WERE MALES BURIED WITH WEAPONS BETTER NOURISHED THAN THE OTHER PART OF THE POPULATION IN THE LA TÈNE PERIOD?

Pilot study of diet of selected individuals buried at Celtic cemetery in Dubník, district of Nové Zámky, southwestern Slovakia

Jozef Bujna – Sylva Drtikolová Kaupová – Mária Hajnalová

Carbon and nitrogen stable isotope values were measured on tissues from human individuals buried at eight graves in the Early La Tène cemetery in Dubník situated in south-west Slovakia. Collagen suitable for isotope analysis for dietary reconstruction was extracted from bone of 9 human individuals of different social status determined archaeologically by grave goods and grave arrangement. Isotope values from bone collagen obtained from six samples of pig and a cattle individual, placed within the graves, were used as a control group. The isotope data indicated that males with weapons had access to more and/or better quality foodstuffs. Their diet was richer in animal proteins than of other individuals. The results of isotope analyses support the hypothesis that the human individuals buried with different grave goods in Dubník were of different social status also during their lives and had a different access to high quality foods.

INTRODUCTION

Within a frame of a project VEGA 1/0680/16 Armament from warrior graves at the territory of Middle Danube Region as an indicator of territorial, cultural-historical and social identity of the chieftain layer of Celtic society carbon and nitrogen stable isotope analyses were carried out on a pilot collection of samples of human and animal bone tissues from the La Tène cemetery in Dubník. The aim of the analyses was two-fold. First, to test if the osteological material from the cemetery is suitable for this type of stable isotope analyses. And second, to establish whether the individuals identified by their grave goods and grave arrangement to be of different social status, had a different position in social hierarchy and different access to higher quality foods during their lives.

The pilot assemblage represents a range of inhumation burials of male, female and non-adult individuals with various grave goods, grave pit arrangement and location of the grave at the cemetery in Dubník. Sampled were three graves of males buried with weapons in above-average size burial pits situated in so-called tomb gardens (17, 18 and 19), grave of a young male buried with weapons (31), grave of a probably young male buried probably with a spear (32), grave of a female with average grave goods in superposition above a child burial (20A, B), grave of a female buried with a newborn (21) and with non-local grave goods and a burial of a non-adult individual (29) with average grave goods.

1 This study is supported by the Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences (grant project VEGA 1/0680/16) and further by the Ministry of Culture of the Czech Republic (grant number DKRVO 2019-2023/7.1.a, 00023272).
ARCHAEOLOGICAL CONTEXT

The cemetery from the Early La Tène period is situated on a high loess terrace northeast of the village of Dubník, Nové Zámky district. Rescue excavations unearthed only part of the cemetery. About 30 graves were uncovered and inventoried from other three was saved. The total extent of the cemetery could not have been detected as it lies under the vineyard located north of the excavated trenches. There were 5 cremation burials among the 33 uncovered graves. The excavations revealed eight rectangular ditches, so-called tomb gardens – viridaria, two of them interconnected (Bujna 1989). Swords occurred in eight graves. The uncovered part of the cemetery dates to stages LTB1–LTB2 (Bujna 1991).

Grave 17 (Bujna 1989, 261–263, fig. 20; 21; pl. XIIIIB; XIV–XVI; XLI: 6, 8, XLII: 5, 8, 9; XLIV: 1; XLVI: 2; XLVII: 9; XLVIII: 1, 4, 6; LIII: 3, 4; LIV: 1, 2; LVII: 3). Grave pit of average size of 1.25 x 2.1 m, depth of 0.4 m. Two graves in superposition. Grave 20 (Bujna 1989, 269 f., fig. 25; pl. XXIIA; XXIII; XLI: 1, 7; XLVIII: 9; XLIX: 5, 6). Two graves in superposition. Grave pit of average size 1.25 x 2.1 m, depth of 0.4 m.

Grave A
Buried: a 50–60 year-old woman, maturus II (Jakab/Vondráková 1989, 358). Deposited in the eastern half of the burial pit, 0.2 m deep, above the ceramic set of grave B.

Grave 18 (Bujna 1989, 263–265, fig. 22; 23; pl. XVII–XIX; XLVII: 8; XLIX: 11, 21; LIII: 4, 5). Grave pit of above-average size of 3.3 x 3.3 m, depth of 1 m, with wooden chamber construction. The grave previously opened and the skeleton as well as grave goods disturbed. The pit is situated in an area delimited by a rectangular ditch of 13.3 x 13.8 m. The tomb garden connected with another one delimiting grave 19.

Buried: a 20–30 year-old man, adultus I (Jakab/Vondráková 1989, 357). Taken sample: costa (DUB02).

Weapons: an iron sword in an iron scabbard (f. no. 9); 3 hollow iron rings – parts of the sword’s suspension system (f. no. 5–7); an iron spearhead (f. no. 9) of above-average length of 46 cm; an iron shield boss and rim (f. no. 10–14). Items of clothing: 4 iron fibulae (f. no. 10–14), from one of them only an extremely long coil spring on the axis is preserved, length of 113 mm (f. no. 4).

Items of everyday use: an iron razor (f. no. 15). Earthenware: 8 vessels (f. no. 16–23) making up a large ceramic set (c.f. Bujna 1991, 237 f.: Gruppe V, Table 4) + parts of 7 other vessels (f. no. 24–30). Animal bones (Ambros 1989, 372): domestic pig (Sus scrofa domesticus) – 2 individuals, taken samples: metapodium (DUBF01); chicken (Gallus gallus domesticus) in a wide bowl (f. no. 17); goose (Anser anser domesticus).

Grave 19 (Bujna 1989, 265–269, fig. 22; 24; pl. XX; XXI; XXII; XI: 11; XLII: 13; XLIV: 2; XLVI: 3; XLVIII: 5; XLIX: 7, 16, 17; LII: 4–6; LIV: 3–6; LVI: 6; LVII: 4, 5). Grave pit of above-average size of 3.5 x 3.5 m, depth of 1 m with wooden chamber construction. Pit situated in an area delimited by a rectangular ditch of 14.3 x 17 m.

Buried: a 50–60 year-old man, maturus II, robust figure and tall (Jakab/Vondráková 1989, 357 f.). Taken sample: costa (DUB03).

Weapons: an iron sword in an iron scabbard (f. no. 8); 3 hollow iron rings and two iron pendants – parts of the sword’s suspension system (f. no. 5–7); an iron spearhead (f. no. 9); an iron shield boss and rim (f. no. 10–15). Items of clothing: 3 iron fibulae (f. no. 1–3). Personal ornaments: a ring made of golden plate, on the right ring finger (f. no. 4).

Items of everyday use: an iron razor, iron scissors and a whetstone (f. no. 16–18). Earthenware: 5 vessels (f. no. 14; 19–21, 25) making up a ceramic set (c.f. Bujna 1991, 237; gruoppe IV, Table 4) + 2 handmadede vessels (f. no. 22, 23).

Animal bones (Ambros 1989, 372 f.): cattle (Bos taurus), taken sample: costa (DUBF02), domestic pig (Sus scrofa domesticus) – 2 individuals, taken samples: 2 x metapodium (DUBF03, DUBF04); goose (Anser anser domesticus), fish (Pisces).

Grave 20 (Bujna 1989, 269 f., fig. 25; pl. XXIIA; XXIII; XLI: 1, 7; XLVIII: 9; XLIX: 5, 6). Two graves in superposition. Grave pit of average size 1.25 x 2.1 m, depth of 0.4 m.

Grave A
Buried: a 50–60 year-old woman, maturus II (Jakab/Vondráková 1989, 358). Deposited in the eastern half of the burial pit, 0.2 m deep, above the ceramic set of grave B.
Taken sample: metacarpus (DUB04).

Items of clothing: 2 bronze fibulae (f. no. 1, 2); 3 iron fibulae (f. no. 3, 8, 9).

Personal ornaments: 2 bronze bracelets of various types, on the right and left wrists (f. no. 4; 5); 2 bronze anklets (f. no. 6, 7).

Earthenware: a vessel (f. no. 16).

Grave B

Buried: a 3–4 year-old child, infans II (Jakab/Vondráková 1989, 358 f.). Deposited on the bottom, 0.4 m deep, in the western half of the grave pit. Skeleton disturbed probably during burial A.

Taken sample: costa (DUB05).

Earthenware: 5 vessels (f. no. 10–14) making up a ceramic set (c.f. Bujna 1991, 237 n.: gruppe IV, Table 4) + sherds from a handmade vessel (f. no. 15).

Animal bones (Ambros 1989, 373): domestic pig (Sus scrofa domesticus).

Grave 21 (Bujna 1989, 270 f., fig. 26; pl. XXIV; XXVA; XLII: 2, 3; XLVII: 5; XLVIII: 1, 6; XLIX: 15, 18, 19, 22; LII: 3).

Grave pit of average size of 1.45 x 1.9 m, depth of 0.55–0.7 m.

A – buried: a 50–60 year-old woman, maturus II (Jakab/Vondráková 1989, 359).

Taken sample: metacarpus (DUB06).

B – buried: a new-born, infans I, along the outer side of the right femur of skeleton A.

Items of clothing: a bronze bracelet on the left wrist (f. no. 5); a splendid necklace: more than 90 drilled sticks of red coral, 23 vase-shaped glass beads, at least 43 globular/biconical colourless or blue glass beads, min. 1 biconical amber bead (f. no. 6–10).

Other items: 2 clay spindle whorls (f. no. 11, 12).

Earthenware: 3 vessels (f. no. 3–5) making up a small ceramic set (Bujna 1991, 236 f.: gruppe III, Table 4).

Animal bones (Ambros 1989, 373): domestic pig (Sus scrofa domesticus), taken sample: scapula (DUBF05); chicken (Gallus gallus domesticus?).

Grave 29 (Bujna 1989, 279, fig. 37; pl. XXXVIA).

Grave pit of average size of 1.5 x 1.85 m, depth of 0.5 m. Grave previously disturbed.

Buried: a 9–10 year-old child, infans III (Jakab/Vondráková 1989, 361).

Taken sample: humerus (DUB07).

Items of clothing: 1 iron fibula (f. no. 1).

Other items: a clay spindle whorl (f. no. 2).

Earthenware: 3 vessels (f. no. 3–5) making up a ceramic set (Bujna 1991, 236 f.: gruppe III, Table 4).

Animal bones (Ambros 1989, 374): domestic pig (Sus scrofa domesticus).

Grave 31 (Bujna 1989, 280 f., fig. 39; pl. XXXIII; XXXIV; XXXVIB; XLIII: 4; XLIV: 3; XLV: 4; LII: 5, 6).

Spacious burial pit of 2.2 x 2.7 m, depth of 0.8 m, with wooden chamber construction.

Buried: a 20–25 year-old man, adultus I (Jakab/Vondráková 1989, 361).

Taken sample: phalanx (DUB09).

Weapons: an iron sword in an iron scabbard decorated with a motif of a dragon lyra (f. no. 5); an iron chain (belt) for suspension of the sword (f. no. 4), an iron spearhead (f. no. 6) with above-average length of 45 cm; an iron shield boss and rim (f. no. 7–9).

Items of clothing: 3 iron fibulae (f. no. 1–3).

Items of everyday use: an iron razor, iron scissors, a whetstone (f. no. 10–12).

Other items: 4 small cramp irons (f. no. 13–16), fragment of an iron point (f. no. 17), fragment of an unidentifiable iron artifact (f. no. 18).

Earthenware: 5 vessels (f. no. 19–23) making up a ceramic set (c.f. Bujna 1991, 237: gruppe IV, Table 4) + sherds from a vessel (f. no. 24) in the grave pit's backfill.

Animal bones (Ambros 1989, 374): domestic pig (Sus scrofa domesticus), taken samples: 2 x metapodium (DUBF06, DUBF07).

Grave 32 (Bujna 1989, 281–283, fig. 40; pl. XXXV; XLI: 9; XLII: 4; LII: 4).

Burial pit of average size of 1.2 x 1.7 m, depth of 0.3 m. Grave previously disturbed.

Discrepancy in determination of the buried individual's age: 3–4 year-old child, infans II (Jakab/Vondráková 1989, 361).2

Taken sample: ulna (DUB08), comes from an older individual, probably a man of Juvenis-Adultus age (identified by: S. Drtikolová Kaupová).

Items of clothing: 5 iron fibulae (f. no. 1–5).

Personal ornaments: an iron bracelet (?; f. no. 6); an bronze ring (?; f. no. 7).

Other items: fragment of an iron socket, possibly from a spearhead (f. no. 8).

Earthenware: 7 vessels (f. no. 9–15) making up a large ceramic set (c.f. Bujna 1991, 237 f.: gruppe V; Table 4).

2 Discrepancy in age estimation: according to the sampled bone, it is an individual, probably a male in the age of Juvenis-Adultus (identified by S. Drtikolová-Kaupová); J. Jakab and M. Vondráková (1989, 361) mention a child of 3–4 years of age.
Table 1. Animal offerings in studied graves from the La Tène cemetery in Dubník.

Grave No.	Sample code	Species	Bone sampled	Yield (mg/g)	Carbon content (%)	Nitrogen content (%)	C:N	δ¹³C (‰)	δ¹⁵N (‰)
17	DUBF01	Sus scrofa dom.	metapodium	91.1	40.9	15.2	3.1	-20.3	7.2
19	DUBF02	Bos taurus	costa	134.1	43.7	16.3	3.1	-20.6	6.2
21	DUBF03	Sus scrofa dom.	metapodium	96.1	41.4	15.4	3.1	-20.0	7.5
	DUBF04								
31	DUBF06	Sus scrofa dom.	metapodium	133.2	44.5	16.7	3.1	-20.5	7.6
	DUBF07								

Table 2. Complete faunal isotope data of the pilot assemblage from the La Tène cemetery in Dubník.

Sample code	Grave No.	Species	Bone sampled	Sex	Age	Yield (mg/g)	Carbon content (%)	Nitrogen content (%)	C:N	δ¹³C (‰)	δ¹⁵N (‰)	Δ¹³Chuman-fauna	Δ¹⁵Nhuman-fauna
DUBF01	17	costa	40–50	Male	199.9	44.4	16.7	3.1	-18.5	10.9	1.7	3.6	
DUBF02	18	costa	20–30	Male	173.2	42.6	15.9	3.1	-18.4	10.3	1.8	3.0	
DUBF03	19	costa	50–60	Male	146.9	44.4	16.6	3.1	-18.2	10.7	2.0	3.4	
DUBF04	20	costa	Female	50–60	139.5	41.3	15.5	3.1	-18.1	8.6	2.1	1.3	
DUBF05	20B	metacarpus	ND	3–4	81.4	39.7	14.7	3.1	-18.4	9.4	1.8	2.1	
DUBF06	21	metacarpus	Female	50–60	203.4	43.6	16.3	3.1	-18.0	9.7	2.2	2.4	
DUBF07	29	humerus	ND	9–10	49.0	39.6	14.6	3.1	-19.0	10.3	1.2	3.0	
DUBF08	32	ulna	ND	3–4	69.7	41.2	15.4	3.1	-17.5	7.8	2.7	0.5	
DUBF09	31	falanx	Male	20–30	185.9	43.8	16.4	3.1	-18.0	10.1	2.2	2.8	

Table 3. Complete human isotope data of the pilot assemblage from the La Tène cemetery in Dubník.

Sample code	Grave No.	Bone sampled	Sex	Age	Yield (mg/g)	Carbon content (%)	Nitrogen content (%)	C:N	δ¹³C (‰)	δ¹⁵N (‰)	Δ¹³Chuman-fauna	Δ¹⁵Nhuman-fauna
DUBF01	17	costa	Male	40–50	199.9	44.4	16.7	3.1	-18.5	10.9	1.7	3.6
DUBF02	18	costa	Male	20–30	173.2	42.6	15.9	3.1	-18.4	10.3	1.8	3.0
DUBF03	19	costa	Male	50–60	146.9	44.4	16.6	3.1	-18.2	10.7	2.0	3.4
DUBF04	20A	costa	Female	50–60	139.5	41.3	15.5	3.1	-18.1	8.6	2.1	1.3
DUBF05	20B	metacarpus	ND	3–4	81.4	39.7	14.7	3.1	-18.4	9.4	1.8	2.1
DUBF06	21	metacarpus	Female	50–60	203.4	43.6	16.3	3.1	-18.0	9.7	2.2	2.4
DUBF07	29	humerus	ND	9–10	49.0	39.6	14.6	3.1	-19.0	10.3	1.2	3.0
DUBF08	32	ulna	ND	3–4	69.7	41.2	15.4	3.1	-17.5	7.8	2.7	0.5
DUBF09	31	falanx	Male	20–30	185.9	43.8	16.4	3.1	-18.0	10.1	2.2	2.8
ARCHAEOBOTANICAL DATA ON AVAILABLE PLANT FOODS FROM THE REGION

The picture on plant foods available to people buried in Dubník in La Tène period can be drawn only from data available from other sites in the region (Hajnalková 1989, 21–25, 88–92). The main staple crops for human consumption during the La Tène period in south-western Slovakia were cereals and pulses from C3 group. The most common in archaeological records are emmer (Triticum dicoccum), freethreshing wheat (Triticum aestivum/durum/turgidum) and barley (Hordeum vulgare). Less numerous in finds are spelt (Triticum spelta), einkorn (Triticum monococcum) and oat (Avena sativa). Finds of millet (Panicum miliaceum), the only C4 crop are documented regularly, but, in low quantities. The legumes, like the pea (Pisum sativum), lentil (Lens culinaris) and broad bean (Vicia faba) are also less common in archaeobotanical finds.

The less frequent occurrence of millet and legumes in the archaeological contexts from the La Tène period does not necessarily indicate their less important role in the diet. It can be a result of different method of food preparation (cooking in water, not baked in fire), or storage practices (in ceramic vessels) which prevent their direct contact with fire, thus lower chance of becoming charred and preserved in archaeological record.

SAMPLING AND METHOD

Sampling of human and animal skeletal material was carried out in the Department of documentation and research depositories of the Institute of Archaeology of Slovak Academy of Sciences in Nitra, where the material is deposited. The pilot assemblage consists of 9 human and 7 animal bone tissue samples. Human samples were taken from 8 graves and animal samples were taken from 4 graves (Table 1).

Collagen for the isotope analysis was extracted by the method according to R. Longin (1971) modified according to H. Bocherens (1992) from 9 samples of human bone tissue and from 7 samples of fauna in the laboratory of the Anthropology Department of the National Museum in Prague. As for humans, preferably ribs were sampled – 4 individuals. In case of absence of ribs, tubular bones of upper or lower limb were sampled in 3 cases – metacarpal bones, phalanges and in two cases long bones were used – ulna and humerus (Table 3). As for animal samples, various bones were used – metapodium, rib and scapula (Table 2).

All 16 samples provided sufficient ammount of collagen for isotope measurements and also met the criteria of well preserved sample with collagen yield exceeding 10mg/g (Van Klinken 1999). Elemental analyses were performed using a Europa Scientific EA elemental analyser connected to a Europa Scientific 20–20 IRMS for carbon and nitrogen isotope analysis at Iso-Analytical Limited, Crewe (UK). The standard deviation at repeated measurements using several laboratory standards (IA-R042: beef liver, L-alanin, IA-R006: cane sugar and IA-R046: ammonium sulphate) was less than 0.1 ‰ for both δ13C and δ15N. These standards verify the exactness of measuring and calibrate the values with regard to internationally accepted standards provided by the International Atomic Energy Agency in Vienna. All analysed samples satisfied the requirements for good preservation, as far as the content of nitrogen, carbon and their ration within the defined intervals (DeNiro 1985; Van Klinken 1999) are concerned.

ISO TOPE ANALYSIS OF DIET

Isotope values of the animals

Isotope values of the animals (N = 7, δ13C = -20.2 ± 0.4; δ15N = 7.3 ± 0.5) show values typical of terrestrial environment based on C3 plants (Fig. 1; Table 2). These values are similar to the archaeological sites of early medieval Great Moravia (Table 4). Values of stable carbon isotopes (δ13C) are – identically with Great Moravia – slightly higher compared to the sites from the region of Bohemia. This phenomenon fits in the wider context of Central Europe and probably reflects the natural variability of the environment. Values of stable nitrogen isotopes are again slightly higher compared to other sites. This is probably caused
by the fact that the animals are (with one exception) exclusively pigs. As omnivores, they often show higher values compared to herbivores, depending on specific farming practices (Hammond/O’Connor 2013). When comparing nitrogen isotope values ($\delta^{15}N$) in the group of pigs only, the average values are similar in all collections from the Czech Republic and Slovakia. The isotope values of pigs from Dubník show – compared to other sites – a relatively low variability, which could point to uniform practices of breeding at the site. Confirmation of this hypothesis would, however, need a considerably higher number of individuals. With regard to the fact that in two cases the isotope values of bones from the same grave are almost identical (samples DuBF03 and DuBF04 from grave 19 and DuBF06 and DuBF07 from grave 31), we cannot exclude multiple sampling of bones from the same individual. However, due to the presence of an archaeozoologist at the sampling and sampling of the same bone (metapodium), this possibility can be ruled out.

Interpretation of the isotope values of the human assemblage included comparison of human data with the comparative collection of animals ($\Delta_{human-fauna}$) and modelling of quantitative dietary estimates using statistical software FRUITS 3.0 (Fernandes et al. 2014). With the software, it is possible to estimate the percentages of individual isotopically distinct foodgroups in the diet. In our case, we took four groups of food into consideration: C3 plants, C4 plants, terrestrial animals (includes meat and milk) and freshwater fish. Faunal data from Dubník were used in the modelling process to define the

Table 4. Faunal isotope data (average of ±1 SD) from the site of Dubník in comparison with values from archaeological sites in the territory of the Czech Republic.

Site/context	Dating	Cattle	Pig	Sheep/Goat							
	N	$\delta^{13}C$	$\delta^{15}N$	$\delta^{13}C$	$\delta^{15}N$	$\delta^{13}C$	$\delta^{15}N$	References			
Slowakia Dubník	La Tène	1	-20.6	6.2	6	-20.2±0.4	7.5±0.2		This study		
Switzerland Basel	La Tène	10	-19.7±1.0	6.8±1.0	11	-20.3±0.4	7.5±1.3		Kaupová et al. 2018		
Czechia Kutná Hora, Radovesice	La Tène	1	-21.0	5.2	1	-20.8	5.8		Le Huray/Schutkowski 2005		
Praha, Levý Hradec	9th–11th c. AD	6	-20.8±0.3	6.6±1.3	6	-20.7±0.7	7.2±1.7	4	-21.1±0.5	6.0±1.3	Kaupová et al. 2019

Table 5. Basic statistics of the human sample from the site of Dubník.

N	$\delta^{13}C$ (%)	$\delta^{15}N$ (%)							
All individuals	9	-18.2	-18.4 to -18.0	-19.0 to -17.5	2.0	10.1	9.4 to 10.3	7.8 to 10.9	2.5
Subadults	3	-18.4	-18.7 to -18.0	-19.0 to -17.5	1.9	9.4	8.6 to 9.8	7.8 to 10.3	1.9
All adults	6	-18.2	-18.3 to -18.1	-18.5 to -18.0	2.0	10.2	9.8 to 10.6	8.6 to 10.9	2.8
Males with weapons	4	-18.3	-18.4 to -18.2	-18.5 to -18.0	1.9	10.5	10.3 to 10.8	10.1 to 10.9	3.2

Table 6. Human isotope data (average of ±1 SD) from the site of Dubník in comparison with the other sites in the Central European context.

Context	Site	Dating	N	$\delta^{13}C$	$\delta^{15}N$	$\Delta^{13}C_{human-fauna}$	$\Delta^{15}N_{human-fauna}$	References
Slowakia	Dubník	La Tène	9	-18.2±0.4	9.8±1.0	2.0	2.5	This study
Switzerland	Basel (adults only)	La Tène	53	-19.2±1.1	9.2±0.8	2.2	2.7	Knipper et al. 2016
Czechia	Kutná Hora, Radovesice	La Tène	65	-18.9±0.7	9.7±0.7	2.2	3.6	Le Huray/Schutkowski 2005
isotope composition of the group of terrestrial animals. For other foodgroups, data obtained from literature for the region of Central Europe were used. For these values and other parameters of the model (c.f. Kaupová et al. 2019).

Isotope values of the human assemblage

Isotope values of the human assemblage (N = 9) and their differences in comparison with the assemblage of animals (Δhumans-fauna) point to food of terrestrial origin, on the border of detectable consumption of C4 plants, i.e. in the Central European context of millet (Fig. 1; Table 3; 5). In general, in groups with significant consumption of millet in the diet, Δ13Chumans-fauna above 2 ‰ is observed; thus, our assemblage is just on the limit.

The relatively low values of δ15N and Δ15Nhumans-fauna which are about 2.5 ‰ in the assemblage from Dubník, practically exclude possible considerable consumption of fish (either freshwater or sea species).3 Actually, the value of 2.5 ‰ is relatively low and thus shows a limited share of animal products in the diet and potentially the consumption of legumes. Similar values (Table 6) were observed with the La Tène population of Switzerland (Knipper et al. 2016). At the Czech sites of Kutná Hora and Radovesice, a higher value of Δ15Nhumans-fauna is observed, but it must be emphasized that for the above mentioned study, only two animals were sampled and possibly not the full variability of the assemblage had been detected. The relatively low value of Δ15Nhumans-fauna in our assemblage can also be influenced by the fact that – with one exception – only pigs were sampled.

Comparison of human isotope values by age and gender (Fig. 2) shows a higher proportion of animal products in the diet of males than females and sub-adults. Isotope values for males are relatively homogeneous and manifest higher nitrogen isotope values. Number of studied individuals is very low, to test the difference statistically. Given that in all four cases the graves of males contain also warrior equipment, it cannot be clarified, whether their isotope exclusivity is due to their gender or their social status.

3 Fish bones presented by C. Ambros (1989, 372) from graves 18 and 19 were not found during sampling.
QUANTITATIVE DIET RECONSTRUCTION

Results of the quantitative estimation of the diet of the studied population group (Fig. 3) confirm the above mentioned conclusions. Despite the rather wide confidence intervals, most of the consumed foods were of plant origin. The average estimation of millet consumption in the studied population group makes 18% of the consumed food. For animal products (meat and milk), the average value of the model is 12%, however, we must mention that mainly in this category of food, the confidence interval is wide, with regard to the isotope similarity with plant group C3. On the contrary, low confidence intervals are observed in case of fish which were consumed only marginally (the average value of the model is 2%, FRUITS, however, cannot count with zero representation of the given food group). These estimations must be only regarded as approximate, since most reference values for individual groups of food were obtained from literature and the fauna assemblage is small, with uneven shares of species.

DISCUSSION

Although not all animal bones in the grave context can be associated with food offerings, many of them can be regarded as such on the basis of selection of type and quality of meet and of place and way of deposition in the grave. For instance, in most cases of animal bone remains in Hallstatt tumuli from Dunajská Lužná, Nové Košariská, Senec district, P. Kmetová (2017b, 149) assumes their function of food, also with regard to their arrangement in the grave and relation with small and larger ceramic bowls. Within the short extent of this pilot study, it is not possible to pay more attention to this topic which has been widely discussed in archaeological literature in the last two decades (c.f. e. g. Stadler 2010 and the review Gramsch 2013).

Bones of domestic pig (Sus scrofa domesticus) occurred in all graves of the studied part of the cemetery in Dubník (Ambros 1989, 372, pl. I; Bujna 1991, 240, table 5) with the exception of grave 2 – it is a double grave of a 40–50 year-old male, maturus I and a 12–13 year-old individual (Jakab/Vondráková 1989, 355). Complete individuals of pig were deposited only in four inhumation burials (17, 19, 28 and 31), while in graves 17 and 19, there were two individuals. To these four burial complexes, two severely disturbed graves 18 and 24 can be added, where almost complete individuals of pig were detected. The above mentioned 6 graves have the richest grave goods from all graves at the cemetery. Four of them (graves 17, 18, 19 and 31) are graves of men buried with complete armament (sword, spearhead and shield).

This discovery corresponds with observations of C. Ambros (1985, 158) at the LaTène cemetery at the site of Palárikovo-Dolný Kerestúr, Nové Zámky district, where out of 65 graves containing meat offerings only four (graves 58, 59, 62 and 86) contained complete individuals of pig. They are graves with rich grave goods and chamber wooden construction; one of the graves was situated in a tomb garden (Benadik 1975, 98). Only smaller pieces of various body parts of pig were deposited in graves with average grave goods – usually those with a smaller quantity of edible meat. We can agree with the notion of C. Ambros (Ambros 1985, 158) that they represented symbolic grave goods, mainly heads of pigs.

Parts of cattle (Bos taurus) were in Dubník included among grave goods of only one man buried with a golden ring and complete armament in grave 19 and a woman buried with rich grave goods in grave 28. Both graves were situated in tomb gardens. The male grave 19 contained bigger and more meaty parts, while the female grave 28 contained considerably smaller pieces (Ambros 1989, 372, grave 19: f. no.
26 and 374; grave 28: f. no. 23). Occurrence of meat from cattle is much rarer in La Tène graves than meat from domestic pig, as follows from the review in the catalogue of animal offerings in La Tène graves in Slovakia (Ambros 1984).

On the basis of this short review, we assume that the quality and mass of meat as grave goods – especially cattle but also domestic pig – represented a significant symbol of social status in the La Tène period. N. Müller-Scheefel and P. Trebsche (2007, 80 ff., fig. 10) analysed Hallstatt graves in Central Europe and arrived to a similar conclusion, that females in general were given less meat to their graves than males. Similar results were obtained by J. Stadler (2010, 72), who analysed an extensive complex of graves from the western Hallstatt sphere from the territory of Baden-Württemberg and Bavaria. Meat offerings were added in a half of male burials, but only a third of the buried females – and only in smaller volumes. As for males, the meat was mainly from pig, as for women, it came mainly from small ruminants. Graves of males buried with weapons and wagons contained – with no exception – meat offerings. Also P. Kmeťová (2017a) analysed animal offerings from Hallstatt graves of social elites from the Eastern Alpine sphere and discovered differences in choices of animal species, volume and selection of deposited parts of meat.

Among works dealing with isotope reconstruction of diet, diversity of food conditioned by social status was stated also by J. D. Le Huray and H. Schutkowski (2005, 144 f., fig. 6). They note that males buried with weapons at the La Tène cemetery at the site of Kutná Hora-Karlov in Central Bohemia, had more positive δ15N values than the rest of male population. According to the cited authors, it suggests that the differences in food in the male group could have been conditioned by social status, which was also expressed by weapons added to grave goods. Identically, the population buried at the La Tène cemetery in Münsingen-Rain, Bern Canton, Switzerland, revealed differences in nutrition of males whose diet was richer in animal proteins (Moghaddam/Müller/Lösch 2018, 1082; Moghaddam et al. 2016).

CONCLUSION

The stable isotope studies of carbon and nitrogen indicate that consumption of food was much more important for prehistoric societies than just a satisfaction of existential needs. Rules related to diet and processing of food were different depending on gender, age and gender status. Thus, food was a significant social determinant and played an important role in creation of a group identity.

Increased nitrogen isotope values (δ15N) observed in males buried with weapons point to higher levels of animal proteins in their diet, which suggests that access to meat and/or dairy products could have been affected by other factors than simple availability. Several studies (Le Huray/Schutkowski 2005; Moghaddam/Müller/Lösch 2018; Moghaddam et al. 2016; Müller-Scheefel/Trebsche 2007; Stadler 2010) show differences in nitrogen isotope values (δ15N) between individuals, locations and phases of the Iron Age in Central Europe and they suggest differences in access to animal proteins, which could be associated with social status.

Based on results of isotope data from our pilot study, we make a justified assumption that larger amounts of meat placed in graves of males buried with armament is not only a specific feature of the burial rite but also reflects a different diet during their lives. The number of studied individuals is, however, too small to verify the observed difference statistically. Currently, further analyses of human and animal bones from other sites in south-western Slovakia – another 16 individuals from the site of Dubník, altogether 24 individuals from 33 studied graves; 25 individuals from the La Tène cemetery in Malé Kosihy, Nové Zámky district, with 102 studied graves (Bujna 1995) and 20 individuals from the La Tène cemetery in Paláríkovo, Nové Zámky district, with 94 studied graves (unpublished) – are being carried out. We hope that new results will reveal prevalece of the results of this pilot study.

Acknowledgements
The team of authors would like to express their gratitude to:
the directorate of the Institute of Archaeology of SAS in Nitra for providing osteological material for sampling and for agreement with publication of results of analyses;
our colleagues Mgr. Zora Bielichová and RNDr. Július Jakab, CSc. from the Institute of Archaeology of SAS for their help at sampling.

Translated by Mgr. Viera Tejbusová
REFERENCES

Ambros 1984
C. Ambros: Katalog der Tierbeigaben aus der hallstattzeitlichen, latènezeitlichen und frühmittelalterlichen Gräbern in der Slowakei. Acta Interdisciplinaria Archaeologica 3. Nitra 1984, 8–85.

Ambros 1985
C. Ambros: Tierbeigaben in latènezeitlichen Gräbern in Palárikovo-Dolný Kestur. Slovenská archeológia 33, 1985, 153–764.

Ambros 1989
C. Ambros: Tierbeigaben in den latènezeitlichen Gräbern von Dubník. Slovenská archeológia 37, 1989, 371–376.

Benadik 1975
B. Benadik: Besonders angelegte Gräber auf keltischen Gräberfeldern der Slowakei und ihre gesellschaftliche Bedeutung. Ausgrabung des Gräberfeldes in Palárikovo und sein Charakter. Alba Regia 14, 1975, 97–106.

Bocherens 1992
H. Bocherens: Biogéochimie isotopique (13C, 15N, 18O) et paléontologie des vertébrés: applications à l’étude des réseaux trophiques révolus et des paléoenvironnements. Doctoral thesis (Université Paris IV), Paris 1992. Unpublished.

Bujna 1989
J. Bujna: Das latènezeitliche Gräberfeld bei Dubník. I. Slovenská archeológia 37, 1989, 249–354.

Bujna 1991
J. Bujna: Das latènezeitliche Gräberfeld bei Dubník. II. Analyse und Auswertung. Slovenská archeológia 39, 1991, 221–255.

Bujna 1995
J. Bujna: Malé Kosihy – laténezeitliches Gräberfeld. Katalog. Nitra 1995.

DeNiro 1985
M. J. De Niro: postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 1985, 806–809.

Fernandes et al. 2014
R. Fernandes/A. R. Millard/M. Brabec/M. J. Nadeau/P. Grootes: Food reconstruction using isotope transferred signals (FRuITS): a Bayesian model for diet reconstruction. PLoS One 9:e87436, 2014. https://doi.org/10.1371/journal.pone.0087436

Gramsch 2013
A. Gramsch, recenzia: J. Stadler: nahrung für die Toten? Speisebeigaben in hallstattzeitlichen Gräbern und ihre kulturhistorische Deutung. Universitätsforschungen zur Prähistorischen Archäologie 186. Germania 91, 2013, 223–226.

Hajnalová 1989
E. Hajnalová: Súčasné poznatky z archeobotaniky na Slovensku. Acta interdisciplinaria Archaeologica 6. Nitra 1989, 3–192.

Hammond/O’Connor 2013
C. Hammond/T. O’Connor: Pig diet in medieval York: carbon and nitrogen stable isotopes. Archaeological and Anthropological Sciences 5, 2013, 123–127.

Jakab/Vondráková 1989
J. Jakab/M. Vondráková: Ergebisse der anthropologischen Analyse des latènezeitlichen Gräberfeldes in Dubník. Slovenská archeológia 37, 1989, 355–370.

Kaupová et al. 2018
S. Kaupová/P. Velemínský/E. Herrscher/V. Sládek/J. Macháček/L. Poláček/J. Brůžek: Diet in transitory society: isotope analysis of medieval population of Central Europe (ninth–eleventh century AD, Czech Republic). Archaeological and Anthropological Sciences 10, 2018, 923–942.

Kaupová et al. 2019
S. Kaupová/P. Velemínský/P. Stránská/M. Bravermanová/D. Frolíková/K. Tomkova/J. Frolík: Dukes, elites, and commoners: dietary reconstruction of the early medieval population of Bohemia (9th–11th Century AD, Czech Republic). Archaeological and Anthropological Sciences 11, 2019, 1887–1909.

Kmeťová 2017a
P. Kmeťová: Animals to honour the ancestors: on animal depositions in barrows of the northeast Alpine Hallstatt region. In: R. Schumann/S. van der Vaart-Verschoof (eds.): Elites and Regions. Perspectives on contacts, relations and differentiation during the Early Iron Age Hallstatt C period in Northwest and Central Europe. Hamburg 2017, 67–84.

Kmeťová 2017b
P. Kmeťová: Gulaš či stehienko? Zvieracie kostrové zvýšky z halštatských mohýl v Dunajskoj Lužnej-Nových Košarískách ako doklad mášitej stravy? In: N. Beljak Pažínová/Z. Borzová (red.): Sedem decénií Petra Romsauera. Supplementum – memorándum číslo čtyřicet pět é rovněž početné úmluvené řádné radu prof. Petra Romsauera. Nitra 2017, 137–154.

Knipper et al. 2016
C. Knipper/S. Pichler/H. Rissanen/B. Stopp/M. Kühn/N. Spichtig/B. Röder/J. Schibler/G. Lassau/K. Alt, Kurt: What is on the menu in a Celtic town? Iron Age diet reconstructed at Basel-Gasfabrik, Switzerland. Archaeological and Anthropological Sciences 9, 2016, 1307–1326.

Le Huray/Schutkowski 2005
J. D. Le Huray/H. Schutkowski: Diet and social status during the La Tène period in Bohemia: carbon and nitrogen stable isotope analysis of bone collagen from Kutná Hora-Karlov and Radovesice. Journal of Anthropological Archaeology 24, 2005, 135–147.
Boli muži pochovaní s výzbrojou lepšie živení než ostatná časť populácie v dobe laténskej?

Pilotná štúdia stravy vybraných jedincov pochovaných na keltskom pohrebisku v Dubníku, okres Nové Zámky, juhozápadné Slovensko

Jozef Bujna – Sylva Drtikolová Kaupová – Mária Hajnalová

Súhrn

V pilotnej štúdii projektu, zameraného na izotopové analýzy potravy pochovaných na laténskych pohrebiskách z juhozápadného Slovenska, je testovaná pracovná hypotéza, či pochovaní s rozdielnou pohrebnou výbavou a úpravou hrobu mali aj za života rozdielny sociálny status, ktorý sa okrem iného mohol prejavit tiež v rozdielnom prístupe k hodnotnejšej strave. Reprezentatívnu vzorku tvorí deväť vzoriek ľudského a sedem vzoriek zvieracieho kostného tkaniva z ôsmich kostrových hrobov z keltského pohrebiska v Dubníku, okres Nové Zámky (tabela 1). Z počtu 33 hrobov odkrytých záchranným výskumom na tejto lokalite bolo iba päť kremacného ritu (Bujna 1989). Meč sa vyskytol v ôsmich hroboch. Odkrytá časť pohrebiska patri do stupnja LTB1 až do staršej fázy stupnja LTB2 (Bujna 1991).

Reprezentatívnu vzorku tvoria tri hroby mužov (17, 18 a 19) pochovaných s výzbrojou v nadpriemerne veľkých hrobových jamách, situovaných v priestoroch ohraničených štvorholníkovými žľabmi, ktoré zvieracie kostrové zástupnosti k súčasnému pohrebisku. Viridaria, dalej hrob mladého muža (31) pochovaného s výzbrojou, hrob pravdepodobne mladého muža (32) pochovaného v evoluciónne prístupom s kopíovou, hrob štyroch (20A) s priemernej výbavou v superpodiel na hroboch, ktoré sú v mnohotvárnosti. Pilotná vzorka teda reprezentuje škálu kostrových hrobov mužských, ženských a nedospelých jedincov napríek rozmanitosti ich pohrebného ritu, úpravom hrobových jamí a umiestneniu hrobu na pohrebisku.

Obraz o rastlinnej stravnej potrave dostupnej pre ľudí pochovaných v Dubníku v dobe laténskej môže čerpať iba z údajov dostupných na iných miestach v regióne (Hajnalová 1989, 21–25, 88–92). Základnými plodinami pre ľudskú spotrebu počas doby laténskej na juhozápadnom Slovensku boli obilniny a strukoviny zo skupiny C3 rastlín. Najčastejšie sa v archeologických nálezoch vyskytuje pšenica (Triticum dicoccum), zriedkavejšie Triticum aestivum/durum/turgidum) a jačmen. Menej početne zastúpená je pšenica špaldová (Triticum spelta), pšenica jednozrnná (Triticum monococcum) a ovos siaty (Avena sativa). Nálezy prosa siateho (Panicum miliaceum), jedinej plodiny zo skupiny C4 rastlín, sú v archeologických nálezoch doložené pravidelne, ale v malom množstve. Strukoviny ako hrach (Pisum sativum), šošovica (Lens culinaris) a bôb konský (Vicia faba) sú v archeobotanických nálezoch tiež menej bežné. Menej častý výskyt prosa a strukovín v archeologických kontextoch z doby laténskej nemusí nevyhnutne naznačovať ich menej dôležité úlohu v strave. Može to byť dôsledkom odlišných spôsobov prípravy potravín (varenie vo vode, nepečené
v ohni) alebo skladovacích postupov (v keramických nádobách), ktoré zabraňujú priamoj kontaktu s ohňom a tým znížujú pravdepodobnosť spálenia a uchovania v archeologických prameňoch.

Isotopová analýza bola uskutočnena v laboratórií antropologického oddelenia Národného múzea v Prahe, kde bol extrahovaný kolagén, jednak v laboratóriu Iso-Analytical Ltd., Crewe, Velská Británia, kde boli vyhotovené isotopové merania (EA-IRMS). Isotopové hodnoty súboru zvierat (N = 7, δ13C = -20,2 ± 0,4; δ15N = 7,3 ± 0,5) vykazujú hodnoty typické pre suchozemské prostredie založené na C3 rastlinách (obr. 1; tabela 2). Tieto hodnoty sú obdobné ako v prípade lokalít archeologických základí v východnom Slovensku (tabela 4).

Interpretácia isotopových hodnôt ľudského súboru sa zaoberala porovnanie cudzích dát s komparatívnym súborom zvierat (Δ15N = -0,1). Prípady s väčšou hodnotou Δ15N boli považované za skupinu S, prípady s menšou hodnotou Δ15N boli považované za skupinu K a porovnanie s manželskými dvojicami v rámci populácie (Stadler 2010) ukazuje, že distribúcia Δ15N je typická pre východnú Európu.

Interpretácia cudzích dát sa zaoberala porovnanie cudzích dát s komparatívnym súborom zvierat (Δ15N = -0,1). Prípady s väčšou hodnotou Δ15N boli považované za skupinu S, prípady s menšou hodnotou Δ15N boli považované za skupinu K a porovnanie s manželskými dvojicami v rámci populácie (Stadler 2010) ukazuje, že distribúcia Δ15N je typická pre východnú Európu.
Na základe výsledkov izotopovej analýzy výživy z nášho pilotného súboru môžeme vysloviti opodstatnený predpoklad, že väčšie množstvo mäsa, ktoré dostávali do hrobu muži pochovaní s výzbrojou, nepredstavuje iba špecifický znak pohrebného rituálu, ale odráža rozdielny spôsob výživy počas života. Počet jedincov je však príliš malý na to, aby bolo možné pozorovany rozdiel overiť štatisticalky. V súčasnosti prebiehajú ďalšie analýzy ľudského a zvieracieho kostroveho materiálu z ďalších lokalít z juhoväčadného Slovenska, konkrétne 16 jedincov z lokality Dubník, sumárne 24 jedincov z 33 preskúmaných hrobov; 25 jedincov z laténskeho pohrebiska Malé Kosihy, okres Nové Zámky, preskúmaných 102 hrobov (Bujna 1995), a 20 jedincov z laténskeho pohrebiska Palárikovo, okres Nové Zámky, preskúmaných 94 hrobov (nepublikované). Nádejame sa, že nové výsledky odhalia platnosť výsledkov tejto pilotnej štúdie.

Obr. 1. Ľudské a zvieracie izotopové dáta pilotného súboru z laténskeho pohrebiska v Dubníku.
Obr. 2. Ľudské izotopové dáta pilotného súboru z laténskeho pohrebiska v Dubníku podľa pohlavia a veku.
Obr. 3. Modelovaný odhad zloženia potravy populácie skupiny z Dubníka. Boxy predstavujú 16 a 84 percentilov (68 % dát) a úsečky 2,5 a 97,5 percentilov (95 % dát) pre prínos každejho zdroja potravy. Plné čiary znázorňujú priemerné a prerušované čiary stredné hodnoty.

Tabela 1. Zvieracie prídavky v analyzovaných hroboch z laténskeho pohrebiska v Dubníku.
Tabela 2. Zočetné zvieracie izotopové dáta pilotného súboru z laténskeho pohrebiska v Dubníku.
Tabela 3. Zočetné ľudské izotopové dáta pilotného súboru z laténskeho pohrebiska v Dubníku.
Tabela 4. Zvieracie izotopové dáta (priemerná hodnota ± 1 SD) z lokality Dubník v porovnaní s hodnotami z arheo-
logických lokalít na území Českej republiky.
Tabela 5. Základná štatistika ľudských vzoriek z laténskeho pohrebiska v Dubníku.
Tabela 6. Ľudské izotopové dáta (priemerná hodnota ± 1 SD) z lokality Dubník v porovnaní s ďalšími lokalítami
v stredoeurópskom kontexte.

prof. Jozef Bujna, CSc.
Katedra archeológie
Filozofická fakulta UKF v Nitre
Hodžova 1
SK – 949 74 Nitra
jbujna@ukf.sk

Mgr. Sylva Drtikolová Kaupová, Ph.D.
Antropologické oddelení
Přírodovědecké muzeum
Cirkusová 1740
CZ – 193 00 Praha 9, Horní Počernice
sylva_kaupova@nm.cz

doc. Mgr. Hajnalová Mária, Ph.D.
Katedra archeológie
Filozofická fakulta UKF v Nitre
Hodžova 1
SK – 949 74 Nitra
mhajnalova@ukf.sk
