Effect of initial pH value on the removal of reactive black dye from water by electrocoagulation (EC) method

Khalid S Hashim1,2, Ameer H Hussein3, Salah L Zubaidi4, Patryk Kot1, Layth Kraidi1, Rafid Alkhaddar1, Andy Shaw1, Reham Alwash2

1Department of Civil Engineering, Liverpool John Moores University, UK.
2Department of Environmental Engineering/ University of Babylon, Iraq.
3Al-Mussaib Technical Institute /Al-Furat Al-Awsat Technical University, Iraq.
4Department of Civil Engineering, College of Engineering, University of Wasit, Iraq.

Email: k.s.hashim@2013.ljmu.ac.uk

Abstract. This study investigates the influence of the initial pH on the removal of reactive black 5 dye (RB5) from water using electrocoagulation (EC) reactor supplied with aluminium electrodes. The influence of the initial pH has been investigated by commencing several sets of continuous flow experiments at five different initial pH values (4, 5, 6, 7, and 8) keeping the current density, inter-electrodes distance, and the concentration of RB5 constant at 2 mA/cm2, 4 mm, and 25 mg/L, respectively. The obtained results showed that the removal efficiency increased gradually as the initial pH increased from 4 to 6 to reach its maximum level (96%) at the neutral range of pH, then it decreased to 74% as the initial pH increased to 8. This change of the removal efficiency with the initial pH could be attributed to the predominant species of aluminium coagulants, where in alkaline and acidic conditions; the prevailing species have low adsorption capacity for pollutants. While, in the neutral range of pH, the predominant species have high adsorption capacity for pollutants.

Keywords: Reactive black dye; electrocoagulation; water.

1. Introduction
Textile industry is categorised as a major source for water pollution because it uses massive quantities of water, chemicals, and dyes during the production and treatment processes, which in turn generates huge volumes of polluted wastewater (Lotito \textit{et al.}, 2014). For example, it has been reported that the textile industry consumes 0.1-0.2 m3 of water to produce 1 kg of products, and uses 700000 tons of different dyes per year (De Jager \textit{et al.}, 2014; Sharma \textit{et al.}, 2016; Kraidi \textit{et al.}, 2019). Discharging this dyes containing wastewater into the water bodies threatens the human life, aquatic life, and the quality of water at large. For example, it produces carcinogenic agents due to the decomposition of azo dyes, it limits sun light penetration, and it decreases the concentration of the dissolved oxygen, that threatens the aquatic life (Gole and Gogate, 2014; Joshi and Mhatre, 2015; Santos and Boaventura, 2015; Hashim \textit{et al.}, 2018a). Therefore, a board rage of treatment methods were practised to treat the wastewater of textile industry, such as aerobic and anaerobic degradation, adsorption, and filtration (Mahmoud \textit{et al.}, 2012; Gole and Gogate, 2014; Kraidi \textit{et al.}, 2018; Zubaidi \textit{et al.}, 2018b). Unfortunately, most the conventional treatment methods are not efficient to remove azo dyes (Aşçı \textit{et al.}, 2015; Hayat \textit{et al.}, 2015; Zubaidi \textit{et al.}, 2018a). More worse, the produced water of some
treatment methods contains carcinogenic agents (Aravind et al., 2016). For example, the produced water from the biological reduction of azo dyes under anaerobic conditions contains aromatic amines, which categorised as carcinogens (Lourenço et al., 2015).

According to the relevant literature review, there is a serious need for efficient, affordable, and eco-friendly treatment method for the textile wastewater. Thus, a number of advanced treatment methods were recently practiced to treat the effluents of the textile industries, such as the nanofiltration (Ong et al., 2014), membrane bioreactor-ultrafiltration (De Jager et al., 2014), and electrocoagulation (Vidal et al., 2016; Hashim et al., 2018b; Hashim et al., 2018c; Hashim et al., 2017a; Hashim et al., 2017c; Hashim, 2017). Amongst these effective methods, electrocoagulation method (EC) received a big deal of interest during the last few decades due to its attractive advantages, such as it can treat different pollutants at the same time, it requires short treatment time, and it does not require chemical additives (Hashim et al., 2017b; Hashim et al., 2016a; Hashim et al., 2015a; Hashim et al., 2015b; Hashim et al., 2016b; Shaw et al., 2017). Additionally, the EC method produces small volumes of sludge in comparison with other treatment methods that greatly enhances its cost-effectiveness (Hashim et al., 2017a; Hashim et al., 2017c), because the produce sludge requires expensive treatment (Abdulredha et al., 2018; Abdulredha et al., 2017; Alattabi et al., 2017a; Alattabi et al., 2017b; Al-Jumeily et al., 2018).

In this context, the current study is devoted to explore the effect of a key operating parameter, the initial pH, on the performance of the EC units in terms of dye removal from water. In this study, RB5 was selected as the model dye because it is one of the widely used dyes in the textile industry, and its degradation generates toxic compounds (Chang et al., 2010). The molecular structure of RB5 is shown in Fig. 1.

![Molecular structure of RB-5 dye (Lucas and Peres, 2006).](image)

Figure 1. Molecular structure of RB-5 dye (Lucas and Peres, 2006).

2. Experimental work

2.1. Material and methods

The azo dye, RB5, and other chemicals were supplied by Sigma-Aldrich UK and used as supplied. Stock solution, 100 mg/l, was prepared by dissolving the required RB5 in deionised water. Samples with lower RB5 concentrations were diluted from this stock solution. The initial pH of the diluted samples was adjusted to the desire level, in the range of 4 to 10, by using 1 M HCl or 1 M NaOH solutions. While the conductivity of these samples was adjusted to 0.32 µS/cm using the required quantity of NaCl. Both water conductivity and pH values were measured using Hanna meter (Model: HI 98130).

2.2. EC unit

The electrolysis process has been carried out using a flow column EC unit. This unit consists of a plastic cylindrical container (25 cm in height and 10.5 cm in internal diameter) that is supplied with aluminium perforated discoid electrodes (10.4 cm in diameter and 0.1 cm in thickness), Fig. 2. These electrodes were stacked vertically within the cylindrical container with the plane of each electrode...
parallel and perpendicular to the direction of flow. Each electrode had the holes offset from the one above it to ensure that the water will flow in a convoluted path in order to increase mixing efficiency. These electrodes were held in the required position, inside the container, using PVC rods and spacers.

The EC unit was supplied with a peristaltic pump (Watson Marlow type, model: 504U) to circulate water inside the EC unit, and a rectifier (HQ Power; Model: PS 3010). It is noteworthy to mention that aluminium has been used as electrodes material due to its cost-effectiveness and low-oxidation potential (Hashim et al., 2017a; Hashim et al., 2017c).

2.3. Electrolysing process

The electrolysing process has been carried out by pumping the coloured water samples continuously, at a flow rate of 1000 mL/h, into the EC unit, and subjected to a constant current density of 2 mA/cm². The distance between electrodes and initial water temperature were kept constant, during the course of experiment, at 4mm and 20±1°C.

The removal of RB5 was measured by collecting 5 mL water samples at 5 min intervals during the course of experiment. The collected samples were filtered at 0.45 µm filter papers (Whatman filters); the residual RB5 concentration in the filtrate was measured using a spectrophotometer (Hach Lange DR 2800). RB5 removal efficiency (RE %) was determined as follows (Hashim et al., 2018c):

\[
RE\% = \frac{C_0 - C_t}{C_0} \times 100\%
\]

(1)

Where \(C_0 \) and \(C_t \) represent the initial and the measured concentrations of RB5, in mg/L, respectively.

3. Results and discussion

To investigate the influence of the change in the pH level on the removal of RB5 from water using the electrocoagulation technology, diluted water samples containing 25 mg/L of RB5 with different initial pHs (4 to 8) were electrolyzed for 60 min at flow rate of 1000 mL/h, current density of 2 mA/cm², distance between electrodes of 4 mm, and water conductivity of 0.32 mS/cm.

The obtained results, Fig. 3, showed that the removal of RB5 is not sensitive from the change of initial pH value within the slightly acidic and neutral environments. However, the removal of RB5 is very sensitive for high pH values. Where, it has been found that RB5 removal is inversely proportional to the level of pH (within the studied range of pH), where it has been noticed that found that the removal of RB5 decreased from about 99.7% to 98.6%, 94.8%, and 80.3 % as the initial pH increased from 4 to 5, 6, and 8, respectively.

This change in dye removal could be explained by the change in the amphoteric characteristics of aluminium hydroxide, where the predominant aluminium hydroxides in the neutral and slightly acidic environments is Al (OH)₃, which has high adsorption capacity. While, in alkaline environment, Al (OH)₄, which has low adsorption capacity, is predominant one (Emamjomeh and Sivakumar, 2009; Un et al., 2013). Therefore, it could be conclude from the results of the current work, that the initial

![Figure 2. The EC unit.](image-url)
pH of 5.0 is the best value to remove RB5 from water using aluminium-based EC unit. It is noteworthy to highlight that this conclusion is only applicable for the studied range of pH.

Figure 3. Influence of the initial pH on RB5 removal.

4. **Conclusions and recommendations**

The outcomes of the current investigation confirmed that the performance of EC technology, in terms of reactive black 5 dye from water, could be enhanced by providing a neutral pH environment. Additionally, it could be concluded that, for the studied type of EC units, there is no need to add chemicals to increase the pH of slightly acidic water as the aluminium-based EC units is not sensitive for the change in the pH value within the slightly acidic and neutral ranges. Finally, the authors recommend, according to the outcomes of the current study, to investigate the influence of low pH values (such as 3) on the removal of RB5 from water. Additionally, the influence of other parameters, such as the distance between electrodes, on RB5 should be investigated.

References

[1] Abdulredha, M., Al Khaddar, R., Jordan, D., Kot, P., Abdulridha, A. and Hashim, K. 2018. Estimating solid waste generation by hospitality industry during major festivals: A quantification model based on multiple regression. *Waste Manag.*, 77, 388-400.

[2] Abdulredha, M., Rafid, A., Jordan, D. and Hashim, K. 2017. The development of a waste management system in Kerbala during major pilgrimage events: determination of solid waste composition. *Procedia Engineering*, 196, 779-784.

[3] 2018. Sustainable and Environmental Friendly Ancient Reed Houses (Inspired by the past to motivate the future). *The 11th International Conference on the Developments in eSystems Engineering*. University of Cambridge, England, UK.

[4] Alattabi, A. W., Harris, C. B., Alkhaddar, R. M., Hashim, K. S., Ortoneda-Pedrola, M. and Phipps, D. 2017a. Treatment of Residential Complexes’ Wastewater using Environmentally Friendly Technology. *Procedia Engineering*, 196, 792-799.

[5] Alattabi, A. W., Harris, C. B., Alkhaddar, R. M., Hashim, K. S., Ortoneda-Pedrola, M. and Phipps, D. 2017b. Improving sludge settleability by introducing an innovative, two-stage settling sequencing batch reactor. *Journal of Water Process Engineering*, 20, 207-216.

[6] Aravind, P., Subramanyan, V., Ferro, S. and Gopalakrishnan, R. 2016. Eco-friendly and facile integrated biological-cum-photo assisted electrooxidation process for degradation of textile wastewater. *Water Res.*, 93, 230-41.

[7] Aşçı, Y., Demirtas, E. A., Iscen, C. F. and Anagun, A. S. 2015. A statistical experimental design to determine the azo dye decolorization and degradation by the heterogeneous fenton process. *Fresenius Environmental Bulletin*, 24, 3717-3726.
[8] Chang, S. H., Wang, K. S., Liang, H. H., Chen, H. Y., Li, H. C., Peng, T. H., Su, Y. C., and Chang, C. Y. 2010. Treatment of Reactive Black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process. J Hazard Mater, 175, 850-7.

[9] De Jager, D., Sheldon, M. S., and Edwards, W. 2014. Colour removal from textile wastewater using a pilot-scale dual-stage MBR and subsequent RO system. Separation and Purification Technology, 135, 135-144.

[10] Emamjomeh, M. M., and Sivakumar, M. 2009. Fluoride removal by a continuous flow electrocoagulation reactor. J Environ Manage, 90, 1204-12.

[11] Gole, V. L., and Gogate, P. R. 2014. Degradation of brilliant green dye using combined treatment strategies based on different irradiations. Separation and Purification Technology, 133, 212-220.

[12] Hashim, K. S. 2017. The innovative use of electrocoagulation-microwave techniques for the removal of pollutants from water. PhD thesis, Liverpool John Moores University, UK.

[13] 2018a. An Investigation into The Level of Heavy Metals Leaching from Canal-Dredged Sediment: A Case Study Metals Leaching from Dredged Sediment. 1st International Conference on Materials Engineering & Science. Istanbul Aydn University (IAU), Turkey.

[14] Hashim, K. S., Idowu, I. A., Jasim, N., Al Khaddar, R., Shaw, A., Phipps, D., Kot, P., Pedrola, M. O., Alattabi, A. W., and Abdulredha, M. 2018b. Removal of phosphate from River water using a new baffle plates electrochemical reactor. MethodsX, 5, 1413-1418.

[15] Hashim, K. S., Khaddar, R. A., Jasim, N., Shaw, A., Phipps, D., Kota, P., Pedrola, M. O., Alattabi, A. W., Abdulredha, M., and Alawsh, R. 2018c. Electrocoagulation as a green technology for phosphate removal from River water. Separation and Purification Technology, 210, 135-144.

[16] Hashim, K. S., Shaw, A., Al Khaddar, R., Ortoneda Pedrola, M., and Phipps, D. 2017a. Defluoridation of drinking water using a new flow column-electrocoagulation reactor (FCER) - Experimental, statistical, and economic approach. J Environ Manage, 197, 80-88.

[17] Hashim, K. S., Shaw, A., Al Khaddar, R., Pedrola, M. O., and Phipps, D. 2017b. Energy efficient electrocoagulation using a new flow column reactor to remove nitrate from drinking water - Experimental, statistical, and economic approach. J Environ Manage, 196, 224-233.

[18] Hashim, K. S., Shaw, A., Al Khaddar, R., Pedrola, M. O., and Phipps, D. 2017c. Iron removal, energy consumption and operating cost of electrocoagulation of drinking water using a new flow column reactor. Journal of Environmental Management, 189, 98-108.

[19] Hashim, K. S., Shaw, A., and Alkhaddar, R. 2016a. Enhancement of Dissolved Oxygen Concentration during the Electrocoagulation Process Using an Innovative Flow Column: Electrocoagulation Reactor. International Journal of Civil and Environmental Engineering, 3.

[20] Hashim, K. S., Shaw, A., Alkhaddar, R., and Montserrat, O. P., 2015a. An innovative use of flow columns in electrocoagulation reactor to enhance the water mixing process. The 12th International Post-Graduate Research Conference. Salford University.

[21] Hashim, K. S., Shaw, A., Alkhaddar, R., and Pedrola, M. O. 2015b. Controlling of Water Temperature during the Electrocoagulation Process Using an Innovative Flow Columns - Electrocoagulation Reactor. International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 9, 869-872.

[22] Hashim, K. S., Shaw, A., Alkhaddar, R., Pedrola, M. O., and Phipps, D., 2016b. Effect of the supporting electrolyte concentration on energy consumption and defluoridation of drinking water in the electrocoagulation (EC) method. The 2nd BUitD Doctoral Research Conference. The British University in Dubai.

[23] Hayat, H., Mahmood, Q., Pervez, A., Bhatti, Z. A., and Baig, S. A. 2015. Comparative decolorization of dyes in textile wastewater using biological and chemical treatment. Separation and Purification Technology, 154, 149-153.

[24] Joshi, P. A., and Mhatre, K. J. 2015. Microbial efficiency to degrade Carbol fuchsin and Malachite green dyes. Advances in Applied Science Research, 6, 85-88.
[25] Kraidi, L., Shah, R., Matipa, W.and Borthwick, F. 2018. Analyzing the critical risk factors in oil and gas pipelines projects regarding the perceptions of the stakeholders.

[26] Kraidi, L., Shah, R., Matipa, W.and Borthwick, F. 2019. Analyzing the critical risk factors associated with oil and gas pipeline projects in Iraq. *International Journal of Critical Infrastructure Protection*, 24, 14-22.

[27] Lotito, A. M., De Sanctis, M., Di Iaconi, C.and Bergna, G. 2014. Textile wastewater treatment: aerobic granular sludge vs activated sludge systems. *Water Res.*, 54, 337-46.

[28] Lourenço, N. D., Franca, R. D. G., Moreira, M. A., Gil, F. N., Viegas, C. A.and Pinheiro, H. M. 2015. Comparing aerobic granular sludge and flocculent sequencing batch reactor technologies for textile wastewater treatment. *Biochemical Engineering Journal*, 104, 57-63.

[29] Lucas, M. S.and Peres, J. A. 2006. Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. *Dyes and Pigments*, 71, 236-244.

[30] Mahmoud, D. K., Salleh, M. a. M., Karim, W. a. W. A., Idris, A.and Abidin, Z. Z. 2012. Batch adsorption of basic dye using acid treated kenaf fibre char: Equilibrium, kinetic and thermodynamic studies. *Chemical Engineering Journal*, 181-182, 449-457.

[31] Ong, Y. K., Li, F. Y., Sun, S.-P., Zhao, B.-W., Liang, C.-Z.and Chung, T.-S. 2014. Nanofiltration hollow fiber membranes for textile wastewater treatment: Lab-scale and pilot-scale studies. *Chemical Engineering Science*, 114, 51-57.

[32] Santos, C. and Boaventura, R. A. 2015. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent. *J Hazard Mater*, 291, 74-82.

[33] Sharma, S., Kaushal, J.and Mahajan, P. 2016. Adsorption of textile dyes by plant biomass-a review. *International Journal of Advanced Technology in Engineering and Science*, 4.

[34] Shaw, A., Hashim, K. S., Alkhaddar, R., Pedrola, M. O.and Phipps, D., 2017. Influence of electrodes spacing on internal temperature of electrocoagulation (EC) cells during the removal (Fe II) from drinking water. *The 3rd BUiD Annual Doctoral Research Conference*. The British University, Dubai.

[35] Un, U. T., Koparal, A. S.and Bakir Oguveren, U. 2013. Fluoride removal from water and wastewater with a bach cylindrical electrode using electrocoagulation. *Chemical Engineering Journal*, 223, 110-115.

[36] Vidal, J., Villegas, L., Peralta-Hernandez, J. M.and Salazar Gonzalez, R. 2016. Removal of Acid Black 194 dye from water by electrocoagulation with aluminum anode. *J Environ Sci Health A Tox Hazard Subst Environ Eng*, 51, 289-96.

[37] Zubaidi, S. L., Dooley, J., Alkhaddar, R. M., Abdellatif, M., Al-Bugharbee, H.and Ortega-Martorell, S. 2018a. A Novel approach for predicting monthly water demand by combining singular spectrum analysis with neural networks. *Journal of Hydrology*, 561, 136-145.

[38] Zubaidi, S. L., Gharghan, S. K., Dooley, J., Alkhaddar, R. M.and Abdellatif, M. 2018b. Short-Term Urban Water Demand Prediction Considering Weather Factors. *Water Resources Management*, 32, 4527-4542.

[39] Ewaid, S.H., Abed, S.A., 2017a. Water quality assessment of Al-Gharraf River, south of Iraq using multivariate statistical techniques. *J. Al-Nahrain Univ. Sci.*, 20 (2), 114-122.

[40] Ewaid, S.H., Abed, S.A., 2017b. Water quality index for Al-Gharraf river, southern Iraq. *Egypt. J Aquatic Res.*, 43 (2), 117–122. [http://dx.doi.org/10.1016/j. ejar.201703001](http://dx.doi.org/10.1016/j.ejar.201703001).

[41] Ewaid, S.H.; Abed, S.A.; Al-Ansari, N. Crop Water Requirements and Irrigation Schedules for Some Major Crops in Southern Iraq. *Water* 2019, 11, 756.

[42] Ewaid, S.H.; Abed, S.A.; Al-Ansari, N. Water Footprint of Wheat in Iraq. *Water* 2019, 11, 535.