DATA NOTE

The genome sequence of the green-underside blue,

Glaucopsyche alexis (Poda, 1761) [version 1; peer review: 2 approved]

Joan Carles Hinojosa Galisteo¹, Roger Vila¹,¹
Darwin Tree of Life Barcoding collective,
Wellcome Sanger Institute Tree of Life programme,
Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective,
Tree of Life Core Informatics collective, Darwin Tree of Life Consortium

¹Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain

Abstract

We present a genome assembly from an individual male *Glaucopsyche alexis* (the green-underside blue; Arthropoda; Insecta; Lepidoptera; Lycaenidae). The genome sequence is 620 megabases in span. The majority (99.87%) of the assembly is scaffolded into 23 chromosomal pseudomolecules, with the Z sex chromosome assembled.

Keywords

Glaucopsyche alexis, the green-underside blue, genome sequence, chromosomal

This article is included in the Tree of Life gateway.
Corresponding author: Darwin Tree of Life Consortium (mark.blaxter@sanger.ac.uk)

Author roles: Hinojosa Galisteo JC: Investigation, Resources, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Vila R: Investigation, Resources, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing;

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by Wellcome through core funding to the Wellcome Sanger Institute (206194) and the Darwin Tree of Life Discretionary Award (218328). RV was supported by the Spanish government through grant PID2019-107078GB-I00/AEI/10.13039/501100011033. JCH was supported by fellowship BES-2017-080641 (MINECO/AEI/FSE).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2021 Hinojosa Galisteo JC et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Hinojosa Galisteo JC, Vila R, Darwin Tree of Life Barcoding collective et al. The genome sequence of the green-underside blue, Glaucopsyche alexis (Poda, 1761) [version 1; peer review: 2 approved] Wellcome Open Research 2021, 6:274 https://doi.org/10.12688/wellcomeopenres.17264.1

First published: 15 Oct 2021, 6:274 https://doi.org/10.12688/wellcomeopenres.17264.1
Species taxonomy
Eukaryota; Metazoa; Ecdysozoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Lepidoptera; Glossata; Ditrysia; Papilionoidea; Lycaenidae; Polymomatinae; Glaucopsyche; Glaucopsyche alexis (Poda, 1761) (NCBI:txid203781).

Introduction
Glaucopsyche alexis is a species of the Polymomatinae subfamily (also known as the blues) found in temperate habitats from Northwestern Africa and Western Europe to Central Asia and Amur, including the Middle East and some Mediterranean islands. However, it is absent from several major islands, including the Balearic Islands, Sardinia, Crete, Cyprus and the Atlantic archipelago of Britain and Ireland (although a single specimen was recorded in Torquay, Devon, in September 1936). As with other Polymomatinae, adults exhibit a strong sexual dimorphism regarding the colour of the wing dorsal side: in males it is blue while, in females, it is predominantly brown. It is a univoltine species that overwinters as pupa. Adults fly during spring in most of its range, but they can fly until the beginning of summer in the coldest areas (Tshikolovets & Others, 2011). Caterpillars feed on a wide variety of Fabaceae; they are facultative myrmecophilous and tended by various ant taxa from the subfamilies Myrmicinae and Formicinae (Álvarez et al., 2012; Tolman & Lewington, 2008). This species has an overall stable population trend and it is listed as Least Concern in the IUCN Red List (van Swaay et al., 2013).

Genome sequence report
The male G. alexis specimen (Figure 1) was collected from Alcalá de la Selva, Teruel, Aragon, Spain (latitude 40.3638, longitude -0.7269). The genome was sequenced from a single male G. alexis to 43-fold coverage in Pacific Biosciences single-molecule long reads and 75-fold coverage in 10X Genomics read clouds. Primary assembly contigs were scaffolded with chromosome conformation Hi-C data. Manual assembly curation corrected 120 missing/misjoins and removed 21 haplotypic duplications, reducing the assembly size by 0.75% and scaffold number by 5.31%, and increasing the scaffold N50 by 7.99%.

Figure 1. Fore and hind wings of the Glaucopsyche alexis specimen from which the genome was sequenced. (A) Dorsal (left) and ventral (right) surface view of wings from specimen ilGlaAlex1 from Alcalá de la Selva, Teruel, Aragon, Spain, used to generate Pacific Biosciences and 10X genomics data. (B) Dorsal surface view of wings from specimen ilGlaAlex1. (C) Ventral surface view of wings from specimen ilGlaAlex1.
The final assembly has a total length of 620 Mb in 58 sequence scaffolds with a scaffold N50 of 27 Mb (Table 1). Of the assembly sequence, 99.87% was assigned to 23 chromosomal-level scaffolds, representing 22 autosomes (numbered by sequence length), and the Z sex chromosome (Figure 2–Figure 5; Table 2). The assembly has a BUSCO v5.1.2 (Simão et al., 2015) completeness of 97.1% (single 96.7%; duplicated 0.4%; fragmented 0.5%; missing 2.4%) using the lepidoptera_odb10 reference set (Table 1). While not fully phased, the assembly deposited is of one haplotype. Contigs corresponding to the second haplotype have also been deposited. The mitochondrial genome was also assembled, with a total length of 15.2 kb.

Table 1. Genome data for Glaucopsyche alexis, ilGlaAlex1.1.

Project accession data	
Assembly identifier	ilGlaAlex1.1
Species	Glaucopsyche alexis
Specimen	ilGlaAlex1
NCBI taxonomy ID	NCBI:txid203781
BioProject	PRJEB43798
BioSample ID	SAMEA7524616
Isolate information	Male, whole organism

Raw data accessions	
PacificBiosciences SEQUEL II	ERR6436366
10X Genomics Illumina	ERR6054614-ERR6054617
Hi-C Illumina	ERR6054618

Genome assembly	
Assembly accession	GCA_905404095.1
Accession of alternate haplotype	GCA_905404225.1
Span (Mb)	620
Number of contigs	207
Contig N50 length (Mb)	8
Number of scaffolds	58
Scaffold N50 length (Mb)	27
Longest scaffold (Mb)	39
BUSCO* genome score	C:97.1%(S:96.7%,D:0.4%), F:0.5%,M:2.4%,n:5286

*BUSCO scores based on the lepidoptera_odb10 BUSCO set using v5.1.2. C= complete [S= single copy, D=duplicated], F=fragmented, M=missing, n=number of orthologues in comparison. A full set of BUSCO scores is available at https://blobtoolkit.genomehubs.org/view/ilNymPoly1.1/dataset/CAJNA01/busco.

Methods

The male *G. alexis* specimen was collected on 12 June 2019 using a net from Alcalá de la Selva, Teruel, Aragon, Spain (latitude 40.3638, longitude -0.7269) by Joan Carles Hinojosa (Institut de Biologia Evolutiva, Barcelona), and identified by Joan carles Hinojosa and Roger Vila (Institut de Biologia Evolutiva, Barcelona). The specimen was snap-frozen from live in liquid nitrogen.

DNA was extracted at the Tree of Life laboratory, WSI. The ilGlaAlex1 sample was weighed and dissected on dry ice with tissue set aside for Hi-C sequencing. Tissue from the whole organism was disrupted to a fine powder using a powermasher. Fragment size analysis of 0.01-0.5 ng of DNA was then performed using an Agilent FemtoPulse. High molecular weight (HMW) DNA was extracted using the Qiagen MagAttract HMW DNA extraction kit. Low molecular weight DNA was removed from a 200-ng aliquot of extracted DNA using 0.8X AMPure XP purification kit prior to 10X Chromium sequencing: a minimum of 50 ng DNA was submitted for 10X sequencing. HMW DNA was sheared into an average fragment size between 12-20 kb in a Megaruptor 3 system with speed setting 30. Sheared DNA was purified by solid-phase reversible immobilisation using AMPure PB beads with a 1.8X ratio of beads to sample to remove the shorter fragments and concentrate the DNA sample. The concentration of the sheared and purified DNA was assessed using a Nanodrop spectrophotometer and Qubit dsDNA High Sensitivity Assay Kit. Fragment size distribution was evaluated by running the sample on the FemtoPulse system.

Pacific Biosciences HiFi circular consensus and 10X Genomics read cloud DNA sequencing libraries were constructed according to the manufacturers’ instructions. DNA sequencing was performed by the Scientific Operations core at the WSI on Pacific Biosciences SEQUEL II and Illumina HiSeq X instruments. Hi-C data were generated from abdomen tissue using the Arima v2.0 kit and sequenced on HiSeq X.

Assembly was carried out with HiCanu (Nurk et al., 2020); haplotypic duplication was identified and removed with purge_dups (Guan et al., 2020). One round of polishing was performed by aligning 10X Genomics read data to the assembly with longranger align, calling variants with freebayes (Garrison & Marth, 2012). The assembly was then scaffolded with Hi-C data (Rao et al., 2014) using SALSA2 (Ghurye et al., 2019). The assembly was checked for contamination and corrected using the gEVAL system (Chow et al., 2016) as described previously (Howe et al., 2021). Manual curation was performed using gEVAL, HiGlass (Kerpedjiev et al., 2018) and Pretex. The mitochondrial genome was assembled using MitofHiFi (Uliano-Silva et al., 2021). The genome was analysed and BUSCO scores generated within the BlobToolKit environment (Challis et al., 2020). Table 3 contains a list of all software tool versions used, where appropriate.
The materials that have contributed to this genome note were supplied by a Tree of Life collaborator. The Wellcome Sanger Institute employs a process whereby due diligence is carried out proportionate to the nature of the materials themselves, and

Figure 2. Genome assembly of *Glaucopsyche alexis*, ilGlaAlex1.1: metrics. The BlobToolKit Snailplot shows N50 metrics and BUSCO gene completeness. The main plot is divided into 1,000 size-ordered bins around the circumference with each bin representing 0.1% of the 619,543,730 bp assembly. The distribution of scaffold lengths is shown in dark grey with the plot radius scaled to the longest chromosome present in the assembly (47,686,528 bp, shown in red). Orange and pale-orange arcs show the N50 and N90 chromosome lengths (26,518,193 and 22,044,104 bp), respectively. The pale grey spiral shows the cumulative scaffold count on a log scale with white scale lines showing successive orders of magnitude. The blue and pale-blue area around the outside of the plot shows the distribution of GC, AT and N percentages in the same bins as the inner plot. A summary of complete, fragmented, duplicated and missing BUSCO genes in the lepidoptera_odb10 set is shown in the top right. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/ilGlaAlex1.1/dataset/CAJQFG01/snail.
the circumstances under which they have been/are to be collected and provided for use. The purpose of this is to address and mitigate any potential legal and/or ethical implications of receipt and use of the materials as part of the research project, and to ensure that in doing so we align with best practice wherever possible.

Figure 3. Genome assembly of *Glaucopsyche alexis*, ilGlaAlex1.1: GC coverage. BlobToolKit GC-coverage plot. Scaffolds are coloured by phylum. Circles are sized in proportion to scaffold length. Histograms show the distribution of scaffold length sum along each axis. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/ilGlaAlex1.1/dataset/CAJQFG01/blob.
The overarching areas of consideration are:

- Ethical review of provenance and sourcing of the material;
- Legality of collection, transfer and use (national and international).

Each transfer of samples is undertaken according to a Research Collaboration Agreement or Material Transfer Agreement entered into by the Tree of Life collaborator, Genome Research Limited (operating as the Wellcome Sanger Institute) and in some circumstances other Tree of Life collaborators.

Figure 4. Genome assembly of *Glaucopsyche alexis*, ilGlaAlex1.1: cumulative sequence. BlobToolKit cumulative sequence plot. The grey line shows cumulative length for all scaffolds. Coloured lines show cumulative lengths of scaffolds assigned to each phylum using the buscogens taxrule. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/ilGlaAlex1.1/dataset/CAJQFG01/cumulative.
Table 2. Chromosomal pseudomolecules in the genome assembly of *Glaucopsyche alexis*, ilGlaAlex1.1.

INSDC accession	Chromosome	Size (Mb)	GC%
FR990043.1	1	39.17	35.9
FR990044.1	2	33.01	36
FR990045.1	3	31.81	35.9
FR990046.1	4	31.46	36.2
FR990047.1	5	31.38	35.7
FR990048.1	6	30.88	35.8
FR990049.1	7	29.90	36
FR990050.1	8	26.97	36.1
FR990051.1	9	26.52	36.0
FR990052.1	10	25.96	35.9
FR990053.1	11	25.55	36.1
FR990054.1	12	24.58	36.1
FR990055.1	13	23.88	36.1
FR990056.1	14	23.50	36.2
FR990057.1	15	22.56	36.4
FR990058.1	16	22.17	36.0
FR990059.1	17	22.13	35.9
FR990060.1	18	22.05	35.9
FR990061.1	19	22.04	36.4
FR990062.1	20	21.40	36.3
FR990063.1	21	17.19	36.6
FR990064.1	22	16.97	36.4
FR990042.1	Z	47.69	35.3
FR990065.1	MT	0.02	17.3
-	Unplaced	0.75	37.1

Figure 5. Genome assembly of *Glaucopsyche alexis*, ilGlaAlex1.1: Hi-C contact map. Hi-C contact map of the ilGlaAlex1.1 assembly, visualised in HiGlass. Chromosomal scaffolds are organised in size order from left to right and top to bottom.
Table 3. Software tools used.

Software tool	Version	Source
HiCanu	2.1	Nurk et al., 2020
purge_dups	1.2.3	Guan et al., 2020
longranger	2.2.2	https://support.10xgenomics.com/genome-exome/software/pipelines/latest/advanced/other-pipelines
freebayes	1.3.1-17-gaa2ace8	Garrison & Marth, 2012
SALSA2	2.2	Ghurye et al., 2019
MitoHiFi	1.0	Uliano-Silva et al., 2021
gEVAL	N/A	Chow et al., 2016
HiGlass	1.11.6	Kerpedjiev et al., 2018
PretextView	0.1.x	https://github.com/wtsi-hpag/PretextView
BlobToolKit	2.6.2	Challis et al., 2020

Data availability

European Nucleotide Archive: Glaucopsyche alexis (greenunderside blue). Accession number PRJEB43798; https://identifiers.org/ena.embl:PRJEB43798.

The genome sequence is released openly for reuse. The G. alexis genome sequencing initiative is part of the Darwin Tree of Life (DTol) project. All raw sequence data and the assembly have been deposited in INSDC databases. Raw data and assembly accession identifiers are reported in Table 1.

Acknowledgements

Members of the Darwin Tree of Life Barcoding collective are listed here: https://doi.org/10.5281/zenodo.4893704.

Members of the Wellcome Sanger Institute Tree of Life programme collective are listed here: https://doi.org/10.5281/zenodo.4783586.

Members of Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective are listed here: https://doi.org/10.5281/zenodo.4790456.

Members of the Tree of Life Core Informatics collective are listed here: https://doi.org/10.5281/zenodo.5013542.

Members of the Darwin Tree of Life Consortium are listed here: https://doi.org/10.5281/zenodo.4783559.

References

Álvarez M, Muginsara LM, Martínez-Ibáñez MD: Nuevos Datos Y Recopilación de Las Relaciones Entre Lycanaediæ Y Formicidae En La Península Ibérica (Lepidoptera: Lycanaediæ; Hymenoptera: Formicidae), SNILAP Revista de Lepidopterologíasis. 2012; 40(157): 45–59.

Challis R, Richards E, Rajan J, et al.: BlobToolKit - Interactive Quality Assessment of Genome Assemblies. G3 (Bethesda). 2020; 10(A): 1361-74.

Chow W, Brugger K, Caccamo M, et al.: gEVAL - a web-based browser for evaluating genome assemblies, Bioinformatics. 2016; 32(16): 2508–10.

Garrison E, Marth G: Haplotype-Based Variant Detection from Short-Read Sequencing. arXiv: 1207.3907. 2012.

Ghurye J, Ribe A, Walenz BP, et al.: Integrating Hi-C Links with Assembly Graphs for Chromosome-Scale Assembly. PLoS Comput Biol. 2019; 15(8): e1007273.

Guan D, McCarthy SA, Wood J, et al.: Identifying and Removing Haplotypic Duplication in Primary Genome Assemblies. Bioinformatics. 2020; 36(9): 2886-88.

Howe K, Chow W, Collins J, et al.: Significantly Improving the Quality of Genome Assemblies through Curation. GigaScience. 2021; 10(1): giaa153.

Kerpedjiev P, Abdemur N, Lekoshas F, et al.: HiGlass: Web-Based Visual Exploration and Analysis of Genome Interaction Maps. Genome Biol. 2018; 19(1): 125.

Nurk S, Walenz BP, Ribe A, et al.: HiCanu: Accurate Assembly of Segmental Duplications, Satellites, and Allelic Variants from High-Fidelity Long Reads. Genome Res. 2020; 30(9): 1291–1305.

Rao SSR, Huntley MH, Durand NC, et al.: A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Celn. 2014;
Simão FA, Waterhouse RM, Ioannidis P, et al.: BUSCO: Assessing Genome Assembly and Annotation Completeness with Single-Copy Orthologs. Bioinformatics. 2015; 31(19): 3210–12.

Tolman T, Lewington R: The Most Complete Guide to the Butterflies of Britain and Europe. Harper Collins, London. 2008.

Tshikolovets VV and Others: Butterflies of Europe & the Mediterranean Area. Butterflies of Europe & the Mediterranean Area. 2011.

Uliano-Silva M, Nunes JGF, Krasheninnikova K, et al.: marcelauliano/MitoHiFi: mitohifi_v2.0. 2021.

van Swaay C, Wynhoff I, Verovnik R, et al.: IUCN Red List of Threatened Species: Glaucopsyche Alexis. IUCN Red List of Threatened Species. 2013.
The article presents a chromosome-level assembly of the Lycaenid butterfly *Glaucapsyche alexis*. The assembly has been generated using accepted standard methodologies and appears of excellent quality. Perhaps the introduction could be expanded slightly to give more context to how the genome might be used (what research questions will it help to address) and perhaps how it relates to existing genome sequences (in terms of taxonomic coverage of the group). Figure 5 is not fully explained for a reader who is not familiar with what a "Hi-C contact map" is.

Is the rationale for creating the dataset(s) clearly described?
Partly

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Butterfly evolutionary genomics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.
The authors present the genome sequence of *Glaucopsyche alexis* following the approach used by the Darwin Tree of Life Project. The genome is of high quality and freely available.

Some minor suggestions:

1. With regards to the methods used, it would be useful if the computational methods used included settings or perhaps a common github or container that has scripts/actual commands used. So others can install/run a similar pipeline. As it stands it is unclear how one would replicate this.

2. Was the mitochondrial genome annotated or check in any way for accuracy/completeness? It is only mentioned in passing.

3. It isn’t clear at the beginning of the methods which tissue is dissected out for Hi-C sequencing, although it is mentioned later in the note. You could change the line to read ‘abdomen tissue’ was set aside for Hi-C. As it is currently unclear if it was only abdomen tissue that was dissected or were others removed as well?

4. From experience, it is difficult to obtain assemblies without contamination. There is no mention here about the presence of sequences from other organisms, were some sort of measure taken to avoid contamination from the gut, ectoparasites etc? If there was, it would be useful for others to mention what you did to achieve this.

Is the rationale for creating the dataset(s) clearly described?

Yes

Are the protocols appropriate and is the work technically sound?

Yes

Are sufficient details of methods and materials provided to allow replication by others?

Yes

Are the datasets clearly presented in a useable and accessible format?

Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Genomics, evolution, population genetics, museomics
I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.