Population growth of stored product insects on wheat containing wheat bugs

Maria K. Sakka1 · Christos G. Athanassiou1

Received: 26 April 2022 / Accepted: 6 September 2022 / Published online: 16 September 2022
© The Author(s) 2022

Abstract
In the present study we examined the effect of the presence of wheat bugs (Eurygaster spp. and Aelia spp.) on wheat on the mortality, progeny production and infestation patterns of three stored product insects, Trogoderma granarium Everts, Sitophilus oryzae (L.) and Rhyzopertha dominica (F.). The bioassays were carried out under laboratory conditions (25 ± 1 °C, 60 ± 5% relative humidity (r.h.) and continuous darkness), and 20 adults of each stored product insect species were placed in plastic vials (3 cm in diameter, 8 cm in height) with wheat that contained different numbers of wheat bugs (1, 2, 3 or 5 adults). In general, stored product insect mortality was not affected by the presence of wheat bugs, in most of the combinations examined. In most of the cases, mortality of T. granarium was higher on wheat that contained Eurygaster, while progeny production of S. oryzae was also affected by the presence of wheat bugs. Frass production for all combinations was similar, but greater frass production occurred by all combinations of R. dominica with Aelia. Overall, the presence of wheat bugs could affect the survival and the progeny production of both S. oryzae and R. dominica. In general, our results showed that beetle longevity and fecundity can be affected by the presence of wheat bugs that are likely to be present in stored grains after harvest.

Graphical abstract

Collection of wheat bugs in the field

Preparation of the bioassays

Separated to the laboratory as Aelia or Eurygaster

Count mortality and progeny production

Results

• The effects of wheat bugs were different among the three different beetle species tested.
• Sitophilus oryzae progeny production was higher with all combinations of wheat containing Aelia.
• Mortality of T. granarium adults was not affected by the presence of Eurygaster and Aelia.
• Some differences were noted between wheat contained Eurygaster and wheat contained Aelia on mortality and progeny production.
• Frass production was similar in most combinations.

Keywords Hemiptera · Coleoptera · Wheat bugs · Stored product insects · Wheat · Foreign materials

Extended author information available on the last page of the article
Introduction

Wheat is the most widely cultivated and consumed plant species throughout the globe (Fourar-Belaifa et al. 2011). During growing, wheat crops are heavily infested by different insect pests that cause serious losses and qualitative degradations (Cressey et al. 1987; Swallow and Every 1991; Hariri et al. 2000; Rosell et al. 2002; Salis et al. 2013). One of the major causal agents of wheat infestation at the pre-harvest stages is the occurrence of the so-called wheat bugs that belong to the genera Eurygaster (Hemiptera: Scutellaridae) and Aelia (Hemiptera: Pentatomidae). Aelia spp. and Eurygaster spp. are the most prominent on wheat damage in Europe (Rosell et al. 2002), with Eurygaster integriceps Puton being the most important in Eastern Europe, West and Central Asia, and Eurygaster maura (L.) in Central and Southern Europe and Central Asia (Vaccino et al. 2006; Trissi et al. 2006; Parker et al. 2011). In New Zealand, the wheat bug Nysius huttoni White (Heteroptera: Lygaeidae) is considered as the most important (Rea et al. 2002), while Nezara viridula (L.) (Heteroptera: Pentatomidae) is regarded as an important pest of wheat in USA (Viator et al. 1983). According to Stavraki (1979) the wheat bug species that have been mostly reported in Greece are E. maura, Eurygaster austriaca (Schrank) and Aelia rostrata Boheman.

Durable commodities are stored in different structures and periods for future consumption. The presence of foreign materials, such as weed seeds, dust, can increase heating, moisture content and deterioration in stored grain (Sinha 1975). Insect fragments in stored products are of major concern for quality preservation and legislation reasons (Rosell et al. 2002; Perez-Mendoza et al. 2003; Hubert et al. 2018; Sharma et al. 2020). In a recent study, Georgousakis et al. (2020) examined the effect of weed seeds on wheat and barley in two stored product insects and found that the presence of weed seeds can affect the progeny production of these species. Sharma et al. (2020) identified the impact of grasshopper carcasses on different grain quality and found negative consequences such as reduction of germination and increase of fat acidity values. The effect of wheat bugs was mostly focused on biochemical properties of the wheat quantifying the bug damage effect in specific protein fractions (Sivri et al. 2004; Salis et al. 2010). For instance, Torbica et al. (2014) tested the effect of wheat infestation of Eurygaster spp. and Aelia spp. on the composition of wheat gluten proteins and found noticeable differences in gluten complex.

Post-harvest losses of grains are estimated in some regions up to 50% with molds, insects and rodents as the primary pests of infestation (Brader et al. 2002; Athanas-siou and Arthur 2018). Pests, and especially insects, not only decrease stored grain quality but also contaminate the products with their metabolic by-products and body fragments (Neethirajan et al. 2007; Hubert et al. 2018). Several pest categories that infest stored products occur from the pre-harvest stages in the field, while there are other species that are present in the field but cannot continue the infestation at the post-harvest stages (Sharma et al. 2020). The Food and Drug Administration (FDA) in USA has established the so-called food defect action levels of insect contamination on amylaceous commodities, which are 32 insect-damaged kernels per 100 g of wheat and 75 insect fragments per 50 g of wheat flour (FDA 1998). In a surveillance from mills in Italy, Trematerra et al. (2011) found that 75% of semolina samples contained insect fragments. Stored product insects such as the primary pests Sitophilus oryzae (L.) (Coleoptera: Curculionidae), the rice weevil, and Rhizopertha dominica (F.) (Coleoptera: Bostryhiidae), the lesser grain borer, are considered as the main source of insects fragments in wheat flour (Campbell et al. 1976; Pedersen 1992; Perez Mendoza et al. 2005). Nevertheless, there are cases where insect contamination in stored grains and flour is related to whole bodies of insects, such as thrips, that are present in the field before harvest (Locatelli et al. 1993; Perez Mendoza et al. 2005; Trematerra et al. 2011; Bhuvaneswari et al. 2011). Other types of contaminants on wheat, such as weed seeds, may have a serious effect on certain quality characteristics of the commodity (Wrigley 1994; Wilson et al. 2016), while they also affect development of certain stored product insect species (Georgousakis et al. 2020).

Most studies for Aelia and Eurygaster focus on the effects of their feeding activity on the wheat fields, while there is scarce information regarding the effect of the presence of wheat bugs on stored product species. Fourar and Fleurat-Lessard (1997) reported that development of S. oryzae on wheat that had been infested in the field by the wheat bug, Aelia germani Kuster, was seriously affected, due to changes on key properties of the commodity. However, to our knowledge, there are no published data available so far about the effect of the actual presence of wheat bug individuals in stored wheat on the longevity and fecundity of stored product insects. In this context, the aim of the current study was to evaluate in laboratory conditions the effect of wheat bug individuals in stored wheat on the longevity
Materials and methods

Collection of the bugs, insects and commodity

Eurygaster spp. and _Aelia_ spp. adults were collected from newly harvested wheat in the area located in Thessaly, Central Greece (Polydameio, region of Farsala), in June 2020. The insects were collected alive from the wheat bulks at the day of harvest and were separated in the laboratory as _Aelia_ or _Eurygaster_, but were not identified up to the species level. Then, the wheat bugs were frozen at −18 °C for a week. Subsequently, the bugs were held in room temperature for 24 h and then were used for experimentation.

Adults of _T. granarium_, _S. oryzae_ and _R. dominica_ were taken from already existing insect cultures from the Laboratory of Entomology and Agricultural Zoology (LEAZ), Department of Agriculture, Crop Production and Rural Environment, University of Thessaly. All species were reared in whole wheat kernels in incubators set at 25 ± 1 °C, 60 ± 5% relative humidity (r.h.) and continuous darkness.

Untreated, clean and infestation-free organic soft wheat was used in the tests. The moisture content of the tested grains, as determined by a moisture meter (Multitest, Gode SAS, Le Catelet, France), was approx. 13.0%.

Bioassays

For the experiments, plastic cylindrical vials (3 cm in diameter, 8 cm in height, Rotilabo Sample tins Snap on lid, Carl Roth, Germany) were used, filled with 20 g of wheat. Twenty insects of each species were placed inside the vial either alone or in combination with 1, 2, 3 or 5 adults of each wheat bug (_Aelia_ spp. or _Eurygaster_ spp.), with separate series of vials for each beetle species and for each bug genus. Then, all vials were placed in incubators set at 30 °C, with 65% r.h. and continuous darkness. Each experiment was repeated three times, with three vials for each combination (3 replicates × 3 subreplicates = 9 vials for each combination). Beetle mortality was recorded after 14 and 65 days later, and the vials were opened and examined for progeny production, ratio of damaged kernels and weight of frass as described by Sakka and Athanassiou (2018).

Statistical analysis

For each species the data were submitted to a two-way ANOVA for bug species and combinations of wheat bugs. Progeny production and grain parameters (e.g., grain damage and frass) were analyzed separately for each species by using a two-way ANOVA with treatment and combinations as main effects. Means were separated by the HSD test. For differences between combinations of wheat bug genera Student’s _t_ test at 0.05 was performed. All tests were performed using JPM 8 software (SAS Institute Inc., Cary, NC).

Results

Adult mortality

For _T. granarium_, only the interaction of bug species and containment was found to be significant (Table 1). _Trogoderma granarium_ showed the highest mortality rate among all species tested after 14 days for all combinations tested (Table 2). Mortality was more than 79% for all combinations of _T. granarium_ with _Eurygaster_ spp. For all combinations with _Aelia_, mortality was more than 83%. Significant differences were noted in mortality levels between all vials containing _Eurygaster_ and those containing _Aelia_.

For _S. oryzae_, only bug containment was found to be significant (Table 1). The highest mortality level for _S. oryzae_ was recorded in vials that contained 5 _Eurygaster_ adults (24.4%), while mortality was lower in the vials that contained _Aelia_, which did not exceed 10% (Table 2). Similarly, as in the case of _S. oryzae_, for _R. dominica_ only bug containment was significant (Table 1). For this species, the highest mortality (13.3%) was recorded in vials containing 5 _Eurygaster_ adults, but the overall adult mortality was extremely low (Table 2).

Progeny production

No significant effects were recorded in the case of progeny production of _T. granarium_ (Table 3). The highest progeny production for _T. granarium_ was recorded in the vials that contained 3 _Aelia_ adults (58.8 adults/vial) and

Table 1

df	_T. granarium_	_S. oryzae_	_R. dominica_				
	F	_P_	_F_	_P_	_F_	_P_	
Model	7	2.4	0.027	5.9	< 0.001	1.3	0.240
Intercept	1	3322.7	< 0.001	100.7	< 0.001	12.0	< 0.001
Bug species	1	0.6	0.623	3.2	0.027	1.4	0.044
Bug containment	3	2.0	0.158	30.7	< 0.001	0.9	0.344
Bug species X containment	3	4.4	0.007	0.3	0.832	1.4	0.242
the lowest in the vials that contained 3 *Eurygaster* adults (50.8 adults/vial (Table 4).

Only containment was significant in the case of *S. oryzae* (Table 3), while progeny production was generally higher in the vials that contained *Aelia* adults, as compared with those that contained *Eurygaster* adults (Table 4). Similarly, only containment was significant for *R. dominica* (Table 3), while, as above, progeny production was higher in the vials that contained *Aelia* adults (Table 4).

Grain damage

In the case of ratio of damaged grains the two-way interaction of bug species × containment was significant only for *S. oryzae*. In the case of weight of frass the interaction of bug species × containment was significant only for *R. dominica* (Table 5). Grain damage and weight of dust were similar between *Eurygaster* and *Aelia* for *T. granarium* for all combinations (Table 6). The levels of frass production were found to be low for all species (Table 6). The ratio of damaged kernels was higher for *R. dominica* with *Aelia* than that with *Eurygaster*. Significant differences were noted

Table 2

Wheat bug species	Wheat bug containment	Beetle species	T. granarium	S. oryzae	R. dominica
Eurygaster spp.	1 bug/vial	79.9 ± 3.9B*	15.6 ± 3.2	9.4 ± 2.3	
	3 bugs/vial	96.7 ± 0.8A*	13.9 ± 2.5	8.9 ± 2.3	
	5 bugs/vial	94.4 ± 2.6A*	24.4 ± 5.4	10.6 ± 1.7	
	Control (0 bugs/vial)	85.6 ± 3.9AB	18.3 ± 2.9*	6.1 ± 1.4	
Aelia spp.	1 bug/vial	91.1 ± 3.8	6.7 ± 2.0	5.0 ± 1.7	
	3 bugs/vial	83.9 ± 2.3	3.3 ± 1.4	12.2 ± 2.2	
	5 bugs/vial	78.3 ± 5.8	10.6 ± 2.1	13.3 ± 4.2	
	Control (0 bugs/vial)	85.6 ± 7.3	5.6 ± 2.1	11.1 ± 2.8	

Asterisks indicate differences between respective combinations of wheat bug genera

Table 3

	df	T. granarium	S. oryzae	R. dominica			
	F	P	F	P	F	P	
Whole model	7	0.5	0.816	10.8	<0.001	4.1	0.001
Intercept	1	220.1	<0.001	382.7	<0.001	107.3	<0.001
Treatment	3	0.4	0.748	1.8	0.150	1.2	0.318
Combinations of bugs	1	0.1	0.766	66.1	<0.001	13.1	<0.001
Treatment × Combinations	3	0.8	0.511	1.3	0.279	3.9	0.012

Table 4

Wheat bug species	Beetle species	T. granarium	S. oryzae	R. dominica
Eurygaster spp.	1 bug/vial	46.0 ± 6.4	97.7 ± 13.6*	12.9 ± 3.4*
	3 bugs/vial	41.8 ± 5.3	94.7 ± 14.3*	49.1 ± 15.5*
	5 bugs/vial	50.8 ± 11.9	88.8 ± 11.7*	65.2 ± 11.0
	Control (0 bugs/vial)	44.9 ± 6.5	96.0 ± 9.0*	72.4 ± 28.5
Aelia spp.	1 bug/vial	49.3 ± 8.5	265.1 ± 21.3	119.1 ± 20.4
	3 bugs/vial	58.8 ± 12.4	253.0 ± 34.8	140.2 ± 25.7
	5 bugs/vial	45.8 ± 10.5	172.8 ± 21.6	106.2 ± 33.6
	Control (0 bugs/vial)	37.1 ± 6.8	222.3 ± 40.2	48.2 ± 10.8

Asterisks indicate differences between respective combinations of wheat bug genera
for all combinations of wheat bugs between *Eurygaster* and *Aelia* for *S. oryzae* (Table 6). Finally, in the case of *R. dominica* significant differences were noted only within each of the combinations tested with *Aelia*.

Discussion

Apparently, the wheat bug containment that was examined here can be considered as high and cannot be easily recorded in newly harvested grains. Nevertheless, wheat bugs are often recorded in high numbers before harvest on wheat plants and can be found in high numbers on wheat grains after harvest (Reisig et al. 2013; Blandino et al. 2015). While these contaminants are removed from the product before processing, certain interactions with some grain properties may be unavoidable. For instance, Sharma et al. (2020) reported that grasshopper carcasses on wheat can increase the presence of fungi that may endanger human health, given that these carcasses may host fungal species and, indirectly, may contribute to the increase of the moisture content of the grain. However, there were no data available so far for the direct effect of wheat carcasses on the development of stored product beetle species. The results of the present study illustrate that in some cases mortality, progeny production and infestation patterns, expressed as damaged kernels and frass, can be affected by the presence of wheat bugs. Moreover, there were some differences between wheat containing *Eurygaster* and wheat containing *Aelia*, but we are unaware for the causes of these differences. Morphologically, *Aelia* individuals were smaller than those of *Eurygaster*, so size might have played a role in the space occupied in our experimental vials or the contribution to the increase of moisture content.

One of the key findings is that the effects of wheat bugs were different among the three beetle species tested. For instance, in the case of *S. oryzae* progeny production was higher with all combinations of wheat containing *Aelia* in contrast with wheat containing *Eurygaster*, while wheat bug containment also played a role in progeny production.
capacity of \textit{R. dominica}. These two beetle species are considered as primary colonizers of grains and their immature development occurs within the grain kernel (Athanassiou et al. 2005; Edde 2012), so the effects of wheat bug carcasses may only indirectly affect their progeny production capacity. On the other hand, \textit{T. granarium} is considered as a “dirty feeder” and can develop in insect species’ carcasses (Kavallieratos et al. 2017; Athanassiou et al. 2019), so theoretically, the presence of wheat bugs was expected to have a beneficial effect on the development of this species. Kavallieratos et al. (2017) found that \textit{T. granarium} could outcompete \textit{S. oryzae} and \textit{R. dominica} at elevated temperatures, and when the numbers of \textit{T. granarium} were high, there were no individuals of the other two species, indicating that the larvae of \textit{T. granarium} were fed upon the individuals of the primary colonizers. Also, the presence of frass seems to have a beneficial effect on the development of \textit{T. granarium} larvae, especially in the case of young larvae, which are more prone to develop in cracked materials than whole kernels (Athanassiou et al. 2019).

According to Jian and Zhang (2022) dockage is “any material that can be removed from the grain by using cleaning equipment such as mechanical dockage tester or sieve”. Sinha et al. (1983) tested the quality of clean wheat and wheat plus dockage that was infested by the saw-toothed grain beetle, \textit{Oryzaephilus surinamensis} (L.) (Coleoptera: Silvanidae) and the rusty grain beetle, \textit{Cryptoletes ferrugineus} (Stephens) (Coleoptera: Laemophloeidae), and found differences in fat acidity values and seed germination, germ and endosperm damage, as well as fungal and bacterial infestation. Moreover, high levels of infestation by stored product insects resulted in increased presence of fungal infections by \textit{Penicillium} and the occurrence of bacteria (Sinha 1983; Hubert et al. 2018). Moreover, Sinha (1975) determined the effect of different percentages of dockage in wheat on stored product insect species and reported that \textit{O. surinamensis} and the red flour beetle, \textit{Tribolium castaneum} (Herbst) (Coleoptera: Tenebrionidae) prefer to feed on broken kernels and dockage. Nevertheless, interspecific interactions in bulked grains are not necessarily negative and may exhibit a considerable beneficial effect (Nansen et al. 2009; Kavallieratos et al. 2017). For example, Nansen et al. (2004) reported a positive commensal relationship between \textit{R. dominica} and \textit{T. castaneum}, that were often detected simultaneously present in the same sampling units, in contrast with \textit{C. ferrugineus}, which was less likely to be present together with \textit{T. castaneum} individuals. The present study showed that, in some combinations, progeny production was positively affected by the presence of \textit{Aelia}, for reasons that may be related to commensal interactions, but also with the size of the \textit{Aelia}, which might have allowed more space within the vial, as compared with \textit{Eurygaster}, which is more large-bodied. The presence of dockage and foreign materials can seriously affect insect distribution in bulked wheat, as certain stored product beetle species aggregate on areas with increased dockage containment (Athanassiou and Buchelos 2001, 2020). For instance, in vertical grain silos, Athanassiou and Buchelos (2020) found that certain species tended to concentrated in the central zone of the bulk that contained more dockage, resulting in increased infestation patterns in that zone, but also to more vigorous changes in the temperature and moisture content levels.

Not surprisingly, beetle parental mortality was not affected from the increase in the number of wheat bugs inside the vials and most of the treatments gave similar results. For instance, parental mortality of \textit{R. dominica}, for both wheat bugs, was similar for all combinations, incl. the control vials. As noted above, both \textit{S. oryzae} and \textit{R. dominica} infest the internal part of the grain kernels, so no direct effects with wheat bug containment were expected. In contrast, the increased parental mortality of \textit{T. granarium} was expected, as this species is short-lived at the adult stage, and usually most of the adults are dead within 14 d (Athanassiou et al. 2019; Gourgouta et al. 2021). In this context, mortality of this particular species, but eventually for the other two species examined, was not affected by the presence of wheat bugs.

In summary, this work is an experimental proof that the presence of wheat bugs can affect the survival and population growth of some species of stored product insects. In fact, we found that the presence of wheat bugs may even support stored product beetle development, such as \textit{S. oryzae} or \textit{R. dominica}. Although the wheat bug containment was high and realistically cannot reach the numbers examined here, our results illustrate that there are certain interactions between these carcasses and stored product beetles, that can be taken into account, at the post-harvest stages of wheat, and probably on other grains that are infested by wheat bugs.

Authors’ contribution MKS and CGA designed the study and wrote the manuscript. MKS performed experiments and evaluated results. CGA supervised validate and finalized the manuscript.

Funding Open access funding provided by HEAL-Link Greece.

Data availability statement Research data are not shared.

Declarations

Conflict of interest All the authors declare that there is no conflict of interest.

Ethical approval Ethics approval was not required for this research.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a

copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Athanassiou, CG, Buchelos, CT (2001) Detection of stored-wheat beetle species and estimation of population density using unbaited probe traps and grain trier samples. Entomologia experimentalis et applicata 98:67–78. https://doi.org/10.1046/j.1570-7458.2001.00758.x

Athanassiou CG, Arthur FH (eds) (2018) Recent advances in stored product protection. Springer, Berlin

Athanassiou CG, Buchelos CT (2020) Grain properties and insect distribution trends in silos of wheat. J Stored Prod Res 88:101632. https://doi.org/10.1016/j.jspr.2020.101632

Athanassiou CG, Kavallieratos NG, Athanassiou CG, Buchelos CT (2020) Grain properties and insect distribution trends in silos of wheat. J Stored Prod Res 88:101632. https://doi.org/10.1016/j.jspr.2020.101632

Athanassiou CG, Vayias BJ, Tomanovic S, Milutinovic M (2005) Persistence and efficacy of three diatomaceous earth formulations against Sitophilus oryzae (Coleoptera: Curculionidae) on wheat and barley. J Econ Entomol 98:1404–1412. https://doi.org/10.1603/0022-0493-98.4.1404

Athanassiou CG, Phillips TW, Wikil W (2019) Biology and control of the khapra beetle, Trogoderma granarium, a major quarantine threat to global food security. Annu Rev Entomol 64:131–148. https://doi.org/10.1146/annurev-ento-011118-111804

Bhuvaneswari K, Fields Paul G, White Noel DG, Sarkar AK, Singh CB, Jayas DS (2011) Image analysis for detecting insect fragments in semolina. J Stored Prod Res 47:20–24. https://doi.org/10.1016/j.jspr.2010.08.003

Blandino M, Marinaccio F, Ingegno BL, Pansa MG, Vaccino P, Tavella L, Reyneri A (2015) Evaluation of common and durum wheat rheological quality through Mixolab® analysis after field damage by cereal bugs. Field Crops Res 179:95–102. https://doi.org/10.1016/j.jspr.2011.08.007

Brader B, Lee RC, Piarre R, Burkholer W, Kitto GB, Kao C, Polston L, Dorneanu E, Szabo I, Mead B, Rouse B (2002) A comparison of screening methods for insect contamination of wheat. J Stored Prod Res 38:75–86. https://doi.org/10.1016/S0022-474X(01)00006-6

Campbell A, Singh NB, Sinha RN (1976) Bioenergetics of the granary weevil, Sitophilus granarius (L.) (Coleoptera: Curculionidae). Can J Zool 54:197–208. https://doi.org/10.1139/z76-088

Cressy PJ, Farrell JAK, Stukfens MW (1987) Identification of an insect species causing bug damage in New Zealand wheats. New Zealand J Agric Res 30:209–212. https://doi.org/10.1080/0022-2474X(02)000021-8

Eddy PA (2012) A review of the biology and control of Rhynzopertha dominica (F.) the lesser grain borer. J Stored Prod Res 48:1–18. https://doi.org/10.1016/j.jspr.2011.08.007

FDA-Food and Drug Administration, Center for Food Safety and Nutrition (1998) The food defect action levels. Washington, DC

Fourar R, Fleurat-Lessard F (1997) Effects of damage by wheat bug, Aelia germari [Hemiptera: Pentatomidae], on grass quality and on reproductive performance of the rice weevil, Sitophilus oryzae [Coleoptera: Curculionidae]. Phytoprotection 78:105–116. https://doi.org/10.7202/706125ar

Fourar-Belaifa R, Fleurat-Lessard F, Bouznad Z (2011) A systemic approach to qualitative changes in the stored-wheat ecosystem: Prediction of deterioration risks in unsafe storage conditions in relation to relative humidity level, infestation by Sitophilus oryzae (L.), and wheat variety. J Stored Prod Res 47:48–61. https://doi.org/10.1016/j.jspr.2010.09.002

Georgousakis C, Sakka MK, Karkanis AC, Athanassiou CG (2020) Gone with the wind: Population growth of Sitophilus oryzae and Rhyzopertha dominica in wheat and barley containing seeds of Silybum marianum. J Stored Prod Res 87:101602. https://doi.org/10.1016/j.jspr.2020.101602

Gourgoula M, Agraftioti P, Athanassiou CG (2021) Immediate and delayed effects of short exposures to phosphine on adults and larvae of the khapra beetle, Trogoderma Granarium. J Stored Prod Res 90:101737. https://doi.org/10.1016/j.jspr.2020.101737

Hariri G, Williams PC, El-Haramein FJ (2000) Influence of pentatomid insect on the physical dough properties and two-layered flat bread baking quality of Syrian wheat. J Cereal Sci 31:111–118. https://doi.org/10.1006/jcrs.1999.0294

Hubert J, Stejskal V, Athanassiou CG, Throne JE (2018) Health hazards associated with arthropod infestation of stored products. Annu Rev Entomol 63:553–573. https://doi.org/10.1146/annurev-ento-020117-043218

Jian F, Zhang Q (2022) Regression models for distributions of dockage and foreign materials in grain silos filled by central spouts. J Stored Prod Res 95:101901. https://doi.org/10.1016/j.jspr.2021.101901

Kavallieratos NG, Athanassiou CG, Guedes RN, Drempela JD, Boukouvula MC (2017) Invader competition with local competitors: displacement or coexistence among the invasive khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae), and two other major stored-grain beetles? Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.01837

Locatelli DP, Moroni E, Daolio E (1993) Arthropod contaminants in flours employed in the confectionery industry. Tecnica Molitoria 44:583–588

Nansen C, Phillips TW, Palmer MW (2004) Analysis of the insect community in a stored-maize facility. Ecol Res 19:197–207. https://doi.org/10.1111/j.1440-1703.2003.00624.x

Nansen C, Finn P, Hagstrom D, Toews MD, Meikle WG (2009) Interspecific associations among stored-grain beetles. J Stored Prod Res 45:254–260. https://doi.org/10.1016/j.jspr.2009.04.005

Neethirajan S, Karunakaran C, Jayas DS, White NDG (2007) Detection techniques for stored-product insects in grain. Food Control 18:157–162. https://doi.org/10.1016/j.foodcont.2005.09.008

Parker BL, Amir-Maafi M, Skinner M, Kim JS, El Bouhssini M (2011) Distribution of sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae), in overwintering sites. J Asia Pac Entomol 14:83–88. https://doi.org/10.1016/j.aspen.2010.10.005

Pederсен JR (1992) Insects: identification, damage, and detection. In: Sauer, D.B. (Ed.), Storage of cereal grains and their products. American Association of Cereal Chemists, St. Paul, MN, pp. 435–489

Perez-Mendoza J, Throne JE, Dowell FE, Baker JE (2003) Detection of insect fragments in wheat flour by near-infrared spectroscopy. J Stored Prod Res 39:305–312. https://doi.org/10.1016/S0022-474X(02)00021-8

Perez-Mendoza J, Throne JE, Maghirang EB, Dowell FE, Baker JE (2005) Insect fragments in flour: relationship to lesser grain borer (Coleoptera: Bostrichidae) infestation level in wheat and rapid detection using near-infrared spectroscopy. J Econ Entomol 98:2282–2291. https://doi.org/10.1093/jee/98.6.2282

Rea JH, Wratten SD, Sedcole R, Cameron PJ, Davis SI, Chapman RB (2002) Trap cropping to manage green vegetable bug Necara viridula (L.) (Heteroptera: Pentatomidae) in sweet corn in New Zealand. Agric for Entomol 4:101–107. https://doi.org/10.1046/j.1461-9563.2002.00130.x
Reisig DD, Roe M, Dhammi A (2013) Dispersal pattern and disper-
sion of adult and nymph stink bugs (Hemiptera: Pentatomidae)
in wheat and corn. Environ Entomol 42:1184–1192. https://doi.
org/10.1603/EN13166
Rosell CM, Aja S, Bean S, Lookhart G (2002) Effect of Aelia spp.
and Eurygaster spp. damage on wheat proteins. Cereal Chem
79:801–805. https://doi.org/10.1094/CCHEM.2002.79.6.801
Sakka MK, Athanassiou CG (2018) Competition of three stored-
product bostrychids on different temperatures and commodities.
J Stored Prod Res 79:34–39. https://doi.org/10.1016/j.jspr.2018.
07.002
Salis L, Goula M, Valero Baya J, Gordún Quiles E (2010)
Prolamin proteins alteration in durum wheat by species of the
genus Eurygaster and Aelia (Insecta, Hemiptera). Span J Agric
Res 8:82–90. https://doi.org/10.5424/sjar/2010081-1146
Salis L, Goula M, Izquierdo J, Gordún E (2013) Population den-
sity and distribution of wheat bugs infesting durum wheat in
Sardinia. Italy J Insect Sci 13:50. https://doi.org/10.1673/031.
013.5001
Sharma A, Demianyk CJ, White ND, Jayas DS (2020) The effects of
grasshopper carcasses as dockage in stored wheat. J Stored Prod
Res 85:101533. https://doi.org/10.1016/j.jspr.2019.101533
Sinha RN (1975) Effect of dockage in the infestation of wheat by some
stored-product insects. J Econ Entomol 68:699–703. https://doi.
org/10.1093/jee/68.5.699
Sinha RN (1983) Effects of stored-product beetle infestation on fat
acidity, seed germination, and microflora of wheat. J Econ Ento-
mol 76:813–817. https://doi.org/10.1093/jee/76.4.813
Sivri D, Batey IL, Skylas DI, Daqiq L, Wrigley CW (2004) Changes in
the composition and size distribution of endosperm proteins from
bug-damaged wheats. Aust J Agric Res 55:477–483
Stavraki HG (1979) Data on the spread in Greece of pentatomids injuri-
ous to cereals. BiolGallo-Hell 9:301–306
Swallow WH, Every D (1991) Insect enzyme damage to wheat. Cereal
Foods World 36(6):505–508
Torbica AM, Mastilović JS, Pojić MM, Kevrešan ŽS (2014) Effects of
wheat bug (Eurygaster spp. and Aelia spp.) infestation in prehar-
vest period on wheat technological quality and gluten composi-
tion. Sci World J. https://doi.org/10.1155/2014/148025. Article
ID 148025, 6 pp
Trematerra P, Stejskal V, Hubert J (2011) The monitoring of semolina
contamination by insect fragments using the light filth method in
an Italian mill. Food Control 22:1021–1026. https://doi.org/10.
1016/j.foodcont.2010.11.026
Trissi N, El Bouhssini M, Ibrahim J, Abdulhai M, Parker BL, Reid
W, El-Haramein FJ (2006) Effect of egg parasitoid density on
the population suppression of Sunn Pest, Eurygaster integriceps
(Hemiptera: Scutelleridae), and its resulting impact on bread
wheat grain quality. J Pest Sci 79:83–87. https://doi.org/10.1007/
s10340-005-0116-3
Vaccino P, Corbellini M, Refo G, Zoccatelli G, Migliardi M, Tavella L
(2006) Impact of Eurygaster maura (Heteroptera: Scutelleridae)
feeding on quality of bread wheat in relation to attack period. J
Econ Entomol 99:757–763. https://doi.org/10.1603/0022-0493-
99.3.757
Viator HP, Pantoja A, Smith CM (1983) Damage to wheat seed qual-
yity and yield by the rice stink bug and southern green stink bug
(Hemiptera: Pentatomidae). J Econ Entomol 76:1410–1413
Wilson CE, Castro KL, Thurston GB, Sissons A (2016) Pathway risk
analysis of weed seeds in imported grain: a Canadian perspective.
NeoBiota 30:49–74. https://doi.org/10.3897/neobiota.30.7502
Wrigley CW (1994) Developing better strategies to improve grain qual-
ity for wheat. Aust J Agric Res 45:1–17. https://doi.org/10.1071/
AR9940001

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Maria K. Sakka1 · Christos G. Athanassiou1

Maria K. Sakka
msakka@agr.uth.gr

1 Laboratory of Entomology and Agricultural Zoology,
Department of Agriculture, Crop Production

and Rural Environment, University of Thessaly,
3846 Nea Ionia, Magnesia, Greece