Molecular and phylogenetic analysis of HIV-1 variants circulating among injecting drug users in Mashhad-Iran

HR Naderi1,4, M Tagliamonte2, ML Tornesello2, M Ciccozzi3, G Rezza3, R Farid4, FM Buonaguro2 and L Buonaguro*2

Address: 1Inst. of Infectious Diseases, Univ. of Mashhad –, Iran, 2Viral Oncogenesis and Immunotherapy & AIDS Refer. Center, Ist. Naz. Tumori “Fond. G. Pascale”, Naples –, Italy, 3Epidemiology Unit, Dept. Infectious Diseases, ISS, Rome –, Italy and 4Allergy and Immunology Dept, Univ. of Mashhad –, Iran

Email: HR Naderi - hr_naderi2@yahoo.com; M Tagliamonte - irccsvir@unina.it; ML Tornesello - irccsvir@unina.it; M Ciccozzi - ciccozzi@iss.it; G Rezza - g.rezza@iss.it; R Farid - rfaridh@yahoo.com; FM Buonaguro - irccsvir@unina.it; L Buonaguro* - irccsvir@unina.it

* Corresponding author

Abstract
Genetic and phylogenetic information on the HIV-1 epidemic in Middle-East Countries, and in particular in Iran, are extremely limited. By March 2004, the Iranian Ministry of Health officially reported a cumulative number of 6'532 HIV positive individuals and 214 AIDS cases in the Iranian HIV-1 epidemic. The intra-venous drug users (IDUs) represent the group at highest risk for HIV-1 infection in Iran, accounting for almost 63% of all HIV-infected population. In this regards, a molecular phylogenetic study has been performed on a sentinel cohort of HIV-1 seropositive IDUs enrolled at the end of 2005 at the University of Mashhad, the largest city North East of Tehran. The study has been performed on both gag and env subgenomic regions amplified by Polymerase Chain Reaction (PCR) from peripheral blood mononuclear cells (PBMCs) and characterized by direct DNA sequence analysis. The results reported here show that the HIV-1 subtype A is circulating in this IDUs sentinel cohort. Moreover, the single phylogenetic cluster as well as the intra-group low nucleotide divergence is indicative of a recent outbreak. Unexpectedly, the Iranian samples appear to be phylogenetically derived from African Sub-Saharan subtype A viruses, raising speculations on HIV-1 introduction into the IDUs epidemic in Mashhad. This sentinel study could represent the starting point for a wider molecular survey of the HIV-1 epidemics in Iran to evaluate in detail the distribution of genetic subtypes and possible natural drug-resistant variants, which are extremely helpful information to design diagnostic and therapeutic strategies.

Background
The first case of HIV/AIDS in Iran was reported in 1987 in a 6-year-old child with hemophilia and since then, the number of HIV infections in Iran has increased exponentially within the hemophiliacs group [1]. After the introduction in 1989 of the mandatory blood (and its derivatives) screening for HIV-1 positivity, the HIV-1 spread among hemophiliacs has dramatically dropped and the intra-venous drug users (IDUs) have progressively become the group at highest risk for HIV-1 infection (62.8% of all reported infections) [1]. In particular, the needle sharing among inmate IDUs represents a specific high risk behavior for HIV-1 transmission in Iran [2,3]. Furthermore, in the last years the HIV infection is increas-
ingly spread in the Iranian population through sexual route (7.3% of all reported cases), although a considerable number of infections (26.1%) are reported to be transmitted through unknown routes [4]. By March 2004, the Iranian Ministry of Health officially reported a cumulative number of 6,532 HIV positive individuals and 214 AIDS cases [5,6]. However, the latest report from UNAIDS estimates a number of HIV/AIDS cases in Iran which could be as much as four times higher than those officially registered [7].

Limited data are available on HIV-1 subtype distribution in the Middle East region where the B and C subtypes are prevalent, with the exception of Lebanon where the A subtype is predominant [8]. Molecular epidemiology studies are extremely important to know the HIV-1 subtype distribution in a specific population/region which may significantly influence the diagnostic and therapeutic strategies. In fact, a correlation between HIV-1 genetic subtypes and natural resistance to antiretroviral drugs, as well as efficiency of diagnostic serological and molecular tests, has been observed [9-12]. Moreover, the degree of cross-protection induced by vaccines, based on subtypes not predominant in the target population, is still a debated matter [13].

In this regards, a molecular phylogenetic study has been performed on a sentinel cohort of Iranian HIV-1 seropositive IDUs enrolled at the end of 2005 at the University of Mashhad, the largest city northeast of Tehran. Blood samples were obtained from 12 HIV-1 positive patients attending the Department of Infectious Diseases, Imam Reza General Hospital where the HIV-1 infection was diagnosed by immunological methods (ELISA, Western blot) and the CD4+ T-cell population counted. At the enrollment, all of them declared to live in Mashhad and to be IDUs, except one patient who reported a homosexual behavior. Some of them have spent few years in prison, representing an IDU specific high risk group within the Iranian HIV-1 epidemic [2,3]. The full designation of samples, according to WHO-proposed nomenclature, is MSH05.00.XE or MSH05.00.XG, where 05 stands for the year of study and E (or G) stands for env (or gag). For the sake of simplicity, however, in this paper the samples have been indicated only with the isolate’s number (e.g., 001) (Table 1).

DNA was extracted at the Imam Reza General Hospital from 5 × 10^6 peripheral blood mononuclear cells (PBMCs) by the QIamp DNA blood kit (Qiagen, Alameda, CA – USA), according to the manufacturer’s instructions. The quality of target DNA was verified by PCR amplification of p53 housekeeping cellular gene as routinely performed at the INT in Naples, prior to viral genes amplification [14,15].

The hypervariable C2-V5 region of the HIV-1 env gene (667 bp) and the fragment spanning the p24 and p7 region of the gag gene (460 bp) have been amplified from approximately 1 μg of purified DNA (corresponding to 1.5 × 10^5 cells) by nested PCR, as previously described [14,15]. The DNA nucleotide sequence analysis has been performed on uncloned PCR products to identify the prevalent viral quasispecies. Nucleotide sequences (appr. 300 nucleotides) were aligned using CLUSTAL W [16], with minor manual adjustments, and pairwise compared to HIV-1 reference standards of different subtypes available through the Los Alamos Database [17]. Sites with gaps in any of the sequences, as well as areas of uncertain alignment, were excluded from all sequence comparisons. Phylogenetic trees were constructed with the neighbor joining method [18] and the Tree View software application was used to draw dendrograms. Genetic distances were calculated with Kimura’s two-parameter method [19].

Table 1: Epidemiological and Clinical Characteristics of Mashhad samples.

Sample	Risk exposure	Status	CD4+ (cells/μl)	ARV	PCR gag	PCR env
MSH01	IDU	Alive	428	Yes	Pos	Neg
MSH02	IDU	Alive	444	No	Pos	Pos
MSH03	IDU	Alive	111	No	Pos	Pos
MSH04	IDU	Alive	191	No	Pos	Pos
MSH05	Homo	Dead	n.a.	No	Neg	Pos
MSH06	IDU	Alive	400	No	Pos	Pos
MSH07	IDU	Alive	450	Yes	Pos	Pos
MSH08	IDU	Alive	408	No	Pos	Pos
MSH09	IDU	Alive	446	No	Pos	Neg
MSH10	IDU	Dead	n.a.	No	Pos	Pos
MSH11	IDU	Alive	133	Yes	Pos	Neg
MSH12	IDU	Alive	129	No	Pos	Pos

n.a, not available;
homo, homosexual;
IDU, injecting drug user.
All Mashhad samples were positive for the highly conserved p24 gag subgenomic region, with the exception of the 005 sample; on the contrary, only 7 out of 12 samples (58.3%) were positive for the C2-V5 env subgenomic region. An alternative primer pair (ED5-ED12) in the first amplification round and less stringent annealing conditions (45°C vs 55°C) yielded the amplification of the env subgenomic region from 2 additional samples, from the 5 previously negative ones (Table 1). The negative amplification results in gag (MSH05) or env (MSH01, 09, 11) subgenomic regions could be explained by a significant number of nucleotide substitutions or deletions in the primers' target sequence, resulting in an inefficient primer-to-target annealing.

The HIV-1 samples identified in Mashhad were analyzed by phylogenetic analysis performed on both gag and env subgenomic regions (approx. 300 bp), which have been repeatedly shown to be informative for an accurate subtype classification [14,15]. All Mashhad HIV-1 samples phylogenetically cluster with reference sequences of A subtype in gag as well as env subgenomic regions, showing no close phylogenetic relations with reference sequences of neither A sub-subtypes (A2, A3, A4) nor A-based circulating recombinant forms (Fig. 1A and 1B). Considering that most of the CRFs show a discordant phylogenetic classification in the gag and env subgenomic regions [20], the consistent clustering in the A subtype observed in the present study suggests the absence of intra-genomic recombination events which, however, need to be confirmed by near full-length sequence analyses. The Mashhad samples group in a single cluster indicating a strong phylogenetic correlation and a recent introduction of the HIV-1 infection in this community with a limited genetic diversity.

Figure 1
Phylogenetic trees based on HIV-1 p24 gag (A) and C2-V3 env (B) regions. Nucleotide sequences of Mashhad isolates are compared with HIV-1 reference strains of subtypes A – J of Group M. Trees have been constructed by the neighbor-joining method on 300 unambiguously aligned positions; the reliability has been estimated from 1'000 bootstrap replicates and values above 65% are indicated. The Mashhad sequences are indicated in bold characters.
evolution of the circulating virus. This observation is further confirmed by the overall lower nucleotide divergence in env (10.8%, ± 2.39%) and gag (3.56%, ± 1.52%) sub-genomic regions of virus samples identified in the present cohort study. In particular, within the Mashhad cluster, a single variant pair (007 – 010) is observed in both gag and env phylogenetic trees. The genetic relationship between these two viral variants is further supported by the extremely limited nucleotide divergence (10.1% in env and 2.16% in gag), which strongly suggest a possible interpersonal direct transmission of the HIV-1 virus, although this is not confirmed by anamnestic data.

In order to identify the possible geographic origin of the founder virus of HIV-1 epidemic in Mashhad, a phylogenetic analysis was performed including a larger number of A-subtype reference sequences from Sub-Saharan African Countries along with sequences from Eastern European and Middle East Countries. Unexpectedly, the Mashhad cluster is closely related to the African Sub-Saharan viruses, with any phylogenetic correlation to the Eastern European and Middle East variants. In particular, the Ugandan UG037 isolate is strongly correlated to the founder of the epidemic (Fig. 2A and 2B). This is further supported by the 100% homology in the amino acid composition of the V3 Loop tip between the consensus of Mashhad and sub-Saharan sequences (GPGQAFYAT), while the East European consensus sequence shows an A-to-T amino acid substitution (GPGQFYAT) [21].

These findings, although obtained in a small number of samples and, for each sample, on limited sub-genomic

Figure 2
Phylogenetic trees based on HIV-1 p24 gag (A) and C2-V3 env (B) regions including sequences from Eastern European and Middle East Countries. Nucleotide sequences of Mashhad isolates are compared with HIV-1 reference strains of Group M subtypes including a larger number of A-subtype reference sequences from Sub-Saharan African Countries along with sequences from Eastern European and Middle East Countries. Trees have been constructed as in Fig. 1. The Mashhad sequences are indicated in bold characters. Sequence groups from different geographical regions are indicated.
regions, suggest that the HIV-1 epidemic currently affecting
the risk groups for HIV-1 infection in Iran (predomi-
nantly IDUs) is driven by viral variants of the A subtype.
Furthermore, the strong phylogenetic correlation between
the Mashhad and the sub-Saharan isolates (in particular Ugandan) supports the possibility that the founder virus
has been introduced from African Countries more than from
the neighboring Countries, which instead represent the
main source of A-subtype variants in the whole Euro-
pean Continent. A similar phylogenetic link to African
isolates of A-subtype variants identified in Tehran has
been recently reported also by Sarrami-Foroooshani et al.,
a although a geographic origin from Former Soviet Union
Countries has been proposed [22]. Considering the Afri-
can origin of all A-subtype HIV-1 epidemics, this hypoth-
esis could be supported by a HIV-1 speciation occurred at
a different rate in the distinct regional epidemics, which,
at this stage, is not supported by solid epidemiological
data. Therefore, assuming a similar HIV-1 speciation rate
in Iran and neighboring Countries, the phylogenetic pat-
ttern described in the present study, together with the
results reported by Sarrami-Foroooshani et al., would
strongly suggest an independent and more recent direct
introduction of African A subtype virus in Iran. This could
possibly be correlated to the relevant role played by this
Country, in particular Mashhad, in the Muslim religious
culture.

These results on a sentinel cohort need to be confirmed by
a nationwide molecular survey to verify the real distribution
of A subtype in the country as well as in other risk
groups (Homo- and heterosexuals groups). This molecular
epidemiological information will be extremely relevant
to guide the development and implementation of
diagnostic as well as preventive/therapeutic approaches in
Iran.

Acknowledgements

This study was supported by grants from the Ministero Italiano Università
e Ricerca (MIUR, 2004), the Ministero Italiano della Sanità (Ricerca Cor-
rente and Progetto Finalizzato AIDS 2004). The GeneBank accession num-
bers of the env sequences are DQ788541-DQ788549. The GeneBank
accession numbers of the gag sequences are DQ788550-DQ788560.

References
1. Gheiratmand R, Navipour R, Mohhebi MR, Hosseini KM, Motaghian-
Monazzam M, Mallik AK, Samarbaksh GR, Jamili P, de Lindvan Wijn-
gaarden JW, Ahmadzadeh N, Goroochi F: A country studyto review existing capacity building and management of the training of teachers on preventive education against HIV/ AIDS in the schools in Iran. Available from the official website of the
Deputy of Physical Education and Health, Ministry of Education of the
IR Iran 2003 [http://www.neshat.org/papers/files/paper_1251.mht].
2. Vazirian M, Nassirimanehes B, Zamani S, et al.: Needle and syringe
sharing practices of injecting drug users participating in an outreach
HIV prevention program in Tehran, Iran: a cross-

sectional study. Harm Reduct J 2005, 2:19.
3. Zamani S, Kihara M, Gouya MM, et al.: High Prevalence of HIV
Infection Associated With Incarceration Among Commu-
nity-based Injecting Drug Users in Tehran, Iran. J Acquir
Immune Defic Syndr 2006, 42:342-346.
4. Gheiratmand R, Navipour R, Mohhebi MR, Malik AK: Uncertainty
on the number of HIV/AIDS patients: our experience in Iran.
Sex Transm Infect 2005, 81:279-280.
5. Montazeri A: AIDS knowledge and attitudes in Iran: results
from a population-based survey in Tehran. Patient Educ Couns
2005, 57:199-203.
6. Ministry of Health: HIV/AIDS statistics; update March 2004.
Tehran, Iran: Ministry of Health, Center for Disease Manage-
ment. 2004.
7. UNAIDS: AIDS epidemics by country. [http://data.unaids.org/
pub/GlobalReport/2006/GR_CH02_en.pdf] (accessed 9 May
2004)
8. [http://hiv-web.lanl.gov/components/hiv-db/new_geography/geogra-
phy.com?region=world&form=all].
9. Apetrei C, Decamps D, Collin G, et al.: Human immunodefi-
ciency virus type I subtype F reverse transcriptase sequence
drug susceptibility. J Virol 1998, 72:3534-3538.
10. Decamps D, Apetrei C, Collin G, Damond F, Brun-Vezinet F: Nat-
urally occurring decreased susceptibility of HIV-1 subtype G
to protease inhibitors. AIDS 1998, 12:1109-1111.
11. Loussert-Ajaka I, Ly TD, Chaix ML, et al.: HIV-1/HIV-2 seronega-
tivity in HIV-1 subtype O infected patients. Lancet 1994,
343:1393-4.
12. Parekh B, Phillips S, Granade TC, Baggs J, Hu D Jr, Respess R: Impact
of HIV type I subtype variation on viral RNA quantitation.
AIDS Res Hum Retroviruses 1999, 15:133-42.
13. Gao F, Korber BT, Weaver E, Liao LX, Hahn BH, Haynes BF: Cen-
tralized immunogens as a vaccine strategy to overcome
HIV-1 diversity. Expert Rev Vaccines 2004, 3(4 Suppl):S161-8.
14. Buonaguro L, Del Gaudio E, Monaco M, et al.: Heteroduplex
mobility assay and phylogenetic analysis of V3 region
sequences of HIV-1 isolates from Gulu – Northern Uganda. J
Virol 1995, 69:7971-7981.
15. Buonaguro L, Tagliamonte M, Tornesello ML, et al.: Screening of
HIV-1 Isolates by Reverse Heteroduplex Mobility Assay and
Identification of Non-B Subtypes in Italy. J Acquir Immune Defic
Syndr 2004, 37:1295-1306.
16. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties
and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
17. [http://hiv-web.lanl.gov].
18. Saitou N, Nei M: The neighbor-joining method: a new method
for reconstructing phylogenetic trees. Mol Biol Evol 1987,
4:406-425.
19. Kimura M: A simple method for estimating evolutionary
rates of base substitution through comparative studies of
nucleotide sequence. J Mol Evol 1980, 16:111-120.
20. McCutchan F: Global epidemiology of HIV. J Med Virol 2006,
78:S7-S12.
21. Korber B, Maclnes K, Smith RF, Myers G: Mutational trends in
V3 loop protein sequences observed in different genetic lin-
eces of Human immunodeficiency virus type 1. J Virol 1994,
68:6730-6744.
22. Sarrami-Foroooshani R, Ranjan Das S, Sabahi F, et al.: Molecular
Analysis and Phylogenetic Characterization of HIV in Iran. J
Med Virol 2006, 78(7):853-863.