Geochemistry of a Triassic dyke swarm in the North Patagonian Massif, Argentina. Implications for a postorogenetic event of the Permian Gondwanide orogeny

Santiago N. González a,*, Gerson A. Greco a, Pablo D. González a, Ana M. Sato b, Eduardo J. Llambías b, Ricardo Varela b

a Instituto de Investigación en Paleobiología y Geología (UNRN-CONICET), Av. Julio A. Roca 1242, R 8332 EXZ, General Roca, Río Negro, Argentina
b Centro de Investigaciones Geológicas (UNLP-CONICET), Calle 1 N° 644, B 1900 TAC, La Plata, Buenos Aires, Argentina

ABSTRACT

Permo-Triassic magmatism is widespread in the eastern North Patagonian Massif and has been related to the Gondwanide orogeny. Although a magmatic arc setting is widely accepted for the Permian plutonic rocks, the origin and geotectonic setting for the Triassic plutonic and volcanic rocks are still unknown. A NW-SE Triassic dyke swarm composed of andesites and latites with minor rhyolites was previously described in the Sierra Grande – Rincon de Paileman area. The dyke swarm was associated with extensional tectonics which was linked to a postorogenic process.

In this paper we present new geochemical data of the rocks that form the swarm. Trachyandesites and rhyolites were separated based on their geochemical characteristics. Both groups may be considered originated from different sources. On the other hand, the content of incompatible elements (LILE and HFSE) indicates a strong relation between the swarm and an active continental margin. The samples also show a transitional signature between continental-arc and postcollisional or anorogenic settings.

The new geochemical data on the dyke swarm support the idea of a magmatism that was linked to a postorogenetic extensional tectonic regime related to a continental magmatic arc. Such an extension started in the Paleopacific margin of Pangea during the Anisian and might indicate the beginning of the Pangea break-up.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The final stage of the amalgamation of Pangea was synchronous with the Gonwanide orogeny (305–230 Ma) which affected the Pacific subduction margin of Pangea (Keidel, 1921; Cawood, 2005; Cawood and Buchan, 2007). The Gondwanide orogeny involves compressive deformation accompanied by voluminous magmatism during the Carboniferous and Permian (Cawood, 2005; Cawood and Buchan, 2007 and references in there). This orogeny ends with an extensional process which is the beginning of Pangea break-up (Cawood and Buchan, 2007; Sato et al., 2015).

In Argentina and Chile, the Gondwanic orogenic axis and associated magmatic arc is arranged in a close N–S belt north of the 38°S (Kay et al., 1989; Llambías and Sato, 2011). Southwards, in the North Patagonia, this belt is oriented near NW-SE direction (Fig. 1; Giacosa, 1987, 1993, 2001; Llambías and Rapela, 1984; Rapela and Llambías, 1985; von Gosen, 2002, 2009; Greco et al., 2015).

The arc-related magmatism associated to the Gondwanide orogeny has been recognized all over the Paleopacific margin of Pangea (Cawood and Buchan, 2007; Sato et al., 2015). In the eastern North Patagonian Massif this magmatism is entirely plutonic and range from 291 to 260 Ma (Varela et al., 2008, 2009, 2011; Pankhurst et al., 2006; García et al., 2014a). This Permian plutonic rocks and their country rocks are affected by Permian deformational structures related with a Gondwanide NE-SW compression (Ramos, 1975; Giacosa, 1987, 2001; Busters et al., 1998; Japas, 2001; von Gosen, 2002; González et al., 2008, 2011; Greco et al., 2015).

* Corresponding author. Instituto de Investigación en Paleobiología y Geología (Universidad Nacional de Río Negro), Av. Julio A. Roca 1242, R 8332 EXZ, General Roca, Río Negro, Argentina.

E-mail addresses: sgonalez@unrn.edu.ar (S.N. González), gersongreco@gmail.com (G.A. Greco), pdgonzalez@unrn.edu.ar (P.D. González), satocig.museo.unlp.edu.ar (A.M. Sato), llambias@cig.museo.unlp.edu.ar (E.J. Llambías), ricardovarela4747@gmail.com (R. Varela).
2. Geologic setting

The study area is located in the eastern part of the North Patagonian Massif, close to Sierra Grande (Fig. 1 and 2). The stratigraphy of the region begins with Cambrian low- and high-grade metamorphic units intruded by Early Ordovician granitoids. A Siluro-Devonian siliciclastic sequence overlies the igneous and metamorphic basement rocks. A significant magmatic activity has been registered during Permian when a large number of plutons intruded older rocks. The Triassic dyke swarm, which is the subject of this study, has cut all the Paleozoic sequences. A Jurassic acidic volcanism cover older units.

There is an important development of ductile shear zones related to NE-SW compressive regime (Giacosa, 2001; von Gosen, 2002), which is associated to the NW–SE-trending Permian magmatic arc (Ramos, 1984; Llambías et al., 2002).

2.1. Basement units and Early Paleozoic sedimentary cover

The basement units consist of the high-grade Mina Gonzalito Complex, the low-grade El Jagüelito Formation and the Punta Sierra Plutonic Complex (Ramos, 1975; Giacosa, 1987; Busteros et al., 1998; Fig. 2). According to stratigraphic, detrital zircon and archeocyath fossil constraints, the protoliths from the low-grade slates, phyllites and metagraywackes of the El Jagüelito Formation belong to the Cambrian period (Ramos, 1975; Giacosa, 1987; Pankhurst et al., 2006; Naipauer et al., 2010; González et al., 2011). Granitoids belonging to the Early to Middle Ordovician Punta Sierra Plutonic Complex intrude the El Jagüelito Formation after their first tectonometamorphic event (Varela et al., 1998, 2008; von Gosen, 2002; Pankhurst et al., 2006; García et al., 2014a). According to U-Pb detrital zircon age constraints on their meta-sedimentary protholiths and a U-Pb zircon magmatic crystallization age of a granodioritic orthogneiss, the protoliths of the high-grade schists, para- and orthogneisses, amphibolites and marbles of the Mina Gonzalito Complex also belong to the Cambrian (Ramos, 1975; Giacosa, 1987; Pankhurst et al., 2006; Greco et al., 2014; Varela et al., 2011). Metamorphic rims on detrital zircons from this unit paragneisses constrain the main metamorphic event to 472 Ma (Pankhurst et al., 2006; Greco et al., 2014).

In Sierra Grande area, the basement rocks are unconformably covered by Siluro-Devonian quartzites of the Sierra Grande Formation and by Cenozoic sediments (Busteros et al., 1998). The sedimentary rocks of Siluro-Devonian cover are affected by major faults, km-scale folds and brittle-ductile microstructures, which are considered of Permian age and part of the Gondwanide deformational history (Japas, 2001; von Gosen, 2002).

2.2. Late Paleozoic magmatism and ductile shear zones

The Pailemán Plutonic Complex crystallized during the Permian Period and intruded on both the igneous and metamorphic basement rocks and the sedimentary rocks of the Sierra Grande Formation (Giacosa, 1993; Busteros et al., 1998). The Pailemán Plutonic Complex comprises several plutons, among which the Laguna Medina granodioritic pluton (U-Pb zircon age 291 ± 5 Ma, Varela et al., 2006), Arroyo Pailemán granitic pluton (Rb-Sr whole rock age 268 ± 3 Ma, Greco et al., 1994), Arroyo Tembrazo granodiorite (39Ar/40Ar biotite age 266 ± 1.5 Ma, Greco and Grégori, 2011) and La Verde granodioritic pluton (U-Pb SHRMP zircon age 261 ± 2 Ma, García et al., 2014b) should be mentioned.
Petrographic and geochemical features of the Paileman Plutonic Complex suggest strong affinities with a calcalkaline series related to a magmatic continental arc (Giacosa, 1993, 1994; Grecco et al., 1994; Busteros et al., 1998; García et al., 2014b).

Fig. 2. Regional geological map and local geological maps showing the distribution of the different geological units and their relation with the dyke swarm (modified from González et al. 2014). In Fig. 1a, the rose diagram shows the frequency distribution for the orientation of the dykes. In Fig. 2b and c, the stars indicate the position of the analyzed samples (Table 1).
Fig. 3. Field photographs and photomicrographs of the dykes in the swarm showing them relation with the basement rocks and the different textures found. a) A trachyandesitic dyke cutting the ductile structure of the low grade rocks from El Jagüelito Formation. b) A trachyandesitic dyke cutting the ductile structure of a gneiss in Mina Gonzalito area. c) Field photograph of one granite enclave in a trachyandesitic dyke. Abbreviations: Plg, plagioclase; Anf, amphibole; K-f, K-feldspar or anorthoclase; Qtz, quartz. d) Latite with porphyritic texture characterized by phenocrysts of plagioclase and amphibole set in a groundmass of plagioclase, amphibole and K-feldspar. e) Lamprophyre with porphyritic texture with large phenocrysts of amphibole set in a seriate holocrystalline groundmass of plagioclase and amphibole. f) Rhyolite with phenocrysts of quartz and anorthoclase in a recrystallized felsitic groundmass. Abbreviations: Plg, plagioclase; Anf, amphibole; K-f, K-feldspar or anorthoclase; Qtz, quartz.
Several ductile to brittle-ductile shear zones cut the Permian plutons and their country rocks and have been proposed as Permian (Giacosa, 2001; von Gosen, 2002). Ductile El Jagüelito and Peñas Blancas shear zones are conspicuous structures that affect the pre-Triassic rocks (Fig. 2a and b). These shear zones are reactivated as brittle fault zones during the Jurassic (Giacosa, 2001). Furthermore, the Permian granitoids of the Paileman Plutonic Complex are deformed by narrow brittle-to-ductile shear zones (Varela et al., 2009). The describe shear zones are cut by the dykes of the Triassic swarm indicating that they are previous to the Anisian crystallization age of the dykes (as is mentioned in 2.3).

2.3. The Triassic dyke swarm

Several andesitic and latitic dykes, with lamprophyritic varieties, and minor rhyolites (Ramos, 1975; Vallès, 1978; Giacosa, 1993; González et al., 2014) were gathered in a swarm by González et al. (2008).

The dyke swarm cut the brittle-to-ductile fabrics of all the basement rocks deformed in the Early and Late Paleozoic (Fig. 3a and b; Vallès, 1978; Giacosa, 1993; González et al., 2008). The Permian plutonic rocks (La Verde and Laguna Medina plutons) and the pre-Triassic shear zones are also intruded by the dykes (Fig. 2b and c; Busteros et al., 1998; Giacosa, 2001; von Gosen, 2002; González et al., 2014). The swarm is parallel to the NW-SE orogenic axis of the Permian magmatic arc (Ramos, 1984; Llambias et al., 2002; von Gosen, 2002; González et al., 2014). A crystallization zircon age (U-Pb LA-ICPMS) of 243.6 ± 1.7 Ma has been obtained for a latite (trachyandesite) dyke (González et al., 2014). This date suggests that the emplacement and magmatic crystallization of the swarm took place in the Middle Triassic. Hence, this magnetism might be associated with an extensional tectonic after the orogenic Permian compression (González et al., 2014).

2.4. Jurassic acidic volcanism

The eruption of the mostly-rhyolitic Marfil Volcanic Complex (Malvícini and Llambias, 1974; Cortés, 1981) occurred during the Jurassic between 188 and 153 Ma (Uliana et al., 1985; Rapela and Pankhurst, 1995; Pankhurst et al., 1998; Féraud et al., 1999; Riley et al., 2001). These volcanic and volcaniclastic deposits unconformably cover all older units mentioned above. The Triassic dyke swarm is cut by rhyolitic dykes assignable to the Marfil Volcanic Complex (Fig. 3b). This unit is composed of rhyolitic lavas and ignimbrites with minor andesites and trachyandesites at the base of the sequence (Busteros et al., 1998).

The basal andesites of the Marfil Volcanic Complex cover an erosive surface above the Permian granitoids (Giacosa, 1993). They also have a composition similar to that of the dykes and are overlain by a volcanic and volcaniclastic acid sequence.

3. Geology of the dyke swarm

The dykes were mapped and described by Vallès (1978) and Giacosa (1993), and recently assigned to a NW-SE trending swarm with sub-vertical dip (González et al., 2008; González et al., 2013). The swarm is about 100 km long and 35 km wide, between Sierra Grande, near the Atlantic coast, and Rincón de Pailemán, at the foothills of the Somuncura plateau (Figs. 2; González et al., 2014). Further northwest, in the Valcheta-Nahuel Niyeu area, a group of several longitudinal dykes was described by Caniños (2001). They have the same cutting relationships and compositions similar to those of the dykes in Mina Gonzalito-Sierra Grande area. These dykes might be considered as part of NW-SE swarm studied here.

Most of the dykes are continuous tabular shaped or are composed of several separate segments. In a regional distribution, the dykes show parallel to subparallel orientation and, in some cases, an en-échelon arrangement. Tabular dykes display few meters to 20 km length and few centimeters to 15 m width. The contact between dykes and country rocks is sharp, mostly straight because of the high rheologic contrast between the country rocks and the dykes during the intrusion (Fig. 3a and b).

3.1. Lithological and textural features

On the basis of mineral associations, the rocks collected from the Mina Gonzalito-Sierra Grande area are classified as andesites, latites, spessartitic lamprophyres and rhyolites (González et al., 2014). The first two are the predominant rocks of the swarm.

The andesites and latites are reddish-brown to yellowish-brown and mostly occur as single intrusions. Dark grey to black lamprophyres appear as occasional composite injections in conjunction with latite dykes. The lamprophyres can also form single intrusions, intersecting the andesitic and latite dykes. The rhyolites are pale pink to dark red and form single dykes.

Another composite intrusion has been found in the Mina Gonzalito area. It is characterized by a dyke with an en-échelon arrangement and separated into two segments: the northwestern part is composed of latite and the southeastern one of orange pinkish rhyolite (Fig. 2b).

As key petrographic features, resulting from a constant modification of the thermal conditions, the majority of the dykes show a well-marked change in texture, ranging from aphanitic texture (sometimes micro-porphyritic) in chilled margins to well-developed porphyritic or fine-grained equigranular textures in cores. Seriate texture is also common especially as groundmass in porphyritic sectors.

Flow banded and/or flow laminated structures are present. Several millimetric to decimetric magmatic folds can be locally refolded due to magma flow. In porphyritic texture, euhedral phenocrysts are oriented parallel to flow, and embedded in a groundmass of smaller crystals.

The porphyritic andesite and latite dykes display variably sized phenocrysts of plagioclase and amphibole set in a groundmass of plagioclase and amphibole ± K-feldspar (Fig. 3c). Apatite, zircon and titanite have been recognized as accessory minerals. No glass has been found. The groundmass of the porphyritic quartz lattes have interstitial quartz. The cores of the thicker dykes can also exhibit an agpaitic-like texture. In andesites and latites, glomeroporphyritic clusters of amphibole, plagioclase and apatite are present.

All lamprophyre samples display porphyritic textures typical of these rocks, with large phenocrysts of amphibole set in a seriate holocrystalline groundmass of plagioclase and amphibole (Fig. 3d). Apatite is the most common accessory mineral in these rocks.

The porphyritic texture of the rhyolite is defined by medium-grained euhedral phenocrysts of quartz, anorthoclase, plagioclase and scarce biotite (Fig. 3e). These phenocrysts are set in a felsitic, very fine-grained groundmass. The embayed quartz phenocrysts contain inclusions of the felsitic groundmass. Perithetic feldspar displays a granophyric arrangement with quartz, while plagioclase is normally zoned and presents sericitized cores and non-altered rims. Apatite and zircon are accessories.

Some of the dykes exhibit weak to moderate alteration, suggesting that solutions might have played an important role in the late-stage of the cooling history. Propylitic alteration has been recognized in andesites, trachyandesites and lamprophyres. Magmatic minerals have been pseudomorphically replaced by chlorite, calcite, epidote and titanite. Additionally, propylitization results in mioralitic cavities filled with the alteration mineral
sericite alteration of feldspars and silicic assemblage. On the other hand, the rhyolites show an adularia-
rocks and the Permian granitoids (Fig. 3f). These are variably sized
inclusions are usually affected by contact metamorphism, in which heat and fluids cause mineralogic
chemical changes, especially at the margins (Gonzalez et al., 2014).

4. Geochemoal features

4.1. Methodology

The present study is based on 19 samples collected from the
different varieties of rocks the dyke swarm (3 samples of lattes, 4 samples of rhyolites and 2 samples of lamprophyres). Major and
trace element concentrations were determined in 0.2 g of powder
samples of rhyolites and 2 samples of lamprophyres). Major and
P2O5 % 0.01 0.3 0.22 0.23 0.33 0.34 0.43 0.36 0.41 0.27 0.58 0.29 0.28 0.18 0.32 0.55 0.35 0.18 0.001 0.04 0.07
Na2O % 0.01 4.86 3.45 4.1 4.31 3.97 3.08 3.94 4.24 3.97 3.48 5.32 5.52 4.58 3.47 3.37 4.89 2.93 0.14 0.09 0.22
CaO % 0.01 2.75 4.47 4.58 1.99 3.85 4.97 3.53 4.97 4.63 7.73 2.43 1.44 2.64 4.27 6.21 2.61 0.24 0.12 0.29
K2O % 0.01 3.85 3.33 2.95 3.43 4.09 3.29 3.52 4.27 3.48 3.61 4.78 7.23 4.4 4.94
TiO2 % 0.01 0.53 0.77 0.46 0.76 1.05 0.74 1.08 0.78 1.2 0.58 0.6 0.49 0.66 1.1 0.59 0.38 0.06 0.13 0.33
Fe2O3 % 0.01 0.22 0.23 0.33 0.34 0.43 0.36 0.41 0.27 0.58 0.29 0.28 0.18 0.32 0.55 0.35 0.001 0.04 0.07
MnO % 0.01 4.01 0.08 0.04 0.09 0.01 0.06 0.11 0.09 0.13 0.04 0.05 0.04 0.1 0.11 0.01 0.003 0.02 0.07
Cr2O3 % 0.002 0.022 0.012 0.001 0.026 0.017 0.005 0.007 0.022 0.067 0.011 0.001 0.013 0.046 0.007 0.005 0.007 0.001 0.003
Ni ppm 20 20 39 101 31 54 76 19 19 19 79 143 19 19 58 117 28 39 19 19 19
Sc ppm 3 16 12 10 6 13 12 5 15 13 21 3 3 7 15 14 4 2 3 5
Lol % -5.1 3.15 2 2.2 1.3 2.1 6.3 4.3 6.5 2.5 6.3 2.4 2.8 5.2 3.1 1.67 1.1 1.2 1.9 1.8

Table 1: Geochemical analysis results for major and trace elements of the samples from the dyke. The sample CVM 128 correspond to Giacosa (1993).

Detection Limit	Trachyandesites	Rhyolites
SiO2 %	0.01	0.01
Al2O3 %	0.01	0.01
Fe2O3 %	0.04	0.04
MgO %	0.01	0.01
CaO %	0.01	0.01
Na2O %	0.01	0.01
K2O %	0.01	0.01
TiO2 %	0.01	0.01
Fe2O3 %	0.01	0.01
MnO %	0.01	0.01
Cr2O3 %	0.002	0.002
Ni ppm	20	20
Sc ppm	3	16
Lol %	-5.1	3.15
Ba ppm	1594	1594
Cs ppm	3.3	3.3
Hf ppm	0.01	0.01
Nb ppm	0.1	0.1
Rb ppm	132	132
Sr ppm	574	574
Ta ppm	1.2	1.2
Th ppm	0.2	0.2
U ppm	0.1	0.1
Zr ppm	229	229
Y ppm	7	7
La ppm	34	34
Ce ppm	72.1	72.1
Pr ppm	8.64	8.64
Nd ppm	34	34
Sm ppm	6.1	6.1
Eu ppm	0.02	0.02
Gd ppm	4	4
Tb ppm	0.01	0.01
Dy ppm	0.05	0.05
Ho ppm	0.02	0.02
Er ppm	0.03	0.03
Tm ppm	0.01	0.01
Yb ppm	0.05	0.05
Lu ppm	0.05	0.05

The analytical results are shown in Table 1, which also includes the analysis of one sample published by Giacosa (1993) for a trachyandesitic dyke crosscutting the La Verde Pluton (oxides are recalculated to volatile-free totals of 100%).

4.2. Results and characterization

4.2.1. Classification

The wide mineral variation of the dykes, determined by petro-
graphic analyses has also been corroborated by their heteroge-
nous geochemical composition. In the Total Alkalai Silica diagram (TAS) of Le Maitre (2002), the rocks plot mostly between trachyandesite and trachyte fields. The SiO2 content ranges from 56 to 67% and the alkalis content (Na2O + K2O) varies between 7.7 and 9.7%, following a continuous trend, which is transitional between sub-alkaline and alkaline series (Fig. 4a). This tendency is characteristic of mildly-alkaline series (Parat et al., 2005). The two analyzed lamprophyres plot in the field of trachyandesites along the same trend, with SiO2 around 60% wt and alkalis ranging between 6.97 and 7.57%.

A sample of a fine grained, virtually aphyric latite plots as a basaltic trachyandesite (52% SiO2, and 5.4% alkalis), far from the general characteristics of the other samples. However, the trace

Analytical Laboratories S.A.
clear continuity with the mesosilicic trend. Their trace elements and REE features are also different from the trachyandesitic group.

Our petrographic studies indicate that some of the samples are slightly altered. A different classification method should be used in order to establish the importance of element remobilization as a product of alteration and how it might affect the rock classification. The problem of element mobility during alteration processes may be minimized by considering the high field strength incompatible elements (i.e., Ti, Zr, P, Nb, Y and REE) that are considered relatively immobile during alteration and low-grade metamorphism (Pearce and Cann, 1973; Pearce, 1982). Winchester and Floyd (1977) used immobile trace elements and their ratios for the classification of igneous rocks and also to discriminate between different magma series. The Zr/Ti ratio and SiO2\% (Fig. 4b) serve as an index of fractionation and the Nb/Y ratio serves as an index of alkalinity. In the Zr/Ti vs Nb/Y diagram (Fig. 4c), the samples plot in the alkali basalt, andesite, trachyandesite, and trachyte fields. In the Zr/Ti vs SiO2\% diagram, however, the samples plot in the fields of alkali basalt, andesite, rhyodacite/dacite and rhyolite. Both diagrams confirm the TAS classification and the slightly alkaline affinity observed in it.

4.2.2. Major and trace element characteristics

The MgO/(MgO + FeO) molar ratios (Mg#) for the dykes decrease gradually from basaltic trachyandesite to trachyte to the most evolved rhyolite samples (0.49, 0.40 and 0.24, on average respectively). The Na2O content is generally higher than K2O in the mesosilicic rocks. On the contrast, the rhyolites have a K2O content greater than Na2O.

The Harker’s diagrams of major elements exhibit a linear trend between the basaltic trachyandesites and trachytes, which might be interpreted as the effect of fractional crystallization (Fig. 5). The rhyolites show a similar picture but with a different slope in the trend line. The K2O vs SiO2 diagram shows that the samples are part of the high-K, calcalkaline series (Fig. 7; Le Maitre, 2002). The Peacock’s index (1931), obtained for the mesosilicic samples, is 51.94 and indicates that the rocks belong to the alkal-calcic suite (Fig. 4d).

Shand’s alumina saturation molar ratio (1943) ranges between 0.64 and 1.08, indicating that most of the trachyandesites are metaluminous (Fig. 4e). The rhyolites are peraluminous with ASI>1.05.

Incompatible element variation patterns for the trachyandesitic and rhyolitic dykes are shown in Fig. 6a (normalized to the N-MORB after Pearce, 1982). In every case the mesosilicic dykes show an inclined pattern (i.e., enrichment in Large-Ion Lithophile Elements -LILE- relative to High Field Strength Elements -HFSE-) and are characterized by negative Ta, Nb, P, Zr and Ti anomalies. They also exhibit a relative enrichment in Ba, Rb and K. An extreme depletion in P and Ti and negative Ba and Sr anomalies separate the rhyolitic samples from the trachyandesitic ones (Fig. 6a). The (Rb/Yb)N ratio is high and ranges between 36.64 and 448.8.

The spessartitic lamprophyres share the same geochemical features and incompatible element variation patterns as those of trachyandesites and trachytes (Figs. 4–8). The lamprophyres appear as part of the same mildly-alkaline trend already distinguished by major element characterization. According to all these geochemical features, they might belong to the group of calcalkaline lamprophyres (after Rock, 1987), which have a very close spatial, temporal and chemical relation with high-K, calcalkaline postorogenic rocks in continental magmatic arcs (Pearce, 1982, 1983; Thompson et al., 1984; Parat et al., 2005).

The rhyolites are geochemically slightly dissimilar to the trachyandesitic samples. They have higher SiO2\% and K2O % content, are clearly peraluminous and their Mg# is lower. Although the
incompatible element patterns (spider diagrams) of the rhyolites are similar to the trachyandesitic samples, the positive and negative anomalies are sharper. Furthermore the rhyolites show negative anomalies of Sr and Ba (Fig. 6a).

4.2.3. Rare earth element patterns

The concentrations of the REE are shown in Table 1 and are illustrated in the chondrite-normalized REE diagrams (Fig. 6b). The REE distribution diagrams show an inclined pattern caused by a high Light REE content and a lower High REE content (Fig. 6b; chondrite normalized after Sun and McDonough, 1989). The trachyandesites exhibit a small negative Eu anomaly (Eu/Eu* = 0.73 – 1.04) while the rhyolites display a strong negative one (Eu/Eu* = 0.24 – 0.71). These REE patterns are characteristic of less evolved rocks from calcalkaline magmas (Gill, 2010).

Slightly lower content of REE than the mesosilicic samples are shown in the rhyolitic ones. Their REE patterns are stepped (La/LuN = 5.65 – 25.72) and they display relative unfractionated HREE (Gd/LuN = 0.46 – 2.9) and high LREE fractionated patterns (La/SmN = 4.83 – 8.59).

5. Discussion

There are many examples of dyke swarms hosted by a magmatic arc with a close spatial, temporal and genetic relationship with it (Llambias and Sato, 1990; Chen and Moore, 1979; Coleman et al., 1994; Carracedo et al., 1997; Teixeira et al., 2002; El-Sayed, 2006; Zhang and Zou, 2012). In general, these swarms show transitional geochemical features between subduction-related magmatic arc and collisional or continental within-plate settings. They are complex suites of rocks that can exhibit either a strong bimodality or a complete series between two end-members. This late to post-orogenic magmatism is linked to a geotectonic process that takes place at subduction margins. There, a thermal anomaly affects the continental lithosphere and leads to the production of partial melts. Additionally, dyke swarms are linked to the extensional process.
that deforms and modifies the tectonic configuration of the lithosphere.

In the following sections we discuss the genetic implications of the new geochemical data from the swarm as well as its correlation with others Triassic magmatic units in the North Patagonian Massif. This Early Mesozoic magmatism might have a significant role during the first stages of the Pangaea break-up as evidence of changes in tectonic regimen as indicators of geotectonic process.

5.1. Petrogenesis

There are two chemically separated groups of rocks in the studied dyke swarm. Although all dykes appear to belong to the same NW structural system, the geochemical differences between trachyandesitic and rhyolitic dykes are remarkable.

The differences in composition might be due to the following causes: 1) the existence of different sources, 2) chemical and mineralogical heterogeneities in the source, 3) different degrees in the partial melting of the source/sources, and 4) magma compositional modifications by fractional crystallization and/or crustal contamination processes.

Following this idea, we are treating the rhyolites separately from the trachyandesitic (mesosilic) rocks of the dyke swarm.

5.1.1. Trachyandesitic dykes

The immobile element ratios (i.e. Zr/Ti, Zr/Y and Zr/Nb) are useful to evaluate the roles that fractional crystallization, partial melting, and source heterogeneity play in magma compositional variations (Pearce and Norry, 1979; Pearce, 1980; Saunders et al., 1980). These elements are not fractionated during the origin of magmas and do not change significantly during their generation and evolution.

The Zr/Y and Zr/Ti ratios show a positive linear progression with SiO2 (Fig. 4b and 6c). Whereas the Zr/Nb ratio shows a negative linear progression with SiO2. Nevertheless, the Zr/Y and Zr/Nb ratios show a scattered distribution different to the Zr/Ti ratio. A heterogeneity in the source or progressive melting variations are suggested by the differences in the Zr/Y ratio.

The high (La/Lu)N ratio between 13.24 and 77.81 (29.13 in average) suggests a peridotitic garnet-bearing source for the trachyandesites (Gill, 2010).

The enrichment in LILE and LightREE, the high Rb/Sr ratios and the negative Nb anomalies (Fig. 6a) might be attributed to a low degree of partial melting (Plank and Langmuire, 1988), to a crustal contamination (Weaver et al., 1987), or to melts derived from a metasomatically enriched mantle source (Richardson et al., 1982).

The enrichment in LILE might be associated to the introduction of slab-derived materials and/or to the transfer of subduction-related fluids. Such fluids are originated by dehydration of the descending oceanic crust and the rise into the overlying depleted mantle wedge (Pearce, 1983). The resultant melt should have a geochemical trace element pattern similar to volcanic-arc related magmas (Saunders et al., 1980).

The effect of contamination of a primitive melt by crustal material is tested with a Cr + Ni vs K plot (Fig. 6e). Cr and Ni are compatible elements in mafic minerals, while K2O is a highly incompatible component. Normal fractional crystallization in a closed system should follow a hyperbolic curve in this diagram (Pearce, 1982). The investigated dykes show a scattered behavior and do not exhibit a hyperbolic trend in the diagram, suggesting that crustal contamination might have played a certain role during magma evolution. Moreover, the wide variation of Rb contents of the trachyandesitic samples (41.7 – 152.5 ppm) also supports the idea that a contamination with LILE-enriched crustal material might have occurred. The assimilation of the country rocks could have taken place either at deep or at shallow levels in the crust. Our field evidence also support country rock assimilation by the dykes (Fig. 3f and section 3.2).

Ni, Cr and Mg# of the dykes are much lower than primary mantle melts (>250 ppm Ni, >1000 ppm Cr, >65 Mg#; Perfit et al., 1980; Wilson, 1989). The absence of primitive rocks among the studied dykes might be attributed to magma mixing and/or to some fractional crystallization processes, before their emplacement. There is no field evidence that support magma mixing processes in the evolution of the mesosilic dykes.

The patterns of incompatible elements as well as the REE patterns are similar in the rocks of the swarm. The patterns of the three types of rocks (basaltic trachyandesite, trachyandesite and trachyte) are parallel and have similar values (Fig. 6b). Also the three types have, in general, a similar negative Nb, Zr and Ti anomalies (Fig. 6a) suggesting that their composition has been modified at some point by fractional crystallization processes. It is also indicated that plagioclase was not a predominant crystallizing phase due to the small values of Eu/Eu* in the samples (Fig. 6d; Basaltic Volcanism Study Project, 1981). Amphibole fractionation decreases the M-REE and leads to a concave upward curve in normalized REE diagrams (Hanson, 1980).

5.1.2. Rhyolitic dykes

The REE pattern for the rhyolitic dykes is characterized by unfractracted flat HREE (Fig. 6b) suggesting a garnet-free source. The felsic dyke rocks might have been formed by simple fractional crystallization processes from a garnet-free magma source. Incompatible element diagrams (normalized to N-MORB after Pearce, 1982) for the felsic dykes display patterns strongly modified by fractional crystallization (Fig. 6a). A low content of Sr and the occurrence of strong negative P and Ti anomalies in the spider diagram, suggest that significant crystallization of plagioclase, apatite and Ti-magnetite probably took place before emplacement. Thus, the most plausible explanation for the low Mg, Cr, Ni and relatively high LILE in the felsic dykes is a fractional crystallisation process, rather than a small degree of partial melting from a slightly enriched mantle source.

From the chemical data and the qualitative evolution presented here, it is clear that the trachyandesitic and rhyolitic dyke groups cannot be related to fractional crystallization processes from a common parental magma. Therefore, dissimilar parental magmas, each one with its own subsequent evolution, might have been responsible for the suites of rocks found in the swarm.

Based on the lack of geochronological data from the rhyolitic dykes and the ambiguous similarities with both the Triassic dyke swarm and the Jurassic acidic Mariñ Volcanic Complex, we propose two possible scenarios for this early Mesozoic magmatism. The first and simplest one is taking into account that the rhyolites are younger and have no genetic or temporal relation with the trachyandesites of the swarm. The second explanation involves a multi-stage magmatic scenario in which two different sources have been molten in order to generate two different melts. One of the melts might have been formed from a deeper garnet-bearing source before rising through the crust and assimilating parts of its country rocks. The second magma might have been differentiated in the continental crust from a garnet-free source. The upper reservoir from the acidic magma might have been energized by the rising of the deeper primitive magma causing the emplacement of the swarm at shallow levels of the crust. This possibility allows us to put together the different rocks of the swarm at the same time and in the same location, in order to explain their geological relation in the field.
5.2. Tectonic and geodynamic significance of the dyke swarm

The geotectonic settings where dyke swarms have been intruded are diverse and all of them imply an extensional tectonic regime. Furthermore, the geochemistry of the igneous rocks from such environments is particular and reflects some characteristics of the source. These characteristics can be used to approach the precise tectonic environment where the magma has been generated and consequently evolved.

As shown above, the rocks in the swarm belong to the High-K group in the K2O versus SiO2 diagram (Fig. 5). Additionally the Peacock index and the Na2O + K2O values of the trachyandesites indicate that the samples have a transitional behavior between the subalkaline and alkaline series of rocks (Fig. 4d). These geochemical characteristics are typical of the youngest subduction-related magmas (Morrison, 1980). The REE patterns (Fig. 4b) and the high La/Lu ratios are typical of magmatic arc related rocks. Incompatible trace element patterns of the dykes, both trachyandesitic and rhyolitic, are characterized by a relative depletion in Nb, P and Ti (Fig. 6a), typical of subduction-related calcalkaline magmas. They also exhibit a relative Sr depletion and enrichment in Ba, Rb and K which defines the slab derived component (Gill, 2010). However, we cannot distinguish whether the arc-like signature in the trace element patterns has been inherited from the metasomatized mantle source (Pearce, 1983; Thirlwall et al., 1994), or reflects contamination by continental crust depleted in HFSE relative to LILE (Weaver and Tarney, 1984; Taylor and McLennan, 1995).

The chemical characteristics of the investigated dyke swarm are similar to the continental arc rocks as it is shown by tectonic discrimination diagrams (Fig. 7; Gorton and Shandl, 2000). Gorton and Shandl’s (2000) geotectonic discrimination diagram (Fig. 7) was developed for acidic and mesosilicic rocks using element ratios sensitive to the petrogenetic process of the different geotectonic settings. The dyke samples plot mostly in the volcanic arc field of the diagrams but some samples plot in the within-plate field.

The rhyolitic dyke samples plot in the discrimination diagrams as orogenic to within-plate settings. Sylvester (1989) found that post-collisional granites show affinities with volcanic arc granites and are compositionally similar to syn-collisional and within-plate granites. This author proposes the transitional member “Highly fractionated I- and S-Type granite” between the “Normal I- and S-type granites” and the “A-type granites”. Fig. 8 shows that the trachyandesitic dykes belong to the “Normal I- and S-type” and are transitional to the “Highly fractionated” and “A-type” granites.
Meanwhile, the rhyolitic dykes are more similar to “Highly fractionated” and “A-type”. The rhyolites may represent an extremely differentiated subduction-related melt besides the trachyandesites. They might belong to a product of partial melting from a subdifferentiated subduction-related melt besides the trachyandesites. The lack of water might explain both a lower degree of partial melting and the mildly-alkaline signature of the generated magmas in this stage. The magmas generated in a post-orogenic stage will display a mixed signature between arc-related magmatism and anorogenic magmatic suites. The enriched mantle wedge might be the source for the postorogenic magmatism. In this stage the water supply is not as permanent and abundant as it was during the subduction stage. The lack of water might explain both a lower degree of partial melting and the mildly-alkaline signature of the generated magmas in this stage.

The above features for postorogenic processes could explain the chemical characteristics of the dykes studied here and the geotectonic environment during their emplacement. The geochemical signatures of the dykes reflect the inheritance of a continental magmatic-arc setting and show transitional features to post-collisional or anorogenic tectonic settings. The stratigraphic relations of the dyke swarm argue for a subduction-related post-orogenic environment. The swarm cuts both the magmatic arc rocks (represented by the Pailéman Plutonic Complex (Giacosa, 1993; Busteros et al., 1998; Varela et al., 2009; García et al., 2014a)) and the orogenic deformational structures (represented by the El Jagüeglito and Peñas Blancas shear zones (Giacosa, 2001)). Additionally, the tensional regime required for the rise and emplacement of magmas can be related to a postorogenic stage.

5.3. Correlations with other North Patagonian units

In northern outcrops of Patagonia, the Permian plutonic complexes of La Esperanza (Llambías and Rapela, 1984), Pailém (Giacosa, 1993), and Navarrete (Camínos, 1983, 1998) were recognized as the Gondwanic magmatic arc (Pankhurst et al., 2006; Ramos, 2008). These complexes intruded the early Paleozoic plutonic and metamorphic rocks.

In the middle-northern North Patagonian Massif, the Permian plutonic units are intruded by plutons and covered by volcanic rocks of Late Permian to Early Triassic age (Llambías and Rapela, 1984). The Triassic Collinao ignimbritic dacite (U-Pb SHRIMP zircon age 246 ± 2 Ma in Pankhurst et al., 2006) covers over an erosion surface above Permian La Esperanza Plutonic Complex (U-Pb circon age 271 Ma in Pankhurst et al., 2006). The Calvo Granite intrudes the Permian plutons and is 250 ± 2 Ma (U-Pb circon age in Pankhurst et al., 2006). This granite was considered as postmagmatic to the Permian plutonism on the basis of its geochemical features (as highly fractionated orogenic granite) and intrusive relations (Martínez D'olico et al., 2013). Overlying the Permian to Early Triassic rocks there is a thick volcanic and volcanioclastic sequence of Middle Triassic to Jurassic age corresponding to the Los Menusos Volcanic Complex (Lema et al., 2008).

The previously described stratigraphic relations are similar to those found in the study are between the Permian granites, the Triassic dyke swarm and the Marifí Volcanic Complex. Moreover, the basal andesitic lava flows from Marifí Volcanic Complex were proposed as Triassic (Rosenman, 1972; Malviccini and Llambías, 1974; Cortés, 1981; Giacosa, 1993).

5.4. Geotectonic implications

In the eastern North Patagonia Massif, the finalization of the Gondwanide orogenic compression and related magmatism is evidenced in two geological elements: the erosive surface between
the Permian plutonic rocks and the Mesozoic volcanic rocks, and the NW dyke swarm. Both elements are related to a Triassic extensional tectonic regime.

In the Fig. 9 there is a proposal of the tectonic evolution for the eastern North Patagonian Massif between the Permian and Triassic. During the Gondwanide orogeny the compression has been proposed in a NE-SW direction (Fig. 9a; von Gosen, 2002). This orientation explains the NW-SE trend of the deformational

![Fig. 8. Zr + Nb + Ce + Y versus FeO/MgO and (Na₂O + K₂O)/CaO diagrams after Sylvester (1989). Both plots show the trend of the samples from a typical arc-related magmatism to a post-collisional or anorogenic magmatism.](image1)

![Fig. 9. Proposed Permo-Triassic tectonic evolution of the eastern North Patagonian Massif. The maps in the left are based on von Gosen (2009) and González et al. (2014). a) Permian compression and arc-related magmatism during the Gondwanide orogeny. b) Extensional postorogenic stage of the Gondwanide orogeny. The arrows in the schematic sections indicate the possible vector of relative convergence between the plates.](image2)
structures and the alignment observed in the associated plutons (Llamblías and Rapela, 1984; Rapela and Llamblías, 1985).

Through Early Triassic the subduction regimen change, probably because the convergence slow down or stop, and consequently the compression vector change (Fig. 9b). As the dyke swarm is oriented parallel to the Gondwanide orogenic axis, the Triassic extension should had a NE-SW orientation (Fig. 9).

We propose a postorogenic event, related to the collapse of the Gondwanide orogen, as responsible for the Triassic extension. This event might have been related to the beginning of the Pangea break-up.

6. Conclusions

In summary, we can draw the following conclusions in relation to the magmatic processes and evolution of the Triassic dyke swarm in the eastern North Patagonian Massif:

1. The Triassic dyke swarm is composed mainly of trachyandesite and trachyandesite dykes. The genetic relation between the rhyolitic and the trachyandesitic dykes of the swarm remains unclear.

2. The dykes in the swarm belong to mildly alkaline, high-K rock series and have a transitional geochemical signature between a typical magmatic arc and anorogenic tectonic setting.

3. The trachyandesitic dykes have a geochemical signature from a garnet-free source.

4. The stratigraphic relations indicate that the swarm is younger than the deformation and magmatism of the Gondwanide orogeny. The extensional structures where the dykes are hosted are subparallel to the compressive Permian structures. The extensional tectonic event is probably related to the collapse of the Permian orogen.

5. The Triassic dyke swarm belongs to a postorogenic process linked to the final stage of the Permian Gondwanic orogeny.

6. The Anisian postorogenic process started in an extensional tectonic regime at the southeastern margin of Gondwana and can be related to the break-up of Pangea.

Acknowledgments

We would like to express our sincere thanks to the people from Sierra Grande to Gonzalito areas, all over the wide eastern part of Río Negro province, for allowing us the access to their farms and for their hospitality during our field work. We are grateful to W. von Gosen for him constructive review that helped to improve the present manuscript. Fieldwork and laboratory task were possible by the financial contributions of the Universidad Nacional de La Plata (UNLP Project 11/N 653) and Consejo Nacional de Investigaciones Científicas y Técnicas (PIP-CONICET 0119).

References

Basaltic Volcanism Study Project (BVSP), 1981. Basaltic Volcanism on the Terrestrial Planets. Pergamon Press, New York, p. 1286.

Bird, P., 1979. Continental delamination and the Colorado plateau. J. Geophys. Res. Solid Earth 1978–1982 84 (B13), 7561–7571.

Black, R., Liégeois, J.P., 1993. Cratons, mobile belts, alkaline rocks and continental lithospheric mantle: the Pan-African tectonics. J. Geol. Soc. Lond. 150, 89–98.

Bustos, A., Giacosa, R., Lema, H., 1998. Hoja Geológica 4166–IV, Sierra Grande (Río Negro). Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Buenos Aires, p. 1 (unpublished).

Caminos, R., 2001. Hoja Geológica 4166–I, Valcheta. Instituto de Geología y Recursos Minerales. Servicio Geológico Minero Argentino. Boletín 299, Buenos Aires, p. 71.

Carracedo, M., Larrue, F.J., Alonso Olazabal, A., Gil Ibaruchi, J.L., 1997. Relación entre las intrusiones plutónicas y el complejo filoniano en el batolito de Los Piedrecos (Municipio Berisso, República Argentina): los diques como indicadores de ambientes paleotectonicos y paleofuerzas. Cad. do Lab. Xeol. (unpublished).

Cawood, P.A., Buchan, C., 2007. Linking accretionary orogeny with supercontinent assembly. Earth Sci. Rev. 82, 217–256.

Cawood, P.A., 2005. Terra Australis orogenic: Rodinia breakup and development of the Pacific and Iapetan margins of Gondwana during the neoproterozoic and paleozoic. Earth Sci. Rev. 69, 249–279.

Chen, J.H., Moore, J.C., 1979. Late Jurassic Independence dike swarm in eastern California. Geology 7, 129–133.

Coleman, D.S., Bartley, J.M., Glazner, A.F., Carl, B.S., 1994. Late Cretaceous dikes in the independence swarm, California. EOS 75, 686.

Cortés, J.M., 1981. El sustrato pre-cretácico del este extremo de la provincia del Chubut. Rev. de la Asoc. Geol. Argent. 36 (2), 217–235.

El-Sayed, M.M., 2006. Geochemistry and petrogenesis of the post-orogenic bimodal dyke swarms in NW Sinai, Egypt: constraints on the magmatic-tectonic processes during the late Precambrian. Chem. Erde 66, 129–141.

Féraud, G., Alric, V., Fournier, M., Bertrand, H., Haller, M., 1999. The Mesozoic silicic volcanic Province of Patagonia synchronous with the Gondwana Break-up and subduction: space-time evolution evidenced by 40Ar/39Ar data. Earth Planet. Sci. Lett. 172, 83–96.

García, V.A., Giacosa, S.N., Tassinari, C.C.G., Sato, K., Sato, A.M., González, P.D., Varela, R., 2014a. U/Pb and Nd data from Peñas Blancas pluton, North-Patagonian Massif, Argentina. In: 9th South American Symposium on Isotope Geology. São Paulo, Brazil. Actas 190.

García, V.A., Giacosa, S.N., Tassinari, C.C.G., Sato, K., Sato, A.M., González, P.D., Varela, R., 2014b. Geochronology and Geochronology of the Pluton La Verde, Macizo Nordpatagónico, provincia de Río Negro. XIX Congreso Geológico Argentino Córdoba, República Argentina.

Giacosa, R., 1987. Caracterización de un sector del basamento metamórfico-migmatítico en el extremo surooriental del Macizo Norpatagónico. In: Provincia de Río Negro, Argentina. 10° Congreso Geológico Argentino, Actas 3: 51–54, S.M. de Azcúcar.

Giacosa, R., 1993. El ciclo eruptivo Gondwanic en el área de Sierra de Palmeac, Macizo Norpatagónico, Argentina. In: 12° Congreso Geológico Argentino y 2° Congreso de exploración de Hidrocarburos, Actas 4: 113–119, Buenos Aires.

Giacosa, R., 1994. Geología y petrología de las rocas pre-cretácicas del área arroyo Salado –Arroyo Tembrado, sector oriental del Macizo Norpatagónico, Río Negro. PhD Thesis. Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut – Argentina, p. 129 (unpublished).

Giacosa, R., 2001. Zonas de cíaza frágil-dóil neopatagónicas en el nordeste de la Patagonia. Rev. la Asoc. Geol. Argent. 56 (2), 131–140.

Gill, R., 2010. Igneous Rocks and Processes, a Practical Guide. Wiley-Blackwell, Malaysia, p. 428.

González, P.D., Varela, R., Sato, A.M., Llamblías, E.J., González, S.N., 2008. Dos fajas estructurales distintas en el Complejo Mina Gonzalito (Río Negro). In: 17° Congreso Geológico Argentino, Actas 2: 847–848, San Salvador de Jujuy.

González, P.D., Tortello, F., Damborenea, S., 2011. Early Cambrian archaeocyathian limestone blocks in low-grade meta-conglomerate from the Jagüelito Formation (Sierra Grande, Río Negro, Argentina). Geol. Acta 9 (2), 159–163.

González, S.N., Greco, G.A., González, P.D., García, V.A., Sato, J.E., A.M., Díaz, F., 2013. Geología de un enjambre longitudinal de diques mesosilíicos en la Cordillera norte. In: Simposio sobre Petrología Igneca y Metagénesis Asociada, Actas 43, San Luis.

González, S.N., Greco, G.A., González, P.D., Sato, A.M., Llamblías, J.E., Varela, R., Base, M.A.S., 2014. Geología, petrología y edad U-Pb de un enjambre longitudinal NO-SE de diques del Macizo Norpatagónico Oriental, Río Negro. Rev. de la Asoc. Geol. Argent. 71 (2), 174–183.

Gorton, M.P., Schandl, E.S., 2000. From continents to island arcs: a geochemical and petrologic setting for arc-related and within-plate felsic to intermediate volcanic rocks. Can. Mineral. 38, 1065–1073.

Greco, L.E., Gregori, D.A., Rapela, C.W., Panhurck, R.J., Labudac, C.H., 1994. Peraluminous granites in the northeastern sector of the north Patagonian Massif. In: 17° Congreso Geológico Chileno, Actas 2: 1354–1359, Concepción.

Greco, L.E., Gregori, D.A., 2011. Geoquímica y Geocronología del Complejo Plutónico Paileman, Comarca Nordpatagónica, Provincia de Río Negro. In: 18° Congreso Geológico Argentino (CD abstracts, Neuquén).

Greco, G.A., Gonzalez, P.D., Sato, A.M., Basei, M.A.S., Tassinari, C.C.G., Sato, K., Varela, R., 2015. Geología, petrología y estructura y edad del Nahuel Huapi Nacimiento en la Aguada Cecilio area, Nor Patagonian Massif, Argentina. J. Am. Earth Sci. 62, 12–32.

GSA Geologic Time Scale v4.0 (http://www.geosociety.org/science/time-scale).

Hansen, N., 1980. Rare earth elements in petrogenetic studies of igneous systems. Ann. Rev. Earth Planet. Sci. 8, 371–406.

IUGS International Chronostratigraphic Chart v2015/01 (http://www.stratigraphy.org/index.php/isc-chart-timescale).

Japas, M.S., 2001. Modelo cinemático neopatagónico para el sector nororiental del
