A COMMON FIXED POINT THEOREM FOR
A COMMUTING FAMILY OF WEAK∗ CONTINUOUS
NONEXPANSIVE MAPPINGS

SŁAWOMIR BORZDYŃSKI AND ANDRZEJ WIŚNICKI

Abstract. It is shown that if \(S \) is a commuting family of weak∗ continuous nonexpansive mappings acting on a weak∗ compact convex subset \(C \) of the dual Banach space \(E \), then the set of common fixed points of \(S \) is a nonempty nonexpansive retract of \(C \). This partially solves a long-standing open problem in metric fixed point theory in the case of commutative semigroups.

1. Introduction

A subset \(C \) of a Banach space \(E \) is said to have the fixed point property if every nonexpansive mapping \(T : C \to C \) (i.e., \(\|Tx - Ty\| \leq \|x - y\| \) for \(x, y \in C \)) has a fixed point. A general problem, initiated by the works of F. Browder, D. Göhde and W. A. Kirk and studied by numerous authors for over 40 years, is to classify those \(E \) and \(C \) which have the fixed point property. For a fuller discussion on this topic we refer the reader to [3, 6].

In this paper we concentrate on weak∗ compact convex subsets of the dual Banach space \(E \). In 1976, L. Karlovitz (see [5]) proved that if \(C \) is a weak∗ compact convex subset of \(\ell_1 \) (as the dual to \(c_0 \)) then every nonexpansive mapping \(T : C \to C \) has a fixed point. His result was extended by T.C. Lim [11] to the case of left reversible topological semigroups. On the other hand, C. Lennard showed the example of a weak∗ compact convex subset of \(\ell_1 \) with the weak∗ topology induced by its predual \(c \) and an affine contractive mapping without fixed points (see [12, Example 3.2]). This shows that, apart from nonexpansiveness, some additional assumptions have to be made to obtain the fixed points.

Let \(S \) be a semitopological semigroup, i.e., a semigroup with a Hausdorff topology such that for each \(t \in S \), the mappings \(s \to t \cdot s \) and \(s \to s \cdot t \) from \(S \) into \(S \) are continuous. Consider the following fixed point property:

\[(F_s): \text{Whenever } S = \{T_s : s \in S\} \text{ is a representation of } S \text{ as norm-nonexpansive mappings on a non-empty weak∗ compact convex set } C \text{ of a dual Banach space } E \text{ and the mapping } (s, x) \to T_s(x) \text{ from } S \times C \text{ to } C \text{ is jointly continuous, where } C \text{ is equipped with the weak∗ topology of } E, \text{ then there is a common fixed point for } S \text{ in } C.\]

2010 Mathematics Subject Classification. Primary 47H10; Secondary 46B20, 47H09.
Key words and phrases. Fixed point property; Nonexpansive mapping; Weak topologies; Commuting mappings; Nonexpansive retract.
It is not difficult to show (see, e.g., [9, p. 528]) that property (F_*) implies that S is left amenable (in the sense that $LUC(S)$, the space of bounded complex-valued left uniformly continuous functions on S, has a left invariant mean). Whether the converse is true is a long-standing open problem, posed by A. T.-M. Lau in [8] (see also [9, Problem 2], [10, Question 1]).

It is well known that all commutative semigroups are left amenable. The aim of this paper is to give a partial answer to the above problem by showing that every commuting family S of weak* continuous nonexpansive mappings acting on a weak* compact convex subset C of the dual Banach space E has common fixed points. Moreover, we prove that the set $Fix S$ of fixed points is a nonexpansive retract of C.

Note that the structure of $Fix S$ (with S commutative) was examined by R. Bruck (cf. [1, 2]) who proved that if every nonexpansive mapping $T : C \to C$ has a fixed point in every nonempty closed convex subset of C which is invariant under T, and C is convex and weakly compact or separable, then $Fix S$ is a nonexpansive retract of C. We are able to mix the elements of Bruck’s method with some properties of w^*-continuous and nonexpansive mappings to get the desired result.

2. Preliminaries

Let E be the dual of a Banach space E_*. In this paper we focus on the weak* topology – the smallest one satisfying the condition: for all $e \in E$, the functional $\hat{e}(x) = x(e)$ is continuous (in the strong topology). This definition opens up the possibility to consider the so-called weak* properties, for example, w^*-compactness (compactness in the w^*-topology), w^*-completeness, etc. In this topology, E becomes a locally convex Hausdorff space. We say that a dual Banach space E has the w^*-FPP if every nonexpansive self-mapping defined on a nonempty w^*-compact convex subset of E has a fixed point. It is known that $\ell_1 = c_0^*$ and some other Banach lattices have w^*-FPP, however $\ell_1 = c^*$ as well as the duals of $C(\Omega)$, where Ω is an infinite compact Hausdorff topological space, do not possess this property.

A non-void set $D \subset C$ is said to be a nonexpansive retract of C if there exists a nonexpansive retraction $R : C \to D$ (i.e., a nonexpansive mapping $R : C \to D$ such that $R|_D = I$). Since we deal a lot with w^*-continuous nonexpansive mappings, we abbreviate them to w^*-CN.

We conclude with recalling the following consequence of the Ishikawa theorem (see [3]): if C is a bounded convex subset of a Banach space X, $\gamma \in (0, 1)$, and $T : C \to C$ is nonexpansive, then the mapping $T_\gamma = (1-\gamma)I + \gamma T$ is asymptotically regular, i.e., $\lim_{n \to \infty} \|T_\gamma^{n+1}x - T_\gamma^n x\| = 0$ for every $x \in C$. We use this theorem in Lemma 3.4.

3. Fixed-point theorems

We begin with a structural result concerning a single w^*-continuous nonexpansive mapping $T : C \to C$.

Theorem 3.1. Let C be a nonempty weak* compact convex subset of the dual Banach space. Then for any w^*-CN self-mapping T on C, the set $\text{Fix}T$ of fixed points of T is a (nonempty) nonexpansive retract of C.

The proof will follow by constructing gradually (and establishing properties of) three functions, each one defined in the means of the earlier, and the last one being the retraction from C to $\text{Fix}T$.

Proof. Notice first that C is complete in the strong topology. Now, for $x \in C$ and a positive integer n, consider a mapping $T_x : C \to C$ defined by

$$T_x z = \frac{1}{n} x + \left(1 - \frac{1}{n}\right) Tz, \; z \in C.$$

It is not difficult to see that T_x is a contraction:

$$\|T_x y - T_x z\| \leq \left(1 - \frac{1}{n}\right) \|y - z\|.$$

Hence and from completeness of C, it follows from the Banach Contraction Principle that there exists exactly one point $F_n x \in C$ such that $T_x F_n x = F_n x$. This defines a mapping $F_n : C \to C$ by

$$F_n x = \frac{1}{n} x + \left(1 - \frac{1}{n}\right) TF_n x$$

for $x \in C$. Thus

$$\|TF_n x - F_n x\| = \frac{1}{n} \|TF_n x - x\| \leq \frac{1}{n} \text{diam } C$$

and consequently,

$$\lim_n \|TF_n x - F_n x\| = 0$$

since C is bounded in norm as a weak* compact subset of a Banach space.

Notice that for $x \in \text{Fix}T$ we have

$$T_x x = x$$

and consequently $F_n x = x$.

Furthermore, $F_n x$ is nonexpansive. Indeed,

$$F_n x - F_n y = T_x F_n x - T_y F_n y = \frac{1}{n} (x - y) + \left(1 - \frac{1}{n}\right) (Tx - Ty)$$

which, by putting it into norm and using the triangle inequality and nonexpansiveness of T, gives us a desired statement.

Notice that we can view C^C as the product space of copies of C, where each copy is endowed with the w^*-topology. Then, according to Tychonoff’s theorem, C^C is compact in the product topology generated in this way (“w^*-product topology”). It follows that a sequence $(F_n)_{n \in \mathbb{N}}$ of elements from C^C has a convergent subnet $(F_{n_\alpha})_{\alpha \in \Lambda}$ and we can define

$$R = \text{w}^*\lim_{\alpha} F_{n_\alpha},$$
where the above limit should be understood as taken in the aforementioned \(w^*-\)product topology. Now we can treat the application of \(R\) to some \(x \in C\) as the projection of the mapping onto the \(x\)-th coordinate and since such projections are continuous in the product topology, we obtain

\[Rx = \lim_{\alpha} w^* F_{n_{\alpha}} x, \]

where this limit is an ordinary \(w^*\)-limit. With this approach, we are able to construct one subnet which guarantees convergence for all \(x \in C\).

Notice that

\[TRx = \lim_{\alpha} w^* TF_{n_{\alpha}} x \]

since \(T\) is weak* continuous. Now, it follows from the weak* lower semicontinuity of the norm that for any \(x \in C,\)

\[\|TRx - Rx\| = \|w^* \lim_{\alpha} (TF_{n_{\alpha}} x - F_{n_{\alpha}} x)\| \leq \liminf_{\alpha} \|TF_{n_{\alpha}} x - F_{n_{\alpha}} x\| = 0 \]

and hence

\[TRx = Rx \]

which means that \(Rx \in \text{Fix } T\). Furthermore, \(Rx = x\) if \(x \in \text{Fix } T\).

We can now use \((2)\) and the weak* lower semicontinuity of the norm to prove that \(R\) is nonexpansive:

\[\|Rx - Ry\| = \|w^* \lim_{\alpha} (F_{n_{\alpha}} x - F_{n_{\alpha}} y)\| \]

\[\leq \liminf_{\alpha} \left\| \frac{1}{n_{\alpha}} (x - y) + (1 - \frac{1}{n_{\alpha}})(Tx - Ty) \right\| \leq \limsup_{\alpha} \frac{1}{n_{\alpha}} \|x - y\| \]

\[+ \limsup_{\alpha} (1 - \frac{1}{n_{\alpha}}) \|Tx - Ty\| = \|Tx - Ty\| \leq \|x - y\|. \]

Thus we conclude that \(\text{Fix } T\) is indeed a nonexpansive retract of \(C\). \(\square\)

Remark 3.2. The \(w^*\)-continuity of \(T\) cannot be omitted in the assumptions of Theorem 3.1. Indeed, otherwise we would conclude that any dual Banach space has \(w^*-\)FPP. But it is known (see, e.g., [12, Example 3.2]) that \(\ell_1\) (as the dual to the Banach space \(c\)) fails the \(w^*-\)FPP, a contradiction.

The following example shows that we would not be able to relax the assumption of the nonexpansiveness of \(T\) to continuity, either, even if we only postulated the existence of a (continuous) retraction.

Example 1. Let \(\ell_1 = c_0^*\) and define

\[T(x_1, x_2, x_3, ...) = ((x_1)^2, 0, x_2, x_3, ...)\]

on the unit ball \(B_{\ell_1}\). Notice that \(T : B_{\ell_1} \to B_{\ell_1}\) is \(w^*-\)continuous and \(\text{Fix } T = \{(\pm 1, 0, ...)\}\). But a non-connected set cannot be a retract of the ball.
Our next objective is to generalize Theorem 3.1 to a commuting family of \(w^*\)-continuous nonexpansive mappings. If \(S = \{T_s : s \in S\}\) is a family of mappings, we denote by

\[
\text{Fix } S = \bigcap_{s \in S} \text{Fix } T_s
\]

the set of common fixed points of \(S\).

We first prove a lemma which resembles [1, Lemma 6].

Lemma 3.3. Let \(S\) be a family of commuting self-mappings acting on a set \(C\) and suppose that there exists a retraction \(R\) of \(C\) onto \(\text{Fix } S\). If \(\tilde{T}\) commutes with every element of the family \(S\), then

\[
\text{Fix } S \cap \text{Fix } \tilde{T} = \text{Fix}(\tilde{T}R).
\]

Proof. The inclusion from left to right follows from the simple observation that if \(x \in \text{Fix } S \cap \text{Fix } \tilde{T}\), then \(Rx = x\) and \(\tilde{T}x = x\).

For the other direction, assume \(x \in \text{Fix}(\tilde{T}R)\) which means \(\tilde{T}Rx = x\).

Then, for every \(T \in S\), it follows from the commutativity and the fact that \(Rx \in \text{Fix } T\) that

\[
T\tilde{T}Rx = \tilde{T}(TRx) = \tilde{T}Rx.
\]

Therefore \(\tilde{T}Rx \in \text{Fix } T\) for every \(T \in S\) and consequently

\[
x = \tilde{T}Rx \in \text{Fix } S.
\]

Since \(R\) is a retraction onto \(\text{Fix } S\), we have \(Rx = x\) and hence \(\tilde{T}x = x\).

It follows that \(x \in \text{Fix } S \cap \text{Fix } \tilde{T}\) which proves the inclusion and the whole lemma. \(\square\)

Lemma 3.4. Suppose that \(C\) is as in Theorem 3.1 and \(S_n = \{T_1, ..., T_n\}\) is a finite commuting family of \(w^*\)-CN self-mappings on \(C\). Then \(\text{Fix } S_n\) is a nonexpansive retract of \(C\).

Proof. We will show by induction on \(n\) that there exists a nonexpansive retraction \(R_n\) from \(C\) onto \(\text{Fix } S_n\). The base case \(n = 1\) follows directly from Theorem 3.1 since \(\text{Fix } S_1 = \text{Fix } T_1\).

Now assume that that there exists a nonexpansive retraction \(R_n\) of \(C\) onto \(\text{Fix } S_n\). We need to show the existence of a nonexpansive retraction \(R_{n+1}\) of \(C\) onto \(\text{Fix } S_{n+1}\).

Let

\[
\tilde{R}_n x = \frac{1}{2} x + \frac{1}{2} T_{n+1} R_n x, \quad x \in C,
\]

and consider a sequence \((\tilde{R}_n^k)_{k \in \mathbb{N}}\) of successive iterations of \(\tilde{R}_n\). As in the proof of Theorem 3.1 we can view \(C^C\) as the product space, compact with respect to the \(w^*\)-topology on \(C\). Hence the sequence \((\tilde{R}_n^k)_{k \in \mathbb{N}}\) has a convergent subnet \((\tilde{R}_n^{k_\alpha})_{\alpha \in \Lambda}\) and we can define

\[
R_{n+1} x = w^* \lim_{\alpha} \tilde{R}_{n}^{k_\alpha} x
\]

for every \(x \in C\).
Since \(T_{n+1} R_n \) is nonexpansive as a composition of such mappings, it is easy to see that also \(\tilde{R}_n \) is nonexpansive. The nonexpansiveness of \(R_{n+1} \) now follows from the weak* lower semicontinuity of the norm. It is also easy to see that \(\text{Fix} T_{n+1} R_n \subset \text{Fix} R_{n+1} \) and, by using Lemma 3.3, we conclude that
\[
\text{Fix} S_{n+1} \subset \text{Fix} R_{n+1}.
\]
But this still does not prove that \(R_{n+1} \) is a mapping we are looking for, nor that \(\text{Fix} S_{n+1} \) is nonempty. To complete the proof, we must show that \(R_{n+1} \) is a mapping onto \(\text{Fix} S_{n+1} \). The rest of the proof is about showing this fact.

Since \(C \) is convex closed and bounded, and \(\tilde{R}_n \) is the convex combination of a nonexpansive mapping and the identity, it follows from the Ishikawa theorem [4] that \(\tilde{R}_n \) is asymptotically regular, i.e.,
\[
\lim_{k \to \infty} \| \tilde{R}_n^{k+1} x - \tilde{R}_n^k x \| = 0
\]
for every \(x \in C \).

Now, fix \(x \) and notice that \((\tilde{R}_n^{k_\alpha} x)_{\alpha \in \Lambda} \) is an approximate fixed point net for the mapping \(T_{n+1} R_n \). To see this, use the equation
\[
\tilde{R}_n^{k_\alpha+1} x = \frac{1}{2} \left(\tilde{R}_n^{k_\alpha} x - T_{n+1} R_n \tilde{R}_n^{k_\alpha} x \right) + T_{n+1} R_n \tilde{R}_n^{k_\alpha} x
\]
and the asymptotical regularity in the following calculations:
\[
\limsup_{\alpha} \left\| T_{n+1} R_n \tilde{R}_n^{k_\alpha} x - \tilde{R}_n^{k_\alpha} x \right\| \leq \limsup_{\alpha} \left\| T_{n+1} R_n \tilde{R}_n^{k_\alpha} x - \tilde{R}_n^{k_\alpha+1} x \right\| + \lim_{\alpha} \left\| \tilde{R}_n^{k_\alpha+1} x - \tilde{R}_n^{k_\alpha} x \right\| = \limsup_{\alpha} \left\| T_{n+1} R_n \tilde{R}_n^{k_\alpha} x - \tilde{R}_n^{k_\alpha+1} x \right\|
\]
\[
= \frac{1}{2} \limsup_{\alpha} \left\| T_{n+1} R_n \tilde{R}_n^{k_\alpha} x - \tilde{R}_n^{k_\alpha} x \right\|.
\]
Thus we conclude that
\[
\lim_{\alpha} \left\| T_{n+1} R_n \tilde{R}_n^{k_\alpha} x - \tilde{R}_n^{k_\alpha} x \right\| = 0,
\]
(3)
as desired.

Now, for brevity, denote \(r_\alpha = \tilde{R}_n^{k_\alpha} x \) and notice that for every \(m \leq n \n\)
\[
T_m T_{n+1} R_n r_\alpha = T_{n+1} T_m R_n r_\alpha = T_{n+1} R_n r_\alpha.
\]
That is, \(T_{n+1} R_n r_\alpha \in \text{Fix} T_m \) which is equivalent to the statement that \(T_{n+1} R_n r_\alpha \) belongs to \(\text{Fix} S_n \). It follows that
\[
T_{n+1} R_n r_\alpha = R_n T_{n+1} R_n r_\alpha.
\]
and using the equation (3), we obtain
\[
\limsup_{\alpha} \left\| R_n r_\alpha - r_\alpha \right\| \leq \limsup_{\alpha} \left\| R_n r_\alpha - T_{n+1} R_n r_\alpha \right\| + \lim_{\alpha} \left\| T_{n+1} R_n r_\alpha - r_\alpha \right\|
\]
\[
= \limsup_{\alpha} \left\| R_n r_\alpha - R_n T_{n+1} R_n r_\alpha \right\| \leq \lim_{\alpha} \left\| r_\alpha - T_{n+1} R_n r_\alpha \right\| = 0.
\]
(4)
In the same manner we can see that for every $m \leq n$,
\[
\limsup_{\alpha} \|T_{m}r_{\alpha} - r_{\alpha}\| \leq \limsup_{\alpha} \|T_{m}r_{\alpha} - T_{m}R_{n}r_{\alpha}\| + \limsup_{\alpha} \|T_{m}R_{n}r_{\alpha} - r_{\alpha}\| \\
\leq \lim_{\alpha} \|r_{\alpha} - R_{n}r_{\alpha}\| + \lim_{\alpha} \|R_{n}r_{\alpha} - r_{\alpha}\| = 0.
\]
Since T_{m} is w^{*}-continuous, this easily yields
\[
T_{m}R_{n+1}x = R_{n+1}x
\]
and, consequently,
\[
R_{n+1}x \in \text{Fix}\ S_{n}.
\]
(5)

Finally, by using (3) and (1), we get
\[
\limsup_{\alpha} \|T_{n+1}r_{\alpha} - r_{\alpha}\| \leq \limsup_{\alpha} \|T_{n+1}r_{\alpha} - T_{n+1}R_{n}r_{\alpha}\| + \limsup_{\alpha} \|T_{n+1}R_{n}r_{\alpha} - r_{\alpha}\| \\
+ \lim_{\alpha} \|T_{n+1}R_{n}r_{\alpha} - r_{\alpha}\| \leq \lim_{\alpha} \|r_{\alpha} - R_{n}r_{\alpha}\| = 0.
\]
Then, from the w^{*}-continuity of T_{n+1},
\[
T_{n+1}R_{n+1}x = R_{n+1}x
\]
which combined with (5), gives
\[
R_{n+1}x \in \text{Fix}\ S_{n+1}.
\]
That is, $\text{Fix}\ S_{n+1}$ is nonempty and R_{n+1} acts onto it, which completes the proof. \qed

We are now in a position to prove our main theorem.

Theorem 3.5. Suppose that C is as in Theorem 3.1 and S is an arbitrary family of commuting w^{*}-CN self-mappings on C. Then $\text{Fix}\ S$ is a nonexpansive retract of C.

Proof. If S is finite, we can use lemma 3.4. So assume that S is infinite. First notice that
\[
\text{Fix}\ T = (T - I)^{-1}\{0\}
\]
is closed in the w^{*}-topology for every $T \in S$. Let
\[
\Lambda = \{\alpha \subset S : \#\alpha < \infty\}
\]
be a directed set with the inclusion relation \leq. Denote by R_{α} the nonexpansive retraction from C to $\text{Fix}\alpha = \bigcap_{T \in \alpha} \text{Fix}\ T$ (a more convenient way of writing $\text{Fix}\alpha$) which existence is guaranteed by Lemma 3.4. Then we have a net $(R_{\alpha})_{\alpha \in \Lambda}$, and we can select a subnet $(R_{\alpha_{\gamma}})_{\gamma \in \Gamma}$, w^{*}-convergent for any $x \in C$. Define
\[
Rx = w^{*}\lim_{\gamma} R_{\alpha_{\gamma}}x.
\]
For a fixed $T \in S$, take γ_{0} such that $\alpha_{\gamma} \geq \{T\}$ for every $\gamma \geq \gamma_{0}$. It exists, straightforward from the subnet definition. Then
\[
\forall_{\gamma \geq \gamma_{0}} R_{\alpha_{\gamma}}x \in \text{Fix}\alpha_{\gamma} \subset \text{Fix}\alpha_{\gamma_{0}} \subset \text{Fix}\ T
\]
and hence $R_\alpha x$ lies eventually in the w^*-closed set $\text{Fix} \ T$. Therefore, $R x \in \text{Fix} \ T$ for every $T \in \mathcal{S}$ which implies $R x \in \text{Fix} \ \mathcal{S}$. It is easy to see that R is nonexpansive. Also, for every α,

$$x \in \text{Fix} \ \mathcal{S} \implies x \in \text{Fix}_\alpha \implies R_\alpha x = x,$$

from which follows

$$Rx = x, \ x \in \text{Fix} \ \mathcal{S}. \quad (6)$$

Thus R is a nonexpansive retraction from C onto $\text{Fix} \ \mathcal{S}$.

Remark 3.6. In particular, the set $\text{Fix} \ \mathcal{S}$ is non-empty. Thus Theorem 3.5 answers affirmatively [10, Question 1] in the case of commutative semigroups.

REFERENCES

[1] R. E. Bruck, Jr., *Properties of fixed-point sets of nonexpansive mappings in Banach spaces*, Trans. Amer. Math. Soc. 179 (1973), 251–262.

[2] R. E. Bruck, Jr., *A common fixed point theorem for a commuting family of nonexpansive mappings*, Pacific J. Math. 53 (1974), 59–71.

[3] K. Goebel, W. A. Kirk, *Topics in Metric Fixed Point Theory*, Cambridge University Press, Cambridge, 1990.

[4] S. Ishikawa, *Fixed points and iteration of a nonexpansive mapping in a Banach space*, Proc. Amer. Math. Soc. 59 (1976), no. 1, 65–71.

[5] L. A. Karlovitz, *On nonexpansive mappings*, Proc. Amer. Math. Soc. 55 (1976), 321–325.

[6] W. A. Kirk, B. Sims (eds.), *Handbook of Metric Fixed Point Theory*, Kluwer Academic Publishers, Dordrecht, 2001.

[7] A. T.-M. Lau, *Invariant means on almost periodic functions and fixed point properties*, Rocky Mountain J. Math. 3 (1973), 69–76.

[8] A. T.-M. Lau, *Amenability and fixed point property for semigroup of nonexpansive mappings*, in: Fixed Point Theory and Applications, M.A. Thera, J.B. Baillon (eds.), Longman Sci. Tech., Harlow, 1991, 303–313.

[9] A. T.-M. Lau, W. Takahashi, *Fixed point and non-linear ergodic theorems for semigroup of non-linear mappings*, in: [6], 515–553.

[10] A.T.-M. Lau, Y. Zhang, *Fixed point properties for semigroups of nonlinear mappings and amenability*, J. Funct. Anal. 263 (2012), 2949–2977.

[11] T. C. Lim, *Asymptotic centers and nonexpansive mappings in conjugate Banach spaces*, Pacific J. Math. 90 (1980), 135–143.

[12] B. Sims, *Examples of fixed point free mappings*, in: [6], 35–48.

Sławomir Borzdyński, Department of Mathematics, Maria Curie-Skłodowska University, 20-031 Lublin, Poland

E-mail address: slawomir.borzdynski@gmail.com

Andrzej Wiśnicki, Department of Mathematics, Maria Curie-Skłodowska University, 20-031 Lublin, Poland

E-mail address: a.wisnicki@umcs.pl