The Use of Nanoparticles to Displace Oil from a Porous Medium

Yu V Pakharukov, E K Shabiev, R F Safargaliev, A S Simonov, B S Ezdin, A E Zarvin and V V Kalyada

1 Tyumen State University, Russia, 625000 Tyumen, Lenina, 25
2 Tyumen Industrial University, Russia, 625000 Tyumen, Volodarskogo, 38
3 Novosibirsk State University, Russia, 630090 Novosibirsk, Pirogova, 2

pacharukovyu@yandex.ru

Abstract. The formation of supramolecular structures forming a transition region at the oil-nanofluid interface with a low surface tension is studied as a result of a synergistic effect in the interaction of planar graphene nanoparticles and silicon carbide nanoparticles coated with graphene layers (Core-shell). In model experiments on a Hele-Shaw cell, it was shown that in a porous medium such hybrid nanofluids have a high displacing ability of residual oil. At the same time, the oil – nanofluid interface remains stable, without the formation of sticky fingers. In the process of research using power electron microscopy, a transition region was observed, in the structuring of which nanoparticles were directly involved. The efficiency of displacement by hybrid nanofluid depends on the concentration of nanoparticles and their interaction.

Introduction

Nanofluids have unique characteristics that over the past two decades have found application in various fields of science and technology, reflected in the reviews [1-7]. Of particular interest are fluids based on graphene-like nanostructures (GLN): single-layer graphene; graphene oxide; reduced graphene; multilayer graphene; graphene with quantum dots. Thus, the optical properties of GPNF are widely used in solar energy. Due to its high thermal conductivity, GLN are actively used in heat removal systems. High electrical conductivity of GLN has found application in electronics [7]. However, the use of GLN runs into a number of difficulties. For example, a change in the rheological properties of the base fluid leads to a rapid increase in the viscosity of the GLN, which negatively affects the performance of nanofluids. The use of a combination of various nanostructures allows one to partially solve the difficulties encountered. So, in a review [7], nanofluids with a combination of nanostructures are considered. Among the many types of nanoparticles used in combination with graphene, the following are common: metals Ag, Cu, [8,9]; metal oxides Al2O3, Fe3O4, CuO [10.11]; carbides TiC, SiC, [12]; carbon in various forms (nanodiamonds, graphite), single-, double- and multi-wall carbon nanotubes, composites from fullerenes [13-15].

In recent years, GLN have become widely used in the oil and gas industry [16-17]. The use of single-layer graphene as a displacing agent [18] has shown high efficiency with increased oil recovery. In [19], graphene oxide was used as such an agent, and in [20], sulfonated graphene (Sulfonated graphene) was...
used. In [21], fluids based on multilayer graphene were used to increase oil recovery. Creating at the oil-water interface a transition region with a low surface tension, which is not a microemulsion, is an urgent task in oil production. The solution to this problem allows us to develop technologies that increase oil recovery from the oil reservoir of the bottomhole zone [22]. It is known that low surface tension at the oil−water interface is associated with the formation of a structure from liquid crystalline monolayers of macromolecules [23]. Such layers can be formed from planar graphene nanoparticles [24]. In this study, the displacing properties of hybrid nanofluids based on multilayer graphene and Core-shell structures - SiC crystallites coated on top with several layers of graphene are studied.

Materials and methods

Planar graphene nanoparticles were obtained in aqueous graphene suspension by ultrasonic dispersion of polycrystalline graphite [25]. Carbon nanoparticles and Core-shell structures were synthesized using a high-performance process − rapid cyclic compression in a chemical reactor [26]. Aqueous suspensions of Core-shell nanoparticles, as well as carbon, were obtained by the same method [27]. We used 12 different samples of nanofluids, the mass concentration of graphene and core-shell nanoparticles in the base fluid (distilled water) in which is shown in the table 1.

Table 1. Graphene nanofluids (GNF), Core-shell nanofluids (C-sNF), hybrid nanofluids (GNF+C-sNF).

GNF	C-sNF	GNF+C-sNF
wt 0,0050%	wt 0,0050%	wt 0,0025%+ wt 0,0025%
wt 0,0100%	wt 0,0100%	wt 0,0050%+ wt 0,0050%
wt 0,0150%	wt 0,0150%	wt 0,0075%+ wt 0,0075%
wt 0,0200%	wt 0,0200%	wt 0,0100%+ wt 0,0100%

As a model of a porous medium, to study the behavior of the interface, in this work, we used the Hele−Shaw radial cell, whose geometric parameters were $R_0 = 2$ mm, $R_\infty = 120$ mm, $b = 0.6$ mm [3]. All experiments on the Hele-Shaw cell were carried out at room temperature. Prepared, dehydrated oil from a Western Siberian field with viscosity $\mu_{20} = 4.08$ mPa*s and density $\rho_{20} = 838$ kg/m3 was placed in the cell. At constant overpressure, nanofluid was injected into the cell. Further, the P_{crit} value increased until the oil−water interface degenerated into instability. The unstable displacement parameter was used to consider the ratio $\delta / R = 0.4$, where R is the radius of the unperturbed surface and δ is the perturbation amplitude [28].

Results and discussion

The size and shape of the particles in the aqueous suspension was determined using an Ntegra Aura atomic force microscope (AFM) (NT-MDT) and a MIRA 3 scanning electron microscope (SEM) (TESCAN). (Figure 1-a, b). SiC crystallites with a size of 3−7 nm, coated with several layers of graphene (Core-shell structure) are shown in Figure 2. Images were obtained by TEMR method using a JEM-2010 electron microscope (JEOL, Japan). At a lower magnification, it can be seen that particles with a size of 40-50 nm form dendrite couplings - aggregates of many round-shaped particles (Figure 3). Particles of fluids were deposited on a silicon single crystal. From the analysis of particles, it can be concluded that graphene particles are predominantly cylindrical in diameter with $D = 30 \pm 5$ nm.
Figure 1. Images of graphene nanoparticles on a silicon substrate, obtained by (a) - SEM, (b) - AFM semi-contact method.

Figure 2. Image of nanoscale crystallites of SiC coated with 2-5 layers of graphene - (Core-shell structure).

Figure 3. Image of Core-shell nanoparticles forming extended dendrite aggregates (resolution 100 nm).

The results of modeling the motion in a porous medium on a Hele-Show cell are given below. In Figs. 4a, c, the undisturbed motion of the GNF and C-sNF nanofluids with equal mass concentrations wt 0.005% was observed. When critical pressure was reached, the oil – nanofluid interface turned into a perturbed state and the front degenerated with the formation of “sticky fingers” (Figures 4-b, d).
It was established that the boundary region between oil and nanofluids is more stable in contrast to the movement of distilled water (table 2). The perturbation of the oil-water interface occurs at lower critical pressures, in contrast to the oil-nanofluid interface (table 2). The critical pressure for displacement with distilled water is $p_{\text{crit}} = 8$ kPa. With increasing concentrations of nanoparticles in the base fluid, the critical pressure p_{crit} also increases. However, when the concentration reaches wt 0.015% for GNF and C-sNF, the critical pressure value ceases to increase. Combined nanofluids No. 1 and No. 2 (see table 2) showed greater stability of the interface. For combination No. 2, the critical pressure value was 92 ± 1 kPa, which exceeds the values of monofluids GNF and C-sNF at concentrations wt 0.015% by $\Delta p = 12 \pm 1$ kPa. For combination No. 3, p_{crit} differs little from the values for monofluids GNF and C-sNF at
Concentration, wt%	GNF p_{crit}, kPa	C-sNF p_{crit}, kPa	GNF+ C-sNF p_{crit}, kPa
0 (dis. water) | 8±1 | 8±1 | |
0.005 | 55±1 | 60±1 | Combined Fluid № 1 | 85 |
0.010 | 70±1 | 75±1 | Combined Fluid № 2 | 92 |
0.015 | 80±1 | 81±1 | Combined Fluid № 3 | 79 |
0.020 | 79±1 | 80±1 | Combined Fluid № 4 | 60 |

Table 2. Critical pressure p_{crit} for GNF, C-sNF and GNF+ C-sNF nanofluids

The stability of the oil – nanofluids interface, in comparison with distilled water, can be explained by the appearance of an ordered film at the interphase boundary [21,25]. This film is the result of self-organization of graphene nanoparticles and hydrocarbon oil molecules. To test this mechanism of strengthening the boundary region of the ball, a film was grown at the GNF boundary and molten paraffin (mixture of saturated hydrocarbons) (Figure 5-a). Using the SEM, the transition region of graphene nanoparticles can be observed in the selected area (Figure 5-b). The formation of a structured region at the hydrocarbon-nanofluid interface can indicate a low surface tension. Therefore, it can be assumed that nanoparticles are directly involved in the structuring of the transition region.

Figure 5. Graphene film: (a) a graphene film grown at the hydrocarbon (paraffin) - GNF interface; (b) SEM image of a graphene film.

The reason that the displacing ability of nanofluids is reduced is the increase in viscosity of the base fluid. It is known that an increase in the concentration of nanoparticles in the base fluid leads to a quadratic increase in the viscosity of nanofluid [29].

Conclusions
Nanofluids, when displaced from a model of a porous medium (Hele-Shaw cells), exhibit greater interphase stability. With an increase in the concentration of nanoparticles in the base fluid, the critical pressure value increases, i.e. a transition to a disturbed state is carried out. Combinations of graphene nanoparticles and Core-shell enhance the displacing ability of nanofluids, however, when certain nanoparticle concentrations are reached, the effect weakens. Research data can be used to create technology that improves oil recovery.

References
[1] Saidur R, Leong K Y, and Mohammad H A 2011 Renew. Sustain. Energy Rev. 15 1646–68
[2] Huminic G, and Huminic A. Renew. Sustain. Energy Rev. 2012, 16 5625–38
[3] Solangi K H, Kazi S N, Luhur M R, Badarudin A, Amir A, Sadri R, Zubir M N M, Gharekhhani S, and Teng K H 2015 Energy 89 1065–86
[4] Sadeghinezhad E, Mehrali M, Saidur R, Mehrali M, Tahan L S, Akhiani A R, and Metselaar H S 2016 Energy Convers. Manag. 111 466–87
[5] Devendiran D K, and Amirtham V A 2016 Renew. Sustain. Energy Rev. 60 21–40
[6] Leong K Y, Ong H C, Amer N H, Norazrina M J, Risby M S, and Ku A K Z 2016 Renew. Sustain. Energy Rev. 53 1092–105
[7] Babu J A R, Kalyada V, Shabiev F, V, Safargaliev R, and Kuvshinov V A 2019 Data in brief
[8] Siddiqui F R, Tso C Y, Fu S C, Qiu H H, and Chao C Y H 2020 J Therm Anal Calorim. 139, 2353–2364.
[9] Mehrali M, Sadeghinezhad E, Akhiani A R, Latibari S T, and Mehrali M 2017 Powder Technol. 308 149-57
[10] Kazemi I, Sefid M, and Afrand M 2020 Powder Technol. 366 216-29
[11] Said Z, Abdelkareem M A, Rezk H, Nassef A M, and Atwany H Z 2020 Powder Technol. 364 795-809
[12] Moghadam I P, Afrand M, Hamad S M, Barzinjy A A, and Talebizadehsardari P 2020 Physica A: Stat. Mech. Appl. 548 122140
[13] Yarmand H, Gharekhhani S, Shirazi S F S, Amiri A, and Kazi S N 2016 Int. Comm. Heat and Mass Transf. 72 10-5
[14] Sun X, Zhang Y, Chen G, Gai Z 2017 Energies 10 345-78
[15] Peng B, Zhang L, Luo J, Wang P, Ding B, Zeng M, and Cheng Z 2017 RSC Adv. 7 32246-54
[16] Luo D, Wang F, Zhu J, Cao F, Liu Y, Li X, Willson R C, Yang Z, Chu C-W, and Re Z 2016 Proc. Nat. Acad. Sci. 113 7711-6
[17] Radnia H., A R S Nazar, and Rashidi A M 2017 J. Taiwan Inst. Chem. Eng. 80 34-45
[18] Radnia H., A R S Nazar, and Rashidi A M 2018 Iran. J. Oil & Gas Sci. Technol. 7 1-19
[19] Pakharukov Yu V, Shabiev F K, Grigoriev B V, Safargaliev R F, and Potochnyak I R 2019 J. Appl. Mech. Tech. Phys. 60 31-4
[20] Altunina L K, and Kuvshinov V A 2007 Russian Chemical Reviews 76 971-89
[21] Friberg S E, and Bothorel P. 1997 Microemulsions: Structure and Dynamics. United States: N. p 310 Web.
[22] Pakharukov Yu V, Shabiev F K, and Safargaliev R F 2018 Tech. Phys. Let. 44 130-2
[23] Pakharukov Yu V, Shabiev F K, Mavrinskii V V, Safargaliev R F, and Voronin V V 2019 JETP Let. 109 615-9
[24] Edzin B S, Yatsenko D A, Kalyada V V, Ichshenko A B, Sarvin A E, Nikiforov A A, and Snytnikov P V 2020 Chem. Eng. J. 381 122642
[25] Edzin B S, Yatsenko D A, Kalyada V V, Ichshenko A B, Sarvin A E, Nikiforov A A, and Snytnikov P V 2020, Data in brief 28, 104868
[26] Martyushev L M, and Birzina A I 2014 JETP Letters 99 446-51
[27] Rudyak V Ya 2013 Adv. Nanoparticles 2 266-79
Acknowledgments

The work was performed using the shared equipment center "Applied physics" of the NSU Physics Department.