Majorana algebra for the Hoffman–Singleton graph

Andries E. Brouwer¹ · Alexander A. Ivanov²,³,⁴

Received: 19 March 2022 / Accepted: 30 September 2022 / Published online: 26 October 2022 © Crown 2022

Abstract
Majorana theory is an axiomatic tool for studying the Monster group M and its subgroups through the 196,884-dimensional Conway–Griess–Norton algebra. The theory was introduced by A. A. Ivanov in 2009 and since then it experienced a remarkable development including the classification of Majorana representations for small (and not so small) groups. The group $U_3(5)$ is (isomorphic to) the socle of the centralizer in M of a subgroup of order 25. The involutions of this $U_3(5)$-subgroup are 2A-involutions in the Monster. Therefore, $U_3(5)$ possesses a Majorana representation (based on the embedding in the Monster). We prove that this is the unique Majorana representation of $U_3(5)$, calculate its dimension, which is 798, and obtain a description in terms of the Hoffman–Singleton graph of which the automorphism group has $U_3(5)$ as an index 2 subgroup.

Keywords Majorana algebra · Monster group · Hoffman–Singleton graph

1 The Monster and Majorana

The Monster group, which is the largest and most famous sporadic simple group, has its minimal complex representation of dimension 196,883. This number was noticed by J. McKay in the 1970’s to be one less than the linear coefficient of the modular invariant $J(q)$, making the start of the Monstrous Moonshine. The underlying vector space, as shown by S. P. Norton in the early 1970’s, carries invariant inner and algebra products. This algebra was more explicitly described by R. L. Griess [6] when constructing the Monster in 1980. Later the construction was reviewed and improved in various ways by J. H. Conway [3]. In particular Conway adjoined to the algebra an identity and defined 2A-axes associated with 2A-involutions in the Monster. The 2A-axis $a(t)$ associated with an involution t is an idempotent in the 2-dimensional space

$$C_{VM}(C_M(t)), \text{ where } C_M(t) \cong 2 \cdot BM,$$

1 Mortensen Institute for Retired Mathematicians and Artists, Amsterdam, Netherlands
2 Imperial College London, London, UK
3 Three Gorges Mathematical Research Center, Yichang, Hubei, China
4 Institute for System Analysis ERC, CSC RAS, Moscow, Russia

Alexander A. Ivanov
a.ivanov@ic.ac.uk
The conditions (M1) to (M7) imply that the eigenspaces of the adjoint action of a satisfy the fusion rules described in Table 1:

The meaning of the fusion rules is the inclusion

$$V^{(a)}_{\lambda} \cdot V^{(a)}_{\mu} \subseteq \bigoplus_{v \in Sp(\lambda, \mu)} V^{(a)}_{v}$$

where $\lambda, \mu \in Sp$ and $Sp(\mu, \lambda)$ is the (λ, μ)-entry in Table 1.

Definition 1 Let $(V, (,), \cdot)$ be a triple satisfying (M1) and (M2), let A be a set of Majorana axes in V satisfying (M3) to (M7), and let G be the subgroup of the automorphism group of $(V, (,), \cdot)$ generated by the Majorana involutions associated with the axes in A. Then the triple $(V, (,), \cdot)$ is called a Majorana algebra, and the quintuple $(V, (,), \cdot, A, G)$ is called a Majorana representation of G.

The Baby Monster sporadic simple group. Among other idempotents in this 2-space the 2A-axis is characterized by having 1-eigenvector with multiplicity 1. The 196,884-dimensional algebra is called the Conway–Griess–Norton algebra or simply the Monster algebra and is denoted by V_M.

In [7] essential properties of 2A-axes in the Monster algebra were axiomatised in the following way.

Let V be a real vector space equipped with a bilinear form $(,)$ and an algebra product \cdot.

(M1) $(,)$ is a symmetric positive-definite bilinear form on V that associates with \cdot in the sense that $(u, v \cdot w) = (u \cdot v, w)$ for all $u, v, w \in V$, and \cdot is a bilinear commutative non-associative algebra product on V;

(M2) the Norton inequality holds, so that $(u \cdot u, v \cdot v) \geq (u \cdot v, u \cdot v)$ for all $u, v \in V$.

A vector $a \in V$ is said to be a Majorana axis if it satisfies the following five conditions (M3) to (M7), where $\text{ad}(a) : v \mapsto a \cdot v$ is the adjoint operator of a on V.

(M3) $(a, a) = 1$ and $a \cdot a = a$, so that a is an idempotent of length 1;

(M4) $\text{ad}(a)$ is semi-simple with spectrum $Sp = \{1, 0, \frac{1}{4}, \frac{1}{32}\}$:

$$V = V^{(a)}_1 \oplus V^{(a)}_0 \oplus V^{(a)}_{\frac{1}{4}} \oplus V^{(a)}_{\frac{1}{32}},$$

where $V^{(a)}_{\mu} = \{v \mid v \in V, a \cdot v = \mu v\}$ is the set of μ-eigenvectors of $\text{ad}(a)$ on V;

(M5) $V^{(a)}_1 = \{\lambda a \mid \lambda \in \mathbb{R}\}$;

(M6) the linear transformation $\tau(a)$ of V defined via

$$\tau(a) : u \mapsto (-1)^{32\mu} u$$

for $u \in V^{(a)}_{\mu}$ with $\mu = 1, 0, \frac{1}{4}, \frac{1}{32}$, preserves the algebra product (i.e. $u^{\tau(a)} \cdot v^{\tau(a)} = (u \cdot v)^{\tau(a)}$ for all $u, v \in V$). The automorphism $\tau(a)$ is called the Majorana involution associated with the Majorana axis a;

(M7) if $V^{(a)}_+$ is the centralizer of $\tau(a)$ in V, so that $V^{(a)}_+ = V^{(a)}_1 \oplus V^{(a)}_0 \oplus V^{(a)}_{\frac{1}{4}}$, then the linear transformation $\sigma(a)$ of $V^{(a)}_+$ defined via

$$\sigma(a) : u \mapsto (-1)^{4\mu} u$$

for $u \in V^{(a)}_{\mu}$ with $\mu = 1, 0, \frac{1}{4}$ preserves the restriction of the algebra product to the subalgebra $V^{(a)}_+$.

The conditions (M1) to (M7) imply that the eigenspaces $V^{(a)}_{\mu}$ of the adjoint action of a satisfy the fusion rules described in Table 1:
Table 1 Fusion rules

Sp	1	0	$\frac{1}{4}$	$\frac{1}{32}$	
1	1	0	$\frac{1}{4}$	$\frac{1}{32}$	
0	0	0	$\frac{1}{4}$	$\frac{1}{32}$	
$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	1	0	$\frac{1}{32}$
$\frac{1}{32}$	$\frac{1}{32}$	$\frac{1}{32}$	$\frac{1}{32}$	1, 0, $\frac{1}{4}$	

If $(V_M, (\ , \ , \cdot)$ is the full name of the Monster algebra and $2A$ denotes the set of $2A$-axes in this algebra, then $(V_M, (\ , \ , \cdot, 2A, M)$ is a Majorana representation of the Monster. There is a 1-1 correspondence between $2A$-involutions t in the monster M and $2A$-axes a in $2A$ such that if $\phi: M \rightarrow GL(V_M)$ is the given representation of M on V_M, then $\phi(t) = \tau(a)$. It follows that any subgroup G of M generated by a set of $2A$-involutions possesses at least one Majorana representation.

The above definitions were motivated by a theorem proved by S. Sakuma in [18] making use of earlier results by M. Miyamoto. In Majorana terms this theorem as stated and proved in [11] sounds as follows.

Theorem 2 (Sakuma) Let $(V, (\ , \ , \cdot)$ be a Majorana algebra, let $A = \{a_0, a_1\}$ for $a_0 \neq a_1$ be Majorana axes, and let G be the dihedral subgroup D_{2n} generated by $\tau(a_0)$ and $\tau(a_1)$, where n is the order of the product of the generators. Then $n \leq 6$ and there are at most eight possibilities for the isomorphism type of the subalgebra generated by A in the Majorana representation $(V, (\ , \ , \cdot, A, G)$ of G.

Each of the eight algebras in Sakuma’s theorem are subalgebras in the Monster algebra, their explicit forms were computed by S. P. Norton in [16] and given in Table 2 with respect to the Majorana scaling. The name of the algebra generated by a_0 and a_1 is the conjugacy class of the Monster containing the product $\tau(a_0)\tau(a_1)$.

Therefore, Sakuma’s theorem provides the classification of Majorana representations of the dihedral groups. On progress in classifying Majorana representations of further groups we refer the reader to surveys [9, 10].

Our main result is the following.

Theorem 1 The group $U_3(5)$ has a unique Majorana representation satisfying (M8) below. This representation has dimension 798, it is 2-closed, is spanned by Majorana and $3A$-axes and is based on an embedding into the Monster.

Here the *dimension* of a Majorana representation $(V, (\ , \ , \cdot, A, G)$ is the vector space dimension of the subalgebra $\langle A \rangle$ of V generated by A. The representation is called *i-closed*, when $\langle A \rangle$ is spanned by products of at most i elements of A.

A $3A$-axis is a vector with the role of u_ρ in a type $3A$ subalgebra (an idempotent of squared length $\frac{8}{5}$, expressed in the Majorana axes a_{-1}, a_0, a_1 by the first equation in the $3A$ part of Table 2). Similarly, $4A$-axes and $5A$-axes are vectors with the role of v_ρ and w_ρ, respectively, in type $4A$ ($5A$ subalgebras.

Condition (M8) is

(M8) The vectors a_ρ, a_ρ^2 and a_ρ^3 in type $2A$, $4B$ and $6A$ algebras, respectively, are Majorana axes. The vectors u_ρ, v_ρ, w_ρ in algebras of type $3A$, $4A$ and $5A$ depend solely on the group element $\rho = \tau(a_0)\tau(a_1)$ (rather than on the whole dihedral group $<\tau(a_0), \tau(a_1)>$).
Table 2 Norton–Sakuma algebras

Type	Basis	Products and angles
2A	a_0, a_1, a_ρ	$a_0 \cdot a_1 = \frac{1}{2^3} (a_0 + a_1 - a_\rho), a_0 \cdot a_\rho = \frac{1}{2^2} (a_0 + a_\rho - a_1)$, $(a_0, a_1) = (a_0, a_\rho) = (a_1, a_\rho) = \frac{1}{2^2}$
2B	a_0, a_1	$a_0 \cdot a_1 = 0$, $(a_0, a_1) = 0$, $a_0 \cdot a_1 = \frac{1}{2^2} (2a_0 + 2a_1 + a_\rho - a_1) - \frac{3\cdot5}{2^7} u_\rho$
3A	a_{-1}, a_0, a_1	$a_0 \cdot u_\rho = \frac{1}{2^2} (2a_0 - a_1 - a_\rho + a_\rho), a_\rho = (a_0, u_\rho) = (a_1, u_\rho) = \frac{3\cdot5}{2^7}$
3C	a_{-1}, a_0, a_1	$a_0 \cdot a_1 = \frac{1}{2^3} (2a_0 + a_1 - a_\rho), (a_0, a_1) = \frac{1}{2^2}$, $a_0 \cdot a_1 = \frac{1}{2^2} (3a_0 + 3a_1 + a_\rho - a_\rho - a_1 - 3u_\rho)$
4A	$a_{-1}, a_0, a_1, a_2, v_\rho$	$a_0 \cdot v_\rho = \frac{1}{2^3} (5a_0 - 2a_1 - a_2 - 2a_\rho + 3v_\rho), a_0 \cdot a_1 = 0, (a_0, v_\rho) = \frac{3\cdot5}{2^7}, (v_\rho, v_\rho) = 2$
4B	$a_{-1}, a_0, a_1, a_2, a_\rho^2$	$a_0 \cdot a_1 = \frac{1}{2^2} (a_0 + a_1 - a_2 + a_\rho^2), a_0 \cdot a_2 = \frac{1}{2^3} (a_0 + a_2 - a_\rho^2), (a_0, a_1) = \frac{1}{2^2}, (a_0, a_2) = 0, (a_0, a_\rho^2) = \frac{1}{2^3}$
5A	$a_{-2}, a_{-1}, a_0, a_1, a_2, w_\rho$	$a_0 \cdot a_2 = \frac{1}{2^2} (3a_0 + 3a_2 + a_\rho - a_\rho - a_1 - a_2), a_0 \cdot w_\rho = \frac{7}{2^7} (a_1 + a_2 - a_\rho - a_2), a_0 \cdot a_\rho = \frac{1}{2^2}$, $w_\rho \cdot w_\rho = \frac{3\cdot7}{2^9} (a_0 + a_1 + a_2 - a_\rho), (a_0, a_1) = \frac{3\cdot7}{2^9}, (a_0, w_\rho) = \frac{3\cdot7}{2^9}$
6A	$a_{-2}, a_{-1}, a_0, a_1, a_2, a_\rho^2$	$a_0 \cdot a_2 = \frac{1}{2^2} (2a_0 + 2a_2 + a_\rho - a_\rho - a_1 - a_2) - \frac{3\cdot5}{2^7} u_\rho^2, a_0 \cdot a_\rho = \frac{1}{2^2} (2a_0 - a_\rho - a_2), a_0 \cdot w_\rho = \frac{1}{2^2} (2a_0 - a_2) + \frac{5}{2^4} u_\rho^2, a_0 \cdot a_\rho^2 = \frac{1}{2^2} (5a_0 + a_\rho - a_3), a_0 \cdot a_\rho^2 = 0, (a_0, a_\rho^2) = 0, (a_0, a_\rho) = \frac{5}{2^4}, (a_0, a_3) = \frac{1}{2^2}$
2 On the $U_3(5)$ group

In this section we summarise the required properties of the group $U_3(5)$. They can be deduced from the information in the relevant section of the ATLAS [2] and the properties of the Hoffman–Singleton graph found in [1, §10.19].

(P1) $U_3(5)$ is a simple group of order $126,000 = 2^4 \cdot 3^2 \cdot 5^3 \cdot 7$ with a unique class of involutions. Its Schur multiplier is of order 3 and the outer automorphism group is isomorphic to S_3.

(P2) $U_3(5)$ contains three classes of subgroups isomorphic to A_7, which are maximal and the classes are transitively permuted by the outer automorphisms.

(P3) The action of $U_3(5)$ on the cosets of a subgroup A_7 preserves a structure of the Hoffman–Singleton graph, which is the unique strongly regular graph with parameters $v = 50$, $k = 7$, $\lambda = 0$, $\mu = 1$. The action of $U_3(5)$ on this graph has rank 3.

(P4) The action of an A_7 subgroup on the cosets of an A_7 subgroup from a different class has two orbits with lengths 15 and 35 and stabilizers $L_3(2)$ and $(S_3 \times S_4)^+$, the latter being the normalizer of a subgroup of order 3 in both A_7’s.

(P5) If t is an involution in $U_3(5)$, then the fixed vertices of t on the Hoffman–Singleton graph form a Petersen subgraph on which the centralizer $C(t)$ of t in $U_3(5)$ induces an action of S_5 with kernel $<t>$. The whole $C(t)$ is a non-split extension of $<t>$ by S_5 in which a transposition of S_5 lifts to an involution. $C(t)$ is the unique index 2 subgroup of $GL_2(5)$ with the class of 20 non-central involutions. $C(t)$ is maximal in $U_3(5)$.

(P6) The action of $U_3(5)$ on its 525 involutions has rank 8, with suborbits of sizes 1, 20, 120, 120, 48, 48, 48, corresponding to product orders 1, 2, 3, 4, 6, 5, 5, 5, respectively. The action of $U_3(5).S_3$ has rank 6, the three suborbits of size 48 fuse into a single suborbit of size 144.

(P7) The Monster group contains a maximal 5-local subgroup

$$N(5A^2) \cong (5^2 : 4 \cdot 2^2 \times U_3(5)) : S_3$$

where

$$N(5A) \cong (D_{10} \times HN) \cdot 2$$

(see [19]).

(P8) The involutions in the $U_3(5)$-subgroup in $N(5A^2)$ are $2A$-involutions in the Monster by Table 5 in [17].

3 An upper bound

Property (P8) implies that $U_3(5)$ possesses a Majorana representation based on embedding into the Monster. It would be very hard to deduce any exact information on this representation, like the dimension, by pre-Majorana methods. The characterization [5] of the Majorana representation of the Harada–Norton group is not explicit enough either. What one can do is to get an upper bound on the dimension of this particular representation. The procedure is rather standard.

Lemma 3 The following assertions hold:

(i) $N_M(U_3(5))/U_3(5) \cong S^2 : (SL_2(3) * Z_4)$;
(ii) $C_M(U_3(5)) \cong S^2 : (Q_8 * Z_4)$.
A list is well known \cite{11} and can be deduced from the product rules. In order to save space, we write we present it here in Table 3 for future reference.

A_{12}	M	A_{12}	M	A_{12}	M	A_{12}	M
(1^{12})	1A	(4, 2)	4B	(6, 2)	6C	(4, 3, 2)	12C
(2^2)	2A	(4, 2)3	4B	(7)	7A	(4, 32, 2)	12C
(2^6)	2A	(5)	5A	(8, 2)	$8B$	(6, 4)	12C
(2^4)	$2B$	(52)	5A	(8, 4)	$8B$	(7, 22)	14A
(3)	3A	(3, 22)	6A	(9)	9A	(5, 3)	15A
(3^2)	3A	(32, 22)	6A	(9, 3)	9A	(5, 32)	15A
(3^4)	3A	(6, 23)	6A	(5, 22)	10A	(5, 4, 2)	20B
(3^3)	$3B$	(62)	6A	(10, 2)	10A	(7, 3)	21A
(4^2)	4A	(6, 3, 2)	$6B$	(11)	11A	(5, 3, 22)	30B
$(4^2, 2^2)$	4A	(3, 24)	$6C$	(42, 3)	12A	(7, 5)	35A

Proof Part (i) follows from (P7), and (ii) is immediate from (i). \hfill \Box

It is clear that the Majorana subalgebra of $U_3(5)$ in the Monster algebra is contained in $C_{V_M}(C_M(U_3(5)))$.

If b is the dimension of the above centralizer, then the dimension of the Majorana representation of $U_3(5)$ in V_M is at most b. On the other hand, b can be calculated by restricting the character of M on V_M to $C_M(U_3(5))$ and counting the number of trivial components. The character table of $C_M(U_3(5))$ was found on the internet by William Giuliano to whom we are very thankful. The fusion of classes was recovered via the embedding $C_M(U_3(5)) \leq C_M(A_5) \cong A_{12}$.

The fusion of A_{12}-classes into the Monster is well known, appeared for instance in \cite{14} and we present it here in Table 3 for future reference.

Since 5^2 is a Sylow 5-subgroup of A_{12} and $N_{A_{12}}(5^2)$ is the intersection with A_{12} of $N_{S_{12}}(5^2) \cong (F_{20} \rtimes 2) \times S_2$ and $C_M(U_3(5))$ as in Lemma 3(ii) is rather visible inside this normalizer, we obtain the final result of these calculations.

Lemma 4

$$\dim C_{V_M}(C_M(U_3(5))) = 990.$$ \hfill \Box

4 Subrepresentations and relations

We start this section by presenting the list of eigenvectors of a Majorana axis a_0 inside Norton–Sakuma algebras. This list is well known \cite{11} and can be deduced from the product rules. In order to save space, we write $e_1 := a_1 - a_{-1}$ and $e_2 := a_2 - a_{-2}$.

Next we formulate and prove an important special case of the resurrection principle \cite{11}. In what follows $\langle X \rangle$ denotes the subalgebra generated by a set X. We shall write ab instead of $a \cdot b$.
Table 4 Eigenvectors of Norton–Sakuma algebras

Type	0	$\frac{1}{4}$	$\frac{1}{52}$
2A	$a_1 + a_\rho - \frac{1}{32} a_0$	$a_1 - a_\rho$	
2B	a_1		
3A	$u_\rho - \frac{25}{3^2} a_0 + \frac{5}{3^2} (a_1 + a_{-1})$	$u_\rho - \frac{5}{3^2} a_0 - \frac{5}{3^2} (a_1 + a_{-1})$	e_1
3C	$a_1 + a_{-1} - \frac{1}{2^5} a_0$		
4A	$v_\rho - \frac{1}{2} a_0 + 2(a_1 + a_{-1}) + a_2$, a_2	$v_\rho - \frac{1}{2} a_0 - \frac{5}{3} (a_1 + a_{-1}) - \frac{1}{3} a_2$	e_1
4B	$a_1 + a_{-1} - \frac{1}{2^5} a_0 - \frac{1}{2^5} (a_\rho^2 - a_2)$, $a_2 - a_\rho^2$		e_1
	$a_2 + a_\rho^2 - \frac{1}{2^5} a_0$		
5A	$w_\rho + \frac{1}{3} a_0 - \frac{3}{2^5} (a_1 + a_{-1}) - \frac{1}{3} (a_2 + a_{-2})$, $w_\rho + \frac{1}{3} (a_1 + a_{-1} - a_2 - a_{-2})$	$w_\rho + \frac{1}{3} (a_1 + a_{-1} - a_2 - a_{-2})$	e_1
	$w_\rho + \frac{1}{2^5} a_0 + \frac{1}{2} (a_1 + a_{-1}) + \frac{3}{2^5} (a_2 + a_{-2})$		e_2
6A	$u_\rho^2 - \frac{2^3}{3^2} a_0 - \frac{2^4}{3^2} (a_1 + a_{-1})$, $u_\rho^2 - \frac{2^3}{3^2} a_0$	$u_\rho^2 - \frac{2^3}{3^2} a_0$	e_1
	$u_\rho^2 - \frac{3^3}{3^2} (a_2 + a_{-2} + a_3 - a_\rho^3)$, $\frac{3^3}{3^2} (a_2 + a_{-2} + a_3 - a_\rho^3)$		e_2
	$a_3 + a_\rho^3 - \frac{1}{2^5} a_0$, $u_\rho^2 - \frac{25}{3^2} a_0 + \frac{5}{3^2} (a_2 + a_{-2})$, $a_3 - a_\rho^3$		

Lemma 5 Let $(V, (\ ,\)\ ,\ \cdots, A, G)$ be a Majorana representation of a group G. Suppose that b_0, b_1, b_2 are Majorana axes such that

$$B_1 := \langle\langle b_0, b_1\rangle\rangle \text{ and } B_2 := \langle\langle b_0, b_2\rangle\rangle$$

are 3A-algebras with 3A-axes u_1 and u_2, respectively. Then the product $u_1 u_2$ is explicitly expressible in terms of products of Majorana axes and products of Majorana axes with a 3A-axis, and similarly for the inner product (u_1, u_2).

Proof Let α_1 be the 0-eigenvector of $\text{ad}(b_0)$ in B_1, α_2 and α_2 the 0- and $\frac{1}{3}$-eigenvectors of that operator in B_2 normalized as in Table 4. Then by the fusion rule $\alpha_1 \alpha_2$ is a 0-eigenvector, while $\alpha_1 \beta_2$ is a $\frac{1}{3}$-eigenvalue of $\text{ad}(b_0)$. These eigenvectors have $u_1 u_2$ as the leading terms and the remaining terms are products of two Majorana axes and of a Majorana axis with u_1 or u_2. Now $u_1 u_2$ can be found from

$$b_0 (\alpha_1 \alpha_2 - \alpha_1 \beta_2) = -\frac{1}{4} \alpha_1 \beta_2 = -\frac{1}{4} u_1 u_2 + \cdots.$$

For the inner product we just apply $0 = (\alpha_1, \beta_2) = (u_1, u_2) + \cdots$. □

Lemma 6 Let G be the semidirect product of an elementary abelian group of order 9 generated by elements x and y, and a group of order 2 generated by t which inverts both x and y. Then G possesses a unique Majorana representation satisfying (M8) such that any two Majorana axes generate a 3A subalgebra. Furthermore, if b_1, \ldots, b_9 and u_1, \ldots, u_4 are the Majorana and 3A-axes in this representation, then

$$45 \sum_{i=1}^4 u_i - 32 \sum_{j=1}^9 b_j = 0$$
The relations in Lemma 6 were called in [8] Pasechnik relations and this terminology became standard, although the referee of [8] pointed out that these relations were known for a long time in the theory of Vertex Operator Algebras.

The Majorana representation of \(A_7 \) based on the embedding into the Monster was characterised in [8].

Lemma 7 The group \(A_7 \) possesses a unique Majorana representation satisfying (M8). This representation has dimension 196. It is spanned by 105 Majorana axes, which are linearly independent and 140 \(3A \)-axes associated with order 3 elements of cyclic type \(3^2 \). The latter are subject to 49 linearly independent relations of which 35 are Pasechnik relations and 14 are Faradzev relations. All the 5\(A \)-axes in the representation are linear combinations of the Majorana and \(3A \)-axes.

An explicit form of Faradzev relation was obtained by Clara Franchi and Mario Mainardis [4] as an alternating sum of some 48 \(3A \)-axes. This form played a crucial role in some early stages of our project.

The information in the following lemma was obtained by J. McInroy by the expansion algorithm for Majorana algebra described in [15]. We are extremely thankful to Justin for his sharing this information with us.

Lemma 8 The group \(C = 2 \cdot S_5 \), which is the centralizer of an involution in \(U_3(5) \), possesses a unique Majorana representation. This representation has dimension 31, and is spanned by twenty-one Majorana and ten \(3A \)-axes. Furthermore, if \(\rho \) is an element of order 3 in \(C \), then

(i) for an involution \(t \) in \(C \) which generates with \(\rho \) a \(GL_2(3) \)-subgroup, we have \((u_\rho, a_t) = \frac{1}{36} \).

(ii) for an element \(\sigma \) of order 3 in \(C \) which generates with \(\rho \) an \(SL_2(3) \)-subgroup, we have \((u_\rho, u_\sigma) = \frac{8}{81} \).

(iii) for an element \(\pi \) of order 3 in \(C \), which generates with \(\rho \) an \(SL_2(5) \)-subgroup, we have \((u_\rho, u_\pi) = \frac{16}{405} \).

\(\square \)

5 Shape and 1-closure

We start our construction of a Majorana representation of \(G = U_3(5) \) by setting a vector space with a set \(A \) of 525 vectors \(a_t \) indexed by the involutions \(t \in T \), where \(T \) is the class of involutions in \(G \). In order to proceed we need to find the shape of the representation we are aiming at, which is a map \(sh \) from the set of dihedral subgroups in \(G \) into the set of Norton–Sakuma algebras such that

\[\langle a_t, a_s \rangle \cong sh(<t, s>)_G. \]

Lemma 9 The shape \(sh \) of a representation of \(G \cong U_3(5) \) is uniquely determined and the set of images of \(sh \) is

\[\{2A, 3A, 4B, 5A, 6A\} \]

Proof There is only one algebra for \(D_{12} \) and one for \(D_{10} \). By (P6) every subgroup \(D_6 \) is contained in a \(D_{12} \)-subgroup. Since a 6\(A \) algebra contains 3\(A \)- but not 3\(C \)-subalgebras, the
image of a D_6-subgroup is $3A$. Similarly, since $6A$ contains $2A$- but not $2B$-subalgebras, the image of a D_4-subgroup is $2A$. Finally $4A$ contains a $2B$-subalgebra, which we do not have, therefore, the image of D_8 is $4B$.

Lemma 9 enables us to determine the form on the linear span of A.

Corollary 10 The inner product (a_t, a_s) is equal to 1, $\frac{1}{8}$, $\frac{13}{256}$, $\frac{1}{64}$, $\frac{3}{128}$ and $\frac{5}{256}$ when $a(st)$ is equal to 1, 2, 3, 4, 5 and 6, respectively.

Computationally we obtain the following.

Lemma 11 The 525×525 Gram matrix $\Gamma(A) = ||(a_t, a_s)||$ has full rank.

Thus the 1-closure, which is the subspace spanned by the Majorana generators of a representation of $U_3(5)$, is 525-dimensional with uniquely determined inner product on it.

6 2-closure

Next we consider the 2-closure, which is the space generated by the Majorana generators together with their pairwise products. By Lemma 9 the 2-closure is spanned by the Majorana generators together with $3A$- and $5A$-axes. The following lemma takes care of the $5A$-axes.

Lemma 12 Every $5A$-axis of a Majorana representation of $U_3(5)$ is a linear combination of the Majorana generators and $3A$-axes in the 2-closure.

Proof The result follows from Lemma 7 since there are three $U_3(5)$-orbits on D_{10}-subgroups by (P6) and three orbits on the A_7-subgroups by (P2) with respective inclusion.

Lemma 13 The 2-closure of a Majorana representation of $U_3(5)$ is spanned by the 525 Majorana generators and 1750 $3A$-axes indexed by the subgroups of order 3 in $U_3(5)$.

Proof By Lemmas 9 and 12 we should only consider $3A$-axes. By (P6) there are $525 \cdot 120/6 = 10500$ dihedral groups of order 6 in $U_3(5)$, six for every subgroup of order 3. Comparing the orders of normalizers we conclude that the normalizer of a 3-subgroup is contained in some A_7-subgroup. So the glueing of $3A$-subalgebras already takes place in A_7-subrepresentations (cf. Lemma 7).

We denote by $U = \{u_\rho \mid \rho \in U_3(5), \rho^3 = 1\}$ the set of $3A$-axes in the representation, understanding that $u_\rho = u_{\rho^{-1}}$.

Next we are aiming to determine the Gram matrix of the set $A \cup U$ and by calculating its rank decide on the dimension of the 2-closure. The following result was obtained computationally.

Lemma 14 The pairs of Majorana $2A$- and $3A$-axes in a representation of $U_3(5)$ are as described in Table 5, where T_H is the number of involutions generating a group H of a given isomorphism type together with a fixed order 3-subgroup generated by ρ.

\[\text{Table 5}\]

ρ	T_H	$3A$-axes
ρ_1	T_{A_7}	u_{ρ_1}
ρ_2	T_{A_7}	u_{ρ_2}
ρ_3	T_{A_7}	u_{ρ_3}

\[\text{Table 5}\]
Notice that all \((2A, 3A)\)-pairs inside the Monster were classified by Simon Norton and are presented in Table 3 of [16] (in a scaling different from ours). We do not have a Majorana version of this classification and can only compare the results and be happy when they are consistent, which is the case here. The entries in the second column showing the class of \((t \rho)\) in the Monster are taken from Norton's table. The inner products can be calculated inside \(A_7\)-subrepresentations as in Lemma 7 for all pairs except those generating \(GL_2(3)\), where we apply Lemma 8.

The inner products between 3A-axes were also determined computationally.

Lemma 15 Let \(\rho\) be a subgroup of order 3 in \(U_3(5)\). Then all the order 3 subgroups \(\sigma\) in \(U_3(5)\) are classified by the isomorphism type of the subgroup \(H = <\rho, \sigma>\) generated by \(\rho\) and \(\sigma\) as indicated in Table 6.

In Table 6 \(U_H\) is the set of subgroups \(\sigma\) generating with \(\rho\) a subgroup isomorphic to \(H\) with further subdivisions in the two cases \(L_2(7)\) and \(A_7\). For \(L_2(7)\) the inner product is \(\frac{32}{405}\) when

Table 5 (2A, 3A)-pairs in \(U_3(5)\)

| \(|T_H|\) | \((t \rho)^M\) | \(H = <t, \rho>\) | \((a_1, u_\rho)\) |
|---|---|---|---|
| 3 | 6A | \(C_6\) | 0 |
| 18 | 2A | \(S_3\) | \(\frac{1}{4}\) |
| 36 | 3A | \(A_4\) | \(\frac{1}{9}\) |
| 108 | 4B | \(S_4\) | \(\frac{1}{36}\) |
| 36 | 8C | \(GL_2(3)\) | \(\frac{1}{36}\) |
| 108 | 5A | \(A_5\) | \(\frac{1}{18}\) |
| 216 | 7A | \(L_2(7)\) | \(\frac{1}{24}\) |
| 525 | | | |

Table 6 Inner products of 3A-axes in \(U_3(5)\)

| \(|U_H|\) | \(|H|\) | \(H = <\rho, \sigma>\) | \((u_\rho, u_\sigma)\) |
|---|---|---|---|
| 1 | 3 | \(C_3\) | \(\frac{8}{5}\) |
| 12 | 9 | \(C_3 \times C_3\) | 0 |
| 36 | 12 | \(A_4\) | \(\frac{136}{405}\) |
| 144 | 21 | \(F_7\) | \(\frac{4}{27}\) |
| 18 | 24 | \(SL_2(3)\) | \(\frac{8}{81}\) |
| 72 | 36 | \(C_3 \times A_4\) | \(\frac{64}{405}\) |
| 54 | 60 | \(A_5\) | \(\frac{16}{405}\) |
| 9 | 120 | \(SL_2(5)\) | \(\frac{16}{405}\) |
| 108 | 168 | \(L_2(7)\) | \(\frac{32}{405}\) |
| 216 | 168 | \(L_2(7)\) | \(\frac{4}{81}\) |
| 216 | 360 | \(A_6\) | \(\frac{32}{405}\) |
| 216 | 2520 | \(A_7\) | \(\frac{8}{81}\) |
| 216 | 2520 | \(A_7\) | \(\frac{32}{405}\) |
| 432 | 126,000 | \(U_3(5)\) | x |
| 1750 | | | |
Lemma 16 Let ρ be a subgroup of order 3 in $G = U_3(5)$ and let $\Gamma_-(\rho)$ denote the set of order 3 subgroups in $U_3(5)$ which generate with ρ the whole group G. Then

(i) $\Gamma_-(\rho)$ is a union of six regular orbits of $N := N_G(\rho) \cong (S_3 \times S_4)^+$ of order 72;
(ii) the orbits in (i) are transitively permuted by $N_{\text{Aut}(G)}(\rho)/N \cong S_3$;
(iii) if $\sigma \in \Gamma_-(\rho)$, then there is no involution in G which normalizes both ρ and σ.

The following lemma was obtained computationally. We sketch the setting.

Let $V := (A \cup U)$, the linear span of $A \cup U$, be the 2-closure of the representation, and for a 3A-axis $u \in U$ corresponding to a subgroup ρ of order 3, let $V_+(u)$ be the subspace of V spanned by all Majorana axes in A together with all the 3A-axes except those in the last row of Table 6 (that is, except for those corresponding to a subgroup σ of order 3 with $<\rho, \sigma> = U_3(5)$). Notice that for every $v \in V_+(u)$ the product uv is contained in an A_7-or $2S_5$-subrepresentation, thus can be computed and is contained in V. Let $\Gamma_-(u)$ be the set of 3A-axes corresponding to the last row in Table 6, so that $|\Gamma_-(u)| = 432$. Let

$$\Gamma_-(u) = O_1 \cup O_2 \cup \cdots \cup O_6$$

be the decomposition of $\Gamma_-(u)$ into a disjoint union of $N_G(\rho)$-orbits. For $1 \leq i \leq 6$, let F_i be the function on V which is 1 on O_i and 0 outside.

Lemma 17 The following assertions hold:

(i) $x = \frac{4}{81}$;
(ii) $\dim V(2) = 798$;
(iii) $\dim V_+(u) = 796$;
(iv) there is an orthogonal complement $V_-(u)$ of $V_+(u)$ in $V(2)$ spanned by

$$F_1 + F_2 - F_3 - F_4, \quad - F_1 - F_2 + F_5 + F_6, \quad F_3 + F_4 - F_5 - F_6$$

for some arrangement of the orbits O_i into pairs.

Proof The left hand side of the relations from an A_7-subrepresentation are vectors of length zero and they must be zero vectors since the form is positive-definite. In particular they have to be perpendicular to all other vectors, which enabled us to determine x, proving (i). The power space of $A \cup U$ factorized over the linear span of the relations in the three classes A_7-subrepresentations turned out to be 796-dimensional positive-definite which gives (ii). The assertions (iii) and (iv) were also achieved computationally.

For $u \in U$, let $G(u)$ denote $N_G(\rho)$ where u corresponds to the subgroup ρ. It is clear from the above lemma that in order to close the product on $V(2)$ it suffices to show that for a triple of 3A-axes u_1, u_2, u_3 such that u_2 and u_3 are in the same regular orbit of $G(u_1)$ on $\Gamma_-(u_1)$, the product

$$u_1(u_2 + u_3)$$

belongs to $V(2)$. This was achieved by a version of the resurrection principle. Computationally the following was established.
Lemma 18 Let \(u_1 \in U \) correspond to an element \(\rho \) and \(u_2 \in \Gamma_-(u_1) \) to an element \(\sigma \). Then there exists an involution \(t \in G \), such that \(\langle \rho, t \rangle \cong S_3 \) and \(\langle \sigma, t \rangle \cong S_4 \).

By the above lemma and the shape of the representation of \(G \) we have that the subalgebra \(A_1 \) generated by \(u_1 \) and \(a(t) \) is the 3A-algebra and the subalgebra \(A_2 \) generated by \(u_2 \) and \(a(t) \) is the 13-dimensional \(S_4 \)-algebra of shape \((2A,3A)\) as described in [11].

We assume that \(a(t) = a_0 \) and \(u_1 = u_\rho \) in \(A_1 \) while \(a(t) = a_{(ij)} \) and \(u_2 = u_i \) in \(A_2 \). Then \(u_j \), which is the image of \(u_i \) under \(t \), is contained with \(u_i \) in the same \(G(u_1)-\)orbit on \(\Gamma_-(u_1) \), since \(t \in G(u_1) \). The subgroups of the axes \(u_k \) and \(u_l \) are normalized by \(t \) and therefore, they are in \(V_+(u_1) \). Then the product rule in \(A_2 \) on p. 2460 in [11] shows that

\[
\alpha_1 := u_i + u_j - \frac{1}{8}(v_k - \frac{8}{45}a_{(ij)} - \frac{32}{45}(a_{(il)} + a_{(jl)}))
- \frac{1}{8}(u_l - \frac{8}{45}a_{(ij)} - \frac{32}{45}(a_{(ik)} + a_{(jk)})))
- \frac{1}{18}a_{(ij)} - \frac{8}{45}(a_{(kl)} - a_{(ij)(kl)})
\]

is a 0-eigenvector of \(a_{(ij)} \). Notice that the expressions in first, second and third brackets are \(\frac{1}{4} \)-eigenvectors of \(a_{(ij)} \) in the algebras \(\langle a_{(ij)}, u_k \rangle \), \(\langle a_{(ij)}, u_l \rangle \) and \(\langle a_{(ij)}, a_{(kl)} \rangle \), respectively, where these algebras are of types \(3A, 3A \) and \(2A \), respectively.

Let \(\alpha_2 \) and \(\beta_2 \) be 0- and \(\frac{1}{4} \)-eigenvectors of \(a(t) = a_0 \) in the algebra \(A_1 \cong 3A \) as in Table 4. Then by the fusion rule

\[
\alpha_1\alpha_2 = u_1(u_i + u_j) + v_1
\]

is a 0-eigenvector of \(a(t) \) for some \(v_1 \in V_+(u_1) \), while

\[
\alpha_1\beta_2 = u_1(u_i + u_j) + v_2
\]

is a \(\frac{1}{4} \)-eigenvector of \(a(t) \), where \(v_2 \in V_+(u_1) \).

Now we apply the resurrection principle, Lemma 1.8 in [11], compare Lemma 5.

Consider

\[
\alpha_1\alpha_2 - \alpha_1\beta_2 = v_3
\]

where \(v_3 \) is in \(V_+(u_1) \) so we can explicitly calculate

\[
a_{(ij)}(\alpha_1\alpha_2 - \alpha_1\beta_2) = a_{(ij)}v_3,
\]

although by the eigenvalue properties the above expression is equal to

\[
0(\alpha_1\alpha_2) - \frac{1}{4}(\alpha_1\beta_2) = -\frac{1}{4}(u_1(u_i + u_j)) - \frac{1}{4}v_2,
\]

which gives the required expression.

Now we know that the product is closed on \(V^{(2)} \), so the latter is the whole Majorana algebra supporting the representation, which completes the proof of Theorem 1.

Since \(\alpha_1 \) and \(\beta_2 \) are eigenvectors of \(a(t) \) with different eigenvalues, they are perpendicular. If we expand the equality \((\alpha_1, \beta_2) = 0 \) in terms of the above expressions and substitute the numerical values from Corollary 10, Lemmas 14 and 15, we deduce that

\[
(u_1, u_2) = (u_1, u_3) = \frac{4}{81},
\]

thus obtaining an independent confirmation of Lemma 17 (i).
Acknowledgements We are extremely thankful to our colleagues without whom the project could not be completed: William Giuliano for finding the character table of $C_34(U_3(5))$; to Clara Franchi and Mario Mainardis for deducing the explicit form of the Faradzev relations in the A_7-algebra; to the three of them for most careful proofreading of the draft; and to Justin McInroy for sharing with us information on the representation of $2\cdot S_5$.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Brouwer, A.E., Van Maldeghem, H.: Strongly Regular Graphs. Cambridge University Press, Cambridge (2022)
2. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Clarendon Press, Oxford (1985)
3. Conway, J.H.: A simple construction for the Fischer–Griess Monster group. Invent. Math. 79, 513–540 (1984)
4. Franchi, C., Mainardis, M.: Relations for A_7. Note November (2021)
5. Franchi, C., Ivanov, A.A., Mainardis, M.: The 2A-Majorana representation of the Harada–Norton group. ARS Math. Contemp. 11, 175–187 (2016)
6. Griess, R.: The friendly giant. Invent. Math. 69, 1–102 (1982)
7. Ivanov, A.A.: The Monster Group and Majorana Involutions. Cambridge University Press, Cambridge (2009)
8. Ivanov, A.A.: On Majorana representations of A_6 and A_7. Commun. Math. Phys. 306, 1–16 (2011)
9. Ivanov, A.A.: The future of Majorana theory. In: Group Theory and Computation. Indian Statistical Institute Series, pp. 107–118. Springer, Singapore (2018)
10. Ivanov, A. A.: The Future of Majorana Theory II. Preprint (2022)
11. Ivanov, A.A., Pasechnik, D.V., Seress, A., Shpectorov, S.: Majorana representations of the symmetric group of degree 4. J. Algebra 324, 2432–2463 (2010)
12. Ivanov, A.A., Seress, A.: Majorana representations of A_5. Math. Z. 272, 269–295 (2012)
13. Ivanov, A.A., Shpectorov, S.: Majorana representation of $L_3(2)$. Adv. Geom. 12, 717–738 (2012)
14. Lim, C.S.: From the Monster to Majorana: A study of the 3A-axes. PhD thesis, Imperial College London (2017)
15. McInroy, J., Shpectorov, S.: An expansion algorithm for constructing axial algebras. J. Algebra 550, 379–409 (2020)
16. Norton, S.P.: The Monster algebra: some new formulae. In: Moonshine, the Monster and Related Topics. Contemporary Mathematics. vol. 193, pp. 297–306. AMS, Providence, RI (1996)
17. Norton, S.P.: Anatomy of the Monster I. In: The Atlas of Finite Groups: Ten Years On. LMS Lecture Notes in Computer Science 249, pp. 198–214. Cambridge University Press, Cambridge (1998)
18. Sakuma, S.: 6-Transposition property of τ-involutions of vertex operator algebras. Int. Math. Res. Notes 2007, rnm030 (2007)
19. Wilson, R.A.: The odd-local subgroups of the Monster. J. Aust. Math. Soc. 44, 1–18 (1988)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.