Effect of solvent extraction in antioxidant activity and RP-HPLC based study of phenolic acids and flavonoids and *Cayratia trifolia* (L.) Domin

Sudeshna Datta and Tapan Seal

Abstract
Cayratia trifolia (L.) Domin (Vitaceae) is perennial climber with wide array of ethnomedicinal uses. The present study was focussed to evaluate the *in vitro* antioxidant activity of the plant in different solvent extracts viz. 70% ethanol, methanol, chloroform and benzene, along with HPLC based identification and quantification of the phenolic acids and flavonoids. The results indicated that 70% ethanol extract was the most potent solvent for extraction of total phenolics which decreased with decreasing polarity, the phenolic content ranged between 42.200 ± 0.196 GAE/ g dry mass in 70% ethanol to 14.872 ± 0.370 GAE/ g dry mass in benzene. ABTS radical scavenging activity of 27.752 ± 0.26%/ g dry mass was observed in 70% ethanol. The HPLC analysis confirmed the presence rutin (6.077 ± 0.001 mg/ 100g dry mass), naringin (1.078 ± 0.005 mg/ 100g dry mass), syringic acid, ferulic acid and others. The present study validates the ethnomedicinal use of the plant and also indicates the need of further study designed for maximum utilization of the same in a more practical and commercial way.

Keywords: Cayratia trifolia, antioxidant, solvent extraction, phenolic acids, RP-HPLC

Introduction
The search of plants with medicinal potential is largely based on ethnobotanical information. Through the ethnobotanical surveys, many of the medicinal plants have been recorded; analysed and preserved for posterity. Indian plants have been proposed for their interesting antioxidant activities and other medicinal properties with no serious side effects. Traditional herbal medicine is still a major source of novel active biological compounds with versatile activities, including anti-inflammatory, anti-diabetic, anti-carcinogenic, anti-viral, anti-bacterial and cardio and gastro protective activities. Antioxidant based formulations are prepared for the prevention and treatment of various complex chronic age related diseases such as atherosclerosis, stroke, diabetes, Alzheimer’s disease and cancer that have gained importance in the past few decades (Devasagayam et al., 2004) [1]. *Cayratia trifolia* (L.) Domin (Vitaceae) is found throughout the hilly regions in India. This perennial climber also grows wildly in Jammu, Rajasthan, Assam, Tripura and West Bengal extending into peninsular India up to 600 m (Gupta and Sharma, 2007) [2]. There has been few ethnomedicinal reports of the plant to be used as diuretic and is applied as poultice on tumors and is useful in neuralgia and splenopathy, leucorrhrea (Gupta and Sharma, 2007; Gaur and Sharma, 2010) [2, 3]. Leaves roots and seeds are used as poultice on ulcers and boils (Gaur and Sharma, 2010) [3]. Extract of tuber along with infusion of its seeds is taken orally by diabetic patients to check sugar levels (Swarnkar and Katewa, 2008) [4]. The study reports the antioxidant activities of the aerial part extracts of the plant along with a HPLC based identification of phenolic compounds which can explain and justify their use in traditional medicine in the past as well as in the present.

Material and Methods

Plant Materials
C. trifolia were collected from different locations of Kolkata, India and were identified from Botanical Survey of India, Howrah. Plant material was shade dried, pulverized and kept in an airtight container for further antioxidant analysis.

Extraction of plant material
1 g dry sample was extracted separately with 20 ml of 70% ethanol, methanol, chloroform, benzene with continuous stirring for 18–24 h at ambient temperature, filtered with Whatman
Estimation of total phenolic content
Total phenolic content in the different solvent extracts was assessed by Folin-Ciocalteu procedure (Singleton and Rossi, 1976) [5], and was expressed as mg/g gallic acid equivalent (GAE)/ g dry mass.

Estimation of total flavonoid content
Total flavonoid content was estimated following method of Ordonez et al. (2006) [6] and expressed as mg/ g rutin equivalent (RE)/ g dry mass.

Ferric Reducing Antioxidant Power (FRAP) Assay
Total antioxidant capacity of plant extracts was determined in terms of Ferric Reducing Antioxidant Power (FRAP) using the method of Benzie and Strain (1996) [7] and expressed as μ mole trolox equivalent (TE) mg/ g dry mass.

Measurement of reducing power
the method of Oyaizu (1986) [8] and followed to determine the reducing power of the different extract and was calculated as ascorbic acid equivalent (AAE) in mg/ g of dry mass.

Free radical scavenging assay
Free radical scavenging assay was performed using DPPH (2,2-Diphenyl-1-picryl-hydrazyl) method (Blois, 1958) [9] and ABTS [2, 2′-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid)] method (Re et al. 1999) [10]. Free radical scavenging activity was represented as % scavenging activity / g dry mass.

Metal chelating ability
Metal chelating property of different extracts was examined following process of Lin et al. (2009) [11] with slight modifications and represented as % metal chelating activity/ g dry mass.

Anti-lipid peroxidation assay in linoleic acid system
The method of Amabye (2015) [12] was followed with slight modifications to determine the anti-lipid peroxidation ability of the different solvent extracts and was represented as % inhibition/ g dry mass.

RP-HPLC study for the estimation of Phenolic acids and Flavonoids
RP-HPLC analysis was performed with Dionex Ultimate 3000 liquid chromatogram having a diode array detector (DAD) and with Chromleon system manager as data processor. Separation of phenolics was achieved by a reversed-phase C18 column (5 micron particle size, 250 × 4.6 mm). Fourteen standard phenolic acids (gallic acid, protocatechuic acid, gentisic acid, chlorogenic acid, p-hydroxy benzoic acid, vanillic acid, caffeic acid, syringic acid, p-coumaric acid, ferulic acid, sinapic acid, salicylic acid and ellagic acid) and eight flavonoids (catechin, rutin, myricetin, quercetin, naringin, naringenin, apigenin and kaempferol) was prepared having concentration 1 mg/mL. The standard and working solutions were filtered through 0.45 μm PVDF-syringe filter and the mobile phase was degassed before the injection (20 μL) to the chromatograph.

Chromatographic analysis of phenolic acids and flavonoids
Chromatographic analysis was performed following method Seal et al. (2016) [13]. 20 μL of sample was injected into the HPLC column. The mobile phase contains Solvent A (methanol) and Solvent B (0.5% aq. acetic acid) and the column temperature was maintained at 25 °C. A gradient elution method was performed with a total run time of 105 min. Phenolic compounds were detected at three different wavelengths (272, 280 and 310 nm) using a photo diode array UV detector. Each phenolic compound was identified by its RT value and comparison with standards under the same conditions. The quantification of phenolic acids and flavonoids in the extract was carried out by the measurement of the integrated peak area.

Results and Discussion
Extraction yield, total phenolics and flavonoids content in C. trifolia
The extraction yield (Table 1) of C. trifolia ranged from 2.932 ± 0.109% in chloroform to 13.076 ± 0.104% in 70% ethanol. Results suggest that efficient extraction was achieved using hydro-alcohol. Hydro-alcohol has been variously reported to be more efficient for extraction of antioxidant over pure solvent system in wild edibles (Seal et al., 2013; Datta et al., 2018a) [14, 15]. The polarity of the solvent, nature of antioxidant compounds to be extracted, parts used for extraction is the important factors that affect extraction yield (Lopez et al., 2011) [16]. The extraction procedure, time and temperature of extraction are physical parameters that also influence extraction.

Table 1: Extractive capacities (% extractive yield), total phenolic content (mg GAE/ g dm) and flavonoid content (mg RE/ g dm) in C. trifolia in different solvent system

Parameters	Extractives of C. trifolia in different solvent system			
	70% ethanol	Methanol	Chloroform	Benzene
Extractive Value (% extractive yield)	13.076 ± 0.104a	7.281 ± 0.162b	6.469 ± 0.154b	2.932 ± 0.109b
Total phenolic content (mg GAE/ g dm)	42.200 ± 0.196a	33.590 ± 0.195b	24.084 ± 1.650b	14.872 ± 0.370b
Total flavonoid content (mg RE/ g dm)	16.324 ± 0.084a	13.724 ± 0.186b	11.663 ± 0.214b	7.427 ± 0.026b

GAE: Gallic acid equivalent; RE: Rutin equivalent. Each value in the table was obtained by calculating the average of three experiments (n=3) and data are presented as Mean ± SEM. Statistical analysis were carried out by Turkeys test at 95% confidence level and statistical significance were accepted at the p< 0.05 level. The superscript letter denotes the significance of various parameters.

The phenolic acid content ranged between 42.200 ± 0.196 mg GAE/ g dry mass to 14.872 ± 0.370 mg GAE/ g dry mass. Results indicate that hydro-ethanol extracts had the maximum phenolic content which diminished with polarity. Polar solvents such as aqueous methanol/ethanol are often better solubiliser of phenolic compounds as compared with absolute methanol/ethanol (Sultana et al., 2007; Seal et al., 2013) [14, 17]. Maximum flavonoid content was also observed in 70% ethanol solution (16.324 ± 0.084 mg RE/ g dry mass). The flavonoid content was also observed to decrease with polarity.
Similar results were observed in another medicinal sedge *C. compressus* (Datta et al., 2018a)\(^{15}\).

Reducing property and FRAP of *C. trifolia*

Reducing property and FRAP both the experiments were used to ascertain the reducing ability of Fe\(^{3+}\) to Fe\(^{2+}\) of the plant extracts, which is the reflection of the antioxidant potential of the sample. Fe\(^{3+}\) promote free radical formation by Fenton reaction and also facilitate lipid peroxidation. The results (Table 2) of both reducing property and FRAP of the solvent extracts can be ranked as 70% ethanol > Methanol > Chloroform > Benzene. The reducing property in 70% ethanol (38.489 ± 0.945 AAE) and methanol (33.792 ± 0.242 AAE) was observed to be comparable. Similarly FRAP results in both these extracts (1.290 ± 0.002 μ mole TE/ g dry mass in 70% ethanol and 1.134 ± 0.002 μ mole TE/ g dry mass in methanol) were also comparable. The reducing property therefore corresponds to the phenolic content of the extracts. Similar results were observed in other medicinal plants (Datta et al., 2018a; Datta et al., 2018b)\(^{15, 18}\).

Metal chelating property of *C. trifolia*

Metal ions are known to catalysis of free radical formation and lipid peroxidation that correlates with incidents of cancer and arthritis (Halliwell et al., 1995)\(^{19}\). The chelating ability of the extracts can be ranked as 70% ethanol > Methanol > Chloroform > Benzene as represented in Table 2. The maximum chelating ability in 70% ethanol (10.647 ± 0.295% / g dry mass) correlated to the maximum phenolic and flavonoid content in the extract.

Parameters	Reducing activity (mg AAE/ g dm)	FRAP (μ mole TE/ g dm)	Metal chelating activity (% inhibition/ g dm)
70% ethanol	38.489 ± 0.945 a	1.290 ± 0.002 a	10.647 ± 0.295 a
Methanol	33.792 ± 0.242 b	1.134 ± 0.002 b	8.780 ± 0.614 b
Chloroform	22.058 ± 0.201 c	0.620 ± 0.002 c	6.983 ± 0.189 c
Benzene	10.621 ± 0.237 d	0.403 ± 0.003 d	3.716 ± 0.117 d

AAE: Ascorbic acid equivalent; TE: Trolox equivalent. Each value in the table was obtained by calculating the average of three experiments (n=3) and data are presented as Mean ± SEM. Statistical analysis were carried out by Turkeys test at 95% confidence level and statistical significance were accepted at the p< 0.05 level. The superscript letter denotes the significance of various parameters.

Radical scavenging property of *C. trifolia*

Scavenging activity of DPPH and ABTS radicals of the different extracts are represented in Table 3. % scavenging activity of ABTS radical was generally observed to higher and ranged from 27.752 ± 3.261%/ g dry mass in 70% ethanol to 6.647 ± 0.528% / g dry mass in benzene. The results correlate to the phenolic acids and flavonoid content in these extracts.

Parameters	70% ethanol	Methanol	Chloroform	Benzene
DPPH	5.956 ± 0.328 a	5.714 ± 0.236 a	4.082 ± 0.612 c	3.054 ± 0.136 a
ABTS	27.752 ± 0.261 a	26.284 ± 0.502 b	13.766 ± 0.219 c	6.647 ± 0.528 a

Each value in the table was obtained by calculating the average of three experiments (n=3) and data are presented as Mean ± SEM. Statistical analysis were carried out by Turkeys test at 95% confidence level and statistical significance were accepted at the p< 0.05 level. The superscript letter denotes the significance of various parameters.

Lipid peroxidation of *C. trifolia*

Lipid peroxidation is one of the main factors of food rancidity. Several chemical antioxidants are such as BHA is used as stabilizers to food to increase shelf life. The severe side effects of these synthetic compounds are not unknown. The phenolic compounds are known to suppress lipid peroxidation by inactivating the free alkyl radicals and scavenging the metal ions (Mathew and Abraham, 2006)\(^{20}\). In addition, lipid peroxidation of cell membrane is associated with various medical conditions such as atherosclerosis, inflammation and liver injury (Singh et al., 2012)\(^{21}\). Use of plant based antioxidants has therefore gained demand. The results (Table 4) suggest that 70% ethanol (18.8982 ± 0.104%) and methanol extract (17.509 ± 0.122%) showed maximum inhibition and it correlated to the phenolic and flavonoid content in these extracts.

Parameters	70% ethanol	Methanol	Chloroform	Benzene
% inhibition of lipid peroxidation	18.8982 ± 0.104 a	17.509 ± 0.122 a	8.732 ± 0.117 a	3.716 ± 0.117 c

Each value in the table was obtained by calculating the average of three experiments (n=3) and data are presented as Mean ± SEM. Statistical analysis were carried out by Turkeys test at 95% confidence level and statistical significance were accepted at the p< 0.05 level. The superscript letter denotes the significance of various parameters.

Identification and quantification of different phenolic acids and flavonoids in 70% aq. ethanol extracts of *C. trifolia*

The HPLC chromatogram of the standard phenolic acids and flavonoids is depicted in figure 1 with absorbance at 260nm. Since maximum antioxidant activity was observed in 70% ethanol extract it was chosen for HPLC quantification of phenolic acids and flavonoids (figure 2). The plant contain maximum amount of rutin (Table 5), a flavonol with antidiabetic effect (Srinivasan et al., 2005)\(^{22}\) and anticancer...
activity (Lin et al., 2012) and can potentially be used as a therapeutic agent. This also justifies the ethnic use of the plant as an anti-diabetic medicine. Ferulic acid is a well-known anti-microbial agent. Presence of ferulic acid validates the ethnic use as a topical application on ulcers. Naringin possess anti-inflammatory and anti-cancerous activity (Chen et al. 2016). Presence of naringin (1.078 ± 0.005 mg/100 g dry mass) can contribute to its anti-inflammatory activity.

Table 5: Quantification of phenolic acids and flavonoids in 70% aq. ethanol extract of C. trifolia (mg/100 g dm) by HPLC

Phenolic acids and flavonoids	Amount mg/100g dry plant material	Phenolic acids and flavonoids	Amount mg/100g dry plant material	Phenolic acids and flavonoids	Amount mg/100g dry plant material
Gallic acid	ND	Caffeic acid	ND	Rutin	6.077 ± 0.001
Protocatechuic acid	ND	Syringic acid	0.322 ± 0.001	Ellagic acid	0.099 ± 0.003
Gentisic acid	ND	p-Coumaric acid	0.208 ± 0.001	Myricetin	ND
p-hydroxybenzoic acid	ND	Ferulic acid	0.261 ± 0.002	Quercetin	ND
Catechin	ND	Sinapic acid	ND	Naringenin	ND
Chlorogenic acid	ND	Salicylic acid	ND	Apigenin	0.469 ± 0.001
Vanillic acid	0.176 ± 0.002	Naringin	1.078 ± 0.005	Kaempferol	0.060 ± 0.001

ND: Not detected. Each value in the table was obtained by calculating the average of three experiments and data are presented as Mean ± SEM.

Fig 1: RP-HPLC based separation of standard phenolics and flavonoids

(1. Gallic acid, 2. Protocatechuic acid, 3. Gentisic acid, 4. p-Hydroxy benzoic acid, 5. Catechin, 6. Chlorogenic acid, 7. Vanillic acid, 8. Caffeic acid, 9. Syringic acid, 10. p-Coumaric acid, 11. Ferulic acid, 12. Sinapic acid, 13. Salicylic acid, 14. Naringin, 15. Rutin, 16. Ellagic acid, 17. Myricetin, 18. Quercetin, 19. Naringenin, 20. Apigenin, 21. Kaempferol)

Fig 2: RP-HPLC based separation of phenolics and flavonoids from 70% ethanol extract of aerial parts of C. trifolia

Conclusion
The above findings clearly indicate that C. trifolia can be used as a natural source of natural antioxidants. Further studies designed to exploit and maximize more practical and effective use of the plant is necessary.

Acknowledgements
The authors are grateful to the Director, Botanical Survey of India, Kolkata for all the facilities provided.

References
1. Devasagayam TPA, Tilak JC and Boloor KK. Free radicals and antioxidants in human health: Current Status and Future Prospect. J Assoc. Physicians India 2004;52:794-804.
2. Gupta AK, Sharma M. Review on Indian Medicinal Plants. ICMR, New Delhi, India 2007;5:879-82.
3. Gaur RD, Sharma J Plants Used in Traditional Healthcare of livestock by Gujar community of Sub Himalayan tracts, Uttrakhand, India. Indian J Nat. Prod. Resour 2010;2:243-248.
4. Swarnkar S, Katewa SS. Ethnobotanical observation on tuberous plants from tribal areas of Rajasthan (India). Ethnobot. Leaflets 2008;13:647-666.
5. Singleton VL, Rossi JA. Colorimetry of total phenolics with Phosphomolybdic-phosphotungstic acid reagents. Am. J Enol. Vitic 1965;16:144-158.
6. Ordonez AAL, Gomez JG, Vattuone MA, Isla MI. Antioxidant activities of Sechiumedule (Jacq.) Swart extracts. Food Chem 2006;97:452-458.
7. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’: the FRAP assay. Anal. Biochem 1996;239:70-76.
8. Oyaizu M. Studies on product on browning reaction prepared from glucose amine. Jpn. J Nutr. Diet 1986;44:307-315.
9. Blois MS. Antioxidant determination by the use of a stable free radical. Nature 1958;181:1199-1200.
10. Re R, Pellegrini N, Proteggente A, Masini M, Montegutti C, Riso R, Panico S, Giugliano F, Protecttini A, Grassi PM. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med 1999;26:1231-1237.
11. Lin SC, Chang CMJ, Deng TS. Enzymatic Hot Pressurized Fluids Extraction of Polyphenolics from Pinus Taiwanensis and Pinus Morrisonicola. J. Taiwan Inst. Chem. Eng 2009;40:136-142.
12. Amabye TG. Evaluation of Physicochemical, Phytochemical, Antioxidant and Antimicrobial Screening Parameters of Amaranthus spinosus leaves. Nat. Prod. Chem. Res 2015;4:199-203.
13. Seal T, Pillai B, Chaudhuri K. Identification and Quantification of Phenolic Acids by HPLC, in three wild edible plants Viz. Viburnum foetidum, Houttuynia cordata and Perilla ocimoides collected from North-Eastern Region in India. Int. J Curr. Pharm 2016;7(5):267-274.
14. Seal T, Pillai B, Chaudhuri K. Effect of solvent extraction system on the antioxidant activity of some selected wild leafy vegetables of Meghalaya state in India. Int. J Pharm. Sci. 2013;4(3):1046-1051.
15. Datta S, Seal T, Sinha BK, Bhattacharjee S. RP-HPLC based evidences of rich sources of phenolics and water-soluble vitamins in an annual sedge Cyperus compressus. Int. J Phytopharm 2018a;7(3):305-311.
16. López A, Rico M, Rivero A, de Tangil MS. The effects of solvents on the phenolic contents and antioxidant activity of Stypocaulon scoparium algae extracts. Food Chem 2011;125:1104-1109.
17. Sultana B, Anwar F, Przybylski R. Antioxidant activity of phenolic components present in barks of barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. trees. Food Chem 2007;104:1106-1114.
18. Datta S, Seal T, Sinha BK, Bhattacharjee S. Effect of solvent extraction system on the antioxidant activity and RP-HPLC based determination of phenolic and water soluble vitamins in an annual herb Mazus pumilus. Pharma Inno. J 2018b;7(6):09-15.
19. Halliwell B, Murcia HA, Chirco S, Aruoma OI. Free radicals and antioxidants in food an in vivo: what they do and how they work. Crit. Rev. Food Sci. Nutr 1995;35:7-20.
20. Mathew S, Abraham TE. In vitro antioxidant activity and scavenging effects of Cinnamomum verum leaf extracts assayed by different methodologies. Food Chem. Toxicol 2006;44:198-206.
21. Singh HP, Kaur S, Negi K, Kumar S, Saini V, Batish DR. Assesment of in-vitro antioxidant activity of essential oil of Eucalyptus citriodora (lemon-scented Eucalypt; Myrtaceae) and its major constituents. LWT Food Sci. Technol 2012;48:237-241.
22. Srinivasan K, Kaul CL, Ramarao P. Partial protective effect of rutin on multiple low dose streptozotocin induced diabetes in mice. Indian J Pharmacol 2005;37:327-328.
23. Lin JP, Yang JS, Lin JJ, Lai KC, Lu HF, Ma CY. Rutin inhibits human leukemia tumor growth in a murine xenograft model in vivo. Environ. Toxicol 2012;27(8):480-484.
24. Chen R, Qi QL, Wang MT, Li QY. Therapeutic potential of naringin: an overview. Pharm. Biol 2016;54(12):3203-3210.