Relapse after nonmetastatic rhabdomyosarcoma: Salvage rates and prognostic variables

Luca Bergamaschi¹ | Stefano Chiaravalli¹ | Virginia Livellara¹ | Giovanna Sironi¹ | Nadia Puma¹ | Olga Nigro¹ | Giovanna Gattuso¹ | Roberto Luksch¹ | Monica Terenziani¹ | Filippo Spreafico¹ | Cristina Meazza¹ | Marta Podda¹ | Veronica Biassoni¹ | Elisabetta Schiavello¹ | Shushan Hovsepyan¹ | Carlo Morosi² | Sabina Vennarini³ | Maura Massimino¹ | Michela Casanova¹ | Andrea Ferrari¹

¹Pediatric Oncology Unit, Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
²Radiology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
³Pediatric Radiotherapy Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy

Correspondence
Andrea Ferrari, Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian, 1 20133, Milan MI, Italy.
Email: andrea.ferrari@istitutotumori.mi.it

Luca Bergamaschi and Stefano Chiaravalli are co-first authors.
Michela Casanova and Andrea Ferrari are co-last authors.

Abstract

Background: Patients with relapsing rhabdomyosarcoma (RMS) pose a therapeutic challenge, and the survival rate is reportedly poor. We describe a retrospective series of relapsing RMS patients treated at a referral center for pediatric sarcoma, investigating the pattern of relapse, salvage rates, and factors correlating with final outcomes.

Methods: The analysis concerned 105 patients < 21 years old treated from 1985 to 2020 with initially localized RMS at first relapse. For risk-adapted stratification purposes, patient outcomes were examined using univariable and multivariable analyses based on patients' clinical features at first diagnosis, first-line treatments, clinical findings at first relapse, and second-line treatments.

Results: First relapses occurred 0.08–4.8 years (median 1 year) following initial diagnosis and were local/locoregional in 59% of cases. Treatment at first relapse included chemotherapy in all but two cases, radiotherapy in 38, and surgery in 21. Median event-free survival (EFS) after first relapse was 4 months, while 5-year EFS was 16.3%; median overall survival (OS) was 9 months, while 5-year OS was 16.7%. Several variables influenced survival rates. Considering only clinical findings and treatment at relapse, Cox’s multivariable analysis showed that OS correlated significantly with time to relapse, radiotherapy administered at relapse, response to chemotherapy, and whether a second remission was achieved.

Conclusion: Survival following first relapse of patients with localized RMS at initial diagnosis is poor. The variables found to influence survival can be utilized in a risk-adapted model to estimate the chances of salvage to guide decisions for second-line treatments.

KEYWORDS
prognostic factors, relapse, rhabdomyosarcoma, salvage rate, second-line therapy, stratification
1 | INTRODUCTION

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of pediatric age, with around 400 cases being diagnosed each year in patients aged 0–19 years in Europe, and 55 in Italy.1–2 RMS is a highly malignant tumor, locally aggressive and with a strong propensity to metastasize,3 but intensive risk-adapted multimodal therapies developed in recent decades have brought significant improvements in long-term survival rates.4–6 Nonetheless, around 30% of patients with localized tumors (and 70% of those initially presenting with metastatic disease) still suffer tumor progression or relapse.4–11

Localized tumors (and 70% of those initially presenting with metastatic sarcomas (NRSTS)).20 The following variables were investigated for a study conducted on relapsing nonrhabdomyosarcoma soft tissue tumor.

In order to focus on the pattern of relapse in a more homogeneous group of patients presenting initially with only localized disease,3 but intensive risk-adapted multimodal therapies developed in recent decades have brought significant improvements in long-term survival rates.4–6 Nonetheless, around 30% of patients with localized tumors (and 70% of those initially presenting with metastatic disease) still suffer tumor progression or relapse.4–11

Relapsing RMS patients pose therapeutic challenge: outcomes following a first relapse are reportedly poor; there is no internationally agreed standard of care; and new effective treatments are urgently needed.12 Several variables may influence the chances of survival after RMS relapse, and it is important to consider them when deciding on second-line treatment options.4–11

The present report concerns a series of RMS patients treated at a referral center for pediatric sarcoma, who relapsed after presenting initially with nonmetastatic disease. The aim here was to describe the pattern and timing of these relapses, the salvage rates, and any clinical or treatment-related variables (at first diagnosis and at the time of relapse) that might influence patients’ outcomes. A further aim of the study was to propose a risk-adapted patient stratification to facilitate the planning of salvage therapy.

2 | MATERIALS AND METHODS

Patients were selected retrospectively from the clinical database of the Pediatric Oncology Unit at the Istituto Nazionale Tumori in Milan (Italy). Study inclusion criteria were a histological diagnosis of RMS; age under 21 years at the time of first diagnosis; initial diagnosis between 1985 and 2020; nonmetastatic disease at first diagnosis; tumor relapse or progression after first therapy; details available on clinical findings, treatment modalities, and outcomes; and written consent to participate in the study. Institutional review board approval was obtained before the data were collected.

The histological diagnosis was established by pathologists at our institution before starting treatment. Cases were classified as alveolar RMS, embryonal RMS, or not-otherwise-specified (NOS) RMS. Patients with metastatic disease at diagnosis were excluded from the present study in order to focus on the pattern of relapse in a more homogeneous group of patients presenting initially with only localized tumor.

The method adopted for the present study was the same as in a study conducted on relapsing nonrhabdomyosarcoma soft tissue sarcomas (NRSTS).20 The following variables were investigated for each patient:

a. Clinical findings at first diagnosis: sex; age; histological subtype; tumor site (favorable sites: head–neck nonparameningeal, orbit, genitourinary non-bladder/prostate; unfavorable sites: parameningeal, genitourinary bladder/prostate, extremities, other sites); tumor size (diameter ≤5 or >5 cm); presence or absence of regional lymph node metastases; surgical stage according to the Intergroup Rhabdomyosarcoma Study (IRS) grouping system (group I: complete resection at first surgery; group II: microscopic residual disease; group III: macroscopic residual disease).4–11

b. First-line treatment modalities: surgery, classified on the grounds of the histological margins (considering both first surgical procedures and any surgery delayed until after primary chemotherapy) as: R0: complete resection with microscopically free margins, R1: marginal resection with suspected microscopic residues, R2: intralesional resection with macroscopic residues; radiotherapy; type of chemotherapy with two drugs (vincristine and actinomycin-D [VA]), three (ifosfamide, vincristine, and actinomycin-D [IVA], or vincristine, actinomycin-D, and cyclophosphamide [VAC], or more than three (vincristine, actinomycin-D, cyclophosphamide, and Adriamycin [VACA], vincristine, actinomycin-D, ifosfamide, and Adriamycin [VAIA], carboplatin, epi-doxorubicin, vincristine, actinomycin-D, ifosfamide, and etoposide [CEVAIE], or ifosfamide, vincristine, actinomycin-D, and doxorubicin [VAoDo]): response to chemotherapy (assessed after three cycles) according to the Response Evaluation Criteria in Solid Tumors (RECIST) v1.022;

c. Clinical findings at the time of first relapse: local or metastatic relapse (including nodal metastases), time to recurrence (the interval between first diagnosis and recurrence, arbitrarily defined as early or late when less or more than 12 months, respectively), site and number of metastases;

d. Second-line treatment modalities: surgery, radiotherapy, chemotherapy, and response to chemotherapy (assessed after three cycles of second-line therapy); achievement of a second remission with second-line therapy, defined as the absence of disease after surgery, or complete tumor remission after chemotherapy and/or radiotherapy, persisting for at least 6 months.

2.1 | Statistical analysis

Primary end-points were survival rates after relapse, calculated from the time of the first disease progression/recurrence to the latest uneventful follow-up, further disease progression or relapse, or death due to any cause for event-free survival (EFS), and to death or latest contact with patients who were still alive for overall survival (OS). The different clinical and therapeutic variables were investigated using univariable and multivariable analyses to ascertain their potential role as prognostic factors. In the univariable analysis, survival after relapse was estimated with the Kaplan–Meier method;23 and the log-rank test was used to compare the survival curves for patient subgroups.24 The multivariable analysis was developed using Cox’s proportional hazards regression method to establish the independent prognostic significance of the variables considered.25 A backward variable...
TABLE 1 Patients’ characteristics and treatments at first diagnosis and at time of first relapse

Clinical findings at diagnosis	Patients	%
Sex		
Female	41	39.0
Male	64	61.0
Age		
<10 years	37	35.2
≥10 years	68	64.8
Histotypes		
Embryonal	68	64.8
Alveolar	31	29.5
Not otherwise specified	6	5.7
Tumor site		
Extremities	8	7.6
Trunk	3	2.9
Intra-abdominal	23	21.9
Head–neck parameningeal	39	37.1
Head–neck nonparameningeal^a	10	9.5
Genitourinary non-bladder/prostate	12	11.4
Genitourinary bladder/prostate	10	9.5
Tumor size		
≤5 cm	18	17.1
>5 cm	87	82.9
Nodal status		
N0	73	69.5
N1	32	30.5
IRS group		
I	12	11.4
II	8	7.6
III	85	81.0
First-line treatments		
Type of surgery		
R0–R1	32	30.5
R2/biopsy	73	69.5
Radiotherapy		
No	30	28.6
Yes	75	71.4
Chemotherapy		
2–3 drugs	23	21.9
>3 drugs	82	78.1
Response to chemotherapy		
No	18	21.2
Yes	67	78.8
Clinical findings at relapse		
Type of relapse		
Local	45	42.9
Regional lymph nodes	8	7.6
Local and regional lymph nodes	9	8.6
Distant metastases (±local relapse and regional lymph nodes)	43	40.9
Time of relapse		
Early (≤12 months)	53	50.5
Late (>12 months)	52	49.5
Second-line treatments		
Surgery		
No	84	80.0
Yes	21	20.0
Radiotherapy		
No	67	63.8
Yes	38	36.2
Systemic treatment		
No	1	1.0
Yes	104	99.0

(Continues)
TABLE 1 (Continued)

Clinical findings at diagnosis	Patients	%
Response to systemic treatment		
No	51	53.7
Yes	44	46.3
Second remission		
No	77	73.3
Yes	28	26.7
Overall status		
Alive in remission	17	16.2
Dead	86	81.9
On treatment	2	1.9

*Including orbit.

Abbreviation: IRS, Intergroup Rhabdomyosarcoma Study.

A selection procedure was applied to the covariates with a p-value of at least <.02 in the univariable analysis. The clinical and treatment factors at relapse were investigated as part of the multivariable analysis. All data analyses were run using the R statistical software (SPSS), version 15.0.

3 | RESULTS

The clinical database at our unit included 376 patients under 21 years old, treated between 1985 and 2020 for nonmetastatic RMS. From this series, we selected 105 consecutive patients (age range 6 months to 20 years, median 13 years) whose tumor progressed or relapsed. All patients fulfilling inclusion criteria were included in the study.

Table 1 shows patients’ clinical characteristics and details of the treatments administered at the time of their first diagnosis and at the time of their first relapse.

All patients received chemotherapy as part of their first-line treatment. This involved combinations of two or three drugs in 23 cases (one VA, three VAC, and 19 IVA), and more than three in 82 (50 VACA, 12 VAIA, 13 CEVAIE, and seven IVADO). In 83 patients with evaluable disease, response to chemotherapy was recorded as: 10 complete remissions, 57 partial remissions, 11 stable disease, and seven tumor progressions. First-line treatment included R0 surgery in 24 cases, R1 surgery in eight, and R2 surgery in five, while 68 patients only had a biopsy. Radiotherapy was administered to 75 patients (with doses in the range of 44.8–60 Gy).

In our series, treatment failed within 0.08–4.8 years (median 1 year) of the patients first being diagnosed. The disease progressed during upfront therapy in 26 patients, and soon after its completion in 27. Overall, there were 53 cases of tumor progression/relapse within 1 year of patients’ first diagnosis. Only 14 out of 105 patients (13%) relapsed 2 years or more after being diagnosed, and none after 5 years.

Tumor progression/relapse was local in 45 cases; it involved regional lymph nodes in eight; in nine, it affected both the local site and a regional lymph node; and distant metastases occurred in 43 cases (metastatic relapse was associated with local relapse in 15 cases, and with lymph node involvement in four cases).

3.1 | Treatment at relapse

After a patient’s RMS progressed/relapsed, treatments included systemic therapy in all but one patient (who refused any therapy), radiotherapy in 38, and surgery in 21. Radiotherapy was given to 28 patients with a locoregional relapse, and to 10 with distant recurrences (with or without locoregional disease). It was only in three cases that radiotherapy was delivered to metastatic sites (all lung metastases), while in the other 35 it involved local or regional sites of disease. Surgery was only performed on local tumors and/or regional lymph node metastases; one patient had an amputation; none had metastases surgically removed.

Various medical therapies were used in second-line systemic treatments over the study period: 17 patients had vincristine, irinotecan (VI) or vincristine, irinotecan, temozolamide (VIT); 14 had vinorelbine or vinorelbine plus oral cyclophosphamide; 14 had CEVAIE; 13 had oral etoposide; eight had topotecan-based chemotherapy; seven had a cisplatin-based regimen; various other drug combinations were administered in 10 cases; and the type of second-line systemic treatment was not specified in 20. One patient was given targeted therapy at first relapse. When response to systemic therapy could be assessed, there was at least a partial response according to the RECIST in 44 cases, and none in 51. In all, 28 patients achieved a complete remission with second-line therapy.

3.2 | Outcome

At the time of this analysis, 19 patients were alive and 86 had died of their disease. Among the patients still alive, 17 were in remission (15 in second remission and two in third remission) from 2 to 25 years (median 13 years) after their first relapse; and two patients were receiving treatment.

With a median follow-up of 15 years (range 10 months to 25 years) for the patients still alive, the median EFS after first relapse was 4 months (95% confidence interval: 2.82–5.18), and the EFS rates were 28.5% and 16.3% at 1 and 5 years, respectively. The median OS was 9 months (95% confidence interval: 7.33–10.67),
FIGURE 1 Post-relapse overall survival (OS) for the whole series
with OS rates of 36.1% and 16.7% at 1 and 5 years, respectively (Figure 1).

Table 2 shows the results of the univariable analysis, with OS rates at 5 years post relapse by patients’ characteristics. Survival did not correlate with the study period. Considering the clinical findings at the time of first diagnosis, OS was associated with primary site, tumor size, nodal status, and IRS group. OS was better for patients who had an initial R0–R1 resection, received no first-line radiotherapy, and whose chemotherapy included only two or three as opposed more numerous different drugs.

As concerns the clinical findings at the time of relapse, OS was significantly better for patients with a local or locoregional relapse, and for those with a late relapse. OS correlated with the feasibility of surgery, the administration of radiotherapy, response to systemic therapy, and the achievement of a second remission. There was evidence of a trend toward a better survival for patients whose second-line chemotherapy was VI or VIT.

Table 3 shows the results of the multivariable analysis focusing on the variables at relapse. Cox’s regression analysis was performed on 95 cases (those with data available on their response to second-line chemotherapy). Survival correlated significantly with time to relapse, radiotherapy performed at relapse, response to chemotherapy, and the achievement of a second remission persisting for at least 6 months.

These findings were used to calculate the OS based on the number of prognostic risk factors (i.e., early relapse, no radiotherapy, no response to chemotherapy, and failure to achieve a second remission). As shown in Figure 2, the estimated 5-year OS was 68.0% for patients with no risk factors (20 cases), 31.0% for patients with one of the above factors (11 cases), and 0% for patients with more than one such prognostic risk factor (64 cases) (p < .001).

4 | DISCUSSION

This study retrospectively analyzed the pattern of relapse, salvage rates, and risk factors correlating with post-relapse outcomes in a large series of pediatric patients with initially localized RMS treated at a single institution. In particular, our study analyzed in details the clinical features of the relapse itself and the post-relapse treatment.

Our analysis confirmed the known pattern of recurrence in RMS: a large proportion of patients whose disease recurred had a locoregional relapse and most relapses occurred within a relatively short time frame (50% of our cases relapsed within a year, and 87% within two). It was also clear that the chances of survival for patients with recurrent RMS have remained poor. Despite its limitations (such as a retrospective design and a lengthy study period), our study enabled us to identify several variables influencing survival. This is helpful when deciding on a risk-adapted approach and for orienting the choice of second-line treatment, as it enables us to distinguish between patients with and without realistic prospects of cure with the currently available therapeutic options.

Post-relapse survival correlated with patients’ clinical characteristics at the time of their initial diagnosis (i.e., tumor site and size, nodal involvement, and IRS group). Other studies also identified an alveolar histology as another prognostic factor. Such clinical features can be seen as indirect markers of a disease’s intrinsic aggressiveness, which remains much the same if and when it relapses. Various factors relating to upfront treatment have been reported as being associated with post-relapse outcomes, and our study confirmed as much. Survival correlated with the extent of surgical resection, the use of radiotherapy, and the type of chemotherapy delivered. The post-relapse outcome was worse in patients who had been given radiotherapy, and in those administered chemotherapy regimens that included more than three agents: this is likely to reflect a confounder effect relating to the choice of risk-directed therapy for patients considered at higher risk.

Our analysis focused particularly on the clinical features of the relapse itself. As in other reports, we found that patients who progressed while still on upfront therapy, and those who relapsed soon afterwards had worse outcomes than those who relapsed later on; and patients whose relapse involved distant metastases had worse outcomes than those whose disease relapsed locoregionally.

Different from most of the previous studies, which were not able to analyze post-relapse treatment, we also examined how relapses were treated. A unique finding in our study on univariable analysis was that survival correlated with the feasibility of surgery, the delivery of radiotherapy, response to systemic therapy, and the achievement of a second remission. No statistically significant differences emerged by type of second-line chemotherapy.

The findings regarding the feasibility of surgery and the use of radiotherapy may be biased by our selection of relapsing patients: most of the patients who underwent surgery and were given radiotherapy had favorable characteristics (e.g., locoregional relapses), and this might make it difficult to distinguish the relative effect of patient selection versus the real contribution of radiotherapy and surgery to the better outcome seen in these patients. These results would nonetheless underscore the importance of post-relapse local measures in patients with recurrent RMS, suggesting that aggressive surgery may be justified as a salvage treatment, and to be recommended whenever
TABLE 2 Post-relapse OS and log-rank test for univariable analysis by patients’ characteristics

Category	N	Groups	N	5-year OS (%)	p-Value
Clinical findings at diagnosis					
Year of diagnosis	105	1985–2004	76	13.2	.473
		2005–2020	29	29.3	
Sex	105	Female	41	23.9	.380
		Male	64	12.0	
Age	105	<10 years	37	23.4	.322
		≥10 years	68	12.8	
Histological types	105	Embryonal	68	22.6	.446
		Alveolar	31	6.5	
		Not otherwise specified	6	16.7	
Tumor site^a	105	Favorable	22	40.4	<.001
		Unfavorable	83	10.4	
Tumor size	105	≤5 cm	18	44.1	.001
		>5 cm	87	11.5	
Nodal status	105	N0	73	22.2	.019
		N1	32	3.8	
IRS group	105	I	12	58.3	.001
		II	8	25.0	
		III	85	9.8	
First-line treatments					
Surgery	105	R0–R1	32	43.5	<.001
		R2/biopsy	73	4.0	
Radiotherapy	105	No	30	53.1	<.001
		Yes	75	1.5	
Chemotherapy	105	2–3 drugs	23	37.5	.013
		>3 drugs	82	11.2	
Response to chemotherapy	85	No	18	14.8	.889
		Yes	67	8.3	
Clinical findings at relapse					
Type of relapse	105	Local	45	26.9	.020
		Locoregional^b	17	23.5	
		Metastatic (+local)	43	4.7	
Time of relapse	105	≤12 months	53	5.7	<.001
		>12 months	52	28.2	
Second-line treatments					
Surgery at relapse	105	No	84	4.8	<.001
		Yes	21	64.3	
Radiotherapy at relapse	105	No	67	0.0	<.001
		Yes	38	43.4	
Type of chemotherapy at relapse	105	Irinotecan-based regimens (VI, VIT)	17	39.7	.069
		Other regimens	88	13.0	
Response to systemic treatment	95	No	51	0.0	<.001
		Yes	44	40.3	
Second remission	105	No	77	0.0	<.001
		Yes	28	62.0	

Abbreviations: IRS, Intergroup Rhabdomyosarcoma Study; OS, overall survival; VI, vincristine, irinotecan; VIT, vincristine, irinotecan, temozolamide.^aFavorable site: head and neck nonparameningeal, genitourinary non-bladder/prostate. Unfavorable site: head and neck parameningeal, genitourinary bladder/prostate, extremities, trunk, intra-abdominal.^bRegional lymph nodes with or without local relapse.
feasible. Other studies reported better outcomes for locally relapsing patients who underwent surgical resection than for those not treated surgically, but its worth noting that very aggressive, mutilating, radical surgery did not yield better outcomes than conservative surgery. Other studies found that adding radiotherapy to salvage treatments had a beneficial effect.

Other groups developed specific algorithms on the strength of their findings to estimate the likelihood of successful salvage therapy. With the same goal in mind, we combined the prognostic factors emerging from our multivariable analysis to predict the outcome for relapsing RMS patients. Our model differed from others in that we only considered the clinical and treatment variables at relapse (i.e., early relapse, radiotherapy not performed, lack of response to chemotherapy, and failure to achieve a second remission).

These findings underscore the need to standardize our clinical approach to RMS patients who relapse, and to find new, effective therapies. The management of relapsing patients should preferably include tumor biopsy (not only to confirm the diagnosis, but also, and especially, to enable the tumor’s molecular characterization); an assessment of the patient’s post-relapse prognosis; a decision on the feasibility of local control measures; a search for any available dedicated clinical trials; and a frank discussion with patients and their families about their goals.

Developing therapeutic trials specifically for relapsing RMS remains a challenge. Very few such efforts have been made in the last decade. The Children’s Oncology Group (COG) completed a randomized phase 2 study (ARST0921) that used vinorelbine–cyclophosphamide chemotherapy plus either the mammalian target of rapamycin (mTOR) inhibitor temsirolimus or the vascular endothelial growth factor (VEGF) inhibitor bevacizumab in RMS at first relapse: the study did not show significant difference in response rate between the two arms, but reported a better 6-month EFS for patients given temsirolimus (69% vs. 55%). The European paediatric Soft tissue sarcoma Study Group (EpSSG) recently reported the results of a randomized phase 2 trial testing the addition of temozolamide to VI chemotherapy: the study showed better response (44% vs. 31%) and better survival rates on the VIT arm. These two prospective trials showed a different impact of response to chemotherapy on post-relapse survival. In our retrospective series, response to second-line therapy emerged as a major prognostic factor in both univariable and multivariable analyses.

While it is clear that the first critical deed should be that of preventing relapse by improving the efficacy of front-line treatment, a multifaceted action on the part of the pediatric sarcoma community is clearly warranted to develop prospective phase I–II trials dedicated to patients with relapsing RMS. Patients with such an extremely poor prognosis should be offered experimental therapies as part of clinical trials. It is always extremely difficult to increase the availability of new drugs for pediatric patients, however. Wider international collaborative projects are needed, including protocols for systematic molecular profiling in an effort to identify new targets and lead to effective agents. The recently opened EpSSG Frontline and Relapse Rhabdomyosarcoma (FaR-RMS) study (EudraCT: 2018-000515-24) includes investigating treatments for newly diagnosed patients with localized and metastatic RMS, but also offers an opportunity to try new systemic treatment combinations, including targeted agents, in patients with relapsing RMS.

FIGURE 2 Post-relapse overall survival (OS) based on number of prognostic risk factors emerging from the multivariable analysis (early relapse, radiotherapy not performed, no response to chemotherapy, and failure to achieve a second remission).

DATA AVAILABILITY STATEMENT
The data are available on request from the authors.

ACKNOWLEDGMENT
Open access funding provided by BIBLIOSAN.

[Correction added on 25th November 2022, after first online publication: BIBLIOSAN funding statement has been added.]

CONFLICT OF INTEREST
The authors have no potential conflicts of interest to declare.

TABLE 3 Cox’s regression for the multivariable analysis of survival by patients’ characteristics at time of relapse

Characteristics	Hazard ratio	95% CI	p-Value
Local/locoregional relapse	0.93	0.58–1.49	.756
Late relapse (>12 months)	0.58	0.36–0.94	.027
Surgery at relapse	0.78	0.20–3.07	.723
Radiotherapy at relapse	0.46	0.25–0.88	.018
Response to chemotherapy at relapse	0.29	0.15–0.54	<.001
Second remission achieved	0.16	0.04–0.65	<.001

RISK FACTORS (N°)
- 0
- 1
- 2–3/4-censored
- 5-censored
- 1-censored

FIGURE 2 Post-relapse overall survival (OS) based on number of prognostic risk factors emerging from the multivariable analysis (early relapse, radiotherapy not performed, no response to chemotherapy, and failure to achieve a second remission).
REFERENCES

1. Ferrari A, Brecht IB, Gatta G, et al. Defining and listing very rare cancers of pediatric age: consensus of the Joint Action on Rare Cancers (JARC) in cooperation with the European Cooperative Study Group for Pediatric Rare Tumors (EXPeRT). Eur J Cancer. 2019;110:120-126.

2. Ferrari A, Trama A, De Paoli A, et al. Access to clinical trials for adolescents with soft tissue sarcomas: enrolment in European pediatric Soft tissue sarcoma Study Group (EpSSG) protocols. Pediatr Blood Cancer. 2017;64:e26348.

3. Skapek S, Ferrari A, Gupta A, et al. Rhabdomyosarcoma. Nat Rev Dis Primers. 2019;5(1):1. https://doi.org/10.1038/s41572-018-0051-2

4. Hawkins DS, Chi YY, Anderson JR, et al. Addition of vincristine and irinotecan to vincristine, dacarbazine, and cyclophosphamide does not improve outcome for intermediate-risk rhabdomyosarcoma: a report from the Children’s Oncology Group. J Clin Oncol. 2018;36:2770-2777.

5. Bisogno G, Jenney M, Bergeron C, et al. Addition of dose-intensified doxorubicin to standard chemotherapy for rhabdomyosarcoma (EpSSG RMS 2005): a multicentre, open-label, randomized controlled, phase 3 trial. Lancet Oncol. 2018;19:1061-1071.

6. Bisogno G, De Salvo GL, Bergeron C, et al. Vinorelbine and continuous low-dose cyclophosphamide as maintenance chemotherapy in patients with high-risk rhabdomyosarcoma (RMS 2005): a multicentre, open-label, randomized, phase 3 trial. Lancet Oncol. 2019;20:1566-1575.

7. Oberlin O, Rey A, Lyden E, et al. Prognostic factors in metastatic rhabdomyosarcoma: results of a pooled analysis from United States and European cooperative groups. J Clin Oncol. 2008;26(14):2384-2389.

8. Chisholm JC, Merks JHM, Casanova M, et al. Open-label, multicentre, randomised, phase II study of the EpSSG and ITCC evaluating the addition of bevacizumab to chemotherapy in childhood and adolescent patients with metastatic soft tissue sarcoma (the BERNIE study). Eur J Cancer. 2017:83:177-184.

9. Heske CM, Mascarenhas L. Relapsed rhabdomyosarcoma. J Clin Med. 2021;10:804.

10. Mazzoleni S, Bisogno G, Garaventa A, et al. Outcomes and prognostic factors after recurrence in children and adolescents with nonmetastatic rhabdomyosarcoma. Cancer. 2005;104:183-190.

11. Chisholm JC, Maranet J, Rey A, et al. Prognostic factors after relapse in non-metastatic rhabdomyosarcoma: a nomogram to better define patients who can be salvaged with further therapy. J Clin Oncol. 2011;29:1319-1325.

12. Pappo AS, Anderson JR, Crist WM, et al. Survival after relapse in children and adolescents with rhabdomyosarcoma: a report from the Intergroup Rhabdomyosarcoma Study Group. J Clin Oncol. 1999;17:3487-3493.

13. Dantonello TM, Int-Veen C, Winkler P, et al. Initial patient characteristics can predict pattern and risk of relapse in localized rhabdomyosarcoma. J Clin Oncol. 2008;26:406-413.

14. Affinita MC, Ferrari A, Chiaravalli S, et al. Defining the impact of prognostic factors at the time of relapse for nonmetastatic rhabdomyosarcoma. Pediatr Blood Cancer. 2020;67:e28674.

15. Raney RB, Crist WM, Maurer HM, Foukels MA. Prognosis of children with soft tissue sarcoma who relapse after achieving a complete response. A report from the Intergroup Rhabdomyosarcoma Study I. Cancer. 1983;52:44-50.

16. Mattke AC, Bailey EJ, Schuck A, et al. Does the time-point of relapse influence outcome in pediatric rhabdomyosarcomas? Pediatr Blood Cancer. 2009;52:772-776.

17. De Corti F, Bisogno G, D’Alessio P, et al. Does surgery have a role in the treatment of local relapses of non-metastatic rhabdomyosarcoma? Pediatr Blood Cancer. 2011;57:1261-1265.

18. Winter S, Fasola S, Brisse H, et al. Relapse after localized rhabdomyosarcoma: evaluation of the efficacy of second-line chemotherapy. Pediatr Blood Cancer. 2015;62:1935-1941.

19. Mascarenhas L, Lyden ER, Breitfeld PP, et al. Risk-based treatment for patients with first relapse or progression of rhabdomyosarcoma: a report from the Children’s Oncology Group. Cancer. 2019;125:2602-2609.

20. Chiaravalli S, Bergamaschi L, Livellara V, et al. Adult-type non-rhabdomyosarcoma soft tissue sarcomas in pediatric age: salvage rates and prognostic factors after relapse. Eur J Cancer. 2022;169:179-187.

21. Maurer HM, Beltangady M, Gehan EA, et al. The Intergroup Rhabdomyosarcoma Study I: a final report. Cancer. 1998;61:209-220.

22. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92(3):205.

23. Kaplan EL, Meier P. Non-parametric estimation from incomplete observations. J Am Stat Assoc. 1958;53:457-481.

24. Conover WJ. Practical Nonparametic Statistics. Wiley; 1980:153-169.

25. Cox DR. Regression models and life tables. J R Stat Soc B. 1972;34:187-220.

26. Hayes-Jordan A, Doherty DK, West SD, et al. Outcome after surgical resection of recurrent rhabdomyosarcoma. J Pediatr Surg. 2006;41:633-638.

27. Klingebiel T, Pertl U, Hess CF, et al. Treatment of children with rhabdomyosarcoma: evaluation of the efficacy of second-line chemotherapy for first relapse rhabdomyosarcoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2011;57:1261-1265.

28. Mascarenhas L, Chi YY, Hingorani P, et al. Randomized phase II trial of bevacizumab or temsirolimus in combination with chemotherapy for first relapse rhabdomyosarcoma: a report from the Children’s Oncology Group. J Clin Oncol. 2009;27:118-125.

29. Defachelles AS, Bogart E, Casanova M, et al. Randomized phase 2 trial of the combination of vincristine and irinotecan with or without temozolomide, in children and adults with refractory or relapsed rhabdomyosarcoma (RMS). J Clin Oncol. 2015;33:2979-2990.

How to cite this article: Bergamaschi L, Chiaravalli S, Livellara V, et al. Relapse after nonmetastatic rhabdomyosarcoma: Salvage rates and prognostic variables. Pediatr Blood Cancer. 2023;70:e30050. https://doi.org/10.1002/pbc.30050