Ultrasound-guided vs endoscopic ultrasound-guided fine-needle aspiration for pancreatic cancer diagnosis

Masato Matsuyama, Hiroshi Ishii, Kensuke Kuraoka, Seigo Yukisawa, Akiyoshi Kasuga, Masato Ozaka, Sho Suzuki, Kouichi Takano, Yuko Sugiyama, Takao Itoi

Masato Matsuyama, Hiroshi Ishii, Kensuke Kuraoka, Seigo Yukisawa, Akiyoshi Kasuga, Masato Ozaka, Sho Suzuki, Kouichi Takano, Department of Gastroenterology, Cancer Institute Hospital, Tokyo 135-8550, Japan
Yuko Sugiyama, Department of Gynecology, Cancer Institute Hospital, Tokyo 135-8550, Japan
Takao Itoi, Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo 160-0023, Japan

Author contributions: Matsuyama M and Ishii H performed most of the examinations; Kuraoka K, Yukisawa S, Kasuga A, Ozaka M, Suzuki S and Takano K managed the patients; Sugiyama Y supported the cytopathology; Matsuyama M, Ishii H and Itoi T wrote the paper.

Correspondence to: Masato Matsuyama, MD, PhD, Department of Gastroenterology, Cancer Institute Hospital, 3-8-31, Ariae, Koto-ku, Tokyo 135-8550, Japan. mahsanmahsan2000@yahoo.co.jp
Telephone: +81-3-35200111 Fax: +81-3-35700111
Received: December 9, 2012 Revised: January 23, 2013 Accepted: February 5, 2013 Published online: April 21, 2013

Abstract

AIM: To clarify the effectiveness and safety of endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) for the diagnosis of pancreatic cancer (PC).

METHODS: Patients who were diagnosed with unresectable, locally advanced or metastatic PC between February 2006 and September 2011 were selected for this retrospective study. FNA biopsy for pancreatic tumors had been performed percutaneously under extracorporeal ultrasound guidance until October 2009; then, beginning in November 2009, EUS-FNA has been performed. We reviewed the complete medical records of all patients who met the selection criteria for the following data: sex, age, location and size of the targeted tumor, histological and/or cytological findings, details of puncture procedures, time from day of puncture until day of definitive diagnosis, and details of severe adverse events.

RESULTS: Of the 121 patients who met the selection criteria, 46 had a percutaneous biopsy (Group A) and 75 had an EUS-FNA biopsy (Group B). Adequate cytological specimens were obtained in 42 Group A patients (91.3%) and all 75 Group B patients (P = 0.0192), and histological specimens were obtained in 41 Group A patients (89.1%) and 65 Group B patients (86.7%). Diagnosis of malignancy by cytology was positive in 33 Group A patients (78.6%) and 72 Group B patients (94.6%) (P = 0.0079). Malignancy by both cytology and pathology was found in 43 Group A patients (93.5%) and 73 Group B (97.3%) patients. The mean period from the puncture until the cytological diagnosis in Group B was 1.7 d, which was significantly shorter than that in Group A (4.1 d) (P < 0.0001). Severe adverse events were experienced in two Group A patients (4.3%) and in one Group B patient (1.3%).

CONCLUSION: EUS-FNA, as well as percutaneous needle aspiration, is an effective modality to obtain cytological confirmation in patients with advanced PC.

© 2013 Baishideng. All rights reserved.

Key words: Endoscopic ultrasound-guided fine needle aspiration; Percutaneous needle aspiration; Pancreatic cancer

Matsuyama M, Ishii H, Kuraoka K, Yukisawa S, Kasuga A, Ozaka M, Suzuki S, Takano K, Sugiyama Y, Itoi T. Ultrasound-guided vs endoscopic ultrasound-guided fine-needle aspiration for pancreatic cancer diagnosis. World J Gastroenterol 2013; 19(15): 2368-2373 Available from: URL: http://www.wjgnet.com/1007-9327/full/v19/i15/2368.htm DOI: http://dx.doi.org/10.3748/wjg.v19.i15.2368

© 2013 Baishideng. All rights reserved.

Key words: Endoscopic ultrasound-guided fine needle aspiration; Percutaneous needle aspiration; Pancreatic cancer

Matsuyama M, Ishii H, Kuraoka K, Yukisawa S, Kasuga A, Ozaka M, Suzuki S, Takano K, Sugiyama Y, Itoi T. Ultrasound-guided vs endoscopic ultrasound-guided fine-needle aspiration for pancreatic cancer diagnosis. World J Gastroenterol 2013; 19(15): 2368-2373 Available from: URL: http://www.wjgnet.com/1007-9327/full/v19/i15/2368.htm DOI: http://dx.doi.org/10.3748/wjg.v19.i15.2368
INTRODUCTION

Pancreatic cancer (PC) is currently the fifth leading cause of cancer-related mortality in Japan. Although complete surgical removal of the tumor is the only chance of cure, almost all PC patients are initially diagnosed as having advanced unresectable disease despite recent improvements in diagnostic techniques. In recent decades, techniques were developed to obtain proof of cancer from the primary tumor in PC patients. Pancreatic juice cytology via endoscopic retrograde pancreatography was initially developed to meet this challenge; however, in practical settings the positive rate for cancer cells has remained low, indicating the presence of false-negative results. Ultrasound-guided fine-needle aspiration (US-FNA) biopsy appears to provide a more definitive diagnosis of PC. US-FNA is convenient but its usefulness is limited for masses in the pancreatic tail. In contrast, CT-guided FNA is the biopsy procedure of choice to assess pancreatic lesions. However, this technique is time-consuming and is limited by a substantial false-negative rate of approximately 20%. In addition, there have been concerns about percutaneous cancer seeding. Recently, endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) has been developed as a more feasible method to obtain definitive specimens for cytological and/or histological examinations for diagnosis of PC. Three years ago, we began to perform EUS-FNA although until that time US-FNA was the standard technique at our institute.

In the current study, we retrospectively examined the diagnostic ability of EUS-FNA for PC compared with US-FNA.

MATERIALS AND METHODS

Patients

The inclusion criteria were: (1) the patient underwent US-FNA between February 2006 and October 2009 or EUS-FNA between November 2009 and September 2011 at the Cancer Institute Hospital, Tokyo, Japan for suspected PC; and (2) the patient was subsequently diagnosed as having clinical stage III or IV PC. Unresectable PC, which was indicated by International Union Against Cancer clinical stage III (locally advanced disease: T4N0-1 and M0) or IV (metastatic disease: T1-4N0-1 and M1), was diagnosed by CT.

The exclusion criteria were: (1) a contraindication for EUS (esophageal stenosis, duodenal stenosis, ileus, or perforation of the digestive tract); and (2) a contraindication for EUS-FNA and US-FNA (severe cardiovascular disease or respiratory disease, poor performance status, difficulty in visualization of the target, bleeding tendency, or impossibility of ensuring the puncture route).

Patients who met the selection criteria were identified from the database in our division, which was updated daily.

US- and EUS-FNA procedures

A short admission, usually for one or two nights, was mandatory according to the protocol for FNA biopsy of a suspected pancreatic tumor in our division. FNA biopsy for pancreatic tumors had been performed percutaneously under extracorporeal ultrasound guidance (US-FNA) until October 2009; then, beginning in November 2009, FNA biopsies have been performed under EUS guidance (EUS-FNA). In general, FNA examinations were performed and managed by Ishii H until October 2009 and by Matsuyama M since November 2009. Written informed consent was obtained from each patient before the examination.

US-FNA was performed using SSA-550A (Toshiba, Tokyo, Japan) as the ultrasound device and SONOPSY C1 21G (Hakko, Osaka, Japan) as the ultrasound-guided biopsy needle. After systemic premedication and percutaneous local anesthesia, FNA was performed 1-3 times repeatedly until adequate material was obtained. Pathological examination of the obtained materials and cytological examination of the needle-washing water were done. There was no on-site cyto technologist during the performance of US-FNA.

EUS-FNA was performed using EU-ME1 and UCT240-AL5 (Olympus, Tokyo, Japan) as the EUS system and the Echo-Tip ULTRA 22G (Wilson-Cook, Bloomington, IN, United States) as the ultrasound-guided biopsy needle. After systemic premedication and pharyngeal local anesthesia, FNA was performed endoscopically via the stomach or duodenum. Aspiration puncture was repeated until an on-site cyto technologist confirmed that adequate materials had been obtained.

After the examination, patients stayed in the hospital overnight and were discharged the following morning if no problems were revealed by physical examination, complete blood count tests and biochemistry tests that included serum amylase level. Three to 7 d later, the patients came to the outpatient clinic for an explanation of the results of the biopsy and examination for late adverse events, and were then able to start chemotherapy.

The final diagnosis was based on pathology results or clinical follow-up of > 6 mo.

Statistical analysis

We reviewed the complete medical records of all patients who met the selection criteria for the following data: sex, age, location and size of the targeted tumor, histological and/or cytological findings of the obtained specimens, details of puncture procedures, time from day of puncture until the day of definitive diagnosis, and details of severe adverse events, if any. The tumor status (location and size) was determined by dynamic CT before puncture. Frequency analysis was performed with Fisher’s exact test for 2×2 tables, χ^2 test for 3×2 tables, and Mann-Whitney test. All analysis were performed using the statistical software SPSS 11.0J for Windows. Statistical significance was defined as a two-sided P value ≤ 0.05.
Table 1 shows a comparison of the results of percutaneous biopsy with those of EUS-FNA. Adequate cytological and histological specimens were obtained in 42 (91.3%) and 41 (89.1%) Group A patients (n = 46), respectively, and in 75 (100%) and 65 (86.7%) Group B patients (n = 75).

Results of cytology indicated the presence of cancer cells in 33 Group A patients (78.6%) and in 72 Group B patients (94.6%). Histological studies showed cancer tissue in 33 (80.5%) and 51 (78.4%) patients in Group A and Group B, respectively. In total, a cancer diagnosis was made in 43 Group A (93.5%) and 73 Group B (97.3%) patients by cytology and/or histology. These 116 patients were diagnosed with pancreatic adenocarcinoma by cytology/histology as well as by imaging and their subsequent clinical course. The final diagnosis of PC in the remaining five patients for whom there was no cytological or histological proof was confirmed by the clinical course until April 2012. The positive cytology/histology rate did not differ between the two groups.

Total puncture procedures per patient varied from one to five, with a median of 3. The frequency of multiple punctures, that is, >2, was significantly higher in Group B than in Group A. Time from the day of puncture until the day of the final cytological diagnosis varied from 0 to 8 d (median, 4.1 d) in Group A and from 0 to 5 d (median, 1.7 d) in Group B. The period was significantly shorter in Group B than in Group A. The time from the day of puncture until the day of the final histological diagnosis varied from 2 to 7 d (median, 4.0 d) in Group A and 2 to 10 d (median, 3.2 d) in Group B, with no significant difference between the two groups.

Severe adverse events occurred in two Group A patients (4.3%) and in one Group B patient (1.3%). In Group A, one patient developed a high fever, which required hospitalization but resolved with only symptomatic treatment. The other Group A patient experienced upper gastrointestinal bleeding, which was confirmed by endoscopy to be related to the needle biopsy. This patient was treated by blood transfusion and antulcer medication and was hospitalized for 1 wk without surgical intervention. The adverse event in Group B was an abdominal abscess that required surgical drainage. The patient experienced continuous abdominal pain one night after EUS-FNA, and dynamic CT demonstrated an abscess in front of the pancreatic body tumor, which was clearly related to the EUS-FNA puncture. Fortunately, she recovered after surgery and antibiotic therapy and could receive chemotherapy thereafter. There was no cancer seeding event up to 6 mo from the time of puncture in any patient in either group.

DISCUSSION

The aim of the current study was to investigate the results of two different approaches to obtain pancreatic biopsy specimens, which are a percutaneous approach and EUS-FNA, because this issue has seldom been ad-
dressed\cite{2}. Our results confirmed the usefulness of EUS-FNA, especially with regard to cytology. The National Comprehensive Cancer Network Guidelines (2012) require that cytological or histological confirmation is needed for the diagnosis of unresectable pancreatic carcinoma\cite{3}. In patients with stage IV PC, a biopsy of the metastatic lesion is preferred for proof of cancer. However, in those with stage III PC and some patients with stage IV PC in whom it is difficult to access metastatic sites for biopsy procedures, the primary tumor of the pancreas must be targeted to obtain proof of cancer. Pancreatic juice cytology was developed in the early 1980s and is still being performed; however, cancer cells cannot easily be observed by collection of pancreatic juice\cite{23,24}. Percutaneous needle biopsy was developed with the expectation of a more definitive method to obtain proof of cancer from the primary pancreatic tumor\cite{2,23,25}. Our institute then used percutaneous needle biopsy under extracorporeal US guidance as the standard for histological confirmation of the pancreatic primary tumor. Recently, EUS-FNA was introduced and was used mainly in high-volume cancer centers in Japan\cite{26,27,28}. As a result of the risk of cancer seeding as well as other risks with percutaneous biopsy, we adopted EUS-FNA beginning in November 2009 in place of percutaneous biopsy. We expected that EUS-FNA would have advantages over a percutaneous procedure with regard to efficacy in confirmation of cancer and avoiding adverse reactions before administering chemotherapy to patients with PC.

Our results demonstrated that EUS-FNA is effective and feasible for obtaining proof of cancer in candidates for PC chemotherapy. In fact, EUS-FNA might have merits with regard to obtaining specimens from small tumors or tumors in the pancreatic tail, for which performance of percutaneous biopsy is difficult\cite{2,23,25}. In this study, the location of the target tumor was most frequent at the body of the pancreas in Group A. In addition, the target tumors were larger in Group A than in Group B. These findings suggest that patients might have been excluded from Group A in which difficulty could be expected in making a puncture because the tumor was either small or difficult to delineate. In these cases, endoscopic retrograde cholangiopancreatography or liver biopsy might have been performed to obtain confirmation of malignancy, if possible.

Horwath \textit{et al}\cite{3} have performed a randomized controlled trial of EUS-FNA and percutaneous biopsy of the pancreas (US- and CT-guided) in 2006. Although there was no statistically significant difference in accuracy between the two methods, the results showed that EUS-FNA had the advantage in the diagnosis of pancreatic malignancy. In our study, the diameters of the target tumors in the EUS-FNA group (Group B) were smaller than those in the US-FNA group (Group A) and the deviation of distribution around the puncture site was smaller in the EUS-FNA than the US-FNA group. Our results indicated high performance through the use of EUS-FNA and are not inconsistent with those of Horwath \textit{et al}\cite{3}. In the present study, there was no analysis of accuracy in the two groups, because our institution is an oncology hospital and we rarely perform biopsies of benign cases.

The benefits of EUS-FNA might be maximized to make a pathological diagnosis in patients with an abdominal tumor of an uncertain type. The definite merit of our EUS-FNA procedure was thought to be rapid cytological results, but perhaps success in this regard was mainly due to the contribution of an on-site cytotecnologist and not to the EUS-FNA procedure itself. Iglesias-Garcia \textit{et al}\cite{29} have claimed that on-site cytological evaluation improves the diagnostic yield of EUS-guided FNA for the cytological diagnosis of solid pancreatic masses. Savoy \textit{et al}\cite{29} have pointed out that even trained endosonographers have variable and, in some cases, inferior abilities in interpreting on-site cytology in comparison with cytotecnologists. In the present study, we had adequate specimens for all cases in the EUS-FNA group. This is natural because we continued the examination until we obtained a sufficient quantity of specimens that were checked by the on-site cytotecnologist. On the contrary, there was no difference in the rate of adequate specimens obtained for histological examination between the EUS-FNA and US-FNA groups, because the collected tissue was checked by the examiner’s naked eye in both groups. The presence of an on-site cytotecnologist to accompany EUS-FNA is considered to be necessary, at least, in high-volume centers.

In the present study, the positivity rate for malignancy was higher for EUS-FNA cytology than for histology. Supporting the current results, another study has shown that the positivity rate for malignancy in EUS-FNA cytology of the pancreas was higher than that in histology\cite{19}. As previously reported, EUS-needle core biopsy is useful for histological and cytological diagnosis in terms of sample volume\cite{30}. In addition, the combined results of EUS-FNA cytology and EUS-needle core biopsy have been reported to improve diagnosis\cite{31,32}. However, to confirm the malignancy, EUS-FNA cytology is more useful than EUS-needle core biopsy\cite{33}. This result is similar to the results of our study, indicating that cytology might be more useful than histology for the diagnosis of malignancy.

In the current study, there was no cancer seeding in any patient in either group. As previously reported, there were rare cases of seeding among patients who underwent US-guided FNA\cite{34}. With regard to the puncture route, we suggest that there is less possibility of seeding in patients who undergo EUS-FNA than in patients who undergo US-FNA, although some recent studies have shown the possibility of seeding in patients who undergo EUS-FNA\cite{35,36}. We did inform patients who were scheduled to undergo EUS-FNA about the possibility of this complication.

The limitations of our study included its retrospective nature. Furthermore, there were no cases of benign pancreatic conditions to enable an evaluation of US and EUS-FNA for accurate differentiation between malignant
and benign diseases.

In conclusion, EUS-FNA, as well as percutaneous needle aspiration, is an effective modality to obtain cytopathological confirmation in patients with advanced PC. EUS-FNA cytology was able to detect malignancy at a high rate. We believe that EUS-FNA has advantages for smaller tumors located deeply and for tumors in which the diagnosis is uncertain by various other imaging modalities.

ACKNOWLEDGMENTS
We thank the cytotechnologist team at Cancer Institute Hospital of the Japanese Foundation for Cancer Research for making this study possible.

REFERENCES
1. Goodale RL, Gaj-Peczalska K, Dressel T, Samuelson J. Cytologic studies for the diagnosis of pancreatic cancer. Cancer 1981; 47: 1652-1655 [PMID: 7272915 DOI: 10.1002/1097-0142 (1981031547)]
2. Nakaizumi A, Tatsuta M, Uehara H, Yamamoto R, Takeda A, Kishigami Y, Takemura K, Kitamura T, Okuda S. Cytologic examination of pure pancreatic juice in the diagnosis of pancreatic carcinoma. The endoscopic retrograde intraduodenal catheter aspiration cytologic technique. Cancer 1992; 70: 2610-2614 [PMID: 1423189]
3. Di Stasi M, Lencioni R, Solmi L, Magnolfi F, Caturelli E, De Sio I, Salmi A, Buscarini L. Ultrasonographically-guided fine needle biopsy of pancreatic masses: results of a multicenter study. Am J Gastroenterol 1998; 93: 1329-1333 [PMID: 9700760 DOI: 10.1111/j.1572-0241.1998.443]
4. Kocjan G, Rode J, Lees WR. Percutaneous fine needle aspiration cytology of the pancreas: advantages and pitfalls. J Clin Pathol 1989; 42: 341-347 [PMID: 2541174 DOI: 10.1136/jcp.42.4.341]
5. Bret PM, Nicolet V, Labadie M. Percutaneous fine-needle aspiration biopsy of the pancreas. Diagn Cytopathol 1986; 2: 221-227 [PMID: 3533479 DOI: 10.1003/2840020309]
6. Kosugi C, Furuse J, Ishii H, Maru Y, Yoshino M, Kinoshita T, Konishi M, Nakagohri T, Inoue K, Oda T. Needle tract implantation of hepatocellular carcinoma and pancreatic carcinoma after ultrasound-guided percutaneous puncture: clinical and pathologic characteristics and the treatment of needle tract implantation. World J Surg 2004; 28: 29-32 [DOI: 10.1007/s00268-003-7003-y]
7. Smith EH. Complications of percutaneous abdominal fine-needle biopsy. Review. Radiology 1991; 178: 253-258 [PMID: 1984314]
8. Ertuk SM, Mortelé KJ, Tuncali K, Saltzman JR, Lao R, Silverman SG. Fine-needle aspiration biopsy of solid pancreatic masses: comparison of CT and endoscopic sonography guidance. AJR Am J Roentgenol 2006; 187: 1531-1535 [PMID: 17114547]
9. Harewood GC, Wiersema MJ. Endosonography-guided fine needle aspiration biopsy in the evaluation of pancreatic masses. Am J Gastroenterol 2002; 97: 1386-1391 [PMID: 12094855 DOI: 10.1111/j.1572-0241.2002.05777.x]
10. Yoshinaga S, Suzuki H, Oda I, Saito Y. Role of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) for diagnosis of solid pancreatic masses. Dig Endosc 2011; 23 Suppl 1: 29-33 [PMID: 21535197 DOI: 10.1111/j.1443-1661.2011.01112.x]
11. Itoi T, Tsuchiya T, Iokawa F, Sofuni A, Kurihara T, Tsujii S, Ikeuchi N. Histological diagnosis by EUS-guided fine-needle aspiration biopsy in pancreatic solid masses without on-site cytopathologist: a single-center experience. Dig Endosc 2011; 23 Suppl 1: 34-38 [PMID: 21553198 DOI: 10.1111/j.1443-1661.2011.01142.x]
12. Horwhat JD, Paulson EK, McGrath K, Branch MS, Baille J, Tyler D, Pappas T, Enns R, Robuck G, Stiftler J, Howell P. A randomized comparison of EUS-guided FNA versus CT or US-guided FNA for the evaluation of pancreatic mass lesions. Gastrointest Endosc 2006; 63: 966-975 [PMID: 16733111 DOI: 10.1016/j.gie.2005.09.028]
13. NCCN. Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Pancreatic Carcinoma Version 2. 2012.
14. Hatfield AR, Smithies A, Wilkins R, Levi AJ. Assessment of endoscopic retrograde cholangio-pancreatography (ERCP) and pure pancreatic juice cytology in patients with pancreatic disease. Gut 1976; 17: 14-21 [PMID: 1269975 DOI: 10.1136/gut.17.1.14]
15. Gress F, Gottlieb K, Sherman S, Lehman G. Endoscopic ultrasonography-guided fine-needle aspiration biopsy of suspected pancreatic cancer. Ann Intern Med 2001; 134: 439-464 [PMID: 11255521]
16. Matsubara J, Okusaka T, Morizane C, Ikeda M, Ueno H. Ultrasound-guided percutaneous pancreatic tumor biopsy in pancreatic cancer: a comparison with metastatic liver tumor biopsy, including sensitivity, specificity, and complications. J Gastroenterol 2008; 43: 225-232 [PMID: 18373165 DOI: 10.1007/s00535-007-2142-9]
17. Tada M, Komatsu Y, Kawabe T, Sasahara N, Isayama H, Toda N, Shiratori Y, Omata M. Quantitative analysis of K-ras gene mutation in pancreatic tissue obtained by endoscopic ultrasonography-guided fine-needle aspiration biopsy: clinical utility for diagnosis of pancreatic tumor. Am J Gastroenterol 2002; 97: 2263-2270 [PMID: 12358243 DOI: 10.1111/j.1572-0241.2002.05980.x]
18. Itoi T, Takei K, Sofuni A, Iokawa F, Tsuchiya T, Kurihara T, Matsuyama M et al. Fine-needle aspiration for pancreatic cancer
Nakamura K, Moriyasu F, Tsuchida A, Kasuya K. Immunohistochemical analysis of p53 and MIB-1 in tissue specimens obtained from endoscopic ultrasonography-guided fine needle aspiration biopsy for the diagnosis of solid pancreatic masses. *Oncol Rep* 2005; 13: 229-234 [PMID: 15643503]

19 Kito H, Ryozawa S, Harada T, Kondoh S, Furuya T, Kawauchi S, Oga A, Okita K, Sasaki K. Comparative genomic hybridization analysis for pancreatic cancer specimens obtained by endoscopic ultrasonography-guided fine-needle aspiration. *J Gastroenterol* 2005; 40: 511-517 [PMID: 15942717 DOI: 10.1007/s00535-005-1577-0]

20 Imaoka H, Yamao K, Bhatia V, Shimizu Y, Yatabe Y, Koshikawa T, Kinoshita Y. Rare pancreatic neoplasms: the utility of endoscopic ultrasonographic-guided fine-needle aspiration-a large single center study. *J Gastroenterol* 2009; 44: 146-153 [PMID: 19214677 DOI: 10.1007/s00535-008-2282-6]

21 Sakamoto H, Kitano M, Komaki T, Noda K, Chikugo T, Dote K, Takeyama Y, Las K, Yamao K, Kudo M. Prospective comparative study of the EUS guided 25-gauge FNA needle with the 19-gauge Trucut needle and 22-gauge FNA needle in patients with solid pancreatic masses. *J Gastroenterol Hepatol* 2009; 24: 384-390 [PMID: 19032453 DOI: 10.1111/j.1440-1746.2008.05636.x]

22 Yamao K, Mizuno N, Takagi T, Hara K. How I do it and when I use (and do not use) EUS-FNA. *Gastrointest Endosc* 2009; 69: S134-S137 [PMID: 19179139 DOI: 10.1016/j.gie.2008.12.020]

23 Sugiyama M, Hagi Y, Atomi Y, Saito M. Diagnosis of portal venous invasion by pancreaticobiliary carcinoma: value of endoscopic ultrasonography. *Abdom Imaging* 1997; 22: 434-438 [PMID: 9197567 DOI: 10.1007/s002619900227]

24 Gress FG, Hawes RH, Savides TJ, Ikkenberry SO, Cummings O, Kopecky K, Sherman S, Wiersema M, Lehman GA. Role of EUS in the preoperative staging of pancreatic cancer: a large single-center experience. *Gastrointestinal Endoscopy* 1999; 50: 786-791 [PMID: 10570357 DOI: 10.1016/S0016-5107(99)07159-8]

25 Ainsworth AP, Rafealsen SW, Wambarg PA, Durup J, Pless TK, Mortensen MB. Is there a difference in diagnostic accuracy and clinical survival between endoscopic ultrasonography and magnetic resonance cholangiopancreatography? *Endoscopy* 2003; 35: 1029-1032 [PMID: 14648416 DOI: 10.1055/s-2003-44603]

26 DeWitt J, Devereaux B, Chriswell M, McGreevy K, Howard T, Imperiale TF, Ciaccia D, Lane KA, Maglinite D, Kopecky K, LeBlanc J, McHenry L, Madura J, Aisen A, Cramer H, Cummings O, Sherman S. Comparison of endoscopic ultrasonography and multidetector computed tomography for detecting and staging pancreatic cancer. *Ann Intern Med* 2004; 141: 753-763 [PMID: 15545675]

27 Ardenh JC, Rosenbaum P, Ganc AJ, Goldenberg A, Lobo EJ, Malheiros CA, Rahal F, Ferrari AP. Role of EUS in the preoperative localization of insulinomas compared with spiral CT. *Gastrointest Endosc* 2000; 51: 552-555 [PMID: 10809840 DOI: 10.1016/S0016-5107(00)07288-4]

28 Iglesias-Garcia J, Dominguez-Munoz JE, Abdulkader I, Larino-Noia J, Eugenyeva E, Lozano-Leon A, Forteza-Vila J. Influence of on-site cytopathology evaluation on the diagnostic accuracy of endoscopic ultrasonography-guided fine needle aspiration (EUS-FNA) of solid pancreatic masses. *Am J Gastroenterol* 2011; 106: 1705-1710 [PMID: 21483464 DOI: 10.1038/ajg.2011.119]

29 Savoy AD, Raimondo M, Woodward TA, Noh K, Pungapong S, Jones AD, Crook J, Wallace MB. Can endosonographers evaluate on-site cytologic adequacy? A comparison with cytotecnologists. *Gastrointestinal Endosc* 2007; 65: 953-957 [PMID: 17531627 DOI: 10.1016/j.gie.2006.11.014]

30 Binmoeller KF, Thul R, Rathod V, Henke P, Brand B, Jauschub HC, Soehendra N. Endoscopic ultrasound-guided, 18-gauge, fine needle aspiration biopsy of the pancreas using a 2.8 mm channel convex array echoendoscope. *Gastrointestinal Endosc* 1998; 47: 121-127 [PMID: 9512275 DOI: 10.1016/S0016-5107(98)70343-8]

31 Saitou A, Vilfman P, Guldhammer Skov B, Georgescu CV. Endoscopic ultrasound (EUS)-guided Trucut biopsy adds significant information to EUS-guided fine-needle aspiration in selected patients: a prospective study. *Scand J Gastroenterol* 2007; 42: 117-125 [PMID: 17190771 DOI: 10.1080/00365107(00)352060078900]

32 Storch I, Jorda M, Thurer R, Raez L, Rocha-Lima C, Vernon S, Ribeiro A. Advantage of EUS Trucut biopsy combined with fine-needle aspiration without immediate on-site cytopathologic examination. *Gastrointestinal Endosc* 2006; 64: 505-511 [PMID: 16996340 DOI: 10.1016/j.gie.2006.02.056]

33 Itoi T, Itofawa F, Sofuni A, Nakamura K, Tsuchida A, Yamao K, Kawai T, Moriyasu F. Puncture of solid pancreatic tumors guided by endoscopic ultrasonography: a pilot study series comparing Trucut and 19-gauge and 22-gauge aspiration needles. *Endoscopy* 2005; 37: 362-366 [PMID: 15824948 DOI: 10.1055/s-2004-826156]

34 Varadarajulu S, Fraig M, Schmulewitz N, Roberts S, Wildi S, Hawes RH, Hoffman BJ, Wallace MB. Comparison of EUS-guided 19-gauge Trucut needle biopsy with EUS-guided fine-needle aspiration. *Endoscopy* 2004; 36: 397-401 [PMID: 15100946 DOI: 10.1055/s-2004-814316]

35 Stewart CJ, Coldewey J, Stewart IS. Comparison of fine needle aspiration cytology and needle core biopsy in the diagnosis of radiologically detected abdominal lesions. *J Clin Pathol* 2002; 55: 93-97 [PMID: 11865001 DOI: 10.1136/jcp.55.2.93]

36 Fornari F, Civardi G, Cavanna L, Di Stasi M, Rossi S, Sbolli G, Buscarini L. Complications of ultrasonically guided fine-needle abdominal biopsy. Results of a multicenter Italian study and review of the literature. The Cooperative Italian Study Group. *Scand J Gastroenterol* 1989; 24: 949-955 [PMID: 2921065 DOI: 10.1080/00365107(89)908595]

37 Paquin SC, Gariépy G, Lepanto L, Bourdages R, Raymond G, Sahai AV. A first report of tumor seeding because of EUS-guided FNA of a pancreatic adenocarcinoma. *Gastrointestinal Endosc* 2005; 61: 610-611 [PMID: 15812422]

38 Chong A, Venugopal K, Segarajasingam D, Lisewski D. Tumor seeding after EUS-guided FNA of pancreatic tail neoplasm. *Gastrointestinal Endosc* 2011; 74: 933-935 [PMID: 21951481 DOI: 10.1016/j.gie.2010.10.020]

39 Katamura A, Maguchi H, Hashigo S, Kaneko M, Kin T, Yane K, Kato R, Kato S, Harada R, Osonai M, Takahashi K, Shinohara T, Itoi T. Tumor seeding after endoscopic ultrasound-guided fine-needle aspiration of cancer in the body of the pancreas. *Endoscopy* 2012; 44 Suppl 2 UCTN: E160-E161 [PMID: 22622721 DOI: 10.1055/s-0031-1291716]