Chinese FDA Approved Fungal Glycan-Based Drugs: An Overview of Structures, Mechanisms and Clinical Related Studies

Zijing Zhou, Zhangrun Han, Yangyang Zeng, Meng Zhang, Yidi Cui, Lingling Xu and Lijuan Zhang*
School of Medicine and Pharmacy, Ocean University of China, Qingdao, China

Abstract
Edible mushrooms have been used not only as food and nutraceuticals but also as important ingredients in traditional Chinese medicines for centuries. Pharmaceutical active components from different types of mushrooms have been extracted and studied by scientists all over the world during the past 50 years, and many biological functions, such as antitumor, immunomodulating, anti-oxidative, anti-inflammatory, and hypoglycemic activities, have been reported in peer reviewed English journals. Interestingly, the purified polysaccharides or glycans possess many reported functions of medicinal mushrooms, which make them potential drug candidates. However, glycans are a mixture of polysaccharides having variable numbers of monosaccharides, linkages, and molecular weight distributions as well as multiple biological functions that are hard to conceive as drugs by conventional standard in that a drug should have one structure and one function. On the other hand, multiple ingredients with multiple beneficial effects are essence of traditional Chinese medicines. Subsequently, glycans from different types of medicinal mushrooms are partially purified and trialed as oral and/or injectable drugs in China. Without serious safety concerns of mostly hot water extracted glycans from edible mushrooms and/or the cultured mycelium, eight of them are approved by Chinese Food and Drug Administration (SFDA) and used clinically in China since 1980s. This review article provides basic information of the 8 drugs including imagine of the medicinal mushrooms, starting materials for glycans extraction, type of drugs approved, specified glycan contents, drug number granted by SFDA, clinical indications, and published clinical studies.

Keywords: Fungal glycan base; Chinese FDA; Mushrooms; Polysaccharides

Introduction
Polysaccharides or glycans are located at intracellular, cell membrane, and extracellular spaces serving energy storage, structure, signal transduction, and system regulatory purposes in all living organisms. Among them, animal glycans have been extensively studied at genetic levels. Knocking out a series genes responsible for biosynthesis or modifications of glycans in different animal model systems reveals that animal glycans are indispensable for cell division [1], for animal development [2], and for maintenance of proper immunity and homeostasis in adult animals [3]. For example, endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking, during inflammatory responses [4]. Moreover, life-saving drug heparin, one type of glycans purified from animal tissues, remains to be an un-replaceable anticoagulant drug in modern medicine after 78 years of clinical use [2]. Furthermore, 20 different kinds of animal glycans-based drugs have preceded through clinical trials and are used clinically world-wide not only as anticoagulant but also used together with other conventional drugs for cancer treatment with an annual sale over $7 billion dollars [5]. These facts indicate glycan-based drugs are not different from other biological drugs either from views of modern molecular biology or from views of their clinical importance.

Like animal cells, fungi synthesize several different types of glycans located in intracellular, cell wall, and extracellular spaces. Moreover, fungi possess several unique glycans that are not made by animal cells, such as chitin, β-glucans, and heteroglucans. In addition, glycans-peptide, glycans-lipid, and glycans-protein complexes isolated from fungi also have potent biological activities. This review article provides basic information of eight fungal glycan-based drugs in China and also summarizes peer-reviewed literatures about structures and biological functions of the fungal glycans at cell- and animal levels along with clinical studies that have been conducted by scientists world-wide.

Eight Fungal Glycans-Based Drugs Approved By Chinese Food and Drug Administration (SFDA)

According to published reports, water-soluble glycans are the most active pharmaceutical components tested in over 300 kinds of glycans extracted from either plants or fungi [6]. Thus, all eight glycans-based drugs approved by SFDA are hot water extracted glycans either from edible mushrooms and/or from cultured mycelium. Table 1 summaries the basic information of the 8 drugs including imagine of the medicinal mushrooms, starting materials for glycans extraction, type of drugs approved, specified glycan contents, drug number granted by SFDA, clinical indications, and published clinical studies.

As shown in Table 1, glycan contents of the eight approved drugs range from 30% to 93%. There are no specifications about monosaccharide compositions, glycan structures, molecular weight, or biological activity for these approved drugs due to inherent structural diversity of glycans. Taking *Ganoderma lucidum* glycans as an example, 16 different types of glycans with different monosaccharide compositions, different glycan linkages, and different molecular weight have been purified and identified by applying additional purification schemes when hot water extracted glycans are used as starting materials (Table 2). Therefore, these drugs are not “pure” or a single type of glycans.
Table 1: Eight fungal glycan-based drugs.

Species	Source	Drug type	Glycan content	SFDA drug number	Clinical applications	Ref.
Ganoderma lucidum	Spores	Injection	Ganoderma lucidum glycans no less than 90%	H20003510	Improving endurance of cyclists, Dyslipidemia, Facial paralysis	[7]
		Tablet	Ganoderma Sinensis glycan no less than 83%	Z22022112	Mushroom poisoning, Leukopenia	[10]
		Injection	Lentinan no less than 85%	H20067183		[11]
Lentinus edodes	Fruiting body	Capsule	Lentinan	Z20080579	Artificial urticaria, Gastrointestinal cancers, Primary liver cancer, Hepatitis, Malignant pleural effusion, HIV-positive	[12]
		Tablet	Lentinan no less than 40%	Z20026215		[13-18]
		Injection	Lentinan no less than 85%	H20067183		[19]
Polyporus umbellatus	Fruiting body	Capsule	Polyporus glycan no less than 90%	Z10970134	Hepatitis B, Reduce the recurrence of bladder cancer	[20-33]
		Injection	Polyporus glycan no less than 90%	Z32021229		[33]
Polystictus Versicolor	Culture of mycelium	Capsule	Krestin (PSK) glycans no less than 35%	H31022501	Acute nonlymphocytic leukemia, Colorectal cancer, Gastric cancer, Lung cancer, Primary liver cancer, Hepatitis, Hyperlipidemia	[34]
		Dropping pills	Krestin (PSK) glycans no less than 38%	Z20090728		[35]
		Capsule	Pachymaran no less than 84%	H20003510	Chronic pulmonary edema, Insomnia, Alopecia, Schizophrenia	[52]
		Capsule	Maitake glycans no less than 40%	B20020023	Antitumor, Impaired Glucose Tolerance, Polycystic ovary syndrome	[56, 162]
Grifola frondosa	Culture of mycelium	Capsule	Maitake glycans no less than 40%	B20020023		[58]
		Capsule	Tremella glycan no less than 60%	Z22022048	Mycoplasma pneumonia, Chronic active hepatitis, Antiadibetics, Cancer patients with leukopenia	[60]
Tremella fuciformis Berk	Fruiting body	Capsule	Tremella glycan no less than 60%	Z22022048		[61]

Citation: Zhou Z, Han Z, Zeng Y, Zhang M, Cui Y, et al. (2014) Chinese FDA Approved Fungal Glycan-Based Drugs: An Overview of Structures, Mechanisms and Clinical Related Studies. Transl Med 4: 141. doi:10.4172/2161-1025.1000141
B - Glucans are glycans that contain only glucose as structural components and are linked with β - glycosidic bonds. β - glucans are the simplest and the most studied fungal glycans. The biologically active fungal β - glucans are those comprising β (1,3) linked-glucose with side-chains of glucose with β (1,6) linkage. As shown in Table 2, the six β - glucans purified from Ganoderma lucidum are either water soluble or insoluble with molecular weight ranged from 5.2 x 10³ to 1.0 x 10⁵ Da. Therefore, β - glucans are not pure glycans. β -glucans can bind to six identified receptors on cell surface of immune cells (Figure 1) [66-73]. The β - glucan and receptor interactions can activate multiple signaling transduction pathways directly or indirectly through macrophages, monocytes, dendritic cells, natural killer cells, B-cells, T-cells and neutrophils. β -Glucans also stimulate the release of cytokines, such as tumor necrosis factor (TNF-α) and several interleukins.

Activating the immune cells explain the immunomodulating and antitumor activities of β - glucans. However, not only fungi but also bacteria, plants, and algae synthesize biological active β - glucans. Moreover when present in animal blood circulation, tissues, or organs, most foreign glycans are recognized as sign of bacterium or fungus invasions through a series of receptors on immune cells including those receptors that bind to β - glucans. Most of glycans also have anti-inflammatory properties that could not be explained by the glycan/ receptor signal transduction mechanism. Moreover, anti-oxidative and hypoglycemic properties are also common to all biological active glycans. As shown in Table 1, the drug indications of the 8 fungal glycan-based drugs are very different, which suggests the unique glycan compositions, but not the β - glucans alone, might contribute to the observed pharmaceutical effects of the fungal glycan-based drugs. Being not pure might be a reasonable character for glycan-based drugs since glycans produced by nature are never pure even for the simplest β -glucans (see different characteristics of six β -glucans purified from Ganoderma lucidum listed in Table 2. We will briefly review the structure, function, clinical uses, and animal studies (summarized in Table 3) of the 8 fungal glycans and the glycan-based drugs in the next section.

Structural and Functional Studies of Fungal Glycans

Lentinan from Lentinus edodes

Lentinan is a name given to β - glucans purified from Lentinus edodes. The antitumor property of lentinan was first reported by Chihara et al in 1970 [74]. Sasaki and Takasuka demonstrated that the primary structure of lentinan has β (1-3)-α-glucan backbone with many (1-6)- β - glucose branches [75].

Lentinan-based drugs are available as capsules, tablets, and injections in China. The published clinical reports indicate that these drugs have been used for treating urticaria [12], gastrointestinal cancers [13-18], primary liver cancers [19], hepatitis [20, 21], malignant pleural effusion [22-27], and HIV [28].

In 1985, lentinan is approved as an adjuvant for stomach cancer therapy in Japan. The lentinan activates immune cells [76], promotes the T- and B-lymphocyte proliferation, and enhances the activities of NK cells. The lentinan also plays multiple roles in inducing α-interferon production and leukocyte infiltration into tumor tissues [77]. The biological activities of lentinan have been studied by using mouse-
Citation: Zhou Z, Han Z, Zeng Y, Zhang M, Cui Y, et al. (2014) Chinese FDA Approved Fungal Glycan-Based Drugs: An Overview of Structures, Mechanisms and Clinical Related Studies. Transl Med 4: 141. doi:10.4172/2161-1025.1000141

rat-, chicken-, and pig-based animal models [76, 78-88]. These animal studies confirm that lentinan stimulate the productions of different cytokines and have antitumor and immunomodulating properties.

Polyporus glycan

Polyporus glycan is extracted from the sclerotium of *Polyporus umbellatus*. The major component of polyporus glycan is a β-gluсan with a (1-3)-β-glucose backbone and (1-6)-β-glucose side chains with a molecular weight of approximately 1.6×10^5 Da [89].

Polyporus glycans have been commercially available as an immunomodulating drug since 1990. Based on published reports, the polyporus glycan-based capsules are effective in treating hepatitis B [29-33, 90,91] and the polyporus glycan-based injections reduce the recurrence of bladder cancer [33]. Polyporus glycan boosts the immune system and have anti-parasite properties [92, 93]. It is also used in treating leukemia and liver cancers [94,95]. Study has also shown that Polyporus glycans are effective in protecting liver from certain toxins [95]. Polyporus glycans are also used together with chemotherapy drugs to treat primary lung cancer, liver cancer, cervical cancer, nasopharyngeal carcinoma, esophageal cancer and leukemia.

Polysaccharide-K (PSK) or krestin

PSK or Krestin is a protein bound glycan isolated from cultured mycelium of *Polystictus Versicolor*. Glucose is the major monosaccharide found in PSK. PSK also contains arabinose, rhamnose, fucose, galactose, mannose, and xylose [96]. The glycans in PSK is highly branched. The molecular weight of PSK is around 1 × 10^5 Da and the protein component is covalently linked to the β-1,6 glucose side chain.

PSK-based drugs are available as capsules and dropping pills in China. The published clinical reports indicate that these drugs have been used for treating acute nonlymphocytic leukemia [34], colorectal cancers [35,36], gastric cancers [37-40], lung cancer [41], primary liver cancer [42-44], hepatitis[45-50], and hyperlipidemia [51].

PSK has increased the survival time of cancer patients in randomized, control studies, with stomach cancer (meta-analysis of 8,009 patients) [97], colorectal cancer (randomized, controlled study...
Table 3: Animal studies of biological effects of Fungal glycans.

Glycans	Models	Effects	Ref.	
Ganoderma lucidum	Mouse	Enhance phagocytosis and cytotoxicity of macrophages	[125]	
	Mouse	Enhance Lymphokine-activated killer cells	[125]	
	Mouse	Increase cytotopic T lymphocyte cytotoxicity and NK activity	[134-136]	
	Mouse	Stimulate spleen-cell proliferation and cytokine generation	[134, 137, 138]	
	Mouse	Reduce tumor weight	[134]	
	Mouse	Exert antitumor effect on solid tumor induced by Ehrlich’s ascites carcinoma cells	[128]	
Ganoderma sinensis	Mouse	Reduce Human lung carcinoma xenograft size	[140]	
Lentinan	Mouse	Induce tumor apoptosis and enhance immunological effect	[141]	
	Mouse	Enhance scavenging abilities on reactive oxygen species	[175]	
	Rat	Reduce ROS production and increase the activity of Manganese superoxide dismutase (Mn-SOD)	[142]	
	Mouse	Increase insulin levels and decrease blood glucose	[143, 144]	
	Rat	Decrease total cholesterol (TC)	[143, 144]	
Polyporus glycan	Mouse	Inhibit growth of Sarcoma	[78]	
	Mouse	Increase production of cytokine in immune cells	[79, 80]	
	Chicken	Enhance serum antibody titer and promote lymphocyte proliferation	[82]	
	Rat	Improve bacteridal ability of peritoneal and alveolar macrophages	[83]	
	Mouse	Enhance sensitivity of colon 26 tumor to cis-diaminedichloroplatinum (II) and decrease glutataione transferase expression	[84]	
	Pig	Induce high level of alveolar macrophage activation	[85]	
	Mouse	Induce TNF-α secretion of murine macrophages	[86]	
	Rat	Induce long-term potentiation in the rat dentate gyrus	[87]	
	Mouse	Induction of cytotoxic peritoneal exudate cells	[176]	
	Mouse	Stimulate the expression of cytokines	[88]	
Krestin	Mouse	Prevent the progression of renal injury and the subsequent renal fibrosis in Aristolochic acid nephropathy	[177]	
	Rat	Inhibit bladder carcinogenesis, which may be associated with upregulation of GSTPI and NQO1 in the bladder	[179]	
	Rat	Down-regulate AQP2, and down-regulate AQP2 by down-regulating V(2)	R	[180]
Pachymaran	Mouse	Enhance macrophage activities and PFC, SRFC, DTH, IL-2, IFN-γ, TNF-α, TCGF levels	[121,123]	
	Mouse	Activate macrophage and induce of IL-1, IL-6 and TNF-α secretion	[181]	
	Mouse	Lower plasma cholesterol level	[152]	
	Mouse	Activate natural killer and dendritic cells and enhance antitumor immunity	[147]	
	Mouse	Protective effect of pancreatic β-cells exerted by decreasing levels of oxidative stress and NO synthesis	[148]	
	Mouse	Induce systemic tumor-antigen specific T cell response, increase infiltration of activated T cells into tumor and decrease number of tumor-caused immunosuppressive cells	[149]	
	Rat	Significantly lower systolic blood pressure (SBP) in diabetic Sprague-Dawley rats	[150]	
	Rat	Inhibit LPS-induced upregulation of NF-κB activation and the production of IL-1β, TNF-α, iNOS, ICAM-1, and COX-2	[151]	
Maitake glycan	Mouse	Have radiation protection properties	[154]	
	Mouse	Increase plasma insulin level and the activities of hepatic hexokinase and glucose-6-phosphatase dehydrogenase, and decrease hepatic glucose-6-phosphatase level	[155]	
	Rat	Improve cognitive function via regulation of the CREB signaling pathway and cholinergic system in the hippocampus	[156, 157]	
Tremella glycan	Mouse	Increase cholinergic activity	[158]	
	Rat	Increase fecal neutral steroids, total bile acids excretion, and SCFA productions	[159]	

Citation: Zhou Z, Han Z, Zeng Y, Zhang M, Cui Y, et al. (2014) Chinese FDA Approved Fungal Glycan-Based Drugs: An Overview of Structures, Mechanisms and Clinical Related Studies. Transl Med 4: 141. doi:10.4172/2161-1025.1000141
of 448 patients) [98], but PSK has produced mixed results with liver cancer [99]. Rat-based animal studies confirmed the anti-metastasis properties of PSK [100-102].

Three mechanisms are proposed to explain the clinical effectiveness of PSK in suppressing cancer relapse [103]. First, PSK improves host immune-competence by inhibiting the production and also by neutralizing immunosuppressive substances that are increased in cancer. Second, PSK activates immune cells such as lymphocytes, either directly or by regulating the production of various cytokines. Third, PSK acts directly on cancer cells. In addition, the effects of PSK on the production of various cytokines and nitric oxide (NO) have also been reported [104,105].

Ganoderma Sinensis glycans

Ganoderma sinensis glycans are purified from the fruiting body of *Ganoderma Sinensis*. The major bioactive *Ganoderma sinensis* glycans are α/β -glucans, glycan-protein complex, and water-soluble heteroglucans with different combinations of glucose, mannose, galactose, xylose, fucose, as well as arabinose. The molecular weight of the glycans ranges from 10^3 to 10^6 Da [106].

Ganoderma sinensis glycan-based drugs are available as capsules. Published reports indicated the drug is used for neutralizing mushroom poisoning [10] and stimulate leukocytes production in leukopenia patients [11]. Further studies showed that *Ganoderma sinensis* glycans enhance the immune responses in patients with advanced-stage cancer [107,108]. *Ganoderma sinensis* glycans also have potent antioxidant activities [109-111]. Mouse-based animal studies indicate that *Ganoderma sinensis* glycans enhance the levels of a variety of cytokines [112].

Pachymaran

Pachymaran is a name giving to a heteroglucan isolated from *Poria Cocos*. Pachymaran consists of glucose, galactose, and mannose. It exhibits antitumor activities both *in vitro* and *in vivo* [113,114]. β-Glucan extracted from *Poria Cocos* is water-insoluble and has no antitumor activity, whereas its phosphorylated water soluble derivatives exhibit strong anti-S-180 tumor activities [115].

Pachymaran is used for making the glycan-based injection drugs in China is isolated from mycelium of *Poria Cocos*. It is used for treating chronic pulmonary edema [52], insomnia [53], alopecia [54], and schizophrenia [55]. It prevents tumor metastasis through its immunomodulatory activities [116,117]. Mouse- and rat-based animal studies showed that pachymaran has potent antioxidative and antitumor activities [118-123].

Ganoderma Lucidum glycans

Ganoderma Lucidum glycans are composed of different variety of glycans as shown in Table 2. *Ganoderma Lucidum* glycan-based drugs are purified form spores and available as injections. Published reports indicated the drug improves endurance of cyclists [7] and helps patients with dyslipidemia conditions [8]. Interestingly, when combined with glucocorticoid, the drug cures facial paralysis in patients [9].

Mouse and rat-based animal studies showed *Ganoderma Lucidum* glycans activate different immune cells and stimulate chemokine and cytokine production [108, 124-139]. *Ganoderma Lucidum* glycans also have antitumor [128,140,141], anti-oxidative [124,142], antidiabetic [143,144], and hypolipidemic [143,144] activities.

Maitake glycans

Grifola Frondosa is also called maitake. A bioactive β - glucan fraction termed D-fraction was isolated from both mycelia and fruiting body of *Grifola Frondosa* by Japanese mycologists in 1984. *Grifolanis* of maitake glycans is a glycan-protein complex, which is called Wu Rong D-fraction in China. Its glycans mainly consist of glucose along with xylose, fucose, galactose, and mannose. The ratio of protein to glycan in *Grifolanis* is 7:3. The average molecular weight of *Grifolanis* is greater than 1x10^6 Da. Only Wu Rong D-fraction have antitumor activities [145].

Grifola Frondosa glycans used for drug production is isolated from cultured mycelium. The glycan-based drugs are available as capsules. Published reports indicated the drug is used for cancer treatment [56,57], impaired glucose tolerance conditions [58], and for treating polycystic ovary syndrome [59]. *Grifola Frondosa* glycans have also been used for cosmetic and other biological purposes [146].

Mouse and rat-based animal studies showed *Grifola Frondosa* glycans activate different types of immune cells [147] and regulate chemokine and cytokine productions [147-151]. *Grifola Frondosa* glycans also have antitumor [147], anti-oxidative [148], hypocholesterol [152], and hypo-systolic blood pressure [150] activities.

Tremella glycans

Tremella glycans are isolated from fruiting body of *Tremella fuciformis*. The most representative glycans in *Tremella fuciformis* is acidic heteroglucan where α - mannan constitutes the backbone with β - (1,2) xylose, β - (1,2) glucuronic acid, and minor amount of fucose on the side chains. Other glycans include several neutral heteroglucans comprising of xylose, mannose, and galactose.

Tremella glycan-based drugs are available as capsules in China. The drug is used clinically in treating mycoplasma caused pneumonia [60], chronic active hepatitis [61], diabetic [62], leukopenia [63-65] conditions. The drug also promotes neural cell growth and improves memory [153].

Mouse-based animal studies showed tremella glycans have radiation protection properties [154]. Tremella glycans increase plasma insulin level and the activities of hepatic hexokinase and glucose-6-phosphatase dehydrogenase and decrease hepatic glucose-6-phosphatase level [155]. Interestingly, tremella glycans improve cognitive functions through multiple distinctive mechanisms in rats [156-159].

Future Perspectives

There are multiple issues needed to be addressed before fungal glycan-based drugs are accepted by governments and clinicians worldwide, such as how to comprehend the pharmacodynamics of fungal glycan-based drugs at molecular level, how to standardize quality, composition, purity of the highly dispersed glycan molecules, and how to perform reliable pharmacokinetic studies. Compared to conventional small molecule- and protein-based drugs, the advantages of glycan-based drugs are their broad spectrum of therapeutic properties, relatively low toxicity, less drug-resistant issues, and relatively low costs. The disadvantages of glycan-based drugs are the inherited heterogeneity of their structures and functions, lack of tools to do proper structure analyses, and difficulty in establishing structure and function relationships. Thus, developing reliable biological assays and novel structural characterization tools might be critical in understanding the information encoded in the fungal glycans and to perform reliable pharmacokinetic and pharmacodynamic studies.

Acknowledgement

This work was supported by Natural Science Foundation of China (Grant No. 91129708). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
References
1. Izumikawa T, Kanagawa N, Watamoto Y, Okada M, Saeki M, et al. (2010) Impairment of embryonic cell division and glycosaminoglycan biosynthesis in glucurononyltransferase-I-deficient mice. J Biol Chem 285: 12190-12196.
2. Zhang L (2010) Glycosaminoglycans in Development, Health and Disease. Academic Press, UK.
3. Lowe JB (2003) Glycerin-dependent leukocyte adhesion and recruitment in inflammation. Curr Opin Cell Biol 15: 531-538.
4. Wang L, Fuster M, Sriramarao P, Esko JD (2005) Endothelial heparan sulfate deficiency impairs L-selectin-and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol 6:902-910
5. China Blood Product Industry Report, 2012-2015. In:...
6. Hu DJ, Cheong KL, Zhao J, Li SP (2013) Chromatography in characterization of polysaccharides from medicinal plants and fungi. J Sep Sci 36: 1-19.
7. Rossi P, Buonocore D, Altobelli E, Brandalise F, Cesaroni V, et al. (2014) Improving Training Condition Assessment in Endurance Cyclists: Effects of Ganoderma lucidum and Ophiocordyceps sinensis Dietary Supplementation. Evid Based Complement Alternat Med 2014: 979613.
8. Hu M, Zeng W, Tomlinson B (2014) Evaluation of a crateagus-based multitherb formula for dyslipidemia: a randomized, double-blind, placebo-controlled clinical trial. Evid Based Complement Alternat Med 2014: 365742.
9. Song LX (2010) Clinical Effect of GLPS injection combined with glucocorticoid on treatment of chronic hepatitis B. Chinese Journal of Digestion:238-239
10. Mao HH (1988) Clinical Observation of G. sinensis polysaccharide in treatment of hepatitis B. Fujian Journal of Traditional Chinese Medicine:225-226
11. Zhou Z, Han Z, Zeng Y, Zhang M, Cui Y, et al. (2014) Chinese FDA Approved Fungal Glycan-Based Drugs: An Overview of Structures, Mechanisms and Clinical Related Studies. Transl Med 4: 141. doi:10.4172/2161-1025.1000141
57. Liu A, Zang LH, Sun QJ (2008) Clinical observation of effect on Grifola frondosa (Maitake mushroom) extract in the treatment of 47 cases of chronic hepatitis B. Antimicrob Agents Chemother 52:1213-1219.

58. Zhang YQ, Luo KL, Zhao EH, Li QF (1982) Changes in IgA and serum ceruloplasmin in chronic schizophrenia with treatment of Poria. Shanxi Journal of Traditional Chinese Medicine:35-36.

59. Chen JT, Tominaga K, Sato Y, Anzai H (2010) Maitake mushroom (Grifola frondosa) extract induces ovulation in patients with polycystic ovary syndrome: a phase III trial of a polysaccharide extract from Grifola frondosa (Maitake mushroom) in breast cancer patients: immunological effects. J Cancer Res Clin Oncol 135: 1215-1221.

60. Liu A, Zang LH, Sun QJ (2008) Clinical observation of effect on Grifola frondosa Amylose against tumor. Journal of Shandong Institute of Light Industry: Science and Technology 22:43-45.

61. Li QZ, Huang CJ, Jiao LH, Pan SJ (2006) Clinical studies of Tremella polysaccharide Enteric-coated Capsules for the treatment of chronic active hepatitis. Infectious Disease Information 19:201-202.

62. Kihl M, Kochi M, Usui S, Hirano K, Aizawa K, et al. (2001) Antidiabetic effect of an acidic polysaccharide (TAP) from Tremella aurantia and its degradation product (TAP-H). Biol Pharm Bull 24: 1400-1403.

63. Cheng GZ (1982) Clinical observation of Tremella Polysaccharide for the cancer patients with leukopenia(40 cases). Antibiotics:101-104.

64. Yang S, Zhou FM, Li M, Zhao WX (1983) Clinical observation of Tremella Polysaccharide Enteric-coated Capsules for the treatment of chronic active hepatitis. Infectious Disease Information 19:201-202.

65. Wang Y, Sun HH, Li XQ (2011) Clinical observation of Tremella Polysaccharide Enteric-coated Capsules in treatment of interferon-induced Leukopenia. Hebei Medicine:411.

66. Karita Y, Okamoto N, Fujimoto T, Inoue N (1991) Lysis of fresh human tumor cells by autologous peripheral blood lymphocytes and tumor-infiltrating lymphocytes activated by PSK. Jpn J Cancer Res 82:1044-1050.

67. Nio Y, Shirashi T, Tsubono M, Morimoto H (1991) In vitro immunomodulating effect of protein-bound polysaccharide, PSK on peripheral blood, regional nodes, and spleen lymphocytes in patients with gastric cancer. Cancer Immunol Immunother 32:335-341.

68. Vánky F, Wang P, Klein E (1992) The polysaccharide K (PSK) potentiates in vitro activation of the cytotoxic function in human blood lymphocytes by autologous tumor cells. Cancer Immunol Immunother 35: 193-198.

69. Ebina T, Kohya H (1988) Antitumor effect mechanism at a distant site in the double grafted tumor system of PSK, a protein-bound polysaccharide preparation. Jpn J Cancer Res 79: 957-964.

70. Tsuru S, Nomoto K (1983) Effects of PSK on specific tumor immunity to syngeneic tumor cells. J Clin Lab Immunol 10: 219-219.

71. Aigara I, Collado A, Garrido F (1997) Protein bound polysaccharide PSK abrogates more efficiently experimental metastases derived from H-2 negative than from H-2 positive fibroascroma tumor clones. J Exp Clin Cancer Res 16:373-380.

72. Baba N, Yamaguchi Y, Sato Y, Takayama T (1990) The enhancement of tumoricidal activities of macrophages by protein-bound polysaccharide in tumor bearing mice. Biotherapy 4:123-128.

73. Kato H, Kin R, Yamamura Y, Tanigawa M (1987) Tumor inhibitory effect of polymorphonuclear leukocytes (PMN) induced by PSK in the peritoneal cavity of tumor-bearing mice. J Kyoto Pref Univ Med 96:927-937.

74. Chihara G, Hamuro J, Maeda Y, Arai Y, Fukukata F (1970) Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinien, from Lentinus edodes (Berk.) Sing. (an edible mushroom). Cancer Res 30: 2776-2781.

75. Sall OH, Ohk T, Takasuka N, Sasaki T (1977) A⁺sup>13^CN. MR-Spectral study of a gel-forming, branching (13)-β-D-glucan, (lentinien) from Lentinus edodes, and its acid-degraded fractions. Structure, and dependence of conformation on the molecular weight. Carbohydr Res 58:293-305.

76. Hamuro J, Rolfsson hf, Wagner H (1980) Induction of cytotoxic peritoneal exudate cells by T-cell immune adjuvants of the beta(1 leads to 3) glucan-type lentinien and its analogues. Immunology 39: 551-559.

77. Yan J, Velticka V, Xia Y, Coxon A, Carroll MC, et al. (1999) Beta-glucan, a “specific” biologic response modifier that uses antibodies to target tumors for cytotoxic recognition by leukocyte complement receptor type 3 (CD11b/CD18). J Immunol 163: 3045-3052.

78. Chihara G, Hamuro J, Maeda Y, Arai Y, Fukukata F (1970) Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinien, from Lentinus edodes (Berk.) Sing. (an edible mushroom). Cancer Res 30: 2776-2781.

79. XuJie H, Na Z, SuYing X, ShuGang L (2008) Extraction of BaChu mushroom polysaccharides and preparation of a compound beverage. Carbohydr Polym 73:289-294.

80. Mull C, Wichers HJ, Savelkoul HF (2005) Anti-inflammatory and immunomodulating properties of fungal metabolites. Mediators Inflamm 2005: 63-80.

81. Suzuki M, Iwashiro M, Takatsuki F, Kuribayashi K (1994) Reconstitution of anti-tumor effects of lentinien in nude mice: roles of delayed-type hypersensitivity reaction triggered by CD4-positive T cell fraction. Jpn J Cancer Res 85:1171-1178.

82. Guo Z, Hu Y, Wang D, Ma X, Zhao X, et al. (2009) Sulfated modification can enhance the adjuvanticity of lentinien and improve the immune effect of ND vaccine. Vaccine 27: 660-665.

83. Markova N, Kussovski V, Radoucheva T, Dilova K, Georgieva N (2002) Effects of intraperitoneal and intranasal application of Lentinan on cellular response in rats. Int Immunopharmacol 2: 1641-1645.

84. Murata T, Hatayama I, Kaku K, Satoh K, Sato K, et al. (1996) Lentinien enhances sensitivity of mouse colon 26 tumor to cis-diamminedicloroplatinum (II) and decreases glutathione transferase expression. Jpn J Cancer Res 87: 1171-1178.

85. Drandarska I, Kussovski V, Nikolaeva S, Markova N (2005) Combined immunomodulating effects of BCG and Lentinien after intranasal application in guinea pigs. Int Immunopharmacol 5: 795-803.

86. Kerékgyártó C, Virág L, Tankó L, Chihara G, Fachet J (1996) Strain differences in the cytotoxic activity and TNF production of murine macrophages stimulated by lentinien. J Immunopharmacol 18: 347-353.

87. Edagawa Y, Smriga M, Nishiyama N, Saito H (2001) Systemic administration of protein-bound polysaccharide, PSK on peripheral blood, regional lymph nodes, and spleen lymphocytes in patients with gastric cancer. Cancer Immunol Immunother 50: 333-341.

88. Liu F, Ooi VE, Fung MC (1999) Analysis of immunomodulating cytokine mRNAs in the mouse induced by mushroom polysaccharides. Life Sci 64: 1005-1011.

89. Zong A, Cao H, Wang F (2012) Anticancer polysaccharides from natural sources: a review of recent research. Carbohydr Polym 90: 1395-1410.
90. Yan SC (1988) [Clinical and experimental research on Polyporus umbellatus polysaccharide in the treatment of chronic viral hepatitis]. Zhong Xi Yi Jie He Za Zhi 8: 141-143, 131.

91. Xiong LL (1993) [Therapeutic effect of combined therapy of Salvia miltiorrhiza and Polyporus umbellatus polysaccharide in the treatment of chronic hepatitis B]. Zhongguo Zhong Xi Yi Jie He Za Zhi 7:533-535.

92. Zhang YH, Liu YL, Yan SC (1991) [Effect of Polyporus umbellatus polysaccharide on function of macrophages in the peritoneal cavities of mice with liver lesions]. Zhong Xi Yi Jie He Za Zhi 11: 225-226, 198.

93. Maehara Y, Tsujitani S, Saeki H, Oki E, Yoshinaga K, et al. (2012) [Countermeasures of biological response modifiers as maintenance therapy for hepatocellular carcinoma]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 20: 234-237.

94. Wu QS, Zhang LY, Okuda H (1997) [Inhibitive effect of umbellatus polyporus polysaccharide on cachexic manifestation induced by toxohormone-L in rats]. Zhongguo Zhong Xi Yi Jie He Za Zhi 17: 232-233.

95. Lin YF, Wu GL (1988) [Protective effect of Polyporus umbellatus polysaccharide on toxic hepatitis in mice]. Zhongguo Yao Xue Bao 9: 345-348.

96. Wang HK, Ng TB, Liu WK, Ooi VE (1996) Polysaccharide-peptide complexes from the cultured mycelia of the mushroom Coriolus versicolor and their medium active mouse lymphocytes and macrophages. Int J Biochem Cell Biol 28:601-607

97. Oba K, Teramukai S, Kobayashi M, Matsui T, Kodera Y, et al. (2007) Efficacy of adjuvant immunotherapy with polysaccharide K for patients with curative resections of gastric cancer. Cancer Immunol Immunother 56: 905-911.

98. Mitomi T, Tsuchiya S, Iijima N, Aso K, Suzuki K, et al. (1992) Randomized, controlled study on surgural stress-indemotherapy with PSK in curatively resected colorectal cancer. The Cooperative Study Group of Surgical Adjuvant Immunotherapy for Cancer of Colon and Rectum (Kanagawa). Dis Colon Rectum 35: 123-130.

99. Suto T, Fukuda S, Moriya N, Watanabe Y, Sasaki D, et al. (1994) Clinical study of biological response modifiers as maintenance therapy for hepatocellular carcinoma. Cancer Chemother Pharmacol 33 Suppl 1: S145-146.

100. Tamagawa K, Horiiuch T, Wada T, Bannai K, Ando T (2012) Polysaccharide-K (PSK) may suppress surgical stress-induced metastasis in rat colon cancer. Langenbecks Arch Surg 397: 475-480.

101. Iino Y, Yokote M, Maemura M, Takeda H, Hiruguchi J, et al. (1997) A New Endocrine Therapy Strategy for Bone Metastasis of Breast Cancer: The Effect of Biological Response Modifiers and 22-Oxacorticin on Animal Models. Breast Cancer 4: 311-313.

102. Nakasahi T, Tajima T, Mitomi T, Fuji K, Kamijoh A (1996) [Countermeasures for hypofunction of gut associated lymphoid tissue during TPN in rats]. Nihon Shokakbyo Gakkai Zasshi 93: 806-812.

103. Maehara Y, Tsujitani S, Saeki H, Oki E, Yoshinaga K, et al. (2012) Biological mechanism and clinical effect of protein-bound polysaccharide K (KRESTIN®): review of development and future perspectives. Surg Today 42: 8-28.

104. Hirose K, Zachariae CO, Oppenheim JJ, Matsushima K (1990) Induction of cytokines in human peripheral blood mononuclear cells by Ganoderma lucidum polysaccharides peptide on injury of macrophages induced by reactive oxygen species. Acta Pharmacol Sin 23: 787-791.

105. Chen XJ, Xu J, Lin ZB (2002) Carboxymethylpachymaran impact on immune function in mice. Chi Pharma J:35-38.

106. Chen CX (2001) Antitumor activity and immune effector of Carboxymethylpachymaran. Edible fungi Journal:39-44.

107. Chen CX, Zhao DM, Zhang XJ, Lin ZB (2002) Anti-tumor experiments of Carboxymethylpachymaran. Fuj J Tradit Chi Med : 38-40.

108. You YH, Lin ZB (2002) Protective effects of Ganoderma lucidum polysaccharides peptide on injury of macrophages induced by reactive oxygen species. Acta Pharmacol Sin 23: 787-791.

109. Zhu XL, Chen AF, Lin ZB (2007) Ganoderma lucidum polysaccharides enhance the function of immune effector cells in immunosuppressed mice. J Ethnopharmacol 111: 219-226.

110. Zhang Q, Lin Z (1999) The antitumor activity of Ganoderma lucidum polysaccharides is related to tumor necrosis factor-a and interferon-?. Int J Med Mushrooms 1:1-10.

111. Cao LZ, Lin ZB (2002) Regulation on maturation and function of dendritic cells by Ganoderma lucidum polysaccharides. Immunol Lett 83: 163-169.

112. Joseph S, Sabaul B, George V, Antony KR, Janardhanan KK (2011) Antitumor and anti-inflammatory activities of polysaccharides isolated from Ganoderma lucidum. Acta Pharm 61: 335-342.

113. Harris PJ, Henry RJ, Blakney AB, Stone BA (1984) An improved procedure for the methylation analysis of oligosaccharides and polysaccharides. Carbohydr Res 127: 59-73.

114. Bao X, Liu C, Fang J, Li X (2001) Structural and immunological studies of a major polysaccharide from spores of Ganoderma lucidum (Fr.) Karst. Carbohydr Res 332: 67-74.

115. Ooi LS, Ooi VEC, Fung MC (2002) Production of immunomodulatory cytokines in the mouse by a polysaccharide from Ganoderma lucidum (Curt.: Fr.) P. Karst.(Aphyllophoromyceae). Int J Med Mushrooms 4 : 1-9.
133. Wang Y, Khoo K, Chen S, Lin C, et al. (2002) Studies on the immuno-Modulating and antitumor activities of Ganoderma lucidum (Reishi) polysaccharides: functional and proteomic analyses of a fucose-Containing glycoprotein fraction responsible for the activities. Bioorg Med Chem 10:1057-1062.

134. Gao Y, Gao H, Chan E, Tang W, Xu A, et al. (2005) Antitumor activity and underlying mechanisms of ganopoly, the refined polysaccharides extracted from Ganoderma lucidum, in mice. Immunol Invest 34: 171-198.

135. Bao X, Liu C, Fang J, Li X (2001) Structural and immunological studies of a major polysaccharide from spores of Ganoderma lucidum (Fr.) Karst. Carbohydr Res 332: 67-74.

136. Bao XF, Wang XS, Dong Q, Fang JN, Li XY (2002) Structural features of immunologically active polysaccharides from Ganoderma lucidum. Phytochemistry 59: 175-181.

137. Ooi LS, Liu F, Ooi VE, Ng TB, Fung MC (2002) Gene expression of immunomodulatory cytokines induced by Narcissus tazetta in the mouse. Biochem Cell Biol 80: 271-277.

138. Wang YY, Kcho KH, Chen ST, Lin CC, et al. (2002) Studies on the immuno-modulating and antitumor activities of Ganoderma lucidum (Reishi) polysaccharides: functional and proteomic analyses of a fucose-containing glycoprotein fraction responsible for the activities. Bioorg Med Chem 10:1057-1062.

139. Zhang GL, Wang YH, Ni W, Teng HL, Lin ZB (2002) Hepatoprotective role of Ganoderma lucidum polysaccharides against BCG-induced immune liver injury in mice. World J Gastroenterol 8: 728-733.

140. Cao QZ, Lin ZB (2004) Antitumor and anti-angiogenic activity of Ganoderma lucidum polysaccharides peptide. Acta Pharmacol Sin 25: 833-838.

141. Li WJ, Chen Y, Nie SP, Xie MY, He M, et al. (2011) Ganoderma atrum polysaccharide induces anti-tumor activity via the mitochondrial apoptotic pathway related to activation of host immune response. J Cell Biochem 112: 860-871.

142. Zhao HB, Lin SQ, Liu JH, Lin ZB (2004) Polysaccharide extract isolated from ganoderma lucidum protects rat cerebral cortical neurons from hypoxia-reoxygenation injury. J Pharmacol Sci 95: 294-298.

143. He CY, Li WD, Guo SX, Lin SQ, Lin ZB (2006) Effect of polysaccharides from Ganoderma lucidum on streptozotocin-induced diabetic nephropathy in mice. J Asian Nat Prod Res 8: 705-711.

144. Meng G, Zhu H, Yang S, Wu F, et al. (2011) Attenuating effects of Ganoderma lucidum polysaccharides on myocardial collagen cross-linking relates to advanced glycation end product and antioxidant enzymes in high-fat-diet and streptozotocin-induced diabetic rats. Carbohydr Polym 84:180-185.

145. Ohno N, Adachi Y, Suzuki I, Sato K, Oikawa S, et al. (1986) Characterization of the antitumor glucan obtained from liquid-cultured Grifola frondosa. Chem Pharm Bull (Tokyo) 34: 1709-1715.

146. Lee BC, Bae JT, Pyo HB, Choe TB, et al. (2003) Biological activities of the polysaccharides produced from submerged culture of the edible Basidiomycete Grifola frondosa. Enzyme Microb Tech 32:574-581.

147. Tsao YW, Kuan YC, Wang JL, Sheu F (2013) Characterization of a novel maitake (Grifola frondosa) protein that activates natural killer and dendritic cells and enhances antitumor immunity in mice. J Agric Food Chem 61: 9828-9838.

148. Lei H, Zhang M, Wang Q, Guo S, et al. (2013) MT-alpha-glucan from the fruit body of the maitake medicinal mushroom Grifola frondosa (higher Basidiomycetes) shows protective effects for hypoglycemic pancreatic beta-cells. Int J Med Mushrooms 15:373-381.

149. Masuda Y, Inoue H, Ohta H, Miyake S, et al. (2011) Oral administration of immunologically active polysaccharides from Ganoderma lucidum polysaccharide peptide. Acta Pharmacol Sin 25: 833-838.

150. Park H, Park KJ, Yeo IH, Shim I, et al. (2012) Tremella fuciformis enhances the neurite outgrowth of PC12 cells and restores trimethylenemethylin-induced impairment of memory in rats via activation of CREB transcription and cholinergic systems. Behav Brain Res 229:82-90.

151. Kim JH, Ha LC, Lee MS, Kang JI, Kim HS, et al. (2007) Effect of Tremella fuciformis on the neurite outgrowth of PC12 cells and the improvement of memory in rats. Biol Pharm Bull 30: 708-714.

152. Cheng HH, Hou WC, Lu ML (2002) Interactions of lipid metabolism and intestinal physiology with Tremella fuciformis Berk edible mushroom in rats fed a high-cholesterol diet with or without Nebaculin. J Agric Food Chem 50: 7436-7443.

153. Kaylor MJ Path to radiant health. Maitake D-fraction The Mushroom World's Gift for Today.

154. Nakata M, Tang W (2008) Japan-China Joint Medical Workshop on Drug Discoveries and Therapeutics 2008: The need of Asian pharmaceutical researchers’ cooperation. Drug Discov Ther 2: 262-263.

155. Liu A, Zhang LH, Sun QJ (2008) Clinical observation of effect on Grifola Frondosa Amylose against tumor. Shandong Institute of Light Industry: Science and Technology 22:43-45.

156. http://course.jnu.edu.cn/8088/wiki/index.php?doc-view=1084

157. Motohoro N (1981) Studies on fungal polysaccharides. XXVII. Structural examination of a water-soluble, antitumor polysaccharide of Ganoderma lucidum. Chem Pharm Bull 29:3611-3616.

158. Sone Y, Okuda R, Wada N, Kishida E, et al. (1985) Structures and antitumor activities of the polysaccharides isolated from fruiting body and the growing extracellular polysaccharide from submergedly cultured Ganoderma lucidum. Chemistry 49:2641-2653.

159. Chen J, Zhou J, Zhang L, Nakamura Y, et al. (1998) Chemical structure of the water-insoluble polysaccharide isolated from the fruiting body of Ganoderma lucidum. Polym J 30:836-842.

160. Li Y, Fang L, Zhang K (2007) Structure and bioactivities of a galactoside rich extracellular polysaccharide from submergedly cultured Ganoderma lucidum. Carbohydr Polym 68:323-328.

161. Ye L, Zhang L, Zhou K, Yang Y, Zhou S, et al. (2008) Purification, NMR study and immunostimulating property of a fucogalactan from the fruiting bodies of Ganoderma lucidum. Planta Med 74: 1730-1734.

162. Ye L, Zhang J, Ye X, Tang Q, Liu Y, et al. (2008) Structural elucidation of the polysaccharide moiety of a glycopeptide (GLPCW-II) from Ganoderma lucidum fruiting bodies. Carbohydr Res 343: 746-752.

163. Ye L, Zhang J, Yang Y, Zhou S, et al. (2009) Structural characterisation of a heteropolysaccharide by NMR spectra. Food Chem 112:962-966.

164. Liu W, Wang H, Pang X, Yao W, Gao X (2010) Characterization and antioxidant activity of two low-molecular-weight polysaccharides purified from the fruiting bodies of Ganoderma lucidum. Int J Biol Macromol 46: 451-457.

165. Ye L, Li J, Zhang J, Pan Y (2010) NMR characterization for polysaccharide moiety of a glycopeptide. Filotherapy 81: 93-96.

166. Huang SQ, Li JW, Li YQ, Wang Z (2011) Purification and structural characterization of a new water-soluble neutral polysaccharide GLP-F-1 from Ganoderma lucidum. Int J Biol Macromol 48: 165-169.

167. Dong Q, Wang Y, Shi L, Yao J, Li J, et al. (2012) A novel water-soluble β-D-glucan isolated from the spores of Ganoderma lucidum. Carbohydr Res 353: 100-105.
175. You YH, Lin ZB (2002) Protective effects of Ganoderma lucidum polysaccharides peptide on injury of macrophages induced by reactive oxygen species. Acta Pharmacol Sin 23: 787-791.

176. Hamuro J, Röllinghoff M, Wagner H (1980) Induction of cytotoxic peritoneal exudate cells by T-cell immune adjuvants of the beta(1 leads to 3) glucan-type lentinan and its analogues. Immunology 39: 551-559.

177. Li X, Xu W (2011) TLR4-mediated activation of macrophages by the polysaccharide fraction from Polyporus umbellatus (pers.) Fries. J Ethnopharmacol 135: 1-6.

178. Zhao YY, Zhang L, Mao JR, Cheng XH, Lin RC, et al. (2011) Ergosta-4,6,8(14),22-tetraen-3-one isolated from Polyporus umbellatus prevents early renal injury in aristolochic acid-induced nephropathy rats. J Pharm Pharmacol 63: 1581-1586.

179. Zhang G, Zeng X, Li C, Li J, Huang Y, et al. (2011) Inhibition of urinary bladder carcinogenesis by aqueous extract of sclerotia of Polyporus umbellatus fries and polyporus polysaccharide. Am J Chin Med 39: 135-144.

180. Zhang G, Zeng X, Han L, Wei JA, Huang H (2010) Diuretic activity and kidney medulla AQP1, AQP2, AQP3, V2R expression of the aqueous extract of sclerotia of Polyporus umbellatus FRIES in normal rats. J Ethnopharmacol 128: 433-437.

181. Yang BK, Gu YA, Jeong YT, Jeong H, Song CH (2007) Chemical characteristics and immuno-modulating activities of exo-biopolymers produced by Grifola frondosa during submerged fermentation process. Int J Biol Macromol 41: 227-233.