A TIME-SERIES AND SPATIAL ANALYSIS OF 56 YEARS (1961-2017) OF RAINFALL HISTORICAL DATA FROM MALAYBALAY, BUKIDNON

B. J. Buenaobra 1, MK L. Alleto2, JM V. Manhuyod1

1 Plantation Geomatics Dept., Del Monte Philippines Inc., Agusan Canyon, Manolo Fortich, 2 Crop Production Unit, Del Monte Philippines Inc., Agusan Canyon, Manolo Fortich, Bukidnon, Northern Mindanao - (buenaobrabj, alletoml, manhuyodjmv) @delmonte-phil.com

KEYWORDS: Time Series Analysis, Rainfall Density, Rainfall Seasonality, Autocorrelation, Stationarity

ABSTRACT:

This paper focuses on using time series and spatial analysis methods to detect climate change indicators in Malaybalay, Bukidnon. We look at 56 years of historical rainfall data between the years 1961 to 2017 and perform a computational method for data processing to arrive at statistical analysis and provide data visualization. We demonstrate the use of the Augmented Dickey-Fuller test (ADF), where a p-value is tested versus a threshold to reject or accept the null hypothesis for a stationarity test. For the seasonality test, we perform a time-domain signal processing by an autocorrelation function. The time-series analysis shows that for Malaybalay, Bukidnon rainfall data shows ADF statistic of -16.348964, a p-value=0.000000 with critical values 1%:-3.431, 5%:-2.862, 10%:-2.567. Hence, the significant negative values indicate more likely to reject the null hypothesis. We showed that rainfall does not demonstrate periodicity, is not seasonal, and is non-stationary. This work does not cover those that can be detected and attributed to anthropogenic causes.

1. INTRODUCTION

1.1 Malaybalay, Bukidnon as a region of interest

In the definition we find from the United States Geological Survey (USGS), the terms Global Warming and Climate Change are well differentiated. In verbatim, "Global warming” refers to the rise in global temperatures due mainly to the increasing concentrations of greenhouse gases in the atmosphere. “Climate change” refers to the growing changes in climate measures over a long period – including precipitation, temperature, and wind patterns. According to the Department of Science and Technology (DOST), the Philippines’ oldest weather station system and weather data are located in Malaybalay, Bukidnon. The resolution specified by the agency is 50km.

To describe our area of interest in Region 10, Malaybalay City in Northern Mindanao has a total land area of 96,919 hectares, about 9.23% of the total area of Bukidnon province. An estimate of 65% is forestland/timberland, and the remaining 35% are alienable and disposable areas for purposes such as agriculture or industry. (PhilAtlas, 2021)

2. COMPUTATIONAL EXPERIMENT SETUP

2.1 Rainfall Data Pre-Processing

The rainfall data from the years 1961-2017 of Malaybalay, Bukidnon was purchased at the cost of Php.1.0 per parameter per day acquisition from the national weather bureau from CAD-PAGASA offices at the beginning of 2018. It was delivered in M.S. Excel format in 2 columns (dates) by 20,805 rows of rainfall data. (DOST PAGASA, 2021)

Marking of “T” designated no data as those “0” were considered no rainfall on the corresponding dates. As in the usual practice of data pre-processing, unknown data entries are removed or replaced by data transformation numerical operations such as averaging. Data with “T” markings were replaced by the average from their immediate neighboring cells value. It is assumed that no instrumental error was caused by the weather station instrument when the data of “0” appeared on the cells. The entire data processing and visualization were done Python programming using Jupyter Notebooks within the Anaconda development environment. (Anaconda Analytics, 2021). We demonstrate the plot generation programmatically in Python in the Appendices. (Anaconda, 2021)

Figure 1. Line plot of Malaybalay rainfall between 1961-2017

2.2 General observations from January 1961 to 2017

For the same months but 56 years apart of rainfall, the later dates show more rain and higher intensity rain events. To site, on the 16th January and 18th in 2017 is rainfall of 83.3mm and 108.4mm that when compared in 1961 on the same month and day there was only 0.0mm and 1.5mm. In 1961 the highest rainfall occurred on 29 January at 29.5mm, while for 2017, it was 108.4mm on 8 January. These were followed by more minor but still more intense than those occurring in 1961 on 28 January at 49.8mm and 74.3mm. Typhoons visit the island of Mindanao as shown by experience during the last quarter to the first quarter of the new year. (DOST PAGASA, 2021)
2.3 Descriptive Statistics of 1961-2017 Rainfall data

Calculating the descriptive statistics for the spanned years of the natural rainfall data from Malaybalay, Bukidnon, we have the following results from programmatic data processing:

Name: Rainfall	dtype: float64
count	20805
mean	7.127195
std	13.995723
25%	0.000000
50%	1.000000
75%	7.800000
max	195.900000

Table 1. Descriptive Statistics Malaybalay Rainfall

We can detect practically twice as much deviation from the mean value for the entire 56 years of rainfall. Also, at least 3/4ths of rains as the whole is around 8mm of rain, and minima occur with zero precipitation or dry periods. Probably the most decisive rain event could be as high as under 200mm. We demonstrate programmatically using Python, obtaining the descriptive statistics in the Appendices. (Anaconda, 2021)

3. TIME-SERIES AND SPATIAL ANALYSIS

3.1 Temporal series of 56-year Malaybalay Rainfall

For a rainfall analysis, both the amount of rain with their temporal component is taken into account. The dimension is in units of day rain for each year for all 56 years of the entire observation. We have shown from the previous section the basic descriptive statistics. We offer the plot of the amplitudes on successive stacks of rainfall variation with time to visualize them over several years. This is shown in Figure 1.

3.2 Test for Stationarity

When the observations in time series are not dependent on time, we say it is stationary; otherwise, it’s called non-stationary. It is also a test if our observations are consistent given the temporal structure. The most basic statistical test is the determination of the means and variances for stationarity or non-stationarity. The mean values are practically the same. Hence, Malaybalay rainfall is therefore stationary. (Brownlee, J., 2021)

| mean1=6.943857 | mean2=7.334317 |
| variance1=186.006267 | variance2=205.297065 |

Table 2. Means and Variance results from splitting data

3.3 Augmented Dickey-Fuller test for stationarity

We also made use of the so-called Augmented Dickey-Fuller test (ADF). A p-value that results from the ADF test below a threshold suggests rejecting the null hypothesis, which implies observation is stationary. Otherwise, a p-value above the threshold indicates means we failed to reject the null hypothesis, and thus it is non-stationary. Performing the ADF program, we have the following results in Table 3. The calculation is done programmatically from reading the measurement data using Python a code within the Jupyter Notebook (Augmented Dickey-Fuller Statistical Test). Calling the Autocorrelation function for the 1961-2017 Malaybalay, Rainfall data, we produced a plot in Figure 3.

ADF Statistic	-16.348964
p-value	0.000000
Critical Values	
1%	-3.431
5%	-2.862
10%	-2.567

Table 3. ADF Test Results

The p-value ≤ 0.05, we reject the null hypothesis (H0); rainfall does not have a unit root; hence, it is stationary. It does not have a time-dependent structure. (Brownlee, J., 2021)

3.4 Test for Seasonality and Periodicity

For the test for seasonality, we perform the Autocorrelation function, also called self-correlation. When the time series data show statistically significant periodicity, it is seasonal.

Figure 2. A stacked plot of Malaybalay Rainfall (1961-2017)

Figure 3. Autocorrelation of 1961-2017 Malaybalay rainfall
We can infer no significant periodicity or cycle of the same intensity across all the years, indicating no seasonality. (Proakis J., Manolakis D.G, 1995)

3.5 Spatial Visualization of 56-year Malaybalay Rainfall

For a 2D visualization of rainfall, as shown in Figure 3. Essentially the plots are 2D representations of a matrix where a column is made up of day rows, another for intensity, and generated a Gaussian interpolated heat map. These can show the intensity peaks of the month’s rainfall for every year.

Figure 4. Heat Map of a typical yearly rainfall data

Figure 5 and Figure 6 below show the specific month data’s heat map with Gaussian interpolation. Here we show the series for the years 1961 and 2017 below. Each column represents one month, with rows representing the days of the month from days 1 to 31.

Figure 5. Heat Map 1961 Figure 6. Heat Map 2017

We can further visualize the peaks of rainfall distribution in the 3D surface generation by image processing software, as shown in Figure 7 and Figure 8 (ImageJ)

Figure 7. 3D surface plot 1961 Figure 8. 3D surface plot 2017

3.6 Weather Station vs. Remote Sensed Dataset Quality

The Malaybalay 56 years of rainfall of 1961-2017 acquired and continues to this day collected by the agency PAGASA-DOST in Region X, is considered the oldest rainfall data obtained by the oldest weather station in the country. We are interested in comparing the old sensor on a mast in the ground with the newer satellite sensor over the atmosphere and extraterrestrial space. We have considered the data archive from LARC-NASA with its oldest available data as starting date. We have subsetted the years from January 1982 to December 2017 from the Malaybalay rainfall data dates to match the. We plot the histogram of the two datasets in Figure 9 below.

Figure 9. Histogram of rainfall dataset

We can see that the PAGASA-DOST rainfall histogram is practically the same as for frequency. However, the localized ground measurement data tends to spread more, reaching near 100mm, while LARC-NASA, which is remote sensed and is nearly 50mm with the integration process. For the line plots, we show both rainfall datasets we depict the matching span of years for visual comparison in Figure 10 below.

Figure 10. Weather Station Data PAGASA-DOST

Figure 11. Remote Sensed Data LARC-NASA

We show the comparison of their individual shape of distribution by deriving their Density Plot programmatically from the two dataset. We can view the density plot as the smooth version of a histogram. In the following page we show the results for the density plot for Malaybalay historical rainfall data from PAGASA-DOST collected by weather station and for a remote sensed data obtained from LARC-NASA archives. Figure 12 shows density plot for PAGASA-DOST dataset and followed by
the Figure 13 that shows the density plot for LARC-NASA. The density plots below shows LARC-NASA data have narrower base than DOST dataset and with higher density.

The result of computational tests of rainfall data of Malaybalay, Bukidnon, showed that the 56 years of rainfall is neither seasonal nor periodic. Furthermore, the examination of means and variance points to rain as being stationary. The visualization using a heat map shows no evidence of the same rainfall intensity from 1961 to 2017. Even with some indication of more significant rain in the later years that could reach under 200mm, it is not a strong case for a sign of climate change. The unavailability of the corresponding temperature on the same span of years as rainfall did permit the authors to investigate the temporal variation of temperature to support the cause of climate change detection.

REFERENCES

DOST, Department of Science and Technology, Philippine Atmospheric, Geophysical and Astronomical Services Administration (https://www.pagasa.dost.gov.ph/climate/climate-data) (20 October 2021)

Climate Change in the Philippines, DOST, Department of Science and Technology, Philippine Atmospheric, Geophysical and Astronomical Services Administration (https://www.pagasa.dost.gov.ph/information/climate-change-in-the-philippines) (20 October 2021)

PhilAtlas

Malaybalay, Province of Bukidnon (https://www.philatlas.com/mindanao/r10/bukidnon/malaybalay.html) (20 October 2021)

Anaconda

Python 3.8 64-bit (Anaconda Individual Edition Version) (https://www.anaconda.com/products/individual) (18 October 2021)

Brownlee, J., 2021: Deep Learning for Time Series Forecasting (https://machinelearningmastery.com/deep-learning-for-time-series-forecasting/) (20 October 2021)

ImageJ

64-bit Java 1.8.0 172 (Platform Independent version) (https://imagej.nih.gov/ij/download.html) (20 October 2021)

Proakis J., Manolakis D.G, 1995: Digital Signal Processing: Principle, Algorithms, and Applications. Prentice-Hall 3rd Ed.

Data Access Viewer – NASA Power (https://power.larc.nasa.gov/data-access-viewer/) (6 November 2021)

APPENDIX

Loading and checking Python modules
Reading in rainfall data

```python
In [2]: from pandas import Series
   ...: from pandas import read_csv
   ...: from matplotlib import pyplot
   ...: series = read_csv("Malayabay_Daily_Total-Rainfall_1961-2011\data\prov\csv\",
   ...:                     parse_dates=True, squeeze=True)
   ...: print(series.head())

2011-01-01  29.0
2011-01-02  16.8
2011-01-03  14.2
2011-01-04  18.1
2011-01-05  1.1
Name: RAINFALL, dtype: float64
```

Calculate the number of observations from data

```python
In [3]: # summarize the dimensions of a time series
   ...: from pandas import read_csv
   ...: series = read_csv("Malayabay_Daily_Total-Rainfall_1961-2011\data\prov\csv\",
   ...:                     parse_dates=True, squeeze=True)
   ...: print(series.shape)

count 9536.0
dtype: float64
```

Calculate descriptive statistics in Python

```python
In [4]: # calculate descriptive statistics
   ...: from pandas import read_csv
   ...: series = read_csv("Malayabay_Daily_Total-Rainfall_1961-2011\data\prov\csv\",
   ...:                     parse_dates=True, squeeze=True)
   ...: print(series.describe())

                 count    mean     std    min    25%    50%    75%     max
RAINFALL 9536.000000 25.274715 17.974072 -1.000000  5.000000 20.000000  69.000000
```

Create the historical rainfall line plot

```python
In [7]: # create a line plot
   ...: from pandas import read_csv
   ...: from matplotlib import pyplot
   ...: fig, ax = pyplot.subplots()
   ...: fig.suptitle('Historical Rainfall Plot', fontsize=14, fontweight='bold')
   ...: series.plot(ax=ax, legend=False)
```

Create stacked line plots of temporal yearly rainfall

```python
In [9]: # create stacked line plots
   ...: from pandas import read_csv
   ...: from pandas import get_dummies
   ...: from pandas import read_csv
   ...: from matplotlib import pyplot
   ...: series = read_csv("Malayabay_Daily_Total-Rainfall_1961-2011\data\prov\csv\",
   ...:                     parse_dates=True, squeeze=True)
   ...: groups = series.groupby('Freq')['Freq']
   ...: year = series['Freq']
   ...: for name, group in groups:
   ...:     group values
   ...:     years_plot=
   ...:     print(years_plot["Freq"]
```

Subsetting dates of interest from rainfall data

```python
In [4]: # query a dataset using a date-time index
   ...: from pandas import read_csv
   ...: series = read_csv("Malayabay_Daily_Total-Rainfall_1961-2011\data\prov\csv\",
   ...:                     parse_dates=True, squeeze=True)
   ...: print(series["Freq"]
```

Create a heat map of yealy rainfall data

```python
In [10]: # create a heat map of yearly data
   ...: from pandas import read_csv
   ...: from pandas import get_dummies
   ...: from pandas import read_csv
   ...: from matplotlib import pyplot
   ...: series = read_csv("Malayabay_Daily_Total-Rainfall_1961-2011\data\prov\csv\",
   ...:                     parse_dates=True, squeeze=True)
   ...: groups = series.groupby('Groups')['Freq']
   ...: years = series['Freq']
   ...: for name, group in groups:
   ...:     years = group
   ...:     print(years["Freq"]
```

Create a heat map of monthly rainfall data

```python
In [11]: # create a heat map of monthly data
   ...: from pandas import read_csv
   ...: from pandas import get_dummies
   ...: from pandas import read_csv
   ...: from matplotlib import pyplot
   ...: series = read_csv("Malayabay_Daily_Total-Rainfall_1961-2011\data\prov\csv\",
   ...:                     parse_dates=True, squeeze=True)
   ...: one_year = series['Freq']
   ...: groups = one_year.groupby('Freq')['Freq']
   ...: months = one_year['Month']
   ...: groups = groups[one_year['Freq'] == 1]
   ...: months = months[groups == 1]
   ...: print(groups)
```

Test for Stationarity by Means and Variances

```python
In [10]: # we split the rainfall data and compare their means and variances
   ...: from pandas import read_csv
   ...: series = read_csv("Malayabay_Daily_Total-Rainfall_1961-2011\data\prov\csv\",
   ...:                     parse_dates=True, squeeze=True)
   ...: group = series.groupby('Groups')['Freq']
   ...: months = series.groupby('Month')['Freq']
   ...: print(groups["Freq"]
```

Augmented Dickey-Fuller Statistical Test

```python
In [14]: # for the use case of airline passenger records
   ...: from pandas import read_csv
   ...: from statsmodels.tsa.stattools import adfuller
   ...: series = read_csv("Malayabay_Daily_Total-Rainfall_1961-2011\data\prov\csv\",
   ...:                     parse_dates=True, squeeze=True)
   ...: result = adfuller(series['Freq'])
   ...: print("ADF Statistic: %f, 1 p-value: %f, 2 p-value: %f, 3 p-value: %f, 4 p-value: %f, 5 p-value: %f"
```

Autocorrelation Function

```python
In [17]: # plot the autocorrelation of any weather variable input on the parenthesis
   ...: from matplotlib import pyplot
   ...: fig, ax = pyplot.subplots()
   ...: fig.suptitle('Autocorrelation Plot', fontsize=14, fontweight='bold')
   ...: print("autocorrelation_plot()
```

This contribution has been peer-reviewed.

https://doi.org/10.5194/isprs-archives-XLVI-4-W6-2021-71-2021 | © Author(s) 2021. CC BY 4.0 License.
Source Code for Complete Time Series Analysis Run

```python
In [55]: # Point to the ARK weather file
import pandas as pd
from pandas import read_csv

# Read the ARK data
series = read_csv('ARK_data.csv', header=0, index_col=0)

# Save the dataframe and slice for the weather variable of interest
ark_weather = series['Temperature']

# Check for stationarity
Harvey = arma.spatial.Akaike(linear, loglike='bic', q=4, k='aic')
print('Akaike: %s' % Harvey)

# ARIMA model
from statsmodels.tsa.arima_model import Arima
model = Arima(ark_weather, order=(1,1,0))
result = model.fit()
print('Result: %s' % result)
```

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI-4-W6-2021-71-2021 | © Author(s) 2021. CC BY 4.0 License.