Mapping storm spatial profiles for flood impact assessments

Nadav Peleg a,⁎, Nikolina Ban b, Michael J. Gibson c, Albert S. Chen c, Athanasios Paschalis d, Paolo Burlando e, João P. Leitão f,⁎

⁎ Institute of Earth Surface Dynamics, University of Lausanne, 1015 Lausanne, Switzerland
b Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, 6020 Innsbruck, Austria
c The Centre for Water Systems, University of Exeter, EX4 4QP Exeter, United Kingdom
d Department of Civil and Environmental Engineering, Imperial College London, SW7 2AZ London, United Kingdom
e Institute of Environmental Engineering, ETH Zurich, 8093 Zurich, Switzerland
f Department of Urban Water Management, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dubendorf, Switzerland

A R T I C L E I N F O
Keywords:
Spatial quantile mapping
Extreme rainfall
Urban flood
High-resolution rainfall
Climate change

A B S T R A C T

Synthetic design storms are often used to plan new drainage systems or assess flood impacts on infrastructure. To simulate extreme rainfall events under climate change, design storms can be modified to match a different return frequency of extreme rainfall events as well as a modified temporal distribution of rainfall intensities. However, the same magnitude of change to the rainfall intensities is often applied in space. Several hydrological applications are limited by this. Climate change impacts on urban pluvial floods, for example, require the use of 2D design storms (rainfall fields) at sub-kilometer and sub-hourly scales. Recent kilometer scale climate models, also known as convection-permitting climate models (CPM), provide rainfall outputs at a high spatial resolution, although rainfall simulations are still restricted to a limited number of climate scenarios and time periods. We nevertheless explored the potential use of rainfall data obtained from these models for hydrological flood impact studies by introducing a method of spatial quantile mapping (SQM). To demonstrate the new methodology, we extracted high-resolution rainfall simulations from a CPM for four domains representing different urban areas in Switzerland. Extreme storms that are plausible under the present climate conditions were simulated with a 2D stochastic rainfall model. Based on the CPM-informed stochastically generated rainfall fields, we modified the design storms to fit the future climate scenario using three different methods: the SQM, a uniform quantile mapping, and a uniform adjustment based on a rainfall–temperature relationship. Throughout all storms, the temporal distribution of rainfall was the same. Using a flood model, we assessed the impact of different rainfall adjustment methods on urban flooding. Significant differences were found in the flood water depths and areas between the three methods. In general, the SQM method results in a higher flood impact than the storms that were modified otherwise. The results suggest that spatial storm profiles may need to be re-adjusted when assessing flood impacts.

1. Introduction

Floods are one of the main natural hazards contributing to massive economic losses and casualties (Paprotny et al., 2018). Especially vulnerable to damage from river overflows and flash floods are urban areas, which contain significant concentrations of infrastructure including residential, commercial, and industrial structures (Guerneralp et al., 2015). Flash floods are commonly triggered by short-duration but intense rainfall bursts (e.g. Fowler et al., 2021b); while river overflows are caused primarily by prolonged rainfall events (and other climate factors, such as snow-melt and evaporation, see Bloeschl et al., 2019). Global warming is predicted to cause both short- and long-duration extreme rainfall events to occur more frequently and with greater intensity in the future (Trenberth, 2011; Westra et al., 2014; Moustakis et al., 2021; Fowler et al., 2021a). Consequently, higher flood-frequencies, damages, and economic losses are predicted (Hirabayashi et al., 2013; Jongman et al., 2014; Mallakpour and Villarini, 2015).

Design storms are a commonly used tool for assessing flood impacts (Sun et al., 2011). They are often synthetic hyetographs that represent extreme rainfall events for a given return period and storm duration (Berk et al., 2017). Hyetographs can either have a simple bell-like shape with a length and maximum rainfall intensity matching observed extreme rainfall events, or they can be stochastically modeled...
to simulate pseudo extreme rainfall events (Onof et al., 2000; Chimene and Campos, 2020). On the basis of climate model data, their intensities can be adapted to reflect extreme rainfall events at future climates (e.g. Berggren et al., 2014; Peleg et al., 2015).

Design storms can be conceptualized at a point scale [i.e. in a one-dimensional (1D) spatial configuration], representing the areal rainfall over a catchment (Onof et al., 2000). In some circumstances, however, using design storms with a two-dimensional (2D) configuration is more appropriate (e.g. Paschalis et al., 2014; Niemi et al., 2016; Peleg et al., 2020); especially when extreme rainfall events are convective in nature, as they often exhibit a high degree of spatial heterogeneity (Belachsen et al., 2017). Additionally, fast-response catchments, such as those in mountainous or urban areas, are sensitive to rainfall heterogeneity (Peleg et al., 2017a; Moraga et al., 2021), making spatially distributed simulations necessary. Another advantage of using stochastic models to simulate design storms is that their output is an ensemble of multiple space–time realizations of the storm. Since stochastic space–time variability is a significant source of uncertainty in hydrological impacts (Fatichi et al., 2016; Peleg et al., 2017a; Moraga et al., 2021), it is beneficial to simulate it in order to, for example, evaluate the effects of climate change on changes in storm properties on flood statistics. A number of stochastic models are available to simulate 2D design storms. These include the STREAP model (Paschalis et al., 2013), the HiReSG (Peleg and Morin, 2014), and the STORM model (Singer et al., 2018), among others.

In many locations, we can estimate how the magnitude, duration and temporal structure of storm hyetographs will likely change under future climate conditions. Climate models can provide this type of information or it can be obtained from empirical relationships between extreme rainfall properties and climate variables, such as temperature increase (Ban et al., 2014; Wasko and Sharma, 2015; Li et al., 2018; Moustakis et al., 2020; Ali et al., 2021). It is possible to modify 1D design storms for climate change impact studies when this information is available (e.g. Olsson et al., 2013).

Global warming is also projected to change the spatial patterns of extreme rainfall. A number of studies linked changes in temperature to changes in storm extent and spatial heterogeneity of rainfall fields (Wasko et al., 2016; Lochbihler et al., 2017; Peleg et al., 2018; Chen et al., 2021). Climate-induced changes in the spatial properties of extreme rainfall have been found to influence catchment hydrological responses (Peleg et al., 2020, 2021). As a result, when using 2D design storms, it is crucial not only to modify the rainfall intensities and temporal structure but also the spatial structure of the storm.

Convection-permitting climate models (CPM) can simulate rainfall fields at high spatial and temporal resolution (i.e. on kilometers and sub-hour scales, Prein et al., 2015; Schär et al., 2020). As a result of their high computational demand and the time required to run them, CPM are not currently used to simulate a wide range of emissions scenarios for long periods of time (e.g. simulating the entire 21st century). Thus, CPM data tend to underrepresent low-frequency intense storms. Consequently, in the vast majority of cases, their data cannot be used directly for hydrological flood assessment studies. Their data can be used to understand how, for example, rainfall intensities are affected by air temperatures (Lenderink et al., 2021), allowing design storms to be adjusted accordingly. Based on their ability to explicitly simulate deep convection, these models have proven to reproduce the spatial structure of rainfall adequately at the kilometer-scale for numerous areas (Ban et al., 2014, 2021; Leutwyler et al., 2017), including over extreme rainfall events and climate model data, their intensities can be adapted to reflect extreme rainfall events at future climates (e.g. Berggren et al., 2014; Peleg et al., 2015).

Fig. 1. An illustration of the steps taken in the study. The spatio-temporal characteristics of an extreme rainfall event are derived from weather radar and parameterized in a stochastic rainfall generator (1). On the basis of this parameterization, a design storm that represents an extreme event for the present climate is simulated (2). With a convection-permitting model (CPM), the changes to extreme rainfall intensities, temperatures during extreme rainfall events, and the spatial structure of extreme rainfall between present and future periods are analyzed (3). The design storm is modified and simulated for future climate conditions using the spatial quantile mapping (SQM, 4) method, the rainfall–temperature relationship method (CC, 5), and the uniform quantile mapping (UQM, 6) method. The design storms (present and future) are used as inputs to a 2D flood inundation model (7). The relevant section of the paper is indicated in brackets and the colors indicate rainfall intensity from low (brownish) to high (dark blue).
complex terrain (e.g. Lind et al., 2020). In the context of climate change, CPM can be used to investigate how the spatial structure of extreme storms will change in the future (e.g. Prein et al., 2017, 2020; Chen et al., 2021). While theoretically this information can be used to alter the spatial structure of 2D design storms for flood assessment applications, in practice this has not been done yet.

In this paper, we describe a new spatial quantile mapping technique that allows for the modification of the spatial structure of 2D design storms. The extreme storm observed in Lausanne in summer 2018 served as our case study in order to construct a 2D design storm and modify its spatial structure to fit future climate conditions. With our 2D modified design storm, we examined flood statistics in four Swiss cities using a flood inundation model and discuss the importance of modifying the spatial structure of storms by comparing our new method with other widely-used methods that allow changes in storm magnitude but lack the spatial dimension.

2. Rainfall adjustment methods

We simulated a 2D design storm, altered it spatially to take into account the modifications expected due to climate change, and examined the changes in flood statistics. In addition, we also tested two other non-spatial rainfall modification methods. These processes are illustrated and explained in Fig. 1; the methods for modifying the rainfall patterns and intensity are explained in the subsequent subsections, and the numerical experiment we conducted as a case study is described in Section 3.

2.1. Spatial quantile mapping

The initial step in performing the spatial quantile mapping (SQM) method is to calculate storm composites using the CPM, both for storms occurring in the present climate (Fig. 2a) and future climate (Fig. 2b). The choice of storms to include depends on the application. Suppose the aim is to modify a design storm that represents a 10-year return period; the relevant rain fields for this return period should then be extracted from an archive of present and future CPM simulations. The storm composite is constructed by centering each rainfall field from the 10-year storm archive on the location of their maximum rainfall intensity over one another and calculating the mean of the rainfall intensities of the composite can be applied to each distinct rainfall field of the design storm.

The empirical cumulative distribution function (CDF) of the spatial rainfall intensities of the present and future storms is then compiled (Fig. 2c). The rainfall intensities obtained from the storm composites are sorted and linearly ranked from the lowest rainfall intensity ($i_q = 0$) to the highest ($i_q = 1$). Linear interpolation is used to compute rain intensity continuous over the entire quantile ranges, $i_q \in [0,1]$. In most cases, it is possible to fit a probability distribution to the data, instead of the empirical CDF; for example, the rain fields presented in Fig. 2 can be fitted with a lognormal distribution, which is a common probability distribution in rain fields (e.g. Cho et al., 2004). In order to calculate the adjustment factor of rainfall intensity per quantile (CF_{i_q}), we divide the future storm profile, $Pr_{i_q}^F$, by the present storm profile, $Pr_{i_q}^P$ (both are illustrated in Fig. 2c):

$$CF_{i_q} = \frac{Pr_{i_q}^F}{Pr_{i_q}^P}.$$

The adjustment factor can then be applied to adjust the rainfall intensities of the design storm:

$$R_{i_q}^F = R_{i_q}^P \cdot CF_{i_q},$$

where i are the individual rain fields composing the design storm R.

In addition to changes in rainfall intensity, it is likely that the area of the storm will change in the future. Adjusting the area of the storm is therefore also necessary and should be applied per rainfall field. It is essential to know which probability distribution the rainfall intensities follow in space in order to perform the adjustment. The area adjustment procedure is done as follows: (i) the rainfall intensity field is transformed into its quantile field; (ii) a random quantile vector is generated, with the size of the “wet” number of grid cells representing the new area; (iii) in the quantile field, “dry” grid cells that are close to “wet” grid cells (by euclidean distance) are converted into “wet” grid cells so as to reach the desired storm area; (iv) the quantiles from the second step are assigned to the quantile field; and (v) the quantile field is back-transformed into a rainfall intensity field. Using this procedure, the area of the rainfall field can be modified while the storm spatial structure remains largely intact. In the case of shrinking fields, the same procedure can be applied but in step (iii) the grid cells with the lowest rainfall intensities are classified as “dry” until the desired rainfall area is met.

As an example, we used a rainfall field characterized by a spatial lognormal distribution (Fig. 3a). The following parameters can be derived from this synthetic rainfall field: the mean areal rainfall (\bar{R}), the total wetted area (R_s), and the spatial rainfall coefficient of variation (R_{cv}). Based on this information, the rainfall field can be transformed into its quantile field (Fig. 3b) using the following transformation (see Paschalis et al., 2013; Peleg et al., 2020, for details):

$$Q(x, y) = LN\left(R(x, y) \cdot \log\left(\frac{R_s}{\sqrt{R_{cv}^2 + 1}}\right) \cdot \sqrt{\log\left(R_{cv}^2 + 1\right)}\right).$$
Fig. 3. (a) A rainfall field with a lognormal spatial distribution of rainfall intensities. From the field, the mean areal rainfall (\bar{R}), the total wetted area (R_a), and the spatial rainfall coefficient of variation (R_{cv}) are calculated. (b) is the quantile field of (a). (c) is a new quantile field with an increased wetted area (see Section 2.1 for details). In (d), the quantile field (c) is converted back to the rainfall intensity field.

The newly adjusted quantile field is finally back-transformed into a rainfall intensity field:

$$R'(x, y) = LN^{-1}\left(Q^*(x, y), \log\left(\frac{R^*_a}{\sqrt{R^2_{cv} + 1}}\right), \sqrt{\log(R^2_{cv} + 1)}\right),$$

where $R'(x, y)$ is the new rainfall intensity field (Fig. 3d), $Q^*(x, y)$ is the adjusted quantile field (Fig. 3c), and LN^{-1} is the inverse cumulative lognormal distribution.

The above example used the lognormal distribution, but the same procedure can be applied to any probability distribution.

2.2. Other rainfall adjustment methods

The two other non-spatial rainfall modification methods that were used here are a uniform adjustment based on a rainfall–temperature relationship (CC relation) and uniform quantile mapping (UQM) methods (Fig. 1). The first is based on the well-known Clausius–Clapeyron relation (Trenberth et al., 2003) that link extreme rainfall intensification (mostly convective in type) and increase in temperature (see recent publications by Moustakis et al., 2020; Ali et al., 2021; Fowler et al., 2021a, among many others). Based on the assumption that the rainfall will intensify at a rate of 7% °C$^{-1}$ (a valid assumption for...
Switzerland; Molnar et al., 2015; Ban et al., 2015), we defined the rainfall intensification factor as follows:

\[
CC = 1.07^T,
\]

where \(CC\) is the “Clausius–Clapeyron” intensification factor that is determined by the increase in temperature \(T\). The new rainfall field \(R^*(x, y)\) is simply a multiplication of \(R(x, y)\) with \(CC\).

The UQM is expressed as:

\[
R^*(x, y) = F^{-1} [U (R(x, y))],
\]

where \(U\) is the quantile function and \(F^{-1}\) is an inverse cumulative probability distribution function. We used the generalized Pareto distribution in our case study (as in Peleg et al., 2017b). It was fitted to the CPM’s rainfall intensities of the present climate (replacing \(U\)) and of the future climate (replacing \(F^{-1}\)).

3. Modifying an intense storm: a case study

The numerical experiment is illustrated in Fig. 1. As our case study, we selected the extreme storm recorded over the city of Lausanne (Section 3.1). Applying a stochastic rainfall generator model, we simulated multiple realizations of this storm (Section 3.2). Then, we evaluated the abilities of CPM to generate extreme rainfall in this region (Section 3.3) and determined how the spatial structure of the storm is expected to change (Section 3.4). We duplicated the “Lausanne storm” for four other cities in Switzerland (Fig. 4), which are considerably larger than Lausanne, and modified its spatial structure using the methods listed in Section 2. The selected cities are located in different climatic zones with different urban forms and terrain characteristics, thus representing a wide variety of urban hydrological responses to extreme rainfall. As a final step, we used an inundation model (Section 3.5) to examine the hydrological response.

3.1. The “Lausanne storm”

On June 11th, 2018, an intense convective storm swept through the city of Lausanne in Switzerland (Fig. 4). The storm lasted for four hours, between 7 PM and 11 PM local time, and is the most intense short rain burst ever recorded in Switzerland. At around 9 pm, a rain gauge in the city’s vicinity (LSN) recorded a peak of 41 mm of rainfall within 10 min (Fig. 5). The rain burst flooded several streets and the underground metro system, causing damage but no casualties.

The storm was captured not only by the local rain gauge but also by the MeteoSwiss weather radar system, which enabled the analysis of the space-time evolution of the storm at a fine resolution of 1 km and 5 min (Germann et al., 2015). A 16 km x 16 km window centered over Lausanne was used to analyze the storm’s mean areal rainfall intensity (\(\bar{R}\)), rainfall spatial structure (\(R_{cv}\)), and fraction of wetted area (\(R_a\), Fig. 5).
the 1% most intense rainfall fields obtained from the evaluation period
spatial structure of extreme storms by comparing the storm profile of
climate at the end of the century based on RCP8.5 greenhouse gas
Schär et al., 1996; Rasmussen et al., 2011). The basic idea of the
future climate driven by pseudo-global-warming (PGW) approach (e.g.
periods in present day climate driven by ERA-Interim reanalysis and
Mode (COSMO-CLM) model (Baldauf et al., 2011) over 10 years long
conducted using the Consortium for Small-Scale Modeling in Climate

3.3. Convection-permitting model

We used convection-permitting climate simulations conducted with
a horizontal grid spacing of 2.2 km over European domain (presented in
Hentgen et al., 2019; Leutwyler et al., 2017). The simulations were
conducted using the Consortium for Small-Scale Modeling in Climate
Mode (COSMO-CLM) model (Baldauf et al., 2011) over 10 years long
periods in present day climate driven by ERA-Interim reanalysis and
future climate driven by pseudo-global-warming (PGW) approach (e.g.
Schär et al., 1996; Rasmussen et al., 2011). The basic idea of the
PGW approach is to apply large-scale perturbations (calculated as
climate change signal from a General Circulation Model) at the lateral
boundaries of a present-day simulation. The PGW simulations represent climate at the end of the century based on RCP8.5 greenhouse gas
emission scenario.

First, we have investigated the CPM’s capabilities to reproduce the
spatial structure of extreme storms by comparing the storm profile of
the 1% most intense rainfall fields obtained from the evaluation period
of the CPM (for the years 1999–2009) with the radar data (2015–
2019), assuming stationary climate for the 1999–2019 period. The rainfall spatial profiles represent the distribution of rainfall intensities
according to their cumulative area, and they are computed for the
rainfall composite as explained above. An illustration of the different
types of rainfall spatial profiles, standardized from 0 (no rain) to 1
(peak intensity) to enable comparison between fields with different
maximum rainfall intensities, is provided in Fig. S1. Since the lengths
and periods of the sampled data differed as well as the space–time
resolutions of the two products, we are not expecting a perfect match
between the storm profiles, but we aimed to investigate if there was
a general agreement between them. Still, it appears that the CPM
simulates the rainfall spatial structure of extreme storms properly in the
four cities, as there is a general agreement that storms exhibit spatial profiles between types 3 and 4 (Fig. 6).

A second issue we examined was the validity of applying the “CC
relation” adjustment, i.e., whether the scaling relationship between
rainfall properties and temperature computed using CPM data is con-
sistent with that of weather radar data. We calculated the scaling
relationship between \(\hat{R} - T \) and \(R_c - T \) using the following equation:

\[
\log(R) = a + \beta T,
\]

where \(\beta \) is the regression coefficient (the scale) and \(T \) is the air
temperature, bounded between 5 and 25 °C to avoid solid precipitation
and the expected breaking point due to humidity limitations (Peleg
et al., 2018). A 2 °C interval was used to bin the rainfall variables \(\hat{R} \) and
\(R_c \) (further details on the binning method are given by Ali et al., 2021).
Note that other methods can be employed to extract the CC-scale (e.g.
Visser et al., 2021). The results of this examination show a high
level of agreement between the radar and CPM rainfall–temperature
scaling (Table 1), as both show a strengthening of the storm (\(\hat{R} \)) and
a decreasing area (\(R_c \)) with increasing temperature. All trends were
found significant by the Mann–Kendall test (p-values<0.05); the fitting
statistics are presented in Table S1.

Table 1: Scaling of rainfall variables \(\hat{R} \) and \(R_c \) with temperature \(T \) [%. °C⁻¹].

City	\(\hat{R} \)	\(R_c \)
Radar		
Geneva	3.3	-2.5
Zurich	2.4	-3.9
Bellinzona	3.6	-1.5
CPM		
Bern	4.3	-4.1
Geneva	3.3	-2.5
Zurich	2.4	-3.9
Bellinzona	3.6	-1.5

3.4. Design storm modifications

The storm profiles of the 1% most intense rainfall fields for the
present and future climates were obtained from the CPM for the four
different domains (Fig. 7). These profiles were used as the basis for
the SQM adjustment, along with the information of the change in the

![Fig. 6. The standardized rainfall spatial profiles of extreme storms as recorded by the weather radar (black dashed lines) and simulated by the CPM (blue solid lines) for the four cities.](image-url)
storm area (ΔR_a) in each of the locations. The example of the present and future storm composites and the changes to the storm profile in Fig. 2 was generated using the CPM information for Bern. In Fig. 8, four additional examples of simulated present and future storm composites for the Bern area are presented to illustrate the spatial stochasticity of the rainfall generator model and its potential to simulate multiple realizations of the same design storm. It is noteworthy that the area of the storm chosen in our case study to demonstrate the storm adjustment process is relatively small compared to the grid spacing of the CPM; we only have 256 grid cells for calculating the spatial composite of CPM’s storms, which can lead to under-representation of the storm spatial structure.

A change in 2-m air temperature during the occurrence of the 1% most intense rainfall simulated by the CPM for the present and future climates was computed ($\Delta T_{1\%}$) to modify the “Lausanne storm” according to the CC relation (Table 2). To apply the UQM method, the rainfall intensity quantiles for the present and future climates were extracted from the CPM for each location (see example in Fig. S2).

3.5. Inundation model

The outputs of the rainfall generator model, i.e. the ensemble of simulated design storms both for present and future climates, were input into the CADDIES/CAFlood 2D cellular automata flood model (Guidolin et al., 2016). CADDIES provides data structures to store rasters and automata spaces, methods to retrieve and assign automaton cell neighborhoods, abstract methods to implement transition functions and more. CAFlood is an application for rapid flood modeling that has been widely used both in academic research (recent publications include Webber et al., 2020; Vamvakerydou-Lyroudia et al., 2020; Padulano et al., 2021, among many others) and in the private sector (see case studies in: https://www.cafloodpro.com/). The required inputs include terrain elevation, roughness, rainfall and water levels at domain boundaries. At each time step, CAFlood applies the Manning’s equation in each automaton cell to compute the velocity of water flowing from/to each of its neighbors, to ultimately calculate the resulting water level in each cell. To this end, the edge between a cell and its neighbor is treated as a channel of width equal to cell side length. The version of the CADDIES/CAFlood model used in this study includes the possibility to take spatially distributed rainfall into account. Fig. 9 shows an example

Table 2
Change in temperature during the occurrence of the 1% most intense rainfall.

City	$\Delta T_{1\%}$
Bern	1.8
Geneva	1
Zurich	2
Bellinzona	1.1

![Fig. 7](image.png)

Fig. 7. Rainfall spatial profiles for the 1% most intense rainfall as simulated by the CPM for the present (blue lines) and future (red lines) climates for the four cities.

![Fig. 8](image.png)

Fig. 8. An example of four storm composites, depicting the present and future “Lausanne storm” in Bern, simulated by the stochastic rainfall generator model and the SQM method using information from the CPM.
An example of an inundation map generated by the CADDIES/CAFlood 2D cellular automata flood model, based on the STREAP model rainfall simulations. The map shows the average maximum water depths of 30 realizations of the “Lausanne storm” in the city of Bern representing the present climate.

From the results obtained using the inundation model, water depth maps at each time step were used for analyzing the impact of the different storm adjustment methods on the flood characteristics, which were summarized in two statistical measures. We first computed the ratio of change in peak water depths between the future scenarios and the rainfall-runoff simulations of the present:

$$\Delta h = \frac{\sum_{i=1}^{N} h_i^F - \sum_{i=1}^{N} h_i^P}{\sum_{i=1}^{N} h_i^P},$$ \hspace{1cm} (9)

where h_i is the water depth at any grid cell i, N is the total number of grid cells in the domain and P and F are the present and future (corrected method) simulations, respectively.

In addition, we calculated the ratio of change in the flooded area ($\Delta \theta$) between the present and future simulations. Grid cells i with a peak water depth above 10 cm were considered flooded and assigned a value of 1 (or 0 otherwise). Then, we used Eq. (9) to sum the flooded area, replacing h_i with θ_i.

3.6. The hydrological response to the rainfall adjustment

Different hydrological responses result from the three different storm adjustment methods, as expected. The SQM method is associated with higher water depths (Fig. 10) and larger inundated areas (Fig. S3) in Bern, Geneva, and Zurich. This can be explained by the increasing area of the storm and the increasing intensity of the rainfall in these locations (Fig. 7). However, in Bellinzona, the storm area is expected only to increase slightly, and the peak rainfall intensity is expected to weaken (Fig. 7), resulting in reduced hydrological impacts (Fig. 10 and S3). We note that in comparison to the other locations, CPM data for Bellinzona are less in agreement with radar data (Table 1). Another possibility could be that the limited data from future climate simulations (10 years) do not show extremely heavy rainfall storms in this region. The two homogeneous rain adjustment methods (UQM and CC relation) agree well in two locations, Bern and Zurich; contrary to this, the UQM has a much greater impact on flood assessments in Geneva and Bellinzona (Fig. 10 and S3).

3.7. Implications

It is evident from the results that it is essential to apply rainfall adjustment to both rainfall intensities and the spatial structure of storms as the impact on the flood can be significant. Spatial rainfall adjustment is more likely to be important in catchments with fast hydrological responses, such as small- to medium-sized rural catchments or urban areas, and less important in large catchments where the temporal structure of rainfall should be more influential; however, further research is needed to examine the impact of changes in convection organization on catchment response at large scales.

For this case study, the purpose of applying rainfall adjustments was not to identify the “true” signal of change in flood assessments for the four locations, but rather to demonstrate the SQM method. The assessment of climate change impacts on flood statistics and their uncertainties requires using additional climate scenarios and rainfall adjustment methods, and performing a detailed validation of the CPM’s ability to represent rainfall for these locations, which is beyond the scope of this paper.
Furthermore, we demonstrated the SQM on a single convective storm, but it should be noted that the method can be applied to any type of storm, for example, stratiform storms. Research is still needed on how to identify the storm types in CPM and extract the adjustment factors, a task that remains challenging.

4. Perspectives on SQM's future development

Under the assumption that the rainfall structure and intensity will change the same throughout the storm duration, we demonstrated the spatial adjustment of design storms. Changes in rainfall structure, however, are likely to be non-stationary, hence we plan to further develop the SQM scheme to adjust design storms both spatially and temporally. Additionally, changes in the spatial structure of the storm are likely influenced by the type of rainfall (e.g. convective vs. stratiform), its source, and orientation. It is possible to address this issue if the changes to the spatial structure obtained from the CPM are analyzed based on rainfall types. In addition, the SQM properties (i.e. the change in storm area and the change in spatial quantile of rainfall intensity) can be scaled with the return period of extreme storms. The result will be a more flexible form of correction to design storms of varying severity.

5. Conclusions

We presented the SQM, a simple method for spatially adjusting the structure of design storms. Using data from a CPM, we applied the SQM to a design storm and presented a case study. Results indicate that modifying the spatial structure of the storm can yield considerable differences in flood impacts in comparison to other adjustment methods that apply uniform adjustment to rainfall intensities. We plan to extend SQM to adjust rainfall also in its temporal component in the future, in addition to the spatial component of the adjustment described in this paper.

Code availability

An example of the Spatial Quantile Mapping (SQM) method can be found in the Zenodo archive at https://doi.org/10.5281/zenodo.6563635. This script (Peleg, 2022) reproduces Fig. 3 from the manuscript.
Peleg, N., Skinner, C., Fatschi, S., Molnar, P., 2020. Temperature effects on the spatial structure of heavy rainfall modify catchment hydro-morphological response. Earth Surface Dyn. 8 (1), 17–36. http://dx.doi.org/10.5194/esurf-8-17-2020.

Peleg, N., Skinner, C., Ramirez, J.A., Molnar, P., 2021. Rainfall spatial-heterogeneity accelerates landscape evolution processes. Geomorphology 390, 107863. http://dx.doi.org/10.1016/j.geomorph.2021.107863.

Prein, A.F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K., Keller, M., Tölle, M., Gutjahr, O., Feuer, F., Britsson, E., Kollet, S., Schmied, J., van Lipzig, N.P.M., Leung, R., 2015. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys. 53 (2), 323–361. http://dx.doi.org/10.1002/2014RG000475.

Prein, A.F., Liu, C., Ikeda, K., Bullock, R., Rasmussen, R.M., Holland, G.J., Clark, M., 2020. Simulating North American mesoscale convective systems with a convection-permitting climate model. Clim. Dynam. 55 (1), 95–110. http://dx.doi.org/10.1007/s00382-017-3993-2.

Prein, A.F., Liu, C., Ikeda, K., Trier, S.B., Rasmussen, R.M., Holland, G.J., Clark, M.P., 2017. Increased rainfall volume from future convective storms in the US. Nature Clim. Change 7 (12), 880–884. http://dx.doi.org/10.1038/s41558-017-0007-7.

Ramirez, J.A., Merrin, M., Peleg, N., Horton, P., Skinner, C., Zimmermann, M., Keiler, M., 2022. Modelling the long-term geomorphic response to check dam failures in an alpine channel with CAESAR-Lisflood. Int. J. Sediment Res. http://dx.doi.org/10.1016/j.ijssrc.2022.04.005.

Rasmussen, R., Liu, C., Ikeda, K., Goichis, D., Yates, D., Chen, F., Tewari, M., Dudhia, J., Yu, W., Miller, K., Arsenault, K., Grubišić, V., Thompson, G., Gutmann, E., 2011. High-resolution coupled climate runoff simulations of seasonal snowfall over colorado: A process study of current and warmer climate. J. Clim. 24 (12), 3015–3048. http://dx.doi.org/10.1175/2011JCLI3985.1.

Schär, C., Frei, C., Lüthi, D., Davies, H.C., 1996. Surrogate climate-change scenarios for regional climate models. Geophys. Res. Lett. 23 (6), 669–672. http://dx.doi.org/10.1029/96GL0265.

Schär, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C., Girolami, S.D., Hengsten, L., Hoefler, T., Lapillonne, X., Leutwyler, D., Osterried, K., Panosetti, D., Rüdisühli, S., Schlemmer, L., Schulthess, T.C., Sprenger, M., Ubbiali, S., Wernli, H., 2020. Kilometer-scale climate models: prospects and challenges. Bull. Am. Meteorol. Soc. 101, E567 – E587. http://dx.doi.org/10.1175/BAMS-D-18-0167.1.

Singer, M.B., Michaelides, K., Hobley, D.E.J., 2018. STORM 1.0: a simple, flexible, and parsimonious stochastic rainfall generator for simulating climate and climate change. Geosci. Model Dev. 11 (9), 3713–3726. http://dx.doi.org/10.5194/gmd-11-3713-2018.