Inhibitory test of Dayak onion extract (eleutherine palmifolia) (L) merr against gram negative and gram positive bacteria

Ni Made Susilawati1, Meliance Bria2, Neiny P Foekh3
1,2,3Prodi Teknologi Laboratorium Medis, Poltekkes Kemenkes Kupang, Indonesia

ABSTRACT
Dayak onion tubers contain chemical compounds such as alkaloids, glycosides, flavonoids, phenolics, steroids and tannins which are potential sources to be developed as medicinal plants. Dayak onions grown in different soil topography produce different secondary metabolite content even though they are from the same species. The purpose of this study was to determine the potential of Dayak onion (Eleutherine palmifolia) (L) Merr extract to have inhibitory potential and the amount of inhibition on the growth of Gram-positive and Gram-negative bacteria. This study is a laboratory experiment using a post test with a group design with 10 treatment groups, namely 1% Dayak onion extract, up to 10% with 5% DMSO solvent, control using 0.85% NaCl tested on Gram positive and Gram negative bacteria. Dayak onion extract (Eleutherine palmifolia) (L) Merr which was tested on the Gram negative bacteria group Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa gave weak inhibitory results, while the Dayak onion extract (Eleutherine palmifolia) (L) Merr which was tested on the bacterial group Gram positive Stapylococcus aureus, Staphylococcus epidemicdis, Staphylococcus saprophyticus give strong inhibitory results.

Keywords: Dayak Onion, Gram Negative Bacteria, Gram Positive bacteria, Inhibitory

INTRODUCTION
Infectious diseases in humans can be treated with the use of antibiotics. The need for the development of herbal-based antibiotics to overcome them(Khameneh et al., 2019). Great opportunity to obtain antibacterial compounds by utilizing the diversity of plants in Indonesia(ERNILASARI et al., 2021). This development is supported by the tendency of humans to treat nature or return to nature (back to nature)(Sachs & Malaney, 2002). Traditional medicine is considered more practical because it has been hereditary(Mirzaie et al., 2020). One of the plants that can be used as traditional medicine is Dayak onion (Eleutherine palmifolia) (L) Merr. Dayak onion bulbs contain chemical compounds such as alkaloids, glycosides, flavonoids, phenolics, steroids and tannins which are potential sources to be developed as medicinal plants.(Wathoni et al., 2018). Alkaloids can function as antimicrobials, glycosides and flavonoids have hypoglycemic functions, while tannins are commonly used as stomach ache drugs(Tcheghebe et al., 2017).

Dayak onion also grows in Lembata Regency, East Nusa Tenggara, known as “forest onion”, used for the treatment of stomach pain, festering wounds, ulcers. Dayak onions grown in different soil topography
produce different secondary metabolite (Neneng et al., 2020) content even though they come from the same species (Tierney et al., 2019). Based on the description above, the author intends to conduct further studies on the potential of extracts (Kraus et al., 2020) Dayak onion bulbs (Eleutherine palmifolia) (L) Merr has the potential for inhibition and the amount of inhibition on growth Gram positive and Gram negative bacteria (Xia et al., 2019).

RESEARCH METHOD

Dayak onion samples were taken in Lusilame Village, Atadei District, Lembata Regency, East Nusa Tenggara. Microbiological testing was carried out at the Kupang City Laboratory Technical Implementation Unit (Adu & Toy, 2020). The time of the study was carried out in June-July 2022. 300 grams of Dayak onion (Eleutherine palmifolia) (L) Merr powder was extracted using the maceration method with 3 liters of 95% ethanol and evaporated, obtained a thick extract (paste) of Dayak onion powder as much as ... grams (Yuanita et al., 2019). The propagation of the test bacteria was carried out on selective media and observed colony growth and Gram staining (Masi et al., 2021). This research is a laboratory experimental study using a post test with a group design with 10 treatment groups, namely 1% Dayak onion extract, up to 10% with 5% DMSO solvent (Hermawan et al., 2019), control using NaCl 0, 85% were tested on Gram positive and Gram negative bacteria (Al-Sharqi et al., 2019). Furthermore, the extract was made in several dilutions using 5% DMSO solution, and absorbed into blank discs to be tested with test bacteria (Jaradat et al., 2020), namely Staphylococcus aureus ATCC 25923 (Al-Maharik et al., 2022), Staphylococcus epidemics ATCC 14990, Staphylococcus saprophyticus ATCC 15305 and Gram negative Escherichia coli ATCC 25922 (Lobos et al., 2021), Klebsiella pneumoniae ATCC 70603, Pseudomonas aeruginosa ATCC 27853, the media used is Muller Hiton Agar by doing 3 (three) repetitions (Ibrahim & Mohd Nazir, 2019). The inhibition formed was measured and averaged in mm (Aritonang et al., 2019).

RESULTS AND DISCUSSION

Dayak onion extract (Eleutherine palmifolia) (L) Merr was tested on bacteria in Muller Hilton media to see the inhibition formed around the discs and the zone of inhibition was calculated in mm units. Interpretation of inhibition according to the Clinical Laboratory Standards Institute (CLSI) (Novaryatiin, et al., 2019) ie if <15 mm it means resistant (weak), 16-18 mm means intermediate (strong) and 19 means susceptible (very strong).

The average inhibition of the extracts tested against groups of Gram-negative bacteria Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 70603, Pseudomonas aeruginosa ATCC 27853 in the formed media can be seen in the table below.

Bakteri Gram -	0	5	10	15
Konsentrasi E.coli	1	2	3	4
Mean E.coli	5	6	7	8
Konsentrasi Klebsiella	9	10	11	
Mean Klebsiella	12	13	14	
Konsentrasi Pseudomonas	15			
Mean Pseudomonas				

Figure 1. Inhibitory activity of the tested extracts against groups of Gram-negative bacteria Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 70603, Pseudomonas aeruginosa ATCC 27853

Based on the test results of the diameter of the inhibition zone of the ethanolic powder extract of Dayak onion (Eleutherine palmifolia) (L) Merr, against Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa bacteria which were carried out three times with a concentration of 1-10%. Seen to have a weak...
inhibition zone at concentrations of 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, all of which are 6 mm, so they are included in the weak category because the zone visible resistance below 15 mm.

These results when compared with the results of research from Julianti (2020), the inhibition zone produced in this study was smaller than the inhibition zone produced by the ethanol extract of the Dayak onion on bacterial growth. Based on CLSI, the inhibition zone formed after being tested on all concentrations of Dayak onion extract (Eleutherine palmifolia) (L) Merr on Gram negative bacteria was categorized as resistant (weak). The control test was carried out on one of the test bacteria of the Gram negative group of bacteria, namely Klebsiella pneumoniae bacteria where the inhibitory power formed was 17 mm while the negative control with DMSO 5% was 6 mm. This indicates that the solvent used does not affect the inhibition formed.

The average formation of the area (zone) of inhibition of the growth of bacterial colonies of Staphylococcus aureus, Staphylococcus epidemics, Staphylococcus saprophyticus in the formed media can be seen in the table below:

Bakteri Gram +	1	2	3	4	5	6	7	8	9	10	11
Konsentrasi S.e											
Mean S.e											
Konsentrasi S.s											
Mean S.s											
Konsentrasi S.a											
Mean S.a											

Figure 1. Average formation of the area (zone) of inhibition of the growth of bacterial colonies of Staphylococcus aureus, Staphylococcus epidemics, Staphylococcus saprophyticus.

Based on the test results of the diameter of the inhibitory zone of the ethanol extract of the Dayak onion (Eleutherine palmifolia) (L) Merr powder against Staphylococcus aureus, Staphylococcus epidemics, Staphylococcus saprophyticus, three replications were carried out at a concentration of 1-10%. There was a difference in the inhibition formed by each bacterium but showed the same thing, which was seen to have an inhibition zone, the greater the concentration of the tested Dayak onion extract, the greater the inhibition formed.

Phytochemical compounds in herbal ingredients have more potential to inhibit Gram-positive bacteria than Gram-negative bacteria because Gram-positive bacteria have a thinner and more polar phospholipid layer so that the extract penetrates the cell wall more easily. Susilawati, 2016). This is what causes the Dayak onion to have a very weak activity in inhibiting the growth of the Gram negative group of bacteria even though it uses an ethanol type of solvent, where ethanol is a polar solvent so that the filtered bioactive compounds are also polar.

In this study, phytochemical screening was not carried out to identify the content of secondary metabolites in the tested Dayak onion powder extract, so it is not known what active compounds are contained in it. By Harlita et al (2018) on Dayak onion bulbs extracted with 96% ethanol solvent, positive results were found on flavonoid, triterpenoid and tannin tests while negative on saponin and steroidal alkaloids. In contrast to Mierza et al (2021) where flavonoids, triterpenoids, tannins, alkaloids, saponins and steroids the results are positive. The difference in the phytochemical test results caused by the Dayak onion extract can be caused by several factors including the topography of the soil in the plant, the unknown age of harvest (tuber age), freshness, and the sterility test of the Dayak onion bulbs which will be used as extract material is not carried out.

According to research conducted by Armanda et al (2017) qualitatively, every 1 mg or 1 mg/mL contains 100.71 µg of total flavonoids. Flavonoids function as antifungal and antibacterial. The mechanism of occurrence is denaturation of bacterial cell proteins, so that their characteristic properties are lost. Flavonoids...
also cause changes in organic components and nutrient transport that result in toxic effects on bacteria. Flavonoids have antibacterial effects due to their ability to interact with bacterial DNA. Each flavonoid component has the ability to break the hydrogen bridge bonds of the double-stranded DNA sequence. Flavonoid compounds will contact the DNA in the cell nucleus and through the difference in polarity between the lipids that make up DNA and the alcohol groups on the flavonoid compounds a reaction will occur, thereby damaging the lipid structure of DNA and the bacterial cell nucleus will also lyse and cause death.

Flavonoids denature bacterial cell proteins and damage bacterial cell membranes (Arief and Aminah 2017). Alkaloids interfere with the peptidoglycan constituent components of bacterial cells, so that the cell wall layer is not completely formed and causes cell death (Hasibuan, 2016). Tannins lead to protein denaturation and lower surface tension, so that bacterial permeability increases (Azizah, 2016). Sponins can inhibit protein synthesis, causing damage to the components that make up bacterial cells (Hasibuan, 2016).

Terpenoids penetrate the bacterial cell wall and then damage the porin so that the bacteria experience a lack of nutrients so that it inhibits their growth (Hasibuan, 2016).

The results of the inhibition zone formed in this study were different from previous studies. This can be caused by differences in solvents used because different solvents can affect the compounds that will be dissolved in the extraction process for their polarity (Susana, et al., 2018). Research conducted by Julianti (2020) using ethanol solvent which is polar so that it is able to attract almost all good substances or secondary metabolite compounds that are polar, semipolar and nonpolar (Aminah, et al., 2016). The use of solvents affects the susceptibility test of various pathogenic bacteria for extracts drawn by a certain organic solvent because this is related to one or more active substances that have biological activation as antimicrobials. While in the negative control test in this study the solvent used was DMSO 5% which is organic which is not bactericidal and has no effect on the function of secondary metabolites in the Dayak onion extract (Eleutherine palmifolia L Merr) so it does not affect the inhibition zone in the antibacterial activity test of the extract. Dayak onion ethanol (Warsiti, 2018).

CONCLUSION

Dayak onion extract (Eleutherine palmifolia) (L) Merr which was tested on the group of Gram negative bacteria Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa gave weak inhibitory results, while the Dayak onion extract (Eleutherine palmifolia) (L) Merr which was tested on the group of Gram positive bacteria Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus provide strong inhibitory results.

References

Adu, A. A., & Toy, S. M. (2020). Microbial Contamination In Laru (Local Community Beverage Alcohol of East Nusa Tenggara). *Journal of Drug and Alcohol Research*, 9(4), 1–3.

Al-Maharik, N., Jaradat, N., Bassalat, N., Hawash, M., & Zaid, H. (2022). Isolation, Identification and Pharmacological Effects of Mandragora autumnalis Fruit Flavonoids Fraction. *Molecules*, 27(3), 1046.

Al-Sharq, A., Apun, K., Vincent, M., Kanakaraju, D., & Bilung, L. M. (2019). Enhancement of the antibacterial efficiency of silver nanoparticles against gram-positive and gram-negative bacteria using blue laser light. *International Journal of Photoenergy*, 2019.

Aritonang, H. F., Koleangan, H., & Wuntu, A. D. (2019). Synthesis of silver nanoparticles using aqueous extract of medicinal plants (Impatiens balsamina and Lantana camara) fresh leaves and analysis of antimicrobial activity. *International Journal of Microbiology*, 2019.

ERNILASARI, E., WALIL, K., FITMAWATI, F., ROSLIM, D. L., ZUMAIDAR, Z., SAUDAH, S., & RAYHANNISA, R. (2021). Antibacterial activity of leaves, flowers, and fruits extract of Etinggera elatior from Nagan Raya District, Indonesia against Escherichia coli and Staphylococcus aureus. *Biodiversitas Journal of Biological Diversity*, 22(10).

Hermawan, M., Amanah, A., & Nurbaite, N. (2019). In Vitro Inhibitory Activity of Dayak Onion (Eleutherine bulbosa Mill.) Essential Oil Against Klebsiella pneumoniae. *GHMJ (Global Health Management Journal)*, 3(3), 146–151.

Ibrahim, M. A., & Mohd Nazir, S. S. (2019). Antibacterial Activities Of Piper sarmentosum (Kaduk) Methanolic Extract. *Acta Sci Malaysia*, 3(2), 21–24.

Jaradat, N., Abuualhasan, M. N., Qadi, M., Issa, L., Mousa, A., Allan, F., Hindi, M., & Alhrezat, Z. (2020). Antiamylase, Antilipase, Antimicrobial, and Cytotoxic Activity of Nonea obtusifolia (Willd.) DC. from
Palestine. BioMed Research International, 2020.
Khameneh, B., Iranshahy, M., Soheili, V., & Fazly Bazzaz, B. S. (2019). Review on plant antimicrobials: a mechanistic viewpoint. Antimicrobial Resistance & Infection Control, 8(1), 1–28.
Kraus, S., Breier, M., & Dasi-Rodriguez, S. (2020). The art of crafting a systematic literature review in entrepreneurship research. International Entrepreneurship and Management Journal, 16(3), 1023–1042.
Lobos, O., Padilla, C., Barrera, A., Lopez-Cabana, Z., Mora, C., Abaca, P., & Carrasco-Sánchez, V. (2021). Antibiofilm and Antifungal Activities of Laurelia sempervirens (Chilean laurel) Essential Oil. Jundishapur Journal of Natural Pharmaceutical Products, 16(4).
Masi, C., Gemechu, G., & Tafesse, M. (2021). Isolation, screening, characterization, and identification of alkaline protease-producing bacteria from leather industry effluent. Annals of Microbiology, 71(1), 1–11.
Mirzaie, A., Halaji, M., Dehkordi, F. S., Ranjbar, R., & Noorbazargan, H. (2020). A narrative literature review on traditional medicine options for treatment of corona virus disease 2019 (COVID-19). Complementary Therapies in Clinical Practice, 40, 101214.
Neneng, L., Pujirahadju, A., Ferayani, F., & Widayat, T. (2020). Anti-tumor Potential Ethnomedicinal Plants from Dayak Tribes in Central Kalimantan. Biosaintifika: Journal of Biology & Biology Education, 12(3), 422–430.
Sachs, J., & Malaney, P. (2002). The economic and social burden of malaria. Nature, 415(6872), 680–685.
Tcheghebe, O. T., Seukep, A. J., & Tatong, F. N. (2017). Ethnomedicinal uses, phytochemical and pharmacological profiles, and toxicity of Sida acuta Burm. F.: a review article. The Pharma Innovation, 6(6, Part A), 1.
Tierney, B. T., Yang, Z., Luber, J. M., Beaudin, M., Wibowo, M. C., Baek, C., Mehlenbacher, E., Patel, C. J., & Kostic, A. D. (2019). The landscape of genetic content in the gut and oral human microbiome. Cell Host & Microbe, 26(2), 283–295.
Wathoni, N., Haerani, A., Yuniarshih, N., & Haryanti, R. (2018). A review on herbal cosmetics in Indonesia. International Journal of Applied Pharmaceutics, 13–16.
Xia, J., Wang, W., Hai, X., Shuang, E., Shu, Y., & Wang, J. (2019). Improvement of antibacterial activity of copper nanoclusters for selective inhibition on the growth of gram-positive bacteria. Chinese Chemical Letters, 30(2), 421–424.
Yuanita, I., Sunarti, D., Wahyuni, H. I., & Suthama, N. (2019). Feeding Dayak onion (Eleutherine palmifolia) extract and Lactobacillus acidophilus mixture on blood biochemicals, meat quality characteristics and growth performance in broiler chickens. Livestock Research for Rural Development, 31(9), 23–32.