Four-Step One Hybrid Block Methods for Solution of Fourth Derivative Ordinary Differential Equations

Raymond, Dominic1*, Skwame, Yusuf2 and Adiku, Lydia1

1Department of Mathematics and Statistics, Federal University Wukari, Nigeria. \\
2Department of Mathematical Science, Adamawa State University, Mubi, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Author RD designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors SY and AL managed the analyses of the study. Author AL managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JAMCS/2021/v36i330343

Editor(s):
(1) Dr. Dragoş - Pătru Covei, The Bucharest University of Economic Studies, Romania.

Reviewers:
(1) Imtiaz Ahmad, University of Swabi, Pakistan.
(2) Raft Abdelmajid Mohd Abdelrahim, Jouf University, Saudi Arabia

Complete Peer review History: http://www.sdiarticle4.com/review-history/63618

Received: 29 September 2020
Accepted: 01 December 2020
Published: 08 April 2021

Abstract

We consider developing a four-step one offgrid block hybrid method for the solution of fourth derivative Ordinary Differential Equations. Method of interpolation and collocation of power series approximate solution was used as the basis function to generate the continuous hybrid linear multistep method, which was then evaluated at non-interpolating points to give a continuous block method. The discrete block method was recovered when the continuous block was evaluated at all step points. The basic properties of the methods were investigated and said to be converge. The developed four-step method is applied to solve fourth derivative problems of ordinary differential equations from the numerical results obtained; it is observed that the developed method gives better approximation than the existing method compared with.

Keywords: Four-step; hybrid point; fourth derivative; power series; ODE’s; interpolation.

*Corresponding author: Email: lydiaadiku@yahoo.com;
AMS subject classification: 65L05, 65L06, 65L20.

1 Introduction

In this paper, a four-step one off grid point hybrid block method is considered to approximate ordinary differential equations of the form

\[y^{iv} = f(x, y, y', y'', y'''), \quad y(t_0) = y_0, \quad y'(t_0) = y'_0, \quad y''(t_0) = y''_0, \quad y'''(t_0) = y'''_0 \]

(1)

Various approaches can be used for the analytic solutions of fourth order ordinary differential equations. Researchers are interested in equation (1) because of its wide area of applications in various fields such as in modeling scientific and engineering, control theory, fluid dynamics, mechanical systems without dissipation, celestial mechanics and other related real life problems.

Solving higher order derivatives method by reducing them to a system of first-derivative approach involves more functions to evaluate which then leads to a computational burden as in [1,2]. Different method have been proposed for the solution of (1) ranging from predictor-corrector method to hybrid methods. Despite the success recorded by the predictor-corrector methods, its major setback is that the predictor are in reducing order of accuracy especially when the value of the step-length is high and moreover the result are at overlapping interval. However, many researchers have addressed these setbacks [3,4,5,6,8]. The direct methods of solving (1) as reported in Literatures is more efficient and gives high accuracy and speed than the method of reduction to first order ordinary differential equations [9,10,11,12, 13].

Scholars who recently adopted the hybrid method other than the direct method in approximation of (1) include among others [15,16,17].

In this paper, we developed a four-step one offgrid hybrid point block method for solution of initial value problems of fourth order ordinary differential equation, which is implemented in block. The method developed evaluates less function per step and circumventing the Dahlquist barrier’s by the introduction of a hybrid points.

The paper is organised as follows: In section 2, we discuss the methods and the materials for the development of the method. Section 3 considers analysis of the basis properties of the method, numerical experiments where the efficiency of the derived method is demonstrated on some numerical examples and discussion of results. Lastly, we concluded in section 4.

2 Derivation of the Method

This section describes the objective of which the derivations of the hybrid block method using the linear multistep Algorithm. The Algorithm shall be in the form

\[y(x) = \sum_{i=0}^{3} \alpha_i y_{n+i} + h^4 \left[\sum_{j=0}^{3} \beta_j f_{n+j} + \beta_k f_{n+k} \right], \quad k = \frac{1}{2} \]

(2)

\[\alpha_i(t), \beta_j(t), \beta_k(t) \] are polynomials, \(y_{n+j} = y(x_{n+j}), f_{n+j} = f(x_{n+j}, y_{n+j}) \) \(t = \frac{x-x_n}{h} \)

On the partition \([a,b]\), where \(\alpha_0 \) and \(\beta_0 \) are non zero.

Equation (2) is obtained by considering the approximate solution of the power series in form of
\[y(x) = \sum_{j=0}^{s+r-1} a_i \left(\frac{x-x_n}{h} \right)^j \]
\[r = 3 \text{ and } s = 3 \text{ are the numbers of interpolation and collocation points. The continuous approximation is then constructed by imposing two conditions which are} \]
\[y_{n+j} = y(x_{n+j}), \quad j = 0, 1, 2, 3 \]
\[y^{(4)}(x_{n+j}) = f_{n+j} \]
\[\text{Equation (4) result to } [r + s], \text{ which gives a non linear equation of the form} \]
\[AX = U \]
\[\text{Which will then be evaluated through a matrix inversion algorithm in which the values of } \alpha_i's \text{ and } \beta_j's \text{ are determined. By the substitutions of the values of } \alpha_i's \text{ and } \beta_j's \text{ obtained into equation (3) gives a continuous hybrid linear multistep method of the form} \]
\[y(x) = \sum_{i=0}^{3} \alpha_i(x) y_{n+i} + h^4 \left[\sum_{j=0}^{4} \beta_j f_{n+j} + \beta_k f_{n+k} \right] \]
\[\left[k = \frac{1}{2} \right] \]
\[\text{We then impose (4) on } y(x) \text{ in (3) and the coefficient of } y_{n+i}, i = 0, 1, 2, 3 \text{ and } f_{n+j}, j = 0, 1, 2, 3, 4, \frac{1}{2} \text{ give} \]
\[y_{n+i} = \sum_{i=0}^{3} \left[\alpha_i(0) y_{n+i} + h^4 \left[\beta_0 f_n + \beta_1 f_{n+1} + \beta_2 f_{n+2} + \beta_3 f_{n+3} + \beta_4 f_{n+4} + \beta \frac{1}{2} f_{n+\frac{1}{2}} \right] \right] \]
\[\text{Where } t = \frac{x-x_n+4}{h}, \quad \frac{dt}{dx} = \frac{1}{h} \]
\[\alpha_0 = 1 - \frac{11}{6} \left(-\frac{x_n+x}{h}\right)^2 + \left(-\frac{x_n+x}{h}\right)^3 + \frac{1}{6} + \frac{1}{2} \left(-\frac{x_n+x}{h}\right)^3 \]
\[\alpha_1 = \frac{3}{2} \left(-\frac{x_n+x}{h}\right)^2 + \frac{5}{2} \left(\frac{-x_n+x}{h}\right) + \frac{1}{2} \left(-\frac{x_n+x}{h}\right)^3 \]
\[\alpha_2 = \frac{1}{3} \left(-\frac{x_n+x}{h}\right)^2 + \frac{1}{6} \left(-\frac{x_n+x}{h}\right)^3 + \frac{1}{2} \left(-\frac{x_n+x}{h}\right)^3 + \frac{1}{6} \left(-\frac{x_n+x}{h}\right)^3 \]
\[\beta_0 = \frac{137}{20160} \left(-\frac{x_n+x}{h}\right)^3 + 3 + \frac{103}{3760} \left(-\frac{x_n+x}{h}\right)^2 + \frac{201}{2970} \left(-\frac{x_n+x}{h}\right)^2 + \frac{32}{123} \left(-\frac{x_n+x}{h}\right)^2 + \frac{1}{1440} \left(-\frac{x_n+x}{h}\right)^3 \]
\[+ \frac{1}{64} \left(-\frac{x_n+x}{h}\right)^6 - \frac{192}{252} \left(-\frac{x_n+x}{h}\right)^7 + \frac{1}{1920} \left(-\frac{x_n+x}{h}\right)^8 + \frac{1}{36288} \left(-\frac{x_n+x}{h}\right)^9 \]
\[\beta_1 = \frac{1}{2} \left(-\frac{x_n+x}{h}\right)^3 + \frac{92}{1323} \left(-\frac{x_n+x}{h}\right)^2 + \frac{1766}{19645} \left(-\frac{x_n+x}{h}\right)^3 + \frac{32}{65} \left(-\frac{x_n+x}{h}\right)^3 + \frac{8}{189} \left(-\frac{x_n+x}{h}\right)^6 \]
The first, second and third derivatives of (6) gives

\[
\frac{4}{315} (-x_n + x)^7 - \frac{4}{2205} (-x_n + x)^8 + \frac{2}{19845} (-x_n + x)^9
\]

\[
\beta_1 = \frac{283}{1680} (-x_n + x)^3 + \frac{8231}{30240} (-x_n + x)^2 h - \frac{4279}{45360} (-x_n + x) h - \frac{1}{30} \frac{(-x_n + x)^5}{h} + \frac{37}{1080} \frac{(-x_n + x)^6}{h^2}
\]

\[
\beta_2 = \frac{61}{5040} (-x_n + x)^7 + \frac{19}{10080} (-x_n + x)^8 - \frac{1}{9072} \frac{(-x_n + x)^9}{h^5}
\]

\[
\beta_3 = \frac{23}{5040} (-x_n + x)^7 - \frac{17}{20160} (-x_n + x)^8 + \frac{1}{18144} \frac{(-x_n + x)^9}{h^5}
\]

\[
\beta_4 = \frac{13}{3600} (-x_n + x)^7 - \frac{59}{10080} (-x_n + x)^2 h^2 + \frac{127}{45360} (-x_n + x)^3 h - \frac{1}{450} \frac{(-x_n + x)^5}{h} + \frac{1}{360} \frac{(-x_n + x)^6}{h^2}
\]

\[
\frac{1}{720} (-x_n + x)^7 + \frac{1}{3360} (-x_n + x)^8 - \frac{1}{45360} \frac{(-x_n + x)^9}{h^5}
\]

\[
\beta_4 = \frac{1}{2240} (-x_n + x)^7 + \frac{613}{846720} (-x_n + x)^2 h^2 - \frac{223}{635040} (-x_n + x)^3 h + \frac{1}{3360} \frac{(-x_n + x)^5}{h} + \frac{1}{254016} \frac{(-x_n + x)^9}{h^5}
\]

The first, second and third derivatives of (6) gives

\[
y'(x) = \frac{\sum_{i=0}^{n} \alpha_i^l(x) y_{n+i} + h^4 \sum_{j=0}^{4} \beta_{f n+j + \beta_{n+k}} f_{n+k}}{h} \]

(8)

\[
y''(x) = \frac{\sum_{i=0}^{n} \alpha_i^l(x) y_{n+i} + h^4 \sum_{j=0}^{4} \beta_{f n+j + \beta_{n+k}} f_{n+k}}{h^2} \]

(9)

\[
y'''(x) = \frac{\sum_{i=0}^{n} \alpha_i^l(x) y_{n+i} + h^4 \sum_{j=0}^{4} \beta_{f n+j + \beta_{n+k}} f_{n+k}}{h^3} \]

(10)

We use equation (7) at \(x = x_{n+1/2} \) to get

\[
y_{n+1/2} = \frac{5}{16} y_n + \frac{15}{16} y_{n+1} - \frac{5}{16} y_{n+2} + \frac{1}{16} y_{n+3} \]

\[
y_n + \frac{1}{184320} h^4 \left(190 f_n - 464 f_{n+1} + \frac{1}{2} + 5265 f_{n+2} + 2315 f_{n+3} - 121 f_{n+4} + 15 f_{n+4} \right)
\]

(11)

\[
y_{n+4} = -y_n + 4 y_{n+1} - 6 y_{n+2} + 4 y_{n+3} - \frac{1}{720} h^4 \left(f_n - 124 f_{n+1} - 474 f_{n+2} - 124 f_{n+3} + f_{n+4} \right)
\]

(12)

Evaluating (8), (9) and (10) at all points we obtain equations (13), (14) and (15) as shown in Tables 1, 2 and 3 respectively.
Table 1. Coefficients of α'_j’s and β'_j’s for equation (8) which was evaluated at all points gives

t	y_n	y_{n+1}	y_{n+2}	y_{n+3}	f_n	$f_{n+1/2}$	f_{n+1}	f_{n+2}	f_{n+3}	f_{n+4}		
t_n	$\frac{11}{6}$	3	$-\frac{3}{2}$	1	$-\frac{1}{3}$	137	16	$-\frac{283}{5}$	683	13	$-\frac{1}{2}$	2240
$t_n + \frac{1}{2}$	$\frac{23}{24}$	7	$\frac{1}{8}$	$-\frac{1}{4}$	10169	3041	569	66527	$-\frac{8707}{3}$	283	$-\frac{1}{5}$	5160960
t_{n+1}	$\frac{1}{3}$	$-\frac{1}{2}$	1	$-\frac{1}{6}$	167	$-\frac{44}{3}$	185	331	$-\frac{127}{7}$	89	$-\frac{1}{5}$	423360
t_{n+2}	$\frac{1}{6}$	$-\frac{1}{2}$	1	$-\frac{1}{3}$	157	424	$-\frac{47}{7}$	1447	83	$-\frac{5}{12}$	28224	
t_{n+3}	$\frac{1}{3}$	3	$-\frac{3}{2}$	11	43	$-\frac{44}{3}$	377	583	43	$-\frac{59}{12}$	14120	
t_{n+4}	$\frac{11}{6}$	7	$-\frac{19}{2}$	$\frac{13}{3}$	17	$-\frac{16}{3}$	703	12737	37613	401	60480	

(13)

Table 2. Coefficients of α''_j’s and β''_j’s for equation (9) which was evaluated at all points gives

t	y_n	y_{n+1}	y_{n+2}	y_{n+3}	f_n	$f_{n+1/2}$	f_{n+1}	f_{n+2}	f_{n+3}	f_{n+4}		
t_n	2	$-\frac{5}{2}$	4	$-\frac{1}{2}$	103	184	8231	6281	$-\frac{59}{2}$	613	$-\frac{1}{2}$	423360
t_{n+1}	$\frac{3}{2}$	$-\frac{3}{2}$	5	$-\frac{1}{2}$	919	701	7879	2699	$-\frac{23}{2}$	1097	$-\frac{1}{2}$	1693440
t_{n+2}	0	1	$-\frac{2}{3}$	1	11	60480	6615	359	$-\frac{23}{2}$	1097	$-\frac{1}{2}$	1693440
t_{n+3}	$-\frac{1}{2}$	4	$-\frac{5}{2}$	2	61	44	2483	19667	31	$-\frac{1577}{2}$	423360	
t_{n+4}	$-\frac{7}{2}$	$-\frac{8}{3}$	3	1891	184	371	41497	16199	617	$-\frac{14120}{2}$	60480	

(14)

Table 3. Coefficients of α'''_j’s and β'''_j’s for equation (10) which was evaluated at all points gives

t	y_n	y_{n+1}	y_{n+2}	y_{n+3}	f_n	$f_{n+1/2}$	f_{n+1}	f_{n+2}	f_{n+3}	f_{n+4}		
t_n	$-\frac{1}{2}$	3	$-\frac{3}{2}$	1	2801	3532	$-\frac{4279}{7}$	$-\frac{347}{7}$	127	$-\frac{223}{7}$	$-\frac{105840}{7}$	
t_{n+1}	$-\frac{1}{2}$	3	$-\frac{3}{2}$	1	$\frac{1931}{2}$	$-\frac{2809}{2}$	$-\frac{8371}{2}$	$-\frac{48947}{2}$	149	$-\frac{4049}{2}$	$-\frac{358880}{2}$	
t_{n+2}	$-\frac{1}{2}$	3	$-\frac{3}{2}$	1	73	3024	1004	$-\frac{1583}{3}$	$-\frac{209}{3}$	53	$-\frac{101}{3}$	$-\frac{105840}{3}$
t_{n+3}	$-\frac{1}{2}$	3	$-\frac{3}{2}$	1	391	15120	$-\frac{844}{3}$	2777	$-\frac{1961}{3}$	$-\frac{209}{3}$	281	$-\frac{105840}{3}$
t_{n+4}	$-\frac{1}{2}$	3	$-\frac{3}{2}$	1	1903	15120	$-\frac{3532}{3}$	6473	2297	$\frac{10879}{3}$	6541	$-\frac{21168}{3}$
3 Analysis of the Method

3.1 Order of the block

According to Fatunla (1991) and Lambert (1973) the truncation error associated with (2) is defined by

\[L[y(x); h] = \sum_{i=0}^{n-i} \left(\alpha_i \right)_{n+i} - h^4 \beta_0 y^{(4)}(x + jh) - h^4 \beta_1 y^{(4)}(x) - h^4 \beta_2 y^{(4)}(x + 2h) - h^4 \beta_3 y^{(4)}(x + 3h) \]

\[(x + 3h) - h \beta_4 y^{(4)}(x + 4h) - h \beta_5 y^{(4)}(x + \frac{1}{2}h) \]

(16)

Assumed that \(y(x) \) can be differentiated. Expanding (16) in Taylor’s series and comparing the coefficient of \(h \) gives the expression

\[L[y(x); h] = C_0 y(x) + C_1 y(x) + \ldots + C_p h^p y^{(p)}(x) + C_{p+1} h^{p+1} y^{(p+1)}(x) + C_{p+2} h^{p+2} y^{(p+2)}(x) + C_{p+3} h^{p+3} y^{(p+3)}(x) + \]

Where the constant coefficients are given below

\[C_0 = \sum_{j=0}^{k} \alpha_j, \quad C_1 = \sum_{j=1}^{k} \alpha_j \]

\[C_q = \sum_{j=0}^{k} j^q \alpha_j - q(q-1)q-2q-3 \sum_{j=0}^{q-3} j^q - \beta_j q^4 - \beta_{j+1} q^3 - \beta_{j+2} q^2 - \beta_{j+3} q - \beta_{j+4} \]

\[q = 2, 3, 4 \ldots \]

Definition 1: The linear operator and the associated continuous linear multistep method (5) are said to be of order \(p \) if \(C_0 = C_1 = \ldots = C_p = 0, C_{p+1} = 0, C_{p+2} = C_{p+3} = 0, \ldots, C_{p+4} \) and \(C_{p+4} \) is called the error constant and the local truncation error is given by

\[t_{n+k} = c_{p+4} h^{p+4} y^{(p+4)}(x_n) + a(h)^{p+5} \]

(17)

For our method

Comparing the coefficient of \(h \) gives \(C_0 = C_1 = C_2 = C_3 = \ldots = C_6 = 0 \) and

\[C_7 = \begin{bmatrix} 311 \quad 5 \quad 11 \quad -8 \end{bmatrix} \]

\[774144 \quad 24192 \quad 896 \quad 945 \]

Hence our method is of order three (3).

3.2 Consistency

Four-Step One Hybrid Block fourth derivative hybrid method is said to be consistent according to Aree and Omojola (2015) if all the following six conditions are satisfied
The order of the method must be greater than or equal to one i.e \(p \geq 1 \)

1. \(\sum_{j=0}^{k} \alpha_j = 0 \) and \(\alpha_j \)'s are the coefficients of the first characteristic polynomial \(\rho(r) \)
2. \(\rho(r) = \rho'(r) = 0 \) for \(r = 1 \)
3. \(\rho''(r) = 2\sigma_1 \) for \(r = 1 \)
4. \(\rho'''(r) = 3\sigma_1 \) for \(r = 1 \)
5. \(\rho^{(4)}(r) = 4\sigma_1 \) for \(r = 1 \)

3.3 Zero stability of our method

Four-Step One Hybrid Block fourth derivative hybrid method is said to be zero-stable if as \(h \to 0 \), the root \(z_i, i=1(1)k \) of the first characteristic polynomial \(\rho(z) = 0 \) that is \(\rho(z) = \det \left[\sum_{j=0}^{k} A^{(i)} z^{-i} \right] = 0 \) Satisfies \(|z_i| \leq 1 \)

and for those roots with \(|z_i| = 1 \), multiplicity must not exceed two.

Hence, our method is zero-stable.

3.4 Numerical example

Problem I We consider a special fourth order differential equation (Source: Adoghe & Omole 2019)

\[y^{(iv)} = -\sin x + \cos x, \quad y(0) = 0, \quad y'(0) = -1, \quad y''(0) = -1, \quad y'''(0) = 7 \]

Exact Solution: \(y(x) = -\sin x + \cos x \cdot x^3 \), \(h = \frac{1}{320} \)

x-values	Exact solution	Computed solution	Error in our method	Error in [17]
0.003125	-0.0031298472046876960	-0.0031298472046876960	0.0000e+00	5.8350e-18
0.00625	-0.00626924635577210114	-0.00626924635577210114	0.0000e+00	4.6708e-17
0.009375	-0.00941798368752841945	-0.00941798368752841944	1.0000e-20	5.2467e-17
0.0125	-0.0125758453946248273	-0.0125758453946248273	0.0000e+00	9.3430e-17
0.015625	-0.01574261735661109244	-0.01574261735661109244	0.0000e+00	9.9220e-17
0.01875	-0.01891808568943283999	-0.0189180856894328399	0.0000e+00	1.4019e-16
0.021875	-0.02210203619616251069	-0.02210203619616251070	1.0000e-20	1.4613e-16
0.025	-0.0252942546390974444	-0.0252942546390974444	1.0000e-20	1.8712e-16
0.028125	-0.0284945268856748983	-0.0284945268856748984	1.0000e-20	1.9324e-16
0.03125	-0.0317026379220647095	-0.03170263792206470951	1.0000e-20	5.8350e-18

Problem II We consider the fourth order ODE (Source: Akinfenwa et al. 2016)

\[y^{(iv)} = 4y'', \quad y(0) = 1, y'(0) = 3, y''(0) = 0, y'''(0) = 16 \]

Exact Solution: \(y(x) = 1 - x + \exp(2x) - \exp(-2x) \), \(h = \frac{1}{320} \)
Table 5. Comparison of the proposed method with Akinfenwa et al 2016

x-values	Exact solution	Computed solution	Error in our method	Error in [16]
0.003125	1.00937508138036727920	1.00937508138036727920	0.00e+00	1.00e-18
0.00625	1.01875065104675294860	1.01875065104675294860	0.00e+00	2.00e-18
0.009375	1.02812719730424913310	1.02812719730424913310	0.00e+00	5.20e-17
0.0125	1.03750520849609617210	1.03750520849609617210	1.00e-19	2.39e-16
0.015625	1.04688517302275858900	1.04688517302275858910	1.00e-19	5.52e-16
0.01875	1.0562675936100329750	1.0562675936100329750	0.00e+00	9.57e-16
0.021875	1.06565291608298078600	1.06565291608298078600	0.00e+00	1.21e-15
0.025	1.07504167187531003060	1.07504167187531003060	0.00e+00	1.21e-15
0.028125	1.08443433555816787740	1.08443433555816787740	0.00e+00	6.27e-16
0.03125	1.09383139610438364350	1.09383139610438364340	1.00e-19	5.54e-16

Problem III
Consider the initial value problem (source: Adeyeye & Omar 2018)

\[\dot{iv} = -y, \quad y(0) = 0, \quad y''(0) = -\frac{1.1}{72 - 50\pi}, \quad y'''(0) = \frac{1}{144 - 100\pi}, \quad y''''(0) = \frac{1.2}{144 - 100\pi} \]

Exact Solution: \(y(x) = \frac{1 - x - \cos x - 1.2\sin x}{144 - 100\pi} \) with \(h = \frac{1}{10} \)

Table 6. Comparison of the proposed method with Adeyeye & Omar 2018

x-values	Exact solution	Computed solution	Error in our method	Error in [7]
0.1	0.00004034461209373069	0.00004034461209373069	0.00e+00	6.51e-19
0.2	0.00008063166098895974	0.00008063166098895974	0.00e+00	1.30e-18
0.3	0.00012086093247161511	0.00012086093247161511	0.00e+00	4.77e-18
0.4	0.00016103221289185685	0.00016103221289185685	0.00e+00	1.73e-17
0.5	0.0002014528916616351	0.0002014528916616351	0.00e+00	4.34e-17
0.6	0.00024119994877941305	0.00024119994877941305	0.00e+00	9.54e-17
0.7	0.0002811959778695816	0.0002811959778695816	0.00e+00	1.81e-16
0.8	0.00032113317081669604	0.00032113317081669604	0.00e+00	3.16e-16
0.9	0.00036101131107113260	0.00036101131107113259	1.00e-20	5.19e-16
1.0	0.00040083019032944098	0.00040083019032944098	0.00e+00	8.05e-16

4 Conclusions
It is evident from the above tables that our proposed method has significant improvement over the existing methods. The four-step one hybrid point block method is proposed for direct solution of general fourth order ordinary differential equations where by it is self-starting when implemented. The developed method converges and is of Order three.

Competing Interests
Authors have declared that no competing interests exist.
References

[1] Kayode SJ, Obuarhua FO. Continuous y-function hybrid methods for direct solution of differential equations. Intern. J. of Differential Equations and Application. 2013;12:37-48.

[2] James A, Adesanya A, Joshua S. Continuous block method for the solution of second order initial value problems of ordinary differential equation. Int. J. Pure Appl. Math. 2013;83:405-416.

[3] Awoyemi DO. Algorithmic collocation methods for direct solution of special and general fourth order initial value problems in ordinary differential equations. Intern Journal of Computer Math. 2001;6: 271-218.

[4] Awoyemi DO, Kayode SJ. An optimal order continuous multistep algorithm for initial value of special second order differential equations. Journal of the Nigeria Association of Mathematical Physics. 2002;6:285-292.

[5] Awoyemi DO. A P-stable linear multistep method for solving general third order Ordinary Differential Equations. International Journal of Computer Mathematics. 2003;80(8):978-993.

[6] Awoyemi DO. Algorithm Collocation approach for direct solution of fourth order initial value problems of ordinary differential equations. Int. J. Comput Math. 2005;82(3):321-329. Available:https://doi.org/10.1080/00207160412331296634

[7] Adeyeye O, Omar Z. New self starting approach for solving special third order initial value problems. International Journal of Pure and Applied Mathematics. 2018;118(3):511-517.

[8] Adeyeye O, Kayode SJ. Two-step two-point hybrid method for general second order differential equations. Afr. J. Math. Comput. Sci. Res. 2013;6(10):191-196. Available:https://doi.org/10.5897/AJMCSR2013.0502

[9] Kayode SJ. An order six zero stable method for direct solution of fourth order ordinary differential equations. Am J. Appl Sci. 2008;5(11):1461-1466.

[10] Jator SN. Numerical integrators for fourth order initial and boundary value problems. Int J. Pure Appl. Math. 2008;47(4):567-576.

[11] Jator SN, Lee L. Implementing a seventh-order linear multistep method in a predictor-corrector mode or block mode, which is more efficient for general second order initial value problems. Springer Plus. 2014;3(1):1-8. Available:https://doi.org/10.1186/2193-1801-3-447.

[12] Waeleh N, Majid ZA, Ismail F, Sulieman M. Numerical solution of higher order ordinary differential equations by direct block code. Journal of Mathematics and Statistics. 2011;8(1):77-81.

[13] Adeyeye O, Omar Z. Implicit five-step Block Method with Generalised Equidistant points for Solving Fourth Order Linear and non-Linear Initial Value Problems. Ain Shams Engineering Journal. 2019;10:881-889.

[14] Adeyeye O, Omar Z. Solving fourth order linear initial and boundary value problems using an implicit block method. Proceedings of the third international conference on computing mathematics and statistics (iCMS2017). 2019. Available:https://doi.org/10.1007/978-981-13-7279-7_21

[15] Lee KP, Fudziah I. Block hybrid collocation method with application to fourth order differential equations. Hindawi Publishing Corporation Mathematical Problems in Engineering. 2014;2015Article ID 561489:6. Available:https://doi.org/10.1155/2015/561489
[16] Akinfenwa OA, Ogunseye HA, Okunuga SA. Block hybrid method for solution of fourth order ordinary differential equations. Nigerian Journal of Mathematics and Applications. 2016;25:146-150.

[17] Adoghe LO, Omole EO. A two-step hybrid block method for the numerical integration of higher order initial value problems of ordinary differential equations. An International Scientific Journal. 2019;118:236-250.

© 2021 Dominic et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
http://www.sdiarticle4.com/review-history/63618