WEINER-HOPF OPERATORS AND SPECTRAL PROBLEMS ON $L^2_\omega(\mathbb{R}^+)$

VIOLETA PETKOVA

Abstract. We study bounded operators T on the weighted space $L^2_\omega(\mathbb{R}^+)$ commuting either with the right translations S_t, $t \in \mathbb{R}^+$, or left translations P^+S_{-t}, $t \in \mathbb{R}^+$, and we establish the existence of a symbol μ of T. We characterize completely the spectrum $\sigma(S_t)$ of the operator S_t proving that $\sigma(S_t) = \{ z \in \mathbb{C} : |z| \leq e^{t\alpha_0} \}$, where α_0 is the growth bound of $(S_t)_{t \geq 0}$. We obtain a similar result for the spectrum of (P^+S_{-t}), $t \geq 0$. Moreover, for a bounded operator T commuting with S_t, $t \geq 0$, we establish the inclusion $\mu(\mathcal{O}) \subset \sigma(T)$, where $\mathcal{O} = \{ z \in \mathbb{C} : \text{Im} z < \alpha_0 \}$.

Key Words: translations, spectrum of Wiener-Hopf operator, semigroup of translations, weighted spaces, symbol

AMS Classification: 47B37, 47B35, 47A10

1. Introduction

Let ω be a weight on \mathbb{R}^+. It means that ω is a positive, continuous function such that

$$0 < \inf_{x \geq 0} \frac{\omega(x+t)}{\omega(x)} \leq \sup_{x \geq 0} \frac{\omega(x+t)}{\omega(x)} < +\infty, \forall t \in \mathbb{R}^+.$$

Let $L^2_\omega(\mathbb{R}^+)$ be the set of measurable functions on \mathbb{R}^+ such that

$$\int_0^\infty |f(x)|^2 \omega(x)^2 dx < +\infty.$$

The space $H = L^2_\omega(\mathbb{R}^+)$ equipped with the scalar product

$$< f, g > = \int_{\mathbb{R}^+} f(x)\overline{g(x)}\omega(x)^2 dx, \quad f, g \in L^2_\omega(\mathbb{R}^+)$$

and the related norm $\| \cdot \|$ is a Hilbert space. Let $C^\infty_c(\mathbb{R})$ (resp. $C^\infty_c(\mathbb{R}^+)$) be the space of C^∞ functions on \mathbb{R} (resp. \mathbb{R}^+) with compact support in \mathbb{R} (resp. \mathbb{R}^+). Notice that
$C_\infty^c(\mathbb{R}^+)$ is dense in $L^2_\omega(\mathbb{R}^+)$. For $t \in \mathbb{R}^+$, define the (right) shift operator S_t on H by

$$(S_t f)(x) = \begin{cases} f(x - t), & \text{a.e. if } x - t \geq 0, \\ 0, & \text{if } x - t < 0. \end{cases}$$

For simplicity S_1 will be denoted by S. Let P^+ be the projection from $L^2(\mathbb{R}^-) \oplus L^2_\omega(\mathbb{R}^+)$ into $L^2_\omega(\mathbb{R}^+)$. For $t > 0$ define the (left) shift operator $(P^+ S_{-t})f(x) = P^+ f(x + t)$ a.e. $x \in \mathbb{R}^+$. Let I be the identity operator on $L^2_\omega(\mathbb{R}^+)$.\n
Definition 1. An operator T on $L^2_\omega(\mathbb{R}^+)$ is called a Wiener-Hopf operator if T is bounded and

$$P^+ S_{-t} T S_t f = T f, \quad \forall t \in \mathbb{R}^+, \quad f \in L^2_\omega(\mathbb{R}^+).$$

Every Wiener-Hopf operator T has a representation by a convolution (see [5]). More precisely, there exists a distribution μ such that

$$T f = P^+ (\mu * f), \quad \forall f \in C_\infty^c(\mathbb{R}^+).$$

If $\phi \in C_\infty^c(\mathbb{R})$ then the operator

$$L^2_\omega(\mathbb{R}^+) \ni f \longrightarrow P^+ (\phi * f)$$

is a Wiener-Hopf operator and we will denote it by T_ϕ.

A bounded operator T commuting either with S_t, $\forall t > 0$ or with $P^+ S_{-t}$, $\forall t > 0$ is a Wiener-Hopf operator. On the other hand, every operator $\alpha P^+ S_{-t} + \beta S_t$ with $t > 0$, $\alpha, \beta \in \mathbb{C}$ is a Wiener-Hopf operator. It is clear that the set of Wiener-Hopf operators is not a sub-algebra of the algebra of the bounded operators on $L^2_\omega(\mathbb{R}^+)$.\n
Notice also that

$$(P^+ S_{-t} S_t)f = f, \quad \forall f \in L^2_\omega(\mathbb{R}^+), \quad t > 0,$$

but it is obvious that $(S_t P^+ S_{-t})f \neq f$, for all $f \in L^2_\omega(\mathbb{R}^+)$ with a support not included in $]-t, +\infty[$. The fact that S is not invertible leads to many difficulties in contrast to the case when we deal with the space $L^2_\omega(\mathbb{R})$. The later space has been considered in [7] and [8] and the author has studied the operators commuting with the translations on $L^2_\omega(\mathbb{R})$ characterizing their spectrum. The group of translations on $L^2_\omega(\mathbb{R})$ is commutative and the investigation of its spectrum is easier. In this work, first we apply some ideas used in [7] and [8] to study Wiener-Hopf operators on $L^2_\omega(\mathbb{R}^+)$. For this purpose it is necessary to treat two semigroups of not invertible operators instead of a group of invertible operators. More precisely, we must deal with the semigroups $(S_t)_{t \in \mathbb{R}^+}$ and $(P^+ S_{-t})_{t \in \mathbb{R}^+}$ on $L^2_\omega(\mathbb{R}^+)$.\n
Consider the semigroup $(S_t)_{t \geq 0}$ on $L^2_\omega(\mathbb{R}^+)$ and let A be its generator. We have the estimate

$$\|S_t\| \leq C e^{\alpha t}, \quad \forall t \in \mathbb{R}^+$$

and a similar estimate holds for the semigroup $(P^+ S_{-t})_{t \geq 0}$. This follows from the fact that the weight ω is equivalent to the special weight $\tilde{\omega}_0$ constructed in [5] following [1].
Denote by $\rho(B)$ (resp. $\sigma(B)$) the spectral radius (resp. the spectrum) of an operator B. Introduce the ground orders of the semigroups $(S_t)_{t \geq 0}$ and $(P^+S_{-t})_{t \geq 0}$ by

$$\alpha_0 = \lim_{t \to \infty} \frac{1}{t} \ln \|S_t\|, \quad \alpha_1 = \lim_{t \to \infty} \frac{1}{t} \ln \|P^+S_{-t}\|.$$

Then it is well known (see for example [2]) that we have

$$\rho(S_t) = e^{\alpha_0 t}, \quad \rho(P^+S_{-t}) = e^{\alpha_1 t}.$$

Let f which yields the result. For a function f and $\alpha \in \mathbb{C}$ we denote by $(f)_{\alpha}$ the function

$$(f)_{\alpha} : x \mapsto f(x)e^{\alpha x}.$$

Denote by $\mathcal{F}f = \hat{f}$ the usual Fourier transformation on $L^2(\mathbb{R})$. If a function $f \in L^2(\mathbb{R}^+)$, then we define \hat{f} extending f as 0 on \mathbb{R}^-. Our first result is the following

Theorem 1. Let $a \in \mathcal{I} = [-\alpha_1, \alpha_0]$ and let T be a Wiener-Hopf operator. Then for every $f \in L^2_a(\mathbb{R}^+)$ such that $(f)_{\alpha} \in L^2(\mathbb{R}^+)$, we have

$$(Tf)_{\alpha} = P^+\mathcal{F}^{-1}(h_{\alpha}(\hat{f}))$$

with $h_{\alpha} \in L^\infty(\mathbb{R})$ and

$$\|h_{\alpha}\|_{\infty} \leq C\|T\|,$$

where C is a constant independent of a. Moreover, if $\alpha_1 + \alpha_0 > 0$, the function h defined on $U = \{z \in \mathbb{C} : \text{Im} z \in [-\alpha_1, \alpha_0]\}$ by $h(z) = h_{\text{lim}}(\text{Re} z)$ is holomorphic on U.

Definition 2. The function h defined in Theorem 1 is called the symbol of T.

A weaker result that Theorem 1 has been proved in [3] where the representation (1.1) has been obtained only for functions $f \in C^\infty_c(\mathbb{R}^+)$ which is too restrictive for the applications to the spectral problems studied in Section 3 and Section 4. On the other hand, in the proof in [3] there is a gap in the approximation argument. Guided by the approach in [8], in this work we prove a stronger version of the result of [5] applying other techniques based essentially on the spectral theory of semigroups. On the other hand, in many interesting cases as $\omega(x) = e^x$, $\omega(x) = e^{-x}$, we have $\alpha_0 + \alpha_1 = 0$ and the result of Theorem 1 is not satisfying since the symbol of T is defined only on the line $\text{Im} z = \alpha_0$. To obtain more complete results we introduce the following class of operators.

Definition 3. Denote by \mathcal{M} the set of bounded operators on $L^2_\omega(\mathbb{R}^+)$ commuting either with S_t, $\forall t > 0$ or P^+S_{-t}, $\forall t > 0$.
For operators in \mathcal{M} we obtain a stronger version of Theorem 1.

Theorem 2. Let T be a bounded operator commuting with $(S_t)_{t>0}$ (resp. $(P^+ S_{-t})_{t>0}$). Let $a \in J =]0, \alpha_0]$ (resp. $K =]0, \alpha_1]$). Then for every $f \in L^2_\omega(\mathbb{R}^+)$ such that $(f)_a \in L^2(\mathbb{R}^+)$, we have

$$(Tf)_a = P^+ F^{-1}(h_a(f)_a)$$

with $h_a \in L^\infty(\mathbb{R})$ and

$$\|h_a\|_{\infty} \leq C\|T\|,$$

where C is a constant independent of a. Moreover, the function h defined on $O = \{z \in \mathbb{C} : \text{Im } z < \alpha_0\}$ (resp. $V = \{z \in \mathbb{C} : \text{Im } z > -\alpha_1\}$) by $h(z) = h_{\text{Im } z}(\text{Re } z)$ is holomorphic on O (resp. V).

Our main spectral result is the following

Theorem 3. We have

(i) $\sigma(S_t) = \{z \in \mathbb{C}, |z| \leq e^{\alpha_0 t}\}, \forall t > 0.$ (1.2)

(ii) $\sigma(P^+ S_{-t}) = \{z \in \mathbb{C}, |z| \leq e^{\alpha_1 t}\}, \forall t > 0.$ (1.3)

Let $T \in \mathcal{M}$ and let μ_T be the symbol of T.

(iii) If T commutes with S_t, $\forall t \geq 0$, then we have

$$\overline{\mu_T(O)} \subset \sigma(T).$$ (1.4)

(iv) If T commutes with $P^+ S_{-t}$, $\forall t \geq 0$, then we have

$$\overline{\mu_T(V)} \subset \sigma(T).$$ (1.5)

It is important to note that for $T \in \mathcal{M}$ and $\lambda \in \mathbb{C}$, if the resolvent $(T - \lambda I)^{-1}$ exists, then this operator is also in \mathcal{M}. In general, this property is not valid for all Wiener-Hopf operators. The above result cannot be obtained from a spectral calculus which is unknown and quite difficult to construct for the operators in \mathcal{M}. On the other hand, our analysis shows the importance of the existence of symbols and this was our main motivation to establish Theorem 1 and Theorem 2.

The spectrum of the weighted right and left shifts on $l^2(\mathbb{R}^+)$ denoted respectively by R and L has been studied in [9]. It particular, it was shown that

$$\sigma(R) = \sigma(L) = \{z \in \mathbb{C}, |z| \leq \rho(R)\}.$$ (1.6)

In this special case the operators R and L are adjoint, while this property in general is not true for S and $P^+ S_{-1}$.

The equalities [1.2], [1.3] are the analogue in $L^2_\omega(\mathbb{R}^+)$ of [1.6] however our proof is quite different from that in [9] and we use essentially Theorem 2. Moreover, these results agree with the spectrum of composition operators studied in [10] and the circular
symmetry about 0. In the standard case $\omega = 1$ the spectral results (1.2), (1.3) are well known (see, for example Chapter V, [2]). Their proof in this special case is based on the fact that the spectrum of the generator A of $(S_t)_{t \geq 0}$ is in $\{z \in \mathbb{C}, \text{Re} z \leq 0\}$ and the spectral mapping theorem for semigroups yields $\sigma(S_t) = \{z \in \mathbb{C}, |z| \leq 1\}$. Notice also that in this case we have

$$s(A) = \sup\{\text{Re} \lambda : \lambda \in \sigma(A)\} = \alpha_0 = 0,$$

so the spectral bound $s(A)$ of A is equal to the ground order and there is no spectral gap. In the general setting we deal with it is quite difficult to describe the spectrum of A. Consequently, we cannot obtain (1.2) from the spectrum of A and our techniques are not based on $\sigma(A)$. Moreover, if for the semigroup S_t on $L^2_{\omega}(\mathbb{R}^+)$ we can apply the spectral mapping theorem, since S_t preserves positive functions (see [11], [12]), in general this is not true for other Hilbert spaces of functions and we could have a spectral gap $s(A) < \alpha_0$. This shows the importance of our approach which works also for more general Hilbert spaces H of functions (see the conditions on H listed below). To our best knowledge it seems that Theorem 3 is the first result in the literature giving a complete characterization of $\sigma(S_t)$ and $\sigma(P^+S_{-t})$ on the spaces $L^2_{\omega}(\mathbb{R}^+)$. On the other hand, for the weighted two-sided shift S in $L^2_{\omega}(\mathbb{R})$ a similar result has been established in [8] saying that

$$\sigma(S) = \{z \in \mathbb{C} : \frac{1}{\rho(S^{-1})} \leq |z| \leq \rho(S)\}.$$

Following the arguments in [7], the results of this paper may be extended to a larger setup. Indeed, instead of $L^2_{\omega}(\mathbb{R}^+)$ we may consider a Hilbert space of functions on \mathbb{R}^+ satisfying the following conditions:

(H1) $C_c(\mathbb{R}^+) \subset H \subset L^1_{loc}(\mathbb{R}^+)$, with continuous inclusions, and $C_c(\mathbb{R}^+)$ is dense in H.

(H2) For every $x \in \mathbb{R}$, $P^+S_x(H) \subset H$ and $\sup_{x \in K} \|P^+S_x\| < +\infty$, for every compact set $K \subset \mathbb{R}$.

(H3) For every $\alpha \in \mathbb{R}$, let T_{α} be the operator defined by

$$T_{\alpha} : H \ni f \mapsto \left(\mathbb{R} \ni x \mapsto f(x)e^{i\alpha x} \right).$$

We have $T_{\alpha}(H) \subset H$ and moreover, $\sup_{\alpha \in \mathbb{R}} \|T_{\alpha}\| < +\infty$.

(H4) There exists $C_1 > 0$ and $a_1 \geq 0$ such that $\|S_x\| \leq C_1 e^{a_1|x|}, \forall x \in \mathbb{R}^+$.

(H5) There exists $C_2 > 0$ and $a_2 \geq 0$ such that $\|P^+S_{-x}\| \leq C_2 e^{a_2|x|}, \forall x \in \mathbb{R}^+$.

Taking into account (H3), without lost of generalities we may consider that in H we have $\|fe^{i\alpha}\| = \|f\|$. For the simplicity of the exposition we deal with the case $H = L^2_{\omega}(\mathbb{R}^+)$.
and the reader may consult [7] for the changes necessary to cover the more general setup.

2. Proof of Theorem 1

By using the arguments based on the spectral results for semigroups (see [3], [4]) we will prove the following

Lemma 1. Let \(\lambda \) be such that \(e^\lambda \in \sigma(S) \) and \(\text{Re} \lambda = \alpha_0 \). Then there exists a sequence \((n_k)_{k \in \mathbb{N}}\) of integers and a sequence \((f_{mk})_{k \in \mathbb{N}}\) of functions of \(H \) such that

\[
\lim_{k \to \infty} \|e^{tA} - e^{(\lambda + 2\pi in_k)t}\|f_{mk}\| = 0, \forall t \in \mathbb{R}^+, \|f_{mk}\| = 1, \forall k \in \mathbb{N}. \tag{2.1}
\]

Proof. We have to deal with two cases: (i) \(\lambda \in \sigma(A) \), (ii) \(\lambda \notin \sigma(A) \). In the case (i) \(\lambda \) is in the approximative point spectrum of \(A \). This follows from the fact that for any \(\mu \in \mathbb{C} \) with \(\text{Re} \mu > \alpha_0 \) we have \(\mu \notin \sigma(A) \), since \(s(A) \leq \alpha_0 \).

Let \(\mu_m \) be a sequence such that \(\mu_m \to \lambda, \text{Re} \mu_m \geq \lambda \). Then \(\|(\mu_m I - A)^{-1}\| \geq (\text{dist} (\mu_m, \text{spec}(A)))^{-1} \), hence \(\|(\mu_m I - A)^{-1}\| \to \infty \). Applying the uniform boundedness principle and passing to a subsequence \(\mu_{mk} \), we may find \(f \in H \) such that

\[
\lim_{k \to \infty} \|(\mu_{mk} I - A)^{-1} f\| = \infty.
\]

Introduce \(f_{mk} \in D(A) \) defined by

\[
f_{mk} = \frac{(\mu_{mk} I - A)^{-1} f}{\|(\mu_{mk} I - A)^{-1} f\|}.
\]

The identity

\[
(\lambda - A)f_{mk} = (\lambda - \mu_{mk})f_{mk} + (\mu_{mk} - A)f_{mk}
\]

implies that \((\lambda - A)f_{mk} \to 0 \) as \(k \to \infty \). Then the equality

\[
(e^{tA} - e^{\lambda t})f_{mk} = \left(\int_0^t e^{\lambda(t-s)}e^{As} ds \right) (A - \lambda)f_{mk}
\]

yields (2.1), where we take \(n_k = 0 \).

To deal with the case (ii), we repeat the argument in [7] and for the sake of completeness we present the details. We have \(e^\lambda \in \sigma(e^A) \setminus \sigma(e^A) \). Applying the results for the spectrum of a semigroup in Hilbert space (see [3], [4]), we conclude that there exists a sequence of integers \((n_k)\) such that \(|n_k| \to \infty \) and

\[
\|(A - (\lambda + 2\pi in_k)I)^{-1}\| \geq k, \forall k \in \mathbb{N}.
\]

We choose a sequence \((g_{mk}) \in H, \|g_{mk}\| = 1 \) so that

\[
\|(A - (\lambda + 2\pi in_k)I)^{-1} g_{mk}\| \geq k/2, \forall k \in \mathbb{N}
\]

and define

\[
f_{mk} = \frac{(A - (\lambda + 2\pi in_k)I)^{-1} g_{mk}}{\|(A - (\lambda + 2\pi in_k)I)^{-1} g_{mk}\|}.
\]
Next we have
\[(e^{tA} - e^{(\lambda + 2\pi i n_k)t})f_{y_k} = \left(\int_0^t e^{(\lambda + 2\pi i n_k)(t-s)} e^{sA} ds \right) (A - (2\pi i n_k + \lambda)I)f_{y_k} \]
and we deduce (2.1). □

Lemma 2. Let \(\lambda \) be such that \(e^\lambda \in \sigma(S) \) and \(\Re \lambda = \alpha_0 \). Then, there exists a sequence \((n_k)_{k \in \mathbb{N}}\) of integers and a sequence \((f_{m_k})_{k \in \mathbb{N}}\) of functions of \(H \) such that for all \(t \in \mathbb{R} \),

\[\lim_{k \to \infty} \left\| \left(P^+ S_t - e^{(\lambda + 2\pi i n_k)t} \right) f_{m_k} \right\| = 0, \quad \|f_{m_k}\| = 1, \quad \forall k \in \mathbb{N}. \]

Proof. Clearly, for \(t \geq 0 \) we get (2.2) by (2.1) Moreover, we have

\[\| (P^+ S_{-t} - e^{-(\lambda + 2\pi i n_k)t}) f_{m_k} \| = \| (P^+ S_{-t} - e^{-(\lambda + 2\pi i n_k)t} P^+ S_{-t} S_t) f_{m_k} \| \]

\[\leq \| P^+ S_{-t} \| \| e^{-(\lambda + 2\pi i n_k)t} \| \| \left(e^{(\lambda + 2\pi i n_k)t} - S_t \right) f_{m_k} \|, \forall t \in \mathbb{R}^+. \]

Thus

\[\lim_{k \to \infty} \| (P^+ S_{-t} - e^{-(\lambda + 2\pi i n_k)t}) f_{m_k} \| = 0. \]

and this completes the proof of (2.2). □

Lemma 3. For all \(\phi \in C_c^\infty(\mathbb{R}) \) and \(\lambda \) such that \(e^\lambda \in \sigma(S) \) with \(\Re \lambda = \alpha_0 \) we have

\[|\hat{\phi}(i\lambda + a)| \leq \| T_\phi \|, \forall a \in \mathbb{R}. \]

Proof. Let \(\lambda \in \mathbb{C} \) be such that \(e^\lambda \in \sigma(S) \) with \(\Re \lambda = \alpha_0 \) and let \((f_{m_k})_{k \in \mathbb{N}}\) be the sequence satisfying (2.2). Fix \(\phi \in C_c^\infty(\mathbb{R}) \) and consider

\[|\hat{\phi}(i\lambda + a)| = \left| \int_{\mathbb{R}} \langle \phi(t) e^{(\lambda - ia)t} f_{m_k}, f_{m_k} \rangle dt \right| \]

\[\leq \left| \int_{\mathbb{R}} \langle \phi(t) \left(e^{(\lambda + 2\pi i n_k)t} - P^+ S_t \right) e^{-i(a + 2\pi n_k)t} f_{m_k}, f_{m_k} \rangle dt \right| \]

\[+ \left| \int_{\mathbb{R}} \langle \phi(t) P^+ S_t e^{-i(a + 2\pi n_k)t} f_{m_k}, f_{m_k} \rangle dt \right|. \]

The first term on the right side of the last inequality goes to 0 as \(k \to \infty \) since by Lemma 1, for every fixed \(t \) we have

\[\lim_{k \to \infty} \| e^{-i(a + 2\pi n_k)t} \left(e^{(\lambda + 2\pi i n_k)t} - P^+ S_t \right) f_{m_k} \| = 0. \]

On the other hand,

\[I_k = \left| \int_{\mathbb{R}} \langle P^+ S_t e^{-i(a + 2\pi n_k)t} f_{m_k}, f_{m_k} \rangle dt \right| \]

\[= \left| \left[\int_{\mathbb{R}} \phi(t) e^{-i(a + 2\pi n_k)t} P^+ f_{m_k}(\cdot - t) dt, f_{m_k}(\cdot) \right] \right| \]

\[= \left| \langle P^+ \int_{\mathbb{R}} \phi(\cdot - y) e^{i(a + 2\pi n_k)y} f_{m_k}(y) dy, e^{i(a + 2\pi n_k)} f_{m_k}(\cdot) \rangle \right|. \]
and \(|I_k| \leq \|T_\phi\|\). Consequently, we deduce that
\[
|\hat{\phi}(i\lambda + a)| \leq \|T_\phi\|. \quad \Box
\]

Notice that the property (2.3) implies that
\[
|\hat{\phi}(\lambda)| \leq \|T_\phi\|, \forall \lambda \in \mathbb{C}, \text{ provided } \text{Im } \lambda = \alpha_0.
\]

Lemma 4. Let \(\phi \in C_c^\infty(\mathbb{R})\) and let \(\lambda\) be such that \(e^{-\lambda} \in \sigma((P^+S_{-1})^*)\) with \(\text{Re } \lambda = -\alpha_1\). Then we have
\[
|\hat{\phi}(i\lambda + a)| \leq \|(T_\phi)\|, \forall a \in \mathbb{R}. \tag{2.4}
\]

Proof. Consider the semigroup \((P^+S_{-t})^*_{t \geq 0}\) and let \(B\) be its generator. We identify \(H\) and its dual space \(H'\). So the semigroup \((P^+S_{-t})^*, t \geq 0\) is acting on \(H\). Let \(\lambda \in \mathbb{C}\) be such that \(e^{-\lambda} \in \sigma((P^+S_{-1})^*)\) and \(|e^{-\lambda}| = \rho(P^+S_{-1}) = \rho((P^+S_{-1})^*) = e^{\alpha_1}\). Then, by the same argument as in Lemma 1, we prove that there exists a sequence \((n_k)_{k \in \mathbb{N}}\) of integers and a sequence \((f_{mk})_{k \in \mathbb{N}}\) of functions of \(H\) such that for all \(t \in \mathbb{R}^+\),
\[
\lim_{k \to \infty} \|(e^{tB} - e^{(-\lambda+i2\pi n_k)t})f_{mk}\| = 0
\]
and \(\|f_{mk}\| = 1\). Thus we deduce
\[
\lim_{k \to +\infty} \|(P^+S_{-t})^*f_{mk} - e^{(-\lambda-i2\pi n_k)t}f_{mk}\| = 0, \quad t \geq 0.
\]
Since for \(t \geq 0\) we have \(P^+S_{-t}S_t = I\), we get \((S_t)^*(P^+S_{-t})^* = I\). Then, for \(t \geq 0\) we get
\[
\|(S_t)^*f_{mk} - e^{(-\lambda-i2\pi n_k)t}f_{mk}\| = \|(S_t)^*f_{mk} - e^{(\lambda-i2\pi n_k)t}(S_t)^*(P^+S_{-t})^*f_{mk}\|
\]
\[
\leq \|(S_t)^*\|\|e^{(\lambda-i2\pi n_k)t}\|\|(e^{(-\lambda-i2\pi n_k)t}f_{mk} - (P^+S_{-t})^*f_{mk})\|.
\]
This implies that
\[
\lim_{k \to +\infty} \|(P^+S_{t})^* - e^{(-\lambda-i2\pi n_k)t})f_{mk}\| = 0, \forall t \in \mathbb{R}. \tag{2.5}
\]

We write
\[
\hat{\phi}(i\lambda + a) = \int_{\mathbb{R}} <\phi(t)e^{-i(a+2\pi n_k)t}f_{mk}, e^{\lambda t - 2\pi in_k t}f_{mk}> dt
\]
\[
= \int_{\mathbb{R}} <\phi(t)e^{-i(a+2\pi n_k)t}f_{mk}, e^{(\lambda t - 2\pi in_k t)(P^+S_t)^*}f_{mk}> dt
\]
\[
+ \int_{\mathbb{R}} <\phi(t)e^{-i(a+2\pi n_k)t}(P^+S_t)f_{mk}, f_{mk}> dt = J'_k + I'_k.
\]
From (2.5) we deduce that \(J'_k \to 0\) as \(k \to \infty\). For \(I'_k\) we apply the same argument as in the proof of Lemma 3 and we get
\[
|\hat{\phi}(i\lambda)| \leq \|T_\phi\|. \quad \Box
Lemma 5. For every function $\phi \in \mathcal{C}_c^\infty(\mathbb{R})$ and for $z \in U = \{ z \in \mathbb{C}, \text{Im} z \in [-\alpha_1, \alpha_0] \}$ we have

$$|\hat{\phi}(z)| \leq \|T_\phi\|.$$

Proof. We will use the Phragmén-Lindelöf theorem and we start by proving the estimations on the bounding lines. There exists $\alpha = e^{-iz} \in \sigma(S)$ such that $|\alpha| = e^{\text{Im} z} = e^{\alpha_0}$. Following (2.3), we obtain

$$|\hat{\phi}(z)| \leq \|T_\phi\|,$$

for every z such that $\text{Im} z = \alpha_0$. Next notice that $\rho(P^+S_{-1}) = \rho((P^+S_{-1})^*)$. So there exists $\beta = e^{-iz} = e^{-(-iz)} \in \sigma((P^+S_{-1})^*)$ such that $|\beta| = e^{\alpha_1}$ and

$$-\text{Im} z = \ln |\beta| = \alpha_1.$$

Then taking into account (2.4), we get

$$|\hat{\phi}(z)| \leq \|T_\phi\|,$$

for every z such that $\text{Im} z = -\alpha_1$. In the case $\alpha_1 + \alpha_0 = 0$ the result is obvious. So assume that $\alpha_0 + \alpha_1 > 0$. Since $\phi \in \mathcal{C}_c^\infty(\mathbb{R})$ we have

$$|\hat{\phi}(z)| \leq C\|\phi\|_\infty e^{k|\text{Im} z|} \leq K\|\phi\|_\infty, \quad \forall z \in U,$$

where $C > 0$, $k > 0$ and $K > 0$ are constants. An application of the Phragmén-Lindelöf theorem for the holomorphic function $\hat{\phi}(z)$, yields

$$|\hat{\phi}(\alpha)| \leq \|T_\phi\|$$

for $\alpha \in \{ z \in \mathbb{C} : \text{Im} z \in [-\alpha_1, \alpha_0] \}$. □

Combining the results in Lemma 3-5, we get

Lemma 6. For every $\phi \in \mathcal{C}_c^\infty(\mathbb{R})$ and for every $a \in [-\alpha_1, \alpha_0]$ we have

$$|\langle \hat{\phi} \rangle_a(x)| \leq \|T_\phi\|, \quad \forall x \in \mathbb{R}.$$

Proof of Theorem 1. The proof follows the approach in [5]. Let T be a Wiener-Hopf operator. Then there exists a sequence $(\phi_n)_{n \in \mathbb{N}} \subset \mathcal{C}_c^\infty(\mathbb{R})$ such that T is the limit of $(T_{\phi_n})_{n \in \mathbb{N}}$ with respect to the strong operator topology and we have $\|T_{\phi_n}\| \leq C\|T\|$, where C is a constant independent of n (see [5]). Let $a \in [-\alpha_1, \alpha_0]$. According to Lemma 6, we have

$$|\langle \hat{\phi} \rangle_a(x)| \leq \|T_{\phi_a}\| \leq C\|T\|, \quad \forall x \in \mathbb{R}, \quad \forall n \in \mathbb{N}$$

(2.6)

and we replace $(\langle \hat{\phi} \rangle_a)_{n \in \mathbb{N}}$ by a suitable subsequence also denoted by $(\langle \hat{\phi} \rangle_a)_{n \in \mathbb{N}}$ converging with respect to the weak topology $\sigma(L^\infty(\mathbb{R}), L^1(\mathbb{R}))$ to a function $h_a \in L^\infty(\mathbb{R})$ such that $\|h_a\|_\infty \leq C\|T\|$. We have

$$\lim_{n \to +\infty} \int_{\mathbb{R}} \left(\langle \hat{\phi} \rangle_a(x) - h_a(x) \right) g(x) \, dx = 0, \quad \forall g \in L^1(\mathbb{R}).$$
Fix \(f \in L^2_\omega(\mathbb{R}^+) \) so that \((f)_a \in L^2(\mathbb{R}^+) \). Then we get
\[
\lim_{n \to +\infty} \int_{\mathbb{R}} \left((\phi_n)_a(x)(f)_a(x) - h_a(x)(f)_a(x) \right) g(x) \, dx = 0,
\]
for all \(g \in L^2(\mathbb{R}) \). We conclude that \((\phi_n)_a(f)_a \) converges weakly in \(L^2(\mathbb{R}) \) to \(h_a(f)_a \).
On the other hand, we have
\[
(T\phi_a)_a = P^+(\phi_n)_a * (f)_a = P^+\mathcal{F}^{-1}(\phi_n)_a(f)_a
\]
and thus \((T\phi_a)_a \) converges weakly in \(L^2(\mathbb{R}^+) \) to \(P^+\mathcal{F}^{-1}(h_a(f)_a) \). For \(g \in C^\infty_c(\mathbb{R}) \), we obtain
\[
\left| \int_{\mathbb{R}^+} (T\phi_a)_a(x) - (Tf)_a(x) \left| g(x) \right| \, dx \right| \leq C_{a,g} \|T\phi_a - Tf\|, \forall n \in \mathbb{N},
\]
where \(C_{a,g} \) is a constant depending only of \(g \) and \(a \). Since \((T\phi_a)_n \) converges to \(Tf \) in \(L^2_\omega(\mathbb{R}^+) \), we get
\[
\lim_{n \to +\infty} \int_{\mathbb{R}^+} (T\phi_a)_a(x)g(x) \, dx = \int_{\mathbb{R}^+} (Tf)_a(x)g(x) \, dx, \forall g \in C^\infty_c(\mathbb{R}).
\]
Thus we deduce that \((Tf)_a = P^+\mathcal{F}^{-1}(h_a(f)_a) \). The symbol \(h \) is holomorphic on \(U \) following the same arguments as in [5].

3. Preliminary spectral result

As a first step to our spectral analysis in this section we prove the following

Proposition 1. Let \(T \in \mathcal{M} \) and suppose that the symbol \(\mu \) of \(T \) is continuous on \(U \). Then \(\mu(U) \subset \sigma(T) \).

Proof of Proposition 1. Let \(T \) be a bounded operator on \(H \) commuting with \(S_t, t \geq 0 \) or \(P^+S_{-t}, t \geq 0 \). For \(a \in [-\alpha_1, \alpha_0] \), we have
\[
(Tf)_a = P^+\mathcal{F}^{-1}(\mu_a(f)_a), \forall f \in L^2_\omega(\mathbb{R}^+),
\]
where \(\mu_a \in L^\infty(\mathbb{R}) \), provided \((f)_a \in L^2(\mathbb{R}^+) \). Suppose that \(\lambda \notin \sigma(T) \). Then, it follows easily that the resolvent \((T - \lambda I)^{-1} \) also commutes with \((S_t)_{t \in \mathbb{R}^+} \) or \((P^+S_{-t})_{t \in \mathbb{R}^+} \). Consequently, \((T - \lambda I)^{-1} \) is a Wiener-Hopf operator and for \(a \in [-\alpha_1, \alpha_0] \) there exists a function \(h_a \in L^\infty(\mathbb{R}) \) such that
\[
((T - \lambda I)^{-1}g)_a = P^+\mathcal{F}^{-1}(h_a(g)_a),
\]
for \(g \in L^2_\omega(\mathbb{R}^+) \) such that \((g)_a \in L^2(\mathbb{R}^+) \). If \(f \) is such that \((f)_a \in L^2(\mathbb{R}^+) \), set \(g = (T - \lambda I)f \). Then following Theorem 1, we deduce that \((Tf)_a \in L^2(\mathbb{R}^+) \) and \((g)_a = ((T - \lambda I)f)_a \in L^2(\mathbb{R}^+) \). Thus applying once more Theorem 1, we get
\[
((T - \lambda I)^{-1}(T - \lambda I)f)_a = P^+\mathcal{F}^{-1}(h_a\mathcal{F}((T - \lambda I)f)_a) = P^+\mathcal{F}^{-1}\left(h_a\mathcal{F}[\mathcal{F}^{-1}(\mu_a - \lambda)(f)_a]\right).
\]
We have
\[\| (f)_a \|_{L^2} \leq \| h_α F^+ F^{-1}(μ_α - λ)(f)_a \|_{L^2} \leq \| h_α \|_\infty \| F^+ F^{-1}(μ_α - λ)(f)_a \|_{L^2} \]
and we deduce
\[\| (f)_a \|_{L^2} \leq C \| (μ_α - λ)(f)_a \|_{L^2}, \quad (3.1) \]
for all \(f \in L^2_α(\mathbb{R}^+) \) such that \((f)_a \in L^2(\mathbb{R}^+)\). Let \(λ = μ_α(η_0) = μ(η_0 + ia) \in μ(U) \) for \(a \in [-\ln ρ(\mathbb{P}^+ S_{-1}), \ln ρ(S)] \) and some \(η_0 \in \mathbb{R} \). Since the symbol \(μ \) of \(T \) is continuous, the function \(μ_α(η) = μ(η + ia) \) is continuous on \(\mathbb{R} \). We will construct a function \(f(x) = F(x)e^{-ax} \) with \(\text{supp}(F) \subset \mathbb{R}^+ \) for which \((3.1)\) is not fulfilled. Consider
\[g(t) = e^{-b^2(t-t_0)^2}e^{i(t-t_0)η_0}, \quad b > 0, \ t_0 > 1 \]
with Fourier transform
\[\hat{g}(ξ) = \frac{1}{b}e^{-(ξ-η_0)^2/4b^2}e^{-it_0ξ}. \]

Fix a small \(0 < ε < \frac{1}{2}C^{-2} \), where \(C \) is the constant in \((3.1)\) and let \(δ > 0 \) be fixed so that \(|μ_α(ξ) - λ| \leq \sqrt{ε} \) for \(ξ \in Ω = \{ ξ \in \mathbb{R} : |ξ - η_0| ≤ δ \} \). Moreover, assume that
\[|μ_α(ξ) - λ|^2 ≤ C_1, \text{ a.e. } ξ \in \mathbb{R}. \]
We have for \(0 < b \leq 1 \) small enough
\[\int_{\mathbb{R}\setminus Ω} |\hat{g}(ξ)|^2 dξ \leq \frac{1}{b^2} \int_{|ξ-η_0| \geq δ} e^{-(η_0^2/4b^2)} dξ \]
\[\quad ≤ e^{-\frac{δ^2}{4b^2}} \frac{1}{b^2} \int_{|ξ-η_0| \geq δ} e^{-(η_0^2/4b^2)} dξ \leq C_0 b^{-1} e^{-\frac{δ^2}{4b^2}} ≤ ε \]
with \(C_0 > 0 \) independent of \(b > 0 \). We fix \(b > 0 \) with the above property and we choose a function \(φ \in C_c^∞(\mathbb{R}^+) \) such that \(0 ≤ φ ≤ 1, \ φ(t) = 1 \) for \(1 ≤ t ≤ 2t_0 - 1, \ φ(t) = 0 \) for \(t ≤ 1/2 \) and for \(t ≥ 2t_0 - 1/2 \). We suppose that \(|φ^{(k)}(t)| ≤ c_1, \ k = 1, 2, \forall t \in \mathbb{R} \). Set \(G(t) = φ(t) - 1)g(t) \). We will show that
\[|(1 + ξ^2) \hat{G}(ξ)| ≤ \sqrt{\frac{C_2}{4πε}} \]
for \(t_0 \) large enough with \(C_2 > 0 \) independent of \(t_0 \). On the support of \((φ - 1)\) we have \(|t - t_0| > t_0 - 1 \) and integrating by parts in \(\int_\mathbb{R} (1 + ξ^2)G(t)e^{-itξ} dt \) we must estimate the integral
\[\int_{|t-t_0| ≥ t_0-1} e^{-\frac{b^2(t-t_0)^2}{2}}(1 + |t - t_0| + (t - t_0)^2)dt \]
\[\leq \left(\int_{-∞}^{1-t_0} (1 + |y| + y^2)e^{-by^2/2}dy + \int_{t_0-1}^{∞} (1 + y + y^2)e^{-by^2/2}dy \right). \]
Choosing \(t_0 \) large enough we arrange \((3.2)\).
We set $F = \varphi g \in C_c^\infty(\mathbb{R}^+)$ and we obtain

$$
\int_{\mathbb{R}\setminus V} |\hat{F}(\xi)|^2 d\xi \leq 2 \int_{\mathbb{R}\setminus V} |\hat{\varphi}(\xi)|^2 d\xi + 2 \int_{\mathbb{R}\setminus V} |\hat{G}(\xi)|^2 d\xi
\leq 2\varepsilon + \frac{C_2\varepsilon}{2\pi} \int_{\mathbb{R}} (1 + \xi^2)^{-2} d\xi \leq (2 + C_2)\varepsilon.
$$

Then

$$
\int_{\mathbb{R}} |(\mu_a(\xi) - \lambda)\hat{F}(\xi)|^2 d\xi \leq \int_{\mathbb{R}\setminus V} |(\mu_a(\xi) - \lambda)\hat{F}(\xi)|^2 d\xi + \int_{V} |(\mu_a(\xi) - \lambda)\hat{F}(\xi)|^2 d\xi
\leq C_1(2 + C_2)\varepsilon + (2\pi)^2 \|F\|_{L^2}^2\varepsilon.
$$

Now assume (3.1) fulfilled. Therefore

$$(2\pi)^2 \|F\|_{L^2}^2 \leq C^2 \|(\mu_a(\xi) - \lambda)\hat{F}(\xi)\|_{L^2}^2 \leq C^2 C_1(2 + C_2)\varepsilon + (2\pi)^2 \|F\|_{L^2}^2\varepsilon,$$

and since $C^2\varepsilon < \frac{1}{2}$, we conclude that

$$
\|F\|_{L^2}^2 \leq \frac{C^2 C_1}{4\pi^2}(2 + C_2)\varepsilon.
$$

On the other hand,

$$
\|F\|_{L^2}^2 \geq \frac{1}{2}\|g\|_{L^2}^2 - \|(\varphi - 1)g\|_{L^2}^2 \geq \frac{1}{2}\|g\|_{L^2}^2 - (2\pi)^{-2} \frac{C_2}{2}\varepsilon
$$

and

$$
\int_{\mathbb{R}} |g(t)|^2 dt \geq \int_{|t-t_0| \leq \frac{1}{b}} e^{-b^2(t-t_0)^2} dt \geq \frac{2e^{-1}}{b} \geq 2e^{-1}.
$$

For small ε we obtain a contradiction, since C_2 is independent of ε. This completes the proof. \square

4. Spectra of $(S_t)_{t \in \mathbb{R}^+}$, $(P^+(S_{-t}))_{t \in \mathbb{R}^+}$ and bounded operators commuting with at least one of these semigroups

Observing that the symbol of S_t is $z \rightarrow e^{-itz}$, an application of Proposition 1 to the operator S_t yields

$$
\{z \in \mathbb{C}, e^{-\alpha t} \leq |z| \leq e^{\alpha t}\} \subset \sigma(S_t).
$$

This inclusion describes only a part of the spectrum of S_t. We will show that in our general setting we have (1.2). To prove this, for $t > 0$ assume that $z \in \mathbb{C}$ is such that $0 < |z| < e^{-\alpha t}$. Let $g \in H$ be a function such that $g(x) = 0$ for $x \geq t$ and $g \neq 0$. If the operator $(zI - S_t)$ is surjective on H, then there exists $f \neq 0$ such that $(z - S_t)f = g$. This implies $P^+S_{-t}g = 0$ and hence

$$(P^+S_{-t} - \frac{1}{z} I)f = 0$$

which is a contradiction. So every such z is in the spectrum of S_t and we obtain (1.2).
Next, it is easy to see that in our setup for the approximative point spectrum \(\Pi(S_t) \) of \(S \) we have the inclusion
\[
\Pi(S_t) \subset \{ z \in \mathbb{C} : e^{-\alpha t} \leq |z| \leq e^{\alpha t} \}. \tag{4.2}
\]
Indeed, for \(z \neq 0 \), we have the equality
\[
P^+S_{-t} - \frac{1}{z}I = \frac{1}{z}P^+S_{-t}(zI - S_t).
\]
If for \(z \in \mathbb{C} \) with \(0 < |z| < e^{-\alpha t} \), there exists a sequence \((f_n)\) such that \(\|f_n\| = 1 \) and \(\|(zI - S_t)f_n\| \to 0 \) as \(n \to \infty \), then
\[
\left(P^+S_{-t} - \frac{1}{z}I \right)f_n \to 0, \quad n \to \infty
\]
and this leads to \(\frac{1}{z} \in \sigma(P^+S_{-t}) \) which is a contradiction. Next, if \(0 \in \Pi(S_t) \), there exists a sequence \(g_n \in \hat{H} \) such that \(S_tg_n \to 0, \|g_n\| = 1 \). Then \(g_n = P^+S_{-t}S_tg_n \) and we obtain a contradiction.

Since the symbol of \(P^+S_{-t} \) is \(z \to e^{it\alpha} \), applying Proposition 1, we obtain
\[
\{ z \in \mathbb{C} : e^{-\alpha t} \leq |z| \leq e^{\alpha t} \} \subset \sigma(P^+S_{-t}).
\]
Passing to the proof of (1.3), notice that \(S_t^*(P^+S_{-t})^* = I \). Then for \(0 < |z| < e^{-\alpha t} \) we have
\[
z\left(\frac{1}{z}I - S_t^* \right) = S_t^* \left((P^+S_{-t})^* - z \right). \tag{4.3}
\]
It is clear that \(0 \in \sigma_r(S_t) \), where \(\sigma_r(S_t) \) denotes the residual spectrum of \(S_t \). In fact, if \(0 \notin \sigma_r(S_t) \), then \(0 \) is in the approximative point spectrum of \(S_t \) and this contradicts (4.2).

Since \(0 \in \sigma_r(S_t) \), we deduce that \(0 \) is an eigenvalue of \(S_t^* \). Let \(S_t^*g = 0, \ g \neq 0 \). Assume that \((P^+S_{-t})^* - zI \) is surjective. Therefore, there exists \(f \neq 0 \) so that \(((P^+S_{-t})^* - z)f = g \) and (1.3) yields \((\frac{1}{z} - S_t^*)f = 0 \). Consequently, \(\frac{1}{z} \leq \rho(S_t^*) = \rho(S_t) = e^{\alpha t} \) and we obtain a contradiction. Thus we conclude that \(z \in \sigma((P^+S_{-t})^*) \), hence \(\bar{z} \in \sigma(P^+S_{-t}) \) and the proof of (1.3) is complete.

To study the operators commuting with \((S_t)_{t \in \mathbb{R}^+} \), we need the following

Lemma 7. Let \(\phi \in C_c^\infty(\mathbb{R}) \). The operator \(T_\phi \) commutes with \(S_t, \forall t > 0 \), if and only if the support of \(\phi \) is in \(\mathbb{R}^+ \).

Proof. First if \(\psi \in L_2^2(\mathbb{R}^+) \) has compact support in \(\mathbb{R}^+ \), it is easy to see that \(T_\psi \) commutes with \(S_t, \ t \geq 0 \). Now consider \(\phi \in C_c^\infty(\mathbb{R}) \) and suppose that \(T_\phi \) commutes with \(S_t, \ t \geq 0 \). We write \(\phi = \phi_{\mathbb{R}^+} + \phi_{\mathbb{R}^-} \). If \(T_\phi \) commutes with \(S_t, \ t \geq 0 \), then the operator \(T_{\phi_{\mathbb{R}^-}} \) commutes too. Let the function \(\psi = \phi_{\mathbb{R}^-} \) have support in \([-a, 0] \) with \(a > 0 \). Setting \(\psi = \chi_{[0,a]} \), we get \(S_a\psi = \chi_{[a,2a]} \). For \(x \geq 0 \) we have
\[
P^+((\psi * S_a)f)(x) = \int_{-a}^0 \psi(t)x_{\{a \leq x-t \leq 2a\}}dt = \int_{\min(x-a,0)}^{\min(x-a,0)} \psi(t)dt.
\]
Since $P^{+}(\psi * S_{a}f) = S_{a}P^{+}(\psi * f)$, for $x \in [0,a]$, we deduce $P^{+}(\psi * S_{a}f)(x) = 0$ and
\[
\int_{-a}^{x-a} \psi(t) dt = 0, \quad \forall x \in [0,a].
\]
This implies that $\psi(t) = 0$, for $t \in [-a,0]$ and $\text{supp}(\phi) \subset \mathbb{R}^{+}$. □

Lemma 8. Let λ be such that $e^{\lambda} \in \sigma(S)$. Then there exists a sequence $(n_{k})_{k \in \mathbb{N}}$ of integers and a sequence $(f_{m_{k}})_{k \in \mathbb{N}}$ of functions of H such that
\[
\lim_{k \to \infty} <S_{t} - e^{(\lambda+2\pi i n_{k})t}\rangle f_{m_{k}}, f_{m_{k}} >= 0, \quad \forall t \in \mathbb{R}^{+}, \quad \|f_{m_{k}}\| = 1, \quad \forall k \in \mathbb{N}.
\]

Proof. Denote by $\sigma_{r}(A)$ the residual spectrum of A. If $\lambda \notin \sigma_{r}(A)$, or if $\lambda \notin \sigma(A)$, we obtain the sequences $(n_{k})_{k \in \mathbb{N}}$ and $(f_{m_{k}})_{k \in \mathbb{N}}$ as in the proof of Lemma 1. If $\lambda \in \sigma_{r}(A)$ then there exists $f \in H$ such that $A^{*}f = \overline{\lambda}f$ and $\|f\| = 1$. We set $f_{m_{k}} = f$ and $n_{k} = 0$, for $k \in \mathbb{N}$. □

Lemma 9. For all $\phi \in C_{c}^{\infty}(\mathbb{R}^{+})$ and λ such that $e^{\lambda} \in \sigma(S)$ we have
\[
|\hat{\phi}(i\lambda)| \leq \|T_{\phi}\|.
\]

The proof is based on the equality
\[
\hat{\phi}(i\lambda) = \int_{\mathbb{R}^{+}} \phi(t)e^{\lambda t} dt = \int_{\mathbb{R}^{+}} \langle \phi(t)e^{(\lambda+2\pi i n_{k})t}f_{m_{k}}, e^{2\pi i n_{k}t}f_{m_{k}} \rangle dt
\]
\[
= \int_{\mathbb{R}^{+}} \langle \phi(t)\left(e^{(\lambda+2\pi i n_{k})t}I - S_{t}\right)f_{m_{k}}, e^{2\pi i n_{k}t}f_{m_{k}} \rangle dt + \int_{\mathbb{R}^{+}} \langle \phi(t)S_{t}f_{m_{k}}, e^{2\pi i n_{k}t}f_{m_{k}} \rangle dt.
\]

We apply Lemma 8 and we repeat the argument of the proof of Lemma 3. Notice that here the integration is over \mathbb{R}^{+} and we do not need to examine the integral for $t < 0$.

Following [3], the operator T is a limit of a sequences of operators $T_{\phi_{n}}$, where $\phi_{n} \in C_{c}^{\infty}(\mathbb{R})$ and $\|T_{\phi_{n}}\| \leq C\|T\|$. The sequence $(T_{\phi_{n}})$ has been constructed in [5] and it follows from its construction that if T commutes with S_{t}, $t > 0$, then $T_{\phi_{n}}$ has the same property. Therefore, Lemma 7 implies that $\hat{\phi}_{n} \in C_{c}^{\infty}(\mathbb{R}^{+})$ and to obtain Theorem 2 for bounded operators commuting with $(S_{t})_{t>0}$, we apply Lemma 9 and the same arguments as in the proof of Theorem 1. Finally, applying Theorem 2 and the arguments of the proof of Proposition 1, we establish (1.3) and this completes the proof of iii) in Theorem 3.

Next we prove the following

Lemma 10. Let $\phi \in C_{c}^{\infty}(\mathbb{R})$. Then T_{ϕ} commutes with $P^{+}(S_{-t})$, $\forall t > 0$ if and only if $\text{supp}(\phi) \subset \mathbb{R}^{-}$.

The proof of Lemma 10 is essentially the same as that of Lemma 7. By using Lemma 10, we obtain an analogue of Lemma 9 and Theorem 2 for bounded operators commuting with $(P^{+}S_{-t})_{t>0}$ and applying these results we establish iv) in Theorem 3.
REFERENCES

[1] A. Beurling, P. Malliavin, On Fourier transforms of measures with compact support, Acta. Math. 107 (1962), 201-309.
[2] K. J. Engel and R. Nagel, A short course on operator semigroups, Springer, Berlin, 2006.
[3] L. Gearhart, Spectral theory for contraction semigroups on Hilbert space, Trans. AMS, 236 (1978), 385-394.
[4] I. Herbst, The spectrum of Hilbert space semigroups, J. Operator Theory, 10 (1983), 87-94.
[5] V. Petkova, Wiener-Hopf operators on $L^2_{\omega}(\mathbb{R}^+)$, Arch. Math.(Basel), 84 (2005), 311-324.
[6] V. Petkova, Wiener-Hopf operators on Banach spaces of vector-valued functions on \mathbb{R}^+, Integral Equations and Operator Theory, 59 (2007), 355-378.
[7] V. Petkova, Multipliers on a Hilbert space of functions on \mathbb{R}, Serdica Math. J. 35 (2009), 207-216.
[8] V. Petkova, Spectral theorem for multipliers on $L^2_{\omega}(\mathbb{R})$, Arch. Math. (Basel), 93 (2009), 357-368.
[9] W. C. Ridge, Approximative point spectrum of a weighted shift, Trans. AMS, 147 (1970), 349-356.
[10] W. C. Ridge, Spectrum of a composition operator, Proc. AMS, 37 (1973), 121-127.
[11] L. Weis, The stability of positive semigroups on L_p-spaces, Proc. AMS, 123 (1995), 3089-3094.
[12] L. Weis, A short proof for the stability theorem for positive semigroups on $L_p(\mu)$, Proc. AMS, 126 (1998), 325-3256.

LMAM, Université de Metz, UMR 7122, Ile du Saulcy 57045, Metz Cedex 1, France.
E-mail address: petkova@univ-metz.fr