CLASSIFICATION OF THREE DIMENSIONAL COMPLEX ω-LIE ALGEBRAS

YIN CHEN, CHANG LIU, AND RUN-XUAN ZHANG

ABSTRACT. A complex ω-Lie algebra is a vector space L over the complex field, equipped with a skew symmetric bracket $[-,-]$ and a bilinear form ω such that

$$[[x,y],z] + [[y,z],x] + [[z,x],y] = \omega(x,y)z + \omega(y,z)x + \omega(z,x)y$$

for all $x,y,z \in L$. The notation of ω-Lie algebras, as a generalization of Lie algebras, originally appeared in Riemannian geometry; they are related to the isoparametric hypersurfaces in spheres ([1, 4]). There are no non-Lie ω-Lie algebras in dimension two. The purpose of this note is to give a classification of three dimensional non-Lie complex ω-Lie algebras.

1. Introduction. Let k be a field of characteristic zero and L be a finite-dimensional vector space over k. Let $[-,-] : L \times L \rightarrow L$ be a anti-commutative product on L and $\omega : L \times L \rightarrow k$ be a bilinear form on L. The triple $(L, [-,-], \omega)$ is called an ω-Lie algebra if the following condition is satisfied:

$$(1) \quad [[x,y],z] + [[y,z],x] + [[z,x],y] = \omega(x,y)z + \omega(y,z)x + \omega(z,x)y$$

for all $x,y,z \in L$. The equation (1) is called the ω-Jacobi identity. Apparently, the ω is also skew-symmetric; an ω-Lie algebra is a Lie algebra if and only if the bilinear form $\omega \equiv 0$. So we usually call the Lie algebras trivial ω-Lie algebras.

The notation of ω-Lie algebras, which is related to the study of isoparametric hypersurfaces in Riemannian geometry, was introduced in the recent works of Bobieński and Nurowski ([1, 4]). By the definition, it is easy to see that all ω-Lie algebras are trivial in the case of dimension 1 and 2. The first example of nontrivial 3-dimensional ω-Lie algebra was given by Nurowski [3] in 2007. In that paper, Nurowski finally completed the classification of 3-dimensional ω-Lie algebra over the field of real numbers.

A fundamental development of ω-Lie algebras was by Zusmanovich [5], in which a lot of basic concepts, such as modules, (quasi-) ideals and (generalized) derivations, were introduced; some basic properties of ω-Lie algebras were found. One of Zusmanovich’s results asserts that finite-dimensional nontrivial ω-Lie algebras are either low-dimensional or have an abelian subalgebra of small codimension with some restrictive conditions. In particular, the following useful result is proved.

Lemma 1 ([5], Lemma 8.1). If L is a finite-dimensional ω-Lie algebra with non-degenerate ω, then dim $L = 2$.

Date: June 25, 2013.
2010 Mathematics Subject Classification. 17B60, 17A30.
Key words and phrases. ω-Lie algebra; ω-Jacobi identity; generalization of Lie algebra.
Recall that a skew-symmetric bilinear form \(\omega \) on \(L \) is degenerate if there exists a nonzero vector \(x \in L \) such that \(\omega(x, y) = 0 \) for all \(y \in L \). Lemma 1 mentioned above means that the bilinear form \(\omega \) on any \(\omega \)-Lie algebra \(L \) must be degenerate if \(\dim L \geq 3 \).

The main purpose of this note is to classify all 3-dimensional nontrivial \(\omega \)-Lie algebras over the field of complex numbers.

In what follows, \(C \) is the field of complex numbers and \(L \) denotes an \(\omega \)-Lie algebra with a basis \(\{x, y, z\} \); we write \(\wedge^2 L \) for the exterior power of \(L \) with the basis \(\{x \wedge y, x \wedge z, y \wedge z\} \) and \(\varphi = [\cdot, -] : \wedge^2 L \rightarrow L \) is the bracket product. We use \(L' = [L, L] \) to denote the commutator subalgebra of \(L \). We call the dimension of \(L' \) the rank of \(\varphi \). In the book [2], Fulton and Harris presented a classification of 3-dimensional complex Lie algebras by considering the rank of \(\varphi \).

In this note, we will follow some ideas in [2] and discuss the rank of \(\varphi \), which may be 0, 1, 2, 3.

The following theorem is our main result.

Theorem 2. Let \(L \) be a nontrivial (i.e. non-Lie) 3-dimensional \(\omega \)-Lie algebra, then it must be isomorphic to one of the following algebras:

1. \(L_1 \) : \([x, z] = 0, [y, z] = z, [x, y] = y \) and \(\omega(y, z) = \omega(x, z) = 0, \omega(x, y) = 1 \).
2. \(L_2 \) : \([x, y] = 0, [x, z] = y, [y, z] = z \) and \(\omega(x, y) = 0, \omega(x, z) = 1, \omega(y, z) = 0 \).
3. \(A_\alpha \) : \([x, y] = x, [x, z] = x + y, [y, z] = z + \alpha x \) and \(\omega(x, y) = \omega(x, z) = 0 \),
 \[\omega(y, z) = -1, \text{ where } \alpha \in C. \]
4. \(B_\alpha \) : \([x, y] = y, [x, z] = y + z, [y, z] = \alpha x \) and \(\omega(x, y) = \omega(x, z) = 0 \),
 \[\omega(y, z) = 2\alpha, \text{ where } 0 \neq \alpha \in C. \]
5. \(C_\alpha \) : \([x, y] = y, [x, z] = \alpha z, [y, z] = x \) and \(\omega(x, y) = \omega(x, z) = 0 \),
 \[\omega(y, z) = 1 + \alpha, \text{ where } 0 \neq \alpha \in C. \]

2. **Ranks 0 and 1.** We continue to follow the notations in the preceding section.

 If the rank of \(\varphi \) is zero, then \(L \) is abelian. It follows from the \(\omega \)-Jacobi identity (1) that
 \[\omega(x, y)z + \omega(y, z)x + \omega(z, x)y = 0. \]

 Since \(\{x, y, z\} \) is a basis of \(L \), \(\omega(x, y) = \omega(y, z) = \omega(z, x) = 0 \). Thus in this case, the \(\omega \)-Lie structure on \(L \) is trivial.

 If the rank of \(\varphi \) is 1, then \(\dim L' = 1 \) and the kernel of \(\varphi \) is two dimensional. Suppose that \(\{x, y, z\} \) is a basis of \(L \) such that \([x, y] = [x, z] = 0 \). We let \([y, z] = ax + by + cz \) for some \(a, b, c \in C \). By \(\omega \)-Jacobi identity, we have
 \[\omega(x, y)z + \omega(y, z)x + \omega(z, x)y \]
 \[= [(x, y), z] + [(y, z), x] + [(z, x), y] \]
 \[= [ax + by + cz, x] = 0. \]
Since \(x, y, z \) is linearly independent, \(\omega(x, y) = \omega(y, z) = \omega(z, x) = 0 \). Thus \(\omega \) is trivial. The same arguments as in \([2]\) (page 137) will imply that there only exist two Lie algebras:

\[
\begin{align*}
g_1 & : [x, y] = [x, z] = 0, \text{ and } [y, z] = y. \\
g_2 & : [x, y] = [x, z] = 0, \text{ and } [y, z] = x.
\end{align*}
\]

They are trivial \(\omega \)-Lie algebras.

3. **Rank 2.** In this case, we choose \([y, z]\) as a basis of \(L' \) and \(x \not\in L' \). We assume that \([y, z] = ay + bz \). Our arguments will separated into the following two cases: \(a = b = 0 \) or the others.

Case 1. If both \(a \) and \(b \) are zero, then \([x, y] \neq 0 \) and \([x, z] \neq 0 \) because the kernel of \(\varphi \) is one dimensional. Thus the linear map \(\text{ad}_x : L' \rightarrow L' \) by \(u \mapsto [x, u] \) is bijective. By linear algebra, we can choose the suitable basis elements \(y, z \) such that \(\text{ad}_x \) is similar to

\[
\begin{pmatrix}
 c & 0 \\
 0 & d
\end{pmatrix}
\]

or

\[
\begin{pmatrix}
 e & 0 \\
 1 & e
\end{pmatrix},
\]

where \(c, d, e \) are nonzero complex numbers. In the first situation, \([x, y] = \text{ad}_x(y) = cy\) and \([x, z] = \text{ad}_x(z) = dz\). Let \(\tilde{x} = c^{-1}x \), then \([\tilde{x}, y] = y \) and \([\tilde{x}, z] = (c^{-1}d)z\). We obtain a family of Lie algebras with one parameter:

\[
b_\alpha : [x, y] = y, [x, z] = az \text{ and } [y, z] = 0, \text{ where } 0 \neq \alpha \in \mathbb{C}.
\]

In the second situation, \([x, y] = ey\) and \([x, z] = y + ez\). Let \(\tilde{\alpha} = e^{-1}x \), then \([\tilde{x}, y] = y \) and \([\tilde{x}, z] = e^{-1}y + z\). Let \(\tilde{y} = e^{-1}y \), then \([\tilde{x}, \tilde{y}] = \tilde{y} \) and \([\tilde{x}, z] = \tilde{y} + z\). Thus we get a Lie algebra:

\[
g_3 : [x, y] = y, [x, z] = y + z \text{ and } [y, z] = 0.
\]

Case 2. Assume that one of \(a \) and \(b \) is not zero. We need only to consider the case of \(b \neq 0 \) because if \(a \neq 0 \) then we can transpose \(y \) and \(z \) and will get the same results.

Let \(\tilde{z} = z + b^{-1}ay \), then \([y, \tilde{z}] = [y, z] = ay + bz = b\tilde{z}\). Let \(\tilde{y} = b^{-1}y \) then \([\tilde{y}, \tilde{z}] = \tilde{z}\). So in this case, we can assume that \([y, z] = z\). Since the kernel of \(\varphi \) is one dimensional, one of \([x, z]\) and \([x, y]\) is zero, and the other is not zero.

Subcase 1. If \([x, y] = ay + cz \neq 0 \) and \([x, z] = 0\), then

\[
\begin{align*}
\omega(x, y)z + \omega(y, z)x + \omega(z, x)y \\
= & \quad [(x, y), z] + [(y, z), x] + [(z, x), y] \\
= & \quad [ay + cz, z] + [z, x] = az.
\end{align*}
\]

This means that \(\omega(y, z) = \omega(z, x) = 0 \) and \(a = \omega(x, y) \). If \(c = 0 \), then \(a \neq 0 \). We let \(\tilde{x} = a^{-1}x \) and it is easy to check that \([\tilde{x}, z] = 0, [y, z] = z, [\tilde{x}, y] = y, \omega(y, z) = \omega(x, z) = 0 \) and \(\omega(\tilde{x}, y) = 1 \). Thus we get a nontrivial \(\omega \)-Lie algebra:

\[
L_1 : [x, z] = 0, [y, z] = z, [x, y] = y \text{ and } \omega(y, z) = \omega(x, z) = 0, \omega(x, y) = 1.
\]
If \(c \neq 0 \) and \(a = 0 \), then the \(\omega \)-Jacobi identity implies that \(\omega \) is trivial. If \(c \neq 0 \) and \(a \neq 0 \), we assume that \(\tilde{y} = y + a^{-1}cz \), then \([x, z] = 0, [\tilde{y}, z] = z, [x, \tilde{y}] = a\tilde{y} \) and \(\omega(\tilde{y}, z) = \omega(x, z) = 0, \omega(x, \tilde{y}) = a \), so it is easy to see that the corresponding \(\omega \)-Lie algebra is isomorphic to \(L_1 \).

Subcase 2. If \([z, x] = -[x, z] = ay + cz \neq 0 \) and \([x, y] = 0\), then
\[
\omega(x, y)z + \omega(y, z)x + \omega(z, x)y = \omega([x, y], z) + \omega(y, [z, x]) + \omega([z, x], y) = [z, x] + [cz, y] = ay.
\]

Thus \(\omega(y, z) = 0, \omega(x, y) = 0 \) and \(\omega(z, x) = a \). Now we have
\[
[y, z] = z, [x, y] = 0, [z, x] = ay + cz.
\]

Since the dimension of \(L' \) is two, \(a \neq 0 \). Let \(\tilde{y} = y + a^{-1}cz \), then
\[
[z, x] = a\tilde{y}, [\tilde{y}, z] = z, [x, \tilde{y}] = -c\tilde{y}.
\]

Recall that the kernel of \(\varphi \) is one dimensional, so \(c \) must be zero. Now we can assume that \(\tilde{z} = a^{-1}z \) and \(\tilde{x} = -x \). This yields that
\[
[\tilde{y}, \tilde{z}] = \tilde{z}, [\tilde{x}, \tilde{y}] = 0, [\tilde{x}, \tilde{z}] = \tilde{y}, \omega(\tilde{y}, \tilde{z}) = 0, \omega(\tilde{x}, \tilde{y}) = 0, \omega(\tilde{x}, \tilde{z}) = -1.
\]

Hence there is a nontrivial \(\omega \)-Lie algebra:
\[
L_2 : \quad [x, y] = 0, [x, z] = y, [y, z] = z \text{ and } \omega(x, y) = 0, \omega(x, z) = 1, \omega(y, z) = 0.
\]

4. Rank 3. For the case of \(\omega \equiv 0 \), it follows from the Fulton and Harris’s arguments in \cite{2} (pages 141-142) that there exists only one Lie algebra:
\[
\mathfrak{g}_4 : \quad [x, y] = 2y, [x, z] = -2z \text{ and } [y, z] = x.
\]

Next we consider the nontrivial case. Since the dimension of \(L' \) is 3, the rank of adjoint map \(\text{ad}_x : L \to L \) must be 2 for any nonzero \(x \in L \). Thus the kernel of \(\text{ad}_x \) is equal to \(C \cdot x \).

By Lemma 1, if \(\omega \) is non-degenerate, then \(L \) must have dimension 2. So the bilinear form \(\omega \) we consider here is degenerate. This means that there exists an nonzero element \(x \in L \) such that \(\omega(x, v) = 0 \) for all \(v \in L \). Now we fix \(x \). By the Jordan canonical form, we can choose a suitable basis \(\{u, y, z\} \) of \(L \) such that \(\text{ad}_x \) is similar to
\[
A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \delta & 0 \\ 0 & 1 & \delta \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & \nu \end{pmatrix}, \quad \text{or } D = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & \tau \end{pmatrix},
\]
where \(\delta, \mu, \nu \) and \(\tau \) are all nonzero and are the eigenvalues of \(\text{ad}_x \). Thus our arguments consist of the following four cases.

Case 1. If \(\text{ad}_x \) is similar to \(A \), then \([x, u] = 0, [x, y] = u \) and \([x, z] = y \). Let \(u = ax \) for some nonzero \(a \in \mathbb{C} \). Then we have \([x, y] = ax \) and \([x, z] = y \). That is, \([a^{-1}x, a^{-1}y] = a^{-1}x \) and \([a^{-1}x, z] = a^{-1}y \). Thus
we can assume that \([x, y, z]\) is a basis of \(L\) such that
\[
[x, y] = x, [x, z] = y.
\]

Next we need to determine the commutator relations of \(y\) and \(z\). Let \([y, z] = bx + cy + dz\), then
\[
\omega(x, y)z + \omega(y, z)x + \omega(z, x)y
\]
\[
= \([x, y], z\] + [[y, z], x] + [[z, x], y]
\]
\[
= [x, z] + [cy + dz, x]
\]
\[
= (1 - d)y - cx.
\]

Thus \(\omega(x, y) = 0, \omega(x, z) = d - 1, \omega(y, z) = -c\). Since \(\omega(x, z) = 0, d = 1\). Notice that \(\omega\) is not trivial, so \(c \neq 0\). In the equation \([y, z] = bx + cy + z\), we can first assume that \(\tilde{z} = z + cy\). Then
\[
[y, \tilde{z}] = \tilde{z} + bx, [x, y] = x, [x, \tilde{z}] = cx + y,
\]
and \(\omega(x, y) = 0, \omega(x, \tilde{z}) = 0\) and \(\omega(y, \tilde{z}) = -c\). Let \(\alpha = c^{-1}b, \beta = c^{-1}, \gamma = c^{-1}\tilde{z}\), then
\[
[y, \gamma'] = \gamma' + \alpha x, [x, y] = x, [x, \gamma'] = x + \beta y
\]
and \(\omega(x, y) = 0, \omega(x, \gamma') = 0\) and \(\omega(y, \gamma') = -1\). We define \(x' = x^{-1}x\) and \(y = \alpha \beta\). Then
\[
[x', y] = x', [x', \gamma'] = x' + y, [y, \gamma'] = \gamma' + y x'
\]
with \(\omega(x', y) = 0, \omega(x', \gamma') = 0, \omega(y, \gamma') = -1\). Hence we get a family of \(\omega\)-Lie algebras with one parameter:

\[
A_\alpha : \begin{array}{l}
x, y, \alpha, x, z = x + y, y, [y, z] = z + \alpha x; \\
\omega(x, y) = 0, \omega(x, z) = 0, \omega(y, z) = -1, \text{ where } \alpha \in \mathbb{C}.
\end{array}
\]

Case 2. If \(\text{ad}_x\) is similar to \(B\), then \([x, u] = 0, [x, y] = \delta y, [x, z] = y + \delta z\). Obviously, \([\delta^{-1}x, \delta^{-1}y] = \delta^{-1}y, [\delta^{-1}x, z] = \delta^{-1}y + z\). Thus we can assume that \([x, y, z]\) is a basis of \(L\) such that
\[
[x, y] = y, [x, z] = y + z.
\]

Let \([y, z] = ax + by + cz\), then
\[
\omega(x, y)z + \omega(y, z)x + \omega(z, x)y
\]
\[
= \([x, y], z\] + [[y, z], x] + [[z, x], y]
\]
\[
= 2[y, z] + [by + cz, x]
\]
\[
= 2ax + (b - c)y + cz.
\]

Thus \(\omega(x, y) = c, \omega(x, z) = c - b\) and \(\omega(y, z) = 2\alpha\). Recall that \(x\) belongs to the kernel of \(\omega\), so \(c = b = 0\). Hence we obtain a family of \(\omega\)-Lie algebras of one parameter:

\[
B_\alpha : \begin{array}{l}
x, y, \alpha, x, z = y + z, y, [y, z] = \alpha x; \\
\omega(x, y) = 0, \omega(x, z) = 0, \omega(y, z) = 2\alpha, \text{ where } 0 \neq \alpha \in \mathbb{C}.
\end{array}
\]
Case 3. If ad$_x$ is similar to C, then $[x, u] = 0, [x, y] = \mu y, [x, z] = \nu z$. We can assume that $\{x, y, z\}$ is a basis of L. Let $[y, z] = ax + by + cz$. Notice that the dimension of L' is 3, so $\alpha \neq 0$. Thus as before, we can assume that $[x, y] = y, [x, z] = \alpha z$ and $[y, z] = x + by + cz$, where $\alpha \neq 0$. The ω-Jacobi identity implies that $b = c = 0$ and $\omega(x, y) = 0, \omega(x, z) = 0, \omega(y, z) = 1 + \alpha$.

We obtain again a family of ω-Lie algebras of one parameter:

$$C_{\alpha} : \quad [x, y] = y, [x, z] = \alpha z, [y, z] = x;$$

$$\omega(x, y) = 0, \omega(x, z) = 0, \omega(y, z) = 1 + \alpha,$$

where $0 \neq \alpha \in \mathbb{C}$.

Case 4. If ad$_x$ is similar to D, then $[x, u] = 0, [x, y] = u, [x, z] = \tau z$. Let $\{x, y, z\}$ is a basis of L and $[y, z] = ax + by + cz$. As before, we can assume that $[x, y] = x, [x, z] = z$ and $[y, z] = ax + by + cz$. By the ω-Jacobi identity we will see that $\omega(x, y) = 1$, which contradicts with the assumption that $\omega(x, v) = 0$ for all $v \in L$. Thus in this situation, there do not exist any ω-Lie algebras.

This completes the proof of Theorem 2.

Acknowledgments. This work was supported by NNSF of China (11226051), IETPUS (201210200041) and the Fundamental Research Funds for the Central Universities (11QNJJ001).

References

[1] M. Bobieński and P. Nurowski, Irreducible SO(3) geometry in dimension five. J. Reine Angew. Math. 605 (2007) 51-93.
[2] W. Fulton and J. Harris, Representation theory: a first course. GTM 129. Springer-Verlag, New York (1991).
[3] P. Nurowski, Deforming a Lie algebra by means of a 2-form. J. Geom. Phys. 57 (2007) 1325-1329.
[4] P. Nurowski, Distinguished dimensions for special Riemannian geometries. J. Geom. Phys. 58 (2008) 1148-1170.
[5] P. Zusmanovich, ω-Lie algebras. J. Geom. Phys. 60 (2010) 1028-1044.

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, P.R. China
E-mail address: ychen@nenu.edu.cn

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, P.R. China
E-mail address: liuc813@nenu.edu.cn

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, P.R. China
E-mail address: zhangrx728@nenu.edu.cn