Embedding Cyclical Information in Solar Irradiance Forecasting

T. A. Fathima*, Vasudevan Nedumpozhimana†, Yee Hui Lee‡ and Soumyabrata Dev§

*Independent Researcher, Dublin, Ireland
†ADAPT SFI Research Centre, Dublin, Ireland
‡School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore
§School of Computer Science, University College Dublin, Ireland
Introduction

- Growing Energy Demand causes air pollution and global warming
- Clean renewable energy is a solution
- Solar energy is a reliable and renewable energy source
- The efficiency of power production is highly dependant on weather conditions
 - Rainy/cloudy days affects the power production
- Forecasting solar irradiance in advance helps in the efficient operation of photovoltaic cells
Objectives

● To develop a solar irradiance forecasting model using historic time series data

● To improve the forecasting accuracy by embedding periodic nature of solar irradiance
Forecasting without Time Stamp Information

- Used 1 year solar irradiance time series data with 1 minute temporal resolution from the weather station located at NTU Singapore.
- Downscaled to 60 mins, 30 mins, and 15 mins temporal resolution
- Previous d time series data is used to predict solar irradiance
 - Varied the values of d from 1 to 9
- *Multi-Layer Perceptron Regression* model is trained for forecasting
Forecasting with Time Stamp Information

- Used the same one year solar irradiance time series data with 1 minute temporal resolution from *NTU Singapore*.
- Downscaled to 60 mins, 30 mins, and 15 mins temporal resolution
- Previous d time series data is used to predict solar irradiance
 - Varied the values of d from 1 to 9
- Used timestamp information along with previous time series data
 - Applied a trigonometric transformation with 24 hr periodicity
- *Multi-Layer Perceptron Regression* model is trained for forecasting
Results

d	Solar60 Without time	Solar60 With time	Solar30 Without time	Solar30 With time	Solar15 Without time	Solar15 With time
1	0.63	0.73	0.74	0.77	0.8	0.82
2	0.65	0.73	0.74	0.78	0.81	0.82
3	0.65	0.73	0.74	0.78	0.81	0.82
4	0.66	0.73	0.74	0.78	0.81	0.83
5	0.67	0.72	0.75	0.78	0.8	0.82
6	0.68	0.72	0.74	0.77	0.81	0.82
7	0.69	0.72	0.75	0.77	0.8	0.82
8	0.7	0.72	0.75	0.77	0.8	0.82
9	0.7	0.72	0.75	0.78	0.8	0.82

R^2 value with- and without- cyclic time feature for varying number of previous time series data (d) and varying temporal resolution.
Discussions

- The forecasting model using time stamp information outperforms the one without time stamp information.
- We obtain 3% increase in the R2 value for the three data sets with varying temporal resolution.
- The periodic nature of solar irradiance is an important information during forecasting.
- It is observed that higher the resolution of data used in our forecasting model, the better is the model performance.
- We observed considerable improvement in the performance by increasing the embedding dimensions but not beyond 7.
Conclusions

- The importance of embedding temporal information for solar irradiance forecasting is demonstrated.
- We observed that including the temporal feature increases the forecasting accuracy for different historical training periods.

https://github.com/FathimaTA/Forecasting
Thank You