ON GROWTH OF DOUBLE COSETS IN HYPERBOLIC GROUPS

RITA GITIK AND ELIYAHU RIPS

Abstract. Let H be a hyperbolic group, A and B be subgroups of H, and $gr(H, A, B)$ be the growth function of the double cosets $AhB, h \in H$. We prove that the behavior of $gr(H, A, B)$ splits into two different cases. If A and B are not quasiconvex, we obtain that every growth function of a finitely presented group can appear as $gr(H, A, B)$. We can even take $A = B$. In contrast, for quasiconvex subgroups A and B of infinite index, $gr(H, A, B)$ is exponential. Moreover, there exists a constant $\lambda > 0$, such that $gr(H, A, B) > \lambda f_H(r)$ for all big enough r, where $f_H(r)$ is the growth function of the group H. So, we have a clear dichotomy between the quasiconvex and non-quasiconvex case.

1. Introduction

Growth of groups has been a subject of research for many years. For main results and references see [4]. Growth of cosets in groups has also been investigated, [5]. However, de la Harp wrote in [4], p.209 that growth of double cosets in groups has not yet received much attention, but probably should. In this paper we investigate growth of double cosets of hyperbolic groups.

Let H be a hyperbolic group and let A and B be finitely generated subgroups of H. Fix some set of generators of H. For any $k \geq 0$, let $gr(H, A, B)$ be the growth function for double cosets AhB, that is $gr(G, A, B)(r) = |\{AhB, |h| \leq r\}|$, where $|h|$ is the length of h.

Our first theorem shows that the class of growth rate functions of double cosets of non-quasiconvex subgroups is rather wide. Namely, let $G = \langle x_1, \cdots, x_m | r_1, \cdots, r_n \rangle$ be any finitely presented group. Let f_G be the growth function of G, that is $f_G(r) = |\{g \in G, |g| \leq r\}|$, where the length $|g|$ is taken with respect to the set of generators x_1, \cdots, x_m.

Theorem 1. There exists a hyperbolic group H and a finitely generated subgroup N of H such that $gr(H, N, N) = f_G$.

Our second theorem shows that if A and B are quasiconvex then the growth function of the double cosets $gr(H, A, B)$ is exponential.

Theorem 2. Let H be a non-elementary hyperbolic group with a fixed set of generators. Let A and B be quasiconvex subgroups of H of infinite index. Then there exists a constant $\lambda > 0$ such that $gr(H, A, B)(r) \geq \lambda f_H(r)$ for all big enough r.

The proof of Theorem 2 uses the following generalization of the Ping-Pong Lemma from [2].

Date: August 3, 2018.

2010 Mathematics Subject Classification. Primary: 20F67; Secondary: 20F65, 20B07.
Theorem 3. Let G be a non-elementary hyperbolic group, let K be a quasiconvex subgroup of G of infinite index, and let $t \in G$ be an element of infinite order such that $K \cap \langle t \rangle = \{1\}$. Denote by H the commensurator of $\langle t \rangle$ and let $G_0 = H \cap K$.

For a big enough N let $H_1 = \langle t^N, G_0 \rangle$. Then $(H_1, K) = H_1 \ast_{G_0} K$ and (H_1, K) is a quasiconvex subgroup of G.

2. Proof of The First Theorem

By a well-known construction [1], there exists a hyperbolic group H and a short exact sequence $1 \rightarrow N \xrightarrow{\alpha} H \xrightarrow{\beta} G \rightarrow 1$ such that the normal subgroup N of H is finitely generated as a group. Indeed, following [1], define H to be a group generated by the elements $x_1, \ldots, x_m, t_1, t_2$ with defining relations:

$r_i t_1^i t_2^i (i = 1, 2, \ldots, m),$

$x_i^{-1} t_i x_i t_1^i t_2^i (i = 1, 2, \ldots, m, j = 1, 2),$

$x_i t_i x_i^{-1} t_1^i t_2^i (i = 1, 2, \ldots, m, j = 1, 2).$

We can choose the constants $a_i, b_i, c_{ij}, d_{ij}, e_{ij}, f_{ij}$ such that H is a small cancellation group with arbitrarily small constant, and hence H is a hyperbolic group.

Let us show that $gr(H, N, N) = f_G$.

Indeed, for every double coset NhN consider the element $\beta(h) \in G$. In this way we obtain a 1-to-1 correspondence between double cosets and elements of G, because $Nh_1N = Nh_2N$ implies $\beta(h_1) = \beta(h_2)$ and for every $g = x_{i_1}^i x_{i_2}^j \cdots x_{i_s}^k \in G$, $\beta(g) = g$, so to NgN there corresponds $\beta(g) = g \in G$.

The homomorphism $\beta : H \rightarrow G$ sends x_i to x_i and t_j to t_j for $i = 1, 2, \ldots, m, j = 1, 2$. It follows that for every $h \in H$, $|\beta(h)| \leq |h|$, where the length of h is with respect to the generators $x_1, \ldots, x_m, t_1, t_2$ of H and the length of $\beta(h)$ is with respect to the generators x_1, \ldots, x_m of G.

Therefore, for any $k \geq 0$, the number of double cosets NhN with $|h| \leq k$ is equal to the number of elements $g \in G$ with $|g| \leq k$. Hence, $gr(H, N, N) = f_G$, proving Theorem 1.

3. Proof of The Second Theorem

Since A and B are quasiconvex and of infinite index in H, there exist elements $c \in H$ and $d \in H$ of infinite order such that $\langle c \rangle \cap A = \{1\}$ and $\langle d \rangle \cap B = \{1\}$. We are grateful to Ilya Kapovich who explained that to us.

Let $c \in H$ and $d \in H$ be elements of infinite order such that $\langle c \rangle \cap A = \{1\}$, and $\langle d \rangle \cap B = \{1\}$. Denote by H_1 the commensurator of $\langle c \rangle$ and by H_2 the commensurator of $\langle d \rangle$. Let $G_1 = H_1 \cap A$ and $G_2 = H_2 \cap B$. By Theorem 3, for some big enough M taking $C = \langle c^M, G_1 \rangle$ and $D = \langle d^M, G_2 \rangle$, we have $\langle A, C \rangle = A \ast C$ and $\langle B, D \rangle = B \ast D$. Denote $c_0 = c^M$ and $d_0 = d^M$.

According to Proposition 1 (below), there exists a constant $\mu > 0$ such that for any big enough r there are words of the form $s_i = c_0^{N_i} u_i w_i v_i d_0^{N_i}$, $i = 1, 2, \ldots, m$ such that

1. $m \geq \mu f_H(r),$
2. $|s_i| \leq r,$
3. $N_i \geq N$ and $N_i' \geq N$ for some fixed big enough $N,$
4. for $i \neq j$, $s_i \neq s_j,$
5. all s_i are quasigeodesic words with constants (η, ϵ).

If for some i, j we have $A_s B = A_s B$ then there exist elements $a \in A$ and $b \in B$ such that $s_j = a s_i b$, hence $b = s_i^{-1} a^{-1} s_j = d_0^{-N''} v_i^{-1} u_i^{-1} c_0^{-N'} a^{-1} c_0^N u_j w_j v_j d_0^N$.

If $a \notin G_1$ then according to Theorem 2, $c_0^{-N'} a^{-1} c_0^N$ is a quasigeodesic word. By 5), $d_0^{-N''} v_i^{-1} u_i^{-1} c_0^{-N'}$ and $c_0^N u_j w_j v_j d_0^N$ are quasigeodesics, so $d_0^{-N''} v_i^{-1} u_i^{-1} c_0^{-N'} a^{-1} c_0^N u_j w_j v_j d_0^N$ is also a quasigeodesic, contradicting the fact that it is equal to $b \in B$, where B is quasiconvex.

Similarly, we cannot have $b \notin G_2$. So $s_j = a s_i b$ implies $a \in G_1$ and $b \in G_2$. It follows that at least $\frac{m}{|G_1| |G_2|}$ of the double cosets $A_s B$, $i = 1, \ldots, m$ are different from each other. So we have $gr(H, A, B)(r) \geq \frac{\mu}{|G_1| |G_2|} \cdot f_G(r)$. Taking $\lambda = \frac{\mu}{|G_1| |G_2|}$, we satisfy the requirements of Theorem 2.

Corollary to the Proof of Theorem 2.

Using the notation of the Proof of Theorem 2, for each $i = 1, 2, \ldots, m$ the subgroup $\langle A, s_i B s_i^{-1} \rangle$ is a quasiconvex subgroup of H, and its geodesic core (see Definition 4 in [3]) consists of a cylindrical neighbourhood of the path for s_i with geodesic cores of A and of B attached at the beginning and at the end of the path for s_i respectively.

4. Proof of The Third Theorem

Theorem 3 generalizes Theorem 2 of [2]. However, notice that we do not assume that H_1 is malnormal. The proof follows the proof of Theorem 2 in [2] with the following modifications.

1. In the decomposition $l = h_1 k_1 \cdots k_{m-1} h_m$ all h_i are powers of t^N.
2. Lemma 8 from [2] is modified in the following way: instead of H we take $H_1 = \langle t^N, G_0 \rangle$.

Note that G_0 is a finite group because G_0 is a subgroup of H which contains the infinite cyclic group $\langle t \rangle$ as a subgroup of finite index. Indeed, by definition, H is a commensurator of an infinite cyclic group $\langle t \rangle$ in a hyperbolic group, so $\langle t \rangle$ is of finite index in H by Theorem 2 of [1], hence H is infinite virtually cyclic. Therefore, it is known that either H maps onto Z with a finite kernel or H maps onto the infinite dihedral group with a finite kernel. Consider two cases.

1. H maps onto Z with a finite kernel P.

 Let x be a preimage of the generator of Z. Then for some integer $L \neq 0, t = x^L z$ with $z \in P$. For big enough M, t^M induces a trivial automorphism of P, because P is finite.

 Consider $y \in G_0 = H \cap K$. Then $y = x^L z_0$ with $z_0 \in P$, so $y^{LM} = x^{SL}_M z_1$ with $z_1 \in P$, hence $y^{LMN} = t^{SM} z_2$ with $z_2 \in P$. By the choice of M, t^M commutes with P, hence for any $N, y^{LMN} = (t^{SM})^N z_2^N$. So if the order of P divides N, we have $z_2^N = 1$ and $y^{LMN} = t^{SMN}$. But we know that $\langle t \rangle \cap K$ is trivial, so $y^{LMN} = 1$, hence y is of infinite order, therefore $y \in P$. Thus, $G_0 = H \cap K$ is contained in P, hence it is finite.

2. H maps onto an infinite dihedral group D with a finite kernel P.

 Let $D = \langle d', x' \rangle$, where d' is of order 2, x' is of infinite order, and $d' x' d' = (x')^{-1}$. Let d and x be preimages of d' and x' correspondingly. Then for some integer $L \neq 0, t = x^L z$, where $z \in P$. For some big enough M, t^M induces a trivial automorphism of P, because P is finite. Consider $y \in G_0 = H \cap K$. Then the image of y^2 in D belongs to the infinite cyclic...
Proceeding as in case (1), we show that $y^{2LMN} = 1$, so y is of finite order, hence $y \in P$. Thus, $G_0 = H \cap K$ is contained in P, hence it is finite.

Note that G_0 does not contain elements of infinite order, since the intersection of $\langle t \rangle$ and K is trivial.

In the notation of Lemma 8 from [2], $\text{Lab}(s)\text{Lab}(p_1p_2\overline{v_1})\text{Lab}^{-1}(s) \in H_1$ and $\text{Lab}(p_1p_2\overline{v_1}) \in H_1$. Without loss of generality, we can assume that the vertices v_i, w_i, v_j, w_j belong to the image of $\langle t^N \rangle$ in $\text{Cayley}(G, H_1)$ because $\text{Lab}(p_1)$ and $\text{Lab}(p_2)$ belong to $\langle t^N \rangle$. The element $\text{Lab}(s)$ conjugates $\text{Lab}(p_1p_2\overline{v_1})$ into H. By our assumption, $\text{Lab}(p_1p_2\overline{v_1}) = (t^Nc)$ for some $c \neq 0$. Then $\text{Lab}(s)$ belongs to the commensurator of $\langle t^N \rangle$ and hence to the commensurator of $\langle t \rangle$ which is t. On the other hand, $\text{Lab}(s) \in K$, so $\text{Lab}(s) \in H \cap K = G_0$. This is the desired contradiction. The rest of the proof is as in the proof of Theorem 2 in [2].

Proposition 1. Let G be a non-elementary hyperbolic group with a fixed set of generators. Let f_G be the growth function of G, that is $f_G(r) = |\{g \in G; |g| \leq r\}|$. Let $c, d \in G$ be elements of infinite order. Fix some big enough N. Then there exists a constant $\mu > 0$ such that for any big enough r there exist words s_i of the form $s_i = c^{N_i}u_iw_iw_i^{N_i}$, $i = 1, 2, \cdots, m$ such that

1. $m \geq \mu f_G(r)$,
2. $|s_i| \leq r$,
3. $N \leq N_i \leq 2N$ and $N \leq N_i'' \leq 2N$,
4. for $i \neq j, s_i \neq s_j$,
5. all s_i are quasigeodesic words with some constants (η, ϵ).

Proof. Consider the ball in $\text{Cayley}(G)$ of radius $r_1 = r - |c^{2N}| - |d^{2N}| - 2\delta_1 - |c| - |d|$ and let $m_1 = |B(r_1)| = f_G(r_1)$. Let z_1, \cdots, z_{m_1} be geodesic words for all elements in $B(r_1)$, that is $|z_i| \leq r_1$. For each z_i consider the word $c^{2N}z_id^{2N}$. As c^{2N} and d^{2N} are quasigeodesics, for big enough r we have the following picture, where $\text{Lab}(p) = c^{2N}, \text{Lab}(q) = z_i$, and $\text{Lab}(t) = d^{2N}$.
Using δ-hyperbolicity of $\text{Cayley}(G)$, we obtain paths l_1 and l_2 such that $p = p_1p_2, q = q_1q_2q_3, t = t_1t_2, |l_1| \leq \delta + |c|, |l_2| \leq \delta + |d|, \text{Lab}(p_1) = c^{N_i}, \text{Lab}(t_2) = d^{N_i}, \text{Lab}(p_2) = c^{2N - N_i}, \text{and } \text{Lab}(t_1) = d^{2N - N''_i}$.

We leave out the cases when \(N_i' < N \) and \(N_i'' < N \). The number of such cases is bounded by
\[
m_0 = N \cdot f_G(\delta + |c|) \cdot N \cdot f_G(\delta + |d|).
\]

We know that for any \(k \) there exists \(\rho > 0 \) such that \(f_G(r - k) \geq f_G(r) \) for all
big enough \(r \), so we can choose \(\mu > 0 \) such that for all big enough \(r \) the following holds:
\[
m = m_1 - m_0 = f_G(r - |c|^{2N} - |d|^{2N} - 2\delta - |c| - |d|) - n \geq \mu f_G(r),
\]
satisfying all the conditions of Proposition 1. Note that condition (5) follows from the local
property of quasigeodesics.

\[\square\]

References

[1] G. N. Arzhantseva, On Quasiconvex Subgroups of Word Hyperbolic Groups, Geometriae Dedicata, 87 (2001), 191-208.

[2] R. Gitik, Ping-Pong on Negatively Curved Groups, J. of Algebra, 217 (1999), 65-72.

[3] R. Gitik, Tameness and Geodesic Cores of Subgroups, J. Austral. Math. Soc. (Series A), 69 (2000), 153-161.

[4] P. de la Harpe, Topics in Geometric Group Theory, Chicago Lectures in Mathematics, The University of Chicago Press, 2000.

[5] A. Olshanskii, Subnormal Subgroups in Free Groups, Their Growth And Cogrowth, Math. Proc. Cambridge Phil. Soc., 163(2017), 499-531.

[6] E. Rips, Subgroups of Small Cancellation Groups, Bull. LMS, 14 (1982), 45-47.