SELF-SIMILAR SOLUTIONS TO NONLINEAR DIRAC EQUATIONS AND AN APPLICATION TO NONUNIQUENESS

HYUNGJIN HUH
Department of Mathematics
Chung-Ang University
Seoul, 156-756, Korea

(Communicated by Thierry Cazenave)

Abstract. Self-similar solutions to nonlinear Dirac systems (1) and (2) are constructed. As an application, we obtain nonuniqueness of strong solution in super-critical space $C([0, T); H^s(\mathbb{R}))$ ($s < 0$) to the system (1) which is $L^2(\mathbb{R})$ scaling critical equations. Therefore the well-posedness theory breaks down in Sobolev spaces of negative order.

1. Introduction. We are interested in the initial value problem for the following nonlinear Dirac equations

$$i(\partial_t U_1 + \partial_x U_1) = U_2(|U_1|^2 + |U_2|^2) + 2\text{Re}(\bar{U}_1 U_2)U_1,$$
$$i(\partial_t U_2 - \partial_x U_2) = U_1(|U_1|^2 + |U_2|^2) + 2\text{Re}(\bar{U}_2 U_1)U_2,$$

and

$$i(\partial_t U_1 + \partial_x U_1) = |U_2|^2 U_1,$$
$$i(\partial_t U_2 - \partial_x U_2) = |U_1|^2 U_2,$$

with the initial data $U_j(x, 0) = u_j(x)$. Here $U_j : \mathbb{R}^{1+1} \to \mathbb{C}$ for $j = 1, 2$ and \bar{U} is a complex conjugate of U.

The systems (1) and (2) have the charge conservation

$$\int_{\mathbb{R}} (|U_1|^2 + |U_2|^2) (x, t) \, dx = \int_{\mathbb{R}} (|u_1|^2 + |u_2|^2) (x) \, dx.$$

Another important property of the systems (1), (2) is invariance under the scaling

$$U_j^\lambda (x, t) = \lambda U_j (\lambda^2 x, \lambda^2 t),$$

from which we deduce a scale invariant Sobolev space $L^2(\mathbb{R})$. We study the initial value problem of (1) and (2) in Sobolev space $H^s(\mathbb{R})$. We call H^s as sub-critical space for $s > 0$, critical space for $s = 0$ and super-critical space for $s < 0$.

The system (1) occurs in the context of a nonlinear refractive index [1] and has been studied in [7] where local existence for H^s ($s > 1/2$) has been proved.

The system (2) is called the Thirring model and the associated Cauchy problem has been studied by several authors [2, 4, 6, 8]. The global existence of solutions to the Thirring equations was studied in [4] in terms of Sobolev space H^s ($s \geq 1$). Low regularity well-posedness was discussed in [2, 6, 8] showing that there exist a

2000 Mathematics Subject Classification. Primary: 58F15, 58F17; Secondary: 53C35.

Key words and phrases. Nonlinear Dirac equations, L^2 critical problem, nonuniqueness.
time $T > 0$ and solution $U_j \in C([0, T], H^s(\mathbb{R}))$ ($s \geq 0$). Furthermore, in [2], it is proven that a local solution in L^2 can be extended to a global one by excluding concentration of the L^2 norm at a point.

In this study we construct self-similar solutions to (1), (2) and establish the ill-posedness of the initial value problem to the nonlinear Dirac equations (1) in super-critical space $C([0, T]; H^s(\mathbb{R}))$ ($s < 0$). Furthermore, in [2], it is proven that a local solution in L^2 can be extended to a global one by excluding concentration of the L^2 norm at a point.

In this study we construct self-similar solutions to (1), (2) and establish the ill-posedness of the initial value problem to the nonlinear Dirac equations (1) in super-critical space $C([0, T]; H^s(\mathbb{R}))$ ($s < 0$) by showing nonuniqueness of solutions. Therefore the well-posedness theory of (1) breaks down in Sobolev spaces of negative order. We could not prove nonuniqueness of (2) because the cubic terms $|U_1|^2 U_2$, $|U_2|^2 U_1$ are not integrable. We refer to Remark 1 in section 3 for details.

Nonuniqueness of solution for Burgers’ equation has been shown in [5] by constructing a nontrivial solution which converges to zero in the $H^{s/2 - 1/4}$ topology as $t \to 0^+$. Nonuniqueness of solutions of the one-dimensional nonlinear Schrödinger equation has been studied in [3] where the author showed that there exist nonzero weak solutions varying continuously in the H^s ($s < 0$) norm as $t \to 0^+$. To construct proper self-similar solutions, special algebraic structure of nonlinear terms should be considered crucially. Our main result is as follows.

Theorem 1.1. There exist strong solutions to (1) satisfying

$$U_j \in C([0, \infty); H^s(\mathbb{R})) \text{ with } s < 0,$$

not identically vanishing, with initial data $u_j(x) \equiv 0$.

For the precise meaning of strong solution, we refer to section 3. We will reduce (1) to a simpler equation (3) and construct self-similar solutions inside the null cone. The self-similar solutions are constructed in two separate regions and glued continuously. To construct a self-similar solution of (2), we will consider the special algebraic structure of nonlinearity which was used in [6].

In section 2, the self-similar solutions of (1) and (2) are constructed. In section 3, we introduce the definition of strong solutions and prove Theorem 1.1. We use the standard Sobolev spaces $H^s(\mathbb{R})$ with the norm $\|f\|_{H^s} = \|(1 - \Delta)^{s/2} f\|_{L^2}$.

2. **Self similar solutions.** In this section, we construct self similar solutions of equations (1) and (2). We reduce PDEs (1) and (2) to ODEs of the self-similar variable $y = x/t$. Then the ODEs are solved, considering the special algebraic structure of nonlinearity, inside the null cone.

2.1. **Self similar solution of (1).** We consider the change of variables $U_1 = U$, $U_2 = iV$ and suppose that U, V are real valued functions. Then the system (1) reduces to

$$\partial_t U + \partial_x U = V(U^2 + V^2),$$
$$\partial_t V - \partial_x V = -U(U^2 + V^2).$$

(3)

Then any solution to (3) becomes a solution of (1). We construct self-similar solutions of the form

$$U(x, t) = \frac{1}{\sqrt{t}} u \left(\frac{x}{t} \right) \quad \text{and} \quad V(x, t) = \frac{1}{\sqrt{t}} v \left(\frac{x}{t} \right).$$
Then the system (3) reduces to
\[(y - 1)u' + \frac{1}{2}u = -v(u^2 + v^2),\]
\[(y + 1)v' + \frac{1}{2}v = u(u^2 + v^2),\]
where we use the variable \(y = x/t\). We can check that \(\frac{d}{dy} (1 + y) v^2 - (1 - y) u^2) = 0\). Assuming that the constant of integration is zero, we derive
\[(1 + y) v^2 = (1 - y) u^2.\]
(5)
From now on, we consider the case \(-1 < y < 1\). Making use of (5), we have from (4)
\[(y + 1)v' + \frac{1}{2}v = \pm \frac{2}{1 - y} \sqrt{\frac{1 + y}{1 - y}} v^2|v|\]
which becomes
\[(\sqrt{y + 1}v')' = \pm \frac{2}{1 - y} \sqrt{\frac{1}{1 - y}} v^2|v|\].
Let \(H(y) = \sqrt{1 + y} v(y)\). Then we have
\[H' = \pm \frac{2}{(1 - y)^{3/2}} H^2[H].\]
We start with the choice of +, in a region \(-1 < y \leq 0\), which leads to
\[H^2 = \frac{1}{2y + a \sqrt{1 - y^2}} \quad \text{for} \quad -1 < y \leq 0,\]
where \(a > 0\) is a constant of integration. With the choice of -, in a region \(0 \leq y < 1\), we have
\[H^2 = \frac{1}{2y - a \sqrt{1 - y^2}} \quad \text{for} \quad 0 \leq y < 1.\]
Note that \(H(0) = \frac{1}{2a}\) and \(H(-1) = 0 = H(1)\). Taking the relation \(V(x, t) = \frac{1}{\sqrt{t}} H(y)\) into account, we define in the region \(t \geq 0\)
\[V(x, t) = \begin{cases} \left(\frac{1}{2} \sqrt{\frac{1 - x}{2 + x}} \frac{1}{a \sqrt{1 - x^2 - 2x}}\right)^{\frac{1}{2}} & \text{for} \quad -t < x \leq 0, \\ \left(\frac{1}{2} \sqrt{\frac{1 - x}{2x + a \sqrt{1 - x^2}}}
ight)^{\frac{1}{2}} & \text{for} \quad 0 \leq x < t, \\ 0 & \text{for} \quad |x| \geq t. \end{cases}\]
Through the similar process to \(u\), we have
\[(y - 1)u' + \frac{1}{2}u = \pm \frac{2}{1 + y} \sqrt{\frac{1 - y}{1 + y}} u^2|u|\]
and derive
\[U(x, t) = \begin{cases} \left(\frac{1}{2} \sqrt{\frac{1 + x}{2 + x}} \frac{1}{a \sqrt{1 + x^2 - 2x}}\right)^{\frac{1}{2}} & \text{for} \quad -t < x \leq 0, \\ \left(\frac{1}{2} \sqrt{\frac{1 + x}{2x + a \sqrt{1 - x^2}}}
ight)^{\frac{1}{2}} & \text{for} \quad 0 \leq x < t, \\ 0 & \text{for} \quad |x| \geq t. \end{cases}\]
Note that \(U\) and \(V\) are continuous across the axis \(\{(x, t)| x = 0 \text{ and } t > 0\}\).
2.2. Self similar solution of (2). Let us try to find solutions to (2) of the form

\[U_j(x, t) = \frac{1}{\sqrt{t}} V_j \left(\frac{x}{t} \right), \]

where \(V_j \) are complex-valued functions. Then the Thirring equations (2) reduce to

\[
\begin{align*}
(1 - y)V_1' - \frac{1}{2}V_1 &= -i|V_2|^2 V_1, \\
(y + 1)V_2' + \frac{1}{2}V_2 &= i|V_1|^2 V_2,
\end{align*}
\]

where we use the variable \(y = x/t \). For \(-1 < y < 1\), the system (8) can be rewritten as

\[
\begin{align*}
\frac{d}{dy}((1 - y)^\frac{1}{2} V_1) &= \frac{-i}{1 - y} \frac{|(1 + y)^\frac{1}{2} V_2|^2}{(1 + y)}, \\
\frac{d}{dy}((1 + y)^\frac{1}{2} V_2) &= \frac{i}{1 + y} \frac{|(1 - y)^\frac{1}{2} V_1|^2}{(1 - y)}.
\end{align*}
\]

Then we have

\[
\begin{align*}
(1 - y)^\frac{1}{2} V_1(y) &= V_1(0) \exp \left(-i \int_0^y \frac{1}{1 - s} \frac{|(1 + s)^\frac{1}{2} V_2|^2}{(1 + s)} ds \right), \\
(1 + y)^\frac{1}{2} V_2(y) &= V_2(0) \exp \left(i \int_0^y \frac{1}{1 + s} \frac{|(1 - s)^\frac{1}{2} V_1|^2}{(1 - s)} ds \right).
\end{align*}
\]

Observing \(|e^{\int_0^y f(s)ds}| = 1 \) for a real-valued function \(f \) which was used in [6], we deduce

\[
\begin{align*}
|(1 - y)^\frac{1}{2} V_1(y)| &= |V_1(0)|, \\
|(1 + y)^\frac{1}{2} V_2(y)| &= |V_2(0)|.
\end{align*}
\]

Then the system (9) reads as

\[
\begin{align*}
(1 - y)^\frac{1}{2} V_1(y) &= V_1(0) \exp \left(-i |V_2(0)|^2 \int_0^y \frac{1}{1 - s^2} ds \right), \\
(1 + y)^\frac{1}{2} V_2(y) &= V_2(0) \exp \left(i |V_1(0)|^2 \int_0^y \frac{1}{1 - s^2} ds \right).
\end{align*}
\]

Now we define, in the region \(t \geq 0 \),

\[
U_1(x, t) = \begin{cases}
\frac{V_1(0)}{\sqrt{t - x}} \exp \left(i \frac{|V_2(0)|^2}{2} \log \frac{t - x}{t + x} \right) & \text{for } -t < x < t, \\
0 & \text{for } |x| \geq t,
\end{cases}
\]

and

\[
U_2(x, t) = \begin{cases}
\frac{V_2(0)}{\sqrt{x + t}} \exp \left(i \frac{|V_1(0)|^2}{2} \log \frac{t + x}{t - x} \right) & \text{for } -t < x < t, \\
0 & \text{for } |x| \geq t.
\end{cases}
\]
3. **Proof of Theorem 1.1.** Let us introduce the definition of strong solution to (1), (2) which can be written in the following form

\[
\partial_t U_1 + \partial_x U_1 = F_1(U_1, U_2), \\
\partial_t U_2 - \partial_x U_2 = F_2(U_1, U_2),
\]

where \(F_1, F_2 \) are cubic polynomials.

Definition 3.1. Consider the Cauchy problem (10) with initial data \((u_1(x), u_2(x)) \in (H^s(\mathbb{R}))^2\). It is said that \(U = (U_1, U_2) \) is a strong solution to the Cauchy problem on the time interval \([0, T]\) provided that

\[
(U_1, U_2) \in (C([0, T]; H^s(\mathbb{R})))^2
\]

satisfies the equations (10) in the following sense. For any \(\phi \in C_0^\infty(\mathbb{R} \times (-T, T)) \), we have

\[
\int_0^T \int_{\mathbb{R}} U_1 \partial_t \phi + U_1 \partial_x \phi + F_1(U_1, U_2) \phi \, dx \, dt + \int_{\mathbb{R}} u_1(x) \phi(x, 0) \, dx = 0,
\]

and

\[
\int_0^T \int_{\mathbb{R}} U_2 \partial_t \phi - U_2 \partial_x \phi + F_2(U_1, U_2) \phi \, dx \, dt + \int_{\mathbb{R}} u_2(x) \phi(x, 0) \, dx = 0,
\]

where \(F_1(U_1, U_2) \in L_{loc}^1(\mathbb{R} \times (-T, T)) \).

Now we prove Theorem 1.1. We will show that the functions \(U \) and \(V \) in section 2.1 are nontrivial strong solutions of (1) with the trivial initial data \(U(x, 0) \equiv 0 \equiv V(x, 0) \). First of all, we know that \(U(\cdot, t), V(\cdot, t) \in L^p(\mathbb{R}) \) (1 \(\leq p < 4 \)) for each \(t > 0 \). Here we just show the case of \(V \):

\[
\int_{\mathbb{R}} |V(x, t)|^p \, dx = \int_{-t}^{t} t^{-\frac{p}{2}} |v(x/t)|^p \, dx = t^{1 - \frac{p}{2}} \int_{-1}^{1} |v(y)|^p \, dy
\]

\[
= t^{1 - \frac{p}{2}} \left(\frac{1}{2} \right)^{\frac{p}{2}} \int_{-1}^{0} \left(\frac{1}{a \sqrt{1 - y^2} - 2y} \right)^{\frac{p}{2}} \left(\frac{1 - y}{1 + y} \right)^{\frac{p}{2}} \, dy
\]

\[
+ t^{1 - \frac{p}{2}} \left(\frac{1}{2} \right)^{\frac{p}{2}} \int_{0}^{1} \left(\frac{1}{2y + a \sqrt{1 - y^2}} \right)^{\frac{p}{2}} \left(\frac{1 - y}{1 + y} \right)^{\frac{p}{2}} \, dy.
\]

Let

\[
g(y) = \begin{cases}
\frac{1}{a \sqrt{1 - y^2} - 2y} & \text{on } -1 \leq y \leq 0, \\
\frac{1}{2y + a \sqrt{1 - y^2}} & \text{on } 0 \leq y \leq 1.
\end{cases}
\]

Then we can check that \(0 < g(y) \leq \frac{1}{y} \) for \(a \geq 2 \). Actually we have \(g(-1) = g(1) = \frac{1}{2} \).

Then it is easy to check \(V(\cdot, t) \in L^p(\mathbb{R}) \) (1 \(\leq p < 4 \)) for each \(t > 0 \). Moreover, taking into account \(L^p(\mathbb{R}) \hookrightarrow H_{\frac{2}{3} - \frac{2}{3p}}(\mathbb{R}) \) for \(1 < p < 2 \), we can verify (11)

\[
U, V \in C([0, T]; H_{\frac{2}{3} - \frac{2}{3p}}(\mathbb{R})),
\]

and

\[
\lim_{t \to 0^+} (\|U\|_{H_{\frac{2}{3} - \frac{2}{3p}}(\mathbb{R})} + \|V\|_{H_{\frac{2}{3} - \frac{2}{3p}}(\mathbb{R})}) \leq C \lim_{t \to 0^+} (\|U\|_{L^p(\mathbb{R})} + \|V\|_{L^p(\mathbb{R})}) = 0,
\]

which shows that the nontrivial solutions converge to zero in the \(H^s \) (\(s < 0 \)) norm as \(t \to 0^+ \).
We note that nonlinear terms $V^2 U$, $U^2 V$, V^3, U^3 are integrable. Here we just show the case of $V^2 U$. Making use of (6) and (7), we have

$$\int_{-t}^{t} V^2 U \, dx = \frac{1}{t \sqrt{t}} \int_{-t}^{t} v^2(x/t) u(x/t) \, dx = \frac{1}{t \sqrt{t}} \int_{-1}^{1} v^2(y) u(y) \, dy$$

$$= \frac{1}{\sqrt{t}} \int_{-1}^{0} \frac{1}{2} \left(\frac{1 - y}{1 + y} \frac{1}{a \sqrt{1 - y^2}} - 2y \right) \frac{1}{2} \sqrt{1 + y} \frac{1}{a \sqrt{1 - y^2}} \, dy$$

$$+ \frac{1}{\sqrt{t}} \int_{0}^{1} \frac{1}{2} \left(\frac{1 - y}{1 + y} \frac{1}{a \sqrt{1 - y^2}} - 2y \right) \frac{1}{2} \sqrt{1 + y} \frac{1}{a \sqrt{1 - y^2}} \, dy.$$

Considering $0 < g(y) \leq \frac{1}{2}$ for $a \geq 2$, we have

$$\int_{0}^{T} \int_{-t}^{t} V^2 U \, dx \, dt \leq \int_{0}^{T} \frac{1}{8 \sqrt{t}} \int_{-1}^{1} \left(\frac{1 - y}{1 + y} \right)^{\frac{1}{2}} \, dx \, dt < \infty.$$

Now we are ready to show (12). Denote, for $\varepsilon > 0$,

$$D_{\varepsilon}^{T} = \{(x, t) \mid t \geq -x + \varepsilon, x \leq 0\} \text{ and } D_{\varepsilon}^{T} = \{(x, t) \mid t \geq x + \varepsilon, x \geq 0\}.$$

Taking into account $U(x, 0) = 0$, we will show that

$$\lim_{\varepsilon \to 0^+} \int_{D_{\varepsilon}^{T} \cup D_{\varepsilon}^{T}} U \partial_t \phi + U \partial_x \phi + V(U^2 + V^2) \phi \, dx \, dt = 0,$$

for $\phi \in C_0^\infty(\mathbb{R} \times [-T, T])$. Since the integrand has a finite L^1 norm over $\mathbb{R} \times [-T, T]$, (12) follows from dominated convergence theorem. Considering $-\partial_t U - \partial_x U + V(U^2 + V^2) = 0$ in D_{ε}^{T} and D_{ε}^{T} respectively and applying Green’s Theorem, we have

$$\int_{D_{\varepsilon}^{T} \cup D_{\varepsilon}^{T}} U \partial_t \phi + U \partial_x \phi + V(U^2 + V^2) \phi \, dx \, dt$$

$$= \int_{D_{\varepsilon}^{T}} \partial_t (U \phi) + \partial_x (U \phi) \, dx \, dt + \int_{D_{\varepsilon}^{T}} \partial_t (U \phi) + \partial_x (U \phi) \, dx \, dt$$

$$= \int_{T \varepsilon}^{T} (U \phi)(0, s) \, ds + \int_{-T + \varepsilon}^{0} (-2U \phi)(s, -s + \varepsilon) \, ds$$

$$+ \int_{T \varepsilon}^{T} (U \phi)(0, s) \, ds + \int_{0}^{T - \varepsilon} (-U \phi)(s, s + \varepsilon) + (U \phi)(s, s + \varepsilon) \, ds.$$

Since

$$\int_{T \varepsilon}^{T} (U \phi)(0, s) \, ds + \int_{T \varepsilon}^{T} (U \phi)(0, s) \, ds = 0,$$

$$\int_{0}^{T - \varepsilon} (-U \phi)(s, s + \varepsilon) + (U \phi)(s, s + \varepsilon) \, ds = 0,$$

we have

$$\int_{-T + \varepsilon}^{0} (-2U \phi)(s, -s + \varepsilon) \, ds = \int_{0}^{T - \varepsilon} -2(U \phi)(-t, t + \varepsilon) \, dt,$$

where we use substitute $s = -t$. Considering

$$U(-t, t + \varepsilon) = \frac{1}{\sqrt{2}} \left(\frac{\varepsilon}{\varepsilon + 2t} \right)^{\frac{1}{2}} \left(\frac{1}{a \sqrt{\varepsilon^2 + 2\varepsilon t + 2t}} \right)^{\frac{1}{2}}$$
and applying dominated convergence theorem, we obtain
\[
\lim_{\varepsilon \to 0^+} \left| \int_0^{T-\varepsilon} -\sqrt{2} (U\phi)(-t, t + \varepsilon) \, dt \right|
\leq \|\phi\|_{L^\infty} \lim_{\varepsilon \to 0^+} \int_0^{T-\varepsilon} \left(\frac{\varepsilon}{\varepsilon + 2t} \right)^{\frac{1}{4}} \left(\frac{1}{a\sqrt{\varepsilon^2 + 2\varepsilon t + 2t}} \right)^{\frac{1}{2}} \, dt = 0.
\]
Therefore we show that (12) holds. The equality (13) can be obtained in a similar way.

Remark 1. Let us consider functions \(U_j\) in section 2.2. Put \(V_1(0) = 1 = V_2(0)\) for simplicity. We can check \(U_j(\cdot, t) \in L^p(\mathbb{R}) (1 \leq p < 2)\) for each \(t > 0\). In fact, we have
\[
\int_\mathbb{R} |U_1(x, t)|^p \, dx = \int_{-t}^t \frac{1}{(t-x)^{p/2}} \, dx = t^{1-\frac{p}{2}} \int_{-1}^1 \frac{1}{(1-y)^{p/2}} \, dy,
\]
where we use change of variable \(y = x/t\). Taking into account \(L^p(\mathbb{R}) \hookrightarrow H^{s-\frac{1}{p}}(\mathbb{R})\) for \(1 < p < 2\), we can verify (11) and
\[
\lim_{t \to 0^+} \|U_j\|_{H^{s-\frac{1}{p}}(\mathbb{R})} \leq C \lim_{t \to 0^+} \|U_j\|_{L^p(\mathbb{R})} = 0,
\]
for \(1 < p < 2\). Therefore \(U_j\) converges to zero in the \(H^s (s < 0)\) norm as \(t \to 0^+\). Here we should note that the nonlinear terms \(|U_1|^2U_2, |U_2|^2U_1\) are not integrable. We have, for instance,
\[
\int_0^T \int_\mathbb{R} |U_1|^2 |U_2| \, dx \, dt = \int_0^T \int_{-1}^1 \left(\frac{1}{\sqrt{t-x}} \right)^2 \frac{1}{\sqrt{t+x}} \, dx \, dt.
\]
Therefore we have a problem in understanding \(U_j\) as a solution to (2) in the sense of distribution.

The main difference between the self-similar solutions for equations (1) and (2) is that, when one writes
\[
|U_1| = \frac{1}{\sqrt{t-x}} h(x, t),
\]
the nature of \(h\) is essentially different: for system (1), it behaves like \((t-x)^{1/4}\) as \(x \to t\); in system (2), it is a constant. This is the essential point that makes the nonlinearity integrable for (1) but not for (2).

Acknowledgments. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2017R1D1A1B03028308). The author would like to thank anonymous referee for useful comments on the manuscript.

REFERENCES

[1] D. Agueev and D. Pelinovsky, Modeling of wave resonances in low-contrast photonic crystals,
\textit{SIAM J. Appl. Math.}, 65 (2005), 1101–1129.

[2] T. Candy, Global existence for an \(L^2\) critical nonlinear Dirac equation in one dimension,
\textit{Adv. Differential Equations}, 16 (2011), 643–666.

[3] M. Christ, Nonuniqueness of weak solutions of the nonlinear Schrödinger equation, preprint, https://arxiv.org/abs/math/0503366.

[4] V. Delgado, Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac and other nonlinear Dirac equations in one space dimension,
\textit{Proc. Amer. Math. Soc.}, 69 (1978), 289–296.
[5] D. B. Dix, Nonuniqueness and uniqueness in the initial-value problem for Burgers’ equation, *SIAM J. Math. Anal.*, **27** (1996), 708–724.
[6] H. Huh, Global strong solution to the Thirring model in critical space, *J. Math. Anal. Appl.*, **381** (2011), 513–520.
[7] H. Huh, Remarks on nonlinear Dirac equations in one space dimension, *Commun. Korean Math. Soc. Soc.*, **30** (2015), 201–208.
[8] S. Selberg and A. Tesfahun, Low regularity well-posedness for some nonlinear Dirac equations in one space dimension, *Differential and Integral Equations*, **23** (2010), 265–278.

Received August 2017; revised November 2017.

E-mail address: huh@cau.ac.kr