A comparison of shear bond strength of brackets bonded to zirconia

Hannah Knott,† Xiaoming Xu,+ Edwin Kee,† Qingzhao Yu,‡ Paul Armbruster§ and Richard Ballard‡
Private Practice of Orthodontics, Houma,† Department of Prosthodontics, LSUHSC School of Dentistry, New Orleans,† Department of Biostatistics, LSUHSC School of Public Health, New Orleans‡ and Department of Orthodontics, LSUHSC School of Dentistry, New Orleans,§ USA

Purpose: The objective of this study was to compare the shear bond strength (SBS) of ceramic orthodontic brackets bonded to highly translucent zirconia surfaces following the use of two different primers.

Materials and methods: Three types of highly translucent zirconia crowns, Cercon xt ML, e.max ZirCAD, and STML-ML Katana Zirconia, were milled, sandblasted, and primed using two zirconia primers, Monobond Etch and Prime and Z-Prime Plus. A ceramic bracket (Radiance) was bonded onto the facial surface of each crown. Shear bond strength was evaluated using a universal testing machine.

Results: There was no significant overall difference across the six experimental groups regarding shear bond strength. The use of the two tested zirconia primers resulted in comparable and clinically acceptable shear bond strengths.

Conclusions: Both tested zirconia primers were associated with adequate bond strength when bonding a ceramic orthodontic bracket to the three highly translucent zirconia substrates.

(Aust Orthod J 2021; 37: 62 - 68. DOI: 10.21307/aoj-2021-006)

Received for publication: May 2020
Accepted: October 2020

Hannah Knott: hannahknott18@gmail.com; Xiaoming Xu: xxu@lsuhsc.edu; Edwin Kee: ekee@lsuhsc.edu; Qingzhao Yu: qyu@lsuhsc.edu
Paul Armbruster: parmbr@lsuhsc.edu; Richard Ballard: rball1@lsuhsc.edu

Introduction
Continuing advances in technology prompt dental practitioners to constantly seek new gold standards for their patients. Patients not only expect a cosmetic result, but also desire an aesthetic treatment option. Because of high aesthetic demands, more adolescents and adults request the use of more visually pleasing dental and orthodontic materials, such as porcelain crowns and ceramic brackets.1 As a result, clinicians may need to bond orthodontic brackets to teeth that have ceramic restorations. The variable surface conditioning treatments available for porcelain substrates are directly correlated to the bond strength of ceramic brackets.2 Consequently, there is a higher level of bond failure when bonding orthodontic brackets to porcelain restorations compared with bonding to enamel.3 With high aesthetic advantages, it would be desirable to establish an adequate method to achieve superior bond strength between ceramic orthodontic brackets and ceramic restorative materials.4

Patients often experience fixed prosthodontic treatment and may have full-coverage ceramic restorations, prior to seeking orthodontic treatment. Zirconia has become a popular ceramic material in dentistry.5,6 New highly-translucent zirconia ceramics have favourable optical properties and can be applied as monolithic full-contour restorations in appropriate clinical circumstances. The latest generation of zirconia materials has a significantly higher degree of translucency, providing greatly improved aesthetics.
The use of highly-translucency, zirconia materials provides a greater range of aesthetic possibilities, specifically for anterior teeth. However, due to the properties of the ceramic materials, bonding brackets to porcelain surfaces can be uncertain. Compared with tooth enamel, orthodontic brackets have a lower bond strength to zirconia, and, consequently, surface pre-conditioning by sandblasting and/or primer application is required. For this reason, it is necessary to establish a bonding protocol for clinicians that will achieve efficient and durable bracket-porcelain bonding.

Currently, hydrofluoric acid (HFA) is used to etch ceramic restorative materials prior to bonding brackets. It has been reported that since zirconia does not have a glass phase, hydrofluoric acid etching will not enhance bond strength. With the increasing aesthetic quality and popularity of ceramic restorative options, bonding to these restorations is becoming a more common consideration for clinicians. Therefore, finding an alternative mechanism to treat ceramic substrates prior to bonding orthodontic brackets would be advantageous for the clinician and the patient.

The objective of the present study was to compare the shear bond strength (SBS) of ceramic orthodontic brackets bonded to highly translucent zirconia surfaces following the use of a bonding resin and two different primers.

Materials and methods
Sixty anterior full-coverage maxillary central incisor crowns were milled from three different zirconia discs using the same maxillary incisor crown computer-aided design/computer-aided manufacturing (CAD/CAM) file (inLab CAM software, Dentsply Sirona, NC, USA) (in Lab MCX5, Dentsply Sirona, NC, USA).

Each zirconia crown was sandblasted (Basic Quattro IS, Renfert, Hilzingen, Germany) with 110 µm alumina particles (Cobra, Renfert, Hilzingen, Germany) for 20 seconds, at 1 psi at a distance of 5 cm. Crowns were cleaned in an ultrasonic bath (Soniclean M250, Midmark, OH, USA), utilising distilled water for 20 minutes. The glazed crowns were separated into three groups (N = 20), based on the specific type of zirconia utilised: Group 1: Cercon xt ML (Dentsply Sirona, NC, USA), Group 2: e.max ZirCAD (Ivoclar Vivadent, NY, USA), Group 3: STML-ML Katana Zirconia (Kuraray Noritake, Tokyo, Japan). All groups were bonded using Radiance ceramic brackets (American Orthodontics, St. Louis, MO, USA).

Each group was further subdivided into two subgroups (N=10), A and B, identified by the applied zirconia primer. The “A” sub-groups represented brackets bonded using Monobond Etch and Prime (Ivoclar Vivadent, NY, USA), while “B” sub-groups represented those using Z-Prime Plus (Bisco, Schaumburg, IL, USA) (Figure 1, Table I). Each primer was applied according to the manufacturers’ recommended protocol. Transbond XT (3M Unitek, Monrovia, CA, USA) light cure adhesive paste was applied to the bracket and light cured for 40 seconds, 10 seconds from each cardinal position around the bracket.

A comparison group consisting of 10 extracted, human maxillary central incisor teeth which were etched for 20 seconds with 35% phosphoric acid, rinsed with water for 10 seconds and had Transbond Plus...
self-etching primer (3M Unitek, CA, USA) applied for 5 seconds and air-thinned. Transbond XT light cure adhesive paste (3M Unitek, CA, USA) was applied to each bracket, placed on the tooth and light cured for 40 seconds, 10 seconds from each cardinal position around the bracket.

Following the ISO technical report 11405 for adhesion testing, all bonded samples were thermocycled using a thermocycling machine (Sabri Dental Enterprises, IL, USA) for 500 cycles between 5°C and 55°C, and a dwell time of 30 seconds in each bath plus a transition time of 15 seconds. Each group was secured to a 0.021” × 0.025” stainless steel orthodontic wire using stainless steel ligatures around the bracket tiewings and embedded into epoxy resin. The orientation was such that the tooth’s facial surface was perpendicular to the floor to support the later debonding process.
Each sample was mounted in a universal testing machine (Model 5566, Instron, MA USA) to enable the application of a bracket shear force at a cross-head speed of 1 mm/min until failure. Maximum force at debond was recorded. The SBS of each sample was calculated in MPa by dividing the force (N) recorded at bracket debond by the surface area of the bracket base (13.94 mm²). The data were statistically analysed using the Kruskal Wallis test.

Results

The SBS of all groups are shown in Table II. The non-parametric method, Kruskal Wallis test (Table III) showed no significant difference across the seven groups with a \(p \)-value of 0.07. From the pairwise comparisons, there was no significant difference between each pair of groups (Table IV). Group 3, the Katana + Monobond group, demonstrated the lowest SBS (7.46 MPa) and the comparison group (bond to enamel) demonstrated the highest SBS (20.0 MPa), which was still not significantly different from other groups due to the large standard deviation.

Discussion

In dentistry today, clinicians often seek ways to satisfy their patients’ high aesthetic demands. By the advent and use of ceramic orthodontic brackets and zirconia crowns, these demands can be met. However, brackets bonded to ceramic restorations historically have a high degree of bond failure.\(^{14,16}\) Therefore, attaining adequate bond strength of orthodontic brackets to ceramic restorative materials is crucial.

Bracket bond failure is a challenging orthodontic treatment concern. The average bond failure rate for practitioners in the United States is reported to be approximately 5%.\(^ {17}\) Bond failure affects many aspects of an orthodontic practice as it is an inconvenience to the practitioner and the patient. Bond failure is costly and results in a loss of chair time and increased treatment time. Studies have reported that a single bond failure can result in a 20 – 30 minute loss in chair time and a cost of $70 – $80 to the practice.\(^ {18,19}\)

In addition, if the shear bond strength (SBS) is too low, brackets may debond between appointments, which delays treatment and increases practice cost. An extended treatment time can be costly to a practice due to a negative perception generated within the community.\(^ {18,19}\)

The zirconia products and the primers chosen for this study are relatively new to the market and are gaining popularity. A PubMed search found little published information concerning the impact on orthodontic bonding of aesthetic ceramic brackets. Cercon is milled from a monolithic block of solid yttria-stabilised zirconia and is claimed by the manufacturer to have high strength and excellent translucency and colour matching.\(^ {20}\) IPS e.max is a zirconium oxide product that the manufacturer claims has high strength and high fracture toughness without a compromise in translucency.\(^ {21}\) Katana is promoted as a multi-layer zirconia product that has excellent translucency and high strength.\(^ {22}\) Z-Prime Plus utilises a combination of two active monomers, MDP, a phosphate monomer, and BPDM, a carboxylate monomer reported to produce high bond strengths.\(^ {23}\) Monobond E & P is blend of a new ceramic conditioner and a silane coupling agent that is also advertised to produce high bond strength.\(^ {24}\)

Table II. Shear bond strength.

Group	N Obs	Mean (MPa)	Std Dev	Coeff of Variation
Comparison (Enamel)	8	20.0	14.1	70.14
1A Cercon + Monobond	10	11.5	3.02	26.3
1B Cercon + ZPrime Plus	10	9.24	3.50	37.91
2A ZirCAD + Monobond	10	11.6	4.06	35.03
2B ZirCAD + ZPrime Plus	10	11.4	4.48	39.27
3A Katana + Monobond	9	7.46	3.36	45.06
3B Katana + ZPrime Plus	8	8.34	1.99	23.87

Table III. Kruskal-Wallis test.

Chi-Square	DF	P-value
11.6391	6	0.0705

In an effort to simulate the clinical application of the products, a maxillary incisor crown shape was chosen because all of the zirconia products promoted the high translucency of their product, which is important in the quality and acceptance of an anterior fixed prosthesis. The maxillary central incisor ceramic bracket was chosen as the bracket base would most closely match the facial contour of the crown. Thermocycling was employed to simulate aging by inducing thermal stresses at the bonding interface resulting from different thermal conductivities and expansion coefficients of the various materials. While the appropriateness of laboratory studies of clinical products are sometimes questioned, it has been reported that orthodontic bonding can be studied in a laboratory setting to obtain valid information concerning the adherence of a new product.

The present study results were slightly higher but consistent with those reported by Ju et al., who found a SBS ranging from 5.16 to 13.85 MPa when a ceramic primer was used to bond ceramic brackets to zirconia.

Utilising the specific materials of the present study, it was found that the SBS of the two tested zirconia primers were comparable. In addition, confirmation that the SBS between the three types of zirconia tested were statistically comparable to one another, was determined. Although there were no significant differences in the SBS between the six experimental groups, the mean SBS for all experimental groups ranged from 7.46 MPa to 11.59 MPa, which is clinically acceptable. These values were lower than the mean SBS of the comparison group of brackets bonded to enamel but not statistically different. The comparison group also showed the largest coefficient of variation or dispersion of the data, which may have resulted from operator error in either the preparation or testing of the samples. Previous studies have suggested that bond strength values in the range of 6 to 8 MPa are adequate for orthodontic force application and the present results fall within or above that range.

Table IV. Pairwise two-sided multiple comparison analysis.

Group	Wilcoxon Z	DSCF Value	p-value
ZirCAD + ZPrime Plus vs. Katana + ZPrime Plus	1.5993	2.2618	0.6828
ZirCAD + ZPrime Plus vs. Cercon + ZPrime Plus	1.2095	1.7105	0.8908
ZirCAD + ZPrime Plus vs. ZirCAD + Monobond	-0.3780	0.5345	0.9998
ZirCAD + ZPrime Plus vs. Katana + Monobond	2.2045	3.1177	0.2929
ZirCAD + ZPrime Plus vs. Cercon + Monobond	-0.2268	0.3207	1.0000
ZirCAD + ZPrime Plus vs. Comparison	-1.0662	1.5079	0.9379
Katana + ZPrime Plus vs. Cercon + ZPrime Plus	-0.2666	0.3770	1.0000
Katana + ZPrime Plus vs. ZirCAD + Monobond	-2.0436	2.8901	0.3870
Katana + ZPrime Plus vs. Katana + Monobond	1.0585	1.4969	0.9400
Katana + ZPrime Plus vs. Cercon + Monobond	-2.3990	3.3927	0.1988
Katana + ZPrime Plus vs. Comparison	-1.0502	1.4852	0.9422
Cercon + ZPrime Plus vs. ZirCAD + Monobond	-1.2095	1.7105	0.8908
Cercon + ZPrime Plus vs. Katana + Monobond	1.0614	1.5011	0.9392
Cercon + ZPrime Plus vs. Cercon + Monobond	-1.6630	2.3519	0.6409
Cercon + ZPrime Plus vs. Comparison	-1.0662	1.5079	0.9379
ZirCAD + Monobond vs. Katana + Monobond	1.9596	2.7713	0.4407
ZirCAD + Monobond vs. Cercon + Monobond	0.3024	0.4276	0.9999
ZirCAD + Monobond vs. Comparison	-1.0662	1.5079	0.9379
Katana + Monobond vs. Cercon + Monobond	-2.6944	3.8105	0.0996
Katana + Monobond vs. Comparison	-1.3472	1.9052	0.8296
Cercon + Monobond vs. Comparison	-0.8885	1.2566	0.9744
The limitations of this study may relate to the number of materials tested and human error when mounting the teeth in epoxy resin or in the universal testing machine. Future studies may utilise a larger number of individual samples as well as sample diversity (more primers) to measure the success or failure of these bonding protocols.

Based on the results of this laboratory study, both Monobond Etch and Prime and Z-Prime Plus, when following the respective manufacturers’ protocols, provide the clinician with acceptable materials to bond ceramic orthodontic brackets to the three tested zirconia materials.

Conclusions

The tested zirconia primers produced clinically acceptable shear bond strengths when bonding a ceramic orthodontic bracket to the three high translucency zirconia substrates. The results of this laboratory study showed no contraindication to using these primers with these crown materials. Therefore, using the specific materials and following the manufacturers’ protocols provide a practical method to bond ceramic brackets to zirconia crowns.

Acknowledgments

This work was made possible by the donation of time from Edward Tucker Rudisill, Dr. Yapin Wang, Dr. Hrwe H Mon, and Dr. Amir Nejat at LSUHSC.

Conflict of interest

The authors declare no conflicts of interest in this study.

Corresponding author

Dr. Richard Ballard
Department of Orthodontics
LSU HSC School of Dentistry
1100 Florida Ave
New Orleans
LA 70119
Email: rball1@lsuhsc.edu

References

1. Russell JS. Current products and practice: Aesthetic Orthodontic Brackets. J Orthod 2005;32:146-63.
2. Akova T, Ayutuldu N, Yoldas O. The evaluation of different surface treatment methods for porcelain composite bonding. J Adhes Dent 2007;27:20-5.
3. Mehmeti B, Azâi B, Kelmendi J, Iljazi-Shahigi D, Alar Z, Anič-Miloševiŝi Š. Shear bond strength of orthodontic brackets bonded to zirconium crowns. Acta Stomatol Croat 2017;51:99-105.
4. Mehta A, Evans C, Viana G, Bedran-Russo A, Galang-Boquiren M. Bonding of metal orthodontic attachments to sandblasted porcelain and zirconia surfaces. Biomed Res Int 2016;2016:1-6.
5. Nistor L, Grădinaru M, Rică R, Mărășescu P, Stan M, Manolea H et al. Zirconia use in dentistry – manufacturing and properties. Curr Health Sci J 2019;45:28-35.
6. Powers M, Farah W, O’Keefe L, Kolb B, Udrys G. Guide to All Ceramic Bonding. New York: Kuranay America Inc, 2009;1-12.
7. Inokoshi M, Poitevin A, De Munck J, Minakuchi S, Van Meerbeek B. Bonding effectiveness to different chemically pre-treated dental zirconia. Clin Oral Investig 2014;18:1803-12.
8. Poosti M, Jahanbin A, Mahdavi P, Mehmoush S. Porcelain conditioning with Nd:YAG and Er:YAG laser for bracket bonding in orthodontics. Lasers Med Sci 2012;27:321-4.
9. Östcan M, Bernasconi M. Adhesion to zirconia used for dental restorations: a systematic review and meta-analysis. J Adhes Dent 2015;17:7-26.
10. García-Sanz V, Paredes-Gallardo V, Bellot-Arcís C, Mendoza-Yero O, Doñate-Buendía C, Montero J et al. Effects of femtosecond laser and other surface treatments on the bond strength of metallic and ceramic orthodontic brackets to zirconia. PLoS ONE 2017;12:1-11.
11. Dérand P, Dérand T. Bond strength of luting cements to zirconium oxide ceramics. Int J Prosthodont 2000;13:131-5.
12. Borges GA, Sophr AM, De Goes MF, Sobrinho LC, Chan DC. Effects of etching and airborne particle abrasion on the microstructure of different dental ceramics. J Prosth Dent 2003;89:479-88.
13. Bishara SE, Ortho 2008;78:1101-4.
14. Bourke BM, Rock WP. Factors affecting the shear bond strength of orthodontic brackets to porcelain. Br J Orthod 1999;26:285-90.
15. International Organization for Standardization. Dental Materials – Guidance on testing of adhesion to tooth structure. ISO/TR 11405:1994(E):1-8.
16. Pannes DD, Bailey DK, Thompson JY, Pietz DM. Orthodontic bonding to porcelain: a comparison of bonding systems. J Prosth Dent 2003;89:66-9.
17. Zachrisson BU, Buyukyilmaz T. Bonding in Orthodontics. In Graber IW, Vanarsdall RL, Vig KW, eds. Orthodontics. 5th edn. Elsevier Science Health Science Division, 2011:579.
18. Sondhi A. The Truth about Bond Failures. The Orthodontic CyberJournal 12: 2000.
19. Grewal Bach GK, Tortevala Y, Lagravere MO. Orthodontic bonding to porcelain: a systematic review. Angle Ortho 2014;84:555-60.
20. Dentsply Sirona. Cercon xtML, 2020. Viewed 24 April 2020, <https://assets.dentsplysirona.com/dentsply/pim/manufacturer/Prosthetics/CAD_CAM_materials/Materials/Zirconia/Cercon_xt_disc/Lab-brochure-Cercon-multi-layer-EN.pdf>.
21. Ivoclar Vivadent. All Ceramics, 2020. Viewed 25 April 2020, <https://www.ivoclarvivadent.com/en/p/all/products/all-ceramics>.
22. Katana Zirconia. Downloads, 2019. Viewed 25 April 2020, <http://katanazirconia.com/wp-content/uploads/2019/07/KATANA-UTML-STML-HTML-brochure.pdf>.
23. Bisco. Z-Prime Plus, 2020. Viewed 24 April 2020, <https://www.bisco.com/z-prime-plus/>.
24. Ivoclar Vivadent. Monobond Etch & Prime, 2020. Viewed 25 April 2020. <https://downloadcenter.ivoclarvivadent.com/en/download-center/brochures/#M>.
25. Vásquez V, Ozcan M, Nishioka R, Souza R, Mesquita A, Pavanelli C. Mechanical and thermal cycling effects on the flexural strength of glass ceramics fused to titanium. Dent Mater J 2008;27:7-15.
26. Powers JM, Kim HB, Turner DS. Orthodontic adhesives and bond strength testing. Semin Orthod 1997;3:147-56.
27. Ju G, Oh S, Lim B, Lee H, Chung S. Effect of Simplified Bonding on Shear Bond Strength between Ceramic Brackets and Dental Zirconia. Materials 2019;12:1640.
28. Lee J, Ahn J, An SI, Park JW. Comparison of bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and a universal adhesive. Restor Dent Endod 2018;43:e7.
29. Reynolds IR. A review of direct orthodontic bonding. Br J Orthod 1975;2:171-8.
30. Whitlock BO 3rd, Eick JD, Ackerman RJ Jr, Glaros AG, Chappell RP. Shear strength of ceramic brackets bonded to porcelain. Am J Orthod Dentofacial Orthop 1994;106:358-64.