Abstract: As is known, cerebral stroke has become one of the main diseases endangering people’s health; ischaemic strokes accounts for approximately 85% of cerebral strokes. According to research, early prediction and prevention can effectively reduce the incidence rate of the disease. However, it is difficult to predict the ischaemic stroke because the data related to the disease are multi-modal. To achieve high accuracy of prediction and combine the stroke risk predictors obtained by previous researchers, a method for predicting the probability of stroke occurrence based on a multi-model fusion convolutional neural network structure is proposed. In such a way, the accuracy of ischaemic stroke prediction is improved by processing multi-modal data through multiple end-to-end neural networks. In this method, the feature extraction of structured data (age, gender, history of hypertension, etc.) and streaming data (heart rate, blood pressure, etc.) based on a convolutional neural network is first realized. A neural network model for feature fusion is then constructed to realize the feature fusion of structured data and streaming data. Finally, a predictive model for predicting the probability of stroke is obtained by training. As shown in the experimental results, the accuracy of ischaemic stroke prediction reached 98.53%. Such a high prediction accuracy will be helpful for preventing the occurrence of stroke.

Keywords: convolutional neural network; stroke; feature extraction; disease diagnosis

1. Introduction

1.1. Related Work

Stroke is one of the main causes of death and disability worldwide [1]. Due to lack of effective treatment, it is difficult to cure stroke patients completely. On the other hand, even if the patient is cured, they still have to face harsh realities: permanent disability, incapacity [2], reduced social activities [3], etc. Hence, the disease puts a heavy burden on patients, the health care system and society. According to lots of studies, there is a certain eclipse period before the onset of stroke and early prediction and prevention can effectively reduce incidence rate of the disease. Actually, some premonitory symptoms appear during the eclipse period of stroke. For example, Zhang designed a questionnaire to put forward that a series of symptoms will appear during the eclipse period before the onset of stroke [4], such as chronic yawning, frequent choking coughs and a habit of biting the tongue. Goldstein [5] has divided risk factors into nonmodifiable risk factors (age, gender, race and genetic, etc.), well-documented and modifiable risk factors (high blood pressure, smoking, diabetes, atrial fibrillation, some other heart diseases, etc.) and less well-documented or potentially modifiable risk factors (metabolic syndrome, alcoholism, drug abuse, etc.), and it was suggested that changing well-documented and modifiable risk factors or less well-documented or potentially modifiable risk factors.
factors could reduce the risk of stroke onset. Therefore, early detection and prevention can effectively reduce the risk of ischaemic stroke and increase the success rate of cure during the eclipse period.

In the medical field, a large-scale independent electronic health record (EHR) database has been established, which provides a large quantity of clinical diagnoses, and imaging and laboratory data [6]. It makes a considerable contribution to predicting the occurrence of diseases by artificial intelligence, which has been widely used for analysis and prediction, with remarkable results. In this field, it is used to deal with complex disease prediction tasks [7]. For example, Czabanski used the Lagrangian support vector machine to predict atrial fibrillation (AF). The results obtained during the test stage showed that the classification accuracy was 98.86%; it can effectively detect AF and provide more reliable information for the processing stage after the onset of AF [8]. Osman used an automatic epilepsy diagnostic method based on a self-organization map (SOM) method to discover epilepsy [9], and the detection accuracy of the model reached 97.47%; it could effectively detect epilepsy. Therefore, the combination of deep learning and big data has made remarkable achievements in the field of disease prediction.

In terms of the prediction of stroke, many researchers used artificial intelligence technology to predict stroke. For example, Songhee [10] used a deep neural network based on extended PCA to extract features from medical service usage and health behavior data and predicted stroke; the area under the curve (AUC) value of our method was 83.48%. It can be used by both patients and doctors to prescreen for possible strokes; however, the risk factors considered are not comprehensive, and the predictive performance of the model is average. Chen-Ying [11] used a deep learning network model to perform feature extraction and stroke prediction on electronic medical claim records. The area under the curve (AUC) value of the method was 0.915. The prediction performance of the prediction model is good. However, there is still a problem of insufficient consideration of factors related to stroke. Although the above-mentioned researchers proved that using deep learning techniques can predict stroke, they all used single-modal data for model training and prediction, and the accuracy of the model is average.

In addition, many researchers have explored many different predictors related to stroke, which provide a sufficient feasibility basis for the prediction methods of stroke. Flint, a stroke specialist at Kaiser Permanente medical center in the United States, performed 36 million blood pressure measurements on more than one million people. This study brought a large amount of data and provided a clear answer to the basic question about blood pressure and stroke: “diastolic blood pressure” and “systolic blood pressure” are independent predictors of stroke risk [12]. Wesley collected left ventricular hypertrophy (LVH) detected by electrocardiography (ECG-LVH) and LVH detected by echocardiography to assess the risk of stroke. Finally, ECG and echocardiography were found to be predictive factors for stroke [13]. Di [14] recruited 11 post-stroke patients and 20 healthy control subjects and performed an elbow sinusoidal trajectory tracking experiment. The experimental results showed that the EMG’s fApEn (fuzzy approximate entropy) values of the experimental group and the control group were significantly different, so stroke can induce neurological changes in paretic muscles. Bodapati examined that whether 24-hour heart rate variability (HRV) added predictive value to the Cardiovascular Health Study clinical stroke risk score (CHS-SCORE) [15]. The value of adding HRV to the CHS-SCORE was assessed with stepwise Cox regression analysis. They found that two HRV parameters, CV% (coefficient of variance of NN intervals) and power law slope, emerged as significantly associated with incident stroke when added to a validated clinical risk score. Chantamit-o-pas et al. integrated the icd-10 code into the health records and other potential risk factors in Electronic Healthcare Records (EHRs) into the patterns and models to predict stroke [16].

1.2. Novelty and Contributions

Current forecasting methods mainly use single-modal data, and the field of stroke prediction is no exception. If the features in text, image or stream data are needed, some methods are used to extract the required features from the unstructured data. How to process multi-modal data with the
help of multiple end-to-end neural networks, and to make fusions and predictions, are very important
technical challenges.

To overcome those challenges, we combined the stroke risk predictors obtained by previous
researchers and propose a multi-model fusion convolutional neural network architecture to predict
the occurrence probability of ischemic stroke (here the stroke referred to is ischemic stroke). In this
method, a convolutional neural network is the first part used for feature extraction. In fact, there are
two models here. One of them is convolutional neural network based on the VGG16 model used
to extract features from an electrocardiogram (ECG), an electromyogram (EMG), a blood pressure
graph and a heart rate graph. The other is a one-dimensional convolutional neural network model,
which is used to extract features from personal health information (smoking, drinking, history of atrial
fibrillation, history of hyperlipidemia, etc). The second part fuses all the features acquired in the first
part and makes stroke predictions. This study used multiple end-to-end models to fuse and predict
multi-modal data of all stroke-related predictors; we also solved the problem of multi-modal data
fusion in disease prediction.

2. Materials and Method

2.1. Dataset

Since stroke is accompanied by dynamic cerebral automatic regulation injury, the factors related to
the state of dynamic cerebral automatic regulation injury, such as blood pressure, heart rate, ECG and
EMG, can be used to predict stroke. The public dataset called cerebral vasoregulation in elderly with
stroke [17], published by Goldberger [18], is used here. It contains data from a large multi-modal study
that investigated the effects of ischaemic stroke on cerebral vascular regulation. The cross-sectional
study compared 60 subjects who suffered strokes to 60 control subjects, collecting the following data for
each patient and normal person across multiple days: transcranial doppler of cerebral arteries; 24-hour
blood pressure numerics; high resolution waveforms (ECG, blood pressure, CO2 and respiration)
during various movement tasks; 24-hour ECG, EMG, and accelerometer recordings; and gait pressure
recordings during a walking test. The parts of the human body detected by ME6000 are shown in
Table 1. As the information of some research subjects is incomplete, the data from 39 patients with
ischaemic stroke and 40 normal persons were chosen. Demographic characteristics among the two
groups are shown in Table 2. Blood pressure, heart rate, ECG and EMG and personal health information
(smoking, drinking, history of atrial fibrillation, history of hyperlipidaemia, etc.) are used in this paper;
baseline information about stroke patients and normal persons is shown in Tables A1–A12.

These factors can reflect the impacts of stroke on cardiovascular and cerebrovascular diseases. Hence, the current state of cardiovascular and cerebrovascular diseases can be judged by observing the
factors. On the other hand, since personal health data such as smoking [19], alcoholism [20], history
of hypertension [21] and history of hyperlipidaemia have strong correlations with stroke [22], it is
necessary to combine personal health data to infer the possibility and probability of stroke attack. Table 3 lists the predictors related to stroke used in this article.

Type	Position
ECG 1	CH1 V5/V6-L clavicle
ECG 2	CH2 V1/V2 L clavicle
EMG 1	gastrocnemius right
EMG 2	gastrocnemius left
The data used in the experiment can be divided into two types, streaming data and structured data. The streaming data contain blood pressure, heart rate, ECG and EMG data. Twenty-four-hour beat-to-beat heart rate and BP monitoring using Dynapulse were measured at 20 min intervals during daytime and at 30 min intervals at night; 24-hour ECG and EMG monitoring was done using ME6000 devices. ECG and EMG data were sampled at 1000 Hz. ECG and EMG were done for 24 h during sleep and daily activities, such as walking; therefore, both ECG and EMG data have two types, static state data and dynamic data. The structured data are the personal health information (age, gender, height, history of hypertension, alcoholism, smoking, etc.) of 79 subjects.

For streaming data, graphical and integrated processing was carried out. First, streaming data were converted into graphs, such as a blood pressure graph (as shown in Figure A2), a heart rate graph (as shown in Figure A3), an ECG and an EMG (as shown in Figure A1). In order to easily show the characteristics of all streaming data, the blood pressure graph (upper left), heart rate graph (upper right), an ECG and an EMG (lower left and right) are shown in Figure 1.

Figure 1. The composite image contains a blood pressure graph, a heart rate graph, an ECG and an EMG.

One-dimensional data were obtained by transforming and processing the structured data. Some of the information (gender, history of hypertension, family members with histories of hypertension, etc.) has two or more values, so it needs to be processed by one-hot encoding [23]. For example, in Table 4, index values from 7 to 9 indicate race types (African American, White, and Asian). The details are shown in Tables 4 and 5, which respectively represent data before and after personal health conversion.
Table 3. Influencing factors of stroke.

Human Characteristic Data	Age	Height/m	Mass/kg	Gender	Height/m	BMI	Mass/kg	Gender
	Htn patient medical history	Neurophy autonomic symptoms	Neurophy autonomic symptoms	Neurophy autonomic symptoms				
	Dizziness autonomic symptoms	Numbness autonomic symptoms	Numbness autonomic symptoms	Numbness autonomic symptoms				
	DM/on-DM stroke	Syncope autonomic symptoms	Syncope autonomic symptoms	Syncope autonomic symptoms				
Personal medical history	OHspecific autonomic symptoms	Atrial fibrillation patient medical history	Atrial fibrillation patient medical history	Atrial fibrillation patient medical history				
	HTN years patient medical history	Cancer patient medical history	Cancer patient medical history	Cancer patient medical history				
	Stroke patient medical history	DM patient medical history	DM patient medical history	DM patient medical history				
	Heart failure =CHF /ifaction=:MI patient medical history							

Table 4. One example of one-hot encoding of personal health data information.

Index	Value									
0–9	1.0	0.0	64.0	1.63	72.6	27.5	0.0	1.0	0.0	0.0
10–19	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
20–29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30–39	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40–49	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50–59	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60–69	0.0	0.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

2.2. Experimental Design

2.2.1. Overall Architecture of Proposed Model

The network model proposed in this paper mainly includes two parts. In the first part, a convolutional neural network model based on VGG16 was built to extract the features of blood pressure, heart rate, EMG and ECG, because the VGG16 model has a better classification effect in image classification [24,25]. For feature extraction of personal health data, the one-dimensional convolutional neural network model was built. In the second part, a model for feature fusion was built to train the prediction model that can predict the occurrence probability of stroke. The entire network structure system is shown in Figure 2.

2.2.2. The First Part: Feature Extraction

The first model used a model based on convolutional neural networks to distinguish the waveforms of sign-of-life parameters of stroke patients. The model includes a VGG16 model; a fully connected layer with 256 neurons and the ReLU, which is used as the activation function; and a fully connected layer with a neuron and the softmax, which is used as the activation function. The workflow of this model is as follows: First, input the waveform graphs with the shape of $150 \times 150 \times 3$ into the model to train the model. Features of the waveform graphs are extracted through the VGG16...
model, and then input into the fully connected layer of the next layer to get a feature layer with a shape of 256×1 for next step.

The second model was built using a one-dimensional convolutional neural network model [26] to identify the personal health data of stroke patients. The model consists of two layers of one-dimensional convolutional layers containing 16 and 32 neurons, and ReLU is used as the activation function; two pooling layers—one fully connected layer containing a neuron, and sigmoid is used as the activation function. The work flow of this model is as follows: First, the convolutional layer and the pooling layer are used to convolve and pool the text to extract features, and then the features are input into the fully connection layer of the next layer, and the feature layer with a shape of 32×1 is obtained for the next step.

Table 5. The values of personal health data information before conversion.

Factor	Value	Used One-Hot
Htn patient medical history	YES	NO
Age	70	NO
Alcohol Dose/Week	0	NO
Neuropathy autonomic symptoms	YES	NO
Previous Tobacco Use	YES	NO
Current Tobacco Use	NO	NO
HeartDisease family history	1	NO
Hdspeciflc family history	f	YES
Stroke year patient medical history	0	NO
Atrial Fibrillation patient medical history	NO	NO
BMI	26.7	NO
Gender	F	NO
Painful feet autonomic symptoms	NO	NO
Syncope autonomic symptoms	NO	NO
cancSpec family history	NULL	NO
HTN years patient medical history	4	NO
DM patient history	0	NO
Dmspeciflc patient history	NULL	YES
DM patient medical history	NO	NO
Height/m	1.64	NO
Mass/kg	71.67	NO
Dizziness autonomic symptoms	NO	NO
Numbness autonomic symptoms	NO	NO
Pack years	20	NO
Previous alcohol use	YES	NO
HTN family history	0	YES
HTNspeciflc family history	NULL	YES
Heart failure =CHF/ifaction=MI patient medical history	NO	NO
Race	White	YES
DM Non-DM stroke	Non-DM	NO
OH autonomic symptoms	NO	NO
Cancer family history	0	YES
Cancer patient medical history	NO	NO
Stroke patient medical history	NO	NO
Stroke family history	0	NO
Stroke Specific family history	NULL	YES
2.2.3. The Second Part: Prediction of Incidence Probability of Stroke

The third model was composed of four layers of fully connected layer. The numbers of neurons in the first three layers of the fully connected layer were 64, 32 and 16. ReLU is used as the activation function. The number of neurons in the last layer was 1, and the activation function was softmax. The two models obtained from the training in first part were used to obtain feature layers with shapes of 256×1 and 32×1. Then the two feature layers were fused [27] to obtain the 189,679 one-dimensional dataset with a shape of 288×1, which was then used to train the model for predicting the incidence probability of stroke.

3. Results

During the experiment, graphs of sign-of-life parameters and 79 one-dimensional data with the shape of 70×1 were used to train the model for extracting the feature from stream data and the model for extracting the feature from structured data in the first part. In the second part, the two feature layers were combined as the training data input layer of the model for feature fusion. Finally, a prediction model was obtained to predict the probability of stroke.

3.1. Results of Training a Model for Extracting Features from Streaming Data

Graphs of sign-of-life parameters were divided into three sets, a training set (60%), a verification set (20%) and a testing set (20%). The training set and verification set were used to train the model for extracting features from streaming data. The optimizer was RMSProp, the learning rate was 1×10^{-5}, the loss function was binary cross entropy and the number of iterations of the training was 30. Finally, the model for extracting features from streaming data was able to identify the waveform graphs of sign-of-life parameters of stroke patients and normal persons. The curves of accuracy and loss rate of the feature extraction model are shown in Figures 3 and 4.

3.2. Results of Training a Model for Extracting Features from Structured Data

The one-dimensional dataset was divided into three sets, a training set (60%), a verification set (20%) and a testing set (20%). The training set and verification set were used to train the model for extracting features from structured data. The optimizer was RMSProp, the learning rate was 1×10^{-4},
the loss function was binary cross entropy and the number of iterations of the training was 100. Finally, a classified prediction model that could identify personal health data of stroke patients and normal persons was obtained. The curves of accuracy and loss rate of the feature extraction model are shown in Figures 5 and 6.

![Figure 3](image1.png)

Figure 3. Accuracy of the model for extracting features from streaming data during training.

![Figure 4](image2.png)

Figure 4. Loss of the model for extracting features from streaming data during training.

3.3. Results of Training a Model for Feature Fusion

On the one hand, graphs of signs of life were input into the feature extraction model for streaming data; a 256×1 feature dataset was then obtained. On the other hand, the one-hot encoded personal health data of 79 subjects were input into the feature extraction model for structured data to obtain the 32×1 feature data. Then the feature layer of the sign-of-life parameters of the research subjects was combined with the corresponding feature layer of the personal health data to obtain a set of feature layers with a shape of 288×1, which were used as the training data of the model for feature fusion.

The combined feature layer set obtained above was divided into three categories: a training set (60%), a verification set (20%) and a testing set (20%). The training set and verification set were used to train the feature fusion model. The optimizer was Adam and the loss function was categorical cross entropy. The number of training iterations was 3000. Finally, a prediction model for feature fusion
capable of predicting the incidence probability of stroke was obtained. The curves of the accuracy and loss rate of the feature fusion model are shown in Figures 7 and 8.

![Figure 5. Accuracy of the model for extracting features from structured data during training.](image)

![Figure 6. Loss of the model for extracting features from structured data during training.](image)

3.4. Model Evaluation

The testing group containing 38,808 samples was used to evaluate the model for feature fusion, and the confusion matrix obtained is shown in Figure 9. Due to the value of AUC being up to 0.99, the prediction performance of the proposed model was proven, as shown in Figure 10. The index values of the model evaluation (precision, recall, accuracy, AUC and f1-score) are shown in Table 6; the precision, recall and f1-score were obtained by Equations (1)–(3). As is known, the accuracy rate is expressed as the proportion of positive samples predicted as positive samples. There are two cases for predicting positive samples. One case labeled as TP is to predict positive samples as positive samples, and the other labeled as FP is to predict negative samples as positive samples. In this paper, a positive sample represents a stroke patient and a negative sample represents a normal person. Obviously, the precision of the proposed model was 98.59%. In the other hand, the accuracy of the proposed model, which is expressed as the proportion of samples that are correctly predicted, was up to 98.53%. In short, these results justify the fact that the proposed model has a good performance in terms of
distinguishing the sign-of-life parameter waveforms and personal health information of stroke patients and normal people, and predicting the probability of a stroke patient, that is, the occurrence probability of stroke.

![Figure 7. Accuracy of the model for feature fusion during training.](image1)

![Figure 8. Loss rate of the model for feature fusion during training.](image2)

Once the predictive model recognizes that the sign-of-life parameters and personal health data of the current test subject have the characteristics of a stroke patient, the current test subject is judged to be a stroke patient. If the current test subject has not had a stroke, the result will be used as a pre-stroke warning. At this time, the subject should take corresponding preventive measures in time to reduce the harm caused by stroke.
Figure 9. Confusion matrix obtained by model evaluation on the testing set.

Figure 10. ROC curve by model evaluation on the testing set.

\[
Precision = \frac{TP}{TP + FP} \tag{1}
\]

\[
Recall = \frac{TP}{TP + FN} \tag{2}
\]

\[
f1-score = \frac{2 \times Precision \times Recall}{Precision + Recall} \tag{3}
\]

Table 6. Evaluation index values of the model.

TP	FN	FP	TN	Precision	Recall	Accuracy	AUC	f1-Score (0)	f1-Score (1)
18863	285	270	18390	98.59%	98.51%	98.53%	0.99	0.96	0.96

4. Discussion

In the model for extracting features from streaming data, the convolutional neural network model based on VGG16 was used to extract the features of ECG, EMG, blood pressure and heart rate to identify the waveform graphs of sign-of-life parameters of stroke patients. It should be noted that VGG16 did have perform better when extracting features compared with other models, such as VGG19, DenseNet201 and ResNet50, as shown in Figure 11 and Table 7. According to the results, the recognition accuracy of VGG19 was the worst. Further, the training time of VGG16 was the shortest compared with DenseNet201 and ResNet50. Meanwhile, the number of parameters was the least. Due to these reasons, VGG16 was selected as the basic network model for extracting features from the streaming data.
The multiple end-to-end network models proposed in this paper realized the feature fusion of multi-modal data and stroke prediction. We compared the method proposed in this paper with the current stroke prediction methods [10,11], as shown in Table 8. First, the method proposed in this paper has made perfect measures in terms of input data, changing from universal single-modal data to multi-modal data. Secondly, optimization was made on the network model, and a prediction model based on multi-modal fusion was used to extract and fuse multi-modal data. Finally, a stroke prediction model with better classification performance than other methods was obtained. This model is used to identify the abnormal characteristics of stroke in the sign-of-life parameters and personal health data in time, so as to prepare for stroke prevention measures in advance to reduce the harm caused by stroke.

![Graphs showing training and verification accuracy and loss for different network structures.]

Figure 11. The model for extracting features from streaming data based on different network structures: the accuracy and loss for the training set and the accuracy and loss for the verification set.

Table 7. Comparison of training time, number of parameters and accuracy using different network structures on testing sets.

	Accuracy	Training Time (Second)	Total Parameters
VGG19	0.96	1678	122122049
DenseNet201	0.97	34271	26186817
ResNet50	0.97	20162	23638913
VGG16	0.97	12689	16812353

Table 8. The method proposed in this paper with the current stroke prediction methods.

Methods	Input Data	Model Structure	AUC
DNN with scaled PCA	Medical service use and health behavior data	DNN	83.48%
Deep neural network	Electronic medical claims (EMCs)	DNN	91.5%
Multi model	Streaming data (Blood pressure etc.), structured data (EHRs)	Multi model fusion	99%
5. Conclusions

The purpose of the current study was to estimate the probability of stroke occurrence. Hence, a convolutional neural network based on multi-model fusion was proposed. First, feature extraction of streaming data and structured data was carried out in combination with a convolutional neural network to expand ischaemic stroke-related factors and enhance feature extraction ability. Second, this paper proposed the processing of multi-modal data by multiple end-to-end neural architectures to achieve feature fusion and stroke prediction, and solved a major technical problem in disease prediction, which effectively improved upon the prediction accuracy of traditional models. To verify the effectiveness of the proposed method, the personal health data of 79 subjects were used in experiments that were carried out (based on a public dataset). The prediction accuracy reached 98.53%. This study contributes to our understanding of the impacts of risk factors on the occurrence of stroke. It could be used to help detect the disease early and thereby help institute appropriate control measures.

Author Contributions: The manuscript was written through contributions of all authors, and all authors contributed equally. Conceptualization, Y.L. and B.Y.; methodology, Y.L. and B.Y.; validation, Y.C.; visualization, Y.L.; supervision, Y.C.; writing—original draft, Y.L.; writing—review and editing, Y.L. and B.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the Pilot National Laboratory for Marine Science and Technology (Qingdao), Aoshan Science and Technology Innovation Project (2016ASKJ07), and the research on motion recognition based on multipart sensors and wearable videos (61602430).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Additional Tables

Table A1. Baseline information about subjects numbered S0030 to S208.

Subject Number	HTN	Patient Medical History	Group	Age	Height	Mass	BMI	Gender	Race	DM/Non-DM
S0030	YES	CONTROL	64	1.6256	72.5747792	27.4636545	F	White	Non-DM	
S0064	YES	CONTROL	76	1.7018	68.0388555	23.49308018	M	White	Non-DM	
S0068	NO	CONTROL	79	1.5748	64.86370891	26.15472364	F	White	Non-DM	
S0121	NO	CONTROL	65	1.8288	72.5747792	21.69967838	M	White	Non-DM	
S0153	NO	CONTROL	71	1.7018	66.67807839	23.02321858	F	White	Non-DM	
S0154	YES	CONTROL	71	1.7526	80.73944186	26.28573518	M	White	Non-DM	
S0160	NO	CONTROL	72	1.8288	106.594207	31.87140263	F	White	Non-DM	
S0163	YES	CONTROL	73	1.651	84.82177319	31.11810921	F	White	Non-DM	
S0164	NO	CONTROL	60	1.651	63.5029318	23.29698015	F	White	Non-DM	
S0165	NO	CONTROL	75	1.7018	53.97749203	18.63784361	F	White	Non-DM	
S0166	NO	CONTROL	76	1.651	73.48196394	26.95793418	M	White	Non-DM	
S0172	NO	CONTROL	71	1.49	58.9670081	26.56051849	F	Asian	Non-DM	
S0174	YES	CONTROL	71	1.7018	67.35826313	23.33645965	M	White	Non-DM	
S0175	YES	STROKE	64	1.778	77.1107029	24.39220991	M	White	STROKE	
S0176	NO	CONTROL	68	1.778	90.718474	26.9671754	M	White	Non-DM	
S0183	NO	CONTROL	60	1.6256	64.41011654	24.3799422	F	White	Non-DM	
S0184	NO	CONTROL	68	1.7018	64.41011654	22.4401591	F	White	Non-DM	
S0185	YES	STROKE	72	1.778	77.1107029	24.39220991	M	White	STROKE	
S0187	NO	CONTROL	65	1.6002	60.78137758	23.73679105	F	White	Non-DM	
S0194	NO	CONTROL	64	1.778	95.2543977	30.13153341	M	White	Non-DM	
S0197	NO	CONTROL	65	1.5494	58.9670081	24.56303288	F	White	Non-DM	
S0199	YES	STROKE	77	1.7526	87.08973504	28.35315255	M	White	STROKE	
S0200	NO	CONTROL	70	1.8034	76.20351816	23.4310365	M	White	Non-DM	
S0203	YES	CONTROL	72	1.8034	70.30681735	21.61789027	M	White	Non-DM	
S0204	YES	STROKE	80	1.7653	67.13167076	21.54221785	M	White	Non-DM	
S0205	YES	STROKE	63	1.6002	53.97749203	21.07986757	F	Asian	STROKE	
S0207	YES	CONTROL	75	1.6764	54.88467677	19.52971055	F	AA	Non-DM	
S0208	NO	CONTROL	67	1.651	70.30681735	25.79308517	F	White	Non-DM	

Race: AA—African American.
Table A2. Baseline information about subjects numbered S0210 to S0402.

Subject Number	HTN Patient Medical History	Group	Age	Height	Mass	BMI	Gender	Race	DM/ Non-DM	STROKE
S0210	NO CONTROL	72	1.6256	71.66759446	72.12035976	F	White	Non-DM		
S0212	YES CONTROL	65	1.6002	90.718474	35.42804634	F	White	Non-DM		
S0213	NO CONTROL	71	1.8542	95.2543977	27.0587572	M	White	Non-DM		
S0214	YES STROKE	62	1.7018	61.23496995	21.14377217	F	White	STROKE		
S0215	YES STROKE	61	1.6002	90.718474	35.42804634	F	White	Non-DM		
S0221	NO CONTROL	71	1.6	54.8846767	21.43932686	F	White	Non-DM		
S0225	NO CONTROL	66	1.524	64.41011654	27.73218897	F	AA	Non-DM		
S0227	YES CONTROL	66	1.5494	67.13167076	27.9640826	F	AA	Non-DM		
S0228	NO CONTROL	61	1.8034	79.37866475	24.40729546	M	White	Non-DM		
S0230	YES STROKE	76	1.7272	72.5747792	24.32766712	M	White	STROKE		
S0231	YES STROKE	64	1.6704	76.20351816	27.11563117	M	White	STROKE		
S0232	YES STROKE	70	1.6256	63.5029318	21.14377217	F	White	STROKE		
S0239	YES STROKE	77	1.7018	70.30681735	24.27618286	M	White	STROKE		
S0240	NO STROKE	60	1.6764	99.7903214	35.50584643	F	White	STROKE		
S0242	YES CONTROL	61	1.778	77.1107029	24.39220991	M	AA	Non-DM		
S0243	YES CONTROL	62	1.7	77.11	26.6816609	M	Asian	Non-DM		
S0244	NO STROKE	71	1.57	72.57	29.44135665	F	AA	STROKE		
S0247	YES STROKE	79	1.695	72.25	25.14771017	M	White	STROKE		
S0248	YES STROKE	80	1.68	69.85	24.74844104	F	White	STROKE		
S0277	YES STROKE	67	1.6	99.6	38.90625	F	AA	STROKE		
S0305	NO CONTROL	52	1.63	83.65	31.48406037	M	Asian	Non-DM		
S0321	NO STROKE	54	1.75	112.35	36.68571429	M	White	STROKE		
S0322	YES STROKE	78	1.61	65.9	25.42340187	F	White	STROKE		
S0324	YES STROKE	62	1.7	84.5	29.23875433	M	White	STROKE		
S0332	YES STROKE	73	1.67	66.5	23.84452652	F	White	STROKE		
S0334	NO STROKE	59	1.57	63	25.588462	F	White	STROKE		
S0337	NO STROKE	67	1.68	78.45	27.7954932	M	White	STROKE		
S0340	NO STROKE	50	1.68	75.85	26.87429138	F	AA	STROKE		
S0343	YES CONTROL	66	1.63	66.2	24.91625579	F	White	Non-DM		
S0348	YES STROKE	72	1.68	51.5	18.2468209	M	white	STROKE		
S0351	YES STROKE	53	1.66	85.9	31.7288431	M	white	STROKE		
S0352	NO STROKE	66	1.47	49.89	23.08760239	F	white	STROKE		
S0353	YES STROKE	65	1.56	79.25	32.56492439	F	white	STROKE		
S0354	NO STROKE	54	1.65	66.3	24.35261708	F	white	STROKE		
S0355	YES STROKE	67	1.75	83.91	27.39918367	M	AA	STROKE		
S0358	YES STROKE	80	1.57	61.2	24.82895435	F	white	STROKE		
S0361	YES STROKE	71	1.74	81.45	26.90249703	M	WHITE	STROKE		
S0363	YES STROKE	55	1.56	94.55	38.85190664	F	white	STROKE		
S0364	NO CONTROL	63	1.8	106.55	32.88580247	M	WHITE	Non-DM		
S0371	YES STROKE	66	1.67	96.2	34.4938648	M	WHITE	STROKE		
S0374	YES STROKE	64	1.57	61	24.74745426	F	WHITE	STROKE		
S0376	YES CONTROL	70	1.83	77.27	23.07324793	M	WHITE	Non-DM		
S0378	NO STROKE	58	1.68	78.2	27.7069161	M	WHITE	STROKE		
S0379	YES STROKE	58	1.74	75.38	24.89760867	M	AA	STROKE		
S0380	YES STROKE	69	1.74	85.15	28.12458713	M	WHITE	STROKE		
S0388	YES STROKE	61	1.62	67.9	25.8725804	F	WHITE	STROKE		
S0389	YES STROKE	50	1.67	107.2	38.43899387	F	WHITE	STROKE		
S0397	YES STROKE	74	1.83	90.7	27.08531996	M	WHITE	STROKE		
S0399	NO CONTROL	51	1.81	68.75	20.98531791	F	White	Non-DM		
S0402	NO STROKE	54	1.82	96.45	29.11786016	M	WHITE	STROKE		

Race: AA—African American.
Table A3. Baseline information about subjects numbered S0030 to S0343.

Subject Number	Previous Tobacco Use	Current Tobacco Use	Pack Years Alcohol Use	Previous Alcohol Dose(Week)	Alcohol Symptoms	Autonomic Symptoms	Neuropathy	Autonomic Symptoms
S0030	NO	NO	0	YES	0	NO		
S0064	NO	NO	0	YES	0	NO		
S0068	NO	NO	0	NO	0	NO		
S0121	NO	NO	0	YES	3	NO		
S0153	NO	NO	0	NO	0	NO		
S0160	NO	NO	0	NO	0	NO		
S0163	NO	NO	0	YES	0	NO		
S0164	YES	NO	0	YES	15	NO		
S0165	YES	NO	0	YES	7	NO		
S0166	NO	NO	0	NO	0	NO		
S0172	NO	NO	0	NO	0	NO		
S0174	NO	NO	0	NO	0	NO		
S0175	YES	NO	35	YES	20	NO		
S0176	YES	NO	15	YES	5	NO		
S0183	YES	YES	41	NO	0	NO		
S0184	NO	NO	0	YES	0	NO		
S0185	YES	NO	60	YES	70	NO		
S0187	NO	NO	0	YES	0	NO		
S0194	NO	NO	0	YES	3	YES		
S0197	NO	NO	0	NO	0	NO		
S0199	YES	NO	56	NO	0	NO		
S0200	NO	NO	0	NO	0	NO		
S0203	NO	NO	0	NO	0	NO		
S0204	NO	NO	0	YES	7	NO		
S0205	YES	NO	0	YES	0	NO		
S0207	NO	NO	0	YES	1	NO		
S0208	YES	NO	27	YES	0	NO		
S0210	YES	NO	160	NO	0	YES		
S0212	NO	NO	0	YES	0	YES		
S0213	YES	NO	9	YES	0	NO		
S0214	YES	NO	28.57	YES	7	NO		
S0215	YES	NO	30	YES	0	NO		
S0218	YES	YES	11	NO	0	YES		
S0221	NO	NO	0	YES	7	NO		
S0225	NO	NO	0	YES	0	NO		
S0227	NO	NO	0	YES	1	NO		
S0228	NO	NO	0	YES	0	NO		
S0230	YES	NO	8.6	YES	4	NO		
S0231	NO	NO	0	YES	3	NO		
S0232	NO	NO	0	YES	2	NO		
S0239	NO	NO	0	NO	0	NO		
S0240	YES	NO	48	NO	0	YES		
S0242	NO	NO	0	YES	2	NO		
S0243	YES	NO	1	YES	1	NO		
S0244	NO	NO	0	YES	1	NO		
S0247	YES	YES	60	YES	2.5	NO		
S0248	NO	NO	0	NO	0	NO		
S0277	NO	NO	0	YES	0	NO		
S0305	NO	NO	0	NO	0	NO		
S0321	NO	YES	30.86	YES	7	YES		
S0322	NO	NO	0	YES	4	NO		
S0324	YES	NO	86	YES	0	NO		
S0332	YES	NO	30	YES	2	NO		
S0334	YES	NO	60	NO	0	NO		
S0337	YES	NO	66	YES	49	NO		
S0340	YES	NO	0.1667	YES	2	NO		
S0343	YES	NO	10.5	YES	0	NO		
Table A4. Baseline information about subjects numbered S0030 to S0343.

Subject Number	Dizziness	Numbness	Painful Feet	Syncope
	Autonomic Symptoms	Autonomic Symptoms	Autonomic Symptoms	Autonomic Symptoms
S0030	NO	NO	NO	NO
S0064	NO	NO	NO	NO
S0068	NO	NO	NO	NO
S0121	YES	YES	NO	NO
S0153	NO	NO	NO	YES
S0154	NO	NO	NO	YES
S0160	NO	NO	NO	NO
S0163	NO	NO	NO	NO
S0164	NO	NO	YES	NO
S0165	NO	NO	NO	NO
S0166	NO	YES	NO	NO
S0172	NO	NO	NO	NO
S0174	NO	NO	NO	NO
S0175	YES	NO	NO	NO
S0176	YES	NO	NO	NO
S0183	NO	NO	NO	NO
S0184	YES	NO	NO	NO
S0185	YES	NO	NO	NO
S0187	NO	NO	NO	NO
S0194	YES	YES	NO	NO
S0197	NO	NO	NO	NO
S0199	NO	NO	NO	NO
S0200	YES	NO	NO	NO
S0203	NO	NO	NO	NO
S0204	NO	NO	NO	NO
S0205	NO	NO	NO	NO
S0207	NO	NO	NO	NO
S0208	NO	NO	NO	YES
S0210	NO	NO	NO	NO
S0212	NO	NO	NO	NO
S0213	YES	NO	NO	NO
S0214	NO	NO	NO	NO
S0215	NO	NO	NO	NO
S0218	YES	NO	NO	YES
S0221	YES	NO	NO	YES
S0225	NO	NO	NO	NO
S0227	NO	NO	NO	NO
S0228	NO	NO	NO	NO
S0230	YES	NO	NO	NO
S0231	YES	NO	NO	NO
S0232	YES	NO	NO	NO
S0239	NO	NO	NO	NO
S0240	YES	YES	NO	NO
S0242	NO	NO	NO	NO
S0243	NO	NO	NO	NO
S0244	NO	NO	NO	NO
S0247	NO	NO	NO	NO
S0248	NO	NO	NO	NO
S0277	YES	NO	NO	NO
S0305	NO	NO	NO	NO
S0321	NO	YES	NO	NO
S0322	YES	NO	NO	NO
S0324	YES	NO	NO	NO
S0332	NO	NO	NO	NO
S0334	NO	NO	NO	NO
S0337	YES	NO	NO	YES
S0340	NO	NO	NO	NO
S0343	NO	NO	NO	NO
Table A5. Baseline information about subjects numbered S0030 to S0343.

Subject Number	OH Autonomic Symptoms	Cancer Family History	CancSpec Family History	HeartDisease Family History	Hdspecific Family History	HTN Family History
S0030	NO	0	0	0	0	0
S0064	NO	0	2	b	0	0
S0068	NO	3	f, m, si	0	f	0
S0121	NO	0	0	1	0	0
S0153	YES	2	gp, f	1	m	0
S0154	YES	0	0	0	0	0
S0160	YES	0	4	gp	0	0
S0163	NO	0	1	f	2	0
S0164	NO	1	f	1	gp	0
S0165	YES	0	1	f	2	0
S0166	YES	1	gp	0	0	0
S0172	YES	0	0	0	0	0
S0174	YES	0	0	0	0	0
S0175	NO	2	f, si	0	0	0
S0176	YES	3	f, m, si	1	gp	0
S0183	YES	1	m	1	f	1
S0184	YES	2	gp, si	1	f	1
S0185	YES	0	1	f	0	0
S0187	NO	0	0	1	0	0
S0194	YES	3	f, m, si	1	b	0
S0197	YES	1	f	1	f	0
S0199	YES	0	0	0	0	0
S0200	YES	1	si	1	f	0
S0203	YES	0	1	f	1	0
S0204	YES	0	1	f	1	0
S0205	YES	1	m	1	gp	0
S0207	NO	0	1	m	3	0
S0208	NO	0	1	gp	1	0
S0210	NO	2	gp, m	1	gp	0
S0212	NO	1	gp	1	gp	2
S0213	NO	0	0	1	f	0
S0214	NO	2	gp, si	1	m	3
S0215	NO	0	0	0	0	0
S0218	NO	2	gp, m	1	gp	0
S0221	NO	1	gp	1	f	1
S0225	NO	0	0	0	1	1
S0227	NO	0	1	m	1	1
S0228	NO	1	m	0	0	0
S0230	NO	0	0	0	0	0
S0231	YES	3	f, m, si	1	gp	2
S0232	YES	0	1	f	0	0
S0239	NO	0	0	0	0	0
S0240	YES	0	1	b	0	0
S0242	NO	0	0	0	1	0
S0243	NO	0	1	b	1	0
S0244	NO	1	b	1	si	1
S0247	NO	0	0	0	0	0
S0248	NO	0	1	f	0	0
S0277	NO	1	gp	1	f	2
S0305	NO	0	0	0	0	0
S0321	NO	0	0	0	1	1
S0322	YES	1	m	1	f	2
S0324	NO	0	1	gp	0	0
S0332	NO	0	1	f	0	0
S0334	NO	0	1	f	0	0
S0337	NO	2	si, si	1	si	0
S0340	NO	0	1	gp	1	0
S0343	NO	2	b, si	1	gp	2

Family member: f—father, si—sister, m—mother, gp—grandparent, so—son, b—brother.
Table A6. Baseline information about subjects numbered S0030 to S0343.

Subject Number	HTNspecific Family History	DM Family History	Dmspecific Family History	StrokeFAMILY Family History	StrokeSpecific Family History	HTN Years Patient Medical History
S0030	0	0	0	4	0	
S0064	0	0	0	0	0	
S0068	0	0	0	0	0	
S0121	b	1	f	1	f	0
S0153	0	0	0	0	0	
S0154	1	f	0	2	0	
S0160	0	0	0	0	0	
S0163	f, m	0	0	50	0	
S0164	0	0	0	0	0	
S0165	gp, m	0	1	f	4	
S0166	2	gp, b	0	0	0	
S0172	0	0	0	0	0	
S0174	0	0	0	15	0	
S0175	0	0	0	0	0	
S0176	0	0	0	0	0	
S0183	m	1	m	0	0	
S0184	si	0	0	0	0	
S0185	0	0	1	m	3	
S0187	0	0	0	1	m	0
S0194	1	gp	0	0	0	
S0197	1	m	0	0	0	
S0199	0	0	0	0	0	
S0200	0	0	0	0	0	
S0203	f	0	1	m	8	
S0204	so	1	so	0	6	
S0205	0	0	0	0	0	
S0207	gp,f,m	2	gp,m	3	f,b,si	10
S0208	f	0	0	0	0	
S0210	1	gp	0	0	0	
S0212	gp,si	0	1	m	3	
S0213	0	0	0	0	0	
S0214	f,m,si	1	b	1	f	0
S0215	0	0	0	3	0	
S0218	1	gp	0	0	0	
S0221	m	2	gp,f	0	0	
S0225	gp	0	1	gp	0	
S0227	m	0	1	m	16	
S0228	1	f	1	f	0	
S0230	0	0	0	0	0	
S0231	m, si	1	si	2	m, si	6
S0232	3	f, b, si	0	6	0	
S0239	0	0	0	21	0	
S0240	0	0	0	1	gp	0
S0242	b	0	0	25	0	
S0243	b	0	0	0	26	
S0244	b	4	m,b,so,si	1	m	0
S0247	0	0	0	0	1	
S0248	0	0	0	2	0	
S0277	f,m	1	m	0	24	
S0305	1	f	0	0	0	
S0321	f	0	1	f	0	
S0322	m,b	0	1	b	20	
S0324	gp	0	0	0	47	
S0332	gp	0	1	0	1	
S0334	gp	0	1	m	0	
S0340	m	1	f	1	m	0
S0343	gp,m	1	gp	0	1	

Family member: f—father, si—sister, m—mother, gp—grandparent, so—son, b—brother.
Table A7. Baseline information about subjects numbered S0030 to S0343.

Subject Number	Cancer Patient	Stroke Patient	Stroke Years	Atrial Fibrillation	Heart Failure = CHF	DM Patient
S0030	NO	NO	0	NO	NO	NO
S0064	NO	NO	0	NO	NO	NO
S0068	NO	NO	0	NO	NO	NO
S0121	NO	NO	0	NO	NO	NO
S0153	NO	NO	0	NO	NO	NO
S0154	NO	NO	0	NO	NO	NO
S0160	YES	NO	0	NO	NO	NO
S0163	NO	NO	0	NO	NO	NO
S0164	NO	NO	0	NO	NO	NO
S0165	NO	NO	0	NO	NO	NO
S0166	NO	NO	0	NO	NO	NO
S0172	NO	NO	0	NO	NO	NO
S0174	NO	NO	0	NO	NO	NO
S0175	NO	YES	16	NO	NO	NO
S0176	NO	NO	0	NO	NO	NO
S0183	NO	NO	0	NO	NO	NO
S0184	NO	NO	0	NO	NO	NO
S0185	NO	YES	3	NO	NO	NO
S0187	NO	NO	0	NO	NO	NO
S0194	NO	NO	0	NO	NO	NO
S0197	NO	NO	0	NO	NO	NO
S0199	YES	YES	16	NO	NO	NO
S0200	NO	NO	0	NO	NO	NO
S0203	NO	NO	0	NO	NO	NO
S0204	YES	NO	0	NO	NO	NO
S0205	NO	YES	11	YES	NO	NO
S0207	NO	NO	0	NO	NO	NO
S0208	NO	NO	0	NO	NO	NO
S0210	NO	NO	0	NO	NO	NO
S0212	NO	NO	0	NO	NO	NO
S0213	YES	NO	0	NO	NO	NO
S0214	NO	NO	0	NO	NO	NO
S0215	NO	NO	0	NO	NO	NO
S0218	NO	NO	0	NO	NO	NO
S0221	NO	NO	0	NO	NO	NO
S0225	NO	NO	0	NO	NO	NO
S0227	NO	NO	0	NO	NO	NO
S0228	NO	NO	0	NO	NO	NO
S0230	YES	YES	1	YES	NO	NO
S0231	YES	YES	6	NO	NO	YES
S0232	NO	YES	1	NO	NO	NO
S0239	NO	YES	4	NO	NO	NO
S0240	NO	YES	12	NO	NO	NO
S0242	YES	NO	0	NO	NO	NO
S0243	NO	NO	0	NO	NO	NO
S0244	NO	YES	1	NO	NO	NO
S0247	YES	YES	8	NO	NO	NO
S0248	NO	YES	2	NO	NO	NO
S0277	NO	YES	4	NO	NO	NO
S0305	NO	NO	0	NO	NO	NO
S0321	NO	YES	2	NO	NO	NO
S0322	NO	YES	5	NO	NO	NO
S0324	NO	YES	1	NO	YES	NO
S0332	NO	YES	1	NO	NO	NO
S0334	NO	YES	8	NO	NO	NO
S0337	NO	YES	16	NO	NO	NO
S0340	NO	YES	2	NO	NO	NO
S0343	NO	NO	0	NO	NO	YES
Table A8. Baseline information about subjects numbered S0348 to S0402.

Subject Number	Previous Tobacco Use	Current Tobacco Use	Pack Years Alcohol Use	Previous Alcohol Dose(Week)	Alcohol Symptoms	Neuropathy Symptoms
S0348	YES	YES	0	YES	0.5	NO
S0351	NO	NO	0	YES	7	NO
S0352	YES	NO	33	YES	2	NO
S0353	YES	NO	15	YES	0.25	YES
S0354	YES	YES	0	YES	3	NO
S0355	YES	NO	10	NO	0	YES
S0358	NO	NO	0	YES	1	NO
S0361	YES	NO	42	YES	0	NO
S0363	YES	NO	33	YES	0	NO
S0364	YES	NO	12	YES	3	NO
S0371	YES	YES	57	YES	42	YES
S0374	YES	NO	10	YES	2	NO
S0376	YES	NO	60	YES	3	NO
S0378	YES	YES	96	YES	24	YES
S0379	YES	YES	14	YES	0	NO
S0380	YES	NO	70	YES	20	YES
S0388	YES	YES	6.75	YES	0	NO
S0389	YES	NO	24	YES	1	NO
S0397	YES	NO	15	YES	7	YES
S0399	NO	NO	0	YES	0	NO
S0402	YES	YES	0	YES	4	NO

Table A9. Baseline information about subjects numbered S0348 to S0402.

Subject Number	Dizziness Autonomic Symptoms	Numbness Autonomic Symptoms	Painful Feet Autonomic Symptoms	Syncope Autonomic Symptoms
S0348	YES	NO	YES	NO
S0351	NO	NO	NO	NO
S0352	NO	YES	NO	NO
S0353	YES	YES	NO	NO
S0354	YES	NO	NO	NO
S0355	NO	YES	NO	NO
S0358	YES	NO	NO	NO
S0361	NO	NO	NO	NO
S0363	NO	NO	NO	NO
S0364	NO	NO	NO	NO
S0371	YES	YES	NO	YES
S0374	NO	NO	NO	YES
S0376	YES	NO	NO	YES
S0378	YES	YES	YES	YES
S0379	NO	YES	NO	YES
S0380	YES	NO	YES	NO
S0388	NO	NO	YES	NO
S0389	NO	NO	NO	NO
S0397	YES	YES	NO	YES
S0399	NO	NO	NO	NO
S0402	YES	NO	NO	NO
Table A10. Baseline information about subjects numbered S0348 to S0402.

Subject Number	OH Autonomic Symptoms	Cancer Family History	CancSpec Family History	HeartDisease Family History	Hdspecific Family History	HTN Family History
S0348	NO	1	b	1	b	0
S0351	NO	2	gp, f	2	gp	3
S0352	NO	1	si	1	f	0
S0353	NO	0	1	m	1	
S0354	NO	3	gp, m, b	1	gp	0
S0355	NO	0	1	f	0	
S0358	YES	2	b, si	0	0	
S0361	NO	2	gp, m	1	f	0
S0363	NO	2	gp, f	1	b	1
S0364	YES	0	1	f	1	
S0371	NO	1	m	1	gp	0
S0374	YES	0	3	gp	3	
S0376	YES	0	3	gp	3	
S0378	NO	1	gp	1	m	0
S0379	NO	5	gp, m, si, so, d	1	f	4
S0380	NO	0	1	gp	3	
S0388	YES	1	f	0	1	
S0389	NO	1	gp	2	f	0
S0397	NO	0	1	b	3	
S0399	NO	1	m	0	0	
S0402	NO	1	m	0	0	

Family member: f—father, si—sister, m—mother, gp—grandparent, so—son, b—brother.

Table A11. Baseline information about subjects numbered S0348 to S0402.

Subject Number	HTNspecific Family History	DM Family History	Dmspecific Family History	StrokeFAMILY Family History	StrokeSpecific Family History	HTN Years Patient Medical History
S0348	gp,f,m	0	0	gp	3	12
S0351	gp,f,m	1	f	1	gp	12
S0352	gp,f,m	0	2	gp	1	4
S0353	gp,f,m	0	2	gp	1	4
S0354	gp,f,m	0	2	gp	1	4
S0355	gp,f,m	0	2	gp	1	4
S0358	gp,f,m	0	2	gp	1	4
S0361	gp,f,m	2	gp, b	1	gp	36
S0363	gp,f,m	3	gp, m, f	1	b	0
S0364	gp,f,m	1	f	0	0	0
S0371	gp,f,m	1	d	0	4	4
S0374	gp,f,m	0	1	gp	3	3
S0376	gp,f,m	0	2	gp	4	4
S0378	gp,f,m	0	2	gp	4	4
S0379	gp,f,m	0	2	gp	4	4
S0380	gp,f,m	0	2	gp	4	4
S0388	gp,f,m	0	2	gp	4	4
S0389	gp,f,m	0	2	gp	4	4
S0397	gp,f,m	0	2	gp	4	4
S0399	gp,f,m	0	2	gp	4	4
S0402	gp,f,m	0	2	gp	4	4

Family member: f—father, si—sister, m—mother, gp—grandparent, so—son, b—brother.
Table A12. Baseline information about subjects numbered S0348 to S0402.

Subject Number	Cancer Patient Medical History	Stroke Patient Medical History	Stroke Years	Atrial Fibrillation Patient Medical History	Heart Failure = CHF /Infarction = -MI Patient Medical History	DM Patient Medical History
S0348	YES	YES	5	NO	NO	NO
S0351	NO	YES	8	NO	NO	NO
S0352	NO	YES	6	NO	NO	NO
S0353	NO	YES	2	NO	NO	NO
S0354	NO	YES	2	NO	NO	NO
S0355	NO	YES	13	NO	NO	NO
S0358	NO	YES	5	NO	NO	NO
S0361	NO	YES	1	NO	NO	NO
S0363	NO	YES	1	NO	NO	NO
S0364	YES	NO	0	NO	NO	NO
S0371	NO	YES	1	NO	NO	NO
S0374	YES	YES	1	NO	NO	NO
S0376	NO	NO	0	YES	NO	NO
S0378	NO	YES	1	NO	NO	NO
S0379	NO	YES	1	NO	NO	NO
S0380	NO	YES	1	NO	NO	NO
S0388	NO	YES	1	NO	NO	NO
S0389	NO	YES	1	NO	NO	NO
S0397	NO	YES	1	YES	NO	NO
S0399	NO	NO	0	NO	NO	NO
S0402	NO	YES	1	NO	YES	NO

Appendix B. Additional Figures

![Figure A1](image)

Figure A1. An example of ECG and EMG for a subject.
Figure A2. An example of the blood pressure curve of a subject in the experiment. The lower curve in the figure is the systolic pressure curve, and the upper curve is the diastolic pressure curve.

Figure A3. An example of the heart rate of a subject in the experiment.
References

1. Mijajlovic, M.; Aleksic, V.; Stermic, N.; Mirkovic, M.; Bornstein, N. Role of prediabetes in stroke. *Neuropsychiatr. Dis. Treat.* 2017, 13, 259–267. [CrossRef]

2. Ackerley, S.J.; Stinear, C.M.; Barber, P.A.; Byblow, W.D. Priming sensorimotor cortex to enhance task-specific training after subcortical stroke. *Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neuro-Physiol.* 2017, 125, 1451–1458. [CrossRef] [PubMed]

3. Michele, A.; Robol, E.; Fiaschi, A.; Manganotti, P. A double blind placebo RCT to investigate the effects of serotonergic modulation on brain excitability and motor recovery in stroke patients. *J. Neurol.* 2009, 256, 1152. [CrossRef]

4. Zhang, X.; Zhao, Q.; Zuo, Q.; Cheng, S.; Ma, J.; Liu, S.; Wang, Y. The development, validity and reliability of Stroke Premonitory Symptoms Alert Questionnaire. *Chin. Nurs. Manag.* 2015, 15, 416–419.

5. Goldstein, L.B.; Adams, R.; Alberts, M.J.; Appel, L.J.; Brass, C.D.; Culebras, A.; DeGraba, T.J.; Gorelick, P.B.; Guyton, J.R.; Hart, R.G.; et al. Primary prevention of ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council: cosponsored by the Atherosclerotic Peripheral Vascular Disease Interdisciplinary Working Group; Cardiovascular Nursing Council; Clinical Cardiology Council; Nutrition, Physical Activity, and Metabolism Council; and the Quality of Care and Outcomes Research Interdisciplinary Working Group. *Circulation* 2006, 113, e873–e923. [CrossRef] [PubMed]

6. Liebeskind, D.S.; Albers, G.W.; Crawford, K.; Derdeyn, C.P.; George, M.S.; Palesch, Y.Y.; Toga, A.W.; Warach, S.; Zhao, W.; Brott, T.G.; et al. Imaging in strokenet: Realizing the potential of big data. *Stroke J. Cereb. Circ.* 2015, 125, 2000–2006. [CrossRef]

7. He, F.; Hu, Z.; Zhang, W.; Cai, L.; Cai, G.; Aoyagi, K. Construction and evaluation of two computational models for predicting the incidence of influenza in Nagasaki Prefecture, Japan. *Sci. Rep.* 2017, 7, 1792. [CrossRef]

8. Czabanski, R.; Horoba, K.; Wrobel, J.; Matonia, A.; Martinek, R.; Kupka, T.; Jezewski, M.; Kahankova, R.; Jezewski, J.; Leski, J.M. Detection of atrial fibrillation episodes in long-term heart rhythm signals using a support vector machine. *Sensors* 2020, 20, 765. [CrossRef]

9. Osman, A.H.; Alzahrani, A.A. New approach for automated epileptic disease diagnosis using an integrated self-organization map and radial basis function neural network algorithm. *IEEE Access.* 2019, 7, 4741–4747. [CrossRef]

10. Cheon, S.; Kim, J.; Lim, J. The use of deep learning to predict stroke patient mortality. *Int. J. Env. Res. Public. Health.* 2019, 16, 1876. [CrossRef]

11. Hung, C.; Chen, W.; Lai, P.; Lin, C.; Lee, C. Comparing deep neural network and other machine learning algorithms for stroke prediction in a large-scale population-based electronic medical claims database. In Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, South Korea, 11–15 July 2017.

12. Flint, A.C.; Conell, C.; Ren, X.; Banki, N.M.; Bhatt, D.L. Effect of systolic and diastolic blood pressure on cardiovascular outcomes. *N. Engl. J. Med.* 2019, 381, 243–251. [CrossRef] [PubMed]

13. Wesley, T.O.; Mohamed, F.A.; Waqas, T.Q.; Elsayed, Z.S. Electrocardiographic and echocardiographic left ventricular hypertrophy in the prediction of stroke in the elderly. *J. Stroke Cerebrovasc. Dis.* 2015, 24, 1991–1997. [CrossRef]

14. Ao, D.; Sun, R.; Tong, K.Y.; Song, R. Characterization of stroke- and aging-related changes in the complexity of EMG signals during tracking tasks. *J. Ann. Biomed. Eng.* 2015, 43, 990–1002. [CrossRef] [PubMed]

15. Bodapati, R.K.; Kizer, J.R.; Kop, W.J.; Kamel, H.; Stein, P.K. Addition of 24-hour heart rate variability parameters to the cardiovascular health study stroke risk score and prediction of incident stroke: The cardiovascular health study. *J. Am. Heart Assoc.* 2017, 6, e004305. [CrossRef] [PubMed]

16. Chantamit-O-Pas, P.; Goyal, M. Long short-term memory recurrent neural network for stroke prediction. *Springer Int. Publ.* 2018, 312–323. [CrossRef]

17. Novak, V.; Hu, K.; Desrochers, L.; Novak, P.; Caplan, L. Cerebral flow velocities during daily activities depend on blood pressure in patients with chronic ischemic infarctions. *Stroke* 2009, 41, 61–66. [CrossRef] [PubMed]
18. Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.; Stanley, H.E. PhysioBank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals. *Circulation* **2000**, *101*, e215–e220. [CrossRef]

19. Larsson, S.C.; Burgess, S.; Michäelsson, K. Smoking and stroke: A mendelian randomization study. *Ann. Neurol.* **2019**, *86*, 468–471. [CrossRef]

20. Yang, S.; Zhao, Y.; Chen, X.; Lu, X.; Chen, Y.; Zhao, X.; Zhu, L.; Fang, Z.; Zhao, H.; Yao, Y.; et al. The ACTB Variants and Alcohol Drinking Confer Joint Effect to Ischemic Stroke in Chinese Han Population. *J. Atheroscler. Thromb.* **2019**, *27*. [CrossRef]

21. Shah, T.G.; Sutaria, J.M.; Vyas, M.V. The association between pulmonary hypertension and stroke: A systematic review and meta-analysis. *Int. J. Cardiol.* **2019**, *7*, S0167527319310757. [CrossRef]

22. Subha, P.P.; Pillai Geethakumari, S.M.; Athira, M.; Nujum, Z.T. Pattern and risk factors of stroke in the young among stroke patients admitted in medical college hospital, Thiruvananthapuram. *Ann. Indian Acad. Neurol.* **2015**, *18*, 20–23. [CrossRef]

23. Pham, D.H.; Le, A.C. Exploiting multiple word embeddings and one-hot character vectors for aspect-based sentiment analysis. *Int. J. Approx. Reason.* **2018**, *103*, S0888613X17304139. [CrossRef]

24. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroundy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. *arXiv* **2015**, arXiv:1512.07108.

25. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. *Comput. Sci.* **2014**, arXiv:1409.1556.

26. Malek, S.; Melgani, F.; Bazi, Y. One-dimensional convolutional neural networks for spectroscopic signal regression. *J. Chemom.* **2017**, *5*, e2977. [CrossRef]

27. Eitel, A.; Springenberg, J.T.; Spinello, L.; Riedmiller, M.; Burgard, W. Multimodal deep learning for robust rgb-d object recognition. *Oncol.* **2015**, 681–687. [CrossRef]