Comparative transcriptome analysis of galls from four different host plants suggests the molecular mechanism of gall development

Seiji Takeda, Makiko Yoza, Taisuke Amano, Issei Ohshima, Tomoko Hirano, Masa H. Sato, Tomoaki Sakamoto, Seisuke Kimura

1 Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan, 2 Biotechnology Research Department, Kyoto Prefectural Agriculture Forestry and Fisheries Technology Center, Seika, Kyoto, Japan, 3 Department of Bioresource and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan, 4 Department of Industrial Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan, 5 Center for Ecological Evolutionary Developmental Biology, Kyoto Sangyo University, Kyoto, Japan

* seijitakeda@kpu.ac.jp (ST); seisuke@cc.kyoto-su.ac.jp (SK)

Abstract

Galls are plant structures generated by gall–inducing organisms including insects, nematodes, fungi, bacteria and viruses. Those made by insects generally consist of inner callus–like cells surrounded by lignified hard cells, supplying both nutrients and protection to the gall insects living inside. This indicates that gall insects hijack developmental processes in host plants to generate tissues for their own use. Although galls are morphologically diverse, the molecular mechanism for their development remains poorly understood. To identify genes involved in gall development, we performed RNA–sequencing based transcriptome analysis for leaf galls. We examined the young and mature galls of *Glochidion obovatum* (Phyllanthaceae), induced by the micromoth *Caloptilia cecidophora* (Lepidoptera: Gracillariidae), the leaf gall from *Eurya japonica* (Pentaphylacaceae) induced by *Borboryctis euryae* (Lepidoptera: Gracillariidae), and the strawberry-shaped leaf gall from *Artemisia montana* (Asteraceae) induced by gall midge *Rhopalomyia yomogicola* (Oligotrophini: Cecidomyiidae). Gene ontology (GO) analyses suggested that genes related to developmental processes are up–regulated, whereas ones related to photosynthesis are down–regulated in these three galls. Comparison of transcripts in these three galls together with the gall on leaves of *Rhus javanica* (Anacardiaceae), induced by the aphid *Schlechtendalia chinensis* (Hemiptera: Aphidoidea), suggested 38 genes commonly up–regulated in galls from different plant species. GO analysis showed that peptide biosynthesis and metabolism are commonly involved in the four different galls. Our results suggest that gall development involves common processes across gall inducers and plant taxa, providing an initial step towards understanding how they manipulate host plant developmental systems.
Introduction

Plants are not only food sources but also living microenvironments for other organisms. Plant galls are generated by insects, nematodes, fungi, bacteria, and viruses, among which, galls created by insects vary widely in terms of their shapes and colors. The estimated number of gall insect species ranges from 21,000 to 211,000 [1–2], and the structure of these galls is generally different from those of plant organs that develop normally, indicating that gall insects manipulate the plant developmental system and build a convenient structure for themselves [1].

Insect galls are induced by a wide range of species including flies, beetles, Hemiptera, wasps, midges, micromoths, and aphids. There is empirical evidence that effectors from insects, including phytohormones (auxin, cytokinin, and abscisic acids) and proteins are involved in gall generation [3–6]. Studies of green–island symptoms suggest that cytokinin supplied by insects to plants is synthesized by symbiont bacteria [7–8]. In some galls, initiation is stimulated by female oviposition [9]. This suggests that secretion from insects stimulate plant cell differentiation to generate the gall structure, although the molecular mechanism for gall initiation and development still remains unclear.

Gall development can be divided into the following processes: (1) secretion of signaling molecules from insects, (2) perception of the signals by plants, (3) plant cell regeneration and differentiation, and (4) organization of gall tissue. During these processes, insects need to suppress the plant’s defense responses [6]. Although many studies have described the gall structure and features, gall development seems to be a complex pathway, such that the molecular mechanism of gall development still remains unclear, due to wide variation in gall and host plant species. Recent progress in next generation sequencing (NGS) has allowed us to outline the biological processes in many organisms. Transcriptome analyses in several galls have been reported recently. For example, the gall transcriptome of *Metrosideros polymorpha*, induced by psyllid (Hemiptera), suggested the involvement of auxin response in the gall [10]. The horned galls of *Rhus chinensis* and *Rhus javanica* accumulate high amounts of tannins that make up to 60–70% of its total dry weight, protecting them from herbivory. Transcriptomes of both host plants and gall aphids have helped elucidate the molecular mechanisms of tannin biosynthesis and aphid reproduction, respectively [11–12]. Another example is the gall of wild grapevine (*Vitis riparia*) generated by phylloxera (*Daktulosphaira vitifoliae*), suggesting that pathways of floral organ development and procambium differentiation are involved in gall development [13]. These reports propose the molecular mechanism of interaction between gall insects and host plants, although, the gall structure varies widely making it difficult to identify the fundamental processes of gall development.

To understand the molecular mechanism of gall development, we performed RNA–sequencing–based transcriptome analyses for leaf galls from four different plant species. The leaf gall of *Glochidion obovatum* (Phyllanthaceae) (kankonoki–ha–fukure–fushi in Japanese, meaning swollen leaf gall of *G. obovatum*) is induced by the micromoth *Caloptilia cecidophora* (Lepidoptera: Gracillariidae), and develops into swollen and hard structures (Fig 1A–1C). The larva of this micromoth is the leaf miner up to the second instar, taking nutrients from leaf epidermal cells. After the third instar, it moves inside the leaves and generates a gall within leaf tissue [14]. Leaf gall of *Eurya japonica* (Pentaphylacaceae) (called hisakaki–ha–fukure–fushi in Japanese, meaning swollen leaf gall of *E. japonica*) is generated by another micromoth *Borboryctis euryae* (Lepidoptera: Gracillariidae), with a structure thinner than that of the gall of *G. obovatum* (Fig 1D–1H). This larva is also the leaf miner at an early stage, and later transforms to galling larva [15].

Together with these micromoth–induced galls, we selected the strawberry–shaped gall on leaves of *Artemisia montana* (Asteraceae), called *yomogi–ha–eboshi–fushi* (meaning *A. montana* hat–shaped gall on leaf, in Japanese), which is generated by a gall midge *Rhopalomyia yomogicola* (Oligotrophini: Cecidomyiidae) (Fig 1I–1K) [4]. Gene ontology (GO) analyses for
transcripts in these three plant species suggested that development–related genes are upregulated in galls, whereas photosynthesis–related genes are downregulated. Comparison of transcripts in galls of these three species and another leaf gall on Rhus javanica (Fig 1L–1N), induced by the aphid Schlechtendalia chinensis (Hemiptera: Aphidoidea), suggested that 38 genes are commonly up–regulated in leaf galls from different plant species.

Materials and methods
Sample collection and microscopy

Galls on leaves of G. obovatum and E. japonica were originally collected from Tomogashima Island (Kada, Wakayama, Japan) and Kibogaoka Cultural Park (Yasu, Shiga, Japan),
respectively, and both have been successfully reared in the laboratory [14,15]. For *G. obovatum*, the galls with the third instar larva were collected as young galls, and those with the fourth to fifth larva as mature galls. In both cases, the collected galls were cut in half and the larva removed. The intact leaves from the same tree were collected as control samples. For *E. japonica*, the gall with the fourth instar inside was collected, cut, and larva removed. Intact leaves from the same tree were collected as control samples. Galls and leaves of *A. montana* were collected from Kyoto Prefectural University, Seika campus (Seika, Kyoto, Japan). Gall and larva RNA were extracted to avoid physical stress by dissection, since the size of the gall was small. Collection, RNA extraction and RNA–sequencing of galls and leaves from *R. javanica* were performed by collaborators (Hirano and Sato, in preparation). All samples were frozen in liquid nitrogen and kept at -80˚C until required for RNA extraction. Photos were taken with an S8AP0 stereomicroscope mounted with an EC3 digital camera (Leica, Germany).

RNA extraction and RNA–sequencing
In each plant species, three independent samples were used for RNA extraction. Total RNA was extracted from approximately 0.05 g of galls or leaves by two different methods. The RNA from *G. obovatum* young and mature leaves, and *E. japonica* leaves and galls were extracted using the Nucleospin RNA Plant and Fungi kit (Macherey–Nagel, Germany) following the manufacturer’s instruction. All other RNA extractions were performed using a modified protocol with the RNasy Plant Mini Kit (QIAGEN, Germany) [16]. For RNA–seq analysis, 0.5 µg of the total RNA samples was used for library preparation after RNA integrity was confirmed by running samples on an Agilent RNA 6000 Nano Chip (Agilent Technologies, U. S. A). All libraries were prepared using Illumina TruSeq Stranded mRNA LT Sample kit according to the manufacturer’s instructions (Illumina, U. S. A). The pooled libraries were sequenced on an Illumina NextSeq500 sequencing platform, and single–end reads of 76 bp length were obtained. The reads from each species were assembled de novo into contigs using Trinity [17] with quality trimming of reads and strand specific assembly. The obtained reads were mapped to the de novo assembled RNA contigs using BWA (http://bio-bwa.sourceforge.net) [18]. The count data were subjected to a trimmed mean of M-value (TMM) normalization in EdgeR [19]. The transcript expression and digital gene expressions (DGEs) were defined using the EdgeR GLM approach [19], and genes with false discovery rates (FDRs) < 0.01, sum (total number of mapped reads) > 1, and log2_FC > 1 (up–regulated) or log2_FC < -1 (down–regulated) were classified as differentially expressed genes (DEGs), which were used for functional prediction by a BLASTX search against the Arabidopsis protein database (TAIR10). The gene number was estimated after the overlapped the Arabidopsis Gnome Initiative (AGI) number was eliminated. For GO analysis, we used PANTHER classification system through the TAIR database [20]. Accession numbers for the RNA–seq data are as follows: DRA008532 (*G. obovatum*), DRA008531 (*E. japonica*), and DRA008530 (*A. montana*), and one for *R. javanica* is described in another manuscript (Hirano and Sato, in preparation).

Results and discussion
Transcriptomes of galls from different plant species
To elucidate the molecular mechanism of gall development, we isolated RNA from galls and leaves, followed by library construction and RNA–sequencing by NGS (S1 Table). For *G. obovatum* galls, we analyzed both young (inside larva at third instar) and mature galls (fourth to fifth instar). In both cases, genes related to developmental processes were up–regulated and photosynthesis–related genes were down–regulated in galls compared to those in leaves (Fig 2 and S1 Fig). The transcriptome of another micromoth–induced leaf gall on *E. japonica*
Fig 2. Gene ontology (GO) analysis (biological process) of young gall and leaf from *G. obovatum*. Colored dots indicate similar biological GO: blue, developmental process; red, phytohormone; and green, photosynthesis.

https://doi.org/10.1371/journal.pone.0223686.g002
suggested that genes related to development as well as cell cycle were up–regulated in galls (Fig 3). In leaf galls induced by the gall midge on *A. montana*, the genes related to developmental processes and cell wall organization were up–regulated (Fig 4). In these three galls, photosynthesis–related genes were down–regulated (Figs 2–4). These results suggest that leaf galls from different plant species commonly down–regulate the photosynthesis activity and express genes related to developmental process for gall morphogenesis. Notably, the three galls express different sets of genes, i.e., phytohormone–related genes in *G. obovatum*, cell cycle–related genes in *E. japonica*, and cell wall biosynthesis–related genes in *A. montana*. This difference may be one of the explanations for the unique shape of galls among different plant species.

Four different galls expressed 38 common genes

The data from RNA–sequencing of *R. javanica* were added to our analysis (Hirano and Sato et al., in preparation). We selected gall–rich genes (genes expressed in galls more than twice that in leaves (see Materials and Methods), whose molecular functions were predicted by a homology search with BLASTX to the *Arabidopsis thaliana* protein database (TAIR10). For *G. obovatum*, data from young and mature galls and leaves were combined, and gall–rich genes compared to those in leaves were extracted. The AGI code corresponding to each gene sequence was compared among the four plant species. The gene number that was expressed more than twice in galls compared to that in leaves was as follows: *A. montana*, 5,720; *E. japonica*, 1,384; *G. obovatum*, 5,092; and *R. javanica*, 4,682 (Fig 5). With comparison among these datasets, we found that 38 genes are commonly expressed in four different galls (Fig 5 and Table 1). These 38 genes may include the master regulators for gall development in different plant species.

Next, we categorize these candidate regulators based on their predicted biological and molecular functions, and discuss their contribution for gall development.

(1) **Cell division and cytokinesis.** In the gall, active cell division occurs to generate nutrient and shelter cells for insects, suggesting cell cycle regulation in the host tissue. We found several genes, involved in cell division and cytokinesis, that were up–regulated in four galls. The AtBRCA1 (At4g21070) is a direct transcriptional target of SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), and involved in DNA repair and cell cycle regulation [21–23]. FUSED Kinase (At1g50240) is involved in cytokinesis by interacting with kinesin protein in the phragmoplast [24–25]. Ethylene response factor 115 (ERF115/At5g07310) regulates the cell cycle of the quiescent center (QC) and surrounding stem cells in roots through direct transcriptional activation of PHYTOSULFOKINE PRECURSOR 5 (PSKS) gene, which raises a sulfonated pentapeptide hormone molecule [26]. DOMINO1 (At5g62240) is a plant–specific gene family protein that is located in the nucleus and nucleolus, and is suggested to regulate nuclear size and cell division during embryogenesis [27]. Knockdown of dUTPase DUT1 (At3g46940) by RNAi causes DNA fragmentation and enhanced somatic homologous recombination [28], suggesting a DNA protection mechanism in galls. These up–regulated genes are likely to regulate cell proliferation in galls.

(2) **Lignification and reactive oxygen species (ROS) generation.** Lignification occurs in the cell layers surrounding the nutrient–rich cells, generating a shelter protecting larvae inside of the gall. AtTLP2 (At2g18280) is a transcription factor and regulates transcription of cell wall–related genes leading to homogalacturonan biosynthesis [29], suggesting that it is involved in biogenesis of cell wall components in the gall. AtPrx25 is a putative cationic cell–wall–bound peroxidase and is involved in lignin biosynthesis through oxidation of phenolic compounds and/or ROS generation [30–31]. These ROS are involved in many cellular processes including cell wall modification. Interestingly, ROOT HAIR DEFECTIVE 2 (RHD2,
Fig 3. Gene ontology (GO) analysis (biological process) of gall and leaf from *E. japonica*. Colored dots indicate similar biological GO: blue, developmental process; red, phytohormone; yellow, cell cycle; and green, photosynthesis.

https://doi.org/10.1371/journal.pone.0223686.g003
Fig 4. Gene ontology (GO) analysis (biological process) of gall and leaf from *A. montana*. Colored dots indicate similar biological GO: blue, developmental process; red, phytohormone; magenta, cell wall organization; and green, photosynthesis.

https://doi.org/10.1371/journal.pone.0223686.g004
At5g51060, a NADPH oxidase that is involved in ROS production at the root hair tip, is up-regulated in the four galls, suggesting the involvement of ROS during gall development, possibly regulating cell wall structure for cell expansion and/or cellular signaling [32–33].

AtMYB77 (At3g50060) is a member of the R2R3–type transcription factor family and involved in metabolism of reactive oxygen species (ROS) by direct transcriptional regulation of the ORBITALLY MANIFESTED GENE 1 (OMGI) [34]. These suggest that active ROS production is involved in lignification within the gall, generating a shelter–like structure.

3) Phytohormone signaling and cell regeneration. Auxin is one of the key phytohormones in gall initiation and development. AtMYB77 is involved in lateral root formation via auxin signaling [35–36]. Since Arabidopsis cell regeneration mediates the process of lateral root development [37], the callus generation within the gall may be mediated by AtMYB77 and auxin signaling. The WRKY23 transcription factor is an auxin–response gene involved in embryogenesis and leaf venation patterning, through the regulation of PIN protein localization [38–40]. Overexpression of WRKY23 affects the localization of PIN proteins, and also the leaf venation pattern [40]. Thus, up–regulation of WRKY23 can be involved in vascular patterning in galls through regulation of auxin flux. It is also activated at the site of nematode infection in roots [41], suggesting that WRKY23 also regulates biotic responses in the galls. DOF4.6 (At4g24060) is a member of plant–specific transcription factors, and expressed in vascular cells depending on auxin flux [42], suggesting its involvement in vascular development in galls.

![Venn diagram of transcriptome results for the 4 different galls. The number of genes that are upregulated more than twice than that in leaves is shown. Note that 38 genes are commonly expressed in the four galls.](https://doi.org/10.1371/journal.pone.0223686.g005)
Table 1. Thirty-eight genes upregulated in 4 different galls.

Annotation	AGI (Arabidopsis thaliana)	logFC*	Putative molecular function	Putative biological function	References				
ATBRCA1	A. montana	8.38	4.07	1.35	7.24	DNA repair	[21–23]		
FUSED Kinase family/Protein kinase family protein with ARM repeat domain	AT1G50240	4.74	2.94	4.54	9.68	protein kinase	[24, 25]		
Integrase-type DNA-binding superfamily protein ERF115	AT5G07310	3.60	8.82	5.15	2.51	transcription factor	[26]		
DOMINO1	Protein of unknown function (DUF3223)	AT5G62440	1.16	2.95	1.52	2.70	nuclear localization	[27]	
DUT1	DUT-PYROPHOSPHATASE-LIKE1	AT3G46940	1.60	4.50	3.83	7.44	deoxyuridine triphosphatase (dUTPase)	[28]	
AtTLP2,TLP2	tubby-like protein 2	AT2G18280	1.01	2.89	2.22	2.68	transcription factor	[29]	
AtPrx25	Peroxidase superfamily protein	AT2G41480	4.94	4.85	3.56	8.87	peroxidase	[30, 31]	
RHD2,ATRBOHC,RBOHC	NADPH/ respiratory burst oxidase protein D	AT5G51060	2.03	3.52	2.26	7.93	NADPH oxidase	[32, 33]	
MYB77	myb domain protein 77	AT3G50060	7.71	5.81	2.89	1.91	transcription factor	[34–36]	
WRKY23,ATWRKY23	WRKYDNA-binding protein 23	AT2G47260	2.83	3.15	6.04	5.21	transcription factor	[38–41]	
WRKY48,ATWRKY48	WRKYDNA-binding protein 48	AT2G32190	8.91	2.36	3.89	3.73	transcription factor	[52]	
AtCYSTM4	CYSTEINE-RICH TRANSMEMBRANE MODULE 4	AT1G76030	4.73	1.92	3.15	8.49	oxigenase	[53]	
Protein kinase superfamily protein, RIPK	AT2G05940	3.06	2.98	3.23	7.88	protein kinase	[50]		
bHLH2	Basic helix-loop-helix(bHLH) DNA-binding superfamily protein	AT4G37850	6.20	4.83	6.39	4.46	transcription factor	[51]	
WRKY48,ATWRKY48	WRKYDNA-binding protein 48	AT5G49520	1.32	3.39	4.16	4.46	transcription factor	[52]	
AtMYB14	myb domain protein 14	AT2G31180	5.96	3.09	5.60	4.62	transcription factor	[54]	
ATBAG7,BAG7	BCL-2-associated athanogene 7	AT5G62390	4.73	1.92	3.15	8.49	ER localization	[55–57]	
HSF4,HSFB1,AT-HSFB1,ATHSF4	heatshock factor 4	AT4G36990	1.69	8.89	3.42	3.04	heat shock protein	[58, 59]	
BAM3	Leucine-rich-receptor-like protein kinase family protein	AT4G20270	7.86	2.87	2.12	2.54	receptor kinase	[60–62]	
HMG1,HMG1R1,AtHMG1R1	3-hydroxy-3-methylglutaryl CoA reductase1	AT1G76490	3.90	2.12	3.21	6.75	reductase	[63]	
Galactosyltransferase family protein	AT1G77810	1.99	2.42	1.78	3.40	galactosyltransferase, Golgi apparatus localization	[64]		
TUB1	tubulin beta-1-chain	AT1G75780	6.23	4.14	2.23	2.87	tubulin	cytoskeleton	[65]

(Continued)
Cytokinin is another key phytohormone in gall development, as well as other physiological functions in plants including cell division, cell regeneration and shoot differentiation [43]. Type–A Arabidopsis response regulator 5 (ARR5, At3g48100), a cytokinin primary response gene, is up–regulated in the four galls. ARR5 expression is activated by exogenous cytokinin and negatively regulates cytokinin signaling redundantly with the other ARRs, generating a feedback regulation to decrease sensitivity to cytokinin [44–46].

Dof AFFECTING GERMINATION 1 (DAG1)/At3g61850 controls hypocotyl cell elongation by affecting the expression of auxin–, ABA– and ethylene–related genes [47], as well as seed dormancy independently of ABA [48]. DAG1 is suggested to be involved in cellular morphogenesis through the regulation of phytohormone–related genes.

Together with previous studies, our results suggest that auxin and cytokinin are common regulators for gall development, and many responsive genes to these phytohormones are activated in galls. They seem to regulate cell proliferation and vascular differentiation during gall development.

(4) Biotic and abiotic stress responses. During gall initiation and development, insects may have to suppress the plant’s resistant system. Several genes involved in biotic–and abiotic–stress responses were up–regulated in galls. DLO2 (At4g10490), a homolog of DMR6 and acting redundantly with it, is upregulated in the four galls (Table 1). DLO2 is a negative regulator of plant defense and its overexpression results in reduced resistance to pathogens [49]. It is possible that insects regulate the expression of DLO2 and reducing plant defense. RIPK (At2g05940), a member of the receptor–like cytoplasmic kinase family, interacts directly with and phosphorylates RIN4, a negative regulator of immune responses against pathogen associated molecular pattern (PAMPs)–triggered immunity (PIT) [50]. RIKP overexpression lines

Annotation	AGI (Arabidopsis thaliana)	logFC*	Putative molecular function	Putative biological function	References				
ATFD3,FD3	ferredoxin 3	AT2G27510	3.13	1.83	3.32	1.91	ferredoxin	Photosystem I	[66]
ANAC100,ATNAC5,NAC100	NAC domain containing protein 100	AT5G61430	2.58	3.53	3.66	4.75	transcription factor	miR164 target	[67]
C2calcium/lipid-binding plant phosphoribosyltransferase family protein MCTP16	AT5G17980	3.23	2.55	2.10	6.17	transmembrane	unknown	[68]	
APK2B	protein kinase2B	AT2G02800	1.58	2.29	7.11	8.23	Ser/Thr kinase	unknown	[69]
Adeninenucleotide alphahydrolases-like superfamily protein	AT3G17020	8.73	2.45	1.89	7.01	-	-	-	
Plant invertase/pectin methylesterase inhibitor superfamily protein	AT5G62350	7.48	5.69	5.01	2.62	-	-	-	
UNE1	Plant protein of unknown function (DUF641)	AT1G29300	3.50	3.15	3.05	4.89	-	-	-
GAD4	glutamate decarboxylase 4	AT2G02010	3.15	3.06	1.78	3.93	-	-	-
Protein of unknown function (DUF1635)	AT5G22930	2.64	4.18	2.64	2.87	-	-	-	
RNA polymerase	AT5G56120	2.03	2.28	2.14	5.01	-	-	-	
cotton fiber protein	AT3G60380	1.89	3.14	3.58	4.75	-	-	-	
phosphatidylinositol 4-phosphate 5-kinase MSS4-like protein	AT1G29195	1.73	2.76	2.40	4.22	-	-	-	
TIP41-like protein	AT3G54000	1.43	1.89	2.47	8.71	-	-	-	

* logFC value: the highest score among trinity contigs

https://doi.org/10.1371/journal.pone.0223686.t001
are more susceptible to inoculation of *Pseudomonas syringae* DC3000, suggesting that up-regulation of RIPK in galls reduces the defense system in plants. bHLH25 (At4g37850), a putative transcription factor with a basic helix–loop–helix domain, is up-regulated in developing syncytia that are generated by invasion of cyst nematode *Heterodera schachtii* [51]. The *wrky48* mutant reduces the growth of the bacterial pathogen *P. syringae*, whereas overexpression leads to enhanced growth of the pathogen [52], suggesting that up-regulation of WRKY48 in galls represses the plant’s defense responses so that insects can survive.

Several abiotic-stress response genes are also up-regulated in the four galls. The expression of the cysteine-rich transmembrane module 4 (AtCYSTM4, At2g32190) is stimulated by salt, drought or oxidation stress [53]. AtMYB14 (At2g31180) is involved in cold tolerance [54]. The Bcl–2–associated athanogene (AtBAG7) is an ER–localized protein where it interacts with the molecular chaperon AtBiP2, and is involved in cold-, heat–and salinity–stress responses [55–56]. Sumoylated AtBAG7 interacts with WRKY29 in the nucleus where it is supposed to activate the molecular chaperon genes including AtBAG7 itself, leading to heat tolerance [57]. HsfB1 (At4g36690) encodes a heat shock protein that is suggested to be involved in thermotolerance response [58], as well as in salicylic acid–mediated resistance against pathogen challenge [59]. BAM3 (At4g20270) encodes a receptor–like kinase related to CLAVATA1 and functions as a receptor of CLAVATA3/EMBRYO SURROUNDING REGION (CLV3/ESR) peptides. So far, it is reported to be involved in suppression of root elongation and protoxylem in roots as a receptor of CLE45 [60–61], and drought–stress response as a receptor of CLE25 [62]. CLE25 is up-regulated in galls of *E. japonica* and *G. obovatum* (Table 2; see below), suggesting that galls are responding to abiotic stresses, which are likely to be caused indirectly by insect infection.

In summary, up-regulation of these abiotic-response genes suggests that in the gall, both biotic and abiotic stress responses are occurring during gall development.

(5) **Metabolic processes.** Plants biosynthesize secondary metabolites, such as terpene, phenolic acids, and alkaloids, and use them as a defense response. In the gall, the secondary metabolites are speculated to be biosynthesized and accumulated. 3–Hydroxy–3–methylglutaryl coenzyme A reductase (HMG1/HMGR, At1g76490) is involved in isoprenoid biosynthesis through regulation of ER morphogenesis [63]. At1g77810 encodes a member of the beta–(1,3)–galactosyltransferases, located in the Golgi apparatus [64]. This enzyme is involved in modification of arabinogalactan–proteins (AGPS), playing roles in various processes such as growth and development, programmed cell death, and signaling pathways [64]. Up-regulation of this gene in the gall may contribute to the biosynthesis of AGPs.

(6) **Other up–regulated genes in the four galls.** There are other up–regulated genes in the four galls: β–TUBULIN gene TUB1 (At1g75780), a component of microtubules [65]; AtFD3 (At2g27510), a ferredoxin involved in photosystem I [66]. ANAC100 (At5g161430), a target of microRNA miR164 [67]; MCTP16 (At5g17980), encoding a multiple C2 domain and transmembrane region protein expressed in vascular tissue [68]; and APK2B (At2g02800), a serine/threonine protein kinase that is expressed in roots, leaves and flowers [69]. Future work will unveil their molecular and biological functions in galls.

GO analysis suggests peptide signaling in galls

GO analysis predicts the biological and molecular functions of genes. We found that GO terms of peptide biosynthetic and peptide metabolic processes are common in four galls (S2 Table), as well as amide biosynthetic process and translation. Therefore, we extracted the CLV3/ESR–related (CLE) family genes from the gene list, and found that several genes are expressed in galls, especially *CLE44*, which is commonly up–regulated in the four galls (Table 2).
Table 2. CLE, LRR-RLK, WOX, and MADS genes expressed in galls.

Gene symbol	AGI (Arabidopsis thaliana)	logFC*	A. montana	E. japonica	G. obovatum	R. javanica
CLE						
CLV3	AT2G27250	2.57				
CLV6	AT2G31085	6.05				
CLV7	AT2G31082	6.76				
CLV9	AT1G26600					
CLV25	AT3G28455	2.83	11.64			
CLV26	AT1G69970	1.32				3.80
CLV44	AT4G13195	3.75	2.87		2.07b	1.75
LRR-RLK						
RLK7	AT1G09970	1.69	3.11			6.07
RLK5	AT1G72180					7.74
RLK5	AT1G75640	2.31	4.65			
RLK5	AT2G25790					
RLK5	AT3G28040	3.40				
RLK5	AT4G28490	9.80	4.99			
RLK5	AT4G36180	5.65	3.03			
RLK5	AT5G10020	2.42	2.75			
RLK5	AT5G46330	5.00	9.80			
RLK5	AT5G56040	3.07				
RLK5	AT5G65700	1.08	3.88			2.37
WOX						
WOX1	AT3G18010	7.02	4.75			
WOX2	AT5G59340					3.14
WOX4	AT1G64680	2.73	3.64			1.83
WOX13/HB-4	AT4G35550	1.40	2.66			
MADS						
AP1/AGL7	AT1G69120	12.13	8.85	5.83		
AP3	AT3G54340		8.18			
PI	AT5G20240	2.49				
AG	AT4G18960	10.93	10.03	11.55		
SEPI/AGL2	AT5G15800					12.39
SEPI/AGL4	AT3G02310	11.52				13.54
SEPI/AGL9	AT1G24260	7.29				11.41
SEPI/AGL3	AT2G03710	6.50				
SHP2/AGL5	AT2G42830		2.04			
SVP/AGL22	AT2G22540	3.65	3.69	9.23		
AGL62	AT5G60440		3.59			
TT16	AT5G23260					8.27
PHE	AT1G65330					7.23

* logFC value: the highest score among trinity contigs.

b CLE44 in G. obovatum is up-regulated only in mature galls but not in young galls.

https://doi.org/10.1371/journal.pone.0223686.t002
CLE peptides are small ligands that bind to the leucin–rich repeat receptor kinase family (LRR–RLK) CLV1/CLV2 proteins, and is involved in cell–cell communication during development, symbiosis, parasitism, and abiotic stress responses [70]. Several CLE and LRR-RLK genes are up–regulated in the galls (Table 2). CLE44 and CLE41 encoding the tracheary element differentiation inhibitory factor (TDIF) are involved in suppression of xylem cell differentiation in vascular stem cells [71]. Recent findings have shown that TDIF–like peptide from cyst nematodes can mimic the CLE function in planta, promoting vascular cell proliferation at the feeding site by activating the CLE and LRR–RLK pathway [72]. WOX4 is involved in promotion of vascular procambial and cambial stem cells depending on the CLE41/44 [73]. The WOX4 gene as well as the other WOX family genes is up–regulated in several galls (Table 2), suggesting that CLE44 and WOX4 regulate the vascular generation in galls.

In many galls the vasculature is generated to connect to the source of host plant tissue, and this process is suggested to be regulated by CLE and LRR–RLK genes, together with the other factors such as the auxin–dependent process shown above. A previous study with grapevine gall has shown that CLE44 and WOX4 are up–regulated in galls [13], supporting our hypothesis that these factors are commonly involved in vascular development in galls.

Genes involved in floral organ development

Shape and color of some galls show similarity to flowers and fruits. From the grapevine gall research, it is suggested that genes involved in reproductive organ development are up–regulated in developing galls [13]. Floral organ identity is determined by combined actions of the floral MADS genes [74–75]. We focused on MADS genes to find out if they are up–regulated in galls (Table 2). Interestingly many floral MADS genes were up–regulated in three plant galls, whereas they were not in the gall of *E. japonica*. This may be due to the different structure of galls: the gall of *E. japonica* is thinner than the other galls (Fig 1), suggesting less proliferation and differentiation of gall cells. This indicates that each gall mobilizes a distinct set of genes to generate each unique structure.

Conclusions

Our results have provided a landscape of transcripts up–and down–regulated in four different galls, suggesting that galls are forced to mobilize the genes that are originally involved in other multiple biological processes to develop specific structure. The 38 commonly up–regulated genes may be involved in development of other leaf galls. Further transcriptome analyses of other plant species are required to validate this hypothesis. This work is based on the transcriptome of galls on plants and in order to understand the gall developmental mechanisms, we need to investigate the gall insects. To date, not many reports have been published except for that on the Hessian fly genome, transcriptome, and proteome (reviewed in [6]), and on *Schlechtendalia chinensis* [11]. Gall–causing insects, as well as the other galls on host plants, should be analyzed to understand the molecular mechanism of insect–plant interaction and gall development.

Supporting information

S1 Fig. Gene ontology (GO) analysis (biological process) of mature gall and leaf from *G. obovatum*. Colored dots indicate similar biological GO: blue, developmental process; red, phytohormone; and green, photosynthesis. (TIF)
S1 Table. RNA-sequencing analysis.
(XLSX)

S2 Table. GO analysis of genes up-regulated in galls.
(XLSX)

Acknowledgments
We thank Ms. Kaori Kaminoyama (Kyoto Sangyo University) for technical help for library construction and RNA–sequencing.

Author Contributions
Conceptualization: Seiji Takeda.
Data curation: Seiji Takeda, Issei Ohshima, Masa H. Sato, Tomoaki Sakamoto.
Formal analysis: Seiji Takeda, Tomoaki Sakamoto, Seisuke Kimura.
Funding acquisition: Issei Ohshima, Masa H. Sato, Seisuke Kimura.
Investigation: Seiji Takeda, Makiko Yoza, Taisuke Amano, Issei Ohshima, Tomoko Hirano.
Methodology: Seiji Takeda, Makiko Yoza, Taisuke Amano, Issei Ohshima, Tomoko Hirano, Tomoaki Sakamoto, Seisuke Kimura.
Project administration: Seiji Takeda.
Resources: Seiji Takeda, Issei Ohshima, Seisuke Kimura.
Software: Tomoaki Sakamoto.
Supervision: Seiji Takeda, Issei Ohshima.
Validation: Masa H. Sato, Seisuke Kimura.
Writing – original draft: Seiji Takeda.
Writing – review & editing: Seiji Takeda.

References
1. Stone GN, Schöngroge K. The adaptive significance of insect gall morphology. Trends Ecol Evol 2003; 18: 512–522. https://doi.org/10.1016/S0169-5347(03)00247-7
2. Espírito-Santo MM, Fernandes GW. How many species of gall–inducing insects are there on earth, and where are they? Ann Entomol Soc Am. 2007; 100: 95–99. https://doi.org/10.1603/0013-8746(2007)100[95:HMSOGI:2.0.CO;2]
3. Yamaguchi H, Tanaka H, Hasegawa M, Tokuda M, Asami T, Suzuki Y. Phytohormones and willow gall induction by a gall–inducing sawfly. New Phytol. 2012; 196: 586–595. https://doi.org/10.1111/j.1469-8137.2012.04264.x PMID: 22913630
4. Tanaka Y, Okada K, Asami T, Suzuki Y. Phytohormones in Japanese mugwort gall induction by a gall–inducing gall midge. Biosci Biotechnol Biochem. 2013; 77: 1942–1948. https://doi.org/10.1271/bbb.130406 PMID: 24018692
5. Bartlett L, Connor EF. Exogenous phytohormones and the induction of plant galls by insects. Arthropod–Plant Interact. 2014; 8: 339–348. https://doi.org/10.1007/s11829-011-9309-0
6. Giron D, Huguet E, Stone GN, Body M. Insect–induced effects on plants and possible effectors used by galling and leaf–mining insects to manipulate their host–plant. J Insect Physiol. 2016; 84: 70–89. https://doi.org/10.1016/j.jinsphys.2015.12.008 PMID: 26723843
7. Kaiser W, Huguet E, Casas J, Commin C, Giron D. Plant green–island phenotype induced by leaf–miners is mediated by bacterial symbionts. Proc R Soc B. 2010; 277: 2311–2319. https://doi.org/10.1098/rspb.2010.0214 PMID: 20356892
8. Body M, Kaiser W, Dubreuil G, Casas J, Giron D. Leaf–miners co–opt microorganisms to enhance their nutritional environment. J Chem Ecol 2013; 39: 969–977. https://doi.org/10.1007/s10886-013-0307-y PMID: 23807431

9. Barnewall EC, De Clerck–Floate RA. A preliminary histological investigation of gall induction in an unconventional galling system. Arthropod–Plant Interact. 2012; 6: 449–459. https://doi.org/10.1007/s11829-012–9193-4

10. Bailey S, Percy DM, Hefer CA, Cronk QCB. The transcriptional landscape of insect galls: psyllid (Hemiptera) gall formation in Hawaiian Metrosideros polymorpha (Myrtaceae). BMC Genomics. 2015; 16: 943. https://doi.org/10.1186/s12864-015-2109-9 PMID: 26572921

11. Liu P, Yang ZX, Chen XM, Yang P. RNA–seq–based transcriptome and the reproduction–related genes for the aphid Schlechtendalia chinensis (Hemiptera, Aphididae). Genet Mol Res. 2017; 16: gmr16019448. https://doi.org/10.4238/gmr16019448 PMID: 28340266

12. Chen H, Liu J, Cui K, Lu Q, Wang C, Wu H, et al. Molecular mechanisms of tannin accumulation in Rhus galls and genes involved in plant–insect interactions. Sci Rep. 2018; 8: 9841. https://doi.org/10.1038/s41598-018-38475-6 PMID: 29959354

13. Schultz JC, Edger PP, Body MJA, Appel HM. A galling insect activates plant reproductive programs during gall development. Sci Rep. 2019; 9: 1833. https://doi.org/10.1038/s41598-019-38774-x PMID: 30755671

14. Guiguet A, Oshima I, Takeda S, Laurans F, Lopez–Vaamonde C, Giron D. Origin of gall–inducing from Schultz JC, Edger PP, Body MJA, Appel HM. A galling insect activates plant reproductive programs during gall development. Sci Rep. 2019; 9: 1833. https://doi.org/10.1038/s41598-019-38774-x PMID: 30755671

15. Ogita N, Okushima Y, Tokizawa M, Yamamoto YY, Tanaka M, Seki M, et al. Identifying the target genes for the aphid Schlechtendalia chinensis (Hemiptera, Aphididae). Genet Mol Res. 2017; 16: gmr16019448. https://doi.org/10.4238/gmr16019448 PMID: 28340266

16. Brunner AM, Yakovlev IA, Strauss SH. Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol. 2004; 4: 1–7. https://doi.org/10.1186/1471-2229-4-1

17. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full–length transcriptome assembly from RNA–seq data without a reference genome. Nat Biotechnol. 2011; 29: 644–652. https://doi.org/10.1038/nbt.1883 PMID: 21572440

18. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009; 25: 1754–1760. https://doi.org/10.1093/bioinformatics/btp324 PMID: 19451168

19. Robinson MD, McCarthy DJ, Smyth GK. EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26: 139–140. https://doi.org/10.1093/bioinformatics/btp324 PMID: 19451168

20. Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more genomes, a new bioinformatic/btp616 PMID: 19910308

21. Lafarge S, Montané MH. Characterization of Arabidopsis thaliana ortholog of the human breast cancer susceptibility gene 1: AtBRCA1, strongly induced by gamma rays. Nucleic Acids Res. 2018; 47: D419–D426. https://doi.org/10.1093/nar/gky1038 PMID: 30407594

22. Sjögren CA, Bolaris SC, Larsen PB. Aluminum–dependent terminal differentiation of the Arabidopsis root tip is mediated through an ATR–, ALT2–, and SOG1–regulated transcriptional response. Plant Cell. 2015; 27: 2501–2515. https://doi.org/10.1105/tpc.15.00172 PMID: 26320227

23. Ogita N, Okushima Y, Tokizawa M, Yamamoto YY, Tanaka M, Seki M, et al. Identifying the target genes of SUPPRESSOR OF GAMMA RESPONSE 1, a master transcription factor controlling DNA damage response in Arabidopsis. Plant J. 2018; 94: 439–453. https://doi.org/10.1111/tpj.13866 PMID: 29430765

24. Oh SA, Johnson A, Smertenko A, Rahman D, Park SK, Hussey PJ, et al. A divergent cellular role for the FUSED kinase family in the plant–specific cytokinetic phragmoplast. Curr Biol. 2005; 15: 2107–2111. https://doi.org/10.1016/j.cub.2005.04.044 PMID: 16332535

25. Oh SA, Allen T, Kim GJ, Sidorova A, Borg M, Park SK, et al. Arabidopsis Fused kinase and the Kinesin–12 subfamily constitute a signaling module required for phragmoplast expansion. Plant J. 2012; 72: 308–319. https://doi.org/10.1111/j.1365-313X.2012.05077.x PMID: 22709276

26. Heyman J, Cools T, Vandenbussche F, Heyndrickx KS, Leene JV, Vercauteren I, et al. ERF115 controls root quiescent center cell division and stem cell replenishment. Science 2013; 342: 860–863. https://doi.org/10.1126/science.1240667 PMID: 24158907

27. Lahmy S, Guilletinot J, Cheng CM, Bechtold N, Albert S, Pelletier G, et al. DOMINO1, a member of a small plant–specific gene family, encodes a protein essential for nuclear and nucleolar functions. Plant J. 2004; 39: 809–820. https://doi.org/10.1111/j.1365-313X.2004.02166.x PMID: 15341625
28. Dubois E, Córdoba–Caño D, Massot S, Siaud N, Gakière B, Domenichini S, et al. Homologous recombination is stimulated by a decrease in dUTPase in Arabidopsis. PLoS ONE. 2011; 6: e18658. https://doi.org/10.1371/journal.pone.0018658 PMID: 21541310

29. Wang M, Xu Z, Ahmed RI, Wang Y, Hu R, Zhou G, et al. Tubby–like Protein 2 regulates homogalacturonan biosynthesis in Arabidopsis seed coat mucilage. Plant Mol Biol. 2019; 99: 421–436. https://doi.org/10.1007/s11103-019-00827-9 PMID: 30707395

30. Shigeto J, Nagano M, Fujita K, Tutsumi Y. Catalytic profile of Arabidopsis peroxidases, AtPrx–2, 25 and 71, contributing to stem lignification. PLoS ONE. 2014; 9: e105332. https://doi.org/10.1371/journal.pone.0105332 PMID: 25137070

31. Shigeto J, Kiyonaga Y, Fujita K, Kondo R, Tsutsumi Y. Putative cationic cell–wall–bound peroxidase homologues in Arabidopsis, AtPrx2, AtPrx25, and AtPrx71, are involved in lignification. J Agri Food Chem. 2013; 1: 3781–3788. https://doi.org/10.1021/jf400426g PMID: 23551275

32. Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, et al. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 2003; 22: 42–446. https://doi.org/10.1038/nature01485 PMID: 12660786

33. Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L. Local positive feedback regulation determines cell shape in root hair cells. Science 2008; 19: 1241–1244. https://doi.org/10.1126/science.1152505 PMID: 18309082

34. Sng NJ, Kolaczkowski B, Feri RJ, Paul AL. A member of the CONSTANS–like protein family is a putative regulator of reactive oxygen species homeostasis and spaceflight physiological adaptation. AoB Plants. 2018; 11: py075. https://doi.org/10.1093/aobpla/py075 PMID: 30705745

35. Shin R, Burch AY, Huppert KA, Murphy AS, Guilfoyle TJ, et al. The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. Plant Cell. 2007; 19: 2440–2453. https://doi.org/10.1105/tpc.107.05963 PMID: 17654040

36. Zhao Y, Xing L, Wang X, Hou YJ, Gao J, Wang P, et al. The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77–dependent transcription of auxin–responsive genes. Sci Signal. 2015; 7: ra53. https://doi.org/10.1126/scisignal.2005051 PMID: 24894996

37. Sugimoto K, Jiao Y, Meyerowitz EM. Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev Cell. 2010; 18: 463–471. https://doi.org/10.1016/j.devcel.2010.02.004 PMID: 20230752

38. Grunewald W, Smet ID, Lewis DR, Løfke C, Jansen L, Goeminne G, et al. Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proc Natl Acad Sci USA. 2012; 109: 155–1559. https://doi.org/10.1073/pnas.1110541108 PMID: 22384764

39. Grunewald W, Smet ID, Rybel BD, Robert HS, van den Cote B, Willemesen V, et al. Tightly controlled WRKY23 expression mediates Arabidopsis embryo development. EMBO Rep. 2013; 14: 1136–1142. https://doi.org/10.1038/embor.2013.169 PMID: 24157946

40. Prat T, Hajny J, Grunewald W, Vasileva M, Molnár G, Tejos R, et al. WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity. PLoS Genet. 2018; 14: e1007177. https://doi.org/10.1371/journal.pgen.1007177 PMID: 29377885

41. Grunewald W, Karimi M, Wienczek E, de Cappelle EV, Wischnitzki E, Grundler F, et al. A role for AtWRKY23 in feeding site establishment of plant–parasitic nematodes. Plant Physiol. 2008; 148: 358–368. https://doi.org/10.1104/pp.108.119131 PMID: 18599655

42. Gardiner J, Sherr I, Scarpella E. Expression of DOF genes identifies early stages of vascular development in Arabidopsis leaves. Int J Dev Biol 2010; 54: 1389–1396. https://doi.org/10.1387/ijdb.093006jg PMID: 20563990

43. Werner T, Schmülling T. Cytokinin action in plant development. Curr Opin Plant Biol. 2009; 12: 527–538. https://doi.org/10.1016/j.pbi.2009.07.002 PMID: 19740686

44. D’Agostino IB, Deruère J, Kieber JJ. Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol. 2000; 124: 1706–1717. https://doi.org/10.1104/pp.124.4.1706 PMID: 11158877

45. Rashotte AM, Carson SDB, To JPC, Kieber JJ. Expression profiling of cytokinin action in Arabidopsis. Plant Physiol. 2003; 132: 1998–2011. https://doi.org/10.1104/pp.102.1436 PMID: 12913156

46. To JPC, Haberer G, Ferreira FJ, Drèure J, Mason MG, Schaller GE, et al. Type–A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 2004; 16: 658–671. https://doi.org/10.1105/tpc.018978 PMID: 14973166

47. Lorrai R, Gandolfi F, Boccaccini A, Ruta V, Possenti M, Tramontano A, et al. Genome–wide RNA–seq analysis indicates that the DAG1 transcription factor promotes hypocotyl elongation acting on ABA, ethylene and auxin signaling. Sci Rep. 2018; 8: 15895. https://doi.org/10.1038/s41598-018-3425-3 PMID: 30367178
Transcriptome analysis suggests common developmental processes in plant galls
67. Sieber P, Wellmer F, Gheyselinck J, Riechmann JL, Meyerowitz EM. Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. Development. 2007; 134: 1051–1060. https://doi.org/10.1242/dev.02817 PMID: 17287247

68. Liu L, Li C, Liang Z, Yu H. Characterization of multiple C2 domain and transmembrane region proteins in Arabidopsis. Plant Physiol. 2018; 176: 2119–2132. https://doi.org/10.1104/pp.17.01144 PMID: 29259105

69. Ito T, Takahashi N, Shimura Y, Okada K. A serine/threonine protein kinase gene isolated by an in vivo binding procedure using the Arabidopsis floral homeotic gene product, AGAMOUS. Plant Cell Physiol. 1997; 38: 248–258. https://doi.org/10.1093/oxfordjournals.pcp.a029160 PMID: 9150601

70. Yamaguchi YL, Ishida T, Sawa S. CLE peptides and their signaling pathways in plant development. J Exp Bot. 2016; 67: 4813–4826. https://doi.org/10.1093/jexbot/erw208 PMID: 27229733

71. Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, et al. Non–cell–autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci USA. 2008; 105: 15208–15213. https://doi.org/10.1073/pnas.0804441105 PMID: 18812507

72. Guo X, Wang J, Gardner M, Fukuda H, Kondo Y, Etchells JP, et al. Identification of cyst nematode B-type peptides and modulation of the vascular stem cell pathway for feeding cell formation. PLoS Pathog. 2017; 13: e1006142. https://doi.org/10.1371/journal.ppat.1006142 PMID: 28158306

73. Hirakawa Y, Kondo Y, Fukuda H. TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell. 2010; 22: 2618–2629. https://doi.org/10.1105/tpc.110.076083 PMID: 20729381

74. Theissen G, Saedler H. Floral quartets. Nature. 2001; 409: 469–471. https://doi.org/10.1038/35054172 PMID: 11206529

75. Krizek BA, Fletcher JC. Molecular mechanisms of flower development: an armchair guide. Nat Rev. 2005; 6: 688–698. https://doi.org/10.1038/nrg1675 PMID: 16151374