Reproductive factors influence the risk of cancers of the female genital tract (uterus and ovary) and breast. The following reproductive factors are important in this respect: age at menarche; age at first birth; parity; age at menopause; and duration of breastfeeding. The effects of exogenous hormones are described in Section 10.

Age at menarche

Early age at menarche has been consistently associated with an increased risk of breast and endometrial cancer (Pike et al., 2004). Relative risk (RR) for premenopausal breast cancer is reduced by an estimated 7% for each year that menarche is delayed after age 12 years, and by 3% for post-menopausal breast cancer (Clavel-Chapelon, 2002). The effect on risk is through prolongation of the period with relatively high exposure to endogenous oestrogen.

Age at first birth

The younger the woman is when she begins childbearing, the lower her risk of breast cancer (Kelsey et al., 1993). The RR of developing breast cancer increases by 3% for each year of delay (Collaborative Group, 2002).

Parity

Increasing parity reduces the risk of breast, endometrial and ovarian cancers (Pike et al., 2004). The higher the number of full-term pregnancies, the greater the protection. Compared with nulliparous women, a woman who has at least one full-term pregnancy reduces her risk of breast cancer by around 25% (Layde et al., 1989; Ewertz et al., 1990) and women with five or more children experience a 50% reduction in risk (Kelsey et al., 1993). For endometrial cancer, risk is reduced by 30% for a woman’s first birth and by 25% for each successive birth, and later maternal age at last birth has also been shown to reduce the risk (Pike et al., 2004). For ovarian cancer, risk in women with four pregnancies is only 40% that in nulliparous women (Ness et al., 2002). However, increasing parity increases the risk of cancer of the cervix, independently of any increase in the prevalence of infection with HPV (Munoz et al., 2002).

Age at menopause

Late menopause increases the risk of breast cancer and endometrial cancer (Pike et al., 2004). For breast cancer, risk is doubled for a woman with menopause at 55 years compared with less than 45 years (Kelsey et al., 1993). For each year that the menopause is delayed, there is an approximate 3% increase in breast cancer risk (Collaborative Group, 1997). Postmenopausal women have a lower risk of breast cancer compared with premenopausal women of the same age, both for natural menopause and for menopause induced through surgery (Collaborative Group, 1997).

Breastfeeding

The role of breastfeeding as a protective factor against the later development of breast cancer has been long suspected (Lane-Claypon, 1926). More recently, this association has been confirmed and the magnitude of the effect estimated as a decrease in risk of 4.3% for every 12 months of breastfeeding (Collaborative Group on Hormonal Factors in Breast Cancer, 2002). For ovarian cancer, the issue is less clear. An early collaborative analysis of case–control studies found a reduced risk in parous women who had ever breastfed compared with those who had never done so (Whittemore et al., 1992). Subsequent work suggested that only serous tumours may be so influenced (Jordan et al., 2007, 2008). A recent analysis of two US cohort studies (Danforth et al., 2007) suggests that each month of breastfeeding reduces the RR by 2% (RR = 0.98 per month, 95% CI 0.97 – 1.00).

Although a woman’s reproductive behaviour can influence the risk of cancers of the uterus, ovary and breast, most of the important aspects discussed above are not sensibly considered as targets for preventive interventions.

In this section, therefore, only the cancers attributable to suboptimal levels of breastfeeding are evaluated.

METHODS

Breastfeeding of infants in Britain is not very common, and is generally not prolonged for more than a few weeks. Surveys of infant feeding in the UK, at 5-yearly intervals since 1975, have been carried out by the Department of Health. The most recent survey (the seventh) was in 2005 (Bolling et al., 2007). Table 1 shows the results of these surveys.
The values in italics have been interpolated. This seems relatively secure, as the decline in breastfeeding prevalence with time since birth in women who do actually commence seems to be relatively constant (Figure 1).

There is no generally accepted target for breastfeeding. The Global Strategy on Diet, Physical Activity and Health of the World Health Organisation (WHO, 2004) includes a recommendation to ‘promote and support exclusive breastfeeding for the first six months of life and promote programmes to ensure optimal feeding for all infants and young children’. Therefore, we have taken as the optimum breastfeeding of all live-born children for six months, with no change to the current pattern after this time. Currently, some 18% of women are breastfeeding to 9 months of age (Table 1).

Table 2 gives information on the birth experience of women in England and Wales in 2008, the most recent year available (Office for National Statistics, 2009).

Table 3 shows the estimated duration of breastfeeding (based on the data of Table 1).

With a change in risk for each month of breastfeeding of \(-0.366\%\) for breast cancer and \(-2.0\%\) for ovarian cancer (Collaborative Group on Hormonal Factors in Breast Cancer, 2002; Danforth et al, 2007), the actual protection provided by the breastfeeding practices of each generation of women can be estimated (column 1 of Table 4). The breastfeeding practices from Table 1 are assumed to apply to the year in which 50% of the children in a given age group in 2008 would have been born. Since there are no data on breastfeeding practices prior to 1980, the duration of having been breastfed for women in the age groups \(\geq 55 - 59\) are taken to be the same as in 1980.

Table 3 also shows the estimated mean duration of breastfeeding if all women could breastfeed their children for 6 months (so that prevalence at 6 months is 100%), after which the values in Table 1 continue to pertain.

RESULTS

Column 1 of Table 4 shows the decrease in risk of breast and ovarian cancer due to breastfeeding, of women in the UK, by age group, in 2008, and column 2 the decrease in risk if all had been breastfed for a minimum of 6 months. Column 3 shows the excess risk of women in 2008, due to their breastfeeding practice being short of target, and column 4 the population-attributable fraction of breast and ovarian cancer cases by age.

In Table 5, we assume that the RR estimated for 2008 is pertinent for 2010, and show the actual numbers of cancer cases that would be attributable to breastfeeding practices not reaching the optimum level.

In total 2699 cancer cases projected to occur in 2010 (1498 breast cancers, 1201 ovarian cancers) would have been avoided if breastfeeding practice had been at the theoretical ‘optimum’. This
represents 1.7% of cancers in women and 0.9% of all cancer cases in 2010.

DISCUSSION

Though it may be desirable, from the point of view of cancer prevention, to have multiple pregnancies commencing at a young age, there are equally, or more, persuasive reasons to avoid such a lifestyle. It makes no sense, therefore, to prescribe an ideal fertility pattern, against which the number of cancers attributable to a less optimum one can be evaluated. In the IARC calculation of avoidable cancers in France (IARC, 2007), the fertility pattern of 1980 was taken as an ideal against which the excess cases resulting from fertility in 2000 were calculated, although the rationale for this was not explained. The origin of the Doll and Peto (2003) estimate of 15% of UK cancer deaths being attributable to ‘reproduction’ (and other factors related to the secretion of reproductive hormones) is obscure; the methodology is said to be the same as in their 1981 monograph (Doll and Peto, 1981), although this considers some 46% of the deaths due to cancers of the breast, ovary and uterus (corpus and cervix) as attributable to reproductive and sexual factors, and these cancers are responsible for only 8% of cancer deaths in UK in 2005.

Age (years)	Breast cancer	Ovarian cancer
0–4	—	—
5–9	—	—
10–14	—	—
15–19	0.0005	0.0010
20–24	0.0043	0.0086
25–29	0.0084	0.0196
30–34	0.0140	0.0328
35–39	0.0183	0.0429
40–44	0.0186	0.0463
45–49	0.0195	0.0478
50–54	0.0207	0.0495
55–59	0.0209	0.0500
60–64	0.0225	0.0536
65–69	0.0240	0.0573
70–74	0.0246	0.0588
75–79	0.0241	0.0576
80–84	0.0217	0.0519
>85	0.0205	0.0490

Age (years)	Breast	Ovary
0–4	1	1
5–9	1	1
10–14	1	1
15–19	10005	10026
20–24	10044	10234
25–29	10114	10646
30–34	10194	11171
35–39	10258	11639
40–44	10291	11885
45–49	10298	11950
50–54	10303	11999
55–59	10306	12026
60–64	10329	12232
65–69	10353	12448
70–74	10363	12538
75–79	10355	12463
80–84	10318	12134
>85	10299	11973
All ages	48385	6820

Table 4 Effect of breastfeeding on women’s risk of breast and ovarian cancer, UK 2008

Table 5 Cases of breast and ovarian cancer estimated to be due to sub-optimal breast feeding, UK 2010
It is reasonable, however, to advocate breastfeeding for a variety of reasons, of which the benefit of cancer protection is one (http://www.breastfeeding.nhs.uk/en/en/page.aspx?n=1 = 2). The ‘optimum’ levels for breastfeeding against which attributable fractions of breast and ovarian cancer have been evaluated are rather artificial, in that it would be impossible for all women to breastfeed their infant for 6 months. In the United States, for example, the US Department of Health and Human Services (2005) Healthy People 2010 objectives for breastfeeding initiation and duration were to increase the proportion of mothers who exclusively breastfeed their infants through age 3 months to 60% and through age 6 months to 25%. Exclusive breastfeeding is defined as an infant receiving only breast milk and no other liquids or solids except for drops or syrups consisting of vitamins, minerals or medicines (WHO, 1991). Clearly, the target for partial breastfeeding may be more ambitious, so that the target may not be so very far from the theoretical optimum, advocated by WHO.

See acknowledgements on page Si.

Conflict of interest

The author declares no conflict of interest.

REFERENCES

Bolling K, Grant C, Hamlyn B, Thornton A (2007) Infant Feeding Survey 2005. http://www.ic.nhs.uk/pubs/fs200
Clavel-Chapelon F (2002) Differential effects of reproductive factors on the risk of pre- and postmenopausal breast cancer. Results from a large cohort of French women. Br J Cancer 86: 723–727
Collaborative Group on Hormonal Factors in Breast Cancer (1997) Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52 705 women with breast cancer and 108 411 women without breast cancer. Collaborative Group on Hormonal Factors in Breast Cancer. Lancet 350: 1047–1059
Collaborative Group on Hormonal Factors in Breast Cancer (2002) Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50 302 women with breast cancer and 96 973 women without the disease. Lancet 360: 187 – 195
Danforth KN, Tworoger SS, Hecht JL, Rosner BA, Colditz GA, Hankinson SE (2007) Breastfeeding and risk of ovarian cancer in two prospective cohorts. Cancer Causes Control 18: 517 – 523
Doll R, Peto R (1981) The Causes of Cancer: Quantitative Estimates of Avoidable Risks of Cancer in the United States Today. Oxford University Press: Oxford
Doll R, Peto R (2003) The epidemiology of cancer. In Oxford Textbook of Medicine, Warrell DA, Cox TM, Firth JD, Benz EJ (eds) 4th edn, Chapter 6.1, pp 193 – 218. Oxford University Press: Oxford
Ewertz M, Duffy SW, Adami HO, Kvåle G, Lund E, Meirik O, Møllemgaard A, Søin J, Tulinhus H (1990) Age at first birth, parity and risk of breast cancer: a meta-analysis of 8 studies from the Nordic countries. Int J Cancer 46: 597 – 603
International Agency for Research on Cancer (IARC) (2007) Attributable Causes of Cancer in France in the Year 2000. IARC Working Group Reports, Vol. 3. IARC: Lyon
Jordan SJ, Green AC, Whiteman DC, Moore SP, Bain CJ, Gertig DM, Webb PM (2008) Serous ovarian, fallopian tube and primary peritoneal cancers: a comparative epidemiological analysis. Int J Cancer 122: 1598 – 1603
Jordan SJ, Green AC, Whiteman DC, Webb PM, Australian Ovarian Cancer Study Group (2007) Risk factors for benign, borderline and invasive mucinous ovarian tumors: epidemiological evidence of a neoplastic continuum? Gynecol Oncol 107: 223 – 230
Kelsey JL, Gammon MD, John EM (1993) Reproductive factors and breast cancer. Epidemiol Rev 15: 36 – 47
Lane-Claypon JE (1926) A Further Report on Cancer of the Breasts, with Special Reference to its Associated Antecedent Conditions. Report on Public Health and Medical Subjects No. 32. HMSO: London
Layde PM, Webster LA, Baughman AL, Wingo PA, Rubin GL, Ory HW (1989) The independent associations of parity, age at first full term pregnancy, and duration of breastfeeding with the risk of breast cancer. Cancer and Steroid Hormone Study Group. J Clin Epidemiol 42: 963 – 973
Munoz N, Franceschi S, Bosetti C, Moreno V, Herrero R, Smith JS, Shah KV, Meijer CJ, Bosch FX, International Agency for Research on Cancer Multicentric Cervical Cancer Study Group (2002) Role of parity and human papillomavirus in cervical cancer: the IARC multicentric case-control study. Lancet 359: 1093 – 1101
Ness RB, Cramer DW, Goodman MT, Kjaer SK, Mallin K, Mosgaard BJ, Purdie DM, Risch HA, Vergorna R, Wu AH (2002) Infertility, fertility drugs, and ovarian cancer: a pooled analysis of case-control studies. Am J Epidemiol 155: 217 – 224
Office for National Statistics (2009) Birth Statistics Review of the National Statistician on births and patterns of family building in England and Wales, 2008 (Series FM1 No. 37). http://www.ons.gov.uk/ons/publications/re-reference-tables.html?edition = tcm%3A77-226270
Pike MC, Pearce CL, Wu AH (2004) Prevention of cancers of the breast, endometrium and ovary. Oncogene 23: 6379 – 6391
World Health Organization (WHO) (2004) Global Strategy on Diet, Physical Activity and Health (WHA57.17). http://www.who.int/dietphysicalactivity/strategy/eb11344/strategy_english_web.pdf

This work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/