Prevalence and correlates of vitamin K deficiency in children with inflammatory bowel disease

Jan K. Nowak1, Urszula Grzybowska-Chlebowczyk2, Piotr Landowski3, Anna Szafarska-Paplawska4, Beata Klincewicz1, Daria Adamczak5, Tomasz Banasiewicz6, Andrzej Pławska7 & Jarosław Walkowiak1

1Poznan University of Medical Sciences, Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan, Poland, 2Medical University of Silesia, Department of Paediatrics, Katowice, Poland, 3Medical University of Gdansk, Department of Pediatrics, Pediatric Gastroenterology, Hepatology and Nutrition, Gdansk, Poland, 4Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Department of Pediatric Endoscopy and Gastrointestinal Function Testing, Bydgoszcz, Poland, 5Poznan University of Medical Sciences, Poznan, Poland, 6Poznan University of Medical Sciences, Department of General, Gastroenterological and Endocrinological Surgery, Poznan, Poland, 7Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.

Although vitamin K deficiency has been implicated in adult inflammatory bowel disease (IBD), its prevalence in pediatric IBD remains unknown. We carried out a cross-sectional study in 63 children with Crohn’s disease (CD) and 48 with ulcerative colitis (UC) to assess the prevalence of vitamin K deficiency and to search for potential correlation between vitamin K status and pediatric IBD activity. Vitamin K status was assessed using protein induced by vitamin K absence-II (PIVKA-II; ELISA). Prevalence of vitamin K deficiency was 54.0% in CD and 43.7% in UC. Vitamin K deficiency was more common in patients with higher CD activity, in CD patients with higher mass Z-scores, and less common among children with CD treated with infliximab. Relation of vitamin K deficiency to pediatric IBD clinical course and treatment demand further research.

Vitamin K is as a group of molecules serving as cofactors of protein carboxylation that leads to creation of gamma-carboxyglutamic acid residues which enable calcium bonding. Several vitamin K-dependent proteins are known. They are involved in coagulation, preservation of bone mineral density and protection against vascular calcification. It is also postulated that vitamin K plays an important role in the central nervous system. Thus, vitamin K deficiency has a range of consequences, of which loss of bone mineral density is the most prominent, as it manifests even before blood coagulation factors production becomes altered.

One of two main substrates of vitamin K-dependent carboxylation used for vitamin K status assessment is protein induced by vitamin K absence-II (PIVKA-II), the other being osteocalcin. Plasma PIVKA-II concentrations were shown to inversely correlate with plasma phylloquinone concentrations. PIVKA-II levels assessment and direct vitamin K concentrations measurements have shown that vitamin K deficiency is prevalent in patient populations as different as newborn infants, children with chronic liver disease, hemodialyzed patients, cystic fibrosis patients, the institutionalized elderly, and is also a consequence of treatment with vitamin K antagonists. Vitamin K deficiency has also been reported in chronic gastrointestinal disorders, including inflammatory bowel diseases (IBD). However, to authors’ best knowledge, vitamin K status has not been investigated in children with IBD so far.

The aim of this study was to assess the prevalence of vitamin K deficiency and its correlates in children with Crohn’s disease (CD) and ulcerative colitis (UC).

Results

The median PIVKA-II serum concentration [interquartile range] in IBD equaled 2 ng/mL [1.3–3.1]; it was 2.3 [1.3–3.5] in Crohn’s disease, and 1.9 [1.3–2.7] in ulcerative colitis. PIVKA-II levels were equal to or higher than 2 ng/mL in 34 of 63 patients (54.0%) with CD and 21 of 48 patients (43.7%) with UC. Basic clinical features in CD and UC patients with and without vitamin K deficiency are shown in Tables 1 and 2, respectively. The PCDAI and Truelove-Witts scores in patients with and without vitamin K deficiency are illustrated in Fig. 1.
Table 1 | Basic clinical features in Crohn’s disease patients with and without vitamin K deficiency.

Variables	Vitamin K deficiency	p-value	
	Median [1st-3rd quartiles] or percentage		
	No	Yes	
Number of patients	29 (46.0%)	34 (54.0%)	0.19
Age (years)	15.0 [12.0–16.2]	16.0 [14.0–17.0]	
Body mass (Z-score)	−1.1 [−1.5–[−0.5]]	−0.4 [−1.3–[−0.0]]	**0.04**
Height (Z-score)	−0.4 [−1.0–[0.2]]	−0.3 [−0.9–[0.3]]	0.41
Disease duration (months)	19.0 [7.0–27.0]	15.5 [6.2–33.5]	0.59
Ileal involvement	75.9%	84.8%	0.57 χ²
Pediatric Crohn’s Disease	**15.0 [10.0–25.0]**	**22.5 [10.6–50.0]**	**0.04**
Activity Index score	**C-reactive protein serum concentration relative to cutoff value**		
	1.2 [0.5–3.1]	1.5 [0.4–2.7]	0.71
Hospitalizations	1.0 [0.5–2.0]	1.5 [1.0–2.0]	0.68
Exacerbations	1.0 [1.0–2.0]	1.0 [0.25–2.0]	0.84
Corticosteroid treatment	34.5%	55.9%	0.09 χ²
Immunosuppressive treatment	58.6%	55.9%	0.93 χ²
Infliximab	**34.5%**	**11.8%**	**0.03 χ²**

(The reason for vitamin K deficiency in IBD remains unclear. It may be hypothesized that vitamin K deficiency results from undernutrition and/or malabsorption caused by IBD and utilized)

Table 2 | Basic clinical features in ulcerative colitis patients with and without vitamin K deficiency.

Variables	Vitamin K deficiency	p-value	
	Median [1st-3rd quartiles] or percentage		
	No	Yes	
Number of patients	27 (56.3%)	21 (43.7%)	0.98
Age (years)	14.0 [12.0–16.0]	14.0 [13.0–16.0]	
Body mass (Z-score)	−0.7 [−1.0–[−0.1]]	−1.3 [−1.4–[−0.2]]	0.07
Height (Z-score)	−0.7 [−1.1–[0.1]]	−0.9 [−1.7–[0.6]]	0.73
Disease duration (months)	24.0 [11.0–44.0]	19.0 [11.0–42.0]	0.79
Truelove-Witts score	2.0 [0.5–4.0]	4.0 [1.0–6.0]	0.26
C-reactive protein concentration relative to cutoff value	0.5 [0.1–1.4]	0.1 [0.1–0.8]	0.21
Hospitalizations	0.0 [0.0–1.0]	1.0 [0.0–1.0]	0.25
Exacerbations	0.0 [0.0–1.0]	1.0 [0.0–1.0]	0.09
Corticosteroid treatment	25.9%	14.3%	0.29 Fishers’ exact test
Immunosuppressive treatment	25.9%	38.1%	0.37 χ²
Vitamin K deficiency was less common in patients receiving infliximab. This fact points to a possibility that vitamin K status in CD reflects the intensity of inflammation. Further research is needed to clarify whether biological therapy influences vitamin K status in children with Crohn’s disease. In fact, no studies on the relationship between anti-TNF therapies and vitamin K status have been published so far.

It is interesting that while body mass Z-scores of vitamin K-deficient children with CD were higher compared to those who were vitamin K-sufficient, body mass Z-scores in vitamin K-deficient patients with UC were lower than in those who were vitamin K-sufficient. The reasons for higher Z-scores in vitamin K-deficient patients with CD remain unclear.

The study was limited in several aspects. Firstly, vitamin K status was not analyzed directly. It remains an open question if direct measurement of vitamin K concentration in the blood would be more clinically relevant than the measurement of PIVKA-II concentration. Different vitamin K levels may lead to vitamin K sufficiency in different patients. Thus, the estimation of vitamin K status using PIVKA-II concentrations may present an advantage in that it reflects the intensity of inflammation. Further research is needed to clarify whether biological therapy influences vitamin K status in children with Crohn’s disease. In fact, no studies on the relationship between anti-TNF therapies and vitamin K status have been published so far.

The cross-sectional character of the study did not allow for analysis of PIVKA-II concentrations’ evolution along with disease activity changes. No data on dietary intake of vitamin K were available. If there are seasonal variations of vitamin K status, they could have been a source of bias, as the patients were examined at different time points.

Vitamin K deficiency was highly prevalent in pediatric IBD. In CD patients it correlated with a lack of infliximab treatment, a higher pediatric CD activity, and higher body mass Z-scores. Relation of vitamin K deficiency to pediatric IBD clinical course and treatment demand further research.

Methods
A total of 111 children with inflammatory bowel disease (IBD) were included in the study (67 M, 44 F, age range 6–18). Sixty-three were treated for CD and 48 for UC. Diagnoses were established on the basis of clinical, histological, endoscopic and/or radiographic criteria. The inclusion criteria were: CD or UC diagnosed according to the aforementioned standards, and age of 18 years at most. The exclusion criteria were: liver disease not related to IBD, cancer, anti-vitamin K treatment, pregnancy, and diagnosis of AIDS.

Information on age, body mass and height, disease activity and duration, C-reactive protein (CRP) serum concentration, the number of hospitalizations for IBD, the number of IBD exacerbations, and the treatment in use were gathered using a questionnaire distributed among clinicians participating in the study. Disease activity in CD and UC was described using the Pediatric Crohn’s Disease Activity Index (PCDAI) and Truelove-Witts scores, respectively. Z-scores for body mass and height were calculated using data relating to the local population.

Vitamin K status was assessed using PIVKA-II concentration in patients’ blood sera. PIVKA-II concentrations were determined by enzyme immunoassay (Asserachrom PIVKA-II, Roche Diagnostic, Rotkreuz, Switzerland). It was considered that values ≥ 2 ng/mL (detectable values) indicated vitamin K deficiency.

Statistical analyses were performed in the R environment (version 2.14.1; The R Foundation for Statistical Computing, Vienna, Austria) and using STATISTICA 10 (StatSoft Inc., Tulsa, USA). Wilcoxon rank sum test was used to compare subgroups of CD and CU patients who were vitamin K sufficient and vitamin K deficient. Results obtained from logistic regression analysis, multiple regression analysis, Spearman’s correlation test, Pearson’s chi-squared test and Fisher’s exact test are appropriately labeled. The level of significance was set at p < 0.05.

The study was conducted in accordance with the Declaration of Helsinki. Informed and written consent was obtained from patients’ parents and patients who were at least 16 years old. The study design was approved by Poznan University of Medical Sciences Bioethical Committee, Poznan, Poland (decision no 53/11).

1. Krzyżanowska, P. et al. Vitamin K status in patients with short bowel syndrome. Clin. Nutr. Edinb. Scott. 31, 1015–1017 (2012).
2. Cranenburg, E. C. M., Schurgers, L. J. & Vermeer, C. Vitamin K: the coagulation vitamin that became omnipotent. Thromb. Haemost. 98, 120–125 (2007).
3. Theuwissen, E., Smit, E. & Vermeer, C. The role of vitamin K in soft-tissue calcification. Adv. Nutr. Bethesda Md 3, 166–173 (2012).

Figure 1 | The Pediatric Crohn’s Disease Activity Index (A) and Truelove-Witts (B) scores in children with and without vitamin K deficiency. Median values, 1st and 3rd quartiles, as well as the minimum and maximum values are shown. The asterisk denotes statistical significance (p = 0.04).
4. Ferland, G. Vitamin K and the nervous system: an overview of its actions. Adv. Nutr. Bethesda Md 3, 204–212 (2012).

5. McCann, J. C. & Ames, B. N. Vitamin K, an example of triage theory: is micronutrient inadequacy linked to diseases of aging? Am. J. Clin. Nutr. 90, 889–907 (2009).

6. Gundberg, C. M., Lian, J. B. & Booth, S. L. Vitamin K-dependent carboxylation of osteocalcin: friend or foe? Adv. Nutr. Bethesda Md 3, 149–157 (2012).

7. Sokoll, L. L. & Sadowski, J. A. Comparison of biochemical indexes for assessing vitamin K nutritional status in a healthy adult population. Am. J. Clin. Nutr. 63, 566–573 (1996).

8. Chuaansumrit, A. et al. Prevalence of subclinical vitamin K deficiency in Thai newborns: relationship to maternal phylloquinone intakes and delivery risk. Arch. Dis. Child. Fetal Neonatal Ed. 95, F104–108 (2010).

9. Mager, D. R., McGee, P. L., Furuya, K. N. & Roberts, E. A. Prevalence of vitamin K deficiency in children with mild to moderate chronic liver disease. J. Pediatr. Gastroenterol. Nutr. 42, 71–76 (2006).

10. Stankowiak-Kulpa, H. et al. Vitamin K status in peritoneally dialyzed patients with chronic kidney disease. Acta Biochim. Pol. 58, 617–620 (2011).

11. Nicolaidou, P. et al. The effect of vitamin K supplementation on biochemical markers of bone formation in children and adolescents with cystic fibrosis. Eur. J. Pediatr. 165, 540–545 (2006).

12. Dougherty, K. A., Schall, J. I. & Stallings, V. A. Suboptimal vitamin K status despite supplementation in children and young adults with cystic fibrosis. Am. J. Clin. Nutr. 92, 660–667 (2010).

13. Nowak, J., Lochocka, K. & Drezymala-Czysz, S. The effects of vitamin K insufficiency induced by oral anticoagulation. Med. Sci. 82, 472–473 (2013).

14. Kuwabara, A. et al. Hypovitaminosis D and K are highly prevalent and independent of overall malnutrition in the institutionalized elderly. Asia Pac. J. Clin. Nutr. 19, 49–56 (2010).

15. Krasinski, S. D. et al. The prevalence of vitamin K deficiency in chronic gastrointestinal disorders. Am. J. Clin. Nutr. 41, 639–643 (1985).

16. Kuwabara, A. et al. High prevalence of vitamin K and D deficiency and decreased BMD in inflammatory bowel disease. Osteoporos. Int. J. Endocr. Res. 4, 540–545 (2006).

17. Nakajima, S. et al. Association of vitamin K deficiency with bone metabolism and clinical disease activity in inflammatory bowel disease. Nutr. Barlk. Los Angel. Cit. Calif 27, 1023–1028 (2011).

18. Shearer, M. J. et al. Mechanism of cephalosporin-induced hypoprothrombinemia: relation to cephalosporin side chain, vitamin K metabolism, and vitamin K status. J. Clin. Pharmacol. 28, 88–95 (1988).

19. Bhat, R. V. & Deshmukh, C. T. A study of Vitamin K status in children on prolonged antibiotic therapy. Indian Pediatr. 40, 36–40 (2003).

20. Wong, R. S. M., Cheng, G., Chan, N. P. H., Wong, W.-S. & Ng, M. H. L. Use of cefoperazone still needs a caution for bleeding from induced vitamin K deficiency. Am. J. Hematol. 81, 76 (2006).

21. Shea, M. K. et al. Vitamin K and vitamin D status: associations with inflammatory markers in the Framingham Offspring Study. Am. J. Epidemiol. 167, 313–320 (2008).

22. IBD Working Group of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition. Inflammatory bowel disease in children and adolescents: recommendations for diagnosis—the Porto criteria. J. Pediatr. Gastroenterol. Nutr. 41, 1–7 (2005).

23. Van Assche, G. et al. The second European evidence-based Consensus on the diagnosis and management of Crohn’s disease: Definitions and diagnosis. J. Crohns Collitis 4, 7–27 (2010).

24. Turner, D. et al. Development, validation, and evaluation of a pediatric ulcerative colitis activity index: a prospective multicenter study. Gastroenterology 133, 423–432 (2007).

25. Hyams, J. S. et al. Development and validation of a pediatric Crohn’s disease activity index. J. Pediatr. Gastroenterol. Nutr. 12, 439–447 (1991).

26. Mahadevan, U. et al. Azathioprine or 6-mercaptopurine before colectomy for ulcerative colitis is not associated with increased postoperative complications. Inflamm. Bowel Dis. 8, 311–316 (2002).

27. Krawczyński, M., Krzyżaniak, A. & Wolkowiak, J. Developmental standards of body height and weight in children and adolescents between 3–18 years of age in the city of Poznań. Pediatr. Prakt. 8, 341–353 (2000).

28. Chawla, D. et al. Vitamin K1 versus vitamin K3 for prevention of subclinical vitamin deficiency: a randomized controlled trial. Indian Pediatr. 44, 817–822 (2007).

Acknowledgments
Supported, in part, by a grant from Poznan University of Medical Sciences.

Author contributions
J.K.N. performed the statistical analysis, took part in data interpretation and drafted the manuscript. U.G.C., P.L., A.S.P., B.K., and T.B. provided the data and revised the manuscript. T.B., A.P., and D.A. took part in data interpretation and revised the manuscript. J.W. designed the study, coordinated data acquisition, analyzed and interpreted the data, drafted and revised the manuscript. All authors read and approved the final manuscript.

Additional information
Competing Financial Interests: J.K.N. and J.W. had national conference fees and associated travel costs covered by Merck Sharp & Dohme.

How to cite this article: Nowak, J.K. et al. Prevalence and correlates of vitamin K deficiency in children with inflammatory bowel disease. Sci. Rep. 4, 4768; DOI:10.1038/srep04768 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerives 3.0 Unported License. The images in this article are included in the article’s Creative Commons license, unless indicated otherwise in the image credit; if the image is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the image. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/