A conceptual model for understanding the zoonotic cutaneous leishmaniasis transmission risk in the Moroccan pre-Saharan area

Ahmed Karmaoui a,*, Denis Sereno b,h, Carla Maia c, Lenea Campino d, Samir El Jaafari e, Abdelkhaled Fouzi Taybi f, Lhoussain Hajji g

a Bioactives (Health and environmental lab, epidenetics team, UMI), Faculty of Sciences and Techniques, Errachidia, & Southern Center for Culture and Science, Morocco
bIRD, University of Montpellier, InterTryp, Parasite Infectiology Research Group, 34000 Montpellier, France
cGlobal Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL) & Medical Parasitology Unit, IHMT-UNL, Lisbon, Portugal
dMedical Parasitology Unit, IHMT-UNL, Lisbon, Portugal
eBioactives, Environmental health and epigenetics research team, UMI, Meknes, Morocco
fÉquipe de Recherche en Biologie et Biotecnologie Appliquées; Faculté Pluridisciplinaire de Nador, University Mohammed I, Morocco
gBioactives, Health and Environmental Laboratory, Epigenetics team, Moulay Ismail University, Morocco
hIRD, CNRS, University of Montpellier MiVeGec, 34000 Montpellier, France

ARTICLE INFO

Keywords:
Biotope
Biophysical Structure
Climate
Drivers
Human health
Human response

ABSTRACT

Leishmanioses are of public health concern in Morocco, mainly the Zoonotic Cutaneous Leishmaniasis (ZCL) endemic in the Moroccan pre-Saharan area. Transmission of this disease depends on eco-epidemiological and socio-economic conditions. Therefore, a multivariable approach is required to delineate the risk and intensity of transmission. This will help outline main disease risk factors and understand interactions between all underlying factors acting on disease transmission at a local and regional scale. In this context, we propose a new conceptual model, the Biophysical-Drivers-Response-Zoonotic Cutaneous Leishmaniasis (BDRZCL), adapted to the Pre-Saharan area. The proposed model highlights how the physical and human drivers affect the environment and human health. The incidence of ZCL is linked to human activity and biophysical changes or by their interactions. The human response added to risk drivers are the main components that influence the biophysical part. This model improves our understanding of the cause-effect interactions and helps decision-makers and stakeholders react appropriately.

1. Introduction

Leishmaniasis are vector-borne diseases caused by protozoan parasites of the genus Leishmania, which phlebotomine sand flies transmit. Leishmaniasis are endemic in 98 countries from four continents (Alvar et al., 2012), and one billion people are at risk of infection (Wamai et al., 2020). Depending on the eco-epidemiological conditions (biotic and abiotic conditions, parasite, vector, and host species), transmission cycles can be sylvatic or domestic (Carreira et al., 2014). In Morocco, cutaneous leishmaniasis is caused mainly by L. major and L. tropica, and sometimes by L. infantum while visceral leishmaniasis is caused by L. infantum (Rhajaoui, 2011;...
ZCL caused by *L. major* is concentrated in pre-Saharan with Saharan biotopes being present in villages along the palm groves in the rural area (Bounoua et al., 2013; Kholoud et al., 2018). In these biotopes, the transmission intensity is under socio-economic and environmental conditions (Karmaoui et al., 2021a). Indeed, ZCL incidence is high in rural areas where the central economic sector is agriculture and livestock. In addition, local communities typically live in poor hygiene conditions and low health services in these rural areas. Therefore, a conceptual framework is required to delineate main disease risk factors and understand their interactions.

Information on the interaction between complex factors affecting human health would guide decision-makers. A valuable conceptual model would help in understanding disease transmission in a global view. These conceptual models are tools needed to manage disease transmission risk. Since vector-borne diseases such as ZCL are often associated with socio-economic and environmental changes, urbanization, agriculture, and biotope alterations, they would benefit from these conceptual models.

2. Material and methods

2.1. Study area

In this geographic area, most of the pre-Saharan region’s Moroccan oases are present in four provinces: Errachidia, Ouarzazate, Zagora, and Tata (Fig. 1). This region’s climate is arid, and the economic sector is based mainly on familial agriculture concentrated along the Wadi (temporary rivers) (Karmaoui and Balica, 2021b).

The study area extends over 127720 km². The population is about one million and a half (4.3% of the national population), with a low density of 11.37% against 47% at the national scale (HCP, 2014).

In this region, ZCL is caused by *Leishmania major* and transmitted by the sandfly *Phlebotomus papatasi*, and *Meriones shawi* and *Psammomys obesus* are the reservoirs (Boussaa et al., 2010; Kehoe, 2017).

These provinces have experienced one to two peak outbreaks incidence between 2000 and 2015 (see Fig. 2) (the most extended documented period). Two epidemic outbreaks peaks were recorded in 2003 and 2010 in the Ouarzazate province and increased from 2005 to 2010 for Zagora and Errachidia.

2.2. Methodology

The construction of the conceptual model was based on the recommendation and definition of Earp and Ennett (1991), which refers to “a diagram of proposed causal linkages among a set of concepts believed to be related to a particular public health problem”. Defined keywords, zoonotic cutaneous leishmaniasis (and ZCL), *L. major*, and vector-borne-disease, were used to search on Plos, Science Direct, Wiley, and Google Scholar. Information extracted was adapted to the ecologic and socio-economic conditions of the pre-Saharan biotope. A total of 29 papers published from 1986 to 2018 and focusing on climate variables, health, biology, human response, and environmental conditions, were selected. This model was based on the closest framework: Cutaneous Leishmaniasis Vulnerability Index including Anthropogenic, Geographical, Socio-economical, Services category, and Health components (Karmaoui, 2018), and the Local ZCL Vulnerability Index (components: Socio-economical, climatic, hydraulic, vegetation, and health) (Karmaoui and Zerouali, 2018).

Interactions between these components allowed to explore risk factors dynamics through the Driving Force - Pressure - State - Impact – Response (DPSIR) model that was adopted by the European Environment Agency (EEA). This model was adapted to consider the ZCL biological cycle in the context of the area. Components of the model were identified along with their associated variables.

![Fig. 1. Study area, the pre-Saharan provinces, Tata, Zagora, Ouarzazate, and Errachidia.](image-url)
3. Results

Information on ZCL was extracted and classified into six sub-components: Biotope, Biocycle, Density cases, Response, Physical, and Anthropogenic (human activity). Essential features linked to the disease were selected, including biophysical aspects of the parasite, vector, host, and reservoir host; climatic, vegetation, extreme events drivers, and human reactions. Reports on the occurrence of the oriental button (Leishmaniasis) in High Guir (South) dates back to 1914 in Morocco (Foley et al., 1914). The insect vector (P. papatasi) was identified in 1916 (Delanoé, 1916). Later, Leblanc reported the “oriental button” cases in Figuig (Leblanc, 1925). The first extensive study on phlebotomine was performed in 1947 by Gaud (1947). In 1970, it was depicted leishmaniasis’ clinical diversity and their association with L. major, L. tropica or L. infantum (Rioux, 2001). In 1971, Bailly-Choumara et al. (1971) studied the spatio-temporal distribution of phlebotomine sandflies of Morocco in relation to bioclimatic conditions. In 1977, with the ban on the use of DDT to combat malaria transmission by anopheline vectors, ZCL had re-emerged as a public health concern (Boussaa, 2008). In 1997 a control program for cutaneous leishmaniasis was established in Morocco (PLCL, 2016), and in 1999, the first iso-enzymatic and genetic study was performed (Benabdennbi et al., 1999). Later, Guernaoui (2000) reported of the presence of vector species in Marrakech: P. papatasi, (proven vector of L. major) Phlebotomus sergenti (proven vector of L. tropica), and P. Longicuspis (vector of L. infantum). In addition, the forecast concept for the distribution of leishmaniasis concerning climate change was introduced (Rioux and De La Rocque, 2003). A World Health Organization (WHO) consultation on the leishmaniasis control program took place in 2009 (PLCL, 2016).

We designed a Biophysical-Drivers-Response-ZCL (BDRZCL) framework with the information gathered. The eco-epidemiological conditions of ZCL at local and regional scales and their combinations in a socio-ecological system are the novel pieces added by the proposed conceptual model. The proposed model includes three components (Table 1).

- The biophysical component includes community structure (biotope), and ecosystem function (parasite, vector, host, and reservoir host).
- The drivers represent likely changes in climate, minimum and maximum temperatures, precipitation, humidity, vegetation density, heat waves, severe storms, floods, or drought.
- The response gathers all aspects of human actions and reactions, like surveillance, preparedness, and vector control.

Using existing literature (Table 1), a conceptual model (Fig. 3) was traced in relation to the impacts and response to ZCL. This model explored the trade-off between socio-economic and biophysical components at two geographic scales (regional and local) (Fig. 3). The incidence of ZCL is linked to human activity and biophysical changes or their interactions. The human response added to risk drivers are the main components that influence the biophysical part. In this conceptual model, the climatic and human drivers are the main risk factors of ZCL at regional and local scales. There are three main components (biophysical, drivers, and human response) specific to the oasis system, but they can be adapted for other ecosystems.

The main drivers are climatic and anthropogenic factors; they act on the three biotopes and the biological developmental cycle of reservoir hosts, vectors, and parasites. The reservoir, vector, and parasite co-existence in favorable conditions increase the incidence
Table 1
Main components and potential and possible indicators related to ZCL caused by L. major.

Scale	Component	Sub-component	Indicator Brief descriptions	Reference
Regional-	Biotope	Presence of insect vector found in houses, caves, and shelters	Guernaoui and Boumezzough, 2009 and Guernaoui et al., 2010	
	Urban	Increasing cases of ZCL in urban areas	Salah et al., 2007	
	Peri-urban	Presence of ZCL in peri-urban areas	Neoumine, 1996	
	Rural	Presence of insect vectors in various habitats in rural sites	Guernaoui et al., 2005	
	Domestic	ZCL is endemic in rural sites	Salah et al., 2007	
	Sylvatic	Reservoir hosts for L. major are sylvatic	WHO, 2007	
	Reservoir host	Identified reservoir hosts are Meriones shawi and Psammomys obesus	WHO, 2007	
	Biocycle	Phlebotomus papatasi is the proven vector of ZCL	Bounoua et al., 2013	
	Parasite	The agent of ZCL is the protozoan parasite L. major	Reithinger et al., 2001	
	Repartition	The following variables affect directly or indirectly the incidence and occurrence of ZCL cases	Surveillance (Gage et al., 2008), Preparedness (Kotnik and Iović, 2017), Vector control (Faraj and Lake, 2015), Changes in climate (Rodhain, 2000), Surface climate variables (Bounoua et al., 2013), Aridity (Rious et al., 1986), Hygiene (Kahime et al., 2014).	
	Density cases	Number of cases Detection of infections by L. major and other Leishmania species	Gage et al., 2008	
Local-	Response (POLICY)	Surveillance As a warning system element of adaptation Use to detect rodents/reservoir hosts	Bounoua et al., 2013	
	Response	Preparedness Basic preparedness and rapid response mechanisms must be taken Measure to decrease the incidence of cutaneous leishmaniasis	Kotnik and Iović, 2017	
	Vector control	An increase in vector abundance can be due to the cessation vector control	Maroli et al., 2013	
	Changes in climate	Climate changes can drive the abundance and expansion of ZCL	Rodhain, 2000; Touni et al., 2012	
	Surface climate variables	ZCL is affected by surface climatic variables	Bounoua et al., 2013	
	Precipitation	A rise in precipitation boosts vegetation, which favours proliferation of reservoir hosts and vector.	Yates et al., 2002	
	Minimum temperature	A rise in minimum temperature decreases the maturation time of the vector.	Faulde et al., 2008	
	Maximum temperatures	Seasonal changes in minimal and maximal temperatures impact the ZCL cases	Kasap and Alten, 2006	
	Physical	Water availability Dams affect the soil temperature and humidity, impacting the vegetation cover, consequently changing sand fly and reservoir hosts abundances.	IPCC, 2014	
	Altitude	The vector of ZCL is abundant in altitudes ranging from 400 to 800 Metres above sea level.	Boussa et al., 2010	
	Vegetation	A rise in vegetation supports both reservoir hosts and vectors	Bounoua et al., 2013; Yates et al., 2002	
	Warming and drought	Longtime warming and drought decrease the ZCL vector capacity	Bounoua et al., 2013	
	Humidity	A rise in humidity decreases the maturation time of the vector.	Kasap and Alten, 2006	
	Aridity	Cutaneous leishmaniasis occurs almost exclusively in arid Saharan regions	Rious et al., 1986; Marty et al., 1989	
	Socio-ecological	The vector of ZCL papatasi is abundant in arid climatic conditions	Bounoua et al., 2013	
	conditions	The incidence of ZCL is localized in the oasis agro-system, where the ecological and socio-economic conditions are weak	Kahime et al., 2014	
	Hygiene	The incidence of ZCL is associated with low hygiene	Kahime et al., 2014	
	Environmental change	The building of dams change the soil temperature and humidity, impacting the vegetation cover and affecting the abundance of sandflies and rodents (reservoir).	IPCC, 2014; Desjeux, 2001	

(continued on next page)
rate. This can be impacted by human activities like land use (forestation and deforestation) and environmental and personal hygiene. On the other hand, the water availability maintains a necessary vegetation cover that supports high biodiversity favoring the establishment of the developmental parasite cycle that impacts ZCL incidence. This influences the human response and accelerates or stops the land use (at the local scale) and the physical drivers, especially the climatic drivers such as precipitation, temperature, and relative humidity at the regional scale.

4. Discussion

A large amount of literature on environmental science concerns transmission risk factors (variables) of ZCL caused by L. major. The variables studied were: latitude and season (Abonnenc, 1972), urbanization (Desjeux, 1999), bioclimate (Rispail et al., 2002), precipitation and vegetation density (Yates et al., 2002), soil construction (Guernaoui, 2006), reservoir (WHO, 2007), biotope (Guernaoui and Boumezzough, 2009 and Guernaoui et al., 2010), altitude (Boussa et al., 2010), temperature, moisture, and wind (Boudrissa et al., 2012; Rioux, 2006), aridity and surface climate variables (Bounoua et al., 2013) and socio-ecological conditions (Karmaoui, 2018). The proposed model aimed at exploring the interaction between these factors in the context of climate change. It is the first

Table 1 (continued)

Scale	Component	Sub-component	Indicator	Brief descriptions	Reference
Human intervention	Anthropogenic factors (deforestation, new settlements, the building of dams…) accelerate the emergence of ZCL	Desjeux, 1999			
Urbanization	P. papatasi persists and resists after the urbanization phenomena	Boussaa, 2008			
Soil construction	Vectors are frequent in areas where the houses are built using clay	Guernaoui, 2006			

ZCL, Zoonotic Cutaneous Leishmaniasis.
attempt to visualize these interactions in the context of ZCL in the Pre-Saharan region.

Several models that include environmental and health components have been developed. The Burden of Disease (BoD) was recommended in the 1990s by the World Bank to estimate health loss due to risk factors (Murray and Lopez, 1996 & Jamison and Jardel, 1994). Others are the Driving Force - Pressure - State - Impact – Response (DPSIR) (Rapport et Friend, 1979), Millennium Ecosystem Assessment (MEA) (Corvalan et al., 2005), Environmental Public Health Indicators (EPHI) (developed by The United States Centers for Disease Control and Prevention based on the work of Thacker et al. (1996), Multiple Exposure-Multiple Effect (MEME) (WHO, 2004), the causal web (a diagram that is created to link causes and effects), and the Driving force-Pressure-State-Exposure-Effect-Action (DPSEA). The latter allows for assessing risk for contaminants (Von Schirnding, 2002). It gathers professionals, practitioners, and managers of public health environmental fields (Waheed et al., 2009). Several specific frameworks based on or derived from DPSIR facilitate our understanding of the social-ecological system. To our knowledge, no model is dealing with the ZCL at the North African scale. For cutaneous leishmaniasis, the closest framework developed is the “Strategic framework for leishmaniasis control in the WHO European Region 2014-2020” (Elov and Dagne, 2014), that outlines the following objectives and actions: Capacity-building (guidelines developed and published and public health staff trained), Surveillance (information systems, collect and analyze data), health education, Case management, outbreak preparedness and response, Control of sand-fly vectors and reservoir hosts, community participation, Evaluation (the impact of measures applied), Environmental management and personal protection (modification of the habitats, local environmental effects, and conflicts), operational researchand sectoral collaboration.

In Morocco, an epidemiological model that includes risk factors using a vertical analysis to emphasize possible critical interventions has been proposed (Laboudi et al., 2018). This study argues that community involvement is essential for improving integrated vector management control (IVMC). It also considers the inter-sectoral strategy framework (using insecticide and rodents control) instead of medical treatments. At the national scale, a leishmaniasis control program (PLCL, 2016) called “2010-2012 Strategic Response Plan” was established to reduce the incidence of cutaneous leishmaniasis caused by L. major and L. tropica. According to PLCL, the reduction of ZCL cases registered at the national level was 88.5%, with the highest reduction (98.6%) recorded in Errachidia (a study area site) with 4128 cases in 2010 and 57 cases in 2012. In addition, PLCL included another plan, the strategic action plan for the fight against leishmaniasis 2013-2016.

5. Conclusion

The multidimensional aspect of the disease requires a multivariable approach to demonstrate how the physical and human drivers affect the environment and then human health. In this context, a new conceptual model, the Biophysical-Drivers-Response-ZCL (BDRZCL), was operationalized in the case Pre-Saharan area. Therefore, the proposed conceptual model helps delineate interactions (associations) of risk factors involved in ZCL transmission in the pre-Saharan region of Morocco.

Funding source

I received no specific funding for this work.

Ethics approval

We further confirm that any aspect of the work covered in this manuscript that has involved human patients has been conducted with the ethical approval of all relevant bodies and that such approvals are acknowledged within the manuscript.

Declaration of Competing Interest

I declare no competing interests exist.

References

Abonnenc, E., 1972. Les phlébotomes de la région éthiopienne (Diptera, Psychodidae). Cahiers de l’ORSTOM, Série Entomol. Méd. Parasitol. 55, 1–239. http://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_2/memoires/05363.pdf.
Alvar, J., Velez, I.D., Bern, C., Herrero, M., Desjeux, P., Cano, J., WHO Leishmaniasis Control Team, 2012. Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7 (5), e35671. https://doi.org/10.1371/journal.pone.0035671.
Bailly-Choumara, H., Abonnenc, E., Pastre, J., 1971. Contribution à l’étude des phlébotomes du Maroc (Diptera, Psychodidae): données faunistiques et écologiques. Cahiers ORSTOM, Série Entomol. Méd. Parasitol. 9 (4), 431–460. https://horizon.documentation.ird.fr/exl-doc/pleins_textes/cahiers/entomo/18944.pdf.
Benabdenbi, L., Pesson, B., Cadi-soussi, M., Morillas, M.F., 1999. Morphological and isoenzymatic differentiation of sympatric populations of P. perniciosus and P. longicuspia (Diptera: Psychodidae) in northern Morocco. J. Med. Entomol. 36, 116–120. https://doi.org/10.1093/jmedent/36.1.116.
Boudrissa, A., Cherif, K., Kherrach, I., Benbetta, S., Boubia, L., Boubidi, S.C., Harrat, Z., 2012. Extension de Leishmania major au nord de l’Algérie. Bull. Soc. Pathol. Exotique 105 (1), 30–35. https://doi.org/10.1017/s13149-011-0199-4.
Bounoua, L., Kahime, K., Houti, L., Blakay, T., Ebi, K.L., Zhang, P., Messouli, M., 2013. Linking climate to incidence of zoonotic cutaneous leishmaniasis (L. major) in the Pre-Saharan North Africa. Int. J. Environ. Res. Public Health 10 (8), 3172–3191. https://doi.org/10.3390/ijerph10083172.
Boussa, S., 2008. Épidémiologie des leishmanioses dans la région de Marrakech, Maroc: effet de l’urbanisation sur la répartition spatio-temporelle des Phlébotomes et caractérisation moléculaire de leurs populations (Doctoral dissertation, Université Louis Pasteur (Strasbourg)). http://www.theses.fr/2008STR13037.
Boussa, S., Nefza, M., Pesson, B., Boumezzough, A., 2010. Phlebotomine sandflies (Diptera: Psychodidae) of southern Morocco: results of entomological surveys along the Marrakech-Ouarzazat and Marrakech-Azilal roads. Ann. Trop. Med. Parasitol. 104 (2), 163–170. https://doi.org/10.1179/136485911X12607012374235.
Carreira, J.C.A., Magalhães, M.D.A.F.M., da Silva, A.V.M., 2014. The geospatial approach on eco-epidemiological studies of leishmaniasis. In Leishmaniasis-Trends in Epidemiology, Diagnosis and Treatment. InTech. https://doi.org/10.5772/57210.
Les leishmanioses. Aspect de santé publique et lutte, Édition Ellipses, p. 253p.

Desjeux, P., 2001. The increase in risk factors for leishmaniasis worldwide. Trans. R. Soc. Trop. Med. Hyg. 95 (3), 239–243. https://doi.org/10.1016/S0035-9203(01)90223-8.

Farb, J.A., Ennett, S.T., 1991. Conceptual models for health education research and practice. Health Educ. Res. 6 (2), 163–171. https://doi.org/10.1093/her/6.2.163.

Ejio, M., Dagne, D., 2014. Strategic framework for leishmaniasis control in the WHO European Region 2014–2020 available on. https://apps.who.intiris/handle/10665/32977.

Faraj, T., Lake, I.R., 2015. The Seasonality of Cutaneous Leishmaniasis in Asir Region, Saudi Arabia. Int. J. Environ. Sustain. 3 (3). https://www.sciencedirect.com/journal/index.php/LIS/article/view/519.

Faulde, M., Schrader, J., Heyl, G., Amirsh, M., Hoerauf, A., 2008. Zoonotic cutaneous leishmaniasis outbreak in Mazarrón-El-Sharif, northern Afghanistan: an epidemiological evaluation. Int. J. Med. Microbiol. 298 (5-6), 543–550. https://doi.org/10.1016/j.ijmm.2007.07.015.

Foley, H., Vialatte, C., Adde, R., 1914. Existence dans le sud marocain (Haut Gui) du bouton d’oriet à l’état endémique. Bull. Soc. Pathol. Exot. 7, 114–115.

Gage, K.L., Burkot, T.R., Eisen, R.J., Hayes, E.B., 2008. Climate and vectorborne diseases. Am. J. Prev. Med. 35 (5), 436–450. https://doi.org/10.1016/j.amepre.2008.08.030.

Gaud, J., 1947. Phlébotomes du Maroc. Bull. Soc. Nat. Maroc. 27, 207–212. https://www.cabdirect.org/cabdirect/abstract/19562900393.

Guernaoui, S., Zerrouki, S., 2018. Modeling the vulnerability to Zoonotic Cutaneous Leishmaniasis at the local scale. Asian J. Appl. Sci. 11, 172–182. https://doi.org/10.3923/ajas.2018.172.182.

Guernaoui, K., Balica, S., 2021b. A new flood vulnerability index adapted for the pre-Saharan region. Int. J. River Basin Manag. 19 (1), 93–107. https://doi.org/10.1080/15715124.2019.1638669.

Kasap, O.E., Alten, B., 2006. Comparative demography of the sand fly Phlebotomus papatasii (Diptera: Psychodidae) at constant temperatures. J. Vector Ecol. 31 (2), 378–385. https://doi.org/10.1016/j.ijmm.2007.07.015.

Kehoe, C., 2017. MOROCCO. 26 APRIL – 7 MAY 2017. BirdQuest Tour Report: Morocco 2017. www.birdquest-tours.com.

Khodou, K., Denis, S., Lahouari, B., El Hidane, M.A., Souad, B., 2018. Management of leishmaniasis in the era of climate change in Morocco. Int. J. Environ. Res. Public Health 15 (7), 1542. https://doi.org/10.3390/ijerph15071542.

Khoudou, B., Bouna, L., Sereno, D., El Hidane, M., Messouli, M., 2020. Emerging and Re-emerging leishmaniasis in the Mediterranean area: what can be learned from a retrospective review analysis of the situation in Morocco during 1990 to 2010? Microorganisms 8 (10), 1511. https://doi.org/10.3390/microorganisms8101511.

Kotnik, T., Iovii, V., 2017. Living on the edge: border countries should have strict veterinary and health policy on leishmaniasis. In: The Epidemiology and Ecology of Leishmaniasis. InTech. https://doi.org/10.5772/65273.

Lainson, R., Rangel, E.F., 2005. Lutzomyia longipalpis and the eco-epidemiology of American visceral leishmaniasis, with particular reference to Brazil: a review. Mem. Inst. Oswaldo Cruz 100 (8), 811–827. https://doi.org/10.1590/S0074-02702005000800001.

Leblanc, L., 1925. Existence du bouton d’Oriente a’ Figuig. Bull. Soc. Pathol. Exot. 18, 146–148.

Maroli, M., Feliciani, M.D., Bichaud, L., Charrel, R.N., Gradoni, L., 2013. Phlebotomine sandflies and the spreading of leishmaniasis and other diseases of public health concern. Med. Vet. Entomol. 27 (2), 123–147. https://doi.org/10.1111/j.1365-2915.2012.01034.x.

Marty, P., Le Fichoux, Y., Pratlong, F., Rioux, J.A., Rostain, G., Lacour, J.P., 1989. Cutaneous leishmaniasis due to Leishmania tropica in a young Moroccan child observed in Nizza, France. Trans. R. Soc. Trop. Med. Hyg. 83 (4), 510. https://doi.org/10.1016/S0035-9203(89)90226-X.

Murray, C.J., Lopez, A.D., 1996. Evidence-based health policy–lessons from the Global Burden of Disease Study. Science 274 (5288), 740–743. https://doi.org/10.1126/science.274.5288.740.

Neoumine, N.J., 1996. Leishmaniasis in the eastern Mediterranean region. Eastern Mediterr Health 2, 94–101. https://apps.who.intiris/handle/10665/118951.

PLCL, 2016. Programme de lutte contre les leishmanioses. Royaume du Maroc, Ministère de la Santé, Direction de L’Épidémiologie et de lutte contre les Maladies, Rapport D.J., Friend, A., 1979. Towards a Comprehensive Framework for Environmental Statistics: a Stress-Response Approach. Statistics Canada 11-510, Ottawa, 1979.

Reithinger, R., Teodor, U., Davies, C.R., 2001. Topical insecticide treatments to protect dogs from sand fly vectors of leishmaniasis. Emerg. Infect. Dis. 7 (5), 872. https://doi.org/10.3201/eid0705.017516.

Rajoua, M., 2011. Les leishmanioses humaines au Maroc: une diversité nosographique. PathologieBiologie 59 (4), 226–229. https://doi.org/10.1016/j. pathbio.2009.09.003.

Rioux, J.A., 2006. Le paradigme «écopathologie» Son application à l’épidémiologie des leishmanioses. Academie des sciences et lettres de Montpellier.

Rioux, J.A., De La Rocque, S., 2003. Climats, leishmanioses et trypanosomoses. In: Annales de l’Institut Pasteur. Actualités No., 16 Elsevier, pp. 41–62.
Rioux, J.A., Lanotte, G., Petter, F., Dereure, J., Akalay, O., Pratlong, F., Jarry, D.M., 1986. Les leishmanioses cutanées du bassin Méditerranéen occidental. De l’identification enzymatique à l’analyse éco-épidémiologique. L’exemple de trois foyers, tunisien, marocain et français. CollintCNRS/INSERM IMEE. Montpellier 1986, 365–395.

Rispail, P., Dereure, J., Jarry, D., 2002. Risk zones of human Leishmaniasis in the Western Mediterranean basin: correlations between vector sand flies, bioclimatology and phytosociology. Mem. Inst. Oswaldo Cruz 97 (4), 477–483.

Rodhain, F., 2000. The state of vector-borne diseases in Indonesia. Bull. Soc. Pathol. Exot. 93, 348–352. https://europepmc.org/article/med/11775322.

Salah, A.B., Kamarianakis, Y., Chlif, S., Alaya, N.B., Prastacos, P., 2007. Zoonotic cutaneous leishmaniasis in central Tunisia: spatio-temporal dynamics. Int. J. Epidemiol. 36 (5), 991–1000. https://doi.org/10.1093/ije/dym125.

Thacker, S.B., Stroup, D.F., Parrish, R.G., Anderson, H.A., 1996. Surveillance in environmental public health: issues, systems, and sources. Am. J. Public Health 86 (5), 633–638. https://ajph.aphapublications.org/doi/abs/10.2105/AJPH.86.5.633.

Toumi, A., Chlif, S., Bettaieb, J., Alaya, N.B., Boukthir, A., Ahmadi, Z.E., Salah, A.B., 2012. Temporal dynamics and impact of climate factors on the incidence of zoonotic cutaneous Leishmaniasis in central Tunisia. PLoS Negl. Trop. Dis 6 (5), e1633. https://doi.org/10.1371/journal.pntd.0001633.

Von Schirnding, Y., 2002. Health in sustainable development planning: the role of indicators. In: Health in sustainable development planning: the role of indicators. World Health Organization, p. 156.

Waheed, B., Khan, F., Veitch, B., 2009. Linkage-based frameworks for sustainability assessment: making a case for driving force-pressure-state-exposure-effect-action (DPSEEA) frameworks. Sustainability 1 (3), 441–463. https://doi.org/10.3390/su1030441.

Wamai, R.G., Kahn, J., McGlone, J., Ziąggi, G., 2020. Visceral leishmaniasis: a global overview. Journal of Global Health. Science 2 (1). https://doi.org/10.35500/jghs.2020.2.e3.

World Health Organization, 2004. From Theory to Action: Implementing the WSSD Global Initiative on Children’s Environmental Health Indicators. World Health Organization, Geneva.

World Health Organization, 2007. Report of the Sixtieth Worldwide Assembly on Health. WHO, Geneva, Switzerland, 22 March 2007.

Yates, T.L., Mills, J.N., Parmenter, C.A., Ksiazek, T.G., Parmenter, R.R., Vande Castle, J.R., Morrison, M.L., 2002. The Ecology and evolutionary history of an emergent disease: hantavirus pulmonary syndrome. AIBS Bull. 52 (11), 989–998.