Detecting Linguistic Characteristics of Alzheimer's Dementia by Interpreting Neural Models

Sweta Karlekar
Computer Science, UNC Chapel Hill
Graduate Student: Tong Niu
Research Mentor: Dr. Mohit Bansal
Alzheimer’s Disease (AD)

- Most common form of Dementia
- Caused by cortical degeneration
- Decline in language comprehension and ability
- Medication can slow or halt progression
Evaluation Techniques

- Mental Status and Mood Testing
- Physical and Neurological Exams
- Extensive Medical History
- Brain Imaging
The Task

Transcripts of Spoken Languages samples

Binary Classification of AD+ or AD-
But first, let’s look at the methodology.
ML vs. DL

Machine Learning

- Input
- Feature extraction
- Classification
- Output

Deep Learning

- Input
- Feature extraction + Classification
- Output

Image from: https://codeutsava.in/blog/40
GOAL: Have computers understand natural language to perform useful tasks.
Back to the task…
Dataset

- Dementia Bank dataset
- Transcripts and speech samples
- Non-AD + AD Patients
- Includes POS tags
 - Noun, verb, adjective, adverb, present participle, determiner, etc.

Image from: https://www.researchgate.net/figure/The-Cookie-theft-picture_fig1_317095410
Previous Works

Author	ML vs. DL	Description	Accuracy
Rudzicz et al.	Machine Learning	Extracted over 200+ lexical features	67.0%
Orimaye et al.	Machine Learning	Used syntactic, lexical, and n-gram features	86.1%
Konig et al.	Machine Learning	Analyzed speech audio	87.0%
Orimaye et al.	Deep Learning	Deep Neural + Language Model	87.5%
Neural Models

Recurrent Neural Network (RNN)

Convolutional Neural Network (CNN)

Convolutional/Recurrent Neural Network (CNN-RNN)

Images from: http://colah.github.io
Results

Author	Model	Description	Accuracy
Rudzicz et al.	Machine Learning	200+ lexical features	67.0%
Orimaye et al.	Machine Learning	Syntactic, lexical, and n-gram features	86.1%
Konig et al.	Machine Learning	Speech audio	87.0%
Orimaye et al.	Deep Language Model	Transcripts	87.5%
	CNN	Transcripts	82.8%
	RNN	Transcripts	83.7%
	CNN-RNN	Transcripts	84.9%
	CNN-RNN	Transcripts + POS	91.1%
But what did the neural model look at?
Saliency Heat Maps

True label: Alzheimer's, Predicted: Alzheimer's
Saliency Heat Maps

True label: Control, Predicted: Control

stool
um
that
off
falling
is
boy
the
uh

Input Text
Saliency Heat Maps

True label: Alzheimer's, Predicted: Control
Activation Clustering

Image from: https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6
Activation Clustering

- Short answers and bursts of speech
 - “Okay”, “yes”, “oh!”, “yes”, “fine”

- Repeated requests for clarification
 - “Did I say facts?”, “Did I get any?”, “Did I say elephant?”

- Starting with interjections
 - “Well I gotta see it”, “Oh I just a lot of uh…”, “So all the words that you can”
Activation Clustering

	AD		Non-AD	
POS	Frequency	POS	Frequency	
`n`	0.20	`n`	0.15	
`det`	0.14	`det`	0.13	
`adj`	0.05	`presp`	0.07	
`adv`	0.04	`part`	0.05	
Conclusion

• Applied 3 different neural models to AD classification
• Achieved a new benchmark accuracy
• Utilized two visualization techniques
Future Work

• Multi-class classification to differentiate among stages

• Apply to other neurological diseases:
 • Huntington’s
 • Diffuse Lewy Body

• How early can we catch AD in language?
 • Agatha Christie and Iris Murdoch novels
Questions?