Research Article

Assessment of the role of multimodality imaging for treatment volume definition of intracranial ependymal tumors: An original article

Ferrat Dincoglan, Omer Sager*, Selcuk Demiral and Murat Beyzadeoglu

Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey

Abstract

Objective: Radiotherapy (RT) can be used for primary treatment, adjuvant therapy, or for salvage of recurrences of intracranial ependymal tumors. In recent years, there is a rising trend towards reducing the adverse effects of RT by incorporation of modernized techniques. Accurate and precise RT treatment volume is essential for optimization of treatment results. Herein, we evaluated irradiation target designation of intracranial ependymal tumors.

Materials and methods: In this study, irradiation target designation was assessed for intracranial ependymal tumors. RT target volume definition was evaluated with comparative analysis for patients receiving irradiation for intracranial ependymal tumors.

Results: Optimal target coverage and minimal exposure of normal tissues was prioritized in RT treatment planning. Ground truth target volume determination was done with meticulous assessment of physicians. As the primary result, it was found that the ground truth target volume was identical with target determination with Computed Tomography (CT)-Magnetic Resonance Imaging (MRI) fusion based planning.

Conclusion: Incorporation of MRI in target definition process should be suggested for improving accuracy and precision of target and treatment volume definition for successful radiotherapeutic management of intracranial ependymal tumors despite the need for further supporting evidence.

Introduction

Ependymomas refer to glial tumors arising from ependymal tissue of Central Nervous System (CNS). These tumors may be derived from the radial glial cells in subventricular zone. Ependymomas comprise approximately one fourth of primary tumors originating in spinal cord, and less than 10% of CNS tumors. There may be an increased incidence of intramedullary spinal cord ependymoma in cases of neurofibromatosis type 2. While the location is typically intracranial in children, adult ependymomas mostly have spinal location. Patient presentation and symptomatology depend on lesion localization. Fourth ventricle is a very common location for intracranial ependymomas, and extension into subarachnoid space may occur. Symptoms may include headache, nausea and vomiting, visual impairment, drowsiness, Babinski sign, constipation, and gait disturbances.

Surgical intervention is required for establishing the diagnosis of ependymoma. Imaging modalities may also be utilized. Computed Tomography (CT) typically shows a hyperdense lesion with homogeneous enhancement, and cysts and calcifications may be seen. Tumor at fourth ventricle having calcifications may suggest a diagnosis of ependymoma, however, histopathological verification is required. Magnetic Resonance Imaging (MRI) typically demonstrates a hypointense
lesion on T1 weighted sequences and hyperintensity on T2 weighted sequences and proton density images with frequently prominent contrast enhancement. Restricted diffusion may be observed on diffusion weighted MRI sequences. Extent of ependymomas into foramen Luschka is not uncommon. Also, the obstruction of supratentorial ventricular system or the fourth ventricle by the lesion may cause hydrocephalus with increased intracranial pressure.

Surgery may be used for management of intracranial ependymal tumors; however, other therapeutic modalities including Radiation Therapy (RT) and chemotherapy may be utilized [1-15]. RT may have a role as part of primary treatment, as adjuvant therapy, or for management of recurrences [3-15]. In recent years, there is a rising trend towards reducing the adverse effects of RT by incorporation of modernized techniques. Accurate and precise RT treatment volume is essential for optimization of treatment results. Herein, we evaluated RT target definition for intracranial ependymal tumors.

Materials and methods

In this study, irradiation target volume definition was assessed for 15 patients with intracranial ependymal tumors. Patient characteristics are summarized in Table 1.

A total of 15 patients were included in the study. Nine patients (60%) were male and 6 patients (40%) were female. Median age was 21 years. All patients had intracranial ependymal tumors with histopathological confirmation. RT target volume definition by incorporation of MRI or by CT–simulation images was evaluated for irradiation of intracranial ependymal tumors. Ground truth target volume was collaboratively defined. All patients were thoroughly assessed on an individual basis with consideration of lesion size, location, symptomatology, contemplated results regarding radiotherapeutic management. CT–simulator was used for treatment simulation at our tertiary cancer center. Images have been acquired, and afterwards transferred for delineation of target and surrounding critical structures. Target designation by CT only and with utilization of CT–MR fusion was assessed.

Results

Contemporary RT treatment planning systems at our tertiary referral institution were used. Optimal target coverage and minimal exposure of normal tissues was considered as priority. Ground truth target volume was determined after meticulous assessment of physicians. Target determination was assessed. An overlap of 100% has been detected between CT–MR fusion based target definition and ground truth target volume determination by the board certified radiation oncologists following meticulous assessment, colleague peer review, collaboration, and ultimate consensus. As the primary result, it was found that the ground truth target volume was identical with target determination with CT–MR fusion based imaging. Table 2 demonstrates treatment characteristics and comparative analysis of target determination with CT–MR fusion based imaging and ground truth target volume definition.

Discussion

In conclusion, precision and accuracy in target and treatment volume definition of intracranial ependymomas...
may be considered as an integral component of optimal radiotherapeutic management. In this regard, incorporation of MRI in target designation process should be suggested for improving accuracy and precision of target and treatment volume definition for successful radiotherapeutic management of intracranial ependymal tumors.

References

1. Maksoud YA, Hahn YS, Engelhard HH (2002) Intracranial ependymoma. Neurosurg Focus 13: e4. Link: https://bit.ly/3Jqfp6q
2. Massimino M, Buttarelli FR, Antonelli M, Gandola L, Modena P, et al. (2009) Intraoperative use, distribution, and reproduction in any medium, provided the original author and source are credited.
3. Vitanovics D, Bälint K, Hanzely Z, Banczerowski P, Afra D (2010) Ependymoma in adults: surgery, reoperation and radiotherapy for survival. Pathol Oncol Res 16: 93-99. Link: https://bit.ly/3AsB3Un
4. Pejavar S, Polley MY, Rosenberg-Wohl S, Chernupathi S, Prados MD, et al. (2012) Pediatric intracranial ependymoma: the roles of surgery, radiation and chemotherapy. J Neurooncol 106: 375-377. Link: https://bit.ly/3jijUlyA
5. Mansur DB (2013) Multidisciplinary management of pediatric intracranial ependymoma. CNS Oncol 2: 247-257. Link: https://bit.ly/36duZRM
6. Rudá R, Reifenberger G, Frappaz D, Pfister SM, Laprie A, et al. (2018) EANO guidelines for the diagnosis and treatment of ependymal tumors. Neuro Oncol 20: 445-456. Link: https://bit.ly/369CyZM
7. Toescu SM, Aquilina K (2019) Current and Emerging Methods of Management of Ependymoma. Curr Oncol Rep 21: 78. Link: https://bit.ly/3AtqBvS
8. Wee CW, Kim IH, Park CK, Lim DH, Nam DH, et al. (2020) Postoperative radiotherapy for WHO grade II-III intracranial ependymoma in adults: An intergroup collaborative study (KROG 18-06/KNOG 18-01). Radiother Oncol 150: 4-11. Link: https://bit.ly/3jBbMo
9. Merchant TE, Bendel AE, Sabin ND, Burger PC, Shaw DW, et al. (2019) Conformal Radiation Therapy for Pediatric Ependymoma, Chemotherapy for Incompletely Resected Ependymoma, and Observation for Completely Resected, Supratentorial Ependymoma. J Clin Oncol 37: 974-983. Link: https://bit.ly/36bXr6m
10. Ager BJ, Christensen MT, Burt LM, Poppe MM (2019) The value of high-dose radiotherapy in intracranial ependymoma. Pediatr Blood Cancer 66: e27697. Link: https://bit.ly/2TEEOw2
11. Shi S, Jin MC, Koenig J, Gibbs IC, Soltys SG, et al. (2019) Stereotactic Radiosurgery for Pediatric and Adult Intracranial and Spinal Ependymomas. Stereotact Funct Neurosurg 97: 189-194. Link: https://bit.ly/3qQvvP1
12. Ruangkanchanasetr R, Swangsilpa T, Puataweewong P, Dhanachai M, Hansasuta A, et al. (2019) Outcome of postoperative radiation therapy for pediatric intracranial ependymoma: a single-institution review. Childs Nerv Syst 35: 1313-1321. Link: https://bit.ly/3yqbfqi
13. Kano H, Su YH, Wu HM, Simonova G, Liscak R, et al. (2019) Stereotactic Radiosurgery for Intracranial Ependymomas: An International Multicenter Study. Neurosurgery 84: 227-234. Link: https://bit.ly/3AvKMjQ
14. Tsang DS, Burghen E, Klimo P, Boop FA, Ellison DW, et al. (2017) Outcomes After Reirradiation for Recurrent Pediatric Intracranial Ependymoma. Int J Radiat Oncol Biol Phys 100: 507-515. Link: https://bit.ly/3ynxNVE
15. Paulino AC (2002) Radiotherapeutic management of intracranial ependymoma. Pediatr Hematol Oncol 19: 295-308. Link: https://bit.ly/2SRSS4e
16. Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2020) Adaptive radiation therapy of breast cancer by repeated imaging during irradiation. World J Radiol 12: 68-75. Link: https://bit.ly/3qKeLZG
17. Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2019) Breathing adapted radiation therapy for leukemia relapse in the breast: A case report. World J Clin Oncol 10: 369-374. Link: https://bit.ly/3fLyLTn
18. Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2019) Utility of Molecular Imaging with 2-Deoxy-2-[Fluorine-18] Fluoro-DGlucose Positron Emission Tomography (18F-FDG PET) for Small Cell Lung Cancer (SCLC): A Radiation Oncology Perspective. Curr Radiopharm 12: 4-10. Link: https://bit.ly/3d1YuqA
19. Sager O, Dincoglan F, Uysal B, Demiral S, Gamsiz H, et al. (2018) Evaluation of adaptive radiotherapy (ART) by use of replanning the tumor bed boost with repeated computed tomography (CT) simulation after whole breast irradiation (WBI) for breast cancer patients having clinically evident seroma. Jpn J Radiol 36: 401-405. Link: https://bit.ly/3XxYuV6
20. Sager O, Beyzadeoglu M, Dincoglan F, Demiral S, Uysal B, et al. (2015) Adaptive splenic radiotherapy for symptomatic splenomegaly management in myeloproliferative disorders. Tumor 101: 84-90. Link: https://bit.ly/3TPpXsn
21. Demiral S, Dincoglan F, Sager O, Beyzadeoglu M (2021) Treatment volume definition for irradiation of primary lymphoma of the orbit: Utility of multimodality imaging. J Surg Surgical Res 7: 057-061. Link: https://bit.ly/3qKwnVv
22. Sager O, Dincoglan F, Demiral S, Gamsiz H, Uysal B, et al. (2019) Evaluation of the Impact of Magnetic Resonance Imaging (MRI) on Gross Tumor Volume (GTV) Definition for Radiation Treatment Planning (RTP) of Inoperable High Grade Gliomas (HGGs). Concepts in Magnetic Resonance Part A 2019, Article ID 4282754. Link: https://bit.ly/3FfLDRL
23. Sager O, Demiral S, Dincoglan F, Beyzadeoglu M (2021) Assessment of posterior fossa target definition by multimodality imaging for patients with medulloblastoma. J Surg Surgical Res 7: 037-041. Link: https://bit.ly/3qMQDzo
24. Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2021) Radiation Therapy (RT) target determination for irradiation of bone metastases with soft tissue component: Impact of multimodality imaging. J Surg Surgical Res 7: 042-046. Link: https://bit.ly/3j8VBVa
25. Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2021) Evaluation of Changes in Tumor Volume Following Upfront Chemotherapy for Locally Advanced Non Small Cell Lung Cancer (NSCLC). Glob J Cancer Ther 7: 031-034. Link: https://bit.ly/2TrZaS5

Copyright: © 2021 Dincoglan F, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.