Direct and inverse source problems for two-term time-fractional diffusion equation with Hilfer derivative

Article - November 2017

2 authors, including:

Erkinjon Tulkinovich Karimov
Uzbekistan Academy of Sciences
72 PUBLICATIONS 459 CITATIONS

Some of the authors of this publication are also working on these related projects:

Direct and inverse problems for fractional order differential equations with singularities View project

Nonlocal boundary value problems with integral conjugating conditions for mixed type equations with different fractional derivatives View project
Direct and inverse source problems for two-term time-fractional diffusion equation with Hilfer derivative
Salakhitdinov M.S., Karimov E.T.

Abstract

In this paper, we investigate direct and inverse source problems for the diffusion equation with two-term generalized fractional derivative (Hilfer derivative) in a rectangular domain. Using spectral expansion method, we derive two-term fractional differential equation together with appropriate initial condition (Cauchy problem). Based on solution of that Cauchy problem, we represent solution of formulated problems as a combination of sinus and multinomial Mittag-Leffler function of two variables. Imposing certain conditions to the given data, we prove uniform convergence of certain infinite series.

MSC 2010: 35R11, 26A33

Keywords: Hilfer derivative, multi-term fractional diffusion equation, inverse source problem, multivariate Mittag-Leffler function.

1 Inverse source problem.

Consider the following diffusion equation with Hilfer derivatives

$$D^{\alpha_1,\beta_1}_{0t}u(t, x) + \mu D^{\alpha_2,\beta_2}_{0t}u(t, x) - u_{xx}(t, x) = g(x)$$

in a rectangular domain \(\Omega = \{(t, x) : 0 < t < T, 0 < x < 1\} \). Here \(\alpha_i, \beta_i (i = 1, 2) \), \(\mu, T \) are given real numbers such that \(T > 0, 0 < \alpha_2 < \alpha_1 < 1, 0 \leq \beta_i \leq 1 \),

$$D^{\alpha,\beta}_{0t} f(t) = \left(I^{(\alpha-\beta)(n-\alpha)}_{0t} \left(I^{(1-\beta)(n-\alpha)}_{0t} f \right) \right)(t), \ t > 0$$

is a Hilfer fractional derivative of the order \(\alpha \) and type \(\beta \) with \(n-1 < \alpha \leq n \in \mathbb{N} \) (see [1]),

$$I^{\alpha}_{0t} f(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-z)^{\alpha-1} f(z)dz, \ t > 0$$

is the Riemann-Liouville fractional integral of order \(\alpha > 0 \) such that \(I^{\alpha}_{0t} f(t) = f(t) \) (see, for example [2]).

We note that in case of \(\beta = 0 \), Hilfer derivative (2) coincides with the Riemann-Liouville derivative and in case of \(\beta = 1 \) with the Caputo derivative [1].

Problem 1 is to find a pair of functions \(\{u(t, x), g(x)\} \) from the class of functions

$$W_1 = \{u(t, x) : u \in C_{-1}[0, T], I^{(1-\beta_i)(1-\alpha_i)}_{0t} u \in C_{-1}[0, T], u \in C[0, 1], u_{xx} \in C(0, 1); g(x) \in C[0, 1] \},$$

which satisfies equation (1) in \(\Omega \) together with boundary conditions

$$u(t, 0) = u(t, 1) = 0, \ 0 \leq t \leq T$$

$$u(t, 0) = u(t, 1) = 0, \ 0 \leq t \leq T$$
and initial condition
\[
\lim_{t \to +0} I_{0t}^{(1-\beta_1)(1-\alpha_1)} u(t, x) = 0, \quad 0 \leq x \leq 1, \tag{5}
\]
and also overdetermining condition
\[
u(T, x) = \varphi(x), \quad 0 \leq x \leq 1. \tag{6}
\]
Here \(\varphi(x)\) is a given function such that \(\varphi(0) = \varphi(1) = 0\).

We remind the definition of the space \(C^m_\alpha\).

Definition. A function \(f(x), x > 0\), is said to be in the space \(C^m_\alpha\), \(m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}\), \(\alpha \in \mathbb{R}\) if there exists a real number \(p, p > \alpha\), such that
\[
f^m(x) = x^p f_1(x) \quad \text{with a function } f_1 \in C[0, \infty), \tag{9}
\]
where \(C^0_\alpha = C_\alpha\).

Hilfer derivative has appeared in the theoretical modeling of a broadband dielectric relaxation spectroscopy for glasses [3]. Some properties and applications of this derivative were studied in [4-7]. We will use in this work result of the work [8], where explicit solution of the modified Cauchy problem for multi-term fractional differential equation with Hilfer derivatives found by operational method.

Separation of variables lead us to the following spectral problem
\[
X''(x) - \lambda X(x) = 0, \quad X(0) = X(1) = 0, \tag{1}
\]
whose eigenvalues are \(\lambda_k = (k\pi)^2, k \in \mathbb{Z}\) and corresponding eigenfunctions \(\{X_k = \sin k\pi x\}\). Since this system forms complete orthogonal basis, we can expand solution of the problem 1 by the following series:
\[
u(t, x) = \sum_{k=1}^{\infty} U_k(t) \sin k\pi x, \quad 0 \leq t \leq T \tag{7}
\]
\[
g(x) = \sum_{k=1}^{\infty} g_k \sin k\pi x, \tag{8}
\]
where
\[
U_k(t) = 2 \int_0^1 u(t, x) \sin k\pi x dx, \quad k = 1, 2, \ldots \tag{9}
\]
\[
g_k = 2 \int_0^1 g(x) \sin k\pi x dx, \quad k = 1, 2, \ldots \tag{10}
\]
Substituting (7)-(8) into (1), we get
\[
D_{0t}^{\alpha_1, \beta_1} U_k(t) + \mu D_{0t}^{\alpha_2, \beta_2} U_k(t) + (k\pi)^2 U_k(t) = g_k. \tag{11}
\]
Initial condition (5) gives us
\[
\lim_{t \to +0} I_{0t}^{(1-\beta_1)(1-\alpha_1)} U_k(t) = 0. \tag{12}
\]
According to [8], solution of (11) together with (12) has a form
\[
U_k(t) = g_k \int_0^t z^{\alpha_1-1} E_{(\alpha_1-\alpha_2, \alpha_1), \alpha_1} \left(-\mu z^{\alpha_1-\alpha_2}, -(k\pi)^2 z^{\alpha_1} \right) dz, \tag{13}
\]
where
\[
E_{(\alpha_1-\alpha_2, \alpha_1), \alpha_1} \left(z^{\alpha_1-\alpha_2}, -(k\pi)^2 z^{\alpha_1} \right) = \frac{1}{\Gamma(\alpha_1)} \int_0^z \frac{t^{\alpha_1-1}}{(k\pi)^2 + t^{\alpha_1}} dt.
\]
where

$$E_{(\alpha-\beta,\alpha)}(x,y) = \sum_{n=0}^{\infty} \sum_{i=0}^{n} \frac{n!}{n!(n-i)!} \Gamma(\rho + \alpha n - \beta i) x^i y^{n-i}$$

(14)

is a particular case (in two variables) of multi-variate Mittag-Leffler function [9] with $\alpha, \beta, \rho > 0$.

Applying the following formula (see, for example [10])

$$\int_0^t z^\alpha E_{(\alpha-\beta,\alpha)}(m_1 z^\alpha, m_2 z^\alpha) \, dz = t^\alpha E_{(\alpha-\beta,\alpha)}(m_1 t^\alpha, m_2 t^\alpha)$$

from (13) we obtain

$$U_k(t) = g_k \cdot t^{\alpha_1-1} E_{(\alpha_1-\alpha_2,\alpha_1),\alpha_1+1}(-\mu t^{\alpha_1-\alpha_2}, -(k\pi)^2 T^{\alpha_1}).$$

(15)

In order to define g_k we use over-determined condition (6), which will take a form

$$U_k(T) = \varphi_k,$$

(16)

where

$$\varphi_k = 2 \int_0^1 \varphi(x) \sin k\pi x dx, \quad k = 1, 2, ...$$

From (15)-(16) we deduce

$$g_k = T^{\alpha_1-1} E_{(\alpha_1-\alpha_2,\alpha_1),\alpha_1+1}(-\mu T^{\alpha_1-\alpha_2}, -(k\pi)^2 T^{\alpha_1})$$

with

$$T^{\alpha_1-1} E_{(\alpha_1-\alpha_2,\alpha_1),\alpha_1+1}(-\mu T^{\alpha_1-\alpha_2}, -(k\pi)^2 T^{\alpha_1}) \neq 0.$$

(17)

Finally, $U_k(t)$ will have a form

$$U_k(t) = \frac{T^{\alpha_1-1} E_{(\alpha_1-\alpha_2,\alpha_1),\alpha_1+1}(-\mu t^{\alpha_1-\alpha_2}, -(k\pi)^2 T^{\alpha_1})}{T^{\alpha_1-1} E_{(\alpha_1-\alpha_2,\alpha_1),\alpha_1+1}(-\mu T^{\alpha_1-\alpha_2}, -(k\pi)^2 T^{\alpha_1})} \varphi_k.$$

(18)

Now, let us estimate $U_k(t)$. Since

$$\frac{t^{\alpha_1-1} E_{(\alpha_1-\alpha_2,\alpha_1),\alpha_1+1}(-\mu t^{\alpha_1-\alpha_2}, -(k\pi)^2 t^{\alpha_1})}{T^{\alpha_1-1} E_{(\alpha_1-\alpha_2,\alpha_1),\alpha_1+1}(-\mu T^{\alpha_1-\alpha_2}, -(k\pi)^2 T^{\alpha_1})} \leq C_1 (C_1 = const > 0),$$

we have

$$|U_k(t)| \leq \frac{C_1}{(k\pi)^2} \left| \varphi_k^{(2)} \right|,$$

(19)

where

$$\varphi_k^{(2)} = -2 \int_0^1 \varphi''(x) \sin k\pi x dx.$$

We need more "strong estimate" for $U_k(t)$ in order to provide convergence of infinite series corresponding for $u_{xx}(t,x)$. Precisely,

$$|U_k(t)| \leq \frac{C_2}{(k\pi)^3} \left| \varphi_k^{(3)} \right|,$$

(20)
where C_2 is a positive constant and

$$\varphi_k^{(3)} = -2 \int_0^1 \varphi'''(x) \cos k\pi x \, dx.$$

We have to impose more condition to the given function $\varphi(x)$ in order to guarantee uniform convergence of the following series

$$u_{xx}(t, x) = \sum_{k=1}^{\infty} U_k(t)(k\pi)^2 \sin k\pi x. \quad (21)$$

In fact, considering (20), we have

$$|u_{xx}(t, x)| \leq \sum_{k=1}^{\infty} |U_k(t)| (k\pi)^2 \leq \sum_{k=1}^{\infty} \frac{C_2}{k\pi} \left| \varphi_k^{(3)} \right|.$$

If we use $2ab \leq a^2 + b^2$, we have

$$|u_{xx}(t, x)| \leq \sum_{k=1}^{\infty} \left(\frac{C_2^2}{4(k\pi)^2} + \left| \varphi_k^{(3)} \right|^2 \right).$$

Due to $\sum_{k=1}^{\infty} \frac{1}{(k\pi)^2} = 1/6$ and $\sum_{k=1}^{\infty} |\varphi|^2 \leq \|\varphi\|_{L_2(0,1)}$, we assume that

$$\varphi(x) \in C^2[0,1], \varphi'''(x) \in L_2(0,1), \varphi(0) = \varphi(1) = \varphi''(0) = \varphi''(1) = 0, \quad (22)$$

then by Weierstrass M-test theorem, we can conclude that series (21) uniformly converges.

Proof of the uniform convergence of series corresponding to the functions $u(t, x), D_{0t}^{\alpha_1}u(t, x) (i = 1, 2)$ and $g(x)$ can be done by similar way considering (2), (3), (17), (19), but with less conditions to the given function $\varphi(x)$.

The uniqueness of the solution of the problem 1, can be obtained based on the completeness of the system $\{\sin k\pi x, k = 1, 2, \ldots \}$ in L_2. In fact, if we consider corresponding homogeneous problem, i.e. $\varphi(x) = 0$, from (18) we will get $U_k(t) \equiv 0$, which implies

$$\int_0^1 u(t, x) \sin k\pi x \, dx = 0, \quad 0 \leq t \leq T.$$

Due to the completeness of the system $\{\sin k\pi x, k = 1, 2, \ldots \}$ in L_2, we will get $u(t, x) \equiv 0$ in Ω.

We proved the following theorem:

Theorem 1. If conditions (17) and (22) are valid, then the problem 1 is uniquely solvable and solution is represented by

$$u(t, x) = \sum_{k=1}^{\infty} \frac{t^{\alpha_1-1}E_{\alpha_1-\alpha_2, \alpha_1}(\alpha_1-\alpha_2, t^{\alpha_1}(-(k\pi)^2)^{\alpha_1} \varphi_k \sin k\pi x,}{T^{\alpha_1-1}}$$

$$g(x) = \frac{1}{\sum_{k=1}^{\infty} T^{\alpha_1-1}E_{\alpha_1-\alpha_2, \alpha_1}(\alpha_1-\alpha_2, t^{\alpha_1}(-(k\pi)^2)^{\alpha_1} \varphi_k \sin k\pi x.}$$
2 Direct problem.

Now let us consider the following direct problem.

Problem 2. To find a solution of the equation

\[D^{\alpha_1, \beta_1}_{0t} u(t, x) + \mu D^{\alpha_2, \beta_2}_{0t} u(t, x) - u_{xx}(t, x) = \tilde{g}(t, x) \] \hspace{1cm} (23)

from the class of functions

\[W_2 = \{ u(t, x) : u \in C_{-1}[0, T], I^{(1-\beta_1)(1-\alpha_1)}_{0t} u \in C^1_1[0, T], \]
\[u \in C[0, 1], u_{xx} \in C(0, 1) \}, \]

satisfying conditions (4) and (5).

Here \(\tilde{g}(t, x) \) is a given function.

Similarly as in the case of problem 1, we search solution in the form of

\[u(t, x) = \sum_{k=1}^{\infty} \bar{U}_k(t) \sin k \pi x, \quad 0 \leq t \leq T. \] \hspace{1cm} (24)

Substituting (24) into (23) we get

\[D^{\alpha_1, \beta_1}_{0t} U_k(t) + \mu D^{\alpha_2, \beta_2}_{0t} U_k(t) + (k \pi)^2 U_k(t) = \bar{g}_k(t), \] \hspace{1cm} (25)

where

\[\bar{g}_k(t) = 2 \int_0^1 \tilde{g}(t, x) \sin k \pi x dx. \]

Solution of (25) satisfying initial condition

\[\lim_{t \to +0} I^{(1-\beta_1)(1-\alpha_1)}_{0t} \bar{U}_k(t) = 0 \]

has a form

\[U_k(t) = \int_0^t z^{\alpha_1 - 1} E_{(\alpha_1 - \alpha_2, \alpha_1)}(-\mu z^{\alpha_1 - \alpha_2}, -(k \pi)^2 z^{\alpha_1}) \bar{g}_k(t - z) dz. \] \hspace{1cm} (26)

For the estimation of \(\bar{U}_k(t) \) we use two different estimation of the function (14). Precisely, first of them is

\[|E_{(\alpha-\beta, \alpha)}(x, y)| \leq \frac{C_3}{1 + |x|} \] \hspace{1cm} (27)

with \(C_3 = \text{const} > 0 \), which is proved in [9]. Another one is

\[|E_{(\alpha-\beta, \alpha)}(x, y)| \leq \frac{C_4}{1 + |x + y|}, \] \hspace{1cm} (28)

with \(C_4 = \text{constant} > 0 \), which has the following additional condition to the fractional orders (see [10], lemma 1.3)

\[\Gamma(\rho + n(\alpha - \beta) + k\beta) > \Gamma(\rho + n(\alpha - \beta)), \quad n, k \in \mathbb{N}, \quad n \geq k. \] \hspace{1cm} (29)
If we use estimation (27), we get

\[|\bar{U}_k(t)| \leq \frac{C_5}{(k\pi)^2} \left| \bar{g}_k^{(2)}(t) \right|, \]

\[\bar{g}_k^{(2)}(t) = -2 \int_0^1 \frac{\partial^2 \bar{g}(t, x)}{\partial x^2} \sin k\pi x dx. \]

As we mentioned in previous case, we need another estimation for the \(\bar{U}_k(t) \) in order to guarantee uniform convergence of infinite series corresponding to the function \(u_{xx}(t, x) \), namely

\[|\bar{U}_k(t)| \leq \frac{C_6}{(k\pi)^3} \left| \bar{g}_k^{(3)}(t) \right|, \] (30)

\[\bar{g}_k^{(3)}(t) = -2 \int_0^1 \frac{\partial^3 \bar{g}(t, x)}{\partial x^3} \cos k\pi x dx. \]

We impose the following conditions to the \(\bar{g}(t, x) \):

\[\frac{\partial^2 \bar{g}(t, x)}{\partial x^2} \in C[0, 1], \quad \frac{\partial^3 \bar{g}(t, x)}{\partial x^3} \in L_2(0, 1), \]

\[\bar{g}(t, 0) = \bar{g}(t, 1) = 0, \quad \left. \frac{\partial^2 \bar{g}(t, x)}{\partial x^2} \right|_{x=0} = \left. \frac{\partial^2 \bar{g}(t, x)}{\partial x^2} \right|_{x=1} = 0 \] (31)

in order to get

\[|u_{xx}(t, x)| \leq C_7 + \left\| \bar{g}_k^{(3)}(t) \right\|, \] (32)

where \(C_7 \) is a positive constant.

Now, if we use estimation (28), we obtain

\[|\bar{U}_k(t)| \leq \frac{C_8}{(k\pi)^3} \left| \bar{g}_k^{(1)}(t) \right|, \]

\[\bar{g}_k^{(1)}(t) = 2 \int_0^1 \frac{\partial \bar{g}(t, x)}{\partial x} \cos k\pi x dx. \]

Consequently, in order to provide the uniform convergence of series

\[u_{xx}(t, x) = \sum_{k=1}^{\infty} \bar{U}_k(t)(k\pi)^2 \sin k\pi x \] (33)

we impose the following condition to the given function \(\bar{g}(t, x) \):

\[\frac{\partial \bar{g}(t, x)}{\partial x} \in C[0, 1], \quad \frac{\partial^2 \bar{g}(t, x)}{\partial x^2} \in L_2(0, 1), \quad \bar{g}(t, 0) = \bar{g}(t, 1) = 0, \] (34)

which yields

\[|u_{xx}(t, x)| \leq C_9 + \left\| \bar{g}_k^{(2)}(t) \right\|. \]

Using Weierstrass M-test theorem, one can easily prove the uniform convergence of (33). The uniqueness of the solution for the problem 2 can be proved similarly to the proof of the problem 1.
Hence, we proved the following theorems:

Theorem 2. If condition (31) is valid, then problem 2 is uniquely solvable and solution is represented by

\[
 u(t, x) = \sum_{k=1}^{\infty} \sin k\pi x \int_0^t \frac{z^{\alpha_1-1}}{E(\alpha_1-\alpha_2, \alpha_1)} \left(-\mu z^{\alpha_1-\alpha_2}, -(k\pi)^2 z^{\alpha_1}\right) \hat{g}_k(t-z) \, dz. \tag{35}
\]

Theorem 3. If condition (29) and (34) are valid, then problem 2 is uniquely solvable and solution is represented by (35).

References

1. R. Hilfer, Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000).
2. I. Podlubny, Fractional Differential Equations, in: Mathematics in Science and Engineering, vol. 198, Acad. Press, 1999.
3. R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials. Chem. Phys. 284 (2002), 399-408.
4. R. Hilfer, Y. Luchko, Z. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives. Fract. Calc. Appl. Anal. 12, No 3 (2009), 299-318.
5. K.M. Furati, M.D. Kassim, N.e.-Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative. Comp. Math. Appl. 64, No 6 (2012), 1616-1626.
6. K.M. Furati, O.S. Iyiola, M. Kirane, An inverse problem for a generalised fractional diffusion, Appl. Math. Comput. 249 (2014) 2431.
7. S.A. Malik, S. Aziz. An inverse source problem for a two parameter anomalous diffusion equation with nonlocal boundary conditions. Computer and Mathematics with Applications, 2017, http://dx/doi.org/10.1016/j.camwa.2017.03.019
8. M.-Ha. Kim, G.Chol-Ri, Chol O.H. Operational method for solving multi-term fractional differential equations with the generalized fractional derivatives. Fractional Calculus and Applied Analysis. 2014. vol.17. No 1, pp.79-95.
9. Luchko Y. and Gorenflo R. An Operational Method for Solving Fractional Differential Equations with the Caputo Derivatives, Acta Math.Vietnamica, N 2, 1999, 207-233.
10. E.T. Karimov, S. Kerbal, N. Al-Salti. Inverse source problem for multi-term fractional mixed type equation. M.Ruzhansky et al. (eds.), Advances in Real and Complex Analysis with Applications, Trends in Mathematics. 2017, pp. 289-301

Institute of Mathematics named after V.I.Romanovsky