Neuroplasticity in post-stroke aphasia: A systematic review and meta-analysis of functional imaging studies of reorganization of language processing

Supplementary Tables

Contents

Supplementary Table S1. Participants: Cohorts 2
Supplementary Table S2. Participants: Demographic data 7
Supplementary Table S3. Participants: Characterization of aphasia 12
Supplementary Table S4. Participants: Characterization of neurological status 18
Supplementary Table S5. Imaging: Design 22
Supplementary Table S6. Imaging: Methodology part 1 26
Supplementary Table S7. Imaging: Methodology part 2 30
Supplementary Table S8. Conditions 34
Supplementary Table S9. Contrasts 45
Supplementary Table S10. All analyses 56
Supplementary Table S11. Cross-sectional aphasia compared to control: Methodologically robust analyses 168
Supplementary Table S12. Cross-sectional correlation with language or other measure: Methodologically robust analyses 173
Supplementary Table S13. Longitudinal change in aphasia: Methodologically robust analyses 183
Supplementary Table S14. Cross-sectional between two groups with aphasia: Methodologically robust analyses 184
Supplementary Table S15. Cross-sectional performance-defined conditions: Methodologically robust analyses 186
Supplementary Table S16. Complete coding of all included studies 187

Note

Interactive tables with hyperlinks and tooltips can be accessed at:
https://langneurosci.org/aphasia-neuroplasticity-review
Study	Language	Inclusion criteria	N	N	N	Notes
Weiller et al. (1995)	German	Lesion including L pSTG; moderate-to-severe Wernicke’s aphasia in the subacute period; now recovered and not aphasic per formal testing; able to perform verb generation task	6	6	N	6 patients were selected from a database of 600 carefully documented cases
Belin et al. (1996)	French	MCA; persistent severe non-fluent aphasia followed by marked improvement with MIT	7	0	N	
Ohyama et al. (1996)	Japanese	Able to repeat single words	16	6	N	
Heiss et al. (1997)	German	—	6	6	N	
Karbe et al. (1998)	German	MCA; able to repeat single words	12	10	N	Only 7 of the 12 patients took part at T2
Cao et al. (1999)	US English	Aphasia with significant recovery over months to years (ADPASS > 70th percentile)	6	37	N	2 additional patients excluded: 1 unable to reliably describe performance post-scan; 1 due to head motion
Heiss et al. (1999)	German	AAT repetition ≥ 50	23	11	N	
Kessler et al. (2000)	German	Mild to moderate aphasia on TT; at least 50 out of 150 on AAT repetition	24	0	N	
Rosen et al. (2000)	US English	L IFG, possibly extending to neighboring regions	6	14	Y	1 participant was reported in a previous case study; of the 14 controls, 6 were studied with PET and 8 with fMRI
Blasi et al. (2002)	US English	L IFG, possibly extending to neighboring regions	8	14	N	
Leff et al. (2002)	UK English	—	15	8	N	
Blank et al. (2003)	UK English	Initial non-fluent aphasia due to anterior perisylvian lesion; subsequently recovered the ability to speak in sentences; patients were divided into those with and without damage to the IFG pars opercularis (POp+: n = 7; POp-: n = 7)	14	12	N	8 of 12 controls included in Blank et al. (2002)
Cardebat et al. (2003)	French	No severe aphasia; no leukoaraiosis	8	6	N	
Sharp et al. (2004)	UK English	Lesion in vicinity of L STG; no extensive frontal damage; no inferior temporal damage; able to perform tasks	9	18	N	
Zahn et al. (2004)	German	Global aphasia in the first three months; some improvement of comprehension within 6-12 months	7	14	N	
Crinion & Price (2005)	UK English	—	17	18	N	
de Boissezon et al. (2005)	French	Subcortical stroke; no severe aphasia	7	0	N	
Connor et al. (2006)	US English	L IFG, possibly extending to neighboring regions	8	14	Y	Re-analysis of data from Blasi et al. (2002)
Crinion et al. (2006)	UK English	—	24	11	N	Results of control participants previously reported in Crinion et al. (2003)
Saur et al. (2006)	German	MCA; age < 70 years; able to distinguish forward vs backward speech outside the scanner; no pronounced small vessel disease	14	14	N	4 additional patients excluded: 1 health problems; 1 scanner noise; 2 did not tolerate fMRI; 198 patients with aphasia were screened
Meinzer et al. (2008)	German	—	11	0	N	
Study	Language	Country	Diagnosis	N	Type	Notes
------------------------------	----------	---------	--	----	------	---
Raboyeau et al. (2008)	French		Naming deficit; good comprehension	10	20	8 additional patients excluded: 5 completed only one of the two sessions; 3 unable to perform the tasks
Richter et al. (2008)	German		Main deficits in production rather than comprehension	16	8	7 out of 13 patients appear to represent the same data reported in de Boissezon et al. (2005)
de Boissezon et al. (2009)	French		Only part of L MCA; able to perform word generation; no severe aphasia	13	0	8 additional patients excluded: 5 completed only one of the two sessions; 3 unable to perform the tasks
Fridriksson et al. (2009)	US English		—	11	10	15 controls were scanned but 3 were randomly excluded to match group sizes for jICA.
Menke et al. (2009)	German		Moderate to severe anoma	8	9	
Specht et al. (2009)	German		—	12	12	8 additional patients excluded: lesions involved L anterolateral superior temporal cortex; reanalysis of subset of dataset from Crinion et al. (2006)
Warren et al. (2009)	UK English		Comprehension deficit per CAT and TROG (1 patient did not meet this criterion); anterolateral superior temporal cortex spared	16	11	8 additional patients excluded: lesions involved L anterolateral superior temporal cortex; reanalysis of subset of dataset from Crinion et al. (2006)
Chau et al. (2010)	Cantonese		—	7	0	7 additional patients excluded: 6 for making fewer than 5 correct responses in one or more sessions; 1 for excessive head motion; “several” patients overlapped with those reported by Fridriksson et al. (2009, 2010); demographic data includes excluded patients
Fridriksson (2010)	US English		—	19	0	
Fridriksson et al. (2010)	US English		—	15	9	
Sharp et al. (2010)	UK English		Lesion in vicinity of L STG; no extensive frontal damage; no inferior temporal damage; able to perform tasks	9	18	Additional analysis of same dataset as Sharp et al. (2004)
Thompson et al. (2010)	US English		Agrammatic	6	12	
Tyler et al. (2010)	UK English		—	14	10	2 of the 14 patients were not stroke, but were post resective surgery
van Oers et al. (2010)	Dutch		MCA; mRS < 3; able to perform at least 2 out of the 3 tasks	13	13	
Papoutsi et al. (2011)	UK English		—	14	15	Reanalysis of same dataset from Tyler et al. (2011); 1 patient had post-surgical haematoma rather than stroke (per Tyler et al., 2011)
Sebastian & Kiran (2011)	US English		—	8	8	
Szaflarski et al. (2011)	US English		Moderate aphasia, L MCA	8	0	3 additional patients excluded: 2 metallic artifact; 1 seizure at time of stroke
Tyler et al. (2011)	UK English		—	14	15	Not stated, but it seems like most of the patients also participated in Tyler et al. (2010); 1 patient had post-surgical haematoma rather than stroke
Weiduschat et al. (2011)	German		Age 55-85	10	0	4 additional patients excluded: 3 malfunction of TMS device or claustrophobia; 1 recovered nearly completely prior to intervention
Allendorfer et al. (2012)	US English		MCA; moderate-severe aphasia; mRS ≤ 3	16	32	"Part of a larger ongoing study", may overlap with other studies from this group
Fridriksson, Hubbard, et al. (2012)	US English		Broca's aphasia	10	20	3 additional patients excluded: 1 due to a metal implant; 2 for severely non-fluent
Study	Language	Region	Description	N	Y	Exclusion Reason
-----------------------------	----------	--------	--------------------------------------	---	---	---
Fridriksson, Richardson, et al. (2012)	US English	—	speech; demographic data includes excluded patients	29	14	Y 1 additional patient excluded: contraindications to MRI; 26 of 30 patients were included in Fridriksson (2010); demographic data includes excluded patient
Marcotte et al. (2012)	Canadian French	Moderate-severe aphasia; anomia	9	0	N	
Schofield et al. (2012)	UK English	Comprehension deficit	20	26	Y 1 additional patient excluded: excessive head motion; patients recruited from database so may have participated in prior studies from this group, but not stated explicitly; demographic data includes excluded patient	
Wright et al. (2012)	UK English	—	Y Unclear how many, if any, patients were included in previous studies from this group; design is identical to Tyler et al. (2010); 3 of the 21 patients were not stroke, but were post resective surgery			
Szafarski et al. (2013)	US English	—	Y 6 additional patients excluded: 4 did not tolerate MRI or PET scans; 2 TMS device was defective			
Thiel et al. (2013)	German	Anomia; no severe AoS or dysarthria	14	0	N 9 additional patients excluded: 4 for ceiling performance; 5 for technical problems	
Benjamin et al. (2014)	US English	"at least minimal evidence of non-fluent output"; lesion including precentral gyrus or underlying white matter	14	0	N	
Brownsett et al. (2014)	UK English	No involvement of ACA territory	16	17	N 3 additional patients excluded: 2 withdrew after attempting first scan; 1 had severe dysarthria	
Mattioli et al. (2014)	Italian	L MCA; comprehension mildly impaired	12	10	N Treated and untreated groups differed in severity at baseline, albeit not significantly	
Mohr et al. (2014)	UK English	MCA; mild-moderate non-fluent aphasia; no severe comprehension deficit	6	0	N 6 additional patients excluded: 4 for health risks; 2 for technical problems and data loss; patient numbers in tables 1 and 2 appear not to correspond with patient numbers later in the paper	
Robson et al. (2014)	UK English	Wernicke's aphasia (impaired spoken single word comprehension, impaired single word repetition, fluent, sentence-like speech with phonological/neologistic errors)	12	12	N	
Szafarski et al. (2014)	US English	—	Y Some participants included in Allendorfer et al. (2012); one participant was < 18 years old at time of stroke; there was also a perinatal stroke group, not relevant for this review; 3 participants were excluded but it is not stated whether they were adult or perinatal patients.			
van Hees et al. (2014)	Australian English	—	Y			
Abel et al. (2015)	German	Anomia; no severe AoS or dysarthria	14	14	Y 9 additional patients excluded: 4 for ceiling performance; 5 for technical problems; same dataset as Abel et al. (2014)	
Kiran et al. (2015)	US English	Impaired naming	8	8	N	
Sandberg et al. (2015)	US English	—	Y			
Study	Country	Condition	n	M	Gender	Notes
-------	---------	-----------	---	---	--------	-------
Geranmayeh et al. (2016)	UK English	No severe receptive aphasia	53	24	N	Prior strokes were allowed only if no aphasia resulted
Griffis et al. (2016)	US English	Moderate aphasia, L MCA	8	0	Y	3 additional patients excluded: 2 metallic artifact; 1 seizure at time of stroke; same patients as Szaflarski et al. (2011); different fMRI paradigm acquired in the same sessions
Sims et al. (2016)	US English	Some spared tissue in L IFG	14	8	Y	2 additional patients excluded: 1 had no spared tissue in the L IFG; 1 had a R hemisphere stroke; although not stated, it is apparent that many of the patients were included in Sandberg et al. (2015)
Darkow et al. (2017)	German	L hand motor area spared; mild aphasia	16	16	N	
Geranmayeh et al. (2017)	UK English	—	27	0	Y	Patients are a subset of those in Geranmayeh et al. (2016); 24 control participants are described, but no imaging data from the controls are analyzed in this paper
Griffis, Nenert, Allendorfer, & Szaflarski (2017)	US English	—	43	43	Y	Same dataset as Griffis et al. (2017) Hum Brain Mapp
Griffis, Nenert, Allendorfer, Vannest, et al. (2017)	US English	—	43	43	Y	Data were collected as part of “several separate studies”
Harvey et al. (2017)	US English	Mild-moderate non-fluent aphasia; relatively intact comprehension; able to produce meaningful words and phrases	6	0	N	
Nardo et al. (2017)	UK English	Anomia; good single word comprehension; relatively spared word and nonword repetition; no AoS; spared or partially spared L IFG	18	0	N	
Nenert et al. (2017)	US English	At least mild aphasia per TT	19	38	Y	Patients are a subset of the 24 participants in Szaflarski et al. (2015), a clinical trial on CIAT
Qiu et al. (2017)	Mandarin	Broca's aphasia	10	10	N	14 additional patients excluded: < 20% accuracy in scanner; 29 of the participants overlap with the other Skipper-Kallal et al. (2017) paper
Skipper-Kallal et al. (2017a)	US English	Able to name 20% of pictures correctly in the scanner	32	25	Y	10 additional patients excluded: < 10% accuracy in scanner; 29 of the participants overlap with the other Skipper-Kallal et al. (2017) paper
Skipper-Kallal et al. (2017b)	US English	10% accuracy on scanner task	39	37	Y	
Dietz et al. (2018)	US English	—	12	0	Y	2 additional patients excluded: 1 for illness; 1 for MRI contraindication or personal conflict (inconsistent information provided); same data as Dietz et al. (2016), which is a methodological paper
Hallam et al. (2018)	UK English	Semantic aphasia; left frontal damage (+ other regions, typically)	14	16	N	
Nenert et al. (2018)	US English	Aphasia at acute screening (not necessarily at first study time point)	17	85	N	1 additional patient excluded: significant signal artifacts; presence and severity of aphasia assessed on hospital admission, not at first study time point, so it is not clear that all participants actually had aphasia at first study time point
Pillay et al. (2018)	US English	Residual phonologic retrieval deficit; intact semantic processing	21	0	N	
Study & Authors	Language	Description	N	Control	Data reuse	Limitations
---------------------------	----------	--	---	---------	------------	--
Szafranski et al. (2018)	US English	—	12	0	N	1 additional patient excluded: scanned at only 2 out of 3 time points
van de Sandt-Koenderman et al. (2018)	Dutch	Severe non-fluent aphasia (< 50 words/minute); articulation deficits; repetition severely affected; moderate-good auditory comprehension	9	0	N	
van Oers et al. (2018)	Dutch	MRS ≤ 3; ability to perform tasks	12	8	N	1 additional patient excluded: developed a hematoma between baseline and post-testing; one patient had two strokes within one day, but we would consider that essentially a single stroke
Barbieri et al. (2019)	US English	—	18	23	N	
Johnson et al. (2019)	US English	Anomia	30	17	N	5 additional patients excluded: 2 withdrew from non-treatment arm; 3 fMRI acquisition errors; 1 did not complete treatment and post-treatment scanning (but of these latter 4, one must have at least completed the non-treatment arm); there were 26 patients in the treated group and 10 in the untreated group, but 6 patients overlapped between the two groups (they joined the treated group after completing the untreated phase)
Kristinsson et al. (2019)	US English	< 80% on PNT; able to name at least 5 out of 40 items during fMRI; WAB-R spontaneous speech ≥ 2; WAB-R auditory comprehension ≥ 2	87	0	Y	65 were previously included in Fridriksson et al. (2018), a tDCS study
Purcell et al. (2019)	US English	Chronic dysgraphia (acquired impairment in spelling)	21	0	N	4 additional patients excluded: 3 health reasons; 1 data acquisition error
Sreedharan, Chandran, et al. (2019)	Malayalam	Broca's aphasia or anomic aphasia; comprehension relatively preserved; "motivated for speech therapy"	8	4	N	3 additional patients excluded: 2 for claustrophobia; 1 for transportation issues
Hartwigsen et al. (2020)	German	Lesion involving left temporo-parietal cortex and sparing left frontal cortex; relatively well-recovered	12	0	N	2 additional patients excluded: 1 lost to follow-up; 1 did not show any sound-related neural activation in auditory cortex after sham cTBS
Stockert et al. (2020)	German	Lesion localized to frontal or temporal cortex	34	17	Y	50 additional patients excluded: 19 lesions spanned frontal and temporal, or were subcortical, or had persisting large vessel occlusions; 31 not all three timepoints were acquired; 8 patients were included in Saur et al. (2006); there may also be overlap with Saur et al. (2010), a study that did not meet our inclusion criteria; 1630 patients screened for inclusion; frontal patients scanned later than temporal patients at T1 and T2

N aphasia = Number of individuals with aphasia; N control = Number of control participants; Data reuse = Were any of the participants included in any previous studies?; AAT = Aachen Aphasia Test; ACA = anterior cerebral artery; ADPASS = Aphasia Diagnostic Profiles Aphasia Severity Score; AoS = apraxia of speech; CAT = Comprehensive Aphasia Test; CIAT = constraint-induced aphasia therapy; fMRI = functional magnetic resonance imaging; IFG = inferior frontal gyrus; jICA = joint independent components analysis; L = left; MCA = middle cerebral artery; MIT = melodic intonation therapy; mRS = modified Rankin Scale; N = No; PET = positron emission tomography; Pop+ = pars opercularis damaged; Pop- = pars opercularis spared; pSTG = posterior superior temporal gyrus; R = right; STG = superior temporal gyrus; T1, T2, etc. = first time point, second time point, etc.; TMS = transcranial magnetic stimulation; TROG = Test for Reception of Grammar; TT = Token Test; Y = Yes; Yellow underline = minor limitation; Orange underline = moderate limitation.
Supplementary Table S2. Participants: Demographic data

Study	Age	Sex	Handedness	Time post onset	
Weiller et al. (1995)	N (mean 58 years, range 50-66 years; controls were younger: mean 35 years; range 27-50 years)	Y (6 M/0 F)	Y (6 R/0 L)	Y (range 5-117 months)	
Belin et al. (1996)	Y (mean 49.7 years, range 40-58 years)	N	Y (7 R/0 L)	Y (range 15-149 months; including MIT for the most recent 1-108 months)	
Ohyama et al. (1996)	Y (mean 56.6 ± 11.8 years, range 38-75 years)	Y (12 M/4 F)	Y (16 R/0 L)	N* (mean 15.1 ± 16.7 months, range 1.1-50.3 months; a mix of subacute and chronic participants; 8 of each)	
Heiss et al. (1997)	Y (range 33-66 years)	Y (4 M/2 F)	Y (6 R/0 L)	Y (T1: ~4 weeks; T2: ~12-18 months)	
Karbe et al. (1998)	N (mean 57 years, range 34-78 years; controls not matched for age)	Y (7 M/5 F); stated to be not matched, but difference not significant	Y (12 R/0 L)	Y (T1: mean 24 ± 11 days, ~3-4 weeks; T2: mean 19 ± 2 months, > 1 year)	
Cao et al. (1999)	Y (range 20-56 years)	Y (1 M/5 F)	Y (6 R/0 L)	Y (range 5-32 months)	
Heiss et al. (1999)	Y (mean 56 ± 12 years, range 31-77 years; assume patient's age of 5.6 years is a typo for 56 years)	Y (15 M/8 F)	Y (23 R/0 L)	Y (T1: ~2 weeks; T2: ~8 weeks)	
Kessler et al. (2000)	Y (piracetam group: mean 57.4 ± 13.5 years; placebo group: mean 56.3 ± 10.0 years)	Y (13 M/11 F)	Y (24 R/0 L)	Y (T1: ~2 weeks; T2: ~8 weeks)	
Rosen et al. (2000)	N (mean 47 years, range 32-72 years; control participants not age-matched)	Y (3 M/3 F)	Y (6 R/0 L)	Y (range 0.5-7.6 years)	
Blasi et al. (2002)	N (mean 48.6 years; patients and controls not closely matched for age, unclear if difference significant)	Y (2 M/6 F)	Y (8 R/0 L)	N (> 6 months; actual TPO not stated)	
Leff et al. (2002)	Y (range 43-76 years)	Y (11 M/4 F)	Y (11 R/0 L)	Y (range 5-76 months)	
Blank et al. (2003)	Y (POp+: median 50 years, range 36-72 years; POp-: median 61 years, range 39-70 years)	Y (8 M/6 F)	Y (14 R/0 L)	Y (POp+: median 39 months, range 19-134 months; POp-: median 17 months, range 6-240 months)	
Cardebat et al. (2003)	Y (mean 58.4 ± 11.9 years, range 37-73 years)	Y (7 M/1 F)	Y (8 R/0 L)	N* (T1: 58 ± 35 days, range 11-113 days; T2: 11.7 ± 1.6 months, range 320-460 days; T1 varies considerably from early to late subacute)	
Sharp et al. (2004)	Y (median 58 years, range 39-72 years)	Y (8 M/1 F)	Y (9 R/0 L)	Y (mean 45 months, range 14-145 months)	
Zahn et al. (2004)	Y (range 29-67 years)	Y (6 M/1 F)	Y (7 R/0 L)	Y (range 6 months-4 years)	
Crinion & Price (2005)	Y (mean 62 ± 2.7 SEM years, range 34-75 years)	Y (12 M/5 F)	Y (17 R/0 L)	Y (range 4-125 months; aphasia with temporal damage (n=8) mean 41 months; aphasia without temporal damage (n=9) mean 48 months)	
de Boissezon et al. (2005)	Y (mean 52.4 ± 13 years, range 31-69 years)	Y (7 M/0 F)	Y (7 R/0 L)	N* (T1: mean 53 ± 35 days, range 11-108 days; T2: mean 12.2 ± 1.4 months; T1 varies considerably from early to late subacute)	
Connor et al. (2006)	N (mean 48.6 years; patients and controls not closely matched for age, unclear if difference significant)	Y (2 M/6 F)	Y (8 R/0 L)	N (> 6 months; actual TPO not stated)	
Crinion et al. (2006)	Y (range 32-85 years)	Y (18 M/6 F)	Y (24 R/0 L)	N (mean 32 months, range 2-204 months; combines subacute and chronic patients)	
Saur et al. (2006)	Y (mean 51.9 ± 14.2 years, range 16-68 years)	Y (11 M/3 F)	Y (12 R/1 L)	Y (T1 acute: mean 1.8 days, range 0-4 days; T2 subacute: mean 12.1 days,	
Study	Age Range	Gender	Study Stage	Notes	
------------------------------	----------------------------	--------	-------------	--	
Meinzer et al. (2008)	Y (median 51.0 years, range 19-66 years)	Y (7 M/4 F)	Y (11 R/0 L)	Y (median 32 months; range 6-480 months)	
Raboyeau et al. (2008)	N (mean 53.8 ± 14.7 years; controls were younger)	Y (6 M/4 F)	Y (10 R/0 L)	Y (range 7-102 months)	
Richter et al. (2008)	Y (mean 58.3 years; range 42-73 years)	Y (12 M/4 F)	Y (16 R/0 L)	N (> 12 months; actual TPO not stated)	
de Boissezon et al. (2009)	Y (range 31.2-74.2 years)	Y (12 M/1 F)	Y (13 R/0 L)	N* (T1: mean 64 ± 32 days; T2: mean 11.8 ± 1.4 months; T1 varies considerably from early to late subacute)	
Raboyeau et al. (2008)	Y (mean 53.8 ± 14.7 years; controls were younger)	Y (6 M/5 F)	N	Y (range 10-101 months)	
Menke et al. (2009)	Y (mean 58.3 years; range 33-78 years)	Y (11 R/0 L)	Y (range 1.8-6.9 years)	N* (T1: mean 64 ± 32 days; T2: mean 11.8 ± 1.4 months; T1 varies considerably from early to late subacute)	
Specht et al. (2009)	N (mean 49 ± 14 years, range 30-71 years; controls were younger)	Y (9 M/3 F)	N	Y (mean 1.9 ± 1.4 years, range 0.2-3.7 years; one non-chronic patient is included)	
Warren et al. (2009)	N (mean 65.8 ± 2.0 SEM years; controls were younger)	Y (11 M/5 F)	Y (16 R/0 L)	N (mean 28.8 ± 9.2 months SEM; minimum time post onset not reported, but some patients in Crinion et al. (2006) were subacute)	
Chau et al. (2010)	Y (mean 63 ± 10 years, range 56-79 years)	Y (5 M/2 F)	Y (7 R/0 L)	Y (mean 17 ± 8 months, range 8-28 months)	
Fridriksson (2010)	Y (mean 59.7 ± 12.3 years)	Y (12 M/14 F)	N	Y (> 8 months; actual TPO not stated)	
Fridriksson et al. (2010)	Y (mean 61.9 years, range 41-81 years)	N (7 M/8 F); not stated for controls	N	Y (mean 29.7 years, > 6 months)	
Sharp et al. (2010)	Y (median 58 years, range 39-72 years)	Y (8 M/1 F)	Y (9 R/0 L)	Y (mean 45 months, range 14-145 months)	
Thompson et al. (2010)	Y (mean 54 years, range 38-66 years)	Y (5 M/1 F)	Y (6 R/0 L)	Y (range 6-146 months)	
Tyler et al. (2010)	Y (mean 54 years, range 33-76 years)	Y (11 M/3 F)	Y (14 R/0 L)	Y (mean 7 years, range 1.4-3.7 years)	
van Oers et al. (2010)	Y (mean 53 ± 14 years, range 29-74 years)	Y (4 M/9 F)	N (13 R/0 L); not stated for controls	Y (range 1.3-4.7 years)	
Papoutsi et al. (2011)	Y (mean 56 ± 12 years, range 35-77 years)	Y (11 M/3 F)	Y (14 R/0 L)	Y (mean 8 ± 9 years, range 2-40 years)	
Sebastian & Kiran (2011)	Y (range 40-79 years)	N (5 M/3 F); control sex not stated, but reported to be matched	Y (8 R/0 L)	Y (mean 48.3 months, range 30-78 months)	
Szaflarski et al. (2011)	Y (mean 54.4 ± 12.7 years)	Y (4 M/4 F)	Y (8 R/0 L)	Y (mean 5.3 ± 3.6 years, > 12 months)	
Tyler et al. (2011)	Y (mean 56 years, range 34-77 years)	Y (11 M/3 F)	Y (14 R/0 L)	Y (mean 7 years, > 1.5 years)	
Weiduschat et al. (2011)	Y (range 59-83 years)	Y (5 M/5 F)	Y (10 R/0 L)	Y (range 18-97 days; patients at different subacute stages of recovery)	
Allendorfer et al. (2012)	Y (mean 54.4 ± 9.5 years, range 38-78 years)	Y (9 M/7 F)	Y (16 R/0 L)	Y (mean 3.7 ± 3.5 years, range 0.5-11.4 years)	
Fridriksson, Hubbard, et al. (2012)	Y (mean 56.9 ± 9.2 years, range 45-75 years)	N (9 M/4 F); control sex not matched	Y (12 R/1 L)	Y (mean 63.8 ± 64.3 months, range 10-261 months)	
Fridriksson, Richardson, et al. (2012)	Y (mean 59.2 years, range 33-81 years)	N (14 M/16 F); not stated for controls	N	Y (mean 51.1 months, range 6-350 months)	
Marcotte et al. (2012)	Y (mean 62 ± 6.0 years, range 50-67 years)	Y (5 M/4 F)	Y (9 R/0 L)	Y (mean 110.2 ± 92.5 months, range 50-300 months)	
Study	Duration (Range)	Sex (M/F)	Control Matched	Year Excluded	Duration (Range)
------------------------------	-----------------------------------	-----------	-----------------	--------------	-----------------------------------
Schofield et al. (2012)	Y (range 35.8-90.3 years)	N	16 M/4 F	Y (16 M/4 F)	Y (range 35.8-90.3 years)
Wright et al. (2012)	Y (mean 57.4 ± 12.5 years)	Y (15 M/6 F)	Y (21 R/0 L)	Y (mean 6.5 ± 7.5 years, > 1.4 years)	
Szaflarski et al. (2013)	Y (recovered: mean 50 ± 13 years; non-recovered: mean 51 ± 13 years)	Y (15 M/12 F)	Y (27 R/0 L)	Y (recovered: mean 2.1 ± 2.1 years; non-recovered: mean 4.9 ± 3.1 years)	
Thiel et al. (2013)	Y (rTMS group: mean 69.8 ± 8.0 years; sham group: mean 71.2 ± 7.8 years)	N	Y (24 R/0 L)	Y (rTMS group: mean 37.5 ± 18.5 days; sham group: mean 50.6 ± 22.6 days)	
Abel et al. (2014)	Y (median 48 years, range 35-74 years)	Y (10 M/4 F)	Y (14 R/0 L)	Y (median 41 months, range 11-72 months)	
Benjamin et al. (2014)	Y (intention group: mean 72.1 ± 10.5 years; control group: mean 63.0 ± 9.2 years)	Y (8 M/6 F)	Y (14 R/0 L)	Y (intention group: mean 37.4 ± 33.5 months, range 12-87 months; control group: 38.1 ± 37.4 months, range 10-112 months)	
Brownsett et al. (2014)	Y (mean 60 years, range 37-84 years)	Y (11 M/5 F)	Y (16 R/0 L)	Y (mean 4 years, range 6 months-11 years)	
Mattioli et al. (2014)	N (range 37-79 years; control ages not reported, though reported to be matched)	N (7 M/5 F); control sex not stated, but reported to be matched	Y (12 R/0 L)	Y (T1: mean 2.2 ± 1.3 days; T2: mean 16.2 ± 1.3 days; T3: mean 190 ± 25.5 days)	
Mohr et al. (2014)	Y (range 41-76 years)	Y (5 M/1 F)	Y (6 R/0 L)	Y (range 17-234 months (including excluded patients))	
Robson et al. (2014)	Y (mean 70.1 ± 8.7 years, range 59-87 years)	Y (10 M/2 F)	Y (12 R/0 L)	Y (range 7-84 months)	
Szaflarski et al. (2014)	Y (mean 51.8 ± 15.1 years)	Y (18 M/14 F)	N	Y (mean 3.2 ± 3.1 years, > 6 months)	
van Hees et al. (2014)	Y (mean 56.4 ± 9.2 years; range 41-69 years)	Y (3 M/5 F)	Y (8 R/0 L)	Y (mean 52.3 ± 49.8 months; range 17-170 months)	
Abel et al. (2015)	Y (median 48 years, range 35-74 years)	Y (10 M/4 F)	Y (14 R/0 L)	Y (median 41 months, range 11-72 months)	
Kiran et al. (2015)	Y (mean 58 years)	Y (7 M/1 F)	N	Y (range 15-157 months)	
Sandberg et al. (2015)	Y (mean 59 years, range 47-75 years)	Y (7 M/3 F)	Y (10 R/0 L)	Y (range 7-134 months)	
Geranmayeh et al. (2016)	Y (mean 62 ± 14 years, range 26-83 years)	N (32 M/21 F); controls were mostly female, unlike patients	Y (50 R/3 L)	Y (mean 111 ± 27 days, range 84-200 days)	
Griffis et al. (2016)	Y (mean 54.4 ± 12.7 years)	Y (4 M/4 F)	Y (8 R/0 L)	Y (mean 5.3 ± 3.6 years)	
Sims et al. (2016)	Y (mean 59.7 years, range 48-75 years)	Y (10 M/4 F)	Y (14 R/0 L)	Y (mean 6 years, range 6 months-13 years)	
Darkow et al. (2017)	Y (mean 56.7 ± 10.1 years)	Y (10 M/6 F)	Y (16 R/0 L)	Y (mean 54.3 ± 45.3 months, range 12-169 months)	
Geranmayeh et al. (2017)	Y (mean 59.1 ± 10.8 years, range 39-77 years)	Y (18 M/9 F)	Y (26 R/1 L)	Y (T1: 15 ± 7.6 days (range 5-35 days); T2: 108 ± 26 days (range 87-200 days))	
Griffis, Nenert, Allendorfer, & Szaflarski (2017)	Y (mean 53 ± 15 years, range 23-90 years)	Y (25 M/18 F)	Y (41 R/2 L)	Y (range 1-14 years)	
Griffis, Nenert, Allendorfer, Vannest, et al. (2017)	Y (mean 53 ± 15 years, range 23-90 years)	Y (25 M/18 F)	Y (41 R/2 L)	Y (range 1-14 years)	
Harvey et al. (2017)	Y (range 47-75 years)	Y (5 M/1 F)	Y (6 R/0 L)	Y (range 6-102 months)	
Nardo et al. (2017)	Y (mean 50 ± 12 years, range 21-67 years)	Y (12 M/6 F)	Y (18 R/0 L)	Y (mean 61 ± 58 months, range 5-264 months)	
Nenert et al.	Y (CIAT group: mean 58.0 ± 10.6 years)	Y (11 M/8 F)	N (17 R/0 L); 2	Y (CIAT group: mean 60.2 ± 48.9	days)
Year	Study	Patients	Treatment Group	Patients “atypical”: (unclear whether L or mixed)	Months: untreated group: mean 41.9 ± 30.0 months; all > 1 year)
--------------	--	----------	----------------	---	---
2017	Qiu et al. (2017)	Y (mean 55.9 ± 13.4 years, range 40-70 years)	Y (7 M/3 F)	Y (10 R/0 L)	Y (range 1-3 months)
	Skipper-Kallal et al. (2017a)	Y (mean 58.8 ± 8.6 years, range 45.7-78.2 years)	Y (19 M/12 F); stated to be not matched, but difference not significant	Y (26 R/3 L)	Y (mean 40.9 ± 36.1 months, 4.9-151.0 months)
	Skipper-Kallal et al. (2017b)	Y (mean 59.8 ± 10.0 years)	Y (26 M/13 F)	Y (33 R/4 L); missing for 2 participants	Y (mean 52.9 ± 51.4 months, range 6.3-255.7 months)
	Dietz et al. (2018)	Y (mean 58.8 ± 8.6 years, range 45.7-78.2 years)	Y (19 M/12 F); stated to be not matched, but difference not significant	Y (26 R/3 L)	Y (mean 40.9 ± 36.1 months, 4.9-151.0 months)
	Hallam et al. (2018)	Y (mean 61 ± 11 years, range 38-80 years)	Y (5 M/7 F)	Y (11 R/1 L)	Y (AAC group: range 16-170 months; usual care group: range 38-105 months)
	Nenert et al. (2018)	Y (mean 46 ± 16 years)	Y (9 M/8 F)	N (17 R/0 L); all patients stated to be right handed, but “ambidextrous patients” mentioned on p. 364	N* (T1: ~2 weeks; T2: ~6 weeks; T3: ~12 weeks; T4: ~26 weeks; T5: ~52 weeks)
	Pillay et al. (2018)	Y (mean 56.4 ± 12.5 years, range 30-80 years)	Y (11 M/10 F)	Y (21 R/0 L)	Y (mean 1134 ± 1491 days, range 180-6732 days)
	Szaflarski et al. (2018)	Y (range 26-66 years)	Y (9 M/3 F)	Y (11 R/1 L)	Y (range 1-12 years)
	van de Sandt-Koenderman et al. (2018)	Y (subacute: mean 51.2 years, range 25-61 years; chronic: mean 54.0 years, range 21-66 years)	Y (5 M/4 F)	Y (8 R/0 L)	Y (subacute: range 0.5-3 months; chronic: range 17-40 months)
	van Oers et al. (2018)	Y (mean 67.9 ± 11.4 years, range 46-86 years)	Y (10 M/2 F)	Y (12 R/0 L)	N* (T1: within 2 weeks; T2: ~3 months; T3: ~6 months; T4: ~12 months; specific timing of first time point not stated)
	Barbieri et al. (2019)	N (range 22-73 years; controls were younger)	Y (11 M/7 F)	N (15 R/3 L); not stated for controls	Y (range 13-107 months)
	Johnson et al. (2019)	Y (treated group: mean 62.8 ± 10.2 years, range 42-80 years; untreated group: mean 59.0 ± 11.8 years, range 39-79 years)	Y (21 M/9 F)	Y (27 R/3 L)	Y (treated group: mean 58.3 ± 51.8 months, range 12-170 months; untreated group: mean 85.2 ± 141.9 months, range 10-467 months)
	Kristinsson et al. (2019)	Y (typical BDNF genotype group mean 59.6 ± 11.2 years, range 29-77 years; atypical BDNF genotype group mean 57.7 ± 10.9 years, range 30-76 years)	Y (58 M/29 F)	Y (87 R/0 L)	Y (typical BDNF genotype group: mean 44.0 ± 38.7 months; atypical BDNF genotype group: mean 34.5 ± 36.9 months; all participants > 6 months)
	Purcell et al. (2019)	Y (range 40-80 years)	Y (13 M/8 F)	Y (16 R/3 L)	Y (range 14-209 months)
	Sreedharan, Chandran, et al. (2019)	N (range 18-68 years; controls were younger)	Y (7 M/1 F)	Y (8 R/0 L)	N (6-22 weeks; patients at different subacute stages of recovery)
	Hartwigsen et al. (2020)	Y (mean 58.8 years, range 43-72 years)	Y (8 M/4 F)	Y (12 R/0 L)	Y (mean 37.9 ± 34.8 months, range 6-122 months)
	Stockert et al. (2020)	Y (frontal group: mean 52.3 ± 18.9 years, range 15-78 years; temporoparietal group: mean 54.4 ± 12.7 years, range 31-76 years)	Y (25 M/9 F)	N (31 R/2 L); not stated for controls	Y (frontal group: T1 acute: mean 3.2 ± 2.0 days, range 1-7 days; T2 subacute: mean 11.9 ± 2.2 days, range 8-17 days; T3 chronic: mean 272.6 ± 88.5 days, range 181-435 days; temporoparietal group: T1 acute: mean 1.6 ± 0.8 days, range 1-4 days; T2 subacute: mean 10.1 ± 1.7 days, range 8-13 days; T3 chronic:
Age = Is age reported for patients and controls, and matched?; Sex = Is sex reported for patients and controls, and matched?; Handedness = Is handedness reported for patients and controls, and matched?; Time post onset = Is time post stroke onset reported and appropriate to the study design?; AAC = Augmentative and Alternative Communication; CIAT = constraint-induced aphasia therapy; F = female; L = left; M = male; MIT = melodic intonation therapy; N = No; POP+ = pars opercularis damaged; POP- = pars opercularis spared; R = right; rTMS = repetitive transcranial magnetic stimulation; SEM = standard error of the mean; T1, T2, etc. = first time point, second time point, etc.; TPO = time post onset; Y = Yes; Yellow underline = minor limitation; Orange underline/* = moderate limitation.					
Study	Aphasia	Language evaluation	Aphasia severity	Aphasia type	
---	---	---	---	---	---
Weiller et al. (1995)	Comprehensive battery	AAT	Recovered; not aphasic per formal testing	Recovered, but all had moderate-severe Wernicke's aphasia in the subacute period	
Belin et al. (1996)	Severity and type	BDAE	Persistent severe non-fluent aphasia followed by marked improvement with MIT	5 global, 2 Broca's	
Ohyama et al. (1996)	Comprehensive battery	WAB	AQ mean 74.3 ± 12.2, range 53.8-92.4	6 anomic, 4 atypical, 4 mild Broca's, 1 mild Wernicke's, 1 transcortical sensory; alternately: 10 fluent, 6 non-fluent	
Heiss et al. (1997)	Severity only	Verbal repetition, confrontation naming, oral and written comprehension, reading abilities, TT, phonemic fluency, clinical impression, family interview	T1: TT range 37-48; T2: TT range 3-39 (1 missing)	T1: 5 global, 1 Wernicke's; T2: not stated	
Karbe et al. (1998)	Severity and type	TT	T1: 9 severe; 2 mild; 1 not stated; TT range 3-47 errors; T2: not stated	T1: 8 global, 3 anomic, 1 Wernicke's; T2: not stated	
Cao et al. (1999)	Severity and type	ADP	ADPASS percentile range 73-99	3 anomic, 1 conduction, 1 recovered, 1 transcortical sensory	
Heiss et al. (1999)	Severity and type	AAT, phonemic fluency	T1: subcortical: TT median 8 errors, range 0-17 errors; frontal: TT median 21 errors, range 4-40 errors; temporal: TT median 39 errors, range 1-47 errors; T2: subcortical: TT median 1 error, range 0-14 errors; frontal: TT median 8 errors, range 0-34; temporal: TT median 34 errors, range 0-44 errors	T1: 6 Wernicke's, 5 Broca's, 5 residual aphasia, 4 anomic, 2 transcortical sensory, 1 conduction; T2: not stated	
Kessler et al. (2000)	Severity only	AAT	T1: piracetam group: TT 17.16 ± 14.31 errors; placebo group: TT 17.91 ± 15.47 errors; T2: piracetam group: TT 9.66 ± 12.62 errors; placebo group: TT 12.50 ± 16.88 errors	Not stated	
Rosen et al. (2000)	Severity and type	WAB (except BDAE in 1 patient), reading pseudowords, word stem completion, verb generation, reading single words	AQ range 74-97 (missing in 1 patient)	3 anomic, 1 Broca's, 1 not stated, 1 recovered	
Blasi et al. (2002)	Comprehensive battery	WAB or BDAE	AQ range 66.5-89.0 in 6 participants; BDAE aphasia severity of 4 in 1 participant, no formal evaluation in 1 participant	3 anomic, 3 transcortical motor, 1 Broca's, 1 not stated; most were Broca's or global acutely	
Leff et al. (2002)	Not at all	PPT (Dutch), British picture vocabulary scale, Action for Dysphasic Adults lexical decision battery, auditory maximal pairs (an offline phoneme discrimination test)	Not stated	Not stated, but all 6 patients with pSTS damage had single word comprehension deficits acutely	
Blank et al. (2003)	Type only	CAT, QPA	Not stated	POP+: 4 non-fluent but not agrammatic, 2 agrammatic, 1 recovered; POp-: 4 non-fluent	
Study	Battery Type	Subtests/Tests Used	Severity/Classified	Notes	
-------------------------------	-----------------------	---	---------------------	--	
Cardebat et al. (2003)	Not at all	Not stated	Not stated	T1: some prominent symptoms are listed for each patient; T2: not stated	
Sharp et al. (2004)	Severity only	Subtests from CAT, subtests from PALPA, Action for dysphasic adults, TROG, PPT	Mild	Not stated	
Zahn et al. (2004)	Comprehensive battery	AABT, AAT	TT percentile range 28-63	3 global, 2 Broca's, 2 unclassifiable; all had been global initially	
Crinion & Price (2005)	Comprehensive battery	CAT	Not stated	Not stated	
de Boissezon et al. (2005)	Type only	Montreal-Toulouse Aphasia Battery	Not stated	T1: 2 Broca's, 2 transcortical sensory, 1 anomic, 1 transcortical motor, 1 Wernicke's; T2: 4 recovered, 1 anomic, 1 transcortical motor; 1 transcortical sensory	
Connor et al. (2006)	Comprehensive battery	WAB or BDAE	AQ range 66.5-89.0 in 6 participants, BDAE aphasia severity of 4 in 1 participant, no formal evaluation in 1 participant	3 anomic, 3 transcortical motor, 1 Broca's, 1 not stated; most were Broca's or global acutely	
Crinion et al. (2006)	Comprehensive battery	CAT (missing in two participants)	Not stated	Not stated	
Saur et al. (2006)	Comprehensive battery	AABT, AAT including TT, analysis of spontaneous speech, CETI, Language Recovery Score (LRS) derived from all these measures plus in-scanner task performance	T1: LRS mean 0.44, range 0.11-0.81; 1 mild, 1 mild-moderate, 7 moderate, 3 moderate-severe, 2 severe per AAT; T2: LRS mean 0.71, range 0.33-0.92; 2 recovered, 2 recovered-mild, 2 mild, 3 mild-moderate, 3 moderate, 2 severe per AAT; T3: LRS mean 0.91, range 0.66-1.00; 8 recovered, 2 recovered-mild, 3 mild, 1 moderate per AAT	T1: 9 non-fluent, 5 fluent; T2: not stated; T3: 6 recovered, 4 minimal language impairment, 3 anomic, 1 global	
Meinzer et al. (2008)	Comprehensive battery	AAT, study-specific picture naming test with 150 items	6 moderate, 4 mild, 1 severe	7 Broca's, 2 Wernicke's, 1 global, 1 unclassified	
Raboyeau et al. (2008)	Severity and type	Montreal-Toulouse Aphasia Battery	Mild (but had initially been severe)	4 anomic, 3 conduction, 2 Broca's, 1 AoS	
Richter et al. (2008)	Comprehensive battery	AAT, two subtests of ANELT	TT range 5-50	7 anomic, 7 Broca's, 2 global; it was an inclusion criterion that the main deficits were in production	
de Boissezon et al. (2009)	Comprehensive battery	Montreal-Toulouse Aphasia Battery	Not stated	T1: 3 transcortical motor, 2 anomic, 2 Broca's, 2 transcortical sensory, 2 Wernicke's, 1 conduction, 1 agrammatic; T2: not stated	
Fridriksson et al. (2009)	Comprehensive battery	WAB; BNT	AQ range 31.8-91.5	6 anomic, 4 Broca's, 1 transcortical motor; alternatively: 6 fluent, 5 non-fluent	
Menke et al. (2009)	Comprehensive battery	AAT	6 moderate-severe, 2 severe	7 Broca's, 1 global	
Specht et al. (2009)	Comprehensive battery	AAT	Not stated	3 global, 3 Wernicke's, 2 amnestic, 2 Broca's, 2 unclassified	
Warren et al. (2009)	Not at all	CAT, TROG	Not stated	Not stated	
Study	Severity and Type	Battery/Materials	Description		
-----------------------------	-------------------	--	--		
Chau et al. (2010)	Severity only	Cantonese Aphasia Battery (modified WAB)	5 patients had AQ > 75, 2 had AQ < 30		
Fridriksson (2010)	Severity and type	WAB	AQ mean 60.4 ± 25.6 (including excluded patients)		
Fridriksson et al. (2010)	Severity and type	WAB	AQ mean 77.1, range 47.1-93.7		
Sharp et al. (2010)	Severity only	WAB, AQ mean 60.4 ± 25.6 (including excluded patients)	11 anomic, 10 Broca's, 3 conduction, 1 transcortical motor, 1 Wernicke's (including excluded patients)		
Thompson et al. (2010)		WAB, AQ mean 60.4 ± 25.6 (including excluded patients)	11 anomic, 10 Broca's, 3 conduction, 1 transcortical motor, 1 Wernicke's (including excluded patients)		
Tyler et al. (2010)		WAB, AQ mean 60.4 ± 25.6 (including excluded patients)	11 anomic, 10 Broca's, 3 conduction, 1 transcortical motor, 1 Wernicke's (including excluded patients)		
van Oers et al. (2010)		WAB, AQ mean 60.4 ± 25.6 (including excluded patients)	11 anomic, 10 Broca's, 3 conduction, 1 transcortical motor, 1 Wernicke's (including excluded patients)		
Papoutsi et al. (2011)		WAB, AQ mean 60.4 ± 25.6 (including excluded patients)	11 anomic, 10 Broca's, 3 conduction, 1 transcortical motor, 1 Wernicke's (including excluded patients)		
Sebastian & Kiran (2011)		WAB, AQ mean 60.4 ± 25.6 (including excluded patients)	11 anomic, 10 Broca's, 3 conduction, 1 transcortical motor, 1 Wernicke's (including excluded patients)		
Szaflarski et al. (2011)		WAB, AQ mean 60.4 ± 25.6 (including excluded patients)	11 anomic, 10 Broca's, 3 conduction, 1 transcortical motor, 1 Wernicke's (including excluded patients)		
Tyler et al. (2011)		WAB, AQ mean 60.4 ± 25.6 (including excluded patients)	11 anomic, 10 Broca's, 3 conduction, 1 transcortical motor, 1 Wernicke's (including excluded patients)		
Weiduschat et al. (2011)		WAB, AQ mean 60.4 ± 25.6 (including excluded patients)	11 anomic, 10 Broca's, 3 conduction, 1 transcortical motor, 1 Wernicke's (including excluded patients)		
Allendorfer et al. (2012)		WAB, AQ mean 60.4 ± 25.6 (including excluded patients)	11 anomic, 10 Broca's, 3 conduction, 1 transcortical motor, 1 Wernicke's (including excluded patients)		
Fridriksson, Hubbard, et al. (2012)		WAB, AQ mean 60.4 ± 25.6 (including excluded patients)	11 anomic, 10 Broca's, 3 conduction, 1 transcortical motor, 1 Wernicke's (including excluded patients)		
Fridriksson, Richardson, et al. (2012)		WAB, AQ mean 60.4 ± 25.6 (including excluded patients)	11 anomic, 10 Broca's, 3 conduction, 1 transcortical motor, 1 Wernicke's (including excluded patients)		
Marquette et al. (2012)		WAB, AQ mean 60.4 ± 25.6 (including excluded patients)	11 anomic, 10 Broca's, 3 conduction, 1 transcortical motor, 1 Wernicke's (including excluded patients)		
Schofield et al. (2012)		WAB, AQ mean 60.4 ± 25.6 (including excluded patients)	11 anomic, 10 Broca's, 3 conduction, 1 transcortical motor, 1 Wernicke's (including excluded patients)		
Authors	Severity/Type	Test battery	Description	T1: Severity and type	T2: Severity and type
--------------------	---------------	--------------	---	-----------------------	-----------------------
Wright et al. (2012)	Not at all	Sentence-picture matching	Not stated	Comprehension impairments; this distribution was bimodal	Not stated
Szaflarski et al. (2013)	Severity only	TT, BNT, semantic fluency, phonemic fluency, PPVT, complex ideation subtest of BDAE	Recovered: TT mean 43 ± 1, ≥ 41; non-recovered: TT mean 23 ± 12, < 41	Not stated	
Thiel et al. (2013)	Severity and type	AAT	T1: rTMS group: AAT sum of scores mean 251.5 ± 32.4; sham group: mean 251.1 ± 39.5; T2 not stated	T1: rTMS group: 7 Wernicke's, 3 amnestic, 2 global, 1 Broca's; sham group: 5 Wernicke's, 3 Broca's, 2 global, 1 amnestic; T2: not stated	
Abel et al. (2014)	Type only	AAT	Not stated	8 Broca's, 3 Wernicke's, 1 fluent non-classifiable, 1 global, 1 transcortical sensory	
Benjamin et al. (2014)	Severity and type	WAB, BNT, PPVT	Intention group: AQ mean 65.5 ± 8.3; control group: AQ mean 71.9 ± 11.9	Intention group: 4 conduction, 2 Broca's, 1 anomic; control group: 4 anomic, 1 Broca's, 1 conduction, 1 transcortical motor	
Brownset et al. (2014)	Not at all	Not stated	Not stated	Not stated, but all had auditory comprehension and repetition deficits, and all could at least attempt to repeat	
Mattioli et al. (2014)	Comprehensive battery	AAT, TT	T1: TT range 2-45; T2: TT range 6-48; T3: TT range 21-48	T1: 8 Broca's, 3 anomic, 1 Wernicke's; T2: not stated	
Mohr et al. (2014)	Severity only	BDAE, TT	Mild-moderate; T1: TT range 15-49 errors (including 2 excluded patients)	Not stated	
Robson et al. (2014)	Comprehensive battery	BDAE, PPT, word-to-picture matching test from Cambridge Semantic Battery, single word reading aloud from PALPA	BDAE comprehension range 6-26 (out of 32); BDAE comprehension scores and percentiles do not seem entirely commensurate	All Wernicke's	
Szaflarski et al. (2014)	Not at all	Not stated	"complete or almost complete" recovery in a "substantial proportion" of the patients	Not stated	
van Hees et al. (2014)	Comprehensive battery	WAB, BNT, PPT, CAT, picture naming from International Picture Naming Project Database	AQ range 57.3-91.6; 5 mild, 2 moderate, 1 mild-moderate	6 anomic, 2 conduction	
Abel et al. (2015)	Type only	AAT	Not stated	8 Broca's, 3 Wernicke's, 1 fluent non-classifiable, 1 global, 1 transcortical sensory	
Kiran et al. (2015)	Severity only	WAB, BNT, PPT, CLQT	AQ range 48.0-97.2	Not stated	
Sandberg et al. (2015)	Comprehensive battery	WAB, BNT, subtests from PALPA, PPT, CLQT	AQ range 41.7-99.2	6 anomic, 2 conduction, 1 Broca's, 1 transcortical motor	
Geramayeh et al. (2016)	Comprehensive battery	CAT, QPA	"relatively mild stroke"; 17 patients were so mild that they were not aphasic per the CAT	Not stated	
Griffiths et al. (2016)	Severity and type	BNT; phonemic fluency, semantic fluency, complex ideation from BDAE, PPVT, communicative activities log	Moderate	4 Broca's, 3 anomic, 1 anomic/conduction	
Sims et al. (2016)	Severity and type	WAB, BNT, PPT, CLQT	AQ range 48.0-99.2	4 anomic, 2 Broca's, 2 conduction, 2 transcortical motor, 1 anomic or transcortical motor, 1 Broca's or conduction, 1 "N/A", 1 Wernicke's or conduction	
Darkow et al. (2017)	Comprehensive battery	AAT	Mild	Not stated	

15
Study	Aphasia*	Assessment Instrument(s)	Aphasia Severity	Type	Note
Geranmayeh et al. (2017)	Not at all	CAT, QPA	Not stated		
Griffis, Nenert, Allendorfer, & Szaflarski (2017)	Not at all	BNT, semantic fluency, phonemic fluency	Not stated		
Griffis, Nenert, Allendorfer, Vannest, et al. (2017)	Not at all	BNT, semantic fluency, phonemic fluency	Not stated		
Harvey et al. (2017)	Comprehensive battery	BDAE, BNT	Mild-moderate		All non-fluent
Nardo et al. (2017)	Not at all	BNT, one CAT subtest, two PALPA subtests	Not stated		
Nenert et al. (2017)	Severity only	TT, PPVT, BNT, semantic fluency, phonemic fluency, communicative activities log	6 mild (2 control, 4 CIAT); 5 moderate (3 control, 2 CIAT); 8 severe (3 control, 5 CIAT)		
Qiu et al. (2017)	Severity and type	WAB	Moderate-severe		All Broca's
Skipper-Kallal et al. (2017a)	Comprehensive battery	WAB, PNT	AQ mean 77.7 ± 21.0, range 22.8-99.2		21 anomic, 7 Broca's, 3 conduction, 1 transcortical sensory
Skipper-Kallal et al. (2017b)	Comprehensive battery	WAB, PNT	Not stated		23 anomic, 11 Broca's, 3 conduction, 1 transcortical sensory, 1 Wernicke's
Dietz et al. (2018)	Severity and type	WAB, Reading Comprehension Battery for Aphasia	AAC group: AQ range 37.6-82.4; usual care group: AQ range 36.7-89.2		AAC group: 2 Broca's, 1 anomic, 1 conduction, 1 global, 1 Wernicke's; usual care group: 2 anomic, 2 Broca's, 1 conduction, 1 Wernicke's
Hallam et al. (2018)	Comprehensive battery	Cambridge semantic battery, three additional semantic tasks, connected speech words per minute, repetition from PALPA	Not stated		6 anomic, 2 Broca's, 2 global, 2 transcortical sensory, 1 mixed transcortical, 1 not stated
Nenert et al. (2018)	Not at all	PPVT, BNT, phonemic fluency, semantic fluency, complex ideation subtest of BDAE	Not stated for study timepoints, but on admission, aphasia severity was assessed with the TT: 2 no aphasia per cutoff but clinical impression of aphasia, 5 mild, 6 moderate, 4 severe		
Pillay et al. (2018)	Not at all	Pseudoword rhyme matching, semantic picture matching (similar to PPT-P), picture naming	Not stated		
Szafarski et al. (2018)	Comprehensive battery	WAB, BNT, semantic fluency, phonemic fluency	AQ range 10.4-94.6		8 anomic, 2 Broca's, 1 conduction, 1 global
van de Sandt-Koenderman et al. (2018)	Comprehensive battery	AAT, ANELT	T1: subacute: ASRS median 1, range 0-2; ANELT range 10-29; chronic: ASRS median 1.5, range 1-2; ANELT range 20-29; T2: subacute: ASRS range 1-3; ANELT range 10-43; chronic: ASRS range 1-2; ANELT range 22-31		T1: all severe non-fluent; T2: not stated
van Oers et al. (2018)	Comprehensive battery	AAT, BNT	T1: 8 moderate, 2 severe, 2 not stated; T2: 4 moderate, 3 recovered, 2 not stated, 1 mild, 1 severe		T1: 6 Broca's, 3 anomic, 2 Wernicke's, 1 global; T2: 4 anomic, 3 recovered, 2 Broca's, 1 unclassified, 1 Wernicke's
Barbieri et al. (2019)	Comprehensive battery	WAB, Northwestern Assessment of Verbs and Sentences (NAVS), Northwestern Naming Battery (NNB), analysis of spontaneous speech (Cinderella story) using	AQ range 52.8-91.7		Not stated, except that "language deficits were consistent with nonfluent aphasia and agrammatism"
Study	Severity	Battery/Tests	Treated/Untreated Group	Not stated	
------------------------------	----------	---	---	--	
Johnson et al. (2019)	Severity only	WAB, BNT, PPT	Treated group: AQ mean 60.1 ± 24.0, range 11.7-95.2; untreated group: AQ mean 65.8 ± 24.6, range 26.9-91.5	Not stated	
Kristinsson et al. (2019)	Severity and type	WAB, PNT, PPT	Typical BDNF genotype group: AQ mean 64.2 ± 20.3; atypical BDNF genotype group: AQ mean 54.3 ± 21.0	Typical BDNF genotype group: 25 Broca's, 12 anomic, 11 conduction, 2 transcortical motor aphasia, 2 Wernicke's, 1 global; atypical BDNF genotype group: 16 Broca's, 6 anomic, 6 conduction, 3 global, 3 Wernicke's	
Purcell et al. (2019)	Comprehensive battery	Spelling (PALPA 40 and 54, and other word lists), oral reading (PALPA 35), reading comprehension (PALPA 51), spoken word-picture matching and picture naming tests from Northwestern Naming Battery, PPT-P; note no generic aphasia battery, but fairly complete coverage of language domains	Spelling of untrained items range 51%-94%	4 orthographic working memory deficit, 8 orthographic long-term memory deficit, 9 both types of deficit	
Sreedharan, Chandran, et al.	Severity only	WAB translated into Malayalam	AQ range approximately 50-80	Broca's or anomic	
Hartwigsen et al. (2020)	Not at all	AAT	7 mild residual aphasia, 5 recovered	Not stated	
Stockert et al. (2020)	Severity only	AAT including TT, comprehension composite (LRScomp) and production composite (LRSprod) were derived	Frontal group: T1 acute: LRScomp mean 0.48 ± 0.26; T2 subacute: LRScomp mean 0.64 ± 0.21; T3 chronic: LRScomp mean 0.91 ± 0.07; temporo-parietal group: T1 acute: LRScomp mean 0.63 ± 0.32; T2 subacute: LRScomp mean 0.79 ± 0.20; T3 chronic: LRScomp mean 0.91 ± 0.13	Not stated	

Aphasia [column] = To what extent is the nature of aphasia characterized?; AABT = Aachen Aphasia Bedside Test; AAT = Aachen Aphasia Test; ABA = Apraxia Battery for Adults; ADP = Aphasia Diagnostic Profiles; ADPASS = Aphasia Diagnostic Profiles Aphasia Severity Score; ANELT = Amsterdam-Nijmegen Everyday Language Test; AoS = apraxia of speech; AQ = aphasia quotient; ASRS = Aphasia Severity Rating Scale; BDAE = Boston Diagnostic Aphasia Examination; BNT = Boston Naming Test; CAT = Comprehensive Aphasia Test; CETI = Communicative Effectiveness Index; CIAT = constraint-induced aphasia therapy; CLQT = Cognitive Linguistic Quick Test; LRS = Language Recovery Score; MIT = melodic intonation therapy; NAVS = Northwestern Assessment of Verbs and Sentences; PALPA = Psycholinguistic Assessments of Language Processing in Aphasia; PNT = Philadelphia Naming Test; POp+ = pars opercularis damaged; POp- = pars opercularis spared; PPT = Pyramids and Palm Trees; PPVT = Peabody Picture Vocabulary Test; pSTS = posterior superior temporal sulcus; QPA = Quantitative Production Analysis; rTMS = repetitive transcranial magnetic stimulation; T1, T2, etc. = first time point, second time point, etc.; TROG = Test for Reception of Grammar; TT = Token Test; WAB = Western Aphasia Battery; Yellow underline = minor limitation; Orange underline = moderate limitation.
Supplementary Table S4. Participants: Characterization of neurological status

Study	First stroke	Stroke type	Lesion	Lesion extent	Lesion location
Weiller et al. (1995)	Yes	Ischemic only	Individual lesions	Not stated	Posterior L MCA infarct, lesion to the L posterior STG usually extending to MTG and AG
Belin et al. (1996)	Not stated	Not stated	Individual lesions	Not stated, but note that hypoperfusion greatly exceeded the infarct in all but 1 patient	L MCA; 2 also had ACA
Ohyama et al. (1996)	Yes	Ischemic only	Extent and location	Mean 33.9 ± 26.3 cc, range 8.1-113.2 cc	L perisylvian
Heiss et al. (1997)	Yes	Ischemic only	Individual lesions	Range 27.2-133.2 cc	L MCA; 5 patients had superior temporal damage and 1 had subcortical damage underlying posterior superior temporal cortex
Karbe et al. (1998)	Yes	Ischemic only	Extent and location	Range 2-133 cc	L MCA
Cao et al. (1999)	Yes	Ischemic only	Individual lesions	Extents are reported in three dimensions	4 L MCA, 2 L ICA
Heiss et al. (1999)	Yes	Ischemic only	Extent and location	Range 4.3-154.3 cc (probably; units not stated)	L MCA; 9 subcortical, 7 frontal, 7 temporal
Kessler et al. (2000)	Yes	Ischemic only	Location only	Not stated	10 L frontal, 6 L subcortical, 8 L temporal
Rosen et al. (2000)	Yes	Not stated	Individual lesions	Range 10.7-117.5 cc	L IFG, extending to neighboring areas in most cases
Blasi et al. (2002)	Yes	Ischemic only	Individual lesions	Not stated	L IFG and operculum, extending to adjacent cortex and white matter in several cases
Leff et al. (2002)	Yes	Not stated	Individual lesions	Extent and location	Range 0.5-14% of total brain volume
Blank et al. (2003)	No	Not stated	Individual lesions	Not stated	L frontal, occasionally extending into temporal
Cardebat et al. (2003)	Yes	Mixed etiologies	Individual lesions	Not stated	4 L subcortical, 2 L prerolandic, 2 L postrolandic
Sharp et al. (2004)	Yes	Not stated	Lesion overlay	Not stated	Lesion in vicinity of L STG; no extensive frontal damage; no inferior temporal damage
Zahn et al. (2004)	Yes	Not stated	Lesion overlay	Not stated	L MCA
Crinion & Price (2005)	Yes	Not stated	Lesion overlay	Not stated	L MCA
de Boissezon et al. (2005)	Yes	Mixed etiologies	Individual lesions	Not stated	5 L non-thalamic subcortical, 2 L thalamic
Connor et al. (2006)	Yes	Ischemic only	Individual lesions	Not stated	L IFG and operculum, extending to adjacent cortex and white matter in several cases
Crinion et al. (2006)	Yes	Not stated	Lesion overlay	Not stated	6 L but no temporal damage, 9 L temporal damage excluding anterior temporal cortex, 9 L temporal damage including anterior temporal cortex
Saur et al. (2006)	Yes	Ischemic only	Individual lesions	Not stated	L MCA; 4 frontal (2 extending to temporoparietal); 5 temporoparietal (2 extending to subcortical); 4 striatocapsular (2 extending to cortical); 1 frontoparietal
Meinzer et al. (2008)	Not stated	Mixed etiologies	Lesion overlay	Range 31.0-236.0 cc	L
Authors	Ischemic Only	Mixed Etiologies	Individual Lesions	Lesion Location	MCA Region
-------------------------	---------------	------------------	--------------------	-----------------	------------
Raboyeau et al. (2008)	Yes	Not stated	Individual lesions	Range 29.9-195.2 cc	L MCA
Richter et al. (2008)	Not stated	Not stated	Individual lesions	Not stated	L
de Boissezon et al. (2009)	Yes	Mixed etiologies	Lesion overlay	Range 0.9-43.4 cc	L MCA (7 subcortical, 6 cortical)
Fridrikksson et al. (2009)	Not stated	Not stated	Lesion overlay	Range 3.0-342.2 cc	L MCA
Menke et al. (2009)	Yes	Mixed etiologies	Individual lesions	Not stated	L
Specht et al. (2009)	Not stated	Not stated	Lesion overlay	Not stated	L MCA, with greatest overlap in the posterior STG
Warren et al. (2009)	Yes	Ischemic only	Lesion overlay	Patients with positive anterior temporal interconnectivity: mean 93.3 ± 24.0 cc; patients with negative anterior temporal interconnectivity: mean 96.1 ± 27.6 cc	L not including anterolateral superior temporal cortex; maximal overlap in posterior superior temporal cortex
Chau et al. (2010)	Yes	Ischemic only	Location only	Not stated	3 L MCA, 2 L frontal, 2 L basal ganglia
Fridrikkson (2010)	Yes	Ischemic only	Lesion overlay	Not stated	L MCA
Fridrikksson et al. (2010)	Yes	Ischemic only	Lesion overlay	Not stated	L MCA
Sharp et al. (2010)	Yes	Not stated	Lesion overlay	Not stated	Lesion in vicinity of L STG; no extensive frontal damage; no inferior temporal damage
Thompson et al. (2010)	Yes	Not stated	Individual lesions	Not stated	5 L MCA, 1 R MCA with aphasia
Tyler et al. (2010)	Not stated	Mixed etiologies	Lesion overlay	Not stated	L
van Oers et al. (2010)	Yes	Ischemic only	Individual lesions	Range 6.0-167.3 cc	L MCA
Papoutsi et al. (2011)	Not stated	Not stated	Lesion overlay	Not stated	L MCA
Sebastian & Kiran (2011)	Not stated	Mixed etiologies	Individual lesions	Range 23-45 cc	L MCA
Szaflarski et al. (2011)	Not stated	Not stated	Individual lesions	Not stated	L MCA
Tyler et al. (2011)	Not stated	Not stated	Lesion overlay	Not stated	L MCA
Weiduschat et al. (2011)	Yes	Not stated	Extent and location	Range 0.7-88.9 cc	L MCA
Allendorfer et al. (2012)	Not stated	Ischemic only	Individual lesions	Range 2.8-248.9 cc	L MCA
Fridrikkson, Hubbard, et al. (2012)	Yes	Not stated	Lesion overlay	Not stated	L MCA
Fridrikkson, Richardson, et al. (2012)	Yes	Mixed etiologies	Lesion overlay	Range 7.7-420.5 cc	L MCA
Marcotte et al. (2012)	Yes	Not stated	Lesion overlay	Range 14.6-295.8 cc	L MCA
Schofield et al. (2012)	Yes	Ischemic only	Lesion overlay	Range 24.2-403.6 cc	L MCA
Wright et al. (2012)	Yes	Not stated	Lesion overlay	Not stated	L MCA
Szaflarski et al. (2011)	Not stated	Not stated	Lesion	Recovered: median 9.2 cc, range	L MCA

19
Year	Etiology	Lesion Type	Lesion Extent Description	Hemisphere	
Thiel et al. (2013)	Yes	Ischemic only	Lesion overlay, RTMS group: 233 ± 197 cc; sham group: 244 ± 243 cc; lesion extent in images appears much smaller than the stated volumes	L MCA	
Abel et al. (2014)	Yes	Mixed etiologies	Lesion overlay, Not stated	L MCA; 2 also had ACA	
Benjamin et al. (2014)	No	Mixed etiologies	Lesion overlay, Not stated	L MCA, extending frontally at least into the precentral gyrus or underlying white matter	
Brownsett et al. (2014)	Not stated	Not stated	Lesion overlay, Not stated	L temporal and parietal cortex; 4 extended into the frontal lobe; no lesions involved ACA territory	
Mattioli et al. (2014)	Yes	Not stated	Individual lesions, Range 4.4-158.3 cc (possibly; units stated do not seem correct)	L MCA; lesions seem very small in Supplementary Figure 1, but are described as more extensive in Supplementary Table 1	
Mohr et al. (2014)	Yes	Mixed etiologies	Lesion overlay, Not stated	L MCA	
Robson et al. (2014)	Yes	Mixed etiologies	Lesion overlay, Not stated	L MCA; all involved STG extending into IPL and temporoparietal junction; 8 extending into MTL; 4 extending into inferior frontal	
Szaflarski et al. (2014)	Not stated	Not stated	Lesion overlay, 60.1 ± 57.5 cc	L MCA	
van Hees et al. (2014)	Yes	Not stated	Lesion overlay, Not stated	L hemisphere	
Abel et al. (2015)	Yes	Mixed etiologies	Lesion overlay, Not stated	L MCA; 2 also had ACA	
Kiran et al. (2015)	Yes	Not stated	Lesion overlay, 24.2-431.6 cc	L MCA except for one patient with R MCA and aphasia	
Sandberg et al. (2015)	Not stated	Not stated	Lesion overlay, Range 0.3-256.0 cc	L MCA	
Geranmayeh et al. (2016)	No	Not stated	Lesion overlay, Mean 25.4 ± 13.5 cc, range 0.3-168.0 cc	L; modest R involvement in 7 cases	
Griffiths et al. (2016)	Not stated	Not stated	Individual lesions, Range 1.4-52.5 cc	L MCA	
Sims et al. (2016)	Not stated	Not stated	Lesion overlay, Not stated	L MCA	
Darkow et al. (2017)	Not stated	Not stated	Lesion overlay, Range 9.7-165.1 cc	L MCA not including hand motor area	
Geranmayeh et al. (2017)	No	Not stated	Lesion overlay, Mean 41.4 ± 44.4 cc, range 3.8-173.9 cc	L; modest R involvement in 3 cases	
Griffiths, Nenert, Allendorfer, & Szaflarski (2017)	Yes	Not stated	Lesion overlay, Mean 105.2 ± 76.3 cc	L	
Griffiths, Nenert, Allendorfer, Vannest, et al. (2017)	Yes	Not stated	Individual lesions, Mean 105.2 ± 76.3 cc	L	
Harvey et al. (2017)	Yes	Ischemic only	Lesion overlay, Individual lesions, Range 36.6-252.1 cc	L MCA	
Nardo et al. (2017)	Yes	Not stated	Lesion overlay, Not stated	L MCA	
Nenert et al. (2017)	Yes	Ischemic only	Lesion overlay, Not stated	L MCA	
Qiu et al. (2017)	Yes	Mixed etiologies	Not at all	L	
Skipper-Kallal et al (2017)	Not stated	Not stated	Lesion, Mean 27.5 ± 22.9 cc	L MCA	
Study	First stroke only?	Lesion [column]	Lesion	Extent and location	Lesion size (cc)
----------------------------	---------------------	-----------------	--------	---------------------	-----------------
Dietz et al. (2018)	Yes	Individual	overlay	AAC group: range 7849-30570 voxels; usual care group: 1583-30110 voxels (voxel size not stated)	L MCA
Nenert et al. (2018)	No	Lesion	overlay	Not stated	L MCA; mostly posterior per Supplementary Figure 2
Pillay et al. (2018)	Not stated	Lesion	overlay	Mean 73.4 ± 58.6 cc, range 6.7-227.0 cc	17 L MCA, 2 combined L MCA/ACA, combined 2 L MCA/PCA
van de Sandt-Koenderman et al. (2018)	Not stated	Extent and location	Subacute: range 32.4-141.2 cc (no lesion extent was reported for one subacute participant because there was no tissue loss yet); chronic: range 27.4-87.9 cc	8 L MCA, 1 L SMA and R insular-temporoparietal	
van Oers et al. (2018)	Yes	Lesion	overlay	Range 9-208 cc	L MCA
Barbieri et al. (2019)	Yes	Lesion	overlay	Not stated	Mostly L MCA but some lesions include PCA or ACA territory
Johnson et al. (2019)	Not stated	Lesion	overlay	Treated group: 136.6 ± 81.1 cc, range 11.7-317.1 cc; untreated group: 112.7 ± 94.6 cc, range 1.6-317.1 cc	Mostly MCA with a few extending into PCA
Kristinsson et al. (2019)	No	Lesion	overlay	Typical BDNF genotype group: 121.4 ± 73.2 cc; atypical BDNF genotype group: 142.2 ± 88.4 cc	L MCA
Purcell et al. (2019)	Yes	Lesion	overlay	Range 7.7-215.0 cc	L MCA with L ventral occipitotemporal cortex mostly intact
Sreedharan, Chandran, et al. (2019)	Not stated	Individual lesions	Not stated	7 L MCA, 1 bilateral MCA	
Hartwigsen et al. (2020)	Yes	Lesion	overlay	Range 11.9-176.3 cc	Left temporo-parietal cortex; maximal overlap in SMG
Stockert et al. (2020)	Yes	Lesion	overlay	Frontal group: mean 69.3 ± 34.0 cc, range 12.3-76.6 cc; temporo-parietal group: mean 54.8 ± 41.1 cc, range 6.2-108.5 cc	L MCA, frontal (n = 17) or temporo-parietal (n = 17)

First stroke = First stroke only?; Lesion [column] = To what extent is the lesion distribution characterized?; AAC = Augmentative and Alternative Communication; ACA = anterior cerebral artery; AG = angular gyrus; cc = cubic centimeters; ICA = internal carotid artery; IFG = inferior frontal gyrus; IPL = inferior parietal lobule; L = left; MCA = middle cerebral artery; MTG = middle temporal gyrus; MTL = medial temporal lobe; PCA = posterior cerebral artery; pMTG = posterior middle temporal gyrus; pSTS = posterior superior temporal sulcus; R = right; rTMS = repetitive transcranial magnetic stimulation; SMA = supplementary motor area; STG = superior temporal gyrus; vATL = ventral anterior temporal lobe; Yellow underline = minor limitation; Orange underline = moderate limitation.
Supplementary Table S5. Imaging: Design

Study	Modality	Study timing	Time points	Intervention		
Weiller et al. (1995)	PET (rCBF)	Cross-sectional	—	—		
Belin et al. (1996)	PET (rCBF)	Cross-sectional	—	—		
Ohyama et al. (1996)	PET (rCBF)	Cross-sectional	—	—		
Heiss et al. (1997)	PET (rCMRgl)	Longitudinal—recovery	T1: ~4 weeks; T2: ~12-18 months	Not stated		
Karbe et al. (1998)	PET (rCMRgl)	Longitudinal—recovery	T1: mean 24 ± 11 days, ~3-4 weeks; T2: mean 19 ± 2 months, > 1 year	Not stated		
Cao et al. (1999)	fMRI	Cross-sectional	—	—		
Heiss et al. (1999)	PET (rCBF)	Longitudinal—recovery	T1: ~2 weeks; T2: ~8 weeks	Not stated		
Kessler et al. (2000)	PET (rCBF)	Longitudinal—mixed	T1: pre-treatment, ~2 weeks post onset; T2: post-treatment, ~8 weeks post onset	SLT, 1 hour/day, 5 days/week, 6 weeks; 12 patients received piracetam and 12 received placebo; note that the two groups are not directly compared in any imaging or behavioral analyses		
Rosen et al. (2000)	PET and fMRI	Cross-sectional	—	—		
Blasi et al. (2002)	fMRI	Cross-sectional	—	—		
Leff et al. (2002)	PET (rCBF)	Cross-sectional	—	—		
Blank et al. (2003)	PET (rCBF)	Cross-sectional	—	—		
Cardebat et al. (2003)	PET (rCBF)	Longitudinal—recovery	T1: 58 ± 35 days, range 11-113 days; T2: 11.7 ± 1.6 months, range 320-460 days; T1 varies considerably from early to late subacute	Not stated		
Sharp et al. (2004)	PET (rCBF)	Cross-sectional	—	—		
Zahn et al. (2004)	fMRI	Cross-sectional	—	—		
Crinion & Price (2005)	fMRI	Cross-sectional	—	—		
de Boissezon et al. (2005)	PET (rCBF)	Longitudinal—recovery	T1: mean 53 ± 35 days, range 11-108 days; T2: mean 12.2 ± 1.4 months; T1 varies considerably from early to late subacute	Not stated		
Connor et al. (2006)	fMRI	Cross-sectional	—	—		
Crinion et al. (2006)	PET (rCBF)	Cross-sectional	—	—		
Saur et al. (2006)	fMRI	Longitudinal—recovery	T1 acute: mean 1.8 days, range 0-4 days; T2 subacute: mean 12.1 days, range 3-16 days; T3 chronic: mean 321 days, range 102-513 days	Standard SLT throughout the observation period including at least 3 weeks inpatient		
Meinzer et al. (2008)	fMRI	Longitudinal—chronic treatment	T1: pre-treatment/chronic; T2: post-treatment, ~2 weeks later	CIAT, 3 hours/day, 5 days/week, 2 weeks		
Raboyeau et al. (2008)	PET (rCBF)	Longitudinal—chronic treatment	T1: pre-treatment/chronic; T2: post-treatment, ~4 weeks later	Lexical training, 15 minutes/day, 5 days/week, 4 weeks; the control group were trained to relearn foreign words that they had learned in school but since mostly forgotten		
Richter et al. (2008)	fMRI	Longitudinal—chronic treatment	T1: pre-treatment/chronic; T2: post-treatment, ~2 weeks later	CIAT, 3 hours/day, 10 days		
de Boissezon et al. (2009)	PET (rCBF)	Longitudinal—recovery	T1: mean 64 ± 32 days; T2: mean 11.8 ± 1.4 months; T1 varies considerably from early to late subacute	Community SLT; 45 minutes/day, 1-3 days/week		
Fridriksson et al. (2009)	fMRI	Cross-sectional	—	—		
Menke et al. (2009)	fMRI	Longitudinal—chronic treatment	T1: pre-treatment/chronic; T2: post-treatment, ~2 weeks later; T3: 8 months after the end of treatment	Intensive anomia training; 3 hours/day; 2 weeks		
Specht et al. (2009)	PET (rCBF)	Cross-sectional	—	—		
Study	Imaging Modality	Study Type	Time Points	Findings		
--------------------------------------	------------------	---------------------	--	--		
Warren et al. (2009)	PET (rCBF)	Cross-sectional	—	—		
Chau et al. (2010)	fMRI	Longitudinal—chronic	T1: pre-treatment/chronic; T2: post-treatment, ~10 weeks later	Acupuncture, 3 sessions/week, 8 weeks		
Fridriksson (2010)	fMRI	Longitudinal—chronic treatment	T1: pre-treatment/chronic; T2: post-treatment/~4 weeks later; note that there were two separate sessions per time point, as well as another two sessions midway through treatment that are not analyzed in this paper	Anomia treatment using a cueing hierarchy, 3 hours/day, 5 days/week, 2 weeks, with a 1-week gap between the two weeks		
Fridriksson et al. (2010)	fMRI	Cross-sectional	—	—		
Sharp et al. (2010)	PET (rCBF)	Cross-sectional	—	—		
Thompson et al. (2010)	fMRI	Longitudinal—chronic	T1: pre-treatment/chronic; T2: post-treatment, 9-15 weeks later	Treatment of underlying forms		
Tyler et al. (2010)	fMRI	Cross-sectional	—	—		
van Oers et al. (2010)	fMRI	Cross-sectional	Behavioral data (TT and a naming measure) were also acquired subacutely (mean 26 ± 18 days, range 5-56 days)	—		
Papoutsi et al. (2011)	fMRI	Cross-sectional	—	—		
Sebastian & Kiran (2011)	fMRI	Cross-sectional	—	—		
Szaflarski et al. (2011)	fMRI	Longitudinal—chronic	T1: pre-treatment/chronic; T2: post-treatment, ~2 weeks later	RTMS to residual activation near Broca's area, 5 sessions/week, 2 weeks		
Tyler et al. (2011)	fMRI	Cross-sectional	—	—		
Weiduschat et al. (2011)	PET (rCBF)	Longitudinal—mixed	T1: pre-treatment/subacute (range 18-97 days post onset); T2: post-treatment, ~2 weeks later	Individualized SLT, 45 minutes/day, 5 days/week, 2 weeks; 6 patients underwent rTMS to the R IFG pars triangularis; 4 received vertex (sham) rTMS		
Allendorfer et al. (2012)	fMRI	Cross-sectional	—	—		
Fridriksson, Hubbard, et al. (2012)	fMRI	Cross-sectional	—	—		
Fridriksson, Richardson, et al. (2012)	fMRI	Longitudinal—chronic treatment	T1: pre-treatment/chronic; T2: post-treatment/~4 weeks later; note that there were two separate sessions per time point, as well as another two sessions midway through treatment that are not analyzed in this paper	Anomia treatment using a cueing hierarchy, 3 hours/day, 5 days/week, 2 weeks, with a 1-week gap between the two weeks		
Marcotte et al. (2012)	fMRI	Longitudinal—chronic	T1: pre-treatment/chronic; T2: post-treatment, 3-6 weeks later (after 80% performance on trained items, or 6 weeks)	Semantic feature analysis, 1 hour/day, 3 days/week, 3-6 weeks		
Schofield et al. (2012)	fMRI	Cross-sectional	—	—		
Wright et al. (2012)	fMRI	Cross-sectional	—	—		
Szaflarski et al. (2013)	fMRI	Cross-sectional	—	—		
Thiel et al. (2013)	PET (rCBF)	Longitudinal—mixed	T1: pre-treatment/subacute (rTMS group: mean 37.5 ± 18.5 days post onset; sham group: mean 50.6 ± 22.6 days post onset); T2 post-treatment, ~2.5 weeks later	RTMS group: inhibitory rTMS over the R IFG pars triangularis + SLT for 45 minutes/day, 5 days/week, 2 weeks; control group: sham TMS + SLT		
Abel et al. (2014)	fMRI	Longitudinal—chronic	T1: pre-treatment/chronic; T2: post-treatment, ~6 weeks later (labeled T2 and T3 in paper)	Lexical therapy, alternating between weeks with phonological and semantic treatment, 4 weeks; 60 out of the 132 items were trained		
Benjamin et al. (2014)	fMRI	Longitudinal—chronic	T1: pre-treatment/chronic; T2: post-treatment; T3: 3 months after the end of treatment	Word finding therapy for both groups, but the intention group had to produce complex left hand movements, while the control group did not; note that groups were not directly compared in any imaging analyses		
Authors	Imaging Technique	Design Type	T1 Description	T2 Description	T3 Description	Patients
-------------------------	-------------------	----------------------	---	---	--	---
Brownsett et al. (2014)	fMRI	Longitudinal—chronic treatment	Patients: T1: acclimatization/chronic (but used in some analyses); T2: pre-treatment/chronic (not stated how long after T1); T3: post-treatment/~4 weeks later; controls: T1: pre-training; T2: post-training/~2 weeks later	Patients: home-based therapy consisting of auditory discrimination and repetition tasks for 3 or 4 weeks between T2 and T3; control: 2 weeks of similar training using noise vocoded speech		
Mattioli et al. (2014)	fMRI	Longitudinal—mixed	T1: pre-treatment, mean 2.2 ± 1.3 days post onset; T2: post-treatment, mean 16.2 ± 1.3 days post onset; T3: mean 190 ± 25.5 days post onset	6 patients were randomized to receive treatment focusing on verbal comprehension and lexical retrieval for 1 hour/day, 5 days/week between T1 and T2; no patient received treatment after T2		
Mohr et al. (2014)	fMRI	Longitudinal—chronic treatment	T1: pre-treatment/chronic; T2: post-treatment, ~2 weeks later	CIAT, 3-4 hours/day, 5 days/week, 2 weeks		
Robson et al. (2014)	fMRI	Cross-sectional	—	—		
Szaflarski et al. (2014)	fMRI	Cross-sectional	—	—		
van Hees et al. (2014)	fMRI	Longitudinal—chronic treatment	T1: pre-treatment/chronic; T2: post-treatment, 5-6 weeks later; note that "immediate improvement" was measured at the end of SLT, a week or two prior to T2 scan	SLT with alternating semantic and phonological sessions, 3 days/week, 4 weeks		
Abel et al. (2015)	fMRI	Longitudinal—chronic treatment	T1: pre-treatment/chronic; T2: post-treatment, ~6 weeks later (labeled T2 and T3 in paper)	Lexical therapy, alternating between weeks with phonological and semantic treatment, 4 weeks; 60 out of the 132 items were trained		
Kiran et al. (2015)	fMRI	Longitudinal—chronic treatment	T1: pre-treatment/chronic; T2: post-treatment, ~10 weeks later	Semantic feature-based treatment, 10 weeks		
Sandberg et al. (2015)	fMRI	Longitudinal—chronic treatment	T1: pre-treatment/chronic; T2: post-treatment, up to 10 weeks later	Semantic feature-based treatment, 2 hours/day, 2 days/week, up to 10 weeks (depending on when criterion reached)		
Geranmayeh et al. (2016)	fMRI	Cross-sectional	—	—		
Grifis et al. (2016)	fMRI	Longitudinal—chronic treatment	T1: pre-treatment/chronic; T2: post-treatment, ~2 weeks later	RTMS to residual activation near Broca's area, 5 sessions/week, 2 weeks		
Sims et al. (2016)	fMRI	Cross-sectional	—	—		
Darkow et al. (2017)	fMRI	Longitudinal—chronic treatment	T1/T2: chronic; tDCS and sham sessions in randomized order	—		
Geranmayeh et al. (2017)	fMRI	Longitudinal—recovery	T1: 15 ± 7.6 days (range 5-35 days); T2: 108 ± 26 days (range 87-200 days)	Variable modest amounts of SLT (range 0-18 hours) reported in Supplementary Table 1		
Grifis, Nenert, Allendorfer, & Szaflarski (2017)	fMRI	Cross-sectional	—	—		
Grifis, Nenert, Allendorfer, Vannest, et al. (2017)	fMRI	Cross-sectional	—	—		
Harvey et al. (2017)	fMRI	Longitudinal—chronic treatment	T1: pre-treatment/chronic; T2: post-treatment, 2 months after treatment; T3: 6 months after treatment (the 2-month time point was not included in analysis because there was no significant behavioral effect at that time)	Inhibitory rTMS to R IFG, 10 days		
Nardo et al. (2017)	fMRI	Longitudinal—chronic treatment	T1: pre-treatment/chronic; T2: post-treatment, ~6 weeks later	Anomia treatment (computer-based practice), 2+ hours/day, 6 weeks		
Nenert et al. (2017)	fMRI	Longitudinal—chronic treatment	T1: pre-treatment/chronic; T2: post-treatment, ~3 weeks later; T3: 3 months after the end of treatment	CIAT, 4 hours/day, 5 days/week, 2 weeks		
Qiu et al. (2017)	fMRI	Cross-sectional	—	—		
Skipper-Kallal et al.	fMRI	Cross-sectional	—	—		
Study (year)	Study Design	Study Timing	Time Points	Intervention Details		
-------------	--------------	--------------	-------------	----------------------		
Skipper-Kallal et al. (2017b)	Cross-sectional	—	—	AAC group: treatment aimed at teaching participants how to utilize AAC to facilitate discourse; usual care group: traditional SLT, not focused on discourse or AAC specifically		
Dietz et al. (2018)	Longitudinal—chronic treatment	T1: pre-treatment/chronic; T2: post-treatment, ~4 weeks later	—	Not stated		
Hallam et al. (2018)	Cross-sectional	—	—	Not stated		
Nenert et al. (2018)	Longitudinal—recovery	T1: ~2 weeks; T2: ~6 weeks; T3: ~12 weeks; T4: ~26 weeks; T5: ~52 weeks	—	Not stated		
Pillay et al. (2018)	Cross-sectional	—	—	Modified CIAT + intermittent theta burst stimulation to residual left hemispheric language activation, 45 minutes/session, 5 days/week, 2 weeks		
Szaflarski et al. (2018)	Longitudinal—chronic treatment	T1: pre-treatment/chronic (1-2 weeks prior to treatment); T2: post-treatment (within 1 week after end of 2-week treatment); T3: 13-20 weeks after end of treatment	—	Not stated		
van de Sandt-Koenderman et al. (2018)	Longitudinal—mixed	T1: pre treatment/subacute or chronic; T2: post-treatment, ~6 weeks later	MIT, 5+ hours/week	Not stated		
van Oers et al. (2018)	Longitudinal—recovery	T1: within 2 weeks; T2: ~3 months; T3: ~6 months; T4: ~12 months; specific timing of first time point not stated	—	Not stated		
Barbieri et al. (2019)	Longitudinal—chronic treatment	T1: pre-treatment/chronic; T2: post-treatment, ~12 weeks later	13 patients were treated and 5 were not; treatment of underlying forms; 90 minutes/session, 2 sessions/week until 80% accuracy met on weekly probe task, then 1 session/week, 12 weeks except for one patient who demonstrated rapid improvement and completed treatment in 6 weeks	Not stated		
Johnson et al. (2019)	Longitudinal—chronic treatment	T1: pre-treatment/chronic; T2: post-treatment, ~12 weeks later	Semantic naming treatment, 2 sessions/week	Not stated		
Kristinsson et al. (2019)	Cross-sectional	—	—	Not stated		
Purcell et al. (2019)	Longitudinal—chronic treatment	T1: pre-treatment/chronic; T2: post-treatment, 6-24 weeks later	Spelling treatment, 60-80 minutes/day, 2 days/week, range 6-24 weeks	Not stated		
Sreedharan, Chandran, et al. (2019)	Longitudinal—mixed	Neurofeedback group: T1: pre-treatment/subacute; T2: 1-5 weeks later; T3: 2-6 weeks after T1; T4: 3-11 weeks after T1; T5: 4-12 weeks after T1; T6: 5-12 weeks after T1; no training group: T1: subacute; T2: 2-12 weeks later; controls: T1: start of study; T2: 1-4 weeks later; T3: 3-5 weeks after T1; T4: 4-8 weeks after T1; T5: 7-37 weeks after T1; T6: 12-43 weeks after T1	4 patients received 4 additional sessions involving neurofeedback training, while 4 patients received treatment as usual	Not stated		
Hartwigs et al. (2020)	Longitudinal—chronic treatment	T1/T2/T3: chronic; sessions consisted of cTBS over left anterior IFG, cTBS over left posterior IFG, or sham; sessions at least 7 days apart in randomized order	CTBS	Not stated		
Stockert et al. (2020)	Longitudinal—recovery	T1 acute: 1-7 days; T2 subacute: 8-21 days; T3 chronic: > 6 months	—	Not stated		

Study timing = Is the study cross-sectional or longitudinal?; Time points = If longitudinal, at what time point(s) were imaging data acquired?; Intervention = If longitudinal, was there any intervention between the time points?; AAC = Augmentative and Alternative Communication; CIAT = constraint-induced aphasia therapy; fMRI = functional magnetic resonance imaging; IFG = inferior frontal gyrus; MIT = melodic intonation therapy; PET = positron emission tomography; R = right; rCBF = regional cerebral blood flow; rCMRgl = regional cerebral metabolic rate for glucose; rTMS = repetitive transcranial magnetic stimulation; SLT = speech-language therapy; T1, T2, etc. = first time point, second time point, etc.; tDCS = transcranial direct current stimulation; TT = Token Test; Yellow underline = minor limitation.
Supplementary Table S6. Imaging: Methodology part 1

Study	Scanner	Timing	Design type	Total images	
Weiller et al. (1995)	Y (CTI ECAT 953/15)	Y	PET	6	
Belin et al. (1996)	Y (CEA LETI-TTV03)	Y	PET	4	
Ohyama et al. (1996)	Y (Head tome IV tomograph)	Y	PET	6	
Heiss et al. (1997)	Y (Siemens ECAT EXACT HR)	Y	PET	2	
Karbe et al. (1998)	Y (CTI-Siemens ECAT EXACT HR)	N*	PET	8	
Cao et al. (1999)	Y (Magnex Scientific 3 Tesla)	Y	Block	40	
Heiss et al. (1999)	Y (CTI-Siemens ECAT EXACT HR)	Y	PET	8	
Kessler et al. (2000)	Y (CTI-Siemens ECAT EXACT HR)	Y	PET	8	
Rosen et al. (2000)	Y (Siemens 961 EXACT HR; Siemens Vision 1.5 Tesla)	N	PET: 10; fMRI: 384-768	8	
Blasi et al. (2002)	Y (Siemens Vision 1.5 Tesla)	Y	Event-related	1024	
Leff et al. (2002)	Y (CTI-Siemens ECAT EXACT HR++/966)	Y	PET	16	
Blank et al. (2003)	Y (CTI-Siemens ECAT EXACT HR++/966)	Y	PET	15 (patients); 12 (controls)	
Cardebat et al. (2003)	Y (Siemens ECAT HR+)	Y	PET	6	
Sharp et al. (2004)	Y (Siemens HR++ 966)	Y	PET	16	
Zahn et al. (2004)	Y (Philips ACS NT Gyroscan 1.5 Tesla)	N*	Block	198	
Crinion & Price (2005)	N (Siemens 1.5 Tesla; model not stated)	N	Block	460	
de Boissezon et al. (2005)	Y (CTI-Siemens ECAT EXACT HR+)	Y	PET	6	
Connor et al. (2006)	Y (Siemens Vision 1.5 Tesla)	Y	Event-related	1024	
Crinion et al. (2006)	Y (CTI-Siemens ECAT EXACT HR++/966 (16 patients and all controls) or GE Advance (8 patients))	Y	PET	12-16	
Saur et al. (2006)	Y (Siemens Trio 3 Tesla)	Y	Event-related	660	
Meinzer et al. (2008)	Y (Philips Intera 1.5 Tesla)	Y	Block	160	
Raboyeau et al. (2008)	Y (Siemens ECAT HR+)	Y	PET	6	
Richter et al. (2008)	Y (Siemens Vision plus 1.5 Tesla)	N	Block	134	
de Boissezon et al. (2009)	Y (CTI-Siemens ECAT EXACT HR+)	Y	PET	6	
Fridriksson et al. (2009)	N (not stated)	N	Event-related	120	
Menke et al. (2009)	Y (Philips Intera 3 Tesla)	N	Event-related	Probably ~360, but not stated	
Specht et al. (2009)	Y (CTI-Siemens HR+)	Y	PET	9	
Warren et al. (2009)	Y (CTI-Siemens ECAT EXACT HR++/966 (10 patients and all controls) or GE Advance (6 patients))	Y	PET	12-16	
Chau et al. (2010)	N (not stated)	N	Block	90?	
Fridriksson (2010)	Y (Siemens Trio 3 Tesla)	N	Event-related	120	
Study	Images	Paradigm	Device	Notes	Time (s)
---	--------	----------	-------------------------	--	----------
Fridriksson et al. (2010)	N	Event-related	Siemens Trio 3 Tesla	N (exact timing of picture presentation not specified)	120
Sharp et al. (2010)	Y	PET	Siemens HR++ 966		16
Thompson et al. (2010)	N	Event-related	Siemens Trio 3 Tesla	N (total images acquired not stated)	Not stated
Tyler et al. (2010)	N*	Block	Siemens Trio 3 Tesla	N* (there was only one block per condition per run, so condition could be confounded with low frequency drift; also, the length of the sentences is not stated so it is unclear how well the HRF peak aligns with the sparse acquisitions)	69
van Oers et al. (2010)	Y	Block	Philips Achieva 3 Tesla	Y	3036
Papoutsi et al. (2011)	N	Event-related	Siemens Trio 3 Tesla	N (length of stimuli not described)	1059
Sebastian & Kiran (2011)	N	Event-related	GE 3 Tesla; model not stated	N* (control events took place in the inter-trial interval between language events, and may have been systematically confounded in timing; the total number of functional images acquired is not stated)	Not stated
Szaflarski et al. (2011)	N	Block	Varian Unity INOVA 4 T	N (timing not clear, because previous studies cited are not all identical in terms of timing)	Not stated
Tyler et al. (2011)	N	Event-related	Siemens Trio 3 Tesla	N (run length not stated; length of stimuli not described)	Not stated but 1059 per Papoutsi et al. (2011)
Weiduschat et al. (2011)	Y	PET	CTI-Siemens ECAT EXACT HR		8
Allendorfer et al. (2012)	N	Mixed	Philips 3 Tesla; model not stated		435
Fridriksson, Hubbard, et al. (2012)	N	Event-related	Siemens 3 Tesla; model not stated	N* (it appears that each of the three conditions was presented in a separate run)	180?
Fridriksson, Richardson, et al. (2012)	N	Event-related	Siemens Trio 3 Tesla	N (timing of stimuli within the silent periods is unclear)	120
Marcotte et al. (2012)	N	Event-related	Siemens Trio 3 Tesla	N (total images acquired not stated)	Not stated
Schofield et al. (2012)	Y	Block	Siemens Sonata 1.5 Tesla		488
Wright et al. (2012)	N*	Block	Siemens Trio 3 Tesla	N* (there was only one block per condition per run, so condition could be confounded with low frequency drift; also, the length of the sentences is not stated so it is unclear how well the HRF peak aligns with the sparse acquisitions)	69
Szaflarski et al. (2013)	Y	Block	Philips 3 Tesla; model not stated		330
Thiel et al. (2013)	Y	PET	CTI-Siemens ECAT EXACT HR		8
Abel et al. (2014)	Y	Event-related	Philips Achieva 3 Tesla	N* (trials too close together (~8 s) and insufficient jitter (1-3 s) for event-related design)	560
Benjamin et al. (2014)	N	Event-related	Philips Achieva 3 Tesla	N (total images acquired not stated)	Not stated
Brownsett et al. (2014)	N	Event-related	Philips Intera 3 Tesla	N* (timing of sentence presentation not described; sparse event-related design, but ITI of only 8 s and consistent linear order of listening and repetition trials could make it difficult to disentangle hemodynamic responses to listening and repeating trials)	168 (patients); 280 (controls)
Mattioli et al. (2014)	N	Event-related	Siemens Avanto 1.5 Tesla	N (timing of stimuli not clearly described)	504
Mohr et al. (2014)	Y	Event-related	Siemens Trio 3 Tesla		76
Robson et al. (2014)	N*	Block	Philips Achieva 3 Tesla	N* (each condition was acquired in a separate run, which is suboptimal)	417
Study	MR System	Type	Notes	Trials	ITI/RTMS
---	-----------	------------	--	--------	-----------
Szaflarski et al. (2014)	Y(Philips Achieva 3 Tesla, except for 1 patient and 1 control on a Bruker 3 Tesla)	Y	Block	165	
van Hees et al. (2014)	Y(Bruker MedSpec 4 Tesla)	Y	Event-related	610	
Abel et al. (2015)	Y(Philips Achieva 3 Tesla)	N*	(trials too close together (~8 s) and insufficient jitter (1-3 s) for event-related design)	560	
Kiran et al. (2015)	Y(Philips Achieva 3 Tesla)	N*	(picture and scrambled conditions have different durations; ITI 2-4 s seems too short; total images acquired not stated)	Not stated	
Sandberg et al. (2015)	Y(Philips Achieva 3 Tesla)	N*	(total images acquired not stated; ITI of 1-3 s seems short)	Not stated	
Geranmayeh et al. (2016)	Y(Siemens Trio 3 Tesla)	Y	Event-related	213	
Griffis et al. (2016)	Y(Varian Unity INOVA 4 Tesla)	Y	Block	140	
Sims et al. (2016)	Y(Philips Achieva 3 Tesla)	N*	(total images acquired not stated)	Not stated	
Darkow et al. (2017)	Y(Siemens Trio 3 Tesla)	Y	Event-related	100	
Geranmayeh et al. (2017)	Y(Siemens Trio 3 Tesla)	Y	Event-related	213	
Griffis, Nenert, Allendorfer, & Szaflarski (2017)	N(Siemens Allegra 3 Tesla or Philips 3 Tesla; model not stated)	Y	Block	165	
Griffis, Nenert, Allendorfer, Vannest, et al. (2017)	N(Siemens Allegra 3 Tesla or Philips 3 Tesla; model not stated)	Y	Block	165	
Harvey et al. (2017)	Y(Siemens Trio 3 Tesla)	Y	Block	200	
Nardo et al. (2017)	Y(Siemens Trio 3 Tesla)	Y	Event-related	696	
Nenert et al. (2017)	N(Philips 3 Tesla or Siemens 3 Tesla; models not stated)	Y	Block	600	
Qiu et al. (2017)	Y(GE Signa 1.5 Tesla)	N*	(only three pictures were named per 30-second block)	186	
Skipper-Kallal et al. (2017a)	Y(Siemens Trio 3 Tesla)	N*	(total images acquired not stated; separation of adjacent events (covert and overt naming) will be limited because of the small amount of jitter in their timing (only 1500 ms))	Event-related	~450 but not stated
Skipper-Kallal et al. (2017b)	Y(Siemens Trio 3 Tesla)	N*	(total images acquired not stated; separation of adjacent events (covert and overt naming) will be limited because of the small amount of jitter in their timing (only 1500 ms))	Event-related	~450 but not stated
Dietz et al. (2018)	Y(Philips Achieva 3 Tesla)	Y	Event-related	135	
Hallam et al. (2018)	Y(GE Signa HDx 3 Tesla)	Y	Event-related	348	
Nenert et al. (2018)	N(Philips 3 Tesla or Siemens 3 Tesla; models not stated)	Y	Block	600	
Pillay et al. (2018)	Y(GE Excite 3 Tesla)	N*	(precise timing of stimuli not stated; total images acquired not stated)	Event-related	Not stated
Szaflarski et al. (2018)	Y(Siemens Allegra 3 Tesla)	Y	Block	330	
van de Sandt-Koenderman et al. (2018)	N(GE 3 Tesla; model not stated)	Y	Block	132	
van Oers et al. (2018)	Y(Philips Achieva 3 Tesla)	N*	(stimulus presentation was self-paced, but the ITI is not reported, nor are the number of trials presented per condition; it is likely that the language and control blocks contained different numbers of trials)	Block	1656
Barbieri et al. (2019)	Y(Siemens Trio 3 Tesla or Siemens Prisma 3 Tesla)	N*	(stimulus timing described does not match stated duration of data acquisition;)	Block	~482
Reference	Scanner Description	Timing Comments	fMRI Type	Total Images	
---------------------------------	--	--	-------------------	--------------	
Johnson et al. (2019)	Y (Siemens Trio 3 Tesla, except for 2 patients on a Siemens Prisma 3 Tesla)	N* (total images not stated; short ITI and minimal jitter)	Event-related	Not stated	
Kristinsson et al. (2019)	Y (Siemens Trio 3 Tesla or Siemens Prisma 3 Tesla)	Y	Event-related	60	
Purcell et al. (2019)	N (not stated)	Y	Event-related	1232	
Sreedharan, Chandran, et al. (2019)	Y (Siemens Avanto 1.5 Tesla)	N* (picture naming events consistently located between blocks)	Mixed	Probably 964	
Hartwigsen et al. (2020)	Y (Siemens Verio 3 Tesla)	N* (stimulus timing not described in detail; stated duration of data acquisition substantially outside possible range of duration of stimuli)	Block	740	
Stockert et al. (2020)	Y (Siemens Trio 3 Tesla or Siemens Verio 3 Tesla)	Y	Event-related	660	

Scanner = Is the scanner described?; Timing = Is the timing of stimulus presentation and image acquisition clearly described and appropriate?; Total images = Total images acquired; fMRI = functional magnetic resonance imaging; HRF = hemodynamic response function; ITI = inter-trial interval; N = No; PET = positron emission tomography; Y = Yes; Yellow underline = minor limitation; Orange underline/* = moderate limitation.
Supplementary Table S7. Imaging: Methodology part 2

Study	Acquisition	Preprocessing	Model fitting	Registration	Notes	
Weiller et al. (1995)	Y (axial; field of view = 5.4 cm; perisylvian only)	Y	Y	Y		
Belin et al. (1996)	Y (7 transaxial slices 12 mm apart)	Y	Y	Y		
Ohyama et al. (1996)	N (91 mm field of view; coverage limitations not stated)	Y	Y	N (lesion impact not addressed)		
Heiss et al. (1997)	Y (whole brain)	Y	Y	N/A		
Karbe et al. (1998)	Y (whole brain)	Y	Y	N/A		
Cao et al. (1999)	Y (axial, perisylvian only)	Y	N (first level cross-correlation analysis unclear)	N/A		
Heiss et al. (1999)	Y (whole brain)	Y	Y	N/A		
Kessler et al. (2000)	Y (whole brain)	Y	Y	N/A		
Rosen et al. (2000)	Y (whole brain)	Y	Y	Y	1 patient scanned on different PET scanner, and not scanned with fMRI; controls had different fMRI sequence to patients	
Blasi et al. (2002)	Y (whole brain)	Y	Y	N (not described)		
Leff et al. (2002)	Y (whole brain)	Y	Y	Y		
Blank et al. (2003)	Y (whole brain)	Y	Y	Y		
Cardebat et al. (2003)	Y (whole brain)	Y	Y	N (lesion impact not addressed)		
Sharp et al. (2004)	Y (whole brain)	Y	Y	Y		
Zahn et al. (2004)	Y (whole brain)	Y	Y	N/A		
Crinion & Price (2005)	Y (whole brain)	Y	Y	Y		
de Boissezon et al. (2005)	Y (whole brain)	Y	Y	N (lesion impact not addressed; minimal due to lesions being small and subcortical)		
Connor et al. (2006)	Y (whole brain)	Y	Y	N/A		
Crinion et al. (2006)	Y (whole brain)	Y	Y	Y	Two different scanners used for patients, but not for controls	
Saur et al. (2006)	Y (whole brain)	Y	Y	Y		
Meinzer et al. (2008)	Y (whole brain)	Y	Y	Y		
Raboyeau et al. (2008)	Y (whole brain)	Y	Y	N (lesion impact not addressed)		
Richter et al. (2008)	Y (whole brain)	Y	Y	N (lesion impact not addressed)		
de Boissezon et al. (2009)	Y (whole brain)	Y	Y	N (lesion impact not addressed)		
Fridrikssson et al. (2009)	Y (whole brain)	Y	Y	Y	Sparse sampling	
Menke et al. (2009)	Y (whole brain)	Y	Y	Y		
Specht et al. (2009)	Y (whole brain)	Y	Y	Y		
Warren et al. (2009)	Y (whole brain)	Y	Y	Y	Two different scanners used for patients, but not for controls	
Chau et al. (2010)	Y (whole brain)	Y	Y	N (lesion impact not addressed)		
Study	Y (whole brain)	Y	Y	N (lacks explanation of event durations)	Y	Sparse sampling
------------------------------	-----------------	---	---	--	---	-----------------
Fridriksson (2010)						
Fridriksson et al. (2010)						
Sharp et al. (2010)						
Thompson et al. (2010)						
Tyler et al. (2010)						
van Oers et al. (2010)				Breath holding scan also done to measure hemodynamic responsiveness		
Papoutsi et al. (2011)						
Sebastian & Kiran (2011)						
Szaflarski et al. (2011)						
Tyler et al. (2011)						
Weiduschat et al. (2011)						
Allendorfer et al. (2012)						
Fridriksson, Hubbard, et al. (2012)						
Fridriksson, Richardson, et al. (2012)						
Marcotte et al. (2012)						
Schofield et al. (2012)						
Wright et al. (2012)						
Szaflarski et al. (2013)						
Thiel et al. (2013)						
Abel et al. (2014)						
Benjamin et al. (2014)						
Brownset et al. (2014)						
Mattioli et al. (2014)						

Sparse sampling; different task structure in controls (two repetition trials per listening trial) raises concerns about comparisons between groups
Study	slices	noise "bip"	lesion impact	Methodology						
Mohr et al. (2014)	Y	Y	N	Sparse sampling						
Robson et al. (2014)	Y	Y	Y	Spin echo fMRI to minimize ATL dropout						
Szaflarski et al. (2014)	Y	Y	Y	Slow event-related design; sparse sampling						
van Hees et al. (2014)	Y	Y	N							
Abel et al. (2015)	Y	Y	N							
Kiran et al. (2015)	Y	Y	Y	Controls were run on two different sets of parameters, neither of which was the same as the patients						
Sandberg et al. (2015)	Y	Y	Y							
Geranmayeh et al. (2016)	Y	Y	Y	Sparse sampling; mini-blocks of 2-4 trials						
Griffis et al. (2016)	Y	Y	N							
Sims et al. (2016)	Y	Y	Y	No smoothing						
Darkow et al. (2017)	Y	Y	Y	Sparse sampling						
Geranmayeh et al. (2017)	Y	Y	Y	Sparse sampling; mini-blocks of 2-4 trials						
Griffis, Nenert, Allendorfer, Szaflarski (2017)	Y	Y	Y							
Griffis, Nenert, Allendorfer, Vannest, et al. (2017)	Y	Y	N							
Harvey et al. (2017)	Y	Y	N							
Nardo et al. (2017)	Y	Y	Y							
Nenert et al. (2017)	Y	Y	N							
Qiu et al. (2017)	Y	N (not described)	N (no description of model fitting)							
Skipper-Kallal et al. (2017a)	Y	N* (entire phases where picture was displayed modeled as covert and overt naming; difficult to separate phases due to timing)	Y							
Skipper-Kallal et al. (2017b)	Y	N* (not stated but see Skipper-Kallal et al. (2017b))	Y	At each voxel, individuals with lesions to that voxel were excluded from analysis						
Dietz et al. (2018)	Y	N (no description of HRF model, which is important given sparse sampling design)	N (lesion impact not addressed)	Additional methodological details in Dietz et al. (2016)						
Hallam et al. (2018)	Y	Y	Y	Interleaved silent steady state imaging						
Nenert et al. (2018)	Y	Y	N	Scanner identity appropriately included as covariate						
Pillay et al. (2018)	Y	Y	Y							
Study	Acquisition	Preprocessing	Model fitting	Registration	ATL	fMRI	HRF	PET	N/A	Comment
-------------------------------	-------------	---------------	---------------	--------------	-----	------	-----	-----	-----	---
Szafarski et al. (2018)	Y	Y	Y	Y						
van de Sandt-Koenderman et al. (2018)	Y	Y	Y	N (lesion impact not addressed)						
van Oers et al. (2018)	Y	Y	Y	Y						Not all participants scanned at each time point; the number scanned at each time point is not stated
Barbieri et al. (2019)	Y	Y	Y	Y						2 runs before treatment and 2 runs after treatment; each pair of runs took place on two separate days (1-7 days apart)
Johnson et al. (2019)	Y	Y	N* (unclear whether there was sufficient resting data to allow the key contrast to be computed)	Y						
Kristinsson et al. (2019)	Y	Y	Y	Y						Sparse sampling
Purcell et al. (2019)	Y (cerebellum excluded)	Y	N* (not feasible to separate closely spaced instruction, word, and letter/response, especially when responses will be compared to rest)	Y						
Sreedharan, Chandran, et al. (2019)	Y	Y	N* (event timing will make conditions difficult to disentangle)	N (lesion impact not addressed)						
Hartwigsen et al. (2020)	Y	Y	Y	N (lesion impact not addressed)						
Stockert et al. (2020)	N	Y	Y	Y						

Acquisition = Are the imaging acquisition parameters, including coverage, adequately described and appropriate?; Preprocessing = Is preprocessing and intrasubject coregistration adequately described and appropriate?; Model fitting = Is first level model fitting adequately described and appropriate?; Registration = Is intersubject normalization adequately described and appropriate?; ATL = anterior temporal lobe; fMRI = functional magnetic resonance imaging; HRF = hemodynamic response function; N = No; N/A = N/A—no intersubject normalization.; PET = positron emission tomography; Y = Yes; Yellow underline = minor limitation; Orange underline/* = moderate limitation.
Supplementary Table S8. Conditions

Study	Condition	Response type	Repetitions	All groups could do	All indivs could do	Notes
Weiller et al. (1995)	Verb generation	Multiple words (covert)	2	Y	Y	Auditory presentation; pre-scan behavioral data reported
	Pseudoword repetition	Multiple words (covert)	2	Y	Y	
	Rest	None	2	N/A	N/A	
Belin et al. (1996)	Word repetition with MIT-like intonation	Word (overt)	1	Y	U	
	Word repetition	Word (overt)	1	Y	U	
	Listening to words	None	1	N/A	N/A	
	Rest	None	1	N/A	N/A	
Ohyama et al. (1996)	Word repetition	Word (overt)	2	Y	Y	Patients were able to repeat words well, with phonemic errors on no more than 4 out of 48 words; counting condition not analyzed in this paper
	Counting	Multiple words (overt)	2	Y	Y	
	Rest	None	2	N/A	N/A	
Heiss et al. (1997)	Word repetition	Word (overt)	1	U	U	No information about repetition rate, or whether repetition was overt or covert
	Rest	None	1	N/A	N/A	
Karbe et al. (1998)	Word repetition	Word (overt)	4 (?)	U	U	Inability to repeat single words was an exclusion criterion, but many patients had severe aphasia so it is unclear how they would have performed
	Rest	None	4 (?)	N/A	N/A	
Cao et al. (1999)	Picture naming	Word (covert)	4	Y	Y	
	Viewing nonsense drawings	None	4	N/A	N/A	
Heiss et al. (1999)	Noun repetition	Word (overt)	4	U	U	Inclusion criterion would suggest all patients could do the task, but this is not stated
	Rest	None	4	N/A	N/A	
Kessler et al. (2000)	Word repetition	Word (overt)	4	Y	Y	Inclusion criterion was applied to ensure that the task could be performed
	Rest	None	4	N/A	N/A	
Rosen et al. (2000)	Word stem completion (PET)	Word (overt)	4	Y	Y	Pseudoword reading condition not analyzed in this paper
	Reading pseudowords aloud (PET)	Word (overt)	4	Y	N	
	Rest (PET)	None	2	N/A	N/A	
	Word stem completion (fMRI)	Word (covert)	15-30 (?)	Y	Y	
	Rest (fMRI)	None	15-30 (?)	N/A	N/A	
Blasi et al. (2002)	Word stem completion (novel items)	Word (covert)	196	Y	U	Novel items were presented in runs 1, 6, 7, and 8; repeated items were presented in runs 2, 3, 4, and 5; of the four repeated runs, only run 5 was analyzed.
	Word stem completion (repeated items)	Word (covert)	196	Y	U	
	Rest	None	Implicit baseline	N/A	N/A	
Leff et al. (2002)	Listening to words at 10 wpm	None	2	N/A	N/A	
	Listening to words at 35 wpm	None	2	N/A	N/A	
	Listening to words at 55 wpm	None	2	N/A	N/A	
	Listening to words at 70 wpm	None	2	N/A	N/A	
	Listening to words at 85 wpm	None	2	N/A	N/A	
	Listening to words at 95 wpm	None	2	N/A	N/A	
	Listening to words at 115 wpm	None	2	N/A	N/A	
Study	Task Type	Trial Type	T	Control T	Y	Note
-------------------------------	----------------------------	------------	---	-----------	---	------
Blank et al. (2003)	Propositional speech	Sentence (overt)	5; control: 4	Y	Alertness maintained in rest by Asking participants to listen to environmental sounds that were presented before and after data acquisition; speech was recorded and rate was measured, also QPA was done of a separate speech sample outside the scanner	
Cardebat et al. (2003)	Word generation	Word (overt)	4	Y	U	
Sharp et al. (2004)	Semantic decision	Word (overt)	8; control: 4	Y	Seems the response was a spoken word, but this is not stated explicitly; assuming all individuals could do the tasks because this was an inclusion criterion and behavioral data supports	
Zahn et al. (2004)	Phonetic decision	Button press	3	Y	N	
Crinion & Price (2005)	Listening to narrative speech	None	32	N/A	N/A	A post-scan surprise recognition test asked whether or not 38 phrases had occurred in any story; patients answered 12-33 of these questions correctly; controls answered 24-37 correctly; also note that all patients performed above chance on CAT auditory sentence comprehension (73%+ accuracy)
de Boissezon et al. (2005)	Word generation	Word (overt)	4	Y	Y	
Connor et al. (2006)	Word stem completion (novel items)	Word (covert)	196	Y	U	
Crinion et al. (2006)	Listening to narrative speech	None	6-8	N/A	N/A	
Saur et al. (2006)	Listening to sentences and making a plausibility	Button press	92	U	N	In the auditory sentence comprehension condition,
participants had to press a button to semantically anomalous sentences; in the reversed speech condition, they had to always press the button; the behavioral scores provided are not explained in the paper, but per a personal communication cited by Geranmayeh et al. (2014), 10% of the score reflects discrimination between intelligible and reversed speech, while 90% reflects semantic anomaly judgment; our coding of behavior is based on this limited information.

Study	Task Description	Event Type	Number	Y/N	U/N	Notes
Meinzer et al. (2008)	Picture naming (trained items)	Word (overt)	8	Y	N	One participant was < 10% on trained and untrained items at T1
	Picture naming (untrained items)	Word (overt)	8	Y	N	
	Rest	None	16	N/A	N/A	
Raboyeau et al. (2008)	Picture naming (native language)	Word (overt)	Aphasia: 4; control: 2	Y	U	Picture naming in native language in controls not analyzed in this paper
	Picture naming (relearned foreign language) (controls only)	Word (overt)	2	Y	U	
Rest	None	2	N/A	N/A		
Richter et al. (2008)	Reading words silently	Word (covert)	4	Y	U	Preliminary data on the tasks suggests that patients would have been able to perform them, and patients were interviewed regarding the tasks after each fMRI session, however the outcomes of these interviews are not reported
	Word stem completion	Word (covert)	4	Y	U	
	Rest	None	10 (?)	N/A	N/A	
de Boissezon et al. (2009)	Word generation	Word (overt)	4	Y	Y	
	Rest	None	2	N/A	N/A	
Fridriksson et al. (2009)	Picture naming	Word (overt)	80	Y	N	Patients could not name trained and untrained items at baseline
	Viewing scrambled images	None	40	N/A	N/A	
Menke et al. (2009)	Picture naming (trained items)	Word (overt)	30	N	N	
	Picture naming (untrained items)	Word (overt)	30	N	N	
	Picture naming (already known items)	Word (overt)	30	Y	U	
	Rest	None	Implicit baseline	N/A	N/A	
Specht et al. (2009)	Lexical decision (words vs pseudowords)	Button press	3	Y	Y	Behavioral data was lost, but it is clearly stated that all participants could perform all tasks above chance; the tone decision task is not described in sufficient detail, but since it is not used in any contrast of interest, the conditions are
	Lexical decision (words vs reversed foreign words)	Button press	3	Y	Y	
Study	Task Description	Response Type	Memory	Error	Comments	
-----------------------------	--	----------------	--------	-------	--	
Warren et al. (2009)	Listening to narrative speech	Button press	3	Y	Tones were described clearly; tone reflecting as being clearly described	
	Listening to reversed speech	None	6-8	N/A	N/A	
Chau et al. (2010)	Answering questions from Cantonese Aphasia Battery	Button press	3	U	Nature of questions not described in detail; responses involved raising left or right hand (not button press per se)	
	Visual decision	Button press	3	U	U	
Fridriksson (2010)	Picture naming	Word (overt)	80	Y	U	
	Viewing abstract pictures	None	40	N/A	N/A	
Fridriksson et al. (2010)	Picture naming	Word (overt)	80	Y	Y	
	Viewing abstract pictures	None	40	N/A	N/A	
Sharp et al. (2010)	Semantic decision	Word (overt)	8	Y	Y	
	Syllable count decision	Word (overt)	4	Y	U	
	Semantic decision (noise vocoded) (control only)	Word (overt)	4 (control)	Y	Y	
	Syllable count decision (noise vocoded) (control only)	Word (overt)	4 (control)	Y	Y	
Thompson et al. (2010)	Auditory sentence-picture matching (auditory; object cleft)	Button press	60	N	N	
	Auditory sentence-picture matching (subject cleft)	Button press	60	Y	Y	
	Auditory sentence-picture matching (simple past tense active)	Button press	60	Y	N	
	Rest	None	Implicit baseline	N/A	N/A	
Tyler et al. (2010)	Listening to normal sentences and detecting a target word	Button press	2	Y	U	
	Listening to grammatical but meaningless sentences and detecting a target word	Button press	2	Y	U	
	Listening to scrambled sentences and detecting a target word	Button press	2	Y	U	
	Listening to "musical rain" and detecting a period of white noise	Button press	2	Y	U	
	Rest	None	2	N/A	N/A	
van Oers et al. (2010)	Written word-picture matching	Button press	6	Y	Y	
	Semantic decision	Button press	6	Y	Y	
	Verb generation	Word (covert)	8	Y	Y	
	Patients who could not do tasks were excluded from analyses of those tasks (1				Patient from semantic decision; 3 patients from verb generation; wording is somewhat unclear regarding exclusion of patients who	
	patient from semantic decision; 3 patients from verb generation; wording is				somewhat unclear regarding exclusion of patients who	
	apparently not reported					

37
Study	Task Description	Type of Task	Duration	Accuracy	Baseline	Notes
Papoutsi et al. (2011)	Listening to unambiguous sentences ("unambiguous")	None	42	N/A	N/A	Could not perform verb generation, but we assume they were excluded
	Listening to ambiguous sentences with dominant resolution ("dominant")	None	42	N/A	N/A	
	Listening to ambiguous sentences with subordinate resolution ("subordinate")	None	42	N/A	N/A	
	Listening to filler sentences	None	126	N/A	N/A	
	Listening to "musical rain"	None	42	N/A	N/A	
Sebastian & Kiran (2011)	Picture naming	Word (overt)	60	Y	Y	Based on Binder et al. (1997), but details not reported; group only just above chance, unclear whether significantly better; clearly some individuals were at chance
	Viewing scrambled images and saying "pass"	Word (overt)	60	U	U	
	Semantic decision	Button press	48	Y	Y	
	Visual decision	Button press	48	U	U	
Szafierski et al. (2011)	Semantic decision	Button press	Not stated	U	N	
	Tone decision	Button press	Not stated	U	U	
Tyler et al. (2011)	Listening to unambiguous sentences ("unambiguous")	None	42	N/A	N/A	
	Listening to ambiguous sentences with dominant resolution ("dominant")	None	42	N/A	N/A	
	Listening to ambiguous sentences with subordinate resolution ("subordinate")	None	42	N/A	N/A	
	Listening to filler sentences	None	126	N/A	N/A	
	Listening to "musical rain"	None	42	N/A	N/A	
	Rest	None	42	N/A	N/A	
Weiduschat et al. (2011)	Verb generation	Word (covert)	4	Y	U	Given the means and standard deviations presented, it is likely that some patients could not perform some tasks; post-scan recognition tests not considered to quantify performance
	Rest	None	4	N/A	N/A	
Allendorfer et al. (2012)	Verb generation (overt, event-related)	Multiple words (overt)	15	Y	U	
	Verb generation (covert, event-related)	Multiple words (covert)	15	U	U	
	Noun repetition (event-related)	Multiple words (overt)	15	Y	U	
	Verb generation (covert, block)	Multiple words (covert)	10	U	U	
	Finger tapping (block)	Other	10	U	U	
Fridrikssson, Hubbard, et al. (2012)	Listening to/watching audiovisual sentences, while producing the same sentences in unison (speech entrainment)	Sentence (overt)	30 (7)	Y	U	Rest condition implied but not described
	Listening to reversed sentences and viewing a mouth speaking, while	Sentence (overt)	30 (7)	Y	U	
Task Description	Response	Y/N	Presentation	Target Detection	Notes	
---	----------	-----	--------------	------------------	-------	
producing unrelated sentences	None	30	N/A	N/A		
Listening to/watching audiovisual sentences and viewing a mouth	None	Implicit baseline	N/A	N/A		
Rest	None	Implicit baseline	N/A	N/A		
Fridrikkson, Richardson, et al. (2012)	Picture naming	80	Y	U		
Viewing abstract pictures	None	40	N/A	N/A		
Marcotte et al. (2012)	Picture naming (already known items)	20	Y	Y		
Picture naming (trained items)	Word (overt)	20	N	N		
Picture naming (untrained items)	Word (overt)	40	N	N		
Viewing scrambled images and saying “baba”	Word (overt)	20	Y	Y		
Rest	None	Implicit baseline	N/A	N/A		
Schofield et al. (2012)	Listening to word pairs, speaker gender judgment	18	Y	U		
Listening to reversed word pairs, speaker gender judgment	Button press	18	Y	U		
Rest	None	40 (?)	N/A	N/A		
Wright et al. (2012)	Listening to normal sentences and detecting a target word	2	Y	Y	Auditory presentation; target detection task with early and late targets; 12-15 trials per block with single sparse acquisition each, but only one block of each condition per run, in fixed order	
Listening to grammatical but meaningless sentences and detecting a target word	Button press	2	Y	Y		
Listening to scrambled sentences and detecting a target word	Button press	2	Y	Y		
Listening to “musical rain” and detecting a period of white noise	Button press	2	Y	Y		
Rest	None	2	N/A	N/A		
Szafarski et al. (2013)	Semantic decision	10	N	N		
Tone decision	Button press	12	N	N		
Thiel et al. (2013)	Verb generation	4	U	U		
Rest	None	4	N/A	N/A		
Abel et al. (2014)	Picture naming (semantic trained items)	30	Y	U		
Picture naming (phonological trained items)	Word (overt)	30	Y	U		
Picture naming (untrained items)	Word (overt)	30	Y	U		
Picture naming (already known items)	Word (overt)	42	Y	U		
Rest	None	Implicit baseline	N/A	N/A		
Benjamin et al. (2014)	Word generation	60	U	U		
Rest	None	Implicit baseline	N/A	N/A		
Brownsett et al. (2014)	Listening to sentences	None	Aphasia: not	N/A	N/A	Paradigm was different in patients and controls, and is
Study (year)	Task Description	Task Type	Patients	See also note		
-----------------------	---	-----------------	----------	---		
Mattioli et al. (2014)	Repeating sentences (sentence from previous trial)	Sentence (overt)	Y	N/A		
	Listening to noise vocoded sentences (control only)	None	N/A	N/A		
	Repeating noise vocoded sentences (control only)	Sentence (overt)	Y	U/A		
	Listening to segmented white noise	None	N/A	N/A		
Mohr et al. (2014)	Listening to sentences and making a plausibility judgment	Button press	Y	U/A		
	Listening to reversed speech	None	N/A	N/A		
Robson et al. (2014)	Semantic decision (written word)	Button press	Y	N/A		
	Semantic decision (picture)	Button press	Y	N/A		
	Visual decision	Button press	Y	N/A		
	Rest	None	N/A	N/A		
Szafrarski et al. (2014)	Verb generation (multiple words)	Multiple words	Y	U/A		
	Finger tapping	Other	Y	Y/A		
van Hees et al. (2014)	Picture naming (phonological trained items)	Word (overt)	Y	N/A		
	Picture naming (semantic trained items)	Word (overt)	Y	N/A		
	Picture naming (known items)	Word (overt)	Y	Y/A		
	Viewing scrambled images	None	N/A	N/A		
Abel et al. (2015)	Picture naming	Word (overt)	Y	Y/A		
	Rest	Implicit	N/A	N/A		
Kiran et al. (2015)	Picture naming (trained)	Word (overt)	U	U/A		
	Picture naming (untrained)	Word (overt)	U	U/A		
	Viewing scrambled images and saying “skip”	Word (overt)	U	U/A		
	Semantic feature decision	Button press	U	U/A		
	Visual decision	Button press	U	U/A		
Sandberg et al. (2015)	Concreteness judgment (abstract words)	Button press	Y	N/A		
	Concreteness judgment (concrete words)	Button press	Y	Y/A		
	Letter string judgment	Button press	U	U/A		
	Rest	Implicit	N/A	N/A		

Some patients named < 10% correct at T1

2 patients below chance on abstract words per supplementary table 2
Study	Task Type	Stimulus Type	Number of Trials	User Feedback	Group Performance		
Geranmayeh et al. (2016)	Propositional speech production	Sentence (overt)	60	Y	N		
	Counting	Multiple words (overt)	48	Y	U		
	Target decision	Button press	48	Y	U		
	Rest	None	45	N/A	N/A		
Griffis et al. (2016)	Verb generation	Multiple words (covert)	7	Y	Y		
	Finger tapping	Other	7	U	U		
Sims et al. (2016)	Semantic feature decision	Button press	64	Y	U		
	Visual decision	Button press	Not stated	Y	U		
	Semantic relatedness decision	Button press	50	Y	U		
	Pseudoword identity decision	Button press	50	Y	U		
	Rest	None	Implicit baseline	N/A	N/A		
Darkow et al. (2017)	Picture naming	Word (overt)	80	Y	Y		
	Rest	None	20	N/A	N/A		
Geranmayeh et al. (2017)	Propositional speech production	Sentence (overt)	60	Y	Y		
	Counting	Multiple words (overt)	48	Y	U		
	Target decision	Button press	48	Y	N		
	Rest	None	45	N/A	N/A		
Griffis, Nenert, Allendorfer, & Szafranski (2017)	Semantic decision	Button press	5	N	N		
	Tone decision	Button press	6	U	U		
Griffis, Nenert, Allendorfer, Vannest, et al. (2017)	Semantic decision	Button press	5	N	N		
	Tone decision	Button press	6	U	U		
Harvey et al. (2017)	Picture naming	Word (overt)	20	Y	Y		
	Viewing patterns	None	20	N/A	N/A		
Nardo et al. (2017)	Picture naming (untrained items, word cue)	Word (overt)	54	Y	U		
	Picture naming (untrained items, initial phonemes cue)	Word (overt)	54	Y	U		
	Picture naming (untrained items, final phonemes cue)	Word (overt)	54	Y	U		
	Picture naming (untrained items, no cue)	Word (overt)	54	Y	U		
	Picture naming (trained items, word cue)	Word (overt)	53	Y	U		
	Picture naming (trained items, initial phonemes cue)	Word (overt)	53	Y	U		
	Picture naming (trained items, final phonemes cue)	Word (overt)	53	Y	U		
	Picture naming (trained items, no cue)	Word (overt)	53	Y	U		
	Rest	None	Implicit baseline	N/A	N/A		
Nenert et al. (2017)	Semantic decision	Button press	10	U	U		
	Tone decision	Button press	10	U	U		
Task Description	Task Type	Items	Y/N	U/U	Notes		
------------------	-----------	-------	-----	-----	-------		
Verb generation (covert)	Multiple words	10	U	U	Evidence for task performance from Dietz et al. (2016)		
Finger tapping	Other	10	U	U			
Qiu et al. (2017)	Picture naming	Word (overt)	9	U	U		
	Rest	None	9	N/A	N/A	Covert and overt naming were modeled as two phases of each trial (there was a cue to produce the name after 7500-9000 ms); 5 participants who were more impaired were given easier pictures to name; patients who named less than 20% of items correctly were excluded	
Skipper-Kallal et al. (2017a)	Picture naming (silently name)	Word (covert)	32	Y	Y		
	Picture naming (produce the name)	Word (overt)	32	Y	Y		
	Rest	None	Implicit baseline	N/A	N/A		
Skipper-Kallal et al. (2017b)	Picture naming (prepare to name)	Word (covert)	32	Y	Y	Covert and overt naming were modeled as two phases of each trial (there was a cue to produce the name after 7500-9000 ms); 14 participants who were more impaired were given easier pictures to name; patients who named less than 10% of items correctly were excluded	
	Picture naming (produce the name)	Word (overt)	32	Y	Y		
	Rest	None	Implicit baseline	N/A	N/A		
Dietz et al. (2018)	Verb generation (covert)	Multiple words (covert)	15	U	U		
	Verb generation (overt)	Multiple words (overt)	15	Y	U		
	Noun repetition	Multiple words (overt)	15	Y	U		
Hallam et al. (2018)	Listening to high ambiguity sentences	None	24	N/A	N/A	All but one patient had good single word comprehension, which was argued to support sentence comprehension	
	Listening to low ambiguity sentences	None	24	N/A	N/A		
	Listening to spectrally rotated speech	None	24	N/A	N/A		
	Pressing a button to a visual cue	Button press	9	U	U		
	Rest	None	12	N/A	N/A		
Nenert et al. (2018)	Semantic decision	Button press	5	N	N	Assume semantic decision is out of 25, so chance is 12.5 and 95% CI below chance at T2; post-scan recognition test for verb generation not considered to quantify task performance	
	Tone decision	Button press	5	Y	U		
	Verb generation	Multiple words (covert)	5	U	U		
	Finger tapping	Other	5	U	U		
Pillay et al. (2018)	Reading nouns aloud	Word (overt)	72	Implicit baseline	N/A	N/A	Some participants had < 10% accuracy, but this is appropriately addressed in the analysis
	Rest	None	Implicit baseline	N/A	N/A		
Szaflarski et al. (2018)	Semantic decision	Button press	5	U	U		
	Tone decision	Button press	6	U	U		
van de Sandt-Koenderman et al. (2018)	Listening to narrative speech	None	6	N/A	N/A		
	Listening to reversed speech	None	6	N/A	N/A		
van Oers et al. (2018)	Written word-picture matching	Button press	6	U	U		

42
Study	Task Description	Response Type	Conditions	Baseline	Notes
Barbieri et al. (2019)	Auditory sentence-picture verification, Listening to reversed speech and viewing scrambled pictures	Button press	32	U	Based on the behavioral data obtained outside the scanner, it is likely that many patients were at chance on the language task.
Johnson et al. (2019)	Picture naming (trained items), Picture naming (untrained items, from control category), Picture naming (untrained items, from experimental categories), Viewing scrambled images and saying “skip”, Rest	Word (overt)	36	U	The untrained group were not actually trained on "trained items"; no accuracy data for untrained group (except for lack of change between T1 and T2).
Kristinsson et al. (2019)	Picture naming, Viewing abstract pictures	Word (overt)	40	Y	
Purcell et al. (2019)	Spelling probe (training items), Spelling probe (known items), Case verification, Rest	Button press	60	Y	Condition 3 not used in any contrasts
Sreedharan, Chandran, et al. (2019)	Neurofeedback (try to activate language areas), Rest, Picture naming	Other	24	U	Suggested strategies to activate language areas included “making a speech, having a conversation, reciting a poem or any other form of language activity performed covertly”; picture naming task involved covert word response and button press; picture naming task not used in any contrast; word generation task used only to generate ROIs.
Hartwigsen et al. (2020)	Syllable count decision, Semantic decision, Rest	Button press	10	Y	Extent of recovery supports the assertion that all individuals could do the tasks
Stockert et al. (2020)	Listening to normal sentences and making a plausibility judgment (paradigm 1), Listening to semantically anomalous sentences and making a plausibility judgment (paradigm 1), Listening to reversed speech, Listening to normal sentences (paradigm 2), Listening to semantically anomalous sentences	Button press	46	U	Description implies that paradigm 2 did not include a semantically anomalous condition, but previous papers indicate that it did; conditions 2, 5, and 6 were not used, and condition 7 was effectively contrasted out; reported behavioral data collapses across conditions and paradigms and so does not establish performance on any specific condition, but the data suggest that at least the conditions where no language-related decisions were
(paradigm 2) Listening to pseudoword speech (paradigm 2)	Button press	30	Y	U	
--	--------------	----	---	---	
Rest	None	Implicit baseline	N/A	N/A	

Repetitions = Number of times the condition was repeated per scanning session (PET measurements, blocks, or events); All groups could do? = Were all groups at all time points able to perform the task (if any)?; All indivs could do = Were all individuals at all time points able to perform the task (if any)?; 2AFC = two-alternative forced choice; BNT = Boston Naming Test; CAT = Comprehensive Aphasia Test; fMRI = functional magnetic resonance imaging; MIT = melodic intonation therapy; N = No; N/A = not applicable (no task); PET = positron emission tomography; PPT = Pyramids and Palm Trees; QPA = Quantitative Production Analysis; T1, T2, etc. = first time point, second time point, etc.; U = Unknown; wpm = words per minute; Y = Yes; Yellow underline = minor limitation; Orange underline = moderate limitation.
Supplementary Table S9. Contrasts

Contrast	Language condition	Control condition	Matched for	Ctrl activation	Notes							
Weiller et al. (1995): Contrast 1	Verb generation	Rest	Vis Aud Mot Cog Acc RT Rep Lang Lat	Y N Y N NANC NANC S Y Y	L posterior temporal, IFG and ventral precentral gyrus, much smaller activations in the R hemisphere							
Weiller et al. (1995): Contrast 2	Pseudoword repetition	Rest	Vis Aud Mot Cog Acc RT Rep Lang Lat	Y N Y N NANC NANC S S S								
Belin et al. (1996): Contrast 1	Word repetition with MIT-like intonation	Word repetition	Vis Aud Mot Cog Acc RT Rep Lang Lat	Y Y Y Y NBD UNR N/A N/A N/A	L posterior temporal only; similar but less extensive activation in the R hemisphere							
Ohyama et al. (1996): Contrast 1	Word repetition	Rest	Vis Aud Mot Cog Acc RT Rep Lang Lat	Y Y N N NANC NANC S S N	Bilateral auditory and motor activations are prominent, only slightly L-lateralized							
Heiss et al. (1997): Contrast 1	Word repetition	Rest	Vis Aud Mot Cog Acc RT Rep Lang Lat	Y Y Y Y NBD UNR N/A N/A N/A	The only control data is extent of activation and mean signal increase in L and R superior temporal cortex; both of these measures were slightly L-lateralized							
Karbe et al. (1998): Contrast 1	Word repetition	Rest	Vis Aud Mot Cog Acc RT Rep Lang Lat	Y Y N N NANC NANC S N N	ROIs only; negligible evidence of lateralization							
Cao et al. (1999): Contrast 1	Picture naming	Viewing nonsense drawings	Vis Aud Mot Cog Acc RT Rep Lang Lat	Y Y Y N NANC NANC S U S	Insufficient data to assess the control activation pattern							
Heiss et al. (1999): Contrast 1	Noun repetition	Rest	Vis Aud Mot Cog Acc RT Rep Lang Lat	Y Y N N NANC NANC S S S	L frontal and bilateral temporal							
Kessler et al. (2000): Contrast 1	Word repetition	Rest	Vis Aud Mot Cog Acc RT Rep Lang Lat	Y Y N N NANC NANC N U U	No control data are reported or cited, however the same task was used in several previous studies by this group							
Rosen et al. (2000): Contrast 1	Word stem completion (PET)	Rest (PET)	Vis Aud Mot Cog Acc RT Rep Lang Lat	N N N N NANC NANC S S Y	L IFG, L ITG, L anterior fusiform							
Rosen et al. (2000): Contrast 2	Word stem completion (fMRI)	Rest (fMRI)	Vis Aud Mot Cog Acc RT Rep Lang Lat	N Y Y N NANC NANC S S Y	L IFG, L intraparietal sulcus							
Blasi et al. (2002): Contrast 1	Word stem completion (novel items)	Rest	Vis Aud Mot Cog Acc RT Rep Lang Lat	N Y Y N NANC NANC Y S S	Activation of language areas but also other areas; frontal activation is somewhat lateralized							
Blasi et al. (2002): Contrast 2	Word stem completion (repeated items)	Word stem completion (novel items)	Vis Aud Mot Cog Acc RT Rep Lang Lat	Y Y Y Y Y N NANC NANC S U S	No whole brain analysis of this contrast, but somewhat lateralized in the sense that L but not R frontal areas showed a learning effect							
Leff et al. (2002): Contrast 1	Higher word rates	Lower word rates	Vis Aud Mot Cog Acc RT Rep Lang Lat	Y N Y Y NANC NANC NANC S S S	Control activation is bilateral in primary auditory cortex and the lateral STG (Fig. 1, labels 1 and 2), but there is a left-lateralized activation in the pSTS (label 3); the scatter plots in Fig. 1 show activity-word rate curves for peak pSTS voxels in individual subjects; slopes were steeper in the left hemisphere (p < 0.05), however,							
Study	Task/Contrast	Task Description	Conditions	p-Value	Analysis Notes							
------------------------------	---------------	--	------------	---------	---------	---------	---------	---------	---------	---------	---------	---
Blank et al. (2003): Contrast 1	Propositional speech production	Rest	Y	N	N	NANC	NANC	Y	S	S	Much bilateral activation due to overt speech but pars opercularis and supratemporal plane L-lateralized	
Blank et al. (2003): Contrast 2	Propositional speech production	Counting	Y	Y	Y	NANC	NANC	Y	S	S	Extrasylvian; somewhat L-lateralized	
Cardebat et al. (2003): Contrast 1	Word generation	Rest	Y	N	N	NANC	NANC	S	S	N	Bilateral fronto-temporal and some other regions per text	
Sharp et al. (2004): Contrast 1	Semantic decision	Syllable count decision	Y	Y	Y	Y N	N	S	S	Y	The control data provided also include the noise vocoded conditions; only ventral temporal activations are shown, which are L-lateralized	
Zahn et al. (2004): Contrast 1	Semantic decision	Phonetic decision and lexical decision (conjunction)	Y	Y	Y	AS	UNR	Y	Y	Y	L-lateralized frontal activation, as well as temporal and parietal to a lesser extent; conjunction of baseline conditions not described in sufficient detail	
Crinion & Price (2005): Contrast 1	Listening to narrative speech	Listening to reversed speech	Y	Y	Y	NANC	NANT	Y	Y	S	Bilateral (L > R) temporal, L IFG and L dorsal precentral	
de Boissezon et al. (2005): Contrast 1	Word generation	Rest	Y	N	N	NANC	NANC	N	U	U		
Connor et al. (2006): Contrast 1	Word stem completion (novel items)	Word stem completion (repeated items)	Y	Y	Y	Y	N	S	U	S	No whole brain analysis of this contrast, but somewhat lateralized in the sense that L but not R frontal areas showed a learning effect; the only contrast analyzed in this paper is the "learning" contrast which corresponds to contrast 2 in Blasi et al. (2002)	
Crinion et al. (2006): Contrast 1	Listening to narrative speech	Listening to reversed speech	Y	Y	Y	NANC	NANT	S	Y	S	11 participants; L-lateralized posterior temporal, bilateral anterior temporal, no frontal	
Saur et al. (2006): Contrast 1	Listening to sentences and making a plausibility judgment	Listening to reversed speech	Y	Y	N	N	UNR	UNR	Y	Y	L temporal and L > R frontal	
Meinzer et al. (2008): Contrast 1	Picture naming (trained items)	Rest	N	N	N	NANC	NANC	N	U	U		
Meinzer et al. (2008): Contrast 2	Picture naming (untrained items)	Rest	N	N	N	NANC	NANC	N	U	U		
Raboyeau et al. (2008): Contrast 1	Picture naming (native in patients; relearned foreign in controls)	Rest	N	N	N	NANC	NANC	N	U	U	Presumably only the relearned foreign condition was used in controls (not the native condition), but this is not stated explicitly	
Richter et al. (2008): Contrast 1	Reading words silently	Rest	N	Y	Y	NANC	NANC	S	U	U	Appears to be somewhat L-lateralized frontal, but not well visualized	
Richter et al.	Word stem	Rest	N	Y	Y	NANC	NANC	S	U	N	Bilateral frontal; other regions not	
Year	Contrast	Task Type	Condition	Y	N	N	N	N	N	S	S	N
----------------------	----------	----------------------------------	--------------------	---	---	---	---	---	---	---	---	---
de Boissezon et al.	2008	Contrast 2 completion	Rest	Y	N	N	N	NANC	NANC	S	S	N
Fridriksson et al.	2009	Contrast 1 Word generation	Rest	Y	Y	Y	Y	NBD	UNR	N/A	N/A	N/A
Fridriksson et al.	2009	Contrast 1 Picture naming (correct trials)	Viewing scrambled images	Y	N	N	N	NANC	NANC	S	N	S
Fridriksson et al.	2009	Contrast 2 Picture naming (correct trials)	Picture naming (correct trials)	Y	Y	Y	Y	NBD	UNR	N/A	N/A	N/A
Fridriksson et al.	2009	Contrast 3 Picture naming (semantic paraphasias)	Picture naming (correct trials)	Y	Y	Y	Y	NBD	UNR	N/A	N/A	N/A
Menke et al.	2009	Contrast 1 Picture naming (trained items)	Rest	N	N	N	N	NANC	NANC	S	U	U
Menke et al.	2009	Contrast 2 Picture naming (untrained items)	Rest	N	N	N	N	NANC	NANC	S	U	U
Specht et al.	2009	Contrast 1 Lexical decision (words vs pseudowords)	Lexical decision (words vs reversed foreign words)	Y	Y	Y	Y	UNR	UNR	Y	S	Y
Warren et al.	2009	Contrast 1 Listening to narrative speech	Listening to reversed speech	Y	Y	Y	Y	NANC	NANT	S	Y	S
Chau et al.	2010	Contrast 1 Answering questions from Cantonese Aphasia Battery	Visual decision	N	N	Y	N	NANC	NANC	N	U	U
Fridriksson	2010	Contrast 1 Picture naming (correct trials)	Viewing abstract pictures	Y	N	N	N	NANC	NANC	S	S	S
Fridriksson et al.	2010	Contrast 1 Picture naming (correct trials)	Viewing abstract pictures	Y	N	N	N	NANC	NANC	S	S	S
Sharp et al.	2010	Contrast 1 Semantic decision (clear in patients; average of clear and noise voked in controls)	Syllable count decision (clear in patients; average of clear and noise voked in controls)	Y	Y	Y	N	N	N	S	S	Y
Thompson et al.	2010	Contrast 1 Auditory sentence-picture matching (all three sentence types)	Rest	N	N	N	N	NANC	NANC	N	U	U
Tyler et al.	2010	Contrast 1 Listening to grammatical but meaningless sentences and	Listening to scrambled sentences and detecting a target word	Y	Y	Y	Y	UNR	AS	S	Y	N

Control data in Cardebat et al. (2003); bilateral fronto-temporal and some other regions per text.

Control data in Fridriksson et al. (2007); motor activations are prominent; there is some L frontal activation but little temporal activation in either hemisphere.

Control data N/A because controls do not typically make errors.

11 participants; L-lateralized posterior temporal, bilateral anterior temporal, no frontal.

The contrast activated a ventral part of the L IFG, along with L anterior cingulate and L DLPFC.

The contrast was intended to be shown in Fridriksson et al. (2007); motor activations are prominent; there is some L frontal activation but little temporal activation in either hemisphere.

L-lateralized frontal and temporal activations, but also bilateral visual, motor and auditory.

Not stated exactly what contrast was used in controls.

There are more control participants in another paper (Tyler et al., 2010, Cereb Cortex), but the relevant contrast does not seem to be shown in that paper; the contrast is intended to...
Study	Condition Description	Task	Decision	Correct	Incorrect	Lateralization	Notes					
van Oers et al. (2010)	Written word-picture matching	Visual decision	N	Y	Y	UNR	Not clearly stated that language tasks were contrasted only with					
						UNR	arrow decision task and not rest for the first two contrasts, but this					
						S	can be inferred					
	Semantic decision	Visual decision	N	Y	Y	UNR	Not clearly stated that language tasks were contrasted only with					
						UNR	arrow decision task and not rest for the first two contrasts, but this					
						S	can be inferred					
Papoutsi et al. (2011)	Listening to ambiguous sentences with subordinate resolution ("subordinate")	Listening to ambiguous sentences with dominant resolution ("dominant")	Y	Y	Y	NANB	Control data in Tyler et al. (2011); L frontal and temporal					
Sebastian & Kiran (2011)	Picture naming (correct trials)	Viewing scrambled images and saying "pass"	Y	Y	N	UNR	Reporting is selective, but appears mostly bilateral with slight L-					
						UNR	lateralization of language areas					
Sebastian & Kiran (2011)	Semantic decision (correct trials)	Visual decision	Y	Y	Y	UNR	Clearly lateralized frontal activation, but very modest temporal					
Szaflarski et al. (2011)	Semantic decision	Tone decision	Y	Y	Y	AS	Control data in Kim et al. (2011) and Szaflarski et al. (2008); L					
						UNR	frontal and temporal, plus other semantic regions					
Tyler et al. (2011): Contrast 1	Listening to ambiguous sentences with dominant and subordinate	Listening to unambiguous sentences ("unambiguous")	Y	Y	Y	NANB	L frontal and parietal; R frontal (but L > R); no L temporal					
Tyler et al. (2011): Contrast 2	Listening to ambiguous sentences with dominant resolution ("dominant")	Listening to unambiguous sentences ("unambiguous")	Y	Y	Y	NANB	L frontal and parietal; no L temporal					
Tyler et al. (2011): Contrast 3	Listening to ambiguous sentences with subordinate resolution ("subordinate")	Listening to unambiguous sentences ("unambiguous")	Y	Y	Y	NANB	L frontal, temporal and parietal, R frontal (but L > R)					
Tyler et al. (2011): Contrast 4	Listening to ambiguous sentences with subordinate resolution ("subordinate")	Listening to ambiguous sentences ("dominant")	Y	Y	Y	NANB	L frontal and temporal					
Weiduschat et al. (2011)	Verb generation	Rest	Y	N	Y	NANC	Control data in Herholz et al. (1996); insufficient to fully validate the contrast					
Allendorfer et al. (2012): Contrast 1	Verb generation (covert, block)	Finger tapping (block)	Y	Y	N	N	**NANC**	**NANC**	Y	Y	Y	Strongly lateralized frontal and temporal activation
Allendorfer et al. (2012): Contrast 2	Verb generation (overt, event-related)	Noun repetition (event-related)	Y	Y	Y	N	AM	UNR	Y	S	S	Somewhat L-lateralized frontal, temporal and parietal activations, but also extensive midline activation
Allendorfer et al. (2012): Contrast 3	Verb generation (overt, event-related)	Verb generation (covert, event-related)	Y	N	N	Y	NANC	NANC	Y	S	N/A	Bilateral speech motor activations, but also extensive midline activation
Fridriksson, Hubbard, et al. (2012): Contrast 1	Listening to/watching audiovisual sentences, while producing the same sentences in unison (speech entrainment)	Listening to reversed sentences and viewing a mouth speaking, while producing unrelated sentences	Y	Y	Y	**UNR**	**UNR**	S	N	N	Control and patient data are combined; this contrast activates bilateral anterior insula and posterior MTG, slightly more extensive on the L	
Fridriksson, Hubbard, et al. (2012): Contrast 2	Listening to/watching audiovisual sentences, while producing the same sentences in unison (speech entrainment)	Rest	N	N	N	NANC	NANC	N	U	U	Rest condition implied but not explicitly described	
Fridriksson, Hubbard, et al. (2012): Contrast 3	Listening to reversed sentences and viewing a mouth speaking, while producing unrelated sentences	Rest	N	N	N	NANC	NANC	N	U	U	Rest condition implied but not explicitly described	
Fridriksson, Hubbard, et al. (2012): Contrast 4	Listening to/watching audiovisual sentences and viewing a mouth	Rest	N	N	N	**NANC**	**NANT**	N	U	U	Rest condition implied but not explicitly described	
Fridriksson, Richardson, et al. (2012): Contrast 1	Picture naming	Viewing abstract pictures	Y	N	N	N	**NANC**	**NANC**	S	N	S	Control data in Fridriksson et al. (2007); motor activations are prominent; there is some L frontal activation but little temporal activation in either hemisphere
Marcotte et al. (2012): Contrast 1	Picture naming (T1: known items; T2: trained items; correct trials)	Viewing scrambled images and saying "baba"	Y	Y	Y	N	YCT	UNR	N	U	U	Different contrasts at different time points not clearly explained
Marcotte et al. (2012): Contrast 2	Picture naming (known items, correct trials)	Viewing scrambled images and saying "baba"	Y	Y	Y	N	YCT	UNR	N	U	U	Different contrasts at different time points not clearly explained
Marcotte et al. (2012): Contrast 3	Picture naming (trained items, correct trials)	Viewing scrambled images and saying "baba"	Y	Y	Y	N	YCT	UNR	N	U	U	Different contrasts at different time points not clearly explained
Study (Year)	Contrast	Task	Rest	Condition 1	Condition 2	Condition 3	Notes					
-------------	----------	------	------	-------------	-------------	-------------	-------					
Schofield et al. (2012): Contrast 1	Listening to word pairs or reversed word pairs, speaker gender judgment	Rest	N	N	N	NANC	NANC	Y	N	N	Control data in Leff et al. (2008); auditory contrast, not intended to be language contrast	
Schofield et al. (2012): Contrast 2	Listening to word pairs, speaker gender judgment	Listening to reversed word pairs, speaker gender judgment	Y	Y	Y	UNR	UNR	Y	S	Y	Control data in Leff et al. (2008); L-lateralized activation of posterior STS	
Wright et al. (2012): Contrast 1	Listening to normal sentences and detecting a target word	Rest	N	N	N	NANC	NANC	Y	N	N	Bilateral superior temporal, sensorimotor and visual	
Wright et al. (2012): Contrast 2	Listening to grammatical but meaningless sentences and detecting a target word	Rest	N	N	N	NANC	NANC	N	U	U		
Szaflarski et al. (2013): Contrast 1	Semantic decision	Tone decision	Y	Y	Y	AM	UNR	Y	Y	Y	Control data in Kim et al. (2011) and Szaflarski et al. (2008); L frontal and temporal, plus other semantic regions	
Thiel et al. (2013): Contrast 1	Verb generation	Rest	Y	N	N	NANC	NANC	S	U	U	Cites Weiduschat et al. (2011) which in turn cites Herholz et al. (1996) which provides some minimal control data	
Abel et al. (2014): Contrast 1	Picture naming (all conditions)	Rest	N	N	N	NANC	NANC	N	U	U	But see control data reported in a subsequent paper (Abel et al., 2015)	
Abel et al. (2014): Contrast 2	Picture naming (trained items)	Picture naming (untrained items)	Y	Y	Y	N	UNR	N	U	U		
Abel et al. (2014): Contrast 3	Picture naming (semantic trained items)	Picture naming (phonological trained items)	Y	Y	Y	Y	UNR	N	U	U		
Benjamin et al. (2014): Contrast 1	Word generation	Rest	N	N	N	NANC	NANC	N	U	U	Contrast not described explicitly but there is only one possible contrast	
Brownsett et al. (2014): Contrast 1	Listening to sentences	Listening to segmented white noise	Y	Y	Y	NANB	NANT	N	U	U		
Brownsett et al. (2014): Contrast 2	Listening to sentences (patients) or listening to noise vocoded sentences (controls)	Listening to segmented white noise	Y	Y	Y	NANB	NANT	N	U	U		
Mattioli et al. (2014): Contrast 1	Listening to sentences and making a plausibility judgment	Listening to reversed speech	Y	Y	N	NANC	NANC	S	S	Y	10 participants; quite lateralized activity centered on the anterior Sylvian fissure; it is mentioned that "noise" was also included on the negative side of the contrast; it is unclear if this refers to the	
Study	Task Description	Signal-correlated noise	Control Data	Note								
-----------------------------	--	-------------------------	--------------	--								
Mohr et al. (2014): Contrast 1	Listening to sentences (high and low ambiguity)	Y Y Y N	NANT U U	Some control data in Rodd et al. (2005), but half of the participants were performing a probe judgment task, unlike in the present study.								
Mohr et al. (2014): Contrast 2	Listening to high ambiguity sentences	Y Y Y N	NANT U U	Some control data in Rodd et al. (2005), but half of the participants were performing a probe judgment task, unlike in the present study.								
Robson et al. (2014): Contrast 1	Semantic decision (written word and picture)	N Y N N	NANC NANC Y S	Control data are provided in Table 6 for contrasts of written word semantic decision vs dual baseline, and picture semantic decision vs dual baseline, but not for the main effect of semantic decision; these data suggest that the contrast activates ventral temporal regions bilaterally; two contrasts are described: (1) written word judgment versus a dual baseline of visual judgment and rest; (2) picture judgment versus a dual baseline of visual judgment and rest; these two primary contrasts are reported in patients and controls separately, but no between-group contrasts are reported, so these contrasts are excluded from our review; rather, the between-groups analyses in the paper take the form of ANOVAs; the main effect of group in these ANOVAs collapses across the two described contrasts, therefore we have coded the contrast as the average of the two described contrasts; the exact nature of the computation of dual baseline contrasts is not described.								
Szafirski et al. (2014): Contrast 1	Verb generation	Y Y N N	NANC NANC Y Y S	Control data in Szafirski et al. (2008); frontal activation L-lateralized, temporal less so.								
van Hees et al. (2014): Contrast 1	Picture naming (phonological trained items, correct trials)	Y N N N	NANC NANC S U U	Control data are described for naming untrained items; the data are reported only briefly in the text; it is notable that no speech motor, visual, or auditory activations are reported, as might be expected in a picture naming task; correct and incorrect trials were apparently modeled separately, but this is not clearly stated, nor are the criteria for deciding whether trials were correct; it is generally not clear which contrasts exactly were run.								
van Hees et al.	Picture naming	Y N N N	NANC NANC S U U	Control data are described for.								
Study	Contrast	Task Description	Baseline	Correct	Incorrect	Naming	Unrelated	Senses	Criteria for Deciding Correct	Contrasts Run	Results	
------------------------	----------	---	----------	---------	-----------	--------	-----------	--------	---------------------------------	----------------	---	
Abel et al. (2015)	Contrast 1	Picture naming	Rest	N	N	N	NANC	Y	N	Bilateral somato-motor, auditory and to a lesser extent higher level visual regions; finite impulse analysis only		
Kiran et al. (2015)	Contrast 1	Picture naming (trained)	Viewing scrambled images and saying “skip”	Y	Y	Y	N	UNR	UNR	S	Overlap of individual participant activation maps; somewhat lateralized frontal and temporal, but also bilateral occipito-temporal	
Kiran et al. (2015)	Contrast 2	Semantic feature decision	Visual decision	Y	Y	Y	N	UNR	UNR	S	Overlap of individual participant activation maps; somewhat lateralized frontal and temporal, but also bilateral occipito-temporal; this contrast inferred but not described	
Sandberg et al. (2015)	Contrast 1	Concreteness judgment (abstract words, correct trials)	Rest	N	Y	N	NANC	NANC	U	The concreteness judgment task was compared to the letter string judgment task to define ROIs for connectivity analysis, but the group analysis meeting criteria for this review appears to be based only on comparisons between time points on the concreteness judgment conditions		
Sandberg et al. (2015)	Contrast 2	Concreteness judgment (concrete words, correct trials)	Rest	N	Y	N	NANC	NANC	U	The concreteness judgment task was compared to the letter string judgment task to define ROIs for connectivity analysis, but the group analysis meeting criteria for this review appears to be based only on comparisons between time points on the concreteness judgment conditions		
Geranmayeh et al. (2016)	Contrast 1	Propositional speech production	Rest	N	N	N	NANC	NANC	S	Control data for univariate analysis in Geranmayeh et al. (2014), but note that the present paper does not describe a univariate analysis; control activations reflect speech rather than language		
Geranmayeh et al. (2016)	Contrast 2	Propositional speech production	Counting	N	Y	Y	NANC	NANC	S	Control data for univariate analysis in Geranmayeh et al. (2014), but note that the present paper does not describe a univariate analysis; control		
Study	Task/Decision	Contrast	Control Data	ROI Description								
--	---	----------	---	---								
Geranmayeh et al. (2016): Contrast 3	Propositional speech production	Target decision	N N N N N N NANC NANC N U U	activations are L frontal, L pSTS, L SMA, L > R occipito-temporal								
Griffis et al. (2016): Contrast 1	Verb generation	Finger tapping	Y Y N N NANC NANC Y Y S	Control data in Szaflarski et al. (2008); frontal activation L-lateralized, temporal less so								
Sims et al. (2016): Contrast 1	Semantic feature decision (6 patients, 4 controls) or semantic relatedness decision (8 patients, 4 controls)	Visual decision or pseudoword identity decision	Y Y Y Y N UNR N U U	8 patients and 4 controls performed one paradigm, while 6 patients and 4 controls performed another; the data were combined based on the assumption that similar processes were implicated by the two contrasts								
Darkow et al. (2017): Contrast 1	Picture naming	Rest	N N N N NANC NANC N U U	Control data in Geranmayeh et al. (2014); speech not language; relevant activations are bilateral; not entirely clear that the whole brain analysis is indeed propositional speech production vs rest; a contrast of target decision vs mean of propositional speech and counting is also used to define the preSMA/dACC ROI								
Geranmayeh et al. (2017): Contrast 1	Propositional speech production	Rest	N N N N NANC NANC Y N N	Temporal activation is mid MTG and AG rather than pSTS								
Griffis, Nenert, Allendorfer, & Szaflarski (2017): Contrast 1	Semantic decision	Tone decision	Y Y Y Y UNR UNR Y Y Y	Temporal activation is mid MTG and AG rather than pSTS								
Griffis, Nenert, Allendorfer, Vannest, et al. (2017): Contrast 1	Semantic decision	Tone decision	Y Y Y Y UNR UNR Y Y Y	Temporal activation is mid MTG and AG rather than pSTS								
Harvey et al. (2017): Contrast 1	Picture naming	Viewing patterns	Y N N N NANC NANC N U U	It is difficult to determine exactly what contrasts were employed								
Nardo et al. (2017): Contrast 1	Picture naming (all conditions, correct trials)	Rest	N N N N NANC NANC N U U	It is difficult to determine exactly what contrasts were employed								
Nardo et al. (2017): Contrast 2	Picture naming (untrained items, no cue, correct trials)	Picture naming (trained items, no cue, correct trials)	Y Y Y Y YCT N N U U	It is difficult to determine exactly what contrasts were employed								
Nenert et al. (2017): Contrast 1	Semantic decision	Tone decision	Y Y Y Y AM UNR Y Y Y	Lateralized frontal, temporal, and parietal								
Nenert et al. (2017): Contrast 2	Verb generation	Finger tapping	Y Y N N NANC NANC Y Y S	Control data in Szaflarski et al. (2008); frontal activation L-lateralized, temporal less so								
Qiu et al. (2017): Contrast 1	Picture naming	Rest	N N N N NANC NANC S N S	Somewhat L-lateralized frontal and anterior temporal language activations, but the majority of activation is in unexpected regions								
Skipper-Kallal et al. (2017a): Contrast 1	Picture naming (silently name, correct trials)	Rest	N Y Y N NANC NANC Y N N	Bilateral frontal and occipito-temporal, but not posterior temporal								
Skipper-Kallal et al. (2017b): Contrast 1	Picture naming	Rest	N N N N NANC NANC Y N N	Bilateral frontal and occipito-temporal, but not posterior temporal								
Study Reference	Task	Design	Control	Frontal	Temporal	Parietal	Overall	Control Notes				
-----------------	------	--------	---------	---------	---------	----------	---------	----------------				
al. (2017a)	(produce the name, correct trials)	(produce the name, correct trials)	Y U U Y NBD UNR N/A N/A N/A				Control data N/A because controls do not typically make errors; it is unclear whether there were no-response trials and whether they were modeled as incorrect.					
Skipper-Kallal et al. (2017a): Contrast 3	Picture naming (both phases, correct trials)	Picture naming (both phases, incorrect trials)	Rest	N Y Y N NANC NANC Y N N	Bilateral frontal and occipito-temporal, but not posterior temporal							
Skipper-Kallal et al. (2017b): Contrast 1	Picture naming (prepare to name, correct trials)		Rest	N N N N NANC NANC Y N N	Bilateral frontal and occipito-temporal, but not posterior temporal							
Skipper-Kallal et al. (2017b): Contrast 2	Picture naming (produce the name, correct trials)		Rest	N N N N NANC NANC Y N N	Bilateral frontal and occipito-temporal, but not posterior temporal							
Dietz et al. (2018): Contrast 1	Verb generation (overt)	Noun repetition	Y Y Y N UNR UNR Y S S	Control data in Allendorfer et al. (2012); somewhat L-lateralized frontal, temporal and parietal activations, but also extensive midline activation								
Hallam et al. (2018): Contrast 1	Listening to high or low ambiguity sentences	Listening to spectrally rotated speech	Y Y Y Y NAB NANT S U U	Hard to evaluate contrast because a “semantic mask” is used but is not described in detail								
Hallam et al. (2018): Contrast 2	Listening to high ambiguity sentences	Listening to low ambiguity sentences	Y Y Y Y NAB NANT N U U									
Nenert et al. (2018): Contrast 1	Semantic decision	Tone decision	Y Y Y Y AM UNR Y Y Y	L lateral and medial frontal and AG, strongly lateralized								
Nenert et al. (2018): Contrast 2	Verb generation	Finger tapping	Y Y N N NANC NANC Y Y Y	L lateral and medial frontal and mid temporal, strongly lateralized								
Pillay et al. (2018): Contrast 1	Reading nouns aloud (correct trials)	Reading nouns aloud (incorrect trials)	Y Y Y Y NBD Y N/A N/A N/A	Control data N/A because controls do not typically make errors								
Szaflarski et al. (2018): Contrast 1	Semantic decision	Tone decision	Y Y Y Y UNR UNR Y Y Y	L frontal and temporal, plus other semantic regions								
van de Sandt-Koenderman et al. (2018): Contrast 1	Listening to narrative speech	Listening to reversed speech	Y Y Y Y NAB NANT N U U	Primarily bilateral visual activations; frontal activation is L-lateralized								
van Oers et al. (2018): Contrast 1	Written word-picture matching	Visual decision	N Y Y N UNR UNR S N S	L frontal, L posterior ITG, L superior parietal								
van Oers et al. (2018): Contrast 2	Semantic decision	Visual decision	N Y Y N UNR UNR S S Y									
Barbieri et al. (2019): Contrast 1	Auditory sentence-picture verification	Listening to reversed speech and viewing scrambled pictures	Y Y Y N UNR UNR Y S S	L-lateralized inferior frontal and posterior temporal, but also bilateral posterior inferior temporal and lateral occipital activations; contrast described as “passive > control” but seems to involve active and passive sentences								
Johnson et al. (2019): Contrast 1	Picture naming (trained items)	Rest	N N N N NANC NANC S N N	Most ROIs deactivated in controls								
Kristinsson et al. (2019): Contrast 1	Picture naming	Viewing abstract pictures	Y N N N NANC NANC N U U									
Study	Task	Outcome	N	Y	N	N	N/A	N	C	U	U	
---	--	---------	---	---	---	---	-----	---	---	---	---	
Purcell et al. (2019): Contrast 1	Spelling probe (training items)	Rest	N	N	N	N	NANC	N	U	U	U	
Purcell et al. (2019): Contrast 2	Spelling probe (known items)	Rest	N	N	N	N	NANC	N	U	U	U	
Sreedharan, Chandran, et al. (2019): Contrast 1	Neurofeedback (try to activate language areas)	Rest	N	Y	Y	N	NANC	N	U	N	Y	
Hartwigsen et al. (2020): Contrast 1	Syllable count decision	Rest	Y	N	N	N	NANC	N	S	U	N	
Hartwigsen et al. (2020): Contrast 2	Semantic decision	Rest	Y	N	N	N	NANC	N	Y	Y	Y	
Stockert et al. (2020): Contrast 1	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2)	Listening to reversed speech	Y	Y	N	N	UNR	N	S	Y	Y	

Vis = Are the language and control conditions matched for visual demands?; Aud = Are the language and control conditions matched for auditory demands?; Mot = Are the language and control conditions matched for motor demands?; Cog = Are the language and control conditions matched for cognitive demands?; Acc = Is accuracy matched between the language and control tasks for all groups at all time points?; RT = Is reaction time matched between the language and control tasks for all groups at all time points?; Rep = Are control data reported in the paper, or in a previous publication that is cited?; Lang = Does the contrast selectively activate plausible relevant language regions in neurologically normal individuals?; Lat = Are activations lateralized in neurologically normal individuals?; AG = angular gyrus; AM = Appear mismatched; ANOVA = analysis of variance; AS = Appear similar; C = Accuracy or RT is covariate; DLPFC = dorsolateral prefrontal cortex; fMRI = functional magnetic resonance imaging; IFG = inferior frontal gyrus; ITG = inferior temporal gyrus; L = left; MIT = melodic intonation therapy; MTG = middle temporal gyrus; N = No; N/A = not applicable; NAM = No, but attempt made; NANC = Not applicable, no behavioral measure; NANT = Not applicable, tasks not comparable.; NBD = No, by design; PET = positron emission tomography; pSTS = posterior superior temporal sulcus; R = right; ROI = region of interest; S = Somewhat; SMA = supplementary motor area; STG = superior temporal gyrus; STS = superior temporal sulcus; T1, T2, etc. = first time point, second time point, etc.; U = Unknown; UNR = Unknown, not reported; UNT = Unknown, no test; Y = Yes; YCT = Yes, correct trials only; Yellow underline = minor limitation; Orange underline = moderate limitation; Red underline = major limitation.
Analysis	First level contrast	Second level contrast	Matched for	Stats	Notes	Findings		
Weiller et al. (1995):	Verb generation vs	CAC	AM	UNR	Vox NDC	† R IFG † R posterior STG/STS/MTG † L posterior STG/STS/MTG notes: based more on Figure 2 than the text		
Vox 1	rest	Aphasia vs control						
Weiller et al. (1995):	Pseudoword repetition	CAC	AS	UNR	Vox NDC	† R ventral precentral/inferior frontal junction † R IFG † R posterior STG/STS/MTG † L posterior STG/STS/MTG notes: based more on Figure 2 than the text		
Vox 2	vs rest	Aphasia vs control						
Belin et al. (1996):	Word repetition with	CB	NBD	UNR	ROI Anat NC	† L IFG † L dorsolateral prefrontal cortex † R posterior STG		
ROI 1	MIT-like intonation	Aphasia						
	vs word repetition							
Ohyama et al. (1996):	Word repetition vs	CAC	UNR	UNR	ROI Func NC	† R IFG † R posterior STG/STS/MTG		
ROI 1	rest	Aphasia vs control						
Ohyama et al. (1996):	Word repetition vs	CAA	UNR	UNR	ROI Func NC	† R IFG † R posterior STG/STS/MTG		
ROI 2	rest	Aphasia fluent (n = 10) vs non-fluent (n = 6)						
Study	Condition	Type	ROIs	Notes				
---------------------	----------------------------	-------	--	--				
Ohyama et al. (1996): ROI 3	Word repetition vs rest	CC	L posterior inferior frontal; R posterior inferior frontal; L posterior superior temporal; R posterior superior temporal; L Rolandic; R Rolandic; SMA	Number of ROIs: 7; ROIs: (1) L posterior inferior frontal; (2) R posterior inferior frontal; (3) L posterior superior temporal; (4) R posterior superior temporal; (5) L Rolandic; (6) R Rolandic; (7) SMA; how ROIs defined: spheres around control peaks; no correction for multiple comparisons across WAB subscores				
Ohyama et al. (1996): ROI 4	Word repetition vs rest	CC	L posterior inferior frontal; R posterior inferior frontal; L posterior superior temporal; R posterior superior temporal; L Rolandic; R Rolandic; SMA	Number of ROIs: 7; ROIs: (1) L posterior inferior frontal; (2) R posterior inferior frontal; (3) L posterior superior temporal; (4) R posterior superior temporal; (5) L Rolandic; (6) R Rolandic; (7) SMA; how ROIs defined: spheres around control peaks; this non-significant finding is implied but not stated explicitly				
Ohyama et al. (1996): ROI 5	Word repetition vs rest	CC	L posterior inferior frontal; R posterior inferior frontal; L posterior superior temporal; R posterior superior temporal; L Rolandic; R Rolandic; SMA	Number of ROIs: 7; ROIs: (1) L posterior inferior frontal; (2) R posterior inferior frontal; (3) L posterior superior temporal; (4) R posterior superior temporal; (5) L Rolandic; (6) R Rolandic; (7) SMA; how ROIs defined: spheres around control peaks; this non-significant finding is implied but not stated explicitly				
Ohyama et al. (1996): ROI 6	Word repetition vs rest	CC	L posterior inferior frontal; R posterior inferior frontal; L posterior superior temporal; R posterior superior temporal; L Rolandic; R Rolandic; SMA	Number of ROIs: 7; ROIs: (1) L posterior inferior frontal; (2) R posterior inferior frontal; (3) L posterior superior temporal; (4) R posterior superior temporal; (5) L Rolandic; (6) R Rolandic; (7) SMA; how ROIs defined: spheres around control peaks; this non-significant finding is implied but not stated explicitly				
Heiss et al. (1997): Vox 1	Word repetition vs rest	LAA	L posterior STG/STS/MTG; R posterior STG/STS/MTG	Search volume: whole brain; software: not stated; qualitative generalization across individuals on pp. 214-6; the consistent aspects of the findings were that there was an emergence of L posterior temporal activation in patients with better recovery, and R posterior temporal activation in patients with worse recovery				
Heiss et al. (1997): ROI 1	Word repetition vs rest	LAA	L posterior STG/STS/MTG; Heschl's gyrus	Number of ROIs: 2; ROIs: (1) L superior temporal cortex; (2) R superior temporal cortex; how ROIs defined:				
Study	Task	Group	Covariates	ROI	ROIs	How ROIs Defined	Number of ROIs	Notes
-------	------	-------	------------	-----	------	------------------	----------------	-------
Karbe et al. (1998): ROI 1	Word repetition vs rest	CAC Aphasia	T1 vs control	UNR	UNR	ROI	8	Number of ROIs: 8; ROIs: (1) L IFG; (2) L STG/HG; (3) L SMA; (4) L ventral precentral; (5-8) homotopic counterparts; how ROIs defined: individual anatomical images; qualitative comparison on p. 219, but only the L SMA comparison is explicitly quantified
Karbe et al. (1998): ROI 2	Word repetition vs rest	CC Aphasia (subset who returned for follow-up) T1 (n = 7)	T1 Covariate: TT T1	UNR	UNR	ROI	8	Number of ROIs: 8; ROIs: (1) L IFG; (2) L STG/HG; (3) L SMA; (4) L ventral precentral; (5-8) homotopic counterparts; how ROIs defined: individual anatomical images
Karbe et al. (1998): ROI 3	Word repetition vs rest	CC Aphasia (subset who returned for follow-up) T2 (n = 7)	T2 Covariate: TT T2	UNR	UNR	ROI	8	Number of ROIs: 8; ROIs: (1) L IFG; (2) L STG/HG; (3) L SMA; (4) L ventral precentral; (5-8) homotopic counterparts; how ROIs defined: individual anatomical images
Karbe et al. (1998): ROI 4	Word repetition vs rest	LC Aphasia (subset who returned for follow-up) (n = 7)	T2 vs T1 Covariate: subsequent outcome (T2) TT	UNR	UNR	ROI	1	Number of ROIs: 1; ROI: L STG/HG; how ROI defined: individual anatomical images
Karbe et al. (1998): ROI 5	Word repetition vs rest	CC Aphasia (subset who returned for follow-up) T2 (n = 7)	T2 vs T1 Covariate: previous Δ (T2 vs T1) activation in L STG/HG	UNR	UNR	ROI	4	Number of ROIs: 4; ROIs: (1) R IFG; (2) R STG/HG; (3) R SMA; (4) R ventral precentral; how ROIs defined: individual anatomical images
patients with less severe initial aphasia would also be expected to show little L temporal increase, but would not be expected to show R temporal recruitment)

Study	Task	Control	ROIs	ROIs Defined	ROIs Activation	ROIs Denotations
Cao et al. (1999): ROI 1	Picture naming vs viewing nonsense drawings	CAC Aphasia vs control	UNR UNR ROI Mix NC	Number of ROIs: 6; ROIs: (1) L IFG and MFG; (2) L pSTG, AG and SMG; (3) R IFG and MFG; (4) R pSTG, AG and SMG; (5) frontal Lt; (6) temporal Lt; how ROIs defined: (1-4) individual anatomical images; activation quantified in terms of extent	↑ L IFG	R dorsolateral prefrontal cortex, R supramarginal gyrus, Rangular gyrus, R posterior STG, L (frontal), L (temporal)
Cao et al. (1999): ROI 2	Picture naming vs viewing nonsense drawings	CC Aphasia Covariate: picture naming (outside scanner)	UNR UNR ROI Mix NC	Number of ROIs: 6; ROIs: (1) L IFG and MFG; (2) L pSTG, AG and SMG; (3) R IFG and MFG; (4) R pSTG, AG and SMG; (5) frontal Lt; (6) temporal Lt; how ROIs defined: (1-4) individual anatomical images; activation quantified in terms of extent	↑ LI (frontal)	
Heiss et al. (1999): ROI 1	Noun repetition vs rest	LA Aphasia with subcortical damage (n = 9) T2 vs T1	UNR UNR ROI Anat NDC	Number of ROIs: 14; ROIs: (1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl's gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic counterparts; how ROIs defined: individual anatomical images; qualitative comparison on p. 434	↑ L mid temporal, ↑ R Heschl's gyrus, ↓ R IFG pars opercularis	
Heiss et al. (1999): ROI 2	Noun repetition vs rest	LA Aphasia with frontal damage (n = 7) T2 vs T1	UNR UNR ROI Anat NDC	Number of ROIs: 14; ROIs: (1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl's gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic counterparts; how ROIs defined: individual anatomical images; qualitative comparison on p. 434	↑ L posterior STG, ↑ L mid temporal, ↑ R Heschl's gyrus, ↓ R IFG pars opercularis	
Heiss et al. (1999): ROI 3	Noun repetition vs rest	LA Aphasia with temporal damage (n = 7) T2 vs T1	UNR UNR ROI Anat NDC	Number of ROIs: 14; ROIs: (1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl's gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic counterparts; how ROIs defined: individual anatomical images; qualitative comparison on p. 434	↑ L ventral precentral/inferior frontal junction, ↑ L SMA/medial prefrontal, ↑ R ventral precentral/inferior frontal junction, ↑ R mid temporal, ↑ R SMA/medial prefrontal	
Heiss et al. (1999): ROI 4	Noun repetition vs rest	CAA Aphasia with temporal damage T1	UNR UNR ROI Anat NDC	Number of ROIs: 14; ROIs: (1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus	↑ L IFG pars opercularis, ↑ R SMA/medial prefrontal	
Study	ROI	Task	Aphasial Region	Comparison Details		
-------	-----	------	----------------	--------------------		
Heiss et al. (1999): ROI 5	CAA	Noun repetition vs rest	Aphasial Region	Number of ROIs: 14; ROIs: (1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl’s gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic counterparts; how ROIs defined: individual anatomical images; qualitative comparison on p. 434		
Heiss et al. (1999): ROI 6	CAA	Noun repetition vs rest	Aphasial Region	Number of ROIs: 14; ROIs: (1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl’s gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic counterparts; how ROIs defined: individual anatomical images; qualitative comparison on p. 434		
Heiss et al. (1999): ROI 7	CAA	Noun repetition vs rest	Aphasial Region	Number of ROIs: 14; ROIs: (1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl’s gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic counterparts; how ROIs defined: individual anatomical images; qualitative comparison on p. 434		
Heiss et al. (1999): ROI 8	CAC	Noun repetition vs rest	Aphasial Region	Number of ROIs: 14; ROIs: (1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl’s gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic counterparts; how ROIs defined: individual anatomical images; qualitative comparison on p. 434		
Heiss et al. (1999): ROI 9	CAC	Noun repetition vs rest	Aphasial Region	Number of ROIs: 14; ROIs: (1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl’s gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic counterparts; how ROIs defined: individual anatomical images; qualitative comparison on p. 434		
Heiss et al. (1999): ROI 10 | Noun repetition vs rest | CAC Aphasia with temporal damage T1 (n = 7) vs control | UNR UNR ROI Anat | Number of ROIs: 14; ROIs: (1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl’s gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic counterparts; how ROIs defined: individual anatomical images; qualitative comparison on p. 434 | ↓ L ventral precentral/inferior frontal junction ↓ L posterior STG/STS/MTG ↓ L Heschl’s gyrus ↓ L mid temporal ↓ R Heschl’s gyrus

Heiss et al. (1999): ROI 11 | Noun repetition vs rest | CAC Aphasia with subcortical damage T2 (n = 9) vs control | UNR UNR ROI Anat | Number of ROIs: 14; ROIs: (1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl’s gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic counterparts; how ROIs defined: individual anatomical images; qualitative comparison on p. 434 | ↓ L IFG pars opercularis ↓ R SMA/medial prefrontal ↓ L ventral precentral/inferior frontal junction ↓ L Heschl’s gyrus

Heiss et al. (1999): ROI 12 | Noun repetition vs rest | CAC Aphasia with frontal damage T2 (n = 7) vs control | UNR UNR ROI Anat | Number of ROIs: 14; ROIs: (1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl’s gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic counterparts; how ROIs defined: individual anatomical images; qualitative comparison on p. 434 | ↓ L IFG pars opercularis ↓ L ventral precentral/inferior frontal junction ↓ L Heschl’s gyrus

Heiss et al. (1999): ROI 13 | Noun repetition vs rest | CAC Aphasia with temporal damage T2 (n = 7) vs control | UNR UNR ROI Anat | Number of ROIs: 14; ROIs: (1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl’s gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic counterparts; how ROIs defined: individual anatomical images; qualitative comparison on p. 434 | ↑ L IFG pars opercularis ↑ L SMA/medial prefrontal ↑ R ventral precentral/inferior frontal junction ↓ L posterior STG ↓ L Heschl’s gyrus ↓ L mid temporal ↓ R posterior STG ↓ R Heschl’s gyrus

Heiss et al. (1999): ROI 14 | Noun repetition vs rest | LA Aphasia with subcortical or frontal damage and good recovery (n = 11) T2 vs T1 | UNR UNR ROI Anat | Number of ROIs: 14; ROIs: (1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl’s gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L | ↑ L SMA/medial prefrontal ↑ L Heschl’s gyrus ↑ R ventral precentral/inferior frontal junction
Study	Task Condition	ROI	Anat	NDC	Changes	Controls						
Heiss et al. (1999):	Noun repetition vs rest	UNR	UNR	NDC	Number of ROIs: 14; ROIs: (1) L IFG pars opercularis; (2) L IFG pars	Number of ROIs: 14; ROIs: (1) L IFG pars opercularis; (2) L IFG pars						
ROI 15					triangularis; (3) L ventral precentral gyrus; (4) L Heschl's gyrus;	triangularis; (3) L ventral precentral gyrus; (4) L Heschl's gyrus;						
					(5) L temporal plane (posterior to HG, coded as posterior STG); (6) L	(5) L temporal plane (posterior to HG, coded as posterior STG); (6) L						
					posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic	posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic						
					counterparts; how ROIs defined: individual anatomical images;	counterparts; how ROIs defined: individual anatomical images;						
					qualitative comparison on pp. 434-5	qualitative comparison on pp. 434-5						
Heiss et al. (1999):	Noun repetition vs rest	UNR	UNR	NDC	Number of ROIs: 14; ROIs: (1) L IFG pars opercularis; (2) L IFG pars	Number of ROIs: 14; ROIs: (1) L IFG pars opercularis; (2) L IFG pars						
ROI 16					triangularis; (3) L ventral precentral gyrus; (4) L Heschl's gyrus;	triangularis; (3) L ventral precentral gyrus; (4) L Heschl's gyrus;						
					(5) L temporal plane (posterior to HG, coded as posterior STG); (6) L	(5) L temporal plane (posterior to HG, coded as posterior STG); (6) L						
					posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic	posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic						
					counterparts; how ROIs defined: individual anatomical images;	counterparts; how ROIs defined: individual anatomical images;						
					qualitative comparison on p. 435	qualitative comparison on p. 435						
Heiss et al. (1999):	Noun repetition vs rest	UNR	UNR	NDC	Number of ROIs: 14; ROIs: (1) L IFG pars opercularis; (2) L IFG pars	Number of ROIs: 14; ROIs: (1) L IFG pars opercularis; (2) L IFG pars						
ROI 17					triangularis; (3) L ventral precentral gyrus; (4) L Heschl's gyrus;	triangularis; (3) L ventral precentral gyrus; (4) L Heschl's gyrus;						
					(5) L temporal plane (posterior to HG, coded as posterior STG); (6) L	(5) L temporal plane (posterior to HG, coded as posterior STG); (6) L						
					posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic	posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic						
					counterparts; how ROIs defined: individual anatomical images;	counterparts; how ROIs defined: individual anatomical images;						
					qualitative comparison on p. 435	qualitative comparison on p. 435						
Kessler et al. (2000):	Word repetition vs rest	UNR	UNR	NDC	Number of ROIs: 14; ROIs: (1) L BA 44; (2) L BA 45; (3) L ventral PrCG;	Number of ROIs: 14; ROIs: (1) L BA 44; (2) L BA 45; (3) L ventral PrCG;						
ROI 1					(4) L HG; (5) L BA 41 and 42; (6) L BA 22; (7) L SMA; (8-14) homotopic	(4) L HG; (5) L BA 41 and 42; (6) L BA 22; (7) L SMA; (8-14) homotopic						
					counterparts; how ROIs defined: individual anatomical images	counterparts; how ROIs defined: individual anatomical images						
					qualitative comparison on p. 435	qualitative comparison on p. 435						
Kessler et al. (2000):	Word repetition vs rest	UNR	UNR	NDC	Number of ROIs: 14; ROIs: (1) L BA 44; (2) L BA 45; (3) L ventral PrCG;	Number of ROIs: 14; ROIs: (1) L BA 44; (2) L BA 45; (3) L ventral PrCG;						
ROI 2					(4) L HG; (5) L BA 41 and 42; (6) L BA 22; (7) L SMA; (8-14) homotopic	(4) L HG; (5) L BA 41 and 42; (6) L BA 22; (7) L SMA; (8-14) homotopic						
					counterparts; how ROIs defined: individual anatomical images	counterparts; how ROIs defined: individual anatomical images						
					qualitative comparison on p. 435	qualitative comparison on p. 435						
Rosen et al. (2000):	Word stem completion (PET) vs rest (PET)	UNR	UNR	NDC	Search volume: whole brain; software: not stated; correction for multiple	Search volume: whole brain; software: not stated; correction for multiple						
Vox 1					comparisons unclear; there may be circularity in only correcting for the	comparisons unclear; there may be circularity in only correcting for the						
					number of regions that seemed to show differences	number of regions that seemed to show differences						
Rosen et al. (2000):	Word stem completion (fMRI) vs rest (fMRI)	UNR	UNR	NDC	Search volume: whole brain; software: not stated; qualitative comparison	Search volume: whole brain; software: not stated; qualitative comparison						
Vox 2					on p. 1888	on p. 1888						
Study	Task Description	CAC	UNR	UNR	ROI	Func	Number of ROIs: 2; ROIs: (1) R IFG; (2) SMA; how ROIs defined: not stated but seem to be functional; possibly circular because not clear how ROIs defined					
---------------------------	--	--------------	-----	--------------	--------------	-----------	--					
Rosen et al. (2000): ROI 1	Word stem completion (fMRI) vs rest (fMRI)	CAC	UNR	UNR	UNR	ROI Func	NC					
Blasi et al. (2002): Vox 1	Word stem completion (novel items) vs rest	CAC	N	N	Vox	U	Behavioral data notes: covert task but overt data acquired separately; patients less accurate and slower than controls; search volume: whole brain; software: not stated; voxelwise p: ~.001 (z > 3); cluster extent cutoff: 45 voxels (size not stated); Monte Carlo analysis not described in detail; rather than fitting a HRF, the authors looked at the shape of the signal in the 8 volumes following each stimulus					
Blasi et al. (2002): ROI 1	Word stem completion (novel items) vs word stem completion (repeated items)	CAC	Y	Y	Y	ROI Func	NC					
Leff et al. (2002): Vox 1	Higher word rates vs lower word rates	CAC	NANT	NANT	Vox	NDC	Search volume: whole brain; software: SPM99; qualitative comparison on p. 555; a FWE-corrected SPM is reported of the relationship in the 6 patients with L pSTS damage (Fig. 2), however it is masked in a way that is not explained (see figure caption), and there is no direct comparison between patients with L pSTS damage and controls					
Leff et al. (2002): Vox 2	Higher word rates vs lower word rates	CAA	NANT	NANT	Vox	NDC	Search volume: whole brain; software: SPM99; qualitative comparison on p. 555; a FWE-corrected SPM is reported of the relationship in the 6 patients with L pSTS damage (Fig. 2), however it is masked in a way that is not explained (see figure caption), and there is no direct comparison between patients with L pSTS damage and controls					
Reference	Condition	ROI	Functional Data									
-----------	-----------	-----	-----------------									
Leff et al. (2002): ROI 1	Higher word rates vs lower word rates	CAC	Aphasia with pSTS damage (n = 6) vs control (n = 8)	Number of ROIs: 1; ROI: R pSTS; how ROI defined: the peak voxel for the contrast in the R pSTS from each subject's individual analysis, but the search region is not stated; the controls and patients without pSTS damage were combined, however it is stated in the caption to Figure 2 that the patients with pSTS damage were significantly different to both	↑ R posterior STS							
Leff et al. (2002): ROI 2	Higher word rates vs lower word rates	CAA	Aphasia with pSTS damage (n = 6) vs aphasia without pSTS damage (n = 9)	Number of ROIs: 1; ROI: R pSTS; how ROI defined: the peak voxel for the contrast in the R pSTS from each subject's individual analysis, but the search region is not stated; the controls and patients without pSTS damage were combined, however it is stated in the caption to Figure 2 that the patients with pSTS damage were significantly different to both	↑ R posterior STS							
Blank et al. (2003): Vox 1	Propositional speech production vs rest	CAC	Aphasia with IFG POp damage (n = 7) vs control	Behavioral data notes: word rates not reported, but offline speech sample differed; search volume: voxels spared in all patients; software: SPM99; voxelwise p: FWE p < .05 with SVC in R pars opercularis	↑ R IFG pars opercularis							
Blank et al. (2003): Vox 2	Propositional speech production vs rest	CAC	Aphasia without IFG POp damage (n = 7) vs control	Behavioral data notes: word rates not reported, but offline speech sample differed; search volume: voxels spared in all patients; software: SPM99; voxelwise p: FWE p < .05 with SVC in R pars opercularis	↑ R IFG pars opercularis							
Blank et al. (2003): Vox 3	Propositional speech production vs rest	CAA	Aphasia with IFG POp damage (n = 7) vs without IFG POp damage (n = 7)	Behavioral data notes: word rates not reported, but offline speech sample differed; search volume: voxels spared in all patients; software: SPM99; voxelwise p: FWE p < .05 with SVC in R pars opercularis	None							
Blank et al. (2003): Vox 4	Propositional speech production vs counting	CAC	Aphasia with IFG POp damage (n = 7) vs control	Behavioral data notes: word rates not reported, but offline speech sample differed; search volume: voxels spared in all patients; software: SPM99; voxelwise p: FWE p < .05 with SVC in R pars opercularis	None							
Blank et al. (2003): Vox 5	Propositional speech production vs counting	CAC	Aphasia without IFG POp damage (n = 7) vs control	Behavioral data notes: word rates not reported, but offline speech sample differed; search volume: voxels spared in all patients; software: SPM99; voxelwise p: FWE p < .05 with SVC in R pars opercularis	None							
Blank et al. (2003): Vox 6	Propositional speech production vs counting	CAA	Aphasia with IFG POp damage (n = 7) vs without IFG POp damage (n = 7)	Behavioral data notes: word rates not reported, but offline speech sample differed; search volume: voxels spared in all patients; software: SPM99; voxelwise p: FWE p < .05 with SVC in R pars opercularis	None							
Study (Year)	ROI	Task	Aphasia Type	Damage Location	Control Condition	ROI Definition	Number of ROIs	ROIs	MA	Unr	Vox	Notes
-------------	-----	------	--------------	----------------	------------------	----------------	----------------	------	-----	-----	-----	-------
Blank et al. (2003): ROI 1	Propositional speech production vs rest	CC	Aphasia with IFG POp damage (n = 7)	Covariate: speech rate during scan	UNR	NANT	ROI Func One	1	ROI: R IFG pars opercularis; how ROI defined: defined by flipping L IFG pars opercularis activation in controls			
Blank et al. (2003): ROI 2	Propositional speech production vs rest	CC	Aphasia without IFG POp damage (n = 7)	Covariate: speech rate during scan	UNR	NANT	ROI Func One	1	ROI: R IFG pars opercularis; how ROI defined: defined by flipping L IFG pars opercularis activation in controls			
Blank et al. (2003): ROI 3	Propositional speech production vs rest	CC	Aphasia with IFG POp damage (n = 7)	Covariate: four different QPA measures	UNR	NANT	ROI Func One	1	ROI: R IFG pars opercularis; how ROI defined: defined by flipping L IFG pars opercularis activation in controls			
Cardebat et al. (2003): Vox 1	Word generation vs rest	LA	Aphasia T2 vs T1	N	UNR	Vox CA	Search volume: whole brain; software: SPM99; voxelwise p: .05; cluster extent cutoff: 50 voxels (size not stated); nature of inclusive masks unclear					
Cardebat et al. (2003): Vox 2	Word generation vs rest	LC	Aphasia T2 vs T1	C	UNR	Vox CA	Search volume: whole brain; software: SPM99; voxelwise p: .001; cluster extent cutoff: 100 voxels (size not stated); nature of inclusive masks unclear					
Sharp et al. (2004): Vox 1	Semantic decision vs syllable count decision	CAC	Aphasia vs control (clear speech)	AM	Y	Vox SVC	Behavioral data notes: interaction of group by task not reported for accuracy; search volume: whole brain; software: SPM99; voxelwise p: FWE p < .05 with SVC in fusiform gyri, temporal poles, L IFG, L orbitofrontal and L SFG					
Sharp et al. (2004): Vox 2	Semantic decision vs syllable count decision	CC	Aphasia	C	UNR	Vox SVC	Search volume: whole brain; software: SPM99; voxelwise p: FWE p < .05 with SVC in fusiform gyri, temporal poles, L IFG, L orbitofrontal and L SFG; fixed effects; this analysis is not clearly described					

Notes: Based on Figure 2
Study	ROI	Task Description	BEHAVIORAL DATA	ROI	Search Volume	Notes
Sharp et al. (2004): ROI 1	CAC	Semantic decision vs syllable count decision	Behavioral data notes: interaction of group by task not reported for accuracy; number of ROIs: 1; ROI: L fusiform gyrus; how ROI defined: probabilistic brain atlas	AM	L posterior inferior temporal gyrus/fusiform gyrus	None
Sharp et al. (2004): ROI 2	CAC	Semantic decision vs syllable count decision	Behavioral data notes: patients were more accurate on semantic decisions than syllable decisions, whereas controls were less accurate on noise vocoded semantic decisions than clear syllable decisions (which were the baseline for this analysis); number of ROIs: 1; ROI: L fusiform gyrus; how ROI defined: probabilistic brain atlas	NAM	None	notes: this analysis suggests that the difference between groups in the L fusiform gyrus disappears when the controls perform a semantic task that is similarly challenging
Zahn et al. (2004): ROI 1	CAC	Semantic decision vs phonetic decision and lexical decision (conjunction)	Behavioral data notes: relative performance on language and control tasks unclear; number of ROIs: 1; ROI: language network L; conjunction analyses not clearly described; in two patients, a different conjunction was used (lexical decision vs phonetic decision & semantic decision vs phonetic decision)	UNT	None	notes: LI > 0 in 12 out of 14 controls and 5 out of 7 patients; no significant difference
Crinion & Price (2005): Vox 1	CAC	Listening to narrative speech vs listening to reversed speech	Search volume: whole brain; software: SPM2; voxelwise p: FWE p < .05; cluster extent cutoff: 5 voxels (size not stated)	NANB	L dorsal precentral	Notes: patients with better sentence comprehension had more activation in the L posterior STS and R somato-motor
Crinion & Price (2005): Vox 2	CAC	Listening to narrative speech vs listening to reversed speech	Search volume: whole brain; software: SPM2; voxelwise p: FWE p < .05; cluster extent cutoff: 5 voxels (size not stated)	NANB	L posterior STS	Notes: L posterior STG/STS/MTG
Crinion & Price (2005): Vox 3	CAC	Listening to narrative speech vs listening to reversed speech	Search volume: whole brain; software: SPM2; voxelwise p: FWE p < .05; cluster extent cutoff: 5 voxels (size not stated)	NANB	L posterior STG/STS/MTG	Notes: L mid temporal
Crinion & Price (2005): Vox 4	CAC	Listening to narrative speech vs listening to reversed speech	Search volume: whole brain; software: SPM2; voxelwise p: FWE p < .05; cluster extent cutoff: 5 voxels (size not stated); conjunction with main effect of story comprehension (details hard to follow); this was a multiple regression also involving patients with temporal lobe damage	NANB	L posterior STS	Notes: patients with better sentence comprehension had more activation in the L posterior STS and R mid STS
Crinion & Price (2005): Vox 5	CAC	Listening to narrative speech vs listening to reversed speech	Search volume: whole brain; software: SPM2; voxelwise p: FWE p < .05; cluster extent cutoff: 5 voxels (size not stated); conjunction with main effect of story comprehension (details hard to follow); this was a multiple regression also involving patients with temporal lobe damage	NANB	L posterior STS	Notes: patients with better sentence comprehension had more activation in the L posterior STS and R mid STS
Study	Task Description	Aphasia Group 1	Aphasia Group 2	Correlation Method	Threshold	
-------------------------------	---	-----------------	-----------------	--------------------	-----------	
Crinion & Price (2005): Cplx 1	Listening to narrative speech vs reversed speech	CAA	NANB	Correlations	p < .001, uncorrected for multiple comparisons	
	Aphasia with temporal damage (n = 8) vs control		NANT			
			Cplx			
	Regression also involving patients with temporal lobe damage					
	Activation in the R mid STS					
	Other: Activity in the L posterior STS was positively correlated with sentence comprehension in patients without temporal lobe damage, but not in patients with temporal lobe damage					
Crinion & Price (2005): Cplx 2	Listening to narrative speech vs reversed speech	CAC	NANB	Correlations	p < 0.05 corrected, plus a minimum cluster size of 5 voxels	
	Aphasia without temporal damage (n = 8) vs control		NANT			
			Cplx			
Crinion & Price (2005): Cplx 3	Listening to narrative speech vs reversed speech	CAC	NANB	Correlations	p < 0.05 corrected, plus a minimum cluster size of 5 voxels	
	Aphasia with temporal damage (n = 8) vs control		NANT			
			Cplx			
Crinion & Price (2005): Cplx 4	Listening to narrative speech vs reversed speech	CAA	NANB	Correlations	p < 0.05 corrected, plus a minimum cluster size of 5 voxels	
	Aphasia with temporal damage (n = 8) vs without temporal damage (n = 9)		NANT			
			Cplx			
de Boissezon et al. (2005): Vox 1	Word generation vs rest	CC	Y	Behavioral data notes: no significant correlation between time post onset and accuracy; search volume: whole brain; software: SPM2; voxelwise p: .01; cluster extent cutoff: 50 voxels (size not stated)		
	Aphasia T1 Covariate: time post onset		UNR			
			Vox			
			CA			
de Boissezon et al.	Word generation vs rest	CC	C	Search volume: whole brain; software: SPM2; voxelwise p: .01; cluster extent cutoff: 50 voxels (size not stated)		
	Aphasia T1 Covariate: word		UNR			
			Vox			
			CA			
(2005): Vox 2	generation accuracy T1	de Boissezon et al. (2005): Vox 3	Word generation vs rest	LA Aphasia T2 vs T1	N UNR Vox CA	Search volume: whole brain; software: SPM2; voxelwise p: .001; cluster extent cutoff: 100 voxels (size not stated); description of masking unclear, but seems to be inclusively masked with T1, which seems inappropriate
---	---	---	---	---	---	---
LA Aphasia T2 vs T1	N UNR Vox CA	Search volume: whole brain; software: SPM2; voxelwise p: .01; cluster extent cutoff: 20 voxels (size not stated)				
Connor et al. (2006): Vox 1	Word stem completion (novel items) vs word stem completion (repeated items)	C UNR Vox CA	CAC Aphasia vs control	Y Y Vox NDC	Behavioral data notes: covert task but overt data acquired separately; no interaction of group by practice for accuracy or RT; search volume: cerebellum; software: not stated; qualitative comparison on p. 174; Monte Carlo-based thresholding not described; rather than fitting a HRF, the authors looked at the shape of the signal in the 8 volumes following each stimulus	
Connor et al. (2006): ROI 1	Word stem completion (novel items) vs word stem completion (repeated items)	Y Y ROI Func One	CAC Aphasia vs control	Behavioral data notes: covert task but overt data acquired separately; no interaction of group by practice for accuracy or RT; number of ROIs: 1; ROI: L cerebellum; how ROI defined: L cerebellar region with a learning effect in the patients; circular because ROIs defined in one group; rather than fitting a HRF, the authors looked at the shape of the signal in the 8 volumes following each stimulus		
Crinion et al. (2006): Vox 1	Listening to narrative speech vs listening to reversed speech	NANB NANT Vox VFWE	CAC Aphasia vs control	Search volume: voxels spared in all patients; software: SPM99; voxelwise p: FWE p < .05		
Crinion et al. (2006): Vox 2	Listening to narrative speech vs listening to reversed speech	NANB NANT Vox VFWE	CAC Aphasia with temporal lobe damage (n = 6) vs control	Search volume: voxels spared in all included patients; software: SPM99; voxelwise p: FWE p < .05		
Crinion et al. (2006): Vox 3	Listening to narrative speech vs listening to reversed speech	NANB NANT Vox VFWE	CAC Aphasia with temporal lobe damage (n = 18) vs control	Search volume: voxels spared in all included patients; software: SPM99; voxelwise p: FWE p < .05		
Crinion et	Listening to	NANB NANT ROI	Number of ROIs: 1; ROI: L ATL; how			
Crinion et	Listening to	NANB NANT ROI	Number of ROIs: 1; ROI: L ATL; how			
Crinion et	Listening to	NANB NANT ROI	Number of ROIs: 1; ROI: L ATL; how			

Notes: Based on coordinates in Table 2, Table 3b, Table 3c.
Study	ROI	Description	Language Disorder	Method	Number of ROIs	ROI Definition	Notes
al. (2006): ROI 1	narrative speech vs listening to reversed speech	Aphasia with no temporal damage (excluding 1 with missing behavioral data and 1 outlier) or posterior temporal damage sparing anterior temporal cortex (n = 13) Covariate: auditory sentence comprehension (CAT)		Func One	ROI defined: activation in the control group; same result obtained with or without excluding one outlier; two other ROIs are described in the methods, but never used in any analyses	temporal notes: more activity in patients with better auditory sentence comprehension	
Crinion et al. (2006): ROI 2	Listening to narrative speech vs listening to reversed speech	CC Aphasia with no temporal damage (excluding 1 with missing behavioral data and 1 outlier) or posterior temporal damage sparing anterior temporal cortex (n = 13) Covariate: time post onset		NANT NANT	ROI: L ATL; how ROI defined: activation in the control group; two other ROIs are described in the methods, but never used in any analyses	None	
Crinion et al. (2006): ROI 3	Listening to narrative speech vs listening to reversed speech	CAA Aphasia with temporal damage excluding anterior temporal cortex (n = 9) vs with no temporal lobe damage (excluding 1 with missing behavioral data and 1 outlier) (n = 4)		NANT NANT	ROI: L ATL; how ROI defined: activation in the control group; two other ROIs are described in the methods, but never used in any analyses	↓ L anterior temporal notes: patients with posterior temporal damage had less signal change	
Crinion et al. (2006): ROI 4	Listening to narrative speech vs listening to reversed speech	CAC Aphasia with temporal damage excluding anterior temporal cortex (n = 9) vs control		NANT NANT	ROI: L ATL; how ROI defined: activation in the control group; circular because ROI defined in one group; two other ROIs are described in the methods, but never used in any analyses	↓ L anterior temporal notes: large difference 2.7 ± 0.8 (patients) vs 6.3 ± 1.4 (controls) makes finding suggestive even in light of the circularity	
Crinion et al. (2006): ROI 5	Listening to narrative speech vs listening to reversed speech	CC Aphasia with no temporal damage (excluding 1 with missing behavioral data and 1 outlier) or posterior temporal damage sparing anterior temporal cortex (n = 13) Covariate: auditory single word comprehension (CAT)		NANT NANT	ROI: L ATL; how ROI defined: activation in the control group; two other ROIs are described in the methods, but never used in any analyses	None notes: r = 0.39; p > 0.1; seems to be a clear trend so lack of significance may reflect only lack of power	
Saur et al. (2006): Vox 1	Listening to sentences and making a plausibility	LA Aphasia T2 vs T1		AM UNR NC	Behavioral data notes: accuracy combines language and control conditions; search volume: whole	↑ L insula ↑ R IFG pars orbitalis ↑ R insula	
Saur et al. (2006): Vox 2	Listening to sentences and making a plausibility judgment vs listening to reversed speech	LA Aphasial T3 vs T2	AM UNR Vox NC	Behavioral data notes: accuracy combines language and control conditions; search volume: whole brain; software: SPM2; voxelwise p: .005; cluster extent cutoff: none; threshold was lowered to reveal the R frontal change in activation	↑ R SMA/medial prefrontal		
---	---	---	---	---	---		
Saur et al. (2006): Vox 3	Listening to sentences and making a plausibility judgment vs listening to reversed speech	LA Aphasial T3 vs T1	AM UNR Vox NC	Behavioral data notes: accuracy combines language and control conditions; search volume: whole brain; software: SPM2; voxelwise p: .001; cluster extent cutoff: none	↑ L IFG pars orbitalis		
Saur et al. (2006): Vox 4	Listening to sentences and making a plausibility judgment vs listening to reversed speech	CAC Aphasial T1 vs control	AM UNR Vox NC	Behavioral data notes: accuracy combines language and control conditions; search volume: whole brain; software: SPM2; voxelwise p: .001; cluster extent cutoff: none	↑ L IFG pars triangularis		
Saur et al. (2006): Vox 5	Listening to sentences and making a plausibility judgment vs listening to reversed speech	CAC Aphasial T2 vs control	AM UNR Vox NC	Behavioral data notes: accuracy combines language and control conditions; search volume: whole brain; software: SPM2; voxelwise p: .005; cluster extent cutoff: none; threshold was lowered to reveal L IFG	↑ L IFG pars orbitalis		
Saur et al. (2006): Vox 6	Listening to sentences and making a plausibility judgment vs listening to reversed speech	CAC Aphasial T3 vs control	AS UNR Vox NC	Behavioral data notes: accuracy combines language and control conditions; search volume: whole brain; software: SPM2; voxelwise p: .001; cluster extent cutoff: none	↑ L IFG		
Saur et al. (2006): Vox 7	Listening to sentences and making a plausibility judgment vs	CC Aphasial T1 Covariate: language recovery score T1	AM UNR Vox NC	Behavioral data notes: accuracy combines language and control conditions; search volume: whole brain; software: SPM2; voxelwise p: .001; cluster extent cutoff: none	↑ L IFG		

Notes: R IFG/insula activation noted to survive FWE correction at p < .05
L STG in table is actually MTG based on coordinates.
Saur et al. (2006): Vox 8	Listening to sentences and making a plausibility judgment vs listening to reversed speech	CC Aphasia T2 Covariate: language recovery score T2	UNT UNR Vox NC	Behavioral data notes: accuracy combines language and control conditions; search volume: whole brain; software: SPM2; voxelwise p: .001; cluster extent cutoff: none	None
Saur et al. (2006): Vox 9	Listening to sentences and making a plausibility judgment vs listening to reversed speech	CC Aphasia T3 Covariate: language recovery score T3	UNT UNR Vox NC	Behavioral data notes: accuracy combines language and control conditions; search volume: whole brain; software: SPM2; voxelwise p: .001; cluster extent cutoff: none	None
Saur et al. (2006): Vox 10	Listening to sentences and making a plausibility judgment vs listening to reversed speech	LC Aphasia T2 vs T1 Covariate: % change in language recovery score	UNT UNR Vox NC	Behavioral data notes: accuracy combines language and control conditions; search volume: whole brain; software: SPM2; voxelwise p: .001; cluster extent cutoff: none	† L SMA/medial prefrontal † R insula † R SMA/medial prefrontal
Saur et al. (2006): Vox 11	Listening to sentences and making a plausibility judgment vs listening to reversed speech	LC Aphasia T3 vs T2 Covariate: % change in language recovery score	UNT UNR Vox NC	Behavioral data notes: accuracy combines language and control conditions; search volume: whole brain; software: SPM2; voxelwise p: .001; cluster extent cutoff: none	None
Saur et al. (2006): Vox 12	Listening to sentences and making a plausibility judgment vs listening to reversed speech	LC Aphasia T3 vs T1 Covariate: % change in language recovery score	UNT UNR Vox NC	Behavioral data notes: accuracy combines language and control conditions; search volume: whole brain; software: SPM2; voxelwise p: .001; cluster extent cutoff: none	None
Saur et al. (2006): ROI 1	Listening to sentences and making a plausibility judgment vs listening to reversed speech	LA Aphasia T2 vs T1	AM UNR ROI Func FWE	Behavioral data notes: accuracy combines language and control conditions; number of ROIs: 6; ROIs: (1) L IFG pars orbitalis; (2) L IFG pars triangularis; (3) L MTG; (4) R insula; (5) R IFG pars triangularis; (6) R SMA; how ROIs defined: peak voxels of overall activation map based on all three time points in patients	† R insula † R SMA/medial prefrontal notes: some other ROIs also significant prior to correction for multiple comparisons; n.b. performance confound
Saur et al. (2006): ROI 2	Listening to sentences and making a plausibility judgment vs listening to reversed speech	LA Aphasia T3 vs T2	AM UNR ROI Func FWE	Behavioral data notes: accuracy combines language and control conditions; number of ROIs: 6; ROIs: (1) L IFG pars orbitalis; (2) L IFG pars triangularis; (3) L MTG; (4) R insula; (5) R IFG pars triangularis; (6) R SMA; how ROIs defined: peak voxels of overall activation map based on all three time points in patients	None notes: some other ROIs also significant prior to correction for multiple comparisons; n.b. performance confound
Saur et al. (2006): ROI 3	Listening to sentences and making a plausibility	LA Aphasia T3 vs T1	AM UNR ROI Func FWE	Behavioral data notes: accuracy combines language and control conditions; number of ROIs: 6; ROIs: (1) L IFG pars orbitalis; (2) L IFG pars triangularis; (3) L MTG; (4) R insula; (5) R IFG pars triangularis; (6) R SMA; how ROIs defined: peak voxels of overall activation map based on all three time points in patients	† L posterior MTG notes: some other ROIs also significant prior to correction for multiple comparisons; n.b. performance confound
ROI	Description	Task	Condition	ROIs	Details
-----	-------------	------	-----------	------	---------
4	Listening to sentences and making a plausibility judgment vs listening to reversed speech	CAC Aphas T1 vs control	AM UNR Func NC	Behavioral data notes: accuracy combines language and control conditions; number of ROIs: 6; ROIs: (1) L IFG pars orbitalis; (2) L IFG pars triangularis; (3) L MTG; (4) R insula; (5) R IFG pars triangularis; (6) R SMA; how ROIs defined: peak voxels of overall activation map based on all three time points in patients; circular because ROIs defined in one group	None
5	Listening to sentences and making a plausibility judgment vs listening to reversed speech	CAC Aphas T2 vs control	AM UNR Func NC	Behavioral data notes: accuracy combines language and control conditions; number of ROIs: 6; ROIs: (1) L IFG pars orbitalis; (2) L IFG pars triangularis; (3) L MTG; (4) R insula; (5) R IFG pars triangularis; (6) R SMA; how ROIs defined: peak voxels of overall activation map based on all three time points in patients; circular because ROIs defined in one group	None
6	Listening to sentences and making a plausibility judgment vs listening to reversed speech	CAC Aphas T3 vs control	AS UNR Func NC	Behavioral data notes: accuracy combines language and control conditions; number of ROIs: 6; ROIs: (1) L IFG pars orbitalis; (2) L IFG pars triangularis; (3) L MTG; (4) R insula; (5) R IFG pars triangularis; (6) R SMA; how ROIs defined: peak voxels of overall activation map based on all three time points in patients; circular because ROIs defined in one group	None
1	Picture naming (trained items) vs rest	LC Aphas T2 vs T1 Covariate: Δ picture naming (trained items)	C UNR Oth NC	Behavioral data notes: picture naming score (trained items) increased from 51.7 ± 24.8 to 78.8 ± 22.1, which was statistically significant (p < 0.0001); number of ROIs: 4; ROIs: (1) perilesional area of slow wave activity determined with MEG; (2) right hemisphere homotopic to lesion; (3) right hemisphere homotopic to slow wave area; (4) remainder of left hemisphere; for one patient, maximal slow wave activity was in the right hemisphere and it is not clear how this was handled; how ROIs defined: the dependent measure was the number of voxels in each ROI exceeding certain thresholds that differed across subjects depending on their strength of activation; it appears that increases and decreases may have been summed, though the description is hard to follow; 2 of the 11 patients were classified as outliers and excluded from analyses, however no plots are provided to justify their status as outliers	Other: improved picture naming of trained items was correlated with increased signal in 3 of the 4 ROIs, the exception being the right hemisphere ROI homotopic to the slow wave area; after removing the two outliers, only the correlation in the left hemisphere area of slow wave activity remained significant
Study	Panel	Condition	Covariate	Other Notes	
---	-------	--	------------------------------------	---	
Raboyeau et al. (2008): Vox 1		Picture naming (native in patients; relearned foreign in controls) vs rest	LAC	Behavioral data notes: relearned foreign language was an attempt to equate to recovery in patients; still, patients improved less than controls, as shown by a significant interaction of group by time (p < .0001); search volume: whole brain; software: SPM2; voxelwise p: .01; cluster extent cutoff: 30 voxels (size not stated); nature of control contrast not clear; negative tail of contrast was masked to exclude lesioned areas, but the mask may have been more extensive than that used by the control group.	
		Picture naming (native in patients; relearned foreign in controls) vs rest	LC	Search volume: whole brain; software: SPM2; voxelwise p: .01; cluster extent cutoff: 30 voxels (size not stated); nature of control contrast not clear.	
Richter et al. (2008): Vox 1		Reading words silently vs rest	C	Search volume: R hemisphere; software: BrainVoyager QX 1.7; voxelwise p: R IFG/R insula ROI:.005; elsewhere: .001; cluster extent cutoff: R IFG/R insula ROI: 0.108 cc; elsewhere: none	
Richter et al. (2008): Vox 2		Word stem completion vs rest	C	Search volume: R hemisphere; software: BrainVoyager QX 1.7; voxelwise p: R IFG/R insula ROI:.005; elsewhere: .001; cluster extent cutoff: R IFG/R insula ROI: 0.108 cc; elsewhere: none	

ROI 2 (untrained items) vs rest

Aphasia T2 vs T1

Covariate: Δ picture naming (untrained items)

NC

score (untrained items) increased from 54.0 ± 24.3 to 70.5 ± 26.7, which was statistically significant (p = 0.002); number of ROIs: 4; ROIs: (1) perilesional area of slow wave activity determined with MEG; (2) right hemisphere homotopic to lesion; (3) right hemisphere homotopic to slow wave area; (4) remainder of left hemisphere; for one patient, maximal slow wave activity was in the right hemisphere and it is not clear how this was handled; how ROIs defined: the dependent measure was the number of voxels in each ROI exceeding certain thresholds that differed across subjects depending on their strength of activation; it appears that increases and decreases may have been summed, though the description is hard to follow; 2 of the 11 patients were classified as outliers and excluded from analyses, however no plots are provided to justify their status as outliers.

improved picture naming of untrained items was correlated with increased signal in all 4 ROIs; after removing the two outliers, none of the correlations remained significant.
Richter et al. (2008): Vox 3	Reading words silently vs rest	CC	Aphasia T1 Covariate: subsequent Δ (T2 vs T1) overall language measure (composite measure of AAT spontaneous speech, token test, ANELT auditory comprehensibility, ANELT semantic comprehensibility)	UNR	UNR	Vox	NC	Search volume: R hemisphere; software: BrainVoyager QX 1.7; voxelwise $p: .05$; cluster extent cutoff: none; *nature of thresholding not entirely clear*, so coded according to best guess	\uparrow R IFG \uparrow R insula \uparrow R ventral precentral/inferior frontal junction \uparrow R posterior MTG notes: increased activity correlated with more behavioral improvement
Richter et al. (2008): Vox 4	Word stem completion vs rest	CC	Aphasia T1 Covariate: subsequent Δ (T2 vs T1) overall language measure (composite measure of AAT spontaneous speech, token test, ANELT auditory comprehensibility, ANELT semantic comprehensibility)	UNR	UNR	Vox	NC	Search volume: R hemisphere; software: BrainVoyager QX 1.7; voxelwise $p: .05$; cluster extent cutoff: none; *nature of thresholding not entirely clear*, so coded according to best guess	\uparrow R IFG \uparrow R insula notes: increased activity correlated with more behavioral improvement
Richter et al. (2008): Vox 5	Reading words silently vs rest	LA	Aphasia T2 vs T1	UNR	UNR	Vox	M**	Search volume: R hemisphere; software: BrainVoyager QX 1.7; voxelwise $p: R$ IFG/R insula ROI: .005; elsewhere: .001; cluster extent cutoff: R IFG/R insula ROI: 0.108 cc; elsewhere: none	None
Richter et al. (2008): Vox 6	Word stem completion vs rest	LA	Aphasia T2 vs T1	UNR	UNR	Vox	M**	Search volume: R hemisphere; software: BrainVoyager QX 1.7; voxelwise $p: R$ IFG/R insula ROI: .005; elsewhere: .001; cluster extent cutoff: R IFG/R insula ROI: 0.108 cc; elsewhere: none	None
Richter et al. (2008): ROI 1	Reading words silently vs rest	CC	Aphasia T1 Covariate: subsequent Δ (T2 vs T1) overall language measure (composite measure of AAT spontaneous speech, token test, ANELT auditory comprehensibility, ANELT semantic comprehensibility)	UNR	UNR	ROI	Func	Number of ROIs: 1; ROI: L IFG/insula or L perilesional; how ROI defined: peak activations in individual patients in L IFG/insula or L perilesional regions (*somewhat unclear*)	None
Study	Task	ROI	Functional Imaging Data	Behavioral Data Notes					
-------	------	-----	-------------------------	-----------------------					
Richter et al. (2008): ROI 2	Word stem completion vs rest	CC	Subsequent Δ (T2 vs T1) overall language measure (composite measure of AAT spontaneous speech, token test, ANELT auditory comprehensibility, ANELT semantic comprehensibility)	Somewhat valid (T1 behavioral measure should be included in model)					
Richter et al. (2008): ROI 3	Reading words silently vs rest	LC	Δ overall language measure (composite measure of AAT spontaneous speech, token test, ANELT auditory comprehensibility, ANELT semantic comprehensibility)	Number of ROIs: 4; ROIs: (1) R IFG/insula; (2) R precentral; (3) R MTG; (4) L IFG/insula or L perilesional; how ROIs defined: regions where T1 activation was correlated with subsequent improvement, along with the previously defined left hemisphere ROI; circular because functional ROIs based on related contrast on same data					
Richter et al. (2008): ROI 4	Word stem completion vs rest	LC	Δ overall language measure (composite measure of AAT spontaneous speech, token test, ANELT auditory comprehensibility, ANELT semantic comprehensibility)	Number of ROIs: 3; ROIs: (1, 2) two clusters within R IFG/insula ROI; (3) L IFG/insula or L perilesional; how ROIs defined: regions where T1 activation was correlated with subsequent improvement, along with the previously defined left hemisphere ROI; circular because functional ROIs based on related contrast on same data					
de Boissezon et al. (2009): Vox 1	Word generation vs rest	LA	Aphasr with "good recovery" (n = 6) T2 vs T1 Somewhat valid (the "good recovery" group showed more improvement than the "poor recovery" group in terms of accuracy on the task, but the distinction was not borne out in behavioral data more generally)	Behavioral data notes: p = 0.07; search volume: whole brain; software: SPM2; voxelwise p: .001; cluster extent cutoff: 100 voxels (size not stated); contrast may not have included resting condition; inappropriate masking					
de	Word generation vs rest	LA		↑ L ventral precentral/inferior frontal junction ↑ L SMA/medial prefrontal ↑ L posterior STG/STS/MTG ↑ R dorsolateral prefrontal cortex ↑ R SMA/medial prefrontal ↑ R angular gyrus ↑ R occipital ↑ R thalamus ↑ R basal ganglia ↑ L cerebellum notes: based on coordinates in Table 5					
Study	Task	Comparison	Subject Group	Analysis Details	Search Volume	ROIs			
-------	------	------------	---------------	-----------------	--------------	------			
Boissezon et al. (2009): Vox 2	Aphasia with "poor recovery" (n = 7) T2 vs T1	Somewhat valid (the "poor recovery" group showed less improvement than the "good recovery" group in terms of accuracy on the task, but the distinction was not borne out in behavioral data more generally)	SPM2: voxelwise p:.001; cluster extent cutoff: 100 voxels (size not stated); contrast may not have included resting condition; inappropriate masking	precentral/inferior frontal junction; R somato-motor; R cerebellum; R basal ganglia					
de Boissezon et al. (2009): Vox 3	Word generation vs rest	C	Search volume: whole brain; software: SPM2; voxelwise p: .01; cluster extent cutoff: 100 voxels (size not stated); each patient's two sessions may be entered into the model without accounting for the dependence between them	L supramarginal gyrus; L occipital; L anterior cingulate; R insula; R SMA/medial prefrontal; R posterior STG; R anterior temporal; R occipital; L cerebellum					
Fridriksson et al. (2009): Vox 1	Picture naming (correct trials) vs viewing scrambled images	CAC	Search volume: voxels spared in all patients; software: FSL (FEAT 5.4); voxelwise p: –.01 (z > 2.3); cluster extent cutoff: based on GRFT	None					
Fridriksson et al. (2009): Vox 2	Picture naming (phonemic paraphasias) vs picture naming (correct trials)	CB	Search volume: voxels spared in all patients; software: FSL (FEAT 5.4); voxelwise p: –.01 (z > 2.3); cluster extent cutoff: based on GRFT	L superior parietal; L posterior inferior temporal gyrus/fusiform gyrus; L occipital					
Fridriksson et al. (2009): Vox 3	Picture naming (semantic paraphasias) vs picture naming (correct trials)	CB	Search volume: voxels spared in all patients; software: FSL (FEAT 5.4); voxelwise p: –.01 (z > 2.3); cluster extent cutoff: based on GRFT	R posterior inferior temporal gyrus/fusiform gyrus; R occipital					
Fridriksson et al. (2009): ROI 1	Picture naming (correct trials) vs viewing scrambled images	CC	Number of ROIs: 5; ROIs: (1) R IFG/insula; (2) R motor/premotor; (3) R SMA; (4) R inferior parietal; (5) R superior temporal; how ROIs defined: regions activated for picture naming vs viewing scrambled images in aphasia	L IFG; R insula notes: R IFG showed more activation in patients who produced more correct responses					
Menke et al. (2009): Vox 1	Picture naming (trained items) vs rest	LC	Search volume: whole brain; software: SPM2; voxelwise p: .05, but at least one voxel in the cluster had to be p < .001; cluster extent cutoff: 0.270 cc; there was an exclusive mask based on activation changes for untrained pictures, but it is unclear what the behavioral covariate was for the mask generation, nor were the regions in the mask reported	L occipital; L hippocampus/MTL; L precuneus; R occipital; R posterior cingulate; R hippocampus/MTL					
Study (2009)	Task	Contrast	Control	Control	Search volume	Software	Voxels	Clusters	Notes
-------------	------	----------	---------	---------	---------------	----------	--------	----------	-------
Menke et al.	Picture naming (untrained items) vs rest	LC Aphasia T3 vs T1 Covariate: subsequent outcome (T3) picture naming of trained items outside the scanner Not valid (the logic behind correlating activation changes and language outcome is unclear)	UNT UNR Vox M**	Search volume: whole brain; software: SPM2; voxelwise p: .05, but at least one voxel in the cluster had to be p < .001; cluster extent cutoff: 0.270 cc; there was an exclusive mask based on activation changes for untrained pictures, but it is unclear what the behavioral covariate was for the mask generation, nor were the regions in the mask reported	† R posterior STG/STS/MTG ↓ L SMA/medial prefrontal ↓ R inferior parietal lobule ↓ R posterior inferior temporal gyrus/fusiform gyrus ↓ R basal ganglia				
Specht et al.	Lexical decision (words vs pseudowords) vs lexical decision (words vs reversed foreign words)	CAC Aphasia vs control	UNR UNR Vox CA	Search volume: whole brain; software: SPM5; voxelwise p: .001; cluster extent cutoff: 0.64 cc	† R posterior STG ↑ R Heschl’s gyrus notes: activation is 1105 voxels (> 8 cc) so quite convincing, but when the contrast was examined in the patient group, this region was not activated.				
Specht et al.	Lexical decision (words vs pseudowords) vs lexical decision (words vs reversed foreign words)	CAC Aphasia vs control	UNR UNR Cplx	Joint ICA was performed on structural and functional contrast images using FIT 1.1b. Only 1 of the 8 components differed between groups in its loadings and was interpretable. The structural part of this component related to the patients’ lesions. The functional part was thresholded at voxelwise p < .001 (CDT), arbitrary minimum cluster extent = 0.64 cc. Other: The component that differed between groups showed more activation for patients than controls in the L anterior temporal lobe, L cerebellum, R posterior STG, R anterior temporal lobe, R posterior inferior temporal gyrus/fusiform gyrus, R cerebellum, and R brainstem, and less activation in patients than controls in the L IFG, L anterior temporal lobe, L occipital lobe, L anterior cingulate, L cerebellum, L thalamus, and R IFG.					
Warren et al.	Listening to narrative speech vs listening to reversed speech	CAC Aphasia vs control	NANB NANT ROI Anat NC	Number of ROIs: 6; ROIs: (1) L anterior superior temporal cortex; (2) L basal temporal language area; (3) L IFG pars triangularis; (4-6) homotopic counterparts; how ROIs defined: ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these	None notes: L IFG pars triangularis almost reached significance (p = .053) for more activation in patients				
(5-6); somewhat circular because ROIs were defined only in regions where controls showed significant connectivity (even though ROIs were anatomical)

Study	ROIs	Task	Covariate	ROIs Defined	ROIs Identified	
Warren et al. (2009): ROI 2	Listening to narrative speech vs listening to reversed speech	CC Aphasia	auditory sentence comprehension	NANB NANT ROI Anat NC	Number of ROIs: 6; ROIs: (1) L anterior superior temporal cortex; (2) L basal temporal language area; (3) L IFG pars triangularis; (4-6) homotopic counterparts; how ROIs defined: ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6)	None
Warren et al. (2009): ROI 3	Listening to narrative speech vs listening to reversed speech	CC Aphasia	written sentence comprehension	NANB NANT ROI Anat NC	Number of ROIs: 6; ROIs: (1) L anterior superior temporal cortex; (2) L basal temporal language area; (3) L IFG pars triangularis; (4-6) homotopic counterparts; how ROIs defined: ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6)	None
Warren et al. (2009): ROI 4	Listening to narrative speech vs listening to reversed speech	CC Aphasia	auditory single word comprehension	NANB NANT ROI Anat NC	Number of ROIs: 6; ROIs: (1) L anterior superior temporal cortex; (2) L basal temporal language area; (3) L IFG pars triangularis; (4-6) homotopic counterparts; how ROIs defined: ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6)	None
Warren et al. (2009): ROI 5	Listening to narrative speech vs listening to reversed speech	CC Aphasia	auditory syntactic comprehension	NANB NANT ROI Anat NC	Number of ROIs: 6; ROIs: (1) L anterior superior temporal cortex; (2) L basal temporal language area; (3) L IFG pars triangularis; (4-6) homotopic counterparts; how ROIs defined: ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6)	None
Warren et al. (2009): ROI 6	Listening to narrative speech vs listening to reversed speech	CC Aphasia	connectivity between L and R ATL	NANB NANT ROI Anat NC	Number of ROIs: 2; ROIs: (1) L anterior superior temporal cortex; (2) R anterior superior temporal cortex; how ROIs defined: ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6)	None
Warren et al. (2009): ROI 7	Listening to narrative speech vs listening to reversed speech	CC Aphasia	time post onset	NANB NANT ROI One	Number of ROIs: 1; ROI: L anterior superior temporal cortex; how ROI defined: ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6)	None
Warren et	Listening to narrative speech vs listening to reversed speech	CC		NANB NANT ROI	Number of ROIs: 1; ROI: L anterior	None
Study	ROI 8	Comparison	Task	Lesion Volume	Region	Notes
-------	-------	------------	------	---------------	--------	-------
Warren et al. (2009)	Listening to narrative speech vs listening to reversed speech	CAC	Aphasia	Covariate: lesion volume	ROI	Number of ROIs: 6; ROIs: (1) L anterior superior temporal cortex; (2) L basal temporal language area; (3) L IFG pars triangularis; (4-6) homotopic counterparts; how ROIs defined: ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6); somewhat circular because ROIs were defined only in regions where controls showed significant connectivity (even though ROIs were anatomical); excluded 3 patients with L IFG damage

Study	ROI 9	Comparison	Task	Lesion Volume	Region	Notes
Warren et al. (2009)	Listening to narrative speech vs listening to reversed speech	CAC	Aphasia with positive anterior temporal interconnectivity (n = 8) vs control	ROI	Number of ROIs: 6; ROIs: (1) L anterior superior temporal cortex; (2) L basal temporal language area; (3) L IFG pars triangularis; (4-6) homotopic counterparts; how ROIs defined: ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6); somewhat circular because ROIs were defined only in regions where controls showed significant connectivity (even though ROIs were anatomical); excluded 1 patient with L IFG damage	

Study	ROI 10	Comparison	Task	Lesion Volume	Region	Notes
Warren et al. (2009)	Listening to narrative speech vs listening to reversed speech	CAC	Aphasia with negative anterior temporal interconnectivity (n = 8) vs control	ROI	Number of ROIs: 6; ROIs: (1) L anterior superior temporal cortex; (2) L basal temporal language area; (3) L IFG pars triangularis; (4-6) homotopic counterparts; how ROIs defined: ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6); somewhat circular because ROIs were defined only in regions where controls showed significant connectivity (even though ROIs were anatomical); excluded 1 patient with L IFG damage	

Study	ROI 11	Comparison	Task	Lesion Volume	Region	Notes
Warren et al. (2009)	Listening to narrative speech vs listening to reversed speech	CAC	Aphasia with positive anterior temporal interconnectivity (n = 8) vs with negative anterior temporal interconnectivity (n = 8)	ROI	Number of ROIs: 6; ROIs: (1) L anterior superior temporal cortex; (2) L basal temporal language area; (3) L IFG pars triangularis; (4-6) homotopic counterparts; how ROIs defined: ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6); excluded 4 patients with L IFG damage	

Study	Cplx 1	Comparison	Task	Lesion Volume	Region	Notes
Warren et al. (2009)	Listening to narrative speech vs listening to reversed speech	CC	Aphasia	Covariate: lesion status of each voxel	ROI	VLSM with FDR correction was used to identify any regions in which damage was predictive of L anterior temporal activation.

Study	Vox 1	Comparison	Task	Lesion Volume	Region	Notes
Chau et al. (2010)	Answering questions from Cantonese Aphasia Battery vs visual decision	LC	Aphasia T2 vs T1	Covariate: Δ WAB AQ Somewhat valid (no treatment effect)	Search volume: whole brain; software: SPM2; stated to be corrected p < 0.05, but the nature of correction is not described; it is not entirely clear whether the functional measure was the difference between T1 and T2 (we assume it is); it is also not clear whether or not 2 patients with low AQ were excluded (we assume not)	

Study	Vox 2	Comparison	Task	Lesion Volume	Region	Notes
Fridriksson	Picture naming	LC	YCT	UNR	Search volume: whole brain; software: None	

↑ L IFG pars triangularis
Study	Task Description	Control Comparison	Covariate	Software	Voxelwise p	Cluster Extent Cutoff	Other Notes
Fridriksson et al. (2010)	Vox 1: Picture naming (correct trials) vs viewing abstract pictures	CC: Aphasia vs control	Δ picture naming accuracy	YCT UNR Vox	FSL 4.1; voxelwise p: ~.01 (z > 2.3); cluster extent cutoff: based on GRFT		prefrontal cortex ↑ L ventral precentral/inferior frontal junction ↑ L supramarginal gyrus ↑ L intraparietal sulcus ↑ L superior parietal ↑ L precuneus notes: activated regions were on the borders on the lesion distribution in the 19 included patients
Fridriksson et al. (2010)	Vox 1: Picture naming (correct trials) vs viewing abstract pictures	CC: Aphasia vs control	Δ picture naming accuracy	YCT UNR Vox	FSL 4.1; voxelwise p: ~.02 (z > 2); cluster extent cutoff: based on GRFT		None
Fridriksson et al. (2010)	Vox 2: Picture naming (correct trials) vs viewing abstract pictures	CC: Aphasia vs control	Δ picture naming accuracy	YCT UNR Func	Search volume: whole brain; software: FSL 4.1; voxelwise p: ~.02 (z > 2); cluster extent cutoff: based on GRFT		L IFG pars orbitalis ↑ L occipital ↑ L anterior cingulate notes: greater activation was associated with better picture naming; L IFG pars orbitalis activation classified as middle frontal gyrus in the paper, but coordinates suggest otherwise
Fridriksson et al. (2010)	ROI 1: Picture naming (correct trials) vs viewing abstract pictures	CC: Aphasia vs control	Δ lesion status of each voxel	YCT UNR Cplx	VLSM was used to identify any regions in which damage was predictive of activation in the regions identified in SPM analysis 1, considered as a single ROI. There was no correction for multiple comparisons, and the analysis is appropriately presented as exploratory.		Other: patients with better naming showed greater activation than controls, while the patients with poorer naming showed less activation than controls.
Sharp et al. (2010)	ROI 1: Semantic decision (clear in patients; average of clear and noise vocoded)	CC: Aphasia vs control	NAM AS ROI Oth NDC		Behavioral data notes: accuracy and RT were not significantly different for the semantic task; statistics are not reported for the syllable counting task,		Other: patients showed greater connectivity
in controls) vs syllable count decision (clear in patients; average of clear and noise vocoded in controls) but the data provided suggest that accuracy was probably not matched, while RT probably was; number of ROIs: 12; ROIs: functional connectivity between pairs of spared nodes of the L hemisphere semantic network and R hemisphere homotopic regions: (1) L SFG-L AG; (2) L SFG-L IFG; (3) L SFG-L IT; (4) L AG-L IFG; (5) L AG-L IT; (6) L IFG-L IT; (7-12) homotopic counterparts; how ROIs defined: partial correlations between nodes between L SFG and L AG than controls while performing the semantic task; this was not the case for the syllable counting task, however connectivity during performance of the two tasks was not compared directly.

Thompson et al. (2010): ROI 1	Auditory sentence-picture matching (all three sentence types) vs rest	LA	AS	AS	ROI	Anat NC	Number of ROIs: 18; ROIs: (1) L BA 7; (2) L BA 9; (3) L BA 13; (4) L BA 21; (5) L BA 22; (6) L BA 39; (7) L BA 40; (8) L BA 44; (9) L BA 45; (10-18) homotopic counterparts; how ROIs defined: WFU pickatlas; proportion of patients who showed increases and decreases in (parts of) each ROI in individual fixed effects SPM analyses
Tyler et al. (2010): Vox 1	Listening to grammatical but meaningless sentences and detecting a target word vs listening to scrambled sentences and detecting a target word	CAC	UNR	AS	Vox NDC	Behavioral data notes: the two groups showed similar differences between RTs in the two conditions of the contrast; search volume: whole brain; software: SPM5; qualitative comparison on pp. 3402-3; each group is presented at voxelwise p < .005 (CDT), cluster-corrected p < .05 with GRFT	
Tyler et al. (2010): ROI 1	Listening to grammatical but meaningless sentences and detecting a target word vs listening to scrambled sentences and detecting a target word	CC	UNR	UNR	ROI Func One	Behavioral data notes: analyses focuses on RT differences between early and late targets, not on mean RT per se; number of ROIs: 1; ROI: L IFG pars triangularis and orbitalis; how ROI defined: activated for the same contrast	
Tyler et al. (2010): ROI 2	Listening to grammatical but meaningless sentences and	CC	UNR	UNR	ROI Func One	Number of ROIs: 1; ROI: L IFG pars triangularis and orbitalis; how ROI defined: activated for the same contrast	

Thompson et al. (2010): ROI 1	Auditory sentence-picture matching (all three sentence types) vs rest	LA	AS	AS	ROI	Anat NC	Number of ROIs: 18; ROIs: (1) L BA 7; (2) L BA 9; (3) L BA 13; (4) L BA 21; (5) L BA 22; (6) L BA 39; (7) L BA 40; (8) L BA 44; (9) L BA 45; (10-18) homotopic counterparts; how ROIs defined: WFU pickatlas; proportion of patients who showed increases and decreases in (parts of) each ROI in individual fixed effects SPM analyses
Tyler et al. (2010): Vox 1	Listening to grammatical but meaningless sentences and detecting a target word vs listening to scrambled sentences and detecting a target word	CAC	UNR	AS	Vox NDC	Behavioral data notes: the two groups showed similar differences between RTs in the two conditions of the contrast; search volume: whole brain; software: SPM5; qualitative comparison on pp. 3402-3; each group is presented at voxelwise p < .005 (CDT), cluster-corrected p < .05 with GRFT	
Tyler et al. (2010): ROI 1	Listening to grammatical but meaningless sentences and detecting a target word vs listening to scrambled sentences and detecting a target word	CC	UNR	UNR	ROI Func One	Behavioral data notes: analyses focuses on RT differences between early and late targets, not on mean RT per se; number of ROIs: 1; ROI: L IFG pars triangularis and orbitalis; how ROI defined: activated for the same contrast	
Tyler et al. (2010): ROI 2	Listening to grammatical but meaningless sentences and	CC	UNR	UNR	ROI Func One	Number of ROIs: 1; ROI: L IFG pars triangularis and orbitalis; how ROI defined: activated for the same contrast	
Study	Task Description	Control Condition	ROIs	Behavior Notes	Other Notes						
Tyler et al. (2010): ROI 3	Listening to grammatical but meaningless sentences and detecting a target word vs listening to scrambled sentences and detecting a target word	CC Aphasia Covariate: RT difference between early and late targets on normal sentences	UNR UNR	Number of ROIs: 1; ROI: L IFG pars triangularis and orbitalis; how ROI defined: activated for the same contrast	None						
Tyler et al. (2010): ROI 4	Listening to grammatical but meaningless sentences and detecting a target word vs listening to scrambled sentences and detecting a target word	CC Aphasia Covariate: damage to L IFG, estimated from T1 signal	UNR UNR	Number of ROIs: 1; ROI: R IFG pars triangularis and orbitalis; how ROI defined: activated for the same contrast	None notes: no correlation (p = .57)						
Tyler et al. (2010): ROI 5	Listening to grammatical but meaningless sentences and detecting a target word vs listening to scrambled sentences and detecting a target word	CC Aphasia Covariate: syntactic processing (presumably the target position effect, though this is not stated)	UNR UNR	Number of ROIs: 1; ROI: R IFG pars triangularis and orbitalis; how ROI defined: activated for the same contrast	None notes: no correlation (p = .41)						
Tyler et al. (2010): Cplx 1	Listening to grammatical but meaningless sentences and detecting a target word vs listening to scrambled sentences and detecting a target word	CC Aphasia Covariate: lesion status of each voxel	UNR UNR	VBM was used to identify any regions where damage was predictive of activation in the L IFG pars triangularis and orbitalis. Tissue integrity was quantified in terms of T1 signal. Clusterwise correction was used, which is not appropriate for VBM.	Other: Only in the L IFG itself was damage predictive of reduced activation in the L IFG.						
van Oers et al. (2010): ROI 1	Written word-picture matching vs visual decision	CAC Aphasia vs control	UNR UNR ROI Mix NC	Behavioral data notes: accuracy not reported for control condition; number of ROIs: 7; ROIs: (1) L anterior language region (IFG); (2) L posterior language region (AG, SMG, STG, MTG); (3) R anterior language region (IFG); (4) R posterior language region (AG, SMG, STG, MTG); (5) frontal LI; (6) temporal LI; (7) whole network LI; how ROIs defined: WFU pickatlas	↓ L IFG ↓ LI (language network) ↓ LI (frontal)						
van Oers et al. (2010): ROI 2	Semantic decision vs visual decision	CAC Aphasia vs control	UNR UNR ROI Mix NC	Behavioral data notes: accuracy not reported for control condition; number of ROIs: 7; ROIs: (1) L anterior language region (IFG); (2) L posterior language region (AG, SMG, STG, MTG); (3) R anterior language region (IFG); (4) R posterior language region (AG, SMG, STG, MTG); (5) frontal LI; (6) temporal LI; (7) whole network LI; how ROIs defined: WFU pickatlas	↓ L IFG ↓ LI (language network) ↓ LI (frontal)						
Study	Task Description	Group Comparisons	ROIs	Number of ROIs	ROIs Defined						
-------	------------------	-------------------	------	----------------	--------------						
van Oers et al. (2010): ROI 3	Verb generation vs rest	CAC Aphasia vs control	UNR UNR Mix NC	1	L anterior language region (IFG); 2	L posterior language region (AG, SMG, STG, MTG); 3	R anterior language region (IFG); 4	R posterior language region (AG, SMG, STG, MTG); 5	Frontal LI; 6	Temporal LI; 7	Whole network LI; how ROIs defined: WFU pickatlas
van Oers et al. (2010): ROI 4	Written word-picture matching vs visual decision	C Aphasia vs control	UNR UNR Mix NC	1	L anterior language region (IFG); 2	L posterior language region (AG, SMG, STG, MTG); 3	R anterior language region (IFG); 4	R posterior language region (AG, SMG, STG, MTG); 5	Frontal LI; 6	Temporal LI; 7	Whole network LI; how ROIs defined: WFU pickatlas
van Oers et al. (2010): ROI 5	Semantic decision vs visual decision	C Aphasia vs control	UNR UNR Mix NC	1	L anterior language region (IFG); 2	L posterior language region (AG, SMG, STG, MTG); 3	R anterior language region (IFG); 4	R posterior language region (AG, SMG, STG, MTG); 5	Frontal LI; 6	Temporal LI; 7	Whole network LI; how ROIs defined: WFU pickatlas
van Oers et al. (2010): ROI 6	Written word-picture matching vs visual decision	C Aphasia vs control	UNR UNR Mix NC	1	L anterior language region (IFG); 2	L posterior language region (AG, SMG, STG, MTG); 3	R anterior language region (IFG); 4	R posterior language region (AG, SMG, STG, MTG); 5	Frontal LI; 6	Temporal LI; 7	Whole network LI; how ROIs defined: WFU pickatlas
van Oers et al. (2010): ROI 7	Semantic decision vs visual decision	C Aphasia vs control	UNR UNR Mix NC	1	L anterior language region (IFG); 2	L posterior language region (AG, SMG, STG, MTG); 3	R anterior language region (IFG); 4	R posterior language region (AG, SMG, STG, MTG); 5	Frontal LI; 6	Temporal LI; 7	Whole network LI; how ROIs defined: WFU pickatlas
van Oers et al. (2010): ROI 8	Verb generation vs rest	C Aphasia vs control	UNR UNR Mix NC	1	L anterior language region (IFG); 2	L posterior language region (AG, SMG, STG, MTG); 3	R anterior language region (IFG); 4	R posterior language region (AG, SMG, STG, MTG); 5	Frontal LI; 6	Temporal LI; 7	Whole network LI; how ROIs defined: WFU pickatlas
van Oers et al. (2010): ROI 9	Written word-picture matching vs visual decision	C Aphasia vs control	UNR UNR Mix NC	1	L anterior language region (IFG); 2	L posterior language region (AG, SMG, STG, MTG); 3	R anterior language region (IFG); 4	R posterior language region (AG, SMG, STG, MTG); 5	Frontal LI; 6	Temporal LI; 7	Whole network LI; how ROIs defined: WFU pickatlas
van Oers et al. (2010): ROI 10	Semantic decision vs visual decision	C Aphasia vs control	UNR UNR Mix NC	1	L anterior language region (IFG); 2	L posterior language region (AG, SMG, STG, MTG); 3	R anterior language region (IFG); 4	R posterior language region (AG, SMG, STG, MTG); 5	Frontal LI; 6	Temporal LI; 7	Whole network LI; how ROIs defined: WFU pickatlas
ROI No.	Task Description	Covariate: lesion volume	ROIs	ROI Defined	Number of ROIs	ROIs Defined					
---------	------------------	--------------------------	------	-------------	---------------	--------------					
11	Verb generation vs rest	CC Aphasia	UNR UNR	ROI 1	Number of ROIs: 2; ROIs: (1) R anterior language region (IFG); (2) R posterior language region (AG, SMG, STG, MTG); how ROIs defined: WFU pickatlas	None					
12	Written word-picture matching vs visual decision	CC Aphasia	UNR UNR	ROI 1	Number of ROIs: 2; ROIs: (1) R anterior language region (IFG); (2) R posterior language region (AG, SMG, STG, MTG); how ROIs defined: WFU pickatlas	None					
13	Semantic decision vs visual decision	CC Aphasia	UNR UNR	ROI 1	Number of ROIs: 2; ROIs: (1) R anterior language region (IFG); (2) R posterior language region (AG, SMG, STG, MTG); how ROIs defined: WFU pickatlas	None					
14	Verb generation vs rest	CC Aphasia	UNR UNR	ROI 1	Number of ROIs: 2; ROIs: (1) R anterior language region (IFG); (2) R posterior language region (AG, SMG, STG, MTG); how ROIs defined: WFU pickatlas	None					
15	Written word-picture matching vs visual decision	CC Aphasia	UNR UNR	ROI 1	Number of ROIs: 7; ROIs: (1) L anterior language region (IFG); (2) L posterior language region (AG, SMG, STG, MTG); (3) R anterior language region (IFG); (4) R posterior language region (AG, SMG, STG, MTG); (5) frontal LI; (6) temporal LI; (7) whole network LI; how ROIs defined: WFU pickatlas	None					
16	Semantic decision vs visual decision	CC Aphasia	UNR UNR	ROI 1	Number of ROIs: 7; ROIs: (1) L anterior language region (IFG); (2) L posterior language region (AG, SMG, STG, MTG); (3) R anterior language region (IFG); (4) R posterior language region (AG, SMG, STG, MTG); (5) frontal LI; (6) temporal LI; (7) whole network LI; how ROIs defined: WFU pickatlas	↑ L IFG					
17	Verb generation vs rest	CC Aphasia	UNR UNR	ROI 1	Number of ROIs: 7; ROIs: (1) L anterior language region (IFG); (2) L posterior language region (AG, SMG, STG, MTG); (3) R anterior language region (IFG); (4) R posterior language region (AG, SMG, STG, MTG); (5) frontal LI; (6) temporal LI; (7) whole network LI; how ROIs defined: WFU pickatlas	↑ L IFG					
18	Written word-picture matching vs visual decision	CC Aphasia	UNR UNR	ROI 1	Number of ROIs: 7; ROIs: (1) L anterior language region (IFG); (2) L posterior language region (AG, SMG, STG, MTG); (3) R anterior language region (IFG); (4) R posterior language region (AG, SMG, STG, MTG); (5) frontal LI; (6) temporal LI; (7) whole network LI; how ROIs defined: WFU pickatlas	None					
Study	Task	Results									
---------------------	--	---									
van Oers et al. (2010): ROI 19	Semantic decision vs visual decision	LI; (7) whole network LI; how ROIs defined: WFU pickatlas									
	CC Aphasıa	Number of ROIs: 7; ROIs: (1) L anterior language region (IFG); (2) L posterior language region (AG, SMG, STG, MTG); (3) R anterior language region (IFG); (4) R posterior language region (AG, SMG, STG, MTG); (5) frontal LI; (6) temporal LI; (7) whole network LI; how ROIs defined: WFU pickatlas									
	Covariate: previous (current vs subacute) Δ TT	Not valid (current activation will reflect not just prior recovery, but also current language function; TT not optimal measure of overall language function)									
	Anat NC	▲ L IFG R IFG									
van Oers et al. (2010): ROI 20	Verb generation vs rest	LI; (7) whole network LI; how ROIs defined: WFU pickatlas									
	CC Aphasıa	Number of ROIs: 7; ROIs: (1) L anterior language region (IFG); (2) L posterior language region (AG, SMG, STG, MTG); (3) R anterior language region (IFG); (4) R posterior language region (AG, SMG, STG, MTG); (5) frontal LI; (6) temporal LI; (7) whole network LI; how ROIs defined: WFU pickatlas									
	Covariate: previous (current vs subacute) Δ TT	Not valid (current activation will reflect not just prior recovery, but also current language function; TT not optimal measure of overall language function)									
	Anat NC	▲ L IFG R IFG									
Papoutsi et al. (2011): Vox 1	Listening to ambiguous sentences with subordinate resolution ("subordinate") vs listening to ambiguous sentences with dominant resolution ("dominant")	Search volume: whole brain; software: SPM8; voxelwise p: .01; cluster extent cutoff: based on GRFT									
	CC Aphasıa	▲ L insula R posterior STG/STS/MTG L mid temporal									
	Covariate: difference in percent of unacceptable judgments between subordinate and dominant sentences (dominance effect)										
Papoutsi et al. (2011): Cplx 1	Listening to ambiguous sentences with subordinate resolution ("subordinate") vs listening to ambiguous sentences with dominant resolution ("dominant")	A PPI analysis was carried out with the L IFG as the seed region. Correlations were computed between voxelwise modulation of connectivity with this region, and a behavioral measure of syntactic processing, which was the dominance effect: the difference in percent of unacceptable judgments between subordinate and dominant sentences. The resultant SPM was thresholded at voxelwise p < .01 (CDT), then corrected for multiple corrections based on cluster extent and GRFT using SPM8.									
	CC Aphasıa	Other: patients with better syntactic performance had more connectivity from the L IFG seed region to L pMTG and adjacent areas (including the insula); pMTG also significant at voxelwise p < .001 in Figure 2B, corrected for									
	Covariate: modulation of L IFG connectivity by dominance effect										
Study	Task	Region	Method	Findings							
---	--	--	--	--							
Papoutsi et al. (2011): Cplx 2	Listening to ambiguous sentences with subordinate resolution vs listening to ambiguous sentences with dominant resolution	CC	NAB	A similar PPI analysis was carried out with the L pMTG as the seed region. Thresholding was the same as in the previous analysis.							
Sebastian & Kiran (2011): ROI 1	Picture naming (correct trials) vs viewing scrambled images and saying “pass”	CC	YCT	Number of ROIs: 4; ROIs: (1) L IFG (oper/tri); (2) L posterior perisylvian (pSTG, pMTG, AG, SMG); (3) R IFG (oper/tri); (4) R posterior perisylvian (pSTG, pMTG, AG, SMG); (5) language network LI; how ROIs defined: Harvard-Oxford atlas							
Sebastian & Kiran (2011): ROI 2	Semantic decision (correct trials) vs visual decision	CC	YCT	Number of ROIs: 4; ROIs: (1) L IFG (oper/tri); (2) L posterior perisylvian (pSTG, pMTG, AG, SMG); (3) R IFG (oper/tri); (4) R posterior perisylvian (pSTG, pMTG, AG, SMG); (5) language network LI; how ROIs defined: Harvard-Oxford atlas							
Szafarski et al. (2011): Vox 1	Semantic decision vs tone decision	LA	Y	Behavioral data notes: language and control tasks both matched; search volume: whole brain; software: in-house; voxelwise p: .05; cluster extent cutoff: none; the figure shows a cutoff of z > 10, which would not correspond to p < .05; increases and decreases in Figure 3 do not accord with the data from T1 and T2 in Figure 2, raising concerns about the implementation of the analyses; there is no explicit description of the second level analysis							

Multiple comparisons with GRFT
Study	Task Description	ROI 1	ROI 2	ROI 3	ROI 4	ROI 5	Notes
Szaflarski et al. (2011): ROI 1	Semantic decision vs tone decision	LA	Y	UNR	ROI Func NC		Behavioral data notes: language and control tasks both matched; number of ROIs: 3; ROIs: (1) frontal L1; (2) temporal L1; (3) language network L1; T1 LI (temporal) is reported to be negative, which does not accord with the voxelwise analysis in Figure 2; increases and decreases in Figure 3 do not accord with the data from T1 and T2 in Figure 2, raising concerns about the implementation of the analyses
Tyler et al. (2011): Vox 1	Listening to ambiguous sentences (dominant and subordinate) vs listening to unambiguous sentences ("unambiguous")	CAC	NANB	NANT	Vox NDC		Search volume: plausible fronto-temporo-parietal language regions; software: SPM5; qualitative comparison on p. 423
Tyler et al. (2011): Vox 2	Listening to ambiguous sentences with dominant resolution ("dominant") vs listening to unambiguous sentences ("unambiguous")	CAC	NANB	NANT	Vox NDC		Search volume: plausible fronto-temporo-parietal language regions; software: SPM5; qualitative comparison on p. 423
Tyler et al. (2011): Vox 3	Listening to ambiguous sentences with subordinate resolution ("subordinate") vs listening to unambiguous sentences ("unambiguous")	CAC	NANB	NANT	Vox NDC		Search volume: plausible fronto-temporo-parietal language regions; software: SPM5; qualitative comparison on p. 423
Tyler et al. (2011): Vox 4	Listening to ambiguous sentences with subordinate resolution ("subordinate") vs listening to unambiguous sentences with dominant resolution ("dominant")	CAC	NANB	NANT	Vox NDC		Search volume: plausible fronto-temporo-parietal language regions; software: SPM5; qualitative comparison on p. 423
Tyler et al. (2011): Vox 5	Listening to ambiguous sentences (dominant and subordinate)	CC	NANB	NANT	Vox C		Search volume: plausible fronto-temporo-parietal language regions; software: SPM5; voxelwise p: .01; cluster extent cutoff: based on GRFT

Notes: based on a combination of coordinates in Table 2, and Figure 3.
Tyler et al. (2011): Vox 6	Listening to ambiguous sentences (dominant and subordinate) vs listening to unambiguous sentences ("unambiguous")	CC	Aphasia	Covariate: performance on sentence-picture matching task	NANB	NANT	Vox CA	Search volume: plausible fronto-temporal-parietal language regions; software: SPM5; voxelwise p: .01; cluster extent cutoff: 30 (units not stated)	↑ R insula	↑ R mid temporal	notes: also L pMTG but this did not reach significance	
Tyler et al. (2011): Vox 7	Listening to ambiguous sentences (dominant and subordinate) vs listening to unambiguous sentences ("unambiguous")	CC	Aphasia	Covariate: performance on word monitoring task	NANB	NANT	Vox CA	Search volume: plausible fronto-temporal-parietal language regions; software: SPM5; voxelwise p: .05; cluster extent cutoff: 10 (units not stated)	↑ L IFG pars orbitalis	↑ L posterior MTG	↑ R insula	↑ R mid temporal
Tyler et al. (2011): Vox 8	Listening to ambiguous sentences (dominant and subordinate) vs listening to unambiguous sentences ("unambiguous")	CC	Aphasia	Covariate: difference in percent of unacceptable judgments between subordinate and dominant sentences (dominance effect)	NANB	NANT	Vox C-	Search volume: plausible fronto-temporal-parietal language regions; software: SPM5; voxelwise p: .01; cluster extent cutoff: based on GRFT	None			
Tyler et al. (2011): ROI 1	Listening to ambiguous sentences (dominant and subordinate) vs listening to unambiguous sentences ("unambiguous")	CC	Aphasia	Covariate: performance on acceptability judgment task (difference in percent of unacceptable judgments between ambiguous and unambiguous sentences)	NANB	NANT	ROI Anat NC	Number of ROIs: 3; ROIs: (1) IFG pars opercularis; (2) IFG pars triangularis; (3) IFG pars orbitalis; how ROIs defined: AAL	↑ L IFG pars triangularis	↑ L IFG pars orbitalis		
Tyler et al. (2011): ROI 2	Listening to ambiguous sentences (dominant and subordinate) vs listening to unambiguous sentences ("unambiguous")	CC	Aphasia	Covariate: difference in percentage of unacceptable judgments between subordinate and dominant sentences (dominance effect)	NANB	NANT	ROI Anat NC	Number of ROIs: 3; ROIs: (1) IFG pars opercularis; (2) IFG pars triangularis; (3) IFG pars orbitalis; how ROIs defined: AAL	None			
Weiduschat et al. (2011): ROI 1	Verb generation vs rest	LA	Aphasia T2 vs T1 (regardless of rTMS)	UNR	UNR	ROI LI NC	Number of ROIs: 3; ROIs: (1) IFG LI; (2) superior temporal LI; (3) SMA LI	None				
Weiduschat	Verb generation vs LA	UNR	UNR	ROI	Number of ROIs: 3; ROIs: (1) IFG LI; (2) None	None						
Author(s)	ROI	Task	Region	Controls	Contrast	Condition	Number of ROIs	ROIs	Notes	
et al. (2011): ROI 2		Verb generation vs rest	Superior temporal LI	(with sham rTMS (n = 4) T2 vs T1)	UNR	ROI	2	LI; (3) SMA LI		
Weiduschat et al. (2011): ROI 3		Verb generation vs rest	Verb generation vs rest	LI	UNR	UNR	ROI	LI; NC	Number of ROIs: 3; ROIs: (1) IFG LI; (2) superior temporal LI; (3) SMA LI	
Weiduschat et al. (2011): ROI 4		Verb generation vs rest	Verb generation vs rest	CAC	Aphasia vs control	UNR	UNR	ROI	LI; NC	Number of ROIs: 1; ROI: IFG LI
Allendorfer et al. (2012): ROI 1		Verb generation (covert, block) vs finger tapping (block)	Verb generation (covert, block) vs finger tapping (block)		Aphas	UNR	UNR	ROI	LI; NC	Number of ROIs: 2; ROIs: (1) frontal LI; (2) temporal LI
Allendorfer et al. (2012): ROI 2		Verb generation (overt, event-related) vs noun repetition (event-related)	Verb generation (overt, event-related) vs noun repetition (event-related)		Aphas	N	UNR	ROI	LI; NC	Number of ROIs: 2; ROIs: (1) frontal LI; (2) temporal LI
Allendorfer et al. (2012): ROI 3		Verb generation (overt, event-related) vs verb generation (covert, event-related)	Verb generation (overt, event-related) vs verb generation (covert, event-related)		Aphas	N	UNR	ROI	LI; NC	Behavioral data notes: patients less accurate and produced less responses on both conditions, but the difference between groups was greater for verb generation; number of ROIs: 2; ROIs: (1) frontal LI; (2) temporal LI
Allendorfer et al. (2012): ROI 4		Verb generation (overt, event-related) vs noun repetition (event-related)	Verb generation (overt, event-related) vs noun repetition (event-related)		Aphas	C	UNR	ROI	Func; NC	Behavioral data notes: overt performance differed, so covert performance probably did too; number of ROIs: 2; ROIs: (1) frontal LI; (2) temporal LI
Allendorfer et al. (2012): ROI 5		Verb generation (overt, event-related) vs verb generation (covert, event-related)	Verb generation (overt, event-related) vs verb generation (covert, event-related)		Aphas	C	UNR	ROI	Func; NC	Number of ROIs: 2; ROIs: (1) R insula/IFG; (2) R STG; how ROIs defined: prominent R hemisphere activations for the contrast of overt and covert verb generation in patients
Fridriksson, Hubbard, et al. (2012): Vox 1		Listening to/watching audiovisual sentences, while producing the same sentences in unison (speech entrainment) vs listening to reversed sentences and viewing a mouth speaking, while producing unrelated sentences	Listening to/watching audiovisual sentences, while producing the same sentences in unison (speech entrainment) vs listening to reversed sentences and viewing a mouth speaking, while producing unrelated sentences		CAC	UNR	NANT	Vox	U	Search volume: whole brain; software: FSL (FEAT 5.98); thresholding not stated

Notes: IFG LI was stable in the stimulation group, but shifted to the R in the sham group, yielding a significant difference between groups.
Fridriksson, Hubbard, et al. (2012): Vox 2

Activity	Group	Analysis	Search Parameters
Listening to/watching audiovisual sentences, while producing the same sentences in unison (speech entrainment) vs rest	LA Aphasia T2 vs T1	UNR NANT Vox U	FSL (FEAT 5.98); thresholding not stated

Notes: Some labels changed based on coordinates.

Fridriksson, Hubbard, et al. (2012): Vox 3

Activity	Group	Analysis	Search Parameters
Listening to reversed sentences and viewing a mouth speaking, while producing unrelated sentences vs rest	LA Aphasia T2 vs T1	UNR NANT Vox U	FSL (FEAT 5.98); thresholding not stated

Notes: None.

Fridriksson, Hubbard, et al. (2012): Vox 4

Activity	Group	Analysis	Search Parameters
Listening to/watching audiovisual sentences and viewing a mouth vs rest	LA Aphasia T2 vs T1	NANT UNR Vox U	FSL (FEAT 5.98); thresholding not stated

Notes: None.

Fridriksson, Hubbard, et al. (2012): ROI 1

Activity	Group	Analysis	Search Parameters
Listening to/watching audiovisual sentences, while producing the same sentences in unison (speech entrainment) vs listening to reversed sentences and viewing a mouth speaking, while producing unrelated sentences	CAC Aphasia T1 vs control	UNR NANT Func NC	Number of ROIs: 6; ROIs: (1) L anterior insula/IFG pars orbitalis; (2) R anterior insula/IFG pars orbitalis; (3) Broca’s area; (4) L MTG; (5) L BA 37; (6) R BA 37; how ROIs defined: regions activated in both groups considered together; there were no interactions of group by condition; two regions showed main effects of group but this is not pertinent to the contrast

Notes: None.

Fridriksson, Richardson, et al. (2012): ROI 1

Activity	Group	Analysis	Search Parameters	
Picture naming vs viewing abstract pictures	LC Aphasia T2 vs T1 Covariate: Δ picture naming accuracy	C UNR ROI Oth NC	Number of ROIs: 3; ROIs: (1) perilesional L hemisphere language regions; (2) perilesional L hemisphere non-language regions; (3) undamaged non-perilesional L hemisphere language regions; how ROIs defined: based on individual lesions and control activation for picture naming	Other: change in perilesional non-language regions positively correlated with improvement in accuracy

Fridriksson, Richardson, et al. (2012): ROI 2

Activity	Group	Analysis	Search Parameters	
Picture naming vs viewing abstract pictures	LC Aphasia T2 vs T1 Covariate: Δ (decrease in) semantic errors	UNR UNR ROI Oth NC	Number of ROIs: 3; ROIs: (1) perilesional L hemisphere language regions; (2) perilesional L hemisphere non-language regions; (3) undamaged non-perilesional L hemisphere language regions; how ROIs defined: based on individual lesions and control activation for picture naming	Other: change in undamaged non-perilesional language regions negatively correlated with decrease in semantic errors

Fridriksson, Picture naming vs | LC | UNR UNR ROI | Number of ROIs: 3; ROIs: (1) | Other:
Study	Task Description	Reference	ROIs	Number of ROIs	ROIs:	Search Volume	Analysis	Notes
Richardson, et al. (2012): ROI 3	Viewing abstract pictures	Aphas. T2 vs T1	Oth	NC	perilesional L hemisphere language regions; (2) perilesional L hemisphere non-language regions; (3) undamaged non-perilesional L hemisphere language regions; how ROIs defined: based on individual lesions and control activation for picture naming change in perilesional language regions, and change in undamaged non-perilesional language regions, negatively correlated with decrease in phonological paraphasias			
Fridriksson, Richardson, et al. (2012): ROI 4	Picture naming vs viewing abstract pictures	CC Aphas. T1	UNR	UNR	UNR	ROI Oth	Number of ROIs: 3; ROIs: (1) perilesional L hemisphere language regions; (2) perilesional L hemisphere non-language regions; (3) undamaged non-perilesional L hemisphere language regions; how ROIs defined: based on individual lesions and control activation for picture naming	None
Fridriksson, Richardson, et al. (2012): ROI 5	Picture naming vs viewing abstract pictures	CC Aphas. T1	UNR	UNR	UNR	ROI Oth	Number of ROIs: 3; ROIs: (1) perilesional L hemisphere language regions; (2) perilesional L hemisphere non-language regions; (3) undamaged non-perilesional L hemisphere language regions; how ROIs defined: based on individual lesions and control activation for picture naming	Other: change in perilesional language regions correlated with decrease in phonological paraphasias
Fridriksson, Richardson, et al. (2012): ROI 6	Picture naming vs viewing abstract pictures	CC Aphas. T1	UNR	UNR	UNR	ROI Oth	Number of ROIs: 3; ROIs: (1) perilesional L hemisphere language regions; (2) perilesional L hemisphere non-language regions; (3) undamaged non-perilesional L hemisphere language regions; how ROIs defined: based on individual lesions and control activation for picture naming	None
Marcotte et al. (2012): Vox 1	Picture naming (T1: known items; T2: trained items; correct trials) vs viewing scrambled images and saying "baba"	LA Aphas. T2 vs T1	YCT	UNR	YCT	Vox NDC	Search volume: whole brain; software: SPM5; qualitative comparison on p. 1780; different contrasts at different time points not clearly explained	† L supramarginal gyrus † L dorsal precentral † L posterior MTG notes: labels based on figures rather than text
Marcotte et al. (2012): Vox 2	Picture naming (known items, correct trials) vs viewing scrambled images and saying "baba"	CC Aphas. T1	YCT	UNR	YCT	Vox CA	Search volume: whole brain; software: SPM5; voxelwise p. .005; cluster extent cutoff: 10 voxels (size not stated); different contrasts at different time points not clearly explained	† L dorsolateral prefrontal cortex † L SMA/medial prefrontal † L somato-motor † L anterior cingulate † R dorsolateral prefrontal cortex † R somato-motor † R thalamus
Study Authors	Study Type	Condition 1	Condition 2	Software	Contrast	Search Volume	Notes	
---------------	------------	-------------	-------------	----------	-----------	---------------	-------	
Marcotte et al. (2012): Vox 3	Picture naming	Trained items, correct trials vs viewing scrambled images and saying "baba"	CC	Aphasiform T2	YCT	UNR	Vox	Search volume: whole brain; software: SPM5; voxelwise p: .005; cluster extent cutoff: 10 voxels (size not stated); different contrasts at different time points not clearly explained
Schofield et al. (2012): Vox 1	Listening to word pairs or reversed word pairs, speaker gender judgment vs rest	Moderate aphasia (n = 11) vs control	CAC	UNR	UNR	Vox	Search volume: whole brain; software: SPM8; voxelwise p: .001; cluster extent cutoff: none	
Schofield et al. (2012): Vox 2	Listening to word pairs or reversed word pairs, speaker gender judgment vs rest	Severe aphasia (n = 9) vs control	CAC	UNR	UNR	Vox	Search volume: whole brain; software: SPM8; voxelwise p: .001; cluster extent cutoff: none	
Schofield et al. (2012): Vox 3	Listening to word pairs or reversed word pairs, speaker gender judgment vs rest	Severe (n = 9) vs moderate (n = 11) aphasia	CAA	UNR	UNR	Vox	Search volume: whole brain; software: SPM8; voxelwise p: .001; cluster extent cutoff: none	
Wright et al. (2012): Vox 1	Listening to normal sentences and detecting a target word vs rest	Aphasia vs control	CAC	UNR	UNR	Vox	Search volume: whole brain; software: SPM5; voxelwise p: .01	
Wright et al. (2012): Cplx 1	Listening to normal sentences and detecting a target word vs rest	Aphasiform	CC	UNR	UNR	Cplx	Joint ICA was performed on structural and functional contrast images for each of the two contrasts using FIT 2.0b. Seven components were derived, of which 2 were further investigated since their loadings correlated with relevant behavioral measures. Functional components were Other: Contrast 1 loaded primarily on the R STG for component 1 (the "semantics component") and on the L ITG for	
Joint ICA was performed on structural and functional contrast images for each of the two contrasts using FIF 2.0b. Seven components were derived, of which 2 were further investigated since their loadings correlated with relevant behavioral measures. Functional components were thresholded at $p < .001$, cluster-corrected for multiple comparisons, minimum cluster extent $= 1.27$ cc. Component 1 was considered a "semantics component" because it correlated with the semantic behavioral measure and not with either of the two syntactic measures. This component did not have any anatomical aspect to it. Component 2 was considered a "syntax component" because it correlated with both syntactic behavioral measures and not with the semantic measure. This conceptualization seems somewhat speculative, given that WPE NP and WPE AP are rather indirect measures of syntactic and semantic processing. Component 2 involved damage to left frontal and insular cortex, and underlying dorsal white matter.

Wright et al. (2012): Cplx 2	Listening to grammatical but meaningless sentences and detecting a target word vs rest	CC	UNR	UNR	Cplx
Szaflarski et al. (2013): Vox 1	Semantic decision vs tone decision	CAA	AM	UNR	Vox

Joint ICA was performed on structural and functional contrast images for each of the two contrasts using FIF 2.0b. Seven components were derived, of which 2 were further investigated since their loadings correlated with relevant behavioral measures. Functional components were thresholded at $p < .001$, cluster-corrected for multiple comparisons, minimum cluster extent $= 1.27$ cc. Component 1 was considered a "semantics component" because it correlated with the semantic behavioral measure and not with either of the two syntactic measures. This component did not have any anatomical aspect to it. Component 2 was considered a "syntax component" because it correlated with both syntactic behavioral measures and not with the semantic measure. This conceptualization seems somewhat speculative, given that WPE NP and WPE AP are rather indirect measures of syntactic and semantic processing. Component 2 involved damage to left frontal and insular cortex, and underlying dorsal white matter.

Behavioral data notes: interaction of group by condition not reported; non-recovered patients were significantly less accurate only on the semantic decision condition, but they actually showed a smaller difference between conditions than the recovered patients; search volume: whole brain; software: AFNI; voxelwise $p: .05$; cluster extent cutoff: 4.16 cc; cluster-defining threshold (CDT) $p < 0.05$ too lenient.

Wright et al. (2012): Cplx 2	Listening to grammatical but meaningless sentences and detecting a target word vs rest	CC	UNR	UNR	Cplx
Szaflarski et al. (2013): Vox 1	Semantic decision vs tone decision	CAA	AM	UNR	Vox

Joint ICA was performed on structural and functional contrast images for each of the two contrasts using FIF 2.0b. Seven components were derived, of which 2 were further investigated since their loadings correlated with relevant behavioral measures. Functional components were thresholded at $p < .001$, cluster-corrected for multiple comparisons, minimum cluster extent $= 1.27$ cc. Component 1 was considered a "semantics component" because it correlated with the semantic behavioral measure and not with either of the two syntactic measures. This component did not have any anatomical aspect to it. Component 2 was considered a "syntax component" because it correlated with both syntactic behavioral measures and not with the semantic measure. This conceptualization seems somewhat speculative, given that WPE NP and WPE AP are rather indirect measures of syntactic and semantic processing. Component 2 involved damage to left frontal and insular cortex, and underlying dorsal white matter.

Behavioral data notes: interaction of group by condition not reported; non-recovered patients were significantly less accurate only on the semantic decision condition, but they actually showed a smaller difference between conditions than the recovered patients; search volume: whole brain; software: AFNI; voxelwise $p: .05$; cluster extent cutoff: 4.16 cc; cluster-defining threshold (CDT) $p < 0.05$ too lenient.

Wright et al. (2012): Cplx 2	Listening to grammatical but meaningless sentences and detecting a target word vs rest	CC	UNR	UNR	Cplx
Szaflarski et al. (2013): Vox 1	Semantic decision vs tone decision	CAA	AM	UNR	Vox

Joint ICA was performed on structural and functional contrast images for each of the two contrasts using FIF 2.0b. Seven components were derived, of which 2 were further investigated since their loadings correlated with relevant behavioral measures. Functional components were thresholded at $p < .001$, cluster-corrected for multiple comparisons, minimum cluster extent $= 1.27$ cc. Component 1 was considered a "semantics component" because it correlated with the semantic behavioral measure and not with either of the two syntactic measures. This component did not have any anatomical aspect to it. Component 2 was considered a "syntax component" because it correlated with both syntactic behavioral measures and not with the semantic measure. This conceptualization seems somewhat speculative, given that WPE NP and WPE AP are rather indirect measures of syntactic and semantic processing. Component 2 involved damage to left frontal and insular cortex, and underlying dorsal white matter.

Behavioral data notes: interaction of group by condition not reported; non-recovered patients were significantly less accurate only on the semantic decision condition, but they actually showed a smaller difference between conditions than the recovered patients; search volume: whole brain; software: AFNI; voxelwise $p: .05$; cluster extent cutoff: 4.16 cc; cluster-defining threshold (CDT) $p < 0.05$ too lenient.

Wright et al. (2012): Cplx 2	Listening to grammatical but meaningless sentences and detecting a target word vs rest	CC	UNR	UNR	Cplx
Szaflarski et al. (2013): Vox 1	Semantic decision vs tone decision	CAA	AM	UNR	Vox

Joint ICA was performed on structural and functional contrast images for each of the two contrasts using FIF 2.0b. Seven components were derived, of which 2 were further investigated since their loadings correlated with relevant behavioral measures. Functional components were thresholded at $p < .001$, cluster-corrected for multiple comparisons, minimum cluster extent $= 1.27$ cc. Component 1 was considered a "semantics component" because it correlated with the semantic behavioral measure and not with either of the two syntactic measures. This component did not have any anatomical aspect to it. Component 2 was considered a "syntax component" because it correlated with both syntactic behavioral measures and not with the semantic measure. This conceptualization seems somewhat speculative, given that WPE NP and WPE AP are rather indirect measures of syntactic and semantic processing. Component 2 involved damage to left frontal and insular cortex, and underlying dorsal white matter.

Behavioral data notes: interaction of group by condition not reported; non-recovered patients were significantly less accurate only on the semantic decision condition, but they actually showed a smaller difference between conditions than the recovered patients; search volume: whole brain; software: AFNI; voxelwise $p: .05$; cluster extent cutoff: 4.16 cc; cluster-defining threshold (CDT) $p < 0.05$ too lenient.

Wright et al. (2012): Cplx 2	Listening to grammatical but meaningless sentences and detecting a target word vs rest	CC	UNR	UNR	Cplx
Szaflarski et al. (2013): Vox 1	Semantic decision vs tone decision	CAA	AM	UNR	Vox

Joint ICA was performed on structural and functional contrast images for each of the two contrasts using FIF 2.0b. Seven components were derived, of which 2 were further investigated since their loadings correlated with relevant behavioral measures. Functional components were thresholded at $p < .001$, cluster-corrected for multiple comparisons, minimum cluster extent $= 1.27$ cc. Component 1 was considered a "semantics component" because it correlated with the semantic behavioral measure and not with either of the two syntactic measures. This component did not have any anatomical aspect to it. Component 2 was considered a "syntax component" because it correlated with both syntactic behavioral measures and not with the semantic measure. This conceptualization seems somewhat speculative, given that WPE NP and WPE AP are rather indirect measures of syntactic and semantic processing. Component 2 involved damage to left frontal and insular cortex, and underlying dorsal white matter.

Behavioral data notes: interaction of group by condition not reported; non-recovered patients were significantly less accurate only on the semantic decision condition, but they actually showed a smaller difference between conditions than the recovered patients; search volume: whole brain; software: AFNI; voxelwise $p: .05$; cluster extent cutoff: 4.16 cc; cluster-defining threshold (CDT) $p < 0.05$ too lenient.

Wright et al. (2012): Cplx 2	Listening to grammatical but meaningless sentences and detecting a target word vs rest	CC	UNR	UNR	Cplx
Szaflarski et al. (2013): Vox 1	Semantic decision vs tone decision	CAA	AM	UNR	Vox

Joint ICA was performed on structural and functional contrast images for each of the two contrasts using FIF 2.0b. Seven components were derived, of which 2 were further investigated since their loadings correlated with relevant behavioral measures. Functional components were thresholded at $p < .001$, cluster-corrected for multiple comparisons, minimum cluster extent $= 1.27$ cc. Component 1 was considered a "semantics component" because it correlated with the semantic behavioral measure and not with either of the two syntactic measures. This component did not have any anatomical aspect to it. Component 2 was considered a "syntax component" because it correlated with both syntactic behavioral measures and not with the semantic measure. This conceptualization seems somewhat speculative, given that WPE NP and WPE AP are rather indirect measures of syntactic and semantic processing. Component 2 involved damage to left frontal and insular cortex, and underlying dorsal white matter.

Behavioral data notes: interaction of group by condition not reported; non-recovered patients were significantly less accurate only on the semantic decision condition, but they actually showed a smaller difference between conditions than the recovered patients; search volume: whole brain; software: AFNI; voxelwise $p: .05$; cluster extent cutoff: 4.16 cc; cluster-defining threshold (CDT) $p < 0.05$ too lenient.

Wright et al. (2012): Cplx 2	Listening to grammatical but meaningless sentences and detecting a target word vs rest	CC	UNR	UNR	Cplx
Szaflarski et al. (2013): Vox 1	Semantic decision vs tone decision	CAA	AM	UNR	Vox

Joint ICA was performed on structural and functional contrast images for each of the two contrasts using FIF 2.0b. Seven components were derived, of which 2 were further investigated since their loadings correlated with relevant behavioral measures. Functional components were thresholded at $p < .001$, cluster-corrected for multiple comparisons, minimum cluster extent $= 1.27$ cc. Component 1 was considered a "semantics component" because it correlated with the semantic behavioral measure and not with either of the two syntactic measures. This component did not have any anatomical aspect to it. Component 2 was considered a "syntax component" because it correlated with both syntactic behavioral measures and not with the semantic measure. This conceptualization seems somewhat speculative, given that WPE NP and WPE AP are rather indirect measures of syntactic and semantic processing. Component 2 involved damage to left frontal and insular cortex, and underlying dorsal white matter.

Behavioral data notes: interaction of group by condition not reported; non-recovered patients were significantly less accurate only on the semantic decision condition, but they actually showed a smaller difference between conditions than the recovered patients; search volume: whole brain; software: AFNI; voxelwise $p: .05$; cluster extent cutoff: 4.16 cc; cluster-defining threshold (CDT) $p < 0.05$ too lenient.
Study	Condition	Control or Comparator	ROI Type	ROI Description	Number of ROIs	ROIs (Specific Regions)	Notes
Szaflarski et al. (2013): ROI 1	Semantic decision vs tone decision	CC Aphasia (recovered and non-recovered)	UNR UNR	ROI 1: (1) bilateral cerebellum; (2) R pSTG; (3) L superior parietal lobule; (4) L superior frontal gyrus; how ROIs defined: regions that were differentially recruited between recovered and non-recovered patients; average t scores from individual SPMs; circular because defined based on recovered status	4	Number of ROIs: 4; ROIs: (1) bilateral cerebellum; (2) R pSTG; (3) L superior parietal lobule; (4) L superior frontal gyrus; how ROIs defined: regions that were differentially recruited between recovered and non-recovered patients; average t scores from individual SPMs; circular because defined based on recovered status	L dorsolateral prefrontal cortex
Szaflarski et al. (2013): ROI 2	Semantic decision vs tone decision	CC Aphasia (recovered and non-recovered)	UNR UNR	ROI 2: (1) bilateral cerebellum; (2) R pSTG; (3) L superior parietal lobule; (4) L superior frontal gyrus; how ROIs defined: regions that were differentially recruited between recovered and non-recovered patients; average t scores from individual SPMs; circular because defined based on recovered status	4	Number of ROIs: 4; ROIs: (1) bilateral cerebellum; (2) R pSTG; (3) L superior parietal lobule; (4) L superior frontal gyrus; how ROIs defined: regions that were differentially recruited between recovered and non-recovered patients; average t scores from individual SPMs; circular because defined based on recovered status	L dorsolateral prefrontal cortex
Szaflarski et al. (2013): ROI 3	Semantic decision vs tone decision	CC Aphasia (recovered and non-recovered)	UNR UNR	ROI 3: (1) bilateral cerebellum; (2) R pSTG; (3) L superior parietal lobule; (4) L superior frontal gyrus; how ROIs defined: regions that were differentially recruited between recovered and non-recovered patients; average t scores from individual SPMs; circular because defined based on recovered status	4	Number of ROIs: 4; ROIs: (1) bilateral cerebellum; (2) R pSTG; (3) L superior parietal lobule; (4) L superior frontal gyrus; how ROIs defined: regions that were differentially recruited between recovered and non-recovered patients; average t scores from individual SPMs; circular because defined based on recovered status	L dorsolateral prefrontal cortex
Szaflarski et al. (2013): ROI 4	Semantic decision vs tone decision	CC Aphasia (recovered and non-recovered)	UNR UNR	ROI 4: (1) bilateral cerebellum; (2) R pSTG; (3) L superior parietal lobule; (4) L superior frontal gyrus; how ROIs defined: regions that were differentially recruited between recovered and non-recovered patients; average t scores from individual SPMs; circular because defined based on recovered status	4	Number of ROIs: 4; ROIs: (1) bilateral cerebellum; (2) R pSTG; (3) L superior parietal lobule; (4) L superior frontal gyrus; how ROIs defined: regions that were differentially recruited between recovered and non-recovered patients; average t scores from individual SPMs; circular because defined based on recovered status	L dorsolateral prefrontal cortex
Szaflarski et al. (2013): ROI 5	Semantic decision vs tone decision	CC Aphasia (recovered and non-recovered)	UNR UNR	ROI 5: (1) bilateral cerebellum; (2) R pSTG; (3) L superior parietal lobule; (4) L superior frontal gyrus; how ROIs defined: regions that were differentially recruited between recovered and non-recovered patients; average t scores from individual SPMs; circular because defined based on recovered status	4	Number of ROIs: 4; ROIs: (1) bilateral cerebellum; (2) R pSTG; (3) L superior parietal lobule; (4) L superior frontal gyrus; how ROIs defined: regions that were differentially recruited between recovered and non-recovered patients; average t scores from individual SPMs; circular because defined based on recovered status	R posterior STG
Szaflarski et al. (2013): ROI 6	Semantic decision vs tone decision	CC Aphasia (recovered and non-recovered)	C UNR	ROI 6: (1) bilateral cerebellum; (2) R pSTG; (3) L superior parietal lobule; (4) L superior frontal gyrus; how ROIs defined: regions that were differentially recruited between recovered and non-recovered patients; average t scores from individual SPMs; circular because defined based on recovered status	4	Number of ROIs: 4; ROIs: (1) bilateral cerebellum; (2) R pSTG; (3) L superior parietal lobule; (4) L superior frontal gyrus; how ROIs defined: regions that were differentially recruited between recovered and non-recovered patients; average t scores from individual SPMs; circular because defined based on recovered status	None
Thiel et al. (2013): Vox 1	Verb generation vs rest	LAA (Aphasia with rTMS (n = 13) T2 vs T1)	UNR UNR	Vox 1: Search volume: whole brain; software: SPM8; qualitative comparison on p. 2244		Search volume: whole brain; software: SPM8; qualitative comparison on p. 2244	L IFG
Study/ROI	Task	Region	Activity	Search Volume	Notes		
-----------	------	--------	----------	---------------	-------		
Thiel et al. (2013): ROI 1	Verb generation vs rest	LAA (Aphasia with rTMS (n = 13) T2 vs T1) vs (aphasia with sham (n = 11) T2 vs T1)	UNR	ROI LI One	Number of ROIs: 1; ROI: language network LI; actual LIs are not reported, only change in LI ↑ LI (language network) notes: T1 R lateralization surprising relative to other findings from this group		
Thiel et al. (2013): ROI 2	Verb generation vs rest	LC Aphasiant vs T1 Covariate: Δ AAT total score	UNR	ROI LI One	Number of ROIs: 1; ROI: language network LI; model did not include treatment group (rTMS vs sham) ↑ LI (language network) notes: patients who improved more showed a greater leftward shift of activation; T1 R lateralization surprising relative to other findings from this group		
Abel et al. (2014): Vox 1	Picture naming (all conditions) vs rest	CC Aphasiant Covariate: subsequent Δ (T2 vs T1) picture naming Somewhat valid (T1 behavioral measure should be included in model)	C	Vox CCB	Search volume: whole brain; software: SPM8; voxelwise p: .01; cluster extent cutoff: 11 voxels (size not stated) ↑ L IFG pars opercularis ↑ R basal ganglia		
Abel et al. (2014): Vox 2	Picture naming (all conditions) vs rest	LC Aphasiant Covariate: Δ picture naming accuracy	C	Vox CCB	Search volume: whole brain; software: SPM8; voxelwise p: .01; cluster extent cutoff: 11 voxels (size not stated) ↑ L somato-motor ↑ L inferior parietal lobule ↑ L supramarginal gyrus ↑ L posterior STS ↑ L posterior MTG ↑ L occipital		
Abel et al. (2014): Vox 3	Picture naming (trained items) vs picture naming (untrained items)	LA Aphasiant	N	Vox CCB	Behavioral data notes: trained items improved more than untrained items; search volume: whole brain; software: SPM8; voxelwise p: .01; cluster extent cutoff: 11 voxels (size not stated) ↑ L precuneus ↑ L posterior STG ↑ L Heschl's gyrus ↑ L mid temporal ↑ L posterior cingulate ↑ L thalamus ↑ R ventral precentral/inferior frontal junction ↑ R somato-motor ↑ R Heschl's gyrus ↑ R posterior cingulate ↑ R thalamus ↑ R basal ganglia		
Abel et al.	Picture naming	LA	Y	Vox	Behavioral data notes: no differential ↑ R superior		
Reference	Type	Control	Design	Imaging Parameters	Region of Interest (s)	Notes	
-----------	------	---------	--------	--------------------	------------------------	-------	
Abel et al. (2014): Vox 4	(semantic trained items) vs picture naming (phonological trained items)	Aphasia T2 vs T1	CCTB	effects for semantic vs phonological trained items; search volume: whole brain; software: SPM8; voxelwise p: .01; cluster extent cutoff: 11 voxels (size not stated)	parietal ↓ L dorsolateral prefrontal cortex ↓ L somato-motor ↓ L occipital ↓ L anterior cingulate ↓ L posterior cingulate ↓ R precuneus ↓ R occipital ↓ R anterior cingulate ↓ R posterior cingulate ↓ R hippocampus/MTL		
Abel et al. (2014): Vox 5	Picture naming (all conditions) vs rest	CAA Aphasia with semantic impairment T1 (n = 8) vs with phonological impairment T1 (n = 6)	UNR UNR Vox CCTB	Search volume: whole brain; software: SPM8; voxelwise p: .01; cluster extent cutoff: 11 voxels (size not stated)	R IFG pars triangularis ↑ R dorsolateral prefrontal cortex		
Abel et al. (2014): Vox 6	Picture naming (all conditions) vs rest	LAA Aphasia with semantic impairment (n = 8) T2 vs T1 vs (aphasia with phonological impairment (n = 6) T2 vs T1)	N UNR Vox CCTB	Behavioral data notes: phonological patients showed more improvement on trained items; search volume: whole brain; software: SPM8; voxelwise p:.01; cluster extent cutoff: 11 voxels (size not stated)	L somato-motor ↑ L Heschl's gyrus ↑ L anterior temporal ↑ L occipital ↑ L thalamus ↑ L basal ganglia ↑ R somato-motor ↑ R IFG pars opercularis		
Abel et al. (2014): Vox 7	Picture naming (all conditions) vs rest	LA Aphasia with semantic impairment (n = 8) T2 vs T1	N UNR Vox CCTB	Search volume: whole brain; software: SPM8; voxelwise p: .01; cluster extent cutoff: 11 voxels (size not stated)	L basal ganglia		
Abel et al. (2014): Vox 8	Picture naming (all conditions) vs rest	LA Aphasia with phonological impairment (n = 6) T2 vs T1	N UNR Vox CCTB	Search volume: whole brain; software: SPM8; voxelwise p: .01; cluster extent cutoff: 11 voxels (size not stated)	None		
Benjamin et al. (2014): ROI 1	Word generation vs rest	LA Aphasia with intention treatment (n = 7) T2 vs T1	UNR UNR ROI LI NC	Number of ROIs: 3; ROIs: (1) lateral frontal Lt; (2) medial frontal Lt; (3) posterior perisylvian Lt	↓ Lt (frontal) notes: laterality shift for lateral frontal Lt, not medial frontal Lt		
Benjamin et al. (2014): ROI 2	Word generation vs rest	LA Aphasia with intention treatment (n = 6) T3 vs T1	UNR UNR ROI LI NC	Number of ROIs: 3; ROIs: (1) lateral frontal Lt; (2) medial frontal Lt; (3) posterior perisylvian Lt	↓ Lt (frontal) notes: laterality shift for both lateral and medial frontal LIs		
Benjamin et al. (2014): ROI 3	Word generation vs rest	LA Aphasia with control treatment (n = 7) T2 vs T1	UNR UNR ROI LI NC	Number of ROIs: 3; ROIs: (1) lateral frontal Lt; (2) medial frontal Lt; (3) posterior perisylvian Lt	None		
Benjamin et al. (2014): ROI 4	Word generation vs rest	LA Aphasia with control treatment (n = 7) T3 vs T1	UNR UNR ROI LI NC	Number of ROIs: 3; ROIs: (1) lateral frontal Lt; (2) medial frontal Lt; (3) posterior perisylvian Lt	None		
Benjamin	Word generation	LC	UNR UNR ROI	Number of ROIs: 3; ROIs: (1) lateral	↓ Lt (temporal)		
Study	ROI	Task	Control Group	Treatment Group	Timepoints	Covariates	ROIs Comment
---	-----	-------------------------------	---------------	----------------	------------	-------------	--------------
et al. (2014): ROI 5		Aphasia with intention treatment (n = 7) T2 vs T1	LI	NC	front Li; (2) medial frontal Li; (3) posterior perisylvian Li		
Benjamin et al. (2014): ROI 6		Word generation vs rest	UNR	UNR	ROI Li NC	Number of ROIs: 3; ROIs: (1) lateral frontal Li; (2) medial frontal Li; (3) posterior perisylvian Li	None
Benjamin et al. (2014): ROI 7		Word generation vs rest	UNR	UNR	ROI Li NC	Number of ROIs: 3; ROIs: (1) lateral frontal Li; (2) medial frontal Li; (3) posterior perisylvian Li	None
Benjamin et al. (2014): ROI 8		Word generation vs rest	UNR	UNR	ROI Li NC	Number of ROIs: 3; ROIs: (1) lateral frontal Li; (2) medial frontal Li; (3) posterior perisylvian Li	None
Brownsett et al. (2014): Vox 1		Listening to sentences vs listening to segmented white noise	N	NANT	Vox C-	Behavioral data notes: significant difference in accuracy of subsequent repetition; search volume: whole brain; software: FSL (FEAT 5.98); voxelwise p: ~.01 (z > 2.3); cluster extent cutoff: based on GRFT	↑ L insula
↑ L anterior cingulate							
↑ R insula							
↑ R anterior cingulate							
↑ L SMA/medial prefrontal							
↑ L precuneus							
↑ L posterior cingulate							
↑ R SMA/medial prefrontal							
↑ R precuneus							
↑ R posterior cingulate							
Notes: findings are approximate since description is partially in terms of networks; at the earlier time point only, patients also showed reduced activity in left ventral prefrontal cortex and right medial planum temporale							
Brownsett et al. (2014): Vox 2		Listening to sentences (patients) or listening to noise vouched sentences (controls) vs CAC Aphasia (T2 and T3) vs control (T1 and T2)	Y	NANT	Vox C-	Behavioral data notes: no significant difference in accuracy of subsequent repetition; search volume: whole brain; software: FSL (FEAT 5.98); voxelwise p: ~.01 (z > 2.3); cluster extent cutoff: based on GRFT	None
Study (Author Year)	Task	Contrast	Control Condition	Method	Search Volume	Software	Cluster Extent
---------------------	------	----------	-------------------	--------	---------------	----------	---------------
Listening to segmented white noise	Brownsett et al. (2014): ROI 1	Listening to sentences vs listening to segmented white noise	CC	Aphasica mean of T1, T2, T3 Covariate: picture description score (CAT), mean of T1, T2, T3	UNR NANT ROI Func One	Behavioral data notes: referring to accuracy of subsequent repetition; correlation with picture description is not reported; number of ROIs: 1; ROI: dorsal anterior cingulate cortex/midline superior frontal gyrus; how ROI defined: contrast of listening to vocoded speech and listening to normal speech in controls; same result obtained with age and lesion volume included in the model	↑ L SMA/medial prefrontal ↑ L anterior cingulate ↑ R SMA/medial prefrontal ↑ R anterior cingulate
Listening to sentences and making a plausibility judgment vs listening to reversed speech	Mattioli et al. (2014): Vox 1	Listening to sentences and making a plausibility judgment vs listening to reversed speech	CAA	Aphasia treated T2 (n = 6) vs untreated T2 (n = 6) Somewhat valid (groups were different but not due to treatment)	Y UNR Vox CA	Search volume: whole brain; software: BrainVoyager QX 1.9; voxelwise p: .001; cluster extent cutoff: 0.16 cc; methods report cluster extent threshold (we assume this was done), but figure caption states uncorrected	↑ L IFG pars opercularis ↑ L IFG pars triangularis ↑ L SMA/medial prefrontal ↑ L angular gyrus ↑ R ventral precentral/inferior frontal junction ↑ R supramarginal gyrus
Listening to sentences and making a plausibility judgment vs listening to reversed speech	Mattioli et al. (2014): Vox 2	Listening to sentences and making a plausibility judgment vs listening to reversed speech	CAA	Aphasia treated T3 (n = 6) vs untreated T3 (n = 6) Somewhat valid (groups were different but not due to treatment)	Y UNR Vox CA	Search volume: whole brain; software: BrainVoyager QX 1.9; voxelwise p: .001; cluster extent cutoff: 0.16 cc; methods report cluster extent threshold (we assume this was done), but figure caption states uncorrected	↑ L IFG pars triangularis ↑ L insula ↑ L supramarginal gyrus
Listening to sentences and making a plausibility judgment vs listening to reversed speech	Mattioli et al. (2014): Vox 3	Listening to sentences and making a plausibility judgment vs listening to reversed speech	LAA	(Aphasia treated (n = 6) T2 vs T1) vs (untreated (n = 6) T2 vs T1) Somewhat valid (no treatment effect)	Y UNR Vox NDC	Search volume: whole brain; software: BrainVoyager QX 1.9; qualitative comparison on p. 548	↑ L IFG ↑ R posterior STG ↑ L inferior parietal lobule ↑ R IFG
Listening to sentences and making a plausibility judgment vs	Mattioli et al. (2014): Vox 4	Listening to sentences and making a plausibility judgment vs	LAA	(Aphasia treated (n = 6) T3 vs T2) vs (untreated (n = 6) T3 vs T2)	Y UNR Vox NDC	Search volume: whole brain; software: BrainVoyager QX 1.9; qualitative comparison on p. 548	None
Study: Mattioli et al. (2014)	ROI	Experimental Design	Language Area	Number of ROIs	ROIs	How ROIs defined	Notes
--------------------------------	-----	---------------------	---------------	----------------	------	-----------------	-------
Listening to sentences and making a plausibility judgment vs listening to reversed speech	**VA**	Aphasias (n = 6) T2 vs T1	Y UNR	Vox NC	Number of ROIs: 4; ROIs: (1) L IFG; (2) R IFG; (3) L STG; (4) R STG; how ROIs defined: based on functional data from patients and controls, but details not stated; a different set of ROIs are mentioned in the results so it is not really clear which set were actually used	∧ L IFG notes; interaction of time by treatment: treated group showed greater L IFG activity at T2	
Listening to reversed speech	Somewhat valid (no treatment effect)	Increases in L hemisphere language areas					
Listening to sentences and making a plausibility judgment vs listening to reversed speech	LA	Aphasias treated (n = 6) T2 vs T1	Y UNR	Vox NC	Number of ROIs: 4; ROIs: (1) L IFG; (2) R IFG; (3) L STG; (4) R STG; how ROIs defined: based on functional data from patients and controls, but details not stated; a different set of ROIs are mentioned in the results so it is not really clear which set were actually used		
Listening to sentences and making a plausibility judgment vs listening to reversed speech	LA	Aphasias untreated (n = 6) T2 vs T1	Y UNR	Vox NC	Number of ROIs: 4; ROIs: (1) L IFG; (2) R IFG; (3) L STG; (4) R STG; how ROIs defined: based on functional data from patients and controls, but details not stated; a different set of ROIs are mentioned in the results so it is not really clear which set were actually used		
Listening to sentences and making a plausibility judgment vs listening to reversed speech	LA	Aphasias treated (n = 6) T3 vs T2	Y UNR	Vox NC	Number of ROIs: 4; ROIs: (1) L IFG; (2) R IFG; (3) L STG; (4) R STG; how ROIs defined: based on functional data from patients and controls, but details not stated; a different set of ROIs are mentioned in the results so it is not really clear which set were actually used		
Listening to sentences and making a plausibility judgment vs listening to reversed speech	LA	Aphasias untreated (n = 6) T3 vs T2	Y UNR	Vox NC	Number of ROIs: 4; ROIs: (1) L IFG; (2) R IFG; (3) L STG; (4) R STG; how ROIs defined: based on functional data from patients and controls, but details not stated; a different set of ROIs are mentioned in the results so it is not really clear which set were actually used		
Listening to sentences and making a plausibility judgment vs listening to reversed speech	LA	(Aphasias treated (n = 6) T1 ≠ T2 ≠ T3) vs (untreated (n = 6) T1 ≠ T2 ≠ T3) Somewhat valid (no treatment effect)	Y UNR	ROI Func NC	Number of ROIs: 4; ROIs: (1) L IFG; (2) R IFG; (3) L STG; (4) R STG; how ROIs defined: based on functional data from patients and controls, but details not stated; a different set of ROIs are mentioned in the results so it is not really clear which set were actually used		
Listening to sentences and making a plausibility judgment vs listening to reversed speech	LC	Aphasias treated (n = 6) T2 vs T1 Covariate: Δ written language (AAT)	Y UNR	ROI Func NC	Number of ROIs: 4; ROIs: (1) L IFG; (2) R IFG; (3) L STG; (4) R STG; how ROIs defined: based on functional data from patients and controls, but details not stated; a different set of ROIs are mentioned in the results so it is not really clear which set were actually used		
Listening to sentences and making a plausibility judgment vs listening to reversed speech	LC	Aphasias treated (n = 6) T2 vs T1 Covariate: Δ naming (AAT)	Y UNR	ROI Func NC	Number of ROIs: 4; ROIs: (1) L IFG; (2) R IFG; (3) L STG; (4) R STG; how ROIs defined: based on functional data from patients and controls, but details not stated; a different set of ROIs are mentioned in the results so it is not really clear which set were actually used		
Study	Condition	ROI	Notes				
-------	-----------	-----	-------				
Mattioli et al. (2014): ROI 4	Listening to sentences and making a plausibility judgment vs listening to reversed speech	LC	Aphasiallpic untreated (n = 6) T2 vs T1 Covariate: Δ written language (AAT)	Y	UNR	ROI Func NC	Number of ROIs: 4; ROIs: (1) L IFG; (2) R IFG; (3) L STG; (4) R STG; how ROIs defined: based on functional data from patients and controls, but details not stated; a different set of ROIs are mentioned in the results so it is not really clear which set were actually used
Mattioli et al. (2014): ROI 5	Listening to sentences and making a plausibility judgment vs listening to reversed speech	LC	Aphasiallpic untreated (n = 6) T2 vs T1 Covariate: Δ naming (AAT)	Y	UNR	ROI Func NC	Number of ROIs: 4; ROIs: (1) L IFG; (2) R IFG; (3) L STG; (4) R STG; how ROIs defined: based on functional data from patients and controls, but details not stated; a different set of ROIs are mentioned in the results so it is not really clear which set were actually used
Mohr et al. (2014): Vox 1	Listening to sentences (high and low ambiguity) vs listening to signal-correlated noise	LA	Aphasiallpic T2 vs T1	NANB NANT Vox NDC	Search volume: whole brain; software: SPM8; qualitative generalization across individuals on pp. 8-9	None	
Mohr et al. (2014): ROI 1	Listening to high ambiguity sentences vs listening to low ambiguity sentences	LA	Aphasiallpic T2 vs T1	NANB NANT ROI Func NC	Number of ROIs: 4; ROIs: (1) L IFG; (2) R IFG; (3) L ITG; (4) R ITG; the temporal ROIs are described as STG but they seem to be in the ITG; how ROIs defined: defined based on control data from Rodd et al. (2005) but the coordinates do not match so it is not clear exactly how they were defined; ANOVA of timepoint by hemisphere by site, with a significant interaction of timepoint by hemisphere	↑ R IFG ↑ R posterior inferior temporal gyrus/fusiform gyrus notes: all signal changes were negative (i.e. less activation for ambiguous sentences), making interpretation challenging	
Robson et al. (2014): Vox 1	Semantic decision (written word and picture) vs visual decision and rest	CAC	Aphasiallpic vs control	N N Vox CA	Behavioral data notes: patients also less accurate on control condition, but control condition includes rest so coded based on language condition only; search volume: whole brain; software: SPM8; voxelwise p: .005; cluster extent cutoff: 4 voxels (size not stated); dual baseline computation not explained	↑ L IFG pars orbitalis ↑ L mid temporal ↑ L anterior temporal ↑ L cerebellum ↑ L hippocampus/MTL ↑ R mid temporal ↑ R anterior temporal ↑ R posterior inferior temporal gyrus/fusiform gyrus ↑ R cerebellum ↑ R hippocampus/MTL ↑ R posterior cingulate	
Robson et al. (2014): ROI 1	Semantic decision (written word and picture) vs visual decision and rest	CAC	Aphasiallpic vs control	N N ROI Func NC	Behavioral data notes: patients also less accurate on control condition, but control condition includes rest so	↑ L anterior temporal ↑ L posterior	
Study	Task Comparison	ROI Count	ROIs	Notes			
--------------------------------	--	-----------	--	--			
Szafierski et al. (2014): Vox 1	Verb generation vs finger tapping	10	(1) L anterior fusiform gyrus; (2) L temporal pole; (3) L anterior STS; (4) L IFG; (5) L ventral occipito-temporal; (6-10) homotopic counterparts; how ROIs defined: spheres around functional peaks from literature; dual baseline computation not explained	Inferior temporal gyrus/fusiform gyrus ↑ R posterior inferior temporal gyrus/fusiform gyrus			
van Hees et al. (2014): Vox 1	Picture naming (phonological trained items, correct trials) vs viewing scrambled images	3	(1) frontal LI; (2) temporal LI; (3) language network LI	L inferior parietal lobule ↓ L superior parietal ↓ L posterior STG/STS/MTG ↓ L occipital ↑ R occipital			
van Hees et al. (2014): Vox 2	Picture naming (semantic trained items, correct trials) vs viewing scrambled images	3	(1) frontal LI; (2) temporal LI; (3) language network LI	L LI (language network) ↓ LI (frontal) notes: temporal LI was also marginally significantly reduced (p = .08)			
van Hees et al. (2014): Vox 3	Picture naming (phonological trained items, correct trials) vs viewing scrambled images	3	(1) frontal LI; (2) temporal LI; (3) language network LI	L basal ganglia ↑ L supramarginal gyrus ↑ R precuneus			
van Hees et al. (2014): Vox 1	Picture naming	3	(1) temporal LI; (2) language network LI	None			
Study	Vox	Design	Analysis	Search Volume	Software	Cluster Cutoff	
-------------------------------	-----	--	----------	---------------	----------------	----------------	
Abel et al. (2015): Vox 1	N	Picture naming vs rest	N	LA	SPM8	11 voxels	
van Hees et al. (2014): Vox 4		(semantic trained items, correct trials) vs viewing scrambled images			AFNI	0.999 cc	
van Hees et al. (2014): Vox 5		Picture naming (phonological trained items, correct trials) vs viewing scrambled images			AFNI	0.999 cc	
van Hees et al. (2014): Vox 6		Picture naming (semantic trained items, correct trials) vs viewing scrambled images			AFNI	0.999 cc	
van Hees et al. (2014): Vox 7		Picture naming (phonological trained items, correct trials) vs viewing scrambled images			AFNI	0.999 cc	
van Hees et al. (2014): Vox 8		Picture naming (semantic trained items, correct trials) vs viewing scrambled images			AFNI	0.999 cc	
		ApHasia T2 Covariate: previous Δ (T2 vs T1) picture naming (semantic treated items) Not valid (T2 activation not an appropriate measure of treatment-induced recovery because it reflects T2 performance)					
		Covariate: subsequent outcome (T2) picture naming Not valid (not appropriate to correlate T1 imaging with T2 behavior without T1 behavior in model)					
		Covariate: picture naming T2					
		Search volume: whole brain; software: AFNI; voxelwise p: 0.005; cluster extent cutoff: 0.999 cc					
		Behavioral data notes: RT shorter at T2; search volume: whole brain; software: SPM8; voxelwise p: 0.01; cluster extent cutoff: 11 voxels (size not stated)					
Study	Task Description	Contrast	AM	N	Vox	Behavioral Data Notes	
---------------	----------------------------	-------------------------------	----	----	-----	--	
Abel et al.	Picture naming vs rest	CAC	AM	N	Vox	Behavioral data notes: controls responded more quickly; search volume: whole brain; software: SPM8; voxelwise p: .01; cluster extent cutoff: 11 voxels (size not stated)	
(2015): Vox 2		Aphasia T1 vs control T1					
		L cerebellum					
		R SMA/medial prefrontal					
		R somato-motor					
		R precuneus					
		R posterior STS					
		R posterior MTG					
		R posterior cingulate					
		R cerebellum					
		R thalamus					
		R hippocampus/MTL					
		R precuneus					
		L somato-motor					
		L Heschl’s gyrus					
		L anterior cingulate					
		L posterior cingulate					
		L thalamus					
		L basal ganglia					
		R insula					
		R somato-motor					
		R mid temporal					
		R anterior cingulate					
		R posterior STS					
		R posterior MTG					
		R posterior cingulate					
		R thalamus					
		R hippocampus/MTL					
		None				Behavioral data notes: RT not reported for controls; search volume: whole brain; software: SPM8; voxelwise p: .01; cluster extent cutoff: 11 voxels (size not stated)	
Abel et al.	Picture naming vs rest	LAC	AM	UNR	Vox	Behavioral data notes: RT not reported for controls; search volume: whole brain; software: SPM8; voxelwise p: .01; cluster extent cutoff: 11 voxels (size not stated)	
(2015): Vox 3		Aphasia T2 vs T1					
		(control T2 vs T1)					
		L cerebellum					
		R SMA/medial prefrontal					
		R somato-motor					
		R precuneus					
		R posterior STS					
		R posterior MTG					
		R posterior cingulate					
		R cerebellum					
		R thalamus					
		R hippocampus/MTL					
		L cerebellum					
		R SMA/medial prefrontal					
		R somato-motor					
		R precuneus					
		R posterior STS					
		R posterior MTG					
		R posterior cingulate					
		R cerebellum					
		R thalamus					
		R hippocampus/MTL					
		None				Behavioral data notes: RT not reported for controls; search volume: whole brain; software: SPM8; voxelwise p: .01; cluster extent cutoff: 11 voxels (size not stated)	
Abel et al.	Picture naming vs rest	CAC	AM	UNR	Vox	Behavioral data notes: RT not reported for controls; search volume: whole brain; software: SPM8; voxelwise p: .01; cluster extent cutoff: 11 voxels (size not stated)	
(2015): Vox 4		Aphasia T1 vs control T1					
		L cerebellum					
		R SMA/medial prefrontal					
		R somato-motor					
		R precuneus					
		R posterior STS					
		R posterior MTG					
		R posterior cingulate					
		R cerebellum					
		R thalamus					
		R hippocampus/MTL					
		None				Behavioral data notes: RT not reported for controls; search volume: whole brain; software: SPM8; voxelwise p: .01; cluster extent cutoff: 11 voxels (size not stated)	
Abel et al.	Picture naming vs rest	CAC	N	UNR	Cplx	Behavioral data notes: RT not reported for controls; Joint ICA was performed on structural and functional contrast images using FIT 1.2c. Three of the 7 components differed between groups in their loadings. Components were thresholded at z > 3.09, not corrected for multiple comparisons.	
(2015): Cplx 1		Aphasia vs control					
		L cerebellum					
		R SMA/medial prefrontal					
		R somato-motor					
		R precuneus					
		R posterior STS					
		R posterior MTG					
		R posterior cingulate					
		R cerebellum					
		R thalamus					
		R hippocampus/MTL					
		L cerebellum					
		R SMA/medial prefrontal					
		R somato-motor					
		R precuneus					
		R posterior STS					
		R posterior MTG					
		R posterior cingulate					
		R cerebellum					
		R thalamus					
		R hippocampus/MTL					
		None				Behavioral data notes: RT not reported for controls; Joint ICA was performed on structural and functional contrast images using FIT 1.2c. Three of the 7 components differed between groups in their loadings. Components were thresholded at z > 3.09, not corrected for multiple comparisons.	
		None				None notes: the time course of response is stated to be similar in patients and controls, however the response in patients appears like it could be a couple of seconds slower	
		None				Other: Three structural-functional components are described in Figure 5 and Table 4. Functional activations are generally small and do not obviously relate to	
Authors	Task Description	Search Volume: Whole Brain; Software: SPM8; Analyses were carried out in individual patients at p < .001, uncorrected; Regions were considered activated when they were found in 6 or more (out of 8) patients	Notes: Regions are approximate since only broad regions are described in Table 6				
------------------	---	---	--				
Kiran et al. (2015): Vox 1	Picture naming (trained) vs viewing scrambled images and saying “skip”	L IFG ↑ L dorsolateral prefrontal cortex ↑ L ventral precentral/inferior frontal junction ↑ L dorsal precentral ↑ L SMA/medial prefrontal ↑ L supramarginal gyrus ↑ L angular gyrus ↑ L posterior MTG ↑ R IFG ↑ R dorsolateral prefrontal cortex ↑ R SMA/medial prefrontal ↑ R supramarginal gyrus ↑ R posterior STG ↑ R posterior MTG ↑ R posterior inferior temporal gyrus/fusiform gyrus					
Kiran et al. (2015): Vox 2	Semantic feature decision vs visual decision	L ventral precentral/inferior frontal junction ↑ L dorsal precentral ↑ L posterior MTG ↑ R IFG ↑ R dorsolateral prefrontal cortex ↑ R SMA/medial prefrontal ↑ R angular gyrus ↑ R posterior STG ↑ R posterior MTG ↑ R posterior inferior temporal gyrus/fusiform gyrus					
Sandberg	Concreteness	Y	Y				

Notes: Regions are approximate since only broad regions are described in Table 6.
Authors	Task Description	Subject Group	Control Group	Analysis Details
et al. (2015): Vox 1	Judgment (abstract words, correct trials) vs rest	Aphasia with response to treatment (n = 9) T2 vs T1	NC	SPM8; voxelwise p: .001; cluster extent cutoff: none; images show peaks instead of activations
Sandberg et al. (2015): Vox 2	Concreteness judgment (concrete words, correct trials) vs rest	LA Aphasia with generalization of treatment effects to concrete words (n = 7) T2 vs T1	Y Y Vox NC	Search volume: whole brain; software: SPM8; voxelwise p: .001; cluster extent cutoff: none; images show peaks instead of activations
Geranmayeh et al. (2016): ROI 1	Propositional speech production vs rest	CAC Aphasia vs control	N UNR ROI Func NC	Behavioral data notes: difference in AICW/trial; number of ROIs: 4; ROIs: (1) L fronto-temporo-parietal network; (2) R fronto-temporo-parietal network; (3) cingulo-oculcular network; (4) default mode network; how ROIs defined: identified using ICA in controls; circular because ROIs defined in one group
Geranmayeh et al. (2016): ROI 2	Propositional speech production vs counting	CAC Aphasia vs control	N UNR ROI Func NC	Behavioral data notes: difference in AICW/trial; number of ROIs: 4; ROIs: (1) L fronto-temporo-parietal network; (2) R fronto-temporo-parietal network; (3) cingulo-oculcular network; (4) default mode network; how ROIs defined: identified using ICA in controls; circular because ROIs defined in one group

Opercularis
- ↑ L dorsolateral prefrontal cortex
- ↑ L SMA/medial prefrontal
- ↑ L inferior parietal lobe
- ↑ L supramarginal gyrus
- ↑ L angular gyrus
- ↑ L precuneus
- ↑ L posterior inferior temporal gyrus/fusiform gyrus
- ↑ L posterior cingulate
- ↑ L basal ganglia
- ↑ R orbitofrontal
- ↑ R supramarginal gyrus
- ↑ R angular gyrus
- ↑ R anterior temporal
- ↑ R occipital

Opercularis
- ↓ L IFG
- ↓ L inferior parietal lobule
- ↓ L precuneus
- ↓ L occipital
- ↑ R dorsolateral prefrontal cortex
- ↑ R ventral precentral/inferior frontal junction
- ↑ R posterior STG
- ↑ R posterior cingulate

Cingulate
- ↑ L insula
- ↑ L posterior inferior parietal lobule
- ↑ L supramarginal gyrus
- ↑ L anterior cingulate
- ↑ L occipital
- ↓ R insula
- ↓ R anterior cingulate
- ↓ L IFG
- ↓ L posterior inferior parietal lobule
- ↓ L posterior inferior temporal gyrus/fusiform gyrus

Parietal
- ↑ L insula
- ↑ L anterior cingulate
- ↑ L posterior inferior parietal lobule
- ↓ R insula
- ↓ R anterior cingulate
- ↓ L IFG
- ↓ L posterior inferior temporal gyrus/fusiform gyrus

Occipital
- ↑ L insula
- ↑ L anterior cingulate
- ↑ L posterior inferior parietal lobule
- ↓ R insula
- ↓ R anterior cingulate
- ↓ L IFG
- ↓ L posterior inferior temporal gyrus/fusiform gyrus
Geranmayeh et al. (2016): ROI 3
Propositional speech production vs target decision
CAC Aphasia vs control
N UNR ROI Func NC
Behavioral data notes: difference in AICW/trial; number of ROIs: 4; ROIs: (1) L fronto-temporo-parietal network; (2) R fronto-temporo-parietal network; (3) cingulo-opercular network; (4) default mode network; how ROIs defined: identified using ICA in controls; circular because ROIs defined in one group

Geranmayeh et al. (2016): Cplx 1
Propositional speech production vs rest
CAC Aphasia vs control
N UNR Cplx
Behavioral data notes: difference in AICW/trial; Activity was compared between pairs of ICA-derived networks. However, circularity was introduced because the networks were defined based on the control group.
Other: Patients showed greater differential activation than controls between (1) L fronto-temporo-parietal network and the DMN; (2) R fronto-temporo-parietal network and the DMN; (3) cingulo-opercular network and the DMN.

Geranmayeh et al. (2016): Cplx 2
Propositional speech production vs rest
CC Aphasia Covariate: appropriate information-carrying words
C UNR Cplx
Multiple regression was used to determine whether differential activation between networks was predictive of the behavioral measure: appropriate information-carrying words. There is no issue of circularity with this analysis since it involved only individuals with aphasia.
Other: Differential activation between L fronto-temporo-parietal network and the DMN was positively correlated with AICW. Differential activation between R fronto-temporo-parietal network and the DMN was negatively correlated with AICW.

Geranmayeh et al. (2016): Cplx 3
Propositional speech production vs rest
CAC Aphasia vs control
N UNR Cplx
Behavioral data notes: difference in AICW/trial; PPI analyses were used to investigate how the speech condition modulated functional connectivity between (1) L fronto-temporo-parietal network and the DMN; (2) R fronto-temporo-parietal network and the DMN. However, circularity was introduced because the networks were defined based on the control group.
Other: In controls, the L FTP network reduced connectivity with the DMN during speech, while the R FTP network increased connectivity with the DMN during speech. Both of these interactions were significantly decreased in patients. This was also true for contrasts 2 and 3.

Griffis et al. (2016): Vox 1
Verb generation vs finger tapping
LA Aphasia T2 vs T1 Somewhat valid (patients improved
UNR UNR Vox NC
Search volume: whole brain; software: SPM12; voxelwise p: .001; cluster extent cutoff: none
† L IFG pars opercularis
† R cerebellum
† R thalamus
† R anterior
Study	Type of Analysis	Description	Number of ROIs	ROIs Defined	Covariates	Other Notes
Griffis et al. (2016): ROI 1	Verb generation vs finger tapping	LA Aphasia T2 vs T1 Somewhat valid (patients improved only on semantic fluency)	UNR UNR	ROI Mix FDR	Number of ROIs: 3; ROIs: (1) L IFG; (2) R IFG; (3) frontal LI; how ROIs defined: first principal component of 8 mm spheres defined based on previously reported control peaks; lesion volume included in model	temporal ↓ R cerebellum notes: based on description in text; it is noted that no regions survived FDR correction
Griffis et al. (2016): ROI 2	Verb generation vs finger tapping	LC Aphasia T2 vs T1 Covariate: Δ semantic fluency Somewhat valid (patients improved only on semantic fluency)	UNR UNR	ROI Mix FDR	Number of ROIs: 3; ROIs: (1) L IFG; (2) R IFG; (3) frontal LI; how ROIs defined: first principal component of 8 mm spheres defined based on previously reported control peaks; lesion volume included in model	↓ L IFG ↓ R IFG ↑ LI (frontal)
Griffis et al. (2016): Cplx 1	Verb generation vs finger tapping	LA Aphasia T2 vs T1 Somewhat valid (patients improved only on semantic fluency)	UNR UNR	Cplx	PPI analyses were used to investigate change over time in modulation by verb generation of functional connectivity between L IFG and R IFG.	Other: There was a significant decrease in modulation by verb generation of functional connectivity between L IFG and R IFG (p = 0.03). Prior to TMS, connectivity increased during verb generation compared to finger tapping, while after TMS, connectivity decreased during verb generation compared to finger tapping.
Griffis et al. (2016): Cplx 2	Verb generation vs finger tapping	LC Aphasia T2 vs T1 Covariate: Δ semantic fluency in association with modulation of interhemispheric IFG connectivity by verb generation Somewhat valid (patients improved only on semantic fluency)	UNR UNR	Cplx	PPI analyses were used to investigate whether change over time in modulation by verb generation of functional connectivity between L IFG and R IFG was associated with changes in semantic fluency scores, which are limited as a measure of language improvement.	None
Griffis et al. (2016): Cplx 3	Verb generation vs finger tapping	LA Aphasia T2 vs T1 Somewhat valid (patients improved only on semantic fluency)	UNR UNR	Cplx	PPI analyses were used to investigate change over time in modulation by verb generation of functional connectivity between R IFG and all other brain regions. Voxelwise p < .001, not corrected for multiple comparisons.	Other: Reduced connectivity was observed in the L IFG pars opercularis, L anterior temporal
Sims et al. (2016): ROI 1	Semantic feature decision (6 patients, 4 controls) or semantic relatedness decision (8 patients, 4 controls) vs visual decision or pseudoword identity decision	CC Aphasia Covariate: semantic feature decision accuracy	C UNR ROI Anat NC	Number of ROIs: 16; ROIs: (1) L IFG pars orbitalis; (2) L IFG pars opercularis; (3) L IFG pars triangularis; (4) L SFG; (5) L MFG; (6) L MTG; (7) L AG/SMG; (8) L ACC; (9-16) homotopic counterparts; how ROIs defined: AAL	\[↑\] L IFG pars opercularis \[↑\] L IFG pars triangularis	
Sims et al. (2016): ROI 2	Semantic feature decision (6 patients, 4 controls) or semantic relatedness decision (8 patients, 4 controls) vs visual decision or pseudoword identity decision	CC Aphasia Covariate: WAB AQ	UNR UNR ROI Anat NC	Number of ROIs: 16; ROIs: (1) L IFG pars orbitalis; (2) L IFG pars opercularis; (3) L IFG pars triangularis; (4) L SFG; (5) L MFG; (6) L MTG; (7) L AG/SMG; (8) L ACC; (9-16) homotopic counterparts; how ROIs defined: AAL	None	
Sims et al. (2016): ROI 3	Semantic feature decision (6 patients, 4 controls) or semantic relatedness decision (8 patients, 4 controls) vs visual decision or pseudoword identity decision	CC Aphasia Covariate: BNT	UNR UNR ROI Anat NC	Number of ROIs: 16; ROIs: (1) L IFG pars orbitalis; (2) L IFG pars opercularis; (3) L IFG pars triangularis; (4) L SFG; (5) L MFG; (6) L MTG; (7) L AG/SMG; (8) L ACC; (9-16) homotopic counterparts; how ROIs defined: AAL	None	
Sims et al. (2016): ROI 4	Semantic feature decision (6 patients, 4 controls) or semantic relatedness decision (8 patients, 4 controls) vs visual decision or pseudoword identity decision	CC Aphasia Covariate: PPT	UNR UNR ROI Anat NC	Number of ROIs: 16; ROIs: (1) L IFG pars orbitalis; (2) L IFG pars opercularis; (3) L IFG pars triangularis; (4) L SFG; (5) L MFG; (6) L MTG; (7) L AG/SMG; (8) L ACC; (9-16) homotopic counterparts; how ROIs defined: AAL	None	
Sims et al. (2016): ROI 5	Semantic feature decision (6 patients, 4 controls) or semantic relatedness decision (8 patients, 4 controls) vs visual decision or pseudoword identity decision	CC Aphasia	Y UNR ROI Anat NC	Behavioral data notes: no correlation between lesion volume and accuracy, not clear whether control condition	\[↑\] R supramarginal gyrus \[↑\] R angular gyrus	
Study	Design	Control/Condition	Results/Findings			
---	--	--	---			
Sims et al. (2016): Cplx 1	Semantic feature decision (6 patients, 4 controls) vs semantic relatedness decision (8 patients, 4 controls) vs visual decision or pseudoword identity decision	CC Aphasia vs control	Multivariate mixed-effects linear regression analyses were used to identify relationships between structural damage to 8 regions, and functional activation in 16 regions. Results were corrected for multiple comparisons based on FDR. This analysis was not described in sufficient detail.			
Sims et al. (2016): Cplx 2	Semantic feature decision (6 patients, 4 controls) vs semantic relatedness decision (8 patients, 4 controls) vs visual decision or pseudoword identity decision	CAC Aphasia vs control	Correlations were computed between functional activation in 16 regions, and qualitatively compared between patients and controls (p. 123). There was no correction for multiple comparisons.			
Darkow et al. (2017): Vox 1	Picture naming vs rest	CAA Aphasia after tDCS (n = 16) vs aphasia after sham stimulation (n = 16); same patients, order counterbalanced, repeated measures Somewhat valid (no behavioral difference)	Search volume: whole brain; software: SPM8; voxelwise p: .001; cluster extent cutoff: based on GRFT; repeated measures			
Darkow et al. (2017): ROI 1	Picture naming vs rest	CAC Aphasia after sham stimulation (n = 16) vs control	Behavioral data notes: patients named > 90% correctly in all sessions; control RT not reported; number of ROIs: 3; ROIs: (1) bilateral anterior cingulate;			
			† R posterior MTG			
			notes: MTG included anterior too; SMG/AG was single ROI			
Study	Task Description	ROI 2	Cplex 1	Cplex 2	Cplex 3	Vox 1
-------------------------------	---	-------	---------	---------	---------	-------
Darkow et al. (2017): ROI 2	Picture naming vs rest	AS	UNR	UNR	Cplx	UNR
	CAC					
	Aphasia after tDCS (n = 16) vs control					
	Behavioral data notes: patients named > 90% correctly in all sessions; control RT not reported; number of ROIs: 3; ROIs: (1) bilateral anterior cingulate; (2) L insula; (3) R lingual gyrus; how ROIs defined: regions that were less active in patients with tDCS vs sham; circular because ROIs defined in one group					
Darkow et al. (2017): Cplx 1	Picture naming vs rest	Y	Y	Cplx		
	CAA					
	Aphasia after tDCS (n = 16) vs aphasia after sham stimulation (n = 16); same patients, order counterbalanced, repeated measures					
	Somewhat valid (no behavioral difference)					
Darkow et al. (2017): Cplx 2	Picture naming vs rest	UNR	UNR	Cplx		
	CAC					
	Aphasia after sham stimulation (n = 16) vs control					
	ICA was used to derive three task-relevant components: language, motor and visual. Thresholding of the functional maps is not described, but they appear to reflect coherent components of a picture naming network. These components were compared between stimulation conditions in terms of mean activity and power in three frequency bins. It should be noted that the language component is left-lateralized, unlike the model-based picture naming contrast.					
Darkow et al. (2017): Cplx 3	Picture naming vs rest	UNR	UNR	Cplx		
	CAC					
	Aphasia after tDCS (n = 16) vs control					
	ICA was used to derive three task-relevant components: language, motor and visual. Thresholding of the functional maps is not described, but they appear to reflect coherent components of a picture naming network. These components were compared between stimulation conditions in terms of mean activity and power in three frequency bins. It should be noted that the language component is left-lateralized, unlike the model-based picture naming contrast.					
Gerammayeh et al. (2017): Vox 1	Propositional speech production vs rest	AM	UNR	Vox		
	CC			CA		
	Aphasia mean of T1, T2					
	Covariate: simultaneous Δ (T2 vs T1)					
	Behavioral data notes: T1 AICW correlated with change in AICW, but not stated whether T2 AICW correlated with change in AICW; search volume: voxels spared in all					
	110					

| | | | | | | |
| | | | | | | |

None
Study	ROI	Task	Contrast	Behavioral Data Notes	ROIs	Language Function	ROI Definition	Lesion Size Covariate	Notes
Geranmayeh et al. (2017): ROI 1		Propositional speech production vs rest	LA Aphasia T2 vs T1	N UNR ROI Func One	Number of ROIs: 1; ROI: L pre-SMA; how ROI defined: peak voxel of the contrast of target decision vs mean of propositional speech and counting in people with aphasia; no main effect of session in session by language recovery ANOVA				
Geranmayeh et al. (2017): ROI 2		Propositional speech production vs rest	LC Aphasia T2 vs T1 Covariate: Δ number of appropriate information-carrying words	UNR UNR ROI Func One	Number of ROIs: 1; ROI: L pre-SMA; how ROI defined: peak voxel of the contrast of target decision vs mean of propositional speech and counting in people with aphasia; no interaction of session by language recovery in ANOVA				
Geranmayeh et al. (2017): ROI 3		Propositional speech production vs rest	CC Aphasia mean of T1, T2 Covariate: simultaneous Δ (T2 vs T1) number of appropriate information-carrying words	AM UNR ROI Func One	Behavioral data notes: T1 AICW correlated with change in AICW, but not stated whether T2 AICW correlated with change in AICW; number of ROIs: 1; ROI: L pre-SMA; how ROI defined: peak voxel of the contrast of target decision vs mean of propositional speech and counting in people with aphasia				
Geranmayeh et al. (2017): ROI 4		Propositional speech production vs rest	CC Aphasia mean of T1, T2 Covariate: simultaneous Δ (T2 vs T1) number of appropriate information-carrying words	AM UNR ROI Func One	Behavioral data notes: T1 AICW correlated with change in AICW, but not stated whether T2 AICW correlated with change in AICW; number of ROIs: 1; ROI: L pre-SMA; how ROI defined: peak voxel of the contrast of target decision vs mean of propositional speech and counting in people with aphasia; lesion size covariate				

- **T1**: number of appropriate information-carrying words
- **Somewhat valid**: (potentially confounded by T1 and T2 language function; language function at T1 was predictive of change in language function)
- **presfrontal ↑**: R somato-motor; R posterior STS; R anterior cingulate
- **Notes**: findings based on figures and coordinates; the pre-SMA/dACC peak noted to survive FWE correction at p < .001
- **Geranmayeh et al. (2017)**: ROI 1/2/3/4
- **Propositional speech production vs rest**: LA/LC/CC
- **Aphasia T2 vs T1**: LA/LC/CC
- **Covariate**: Δ number of appropriate information-carrying words
- **AM UNR ROI Func One**: Behavioral data notes: number of AICW increased; number of ROIs: 1; ROI: L pre-SMA; how ROI defined: peak voxel of the contrast of target decision vs mean of propositional speech and counting in people with aphasia; no main effect of session in session by language recovery ANOVA
- **Unrelated**
| Study | ROI | Task | Analysis | Behavioral Notes | Notes |
|---|-----|---|----------|---|--|
| Geranmayeh et al. (2017): ROI 5 | | Propositional speech production vs rest | CC | Aphasia mean of T1, T2 Covariate: simultaneous Δ (T2 vs T1) number of appropriate information-carrying words | Behavioral data notes: T1 AICW correlated with change in AICW, but not stated whether T2 AICW correlated with change in AICW; number of ROIs: 1; ROI: L pre-SMA; how ROI defined: peak voxel of the contrast of target decision vs mean of propositional speech and counting in people with aphasia; lesion size, T1 performance, and age covariates. |
| Geranmayeh et al. (2017): ROI 6 | | Propositional speech production vs rest | CC | Aphasia mean of T1, T2 Covariate: subsequent outcome (T2) number of appropriate information-carrying words Not valid (mathematically equivalent to the previous analysis, because of the inclusion of T1 performance as a covariate) | Behavioral data notes: T1 AICW correlated with change in AICW, but not stated whether T2 AICW correlated with change in AICW; number of ROIs: 1; ROI: L pre-SMA; how ROI defined: peak voxel of the contrast of target decision vs mean of propositional speech and counting in people with aphasia; lesion size, T1 performance, and age covariates. |
| Geranmayeh et al. (2017): ROI 7 | | Propositional speech production vs rest | CC | Aphasis T1 Covariate: subsequent Δ (T2 vs T1) number of appropriate information-carrying words Somewhat valid (potentially confounded by T1 language function; language function at T1 was predictive of change in language function) | Behavioral data notes: T1 AICW correlated with change in AICW; number of ROIs: 1; ROI: L pre-SMA; how ROI defined: peak voxel of the contrast of target decision vs mean of propositional speech and counting in people with aphasia. |
| Geranmayeh et al. (2017): ROI 8 | | Propositional speech production vs rest | CC | Aphasis T2 Covariate: previous Δ (T2 vs T1) number of appropriate information-carrying words Not valid (the logic behind correlating activation changes and language outcome is unclear) | Behavioral data notes: T1 AICW correlated with change in AICW, but not stated whether T2 AICW correlated with change in AICW; number of ROIs: 1; ROI: L pre-SMA; how ROI defined: peak voxel of the contrast of target decision vs mean of propositional speech and counting in people with aphasia. |
| Grifis, Nenert, Allendorfer, & Szafarski (2017): ROI 1 | | Semantic decision vs tone decision | CC | Aphasis Covariate: semantic decision accuracy | Number of ROIs: 3; ROIs: (1) L AG and bilateral midline components of the canonical semantic network, along with reduced activity in R frontal, temporal and parietal regions; (2) bilateral IFG pars orbitalis; (3) L IFG and DLPFC along with bilateral midline. |
Griffis, Nenert, Allendorfer, & Szafarski (2017): ROI 2

Semantic decision vs tone decision	CC Aphasia	UNR	UNR	ROI Oth	FWE
Semantic decision vs tone decision	Aphasia	UNR	UNR	ROI Oth	FWE
Semantic decision vs tone decision	Aphasia	UNR	UNR	ROI Oth	FWE
Semantic decision vs tone decision	Aphasia	UNR	UNR	ROI Oth	FWE

Number of ROIs: 3; ROIs: (1) L AG and bilateral midline components of the canonical semantic network, along with reduced activity in R frontal, temporal and parietal regions; (2) bilateral IFG pars orbitalis; (3) L IFG and DLPFC along with bilateral midline regions; how ROIs defined: ROIs are mixing coefficients of functional networks arising from mCCA + jICA that were differently represented in the patient and control groups

† L posterior cingulate
† R IFG pars orbitalis
† R SMA/medial prefrontal
† R precuneus
† R posterior cingulate
† L insula
† R IFG pars opercularis
† R IFG pars triangularis
† R insula
† R dorsal precentral
† R supramarginal gyrus
† R posterior STG
† R mid temporal

Notes: all 3 networks were significantly correlated; analysis of networks so involvement of each individual region cannot be assured
Study	Semantic decision vs tone decision	CC	UNR	UNR	ROI	Oth	FWE	Number of ROIs: 3; ROIs: (1) L AG and bilateral midline components of the canonical semantic network, along with reduced activity in R frontal, temporal and parietal regions; (2) bilateral IFG pars orbitalis; (3) L IFG and DLPFC along with bilateral midline regions; how ROIs defined: ROIs are mixing coefficients of functional networks arising from mCCA + jICA that were differently represented in the patient and control groups		
Griffis, Nenert, Allendorfer, & Szafarski (2017): ROI 3	Semantic decision vs tone decision	CC	Aphasia	BNT	UNR	UNR	ROI	Oth	FWE	Number of ROIs: 3; ROIs: (1) L AG and bilateral midline components of the canonical semantic network, along with reduced activity in R frontal, temporal and parietal regions; (2) bilateral IFG pars orbitalis; (3) L IFG and DLPFC along with bilateral midline regions; how ROIs defined: ROIs are mixing coefficients of functional networks arising from mCCA + jICA that were differently represented in the patient and control groups
Griffis, Nenert, Allendorfer, & Szafarski (2017): Cplx 1	Semantic decision vs tone decision	CAC	Aphasia vs control	N	UNR	Cplx	Behavioral data notes: semantic decision accuracy not matched, but tone decision accuracy not reported; Multimodal canonical correlation analysis (mCCA) and joint ICA were used to identify 3 joint ICs (structural/functional) that were differently represented in the patient and control groups. Although there was no correction for multiple comparisons when the functional maps were thresholded, the maps for the three networks each appeared to relate to coherent parts of the semantic network.			

Other: The first joint IC comprised preservation of tissue in L posterior temporoparietal region, activity in the L AG and bilateral midline components of the canonical semantic network, and reduced activity in R frontal, temporal and parietal regions. The second joint IC comprised preservation of...
tissue in the the L basal ganglia/insula region, and activity predominantly in the IFG pars orbitalis bilaterally. The third joint IC comprised preservation of the L IFG and activity in the L IFG and DLPFC along with bilateral midline regions. The first joint IC was considered to provide more robust evidence for structure-function relationships than the other two, because it was the only one where individual structural and functional mixing coefficients remained correlated even when lesion volume was included as a covariate.

Griffis, Nenert, Allendorfer, Vannest, et al. (2017): Vox 1

Semantic decision vs tone decision	CC Aphasia	Search volume: whole brain; software: SPM12/in-house; voxelwise p: .01; cluster extent cutoff: 126 voxels (size not stated); lesion volume covariate
	L dorsolateral prefrontal cortex	
	L angular gyrus	
	L precuneus	
	L mid temporal	
	L anterior temporal	
	L posterior cingulate	
	L cerebellum	
	L brainstem	
	L hippocampus/MTL	
	R IFG pars orbitalis	
	R angular gyrus	
	R precuneus	
	R anterior temporal	
	R occipital	
	R brainstem	
	R hippocampus/MTL	
	L somato-motor	

Notes: based on figure and table; larger activations
Griffis, Nenert, Allendorfer, Vannest, et al. (2017): Vox 2	Semantic decision vs tone decision	CC Aphasia Covariate: average of semantic and phonemic fluency	UNR UNR Vox CCTB	Search volume: whole brain; software: SPM12/in-house; voxelwise p: .01; cluster extent cutoff: 126 voxels (size not stated); lesion volume covariate
Griffis, Nenert, Allendorfer, Vannest, et al. (2017): Vox 3	Semantic decision vs tone decision	CC Aphasia Covariate: BNT	UNR UNR Vox CCTB	Search volume: whole brain; software: SPM12/in-house; voxelwise p: .01; cluster extent cutoff: 126 voxels (size not stated); lesion volume covariate

are compelling; smaller activations are not due to lenient correction approach

↑ L IFG pars orbitalis
↑ L SMA/medial prefrontal
↑ L angular gyrus
↑ L precuneus
↑ L posterior STS
↑ L mid temporal
↑ L anterior temporal
↑ L posterior cingulate
↑ L brainstem
↑ L hippocampus/MTL
↑ R IFG pars orbitalis
↑ R SMA/medial prefrontal
↑ R angular gyrus
↑ R precuneus
↑ R posterior cingulate
↑ R hippocampus/MTL
↑ R posterior STS
notes: based on figure and table; larger activations are compelling; smaller activations are not due to lenient correction approach
Study	Design	Controls	Methodology	Results	
Grifis, Nenert, Allendorfer, Vannest, et al. (2017): Vox 4	Semantic decision vs tone decision	CC Aphasia Covariate: lesion volume	UNR UNR Vox CCTB	Search volume: R hemisphere; software: SPM12/in-house; voxelwise p: .01; cluster extent cutoff: 126 voxels (size not stated)	
				↑ R IFG pars opercularis	
				↑ R dorsolateral prefrontal cortex	
				↑ R SMA/medial prefrontal	
				↓ R orbitofrontal	
				↓ R anterior temporal	
				↓ R cerebellum	
				↓ R thalamus	
				notes: based on figure and table; larger activations are compelling; smaller activations are not due to lenient correction approach	
Grifis, Nenert, Allendorfer, Vannest, et al. (2017): ROI 1	Semantic decision vs tone decision	CAC Aphasia vs control	N UNR ROI Func FWE	Behavioral data notes: semantic decision accuracy not matched, but tone decision accuracy not reported; number of ROIs: 5; ROIs: (1) overall canonical semantic network (CSN); (2) L CSN; (3) R CSN; (4) mirror L CSN in R; (5) out-of-network CSN in R; how ROIs defined: control data; circular because ROI defined in one group	
				↑ L IFG	
				↑ L dorsolateral prefrontal cortex	
				↑ L SMA/medial prefrontal	
				↓ L angular gyrus	
				↓ L precuneus	
				↓ L anterior temporal	
				↓ L mid temporal	
				↓ L occipital	
				↓ L posterior cingulate	
				↓ L cerebellum	
				↑ R IFG	
				↑ R dorsolateral prefrontal cortex	
				↑ R SMA/medial prefrontal	
				↓ R angular gyrus	
				↓ R precuneus	
				↓ R anterior temporal	
				↓ R occipital	
				↓ R posterior cingulate	
				↓ R cerebellum	
				notes: results are for whole networks of regions, so individual regions cannot be assured; out-of-network R regions	
Study	Region Type	Region Description	Number of ROIs	ROI Definition	Lesion Volume Covariate
-------	-------------	---------------------	----------------	----------------	------------------------
Griffis, Nenert, Allendorfer, Vannest, et al. (2017): ROI 2	Semantic decision vs tone decision	CC Aphasia Covariate: lesion volume	5	ROIs: (1) overall canonical semantic network (CSN); (2) L CSN; (3) R CSN; (4) mirror L CSN in R; (5) out-of-network CSN in R; how ROIs defined: control data	None
Griffis, Nenert, Allendorfer, Vannest, et al. (2017): ROI 3	Semantic decision vs tone decision	CC Aphasia Covariate: semantic decision accuracy	1	ROI defined: control data; lesion volume covariate	↑ L IFG ↑ L dorsolateral prefrontal cortex ↑ L SMA/medial prefrontal ↑ L angular gyrus ↑ L precuneus ↑ L mid temporal ↑ L anterior temporal ↑ L posterior cingulate ↑ L cerebellum ↑ R IFG ↑ R dorsolateral prefrontal cortex ↑ R SMA/medial prefrontal ↑ R angular gyrus ↑ R precuneus ↑ R anterior temporal ↑ R posterior cingulate ↑ R cerebellum
Griffis, Nenert, Allendorfer, Vannest, et al. (2017): ROI 4	Semantic decision vs tone decision	CC Aphasia Covariate: average of semantic and phonemic fluency	1	ROI defined: control data; lesion volume covariate	↑ L IFG ↑ L dorsolateral prefrontal cortex ↑ L SMA/medial prefrontal ↑ L angular gyrus ↑ L precuneus ↑ L mid temporal ↑ L anterior temporal ↑ L posterior cingulate ↑ L cerebellum ↑ R IFG ↑ R dorsolateral prefrontal cortex ↑ R SMA/medial prefrontal ↑ R angular gyrus ↑ R precuneus
Study	Task/Condition	Control/Comparison	ROI	Number of ROIs	Notes
-------------------	---	--------------------	-----	----------------	--
Grissi, Nenert, Allendorfer, Vannest, et al. (2017): Cplx 1	Semantic decision vs tone decision	Aphasia vs control	UNR	1; ROI: CSN; how ROI defined: control data; lesion volume covariate	None
	CAC	CC	UNR	Number of ROIs: 1; ROI: CSN; how ROI defined: control data; lesion volume covariate	119

Behavioral data notes: semantic decision accuracy not matched, but tone decision accuracy not reported; Correlations between activation magnitudes in the L and R canonical semantic network (CSN) were compared between groups. However, this analysis is circular because the CSN ROIs were defined based on controls only.
Study	Task	Control	ROIs	Other			
Gris, Nenert, Allendorfer, Vannest, et al. (2017): Cplx 3	Semantic decision vs tone decision	CAC Aphasia vs control	N UNR Cplx	Behavioral data notes: semantic decision accuracy not matched, but tone decision accuracy not reported; Correlations between activation magnitudes in the L CSN and R out-of-network homotopic regions were compared between groups. However, this analysis is circular because the CSN ROIs were defined based on controls only.			
				Other: Correlations between activations in the L CSN and R out-of-network homotopic regions were stronger in patients than controls.			
Gris, Nenert, Allendorfer, Vannest, et al. (2017): Cplx 4	Semantic decision vs tone decision	CAC Aphasia vs control	N UNR Cplx	Behavioral data notes: semantic decision accuracy not matched, but tone decision accuracy not reported; The difference in activation between the L CSN and R CSN was compared between patients and controls. However, this analysis is circular because the CSN ROIs were defined based on controls only.			
				Other: The difference was smaller in patients.			
Gris, Nenert, Allendorfer, Vannest, et al. (2017): Cplx 5	Semantic decision vs tone decision	CAC Aphasia vs control	N UNR Cplx	Behavioral data notes: semantic decision accuracy not matched, but tone decision accuracy not reported; The difference in activation between the L CSN and mirror L CSN in the R was compared between patients and controls. However, this analysis is circular because the CSN ROIs were defined based on controls only.			
				Other: The difference was smaller in patients.			
Gris, Nenert, Allendorfer, Vannest, et al. (2017): Cplx 6	Semantic decision vs tone decision	CAC Aphasia vs control	N UNR Cplx	Behavioral data notes: semantic decision accuracy not matched, but tone decision accuracy not reported; The difference in activation between the R CSN and out-of-network homotopic regions in the R was compared between patients and controls. However, this analysis is circular because the CSN ROIs were defined based on controls only.			
				Other: For 1 of the 4 regions (R SMA), there were significant interactions such that in patients with larger lesions, more activation was associated with higher semantic fluency scores and higher BNT scores, while in patients with smaller lesions, more activation was associated with lower fluency and BNT scores. There was a similar			
				For the 4 R hemisphere regions that were more activated in patients with larger lesions (SPM analysis 4), analyses were carried out to determine whether the semantic fluency or naming measures were differentially impacted by activation depending on whether lesions were larger or smaller.			
Study	Comparison	Region	Parameter	Software	significance	Notes	
-------	------------	--------	-----------	----------	--------------	-------	
Harvey et al. (2017): Vox 1	Picture naming vs viewing patterns	LA Aphasia T3 vs T1	UNR UNR Vox NDC	Search volume: voxels spared in all patients; software: SPM8; qualitative comparison on pp. 138-9	relationship with semantic fluency in the R IFG pars opercularis but only at p(FDR) = 0.07.	\[L SMA/medial prefrontal \[L posterior inferior temporal gyrus/fusiform gyrus \[L occipital \[L anterior cingulate \[R IFG pars opercularis \[R ventral precentral/inferior frontal junction \[L dorsolateral prefrontal cortex \[R IFG pars triangularis \[R posterior inferior temporal gyrus/fusiform gyrus \[R occipital	\[R hippocampus/MTL notes: based on Figure 5 and Table 4
Nardo et al. (2017): Vox 1	Picture naming (all conditions, correct trials) vs rest	LA Aphasia T2 vs T1	YCT N Vox VFWE	Behavioral data notes: RT faster at T2; search volume: whole brain; software: SPM12; voxelwise p: .05	None	\[R IFG pars opercularis \[R insula	
Nardo et al. (2017): ROI 1	Picture naming (untrained items, no cue, correct trials) vs picture naming (trained items, no cue, correct trials)	CC Aphasia T2 Covariate: "a change in un-cued naming RT" (exact measure unclear) Somewhat valid (unclear whether behavioral measure is longitudinal)	YCT UNR ROI Func NC	Number of ROIs: 4; ROIs: (1) R anterior insula; (2) R IFG; (3) dorsal anterior cingulate; (4) L premotor cortex; how ROIs defined: peaks (only with SVC) for the main effect of untrained (4 conditions) vs trained (4 conditions) in T2 aphasia; unclear what the behavioral measure was exactly	\[R IFG pars opercularis \[R insula		
Nenert et al. (2017): Vox 1	Semantic decision vs tone decision	CAA Aphasia CIAT T2 (n = 11) vs untreated T2 (n = 8) Somewhat valid (no treatment effect)	AS UNR Vox CA	Search volume: voxels spared in all patients; software: SPM12; voxelwise p: .01; cluster extent cutoff: 50 voxels (size not stated)	\[L somato-motor \[L superior parietal \[L brainstem \[R ventral precentral/inferior frontal junction \[R somato-motor \[R superior parietal notes: based on coordinates in Table 4		
Nenert et al. (2017): Vox 1	Semantic decision vs tone decision	CAA Aphasia CIAT T3 (n =	UNT UNR Vox CA	Search volume: voxels spared in all patients; software: SPM12; voxelwise	\[L superior parietal		
Tag	Task 1	Task 2	Task 3	Task 4	Task 5		
-----	--------	--------	--------	--------	--------		
Vox 2	11) vs untreated T3 (n = 8)	Somewhat valid (no treatment effect)	p: .01; cluster extent cutoff: 50 voxels (size not stated)	↑ L anterior temporal ↑ L hippocampus/MTL ↑ R orbitofrontal ↓ L dorsolateral prefrontal cortex ↓ L posterior inferior temporal gyrus/fusiform gyrus ↓ R IFG pars opercularis ↓ R ventral precentral/inferior frontal junction ↓ R posterior STS notes: based on coordinates in Table 4			
Nenert et al. (2017): Vox 3	Verb generation vs finger tapping	CAA Aphasia CIAT T2 (n = 11) vs untreated T2 (n = 8) Somewhat valid (no treatment effect)	UNR UNR Vox CA	Search volume: voxels spared in all patients; software: SPM12; voxelwise p: .01; cluster extent cutoff: 50 voxels (size not stated)	↓ L precuneus ↓ R dorsolateral prefrontal cortex ↓ R posterior STS ↓ R anterior temporal ↓ R posterior inferior temporal gyrus/fusiform gyrus notes: based on coordinates in Table 4		
Nenert et al. (2017): Vox 4	Verb generation vs finger tapping	CAA Aphasia CIAT T3 (n = 11) vs untreated T3 (n = 8) Somewhat valid (no treatment effect)	UNR UNR Vox CA	Search volume: voxels spared in all patients; software: SPM12; voxelwise p: .01; cluster extent cutoff: 50 voxels (size not stated)	↑ L SMA/medial prefrontal ↑ R basal ganglia ↓ L anterior temporal ↓ R posterior STS ↓ R Heschl's gyrus ↓ R posterior inferior temporal gyrus/fusiform gyrus		
Nenert et al. (2017): Vox 5	Semantic decision vs tone decision	CAC Aphasia CIAT T1 (n = 11) vs control	AM UNR Vox CA	Behavioral data notes: patients less accurate than controls on both tasks, but more so on the tone decision task; search volume: voxels spared in all patients; software: SPM12; voxelwise p: .01; cluster extent cutoff: 50 voxels (size not stated)	↑ L orbitofrontal ↑ L hippocampus/MTL ↑ R IFG pars opercularis ↑ R SMA/medial prefrontal ↑ R supramarginal gyrus ↑ R posterior STG/STS/MTG ↑ R anterior temporal ↑ R anterior cingulate ↑ R dorsolateral prefrontal cortex ↑ L anterior temporal		
Nenert et al. (2017): Vox 5	Semantic decision vs tone decision	CAC Aphasia CIAT T1 (n = 11) vs control	AM UNR Vox CA	Behavioral data notes: patients less accurate than controls on both tasks, but more so on the tone decision task; search volume: voxels spared in all patients; software: SPM12; voxelwise p: .01; cluster extent cutoff: 50 voxels (size not stated)	↑ L orbitofrontal ↑ L hippocampus/MTL ↑ R IFG pars opercularis ↑ R SMA/medial prefrontal ↑ R supramarginal gyrus ↑ R posterior STG/STS/MTG ↑ R anterior temporal ↑ R anterior cingulate ↑ R dorsolateral prefrontal cortex ↑ L anterior temporal		

122
Study	Task	Group 1	Group 2	Behavioral data	Voxels spared	Software	Cluster extent	Note	Regions		
Nenert et al. (2017): Vox 6	Semantic decision vs tone decision	Aphasia CIAT T2 (n = 11) vs control	CA	Behavioral data	voxels spared in all patients; software: SPM12; voxelwise p: .01; cluster extent cutoff: 50 voxels (size not stated)		CA	SPM12	50 voxels (size not stated)		R IFG pars opercularis
									R insula		
									R ventral precentral/inferior frontal junction		
									R supramarginal gyrus		
									R Heschl's gyrus		
									L dorsolateral prefrontal cortex		
									L SMA/medial prefrontal		
									L cerebellum		
Nenert et al. (2017): Vox 7	Semantic decision vs tone decision	CAC Aphasia CIAT T3 (n = 11) vs control	AM UNR VOC CA	Behavioral data	voxels spared in all patients; software: SPM12; voxelwise p: .01; cluster extent cutoff: 50 voxels (size not stated)			SPM12	50 voxels (size not stated)		L orbitofrontal
									L anterior cingulate		
									L hippocampus/MTL		
									R superior parietal		
									L dorsolateral prefrontal cortex		
									R anterior temporal		
									R cerebellum		
Nenert et al. (2017): Vox 8	Semantic decision vs tone decision	CAC Aphasia untreated T1 (n = 8) vs control	AM UNR VOC CA	Behavioral data	voxels spared in all patients; software: SPM12; voxelwise p: .01; cluster extent cutoff: 50 voxels (size not stated)			SPM12	50 voxels (size not stated)		L dorsolateral prefrontal cortex
									R dorsolateral prefrontal cortex		
									R SMA/medial prefrontal		
									R somato-motor		
									L IFG pars orbitalis		
									L dorsolateral prefrontal cortex		
									L SMA/medial prefrontal		
									L angular gyrus		
									L mid temporal		
									L anterior temporal		
									L IFG pars orbitalis		
									L anterior gyrus		
									L posterior temporal		
									L posterior inferior temporal gyrus/fusiform gyrus		
									R dorsolateral prefrontal cortex		

Notes:
- CA: Categorical Analysis
- Vox: Voxel Analysis
- AM: Aphasia Model
- UNR: Unrelated
- CA: Control Analysis
| Nenert et al. (2017): Vox 10 | Semantic decision vs tone decision | CAC | Aphasia untreated T3 (n = 8) vs control | AM | UNR | Vox | CA | Behavioral data notes: patients less accurate than controls on both tasks, but not significantly for the semantic decision task, and more so on the tone decision task; search volume: voxels spared in all patients; software: SPM12; voxelwise p: .01; cluster extent cutoff: 50 voxels (size not stated) | ↑ R orbitofrontal | ↑ R mid temporal | ↓ L IFG pars orbitalis | ↓ L SMA/medial prefrontal | ↓ L orbitofrontal | ↓ L intraparietal sulcus | ↓ L superior parietal | ↓ L anterior cingulate | ↓ L brainstem | ↓ R IFG pars orbitalis | ↓ R dorsolateral prefrontal cortex | ↓ R inferior parietal lobule | ↓ R supramarginal gyrus | ↓ R anterior temporal | ↓ R posterior inferior temporal gyrus/fusiform gyrus | ↓ R hippocampus/MTL |
|--------------------------------|----------------------------------|-----|--------------------------------------|----|-----|-----|----|---|--------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Nenert et al. (2017): Vox 11 | Verb generation vs finger tapping | CAC | Aphasia CIAT T1 (n = 11) vs control | UNR | UNR | Vox | CA | Search volume: voxels spared in all patients; software: SPM12; voxelwise p: .01; cluster extent cutoff: 50 voxels (size not stated) | ↑ L dorsolateral prefrontal cortex | ↑ R dorsolateral prefrontal cortex | ↑ R SMA/medial prefrontal | ↑ R orbitofrontal | ↑ R superior parietal | ↑ R cerebellum | ↓ L orbitofrontal | ↓ L mid temporal | ↓ L anterior temporal | ↓ L posterior cingulate | ↓ L cerebellum | ↓ L hippocampus/MTL | ↑ L angular gyrus | ↑ R anterior temporal |
| Study | Type | Condition | Control | Software | Search Volume | Results |
|---|---|---|---|---|---|---|
| Nenert et al. (2017): Vox 12 | Verb generation vs finger tapping | Aphasia CIAT T2 (n = 11) vs control | UNR UNR Vox CA | SPM12 | voxels spared in all patients; voxelwise p: .01; cluster extent cutoff: 50 voxels (size not stated) | ↑ L dorsal precentral ↑ L anterior cingulate ↓ L IFG pars orbitalis ↓ L dorsolateral prefrontal cortex ↓ L SMA/medial prefrontal ↓ L superior parietal ↓ L posterior inferior temporal gyrus/fusiform gyrus ↓ L occipital ↓ R IFG pars orbitalis |
| Nenert et al. (2017): Vox 13 | Verb generation vs finger tapping | Aphasia CIAT T3 (n = 11) vs control | UNR UNR Vox CA | SPM12 | voxels spared in all patients; voxelwise p: .01; cluster extent cutoff: 50 voxels (size not stated) | ↑ L somato-motor ↑ L anterior cingulate ↑ L posterior cingulate ↓ L IFG pars orbitalis ↓ L dorsolateral prefrontal cortex ↓ L superior parietal ↓ L posterior inferior temporal gyrus/fusiform gyrus ↑ R dorsolateral prefrontal cortex ↓ R mid temporal |
| Nenert et al. (2017): Vox 14 | Verb generation vs finger tapping | Aphasia untreated T1 (n = 8) vs control | UNR UNR Vox CA | SPM12 | voxels spared in all patients; voxelwise p: .01; cluster extent cutoff: 50 voxels (size not stated) | ↑ L superior parietal ↑ L occipital ↑ L cerebellum ↑ R dorsolateral prefrontal cortex ↑ R cerebellum ↓ L IFG pars orbitalis ↓ L SMA/medial prefrontal ↓ L posterior inferior temporal gyrus/fusiform gyrus ↓ L cerebellum ↓ R superior parietal |
| Nenert et al. (2017): Vox 15 | Verb generation vs finger tapping | Aphasia untreated T2 (n = 8) vs control | UNR UNR Vox CA | SPM12 | voxels spared in all patients; voxelwise p: .01; cluster extent cutoff: 50 voxels (size not stated) | ↑ L dorsolateral prefrontal cortex ↑ R SMA/medial prefrontal |
| Author(s) | Task Description | Category | Group 1 | Group 2 | Software | Voxels | Search Volume | Control Region(s) |
|-----------|------------------|----------|--------|---------|----------|--------|---------------|-------------------|
| Nenert et al. (2017): Vox 16 | Verb generation vs finger tapping | CAC | Aphasia untreated T3 (n = 8) vs control | UNR | UNR | Vox | Search volume: voxels spared in all patients; software: SPM12; voxelwise p: .01; cluster extent cutoff: 50 voxels (size not stated) | ↑ R angular gyrus ↑ R posterior STG ↑ R posterior cingulate ↑ R cerebellum ↓ L dorsolateral prefrontal cortex ↓ L SMA/medial prefrontal ↓ L superior parietal ↓ L anterior temporal ↓ L posterior inferior temporal gyrus/fusiform gyrus ↓ L occipital ↓ R superior parietal ↓ R cerebellum |
| Nenert et al. (2017): Vox 17 | Semantic decision vs tone decision | LC | Aphasia T2 vs T1 Covariate: Δ BNT | UNR | UNR | Vox | Search volume: voxels spared in all patients; software: SPM12; voxelwise p: .01; cluster extent cutoff: 50 voxels (size not stated) | ↑ L superior parietal ↑ L anterior temporal ↑ L occipital ↑ R insula ↑ R ventral precentral/inferior frontal junction ↑ R orbitofrontal ↑ R occipital ↑ R cerebellum ↓ L IFG pars orbitalis ↓ L SMA/medial prefrontal ↓ L superior parietal ↓ L occipital ↓ R insula ↓ R dorsolateral prefrontal cortex ↓ R cerebellum ↓ R basal ganglia |
| Nenert et al. (2017): Vox 18 | Semantic decision vs tone decision | LC | Aphasia T3 vs T2 Covariate: Δ BNT Somewhat valid (no treatment effect) | UNR | UNR | Vox | Search volume: voxels spared in all patients; software: SPM12; voxelwise p: .01; cluster extent cutoff: 50 voxels (size not stated) | ↑ R somato-motor ↑ R posterior MTG ↑ R thalamus |
| Nenert et al. (2017): Vox 19 | Verb generation vs finger tapping | LC | Aphasia T2 vs T1 Covariate: Δ BNT | UNR | UNR | Vox | Search volume: voxels spared in all patients; software: SPM12; voxelwise p: .01; cluster extent cutoff: 50 voxels (size not stated) | ↑ R orbitofrontal ↑ R mid temporal |
| Nenert et al. (2017): Vox 20 | Semantic decision vs tone decision | LC | Aphasia T3 vs T2 Covariate: Δ BNT Somewhat valid (no treatment effect) | UNR | UNR | Vox | Search volume: voxels spared in all patients; software: SPM12; voxelwise p: .01; cluster extent cutoff: 50 voxels (size not stated) | ↑ R somato-motor ↑ R posterior MTG ↑ R thalamus |

126
Study Reference	Task	Control	Group 1	Group 2	Group 3	Group 4	ROI(s)	Region of Interest	Notes	
Nenert et al. (2017): ROI 1	Semantic decision vs tone decision	LA	Aphasia ANOVA including T1, T2, T3	AS	UNR	ROI	LI	NC	Number of ROIs: 5; ROIs: (1) frontal LI; (2) temporo-parietal LI; (3) cerebellar LI; (4) fronto-parietal LI; (5) Broca’s LI	None
Nenert et al. (2017): ROI 2	Semantic decision vs tone decision	LAA	(Aphasia CIAT (n = 11) T1 ≠ T2 ≠ T3) vs (untreated (n = 8) T1 ≠ T2 ≠ T3)	AS	UNR	ROI	LI	NC	Number of ROIs: 5; ROIs: (1) frontal LI; (2) temporo-parietal LI; (3) cerebellar LI; (4) fronto-parietal LI; (5) Broca’s LI	None
Nenert et al. (2017): ROI 3	Verb generation vs finger tapping	LA	Aphasia ANOVA including T1, T2, T3	UNR	UNR	ROI	LI	NC	Number of ROIs: 5; ROIs: (1) frontal LI; (2) temporo-parietal LI; (3) cerebellar LI; (4) fronto-parietal LI; (5) Broca’s LI	None
Nenert et al. (2017): ROI 4	Verb generation vs finger tapping	LAA	(Aphasia CIAT (n = 11) T1 ≠ T2 ≠ T3) vs (untreated (n = 8) T1 ≠ T2 ≠ T3)	UNR	UNR	ROI	LI	NC	Number of ROIs: 5; ROIs: (1) frontal LI; (2) temporo-parietal LI; (3) cerebellar LI; (4) fronto-parietal LI; (5) Broca’s LI	None
Qiu et al. (2017): Vox 1	Picture naming vs rest	CA	Aphasia vs control	UNR	UNR	Vox	CA		Search volume: whole brain; software: SPM8; voxelwise p: .05; cluster extent cutoff: 10 voxels (size not stated); in the footnote to Table 2, there is a reference to FWE correction with Monte Carlo simulation, but this is not described in the text, and the values in the table appear to be inconsistent with that	
Skipper-Kallal et al. (2017a): Vox 1	Picture naming (silently name, correct trials) vs rest	CAC	Aphasia vs control	YCT	UNR	Vox	CA		Behavioral data notes: covert phase but accuracy derived from overt phase; search volume: whole brain gray matter; software: FSL 5.0.6; voxelwise p: ~.01 (z > 2.3); cluster extent cutoff: based on GRFT; threshold of z > 3.1 mentioned in results, but presume 2.3 based on methods and figure	
Study	Condition	search volume: whole brain gray matter; software: FSL 5.0.6; voxelwise \(p: \sim .01 \ (z > 2.3) \); cluster extent cutoff: based on GRFT; threshold of \(z > 3.1 \) mentioned in results, but presume 2.3 based on methods and figure								
---	---	---								
Skipper-Kallal et al. (2017a): Vox 2	Picture naming (produce the name, correct trials) vs rest	CAC	Aphasia vs control	YCT	UNR	Vox C-				
Skipper-Kallal et al. (2017a): Vox 3	Picture naming (silently name, correct trials) vs rest	CC	Aphasia Covariate: PNT	YCT	UNR	Vox C-				
Skipper-Kallal et al. (2017a): Vox 4	Picture naming (produce the name, correct trials) vs rest	CC	Aphasia Covariate: PNT	YCT	UNR	Vox C-				

- ↑: increased activity
- ↓: decreased activity
- \(L \): left hemisphere
- \(R \): right hemisphere
- IFG: inferior frontal gyrus
- STG: superior temporal gyrus
- STS: superior temporal sulcus
- MTL: medial temporal lobe
- PNT: perceptual naming task
L dorsolateral prefrontal cortex
L angular gyrus
notes: L IFG pars orbitalis, R pSTS, and R somato-motor correlations remained significant after accounting for lesion load and other factors; note that the pars orbitalis region is described as frontal pole in the paper but the coordinates and image support pars orbitalis

Skipper-Kallal et al. (2017a): Vox 5	Picture naming (both phases, correct trials) vs picture naming (both phases, incorrect trials)	CB	Aphasia with naming < 80% (n = 24)	NBD	UNR	Vox	Search volume: whole brain gray matter; software: FSL 5.0.6; voxelwise p: ~.01 (z > 2.3); cluster extent cutoff: based on GRFT	None
Skipper-Kallal et al. (2017a): ROI 1	Picture naming (produce the name, correct trials) vs rest	CC	Aphasia Covariate: PNT	YCT	UNR	ROI Func FWE	Number of ROIs: 11; ROIs: (1) right IPS; (2) left IPS; (3) left PTr; (4) left dPOp; (5) right superior motor cortex; (6) right ventral motor cortex; (7) right supramarginal sulcus; (8) left medial SMA; (9) right marginal sulcus; (10) left dorsal motor cortex; (11) right STS; how ROIs defined: regions that were activated for control > aphasia (ROIs 1-4) or aphasia > control (ROIs 5-11)	
Skipper-Kallal et al. (2017a): ROI 2	Picture naming (silently name, correct trials) vs rest	CAC	Aphasia vs control	YCT	UNR	ROI Func One	Number of ROIs: 1; ROI: L anterior temporal; how ROI defined: activity for covert naming correlated with naming ability in patients, after controlling for lesion and demographic factors	
Skipper-Kallal et al. (2017a): ROI 3	Picture naming (produce the name, correct trials) vs rest	CAC	Aphasia vs control	YCT	UNR	ROI Func NC	Number of ROIs: 3; ROIs: (1) L frontal pole; (2) R postcentral gyrus; (3) R STS; how ROIs defined: activity for overt naming correlated with naming ability in patients, after controlling for lesion and demographic factors	
Skipper-Kallal et al.	Picture naming (produce the name, correct trials) vs rest	CC	Aphasia Covariate: lesion	YCT	UNR	Cplx	SVR-LSM was used to identify regions of damage associated with activation of R pSTS ROI (defined based on SPM)	

↑ L IFG pars orbitalis
↑ R posterior STS
↑ R somato-motor
↑ R posterior STS
↑ R posterior STS also contributed to predicting PNT scores even when lesion load on critical areas for picture naming, and several other variables, were included in multiple regression models

None

Other:
Damage to the L IFG pars
Skipper-Kallal et al. (2017a): Cplx 1
name, correct trials) vs rest

patterns identified with SVR-LSM

The results were thresholded at voxelwise p < .01 (CDT), cluster extent > 500 voxels.

opercularis was associated with more activity in the R pSTS. Damage to the L pSTS was associated with less activity in the R pSTS.

Skipper-Kallal et al. (2017a): Cplx 2

Picture naming (produce the name, correct trials) vs rest

CC Aphasia without IFG POP damage (n = 26) Covariate: lesion patterns identified with SVR-LSM

YCT UNR Cplx

SVR-LSM was used to identify regions of damage associated with activation of L IFG pars opercularis ROI (defined based on SPM analysis 2). *The results were thresholded at voxelwise p < .01 (CDT), cluster extent > 500 voxels.*

Other: Damage to the L pSTG, L pSTS, and white matter underlying the L precuneus was associated with more activity in the L IFG pars opercularis. There were no regions associated with less activity.

Skipper-Kallal et al. (2017b): Vox 1

Picture naming (prepare to name, correct trials) vs rest

CAC Aphasia vs control

YCT UNR Vox

Behavioral data notes: covert phase but accuracy derived from overt phase; search volume: whole brain; software: FSL 5.0.6; voxelwise p: .01; cluster extent cutoff: based on GRFT

↑ L cerebellum
↑ L thalamus
↑ L basal ganglia
↑ R IFG pars opercularis
↑ R insula
↑ R cerebellum
↑ R basal ganglia
↑ L dorsolateral prefrontal cortex
↑ L orbitofrontal
↑ L intraparietal sulcus
↑ L anterior cingulate
↑ R dorsolateral prefrontal cortex

notes: based on Table 2

Skipper-Kallal et al. (2017b): Vox 2

Picture naming (produce the name, correct trials) vs rest

CAC Aphasia vs control

YCT UNR Vox

Search volume: whole brain; software: FSL 5.0.6; voxelwise p: .01; cluster extent cutoff: based on GRFT

↑ L somato-motor
↑ L intraparietal sulcus
↑ L anterior cingulate
↑ R insula
↑ R dorsal precentral
↑ R somato-motor
↑ R supramarginal gyrus
↑ R posterior MTG
↑ R Heschl's gyrus
↑ L ventral precentral/inferior frontal junction
↑ L somato-motor
↑ L posterior STG/STS/MTG
↑ L mid temporal
↑ L anterior
Study	Task Description	Main Contrasts	Behavioral Data Notes
Skipper-Kallal et al. (2017b); Vox 3	Picture naming (prepare to name, correct trials) vs rest	L temporal L cerebellum L thalamus L hippocampus/MTL L ventral precentral/inferior frontal junction L intraparietal sulcus L superior parietal L occipital L basal ganglia R IFG R insula R ventral precentral/inferior frontal junction R SMA/medial prefrontal R somato-motor R intraparietal sulcus R occipital R cerebellum R brainstem R basal ganglia	Behavioral data notes: covert phase but accuracy derived from overt phase; search volume: whole brain; software: FSL 5.0.6; voxelwise p: .01; cluster extent cutoff: based on GRFT

Skipper-Kallal et al. (2017b); Vox 4	Picture naming (produce the name, correct trials) vs rest	L somato-motor L precuneus L occipital L cerebellum R IFG pars triangularis R insula R ventral precentral/inferior frontal junction R SMA/medial prefrontal R posterior STG/STS/MTG R mid temporal R occipital R cerebellum R basal ganglia R hippocampus/MTL	Search volume: whole brain; software: FSL 5.0.6; voxelwise p: .01; cluster extent cutoff: based on GRFT		
Skipper-Kallal et al. (2017b): Vox 5	Picture naming (prepare to name, correct trials) vs rest	CAA Aphas with IPS damage (n not stated) vs without IPS damage (n not stated)	YCT UNR Vox	Behavioral data notes: covert phase but accuracy derived from overt phase; search volume: whole brain; software: FSL 5.0.6; voxelwise p: .01; cluster extent cutoff: based on GRFT; lesion volume covariate	None
Skipper-Kallal et al. (2017b): Vox 6	Picture naming (prepare to name, correct trials) vs rest	CAA Aphas with insula damage (n = 18) vs without insula damage (n = 21)	YCT UNR Vox	Behavioral data notes: covert phase but accuracy derived from overt phase; search volume: whole brain; software: FSL 5.0.6; voxelwise p: .01; cluster extent cutoff: based on GRFT; lesion volume covariate	↓ R IFG pars triangularis
Skipper-Kallal et al. (2017b): Vox 7	Picture naming (prepare to name, correct trials) vs rest	CAA Aphas with motor cortex damage (n = 24) vs without motor cortex damage (n = 15)	YCT UNR Vox	Search volume: whole brain; software: FSL 5.0.6; voxelwise p: .01; cluster extent cutoff: based on GRFT; lesion volume covariate	None
Skipper-Kallal et al. (2017b): Vox 8	Picture naming (produce the name, correct trials) vs rest	CAA Aphas with insula damage (n not stated) vs without STS damage (n not stated)	YCT UNR Vox	Search volume: whole brain; software: FSL 5.0.6; voxelwise p: .01; cluster extent cutoff: based on GRFT; lesion volume covariate	None
Skipper-Kallal et al. (2017b): Vox 9	Picture naming (produce the name, correct trials) vs rest	CAA Aphas with IFG POp damage (n = 16) vs without IFG POp damage (n = 23)	YCT UNR Vox	Behavioral data notes: covert phase but accuracy derived from overt phase; number of ROIs: 1; ROI: R DLPFC; how ROI defined: peak location for decreased activation for patients with left insula and left POp lesions compared to patients without said damage; lesion volume covariate	None
Skipper-Kallal et al. (2017b): ROI 1	Picture naming (prepare to name, correct trials) vs rest	CC Aphas with IFG POp damage (n = 16) Covariate: PNT	YCT UNR ROI Func One	Behavioral data notes: covert phase but accuracy derived from overt phase; number of ROIs: 1; ROI: R DLPFC; how ROI defined: peak location for decreased activation for patients with left insula and left POp lesions compared to patients without said damage; lesion volume covariate	None
Skipper-Kallal et al. (2017b): ROI 2	Picture naming (prepare to name, correct trials) vs rest	CC Aphas without IFG POp damage (n = 23) Covariate: PNT	YCT UNR ROI Func One	Behavioral data notes: covert phase but accuracy derived from overt phase; number of ROIs: 1; ROI: R DLPFC; how ROI defined: peak location for decreased activation for patients with left insula and left POp lesions compared to patients without said damage; lesion volume covariate	None
Skipper-Kallal et al. (2017b): ROI 3	Picture naming (prepare to name, correct trials) vs rest	CC Aphas with insula damage (n = 18) Covariate: PNT	YCT UNR ROI Func One	Behavioral data notes: covert phase but accuracy derived from overt phase; number of ROIs: 1; ROI: R DLPFC; how ROI defined: peak location for decreased activation for patients with left insula and left POp lesions compared to patients without said damage; lesion volume covariate	None
Skipper-Kallal et al. (2017b): ROI 4	Picture naming (prepare to name, correct trials) vs rest	CC Aphas without insula damage (n =	YCT UNR ROI Func One	Behavioral data notes: covert phase but accuracy derived from overt phase; number of ROIs: 1; ROI: R DLPFC; how ROI defined: peak location for decreased activation for patients with left insula and left POp lesions compared to patients without said damage; lesion volume covariate	None

are missing from the table, and were added based on the figure.
Skipper-Kallal et al. (2017b): ROI 5	Picture naming (prepare to name, correct trials) vs rest	CAA Aphasias with IPS damage (n not stated) vs without IPS damage (n not stated)	YCT UNR	ROI Func NC	Behavioral data notes: covert phase but accuracy derived from overt phase; number of ROIs: 5; ROIs: (1) L IPS; (2) L insula; (3) L IFG pars opercularis; (4) R IPS; (5) R insula; how ROIs defined: 5 mm spheres around control peaks; lesion volume covariate: None
Skipper-Kallal et al. (2017b): ROI 6	Picture naming (prepare to name, correct trials) vs rest	CAA Aphasias with insula damage (n = 18) vs without insula damage (n = 21)	YCT UNR	ROI Func NC	Behavioral data notes: covert phase but accuracy derived from overt phase; number of ROIs: 5; ROIs: (1) L IPS; (2) L insula; (3) L IFG pars opercularis; (4) R IPS; (5) R insula; how ROIs defined: 5 mm spheres around control peaks; lesion volume covariate: None
Skipper-Kallal et al. (2017b): ROI 7	Picture naming (produce the name, correct trials) vs rest	CAA Aphasias with motor cortex damage (n = 24) vs without motor cortex damage (n = 15)	YCT UNR	ROI Func NC	Number of ROIs: 4; ROIs: (1) L motor; (2) L pSTS; (3) R motor; (4) R pSTS; how ROIs defined: 5 mm spheres around control peaks; lesion volume covariate: ↑ R somato-motor
Skipper-Kallal et al. (2017b): ROI 8	Picture naming (produce the name, correct trials) vs rest	CAA Aphasias with STS damage (n not stated) vs without STS damage (n not stated)	YCT UNR	ROI Func NC	Number of ROIs: 1; ROI: R motor; how ROI defined: 5 mm sphere around control peak; lesion volume covariate: ↓ R somato-motor
Skipper-Kallal et al. (2017b): ROI 9	Picture naming (produce the name, correct trials) vs rest	CC Aphasias without motor cortex damage (n = 15) Covariate: PNT	YCT UNR	ROI Func One	Number of ROIs: 1; ROI: R motor; how ROI defined: 5 mm sphere around control peak; lesion volume covariate: ↑ R somato-motor
Skipper-Kallal et al. (2017b): ROI 10	Picture naming (produce the name, correct trials) vs rest	CC Aphasias with motor cortex damage (n = 24) Covariate: PNT	YCT UNR	ROI Func One	Number of ROIs: 1; ROI: frontal Li; temporal Li calculated but not reported
Dietz et al. (2018): ROI 1	Verb generation (overt) vs noun repetition	CAA Aphasias with AAC treatment (n = 6) T2 vs usual care T2 (n = 6) Somewhat valid (marginal treatment effect)	UNR UNR	ROI Li One	Number of ROIs: 1; ROI: frontal Li; temporal Li calculated but not reported
Dietz et al. (2018): ROI 2	Verb generation (overt) vs noun repetition	LC Aphasias (both groups) T2 vs T1 Covariate: Δ WAB AQ Somewhat valid (gain in AQ not tested for significance)	UNR UNR	ROI Li One	Number of ROIs: 1; ROI: frontal Li; temporal Li calculated but not reported
Study	Task Description	ROI Type	Analysis Type	Search Volume	Notes								
Hallam et al. (2018): ROI 1	Listening to high or low ambiguity sentences vs listening to spectrally rotated speech	CAC	Aphasia vs control	NANB	Number of ROIs: 2; ROIs: (1) L vATL; (2) L pMTG; how ROIs defined: functional coordinates in literature; ANOVA revealed main effect of group (patient vs control), confirmed in follow-up tests for each ROI								
Hallam et al. (2018): ROI 2	Listening to high ambiguity sentences vs listening to low ambiguity sentences	CAC	Aphasia vs control	NANB	Number of ROIs: 2; ROIs: (1) L vATL; (2) L pMTG; how ROIs defined: functional coordinates in literature; no interaction of group by condition								
Hallam et al. (2018): Cplx 1	Listening to high ambiguity sentences vs listening to low ambiguity sentences	CAC	(subset with resting state data, n = 10) vs control (subset with resting state data, n = 10)	NANB	A whole brain analysis was carried out to identify regions where the groups differed in the extent to which the strength of functional connectivity at rest from L pMTG was associated with the difference in signal between the high ambiguity and low ambiguity conditions in the same ROI. Thresholding is not described and cluster extent is not reported.								
Hallam et al. (2018): Cplx 2	Listening to high ambiguity sentences vs listening to low ambiguity sentences	CAC	(subset with resting state data, n = 10) vs control (subset with resting state data, n = 10)	NANB	A whole brain analysis was carried out to identify regions where the groups differed in the extent to which the strength of functional connectivity at rest from L pMTG was associated with the difference in signal between the high ambiguity and low ambiguity conditions in the same ROI. Thresholding is not described.								
Nenert et al. (2018): Vox 1	Semantic decision vs tone decision	CAC	Aphasia T1 vs control	AM	Behavioral data notes: patients less accurate than controls on both tasks, but more so on the tone decision task; search volume: whole brain; software: SPM12/SnPM13; voxelwise p: FWE p < .05								
Nenert et al. (2018): Vox 2	Semantic decision vs tone decision	CAC	Aphasia T2 vs control	AM	Behavioral data notes: patients less accurate than controls on both tasks, but more so on the tone decision task; search volume: whole brain; software: SPM12/SnPM13; voxelwise p: FWE p < .05								
Nenert et al. (2018): Vox 3	Semantic decision vs tone decision	CAC	Aphasia T3 vs control	AM	Behavioral data notes: patients less accurate than controls on both tasks, but more so on the tone decision task; search volume: whole brain; software: SPM12/SnPM13; voxelwise p: FWE p < .05								
Nenert et al. (2018): Vox 4	Semantic decision vs tone decision	CAC	Aphasia T4 vs control	AM	Behavioral data notes: patients less accurate than controls on both tasks, but more so on the tone decision task;								
Study & Participant IDs	Task 1	Task 2	Control 1	Control 2	Control 3	Control 4	Control 5	Control 6	Control 7	Control 8	Control 9	Control 10	Analysis Notes
------------------------	------------------------	------------------------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	----------------
Nenert et al. (2018); Vox 5	Semantic decision vs tone decision	CAC	Aphasia T5 vs control	AM	UNR	UNR	UNR	VOX	VP	Search volume: whole brain; software: SPM12/SnPM13; voxelwise p: FWE p < .05	Behavioral data notes: patients less accurate than controls on both tasks, but more so on the tone decision task; search volume: whole brain; software: SPM12/SnPM13; voxelwise p: FWE p < .05	None	
Nenert et al. (2018); Vox 6	Verb generation vs finger tapping	CAC	Aphasia T1 vs control	UNR	UNR	UNR	UNR	VOX	VP	Search volume: whole brain; software: SPM12/SnPM13; voxelwise p: FWE p < .05	None		
Nenert et al. (2018); Vox 7	Verb generation vs finger tapping	CAC	Aphasia T2 vs control	UNR	UNR	UNR	UNR	VOX	VP	Search volume: whole brain; software: SPM12/SnPM13; voxelwise p: FWE p < .05	None		
Nenert et al. (2018); Vox 8	Verb generation vs finger tapping	CAC	Aphasia T3 vs control	UNR	UNR	UNR	UNR	VOX	VP	Search volume: whole brain; software: SPM12/SnPM13; voxelwise p: FWE p < .05	None		
Nenert et al. (2018); Vox 9	Verb generation vs finger tapping	CAC	Aphasia T4 vs control	UNR	UNR	UNR	UNR	VOX	VP	Search volume: whole brain; software: SPM12/SnPM13; voxelwise p: FWE p < .05	None		
Nenert et al. (2018); Vox 10	Verb generation vs finger tapping	CAC	Aphasia T5 vs control	UNR	UNR	UNR	UNR	VOX	VP	Search volume: whole brain; software: SPM12/SnPM13; voxelwise p: FWE p < .05	None		
Nenert et al. (2018); Vox 11	Semantic decision vs tone decision	CC	Aphasia T1	C	UNR	VOX	VP	Search volume: whole brain; software: SPM12/SnPM13; voxelwise p: FWE p < .05	↑ L anterior temporal notes: unclear why this type of analysis was run only for semantic task, and only at T1				
Nenert et al. (2018); Vox 12	Semantic decision vs tone decision	LC	Aphasia T4 vs aphasia T1	UNR	UNR	UNR	VOX	VP	Search volume: whole brain; software: SPM12/SnPM13; voxelwise p: FWE p < .05	None			
Nenert et al. (2018); Vox 13	Semantic decision vs tone decision	LC	Aphasia T4 vs aphasia T1	UNR	UNR	UNR	VOX	VP	Search volume: whole brain; software: SPM12/SnPM13; voxelwise p: FWE p < .05	None			
Nenert et al. (2018); Vox 14	Semantic decision vs tone decision	LC	Aphasia T4 vs aphasia T1	UNR	UNR	UNR	VOX	VP	Search volume: whole brain; software: SPM12/SnPM13; voxelwise p: FWE p < .05	None			
Nenert et al. (2018); Vox 15	Semantic decision vs tone decision	LC	Aphasia T4 vs aphasia T1	UNR	UNR	UNR	VOX	VP	Search volume: whole brain; software: SPM12/SnPM13; voxelwise p: FWE p < .05	None			
Nenert et al. (2018); Vox 16	Semantic decision vs tone decision	LC	Aphasia T4 vs aphasia T1	UNR	UNR	UNR	VOX	VP	Search volume: whole brain; software: SPM12/SnPM13; voxelwise p: FWE p < .05	None			
Nenert et al. (2018); Vox 17	Verb generation vs finger tapping	LC	Aphasia T4 vs aphasia T1	UNR	UNR	UNR	VOX	VP	Search volume: whole brain; software: SPM12/SnPM13; voxelwise p: FWE p < .05	None			
Nenert et al. (2018): Vox 18	Verb generation vs finger tapping	LC Aphasia T4 vs aphasia T1 Covariate: Δ semantic fluency	UNR	UNR	Vox VP	Search volume: whole brain; software: SPM12/SnPM13; voxelwise p: FWE p < .05	↑ L dorsolateral prefrontal cortex ↑ L SMA/medial prefrontal ↑ R somato-motor ↑ R anterior temporal						
-------------------------------	---------------------------------	---	------	------	--------	--	--						
Nenert et al. (2018): Vox 19	Verb generation vs finger tapping	LC Aphasia T4 vs aphasia T1 Covariate: Δ PPVT	UNR	UNR	Vox VP	Search volume: whole brain; software: SPM12/SnPM13; voxelwise p: FWE p < .05	None						
Nenert et al. (2018): Vox 20	Verb generation vs finger tapping	LC Aphasia T4 vs aphasia T1 Covariate: Δ phonemic fluency	UNR	UNR	Vox VP	Search volume: whole brain; software: SPM12/SnPM13; voxelwise p: FWE p < .05	↑ L cerebellum						
Nenert et al. (2018): Vox 21	Verb generation vs finger tapping	LC Aphasia T4 vs aphasia T1 Covariate: Δ BDAE complex ideation subtest	UNR	UNR	Vox VP	Search volume: whole brain; software: SPM12/SnPM13; voxelwise p: FWE p < .05	None						
Nenert et al. (2018): ROI 1	Semantic decision vs tone decision	LA Aphasia (comparisons between all pairs of time points)	AS	UNR	ROI LI NC	Number of ROIs: 4; ROIs: (1) frontal Ll; (2) tempo-parietal Ll; (3) language network Ll; (4) cerebellar Ll	None						
Nenert et al. (2018): ROI 2	Verb generation vs finger tapping	LA Aphasia (comparisons between all pairs of time points)	UNR	UNR	ROI LI NC	Number of ROIs: 4; ROIs: (1) frontal Ll; (2) tempo-parietal Ll; (3) language network Ll; (4) cerebellar Ll	None						
Nenert et al. (2018): ROI 3	Semantic decision vs tone decision	CAC Aphasia T1 vs control	AM	UNR	ROI LI NC	Behavioral data notes: patients less accurate than controls on both tasks, but more so on the tone decision task; number of ROIs: 4; ROIs: (1) frontal Ll; (2) tempo-parietal Ll; (3) language network Ll; (4) cerebellar Ll	None						
Nenert et al. (2018): ROI 4	Semantic decision vs tone decision	CAC Aphasia T2 vs control	AM	UNR	ROI LI NC	Behavioral data notes: patients less accurate than controls on both tasks, but more so on the tone decision task; number of ROIs: 4; ROIs: (1) frontal Ll; (2) tempo-parietal Ll; (3) language network Ll; (4) cerebellar Ll	None						
Nenert et al. (2018): ROI 5	Semantic decision vs tone decision	CAC Aphasia T3 vs control	AM	UNR	ROI LI NC	Behavioral data notes: patients less accurate than controls on both tasks, but more so on the tone decision task; number of ROIs: 4; ROIs: (1) frontal Ll; (2) tempo-parietal Ll; (3) language network Ll; (4) cerebellar Ll	None						
Nenert et al. (2018): ROI 6	Semantic decision vs tone decision	CAC Aphasia T4 vs control	AM	UNR	ROI LI NC	Behavioral data notes: patients less accurate than controls on both tasks, but more so on the tone decision task; number of ROIs: 4; ROIs: (1) frontal Ll; (2) tempo-parietal Ll; (3) language network Ll; (4) cerebellar Ll	None						
Nenert et al. (2018): ROI 7	Semantic decision vs tone decision	CAC Aphasia T5 vs control	AM	UNR	ROI LI NC	Behavioral data notes: patients less accurate than controls on both tasks, but more so on the tone decision task; number of ROIs: 4; ROIs: (1) frontal Ll; (2) tempo-parietal Ll; (3) language network Ll; (4) cerebellar Ll	None						

Nenert et al. (2018): Number of ROIs: 4; ROIs: (1) frontal LI; (2) temporo-parietal LI; (3) language network LI; (4) cerebellar LI

Behavioral data notes: patients less accurate than controls on both tasks, but more so on the tone decision task; number of ROIs: 4; ROIs: (1) frontal LI; (2) temporo-parietal LI; (3) language network LI; (4) cerebellar LI

None

Verb generation vs CAC Aphasia T4 vs control | UNR | UNR | ROI | Number of ROIs: 4; ROIs: (1) frontal LI; | None
Study	Task	Timepoint	ROIs	Number of ROIs	ROIs Details	CPM	Analysis Details
Nenert et al. (2018): ROI 8	Verb generation vs finger tapping	Aphasia T1 vs control	LI, NC	4	(1) frontal LI; (2) temporo-parietal LI; (3) language network LI; (4) cerebellar LI	↓	LI (language network) ↓ LI (frontal)
Nenert et al. (2018): ROI 9	Verb generation vs finger tapping	CAC Aphasia T2 vs control	UNR, UNR	ROI LI NC	Number of ROIs: 4; ROIs: (1) frontal LI; (2) temporo-parietal LI; (3) language network LI; (4) cerebellar LI	↓	LI (language network) ↓ LI (frontal)
Nenert et al. (2018): ROI 10	Verb generation vs finger tapping	CAC Aphasia T3 vs control	UNR, UNR	ROI LI NC	Number of ROIs: 4; ROIs: (1) frontal LI; (2) temporo-parietal LI; (3) language network LI; (4) cerebellar LI	None	
Nenert et al. (2018): ROI 11	Verb generation vs finger tapping	CAC Aphasia T4 vs control	UNR, UNR	ROI LI NC	Number of ROIs: 4; ROIs: (1) frontal LI; (2) temporo-parietal LI; (3) language network LI; (4) cerebellar LI	None	
Nenert et al. (2018): ROI 12	Verb generation vs finger tapping	CAC Aphasia T5 vs control	UNR, UNR	ROI LI NC	Number of ROIs: 4; ROIs: (1) frontal LI; (2) temporo-parietal LI; (3) language network LI; (4) cerebellar LI	None	
Nenert et al. (2018): Cplx 1	Semantic decision vs tone decision	LA Aphasia (comparisons between all pairs of time points)	AS, UNR	Cplx	PPI analyses were carried out to investigate potential changes over time in how connectivity from L and R IFG was modulated by the semantic decision task. The resultant SPM was thresholded at FWE p < .05 using permutation testing implemented in SnPM 13.	None	
Nenert et al. (2018): Cplx 2	Verb generation vs finger tapping	LA Aphasia (comparisons between all pairs of time points)	UNR, UNR	Cplx	PPI analyses were carried out to investigate potential changes over time in how connectivity from L and R IFG was modulated by the verb generation task. The resultant SPM was thresholded at FWE p < .05 using permutation testing implemented in SnPM 13.	None	
Pillay et al. (2018): Vox 1	Reading nouns aloud (correct trials) vs reading nouns aloud (incorrect trials)	CB Aphasia	NBD, Y, Vox				
Szafranski et al. (2018): Vox 1	Semantic decision vs tone decision	LA Aphasia T2 vs T1	UNR, UNR	Vox	Search volume: whole brain; software: SPM12; voxelwise p: .05; cluster extent cutoff: 0.928 cc	↓	L angular gyrus ↓ L ventral precentral/inferior frontal junction ↓ L SMA/medial prefrontal ↓ R insula ↓ R ventral precentral/inferior frontal junction ↓ L SMA/medial prefrontal notes: positive region (L AG) was part of the semantic network, while many negative regions were positively modulated by reaction time in the aphasia group

Notes:
- ROI: Region of Interest
- LI: Language Impaired
- NC: Normal Control
- CPM: Comparison Method
- Cplx: Complex Analysis
- NbD: Nondominant
- Y: Dominant
- Vox: Voxel
- CCS: Cluster Cutoff Significance
- SPM: Statistical Parametric Mapping
- FWE: Family Wise Error
Szaflarski et al. (2018): Vox 2
Semantic decision vs tone decision
LA Aphasia T3 vs T2
↑ R supramarginal gyrus
↑ R superior parietal
↑ R precuneus
↑ R mid temporal
↑ R anterior cingulate
↓ L IFG pars opercularis
↓ L dorsolateral prefrontal cortex
↓ L ventral precentral/inferior frontal junction
↓ L dorsal precentral
↓ L SMA/medial prefrontal
↓ L somato-motor
↓ L superior parietal
↓ L occipital

Search volume: whole brain; software: SPM12; voxelwise p: .05; cluster extent cutoff: 0.928 cc

Szaflarski et al. (2018): Vox 3
Semantic decision vs tone decision
LA Aphasia T3 vs T1
↑ L dorsolateral prefrontal cortex
↑ L angular gyrus
↑ L precuneus
↑ L posterior STS
↑ L SMA/medial prefrontal
↑ L anterior temporal
↑ L anterior cingulate
↑ R IFG
↑ R dorsolateral prefrontal cortex
↑ R ventral precentral/inferior frontal junction
↑ R SMA/medial prefrontal
↑ R somato-motor
↑ R precuneus
↑ R posterior STG/STS/MTG
↑ R anterior temporal
↑ L supramarginal gyrus
↑ L angular gyrus
↑ L precuneus
↑ L posterior STG
↑ L mid temporal
↑ L anterior temporal
↑ L posterior cingulate
↑ L somato-motor
↑ R dorsolateral prefrontal cortex

Search volume: whole brain; software: SPM12; voxelwise p: .05; cluster extent cutoff: 0.928 cc
Reference	Task 1	Task 2	Region of Interest 1	Region of Interest 2	Region of Interest 3	Region of Interest 4	Region of Interest 5	Region of Interest 6	Region of Interest 7	Region of Interest 8	Region of Interest 9	Region of Interest 10	Region of Interest 11	Region of Interest 12	Notes
Szafranski et al. (2018): Vox 4	Semantic decision vs tone decision	LC AphasT2 vs aphasia T2	UNR	UNR	Vox	CCB	Search volume: whole brain; software: SPM12; voxelwise p: .05; cluster extent cutoff: 0.928 cc; inclusive mask of voxels that differed between T2 and T3	↓	L inferior parietal lobule						
Szafranski et al. (2018): Vox 5	Semantic decision vs tone decision	LC AphasT3 vs aphasia T1	UNR	UNR	Vox	CCB	Search volume: whole brain; software: SPM12; voxelwise p: .05; cluster extent cutoff: 0.928 cc; inclusive mask of voxels that differed between T2 and T3	↓	R IFG						
van de Sandt-Koenderman et al. (2018): ROI 1	Listening to narrative speech vs listening to reversed speech	CC AphasT1	NANB	NANT	ROI	Li	Number of ROIs: 1; ROI: language network L1; how ROI defined: activations that were “not clearly related to known language areas” were excluded, but the basis for this determination is not clear	None							
van de Sandt-Koenderman et al. (2018): ROI 2	Listening to narrative speech vs listening to reversed speech	LC AphasT2 vs T1	NANT	NANT	ROI	Li	Number of ROIs: 1; ROI: language network L1; how ROI defined: activations that were “not clearly related to known language areas” were excluded, but the basis for this determination is not clear	None							
van de Sandt-Koenderman et al. (2018): ROI 3	Listening to narrative speech vs listening to reversed speech	LC AphasT2 vs T1	NANT	NANT	ROI	Li	Number of ROIs: 1; ROI: language network L1; how ROI defined: activations that were “not clearly related to known language areas” were excluded, but the basis for this determination is not clear	None							
van de Sandt-Koenderman et al. (2018): ROI 4	Listening to narrative speech vs listening to reversed speech	LC AphasT2 vs T1	NANT	NANT	ROI	Li	Number of ROIs: 1; ROI: language network L1; how ROI defined: activations that were “not clearly related to known language areas” were excluded, but the basis for this determination is not clear	None							
van Oers et al. (2018): ROI 1	Written word-picture matching vs visual decision	CC AphasT1	UNR	UNR	ROI	Func	Search volume: whole brain; software: SPM12; voxelwise p: .05; cluster extent cutoff: 0.928 cc; inclusive mask of voxels that differed between T2 and T3	↓	L posterior inferior temporal gyrus/fusiform gyrus						
van Oers et al. (2018): ROI 2	Written word-picture matching vs visual decision	CC AphasT1	UNR	UNR	ROI	Func	Search volume: whole brain; software: SPM12; voxelwise p: .05; cluster extent cutoff: 0.928 cc; inclusive mask of voxels that differed between T2 and T3	↓	L posterior inferior temporal gyrus/fusiform gyrus						

Notes: activation predicted later outcome even when initial language performance was included in the model
van Oers et al. (2018): ROI 3
Written word-picture matching vs visual decision
CC Aphasia (all time points)
Covariate: average of AAT comprehension score and BNT, all time points
UNR UNR UNR Func FDR
Number of ROIs: 12; ROIs: (1) bilateral dorsal anterior cingulate; (2) L angular gyrus; (3) L IFG pars opercularis and triangularis; (4) L thalamus; (5) L MFG; (6) L posterior ITG; (7) R angular gyrus; (8) R IFG pars triangularis; (9) R thalamus; (10) R posterior ITG; (11) R IFG pars opercularis and triangularis; (12) R MFG; how ROIs defined: control activations and their homotopic counterparts in the R hemisphere; activation measured as count of voxels activated at p < 0.001, uncorrected; mixed model; minimal detail provided
↓ R IFG pars opercularis
↓ R IFG pars triangularis

van Oers et al. (2018): ROI 4
Written word-picture matching vs visual decision
CC Aphasia (all time points)
Covariate: picture-word matching accuracy, all time points
C UNR UNR UNR Func FDR
Number of ROIs: 12; ROIs: (1) bilateral dorsal anterior cingulate; (2) L angular gyrus; (3) L IFG pars opercularis and triangularis; (4) L thalamus; (5) L MFG; (6) L posterior ITG; (7) R angular gyrus; (8) R IFG pars triangularis; (9) R thalamus; (10) R posterior ITG; (11) R IFG pars opercularis and triangularis; (12) R MFG; how ROIs defined: control activations and their homotopic counterparts in the R hemisphere; activation measured as count of voxels activated at p < 0.001, uncorrected; mixed model; minimal detail provided
↑ R posterior inferior temporal gyrus/fusiform gyrus

van Oers et al. (2018): ROI 5
Written word-picture matching vs visual decision
LA Aphasia: linear effect of time
UNR UNR UNR UNR Func FDR
Number of ROIs: 6; ROIs: (1) L angular gyrus; (2) L IFG pars opercularis and triangularis; (3) L thalamus; (4) L posterior ITG; (5) L MFG; (6) R IFG pars opercularis and triangularis; (7) R angular gyrus; (8) R IFG pars triangularis; (9) R thalamus; (10) R posterior ITG; (11) R IFG pars opercularis and triangularis; (12) R MFG; how ROIs defined: control activations and their homotopic counterparts in the R hemisphere; activation measured as count of voxels activated at p < 0.001, uncorrected; mixed model; minimal detail provided
↑ L dorsolateral prefrontal cortex
↑ L anterior cingulate
duo R dorsolateral prefrontal cortex
↑ R angular gyrus
↑ R anterior cingulate
↑ R thalamus
↑ L IFG pars opercularis
duo L IFG pars triangularis

van Oers et al. (2018): ROI 6
Semantic decision vs visual decision
CC Aphasia (subset who returned for follow-up) T1 (n = 10)
Covariate: subsequent outcome
UNR UNR UNR UNR Func FDR
Number of ROIs: 6; ROIs: (1) L angular gyrus; (2) L IFG pars opercularis and triangularis; (3) L posterior ITG; (4) R angular gyrus; (5) R IFG pars opercularis and triangularis; (6) R posterior ITG; how ROIs defined: None
van Oers et al. (2018): ROI 7

| Semantic decision vs visual decision | CC Aphasia (all time points) Covariate: average of AAT comprehension score and BNT, all time points | Number of ROIs: 6; ROIs: (1) L angular gyrus; (2) L IFG pars opercularis and triangularis; (3) L posterior ITG; (4) R angular gyrus; (5) R IFG pars opercularis and triangularis; (6) R posterior ITG; how ROIs defined: control activations and their homotopic counterparts in the R hemisphere; activation measured as count of voxels activated at p < 0.001, uncorrected; mixed model; minimal detail provided | None |

van Oers et al. (2018): ROI 8

| Semantic decision vs visual decision | CC Aphasia (all time points) Covariate: average of AAT comprehension score and BNT, all time points | Number of ROIs: 6; ROIs: (1) L angular gyrus; (2) L IFG pars opercularis and triangularis; (3) L posterior ITG; (4) R angular gyrus; (5) R IFG pars opercularis and triangularis; (6) R posterior ITG; how ROIs defined: control activations and their homotopic counterparts in the R hemisphere; activation measured as count of voxels activated at p < 0.001, uncorrected; mixed model; minimal detail provided | None |

van Oers et al. (2018): ROI 9

| Semantic decision vs visual decision | CC Aphasia (all time points) Covariate: semantic decision accuracy, all time points | Number of ROIs: 6; ROIs: (1) L angular gyrus; (2) L IFG pars opercularis and triangularis; (3) L posterior ITG; (4) R angular gyrus; (5) R IFG pars opercularis and triangularis; (6) R posterior ITG; how ROIs defined: control activations and their homotopic counterparts in the R hemisphere; activation measured as count of voxels activated at p < 0.001, uncorrected; mixed model; minimal detail provided | None |

van Oers et al. (2018): ROI 10

| Semantic decision vs visual decision | LA Aphasia: linear effect of time | Number of ROIs: 6; ROIs: (1) L angular gyrus; (2) L IFG pars opercularis and triangularis; (3) L posterior ITG; (4) R angular gyrus; (5) R IFG pars opercularis and triangularis; (6) R posterior ITG; how ROIs defined: control activations and their homotopic counterparts in the R hemisphere; activation measured as count of voxels activated at p < 0.001, uncorrected; mixed model; minimal detail provided | ↑ L posterior inferior temporal gyrus/fusiform gyrus ↑ R angular gyrus ↓ L IFG pars opercularis ↓ L IFG pars triangularis notes: similar numbers of findings are reported for controls |

Barbieri et al. (2019): Vox 1

| Auditory sentence-picture verification vs listening to | LA Aphasia treated (n = 13) T2 vs T1 | Behavioral data notes: out-of-scanner performance on passive sentences improved; software: SPM8; voxelwise | ↑ L precuneus ↑ R ventral precentral/inferior |
Study	Task	Brain Regions	Software	p-value	Clusters	Notes
Barbieri et al. (2019): Vox 2	Auditory sentence-picture verification vs listening to reversed speech and viewing scrambled pictures	LA Aphasia natural history (n = 5) T2 vs T1	UNR UNR Vox CCS	p: .001; cluster extent cutoff: 37 voxels (size not stated)		frontal junction
		R somato-motor				
		R supramarginal gyrus				
		R intraparietal sulcus				
		R superior parietal				
		R precuneus				
		Notes: based on Table 7 and Figure 8				
		Software: SPM8; voxelwise p: .001; cluster extent cutoff: 37 voxels (size not stated)				
		None				
		auditory sentence-picture verification vs listening to reversed speech and viewing scrambled pictures	UNR UNR ROI Anat NC	Number of ROIs: 4; ROIs: (1) L hemisphere sentence processing network (IFGpt, pMTG, pSTG, AG); (2) R hemisphere homotopic regions; (3) L dorsal attention network (MFG, PrCG, SPL, sLOC); (4) R dorsal attention network (same regions); how ROIs defined: sentence processing network based on Walenski et al. (2019); dorsal attention network based on Corbetta et al. (2008) and Vincent et al. (2008); ROIs were defined based on Harvard-Oxford atlas which would align imperfectly with these functional networks; dependent variable was number of active voxels (p < .001, uncorrected) divided by number of intact voxels; derivation of dependent measures from ROIs difficulty to follow, but it seems that ROIs with less than 5 voxels upregulated were excluded and deactivations were not considered, meaning that estimates of change may be biased		
		L dorsolateral prefrontal cortex				
		L ventral precentral/inferior frontal junction				
		L dorsal precentral				
		L angular gyrus				
		L intraparietal sulcus				
		L superior parietal				
		R dorsolateral prefrontal cortex				
		R ventral precentral/inferior frontal junction				
		R dorsal precentral				
		R angular gyrus				
		R intraparietal sulcus				
		L superior parietal				
		Notes: bilateral dorsal attention network; findings were for networks as a whole; regions coded correspond to atlas ROIs				
Barbieri et al. (2019): ROI 1	Auditory sentence-picture verification vs listening to reversed speech and viewing scrambled pictures	LAA Aphasia treated (n=13) T2 vs T1 vs T1 (aphasia natural history (n=5) T2 vs T1)	UNR UNR ROI Anat NC	Number of ROIs: 4; ROIs: (1) L hemisphere sentence processing network (IFGpt, pMTG, pSTG, AG); (2) R hemisphere homotopic regions; (3) L dorsal attention network (MFG, PrCG, SPL, sLOC); (4) R dorsal attention network (same regions); how ROIs defined: sentence processing network based on Walenski et al. (2019); dorsal attention network based on Corbetta et al. (2008) and Vincent et al. (2008); ROIs were defined based on Harvard-Oxford atlas which would align imperfectly with these functional networks; dependent variable was number of active voxels (p < .001, uncorrected) divided by number of intact voxels; derivation of dependent measures from ROIs difficulty to follow, but it seems that ROIs with less than 5 voxels upregulated were excluded and deactivations were not considered, meaning that estimates of change may be biased		
		LVP frontal junction				
		LIFG pars triangularis				
		R dorsolateral prefrontal cortex				
		R ventral precentral/inferior frontal junction				
		R dorsal precentral				
		R angular gyrus				
		R intraparietal sulcus				
		Notes: bilateral dorsal attention network; findings were for networks as a whole; regions coded correspond to atlas ROIs				
Oxford atlas which would align imperfectly with these functional networks; dependent variable was number of active voxels (p < .001, uncorrected) divided by number of intact voxels; derivation of dependent measures from ROIs difficulty to follow, but it seems that ROIs with less than 5 voxels upregulated were excluded and deactivations were not considered, meaning that estimates of change may be biased.

Barbieri et al. (2019): ROI 3	Auditory sentence-picture verification vs listening to reversed speech and viewing scrambled pictures	UNR	UNR	ROI	Anat	Number of ROIs: 4; ROIs: (1) L hemisphere sentence processing network (IFGpt, pMTG, pSTG, AG); (2) R hemisphere homotopic regions; (3) L dorsal attention network (MFG, PrCG, SPL, sLOC); (4) R dorsal attention network (same regions); how ROIs defined: sentence processing network based on Walenski et al. (2019); dorsal attention network based on Corbetta et al. (2008) and Vincent et al. (2008); ROIs were defined based on Harvard-Oxford atlas which would align imperfectly with these functional networks; dependent variable was number of active voxels (p < .001, uncorrected) divided by number of intact voxels; derivation of dependent measures from ROIs difficulty to follow, but it seems that ROIs with less than 5 voxels upregulated were excluded and deactivations were not considered, meaning that estimates of change may be biased.			
Barbieri et al. (2019): ROI 4	Auditory sentence-picture verification vs listening to reversed speech and viewing scrambled pictures	UNR	UNR	ROI	Anat	Number of ROIs: 4; ROIs: (1) L hemisphere sentence processing network (IFGpt, pMTG, pSTG, AG); (2) R hemisphere homotopic regions; (3) L dorsal attention network (MFG, PrCG, SPL, sLOC); (4) R dorsal attention network (same regions); how ROIs defined: sentence processing network based on Walenski et al. (2019); dorsal attention network based on Corbetta et al. (2008) and Vincent et al. (2008); ROIs were defined based on Harvard-Oxford atlas which would align imperfectly with these functional networks; dependent variable was number of active voxels (p < .001, uncorrected) divided by number of intact voxels; derivation of dependent measures from ROIs difficulty to follow, but it seems that ROIs with less than 5 voxels upregulated were excluded and deactivations were not considered, meaning that estimates of change may be biased.			
Study	Task	Control	ROI	UNR	Ctr	Anat	NC	Number of ROIs	ROIs
------------------------------	-------------------------------	---------------------------	-----	-----	-----	------	----	----------------	---
Johnson et al. (2019): ROI 1	Picture naming (trained items) vs rest	CAC	N	UNR	N	R	NC	16	(1) L IFGorb; (2) L IFGtri; (3) L IFGop; (4) L MFG; (5) L PrCG; (6) L MTG; (7) L SMG; (8) L AG; (9-16) homotopic counterparts; how ROIs defined: AAL but lesioned voxels were excluded from ROIs on an individual basis
Johnson et al. (2019): ROI 2	Picture naming (trained items) vs rest	CAC	Y	UNR	N	R	NC	16	(1) L IFGorb; (2) L IFGtri; (3) L IFGop; (4) L MFG; (5) L PrCG; (6) L MTG; (7) L SMG; (8) L AG; (9-16) homotopic counterparts; how ROIs defined: AAL but lesioned voxels were excluded from ROIs on an individual basis
Johnson et al. (2019): ROI 3	Picture naming (trained items) vs rest	LA	N	UNR	N	R	NC	None	None; no main effect of time or interaction of time by ROI
Johnson et al. (2019): Cplx 1	Picture naming (trained items) vs rest	LA	N	UNR	N	R	NC	16	A linear model was constructed to examine the relationship between proportion of spared tissue in each L hemisphere ROI and changes in activation over time. The model is not described in sufficient detail.

Kristinsson et al. (2019): Vox 1

Task	Control	ROI	UNR	Ctr	Anat	NC	Software	Ctr	Notes
Spelling probe (training items) vs rest	LA Apathia with both timepoints (n = 20) T2 vs T1	AM	AM	AM	AM	5	SPM12	None	1 L posterior cingulate; R angular gyrus; R posterior cingulate

Purcell et al. (2019): Vox 1

Task	Control	ROI	UNR	Ctr	Anat	NC	Software	Ctr	Notes
Spelling probe (training items) vs rest	LA Apathia with both timepoints (n = 20) T2 vs T1	AM	AM	AM	AM	5	SPM12	None	1 L posterior cingulate; R angular gyrus; R posterior cingulate
Study (Purcell et al. 2019)	Task	Group	Condition	Design	ROIs	Functional Interpretation	Notes		
-----------------------------	------	-------	-----------	--------	------	---------------------------	-------		
ROI 1	Spelling probe (training items) vs rest	LC	Aphasia with both timepoints (n = 20) T2 vs T1	Covariate: Δ spelling accuracy on training items	UNR UNR	ROI Func	None		
					Number of ROIs: 3; ROIs: (1) R AG; (2) L PCC; (3) R PCC; how ROIs defined: regions activated in SPM analysis 1				
ROI 2	Spelling probe (training items) vs rest	LC	Aphasia with both timepoints (n = 20) T2 vs T1	Covariate: Δ spelling accuracy on training items	UNR UNR	ROI Func	None		
					Number of ROIs: 3; ROIs: (1) R AG; (2) L PCC; (3) R PCC; how ROIs defined: regions activated in SPM analysis 1				
ROI 3	Spelling probe (training items) vs rest	CC	Aphasia T1	Covariate: subsequent Δ spelling accuracy on training items (T2 vs T1) **Somewhat valid** (T1 behavioral measure should be included in model)	UNR UNR	ROI Func	None		
					Number of ROIs: 1; ROI: L ventral occipitotemporal cortex; how ROI defined: the region that showed an increase in Local-Hreg from T1 to T2				
ROI 4	Spelling probe (training items) vs rest	CC	Aphasia with both timepoints T1 (n = 20)	Covariate: subsequent Δ spelling accuracy on untrained items (T2 vs T1) **Somewhat valid** (T1 behavioral measure should be included in model)	UNR UNR	ROI Func	None		
					Number of ROIs: 1; ROI: L ventral occipitotemporal cortex; how ROI defined: the region that showed an increase in Local-Hreg from T1 to T2				
ROI 5	Spelling probe (training items) vs rest	LC	Aphasia with both timepoints (n = 20) T2 vs T1	Covariate: Δ spelling accuracy on training items	UNR UNR	ROI Func	None		
					Number of ROIs: 1; ROI: L ventral occipitotemporal cortex; how ROI defined: the region that showed an increase in Local-Hreg from T1 to T2				
ROI 6	Spelling probe (training items) vs rest	LC	Aphasia with both timepoints (n = 20) T2 vs T1	Covariate: Δ spelling accuracy on untrained items	UNR UNR	ROI Func	None		
					Number of ROIs: 1; ROI: L ventral occipitotemporal cortex; how ROI defined: the region that showed an increase in Local-Hreg from T1 to T2				
Cplx 1	Spelling probe (training items) vs rest	LA	Aphasia with both timepoints (n = 20) T2 vs T1		AM AM Cplx	Behavioral data notes: see section S2, where Figures S1 and S2 appear to show differences; the main effects of time were not significant for accuracy or RT, but those analyses included known items also, which had smaller effects; Local Heterogeneity Regression Analysis (Local-Hreg) was used to identify brain regions where the heterogeneity of timecourses	Other: Only in L ventral occipitotemporal cortex, there was a significant increase in Local-Hreg from T1 to T2 (p = 0.028, corrected).		
between neighboring voxels, specifically for the trained condition, increased from T1 to T2. A voxelwise threshold of \(p < 0.05 \) was applied, followed by cluster correction based on permutation testing. The analysis appears to have been restricted to brain regions not damaged in any patients.

| Study: Purcell et al. (2019): Cplx 2 | Task: Spelling probe (known items) vs rest | Condition: LA Aphasia with both timepoints (\(n = 20 \)) T2 vs T1 | Y Y Cplx | Behavioral data notes: see section S2, main effects were not significant and effects appear smaller for known than trained; Local Heterogeneity Regression Analysis (Local-Hreg) was used to identify brain regions where the heterogeneity of timecourses between neighboring voxels, specifically for the known condition, increased from T1 to T2. A voxelwise threshold of \(p < 0.05 \) was applied, followed by cluster correction based on permutation testing. The analysis appears to have been restricted to brain regions not damaged in any patients. | None |

| Study: Purcell et al. (2019): Cplx 3 | Task: Spelling probe (training items) vs rest | Condition: CC Aphasia T1 Covariate: T1 spelling accuracy on training items Somewhat valid (training items were selected for individual patients, so training item accuracy is not an appropriate measure of spelling ability) | UNR UNR Cplx | A linear mixed effects model was used to investigate the relationship between Local-Hreg at T1 in the L ventral occipitotemporal region previously identified and T1 spelling accuracy of training items. A complex model was used in which every voxel for every patient was considered an observation, with random effects of voxel and patient, but this is not described in detail. Other: There was a significant positive relationship between T1 Local-Hreg and T1 spelling accuracy on training items. | |

| Study: Purcell et al. (2019): Cplx 4 | Task: Spelling probe (training items) vs rest | Condition: CC Aphasia T1 Covariate: subsequent Δ spelling accuracy on training items (T2 vs T1) Somewhat valid (T1 behavioral measure should be included in model) | UNR UNR Cplx | A linear mixed effects model was used to investigate the relationship between Local-Hreg at T1 in the L ventral occipitotemporal region previously identified and subsequent improvement in spelling accuracy of training items from T1 to T2. A complex model was used in which every voxel for every patient was considered an observation, with random effects of voxel and patient, but this is not described in detail. Other: There was a significant positive relationship between T1 Local-Hreg and subsequent improvement in spelling accuracy on training items from T1 to T2. | |

| Study: Purcell et al. (2019): Cplx 5 | Task: Spelling probe (training items) vs rest | Condition: CC Aphasia with both timepoints T1 (\(n = 20 \)) Covariate: subsequent Δ spelling accuracy on untrained items (T2 vs T1) Somewhat valid (T1 behavioral measure should be included in model) | UNR UNR Cplx | A linear mixed effects model was used to investigate the relationship between Local-Hreg at T1 in the L ventral occipitotemporal region previously identified and subsequent improvement in spelling accuracy of untrained items from T1 to T2. A complex model was used in which every voxel for every patient was considered an observation, with random effects of voxel and patient, but this is not described in detail. Other: There was a significant positive relationship between T1 Local-Hreg and subsequent improvement in spelling accuracy on untrained items from T1 to T2. | |
Purcell et al. (2019): Cplx 6	Spelling probe (training items) vs rest	LC	Aphasia with both timepoints (n = 20) T2 vs T1	Covariate: Δ spelling accuracy on training items	UNR	UNR	Cplx	A linear mixed effects model was used to investigate the relationship between change in Local-Hreg in the L ventral occipitotemporal region previously identified and change in spelling accuracy of training items. A complex model was used in which every voxel for every patient was considered an observation, with random effects of voxel and patient, but this is not described in detail.	Other: There was a significant negative relationship between change in Local-Hreg and change in spelling accuracy on training items.
Purcell et al. (2019): Cplx 7	Spelling probe (training items) vs rest	LC	Aphasia with both timepoints (n = 20) T2 vs T1	Covariate: Δ spelling accuracy on untrained items	UNR	UNR	Cplx	A linear mixed effects model was used to investigate the relationship between change in Local-Hreg in the L ventral occipitotemporal region previously identified and change in spelling accuracy of untrained items. A complex model was used in which every voxel for every patient was considered an observation, with random effects of voxel and patient, but this is not described in detail.	Other: There was a significant negative relationship between change in Local-Hreg and change in spelling accuracy on untrained items.
Purcell et al. (2019): Cplx 8	Spelling probe (training items) vs rest	CC	Aphasia with both timepoints T2 (n = 20)	Covariate: T2 spelling accuracy on training items	UNR	UNR	Cplx	A linear mixed effects model was used to investigate the relationship between Local-Hreg at T2 in the L ventral occipitotemporal region previously identified and T2 spelling accuracy of training items. A complex model was used in which every voxel for every patient was considered an observation, with random effects of voxel and patient, but this is not described in detail.	None
Purcell et al. (2019): Cplx 9	Spelling probe (training items) vs rest	LC	Aphasia with both timepoints (n = 20) T2 vs T1	Covariate: previous T1 Local-Hreg in L ventral occipitotemporal ROI Not valid (the ROI was defined based on change in Local-Hreg, so spurious findings could arise in the absence of a real effect)	UNR	UNR	Cplx	A linear mixed effects model was used to investigate the relationship between change in Local-Hreg in the L ventral occipitotemporal region previously identified and T1 Local-Hreg. A complex model was used in which every voxel for every patient was considered an observation, with random effects of voxel and patient, but this is not described in detail.	Other: There was a significant negative relationship between change in Local-Hreg and T1 Local-Hreg.
Purcell et al. (2019): Cplx 10	Spelling probe (training items) vs rest	LC	Aphasia with both timepoints (n = 20) T2 vs T1	Covariate: Δ spelling accuracy on training items	UNR	UNR	Cplx	A linear mixed effects model was used to investigate the relationship between change in Local-Hreg in the R AG, L PCC, and R PCC and change in spelling accuracy of training items. A complex model was used in which every voxel for every patient was considered an observation, with random effects of voxel and patient, but this is not described in detail.	None
Purcell et al. (2019): Cplx 11	Spelling probe (training items) vs rest	LC	Aphasia with both timepoints (n = 20) T2 vs T1	Covariate: Δ spelling accuracy on untrained items	UNR	UNR	Cplx	A linear mixed effects model was used to investigate the relationship between change in Local-Hreg in the R AG, L PCC, and R PCC and change in spelling accuracy of untrained items. A complex model was used in which every voxel for every patient was considered an observation, with random effects of voxel and patient, but this is not described in detail.	None
accuracy on untrained items

complex model was used in which every voxel for every patient was considered an observation, with random effects of voxel and patient, but this is not described in detail.

Sreedharan, Chandran, et al. (2019): ROI 1

Neurofeedback	CAC	Aphasias with neurofeedback training (n = 4) mean of T4, T5, T6 vs no training (n = 4) T2	NANB	NANT	ROI Func	NDC
Neurofeedback	CAA	Aphasias with neurofeedback training (n = 4) mean of T4, T5, T6 vs no training (n = 4) T2	Somewhat valid (no treatment effect; second half measures rather than measures of change)			
Neurofeedback	CAC	Aphasias mean of T1, T2, T3, T4, T5, T6 (neurofeedback patients) or T1, T2 (no training patients) vs control mean	NANB	NANT	ROI Func	NDC
Neurofeedback	Cplx 1	Aphasias mean of T1, T2, T3, T4, T5, T6 (neurofeedback patients) or T1, T2 (no training patients) vs control mean	NANB	NANT	Cplx	
Neurofeedback	CAA	Aphasias mean of T1, T2, T3, T4, T5, T6 (neurofeedback patients) or T1, T2 (no training patients) vs control mean	Somewhat valid (no treatment effect; second half measures rather than measures of change)			

Sreedharan, Chandran, et al. (2019): ROI 2

Neurofeedback	CAA	Aphasias with neurofeedback training (n = 4) mean of T4, T5, T6 vs no training (n = 4) T2	NANB	NANT	ROI Func	NDC
Neurofeedback	CAA	Aphasias with neurofeedback training (n = 4) mean of T4, T5, T6 vs no training (n = 4) T2	Somewhat valid (no treatment effect; second half measures rather than measures of change)			
Neurofeedback	CAA	Aphasias mean of T1, T2, T3, T4, T5, T6 (neurofeedback patients) or T1, T2 (no training patients) vs control mean	NANB	NANT	ROI Func	NDC
Neurofeedback	CAA	Aphasias mean of T1, T2, T3, T4, T5, T6 (neurofeedback patients) or T1, T2 (no training patients) vs control mean	Somewhat valid (no treatment effect; second half measures rather than measures of change)			

Sreedharan, Chandran, et al. (2019): Cplx 1

Neurofeedback	CAA	Aphasias after cTBS to posterior IFG vs sham; same patients, repeated measures	Y	N	Vox C+
Neurofeedback	CAA	Aphasias after cTBS to anterior IFG; same patients, repeated measures	Y	N	Vox C+
Neurofeedback	CAA	Aphasias after cTBS to anterior IFG; same patients, repeated measures	Somewhat valid (no behavioral difference)		

Hartwigsen et al. (2020): Vox 1

Syllable count decision vs rest	CAA	Aphasias after cTBS to posterior IFG vs sham; same patients, repeated measures	Behavioral data notes: significantly slower response times when cTBS was applied over IFG relative to when sham cTBS was applied; search volume: voxels spared in all patients; software: SPM12; voxelwise p: .001; cluster extent cutoff: based on GRFT
Syllable count decision vs rest	CAA	Aphasias after cTBS to anterior IFG; same patients, repeated measures	Behavioral data notes: significantly slower response times when cTBS was applied over IFG relative to when sham cTBS was applied; search volume: voxels spared in all patients; software: SPM12; voxelwise p: .001; cluster extent cutoff: based on GRFT

Hartwigsen et al. (2020): Vox 3

Semantic decision vs rest	CAA	Aphasias after cTBS to anterior IFG vs sham; same patients, repeated measures	Behavioral data notes: difference in reaction time did not survive correction; search volume: voxels spared in all patients; software: SPM12; voxelwise p: .001; cluster extent cutoff: based on GRFT
Semantic decision vs rest	CAA	Aphasias after cTBS to anterior IFG; same patients, repeated measures	Behavioral data notes: significantly slower response times when cTBS was applied over IFG relative to when sham cTBS was applied; search volume: voxels spared in all patients; software: SPM12; voxelwise p: .001; cluster extent cutoff: based on GRFT

Other: Patients received lower neurofeedback values than controls, due to lower signal changes and lower functional connectivity.
Authors and Year	Condition A	Condition B	ROI Function	Notes									
Hartwigsen et al. (2020): Vox 4	Semantic decision vs rest	CC Aphasias after cTBS to anterior IFG vs after cTBS to posterior IFG; same patients, repeated measures	UNR C Cplx 1	Behavioral data notes: significantly slower response times when cTBS was applied over aIFG relative to when cTBS was applied over pIFG; search volume: voxels spared in all patients; software: SPM12; voxelwise p < .001; cluster extent cutoff: based on GRFT									
				↓ L insula									
				↓ R insula									
				↓ R dorsolateral prefrontal cortex									
Hartwigsen et al. (2020): Cplx 1	Syllable count decision vs rest	CC Aphasias after cTBS to posterior IFG vs sham; same patients, repeated measures Covariate: Δ RT for syllable decision (cTBS to posterior IFG timepoint vs sham timepoint)	UNR C Cplx 1	Whole brain correlations were computed between the difference in functional activity after cTBS to posterior IFG versus sham stimulation, and the difference in reaction times on the syllable counting task under these two conditions. The resulting SPM was thresholded at voxelwise p < .001 (CDT) followed by correction for multiple comparisons based on cluster extent and GRFT using SPM12.									
Stockert et al. (2020): ROI 1	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	LA Aphasias T2 vs T1	UNR UNR ROI Func NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 13; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; how ROIs defined: spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; post-hoc tests comparing 2 out of the 3 time points were corrected using the Bonferroni-Holm procedure, but there is no indication that that multiple comparisons across ROIs were accounted for									
Stockert et al. (2020): ROI 2	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal	LA Aphasias T3 vs T1	UNR UNR ROI Func NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 13; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L	↓ L IFG pars orbitalis								
				↓ L insula									
				↓ L dorsolateral prefrontal cortex									
				↓ L SMA/medial prefrontal									
				↓ R insula									
				Notes: based on Figure 3; several additional regions are mentioned in text and/or Table 1									
Stockert et al. (2020): ROI 3	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	LA Aphasia T3 vs T2	UNR UNR	ROI Func NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 13; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; how ROIs defined: spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; post-hoc tests comparing 2 out of the 3 time points were corrected using the Bonferroni-Holm procedure, but there is no indication that multiple comparisons across ROIs were accounted for	None notes: based on Figure 3; several additional regions are mentioned in text and/or Table 1							
---	---	---	---	---	---								
Stockert et al. (2020): ROI 4	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CAA Aphasia frontal mean of T1, T2, T3 (n = 17) vs temporo-parietal mean of T1, T2, T3 (n = 17)	UNR UNR	ROI Func NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 13; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; how ROIs defined: spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; post-hoc tests comparing 2 out of the 3 time points were corrected using the Bonferroni-Holm procedure, but there is no indication that multiple comparisons across ROIs were accounted for	↑ L posterior STG/STS/MTG ↑ R IFG pars orbitalis ↑ R anterior temporal ↓ L IFG pars opercularis ↓ L IFG pars triangularis ↓ L dorsolateral prefrontal cortex notes: based on Table 1							
Stockert et al. (2020): ROI 5	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	LAA (Aphasia frontal (n = 17) T2 vs T1) vs (temporo-parietal (n = 17) T2 vs T1)	UNR UNR	ROI Func NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 13; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; how ROIs defined: spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; interactions were significant in model with all 3 time points; post-hoc sub-interactions not reported but the patterns appear clear	↓ L IFG pars opercularis ↓ L IFG pars triangularis ↓ R IFG pars triangularis ↓ L dorsolateral prefrontal cortex							
Stockert et al. (2020): ROI 6	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	LA (Aphasia frontal (n = 17) T3 vs T1) vs (temporo-parietal (n = 17) T3 vs T1)	UNR	UNR	ROI Func NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 13; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; how ROIs defined: spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; interactions were significant in model with all 3 time points; post-hoc sub-interactions not reported and patterns are not clear	↓ L IFG pars opercularis ↓ L IFG pars triangularis ↓ R IFG pars triangularis ↓ R dorsolateral prefrontal cortex						
Stockert et al. (2020): ROI 7	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	LA (Aphasia frontal (n = 17) T3 vs T2) vs (temporo-parietal (n = 17) T3 vs T2)	UNR	UNR	ROI Func NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 13; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; how ROIs defined: spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; post-hoc sub-interactions not reported but there do not appear to be any T2/T3 effects	None						
Stockert et al. (2020): ROI 8	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	LA (Aphasia T2 vs T1)	UNR	UNR	ROI Oth NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 2; ROIs: (1) perilesional tissue; (2) regions homotopic to lesions; each unique to individuals; how ROIs defined: (1) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (2) homotopic ROIs were flipped lesions; test of group by time interaction not reported	Other: there was a significant increase in activation in perilesional ROIs						
Stockert et al. (2020): ROI 9	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	LA (Aphasia T3 vs T1)	UNR	UNR	ROI Oth NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 2; ROIs: (1) perilesional tissue; (2) regions homotopic to lesions; each unique to individuals; how ROIs defined: (1) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (2) homotopic ROIs were flipped lesions	Other: there was a significant increase in activation in perilesional ROIs						
Stockert et al. (2020): ROI 10	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	LA Aphasia T3 vs T2	UNR	UNR	ROI	Oth	NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 2; ROIs: (1) perilesional tissue; (2) regions homotopic to lesions; each unique to individuals; how ROIs defined: (1) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (2) homotopic ROIs were flipped lesions; test of group by time interaction not reported	None				
---	---	---	---	---	---	---	---	---	---				
Stockert et al. (2020): ROI 11	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CAA Aphasia frontal mean of T1, T2, T3 (n = 17) vs temporo-parietal mean of T1, T2, T3 (n = 17)	UNR	UNR	ROI	Oth	NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 2; ROIs: (1) perilesional tissue; (2) regions homotopic to lesions; each unique to individuals; how ROIs defined: (1) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (2) homotopic ROIs were flipped lesions; test of group by time interaction not reported; this comparison is somewhat questionable given the differing extent to which frontal and temporal regions are activated in controls	Other: frontal patients showed relatively greater activation in regions homotopic to their lesions				
Stockert et al. (2020): ROI 12	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CAC Aphasia frontal T1 (n = 17) vs control	UNR	UNR	ROI	Func	NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 13; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; how ROIs defined: spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; circular because patients but not controls used to define ROIs	↓ L IFG pars triangularis	↓ L insula	↓ L dorsolateral prefrontal cortex		
Stockert et al. (2020): ROI 13	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CAC Aphasia temporo-parietal T1 (n = 17) vs control	UNR	UNR	ROI	Func	NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 13; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; how ROIs defined: spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; circular because patients but not controls used to define ROIs	↓ L IFG pars triangularis	↓ L insula	↓ L dorsolateral prefrontal cortex	↓ L posterior STG/STS/MTG	↓ R IFG pars triangularis
Stockert et al. (2020): ROI 14	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CAA Aphasia frontal T1 (n = 17) vs temporo-parietal T1 (n = 17)	UNR UNR ROI Func NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 13; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; how ROIs defined: spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints	↑ L anterior temporal ↑ R IFG pars triangularis								
Stockert et al. (2020): ROI 15	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CAC Aphasia frontal T2 (n = 17) vs control	UNR UNR ROI Func NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 13; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; how ROIs defined: spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; circular because patients but not controls used to define ROIs	↓ L IFG pars triangularis								
Stockert et al. (2020): ROI 16	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CAC Aphasia temporo-parietal T2 (n = 17) vs control	UNR UNR ROI Func NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 13; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; how ROIs defined: spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; circular because patients but not controls used to define ROIs	None								
Stockert et al. (2020): ROI 17	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CAA Aphasia frontal T2 (n = 17) vs temporo-parietal T2 (n = 17)	UNR UNR ROI Func NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 13; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; how ROIs defined: spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; circular because patients but not controls used to define ROIs	↓ L IFG pars opercularis ↓ L IFG pars triangularis ↓ L dorsolateral prefrontal cortex								
Stockert et al. (2020):	Listening to normal sentences	CAC Aphasia frontal T3 (n	UNR UNR ROI Func	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 13; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; how ROIs defined: spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints	↓ L IFG pars triangularis								
ROI 18	and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	NC	presses by group or time, but behavioral data pooled across conditions; number of ROIs: 13; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; how ROIs defined: spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; circular because patients but not controls used to define ROIs	↓ L insula									
Stockert et al. (2020): ROI 19	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	UNR	UNR	ROI Func NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 13; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; how ROIs defined: spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; circular because patients but not controls used to define ROIs	None							
Stockert et al. (2020): ROI 20	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CAC	Aphasias temporoparietal T3 (n = 17) vs control	UNR	UNR	ROI Func NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 13; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; how ROIs defined: spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; circular because patients but not controls used to define ROIs	↓ L IFG pars opercularis ↓ L IFG pars triangularis ↓ L IFG pars orbitalis ↓ L dorsolateral prefrontal cortex					
Stockert et al. (2020): ROI 21	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CAC	Aphasias frontal T1 (n = 17) vs temporo-parietal T3 (n = 17)	UNR	UNR	ROI Oth NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 2; ROIs: (1) perilesional tissue; (2) regions homotopic to lesions; each unique to individuals; how ROIs defined: (1) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (2) homotopic ROIs were flipped lesions	Other: frontal patients showed reduced activation in perilesional tissue					
Stockert et al. (2020): ROI 22	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal	CAC	Aphasias frontal T2 (n = 17) vs control	UNR	UNR	ROI Oth NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 2; ROIs: (1) perilesional tissue; (2) regions homotopic to lesions; each unique to	Other: frontal patients showed reduced activation in perilesional tissue					
Study	Description	ROIs	Behavioral Data Notes	Other							
Stockert et al. (2020): ROI 23	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CAC Aphasia frontal T3 (n = 17) vs control	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 2; ROIs: (1) perilesional tissue; (2) regions homotopic to lesions; each unique to individuals; how ROIs defined: (1) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (2) homotopic ROIs were flipped lesions	Frontal patients showed reduced activation in perilesional tissue							
Stockert et al. (2020): ROI 24	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CAC Aphasia temporo-parietal T1 (n = 17) vs control	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 2; ROIs: (1) perilesional tissue; (2) regions homotopic to lesions; each unique to individuals; how ROIs defined: (1) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (2) homotopic ROIs were flipped lesions	Temporal patients showed reduced activation in perilesional tissue and in regions homotopic to their lesions							
Stockert et al. (2020): ROI 25	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CAC Aphasia temporo-parietal T2 (n = 17) vs control	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 2; ROIs: (1) perilesional tissue; (2) regions homotopic to lesions; each unique to individuals; how ROIs defined: (1) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (2) homotopic ROIs were flipped lesions	None							
Stockert et al. (2020): ROI 26	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CAC Aphasia temporo-parietal T3 (n = 17) vs control	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 2; ROIs: (1) perilesional tissue; (2) regions homotopic to lesions; each unique to individuals; how ROIs defined: (1) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (2) homotopic ROIs were flipped lesions	None							
Stockert et al. (2020): ROI 27	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CC	Aphasias T1	Covariate: comprehension composite	UNR	UNR	ROI	Mix	NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 15; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions; how ROIs defined: (1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions	\(↑\) L IFG pars opercularis \(↑\) L IFG pars triangularis \(↑\) L IFG pars orbitalis other: L IFG pars opercularis and orbitals did not remain significant when lesion volume was included as a covariate; there was a significant correlation between perilesional activation and LRScomp; this did not remain significant when lesion volume was included as a covariate
Stockert et al. (2020): ROI 28	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CC	Aphasias T2	Covariate: comprehension composite	UNR	UNR	ROI	Mix	NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 15; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions; how ROIs defined: (1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions	\(↑\) L IFG pars triangularis other: there was a significant correlation between perilesional activation and LRScomp
Stockert et al. (2020): ROI 29	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CC	Aphasias T3	Covariate: comprehension composite	UNR	UNR	ROI	Mix	NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 15; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions; how ROIs defined: (1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions	\(↑\) L IFG pars triangularis notes: did not remain significant when lesion volume was included as a covariate
analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions

| Stockert et al. (2020): ROI 30 | Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech | LC Aphasía T2 vs T1 Covariate: Δ comprehension composite | UNR UNR ROI Mix NC | Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 15; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions; how ROIs defined: (1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions |

| Stockert et al. (2020): ROI 31 | Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech | LC Aphasía T3 vs T1 Covariate: Δ comprehension composite | UNR UNR ROI Mix NC | Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 15; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions; how ROIs defined: (1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions |

| Stockert et al. (2020): ROI 32 | Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech | LC Aphasía T3 vs T2 Covariate: Δ comprehension composite | UNR UNR ROI Mix NC | Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 15; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions; how ROIs defined: (1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions |
spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions

Stockert et al. (2020): ROI 33	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CC	Aphasia frontal T1 (n = 17)	UNR	UNR	ROI	Mix	NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 15; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions; how ROIs defined: (1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions	None
Stockert et al. (2020): ROI 34	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CC	Aphasia frontal T2 (n = 17)	UNR	UNR	ROI	Mix	NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 15; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions; how ROIs defined: (1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions	None
Stockert et al. (2020): ROI 35	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CC	Aphasia frontal T3 (n = 17)	UNR	UNR	ROI	Mix	NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 15; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions	None
Stockert et al. (2020): ROI 36	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	LC Aphasia frontal (n = 17) T2 vs T1 Covariate: Δ comprehension composite	UNR UNR ROI Mix NC Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 15; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions; how ROIs defined: (1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions	None						
---	---	---	---	---						
Stockert et al. (2020): ROI 37	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	LC Aphasia frontal (n = 17) T3 vs T1 Covariate: Δ comprehension composite	UNR UNR ROI Mix NC Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 15; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions; how ROIs defined: (1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions	None						
Stockert et al. (2020): ROI 38	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs	LC Aphasia frontal (n = 17) T3 vs T2 Covariate: Δ comprehension composite	UNR UNR ROI Mix NC Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 15; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional	None						
159										
Stockert et al. (2020): ROI 39	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CC Aphasia temporo-parietal T1 (n = 17) Covariate: comprehension composite	UNR UNR Mix NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 15; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions; how ROIs defined: (1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions	† R anterior temporal					
Stockert et al. (2020): ROI 40	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CC Aphasia temporo-parietal T2 (n = 17) Covariate: comprehension composite	UNR UNR Mix NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 15; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions; how ROIs defined: (1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions	† L IFG pars opercularis † L posterior STG/STS/MTG					
Stockert et al. (2020): ROI 41	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CC Aphasia temporo-parietal T3 (n = 17) Covariate: comprehension composite	UNR UNR Mix NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 15; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions; how ROIs defined: (1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions	None					
Stockert et al. (2020): ROI 42	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	LC Aphasia temporo-parietal (n = 17) T2 vs T1 Covariate: Δ comprehension composite	UNR UNR ROI Mix NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 15; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions; how ROIs defined: (1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions	↑ L insula					
Stockert et al. (2020): ROI 43	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	LC Aphasia temporo-parietal (n = 17) T3 vs T1 Covariate: Δ comprehension composite	UNR UNR ROI Mix NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 15; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions; how ROIs defined: (1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions	None					
Stockert et al. (2020): ROI 44	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences	LC Aphasia temporo-parietal (n = 17) T3 vs T2 Covariate: Δ comprehension composite	UNR UNR ROI Mix NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 15; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb;	None					
Stockert et al. (2020): ROI 45	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CC	Aphasia T1	Covariate: lesion volume	UNR	UNR	ROI	Mix	NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 15; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions; how ROIs defined: (1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions
Stockert et al. (2020): ROI 46	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CC	Aphasia T2	Covariate: lesion volume	UNR	UNR	ROI	Mix	NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 15; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions; how ROIs defined: (1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions
Stockert et al. (2020): ROI 47	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CC	Aphasia T3	Covariate: lesion volume	UNR	UNR	ROI	Mix	NC	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; number of ROIs: 15; ROIs: (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions; how ROIs defined: (1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions
Stockert et al. (2020): ROI 48	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	LC	Aphasia T2 vs T1	UNR	UNR	ROI	Mix	NC		
Stockert et al. (2020): ROI 49	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	LC	Aphasia T3 vs T1	UNR	UNR	ROI	Mix	NC		
Stockert et al. (2020): ROI 50	Listening to normal sentences and making a plausibility judgment (paradigm 1) or	LC	Aphasia T3 vs T2	UNR	UNR	ROI	Mix	NC		
Stockert et al. (2020): Cplx 1	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CAA Aphasia frontal T1 (n = 17) vs temporo-parietal T1 (n = 17)	UNR	UNR	Cplx	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; Correlations between activity in 15 ROIs and LRScomp were compared between patients with frontal and temporal lesions, using interaction terms as well as the Fisher r-to-z transformation. **There was no correction for multiple comparisons across the 15 ROIs.**	Other: Correlations were higher in the temporal group in the R ATL.			
Stockert et al. (2020): Cplx 2	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CAA Aphasia frontal T2 (n = 17) vs temporo-parietal T2 (n = 17)	UNR	UNR	Cplx	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; Correlations between activity in 15 ROIs and LRScomp were compared between patients with frontal and temporal lesions, using interaction terms as well as the Fisher r-to-z transformation. **There was no correction for multiple comparisons across the 15 ROIs.**	Other: Correlations were higher in the temporal group in L posterior temporal cortex and L IFG op.			
Stockert et al. (2020): Cplx 3	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CAA Aphasia frontal T3 (n = 17) vs temporo-parietal T3 (n = 17)	UNR	UNR	Cplx	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; Correlations between activity in 15 ROIs and LRScomp were compared between patients with frontal and temporal lesions, using interaction terms. **There was no correction for multiple comparisons across the 15 ROIs.**	Other: Correlations were different between groups in the R ATL, but the correlation is not reported as significant in the temporo-parietal group alone.			
Stockert et al. (2020): Cplx 4	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	LAA (Aphasia frontal (n = 17) T2 vs T1) vs (aphasia temporo-parietal (n = 17) T2 vs T1)	UNR	UNR	Cplx	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; Correlations between changes in activity in 15 ROIs and changes in LRScomp were compared between patients with frontal and temporal lesions, using interaction terms as well as the Fisher r-to-z transformation. **There was no correction for multiple comparisons across the 15 ROIs.**	Other: In the L insula, the temporo-parietal group showed a stronger correlation than the frontal group between changes in activation and changes in LRScomp.			
Stockert et al. (2020): Cplx 5	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	LAA (Aphasia frontal (n = 17) T3 vs T1) vs (temporo-parietal (n = 17) T3 vs T1)	UNR UNR Cplx	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; Correlations between changes in activity in 15 ROIs and changes in LRScomp were compared between patients with frontal and temporal lesions, using interaction terms as well as the Fisher r-t-to-z transformation. **There was no correction for multiple comparisons across the 15 ROIs.**	Other: None
Stockert et al. (2020): Cplx 6	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	LAA (Aphasia frontal (n = 17) T3 vs T2) vs (temporo-parietal (n = 17) T3 vs T2)	UNR UNR Cplx	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; Correlations between changes in activity in 15 ROIs and changes in LRScomp were compared between patients with frontal and temporal lesions, using interaction terms as well as the Fisher r-t-to-z transformation. **There was no correction for multiple comparisons across the 15 ROIs.**	None
Stockert et al. (2020): Cplx 7	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CAA Aphasia frontal T1 (n = 17) vs temporo-parietal T1 (n = 17)	UNR UNR Cplx	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; Correlations between activity in 15 ROIs and lesion extent were compared between patients with frontal and temporal lesions. **There was no correction for multiple comparisons across the 15 ROIs.**	None
Stockert et al. (2020): Cplx 8	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CAA Aphasia frontal T2 (n = 17) vs temporo-parietal T2 (n = 17)	UNR UNR Cplx	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; Correlations between activity in 15 ROIs and lesion extent were compared between patients with frontal and temporal lesions. **There was no correction for multiple comparisons across the 15 ROIs.**	None
Stockert et al. (2020): Cplx 9	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CAA Aphasia frontal T3 (n = 17) vs temporo-parietal T3 (n = 17)	UNR UNR Cplx	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; Correlations between activity in 15 ROIs and lesion extent were compared between patients with frontal and temporal lesions. **There was no correction for multiple comparisons across the 15 ROIs.**	None
Cplx	Description	Case	Covariate	Behavioral Data Notes	Other
------	-------------	------	------------	-----------------------	-------
10	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	LAA (Aphasia frontal (n = 17) T2 vs T1) vs (temporo-parietal (n = 17) T2 vs T1)	UNR	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; Correlations between changes in activity in 15 ROIs and lesion extent were compared between patients with frontal and temporal lesions. **There was no correction for multiple comparisons across the 15 ROIs.**	None
11	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	LAA (Aphasia frontal (n = 17) T3 vs T1) vs (temporo-parietal (n = 17) T3 vs T1)	UNR	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; Correlations between changes in activity in 15 ROIs and lesion extent were compared between patients with frontal and temporal lesions. **There was no correction for multiple comparisons across the 15 ROIs.**	None
12	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	LAA (Aphasia frontal (n = 17) T3 vs T2) vs (temporo-parietal (n = 17) T3 vs T2)	UNR	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; Correlations between changes in activity in 15 ROIs and lesion extent were compared between patients with frontal and temporal lesions. **There was no correction for multiple comparisons across the 15 ROIs.**	None
13	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	CC Aphonasia T1 Covariate: interaction of comprehension composite by lesion size	UNR	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; To investigate why some activation-behavior relationships did not remain significant when lesion extent was included as a covariate, models were constructed looking at the relationship between activation and behavior in patients with larger and smaller lesions. **Other:** The three regions where this applied at T1, namely perilesional cortex, L IFG op, and L IFG orb, all showed positive correlations between activation and LRScomp in patients with larger lesions, but no correlations in patients with smaller lesions.	Other
14	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech	LC Aphonasia T2 vs T1 Covariate: interaction of & comprehension composite by lesion size	UNR	Behavioral data notes: no differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions; To investigate why some activation-behavior relationships did not remain significant when lesion extent was included as a covariate, models were constructed looking at the relationship between activation and behavior in patients with larger and smaller lesions. **Other:** This applied to the R DLPFC in the T2 vs T1 analysis. This region showed a positive correlation between activation and LRScomp in patients with larger lesions, but no correlation in...	Other
patients with smaller lesions.

Second level contrast = Which of the 8 relevant classes of analyses is this? Which group or groups of participants are included? If there is a covariate, what is it?; Acc = Is accuracy matched across the second level contrast?; RT = Is reaction time matched across the second level contrast?; Stats = Does the analysis involve voxelwise statistics, region(s) of interest (ROI), or something else (complex)? If voxelwise, how are multiple comparisons across voxels accounted for? If ROI, were the ROI(s) anatomical, functional, laterality indices, mixed, or something else? If there was more than one ROI, how were the ROIs corrected for multiple comparisons?; Yellow underline = minor limitation; Orange underline = moderate limitation; Red underline = major limitation; CAC = Cross-sectional aphasia vs control; CAA = Cross-sectional between two groups with aphasia; CC = Cross-sectional correlation with language or other measure; CB = Cross-sectional performance-defined conditions; LA = Longitudinal change in aphasia; LAC = Longitudinal aphasia vs control; LAA = Longitudinal between two groups with aphasia; LC = Longitudinal correlation with language or other measure; Y = Yes, matched; YCT = Yes, correct trials only; NBD = No, by design; NAM = No, but attempt made; N = No, different; C = Accuracy or RT is covariate; UNT = Unknown, no test; AS = Appear similar; AM = Appear mismatched; UNR = Unknown, not reported; NANB = N/A, no behavioral measure; NANT = N/A, no timeable task; Vox = Voxelwise; VP = Voxelwise correction based on permutation testing; VFWE = Voxelwise FWE correction; C+ = Clusterwise correction with GRFT and stringent voxelwise p; VFWC = Voxelwise FWE correction and additional arbitrary cluster correction; C- = Clusterwise correction with GRFT and lenient voxelwise p; CCS = Clusterwise correction based on 3dClustSim; SVC = Small volume correction; CCTB = Clusterwise correction based on cluster_threshold_beta; CA = Clusterwise correction based on arbitrary cluster extent; NC = No correction; NDC = No direct comparison; M** = Mixed** (major limitation); U = Unclear or not stated; ROI = Region(s) of interest; Anat = Anatomical; Func = Functional; Oth = Other; LI = Laterality indices; Mix = Mixed; FWE = Familywise error (FWE); FDR = False discovery rate (FDR); NC = No correction; One = One only; NDC = No direct comparison; Cplx = Complex.
Supplementary Table S11. Cross-sectional aphasia compared to control: Methodologically robust analyses

Analysis	First level contrast	Second level contrast	Matched for	Stats	Notes	Findings		
Leff et al. (2002): ROI 1	Higher word rates vs lower word rates	CAC	ROI 1	Acc & RT	NANB	NANT	Stats: ROI defined; the peak voxel for the contrast in the R pSTS from each subject's individual analysis, but the search region is not stated; the controls and patients without pSTS damage were combined, however it is stated in the caption to Figure 2 that the patients with pSTS damage were significantly different to both	Number of ROIs: 1; ROI: R pSTS; how ROI defined: the peak voxel for the contrast in the R pSTS from each subject's individual analysis, but the search region is not stated; the controls and patients without pSTS damage were combined, however it is stated in the caption to Figure 2 that the patients with pSTS damage were significantly different to both
Blank et al. (2003): Vox 1	Propositional speech production vs rest	CAC	IFG POp	Acc & RT	N	NANT	Stats: voxelwise p: FWE p < .05 with SVC in R pars opercularis	Behavioral data notes: word rates not reported, but offline speech sample differed; search volume: voxels spared in all patients; software: SPM99; voxelwise p: FWE p < .05 with SVC in R pars opercularis
Blank et al. (2003): Vox 2	Propositional speech production vs rest	CAC	IFG POp	Acc & RT	N	NANT	Stats: voxelwise p: FWE p < .05 with SVC in R pars opercularis	Behavioral data notes: word rates not reported, but offline speech sample differed; search volume: voxels spared in all patients; software: SPM99; voxelwise p: FWE p < .05 with SVC in R pars opercularis
Blank et al. (2003): Vox 4	Propositional speech production vs counting	CAC	IFG POp	Acc & RT	N	NANT	Stats: voxelwise p: FWE p < .05 with SVC in R pars opercularis	Behavioral data notes: word rates not reported, but offline speech sample differed; search volume: voxels spared in all patients; software: SPM99; voxelwise p: FWE p < .05 with SVC in R pars opercularis
Blank et al. (2003): Vox 5	Propositional speech production vs counting	CAC	IFG POp	Acc & RT	N	NANT	Stats: voxelwise p: FWE p < .05 with SVC in R pars opercularis	Behavioral data notes: word rates not reported, but offline speech sample differed; search volume: voxels spared in all patients; software: SPM99; voxelwise p: FWE p < .05 with SVC in R pars opercularis
Sharp et al. (2004): Vox 1	Semantic decision vs syllable count decision	CAC	Control	Acc & RT	AM	Y	Stats: voxelwise p: FWE p < .05 with SVC in fusiform gyr, temporal poles, L IFG, L orbitofrontal and L SFG	Behavioral data notes: interaction of group by task not reported for accuracy; search volume: whole brain; software: SPM99; voxelwise p: FWE p < .05 with SVC in fusiform gyr, temporal poles, L IFG, L orbitofrontal and L SFG
Sharp et al. (2004): ROI 1	Semantic decision vs syllable count decision	CAC	Control	Acc & RT	AM	Y	Stats: voxelwise p: FWE p < .05 with SVC in fusiform gyr, temporal poles, L IFG, L orbitofrontal and L SFG	Behavioral data notes: interaction of group by task not reported for accuracy; number of ROIs: 1; ROI: L fusiform gyrus; how ROI defined: probabilistic brain atlas
Sharp et al. (2004): ROI 2	Semantic decision vs syllable count decision	CAC	Control	Acc & RT	NAM	Y	Stats: voxelwise p: FWE p < .05 with SVC in fusiform gyr, temporal poles, L IFG, L orbitofrontal and L SFG	Behavioral data notes: interaction of group by task not reported for accuracy; number of ROIs: 1; ROI: L fusiform gyrus; how ROI defined: probabilistic brain atlas

↑ R posterior STS
↑ R IFG pars opercularis
↑ L posterior inferior temporal gyrus/fusiform gyrus
Study/Year	Design/ROI	Task	Condition	Control	Type	Statistics	Notes
Zahn et al. (2004): ROI 1	Semantic decision vs phonetic decision and lexical decision (conjunction)	CAC	Aphasia vs control	UNT	UNT	ROILi One	Behavioral data notes: relative performance on language and control tasks unclear; number of ROIs: 1; ROI: language network Li; conjunction analyses not clearly described; in two patients, a different conjunction was used (lexical decision vs phonetic decision & semantic decision vs phonetic decision) None notes: Li > 0 in 12 out of 14 controls and 5 out of 7 patients; no significant difference
Crinion & Price (2005): Vox 1	Listening to narrative speech vs listening to reversed speech	CAC	Aphasia without temporal lobe damage (n = 9) vs control	NANB	NANT	VoxVFWC	Search volume: whole brain; software: SPM2; voxelwise p: FWE p < .05; cluster extent cutoff: 5 voxels (size not stated) ↓ L dorsal precentral
Crinion & Price (2005): Vox 2	Listening to narrative speech vs listening to reversed speech	CAC	Aphasia with temporal lobe damage (n = 8) vs control	NANB	NANT	VoxVFWC	Search volume: whole brain; software: SPM2; voxelwise p: FWE p < .05; cluster extent cutoff: 5 voxels (size not stated) ↓ L posterior STS
Crinion et al. (2006): Vox 1	Listening to narrative speech vs listening to reversed speech	CAC	Aphasia vs control	NANB	NANT	VoxVFWC	Search volume: voxels spared in all patients; software: SPM99; voxelwise p: FWE p < .05 None
Crinion et al. (2006): Vox 2	Listening to narrative speech vs listening to reversed speech	CAC	Aphasia without temporal lobe damage (n = 6) vs control	NANB	NANT	VoxVFWC	Search volume: voxels spared in all included patients; software: SPM99; voxelwise p: FWE p < .05 None
Crinion et al. (2006): Vox 3	Listening to narrative speech vs listening to reversed speech	CAC	Aphasia with temporal lobe damage (n = 18) vs control	NANB	NANT	VoxVFWC	Search volume: voxels spared in all included patients; software: SPM99; voxelwise p: FWE p < .05 None
Warren et al. (2009): ROI 1	Listening to narrative speech vs listening to reversed speech	CAC	Aphasia vs control	NANB	NANT	ROIAnatNC	Number of ROIs: 6; ROIs: (1) L anterior superior temporal cortex; (2) L basal temporal language area; (3) L IFG pars triangularis; (4-6) homotopic counterparts; how ROIs defined: ROIs were defined anatomically in regions that were functionally connected with None notes: L IFG pars triangularis almost reached significance (p = .053) for more
Study	Task Description	Condition	Search Volume	Software	Voxelwise p	ROI Description	
---	--	---	---------------	----------	-------------	---	
Warren et al. (2009): ROI 9	Listening to narrative speech vs listening to reversed speech	CAC Aphasia with positive anterior temporal interconnectivity (n = 8) vs control	NANB	NANT	ROI Anat NC	Number of ROIs: 6; ROIs: (1) L anterior superior temporal cortex; (2) L basal temporal language area; (3) L IFG pars triangularis; (4-6) homotopic counterparts; how ROIs defined: ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6); somewhat circular because ROIs were defined only in regions where controls showed significant connectivity (even though ROIs were anatomical); excluded 3 patients with L IFG damage	L IFG pars triangularis
Warren et al. (2009): ROI 10	Listening to narrative speech vs listening to reversed speech	CAC Aphasia with negative anterior temporal interconnectivity (n = 8) vs control	NANB	NANT	ROI Anat NC	Number of ROIs: 6; ROIs: (1) L anterior superior temporal cortex; (2) L basal temporal language area; (3) L IFG pars triangularis; (4-6) homotopic counterparts; how ROIs defined: ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6); somewhat circular because ROIs were defined only in regions where controls showed significant connectivity (even though ROIs were anatomical); excluded 1 patient with L IFG damage	None
Fridriksson et al. (2010): Vox 2	Picture naming (correct trials) vs viewing abstract pictures	CAC Aphasia vs control	YCT	UNR	Vox NC	Search volume: whole brain; software: FSL 4.1; voxelwise p: ~.02 (z > 2); cluster extent cutoff: based on GRFT	None
van Oers et al. (2010): ROI 3	Verb generation vs rest	CAC Aphasia vs control	UNR	UNR	ROI Mix NC	Number of ROIs: 7; ROIs: (1) L anterior language region (IFG); (2) L posterior language region (AG, SMG, STG, MTG); (3) R anterior language region (IFG); (4) R posterior language region (AG, SMG, STG, MTG); (5) frontal Ll; (6) temporal Ll; (7) whole network Ll; how ROIs defined: WFU pickatlas	↓ L IFG
Allendorfer et al. (2012): ROI 2	Verb generation (overt, event-related) vs noun repetition (event-related)	CAC Aphasia vs control	N	UNR	ROI LI NC	Behavioral data notes: patients less accurate and produced less responses on both conditions, but the difference between groups was greater for verb generation; number of ROIs: 2; ROIs: (1) frontal Ll; (2) temporal Ll	↓ LI (frontal)
Szafarski et al. (2014): ROI 1	Verb generation vs finger tapping	CAC Aphasia vs control	UNR	UNR	ROI LI NC	Number of ROIs: 3; ROIs: (1) frontal Ll; (2) temporal Ll; (3) language network Ll	↓ LI (language network)

Note: L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6); somewhat circular because ROIs were defined only in regions where controls showed significant connectivity (even though ROIs were anatomical).
Gris, Nenert, Allendorfer, & Szafranski (2017): Cplx 1

Semantic decision vs tone decision
CAC Aphasia vs control
N UNR Cplx

Behavioral data notes: semantic decision accuracy not matched, but tone decision accuracy not reported; Multimodal canonical correlation analysis (mCCA) and joint ICA were used to identify 3 joint ICs (structural/functional) that were differently represented in the patient and control groups. Although there was no correction for multiple comparisons when the functional maps were thresholded, the maps for the three networks each appeared to relate to coherent parts of the semantic network.

Other: The first joint IC comprised preservation of tissue in L posterior temporo-parietal region, activity in the L AG and bilateral midline components of the canonical semantic network, and reduced activity in R frontal, temporal and parietal regions. The second joint IC comprised preservation of tissue in the L basal ganglia/insula region, and activity predominantly in the IFG pars orbitalis bilaterally. The third joint IC comprised preservation of the L IFG and activity in the L IFG and DLPFC along with bilateral midline regions. The first joint IC was considered to provide more robust evidence for structure-function relationships than the other two, because it was the only one where individual structural and functional mixing coefficients remained correlated even when lesion volume was included as a covariate.

Second level contrast = Which of the 8 relevant classes of analyses is this? Which group or groups of participants are included? If there is a covariate, what is it?; Acc = Is accuracy matched across the second level contrast?; RT = Is reaction time matched across the second level contrast?; Stats = Does the analysis involve voxelwise statistics, region(s) of interest (ROI), or something else (complex)? If voxelwise, how are multiple comparisons across
voxels accounted for? If ROI, were the ROI(s) anatomical, functional, laterality indices, mixed, or something else? If there was more than one ROI, how were the ROIs corrected for multiple comparisons?; Yellow underline = minor limitation; Orange underline = moderate limitation; Red underline = major limitation; CAC = Cross-sectional aphasia vs control; Y = Yes, matched; YCT = Yes, correct trials only; NAM = No, but attempt made; N = No, different; UNT = Unknown, no test; AM = Appear mismatched; UNR = Unknown, not reported; NANB = N/A, no behavioral measure; NANT = N/A, no timeable task; Vox = Voxelwise; VFWE = Voxelwise FWE correction; VFWC = Voxelwise FWE correction and additional arbitrary cluster correction; C- = Clusterwise correction with with GRFT and lenient voxelwise p; SVC = Small volume correction; ROI = Region(s) of interest; Anat = Anatomical; Func = Functional; LI = Laterality indices; Mix = Mixed; NC = No correction; One = One only; Cplx = Complex.
Supplementary Table S12. Cross-sectional correlation with language or other measure: Methodologically robust analyses

Analysis	First level contrast	Second level contrast	Matched for	Stats	Notes	Findings
Blank et al. (2003): ROI 1	Propositional speech production vs rest	CC Aphasia with IFG POp damage (n = 7) Covariate: speech rate during scan	UNR NANT	ROI Func One	Number of ROIs: 1; ROI: R IFG pars opercularis; how ROI defined: defined by flipping L IFG pars opercularis activation in controls	None
Blank et al. (2003): ROI 2	Propositional speech production vs rest	CC Aphasia without IFG POp damage (n = 7) Covariate: speech rate during scan	UNR NANT	ROI Func One	Number of ROIs: 1; ROI: R IFG pars opercularis; how ROI defined: defined by flipping L IFG pars opercularis activation in controls	None
Blank et al. (2003): ROI 3	Propositional speech production vs rest	CC Aphasia with IFG POp damage (n = 7) Covariate: four different QPA measures	UNR NANT	ROI Func One	Number of ROIs: 1; ROI: R IFG pars opercularis; how ROI defined: defined by flipping L IFG pars opercularis activation in controls	None
Crinion & Price (2005): Vox 4	Listening to narrative speech vs listening to reversed speech	CC Aphasia without temporal lobe damage (n = 9) Covariate: sentence comprehension (CAT)	NANB NANT	Vox VFWC	Search volume: whole brain; software: SPM2; voxelwise p: FWE p < .05; cluster extent cutoff: 5 voxels (size not stated); conjunction with main effect of story comprehension (details hard to follow); this was a multiple regression also involving patients with temporal lobe damage	↑ L posterior STS
↑ R mid temporal notes: patients with better sentence comprehension had more activation in the L posterior STS and R mid STS						
Crinion & Price (2005): Vox 5	Listening to narrative speech vs listening to reversed speech	CC Aphasia with temporal lobe damage (n = 8) Covariate: sentence comprehension (CAT)	NANB NANT	Vox VFWC	Search volume: whole brain; software: SPM2; voxelwise p: FWE p < .05; cluster extent cutoff: 5 voxels (size not stated); conjunction with main effect of story comprehension (details hard to follow); this was a multiple regression also involving patients without temporal lobe damage	↑ R mid temporal notes: patients with better sentence comprehension had more activation in the R mid STS
Crinion et al. (2006): ROI 1	Listening to narrative speech vs listening to reversed speech	CC Aphasia with no temporal damage (excluding 1 with missing behavioral data and 1 outlier) or posterior temporal damage sparing anterior temporal cortex (n = 13) Covariate: auditory sentence comprehension (CAT)	NANB NANT	ROI Func One	Number of ROIs: 1; ROI: L ATL; how ROI defined: activation in the control group; same result obtained with or without excluding one outlier; two other ROIs are described in the methods, but never used in any analyses	↑ L anterior temporal notes: more activity in patients with better auditory sentence comprehension
Crinion et al. (2006): ROI 2	Listening to narrative speech vs listening to reversed speech	CC Aphasia with no temporal damage (excluding 1 with missing behavioral data and 1 outlier) or posterior temporal damage sparing anterior temporal cortex (n = 13) Covariate: auditory sentence comprehension (CAT)	NANB NANT	ROI Func One	Number of ROIs: 1; ROI: L ATL; how ROI defined: activation in the control group; two other ROIs are described in the methods, but never used in any analyses	None
Study	ROI	Task Description	Covariate	ROI Definition	Number of ROIs	Notes		
Crinion et al. (2006): ROI 5	Listening to narrative speech vs listening to reversed speech	CC Aphasia with no temporal damage (excluding 1 with missing behavioral data and 1 outlier) or posterior temporal damage sparing anterior temporal cortex (n = 13)	time post onset	ROIs defined: activation in the control group; two other ROIs are described in the methods, but never used in any analyses	1	None notes: r = 0.39; p > 0.1; seems to be a clear trend so lack of significance may reflect only lack of power		
Warren et al. (2009): ROI 2	Listening to narrative speech vs listening to reversed speech	CC Aphasia Covariate: auditory sentence comprehension		ROIs: (1) L anterior superior temporal cortex; (2) L basal temporal language area; (3) L IFG pars triangularis; (4-6) homotopic counterparts; how ROIs defined: ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6)	6	↑ L anterior temporal		
Warren et al. (2009): ROI 3	Listening to narrative speech vs listening to reversed speech	CC Aphasia Covariate: written sentence comprehension		ROIs: (1) L anterior superior temporal cortex; (2) L basal temporal language area; (3) L IFG pars triangularis; (4-6) homotopic counterparts; how ROIs defined: ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6)	6	None		
Warren et al. (2009): ROI 4	Listening to narrative speech vs listening to reversed speech	CC Aphasia Covariate: auditory single word comprehension		ROIs: (1) L anterior superior temporal cortex; (2) L basal temporal language area; (3) L IFG pars triangularis; (4-6) homotopic counterparts; how ROIs defined: ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6)	6	None notes: L anterior temporal p = .08		
Warren et al. (2009): ROI 5	Listening to narrative speech vs listening to reversed speech	CC Aphasia Covariate: auditory syntactic comprehension		ROIs: (1) L anterior superior temporal cortex; (2) L basal temporal language area; (3) L IFG pars triangularis; (4-6) homotopic counterparts; how ROIs defined: ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6)	6	None notes: L anterior temporal p = .09		
Warren et al. (2009): ROI 6	Listening to narrative speech	CC Aphasia Covariate:		Number of ROIs: 2; ROIs: (1) L anterior superior temporal cortex; (2) R anterior superior temporal cortex	None			
Study	Type	Task	Connectivity	ROIs Defined	ROIs	ROIs Description	Number of ROIs: Page 175	Number of ROIs: Page 175
-------	------	------	--------------	-------------	------	-----------------	--------------------------	--------------------------
Warren et al. (2009): ROI 7	Listening to narrative speech vs listening to reversed speech	CC, Aphas	L and R ATL	ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6)	Nanb, NANT	ROI	Nanb, NANT	None
Warren et al. (2009): ROI 8	Listening to narrative speech vs listening to reversed speech	CC, Aphas	L and R ATL	ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6)	Nanb, NANT	ROI	Nanb, NANT	None
Fridriksson et al. (2010): Vox 1	Picture naming (correct trials) vs viewing abstract pictures	CC, Aphas	L and R ATL	VLSM with FDR correction was used to identify any regions in which damage was predictive of L anterior temporal activation.	Nanb, NANT	Cplx	Nanb, NANT	None
Fridriksson et al. (2010): ROI 1	Picture naming (correct trials) vs viewing abstract pictures	CC, Aphas	L and R ATL	Search volume: whole brain; software: FSL 4.1; voxelwise p: ~.02 (z > 2); cluster extent cutoff: based on GRFT	Nanb, NANT	Vox	Nanb, NANT	None
van Oers et al. (2010): ROI 4	Written word-picture matching vs visual decision	CC, Aphas	L and R ATL	Number of ROIs: 7; ROIs: (1) L anterior language region (IFG); (2) L posterior language region (AG, SMG, STG, MTG); (3) R anterior language region (IFG); (4) R posterior language region (AG, SMG, STG, MTG); (5) frontal Ll; (6) temporal Ll; (7) whole network Ll; how ROIs defined: WFU pickatlas	Nanb, NANT	Mix	Nanb, NANT	None
van Oers et al. (2010):	Semantic decision vs visual decision	CC, Aphas	L and R ATL	Number of ROIs: 7; ROIs: (1) L anterior language region (IFG); (2) L posterior	Nanb, NANT	Mix	Nanb, NANT	None
ROI 5	Covariate: semantic decision accuracy	NC	language region (AG, SMG, STG, MTG); (3) R anterior language region (IFG); (4) R posterior language region (AG, SMG, STG, MTG); (5) frontal Lt; (6) temporal Lt; (7) whole network Lt; how ROIs defined: WFU pickatlas					
---	---	---	---					
van Oers et al. (2010): ROI 8	Verb generation vs rest	CC Aphasia Covariate: overall language measure	UNR UNR ROI Mix NC	Number of ROIs: 7; ROIs: (1) L anterior language region (IFG); (2) L posterior language region (AG, SMG, STG, MTG); (3) R anterior language region (IFG); (4) R posterior language region (AG, SMG, STG, MTG); (5) frontal Lt; (6) temporal Lt; (7) whole network Lt; how ROIs defined: WFU pickatlas				
van Oers et al. (2010): ROI 11	Verb generation vs rest	CC Aphasia Covariate: lesion volume	UNR UNR ROI Anat NC	Number of ROIs: 2; ROIs: (1) R anterior language region (IFG); (2) R posterior language region (AG, SMG, STG, MTG); how ROIs defined: WFU pickatlas				
van Oers et al. (2010): ROI 14	Verb generation vs rest	CC Aphasia Covariate: damage to L hemisphere language regions	UNR UNR ROI Anat NC	Number of ROIs: 2; ROIs: (1) R anterior language region (IFG); (2) R posterior language region (AG, SMG, STG, MTG); how ROIs defined: WFU pickatlas				
Papoutsi et al. (2011): Vox 1	Listening to ambiguous sentences with subordinate resolution ("subordinate") vs listening to ambiguous sentences with dominant resolution ("dominant")	CC Aphasia Covariate: difference in percent of unacceptable judgments between subordinate and dominant sentences (dominance effect)	NANB NANT Vox C-	Search volume: whole brain; software: SPM8; voxelwise p: .01; cluster extent cutoff: based on GRFT				
† L insula	† L posterior STG/STS/MTG	† L mid temporal						
Papoutsi et al. (2011): Cplx 1	Listening to ambiguous sentences with subordinate resolution ("subordinate") vs listening to ambiguous sentences with dominant resolution ("dominant")	CC Aphasia Covariate: modulation of L IFG connectivity by dominance effect	NANB NANT Cplx	A PPI analysis was carried out with the L IFG as the seed region. Correlations were computed between voxelwise modulation of connectivity with this region, and a behavioral measure of syntactic processing, which was the dominance effect: the difference in percent of unacceptable judgments between subordinate and dominant sentences. The resultant SPM was thresholded at voxelwise p < .01 (CDT), then corrected for multiple corrections based on cluster extent and GRFT using SPM8.				
Other: patients with better syntactic performance had more connectivity from the L IFG seed region to L pMTG and adjacent areas (including the insula); pMTG also significant at voxelwise p < .001 in Figure 2B, corrected for multiple comparisons with GRFT								
Papoutsi et al. (2011): Cplx 2	Listening to ambiguous sentences with subordinate resolution ("subordinate") vs listening to ambiguous	CC Aphasia Covariate: modulation of L pMTG connectivity by dominance effect	NANB NANT Cplx	A similar PPI analysis was carried out with the L pMTG as the seed region. Thresholding was the same as in the previous analysis.				
None								
Study	Task/Contrast	ROIs	PBA/Atlas/Mask	Notes				
---	---	---	---	---	---	---		
Sebastian & Kiran (2011): ROI 2	Semantic decision (correct trials) vs visual decision	CC	YCT UNR	Number of ROIs: 4; ROIs: (1) L IFG (oper/tri); (2) L posterior perisylvian (pSTG, pMTG, AG, SMG); (3) R IFG (oper/tri); (4) R posterior perisylvian (pSTG, pMTG, AG, SMG); (5) language network LI; how ROIs defined: Harvard-Oxford atlas None				
Tyler et al. (2011): Vox 5	Listening to ambiguous sentences (dominant and subordinate) vs unambiguous sentences	CC	NANB NANT VOX C-	Search volume: plausible fronto-temporo-parietal language regions; software: SPM5; voxelwise p: .01; cluster extent cutoff: based on GRFT ↑ L IFG pars triangularis ↑ L IFG pars orbitalis ↑ R insula ↑ R mid temporal notes: also L pMTG but this did not reach significance None				
Tyler et al. (2011): Vox 8	Listening to ambiguous sentences (dominant and subordinate) vs unambiguous sentences	CC	NANB NANT VOX C-	Search volume: plausible fronto-temporo-parietal language regions; software: SPM5; voxelwise p: .01; cluster extent cutoff: based on GRFT None				
Tyler et al. (2011): ROI 1	Listening to ambiguous sentences (dominant and subordinate) vs unambiguous sentences	CC	NANB NANT ROI ANAT NC	Number of ROIs: 3; ROIs: (1) IFG opercularis; (2) IFG pars triangularis; (3) IFG pars orbitalis; how ROIs defined: AAL ↑ L IFG pars triangularis ↑ L IFG pars orbitalis None				
Tyler et al. (2011): ROI 2	Listening to ambiguous sentences (dominant and subordinate) vs unambiguous sentences	CC	NANB NANT ROI ANAT NC	Number of ROIs: 3; ROIs: (1) IFG opercularis; (2) IFG pars triangularis; (3) IFG pars orbitalis; how ROIs defined: AAL None				
Allendorfer et al. (2012): ROI 4	Verb generation (overt, event-related) vs noun repetition (event-related)	C	UNR ROI Func NC	Number of ROIs: 3; ROIs: (1) L MTG; (2) L SFG/CG; (3) left MFG; how ROIs defined: regions activated by the contrast of overt verb generation vs noun repetition in patients ↑ L dorsolateral prefrontal cortex ↑ L SMA/medial prefrontal None				
Allendorfer et al.	Verb generation (overt, event-related) vs verb	C	UNR ROI Func NC	Number of ROIs: 2; ROIs: (1) R insula/IFG; (2) R STG; how ROIs defined: prominent R hemisphere None				
Year	Study	Task/Condition	Covariate	ROIs	Number of ROIs	ROIs Defined		
------	-------	----------------	------------	------	---------------	--------------		
2012	Griffis, Nenert, Allendorfer, & Szaflarski (2017): ROI 1	Semantic decision vs tone decision	Covariate: average of semantic and phonemic fluency	CC Aphasia	3	ROIs are mixing coefficients of functional networks arising from mCCA + jICA that were differently represented in the patient and control groups		

- **Number of ROIs**: 3; ROIs: (1) L AG and bilateral midline components of the canonical semantic network, along with reduced activity in R frontal, temporal and parietal regions; (2) bilateral IFG pars orbitalis; (3) L IFG and DLPFC along with bilateral midline regions; how ROIs defined: ROIs are mixing coefficients of functional networks arising from mCCA + jICA that were differently represented in the patient and control groups.

- **Activations**:
 - **↑**: L IFG
 - **↑**: L dorsolateral prefrontal cortex
 - **↑**: L SMA/medial prefrontal
 - **↑**: L angular gyrus
 - **↑**: L precuneus
 - **↑**: L posterior cingulate
 - **↑**: R IFG pars orbitalis
 - **↑**: R IFG pars opercularis
 - **↑**: R IFG pars triangularis
 - **↑**: R insula
 - **↑**: R dorsal precentral
 - **↑**: R supramarginal gyrus
 - **↑**: R posterior STG
 - **↑**: R mid temporal gyri
 - **↓**: L insula
 - **↓**: R IFG pars opercularis
 - **↓**: R IFG pars triangularis
 - **↓**: R insula
 - **↓**: R dorsal precentral
 - **↓**: R supramarginal gyrus
 - **↓**: R posterior STG
 - **↓**: R mid temporal gyri

- **Notes**: all 3 networks were significantly correlated; analysis of networks so involvement of each individual region cannot be assured.
Griffis, Nenert, Allendorfer, & Szafarski (2017): ROI 3

| Semantic decision vs tone decision | CC Aphasia Covariate: BNT | UNR UNR | ROI Oth FWE | Number of ROIs: 3; ROIs: (1) L AG and bilateral midline components of the canonical semantic network, along with reduced activity in R frontal, temporal and parietal regions; (2) bilateral IFG pars orbitalis; (3) L IFG and DLPFC along with bilateral midline regions; how ROIs defined: ROIs are mixing coefficients of functional networks arising from mCCA + jICA that were differently represented in the patient and control groups |

Griffis, Nenert, Allendorfer, Vannest, et al. (2017): ROI 3

| Semantic decision vs tone decision | CC Aphasia Covariate: lesion volume | UNR UNR | ROI Func FWE | Number of ROIs: 5; ROIs: (1) overall canonical semantic network (CSN); (2) L CSN; (3) R CSN; (4) mirror L CSN in R; (5) out-of-network CSN in R; how ROIs defined: control data |

Griffis, Nenert, Allendorfer, Vannest, et al. (2017): ROI 3

| Semantic decision vs tone decision | CC Aphasia Covariate: semantic decision accuracy | C UNR | ROI Func One | Number of ROIs: 1; ROI: CSN; how ROI defined: control data; lesion volume covariate |

Note: networks 1 and 3 were significantly correlated; analysis of networks so involvement of each individual region cannot be assured.
Study	Semantic decision vs tone decision	CC	UNR	UNR	ROI	Func	Number of ROIs: 1; ROI: CSN; how ROI defined: control data; lesion volume covariate
Griffis, Nenert, Allendorfer, Vannest, et al. (2017): ROI 4	Semantic decision vs tone decision	CC	UNR	UNR	ROI	Func	Number of ROIs: 1; ROI: CSN; how ROI defined: control data; lesion volume covariate

- L IFG
- L dorsolateral prefrontal cortex
- L SMA/medial prefrontal
- L angular gyrus
- L precuneus
- L mid temporal
- L anterior temporal
- L posterior cingulate
- L cerebellum
- R IFG
- R dorsolateral prefrontal cortex
- R SMA/medial prefrontal
- R angular gyrus
- R precuneus
- R anterior temporal
- R posterior cingulate
- R cerebellum

Notes: correlation calculated for the whole network of regions, so correlation of individual regions cannot be assured.
Study	Task	CC	UNR	UNR	Cplx	Notes
Nenert et al. (2017): Cplx 7	Semantic decision vs tone decision	CC	UNR	UNR	Cplx	For the 4 R hemisphere regions that were more activated in patients with larger lesions (SPM analysis 4), analyses were carried out to determine whether the semantic fluency or naming measures were differentially impacted by activation depending on whether lesions were larger or smaller. Other: For 1 of the 4 regions (R SMA), there were significant interactions such that in patients with larger lesions, more activation was associated with higher semantic fluency scores and higher BNT scores, while in patients with smaller lesions, more activation was associated with lower fluency and BNT scores. There was a similar relationship with semantic fluency in the R IFG pars opercularis but only at p(FDR) = 0.07.
Griffis, Nenert, Allendorfer, Vannest et al. (2017): Cplx 7	Semantic decision vs tone decision	CC	UNR	UNR	Cplx	For the 4 R hemisphere regions that were more activated in patients with larger lesions (SPM analysis 4), analyses were carried out to determine whether the semantic fluency or naming measures were differentially impacted by activation depending on whether lesions were larger or smaller. Other: For 1 of the 4 regions (R SMA), there were significant interactions such that in patients with larger lesions, more activation was associated with higher semantic fluency scores and higher BNT scores, while in patients with smaller lesions, more activation was associated with lower fluency and BNT scores. There was a similar relationship with semantic fluency in the R IFG pars opercularis but only at p(FDR) = 0.07.

ROI 5

↑ L angular gyrus
↑ L precuneus
↑ L mid temporal
↑ L anterior temporal
↑ L posterior cingulate
↑ L cerebellum
↑ R IFG
↑ R dorsolateral prefrontal cortex
↑ R SMA/medial prefrontal
↑ R angular gyrus
↑ R precuneus
↑ R anterior temporal
↑ R posterior cingulate
↑ R cerebellum

Notes: correlation calculated for the whole network of regions, so correlation of individual regions cannot be assured.

↑ L anterior temporal
Hartwigsen et al. (2020): Cplx 1	Syllable count decision vs rest	CC	Aphasias after cTBS to posterior IFG vs sham; same patients, repeated measures	Covariate: Δ RT for syllable decision (cTBS to posterior IFG timepoint vs sham timepoint)	UNR	C	Cplx	Whole brain correlations were computed between the difference in functional activity after cTBS to posterior IFG versus sham stimulation, and the difference in reaction times on the syllable counting task under these two conditions. The resulting SPM was thresholded at voxelwise p < .001 (CDT) followed by correction for multiple comparisons based on cluster extent and GRFT using SPM12.
Hartwigsen et al. (2020): Cplx 2	Semantic decision vs rest	CC	Aphasias after cTBS to anterior IFG vs sham; same patients, repeated measures	Covariate: Δ RT for semantic decision (cTBS to posterior IFG timepoint vs sham timepoint)	UNR	C	Cplx	Whole brain correlations were computed between the difference in functional activity after cTBS to anterior IFG versus sham stimulation, and the difference in reaction times on the semantic decision task under these two conditions. The resulting SPM was thresholded at voxelwise p < .001 (CDT) followed by correction for multiple comparisons based on cluster extent and GRFT using SPM12.

Second level contrast = Which of the 8 relevant classes of analyses is this? Which group or groups of participants are included? If there is a covariate, what is it?; Acc = Is accuracy matched across the second level contrast?; RT = Is reaction time matched across the second level contrast?; Stats = Does the analysis involve voxelwise statistics, region(s) of interest (ROI), or something else (complex)? If voxelwise, how are multiple comparisons across voxels accounted for? If ROI, were the ROI(s) anatomical, functional, laterality indices, mixed, or something else? If there was more than one ROI, how were the ROIs corrected for multiple comparisons?; Yellow underline = minor limitation; Orange underline = moderate limitation; Red underline = major limitation; CC = Cross-sectional correlation with language or other measure; YCT = Yes, correct trials only; C = Accuracy or RT is covariate; UNR = Unknown, not reported; NANB = N/A, no behavioral measure; NANT = N/A, no timeable task; Vox = Voxelwise; VP = Voxelwise correction based on permutation testing; VFWC = Voxelwise FWE correction and additional arbitrary cluster correction; C- = Clusterwise correction with with GRFT and lenient voxelwise p; ROI = Region(s) of interest; Anat = Anatomical; Func = Functional; Oth = Other; Mix = Mixed; FWE = Familywise error (FWE); NC = No correction; One = One only; Cplx = Complex.
Supplementary Table S13. Longitudinal change in aphasia: Methodologically robust analyses

Analysis et al. (2006): ROI 1	First level contrast	Second level contrast	Matched for Acc	Stats	Notes	Findings
Listening to sentences and making a plausibility judgment vs listening to reversed speech	LA Aphasia T2 vs T1	AM UNR	ROI Func FWE	Behavioral data notes: accuracy combines language and control conditions; number of ROIs: 6; ROIs: (1) L IFG pars orbitalis; (2) L IFG pars triangularis; (3) L MTG; (4) R insula; (5) R IFG pars triangularis; (6) R SMA; how ROIs defined: peak voxels of overall activation map based on all three time points in patients	↑ R insula	

| Saur et al. (2006): ROI 2 | Listening to sentences and making a plausibility judgment vs listening to reversed speech | LA Aphasia T3 vs T2 | AM UNR | ROI Func FWE | Behavioral data notes: accuracy combines language and control conditions; number of ROIs: 6; ROIs: (1) L IFG pars orbitalis; (2) L IFG pars triangularis; (3) L MTG; (4) R insula; (5) R IFG pars triangularis; (6) R SMA; how ROIs defined: peak voxels of overall activation map based on all three time points in patients | None |

| Saur et al. (2006): ROI 3 | Listening to sentences and making a plausibility judgment vs listening to reversed speech | LA Aphasia T3 vs T1 | AM UNR | ROI Func FWE | Behavioral data notes: accuracy combines language and control conditions; number of ROIs: 6; ROIs: (1) L IFG pars orbitalis; (2) L IFG pars triangularis; (3) L MTG; (4) R insula; (5) R IFG pars triangularis; (6) R SMA; how ROIs defined: peak voxels of overall activation map based on all three time points in patients | ↑ L posterior MTG |

| Nenert et al. (2017): ROI 1 | Semantic decision vs tone decision | LA Aphasia ANOVA including T1, T2, T3 | AS UNR | ROI Li NC | Number of ROIs: 5; ROIs: (1) frontal Li; (2) temporo-parietal Li; (3) cerebellar Li; (4) fronto-parietal Li; (5) Broca’s Li | None |

| Nenert et al. (2018): Cplx 1 | Semantic decision vs tone decision | LA Aphasia (comparisons between all pairs of time points) | AS UNR | Cplx | PPI analyses were carried out to investigate potential changes over time in how connectivity from L and R IFG was modulated by the semantic decision task. The resultant SPM was thresholded at FWE p < .05 using permutation testing implemented in SnPM 13. | None |

Second level contrast = Which of the 8 relevant classes of analyses is this? Which group or groups of participants are included? If there is a covariate, what is it?; Acc = Is accuracy matched across the second level contrast?; RT = Is reaction time matched across the second level contrast?; Stats = Does the analysis involve voxelwise statistics, region(s) of interest (ROI), or something else (complex)? If voxelwise, how are multiple comparisons across voxels accounted for? If ROI, were the ROI(s) anatomical, functional, laterality indices, mixed, or something else? If there was more than one ROI, how were the ROIs corrected for multiple comparions?; Yellow underline = minor limitation; Orange underline = moderate limitation; Red underline = major limitation; LA = Longitudinal change in aphasia; AS = Appear similar; AM = Appear mismatched; UNR = Unknown, not reported; ROI = Region(s) of interest; Func = Functional; Li = Laterality indices; FWE = Familywise error (FWE); NC = No correction; Cplx = Complex.
Supplementary Table S14. Cross-sectional between two groups with aphasia: Methodologically robust analyses

Analysis	First level contrast	Second level contrast	Matched for	Stats	Notes	Findings
Leff et al. (2002): ROI 2	Higher word rates vs lower word rates	CAA Aphasia with pSTS damage (n = 6) vs aphasia without pSTS damage (n = 9)	NANT	ROI	Func	Number of ROIs: 1; ROI: R pSTS; how ROI defined: the peak voxel for the contrast in the R pSTS from each subject's individual analysis, but the search region is not stated; the controls and patients without pSTS damage were combined, however it is stated in the caption to Figure 2 that the patients with pSTS damage were significantly different to both
Blank et al. (2003): Vox 3	Propositional speech production vs rest	CAA Aphasia with IFG POp damage (n = 7) vs without IFG POp damage (n = 7)	NANT	Vox	SVC	Behavioral data notes: word rates not reported, but offline speech sample differed; search volume: voxels spared in all patients; software: SPM99; voxelwise p: FWE p < .05 with SVC in R pars opercularis
Blank et al. (2003): Vox 6	Propositional speech production vs counting	CAA Aphasia with IFG POp damage (n = 7) vs without IFG POp damage (n = 7)	NANT	Vox	SVC	Behavioral data notes: word rates not reported, but offline speech sample differed; search volume: voxels spared in all patients; software: SPM99; voxelwise p: FWE p < .05 with SVC in R pars opercularis
Crinion & Price (2005): Vox 3	Listening to narrative speech vs listening to reversed speech	CAA Aphasia with temporal lobe damage (n = 8) vs without temporal lobe damage (n = 9)	NANT	Vox	VFWC	Search volume: whole brain; software: SPM2; voxelwise p: FWE p < .05; cluster extent cutoff: 5 voxels (size not stated)
Crinion & Price (2005): Cplx 4	Listening to narrative speech vs listening to reversed speech	CAA Aphasia with temporal damage (n = 8) vs without temporal damage (n = 9)	NANT	Cplx		Correlations were computed between activity in each voxel, and post-scan story recall, and were compared between the two aphasia groups, in regions with a main effect of story comprehension. The threshold was p < 0.05 corrected, plus a minimum cluster size of 5 voxels.
Crinion et al. (2006): ROI 3	Listening to narrative speech vs listening to reversed speech	CAA Aphasia with temporal damage excluding anterior temporal cortex (n = 9) vs with no temporal lobe damage (excluding 1 with missing behavioral data and 1 outlier) (n = 4)	NANT	ROI	Func	Number of ROIs: 1; ROI: L ATL; how ROI defined: activation in the control group; two other ROIs are described in the methods, but never used in any analyses
Warren et al. (2009): ROI 11	Listening to narrative speech vs listening to reversed speech	CAA Aphasia with positive anterior temporal interconnectivity (n = 8) vs with negative anterior temporal	NANT	ROI	Anat	Number of ROIs: 6; ROIs: (1) L anterior superior temporal cortex; (2) L basal temporal language area; (3) L IFG pars triangularis; (4-6) homotopic counterparts; how ROIs defined: ROIs were defined anatomically in regions

184
interconnectivity (n = 8) that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6); excluded 4 patients with L IFG damage

Hartwigsen et al. (2020): Vox 1	Syllable count decision vs rest	CAA Aphasia after cTBS to posterior IFG vs sham; same patients, repeated measures	Y	N	Vox C+	Behavioral data notes: significantly slower response times when cTBS was applied over pIFG relative to when sham cTBS was applied; search volume: voxels spared in all patients; software: SPM12; voxelwise p: .001; cluster extent cutoff: based on GRFT ↓ L IFG pars opercularis ↓ L SMA/medial prefrontal ↓ R SMA/medial prefrontal ↓ R basal ganglia notes: based on Figure 4A and Table 3
Hartwigsen et al. (2020): Vox 2	Syllable count decision vs rest	CAA Aphasia after cTBS to posterior IFG vs after cTBS to anterior IFG; same patients, repeated measures	Y	N	Vox C+	Behavioral data notes: significantly slower response times when cTBS was applied over pIFG relative to when cTBS was applied over aIFG; search volume: voxels spared in all patients; software: SPM12; voxelwise p: .001; cluster extent cutoff: based on GRFT ↓ L IFG pars opercularis notes: based on Table 3
Hartwigsen et al. (2020): Vox 3	Semantic decision vs rest	CAA Aphasia after cTBS to anterior IFG vs sham; same patients, repeated measures Somewhat valid (no behavioral difference)	Y	Y	Vox C+	Behavioral data notes: difference in reaction time did not survive correction; search volume: voxels spared in all patients; software: SPM12; voxelwise p: .001; cluster extent cutoff: based on GRFT ↓ L insula ↓ R insula ↓ R dorsolateral prefrontal cortex ↓ R SMA/medial prefrontal notes: based on Figure 4B and Table 3
Hartwigsen et al. (2020): Vox 4	Semantic decision vs rest	CAA Aphasia after cTBS to anterior IFG vs after cTBS to posterior IFG ; same patients, repeated measures	Y	N	Vox C+	Behavioral data notes: significantly slower response times when cTBS was applied over aIFG relative to when cTBS was applied over pIFG; search volume: voxels spared in all patients; software: SPM12; voxelwise p: .001; cluster extent cutoff: based on GRFT ↓ L insula ↓ R insula ↓ R dorsolateral prefrontal cortex notes: based on Table 3

Second level contrast = Which of the 8 relevant classes of analyses is this? Which group or groups of participants are included? If there is a covariate, what is it?; Acc = Is accuracy matched across the second level contrast?; RT = Is reaction time matched across the second level contrast?; Stats = Does the analysis involve voxelwise statistics, region(s) of interest (ROI), or something else (complex)? If voxelwise, how are multiple comparisons across voxels accounted for? If ROI, were the ROI(s) anatomical, functional, laterality indices, mixed, or something else? If there was more than one ROI, how were the ROIs corrected for multiple comparions?; Yellow underline = minor limitation; Orange underline = moderate limitation; Red underline = major limitation; CAA = Cross-sectional between two groups with aphasia; Y = Yes, matched; N = No, different; NANB = N/A, no behavioral measure; NANT = N/A, no timeable task; Vox = Voxelwise; C+ = Clusterwise correction with with GRFT and stringent voxelwise p; VFWC = Voxelwise FWE correction and additional arbitrary cluster correction; SVC = Small volume correction; ROI = Region(s) of interest; Anat = Anatomical; Func = Functional; NC = No correction; One = One only; Cplx = Complex.
Supplementary Table S15. Cross-sectional performance-defined conditions: Methodologically robust analyses

Analysis	First level contrast	Second level contrast	Matched for	Stats	Notes	Findings
Fridriksson et al. (2009): Vox 2	Picture naming (phonemic paraphasias) vs picture naming (correct trials)	CB Aphasia	NBD	UNR	Vox C-	Search volume: voxels spared in all patients; software: FSL (FEAT 5.4); voxelwise p: ~.01 (z > 2.3); cluster extent cutoff: based on GRFT
						↑ L posterior inferior temporal gyrus/fusiform gyrus
						↑ R occipital
Fridriksson et al. (2009): Vox 3	Picture naming (semantic paraphasias) vs picture naming (correct trials)	CB Aphasia	NBD	UNR	Vox C-	Search volume: voxels spared in all patients; software: FSL (FEAT 5.4); voxelwise p: ~.01 (z > 2.3); cluster extent cutoff: based on GRFT
						↑ R occipital
Skipper-Kallal et al. (2017a): Vox 5	Picture naming (both phases, correct trials) vs picture naming (both phases, incorrect trials)	CB Aphasia with naming < 80% (n = 24)	NBD	UNR	Vox C-	Search volume: whole brain gray matter; software: FSL 5.0.6; voxelwise p: ~.01 (z > 2.3); cluster extent cutoff: based on GRFT
Pillay et al. (2018): Vox 1	Reading nouns aloud (correct trials) vs reading nouns aloud (incorrect trials)	CB Aphasia	NBD	Y	Vox CCS	Search volume: whole brain; software: AFNI; voxelwise p: .01; cluster extent cutoff: 1.609 cc; regarding correction for multiple comparisons, addition of monoeponential function reduces but does not eliminate inflation of p values (Cox et al., 2017)
						↓ L ventral precentral/inferior frontal junction
						↓ L SMA/medial prefrontal
						↓ R insula
						↓ R ventral precentral/inferior frontal junction
						↓ R SMA/medial prefrontal
						notes: positive region (L AG) was part of the semantic network, while many negative regions were positively modulated by reaction time in the aphasia group

Second level contrast = Which of the 8 relevant classes of analyses is this? Which group or groups of participants are included? If there is a covariate, what is it?; Acc = Is accuracy matched across the second level contrast?; RT = Is reaction time matched across the second level contrast?; Stats = Does the analysis involve voxelwise statistics, region(s) of interest (ROI), or something else (complex)? If voxelwise, how are multiple comparisons across voxels accounted for? If ROI, were the ROI(s) anatomical, functional, laterality indices, mixed, or something else? If there was more than one ROI, how were the ROIs corrected for multiple comparisons?; Yellow underline = minor limitation; Orange underline = moderate limitation; Red underline = major limitation; CB = Cross-sectional performance-defined conditions; Y = Yes, matched; NBD = No, by design; UNR = Unknown, not reported; Vox = Voxelwise; C- = Clusterwise correction with with GRFT and lenient voxelwise p; CCS = Clusterwise correction based on 3dClustSim.
Supplementary Table S16: Complete coding of all included studies

Weiller et al. (1995)

Reference	
Authors	Weiller C, Isensee C, Rijntjes M, Huber W, Müller S, Bier D, Dutschka K, Woods RP, Noth J, Diener HC
Title	Recovery from Wernicke's aphasia: a positron emission tomographic study
Reference	Ann Neurol 1995; 37: 723-732
PMID	7778845
DOI	10.1002/ana.410370605

Participants	
Language	German
Inclusion criteria	Lesion including L pSTG; moderate-to-severe Wernicke's aphasia in the subacute period; now recovered and not aphasic per formal testing; able to perform verb generation task
Number of individuals with aphasia	6
Number of control participants	6
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	No (mean 58 years, range 50-66 years; controls were younger: mean 35 years; range 27-50 years)
Is sex reported for patients and controls, and matched?	Yes (males: 6; females: 0)
Is handedness reported for patients and controls, and matched?	Yes (right: 6; left: 0)
Is time post stroke onset reported and appropriate to the study design?	Yes (range 5-117 months)
To what extent is the nature of aphasia characterized?	Comprehensive battery
Language evaluation	AAT
Aphasia severity	Recovered; not aphasic per formal testing
Aphasia type	Recovered, but all had moderate-severe Wernicke's aphasia in the subacute period
First stroke only?	Yes
Stroke type	Ischemic only
To what extent is the lesion distribution characterized?	Individual lesions
Lesion extent	Not stated
Lesion location	Posterior L MCA infarct, lesion to the L posterior STG usually extending to MTG and AG
Participants notes	6 patients were selected from a database of 600 carefully documented cases

Imaging	
Modality	PET (rCBF)
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired?	—
If longitudinal, was there any intervention between the time points?	—
Is the scanner described?	Yes (CTI ECAT 953/15)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	PET
Total images acquired	6
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (axial; field of view = 5.4 cm; perisylvian only)
Is preprocessing and intrasubject coregistration adequately described and appropriate? Yes
Is first level model fitting adequately described and appropriate? Yes
Is intersubject normalization adequately described and appropriate? Yes
Imaging notes —

Conditions
Are the conditions clearly described? Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
verb generation	Multiple words (covert)	2	Yes	Yes
pseudoword repetition	Multiple words (covert)	2	Yes	Yes
rest	None	2	N/A	N/A

Conditions notes Auditory presentation; pre-scan behavioral data reported

Contrasts
Are the contrasts clearly described? Yes

Contrast 1: verb generation vs rest
Language condition Verb generation
Control condition Rest
Are the conditions matched for visual demands? Yes
Are the conditions matched for auditory demands? No
Are the conditions matched for motor demands? Yes
Are the conditions matched for cognitive/executive demands? No
Is accuracy matched between the language and control tasks for all relevant groups? N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups? N/A, tasks not comparable
Behavioral data notes —
Are control data reported in this paper or another that is referenced? Somewhat
Does the contrast selectively activate plausible relevant language regions in the control group? Yes
Are activations lateralized in the control data? Yes
Control activation notes L posterior temporal, IFG and ventral precentral gyrus, much smaller activations in the R hemisphere
Contrast notes —

Contrast 2: pseudoword repetition vs rest
Language condition Pseudoword repetition
Control condition Rest
Are the conditions matched for visual demands? Yes
Are the conditions matched for auditory demands? No
Are the conditions matched for motor demands? Yes
Are the conditions matched for cognitive/executive demands? No
Is accuracy matched between the language and control tasks for all relevant groups? N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups? N/A, tasks not comparable
Behavioral data notes —
Are control data reported in this paper or another that is referenced?	**Somewhat**
Does the contrast selectively activate plausible relevant language regions in the control group? | **Somewhat**
Are activations lateralized in the control data? | **Somewhat**
Control activation notes | L posterior temporal only; similar but less extensive activation in the R hemisphere
Contrast notes | —

Analyses

Are the analyses clearly described?	Yes

Voxelwise analysis 1

First level contrast	Verb generation vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Appear mismatched
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes	In practice trials, patients produced 1.5 words on average per prompt, not all of which were verbs, while controls 2.3 words on average per prompt, almost all of which were verbs
Type of analysis | Voxelwise |
Search volume | Perisylvian |
Correction for multiple comparisons | No direct comparison |
Software | SPM |
Voxelwise p | — |
Cluster extent | — |
Statistical details | Qualitative comparison on p. 729 (the word “significant” is used)
Findings | ↑ R IFG
↑ R posterior STG/STS/MTG
↓ L posterior STG/STS/MTG |
Findings notes | Based more on Figure 2 than the text

Voxelwise analysis 2

First level contrast	Pseudoword repetition vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Appear similar
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes	All participants are reported to have had no difficulties in performing the repetition task
Type of analysis	Voxelwise
Search volume	Perisylvian
Correction for multiple comparisons	No direct comparison
Software	SPM
Voxelwise p	—
Cluster extent	—
Statistical details	Qualitative comparison on p. 729 (the word “significant” is used)
Findings	↑ L ventral precentral/inferior frontal junction
Findings notes	Based more on Figure 2 than the text
---------------	-------------------------------------

Notes

Excluded analyses

Belin et al. (1996)

Reference

Authors	Belin P, Van Eeckhout P, Zilbovicius M, Remy P, François C, Guillaume S, Chain F, Rancurel G, Samson Y
Title	Recovery from nonfluent aphasia after melodic intonation therapy: a PET study
Reference	Neurology 1996; 47: 1504-1511
PMID	8960735
DOI	10.1212/wnl.47.6.1504

Participants

Language	French
Inclusion criteria	MCA; persistent severe non-fluent aphasia followed by marked improvement with MIT
Number of individuals with aphasia	7
Number of control participants	0
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (mean 49.7 years, range 40-58 years)
Is sex reported for patients and controls, and matched?	No
Is handedness reported for patients and controls, and matched?	Yes (right: 7; left: 0)
Is time post stroke onset reported and appropriate to the study design?	Yes (range 15-149 months; including MIT for the most recent 1-108 months)
To what extent is the nature of aphasia characterized?	Severity and type
Language evaluation	BDAE
Aphasia severity	Persistent severe non-fluent aphasia followed by marked improvement with MIT
Aphasia type	5 global, 2 Broca's
First stroke only?	Not stated
Stroke type	Not stated
To what extent is the lesion distribution characterized?	Individual lesions
Lesion extent	Not stated, but note that hypoperfusion greatly exceeded the infarct in all but 1 patient
Lesion location	L MCA; 2 also had ACA
Participants notes	—

Imaging

Modality	PET (rCBF)
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired?	—
If longitudinal, was there any intervention between the time points?	—
Question	Answer
---	----------------
Is the scanner described?	Yes (CEA LETI-TTV03)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	PET
Total images acquired	4
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (7 transaxial slices 12 mm apart)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	Yes
Imaging notes	—

Conditions

Are the conditions clearly described? Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
word repetition with MIT-like intonation	Word (overt)	1	Yes	Unknown
word repetition	Word (overt)	1	Yes	Unknown
listening to words	None	1	N/A	N/A
rest	None	1	N/A	N/A

Conditions notes —

Contrasts

Are the contrasts clearly described? Yes

Contrast 1: word repetition with MIT-like intonation vs word repetition

Language condition	Word repetition with MIT-like intonation	Control condition	Word repetition
Are the conditions matched for visual demands?	Yes	Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes	Are the conditions matched for cognitive/executive demands?	Yes
Is accuracy matched between the language and control tasks for all relevant groups?	No, by design	Is reaction time matched between the language and control tasks for all relevant groups?	Unknown, not reported
Behavioral data notes	More words were correctly repeated with MIT (16.3 ± 8) than without (12.4 ± 8; p < 0.03)	Are control data reported in this paper or another that is referenced?	N/A
Does the contrast selectively activate plausible relevant language regions in the control group?	N/A	Are activations lateralized in the control data?	N/A
Control activation notes	—	Contrast notes	—

Analyses

Are the analyses clearly described? Yes

ROI analysis 1

First level contrast	Word repetition with MIT-like intonation vs word repetition	
Analysis class	Cross-sectional performance-defined conditions	
Group(s)	Aphasia	
----------	---------	
Covariate	—	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes	
Is accuracy matched across the second level contrast?	No, by design	
Is reaction time matched across the second level contrast?	Unknown, not reported	
Behavioral data notes	More words were correctly repeated with MIT (16.3 ± 8) than without (12.4 ± 8; p < 0.03)	
Type of analysis	Regions of interest (ROI)	
ROI type	Anatomical	
How many ROIs are there?	18	
What are the ROI(s)?	(1) L Broca’s area; (2) L prefrontal; (3) L sensorimotor mouth; (4) L parietal; (5) L Wernicke’s area; (6) L Heschl’s gyrus; (7) L anterior STG; (8) L MTG; (9) L temporal pole; (10-18) homotopic counterparts	
How are the ROI(s) defined?	Individual anatomical images; activation quantified as mean rCBF, not including any intersection of the infarct with the ROI	
Correction for multiple comparisons	No correction	
Statistical details	Three left hemisphere ROIs were excluded (3, 6, 9) because they were completely infarcted in 4 or more patients	
Findings	↑ L IFG	
Findings notes	↑ L dorsolateral prefrontal cortex	
Findings notes	↓ R posterior STG	
Notes	Excluded analyses	Two other contrasts are also reported, but do not fall within the scope of this review

Ohyama et al. (1996)

Reference

Authors

Ohyama M, Senda M, Kitamura S, Ishii K, Mishina M, Terashi A

Title

Role of the nondominant hemisphere and undamaged area during word repetition in poststroke aphasics: a PET activation study

Reference

Stroke 1996; 27: 897-903

PMID

8623110

DOI

10.1161/01.str.27.5.897

Participants

Language

Japanese

Inclusion criteria

Able to repeat single words

Number of individuals with aphasia

16

Number of control participants

6

Were any of the participants included in any previous studies?

No

Is age reported for patients and controls, and matched?

Yes (mean 56.6 ± 11.8 years, range 38-75 years)

Is sex reported for patients and controls, and matched?

Yes (males: 12; females: 4)

Is handedness reported for patients and controls, and matched?

Yes (right: 16; left: 0)

Is time post stroke onset reported and appropriate to the study design?

No* (moderate limitation) (mean 15.1 ± 16.7 months, range 1.1-50.3 months; a mix of subacute and chronic participants; 8 of each)
To what extent is the nature of aphasia characterized?

Language evaluation	Comprehensive battery
Aphasia severity	AQ mean 74.3 ± 12.2, range 53.8-92.4
Aphasia type	6 anomic, 4 atypical, 4 mild Broca's, 1 mild Wernicke's, 1 transcortical sensory; alternately: 10 fluent, 6 non-fluent

First stroke only? Yes
Stroke type Ischemic only

To what extent is the lesion distribution characterized?

| Lesion extent | Mean 33.9 ± 26.3 cc, range 8.1-113.2 cc |
| Lesion location | L perisylvian |

Imaging

Modality	PET (rCBF)
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired?	—
If longitudinal, was there any intervention between the time points?	—
Is the scanner described?	Yes (Headtome IV tomograph)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	PET
Total images acquired	6
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	No (91 mm field of view; coverage limitations not stated)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	No (lesion impact not addressed)

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
word repetition	Word (overt)	2	Yes	Yes
counting	Multiple words (overt)	2	Yes	Yes
rest	None	2	N/A	N/A

Conditions notes Patients were able to repeat words well, with phonemic errors on no more than 4 out of 48 words; counting condition not analyzed in this paper

Contrasts

Contrast 1: word repetition vs rest
Language condition
Control condition
Are the conditions matched for visual demands?
Are the conditions matched for auditory demands?
Are the conditions matched for motor demands?
Question

Are the conditions matched for cognitive/executive demands?
Is accuracy matched between the language and control tasks for all relevant groups?
Is reaction time matched between the language and control tasks for all relevant groups?
Behavioral data notes
Are control data reported in this paper or another that is referenced?
Does the contrast selectively activate plausible relevant language regions in the control group?
Are activations lateralized in the control data?
Control activation notes
Contrast notes

Analyses

Question	Answer
Are the analyses clearly described?	No (see specific limitation(s) below)

ROI analysis 1

First level contrast	Word repetition vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Some of the patients made a few errors, so as a group they may have been less accurate than controls
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	7
What are the ROI(s)?	(1) L posterior inferior frontal; (2) R posterior inferior frontal; (3) L posterior superior temporal; (4) R posterior superior temporal; (5) L Rolandic; (6) R Rolandic; (7) SMA
How are the ROI(s) defined?	Spheres around control peaks
Correction for multiple comparisons	No correction
Statistical details	The rCBF increase in R PIF was also significant at p < 0.005 for nonfluent patients with Fisher’s protected least-significant difference
Findings	↑ R IFG
Findings notes	↑ R posterior STG/STS/MTG

ROI analysis 2

First level contrast	Word repetition vs rest
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia fluent (n = 10) vs non-fluent (n = 6)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
------------------	---------------------------
ROI type	Functional
How many ROIs are there?	7
What are the ROI(s)?	(1) L posterior inferior frontal; (2) R posterior inferior frontal; (3) L posterior superior temporal; (4) R posterior superior temporal; (5) L rolandic; (6) R rolandic; (7) SMA
How are the ROI(s) defined?	Spheres around control peaks
Correction for multiple comparisons	No correction
Statistical details	—
Findings	↓ R IFG
Findings notes	—

ROI analysis 3

First level contrast	Word repetition vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Spontaneous speech (WAB)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	7
What are the ROI(s)?	(1) L posterior inferior frontal; (2) R posterior inferior frontal; (3) L posterior superior temporal; (4) R posterior superior temporal; (5) L rolandic; (6) R rolandic; (7) SMA
How are the ROI(s) defined?	Spheres around control peaks
Correction for multiple comparisons	No correction
Statistical details	No correction for multiple comparisons across WAB subscores
Findings	↑ L IFG
Findings notes	—

ROI analysis 4

First level contrast	Word repetition vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Comprehension (WAB)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	7
What are the ROI(s)?	(1) L posterior inferior frontal; (2) R posterior inferior frontal; (3) L posterior superior temporal; (4) R posterior superior temporal; (5) L rolandic; (6) R rolandic; (7) SMA
How are the ROI(s) defined?	Spheres around control peaks
Correction for multiple comparisons	No correction
Statistical details	No correction for multiple comparisons across WAB subscores
Findings	None
Findings notes	—
ROI analysis 5

First level contrast	Word repetition vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Repetition (WAB)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	7
What are the ROI(s)?	(1) L posterior inferior frontal; (2) R posterior inferior frontal; (3) L posterior superior temporal; (4) R posterior superior temporal; (5) L rolandic; (6) R rolandic; (7) SMA
How are the ROI(s) defined?	Spheres around control peaks
Correction for multiple comparisons	No correction
Statistical details	This non-significant finding is implied but not stated explicitly
Findings	None
Findings notes	—

ROI analysis 6

First level contrast	Word repetition vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Naming (WAB)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	7
What are the ROI(s)?	(1) L posterior inferior frontal; (2) R posterior inferior frontal; (3) L posterior superior temporal; (4) R posterior superior temporal; (5) L rolandic; (6) R rolandic; (7) SMA
How are the ROI(s) defined?	Spheres around control peaks
Correction for multiple comparisons	No correction
Statistical details	This non-significant finding is implied but not stated explicitly
Findings	None
Findings notes	—

Notes

Excluded analyses: Separate analyses for fluent and non-fluent patients revealed essentially similar results

Heiss et al. (1997)
Reference

Authors	Heiss WD, Kessler J, Karbe H, Fink GR, Pawlik G
Title	Speech-induced cerebral metabolic activation reflects recovery from aphasia
Reference	J Neurol Sci 1997; 145: 213-217
PMID	9094051
DOI	10.1016/s0022-510x(96)00252-3

Participants

Language	German
Inclusion criteria	—
Number of individuals with aphasia	6
Number of control participants	6
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (range 33-66 years)
Is sex reported for patients and controls, and matched?	Yes (males: 4; females: 2)
Is handedness reported for patients and controls, and matched?	Yes (right: 6; left: 0)
Is time post stroke onset reported and appropriate to the study design?	Yes (T1: ~4 weeks; T2: ~12-18 months)
To what extent is the nature of aphasia characterized?	Severity only
Language evaluation	Verbal repetition, confrontation naming, oral and written comprehension, reading abilities, TT, phonemic fluency, clinical impression, family interview
Aphasia severity	T1: TT range 37-48; T2: TT range 3-39 (1 missing)
Aphasia type	T1: 5 global, 1 Wernicke’s; T2: not stated
First stroke only?	Yes
Stroke type	Ischemic only
To what extent is the lesion distribution characterized?	Individual lesions
Lesion extent	Range 27.2-133.2 cc
Lesion location	L MCA; 5 patients had superior temporal damage and 1 had subcortical damage underlying posterior superior temporal cortex
Participants notes	—

Imaging

Modality	PET (rCMRgl)
Is the study cross-sectional or longitudinal?	Longitudinal—recovery
If longitudinal, at what time point(s) were imaging data acquired?	T1: ~4 weeks; T2: ~12-18 months
If longitudinal, was there any intervention between the time points?	Not stated
Is the scanner described?	Yes (Siemens ECAT EXACT HR)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	PET
Total images acquired	2
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and inrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described	N/A—no intersubject normalization
and appropriate?

Imaging notes

Conditions

Are the conditions clearly described? No (no information about repetition rate, or whether repetition was overt or covert)

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
word repetition	Word (overt)	1	Unknown	Unknown
rest	None	1	N/A	N/A

Conditions notes

Contrasts

Are the contrasts clearly described? Yes

Contrast 1: word repetition vs rest

Language condition	Control condition	Are the conditions matched for visual demands?	Are the conditions matched for auditory demands?	Are the conditions matched for motor demands?	Are the conditions matched for cognitive/executive demands?	Is accuracy matched between the language and control tasks for all relevant groups?	Is reaction time matched between the language and control tasks for all relevant groups?	Behavioral data notes	Does the contrast selectively activate plausible relevant language regions in the control group?	Are activations lateralized in the control data?	Control activation notes	Contrast notes
Word repetition	Rest	Yes	No	No	No	N/A, tasks not comparable	N/A, tasks not comparable		Unknown	No	The only control data is extent of activation and mean signal increase in L and R superior temporal cortex; both of these measures were slightly L-lateralized	

Behavioral data notes

Is control data reported in this paper or another that is referenced? Somewhat

Contrast notes

Analyses

Are the analyses clearly described? Yes

Voxelwise analysis 1

First level contrast	Word repetition vs rest
Analysis class	Longitudinal between two groups with aphasia
Group(s)	(Aphasia with good recovery (n = 3) T2 vs T1) vs (aphasia with poor recovery (n = 3) T2 vs T1)
Covariate	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (TT not optimal measure of overall language function)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	No direct comparison
Software	not stated
---------------------------	---------------------
Voxelwise p	—
Cluster extent	—
Statistical details	Qualitative generalization across individuals on pp. 214-6
Findings	↑ L posterior STG/STS/MTG
	↓ R posterior STG/STS/MTG
Findings notes	The consistent aspects of the findings were that there was an emergence of L posterior temporal activation in patients with better recovery, and R posterior temporal activation in patients with worse recovery

ROI analysis 1

First level contrast	Word repetition vs rest
Analysis class	Longitudinal between two groups with aphasia
Group(s)	(Aphasia with good recovery (n = 3) T2 vs T1) vs (aphasia with poor recovery (n = 3) T2 vs T1)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (TT not optimal measure of overall language function)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

Type of analysis	Regions of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	2
What are the ROI(s)?	(1) L superior temporal cortex; (2) R superior temporal cortex
How are the ROI(s) defined?	Individual anatomical images; activation quantified in terms of extent exceeding 10% signal change, and mean % increase over the activation
Correction for multiple comparisons	No direct comparison
Statistical details	Qualitative generalization across individuals on pp. 214, 216
Findings	↑ L posterior STG/STS/MTG
	↑ L Heschl's gyrus
Findings notes	—

Notes

| Excluded analyses | — |

Karbe et al. (1998)

Reference

Authors	Karbe H, Thiel A, Weber-Luxenburger G, Herholz K, Kessler J, Heiss WD
Title	Brain plasticity in poststroke aphasia: what is the contribution of the right hemisphere?
Reference	Brain Lang 1998; 64: 215-230
PMID	9710490
DOI	10.1006/brln.1998.1961

Participants

Language	German
Inclusion criteria	MCA; able to repeat single words
Number of individuals with aphasia	12
Number of control participants	10
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched? | No (mean 57 years, range 34-78 years; controls not matched for age)
---|---
Is sex reported for patients and controls, and matched? | Yes (males: 7; females: 5; stated to be not matched, but difference not significant)
Is handedness reported for patients and controls, and matched? | Yes (right: 12; left: 0)
Is time post stroke onset reported and appropriate to the study design? | Yes (T1: mean 24 ± 11 days, ~3-4 weeks; T2: mean 19 ± 2 months, > 1 year)
To what extent is the nature of aphasia characterized? | Severity and type
Language evaluation | TT
Aphasia severity | T1: 9 severe; 2 mild; 1 not stated; TT range 3-47 errors; T2: not stated
Aphasia type | T1: 8 global, 3 anomic, 1 Wernicke's; T2: not stated
First stroke only? | Yes
Stroke type | Ischemic only
To what extent is the lesion distribution characterized? | Extent and location
Lesion extent | Range 2-133 cc
Lesion location | L MCA
Participants notes | Only 7 of the 12 patients took part at T2

Imaging

Modality	PET (rCMRgl)
Is the study cross-sectional or longitudinal?	Longitudinal—recovery
If longitudinal, at what time point(s) were imaging data acquired?	T1: mean 24 ± 11 days, ~3-4 weeks; T2: mean 19 ± 2 months, > 1 year
If longitudinal, was there any intervention between the time points?	Not stated
Is the scanner described?	Yes (CTI-Siemens ECAT EXACT HR)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No* (moderate limitation) (activation and control images not acquired on the same day; number of acquisitions not clearly described)
Design type	PET
Total images acquired	8
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	N/A—no intersubject normalization
Imaging notes	—

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
word repetition	Word (overt)	4 (?)	Unknown	Unknown
rest	None	4 (?)	N/A	N/A

| Conditions notes | Inability to repeat single words was an exclusion criterion, but many patients had severe aphasia so it is unclear how they would have performed |

Contrasts

| Are the contrasts clearly described? | Yes |
Contrast 1: word repetition vs rest

Language condition	Word repetition
Control condition	Rest
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	—
Does the contrast selectively activate plausible relevant language regions in the control group?	No
Are activations lateralized in the control data?	No

Contrast notes —

Analyses

Are the analyses clearly described? No* (moderate limitation) (see specific limitation(s) below)

ROI analysis 1

First level contrast Word repetition vs rest

Analysis class Cross-sectional aphasia vs control

Group(s) Aphasia T1 vs control

Covariate —

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? Yes

Is accuracy matched across the second level contrast? Unknown, not reported

Is reaction time matched across the second level contrast? Unknown, not reported

Behavioral data notes —

Type of analysis Regions of interest (ROI)

ROI type Anatomical

How many ROIs are there? 8

What are the ROI(s)? (1) L IFG; (2) L STG/HG; (3) L SMA; (4) L ventral precentral; (5-8) homotopic counterparts

How are the ROI(s) defined? Individual anatomical images

Correction for multiple comparisons No direct comparison

Statistical details Qualitative comparison on p. 219, but only the L SMA comparison is explicitly quantified

Findings ↑ L SMA/medial prefrontal

↑ R SMA/medial prefrontal

↓ L posterior STG

↓ L Heschl's gyrus

Findings notes —

ROI analysis 2

First level contrast Word repetition vs rest

Analysis class Cross-sectional correlation with language or other measure

Group(s) Aphasia (subset who returned for follow-up) T1 (n = 7)

Covariate TT T1

Is the second level contrast valid in terms of the Somewhat (TT not optimal measure of overall language function)
ROI analysis 3
First level contrast
Analysis class
Group(s)
Covariate
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?
Is accuracy matched across the second level contrast?
Is reaction time matched across the second level contrast?
Behavioral data notes
Type of analysis
ROI type
How many ROIs are there?
What are the ROI(s)?
How are the ROI(s) defined?
Correction for multiple comparisons
Statistical details
Findings
Findings notes

ROI analysis 4
First level contrast
Analysis class
Group(s)
Covariate
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?
Is accuracy matched across the second level contrast?
Is reaction time matched across the second level contrast?
Behavioral data notes
Type of analysis
ROI type
ROI analysis 5

First level contrast	Word repetition vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia (subset who returned for follow-up) T2 (n = 7)
Covariate	Previous Δ (T2 vs T1) activation in L STG/HG
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	No (logically problematic because patients with less severe initial aphasia would also be expected to show little L temporal increase, but would not be expected to show R temporal recruitment)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	4
What are the ROI(s)?	(1) R IFG; (2) R STG/HG; (3) R SMA; (4) R ventral precentral
How are the ROI(s) defined?	Individual anatomical images
Correction for multiple comparisons	No correction
Statistical details	—
Findings	↓ R IFG
	↓ R ventral precentral/inferior frontal junction
	↓ R SMA/medial prefrontal
	↓ R posterior STG
	↓ R Heschl's gyrus
Findings notes	Patients with more increase in L STG/HG activation showed less activation of R hemisphere regions at T2

Notes

Excluded analyses: The "Initial study" columns of table 3, because they are not described in the text and it is not clear exactly what is being correlated with what.
Number of individuals with aphasia	6 (plus 2 excluded: 1 unable to reliably describe performance post-scan; 1 due to head motion)
Number of control participants	37
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (range 20-56 years)
Is sex reported for patients and controls, and matched?	Yes (males: 1; females: 5)
Is handedness reported for patients and controls, and matched?	Yes (right: 6; left: 0)
Is time post stroke onset reported and appropriate to the study design?	Yes (range 5-32 months)
To what extent is the nature of aphasia characterized?	Severity and type
Language evaluation	ADP
Aphasia severity	ADPASS percentile range 73-99
Aphasia type	3 anomic, 1 conduction, 1 recovered, 1 transcortical sensory
First stroke only?	Yes
Stroke type	Ischemic only
To what extent is the lesion distribution characterized?	Individual lesions
Lesion extent	Extents are reported in three dimensions
Lesion location	4 L MCA, 2 L ICA
Participants notes	—

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired?	—
If longitudinal, was there any intervention between the time points?	—
Is the scanner described?	Yes (Magnex Scientific 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	Block
Total images acquired	40
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (axial, perisylvian only)
Is preprocessing and intersubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	No (first level cross-correlation analysis unclear)
Is intersubject normalization adequately described and appropriate?	N/A—no intersubject normalization
Imaging notes	—

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
picture naming	Word (covert)	4	Yes	Yes
viewing nonsense drawings	None	4	N/A	N/A

Conditions notes

—
Contrasts

Are the contrasts clearly described? Yes

Contrast 1: picture naming vs viewing nonsense drawings

Language condition	Picture naming
Control condition	Viewing nonsense drawings
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable

Behavioral data notes —

Are control data reported in this paper or another that is referenced? Somewhat

Does the contrast selectively activate plausible relevant language regions in the control group? Unknown

Are activations lateralized in the control data? Somewhat

Control activation notes Insufficient data to assess the control activation pattern

Analyses

Are the analyses clearly described? Yes

ROI analysis 1

First level contrast	Picture naming vs viewing nonsense drawings
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes —

Type of analysis Regions of interest (ROI)

ROI type Mixed

How many ROIs are there? 6

What are the ROI(s)? (1) L IFG and MFG; (2) L pSTG, AG and SMG; (3) R IFG and MFG; (4) R pSTG, AG and SMG; (5) frontal LI; (6) temporal LI

How are the ROI(s) defined? (1-4) individual anatomical images; activation quantified in terms of extent

Correction for multiple comparisons No correction

Statistical details —

Findings ↑ R IFG; ↑ R dorsolateral prefrontal cortex; ↑ R supramarginal gyrus; ↑ R angular gyrus; ↑ R posterior STG; ↓ LI (frontal); ↓ LI (temporal)

Findings notes —
ROI analysis 2

First level contrast	Picture naming vs viewing nonsense drawings
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Picture naming (outside scanner)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	6
What are the ROI(s)?	(1) L IFG and MFG; (2) L pSTG, AG and SMG; (3) R IFG and MFG; (4) R pSTG, AG and SMG; (5) frontal LI; (6) temporal LI
How are the ROI(s) defined?	(1-4) individual anatomical images; activation quantified in terms of extent
Correction for multiple comparisons	No correction
Statistical details	—
Findings	↑ LI (frontal)
Findings notes	—

Notes

- **Excluded analyses**
 - (1) verb generation study with n = 4 patients; (2) individual patient results; (3) whole brain and whole hemisphere activation measures

Heiss et al. (1999)

Reference

- **Authors**
 - Heiss WD, Kessler J, Thiel A, Ghaemi M, Karbe H
- **Title**
 - Differential capacity of left and right hemispheric areas for compensation of poststroke aphasia
- **Reference**
 - Ann Neurol 1999; 45: 430-438
- **PMID**
 - 10211466
- **DOI**
 - 10.1002/1531-8249(199904)45:4<430::aid-ana3>3.0.co;2-p

Participants

- **Language**
 - German
- **Inclusion criteria**
 - AAT repetition ≥ 50
- **Number of individuals with aphasia**
 - 23
- **Number of control participants**
 - 11
- **Were any of the participants included in any previous studies?**
 - No
- **Is age reported for patients and controls, and matched?**
 - Yes (mean 56 ± 12 years, range 31-77 years; assume patient’s age of 5.6 years is a typo for 56 years)
- **Is sex reported for patients and controls, and matched?**
 - Yes (males: 15; females: 8)
- **Is handedness reported for patients and controls, and matched?**
 - Yes (right: 23; left: 0)
- **Is time post stroke onset reported and appropriate to the study design?**
 - Yes (T1: ~2 weeks; T2: ~8 weeks)
- **To what extent is the nature of aphasia**
 - Severity and type
| Question | Answer | | | | |
|---|---|---|---|---|---|
| Language evaluation characteristics? | AAT, phonemic fluency |
| Aphasia severity T1: subcortical, frontal, temporal | T1: median 8 errors, range 0-17 errors; frontal: median 21 errors, range 4-40 errors; temporal: median 39 errors, range 1-47 errors; T2: subcortical: median 1 error, range 0-14 errors; frontal: median 8 errors, range 0-34; temporal: median 34 errors, range 0-44 errors |
| Aphasia severity T2: subcortical, frontal, temporal | T2: median 1 error, range 0-14 errors; frontal: median 8 errors, range 0-34; temporal: median 34 errors, range 0-44 errors |
| Aphasia type | T1: 6 Wernicke's, 5 Broca's, 5 residual aphasia, 4 anomic, 2 transcortical sensory, 1 conduction; T2: not stated |
| First stroke only? | Yes |
| Stroke type | Ischemic only |
| To what extent is the lesion distribution characterized? | Extent and location |
| Lesion extent | Range 4.3-154.3 cc (probably; units not stated) |
| Lesion location | L MCA; 9 subcortical, 7 frontal, 7 temporal |
| Imaging | |
| Modality | PET (rCBF) |
| Is the study cross-sectional or longitudinal? | Longitudinal—recovery |
| If longitudinal, at what time point(s) were imaging data acquired? | T1: ~2 weeks; T2: ~8 weeks |
| If longitudinal, was there any intervention between the time points? | Not stated |
| Is the scanner described? | Yes (CTI-Siemens ECAT EXACT HR) |
| Is the timing of stimulus presentation and image acquisition clearly described and appropriate? | Yes |
| Design type | PET |
| Total images acquired | 8 |
| Are the imaging acquisition parameters, including coverage, adequately described and appropriate? | Yes (whole brain) |
| Is preprocessing and inrasubject coregistration adequately described and appropriate? | Yes |
| Is first level model fitting adequately described and appropriate? | Yes |
| Is intersubject normalization adequately described and appropriate? | N/A—no intersubject normalization |
| Imaging notes | — |
| Conditions | |
| Are the conditions clearly described? | Yes |
| Condition | Response type | Repetitions | All groups could do? | All individuals could do? | |
| noun repetition | Word (overt) | 4 | Unknown | Unknown |
| rest | None | 4 | N/A | N/A |
| Conditions notes | Inclusion criterion would suggest all patients could do the task, but this is not stated |
| Contrasts | |
| Are the contrasts clearly described? | Yes |
| Contrast 1: noun repetition vs rest | Noun repetition |
| Language condition | Noun repetition |
| Control condition | Rest |
| Are the conditions matched for visual demands? | Yes |
| Are the conditions matched for auditory demands? | No |
| Are the conditions matched for motor demands? | No |
| Question | Answer |
|---|-------------------------------|
| Are the conditions matched for cognitive/executive demands? | No |
| Is accuracy matched between the language and control tasks for all relevant groups? | N/A, tasks not comparable |
| Is reaction time matched between the language and control tasks for all relevant groups? | N/A, tasks not comparable |
| Behavioral data notes | |
| Are control data reported in this paper or another that is referenced? | Somewhat |
| Does the contrast selectively activate plausible relevant language regions in the control group? | Somewhat |
| Are activations lateralized in the control data? | Somewhat |
| Control activation notes | L frontal and bilateral temporal |
| Contrast notes | |
| Analyses | |
| Are the analyses clearly described? | Yes |
| ROI analysis 1 | |
| First level contrast | Noun repetition vs rest |
| Analysis class | Longitudinal change in aphasia |
| Group(s) | Aphasia with subcortical damage (n = 9) T2 vs T1 |
| Covariate | |
| Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? | Yes |
| Is accuracy matched across the second level contrast? | Unknown, not reported |
| Is reaction time matched across the second level contrast? | Unknown, not reported |
| Behavioral data notes | |
| Type of analysis | Regions of interest (ROI) |
| ROI type | Anatomical |
| How many ROIs are there? | 14 |
| What are the ROI(s)? | (1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl's gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic counterparts |
| How are the ROI(s) defined? | Individual anatomical images |
| Correction for multiple comparisons | No direct comparison |
| Statistical details | Qualitative comparison on p. 434 |
| Findings | † L mid temporal |
| | † R Heschl's gyrus |
| | † R IFG pars opercularis |
| Findings notes | |
| ROI analysis 2 | |
| First level contrast | Noun repetition vs rest |
| Analysis class | Longitudinal change in aphasia |
| Group(s) | Aphasia with frontal damage (n = 7) T2 vs T1 |
| Covariate | |
| Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? | Yes |
| Is accuracy matched across the second level contrast? | Unknown, not reported |
| Is reaction time matched across the second level contrast? | Unknown, not reported |
| Behavioral data notes | |
| Type of analysis | Regions of interest (ROI) |
|------------------|--------------------------|
| ROI type | Anatomical |
| How many ROIs are there? | 14 |
| What are the ROI(s)? | (1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl's gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic counterparts |
| How are the ROI(s) defined? | Individual anatomical images |
| Correction for multiple comparisons | No direct comparison |
| Statistical details | Qualitative comparison on p. 434 |
| Findings | ↑ L posterior STG
↑ L mid temporal
↑ R Heschl's gyrus
↓ R IFG pars opercularis |
| Findings notes | — |

ROI analysis 3

First level contrast	Noun repetition vs rest
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia with temporal damage (n = 7) T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	14
What are the ROI(s)?	(1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl's gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic counterparts
How are the ROI(s) defined?	Individual anatomical images
Correction for multiple comparisons	No direct comparison
Statistical details	Qualitative comparison on p. 434
Findings	↑ L ventral precentral/inferior frontal junction
↑ L SMA/medial prefrontal	
↑ R ventral precentral/inferior frontal junction	
↑ R mid temporal	
↓ R SMA/medial prefrontal	
Findings notes	—

ROI analysis 4

First level contrast	Noun repetition vs rest
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia with temporal damage T1 (n = 7) vs with subcortical damage T1 (n = 9)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Anatomical
-------------	------------
How many ROIs are there?	14
What are the ROI(s)?	(1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl's gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic counterparts
How are the ROI(s) defined?	Individual anatomical images
Correction for multiple comparisons	No direct comparison
Statistical details	Qualitative comparison on p. 434
Findings	↑ L IFG pars opercularis; ↑ R SMA/medial prefrontal; ↓ L posterior STG; ↓ R IFG pars opercularis; ↓ R posterior STG; ↓ R mid temporal
Findings notes	—

ROI analysis 5

First level contrast	Noun repetition vs rest
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia with temporal damage T1 (n = 7) vs with frontal damage T1 (n = 7)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	14
What are the ROI(s)?	(1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl's gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic counterparts
How are the ROI(s) defined?	Individual anatomical images
Correction for multiple comparisons	No direct comparison
Statistical details	Qualitative comparison on p. 434
Findings	↑ L IFG pars opercularis; ↑ R SMA/medial prefrontal; ↓ L posterior STG; ↓ R IFG pars opercularis; ↓ R posterior STG; ↓ R mid temporal
Findings notes	—

ROI analysis 6

First level contrast	Noun repetition vs rest
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia with temporal damage T2 (n = 7) vs with subcortical damage T2 (n = 9)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	**Anatomical**
How many ROIs are there?	14
What are the ROI(s)?	(1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl's gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic counterparts
How are the ROI(s) defined?	Individual anatomical images
Correction for multiple comparisons	No direct comparison
Statistical details	Qualitative comparison on p. 434

Findings

↑	L IFG pars opercularis
↑	L ventral precentral/inferior frontal junction
↑	L SMA/medial prefrontal
↑	R ventral precentral/inferior frontal junction
↓	L posterior STG
↓	L mid temporal
↓	R posterior STG
↓	R Heschl's gyrus

Findings notes

| — |

ROI analysis 7

First level contrast

Noun repetition vs rest

Analysis class

Cross-sectional between two groups with aphasia

Group(s)

Aphasia with temporal damage T2 (n = 7) vs with frontal damage T2 (n = 7)

Covariate

—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?

Yes

Is accuracy matched across the second level contrast?

Unknown, not reported

Is reaction time matched across the second level contrast?

Unknown, not reported

Behavioral data notes

—

Type of analysis

Regions of interest (ROI)

ROI type

Anatomical

How many ROIs are there?

14

What are the ROI(s)?

(1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl's gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic counterparts

How are the ROI(s) defined?

Individual anatomical images

Correction for multiple comparisons

No direct comparison

Statistical details

Qualitative comparison on p. 434

Findings

↑	L IFG pars opercularis
↑	L ventral precentral/inferior frontal junction
↑	L SMA/medial prefrontal
↑	R ventral precentral/inferior frontal junction
↓	L posterior STG
↓	L mid temporal
↓	R posterior STG
↓	R Heschl's gyrus

Findings notes

| — |

ROI analysis 8

First level contrast

Noun repetition vs rest

Analysis class

Cross-sectional aphasia vs control

Group(s)

Aphasia with subcortical damage T1 (n = 9) vs control

Covariate

—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?

Yes

Is accuracy matched across the second level contrast?

Unknown, not reported
Behavioral data notes	Unknown, not reported
Type of analysis	Regions of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	14
What are the ROI(s)?	(1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl's gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic counterparts
How are the ROI(s) defined?	Individual anatomical images
Correction for multiple comparisons	No direct comparison
Statistical details	Qualitative comparison on p. 434
Findings	↑ R IFG pars opercularis ↓ L IFG ↓ L ventral precentral/inferior frontal junction ↓ L Heschl's gyrus ↓ L mid temporal ↓ R Heschl's gyrus
Findings notes	—

ROI analysis 9

First level contrast	Noun repetition vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia with frontal damage T1 (n = 7) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

ROI analysis 10

First level contrast	Noun repetition vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia with temporal damage T1 (n = 7) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
group(s), time point(s), and measures involved?	Unknown, not reported
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

- Type of analysis: Regions of interest (ROI)
- ROI type: Anatomical
- How many ROIs are there? 14
- What are the ROI(s)? (1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl's gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic counterparts
- How are the ROI(s) defined? Individual anatomical images
- Correction for multiple comparisons: No direct comparison

Statistical details Qualitative comparison on p. 434; L IFG pars opercularis noted as different in text despite being significant in both groups

Findings

\[\text{↑ L IFG pars opercularis} \]
\[\text{↑ R SMA/medial prefrontal} \]
\[\text{↓ L ventral precentral/inferior frontal junction} \]
\[\text{↓ L posterior STG} \]
\[\text{↓ L Heschl's gyrus} \]
\[\text{↓ L mid temporal} \]
\[\text{↓ R posterior STG} \]
\[\text{↓ R Heschl's gyrus} \]
\[\text{↓ R mid temporal} \]

Findings notes —

ROI analysis 11

First level contrast Noun repetition vs rest

Analysis class Cross-sectional aphasia vs control

Group(s) Aphasia with subcortical damage T2 (n = 9) vs control

Covariate —

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? Yes

Is accuracy matched across the second level contrast? Unknown, not reported

Is reaction time matched across the second level contrast? Unknown, not reported

Behavioral data notes —

- Type of analysis: Regions of interest (ROI)
- ROI type: Anatomical
- How many ROIs are there? 14
- What are the ROI(s)? (1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl's gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic counterparts
- How are the ROI(s) defined? Individual anatomical images
- Correction for multiple comparisons: No direct comparison

Statistical details Qualitative comparison on p. 434

Findings

\[\text{↓ L IFG pars opercularis} \]
\[\text{↓ L ventral precentral/inferior frontal junction} \]
\[\text{↓ L Heschl's gyrus} \]

Findings notes —

ROI analysis 12

First level contrast Noun repetition vs rest

Analysis class Cross-sectional aphasia vs control

Group(s) Aphasia with frontal damage T2 (n = 7) vs control
Covariate

Question	Answer
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

Type of analysis	Regions of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	14
What are the ROI(s)?	(1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl's gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic counterparts
How are the ROI(s) defined?	Individual anatomical images
Correction for multiple comparisons	No direct comparison
Statistical details	Qualitative comparison on p. 434

Findings

Findings	↓ L IFG pars opercularis
	↓ L ventral precentral/inferior frontal junction
	↓ L Heschl's gyrus

Findings notes

ROI analysis 13
First level contrast
Analysis class
Group(s)
Covariate
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?
Is accuracy matched across the second level contrast?
Is reaction time matched across the second level contrast?
Behavioral data notes
Type of analysis
ROI type
How many ROIs are there?
What are the ROI(s)?
How are the ROI(s) defined?
Correction for multiple comparisons
Statistical details
Findings

Findings notes

ROI analysis 14
First level contrast
Analysis class
Group(s)
Covariate

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

| Type of analysis | Regions of interest (ROI) |
| ROI type | Anatomical |

How many ROIs are there?

| 14 |

What are the ROI(s)?

(1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl's gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic counterparts

How are the ROI(s) defined?

| Individual anatomical images |

Correction for multiple comparisons

| No direct comparison |

Statistical details

| Qualitative comparison on pp. 434-5 |

Findings

↑ L SMA/medial prefrontal
↑ L Heschl's gyrus
↑ L ventral precentral/inferior frontal junction
↑ R SMA/medial prefrontal
↑ R Heschl's gyrus
↓ R IFG pars opercularis

ROI analysis 15

First level contrast

| Noun repetition vs rest |

Analysis class

| Longitudinal change in aphasia |

Group(s)

| Aphasia with subcortical or frontal damage and poor recovery (n = 5) T2 vs T1 |

Covariate

| — |

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?

| Yes |

Is accuracy matched across the second level contrast?

| Unknown, not reported |

Is reaction time matched across the second level contrast?

| Unknown, not reported |

Behavioral data notes

| — |

Type of analysis

| Regions of interest (ROI) |

ROI type

| Anatomical |

How many ROIs are there?

| 14 |

What are the ROI(s)?

(1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl's gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic counterparts

How are the ROI(s) defined?

| Individual anatomical images |

Correction for multiple comparisons

| No direct comparison |

Statistical details

| Qualitative comparison on pp. 434-5 |

Findings

↑ L ventral precentral/inferior frontal junction
↑ R Heschl's gyrus
↓ R IFG pars opercularis

Findings notes

| — |

ROI analysis 16

First level contrast

| Noun repetition vs rest |

Analysis class

| Cross-sectional between two groups with aphasia |

Group(s)

| Aphasia with subcortical and frontal damage and good recovery T1 (n = 11) vs with subcortical and frontal damage and poor recovery T1 (n = 5) |
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

- **Type of analysis**: Regions of interest (ROI)
- **ROI type**: Anatomical
- **How many ROIs are there?**: 14
- **What are the ROI(s)?**: (1) L IFG pars opercularis; (2) L IFG pars triangularis; (3) L ventral precentral gyrus; (4) L Heschl's gyrus; (5) L temporal plane (posterior to HG, coded as posterior STG); (6) L posterior STG (coded as mid STG per Fig. 2); (7) L SMA; (8-14) homotopic counterparts
- **How are the ROI(s) defined?**: Individual anatomical images
- **Correction for multiple comparisons**: No direct comparison
- **Statistical details**: Qualitative comparison on p. 435
- **Findings**: ↑ L posterior STG; ↑ L mid temporal

Findings notes

- **Notes**

Excluded analyses

- **216**
Kessler et al. (2000)

Reference

Authors	Kessler J, Thiel A, Karbe H, Heiss WD
Title	Piracetam improves activated blood flow and facilitates rehabilitation of poststroke aphasic patients
Reference	*Stroke* 2000; 31: 2112-2116
PMID	10978039
DOI	10.1161/01.str.31.9.2112

Participants

Language	German
Inclusion criteria	Mild to moderate aphasia on TT; at least 50 out of 150 on AAT repetition
Number of individuals with aphasia	24
Number of control participants	0
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (piracetam group: mean 57.4 ± 13.5 years; placebo group: mean 56.3 ± 10.0 years)
Is sex reported for patients and controls, and matched?	Yes (males: 13; females: 11)
Is handedness reported for patients and controls, and matched?	Yes (right: 24; left: 0)
Is time post stroke onset reported and appropriate to the study design?	Yes (T1: ~2 weeks; T2: ~8 weeks)
To what extent is the nature of aphasia characterized?	Severity only
Language evaluation	AAT
Aphasia severity	T1: piracetam group: TT 17.16 ± 14.31 errors; placebo group: TT 17.91 ± 15.47 errors; T2: piracetam group: TT 9.66 ± 12.62 errors; placebo group: TT 12.50 ± 16.88 errors
Aphasia type	Not stated
First stroke only?	Yes
Stroke type	Ischemic only
To what extent is the lesion distribution characterized?	Location only
Lesion extent	Not stated
Lesion location	10 L frontal, 6 L subcortical, 8 L temporal
Participants notes	—

Imaging

Modality	PET (rCBF)
Is the study cross-sectional or longitudinal?	Longitudinal—mixed
If longitudinal, at what time point(s) were imaging data acquired?	T1: pre-treatment, ~2 weeks post onset; T2: post-treatment, ~8 weeks post onset
If longitudinal, was there any intervention between the time points?	SLT, 1 hour/day, 5 days/week, 6 weeks; 12 patients received piracetam and 12 received placebo; note that the two groups are not directly compared in any imaging or behavioral analyses
Is the scanner described?	Yes (CTI-Siemens ECAT EXACT HR)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	PET
Total images acquired	8
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate? Yes
Is intersubject normalization adequately described and appropriate? N/A—no intersubject normalization
Imaging notes —

Conditions
Are the conditions clearly described? Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
word repetition	Word (overt)	4	Yes	Yes
rest	None	4	N/A	N/A

Conditions notes Inclusion criterion was applied to ensure that the task could be performed

Contrasts
Are the contrasts clearly described? Yes

Contrast 1: word repetition vs rest

Language condition	Word repetition
Control condition	Rest
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable

Behavioral data notes —

Does the contrast selectively activate plausible relevant language regions in the control group? Unknown

Are activations lateralized in the control data? Unknown

Control activation notes No control data are reported or cited, however the same task was used in several previous studies by this group

Contrast notes —

Analyses
Are the analyses clearly described? Yes

ROI analysis 1

First level contrast	Word repetition vs rest
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia treated with pirecetam (n = 12) T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes —

Type of analysis Regions of interest (ROI)
ROI type	Anatomical
How many ROIs are there? | 14
What are the ROI(s)? | (1) L BA 44; (2) L BA 45; (3) L ventral PrCG; (4) L HG; (5) L BA 41 and 42; (6) L BA 22; (7) L SMA; (8-14) homotopic counterparts
How are the ROI(s) defined? | Individual anatomical images
Correction for multiple comparisons | No correction
Statistical details | —
Findings | ↑ L IFG pars triangularis
 | ↑ L posterior STG
 | ↑ L Heschl's gyrus
Findings notes | —

ROI analysis 2

First level contrast | Word repetition vs rest
Analysis class | Longitudinal change in aphasia
Group(s) | Aphasia treated with placebo (n = 12) T2 vs T1
Covariate | —
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? | Yes
Is accuracy matched across the second level contrast? | Unknown, not reported
Is reaction time matched across the second level contrast? | Unknown, not reported
Behavioral data notes | —
Type of analysis | Regions of interest (ROI)
ROI type | Anatomical
How many ROIs are there? | 14
What are the ROI(s)? | (1) L BA 44; (2) L BA 45; (3) L ventral PrCG; (4) L HG; (5) L BA 41 and 42; (6) L BA 22; (7) L SMA; (8-14) homotopic counterparts
How are the ROI(s) defined? | Individual anatomical images
Correction for multiple comparisons | No correction
Statistical details | —
Findings | ↑ L ventral precentral/inferior frontal junction
Findings notes | —

Notes

Excluded analyses | —

Rosen et al. (2000)

Reference

Authors | Rosen HJ, Petersen SE, Linenweber MR, Snyder AZ, White DA, Chapman L, Dromerick AW, Fiez JA, Corbetta M
Title | Neural correlates of recovery from aphasia after damage to left inferior frontal cortex
Reference | Neurology 2000; 55: 1883-1894
PMID | 11134389
DOI | 10.1212/wnl.55.12.1883

Participants

Language | US English
Inclusion criteria | L IFG, possibly extending to neighboring regions
Number of individuals with aphasia | 6
Number of control participants | 14
Were any of the participants included in any previous studies?	Yes (1 participant was reported in a previous case study)
Is age reported for patients and controls, and matched?	No (mean 47 years, range 32-72 years; control participants not age-matched)
Is sex reported for patients and controls, and matched?	Yes (males: 3; females: 3)
Is handedness reported for patients and controls, and matched?	Yes (right: 6; left: 0)
Is time post stroke onset reported and appropriate to the study design?	Yes (range 0.5-7.6 years)
To what extent is the nature of aphasia characterized?	Severity and type
Language evaluation	WAB (except BDAE in 1 patient), reading pseudowords, word stem completion, verb generation, reading single words
Aphasia severity	AQ range 74-97 (missing in 1 patient)
Aphasia type	3 anomic, 1 Broca's, 1 not stated, 1 recovered
First stroke only?	Yes
Stroke type	Not stated
To what extent is the lesion distribution characterized?	Individual lesions
Lesion extent	Range 10.7-117.5 cc
Lesion location	L IFG, extending to neighboring areas in most cases
Participants notes	Of the 14 controls, 6 were studied with PET and 8 with fMRI

Imaging

Modality	PET and fMRI
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired?	—
If longitudinal, was there any intervention between the time points?	—
Is the scanner described?	Yes (Siemens 961 EXACT HR; Siemens Vision 1.5 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No (fMRI timing description is inconsistent)
Design type	Mixed
Total images acquired	PET: 10; fMRI: 384-768
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	Yes
Imaging notes	1 patient scanned on different PET scanner, and not scanned with fMRI; controls had different fMRI sequence to patients

Conditions

| Condition | Response type | Repetitions | All groups could do? | All individuals could do? |
|-------------------------|---|
| word stem completion (PET) | Word (overt) | 4 | Yes | Yes |
| reading pseudowords aloud (PET) | Word (overt) | 4 | Yes | No |
| rest (PET) | None | 2 | N/A | N/A |
| word stem completion (fMRI) | Word (covert) | 15-30 (?) | Yes | Yes |
| rest (fMRI) | None | 15-30 (?) | N/A | N/A |
Conditions notes	Pseudoword reading condition not analyzed in this paper

Contrasts

Are the contrasts clearly described? | Yes |

Contrast 1: word stem completion (PET) vs rest (PET)

Language condition	Word stem completion (PET)
Control condition	Rest (PET)

Are the conditions matched for visual demands? | No |
Are the conditions matched for auditory demands? | No |
Are the conditions matched for motor demands? | No |
Are the conditions matched for cognitive/executive demands? | No |

Is accuracy matched between the language and control tasks for all relevant groups? | N/A, tasks not comparable |
Is reaction time matched between the language and control tasks for all relevant groups? | N/A, tasks not comparable |

Behavioral data notes
Are control data reported in this paper or another that is referenced? | Somewhat |
Does the contrast selectively activate plausible relevant language regions in the control group? | Somewhat |
Are activations lateralized in the control data? | Yes |
Control activation notes | L IFG, L ITG, L anterior fusiform |
Contrast notes | — |

Contrast 2: word stem completion (fMRI) vs rest (fMRI)

Language condition	Word stem completion (fMRI)
Control condition	Rest (fMRI)

Are the conditions matched for visual demands? | No |
Are the conditions matched for auditory demands? | Yes |
Are the conditions matched for motor demands? | Yes |
Are the conditions matched for cognitive/executive demands? | No |

Is accuracy matched between the language and control tasks for all relevant groups? | N/A, tasks not comparable |
Is reaction time matched between the language and control tasks for all relevant groups? | N/A, tasks not comparable |

Behavioral data notes
Are control data reported in this paper or another that is referenced? | Somewhat |
Does the contrast selectively activate plausible relevant language regions in the control group? | Somewhat |
Are activations lateralized in the control data? | Yes |
Control activation notes | L IFG, L intraparietal sulcus |
Contrast notes | — |

Analyses

Are the analyses clearly described? | No* (moderate limitation) (see specific limitation(s) below) |

Voxelwise analysis 1

First level contrast	Word stem completion (PET) vs rest (PET)
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Question	Answer
--	---------
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, different
Is reaction time matched across the second level contrast?	Yes, matched

Behavioral data notes

- **Type of analysis**: Voxelwise
- **Search volume**: Whole brain
- **Correction for multiple comparisons**: Unclear or not stated
- **Software**: not stated
- **Voxelwise p**
- **Cluster extent**
- **Statistical details**: Correction for multiple comparisons unclear; there may be circularity in only correcting for the number of regions that seemed to show differences

Findings

- ↑ L SMA/medial prefrontal
- ↑ R IFG
- ↑ R Heschl's gyrus
- ↓ L IFG

Findings notes

- Voxelwise analysis 2

Voxelwise analysis 2

First level contrast	Word stem completion (fMRI) vs rest (fMRI)
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia (n = 5) vs control
Covariate	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

- **Type of analysis**: Voxelwise
- **Search volume**: Whole brain
- **Correction for multiple comparisons**: No direct comparison
- **Software**: not stated
- **Voxelwise p**
- **Cluster extent**
- **Statistical details**: Qualitative comparison on p. 1888

Findings

- ↑ R IFG
- ↓ L IFG

Findings notes

- ROI analysis 1

ROI analysis 1

First level contrast	Word stem completion (fMRI) vs rest (fMRI)
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia (n = 5) vs control
Covariate	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

- —
| Type of analysis | Regions of interest (ROI) |
|------------------|--------------------------|
| ROI type | Functional |
| How many ROIs are there? | 2 |
| What are the ROI(s)? | (1) R IFG; (2) SMA |
| How are the ROI(s) defined? | Not stated but seem to be functional |
| Correction for multiple comparisons | No correction |
| Statistical details | Possibly circular because not clear how ROIs defined |
| Findings | ↑ R IFG |
| Findings notes | — |

Notes

Excluded analyses

(1) the authors also observe that the two patients with the best language outcomes retained perilesional activation in the L IFG; (2) two non-significant correlational analyses involving only 5 patients, but note that the main fMRI analyses have been included even though n = 5

Blasi et al. (2002)

Reference

Authors	Blasi V, Young AC, Tansy AP, Petersen SE, Snyder AZ, Corbetta M
Title	Word retrieval learning modulates right frontal cortex in patients with left frontal damage
Reference	Neuron 2002; 36: 159-170
PMID	12367514
DOI	10.1016/s0896-6273(02)00936-4

Participants

Language	US English
Inclusion criteria	L IFG, possibly extending to neighboring regions
Number of individuals with aphasia	8
Number of control participants	14
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	No (mean 48.6 years; patients and controls not closely matched for age, unclear if difference significant)
Is sex reported for patients and controls, and matched?	Yes (males: 2; females: 6)
Is handedness reported for patients and controls, and matched?	Yes (right: 8; left: 0)
Is time post stroke onset reported and appropriate to the study design?	No (> 6 months; actual TPO not stated)
To what extent is the nature of aphasia characterized?	Comprehensive battery
Language evaluation	WAB or BDAE
Aphasia severity	AQ range 66.5-89.0 in 6 participants, BDAE aphasia severity of 4 in 1 participant, no formal evaluation in 1 participant
Aphasia type	3 anomic, 3 transcortical motor, 1 Broca's, 1 not stated; most were Broca's or global acutely
First stroke only?	Yes
Stroke type	Ischemic only
To what extent is the lesion distribution characterized?	Individual lesions
Lesion extent	Not stated
Lesion location	L IFG and operculum, extending to adjacent cortex and white matter in several cases
Participants notes	—
Imaging

Question	Answer
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired?	—
If longitudinal, was there any intervention between the time points?	—
Is the scanner described?	Yes (Siemens Vision 1.5 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	Event-related
Total images acquired	1024
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	No (not described)
Imaging notes	—

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
word stem completion (novel items)	Word (covert)	196	Yes	Unknown
word stem completion (repeated items)	Word (covert)	196	Yes	Unknown
rest	None	implicit baseline	N/A	N/A

Conditions notes: Novel items were presented in runs 1, 6, 7, and 8; repeated items were presented in runs 2, 3, 4, and 5; of the four repeated runs, only run 5 was analyzed.

Contrasts

Contrast 1: word stem completion (novel items) vs rest	Language condition	Control condition	Are the conditions matched for visual demands?	Are the conditions matched for auditory demands?	Are the conditions matched for motor demands?	Are the conditions matched for cognitive/executive demands?	Is accuracy matched between the language and control tasks for all relevant groups?	Is reaction time matched between the language and control tasks for all relevant groups?	Behavioral data notes	Are control data reported in this paper or another that is referenced?	Does the contrast selectively activate plausible relevant language regions in the control group?	Are activations lateralized in the control data?	Control activation notes
	Word stem completion (novel items)	Rest	No	Yes	Yes	No	N/A, tasks not comparable	N/A, tasks not comparable	—	Yes	Somewhat	Somewhat	Activation of language areas but also other areas; frontal activation is somewhat lateralized
Contrast notes

Contrast 2: word stem completion (novel items) vs word stem completion (repeated items)

Language condition	Control condition
Word stem completion (novel items)	Word stem completion (repeated items)

Are the conditions matched for visual demands? Yes
Are the conditions matched for auditory demands? Yes
Are the conditions matched for motor demands? Yes
Are the conditions matched for cognitive/executive demands? Yes

Is accuracy matched between the language and control tasks for all relevant groups? Yes, matched
Is reaction time matched between the language and control tasks for all relevant groups? No, different

Behavioral data notes
Are control data reported in this paper or another that is referenced? Somewhat

Does the contrast selectively activate plausible relevant language regions in the control group? Unknown

Are activations lateralized in the control data? Somewhat

Control activation notes
No whole brain analysis of this contrast, but somewhat lateralized in the sense that L but not R frontal areas showed a learning effect

Contrast notes

Analyses

Are the analyses clearly described? No** (major limitation) (see specific limitation(s) below)

Voxelwise analysis 1

First level contrast	Analysis class
Word stem completion (novel items) vs rest	Cross-sectional aphasia vs control

Group(s) Aphasia vs control
Covariate —

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? Yes
Is accuracy matched across the second level contrast? No, different
Is reaction time matched across the second level contrast? No, different

Behavioral data notes Covert task but overt data acquired separately; patients less accurate and slower than controls

Type of analysis Voxelwise
Search volume Whole brain
Correction for multiple comparisons Unclear or not stated
Software not stated
Voxelwise p ~.001 (z > 3)
Cluster extent 45 voxels (size not stated)

Statistical details Monte Carlo analysis not described in detail; rather than fitting a HRF, the authors looked at the shape of the signal in the 8 volumes following each stimulus

Findings ↑ R IFG pars opercularis
↑ R IFG pars triangularis
↑ R insula
↑ R ventral precentral/inferior frontal junction
↑ R dorsal precentral
↓ L IFG pars opercularis
↓ L ventral precentral/inferior frontal junction

Findings notes Labels based on coordinates reported
ROI analysis 1

First level contrast	Word stem completion (novel items) vs word stem completion (repeated items)
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	Yes, matched
Behavioral data notes	Covert task but overt data acquired separately; no interaction of group by practice for accuracy or RT
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	14
What are the ROI(s)?	(1) L dorsal IFG; (2) L ventral IFG; (3) R MFG; (4) L anterior fusiform; (5) R anterior fusiform; (6) R posterior fusiform; (7) R lateral occipital; (8) R lateral cerebellum; (9) L SMA; (10) R dorsal IFG; (11) R posterior fusiform; (12) R lateral occipital; (13) R lingual; (14) L MTG
How are the ROI(s) defined?	Regions that were active for the main effect of word stem completion (irrespective of practice) in either group and modulated by practice in that group
Correction for multiple comparisons	No correction

Statistical details
Circular because ROIs defined in one group or the other; the L ROIs showed repetition suppression in controls but not in patients, and this difference is interpreted by the authors, but not supported statistically.

Findings
- ↑ R ventral precentral/inferior frontal junction
- ↑ R posterior inferior temporal gyrus/fusiform gyrus
- ↓ L IFG
- ↓ L ventral precentral/inferior frontal junction
- ↓ L posterior inferior temporal gyrus/fusiform gyrus

Findings notes
Labels based on coordinates reported

Notes
- (1) the ROI results were replicated in a whole brain SPM analysis, but that analysis is not reported; (2) the authors observe that patients with smaller L frontal lesions, and perilesional activation, performed better on word stem completion overall, but did not differ in rate of learning

Leff et al. (2002)

Reference
- **Authors**: Leff A, Crinion J, Scott S, Turkheimer F, Howard D, Wise R
- **Title**: A physiological change in the homotopic cortex following left posterior temporal lobe infarction
- **Reference**: Ann Neurol 2002; 51: 553-558
- **PMID**: 12112100
- **DOI**: 10.1002/ana.10181

Participants
- **Language**: UK English
- **Inclusion criteria**: —
- **Number of individuals with aphasia**: 15
- **Number of control participants**: 8
- **Were any of the participants included in any analysis?**: No
previous studies?
Is age reported for patients and controls, and matched? Yes (range 43-76 years)
Is sex reported for patients and controls, and matched? Yes (males: 11; females: 4)
Is handedness reported for patients and controls, and matched? Yes (right: 11; left: 0)
Is time post stroke onset reported and appropriate to the study design? Yes (range 5-76 months)
To what extent is the nature of aphasia characterized? Not at all

Language evaluation
PPT (Dutch), British picture vocabulary scale, Action for Dysphasic Adults lexical decision battery, auditory maximal pairs (an offline phoneme discrimination test)

Aphasia severity
Not stated

Aphasia type
Not stated, but all 6 patients with pSTS damage had single word comprehension deficits acutely

First stroke only? Yes
Stroke type Not stated

To what extent is the lesion distribution characterized? Extent and location
Lesion extent Range 0.5-14% of total brain volume
Lesion location 9 L but sparing pSTS, 6 L including pSTS
Participants notes —

Imaging
Modality PET (rCBF)
Is the study cross-sectional or longitudinal? Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired? —
If longitudinal, was there any intervention between the time points? —
Is the scanner described? Yes (CTI-Siemens ECAT EXACT HR++/966)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate? Yes

Design type PET
Total images acquired 16
Are the imaging acquisition parameters, including coverage, adequately described and appropriate? Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate? Yes
Is first level model fitting adequately described and appropriate? Yes
Is intersubject normalization adequately described and appropriate? Yes
Imaging notes —

Conditions
Are the conditions clearly described? Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
listening to words at 10 wpm	None	2	N/A	N/A
listening to words at 35 wpm	None	2	N/A	N/A
listening to words at 55 wpm	None	2	N/A	N/A
listening to words at 70 wpm	None	2	N/A	N/A
listening to words at 85 wpm	None	2	N/A	N/A
listening to words at 95 wpm	None	2	N/A	N/A
Conditions notes	—			
---	--			
Contrasts				
Are the contrasts clearly described?	Yes			
Contrast 1: higher word rates vs lower word rates				
Language condition	Higher word rates			
Control condition	Lower word rates			
Are the conditions matched for visual demands?	Yes			
Are the conditions matched for auditory demands?	No			
Are the conditions matched for motor demands?	Yes			
Are the conditions matched for cognitive/executive demands?	Yes			
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, no behavioral measure			
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, no timeable task			
Behavioral data notes				
Are control data reported in this paper or another that is referenced?	Somewhat			
Does the contrast selectively activate plausible relevant language regions in the control group?	Somewhat			
Are activations lateralized in the control data?	Somewhat			
Control activation notes	Control activation is bilateral in primary auditory cortex and the lateral STG (Fig. 1, labels 1 and 2), but there is a left-lateralized activation in the pSTS (label 3); the scatter plots in Fig. 1 show activity-word rate curves for peak pSTS voxels in individual subjects; slopes were steeper in the left hemisphere (p < 0.05), however, the identification of these voxels is not described in sufficient detail (i.e. what was the search region?)			
Contrast notes	—			
Analyses				
Are the analyses clearly described?	No* (moderate limitation) (see specific limitation(s) below)			
Voxelwise analysis 1				
First level contrast	Higher word rates vs lower word rates			
Analysis class	Cross-sectional aphasia vs control			
Group(s)	Aphasia with pSTS damage (n = 6) vs control			
Covariate	—			
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes			
Is accuracy matched across the second level contrast?	N/A, no behavioral measure			
Is reaction time matched across the second level contrast?	N/A, no timeable task			
Behavioral data notes	—			
Type of analysis	Voxelwise			
Search volume	Whole brain			
Correction for multiple comparisons	No direct comparison			
Software	SPM99			
Voxelwise p	—			
Cluster extent	—			
Statistical details	Qualitative comparison on p. 555; a FWE-corrected SPM is reported of the relationship in the 6 patients with L pSTS damage (Fig. 2), however it is masked in a way that is not explained (see...			
figure caption), and there is no direct comparison between patients with L pSTS damage and controls.

Findings notes	↑ R posterior STS

Voxelwise analysis 2

First level contrast	Higher word rates vs lower word rates
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia with pSTS (n = 6) damage vs without pSTS damage (n = 9)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	No direct comparison
Software	SPM99
Voxelwise p	—
Cluster extent	—
Statistical details	Qualitative comparison on p. 555; a FWE-corrected SPM is reported of the relationship in the 6 patients with L pSTS damage (Fig. 2), however it is masked in a way that is not explained (see figure caption), and there is no direct comparison between patients with L pSTS damage and patients with R pSTS damage

Findings

Findings notes | — |

ROI analysis 1

First level contrast	Higher word rates vs lower word rates
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia with pSTS damage (n = 6) vs control (n = 8)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	R pSTS
How are the ROI(s) defined?	The peak voxel for the contrast in the R pSTS from each subject’s individual analysis, but the search region is not stated
Correction for multiple comparisons	One only
Statistical details	The controls and patients without pSTS damage were combined, however it is stated in the caption to Figure 2 that the patients with pSTS damage were significantly different to both

Findings

Findings notes | — |

ROI analysis 2

First level contrast	Higher word rates vs lower word rates
Analysis class	Cross-sectional between two groups with aphasia
---------------	---
Group(s)	Aphasia with pSTS damage (n = 6) vs aphasia without pSTS damage (n = 9)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	R pSTS
How are the ROI(s) defined?	The peak voxel for the contrast in the R pSTS from each subject's individual analysis, but the search region is not stated
Correction for multiple comparisons	One only
Statistical details	The controls and patients without pSTS damage were combined, however it is stated in the caption to Figure 2 that the patients with pSTS damage were significantly different to both
Findings	↑ R posterior STS
Findings notes	—

Notes

Excluded analyses —

Blank et al. (2003)

Reference

Authors	Blank SC, Bird H, Turkheimer F, Wise RJ
Title	Speech production after stroke: the role of the right pars opercularis
Reference	Ann Neurol 2003; 54: 310-320
PMID	12953263
DOI	10.1002/ana.10656

Participants

Language	UK English
Inclusion criteria	Initial non-fluent aphasia due to anterior perisylvian lesion; subsequently recovered the ability to speak in sentences; patients were divided into those with and without damage to the IFG pars opercularis (POp+: n = 7; POp-: n = 7)
Number of individuals with aphasia	14
Number of control participants	12
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (POp+: median 50 years, range 36-72 years; POp-: median 61 years, range 39-70 years)
Is sex reported for patients and controls, and matched?	Yes (males: 8; females: 6)
Is handedness reported for patients and controls, and matched?	Yes (right: 14; left: 0)
Is time post stroke onset reported and appropriate to the study design?	Yes (POp+: median 39 months, range 19-134 months; POp-: median 17 months, range 6-240 months)
To what extent is the nature of aphasia characterized?	Type only
Language evaluation	CAT, QPA
-----------------------------	---------
Aphasia severity	Not stated
Aphasia type	POP+: 4 non-fluent but not agrammatic, 2 agrammatic, 1 recovered; POP-: 4 non-fluent but not agrammatic, 3 recovered
First stroke only?	No
Stroke type	Not stated
To what extent is the lesion distribution characterized?	Individual lesions
Lesion extent	Not stated
Lesion location	L frontal, occasionally extending into temporal
Participants notes	8 of 12 controls included in Blank et al. (2002)

Imaging

Modality	PET (rCBF)
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired?	—
If longitudinal, was there any intervention between the time points?	—
Is the scanner described?	Yes (CTI-Siemens ECAT EXACT HR++ (966))
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	PET
Total images acquired	15 (patients); 12 (controls)
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	Yes
Imaging notes	—

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
propositional speech production	Sentence (overt)	aphasia: 5; control: 4	Yes	Yes
counting	Multiple words (overt)	aphasia: 5; control: 4	Yes	Yes
rest	None	aphasia: 5; control: 4	N/A	N/A

Conditions notes: Alertness maintained in rest by asking participants to listen to environmental sounds that were presented before and after data acquisition; speech was recorded and rate was measured, also QPA was done of a separate speech sample outside the scanner.

Contrasts

Contrast 1: propositional speech production vs rest
Language condition
Control condition
Are the conditions matched for visual demands?

231
Question	Answer
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible relevant language regions in the control group?	Somewhat
Are activations lateralized in the control data?	Somewhat

Control activation notes

- Much bilateral activation due to overt speech but pars opercularis and supratemporal plane L-lateralized

Contrast notes

- Analyses

Language condition	Propositional speech production
Control condition	Counting
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible relevant language regions in the control group?	Somewhat
Are activations lateralized in the control data?	Somewhat
Control activation notes	Extrasylvian; somewhat L-lateralized
Contrast notes	—

Analyses

| Are the analyses clearly described? | Yes |

Voxelwise analysis 1

First level contrast	Propositional speech production vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia with IFG POp damage (n = 7) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, different
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	Word rates not reported, but offline speech sample differed
Type of analysis	Voxelwise
Search volume	Voxel spared in all patients
Correction for multiple comparisons	Small volume correction
------------------------------------	------------------------
Software	SPM99
Voxelwise p	FWE p < .05 with SVC in R pars opercularis
Cluster extent	—
Statistical details	—
Findings	↑ R IFG pars opercularis
Findings notes	No voxels survived FWE correction without SVC

Voxelwise analysis 2

First level contrast	Propositional speech production vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia without IFG POp damage (n = 7) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, different
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	Word rates not reported, but offline speech sample differed
Type of analysis	Voxelwise
Search volume	Voxels spared in all patients
Correction for multiple comparisons	Small volume correction
Software	SPM99
Voxelwise p	FWE p < .05 with SVC in R pars opercularis
Cluster extent	—
Statistical details	—
Findings	↑ R IFG pars opercularis
Findings notes	

Voxelwise analysis 3

First level contrast	Propositional speech production vs rest
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia with IFG POp damage (n = 7) vs without IFG POp damage (n = 7)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, different
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	Word rates not reported, but offline speech sample differed
Type of analysis	Voxelwise
Search volume	Voxels spared in all patients
Correction for multiple comparisons	Small volume correction
Software	SPM99
Voxelwise p	FWE p < .05 with SVC in R pars opercularis
Cluster extent	—
Statistical details	—
Findings	↑ R IFG pars opercularis
Findings notes	

Voxelwise analysis 4

| First level contrast | Propositional speech production vs counting |
| Analysis class | Cross-sectional aphasia vs control |
Voxelwise analysis 5

Group(s)	Aphasia without IFG POp damage (n = 7) vs control
Covariate	---
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, different
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	Word rates not reported, but offline speech sample differed
Type of analysis	Voxelwise
Search volume	Voxels spared in all patients
Correction for multiple comparisons	Small volume correction
Software	SPM99
Voxelwise p	FWE p < .05 with SVC in R pars opercularis
Cluster extent	---
Statistical details	---
Findings	None
Findings notes	---

Voxelwise analysis 6

Group(s)	Aphasia with IFG POp damage (n = 7) vs without IFG POp damage (n = 7)
Covariate	---
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, different
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	Word rates not reported, but offline speech sample differed
Type of analysis	Voxelwise
Search volume	Voxels spared in all patients

234
Correction for multiple comparisons	Small volume correction
Software	SPM99
Voxelwise p	FWE p < .05 with SVC in R pars opercularis
Cluster extent	—
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 1

First level contrast	Propositional speech production vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia with IFG POp damage (n = 7)
Covariate	Speech rate during scan
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	R IFG pars opercularis
How are the ROI(s) defined?	Defined by flipping L IFG pars opercularis activation in controls
Correction for multiple comparisons	One only
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 2

First level contrast	Propositional speech production vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia without IFG POp damage (n = 7)
Covariate	Speech rate during scan
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	R IFG pars opercularis
How are the ROI(s) defined?	Defined by flipping L IFG pars opercularis activation in controls
Correction for multiple comparisons	One only
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 3

First level contrast	Propositional speech production vs rest
Analysis class	Cross-sectional correlation with language or other measure

235
Group(s)	Aphasia with IFG POp damage (n = 7)
Covariate	Four different QPA measures
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	**Unknown, not reported**
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	R IFG pars opercularis
How are the ROI(s) defined?	Defined by flipping L IFG pars opercularis activation in controls
Correction for multiple comparisons	One only
Statistical details	—
Findings	None
Findings notes	—

Notes

Excluded analyses
ROI analyses may have been carried out for both contrasts, but this is not stated

Cardebat et al. (2003)

Reference

Authors
Cardebat D, Démonet JF, De Boissezon X, Marie N, Marié RM, Lambert J, Baron JC, Puel M

Title
Behavioral and neurofunctional changes over time in healthy and aphasic subjects: a PET language activation study

Reference
Stroke 2003; 34: 2900-2906

PMID
14615626

DOI
10.1161/01.str.0000099965.99393.83

Participants

Language	French
Inclusion criteria	No severe aphasia; no leukoaraiosis
Number of individuals with aphasia	8
Number of control participants	6
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (mean 58.4 ± 11.9 years, range 37-73 years)
Is sex reported for patients and controls, and matched?	Yes (males: 7; females: 1)
Is handedness reported for patients and controls, and matched?	Yes (right: 8; left: 0)
Is time post stroke onset reported and appropriate to the study design?	**No***(moderate limitation) (T1: 58 ± 35 days, range 11-113 days; T2: 11.7 ± 1.6 months, range 320-460 days; T1 varies considerably from early to late subacute)
To what extent is the nature of aphasia characterized?	**Not at all**
Language evaluation	Not stated
Aphasia severity	Not stated
Aphasia type	T1: some prominent symptoms are listed for each patient; T2: not stated
First stroke only?	Yes
Stroke type	Mixed etiologies
-----------------	------------------
To what extent is the lesion distribution characterized?	Individual lesions
Lesion extent	Not stated
Lesion location	4 L subcortical, 2 L prerolandic, 2 L postrolandic
Participants notes	—

Imaging

Modality	PET (rCBF)
Is the study cross-sectional or longitudinal?	Longitudinal—recovery
If longitudinal, at what time point(s) were imaging data acquired?	T1: 58 ± 35 days, range 11-113 days; T2: 11.7 ± 1.6 months, range 320-460 days; T1 varies considerably from early to late subacute
If longitudinal, was there any intervention between the time points?	Not stated
Is the scanner described?	Yes (Siemens ECAT HR+)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	PET
Total images acquired	6
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	No (lesion impact not addressed)
Imaging notes	—

Conditions

| **Are the conditions clearly described?** | Yes |
Condition	**Response type**	**Repetitions**	**All groups could do?**	**All individuals could do?**
word generation	Word (overt)	4	Yes	Unknown
rest	None	2	N/A	N/A

Conditions notes

Participants were asked to generate words that were semantically related to binaurally presented stimuli; 2 runs involved nouns and 2 involved verbs

Contrasts

| **Are the contrasts clearly described?** | Yes |

Contrast 1: word generation vs rest

Language condition	Word generation
Control condition	Rest
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	—
Are control data reported in this paper or another	Somewhat
that is referenced?

Does the contrast selectively activate plausible relevant language regions in the control group? **Somewhat**

Are activations lateralized in the control data? **No**

Control activation notes Bilateral fronto-temporal and some other regions per text

Contrast notes —

Analyses

Are the analyses clearly described? **No** *(moderate limitation) (see specific limitation(s) below)*

Voxelwise analysis 1

First level contrast Word generation vs rest

Analysis class Longitudinal change in aphasia

Group(s) Aphasia T2 vs T1

Covariate —

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? **Yes**

Is accuracy matched across the second level contrast? **No, different**

Is reaction time matched across the second level contrast? **Unknown, not reported**

Behavioral data notes —

Type of analysis Voxelwise

Search volume Whole brain

Correction for multiple comparisons **Clusterwise correction based on arbitrary cluster extent**

Software SPM99

Voxelwise p .05

Cluster extent 50 voxels (size not stated)

Statistical details **Nature of inclusive masks unclear**

Findings ↓ L dorsolateral prefrontal cortex

↑ L SMA/medial prefrontal

↑ L somato-motor

↑ L posterior STG/STS/MTG

↑ L cerebellum

↑ R IFG pars opercularis

↑ R dorsolateral prefrontal cortex

↑ R SMA/medial prefrontal

↑ R somato-motor

↑ R posterior STG/STS/MTG

↑ R cerebellum

Findings notes Based on Figure 2

Voxelwise analysis 2

First level contrast Word generation vs rest

Analysis class Longitudinal correlation with language or other measure

Group(s) Aphasia T2 vs T1

Covariate Δ word generation accuracy

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? **Yes**

Is accuracy matched across the second level contrast? **Accuracy is covariate**

Is reaction time matched across the second level contrast? **Unknown, not reported**

Behavioral data notes —

Type of analysis Voxelwise

Search volume Whole brain
Correction for multiple comparisons
Clusterwise correction based on arbitrary cluster extent

Software
SPM99

Voxelwise p
.001

Cluster extent
100 voxels (size not stated)

Statistical details
Nature of inclusive masks unclear

Findings
- ↑ L posterior STG/STS/MTG
- ↑ R posterior STG/STS/MTG
- ↑ R cerebellum
- ↓ L occipital
- ↓ L hippocampus/MTL
- ↓ R dorsolateral prefrontal cortex
- ↓ R occipital

Findings notes
—

Notes
Excluded analyses
Aphasia vs control SPM analyses at each time point, because they are not reported in sufficient detail to determine activated regions

Sharp et al. (2004)

Reference
Authors
Sharp DJ, Scott SK, Wise RJ

Title
Retrieving meaning after temporal lobe infarction: the role of the basal language area

Reference
Ann Neurol 2004; 56: 836-846

PMID
15514975

DOI
10.1002/ana.20294

Participants
Language
UK English

Inclusion criteria
Lesion in vicinity of L STG; no extensive frontal damage; no inferior temporal damage; able to perform tasks

Number of individuals with aphasia
9

Number of control participants
18

Were any of the participants included in any previous studies?
No

Is age reported for patients and controls, and matched?
Yes (median 58 years, range 39-72 years)

Is sex reported for patients and controls, and matched?
Yes (males: 8; females: 1)

Is handedness reported for patients and controls, and matched?
Yes (right: 9; left: 0)

Is time post stroke onset reported and appropriate to the study design?
Yes (mean 45 months, range 14-145 months)

To what extent is the nature of aphasia characterized?
Severity only

Language evaluation
Subtests from CAT, subtests from PALPA, Action for dysphasic adults, TROG, PPT

Aphasia severity
Mild

Aphasia type
Not stated

First stroke only?
Yes

Stroke type
Not stated

To what extent is the lesion distribution characterized?
Lesion overlay

Lesion extent
Not stated

Lesion location
Lesion in vicinity of L STG; no extensive frontal damage; no inferior temporal damage
Participants notes

Imaging

Modality	PET (rCBF)
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired?	—
If longitudinal, was there any intervention between the time points?	—
Is the scanner described?	Yes (Siemens HR++ 966)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes

Design type

Total images acquired	16
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	Yes

Imaging notes

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
semantic decision	Word (overt)	aphasia: 8; control: 4	Yes	Yes
syllable count decision	Word (overt)	aphasia: 8; control: 4	Yes	Yes
semantic decision (noise vocoded) (control only)	Word (overt)	4 (control)	Yes	Yes
syllable count decision (noise vocoded) (control only)	Word (overt)	4 (control)	Yes	Yes

Conditions notes

Seems the response was a spoken word, but this is not stated explicitly; assuming all individuals could do the tasks because this was an inclusion criterion and behavioral data supports

Contrasts

Contrast 1: semantic decision vs syllable count decision

Language condition

Semantic decision

Control condition

Syllable count decision

Are the conditions matched for visual demands? Yes

Are the conditions matched for auditory demands? Yes

Are the conditions matched for motor demands? Yes

Are the conditions matched for cognitive/executive demands?

Is accuracy matched between the language and control tasks for all relevant groups? No, different

Is reaction time matched between the language and control tasks for all relevant groups? No, different

Behavioral data notes

Question	Answer
Are control data reported in this paper or another that is referenced?	Somewhat
Does the contrast selectively activate plausible relevant language regions in the control group?	Somewhat
Are activations lateralized in the control data?	Yes
Control activation notes	The control data provided also include the noise vocoded conditions; only ventral temporal activations are shown, which are L-lateralized
Contrasts notes	—

Analyses

Question	Answer
Are the analyses clearly described?	No* (moderate limitation) (see specific limitation(s) below)

Voxelwise analysis 1

First level contrast	Semantic decision vs syllable count decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control (clear speech)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Appear mismatched
Is reaction time matched across the second level contrast?	Yes, matched

Behavioral data notes

Interaction of group by task not reported for accuracy

Type of analysis

Voxelwise

Search volume

Whole brain

Correction for multiple comparisons

Small volume correction

Software

SPM99

Voxelwise p

FWE p < .05 with SVC in fusiform gyri, temporal poles, L IFG, L orbitofrontal and L SFG

Cluster extent

—

Statistical details

Fixed effects; this analysis is not clearly described

Findings

↓ L posterior inferior temporal gyrus/fusiform gyrus

Findings notes

Patients who were more accurate had more activity in R anterior fusiform gyrus

Voxelwise analysis 2

First level contrast	Semantic decision vs syllable count decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Semantic decision accuracy
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Accuracy is covariate
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

—

Type of analysis

Voxelwise

Search volume

Whole brain

Correction for multiple comparisons

Small volume correction

Software

SPM99

Voxelwise p

FWE p < .05 with SVC in fusiform gyri, temporal poles, L IFG, L orbitofrontal and L SFG

Cluster extent

—

Statistical details

Fixed effects; this analysis is not clearly described

Findings

↑ R posterior inferior temporal gyrus/fusiform gyrus

Findings notes

Patients who were more accurate had more activity in R anterior fusiform gyrus
ROI analysis 1

First level contrast	Semantic decision vs syllable count decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control (clear speech)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Appears mismatched
Is reaction time matched across the second level contrast?	Yes, matched
Behavioral data notes	Interaction of group by task not reported for accuracy
Type of analysis	Region of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	1
What are the ROI(s)?	L fusiform gyrus
How are the ROI(s) defined?	Probabilistic brain atlas
Correction for multiple comparisons	One only
Statistical details	—
Findings	L posterior inferior temporal gyrus/fusiform gyrus
Findings notes	—

ROI analysis 2

First level contrast	Semantic decision vs syllable count decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control (noise vocoded)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, but attempt made
Is reaction time matched across the second level contrast?	Yes, matched
Behavioral data notes	Patients were more accurate on semantic decisions than syllable decisions, whereas controls were less accurate on noise vocoded semantic decisions than clear syllable decisions (which were the baseline for this analysis)
Type of analysis	Region of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	1
What are the ROI(s)?	L fusiform gyrus
How are the ROI(s) defined?	Probabilistic brain atlas
Correction for multiple comparisons	One only
Statistical details	—
Findings	None
Findings notes	This analysis suggests that the difference between groups in the L fusiform gyrus disappears when the controls perform a semantic task that is similarly challenging

Notes

- Excluded analyses: (1) combined analysis of patients and controls (Figure 4); (2) correlation with syllable decision making not described in sufficient detail

Zahn et al. (2004)
Reference

Authors	Zahn R, Drews E, Specht K, Kemeny S, Reith W, Willmes K, Schwarz M, Huber W
Title	Recovery of semantic word processing in global aphasia: a functional MRI study
Reference	Cogn Brain Res 2004; 18: 322-336
PMID	14741318
DOI	10.1016/j.cogbrainres.2003.10.021

Participants

Language	German
Inclusion criteria	
Number of individuals with aphasia	7
Number of control participants	14
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (range 29-67 years)
Is sex reported for patients and controls, and matched?	Yes (males: 6; females: 1)
Is handedness reported for patients and controls, and matched?	Yes (right: 7; left: 0)
Is time post stroke onset reported and appropriate to the study design?	Yes (range 6 months-4 years)
To what extent is the nature of aphasia characterized?	Comprehensive battery

Language evaluation

AABT, AAT	
Aphasia severity	TT percentile range 28-63
Aphasia type	3 global, 2 Broca's, 2 unclassifiable; all had been global initially
First stroke only?	Yes
Stroke type	Not stated

Imaging

Modality	fMRI
Design type	Block
Total images acquired	198
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	N/A—no intersubject normalization
Conditions

Are the conditions clearly described?	Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
phonetic decision (reversed words vs sounds)	Button press	3	Yes	No
lexical decision (words vs reversed words)	Button press	3	Yes	Yes
semantic decision	Button press	3	Yes	No
rest	None	9	N/A	N/A

Contrasts

Are the contrasts clearly described?	No (see specific limitation(s) below)

Contrast 1: semantic decision vs phonetic decision and lexical decision (conjunction)

Language condition	Semantic decision
Control condition	Phonetic decision and lexical decision (conjunction)
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	Yes
Is accuracy matched between the language and control tasks for all relevant groups?	Appear similar
Is reaction time matched between the language and control tasks for all relevant groups?	Unknown, not reported
Behavioral data notes	Tasks were matched in controls, but no statistics reported for patients
Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible relevant language regions in the control group?	Yes
Are activations lateralized in the control data?	Yes
Control activation notes	L-lateralized frontal activation, as well as temporal and parietal to a lesser extent
Contrast notes	Conjunction of baseline conditions not described in sufficient detail

Analyses

Are the analyses clearly described?	No* (moderate limitation) (see specific limitation(s) below)

ROI analysis 1

First level contrast	Semantic decision vs phonetic decision and lexical decision (conjunction)
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, no test
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Relative performance on language and control tasks unclear
Type of analysis	Region of interest (ROI)
ROI type	Laterality indices
How many ROIs are there?	1
Question	Answer
--	--
What are the ROI(s)?	Language network LI
How are the ROI(s) defined?	One only
Correction for multiple comparisons	Conjunction analyses not clearly described; in two patients, a different conjunction was used (lexical decision vs phonetic decision & semantic decision vs phonetic decision)
Statistical details	
Findings	None
Findings notes	LI > 0 in 12 out of 14 controls and 5 out of 7 patients; no significant difference

Notes

- Excluded analyses: Individual patient analyses

Crinion & Price (2005)

Reference

Authors	Crinion J, Price CJ
Title	Right anterior superior temporal activation predicts auditory sentence comprehension following aphasic stroke
Reference	Brain 2005; 128: 2858-2871
PMID	16234297
DOI	10.1093/brain/awh659

Participants

Language	UK English
Inclusion criteria	—
Number of individuals with aphasia	17
Number of control participants	18
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (mean 62 ± 2.7 SEM years, range 34-75 years)
Is sex reported for patients and controls, and matched?	Yes (males: 12; females: 5)
Is handedness reported for patients and controls, and matched?	Yes (right: 17; left: 0)
Is time post stroke onset reported and appropriate to the study design?	Yes (range 4-125 months; aphasia with temporal damage (n=8) mean 41 months; aphasia without temporal damage (n=9) mean 48 months)
To what extent is the nature of aphasia characterized?	Comprehensive battery

Language evaluation

CAT	Not stated
Aphasida severity	Not stated
Aphasida type	Not stated
First stroke only?	Yes
Stroke type	Not stated
To what extent is the lesion distribution characterized?	Lesion overlay
Lesion extent	Not stated
Lesion location	L MCA
Participants notes	—

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time point(s) were imaging	—
Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
listening to narrative speech	None	32	N/A	N/A
listening to reversed speech	None	8	N/A	N/A

Conditions notes

A post-scan surprise recognition test asked whether or not 38 phrases had occurred in any story; patients answered 12-33 of these questions correctly; controls answered 24-37 correctly; also note that all patients performed above chance on CAT auditory sentence comprehension (73%+ accuracy)

Contrasts

Contrast 1: listening to narrative speech vs listening to reversed speech
Language condition
Control condition
Are the conditions matched for visual demands?
Are the conditions matched for auditory demands?
Are the conditions matched for motor demands?
Are the conditions matched for cognitive/executive demands?
Is accuracy matched between the language and control tasks for all relevant groups?
Is reaction time matched between the language and control tasks for all relevant groups?
Behavioral data notes
Are control data reported in this paper or another that is referenced?
Does the contrast selectively activate plausible relevant language regions in the control group?
Are activations lateralized in the control data?
Control activation notes
Contrast notes

Analyses

| Are the analyses clearly described? | Yes |

data acquired?

If longitudinal, was there any intervention between the time points? —

Is the scanner described?

No (Siemens 1.5 Tesla; model not stated)

Is the timing of stimulus presentation and image acquisition clearly described and appropriate?

No (the calculated duration of the stimuli, the calculated duration of the acquisitions, and the stated duration of the acquisitions yield three different numbers)

Design type

Block

Total images acquired

460

Are the imaging acquisition parameters, including coverage, adequately described and appropriate?

Yes (whole brain)

Is preprocessing and intrasubject coregistration adequately described and appropriate?

Yes

Is first level model fitting adequately described and appropriate?

Yes

Is intersubject normalization adequately described and appropriate?

Yes

Imaging notes

—

Conditions

Are the conditions clearly described? Yes

Contrasts

Are the contrasts clearly described? Yes

Analyses

Are the analyses clearly described? Yes
Voxelwise analysis 1	Listening to narrative speech vs. listening to reversed speech
First level contrast	Cross-sectional aphasia vs control
Group(s)	Aphasia without temporal lobe damage (n = 9) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Voxelwise FWE correction and additional arbitrary cluster correction
Software	SPM2
Voxelwise p	FWE p < .05
Cluster extent	5 voxels (size not stated)
Statistical details	—
Findings	↓ L dorsal precentral ↓ R somato-motor
Findings notes	—

Voxelwise analysis 2	Listening to narrative speech vs. listening to reversed speech
First level contrast	Cross-sectional aphasia vs control
Group(s)	Aphasia with temporal lobe damage (n = 8) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Voxelwise FWE correction and additional arbitrary cluster correction
Software	SPM2
Voxelwise p	FWE p < .05
Cluster extent	5 voxels (size not stated)
Statistical details	—
Findings	↓ L posterior STS ↓ L mid temporal
Findings notes	—

Voxelwise analysis 3	Listening to narrative speech vs. listening to reversed speech
First level contrast	Cross-sectional between two groups with aphasia
Group(s)	Aphasia with temporal lobe damage (n = 8) vs without temporal lobe damage (n = 9)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Question	Answer
--	--
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Voxelwise FWE correction and additional arbitrary cluster correction
Software	SPM2
Voxelwise p	FWE p < .05
Cluster extent	5 voxels (size not stated)
Statistical details	—
Findings	↓ L posterior STG/STS/MTG
	↓ L mid temporal
Findings notes	—

Voxelwise analysis 4

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia without temporal lobe damage (n = 9)
Covariate	Sentence comprehension (CAT)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Voxelwise FWE correction and additional arbitrary cluster correction
Software	SPM2
Voxelwise p	FWE p < .05
Cluster extent	5 voxels (size not stated)
Statistical details	Conjunction with main effect of story comprehension (details hard to follow); this was a multiple regression also involving patients with temporal lobe damage
Findings	↑ L posterior STS
	↑ R mid temporal
Findings notes	Patients with better sentence comprehension had more activation in the L posterior STS and R mid STS

Voxelwise analysis 5

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia with temporal lobe damage (n = 8)
Covariate	Sentence comprehension (CAT)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Voxelwise FWE correction and additional arbitrary cluster correction
Software	SPM2
Voxelwise p	FWE p < .05
Complex analysis 1

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia with temporal damage (n = 8) vs without temporal damage (n = 9)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Complex
Statistical details	Correlations were computed between activity in each voxel, and the sentence comprehension measure from the CAT, and were compared between the two aphasia groups, in regions with a main effect of story comprehension. The voxelwise threshold was p < .001, uncorrected for multiple comparisons.
Findings	Other
Findings notes	Activity in the L posterior STS was positively correlated with sentence comprehension in patients without temporal lobe damage, but not in patients with temporal lobe damage

Complex analysis 2

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia without temporal damage (n = 9) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Complex
Statistical details	Correlations were computed between activity in each voxel, and post-scan story recall, and were compared between patients without temporal damage and controls, in regions with a main effect of story comprehension. The threshold was p < 0.05 corrected, plus a minimum cluster size of 5 voxels.
Findings	None
Findings notes	—

Complex analysis 3

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia with temporal damage (n = 8) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Behavioral data notes	—
Type of analysis	Complex
Statistical details	Correlations were computed between activity in each voxel, and the sentence comprehension measure from the CAT, and were compared between the two aphasia groups, in regions with a main effect of story comprehension. The voxelwise threshold was p < .001, uncorrected for multiple comparisons.
Findings	Other
Findings notes	—
Is reaction time matched across the second level contrast?	N/A, no timeable task
---	---
Behavioral data notes	—
Type of analysis	Complex
Statistical details	Correlations were computed between activity in each voxel, and post-scan story recall, and were compared between patients with temporal damage and controls, in regions with a main effect of story comprehension. The threshold was p < 0.05 corrected, plus a minimum cluster size of 5 voxels.
Findings	None
Findings notes	—

Complex analysis 4

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia with temporal damage (n = 8) vs without temporal damage (n = 9)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Complex
Statistical details	Correlations were computed between activity in each voxel, and post-scan story recall, and were compared between the two aphasia groups, in regions with a main effect of story comprehension. The threshold was p < 0.05 corrected, plus a minimum cluster size of 5 voxels.
Findings	None
Findings notes	—

Notes

Excluded analyses
An analysis involving associations between activations and story recognition memory because it included both controls and patients

de Boissezon et al. (2005)

Reference

Authors	de Boissezon X, Démonet JF, Puel M, Marie N, Raboyeau G, Albucher JF, Chollet F, Cardebat D
Title	Subcortical aphasia: a longitudinal PET study
Reference	Stroke 2005; 36: 1467-1473
PMID	15933252
DOI	10.1161/01.str.0000169947.08972.4f

Participants

Language	French
Inclusion criteria	Subcortical stroke; no severe aphasia
Number of individuals with aphasia	7
Number of control participants	0
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (mean 52.4 ± 13 years, range 31-69 years)
Question	Answer
----------	--------
Is sex reported for patients and controls, and matched?	Yes (males: 7; females: 0)
Is handedness reported for patients and controls, and matched?	Yes (right: 7; left: 0)
Is time post stroke onset reported and appropriate to the study design?	No* (moderate limitation) (T1: mean 53 ± 35 days, range 11-108 days; T2: mean 12.2 ± 1.4 months; T1 varies considerably from early to late subacute)
To what extent is the nature of aphasia characterized?	Type only
Language evaluation	Montreal-Toulouse Aphasia Battery
Aphasia severity	Not stated
Aphasia type	T1: 2 Broca's, 2 transcortical sensory, 1 anomic, 1 transcortical motor, 1 Wernicke's; T2: 4 recovered, 1 anomic, 1 transcortical motor; 1 transcortical sensory
First stroke only?	Yes
Stroke type	Mixed etiologies
To what extent is the lesion distribution characterized?	Individual lesions
Lesion extent	Not stated
Lesion location	5 L non-thalamic subcortical, 2 L thalamic
Participants notes	—

Imaging

Modality	PET (rCBF)
Is the study cross-sectional or longitudinal?	Longitudinal—recovery
If longitudinal, at what time point(s) were imaging data acquired?	T1: mean 53 ± 35 days, range 11-108 days; T2: mean 12.2 ± 1.4 months; T1 varies considerably from early to late subacute
If longitudinal, was there any intervention between the time points?	Not stated
Is the scanner described?	Yes (CTI-Siemens ECAT EXACT HR+)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	PET
Total images acquired	6
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and inrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	No (lesion impact not addressed; minimal due to lesions being small and subcortical)
Imaging notes	—

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
word generation	Word (overt)	4	Yes	Yes
rest	None	2	N/A	N/A

Conditions notes: Nouns in two runs, verbs in two runs, combined here because they were combined in analysis

Contrasts

Are the contrasts clearly described? | Yes

Contrast 1: word generation vs rest

| Language condition | Word generation |
Control condition

Question	Answer
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	No
Does the contrast selectively activate plausible relevant language regions in the control group?	Unknown
Are activations lateralized in the control data?	Unknown
Control activation notes	—
Contrast notes	—

Analyses

Question	Answer
Are the analyses clearly described?	No* (moderate limitation) (see specific limitation(s) below)

Voxelwise analysis 1

First level contrast	Word generation vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T1
Covariate	Time post onset
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No significant correlation between time post onset and accuracy
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on arbitrary cluster extent
Software	SPM2
Voxelwise p	.01
Cluster extent	50 voxels (size not stated)
Statistical details	—
Findings	↑ L orbitofrontal
	↑ L anterior temporal
	↑ L occipital
	↑ L anterior cingulate
	↑ L cerebellum
	↑ R anterior temporal
	↑ R occipital

Voxelwise analysis 2

First level contrast	Word generation vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T1
Covariate	Word generation accuracy T1
Is the second level contrast valid in terms of the	Yes

Findings notes: More activity with longer time post onset; based on coordinates in Table 3a
group(s), time point(s), and measures involved?	Accuracy is covariate
Is accuracy matched across the second level contrast?	Accuracy is covariate
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on arbitrary cluster extent
Software	SPM2
Voxelwise p	.01
Cluster extent	50 voxels (size not stated)
Statistical details	—
Findings	↑ L IFG pars triangularis
↑ L dorsolateral prefrontal cortex	
↑ L precuneus	
↑ L Heschl's gyrus	
↑ L anterior temporal	
↑ R insula	
↑ R posterior STG	
Findings notes	Based on coordinates in Table 3b

Voxelwise analysis 3

First level contrast	Word generation vs rest
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, different
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on arbitrary cluster extent
Software	SPM2
Voxelwise p	.001
Cluster extent	100 voxels (size not stated)
Statistical details	Description of masking unclear, but seems to be inclusively masked with T1, which seems inappropriate
Findings	↑ L insula
↑ L posterior STG	
↑ R orbitofrontal	
↑ R posterior STG	
↑ R cerebellum	
Findings notes	Based on coordinates in Table 2

Voxelwise analysis 4

First level contrast	Word generation vs rest
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T2 vs T1
Covariate	Δ word generation accuracy
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Question	Answer
Is accuracy matched across the second level contrast?	Accuracy is covariate
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on arbitrary cluster extent
Software	SPM2
Voxelwise p	.01
Cluster extent	20 voxels (size not stated)
Statistical details	—
Findings	↑ L mid temporal
	↑ R anterior temporal
	↑ R cerebellum
Findings notes	Based on coordinates in Table 3c

Notes

Excluded analyses
—

Connor et al. (2006)

Reference

Authors	Connor LT, DeShazo Braby T, Snyder AZ, Lewis C, Blasi V, Corbetta M
Title	Cerebellar activity switches hemispheres with cerebral recovery in aphasia
Reference	*Neuropsychologia* 2006; 44: 171-177
PMID	16019040
DOI	10.1016/j.neuropsychologia.2005.05.019

Participants

Language	US English

Inclusion criteria	L IFG, possibly extending to neighboring regions
Number of individuals with aphasia	8
Number of control participants	14
Were any of the participants included in any previous studies?	Yes (re-analysis of data from Blasi et al. (2002))
Is age reported for patients and controls, and matched?	No (mean 48.6 years; patients and controls not closely matched for age, unclear if difference significant)
Is sex reported for patients and controls, and matched?	Yes (males: 2; females: 6)
Is handedness reported for patients and controls, and matched?	Yes (right: 8; left: 0)
Is time post stroke onset reported and appropriate to the study design?	No (> 6 months; actual TPO not stated)
To what extent is the nature of aphasia characterized?	Comprehensive battery
Language evaluation	WAB or BDAE
Aphasia severity	AQ range 66.5-89.0 in 6 participants, BDAE aphasia severity of 4 in 1 participant, no formal evaluation in 1 participant
Aphasia type	3 anomic, 3 transcortical motor, 1 Broca's, 1 not stated; most were Broca's or global acutely
First stroke only?	Yes
Stroke type	Ischemic only
To what extent is the lesion distribution	Individual lesions
Lesion extent: Not stated
Lesion location: L IFG and operculum, extending to adjacent cortex and white matter in several cases

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, what time point(s) were imaging data acquired?	—
If longitudinal, was there any intervention between the time points?	—
Is the scanner described?	Yes (Siemens Vision 1.5 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	Event-related
Total images acquired	1024
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	Yes

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
word stem completion (novel items)	Word (covert)	196	Yes	Unknown
word stem completion (repeated items)	Word (covert)	196	Yes	Unknown
rest	None	implicit	N/A	N/A

Conditions notes: Novel items were presented in runs 1, 6, 7, and 8; repeated items were presented in runs 2, 3, 4, and 5; of the four repeated runs, only run 5 was analyzed.

Contrasts

Contrast 1: word stem completion (novel items) vs word stem completion (repeated items)
Language condition
Control condition
Are the conditions matched for visual demands?
Are the conditions matched for auditory demands?
Are the conditions matched for motor demands?
Are the conditions matched for cognitive/executive demands?
Is accuracy matched between the language and control tasks for all relevant groups?
Is reaction time matched between the language and control tasks for all relevant groups?
Behavioral data notes
Are control data reported in this paper or another
Question
--
Does the contrast selectively activate plausible relevant language regions in the control group?
Are activations lateralized in the control data?
Control activation notes
Contrast notes

Analyses

| Are the analyses clearly described? | No* (moderate limitation) (see specific limitation(s) below) |

Voxelwise analysis 1

First level contrast	Word stem completion (novel items) vs word stem completion (repeated items)
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	Yes, matched
Behavioral data notes	Covert task but overt data acquired separately; no interaction of group by practice for accuracy or RT
Type of analysis	Voxelwise
Search volume	Cerebellum
Correction for multiple comparisons	No direct comparison
Software	not stated
Voxelwise p	—
Cluster extent	—
Statistical details	Qualitative comparison on p. 174; Monte Carlo-based thresholding not described; rather than fitting a HRF, the authors looked at the shape of the signal in the 8 volumes following each stimulus
Findings	↑ L cerebellum
Findings notes	↓ R cerebellum

ROI analysis 1

First level contrast	Word stem completion (novel items) vs word stem completion (repeated items)
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	Yes, matched
Behavioral data notes	Covert task but overt data acquired separately; no interaction of group by practice for accuracy or RT
Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	L cerebellum
How are the ROI(s) defined?	L cerebellar region with a learning effect in the patients
Correction for multiple comparisons	One only
------------------------------------	----------
Statistical details	Circular because ROIs defined in one group; rather than fitting a HRF, the authors looked at the shape of the signal in the 8 volumes following each stimulus
Findings	↑ L cerebellum
Findings notes	—

Notes

Excluded analyses

1. analysis of frontal changes is excluded since it appears to be identical to Blasi et al. (2002);
2. the analyses involving mirrored cerebellar regions are excluded since the groups were not compared directly

Crinion et al. (2006)

Reference

Authors

Crinion JT, Warburton EA, Lambon-Ralph MA, Howard D, Wise RJ

Title

Listening to narrative speech after aphasic stroke: the role of the left anterior temporal lobe

Reference

Cereb Cortex 2006; 16: 1116-1125

PMID

16251507

DOI

10.1093/cercor/bhj053

Participants

Language

UK English

Inclusion criteria

—

Number of individuals with aphasia

24

Number of control participants

11

Were any of the participants included in any previous studies?

No

Is age reported for patients and controls, and matched?

Yes (range 32-85 years)

Is sex reported for patients and controls, and matched?

Yes (males: 18; females: 6)

Is handedness reported for patients and controls, and matched?

Yes (right: 24; left: 0)

Is time post stroke onset reported and appropriate to the study design?

No (mean 32 months, range 2-204 months; combines subacute and chronic patients)

To what extent is the nature of aphasia characterized?

Comprehensive battery

Language evaluation

CAT (missing in two participants)

Aphasia severity

Not stated

Aphasia type

Not stated

First stroke only?

Yes

Stroke type

Not stated

To what extent is the lesion distribution characterized?

Lesion overlay

Lesion extent

Not stated

Lesion location

6 L but no temporal damage, 9 L temporal damage excluding anterior temporal cortex, 9 L temporal damage including anterior temporal cortex

Participants notes

Results of control participants previously reported in Crinion et al. (2003)

Imaging

Modality

PET (rCBF)

Is the study cross-sectional or longitudinal?

Cross-sectional

If longitudinal, at what time point(s) were imaging

—
data acquired?

- If longitudinal, was there any intervention between the time points? —

Is the scanner described?

- Yes (CTI-Siemens ECAT EXACT HR++/966 (16 patients and all controls) or GE Advance (8 patients))

Is the timing of stimulus presentation and image acquisition clearly described and appropriate?

- Yes

Design type

- PET

Total images acquired

- 12-16

Are the imaging acquisition parameters, including coverage, adequately described and appropriate?

- Yes (whole brain)

Is preprocessing and intrasubject coregistration adequately described and appropriate?

- Yes

Is first level model fitting adequately described and appropriate?

- Yes

Is intersubject normalization adequately described and appropriate?

- Yes

Imaging notes

- two different scanners used for patients, but not for controls

Conditions

- Are the conditions clearly described? Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
Listening to narrative speech	None	6-8	N/A	N/A
Listening to reversed speech	None	6-8	N/A	N/A

Conditions notes

- —

Contrasts

- Are the contrasts clearly described? Yes

Contrast 1: listening to narrative speech vs listening to reversed speech

Language condition	Listening to narrative speech
Control condition	Listening to reversed speech
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	Yes

Is accuracy matched between the language and control tasks for all relevant groups?

- N/A, no behavioral measure

Is reaction time matched between the language and control tasks for all relevant groups?

- N/A, no timeable task

Behavioral data notes

- —

Are control data reported in this paper or another that is referenced?

- Somewhat

Does the contrast selectively activate plausible relevant language regions in the control group?

- Yes

Are activations lateralized in the control data?

- Somewhat

Control activation notes

- 11 participants; L-lateralized posterior temporal, bilateral anterior temporal, no frontal

Contrast notes

- —

Analyses

- Are the analyses clearly described? Yes

Voxelwise analysis 1
First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Voxelwise spared in all patients
Correction for multiple comparisons	Voxelwise FWE correction
Software	SPM99
Voxelwise p	FWE p < .05
Cluster extent	—
Statistical details	—
Findings	None
Findings notes	—

Voxelwise analysis 2

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Cross-sectional aphasia without temporal lobe damage (n = 6) vs control
Group(s)	Aphasia without temporal lobe damage (n = 6) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Voxelwise spared in all included patients
Correction for multiple comparisons	Voxelwise FWE correction
Software	SPM99
Voxelwise p	FWE p < .05
Cluster extent	—
Statistical details	—
Findings	None
Findings notes	—

Voxelwise analysis 3

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Cross-sectional aphasia with temporal lobe damage (n = 18) vs control
Group(s)	Aphasia with temporal lobe damage (n = 18) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Voxelwise
--------------------------	----------------------------
Search volume	Voxelwise FWE correction
Correction for multiple comparisons	
Software	SPM99
Voxelwise p	FWE p < .05
Cluster extent	—
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 1

- **First level contrast**: Listening to narrative speech vs listening to reversed speech
- **Analysis class**: Cross-sectional correlation with language or other measure
- **Group(s)**: Aphasia with no temporal damage (excluding 1 with missing behavioral data and 1 outlier) or posterior temporal damage sparing anterior temporal cortex (n = 13)
- **Covariate**: Auditory sentence comprehension (CAT)
- **Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?**: Yes
- **Is accuracy matched across the second level contrast?**: N/A, no behavioral measure
- **Is reaction time matched across the second level contrast?**: N/A, no timeable task
- **Behavioral data notes**: —
- **Type of analysis**: Region of interest (ROI)
- **ROI type**: Functional
- **How many ROIs are there?**: 1
- **What are the ROI(s)?**: L ATL
- **How are the ROI(s) defined?**: Activation in the control group
- **Correction for multiple comparisons**: One only
- **Statistical details**: Same result obtained with or without excluding one outlier; two other ROIs are described in the methods, but never used in any analyses
- **Findings**: ↑ L anterior temporal
- **Findings notes**: More activity in patients with better auditory sentence comprehension

ROI analysis 2

- **First level contrast**: Listening to narrative speech vs listening to reversed speech
- **Analysis class**: Cross-sectional correlation with language or other measure
- **Group(s)**: Aphasia with no temporal damage (excluding 1 with missing behavioral data and 1 outlier) or posterior temporal damage sparing anterior temporal cortex (n = 13)
- **Covariate**: Time post onset
- **Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?**: Yes
- **Is accuracy matched across the second level contrast?**: N/A, no behavioral measure
- **Is reaction time matched across the second level contrast?**: N/A, no timeable task
- **Behavioral data notes**: —
- **Type of analysis**: Region of interest (ROI)
- **ROI type**: Functional
- **How many ROIs are there?**: 1
- **What are the ROI(s)?**: L ATL
- **How are the ROI(s) defined?**: Activation in the control group
- **Correction for multiple comparisons**: One only
- **Statistical details**: Two other ROIs are described in the methods, but never used in any analyses
- **Findings**: None
- **Findings notes**: —
ROI analysis 3

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia with temporal damage excluding anterior temporal cortex (n = 9) vs with no temporal lobe damage (excluding 1 with missing behavioral data and 1 outlier) (n = 4)
Covariate	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task

Behavioral data notes

Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	L ATL
How are the ROI(s) defined?	Activation in the control group
Correction for multiple comparisons	One only
Statistical details	Two other ROIs are described in the methods, but never used in any analyses
Findings	↓ L anterior temporal
Findings notes	Patients with posterior temporal damage had less signal change

ROI analysis 4

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia with temporal damage excluding anterior temporal cortex (n = 9) vs control
Covariate	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task

Behavioral data notes

Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	L ATL
How are the ROI(s) defined?	Activation in the control group
Correction for multiple comparisons	One only
Statistical details	Circular because ROI defined in one group; two other ROIs are described in the methods, but never used in any analyses
Findings	↓ L anterior temporal
Findings notes	Large difference 2.7 ± 0.8 (patients) vs 6.3 ± 1.4 (controls) makes finding suggestive even in light of the circularity

ROI analysis 5

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia with no temporal damage (excluding 1 with missing behavioral data and 1 outlier) or posterior temporal damage sparing anterior temporal cortex (n = 13)
Covariate	Auditory single word comprehension (CAT)
Question	Answer
--	--
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	L ATL
How are the ROI(s) defined?	Activation in the control group
Correction for multiple comparisons	One only
Statistical details	Two other ROIs are described in the methods, but never used in any analyses
Findings	None
Findings notes	R = 0.39; p > 0.1; seems to be a clear trend so lack of significance may reflect only lack of power

Notes

Excluded analyses

Reference	Authors	Title	Reference	PMID	DOI
Saur et al. (2006)	Saur D, Lange R, Baumgaertner A, Schraknepper V, Willmes K, Rijntjes M, Weiller C	Dynamics of language reorganization after stroke	Brain 2006; 129: 1371-1384	16638796	10.1093/brain/awl090

Participants

Language	German
Inclusion criteria	MCA; age < 70 years; able to distinguish forward vs backward speech outside the scanner; no pronounced small vessel disease
Number of individuals with aphasia	14 (plus 4 excluded: 1 health problems; 1 scanner noise; 2 did not tolerate fMRI)
Number of control participants	14
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (mean 51.9 ± 14.2 years, range 16-68 years)
Is sex reported for patients and controls, and matched?	Yes (males: 11; females: 3)
Is handedness reported for patients and controls, and matched?	Yes (right: 12; left: 1; other: 1)
Is time post stroke onset reported and appropriate to the study design?	Yes (T1 acute: mean 1.8 days, range 0-4 days; T2 subacute: mean 12.1 days, range 3-16 days; T3 chronic: mean 321 days, range 102-513 days)
To what extent is the nature of aphasia characterized?	Comprehensive battery
Language evaluation	AABT, AAT including TT, analysis of spontaneous speech, CETI, Language Recovery Score (LRS) derived from all these measures plus in-scanner task performance
Aphasia severity	T1: LRS mean 0.44, range 0.11-0.81; 1 mild, 1 mild-moderate, 7 moderate, 3 moderate-severe, 2 severe per AAT; T2: LRS mean 0.71, range 0.33-0.92; 2 recovered, 2 recovered-mild, 2 mild, 3 mild-moderate, 3 moderate, 2 severe per AAT; T3: LRS mean 0.91, range 0.66-1.00; 8 recovered, 2 recovered-mild, 3 mild, 1 moderate per AAT
Aphasia type

| T1: 9 non-fluent, 5 fluent; T2: not stated; T3: 6 recovered, 4 minimal language impairment, 3 anomic, 1 global |

First stroke only?

| Yes |

Stroke type

| Ischemic only |

To what extent is the lesion distribution characterized?

| Individual lesions |

Lesion extent

| Not stated |

Lesion location

| L MCA; 4 frontal (2 extending to temporoparietal); 5 temporoparietal (2 extending to subcortical); 4 striatocapsular (2 extending to cortical); 1 frontoparietal |

Participants notes

| 198 patients with aphasia were screened |

Imaging

Modality

| fMRI |

Is the study cross-sectional or longitudinal?

| Longitudinal—recovery |

If longitudinal, at what time point(s) were imaging data acquired?

| T1 acute: mean 1.8 days, range 0-4 days; T2 subacute: mean 12.1 days, range 3-16 days; T3 chronic: mean 321 days, range 102-513 days |

If longitudinal, was there any intervention between the time points?

| Standard SLT throughout the observation period including at least 3 weeks inpatient |

Is the scanner described?

| Yes (Siemens Trio 3 Tesla) |

Is the timing of stimulus presentation and image acquisition clearly described and appropriate?

| Yes |

Design type

| Event-related |

Total images acquired

| 660 |

Are the imaging acquisition parameters, including coverage, adequately described and appropriate?

| Yes (whole brain) |

Is preprocessing and intrasubject coregistration adequately described and appropriate?

| Yes |

Is first level model fitting adequately described and appropriate?

| Yes |

Is intersubject normalization adequately described and appropriate?

| Yes |

Imaging notes

| — |

Conditions

Are the conditions clearly described?

| Yes |

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
listening to sentences and making a plausibility judgment	Button press	92	Unknown	No
listening to reversed speech rest	Button press	92	Yes	Unknown
	None	implicit baseline	N/A	N/A

Conditions notes

In the auditory sentence comprehension condition, participants had to press a button to semantically anomalous sentences; in the reversed speech condition, they had to always press the button; the behavioral scores provided are not explained in the paper, but per a personal communication cited by Geranmayeh et al. (2014), 10% of the score reflects discrimination between intelligible and reversed speech, while 90% reflects semantic anomaly judgment; our coding of behavior is based on this limited information

Contrasts

Are the contrasts clearly described?

| Yes |

Contrast 1: listening to sentences and making a plausibility judgment vs listening to reversed speech

Language condition	Listening to sentences and making a plausibility judgment
Control condition	Listening to reversed speech
Question	Answer
--	----------------
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	Unknown, not reported
Is reaction time matched between the language and control tasks for all relevant groups?	Unknown, not reported
Behavioral data notes	Reported accuracy combines the two conditions in a way that is not explained
Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible relevant language regions in the control group?	Yes
Are activations lateralized in the control data?	Yes

Behavioral data notes

Are control data reported in this paper or another that is referenced? Yes

Does the contrast selectively activate plausible relevant language regions in the control group? Yes

Are activations lateralized in the control data? Yes

Control activation notes L temporal and L > R frontal

Contrast notes —

Analyses

Are the analyses clearly described? Yes

Voxelwise analysis 1

First level contrast

Analysis class

Group(s)

Covariate

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? Yes

Is accuracy matched across the second level contrast? Appear mismatched

Is reaction time matched across the second level contrast? Unknown, not reported

Behavioral data notes Accuracy combines language and control conditions

Type of analysis Voxelwise

Search volume Whole brain

Correction for multiple comparisons No correction

Software SPM2

Voxelwise p .001

Cluster extent None

Statistical details —

Findings ↑ L insula

↑ R IFG pars orbitalis

↑ R insula

↑ R SMA/medial prefrontal

Findings notes R IFG/insula activation noted to survive FWE correction at p < .05

Voxelwise analysis 2

First level contrast

Analysis class

Group(s)

Covariate

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? Yes

Is accuracy matched across the second level contrast? Appear mismatched

Is reaction time matched across the second level contrast? Unknown, not reported
Behavioral data notes	Accuracy combines language and control conditions
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	No correction
Software	SPM2
Voxelwise p	.005
Cluster extent	None
Statistical details	Threshold was lowered to reveal the R frontal change in activation
Findings	↓ R IFG pars orbitalis
	↓ R occipital
Findings notes	—

Voxelwise analysis 3

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T3 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	**Appear mismatched**
Is reaction time matched across the second level contrast?	**Unknown, not reported**
Behavioral data notes	Accuracy combines language and control conditions
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	No correction
Software	SPM2
Voxelwise p	.001
Cluster extent	None
Statistical details	—
Findings	↑ L IFG pars orbitalis
	↑ L SMA/medial prefrontal
	↑ L posterior inferior temporal gyrus/fusiform gyrus
	↑ R IFG pars orbitalis
	↑ R insula
Findings notes	—

Voxelwise analysis 4

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T1 vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	**Appear mismatched**
Is reaction time matched across the second level contrast?	**Unknown, not reported**
Behavioral data notes	Accuracy combines language and control conditions
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	No correction
Software	SPM2
Voxelwise p	.001
Voxelwise analysis 5

First level contrast
Listening to sentences and making a plausibility judgment vs listening to reversed speech

Analysis class
Cross-sectional aphasia vs control

Group(s)
Aphasia T2 vs control

Covariate
—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?
Yes

Is accuracy matched across the second level contrast?
Appear mismatched

Is reaction time matched across the second level contrast?
Unknown, not reported

Behavioral data notes
Accuracy combines language and control conditions

Type of analysis
Voxelwise

Search volume
Whole brain

Correction for multiple comparisons
No correction

Software
SPM2

Voxelwise p
.005

Cluster extent
None

Statistical details
Threshold was lowered to reveal L IFG

Findings

- ↑ L IFG pars triangularis
- ↑ L IFG pars orbitalis
- ↑ L insula
- ↑ L posterior MTG
- ↑ L posterior inferior temporal gyrus/fusiform gyrus
- ↑ R IFG pars orbitalis
- ↑ R insula

Findings notes
L STG in table is actually MTG based on coordinates

Voxelwise analysis 6

First level contrast
Listening to sentences and making a plausibility judgment vs listening to reversed speech

Analysis class
Cross-sectional aphasia vs control

Group(s)
Aphasia T3 vs control

Covariate
—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?
Yes

Is accuracy matched across the second level contrast?
Appear similar

Is reaction time matched across the second level contrast?
Unknown, not reported

Behavioral data notes
Accuracy combines language and control conditions

Type of analysis
Voxelwise

Search volume
Whole brain

Correction for multiple comparisons
No correction

Software
SPM2

Voxelwise p
.001

Cluster extent
None

Statistical details
—

Findings

- ↑ L IFG pars orbitalis
- ↑ L insula
- ↑ L SMA/medial prefrontal
- ↑ R IFG

Findings notes
—
Voxelwise analysis 7

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T1
Covariate	Language recovery score T1
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	**Appear mismatched**
Is reaction time matched across the second level contrast?	**Unknown, not reported**
Behavioral data notes	Accuracy combines language and control conditions
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	**No correction**
Software	SPM2
Voxelwise p	.001
Cluster extent	None
Statistical details	—
Findings	↑ L IFG, ↑ L SMA/medial prefrontal, ↑ R IFG pars triangularis
Findings notes	—

Voxelwise analysis 8

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T2
Covariate	Language recovery score T2
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	**Unknown, no test**
Is reaction time matched across the second level contrast?	**Unknown, not reported**
Behavioral data notes	Accuracy combines language and control conditions
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	**No correction**
Software	SPM2
Voxelwise p	.001
Cluster extent	None
Statistical details	—
Findings	None
Findings notes	—

Voxelwise analysis 9

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T3
Covariate	Language recovery score T3
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Question	Answer
---	---
Is accuracy matched across the second level contrast?	Unknown, no test
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Accuracy combines language and control conditions
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	No correction
Software	SPM2
Voxelwise p	.001
Cluster extent	None
Statistical details	—
Findings	None
Findings notes	—

Voxelwise analysis 10

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T2 vs T1
Covariate	% change in language recovery score
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, no test
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Accuracy combines language and control conditions
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	No correction
Software	SPM2
Voxelwise p	.001
Cluster extent	None
Statistical details	—
Findings	↓ L SMA/medial prefrontal
Findings notes	↓ R insula
	↑ R SMA/medial prefrontal

Voxelwise analysis 11

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T3 vs T2
Covariate	% change in language recovery score
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, no test
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Accuracy combines language and control conditions
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	No correction
Software	SPM2

268
Voxelwise analysis 12

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T3 vs T1
Covariate	% change in language recovery score
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, no test
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Accuracy combines language and control conditions
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	No correction
Software	SPM2
Voxelwise p	.001
Cluster extent	None
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 1

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Appear mismatched
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Accuracy combines language and control conditions
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	6
What are the ROI(s)?	(1) L IFG pars orbitalis; (2) L IFG pars triangularis; (3) L MTG; (4) R insula; (5) R IFG pars triangularis; (6) R SMA
How are the ROI(s) defined?	Peak voxels of overall activation map based on all three time points in patients
Correction for multiple comparisons	Familywise error (FWE)
Statistical details	—
Findings	↑ R insula
Findings notes	↑ R SMA/medial prefrontal

ROI analysis 2

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
Analysis class	—
Group(s)	—
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	—
Is accuracy matched across the second level contrast?	—
Is reaction time matched across the second level contrast?	—
Behavioral data notes	—
Type of analysis	—
ROI type	—
How many ROIs are there?	—
What are the ROI(s)?	—
How are the ROI(s) defined?	—
Correction for multiple comparisons	—
Statistical details	—
Findings	Some other ROIs also significant prior to correction for multiple comparisons; n.b. performance confound
Findings notes	—
Analysis class	Longitudinal change in aphasia
----------------	-------------------------------
Group(s)	Aphasia T3 vs T2
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Appear mismatched
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Accuracy combines language and control conditions
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	6
What are the ROI(s)?	(1) L IFG pars orbitalis; (2) L IFG pars triangularis; (3) L MTG; (4) R Insula; (5) R IFG pars triangularis; (6) R SMA
How are the ROI(s) defined?	Peak voxels of overall activation map based on all three time points in patients
Correction for multiple comparisons	Familywise error (FWE)
Statistical details	—
Findings	—
Findings notes	Some other ROIs also significant prior to correction for multiple comparisons; n.b. performance confound

ROI analysis 3

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T3 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Appear mismatched
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Accuracy combines language and control conditions
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	6
What are the ROI(s)?	(1) L IFG pars orbitalis; (2) L IFG pars triangularis; (3) L MTG; (4) R Insula; (5) R IFG pars triangularis; (6) R SMA
How are the ROI(s) defined?	Peak voxels of overall activation map based on all three time points in patients
Correction for multiple comparisons	Familywise error (FWE)
Statistical details	—
Findings	—
Findings notes	Some other ROIs also significant prior to correction for multiple comparisons; n.b. performance confound

ROI analysis 4

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T1 vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Appear mismatched
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes
Accuracy combines language and control conditions

Type of analysis
Regions of interest (ROI)

ROI type
Functional

How many ROIs are there?
6

What are the ROI(s)?
1. L IFG pars orbitalis; 2. L IFG pars triangularis; 3. L MTG; 4. R insula; 5. R IFG pars triangularis; 6. R SMA

How are the ROI(s) defined?
Peak voxels of overall activation map based on all three time points in patients

Correction for multiple comparisons
No correction

Statistical details
Circular because ROIs defined in one group

Findings
1. L posterior MTG
2. R IFG pars triangularis

Findings notes
R IFG difference described in text but not table

ROI analysis 5

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T2 vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Appear mismatched
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes
Accuracy combines language and control conditions

Type of analysis
Regions of interest (ROI)

ROI type
Functional

How many ROIs are there?
6

What are the ROI(s)?
1. L IFG pars orbitalis; 2. L IFG pars triangularis; 3. L MTG; 4. R insula; 5. R IFG pars triangularis; 6. R SMA

How are the ROI(s) defined?
Peak voxels of overall activation map based on all three time points in patients

Correction for multiple comparisons
No correction

Statistical details
Circular because ROIs defined in one group

Findings
None

Findings notes
—

ROI analysis 6

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T3 vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Appear similar
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes
Accuracy combines language and control conditions

Type of analysis
Regions of interest (ROI)

ROI type
Functional

How many ROIs are there?
6

What are the ROI(s)?
1. L IFG pars orbitalis; 2. L IFG pars triangularis; 3. L MTG; 4. R insula; 5. R IFG pars triangularis; 6. R SMA

How are the ROI(s) defined?
Peak voxels of overall activation map based on all three time points in patients

Correction for multiple comparisons
No correction

Statistical details
Circular because ROIs defined in one group

Findings
None

Findings notes
—
Correction for multiple comparisons
No correction

Statistical details
Circular because ROIs defined in one group

Findings
None

Findings notes
—

Notes
Excluded analyses
Additional analyses using absolute improvements in LRS instead of proportional improvements

Meinzer et al. (2008)

Reference
Authors
Meinzer M, Flaisch T, Breitenstein C, Wienbruch C, Elbert T, Rockstroh B

Title
Functional re-recruitment of dysfunctional brain areas predicts language recovery in chronic aphasia

Reference
NeuroImage 2008; 39: 2038-2046

PMID
18096407

DOI
10.1016/j.neuroimage.2007.10.008

Participants
Language
German

Inclusion criteria
—

Number of individuals with aphasia
11

Number of control participants
0

Were any of the participants included in any previous studies?
No

Is age reported for patients and controls, and matched?
Yes (median 51.0 years, range 19-66 years)

Is sex reported for patients and controls, and matched?
Yes (males: 7; females: 4)

Is handedness reported for patients and controls, and matched?
Yes (right: 11; left: 0)

Is time post stroke onset reported and appropriate to the study design?
Yes (median 32 months; range 6-480 months)

To what extent is the nature of aphasia characterized?
Comprehensive battery

Language evaluation
AAT, study-specific picture naming test with 150 items

Aphasia severity
6 moderate, 4 mild, 1 severe

Aphasia type
7 Broca’s, 2 Wernicke’s, 1 global, 1 unclassified

First stroke only?
Not stated

Stroke type
Mixed etiologies

To what extent is the lesion distribution characterized?
Lesion overlay

Lesion extent
Range 31.0-236.0 cc

Lesion location
L

Participants notes
—

Imaging
Modality
fMRI

Is the study cross-sectional or longitudinal?
Longitudinal—chronic treatment

If longitudinal, at what time point(s) were imaging data acquired?
T1: pre-treatment/chronic; T2: post-treatment, ~2 weeks later

If longitudinal, was there any intervention between imaging time points?
CIAT, 3 hours/day, 5 days/week, 2 weeks
question	answer			
Is the scanner described?	Yes (Philips Intera 1.5 Tesla)			
Is the timing of stimulus presentation and image acquisition clearly	Yes			
described and appropriate?				
Design type	Block			
Total images acquired	160			
Are the imaging acquisition parameters, including coverage, adequately	Yes (whole brain)			
described and appropriate?				
Is preprocessing and intrasubject coregistration adequately described	Yes			
and appropriate?				
Is first level model fitting adequately described and appropriate?	Yes			
Is intersubject normalization adequately described and appropriate?	Yes			
Imaging notes	—			
Conditions				
Are the conditions clearly described?	Yes			
Condition	Response type	Repetitions	All groups could do?	All individuals could do?
picture naming (trained items)	Word (overt)	8	Yes	No
picture naming (untrained items)	Word (overt)	8	Yes	No
rest	None	16	N/A	N/A
Conditions notes	One participant was < 10% on trained and untrained items at T1			
Contrasts				
Are the contrasts clearly described?	Yes			
Contrast 1: picture naming (trained items) vs rest				
Language condition	Picture naming (trained items)			
Control condition	Rest			
Are the conditions matched for visual demands?	No			
Are the conditions matched for auditory demands?	No			
Are the conditions matched for motor demands?	No			
Are the conditions matched for cognitive/executive demands?	No			
Is accuracy matched between the language and control tasks for all	N/A, tasks not comparable			
relevant groups?				
Is reaction time matched between the language and control tasks for all	N/A, tasks not comparable			
relevant groups?				
Behavioral data notes	—			
Are control data reported in this paper or another that is referenced?	No			
Does the contrast selectively activate plausible relevant language	Unknown			
regions in the control group?				
Are activations lateralized in the control data?	Unknown			
Control activation notes	—			
Contrast notes	—			
Contrast 2: picture naming (untrained items) vs rest				
Language condition	Picture naming (untrained items)			
Control condition	Rest			
Are the conditions matched for visual demands?	No			
Are the conditions matched for auditory demands?	No			
Question	Answer			
---	--------			
Are the conditions matched for motor demands?	No			
Are the conditions matched for cognitive/executive demands?	No			
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable			
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable			
Behavioral data notes	—			
Are control data reported in this paper or another that is referenced?	No			
Does the contrast selectively activate plausible relevant language regions in the control group?	Unknown			
Are activations lateralized in the control data?	Unknown			
Control activation notes	—			
Contrast notes	—			

Analyses

Question	Answer
Are the analyses clearly described?	No* (moderate limitation) (see specific limitation(s) below)

ROI analysis 1

First level contrast	Picture naming (trained items) vs rest
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T2 vs T1
Covariate	Δ picture naming (trained items)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Accuracy is covariate
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Picture naming score (trained items) increased from 51.7 ± 24.8 to 78.8 ± 22.1, which was statistically significant (p < 0.0001)
Type of analysis	Regions of interest (ROI)
ROI type	Other
How many ROIs are there?	4
What are the ROI(s)?	(1) perilesional area of slow wave activity determined with MEG; (2) right hemisphere homotopic to lesion; (3) right hemisphere homotopic to slow wave area; (4) remainder of left hemisphere; for one patient, maximal slow wave activity was in the right hemisphere and it is not clear how this was handled
How are the ROI(s) defined?	The dependent measure was the number of voxels in each ROI exceeding certain thresholds that differed across subjects depending on their strength of activation; it appears that increases and decreases may have been summed, though the description is hard to follow
Correction for multiple comparisons	No correction
Statistical details	2 of the 11 patients were classified as outliers and excluded from analyses, however no plots are provided to justify their status as outliers
Findings	Other
Findings notes	Improved picture naming of trained items was correlated with increased signal in 3 of the 4 ROIs, the exception being the right hemisphere ROI homotopic to the slow wave area; after removing the two outliers, only the correlation in the left hemisphere area of slow wave activity remained significant

ROI analysis 2

First level contrast	Picture naming (untrained items) vs rest
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T2 vs T1
Covariate	Δ picture naming (untrained items)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? | Yes
---|---
Is accuracy matched across the second level contrast? | Accuracy is covariate
Is reaction time matched across the second level contrast? | Unknown, not reported

Behavioral data notes
Picture naming score (untrained items) increased from 54.0 ± 24.3 to 70.5 ± 26.7, which was statistically significant (p= 0.002)

Type of analysis | Regions of interest (ROI)
ROI type | Other
How many ROIs are there? | 4

What are the ROI(s)?
(1) perilesional area of slow wave activity determined with MEG; (2) right hemisphere homotopic to lesion; (3) right hemisphere homotopic to slow wave area; (4) remainder of left hemisphere; for one patient, maximal slow wave activity was in the right hemisphere and it is not clear how this was handled

How are the ROI(s) defined?
The dependent measure was the number of voxels in each ROI exceeding certain thresholds that differed across subjects depending on their strength of activation; it appears that increases and decreases may have been summed, though the description is hard to follow

Correction for multiple comparisons | No correction
Statistical details
2 of the 11 patients were classified as outliers and excluded from analyses, however no plots are provided to justify their status as outliers
Findings | Other
Findings notes
Improved picture naming of untrained items was correlated with increased signal in all 4 ROIs; after removing the two outliers, none of the correlations remained significant

Notes
Excluded analyses
Additional analyses correlating functional changes in the “delta ROI” with ROI extent, initial severity, duration of aphasia, overall speech activity, since limited detail is provided and only one ROI is reported

Raboyeau et al. (2008)

Reference
Raboyeau G, De Boissezon X, Marie N, Balduyck S, Puel M, Bézy C, Démonet JF, Cardebat D

Title
Right hemisphere activation in recovery from aphasia: lesion effect or function recruitment?

Reference
Neurology 2008; 70: 2900-298

PMID
18209203

DOI
10.1212/01.wnl.0000287115.85956.87

Participants
Language | French
Inclusion criteria | Naming deficit; good comprehension
Number of individuals with aphasia | 10
Number of control participants | 20
Were any of the participants included in any previous studies? | No
Is age reported for patients and controls, and matched? | No (mean 53.8 ± 14.7 years; controls were younger)
Is sex reported for patients and controls, and matched? | Yes (males: 6; females: 4)
Is handedness reported for patients and controls, and matched? | Yes (right: 10; left: 0)
Is time post stroke onset reported and appropriate to the study design? | Yes (range 7-102 months)
To what extent is the nature of aphasia characterized?

Severity and type

Language evaluation	Montreal-Toulouse Aphasia Battery
Aphasia severity	Mild (but had initially been severe)
Aphasia type	4 anomic, 3 conduction, 2 Broca's, 1 AoS
First stroke only?	Yes
Stroke type	Not stated

To what extent is the lesion distribution characterized?

Individual lesions

Lesion extent	Range 29.9-195.2 cc
Lesion location	L MCA
Participants notes	—

Imaging

Modality	PET (rCBF)
Is the study cross-sectional or longitudinal?	Longitudinal—chronic treatment
If longitudinal, at what time point(s) were imaging data acquired?	T1: pre-treatment/chronic; T2: post-treatment, ~4 weeks later
If longitudinal, was there any intervention between the time points?	Lexical training, 15 minutes/day, 5 days/week, 4 weeks; the control group were trained to relearn foreign words that they had learned in school but since mostly forgotten
Is the scanner described?	Yes (Siemens ECAT HR+)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	PET
Total images acquired	6
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and inrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	No (lesion impact not addressed)
Imaging notes	—

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
picture naming (native language)	Word (overt)	aphasia: 4; control: 2	Yes	Unknown
picture naming (relearned foreign language) (controls only)	Word (overt)	2	Yes	Unknown
rest	None	2	N/A	N/A

Conditions notes

Picture naming in native language in controls not analyzed in this paper

Contrasts

Are the contrasts clearly described?

No (see specific limitation(s) below)

Contrast 1: picture naming (native in patients; relearned foreign in controls) vs rest

Language condition	Picture naming (native in patients; relearned foreign in controls)
Control condition	Rest
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?
- **No**

Is accuracy matched between the language and control tasks for all relevant groups?
- **N/A, tasks not comparable**

Is reaction time matched between the language and control tasks for all relevant groups?
- **N/A, tasks not comparable**

Behavioral data notes
- **—**

Are control data reported in this paper or another that is referenced?
- **No**

Does the contrast selectively activate plausible relevant language regions in the control group?
- **Unknown**

Are activations lateralized in the control data?
- **Unknown**

Control activation notes
- **—**

Contrast notes
- Presumably only the relearned foreign condition was used in controls (not the native condition), but this is not stated explicitly.

Analyses

Are the analyses clearly described?
- **No (see specific limitation(s) below)**

Voxelwise analysis 1

First level contrast	Picture naming (native in patients; relearned foreign in controls) vs rest
Analysis class	Longitudinal aphasia vs control
Group(s)	(Aphasia T2 vs T1) vs (control T2 vs T1)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	**No, but attempt made**
Is reaction time matched across the second level contrast?	**Unknown, not reported**

Behavioral data notes
- Relearned foreign language was an attempt to equate to recovery in patients; still, patients improved less than controls, as shown by a significant interaction of group by time (p < .0001)

Type of analysis
- **Voxelwise**

Search volume
- **Whole brain**

Correction for multiple comparisons
- **Clusterwise correction based on arbitrary cluster extent**

Software
- **SPM2**

Voxelwise p
- **.01**

Cluster extent
- **30 voxels (size not stated)**

Statistical details
- **Nature of control contrast not clear; negative tail of contrast was masked to exclude lesioned areas, but the mask may have been more extensive than that**

Findings
- ↑ L orbitofrontal

Findings notes
- **—**

Voxelwise analysis 2

First level contrast	Picture naming (native in patients; relearned foreign in controls) vs rest
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T2 vs T1
Covariate	Δ picture naming accuracy
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	**Accuracy is covariate**
Is reaction time matched across the second level contrast?	**Unknown, not reported**

Behavioral data notes
- **—**

Type of analysis
- **Voxelwise**
Search volume
Whole brain

Correction for multiple comparisons
Clusterwise correction based on arbitrary cluster extent

Software
SPM2

Voxelwise p
.01

Cluster extent
30 voxels (size not stated)

Statistical details
Nature of control contrast not clear

Findings
- ↑ R insula
- ↑ R SMA/medial prefrontal
- ↑ R orbitofrontal
- ↑ R anterior cingulate
- ↓ L intraparietal sulcus
- ↓ L precuneus
- ↓ L posterior cingulate
- ↓ R dorsal precentral
- ↓ R precuneus

Findings notes
—

Notes
Excluded analyses
Conjunction analysis, because it collapsed across patients and controls

Richter et al. (2008)

Reference
Authors
Richter M, Miltner WH, Straube T

Title
Association between therapy outcome and right-hemispheric activation in chronic aphasia

Reference
Brain 2008; 131: 1391-1401

PMID
18349055

DOI
10.1093/brain/awn043

Participants
Language
German

Inclusion criteria
Main deficits in production rather than comprehension

Number of individuals with aphasia
16 (plus 8 excluded: 5 completed only one of the two sessions; 3 unable to perform the tasks)

Number of control participants
8

Were any of the participants included in any previous studies?
No

Is age reported for patients and controls, and matched?
Yes (mean 58.3 years; range 42-73 years)

Is sex reported for patients and controls, and matched?
Yes (males: 12; females: 4)

Is handedness reported for patients and controls, and matched?
Yes (right: 16; left: 0)

Is time post stroke onset reported and appropriate to the study design?
No (> 12 months; actual TPO not stated)

To what extent is the nature of aphasia characterized?
Comprehensive battery

Language evaluation
AAT, two subtests of ANELT

Aphasia severity
TT range 5-50

Aphasia type
7 anomic, 7 Broca’s, 2 global; it was an inclusion criterion that the main deficits were in production

First stroke only?
Not stated

Stroke type
Not stated

To what extent is the lesion distribution characterized?
Individual lesions
Lesion extent	Not stated
Lesion location	L
Participants notes	—

Imaging

- **Modality**: fMRI
- **Is the study cross-sectional or longitudinal?**: Longitudinal—chronic treatment
- **If longitudinal, at what time point(s) were imaging data acquired?**: T1: pre-treatment/chronic; T2: post-treatment, ~2 weeks later
- **If longitudinal, was there any intervention between the time points?**: CIAT, 3 hours/day, 10 days
- **Is the scanner described?**: Yes (Siemens Vision plus 1.5 Tesla)
- **Is the timing of stimulus presentation and image acquisition clearly described and appropriate?**: No (minor discrepancies in description of timing)

Design type	Block
Total images acquired	134

- **Are the imaging acquisition parameters, including coverage, adequately described and appropriate?**: Yes (whole brain)
- **Is preprocessing and intrasubject coregistration adequately described and appropriate?**: Yes
- **Is first level model fitting adequately described and appropriate?**: Yes
- **Is intersubject normalization adequately described and appropriate?**: No (lesion impact not addressed)

Conditions

- **Are the conditions clearly described?**: Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
reading words silently	Word (covert)	4	Yes	Unknown
word stem completion	Word (covert)	4	Yes	Unknown
rest	None	10 (?)	N/A	N/A

| Conditions notes | Preliminary data on the tasks suggests that patients would have been able to perform them, and patients were interviewed regarding the tasks after each fMRI session, however the outcomes of these interviews are not reported |

Contrasts

- **Are the contrasts clearly described?**: Yes

Contrast 1: reading words silently vs rest

Language condition	Reading words silently
Control condition	Rest
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable

| Behavioral data notes | — |
| Are control data reported in this paper or another that is referenced? | Somewhat |

279
Question	Answer
Does the contrast selectively activate plausible relevant language regions in the control group?	Unknown
Are activations lateralized in the control data?	Unknown
Control activation notes	Appears to be somewhat L-lateralized frontal, but not well visualized
Contrast notes	

Contrast 2: word stem completion vs rest

Language condition	Word stem completion
Control condition	Rest
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	
Are control data reported in this paper or another that is referenced?	Somewhat
Does the contrast selectively activate plausible relevant language regions in the control group?	Unknown
Are activations lateralized in the control data?	No
Control activation notes	Bilateral frontal; other regions not well visualized
Contrast notes	

Analyses

| Are the analyses clearly described? | No* (moderate limitation) (see specific limitation(s) below) |

Voxelwise analysis 1

First level contrast	Reading words silently vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T1 vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—

Type of analysis	Voxelwise
Search volume	R hemisphere
Correction for multiple comparisons	Mixed** (major limitation)
Software	BrainVoyager QX 1.7
Voxelwise p	R IFG/R insula ROI: .005; elsewhere: .001
Cluster extent	R IFG/R insula ROI: 0.108 cc; elsewhere: none
Statistical details	—
Findings	↑ R IFG
Findings notes	↑ R insula

Voxelwise analysis 2

| First level contrast | Word stem completion vs rest |
Voxelwise analysis 3

First level contrast: Reading words silently vs rest

Analysis class: Cross-sectional correlation with language or other measure

Group(s): Aphasia T1

Covariate: Subsequent Δ (T2 vs T1) overall language measure (composite measure of AAT spontaneous speech, token test, ANELT auditory comprehensibility, ANELT semantic comprehensibility)

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?: Somewhat (T1 behavioral measure should be included in model)

Is accuracy matched across the second level contrast?: Unknown, not reported

Is reaction time matched across the second level contrast?: Unknown, not reported

Behavioral data notes: —

Type of analysis: Voxelwise

Search volume: R hemisphere

Correction for multiple comparisons: Mixed** (major limitation)

Software: BrainVoyager QX 1.7

Voxelwise p: R IFG/R insula ROI: .005; elsewhere: .001

Cluster extent: R IFG/R insula ROI: 0.108 cc; elsewhere: none

Statistical details: —

Findings: ↑ R dorsal precentral

Findings notes: Increased activity correlated with more behavioral improvement

Voxelwise analysis 4

First level contrast: Word stem completion vs rest

Analysis class: Cross-sectional correlation with language or other measure

Group(s): Aphasia T1

Covariate: Subsequent Δ (T2 vs T1) overall language measure (composite measure of AAT spontaneous speech, token test, ANELT auditory comprehensibility, ANELT semantic comprehensibility)

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?: Somewhat (T1 behavioral measure should be included in model)

Is accuracy matched across the second level contrast?: Unknown, not reported

Behavioral data notes: —

Type of analysis: Voxelwise

Search volume: R hemisphere

Correction for multiple comparisons: No correction

Software: BrainVoyager QX 1.7

Voxelwise p: .05

Cluster extent: None

Statistical details: Nature of thresholding not entirely clear, so coded according to best guess

Findings: ↑ R IFG

Findings notes: Increased activity correlated with more behavioral improvement
Analysis	First level contrast	Analysis class	Group(s)	Covariate	Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Is accuracy matched across the second level contrast?	Is reaction time matched across the second level contrast?	Behavioral data notes	Type of analysis	Search volume	Correction for multiple comparisons	Software	Voxelwise p	Cluster extent	Statistical details	Findings	Findings notes
5	Reading words silently vs rest	Longitudinal change in aphasia	Aphasia T2 vs T1	—	Yes	Unknown, not reported	Unknown, not reported	—	Voxelwise	R hemisphere	Mixed** (major limitation)	BrainVoyager QX 1.7	.05	None	Nature of thresholding not entirely clear, so coded according to best guess	↑ R IFG	↑ R insula
6	Word stem completion vs rest	Longitudinal change in aphasia	Aphasia T2 vs T1	—	Yes	Unknown, not reported	Unknown, not reported	—	Voxelwise	R hemisphere	Mixed** (major limitation)	BrainVoyager QX 1.7	.05	None	—	None	—
Findings

Findings	None
Findings notes	—

ROI analysis 1

First level contrast	Reading words silently vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T1
Covariate	Subsequent Δ (T2 vs T1) overall language measure (composite measure of AAT spontaneous speech, token test, ANELT auditory comprehensibility, ANELT semantic comprehensibility)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (T1 behavioral measure should be included in model)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	L IFG/insula or L perilesional
How are the ROI(s) defined?	Peak activations in individual patients in L IFG/insula or L perilesional regions (somewhat unclear)
Correction for multiple comparisons	One only
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 2

First level contrast	Word stem completion vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T1
Covariate	Subsequent Δ (T2 vs T1) overall language measure (composite measure of AAT spontaneous speech, token test, ANELT auditory comprehensibility, ANELT semantic comprehensibility)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (T1 behavioral measure should be included in model)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	L IFG/insula or L perilesional
How are the ROI(s) defined?	Peak activations in individual patients in L IFG/insula or L perilesional regions (somewhat unclear)
Correction for multiple comparisons	One only
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 3

First level contrast	Reading words silently vs rest
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T2 vs T1
Covariate	Subsequent Δ (T2 vs T1) overall language measure (composite measure of AAT spontaneous speech, token test, ANELT auditory comprehensibility, ANELT semantic comprehensibility)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (T1 behavioral measure should be included in model)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	L IFG/insula or L perilesional
How are the ROI(s) defined?	Peak activations in individual patients in L IFG/insula or L perilesional regions (somewhat unclear)
Correction for multiple comparisons	One only
Statistical details	—
Findings	None
Findings notes	—
Covariate

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

- **Type of analysis**: Regions of interest (ROI)
- **ROI type**: Functional

How many ROIs are there?

- 4

What are the ROI(s)?

1. R IFG/insula
2. R precentral
3. R MTG
4. L IFG/insula or L perilesional

How are the ROI(s) defined?

Regions where T1 activation was correlated with subsequent improvement, along with the previously defined left hemisphere ROI

Correction for multiple comparisons

- No correction

Statistical details

- Circular because functional ROIs based on related contrast on same data

Findings

- ↓ R posterior MTG

Findings notes

Decreased activity over time correlated with more behavioral improvement

ROI analysis 4

First level contrast

- Word stem completion vs rest

Analysis class

- Longitudinal correlation with language or other measure

Group(s)

- Aphasia T2 vs T1

Covariate

- Δ overall language measure (composite measure of AAT spontaneous speech, token test, ANELT auditory comprehensibility, ANELT semantic comprehensibility)

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?

- Yes

Is accuracy matched across the second level contrast?

- Unknown, not reported

Is reaction time matched across the second level contrast?

- Unknown, not reported

Behavioral data notes

- **Type of analysis**: Regions of interest (ROI)
- **ROI type**: Functional

How many ROIs are there?

- 3

What are the ROI(s)?

1. (1, 2) two clusters within R IFG/insula ROI
2. (3) L IFG/insula or L perilesional

How are the ROI(s) defined?

Regions where T1 activation was correlated with subsequent improvement, along with the previously defined left hemisphere ROI

Correction for multiple comparisons

- No correction

Statistical details

- Circular because functional ROIs based on related contrast on same data

Findings

- ↓ R IFG
- ↓ R insula

Findings notes

Decreased activity over time correlated with more behavioral improvement

Notes

- Excluded analyses: —

de Boissezon et al. (2009)

Reference

- **Authors**: de Boissezon X, Marie N, Castel-Lacanal E, Marque P, Bezy C, Gros H, Lotterie JA, Cardebat D, Puel M, Demonet JF
| Title | Good recovery from aphasia is also supported by right basal ganglia: a longitudinal controlled PET study |
|-------|---|
| Reference | *Eur J Phys Rehabil Med* 2009; 45: 547-558 |
| PMID | 20032914 |
| DOI | N/A |

Participants

Language	French
Inclusion criteria	Only part of L MCA; able to perform word generation; no severe aphasia
Number of individuals with aphasia	13
Number of control participants	0
Were any of the participants included in any previous studies?	Yes (7 out of 13 patients appear to represent the same data reported in de Boissezon et al. (2005))
Is age reported for patients and controls, and matched?	Yes (range 31.2-74.2 years)
Is sex reported for patients and controls, and matched?	Yes (males: 12; females: 1)
Is handedness reported for patients and controls, and matched?	Yes (right: 13; left: 0)
Is time post stroke onset reported and appropriate to the study design?	No* (moderate limitation) (T1: mean 64 ± 32 days; T2: mean 11.8 ± 1.4 months; T1 varies considerably from early to late subacute)
To what extent is the nature of aphasia characterized?	Comprehensive battery
Language evaluation	Montreal-Toulouse Aphasia Battery
Aphasia severity	Not stated
Aphasia type	T1: 3 transcortical motor, 2 anomic, 2 Broca's, 2 transcortical sensory, 2 Wernicke's, 1 conduction, 1 agrammatic; T2: not stated
First stroke only?	Yes
Stroke type	Mixed etiologies
To what extent is the lesion distribution characterized?	Lesion overlay
Lesion extent	Range 0.9-43.4 cc
Lesion location	L MCA (7 subcortical, 6 cortical)
Participants notes	—

Imaging

Modality	PET (rCBF)
Is the study cross-sectional or longitudinal?	Longitudinal—recovery
If longitudinal, at what time point(s) were imaging data acquired?	T1: mean 64 ± 32 days; T2: mean 11.8 ± 1.4 months; T1 varies considerably from early to late subacute
If longitudinal, was there any intervention between the time points?	Community SLT; 45 minutes/day, 1-3 days/week
Is the scanner described?	Yes (CTI-Siemens ECAT EXACT HR+)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	PET
Total images acquired	6
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	No (lesion impact not addressed)
Imaging notes	—
Conditions

Are the conditions clearly described? Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
word generation	Word (overt)	4	Yes	Yes
rest	None	2	N/A	N/A

Conditions notes —

Contrasts

Are the contrasts clearly described? Yes

Contrast 1: word generation vs rest

Language condition	Word generation
Control condition	Rest
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable

Behavioral data notes —

Does the contrast selectively activate plausible relevant language regions in the control group? Somewhat

Are activations lateralized in the control data? No

Control activation notes Control data in Cardebat et al. (2003); bilateral fronto-temporal and some other regions per text

Contrast notes —

Analyses

Are the analyses clearly described? No* (moderate limitation) (see specific limitation(s) below)

Voxelwise analysis 1

First level contrast	Word generation vs rest
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia with "good recovery" (n = 6) T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (the "good recovery" group showed more improvement than the "poor recovery" group in terms of accuracy on the task, but the distinction was not borne out in behavioral data more generally)

Is accuracy matched across the second level contrast? Yes, matched

Is reaction time matched across the second level contrast? Unknown, not reported

Behavioral data notes P = 0.07

Type of analysis Voxelwise

Search volume Whole brain

Correction for multiple comparisons Clusterwise correction based on arbitrary cluster extent

Software SPM2

Voxelwise p .001
Findings

- **↑** L ventral precentral/inferior frontal junction
- **↑** L SMA/medial prefrontal
- **↑** L posterior STG/STS/MTG
- **↑** R dorsolateral prefrontal cortex
- **↑** R SMA/medial prefrontal
- **↑** R angular gyrus
- **↑** R occipital
- **↑** R thalamus
- **↑** R angular gyrus
- **↑** R occipital
- **↑** R thalamus
- **↑** R basal ganglia
- **↑** L cerebellum

Findings notes

Based on coordinates in Table 5

Voxelwise analysis 2

First level contrast	Word generation vs rest
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia with "poor recovery" (n = 7) T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (the "poor recovery" group showed less improvement than the "good recovery" group in terms of accuracy on the task, but the distinction was not borne out in behavioral data more generally)
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

—

Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on arbitrary cluster extent
Software	SPM2
Voxelwise p	.001
Cluster extent	100 voxels (size not stated)
Statistical details	Contrast may not have included resting condition; inappropriate masking

Voxelwise analysis 3

First level contrast	Word generation vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Word generation accuracy
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Accuracy is covariate
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

—

Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on arbitrary cluster extent
Software	SPM2
Voxelwise p	.01
Cluster extent	100 voxels (size not stated)
----------------	-------------------------------
Statistical details	Each patient's two sessions may be entered into the model without accounting for the dependence between them
Findings	↑ L supramarginal gyrus
	↑ L occipital
	↑ L anterior cingulate
	↑ R insula
	↑ R SMA/medial prefrontal
	↑ R posterior STG
	↑ R anterior temporal
	↑ R occipital
	↓ L cerebellum
Findings notes	—

Notes
Excluded analyses —

Fridriksson et al. (2009)

Reference

Authors	Fridriksson J, Baker JM, Moser D
——	——
Title	Cortical mapping of naming errors in aphasia
Reference	*Hum Brain Mapp* 2009; 30: 2487-2498
PMID	19294641
DOI	10.1002/hbm.20683

Participants

Language	US English
——	——
Inclusion criteria	—
Number of individuals with aphasia	11
Number of control participants	10
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (mean 58.8 ± 14.7 years, range 33-78 years)
Is sex reported for patients and controls, and matched?	Yes (males: 6; females: 5)
Is handedness reported for patients and controls, and matched?	No
Is time post stroke onset reported and appropriate to the study design?	Yes (range 10-101 months)
To what extent is the nature of aphasia characterized?	Comprehensive battery
Language evaluation	WAB; BNT
Aphasia severity	AQ range 31.8-91.5
Aphasia type	6 anomic, 4 Broca's, 1 transcortical motor; alternatively: 6 fluent, 5 non-fluent
First stroke only?	Not stated
Stroke type	Not stated
To what extent is the lesion distribution characterized?	Lesion overlay
Lesion extent	Range 3.0-342.2 cc
Lesion location	L MCA
Participants notes	—
Imaging

Question	Answer
Modality	fMRI
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired?	—
If longitudinal, was there any intervention between the time points?	—
Is the scanner described?	No (not stated)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No (timing of picture presentation not clearly explained)
Design type	Event-related
Total images acquired	120
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	Yes
Imaging notes	sparse sampling

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
picture naming	Word (overt)	80	Yes	No
viewing scrambled images	None	40	N/A	N/A

Contrasts

Contrast 1: picture naming (correct trials) vs viewing scrambled images

Language condition	Picture naming (correct trials)
Control condition	Viewing scrambled images

Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable

Behavioral data notes —

Are control data reported in this paper or another that is referenced? | Somewhat |

Does the contrast selectively activate plausible relevant language regions in the control group? | No |

Are activations lateralized in the control data? | Somewhat |

Control activation notes | Control data in Fridriksson et al. (2007); motor activations are prominent; there is some L frontal activation but little temporal activation in either hemisphere |

Contrast notes —
Contrast 2: picture naming (phonemic paraphasias) vs picture naming (correct trials)

Language condition	Picture naming (phonemic paraphasias)
Control condition	Picture naming (correct trials)
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	Yes
Is accuracy matched between the language and control tasks for all relevant groups?	No, by design
Is reaction time matched between the language and control tasks for all relevant groups?	Unknown, not reported
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	N/A
Does the contrast selectively activate plausible relevant language regions in the control group?	N/A
Are activations lateralized in the control data?	N/A
Control activation notes	Control data N/A because controls do not typically make errors
Contrast notes	—

Contrast 3: picture naming (semantic paraphasias) vs picture naming (correct trials)

Language condition	Picture naming (semantic paraphasias)
Control condition	Picture naming (correct trials)
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	Yes
Is accuracy matched between the language and control tasks for all relevant groups?	No, by design
Is reaction time matched between the language and control tasks for all relevant groups?	Unknown, not reported
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	N/A
Does the contrast selectively activate plausible relevant language regions in the control group?	N/A
Are activations lateralized in the control data?	N/A
Control activation notes	Control data N/A because controls do not typically make errors
Contrast notes	—

Analyses

| Are the analyses clearly described? | Yes |

Voxelwise analysis 1

First level contrast	Picture naming (correct trials) vs viewing scrambled images
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes

Type of analysis	Voxelwise
Search volume	Voxel levels across all patients
Correction for multiple comparisons	Clusterwise correction with GRFT and lenient voxelwise p
Software	FSL (FEAT 5.4)
Voxelwise p	~.01 (z > 2.3)
Cluster extent	Based on GRFT
Statistical details	
Findings	None
Findings notes	

Voxelwise analysis 2

First level contrast	Picture naming (phonemic paraphasias) vs picture naming (correct trials)
Analysis class	Cross-sectional performance-defined conditions
Group(s)	Aphasia
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, by design
Is reaction time matched across the second level contrast?	Unknown, not reported

Voxelwise analysis 3

First level contrast	Picture naming (semantic paraphasias) vs picture naming (correct trials)
Analysis class	Cross-sectional performance-defined conditions
Group(s)	Aphasia
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, by design
Is reaction time matched across the second level contrast?	Unknown, not reported

291
ROI analysis 1

First level contrast
Analysis class
Group(s)
Covariate
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?
Is accuracy matched across the second level contrast?
Is reaction time matched across the second level contrast?

Behavioral data notes
Type of analysis
ROI type
How many ROIs are there?
What are the ROI(s)?
How are the ROI(s) defined?
Correction for multiple comparisons

Statistical details
Findings
Findings notes

Notes
Excluded analyses

Menke et al. (2009)

Reference

Authors
Menke R, Meinzer M, Kugel H, Deppe M, Baumgärtner A, Schiffbauer H, Thomas M, Kramer K, Lohmann H, Flöel A, Knecht S, Breitenstein C

Title
Imaging short- and long-term training success in chronic aphasia

Reference
BMC Neurosci 2009; 10: 118

PMID
19772660

DOI
10.1186/1471-2202-10-118

Participants

Language
German

Inclusion criteria
Moderate to severe anomia

Number of individuals with aphasia
8

Number of control participants
9

Were any of the participants included in any previous studies?
No

Is age reported for patients and controls, and matched?
Yes (range 34-67 years)

Is sex reported for patients and controls, and matched?
Yes (males: 5; females: 3)

Is handedness reported for patients and controls, and matched?
Yes (right: 8; left: 0)

Is time post stroke onset reported and appropriate
Yes (range 1.8-6.9 years)
Question	Answer
To what extent is the nature of aphasia characterized?	
Language evaluation	AAT
Aphasia severity	6 moderate-severe, 2 severe
Aphasia type	7 Broca’s, 1 global
First stroke only?	Yes
Stroke type	Mixed etiologies
To what extent is the lesion distribution characterized?	Individual lesions
Lesion extent	Not stated
Lesion location	L
Participants notes	—

Imaging

Question	Answer
Modality	fMRI
Is the study cross-sectional or longitudinal?	Longitudinal—chronic treatment
If longitudinal, at what time point(s) were imaging data acquired?	T1: pre-treatment/chronic; T2: post-treatment, ~2 weeks later; T3: 8 months after the end of treatment
If longitudinal, was there any intervention between the time points?	Intensive anomia training; 3 hours/day; 2 weeks
Is the scanner described?	Yes (Philips Intera 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No (total images acquired not stated)
Design type	Event-related
Total images acquired	probably ~360, but not stated
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	Yes
Imaging notes	—

Conditions

Question	Answer
Are the conditions clearly described?	Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
picture naming (trained items)	Word (overt)	30	No	No
picture naming (untrained items)	Word (overt)	30	No	No
picture naming (already known items)	Word (overt)	30	Yes	Unknown
rest	None	implicit baseline	N/A	N/A

Conditions notes

Patients could not name trained and untrained items at baseline

Contrasts

Question	Answer
Are the contrasts clearly described?	Yes

Contrast 1: picture naming (trained items) vs rest

Question	Answer	
Language condition	Picture naming (trained items)	
Control condition	Rest	
Are the conditions matched for visual demands?	No	
Condition	Matched?	Notes
--------------------	----------	------------------------
Auditory demands	No	
Motor demands	No	
Cognitive/executive demands	No	
Language and control tasks	N/A, tasks not comparable	
Reaction time	N/A, tasks not comparable	

Behavioral data notes

- Are control data reported in this paper or another that is referenced? Somewhat
- Does the contrast selectively activate plausible relevant language regions in the control group? Unknown
- Are activations lateralized in the control data? Unknown

Control activation notes

- Table of coordinates only

Contrast notes

- Analyses
 - Are the analyses clearly described? No* (moderate limitation) (see specific limitation(s) below)

Voxelwise analysis 1

- First level contrast: Picture naming (trained items) vs rest
- Analysis class: Longitudinal correlation with language or other measure
- Group(s): Aphasia T2 vs T1
- Covariate: Subsequent outcome (T2) picture naming of trained items outside the scanner
- Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? No (the logic behind correlating activation changes and language outcome is unclear)
- Is accuracy matched across the second level contrast? Unknown, no test
- Is reaction time matched across the second level contrast? Unknown, not reported
- Behavioral data notes: —
- Type of analysis: Voxelwise
- Search volume: Whole brain
- Correction for multiple comparisons: Mixed** (major limitation)
There was an exclusive mask based on activation changes for untrained pictures, but it is unclear what the behavioral covariate was for the mask generation, nor were the regions in the mask reported.

Voxelwise analysis 2

First level contrast	Picture naming (untrained items) vs rest
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T3 vs T1
Covariate	Subsequent outcome (T3) picture naming of trained items outside the scanner
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	No (the logic behind correlating activation changes and language outcome is unclear)
Is accuracy matched across the second level contrast?	Unknown, no test
Is reaction time matched across the second level contrast?	Unknown, not reported

Notes

Excluded analyses

Specht et al. (2009)

Reference

Specht K, Zahn R, Willmes K, Weis S, Holtel C, Krause BJ, Herzog H, Huber W

Joint independent component analysis of structural and functional images reveals complex patterns of functional reorganisation in stroke aphasia

Neurolmage 2009; 47: 2057-2063
19524049
10.1016/j.neuroimage.2009.06.011
Participants

Language	German
Inclusion criteria	—
Number of individuals with aphasia	12
Number of control participants	12
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	No (mean 49 ± 14 years, range 30-71 years; controls were younger)
Is sex reported for patients and controls, and matched?	Yes (males: 9; females: 3)
Is handedness reported for patients and controls, and matched?	No
Is time post stroke onset reported and appropriate to the study design?	No (mean 1.9 ± 1.4 years, range 0.2-3.7 years; one non-chronic patient is included)
To what extent is the nature of aphasia characterized?	Comprehensive battery

Language evaluation

Aphasia severity	Not stated
Aphasia type	3 global, 3 Wernicke's, 2 amnestic, 2 Broca's, 2 unclassified
First stroke only?	Not stated
Stroke type	Not stated
To what extent is the lesion distribution characterized?	Lesion overlay

Participants notes

15 controls were scanned but 3 were randomly excluded to match group sizes for jICA.

Imaging

Modality	PET (rCBF)
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired?	—
If longitudinal, was there any intervention between the time points?	—
Is the scanner described?	Yes (CTI-Siemens HR+)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	PET
Total images acquired	9
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and inrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	Yes
Imaging notes	—

Conditions

Are the conditions clearly described? Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
lexical decision (words vs pseudowords)	Button press	3	Yes	Yes
lexical decision (words vs reversed foreign words)	Button press	3	Yes	Yes
Conditions notes

Behavioral data was lost, but it is clearly stated that all participants could perform all tasks above chance; the tone decision task is not described in sufficient detail, but since it is not used in any contrast of interest, the conditions are coded as being clearly described.

Contrasts

Are the contrasts clearly described? Yes

Contrast 1: lexical decision (words vs pseudowords) vs lexical decision (words vs reversed foreign words)

Language condition	Lexical decision (words vs pseudowords)
Control condition	Lexical decision (words vs reversed foreign words)
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	Yes
Is accuracy matched between the language and control tasks for all relevant groups?	Unknown, not reported
Is reaction time matched between the language and control tasks for all relevant groups?	Unknown, not reported
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible relevant language regions in the control group?	Somewhat
Are activations lateralized in the control data?	Yes
Control activation notes	The contrast activated a ventral part of the L IFG, along with L anterior cingulate and L DLPFC

Analyses

Are the analyses clearly described? Yes

Voxelwise analysis 1

First level contrast	Lexical decision (words vs pseudowords) vs lexical decision (words vs reversed foreign words)
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on arbitrary cluster extent
Software	SPM5
Voxelwise p	.001
Cluster extent	0.64 cc
Statistical details	—
Findings	↑ R posterior STG
Findings notes	Activation is 1105 voxels (> 8 cc) so quite convincing, but when the contrast was examined in the patient group, this region was not activated.
Complex analysis 1

First level contrast	Lexical decision (words vs pseudowords) vs lexical decision (words vs reversed foreign words)
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Complex
Statistical details	Joint ICA was performed on structural and functional contrast images using FIT 1.1b. Only 1 of the 8 components differed between groups in its loadings and was interpretable. The structural part of this component related to the patients' lesions. The functional part was thresholded at voxelwise p < .001 (CDT), arbitrary minimum cluster extent = 0.64 cc.
Findings	Other
Findings notes	The component that differed between groups showed more activation for patients than controls in the L anterior temporal lobe, L cerebellum, R posterior STG, R anterior temporal lobe, R posterior inferior temporal gyrus/fusiform gyrus, R cerebellum, and R brainstem, and less activation in patients than controls in the L IFG, L anterior temporal lobe, L occipital lobe, L anterior cingulate, L cerebellum, L thalamus, and R IFG.

Notes

Excluded analyses —

Warren et al. (2009)

Reference

Authors Warren JE, Crinion JT, Lambon Ralph MA, Wise RJ
Title Anterior temporal lobe connectivity correlates with functional outcome after aphasic stroke
Reference Brain 2009; 132: 3428-3442
PMID 19903736
DOI 10.1093/brain/awp270

Participants

Language UK English
Inclusion criteria Comprehension deficit per CAT and TROG (1 patient did not meet this criterion); anterolateral superior temporal cortex spared
Number of individuals with aphasia 16 (plus 8 excluded: lesions involved L anterolateral superior temporal cortex)
Number of control participants 11
Were any of the participants included in any previous studies? Yes (reanalysis of subset of dataset from Crinion et al. (2006))
Is age reported for patients and controls, and matched? No (mean 65.8 ± 2.0 SEM years; controls were younger)
Is sex reported for patients and controls, and matched? Yes (males: 11; females: 5)
Is handedness reported for patients and controls, and matched? Yes (right: 16; left: 0)
Is time post stroke onset reported and appropriate to the study design? No (mean 28.8 ± 9.2 months SEM; minimum time post onset not reported, but some patients in Crinion et al. (2006) were subacute)
To what extent is the nature of aphasia characterized? Not at all
Language evaluation	CAT, TROG
Aphasia severity	Not stated
Aphasia type	Not stated
First stroke only?	Yes
Stroke type	Ischemic only
To what extent is the lesion distribution characterized?	Lesion overlay
Lesion extent	Patients with positive anterior temporal interconnectivity: mean 93.3 ± 24.0 cc; patients with negative anterior temporal interconnectivity: mean 96.1 ± 27.6 cc
Lesion location	L not including anterolateral superior temporal cortex; maximal overlap in posterior superior temporal cortex
Participants notes	—

Imaging

Modality	PET (rCBF)
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired?	—
If longitudinal, was there any intervention between the time points?	—
Is the scanner described?	Yes (CTI-Siemens ECAT EXACT HR++/966 (10 patients and all controls) or GE Advance (6 patients))
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	PET
Total images acquired	12-16
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	Yes
Imaging notes	two different scanners used for patients, but not for controls

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
listening to narrative speech	None	6-8	N/A	N/A
listening to reversed speech	None	6-8	N/A	N/A

Contrasts

Contrast 1: listening to narrative speech vs listening to reversed speech
Language condition
Control condition
Are the conditions matched for visual demands?
Are the conditions matched for auditory demands?
Are the conditions matched for motor demands?
Are the conditions matched for cognitive/executive demands?
Behavioral data notes

- Are control data reported in this paper or another that is referenced? Somewhat
- Does the contrast selectively activate plausible relevant language regions in the control group? Yes
- Are activations lateralized in the control data? Somewhat

Control activation notes

- 11 participants; L-lateralized posterior temporal, bilateral anterior temporal, no frontal

Analyses

Analyses	Is the analyses clearly described?	Yes

ROI analysis 1

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task

ROI type

- Anatomical

How many ROIs are there?

- 6

What are the ROI(s)?

- (1) L anterior superior temporal cortex; (2) L basal temporal language area; (3) L IFG pars triangularis; (4-6) homotopic counterparts

How are the ROI(s) defined?

- ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6)

Correction for multiple comparisons

- No correction

Statistical details

- Somewhat circular because ROIs were defined only in regions where controls showed significant connectivity (even though ROIs were anatomical)

Findings

- None

Findings notes

- L IFG pars triangularis almost reached significance (p = .053) for more activation in patients

ROI analysis 2

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Auditory sentence comprehension
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task

ROI type

- Anatomical

How many ROIs are there?

- 6
What are the ROI(s)? | (1) L anterior superior temporal cortex; (2) L basal temporal language area; (3) L IFG pars triangularis; (4-6) homotopic counterparts
---|---
How are the ROI(s) defined? | ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6)
Correction for multiple comparisons | No correction
Statistical details | —
Findings | ↑ L anterior temporal
Findings notes | —

ROI analysis 3

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Written sentence comprehension
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	6
What are the ROI(s)?	(1) L anterior superior temporal cortex; (2) L basal temporal language area; (3) L IFG pars triangularis; (4-6) homotopic counterparts
How are the ROI(s) defined?	ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6)
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 4

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Auditory single word comprehension
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	6
What are the ROI(s)?	(1) L anterior superior temporal cortex; (2) L basal temporal language area; (3) L IFG pars triangularis; (4-6) homotopic counterparts
How are the ROI(s) defined?	ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6)
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	L anterior temporal p = .08
ROI analysis 5

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Auditory syntactic comprehension
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	6
What are the ROI(s)?	(1) L anterior superior temporal cortex; (2) L basal temporal language area; (3) L IFG pars triangularis; (4-6) homotopic counterparts
How are the ROI(s) defined?	ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6)
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	L anterior temporal p = .09

ROI analysis 6

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Connectivity between L and R ATL
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	2
What are the ROI(s)?	(1) L anterior superior temporal cortex; (2) R anterior superior temporal cortex
How are the ROI(s) defined?	ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6)
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 7

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Time post onset
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Contrast?	**N/A, no timeable task**
---	---
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	1
What are the ROI(s)?	**L anterior superior temporal cortex**
How are the ROI(s) defined?	ROIs were defined anatomically in regions that were functionally connected with **L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6)**
Correction for multiple comparisons	One only
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 8

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Lesion volume
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	1
What are the ROI(s)?	**L anterior superior temporal cortex**
How are the ROI(s) defined?	ROIs were defined anatomically in regions that were functionally connected with **L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6)**
Correction for multiple comparisons	One only
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 9

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia with positive anterior temporal interconnectivity (n = 8) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	6
What are the ROI(s)?	(1) **L anterior superior temporal cortex**; (2) **L basal temporal language area**; (3) **L IFG pars triangularis**; (4-6) homotopic counterparts
Question	Answer
---	--
How are the ROI(s) defined?	ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6)
Correction for multiple comparisons	No correction
Statistical details	Somewhat circular because ROIs were defined only in regions where controls showed significant connectivity (even though ROIs were anatomical); excluded 3 patients with L IFG damage
Findings	↑ L IFG pars triangularis
Findings notes	—

ROI analysis 10

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia with negative anterior temporal interconnectivity (n = 8) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	6
What are the ROI(s)?	(1) L anterior superior temporal cortex; (2) L basal temporal language area; (3) L IFG pars triangularis; (4-6) homotopic counterparts
How are the ROI(s) defined?	ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6)
Correction for multiple comparisons	No correction
Statistical details	Somewhat circular because ROIs were defined only in regions where controls showed significant connectivity (even though ROIs were anatomical); excluded 1 patient with L IFG damage
Findings	None
Findings notes	—

ROI analysis 11

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia with positive anterior temporal interconnectivity (n = 8) vs with negative anterior temporal interconnectivity (n = 8)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	6
What are the ROI(s)?	(1) L anterior superior temporal cortex; (2) L basal temporal language area; (3) L IFG pars triangularis; (4-6) homotopic counterparts
How are the ROI(s) defined?	ROIs were defined anatomically in regions that were functionally connected with L anterior superior temporal cortex in controls (1-4) or homotopic to these (5-6)
Correction for multiple comparisons	No correction
Statistical details

- Excluded 4 patients with L IFG damage

Findings

- ↑ L IFG pars triangularis

Complex notes

Complex analysis 1

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Lesion status of each voxel
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task

Behavioral data notes

Type of analysis

- Complex

Statistical details

- VLSM with FDR correction was used to identify any regions in which damage was predictive of L anterior temporal activation.

Findings

None

Findings notes

Notes

- Excluded analyses (1) all connectivity analyses because they were based on either both conditions (whole brain analysis) or only the narrative condition (ROI analyses), except where connectivity was investigated in relation to task-based activation differences; (2) correlation with age (covariate not language-related)

Chau et al. (2010)

Reference

- **Authors**: Chau AC, Fai Cheung RT, Jiang X, Au-Yeung PK, Li LS
- **Title**: An fMRI study showing the effect of acupuncture in chronic stage stroke patients with aphasia
- **Reference**: *J Acupunct Meridian Stud* 2010; 30: 53-57
- **PMID**: 20633517
- **DOI**: 10.1016/s2005-2901(10)60009-x

Participants

- **Language**: Cantonese
- **Inclusion criteria**: —
- **Number of individuals with aphasia**: 7
- **Number of control participants**: 0
- **Were any of the participants included in any previous studies?**: No
- **Is age reported for patients and controls, and matched?**: Yes (mean 63 ± 10 years, range 56-79 years)
- **Is sex reported for patients and controls, and matched?**: Yes (males: 5; females: 2)
- **Is handedness reported for patients and controls, and matched?**: Yes (right: 7; left: 0)
- **Is time post stroke onset reported and appropriate to the study design?**: Yes (mean 17 ± 8 months, range 8-28 months)
- **To what extent is the nature of aphasia**: Severity only
| Characterized? | Cantonese Aphasia Battery (modified WAB) |
|---------------|--|
| Aphasia severity | 5 patients had AQ > 75, 2 had AQ < 30 |
| Aphasia type | Not stated |
| First stroke only? | Yes |
| Stroke type | Ischemic only |
| To what extent is the lesion distribution characterized? | Location only |
| Lesion extent | Not stated |
| Lesion location | 3 L MCA, 2 L frontal, 2 L basal ganglia |

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Longitudinal—chronic treatment
If longitudinal, at what time point(s) were imaging data acquired?	T1: pre-treatment/chronic; T2: post-treatment, ~10 weeks later
If longitudinal, was there any intervention between the time points?	Acupuncture, 3 sessions/week, 8 weeks
Is the scanner described?	No (not stated)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No (inconsistent information regarding timing)
Design type	Block
Total images acquired	907
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	No (lesion impact not addressed)

Conditions

| Are the conditions clearly described? | No* (moderate limitation) (nature of questions not described in detail) |

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
answering questions from Cantonese Aphasia Battery	Button press	3	Unknown	Unknown
visual decision	Button press	3	Unknown	Unknown

Contrasts

| Are the contrasts clearly described? | Yes |

Contrast 1: answering questions from Cantonese Aphasia Battery vs visual decision

Language condition	Answering questions from Cantonese Aphasia Battery
Control condition	Visual decision
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups? | N/A, tasks not comparable
---|---
Is reaction time matched between the language and control tasks for all relevant groups? | N/A, tasks not comparable

Behavioral data notes
- Are control data reported in this paper or another that is referenced? | No
- Does the contrast selectively activate plausible relevant language regions in the control group? | Unknown
- Are activations lateralized in the control data? | Unknown

Control activation notes
- Contrast notes

Analyses
- Are the analyses clearly described? | No* (moderate limitation) (see specific limitation(s) below)

Voxelwise analysis 1

First level contrast	Answering questions from Cantonese Aphasia Battery vs visual decision
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T2 vs T1
Covariate	Δ WAB AQ
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (no treatment effect)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes
- Type of analysis | Voxelwise
- Search volume | Whole brain
- Correction for multiple comparisons | Unclear or not stated
- Software | SPM2
- Voxelwise p | —
- Cluster extent | —

Statistical details
- Stated to be corrected p < 0.05, but the nature of correction is not described; it is not entirely clear whether the functional measure was the difference between T1 and T2 (we assume it is); it is also not clear whether or not 2 patients with low AQ were excluded (we assume not)

Findings
- ↑ L posterior MTG

Findings notes
- Finding based on table; additional small activations are shown in figure but not table

Notes
- Excluded analyses | —

Fridriksson (2010)

Reference

Authors	Fridriksson J
Title	Preservation and modulation of specific left hemisphere regions is vital for treated recovery from anomia in stroke
Reference	J Neurosci 2010; 30: 11558-11564
PMID	20810877
DOI	10.1523/jneurosci.2227-10.2010
Participants

Description	Details
Language	US English
Inclusion criteria	—
Number of individuals with aphasia	19 (plus 7 excluded: 6 for making fewer than 5 correct responses in one or more sessions; 1 for excessive head motion)
Number of control participants	0
Were any of the participants included in any previous studies?	Yes (“several” patients overlapped with those reported by Fridriksson et al. (2009, 2010))
Is age reported for patients and controls, and matched?	Yes (mean 59.7 ± 12.3 years)
Is sex reported for patients and controls, and matched?	Yes (males: 12; females: 14)
Is handedness reported for patients and controls, and matched?	No
Is time post stroke onset reported and appropriate to the study design?	Yes (> 8 months; actual TPO not stated)
To what extent is the nature of aphasia characterized?	Severity and type
Language evaluation	WAB
Aphasia severity	AQ mean 60.4 ± 25.6 (including excluded patients)
Aphasia type	11 anomic, 10 Broca’s, 3 conduction, 1 transcortical motor, 1 Wernicke’s (including excluded patients)
First stroke only?	Yes
Stroke type	Ischemic only
To what extent is the lesion distribution characterized?	Lesion overlay
Lesion extent	Not stated
Lesion location	L MCA
Participants notes	Demographic data includes excluded patients

Imaging

Description	Details
Modality	fMRI
Is the study cross-sectional or longitudinal?	Longitudinal—chronic treatment
If longitudinal, at what time point(s) were imaging data acquired?	T1: pre-treatment/chronic; T2: post-treatment/~4 weeks later; note that there were two separate sessions per time point, as well as another two sessions midway through treatment that are not analyzed in this paper
If longitudinal, was there any intervention between the time points?	Anomia treatment using a cueing hierarchy, 3 hours/day, 5 days/week, 2 weeks, with a 1-week gap between the two weeks
Is the scanner described?	Yes (Siemens Trio 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No (timing of stimuli within the silent periods is unclear)
Design type	Event-related
Total images acquired	120
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	Yes
Imaging notes	sparse sampling

Conditions

Description	Details			
Are the conditions clearly described?	Yes			
Condition	Response type	Repetitions	All groups could do?	All individuals could do?
-------------------------------	-------------------	-------------	----------------------	--------------------------
picture naming	Word (overt)	80	Yes	Unknown
viewing abstract pictures	None	40	N/A	N/A

Conditions notes: Patients with fewer than 5 correct responses in any session were excluded; there were probably some patients who made 5 or more correct responses but less than 10%, but this is not reported.

Contrasts

Are the contrasts clearly described? Yes

Contrast 1: picture naming (correct trials) vs viewing abstract pictures

Language condition	Picture naming (correct trials)
Control condition	Viewing abstract pictures
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	—
Does the contrast selectively activate plausible relevant language regions in the control group?	No
Are activations lateralized in the control data?	Somewhat
Control activation notes	Control data in Fridriksson et al. (2007); motor activations are prominent; there is some L frontal activation but little temporal activation in either hemisphere.
Contrast notes	—

Analyses

Are the analyses clearly described? Yes

Voxelwise analysis 1

First level contrast	Picture naming (correct trials) vs viewing abstract pictures
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T2 vs T1
Covariate	Δ picture naming accuracy
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction with with GRFT and lenient voxelwise p
Software	FSL 4.1
Voxelwise p	~.01 (z > 2.3)
Cluster extent	Based on GRFT
Statistical details	—
Findings	↑ L dorsolateral prefrontal cortex
Findings notes	Activated regions were on the borders on the lesion distribution in the 19 included patients
----------------	--

Notes

Excluded analyses

Fridriksson et al. (2010)

Reference

Authors	Fridriksson J, Bonilha L, Baker JM, Moser D, Rorden C
Title	Activity in preserved left hemisphere regions predicts anemia severity in aphasia
Reference	Cereb Cortex 2010; 20: 1013-1019
PMID	19687294
DOI	10.1093/cercor/bhp160

Participants

Language	US English
Inclusion criteria	—
Number of individuals with aphasia	15
Number of control participants	9
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (mean 61.9 years, range 41-81 years)
Is sex reported for patients and controls, and matched?	No (males: 7; females: 8; not stated for controls)
Is handedness reported for patients and controls, and matched?	No
Is time post stroke onset reported and appropriate to the study design?	Yes (mean 29.7 months, > 6 months)
To what extent is the nature of aphasia characterized?	Severity and type
Language evaluation	WAB
Aphasia severity	AQ mean 77.1, range 47.1-93.7
Aphasia type	10 anomic, 3 Broca’s, 2 conduction
First stroke only?	Yes
Stroke type	Ischemic only
To what extent is the lesion distribution characterized?	Lesion overlay
Lesion extent	Not stated
Lesion location	L MCA
Participants notes	—

Imaging

Modality	fMRI	
Is the study cross-sectional or longitudinal?	Cross-sectional	
If longitudinal, at what time point(s) were imaging data acquired?	—	
If longitudinal, was there any intervention between	—	
the time points?	Is the scanner described?	Yes (Siemens Trio 3 Tesla)
-----------------	--------------------------	--------------------------
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No (exact timing of picture presentation not specified)	
Design type	Event-related	
Total images acquired	120	
Are the imaging parameters, including coverage, adequately described and appropriate?	Yes (whole brain)	
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes	
Is first level model fitting adequately described and appropriate?	Yes	
Is intersubject normalization adequately described and appropriate?	Yes	
Imaging notes	sparse sampling	

Conditions

| Are the conditions clearly described? | Yes |

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
picture naming	Word (overt)	80	Yes	Yes
viewing abstract pictures	None	40	N/A	N/A

| Conditions notes | — |

Contrasts

| Are the contrasts clearly described? | Yes |

Contrast 1: picture naming (correct trials) vs viewing abstract pictures

Language condition	Picture naming (correct trials)
Control condition	Viewing abstract pictures
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	Somewhat
Does the contrast selectively activate plausible relevant language regions in the control group?	Somewhat
Are activations lateralized in the control data?	Somewhat
Control activation notes	L-lateralized frontal and temporal activations, but also bilateral visual, motor and auditory
Contrast notes	—

Analyses

| Are the analyses clearly described? | Yes |

Voxelwise analysis 1

First level contrast	Picture naming (correct trials) vs viewing abstract pictures
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Picture naming accuracy
-----------	-------------------------
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

Type of analysis | Voxelwise |

Search volume | Whole brain |

Correction for multiple comparisons | Clusterwise correction with GRFT and lenient voxelwise p |

Software | FSL 4.1 |

Voxelwise p | ~.02 (z > 2) |

Cluster extent | Based on GRFT |

Statistical details |

Findings | ↑ L IFG pars orbitalis |

| ↑ L occipital |

| ↑ L anterior cingulate |

Findings notes | Greater activation was associated with better picture naming; L IFG pars orbitalis activation classified as middle frontal gyrus in the paper, but coordinates suggest otherwise |

Voxelwise analysis 2

First level contrast	Picture naming (correct trials) vs viewing abstract pictures
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes |

Type of analysis | Voxelwise |

Search volume | Whole brain |

Correction for multiple comparisons | Clusterwise correction with GRFT and lenient voxelwise p |

Software | FSL 4.1 |

Voxelwise p | ~.02 (z > 2) |

Cluster extent | Based on GRFT |

Statistical details |

Findings | None |

Findings notes |

ROI analysis 1

First level contrast	Picture naming (correct trials) vs viewing abstract pictures
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Picture naming accuracy
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes |

Type of analysis | Region of interest (ROI) |
ROI type	Functional
How many ROIs are there? | 1
What are the ROI(s)? | A single ROI comprising 3 regions where activation in patients was correlated with picture naming accuracy: the L IFG pars orbitalis, occipital lobe, and anterior cingulate
How are the ROI(s) defined? | Based on SPM analysis 1
Correction for multiple comparisons | One only
Statistical details | The purpose of this analysis was to determine whether these regions were recruited in the patients with better naming, or not activated in the patients with worse naming, relative to the control mean
Findings | Other
Findings notes | Patients with better naming showed greater activation than controls, while the patients with poorer naming showed less activation than controls.

Complex analysis 1

First level contrast	Picture naming (correct trials) vs viewing abstract pictures
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Lesion status of each voxel
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Complex
Statistical details	VLSM was used to identify any regions in which damage was predictive of activation in the regions identified in SPM analysis 1, considered as a single ROI. There was no correction for multiple comparisons, and the analysis is appropriately presented as exploratory.
Findings	Other
Findings notes	Only in the L IFG pars opercularis was damage predictive of reduced activation in the potentially compensatory network.

Notes
Excluded analyses | — |

Sharp et al. (2010)

Reference
Authors | Sharp DJ, Turkheimer FE, Bose SK, Scott SK, Wise RJ |
Title | Increased frontoparietal integration after stroke and cognitive recovery |
Reference | Ann Neurol 2010; 68: 753-756 |
PMID | 20687116 |
DOI | 10.1002/ana.21866 |

Participants
Language | UK English |
Inclusion criteria | Lesion in vicinity of L STG; no extensive frontal damage; no inferior temporal damage; able to perform tasks |
Number of individuals with aphasia | 9 |
Number of control participants | 18 |
Were any of the participants included in any previous studies? | Yes (additional analysis of same dataset as Sharp et al. (2004)) |
Is age reported for patients and controls, and matched? Yes (median 58 years, range 39-72 years)

Is sex reported for patients and controls, and matched? Yes (males: 8; females: 1)

Is handedness reported for patients and controls, and matched? Yes (right: 9; left: 0)

Is time post stroke onset reported and appropriate to the study design? Yes (mean 45 months, range 14-145 months)

To what extent is the nature of aphasia characterized? Severity only

Language evaluation Subtests from CAT, subtests from PALPA, Action for dysphasic adults, TROG, PPT

Aphasia severity Mild

Aphasia type Not stated

First stroke only? Yes

Stroke type Not stated

To what extent is the lesion distribution characterized? Lesion overlay

Lesion extent Not stated

Lesion location Lesion in vicinity of L STG; no extensive frontal damage; no inferior temporal damage

Participants notes —

Imaging

Modality PET (rCBF)

Is the study cross-sectional or longitudinal? Cross-sectional

If longitudinal, at what time point(s) were imaging data acquired? —

If longitudinal, was there any intervention between the time points? —

Is the scanner described? Yes (Siemens HR++ 966)

Is the timing of stimulus presentation and image acquisition clearly described and appropriate? Yes

Design type PET

Total images acquired 16

Are the imaging acquisition parameters, including coverage, adequately described and appropriate? Yes (whole brain)

Is preprocessing and intrasubject coregistration adequately described and appropriate? Yes

Is first level model fitting adequately described and appropriate? Yes

Is intersubject normalization adequately described and appropriate? Yes

Imaging notes —

Conditions

Are the conditions clearly described? Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
semantic decision	Word (overt)	aphasia: 8; control: 4	Yes	Yes
syllable count decision	Word (overt)	aphasia: 8; control: 4	Yes	**Unknown**
semantic decision (noise vocoded) (control only)	Word (overt)	4 (control)	Yes	Yes
syllable count decision (noise vocoded) (control only)	Word (overt)	4 (control)	Yes	Yes

Conditions notes Seems the response was a spoken word, but this is not stated explicitly; assuming all
individuals could do the semantic task because this was an inclusion criterion and behavioral data (PPT) supports, but not sure about the phonological task

Contrasts

| Are the contrasts clearly described? | Yes |

Contrast 1: semantic decision (clear in patients; average of clear and noise vocoded in controls) vs syllable count decision (clear in patients; average of clear and noise vocoded in controls)

Language condition	Semantic decision (clear in patients; average of clear and noise vocoded in controls)
Control condition	Syllable count decision (clear in patients; average of clear and noise vocoded in controls)
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	Yes
Is accuracy matched between the language and control tasks for all relevant groups?	No, different
Is reaction time matched between the language and control tasks for all relevant groups?	No, different
Behavioral data notes	Significant differences per Sharp et al. (2004)
Does the contrast selectively activate plausible relevant language regions in the control group?	Somewhat
Are activations lateralized in the control data?	Yes
Control activation notes	Not stated exactly what contrast was used in controls

Analyses

| Are the analyses clearly described? | Yes |

ROI analysis 1

First level contrast	Semantic decision (clear in patients; average of clear and noise vocoded in controls) vs syllable count decision (clear in patients; average of clear and noise vocoded in controls)
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, but attempt made
Is reaction time matched across the second level contrast?	Appear similar
Behavioral data notes	Accuracy and RT were not significantly different for the semantic task; statistics are not reported for the syllable counting task, but the data provided suggest that accuracy was probably not matched, while RT probably was
Type of analysis	Regions of interest (ROI)
ROI type	Other
How many ROIs are there?	12
What are the ROI(s)?	Functional connectivity between pairs of spared nodes of the L hemisphere semantic network and R hemisphere homotopic regions: (1) L SFG-L AG; (2) L SFG-L IFG; (3) L SFG-L IT; (4) L AG-L IFG; (5) L AG-L IT; (6) L IFG-L IT; (7-12) homotopic counterparts
How are the ROI(s) defined?	Partial correlations between nodes
Correction for multiple comparisons	No direct comparison
Statistical details	—
Findings	Other
Patients showed greater connectivity between L SFG and L AG than controls while performing the semantic task; this was not the case for the syllable counting task, however connectivity during performance of the two tasks was not compared directly.

Excluded analyses

(1) correlations between connection strength of AG-IT and language performance, because there was no functional control condition; (2) controls showed greater connectivity between L SFG and L AG while performing the semantic task with noise vocoded speech relative to clear speech, supporting the interpretation that greater connectivity reflects effortful processing.

Thompson et al. (2010)

Reference

Authors
Thompson CK, den Ouden DB, Bonakdarpour B, Garibaldi K, Parrish TB

Title
Neural plasticity and treatment-induced recovery of sentence processing in agrammatism

Reference
Neuropsychologia 2010; 48: 3211-3227

PMID
20603138

DOI
10.1016/j.neuropsychologia.2010.06.036

Participants

Language
US English

Inclusion criteria
Agrammatic

Number of individuals with aphasia
6

Number of control participants
12

Were any of the participants included in any previous studies?
No

Is age reported for patients and controls, and matched?
Yes (mean 54 years, range 38-66 years)

Is sex reported for patients and controls, and matched?
Yes (males: 5; females: 1)

Is handedness reported for patients and controls, and matched?
Yes (right: 6; left: 0)

Is time post stroke onset reported and appropriate to the study design?
Yes (range 6-146 months)

To what extent is the nature of aphasia characterized?
Comprehensive battery

Language evaluation
WAB, NAVS, narrative language sample

Aphasia severity
AQ range 66.8-85.0

Aphasia type
All agrammatic; per WAB scores provided: 3 Broca’s, 3 unclassified

First stroke only?
Yes

Stroke type
Not stated

To what extent is the lesion distribution characterized?
Individual lesions

Lesion extent
Not stated

Lesion location
5 L MCA, 1 R MCA with aphasia

Participants notes
—

Imaging

Modality
fMRI

Is the study cross-sectional or longitudinal?
Longitudinal—chronic treatment

If longitudinal, at what time point(s) were imaging data acquired?
T1: pre-treatment/chronic; T2: post-treatment, 9-15 weeks later

If longitudinal, was there any intervention between
Treatment of underlying forms
the time points?

Is the scanner described?	Yes (Siemens Trio 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No (total images acquired not stated)

Design type Event-related

| Total images acquired | not stated |

Are the imaging acquisition parameters, including coverage, adequately described and appropriate? | Yes (whole brain) |

Are preprocessing and intrasubject coregistration adequately described and appropriate? | Yes |

Is first level model fitting adequately described and appropriate? | Yes |

Is intersubject normalization adequately described and appropriate? | Yes |

Imaging notes —

Conditions

Are the conditions clearly described? Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
auditory sentence-picture matching (auditory; object cleft)	Button press	60	No	No
auditory sentence-picture matching (subject cleft)	Button press	60	Yes	Yes
auditory sentence-picture matching (simple past tense active)	Button press	60	Yes	No
rest	None	implicit baseline	N/A	N/A

Conditions notes —

Contrasts

Are the contrasts clearly described? Yes

Contrast 1: auditory sentence-picture matching (all three sentence types) vs rest

Language condition	Auditory sentence-picture matching (all three sentence types)
Control condition	Rest
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable

Behavioral data notes —

Are control data reported in this paper or another that is referenced? No

Does the contrast selectively activate plausible relevant language regions in the control group? Unknown

Are activations lateralized in the control data? Unknown

Control activation notes —

Contrast notes —

Analyses

Are the analyses clearly described? Yes
ROI analysis 1

First level contrast	Auditory sentence-picture matching (all three sentence types) vs rest
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Appear similar
Is reaction time matched across the second level contrast?	Appear similar

Behavioral data notes —

Type of analysis Regions of interest (ROI)

ROI type Anatomical

How many ROIs are there? 18

What are the ROI(s)? (1) L BA 7; (2) L BA 9; (3) L BA 13; (4) L BA 21; (5) L BA 22; (6) L BA 39; (7) L BA 40; (8) L BA 44; (9) L BA 45; (10-18) homotopic counterparts

How are the ROI(s) defined? WFU pickatlas; proportion of patients who showed increases and decreases in (parts of) each ROI in individual fixed effects SPM analyses

Correction for multiple comparisons No correction

Statistical details —

Findings ↑ L angular gyrus
 ↑ L superior parietal
 ↑ L mid temporal
 ↑ R supramarginal gyrus
 ↑ R superior parietal
 ↓ L insula
 ↓ L posterior STG

Findings notes These are the regions involved in what the authors interpret as a "general shift"

Notes

Excluded analyses Individual patient analyses

Tyler et al. (2010)

Reference

Authors Tyler LK, Wright P, Randall B, Marslen-Wilson WD, Stamatakis EA
Title Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?
Reference *Brain* 2010; 133: 3396-3408
PMID 20870779
DOI 10.1093/brain/awq262

Participants

Language UK English

Inclusion criteria —

Number of individuals with aphasia 14
Number of control participants 10
Were any of the participants included in any previous studies? No
Is age reported for patients and controls, and matched? Yes (mean 54 years, range 33-76 years)
Is sex reported for patients and controls, and Yes (males: 11; females: 3)
Question	Answer
Is handedness reported for patients and controls, and matched?	Yes (right: 14; left: 0)
Is time post stroke onset reported and appropriate to the study design?	Yes (mean 7 years, range 1.4-37.3 years)
To what extent is the nature of aphasia characterized?	Not at all
Language evaluation	Sentence-picture matching, lexical decision, phonological similarity, word repetition, sentence repetition, morphological similarity, semantic categorization, sentence acceptability
Aphasia severity	Not stated
Aphasia type	Not stated
First stroke only?	Not stated
Stroke type	Mixed etiologies
To what extent is the lesion distribution characterized?	Lesion overlay
Lesion extent	Not stated
Lesion location	L
Participants notes	2 of the 14 patients were not stroke, but were post resective surgery

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired?	—
If longitudinal, was there any intervention between the time points?	—
Is the scanner described?	Yes (Siemens Trio 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No* (moderate limitation) (there was only one block per condition per run, so condition could be confounded with low frequency drift; also, the length of the sentences is not stated so it is unclear how well the HRF peak aligns with the sparse acquisitions)
Design type	Block
Total images acquired	69
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	Yes
Imaging notes	sparse sampling

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
listening to normal sentences and detecting a target word	Button press	2	Yes	Unknown
listening to grammatical but meaningless sentences and detecting a target word	Button press	2	Yes	Unknown
listening to scrambled sentences and detecting a target word	Button press	2	Yes	Unknown
listening to "musical rain" and detecting a period of white noise rest	Button press	2	Yes	Unknown
	None	2	N/A	N/A
Conditions notes
Auditory presentation; target detection task with early and late targets; 12-15 trials per block with single sparse acquisition each, but only one block per run, in fixed order; task can apparently be performed by patients with brain damage, but accuracy is not reported.

Contrasts

Are the contrasts clearly described? Yes

Contrast 1: listening to grammatical but meaningless sentences and detecting a target word vs listening to scrambled sentences and detecting a target word

Language condition	Listening to grammatical but meaningless sentences and detecting a target word
Control condition	Listening to scrambled sentences and detecting a target word

Are the conditions matched for visual demands? Yes
Are the conditions matched for auditory demands? Yes
Are the conditions matched for motor demands? Yes
Are the conditions matched for cognitive/executive demands? Yes

Is accuracy matched between the language and control tasks for all relevant groups? Unknown, not reported
Is reaction time matched between the language and control tasks for all relevant groups? Appear similar

Behavioral data notes
There appears to be a small RT difference (control condition slower)

Are control data reported in this paper or another that is referenced? Somewhat

Does the contrast selectively activate plausible relevant language regions in the control group? Yes
Are activations lateralized in the control data? No

Contrast notes
The contrast is intended to identify regions involved in syntactic processing, however it seems possible that there are semantic differences between these conditions also

Analyses

Are the analyses clearly described? Yes

Voxelwise analysis 1

First level contrast	Listening to grammatical but meaningless sentences and detecting a target word vs listening to scrambled sentences and detecting a target word
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Appear similar

Behavioral data notes
The two groups showed similar differences between RTs in the two conditions of the contrast

Type of analysis Voxelwise
Search volume Whole brain

Correction for multiple comparisons No direct comparison

Software SPM5
Voxelwise p —
Cluster extent —

Statistical details Qualitative comparison on pp. 3402-3; each group is presented at voxelwise p < .005 (CDT), cluster-corrected p < .05 with GRFT

Findings
† R IFG pars triangularis
| Findings notes | ↑ R IFG pars orbitalis
| | ↓ L posterior MTG
| Several other potential differences are apparent in the figure, but only the differences tabulated are interpreted in the text |

ROI analysis 1

First level contrast	Listening to grammatical but meaningless sentences and detecting a target word vs listening to scrambled sentences and detecting a target word
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	RT difference between early and late targets on grammatical but meaningless sentences (a measure of syntactic processing)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Analyses focuses on RT differences between early and late targets, not on mean RT per se
Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	L IFG pars triangularis and orbitalis
How are the ROI(s) defined?	Activated for the same contrast
Correction for multiple comparisons	One only
Statistical details	—
Findings	↑ L IFG pars triangularis
	↑ L IFG pars orbitalis
Findings notes	L IFG showed more activation in patients that had a larger target position effect (indicative of better syntactic processing)

ROI analysis 2

First level contrast	Listening to grammatical but meaningless sentences and detecting a target word vs listening to scrambled sentences and detecting a target word
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	RT difference between early and late targets on normal sentences
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	L IFG pars triangularis and orbitalis
How are the ROI(s) defined?	Activated for the same contrast
Correction for multiple comparisons	One only
Statistical details	—
Findings	—
Findings notes	—

ROI analysis 3

First level contrast	Listening to grammatical but meaningless sentences and detecting a target word vs listening to scrambled sentences and detecting a target word
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	RT difference between early and late targets on grammatical but meaningless sentences
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	L IFG pars triangularis and orbitalis
How are the ROI(s) defined?	Activated for the same contrast
Correction for multiple comparisons	One only
Statistical details	—
Findings	—
Findings notes	—
ROI analysis 4

First level contrast	Listening to grammatical but meaningless sentences and detecting a target word vs listening to scrambled sentences and detecting a target word
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	RT difference between early and late targets on scrambled sentences
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	**Unknown, not reported**
Is reaction time matched across the second level contrast?	**Unknown, not reported**
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	L IFG pars triangularis and orbitalis
How are the ROI(s) defined?	Activated for the same contrast
Correction for multiple comparisons	One only
Statistical details	—
Findings	None
Findings notes	No correlation (p = .57)

ROI analysis 5

First level contrast	Listening to grammatical but meaningless sentences and detecting a target word vs listening to scrambled sentences and detecting a target word
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Syntactic processing (presumably the target position effect, though this is not stated)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	**Unknown, not reported**
Is reaction time matched across the second level contrast?	**Unknown, not reported**
Behavioral data notes

Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	R IFG pars triangularis and orbitalis
How are the ROI(s) defined?	Activated for the same contrast
Correction for multiple comparisons	One only
Statistical details	—
Findings	None
Findings notes	No correlation (p = .41)

Complex analysis 1

First level contrast	Listening to grammatical but meaningless sentences and detecting a target word vs listening to scrambled sentences and detecting a target word
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Lesion status of each voxel
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

Type of analysis	Complex
Statistical details	VBM was used to identify any regions where damage was predictive of activation in the L IFG pars triangularis and orbitalis. Tissue integrity was quantified in terms of T1 signal. Clusterwise correction was used, which is not appropriate for VBM.
Findings	Other
Findings notes	Only in the L IFG itself was damage predictive of reduced activation in the L IFG.

Notes

- Excluded analyses: (1) patients, unlike controls, showed a correlation between R IFG and R MTG activity, but the authors do not make much of this, and there is no direct comparison was reported to controls; (2) a nonsignificant correlation between L pMTG activation in patients (lacking at the group level) and tissue integrity in that same region.

van Oers et al. (2010)

Reference

Authors	van Oers CA, Vink M, van Zandvoort MJ, van der Worp HB, de Haan EH, Kappelle LJ, Ramsey NF, Dijkhuizen RM
Title	Contribution of the left and right inferior frontal gyrus in recovery from aphasia: a functional MRI study in stroke patients with preserved hemodynamic responsiveness
Reference	NeuroImage 2010; 49: 885-893
PMID	19733673
DOI	10.1016/j.neuroimage.2009.08.057

Participants

Language	Dutch
Inclusion criteria	MCA; mRS < 3; able to perform at least 2 out of the 3 tasks
Number of individuals with aphasia	13
Number of control participants	13
Were any of the participants included in any previous studies? No
Is age reported for patients and controls, and matched? Yes (mean 53 ± 14 years, range 29-74 years)
Is sex reported for patients and controls, and matched? Yes (males: 4; females: 9)
Is handedness reported for patients and controls, and matched? No (right: 13; left: 0; not stated for controls)
Is time post stroke onset reported and appropriate to the study design? Yes (range 1.3-4.7 years)
To what extent is the nature of aphasia characterized? Comprehensive battery
Language evaluation AAT, BNT, TT
Aphasia severity 4 moderate, 4 severe, 3 recovered, 2 mild; all had aphasia initially
Aphasia type 5 anomic, 4 Broca’s, 3 recovered, 1 Wernicke’s
First stroke only? Yes
Stroke type Ischemic only
To what extent is the lesion distribution characterized? Individual lesions
Lesion extent Range 6.0-167.3 cc
Lesion location L MCA
Participants notes —

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired?	Behavioral data (TT and a naming measure) were also acquired subacutely (mean 26 ± 18 days, range 5-56 days)
If longitudinal, was there any intervention between the time points?	—
Is the scanner described?	Yes (Philips Achieva 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	Block
Total images acquired	3036
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	Yes
Imaging notes	Breath holding scan also done to measure hemodynamic responsiveness

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
written word-picture matching	Button press	6	Yes	Yes
semantic decision	Button press	6	Yes	Yes
verb generation	Word (covert)	8	Yes	Yes
visual decision	Button press	12	Unknown	Unknown
rest	None	20	N/A	N/A

Conditions notes
Patients who could not do tasks were excluded from analyses of those tasks (1 patient from...
Contrasts

Are the contrasts clearly described? No (see specific limitation(s) below)

Contrast 1: written word-picture matching vs visual decision

Language condition	Written word-picture matching
Control condition	Visual decision
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	Unknown, not reported
Is reaction time matched between the language and control tasks for all relevant groups?	Unknown, not reported
Behavioral data notes	Accuracy not reported for control condition
Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible relevant language regions in the control group?	Somewhat
Are activations lateralized in the control data?	Somewhat
Control activation notes	—
Contrast notes	Not clearly stated that language tasks were contrasted only with arrow decision task and not rest for the first two contrasts, but this can be inferred

Contrast 2: semantic decision vs visual decision

Language condition	Semantic decision
Control condition	Visual decision
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	Unknown, not reported
Is reaction time matched between the language and control tasks for all relevant groups?	Unknown, not reported
Behavioral data notes	Accuracy not reported for control condition
Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible relevant language regions in the control group?	Somewhat
Are activations lateralized in the control data?	Somewhat
Control activation notes	—
Contrast notes	Not clearly stated that language tasks were contrasted only with arrow decision task and not rest for the first two contrasts, but this can be inferred

Contrast 3: verb generation vs rest

Language condition	Verb generation
Control condition	Rest
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	Yes
Question	Answer
---	-------------------------
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible relevant language regions in the control group?	Somewhat
Are activations lateralized in the control data?	Somewhat
Control activation notes	—

Analyses

Question	Answer
Are the analyses clearly described?	No (see specific limitation(s) below)

ROI analysis 1

First level contrast	Written word-picture matching vs visual decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Accuracy not reported for control condition
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	7
What are the ROI(s)?	(1) L anterior language region (IFG); (2) L posterior language region (AG, SMG, STG, MTG); (3) R anterior language region (IFG); (4) R posterior language region (AG, SMG, STG, MTG); (5) frontal LI; (6) temporal LI; (7) whole network LI
How are the ROI(s) defined?	WFU pickatlas
Correction for multiple comparisons	No correction
Statistical details	—
Findings	↓ L IFG ↓ L (language network) ↓ L (frontal)
Findings notes	—

ROI analysis 2

First level contrast	Semantic decision vs visual decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

326
Behavioral data notes

Accuracy not reported for control condition

Type of analysis

Regions of interest (ROI)

ROI type

Mixed

How many ROIs are there?

7

What are the ROI(s)?

1. L anterior language region (IFG); 2. L posterior language region (AG, SMG, STG, MTG); 3. R anterior language region (IFG); 4. R posterior language region (AG, SMG, STG, MTG); 5. frontal LI; 6. temporal LI; 7. whole network LI

How are the ROI(s) defined?

WFU pickatlas

Correction for multiple comparisons

No correction

Statistical details

—

Findings

1. L IFG
2. LI (language network)
3. LI (frontal)

Findings notes

—

ROI analysis 3

Verb generation vs rest

Cross-sectional aphasia vs control

Aphasia vs control

—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?

Yes

Is accuracy matched across the second level contrast?

Unknown, not reported

Is reaction time matched across the second level contrast?

Unknown, not reported

Behavioral data notes

—

Type of analysis

Regions of interest (ROI)

ROI type

Mixed

How many ROIs are there?

7

What are the ROI(s)?

1. L anterior language region (IFG); 2. L posterior language region (AG, SMG, STG, MTG); 3. R anterior language region (IFG); 4. R posterior language region (AG, SMG, STG, MTG); 5. frontal LI; 6. temporal LI; 7. whole network LI

How are the ROI(s) defined?

WFU pickatlas

Correction for multiple comparisons

No correction

Statistical details

—

Findings

1. L IFG
2. LI (language network)
3. LI (frontal)

Findings notes

—

ROI analysis 4

Written word-picture matching vs visual decision

Cross-sectional correlation with language or other measure

Picture-word matching accuracy

Aphasia

—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?

Yes

Is accuracy matched across the second level contrast?

Accuracy is covariate

Is reaction time matched across the second level contrast?

Unknown, not reported

Behavioral data notes

—

Type of analysis

Regions of interest (ROI)

ROI type

Mixed

How many ROIs are there?

7
What are the ROI(s)?

(1) L anterior language region (IFG); (2) L posterior language region (AG, SMG, STG, MTG); (3) R anterior language region (IFG); (4) R posterior language region (AG, SMG, STG, MTG); (5) frontal LI; (6) temporal LI; (7) whole network LI

How are the ROI(s) defined?

WFU pickatlas

Correction for multiple comparisons

No correction

Statistical details

—

Findings

None

Findings notes

—

ROI analysis 5

First level contrast	Semantic decision vs visual decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Semantic decision accuracy
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Accuracy is covariate
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

—

Type of analysis

Regions of interest (ROI)

ROI type

Mixed

How many ROIs are there?

7

What are the ROI(s)?

(1) L anterior language region (IFG); (2) L posterior language region (AG, SMG, STG, MTG); (3) R anterior language region (IFG); (4) R posterior language region (AG, SMG, STG, MTG); (5) frontal LI; (6) temporal LI; (7) whole network LI

How are the ROI(s) defined?

WFU pickatlas

Correction for multiple comparisons

No correction

Statistical details

—

Findings

None

Findings notes

—

ROI analysis 6

First level contrast	Written word-picture matching vs visual decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Overall language measure
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

—

Type of analysis

Regions of interest (ROI)

ROI type

Mixed

How many ROIs are there?

7

What are the ROI(s)?

(1) L anterior language region (IFG); (2) L posterior language region (AG, SMG, STG, MTG); (3) R anterior language region (IFG); (4) R posterior language region (AG, SMG, STG, MTG); (5) frontal LI; (6) temporal LI; (7) whole network LI

How are the ROI(s) defined?

WFU pickatlas

Correction for multiple comparisons

No correction

Statistical details

—

Findings

None

Findings notes

—
ROI analysis 7

First level contrast	Semantic decision vs visual decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Overall language measure
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes: —

Type of analysis: Regions of interest (ROI)

ROI type: Mixed

How many ROIs are there? 7

What are the ROI(s)?
1. L anterior language region (IFG);
2. L posterior language region (AG, SMG, STG, MTG);
3. R anterior language region (IFG);
4. R posterior language region (AG, SMG, STG, MTG);
5. frontal LI;
6. temporal LI;
7. whole network LI

How are the ROI(s) defined? WFU pickatlas

Correction for multiple comparisons
No correction

Statistical details
Not clear if it was LI for whole language network

Findings
↑ LI (language network)

Findings notes —

ROI analysis 8

First level contrast	Verb generation vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Overall language measure
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes: —

Type of analysis: Regions of interest (ROI)

ROI type: Mixed

How many ROIs are there? 7

What are the ROI(s)?
1. L anterior language region (IFG);
2. L posterior language region (AG, SMG, STG, MTG);
3. R anterior language region (IFG);
4. R posterior language region (AG, SMG, STG, MTG);
5. frontal LI;
6. temporal LI;
7. whole network LI

How are the ROI(s) defined? WFU pickatlas

Correction for multiple comparisons
No correction

Statistical details
Not clear if it was LI for whole language network

Findings
None

Findings notes —

ROI analysis 9

First level contrast	Written word-picture matching vs visual decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Lesion volume
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes

Findings notes —
Question	Answer
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	2
What are the ROI(s)?	(1) R anterior language region (IFG); (2) R posterior language region (AG, SMG, STG, MTG)
How are the ROI(s) defined?	WFU pickatlas
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 10

First level contrast	Semantic decision vs visual decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Lesion volume
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	2
What are the ROI(s)?	(1) R anterior language region (IFG); (2) R posterior language region (AG, SMG, STG, MTG)
How are the ROI(s) defined?	WFU pickatlas
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 11

First level contrast	Verb generation vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Lesion volume
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	2
What are the ROI(s)?	(1) R anterior language region (IFG); (2) R posterior language region (AG, SMG, STG, MTG)
How are the ROI(s) defined?	WFU pickatlas
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 12

First level contrast	Written word-picture matching vs visual decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Damage to L hemisphere language regions
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

- Type of analysis: Regions of interest (ROI)
- ROI type: Anatomical
- How many ROIs are there? 2
- What are the ROI(s)? (1) R anterior language region (IFG); (2) R posterior language region (AG, SMG, STG, MTG)
- How are the ROI(s) defined? WFU pickatlas
- Correction for multiple comparisons: No correction
- Statistical details: —
- Findings: None
- Findings notes: —

ROI analysis 13

First level contrast	Semantic decision vs visual decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Damage to L hemisphere language regions
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

- Type of analysis: Regions of interest (ROI)
- ROI type: Anatomical
- How many ROIs are there? 2
- What are the ROI(s)? (1) R anterior language region (IFG); (2) R posterior language region (AG, SMG, STG, MTG)
- How are the ROI(s) defined? WFU pickatlas
- Correction for multiple comparisons: No correction
- Statistical details: —
- Findings: None
- Findings notes: —

ROI analysis 14

First level contrast	Verb generation vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Damage to L hemisphere language regions
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes

331
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

- **Type of analysis**
 - Regions of interest (ROI)
- **ROI type**
 - Anatomical
- **How many ROIs are there?**
 - 2
- **What are the ROI(s)?**
 - (1) R anterior language region (IFG); (2) R posterior language region (AG, SMG, STG, MTG)
- **How are the ROI(s) defined?**
 - WFU pickatlas
- **Correction for multiple comparisons**
 - No correction

Statistical details

- **Findings**
 - None
- **Findings notes**
 - —

ROI analysis 15

First level contrast

- **Written word-picture matching vs visual decision**

Analysis class

- Cross-sectional correlation with language or other measure

Group(s)

- Aphasia

Covariate

- Previous (current vs subacute) Δ naming

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?

- No (current activation will reflect not just prior recovery, but also current language function)

Is accuracy matched across the second level contrast?

- Unknown, not reported

Is reaction time matched across the second level contrast?

- Unknown, not reported

Behavioral data notes

- **Type of analysis**
 - Regions of interest (ROI)
- **ROI type**
 - Anatomical
- **How many ROIs are there?**
 - 7
- **What are the ROI(s)?**
 - (1) L anterior language region (IFG); (2) L posterior language region (AG, SMG, STG, MTG); (3) R anterior language region (IFG); (4) R posterior language region (AG, SMG, STG, MTG); (5) frontal LI; (6) temporal LI; (7) whole network LI
- **How are the ROI(s) defined?**
 - WFU pickatlas
- **Correction for multiple comparisons**
 - No correction

Statistical details

- **Findings**
 - None
- **Findings notes**
 - —

ROI analysis 16

First level contrast

- **Semantic decision vs visual decision**

Analysis class

- Cross-sectional correlation with language or other measure

Group(s)

- Aphasia

Covariate

- Previous (current vs subacute) Δ naming

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?

- No (current activation will reflect not just prior recovery, but also current language function)

Is accuracy matched across the second level contrast?

- Unknown, not reported

Is reaction time matched across the second level contrast?

- Unknown, not reported

Behavioral data notes

- **Type of analysis**
 - Regions of interest (ROI)
- **ROI type**
 - Anatomical
- **How many ROIs are there?**
 - 7
- **What are the ROI(s)?**
 - (1) L anterior language region (IFG); (2) L posterior language region (AG, SMG, STG, MTG); (3) R anterior language region (IFG); (4) R posterior language region (AG, SMG, STG, MTG); (5) frontal LI; (6) temporal LI; (7) whole network LI
How are the ROI(s) defined? | WFU pickatlas
---|---
Correction for multiple comparisons | No correction
Statistical details | —
Findings | ↑ L IFG
Findings notes | —

ROI analysis 17

| First level contrast | Verb generation vs rest
Analysis class | Cross-sectional correlation with language or other measure
Group(s) | Aphasia
Covariate | Previous (current vs subacute) Δ naming
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? | No (current activation will reflect not just prior recovery, but also current language function)
Is accuracy matched across the second level contrast? | Unknown, not reported
Is reaction time matched across the second level contrast? | Unknown, not reported
Behavioral data notes | —
Type of analysis | Regions of interest (ROI)
ROI type | Anatomical
How many ROIs are there? | 7
What are the ROI(s)? | (1) L anterior language region (IFG); (2) L posterior language region (AG, SMG, STG, MTG); (3) R anterior language region (IFG); (4) R posterior language region (AG, SMG, STG, MTG); (5) frontal LI; (6) temporal LI; (7) whole network LI
How are the ROI(s) defined? | WFU pickatlas
Correction for multiple comparisons | No correction
Statistical details | —
Findings | ↑ L IFG
Findings notes | —

ROI analysis 18

| First level contrast | Written word-picture matching vs visual decision
Analysis class | Cross-sectional correlation with language or other measure
Group(s) | Aphasia
Covariate | Previous (current vs subacute) Δ TT
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? | No (current activation will reflect not just prior recovery, but also current language function; TT not optimal measure of overall language function)
Is accuracy matched across the second level contrast? | Unknown, not reported
Is reaction time matched across the second level contrast? | Unknown, not reported
Behavioral data notes | —
Type of analysis | Regions of interest (ROI)
ROI type | Anatomical
How many ROIs are there? | 7
What are the ROI(s)? | (1) L anterior language region (IFG); (2) L posterior language region (AG, SMG, STG, MTG); (3) R anterior language region (IFG); (4) R posterior language region (AG, SMG, STG, MTG); (5) frontal LI; (6) temporal LI; (7) whole network LI
How are the ROI(s) defined? | WFU pickatlas
Correction for multiple comparisons | No correction
Statistical details | —
Findings | None
Findings notes | —
First level contrast	Semantic decision vs visual decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Previous (current vs subacute) Δ TT
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	No (current activation will reflect not just prior recovery, but also current language function; TT not optimal measure of overall language function)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	7
What are the ROI(s)?	(1) L anterior language region (IFG); (2) L posterior language region (AG, SMG, STG, MTG); (3) R anterior language region (IFG); (4) R posterior language region (AG, SMG, STG, MTG); (5) frontal LI; (6) temporal LI; (7) whole network LI
How are the ROI(s) defined?	WFU pickatlas
Correction for multiple comparisons	No correction
Statistical details	—
Findings	↑ L IFG
Findings notes	—

ROI analysis 20

First level contrast	Verb generation vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Previous (current vs subacute) Δ TT
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	No (current activation will reflect not just prior recovery, but also current language function; TT not optimal measure of overall language function)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	7
What are the ROI(s)?	(1) L anterior language region (IFG); (2) L posterior language region (AG, SMG, STG, MTG); (3) R anterior language region (IFG); (4) R posterior language region (AG, SMG, STG, MTG); (5) frontal LI; (6) temporal LI; (7) whole network LI
How are the ROI(s) defined?	WFU pickatlas
Correction for multiple comparisons	No correction
Statistical details	—
Findings	↑ L IFG
Findings notes	—

Notes

Excluded analyses

Papoutsi et al. (2011)
Reference

Authors	Papoutsi M, Stamatakis EA, Griffiths J, Marslen-Wilson WD, Tyler LK
Title	Is left fronto-temporal connectivity essential for syntax? Effective connectivity, tractography and performance in left-hemisphere damaged patients
Reference	*NeuroImage* 2011; 58: 656-664
PMID	21722742
DOI	10.1016/j.neuroimage.2011.06.036

Participants

Language	UK English
Inclusion criteria	—
Number of individuals with aphasia	14
Number of control participants	15
Were any of the participants included in any previous studies?	Yes (reanalysis of same dataset from Tyler et al. (2011))
Is age reported for patients and controls, and matched?	Yes (mean 56 ± 12 years, range 35-77 years)
Is sex reported for patients and controls, and matched?	Yes (males: 11; females: 3)
Is handedness reported for patients and controls, and matched?	Yes (right: 14; left: 0)
Is time post stroke onset reported and appropriate to the study design?	Yes (mean 8 ± 9 years, range 2-40 years)
To what extent is the nature of aphasia characterized?	Not at all
Language evaluation	Sentence-picture matching, grammaticality judgment, lexical decision, phonological discrimination, semantic categorization, sentence repetition, word repetition
Aphasia severity	Not stated
Aphasia type	Not stated
First stroke only?	Not stated
Stroke type	Not stated
To what extent is the lesion distribution characterized?	Lesion overlay
Lesion extent	Not stated
Lesion location	L MCA
Participants notes	1 patient had post-surgical haematoma rather than stroke (per Tyler et al., 2011)

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired?	—
If longitudinal, was there any intervention between the time points?	—
Is the scanner described?	Yes (Siemens Trio 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No (length of stimuli not described)
Design type	Event-related
Total images acquired	1059
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	No (lacks explanation of event durations)
Is intersubject normalization adequately described	Yes
and appropriate?

Imaging notes
—

Conditions

Are the conditions clearly described? Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
Listening to unambiguous sentences	None	42	N/A	N/A
Listening to ambiguous sentences with dominant resolution	None	42	N/A	N/A
Listening to ambiguous sentences with subordinate resolution	None	42	N/A	N/A
Listening to filler sentences	None	126	N/A	N/A
Listening to "musical rain"	None	42	N/A	N/A
Rest	None	implicit	N/A	N/A

Conditions notes
—

Contrasts

Are the contrasts clearly described? Yes

Contrast 1: listening to ambiguous sentences with subordinate resolution ("subordinate") vs listening to ambiguous sentences with dominant resolution ("dominant")

Language condition	Listening to ambiguous sentences with subordinate resolution ("subordinate")
Control condition	Listening to ambiguous sentences with dominant resolution ("dominant")
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	Yes
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, no behavioral measure
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, no timeable task

Behavioral data notes
—

Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible relevant language regions in the control group?	Yes
Are activations lateralized in the control data?	Yes
Control activation notes	Control data in Tyler et al. (2011); L frontal and temporal
Contrast notes	—

Analyses

Are the analyses clearly described? Yes

Voxelwise analysis 1

First level contrast	Listening to ambiguous sentences with subordinate resolution ("subordinate") vs listening to ambiguous sentences with dominant resolution ("dominant")
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Difference in percent of unacceptable judgments between subordinate and dominant sentences (dominance effect)
Is the second level contrast valid in terms of the	Yes
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task

Behavioral data notes

- Type of analysis: Complex
- Statistical details:
 - A PPI analysis was carried out with the L IFG as the seed region. Correlations were computed between voxelwise modulation of connectivity with this region, and a behavioral measure of syntactic processing, which was the dominance effect: the difference in percent of unacceptable judgments between subordinate and dominant sentences. The resultant SPM was thresholded at voxelwise p < .01 (CDT), then corrected for multiple corrections based on cluster extent and GRFT using SPM8.

- Findings notes:
 - Patients with better syntactic performance had more connectivity from the L IFG seed region to L pMTG and adjacent areas (including the insula); pMTG also significant at voxelwise p < .001 in Figure 2B, corrected for multiple comparisons with GRFT.

Complex analysis 2

First level contrast	Listening to ambiguous sentences with subordinate resolution ("subordinate") vs listening to ambiguous sentences with dominant resolution ("dominant")
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Modulation of L pMTG connectivity by dominance effect
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task

Behavioral data notes

- Type of analysis: Complex
Statistical details

A similar PPI analysis was carried out with the L pMTG as the seed region. **Thresholding was the same as in the previous analysis.**

Findings

None

Findings notes

—

Notes

Excluded analyses

—

Sebastian & Kiran (2011)

Reference	Authors	Title	Reference	PMID	DOI
	Sebastian R, Kiran S.	Task-modulated neural activation patterns in chronic stroke patients with aphasia	*Aphasiology* 2011; 25: 927-951	N/A	10.1080/02687038.2011.557436

Participants

Language	US English
Inclusion criteria	—
Number of individuals with aphasia	8
Number of control participants	8
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (range 40-79 years)
Is sex reported for patients and controls, and matched?	No (males: 5; females: 3; control sex not stated, but reported to be matched)
Is handedness reported for patients and controls, and matched?	Yes (right: 8; left: 0)
Is time post stroke onset reported and appropriate to the study design?	Yes (mean 48.3 months, range 30-78 months)
To what extent is the nature of aphasia characterized?	Comprehensive battery
Language evaluation	WAB, BNT, portions of PALPA, PPT, CLQT
Aphasia severity	AQ range 74.0-97.8
Aphasia type	6 anomic, 2 recovered
First stroke only?	Not stated
Stroke type	Mixed etiologies
To what extent is the lesion distribution characterized?	Individual lesions
Lesion extent	Range 23-45 cc
Lesion location	L MCA
Participants notes	—

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired?	—
If longitudinal, was there any intervention between the time points?	—
Is the scanner described?	No (GE 3 Tesla; model not stated)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No* (moderate limitation) (control events took place in the inter-trial interval between language events, and may have been systematically confounded in timing; the total number of functional images acquired is not stated)
---	---
Design type	Event-related
Total images acquired	not stated
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	No (only correct trials are included but it is not stated how incorrect trials were modeled; in general, it is not stated whether the control events were modeled at all)
Is intersubject normalization adequately described and appropriate?	Yes
Imaging notes	—

Conditions

| Are the conditions clearly described? | Yes |

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
picture naming	Word (overt)	60	Yes	Yes
viewing scrambled images and saying "pass"	Word (overt)	60	Unknown	Unknown
semantic decision	Button press	48	Yes	Yes
visual decision	Button press	48	Unknown	Unknown

| Conditions notes | — |

Contrasts

| Are the contrasts clearly described? | Yes |

Contrast 1: picture naming (correct trials) vs viewing scrambled images and saying "pass"

Language condition	Picture naming (correct trials)
Control condition	Viewing scrambled images and saying "pass"
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	Unknown, not reported
Is reaction time matched between the language and control tasks for all relevant groups?	Unknown, not reported
Behavioral data notes	Accuracy/RT not reported for control task
Are control data reported in this paper or another that is referenced?	Somewhat
Does the contrast selectively activate plausible relevant language regions in the control group?	Somewhat
Are activations lateralized in the control data?	No
Control activation notes	Reporting is selective, but appears mostly bilateral with slight L-lateralization of language areas
Contrast notes	—

Contrast 2: semantic decision (correct trials) vs visual decision

Language condition	Semantic decision (correct trials)
Control condition	Visual decision
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Question	Answer
---	--
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	Yes
Is accuracy matched between the language and control tasks for all relevant groups?	Unknown, not reported
Is reaction time matched between the language and control tasks for all relevant groups?	Unknown, not reported
Behavioral data notes	Accuracy/RT not reported for control task
Are control data reported in this paper or another that is referenced?	Somewhat
Does the contrast selectively activate plausible relevant language regions in the control group?	Somewhat
Are activations lateralized in the control data?	Yes
Control activation notes	Clearly lateralized frontal activation, but very modest temporal activation
Behavioral data notes	Accuracy/RT not reported for control task
Are control data reported in this paper or another that is referenced?	Somewhat
Does the contrast selectively activate plausible relevant language regions in the control group?	Somewhat
Are activations lateralized in the control data?	Yes
Control activation notes	Clearly lateralized frontal activation, but very modest temporal activation
Analyses	
Are the analyses clearly described?	Yes

ROI analysis 1

First level contrast	Picture naming (correct trials) vs viewing scrambled images and saying "pass"
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Lesion volume
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	4
What are the ROI(s)?	(1) L IFG (oper/tri); (2) L posterior perisylvian (pSTG, pMTG, AG, SMG); (3) R IFG (oper/tri); (4) R posterior perisylvian (pSTG, pMTG, AG, SMG); (5) language network LI
How are the ROI(s) defined?	Harvard–Oxford atlas
Correction for multiple comparisons	No correction
Statistical details	—
Findings	↑ R supramarginal gyrus
	↑ R angular gyrus
	↑ R posterior STG/STS/MTG
	↓ LI (language network)
Findings notes	Larger lesions were associated with more R posterior perisylvian activation

ROI analysis 2

First level contrast	Semantic decision (correct trials) vs visual decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Lesion volume
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes

Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	4
What are the ROI(s)?	(1) L IFG (oper/tri); (2) L posterior perisylvian (pSTG, pMTG, AG, SMG); (3) R IFG (oper/tri); (4) R posterior perisylvian (pSTG, pMTG, AG, SMG); (5) language network LI
How are the ROI(s) defined?	Harvard–Oxford atlas
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—

Notes

| Excluded analyses | (1) individual patient analyses; (2) comparisons between the two language tasks |

Szaflarski et al. (2011)

Reference

Authors	Szaflarski JP, Vannest J, Wu SW, DiFrancesco MW, Banks C, Gilbert DL
Title	Excitatory repetitive transcranial magnetic stimulation induces improvements in chronic post-stroke aphasia
Reference	Med Sci Monit 2011; 17: CR132-139
PMID	21358599
DOI	10.12659/msm.881446

Participants

Language	US English
Inclusion criteria	Moderate aphasia, L MCA
Number of individuals with aphasia	8 (plus 3 excluded: 2 metallic artifact; 1 seizure at time of stroke)
Number of control participants	0
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (mean 54.4 ± 12.7 years)
Is sex reported for patients and controls, and matched?	Yes (males: 4; females: 4)
Is handedness reported for patients and controls, and matched?	Yes (right: 8; left: 0)
Is time post stroke onset reported and appropriate to the study design?	Yes (mean 5.3 ± 3.6 years, > 12 months)
To what extent is the nature of aphasia characterized?	Severity and type
Language evaluation	BNT; phonemic fluency, semantic fluency, complex ideation from BDAE, PPVT, communicative activities log
Aphasia severity	Moderate
Aphasia type	4 Broca’s, 3 anomic, 1 anomic/conduction
First stroke only?	Not stated
Stroke type	Not stated
To what extent is the lesion distribution characterized?	Individual lesions
Lesion extent	Not stated
Lesion location	L MCA
Participants notes	—
Imaging	
-------------------------------	-------------------------------
Modality	fMRI
Is the study cross-sectional or longitudinal?	Longitudinal—chronic treatment
If longitudinal, at what time point(s) were imaging data acquired?	T1: pre-treatment/chronic; T2: post-treatment, ~2 weeks later
If longitudinal, was there any intervention between the time points?	RTMS to residual activation near Broca’s area, 5 sessions/week, 2 weeks
Is the scanner described?	Yes (Varian Unity INOVA 4 T)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No (timing not clear, because previous studies cited are not all identical in terms of timing)
Design type	Block
Total images acquired	not stated
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	No (lesion impact not addressed)
Imaging notes	—

Conditions	
Are the conditions clearly described?	No (based on Binder et al. (1997), but details not reported)

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
semantic decision	Button press	not stated	Unknown	No
tone decision	Button press	not stated	Unknown	No

| Conditions notes | Group only just above chance, unclear whether significantly better; clearly some individuals were at chance |

Contrasts	
Are the contrasts clearly described?	Yes

Contrast 1: semantic decision vs tone decision

Language condition	Semantic decision
Control condition	Tone decision
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	Yes
Is accuracy matched between the language and control tasks for all relevant groups?	Appear similar
Is reaction time matched between the language and control tasks for all relevant groups?	Unknown, not reported
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible relevant language regions in the control group?	Yes
Are activations lateralized in the control data?	Yes
Control activation notes	Control data in Kim et al. (2011) and Szafirski et al. (2008); L frontal and temporal, plus other semantic regions
Contrast notes	—
Analyses

| Are the analyses clearly described? | No* (moderate limitation) (see specific limitation(s) below) |

Voxelwise analysis 1

First level contrast	Semantic decision vs tone decision
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (patients improved only on semantic fluency)
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Language and control tasks both matched
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	No correction
Software	in-house
Voxelwise p	.05
Cluster extent	None
Statistical details	The figure shows a cutoff of z > 10, which would not correspond to p < .05; increases and decreases in Figure 3 do not accord with the data from T1 and T2 in Figure 2, raising concerns about the implementation of the analyses; there is no explicit description of the second level analysis
Findings	↑ L IFG
	↑ L SMA/medial prefrontal
	↑ L orbitofrontal
	↑ L inferior parietal lobule
	↑ L supramarginal gyrus
	↑ L angular gyrus
	↑ L precuneus
	↑ L occipital
	↑ L anterior cingulate
	↑ L basal ganglia
	↑ L hippocampus/MTL
	↑ R dorsal precentral
	↑ R precuneus
	↑ R occipital
	↑ R basal ganglia
	↑ R hippocampus/MTL
	↓ R insula
	↓ R supramarginal gyrus
	↓ R posterior STG
Findings notes	Based on a combination of coordinates in Table 2, and Figure 3

ROI analysis 1

First level contrast	Semantic decision vs tone decision
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (patients improved only on semantic fluency)
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes
Language and control tasks both matched

Type of analysis
Regions of interest (ROI)

ROI type
Functional

How many ROIs are there?
3

What are the ROI(s)?
(1) frontal LI; (2) temporal LI; (3) language network LI

How are the ROI(s) defined?
No correction

Correction for multiple comparisons

Statistical details
T1 LI (temporal) is reported to be negative, which does not accord with the voxelwise analysis in Figure 2; increases and decreases in Figure 3 do not accord with the data from T1 and T2 in Figure 2, raising concerns about the implementation of the analyses

Findings
↑ LI (language network)
↑ LI (frontal)
↑ LI (temporal)

Findings notes
—

Notes
Excluded analyses
—

Tyler et al. (2011)

Reference

Authors
Tyler LK, Marslen-Wilson WD, Randall B, Wright P, Devereux B, Zhuang J, Papoutsi M, Stamatakis EA

Title
Left inferior frontal cortex and syntax: function, structure and behaviour in patients with left hemisphere damage

Reference
Brain 2011; 134: 415-431

PMID
21278407

DOI
10.1093/brain/awq369

Participants

Language
UK English

Inclusion criteria
—

Number of individuals with aphasia
14

Number of control participants
15

Were any of the participants included in any previous studies?
Yes (not stated, but it seems like most of the patients also participated in Tyler et al. (2010))

Is age reported for patients and controls, and matched?
Yes (mean 56 years, range 34-77 years)

Is sex reported for patients and controls, and matched?
Yes (males: 11; females: 3)

Is handedness reported for patients and controls, and matched?
Yes (right: 14; left: 0)

Is time post stroke onset reported and appropriate to the study design?
Yes (mean 7 years, > 1.5 years)

To what extent is the nature of aphasia characterized?
Not at all

Language evaluation
Sentence-picture matching, grammaticality judgment, lexical decision, phonological discrimination, semantic categorization, sentence repetition, word repetition

Aphasia severity
Not stated

Aphasia type
Not stated

First stroke only?
Not stated

Stroke type
Not stated

To what extent is the lesion distribution
Lesion overlay
characterized?
Lesion extent: Not stated
Lesion location: L MCA
Participants notes: 1 patient had post-surgical haematoma rather than stroke

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired?	—
If longitudinal, was there any intervention between the time points?	—
Is the scanner described?	Yes (Siemens Trio 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No (run length not stated; length of stimuli not described)
Design type	Event-related
Total images acquired	not stated but 1059 per Papoutsi et al. (2011)
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	No (lacks explanation of event durations)
Is intersubject normalization adequately described and appropriate?	Yes
Imaging notes	—

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
listening to unambiguous sentences ("unambiguous")	None	42	N/A	N/A
listening to ambiguous sentences with dominant resolution ("dominant")	None	42	N/A	N/A
listening to ambiguous sentences with subordinate resolution ("subordinate")	None	42	N/A	N/A
listening to filler sentences	None	126	N/A	N/A
listening to "musical rain"	None	42	N/A	N/A
rest	None	implicit baseline	N/A	N/A

Contrasts

| Contrast 1: listening to ambiguous sentences (dominant and subordinate) vs listening to unambiguous sentences ("unambiguous") |
|----------------------|----------------------|
| Language condition | Listening to ambiguous sentences (dominant and subordinate) |
| Control condition | Listening to unambiguous sentences ("unambiguous") |
| Are the conditions matched for visual demands? | Yes |
| Are the conditions matched for auditory demands? | Yes |
| Are the conditions matched for motor demands? | Yes |
| Are the conditions matched for cognitive/executive demands? | Yes |
| Is accuracy matched between the language and | N/A, no behavioral measure |
control tasks for all relevant groups?	N/A, no timeable task
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible relevant language regions in the control group?	Somewhat
Are activations lateralized in the control data?	Yes
Control activation notes	L frontal and parietal; R frontal (but L > R); no L temporal
Contrast notes	—

Contrast 2: listening to ambiguous sentences with dominant resolution ("dominant") vs listening to unambiguous sentences ("unambiguous")

Language condition	Listening to ambiguous sentences with dominant resolution ("dominant")
Control condition	Listening to unambiguous sentences ("unambiguous")
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	Yes
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, no behavioral measure
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, no timeable task
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible relevant language regions in the control group?	Somewhat
Are activations lateralized in the control data?	Yes
Control activation notes	L frontal and parietal; no L temporal
Contrast notes	—

Contrast 3: listening to ambiguous sentences with subordinate resolution ("subordinate") vs listening to unambiguous sentences ("unambiguous")

Language condition	Listening to ambiguous sentences with subordinate resolution ("subordinate")
Control condition	Listening to unambiguous sentences ("unambiguous")
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	Yes
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, no behavioral measure
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, no timeable task
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible relevant language regions in the control group?	Yes
Are activations lateralized in the control data?	Yes
Control activation notes	L frontal, temporal and parietal, R frontal (but L > R)
Contrast notes	—
Contrast 4: listening to ambiguous sentences with subordinate resolution (“subordinate”) vs listening to ambiguous sentences with dominant resolution (“dominant”)

Language condition	Listening to ambiguous sentences with subordinate resolution (“subordinate”)
Control condition	Listening to ambiguous sentences with dominant resolution (“dominant”)
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	Yes
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, no behavioral measure
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, no timeable task
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible relevant language regions in the control group?	Yes
Are activations lateraled in the control data?	Yes
Control activation notes	L frontal and temporal
Contrast notes	—

Analyses

Are the analyses clearly described? Yes

Voxelwise analysis 1

First level contrast	Listening to ambiguous sentences (dominant and subordinate) vs listening to unambiguous sentences (“unambiguous”)
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Plausible fronto-temporo-parietal language regions
Correction for multiple comparisons	No direct comparison
Software	SPM5
Voxelwise p	—
Cluster extent	—
Statistical details	Qualitative comparison on p. 423
Findings	▼ L IFG
Findings notes	—

Voxelwise analysis 2

First level contrast	Listening to ambiguous sentences with dominant resolution (“dominant”) vs listening to unambiguous sentences (“unambiguous”)
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the	Yes
Group(s), time point(s), and measures involved?	N/A, no behavioral measure
---	---
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Plausible fronto-temporo-parietal language regions
Correction for multiple comparisons	No direct comparison
Software	SPM5
Voxelwise p	—
Cluster extent	—
Statistical details	Qualitative comparison on p. 423
Findings	↓ L IFG
Findings notes	—

Voxelwise analysis 3

First level contrast	Listening to ambiguous sentences with subordinate resolution ("subordinate") vs listening to unambiguous sentences ("unambiguous")
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Plausible fronto-temporo-parietal language regions
Correction for multiple comparisons	No direct comparison
Software	SPM5
Voxelwise p	—
Cluster extent	—
Statistical details	Qualitative comparison on p. 423
Findings	↓ L IFG
Findings notes	Lack of patient activation in pMTG implied in text, but this activation looks fairly similar in patients and controls (c.f. Figure 3C vs 2C)

Voxelwise analysis 4

First level contrast	Listening to ambiguous sentences with subordinate resolution ("subordinate") vs listening to ambiguous sentences with dominant resolution ("dominant")
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Plausible fronto-temporo-parietal language regions
Correction for multiple comparisons	No direct comparison
Software	SPM5
--------------	------------
Voxelwise p	—
Cluster extent	—
Statistical details	Qualitative comparison on p. 423
Findings	↓ L IFG
	↓ L posterior MTG
Findings notes	—

Voxelwise analysis 5

First level contrast	Listening to ambiguous sentences (dominant and subordinate) vs listening to unambiguous sentences (“unambiguous”)
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Performance on acceptability judgment task (difference in percent of unacceptable judgments between ambiguous and unambiguous sentences)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Plausible fronto-temporo-parietal language regions
Correction for multiple comparisons	Clusterwise correction with with GRFT and lenient voxelwise p
Software	SPM5
Voxelwise p	.01
Cluster extent	Based on GRFT
Statistical details	—
Findings	↑ L IFG pars triangularis
	↑ L IFG pars orbitalis
	↑ R insula
	↑ R mid temporal
Findings notes	Also L pMTG but this did not reach significance

Voxelwise analysis 6

First level contrast	Listening to ambiguous sentences (dominant and subordinate) vs listening to unambiguous sentences (“unambiguous”)
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Performance on sentence-picture matching task
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Plausible fronto-temporo-parietal language regions
Correction for multiple comparisons	Clusterwise correction based on arbitrary cluster extent
Software	SPM5
Voxelwise p	.01
Cluster extent	30 (units not stated)
Statistical details	—
Findings	↑ L IFG pars orbitalis
Voxelwise analysis 7

First level contrast	Listening to ambiguous sentences (dominant and subordinate) vs listening to unambiguous sentences ("unambiguous")
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Performance on word monitoring task
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task

Behavioral data notes

- Type of analysis: Voxelwise
- Search volume: Plausible fronto-temporo-parietal language regions
- Correction for multiple comparisons: Clusterwise correction based on arbitrary cluster extent
- Software: SPM5
- Voxelwise p: .05
- Cluster extent: 10 (units not stated)
- Statistical details: —
- Findings: ↑ L IFG pars orbitalis, ↑ L posterior MTG, ↑ R insula, ↑ R mid temporal

Voxelwise analysis 8

First level contrast	Listening to ambiguous sentences (dominant and subordinate) vs listening to unambiguous sentences ("unambiguous")
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Difference in percent of unacceptable judgments between subordinate and dominant sentences (dominance effect)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task

Behavioral data notes

- Type of analysis: Voxelwise
- Search volume: Plausible fronto-temporo-parietal language regions
- Correction for multiple comparisons: Clusterwise correction with with GRFT and lenient voxelwise p
- Software: SPM5
- Voxelwise p: .01
- Cluster extent: Based on GRFT
- Statistical details: —
- Findings: None
- Findings notes: —
ROI analysis 1

First level contrast	Listening to ambiguous sentences (dominant and subordinate) vs listening to unambiguous sentences (“unambiguous”)
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Performance on acceptability judgment task (difference in percent of unacceptable judgments between ambiguous and unambiguous sentences)

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task

Behavioral data notes —

Type of analysis Regions of interest (ROI)

ROI type Anatomical

How many ROIs are there? 3

What are the ROI(s)? (1) IFG pars opercularis; (2) IFG pars triangularis; (3) IFG pars orbitalis

How are the ROI(s) defined? AAL

Correction for multiple comparisons No correction

Statistical details —

Findings
- ↑ L IFG pars triangularis
- ↑ L IFG pars orbitalis

Findings notes —

ROI analysis 2

First level contrast	Listening to ambiguous sentences (dominant and subordinate) vs listening to unambiguous sentences (“unambiguous”)
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Difference in percentage of unacceptable judgments between subordinate and dominant sentences (dominance effect)

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task

Behavioral data notes —

Type of analysis Regions of interest (ROI)

ROI type Anatomical

How many ROIs are there? 3

What are the ROI(s)? (1) IFG pars opercularis; (2) IFG pars triangularis; (3) IFG pars orbitalis

How are the ROI(s) defined? AAL

Correction for multiple comparisons No correction

Statistical details —

Findings None

Findings notes —

Notes

Excluded analyses It is mentioned in the supplementary material that there was no correlation between activation and lexical (non-syntactic) errors
Weiduschat et al. (2011)

Reference

Authors	Weiduschat N, Thiel A, Rubi-Fessen I, Hartmann A, Kessler J, Merl P, Kracht L, Rommel T, Heiss WD
Title	Effects of repetitive transcranial magnetic stimulation in aphasic stroke: a randomized controlled pilot study
Reference	Stroke 2011; 42: 409-415
PMID	21164121
DOI	10.1161/strokeaha.110.597864

Participants

Language	German
Inclusion criteria	Age 55-85
Number of individuals with aphasia	10 (plus 4 excluded: 3 malfunction of TMS device or claustrophobia; 1 recovered nearly completely prior to intervention)
Number of control participants	0
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (range 59-83 years)
Is sex reported for patients and controls, and matched?	Yes (males: 5; females: 5)
Is handedness reported for patients and controls, and matched?	Yes (right: 10; left: 0)
Is time post stroke onset reported and appropriate to the study design?	Yes (range 18-97 days; patients at different subacute stages of recovery)
To what extent is the nature of aphasia characterized?	Type only
Language evaluation	AAT
Aphasia severity	T1: TT range 0-45 errors; T2: TT range 0-44 errors
Aphasia type	T1: 5 Wernicke's, 2 Broca's, 2 global, 1 amnestic fluent; T2: not stated
First stroke only?	Yes
Stroke type	Not stated
To what extent is the lesion distribution characterized?	Extent and location
Lesion extent	Range 0.7-88.9 cc
Lesion location	L MCA
Participants notes	—

Imaging

Modality	PET (rCBF)
Is the study cross-sectional or longitudinal?	Longitudinal—mixed
If longitudinal, at what time point(s) were imaging data acquired?	T1: pre-treatment/subacute (range 18-97 days post onset); T2: post-treatment, ~2 weeks later
If longitudinal, was there any intervention between the time points?	Individualized SLT, 45 minutes/day, 5 days/week, 2 weeks; 6 patients underwent rTMS to the R IFG pars triangularis; 4 received vertex (sham) rTMS
Is the scanner described?	Yes (CTI-Siemens ECAT EXACT HR)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	PET
Total images acquired	8
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate? Yes
Is intersubject normalization adequately described and appropriate? Yes
Imaging notes —

Conditions

Are the conditions clearly described? Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
verb generation	Word (covert)	4	Unknown	Unknown
rest	None	4	N/A	N/A

Conditions notes —

Contrasts

Are the contrasts clearly described? Yes

Contrast 1: verb generation vs rest

Language condition Verb generation
Control condition Rest
Are the conditions matched for visual demands? Yes
Are the conditions matched for auditory demands? No
Are the conditions matched for motor demands? Yes
Are the conditions matched for cognitive/executive demands? No
Is accuracy matched between the language and control tasks for all relevant groups? N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups? N/A, tasks not comparable
Behavioral data notes —
Does the contrast selectively activate plausible relevant language regions in the control group? Unknown
Are activations lateralized in the control data? Unknown
Control activation notes Control data in Herholz et al. (1996); insufficient to fully validate the contrast
Contrast notes —

Analyses

Are the analyses clearly described? Yes

ROI analysis 1

First level contrast Verb generation vs rest
Analysis class Longitudinal change in aphasia
Group(s) Aphasia T2 vs T1 (regardless of rTMS)
Covariate —
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? Yes
Is accuracy matched across the second level contrast? Unknown, not reported
Is reaction time matched across the second level contrast? Unknown, not reported
Behavioral data notes —
Type of analysis Regions of interest (ROI)
ROI type Laterality indices
ROI analysis 2

First level contrast	Verb generation vs rest
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia treated with rTMS (n = 6) T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Laterality indices
How many ROIs are there?	3
What are the ROI(s)?	(1) IFG LI; (2) superior temporal LI; (3) SMA LI
How are the ROI(s) defined?	Correction for multiple comparisons
Statistical details	No correction
Findings	None
Findings notes	—

ROI analysis 3

First level contrast	Verb generation vs rest
Analysis class	Longitudinal between two groups with aphasia
Group(s)	(Aphasia with R IFG rTMS (n = 6) T2 vs T1) vs (with sham rTMS (n = 4) T2 vs T1)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Laterality indices
How many ROIs are there?	3
What are the ROI(s)?	(1) IFG LI; (2) superior temporal LI; (3) SMA LI
How are the ROI(s) defined?	Correction for multiple comparisons
Statistical details	No correction
Findings	None
Findings notes	IFG LI was stable in the stimulation group, but shifted to the R in the sham group, yielding a significant difference between groups

ROI analysis 4

First level contrast	Verb generation vs rest
Analysis class	—
Group(s)	—
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Laterality indices
How many ROIs are there?	3
What are the ROI(s)?	(1) IFG LI; (2) superior temporal LI; (3) SMA LI
How are the ROI(s) defined?	Correction for multiple comparisons
Statistical details	No correction
Findings	None
Findings notes	IFG LI was stable in the stimulation group, but shifted to the R in the sham group, yielding a significant difference between groups
Analysis class	Longitudinal correlation with language or other measure
---------------	--
Group(s)	Aphasia T2 vs T1 (regardless of rTMS)
Covariate	Δ AAT total score
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Laterality indices
How many ROIs are there?	1
What are the ROI(s)?	IFG LI
How are the ROI(s) defined?	—
Correction for multiple comparisons	One only
Statistical details	—
Findings	None
Findings notes	—

Notes

Excluded analyses (1) difference between groups at T1 (pre-treatment); (2) sham group T2 vs T1 (n = 4)

Allendorfer et al. (2012)

Reference

Authors	Allendorfer JB, Kissela BM, Holland SK, Szafarski JP
Title	Different patterns of language activation in post-stroke aphasia are detected by overt and covert versions of the verb generation fMRI task
Reference	*Med Sci Monit* 2012; 18: CR135-147
PMID	22367124
DOI	10.12659/msm.882518

Participants

Language	US English
Inclusion criteria	MCA; moderate-severe aphasia; mRS ≤ 3
Number of individuals with aphasia	16
Number of control participants	32
Were any of the participants included in any previous studies?	Yes (“part of a larger ongoing study”, may overlap with other studies from this group)
Is age reported for patients and controls, and matched?	Yes (mean 54.4 ± 9.5 years, range 38-78 years)
Is sex reported for patients and controls, and matched?	Yes (males: 9; females: 7)
Is handedness reported for patients and controls, and matched?	Yes (right: 16; left: 0)
Is time post stroke onset reported and appropriate to the study design?	Yes (mean 3.7 ± 3.5 years, range 0.5-11.4 years)
To what extent is the nature of aphasia characterized?	Severity and type
Language evaluation	TT, PPVT, BNT, semantic and phonemic fluency, complex ideation subtest of BDAE
Aphasia severity	Moderate-severe; TT mean 25.5 ± 11.3; unclear how to reconcile moderate-severe severity with mostly anomic aphasia
Aphasia type	Mostly anomic with some non-fluent
-------------	----------------------------------
First stroke only?	Not stated
Stroke type	Ischemic only
To what extent is the lesion distribution characterized?	Individual lesions
Lesion extent	Range 2.8-248.9 cc
Lesion location	L MCA
Participants notes	—

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired?	—
If longitudinal, was there any intervention between the time points?	—
Is the scanner described?	No (Phillips 3 Tesla; model not stated)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	Mixed
Total images acquired	435
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	No (no description of HRF model, which is important given sparse sampling design)
Is intersubject normalization adequately described and appropriate?	No (lesion impact not addressed)
Imaging notes	sparse sampling

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
verb generation (overt, event-related)	Multiple words (overt)	15	Yes	Unknown
verb generation (covert, event-related)	Multiple words (covert)	15	Unknown	Unknown
noun repetition (event-related)	Multiple words (covert)	15	Yes	Unknown
verb generation (covert, block)	Multiple words (covert)	10	Unknown	Unknown
finger tapping (block)	Other	10	Unknown	Unknown

Conditions notes

Given the means and standard deviations presented, it is likely that some patients could not perform some tasks; post-scan recognition tests not considered to quantify performance.

Contrasts

| Contrast 1: verb generation (covert, block) vs finger tapping (block) |
|--------------------------|--------------------------|
| Language condition | Verb generation (covert, block) |
| Control condition | Finger tapping (block) |
| Are the conditions matched for visual demands? | Yes |
| Are the conditions matched for auditory demands? | Yes |
| Are the conditions matched for motor demands? | No |
| Are the conditions matched for cognitive/executive demands? | No |
Question	Answer
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	
Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible relevant language regions in the control group?	Yes
Are activations lateralized in the control data?	Yes
Control activation notes	Strongly lateralized frontal and temporal activation
Contrast notes	

Contrast 2: verb generation (overt, event-related) vs noun repetition (event-related)

Language condition	Verb generation (overt, event-related)
Control condition	Noun repetition (event-related)
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	Appear mismatched
Is reaction time matched between the language and control tasks for all relevant groups?	Unknown, not reported
Behavioral data notes	
Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible relevant language regions in the control group?	Somewhat
Are activations lateralized in the control data?	Somewhat
Control activation notes	Somewhat L-lateralized frontal, temporal and parietal activations, but also extensive midline activation
Contrast notes	

Contrast 3: verb generation (overt, event-related) vs verb generation (covert, event-related)

Language condition	Verb generation (overt, event-related)
Control condition	Verb generation (covert, event-related)
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	Yes
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	
Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible relevant language regions in the control group?	Somewhat
Are activations lateralized in the control data?	N/A
Control activation notes	Bilateral speech motor activations, but also extensive midline activation
Contrast notes	
Analyses

| Are the analyses clearly described? | Yes |

ROI analysis 1

First level contrast	Verb generation (covert, block) vs finger tapping (block)
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Laterality indices
How many ROIs are there?	2
What are the ROI(s)?	(1) frontal LI; (2) temporal LI
How are the ROI(s) defined?	—
Correction for multiple comparisons	No correction
Statistical details	—
Findings	↓ LI (temporal)
Findings notes	—

ROI analysis 2

First level contrast	Verb generation (overt, event-related) vs noun repetition (event-related)
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, different
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Patients less accurate and produced less responses on both conditions, but the difference between groups was greater for verb generation
Type of analysis	Regions of interest (ROI)
ROI type	Laterality indices
How many ROIs are there?	2
What are the ROI(s)?	(1) frontal LI; (2) temporal LI
How are the ROI(s) defined?	—
Correction for multiple comparisons	No correction
Statistical details	—
Findings	↓ LI (frontal)
Findings notes	—

ROI analysis 3

First level contrast	Verb generation (overt, event-related) vs verb generation (covert, event-related)
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Question	Answer
----------	--------
Is accuracy matched across the second level contrast?	No, different
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Overt performance differed, so covert performance probably did too
Type of analysis	Regions of interest (ROI)
ROI type	Laterality indices
How many ROIs are there?	2
What are the ROI(s)?	(1) frontal LI; (2) temporal LI
How are the ROI(s) defined?	
Correction for multiple comparisons	No correction
Statistical details	None
Findings notes	Lack of lateralization in controls makes this analysis difficult to interpret

ROI analysis 4

First level contrast	Verb generation (overt, event-related) vs noun repetition (event-related)
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Overt verb generation accuracy
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Accuracy is covariate
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	3
What are the ROI(s)?	(1) L MTG; (2) L SFG/CG; (3) left MFG
How are the ROI(s) defined?	Regions activated by the contrast of overt verb generation vs noun repetition in patients
Correction for multiple comparisons	No correction
Statistical details	
Findings	↑ L dorsolateral prefrontal cortex
Findings notes	↑ L SMA/medial prefrontal

ROI analysis 5

First level contrast	Verb generation (overt, event-related) vs verb generation (covert, event-related)
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Overt verb generation accuracy
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Accuracy is covariate
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	2
What are the ROI(s)?	(1) R insula/IFG; (2) R STG
How are the ROI(s) defined?	Prominent R hemisphere activations for the contrast of overt and covert verb generation in
Correction for multiple comparisons: No correction

Statistical details: —

Findings: None

Findings notes: —

Notes

Excluded analyses: Analysis of LI distribution (left/right/bilateral) yielded similar results

Fridriksson, Hubbard, et al. (2012)

Reference

Authors: Fridriksson J, Hubbard HI, Hudspeth SG, Holland AL, Bonilha L, Fromm D, Rorden C
Title: Speech entrainment enables patients with Broca’s aphasia to produce fluent speech
Reference: Brain 2012; 135: 3815-3829
PMID: 23250889
DOI: 10.1093/brain/aws301

Participants

Language: US English
Inclusion criteria: Broca’s aphasia
Number of individuals with aphasia: 10 (plus 3 excluded: 1 due to a metal implant; 2 for severely non-fluent speech)
Number of control participants: 20
Were any of the participants included in any previous studies? No
Is age reported for patients and controls, and matched? Yes (mean 56.9 ± 9.2 years, range 45-75 years)
Is sex reported for patients and controls, and matched? No (males: 9; females: 4; control sex not matched)
Is handedness reported for patients and controls, and matched? Yes (right: 12; left: 1)
Is time post stroke onset reported and appropriate to the study design? Yes (mean 63.8 ± 64.3 months, range 10-261 months)
To what extent is the nature of aphasia characterized? Comprehensive battery
Language evaluation: WAB, BNT, AoS from ABA
Aphasia severity: AQ mean 48.5 ± 20.6, range 20.9-73.5
Aphasia type: Broca’s
First stroke only? Yes
Stroke type: Not stated
To what extent is the lesion distribution characterized? Lesion overlay
Lesion extent: Not stated
Lesion location: L MCA
Participants notes: Demographic data includes excluded patients

Imaging

Modality: fMRI
Is the study cross-sectional or longitudinal? Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired? —
If longitudinal, was there any intervention between the time points? —
Question	Answer			
Is the scanner described?	No (Siemens 3 Tesla; model not stated)			
Is the timing of stimulus presentation and image acquisition clearly	No* (moderate limitation) (it appears that each of the three conditions was presented in a separate run)			
acquired and appropriate?				
Design type	Event-related			
Total images acquired	180?			
Are the imaging acquisition parameters, including coverage, adequately	Yes (whole brain)			
described and appropriate?				
Is preprocessing and intrasubject coregistration adequately described	Yes			
and appropriate?				
Is first level model fitting adequately described and appropriate?	No (not described clearly)			
Is intersubject normalization adequately described and appropriate?	Yes			
Imaging notes	sparse sampling			
Conditions				
Are the conditions clearly described?	No (rest condition implied but not described)			
Condition	**Response type**	**Repetitions**	**All groups could do?**	**All individuals could do?**
listening to/watching audiovisual sentences, while producing the same	Sentence (overt)	30 (?)	Yes	Unknown
sentences in unison (speech entrainment)				
listening to reversed sentences and viewing a mouth speaking, while	Sentence (overt)	30 (?)	Yes	Unknown
producing unrelated sentences				
listening to/watching audiovisual sentences and viewing a mouth	None	30 (?)	N/A	N/A
rest				
Conditions notes	—			
Contrasts				
Are the contrasts clearly described?	No (see specific limitation(s) below)			
**Contrast 1: listening to/watching audiovisual sentences, while	Listening to/watching audiovisual sentences, while producing the same sentences in unison (speech entrainment) vs			
producing the same sentences in unison (speech entrainment) vs	listening to reversed sentences and viewing a mouth speaking, while producing unrelated sentences			
listening to reversed sentences and viewing a mouth speaking, while				
producing unrelated sentences				
Language condition	Listening to/watching audiovisual sentences, while producing the same sentences in unison (speech entrainment)			
Control condition	Listening to reversed sentences and viewing a mouth speaking, while producing unrelated sentences			
Are the conditions matched for visual demands?	Yes			
Are the conditions matched for auditory demands?	Yes			
Are the conditions matched for motor demands?	Yes			
Are the conditions matched for cognitive/executive demands?	Yes			
Is accuracy matched between the language and control tasks for all	Unknown, not reported			
relevant groups?				
Is reaction time matched between the language and control tasks for	Unknown, not reported			
all relevant groups?				
Behavioral data notes	Behavioral data outside the scanner suggest not matched, but in-scanner behavioral data not reported			
Are control data reported in this paper or another that is referenced?	Somewhat			
Does the contrast selectively activate plausible relevant language	No			
regions in the control group?				
Are activations lateralized in the control data?	No			
Control activation notes	Control and patient data are combined; this contrast activates bilateral anterior insula and posterior MTG, slightly more extensive on the L			
--------------------------	--			
Contrast notes	—			

Contrast 2: listening to/watching audiovisual sentences, while producing the same sentences in unison (speech entrainment) vs rest

Language condition	Listening to/watching audiovisual sentences, while producing the same sentences in unison (speech entrainment)
Control condition	Rest
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable

Behavioral data notes

- Are control data reported in this paper or another that is referenced? | No |
- Does the contrast selectively activate plausible relevant language regions in the control group? | Unknown |
- Are activations lateralized in the control data? | Unknown |

Control activation notes

- Rest condition implied but not explicitly described

Contrast 3: listening to reversed sentences and viewing a mouth speaking, while producing unrelated sentences vs rest

Language condition	Listening to reversed sentences and viewing a mouth speaking, while producing unrelated sentences
Control condition	Rest
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable

Behavioral data notes

- Are control data reported in this paper or another that is referenced? | No |
- Does the contrast selectively activate plausible relevant language regions in the control group? | Unknown |
- Are activations lateralized in the control data? | Unknown |

Control activation notes

- Rest condition implied but not explicitly described

Contrast 4: listening to/watching audiovisual sentences and viewing a mouth vs rest

Language condition	Listening to/watching audiovisual sentences and viewing a mouth
Control condition	Rest
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No

362
Question	Answer
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, no behavioral measure
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, no timeable task
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	No
Does the contrast selectively activate plausible relevant language regions in the control group?	Unknown
Are activations lateralized in the control data?	Unknown
Control activation notes	—
Contrast notes	Rest condition implied but not explicitly described

Analyses

| Are the analyses clearly described? | No** (major limitation) (see specific limitation(s) below) |

Voxelwise analysis 1

First level contrast	Listening to/watching audiovisual sentences, while producing the same sentences in unison (speech entrainment) vs listening to reversed sentences and viewing a mouth speaking, while producing unrelated sentences
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T1 vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Unclear or not stated
Software	FSL (FEAT 5.98)
Voxelwise p	—
Cluster extent	—
Statistical details	Thresholding not stated
Findings	↑ L angular gyrus
	↓ L anterior temporal
Findings notes	Based on coordinates in Table 2

Voxelwise analysis 2

First level contrast	Listening to/watching audiovisual sentences, while producing the same sentences in unison (speech entrainment) vs rest
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons

Unclear or not stated

Software

FSL (FEAT 5.98)

Voxelwise p

—

Cluster extent

—

Statistical details

Thresholding not stated

Findings

† L SMA/medial prefrontal
† L anterior cingulate
† R precuneus
† R occipital
† R hippocampus/MTL
† L supramarginal gyrus

Findings notes

Some labels changed based on coordinates

Voxelwise analysis 3

First level contrast	Listening to reversed sentences and viewing a mouth speaking, while producing unrelated sentences vs rest
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T2 vs T1
Covariate	—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?

Yes

Is accuracy matched across the second level contrast?

Unknown, not reported

Is reaction time matched across the second level contrast?

N/A, no timeable task

Behavioral data notes

—

Type of analysis

Voxelwise

Search volume

Whole brain

Correction for multiple comparisons

Unclear or not stated

Software

FSL (FEAT 5.98)

Voxelwise p

—

Cluster extent

—

Statistical details

Thresholding not stated

Findings

None

Findings notes

—

Voxelwise analysis 4

First level contrast	Listening to/watching audiovisual sentences and viewing a mouth vs rest
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T2 vs T1
Covariate	—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?

Yes

Is accuracy matched across the second level contrast?

N/A, no behavioral measure

Is reaction time matched across the second level contrast?

N/A, no timeable task

Behavioral data notes

—

Type of analysis

Voxelwise

Search volume

Whole brain

Correction for multiple comparisons

Unclear or not stated

Software

FSL (FEAT 5.98)

Voxelwise p

—

Cluster extent

—

Statistical details

Thresholding not stated

Findings

None

Findings notes

—
Findings notes

ROI analysis 1

First level contrast	Listening to/watching audiovisual sentences, while producing the same sentences in unison (speech entrainment) vs listening to reversed sentences and viewing a mouth speaking, while producing unrelated sentences
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T1 vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	N/A, no timeable task

Behavioral data notes

Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	6
What are the ROI(s)?	(1) L anterior insula/IFG pars orbitalis; (2) R anterior insula/IFG pars orbitalis; (3) Broca's area; (4) L MTG; (5) L BA 37; (6) R BA 37
How are the ROI(s) defined?	Regions activated in both groups considered together
Correction for multiple comparisons	No correction
Statistical details	There were no interactions of group by condition; two regions showed main effects of group but this is not pertinent to the contrast
Findings	None
Findings notes	—

Notes

Excluded analyses

Fridriksson, Richardson, et al. (2012)

Reference

Authors	Fridriksson J, Richardson JD, Fillmore P, Cai B
Title	Left hemisphere plasticity and aphasia recovery
Reference	*Neuroimage* 2012; 60: 854-863
PMID	22227052
DOI	10.1016/j.neuroimage.2011.12.057

Participants

Language	US English
Inclusion criteria	—
Number of individuals with aphasia	29 (plus 1 excluded: contraindications to MRI)
Number of control participants	14
Were any of the participants included in any previous studies?	Yes (26 of 30 patients were included in Fridriksson (2010))
Is age reported for patients and controls, and matched?	Yes (mean 59.2 years, range 33-81 years)
Is sex reported for patients and controls, and matched?	No (males: 14; females: 16; not stated for controls)
Is handedness reported for patients and controls, and matched?	No
Is time post stroke onset reported and appropriate to the study design? Yes (mean 51.1 months, range 6-350 months)

To what extent is the nature of aphasia characterized? Severity and type

Language evaluation WAB

Aphasia severity AQ mean 57.9 ± 25.8, range 17.2-95.2

Aphasia type 13 Broca's, 10 anomic, 3 conduction, 2 Wernicke's, 1 global, 1 transcortical motor

First stroke only? Yes

Stroke type Mixed etiologies

To what extent is the lesion distribution characterized? Lesion overlay

Lesion extent Range 7.7-420.5 cc

Lesion location L MCA

Participants notes Demographic data includes excluded patient

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Longitudinal—chronic treatment
If longitudinal, at what time point(s) were imaging data acquired?	T1: pre-treatment/chronic; T2: post-treatment/~4 weeks later; note that there were two separate sessions per time point, as well as another two sessions midway through treatment that are not analyzed in this paper
If longitudinal, was there any intervention between the time points?	Anomia treatment using a cueing hierarchy, 3 hours/day, 5 days/week, 2 weeks, with a 1-week gap between the two weeks
Is the scanner described?	Yes (Siemens Trio 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No (timing of stimuli within the silent periods is unclear)

Design type

Total images acquired	120
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	Yes

Imaging notes

sparse sampling; 26 patients were also scanned with arterial spin labelling

Conditions

Are the conditions clearly described? Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
picture naming	Word (overt)	80	Yes	Unknown
viewing abstract pictures	None	40	N/A	N/A

Conditions notes —

Contrasts

Are the contrasts clearly described? Yes

Contrast 1: picture naming vs viewing abstract pictures

Language condition	Control condition
Picture naming	Viewing abstract pictures

Are the conditions matched for visual demands? Yes

Are the conditions matched for auditory demands? No

Are the conditions matched for motor demands? No
Question	Answer
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	
Are control data reported in this paper or another that is referenced?	Somewhat
Does the contrast selectively activate plausible relevant language regions in the control group?	No
Are activations lateralized in the control data?	Somewhat
Control activation notes	Control data in Fridriksson et al. (2007); motor activations are prominent; there is some L frontal activation but little temporal activation in either hemisphere
Contrasts notes	

Analyses

Question	Answer
Are the analyses clearly described?	No* (moderate limitation) (see specific limitation(s) below)

ROI analysis 1

First level contrast	Picture naming vs viewing abstract pictures
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T2 vs T1
Covariate	Δ picture naming accuracy
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Accuracy is covariate
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	
Type of analysis	Regions of interest (ROI)
ROI type	Other
How many ROIs are there?	3
What are the ROI(s)?	(1) perilesional L hemisphere language regions; (2) perilesional L hemisphere non-language regions; (3) undamaged non-perilesional L hemisphere language regions
How are the ROI(s) defined?	Based on individual lesions and control activation for picture naming
Correction for multiple comparisons	No correction
Statistical details	
Findings	Other
Findings notes	Change in perilesional non-language regions positively correlated with improvement in accuracy

ROI analysis 2

First level contrast	Picture naming vs viewing abstract pictures
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T2 vs T1
Covariate	Δ (decrease in) semantic errors
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	
Type of analysis	Regions of interest (ROI)
ROI analysis 3	

First level contrast	Picture naming vs viewing abstract pictures
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T2 vs T1
Covariate	Δ (decrease in) phonological paraphasias
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Other
How many ROIs are there?	3
What are the ROI(s)?	(1) perilesional L hemisphere language regions; (2) perilesional L hemisphere non-language regions; (3) undamaged non-perilesional L hemisphere language regions
How are the ROI(s) defined?	Based on individual lesions and control activation for picture naming
Correction for multiple comparisons	No correction
Statistical details	—
Findings	Other
Findings notes	Change in undamaged non-perilesional language regions negatively correlated with decrease in semantic errors

ROI analysis 4
First level contrast
Analysis class
Group(s)
Covariate
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?
Is accuracy matched across the second level contrast?
Is reaction time matched across the second level contrast?
Behavioral data notes
Type of analysis
ROI type
How many ROIs are there?
What are the ROI(s)?
How are the ROI(s) defined?
Correction for multiple comparisons
Statistical details
Findings
Findings notes
Findings notes

—

ROI analysis 5

First level contrast	Picture naming vs viewing abstract pictures
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T1
Covariate	Subsequent Δ (T2 vs T1, decrease in) semantic errors
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (T1 behavioral measure should be included in model)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

—

Type of analysis

Regions of interest (ROI)

ROI type

Other

How many ROIs are there?

3

What are the ROI(s)?

(1) perilesional L hemisphere language regions; (2) perilesional L hemisphere non-language regions; (3) undamaged non-perilesional L hemisphere language regions

How are the ROI(s) defined?

Based on individual lesions and control activation for picture naming

Correction for multiple comparisons

No correction

Statistical details

Findings

Other

Findings notes

Change in perilesional language regions correlated with decrease in phonological paraphasias

Notes

Excluded analyses

(1) breakdown of frontal, temporal and parietal components of masks, because stepwise regression not described in sufficient detail; (2) pASL rCBF predictors not task-based; (3) ancillary analyses based on total naming responses instead of accuracy; (4) ancillary analyses after excluding one patient
Marcotte et al. (2012)

Reference
Authors
Title
Reference
PMID
DOI

Participants
Language
Inclusion criteria
Number of individuals with aphasia
Number of control participants
Were any of the participants included in any previous studies?
Is age reported for patients and controls, and matched?
Is sex reported for patients and controls, and matched?
Is handedness reported for patients and controls, and matched?
Is time post stroke onset reported and appropriate to the study design?
To what extent is the nature of aphasia characterized?
Language evaluation
Aphasia severity
Aphasia type
First stroke only?
Stroke type
To what extent is the lesion distribution characterized?
Lesion extent
Lesion location
Participants notes

Imaging
Modality
Is the study cross-sectional or longitudinal?
If longitudinal, at what time point(s) were imaging data acquired?
If longitudinal, was there any intervention between the time points?
Is the scanner described?
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?
Design type
Total images acquired
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?
Is preprocessing and intrasubject coregistration adequately described and appropriate?
Is first level model fitting adequately described and appropriate?
Is intersubject normalization adequately described
and appropriate?

Imaging notes —

Conditions

Are the conditions clearly described? Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
picture naming (already known items)	Word (overt)	20	Yes	Yes
picture naming (trained items)	Word (overt)	20	No	No
picture naming (untrained items)	Word (overt)	40	No	No
viewing scrambled images and saying "baba"	Word (overt)	20	Yes	Yes
rest	None	Implicit baseline	N/A	N/A

Conditions notes —

Contrasts

Are the contrasts clearly described? No (see specific limitation(s) below)

Contrast 1: picture naming (T1: known items; T2: trained items; correct trials) vs viewing scrambled images and saying "baba"

Language condition Picture naming (T1: known items; T2: trained items; correct trials)
Control condition Viewing scrambled images and saying "baba"
Are the conditions matched for visual demands? Yes
Are the conditions matched for auditory demands? Yes
Are the conditions matched for motor demands? Yes
Are the conditions matched for cognitive/executive demands? No
Is accuracy matched between the language and control tasks for all relevant groups? Yes, correct trials only
Is reaction time matched between the language and control tasks for all relevant groups? Unknown, not reported
Behavioral data notes —
Are control data reported in this paper or another that is referenced? No
Does the contrast selectively activate plausible relevant language regions in the control group? Unknown
Are activations lateralized in the control data? Unknown
Control activation notes —
Contrast notes Different contrasts at different time points not clearly explained

Contrast 2: picture naming (known items, correct trials) vs viewing scrambled images and saying "baba"

Language condition Picture naming (known items, correct trials)
Control condition Viewing scrambled images and saying "baba"
Are the conditions matched for visual demands? Yes
Are the conditions matched for auditory demands? Yes
Are the conditions matched for motor demands? Yes
Are the conditions matched for cognitive/executive demands? No
Is accuracy matched between the language and control tasks for all relevant groups? Yes, correct trials only
Is reaction time matched between the language and control tasks for all relevant groups? Unknown, not reported
Behavioral data notes —
Are control data reported in this paper or another that is referenced? No
Question	Answer
Does the contrast selectively activate plausible relevant language	Unknown
regions in the control group?	
Are activations lateralized in the control data?	Unknown
Control activation notes	—
Contrast notes	Different contrasts at different time points not clearly explained

Contrast 3: picture naming (trained items, correct trials) vs viewing scrambled images and saying "baba"

Language condition	Picture naming (trained items, correct trials)
Control condition	Viewing scrambled images and saying "baba"
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	Yes, correct trials only
Is reaction time matched between the language and control tasks for all relevant groups?	Unknown, not reported

Behavioral data notes

Are control data reported in this paper or another that is referenced? No

Does the contrast selectively activate plausible relevant language regions in the control group? Unknown

Contrast notes

Findings notes

Labels based on figures rather than text

Analyses

Are the analyses clearly described? No (see specific limitation(s) below)

Voxelwise analysis 1

First level contrast

Picture naming (T1: known items; T2: trained items; correct trials) vs viewing scrambled images and saying "baba"

Analysis class

Longitudinal change in aphasia

Group(s)

Aphasia T2 vs T1

Covariate

—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? Yes

Is accuracy matched across the second level contrast? Yes, correct trials only

Is reaction time matched across the second level contrast? Unknown, not reported

Behavioral data notes

—

Type of analysis

Voxelwise

Search volume

Whole brain

Correction for multiple comparisons

No direct comparison

Software

SPM5

Voxelwise p

—

Cluster extent

—

Statistical details

Qualitative comparison on p. 1780; different contrasts at different time points not clearly explained

Findings

† L supramarginal gyrus

‡ L dorsal precentral

¶ L posterior MTG

Findings notes

—
Voxelwise analysis 2

First level contrast	Picture naming (known items, correct trials) vs viewing scrambled images and saying "baba"
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T1
Covariate	Subsequent Δ (T2 vs T1) naming of trained items
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	[Somewhat](T1 behavioral measure should be included in model)
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	[Unknown](T2 activation not an appropriate measure of treatment-induced recovery because it reflects T2 performance)
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on arbitrary cluster extent
Software	SPM5
Voxelwise p	.005
Cluster extent	10 voxels (size not stated)
Statistical details	Different contrasts at different time points not clearly explained
Findings	▲ L dorsolateral prefrontal cortex
	▲ L SMA/medial prefrontal
	▲ L somato-motor
	▲ L anterior cingulate
	▲ R dorsolateral prefrontal cortex
	▲ R somato-motor
	▲ R thalamus
Findings notes	Labels based on figures and text

Voxelwise analysis 3

First level contrast	Picture naming (trained items, correct trials) vs viewing scrambled images and saying "baba"
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T2
Covariate	Previous Δ (T2 vs T1) naming of trained items
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	[No](T2 activation not an appropriate measure of treatment-induced recovery because it reflects T2 performance)
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	[Unknown](T2 activation not an appropriate measure of treatment-induced recovery because it reflects T2 performance)
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on arbitrary cluster extent
Software	SPM5
Voxelwise p	.005
Cluster extent	10 voxels (size not stated)
Statistical details	Different contrasts at different time points not clearly explained
Findings	▲ L somato-motor
Findings notes	Label based on figure

Notes

Excluded analyses: Individual analyses of participants with more and less successful recovery
Schofield et al. (2012)

Reference

Authors	Schofield TM, Penny WD, Stephan KE, Crinion JT, Thompson AJ, Price CJ, Leff AP
Title	Changes in auditory feedback connections determine the severity of speech processing deficits after stroke
Reference	J Neurosci 2012; 32: 4260-4270
PMID	22442088
DOI	10.1523/jneurosci.4670-11.2012

Participants

Language	UK English
Inclusion criteria	Comprehension deficit
Number of individuals with aphasia	20 (plus 1 excluded: excessive head motion)
Number of control participants	26
Were any of the participants included in any previous studies?	Yes (patients recruited from database so may have participated in prior studies from this group, but not stated explicitly)
Is age reported for patients and controls, and matched?	Yes (range 35.8-90.3 years)
Is sex reported for patients and controls, and matched?	No (males: 16; females: 4; control sex not stated)
Is handedness reported for patients and controls, and matched?	No
Is time post stroke onset reported and appropriate to the study design?	Yes (mean 3.5 years, range 0.6-8.6 years)
To what extent is the nature of aphasia characterized?	Severity only
Language evaluation	CAT
Aphasia severity	11 patients (plus one excluded) had moderate comprehension impairments, 9 had severe comprehension impairments; this distribution was bimodal
Aphasia type	Not stated
First stroke only?	Yes
Stroke type	Ischemic only
To what extent is the lesion distribution characterized?	Lesion overlay
Lesion extent	Range 24.2-403.6 cc
Lesion location	L MCA
Participants notes	Demographic data includes excluded patient

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired?	—
If longitudinal, was there any intervention between the time points?	—
Is the scanner described?	Yes (Siemens Sonata 1.5 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	Block
Total images acquired	488
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (mostly whole brain but convexity or cerebellum excluded in some participants)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and	Yes
Is intersubject normalization adequately described and appropriate? Yes

Imaging notes

Conditions

Are the conditions clearly described? Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
Listening to word pairs, speaker gender judgment	Button press	18	Yes	Unknown
Listening to reversed word pairs, speaker gender judgment	Button press	18	Yes	Unknown
Rest	None	40 (?)	N/A	N/A

Conditions notes

Contrasts

Are the contrasts clearly described? Yes

Contrast 1: listening to word pairs or reversed word pairs, speaker gender judgment vs rest

Language condition	Listening to word pairs or reversed word pairs, speaker gender judgment
Control condition	Rest
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible relevant language regions in the control group?	No
Are activations lateralized in the control data?	No
Control activation notes	Control data in Leff et al. (2008); auditory contrast, not intended to be language contrast
Contrast notes	—

Contrast 2: listening to word pairs, speaker gender judgment vs listening to reversed word pairs, speaker gender judgment

Language condition	Listening to word pairs, speaker gender judgment
Control condition	Listening to reversed word pairs, speaker gender judgment
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	Yes
Is accuracy matched between the language and control tasks for all relevant groups?	Unknown, not reported
Is reaction time matched between the language and control tasks for all relevant groups?	Unknown, not reported
Behavioral data notes	Behavioral data not separated by condition
Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible	Somewhat

375
relevant language regions in the control group? Yes
Are activations lateralized in the control data? Yes
Control activation notes Control data in Leff et al. (2008); L-lateralized activation of posterior STS
Contrast notes —

Analyses
Are the analyses clearly described? No** (major limitation) (see specific limitation(s) below)

Voxelwise analysis 1
First level contrast Listening to word pairs or reversed word pairs, speaker gender judgment vs rest
Analysis class Cross-sectional aphasia vs control
Group(s) Moderate aphasia (n = 11) vs control
Covariate —
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? Yes
Is accuracy matched across the second level contrast? Unknown, not reported
Is reaction time matched across the second level contrast? Unknown, not reported
Behavioral data notes —
Type of analysis Voxelwise
Search volume Whole brain
Correction for multiple comparisons No correction
Software SPM8
Voxelwise p .001
Cluster extent None
Statistical details —
Findings ↓ L Heschl's gyrus
Findings notes Structurally, HG was not significantly damaged in this group

Voxelwise analysis 2
First level contrast Listening to word pairs or reversed word pairs, speaker gender judgment vs rest
Analysis class Cross-sectional aphasia vs control
Group(s) Severe aphasia (n = 9) vs control
Covariate —
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? Yes
Is accuracy matched across the second level contrast? Unknown, not reported
Is reaction time matched across the second level contrast? Unknown, not reported
Behavioral data notes —
Type of analysis Voxelwise
Search volume Whole brain
Correction for multiple comparisons Mixed** (major limitation)
Software SPM8
Voxelwise p MGB: SVC; elsewhere: .001
Cluster extent None
Statistical details —
Findings ↓ L posterior STG ↓ L Heschl's gyrus ↓ L thalamus
Findings notes Specifically: PT, HG and MGB; structurally, the PT and HG were significantly damaged, but not the MGB

Voxelwise analysis 3
First level contrast	Listening to word pairs or reversed word pairs, speaker gender judgment vs rest
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Severe (n = 9) vs moderate (n = 11) aphasia
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	No correction
Software	SPM8
Voxelwise p	.001
Cluster extent	None
Statistical details	—
Findings	↓ L posterior STG
Findings notes	Specifically, PT; structurally, severe patients had more damage in HG and PT
Notes	
Excluded analyses	Intelligibility contrasts, because findings are unclear: statements of significance in the text do not match Table 5. DCM analyses (which are the main focus of the paper)

Wright et al. (2012)

Reference

Authors	Wright P, Stamatakis EA, Tyler LK
Title	Differentiating hemispheric contributions to syntax and semantics in patients with left-hemisphere lesions
Reference	J Neurosci 2012; 32: 8149-8157
PMID	22699896
DOI	10.1523/jneurosci.0485-12.2012

Participants

Language	UK English
Inclusion criteria	—
Number of individuals with aphasia	21
Number of control participants	21
Were any of the participants included in any previous studies?	Yes (unclear how many, if any, patients were included in previous studies from this group; design is identical to Tyler et al. (2010))
Is age reported for patients and controls, and matched?	Yes (mean 57.4 ± 12.5 years)
Is sex reported for patients and controls, and matched?	Yes (males: 15; females: 6)
Is handedness reported for patients and controls, and matched?	Yes (right: 21; left: 0)
Is time post stroke onset reported and appropriate to the study design?	Yes (mean 6.5 ± 7.5 years, > 1.4 years)
To what extent is the nature of aphasia characterized?	Not at all
Language evaluation	Sentence-picture matching
Aphasia

Aphasia severity	Not stated
Aphasia type	Not stated
First stroke only?	Yes
Stroke type	Not stated
To what extent is the lesion distribution characterized?	Lesion overlay
Lesion extent	Not stated
Lesion location	L MCA
Participants notes	3 of the 21 patients were not stroke, but were post resective surgery

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired?	—
If longitudinal, was there any intervention between the time points?	—
Is the scanner described?	Yes (Siemens Trio 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No* (moderate limitation) (there was only one block per condition per run, so condition could be confounded with low frequency drift; also, the length of the sentences is not stated so it is unclear how well the HRF peak aligns with the sparse acquisitions)
Design type	Block
Total images acquired	69
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	Yes
Imaging notes	sparse sampling

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
listening to normal sentences and detecting a target word	Button press	2	Yes	Yes
listening to grammatical but meaningless sentences and detecting a target word	Button press	2	Yes	Yes
listening to scrambled sentences and detecting a target word	Button press	2	Yes	Yes
listening to "musical rain" and detecting a period of white noise	Button press	2	Yes	Yes
rest	None	2	N/A	N/A

Conditions notes

Auditory presentation; target detection task with early and late targets; 12-15 trials per block with single sparse acquisition each, but only one block of each condition per run, in fixed order

Contrasts

Are the contrasts clearly described?	Yes

Contrast 1: listening to normal sentences and detecting a target word vs rest

Language condition	Listening to normal sentences and detecting a target word
Control condition	Rest
------------------------	-------------------
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible relevant language regions in the control group?	No
Are activations lateralized in the control data?	No
Control activation notes	Bilateral superior temporal, sensorimotor and visual
Contrast notes	—

Contrast 2: listening to grammatical but meaningless sentences and detecting a target word vs rest

Language condition	Listening to grammatical but meaningless sentences and detecting a target word vs rest
Control condition	Rest
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	No
Does the contrast selectively activate plausible relevant language regions in the control group?	Unknown
Are activations lateralized in the control data?	Unknown
Control activation notes	—
Contrast notes	—

Analyses

| Are the analyses clearly described? | Yes |

Voxelwise analysis 1

First level contrast	Listening to normal sentences and detecting a target word vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
---------------------	-------------
Correction for multiple comparisons	No correction
Software	SPM5
Voxelwise p	.01
Cluster extent	—
Statistical details	—
Findings	↓ L posterior STG/STS/MTG
	↓ L Heschl's gyrus
	↓ L mid temporal
Findings notes	At a more stringent threshold of p < .001, with correction for multiple comparisons based on GRFT and cluster extent, only L HG showed reduced activity in patients

Complex analysis 1

First level contrast	Listening to normal sentences and detecting a target word vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	See statistical details
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Complex
Statistical details	Joint ICA was performed on structural and functional contrast images for each of the two contrasts using FIT 2.0b. Seven components were derived, of which 2 were further investigated since their loadings correlated with relevant behavioral measures. Functional components were thresholded at p < .001, cluster-corrected for multiple comparisons, minimum cluster extent = 1.27 cc. Component 1 was considered a "semantics component" because it correlated with the semantic behavioral measure and not with either of the two syntactic measures. This component did not have any anatomical aspect to it. Component 2 was considered a "syntax component" because it correlated with both syntactic behavioral measures and not with the semantic measure. This conceptualization seems somewhat speculative, given that WPE NP and WPE AP are rather indirect measures of syntactic and semantic processing. Component 2 involved damage to left frontal and insular cortex, and underlying dorsal white matter.
Findings	Other
Findings notes	Contrast 1 loaded primarily on the R STG for component 1 (the "semantics component") and on the L ITG for component 2 (the "syntax component").

Complex analysis 2

First level contrast	Listening to grammatical but meaningless sentences and detecting a target word vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	See statistical details
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Complex
Statistical details	Joint ICA was performed on structural and functional contrast images for each of the two contrasts using FIT 2.0b. Seven components were derived, of which 2 were further investigated since their loadings correlated with relevant behavioral measures. Functional components were thresholded at p < .001, cluster-corrected for multiple comparisons, minimum cluster extent = 1.27 cc. Component 1 was considered a "semantics component" because it correlated with the semantic behavioral measure and not with either of the two syntactic measures. This component did not have any anatomical aspect to it. Component 2 was considered a "syntax component" because it correlated with both syntactic behavioral measures and not with the semantic measure. This conceptualization seems somewhat speculative, given that WPE NP and WPE AP are rather indirect measures of syntactic and semantic processing. Component 2 involved damage to left frontal and insular cortex, and underlying dorsal white matter.
components were thresholded at p < .001, cluster-corrected for multiple comparisons, minimum cluster extent = 1.27 cc. Component 1 was considered a "semantics component" because it correlated with the semantic behavioral measure and not with either of the two syntactic measures. This component did not have any anatomical aspect to it. Component 2 was considered a "syntax component" because it correlated with both syntactic behavioral measures and not with the semantic measure. This conceptualization seems somewhat speculative, given that WPE NP and WPE AP are rather indirect measures of syntactic and semantic processing. Component 2 involved damage to left frontal and insular cortex, and underlying dorsal white matter.

Findings

Notes

Excluded analyses —

Szaflarski et al. (2013)

Reference

Authors Szaflarski JP, Allendorfer JB, Banks C, Vannest J, Holland SK
Title Recovered vs. not-recovered from post-stroke aphasia: the contributions from the dominant and non-dominant hemispheres
Reference Restor Neurol Neurosci 2013; 31: 347-360
PMID 23482065
DOI 10.3233/rnn-120267

Participants

Language US English
Inclusion criteria —
Number of individuals with aphasia 27
Number of control participants 0
Were any of the participants included in any previous studies? No
Is age reported for patients and controls, and matched? Yes (recovered: mean 50 ± 13 years; non-recovered: mean 51 ± 13 years)
Is sex reported for patients and controls, and matched? Yes (males: 15; females: 12)
Is handedness reported for patients and controls, and matched? Yes (right: 27; left: 0)
Is time post stroke onset reported and appropriate to the study design? Yes (recovered: mean 2.1 ± 2.1 years; non-recovered: mean 4.9 ± 3.1 years)
To what extent is the nature of aphasia characterized? Severity only
Language evaluation TT, BNT, semantic fluency, phonemic fluency, PPVT, complex ideation subtest of BDAE
Aphasia severity Recovered: TT mean 43 ± 1, ≥ 41; non-recovered: TT mean 23 ± 12, < 41
Aphasia type Not stated
First stroke only? Not stated
Stroke type Not stated
To what extent is the lesion distribution characterized? Lesion overlay
Lesion extent Recovered: median 9.2 cc, range 2.2-26.5 cc; non-recovered: median 74 cc, range 5.1-206.0 cc
Lesion location L MCA
Participants notes —
Imaging

Question	Answer
Modality	fMRI
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time points were imaging data acquired?	—
If longitudinal, was there any intervention between the time points?	—
Is the scanner described?	No (Phillips 3 Tesla; model not stated)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	Block
Total images acquired	330
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	Yes
Imaging notes	—

Conditions

Question	Answer
Are the conditions clearly described?	Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
semantic decision	Button press	10	No	No
tone decision	Button press	12	No	No

Contrasts

Question	Answer
Are the contrasts clearly described?	Yes

Contrast 1: semantic decision vs tone decision

Language condition	Semantic decision
Control condition	Tone decision
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	Yes
Is accuracy matched between the language and control tasks for all relevant groups?	**Appear mismatched**
Is reaction time matched between the language and control tasks for all relevant groups?	**Unknown, not reported**

Behavioral data notes	Accuracy appears similar in the non-recovered group, but not in the recovered group
Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible relevant language regions in the control group?	Yes
Are activations lateralized in the control data?	Yes
Control activation notes	Control data in Kim et al. (2011) and Szafarski et al. (2008); L frontal and temporal, plus other semantic regions

Contrast notes

—
Analyses

Are the analyses clearly described?	Yes

Voxelwise analysis 1

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia not recovered (n = 18) vs recovered (n = 9)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Appear mismatched
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

Interaction of group by condition not reported; non-recovered patients were significantly less accurate only on the semantic decision condition, but they actually showed a smaller difference between conditions than the recovered patients.

Type of analysis | Voxelwise |
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on 3dClustSim
Software	AFNI
Voxelwise p	.05
Cluster extent	4.16 cc
Statistical details	Cluster-defining threshold (CDT) p < 0.05 too lenient

Findings

	↑ L dorsolateral prefrontal cortex	↑ L superior parietal	↑ L cerebellum	↑ R cerebellum	↓ R posterior STG

Findings notes

—

ROI analysis 1

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia (recovered and non-recovered)
Covariate	BNT
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

—

Type of analysis | Regions of interest (ROI) |
ROI type	Functional
How many ROIs are there?	4
What are the ROI(s)?	(1) bilateral cerebellum; (2) R pSTG; (3) L superior parietal lobule; (4) L superior frontal gyrus
How are the ROI(s) defined?	Regions that were differentially recruited between recovered and non-recovered patients; average t scores from individual SPMs
Correction for multiple comparisons	Familywise error (FWE)
Statistical details	Circular because defined based on recovered status

Findings

	↑ L dorsolateral prefrontal cortex

Findings notes

—

ROI analysis 2

| First level contrast | Semantic decision vs tone decision |
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia (recovered and non-recovered)
Covariate	Semantic fluency
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	4
What are the ROI(s)?	(1) bilateral cerebellum; (2) R pSTG; (3) L superior parietal lobule; (4) L superior frontal gyrus
How are the ROI(s) defined?	Regions that were differentially recruited between recovered and non-recovered patients; average t scores from individual SPMs
Correction for multiple comparisons	Familywise error (FWE)
Statistical details	Circular because defined based on recovered status
Findings	✡ L dorsolateral prefrontal cortex
Findings notes	

ROI analysis 3

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia (recovered and non-recovered)
Covariate	Single word comprehension (PPVT)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	4
What are the ROI(s)?	(1) bilateral cerebellum; (2) R pSTG; (3) L superior parietal lobule; (4) L superior frontal gyrus
How are the ROI(s) defined?	Regions that were differentially recruited between recovered and non-recovered patients; average t scores from individual SPMs
Correction for multiple comparisons	Familywise error (FWE)
Statistical details	Circular because defined based on recovered status
Findings	✡ L dorsolateral prefrontal cortex
Findings notes	

ROI analysis 4

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia (recovered and non-recovered)
Covariate	BDAE complex ideation subtest
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
ROI analysis 5

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia (recovered and non-recovered)
Covariate	Phonemic fluency
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	4
What are the ROI(s)?	(1) bilateral cerebellum; (2) R pSTG; (3) L superior parietal lobule; (4) L superior frontal gyrus
How are the ROI(s) defined?	Regions that were differentially recruited between recovered and non-recovered patients; average t scores from individual SPMs
Correction for multiple comparisons	Familywise error (FWE)
Statistical details	Circular because defined based on recovered status
Findings	↑ L dorsolateral prefrontal cortex
Findings notes	—

ROI analysis 6

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia (recovered and non-recovered)
Covariate	Semantic decision accuracy
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Accuracy is covariate
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	4
What are the ROI(s)?	(1) bilateral cerebellum; (2) R pSTG; (3) L superior parietal lobule; (4) L superior frontal gyrus
How are the ROI(s) defined?	Regions that were differentially recruited between recovered and non-recovered patients; average t scores from individual SPMs
Correction for multiple comparisons	Familywise error (FWE)
Statistical details	Circular because defined based on recovered status
Thiel et al. (2013)

Reference

Authors	Thiel A, Hartmann A, Rubi-Fessen I, Anglade C, Kracht L, Weiduschat N, Kessler J, Rommel T, Heiss WD
Title	Effects of noninvasive brain stimulation on language networks and recovery in early poststroke aphasia
Reference	*Stroke* 2013; 44: 2240-2246
PMID	23813984
DOI	10.1161/strokeaha.111.000574

Participants

Language	German
Number of individuals with aphasia	24 (plus 6 excluded: 4 did not tolerate MRI or PET scans; 2 TMS device was defective)
Number of control participants	0
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (rTMS group: mean 69.8 ± 8.0 years; sham group: mean 71.2 ± 7.8 years)
Is sex reported for patients and controls, and matched?	No
Is handedness reported for patients and controls, and matched?	Yes (right: 24; left: 0)
Is time post stroke onset reported and appropriate to the study design?	Yes (rTMS group: mean 37.5 ± 18.5 days; sham group: mean 50.6 ± 22.6 days)
To what extent is the nature of aphasia characterized?	Severity and type
Language evaluation	AAT
Aphasia severity	T1: rTMS group: AAT sum of scores mean 251.5 ± 32.4; sham group: mean 251.1 ± 39.5; T2 not stated
Aphasia type	T1: rTMS group: 7 Wernicke's, 3 amnestic, 2 global, 1 Broca's; sham group: 5 Wernicke's, 3 Broca's, 2 global, 1 amnestic; T2: not stated
First stroke only?	Yes
Stroke type	Ischemic only
To what extent is the lesion distribution characterized?	Individual lesions
Lesion extent	RTMS group: 233 ± 197 cc; sham group: 244 ± 243 cc; lesion extent in images appears much smaller than the stated volumes
Lesion location	L MCA
Participants notes	—

Imaging

Modality	PET (rCBF)
Is the study cross-sectional or longitudinal?	Longitudinal—mixed
If longitudinal, at what time point(s) were imaging data acquired?	T1: pre-treatment/subacute (rTMS group: mean 37.5 ± 18.5 days post onset; sham group: mean 50.6 ± 22.6 days post onset); T2 post-treatment, ~2.5 weeks later
If longitudinal, was there any intervention between the time points? | RTMS group: inhibitory rTMS over the R IFG pars triangularis + SLT for 45 minutes/day, 5 days/week, 2 weeks; control group: sham TMS + SLT
---|---
Is the scanner described? | Yes (CTI-Siemens ECAT EXACT HR)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate? | Yes
Design type | PET
Total images acquired | 8
Are the imaging acquisition parameters, including coverage, adequately described and appropriate? | Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate? | Yes
Is first level model fitting adequately described and appropriate? | Yes
Is intersubject normalization adequately described and appropriate? | No (lesion impact not addressed)
Imaging notes | —

Conditions

Are the conditions clearly described? | Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
verb generation	Word (overt)	4	Unknown	Unknown
rest	None	4	N/A	N/A

Conditions notes | —

Contrasts

Are the contrasts clearly described? | Yes

Contrast 1: verb generation vs rest

Language condition	Verb generation	Rest
Control condition	Verb generation	Rest
Are the conditions matched for visual demands?	Yes	
Are the conditions matched for auditory demands?	No	
Are the conditions matched for motor demands?	No	
Are the conditions matched for cognitive/executive demands?	No	
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable	
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable	
Behavioral data notes	—	
Are control data reported in this paper or another that is referenced?	Somewhat	
Does the contrast selectively activate plausible relevant language regions in the control group?	Unknown	
Are activations lateralized in the control data?	Unknown	
Control activation notes	Cites Weiduschat et al. (2011) which in turn cites Herholz et al. (1996) which provides some minimal control data	
Contrast notes	—	

Analyses

Are the analyses clearly described? | Yes

Voxelwise analysis 1

| First level contrast | Verb generation vs rest |
Analysis class
Longitudinal between two groups with aphasia

Group(s)
(Aphasia with rTMS (n = 13) T2 vs T1) vs (aphasia with sham (n = 11) T2 vs T1)

Covariate
—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?
Yes

Is accuracy matched across the second level contrast?
Unknown, not reported

Is reaction time matched across the second level contrast?
Unknown, not reported

Behavioral data notes
—

Type of analysis
Voxelwise

Search volume
Whole brain

Correction for multiple comparisons
No direct comparison

Software
SPM8

Voxelwise p
—

Cluster extent
—

Statistical details
Qualitative comparison on p. 2244

Findings
↑	L IFG
↑	L posterior STG/STS/MTG
↓	R IFG
↓	R posterior STG/STS/MTG

Findings notes
Approximate interpretation of qualitative patterns shown in Figure 3; T1 R lateralization surprising relative to other findings from this group

ROI analysis 1

First level contrast
Verb generation vs rest

Analysis class
Longitudinal between two groups with aphasia

Group(s)
(Aphasia with rTMS (n = 13) T2 vs T1) vs (aphasia with sham (n = 11) T2 vs T1)

Covariate
—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?
Yes

Is accuracy matched across the second level contrast?
Unknown, not reported

Is reaction time matched across the second level contrast?
Unknown, not reported

Behavioral data notes
—

Type of analysis
Region of interest (ROI)

ROI type
Laterality indices

How many ROIs are there?
1

What are the ROI(s)?
Language network LI

How are the ROI(s) defined?
Language network LI

Correction for multiple comparisons
One only

Statistical details
Actual LIs are not reported, only change in LI

Findings
↑ LI (language network)

Findings notes
T1 R lateralization surprising relative to other findings from this group

ROI analysis 2

First level contrast
Verb generation vs rest

Analysis class
Longitudinal correlation with language or other measure

Group(s)
Aphasia T2 vs T1

Covariate
Δ AAT total score

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?
Yes

Is accuracy matched across the second level contrast?
Unknown, not reported

Is reaction time matched across the second level contrast?
Unknown, not reported
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Laterality indices
How many ROIs are there?	1
What are the ROI(s)?	Language network LI
How are the ROI(s) defined?	One only
Correction for multiple comparisons	Model did not include treatment group (rTMS vs sham)
Statistical details	Model did not include treatment group (rTMS vs sham)
Findings	↑ LI (language network)
Findings notes	Patients who improved more showed a greater leftward shift of activation; T1 R lateralization surprising relative to other findings from this group

Notes

Excluded analyses

Abel et al. (2014)
Reference
Title
Reference
PMID
DOI

Participants

Language	German
Inclusion criteria	Anomia; no severe AoS or dysarthria
Number of individuals with aphasia	14 (plus 9 excluded: 4 for ceiling performance; 5 for technical problems)
Number of control participants	0
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (median 48 years, range 35-74 years)
Is sex reported for patients and controls, and matched?	Yes (males: 10; females: 4)
Is handedness reported for patients and controls, and matched?	Yes (right: 14; left: 0)
Is time post stroke onset reported and appropriate to the study design?	Yes (median 41 months, range 11-72 months)
To what extent is the nature of aphasia characterized?	Type only
Language evaluation	AAT
Aphasia severity	Not stated
Aphasia type	8 Broca's, 3 Wernicke's, 1 fluent non-classifiable, 1 global, 1 transcortical sensory
First stroke only?	Yes
Stroke type	Mixed etiologies
To what extent is the lesion distribution characterized?	Lesion overlay
Lesion extent	Not stated
Lesion location	L MCA; 2 also had ACA
Participants notes	—
Imaging

Question	Answer
Modality	fMRI
Is the study cross-sectional or longitudinal?	Longitudinal—chronic treatment
If longitudinal, at what time point(s) were imaging data acquired?	T1: pre-treatment/chronic; T2: post-treatment, ~6 weeks later (labeled T2 and T3 in paper)
If longitudinal, was there any intervention between the time points?	Lexical therapy, alternating between weeks with phonological and semantic treatment, 4 weeks; 60 out of the 132 items were trained
Is the scanner described?	Yes (Philips Achieva 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No* (moderate limitation) (trials too close together (~8 s) and insufficient jitter (1-3 s) for event-related design)
Design type	Event-related
Total images acquired	560
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	No (lesion impact not addressed)
Imaging notes	—

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
picture naming (semantic trained items)	Word (overt)	30	Yes	Unknown
picture naming (phonological trained items)	Word (overt)	30	Yes	Unknown
picture naming (untrained items)	Word (overt)	30	Yes	Unknown
picture naming (already known items)	Word (overt)	42	Yes	Unknown
rest	None	implicit baseline	N/A	N/A

Contrasts

Contrasts	Answer
Contrast 1: picture naming (all conditions) vs rest	
Language condition	Picture naming (all conditions)
Control condition	Rest
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	No
Does the contrast selectively activate plausible relevant language regions in the control group?	Unknown
Are activations lateralized in the control data?	Unknown
Control activation notes

- But see control data reported in a subsequent paper (Abel et al., 2015)

Contrast notes

Contrast 2: picture naming (trained items) vs picture naming (untrained items)

Language condition	Picture naming (trained items)
Control condition	Picture naming (untrained items)
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	Yes
Is accuracy matched between the language and control tasks for all relevant groups?	No, different
Is reaction time matched between the language and control tasks for all relevant groups?	Unknown, not reported

Behavioral data notes

- Are control data reported in this paper or another that is referenced? No
- Does the contrast selectively activate plausible relevant language regions in the control group? Unknown
- Are activations lateralized in the control data? Unknown

Contrast notes

Contrast 3: picture naming (semantic trained items) vs picture naming (phonological trained items)

Language condition	Picture naming (semantic trained items)
Control condition	Picture naming (phonological trained items)
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	Yes
Is accuracy matched between the language and control tasks for all relevant groups?	Yes, matched
Is reaction time matched between the language and control tasks for all relevant groups?	Unknown, not reported

Behavioral data notes

- Are control data reported in this paper or another that is referenced? No
- Does the contrast selectively activate plausible relevant language regions in the control group? Unknown
- Are activations lateralized in the control data? Unknown

Contrast notes

Analyses

- Are the analyses clearly described? Yes

Voxelwise analysis 1

First level contrast	Picture naming (all conditions) vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T1
Covariate	Subsequent Δ (T2 vs T1) picture naming
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (T1 behavioral measure should be included in model)
Is accuracy matched across the second level contrast? | Accuracy is covariate
---|---
Is reaction time matched across the second level contrast? | Unknown, not reported
Behavioral data notes | —
Type of analysis | Voxelwise
Search volume | Whole brain
Correction for multiple comparisons | Clusterwise correction based on cluster_threshold_beta
Software | SPM8
Voxelwise p | .01
Cluster extent | 11 voxels (size not stated)
Statistical details | —
Findings | ↑ L IFG pars opercularis
 | ↓ R basal ganglia
Findings notes | —

Voxelwise analysis 2

| First level contrast | Picture naming (all conditions) vs rest
| Analysis class | Longitudinal correlation with language or other measure
| Group(s) | Aphasia T2 vs T1
| Covariate | Δ picture naming accuracy
| Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? | Yes
| Is accuracy matched across the second level contrast? | Accuracy is covariate
| Is reaction time matched across the second level contrast? | Unknown, not reported
Behavioral data notes | —
Type of analysis | Voxelwise
Search volume | Whole brain
Correction for multiple comparisons | Clusterwise correction based on cluster_threshold_beta
Software | SPM8
Voxelwise p | .01
Cluster extent | 11 voxels (size not stated)
Statistical details | —
Findings | ↑ L somato-motor
 | ↑ L inferior parietal lobule
 | ↑ L supramarginal gyrus
 | ↑ L posterior STS
 | ↑ L posterior MTG
 | ↑ L occipital
Findings notes | —

Voxelwise analysis 3

| First level contrast | Picture naming (trained items) vs picture naming (untrained items)
| Analysis class | Longitudinal change in aphasia
| Group(s) | Aphasia T2 vs T1
| Covariate | —
| Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? | Yes
| Is accuracy matched across the second level contrast? | No, different
| Is reaction time matched across the second level contrast? | Unknown, not reported
Behavioral data notes | Trained items improved more than untrained items
Type of analysis | Voxelwise
Voxelwise analysis 4

Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on cluster_threshold_beta
Software	SPM8
Voxelwise p	.01
Cluster extent	11 voxels (size not stated)
Statistical details	
Findings	↑ L precuneus, ↑ L posterior STG, ↑ L Heschl's gyrus, ↑ L mid temporal, ↑ L posterior cingulate, ↑ L thalamus, ↑ R ventral precentral/inferior frontal junction, ↑ R somato-motor, ↑ R Heschl's gyrus, ↑ R posterior cingulate, ↑ R thalamus, ↑ R basal ganglia
Findings notes	

Voxelwise analysis 5

Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on cluster_threshold_beta
Software	SPM8
Voxelwise p	.01
Cluster extent	11 voxels (size not stated)
Statistical details	
Findings	↓ R superior parietal, ↓ L dorsolateral prefrontal cortex, ↓ L somato-motor, ↓ L occipital, ↓ L anterior cingulate, ↓ L posterior cingulate, ↓ R precuneus, ↓ R occipital, ↓ R anterior cingulate, ↓ R posterior cingulate, ↓ R hippocampus/MTL
Findings notes	
Question	Answer
--	---
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

- Type of analysis: Voxelwise
- Search volume: Whole brain
- Correction for multiple comparisons: Clusterwise correction based on cluster_threshold_beta
- Software: SPM8
- Voxelwise p: .01
- Cluster extent: 11 voxels (size not stated)
- Statistical details: —
- Findings:
 - ↑ R IFG pars triangularis
 - ↑ R dorsolateral prefrontal cortex
 - ↑ L thalamus
 - ↑ L basal ganglia
 - ↑ R somato-motor
 - ↓ L IFG pars opercularis

Voxelwise analysis 6

First level contrast: Picture naming (all conditions) vs rest

Analysis class: Longitudinal between two groups with aphasia

Group(s):
- Aphasia with semantic impairment (n = 8) T2 vs T1
- Aphasia with phonological impairment (n = 6) T2 vs T1

Covariate: —

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? Yes

Is accuracy matched across the second level contrast? No, different

Is reaction time matched across the second level contrast? Unknown, not reported

Behavioral data notes: Phonological patients showed more improvement on trained items

Type of analysis: Voxelwise

Search volume: Whole brain

Correction for multiple comparisons: Clusterwise correction based on cluster_threshold_beta

Software: SPM8

Voxelwise p: .01

Cluster extent: 11 voxels (size not stated)

Statistical details: —

Findings:
- ↑ L somato-motor
- ↑ L Heschl's gyrus
- ↑ L anterior temporal
- ↑ L occipital
- ↑ L thalamus
- ↑ L basal ganglia
- ↑ R somato-motor
- ↓ L IFG pars opercularis

Findings notes: —

Voxelwise analysis 7

First level contrast: Picture naming (all conditions) vs rest

Analysis class: Longitudinal change in aphasia

Group(s): Aphasia with semantic impairment (n = 8) T2 vs T1

Covariate: —

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? Yes

Is accuracy matched across the second level contrast? No, different
contrast? Is reaction time matched across the second level contrast?

Behavioral data notes
Type of analysis
Voxelwise
Search volume
Whole brain
Correction for multiple comparisons
Clusterwise correction based on cluster_threshold.beta
Software
SPM8
Voxelwise p
.01
Cluster extent
11 voxels (size not stated)
Statistical details
—
Findings
↑ L basal ganglia
Findings notes
—

Voxelwise analysis 8
First level contrast
Picture naming (all conditions) vs rest
Analysis class
Longitudinal change in aphasia
Group(s)
Aphasia with phonological impairment (n = 6) T2 vs T1
Covariate
—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?
Yes
Is accuracy matched across the second level contrast?
No, different
Is reaction time matched across the second level contrast?
Unknown, not reported
Behavioral data notes
—
Type of analysis
Voxelwise
Search volume
Whole brain
Correction for multiple comparisons
Clusterwise correction based on cluster_threshold.beta
Software
SPM8
Voxelwise p
.01
Cluster extent
11 voxels (size not stated)
Statistical details
—
Findings
—
Findings notes
—

Notes
Excluded analyses
—

Benjamin et al. (2014)

Reference
Authors
Benjamin ML, Towler S, Garcia A, Park H, Sudhyadhom A, Harnish SM, McGregor KM, Zlatar Z, Reilly JJ, Rosenbek JC, Gonzalez LJ, Crosson B
Title
A behavioral manipulation engages right frontal cortex during aphasia therapy
Reference
Neurorehabil Neural Repair 2014; 28: 545-553
PMID
24407914
DOI
10.1177/1545968313517754

Participants
Language
US English
Inclusion criteria
"at least minimal evidence of non-fluent output"; lesion including precentral gyrus or
Number of individuals with aphasia | 14
Number of control participants | 0
Were any of the participants included in any previous studies? | No
Is age reported for patients and controls, and matched? | Yes (intention group: mean 72.1 ± 10.5 years; control group: mean 63.0 ± 9.2 years)
Is sex reported for patients and controls, and matched? | Yes (males: 8; females: 6)
Is handedness reported for patients and controls, and matched? | Yes (right: 14; left: 0)
Is time post stroke onset reported and appropriate to the study design? | Yes (intention group: mean 37.4 ± 33.5 months, range 12-87 months; control group: 38.1 ± 37.4 months, range 10-112 months)
To what extent is the nature of aphasia characterized? | Severity and type

Language evaluation | WAB, BNT, PPVT
Aphasia severity | Intention group: AQ mean 65.5 ± 8.3; control group: AQ mean 71.9 ± 11.9
Aphasia type | Intention group: 4 conduction, 2 Broca’s, 1 anomic; control group: 4 anomic, 1 Broca’s, 1 conduction, 1 transcortical motor
First stroke only? | No
Stroke type | Mixed etiologies
To what extent is the lesion distribution characterized? | Lesion overlay
Lesion extent | Not stated
Lesion location | L MCA, extending frontally at least into the precentral gyrus or underlying white matter

Imaging

| Modality | fMRI
Is the study cross-sectional or longitudinal? | Longitudinal—chronic treatment
If longitudinal, at what time point(s) were imaging data acquired? | T1: pre-treatment/chronic; T2: post-treatment; T3: 3 months after the end of treatment
If longitudinal, was there any intervention between the time points? | Word finding therapy for both groups, but the intention group had to produce complex left hand movements, while the control group did not; note that groups were not directly compared in any imaging analyses
Is the scanner described? | Yes (Philips Achieva 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate? | No (total images acquired not stated)
Design type | Event-related
Total images acquired | not stated
Are the imaging acquisition parameters, including coverage, adequately described and appropriate? | Yes (whole brain)
Is preprocessing and intersubject coregistration adequately described and appropriate? | No (not described)
Is first level model fitting adequately described and appropriate? | No (not described clearly)
Is intersubject normalization adequately described and appropriate? | No (lesion impact not addressed)

Conditions

Are the conditions clearly described? | Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
word generation	Word (overt)	60	Unknown	Unknown
rest	None	implicit	N/A	N/A
Conditions notes

Contrasts

Are the contrasts clearly described? Yes

Contrast 1: word generation vs rest

Language condition	Word generation
Control condition	Rest
Are the conditions matched for visual demands? No	
Are the conditions matched for auditory demands? No	
Are the conditions matched for motor demands? No	
Are the conditions matched for cognitive/executive demands? No	
Is accuracy matched between the language and control tasks for all relevant groups? N/A, tasks not comparable	
Is reaction time matched between the language and control tasks for all relevant groups? N/A, tasks not comparable	

Behavioral data notes

Are control data reported in this paper or another that is referenced? No
Does the contrast selectively activate plausible relevant language regions in the control group? Unknown
Are activations lateralized in the control data? Unknown

Contrast notes
Contrast not described explicitly but there is only one possible contrast

Analyses

Are the analyses clearly described? Yes

ROI analysis 1

First level contrast Word generation vs rest
Analysis class Longitudinal change in aphasia
Group(s) Aphasia with intention treatment (n = 7) T2 vs T1
Covariate —
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? Yes
Is accuracy matched across the second level contrast? Unknown, not reported
Is reaction time matched across the second level contrast? Unknown, not reported

Behavioral data notes

Type of analysis Regions of interest (ROI)
ROI type Laterality indices
How many ROIs are there? 3
What are the ROI(s)? (1) lateral frontal LI; (2) medial frontal LI; (3) posterior perisylvian LI
How are the ROI(s) defined? Laterality shift for lateral frontal LI, not medial frontal LI

Correction for multiple comparisons No correction
Statistical details —
Findings ↓ LI (frontal)
Findings notes Laterality shift for lateral frontal LI, not medial frontal LI

ROI analysis 2

First level contrast Word generation vs rest
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia with intention treatment (n = 6) T3 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Laterality indices
How many ROIs are there?	3
What are the ROI(s)?	(1) lateral frontal LI; (2) medial frontal LI; (3) posterior perisylvian LI
How are the ROI(s) defined?	
Correction for multiple comparisons	No correction
Statistical details	—
Findings	↓ LI (frontal)
Findings notes	Laterality shift for both lateral and medial frontal LIs

ROI analysis 3

First level contrast	Word generation vs rest
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia with control treatment (n = 7) T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Laterality indices
How many ROIs are there?	3
What are the ROI(s)?	(1) lateral frontal LI; (2) medial frontal LI; (3) posterior perisylvian LI
How are the ROI(s) defined?	
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 4

First level contrast	Word generation vs rest
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia with control treatment (n = 7) T3 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)

398
ROI analysis 5	First level contrast	Word generation vs rest
Analysis class	Longitudinal correlation with language or other measure	
Group(s)	Aphasia with intention treatment (n = 7) T2 vs T1	
Covariate	Δ category-member generation probe performance	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes	
Is accuracy matched across the second level contrast?	Unknown, not reported	
Is reaction time matched across the second level contrast?	Unknown, not reported	
Behavioral data notes	—	
Type of analysis	Regions of interest (ROI)	
ROI type	Laternality ind(ices)	
How many ROIs are there?	3	
What are the ROI(s)?	(1) lateral frontal Ll; (2) medial frontal Ll; (3) posterior perisylvian Ll	
How are the ROI(s) defined?	No correction	
Statistical details	—	
Findings	None	
Findings notes	—	

ROI analysis 6	First level contrast	Word generation vs rest
Analysis class	Longitudinal correlation with language or other measure	
Group(s)	Aphasia with control treatment (n = 7) T2 vs T1	
Covariate	Δ category-member generation probe performance	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes	
Is accuracy matched across the second level contrast?	Unknown, not reported	
Is reaction time matched across the second level contrast?	Unknown, not reported	
Behavioral data notes	—	
Type of analysis	Regions of interest (ROI)	
ROI type	Laterality ind(ices)	
How many ROIs are there?	3	
What are the ROI(s)?	(1) lateral frontal Ll; (2) medial frontal Ll; (3) posterior perisylvian Ll	
How are the ROI(s) defined?	No correction	
Statistical details	—	
Findings	None	
Findings notes	—	

ROI analysis 7	First level contrast	Word generation vs rest
Analysis class	Longitudinal correlation with language or other measure	
Group(s)	Aphasia with intention treatment (n = 7) T2 vs T1	
Covariate	Δ category-member generation probe performance	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes	
Is accuracy matched across the second level contrast?	Unknown, not reported	
Is reaction time matched across the second level contrast?	Unknown, not reported	
Behavioral data notes	—	
Type of analysis	Regions of interest (ROI)	
ROI type	Laterality ind(ices)	
How many ROIs are there?	3	
What are the ROI(s)?	(1) lateral frontal Ll; (2) medial frontal Ll; (3) posterior perisylvian Ll	
How are the ROI(s) defined?	No correction	
Statistical details	—	
Findings	None	
Findings notes	—	
Analysis class
Longitudinal correlation with language or other measure

Group(s)
Aphasia with intention treatment (n = 7) T2 vs T1

Covariate
Δ picture naming probe performance

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?
Yes

Is accuracy matched across the second level contrast?
Unknown, not reported

Is reaction time matched across the second level contrast?
Unknown, not reported

Behavioral data notes
—

Type of analysis
Regions of interest (ROI)

ROI type
Laterality indices

How many ROIs are there?
3

What are the ROI(s)?
(1) lateral frontal LI; (2) medial frontal LI; (3) posterior perisylvian LI

How are the ROI(s) defined?
(1) lateral frontal LI; (2) medial frontal LI; (3) posterior perisylvian LI

Correction for multiple comparisons
No correction

Statistical details
—

Findings
None

Findings notes
—

ROI analysis 8

First level contrast
Word generation vs rest

Analysis class
Longitudinal correlation with language or other measure

Group(s)
Aphasia with control treatment (n = 7) T2 vs T1

Covariate
Δ picture naming probe performance

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?
Yes

Is accuracy matched across the second level contrast?
Unknown, not reported

Is reaction time matched across the second level contrast?
Unknown, not reported

Behavioral data notes
—

Type of analysis
Regions of interest (ROI)

ROI type
Laterality indices

How many ROIs are there?
3

What are the ROI(s)?
(1) lateral frontal LI; (2) medial frontal LI; (3) posterior perisylvian LI

How are the ROI(s) defined?
(1) lateral frontal LI; (2) medial frontal LI; (3) posterior perisylvian LI

Correction for multiple comparisons
No correction

Statistical details
—

Findings
None

Findings notes
—

Notes

Excluded analyses
SPM analysis in Figure 3, because the authors do not attempt to interpret it

Brownsett et al. (2014)

Reference

Authors	Brownsett SL, Warren JE, Geranmayeh F, Woodhead Z, Leech R, Wise RJ
Title	Cognitive control and its impact on recovery from aphasic stroke
Reference	Brain 2014; 137: 242-254
PMID	24163248
DOI
10.1093/brain/awt289

Participants

Language	UK English
Inclusion criteria	No involvement of ACA territory
Number of individuals with aphasia	16 (plus 3 excluded: 2 withdrew after attempting first scan; 1 had severe dysarthria)
Number of control participants	17
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (mean 60 years, range 37-84 years)
Is sex reported for patients and controls, and matched?	Yes (males: 11; females: 5)
Is handedness reported for patients and controls, and matched?	Yes (right: 16; left: 0)
Is time post stroke onset reported and appropriate to the study design?	Yes (mean 4 years, range 6 months-11 years)
To what extent is the nature of aphasia characterized?	Not at all
Language evaluation	Not stated
Aphasia severity	Not stated
Aphasia type	Not stated, but all had auditory comprehension and repetition deficits, and all could at least attempt to repeat
First stroke only?	Not stated
Stroke type	Not stated
To what extent is the lesion distribution characterized?	Lesion overlay
Lesion extent	Not stated
Lesion location	L temporal and parietal cortex; 4 extended into the frontal lobe; no lesions involved ACA territory
Participants notes	—

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Longitudinal—chronic treatment
If longitudinal, at what time point(s) were imaging data acquired?	Patients: T1: acclimatization/chronic (but used in some analyses); T2: pre-treatment/chronic (not stated how long after T1); T3: post-treatment/~4 weeks later; controls: T1: pre-training; T2: post-training/~2 weeks later
If longitudinal, was there any intervention between the time points?	Patients: home-based therapy consisting of auditory discrimination and repetition tasks for 3 or 4 weeks between T2 and T3; control: 2 weeks of similar training using noise vocoded speech
Is the scanner described?	Yes (Philips Intera 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No* (moderate limitation) (timing of sentence presentation not described; sparse event-related design, but ITI of only 8 s and consistent linear order of listening and repetition trials could make it difficult to disentangle hemodynamic responses to listening and repeating trials)
Design type	Event-related
Total images acquired	168 (patients); 280 (controls)
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	No* (moderate limitation) (consistent linear order of listening and repetition trials could make it difficult to disentangle hemodynamic responses to listening and repeating trials)
Is intersubject normalization adequately described and appropriate?	Yes
Imaging notes	sparse sampling; different task structure in controls (two repetition trials per listening trial) raises concerns about comparisons between groups
Conditions

| Are the conditions clearly described? | No (paradigm was different in patients and controls, and is not described in sufficient detail for patients) |

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
listening to sentences	None	aphasia: not stated; control: 40	N/A	N/A
repeating sentences (sentence from previous trial)	Sentence (overt)	aphasia: not stated; control: 40	Yes	No
listening to noise vocoded sentences (control only)	None	40 (control)	N/A	N/A
repeating noise vocoded sentences (control only)	Sentence (overt)	80 (control)	Yes	Unknown
listening to segmented white noise	None	aphasia: not stated; control: 40	N/A	N/A

Conditions notes

In two patients, only single words were produced

Contrasts

| Are the contrasts clearly described? | Yes |

Contrast 1: listening to sentences vs listening to segmented white noise

Language condition

- Listening to sentences

Control condition

- Listening to segmented white noise

Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	Yes

| Is accuracy matched between the language and control tasks for all relevant groups? | N/A, no behavioral measure |
| Is reaction time matched between the language and control tasks for all relevant groups? | N/A, no timeable task |

Behavioral data notes

- —

Are control data reported in this paper or another that is referenced?	No
Does the contrast selectively activate plausible relevant language regions in the control group?	Unknown
Are activations lateralized in the control data?	Unknown
Control activation notes	—
Contrast notes	—

Contrast 2: listening to sentences (patients) or listening to noise vocoded sentences (controls) vs listening to segmented white noise

Language condition

- Listening to sentences (patients) or listening to noise vocoded sentences (controls)

Control condition

- Listening to segmented white noise

Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	Yes

| Is accuracy matched between the language and control tasks for all relevant groups? | N/A, no behavioral measure |
| Is reaction time matched between the language and control tasks for all relevant groups? | N/A, no timeable task |
Behavioral data notes
- Are control data reported in this paper or another that is referenced? **No**
- Does the contrast selectively activate plausible relevant language regions in the control group? **Unknown**
- Are activations lateralized in the control data? **Unknown**

Analyses
Are the analyses clearly described? **Yes**

Voxelwise analysis 1

First level contrast	Listening to sentences vs listening to segmented white noise
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia (T2 and T3) vs control (T1 and T2)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	**Yes**
Is accuracy matched across the second level contrast?	**No, different**
Is reaction time matched across the second level contrast?	N/A, no timeable task

Behavioral data notes
- Significant difference in accuracy of subsequent repetition

Type of analysis
- Voxelwise

Search volume
- Whole brain

Correction for multiple comparisons
- Clusterwise correction with with GRFT and lenient voxelwise p

Software
- FSL (FEAT 5.98)

Voxelwise p
- $< .01$ (z > 2.3)

Cluster extent
- Based on GRFT

Statistical details
- —

Findings
- ↑ L insula
- ↑ L anterior cingulate
- ↑ R insula
- ↑ R anterior cingulate
- ↓ L SMA/medial prefrontal
- ↓ L precuneus
- ↓ L posterior cingulate
- ↓ R SMA/medial prefrontal
- ↓ R precuneus
- ↓ R posterior cingulate

Findings notes
- Findings are approximate since description is partially in terms of networks; at the earlier time point only, patients also showed reduced activity in left ventral prefrontal cortex and right medial planum temporale

Voxelwise analysis 2

First level contrast	Listening to sentences (patients) or listening to noise vocoded sentences (controls) vs listening to segmented white noise
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia (T2 and T3) vs control (T1 and T2)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	**Yes**
Is accuracy matched across the second level contrast?	**Yes, matched**
Is reaction time matched across the second level contrast?	N/A, no timeable task

403
Behavioral data notes: No significant difference in accuracy of subsequent repetition.

Type of analysis: Voxelwise

Search volume: Whole brain

Correction for multiple comparisons: Clusterwise correction with GRFT and lenient voxelwise p

Software: FSL (FEAT 5.98)

Voxelwise p: ~.01 (z > 2.3)

Cluster extent: Based on GRFT

No findings reported.

Findings notes: Referring to accuracy of subsequent repetition; correlation with picture description is not reported.

ROI analysis 1

First level contrast: Listening to sentences vs listening to segmented white noise

Analysis class: Cross-sectional correlation with language or other measure

Group(s): Aphasia mean of T1, T2, T3

Covariate: Picture description score (CAT), mean of T1, T2, T3

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?: Yes

Is accuracy matched across the second level contrast?: Unknown, not reported

Is reaction time matched across the second level contrast?: N/A, no timeable task

Behavioral data notes: Referring to accuracy of subsequent repetition; correlation with picture description is not reported.

Type of analysis: Region of interest (ROI)

ROI type: Functional

How many ROIs are there?: 1

What are the ROI(s)?: Dorsal anterior cingulate cortex/midline superior frontal gyrus

How are the ROI(s) defined?: Contrast of listening to vocoded speech and listening to normal speech in controls

Correction for multiple comparisons: One only

Statistical details: Same result obtained with age and lesion volume included in the model

Findings:

- ↑ L SMA/medial prefrontal
- ↑ L anterior cingulate
- ↑ R SMA/medial prefrontal
- ↑ R anterior cingulate

Findings notes: Increased activation of dACC/SFG was correlated with higher scores on picture description.

Notes

Excluded analyses: Longitudinal analyses, since these were null findings that were not the focus of this paper.

Mattioli et al. (2014)

Reference

Authors: Mattioli F, Ambrosi C, Mascaro L, Scarpazza C, Pasquali P, Frugoni M, Magoni M, Biagi L, Gasparotti R

Title: Early aphasia rehabilitation is associated with functional reactivation of the left inferior frontal gyrus: a pilot study

Reference: Stroke 2014; 45: 545-552

PMID: 24309584

DOI: 10.1161/strokeaha.113.003192

Participants

Language: Italian
Inclusion criteria

Inclusion criteria	L MCA; comprehension mildly impaired

Number of individuals with aphasia

| Number of individuals with aphasia | 12 |

Number of control participants

| Number of control participants | 10 |

Were any of the participants included in any previous studies?

| Were any of the participants included in any previous studies? | No |

Is age reported for patients and controls, and matched?

| Is age reported for patients and controls, and matched? | No (range 37-79 years; control ages not reported, though reported to be matched) |

Is sex reported for patients and controls, and matched?

| Is sex reported for patients and controls, and matched? | No (males: 7; females: 5; control sex not stated, but reported to be matched) |

Is handedness reported for patients and controls, and matched?

| Is handedness reported for patients and controls, and matched? | Yes (right: 12; left: 0) |

Is time post stroke onset reported and appropriate to the study design?

| Is time post stroke onset reported and appropriate to the study design? | Yes (T1: mean 2.2 ± 1.3 days; T2: mean 16.2 ± 1.3 days; T3: mean 190 ± 25.5 days) |

To what extent is the nature of aphasia characterized?

| To what extent is the nature of aphasia characterized? | Comprehensive battery |

Language evaluation

| Language evaluation | AAT, TT |

Aphasia severity

| Aphasia severity | T1: TT range 2-45; T2: TT range 6-48; T3: TT range 21-48 |

Aphasia type

| Aphasia type | T1: 8 Broca's, 3 anomic, 1 Wernicke's; T2: not stated |

First stroke only?

| First stroke only? | Yes |

Stroke type

| Stroke type | Not stated |

To what extent is the lesion distribution characterized?

| To what extent is the lesion distribution characterized? | Individual lesions |

Lesion extent

| Lesion extent | Range 4.4-158.3 cc (possibly; units stated do not seem correct) |

Lesion location

| Lesion location | L MCA; lesions seem very small in Supplementary Figure 1, but are described as more extensive in Supplementary Table 1 |

Participants notes

| Participants notes | Treated and untreated groups differed in severity at baseline, albeit not significantly |

Imaging

Modality

| Modality | fMRI |

Is the study cross-sectional or longitudinal?

| Is the study cross-sectional or longitudinal? | Longitudinal—mixed |

If longitudinal, at what time point(s) were imaging data acquired?

| If longitudinal, at what time point(s) were imaging data acquired? | T1: pre-treatment, mean 2.2 ± 1.3 days post onset; T2: post-treatment, mean 16.2 ± 1.3 days post onset; T3: mean 190 ± 25.5 days post onset |

If longitudinal, was there any intervention between the time points?

| If longitudinal, was there any intervention between the time points? | 6 patients were randomized to receive treatment focusing on verbal comprehension and lexical retrieval for 1 hour/day, 5 days/week between T1 and T2; no patient received treatment after T2 |

Is the scanner described?

| Is the scanner described? | Yes (Siemens Avanto 1.5 Tesla) |

Is the timing of stimulus presentation and image acquisition clearly described and appropriate?

| Is the timing of stimulus presentation and image acquisition clearly described and appropriate? | No (timing of stimuli not clearly described) |

Design type

| Design type | Event-related |

Total images acquired

| Total images acquired | 504 |

Are the imaging acquisition parameters, including coverage, adequately described and appropriate?

| Are the imaging acquisition parameters, including coverage, adequately described and appropriate? | No (unclear; number of slices not stated) |

Is preprocessing and intrasubject coregistration adequately described and appropriate?

| Is preprocessing and intrasubject coregistration adequately described and appropriate? | Yes |

Is first level model fitting adequately described and appropriate?

| Is first level model fitting adequately described and appropriate? | No (model fitting of noise "bip" not clearly described) |

Is intersubject normalization adequately described and appropriate?

| Is intersubject normalization adequately described and appropriate? | Yes |

Imaging notes

| Imaging notes | — |

Conditions

Are the conditions clearly described?

| Are the conditions clearly described? | No (there is also mention of a noise "bip" that preceded each sentence but details are lacking) |

Condition

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
listening to sentences and making a plausibility judgment	Button press	56	Yes	Unknown
Conditions notes	None			
------------------	------			
N/A	N/A			

Contrasts

Contrast 1: listening to sentences and making a plausibility judgment vs listening to reversed speech

Language condition	Listening to sentences and making a plausibility judgment
Control condition	Listening to reversed speech

Are the conditions matched for visual demands? Yes

Are the conditions matched for auditory demands? Yes

Are the conditions matched for motor demands? No

Are the conditions matched for cognitive/executive demands? No

Is accuracy matched between the language and control tasks for all relevant groups? N/A, tasks not comparable

Is reaction time matched between the language and control tasks for all relevant groups? N/A, tasks not comparable

Behavioral data notes

Does the contrast selectively activate plausible relevant language regions in the control group? Somewhat

Are activations lateralized in the control data? Yes

Control activation notes

10 participants; quite lateralized activity centered on the anterior Sylvian fissure

Contrast notes

It is mentioned that “noise” was also included on the negative side of the contrast; it is unclear if this refers to the noise “bip”, which would be inappropriate

Analyses

Are the analyses clearly described? No* (moderate limitation) (see specific limitation(s) below)

Voxelwise analysis 1

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia treated T2 (n = 6) vs untreated T2 (n = 6)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (groups were different but not due to treatment)
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

Type of analysis | Voxelwise

Search volume | Whole brain

Correction for multiple comparisons | Clusterwise correction based on arbitrary cluster extent

Software | BrainVoyager QX 1.9

Voxelwise p | .001

Cluster extent | 0.16 cc

Statistical details

Methods report cluster extent threshold (we assume this was done), but figure caption states uncorrected

Findings

↑ L IFG pars opercularis
↑ L IFG pars triangularis
↑ L SMA/medial prefrontal
↑ L angular gyrus
Voxelwise analysis 2

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia treated T3 (n = 6) vs untreated T3 (n = 6)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (groups were different but not due to treatment)
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on arbitrary cluster extent
Software	BrainVoyager QX 1.9
Voxelwise p	.001
Cluster extent	0.16 cc
Statistical details	Methods report cluster extent threshold (we assume this was done), but figure caption states uncorrected
Findings	↑ L IFG pars triangularis
	↑ L insula
	↑ L supramarginal gyrus
Findings notes	Based on coordinates in Table 2; also increases in R IFG and R supramarginal gyrus but only uncorrected

Voxelwise analysis 3

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
Analysis class	Longitudinal between two groups with aphasia
Group(s)	(Aphasia treated (n = 6) T2 vs T1) vs (untreated (n = 6) T2 vs T1)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (no treatment effect)
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	No direct comparison
Software	BrainVoyager QX 1.9
Voxelwise p	—
Cluster extent	—
Statistical details	Qualitative comparison on p. 548
Findings	↑ L IFG
	↑ R posterior STG
	↓ L inferior parietal lobule
	↓ R IFG
Findings notes	Treated patients showed increases in L IFG and R STG, while untreated patients showed increases in L IPL and R IFG
Voxelwise analysis 4

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
Analysis class	Longitudinal between two groups with aphasia
Group(s)	(Aphasia treated (n = 6) T3 vs T2) vs (untreated (n = 6) T3 vs T2)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (no treatment effect)
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	No direct comparison
Software	BrainVoyager QX 1.9
Voxelwise p	—
Cluster extent	—
Statistical details	Qualitative comparison on p. 548
Findings	None
Findings notes	The two groups were reported to have comparable increases in L hemisphere language areas

Voxelwise analysis 5

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia treated (n = 6) T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	No correction
Software	BrainVoyager QX 1.9
Voxelwise p	.005
Cluster extent	None
Statistical details	Qualitative comparison on p. 548
Findings	↑ L IFG pars opercularis
Findings notes	↑ R posterior STG

Voxelwise analysis 6

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia untreated (n = 6) T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	Unknown, not reported
Voxelwise analysis 7

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
----------------------	—————————————————————————————————
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia treated (n = 6) T3 vs T2
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	No correction
Software	BrainVoyager QX 1.9
Voxelwise p	.005
Cluster extent	None
Statistical details	—
Findings	↑ L inferior parietal lobule
↑ R insula	
Findings notes	—

Voxelwise analysis 8

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
----------------------	—————————————————————————————————
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia untreated (n = 6) T3 vs T2
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	No correction
Software	BrainVoyager QX 1.9
Voxelwise p	.005
Cluster extent	None
----------------	------
Statistical details	—
Findings	↑ L IFG pars opercularis
↑ L IFG pars triangularis	
↑ L IFG pars orbitalis	
↑ L angular gyrus	
↑ L superior parietal	
↑ L posterior STG/STS/MTG	
↑ R IFG pars opercularis	
↑ R angular gyrus	
Findings notes	—

ROI analysis 1

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
Analysis class	Longitudinal between two groups with aphasia
Group(s)	(Aphasia treated (n = 6) T1 ≠ T2 ≠ T3) vs (untreated (n = 6) T1 ≠ T2 ≠ T3)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (no treatment effect)
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	4
What are the ROI(s)?	(1) L IFG; (2) R IFG; (3) L STG; (4) R STG
How are the ROI(s) defined?	Based on functional data from patients and controls, but details not stated; a different set of ROIs are mentioned in the results so it is not really clear which set were actually used
Correction for multiple comparisons	No correction
Statistical details	—
Findings	↑ L IFG
Findings notes	Interaction of time by treatment: treated group showed greater L IFG activity at T2

ROI analysis 2

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia treated (n = 6) T2 vs T1
Covariate	Δ written language (AAT)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	4
What are the ROI(s)?	(1) L IFG; (2) R IFG; (3) L STG; (4) R STG
How are the ROI(s) defined?	Based on functional data from patients and controls, but details not stated; a different set of ROIs are mentioned in the results so it is not really clear which set were actually used
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None

410
ROI analysis 3

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia treated (n = 6) T2 vs T1
Covariate	Δ naming (AAT)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

- **Type of analysis**: Regions of interest (ROI)
- **ROI type**: Functional
- **How many ROIs are there?**: 4
- **What are the ROI(s)?**: (1) L IFG; (2) R IFG; (3) L STG; (4) R STG
- **How are the ROI(s) defined?**: Based on functional data from patients and controls, but details not stated; a different set of ROIs are mentioned in the results so it is not really clear which set were actually used
- **Correction for multiple comparisons**: No correction

ROI analysis 4

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia untreated (n = 6) T2 vs T1
Covariate	Δ written language (AAT)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

- **Type of analysis**: Regions of interest (ROI)
- **ROI type**: Functional
- **How many ROIs are there?**: 4
- **What are the ROI(s)?**: (1) L IFG; (2) R IFG; (3) L STG; (4) R STG
- **How are the ROI(s) defined?**: Based on functional data from patients and controls, but details not stated; a different set of ROIs are mentioned in the results so it is not really clear which set were actually used
- **Correction for multiple comparisons**: No correction

ROI analysis 5

First level contrast	Listening to sentences and making a plausibility judgment vs listening to reversed speech
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia untreated (n = 6) T2 vs T1
Covariate	Δ naming (AAT)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Question	Yes, matched
---	---
Is reaction time matched across the second level contrast?	Unknown, not reported
Is accuracy matched across the second level contrast?	
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	4
What are the ROI(s)?	(1) L IFG; (2) R IFG; (3) L STG; (4) R STG
How are the ROI(s) defined?	Based on functional data from patients and controls, but details not stated; a different set of ROIs are mentioned in the results so it is not really clear which set were actually used
Correction for multiple comparisons	No correction
Statistical details	—
Findings	↑ R IFG
Findings notes	—

Notes

Excluded analyses	(1) a visual comparison between all patients at T1, and controls, because there are no specific claims apart from "markedly reduced cortical activation" in patients; (2) pre-treatment comparison between treated and untreated groups

Mohr et al. (2014)

Reference

Authors	Mohr B, Difrancesco S, Harrington K, Evans S, Pulvermüller F
Title	Changes of right-hemispheric activation after constraint-induced, intensive language action therapy in chronic aphasia: fMRI evidence from auditory semantic processing
Reference	Front Hum Neurosci 2014; 8: 919
PMID	25452721
DOI	10.3389/fnhum.2014.00919

Participants

Language	UK English
Inclusion criteria	MCA; mild-moderate non-fluent aphasia; no severe comprehension deficit
Number of individuals with aphasia	6 (plus 6 excluded: 4 for health risks; 2 for technical problems and data loss)
Number of control participants	0
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (range 41-76 years)
Is sex reported for patients and controls, and matched?	Yes (males: 5; females: 1)
Is handedness reported for patients and controls, and matched?	Yes (right: 6; left: 0)
Is time post stroke onset reported and appropriate to the study design?	Yes (range 17-234 months (including excluded patients))
To what extent is the nature of aphasia characterized?	Severity only
Language evaluation	BDAE, TT
Aphasia severity	Mild-moderate; T1: TT range 15-49 errors (including 2 excluded patients)
Aphasia type	Not stated
First stroke only?	Yes
Stroke type	Mixed etiologies
To what extent is the lesion distribution characterized? | Lesion overlay
---|---
Lesion extent | Not stated
Lesion location | L MCA
Participants notes | Patient numbers in tables 1 and 2 appear not to correspond with patient numbers later in the paper

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Longitudinal—chronic treatment
If longitudinal, at what time point(s) were imaging data acquired?	T1: pre-treatment/chronic, T2: post-treatment, ~2 weeks later
If longitudinal, was there any intervention between the time points?	CIAT, 3-4 hours/day, 5 days/week, 2 weeks
Is the scanner described?	Yes (Siemens Trio 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	Event-related
Total images acquired	76
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	No (lesion impact not addressed)
Imaging notes	sparse sampling

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
listening to high ambiguity sentences	None	19	N/A	N/A
listening to low ambiguity sentences	None	19	N/A	N/A
listening to signal-correlated noise	None	19	N/A	N/A
rest	None	19	N/A	N/A

Contrasts

| Contrast 1: listening to sentences (high and low ambiguity) vs listening to signal-correlated noise |
| --- | --- |
| Language condition | Listening to sentences (high and low ambiguity) |
| Control condition | Listening to signal-correlated noise |
| Are the conditions matched for visual demands? | Yes |
| Are the conditions matched for auditory demands? | Yes |
| Are the conditions matched for motor demands? | Yes |
| Are the conditions matched for cognitive/executive demands? | Yes |
| Is accuracy matched between the language and control tasks for all relevant groups? | N/A, no behavioral measure |
| Is reaction time matched between the language and control tasks for all relevant groups? | N/A, no timeable task |
| Behavioral data notes | — |
Are control data reported in this paper or another that is referenced?	No
Does the contrast selectively activate plausible relevant language regions in the control group?	Unknown
Are activations lateralized in the control data?	Unknown
Control activation notes	Some control data in Rodd et al. (2005), but half of the participants were performing a probe judgment task, unlike in the present study
Contrast notes	—

Contrast 2: listening to high ambiguity sentences vs listening to low ambiguity sentences

Language condition	Listening to high ambiguity sentences
Control condition	Listening to low ambiguity sentences
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	Yes
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, no behavioral measure
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, no timeable task
Behavioral data notes	—
Do the contrast selectively activate plausible relevant language regions in the control group?	Unknown
Are activations lateralized in the control data?	Unknown
Control activation notes	Some control data in Rodd et al. (2005), but half of the participants were performing a probe judgment task, unlike in the present study
Contrast notes	—

Analyses

| Are the analyses clearly described? | No* (moderate limitation) (see specific limitation(s) below) |

Voxelwise analysis 1

First level contrast	Listening to sentences (high and low ambiguity) vs listening to signal-correlated noise
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	No direct comparison
Software	SPM8
Voxelwise p	—
Cluster extent	—
Statistical details	Qualitative generalization across individuals on pp. 8-9
Findings	None
Findings notes	—
ROI analysis 1

First level contrast	Listening to high ambiguity sentences vs listening to low ambiguity sentences
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	4
What are the ROI(s)?	(1) L IFG; (2) R IFG; (3) L ITG; (4) R ITG; the temporal ROIs are described as STG but they seem to be in the ITG
How are the ROI(s) defined?	Defined based on control data from Rodd et al. (2005) but the coordinates do not match so it is not clear exactly how they were defined
Correction for multiple comparisons	No correction
Statistical details	ANOVA of timepoint by hemisphere by site, with a significant interaction of timepoint by hemisphere
Findings	↑ R IFG
Findings notes	All signal changes were negative (i.e. less activation for ambiguous sentences), making interpretation challenging

Notes

Excluded analyses
Noise vs rest (not language); individual patient analyses

Robson et al. (2014)

Reference

Authors
Robson H, Zahn R, Keidel JL, Binney RJ, Sage K, Lambon Ralph MA

Title
The anterior temporal lobes support residual comprehension in Wernicke's aphasia

Reference
Brain 2014; 137: 931-943
PMID
24519979
DOI
10.1093/brain/awt373

Participants

Language
UK English

Inclusion criteria
Wernicke's aphasia (impaired spoken single word comprehension, impaired single word repetition, fluent, sentence-like speech with phonological/neologistic errors)

Number of individuals with aphasia
12
Number of control participants
12
Were any of the participants included in any previous studies?
No
Is age reported for patients and controls, and matched?
Yes (mean 70.1 ± 8.7 years, range 59-87 years)
Is sex reported for patients and controls, and matched?
Yes (males: 10; females: 2)
Is handedness reported for patients and controls, and matched?
Yes (right: 12; left: 0)
Is time post stroke onset reported and appropriate to the study design? Yes (range 7-84 months)

To what extent is the nature of aphasia characterized? Comprehensive battery

Language evaluation BDAE, PPT, word-to-picture matching test from Cambridge Semantic Battery, single word reading aloud from PALPA

Aphasia severity BDAE comprehension range 6-26 (out of 32); BDAE comprehension scores and percentiles do not seem entirely commensurate

Aphasia type All Wernicke’s

First stroke only? Yes

Stroke type Mixed etiologies

To what extent is the lesion distribution characterized? Lesion overlay

Lesion extent Not stated

Lesion location L MCA; all involved STG extending into IPL and temporoparietal junction; 8 extending into MTL; 4 extending into inferior frontal

Participants notes —

Imaging

Modality fMRI

Is the study cross-sectional or longitudinal? Cross-sectional

If longitudinal, at what time point(s) were imaging data acquired? —

If longitudinal, was there any intervention between the time points? —

Is the scanner described? Yes (Philips Achieva 3 Tesla)

Is the timing of stimulus presentation and image acquisition clearly described and appropriate? No* (moderate limitation) (each condition was acquired in a separate run, which is suboptimal)

Design type Block

Total images acquired 417

Are the imaging acquisition parameters, including coverage, adequately described and appropriate? Yes (whole brain)

Is preprocessing and intrasubject coregistration adequately described and appropriate? Yes

Is first level model fitting adequately described and appropriate? Yes

Is intersubject normalization adequately described and appropriate? Yes

Imaging notes spin echo fMRI to minimize ATL dropout

Conditions

Are the conditions clearly described? Yes

Condition Response type Repetitions All groups could do? All individuals could do?

semantic decision (written word) Button press 16 Yes No

semantic decision (picture) Button press 16 Yes No

visual decision Button press 16 Yes No

rest None 48 N/A N/A

Conditions notes —

Contrasts

Are the contrasts clearly described? No (see specific limitation(s) below)

Contrast 1: semantic decision (written word and picture) vs visual decision and rest

Language condition Semantic decision (written word and picture)
Control condition	Visual decision and rest
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	Not comparable because the control condition includes rest
Are control data reported in this paper or another that is referenced?	Somewhat
Does the contrast selectively activate plausible relevant language regions in the control group?	Somewhat
Are activations lateralized in the control data?	No

Control activation notes
Control data are provided in Table 6 for contrasts of written word semantic decision vs dual baseline, and picture semantic decision vs dual baseline, but not for the main effect of semantic decision; these data suggest that the contrast activates ventral temporal regions bilaterally.

Contrast notes
Two contrasts are described: (1) written word judgment versus a dual baseline of visual judgment and rest; (2) picture judgment versus a dual baseline of visual judgment and rest; these two primary contrasts are reported in patients and controls separately, but no between-group contrasts are reported, so these contrasts are excluded from our review; rather, the between-groups analyses in the paper take the form of ANOVAs; the main effect of group in these ANOVAs collapses across the two described contrasts, therefore we have coded the contrast as the average of the two described contrasts; the exact nature of the computation of dual baseline contrasts is not described.

Analyses

Are the analyses clearly described? No* (moderate limitation) (see specific limitation(s) below)

Voxelwise analysis 1

First level contrast	Semantic decision (written word and picture) vs visual decision and rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, different
Is reaction time matched across the second level contrast?	No, different

Behavioral data notes
Patients also less accurate on control condition, but control condition includes rest so coded based on language condition only.

Type of analysis
Voxelwise

Search volume
Whole brain

Correction for multiple comparisons
Clusterwise correction based on arbitrary cluster extent

Software
SPM8

Voxelwise p
.005

Cluster extent
4 voxels (size not stated)

Statistical details
Dual baseline computation not explained

Findings
- ↑ L IFG pars orbitalis
- ↑ L mid temporal
- ↑ L anterior temporal
- ↑ L cerebellum
- ↑ L hippocampus/MTL

417
Findings notes
—

ROI analysis 1

First level contrast	Semantic decision (written word and picture) vs visual decision and rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, different
Is reaction time matched across the second level contrast?	No, different

Behavioral data notes

Patients also less accurate on control condition, but control condition includes rest so coded based on language condition only

Type of analysis

Regions of interest (ROI)

ROI type

Functional

How many ROIs are there?

10

What are the ROI(s)?

(1) L anterior fusiform gyrus; (2) L temporal pole; (3) L anterior STS; (4) L IFG; (5) L ventral occipito-temporal; (6-10) homotopic counterparts

How are the ROI(s) defined?

Spheres around functional peaks from literature

Correction for multiple comparisons

No correction

Statistical details

Dual baseline computation not explained

Findings notes
—

Notes

Excluded analyses

(1) main effect of condition (written words vs pictures); (2) interactions of condition by group (all of which were non-significant); (3) additional analyses were run including only participants who performed above chance, and only correct responses from all participants, but these gave essentially similar results

Szaflarski et al. (2014)

Reference

Szaflarski JP, Allendorfer JB, Byars AW, Vannest J, Dietz A, Hernando KA, Holland SK

Title

Age at stroke determines post-stroke language lateralization

Reference

Restor Neurol Neurosci 2014; 32: 733-742

PMID

25159870

DOI

10.3233/rnn-140402

Participants

Language
US English

Inclusion criteria
—

Number of individuals with aphasia
32

Number of control participants
32
Were any of the participants included in any previous studies? | Yes (some participants included in Allendorfer et al. (2012))
---|---
Is age reported for patients and controls, and matched? | Yes (mean 51.8 ± 15.1 years)
Is sex reported for patients and controls, and matched? | Yes (males: 18; females: 14)
Is handedness reported for patients and controls, and matched? | No
Is time post stroke onset reported and appropriate to the study design? | Yes (mean 3.2 ± 3.1 years, > 6 months)
To what extent is the nature of aphasia characterized? | Not at all
Language evaluation | Not stated
Aphasia severity | "complete or almost complete" recovery in a "substantial proportion" of the patients
Aphasia type | Not stated
First stroke only? | Not stated
Stroke type | Not stated
To what extent is the lesion distribution characterized? | Lesion overlay
Lesion extent | 60.1 ± 57.5 cc
Lesion location | L MCA
Participants notes | One participant was < 18 years old at time of stroke; there was also a perinatal stroke group, not relevant for this review; 3 participants were excluded but it is not stated whether they were adult or perinatal patients.

Imaging

| Modality | fMRI
| Is the study cross-sectional or longitudinal? | Cross-sectional
| If longitudinal, at what time point(s) were imaging data acquired? | —
| If longitudinal, was there any intervention between the time points? | —
| Is the scanner described? | Yes (Philips Achieva 3 Tesla, except for 1 patient and 1 control on a Bruker 3 Tesla)
| Is the timing of stimulus presentation and image acquisition clearly described and appropriate? | Yes
| Design type | Block
| Total images acquired | 165
| Are the imaging acquisition parameters, including coverage, adequately described and appropriate? | Yes (whole brain)
| Is preprocessing and intrasubject coregistration adequately described and appropriate? | Yes
| Is first level model fitting adequately described and appropriate? | Yes
| Is intersubject normalization adequately described and appropriate? | Yes
| Imaging notes | —

Conditions

| Are the conditions clearly described? | Yes
Condition	Response type	Repetitions	All groups could do?	All individuals could do?
verb generation	Multiple words (covert)	5	Yes	Unknown
finger tapping	Other	6	Yes	Yes

Conditions notes

Contrasts

Are the contrasts clearly described? Yes

Contrast 1: verb generation vs finger tapping

Language condition	Verb generation
Control condition	Finger tapping

Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No

| Is accuracy matched between the language and control tasks for all relevant groups? | N/A, tasks not comparable |
| Is reaction time matched between the language and control tasks for all relevant groups? | N/A, tasks not comparable |

Behavioral data notes —

Are control data reported in this paper or another that is referenced? Yes

Does the contrast selectively activate plausible relevant language regions in the control group? Yes

Are activations lateralized in the control data? Somewhat

Control activation notes

Control data in Szafirski et al. (2008); frontal activation L-lateralized, temporal less so

Analyses

Are the analyses clearly described? Yes

Voxelwise analysis 1

First level contrast	Verb generation vs finger tapping
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes —

Type of analysis Voxelwise

Search volume Whole brain

Correction for multiple comparisons No direct comparison

Software CCHIPS

Voxelwise p —

Cluster extent —

Statistical details Qualitative comparison on pp. 5-6 (page numbers refer to PMC author manuscript)

Findings
↓ L inferior parietal lobule
↓ L superior parietal
↓ L posterior STG/STS/MTG
↓ L occipital
↓ R occipital

Findings notes —

ROI analysis 1

First level contrast	Verb generation vs finger tapping
Analysis class	Cross-sectional aphasia vs control
----------------	----------------------------------
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Laterality indices
How many ROIs are there?	3
What are the ROI(s)?	(1) frontal LI; (2) temporal LI; (3) language network LI
How are the ROI(s) defined?	No correction
Statistical details	—
Findings	↓ LI (language network)
Findings notes	↓ LI (frontal)
Notes	Temporal LI was also marginally significantly reduced (p = .08)
Excluded analyses	All analyses involving perinatal stroke group; distribution of language lateralization categories (derived from LI) also differed between patients and controls

van Hees et al. (2014)

Reference

Authors	van Hees S, McMahon K, Angwin A, de Zubicaray G, Copland DA
Title	Neural activity associated with semantic versus phonological anomia treatments in aphasia
Reference	Brain Lang 2014; 129: 47-57
PMID	24556337
DOI	10.1016/j.bandl.2013.12.004

Participants

Language	Australian English
Inclusion criteria	—
Number of individuals with aphasia	8
Number of control participants	14
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (mean 56.4 + 9.2 years; range 41-69 years)
Is sex reported for patients and controls, and matched?	Yes (males: 3; females: 5)
Is handedness reported for patients and controls, and matched?	Yes (right: 8; left: 0)
Is time post stroke onset reported and appropriate to the study design?	Yes (mean 52.3 + 49.8 months; range 17-170 months)
To what extent is the nature of aphasia characterized?	Comprehensive battery
Language evaluation	WAB, BNT, PPT, CAT, picture naming from International Picture Naming Project Database
Aphasia severity	AQ range 57.3-91.6; 5 mild, 2 moderate, 1 mild-moderate
Aphasia type	6 anomic, 2 conduction
------------------------------	------------------------
First stroke only?	Yes
Stroke type	Not stated
To what extent is the lesion distribution characterized?	Lesion overlay
Lesion extent	Not stated
Lesion location	L hemisphere
Participants notes	—

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Longitudinal—chronic treatment
If longitudinal, at what time point(s) were imaging data acquired?	T1: pre-treatment/chronic; T2: post-treatment, 5-6 weeks later; note that "immediate improvement" was measured at the end of SLT, a week or two prior to T2 scan
If longitudinal, was there any intervention between the time points?	SLT with alternating semantic and phonological sessions, 3 days/week, 4 weeks
Is the scanner described?	Yes (Bruker MedSpec 4 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	Event-related
Total images acquired	610
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	No (lesion impact not addressed)
Imaging notes	slow event-related design; sparse sampling

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
picture naming (phonological trained items)	Word (overt)	30	Yes	No
picture naming (semantic trained items)	Word (overt)	30	Yes	No
picture naming (known items)	Word (overt)	30	Yes	Yes
viewing scrambled images	None	30	N/A	N/A

Conditions notes

Some patients named < 10% correct at T1

Contrasts

| Are the contrasts clearly described? | No (see specific limitation(s) below) |

Contrast 1: picture naming (phonological trained items, correct trials) vs viewing scrambled images

Language condition	Picture naming (phonological trained items, correct trials)
Control condition	Viewing scrambled images

Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No

| Is accuracy matched between the language and control tasks for all relevant groups? | N/A, tasks not comparable |
Question	Answer
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	Somewhat
Does the contrast selectively activate plausible relevant language regions in the control group?	Unknown
Are activations lateralized in the control data?	Unknown
Control activation notes	Control data are described for naming untrained items; the data are reported only briefly in the text; it is notable that no speech motor, visual, or auditory activations are reported, as might be expected in a picture naming task
Contrast notes	Correct and incorrect trials were apparently modeled separately, but this is not clearly stated, nor are the criteria for deciding whether trials were correct; it is generally not clear which contrasts exactly were run
Contrast 2: picture naming (semantic trained items, correct trials) vs viewing scrambled images	
Language condition	Picture naming (semantic trained items, correct trials)
Control condition	Viewing scrambled images
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	Unknown
Does the contrast selectively activate plausible relevant language regions in the control group?	Unknown
Are activations lateralized in the control data?	Unknown
Control activation notes	Control data are described for naming untrained items; the data are reported only briefly in the text; it is notable that no speech motor, visual, or auditory activations are reported, as might be expected in a picture naming task
Contrast notes	Correct and incorrect trials were apparently modeled separately, but this is not clearly stated, nor are the criteria for deciding whether trials were correct; it is generally not clear which contrasts exactly were run
Analyses	Yes
Voxelwise analysis 1	
First level contrast	Picture naming (phonological trained items, correct trials) vs viewing scrambled images
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T1
Covariate	Subsequent Δ (T2 vs T1) picture naming (phonological treated items)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (T1 behavioral measure should be included in model)
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on 3dClustSim
-----------------------------------	---
Software	AFNI
Voxelwise p	.005
Cluster extent	0.999 cc
Statistical details	—
Findings	None
Findings notes	—

Voxelwise analysis 2

First level contrast	Picture naming (semantic trained items, correct trials) vs viewing scrambled images
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T1
Covariate	Subsequent Δ (T2 vs T1) picture naming (semantic treated items)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (T1 behavioral measure should be included in model)
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on 3dClustSim
Software	AFNI
Voxelwise p	.005
Cluster extent	0.999 cc
Statistical details	—
Findings	↑ L basal ganglia
Findings notes	—

Voxelwise analysis 3

First level contrast	Picture naming (phonological trained items, correct trials) vs viewing scrambled images
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T2
Covariate	Previous Δ (T2 vs T1) picture naming (phonological treated items)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	No (T2 activation not an appropriate measure of treatment-induced recovery because it reflects T2 performance)
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on 3dClustSim
Software	AFNI
Voxelwise p	.005
Cluster extent	0.999 cc
Statistical details	—
Findings	↑ L supramarginal gyrus
Findings notes	↑ R precuneus

Voxelwise analysis 4

| First level contrast | Picture naming (semantic trained items, correct trials) vs viewing scrambled images |
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T2
Covariate	Previous \(\Delta\) (T2 vs T1) picture naming (semantic treated items)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	No (T2 activation not an appropriate measure of treatment-induced recovery because it reflects T2 performance)
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on 3dClustSim
Software	AFNI
Voxelwise p	.005
Cluster extent	0.999 cc
Statistical details	—
Findings	None
Findings notes	—

Voxelwise analysis 5

First level contrast	Picture naming (phonological trained items, correct trials) vs viewing scrambled images
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T1
Covariate	Subsequent outcome (T2) picture naming
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	No (not appropriate to correlate T1 imaging with T2 behavior without T1 behavior in model)
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on 3dClustSim
Software	AFNI
Voxelwise p	.005
Cluster extent	0.999 cc
Statistical details	—
Findings	None
Findings notes	—

Voxelwise analysis 6

First level contrast	Picture naming (semantic trained items, correct trials) vs viewing scrambled images																
Analysis class	Cross-sectional correlation with language or other measure																
Group(s)	Aphasia T1																
Covariate	Subsequent outcome (T2) picture naming																
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	No (not appropriate to correlate T1 imaging with T2 behavior without T1 behavior in model)																
Is accuracy matched across the second level contrast?	Yes, correct trials only																
Is reaction time matched across the second level contrast?	Unknown, not reported																
Behavioral data notes	—																
Type of analysis	Voxelwise																
Analysis	First level contrast	Analysis class	Group(s)	Covariate	Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Is accuracy matched across the second level contrast?	Is reaction time matched across the second level contrast?	Behavioral data notes	Type of analysis	Search volume	Correction for multiple comparisons	Software	Voxelwise p	Cluster extent	Statistical details	Findings	Findings notes
----------	----------------------	----------------	----------	-----------	---	---	---	----------------------	----------------	--------------	---------------------------------	----------	-------------	---------------	----------------	---------	---------------
7	Picture naming (phonological trained items, correct trials) vs viewing scrambled images	Cross-sectional correlation with language or other measure	Aphasia T2	Picture naming T2	Yes	Yes, correct trials only	Unknown, not reported	—	Voxelwise	Whole brain	Clusterwise correction based on 3dClustSim	AFNI	.005	0.999 cc	—	None	—
8	Picture naming (semantic trained items, correct trials) vs viewing scrambled images	Cross-sectional correlation with language or other measure	Aphasia T2	Picture naming T2	Yes	Yes, correct trials only	Unknown, not reported	—	Voxelwise	Whole brain	Clusterwise correction based on 3dClustSim	AFNI	.005	0.999 cc	—	None	—

Notes

Excluded analyses: Individual patient analyses
Abel et al. (2015)

Reference

Authors	Abel S, Weiller C, Huber W, Willmes K, Specht K
Title	Therapy-induced brain reorganization patterns in aphasia
Reference	*Brain* 2015; 138: 1097-1112
PMID	25688082
DOI	10.1093/brain/awv022

Participants

Language	German
Inclusion criteria	Anomia; no severe AoS or dysarthria
Number of individuals with aphasia	14 (plus 9 excluded: 4 for ceiling performance; 5 for technical problems)
Number of control participants	14
Were any of the participants included in any previous studies?	Yes (same dataset as Abel et al. (2014))
Is age reported for patients and controls, and matched?	Yes (median 48 years, range 35-74 years)
Is sex reported for patients and controls, and matched?	Yes (males: 10; females: 4)
Is handedness reported for patients and controls, and matched?	Yes (right: 14; left: 0)
Is time post stroke onset reported and appropriate to the study design?	Yes (median 41 months, range 11-72 months)
To what extent is the nature of aphasia characterized?	Type only
Language evaluation	AAT
Aphasia severity	Not stated
Aphasia type	8 Broca's, 3 Wernicke's, 1 fluent non-classifiable, 1 global, 1 transcortical sensory
First stroke only?	Yes
Stroke type	Mixed etiologies
To what extent is the lesion distribution characterized?	Lesion overlay
Lesion extent	Not stated
Lesion location	L MCA; 2 also had ACA
Participants notes	—

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Longitudinal—chronic treatment
If longitudinal, at what time point(s) were imaging data acquired?	T1: pre-treatment/chronic; T2: post-treatment, ~6 weeks later (labeled T2 and T3 in paper)
If longitudinal, was there any intervention between the time points?	Lexical therapy, alternating between weeks with phonological and semantic treatment, 4 weeks; 60 out of the 132 items were trained
Is the scanner described?	Yes (Philips Achieva 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No* (moderate limitation) (trials too close together (~8 s) and insufficient jitter (1-3 s) for event-related design)
Design type	Event-related
Total images acquired	560
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?
Yes

Is intersubject normalization adequately described and appropriate?
No (lesion impact not addressed)

Imaging notes
—

Conditions

Are the conditions clearly described?
Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
picture naming	Word (overt)	132	Yes	Yes
rest	None	implicit	N/A	N/A

Conditions notes
—

Contrasts

Are the contrasts clearly described?
Yes

Contrast 1: picture naming vs rest

Language condition	Control condition	Are the conditions matched for visual demands?	Are the conditions matched for auditory demands?	Are the conditions matched for motor demands?	Are the conditions matched for cognitive/executive demands?	Is accuracy matched between the language and control tasks for all relevant groups?	Is reaction time matched between the language and control tasks for all relevant groups?	Behavioral data notes	Does the contrast selectively activate plausible relevant language regions in the control group?	Are activations lateralized in the control data?	Control activation notes	Contrast notes
Picture naming	Rest	No	No	No	No	N/A, tasks not comparable	N/A, tasks not comparable	—	No	No	Bilateral somato-motor, auditory and to a lesser extent higher level visual regions; finite impulse analysis only	—

Behavioral data notes
RT shorter at T2

Analyses

Are the analyses clearly described?
Yes

Voxelwise analysis 1

First level contrast	Analysis class	Group(s)	Covariate	Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Is accuracy matched across the second level contrast?	Is reaction time matched across the second level contrast?	Behavioral data notes
Picture naming vs rest	Longitudinal change in aphasia	Aphasia T2 vs T1	—	Yes	No, different	No, different	RT shorter at T2
Type of analysis	Voxelwise						
--------------------------	----------------------------						
Search volume	Whole brain						
Correction for multiple comparisons	Clusterwise correction based on cluster_threshold_beta						
Software	SPM8						
Voxelwise p	.01						
Cluster extent	11 voxels (size not stated)						
Statistical details	—						
Findings							
	↓ L IFG pars triangularis						
	↓ L dorsolateral prefrontal cortex						
	↓ L ventral precentral/inferior frontal junction						
	↓ L dorsal precentral						
	↓ L SMA/medial prefrontal						
	↓ L somato-motor						
	↓ L inferior parietal lobule						
	↓ L precuneus						
	↓ L posterior cingulate						
	↓ L cerebellum						
	↓ R SMA/medial prefrontal						
	↓ R somato-motor						
	↓ R precuneus						
	↓ R posterior STS						
	↓ R posterior MTG						
	↓ R posterior cingulate						
	↓ R cerebellum						
	↓ R thalamus						
	↓ R hippocampus/MTL						
Findings notes	—						

Voxelwise analysis 2

First level contrast	Picture naming vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T1 vs control T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Appear mismatched
Is reaction time matched across the second level contrast?	No, different
Behavioral data notes	Controls responded more quickly
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on cluster_threshold_beta
Software	SPM8
Voxelwise p	.01
Cluster extent	11 voxels (size not stated)
Statistical details	—
Findings	
	↑ R precuneus
	↓ L somato-motor
	↓ L Heschl's gyrus
	↓ L anterior cingulate
	↓ L posterior cingulate
	↓ L thalamus
	↓ L basal ganglia
	↓ R insula
	↓ R somato-motor
	↓ R mid temporal
Findings notes	—
Voxelwise analysis 3

First level contrast	Picture naming vs rest
Analysis class	Longitudinal aphasia vs control
Group(s)	(Aphasia T2 vs T1) vs (control T2 vs T1)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	**Appear mismatched**
Is reaction time matched across the second level contrast?	**Unknown, not reported**
Behavioral data notes	RT not reported for controls
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on cluster_threshold_beta
Software	SPM8
Voxelwise p	.01
Cluster extent	11 voxels (size not stated)
Statistical details	—
Findings	↓ L precuneus
	↓ L anterior cingulate
	↓ L posterior cingulate
	↓ L basal ganglia
	↓ R precuneus
	↓ R posterior STS
	↓ R posterior MTG
	↓ R posterior cingulate
	↓ R thalamus
	↓ R hippocampus/MTL
Findings notes	—

Voxelwise analysis 4

First level contrast	Picture naming vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T1 vs control T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	**Appear mismatched**
Is reaction time matched across the second level contrast?	**Unknown, not reported**
Behavioral data notes	RT not reported for controls
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	No direct comparison
Software	SPM8
Voxelwise p	—
Cluster extent	—
Statistical details	Qualitative comparison between activation in the first 5 TRs after each stimulus on p. 1101
Findings	None
Findings notes	The time course of response is stated to be similar in patients and controls, however the response in patients appears like it could be a couple of seconds slower

Complex analysis 1

| First level contrast | Picture naming vs rest |
Analysis class
Cross-sectional aphasia vs control

Group(s)
Aphasia vs control

Covariate
—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?
Yes

Is accuracy matched across the second level contrast?
No, different

Is reaction time matched across the second level contrast?
Unknown, not reported

Behavioral data notes
RT not reported for controls

Type of analysis
Complex

Statistical details
Joint ICA was performed on structural and functional contrast images using FIT 1.2c. Three of the 7 components differed between groups in their loadings. Components were thresholded at $z > 3.09$, not corrected for multiple comparisons.

Findings
Three structural-functional components are described in Figure 5 and Table 4. Functional activations are generally small and do not obviously relate to language processing. It is mentioned in the supplementary results that "the lesion maps may dominate estimation of the mixing parameter" (p. 10).

Notes
Excluded analyses
—

Kiran et al. (2015)

Reference

Authors	Kiran S, Meier EL, Kapse Kj, Glynn PA
Title	Changes in task-based effective connectivity in language networks following rehabilitation in post-stroke patients with aphasia
Reference	Front Hum Neurosci 2015; 9: 316
PMID	26106314
DOI	10.3389/fnhum.2015.00316

Participants

Language	US English
Inclusion criteria	Impaired naming
Number of individuals with aphasia	8
Number of control participants	8
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (mean 58 years)
Is sex reported for patients and controls, and matched?	Yes (males: 7; females: 1)
Is handedness reported for patients and controls, and matched?	No
Is time post stroke onset reported and appropriate to the study design?	Yes (range 15-157 months)
To what extent is the nature of aphasia characterized?	Severity only
Language evaluation	WAB, BNT, PPT, CLQT
Aphasia severity	AQ range 48.0-97.2
Aphasia type	Not stated
First stroke only?	Yes
Stroke type | Not stated
---|---
To what extent is the lesion distribution characterized? | Lesion overlay
Lesion extent | 24.2-431.6 cc
Lesion location | L MCA except for one patient with R MCA and aphasia
Participants notes | —

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Longitudinal—chronic treatment
If longitudinal, at what time point(s) were imaging data acquired?	T1: pre-treatment/chronic; T2: post-treatment, ~10 weeks later
If longitudinal, was there any intervention between the time points?	Semantic feature-based treatment, 10 weeks
Is the scanner described?	Yes (Philips Achieva 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No* (moderate limitation) (picture and scrambled conditions have different durations; ITI 2-4 s seems too short; total images acquired not stated)
Design type	Event-related
Total images acquired	not stated
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	Yes
Imaging notes	controls were run on two different sets of parameters, neither of which was the same as the patients

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
picture naming (trained)	Word (overt)	40	Unknown	Unknown
picture naming (untrained)	Word (overt)	40	Unknown	Unknown
viewing scrambled images and saying "skip"	Word (overt)	80	Unknown	Unknown
semantic feature decision	Button press	40	Unknown	Unknown
visual decision	Button press	40	Unknown	Unknown

Conditions notes | — |

Contrasts

| Contrast 1: picture naming (trained) vs viewing scrambled images and saying "skip" |
|---|---|
| Language condition | Picture naming (trained) |
| Control condition | Viewing scrambled images and saying "skip" |
| Are the conditions matched for visual demands? | Yes |
| Are the conditions matched for auditory demands? | Yes |
| Are the conditions matched for motor demands? | Yes |
| Are the conditions matched for cognitive/executive demands? | No |
| Is accuracy matched between the language and control tasks for all relevant groups? | Unknown, not reported |
| Is reaction time matched between the language | Unknown, not reported |

432
and control tasks for all relevant groups?

Behavioral data notes

- Are control data reported in this paper or another that is referenced? Somewhat
- Does the contrast selectively activate plausible relevant language regions in the control group? No
- Are activations lateralized in the control data? Somewhat

Control activation notes

- Overlap of individual participant activation maps; somewhat lateralized frontal and temporal, but also bilateral occipito-temporal

Contrast notes

- Overlap of individual participant activation maps; somewhat lateralized frontal and temporal, but also bilateral occipito-temporal

Contrast 2: semantic feature decision vs visual decision

Language condition	Semantic feature decision
Control condition	Visual decision
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	Unknown, not reported
Is reaction time matched between the language and control tasks for all relevant groups?	Unknown, not reported

Behavioral data notes

- Are control data reported in this paper or another that is referenced? Somewhat

Contrast notes

- Overlap of individual participant activation maps; somewhat lateralized frontal and temporal, but also bilateral occipito-temporal

Analyses

Are the analyses clearly described? Yes

Voxelwise analysis 1

- First level contrast: Picture naming (trained) vs viewing scrambled images and saying "skip"
- Analysis class: Longitudinal change in aphasia
- Group(s): Aphasia T2 vs T1
- Covariate: —
- Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? Yes
- Is accuracy matched across the second level contrast? Unknown, not reported
- Is reaction time matched across the second level contrast? Unknown, not reported

Behavioral data notes

- Type of analysis: Voxelwise
- Search volume: Whole brain
- Correction for multiple comparisons: No direct comparison
- Software: SPM8
- Voxelwise p: —
- Cluster extent: —
- Statistical details: Analyses were carried out in individual patients at p < .001, uncorrected; regions were considered activated when they were found in 6 or more (out of 8) patients
Findings

| ↑ L IFG |
| ↑ L dorsolateral prefrontal cortex |
| ↑ L ventral precentral/inferior frontal junction |
| ↑ L dorsal precentral |
| ↑ L SMA/medial prefrontal |
| ↑ L supramarginal gyrus |
| ↑ L angular gyrus |
| ↑ L posterior MTG |
| ↑ R IFG |
| ↑ R dorsolateral prefrontal cortex |
| ↑ R SMA/medial prefrontal |
| ↑ R supramarginal gyrus |
| ↑ R posterior STG |
| ↑ R posterior MTG |
| ↑ R posterior inferior temporal gyrus/fusiform gyrus |

Findings notes

Regions are approximate since only broad regions are described in Table 6

Voxelwise analysis 2

First level contrast	Semantic feature decision vs visual decision
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	No direct comparison
Software	SPM8
Voxelwise p	—
Cluster extent	—
Statistical details	Analyses were carried out in individual patients at p < .001, uncorrected; regions were considered activated when they were found in 6 or more (out of 8) patients

Findings

| ↑ L ventral precentral/inferior frontal junction |
| ↑ L dorsal precentral |
| ↑ L posterior MTG |
| ↑ R IFG |
| ↑ R dorsolateral prefrontal cortex |
| ↑ R SMA/medial prefrontal |
| ↑ R supramarginal gyrus |
| ↑ R angular gyrus |
| ↑ R posterior STG |
| ↑ R posterior MTG |

Findings notes

Regions are approximate since only broad regions are described in Table 7

Notes

- **Excluded analyses**: (1) DCM analyses; (2) activation for untrained categories, since this is reported only for individual patients in supplementary material

Sandberg et al. (2015)

Reference
Sandberg CW, Bohland JW, Kiran S

Changes in functional connectivity related to direct training and generalization effects of a word finding treatment in chronic aphasia

Brain Lang 2015; 150: 103-116

26398158 10.1016/j.bandl.2015.09.002

Participants			
Language	US English		
Inclusion criteria			
Number of individuals with aphasia	10		
Number of control participants	0		
Were any of the participants included in any previous studies?	No		
Is age reported for patients and controls, and matched?	Yes (mean 59 years, range 47-75 years)		
Is sex reported for patients and controls, and matched?	Yes (males: 7; females: 3)		
Is handedness reported for patients and controls, and matched?	Yes (right: 10; left: 0)		
Is time post stroke onset reported and appropriate to the study design?	Yes (range 7-134 months)		
To what extent is the nature of aphasia characterized?	Comprehensive battery		
Language evaluation	WAB, BNT, subtests from PALPA, PPT, CLQT		
Aphasia severity	AQ range 41.7-99.2		
Aphasia type	6 anomic, 2 conduction, 1 Broca’s, 1 transcortical motor		
First stroke only?	Not stated		
Stroke type	Not stated		
To what extent is the lesion distribution characterized?	Lesion overlay		
Lesion extent	Range 0.3-256.0 cc		
Lesion location	L MCA		
Participants notes	—		

Imaging			
Modality	fMRI	Longitudinal—chronic treatment	
Is the study cross-sectional or longitudinal?	Longitudinal—chronic treatment		
If longitudinal, at what time point(s) were imaging data acquired?	T1: pre-treatment/chronic; T2: post-treatment, up to 10 weeks later		
If longitudinal, was there any intervention between the time points?	Semantic feature-based treatment, 2 hours/day, 2 days/week, up to 10 weeks (depending on when criterion reached)		
Is the scanner described?	Yes (Philips Achieva 3 Tesla)		
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No* (moderate limitation) (total images acquired not stated; ITI of 1-3 s seems short)		
Design type	Event-related		
Total images acquired	not stated		
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)		
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes		
Is first level model fitting adequately described and appropriate?	Yes		
Is intersubject normalization adequately described and appropriate?	Yes		
Imaging notes	—		
Conditions

Are the conditions clearly described? Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
concreteness judgment (abstract words)	Button press	60	Yes	No
concreteness judgment (concrete words)	Button press	60	Yes	Yes
letter string judgment	Button press	60	Unknown	Unknown
rest	None	implicit baseline	N/A	N/A

Conditions notes 2 patients below chance on abstract words per supplementary table 2

Contrasts

Are the contrasts clearly described? No (see specific limitation(s) below)

Contrast 1: concreteness judgment (abstract words, correct trials) vs rest

Language condition	Concreteness judgment (abstract words, correct trials)	Rest
Control condition	Concreteness judgment (abstract words, correct trials)	Rest
Are the conditions matched for visual demands?	No	
Are the conditions matched for auditory demands?	Yes	
Are the conditions matched for motor demands?	No	
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable	
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable	
Behavioral data notes	—	
Are control data reported in this paper or another that is referenced?	No	
Does the contrast selectively activate plausible relevant language regions in the control group?	Unknown	
Are activations lateralized in the control data?	Unknown	
Control activation notes	—	
Contrast notes	The concreteness judgment task was compared to the letter string judgment task to define ROIs for connectivity analysis, but the group analysis meeting criteria for this review appears to be based only on comparisons between time points on the concreteness judgment conditions	

Contrast 2: concreteness judgment (concrete words, correct trials) vs rest

Language condition	Concreteness judgment (concrete words, correct trials)	Rest
Control condition	Concreteness judgment (concrete words, correct trials)	Rest
Are the conditions matched for visual demands?	No	
Are the conditions matched for auditory demands?	Yes	
Are the conditions matched for motor demands?	No	
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable	
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable	
Behavioral data notes	—	
Are control data reported in this paper or another that is referenced?	No	
Does the contrast selectively activate plausible relevant language regions in the control group?	Unknown	
Are activations lateralized in the control data? | Unknown
---|---
Control activation notes | —
Contrast notes | The concreteness judgment task was compared to the letter string judgment task to define ROIs for connectivity analysis, but the group analysis meeting criteria for this review appears to be based only on comparisons between time points on the concreteness judgment conditions

Analyses

Are the analyses clearly described? | **No**** (major limitation) (see specific limitation(s) below)**

Voxelwise analysis 1

First level contrast	Concreteness judgment (abstract words, correct trials) vs rest
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia with response to treatment ($n = 9$) T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	Yes, matched
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	No correction
Software	SPM8
Voxelwise p	.001
Cluster extent	None
Statistical details	Images show peaks instead of activations
Findings	↑ L IFG pars opercularis, ↑ L dorsolateral prefrontal cortex, ↑ L SMA/medial prefrontal, ↑ L inferior parietal lobule, ↑ L supramarginal gyrus, ↑ L angular gyrus, ↑ L precuneus, ↑ L posterior inferior temporal gyrus/fusiform gyrus, ↑ L posterior cingulate, ↑ L basal ganglia, ↑ R orbitofrontal, ↑ R supramarginal gyrus, ↑ R angular gyrus, ↑ R anterior temporal, ↑ R occipital
Findings notes	—

Voxelwise analysis 2

First level contrast	Concreteness judgment (concrete words, correct trials) vs rest
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia with generalization of treatment effects to concrete words ($n = 7$) T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	Yes, matched
Behavioral data notes

- Type of analysis: Voxelwise
- Search volume: Whole brain
- Correction for multiple comparisons: **No correction**
- Software: SPM8
- Voxelwise p: .001
- Cluster extent: None

Statistical details

- Images show peaks instead of activations

Findings

Findings
↑ L insula
↑ L inferior parietal lobule
↑ L supramarginal gyrus
↑ L precuneus
↑ L occipital
↑ R dorsolateral prefrontal cortex
↑ R ventral precentral/inferior frontal junction
↑ R posterior STG
↑ R posterior cingulate

Findings notes

- —

Notes

- Excluded analyses: Connectivity analyses due to degree of complexity, which precluded assessment

Geranmayeh et al. (2016)

Reference

Authors	Geranmayeh F, Leech R, Wise RJ
Title	Network dysfunction predicts speech production after left hemisphere stroke
Reference	*Neurology* 2016; 86: 1296-1305
PMID	26962070
DOI	10.1212/wnl.0000000000002537

Participants

Language	UK English
Inclusion criteria	No severe receptive aphasia
Number of individuals with aphasia	53
Number of control participants	24
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (mean 62 ± 14 years, range 26-83 years)
Is sex reported for patients and controls, and matched?	No (males: 32; females: 21; controls were mostly female, unlike patients)
Is handedness reported for patients and controls, and matched?	Yes (right: 50; left: 3)
Is time post stroke onset reported and appropriate to the study design?	Yes (mean 111 ± 27 days, range 84-200 days)
To what extent is the nature of aphasia characterized?	Comprehensive battery
Language evaluation	CAT, QPA
Aphasia severity	“relatively mild stroke”; 17 patients were so mild that they were not aphasic per the CAT
Aphasia type	Not stated
First stroke only?	No
Stroke type	Not stated
To what extent is the lesion distribution characterized? | Lesion overlay
---|---
Lesion extent | Mean 25.4 ± 13.5 cc, range 0.3-168.0 cc
Lesion location | L; modest R involvement in 7 cases
Participants notes | Prior strokes were allowed only if no aphasia resulted

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal? | Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired? | —
If longitudinal, was there any intervention between the time points? | —
Is the scanner described? | Yes (Siemens Trio 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate? | Yes
Design type | Event-related
Total images acquired | 213
Are the imaging acquisition parameters, including coverage, adequately described and appropriate? | Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate? | Yes
Is first level model fitting adequately described and appropriate? | Yes
Is intersubject normalization adequately described and appropriate? | Yes
Imaging notes | sparse sampling; mini-blocks of 2-4 trials

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
propositional speech production | Sentence (overt) | 60 | Yes | No |
counting | Multiple words (overt) | 48 | Yes | Unknown |
target decision | Button press | 48 | Yes | Unknown |
rest | None | 45 | N/A | N/A |

Conditions notes | —

Contrasts

Are the contrasts clearly described? | Yes

Contrast 1: propositional speech production vs rest

Language condition	Propositional speech production
Control condition | Rest
Are the conditions matched for visual demands? | No
Are the conditions matched for auditory demands? | No
Are the conditions matched for motor demands? | No
Are the conditions matched for cognitive/executive demands? | No
Is accuracy matched between the language and control tasks for all relevant groups? | N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups? | N/A, tasks not comparable
Behavioral data notes | —
Are control data reported in this paper or another | Somewhat
Contrast 2: propositional speech production vs counting

Language condition	Propositional speech production
Control condition	Counting
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	
Are control data reported in this paper or another that is referenced?	Somewhat
Does the contrast selectively activate plausible relevant language regions in the control group?	Yes
Are activations lateralized in the control data?	Yes
Control activation notes	Control data for univariate analysis in Geranmayeh et al. (2014), but note that the present paper does not describe a univariate analysis; control activations reflect speech rather than language
Contrast notes	

Contrast 3: propositional speech production vs target decision

Language condition	Propositional speech production
Control condition	Target decision
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	
Are control data reported in this paper or another that is referenced?	No
Does the contrast selectively activate plausible relevant language regions in the control group?	Unknown
Are activations lateralized in the control data?	Unknown
Control activation notes	
Contrast notes	

Analyses

| Are the analyses clearly described? | No (see specific limitation(s) below) |
ROI analysis 1

First level contrast	Propositional speech production vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, different
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Difference in AICW/trial
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	4
What are the ROI(s)?	(1) L fronto-temporo-parietal network; (2) R fronto-temporo-parietal network; (3) cingulo-opercular network; (4) default mode network
How are the ROI(s) defined?	Identified using ICA in controls
Correction for multiple comparisons	No correction
Statistical details	Circular because ROIs defined in one group
Findings	↑ L insula
	↑ L anterior cingulate
	↑ R insula
	↑ R anterior cingulate
Findings notes	—

ROI analysis 2

First level contrast	Propositional speech production vs counting
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, different
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Difference in AICW/trial
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	4
What are the ROI(s)?	(1) L fronto-temporo-parietal network; (2) R fronto-temporo-parietal network; (3) cingulo-opercular network; (4) default mode network
How are the ROI(s) defined?	Identified using ICA in controls
Correction for multiple comparisons	No correction
Statistical details	Circular because ROIs defined in one group
Findings	↑ L insula
	↑ L anterior cingulate
	↑ R insula
	↑ R anterior cingulate
	↓ L IFG
	↓ L inferior parietal lobule
	↓ L posterior inferior temporal gyrus/fusiform gyrus
Findings notes	—

ROI analysis 3
Complex analysis 1

First level contrast	Propositional speech production vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, different
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Difference in AICW/trial
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	4
What are the ROI(s)?	(1) L fronto-temporo-parietal network; (2) R fronto-temporo-parietal network; (3) cingulo-opercular network; (4) default mode network
How are the ROI(s) defined?	Identified using ICA in controls
Correction for multiple comparisons	No correction
Statistical details	Circular because ROIs defined in one group
Findings	None
Findings notes	—

Findings

Patients showed greater differential activation than controls between (1) L fronto-temporo-parietal network and the DMN; (2) R fronto-temporo-parietal network and the DMN; (3) cingulo-opercular network and the DMN.

Complex analysis 2

First level contrast	Propositional speech production vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Appropriate information-carrying words
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Accuracy is covariate
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Complex
Statistical details	Multiple regression was used to determine whether differential activation between networks

Findings

Patients showed greater differential activation than controls between (1) L fronto-temporo-parietal network and the DMN; (2) R fronto-temporo-parietal network and the DMN; (3) cingulo-opercular network and the DMN.
was predictive of the behavioral measure: appropriate information-carrying words. There is no issue of circularity with this analysis since it involved only individuals with aphasia.

Findings	Other
Findings notes | Differential activation between L fronto-temporo-parietal network and the DMN was positively correlated with AICW. Differential activation between R fronto-temporo-parietal network and the DMN was negatively correlated with AICW.

Complex analysis 3

First level contrast	Propositional speech production vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, different
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Difference in AICW/trial
Type of analysis	Complex
Statistical details	PPI analyses were used to investigate how the speech condition modulated functional connectivity between (1) L fronto-temporo-parietal network and the DMN; (2) R fronto-temporo-parietal network and the DMN. However, circularity was introduced because the networks were defined based on the control group.

Findings	Other
Findings notes | In controls, the L FTP network reduced connectivity with the DMN during speech, while the R FTP network increased connectivity with the DMN during speech. Both of these interactions were significantly decreased in patients. This was also true for contrasts 2 and 3.

Notes

Excluded analyses

It is mentioned that LFTP and DMN activation did not correlate with speech performance, but insufficient details are provided regarding this analysis.

Griffis et al. (2016)

Reference

Authors	Griffis JC, Nenert R, Allendorfer JB, Szafarski JP
Title	Interhemispheric plasticity following intermittent theta burst stimulation in chronic poststroke aphasia
Reference	*Neural Plast* 2016; 2016: 4796906
PMID	26881111
DOI	10.1155/2016/4796906

Participants

Language	US English
Inclusion criteria	Moderate aphasia, L MCA
Number of individuals with aphasia	8 (plus 3 excluded: 2 metallic artifact; 1 seizure at time of stroke)
Number of control participants	0
Were any of the participants included in any previous studies?	Yes (same patients as Szafarski et al. (2011); different fMRI paradigm acquired in the same sessions)
Is age reported for patients and controls, and matched?	Yes (mean 54.4 ± 12.7 years)
Is sex reported for patients and controls, and matched?	Yes (males: 4; females: 4)
Is handedness reported for patients and controls, and matched?
Yes (right: 8; left: 0)

Is time post stroke onset reported and appropriate to the study design?
Yes (mean 5.3 ± 3.6 years)

To what extent is the nature of aphasia characterized?
Severity and type

Language evaluation
BNT; phonemic fluency, semantic fluency, complex ideation from BDAE, PPVT, communicative activities log

Aphasia severity
Moderate
Aphasia type
4 Broca’s, 3 anomic, 1 anomic/conduction
First stroke only?
Not stated
Stroke type
Not stated

To what extent is the lesion distribution characterized?
Individual lesions

Lesion extent
Range 1.4-52.5 cc
Lesion location
L MCA
Participants notes
—

Imaging

Modality
fMRI

Is the study cross-sectional or longitudinal?
Longitudinal—chronic treatment

If longitudinal, at what time point(s) were imaging data acquired?
T1: pre-treatment/chronic; T2: post-treatment, ~2 weeks later

If longitudinal, was there any intervention between the time points?
RTMS to residual activation near Broca’s area, 5 sessions/week, 2 weeks

Is the scanner described?
Yes (Varian Unity INOVA 4 Tesla)

Is the timing of stimulus presentation and image acquisition clearly described and appropriate?
Yes

Design type
Block
Total images acquired
140
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?
Yes (whole brain)

Is preprocessing and intrasubject coregistration adequately described and appropriate?
Yes

Is first level model fitting adequately described and appropriate?
Yes

Is intersubject normalization adequately described and appropriate?
No (lesion impact not addressed)

Imaging notes
—

Conditions

Are the conditions clearly described?
Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
verb generation	Multiple words (covert)	7	Yes	Yes
finger tapping	Other	7	Unknown	Unknown

Conditions notes
—

Contrasts

Are the contrasts clearly described?
Yes

Contrast 1: verb generation vs finger tapping

Language condition
Verb generation
Control condition
Finger tapping
Are the conditions matched for visual demands?
Yes
Question	Answer
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	---
Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible relevant language regions in the control group?	Yes
Are activations lateralized in the control data?	Somewhat
Control activation notes	Control data in Szafranski et al. (2008); frontal activation L-lateralized, temporal less so
Contrast notes	---

Analyses

Question	Answer
Are the analyses clearly described?	No (see specific limitation(s) below)

Voxelwise analysis 1

Question	Answer
First level contrast	Verb generation vs finger tapping
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T2 vs T1
Covariate	---
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (patients improved only on semantic fluency)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	---
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	No correction
Software	SPM12
Voxelwise p	.001
Cluster extent	None
Statistical details	---
Findings	↑ L IFG pars opercularis
	↑ R cerebellum
	↑ R thalamus
	↓ R anterior temporal
	↓ R cerebellum
Findings notes	Based on description in text; it is noted that no regions survived FDR correction

ROI analysis 1

Question	Answer
First level contrast	Verb generation vs finger tapping
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T2 vs T1
Covariate	---
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (patients improved only on semantic fluency)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	3
What are the ROI(s)?	(1) L IFG; (2) R IFG; (3) frontal LI
How are the ROI(s) defined?	First principal component of 8 mm spheres defined based on previously reported control peaks
Correction for multiple comparisons	False discovery rate (FDR)
Statistical details	Lesion volume included in model
Findings	↑ L IFG ↓ R IFG ↓ LI (frontal)
Findings notes	—

ROI analysis 2

First level contrast	Verb generation vs finger tapping
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T2 vs T1
Covariate	Δ semantic fluency
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (patients improved only on semantic fluency)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	3
What are the ROI(s)?	(1) L IFG; (2) R IFG; (3) frontal LI
How are the ROI(s) defined?	First principal component of 8 mm spheres defined based on previously reported control peaks
Correction for multiple comparisons	False discovery rate (FDR)
Statistical details	Lesion volume included in model
Findings	↓ R IFG
Findings notes	Decreased R IFG activation was correlated with improved semantic fluency

Complex analysis 1

First level contrast	Verb generation vs finger tapping
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (patients improved only on semantic fluency)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Complex
Statistical details	PPI analyses were used to investigate change over time in modulation by verb generation of functional connectivity between L IFG and R IFG.
Findings	Other
Findings notes	There was a significant decrease in modulation by verb generation of functional connectivity between L IFG and R IFG (p = 0.03). Prior to TMS, connectivity increased during verb
generation compared to finger tapping, while after TMS, connectivity decreased during verb generation compared to finger tapping.

Complex analysis 2

First level contrast	Verb generation vs finger tapping
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T2 vs T1
Covariate	Δ semantic fluency in association with modulation of interhemispheric IFG connectivity by verb generation
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (patients improved only on semantic fluency)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Complex
Statistical details	PPI analyses were used to investigate whether change over time in modulation by verb generation of functional connectivity between L IFG and R IFG was associated with changes in semantic fluency scores, which are limited as a measure of language improvement.

Findings

None

Findings notes

None

Complex analysis 3

First level contrast	Verb generation vs finger tapping
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (patients improved only on semantic fluency)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Complex
Statistical details	PPI analyses were used to investigate change over time in modulation by verb generation of functional connectivity between R IFG and all other brain regions. Voxelwise \(p < .001 \), not corrected for multiple comparisons.

Findings

Other

Findings notes

Reduced connectivity was observed in the L IFG pars opercularis, L anterior temporal lobe, L occipital lobe, L basal ganglia, R SMA and pre-SMA, R somato-motor cortex, R posterior MTG, and R cerebellum. It is noted that no regions survived FDR correction.

Notes

Excluded analyses

(1) correlations between lesion volume and functional measures, not described in sufficient detail; (2) ad hoc analyses in section 3.4

Sims et al. (2016)

Reference

Authors	Sims JA, Kapse K, Glynn P, Sandberg C, Tripodis Y, Kiran S
Title	The relationships between the amount of spared tissue, percent signal change, and accuracy in semantic processing in aphasia
Participants

Language	US English
Number of individuals with aphasia	14 (plus 2 excluded: 1 had no spared tissue in the L IFG; 1 had a R hemisphere stroke)
Number of control participants	8
Were any of the participants included in any previous studies?	Yes (although not stated, it is apparent that many of the patients were included in Sandberg et al. (2015))
Is age reported for patients and controls, and matched?	Yes (mean 59.7 years, range 48-75 years)
Is sex reported for patients and controls, and matched?	Yes (males: 10; females: 4)
Is handedness reported for patients and controls, and matched?	Yes (right: 14; left: 0)
Is time post stroke onset reported and appropriate to the study design?	Yes (mean 6 years, range 6 months-13 years)
To what extent is the nature of aphasia characterized?	Severity and type
Language evaluation	WAB, BNT, PPT, CLQT
Aphasia severity	AQ range 48.0-99.2
Aphasia type	4 anomic, 2 Broca's, 2 conduction, 2 transcortical motor, 1 anomic or transcortical motor, 1 Broca's or conduction, 1 "N/A", 1 Wernicke's or conduction
First stroke only?	Not stated
Stroke type	Not stated
To what extent is the lesion distribution characterized?	Lesion overlay
Lesion extent	Not stated
Lesion location	L MCA
Participants notes	—

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired?	—
If longitudinal, was there any intervention between the time points?	—
Is the scanner described?	Yes (Philips Achieva 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No (total images acquired not stated)
Design type	Event-related
Total images acquired	not stated
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	Yes
Imaging notes	no smoothing

Conditions
Are the conditions clearly described? No (number of visual decision trials not reported)

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
semantic feature decision	Button press	64	Yes	Unknown
visual decision	Button press	not stated	Yes	Unknown
semantic relatedness decision	Button press	50	Yes	Unknown
pseudoword identity decision	Button press	50	Yes	Unknown
rest	None	implicit	N/A	N/A

Conditions notes —

Contrasts

Are the contrasts clearly described? Yes

Contrast 1: semantic feature decision (6 patients, 4 controls) or semantic relatedness decision (8 patients, 4 controls) vs visual decision or pseudoword identity decision

Language condition	Semantic feature decision (6 patients, 4 controls) or semantic relatedness decision (8 patients, 4 controls)
Control condition	Visual decision or pseudoword identity decision
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	Yes
Is accuracy matched between the language and control tasks for all relevant groups?	No, different
Is reaction time matched between the language and control tasks for all relevant groups?	Unknown, not reported
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	No
Does the contrast selectively activate plausible relevant language regions in the control group?	Unknown
Are activations lateralized in the control data?	Unknown
Control activation notes	—
Contrast notes	8 patients and 4 controls performed one paradigm, while 6 patients and 4 controls performed another; the data were combined based on the assumption that similar processes were implicated by the two contrasts

Analyses

Are the analyses clearly described? No* (moderate limitation) (see specific limitation(s) below)

ROI analysis 1

First level contrast	Semantic feature decision (6 patients, 4 controls) or semantic relatedness decision (8 patients, 4 controls) vs visual decision or pseudoword identity decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Semantic feature decision accuracy
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Accuracy is covariate
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
-----------------	---------------------------
ROI type	Anatomical
How many ROIs are there?	16
What are the ROI(s)?	(1) L IFG pars orbitalis; (2) L IFG pars opercularis; (3) L IFG pars triangularis; (4) L SFG; (5) L MFG; (6) L MTG; (7) L AG/SMG; (8) L ACC; (9-16) homotopic counterparts
How are the ROI(s) defined?	AAL
Correction for multiple comparisons	No correction
Statistical details	—
Findings	↑ L IFG pars opercularis
Findings notes	—

ROI analysis 2

First level contrast	Semantic feature decision (6 patients, 4 controls) or semantic relatedness decision (8 patients, 4 controls) vs visual decision or pseudoword identity decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	WAB AQ
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	16
What are the ROI(s)?	(1) L IFG pars orbitalis; (2) L IFG pars opercularis; (3) L IFG pars triangularis; (4) L SFG; (5) L MFG; (6) L MTG; (7) L AG/SMG; (8) L ACC; (9-16) homotopic counterparts
How are the ROI(s) defined?	AAL
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 3

First level contrast	Semantic feature decision (6 patients, 4 controls) or semantic relatedness decision (8 patients, 4 controls) vs visual decision or pseudoword identity decision	
Analysis class	Cross-sectional correlation with language or other measure	
Group(s)	Aphasia	
Covariate	BNT	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes	
Is accuracy matched across the second level contrast?	Unknown, not reported	
Is reaction time matched across the second level contrast?	Unknown, not reported	
Behavioral data notes	—	
Type of analysis	Regions of interest (ROI)	
ROI type	Anatomical	
How many ROIs are there?	16	
What are the ROI(s)?	(1) L IFG pars orbitalis; (2) L IFG pars opercularis; (3) L IFG pars triangularis; (4) L SFG; (5) L MFG; (6) L MTG; (7) L AG/SMG; (8) L ACC; (9-16) homotopic counterparts	
How are the ROI(s) defined?	AAL	
Correction for multiple comparisons	No correction	
ROI analysis 4		
---	---	---
First level contrast	Semantic feature decision (6 patients, 4 controls) or semantic relatedness decision (8 patients, 4 controls) vs visual decision or pseudoword identity decision	
Analysis class	Cross-sectional correlation with language or other measure	
Group(s)	Aphasia	
Covariate	PPT	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes	
Is accuracy matched across the second level contrast?	Unknown, not reported	
Is reaction time matched across the second level contrast?	Unknown, not reported	
Behavioral data notes		
Type of analysis	Regions of interest (ROI)	
ROI type	Anatomical	
How many ROIs are there?	16	
What are the ROI(s)?	(1) L IFG pars orbitalis; (2) L IFG pars opercularis; (3) L IFG pars triangularis; (4) L SFG; (5) L MFG; (6) L MTG; (7) L AG/SMG; (8) L ACC; (9-16) homotopic counterparts	
How are the ROI(s) defined?	AAL	
Correction for multiple comparisons	No correction	
Statistical details	None	
Findings		
Findings notes	MTG included anterior too; SMG/AG was single ROI	

ROI analysis 5		
First level contrast	Semantic feature decision (6 patients, 4 controls) or semantic relatedness decision (8 patients, 4 controls) vs visual decision or pseudoword identity decision	
Analysis class	Cross-sectional correlation with language or other measure	
Group(s)	Aphasia	
Covariate	Lesion volume	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes	
Is accuracy matched across the second level contrast?	Yes, matched	
Is reaction time matched across the second level contrast?	Unknown, not reported	
Behavioral data notes	No correlation between lesion volume and accuracy, not clear whether control condition accuracy was also tested	
Type of analysis	Regions of interest (ROI)	
ROI type	Anatomical	
How many ROIs are there?	8	
What are the ROI(s)?	As above but only in the R hemisphere	
How are the ROI(s) defined?	AAL	
Correction for multiple comparisons	No correction	
Statistical details	None	
Findings	↑ R supramarginal gyrus ↑ R angular gyrus ↑ R posterior MTG	
Findings notes	MTG included anterior too; SMG/AG was single ROI	

Complex analysis 1		
First level contrast	Semantic feature decision (6 patients, 4 controls) or semantic relatedness decision (8 patients, 4 controls) vs visual decision or pseudoword identity decision	
Analysis class	Cross-sectional correlation with language or other measure	
----------------------	--	
Group(s)	Aphasia	
Covariate	Lesion status of 8 ROIs	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes	
Is accuracy matched across the second level contrast?	Unknown, not reported	
Is reaction time matched across the second level contrast?	Unknown, not reported	
Behavioral data notes	—	
Type of analysis	Complex	
Statistical details	Multivariate mixed-effects linear regression analyses were used to identify relationships between structural damage to 8 regions, and functional activation in 16 regions. Results were corrected for multiple comparisons based on FDR. This analysis was not described in sufficient detail.	
Findings	Other	
Findings notes	Sparing of the L ACC and L SFG was associated with more functional activation in many regions, however this is difficult to interpret since these regions were largely or completely spared in many patients. Damage to the L IFG pars orbitalis, L MTG and L AG/SMG was associated with activation of the L ACC, L SFG (and other regions) potentially indicative of compensatory processing.	

Complex analysis 2

First level contrast	Semantic feature decision (6 patients, 4 controls) or semantic relatedness decision (8 patients, 4 controls) vs visual decision or pseudoword identity decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Complex
Statistical details	Correlations were computed between functional activation in 16 regions, and qualitatively compared between patients and controls (p. 123). There was no correction for multiple comparisons.
Findings	Other
Findings notes	In controls, all regions were generally correlated with one another. This was largely true in patients too, with the exception of the R IFG pars orbitalis, which was negatively correlated with the L IFG.

Notes

| Excluded analyses | PCA analysis (section 3.4.1) |

Darkow et al. (2017)

Reference

Authors	Darkow R, Martin A, Würtz A, Flöel A, Meinzer M
Title	Transcranial direct current stimulation effects on neural processing in post-stroke aphasia
Reference	*Hum Brain Mapp* 2017; 38: 1518-1531
PMID | 27859982
DOI | 10.1002/hbm.23469

Participants

| Language | German
| Inclusion criteria | L hand motor area spared; mild aphasia
| Number of individuals with aphasia | 16
| Number of control participants | 16
| Were any of the participants included in any previous studies? | No
| Is age reported for patients and controls, and matched? | Yes (mean 56.7 ± 10.1 years)
| Is sex reported for patients and controls, and matched? | Yes (males: 10; females: 6)
| Is handedness reported for patients and controls, and matched? | Yes (right: 16; left: 0)
| Is time post stroke onset reported and appropriate to the study design? | Yes (mean 54.3 ± 45.3 months, range 12-169 months)
| To what extent is the nature of aphasia characterized? | Comprehensive battery
| Language evaluation | AAT
| Aphasia severity | Mild
| Aphasia type | Not stated
| First stroke only? | Not stated
| Stroke type | Not stated
| To what extent is the lesion distribution characterized? | Lesion overlay
| Lesion extent | Range 9.7-165.1 cc
| Lesion location | L MCA not including hand motor area
| Participants notes | —

Imaging

| Modality | fMRI
| Is the study cross-sectional or longitudinal? | Longitudinal—chronic treatment
| If longitudinal, at what time point(s) were imaging data acquired? | T1/T2: chronic; tDCS and sham sessions in randomized order
| If longitudinal, was there any intervention between the time points? | —
| Is the scanner described? | Yes (Siemens Trio 3 Tesla)
| Is the timing of stimulus presentation and image acquisition clearly described and appropriate? | Yes
| Design type | Event-related
| Total images acquired | 100
| Are the imaging acquisition parameters, including coverage, adequately described and appropriate? | Yes (whole brain)
| Is preprocessing and intrasubject coregistration adequately described and appropriate? | Yes
| Is first level model fitting adequately described and appropriate? | Yes
| Is intersubject normalization adequately described and appropriate? | Yes
| Imaging notes | sparse sampling

Conditions

| Are the conditions clearly described? | Yes
Condition	Response type	Repetitions	All groups could do?	All individuals could do?
picture naming	Word (overt)	80	Yes	Yes
rest	None	20	N/A	N/A

Conditions notes
—

Contrasts

Are the contrasts clearly described? Yes

Contrast 1: picture naming vs rest

Language condition	Control condition	Are the conditions matched for visual demands?	Are the conditions matched for auditory demands?	Are the conditions matched for motor demands?	Are the conditions matched for cognitive/executive demands?	Is accuracy matched between the language and control tasks for all relevant groups?	Is reaction time matched between the language and control tasks for all relevant groups?	Behavioral data notes	Does the contrast selectively activate plausible relevant language regions in the control group?	Are activations lateralized in the control data?	Control activation notes	Contrast notes
Picture naming	Rest	No	No	No	No	N/A, tasks not comparable	N/A, tasks not comparable	—	Unknown	Unknown		

Analyses

Are the analyses clearly described? Yes

Voxelwise analysis 1

First level contrast	Analysis class	Group(s)	Covariate	Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Is accuracy matched across the second level contrast?	Is reaction time matched across the second level contrast?	Behavioral data notes	Type of analysis	Search volume	Correction for multiple comparisons	Software	Voxelwise p	Cluster extent	Statistical details	Findings
Picture naming vs rest	Cross-sectional between two groups with aphasia	Aphasia after tDCS (n = 16) vs aphasia after sham stimulation (n = 16); same patients, order counterbalanced, repeated measures	—	Somewhat (no behavioral difference)	Yes, matched	Yes, matched	—	Voxelwise	Whole brain	Clusterwise correction with with GRFT and stringent voxelwise p	SPM8	.001	Based on GRFT	Repeated measures	↓ L insula
															↓ L anterior cingulate
ROI analysis 1

First level contrast	Picture naming vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia after sham stimulation (n = 16) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Appear similar
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Patients named > 90% correctly in all sessions; control RT not reported
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	3
What are the ROI(s)?	(1) bilateral anterior cingulate; (2) L insula; (3) R lingual gyrus
How are the ROI(s) defined?	Regions that were less active in patients with tDCS vs sham
Correction for multiple comparisons	No correction
Findings	↑ L insula
	↑ L anterior cingulate
	↑ R anterior cingulate

ROI analysis 2

First level contrast	Picture naming vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia after tDCS (n = 16) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Appear similar
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Patients named > 90% correctly in all sessions; control RT not reported
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	3
What are the ROI(s)?	(1) bilateral anterior cingulate; (2) L insula; (3) R lingual gyrus
How are the ROI(s) defined?	Regions that were less active in patients with tDCS vs sham
Correction for multiple comparisons	No correction
Statistical details	Circular because ROIs defined in one group
Findings	None
Findings notes	—

Complex analysis 1

First level contrast	Picture naming vs rest
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia after tDCS (n = 16) vs aphasia after sham stimulation (n = 16); same patients, order counterbalanced, repeated measures
Covariate	—
--	---
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (no behavioral difference)
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	Yes, matched
Behavioral data notes	—
Type of analysis	Complex
Statistical details	ICA was used to derive three task-relevant components: language, motor and visual. Thresholding of the functional maps is not described, but they appear to reflect coherent components of a picture naming network. These components were compared between stimulation conditions in terms of mean activity and power in three frequency bins. It should be noted that the language component is left-lateralized, unlike the model-based picture naming contrast.
Findings	Other
Findings notes	Activity in the language component was greater in the tDCS condition. In the frequency domain, the tDCS condition showed reduced power in the highest frequency bin, and increased power in the lowest frequency bin.

Complex analysis 2

First level contrast	Picture naming vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia after sham stimulation (n = 16) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Complex
Statistical details	ICA was used to derive three task-relevant components: language, motor and visual. Thresholding of the functional maps is not described, but they appear to reflect coherent components of a picture naming network. These components were compared between stimulation conditions in terms of mean activity and power in three frequency bins. It should be noted that the language component is left-lateralized, unlike the model-based picture naming contrast.
Findings	Other
Findings notes	Mean activity of these components did not differ between patients and controls. However, patients showed increased power in the middle frequency bin of the visual component.

Complex analysis 3

First level contrast	Picture naming vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia after tDCS (n = 16) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Complex
Statistical details	ICA was used to derive three task-relevant components: language, motor and visual.
Thresholding of the functional maps is not described, but they appear to reflect coherent components of a picture naming network. These components were compared between stimulation conditions in terms of mean activity and power in three frequency bins. It should be noted that the language component is left-lateralized, unlike the model-based picture naming contrast.

Findings	None
Findings notes	—

Notes

| Excluded analyses | — |

Geranmayeh et al. (2017)

Reference

Authors	Geranmayeh F, Chau TW, Wise RJS, Leech R, Hampshire A
Title	Domain-general subregions of the medial prefrontal cortex contribute to recovery of language after stroke
Reference	Brain 2017; 140: 1947-1958
PMID	29177494
DOI	10.1093/brain/awx134

Participants

Language	UK English
Inclusion criteria	—
Number of individuals with aphasia	27
Number of control participants	0
Were any of the participants included in any previous studies?	Yes (patients are a subset of those in Geranmayeh et al. (2016))
Is age reported for patients and controls, and matched?	Yes (mean 59.1 ± 10.8 years, range 39-77 years)
Is sex reported for patients and controls, and matched?	Yes (males: 18; females: 9)
Is handedness reported for patients and controls, and matched?	Yes (right: 26; left: 1)
Is time post stroke onset reported and appropriate to the study design?	Yes (T1: 15 ± 7.6 days (range 5-35 days); T2: 108 ± 26 days (range 87-200 days))
To what extent is the nature of aphasia characterized?	Not at all
Language evaluation	CAT, QPA
Aphasia severity	Not stated
Aphasia type	Not stated
First stroke only?	No
Stroke type	Not stated
To what extent is the lesion distribution characterized?	Lesion overlay
Lesion extent	Mean 41.4 ± 44.4 cc, range 3.8-173.9 cc
Lesion location	L; modest R involvement in 3 cases
Participants notes	24 control participants are described, but no imaging data from the controls are analyzed in this paper

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Longitudinal—recovery
If longitudinal, at what time point(s) were imaging data acquired?
T1: 15 ± 7.6 days (range 5-35 days); T2: 108 ± 26 days (range 87-200 days)

If longitudinal, was there any intervention between the time points?
Variable modest amounts of SLT (range 0-18 hours) reported in Supplementary Table 1

Is the scanner described?
Yes (Siemens Trio 3 Tesla)

Is the timing of stimulus presentation and image acquisition clearly described and appropriate?
Yes

Design type
Event-related

Total images acquired
213

Are the imaging acquisition parameters, including coverage, adequately described and appropriate?
Yes (whole brain)

Is preprocessing and intrasubject coregistration adequately described and appropriate?
Yes

Is first level model fitting adequately described and appropriate?
Yes

Is intersubject normalization adequately described and appropriate?
Yes

Imaging notes
sparse sampling; mini-blocks of 2-4 trials

Conditions

Are the conditions clearly described?
Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
propositional speech production	Sentence (overt)	60	Yes	Yes
counting	Multiple words (overt)	48	Yes	Unknown
target decision	Button press	48	Yes	No
rest	None	45	N/A	N/A

Conditions notes
All participants could do the target decision task except for one who was at chance

Contrasts

Are the contrasts clearly described?
Yes (see specific limitation(s) below)

Contrast 1: propositional speech production vs rest

Language condition	Control condition
Proppositional speech production	Rest

Are the conditions matched for visual demands?
No

Are the conditions matched for auditory demands?
No

Are the conditions matched for motor demands?
No

Are the conditions matched for cognitive/executive demands?
No

Is accuracy matched between the language and control tasks for all relevant groups?
N/A, tasks not comparable

Is reaction time matched between the language and control tasks for all relevant groups?
N/A, tasks not comparable

Behavioral data notes
—

Are control data reported in this paper or another that is referenced?
Yes

Does the contrast selectively activate plausible relevant language regions in the control group?
No

Are activations lateralized in the control data?
No

Control activation notes
Control data in Geranmayeh et al. (2014); speech not language; relevant activations are bilateral

Contrast notes
Not entirely clear that the whole brain analysis is indeed propositional speech production vs rest; a contrast of target decision vs mean of propositional speech and counting is also used to define the preSMA/dACC ROI
Analyses

| Are the analyses clearly described? | Yes |

Voxelwise analysis 1

First level contrast	Propositional speech production vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia mean of T1, T2
Covariate	Simultaneous Δ (T2 vs T1) number of appropriate information-carrying words

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? Somewhat (potentially confounded by T1 and T2 language function; language function at T1 was predictive of change in language function)

Is accuracy matched across the second level contrast? Appear mismatched

Behavioral data notes

T1 AICW correlated with change in AICW, but not stated whether T2 AICW correlated with change in AICW

Type of analysis	Voxelwise
Search volume	Voxels spared in all patients
Correction for multiple comparisons	Clusterwise correction based on arbitrary cluster extent
Software	FSL
Voxelwise p	.05
Cluster extent	1.6 cc

Statistical details

Findings	↑ L SMA/medial prefrontal
	↑ L anterior cingulate
	↑ R SMA/medial prefrontal
	↑ R somato-motor
	↑ R posterior STS
	↑ R anterior cingulate

Findings notes

Findings based on figures and coordinates; the pre-SMA/dACC peak noted to survive FWE correction at p < .001

ROI analysis 1

First level contrast	Propositional speech production vs rest
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T2 vs T1

Behavioral data notes

Number of AICW increased

Type of analysis	Region of interest (ROI)
ROI type	Functional

How many ROIs are there?	1
What are the ROI(s)?	L pre-SMA
How are the ROI(s) defined?	Peak voxel of the contrast of target decision vs mean of propositional speech and counting in people with aphasia

Correction for multiple comparisons

One only

Statistical details

No main effect of session in session by language recovery ANOVA

Findings	None
Findings notes	—

ROI analysis 2

How many ROIs are there?	1
What are the ROI(s)?	L pre-SMA
How are the ROI(s) defined?	Peak voxel of the contrast of target decision vs mean of propositional speech and counting in people with aphasia

Correction for multiple comparisons

One only

Statistical details

No main effect of session in session by language recovery ANOVA

Findings	None
Findings notes	—
First level contrast	Propositional speech production vs rest
----------------------	--
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T2 vs T1
Covariate	Δ number of appropriate information-carrying words
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	L pre-SMA
How are the ROI(s) defined?	Peak voxel of the contrast of target decision vs mean of propositional speech and counting in people with aphasia
Correction for multiple comparisons	One only
Statistical details	No interaction of session by language recovery in ANOVA
Findings	None
Findings notes	—

ROI analysis 3

First level contrast	Propositional speech production vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia mean of T1, T2
Covariate	Simultaneous Δ (T2 vs T1) number of appropriate information-carrying words
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (potentially confounded by T1 and T2 language function; language function at T1 was predictive of change in language function)
Is accuracy matched across the second level contrast?	Appear mismatched
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	T1 AICW correlated with change in AICW, but not stated whether T2 AICW correlated with change in AICW
Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	L pre-SMA
How are the ROI(s) defined?	Peak voxel of the contrast of target decision vs mean of propositional speech and counting in people with aphasia
Correction for multiple comparisons	One only
Statistical details	—
Findings	† L SMA/medial prefrontal
Findings notes	Patients with more pre-SMA activity improved more

ROI analysis 4

First level contrast	Propositional speech production vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia mean of T1, T2
Covariate	Simultaneous Δ (T2 vs T1) number of appropriate information-carrying words
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (potentially confounded by T1 and T2 language function; language function at T1 was predictive of change in language function)
Is accuracy matched across the second level contrast?	Appear mismatched
Is reaction time matched across the second level contrast?	Unknown, not reported
ROI analysis 5	
---	---
First level contrast	Propositional speech production vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia mean of T1, T2
Covariate	Simultaneous Δ(T2 vs T1) number of appropriate information-carrying words
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes (this analysis is appropriate because T1 behavior is included in model)
Is accuracy matched across the second level contrast?	Appear mismatched
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

T1 AICW correlated with change in AICW, but not stated whether T2 AICW correlated with change in AICW

Type of analysis

Region of interest (ROI)

ROI type

Functional

How many ROIs are there?

1

What are the ROI(s)?

L pre-SMA

How are the ROI(s) defined?

Peak voxel of the contrast of target decision vs mean of propositional speech and counting in people with aphasia

Correction for multiple comparisons

One only

Statistical details

Lesion size covariate

Findings

† L SMA/medial prefrontal

Findings notes

Patients with more pre-SMA activity improved more

ROI analysis 6	
First level contrast	Propositional speech production vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia mean of T1, T2
Covariate	Subsequent outcome (T2) number of appropriate information-carrying words
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	No (mathematically equivalent to the previous analysis, because of the inclusion of T1 performance as a covariate)
Is accuracy matched across the second level contrast?	Appear mismatched
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

T1 AICW correlated with change in AICW, but not stated whether T2 AICW correlated with change in AICW

Type of analysis

Region of interest (ROI)

ROI type

Functional

How many ROIs are there?

1

What are the ROI(s)?

L pre-SMA

How are the ROI(s) defined?

Peak voxel of the contrast of target decision vs mean of propositional speech and counting in...
ROI analysis 7	ROI analysis 8
First level contrast	Propositional speech production vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T1
Covariate	Subsequent Δ (T2 vs T1) number of appropriate information-carrying words
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (potentially confounded by T1 language function; language function at T1 was predictive of change in language function)
Is accuracy matched across the second level contrast?	No, different
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	T1 AICW correlated with change in AICW
Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	L pre-SMA
How are the ROI(s) defined?	Peak voxel of the contrast of target decision vs mean of propositional speech and counting in people with aphasia
Correction for multiple comparisons	One only
Statistical details	—
Findings	↑ L SMA/medial prefrontal
Findings notes	—

Notes

Excluded analyses: It is mentioned that activity for other tasks did not correlate with language recovery, but no
Griffis, Nenert, Allendorfer, & Szafarski (2017)

Reference
Authors
Title
Reference
PMID
DOI

Participants
Language
Inclusion criteria
Number of individuals with aphasia
Number of control participants
Were any of the participants included in any previous studies?
Is age reported for patients and controls, and matched?
Is sex reported for patients and controls, and matched?
Is handedness reported for patients and controls, and matched?
Is time post stroke onset reported and appropriate to the study design?
To what extent is the nature of aphasia characterized?
Language evaluation
Aphasia severity
Aphasia type
First stroke only?
Stroke type
To what extent is the lesion distribution characterized?
Lesion extent
Lesion location
Participants notes

Imaging
Modality
Is the study cross-sectional or longitudinal?
If longitudinal, at what time point(s) were imaging data acquired?
If longitudinal, was there any intervention between the time points?
Is the scanner described?
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?
Design type
Total images acquired
Are the imaging acquisition parameters, including
coverage, adequately described and appropriate? Yes
Is preprocessing and intrasubject coregistration adequately described and appropriate? Yes
Is first level model fitting adequately described and appropriate? Yes
Is intersubject normalization adequately described and appropriate? Yes
Imaging notes —

Conditions
Are the conditions clearly described? Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
semantic decision	Button press	5	No	No
tone decision	Button press	6	Unknown	Unknown

Conditions notes Group performance below chance; several patients at 0 which is difficult to understand in a 2AFC task

Contrasts
Are the contrasts clearly described? Yes

Contrast 1: semantic decision vs tone decision
Language condition Semantic decision
Control condition Tone decision
Are the conditions matched for visual demands? Yes
Are the conditions matched for auditory demands? Yes
Are the conditions matched for motor demands? Yes
Are the conditions matched for cognitive/executive demands? Yes
Is accuracy matched between the language and control tasks for all relevant groups? Unknown, not reported
Is reaction time matched between the language and control tasks for all relevant groups? Unknown, not reported
Behavioral data notes Tone decision accuracy not reported
Are control data reported in this paper or another that is referenced? Yes
Does the contrast selectively activate plausible relevant language regions in the control group? Yes
Are activations lateralized in the control data? Yes
Control activation notes Temporal activation is mid MTG and AG rather than pSTS
Contrast notes —

Analyses
Are the analyses clearly described? Yes

ROI analysis 1
First level contrast Semantic decision vs tone decision
Analysis class Cross-sectional correlation with language or other measure
Group(s) Aphasia
Covariate Semantic decision accuracy
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? Yes
Is accuracy matched across the second level contrast? Accuracy is covariate
Is reaction time matched across the second level contrast? Unknown, not reported
ROI analysis 2

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Average of semantic and phonemic fluency
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes
- **Type of analysis**: Regions of interest (ROI)
- **ROI type**: Other
- **How many ROIs are there?**: 3
- **What are the ROI(s)?**: (1) L AG and bilateral midline components of the canonical semantic network, along with reduced activity in R frontal, temporal and parietal regions; (2) bilateral IFG pars orbitalis; (3) L IFG and DLPFC along with bilateral midline regions
- **How are the ROI(s) defined?**: ROIs are mixing coefficients of functional networks arising from mCCA + jICA that were differently represented in the patient and control groups
- **Correction for multiple comparisons**: Familywise error (FWE)

Statistical details
- **Findings**: ↑ L IFG
- **Findings notes**: All 3 networks were significantly correlated; analysis of networks so involvement of each individual region cannot be assured
ROI analysis 3

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	BNT
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Other
How many ROIs are there?	3
What are the ROI(s)?	(1) L AG and bilateral midline components of the canonical semantic network, along with reduced activity in R frontal, temporal and parietal regions; (2) bilateral IFG pars orbitalis; (3) L IFG and DLPFC along with bilateral midline regions
How are the ROI(s) defined?	ROIs are mixing coefficients of functional networks arising from mCCA + jICA that were differently represented in the patient and control groups
Correction for multiple comparisons	Familywise error (FWE)
Statistical details	—
Findings	↑ L IFG
	↑ L dorsolateral prefrontal cortex
	↑ L SMA/medial prefrontal
	↑ L angular gyrus
	↑ L precuneus
	↑ L posterior cingulate
	↑ R SMA/medial prefrontal
	↑ R precuneus
	↑ R posterior cingulate
	↓ L insula
	↓ R IFG pars opercularis
	↓ R IFG pars triangularis
	↓ R insula
	↓ R dorsal precentral
	↓ R supramarginal gyrus
	↓ R posterior STG
	↓ R mid temporal
Findings notes	Networks 1 and 3 were significantly correlated; analysis of networks so involvement of each individual region cannot be assured
Complex analysis 1

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, different
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Semantic decision accuracy not matched, but tone decision accuracy not reported
Type of analysis	Complex
Statistical details	Multimodal canonical correlation analysis (mCCA) and joint ICA were used to identify 3 joint ICs (structural/functional) that were differently represented in the patient and control groups. Although there was no correction for multiple comparisons when the functional maps were thresholded, the maps for the three networks each appeared to relate to coherent parts of the semantic network.

Findings

Findings notes

The first joint IC comprised preservation of tissue in L posterior temporo-parietal region, activity in the L AG and bilateral midline components of the canonical semantic network, and reduced activity in R frontal, temporal and parietal regions. The second joint IC comprised preservation of tissue in the L basal ganglia/insula region, and activity predominantly in the IFG pars orbitalis bilaterally. The third joint IC comprised preservation of the L IFG and activity in the L IFG and DLPFC along with bilateral midline regions. The first joint IC was considered to provide more robust evidence for structure-function relationships than the other two, because it was the only one where individual structural and functional mixing coefficients remained correlated even when lesion volume was included as a covariate.

Notes

Excluded analyses

(1) group analyses that were described in a previous paper (Gris et al., 2017, Hum Brain Mapp); (2) ancillary analysis using different numbers of components per modality; (3) ancillary analysis using lesion masks instead of brain tissue maps; (4) ancillary analysis using multivariate lesion-symptom mapping, because these analyses yielded similar results to the main analysis

Griffis, Nenert, Allendorfer, Vannest, et al. (2017)

Reference

Authors	Griffis JC, Nenert R, Allendorfer JB, Vannest J, Holland S, Dietz A, Szafarlski JP
Title	The canonical semantic network supports residual language function in chronic post-stroke aphasia
Reference	Hum Brain Mapp 2017; 38: 1636-1658
PMID	27981674
DOI	10.1002/hbm.23476

Participants

Language	US English
Inclusion criteria	—
Number of individuals with aphasia	43
Number of control participants	43
Were any of the participants included in any previous studies?	Yes (data were collected as part of “several separate studies”)
Is age reported for patients and controls, and	Yes (mean 53 ± 15 years, range 23-90 years)
Is sex reported for patients and controls, and matched? Yes (males: 25; females: 18)

Is handedness reported for patients and controls, and matched? Yes (right: 41; left: 2)

Is time post stroke onset reported and appropriate to the study design? Yes (range 1-14 years)

To what extent is the nature of aphasia characterized? Not at all

Language evaluation BNT, semantic fluency, phonemic fluency

Aphasia severity Not stated

Aphasia type Not stated

First stroke only? Yes

Stroke type Not stated

To what extent is the lesion distribution characterized? Individual lesions

Lesion extent Mean 105.2 ± 76.3 cc

Lesion location L

Participants notes —

Imaging

Modality fMRI

Is the study cross-sectional or longitudinal? Cross-sectional

If longitudinal, at what time point(s) were imaging data acquired? —

If longitudinal, was there any intervention between the time points? —

Is the scanner described? No (Siemens Allegra 3 Tesla or Philips 3 Tesla; model not stated)

Is the timing of stimulus presentation and image acquisition clearly described and appropriate? Yes

Design type Block

Total images acquired 165

Are the imaging acquisition parameters, including coverage, adequately described and appropriate? Yes (whole brain)

Is preprocessing and intrasubject coregistration adequately described and appropriate? Yes

Is first level model fitting adequately described and appropriate? Yes

Is intersubject normalization adequately described and appropriate? Yes

Imaging notes —

Conditions

Are the conditions clearly described? Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
semantic decision	Button press	5	No	No
tone decision	Button press	6	Unknown	Unknown

Conditions notes Group performance below chance; several patients at 0 which is difficult to understand in a 2AFC task

Contrasts

Are the contrasts clearly described? Yes

Contrast 1: semantic decision vs tone decision
Language condition	Semantic decision
Control condition	Tone decision

Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	Yes

| Is accuracy matched between the language and control tasks for all relevant groups? | Unknown, not reported |
| Is reaction time matched between the language and control tasks for all relevant groups? | Unknown, not reported |

Behavioral data notes
- Tone decision accuracy not reported

Are control data reported in this paper or another that is referenced? Yes

Does the contrast selectively activate plausible relevant language regions in the control group? Yes

Are activations lateralized in the control data? Yes

Control activation notes
- Temporal activation is mid MTG and AG rather than pSTS

Contrast notes

Analyses

Are the analyses clearly described? Yes

Voxelwise analysis 1

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Semantic decision accuracy
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Accuracy is covariate
Is reaction time matched across the second level contrast?	Unknown, not reported

Correction for multiple comparisons
- Clusterwise correction based on cluster_threshold_beta

Software
- SPM12/in-house

| Voxelwise p | .01 |
| Cluster extent | 126 voxels (size not stated) |

Statistical details
- Lesion volume covariate

Findings
- ↑ L dorsolateral prefrontal cortex
- ↑ L angular gyrus
- ↑ L precuneus
- ↑ L mid temporal
- ↑ L anterior temporal
- ↑ L posterior cingulate
- ↑ L cerebellum
- ↑ L brainstem
- ↑ L hippocampus/MTL
- ↑ R IFG pars orbitalis
- ↑ R angular gyrus
- ↑ R precuneus
- ↑ R anterior temporal
- ↑ R occipital
- ↑ R brainstem
| Findings notes | Based on figure and table; larger activations are compelling; smaller activations are not due to lenient correction approach |

Voxelwise analysis 2

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Average of semantic and phonemic fluency
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on cluster_threshold_beta
Software	SPM12/in-house
Voxelwise p	.01
Cluster extent	126 voxels (size not stated)
Statistical details	Lesion volume covariate
Findings	↑ L IFG
	↑ L dorsolateral prefrontal cortex
	↑ L SMA/medial prefrontal
	↑ L angular gyrus
	↑ L precuneus
	↑ L posterior STS
	↑ L mid temporal
	↑ L anterior temporal
	↑ L posterior cingulate
	↑ L brainstem
	↑ L hippocampus/MTL
	↑ R SMA/medial prefrontal
	↑ R precuneus
	↑ R anterior temporal
	↑ R occipital
	↑ R posterior cingulate
	↑ R hippocampus/MTL
	↓ R posterior STS
Findings notes	Based on figure and table; larger activations are compelling; smaller activations are not due to lenient correction approach

Voxelwise analysis 3

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	BNT
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on cluster_threshold_beta
Software	SPM12/in-house
Voxelwise p	.01
Cluster extent	126 voxels (size not stated)
Statistical details	Lesion volume covariate
Findings	↑ L IFG pars orbitalis
↑ L SMA/medial prefrontal	
↑ L angular gyrus	
↑ L precuneus	
↑ L posterior cingulate	
↑ L hippocampus/MTL	
↑ R IFG pars orbitalis	
↑ R SMA/medial prefrontal	
↑ R precuneus	
↑ R anterior temporal	
↑ R posterior cingulate	
↑ R cerebellum	
Findings notes	Based on figure and table; larger activations are compelling; smaller activations are not due to lenient correction approach

Voxelwise analysis 4

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Lesion volume
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	R hemisphere
Correction for multiple comparisons	Clusterwise correction based on cluster_threshold_beta
Software	SPM12/in-house
Voxelwise p	.01
Cluster extent	126 voxels (size not stated)
Statistical details	—
Findings	↑ R IFG pars opercularis
↑ R dorsolateral prefrontal cortex	
↑ R dorsal precentral	
↑ R SMA/medial prefrontal	
↓ R orbitofrontal	
↓ R anterior temporal	
↓ R cerebellum	
↓ R thalamus	
Findings notes	Based on figure and table; larger activations are compelling; smaller activations are not due to lenient correction approach

ROI analysis 1

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Question	Answer
Is accuracy matched across the second level contrast?	No, different
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Semantic decision accuracy not matched, but tone decision accuracy not reported
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	5
What are the ROI(s)?	(1) overall canonical semantic network (CSN); (2) L CSN; (3) R CSN; (4) mirror L CSN in R; (5) out-of-network CSN in R
How are the ROI(s) defined?	Control data
Correction for multiple comparisons	Familywise error (FWE)
Statistical details	Circular because ROI defined in one group
Findings	
L IFG	
L dorsolateral prefrontal cortex	
L SMA/medial prefrontal	
L angular gyrus	
L precuneus	
L mid temporal	
L anterior temporal	
L occipital	
L posterior cingulate	
L cerebellum	
R IFG	
R dorsolateral prefrontal cortex	
R SMA/medial prefrontal	
R angular gyrus	
R precuneus	
R anterior temporal	
R occipital	
R posterior cingulate	
R cerebellum	
Findings notes	Results are for whole networks of regions, so individual regions cannot be assured; out-of-network R regions not listed since they were not significant in ROI 5 (only in ROI 4)

ROI analysis 2

Question	Answer
First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Lesion volume
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	5
What are the ROI(s)?	(1) overall canonical semantic network (CSN); (2) L CSN; (3) R CSN; (4) mirror L CSN in R; (5) out-of-network CSN in R
How are the ROI(s) defined?	Control data
Correction for multiple comparisons	Familywise error (FWE)
Statistical details	—
Findings	None
Findings notes	—
ROI analysis 3

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Semantic decision accuracy
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Accuracy is covariate
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

- Type of analysis: Region of interest (ROI)
- ROI type: Functional
- How many ROIs are there? 1
- What are the ROI(s)? CSN
- How are the ROI(s) defined? Control data
- Correction for multiple comparisons: One only
- Statistical details: Lesion volume covariate

Findings

- ↑ L IFG
- ↑ L dorsolateral prefrontal cortex
- ↑ L SMA/medial prefrontal
- ↑ L angular gyrus
- ↑ L precuneus
- ↑ L mid temporal
- ↑ L anterior temporal
- ↑ L posterior cingulate
- ↑ L cerebellum
- ↑ R IFG
- ↑ R dorsolateral prefrontal cortex
- ↑ R SMA/medial prefrontal
- ↑ R angular gyrus
- ↑ R precuneus
- ↑ R anterior temporal
- ↑ R posterior cingulate
- ↑ R cerebellum

Findings notes

- Correlation calculated for the whole network of regions, so correlation of individual regions cannot be assured

ROI analysis 4

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Average of semantic and phonemic fluency
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

- Type of analysis: Region of interest (ROI)
- ROI type: Functional
- How many ROIs are there? 1
- What are the ROI(s)? CSN
- How are the ROI(s) defined? Control data
| Correction for multiple comparisons | One only |
|------------------------------------|----------|
| Statistical details | Lesion volume covariate |
| Findings | ↑ L IFG |
| | ↑ L dorsolateral prefrontal cortex |
| | ↑ L SMA/medial prefrontal |
| | ↑ L angular gyrus |
| | ↑ L precuneus |
| | ↑ L mid temporal |
| | ↑ L anterior temporal |
| | ↑ L posterior cingulate |
| | ↑ L cerebellum |
| | ↑ R IFG |
| | ↑ R dorsolateral prefrontal cortex |
| | ↑ R SMA/medial prefrontal |
| | ↑ R angular gyrus |
| | ↑ R precuneus |
| | ↑ R anterior temporal |
| | ↑ R posterior cingulate |
| | ↑ R cerebellum |
| Findings notes | Correlation calculated for the whole network of regions, so correlation of individual regions cannot be assured |

ROI analysis 5

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	BNT
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	CSN
How are the ROI(s) defined?	Control data
Correction for multiple comparisons	One only
Statistical details	Lesion volume covariate
Findings	↑ L IFG
	↑ L dorsolateral prefrontal cortex
	↑ L SMA/medial prefrontal
	↑ L angular gyrus
	↑ L precuneus
	↑ L mid temporal
	↑ L anterior temporal
	↑ L posterior cingulate
	↑ L cerebellum
	↑ R IFG
	↑ R dorsolateral prefrontal cortex
	↑ R SMA/medial prefrontal
	↑ R angular gyrus
	↑ R precuneus
	↑ R anterior temporal
	↑ R posterior cingulate
	↑ R cerebellum
Findings notes	Correlation calculated for the whole network of regions, so correlation of individual regions cannot be assured
Complex analysis 1

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, different
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Semantic decision accuracy not matched, but tone decision accuracy not reported
Type of analysis	Complex
Statistical details	Correlations between activation magnitudes in the L and R canonical semantic network (CSN) were compared between groups. However, this analysis is circular because the CSN ROIs were defined based on controls only.
Findings	None
Findings notes	—

Complex analysis 2

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, different
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Semantic decision accuracy not matched, but tone decision accuracy not reported
Type of analysis	Complex
Statistical details	Correlations between activation magnitudes in the L CSN and R mirrored CSN were compared between groups. However, this analysis is circular because the CSN ROIs were defined based on controls only.
Findings	Other
Findings notes	Correlations between activations in the L CSN and the mirrored L CSN in the R hemisphere were stronger in patients than controls.

Complex analysis 3

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, different
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Semantic decision accuracy not matched, but tone decision accuracy not reported
Type of analysis	Complex
Statistical details	Correlations between activation magnitudes in the L CSN and R out-of-network homotopic regions were compared between groups. However, this analysis is circular because the CSN ROIs were defined based on controls only.

475
Findings	Other
Findings notes | Correlations between activations in the L CSN and R out-of-network homotopic regions were stronger in patients than controls.

Complex analysis 4

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, different
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Semantic decision accuracy not matched, but tone decision accuracy not reported
Type of analysis	Complex
Statistical details	The difference in activation between the L CSN and R CSN was compared between patients and controls. However, this analysis is circular because the CSN ROIs were defined based on controls only.
Findings	None
Findings notes	—

Complex analysis 5

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, different
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Semantic decision accuracy not matched, but tone decision accuracy not reported
Type of analysis	Complex
Statistical details	The difference in activation between the L CSN and mirror L CSN in the R was compared between patients and controls. However, this analysis is circular because the CSN ROIs were defined based on controls only.
Findings	Other
Findings notes	The difference was smaller in patients.

Complex analysis 6

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, different
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Semantic decision accuracy not matched, but tone decision accuracy not reported
Type of analysis	Complex

476
Statistical details
The difference in activation between the R CSN and out-of-network homotopic regions in the R was compared between patients and controls. However, this analysis is circular because the CSN ROIs were defined based on controls only.

Findings
Other

Findings notes
The difference was smaller in patients.

Complex analysis 7

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Interactions of semantic fluency and naming measures by lesion size
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes
—

Type of analysis
Complex

Statistical details
For the 4 R hemisphere regions that were more activated in patients with larger lesions (SPM analysis 4), analyses were carried out to determine whether the semantic fluency or naming measures were differentially impacted by activation depending on whether lesions were larger or smaller.

Findings
Other

Findings notes
For 1 of the 4 regions (R SMA), there were significant interactions such that in patients with larger lesions, more activation was associated with higher semantic fluency scores and higher BNT scores, while in patients with smaller lesions, more activation was associated with lower fluency and BNT scores. There was a similar relationship with semantic fluency in the R IFG pars opercularis but only at p(FDR) = 0.07.

Notes

Excluded analyses
Ancillary whole brain analyses without lesion volume covariate (Supporting Figure 3); Figure 3b and 3c, which are derivatives of included analyses

Harvey et al. (2017)

Reference

Authors
Harvey DY, Poddell J, Turkeltaub PE, Faseyitan O, Coslett HB, Hamilton RH

Title
Functional reorganization of right prefrontal cortex underlies sustained naming improvements in chronic aphasia via repetitive transcranial magnetic stimulation

Reference
Cogn Behav Neurol 2017; 30: 133-144

PMID
29256908

DOI
10.1097/wnn.0000000000000141

Participants

Language	US English
Inclusion criteria	Mild-moderate non-fluent aphasia; relatively intact comprehension; able to produce meaningful words and phrases
Number of individuals with aphasia	6
Number of control participants	0
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (range 47-75 years)
Question	Answer
---	--------
Is sex reported for patients and controls, and matched?	Yes (males: 5; females: 1)
Is handedness reported for patients and controls, and matched?	Yes (right: 6; left: 0)
Is time post stroke onset reported and appropriate to the study design?	Yes (range 6-102 months)
To what extent is the nature of aphasia characterized?	Comprehensive battery
Language evaluation	BDAE, BNT
Aphasia severity	Mild-moderate
Aphasia type	All non-fluent
First stroke only?	Yes
Stroke type	Ischemic only
To what extent is the lesion distribution characterized?	Individual lesions
Lesion extent	Range 36.6-252.1 cc
Lesion location	L MCA
Participants notes	—

Imaging

Question	Answer
Modality	fMRI
Is the study cross-sectional or longitudinal?	Longitudinal—chronic treatment
If longitudinal, at what time point(s) were imaging data acquired?	T1: pre-treatment/chronic; T2: post-treatment, 2 months after treatment; T3: 6 months after treatment (the 2-month time point was not included in analysis because there was no significant behavioral effect at that time)
If longitudinal, was there any intervention between the time points?	Inhibitory rTMS to R IFG, 10 days
Is the scanner described?	Yes (Siemens Trio 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	Block
Total images acquired	200
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	No (lesion impact not addressed)
Imaging notes	—

Conditions

Question	Answer
Are the conditions clearly described?	Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
picture naming	Word (overt)	20	Yes	Yes
viewing patterns	None	20	N/A	N/A

Conditions notes

Assume all individuals could do based on inclusion criterion and BNT scores

Contrasts

Question	Answer
Are the contrasts clearly described?	Yes

Contrast 1: picture naming vs viewing patterns

Language condition	Picture naming

478
Control condition	Viewing patterns
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable

Behavioral data notes
- Are control data reported in this paper or another that is referenced? No
- Does the contrast selectively activate plausible relevant language regions in the control group? Unknown
- Are activations lateralized in the control data? Unknown

Control activation notes
- Contrast notes —

Analyses

Are the analyses clearly described? Yes

Voxelwise analysis 1

First level contrast	Picture naming vs viewing patterns
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T3 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes
- —

Type of analysis	Voxelwise
Search volume	Voxels spared in all patients
Correction for multiple comparisons	No direct comparison
Software	SPM8
Voxelwise p	—
Cluster extent	—
Statistical details	Qualitative comparison on pp. 138-9

Findings

- ↑ L SMA/medial prefrontal
- ↑ L posterior inferior temporal gyrus/fusiform gyrus
- ↑ L occipital
- ↑ L anterior cingulate
- ↑ R IFG pars opercularis
- ↑ R ventral precentral/inferior frontal junction
- ↓ L dorsolateral prefrontal cortex
- ↓ R IFG pars triangularis
- ↓ R posterior inferior temporal gyrus/fusiform gyrus
- ↓ R occipital
- ↓ R hippocampus/MTL

Findings notes
- Based on Figure 5 and Table 4

Notes

| Excluded analyses | — |
Nardo et al. (2017)

Reference

Authors	Nardo D, Holland R, Leff AP, Price CJ, Crinion JT
Title	Less is more: neural mechanisms underlying anomia treatment in chronic aphasic patients
Reference	Brain 2017; 140: 3039-3054
PMID	29053773
DOI	10.1093/brain/awx234

Participants

Language	UK English
Inclusion criteria	Anomia; good single word comprehension; relatively spared word and nonword repetition; no AoS; spared or partially spared L IFG
Number of individuals with aphasia	18
Number of control participants	0
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (mean 50 ± 12 years, range 21-67 years)
Is sex reported for patients and controls, and matched?	Yes (males: 12; females: 6)
Is handedness reported for patients and controls, and matched?	Yes (right: 18; left: 0)
Is time post stroke onset reported and appropriate to the study design?	Yes (mean 61 ± 58 months, range 5-264 months)
To what extent is the nature of aphasia characterized?	Not at all
Language evaluation	BNT, one CAT subtest, two PALPA subtests
Aphasia severity	Not stated
Aphasia type	Not stated
First stroke only?	Yes
Stroke type	Not stated
To what extent is the lesion distribution characterized?	Lesion overlay
Lesion extent	Not stated
Lesion location	L MCA
Participants notes	—

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Longitudinal—chronic treatment
If longitudinal, at what time point(s) were imaging data acquired?	T1: pre-treatment/chronic; T2: post-treatment, ~6 weeks later
If longitudinal, was there any intervention between the time points?	Anomia treatment (computer-based practice), 2+ hours/day, 6 weeks
Is the scanner described?	Yes (Siemens Trio 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	Event-related
Total images acquired	696
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration	Yes
adequately described and appropriate? Yes
Is rst level model fitting adequately described and appropriate? Yes
Is intersubject normalization adequately described and appropriate? Yes

Imaging notes —

Conditions

Are the conditions clearly described? Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
picture naming (untrained items, word cue)	Word (overt)	54	Yes	Unknown
picture naming (untrained items, initial phonemes cue)	Word (overt)	54	Yes	Unknown
picture naming (untrained items, final phonemes cue)	Word (overt)	54	Yes	Unknown
picture naming (untrained items, no cue)	Word (overt)	54	Yes	Unknown
picture naming (trained items, word cue)	Word (overt)	53	Yes	Unknown
picture naming (trained items, initial phonemes cue)	Word (overt)	53	Yes	Unknown
picture naming (trained items, final phonemes cue)	Word (overt)	53	Yes	Unknown
picture naming (trained items, no cue)	Word (overt)	53	Yes	Unknown
rest	None	Implicit baseline	N/A	N/A

Conditions notes Spectrally rotated noise vocoded auditory stimulus in no-cue conditions; one patient had a BNT of 1/60 so it is unclear whether that patient could do the task

Contrasts

Are the contrasts clearly described? No (see specific limitation(s) below)

Contrast 1: picture naming (all conditions, correct trials) vs rest

Language condition	Control condition
Picture naming (all conditions, correct trials)	Rest

Are the conditions matched for visual demands? No
Are the conditions matched for auditory demands? No
Are the conditions matched for motor demands? No
Are the conditions matched for cognitive/executive demands? No
Is accuracy matched between the language and control tasks for all relevant groups? N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups? N/A, tasks not comparable

Behavioral data notes —

Does the contrast selectively activate plausible relevant language regions in the control group? Unknown
Are activations lateralized in the control data? Unknown

Contrast notes It is difficult to determine exactly what contrasts were employed

Contrast 2: picture naming (untrained items, no cue, correct trials) vs picture naming (trained items, no cue, correct trials)

Language condition	Control condition
Picture naming (untrained items, no cue, correct trials)	Picture naming (trained items, no cue, correct trials)
Question	Answer
---	-----------------
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	Yes
Is accuracy matched between the language and control tasks for all relevant groups?	Yes, correct trials only
Is reaction time matched between the language and control tasks for all relevant groups?	No, different
Behavioral data notes	Untrained items significantly slower at T2
Are control data reported in this paper or another that is referenced?	No
Does the contrast selectively activate plausible relevant language regions in the control group?	Unknown
Are activations lateralized in the control data?	Unknown
Control activation notes	—
Contrast notes	It is difficult to determine exactly what contrasts were employed

Analyses

Question	Answer
Are the analyses clearly described?	No* (moderate limitation) (see specific limitation(s) below)

Voxelwise analysis 1

First level contrast	Picture naming (all conditions, correct trials) vs rest
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	No, different
Behavioral data notes	RT faster at T2
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Voxelwise FWE correction
Software	SPM12
Voxelwise p	FWE p < .05
Cluster extent	—
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 1

First level contrast	Picture naming (untrained items, no cue, correct trials) vs picture naming (trained items, no cue, correct trials)
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T2
Covariate	"a change in un-cued naming RT" (exact measure unclear)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (unclear whether behavioral measure is longitudinal)
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis
Regions of interest (ROI)

ROI type
Functional

How many ROIs are there?
4

What are the ROI(s)?
(1) R anterior insula; (2) R IFG; (3) dorsal anterior cingulate; (4) L premotor cortex

How are the ROI(s) defined?
Peaks (only with SVC) for the main effect of untrained (4 conditions) vs trained (4 conditions) in T2 aphasia

Correction for multiple comparisons
No correction

Statistical details
Unclear what the behavioral measure was exactly

Findings
↑ R IFG pars opercularis
↑ R insula

Findings notes
—

Notes
Most analyses were between conditions in people with aphasia, so did not meet criteria for this review

Excluded analyses
Most analyses were between conditions in people with aphasia, so did not meet criteria for this review

Nenert et al. (2017)

Reference

Authors	Nenert R, Allendorfer JB, Martin AM, Banks C, Ball A, Vannest J, Dietz AR, Szafarski JP
Title	Neuroimaging correlates of post-stroke aphasia rehabilitation in a pilot randomized trial of constraint-induced aphasia therapy
Reference	Med Sci Monit 2017; 23: 3489-3507
PMID	28719572
DOI	10.12659/msm.902301

Participants

Language	US English
Inclusion criteria	At least mild aphasia per TT
Number of individuals with aphasia	19
Number of control participants	38
Were any of the participants included in any previous studies?	Yes (patients are a subset of the 24 participants in Szafarski et al. (2015), a clinical trial on CIAT)
Is age reported for patients and controls, and matched?	Yes (CIAT group: mean 58.0 ± 10.6 years; untreated group: mean 50.3 ± 13.3 years)
Is sex reported for patients and controls, and matched?	Yes (males: 11; females: 8)
Is handedness reported for patients and controls, and matched?	No (right: 17; left: 0; other: 2; 2 patients "atypical": unclear whether L or mixed)
Is time post stroke onset reported and appropriate to the study design?	Yes (CIAT group: mean 60.2 ± 48.9 months; untreated group: mean 41.9 ± 30.0 months; all > 1 year)
To what extent is the nature of aphasia characterized?	Severity only
Language evaluation	TT, PPVT, BNT, semantic fluency, phonemic fluency, communicative activities log
Aphasia severity	6 mild (2 control, 4 CIAT); 5 moderate (3 control, 2 CIAT); 8 severe (3 control, 5 CIAT)
Aphasia type	Not stated
First stroke only?	Yes
Stroke type	Ischemic only
To what extent is the lesion distribution characterized?	Lesion overlay
Lesion extent	Not stated
Lesion location	L MCA
Participants notes	—
Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Longitudinal—chronic treatment
If longitudinal, at what time point(s) were imaging data acquired?	T1: pre-treatment/chronic; T2: post-treatment, ~3 weeks later; T3: 3 months after the end of treatment
If longitudinal, was there any intervention between the time points?	CIAT, 4 hours/day, 5 days/week, 2 weeks
Is the scanner described?	No (Philips 3 Tesla or Siemens 3 Tesla; models not stated)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	Block
Total images acquired	600
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	No (lesion impact not addressed)
Imaging notes	—

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
semantic decision	Button press	10	Unknown	Unknown
tone decision	Button press	10	Unknown	Unknown
verb generation	Multiple words (covert)	10	Unknown	Unknown
finger tapping	Other	10	Unknown	Unknown

| Conditions notes | Behavioral data are provided for the semantic decision and tone decision tasks, but the denominator is unclear; a post-scan recognition test for verb generation is reported, but this cannot confirm verb generation performance |

Contrasts

Contrast 1: semantic decision vs tone decision
Language condition
Control condition
Are the conditions matched for visual demands?
Are the conditions matched for auditory demands?
Are the conditions matched for motor demands?
Are the conditions matched for cognitive/executive demands?
Is accuracy matched between the language and control tasks for all relevant groups?
Is reaction time matched between the language and control tasks for all relevant groups?

Behavioral data notes	Appear mismatched at least in healthy controls in Table 3
Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible relevant language regions in the control group?	Yes
Are activations lateralized in the control data?	Yes
Control activation notes	Lateralized frontal, temporal, and parietal
Contrast notes	—

Contrast 2: verb generation vs finger tapping

Language condition	Verb generation
Control condition	Finger tapping
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No

| Is accuracy matched between the language and control tasks for all relevant groups? | N/A, tasks not comparable |
| Is reaction time matched between the language and control tasks for all relevant groups? | N/A, tasks not comparable |

| Behavioral data notes | — |
| Are control data reported in this paper or another that is referenced? | Yes |

| Does the contrast selectively activate plausible relevant language regions in the control group? | Yes |
| Are activations lateralized in the control data? | Somewhat |

| Control activation notes | Control data in Szafirowski et al. (2008); frontal activation L-lateralized, temporal less so |
| Contrast notes | — |

Analyses

| Are the analyses clearly described? | Yes |

Voxelwise analysis 1

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia CIAT T2 (n = 11) vs untreated T2 (n = 8)
Covariate	—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (no treatment effect)
Is accuracy matched across the second level contrast?	Appears similar
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Voxels spared in all patients
Correction for multiple comparisons	Clusterwise correction based on arbitrary cluster extent
Software	SPM12
Voxelwise p	.01
Cluster extent	50 voxels (size not stated)

Statistical details	—
Findings	L somato-motor
	L superior parietal
	L brainstem
	L ventral precentral/inferior frontal junction
	R somato-motor
	R superior parietal

| Findings notes | Based on coordinates in Table 4 |

Voxelwise analysis 2

| First level contrast | Semantic decision vs tone decision | 485 |
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia CIAT T3 (n = 11) vs untreated T3 (n = 8)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (no treatment effect)
Is accuracy matched across the second level contrast?	Unknown, no test
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

Type of analysis

Voxelwise

Search volume

Voxels spared in all patients

Correction for multiple comparisons

Clusterwise correction based on arbitrary cluster extent

Software

SPM12

Voxelwise p

.01

Cluster extent

50 voxels (size not stated)

Statistical details

Findings

↑ L superior parietal
↑ L anterior temporal
↑ L hippocampus/MTL
↑ R orbitofrontal
↓ L dorsolateral prefrontal cortex
↓ L posterior inferior temporal gyrus/fusiform gyrus
↓ R IFG pars orbitalis
↓ R ventral precentral/inferior frontal junction
↓ R posterior STS

Findings notes

Based on coordinates in Table 4

Voxelwise analysis 3

First level contrast

Verb generation vs finger tapping

Analysis class

Cross-sectional between two groups with aphasia

Group(s)

Aphasia CIAT T2 (n = 11) vs untreated T2 (n = 8)

Covariate

—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?

Somewhat (no treatment effect)

Is accuracy matched across the second level contrast?

Unknown, not reported

Is reaction time matched across the second level contrast?

Unknown, not reported

Behavioral data notes

—

Type of analysis

Voxelwise

Search volume

Voxels spared in all patients

Correction for multiple comparisons

Clusterwise correction based on arbitrary cluster extent

Software

SPM12

Voxelwise p

.01

Cluster extent

50 voxels (size not stated)

Statistical details

—

Findings

↓ L precuneus
↓ R dorsolateral prefrontal cortex
↓ R posterior STS
↓ R anterior temporal
↓ R posterior inferior temporal gyrus/fusiform gyrus

Findings notes

Based on coordinates in Table 4

Voxelwise analysis 4

First level contrast

Verb generation vs finger tapping
Analysis class
Cross-sectional between two groups with aphasia

Group(s)
Aphasia CIAT T3 (n = 11) vs untreated T3 (n = 8)

Covariate
—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (no treatment effect)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes
—

Type of analysis	Voxelwise
Search volume	Voxels spared in all patients
Correction for multiple comparisons	Clusterwise correction based on arbitrary cluster extent
Software	SPM12
Voxelwise p	.01
Cluster extent	50 voxels (size not stated)

Statistical details
—

Findings
↑ L SMA/medial prefrontal
↑ R basal ganglia
↓ L anterior temporal
↓ R posterior STS
↓ R Heschl's gyrus
↓ R posterior inferior temporal gyrus/fusiform gyrus

Findings notes
—

Voxelwise analysis 5

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia CIAT T1 (n = 11) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Appears mismatched
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes
Patients less accurate than controls on both tasks, but more so on the tone decision task

Type of analysis	Voxelwise
Search volume	Voxels spared in all patients
Correction for multiple comparisons	Clusterwise correction based on arbitrary cluster extent
Software	SPM12
Voxelwise p	.01
Cluster extent	50 voxels (size not stated)

Statistical details
—

Findings
↑ L orbitofrontal
↑ L hippocampus/MTL
↑ R IFG pars opercularis
↑ R SMA/medial prefrontal
↑ R supramarginal gyrus
↑ R posterior STG/STS/MTG
↑ R anterior temporal
↑ R anterior cingulate
↓ R dorsolateral prefrontal cortex

Findings notes
—

Voxelwise analysis 6

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia CIAT T3 (n = 11) vs untreated T3 (n = 8)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (no treatment effect)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes
—

Type of analysis	Voxelwise
Search volume	Voxels spared in all patients
Correction for multiple comparisons	Clusterwise correction based on arbitrary cluster extent
Software	SPM12
Voxelwise p	.01
Cluster extent	50 voxels (size not stated)

Statistical details
—

Findings
↑ L orbitofrontal
↑ L hippocampus/MTL
↑ R IFG pars opercularis
↑ R SMA/medial prefrontal
↑ R supramarginal gyrus
↑ R posterior STG/STS/MTG
↑ R anterior temporal
↑ R anterior cingulate
↓ R dorsolateral prefrontal cortex

Findings notes
—
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia CIAT T2 (n = 11) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Appears mismatched
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Patients less accurate than controls on both tasks, but more so on the tone decision task
Type of analysis	Voxelwise
Search volume	Voxel spared in all patients
Correction for multiple comparisons	Clusterwise correction based on arbitrary cluster extent
Software	SPM12
Voxelwise p	.01
Cluster extent	50 voxels (size not stated)
Statistical details	—
Findings	↑ L anterior cingulate
	↑ R IFG pars opercularis
	↑ R insula
	↑ R ventral precentral/inferior frontal junction
	↑ R supramarginal gyrus
	↑ R Heschl's gyrus
	↓ L dorsolateral prefrontal cortex
	↓ L SMA/medial prefrontal
	↓ L cerebellum
	↓ R dorsolateral prefrontal cortex
Findings notes	—

Voxelwise analysis 7

Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia CIAT T3 (n = 11) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Appears mismatched
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Patients less accurate than controls on both tasks, but more so on the tone decision task
Type of analysis	Voxelwise
Search volume	Voxel spared in all patients
Correction for multiple comparisons	Clusterwise correction based on arbitrary cluster extent
Software	SPM12
Voxelwise p	.01
Cluster extent	50 voxels (size not stated)
Statistical details	—
Findings	↑ L orbitofrontal
	↑ L anterior cingulate
	↑ L hippocampus/MTL
	↑ R superior parietal
	↓ L cerebellum
	↓ R dorsolateral prefrontal cortex
	↓ R anterior temporal
	↓ R cerebellum
Findings notes	—
Voxelwise analysis 8

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia untreated T1 (n = 8) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	**Appear mismatched**
Is reaction time matched across the second level contrast?	**Unknown, not reported**
Behavioral data notes	Patients less accurate than controls on both tasks, but more so on the tone decision task
Type of analysis	Voxelwise
Search volume	Voxels spared in all patients
Correction for multiple comparisons	**Clusterwise correction based on arbitrary cluster extent**
Software	SPM12
Voxelwise p	.01
Cluster extent	50 voxels (size not stated)
Statistical details	—
Findings	↑ L dorsolateral prefrontal cortex
	↑ R dorsolateral prefrontal cortex
	↑ R SMA/medial prefrontal
	↑ R somato-motor
	↓ L IFG pars orbitalis
	↓ L dorsolateral prefrontal cortex
	↓ L SMA/medial prefrontal
	↓ L angular gyrus
	↓ L mid temporal
	↓ L anterior temporal
	↓ R IFG pars orbitalis
	↓ R angular gyrus
	↓ R anterior temporal
	↓ R posterior inferior temporal gyrus/fusiform gyrus

Voxelwise analysis 9

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia untreated T2 (n = 8) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	**Appear mismatched**
Is reaction time matched across the second level contrast?	**Unknown, not reported**
Behavioral data notes	Patients less accurate than controls on both tasks, but more so on the tone decision task
Type of analysis	Voxelwise
Search volume	Voxels spared in all patients
Correction for multiple comparisons	**Clusterwise correction based on arbitrary cluster extent**
Software	SPM12
Voxelwise p	.01
Cluster extent	50 voxels (size not stated)
Statistical details	—
Findings	↑ L posterior inferior temporal gyrus/fusiform gyrus
	↑ R dorsolateral prefrontal cortex
	↑ R orbitofrontal
Findings notes	—

Voxelwise analysis 10

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia untreated T3 (n = 8) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Appear mismatched
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Patients less accurate than controls on both tasks, but not significantly for the semantic decision task, and more so on the tone decision task
Type of analysis	Voxelwise
Search volume	Voxels spared in all patients
Correction for multiple comparisons	Clusterwise correction based on arbitrary cluster extent
Software	SPM12
Voxelwise p	.01
Cluster extent	50 voxels (size not stated)
Statistical details	—
Findings	↑ L dorsolateral prefrontal cortex
	↑ R dorsolateral prefrontal cortex
	↑ R SMA/medial prefrontal
	↑ R orbitofrontal
	↑ R superior parietal
	↑ R cerebellum
	↓ L orbitofrontal
	↓ L mid temporal
	↓ L anterior temporal
	↓ L posterior cingulate
	↓ L cerebellum
	↓ L hippocampus/MTL
	↓ R angular gyrus
	↓ R anterior temporal

Voxelwise analysis 11

First level contrast	Verb generation vs finger tapping
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia CIAT T1 (n = 11) vs control
Covariate	—
Behavioral data notes

Type of analysis: Voxelwise
Search volume: Voxels spared in all patients
Correction for multiple comparisons: *Clusterwise correction based on arbitrary cluster extent*
Software: SPM12
Voxelwise p: .01
Cluster extent: 50 voxels (size not stated)
Statistical details: —

Findings

- ↑ L dorsal precentral
- ↑ L superior parietal
- ↑ R cerebellum
- ↑ L dorsolateral prefrontal cortex
- ↓ L SMA/medial prefrontal
- ↓ R posterior inferior temporal gyrus/fusiform gyrus

Voxelwise analysis 12

First level contrast: Verb generation vs finger tapping
Analysis class: Cross-sectional aphasia vs control
Group(s): Aphasia CIAT T2 (n = 11) vs control
Covariate: —

Findings

- ↑ L dorsal precentral
- ↑ L anterior cingulate
- ↓ L IFG pars orbitalis
- ↓ L dorsolateral prefrontal cortex
- ↓ L SMA/medial prefrontal
- ↓ L superior parietal
- ↑ L posterior inferior temporal gyrus/fusiform gyrus
- ↓ L occipital
- ↓ R IFG pars orbitalis

Voxelwise analysis 13

First level contrast: Verb generation vs finger tapping
Analysis class: Cross-sectional aphasia vs control
Group(s): Aphasia CIAT T3 (n = 11) vs control
Covariate: —
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

- Type of analysis: Voxelwise
- Search volume: Voxels spared in all patients
- Correction for multiple comparisons: *Clusterwise correction based on arbitrary cluster extent*
- Software: SPM12
- Voxelwise p: .01
- Cluster extent: 50 voxels (size not stated)

Statistical details

Findings
↑ L somato-motor
↑ L anterior cingulate
↑ L posterior cingulate
↓ L IFG pars orbitalis
↓ L dorsolateral prefrontal cortex
↓ L superior parietal
↓ L posterior inferior temporal gyrus/fusiform gyrus
↓ R dorsolateral prefrontal cortex
↓ R mid temporal

Findings notes

- Voxelwise analysis 14

Voxelwise analysis 14

First level contrast	Verb generation vs finger tapping
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia untreated T1 (n = 8) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

- Type of analysis: Voxelwise
- Search volume: Voxels spared in all patients
- Correction for multiple comparisons: *Clusterwise correction based on arbitrary cluster extent*
- Software: SPM12
- Voxelwise p: .01
- Cluster extent: 50 voxels (size not stated)

Statistical details

Findings
↑ L superior parietal
↑ L occipital
↑ L cerebellum
↑ R dorsolateral prefrontal cortex
↑ R cerebellum
↓ L IFG pars orbitalis
↓ L SMA/medial prefrontal
↓ L posterior inferior temporal gyrus/fusiform gyrus
↓ L cerebellum
↓ R superior parietal

Findings notes

- Voxelwise analysis 15

Voxelwise analysis 15
First level contrast	Verb generation vs finger tapping
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia untreated T2 (n = 8) vs control
Covariate	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	
Type of analysis	Voxelwise
Search volume	Voxel spared in all patients
Correction for multiple comparisons	Clusterwise correction based on arbitrary cluster extent
Software	SPM12
Voxelwise p	.01
Cluster extent	50 voxels (size not stated)
Statistical details	
Findings	
↑ L dorsolateral prefrontal cortex	
↑ R SMA/medial prefrontal	
↑ R angular gyrus	
↑ R posterior STG	
↑ R posterior cingulate	
↑ R cerebellum	
↓ L dorsolateral prefrontal cortex	
↓ L SMA/medial prefrontal	
↓ L superior parietal	
↓ L anterior temporal	
↓ L posterior inferior temporal gyrus/fusiform gyrus	
↓ L occipital	
↓ R superior parietal	
↓ R occipital	
↓ R cerebellum	

Findings notes

Voxelwise analysis 16

First level contrast	Verb generation vs finger tapping
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia untreated T3 (n = 8) vs control
Covariate	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	
Type of analysis	Voxelwise
Search volume	Voxel spared in all patients
Correction for multiple comparisons	Clusterwise correction based on arbitrary cluster extent
Software	SPM12
Voxelwise p	.01
Cluster extent	50 voxels (size not stated)
Statistical details	
Findings	
↑ L superior parietal	
↑ L anterior temporal	
↑ L occipital	
Findings notes	

—	

Voxelwise analysis 17

First level contrast	Semantic decision vs tone decision
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T2 vs T1
Covariate	Δ BNT
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Voxels spared in all patients
Correction for multiple comparisons	Clusterwise correction based on arbitrary cluster extent
Software	SPM12
Voxelwise p	.01
Cluster extent	50 voxels (size not stated)
Statistical details	—
Findings	↑ R insula
	↑ R anterior cingulate
	↑ R cerebellum
	↑ R brainstem
	↑ R basal ganglia
Findings notes	—

Voxelwise analysis 18

First level contrast	Semantic decision vs tone decision
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T3 vs T2
Covariate	Δ BNT
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (no treatment effect)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Voxels spared in all patients
Correction for multiple comparisons	Clusterwise correction based on arbitrary cluster extent
Software	SPM12
Voxelwise analysis 19

Voxelwise p	.01
Cluster extent	50 voxels (size not stated)
Statistical details	—
Findings	↑ R somato-motor
↑ R posterior MTG	
↑ R thalamus	
Findings notes	—

Voxelwise analysis 20

Voxelwise p	.01
Cluster extent	50 voxels (size not stated)
Statistical details	—
Findings	↑ R orbitofrontal
↑ R mid temporal	
Findings notes	—

ROI analysis 1

Voxelwise p	.01
Cluster extent	50 voxels (size not stated)
Statistical details	—
Findings	↑ L dorsolateral prefrontal cortex
↑ R dorsolateral prefrontal cortex	
↑ R orbitofrontal	
Findings notes	—
First level contrast	Semantic decision vs tone decision
----------------------	-----------------------------------
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia ANOVA including T1, T2, T3
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Appear similar
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Laterality indices
How many ROIs are there?	5
What are the ROI(s)?	(1) frontal LI; (2) temporo-parietal LI; (3) cerebellar LI; (4) fronto-parietal LI; (5) Broca’s LI
How are the ROI(s) defined?	
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 2

First level contrast	Semantic decision vs tone decision
Analysis class	Longitudinal between two groups with aphasia
Group(s)	(Aphasia CIAT (n = 11) T1 ≠ T2 ≠ T3) vs (untreated (n = 8) T1 ≠ T2 ≠ T3)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (no treatment effect)
Is accuracy matched across the second level contrast?	Appear similar
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Laterality indices
How many ROIs are there?	5
What are the ROI(s)?	(1) frontal LI; (2) temporo-parietal LI; (3) cerebellar LI; (4) fronto-parietal LI; (5) Broca’s LI
How are the ROI(s) defined?	
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 3

First level contrast	Verb generation vs finger tapping
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia ANOVA including T1, T2, T3
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—

496
Type of analysis	Regions of interest (ROI)
ROI type	Laterality indices
How many ROIs are there?	5
What are the ROI(s)?	(1) frontal LI; (2) temporo-parietal LI; (3) cerebellar LI; (4) fronto-parietal LI; (5) Broca's LI
How are the ROI(s) defined?	
Correction for multiple comparisons	No correction
Statistical details	None
Findings	None
Findings notes	

ROI analysis 4

First level contrast	Verb generation vs finger tapping
Analysis class	Longitudinal between two groups with aphasia
Group(s)	(Aphasia CIAT (n = 11) T1 ≠ T2 ≠ T3) vs (untreated (n = 8) T1 ≠ T2 ≠ T3)
Covariate	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (no treatment effect)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	
Type of analysis	Regions of interest (ROI)
ROI type	Laterality indices
How many ROIs are there?	5
What are the ROI(s)?	(1) frontal LI; (2) temporo-parietal LI; (3) cerebellar LI; (4) fronto-parietal LI; (5) Broca's LI
How are the ROI(s) defined?	
Correction for multiple comparisons	No correction
Statistical details	None
Findings	None
Findings notes	

Notes

Excluded analyses: (1) pretreatment comparisons between CIAT and untreated groups; (2) Figure 4 caption states that LI values for control group are different to the aphasia groups, but there is no statistical test in support of this.

Qiu et al. (2017)

Reference

Authors	Qiu WH, Wu HX, Yang QL, Kang Z, Chen ZC, Li K, Qiu GR, Xie CQ, Wan GF, Chen SQ
Title	Evidence of cortical reorganization of language networks after stroke with subacute Broca's aphasia: a blood oxygenation level dependent-functional magnetic resonance imaging study
Reference	Neural Regen Res 2017; 128: 109-117
PMID	28250756
DOI	10.4103/1673-5374.198996

Participants

Language	Mandarin
Inclusion criteria	Broca's aphasia
Number of individuals with aphasia	10
Number of control participants	10
Were any of the participants included in any previous studies? No
Is age reported for patients and controls, and matched? Yes (mean 55.9 ± 13.4 years, range 40-70 years)
Is sex reported for patients and controls, and matched? Yes (males: 7; females: 3)
Is handedness reported for patients and controls, and matched? Yes (right: 10; left: 0)
Is time post stroke onset reported and appropriate to the study design? Yes (range 1-3 months)
To what extent is the nature of aphasia characterized? Severity and type
Language evaluation WAB
Aphasia severity Moderate-severe
Aphasia type All Broca's
First stroke only? Yes
Stroke type Mixed etiologies
To what extent is the lesion distribution characterized? Not at all
Lesion extent Not stated
Lesion location L
Participants notes —

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired?	—
If longitudinal, was there any intervention between the time points?	—
Is the scanner described?	Yes (GE Signa 1.5 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No* (moderate limitation) (only three pictures were named per 30-second block)
Design type	Block
Total images acquired	186
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	No (not described)
Is first level model fitting adequately described and appropriate?	No (no description of model fitting)
Is intersubject normalization adequately described and appropriate?	No (not described)
Imaging notes	—

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
picture naming	Word (overt)	9	Unknown	Unknown
rest	None	9	N/A	N/A

Conditions notes —

Contrasts

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
Condition notes	—			

Contrasts

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
Condition notes	—			
Contrast 1: picture naming vs rest

Language condition	Picture naming
Control condition	Rest
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	—
Does the contrast selectively activate plausible relevant language regions in the control group?	No
Are activations lateralized in the control data?	Somewhat

Contrast notes
- Somewhat L-lateralized frontal and anterior temporal language activations, but the majority of activation is in unexpected regions

Analyses

| Are the analyses clearly described? | No* (moderate limitation) (see specific limitation(s) below) |

Voxelwise analysis 1

First level contrast	Picture naming vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on arbitrary cluster extent
Software	SPM8
Voxelwise p	.05
Cluster extent	10 voxels (size not stated)
Statistical details	In the footnote to Table 2, there is a reference to FWE correction with Monte Carlo simulation, but this is not described in the text, and the values in the table appear to be inconsistent with that

Findings
- ↑ L intraparietal sulcus
- ↑ L posterior inferior temporal gyrus/fusiform gyrus
- ↑ L occipital
- ↑ L thalamus
- ↑ R inferior parietal lobule
- ↑ R intraparietal sulcus
- ↑ R precuneus
- ↑ R anterior temporal
- ↓ L IFG
- ↓ L orbitofrontal
Findings notes

Findings are based on coordinates, which in many cases do not match the labels assigned in the paper.

Notes

Excluded analyses

Comparisons between activation volumes in the left and right hemispheres in the two groups, because not described in sufficient detail.

Skipper-Kallal et al. (2017a)

Reference

Authors	Skipper-Kallal LM, Lacey EH, Xing S, Turkeltaub PE
Title	Functional activation independently contributes to naming ability and relates to lesion site in post-stroke aphasia
Reference	Hum Brain Mapp 2017a; 38: 2051-2066
PMID	28083891
DOI	10.1002/hbm.23504

Participants

Language	US English
Inclusion criteria	Able to name 20% of pictures correctly in the scanner
Number of individuals with aphasia	32 (plus 14 excluded: < 20% accuracy in scanner)
Number of control participants	25
Were any of the participants included in any previous studies?	Yes (29 of the participants overlap with the other Skipper-Kallal et al. (2017) paper)
Is age reported for patients and controls, and matched?	Yes (mean 58.8 ± 8.6 years, range 45.7-78.2 years)
Is sex reported for patients and controls, and matched?	Yes (males: 19; females: 12; stated to be not matched, but difference not significant)
Is handedness reported for patients and controls, and matched?	Yes (right: 26; left: 3; other: 2)
Is time post stroke onset reported and appropriate to the study design?	Yes (mean 40.9 ± 36.1 months, 4.9-151.0 months)
To what extent is the nature of aphasia characterized?	Comprehensive battery
Language evaluation	WAB, PNT
Aphasia severity	AQ mean 77.7 ± 21.0, range 22.8-99.2
Aphasia type	21 anomic, 7 Broca’s, 3 conduction, 1 transcortical sensory
First stroke only?	Not stated
Stroke type	Not stated
To what extent is the lesion distribution characterized?	Lesion overlay
Lesion extent	Mean 27.5 ± 22.9 cc
Lesion location	L MCA
Participants notes	—

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired?	—
If longitudinal, was there any intervention between	—
the time points?
Is the scanner described? Yes (Siemens Trio 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate? No* (moderate limitation) (total images acquired not stated; separation of adjacent events (covert and overt naming) will be limited because of the small amount of jitter in their timing (only 1500 ms))
Design type Event-related
Total images acquired ~450 but not stated
Are the imaging acquisition parameters, including coverage, adequately described and appropriate? Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate? Yes
Is first level model fitting adequately described and appropriate? No* (moderate limitation) (entire phases where picture was displayed modeled as covert and overt naming; difficult to separate phases due to timing)
Is intersubject normalization adequately described and appropriate? Yes
Imaging notes —

Conditions
Are the conditions clearly described? Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
picture naming (silently name)	Word (covert)	32	Yes	Yes
picture naming (produce the name)	Word (overt)	32	Yes	Yes
rest	None	implicit baseline	N/A	N/A

Conditions notes Covert and overt naming were modeled as two phases of each trial (there was a cue to produce the name after 7500-9000 ms); 5 participants who were more impaired were given easier pictures to name; patients who named less than 20% of items correctly were excluded

Contrasts
Are the contrasts clearly described? No (see specific limitation(s) below)

Contrast 1: picture naming (silently name, correct trials) vs rest
Language condition Picture naming (silently name, correct trials)
Control condition Rest
Are the conditions matched for visual demands? No
Are the conditions matched for auditory demands? Yes
Are the conditions matched for motor demands? Yes
Are the conditions matched for cognitive/executive demands? No
Is accuracy matched between the language and control tasks for all relevant groups? N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups? N/A, tasks not comparable
Behavioral data notes —
Are control data reported in this paper or another that is referenced? Yes
Does the contrast selectively activate plausible relevant language regions in the control group? No
Are activations lateralized in the control data? No
Control activation notes Bilateral frontal and occipito-temporal, but not posterior temporal
Contrast notes —

Contrast 2: picture naming (produce the name, correct trials) vs rest
Language condition Picture naming (produce the name, correct trials)
Control condition	Rest
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable

Behavioral data notes

- Are control data reported in this paper or another that is referenced? Yes
- Does the contrast selectively activate plausible relevant language regions in the control group? No
- Are activations lateralized in the control data? No

Control activation notes

- Bilateral frontal and occipito-temporal, but not posterior temporal; speech motor activation not readily apparent

Contrast notes

- It is unclear whether there were no-response trials and whether they were modeled as incorrect

Analyses

- Are the analyses clearly described? Yes

Voxelwise analysis 1

First level contrast	Picture naming (silently name, correct trials) vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes

Covert phase but accuracy derived from overt phase

Type of analysis	Voxelwise
Search volume	Whole brain gray matter
Correction for multiple comparisons	Clusterwise correction with with GRFT and lenient voxelwise p
Software	FSL 5.0.6
Voxelwise p	~.01 (z > 2.3)
Cluster extent	Based on GRFT
Statistical details	Threshold of z > 3.1 mentioned in results, but presume 2.3 based on methods and figure

Findings

- ↑ R precuneus
- ↓ L occipital

Findings notes

Labels based largely on text with some adjustments based on figures; overall pattern of decreased L activity and increased R activity is quite convincing

Voxelwise analysis 2

First level contrast	Picture naming (produce the name, correct trials) vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

-

Type of analysis

- Voxelwise

Search volume	Whole brain gray matter
Correction for multiple comparisons	Clusterwise correction with with GRFT and lenient voxelwise p
Software	FSL 5.0.6
Voxelwise p	~.01 (z > 2.3)
Cluster extent	Based on GRFT
Statistical details	Threshold of z > 3.1 mentioned in results, but presume 2.3 based on methods and figure

Findings

- ↑ L SMA/medial prefrontal
- ↑ L orbitofrontal
- ↑ L precuneus
- ↑ R insula
- ↑ R ventral precentral/inferior frontal junction
- ↑ R SMA/medial prefrontal
- ↑ R orbitofrontal
- ↑ R somato-motor
- ↑ R supramarginal gyrus
- ↑ R posterior STS
- ↓ L IFG
- ↓ L insula
- ↓ L ventral precentral/inferior frontal junction
- ↓ L intraparietal sulcus
- ↓ L anterior temporal
- ↓ L hippocampus/MTL
- ↓ R intraparietal sulcus

Findings notes

Labels based largely on text with some adjustments based on figures; overall pattern of decreased L activity and increased R activity is quite convincing

Voxelwise analysis 3

First level contrast	Picture naming (silently name, correct trials) vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	PNT
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes

Behavioral data notes

-

Type of analysis

- Voxelwise

Search volume	Whole brain gray matter
Correction for multiple comparisons	Clusterwise correction with with GRFT and lenient voxelwise p
Software	FSL 5.0.6
Voxelwise p	~.01 (z > 2.3)
Cluster extent	Based on GRFT
Statistical details	Threshold of z > 3.1 mentioned in results, but presume 2.3 based on methods and figure

Findings

- ↑ L SMA/medial prefrontal
- ↑ L orbitofrontal
- ↑ L precuneus
- ↑ R insula
- ↑ R ventral precentral/inferior frontal junction
- ↑ R SMA/medial prefrontal
- ↑ R orbitofrontal
- ↑ R somato-motor
- ↑ R supramarginal gyrus
- ↑ R posterior STS
- ↓ L IFG
- ↓ L insula
- ↓ L ventral precentral/inferior frontal junction
- ↓ L intraparietal sulcus
- ↓ L anterior temporal
- ↓ L hippocampus/MTL
- ↓ R intraparietal sulcus

Findings notes

Labels based largely on text with some adjustments based on figures; overall pattern of decreased L activity and increased R activity is quite convincing
group(s), time point(s), and measures involved?	Yes, correct trials only
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Covert phase but accuracy derived from overt phase
Type of analysis	Voxelwise
Search volume	Whole brain gray matter
Correction for multiple comparisons	Clusterwise correction with GRFT and lenient voxelwise p
Software	FSL 5.0.6
Voxelwise p	~.01 (z > 2.3)
Cluster extent	Based on GRFT
Statistical details	—
Findings	↑ L anterior temporal
Findings notes	L anterior temporal correlation remained significant after accounting for lesion load and other factors

Voxelwise analysis 4

First level contrast	Picture naming (produce the name, correct trials) vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	PNT
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain gray matter
Correction for multiple comparisons	Clusterwise correction with GRFT and lenient voxelwise p
Software	FSL 5.0.6
Voxelwise p	~.01 (z > 2.3)
Cluster extent	Based on GRFT
Statistical details	—
Findings	↑ L posterior STG
Findings notes	L IFG pars orbitalis, R pSTS, and R somato-motor correlations remained significant after accounting for lesion load and other factors; note that the pars orbitalis region is described as frontal pole in the paper but the coordinates and image support pars orbitalis

Voxelwise analysis 5

First level contrast	Picture naming (both phases, correct trials) vs picture naming (both phases, incorrect trials)
Analysis class	Cross-sectional performance-defined conditions
Group(s)	Aphasia with naming < 80% (n = 24)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

Type of analysis

Voxelwise

Search volume

Whole brain gray matter

Correction for multiple comparisons

Clusterwise correction with with GRFT and lenient voxelwise p

Software

FSL 5.0.6

Voxelwise p

~.01 (z > 2.3)

Cluster extent

Based on GRFT

Statistical details

Findings

None

Findings notes

ROI analysis 1

First level contrast

Picture naming (produce the name, correct trials) vs rest

Analysis class

Cross-sectional correlation with language or other measure

Group(s)

Aphasia

Covariate

PNT

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?

Yes

Is accuracy matched across the second level contrast?

Yes, correct trials only

Is reaction time matched across the second level contrast?

Unknown, not reported

Behavioral data notes

Type of analysis

Regions of interest (ROI)

ROI type

Functional

How many ROIs are there?

11

What are the ROI(s)?

(1) right IPS; (2) left IPS; (3) left PTr; (4) left dPOp; (5) right superior motor cortex; (6) right ventral motor cortex; (7) right supramarginal sulcus; (8) left medial SMA; (9) right marginal sulcus; (10) left dorsal motor cortex; (11) right STS

How are the ROI(s) defined?

Regions that were activated for control > aphasia (ROIs 1-4) or aphasia > control (ROIs 5-11)

Correction for multiple comparisons

Familywise error (FWE)

Statistical details

Findings

↑ R ventral precentral/inferior frontal junction

↑ R posterior STS

↓ L IFG pars opercularis

Findings notes

The L IFG pars opercularis and the R posterior STS also contributed to predicting PNT scores even when lesion load on critical areas for picture naming, and several other variables, were included in multiple regression models

ROI analysis 2

First level contrast

Picture naming (silently name, correct trials) vs rest

Analysis class

Cross-sectional aphasia vs control

Group(s)

Aphasia vs control

Covariate

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?

Yes

Is accuracy matched across the second level contrast?

Yes, correct trials only

Is reaction time matched across the second level contrast?

Unknown, not reported
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	L anterior temporal
How are the ROI(s) defined?	Activity for covert naming correlated with naming ability in patients, after controlling for lesion and demographic factors
Correction for multiple comparisons	One only
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 3

First level contrast	Picture naming (produce the name, correct trials) vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported

Complex analysis 1

First level contrast	Picture naming (produce the name, correct trials) vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Lesion patterns identified with SVR-LSM
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported

Findings notes

Findings	Other
Findings notes	Damage to the L IFG pars opercularis was associated with more activity in the R pSTS. Damage to the L pSTS was associated with less activity in the R pSTS.
Complex analysis 2

First level contrast	Picture naming (produce the name, correct trials) vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia without IFG POp damage (n = 26)
Covariate	Lesion patterns identified with SVR-LSM
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Complex
Statistical details	SVR-LSM was used to identify regions of damage associated with activation of L IFG pars opercularis ROI (defined based on SPM analysis 2). The results were thresholded at voxelwise p < .01 (CDT), cluster extent > 500 voxels.
Findings	Other
Findings notes	Damage to the L pSTG, L pSTS, and white matter underlying the L precuneus was associated with more activity in the L IFG pars opercularis. There were no regions associated with less activity.

Notes

| Excluded analyses | Negative correlation between functional activation in the L IFG pars opercularis and R pSTS |

Skipper-Kallal et al. (2017b)

Reference

Authors	Skipper-Kallal LM, Lacey EH, Xing S, Turkeltaub PE
Title	Right hemisphere remapping of naming functions depends on lesion size and location in poststroke aphasia
Reference	Neural Plast 2017b; 2017: 8740353
PMID	28168061
DOI	10.1155/2017/8740353

Participants

Language	US English
Inclusion criteria	10% accuracy on scanner task
Number of individuals with aphasia	39 (plus 10 excluded: < 10% accuracy in scanner)
Number of control participants	37
Were any of the participants included in any previous studies?	Yes (29 of the participants overlap with the other Skipper-Kallal et al. (2017) paper)
Is age reported for patients and controls, and matched?	Yes (mean 59.8 ± 10.0 years)
Is sex reported for patients and controls, and matched?	Yes (males: 26; females: 13)
Is handedness reported for patients and controls, and matched?	Yes (right: 33; left: 4; other: 2; missing for 2 participants)
Is time post stroke onset reported and appropriate to the study design?	Yes (mean 52.9 ± 51.4 months, range 6.3-255.7 months)
To what extent is the nature of aphasia characterized?	Comprehensive battery
Language evaluation	WAB, PNT
Aphasia severity	Not stated
Aphasia type
23 anomic, 11 Broca's, 3 conduction, 1 transcortical sensory, 1 Wernicke's

First stroke only?
Not stated

Stroke type
Not stated

To what extent is the lesion distribution characterized?
Lesion overlay

Lesion extent
Not stated

Lesion location
L MCA

Participants notes
—

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired?	—
If longitudinal, was there any intervention between the time points?	—
Is the scanner described?	Yes (Siemens Trio 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No* (moderate limitation) (total images acquired not stated; separation of adjacent events (covert and overt naming) will be limited because of the small amount of jitter in their timing (only 1500 ms))
Design type	Event-related
Total images acquired	~450 but not stated
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	No* (moderate limitation) (not stated but see Skipper-Kallal et al. (2017b))
Is intersubject normalization adequately described and appropriate?	Yes
Imaging notes	at each voxel, individuals with lesions to that voxel were excluded from analysis

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
picture naming (prepare to name)	Word (covert)	32	Yes	Yes
picture naming (produce the name)	Word (overt)	32	Yes	Yes
rest	None	implicit baseline	N/A	N/A

Conditions notes
Covert and overt naming were modeled as two phases of each trial (there was a cue to produce the name after 7500-9000 ms); 14 participants who were more impaired were given easier pictures to name; patients who named less than 10% of items correctly were excluded

Contrasts

Contrast 1: picture naming (prepare to name, correct trials) vs rest
Language condition
Control condition
Are the conditions matched for visual demands?
Are the conditions matched for auditory demands?
Are the conditions matched for motor demands?
Are the conditions matched for cognitive/executive demands?
Question
--
Is accuracy matched between the language and control tasks for all relevant groups?
Is reaction time matched between the language and control tasks for all relevant groups?
Behavioral data notes
Are control data reported in this paper or another that is referenced?
Does the contrast selectively activate plausible relevant language regions in the control group?
Are activations lateralized in the control data?
Control activation notes

Contrast 2: picture naming (produce the name, correct trials) vs rest

Language condition	Picture naming (produce the name, correct trials)
Control condition	Rest
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	—
Does the contrast selectively activate plausible relevant language regions in the control group?	No
Are activations lateralized in the control data?	No
Control activation notes	Bilateral frontal and occipito-temporal, but not posterior temporal; speech motor activation not readily apparent

Analyses

| Are the analyses clearly described? | Yes |

Voxelwise analysis 1

First level contrast	Picture naming (prepare to name, correct trials) vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Covert phase but accuracy derived from overt phase
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction with with GRFT and lenient voxelwise p
Software	FSL 5.0.6
Voxelwise p	.01
Cluster extent	Based on GRFT
Statistical details

Findings
↑ L cerebellum
↑ L thalamus
↑ L basal ganglia
↑ R IFG pars opercularis
↑ R insula
↑ R cerebellum
↑ R basal ganglia
↓ L dorsolateral prefrontal cortex
↓ L orbitofrontal
↓ L intraparietal sulcus
↓ L anterior cingulate
↓ R dorsolateral prefrontal cortex

Findings notes
Based on Table 2

Voxelwise analysis 2

First level contrast	Picture naming (produce the name, correct trials) vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes	
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction with lenient voxelwise p
Software	FSL 5.0.6
Voxelwise p	.01
Cluster extent	Based on GRFT
Statistical details	
Findings	
↑ L somato-motor	
↑ L intraparietal sulcus	
↑ L anterior cingulate	
↑ R insula	
↑ R dorsal precentral	
↑ R somato-motor	
↑ R supramarginal gyrus	
↑ R posterior MTG	
↑ R Heschl's gyrus	
↓ L ventral precentral/inferior frontal junction	
↓ L somato-motor	
↓ L posterior STG/STS/MTG	
↓ L mid temporal	
↓ L anterior temporal	
↓ L cerebellum	
↓ L thalamus	
↓ L hippocampus/MTL	

Findings notes
Based on Table 3

Voxelwise analysis 3

First level contrast	Picture naming (prepare to name, correct trials) vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia
Covariate	Lesion volume
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
---	---
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Covert phase but accuracy derived from overt phase
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction with with GRFT and lenient voxelwise p
Software	FSL 5.0.6
Voxelwise p	.01
Cluster extent	Based on GRFT
Statistical details	—
Findings	↑ L ventral precentral/inferior frontal junction
↑ L intraparietal sulcus	
↑ L superior parietal	
↑ L occipital	
↑ L basal ganglia	
↑ R IFG	
↑ R insula	
↑ R ventral precentral/inferior frontal junction	
↑ R SMA/medial prefrontal	
↑ R somato-motor	
↑ R intraparietal sulcus	
↑ R occipital	
↑ R cerebellum	
↑ R brainstem	
↑ R basal ganglia	
Findings notes | Based on Table 4, except for R frontal activations which are missing from the table, and were added based on the figure

Voxelwise analysis 4

First level contrast | Picture naming (produce the name, correct trials) vs rest
Analysis class | Cross-sectional correlation with language or other measure
Group(s) | Aphasia
Covariate | Lesion volume
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? | Yes
Is accuracy matched across the second level contrast? | Yes, correct trials only
Is reaction time matched across the second level contrast? | Unknown, not reported
Behavioral data notes | —
Type of analysis | Voxelwise
Search volume | Whole brain
Correction for multiple comparisons | Clusterwise correction with with GRFT and lenient voxelwise p
Software | FSL 5.0.6
Voxelwise p | .01
Cluster extent | Based on GRFT
Statistical details | —
Findings | ↑ L somato-motor
| ↑ L precuneus
| ↑ L occipital
| ↑ L cerebellum
| ↑ R IFG pars triangularis
| ↑ R insula
| ↑ R ventral precentral/inferior frontal junction
Findings notes	Based on Table 4, except for bilateral occipital activations which are missing from the table, and were added based on the figure

Voxelwise analysis 5

First level contrast	Picture naming (prepare to name, correct trials) vs rest
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia with IPS damage (n not stated) vs without IPS damage (n not stated)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Covert phase but accuracy derived from overt phase
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction with with GRFT and lenient voxelwise p
Software	FSL 5.0.6
Voxelwise p	.01
Cluster extent	Based on GRFT
Statistical details	Lesion volume covariate
Findings	None
Findings notes	—

Voxelwise analysis 6

First level contrast	Picture naming (prepare to name, correct trials) vs rest
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia with insula damage (n = 18) vs without insula damage (n = 21)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Covert phase but accuracy derived from overt phase
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction with with GRFT and lenient voxelwise p
Software	FSL 5.0.6
Voxelwise p	.01
Cluster extent	Based on GRFT
Statistical details	Lesion volume covariate
Findings	↓ R IFG pars triangularis
Findings notes	↓ R dorsolateral prefrontal cortex

Voxelwise analysis 7
First level contrast	Picture naming (prepare to name, correct trials) vs rest
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia with IFG POp damage (n = 16) vs without IFG POp damage (n = 23)
Covariate	-
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Covert phase but accuracy derived from overt phase
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clustervise correction with with GRFT and lenient voxelwise p
Software	FSL 5.0.6
Voxelwise p	.01
Cluster extent	Based on GRFT
Statistical details	Lesion volume covariate
Findings	↓ R IFG pars triangularis
	↓ R dorsolateral prefrontal cortex
Findings notes	-

Voxelwise analysis 8

First level contrast	Picture naming (produce the name, correct trials) vs rest
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia with motor cortex damage (n = 24) vs without motor cortex damage (n = 15)
Covariate	-
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	-
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clustervise correction with with GRFT and lenient voxelwise p
Software	FSL 5.0.6
Voxelwise p	.01
Cluster extent	Based on GRFT
Statistical details	Lesion volume covariate
Findings	None
Findings notes	-

Voxelwise analysis 9

First level contrast	Picture naming (produce the name, correct trials) vs rest
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia with STS damage (n not stated) vs without STS damage (n not stated)
Covariate	-
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes

Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction with GRFT and lenient voxelwise p
Software	FSL 5.0.6
Voxelwise p	.01
Cluster extent	Based on GRFT
Statistical details	Lesion volume covariate
Findings	None
Findings notes	—

ROI analysis 1

First level contrast	Picture naming (prepare to name, correct trials) vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia with IFG POp damage (n = 16)
Covariate	PNT
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Covert phase but accuracy derived from overt phase
Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	R DLPFC
How are the ROI(s) defined?	Peak location for decreased activation for patients with left insula and left POp lesions compared to patients without said damage
Correction for multiple comparisons	One only
Statistical details	Lesion volume covariate
Findings	None
Findings notes	—

ROI analysis 2

First level contrast	Picture naming (prepare to name, correct trials) vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia without IFG POp damage (n = 23)
Covariate	PNT
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Covert phase but accuracy derived from overt phase
Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	R DLPFC
How are the ROI(s) defined?	Peak location for decreased activation for patients with left insula and left POp lesions compared to patients without said damage
Correction for multiple comparisons	One only
Statistical details	Lesion volume covariate
Findings	None
Findings notes

ROI analysis 3

First level contrast	Picture naming (prepare to name, correct trials) vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia with insula damage (n = 18)
Covariate	PNT
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

Covert phase but accuracy derived from overt phase

Type of analysis

Region of interest (ROI)

ROI type

Functional

How many ROIs are there?

1

What are the ROI(s)?

R DLPFC

How are the ROI(s) defined?

Peak location for decreased activation for patients with left insula and left POp lesions compared to patients without said damage

Correction for multiple comparisons

One only

Statistical details

Lesion volume covariate

Findings

None

Findings notes

ROI analysis 4

First level contrast	Picture naming (prepare to name, correct trials) vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia without insula damage (n = 21)
Covariate	PNT
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

Covert phase but accuracy derived from overt phase

Type of analysis

Region of interest (ROI)

ROI type

Functional

How many ROIs are there?

1

What are the ROI(s)?

R DLPFC

How are the ROI(s) defined?

Peak location for decreased activation for patients with left insula and left POp lesions compared to patients without said damage

Correction for multiple comparisons

One only

Statistical details

Lesion volume covariate

Findings

None

Findings notes

ROI analysis 5

First level contrast	Picture naming (prepare to name, correct trials) vs rest
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia with IPS damage (n not stated) vs without IPS damage (n not stated)
Covariate	--
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes

515
Question	Answer
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Covert phase but accuracy derived from overt phase
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	5
What are the ROI(s)?	(1) L IPS; (2) L insula; (3) L IFG pars opercularis; (4) R IPS; (5) R insula
How are the ROI(s) defined?	5 mm spheres around control peaks
Correction for multiple comparisons	No correction
Statistical details	Lesion volume covariate
Findings	None
Findings notes	—

ROI analysis 6

First level contrast	Picture naming (prepare to name, correct trials) vs rest
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia with insula damage (n = 18) vs without insula damage (n = 21)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Covert phase but accuracy derived from overt phase
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	5
What are the ROI(s)?	(1) L IPS; (2) L insula; (3) L IFG pars opercularis; (4) R IPS; (5) R insula
How are the ROI(s) defined?	5 mm spheres around control peaks
Correction for multiple comparisons	No correction
Statistical details	Lesion volume covariate
Findings	None
Findings notes	—

ROI analysis 7

First level contrast	Picture naming (prepare to name, correct trials) vs rest
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia with IFG POp damage (n = 16) vs without IFG POp damage (n = 23)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Covert phase but accuracy derived from overt phase
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	5
What are the ROI(s)?	(1) L IPS; (2) L insula; (3) L IFG pars opercularis; (4) R IPS; (5) R insula
How are the ROI(s) defined?	5 mm spheres around control peaks
Correction for multiple comparisons	No correction
Statistical details	Lesion volume covariate
---------------------	-------------------------
Findings	None
Findings notes	—

ROI analysis 8

First level contrast	Picture naming (produce the name, correct trials) vs rest
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia with motor cortex damage (n = 24) vs without motor cortex damage (n = 15)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	4
What are the ROI(s)?	(1) L motor; (2) L pSTS; (3) R motor; (4) R pSTS
How are the ROI(s) defined?	5 mm spheres around control peaks
Correction for multiple comparisons	No correction
Statistical details	Lesion volume covariate
Findings	↑ R somato-motor
Findings notes	—

ROI analysis 9

First level contrast	Picture naming (produce the name, correct trials) vs rest
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia with STS damage (n not stated) vs without STS damage (n not stated)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	4
What are the ROI(s)?	(1) L motor; (2) L pSTS; (3) R motor; (4) R pSTS
How are the ROI(s) defined?	5 mm spheres around control peaks
Correction for multiple comparisons	No correction
Statistical details	Lesion volume covariate
Findings	↓ R somato-motor
Findings notes	—

ROI analysis 10

First level contrast	Picture naming (produce the name, correct trials) vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia without motor cortex damage (n = 15)
Covariate	PNT
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Question	Answer
--	---
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	R motor
How are the ROI(s) defined?	5 mm sphere around control peak
Correction for multiple comparisons	One only
Statistical details	Lesion volume covariate
Findings	None
Findings notes	—

ROI analysis 11

First level contrast	Picture naming (produce the name, correct trials) vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia with motor cortex damage (n = 24)
Covariate	PNT
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, correct trials only
Is reaction time matched across the second level contrast?	Unknown, not reported

Excluded analyses

Dietz et al. (2018)

Reference

Authors
Dietz A, Vannest J, Maloney T, Altaye M, Holland S, Szaflarski JP

Title
The feasibility of improving discourse in people with aphasia through AAC: clinical and functional MRI correlates

Reference
Aphasiology 2018; 32: 693-719

PMID
N/A

DOI
10.1080/02687038.2018.1447641

Participants

Language
US English
Inclusion criteria

Number of individuals with aphasia	12 (plus 2 excluded: 1 for illness; 1 for MRI contraindication or personal conflict (inconsistent information provided))
Number of control participants	0
Were any of the participants included in any previous studies?	Yes (same data as Dietz et al. (2016), which is a methodological paper)
Is age reported for patients and controls, and matched?	Yes (AAC group: range 39-63 years; usual care group: range 47-71 years)
Is sex reported for patients and controls, and matched?	Yes (males: 5; females: 7)
Is handedness reported for patients and controls, and matched?	Yes (right: 11; left: 1)
Is time post stroke onset reported and appropriate to the study design?	Yes (AAC group: range 16-170 months; usual care group: range 38-105 months)

To what extent is the nature of aphasia characterized?

- **Severity and type**
 - **Language evaluation**
 - **WAB, Reading Comprehension Battery for Aphasia**
 - **Aphasia severity**
 - AAC group: AQ range 37.6-82.4; usual care group: AQ range 36.7-89.2
 - **Aphasia type**
 - AAC group: 2 Broca’s, 1 anomic, 1 conduction, 1 global, 1 Wernicke’s; usual care group: 2 anomic, 2 Broca’s, 1 conduction, 1 Wernicke’s

Stroke and lesion descriptions

- **First stroke only?** Yes
- **Stroke type** Ischemic only
- **To what extent is the lesion distribution characterized?** Individual lesions
- **Lesion extent** AAC group: range 7849-30570 voxels; usual care group: 1583-30110 voxels (voxel size not stated)
- **Lesion location** L MCA

Imaging

- **Modality** fMRI
- **Is the study cross-sectional or longitudinal?** Longitudinal—chronic treatment
- **If longitudinal, at what time point(s) were imaging data acquired?** T1: pre-treatment/chronic; T2: post-treatment, ~4 weeks later
- **If longitudinal, was there any intervention between the time points?** AAC group: treatment aimed at teaching participants how to utilize AAC to facilitate discourse; usual care group: traditional SLT, not focused on discourse or AAC specifically
- **Is the scanner described?** Yes (Philips Achieva 3 Tesla)
- **Is the timing of stimulus presentation and image acquisition clearly described and appropriate?** Yes
- **Total images acquired** 135
- **Are the imaging acquisition parameters, including coverage, adequately described and appropriate?** Yes (whole brain)
- **Is preprocessing and intrasubject coregistration adequately described and appropriate?** Yes
- **Is first level model fitting adequately described and appropriate?** No (no description of HRF model, which is important given sparse sampling design)
- **Is intersubject normalization adequately described and appropriate?** No (lesion impact not addressed)
- **Imaging notes** additional methodological details in Dietz et al. (2016)

Conditions

- **Are the conditions clearly described?** Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
verb generation (covert)	Multiple words (covert)	15	Unknown	Unknown
Conditions notes	Evidence for task performance from Dietz et al. (2016)			
------------------	--			

Contrasts

Contrast 1: verb generation (overt) vs noun repetition

Language condition	Verb generation (overt)
Control condition	Noun repetition
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	Unknown, not reported
Is reaction time matched between the language and control tasks for all relevant groups?	Unknown, not reported
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible relevant language regions in the control group?	Somewhat
Are activations lateralized in the control data?	Somewhat
Control activation notes	Control data in Allendorfer et al. (2012); somewhat L-lateralized frontal, temporal and parietal activations, but also extensive midline activation

Analyses

ROI analysis 1

First level contrast	Verb generation (overt) vs noun repetition
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia with AAC treatment (n = 6) T2 vs usual care T2 (n = 6)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (marginal treatment effect)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Laterality indi(ces)
How many ROIs are there?	1
What are the ROI(s)?	Frontal LI
How are the ROI(s) defined?	—
Correction for multiple comparisons	One only
Statistical details	Temporal LI calculated but not reported
Findings	None
Findings notes	—

ROI analysis 2
First level contrast	Verb generation (overt) vs noun repetition
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia (both groups) T2 vs T1
Covariate	Δ WAB AQ
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (gain in AQ not tested for significance)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Laterality indices
How many ROIs are there?	1
What are the ROI(s)?	Frontal LI
Correction for multiple comparisons	One only
Statistical details	Temporal LI calculated but not reported
Findings	↑ LI (frontal)
Findings notes	—

Notes

Excluded analyses

(1) pre-treatment comparison between treated and untreated groups; (2) several other analyses based on LI in different ROIs, because there were no inferential statistics

Hallam et al. (2018)

Reference

Authors

Hallam GP, Thompson HE, Hymers M, Millman RE, Rodd JM, Lambon Ralph MA, Smallwood J, Jefferies E

Title

Task-based and resting-state fMRI reveal compensatory network changes following damage to left inferior frontal gyrus

Reference

Cortex 2018; 99: 150-165

PMID

29223933

DOI

10.1016/j.cortex.2017.10.004

Participants

Language

UK English

Inclusion criteria

Semantic aphasia; left frontal damage (+ other regions, typically)

Number of individuals with aphasia

14

Number of control participants

16

Were any of the participants included in any previous studies?

No

Is age reported for patients and controls, and matched?

Yes (mean 61 ± 11 years, range 38-80 years)

Is sex reported for patients and controls, and matched?

Yes (males: 5; females: 9)

Is handedness reported for patients and controls, and matched?

No

Is time post stroke onset reported and appropriate to the study design?

Yes (range 11-264 months)

To what extent is the nature of aphasia characterized?

Comprehensive battery
Language evaluation

Language evaluation	Cambridge semantic battery, three additional semantic tasks, connected speech words per minute, repetition from PALPA
Aphasia severity	Not stated
Aphasia type	6 anomic, 2 Broca's, 2 global, 2 transcortical sensory, 1 mixed transcortical, 1 not stated
First stroke only?	Not stated
Stroke type	Not stated
To what extent is the lesion distribution characterized?	Lesion overlay
Lesion extent	Not stated
Lesion location	L IFG plus other MCA regions; vATL and pMTG spared

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired?	—
If longitudinal, was there any intervention between the time points?	—
Is the scanner described?	Yes (GE Signa HDx 3 Tesla)
Design type	Event-related
Total images acquired	348
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	Yes
Imaging notes	interleaved silent steady state imaging

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
listening to high ambiguity sentences	None	24	N/A	N/A
listening to low ambiguity sentences	None	24	N/A	N/A
listening to spectrally rotated speech	None	24	N/A	N/A
pressing a button to a visual cue	Button press	9	Unknown	Unknown
rest	None	12	N/A	N/A

Conditions notes

All but one patient had good single word comprehension, which was argued to support sentence comprehension

Contrasts

Contrast 1: listening to high or low ambiguity sentences vs listening to spectrally rotated speech
Language condition
Control condition
Are the conditions matched for visual demands?
Are the conditions matched for auditory demands?
Question
--
Are the conditions matched for motor demands?
Are the conditions matched for cognitive/executive demands?
Is accuracy matched between the language and control tasks for all relevant groups?
Is reaction time matched between the language and control tasks for all relevant groups?
Behavioral data notes
Are control data reported in this paper or another that is referenced?
Does the contrast selectively activate plausible relevant language regions in the control group?
Are activations lateralized in the control data?
Control activation notes
Contrast notes

Contrast 2: listening to high ambiguity sentences vs listening to low ambiguity sentences

Question	Answer
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	Yes
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, no behavioral measure
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, no timeable task
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	No
Does the contrast selectively activate plausible relevant language regions in the control group?	Unknown
Are activations lateralized in the control data?	Unknown
Control activation notes	—
Contrast notes	—

Analyses

Question	Answer
Are the analyses clearly described?	Yes

ROI analysis 1

Question	Answer
First level contrast	Listening to high or low ambiguity sentences vs listening to spectrally rotated speech
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	2
What are the ROI(s)?	(1) L vATL; (2) L pMTG
How are the ROI(s) defined?	Functional coordinates in literature
Correction for multiple comparisons	No correction
Statistical details	ANOVA revealed main effect of group (patient vs control), confirmed in follow-up tests for each ROI
Findings	↑ L posterior MTG
↑ L anterior temporal	
Findings notes	—

ROI analysis 2

First level contrast	Listening to high ambiguity sentences vs listening to low ambiguity sentences
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	2
What are the ROI(s)?	(1) L vATL; (2) L pMTG
How are the ROI(s) defined?	Functional coordinates in literature
Correction for multiple comparisons	No correction
Statistical details	No interaction of group by condition
Findings	—
Findings notes	—

Complex analysis 1

First level contrast	Listening to high ambiguity sentences vs listening to low ambiguity sentences
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia (subset with resting state data, n = 10) vs control (subset with resting state data, n = 10)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Complex
Statistical details	A whole brain analysis was carried out to identify regions where the groups differed in the extent to which the strength of functional connectivity at rest from L pMTG was associated with the difference in signal between the high ambiguity and low ambiguity conditions in the same ROI. Thresholding is not described and cluster extent is not reported.
Findings	Other
Findings notes	There was a functional activation by group interaction in the L aSTG. For controls, there was a positive association between L pMTG activity and functional connectivity to aSTG, while for the patients, there was a negative association.

Complex analysis 2

| First level contrast | Listening to high ambiguity sentences vs listening to low ambiguity sentences |
| Analysis class | Cross-sectional aphasia vs control |
Group(s)	Aphasia (subset with resting state data, n = 10) vs control (subset with resting state data, n = 10)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Complex
Statistical details	A whole brain analysis was carried out to identify regions where the groups differed in the extent to which the strength of functional connectivity at rest from L pMTG was associated with the difference in signal between the high ambiguity and low ambiguity conditions in the same ROI. Thresholding is not described.
Findings	None
Findings notes	No interaction is reported; both groups showed a correlation between L vATL activity and functional connectivity to a ventral IFG region

Notes

Excluded analyses

Analyses involving resting state data, except for those that also involved task-based data

Nenert et al. (2018)

Reference

Authors

Nenert R, Allendorfer JB, Martin AM, Banks C, Vannest J, Holland SK, Hart KW, Lindsell CJ, Szaarski JP

Title

Longitudinal fMRI study of language recovery after a left hemispheric ischemic stroke

Reference

Restor Neurol Neurosci 2018; 36: 359-385

PMID

29782329

DOI

10.3233/rnn-170767

Participants

Language	US English
Inclusion criteria	Aphasia at acute screening (not necessarily at first study time point)
Number of individuals with aphasia	17 (plus 1 excluded: significant signal artifacts)
Number of control participants	85
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (mean 46 ± 16 years)
Is sex reported for patients and controls, and matched?	Yes (males: 9; females: 8)
Is handedness reported for patients and controls, and matched?	No (right: 17; left: 0; all patients stated to be right handed, but "ambidextrous patients" mentioned on p. 364)
Is time post stroke onset reported and appropriate to the study design?	Yes (T1: ~2 weeks; T2: ~6 weeks; T3: ~12 weeks; T4: ~26 weeks; T5: ~52 weeks)
To what extent is the nature of aphasia characterized?	Not at all
Language evaluation	PPVT, BNT, phonemic fluency, semantic fluency, complex ideation subtest of BDAE
Aphasia severity	Not stated for study timepoints, but on admission, aphasia severity was assessed with the TT: 2 no aphasia per cutoff but clinical impression of aphasia, 5 mild, 6 moderate, 4 severe
Aphasia type	Not stated
First stroke only?	No
Stroke type	Ischemic only
---	---
To what extent is the lesion distribution characterized?	Lesion overlay
Lesion extent	Not stated
Lesion location	L MCA; mostly posterior per Supplementary Figure 2
Participants notes	Presence and severity of aphasia assessed on hospital admission, not at first study time point, so it is not clear that all participants actually had aphasia at first study time point

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Longitudinal—recovery
If longitudinal, at what time point(s) were imaging data acquired?	T1: ~2 weeks; T2: ~6 weeks; T3: ~12 weeks; T4: ~26 weeks; T5: ~52 weeks
If longitudinal, was there any intervention between the time points?	Not stated
Is the scanner described?	No (Philips 3 Tesla or Siemens 3 Tesla; models not stated)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	Block
Total images acquired	600
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	No (lesion impact not addressed)
Imaging notes	Scanner identity appropriately included as covariate

Conditions

Are the conditions clearly described?	Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
semantic decision	Button press	5	No	No
tone decision	Button press	5	Yes	Unknown
verb generation	Multiple words (covert)	5	Unknown	Unknown
finger tapping	Other	5	Unknown	Unknown

| Conditions notes | Assume semantic decision is out of 25, so chance is 12.5 and 95% CI below chance at T2; post-scan recognition test for verb generation not considered to quantify task performance |

Contrasts

Are the contrasts clearly described?	Yes

Contrast 1: semantic decision vs tone decision

Language condition	Semantic decision
Control condition	Tone decision
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	Yes
Is accuracy matched between the language and control tasks for all relevant groups?	Appear mismatched
Is reaction time matched between the language	Unknown, not reported
and control tasks for all relevant groups?

| Behavioral data notes | — |
|———|——|

Are control data reported in this paper or another that is referenced? Yes

Does the contrast selectively activate plausible relevant language regions in the control group? Yes

Are activations lateralized in the control data? Yes

Control activation notes L lateral and medial frontal and AG, strongly lateralized

Contrast notes —

Contrast 2: verb generation vs finger tapping

Language condition	Verb generation
———	——
Control condition	Finger tapping

Are the conditions matched for visual demands? Yes

Are the conditions matched for auditory demands? Yes

Are the conditions matched for motor demands? No

Are the conditions matched for cognitive/executive demands? No

Is accuracy matched between the language and control tasks for all relevant groups? N/A, tasks not comparable

Is reaction time matched between the language and control tasks for all relevant groups? N/A, tasks not comparable

Behavioral data notes

Are control data reported in this paper or another that is referenced? Yes

Does the contrast selectively activate plausible relevant language regions in the control group? Yes

Are activations lateralized in the control data? Yes

Control activation notes L lateral and medial frontal and mid temporal, strongly lateralized

Contrast notes —

Analyses

Are the analyses clearly described? No** (major limitation) (see specific limitation(s) below)

Voxelwise analysis 1

First level contrast	Semantic decision vs tone decision
———	——
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T1 vs control
Covariate	—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? Yes

Is accuracy matched across the second level contrast? Appear mismatched

Is reaction time matched across the second level contrast? Unknown, not reported

Behavioral data notes

Patients less accurate than controls on both tasks, but more so on the tone decision task

Type of analysis Voxelwise

Search volume Whole brain

Correction for multiple comparisons Voxelwise correction based on permutation testing

Software SPM12/SpNM13

Voxelwise p FWE p < .05

Cluster extent —

Statistical details —

Findings ↑ L Heschl's gyrus

Findings notes —
Voxelwise analysis 2

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T2 vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	**Appear mismatched**
Is reaction time matched across the second level contrast?	**Unknown, not reported**
Behavioral data notes	Patients less accurate than controls on both tasks, but more so on the tone decision task
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Voxelwise correction based on permutation testing
Software	SPM12/SnPM13
Voxelwise p	FWE p < .05
Cluster extent	—
Statistical details	—
Findings	None
Findings notes	—

Voxelwise analysis 3

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T3 vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	**Appear mismatched**
Is reaction time matched across the second level contrast?	**Unknown, not reported**
Behavioral data notes	Patients less accurate than controls on both tasks, but more so on the tone decision task
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Voxelwise correction based on permutation testing
Software	SPM12/SnPM13
Voxelwise p	FWE p < .05
Cluster extent	—
Statistical details	—
Findings	None
Findings notes	—

Voxelwise analysis 4

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T4 vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	**Appear mismatched**
Is reaction time matched across the second level contrast?	**Unknown, not reported**
Behavioral data notes
Patients less accurate than controls on both tasks, but more so on the tone decision task

Type of analysis
Voxelwise

Search volume
Whole brain

Correction for multiple comparisons
Voxelwise correction based on permutation testing

Software
SPM12/SnPM13

Voxelwise p
FWE p < .05

Cluster extent
—

Statistical details
—

Findings
None

Findings notes
—

Voxelwise analysis 5

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T5 vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	**Appear mismatched**
Is reaction time matched across the second level contrast?	Unknown, not reported

Voxelwise analysis 6

First level contrast	Verb generation vs finger tapping
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T1 vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Voxelwise analysis 5

Behavioral data notes	Patients less accurate than controls on both tasks, but more so on the tone decision task
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Voxelwise correction based on permutation testing
Software	SPM12/SnPM13
Voxelwise p	FWE p < .05
Cluster extent	—
Statistical details	—
Findings	None
Findings notes	—
Voxelwise analysis 7

First level contrast	Verb generation vs finger tapping
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T2 vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Voxelwise correction based on permutation testing
Software	SPM12/SnPM13
Voxelwise p	FWE p < .05
Cluster extent	—
Statistical details	—
Findings	None
Findings notes	—

Voxelwise analysis 8

First level contrast	Verb generation vs finger tapping
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T3 vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Voxelwise correction based on permutation testing
Software	SPM12/SnPM13
Voxelwise p	FWE p < .05
Cluster extent	—
Statistical details	—
Findings	None
Findings notes	—

Voxelwise analysis 9

First level contrast	Verb generation vs finger tapping
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T4 vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes
- **Type of analysis**: Voxelwise
- **Search volume**: Whole brain
- **Correction for multiple comparisons**: Voxelwise correction based on permutation testing
- **Software**: SPM12/SnPM13
- **Voxelwise p**: FWE p < .05
- **Cluster extent**: —
- **Statistical details**: —
- **Findings**: None
- **Findings notes**: —

Voxelwise analysis 10

First level contrast	Verb generation vs finger tapping
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T5 vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes
- **Type of analysis**: Voxelwise
- **Search volume**: Whole brain
- **Correction for multiple comparisons**: Voxelwise correction based on permutation testing
- **Software**: SPM12/SnPM13
- **Voxelwise p**: FWE p < .05
- **Cluster extent**: —
- **Statistical details**: —
- **Findings**: None
- **Findings notes**: —

Voxelwise analysis 11

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T1
Covariate	Semantic decision accuracy
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Accuracy is covariate
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes
- **Type of analysis**: Voxelwise
- **Search volume**: Whole brain
- **Correction for multiple comparisons**: Voxelwise correction based on permutation testing
- **Software**: SPM12/SnPM13
- **Voxelwise p**: FWE p < .05
- **Cluster extent**: —
- **Statistical details**: —
- **Findings**: ↑ L anterior temporal
- **Findings notes**: Unclear why this type of analysis was run only for semantic task, and only at T1
Voxelwise analysis 12

First level contrast	Semantic decision vs tone decision
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T4 vs aphasia T1
Covariate	Δ BNT
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Voxelwise correction based on permutation testing
Software	SPM12/SnPM13
Voxelwise p	FWE p < .05
Cluster extent	—
Statistical details	—
Findings	None
Findings notes	—

Voxelwise analysis 13

First level contrast	Semantic decision vs tone decision
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T4 vs aphasia T1
Covariate	Δ semantic fluency
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Voxelwise correction based on permutation testing
Software	SPM12/SnPM13
Voxelwise p	FWE p < .05
Cluster extent	—
Statistical details	—
Findings	None
Findings notes	—

Voxelwise analysis 14

First level contrast	Semantic decision vs tone decision
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T4 vs aphasia T1
Covariate	Δ PPVT
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
-----------------------	---
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Voxelwise correction based on permutation testing
Software	SPM12/SnPM13
Voxelwise p	FWE p < .05
Cluster extent	—
Statistical details	—
Findings	None
Findings notes	—

Voxelwise analysis 15

First level contrast	Semantic decision vs tone decision
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T4 vs aphasia T1
Covariate	Δ phonemic fluency
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Voxelwise correction based on permutation testing
Software	SPM12/SnPM13
Voxelwise p	FWE p < .05
Cluster extent	—
Statistical details	—
Findings	None
Findings notes	—

Voxelwise analysis 16

First level contrast	Semantic decision vs tone decision
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T4 vs aphasia T1
Covariate	Δ BDAE complex ideation subtest
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Voxelwise correction based on permutation testing
Software	SPM12/SnPM13
Voxelwise p	FWE p < .05
Cluster extent	—
Statistical details	—
Findings	None
Findings notes	—
Voxelwise analysis 17

First level contrast	Verb generation vs finger tapping
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T4 vs aphasia T1
Covariate	Δ BNT
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Voxelwise correction based on permutation testing
Software	SPM12/SnPM13
Voxelwise p	FWE p < .05
Cluster extent	—
Statistical details	—
Findings	None
Findings notes	—

Voxelwise analysis 18

First level contrast	Verb generation vs finger tapping
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T4 vs aphasia T1
Covariate	Δ semantic fluency
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Voxelwise correction based on permutation testing
Software	SPM12/SnPM13
Voxelwise p	FWE p < .05
Cluster extent	—
Statistical details	—
Findings	↑ L dorsolateral prefrontal cortex
Findings notes	↑ L SMA/medial prefrontal
	↑ R somato-motor
	↑ R anterior temporal

Voxelwise analysis 19

First level contrast	Verb generation vs finger tapping
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T4 vs aphasia T1
Covariate	Δ PPVT
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Unknown, not reported
---------------------------	-----------------------
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Voxelwise correction based on permutation testing
Software	SPM12/SnPM13
Voxelwise p	FWE p < .05
Cluster extent	—
Statistical details	—
Findings	None
Findings notes	—

Voxelwise analysis 20

First level contrast	Verb generation vs finger tapping
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T4 vs aphasia T1
Covariate	Δ phonemic fluency
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Voxelwise correction based on permutation testing
Software	SPM12/SnPM13
Voxelwise p	FWE p < .05
Cluster extent	—
Statistical details	—
Findings	↑ L cerebellum
Findings notes	—

Voxelwise analysis 21

First level contrast	Verb generation vs finger tapping
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T4 vs aphasia T1
Covariate	Δ BDAE complex ideation subtest
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Voxelwise correction based on permutation testing
Software	SPM12/SnPM13
Voxelwise p	FWE p < .05
Cluster extent	—
Statistical details	—
Findings	—
Findings notes	—
ROI analysis 1

First level contrast	Semantic decision vs tone decision
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia (comparisons between all pairs of time points)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Appear similar
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Laterality indices
How many ROIs are there?	4
What are the ROI(s)?	(1) frontal LI; (2) temporo-parietal LI; (3) language network LI; (4) cerebellar LI
How are the ROI(s) defined?	No correction
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 2

First level contrast	Verb generation vs finger tapping
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia (comparisons between all pairs of time points)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Laterality indices
How many ROIs are there?	4
What are the ROI(s)?	(1) frontal LI; (2) temporo-parietal LI; (3) language network LI; (4) cerebellar LI
How are the ROI(s) defined?	No correction
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 3

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T1 vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Appear mismatched
Behavioral data notes	—
Type of analysis	
ROI type	
How many ROIs are there?	
What are the ROI(s)?	
How are the ROI(s) defined?	
Statistical details	
Findings	
Findings notes	
ROI analysis 4

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T2 vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	**Appear mismatched**
Is reaction time matched across the second level contrast?	**Unknown, not reported**
Behavioral data notes	Patients less accurate than controls on both tasks, but more so on the tone decision task
Type of analysis	Regions of interest (ROI)
ROI type	Laterality ind(ices)
How many ROIs are there?	4
What are the ROI(s)?	(1) frontal LI; (2) temporo-parietal LI; (3) language network LI; (4) cerebellar LI
How are the ROI(s) defined?	—
Correction for multiple comparisons	**No correction**
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 5

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T3 vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	**Appear mismatched**
Is reaction time matched across the second level contrast?	**Unknown, not reported**
Behavioral data notes	Patients less accurate than controls on both tasks, but more so on the tone decision task
Type of analysis	Regions of interest (ROI)
ROI type	Laterality ind(ices)
How many ROIs are there?	4
What are the ROI(s)?	(1) frontal LI; (2) temporo-parietal LI; (3) language network LI; (4) cerebellar LI
How are the ROI(s) defined?	—
Correction for multiple comparisons	**No correction**
Statistical details	—
Findings	None
Findings notes	—
ROI analysis 6

Findings	None
Findings notes	—

ROI analysis 6

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T4 vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Appear mismatched
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Patients less accurate than controls on both tasks, but more so on the tone decision task
Type of analysis	Regions of interest (ROI)
ROI type	Laterality index(ies)
How many ROIs are there?	4
What are the ROI(s)?	(1) frontal LI; (2) temporo-parietal LI; (3) language network LI; (4) cerebellar LI
How are the ROI(s) defined?	
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 7

Findings	None
Findings notes	—

ROI analysis 7

First level contrast	Semantic decision vs tone decision
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T5 vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Appear mismatched
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Patients less accurate than controls on both tasks, but more so on the tone decision task
Type of analysis	Regions of interest (ROI)
ROI type	Laterality index(ies)
How many ROIs are there?	4
What are the ROI(s)?	(1) frontal LI; (2) temporo-parietal LI; (3) language network LI; (4) cerebellar LI
How are the ROI(s) defined?	
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 8

Findings	None
Findings notes	—

ROI analysis 8

First level contrast	Verb generation vs finger tapping
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T1 vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported

538
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Laterality indices
How many ROIs are there?	4
What are the ROI(s)?	(1) frontal LI; (2) temporo-parietal LI; (3) language network LI; (4) cerebellar LI
How are the ROI(s) defined?	—
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 9

First level contrast	Verb generation vs finger tapping
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T2 vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Laterality indices
How many ROIs are there?	4
What are the ROI(s)?	(1) frontal LI; (2) temporo-parietal LI; (3) language network LI; (4) cerebellar LI
How are the ROI(s) defined?	—
Correction for multiple comparisons	No correction
Statistical details	—
Findings	↓ LI (language network) ↓ LI (frontal)
Findings notes	—

ROI analysis 10

First level contrast	Verb generation vs finger tapping
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia T3 vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Laterality indices
How many ROIs are there?	4
What are the ROI(s)?	(1) frontal LI; (2) temporo-parietal LI; (3) language network LI; (4) cerebellar LI
How are the ROI(s) defined?	—
Correction for multiple comparisons	No correction
ROI analysis 11		
First level contrast	Verb generation vs finger tapping	
Analysis class	Cross-sectional aphasia vs control	
Group(s)	Aphasia T4 vs control	
Covariate		
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes	
Is accuracy matched across the second level contrast?	Unknown, not reported	
Is reaction time matched across the second level contrast?	Unknown, not reported	
Behavioral data notes		
Type of analysis	Regions of interest (ROI)	
ROI type	Laterality indices	
How many ROIs are there?	4	
What are the ROI(s)?	(1) frontal LI; (2) temporo-parietal LI; (3) language network LI; (4) cerebellar LI	
How are the ROI(s) defined?		
Correction for multiple comparisons	No correction	
Statistical details		
Findings	None	
Findings notes		

ROI analysis 12		
First level contrast	Verb generation vs finger tapping	
Analysis class	Cross-sectional aphasia vs control	
Group(s)	Aphasia T5 vs control	
Covariate		
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes	
Is accuracy matched across the second level contrast?	Unknown, not reported	
Is reaction time matched across the second level contrast?	Unknown, not reported	
Behavioral data notes		
Type of analysis	Regions of interest (ROI)	
ROI type	Laterality indices	
How many ROIs are there?	4	
What are the ROI(s)?	(1) frontal LI; (2) temporo-parietal LI; (3) language network LI; (4) cerebellar LI	
How are the ROI(s) defined?		
Correction for multiple comparisons	No correction	
Statistical details		
Findings	None	
Findings notes		

Complex analysis 1		
First level contrast	Semantic decision vs tone decision	
Analysis class	Longitudinal change in aphasia	
Group(s)	Aphasia (comparisons between all pairs of time points)	
Covariate		
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes	
Complex analysis 2

First level contrast	Verb generation vs finger tapping
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia (comparisons between all pairs of time points)
Covariate	—
Is the second level contrast	Yes
valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes —

Type of analysis Complex

Statistical details

PPI analyses were carried out to investigate potential changes over time in how connectivity from L and R IFG was modulated by the verb generation task. The resultant SPM was thresholded at FWE p < .05 using permutation testing implemented in SnPM 13.

Findings None

Findings notes —

Notes

Excluded analyses Longitudinal analyses in people with aphasia, because of contradictory and unclear reporting of findings

Pillay et al. (2018)

Reference

Authors	Pillay SB, Gross WL, Graves WW, Humphries C, Book DS, Binder JR
Title	The neural basis of successful word reading in aphasia
Reference	J Cogn Neurosci 2018; 30: 514-525
PMID	29211656
DOI	10.1162/jocn_a_01214

Participants

Language	US English
Inclusion criteria	Residual phonologic retrieval deficit; intact semantic processing
Number of individuals with aphasia	21
Number of control participants	0
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and	Yes (mean 56.4 ± 12.5 years, range 30-80 years)
Is sex reported for patients and controls, and matched?
Yes (males: 11; females: 10)

Is handedness reported for patients and controls, and matched?
Yes (right: 21; left: 0)

Is time post stroke onset reported and appropriate to the study design?
Yes (mean 1134 ± 1491 days, range 180-6732 days)

To what extent is the nature of aphasia characterized?
Not at all

Language evaluation
Pseudoword rhyme matching, semantic picture matching (similar to PPT-P), picture naming

Aphasia severity
Not stated

Aphasia type
Not stated

First stroke only?
Not stated

Stroke type
Ischemic only

To what extent is the lesion distribution characterized?
Lesion overlay

Lesion extent
Mean 73.4 ± 58.6 cc, range 6.7-227.0 cc

Lesion location
17 L MCA, 2 combined L MCA/ACA, combined 2 L MCA/PCA

Participants notes
—

Imaging

Modality
fMRI

Is the study cross-sectional or longitudinal?
Cross-sectional

If longitudinal, at what time point(s) were imaging data acquired?
—

If longitudinal, was there any intervention between the time points?
—

Is the scanner described?
Yes (GE Excite 3 Tesla)

Is the timing of stimulus presentation and image acquisition clearly described and appropriate?
No (precise timing of stimuli not stated; total images acquired not stated)

Design type
Event-related

Total images acquired
not stated

Are the imaging acquisition parameters, including coverage, adequately described and appropriate?
Yes (whole brain)

Is preprocessing and intrasubject coregistration adequately described and appropriate?
Yes

Is first level model fitting adequately described and appropriate?
Yes

Is intersubject normalization adequately described and appropriate?
Yes

Imaging notes
—

Conditions

Are the conditions clearly described?
Yes

Condition	Response type	Repetitions	All groups could do	All individuals could do
reading nouns aloud	Word (overt)	72	Yes	No
rest	None	implicit	N/A	N/A
		baseline		

Conditions notes
Some participants had < 10% accuracy, but this is appropriately addressed in the analysis

Contrasts

Are the contrasts clearly described?
Yes

Contrast 1: reading nouns aloud (correct trials) vs reading nouns aloud (incorrect trials)
Language condition
Reading nouns aloud (correct trials)

Control condition
Reading nouns aloud (incorrect trials)

Are the conditions matched for visual demands?
Yes

Are the conditions matched for auditory demands?
Yes

Are the conditions matched for motor demands?
Yes

Are the conditions matched for cognitive/executive demands?
Yes

Is accuracy matched between the language and control tasks for all relevant groups?
No, by design

Is reaction time matched between the language and control tasks for all relevant groups?
Yes, matched

Behavioral data notes
—

Are control data reported in this paper or another that is referenced?
N/A

Does the contrast selectively activate plausible relevant language regions in the control group?
N/A

Are activations lateralized in the control data?
N/A

Control activation notes
Control data N/A because controls do not typically make errors

Analyses

Are the analyses clearly described?
Yes

Voxelwise analysis 1

First level contrast	Reading nouns aloud (correct trials) vs reading nouns aloud (incorrect trials)
Analysis class	Cross-sectional performance-defined conditions
Group(s)	Aphasia
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, by design
Is reaction time matched across the second level contrast?	Yes, matched
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on 3dClustSim
Software	AFNI
Voxelwise p	.01
Cluster extent	1.609 cc

Statistical details
Regarding correction for multiple comparisons, addition of monoexponential function reduces but does not eliminate inflation of p values (Cox et al., 2017)

Findings
- ↑ L angular gyrus
- ↓ L ventral precentral/inferior frontal junction
- ↓ L SMA/medial prefrontal
- ↑ R insula
- ↓ R ventral precentral/inferior frontal junction
- ↓ R SMA/medial prefrontal

Findings notes
Positive region (L AG) was part of the semantic network, while many negative regions were positively modulated by reaction time in the aphasia group

Notes

Excluded analyses
(1) ancillary analysis in which similar findings were obtained when phonological impairment was included as a covariate; (2) ancillary analysis in which similar findings were obtained when lesioned patients were excluded at each voxel; (3) analysis of modulation by reaction time (while informative, this analysis does not meet our inclusion criteria)
Szaflarski et al. (2018)

Reference

Authors	Szaflarski JP, Griffis J, Vannest J, Allendorfer JB, Nenert R, Amara AW, Sung V, Walker HC, Martin AN, Mark VW, Zhou X
Title	A feasibility study of combined intermittent theta burst stimulation and modified constraint-induced aphasia therapy in chronic post-stroke aphasia
Reference	Restor Neurol Neurosci 2018; 36: 503-518
PMID	29889086
DOI	10.3233/rnn-180812

Participants

Language	US English
Inclusion criteria	—
Number of individuals with aphasia	12 (plus 1 excluded: scanned at only 2 out of 3 time points)
Number of control participants	0
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (range 26-66 years)
Is sex reported for patients and controls, and matched?	Yes (males: 9; females: 3)
Is handedness reported for patients and controls, and matched?	Yes (right: 11; left: 1)
Is time post stroke onset reported and appropriate to the study design?	Yes (range 1-12 years)
To what extent is the nature of aphasia characterized?	Comprehensive battery
Language evaluation	WAB, BNT, semantic fluency, phonemic fluency
Aphasia severity	AQ range 10.4-94.6
Aphasia type	8 anomic, 2 Broca’s, 1 conduction, 1 global
First stroke only?	Yes
Stroke type	Not stated
To what extent is the lesion distribution characterized?	Individual lesions
Lesion extent	Not stated
Lesion location	L MCA

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Longitudinal—chronic treatment
If longitudinal, at what time point(s) were imaging data acquired?	T1: pre-treatment/chronic (1-2 weeks prior to treatment); T2: post-treatment (within 1 week after end of 2-week treatment); T3: 13-20 weeks after end of treatment
If longitudinal, was there any intervention between the time points?	Modified CIAT + intermittent theta burst stimulation to residual left hemispheric language activation, 45 minutes/session, 5 days/week, 2 weeks
Is the scanner described?	Yes (Siemens Allegra 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	Block
Total images acquired	330
Are the imaging acquisition parameters, including...	Yes (whole brain)
coverage, adequately described and appropriate? Yes
Is preprocessing and intrasubject coregistration adequately described and appropriate? Yes
Is first level model fitting adequately described and appropriate? Yes
Is intersubject normalization adequately described and appropriate? Yes

Imaging notes

Conditions

Are the conditions clearly described? Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
semantic decision	Button press	5	Unknown	Unknown
tone decision	Button press	6	Unknown	Unknown

Conditions notes

Contrasts

Are the contrasts clearly described? Yes

Contrast 1: semantic decision vs tone decision

Language condition	Semantic decision
Control condition	Tone decision
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	Yes
Is accuracy matched between the language and control tasks for all relevant groups?	Unknown, not reported
Is reaction time matched between the language and control tasks for all relevant groups?	Unknown, not reported

Behavioral data notes

Are control data reported in this paper or another that is referenced? Yes
Does the contrast selectively activate plausible relevant language regions in the control group? Yes
Are activations lateralized in the control data? Yes
Control activation notes L frontal and temporal, plus other semantic regions
Contrast notes

Analyses

Are the analyses clearly described? Yes

Voxelwise analysis 1

First level contrast	Semantic decision vs tone decision
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T2 vs T1
Covariate	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes

Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on cluster_threshold_beta
Software	SPM12
Voxelwise p	.05
Cluster extent	0.928 cc

Statistical details

Findings

- ↑ L supramarginal gyrus
- ↑ L intraparietal sulcus
- ↑ L precuneus
- ↑ L posterior STG
- ↑ L Heschl's gyrus
- ↑ L mid temporal
- ↑ L anterior temporal
- ↑ R supramarginal gyrus
- ↑ R superior parietal
- ↑ R precuneus
- ↑ R mid temporal
- ↑ R anterior cingulate
- ↓ L IFG pars opercularis
- ↓ L dorsolateral prefrontal cortex
- ↓ L ventral precentral/inferior frontal junction
- ↓ L dorsal precentral
- ↓ L SMA/medial prefrontal
- ↓ L somato-motor
- ↓ L superior parietal
- ↓ L occipital

Findings notes

- Voxelwise analysis 2

Voxelwise analysis 2

First level contrast	Semantic decision vs tone decision
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T3 vs T2
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on cluster_threshold_beta
Software	SPM12
Voxelwise p	.05
Cluster extent	0.928 cc

Findings

- ↑ L dorsolateral prefrontal cortex
- ↑ L angular gyrus
- ↑ L precuneus
- ↑ L posterior STS
- ↓ L SMA/medial prefrontal
- ↓ L anterior temporal
- ↓ L anterior cingulate
- ↓ R IFG
- ↓ R dorsolateral prefrontal cortex
| Findings notes | — |

Voxelwise analysis 3

First level contrast	Semantic decision vs tone decision
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T3 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on cluster_threshold_beta
Software	SPM12
Voxelwise p	.05
Cluster extent	0.928 cc
Statistical details	—
Findings	↑ L supramarginal gyrus
	↑ L angular gyrus
	↑ L precuneus
	↑ L posterior STG
	↑ L mid temporal
	↑ L anterior temporal
	↑ L posterior cingulate
	↓ L somato-motor
	↓ R dorsolateral prefrontal cortex

Findings notes

—

Voxelwise analysis 4

First level contrast	Semantic decision vs tone decision
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T3 vs aphasia T2
Covariate	Δ WAB AQ
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Whole brain
Correction for multiple comparisons	Clusterwise correction based on cluster_threshold_beta
Software	SPM12
Voxelwise p	.05
Cluster extent	0.928 cc
Statistical details	Inclusive mask of voxels that differed between T2 and T3

547
Findings

Findings	↓ L inferior parietal lobule
Findings notes	—

Voxelwise analysis 5

First level contrast	Semantic decision vs tone decision
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T3 vs aphasia T1
Covariate	Δ BNT
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes
- Type of analysis: Voxelwise
- Search volume: Whole brain
- Correction for multiple comparisons: Clusterwise correction based on cluster_threshold_beta
- Software: SPM12
- Voxelwise p: .05
- Cluster extent: 0.928 cc
- Statistical details: Inclusive mask of voxels that differed between T1 and T3
- Findings | ↓ R IFG |
| Findings notes | — |

Notes
- Excluded analyses | — |

van de Sandt-Koenderman et al. (2018)

Reference

Authors	van de Sandt-Koenderman, MWME; Orellana, CPM; van der Meulen, I; Smits, M; Ribbers, GM
Title	Language lateralisation after Melodic Intonation Therapy: an fMRI study in subacute and chronic aphasia
Reference	Aphasiology 2018; 32: 765-783
PMID	N/A
DOI	10.1080/02687038.2016.1240353

Participants

Language	Dutch
Inclusion criteria	Severe non-fluent aphasia (< 50 words/minute); articulation deficits; repetition severely affected; moderate-good auditory comprehension
Number of individuals with aphasia	9
Number of control participants	0
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (subacute: mean 51.2 years, range 25-61 years; chronic: mean 54.0 years, range 21-66 years)
Is sex reported for patients and controls, and matched?	Yes (males: 5; females: 4)
Is handedness reported for patients and controls, and matched?	Yes (right: 8; left: 0; other: 1)
Is time post stroke onset reported and appropriate	Yes (subacute: range 0.5-3 months; chronic: range 17-40 months)
To what extent is the nature of aphasia characterized?

Comprehensive battery

Language evaluation	AAT, ANELT
Aphasia severity	T1: subacute: ASRS median 1, range 0-2; ANELT range 10-29; chronic: ASRS median 1.5, range 1-2; ANELT range 20-29; T2: subacute: ASRS range 1-3; ANELT range 10-43; chronic: ASRS range 1-2; ANELT range 22-31
Aphasia type	T1: all severe non-fluent; T2: not stated
First stroke only?	Not stated
Stroke type	Not stated

To what extent is the lesion distribution characterized?

Extent and location

| Lesion extent | Subacute: range 32.4-141.2 cc (no lesion extent was reported for one subacute participant because there was no tissue loss yet); chronic: range 27.4-87.9 cc |
| Lesion location | 8 L MCA, 1 L SMA and R insular-temporoparietal |

Participants notes —

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Longitudinal—mixed
If longitudinal, at what time point(s) were imaging data acquired?	T1: pre treatment/subacute or chronic; T2: post-treatment, ~6 weeks later
If longitudinal, was there any intervention between the time points?	MIT, 5+ hours/week
Is the scanner described?	No (GE 3 Tesla; model not stated)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	Block
Total images acquired	132
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	No (lesion impact not addressed)

Imaging notes —

Conditions

| Are the conditions clearly described? | Yes |

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
listening to narrative speech	None	6	N/A	N/A
listening to reversed speech	None	6	N/A	N/A

Conditions notes —

Contrasts

Are the contrasts clearly described? Yes

Contrast 1: listening to narrative speech vs listening to reversed speech

Language condition	Listening to narrative speech
Control condition	Listening to reversed speech
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	Yes
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, no behavioral measure
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, no timeable task
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	No
Does the contrast selectively activate plausible relevant language regions in the control group?	Unknown
Are activations lateralized in the control data?	Unknown

Behavioral data notes

Contrast notes

Analyses

| Are the analyses clearly described? | No* (moderate limitation) (see specific limitation(s) below) |

ROI analysis 1

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T1
Covariate	Lesion volume
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Laterality indices
How many ROIs are there?	1
What are the ROI(s)?	Language network LI
How are the ROI(s) defined?	Activations that were "not clearly related to known language areas" were excluded, but the basis for this determination is not clear
Correction for multiple comparisons	One only
Statistical details	None
Findings	None
Findings notes	—

ROI analysis 2

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T2 vs T1
Covariate	Lesion volume
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Laterality indices
How many ROIs are there? 1
What are the ROI(s)? Language network LI
How are the ROI(s) defined? Activations that were "not clearly related to known language areas" were excluded, but the basis for this determination is not clear
Correction for multiple comparisons One only
Statistical details —
Findings None
Findings notes —

ROI analysis 3

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T2 vs T1
Covariate	Δ AAT repetition score
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Laterality index(es)
How many ROIs are there?	1
What are the ROI(s)?	Language network LI
How are the ROI(s) defined?	Activations that were "not clearly related to known language areas" were excluded, but the basis for this determination is not clear
Correction for multiple comparisons	One only
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 4

First level contrast	Listening to narrative speech vs listening to reversed speech
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T2 vs T1
Covariate	Δ ANELT
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Laterality index(es)
How many ROIs are there?	1
What are the ROI(s)?	Language network LI
How are the ROI(s) defined?	Activations that were "not clearly related to known language areas" were excluded, but the basis for this determination is not clear
Correction for multiple comparisons	One only
Statistical details	—
Findings	None
Findings notes	—

Notes
Excluded analyses

Individual participant LIIs and activation maps

van Oers et al. (2018)

Reference

Authors	van Oers CAMM, van der Worp HB, Kappelle LJ, Raemaekers MAH, Otte WM, Dijkhuizen RM
Title	Etiology of language network changes during recovery of aphasia after stroke
Reference	Sci Rep 2018; 8: 856
PMID	29339771
DOI	10.1038/s41598-018-19302-4

Participants

Language	Dutch
Inclusion criteria	MRS ≤ 3; ability to perform tasks
Number of individuals with aphasia	12
Number of control participants	8
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (mean 67.9 ± 11.4 years, range 46-86 years)
Is sex reported for patients and controls, and matched?	Yes (males: 10; females: 2)
Is handedness reported for patients and controls, and matched?	Yes (right: 12; left: 0)
Is time post stroke onset reported and appropriate to the study design?	No* (moderate limitation) (T1: within 2 weeks; T2: ~3 months; T3: ~6 months; T4: ~12 months; specific timing of first time point not stated)
To what extent is the nature of aphasia characterized?	Comprehensive battery
Language evaluation	AAT, BNT
Aphasia severity	T1: 8 moderate, 2 severe, 2 not stated; T2: 4 moderate, 3 recovered, 2 not stated, 1 mild, 1 severe
Aphasia type	T1: 6 Broca's, 3 anomic, 2 Wernicke's, 1 global; T2: 4 anomic, 3 recovered, 2 Broca's, 1 unclassified, 1 Wernicke's
First stroke only?	Yes
Stroke type	Ischemic only
To what extent is the lesion distribution characterized?	Lesion overlay
Lesion extent	Range 9-208 cc
Lesion location	L MCA
Participants notes	—

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Longitudinal—recovery
If longitudinal, at what time point(s) were imaging data acquired?	T1: within 2 weeks; T2: ~3 months; T3: ~6 months; T4: ~12 months; specific timing of first time point not stated
If longitudinal, was there any intervention between the time points?	Not stated
Is the scanner described?	Yes (Philips Achieva 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No* (moderate limitation) (stimulus presentation was self-paced, but the ITI is not reported, nor are the number of trials presented per condition; it is likely that the language and control blocks contained different numbers of trials)
Design type	Block
Total images acquired	1656
-----------------------	------
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and inrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	Yes
Imaging notes	not all participants scanned at each time point; the number scanned at each time point is not stated

Conditions

Are the conditions clearly described? Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
written word-picture matching	Button press	6	Unknown	Unknown
semantic decision	Button press	6	Unknown	Unknown
visual decision	Button press	12	Unknown	Unknown
rest	None	12	N/A	N/A

Conditions notes —

Contrasts

Are the contrasts clearly described? Yes

Contrast 1: written word-picture matching vs visual decision

Language condition	Written word-picture matching
Control condition	Visual decision
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	Unknown, not reported
Is reaction time matched between the language and control tasks for all relevant groups?	Unknown, not reported
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	Somewhat
Does the contrast selectively activate plausible relevant language regions in the control group?	No
Are activations lateralized in the control data?	Somewhat
Control activation notes	Primarily bilateral visual activations; frontal activation is L-lateralized
Contrast notes	—

Contrast 2: semantic decision vs visual decision

Language condition	Semantic decision
Control condition	Visual decision
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	Unknown, not reported
Is reaction time matched between the language and control tasks for all relevant groups? | Unknown, not reported
---|---
Behavioral data notes | —
Are control data reported in this paper or another that is referenced? | Somewhat
Does the contrast selectively activate plausible relevant language regions in the control group? | Somewhat
Are activations lateralized in the control data? | Yes
Control activation notes | L frontal, L posterior ITG, L superior parietal
Contrast notes | —

Analyses

Are the analyses clearly described? | No* (moderate limitation) (see specific limitation(s) below)

ROI analysis 1

First level contrast	Written word-picture matching vs visual decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia (subset who returned for follow-up) T1 (n = 10)
Covariate	Subsequent outcome (T4) overall language measure (average of AAT measures)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	12
What are the ROI(s)?	(1) bilateral dorsal anterior cingulate; (2) L angular gyrus; (3) L IFG pars opercularis and triangularis; (4) L thalamus; (5) L MFG; (6) L posterior ITG; (7) R angular gyrus; (8) R IFG pars triangularis; (9) R thalamus; (10) R posterior ITG; (11) R IFG pars opercularis and triangularis; (12) R MFG
How are the ROI(s) defined?	Control activations and their homotopic counterparts in the R hemisphere; activation measured as count of voxels activated at p < 0.001, uncorrected
Correction for multiple comparisons	False discovery rate (FDR)
Statistical details	—
Findings	↑ L posterior inferior temporal gyrus/fusiform gyrus
Findings notes	Activation predicted later outcome even when initial language performance was included in the model

ROI analysis 2

First level contrast	Written word-picture matching vs visual decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia (all time points)
Covariate	Overall language measure (average of AAT measures) all time points
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	12
--------------------------	----
What are the ROI(s)?	(1) bilateral dorsal anterior cingulate; (2) L angular gyrus; (3) L IFG pars opercularis and triangularis; (4) L thalamus; (5) L MFG; (6) L posterior ITG; (7) R angular gyrus; (8) R IFG pars triangularis; (9) R thalamus; (10) R posterior ITG; (11) R IFG pars opercularis and triangularis; (12) R MFG
How are the ROI(s) defined?	Control activations and their homotopic counterparts in the R hemisphere; activation measured as count of voxels activated at p < 0.001, uncorrected
Correction for multiple comparisons	False discovery rate (FDR)
Statistical details	Mixed model; minimal detail provided
Findings	↑ L posterior inferior temporal gyrus/fusiform gyrus
Findings notes	—

ROI analysis 3

First level contrast	Written word-picture matching vs visual decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia (all time points)
Covariate	Average of AAT comprehension score and BNT, all time points
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	12
What are the ROI(s)?	(1) bilateral dorsal anterior cingulate; (2) L angular gyrus; (3) L IFG pars opercularis and triangularis; (4) L thalamus; (5) L MFG; (6) L posterior ITG; (7) R angular gyrus; (8) R IFG pars triangularis; (9) R thalamus; (10) R posterior ITG; (11) R IFG pars opercularis and triangularis; (12) R MFG
How are the ROI(s) defined?	Control activations and their homotopic counterparts in the R hemisphere; activation measured as count of voxels activated at p < 0.001, uncorrected
Correction for multiple comparisons	False discovery rate (FDR)
Statistical details	Mixed model; minimal detail provided
Findings	↓ R IFG pars opercularis; ↓ R IFG pars triangularis
Findings notes	—

ROI analysis 4

First level contrast	Written word-picture matching vs visual decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia (all time points)
Covariate	Picture-word matching accuracy, all time points
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Accuracy is covariate
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	12
What are the ROI(s)?	(1) bilateral dorsal anterior cingulate; (2) L angular gyrus; (3) L IFG pars opercularis and triangularis; (4) L thalamus; (5) L MFG; (6) L posterior ITG; (7) R angular gyrus; (8) R IFG pars triangularis; (9) R thalamus; (10) R posterior ITG; (11) R IFG pars opercularis and triangularis; (12) R MFG
ROI analysis 5

First level contrast	Written word-picture matching vs visual decision
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia: linear effect of time
Covariate	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	12
What are the ROI(s)?	(1) bilateral dorsal anterior cingulate; (2) L angular gyrus; (3) L IFG pars opercularis and triangularis; (4) L thalamus; (5) L MFG; (6) L posterior ITG; (7) R angular gyrus; (8) R IFG pars triangularis; (9) R thalamus; (10) R posterior ITG; (11) R IFG pars opercularis and triangularis; (12) R MFG
How are the ROI(s) defined?	Control activations and their homotopic counterparts in the R hemisphere; activation measured as count of voxels activated at p < 0.001, uncorrected
Correction for multiple comparisons	False discovery rate (FDR)
Statistical details	Mixed model; minimal detail provided
Findings	† R posterior inferior temporal gyrus/fusiform gyrus
Findings notes	

ROI analysis 6

First level contrast	Semantic decision vs visual decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia (subset who returned for follow-up) T1 (n = 10)
Covariate	Subsequent outcome (T4) overall language measure (average of AAT measures)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (not appropriate to correlate T1 imaging with T4 behavior without T1 behavior in model)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	
Type of analysis	Regions of interest (ROI)

Findings notes: Similar numbers of findings are reported for controls.
ROI analysis 7

First level contrast	Semantic decision vs visual decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia (all time points)
Covariate	Overall language measure (average of AAT measures) all time points
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	6
What are the ROI(s)?	(1) L angular gyrus; (2) L IFG pars opercularis and triangularis; (3) L posterior ITG; (4) R angular gyrus; (5) R IFG pars opercularis and triangularis; (6) R posterior ITG
How are the ROI(s) defined?	Control activations and their homotopic counterparts in the R hemisphere; activation measured as count of voxels activated at p < 0.001, uncorrected
Correction for multiple comparisons	False discovery rate (FDR)
Statistical details	Mixed model; minimal detail provided
Findings	None
Findings notes	—

ROI analysis 8

First level contrast	Semantic decision vs visual decision
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia (all time points)
Covariate	Average of AAT comprehension score and BNT, all time points
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	6
What are the ROI(s)?	(1) L angular gyrus; (2) L IFG pars opercularis and triangularis; (3) L posterior ITG; (4) R angular gyrus; (5) R IFG pars opercularis and triangularis; (6) R posterior ITG
How are the ROI(s) defined?	Control activations and their homotopic counterparts in the R hemisphere; activation measured as count of voxels activated at p < 0.001, uncorrected
Correction for multiple comparisons	False discovery rate (FDR)
Statistical details	Mixed model; minimal detail provided
Findings	None
Findings notes	—
ROI analysis 9

Findings	None

| Findings notes | — |

ROI analysis 9

First level contrast	Semantic decision vs visual decision

Analysis class	Cross-sectional correlation with language or other measure

Group(s)	Aphasia (all time points)

Covariate	Semantic decision accuracy, all time points

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes

Is accuracy matched across the second level contrast?	Accuracy is covariate

Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

Type of analysis	Regions of interest (ROI)

ROI type	Functional

How many ROIs are there?	6

What are the ROI(s)?	(1) L angular gyrus; (2) L IFG pars opercularis and triangularis; (3) L posterior ITG; (4) R angular gyrus; (5) R IFG pars opercularis and triangularis; (6) R posterior ITG

How are the ROI(s) defined?	Control activations and their homotopic counterparts in the R hemisphere; activation measured as count of voxels activated at p < 0.001, uncorrected

Correction for multiple comparisons	False discovery rate (FDR)

Statistical details	Mixed model; minimal detail provided

Findings	None

| Findings notes | — |

ROI analysis 10

Findings	None

| Findings notes | — |

ROI analysis 10

First level contrast	Semantic decision vs visual decision

Analysis class	Longitudinal change in aphasia

Group(s)	Aphasia: linear effect of time

Covariate	—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes

Is accuracy matched across the second level contrast?	Unknown, not reported

Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

Type of analysis	Regions of interest (ROI)

ROI type	Functional

How many ROIs are there?	6

What are the ROI(s)?	(1) L angular gyrus; (2) L IFG pars opercularis and triangularis; (3) L posterior ITG; (4) R angular gyrus; (5) R IFG pars opercularis and triangularis; (6) R posterior ITG

How are the ROI(s) defined?	Control activations and their homotopic counterparts in the R hemisphere; activation measured as count of voxels activated at p < 0.001, uncorrected

Correction for multiple comparisons	False discovery rate (FDR)

Statistical details	Mixed model; minimal detail provided

Findings	None

| Findings notes | — |

Notes

Excluded analyses	(1) activation maps in patients at each time point (Fig. 2); (2) analyses assessing whether

558
outcome can be better predicted by including fMRI data; (3) analyses examining relationships between activations related to breath holding and language tasks (there was little if any evidence that vascular reactivity was abnormal in patients); (4) correlations with ROI activity level instead of counts of activated voxels, which yielded similar but non-significant findings.

Barbieri et al. (2019)

Reference

Authors	Barbieri E, Mack J, Chiappetta B, Europa E, Thompson CK
Title	Recovery of offline and online sentence processing in aphasia: Language and domain-general network neuroplasticity
Reference	Cortex 2019; 120: 394-418
PMID	31419597
DOI	10.1016/j.cortex.2019.06.015

Participants

Language	US English
Inclusion criteria	—
Number of individuals with aphasia	18 (plus 1 excluded: developed a hematoma between baseline and post-testing)
Number of control participants	23
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	No (range 22-73 years; controls were younger)
Is sex reported for patients and controls, and matched?	Yes (males: 11; females: 7)
Is handedness reported for patients and controls, and matched?	No (right: 15; left: 3; not stated for controls)
Is time post stroke onset reported and appropriate to the study design?	Yes (range 13-107 months)
To what extent is the nature of aphasia characterized?	Comprehensive battery
Language evaluation	WAB, Northwestern Assessment of Verbs and Sentences (NAVS), Northwestern Naming Battery (NNB), analysis of spontaneous speech (Cinderella story) using Northwestern Narrative Language Analysis (NNLA) protocol
Aphasia severity	AQ range 52.8-91.7
Aphasia type	Not stated, except that “language deficits were consistent with nonfluent aphasia and agrammatism”
First stroke only?	Yes
Stroke type	Mixed etiologies
To what extent is the lesion distribution characterized?	Lesion overlay
Lesion extent	Not stated
Lesion location	Mostly L MCA but some lesions include PCA or ACA territory
Participants notes	One patient had two strokes within one day, but we would consider that essentially a single stroke

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Longitudinal—chronic treatment
If longitudinal, at what time point(s) were imaging data acquired?	T1: pre-treatment/chronic; T2: post-treatment, ~12 weeks later
If longitudinal, was there any intervention between the time points?	13 patients were treated and 5 were not; treatment of underlying forms; 90 minutes/session, 2 sessions/week until 80% accuracy met on weekly probe task, then 1 session/week, 12 weeks
except for one patient who demonstrated rapid improvement and completed treatment in 6 weeks

Question	Answer
Is the scanner described?	Yes (Siemens Trio 3 Tesla or Siemens Prisma 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No* (moderate limitation) (stimulus timing described does not match stated duration of data acquisition; timing of language and control trials not matched)
Design type	Block
Total images acquired	~482
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	Yes
Imaging notes	2 runs before treatment and 2 runs after treatment; each pair of runs took place on two separate days (1-7 days apart)

Conditions

| Are the conditions clearly described? | Yes |

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
auditory sentence-picture verification	Button press	32	Unknown	Unknown
listening to reversed speech and viewing scrambled pictures	Button press	8	Unknown	Unknown

Conditions notes: Based on the behavioral data obtained outside the scanner, it is likely that many patients were at chance on the language task

Contrasts

| Are the contrasts clearly described? | No (see specific limitation(s) below) |

Contrast 1: auditory sentence-picture verification vs listening to reversed speech and viewing scrambled pictures

Language condition	Auditory sentence-picture verification
Control condition	Listening to reversed speech and viewing scrambled pictures
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	Unknown, not reported
Is reaction time matched between the language and control tasks for all relevant groups?	Unknown, not reported
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible relevant language regions in the control group?	Somewhat
Are activations lateralized in the control data?	Somewhat
Control activation notes	L-lateralized inferior frontal and posterior temporal, but also bilateral posterior inferior temporal and lateral occipital activations
Contrast notes	Contrast described as "passive > control" but seems to involve active and passive sentences

Analyses

| Are the analyses clearly described? | No* (moderate limitation) (see specific limitation(s) below) |

560
Voxelwise analysis 1

First level contrast	Auditory sentence-picture verification vs listening to reversed speech and viewing scrambled pictures
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia treated (n = 13) T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	Out-of-scanner performance on passive sentences improved
Type of analysis	Voxelwise
Search volume	Clusterwise correction based on 3dClustSim
Correction for multiple comparisons	Clusterwise correction based on 3dClustSim
Software	SPM8
Voxelwise p	.001
Cluster extent	37 voxels (size not stated)
Statistical details	—
Findings	↑ L precuneus
	↑ R ventral precentral/inferior frontal junction
	↑ R somato-motor
	↑ R supramarginal gyrus
	↑ R intraparietal sulcus
	↑ R superior parietal
	↑ R precuneus
Findings notes	Based on Table 7 and Figure 8

Voxelwise analysis 2

First level contrast	Auditory sentence-picture verification vs listening to reversed speech and viewing scrambled pictures
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia natural history (n = 5) T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Voxelwise
Search volume	Clusterwise correction based on 3dClustSim
Correction for multiple comparisons	Clusterwise correction based on 3dClustSim
Software	SPM8
Voxelwise p	.001
Cluster extent	37 voxels (size not stated)
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 1

First level contrast	Auditory sentence-picture verification vs listening to reversed speech and viewing scrambled pictures
Analysis class	Longitudinal between two groups with aphasia
ROI analysis 1

Group(s)	(Aphasia treated (n=13) T2 vs T1) vs (aphasia natural history (n=5) T2 vs T1)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	4
What are the ROI(s)?	(1) L hemisphere sentence processing network (IFGpt, pMTG, pSTG, AG); (2) R hemisphere homotopic regions; (3) L dorsal attention network (MFG, PrCG, SPL, sLOC); (4) R dorsal attention network (same regions)
How are the ROI(s) defined?	Sentence processing network based on Walenski et al. (2019); dorsal attention network based on Corbetta et al. (2008) and Vincent et al. (2008); ROIs were defined based on Harvard-Oxford atlas which would align imperfectly with these functional networks; dependent variable was number of active voxels (p < .001, uncorrected) divided by number of intact voxels
Correction for multiple comparisons	No correction
Statistical details	Derivation of dependent measures from ROIs difficulty to follow, but it seems that ROIs with less than 5 voxels upregulated were excluded and deactivations were not considered, meaning that estimates of change may be biased
Findings	† L dorsolateral prefrontal cortex
† L ventral precentral/inferior frontal junction	
† L dorsal precentral	
† L angular gyrus	
† L intraparietal sulcus	
† L superior parietal	
† R dorsolateral prefrontal cortex	
† R ventral precentral/inferior frontal junction	
† R dorsal precentral	
† R angular gyrus	
† R intraparietal sulcus	
† R superior parietal	
Findings notes	Bilateral dorsal attention network; findings were for networks as a whole; regions coded correspond to atlas ROIs

ROI analysis 2

First level contrast	Auditory sentence-picture verification vs listening to reversed speech and viewing scrambled pictures
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T2 vs T1
Covariate	∆ offline comprehension composite
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	4
What are the ROI(s)?	(1) L hemisphere sentence processing network (IFGpt, pMTG, pSTG, AG); (2) R hemisphere homotopic regions; (3) L dorsal attention network (MFG, PrCG, SPL, sLOC); (4) R dorsal attention network (same regions)
How are the ROI(s) defined?	Sentence processing network based on Walenski et al. (2019); dorsal attention network based
on Corbetta et al. (2008) and Vincent et al. (2008); ROIs were defined based on Harvard-Oxford atlas which would align imperfectly with these functional networks; dependent variable was number of active voxels ($p < .001$, uncorrected) divided by number of intact voxels

Correction for multiple comparisons	No correction
Statistical details	Derivation of dependent measures from ROIs difficult to follow, but it seems that ROIs with less than 5 voxels upregulated were excluded and deactivations were not considered, meaning that estimates of change may be biased
Findings	† R IFG pars triangularis
	† R dorsolateral prefrontal cortex
	† R ventral precentral/inferior frontal junction
	† R dorsal precentral
	† R angular gyrus
	† R intraparietal sulcus
	† R superior parietal
	† R posterior STG/STS/MTG
Findings notes	R homotopic sentence processing network and R dorsal attention network; findings were for networks as a whole; regions coded correspond to atlas ROIs

ROI analysis 3

First level contrast	Auditory sentence-picture verification vs listening to reversed speech and viewing scrambled pictures
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia participants with eye tracking data ($n = 16$) T2 vs T1
Covariate	Δ decrease in eye tracking online thematic prediction score
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	4
What are the ROI(s)?	(1) L hemisphere sentence processing network (IFGpt, pMTG, pSTG, AG); (2) R hemisphere homotopic regions; (3) R dorsal attention network (MFG, PrCG, SPL, sLOC); (4) R dorsal attention network (same regions)
How are the ROI(s) defined?	Sentence processing network based on Walenski et al. (2019); dorsal attention network based on Corbetta et al. (2008) and Vincent et al. (2008); ROIs were defined based on Harvard-Oxford atlas which would align imperfectly with these functional networks; dependent variable was number of active voxels ($p < .001$, uncorrected) divided by number of intact voxels
Correction for multiple comparisons	No correction
Statistical details	Derivation of dependent measures from ROIs difficult to follow, but it seems that ROIs with less than 5 voxels upregulated were excluded and deactivations were not considered, meaning that estimates of change may be biased
Findings	† R IFG pars triangularis
	† R angular gyrus
	† R posterior STG/STS/MTG
Findings notes	R homotopic sentence processing network; findings were for networks as a whole; regions coded correspond to atlas ROIs

ROI analysis 4

First level contrast	Auditory sentence-picture verification vs listening to reversed speech and viewing scrambled pictures
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia participants with eye tracking data ($n = 16$) T2 vs T1
Covariate	Δ eye tracking online thematic integration score
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Question	Answer
Group(s), time point(s), and measures involved?	Unknown, not reported
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	4
What are the ROI(s)?	(1) L hemisphere sentence processing network (IFGpt, pMTG, pSTG, AG); (2) R hemisphere homotopic regions; (3) L dorsal attention network (MFG, PrCG, SPL, sLOC); (4) R dorsal attention network (same regions)
How are the ROI(s) defined?	Sentence processing network based on Walenski et al. (2019); dorsal attention network based on Corbetta et al. (2008) and Vincent et al. (2008); ROIs were defined based on Harvard-Oxford atlas which would align imperfectly with these functional networks; dependent variable was number of active voxels (p < .001, uncorrected) divided by number of intact voxels
Correction for multiple comparisons	No correction
Statistical details	Derivation of dependent measures from ROIs difficulty to follow, but it seems that ROIs with less than 5 voxels upregulated were excluded and deactivations were not considered, meaning that estimates of change may be biased
Findings	↑ R dorsolateral prefrontal cortex
↑ R ventral precentral/inferior frontal junction	
↑ R dorsal precentral	
↑ R angular gyrus	
↑ R intraparietal sulcus	
↑ R superior parietal	
Findings notes	R dorsal attention network; findings were for networks as a whole; regions coded correspond to atlas ROIs
Notes	Excluded analyses Analysis of relationship between lesion volume with ROIs and functional changes in ROIs, because L and R hemisphere networks seem to be combined

Johnson et al. (2019)

Reference

Authors

Johnson JP, Meier EL, Pan Y, Kiran S

Title

Treatment-related changes in neural activation vary according to treatment response and extent of spared tissue in patients with chronic aphasia

Reference

Cortex 2019; 121: 147-168

PMID

31627014

DOI

10.1016/j.cortex.2019.08.016

Participants

Language

US English

Inclusion criteria

Anomia

Number of individuals with aphasia

30 (plus 5 excluded: 2 withdrew from non-treatment arm; 3 fMRI acquisition errors; 1 did not complete treatment and post-treatment scanning (but of these latter 4, one must have at least completed the non-treatment arm))

Number of control participants

17

Were any of the participants included in any previous studies?

No

Is age reported for patients and controls, and matched?

Yes (treated group: mean 62.8 ± 10.2 years, range 42-80 years; untreated group: mean 59.0 ± 11.8 years, range 39-79 years)
Question	Answer
Is sex reported for patients and controls, and matched?	Yes (males: 21; females: 9)
Is handedness reported for patients and controls, and matched?	Yes (right: 27; left: 3)
Is time post stroke onset reported and appropriate to the study design?	Yes (treated group: mean 58.3 ± 51.8 months, range 12-170 months; untreated group: mean 85.2 ± 141.9 months, range 10-467 months)
To what extent is the nature of aphasia characterized?	Severity only
Language evaluation	WAB, BNT, PPT
Aphasia severity	Treated group: AQ mean 60.1 ± 24.0, range 11.7-95.2; untreated group: AQ mean 65.8 ± 24.6, range 26.9-91.5
Aphasia type	Not stated
First stroke only?	Not stated
Stroke type	Not stated
To what extent is the lesion distribution characterized?	Lesion overlay
Lesion extent	Treated group: 136.6 ± 81.1 cc, range 11.7-317.1 cc; untreated group: 112.7 ± 94.6 cc, range 1.6-317.1 cc
Lesion location	Mostly MCA with a few extending into PCA
Participants notes	There were 26 patients in the treated group and 10 in the untreated group, but 6 patients overlapped between the two groups (they joined the treated group after completing the untreated phase)

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Longitudinal—chronic treatment
If longitudinal, at what time point(s) were imaging data acquired?	T1: pre-treatment/chronic; T2: post-treatment, ~12 weeks later
If longitudinal, was there any intervention between the time points?	Semantic naming treatment, 2 sessions/week
Is the scanner described?	Yes (Siemens Trio 3 Tesla, except for 2 patients on a Siemens Prisma 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No* (moderate limitation) (total images not stated; short ITI and minimal jitter)
Design type	Event-related
Total images acquired	not stated
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	No* (moderate limitation) (unclear whether there was sufficient resting data to allow the key contrast to be computed)
Is intersubject normalization adequately described and appropriate?	Yes
Imaging notes	—

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
picture naming (trained items)	Word (overt)	36	Unknown	Unknown
picture naming (untrained items, from control category)	Word (overt)	36	Unknown	Unknown
picture naming (untrained items, from experimental categories)	Word (overt)	36	Unknown	Unknown
viewing scrambled images and saying “skip” rest	Word (overt)	36	Unknown	Unknown
	None	36	implicit baseline	N/A

565
Conditions notes

The untrained group were not actually trained on "trained items"; no accuracy data for untrained group (except for lack of change between T1 and T2).

Contrasts

Are the contrasts clearly described?

Yes

Contrast 1: picture naming (trained items) vs rest

Language condition	Picture naming (trained items)
Control condition	Rest
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable

Behavioral data notes

Somewhat

Does the contrast selectively activate plausible relevant language regions in the control group?

No

Are activations lateralized in the control data?

No

Control activation notes

Most ROIs deactivated in controls

Analyses

Are the analyses clearly described?

Yes

ROI analysis 1

First level contrast	Picture naming (trained items) vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia treated T1 (n = 26) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, different
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

—

Type of analysis

Regions of interest (ROI)

ROI type

Anatomical

How many ROIs are there?

16

What are the ROI(s)?

(1) L IFGorb; (2) L IFGtri; (3) L IFGop; (4) L MFG; (5) L PrCG; (6) L MTG; (7) L SMG; (8) L AG; (9-16) homotopic counterparts

How are the ROI(s) defined?

AAL but lesioned voxels were excluded from ROIs on an individual basis

Correction for multiple comparisons

No correction

Statistical details

—

Findings

↑ L IFG pars triangularis
↑ R IFG pars triangularis
↓ L angular gyrus

Findings notes

Significant interaction of ROI by group

ROI analysis 2
ROI analysis 3

First level contrast	Picture naming (trained items) vs rest
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia untreated (n = 10) T2 vs T1
Covariate	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	
Type of analysis	Regions of interest (ROI)
ROI type	Anatomical
How many ROIs are there?	16
What are the ROI(s)?	(1) L IFGorb; (2) L IFGtri; (3) L IFGop; (4) L MFG; (5) L PrCG; (6) L MTG; (7) L SMG; (8) L AG; (9-16) homotopic counterparts
How are the ROI(s) defined?	AAL but lesioned voxels were excluded from ROIs on an individual basis
Correction for multiple comparisons	No correction
Statistical details	
Findings	↑ L IFG pars triangularis
Findings notes	None

Complex analysis 1

First level contrast	Picture naming (trained items) vs rest
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia treated (n = 26) T2 vs T1
Covariate	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	No, different
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	
Type of analysis	
ROI type	
How many ROIs are there?	
What are the ROI(s)?	
How are the ROI(s) defined?	
Correction for multiple comparisons	
Statistical details	
Findings	
Findings notes	

567
Behavioral data notes	—
Type of analysis	Complex
Statistical details	A linear model was constructed to examine the relationship between proportion of spared tissue in each L hemisphere ROI and changes in activation over time. The model is not described in sufficient detail.
Findings notes	There was a significant 3-way interaction of time by ROI by spared tissue, such that in some regions (AG, MFG, IFG orb, SMG), less spared tissue was associated with greater increases in activation, while in others (PrCG, IFG op, IFG tri), less spared tissue was associated with greater decreases in activation.

Notes

Excluded analyses

(1) the treated group showed an increase in activation over time averaged across all ROIs, and a near-significant interaction of time by hemisphere such that greater increases were observed in the right hemisphere; (2) “responders” showed an increase in activation over time averaged across all ROIs, while “nonresponders” did not (excluded because not anatomically specific, but also note that the definition of responders vs nonresponders was somewhat arbitrary)

Kristinsson et al. (2019)

Reference

Authors

Kristinsson S, Yourganov G, Xiao F, Bonilha L, Stark BC, Rorden C, Basilakos A, Fridriksson J

Title

Brain-derived neurotrophic factor genotype-specific differences in cortical activation in chronic aphasia

Reference

J Speech Lang Hear Res 2019; 62: 3923-3936

PMID

31756156

DOI

10.1044/2019_jslhr-l-rsnp-19-0021

Participants

Language

US English

Inclusion criteria

< 80% on PNT; able to name at least 5 out of 40 items during fMRI; WAB-R spontaneous speech ≥ 2; WAB-R auditory comprehension ≥ 2

Number of individuals with aphasia

87

Number of control participants

0

Were any of the participants included in any previous studies?

Yes (65 were previously included in Fridriksson et al. (2018), a tDCS study)

Is age reported for patients and controls, and matched?

Yes (typical BDNF genotype group mean 59.6 ± 11.2 years, range 29-77 years; atypical BDNF genotype group mean 57.7 ± 10.9 years, range 30-76 years)

Is sex reported for patients and controls, and matched?

Yes (males: 58; females: 29)

Is handedness reported for patients and controls, and matched?

Yes (right: 87; left: 0)

Is time post stroke onset reported and appropriate to the study design?

Yes (typical BDNF genotype group: mean 44.0 ± 38.7 months; atypical BDNF genotype group: mean 34.5 ± 36.9 months; all participants > 6 months)

To what extent is the nature of aphasia characterized?

Severity and type

Language evaluation

WAB, PNT, PPT

Aphasia severity

Typical BDNF genotype group: AQ mean 64.2 ± 20.3; atypical BDNF genotype group: AQ mean 54.3 ± 21.0

Aphasia type

Typical BDNF genotype group: 25 Broca's, 12 anomic, 11 conduction, 2 transcortical motor
aphasia, 2 Wernicke's, 1 global; atypical BDNF genotype group: 16 Broca’s, 6 anomic, 6 conduction, 3 global, 3 Wernicke’s

First stroke only?	No
Stroke type	Mixed etiologies
To what extent is the lesion distribution characterized?	Lesion overlay
Lesion extent	Typical BDNF genotype group: 121.4 ± 73.2 cc; atypical BDNF genotype group: 142.2 ± 88.4 cc
Lesion location	L MCA

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Cross-sectional
If longitudinal, at what time point(s) were imaging data acquired?	—
If longitudinal, was there any intervention between the time points?	—
Is the scanner described?	Yes (Siemens Trio 3 Tesla or Siemens Prisma 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	Event-related
Total images acquired	60
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	Yes
Imaging notes	sparse sampling

Conditions

| Are the conditions clearly described? | Yes |

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
picture naming	Word (overt)	40	Yes	Unknown
viewing abstract pictures	None	20	N/A	N/A

Conditions notes

| — |

Contrasts

| Are the contrasts clearly described? | Yes |

Contrast 1: picture naming vs viewing abstract pictures

Language condition	Picture naming
Control condition	Viewing abstract pictures
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes
- Are control data reported in this paper or another that is referenced? **No**
- Does the contrast selectively activate plausible relevant language regions in the control group? **Unknown**
- Are activations lateralized in the control data? **Unknown**

Analyses
- Are the analyses clearly described? **No* (moderate limitation) (see specific limitation(s) below)**

Voxelwise analysis 1
- **First level contrast**: Picture naming vs viewing abstract pictures
- **Analysis class**: Cross-sectional between two groups with aphasia
- **Group(s)**: Aphasia with typical genotype (n = 53) vs atypical genotype (n = 34)
- **Covariate**: —
- **Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?** **Yes**
- **Is accuracy matched across the second level contrast?** **Yes, matched**
- **Is reaction time matched across the second level contrast?** **Unknown, not reported**
- **Behavioral data notes**: —
- **Type of analysis**: Voxelwise
- **Search volume**
- **Correction for multiple comparisons**: Voxelwise FWE correction
- **Software**: SPM12
- **Voxelwise p**: —
- **Cluster extent**: —
- **Statistical details**: —
- **Findings**: None

Notes
- **Excluded analyses**: Comparisons between numbers of voxels activated, because not regionally specific and not described in sufficient detail

Purcell et al. (2019)
Reference
- **Authors**: Purcell JJ, Wiley RW, Rapp B
- **Title**: Re-learning to be different: Increased neural differentiation supports post-stroke language recovery
- **Reference**: NeuroImage 2019; 202: 116145
- **PMID**: 31479754
- **DOI**: 10.1016/j.neuroimage.2019.116145

Participants
- **Language**: US English
- **Inclusion criteria**: Chronic dysgraphia (acquired impairment in spelling)
- **Number of individuals with aphasia**: 21 (plus 4 excluded: 3 health reasons; 1 data acquisition error)
- **Number of control participants**: 0
Were any of the participants included in any previous studies? No

Is age reported for patients and controls, and matched? Yes (range 40-80 years)

Is sex reported for patients and controls, and matched? Yes (males: 13; females: 8)

Is handedness reported for patients and controls, and matched? Yes (right: 16; left: 3; other: 2)

Is time post stroke onset reported and appropriate to the study design? Yes (range 14-209 months)

To what extent is the nature of aphasia characterized? Comprehensive battery

Language evaluation
- Spelling (PALPA 40 and 54, and other word lists), oral reading (PALPA 35), reading comprehension (PALPA 51), spoken word-picture matching and picture naming tests from Northwestern Naming Battery, PPT-P; note no generic aphasia battery, but fairly complete coverage of language domains

Aphasia severity
- Spelling of untrained items range 51%-94%

Aphasia type
- 4 orthographic working memory deficit, 8 orthographic long-term memory deficit, 9 both types of deficit

First stroke only? Yes

Stroke type Not stated

To what extent is the lesion distribution characterized? Lesion overlay

Lesion extent Range 7.7-215.0 cc

Lesion location L MCA with L ventral occipitotemporal cortex mostly intact

Imaging notes —

Modality fMRI

Is the study cross-sectional or longitudinal? Longitudinal—chronic treatment

If longitudinal, at what time point(s) were imaging data acquired? T1: pre-treatment/chronic; T2: post-treatment, 6-24 weeks later

If longitudinal, was there any intervention between the time points? Spelling treatment, 60-80 minutes/day, 2 days/week, range 6-24 weeks

Is the scanner described? No (not stated)

Is the timing of stimulus presentation and image acquisition clearly described and appropriate? Yes

Design type Event-related

Total images acquired 1232 (four runs distributed over two days)

Are the imaging acquisition parameters, including coverage, adequately described and appropriate? Yes (cerebellum excluded)

Is preprocessing and intrasubject coregistration adequately described and appropriate? Yes

Is first level model fitting adequately described and appropriate? No* (moderate limitation) (not feasible to separate closely spaced instruction, word, and letter/response, especially when responses will be compared to rest)

Is intersubject normalization adequately described and appropriate? Yes

Imaging notes —

Conditions

Are the conditions clearly described? Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
spelling probe (training items)	Button press	60	Yes	Unknown
spelling probe (known items)	Button press	60	Yes	Unknown
case verification	Button press	60	Yes	Unknown
Conditions notes	Condition 3 not used in any contrasts			
-----------------	---------------------------------------			

Contrasts

Are the contrasts clearly described? Yes

Contrast 1: spelling probe (training items) vs rest

Language condition	Spelling probe (training items)
Control condition	Rest
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No

| Is accuracy matched between the language and control tasks for all relevant groups? | N/A, tasks not comparable |
| Is reaction time matched between the language and control tasks for all relevant groups? | N/A, tasks not comparable |

Behavioral data notes

| Are control data reported in this paper or another that is referenced? | No |

| Does the contrast selectively activate plausible relevant language regions in the control group? | Unknown |
| Are activations lateralized in the control data? | Unknown |

Control activation notes

Task comes from Rapp and Lipka (2011), who report lateralized activations for the contrast of spelling probes to case verification, but do not report results relative to fixation baseline

Contrast 2: spelling probe (known items) vs rest

Language condition	Spelling probe (known items)
Control condition	Rest
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No

| Is accuracy matched between the language and control tasks for all relevant groups? | N/A, tasks not comparable |
| Is reaction time matched between the language and control tasks for all relevant groups? | N/A, tasks not comparable |

Behavioral data notes

| Are control data reported in this paper or another that is referenced? | No |

| Does the contrast selectively activate plausible relevant language regions in the control group? | Unknown |
| Are activations lateralized in the control data? | Unknown |

Control activation notes

Task comes from Rapp and Lipka (2011), who report lateralized activations for the contrast of spelling probes to case verification, but do not report results relative to fixation baseline

Analyses

Are the analyses clearly described? No* (moderate limitation) (see specific limitation(s) below)

Voxelwise analysis 1
First level contrast

Description	Details
Spelling probe (training items) vs rest	
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia with both timepoints (n = 20) T2 vs T1
Covariate	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	**Appear mismatched**
Is reaction time matched across the second level contrast?	**Appear mismatched**
Behavioral data notes	
Type of analysis	Voxelwise
Search volume	Appears to be restricted to voxels spared in all patients
Correction for multiple comparisons	Clusterwise correction based on 3dClustSim
Software	BrainVoyager QX 2.4 or SPM12
Voxelwise p	.01
Cluster extent	49 voxels (size not stated)
Statistical details	
Findings	↑ L posterior cingulate
	↑ R angular gyrus
	↑ R posterior cingulate
Findings notes	

ROI analysis 1

Description	Details
First level contrast	Spelling probe (training items) vs rest
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia with both timepoints (n = 20) T2 vs T1
Covariate	Δ spelling accuracy on training items
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	**Unknown, not reported**
Is reaction time matched across the second level contrast?	**Unknown, not reported**
Behavioral data notes	
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	3
What are the ROI(s)?	(1) R AG; (2) L PCC; (3) R PCC
How are the ROI(s) defined?	Regions activated in SPM analysis 1
Correction for multiple comparisons	**No correction**
Statistical details	
Findings	None
Findings notes	

ROI analysis 2

Description	Details
First level contrast	Spelling probe (training items) vs rest
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia with both timepoints (n = 20) T2 vs T1
Covariate	Δ spelling accuracy on untrained items
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	**Unknown, not reported**
Is reaction time matched across the second level contrast?	**Unknown, not reported**
Behavioral data notes	—
---	---
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	3
What are the ROI(s)?	(1) R AG; (2) L PCC; (3) R PCC
How are the ROI(s) defined?	Regions activated in SPM analysis 1
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 3

First level contrast	Spelling probe (training items) vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T1
Covariate	Subsequent Δ spelling accuracy on training items (T2 vs T1)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (T1 behavioral measure should be included in model)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	L ventral occipitotemporal cortex
How are the ROI(s) defined?	The region that showed an increase in Local-Hreg from T1 to T2
Correction for multiple comparisons	One only
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 4

First level contrast	Spelling probe (training items) vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia with both timepoints T1 (n = 20)
Covariate	Subsequent Δ spelling accuracy on untrained items (T2 vs T1)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (T1 behavioral measure should be included in model)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	L ventral occipitotemporal cortex
How are the ROI(s) defined?	The region that showed an increase in Local-Hreg from T1 to T2
Correction for multiple comparisons	One only
Statistical details	—
Findings	None
Findings notes	—
ROI analysis 5

First level contrast	Spelling probe (training items) vs rest
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia with both timepoints (n = 20) T2 vs T1
Covariate	Δ spelling accuracy on training items
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	L ventral occipitotemporal cortex
How are the ROI(s) defined?	The region that showed an increase in Local-Hreg from T1 to T2
Correction for multiple comparisons	One only
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 6

First level contrast	Spelling probe (training items) vs rest
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia with both timepoints (n = 20) T2 vs T1
Covariate	Δ spelling accuracy on untrained items
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Region of interest (ROI)
ROI type	Functional
How many ROIs are there?	1
What are the ROI(s)?	L ventral occipitotemporal cortex
How are the ROI(s) defined?	The region that showed an increase in Local-Hreg from T1 to T2
Correction for multiple comparisons	One only
Statistical details	—
Findings	None
Findings notes	—

Complex analysis 1

First level contrast	Spelling probe (training items) vs rest
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia with both timepoints (n = 20) T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Appear mismatched
Is reaction time matched across the second level contrast?	Appear mismatched
Complex analysis 2

First level contrast	Spelling probe (known items) vs rest
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia with both timepoints (n = 20) T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	Yes, matched

Behavioral data notes

See section S2, main effects were not significant and effects appear smaller for known than trained

Statistical details

Local Heterogeneity Regression Analysis (Local-Hreg) was used to identify brain regions where the heterogeneity of timecourses between neighboring voxels, specifically for the trained condition, increased from T1 to T2. A voxelwise threshold of \(p < 0.05 \) was applied, followed by cluster correction based on permutation testing. The analysis appears to have been restricted to brain regions not damaged in any patients.

Findings notes

Only in L ventral occipitotemporal cortex, there was a significant increase in Local-Hreg from T1 to T2 (\(p = 0.028 \), corrected).

Complex analysis 3

First level contrast	Spelling probe (training items) vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T1
Covariate	T1 spelling accuracy on training items
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (training items were selected for individual patients, so training item accuracy is not an appropriate measure of spelling ability)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

—

Type of analysis

Complex

Statistical details

A linear mixed effects model was used to investigate the relationship between Local-Hreg at T1 in the L ventral occipitotemporal region previously identified and T1 spelling accuracy of training items. A complex model was used in which every voxel for every patient was considered an observation, with random effects of voxel and patient, but this is not described in detail.

Findings notes

There was a significant positive relationship between T1 Local-Hreg and T1 spelling accuracy on training items.
Complex analysis 4

First level contrast	Spelling probe (training items) vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T1
Covariate	Subsequent Δ spelling accuracy on training items (T2 vs T1)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (T1 behavioral measure should be included in model)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Complex
Statistical details	A linear mixed effects model was used to investigate the relationship between Local-Hreg at T1 in the L ventral occipitotemporal region previously identified and subsequent improvement in spelling accuracy of training items from T1 to T2. A complex model was used in which every voxel for every patient was considered an observation, with random effects of voxel and patient, but this is not described in detail.
Findings	Other
Findings notes	There was a significant positive relationship between T1 Local-Hreg and subsequent improvement in spelling accuracy on training items from T1 to T2.

Complex analysis 5

First level contrast	Spelling probe (training items) vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia with both timepoints T1 (n = 20)
Covariate	Subsequent Δ spelling accuracy on untrained items (T2 vs T1)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (T1 behavioral measure should be included in model)
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—
Type of analysis	Complex
Statistical details	A linear mixed effects model was used to investigate the relationship between Local-Hreg at T1 in the L ventral occipitotemporal region previously identified and subsequent improvement in spelling accuracy of training items from T1 to T2. A complex model was used in which every voxel for every patient was considered an observation, with random effects of voxel and patient, but this is not described in detail.
Findings	Other
Findings notes	There was a significant positive relationship between T1 Local-Hreg and subsequent improvement in spelling accuracy on training items from T1 to T2.

Complex analysis 6

First level contrast	Spelling probe (training items) vs rest
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia with both timepoints (n = 20) T2 vs T1
Covariate	Δ spelling accuracy on training items
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	—

Findings Notes: There was a significant positive relationship between T1 Local-Hreg and subsequent improvement in spelling accuracy on untrained items from T1 to T2.
Complex analysis 7
First level contrast
Analysis class
Group(s)
Covariate
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?
Is accuracy matched across the second level contrast?
Is reaction time matched across the second level contrast?
Behavioral data notes
Type of analysis
Statistical details
Findings
Findings notes

Complex analysis 8
First level contrast
Analysis class
Group(s)
Covariate
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?
Is accuracy matched across the second level contrast?
Is reaction time matched across the second level contrast?
Behavioral data notes
Type of analysis
Statistical details
Findings
Findings notes

Complex analysis 9
First level contrast
Analysis class
Group(s)
Covariate
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?
Is accuracy matched across the second level contrast?
Is reaction time matched across the second level contrast?
Behavioral data notes
Type of analysis
Statistical details
Findings
Findings notes
Covariate | Previous T1 Local-Hreg in L ventral occipitotemporal ROI
---|---
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? | No (the ROI was defined based on change in Local-Hreg, so spurious findings could arise in the absence of a real effect)
Is accuracy matched across the second level contrast? | Unknown, not reported
Is reaction time matched across the second level contrast? | Unknown, not reported

Behavioral data notes | —
Type of analysis | Complex
Statistical details | A linear mixed effects model was used to investigate the relationship between change in Local-Hreg in the L ventral occipitotemporal region previously identified and T1 Local-Hreg. A complex model was used in which every voxel for every patient was considered an observation, with random effects of voxel and patient, but this is not described in detail.

Findings | Other
Findings notes | There was a significant negative relationship between change in Local-Hreg and T1 Local-Hreg.

Complex analysis 10

First level contrast | Spelling probe (training items) vs rest
Analysis class | Longitudinal correlation with language or other measure
Group(s) | Aphasia with both timepoints (n = 20) T2 vs T1
Covariate | Δ spelling accuracy on training items
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? | Yes
Is accuracy matched across the second level contrast? | Unknown, not reported
Is reaction time matched across the second level contrast? | Unknown, not reported

Behavioral data notes | —
Type of analysis | Complex
Statistical details | A linear mixed effects model was used to investigate the relationship between change in Local-Hreg in the R AG, L PCC, and R PCC and change in spelling accuracy of training items. A complex model was used in which every voxel for every patient was considered an observation, with random effects of voxel and patient, but this is not described in detail.

Findings | None
Findings notes | —

Complex analysis 11

First level contrast | Spelling probe (training items) vs rest
Analysis class | Longitudinal correlation with language or other measure
Group(s) | Aphasia with both timepoints (n = 20) T2 vs T1
Covariate | Δ spelling accuracy on untrained items
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? | Yes
Is accuracy matched across the second level contrast? | Unknown, not reported
Is reaction time matched across the second level contrast? | Unknown, not reported

Behavioral data notes | —
Type of analysis | Complex
Statistical details | A linear mixed effects model was used to investigate the relationship between change in Local-Hreg in the R AG, L PCC, and R PCC and change in spelling accuracy of untrained items. A complex model was used in which every voxel for every patient was considered an observation, with random effects of voxel and patient, but this is not described in detail.

Findings | None
Findings notes | —

Notes |
Excluded analyses

(1) confirmatory voxelwise analyses in section S4.1 and S4.2; (2) additional analyses accounting for spelling deficit type and auditory comprehension deficits described in 3.3.3; (3) relationship between overall BOLD and local heterogeneity described in 3.4.3, because not related to aphasia recovery

Sreedharan, Chandran, et al. (2019)

Reference

Authors	Sreedharan S, Chandran A, Yanamala VR, Sylaja PN, Kesavadas C, Sitaram R
Title	Self-regulation of language areas using real-time functional MRI in stroke patients with expressive aphasia
Reference	Brain Imaging Behav 2019; None:
PMID	31089955
DOI	10.1007/s11682-019-00106-7

Participants

Language	Malayalam
Inclusion criteria	Broca's aphasia or anomic aphasia; comprehension relatively preserved; "motivated for speech therapy"
Number of individuals with aphasia	8 (plus 3 excluded: 2 for claustrophobia; 1 for transportation issues)
Number of control participants	4
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	No (range 18-68 years; controls were younger)
Is sex reported for patients and controls, and matched?	Yes (males: 7; females: 1)
Is handedness reported for patients and controls, and matched?	Yes (right: 8; left: 0)
Is time post stroke onset reported and appropriate to the study design?	No (6-22 weeks; patients at different subacute stages of recovery)
To what extent is the nature of aphasia characterized?	Severity only
Language evaluation	WAB translated into Malayalam
Aphasia severity	AQ range approximately 50-80
Aphasia type	Broca's or anomic
First stroke only?	Not stated
Stroke type	Not stated
To what extent is the lesion distribution characterized?	Individual lesions
Lesion extent	Not stated
Lesion location	7 L MCA, 1 bilateral MCA
Participants notes	—

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Longitudinal—mixed
If longitudinal, at what time point(s) were imaging data acquired?	Neurofeedback group: T1: pre-treatment/subacute; T2: 1-5 weeks later; T3: 2-6 weeks after T1; T4: 3-11 weeks after T1; T5: 4-12 weeks after T1; T6: 5-12 weeks after T1; no training group: T1: subacute; T2: 2-12 weeks later; controls: T1: start of study; T2: 1-4 weeks later; T3: 3-5 weeks after T1; T4: 4-8 weeks after T1; T5: 7-37 weeks after T1; T6: 12-43 weeks after T1
If longitudinal, was there any intervention between the time points?	4 patients received 4 additional sessions involving neurofeedback training, while 4 patients received treatment as usual
Is the scanner described?	Yes (Siemens Avanto 1.5 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate? No* (moderate limitation) (picture naming events consistently located between blocks)

Design type Mixed

Total images acquired probably 964

Are the imaging acquisition parameters, including coverage, adequately described and appropriate? Yes (whole brain)

Is preprocessing and intrasubject coregistration adequately described and appropriate? Yes

Is first level model fitting adequately described and appropriate? No* (moderate limitation) (event timing will make conditions difficult to disentangle)

Is intersubject normalization adequately described and appropriate? No (lesion impact not addressed)

Imaging notes —

Conditions

Are the conditions clearly described? Yes

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
neurofeedback (try to activate language areas)	Other	24	Unknown	Unknown
rest	None	24	N/A	N/A
picture naming	Other	first and last timepoints: 48; other timepoints: 0	No	No
word generation	Multiple words (covert)	5	Unknown	Unknown

Conditions notes Suggested strategies to activate language areas included "making a speech, having a conversation, reciting a poem or any other form of language activity performed covertly"; picture naming task involved covert word response and button press; picture naming task not used in any contrast; word generation task used only to generate ROIs

Contrasts

Are the contrasts clearly described? Yes

Contrast 1: neurofeedback (try to activate language areas) vs rest

Language condition	Neurofeedback (try to activate language areas)
Control condition	Rest
Are the conditions matched for visual demands?	No
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	Yes
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	Somewhat
Does the contrast selectively activate plausible relevant language regions in the control group?	Unknown
Are activations lateralized in the control data?	No
Control activation notes	Task activated L IFG and L STG in controls (Fig. 8c), but no data on other regions, and language activations were not lateralized (Fig. 9d)

Analyses
Are the analyses clearly described?	**No** (moderate limitation) (see specific limitation(s) below)

ROI analysis 1

First level contrast	Neurofeedback (try to activate language areas) vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia mean of T1, T2, T3, T4, T5, T6 (neurofeedback patients) or T1, T2 (no training patients) vs control mean
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	4
What are the ROI(s)?	(1) L Broca’s area (IFG pars opercularis and triangularis); (2) L Wernicke’s area (pSTG); (3-4) homotopic counterparts
How are the ROI(s) defined?	Individual activations within AAL ROIs on a separate word generation localizer
Correction for multiple comparisons	No direct comparison
Statistical details	—
Findings	↓ L IFG pars opercularis
	↓ L IFG pars triangularis
	↓ L posterior STG
	↓ R IFG pars opercularis
	↓ R IFG pars triangularis
	↓ R posterior STG

ROI analysis 2

First level contrast	Neurofeedback (try to activate language areas) vs rest
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia with neurofeedback training (n = 4) mean of T4, T5, T6 vs no training (n = 4) T2
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Somewhat (no treatment effect; second half measures rather than measures of change)
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	15
What are the ROI(s)?	(1) L Broca’s area (IFG pars opercularis and triangularis); (2) L Wernicke’s area (pSTG); (3-4) homotopic counterparts; (5) L MFG; (6) L PrCG; (7) L Rolandic operculum; (8) L insula; (9) L IFG pars orbitalis; (10) L MFG orbital; (11) L SMG; (12) L MTG; (13) L PoCG; (14) L AG; (15) L HG
How are the ROI(s) defined?	(1-4) individual activations within AAL ROIs on a separate word generation localizer; (5-15) AAL
Correction for multiple comparisons	No correction
Statistical details	—
Findings	↑ L ventral precentral/inferior frontal junction
	↑ L somato-motor
Findings notes	—
Complex analysis 1

First level contrast	Neurofeedback (try to activate language areas) vs rest
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia mean of T1, T2, T3, T4, T5, T6 (neurofeedback patients) or T1, T2 (no training patients) vs control mean
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	N/A, no behavioral measure
Is reaction time matched across the second level contrast?	N/A, no timeable task
Behavioral data notes	—
Type of analysis	Complex
Statistical details	Signal change in L IFG and L pSTG ROIs was computed, along with functional connectivity between these ROIs. Neurofeedback values were calculated based on signal change as well as correlation between the ROIs. Group differences in neurofeedback values were compared, but not quantified statistically.
Findings	Other
Findings notes	Patients received lower neurofeedback values than controls, due to lower signal changes and lower functional connectivity.

Notes

Excluded analyses:
(1) individual participant analyses in Fig. 10; (2) comparisons between groups at each time point (Fig. 11), which yielded similar results to comparisons averaged across time points; (3) vague statements about temporal trends in Figs. 12, 13, and 14

Hartwigsen et al. (2020)

Reference

Authors	Hartwigsen G, Stockert A, Charpentier L, Wawrzyniak M, Klingbeil J, Wrede K, Obrig H, Saur
Title	Short-term modulation of the lesioned language network
Reference	eLife 2020; 9: e54277
PMID	32181741
DOI	10.7554/elife.54277

Participants

Language	German
Inclusion criteria	Lesion involving left temporo-parietal cortex and sparing left frontal cortex; relatively well-recovered
Number of individuals with aphasia	12 (plus 2 excluded: 1 lost to follow-up; 1 did not show any sound-related neural activation in auditory cortex after sham cTBS)
Number of control participants	0
Were any of the participants included in any previous studies?	No
Is age reported for patients and controls, and matched?	Yes (mean 58.8 years, range 43-72 years)
Is sex reported for patients and controls, and matched?	Yes (males: 8; females: 4)
Is handedness reported for patients and controls, and matched?	Yes (right: 12; left: 0)
Is time post stroke onset reported and appropriate to the study design?	Yes (mean 37.9 ± 34.8 months, range 6-122 months)
To what extent is the nature of aphasia	Not at all
Language evaluation

Characteristic	Description
AAT	
Aphasia severity	7 mild residual aphasia, 5 recovered
Aphasia type	Not stated
First stroke only?	Yes
Stroke type	Ischemic only
To what extent is the lesion distribution characterized?	Lesion overlay
Lesion extent	Range 11.9-176.3 cc
Lesion location	Left temporo-parietal cortex; maximal overlap in SMG

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Longitudinal—chronic treatment
If longitudinal, at what time point(s) were imaging data acquired?	T1/T2/T3: chronic; sessions consisted of cTBS over left anterior IFG, cTBS over left posterior IFG, or sham; sessions at least 7 days apart in randomized order
If longitudinal, was there any intervention between the time points?	CTBS
Is the scanner described?	Yes (Siemens Verio 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	No* (moderate limitation) (stimulus timing not described in detail; stated duration of data acquisition substantially outside possible range of duration of stimuli)
Design type	Block
Total images acquired	740
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	Yes (whole brain)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	No (lesion impact not addressed)

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
syllable count decision	Button press	10	Yes	Yes
semantic decision	Button press	10	Yes	Yes
rest	None	20	N/A	N/A

Conditions notes

Extent of recovery supports the assertion that all individuals could do the tasks

Contrasts

Contrast 1: syllable count decision vs rest

Language condition	Control condition
Syllable count decision	Rest

Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Question	Answer
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible relevant language regions in the control group?	Yes
Are activations lateralized in the control data?	Somewhat
Control activation notes	Control data in Hartwigsen et al. (2017); L-lateralized IFG but bilateral SMG
Contrast notes	—

Contrast 2: semantic decision vs rest

Language condition	Semantic decision
Control condition	Rest
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	No
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	—
Are control data reported in this paper or another that is referenced?	Yes
Does the contrast selectively activate plausible relevant language regions in the control group?	Yes
Are activations lateralized in the control data?	Yes
Control activation notes	Control data in Hartwigsen et al. (2017); L-lateralized IFG and AG most prominent
Contrast notes	—

Analyses

Are the analyses clearly described? Yes

Voxelwise analysis 1

First level contrast	Syllable count decision vs rest
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia after cTBS to posterior IFG vs sham; same patients, repeated measures
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	No, different
Behavioral data notes	Significantly slower response times when cTBS was applied over pIFG relative to when sham cTBS was applied
Type of analysis	Voxelwise
Search volume	Voxels spared in all patients
Correction for multiple comparisons	Clusterwise correction with with GRFT and stringent voxelwise p
Software	SPM12
Voxelwise p	.001
Cluster extent	Based on GRFT
Statistical details

Findings
- ↓ L IFG pars opercularis
- ↓ L SMA/medial prefrontal
- ↓ R SMA/medial prefrontal
- ↓ R basal ganglia

Findings notes
Based on Figure 4A and Table 3

Voxelwise analysis 2

First level contrast
Syllable count decision vs rest

Analysis class
Cross-sectional between two groups with aphasia

Group(s)
Aphasia after cTBS to posterior IFG vs after cTBS to anterior IFG; same patients, repeated measures

Covariate
—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?
Yes

Is accuracy matched across the second level contrast?
Yes, matched

Is reaction time matched across the second level contrast?
No, different

Behavioral data notes
Significantly slower response times when cTBS was applied over pIFG relative to when cTBS was applied over aIFG

Type of analysis
Voxelwise

Search volume
Voxels spared in all patients

Correction for multiple comparisons
Clusterwise correction with with GRFT and stringent voxelwise p

Software
SPM12

Voxelwise p
.001

Cluster extent
Based on GRFT

Statistical details
—

Findings
- ↓ L IFG pars opercularis

Findings notes
Based on Table 3

Voxelwise analysis 3

First level contrast
Semantic decision vs rest

Analysis class
Cross-sectional between two groups with aphasia

Group(s)
Aphasia after cTBS to anterior IFG vs sham; same patients, repeated measures

Covariate
—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?
Somewhat (no behavioral difference)

Is accuracy matched across the second level contrast?
Yes, matched

Is reaction time matched across the second level contrast?
Yes, matched

Behavioral data notes
Difference in reaction time did not survive correction

Type of analysis
Voxelwise

Search volume
Voxels spared in all patients

Correction for multiple comparisons
Clusterwise correction with with GRFT and stringent voxelwise p

Software
SPM12

Voxelwise p
.001

Cluster extent
Based on GRFT

Statistical details
—

Findings
- ↓ L insula
- ↓ L dorsolateral prefrontal cortex
- ↓ R insula
- ↓ R dorsolateral prefrontal cortex
- ↓ R SMA/medial prefrontal

Findings notes
Based on Figure 4B and Table 3
Voxelwise analysis 4

First level contrast	Semantic decision vs rest
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia after cTBS to anterior IFG vs after cTBS to posterior IFG ; same patients, repeated measures
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Yes, matched
Is reaction time matched across the second level contrast?	No, different
Behavioral data notes	Significantly slower response times when cTBS was applied over aIFG relative to when cTBS was applied over pIFG
Type of analysis	Voxelwise
Search volume	Voxels spared in all patients
Correction for multiple comparisons	Clusterwise correction with with GRFT and stringent voxelwise p
Software	SPM12
Voxelwise p	.001
Cluster extent	Based on GRFT
Statistical details	—
Findings	↓ L insula
	↓ R insula
	↓ R dorsolateral prefrontal cortex
Findings notes	Based on Table 3

Complex analysis 1

First level contrast	Syllable count decision vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia after cTBS to posterior IFG vs sham; same patients, repeated measures
Covariate	Δ RT for syllable decision (cTBS to posterior IFG timepoint vs sham timepoint)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	RT is covariate
Behavioral data notes	—
Type of analysis	Complex
Statistical details	Whole brain correlations were computed between the difference in functional activity after cTBS to posterior IFG versus sham stimulation, and the difference in reaction times on the syllable counting task under these two conditions. The resulting SPM was thresholded at voxelwise p < .001 (CDT) followed by correction for multiple comparisons based on cluster extent and GRFT using SPM12.
Findings	Other
Findings notes	Uregulation of the R supramarginal gyrus after cTBS was significantly associated with slowing of RT after cTBS. This finding remained significant after including lesion volume as covariate.

Complex analysis 2

First level contrast	Semantic decision vs rest
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia after cTBS to anterior IFG vs sham; same patients, repeated measures
Covariate	Δ RT for semantic decision (cTBS to posterior IFG timepoint vs sham timepoint)
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?
RT is covariate

Behavioral data notes
—

Type of analysis
Complex

Statistical details
Whole brain correlations were computed between the difference in functional activity after cTBS to anterior IFG versus sham stimulation, and the difference in reaction times on the semantic decision task under these two conditions. The resulting SPM was thresholded at voxelwise \(p < .001 \) (CDT) followed by correction for multiple comparisons based on cluster extent and GRFT using SPM12.

Findings
None

Notes
Excluded analyses
—

Stockert et al. (2020)

Reference

Authors
Stockert A, Wawrzyniak M, Klingbeil J, Wrede K, Kümmerer D, Hartwigsen G, Kaller CP, Weiller C, Saur D

Title
Dynamics of language reorganization after left temporo-parietal and frontal stroke

Reference
Brain 2020; 143: 844-861

PMID
32068789

DOI
10.1093/brain/awaa023

Participants

Language
German

Inclusion criteria
Lesion localized to frontal or temporal cortex

Number of individuals with aphasia
34 (plus 50 excluded: 19 lesions spanned frontal and temporal, or were subcortical, or had persisting large vessel occlusions; 31 not all three timepoints were acquired)

Number of control participants
17

Were any of the participants included in any previous studies?
Yes (8 patients were included in Saur et al. (2006); there may also be overlap with Saur et al. (2010), a study that did not meet our inclusion criteria)

Is age reported for patients and controls, and matched?
Yes (frontal group: mean 52.3 ± 18.9 years, range 15-78 years; temporo-parietal group: mean 54.4 ± 12.7 years, range 31-76 years)

Is sex reported for patients and controls, and matched?
Yes (males: 25; females: 9)

Is handedness reported for patients and controls, and matched?
No (right: 31; left: 2; other: 1; not stated for controls)

Is time post stroke onset reported and appropriate to the study design?
Yes (frontal group: T1 acute: mean 3.2 ± 2.0 days, range 1-7 days; T2 subacute: mean 11.9 ± 2.2 days, range 8-17 days; T3 chronic: mean 272.6 ± 88.5 days, range 181-435 days; temporo-parietal group: T1 acute: mean 1.6 ± 0.8 days, range 1-4 days; T2 subacute: mean 10.1 ± 1.7 days, range 8-13 days; T3 chronic: mean 262.5 ± 75.0 days, range 184-394 days)

To what extent is the nature of aphasia characterized?
Severity only

Language evaluation
AAT including TT, comprehension composite (LRScomp) and production composite (LRSprod) were derived

Aphasia severity
Frontal group: T1 acute: LRScomp mean 0.48 ± 0.26; T2 subacute: LRScomp mean 0.64 ± 0.21; T3 chronic: LRScomp mean 0.91 ± 0.07; temporo-parietal group: T1 acute: LRScomp mean 0.63 ± 0.32; T2 subacute: LRScomp mean 0.79 ± 0.20; T3 chronic: LRScomp mean 0.91 ± 0.13

Aphasia type
Not stated

First stroke only?
Yes

Stroke type
Ischemic only
To what extent is the lesion distribution characterized?
Lesion extent
Frontal group: mean 69.3 ± 34.0 cc, range 12.3-76.6 cc; temporo-parietal group: mean 54.8 ± 41.1 cc, range 6.2-108.5 cc
Lesion location
L MCA, frontal (n = 17) or temporo-parietal (n = 17)
Participants notes
1630 patients screened for inclusion; frontal patients scanned later than temporal patients at T1 and T2

Imaging

Modality	fMRI
Is the study cross-sectional or longitudinal?	Longitudinal—recovery
If longitudinal, at what time point(s) were imaging data acquired?	T1 acute: 1-7 days; T2 subacute: 8-21 days; T3 chronic: > 6 months
If longitudinal, was there any intervention between the time points?	Not stated
Is the scanner described?	Yes (Siemens Trio 3 Tesla or Siemens Verio 3 Tesla)
Is the timing of stimulus presentation and image acquisition clearly described and appropriate?	Yes
Design type	Event-related
Total images acquired	660 (20 patients; paradigm 1) or 260 (14 patients; paradigm 2)
Are the imaging acquisition parameters, including coverage, adequately described and appropriate?	No (whole brain; TE = 96 ms questionable)
Is preprocessing and intrasubject coregistration adequately described and appropriate?	Yes
Is first level model fitting adequately described and appropriate?	Yes
Is intersubject normalization adequately described and appropriate?	Yes
Imaging notes	—

Conditions

Condition	Response type	Repetitions	All groups could do?	All individuals could do?
listening to normal sentences and making a plausibility judgment (paradigm 1)	None	46	Unknown	Unknown
listening to semantically anomalous sentences and making a plausibility judgment (paradigm 1)	Button press	46	Unknown	Unknown
listening to reversed speech	Button press	paradigm 1: 92; paradigm 2: 30	Yes	Unknown
listening to normal sentences (paradigm 2)	Button press	15	Yes	Unknown
listening to semantically anomalous sentences (paradigm 2)	Button press	15	Yes	Unknown
listening to pseudoword speech (paradigm 2)	Button press	30	Yes	Unknown
rest	None	implicit baseline	N/A	N/A

Conditions notes
Conditions 2, 5, and 6 were not used, and condition 7 was effectively contrasted out; reported behavioral data collapses across conditions and paradigms and so does not establish performance on any specific condition, but the data suggest that at least the conditions where no language-related decisions were required could have been performed by all groups.

Contrasts

Are the contrasts clearly described?
No (see specific limitation(s) below)
Contrast 1: listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech

Language condition	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2)
Control condition	Listening to reversed speech
Are the conditions matched for visual demands?	Yes
Are the conditions matched for auditory demands?	Yes
Are the conditions matched for motor demands?	No
Are the conditions matched for cognitive/executive demands?	No
Is accuracy matched between the language and control tasks for all relevant groups?	Unknown, not reported
Is reaction time matched between the language and control tasks for all relevant groups?	N/A, tasks not comparable
Behavioral data notes	In paradigm 1, responses were required in the language condition but not the control condition, making the tasks not comparable for RT
Are control data reported in this paper or another that is referenced?	Somewhat
Does the contrast selectively activate plausible relevant language regions in the control group?	Yes
Are activations lateralized in the control data?	Yes
Control activation notes	Not stated which of the two paradigms controls were run on, but clearly L-lateralized frontal and temporal activation; bilateral MD network activation also noted
Contrast notes	20 patients performed paradigm 1 and 14 patients performed paradigm 2; data were combined despite some differences; unclear whether all reversed speech was included, or only reversed speech derived from plausible sentences

Analyses

| Are the analyses clearly described? | Yes |

ROI analysis 1

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	13
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL
How are the ROI(s) defined?	Spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints
Correction for multiple comparisons	No correction
Statistical details	Post-hoc tests comparing 2 out of the 3 time points were corrected using the Bonferroni-Holm procedure, but there is no indication that that multiple comparisons across ROIs were accounted for
Findings	↑ L IFG pars orbitalis
ROI analysis 2

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T3 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	13
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL
How are the ROI(s) defined?	Spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints
Correction for multiple comparisons	No correction
Statistical details	Post-hoc tests comparing 2 out of the 3 time points were corrected using the Bonferroni-Holm procedure, but there is no indication that that multiple comparisons across ROIs were accounted for
Findings	↑ L IFG pars orbitalis
	↑ L dorsolateral prefrontal cortex
	↑ L posterior STG/STS/MTG
	↑ L anterior temporal
Findings notes	Based on Figure 3; several additional regions are mentioned in text and/or Table 1

ROI analysis 3

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T3 vs T2
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	13
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL
How are the ROI(s) defined?	Spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints
Findings notes	Based on Figure 3; several additional regions are mentioned in text and/or Table 1
Correction for multiple comparisons

No correction

Statistical details

Post-hoc tests comparing 2 out of the 3 time points were corrected using the Bonferroni-Holm procedure, but there is no indication that multiple comparisons across ROIs were accounted for.

Findings

None

Findings notes

Based on Figure 3; several additional regions are mentioned in text and/or Table 1

ROI analysis 4

First level contrast

Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech

Analysis class

Cross-sectional between two groups with aphasia

Group(s)

Aphasia frontal mean of T1, T2, T3 (n = 17) vs temporo-parietal mean of T1, T2, T3 (n = 17)

Covariate

—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?

Yes

Is accuracy matched across the second level contrast?

Unknown, not reported

Is reaction time matched across the second level contrast?

Unknown, not reported

Behavioral data notes

No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions

Type of analysis

Regions of interest (ROI)

ROI type

Functional

How many ROIs are there?

13

What are the ROI(s)?

(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL

How are the ROI(s) defined?

Spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints

Correction for multiple comparisons

No correction

Statistical details

—

Findings

↑ L posterior STG/STS/MTG
↑ R IFG pars orbitalis
↑ R anterior temporal
↓ L IFG pars opercularis
↓ L IFG pars triangularis
↓ L dorsolateral prefrontal cortex

Findings notes

Based on Table 1

ROI analysis 5

First level contrast

Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech

Analysis class

Longitudinal between two groups with aphasia

Group(s)

(Aphasia frontal (n = 17) T2 vs T1) vs (temporo-parietal (n = 17) T2 vs T1)

Covariate

—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?

Yes

Is accuracy matched across the second level contrast?

Unknown, not reported

Is reaction time matched across the second level contrast?

Unknown, not reported

Behavioral data notes

No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions

Type of analysis

Regions of interest (ROI)

ROI type

Functional

How many ROIs are there?

13

What are the ROI(s)?

(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L
How are the ROI(s) defined?

Spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints

Correction for multiple comparisons

No correction

Statistical details

Interactions were significant in model with all 3 time points; post-hoc sub-interactions not reported but the patterns appear clear

Findings

↓ L IFG pars opercularis
↓ L IFG pars triangularis
↓ R IFG pars triangularis
↓ R dorsolateral prefrontal cortex

Findings notes

—

ROI analysis 6

First level contrast

Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech

Analysis class

Longitudinal between two groups with aphasia

Group(s)

(Aphasia frontal \(n = 17 \) T3 vs T1) vs (temporo-parietal \(n = 17 \) T3 vs T1)

Covariate

—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?

Yes

Is accuracy matched across the second level contrast?

Unknown, not reported

Is reaction time matched across the second level contrast?

Unknown, not reported

Behavioral data notes

No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions

Type of analysis

Regions of interest (ROI)

ROI type

Functional

How many ROIs are there?

13

What are the ROI(s)?

(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL

How are the ROI(s) defined?

Spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints

Correction for multiple comparisons

No correction

Statistical details

Interactions were significant in model with all 3 time points; post-hoc sub-interactions not reported and patterns are not clear

Findings

↓ L IFG pars opercularis
↓ L IFG pars triangularis
↓ R IFG pars triangularis
↓ R dorsolateral prefrontal cortex

Findings notes

—

ROI analysis 7

First level contrast

Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech

Analysis class

Longitudinal between two groups with aphasia

Group(s)

(Aphasia frontal \(n = 17 \) T3 vs T2) vs (temporo-parietal \(n = 17 \) T3 vs T2)

Covariate

—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?

Yes

Is accuracy matched across the second level contrast?

Unknown, not reported

Is reaction time matched across the second level contrast?

Unknown, not reported

Behavioral data notes

No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions

Type of analysis

Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	13
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL
How are the ROI(s) defined?	Spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints
Correction for multiple comparisons	No correction
Statistical details	Post-hoc sub-interactions not reported but there do not appear to be any T2/T3 effects
Findings	None
Findings notes	—

ROI analysis 8

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T2 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Other
How many ROIs are there?	2
What are the ROI(s)?	(1) perilesional tissue; (2) regions homotopic to lesions; each unique to individuals
How are the ROI(s) defined?	(1) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (2) homotopic ROIs were flipped lesions
Correction for multiple comparisons	No correction
Statistical details	Test of group by time interaction not reported
Findings	Other
Findings notes	There was a significant increase in activation in perilesional ROIs

ROI analysis 9

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T3 vs T1
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Other
How many ROIs are there?	2
What are the ROI(s)?	(1) perilesional tissue; (2) regions homotopic to lesions; each unique to individuals
How are the ROI(s) defined?	(1) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (2) homotopic ROIs were flipped lesions
temporal regions activated by the language contrast in controls; (2) homotopic ROIs were flipped lesions

Correction for multiple comparisons
No correction

Statistical details
Test of group by time interaction not reported

Findings notes
There was a significant increase in activation in perilesional ROIs

ROI analysis 10

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Longitudinal change in aphasia
Group(s)	Aphasia T3 vs T2
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Other
How many ROIs are there?	2
What are the ROI(s)?	(1) perilesional tissue; (2) regions homotopic to lesions; each unique to individuals
How are the ROI(s) defined?	(1) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (2) homotopic ROIs were flipped lesions
Correction for multiple comparisons	No correction
Statistical details	Test of group by time interaction not reported
Findings notes	—
Findings	None

ROI analysis 11

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia frontal mean of T1, T2, T3 (n = 17) vs temporo-parietal mean of T1, T2, T3 (n = 17)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Other
How many ROIs are there?	2
What are the ROI(s)?	(1) perilesional tissue; (2) regions homotopic to lesions; each unique to individuals
How are the ROI(s) defined?	(1) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (2) homotopic ROIs were flipped lesions
Correction for multiple comparisons	No correction
Statistical details	Test of group by time interaction not reported; this comparison is somewhat questionable
Findings notes	—
Findings	None
Findings
Other
Findings notes
Frontal patients showed relatively greater activation in regions homotopic to their lesions

ROI analysis 12

First level contrast
Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech

Analysis class
Cross-sectional aphasia vs control

Group(s)
Aphasia frontal T1 (n = 17) vs control

Covariate
—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?
Yes

Is accuracy matched across the second level contrast?
Unknown, not reported

Is reaction time matched across the second level contrast?
Unknown, not reported

Behavioral data notes
No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions

Type of analysis
Regions of interest (ROI)

ROI type
Functional

How many ROIs are there?
13

What are the ROI(s)?
(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL

How are the ROI(s) defined?
Spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; circular because patients but not controls used to define ROIs

Correction for multiple comparisons
No correction

Statistical details
—

Findings
↓ L IFG pars triangularis
↓ L insula
↓ L dorsolateral prefrontal cortex

Findings notes
—

ROI analysis 13

First level contrast
Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech

Analysis class
Cross-sectional aphasia vs control

Group(s)
Aphasia temporo-parietal T1 (n = 17) vs control

Covariate
—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?
Yes

Is accuracy matched across the second level contrast?
Unknown, not reported

Is reaction time matched across the second level contrast?
Unknown, not reported

Behavioral data notes
No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions

Type of analysis
Regions of interest (ROI)

ROI type
Functional

How many ROIs are there?
13

What are the ROI(s)?
(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL

How are the ROI(s) defined?
Spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; circular because patients but not controls used to define ROIs

Correction for multiple comparisons
No correction

Statistical details
—

Findings
↓ L IFG pars triangularis
ROI analysis 14	
First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia frontal T1 (n = 17) vs temporo-parietal T1 (n = 17)
Covariate	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	13
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL
How are the ROI(s) defined?	Spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints
Correction for multiple comparisons	No correction
Statistical details	
Findings	↑ L anterior temporal
	↑ R IFG pars triangularis
	↑ R anterior temporal
Findings notes	

ROI analysis 15	
First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia frontal T2 (n = 17) vs control
Covariate	
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	13
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL
How are the ROI(s) defined?	Spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; circular because patients but not controls used to define ROIs
Correction for multiple comparisons	No correction
Findings notes	

597
ROI analysis 16

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia temporo-parietal T2 (n = 17) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	13
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL
How are the ROI(s) defined?	Spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; circular because patients but not controls used to define ROIs
Correction for multiple comparisons	No correction

ROI analysis 17

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia frontal T2 (n = 17) vs temporo-parietal T2 (n = 17)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	13
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL
How are the ROI(s) defined?	Spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints
Correction for multiple comparisons	No correction

Findings
↓ L IFG pars opercularis
↓ L IFG pars triangularis
↓ L dorsolateral prefrontal cortex
ROI analysis 18

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia frontal T3 (n = 17) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	13
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL
How are the ROI(s) defined?	Spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; circular because patients but not controls used to define ROIs
Correction for multiple comparisons	No correction
Statistical details	—
Findings	↓ L IFG pars triangularis
Findings notes	—

ROI analysis 19

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia temporo-parietal T3 (n = 17) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Functional
How many ROIs are there?	13
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL
How are the ROI(s) defined?	Spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; circular because patients but not controls used to define ROIs
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 20

| Findings notes | — |
First level contrast

- **Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech**

Analysis class

- **Cross-sectional between two groups with aphasia**

Group(s)

- **Aphasia frontal T3 (n = 17) vs temporo-parietal T3 (n = 17)**

Covariate

- —

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?

- **Yes**

Is accuracy matched across the second level contrast?

- **Unknown, not reported**

Is reaction time matched across the second level contrast?

- **Unknown, not reported**

Behavioral data notes

- No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions

Type of analysis

- **Regions of interest (ROI)**

ROI type

- **Functional**

How many ROIs are there?

- 13

What are the ROI(s)?

- (1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL

How are the ROI(s) defined?

- Spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints

Correction for multiple comparisons

- **No correction**

Statistical details

- —

Findings

- ↓ L IFG pars opercularis
- ↓ L IFG pars triangularis
- ↓ L IFG pars orbitalis
- ↓ L dorsolateral prefrontal cortex

Findings notes

- —

ROI analysis 21

First level contrast

- Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech

Analysis class

- Cross-sectional aphasia vs control

Group(s)

- Aphasia frontal T1 (n = 17) vs control

Covariate

- —

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?

- **Yes**

Is accuracy matched across the second level contrast?

- **Unknown, not reported**

Is reaction time matched across the second level contrast?

- **Unknown, not reported**

Behavioral data notes

- No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions

Type of analysis

- **Regions of interest (ROI)**

ROI type

- **Other**

How many ROIs are there?

- 2

What are the ROI(s)?

- (1) perilesional tissue; (2) regions homotopic to lesions; each unique to individuals

How are the ROI(s) defined?

- (1) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (2) homotopic ROIs were flipped lesions

Correction for multiple comparisons

- **No correction**

Statistical details

- —

Findings notes

- Frontal patients showed reduced activation in perilesional tissue

ROI analysis 22

First level contrast

- Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
normal sentences (paradigm 2) vs listening to reversed speech

Analysis class
Cross-sectional aphasia vs control

Group(s)
Aphasia frontal T2 (n = 17) vs control

Covariate
—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? Yes

Is accuracy matched across the second level contrast? Unknown, not reported

Is reaction time matched across the second level contrast? Unknown, not reported

Behavioral data notes No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions

Type of analysis Regions of interest (ROI)

ROI type Other

How many ROIs are there? 2

What are the ROI(s)? (1) perilesional tissue; (2) regions homotopic to lesions; each unique to individuals

How are the ROI(s) defined? (1) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (2) homotopic ROIs were flipped lesions

Correction for multiple comparisons No correction

Statistical details —

Findings Other

Findings notes Frontal patients showed reduced activation in perilesional tissue

ROI analysis 23

First level contrast Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech

Analysis class Cross-sectional aphasia vs control

Group(s)
Aphasia frontal T3 (n = 17) vs control

Covariate —

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved? Yes

Is accuracy matched across the second level contrast? Unknown, not reported

Is reaction time matched across the second level contrast? Unknown, not reported

Behavioral data notes No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions

Type of analysis Regions of interest (ROI)

ROI type Other

How many ROIs are there? 2

What are the ROI(s)? (1) perilesional tissue; (2) regions homotopic to lesions; each unique to individuals

How are the ROI(s) defined? (1) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (2) homotopic ROIs were flipped lesions

Correction for multiple comparisons No correction

Statistical details —

Findings Other

Findings notes Frontal patients showed reduced activation in perilesional tissue

ROI analysis 24

First level contrast Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech

Analysis class Cross-sectional aphasia vs control

Group(s)
Aphasia temporo-parietal T1 (n = 17) vs control

Covariate —
Question	Answer
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Other
How many ROIs are there?	2
What are the ROI(s)?	(1) perilesional tissue; (2) regions homotopic to lesions; each unique to individuals
How are the ROI(s) defined?	(1) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (2) homotopic ROIs were flipped lesions
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	Temporal patients showed reduced activation in perilesional tissue and in regions homotopic to their lesions

ROI analysis 25

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia temporo-parietal T2 (n = 17) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Other
How many ROIs are there?	2
What are the ROI(s)?	(1) perilesional tissue; (2) regions homotopic to lesions; each unique to individuals
How are the ROI(s) defined?	(1) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (2) homotopic ROIs were flipped lesions
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 26

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional aphasia vs control
Group(s)	Aphasia temporo-parietal T3 (n = 17) vs control
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported

602
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Other
How many ROIs are there?	2
What are the ROI(s)?	(1) perilesional tissue; (2) regions homotopic to lesions; each unique to individuals
How are the ROI(s) defined?	(1) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (2) homotopic ROIs were flipped lesions
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 27

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T1
Covariate	Comprehension composite
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	15
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions
How are the ROI(s) defined?	(1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions
Correction for multiple comparisons	No correction
Statistical details	—
Findings	↑ L IFG pars opercularis
Findings notes	↑ L IFG pars triangularis
	↑ L IFG pars orbitalis
	other
	L IFG pars opercularis and orbitalis did not remain significant when lesion volume was included as a covariate; there was a significant correlation between perilesional activation and LRScomp; this did not remain significant when lesion volume was included as a covariate

ROI analysis 28

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T2
Covariate	Comprehension composite

603
Description	Value
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	15
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions
How are the ROI(s) defined?	(1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions
Correction for multiple comparisons	No correction
Statistical details	—
Findings	↑ L IFG pars triangularis
Other	
Findings notes	There was a significant correlation between perilesional activation and LRScomp

ROI analysis 29

Description	Value
First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T3
Covariate	Comprehension composite
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	15
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions
How are the ROI(s) defined?	(1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions
Correction for multiple comparisons	No correction
Statistical details	—
Findings	↑ L IFG pars triangularis
Other	
Findings notes	Did not remain significant when lesion volume was included as a covariate

ROI analysis 30

Description	Value
First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Longitudinal correlation with language or other measure
ROI analysis 31

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T3 vs T1
Covariate	Δ comprehension composite
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	15
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions
How are the ROI(s) defined?	(1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions
Correction for multiple comparisons	No correction
Statistical details	—
Findings	↑ L insula
	↑ R dorsolateral prefrontal cortex
Findings notes	R dorsolateral prefrontal cortex did not remain significant when lesion volume was included as a covariate

ROI analysis 32

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T2 vs T1
Covariate	Δ comprehension composite
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	15
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions
How are the ROI(s) defined?	(1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—
First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
----------------------	--
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T3 vs T2
Covariate	Δ comprehension composite
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	15
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions
How are the ROI(s) defined?	(1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 33

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia frontal T1 (n = 17)
Covariate	Comprehension composite
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	15
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions
How are the ROI(s) defined?	(1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—
ROI analysis 34

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia frontal T2 (n = 17)
Covariate	Comprehension composite
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	15
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions
How are the ROI(s) defined?	(1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions
Correction for multiple comparisons	No correction
Findings	None
Findings notes	—

ROI analysis 35

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia frontal T3 (n = 17)
Covariate	Comprehension composite
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	15
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions
How are the ROI(s) defined?	(1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions
Correction for multiple comparisons	No correction
Findings	None
Findings notes	—
ROI analysis 36

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia frontal (n = 17) T2 vs T1
Covariate	Δ comprehension composite
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

- No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions.

Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	15
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions
How are the ROI(s) defined?	(1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions

| Correction for multiple comparisons | No correction |

Statistical details	Findings
Findings notes	—

ROI analysis 37

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia frontal (n = 17) T3 vs T1
Covariate	Δ comprehension composite
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes

- No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions.

Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	15
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions
How are the ROI(s) defined?	(1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions

| Correction for multiple comparisons | No correction |

Statistical details	Findings
Findings notes	—
Findings	None
-----------------------	------
Findings notes	—

ROI analysis 38

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia frontal (n = 17) T3 vs T2
Covariate	Δ comprehension composite
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	15
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions
How are the ROI(s) defined?	(1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 39

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia temporo-parietal T1 (n = 17)
Covariate	Comprehension composite
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	15
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions
How are the ROI(s) defined?	(1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions
Correction for multiple comparisons	No correction
ROI analysis 40

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia temporo-parietal T2 (n = 17)
Covariate	Comprehension composite
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	15
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions
How are the ROI(s) defined?	(1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions
Correction for multiple comparisons	No correction
Statistical details	—
Findings	↑ R anterior temporal
Findings notes	—

ROI analysis 41

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia temporo-parietal T3 (n = 17)
Covariate	Comprehension composite
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	15
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions
How are the ROI(s) defined?	(1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions
Correction for multiple comparisons | No correction
---|---
Statistical details | —
Findings | None
Findings notes | —

ROI analysis 42

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia temporo-parietal (n = 17) T2 vs T1
Covariate	Δ comprehension composite
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	15
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions
Correction for multiple comparisons	No correction
Statistical details	—
Findings	↑ L insula
Findings notes	—

ROI analysis 43

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia temporo-parietal (n = 17) T3 vs T1
Covariate	Δ comprehension composite
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	15
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions
How are the ROI(s) defined?	(1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 44

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia temporo-parietal (n = 17) T3 vs T2
Covariate	Δ comprehension composite
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	15
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions
How are the ROI(s) defined?	(1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 45

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T1
Covariate	Lesion volume
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	15
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional...
How are the ROI(s) defined?	(1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions
Correction for multiple comparisons	No correction
Statistical details	—
Findings	↓ L IFG pars triangularis
Findings notes	Lesion volume negatively correlated with activation

ROI analysis 46

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T2
Covariate	Lesion volume
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	15
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 47

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T3
Covariate	Lesion volume
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	15
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions
ROI analysis 48

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T2 vs T1
Covariate	Lesion volume
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	15
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions
How are the ROI(s) defined?	(1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 49

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T3 vs T1
Covariate	Lesion volume
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	15
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions
How are the ROI(s) defined?	(1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions
----------------------	--
How are the ROI(s) defined?	(1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—

ROI analysis 50

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T3 vs T2
Covariate	Lesion volume
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Regions of interest (ROI)
ROI type	Mixed
How many ROIs are there?	15
What are the ROI(s)?	(1) L IFG orb; (2) L IFG tri; (3) L IFG op; (4) L DLPFC; (5) L insula; (6) L ATL; (7) L PTL; (8) L SMA/dACC; (9) R L IFG orb; (10) R IFG tri; (11) R insula; (12) R DLPFC; (13) R ATL; (14) perilesional tissue; (15) regions homotopic to lesions
How are the ROI(s) defined?	(1-13) spheres around peaks of whole brain analysis of all patients collapsing across groups and timepoints; (14) perilesional ROIs were voxels 3-15 mm from the lesion that were located in frontal or temporal regions activated by the language contrast in controls; (15) homotopic ROIs were flipped lesions
Correction for multiple comparisons	No correction
Statistical details	—
Findings	None
Findings notes	—

Complex analysis 1

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia frontal T1 (n = 17) vs temporo-parietal T1 (n = 17)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Complex
Statistical details	Correlations between activity in 15 ROIs and LRScomp were compared between patients with...
Correlations were higher in the temporal group in the R ATL.

Complex analysis 2

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia frontal T2 (n = 17) vs temporo-parietal T2 (n = 17)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Complex
Statistical details	Correlations between activity in 15 ROIs and LRScomp were compared between patients with frontal and temporal lesions, using interaction terms as well as the Fisher r-to-z transformation. There was no correction for multiple comparisons across the 15 ROIs.
Findings	Other
Findings notes	Correlations were higher in the temporal group in L posterior temporal cortex and L IFG op.

Complex analysis 3

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia frontal T3 (n = 17) vs temporo-parietal T3 (n = 17)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Complex
Statistical details	Correlations between activity in 15 ROIs and LRScomp were compared between patients with frontal and temporal lesions, using interaction terms as well as the Fisher r-to-z transformation. There was no correction for multiple comparisons across the 15 ROIs.
Findings	Other
Findings notes	Correlations were different between groups in the R ATL, but the correlation is not reported as significant in the temporo-parietal group alone.

Complex analysis 4

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Longitudinal between two groups with aphasia
Group(s)	(Aphasia frontal (n = 17) T2 vs T1) vs (aphasia temporo-parietal (n = 17) T2 vs T1)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Complex analysis 5	Complex analysis 6
-------------------	-------------------
Finding notes	In the L insula, the temporo-parietal group showed a stronger correlation than the frontal group between changes in activation and changes in LRScomp.
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Complex
Statistical details	Correlations between changes in activity in 15 ROIs and changes in LRScomp were compared between patients with frontal and temporal lesions, using interaction terms as well as the Fisher r-to-z transformation. There was no correction for multiple comparisons across the 15 ROIs.
Findings	None
Findings notes	Other
First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Longitudinal between two groups with aphasia
Group(s)	(Aphasia frontal (n = 17) T3 vs T1) vs (temporo-parietal (n = 17) T3 vs T1)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported

Complex analysis 5	Complex analysis 6
Finding notes	In the L insula, the temporo-parietal group showed a stronger correlation than the frontal group between changes in activation and changes in LRScomp.
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Complex
Statistical details	Correlations between changes in activity in 15 ROIs and changes in LRScomp were compared between patients with frontal and temporal lesions, using interaction terms as well as the Fisher r-to-z transformation. There was no correction for multiple comparisons across the 15 ROIs.
Findings	None
Findings notes	Other
First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Longitudinal between two groups with aphasia
Group(s)	(Aphasia frontal (n = 17) T3 vs T2) vs (temporo-parietal (n = 17) T3 vs T2)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Complex analysis 7

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia frontal T1 (n = 17) vs temporo-parietal T1 (n = 17)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Complex
Statistical details	Correlations between activity in 15 ROIs and lesion extent were compared between patients with frontal and temporal lesions. There was no correction for multiple comparisons across the 15 ROIs.
Findings	None
Findings notes	—

Complex analysis 8

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia frontal T2 (n = 17) vs temporo-parietal T2 (n = 17)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Complex
Statistical details	Correlations between activity in 15 ROIs and lesion extent were compared between patients with frontal and temporal lesions. There was no correction for multiple comparisons across the 15 ROIs.
Findings	None
Findings notes	—

Complex analysis 9

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional between two groups with aphasia
Group(s)	Aphasia frontal T3 (n = 17) vs temporo-parietal T3 (n = 17)
Covariate	—
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Complex analysis 10	

Type of analysis	Complex
Statistical details	Correlations between activity in 15 ROIs and lesion extent were compared between patients with frontal and temporal lesions. There was no correction for multiple comparisons across the 15 ROIs.
Findings	None
Findings notes	—

First level contrast
Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech

Analysis class
Longitudinal between two groups with aphasia

Group(s)
(Aphasia frontal (n = 17) T2 vs T1) vs (temporo-parietal (n = 17) T2 vs T1)

Covariate
—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?
Yes

Is accuracy matched across the second level contrast?
Unknown, not reported

Is reaction time matched across the second level contrast?
Unknown, not reported

Behavioral data notes
No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions

Complex analysis 11
Type of analysis
Statistical details
Findings
Findings notes

First level contrast
Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech

Analysis class
Longitudinal between two groups with aphasia

Group(s)
(Aphasia frontal (n = 17) T3 vs T1) vs (temporo-parietal (n = 17) T3 vs T1)

Covariate
—

Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?
Yes

Is accuracy matched across the second level contrast?
Unknown, not reported

Is reaction time matched across the second level contrast?
Unknown, not reported

Behavioral data notes
No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions

Complex analysis 12
Type of analysis
Statistical details
Findings
Findings notes
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?
Is accuracy matched across the second level contrast?
Is reaction time matched across the second level contrast?
Behavioral data notes
Type of analysis
Statistical details
Findings
Findings notes

Complex analysis 13

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Cross-sectional correlation with language or other measure
Group(s)	Aphasia T1
Covariate	Interaction of comprehension composite by lesion size
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Complex
Statistical details	To investigate why some activation-behavior relationships did not remain significant when lesion extent was included as a covariate, models were constructed looking at the relationship between activation and behavior in patients with larger and smaller lesions.
Findings	Other
Findings notes	The three regions where this applied at T1, namely perilesional cortex, L IFG op, and L IFG orb, all showed positive correlations between activation and LRScomp in patients with larger lesions, but no correlations in patients with smaller lesions.

Complex analysis 14

First level contrast	Listening to normal sentences and making a plausibility judgment (paradigm 1) or listening to normal sentences (paradigm 2) vs listening to reversed speech
Analysis class	Longitudinal correlation with language or other measure
Group(s)	Aphasia T2 vs T1
Covariate	Interaction of Δ comprehension composite by lesion size
Is the second level contrast valid in terms of the group(s), time point(s), and measures involved?	Yes
Is accuracy matched across the second level contrast?	Unknown, not reported
Is reaction time matched across the second level contrast?	Unknown, not reported
Behavioral data notes	No differences in proportion of expected button presses by group or time, but behavioral data pooled across conditions
Type of analysis	Complex
Statistical details	To investigate why some activation-behavior relationships did not remain significant when lesion extent was included as a covariate, models were constructed looking at the relationship between activation and behavior in patients with larger and smaller lesions.
Findings	Other

620
Findings notes	This applied to the R DLPFC in the T2 vs T1 analysis. This region showed a positive correlation between activation and LR5comp in patients with larger lesions, but no correlation in patients with smaller lesions.	
Notes	**Excluded analyses**	ROI analyses 27-32 and 45-50 were carried out with and without lesion extent as a covariate, but are coded only once, with notes as to which regions did not remain significant when the covariate was included.