Prevalence of methylenetetrahydrofolate reductase gene polymorphisms (C677T, and A1298C) among Saudi children receiving dental treatment

Amina M. Bagher, Alexander P. Young, Thikryat Neamatallah, Reham M. Al-Amoudi, Sara M. Bagher, Eileen M. Denovan-Wright

From the aDepartment of Pharmacology and Toxicology, Faculty of Pharmacy, King AbdulAziz University, Jeddah, Saudi Arabia; bDepartment of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia; cDepartment of Pediatric Dentistry, Faculty of Dentistry, King AbdulAziz University, Jeddah, Saudi Arabia

BACKGROUND: Methylenetetrahydrofolate reductase, the encoded by the MTHFR gene, plays a crucial role in converting the amino acid homocysteine to methionine. Two polymorphisms of the MTHFR gene, C677T and A1298C, reportedly reduce enzyme activity, resulting in hyperhomocysteinemia. Patients with C677T and A1298C polymorphisms may be at higher risk for developing abnormal hyperhomocysteinemia, which has been linked to catastrophic neurological including fatal outcomes.

OBJECTIVE: Determine the prevalence of the MTHFR gene variants C677T and A1298C among pediatric dental patients treated at King Abdulaziz University Hospital.

DESIGN: Cross-sectional.

SETTING: Clinics of pediatric dentistry department.

SUBJECTS AND METHODS: Healthy Saudi children 6–12 years old with no known allergies were screened for eligibility between May and December 2019. A single investigator collected saliva samples. The MTHFR C677T and A1298C polymorphisms were analyzed using polymerase chain reaction and restriction fragment length polymorphism.

MAIN OUTCOME MEASURE: The prevalence of MTHFR gene variants (C677T and A1298C) among the subjects.

SAMPLE SIZE: 138.

RESULTS: MTHFR C677T polymorphism was present in 36.2% of the sample and 90.0% of children carrying this allele were heterozygotes. MTHFR A1298C polymorphism was present in 91.3% of the sample and 77.0% of the children carrying this allele were heterozygotes. No linkage disequilibrium between MTHFR C677T and MTHFR A1298C was observed within this sample.

CONCLUSIONS: Our study found a high frequency of the MTHFR A1298C genotype, which was substantially more abundant than expected based on a Hardy-Weinberg distribution. Therefore, caution is advised in using N₂O in Saudi children as the increased prevalence of this MTHFR allele may increase the incidence of serious adverse effects among these children.

LIMITATIONS: Further studies are recommended with a larger sample size from randomly selected hospitals from different regions of Saudi Arabia.

CONFLICT OF INTEREST: None.
The MTHFR gene (OMIM: 607093) encodes methylenetetrahydrofolate reductase (MTHFR), which plays a crucial role in the endogenous conversion of homocysteine to methionine. Reduced MTHFR activity can result in the accumulation of homocysteine in the blood plasma and cause hyperhomocysteinemia.\(^\text{1-3}\) The most common causes of hyperhomocysteinemia are single nucleotide polymorphisms (SNPs) in the coding region of the MTHFR gene and the production of a variant enzyme that is less efficient than enzymes encoded by other alleles.\(^\text{4-6}\) The two most common polymorphisms in the MTHFR gene are the C677T and A1298C polymorphisms. The alteration of cytosine (C) to thymine (T) at position 677 causes the replacement of the amino acid alanine for valine (A222V; UniProtKB: P42898) in the enzyme and subsequently reduces enzyme activity compared to enzymes with A677.\(^\text{6}\) Specifically, the heterozygous CT genotype causes a 34% reduction in the MTHFR enzyme’s activity, whereas the homozygous mutant TT genotype causes a 70% reduction in enzyme activity relative to that encoded by the CC genotype.\(^\text{2}\) The mutation of adenine (A) to cytosine (C) at position 1298 results in the substitution of the amino acid glutamic acid with alanine (E429A). The A1298C polymorphism alone generally does not cause hyperhomocysteinemia.\(^\text{8}\) However, the combined C677T and A1298C polymorphisms result in a 70% reduction in enzyme activity, indicating that the two polymorphisms have a synergistic effect on enzyme activity.\(^\text{9}\) Several studies have documented the association of MTHFR C677T and A1298C polymorphisms with intellectual disability, psychosis, type II diabetes, venous thrombosis, and coronary heart disease.\(^\text{10-15}\)

Based on the American Academy of Pediatric Dentistry (AAPD) nitrous oxide/oxygen (NO\(_2\)/O\(_2\)) inhalation is generally one of the safest and most effective techniques to reduce anxiety and produce analgesia in pediatric dental patients.\(^\text{14,15}\) Nagele et al (2008) reported that patients with the MTHFR C677T and A1298C polymorphisms are at a higher risk for the development of abnormal hyperhomocysteinemia following exposure to N\(_2\)O anesthesia.\(^\text{16,17}\) A later study conducted by Nagele et al reported that MTHFR C677T and A1298C had no influence on nitrous oxide-induced homocysteine increases.\(^\text{18}\) However, severe catastrophic neurological outcomes, including fatalities, have been reported in children carrying MTHFR C677T and A1298C polymorphisms after treatment with N\(_2\)O.\(^\text{14,18-20}\) Thus, patients who carry the MTHFR C677T and A1298C polymorphisms might be at increased risk for harmful side effects following N\(_2\)O exposure.\(^\text{19,20}\)

The prevalence of the C667T and A1298C genotypes of the MTHFR gene are known to vary among ethnic groups. More than 25% of Hispanics and 10% to 15% of North American Caucasians are estimated to be homozygous for the TT genotype.\(^\text{21}\) However, the prevalence of the MTHFR C677T and A1298C polymorphisms among Saudi pediatric patients receiving dental treatments at King Abdulaziz University Hospital is unknown. N\(_2\)O is commonly used at the pediatric dental clinic at King Abdulaziz University Hospital. The goal of the current study was to determine the proportion of patients who are at an increased risk of negative side effects due to the MTHFR C677T and A1298C polymorphisms. This information will be useful for policy makers and medical practitioners with respect to N\(_2\)O use as a pharmacological agent in the management techniques used for pediatric dental patients.

SUBJECTS AND METHODS

Subject selection criteria and sample size calculation

The study was conducted in the Department of Pediatrics and Specialist Dental Clinic at King Abdulaziz University Faculty of Dentistry (KAUFD) in Jeddah, Saudi Arabia, between May and December of 2019. The study protocol was approved by the Human Research Ethics Committee of the School of Dentistry at King Abdulaziz University (024-03-20). All children who received dental treatment at the Pediatric Dentistry Department Clinic between May and December 2019 were screened for eligibility. The inclusion criteria included: 1) Saudi nationality, 2) healthy children 6–12 years of age receiving dental treatment at the Department of Pediatric and Specialist Dental Clinic at KAUFD, 3) no known allergy, and 4) no use of prescribed medications. The objectives and the nature of the study were introduced to the parents or guardians of eligible subjects. Those who agreed to participate were required to sign an informed consent written in Arabic before participation. Subjects who failed to provide the amount of saliva required for the analysis were excluded from the study. Subject data were recorded, including demographic data and family history of MTHFR enzyme polymorphism. All saliva samples were collected by a single investigator. When the results of the genetic analyses were obtained, the parents/guardians were informed directly.

Dental treatment under N\(_2\)O is considered an alternative behavioral management technique. At KAUFD’s pediatric dentistry clinics, dental treatment is provided by trained pediatric dentist consultants and residents under the supervision of a pediatric dentistry consultant. Following the AAPD guidelines, each patient re-
received 100% oxygen for one to two minutes followed by titration of N\textsubscript{2}O in 10% intervals without exceeding 50% N\textsubscript{2}O. At the end of the treatment, once the N\textsubscript{2}O was terminated, the patients were provided 100% oxygen for three to five minutes.14

Based on the results of Zappacosta et al.,22 the prevalence of the C667T and A1298C genotypes of the MTHFR gene was assumed to be 15%. Using OpenEpi software, we calculated that a random sample of 138 subjects would be sufficient to detect the true prevalence of these genes in the Saudi population with 95% confidence, assuming that the prevalence is in the range of 15\% \pm 5\%.23

Detection of MTHFR polymorphisms

1. Saliva samples were collected from patients using the Oragene-Discover (OG-500). Genomic DNAs from the saliva samples were extracted following the manufacturer’s instructions (DNA Genotek, Kanata, ON). Polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) were used to detect MTHFR polymorphisms using a previously described protocol.24 Specifically, to genotype the C677T polymorphism, a 294-base pair (bp) fragment of the MTHFR gene was amplified using custom primers (forward: 5’-CTTTGGGAGCTGAAGGACTATA-3’; reverse: 5’-CACCTTTGTGACCATTCCGGTTCGTTT-3’; Macrogen, Korea). The PCR reaction was performed in 20 \textmu L of a total volume containing 10 \textmu L of 2X GoTaq Green Master Mix (Promega), 100 ng of genomic DNA, and 0.5 \textmu M of each primer. Reactions were subjected to an initial denaturation at 95°C for 10 min, and then 35 cycles of denaturation (95°C, 1 min), primer annealing (65°C, 1 min), and extension (72°C, 1 min) with a final extension at 72°C for 10 min. PCR products were digested using the HinfI restriction enzyme and separated on a 3% agarose gel at 80 V for 120 min. The homozygous wild-type allele (C677C) was identified by a single band of 294 bp, the heterozygous (C677T) was identified by three bands of 294, 168, and 126 bp, and the homozygous (T677T) genotype was identified by two bands at 168 bp and 126 bp (Figure 1A).

To genotype the MTHFR A1298C polymorphism, a 163-bp fragment of the MTHFR gene,

Figure 1. (A) PCR-RFLP results of the MTHFR C677T polymorphism. Agarose gel electrophoresis for MTHFR C677T after digestion with Hinf. Digestion of the homozygous wild-type CC genotype yields a single band of 294 bp, whereas the heterozygous CT genotype results in three bands of 294, 168, and 126 bp, and the homozygous TT genotype shows two bands at 168 bp and 126 bp. Lane 1: 100 bp DNA marker (B) PCR-based RFLP results of the MTHFR A1298C polymorphism. Agarose gel electrophoresis for A1298C polymorphism after digestion with MboII. Digestion of the homozygous AA genotype results in five bands of 56, 31, 30, 28, and 18 bp, whereas the heterozygous AC genotype results in three bands of 84, 56, and 30 bp, and the homozygous CC genotype leads by four bands of 84, 31, 30, and 18 bp. Since the molecular weights of 31, 30, and 28 bp are very similar, they could not be distinguished on the gel. The major visible bands were those of 84 bp and 56 bp. Lane 1:25 bp DNA marker.
The MTHFR C677T and A1298C polymorphisms
allele frequency.

Polymorphism	Allele	Percentage (95% CI)
MTHFR C677T	677T	19.9 (12.9-29.4)
	677C	80.1 (70.6-87.1)
MTHFR A1298C	1298A	43.9 (34.1-54.1)
	1298C	56.2 (45.9-65.9)

Table 2. Genotype frequencies of the MTHFR C677T and A1298C polymorphisms.

Polymorphism	Genotype	n	Percentage of subjects (95% CI)	Observed/Expected*
MTHFR C677T	CC	88	63.8 (53.4-73.0)	0.99
	CT	45	32.6 (23.8-42.8)	1.00
	TT	5	3.6 (0.1-10.0)	0.97
MTHFR A1298C	AA	12	8.7 (4.3-16.5)	0.45
	AC	97	70.3 (60.2-78.8)	1.42
	CC	29	21.0 (13.8-30.5)	0.66

*Under Hardy-Weinberg equilibrium.

Table 3. Prevalence of the compound genotypes of the MTHFR C677T and A1298C polymorphisms.

Genotype	C677C	C677T	T677T
A1298A	6 (4.3%)	4 (2.9%)	1 (0.7%)
A1298C	59 (42.8%)	33 (23.9%)	3 (2.2%)
C1298C	27 (19.6%)	4 (2.9%)	1 (0.7%)

RESULTS

Of 147 children initially eligible, 3 were excluded because of insufficient saliva, 6 refused to participate, leaving 138 included in the study. After all were genotyped, we first calculated the frequencies of the individual 677T and 1298C alleles. The frequency of the 677T allele was 19.9% while the frequency of the 1298C allele was 56.2%, indicating that the A1298C polymorphism was more abundant in the sample subjects (Table 1).

We examined the genotype distributions for the MTHFR C677T and A1298C polymorphisms to determine the abundance of the homozygous or heterozygous genotypes. The homozygous MTHFR T677T genotype was present in only 3.6% of the sample (Table 2), whereas the heterozygous MTHFR C677T genotype was present in 32.6% of the sample. Thus, the MTHFR C677T genotype comprised the remaining 63.8% of the sample. This genotype distribution for the MTHFR C677T polymorphism was consistent with Hardy-Weinberg equilibrium ($\chi^2=0.049, P=.97$) (Figure 2). The homozygous MTHFR C1298C genotype was present in 21.0%, whereas the heterozygous MTHFR A1298C genotype was present in 70.3%. Thus, the 1298C polymorphism was present in 91.3% while the A1298A genotype was present in only 8.7%. This MTHFR A1298C genotype distribution was not consistent with the expected distribution based on a Hardy-Weinberg equilibrium ($\chi^2=18.25, P=.0001$). Our data indicate that the MTHFR A1298C polymorphism is more abundant than expected among the sample of Saudis in the Western Province compared to the Central Province in another study (Table 4).27,28

Finally, we examined the distribution of the compound genotypes for the MTHFR C677T/A1298C polymorphisms. The frequency of the MTHFR C677T/A1298A compound genotype was only 4.3% of the sample population (Table 3). The MTHFR C677T/A1298C compound genotype was the most prevalent, at 42.8% of the sample population. The MTHFR T677T/C1298C compound genotype was the least prevalent, as it was present in only 0.7% of the sample population. The MTHFR T677T/A1298C and C677T/C1298C compound

Statistical analysis

Allele and genotype frequencies of MTHFR polymorphisms, C677T and A1298C, were calculated by direct counting and compared using a chi-square test with the expected values calculated based on an assumption of Hardy-Weinberg equilibrium. The confidence intervals of allele and genotype frequencies were calculated using the normal approximation with continuity correction.25 The linkage disequilibrium D’ and haplotype prevalence were carried out using a previously described method.26
genotypes also had a low abundance (2.2% and 2.9%, respectively). Furthermore, the MTHFR C677T/C1298C compound genotype was relatively common (19.6%), which indicated that subjects homozygous for the wild-type 677C were the primary carriers of the mutant 1298C allele. Linkage disequilibrium between C677T and A1298C polymorphisms ($D' = -0.01, r^2 = 0.0001$) was not detected during analysis of the genotype combination. The four possible haplotypes of the 677 and 1298 loci were CA, CC, TA, and TC. As expected, the highest frequencies were found for the CC (44.9%) and CA (35.1%) haplotypes. The lowest frequencies were found for the TC (11.3%) and TA (8.7%) haplotypes.

DISCUSSION

The aim of this study was to determine the prevalence of MTHFR C677T and A1298C polymorphisms among pediatric patients who were treated at the King Abdulaziz University Hospital as a first step to limiting the adverse effects for children with reduced MTHFR-encoded enzyme activity receiving dental care and N2O sedation. A sample of 138 Saudi pediatric patients was genotyped to determine the abundance of these polymorphisms. We determined that the MTHFR C677T polymorphism was present in 36.2% of the sample, compared to the global average of 33.6% reported in the dbSNP database (rs1801133).29 Among those with the MTHFR C677T polymorphism, 90.0% were heterozygous. This distribution of the MTHFR C677T polymorphism followed a Hardy-Weinberg distribution. The MTHFR A1298C polymorphism was present in 91.3% of the sample compared to the global average of 30.6% reported in the dbSNP database (rs1801131). Of those with the MTHFR A1298C polymorphism, 77.0% were heterozygous. This heterozygous MTHFR A1298C was substantially more abundant than expected based on a Hardy-Weinberg distribution.

Several studies have previously reported the prevalence of the MTHFR C677T and A1298C polymorphisms in other Saudi regions, but this is the first study

Table 4. Distribution of MTHFR C677T and A1298C polymorphisms among different ethnic populations in Saudi Arabia.

Reference	MTHFR A1298C	MTHFR C677T	n	Region				
	CC (%)	AC (%)	AA (%)	TT (%)	CT (%)	CC (%)	n	Region
Current study	21.0	70.3	8.7	3.6	32.6	63.8	138	Western Province
(30)	---	---	---	4.0	21.0	75.0	105	Eastern Province
(31)	---	---	---	0	15.0	85.0	40	Central Province
(32)	---	---	---	2.4	24.6	73.0	884	Central Province
(27)	10.2	43.0	46.8	2.5	24.7	72.8	511	Central Province
(28)	---	42.5	57.6	3.0	23.0	74.0	250	Central Province
(33)	---	---	---	0	25.0	75.0	280	Central Province
to report them in the Western Province. These data from the Western Province are largely consistent with previous work with respect to the MTHFR C677T polymorphism in the Eastern and Central provinces (Table 4). Only two previous studies have analyzed the presence of the MTHFR A1298C polymorphism. Siraj et al and Alghasham et al identified that the heterozygous MTHFR A1298C genotype was present in 43.0% and 42.5% of patients in the central province, respectively. However, we found that this genotype was present in 70.3% of patients. This indicates that there is a notable difference in the prevalence of the MTHFR A1298C genotype between the Western and Central provinces. The observed abundance of the MTHFR A1298C genotype in the Western Province was also substantially higher than that reported for other populations including Italians at roughly 45% and Chinese at roughly 29%.

We observed that the most common compound genotypes were MTHFR C677C/A1298C, C677T/A1298C, and C677C/C1298C. Combined, these compound genotypes accounted for 86.3% of the sample population. Zappacosta et al reported a low abundance of the MTHFR C677C/A1298C compound genotype in an Italian sample that instead had a higher prevalence of MTHFR C677T/A1298A and T677T/A1298A compound genotypes. Previous work has also indicated that the MTHFR C677C/A1298C compound genotype is much less abundant in American and Turkish populations, but equally abundant in an Indian population. Thus, there is a somewhat large degree of variation in the distribution of compound genotypes among populations worldwide. The observed pattern of compound genotype combinations suggests that there is no linkage disequilibrium between the polymorphisms at nucleotide positions 677 and 1298.

The prevalence of minor adverse effects associated with N2O sedation is low, ranging from 1.8% to 8.3%, with vomiting being one of the primary minor adverse effects. Longer treatment duration and deeper N2O sedation reportedly increased the incidence and severity of vomiting associated with N2O sedation. Significant adverse effects following N2O sedation are extremely rare, and a limited number of cases reported severe neurological complications in pediatric patients following N2O sedation for over 80 minutes. Although the exposure duration in the reported cases is longer than what pediatric patients are usually exposed to during dental treatment, the possible adverse effects should not be underestimated, especially for procedures requiring multiple and longer treatment durations.

Despite the AAPD contraindication on the use of N2O in patients with MTHFR polymorphism, no routine preoperative screening for MTHFR polymorphism has been recommended. In our study, a high frequency of the MTHFR A1298C genotype was detected among Saudi children, which emphasizes that detailed preoperative evaluation and investigation of the patients’ previous medical and family history of MTHFR polymorphism can be suggested as a valuable tool to diagnosing MTHFR polymorphisms in patients who need treatment under N2O.

Further studies to determine the association between MTHFR polymorphisms and the frequency and severity of adverse effects after dental treatment with N2O are recommended. In addition, due to the limited sample size and the study’s design, the direct cause and effect cannot be determined. Further studies with a larger sample size from randomly selected hospitals across different regions of Saudi Arabia are also recommended to accurately report the prevalence of MTHFR gene polymorphisms among Saudi children. Knowledge of the prevalence of MTHFR variants among our population will help us to better understand the likelihood that individual patients will experience N2O-related adverse effects.

Acknowledgments
This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. D-153-166-1439. The authors, therefore, gratefully acknowledge the DSR technical and financial support of DSR.
REFERENCES

1. Brustolin S, Giugliani R, Félix TM. Genet- ics of homocysteine metabolism and asso- ciated disorders. Brazilian J Med Biol Res. 2010;43(1):1–7.
2. Bolland J, Tell GS, Voutilset SE, Refsum H, Ueland PM. Folate, vitamin B12, homocyste- ine, and the MTHFR 677C→T polymorphism in anxiety and depression. The Nordland Homocysteine Study. Arch Gen Psychiatry. 2003;60(6):618–26.
3. Kumar J, Das SK, Sharma P, Karthikeyan G, Ramakrishnan L, Sengupta S. Homocysteine levels are associated with MTHFR A1298C polymorphism in Indian population. J Hum Genet. 2005;50(12):653–63.
4. Jacques PF, Bostom AG, Williams RR, El- lison RC, Eckfeldt JH, Rosenberg IH, et al. Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentra- tions. Circulation. 1993;91(7):7–9.
5. Hobbs CA, Sherman SL, Yi P, Hopkins SE, Torfs CP, Hine RJ, et al. Polymorphisms in genes involved in folate metabolism as ma- jor risk factors for Down syndrome. Am J Hum Genet. 2000;67(3):623–30.
6. Weisberg JB, Tran P, Christiansen B, Sibani S, Rozen R. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTH- FR) associated with decreased enzyme activity. Mol Genet Metab. 1998;64(3):169–72.
7. James SJ, Pogirlina M, Pogirlny IP, Mel- nysk S, Hine RJ, Gilson JB, et al. Abnormal folate metabolism and mutation in the meth- ylenetetrahydrofolate reductase gene may be maternal risk factors for Down syndrome. Am J Clin Nutr. 1999;70(4):495–501.
8. Friedman G, Goldschmidt N, Friedlander Y, Ben-Yehuda A, Selhub J, Babaey S, et al. A common mutation in the MTHFR gene is associated with a decreased free homocys- teine level in a child with 5,10-methylenetetrahydrofolate reductase deficiency. N Engl J Med. 2003;349(1):45–50.
9. Lacassie HJ, Nazar C, Yonish B, Sandoval P, Muir HA, Mellado P. Reversible nitrous oxide effect in the hyperactivity and a polymorphism in the gene encoding 5,10-methylenetetrahydrofo- late reductase. Br J Anaesth. 2006;96(2):222– 5.
10. Feng F, Labelle LA, Rainey BJ, Tsonga- lia GJ. Single nucleotide polymorphisms in the methylenetetrahydrofolate reductase gene are common in US Caucasian and His- panic American populations. Int J Mol Med. 2001;8(5):509–11.
11. Zappacosta B, Graziano M, Persichilli S, Cutrone LA, Graziano M, Vitrani A, et al. Genotype prevalence and allele frequen- cies of 5,10- methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymor- phisms in Italian newborns. Lab Med. 2009;40(12):732–5.
12. Alizadeh S, Dafarian K, Moradi S, Shab- Bidar S. C677T and A1298C polymorphisms of methylenetetrahydrofolate reductase gene and susceptibility to myocar- dial infarction: A systematic review and meta-analysis. Int J Cardiol. 2016;217:99–108.
13. Zeng J, Zeng Q. Correlations between methylenetetrahydrofolate reductase gene polymorphisms and venous thrombo- embolism: A meta-analysis of 99 genetic association studies. Eur J Prev Cardiol. 2019;26(2):120–34.
14. American Academy of Pediatric Den- tistry. Guideline on use of nitrous oxide for pediatric dental patients. Pediatr Dent. 2016;38(6):211–5.
15. Wilson KE. Overview of paediatric dental sedation: 2. Nitrous oxide/oxygen inhalation sedation. Dent Update. 2013;40(10):822–9.
16. Nagele P, Zeugwetter B, Huffel M, Milti- boeck M, Foedinger M. Influence of MTHFR gene polymorphisms on homocysteine concentra- tions after nitrous oxide anesthesia. Eur J Anaesthesiol. 2008;25(Suppl 44):146.
17. Nagele P, Brown F, Francis A, Scott MG, Gage BF, Miller JP. Influence of nitrous ox- ide anesthesia, B-vitamins, and MTHFR gene polymorphisms on perioperative cardiac events the vitamins in nitrous oxide (VINO) randomized trial. Anesthesiology. 2013.
18. Nagele P, Brown F, Francis A, Scott MG, Gage BF, Miller JP. Influence of nitrous ox- ide anesthesia, B-vitamins, and MTHFR gene polymorphisms on perioperative cardiac events in patients with vitamin B12 deficiency. Anesthesiology. 2013;119(1):19–28.
19. Sezer RR, Rosenblatt DS, Laxova R, Hogan K. Adverse effect of nitrous oxide in a child with 5,10-methylenetetrahydrofo- late reductase deficiency. N Engl J Med. 2003;349(1):45–50.
20. Hobbs CA, Sherman SL, Yi P, Hopkins SE, Torfs CP, Hine RJ, et al. Abnormal folate metabolism and mutation in the meth- ylenetetrahydrofolate reductase gene may be maternal risk factors for Down syndrome. Am J Clin Nutr. 1999;70(4):495–501.
21. Friedlander Y, Ben-Yehuda A, Selhub J, Babaey S, et al. A common mutation in the MTHFR gene is associated with a decreased free homocys- teine level in a child with 5,10-methylenetetrahydrofolate reductase deficiency. N Engl J Med. 2003;349(1):45–50.
22. Lacassie HJ, Nazar C, Yonish B, Sandoval P, Muir HA, Mellado P. Reversible nitrous oxide effect in the hyperactivity and a polymorphism in the gene encoding 5,10-methylenetetrahydrofo- late reductase. Br J Anaesth. 2006;96(2):222– 5.
23. Feng F, Labelle LA, Rainey BJ, Tsonga- lia GJ. Single nucleotide polymorphisms in the methylenetetrahydrofolate reductase gene are common in US Caucasian and His-panic American populations. Int J Mol Med. 2001;8(5):509–11.
24. Zappacosta B, Graziano M, Persichilli S, Cutrone LA, Graziano M, Vitrani A, et al. Genotype prevalence and allele frequen- cies of 5,10- methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C poly- morphisms in Italian newborns. Lab Med. 2009;40(12):732–5.
25. Bagheri M, Abdai R. Frequency of the MethyleneH10tetrahydrofolate REDUCTASE 677CT and 1298AC mutations in an Iranian Turkish female population. Maedica (Buchar). 2010;5(3):171–7.
26. Pasaqon R, Burnweit C, Zerpa J, Malvezzi L, Knight C, Shapiro T, et al. Nitrous oxide procedural sedation in non-fasting pediatric patients undergoing minor surgery: a 12-year experience with 1,058 patients. Pediatr Surg Int. 2015;31(2):173–80.
27. Zier JL, Tarrago R, Liu M. Level of sedation with nitrous oxide for pediatric medical proce- dures. Anesth Analg. 2011;112(5):1399– 405.
28. Zier JL, Liu M. Safety of high-concen- tration nitrous oxide by nasal mask for pediatric procedural sedation: Experience with 7802 cases. Pediatr Emerg Care. 2011;27(12):1107–12.
29. Babal FE, Oakley E, Seaman C, Barnett P, Shawood LN. High-concentration nitrous oxide for procedural sedation in children: Adverse events and depth of sedation. Pediatric. 2008;121(3)