IVARIANT FORMULATION OF q-DEFORMATIONS VIA THE NOVEL GENOMATHEMATICS

Ruggero Maria Santilli
Institute for Basic Research
P. O. Box 1577, Palm Harbor, FL 34682, U.S.A.
ibr@gte.net, http://home1.gte.net/ibr

Abstract

In this note we outline the history of q-deformations; indicate their physical shortcomings; suggest their apparent resolution via an invariant formulation based on a new mathematics of genotopic type; and point out their expected physical significance once formulated in an invariant form.

1 INTRODUCTION

In 1948 Albert [1] introduced the notions of Lie-admissible and Jordan-admissible algebras as generally nonassociative algebras U with elements a, b, c, and abstract product ab which are such that the attached algebras U^- and U^+, which are the same vector spaces as U equipped with the products $[a, b]_U = ab - ba$ and $\{a, b\}_U = ab + ba$, are Lie and Jordan algebras, respectively. Albert then studied the algebra with product

$$(A, B) = p \times A \times B + (1 - p) \times B \times A,$$

(1.1)

where p is a parameter, A, B are matrices or operators (hereon assumed to be Hermitean), and $A \times B$ is the conventional associative product.

It is easy to see that the above product is indeed jointly Lie- and Jordan-admissible because $[A, B]_U = (1 - 2p) \times (A \times B - B \times A)$ and $\{A, B\}_U = A \times B + B \times A$. However, there exist no (finite) value of p under which product (1.1) recovers the Lie product. As a result, product (1.1) cannot be used for possible coverings of current physical theories.

In view of the above occurrence, Santilli introduced in 1967 [2] a new notion of Lie-admissibility which is Albert’s definition [loc. cit.], plus the condition that the algebras U
admit Lie algebras in their classification or, equivalently, that the generalized Lie product admits the conventional one as a particular case.

As an illustration, we introduced the algebra with product (Ref. [2], Eq.(8), p. 573)

\[(A, B) = p \times A \times B - q \times B \times A,\]

and related time evolution in the infinitesimal and finite forms \((h = 1) [3, 4]\)

\[i \times dA / dt = p \times A \times Hq \times H \times A,\]

\[A(t) = \{e^{i \times q \times H \times t}\} \times A(0) \times \{e^{-i \times p \times t \times H}\},\]

where: \(p\) and \(q\) are non-null parameters with non-null values \(p \pm q\). It is easy to see that product (1.2) is Lie- and Jordan-admissible and admits the Lie and Jordan products as particular (nondegenerate) cases.

Structures (1.2) and (1.3) resulted to be insufficient for physical applications because, as we shall see in Sect. 3, the parameters \(p\) and \(q\) become operators under the time evolution of the theory. We therefore introduced in 1978 [5] (see also monograph [6] of 1983) the notion of general Lie-admissibility which is the notion of ref. [1] plus the conditions that algebras \(U\) admit Lie-isotopic [5, 6] (rather then Lie) algebras in their attached antisymmetric form and admit ordinary Lie algebras in their classification.

The latter notion was realized via the general Lie-admissible product (first introduced in ref. [5b], p. 719; see Ref. [6] for a more detailed treatment)

\[(A, B) = A \times P \times B - B \times Q \times A,\]

and time evolution in infinitesimal and finite forms (Ref. [5b], pp. 741, 742, and [6])

\[i \times dA / dt = A \times P \times H - H \times Q \times A,\]

\[A(t) = \{e^{i \times H \times Q \times t}\} \times A(0) \times \{e^{-i \times t \times P \times H}\},\]

where \(H\) is Hermitean but \(P\) and \(Q\) are nonsingular, generally nonhermitean matrices or operators with non-singular values \(P \pm Q\) admitting of the parametric values \(p\) and \(q\) as particular cases. The conventional Heisenberg’s equations are evidently recovered for \(P = Q = 1\).

Note that the attached products \([A, B]_U = (A, B) - (B, A) = A \times T \times B - B \times T \times A, T = P+Q\), and \(\{A, B\}_U = (A, B) + (B, A) = A \times T \times B + B \times T \times A, T = P - Q\), are still Lie and (commutative) Jordan, respectively, although of a more general type called isotopic [5, 6]. Note also that the \(P\) and \(Q\) operators must be sandwiched in between the elements \(A\) and \(B\) to characterize an algebra as commonly understood in mathematics [5, 6]. It should be finally indicated that, when properly written, Hamilton’s equations with external terms possess precisely a Lie-admissible structure.

In 1989 Biedenharn [7] and Macfarlane [8] introduced the so-called \(q\)-deformations, with a structure of the type

\[A \times B - B \times A \rightarrow A \times B - q \times A \times B;\]

\[\text{(1.6)}\]
which were followed by a number of papers so large to discourage an outline (see, e.g.,
representative papers [9]). More recently, other types of deformations of relativistic quantum
formulations appeared in the literature under the name of k-deformations (see, e.g., Ref.s
[10], quantum groups (see, e.g. Ref.s [11]) and others generalizations. It is evident that
theories of type (1.3) are a particular case of the broader Lie-admissible theories (1.2) and
(1.4).

Unfortunately, even though mathematically impeccable, all the above theories have re-
sulted to possess a number of physical shortcomings investigated in Ref.s [19,23]. As a
necessary condition to exit the class of equivalence of quantum mechanics, Lie-admissible
theories, q-deformations, k-deformations, quantum groups, and all that must have a nonuni-
tary time evolution, $U \times U^\dagger \neq I$. When the these theories are formulated on conventional
spaces over conventional fields, the following physical shortcomings are simply unavoidable:

1. **Lack of invariance of the fundamental unit** (that of the enveloping operator algebra),
because under nonunitary transforms we have $I \rightarrow I' = U \times I \times U^\dagger = U \times
U^\dagger \neq I$. This implies lack of invariance of the basic units of space and time,
with consequential lack of unambiguous application of the theories to experiments,
because it is not possible to conduct a meaningful measurement, say, of a length,
with a stationary meter changing in time.

2. **Lack of conservation of the Hermiticity in time**, with consequential lack of physically
acceptable observables (see Sect. 3 for more details).

3. **Lack of invariance of physical laws**, e.g., because of the lack of invariance of the de-
formed brackets under the time time evolution of the theory.

4. **Lack of uniqueness and invariance of numerical predictions**, because of the lack of
uniqueness (e.g., in the exponentiation) and invariance (e.g., of special functions and
transforms) needed for data elaboration (for instance, the "q-parameter" becomes a "Q-
operator" under a nonunitary transform, $Q = q \times U \times U^\dagger$, with consequential evident
loss of all original special functions and transforms constructed for the q-parameter).

5. **Loss of the axioms of the special relativity**, an occurrence of all generalizations under
consideration, evidently because deformed spaces and symmetries are no longer iso-
morphic to the original ones. This creates the sizable problems of: first, identifying
new axioms capable of replacing Einstein’s axioms; second, proving their axiomatic
consistency; and, third, establishing them experimentally.

In this note we shall present a conceivable resolution of the above physical shortcomings
based on the use of a new mathematics called genomathematics, as recently identified in
memoir [12]. To render the note self-sufficient, we shall first outline in Sect. 2 the rudiments
of the genomathematics and then indicate in Sect. 3 the invariant formulation of (p,q)- and
(P,Q)-deformations.

The reader should keep in mind that the most serious shortcoming of generalized theories
under consideration in this note is the loss of Einstein’s axioms. Our primary objective is
therefore to attempt the formulation of generalized theories in such a way to **preserve** the
axioms of the special relativity, although in generalized spaces and fields. If achieved, this
result will be sufficient, alone, to resolve all possible physical shortcomings.
2 GENOMATHEMATICS

The main idea of the Lie-admissible theory [6] is that its structure \([1.5] \) is inherent in the conventional Lie theory. In fact, a one-parameter connected Lie group realized via Hermitean operators \(X = X^\dagger \) on a Hilbert space \(\mathcal{H} \) has in reality the structure of a bi-module (also called in nonassociative algebras spit-null extension, see, e.g., Ref. [13]).

In nontechnical terms, the structure of a Lie group as a bimodule is essentially characterized by an action from the left \(U^> \) and an action from the right \(<U \) with explicit realization and interconnecting conjugation

\[
A(t) = U^> \times Q(0) \times <U = \{e^{ix^>\times w}\} > A(0) <\{e^{-ix^>\times w}\} = \\
= (I^> + i \times X^> \times w + ...) > A(0) < (<I - i \times w \times <X + ...),
\]

\(U^> = (<U)^\dagger = U^>, \ X^> = (X)^\dagger = X, \ I^> = <I = I, \) \tag{2.1}

(where \(w \) is a Lie parameter and the multiplications \(> \) and \(< \) represent conventional associative products ordered to the right and to the left, respectively). The infinitesimal version in the neighborhood of the unit then acquires the familiar form

\[
i[A(dw) - A(0)]/dw = A < X - X > A = A \times X - X \times A,
\] \tag{2.2}

which clarifies that in the product \(AX = A < X(X \times A = X > A) \), \(X \) in actuality acts from the right (from the left).

The bimodular structure is generally ignored in the conventional formulation of Lie’s theory because un-necessary. In fact, in a Lie bimodule \(\{<\mathcal{H}, \mathcal{H}^>\} \), where \(<\mathcal{H} = \mathcal{H}^> = \mathcal{H} \) is a conventional Hilbert space, the modular action to the right and to the left are interconnected with the simple bimodular rules [14] \(X^> \times > \psi^> = X \times \psi = <\psi \times <X = -\psi \times X, \) where \(\psi^> \in \mathcal{H}^>, \ <\psi \in <\mathcal{H}, \ X^> \) is an element of the universal enveloping associative algebra \(\xi^>(L) \) of the considered Lie algebra \(L \approx [\xi^>(L)]^- \) for the action to the right and \(<X \in <\xi(L) \) [14]. Since \(\mathcal{H}^> = <\mathcal{H} = \mathcal{H}, \) and \(\xi^>(L) = <\xi(L) = \xi(L). \) The birepresentations of the bimodular structure \(\{<\xi(L), \xi^>(L)\} \) over \(\{<\mathcal{H}, \mathcal{H}^>\} \) can then be effectively reduced to the one-sided representations, or just representations for short, of \(\xi(L) \) over \(\mathcal{H}, \) as well known. However, as we shall see shortly, the original bimodular structure of Lie’s theory is no longer trivial for broader realizations of axioms (2.1).

Lie-admissible structure \([1.3] \) was proposed [5b] on the basis of the mere observation that the abstract axioms of the bimodular structure \([2.7] \) do not necessarily require that the multiplications \(> \) and \(< \) must be conventional, because they can also be generalized, provided that they remain associative. In other word, the abstract axiomatic structure of the action from the right, \(U^> \times A(0) \) is that of a right modular associative action, with no restriction on the realization of the associative product, and the same occurs for the action from the left \(A(0) < <U. \)

The simplest possible broadening of the Lie version is given by the isotopies of Lie’s theory, first proposed in Refs. [5], then studied in various works (see Ref. [6] for a comprehensive presentation as of 1983), and it is called the Lie-Santilli isotheory (see, e.g., Refs. [15-18]). It is essentially characterized by the lifting of the conventional right modular associative product \(U^> \times A(0) = U^> \times T \times A(a) \) with conjugate from the left \(A(0) < <U, \)
where \(T = T^\dagger \) is a fixed, well behaved, nowhere singular and Hermitean matrix or operator of the same dimension of the considered representation. Its inverse \(\hat{I} = T^{-1} \) is then a fully acceptable, generalized, left and right unit, \(I \times A = A > \hat{I} = \hat{I} < A = A < \hat{I} = \hat{I} \) for all possible elements \(A \).

The isotopies then require, for mathematical and physical consistency, the reconstruction of the entire Lie theory with respect to the new unit \(\hat{I} \) and isoproduct \(> = < = \hat{\times} \), including: numbers and fields; vector, metric and Hilbert spaces; Lie algebras, groups and symmetries; transformation and representation theories; etc. [15-18]. This intermediate level of study also possesses a trivial bimodular structure, in the sense that its two-sided representations can be effectively reduced to the one-sided form.

Following the prior achievement of sufficient mathematical maturity in Ref. [12], the physical profiles of the isotopic realization of axioms (2.1) have been studied in details in the recent memoir [19], including most importantly the resolution of problematic aspects (1)-(5) of the preceding section. A knowledge of Ref. [19] is useful for a technical understanding of this note.

Our objective is the realization of the abstract axioms of bimodular structure (2.1) via the generalized associative laws originally submitted in Ref. [5b] of 1978, under the name of genoassociative multiplication and unit (or genomultiplication and genounit for short), then studies in Ref.s [6,20], and more recently studied in details in Ref. [12],

\[
A > B = A \times P \times B, \quad A < B = A \times Q \times B,
\]

\[
\hat{I}^> = P^{-1}, \quad \hat{I}^< > A = A > \hat{I} = A, \quad \hat{I} < = Q^{-1}, \quad \hat{I} < A = A < \hat{I} = A,
\]

\[
\hat{I}^> = P^{-1} = (\hat{I}^\dagger) = Q^\dagger, \tag{2.3}
\]

where \(P \neq Q \) are well behaved, everywhere invertible, nonhermitean matrices or operators generally realized via real-valued nonsymmetric matrices of the same dimension of the considered Lie representation. Moreover, it is requested that that \(P + Q \) and \(P - Q \) are nonsingular to preserve a well defined Lie and Jordan content, respectively. To differentiate forms (2.3) from the isotopic ones, I called them genotopic in Ref. [5], to denote their character of inducing a more general realization. \(\hat{I}^> \) and \(\hat{I} < \) and then called genotopic units and \(P \) and \(Q \) the genotopic elements.

Broader products and units (2.3) characterize the following more general realization of the abstract axioms (2.1) I tentatively called Lie-admissible transformation group [5,6,12,20]

\[
A(t) = U^> > A(0) < = A = \{ e^{iXw} \times w \} > A(0) < \{ e^{-iXw} \times X \} = \nonumber
\]

\[
= \{ e^{iXwP} \times w \} \times A(0) \times \{ e^{-iXw} \} = \nonumber
\]

\[
= (I + i \times X \times P \times w + ...) \times A(0) < \{ i - i \times w \times Q \times X + ... \} = \nonumber
\]

\[
= (\hat{I}^> + i \times X \times w + ...) \times A(0) < \{ i - i \times w \times X + ... \} = \nonumber
\]

\[
U^> = (U^\dagger)^>, \quad X^> = (X^\dagger)^> = X = X, \quad P^> = P = (Q^\dagger)^> = Q^\dagger,
\]

\[
\hat{I}^> = P^{-1} = (I^\dagger)^> = (Q^\dagger)^{-1}, \tag{2.4}
\]

with infinitesimal version in the neighborhood of the genounits characterized by the general Lie-admissible algebra [loc. cit.]
\[i \times [A(\text{d}w) - A(0)]/\text{d}w = A < X - X > A = A \times P \times X - X \times Q \times A, \quad (2.5) \]

where we have used the genoeponentiation to the right and to the left [12,18]

\[e^{i \times X \times w} = I > + i \times X \times w/1! + (i \times X \times w) > (i \times X \times w)/2! + \ldots = \{e^{i \times X \times P \times w}\} \times I^>, \]
\[e^{i \times w \times X} = < I + i \times X \times w/1! + (i \times X \times w) > (i \times X \times w)/2! + \ldots = < I \times \{e^{i \times w \times Q \times X}\}, \quad (2.6) \]

It is at this point where the essential bimodular character of axioms (2.4) acquire their full light because no longer effectively reducible to a one-sided form. It is evident that realization (2.4) and (2.5) of the conventional Lie axioms (2.4) coincides with the Lie-admissible equations (1.5) and (1.3). For this reason, realizations (2.3)-(2.6) are assumed as the foundation of the Lie-admissible theory under study in this section.

The central assumption we are studying herein is the bimodular lifting of the unit of Lie’s theory \(I \to \{<, I, \hat{I}>\}, < \hat{I} = (\hat{I}^>)^\dagger \). To achieve consistency, the entirety of the Lie theory must be lifted into a dual genotopic form, with no known exception. A rudimentary review of the emerging genotopic mathematics or genomathematics for short of Ref. [12] plus unpublished aspects is the following.

DEFINITION 1 [21]: Let \(F = F(a, +, \times) \) be a conventional field of (real \(R \), complex \(C \) or quaternionic \(Q \)) numbers, with additive unit 0, multiplicative unit \(I = 1 \), sum \(a + b \) and product \(a \times b \). The *genofields to the right \(F^> = F^>(a^>, +^>, \times^>) \) are rings with elements \(a^> = a \times I^> \) called genonumbers, where \(a \) is an element of \(F \), \(\times \) is the multiplication in \(F \), and \(I^> = P^{-1} \) is a well behaved, everywhere invertible and non-Hermitean quantity generally outside \(F \), equipped with all operations ordered to the right, i.e., the ordered genosum to the right, ordered genoproduct to the right, etc.,

\[
(a^>)^> (b^>) = (a + b) \times I^>, \quad (a^>) \times^> (b^>) = (a^>) > (b^>) (a^>) \times P (b^>) = (a \times b) \times I^>, \quad (2.7)
\]

genoadditive unit to the right \(0^> = 0 \) and genounit to the right \(I^> \). The genofields to the left \(\langle F = \langle F(\langle a, \langle, +, \times) \) are rings with genonumbers \(\langle a = \langle I \times a \), all operations ordered to the left, such as genosum \(\langle a)^\langle + (\langle b) = \langle b) = \langle I \times (a + b) \), genoproduct \(\langle a < (\langle b) = (\langle a) \times Q (\langle b) = \langle I \times (a \times b) \), etc., with additive genounit to the left \(\langle 0 = 0 \) and multiplicative genounit to the left \(\langle I = Q^{-1} \) which is generally different than the genounit \(I^\dagger \) to the right. A bigenofield is the structure \(\{< F, \langle F >\} \) with corresponding bielements, bieunits, bioperations, etc. holding jointly to the left and right under the condition \(\hat{I}^> = (\hat{I})^\dagger \).

LEMMA 1 [21]: Each individual genofield to the right \(F^> \) or to the left \(\langle F \) is a field isomorphic to the original field \(F \). Thus, the liftings \(F \to F^>, F \to \langle F \) and \(\{F, F\} \to \{< F, \langle F >\} \) are axiom-preserving.

REMARKS: In the definition of fields (and isofields [21]) there is no ordering of the multiplication in the sense that in the products \(a \times b \) and \(a \hat{\times} b = a \hat{\times} T \times b, T = T^\dagger \), one
can either select a multiplying \(b \) from the left, \(a < b \) or \(b \) multiplying \(a \) from the right \(a > b \), because \(a > b = a < b \) (even for non-commutative isofields such as the isouaternions). A genofield requires that all multiplications and related operations (division, moduli, etc.) be ordered either to the right or to the left because now, for a commutative field \(F = R \) or \(C \), we have the properties \(a > b = b > a \) and \(a < b = b < a \), but in general \(a > b = a \times P \times b \neq a < b = a \times Q \times b \). Note that in each case the genounit is the left and right unit, Eq.s \(\ref{2.3} \). The important advances of Ref. \[21\] are therefore the identification, first, that the axioms of a field remain valid when the multiplication is ordered to the right or to the left, and, second, each ordered multiplication can be generalized, provided that it remains associative. The above mathematical occurrences permit the axiomatization of irreversibility beginning with the most fundamental quantities, units and numbers. In fact, the unit and product to the right, irreversibility being always built on numbers, must preserve the same axiomatization of irreversibility, as a necessary condition for consistency.

DEFINITION 2 [12]: Let \(S = S(r,g,R) \) be a conventional n-dimensional metric or pseudo-metric space with local chart \(r = \{r^k\}, k = 1,2,...,n \), nowhere singular, real-valued and symmetric metric \(g = g(r,...) \) and invariant \(r^2 = r^t \times g \times r \) (where \(t \) denotes transposed) over a conventional real field \(R = R(a,+,\times) \). The n-dimensional genospaces to the right \(S^\triangleright = S^\triangleright(r^\triangleright,G^\triangleright,R^\triangleright) \) are vector spaces with local genocoordinates to the right \(r^\triangleright = r \times I^\triangleright \), genometric \(G^\triangleright = P \times g \times I^\triangleright = (g^\triangleright) \times I^\triangleright, g^\triangleright = P \times g \), and genoinvariant to the right

\[
(r^\triangleright)^{2\triangleright} = (r^\triangleright)^\dagger G^\triangleright \times r^\triangleright = [r^t \times (g^\triangleright) \times r] \times I^\triangleright \in R^\triangleright, \tag{2.8}
\]

which, for consistency, must be a genoscalar to the right with structure \(n \times I^\triangleright \) and be an element of the genofield \(R^\triangleright \) with common genounit to the right \(I^\triangleright = P^{-1} \) where \(P \) is given by an everywhere invertible, real-valued, non-symmetric \(n \times n \) matrix. The n-dimensional genospaces to the left \(<S = <S(<r,<+,<F) \) are genospaces over genofields with all operations ordered to the left and a common \(n \times n \)-dimensional genounit to the left \(<I = Q^{-1} \) which is generally different than that to the right but verifying the interconnecting condition \(P = Q^\dagger \). The bigenospaces are the structures \(\{<S,S^\triangleright\} \) with bigenocoordinates, etc, defined over the bigenofield \(\{<R,R^\triangleright\} \) under the condition \(I^\triangleright = (<I)^\dagger \).

LEMMA 2 [12]: Genospaces to the right \(S^\triangleright \) and, independently, those to the left \(<S \) (thus bigenospaces \(\{<S,S^\triangleright\} \) are locally isomorphic to the original spaces \(S \) (\(\{S,S\} \)).

PROOF. The original metric \(g \) is lifted in the form \(g \rightarrow P \times g \), but the unit is lifted by the inverse amount \(I \rightarrow I^\triangleright = P^{-1} \) thus preserving the original axioms (because the invariant is \((\text{length})^2 \times \text{(unit)}^2 \)), and the same occurs for the other cases. q.e.d.

REMARKS. The best way to see the local isomorphism between conventional and genospaces is by nothing that the latter are the results of the following novel degree of freedom of the former (here expressed for the case of a scalar complex function \(P \))
\[r^i \times g \times r \times I \equiv r^i \times g \times r \times Q \times Q^{-1} \equiv (r^i \times g^> \times r) \times I^> \equiv P^{-1} \times P \times (r^i \times g \times r \times I) \equiv I^< \times (r \times I^< g \times r^i) \quad (2.9) \]

which is another illustration of the structure of the basic invariant of metric spaces \([\text{length}]^2 \times [\text{Unit}]^2\).

DEFINITION 3 [12]: The genodifferential calculus to the right on a genospace \(S^> (r^>, R^>) \) over \(R^> \) is the image of the conventional differential calculus characterized by the expressions (where we have ignored for notational simplicity the multiplication to the right by \(I^> \))

\[
\begin{align*}
dr^k \rightarrow d^>r^k &= (I^>)^i_k \times dr^i, \\
\partial/\partial r^k \rightarrow \partial^>/\partial^> r^k &= P^i_k \times \partial/\partial r^i, \\
\partial/\partial r_k \rightarrow \partial^>/\partial^> r_k &= I^i_k \times I/\partial r^i,
\end{align*}
\]

(2.10)

with all operations ordered to the right and main properties

\[
\partial^> r^i/\partial^> r^j = \delta^i_j, \quad \partial^> r^i/\partial^> r^j = \delta^j_i, \quad \text{etc.} \quad (2.11)
\]

The genodifferential calculus to the left is the conjugate of the preceding one for the genounit to the left \(<I \neq I^>\). The bigenodifferential calculus is that acting on \(<S, S^>\) over \(<R, R^>\) for \(I^> = (<I)^\dagger \).

LEMMA 3 [12]: The genocalculus to the right and, independently, that to the left preserve all original properties, such as commutativity of the second-order derivative, etc.

REMARKS. A important advance of Ref. [12] is the identification of an insidious lack of invariance where one would expect it the least, in the conventional differential calculus, because traditionally formulated without indicating its dependence on the selected unit. As a result, all generalized equations of motion expressed in terms of conventional derivative, e.g., \(dA/dt \), are not invariant.

DEFINITION 4 [12]: The genogeometries to the right, or to the left, or the bigenogeometries are the geometries of the corresponding genospaces when entirely expressed via the applicable geonomathematics, including the genodifferential calculus.

LEMMA 4 [loc. cit.]: The genoeuclidean, genominkowskian, genoriemannian and genosymplectic geometries to the right and, independently, to the left and their combined bimodular form, are locally isomorphic to the original geometries (i.e., the verify their abstract axioms).

REMARKS. Another intriguing property identified in memoir [12] is that the Riemannian axioms do not necessarily need symmetric metrics because the metrics can also be nonsymmetric with structure \(g^> = P \times g, \quad P = P^t \) real-valued but nonsymmetric, provided that the geometry is formulated on a genofield with genounit given by the inverse of the
nonsymmetric part, \(I^\triangleright = P^{-1} \), and the same occurs for the case to the left. This property has permitted the first quantitative studies on the irreversibility of interior gravitational problems via the conventional Riemannian axioms [20], e.g., the geometrization of the irreversible black hole model by Ellis, Nonopoulos and Mavromatos [21], which has precisely a Lie-admissible structure, and other models. These remarks are important to begin to see the physical relevance of Biedenharn’s q-deformations when written in an axiomatically correct form.

DEFINITION 5 [12]: Let \(\mathcal{H} \) be a conventional Hilbert space with states \(|\psi> \), \(|\varphi> \), ..., inner product \(<\varphi| \times |\psi> \) over the field \(C = C(e^+, +, \times) \) of complex numbers and normalization \(<\psi| \times |\psi> = 1 \). A genohilbert space to the right \(\mathcal{H}^\triangleright \) is a right genolinear space with genostates \(|\psi^\triangleright> \), \(|\varphi^\triangleright> \), ..., genoinner product and genonormalization to the right

\[
<\varphi^\triangleright| \times |\psi^\triangleright> = <\psi^\triangleright| \times P \times |\psi^\triangleright> \times I^\triangleright \in C^\triangleright(e^\triangleright, +^\triangleright, \times^\triangleright), \quad <\varphi^\triangleright| \times |\psi^\triangleright> = I^\triangleright
\]

(2.12)

defined over a genocomplex field to the right \(C^\triangleright(e^\triangleright, +^\triangleright, \times^\triangleright) \) with a common genounit \(I^\triangleright = P^{-1} \). A genohilbert space to the left \(<\mathcal{H} \) is the left conjugate of \(\mathcal{H} \) with left genounit \(<I = Q^{-1} \) generally different than \(I^\triangleright \). A bigenohilbert space is the bistructure \(\{<\mathcal{H}, \mathcal{H}^\triangleright\} \) over the bigenofield \(\{<C, C^\triangleright\} \) under the conjugation \(I^\triangleright = (<I)^\dagger \).

LEMMA 5: The right-, left- and bi-genohilbert spaces are locally isomorphic to the original space \(\mathcal{H} \).

PROOF. The original inner product is lifted by the amount \(<| \times |> \rightarrow <| \times P \times |> \), but the underlying unit is lifted by the inverse amount, \(1 \rightarrow P^{-1} \), thus leaving the original axiomatic structure unchanged. q.e.d.

REMARK. The understanding of genoperator theory requires the knowledge that it is a consequence of the following, hitherto unknown degree of freedom of conventional Hilbert spaces (where \(P \) is independent from the integration variable for simplicity)

\[
<\varphi| \times |\psi> \equiv <\psi| \times |\psi> \times P \times P^{-1} \equiv <\varphi| \times P \times |\psi> \times P^{-1} = <\varphi| <|\psi> \times <I \equiv <\varphi| \times |\psi> \times Q \times Q^{-1} \equiv <\varphi| >|\psi> \times I^\triangleright, \quad (2.13)
\]

which is evidently the Hilbert space counterpart of the novel invariance (2.9). It should be noted that new invariances (2.9) and (2.13) have remained undetected since Riemannian’s and Hilbert’s times, respectively, because they required the prior discovery of new numbers, those with an arbitrary, generally nonhermitean unit.

DEFINITION 6: Genolinear operators to the right are operators \(A, B, \ldots \) of a geno-enveloping algebra to the right verifying the condition of genolinearity (i.e., linearity on \(\mathcal{H}^\triangleright \) over \(C^\triangleright \)), and a similar occurrence holds for the left case. In particular, we have the genounitary operators to the right and to the left
\[U^> > U^>^\dagger = U^>^\dagger > U = I^>, \quad <U <^< U^\dagger = <U^\dagger <^< U = <I. \]

(2.14)

When applied on the bistructure \(\{<H, H^>\} \) over \(\{<C, C^>\} \), the theory is bigenolinear.

Lemma 6: Operators \(X \) which are originally Hermitean on \(H \) over \(C \) remains Hermitean on \(H^> \) over \(C^> \), or on \(<H \) over \(<C \) (i.e., genotopies preserve the original observables).

Proof. The condition of genohermiticity on \(H^> \) reads \(X^\dagger^> = Q \times Q^{-1} \times X^\dagger \times Q \times Q^{-1} = X^\dagger. \) q.e.d.

Lemma 7: Under sufficient topological conditions, any conventionally nonunitary operator on \(H \) can be identically written in a genounitary form to the right or to the left.

Proof. Any operator \(U \) of the considered class such that \(U \times U^\dagger \neq I \) can always be written

\[U = (U^>) \times Q^{1/2} \text{ or } P^{1/2} \times (<U), \]

and properties (2.14) follows. q.e.d.

Remarks. The reader should be aware that the entire theory of linear operators on a Hilbert spaces must be lifted into a genotopic form for consistency. For instance, conventional operations, such as TrX, DetX, etc. can be easily proved to be inapplicable for genomathematics, and must be replaced with the corresponding genoforms. The same happens for all conventional and special functions and transforms. A systematic study of the theory of genolinear operators will be conducted elsewhere.

We are now equipped to present, apparently for the first time, the central notion of this note which consists of the old notion of Lie-admissibility upgraded with the systematic use of genomathematics.

Definition 7: Consider the conventional Lie theory with ordered \(N \)-dimensional basis of Hermitean operators \(X = \{X_k\} \), parameters \(w = \{w_k\} \), universal enveloping associative algebra \(\xi = \xi(L) \), Lie algebra \(L \approx [\xi(L)]^{-} \), corresponding, (connected) Lie transformation group \(G \) on a space \(S(r, F) \) with local coordinates \(r = \{r^k\} \) over a field \(F \).

The Lie-admissible theory (also called Lie-Santilli genotheory [15-18]) is here defined as a step-by-step bimodular lifting of the conventional Lie theory defined on bigenospaces over bigenofields, and includes:

(5.A) The universal genoeveloping associative algebra to the right \(\xi^>(L) \) of an \(N \)-dimensional Lie algebra \(L \) with ordered basis \(X^> \equiv X = \{X_k\}, k = 1, 2, \ldots, N \), genounit \(I^> = Q^{-1} \), genoassociative product \(X_i \times X_j = X_i \times Q \times X_j \) and infinite-dimensional genobasis characterized by the genotopic Poincare’-Birkhoff-Witt theorem to the right

\[I^> = Q^{-1}, \quad X_k, \quad X_i > X_j (i \leq j), \quad X_i > X_j > X_k (i \leq j \leq k), \ldots \]

(2.16)

and genoexponentiation (2.16); the universal genoassociative algebra to the left \(\xi<(L) \) with genounit \(<I = P^{-1} \) and genoproduct \(X_i < X_j = X_i \times P \times X_j \), with infinite-dimensional genobasis characterized by the genotopic Poincare’-Birkhoff-Witt theorem to the left
\[<I = P^{-1}, \ X_k, \ X_i < X_j \ (i \leq j), \ X_i < X_j < X_k \ (i \leq j \leq k), \ldots \quad (2.17)\]
and genoexponentiation to the left (2.6); the bigenoenvelope is the bistructure \(\{<\xi, \xi^>\}\) defined on corresponding bigenospaces and bigenofields under the condition \(I^> = (<I)^>\).

(5a) A Lie-Santilli genoalgebra is a bigenolinear bigenoalgebra defined on \(\{<\xi, \xi^>\}\) over \(\{<F, F^>\}\) with Lie-admissible product

\[(X_i, X_j) = X_i < X_j - X_j > X_i = X_i \times P \times X_j - X_j \times Q \times X_i. \quad (2.18)\]

(5c) A (connected) Lie-Santilli genotransformation group is the biset \(\{<G, G^>\}\) of bigenotransforms on \(\{<S, S^>\}\) over \(\{<F, F^>\}\) with genounits \(<I = (I^>)^>\)

\[r^> \iota = (U^>) \circ r^> = (U^>) \times Q \circ r \times I^> = V \times r \times I^>, \ U^> = V \times I^>, \quad <rt = <r \circ (<U) = <I \times r \times P \times (<U) = <I \times r \times W, \ <U^><I^> \times W, \quad (2.19)\]

verifying the following conditions: genodifferentiability of the maps \(G^> : S^> \rightarrow S^>\) and \(<S \leftarrow S^< : S^<\), invariance of the genounits and genolinearity, with realizations \(U^> = exp_>(i \times w \times X)\) and \(<U = exp_(<-i \times w \times X)\), genolaws

\[U^>(w^> \circ U^>(w^>) \circ U^>(w^>) \circ U^>(-w^>) = U^>(0^>) = I^>. \quad (2.20)\]

and Lie-admissible algebra in the neighborhood of the genounits \(\{<I, I^>\}\) according to rule (2.4).

LEMMA 8: Lie-admissible product (2.18) verifies the Lie axioms when defined on \(\{<\xi, \xi^>\}\) over \(\{<F, F^>\}\).

PROOF. The genoenvelopes to the left \(<\xi\) and to the right \(\xi^>\) are isomorphic to the original envelope \(\xi\), thus implying \(<I(A < B) = (A^> \circ B^>) \circ I^>\) i.e., the value of the genoproduct \(A < B = A \times P \times B\), when measured with respect to the genounit \(<I = P^{-1}\), is equal to that of the genoproduct \(A > B = A \times Q \times B\) measured with respect to the genounit \(I^> = Q^{-1}\). q.e.d.

The most important property of this section, which is an evident consequence of the preceding analysis, can be expressed as follows:

THEOREM: Lie-admissible groups as per Definition 7 coincide at the abstract level with the original Lie-transformation groups.

REMARKS. Note that the generators of the original Lie algebra are not lifted under genotopies, evidently because they represent conventional physical quantities, such as energy, linear momentum, angular momentum, etc. Only the operations defined on them are lifted. Note also that, when conjugation \(P = Q^>\) is violated, the Lie axioms are lost. Note also that the genotheory is highly nonlinear, because the elements \(P\) and \(Q\) in genotransforms (2.19) have unrestricted functional dependence, this including that in the local coordinates. Nevertheless, genomathematics reconstructs linearity in genospaces over genofields. The
same happens for nonlocality, noncanonicity, nonunitarity and irreversibility [20]. In fact, on genospaces over genofields, genotheories are fully linear, local, canonical unitary and reversible. Departures from these axiomatic properties occur only in their projection over conventional; spaces and fields. These are evident fundamental conditions to lift nonlinear, nonlocal, noncanonical, nonunitary and irreversible theories into a form compatible with the notoriously linear, local, canonical, unitary and reversible axioms of the special relativity.

Needless to say, we have been able to present in this note only the rudiments of the needed genomathematics, with the understanding that its detailed study is rather vast indeed. Also, by no means, genomathematics should be considered as the most general possible form admitted by the Lie axioms. Mathematics and physics are disciplines which will never admit "final theories". In fact, a still broader multivalued hyperrealization of Lie's theory has already been identified in Ref. [12] and cannot be treated here for brevity.

3 INVARIANT FORMULATION OF q - DEFORMATIONS

We are now equipped to submit the suggested invariant formulation of the (p, q)- [2] or q-deformations [2,7,8]. First, we have to identify the following insufficiencies:

(I) No invariant formulation is possible for (p, q)-parameters because, under the nonunitary time evolution of the theory, brackets (1.2) or (??) assume the general Lie-admissible form (1.4) (for which reason the latter was submitted in the first place [5b,6]),

\[U \times (A, B) \times U^\dagger = p \times U \times A \times B \times U^\dagger - q \times U \times B \times A \times U^\dagger = A t \times P \times B t - B t \times Q \times A t, \]
\[P = p \times (U \times U^\dagger)^{-1}, \quad Q = q \times (U \times u^\dagger)^{-1}, \quad A t = U \times A \times U^\dagger, \quad B t = U \times B \times U^\dagger. \quad (3.1) \]

(II) Despite such a generality, the formulation are still not physically acceptable because they generally violate the crucial conjugation \(P = Q^\dagger \), without which there is the loss of the Lie axioms (Sect. 2) with consequential problems in invariance, causality, etc. The condition \(P = Q^\dagger \) is therefore assumed hereon.

(III) Brackets \((A, B) = A \times P \times B - B \times Q \times A, P = Q^\dagger \) on conventional spaces and fields are still not invariant and, therefore, they have all problematic aspects (1)-(5) of the (p, q)- and q-deformations (Sect. 1). In fact, under an additional (necessarily) nonunitary transform we have

\[U \times (A, B) \times U^\dagger = U \times A \times P \times B \times U^\dagger - U \times B \times A \times U^\dagger = A t \times P t \times B t - B t \times Q t \times A t, \]
\[P t = U^\dagger^{-1} \times P \times U^{-1}, \quad Q t = U^{-1} \times Q \times U^{-1}, \quad A t = U \times A \times U^\dagger, \quad B t = U \times B \times U^\dagger. \quad (3.2) \]

This implies the lack of invariance of the fundamental genounits \(I^> = P^{-1} \) and \(< I = Q^{-1} \), with consequential ambiguous physical applications.
The only possible resolution of the above problematic aspects known to this author is the formulation of the q-parameter deformations in the operator (P, Q)-deformations formulated via the genomathematics of Sect. 2, i.e., on bigenofield, bigenospace, bigenogroup, etc.

In fact, it is easy to see that each structure to the right is invariant under the action of the genogroup to the right, e.g., $U^> > I^> > U^>† = I^> = U^>(A > B) > U^>† = At > B$, the initial genohermiticity to the right can be proved to remain invariant under the action of a genogroup to the right, etc.

From these grounds, genominkowskian spaces, the genopoincare’ symmetry and the genospecial relativity are expected to coincide at abstract level with the conventional corresponding structures, with the understanding that the detailed study of this expectation will be predictably long and cannot possibly be done in this note.

We close with a simple rule for the explicit construction of invariant (P, Q)-deformations and related genomathematics. It is based on the systematic use of two nonunitary transforms for the characterization of motion forward and backward in time,

\[
A \times A^† \neq I, \quad B \times B^† \neq I, \quad A \times B^† = I^>, \quad B \times A^† = <I = (I^>)^†. \quad (3.3)
\]

It is then easy to see that the entire genomathematics of the preceding section follows via a simple application of the above two transforms. For instance, the genonumbers to the right are given by the above transforms of conventional numbers $A \times > a \times B^† = a \times (A \times B^†) = A \times I^>$, the genoproduct to the right is given by the same transform $A \times (A \times B) \times B^† = At \times Q \times Bt, \quad Q = (A \times B^†)^{-1}$ with the correct Hermiticity properties, etc.

Most importantly, the Lie-Santilli genogroups and genoalgebras can also be derived via the above dual nonunitary map. In fact, a conventional, right modular Lie group is lifted under the transform $A \times B^†$ into the forward genoform

\[
e^{iXw} \rightarrow A \times \{e^{iXw}\} \times B^† =
\]

\[
= A \times (I + i \times X \times w/1! + (i \times X \times w) \times (i \times X \times w)/2! + ...) \times B^† =
\]

\[
= I^> + \hat{I}^> \times X^> \times w^>/2!1^> + \hat{I}^> \times X^> \times w^>/2!(I > X^> \times w^>) \times (i^> > X^> \times w^> > w^>/2! > + ...) =
\]

\[
= (I + i \times X^> \times Q \times w)/1! + (i \times X^> \times Q \times w) \times (i \times X^> \times Q \times w)/2! + ...) \times I^> =
\]

\[
= \{e^{iXw}\} \times I^> \equiv e^>_i \times X \times w,
\]

\[
I^> = A \times B^† = Q^{-1},
\]

\[
X^> = A \times X \times B^†, \quad w^> = w \times I^>, \quad i^> > X^> \times w^> \equiv i \times X^> \times w,
\]

(3.4)

with a conjugate lifting for the left modular action. Lie-admissible algebras then follows in the neighborhood of the genounits \{I, I^>\}.

In conclusion, Biedenharn’s 1989 paper on q-deformations [7], when expressed in an invariant, (P, Q)-operator, Lie-admissible form, deals with one of the most important problems of the physics of this century, the origin of irreversibility. In fact, the invariant formulation
of the deformations permits the identification of the origin of irreversibility at the ultimate level of physical reality, such as a proton in the core of a collapsing star [22]. In this case all conventional, action-at-a-distance, potential forces are represented via the conventional Hamiltonian H, while contact, zero-range, nonhamiltonian, irreversible effects are represented via the forward isounit $I^\geq = A \times B^\dagger$ with different backward from $I^\leq = (I^\leq) = B \times A^\dagger$. When applicable in interior problems, the emerging theory is then structurally irreversible, that is, irreversible even for reversible Hamiltonians.

ACKNOWLEDGMENTS

I would like to express my gratitude to H. Tributsch, C. A. C. Dreismann and L. Pohlmann for the opportunity of visiting the Hahn-Meitner Institute in Berlin in September 1995 and for long, detailed and critical examinations of the various aspects of Lie-admissible theories.
References

[1.] . A. Albert, Trans. Amer. Math. Soc. 64, 552 (1948)

[2.] . M. Santilli, Nuovo Cimento 51, 570 (1967)

[3.] . M. Santilli, Suppl. Nuovo Cimento 6, 1225 (1968)

[4.] . M. Santilli, Meccanica 1, 3 (1969) [6b];

[5.] .M. Santilli, Hadronic J. 1, 224 [5a], 574 [5b] and 1267 [5c] (1978); Phys. Rev. D 20, 555 (1979) [5d]

[6.] . M. Santilli, foundations of Theoretical Mechanics, Vol. II: Birkhoffian Generalization of Hamiltonian Mechanics (Springer-Verlag, Heidelberg-New York, 1983)

[7.] . C. Biedernharn J. Phys. A 22, L873 (1989)

[8.] . J. Macfarlane, J. Phys. A 22, L4581 (1989)

[9.] . Dobrev, in Proceedings of the Second Wigner Symposium, Clausthal 1991 (World Scientific, Singapore, 1992). J. Lukierski, A. Novicki, H. Ruegg and V. Tolstoy, Phys. Lett. B 264, 331 (1991). O. Ogivetski, W.B. Schmidke, J. Wess and B. Zumino, Comm. Math. Phys. 50, 495 (1992). S. Giller, J. Kunz, P. Kosinki, M. MajewskiI and P. Maslanka, Phys. Lett. B. 286, 57 (1992)

[10.] . Lukierski, A. Nowiski and H. Ruegg, Phys. Lett. B 293, 344 (1992). J. Lukierski, H. Ruegg and W. Rühl, Phys. Lett. B 313, 357 (1993). J. Lukierski and H. Ruegg, Phys. Lett. B 329, 189 (1994). S. Majid and H. Ruegg, Phys. Lett. B 334, 348 (1994)

[11.] . L. Curtis, B. Fairlie and Z.K. Zachos, Editors, Quantum Groups (World, Scientific, Singapore, 1991). Mo-Lin Ge and Bao Heng Zhao, Editors, Introduction to Quantum Groups and Integrable Massive Models of Quantum Field Theory (World Scientific , Singapore, 1991). Yu. F. Smirnov and R. M. Asherova, Editors, Proceedings of the Fifth Workshop Symmetry Methods in Physics (JINR, Dubna, Russia, 1992)

[12.] . M. Santilli, Rendiconti Circolo Matematico Palermo, Suppl. 42, 7 (1996)

[13.] . D. Schafer, An Introduction to Nonassociative Algebras (Academic Press, New York, 1966)

[14.] . M. Santilli, Initiation of the representation theory of Lie admissible algebras on bi-modular Hilbert spaces, Hadronic J. 3, 440 (1979)

[15.] . S. Sourlas and G. T. Tsagas, Mathematical Foundations of the Lie-Santilli Theory (Ukraine Academy of Sciences, Kiev, 1993)

[16.] . Löhmuus, E. Paal and L. Sorgsepp, Nonassociative Algebras in Physics (Hadronic Press, Palm Harbor, FL, 1994) [5d]
[17.] V. Kadeisvili, *Santilli’s Isotopies of contemporary Algebras, Geometries and Relativities* (Hadronic Press, FL, 1991, Second Edition, Ukraine Academy of Sciences, Kiev, in press).

[18.] V. Kadeisvili, *Math. Methods in Applied Sciences*, 19, 362 (1996)

[19.] M. Santilli, *Relativistic hadronic mechanics: Nonunitary axiom-preserving completion of relativistic quantum mechanics*, in press (1997)

[20.] M. Santilli, *Elements of Hadronic Mechanics*, Vols I and II, (Ukraine Academy of Sciences, Kiev, Second Edition, 1995)

[21.] M. Santilli, *Algebras, Groups and Geometries* 10, 273 (1993)

[22.] Ellis, N. E. Mavromatos and D. V. Nanopoulos in *Proceedings of the Erice Summer School, 31st Course: From Superstrings to the Origin of Space-Time*, World Scientific (1996)

[23] F. Lopez, in *Symmetry Methods in Physics* (Memorial Volume dedicated to Ya. S. Smorodinsky), A. N. Sissakian, G. S. Pogosyan and S. I. Vinitsky, Editors, J.I.N.R., Dubna, Russia (1994), p. 300; and Hadronic J. 16, 429 (1993); Jannussis and D. Skaltzas, *Ann. Fond. L. de Broglie* 18, 1137 (1993); A. Jannussis, R. Mignani and R. M. Santilli, *Ann. Fond. L. de Broglie* 18, 371 (1993); D. Schuch, *Phys. Rev. A*, 55 (1997), in press; R. M. Santilli, ”Problematic aspects of classical and quantum deformations”, Preprint IBR-TH-97-S-037, submitted for publication