DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised Domain-Classifier Guided Network

Yeying Jin, Aashish Sharma, and Robby T. Tan

1National University of Singapore, 2Yale-NUS College

jinyeying@u.nus.edu, aashish.sharma@u.nus.edu, robby.tan{nus,yale-nus}.edu.sg

Abstract

Shadow removal from a single image is generally still an open problem. Most existing learning-based methods use supervised learning and require a large number of paired images (shadow and corresponding non-shadow images) for training. A recent unsupervised method, Mask-ShadowGAN [13], addresses this limitation. However, it requires a binary mask to represent shadow regions, making it inapplicable to soft shadows. To address the problem, in this paper, we propose an unsupervised domain-classifier guided shadow removal network, DC-ShadowNet. Specifically, we propose to integrate a shadow/shadow-free domain classifier into a generator and its discriminator, enabling them to focus on shadow regions. To train our network, we introduce novel losses based on physics-based shadow-free chromaticity, shadow-robust perceptual features, and boundary smoothness. Moreover, we show that our unsupervised network can be used for test-time training that further improves the results. Our experiments show that all these novel components allow our method to handle soft shadows, and also to perform better on hard shadows both quantitatively and qualitatively than the existing state-of-the-art shadow removal methods. Our code is available at: https://github.com/jinyeying/DC-ShadowNet-Hard-and-Soft-Shadow-Removal.

1. Introduction

Shadow removal from a single image can benefit many applications, such as image editing, scene relighting, etc., [19, 17, 16]. Unfortunately, in general, removing shadows from a single image is still an open problem. Existing physics-based methods for shadow removal [7, 6, 10] are based on entropy minimization that can capture the invariant features of shadow and non-shadow regions belong to the same surfaces in the log-chromaticity space. These methods, however, tend to fail, particularly when the image surfaces are close to achromatic (e.g. gray or white surfaces), and are not designed to handle soft shadow images.

Unlike physics-based methods, deep-learning methods, e.g. [24, 27, 14, 20, 1, 21], are more robust to different conditions of image surfaces and lighting. However, most of these methods are based on fully-supervised learning, which means that for training, they require pairs of shadow and their corresponding non-shadow images. To collect these image pairs in a large amount, particularly for images containing diverse scenes and shadows can be considerably expensive.

Recently, Hu et al. propose an unsupervised method,
2. Related work

Physics-based shadow removal methods (e.g. \[4, 3, 5, 7, 6\]) are based on the physics models of illumination and surface colors. These methods assume that the surface colors in the input image are chromatic, and hence they are erroneous when this assumption does not hold. These methods are designed to remove hard shadows only. In contrast, our method is based on unsupervised learning and is designed to handle both hard and soft shadows. Also, our method is more robust in dealing with achromatic surfaces.

Some other non-learning-based methods rely on user interaction. Gryka \textit{et al}. \cite{9} propose a regression model to learn a mapping function of shadow image regions and their corresponding shadow mattes. However, they need the user to provide brush strokes to relight shadow regions. Guo \textit{et al}. \cite{10, 11} use annotated ground truth to learn the appearances of shadow regions. Unlike these methods, our method is learning-based and does not rely on hand-crafted feature descriptors, making it more robust. Moreover, our method does not need any annotated ground truth and user interaction; hence, it is more practical and efficient.

To address the aforementioned limitations of non-deep learning methods, many deep learning methods are proposed. Wang \textit{et al}. \cite{27} use a stacked conditional GAN (ST-CGAN) to detect and remove shadows jointly. Le \textit{et al}. \cite{20, 21} propose SP+M-Net do shadow removal using image decomposition. Hu \textit{et al}. \cite{14, 12} propose to add global and direction-aware context into the direction-aware spatial context (DSC) module. Ding \textit{et al}. \cite{2} introduce an LSTM-based attentive recurrent GAN (ARGAN) to detect and remove shadows. All these methods are trained on paired data using supervised learning. Hence, training them using various soft shadows and complex scenes is difficult, since obtaining the ground truths is intractable. In contrast, our method is based on unsupervised learning and does not need any paired data.

Recently, Hu \textit{et al}. \cite{13} propose an unsupervised deep-learning method Mask-ShadowGAN. Unfortunately, since it mainly relies on adversarial training for shadow removal, it cannot guarantee that the generated output images are shadow-free since there is no strong guidance for the network to do so. Moreover, it cannot handle soft shadows due to the use of binary masks. In contrast, our method DC-ShadowNet uses new additional unsupervised losses and domain-classifier guided network that helps our method to more effectively deal with hard and soft shadows.
3. Proposed Method

Fig. 2 shows the architecture of our network, DC-ShadowNet. Given a shadow input image, \(\mathbf{I}_s \), we use a generator, \(G_s \), to transform it into a shadow-free output image \(\mathbf{Z}_{sf} \). Also, given an unpaired shadow-free input image, \(\mathbf{I}_{sf} \), we expect the generator, \(G_s \), to simply reconstruct the image back. Therefore, the generator \(G_s \), whether its input is a shadow or shadow-free image, always generates a shadow-free output image. Note that, in our method, we have two domains: shadow, \(s \), and shadow-free, \(sf \).

Our generator \(G_s \) consists of an encoder \(F_s^d \), decoder \(H_s^d \), and a domain classifier \(\Phi_s^d \). We use a discriminator \(D_{sf} \) to assess the quality of the shadow removal output. It consists of an encoder \(F_{sf}^d \), a classifier \(C_{sf}^d \), and a domain classifier \(\Phi_{sf}^d \). Both the domain classifiers, \(\Phi_s^d \) and \(\Phi_{sf}^d \), are used to classify the inputs to their respective modules, \(G_s \) and \(D_{sf} \), belonging to either shadow or shadow-free domain. However, unlike \(\Phi_s^d \), which is trained together with \(G_s \), \(\Phi_{sf}^d \) is pre-trained, and its weights are kept frozen while training \(D_{sf} \). The underlying idea of integrating the domain classifier into our generator and its discriminator is to guide our network to focus on shadow regions. The reference images of our discriminator are the unpaired shadow-free real images. Our discriminator’s classifier, \(C_{sf}^d \), outputs the real/fake binary label, where real refers to the label given to an image that belongs to the reference images.

While not shown in Fig. 2, for the sake of clarity, we employ another generator \(G_{sf} \) and the shadow mask to transform the shadow-free output image back to a shadow image, in order to enforce reconstruction consistency [34] and locate the shadow regions. Also, another discriminator \(D_s \) is used to distinguish whether the generated shadow image is real or not. Our method, DC-ShadowNet, is trained in an unsupervised manner using our losses, which are described in the following sections.

3.1. Shadow-Free Chromaticity Loss

Given a shadow input image \(\mathbf{I}_s \), we obtain a physics-based shadow-free chromaticity image \(\sigma_{sf}^{sphy} \), which is used to guide our shadow removal generator \(G_s \), through our shadow-free chromaticity loss function. To obtain \(\sigma_{sf}^{sphy} \) from \(\mathbf{I}_s \) requires two steps: (1) Entropy Minimization, and (2) Illumination Compensation.

Entropy Minimization Following [6], as shown in Fig. 3, we plot the input shadow image \(\mathbf{I}_s \) onto the log-chromaticity space, calculate the entropy, and use the entropy minimization to find the projection direction \(\theta \), which is specific to \(\mathbf{I}_s \). From \(\theta \), we can obtain a shadow-free chromaticity map.
Figure 3. Shadow-Free Chromaticity Loss. The upper part is the physics-based pipeline where we use entropy minimization followed by illumination compensation to generate the shadow-free chromaticity image σ_{sf}^{phy} from the input image I_s. The lower part shows our shadow removal generator G, guided by σ_{sf}^{phy} through our shadow-free chromaticity loss L_{chroma}.

Figure 4. (a) Input shadow image I_s, (b) Shadow-free chromaticity after entropy minimization σ_{sf}^{ent}, (c) Shadow-free chromaticity after illumination compensation σ_{sf}^{phy}, (d) Output shadow-free image Z_{sf}, and (e) Chromaticity map of the output image σ_{sf}. Our shadow-free chromaticity loss constrains (e) to be similar to (c) facilitating better shadow removal.

Now define our shadow-free chromaticity loss as:

$$L_{\text{chroma}}(G_s) = \mathbb{E}_{I_s} \left[||\sigma_{sf} - \sigma_{sf}^{\text{phy}}||_1 \right].$$

Using the loss function expressed in Eq. (2), we enforce the chromaticity of the output shadow-free image, σ_{sf}^{sf}, to be the same as our physics-based shadow-free chromaticity σ_{sf}^{phy}, which can be observed in the results shown in Fig. 4 for both hard shadow and soft shadow images.

3.2. Shadow-Robust Feature Loss

Our shadow-robust feature loss is based on the perceptual features obtained from the pre-trained VGG-16 network [15, 26]. Since we do not have ground truth to obtain the correct shadow-free features, to guide the shadow-free output, we use features from the input shadow image itself. Our underlying idea is that, since with some degree of shadows and lighting conditions, object classification using the pre-trained VGG-16 is known to be robust [28], there should be some features in the pre-trained VGG-16 that are less affected by shadows. Based on this, we perform a calibration experiment and find that the Conv22 layer in the VGG-16 network provides features that are least affected by shadows.

Hence, from the input shadow image, we obtain the shadow-robust features and use them to guide our shadow-free output image. Specifically, given an input shadow image I_s and the corresponding shadow-free output image Z_{sf}, we define our shadow-robust feature loss as:

$$L_{\text{feature}}(G_s) = \mathbb{E}_{I_s} \left[||V(Z_{sf}) - V(I_s)||_1 \right].$$

1For surfaces that are close to being achromatic, the entropy minimization can fail, which can lead to the improper recovery of the shadow-free chromaticity map. However, due to the presence of our other unsupervised losses, our method can still generate proper shadow removal results.
AVG:: Weights Multiplication

with its domain classifier. However, for the discriminator, a shadow-free image as input, it allows us to train it together to achieve better shadow removal results (see Fig. 7). We selectively focus on important shadow regions and generate

Φ shadow regions. We also add a similar domain classifier Φ s. We train DC-ShadowNet to know the shadow removal/restoration results from shadows and represent more of structural information (like edges).

3.3. Domain Classification Loss

We incorporate an attention mechanism that allows our DC-ShadowNet to know the shadow removal/restoration regions [33, 23, 18]. To achieve this, we create a domain classifier Φ d s and integrate it with the generator G s. We train Φ d s to classify whether the input to G s is from the shadow or shadow-free domain. Fig. 6 shows the integration of Φ d s into G s to obtain an attention map A d s that highlights shadow regions. We also add a similar domain classifier Φ d f s to the discriminator D s f. This allows our network to selectively focus on important shadow regions and generate better shadow removal results (see Fig. 7).

Since the generator can accept either a shadow or shadow-free image as input, it allows us to train it together with its domain classifier. However, for the discriminator, the domain of its input image, which is the output of the generator, can be ambiguous. For this reason, we pre-train the domain classifier of the discriminator using the following classification loss:

\[
\mathcal{L}_{\text{domcls}}(D_{sf}) = \mathbb{E}_{I_s} \left[-\log \left(\Phi^d_{sf}(F^d_{sf}(I_s)) \right) \right]
+ \mathbb{E}_{Z_{sf}} \left[-\log \left(1 - \Phi^d_{sf}(F^d_{sf}(Z_{sf})) \right) \right],
\]

and after pre-training, we freeze its weights during the main training cycle that trains our entire network (see Fig. 2). To train the domain classifier of the generator, we use a similar classification loss:

\[
\mathcal{L}_{\text{domcls}}(G_s) = \mathbb{E}_{I_s} \left[-\log \left(\Phi^d_s(F^d_s(I_s)) \right) \right]
+ \mathbb{E}_{Z_{sf}} \left[-\log \left(1 - \Phi^d_s(F^d_s(Z_{sf})) \right) \right].
\]

3.4. Boundary Smoothness Loss

To ensure that the output shadow-free image Z_{sf} have smoother transitions in the boundaries defined by the shadow regions of the input shadow image I_s, we also use a boundary smoothness loss:

\[
\mathcal{L}_{\text{smooth}}(G_s) = \mathbb{E}_{I_s} \left[\| B(M_s) \ast |\nabla(Z_{sf})| \|_1 \right],
\]

where \(\nabla \) is the gradient operation, B is a noise-robust function [29, 25, 31] to compute the boundaries of the shadow regions from our shadow mask M_s. To obtain M_s, we compute the difference between the input shadow image I_s and output shadow-free image Z_{sf}, and apply our mask detection function F on the difference:

\[
M_s = F(I_{sc} - Z_{sf,c}) = \sum_{c \in \{r,g,b\}} \frac{1}{3} |N(I_{sc} - Z_{sf,c})|,
\]

where the function N is a normalization function defined as N(I) = (I - I_{min})/(I_{max} - I_{min}), where I_{max} and I_{min} are the maximum and minimum values of I, respectively. Note that, our shadow mask M_s is a soft map and have the values in the range of [0, 1]. See Fig. 8b for some examples.

The noise-robust function B is defined as: B(M_s) = B_{sx} + B_{sy} where B_{sx}(p) = \(|\sum_{q \in R_p} g_{p,q} \partial_x(M_s(q))|\) and B_{sy}(p) = \(|\sum_{q \in R_p} g_{p,q} \partial_y(M_s(q))|\), \(\partial_x\) and \(\partial_y\) are partial derivatives in horizontal and vertical directions respectively, p defines a pixel, \(R_p\) is a 3\times3 window around p, and \(g_{p,q}\) is a weighing function measuring spatial affinity defined as \(g_{p,q} = \exp \left(-\frac{|p-q|^2}{\tau^2} \right)\), where \(\tau\) is set to 0.01 by default. See Fig. 8(c) for some examples of our soft boundary detection.
3.5. Adversarial, Consistency and Identity Losses

For shadow removal, we use the generator G_s, which is coupled with a discriminator D_{sf}. To ensure reconstruction consistency, we use another generator G_{sf} coupled with its own discriminator D_s. We use adversarial losses to train our DC-ShadowNet:

$$
L_{adv}(G_s, D_{sf}) = \mathbb{E}_{I_s} \left[\log \left(D_{sf}(I_s) \right) \right] + \mathbb{E}_{I_s} \left[\log \left(1 - D_{sf}(G_s(I_s)) \right) \right],
$$
(8)

$$
L_{adv}(G_{sf}, D_s) = \mathbb{E}_{I_s} \left[\log \left(D_s(I_s) \right) \right] + \mathbb{E}_{I_s} \left[\log \left(1 - D_s(G_{sf}(I_s, M_s)) \right) \right].
$$
(9)

During training, the losses expressed in Eqs. (8) and (9) are actually minimized as $\min_{G_s} \max_{D_{sf}} (L_{adv}(G_s, D_{sf}))$ and $\min_{G_{sf}} \max_{D_s} (L_{adv}(G_{sf}, D_s))$ respectively. Note that, unlike generator G_s, the generator G_{sf} takes the mask M_s (from Eq. 7) as input to help render more proper shadow images [13]. Following [34, 30], we define our reconstruction consistency losses by:

$$
L_{cons}(G_s) = \mathbb{E}_{I_s} \left[\| G_s(I_s, M_s) - I_s \|_1 \right],
$$
(10)

$$
L_{cons}(G_{sf}) = \mathbb{E}_{I_s} \left[\| G_{sf}(I_s, M_s) - I_s \|_1 \right].
$$
(11)

While our G_s is designed to remove shadows from shadow input image I_s, we also encourage it to output the same image as input, if the input is a shadow-free image I_{sf}. We achieve this by using the following identity losses [34]:

$$
L_{iden}(G_s) = \mathbb{E}_{I_{sf}} \left[\| (G_s(I_{sf})) - I_{sf} \|_1 \right],
$$
(12)

$$
L_{iden}(G_{sf}) = \mathbb{E}_{I_{sf}} \left[\| (G_{sf}(I_{sf}, M_{sf})) - I_{sf} \|_1 \right].
$$
(13)

where M_0 represents a mask with all zero values.

Overall Loss We multiply each loss function with its respective weight, and sum them together to obtain our overall loss function. The weights of the losses, $\{L_{chroma}, L_{feature}, L_{smooth}, L_{domcls}, L_{adv}, L_{cons}, L_{iden}\}$, are represented by $\{\lambda_{chroma}, \lambda_{feat}, \lambda_{sm}, \lambda_{dom}, \lambda_{adv}, \lambda_{cons}, \lambda_{iden}\}$.

4. Experiments

To evaluate our method, we use five datasets: SRD [24], adjusted ISTD (AISTD) [20], ISTD [27], USR [13] and LRSS [9], where LRSS is a soft shadow dataset. To ensure fair comparisons, all the unsupervised baselines, including ours are trained and tested on the same datasets. For the SRD dataset, for Table 1 and Fig. 9 rows 2-4, we use 2680 shadow images and 2680 shadow-free images for training. We use 408 shadow images that have shadow-free ground truth for testing. Similarly, for Table 2, we use 1330 training and 540 testing AISTD images; Fig. 9 row 1, we use 1330 training and 540 testing ISTD images. For the USR dataset, we use 1956 shadow, 1770 shadow-free images for training, 489 shadow images for testing. However, for testing, the USR dataset does not provide paired shadow and shadow-free images.

Our DC-ShadowNet is trained in an unsupervised manner (Sec. 3). The weights of our losses $\{\lambda_{chroma}, \lambda_{feat}, \lambda_{sm}, \lambda_{dom}, \lambda_{adv}, \lambda_{cons}, \lambda_{iden}\}$ are set empirically to $\{1, 1, 1, 10, 1, 1, 10\}$. Following the baselines [11, 13], to evaluate shadow removal performance, we use root mean squared error (RMSE) between the

Table 1. RMSE results on the SRD dataset. All, S and NS represent entire, shadow and non-shadow regions respectively.

Method	Training	All	S	NS
Our DC-ShadowNet	Unpaired	**4.66**	7.70	3.39
Mask-ShadowGAN [13]	Unpaired	6.40	11.46	4.29
DSC [14]	Paired	4.86	8.81	**3.23**
DeShadowNet [24]	Paired	5.11	**3.57**	8.82
Gong et al. [8]	-	12.35	25.43	6.91
Input Image	-	13.77	37.40	3.96

Table 2. RMSE results on the AISTD dataset. All, S and NS represent entire, shadow and non-shadow regions respectively. M shows that ground truth shadow masks are also used in training.

Method	Training	All	S	NS
Our DC-ShadowNet	Unpaired	**4.6**	**10.3**	3.5
Mask-ShadowGAN [13]	Unpaired	5.3	12.5	4.0
DshadowNet [24]	Paired	7.6	15.9	6.0
ST-CGAN [27]	Paired+M	8.7	13.4	7.7
Gong et al. [8]	-	-	13.3	-
Guo et al. [10]	Paired+M	6.1	22.0	3.1
Yang et al. [32]	-	16.0	24.7	14.4
Input Image	-	8.5	40.2	**2.6**

3Results of [13, 14, 27, 8, 20, 1] are taken from their official implementations. Results of [9, 11] are obtained from their project website: http://visual.cs.ucl.ac.uk/pubs/softshadows/. The quantitative results are taken from the paper [21].
Table 3. RMSE (lower is better) and PSNR (higher is better) results on the LRSS dataset (soft shadow dataset). M and S respectively show that ground truth shadow masks and synthetic paired data are used in training. P and UP denote paired and unpaired training, respectively.

Method	Input	[11]	[11] (ours)	[2]	[1]	[20]	[12]	Ours
RMSE	12.26	6.02	5.87	4.38	7.92	7.48	7.13	3.48
PSNR	18.05	27.88	28.02	29.25	25.57	23.93	25.12	31.01
Training		P+M	P	P+M+M+S	P+M+S	P+M	UP	UP

(a) Input (b) Ours (c) [13] (d) [21] (e) [27] (f) [8]

Figure 9. Comparison results on the ISTD (top row) and SRD (bottom three rows) datasets. (a) Input image, (b) Our method, unsupervised method (c) Mask-ShadowGAN [13], weakly-supervised method (d) Param+M+D-Net [21] (top row), supervised methods DSC [14], (e) ST- CGAN [27] (top row), DeshadowNet [24], and traditional method (f) Gong et al. [8]. Our method trained using unsupervised learning provides the best performance.

The qualitative results for the SRD (rows 2-4) and ISTD (top row) datasets are shown in Fig. 9, which include challenging conditions and diverse objects. For example, the shadow image contains shadows casted on semantic objects (i.e., building, wall). In Fig. 9, the method [13] alters the colors of the non-shadow regions and cannot properly handle shadow boundaries. For the method [8], the recovery of the shadow-free images is unsatisfactory. In comparison, our DC-ShadowNet performs better, showing the effectiveness of our domain classification network and our novel unsupervised losses.

Results on Soft Shadows The LRSS dataset has 134 shadow images, mainly contains soft-shadow images. We pre-trained our DC-ShadowNet on the SRD training set, then we use 100 LRSS images for training it in an unsupervised manner. The remaining 34 LRSS images with their corresponding shadow-free images are used for testing. The quantitative results are shown in Table 3. We compare our DC-ShadowNet with the following methods: unsupervised method Mask-ShadowGAN [13], supervised methods SP+M-Net [20] and DHAN [1], automatic method Guo et al. [8], and interactive method [9] which requires user-annotations of shadow regions. As shown in Table 3, our method achieves the lowest RMSE and highest PSNR.

The qualitative results covering a diverse set of images such as indoor/outdoor scenes, shadow regions, etc., are shown in Fig. 10. While the state-of-the-art methods can remove shadows to some extent, the results are still improper. Mask-ShadowGAN [13] fails to handle soft-shadows since it uses binary masks to represent shadow regions. Moreover, it mainly relies on adversarial training that cannot guarantee proper shadow removal. Supervised methods like DHAN [1] and SP+M-Net [20] have artifacts in the shadow regions as they suffer from the domain gap problem. Guo et al. [11] fails due to the difficulty in automatically identifying soft shadow regions. Compared to all the baseline methods, our results are more proper, and the image
Figure 10. Comparison results on the soft shadow LRSS dataset (a) Input image, (b) Our result, (c) Unsupervised method Mask-ShadowGAN [13], Supervised methods (d) SP+M-Net [20] and (e) DHAN [1]. (f)~(h) are the results of the traditional methods (auto means automatic detection). Our method, trained using unsupervised learning, generates better shadow-free results.

Test-Time Training We show that our method being unsupervised can be used for test-time training to further improve the results on the test images. For this, we use the 34 shadow images from the test set used in the soft shadow evaluation above, and employ our unsupervised losses to train our method. To evaluate shadow removal performance, we use the corresponding shadow-free images; and the performance in terms of RMSE and PSNR improves from 3.48 and 31.01 to 3.36 and 31.31, respectively. See Fig. 11 for a qualitative example showing the effectiveness of test-time training.

5. Ablation Study

We conduct ablation studies to analyze the effectiveness of different components of our method such as the shadow-invariant chromaticity loss L_{chroma}, shadow-robust feature loss L_{feature}, boundary-smoothness loss L_{smooth}, and the domain classifier Φ^g_s and Φ^g_{sf}. We use the SRD dataset for our experiments and the corresponding quantitative results are shown in Table 4. Each component of our method is important and contributes to the better performance.

6. Conclusion

We have proposed DC-ShadowNet, an unsupervised learning-based shadow removal method guided by domain classification network, shadow-free chromaticity, shadow-robust feature and boundary smoothness losses. Our method can robustly handle both hard and soft shadow images. We integrate a domain classifier with our generator and its corresponding discriminator, enabling our method to focus on shadow regions. To train DC-ShadowNet, we use novel unsupervised losses that enable it to directly learn from unlabeled (no ground truth) real shadow images. We
also showed that we could employ test-time refinement that can further improve our performance. Experimental results have confirmed that our method is effective and outperforms the state-of-the-art shadow removal methods.

References

[1] Xiaodong Cun, Chi-Man Pun, and Cheng Shi. Towards ghost-free shadow removal via dual hierarchical aggregation network and shadow matting gan. In AAAI, pages 10680–10687, 2020. 1, 6, 7, 8

[2] Bin Ding, Chengjiang Long, Ling Zhang, and Chunxia Xiao. Argan: Attentive recurrent generative adversarial network for shadow detection and removal. In Proceedings of the IEEE international conference on computer vision, pages 10213–10222, 2019. 2

[3] Mark S Drew, Graham D Finlayson, and Steven D Hordley. Recovery of chromaticity image free from shadows via illumination invariance. In IEEE Workshop on Color and Photometric Methods in Computer Vision, ICCV’03, pages 32–39, 2003. 2, 4

[4] Graham D Finlayson and Mark S Drew. 4-sensor camera calibration for image representation invariant to shading, shadows, lighting, and specularities. In Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, volume 2, pages 473–480, 2001. 2

[5] Graham D Finlayson, Mark S Drew, and Cheng Lu. Intrinsic images by entropy minimization. In European conference on computer vision, pages 582–595, 2004. 2

[6] Graham D Finlayson, Mark S Drew, and Cheng Lu. Entropy minimization for shadow removal. International Journal of Computer Vision, 85(1):35–57, 2009. 1, 2, 3

[7] Graham D Finlayson, Steven D Hordley, Cheng Lu, and Mark S Drew. On the removal of shadows from images. IEEE transactions on pattern analysis and machine intelligence, 28(1):59–68, 2005. 1, 2

[8] Han Gong and Darren Cosker. Interactive shadow removal and ground truth for variable scene categories. In BMVC, pages 1–11, 2014. 6, 7

[9] Maciej Gryka, Michael Terry, and Gabriel J Brostow. Learning to remove soft shadows. ACM Transactions on Graphics (TOG), 34(5):1–15, 2015. 2, 6, 7, 8

[10] Ruiqi Guo, Qieyun Dai, and Derek Hoiem. Single-image shadow detection and removal using paired regions. In CVPR 2011, pages 2033–2040, 2011. 1, 2, 6

[11] Ruiqi Guo, Qieyun Dai, and Derek Hoiem. Paired regions for shadow detection and removal. IEEE transactions on pattern analysis and machine intelligence, 35(12):2956–2967, 2012. 2, 6, 7, 8

[12] Xiaowei Hu, Chi-Wing Fu, Lei Zhu, Jing Qin, and Pheng-Ann Heng. Direction-aware spatial context features for shadow detection and removal. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(11):2795–2808, 2019. 2

[13] Xiaowei Hu, Yitong Jiang, Chi-Wing Fu, and Pheng-Ann Heng. Mask-shadowgan: Learning to remove shadows from unpaired data. In Proceedings of the IEEE International Conference on Computer Vision, pages 2472–2481, 2019. 1, 2, 6, 7, 8

[14] Xiaowei Hu, Lei Zhu, Chi-Wing Fu, Jing Qin, and Pheng-Ann Heng. Direction-aware spatial context features for shadow detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 7454–7462, 2018. 1, 2, 6, 7

[15] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In European conference on computer vision, pages 694–711. Springer, 2016. 2, 4

[16] Rei Kawakami, Katsushi Ikeuchi, and Robby T Tan. Consistent surface color for texturing large objects in outdoor scenes. In Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1, page 2, 2005. 1

[17] Salman H Khan, Mohammed Bennamoun, Ferdous Sohel, and Roberto Togneri. Automatic shadow detection and removal from a single image. IEEE transactions on pattern analysis and machine intelligence, 38(3):431–446, 2015. 1

[18] Junho Kim, Minjae Kim, Hyeonwoo Kang, and Kwang Hee Lee. U-gat-it: Unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation. In International Conference on Learning Representations, 2020. 5

[19] Jean-François Lalonde, Alexei A Efros, and Srinivasa G Narasimhan. Estimating natural illumination from a single outdoor image. In 2009 IEEE 12th International Conference on Computer Vision, pages 183–190, 2009. 1

[20] Hieu Le and Dimitris Samaras. Shadow removal via shadow image decomposition. In Proceedings of the IEEE International Conference on Computer Vision, pages 8578–8587, 2019. 1, 2, 6, 7, 8

[21] Hieu Le and Dimitris Samaras. From shadow segmentation to shadow removal. In European Conference on Computer Vision, pages 264–281. Springer, 2020. 1, 2, 6, 7

[22] Official Github page of ‘Shadow Removal via Shadow Image Decomposition’ ICCV 2019. https://github.com/cvlab-stonybrook/SID. 7

[23] Rui Qian, Robby T Tan, Wenhao Yang, Jiajun Su, and Jiaying Liu. Attentive generative adversarial network for raindrop removal from a single image. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2482–2491, 2018. 5

[24] Liangqiong Qu, Jiandong Tian, Shengfeng He, Yandong Tang, and Rynson WH Lau. Deshadownet: A multi-context embedding deep network for shadow removal. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4067–4075, 2017. 1, 6, 7

[25] Ashesh Sharma and Loong-Fah Cheong. Into the twilight zone: Depth estimation using joint structure-stereo optimization. In Proceedings of the European Conference on Computer Vision (ECCV), pages 103–118, 2018. 5

[26] Ashesh Sharma, Loong-Fah Cheong, Lionel Heng, and Robby T Tan. Nighttime stereo depth estimation using joint translation-stereo learning: Light effects and uninformative regions. In 2020 International Conference on 3D Vision (3DV), pages 23–31. IEEE, 2020. 4
[27] Jifeng Wang, Xiang Li, and Jian Yang. Stacked conditional generative adversarial networks for jointly learning shadow detection and shadow removal. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1788–1797, 2018. 1, 2, 6, 7

[28] Brandon Richard Webster, Samuel E Anthony, and Walter J Scheirer. Psyphy: A psychophysics driven evaluation framework for visual recognition. IEEE transactions on pattern analysis and machine intelligence, 41(9):2280–2286, 2018. 4

[29] Li Xu, Qiong Yan, Yang Xia, and Jiaya Jia. Structure extraction from texture via relative total variation. ACM transactions on graphics (TOG), 31(6):1–10, 2012. 5

[30] Wending Yan, Aashish Sharma, and Robby T Tan. Optical flow in dense foggy scenes using semi-supervised learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13259–13268, 2020. 6

[31] Wending Yan, Robby T Tan, and Dengxin Dai. Night-time defogging using high-low frequency decomposition and grayscale-color networks. In European Conference on Computer Vision, pages 473–488. Springer, 2020. 5

[32] Qingxiong Yang, Kar-Han Tan, and Narendra Ahuja. Shadow removal using bilateral filtering. IEEE Transactions on Image processing, 21(10):4361–4368, 2012. 6, 7

[33] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep features for discriminative localization. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2921–2929, 2016. 5

[34] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer vision, pages 2223–2232, 2017. 2, 3, 6