Effect of decreased haemoglobin concentration on audio visual reaction time

Amrithaashri S1, Sridevi G2*, Archana Santhanam3

1Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, Tamil Nadu, India
2Department of Physiology, Saveetha Dental College, Saveetha University, Saveetha Institute of Medical and Technical Science, Chennai, Tamil Nadu, India
3Department of oral pathology, Saveetha Dental College, Saveetha Institute of medical and technical science, Saveetha University, Chennai, Tamil Nadu, India

Article History:
Received on: 23 Jul 2020
Revised on: 23 Aug 2020
Accepted on: 10 Sep 2020

Keywords:
Haemoglobin, visual reaction time, Auditory reaction time, impaired nerve conduction

ABSTRACT

Anaemia is defined as the decrease in the blood with haemoglobin concentration and has also been a very important public health issue that extremely affects the middle-income countries. The present study was planned to investigate the association between haemoglobin concentration with audiovisual reaction time. The study was conducted among I year BDS female student population of saveetha dental college and hospital. Based on Haemoglobin values, the study population was divided into two categories. Group 1- Female subjects whose haemoglobin concentration was above 10 G%. Group 2(anaemic group)- Female subjects whose haemoglobin concentration was below 10 G%. Audiovisual reaction time was determined by the audio visual meter. The student’s test was used to analyse the relationship between haemoglobin level and audiovisual reaction time. The effect of age above and below 20 years also were analysed for haemoglobin and ART, VRT association. Pearson Chi square test was used to analyse the difference between normal and anaemic individuals in the age group above and below 20 years. The results of the analysis revealed that haemoglobin concentration was inversely proportional to Audio visual reaction time. The association analysis done between age groups with audiovisual reaction time in normal and anaemic participants did not show significant change. Thus, the present study concludes that haemoglobin concentration is inversely related to audio visual reaction time. This may be attributed to lower neural activity and impaired nerve conduction produced by anaemia.

INTRODUCTION

The WHO defined anaemia as a level of haemoglobin lower than 13g% in males and less than 12g% in females. Anaemia is the condition which is characterized by the deficiency of the haemoglobin or decreased level of the red blood cells associated with the decreased oxygen-carrying capacity of the blood. In many, less and moderate-income countries, including India, anaemia is a common health issue among the public leading to morbidity in children and also in reproductive age women (Stoltzfus, 2001). The WHO reported that about 1.6 - 2 bil-
lion people worldwide are anaemic. According to
the National Family Health Survey, more than 50%
of the women in India have anaemia among them
which 39% are mildly anaemic, 15% moderately
aemic and 2% severely anaemic that can lead to
many deficiencies. (Misra et al., 1885)

Adolescent girls, who constitute a considerable se-
gment of the Indian population, form a vulnera-
ble group and are at a greater risk. Thus this is
the most prone phase for developments of nutri-
tional anaemia (Chaudhary and Dhage, 2008). They
are particularly prone to iron deficiency anaemia
because of their high demands of iron for the syn-
thesis of haemoglobin. This is to make up for the loss
of iron during menstruation (Beard, 2000). In addi-
tion, there is also a mismatch between their high
metabolic demand and poor dietary intake. Abu
Rayhan al- Biruni, a Persian scientist was first to
explain that reaction time and measure it in a labora-
ory in 1868 (Chandra et al., 2010) Normal auditory
reaction time is 100-200 msec and normal visual
reaction time is 200-400 msec (Ghuntla et al., 2013)

Reaction time is a very important, simple and non-
- invasive test for nerve conduction in peripheral
and central neural structures. It is a measure of
the function of sensorimotor association (Botwinick
and Thompson, 1966). The audio-visual reaction
time is found to be prolonged with a decrease
in haemoglobin levels, and the reason has been
attributed to the decreased neuronal conduc-
tion caused due to decreased levels of iron in
aemia (Shenvi and Balasubramanian, 1994;
Samuel and Devi, 2015; Fathima and P, 2016). The
lifestyle habits such as caffeine consumption and
other dietary habits play a very important level not
only in haemoglobin concentration, but the other
blood counts as well. (Ilankizhai and Devi, 2016;
Harsha et al., 2015).

Emotional stress can either precipitate or provoke
both acute and chronic anaemia. (Dave and Preetha,
2016; Abigail et al., 2019). The primary remedy
lies in practices of physical fitness that help in mak-
ing the body fit and purify the blood (Shruthi and Preetha, 2018). Fitness in the form of physical exer-
cises not only prevents anaemia but also enhances
circulation and stimulates the bone marrow. (Iyer et al., 2019; Devi and Sethu, 2018). The effect of
acupuncture can also improve the concentration of haemoglobin. (Swathy and Sethu, 2015). The stem
cell therapy, which repairs heart muscles after acute
myocardial infarction, also provides new circula-
tion with right haemoglobin concentration (Renuka
and Sethu, 2015). Also, deficiencies play a role
in anaemia, physiologically pregnancy also results
in anaemia. (Renuka and Sethu, 2015; Swathy and
Sethu, 2015; Timothy et al., 2019).

MATERIALS AND METHODS

30 Female students of I year BDS students in the
group between (15 - 25 years) from Saveetha Den-
tal College and Hospital, were taken as participants
for the study. The study was conducted in the
Department of Physiology, Saveetha Dental College
and Hospital in February 2020. Exclusion criteria of
neural diseases and muscle disease involved in hear-
ing impairment and visual impairment. Students are
receiving iron supplementation before one month,
which is excluded from the study. The study is done
during the post-menstrual phase of the menstrual
cycle to avoid alteration in India values in the pre-
menstrual phase.

As a routine part of I-BDS practical, haemoglobin
estimation was done by SAHLI’s method, the study
population was divided into two categories on the
basis of haemoglobin values.

Group 1

Female subjects whose haemoglobin concentration
was above 10 G%

Group 2

Anemic group- Female subjects whose haemoglobin
concentration was below 10 G%

The visual reaction time (ART) and auditory reac-
tion time (VRT) was determined by the audio visual
meter.

Reaction time is the time that occurs between
the application of sensory stimulation and the sub-
sequent behavioural response. An instrument was
used to record audiovisual reactions. A portable
device which is built with a chronoscope that counts
least 1/1000 seconds. A recording of visual reac-
tion time with Greenlight stimuli. On the other hand,
auditory reaction time with frequency beep stimuli
was done respectively. While performing a test, the
subjects are made very comfortably in chairs. The
readings were taken in the morning in a silent room.
The auditory reaction time readings were done in
triplicate with high-frequency beep stimuli and sim-
ilarly, the visual reaction time readings were also
taken triplicate with the green light stimulus in Mil-
seconds through the auto display. As the person
perceives the stimulus, she/he is asked to respond
by pressing in the response with their index fin-
ger using the dominant hand. Three readings were
taken, and the average was taken.

Statistical analysis
Table 1: The haemoglobin with the visual reaction time

Groups	Haemoglobin Concentration (GM%)	Visual Reaction Time
Group1 (G1)	10.75+0.77	0.291+ 0.20
Group 2 (G2)	8.26+ 0.59*	0.361 + 0.17#

signifies that haemoglobin is significantly decreased in G2; # signifies that visual reaction time is increased in G2

Table 2: The haemoglobin with the auditory reaction time

Groups	Haemoglobin Concentration (GM%)	Auditory Reaction Time
Group1 (G1)	10.75 + 0.77	0.258 + 0.12
Group 2 (G2)	8.26 + 0.59*	0.444+0.13#

signifies haemoglobin is significantly decreased in G2; # signifies auditory reaction time is significantly increased in G2

The obtained data were presented as mean + STD. The student’s test was applied to analyse the differences in haemoglobin concentration and audiovisual reaction time. The changes in haemoglobin and audiovisual reaction time among the two age groups of the study above 20 years and below 20 years was analysed using Pearson chi square test, and the significance level was fixed at p< 0.001.

RESULTS AND DISCUSSION

Table 1 Comparing the Haemoglobin concentration and visual reaction time.

Table 2 Comparing the haemoglobin concentration and auditory reaction time.

The haemoglobin concentration in the graph is inversely proportional to Audio visual reaction time.

Association analysis between age groups and audiovisual reaction time

The association analysis did not reveal significant changes among the two age groups (G1- Age above 20 years) and (G2- Age group below 20 years) with audio visual reaction time as in Figures 1 and 2.

Anaemia is a common public health issue affecting low and middle-income countries. The common causes of Anemia are nutritional deficiency of folate, vitamin A, vitamin, B12), inherited or acquired disorders, parasitic infections etc. These have an effect on haemoglobin synthesis, red blood cell production, but the most significant and essential contributor globally is iron deficiency. Studies done on adolescent girls revealed that low haemoglobin could be diagnosed with symptoms like fatigue, weakness, low immune power. (Stevens et al., 2013; Renuka and Sethu, 2015). Anaemia is also reported to develop cognitively and motor-impaired along with fatigue and low productivity (Balarajan et al., 2011; Iyer et al., 2019). The findings of this study indicate that the decrease in haemoglobin levels have an important and significant impact on the audiovisual reaction time; this is in accordance with the result in (Misra et al., 1885) study. A detailed review written by Sachdev HPS and Gera T with iron supplementation in infants and children with age less than five years led to an improvement in their cognition and motor development (Sachdev et al., 2006; Choudhari and Jothipriya, 2016). Adolescence has been the determining growing phase in life and is more prone to major nutritional deficiency. Many factors contribute to anaemia in adolescent girls like low iron intake, poor iron absorption, high metabolic demand for iron during menstruation and growth spurts. Due to this, the pubescent girls are at a higher risk of developing anaemia.

Figure 1, There is no significant difference in the VRT among the two age groups. Pearson chi square test value=1.167; p=0.280;

Figure 2, There is no significant difference in ART among the two age groups. Pearson chi square test value=1.167; p=0.280; p< 0.05;

Children diagnosed with iron deficiency anaemia
have been reported to have lower cognitive, social, emotional and motor neurophysiological development when compared to infants with normal haemoglobin concentration. Humans with neonatal iron deficiency have shown poorer outcomes with respect to physical and mental growth in the early developmental years. Reports revealed that CNS iron deficiency is associated with 1) Decreased myelination of the neurons, 2) impaired activity of the dopaminergic system and 3) deficiency of enzymes involved cognitive function and memory (Lozoff and Georgieff, 2006; Abbas et al., 2020).

In context to reaction time, the central conduction time was increased. The study states that the high central conduction time can be caused by changes in myelination of neurons in iron-deficient infants. This is anaemic children central conduction time was prolonged, and also longer latencies in visual evoked potential were recorded (Metallinos-Katsaras et al., 2004; Timothy et al., 2019). The Supporting article of our study reveals that when haemoglobin values were decreased, there was a rise in Visual Reaction. Time(VRT) indicating that lower Hb levels cause prolonged VRT. (Rashmi et al., 2010; Kumar et al., 2018). In the Opposing article it is given that Visual reaction time is greater than Auditory reaction time – (Solanki et al., 2012)

Limitations of the study

The present study involves a limited population, and the parameters were taken in subjects within a particular geographical area. Further biochemical and haematological parameters like blood in disease and serum iron levels were not determined.

Implications of the study

Deficiency of iron results in infant nerve conduction and transmission of nerve impulses so awareness of proper dietary intake of iron and nutritional factors can help to prevent anaemia and changes in visual and auditory reaction time.

CONCLUSIONS

The present study concludes that haemoglobin concentration is inversely related to audio visual reaction time. This results in decreased transmission of neuronal impulses, that causes changes in the transmission of impulses in the central nervous system. There were no significant groups between age groups with ART and VRT.

Conflict of Interest

The authors declare that they have no conflict of interest for this study.

Funding Support

The authors declare that they have no funding support for this study.

REFERENCES

Abbas, S. H., Nafea, L. T., Abbas, R. S. 2020. Prevalence of ABO Incompatibility and its effect on Neonates Hyperbilirubinemia. Research Journal of Pharmacy and Technology, 13(1):141–141.

Abigail, Priya, J., Devi, G. 2019. Evaluation of Muscular Endurance among Dentists. Indian Journal of Public Health Research & Development, 10(10):258–258.

Balarajan, Y., Ramakrishnan, U., Özaltin, E., Shankar, A. H., Subramanian, S. V. 2011. Anaemia in low-income and middle-income countries. The Lancet, 378(9809):2123–2135.

Beard, J. L. 2000. Iron Requirements in Adolescent Females. The Journal of Nutrition, 130(2):440–442.

Botwinick, J., Thompson, L. W. 1966. Premotor and motor components of reaction time. Journal of Experimental Psychology, 71(1):9–15.

Chandra, A. M., Ghosh, S., Barman, S., Iqbal, R., Sadhu, N. 2010. Effect of Exercise and Heat-Load on Simple Reaction Time of University Students. International Journal of Occupational Safety and Ergonomics, 16(4):497–505.

Chaudhary, S., Dhage, V. 2008. A study of anemia among adolescent females in the urban area of Nagpur. Indian Journal of Community Medicine, 33(4):243–243.

Choudhari, S., Jothipriya, M. A. 2016. Non-alcoholic fatty liver disease. Research Journal of Pharmacy and Technology, 9(10):1782–1782.

Dave, P. H., Preetha 2016. Pathogenesis and Novel Drug for Treatment of Asthma-A Review. Research...
Journal of Pharmacy and Technology, 9(9):1519–1519.

Devi, R. G., Sethu, G. 2018. Evaluation of adenoids by oronasal and nasal spirometry. Asian Journal of Pharmaceutical and Clinical Research, 11(10):272–272.

Fathima, F., P. P. 2016. Evaluation of thyroid function test in obese patients. Asian Journal of Pharmaceutical and Clinical Research, 9(9):353–353.

Ghuntla, T., Mehta, H., Gokhale, P., Shah, C. 2013. Effect of number of stimuli on auditory reaction time in healthy subjects of Bhavnagar region. Indian Journal of Otolology, 19(4):179–179.

Harsha, L., Priya, J., Shah, K. K., Reshmi, B. 2015. Systemic Approach to Management of Neonatal Jaundice and Prevention of Kernicterus. Research Journal of Pharmacy and Technology, 8(8):1087–1087.

Ilankizhai, R., Devi, R. G. 2016. Role of environmental factors on sleep patterns of different age groups. Asian Journal of Pharmaceutical and Clinical Research, 9(6):124–124.

Iyer, P. K., Devi, R. G., Priya, A. J. 2019. A Survey Study on Causes, Treatment and Prevention of Onychocryptosis. Indian Journal of Public Health Research & Development, 10(8):807–807.

Kumar, M. S., Sharma, Y. K., Prasanna, K. 2018. A Study on Authentication Framework by using 2-D & 3-D. Image/Video-Based Encryption.

Lozoff, B., Georgieff, M. K. 2006. Iron Deficiency and Brain Development. Seminars in Pediatric Neurology, 13(3):158–165.

Metallinos-Katsaras, E., Valassi-Adam, E., Dewey, K. G., Lönnerdal, B., Stamoulakatou, A., Pollitt, E. 2004. Effect of iron supplementation on cognition in Greek preschoolers. European Journal of Clinical Nutrition, 58(11):1532–1542.

Misra, N., Mahajan, K. K., Maini, B. K. 1885. Comparative study of the visual and auditory reaction time of hands and feet in males and females. Indian J. Physiol. Pharmacol, 29(4).

Rashmi, S., Kumar, P., M 2010. A Study on the effect of haemoglobin concentration on audio-visual reaction time. International Journal of Current Research, 9(6):53072–53076.

Renuka, S., Sethu, G. 2015. Regeneration after Myocardial Infarction. Research Journal of Pharmacy and Technology, 8(6):738–738.

Sachdev, H. P. S., Gera, T., Nestel, P. 2006. Effect of iron supplementation on physical growth in children: systematic review of randomised controlled trials. Public Health Nutrition, 9(7):904–920.

Samuel, A. R., Devi, M. G. 2015. Geographical distribution and occurrence of Endemic Goitre. Research Journal of Pharmacy and Technology, 8(8):973–978.