Identification of DEGs and Transcription Factors Involved in *H. pylori*-associated inflammation and their relevance with Gastric Cancer

Honghao Yin¹, ², ³, Aining Chu¹, ², ³, Songyi Liu¹, ², ³, Yuan Yuan Corresp., ¹, ², ³, Yuehua Gong Corresp.¹, ², ³

¹Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, LiaoNing, China
²Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, LiaoNing, China
³Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, LiaoNing, China

Corresponding Authors: Yuan Yuan, Yuehua Gong
Email address: yuanyuan@cmu.edu.cn, yhgong@cmu.edu.cn

Background: Previous studies have indicated that chronic inflammation linked to *H. pylori* infection is the leading causes for gastric cancer (GC). However, the exact mechanism is not entirely clear until now.

Purpose: To identify the key molecules and TFs involved in *H. pylori* infection and to provide new insights into *H. pylori*-associated carcinogenesis and lay the groundwork for the prevention of GC.

Results: GO and KEGG analysis revealed that the DEGs of Hp⁺-NAG were mainly associated with the immune response, chemokine activity, extracellular region and rheumatoid arthritis pathway. The DEGs of Hp⁺-AG-IM were related to the apical plasma membrane, intestinal cholesterol absorption, transporter activity and fat digestion and absorption pathway. In Hp⁺-NAG network, the expression of TNF, CXCL8, MMP9, CXCL9, CXCL1, CCL20, CTLA4, CXCL2, C3, SAA1 and FOXP3, JUN had statistical significance between normal and cancer in TCGA database. In Hp⁺-AG-IM network the expression of APOA4, GCG, CYP3A4, XPNPEP2 and FOXP3, JUN were statistically different in the comparison of normal and cancer in TCGA database. FOXP3 were negatively associated with overall survival, and the association for JUN was positive.

Conclusion: The current study identified key DEGs and their transcriptional regulatory networks involved in *H. pylori*-associated NAG, AG-IM and GC and found that patients with higher expressed FOXP3 or lower expressed JUN had shorter overall survival time. Our study provided new directions for inflammation-associated oncogenic transformation involved in *H. pylori* infection.
Identification of DEGs and Transcription Factors Involved in *H. pylori*-associated inflammation and Their Relevance with Gastric Cancer

Honghao Yin, Aining Chu, Songyi Liu, Yuan Yuan*, Yuehua Gong*

1 Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang 110001, China

2 Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang 110001, China

3 Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, China

*Co-Correspondence should be addressed to

Dr. Gong Yuehua, Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No.155 NanjingBei Street, Heping District, Shenyang, Liaoning Province, P.R. China 110001, Telephone: +86-024-83282153; fax: +86-024-83282383. Email: yhgong@cmu.edu.cn

Dr. Yuan Yuan, Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No.155 NanjingBei Street, Heping District, Shenyang, Liaoning Province, P.R. China 110001, Telephone:+86-024-83282153;fax: +86-024-83282292. Email: yuanyuan@cmu.edu.cn
Abstract:

Background: Previous studies have indicated that chronic inflammation linked to *H. pylori* infection is the leading causes for gastric cancer (GC). However, the exact mechanism is not entirely clear until now.

Purpose: To identify the key molecules and TFs involved in *H. pylori* infection and to provide new insights into *H. pylori*-associated carcinogenesis and lay the groundwork for the prevention of GC.

Results: GO and KEGG analysis revealed that the DEGs of Hp⁺-NAG were mainly associated with the immune response, chemokine activity, extracellular region and rheumatoid arthritis pathway. The DEGs of Hp⁺-AG-IM were related to the apical plasma membrane, intestinal cholesterol absorption, transporter activity and fat digestion and absorption pathway. In Hp⁺-NAG network, the expression of TNF, CXCL8, MMP9, CXCL9, CXCL1, CCL20, CTLA4, CXCL2, C3, SAA1 and FOXP3, JUN had statistical significance between normal and cancer in TCGA database. In Hp⁺-AG-IM network the expression of APOA4, GCG, CYP3A4, XPNPEP2 and FOXP3, JUN were statistically different in the comparison of normal and cancer in TCGA database. FOXP3 were negatively associated with overall survival, and the association for JUN was positive.

Conclusion: The current study identified key DEGs and their transcriptional regulatory networks involved in *H. pylori*-associated NAG, AG-IM and GC and found that patients with higher expressed FOXP3 or lower expressed JUN had shorter overall survival time. Our study provided
new directions for inflammation-associated oncogenic transformation involved in *H. pylori* infection.

Keywords: *H. pylori*, inflammation, gastric cancer, DEGs, transcription factor, regulatory network

Introduction

Gastric cancer (GC) is one of the most common malignancies, and ranks second in the world in terms of the cancer mortality (Chmiela et al. 2017; Dadashzadeh et al. 2017; Van Cutsem et al. 2016). Helicobacter pylori (*H. pylori*) infection can induce inflammation, affect the growth, differentiation, renewal, mucosal integrity, and lead to gastric injury. Several previous studies have indicated that chronic inflammation linked to *H. pylori* infection is one of the leading causes of GC (Sipponen et al. 2015). Thus, investigating the inflammation mechanisms of *H.pylori* infection is of great importance to understand the occurrence and progression of GC.

According to the Correa's model (Correa 1992), *H. pylori* infection was firmly related to intestinal-type GC through the process of non-atrophic gastritis (NAG), atrophic gastritis (AG), intestinal metaplasia (IM), atypical hyperplasia. In the NAG stage, infection with *H. pylori* is characterized by the infiltration of lymphocytes, polymorphonuclear leukocytes, and macrophages in the gastric mucosa. Over time, gastric mucosa would suffer a loss of glandular cells and be replaced by intestinal and fibrous tissues eventually, which is manifested as AG or AG-IM. In these processes, *H.pylori* can induce the expression of pro-inflammatory factors, chemokines, inflammatory regulatory factors and contribute to gastric disorder (Ernst et al. 2000). Current research indicates that chronic NAG and AG-IM are associated with the development of GC (Matysiak-Budnik et al. 2006). Also, the existing intervention trials have shown that *H. pylori* eradication in the NAG and AG-IM stage is helpful for the prevention of GC (Kuipers et al. 2006). However, until now it is not entirely clear about the key genes involved in the *H. pylori*-related inflammation.
Gene expression is determined at both transcriptional and post-transcriptional levels. Transcription factors (TFs) regulate gene expression by site-specific binding to chromosomal DNA, thereby preventing or promoting the transcription by RNA polymerase. Studies have shown that TFs vary during different inflammatory stages of *H. pylori* infection. For example, activator protein-1 (AP-1) and cAMP-response element-binding protein (CREB) modulate early inflammatory responses, while nuclear factor-κB (NF-κB) and interferon-sensitive response element (ISRE) contact with inflammatory processes of AG (Sokolova et al. 2017). Thus, searching for key TFs involved in the inflammatory response of *H. pylori* is of great importance for the development of GC.

As the availability of multi-level expression data for diseases and normal tissues increases, new opportunities for the extraction and integration of large data sets, such as gene expression omnibus (GEO) and The Cancer Genome Atlas (TCGA), may help in providing a more comprehensive understanding of the pathogenesis of *H. pylori* infection. Here, we used an online bioinformatics resources to identify the key molecules involved in *H. pylori*-related gastric inflammation and the TFs regulatory networks. Our study intended to provide a new insight into *H. pylori*-associated carcinogenesis and lay the foundation for GC prevention.

Materials and methods

Microarray Data

Two sets of microarray data from the public database GEO were used in this study. For the data set with the GEO accession number GSE27411, three cases of no *H. pylori* infection (Hp⁻-No), three cases of *H. pylori* infection without corpus-predominant AG (Hp⁺-NAG) and three cases of *H. pylori* infection with corpus-predominant AG (Hp⁺-AG-IM) were included. For the data set with the accession number GSE60662, four replicates of the control were included as
Hp⁺-No, four replicates of mild gastritis and four replicates of severe gastritis as Hp⁺-NAG, and four replicates of IM as Hp⁺-AG-IM.

Data Processing

GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/) was undertaken to compare multiple sets of samples and to identify differentially expressed genes (DEGs) in the GEO series (Barrett et al. 2013). FDR < 0.05 and |logFC| > 1 were considered statistically significant.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Enrichment Analyses

GO analysis is a major bioinformatics tool for annotating genes and gene products. It contains terms under three categories: cellular component, molecular function, and biological process. To claim the different underlying biological processes of DEGs involved in *H. pylori*-related inflammation, GO biological process enrichment analysis was performed using Gene Ontology Consortium (http://www.geneontology.org) and KEGG pathway enrichment analysis was used to find the potential pathways of *H. pylori*-related inflammation by David database (https://david.ncifcrf.gov/) (Dennis et al. 2003). The cut-off criteria of significant GO terms and KEGG pathways was FDR < 0.05.

Protein-protein interaction (PPI) networks of key DEGs and TFs

The Retrieval of Interacting Genes (STRING) database tool (string-db.org) was used to figure out the interactive relationships of DEGs, and only interactions with a combined score > 0.4 were considered as significant and retained. The key DEGs were identified by degree ≥ 15, which were calculated using the online tool Centiscape 2.2. PROMO database that can use
species-specific searches to detect known transcription regulatory elements (Messeguer et al. 2002). We obtained the DNA sequence from 2000bp upstream to 100bp downstream of the transcription start site of the DEGs from University of California Santa Cruz (UCSC) genome browser database. After entering above sequences into the PROMO database with zero fault tolerance, we obtained all the TFs that could regulate the key DEGs. PPI networks of TFs-key DEGs were visualized and analyzed by Cytoscape 3.4.0 (Scardoni et al. 2009).

TCGA database Analysis of key DEGs and TFs

TCGA database (https://cancergenome.nih.gov/) provides genomic information on 33 types of cancer. In the database, there are 18 GC specimens with *H. pylori* positive and 32 normal specimens without *H. pylori* infection (see Table 1 for details). Further, we downloaded the RNA expression data and compared the differences of the key DEGs and TFs between *H. pylori* positive GC and normal groups using the Mann-Whitney U test. *P* <0.05 was considered statistically significant.

Survival analysis

Kmplot (www.kmplot.com) provided customizable functions such as patient survival analysis (Á et al. 2018). To determine the possible relationship of the key DEGs and TFs with GC prognosis, we performed survival analysis of 882 GC patients in Kmplot. And *P* <0.05 was considered statistically significant. Figure 1 depicted the flow diagram of all above bioinformatics analysis.

Result

Screening of DEGs involved in *H. pylori*-associated inflammation
Comparing Hp¹-No with Hp¹-NAG in GSE27411, there were 191 downregulated and 323 upregulated genes. In terms of Hp¹-No and Hp¹-NAG in GSE60662, there were 743 downregulated and 1682 upregulated genes. After the intersection, there were 97 high-expressed genes and 14 low-expressed genes screened out.

Comparing Hp¹-NAG with Hp¹-AG-IM in GSE27411, there were 235 downregulated and 508 upregulated genes. In terms of Hp¹-NAG and Hp¹-AG-IM in GSE60662, there were 1376 downregulated and 1364 upregulated genes. After the intersection, there were 342 genes of high expression and 43 genes of low expression screened out.

The cellular functions and pathway analysis of DEGs involved in H. pylori-associated inflammation

As can be seen from Figure 2, GO terms of Hp¹-NAG participated in the cell component of extracellular region, space MHC class II protein complex, integral component of luminal side of endoplasmic reticulum membrane, and transport vesicle membrane. About biological processes, these genes enriched in immune response, inflammatory response, antigen processing and presentation of peptide or polysaccharide antigen via MHC class II and cell chemotaxis. In addition, molecular function suggested enrichment mainly at chemokine activity, MHC class II receptor activity, peptide antigen binding, CXCR chemokine receptor binding, CCR6 chemokine receptor binding. According to KEGG pathway analysis, the most significant pathways were rheumatoid arthritis, staphylococcus aureus infection, asthma, graft-versus-host disease, allograft rejection and so on.

As shown in Figure 3, GO terms of Hp¹-AG-IM participated in cell component of apical plasma membrane, extracellular exosome, brush border, brush border membrane, integral component of membrane. For biological processes, these genes enriched in intestinal cholesterol absorption, cholesterol homeostasis, retinoid metabolic process, cholesterol efflux, and xenobiotic metabolic process. In addition, molecular function suggested enrichment mainly at transporter
activity, phospholipid binding, cholesterol transporter activity, protein homodimerization activity, ATPase activity, coupled to transmembrane movement of substances. According to KEGG pathway analysis, the most significant pathways were fat digestion and absorption, metabolic pathways, drug metabolism, protein digestion and absorption, metabolism of xenobiotics by cytochrome P450 and so on.

Construction of DEGs-TFs PPI networks

As can be seen from Table 2, the key genes of Hp⁺-NAG were TNF, CXCL8, MMP9, CXCL9, CXCL1, CCL20, LCN2, CTLA4, FPR1, CXCL2, C3, SAA1, and all of which were high expression. TFs regulated these key DEGs were FOXP3, TP53, ESR1, JUN and FOSB. Figure 4 showed the PPI network of DEGs-TFs involved in Hp⁺-NAG.

As shown in Table 3, the key genes of Hp⁺-AG-IM were APOB, SLC2A2, FABP1, APOA4, NR1H4, APOC3, DGAT1, APOA1, GCG, CYP3A4, DPP4, GLUL, SI, XPNPEP2, MGAM, SLC15A1. Among them, GLUL was low-expressed and others with high expression. And TFs regulated these key DEGs were TBP, NR3C1, FOXP3, ESR1, JUN. Figure 5 showed the PPI network of DEGs-TFs involved in Hp⁺-AG-IM.

The Relevance of key DEGs and TFs with GC in TCGA database

Next, we analyzed above genes between 18 GC with *H. pylori* and 32 normal without *H. pylori* in TCGA database. The results indicated that the expressed differences of TNF, CXCL8, MMP9, CXCL9, CXCL1, CCL20, CTLA4, CXCL2, C3, SAA1 and FOXP3, JUN in Hp⁺-NAG network, had statistical significance between normal and cancer (*P*<0.05). APOA4, GCG, CYP3A4, XPNPEP2 and FOXP3, JUN of Hp⁺-AG-IM network differed between normal and cancer (*P*<0.05).
Survival analysis of key DEGs and TFs in Kmplot

To further analyze the prognostic characteristics of key DEGs and TFs, survival analysis was performed by Kmplot software. As shown in Figure 6, FOXP3 was negatively associated with overall survival, and the association for JUN were positive.

Discussion:

NAG and AG-IM caused by \textit{H. pylori} infection are closely related to gastric carcinogenesis. However, the key genes and transcriptional regulatory networks in this process are not apparent. In this paper, we used GEO and TCGA database to analyze the key DEGs and TFs involved in \textit{H. pylori}-related inflammation and GC. The present study would provide new insights into the early prevention of gastric diseases caused by \textit{H. pylori}.

Firstly, by comparing Hp--No with Hp+-NAG samples, we obtained 111 DEGs, which were mainly related to immune response, inflammatory response, extracellular region and space, MHC class II protein complex, chemokine activity and so on. Through KEGG enrichment, they primarily concentrated on rheumatoid arthritis, staphylococcus aureus infection, allograft rejection and so on. In TCGA database, the expression of TNF, CXCL8, MMP9, CXCL9, CXCL1, CCL20, CTLA4, CXCL2, C3, SAA1 and FOXP3, JUN were differed between cancer and normal, suggesting that these genes may be related to both NAG inflammation and GC. Except JUN, these genes were all high expressed in GC group. CXCL and CXCR are members of endogenous ligands or receptor families of chemokines, and current studies have believed that they are strictly correlated with many kinds of cancers (Pevida et al. 2014; Wyler et al. 2014). \textit{H. pylori} could upregulate TNF\textalpha to induce CCL20 expression in gastric epithelial cells, which were positively associated with the degree of inflammation (Wu et al. 2007). Cytotoxic T
lymphocyte-associated antigen-4 (CTLA-4), is an essential negative regulator expressed on regulatory T cells (Tregs) and activated T cells (Hayakawa et al. 2016). During *H. pylori* infection, CTLA-4 engagement would reduce immune response and promote the development of stomach inflammation (Watanabe et al. 2004). Some studies have asserted that *H. pylori* induces macrophages to release TNF and CXCL8 (Tavares et al. 2018), thereby suppressing immunity and promoting tumorigenesis and development (Lin et al. 2019). However, other CXCL family members identified in this study such as CXCL8, CXCL9, CXCL1, and CXCL2 are currently less described in *H. pylori* infection. CXCL9 was shown to upregulate PD-L1 during gastric carcinogenesis by activating STAT and PI3K-Akt pathways (Zhang et al. 2018). CXCL1 improved MMP-2/9 expression through the integrin β1/FAK/AKT signaling pathway and promoted lymph node metastasis of GC (Wang et al. 2017). CXCL2 increased bladder cancer progression by recruiting myeloid-derived suppressor cells. It has been reported that the inflammation of *H. pylori* may improve MMP-9 expression (Slomiany et al. 2016). Serum amyloid A (SAA) is a polymorphic protein encoded by a family of SAA genes in which new members continue to be identified (Husby et al. 1994). Sung et al demonstrated that SAA was induced from lung cancer cells by the interaction with monocyte macrophages, in return, inducing MMP-9 from monocyte macrophages, thereby promoting the occurrence and development of lung adenocarcinoma (Sung et al. 2011). Yuan et al showed local C3 deposition in the tumor microenvironment was a relevant immune signature for predicting prognosis of GC. It may aberrantly activate JAK2/STAT3 pathway, then allowing tumor progression. FOXP3 is considered to be a hallmark of the forkhead transcription factor family (Guo et al. 2016). However, it is unclear how FOXP3 participates in the process of *H. pylori*-associated inflammation. Our study found that CCL20, CXCL1, CXCL9, and MMP9 may be regulated by FOXP3. JUN is a TF member of the AP-1 family, which are crucial regulators of improving cell proliferation and differentiation (Shaulian 2010). However, our research found the decreased
JUN expression in GC, which might be induced by the dedifferentiation process during tumorigenesis.

Comparing Hp\(^+\)-NAG with Hp\(^-\)-AG-IM, 385 DEGs were screened out. These genes were mostly related to apical plasma membrane, extracellular exosome, intestinal cholesterol absorption, and so on. Through KEGG enrichment analysis, they principally concentrated in fat digestion and absorption, metabolic pathways, drug metabolism, and so on. It is worth noting that the expression of APOA4, GCG, CYP3A4, XPNPEP2, and FOXP3, JUN were different between cancer and normal samples in TCGA database. APOA4 was reported to be closely related to urinary bladder cancer (Soukup et al. 2019). CYP3A4 is currently indicated for the treatment of ovarian and breast cancer (Fiszer-Maliszewska et al. 2018; Liu et al. 2019). Bian et al found that GCG affected the development and progression of colon cancer (Bian et al. 2019). Li et al demonstrated that XPNPEP2 was associated with lymph node metastasis in prostate cancer patients (Li et al. 2019). However, the relationships between these genes and H. pylori-related AG-IM and GC are still unclear. But interestingly, we found that these genes were all involved in metabolically changes. GCG was related to glucose metabolism; other genes were closely associated with lipid metabolism. At present, the relationship between metabolic regulation and cancer have made significant progress (Xiao et al. 2017). In our study, they showed a trend of increasing in NAG and then decreasing in AG and GC, which may be closely associated with the occurrence of GC.

Hu, et al screened genes involved in the Hp\(^+\)-GC group than in the H. pylori-GC group, furthermore verified the results in TCGA database (Hu et al. 2018). They did not analyze differential expressed genes during the dynamic progression from NAG, AG-IM and GC. They found TP53 was upregulated, and CCDC151, CHRN2, GMP2, HDGFRP2 and VSTM2L were downregulated in the H.pylori-positive GC group. By our screening, we also confirmed the
up-regulation of TP53 and down-regulation of CHRNB2, VSTM2L in Hp⁺-GC ($P < 0.05$), but not the DEGs in Hp⁺-NAG or Hp⁺-AG-IM group. It suggests that these genes may be involved in Hp-associated GC, with more significant changes in cancer tissues, and may not play the most critical role in the process from inflammation to carcinogenesis.

Further, we explored the correlation of DEGs/TFs with GC prognosis in Kmplot database. It showed that patients with higher expressed FOXP3 or lower expressed JUN had shorter overall survival time. Wyler et al have claimed that the median overall survival rate of GC patients with high FOXP3 expression is significant lower than that of patients with low expression (Wyler et al. 2014). Furthermore, Ma GF et al found that FOXP3 expression in tumor cells indicated a good prognosis, while high expression in the stroma indicated a poor prognosis (Ma et al. 2014). It indicates that the prognosis of patients may be adjusted by examining the position of FOXP3 expression. Alternately, some studies have shown that JUN expression is associated with poor prognosis (Zhang et al. 2018). JUN generally regulates cell differentiation and has a decreased expression with decreasing differentiation. In our study, JUN expression fluctuated from AG-IM to GC. However, GC patients with lower JUN expression had a shorter survival time. The above results showed that FOXP3, JUN involved in Hp-related NAG, AG-IM, GC, and also closely related to the prognosis of GC. It indicates the role of JUN and FOXP3 factors may be involved in the transformation process of *H. pylori* infection-related inflammation to cancer.

In conclusion, the current study revealed key DEGs and their transcriptional regulatory networks involved in *H. pylori*-associated NAG, AG and GC. TNF, CXCL8, MMP9, CXCL9, CXCL1, CCL20, CTLA4, CXCL2, C3, SAA1 and FOXP3, JUN were key DEGs and TFs of NAG, related with *H. pylori*-infected GC. APOA4, GCG, CYP3A4, XPNPEP2 and FOXP3, JUN constituted a regulatory network of key DEGs and TFs, and were involved in AG-IM and GC. More importantly, FOXP3 and JUN were closely connected with the survival of patients with
Our study provided new directions for inflammation-associated oncogenic transformation of
H. pylori infection.

References:

Á N, A L, O M, and B G. 2018. Author Correction: Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. *Scientific reports* 8:11515.

Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, and Soboleva A. 2013. NCBI GEO: archive for functional genomics data sets--update. *Nucleic Acids Res* 41:D991-995. 10.1093/nar/gks1193

Bian Q, Chen J, Qiu W, Peng C, Song M, Sun X, Liu Y, Ding F, Chen J, and Zhang L. 2019. Four targeted genes for predicting the prognosis of colorectal cancer: A bioinformatics analysis case. *Oncology Letters*. 10.3892/ol.2019.10866

Chmiela M, Karwowska Z, Gonciarz W, Allushi B, and Staczek P. 2017. Host pathogen interactions in Helicobacter pylori related gastric cancer. *World J Gastroenterol* 23:1521-1540. 10.3748/wjg.v23.i9.1521

Correa P. 1992. Human gastric carcinogenesis: a multistep and multifactorial process--First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. *Cancer Res* 52:6735-6740.

Dadashzadeh K, Peppelenbosch MP, and Adamu AI. 2017. Helicobacter pylori Pathogenicity Factors Related to Gastric Cancer. *Can J Gastroenterol Hepatol* 2017:7942489. 10.1155/2017/7942489

Ernst PB, and Gold BD. 2000. The disease spectrum of Helicobacter pylori: the immunopathogenesis of gastroduodenal ulcer and gastric cancer. *Annu Rev Microbiol* 54:615-640. 10.1146/annurev.micro.54.1.615

Fiszer-Maliszewska L, Laczmanski L, Dolinska A, Jagas M, Kolodziejka E, Jankowska M, and Kusnierczyk P. 2018. Polymorphisms of ABCB1, CYP3A4 and CYP3A5 Genes in Ovarian Cancer and Treatment Response in Poles. *Anticancer Res* 38:1455-1459. 10.21873/anticancerres.12370

Guo G, He Z, and Shi Z. 2016. Correlation between FOXP3 expression and gastric cancer. *Oncol Lett* 12:1554-1558. 10.3892/ol.2016.4752

Hayakawa S, Okada S, Tsumura M, Sakata S, Ueno Y, Imai K, Morio T, Ohara O, Chayama K, and Kobayashi M. 2016. A Patient with CTLA-4 Haploinsufficiency Presenting Gastric Cancer. *J Clin Immunol* 36:28-32. 10.1007/s10875-015-0221-x
Hu Y, He C, Liu JP, Li NS, Peng C, Yang-Ou YB, Yang XY, Lu NH, and Zhu Y. 2018. Analysis of key genes and signaling pathways involved in Helicobacter pylori-associated gastric cancer based on The Cancer Genome Atlas database and RNA sequencing data. *Helicobacter* 23:e12530. 10.1111/hel.12530

Husby G, Marhaug G, Dowtor B, Sletten K, and Sipe JD. 1994. Serum amyloid A (SAA): Biochemistry, genetics and the pathogenesis of AA amyloidosis. *Amyloid* 1:119-137. 10.3109/13506129409148635

Kuipers EJ, and Sipponen P. 2006. Helicobacter pylori eradication for the prevention of gastric cancer. *Helicobacter* 11 Suppl 1:52-57. 10.1111/j.1478-405X.2006.00425.x

Li F, Dai Y, Xu H, Huang K, Zhou Y, Luo D, Ma D, Xi L, Lv M, and Ma X. 2019. XPNPEP2 is associated with lymph node metastasis in prostate cancer patients. *Sci Rep* 9:10078. 10.1038/s41598-019-45245-5

Lin C, He H, Liu H, Li R, Chen Y, Qi Y, Jiang Q, Chen L, Zhang P, Zhang H, Li H, Zhang W, Sun Y, and Xu J. 2019. Tumour-associated macrophages-derived CXCL8 determines immune evasion through autonomous PD-L1 expression in gastric cancer. *Gut* 68:1764-1773. 10.1136/gutjnl-2018-316324

Liu X, Huang X, Zhang S, Niu F, Ouyang Y, Shou Z, and Liu J. 2019. Correlations between CYP3A4 polymorphism and susceptibility to breast cancer in Chinese Han population. *Int J Clin Oncol* 24:179-188. 10.1007/s10147-018-1346-8

Ma GF, Miao Q, Liu YM, Gao H, Lian JJ, Wang YN, Zeng XQ, Luo TC, Ma LL, Shen ZB, Sun YH, and Chen SY. 2014. High FoxP3 expression in tumour cells predicts better survival in gastric cancer and its role in tumour microenvironment. *Br J Cancer* 110:1552-1560. 10.1038/bjc.2014.47

Matysiak-Budnik T, and Megraud F. 2006. Helicobacter pylori infection and gastric cancer. *Eur J Cancer* 42:708-716. 10.1016/j.ejca.2006.01.020

Messeguer X, Escudero R, Farre D, Nunez O, Martinez J, and Alba MM. 2002. PROMO: detection of known transcription regulatory elements using species-tailored searches. *Bioinformatics* 18:333-334. 10.1093/bioinformatics/18.2.333

Pevida M, Lastra A, Meana A, Hidalgo A, Baamonde A, and Menendez L. 2014. The chemokine CCL5 induces CCR1-mediated hyperalgesia in mice inoculated with NCTC 2472 tumoral cells. *Neuroscience* 259:113-125. 10.1016/j.neuroscience.2013.11.055

Scardoni G, Petterlini M, and Laudanna C. 2009. Analyzing biological network parameters with CentiScaPe. *Bioinformatics* 25:2857-2859. 10.1093/bioinformatics/btp517

Shaulian E. 2010. AP-1 — The Jun proteins: Oncogenes or tumor suppressors in disguise? *Cellular Signalling* 22:894-899. 10.1016/j.cellsig.2009.12.008

Sipponen P, and Maaroos HI. 2015. Chronic gastritis. *Scand J Gastroenterol* 50:657-667. 10.3109/00365521.2015.1019918

Slomiany BL, and Slomiany A. 2016. Helicobacter pylori-elicited induction in gastric mucosal matrix metalloproteinase-9 (MMP-9) release involves ERK-dependent cPLA2 activation.
and its recruitment to the membrane-localized Rac1/p38 complex.

Inflammopharmacology 24:87-95. 10.1007/s10787-016-0261-8

Sokolova O, and Naumann M. 2017. NF-kappaB Signaling in Gastric Cancer. *Toxins (Basel)* 9. 10.3390/toxins9040119

Soukup V, Capoun O, Pesl M, Vavrova L, Sobotka R, Levova K, Hanus T, Zima T, and Kalousova M. 2019. The significance of calprotectin, CD147, APOA4 and DJ-1 in non-invasive detection of urinary bladder carcinoma. *Neoplasma* 66:1019-1023.

10.4149/neo_2019_190124N74

Sung HJ, Ahn JM, Yoon YH, Rhim TY, Park CS, Park JY, Lee SY, Kim JW, and Cho JY. 2011. Identification and validation of SAA as a potential lung cancer biomarker and its involvement in metastatic pathogenesis of lung cancer. *J Proteome Res* 10:1383-1395.

10.1021/pr101154j

Tavares R, and Pathak SK. 2018. Induction of TNF, CXCL8 and IL-1beta in macrophages by Helicobacter pylori secreted protein HP1173 occurs via MAP-kinases, NF-kappaB and AP-1 signaling pathways. *Microb Pathog* 125:295-305. 10.1016/j.micpath.2018.09.037

Van Cutsem E, Sagaert X, Topal B, Haustermans K, and Prenen H. 2016. Gastric cancer. *Lancet* 388:2654-2664. 10.1016/s0140-6736(16)30354-3

Wang Z, Wang Z, Li G, Wu H, Sun K, Chen J, Feng Y, Chen C, Cai S, Xu J, and He Y. 2017. CXCL1 from tumor-associated lymphatic endothelial cells drives gastric cancer cell into lymphatic system via activating integrin beta1/FAK/AKT signaling. *Cancer Lett* 385:28-38. 10.1016/j.canlet.2016.10.043

Watanabe K, Murakami K, Sato R, Okimoto T, Maeda K, Nasu M, Nishizono A, and Fujioka T. 2004. CTLA-4 blockade inhibits induction of Helicobacter pylori-associated gastritis in mice. *Clin Exp Immunol* 135:29-34. 10.1111/j.1365-2249.2004.02338.x

Wu YY, Tsai HF, Lin WC, Hsu PI, Shun CT, Wu MS, and Hsu PN. 2007. Upregulation of CCL20 and recruitment of CCR6+ gastric infiltrating lymphocytes in Helicobacter pylori gastritis. *Infect Immun* 75:4357-4363. 10.1128/IAI.01660-06

Wyler L, Napoli CU, Ingold B, Sulser T, Heikenwalder M, Schraml P, and Moch H. 2014. Brain metastasis in renal cancer patients: metastatic pattern, tumour-associated macrophages and chemokine/chemoreceptor expression. *Br J Cancer* 110:686-694.

10.1038/bjc.2013.755

Xiao S, and Zhou L. 2017. Gastric cancer: Metabolic and metabolomics perspectives (Review). *Int J Oncol* 51:5-17. 10.3892/ijo.2017.4000

Zhang C, Li Z, Xu L, Che X, Wen T, Fan Y, Li C, Wang S, Cheng Y, Wang X, Qu X, and Liu Y. 2018. CXCL9/10/11, a regulator of PD-L1 expression in gastric cancer. *BMC Cancer* 18:462. 10.1186/s12885-018-4384-8
Figure 1

Depicted the flow diagram of all above bioinformatics analysis.
Figure 2

The functions and pathway analysis of DEGs in \textit{H. pylori}-associated NAG.

Results of GO and KEGG enrichment analysis of the 111 genes between Hp-No and Hp+-NAG. Ordinate is the enriched functions and pathway, and abscissa is the ratio of the DEGs. The area of the displayed graphic is proportional to the number of genes assigned to the term and the color corresponds to the \(P \) value.
Figure 3

The functions and pathway analysis of DEGs in \textit{H.pylori}-associated AG-IM.

Results of GO and KEGG enrichment analysis of the 385 genes between Hp+-NAG and Hp+-AG-IM. Ordinate is the enriched functions and pathway, and abscissa is the ratio of the DEGs. The area of the displayed graphic is proportional to the number of genes assigned to the term and the color corresponds to the P value.
Figure 4

DEGs-TFs regulatory network involved in Hp⁺-NAG.

The network consisting of 83 nodes and 370 edges was extracted from the whole PPI network. Key nodes in the network are highlighted in different colors and shape: blue dots corresponds to the up-regulated gene, yellow dots corresponds to the down-regulated gene and red square indicate TFs, size increasing with degree. Red edges indicate transcriptional regulatory relationships.
Figure 5

DEGs-TFs regulatory network involved in Hp⁺-AG-IM.

The giant network consisting of 166 nodes and 741 edges was extracted from the whole PPI network. Key nodes in the giant network are highlighted in different colors and shape: blue dots corresponds to the up-regulated gene, yellow dots corresponds to the down-regulated gene and red square indicate TFs, size increasing with degree. Red edges indicate transcriptional regulatory relationships.
Figure 6

The Kaplan-Meier survival curve of 882 gastric cancer (GC) patients based on FOXP3(A), JUN(B) in Kmplot software.
Table 1 (on next page)

Information about cases of GC and normal in TCGA
Table 1. Information about cases of GC and normal in TCGA

	Total	H. pylori (+) GC	Normal tissue
Average age(year)	66.20	63.61	68.78
Gender			
Male	35(70%)	13(26%)	22(44%)
female	15(30%)	5(10%)	10(20%)
Race category			
Asian	9(18%)	2(4%)	7(14%)
White	28(56%)	11(22%)	17(34%)
Others	13(26%)	5(10%)	8(16%)
Cancer type			
Intestinal type	10(55.6%)	10(55.6%)	0
Diffuse type	7(38.9%)	7(38.9)	0
Not otherwise specified	1(5.5%)	1(5.5%)	0
Disease stage			
Stage I	1(5.5%)	1(5.5%)	0
Stage II	4(22.3%)	4(22.3%)	0
Stage III	11(61.1%)	11(61.1%)	0
Stage IV	2(11.1%)	2(11.1%)	0
Table 2 (on next page)

key DEGs involved in *Hp*+ -NAG
Table 2. key DEGs involved in \(Hp^+ \)-NAG

Gene Name	Degree	Betweenness	Closeness
TNF	38	1332.769	0.00885
CXCL8	30	427.4495	0.008
MMP9	24	839.5228	0.007519
CXCL9	22	639.6061	0.007692
CXCL1	20	115.4851	0.007353
CCL20	20	117.0942	0.007299
LCN2	20	694.3924	0.007194
CTLA4	19	285.9193	0.007194
FPR1	18	180.3151	0.00641
CXCL2	15	27.46918	0.006897
C3	15	109.0515	0.006579
Table 3 (on next page)

key DEGs involved in Hp^+-AG-IM
Table 3. key DEGs involved in Hp*-AG-IM

Name	Degree	Betweenness	Closeness
APOB	42	6129.43	0.001372
SLC2A2	34	5955.64	0.001355
FABP1	33	6241.264	0.001381
APOA4	32	5013.443	0.001297
NR1H4	32	2808.839	0.001316
APOC3	26	1692.219	0.001279
DGAT1	26	2460.765	0.001225
APOA1	25	982.1235	0.001224
GCG	24	7636.908	0.001323
CYP3A4	24	4010.06	0.001267
DPP4	20	2526.871	0.001318
GLUL	20	5105.64	0.001255
SI	18	3977.184	0.001304
XPNPEP2	16	1895.259	0.001215
MGAM	15	4515.383	0.001241
SLC15A1	15	2751.226	0.001235