A noncommutative version of the Banach-Stone theorem (II).

B. BOUALI
University of Mohammed premier
OUJDA, MOROCCO

Abstract

In this paper, we extend the Banach-Stone theorem to the non commutative case, i.e, we give a partial answer to the question 2.1 of [13], and we prove that the structure of the postliminal C^*-algebras \mathcal{A} determines the topology of its primitive ideals space.

A. M.S 2000 subject classification : 46H05, 46H10, 46H15
Keywords: Banach-Stone Theorem, Postliminal C^*-algebras, Primitive ideals, Hull-kernel topology.

1 Introduction

Let X be a Banach space and let $C(S, X)$ ($C(S)$) denote the space of X-valued (Scalar-valued) continuous functions on a compact hausdorff space S (endowed with the sup-norm). The classical Banach-Stone theorem states that the existence of an isometric isomorphism from $C(S)$ onto $C(S)$ implies that S and S' are homeomorphic. There exists a variety of results in the literature linking the topological structure of a topological space X with algebraic or topological-algebraic structures of $C(X)$, the set of all continuous real functions on X. Further results along this line were obtained by Hewitt [1] and Shirota [2]. They proved respectively that, for a realcompact space X, the topology of X is determined by the ring structure of $C(X)$ and by the lattice structure of $C(X)$. Moreover, Shirota proved in [2] that the lattices $UC(X)$ and $UB(X)$ determine the topology of a complete metric space X, where $UC(X)$ denotes the family of all uniformly continuous real functions on X, and $UB(X)$ denotes the subfamily of all bounded functions in
Moreover Behrends [3] proved that if the centralizers (for the definition see also [3]) of \(X \) and \(Y \) are one-dimensional then the existence of an isometric isomorphism between \(C(S, X) \) and \(C(S', X) \) implies that \(S \) and \(S' \) are homeomorphic. Cambern [4] proved that if \(X \) is finite-dimensional Hilbert space and if \(\Psi \) is an isomorphism of \(C(S, X) \) onto \(C(S', X) \) with \(\| \Psi \Psi^{-1} \| < \sqrt{2} \) then \(S \) and \(S' \) are homeomorphic. In [5] Jarosz proved that there is an isometric isomorphism between \(C(S, X) \) and \(C(S', X) \) with a small bound iff \(S \) and \(S' \) are homeomorphic.

In the last few years there has been interest in the connection between the uniformity of a metric space \(X \) and some further structures over \(UC(X) \) and \(UB(X) \). Thus, Araujo and Font in [6], using some results by Lacruz and Llavona [7], proved that the metric linear structure of \(UB(X) \) endowed with the sup-norm determines the uniformity of \(X \), in the case that \(X \) is the unit ball of a Banach space. This result has been extended to any complete metric space \(X \) by Hernández [8]. Garrido and Jaramillo in [9] proved that the uniformity of a complete metric space \(X \) is indeed characterized not only by \(UB(X) \) but also \(UC(X) \). In [13] we proved that the structure of the liminal \(C^* \)-algebra \(A \) determines the topology of its primitive ideal \(\text{Prim}(A) \).

In this note, considering a \(C^* \)-algebra \(A \) and the space of primitive ideals \(\text{Prim}(A) \), we prove that the structure of the postliminal \(C^* \)-algebra \(A \) determines the topology of its primitive ideals.

1.1 The hull kernel topology

The topology on \(\text{Prim}(A) \) (The space of all primitive ideals of \(A \)) is given by means of a closure operation. Given any subset \(W \) of \(\text{Prim}(A) \), the closure \(\overline{W} \) of \(W \) is by definition the set of all elements in \(\text{Prim}(A) \) containing \(\cap W = \{ \cap I : I \in W \} \), namely

\[
\overline{W} = \{ I \in \text{Prim}(A) : I \supseteq \cap W \}
\]

It follows that the closure operation defines a topology on \(\text{Prim}(A) \) which called Jacobson topology or hull kernel topology (see [10]).

Proposition 1.1: [12] The space \(\text{Prim}(A) \) is a \(T_0 \)-space, i.e. for any two distinct points of the space there is an open neighborhood of one of the points which does not contain the other.

Proposition 1.2: [12] If \(A \) is a \(C^* \)-algebra, then \(\text{Prim}(A) \) is locally compact. If \(A \) has a unit, \(\text{Prim}(A) \) is compact.

Remark 1.1: The set of \(\mathcal{K}(H) \) of all compact operators on the Hilbert space \(H \) is the largest two sided ideal in the \(C^* \)-algebra \(B(H) \) of all bounded operators.

Definition 1.1: A \(C^* \)-algebra \(A \) is said to be liminal if for every irreducible representation \((\pi, \mathcal{H}) \) of \(A \), one has \(\pi(A) = \mathcal{K}(\mathcal{H}) \).
So, the algebra \mathcal{A} is liminal if it is mapped to the algebra of compact operators under any irreducible representation. Furthermore, if \mathcal{A} is a liminal algebra, then one can prove that each primitive ideal of \mathcal{A} is automatically a maximal closed two-sided ideal. As a consequence, all points of $\text{Prim}(\mathcal{A})$ are closed and $\text{Prim}(\mathcal{A})$ is a T_1-space. In particular, every commutative C^*-algebra is liminal.

Definition 1.2: A C^*-algebra \mathcal{A} is said to be postliminal if for every irreducible representation (π, \mathcal{H}) of \mathcal{A} one has $\mathcal{K}(\mathcal{H}) \subset \pi(\mathcal{A})$.

Remark 1.2: Every liminal C^*-algebra is postliminal but the converse is not true. Postliminal algebras have the remarkable property that their irreducible representations are completely characterized by the kernels: if π_1 and π_2 are two irreducible representations with the same kernel, then π_1 and π_2 are equivalent, and the space \mathcal{A} and $\text{Prim}\mathcal{A}$ are homeomorphic.

2 The main result

In this section, we extend the Banach-Stone Theorem to postliminal C^*-algebras. Before we give some lemma.

Lemma 2.1: Let \mathcal{A} and \mathcal{B} be postliminal C^*-algebras and let α be an isomorphism of \mathcal{A} onto \mathcal{B}. If I is a primitive ideal of \mathcal{B}, then $\alpha^{-1}(I)$ is a primitive ideal of \mathcal{A}.

Proof It is clear that the kernel of $\pi \circ \alpha$ (representation of \mathcal{A}) is $\alpha^{-1}(I_\pi)$, where I_π is a primitive ideal of \mathcal{B}.

Now, we prove that $\pi \circ \alpha$ is an irreducible representation of \mathcal{A}. If, contrary there exists a $\Pi(\mathcal{A})$-invariant subspace K of Hilbert space H ($K \neq 0, K \neq H$), a sample calcule show that K is $\pi(\mathcal{B})$-invariant and π is not a irreducible representation of \mathcal{B}. This is a contradiction, and we conclude that $\alpha^{-1}(I_\pi)$ is a primitive ideal of \mathcal{A}.

Theorem 2.1: Let \mathcal{A} and \mathcal{B} be postliminal C^*-algebras and let α be an isomorphism of \mathcal{A} onto \mathcal{B}. If I is a primitive ideal of \mathcal{B}, then $\alpha^{-1}(I)$ is a primitive ideal of \mathcal{A}. The map $I \rightarrow \alpha^{-1}(I)$ is a homeomorphism of $\text{Prim}(\mathcal{B})$ onto $\text{Prim}(\mathcal{A})$.

Proof Let I_π be a primitive ideal of \mathcal{A} for some $\pi \in \mathcal{A}$. From Lemma 2.1 $\alpha^{-1}(I_\pi)$ is a primitive ideal, then there is a function h:

$$h : \text{Prim}(\mathcal{B}) \rightarrow \text{Prim}(\mathcal{A})$$

such that $\alpha^{-1}(I_\pi) = I_{h(\pi)}$.

Since we can replace α^{-1} by α, it follows that h is a bijection. We have induced homomorphisms $\chi_\pi : \mathcal{A}/I_\pi \rightarrow \mathcal{B}(\mathcal{H})$ given by $\chi_\pi(a) =$
\(\pi(a)\) and \(\beta : A/I_\pi \to B/I_{h^{-1}(\pi)}\) given by \(\beta(a + I_\pi) = \alpha(a) + I_{h^{-1}(\pi)}\). Therefore we get a commutative diagram:

\[
\begin{array}{ccc}
A/I_\pi & \xrightarrow{\beta} & B/I_{h^{-1}(\pi)} \\
\downarrow{\chi_\pi} & & \downarrow{\chi_{h^{-1}(\pi)}} \\
B(H) & \xrightarrow{\gamma} & B(H)
\end{array}
\]

and an induced automorphism \(\gamma : B(H) \to B(H)\) defined by

\[
\gamma(\pi(a)) = h^{-1}(\pi)(\alpha(a))
\]

All open set of \(\text{Prim}(A)\) are of the form:

\[
U_I = \{ P \in \text{Prim}(A) : P \not\supseteq I \}
\]

Computation of \(h^{-1}(U_I)\):

\[
\begin{align*}
h^{-1}(U_I) &= \{ \pi : \text{ker}(\pi) \in \text{Prim}(A) \text{ and } \text{ker}(\pi) \not\supseteq I \} \\
&= \{ h^{-1}(\pi) : \text{ker}(\pi) \in \text{Prim}(A) \text{ and } \text{ker}(\pi) \not\supseteq I \} \\
&= \{ \pi' : \text{ker}(\pi') \in \text{Prim}(A) \text{ and } \text{ker}(h(\pi')) \not\supseteq I \} \\
&= \{ \pi' : \text{ker}(\pi') \in \text{Prim}(A) \text{ and } \alpha^{-1}(I_\pi) \not\supseteq I \} \\
&= U_{\alpha(I)}.
\end{align*}
\]

Then \(h^{-1}(U_I)\) is an open set and \(h\) is continuous. Replace \(\alpha\) by \(\alpha^{-1}\), it follows that \(h^{-1}\) is continuous. So, \(h\) is a homeomorphism.

We give now a corollary to our principal result.

Corollary 2.1: Let \(A\) be postliminary \(C^*\)-algebra. If \(\alpha\) is an isomorphism of \(A\) onto \(B\), there is an homeomorphism \(h\) from \(\text{Prim}(B)\) to \(\text{Prim}(A)\) and two unitary operators \(U, V \in B(H)\) for some \(H\) such that:

\[
U\pi(a)V = h^{-1}(\pi)(\alpha(a)) \quad \forall a \in A \text{ and } \text{Ker}(\pi) \in \text{Prim}(A)
\]

Proof From theorem 2.1, if \(\alpha\) is surjective isometry, then there is an homeomorphism \(h\) from \(\text{Prim}(B)\) to \(\text{Prim}(A)\) and \(\gamma \in \text{Aut}(B(H))\) such that:

\[
\gamma(\pi(a)) = h^{-1}(\pi)(\alpha(a)) \quad \forall a \in A \text{ and } \text{Ker}(\pi) \in \text{Prim}(A)
\]

and from [14, Theorem 4] there are two unitary operators \(U, V \in B(H)\) such that \(\gamma\) is of the form:

\[
\gamma(A) = UAV
\]

then \(U\pi(a)V = h^{-1}(\pi)(\alpha(a)) \quad \forall a \in A \text{ and } \text{Ker}(\pi) \in \text{Prim}(A)\).
References

[1] Hewitt E (1948) Rings of real-valued continuous functions I. Trans. Amer. Math. Soc. 64: 54–99

[2] Shirota, T (1952) A generalization of a theorem of I. Kaplansky. Osaka Math. J. 4: 121–132

[3] Behrends, E (1979) M-Structure and the Banach-Stone theorem. Lect. Notes in Math. 736, Springer-Verlag, Berlin.

[4] Cambern, M (1967) Isomorphisms of space of continuous vector-valued functions. Illinois J. Math. 20: 1–11

[5] Jarosz, K (1982) A generalization of the Banach-Stone theorem. Studia Mathematica, T. LXXIII: 33–39

[6] Araujo J, Font JJ (2000) Linear isometries on subalgebras of uniformly continuous functions. Proc. Edinburgh Math. Soc. 43: 139–147

[7] Lacruz M, Llavona JG (1997) Composition operators between algebras of uniformly continuous functions. Arch. Math. 69: 52–56

[8] Hernández S (1999) Uniformly continuous mappings defined by isometries of spaces of bounded uniformly continuous functions. Topology Atlas # 394

[9] Garrido M I, Jaramillo A J (2000) A Banach-Stone theorem for uniformly continuous functions. Monatshefte Fur Mathematik # 131, 189–192

[10] Dixmier J (1969) Les C*-algèbres et leurs représentations, Gauthier-Villars éditeur, Paris.

[11] Dixmier J (1977) C*-algèbres, North-Holland, New York.

[12] Landi G (1997) An introduction to noncommutative spaces and their geometry, Dipartimento di Scienze Matematiche, Università di Trieste, Italia.

[13] Bouali B (2001) A noncommutative version of the Banach-Stone theorem, preprint.

[14] Molnár L (2000) Some characterisations of the automorphisms of $B(H)$ and $C(X)$, [arXiv:math.FA/0011030] 4 Nov 2000.

Bouchta Bouali
Faculté des Sciences, Département de Matématiques
Université Mohammed Premier
60000 Oujda, Maroc
bbouali@sciences.univ-oujda.ac.ma