED	C5-6	2MTH	N	AF	CR	
28		63 M	ED	C5-6	8D	N	ACD	CR	
29		46 M	ED	C5-6	3MTH	N	ACD	CR	
30		31 M	ED	C5-6	4MTH	N	ACD	CR	
31		44 M	ED	C5-6	4MTH	N	ACD	CR	
32		45 M	ED	C5-6	2MTH	N	AF	CR	
33		46 M	ED	C5-6	8D	N	ACD	CR	
34		50 F	ED	C3-C4	1W	NR	ACD	CR	
35		79 M	ED	C4-5	1MTH	N	ACD	CR	
36		61 F	ID	C4-5	2WK	Y	ACD	CR	
37		34 M	ED	C5-6	2MTH	N	ACD	CR	
38		35 M	ED	C5-6	4MTH	N	ACD	CR	
39		36 M	ED	C5-6	3MTH	N	ACD	CR	
40		43 M	ED	C5-6	1D	N	ACD	CR	
41		52 M	ED	C5-6	7D	Y	ACD	CR	
42		35 M	ED	C5-6	21D	N	ACD	INCR	
43		72 M	ED	multiple	30D	N	ACD	INCR	
44		51 M	ED	multiple	10D	N	ACD	INCR	
45		31 M	ED	C5-6	1D	Y	ACD	CR	
46		52 M	ED	C5-6	6MTH	N	ACD+LAM	CR	
47		73 F	ED	C4-5	1D	N	AOF+LAM	CR	
48		44 F	ED	C5-6	2WK	N	ACF+LAM	CR	
49		39 M	ED	C5-6	6WK	N	AOF+LAM	CR	
50		46 M	ED	C5-6	4WK	N	ACF+LAM	CR	
51		54 M	ED	C5-6	9WK	N	AOF+LAM	CR	
52		32 M	ED	C5-6	15MTH	N	ACF+LAM	CR	
53		41 F	ED	C5-6	3D	N	AOF+LAM	CR	
54		35 M	ED	C5-6	8D	N	ACD	CR	
55		47 M	ED	C5-6	2WK	N	ACD	CR	
56		33 M	ED	C5-6	2MTH	N	ACD	CR	
57		31 M	ED	C5-6	14D	Y	ACD	CR	
58		39 M	ED	C5-6	6MTH	N	ACD+LAM	CR	
59		50 F	ED	C5-6	21D	N	ACF+LAM	CR	
60		72 M	ED	multiple	30D	N	ACD	INCR	
61		51 M	ED	multiple	10D	N	ACD	INCR	
62		31 M	ED	C5-6	1D	Y	ACD	CR	
63		52 M	ED	C5-6	6MTH	N	ACD+LAM	CR	

(continued)
English language literature up to now (Table 1). According to a review of those reported cases, the mean age of the patients was 47.2 years and ranged between 23 and 86 years. C5-C6 was the most vulnerable level of discogenic BSS, which was involved in 45.7% of the case series. A male predominance was shown with a percentage of 70%. Single level disease was shown in most cases, but no significant relationship was found between the number of involved discs and clinical prognosis. Classic manifestation of BSS caused by CDH is very rare; most of the reported cases were partial BSS. This can be explained by the anterior compression of spinal cord by CDH, thus the racile of the reported cases were partial BSS. This can be explained by anterior cervical discectomy and fusion surgery. Cases with CDH and ipsilateral spinal cord compression. The 2 cases both anterior foraminotomy, CR = complete recovery, D = day(s), ED = extradural, ID = intradural, MTH = month(s), N = no, NR = not reported, SD = symptom duration, WK = week, Y = yes.

N	Reference	Age	Sex	Location	Level	Symptom Duration	History of Trauma	Surgery	Recovery
64	Guan et al, 2015[20]	51	M	ED	C4–C5	6MTH	N	ACF	INCR
65	Hamil et al, 2016[16]	32	M	ED	C3–C4	1D	N	ACFDF	CR
66	Meng et al, 2016[18]	51	F	ED	C3–C4,C5–C6	5D	N	ACF	INCR
67	Porto et al, 2016[45]	86	M	ED	C4–5	1WK	N	ACFDF	INCR
68	Baudracco et al, 2017[46]	45	F	ID	C4–C5	1MTH	NR	ACF	INCR
69	Lau Janice et al, 2017[48]	27	M	ED	C3–C4	3WK	N	ACFDF	INCR

ACD = anterior cervical discectomy, ACF = anterior cervical foraminotomy and fusion, AF = anterior foraminotomy, CR = complete recovery, D = day(s), ED = extradural, ID = intradural, MTH = month(s), N = no, NR = not reported, SD = symptom duration, WK = week, Y = yes.

Two cases manifesting BSS and Horner syndrome that caused by CDH were reported. Though the clinical manifestations of the 2 patients were exceptional, treatment principles were similar to other cases. Satisfactory clinical outcomes could also be achieved after surgery. Including our case, all of those 70 patients underwent surgery. The most adopted approach was anterior in 35 patients (78.6%), and 38 patients (54.3%) underwent the anterior cervical discectomy and fusion surgery. Posterior surgery in the form of laminectomy or hemilaminectomy was performed in 12 patients. 3 patients carried out anterior combine with posterior approaches. The treatment decision of surgical approaches is based on multiple factors, such as the size or location of herniated discs, numbers of involved vertebral levels, the dimensions of the spinal canal, as well as whether presenting ossification of posterior longitudinal ligament or ligamenta flava. We believe that favorable outcomes could obtain if adequate decompression is achieved by early surgery.

We report a case of BSS resulted from C4–C5 cervical herniated cervical disc, and complete recovery of sensory and motor functions was obtained after surgery. Our case, along with the review of the literature illustrated that BSS caused by CDH is very rare and often be delayed or incorrectly diagnosed. Careful medical history inquiries, detailed neurologic examinations and cervical spinal MRI scans are indispensable for early diagnosis of CDH caused BSS. Prompt surgical decompression according to individual condition is commonly warranted. Proper treatment could lead to apparent recovery of neurological function in a short time and result in favorable prognosis.

Acknowledgments
Our study was approved by the ethics committee of the Tongde Hospital of Zhejiang Province. Written informed consent was obtained from the patient for publication of this case report and accompanying images.

The project described in this publication was supported by the Natural Science Foundation of Zhejiang Province of China (NO: LQ18H080003). There is no conflict of interest or disclosure.

Author contributions
Investigation: FuHua Zhong.
Resources: Haiyong Ren, Junming Wan.
Visualization: Jianwei Lu.
Writing – original draft: Yuqing Zeng.
Writing – review & editing: Shu Deng.
References

[1] Brown-Sequard C. De la transmission des impressions sensitives par la moelle epiniere. CR Soc Biol 1849;1:192–4.

[2] Abouhasem S, Ammar M, Barakat M, et al. Management of Brown-Sequard syndrome in cervical disc diseases. Turk Neurosurg 2013;23:470–5.

[3] Stokey B. Compression of the spinal cord due to ventral extradural cervical chondromas: diagnosis and surgical treatment. Arch Neurol Psychiatry 1928;20:275–91.

[4] Lee JK, Kim YS, Kim SH. Brown-Sequard syndrome produced by cervical disc herniation with complete neurologic recovery: report of three cases and review of the literature. Spinal Cord 2007;45:744–8.

[5] Choi KB, Lee CD, Chung DJ, et al. Brown-Sequard syndrome produced by cervical disc herniation. J Neurosurg Q 2010;20:46–7.

[6] Lau JCK, Li KK. Acute Brown-Séquard syndrome caused by cervical disc herniation: a case report and review of the literature. J Orthop Trauma Rehabil 2017;22(suppl C):38–40.

[7] Düring M, Zdrojewski B. Intrathecal herniation of a cervical disc: a case report (author’s trans.). Arch orthop Unfall-Chirurgie 1977;87:141–7.

[8] Roda JM, Gonzalez C, Blazquez MG, et al. Intradural herniated cervical disc. J Neurosurg 1982;57:278–80.

[9] Eisenberg RA, Bremer AM, Northup HM. Intradural herniated cervical disk; a case report and review of the literature. AJNR Am J Neuroradiol 1986;7:492–4.

[10] Schneider SJ, Grossman RG, Bryan RN. Magnetic resonance imaging of Brown-Sequard syndrome: case report and review of the literature. J Inj Violence Res 2012;4(1):67.

[11] Antich PA, Sanjuan AC, Gvert FM, et al. High cervical herniation and Brown-Sequard syndrome. A case report and review of the literature. J Bone Jt Surg Br Vol 1999;81:462–3.

[12] Kohn M, Takahashi H, Yamaoka K, et al. Postoperative prognosis of cervical intradural disc herniation: a case report and review of the literature. J Inj Violence Res 2012;4(1):82.

[13] Sayer FT, Vitali AM, Low HL, et al. Brown-Sequard syndrome produced by cervical disc herniation associated with severe carotid stenosis prompting rapid combined carotopyy and carotid endarterectomy under deep anticoagulant therapy. Spine J: Off J North Am Spine Soc 2009;9:e15–9.

[14] Saito Y, Onari K, Kondo S, et al. Cervical Brown-Sequard syndrome: a case report and literature review. Spine J: Off J North Am Spine Soc 2009;9:e15–9.

[15] Karadag-Saygi E, Cubukcu-Aydoseli K, Aydoseli A, et al. Brown-Sequard syndrome caused by cervical disc herniation: case report and review. Neurosurg Q 2010;20:61–7.

[16] Yang HS, Yuan W, Chen DY. Brown-Sequard syndrome produced by traumatic cervical disc herniation. ANZ J Surg 2010;80:575–6.

[17] Rustagi T, Badve S, Maniar H, et al. Brown-Sequard syndrome: case report and literature review. Case Rep Orthop 2011;2011:6.

[18] Ghaseem AA. A rare case of Brown-Sequard syndrome caused by cervical disc herniation: a case report. J Trauma 2012;72:1323–7.

[19] Shariati G, Mosavi SA, Shahzad M, et al. Pure traumatic upper cervical disc herniation causing spinal cord injury: a case report and review of the literature. J Inj Violence Res 2012;4(1):67.

[20] Kontula J, Faidic R. Cervical disc herniation producing acute Brown-Sequard syndrome: dynamic changes documented by intraoperative neuromonitoring. Eur Spine J 2012;21(suppl 4):S248–51.

[21] Yeung JT, Johnson JL, Barlow AS. Cervical disc herniation presenting with neck pain and contralateral symptoms: a case report. J Med Case Rep 2012;6:166.

[22] Yokoyama K, Kawanshii M, Yamada M, et al. Cervical disc herniation presenting as Brown-Sequard syndrome. J Neurosci Rural Pract 2012;3:182–3.

[23] Wang D, Wang H, Shen WJ. Spontaneous cervical intradural disc herniation associated with ossification of posterior longitudinal ligament. Case Rep Orthop 2014;2014:25207.

[24] Guan D, Wang G, Clarke M, et al. Brown-Sequard syndrome produced by calcified herniated cervical disc and posterior vertebral osteophyte: case report. J Orthop 2015;12(suppl 2):S260–263.

[25] Han D, Wang G, Clare M, et al. Cervical disc herniation resulting in sudden and severe neurologic deterioration: a case series. Surg J (New York, NY) 2016;2:e96–101.

[26] Meng Y, Zhou L, Liu X, et al. Brown-Sequard syndrome associated with Horner syndrome following cervical disc herniation. Spinal cord series and cases 2016;2(1):16037.

[27] Porto GB, Tan LA, Kadiwal MK, et al. Progressive Brown-Sequard syndrome: a rare manifestation of cervical disc herniation. J Clin Neurosci: Off J Neurosurg Soc Australas 2016;23:195–6.

[28] Baudracco I, Grahovac G, Russo VM. Spontaneous cervical intradural disc herniation presenting with Brown-Sequard and Horner’s syndrome: lesson learned from a very unique case. European Spine J 2017;26(Suppl 1):218–21.

[29] Warade AG, Misra BK. Spontaneous cervical intradural disc herniation. J Clin Neurosci 2014;21:872–3.

[30] Yang H-S, Oh Y-M, Eun J-P. Cervical intradural disc herniation causing progressive quadriparesis after spinal manipulation therapy: a case report and literature review. Medicine 2016;55:e2797.