Cryptographic protocols based on Nielsen transformations
Anja I. S. Moldenhauer and Gerhard Rosenberger

Abstract
Based on a combinatorial distribution of shares we present in this paper secret sharing schemes and cryptosystems using Nielsen transformations.

2010 Mathematics Subject Classification: 20E36, 20E05, 94A60, 94A62 .
Key words: Nielsen transformation, matrix group $SL(2, \mathbb{Q})$, secret sharing protocol, private key cryptosystem, public key cryptosystem.

1 Introduction
We first describe secret sharing protocols and combinatorial distributions of shares. After this introductory definitions we start with a secret sharing scheme using directly the combinatorial distribution of shares. Based on this we present two schemes in which we apply regular Nielsen transformations in connections with faithful representations of free groups and the Nielsen reduction theory. In the last sections we modify the secret sharing schemes to a private key cryptosystem and finally Nielsen transformations are used for a public key cryptosystem which is inspired by the ElGamal cryptosystem. The new cryptographic protocols are in part in the dissertation from A. Moldenhauer [6] under her supervisor G. Rosenberger at the University of Hamburg.

A (n,t)-secret sharing protocol, with $n, t \in \mathbb{N}$ and $t \leq n$, is a method to distribute a secret among a group of n participants in such a way that it can be recovered only if at least t of them combine their shares. Hence any group of $t-1$ or fewer participants cannot calculate the secret. The number t is called threshold. The person who distributes the shares is called the dealer.

D. Panagopoulos presents in his paper [8] a (n,t)-secret sharing scheme using group presentations with solvable word problem. Here we use combinatorial distributions of the shares similar to those introduced in the paper of D. Panagopoulos:

To distribute the shares in a (n,t)-secret sharing scheme the dealer does the following steps:

1. Calculate $m = \binom{n}{t-1}$, the number of all elements, for example $\{a_1, a_2, \ldots, a_m\}$, the participants need to know for the reconstruction of the secret.

2. Let A_1, A_2, \ldots, A_m be an enumeration of the subsets of $\{1, 2, \ldots, n\}$ with $t-1$ elements. Define n subsets R_1, R_2, \ldots, R_n of the set $\{a_1, a_2, \ldots, a_m\}$ with the property

 $a_j \in R_i \iff i \notin A_j$ for $j = 1, 2, \ldots, m$ and $i = 1, 2, \ldots, n$.

3. The dealer distributes to each of the n participants one of the sets R_1, R_2, \ldots, R_n.

The new protocols in this paper are based on Nielsen transformations, which are the basis of a linear technique to study free groups and general infinite groups. We now review some basic definitions concerning regular Nielsen transformations and Nielsen reduced sets (see [1] or [5]).

Let F be a free group on the free generating set $X := \{x_1, x_2, \ldots\}$ and let $U := \{u_1, u_2, \ldots\} \subset F$.

1
Definition 1.1. An elementary Nielsen transformation on $U = \{u_1, u_2, \ldots\}$ is one of the following transformations

(T1) replace some u_i by u_i^{-1};
(T2) replace some u_i by $u_i u_j$ where $j \neq i$;
(T3) delete some u_i where $u_i = 1$.

In all three cases the u_k for $i \neq k$ are not changed. A (finite) product of elementary Nielsen transformations is called a Nielsen transformation. A Nielsen transformation is called regular if it is a finite product of the transformations (T1) and (T2), otherwise it is called singular.

The set U is called Nielsen-equivalent to the set V, if there is a regular Nielsen transformation from U to V.

Definition 1.2. Consider elements v_1, v_2, v_3 of the form $u_i^{\pm 1}$, call U Nielsen reduced if for all such triples the following conditions hold:

(N0) $v_1 \neq 1$;
(N1) $v_1 v_2 \neq 1$ implies $|v_1 v_2| \geq |v_1|, |v_2|$;
(N2) $v_1 v_2 \neq 1$ and $v_2 v_3 \neq 1$ implies $|v_1 v_2 v_3| > |v_1| - |v_2| + |v_3|$.

Here $| \cdot |$ denotes the free length in F.

Proposition 1.3. If $U = \{u_1, u_2, \ldots, u_n\}$ is finite, then U can be carried by a Nielsen transformation into some V such that V is Nielsen reduced.

For a proof see [1, Theorem 2.3] or [5, Proposition 2.2].

For the secret sharing scheme based on Nielsen transformations we will only use regular Nielsen transformations. We agree on some notations.

We write $(T_1)_i$ if we replace u_i by u_i^{-1} and we write $(T_2)_{ij}$ if we replace u_i by $u_i u_j$. If we want to apply t-times one after the other the same Nielsen transformation (T_2) we write $[(T_2)_{ij}]^t$ and hence replace u_i by $u_i u_j^t$. In all cases the u_k for $i \neq k$ are not changed.

2 A combinatorial secret sharing scheme

Now we present a (n, t)-secret sharing scheme, whereby the secret is the sum of multiplicative inverses of elements in the natural numbers. For the distribution of the shares the dealer uses the method of D. Panagopoulos described in Section 1.

The numbers n and t are given, whereby n is the number of participants and t is the threshold.

1. The dealer first calculates the number $m = \binom{n}{t-1}$.
2. He chooses m elements $a_1, a_2, \ldots, a_m \in \mathbb{N}$. From these elements he constructs analogously as in Section 1 the sets R_1, R_2, \ldots, R_n. The secret S is the sum

$$S := \sum_{i=1}^{m} \frac{1}{a_i} \in \mathbb{Q}^+.$$

3. Each participant P_i gets one share R_i, $1 \leq i \leq n$.

2
If t of the n participants come together they can reconstruct the secret while they first combine their t private sets R_i and get by construction the set $\tilde{R} = \{a_1, a_2, \ldots, a_m\}$. The secret is the sum of the inverse elements in the set \tilde{R}, that is
\[
S = \sum_{i=1}^{m} \frac{1}{a_i}.
\]
If the dealer needs a special secret $\tilde{S} \in \mathbb{Q}$ he gives every participant one more element $x \in \mathbb{Q}$ in each R_i, with
\[
x := \frac{\tilde{S}}{S}.
\]
The participants get \tilde{S} by multiplying the reconstructed secret S with x.
Each element a_j is exactly contained in $n - (t - 1)$ subsets. Hence for each $j = 1, 2, \ldots, m$ the element a_j is not contained in $t - 1$ subsets from $\{R_1, R_2, \ldots, R_n\}$. As a consequence, a_j is in each union of t subsets. Otherwise, if just $t - 1$ arbitrary sets from $\{R_1, R_2, \ldots, R_n\}$ are combined, there exist a j so that the element a_j is not included in the union of this sets.
If just one element a_j is absent, the participants do not get the correct sum S, and hence cannot compute the correct secret.

Example 2.1. We perform the steps for a $(4, 3)$-secret sharing scheme. It is $n = 4$ and $t = 3$.

The dealer follows the steps:

1. He first calculates $m = \binom{n}{t-1} = \binom{4}{2} = 6$.
2. The dealer chooses the numbers $a_1 := 2, a_2 := 1, a_3 := 2, a_4 := 8, a_5 := 4$ and $a_6 := 2$. The secret is
 \[
 S := \sum_{i=1}^{m} \frac{1}{a_i} = \frac{23}{8}.
 \]
 (a) The six subsets with size 2 of the set $\{1, 2, 3, 4\}$ are
 \[
 A_1 = \{1, 2\}, \quad A_2 = \{1, 3\}, \quad A_3 = \{1, 4\},
 \quad A_4 = \{2, 3\}, \quad A_5 = \{2, 4\}, \quad A_6 = \{3, 4\}.
 \]
 With help of the A_i the dealer gets the sets R_1, R_2, R_3 and R_4, which contain elements from $\{a_1, \ldots, a_6\}$. He puts the element a_j for which i is not contained in the set A_j for $i = 1, \ldots, 4$ and $j = 1, \ldots, 6$, into the set R_i:
 \[
 1 \notin A_4, A_5, A_6 \Rightarrow R_1 = \{a_4, a_5, a_6\},
 \quad 2 \notin A_2, A_3, A_6 \Rightarrow R_2 = \{a_2, a_3, a_6\},
 \quad 3 \notin A_1, A_3, A_5 \Rightarrow R_3 = \{a_1, a_3, a_5\},
 \quad 4 \notin A_1, A_2, A_4 \Rightarrow R_4 = \{a_1, a_2, a_4\}.
 \]
3. The dealer distributes the set R_i to the participant T_i, for $i = 1, \ldots, 4$.

If three of the four participants come together, they can calculate the secret S. For example the participants T_1, T_2 and T_3 have the set
\[
\tilde{R} := R_1 \cup R_2 \cup R_3
 = \{a_4, a_5, a_6\} \cup \{a_2, a_3, a_6\} \cup \{a_1, a_3, a_5\}
 = \{a_1, a_2, a_3, a_4, a_5, a_6\},
\]
and hence get the secret

\[S = \sum_{i=1}^{6} \frac{1}{a_i} = \frac{23}{8} \quad \text{with } a_i \in \tilde{R}. \]

3 A secret sharing scheme using a regular Nielsen transformation

In this section we describe a \((n, t)\)-secret sharing scheme which extends and improves the ideas in Section 2 by using Nielsen transformations. We consider free groups as abstract groups but also as subgroups of the special linear group of all \(2 \times 2\) matrices over \(\mathbb{Q}\), that is,

\[SL(2, \mathbb{Q}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{Q}^4 \, \text{and} \, ad - bc = 1 \right\}. \]

We use the special linear group over the rational numbers because these numbers can be stored and computed more efficiently on a computer than irrational numbers.

Let \(F\) be a free group in \(SL(2, \mathbb{Q})\) of rank \(m := \binom{n}{t-1}\). The dealer wants to distribute the shares for the participants as described in Section 1. The shares will be subsets of a free generating set of the group \(F\).

Steps for the Dealer: The numbers \(n\) and \(t\) are given, whereby \(n\) is the number of participants and \(t\) is the threshold. We have \(m := \binom{n}{t-1}\).

1. The dealer chooses an abstract free generating set \(X\) for the free group \(F\) of rank \(m\), that is

 \[F = \langle X; \rangle \quad \text{with } X := \{x_1, x_2, \ldots, x_m\}. \]

 He also needs an explicit free generating set \(M\), that is

 \[F = \langle M; \rangle \quad \text{with } M := \{M_1, M_2, \ldots, M_m\} \]

 and \(M_i \in SL(2, \mathbb{Q})\).

2. With the known matrices in the set \(M\) he computes the secret

 \[S := \sum_{j=1}^{m} \frac{1}{|a_j|} \in \mathbb{Q}^+ \quad \text{with } a_j := tr(M_j) \in \mathbb{Q}, \]

 \(tr(M_j)\) is the trace for the matrix \(M_i := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Q})\), that is, \(tr(M_i) := a + d\). If the dealer needs a special secret he can act as in Section 2 described.

3. The dealer constructs the shares for the participants in the following way:

 (a) He first applies a regular Nielsen transformation simultaneously for both sets \(X\) and \(M\) to get Nielsen-equivalent sets \(U\) and \(N\) to \(X\) and \(M\), respectively (see Figure 1).

 \[
 \begin{align*}
 X &:= \{x_1, x_2, \ldots, x_m\} & M &:= \{M_1, M_2, \ldots, M_m\} \\
 \text{regular Nielsen transformation} & & \text{regular Nielsen transformation} \\
 U &:= \{u_1, u_2, \ldots, u_m\} & N &:= \{N_1, N_2, \ldots, N_m\}
 \end{align*}
 \]
The elements \(u_i \) are words in \(X \) and the elements \(N_i \) are words in \(M \). Hence we have \(N_i \in SL(2, \mathbb{Q}) \).

(b) The dealer now uses the method of D. Panagopoulos to split \(U \) and \(N \) and to get the shares \((R_i, S_j)\) for the participants with \(R_i \subset U \) and \(S_j \subset N \).

4. The dealer distributes the shares.

If \(t \) of the \(n \) participants combine their parts they obtain the sets \(U \) and \(N \). The secret can be recovered as follows:

1. The participants apply regular Nielsen transformations in a Nielsen reduction manner for \(U \) and step by step simultaneously for \(N \). By Proposition 1.3 they get Nielsen reduced sets \(X^\pm = \{x_1^\epsilon, x_2^\epsilon, \ldots, x_m^\epsilon\} \) and \(M^\pm = \{M_1^\delta, M_2^\delta, \ldots, M_m^\delta\} \) with \(\epsilon, \delta \in \{+1, -1\} \), see Figure 2.

\[
U := \{u_1, u_2, \ldots, u_m\} \\
N := \{N_1, N_2, \ldots, N_m\}
\]

regular Nielsen transformations

\[
X^\pm = \{x_1^\epsilon, x_2^\epsilon, \ldots, x_m^\epsilon\} \\
M^\pm = \{M_1^\delta, M_2^\delta, \ldots, M_m^\delta\}
\]

Figure 2: Simultaneously regular Nielsen transformations

2. With the knowledge of the set \(M^\pm \) it is easy to reconstruct the secret

\[
S = \sum_{j=1}^{m} \frac{1}{|a_j|} \in \mathbb{Q}^+ \quad \text{with } tr(M_j) = a_j \in \mathbb{Q}.
\]

Recall that \(tr(M_i^\delta) = tr(M_i) \) for \(i = 1, \ldots, m \).

Less than \(t \) participants can neither get the whole set \(U \), which is Nielsen-equivalent to \(X \), nor the set \(N \), which is Nielsen-equivalent to \(M \).

For the calculation of the secret, the participants need the set \(M \), because the secret depends on the traces of the matrices \(M_i \in M \). The participants need both sets \(U \) and \(N \). If they just have one set \(U \) or \(N \) they cannot get information about the set \(M \).

If the set \(U \) is known, it is only known which Nielsen transformation should be done to get the Nielsen-equivalent set \(X \), but it is unknown on which matrices they should be done simultaneously.

If only the set \(N \) is known, then the matrices in \(SL(2, \mathbb{Q}) \) are known, but nobody knows which Nielsen transformation should be done on \(N \) to get the set \(M \). It is also unknown how many Nielsen transformations were used.

In the book [4] of J. Lehner on page 247 a method is given to explicitly obtain a free generating set \(M \) for a free group \(F \) on the abstract generating set \(X := \{x_1, x_2, \ldots, x_m\} \):

Example 3.1. Let \(F \) be a free group with countably many free generators \(x_1, x_2, \ldots \). Corresponding to \(x_j \) define the matrix

\[
M_j = \begin{pmatrix} -r_j & 1 + r_j^2 \\ 1 & -r_j \end{pmatrix}
\]
with $r_j \in \mathbb{Q}$ such that the following inequalities hold:

$$r_{j+1} - r_j \geq 3 \quad \text{and} \quad r_1 \geq 2. \quad (1)$$

The group G generated by $\{M_1, M_2, \ldots\}$ is isomorphic to F (see [3]).

We now present an example for this secret sharing scheme.

Example 3.2. We perform the steps for a $(3, 2)$-secret sharing scheme with the help of the computer program Maple 16. It is $n = 3$, $t = 2$ and hence $m = \binom{3}{1} = 3$.

First the Dealer generates the shares for the participants.

1. The dealer chooses an abstract presentation for the free group F of rank 3

$$F = \langle X; \rangle \quad \text{with} \quad X := \{x_1, x_2, x_3\}.$$

He takes an explicit presentation

$$F = \langle M; \rangle \quad \text{with} \quad M := \{M_1, M_2, M_3\},$$

$M_i \in \text{SL}(2, \mathbb{Q})$ as above. We first mention that the inequalities (1) hold for

$$r_1 = \frac{7}{2}, \quad r_2 = \frac{15}{2}, \quad r_3 = 11$$

and hence the set of the matrices

$$M_1 = \left(\begin{array} {cc} -\frac{7}{2} & -1 + \left(\frac{7}{2}\right)^2 \\ 1 & -\frac{7}{2} \end{array} \right) = \left(\begin{array} {cc} -\frac{7}{2} & \frac{45}{4} \\ 1 & -\frac{7}{2} \end{array} \right),$$

$$M_2 = \left(\begin{array} {cc} -\frac{15}{2} & -1 + \left(\frac{15}{2}\right)^2 \\ 1 & -\frac{15}{2} \end{array} \right) = \left(\begin{array} {cc} -\frac{15}{2} & \frac{221}{4} \\ 1 & -\frac{15}{2} \end{array} \right),$$

$$M_3 = \left(\begin{array} {cc} -11 & -1 + 11^2 \\ 1 & -11 \end{array} \right) = \left(\begin{array} {cc} -11 & 120 \\ 1 & -11 \end{array} \right)$$

is a free generating set for a free group of rank 3.

2. We have

$$a_1 := \text{tr}(M_1) = -7, \quad a_2 := \text{tr}(M_2) = -15, \quad a_3 := \text{tr}(M_3) = -22,$$

and hence the secret is

$$S := \sum_{j=1}^{3} \frac{1}{|a_j|} = \frac{589}{2310}.$$

3. Construction of the shares for the participants:

(a) First the dealer applies regular Nielsen transformations (NTs) simultaneously for both sets X and M to get Nielsen-equivalent sets U and N to X or M, respectively. These transformations are shown in the Table [4].
Table 1: Nielsen transformations (NTs) of the dealer

NTs	theoretical set A	explicit set M
	\{x_1, x_2, x_3\}	\{ \left(\begin{array}{ccc} \frac{7}{2} & 45 & 15 \\ 1 & -\frac{224}{1} & \frac{2}{1} \\ 2 & -\frac{45}{1} & \frac{1}{2} \end{array} \right), \left(\begin{array}{ccc} -11 & -120 \\ 1 & -11 \end{array} \right) \}
(T1)_2	\{x_1, x_2^{-1}, x_3\}	\{ \left(\begin{array}{ccc} \frac{7}{2} & 45 & 15 \\ 1 & -\frac{224}{1} & \frac{2}{1} \\ 2 & -\frac{45}{1} & \frac{1}{2} \end{array} \right), \left(\begin{array}{ccc} -11 & -120 \\ 1 & -11 \end{array} \right) \}
(T2)_{1,2}	\{x_1 x_2^{-1}, x_2^{-1}, x_3\}	\{ \left(\begin{array}{ccc} \frac{15}{4} & -109 & -\frac{8565}{1} \\ -1 & -\frac{3452}{1} & \frac{38243}{1} \\ 2 & -\frac{15}{1} & \frac{597401}{1} \end{array} \right), \left(\begin{array}{ccc} -8565 & 799 & 5939 \\ -1 & 799 & 509 \end{array} \right) \}
\left[(T2)_{3,2} \right]^3	\{x_1 x_2^{-1}, x_2^{-1}, x_3 x_2^{-3}\}	\{ \left(\begin{array}{ccc} \frac{15}{4} & -109 & -\frac{8565}{1} \\ -1 & -\frac{3452}{1} & \frac{38243}{1} \\ 2 & -\frac{15}{1} & \frac{597401}{1} \end{array} \right), \left(\begin{array}{ccc} -8565 & 799 & 5939 \\ -1 & 799 & 509 \end{array} \right) \}
(T2)_{2,3}	\{x_1 x_2^{-1} x_2^{-1} x_3 x_2^{-3}, x_3 x_2^{-3}\}	\{ \left(\begin{array}{ccc} \frac{80371}{2} & 597401 & 8565 \\ \frac{597401}{2} & \frac{8565}{3} & 237917 \\ \frac{80371}{2} & \frac{597401}{2} & \frac{237917}{1} \end{array} \right), \left(\begin{array}{ccc} -8565 & 799 & 509 \end{array} \right) \}
(T1)_1	\{x_2 x_1^{-1} x_3 x_2^{-3}, x_3 x_2^{-3}\}	\{ \left(\begin{array}{ccc} -29 & -109 & -1 \end{array} \right), \left(\begin{array}{ccc} \frac{80371}{2} & 597401 & 8565 \\ \frac{597401}{2} & \frac{8565}{3} & 237917 \\ \frac{80371}{2} & \frac{597401}{2} & \frac{237917}{1} \end{array} \right), \left(\begin{array}{ccc} -8565 & 799 & 509 \end{array} \right) \}
(T2)_{1,2}	\{x_2 x_1^{-1} x_2^{-1} x_3 x_2^{-3}, x_2^{-1} x_3 x_2^{-3}, x_2^{-1} x_3 x_2^{-3}\}	\{ \left(\begin{array}{ccc} \frac{3452169}{1} & \frac{25661663}{1} & \frac{25661663}{1} \\ \frac{217707}{1} & \frac{1756447}{2} & \frac{1756447}{2} \\ \frac{80371}{2} & \frac{597401}{2} & \frac{237917}{1} \end{array} \right), \left(\begin{array}{ccc} -8565 & 799 & 509 \end{array} \right) \}
(T1)_3	\{x_2 x_1^{-1} x_2^{-1} x_3 x_2^{-3}, x_2^{-1} x_3 x_2^{-3}, x_2^{-1} x_3 x_2^{-3}\}	\{ \left(\begin{array}{ccc} \frac{80371}{2} & 597401 & 8565 \\ \frac{597401}{2} & \frac{8565}{3} & 237917 \\ \frac{80371}{2} & \frac{597401}{2} & \frac{237917}{1} \end{array} \right), \left(\begin{array}{ccc} 5939 & 63664 \end{array} \right), \left(\begin{array}{ccc} -799 & -8565 \end{array} \right) \}
(T2)_{3,2}	\{x_2 x_1^{-1} x_2^{-1} x_3 x_2^{-3}, x_2^{-1} x_3 x_2^{-3}, x_2^{-1} x_3 x_2^{-3}\}	\{ \left(\begin{array}{ccc} \frac{3452169}{1} & \frac{25661663}{1} & \frac{25661663}{1} \\ \frac{217707}{1} & \frac{1756447}{2} & \frac{1756447}{2} \\ \frac{80371}{2} & \frac{597401}{2} & \frac{237917}{1} \end{array} \right), \left(\begin{array}{ccc} 5939 & 63664 \end{array} \right), \left(\begin{array}{ccc} -799 & -8565 \end{array} \right) \}
The Dealer obtains the sets

\[U = \{ u_1, u_2, u_3 \} := \{ x_2 x_1^{-1} x_2^{-1} x_3 x_2^{-3}, x_2^{-1} x_3 x_2^{-3}, x_2 x_3^{-1} x_2^{-1} x_3 x_2^{-3} \} \]

and

\[N = \{ N_1, N_2, N_3 \} := \left\{ \left(\frac{-3452369}{2}, \frac{-25661603}{2}, \frac{80371}{2}, \frac{597401}{2}, \frac{-152350279}{4}, \frac{-1132250279}{4}, \frac{1132250279}{4}, \frac{-8417369243}{4} \right) \right\} \]

(b) He gets the shares \((R_i, S_j)\) for the participants with \(R_i \subset U\) and \(S_j \subset N\) as follows:

i. It is \(m = \binom{n}{t-1} = \binom{3}{1} = 3 \).

ii. The dealer chooses the elements \(\tilde{a}_1, \tilde{a}_2, \tilde{a}_3 \) and gets the three sets

\[A_1 = \{ 1 \}, \quad A_2 = \{ 2 \}, \quad A_3 = \{ 3 \}. \]

With the help of the \(A_i \) the dealer gets the sets \(R'_1, R'_2, R'_3 \) which contain elements from the set \(\{ \tilde{a}_1, \tilde{a}_2, \tilde{a}_3 \} \). He puts the element \(\tilde{a}_j \) by which \(i \) is not contained in the set \(A_j \) for \(i = 1, 2, 3 \) and \(j = 1, 2, 3 \), into the set \(R'_i \):

\[1 \notin A_2, A_3 \implies R'_1 = \{ \tilde{a}_2, \tilde{a}_3 \}, \]
\[2 \notin A_1, A_3 \implies R'_2 = \{ \tilde{a}_1, \tilde{a}_3 \}, \]
\[3 \notin A_1, A_2 \implies R'_3 = \{ \tilde{a}_1, \tilde{a}_2 \}. \]

Now we apply this to \(U \) and \(N \) to create the share-sets for the participants, respectively:

\[R_1 = \{ u_2, u_3 \}, \quad S_1 = \{ N_2, N_3 \}, \]
\[R_2 = \{ u_1, u_3 \}, \quad S_2 = \{ N_1, N_3 \}, \]
\[R_3 = \{ u_1, u_2 \}, \quad S_3 = \{ N_1, N_2 \}. \]

4. The Dealer distributes to each participant a tuple \((R_i, S_j)\). Participant \(P_1 \) gets \((R_1, S_2)\), \(P_2 \) gets \((R_2, S_3)\) and \(P_3 \) gets \((R_3, S_1)\).

Assume the participants \(P_1 \) and \(P_2 \) come together to reconstruct the secret. They generate the sets \(U = \{ u_1, u_2, u_3 \} \) and \(N = \{ N_1, N_2, N_3 \} \). The secret can be recovered as follows. The participants apply regular Nielsen transformations step by step simultaneously for both sets \(U \) and \(N \) to get \(X^\pm \) and \(M^\pm \). The steps are shown in the Tables [] and [].
Table 2: Nielsen transformations (NTs) from the participants I

NTs	theoretical set U	explicit set N
	\(\{x_2x_1^{-1}x_2^{-1}x_3x_2^{-3}, \)	\(\left\{ \left(\frac{1132425929}{1132425989}, \frac{1132425929}{1132425989} \right) \right\} \)
	\(x_2^{-1}x_3x_2^{-3}, x_2^3x_3^{-1}x_2^{-1}x_3x_2^{-3} \} \)	\(\left\{ \left(\frac{-3452369}{40371}, \frac{-25661603}{40371} \right), \left(\frac{-3452369}{40371}, \frac{-25661603}{40371} \right) \right\} \)
(T1)₂	\(\{x_2x_1^{-1}x_2^{-1}x_3x_2^{-3}, \)	\(\left\{ \left(\frac{-3452369}{40371}, \frac{-25661603}{40371} \right), \left(\frac{-3452369}{40371}, \frac{-25661603}{40371} \right) \right\} \)
	\(x_2^3x_3^{-1}x_2, x_2^3x_3^{-1}x_2^{-1}x_3x_2^{-3} \} \)	\(\left\{ \left(\frac{-3452369}{40371}, \frac{-25661603}{40371} \right), \left(\frac{-3452369}{40371}, \frac{-25661603}{40371} \right) \right\} \)
(T2)₁₂	\(\{x_2x_1^{-1}x_2^{-1}x_3x_2^{-3}, \)	\(\left\{ \left(\frac{-3452369}{40371}, \frac{-25661603}{40371} \right), \left(\frac{-3452369}{40371}, \frac{-25661603}{40371} \right) \right\} \)
	\(x_2^{-1}x_3x_2^{-3}, x_2^3x_3^{-1} \} \)	\(\left\{ \left(\frac{-3452369}{40371}, \frac{-25661603}{40371} \right), \left(\frac{-3452369}{40371}, \frac{-25661603}{40371} \right) \right\} \)
(T2)₂₃	\(\{x_2x_1^{-1}x_2^{-1}x_3x_2^{-3}, \)	\(\left\{ \left(\frac{-3452369}{40371}, \frac{-25661603}{40371} \right), \left(\frac{-3452369}{40371}, \frac{-25661603}{40371} \right) \right\} \)
	\(x_2^{-1}, x_2^3x_3^{-1} \} \)	\(\left\{ \left(\frac{-3452369}{40371}, \frac{-25661603}{40371} \right), \left(\frac{-3452369}{40371}, \frac{-25661603}{40371} \right) \right\} \)
(T2)₁₃	\(\{x_2x_1^{-1}x_2^{-1}, x_2^{-1}, x_2^3x_3^{-1} \} \)	\(\left\{ \left(\frac{5939}{9679}, \frac{6078}{9679} \right), \left(\frac{-45}{45}, \frac{-221}{45} \right), \left(\frac{-5939}{9679}, \frac{6078}{9679} \right) \right\} \)
(T1)₂	\(\{x_2x_1^{-1}x_2^{-1}, x_2, x_2^3x_3^{-1} \} \)	\(\left\{ \left(\frac{5939}{9679}, \frac{6078}{9679} \right), \left(\frac{-45}{45}, \frac{-221}{45} \right), \left(\frac{-5939}{9679}, \frac{6078}{9679} \right) \right\} \)
With the knowledge of the set $M^\pm = \left\{ \left(\begin{array}{cc} -7 & 45 \\ 1 & -\frac{7}{7} \end{array} \right), \left(\begin{array}{cc} -15 & -221 \\ 1 & -\frac{1}{15} \end{array} \right), \left(\begin{array}{cc} -11 & 120 \\ 1 & -11 \end{array} \right) \right\}$ the participants can reconstruct the secret easily. It is

\[a_1 := \text{tr}(M_1) = -7, \quad a_2 := \text{tr}(M_2) = -15, \quad a_3 := \text{tr}(M_3) = -22 \]

and hence it is

\[S := \sum_{j=1}^{3} \frac{1}{|a_j|} = \frac{1}{7} + \frac{1}{15} + \frac{1}{22} = \frac{589}{2310}. \]

In general we can use any free matrix group F of rank $m := \left(\begin{array}{c} n \\ t \end{array} \right)$ for a (n, t)-secret sharing scheme as it is described in this section. The shares can be generated by the above method and are tuples (R_i, S_j) with $R_i \subset U$ and $S_j \subset N$. Some other ideas for the secret S are

\[S := \prod_{i=1}^{m} |\text{tr}(M_i)| \text{ or } S := \sum_{i=1}^{m} |\text{tr}(M_i)| \text{ or } \]

\[S := \prod_{i=1}^{m} (\text{tr}(M_i))^2 \text{ or } S := \sum_{i=1}^{m} (\text{tr}(M_i))^2 \text{ or } \]

\[S := \prod_{i=1}^{\frac{m}{2}} \text{tr}([M_{2i-1}, M_{2i}]) \text{ if } m \text{ is even or } S := \sum_{i=1}^{m} \text{tr}(M_i^2). \]
4 A variation of the secret sharing scheme based on Nielsen transformations

We explain a variation of the secret sharing scheme described in Section 3. As in the previous sections, let F be a free group with the abstract free generating set $X := \{x_1, x_2, \ldots, x_q \}, q \in \mathbb{N}$, that is,

$$F = \langle X \rangle.$$

For a (n, t)-secret sharing scheme the dealer chooses a Nielsen reduced set $U := \{u_1, u_2, \ldots, u_m \} \subset F$, with $m = \binom{n}{t-1}$. The u_i are given as words in X. The secret is the sum

$$S := \sum_{i=1}^{m} \frac{1}{|u_i|},$$

with $|u_i|$ the length of the word u_i.

The dealer does a regular Nielsen transformation on the set U to get the Nielsen-equivalent set V (Figure 3).

![Figure 3: Regular Nielsen transformation](image)

Each participant $P_i, 1 \leq i \leq n$, gets one set $R_i \subset V$, as above.

If t of the n participants come together to reconstruct the secret, they combine their shares and get the set $V = \{v_1, v_2, \ldots, v_m \}$. They have to find a Nielsen-reduced set $U' := \{u'_1, u'_2, \ldots, u'_m \}$ to V. They apply Nielsen transformations in a Nielsen reducing manner as described in [1] and [5] and get from V a Nielsen-reduced set U'. The secret is the sum

$$S = \sum_{i=1}^{m} \frac{1}{|u'_i|},$$

because $\sum_{i=1}^{m} |u'_i| = \sum_{i=1}^{m} |u_i|$ for the Nielsen reduced sets U' and U (see [1, Corollary 2.9]).

5 A symmetric key cryptosystem using Nielsen transformations

Before Alice and Bob are able to communicate with each other they have to make some arrangements. Let F be an abstract free group with the free generating set $X = \{x_1, x_2, \ldots, x_q \}, q \in \mathbb{N}\setminus\{1\}$. Let

$$\varphi : F \rightarrow SL(2, \mathbb{Q})$$

$$x_i \mapsto M_i,$$
be a faithful representation of F into $SL(2, \mathbb{Q})$ as in Section 3. The group $G = \varphi(F)$ is isomorphic to F under the map $x_i \mapsto M_i$, for $i = 1, \ldots, q$.

Let N be the number of letters from the alphabet $A = \{a_1, \ldots, a_N\}$, for instance $N = 26$. We assume that $N \geq 5$.

Let $U \subset F$, $U = \{u_1, \ldots, u_N\}$ be a basis of a free subgroup of F of rank N. Such systems U are easily to construct (see [1] or [5]).

There is the one to one assignment

$$A \to U$$

$$a_j \mapsto u_j, \quad \text{for } j = 1, \ldots, N.$$

Let $U' = \varphi(U) = \{U'_1, \ldots, U'_N\} \subset SL(2, \mathbb{Q})$, $u_j \mapsto U'_j$ for $j = 1, \ldots, N$. The set U' is a basis for a free subgroup of G. Now, Alice and Bob agree on a block sequence $P := p_1p_2 \cdots p_k$ with, say, $1 \leq p_i \leq 4$ and $k \geq 2$, and for each p_i they construct a regular Nielsen transformation f_i from U' to a Nielsen-equivalent system $f_i(U') = \{V'_1, \ldots, V'_N\}$, $f_i(U'_j) = V'_j$, $j = 1, \ldots, N$. The Nielsen transformations f_i, $1 \leq i \leq k$, should be pairwise different and given as sequences of elementary Nielsen transformations from U' to $f_i(U')$.

As soon as Alice and Bob agree on a Nielsen transformation f_i they compute $f_i(U')$, $i = 1, 2, \ldots, k$, independent from each other even if they do not know the message. Hence they get a one to one assignment between the letters in their alphabet A and the matrices for the ciphertext depending from the part of the sequence P. This is shown in Table 4.

Sequence P	Elements from the alphabet A
p_1	V'_1, V'_2, \ldots, V'_N
p_2	V'_1, V'_2, \ldots, V'_N
p_k	V'_1, V'_2, \ldots, V'_N

Now, Alice wants to send a message S with z, $z > 0$, letters from A. To describe the procedure let first

$$z = |S| = \sum_{i=1}^{k} p_i.$$
Alice cuts the message S into pieces corresponding to the sequence P, that is,

$$S = a_{11} \cdots a_{1p_1} a_{21} \cdots a_{2p_2} \cdots a_{k1} \cdots a_{kp_k},$$

with $a_{ij} \in A$ for $1 \leq i \leq k$ and $1 \leq j \leq p_i$. Then she uses the Table 4 to get the matrices for the ciphertext depending on the sequence p_i, $1 \leq i \leq k$:

$$\text{If } a_{ij} = a_t \quad \text{then } a_{ij} \rightarrow V'_{it}, \quad 1 \leq t \leq N, \quad 1 \leq j \leq p_i.$$

The ciphertext C is the following sequence of matrices:

$$C = V'_{11} \cdots V'_{1p_1} V'_{21} \cdots V'_{2p_2} \cdots V'_{k1} \cdots V'_{kp_k},$$

with $V'_{gi} \in \{V'_{g1}, V'_{g2}, \ldots, V'_{gN}\}$ for $1 \leq g \leq k$ and $1 \leq q \leq p_g$. Alice sends the ciphertext C just as a sequence of matrices to Bob. To reconstruct the message S Bob does the following steps:

1. He cuts back the ciphertext into pieces as above corresponding to the known sequence P.

2. Because he gets the same table as Alice (Table 4) he can match V'_{ij} to a_t for the piece corresponding to p_i, with $1 \leq i \leq k$, $1 \leq j \leq p_i$ and $1 \leq t \leq N$, and hence reads the message S in the alphabet easily.

Now, assume that $z = |S| \neq \sum_{i=1}^{k} p_i$.

If $z < \sum_{i=1}^{k} p_i$, there is no problem, Alice just ends with the last letter.

If $S = \tilde{S}_1 \tilde{S}_2$ with $|\tilde{S}_1| = \sum_{i=1}^{k} p_i$ then she first applies the above procedure to \tilde{S}_1 and continues then with \tilde{S}_2 in the same manner.

Indeed, if $z = |S| > \sum_{i=1}^{k} p_i$ and $S = \tilde{S}_1 \tilde{S}_2 \cdots \tilde{S}_m$ with $|\tilde{S}_j| = \cdots = |\tilde{S}_m|$ then we may improve the cryptosystem. Alice and Bob agree in addition on a permutation $\sigma \in S_m$, S_m the symmetric group on m symbols, and work with $\tilde{S}_{\sigma(1)} \tilde{S}_{\sigma(2)} \cdots \tilde{S}_{\sigma(m)}$ instead of $S = \tilde{S}_1 \tilde{S}_2 \cdots \tilde{S}_m$. Bob starts then the decryption procedure with applying first σ^{-1}.

Theorem 5.1. 1. If Alice wants to send several messages to Bob or vice versa, then to improve the system, they may replace during each message transmission the Nielsen transformations f_i by different Nielsen transformations, for instance by $\tilde{f}_i = f_i f^k$ for a fixed Nielsen transformation f on U and $k = 0, 1, 2, \ldots$. They also may replace the system $U \subset F$ by different systems, such that U is not used too often.

2. The cryptosystem is a polyalphabetic system. A matrix $u \in U$, and hence a letter $a \in A$, can be encrypted differently at different times.

3. A possible attacker Eve cannot read the message. She can only see a sequence of matrices in $\text{SL}(2, \mathbb{Q})$. From this she neither knows the system $U' = \varphi(U)$ nor the Nielsen transformations f_i. Since the block lengths p_i are very small (it is $1 \leq p_i \leq 4$ for all i) and since rather frequently the Nielsen transformations f_i and the system U will be changed, a statistical frequency attack is almost impossible.

Moreover, if we just have two N-tuples $\{A_1, \ldots, A_N\}$ and $\{B_1, \ldots, B_N\}$ in $\text{SL}(2, \mathbb{Q})$, it is hard to decide if they generate the same group, in fact, if $A \in \text{SL}(2, \mathbb{Q})$ and H a subgroup of $\text{SL}(2, \mathbb{Q})$, it is hard to decide if $A \in H$.

More details and generalizations of the cryptosystem as well as more cryptographical analysis can be found in [6] by A. Moldenhauer.
6 Cryptosystem with Nielsen transformation inspired by the ElGamal cryptosystem

Now we describe a public key cryptosystem for Alice and Bob which is inspired by the ElGamal cryptosystem (see [3] or [11 Section 1.3]), based on discrete logarithms, that is:

1. Alice and Bob agree on a finite cyclic group G and a generating element $g \in G$.
2. Alice picks a random natural number a and publishes the element $c := g^a$.
3. Bob, who wants to send a message $m \in G$ to Alice, picks a random natural number b and sends the two elements $m \cdot c^b$ and g^b, to Alice. Note that $c^b = g^{ab}$.
4. Alice recovers $m = (m \cdot c^b) \cdot ((g^b)^a)^{-1}$.

In the following cryptosystem let $N \in \mathbb{N}$ be the number of letters from the used alphabet, $X = \{x_1, x_2, \ldots, x_N\}$, $S = X \cup X^{-1}$ and F the free group on the free generating set X, that is, $F = \langle X; \rangle$. The message is an element $m \in S^*$, the set of all words on S. Public are the free group F, its generating set X, an element $a \in S^*$ and an automorphism $f : F \rightarrow F$, of infinite order, given as a Nielsen transformation or a Whitehead automorphism (see [2]). Each automorphism of F is a product of elementary Nielsen transformations between two bases of F (see [11, Korollar 2.10]).

The cryptosystem is now as follows:

Public parameters: The group $F = \langle X; \rangle$, an element $a \in F$ and an automorphism $f : F \rightarrow F$ of infinite order.

1. Alice chooses a $n \in \mathbb{N}$ and publishes the element $c := f^n(a) \in S^*$.
2. Bob picks a random $t \in \mathbb{N}$ and his message $m \in S^*$. He calculates $c_1 := m \cdot f^t(c) \in S^*$ and $c_2 := f^t(a) \in S^*$. He sends the ciphertext $(c_1, c_2) \in S^* \times S^*$ to Alice.
3. Alice calculates

$$c_1 \cdot f^n(c_2)^{-1} = m \cdot f^t(c) \cdot f^n(c_2)^{-1} = m \cdot f^t(f^n(a)) \cdot (f^n(f^t(a)))^{-1} = m \cdot f^{n+t}(a) \cdot (f^{n+t}(a))^{-1} = m,$$

and gets the message m.

Remark 6.1. A possible attacker, Eve, can see the elements $c, c_2, c_1 \in S^*$. She does not know the free length of m and the cancellations between m and $f^t(c)$ in c_1. Hence she gets no information about m from the element c_1. Eve just sees words in the free generating system from which it is almost impossible to realize the exponents n and t, that is, the private keys from Alice and Bob, respectively.

Remark 6.2. We give some ideas to enhance the security, they can also be combined:

1. The element $a \in F$ is a common secret between Alice and Bob. They could use for example the Anshel-Anshel-Goldfeld key exchange protocol (see [7]) to agree on the element a.
2. Alice and Bob agree on a faithful representation from F into the special linear group of all 2×2 matrices with entries in \mathbb{Q}, that is, $g : F \rightarrow SL(2, \mathbb{Q})$. Now $m \in S$ and Bob sends $c_1 := g(m) \cdot g(f^t(c)) \in SL(2, \mathbb{Q})$ instead of $c_1 := m \cdot f^t(c) \in S^*$. Therefore Alice calculates $c_1 \cdot (g(f^n(c_2)))^{-1} = g(m)$ and hence the message $m = g^{-1}(g(m)) \in S$.

14
References

[1] T. Camps, V. große Rebel and G. Rosenberger. *Einführung in die kombinatorische und die geometrische Gruppentheorie*. Berliner Studienreihe zur Mathematik Band 19. Heldermann Verlag, 2008.

[2] V. Diekert, M. Kufleitner and G. Rosenberger. *Diskrete Algebraische Methoden*. De Gruyter, 2013.

[3] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. *IEEE Transactions on Information Theory*, IT-31:469–473, 1985.

[4] J. Lehner. *Discontinuous Groups and Automorphic Functions*. Mathematical Surveys Number VIII. American Mathematical Society, Providence, Rhode Island, 1964.

[5] R. C. Lyndon and P. E. Schupp. *Combinatorial Group Theory*. Ergebnisse der Mathematik und ihre Grenzgebiete 89. Springer-Verlag, 1977.

[6] A. I. S. Moldenhauer. Cryptographic protocols based on inner product spaces and group theory with a special focus on the use of Nielsen transformations. PhD thesis, University of Hamburg, 2015/2016.

[7] A. Myasnikov, V. Shpilrain and A. Ushakov. *Group-based Cryptography*. Advanced Courses in Mathematics - CRM Barcelona. Birkhäuser Basel, 2008.

[8] D. Panagopoulos. A secret sharing scheme using groups. *preprint*, http://arxiv.org/abs/1009.0026, 2010.

Author information

Anja I. S. Moldenhauer, Fachbereich Mathematik, Universität Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany.
E-mail: anja.moldenhauer@uni-hamburg.de

Gerhard Rosenberger, Fachbereich Mathematik, Universität Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany.
E-mail: gerhard.rosenberger@math.uni-hamburg.de