Toward standard abbreviations and acronyms for use in articles on aortic disease

Zachary G. Perez, BA, Mohammad A. Zafar, MBBS, Bulat A. Ziganshin, MD, PhD, and John A. Elefteriades, MD, PhD (hon)

ABSTRACT

Objectives: Academic medical literature is fraught with complex article-specific acronyms and abbreviations that can impair communication and make reading arduous. Our goal is to ease frustration with bespoke, inconsistent, and variable sets of abbreviations that currently exist for common aorta-related terminology (eg, anatomy, imaging, disease, and therapy). We hope to ease reading and improve communication in the aortic sphere of cardiovascular literature.

Methods: We reviewed a total of 205 published references related to aortic disease, including a systematic review of aorta-related articles in the Journal of Thoracic and Cardiovascular Surgery from the years 2020 and 2021. The array of variable definitions, abbreviations, and acronyms encountered in different papers that refer to the same terminology was striking, revealing that there were few standardized abbreviations in the aortic literature. We cataloged these terms, their associated abbreviations, and their frequency of use, and compiled a list of proposed standard abbreviations for commonly used terms that could be implemented uniformly in articles written about aortic diseases.

Results: We present suggested acronyms and abbreviations for common terminology related to the aorta. It is anticipated that this standard list will evolve over time as the literature and technology of the field grows and develops.

Conclusions: A proposed standard set of acronyms and abbreviations for aorta-related terminology is provided that, if found useful, could be implemented broadly in the aortic literature. (JTCVS Open 2022;10:34-8)

Among the most onerous aspects of reading scientific research is familiarizing oneself with the plethora of article-specific acronyms and abbreviations. Readers often struggle to remember the exact meaning of each abbreviation in an article at hand, and, need to move up and down the article to find its definition at first use. A combination of increasingly complex research, highly specific terminology, and strict word and character limits is forcing the use of more and more abbreviations. Despite an intention to enhance clarity and ease reading, acronyms and abbreviations can counterproductively become a burden. For many readers, acronyms have contributed to confusion and frustration. In fact, some critics of acronyms and abbreviations have facetiously coined derogatory neologisms for this supposed syndrome.

In the aortic space, many acronyms and abbreviations have arisen to describe anatomic structures, clinical events and syndromes, imaging findings, and surgical and endovascular therapies. In a review of the literature for an
TABLE 1. Heterogeneity of abbreviations used in reference to type A thoracic aortic dissection in Journal of Thoracic and Cardiovascular Surgery articles published during 2020 and 2021

Abbreviation	Entity
AAAD	Acute type A aortic dissection
A-AD	Type A aortic dissection
AAD*	Acute aortic dissection
AAD	Acute type A aortic dissection
AADA	Acute aortic dissection type A
aTAAD*	Acute type A aortic dissection
ATAAD*	Acute type A aortic dissection
ATAD	Acute type A dissection
TAAAD	Type A acute aortic dissection
TAAD*	Type A aortic dissection
TAD*	Thoracic aortic dissection
TAD	Type A dissection
Type A TAD	Type A thoracic aortic dissection

*Acronyms that have also been used in the literature to refer to other aortic terminology.

upcoming article, \(^{3-35}\) an overwhelming array of inconsistent abbreviations became apparent. \(^{36-56}\) After tallying these references, we systematically reviewed all aorta-related articles published in the Journal of Thoracic and Cardiovascular Surgery during the years 2020 and 2021. A total of 205 references (inclusive of the initial search and the systematic review) were evaluated. The high degree of variability discovered presents unwanted opportunities for miscommunication between researchers and target audiences as well as foments frustration among readers. It was found that many specific abbreviations had different meanings in different articles. For example, in the literature reviewed, TAAD was used as a general term to mean thoracic aortic aneurysms and dissections, as well as a more specific term for both type A aortic dissection and thoraco-abdominal aortic dissection. \(^{12-14,24}\) Conversely, there were 13 different acronyms or terms used to denote acute type A thoracic aortic dissection \(^{12,15,21,30}\) This finding alone undoubtedly demonstrates that there is a need for an organized method of presenting common aortic terminology in the primary literature.

We present a suggested master list of acronyms and abbreviations related to aortic disease that could be used more consistently across journals to achieve both clarity and brevity \(^{1}\) (Figure 1 and Table 2). Ideally, a single set of standard abbreviations will be used collaboratively among journals within this specialty to minimize the so-called word soup of aortic acronyms that currently exists. Toward this end, we suggest that these acronyms be implemented by all journals that publish frequently on aortic diseases via their Information for Authors document (or the equivalent) to encourage this standardization within the literature. Such an approach would guide authors on what acronyms, if any,
to use if they wish to publish on aortic diseases in those journals. This would not replace current conventions to define all acronyms at first use—this is still needed for transparency and clarity. The suggested list can be updated as the literature demands or at regular intervals to reflect new terminologies and therapies. We hope that the widespread implementation of such a list will ease writing, improve communication, and make reading of individual papers less onerous to the reader.

CONCLUSIONS

The suggested list is a starting point toward a communal master list of aortic acronyms and abbreviations. We

Table 2. Suggested list of standard abbreviations and acronyms for aorta-related terminology	Abbreviation	Entity
AA*	Aortic aneurysm	
AAA	Abdominal aortic aneurysm	
AAD	Acute aortic dissection	
AAE	Adverse aortic event(s)	
AAR	Ascending aortic replacement	
AAS	Acute aortic syndrome	
ACP	Antegrade cerebral perfusion	
AD*	Aortic dissection	
AI	Aortic insufficiency	
Ao	Aorta	
AoArch	Aortic arch	
AoRoot	Aortic root	
AR	Aortic regurgitation	
ARR	Aortic root replacement	
AS	Aortic stenosis	
AscAD	Ascending aortic dissection	
AscAo	Ascending aorta	
ATAA	Ascending thoracic aortic aneurysm	
ATS	Arterial tortuosity syndrome	
AU	Aortic ulcer	
AV	Aortic valve	
BArch	Bovine arch	
BAV	Bicuspid aortic valve	
CA	Celiac artery	
CoA	Coarctation of the aorta	
CTA	Computed tomography angiography	
DescAo	Descending aorta	
DHCA	Deep hypothermic circulatory arrest	
DTAA	Descending thoracic aortic aneurysm	
DTAD	Descending thoracic aortic dissection	
DT Ao	Descending thoracic aorta	
EVAR	Endovascular aneurysm repair	
FEVAR	Fenestrated endovascular aneurysm repair	
FL	False lumen	
HAR	Hemiarch replacement	
HCA	Hypothermic circulatory arrest	
IA	Innominate artery	
IAbdAD	Isolated abdominal aortic dissection	
IAD	Iatrogenic aortic dissection	
IMA	Inferior mesenteric artery	
IMH	Intramural hematoma	
LCCA	Left common carotid artery	
LRA	Left renal artery	
LSCA	Left subclavian artery	
LV	Left vertebral artery	
MRA	Magnetic resonance artery	
PAU	Penetrating aortic ulcer	
RCCA	Right common carotid artery	
RCP	Retrograde cerebral perfusion	
RRA	Right renal artery	
RSCA	Right subclavian artery	
RVA	Right vertebral artery	
SAVR	Surgical aortic valve replacement	
SMA	Superior mesenteric artery	
SoV	Sinuses of Valsalva	
STJ	Sinotubular junction	
TAA*	Thoracic aortic aneurysm	
TAAA*	Thoracoabdominal aortic aneurysm	
TAAD*	Thoracic aortic aneurysms and dissections	
TabdAD	Thoracoabdominal aortic dissection	
TabdAo	Thoracoabdominal aorta	
TAD*	Thoracic aortic dissection	
Tao	Thoracic aorta	
TAR	Total arch replacement	
TAV	Tricuspid aortic valve	
TAVI	Trans-catheter aortic valve implantation	
TAVR	Trans-catheter aortic valve replacement	
TEE	Transesophageal echocardiography	
TEVAR	Thoracic endovascular aneurysm repair	
TL	True lumen	
TTE	Transthoracic echocardiography	
Type A TAD*	Type A thoracic aortic dissection	
Type B TAD*	Type B thoracic aortic dissection	
VSARR	Valve-sparing aortic root replacement	

*Preceding term specifiers should be written out unless they are used extensively. These include but are not limited to: acute, chronic, complicated, uncomplicated, sporadic, familial, heritable, iatrogenic, isolated, localized, and spontaneous.
welcome suggestions for improvement—via alternatives or additions to the entries in this suggested list.

Conflict of Interest Statement
Dr Elefteriades is the principal of CoolSpine. All other authors report no conflict of interest.

The Journal policy requires editors and reviewers to disclose conflicts of interest and to decline handling or reviewing manuscripts for which they have a conflict of interest. The editors and reviewers of this article have no conflicts of interest.

References

1. Begg CB. Zero tolerance for acronyms. Clin Trials. 2017;14:561-2.
2. Cheng TO. Acronymia. J Fam Pract. 1995;40:328.
3. Albornoz G, Coady MA, Roberts M, Davies RR, Tranquilli M, Rizzo JA, et al. Familial thoracic aortic aneurysms and dissections—incidence, modes of inheritance, and phenotypic patterns. Ann Thorac Surg. 2006;82:1400-5.
4. Bhandari R, Aatre RD, Kanthi Y. Diagnostic approach and management of genetic aortopathies. Vasc Med. 2020;25:63-77.
5. Boczar KE, Cheung K, Boodhwani M, Beauchesne L, Demmie C, Nagpal S, et al. Sex differences in thoracic aortic aneurysm growth. Hypertension. 2019;73:190-6.
6. Borger MA, Feldak PWM, Stephens EH, Gleason TG, Girdauskas E, Ilkonomidis JS, et al. The American Association for Thoracic Surgery consensus guidelines on bicuspid aortic valve-related aortopathy: full online-only version. J Thorac Cardiovasc Surg. 2018;156:e41-74.
7. Coady MA, Rizzo JA, Hammond GL, Mandapati D, Durr U, Kopf GS, et al. What is the appropriate size criterion for resection of thoracic aortic aneurysms? J Thorac Cardiovasc Surg. 1997;113:476-91.
8. Elefteriades JA, Farkas EA. Thoracic aortic aneurysm: clinically pertinent controversies and uncertainties. J Am Coll Cardiol. 2010;55:841-57.
9. Elefteriades JA, Sang A, Kuzmik G, Hornick M. Guilt by association: paradigm for detecting a silent killer (thoracic aortic aneurysm). Open Heart. 2015;2:e000169.
10. Elefteriades JA, Ziganshin BA. Paradigm for detecting silent thoracic aneurysm disease. Semin Thorac Cardiovasc Surg. 2016;28:776-82.
11. Elefteriades JA, Ziganshin BA. A new ‘angle’ towards prediction of type A aortic dissection. Eur J Cardiothorac Surg. 2021;60:987-8.
12. Emerel L, Thunes J, Kicklitter T, Billaud M, Phillippi JA, Vorp DA, et al. Prediction of thoracic aortic dissection from age-related geometric and distensibility indices reveals increased peak longitudinal strain and stiffness in patients sustaining acute type A aortic dissection: implications for predicting dissection. J Thorac Cardiovasc Surg. 2019;158:355-63.
13. Erbel R, Abiyans V, Boileau C, Bosseen E, Di Bartolomeo R, Eggebercht H, et al. 2014 ESC guidelines on the diagnosis and treatment of aortic diseases. Eur Heart J. 2014;35:2873-926.
14. Faggion Vinholo T, Brownstein AJ, Ziganshin BA, Zafar MA, Kuwaniemi H, Body SC, et al. Genes associated with thoracic and abdominal aortic aneurysms and dissection: 2019 update and clinical implications. AORTA. 2019;7:99-107.
15. Gudbjartsson Th, Ahlsson A, Geirsson A, Gunn J, Hjortdal V, Jeppsson A, et al. Acute type A aortic dissection—a review. Scand Cardiovasc J. 2020;54:1-13.
16. Heuts S, Adriaans BP, Rylski B, Mihl C, Bekkers SCAM, Olsthoorn JR, et al. Evaluating the diagnostic accuracy of maximal aortic diameter, length and volume for prediction of aortic dissection. Heart. 2020;106:892.
17. Isselbacher EM, Lino Cardenas CL, Lindsay ME. Hereditary influence in thoracic aortic aneurysm and dissection. Circulation. 2016;133:2516-28.
18. Koechlin L, Mousis E, Kaufmann J, Gahl B, Reuthubech O, Eckstein F, et al. Aortic root and ascending aorta dimensions in acute aortic dissection. Perfusion. 2020;35:131-7.
19. LeMaire SA, Russell L. Epidemiology of thoracic aortic dissection. Nat Rev Cardiol. 2011;8:103-13.
20. Levine D, Cina A, Totsello F, Saba L, Vallevonga F, Avenatti E, et al. Proximal aortic diameter evaluation in hypertensive patients with mild-to-moderate aortic dilatation: a 5-year follow-up experience. J Hypertens. 2020;38:716-22.
21. Mansour AM, Peters S, Zafar MA, Rizzo JA, Fang H, Charlaou P, et al. Prevention of aortic dissection suggests a diameter shift to a lower aortic size threshold for intervention. Cardiology. 2018;139:139-46.
22. Mariscalco G, Debiec R, Elefteriades JA, Samani NJ, Murphy GJ. Systematic review of studies that have evaluated screening tests in relatives of patients affected by nonsyndromic thoracic aortic disease. J Am Heart Assoc. 2018;7:e009302.
23. Mark DG, Davis JA, Hung Y-Y, Vinson DR. Discriminatory value of the ascending aorta diameter in suspected acute type A aortic dissection. Acad Emerg Med. 2019;26:217-25.
24. McKinsey JF, Kim I-K, Sosnow E, Moskovitz A, Egerova N. Thoracic aortic dissection and thoracoabdominal acute type B aortic dissections have superior survival when treated with thoracic endovascular aneurysm repair and open surgery compared to medical therapy: outcomes from the National Medicare Database. J Vasc Surg. 2012;56:886.
25. Papakonstantinou NA, Rorris F-P. Elective replacement of the ascending aorta: is the 5.5-cm threshold appropriate? The insidious, small aorta. Eur J Cardiothorac Surg. 2021;59:554-61.
26. Pape LA, Tsai TT, Isselbacher EM, Oh JK, O’Gara PT, Evangelista A, et al. Aortic diameter greater than 5.5 cm is not a good predictor of type A aortic dissection: observations from the International Registry of Acute Aortic Dissection (IRAD). Circulation. 2007;116:1120-7.
27. Parish LM, Gorman JH III, Kahn S, Plappert T, St John-Sutton MG, Bavaria JE, et al. Aortic size in acute type A dissection: implications for preventive ascending aortic replacement. Eur J Cardiothorac Surg. 2009;35:941-6.
28. Parauchuri V, Salhab KF, Kuzmik G, Guberickoff F, Fang H, Rizzo JA, et al. Aortic size distribution in the general population: explaining the size paradox in aortic dissection. Cardiovasc Pathol. 2015;13:265-72.
29. Perez et al Adult: Aorta
30. Tsai TT, Evangelista A, Nienaber CA, Trimarchi S, Sechtem U, Fattori R, et al. Long-term survival in patients presenting with type A acute aortic dissection. Circulation. 2006;114:1330-6.
31. Turkbey EB, Jain A, Boodhwani M, Beauchesne L, Dick A, Coutinho T, et al. Genes associated with thoracic aortic aneurysm and dissection: a review of the literature and a call to action. J Magn Reson Imaging. 2014;39:560-8.
32. Weiss S, Sen I, Huang Y, Harmsen WS, Bower TC, Odendorf GS, et al. Population-based assessment of aortic-related outcomes in aortic dissection, intramural hematoma, and penetrating aortic ulcer. Ann Vasc Surg. 2020;69:62-73.
33. Wu Y, Gong M, Fan R, Gu T, Qian X, Zhang H. Analysis of ascending aortic diameter and long-term prognosis in patients with ascending aortic dissection. J Thorac Cardiovasc Surg. 2020;160:656-60.
34. Xie CF, Cervi E. Risk factors for thoracic aortic aneurysms and dissections: a review of the literature. J Thorac Cardiovasc Surg. 2019;157:37-42.
35. Zhangina BA, Zafar MA, Elefteriades JA. Ascending aorta diameter in suspected acute type A aortic dissection. J Thorac Cardiovasc Surg. 2019;157:37-42.
root dilation rate and aortic events in Marfan syndrome. Eur Heart J. 2019;40:2047-55.
44. Hawkins RB, Mehaffey JH, Downs EA, Johnston LE, Yarboro LT, Fonner CE, et al. Regional practice patterns and outcomes of surgery for acute type A aortic dissection. Ann Thorac Surg. 2017;104:1275-81.
45. Howard DP, Banerjee A, Fairhead JF, Perkins J, Silver LE, Rothwell PM. Population-based study of incidence and outcome of acute aortic dissection and pre-morbid risk factor control: 10-year results from the Oxford Vascular Study. Circulation. 2013;127:2031-7.
46. Mennander A, Olsson C, Jeppsson A, Geirsson A, Hjortdal V, Hansson EC, et al. The significance of bicuspid aortic valve after surgery for acute type A aortic dissection. J Thorac Cardiovasc Surg. 2020;159:760-7.e763.
47. Obel LM, Diederichsen AC, Steffensen FH, Frost L, Lambrechtsh J, Busk M, et al. Population-based risk factors for ascending, arch, descending, and abdominal aortic dilations for 60-74-year-old individuals. J Am Coll Cardiol. 2021;78:201-11.
48. Parve S, Ziganshin BA, Elefteriades JA. Overview of the current knowledge on etiology, natural history and treatment of aortic dissection. J Cardiovasc Surg. 2017;58:238-51.
49. Pinard A, Jones GT, Milewicz DM. Genetics of thoracic and abdominal aortic diseases. Circ Res. 2019;124:588-606.
50. Rylski B, Blanke P, Bayersdorf F, Desai ND, Milewski RK, Siepe M, et al. How does the ascending aorta geometry change when it dissects? J Am Coll Cardiol. 2014;63:1311-9.
51. Sievers HH, Hemmer W, Bayersdorf F, Moritz A, Moosdorf R, Lichtenberg A, et al. The everyday used nomenclature of the aortic root components: the tower of Babel? Eur J Cardiothorac Surg. 2012;41:478-82.
52. Song JK, Kim HS, Kang DH, Lim TH, Song MG, Park SW, et al. Different clinical features of aortic intramural hematoma versus dissection involving the ascending aorta. J Am Coll Cardiol. 2001;37:1604-10.
53. Wu J, Zafar MA, Li Y, Saeyeldin A, Huang Y, Zhao R, et al. Ascending aortic length and risk of aortic adverse events: the neglected dimension. J Am Coll Cardiol. 2019;74:1883-94.
54. Ziganshin BA, Bailey AE, Coons C, Dykas D, Charilaou P, Tanriverdi LH, et al. Routine genetic testing for thoracic aortic aneurysm and dissection in a clinical setting. Ann Thorac Surg. 2015;100:1604-11.

Key Words: abbreviations, acronyms, aneurysm, aorta, aortic aneurysm