Background. Norovirus is a leading cause of acute gastroenteritis (AGE) across the age spectrum; candidate vaccines are in clinical trials. While norovirus diagnostic testing is increasingly available, stool testing may not be performed routinely, which can hamper surveillance and burden of disease estimates. Our objectives were to understand physicians’ stool testing practices in outpatients with AGE, and physicans’ knowledge of norovirus, in order to improve surveillance and prepare for vaccine introduction.

Methods. Internet and mail survey on AGE and norovirus conducted January to March 2018 among national networks of primary care pediatricians (Peds), family practice (FP) and general internal medicine (GIM) physicians.

Results. The response rate was 59% (820/1,383). During peak AGE season, physicians estimated they ordered stool tests for a median of 15% (interquartile range: 5–33%) of their outpatients with AGE. Stool tests were more often available for ova and parasites, Clostridiodes difficile, and bacterial culture (>95% for all specialties) than for norovirus (6–33% across specialties); even when available, norovirus-specific tests were infrequently ordered. Most providers were unaware that norovirus is a leading cause of AGE across all age groups (Peds 80%, FP 86%, GIM 89%) or that alcohol-based hand sanitizers are ineffective against norovirus (Peds 51%, FP 66%, GIM 62%).

Conclusion. Physicians infrequently order stool tests for outpatients with AGE, and have knowledge gaps on norovirus prevalence and hand hygiene for prevention. Understanding the limitations of surveillance that relies on physician-ordered stool diarrheal events and closing physician knowledge gaps, can help support norovirus vaccine introduction.

Disclosures. All authors: No reported disclosures.

1625. Risk of Invasive Group A Streptococcus, Group B Streptococcus, and Streptococcus pneumoniae Infection Among Adults Experiencing Homelessness—Anchorage, Alaska, 2002–2015

Emily Moisten, MPH
Tammy Zul, MPH
Dana Bruden, MS
Leisha Nolen, MD, PhD
Anna Frick, MPH
Louisa Castrodale, DVM, MPH
Joseph McLaughlin, MD
Chris Van Beneden, MD, MPH
Thomas Hennessy, MD, MPH
Michael Bruce, MD, MPH
Hank Caspersen, MD, MPH
Arthur Cope, MD
Jennifer Cope, MD
No reported disclosures.

Background. People experiencing homelessness (PEH) have an increased risk of infectious disease. However, for many infections, this increased risk has not been clearly quantified. For example, the risk of invasive streptococcal infection has not been established among PEH in the United States.

Methods. We compared the incidence of detected cases of invasive group A Streptococcus (GAS) infection, group B Streptococcus (GBS) infection, and Streptococcus pneumoniae (pneumococcal) infection among adult PEH to that in the general adult population in Anchorage, Alaska from 2005 through 2015 using data from the CDC Arctic Investigations Program, Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Anchorage, Alaska; “CDC, Anchorage, Alaska; “Centers for Disease Control and Prevention, Anchorage, Alaska; Alaska SOE, Anchorage, Alaska; Section of Epidemiology, Division of Health and Social Services, State of Alaska, Anchorage, Alaska; CDC AIP, Anchorage, Alaska.”

Results. The Anchorage Point in Time count (PIT [a yearly census of PEH]) from the CDC Arctic Investigations Program surveillance system, the US census, and the US Census Bureau were used to estimate the PEH compared with the general population.

Results. The Anchorage Point in Time count (PIT [a yearly census of PEH]) from the CDC Arctic Investigations Program surveillance system, the US census, and the US Census Bureau were used to estimate the PEH compared with the general population.

Conclusions. Underreporting of the facility revealed a practice of manual chlorination treatment with monitoring, but no water filtering or record keeping to document water quality. Surf park water temperature was warm (25°C) and chlorine residual was negligible. N. fowleri was detected in a single sediment sample collected at the cable park venue, and viable thermophilic amebae were detected in all samples collected from the surf park water slide, and cable park venues, as well as from the sediment in the open-air groundwater reservoir feeding the venues.

Conclusion. This investigation documents a novel exposure in an inland surf park as the likely exposure causing PAM. Conditions in the surf park were conducive to amebic growth. Novel types of recreational water venues that do not meet traditional definitions of swimming pools, such as this surf park, might not meet the water quality standards required for public health officials should remain vigilant for nontraditional exposures to water.

Disclosures. All authors: No reported disclosures.

1626. Risk of Invasive Group A Streptococcus, Group B Streptococcus, and Streptococcus pneumoniae Infection Among Adults Experiencing Homelessness—Anchorage, Alaska, 2002–2015

Emily Moisten, MPH
Tammy Zul, MPH
Dana Bruden, MS
Leisha Nolen, MD, PhD
Anna Frick, MPH
Louisa Castrodale, DVM, MPH
Joseph McLaughlin, MD
Chris Van Beneden, MD, MPH
Thomas Hennessy, MD, MPH
Michael Bruce, MD, MPH
Hank Caspersen, MD, MPH
Arthur Cope, MD
Jennifer Cope, MD
No reported disclosures.

Background. People experiencing homelessness (PEH) have an increased risk of infectious disease. However, for many infections, this increased risk has not been clearly quantified. For example, the risk of invasive streptococcal infection has not been established among PEH in the United States.

Methods. We compared the incidence of detected cases of invasive group A Streptococcus (GAS) infection, group B Streptococcus (GBS) infection, and Streptococcus pneumoniae (pneumococcal) infection among adult PEH to that in the general adult population in Anchorage, Alaska from 2005 through 2015 using data from the CDC Arctic Investigations Program, Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Anchorage, Alaska; “CDC, Anchorage, Alaska; “Centers for Disease Control and Prevention, Anchorage, Alaska; Alaska SOE, Anchorage, Alaska; Section of Epidemiology, Division of Health and Social Services, State of Alaska, Anchorage, Alaska; CDC AIP, Anchorage, Alaska.”

Results. The Anchorage Point in Time count (PIT [a yearly census of PEH]) from the CDC Arctic Investigations Program surveillance system, the US census, and the US Census Bureau were used to estimate the PEH compared with the general population.

Results. The Anchorage Point in Time count (PIT [a yearly census of PEH]) from the CDC Arctic Investigations Program surveillance system, the US census, and the US Census Bureau were used to estimate the PEH compared with the general population.

Conclusions. Underreporting of the facility revealed a practice of manual chlorination treatment with monitoring, but no water filtering or record keeping to document water quality. Surf park water temperature was warm (25°C) and chlorine residual was negligible. N. fowleri was detected in a single sediment sample collected at the cable park venue, and viable thermophilic amebae were detected in all samples collected from the surf park water slide, and cable park venues, as well as from the sediment in the open-air groundwater reservoir feeding the venues.

Conclusion. This investigation documents a novel exposure in an inland surf park as the likely exposure causing PAM. Conditions in the surf park were conducive to amebic growth. Novel types of recreational water venues that do not meet traditional definitions of swimming pools, such as this surf park, might not meet the water quality standards required for public health officials should remain vigilant for nontraditional exposures to water.

Disclosures. All authors: No reported disclosures.

1627. Risk of Invasive Group A Streptococcus, Group B Streptococcus, and Streptococcus pneumoniae Infection Among Adults Experiencing Homelessness—Anchorage, Alaska, 2002–2015

Emily Moisten, MPH
Tammy Zul, MPH
Dana Bruden, MS
Leisha Nolen, MD, PhD
Anna Frick, MPH
Louisa Castrodale, DVM, MPH
Joseph McLaughlin, MD
Chris Van Beneden, MD, MPH
Thomas Hennessy, MD, MPH
Michael Bruce, MD, MPH
Hank Caspersen, MD, MPH
Arthur Cope, MD
Jennifer Cope, MD
No reported disclosures.

Background. People experiencing homelessness (PEH) have an increased risk of infectious disease. However, for many infections, this increased risk has not been clearly quantified. For example, the risk of invasive streptococcal infection has not been established among PEH in the United States.

Methods. We compared the incidence of detected cases of invasive group A Streptococcus (GAS) infection, group B Streptococcus (GBS) infection, and Streptococcus pneumoniae (pneumococcal) infection among adult PEH to that in the general adult population in Anchorage, Alaska from 2005 through 2015 using data from the CDC Arctic Investigations Program, Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Anchorage, Alaska; “CDC, Anchorage, Alaska; “Centers for Disease Control and Prevention, Anchorage, Alaska; Alaska SOE, Anchorage, Alaska; Section of Epidemiology, Division of Health and Social Services, State of Alaska, Anchorage, Alaska; CDC AIP, Anchorage, Alaska.”

Results. The Anchorage Point in Time count (PIT [a yearly census of PEH]) from the CDC Arctic Investigations Program surveillance system, the US census, and the US Census Bureau were used to estimate the PEH compared with the general population.

Results. The Anchorage Point in Time count (PIT [a yearly census of PEH]) from the CDC Arctic Investigations Program surveillance system, the US census, and the US Census Bureau were used to estimate the PEH compared with the general population.

Conclusions. Underreporting of the facility revealed a practice of manual chlorination treatment with monitoring, but no water filtering or record keeping to document water quality. Surf park water temperature was warm (25°C) and chlorine residual was negligible. N. fowleri was detected in a single sediment sample collected at the cable park venue, and viable thermophilic amebae were detected in all samples collected from the surf park water slide, and cable park venues, as well as from the sediment in the open-air groundwater reservoir feeding the venues.

Conclusion. This investigation documents a novel exposure in an inland surf park as the likely exposure causing PAM. Conditions in the surf park were conducive to amebic growth. Novel types of recreational water venues that do not meet traditional definitions of swimming pools, such as this surf park, might not meet the water quality standards required for public health officials should remain vigilant for nontraditional exposures to water.

Disclosures. All authors: No reported disclosures.

1627.2. Clinical, Epidemiological and Microbiological Characterization of Invasive Streptococcus pneumoniae Disease in Hospitalized Adults from 5 Tertiary Hospitals in Bogotá, Colombia: A Descriptive Study

Aura Lucía Leal Castro, MD
Germán Camacho Moreno, MD
Anita Montañez Ayala, Bacteriologist, Epidemiologist and MSc Public Health
Fabio Varon, MD, Pneumologist, Critical Care
Camilo Alvarez Rodriguez, MD, Infectologist
Sandra Valderrama, MD, ID
Beatriz Elena Ariza, Bacteriologist
Oscar Pancha, MD
Ana Yadir Santana, Bacteriologist, MSc Microbiology
Nella Sánchez Flórez, Bacteriologist
Patricia Reyes Pabón, MD, Infectologist
Claudia Beltrán, MD, Infectologist
Claudia Prieto, MD, Infectologist
No reported disclosures.