Supplement

Supplemental Figure 1. Forest plot summarizing meta-analysis of studies reporting early pain score
Supplemental Figure 2. Forest plot summarizing meta-analysis of studies reporting intermediate pain score
Supplemental Figure 3. Forest plot summarizing meta-analysis of studies reporting late pain score
Supplemental Figure 4. Forest plot summarizing meta-analysis of studies reporting very late pain score
Supplemental Figure 5. Forest plot summarizing meta-analysis of studies reporting time of the first request of rescue analgesia
Supplemental Figure 6. Forest plot summarizing meta-analysis of studies reporting additional analgesia requirement in first 24h
Supplemental Figure 7. Summary of the Egger’s publication bias plot
Supplemental Figure 8. “Leave-one-out” sensitivity analysis of studies reporting very early pain score
Supplemental Figure 9. “Leave-one-out” sensitivity analysis of studies reporting early pain score
Supplemental Figure 10. “Leave-one-out” sensitivity analysis of studies reporting intermediate pain score
Supplemental Figure 11. “Leave-one-out” sensitivity analysis of studies reporting late pain score
Supplemental Figure 12. “Leave-one-out” sensitivity analysis of studies reporting very late pain score
Supplemental Figure 13. “Leave-one-out” sensitivity analysis of studies reporting time of the first request of rescue analgesia
Supplemental Figure 14. “Leave-one-out” sensitivity analysis of studies reporting additional analgesia requirement in first 24h
Supplemental Figure 15. “Leave-one-out” sensitivity analysis of studies reporting nausea and vomiting in first 24h

Characteristics of included studies (order by year of publication)
Supplemental Figure 1. Forest plot summarizing meta-analysis of studies reporting early pain score.

Visual analogue scale at the early period	Mean Difference (95% CI)	% Weight
Pre-incision scalp block		
Carella 2021	-4.00 (-4.90, -3.10)	16.15
Hussien 2020	-1.80 (-2.64, -0.96)	16.38
Tschinda 2010	0.10 (-1.46, 1.66)	13.31
Guasani 2008	-1.45 (-2.90, 0.00)	13.79
Subgroup, DL (I² = 88.2%, p = 0.000)	-1.87 (-3.50, -0.23)	59.64
Post-incision scalp block		
Rigamonti 2020	-0.75 (-1.51, 0.01)	16.66
Zhang 2003	-2.80 (-4.57, -1.03)	12.38
Nguyen 2001	-2.10 (-4.12, -0.08)	11.32
Subgroup, DL (I² = 61.9%, p = 0.073)	-1.67 (-3.05, -0.29)	40.36
Heterogeneity between groups: p = 0.860		
Overall, DL (I² = 84.0%, p > 0.000)	-1.84 (-2.95, -0.73)	100.00

NOTE: Weights and between-subgroup heterogeneity test are from random-effects model.
Supplemental Figure 2. Forest plot summarizing meta-analysis of studies reporting intermediate pain score.

Visual analog scale at the intermediate period	Mean Difference (95% CI)	Weight
Pre-incision scalp block		
Carella 2021	−2.00 (−3.11, −0.89)	16.35
Hussien 2020	−1.06 (−2.05, −0.07)	17.97
Tuchinda 2010	0.57 (−0.78, 1.93)	13.50
Subgroup, DL (I^2 = 76.9%, p = 0.016)	−0.88 (−2.23, 0.47)	47.82
Post-incision scalp block		
Rigamonti 2020	−0.64 (−1.66, 0.38)	17.61
Dudko 2014	−1.68 (−3.00, −0.36)	13.81
Zhang 2003	−2.30 (−3.94, −0.66)	10.80
Nguyen 2001	−1.30 (−3.04, 0.44)	9.96
Subgroup, DL (I^2 = 10.8%, p = 0.339)	−1.31 (−2.03, −0.59)	52.18
Heterogeneity between groups: p = 0.583		
Overall, DL (I^2 = 50.1%, p = 0.062)	−1.16 (−1.84, −0.49)	100.00

NOTE: Weights and between-subgroup heterogeneity test are from random-effects model.
Supplemental Figure 3. Forest plot summarizing meta-analysis of studies reporting late pain score.

Visual analogue scale at the late period	Mean Difference (95% CI)	% Weight	
Pre-incision scalp block			
Hussien 2020	-0.80 (-1.60, 0.00)	20.75	
Tuchinda 2010	0.16 (-1.18, 1.42)	18.07	
Subgroup, DL (I² = 37.2%, p = 0.207)	-0.45 (-1.36, 0.46)	38.82	
Post-incision scalp block			
Rigamonti 2020	0.13 (-0.48, 0.73)	21.69	
Zhang 2003	-2.87 (-3.74, -1.99)	20.35	
Neuvon 2001	-1.50 (-2.59, -0.41)	19.14	
Subgroup, DL (I² = 93.6%, p = 0.000)	-1.39 (-3.31, 0.53)	61.18	
Homogeneity between groups: p = 0.382			
Overall, DL (I² = 88.3%, p = 0.000)	-0.98 (-2.13, 0.17)	100.00	

NOTE: Weights and between-subgroup heterogeneity test are from random-effects model.
Supplemental Figure 4. Forest plot summarizing meta-analysis of studies reporting very late pain score.

	Mean Difference (95% CI)	%
Visual analogue scale at the very late period		
Pre-incision scalp block		
Carella 2021	-2.00 (-2.80, -1.20)	15.12
Hussien 2020	-0.27 (-1.05, 0.51)	15.20
Tuchinda 2010	0.31 (-0.91, 1.52)	13.77
Subgroup, DL ($I^2 = 85.2\%$, $p = 0.001$)	-0.70 (-2.06, 0.67)	44.10
Post-incision scalp block		
Rigamonti 2020	0.82 (0.16, 1.47)	15.52
Dadko 2014	-2.44 (-4.04, -0.84)	12.31
Zhang 2003	-2.75 (-3.70, -1.80)	14.68
Nguyen 2001	-1.60 (-2.92, -0.28)	13.39
Subgroup, DL ($I^2 = 93.3\%$, $p = 0.006$)	-1.45 (-3.47, 0.57)	55.90
Heterogeneity between groups: $p = 0.545$		
Overall, DL ($I^2 = 89.7\%$, $p = 0.000$)	-1.09 (-2.22, 0.03)	100.00

NOTE: Weights and between-subgroup heterogeneity test are from random-effects model.
Supplemental Figure 5. Forest plot summarizing meta-analysis of studies reporting time of the first request of rescue analgesia.

Time of the first request of rescue analgesia	Mean Difference	95% CI	Weight
Pre-incision scalp block			
Hussien 2020	109.80	(72.98, 146.62)	23.01
Tuchinda 2010	−15.00	(−40.94, 10.94)	23.38
Subgroup, DL ($I^2 = 96.6\%$, $p = 0.000$)	46.69	(−75.61, 168.98)	46.39
Post-incision scalp block			
Skatulien? 2021	365.00	(225.46, 504.54)	16.18
Dudko 2015	402.00	(240.69, 563.31)	14.61
Dudko 2014	110.00	(68.65, 151.35)	22.82
Subgroup, DL ($I^2 = 90.9\%$, $p = 0.000$)	282.48	(67.17, 497.79)	53.61
Heterogeneity between groups: $p = 0.062$			
Overall, DL ($I^2 = 95.0\%$, $p = 0.000$)	164.65	(65.28, 264.01)	100.00

NOTE: Weights and between-subgroup heterogeneity test are from random-effects model.
Supplemental Figure 6. Forest plot summarizing meta-analysis of studies reporting additional analgesia requirement in first 24h.

Additional analgesia requirement in first 24h	Standard Mean Difference (95% CI)	% Weight
Pre-incision scalp block		
Carolla 2021	−1.60 (−2.24, −0.96)	14.66
Hussien 2020	−4.65 (−6.06, −3.23)	10.33
Tuchinda 2010	−0.21 (−0.75, 0.33)	15.14
Gazoni 2008	−0.46 (−1.19, 0.27)	14.22
Subgroup, DL (I² = 92.4%, p = 0.000)	−1.58 (−2.92, −0.24)	54.34
Post-incision scalp block		
Rigamonti 2020	0.26 (−0.17, 0.68)	15.60
Dukko 2014	−0.74 (−1.31, −0.16)	14.98
Ayoub 2006	0.04 (−0.52, 0.59)	15.07
Subgroup, DL (I² = 73.6%, p = 0.023)	−0.13 (−0.71, 0.45)	45.66
Heterogeneity between groups: p = 0.050		
Overall, DL (I² = 90.2%, p = 0.000)	−0.88 (−1.62, −0.13)	100.00

NOTE: Weights and between-subgroup heterogeneity test are from random-effects model.
Supplemental Figure 7. Summary of the Egger’s publication bias plot.
Supplemental Figure 8. “Leave-one-out” sensitivity analysis of studies reporting very early pain score.

Study	Meta-analysis estimates, given named study is omitted
Carella 2021	---
Hussien 2020	---
Tuchinda 2010	---
Gazoni 2008	---
Rigamonti 2020	---
Dudko 2014	---

Lower CI Limit	Estimate	Upper CI Limit
Supplemental Figure 9. “Leave-one-out” sensitivity analysis of studies reporting early pain score.

Study	Meta-analysis estimates, given named study is omitted		
	Lower CI Limit	Estimate	Upper CI Limit
Carella 2021			
Hussien 2020			
Tuchinda 2010			
Gazoni 2008			
Rigamonti 2020			
Zhang 2003			
Nguyen 2001			

Values range from approximately -3.28 to -0.43.
Supplemental Figure 10. “Leave-one-out” sensitivity analysis of studies reporting intermediate pain score.

Study	Lower CI Limit	Estimate	Upper CI Limit
Carella 2021			
Hussien 2020			
Tuchinda 2010			
Rigamonti 2020			
Dudko 2014			
Zhang 2003			
Nguyen 2001			

-2.07 -1.84 -1.16 -0.49 -0.28
Supplemental Figure 11. “Leave-one-out” sensitivity analysis of studies reporting late pain score.

Meta-analysis estimates, given named study is omitted

Study	Lower CI Limit	Estimate	Upper CI Limit
Hussien 2020			
Tuchinda 2010			
Rigamonti 2020			
Zhang 2003			
Nguyen 2001			
Supplemental Figure 12. “Leave-one-out” sensitivity analysis of studies reporting very late pain score.
Supplemental Figure 13. “Leave-one-out” sensitivity analysis of studies reporting time of the first request of rescue analgesia.

Study	Meta-analysis estimates, given named study is omitted
Hussien 2020	...
Tuchinda 2010	...
Skutulienė 2021	...
Dudko 2015	...
Dudko 2014	...

	Lower CI Limit	Estimate	Upper CI Limit
Hussien 2020			
Tuchinda 2010			
Skutulienė 2021			
Dudko 2015			
Dudko 2014			

23.75 65.28 164.65 264.01 330.93
Supplemental Figure 14. “Leave-one-out” sensitivity analysis of studies reporting additional analgesia requirement in first 24h.
Supplemental Figure 15. “Leave-one-out” sensitivity analysis of studies reporting nausea and vomiting in first 24h.

Meta-analysis estimates, given named study is omitted
Study	Lower CI Limit	Estimate	Upper CI Limit
Yang 2020			
Gazoni 2008			
Skutulienè 2021			
Rigamonti 2020			
Ayoub 2006			

0.1023 0.61 1.67 3.09
Characteristics of included studies (order by year of publication)

Skutulienė 2021

| Methods | Study design: randomized controlled trial (3 arms)
Study duration: not reported
Study setting: hospital, single center, Lithuanian |
|---------|---|
| Participants | Adults undergoing scheduled supratentorial brain tumor removal (n=141)
Inclusion criteria
1. ASA I–III
Exclusion criteria
1. Glasgow Coma Score (GCS) of less than 15
2. Allergy to local anesthetics
3. Undergoing long-term analgesic or corticosteroid therapy,
4. Cardiac arrhythmias
5. Impaired liver function
Mean age (years)
1. 57.2
Numbers allocated to each arm
1. Group wound infiltration (n = 47)
2. Group scalp nerve blockade (n = 47)
3. Group systemic analgesia (n = 47)
Male gender
1. Group wound infiltration: 13/34
2. Group scalp nerve blockade: 15/32
3. Group systemic analgesia: 16/31 |
| Interventions | Technique and occasion
Scalp block of the following nerves with 0.25% bupivacaine combined with 1% lidocaine and 1:200,000 epinephrine after suturing the wound:
1. The supraorbital and supratrochlear nerves
2. The zygomaticotemporal nerve
3. The auriculotemporal nerve
4. The greater and lesser occipital nerves
Dosage
20 mL |
| Outcomes | **Primary**
1. Pain as measured by the visual analogue score during the first 24 hours postoperatively (measured at 1, 3, 6 and 24 hours)
Secondary
1. The duration for the request of additional analgesics
2. Adverse effects
3. Baseline hemodynamic variables during induction through operation and postoperatively |
| Notes | **Funding**
No funding source reported |
Carella 2021

| Methods | Study design: randomized controlled trial (2 arms)
Study duration: October 2016 to December 2019
Study setting: hospital, single center, Belgium |
|---|---|
| Participants | Adults undergoing scheduled supratentorial brain tumor removal (n=60)
Inclusion criteria
1. ASA I–III
Exclusion criteria
1. Allergy to local anesthetic
2. Psychiatric disease
3. Inability to consent
4. Uncontrolled intracranial hypertension
Mean age (years)
1. 57
Numbers allocated to each arm
1. Group SB (n = 30)
2. Group CO (n = 30)
Male gender
1. Group SB: 13/17
2. Group CO: 13/17 |
| Interventions | **Technique and occasion**
Scalp block of the following nerves with 0.33% levobupivacaine after induction of general anesthesia:
1. The supraorbital and supratrochlear nerve
2. The auriculotemporal nerve
3. The postauricular branches of the greater auricular nerve
4. The zygomaticotemporal nerve
5. The greater, lesser, and third occipital nerves
Dosage
30 mL |
| Outcomes | **Primary**
1. Hemodynamic stability
Secondary
1. Cumulative intraoperative remifentanil consumption
2. Cumulative postoperative morphine consumption
3. Postoperative pain scores |
| Notes | **Funding**
No funding source reported |
Methods

Study design: randomized controlled trial (4 arms)
Study duration: October 2016 to December 2019
Study setting: hospital, single center, Belgium

Participants

Adults aged 18 to 60 years, who were waiting for elective craniotomy that acquired general anesthesia (n=85)

Inclusion criteria

1. ASA I–II
2. Body mass index 18 to 30 kg/m²

Exclusion criteria

1. Unable to understand or use VAS
2. Allergic to local anesthetics
3. Glasgow coma scale scores <15
4. History of opioid dependence, coagulopathy, scalp infection, pregnancy and previous craniotomy

Mean age (years, Mean±SD)

1. 44±12

Numbers allocated to each arm

1. Group R₀.2 (n = 21)
2. Group R₀.3 (n = 20)
3. Group R₀.5 (n = 22)
4. Group C (n = 22)

Male gender

1. Group R₀.2: 11/10
2. Group R₀.3: 12/8
3. Group R₀.5: 11/11
4. Group C: 7/15

Interventions

Technique and occasion

Scalp block of the following nerves with 0.33%, 0.33% or 0.5% levobupivacaïne before surgical incision and after intubation:

1. Unilateral supraorbital, auriculotemporal and lesser occipital nerve of the side of craniotomy
2. Bilateral greater occipital nerve

Dosage

8 mL

Outcomes

Primary

1. Pain as measured by the visual analogue score during the first 24 hours postoperatively (measured at 2, 4, 6 and 24 hours)

Secondary

1. Intraoperative hemodynamic variables (MAP and HR)
2. Additional sufentanyl requirements
3. Total consumption of dezocine during the first 24 hours after surgery
4. The time to first injection
5. Incidence of postoperative nausea and vomiting (PONV)
6. Complications both from local anesthetic and the nerve block

Notes

Funding

No funding source reported
Methods	Study design: randomized controlled trial (2 arms)
	Study duration: March 2010 to December 2011
	Study setting: hospital, single center, Canada

Participants	Adults aged 18 years and over, scheduled for supratentorial craniotomy (n=89)
Inclusion criteria	1. ASA physical status < IV
Exclusion criteria	1. History of significant coronary artery disease
	2. Presence of pre-existing pain related to the Intracranial pathology
	3. Active history of alcohol or recreational drug abuse
	4. Active history of psychotic disorder

| Mean age (years, Mean±SD) | 1. 54.5±15 |

Numbers allocated to each arm	1. Group treatment (n = 44)	2. Group control (n = 45)
Male gender	1. Group treatment: 16/28	2. Group control: 24/21

Interventions	Technique and occasion	Scalp block of the following nerves with 0.5% bupivacaine and 1:200,000 epinephrine at the end of the procedure:
	1. The supraorbital and supratrochlear nerves	
	2. The auriculotemporal nerve	
	3. The postauricular branches of the greater auricular nerve	
	4. The greater, lesser, and third occipital nerves	
Dosage	20 mL	

Outcomes	Primary	1. Pain as measured by the visual analogue score during the first 48 hours postoperatively (measured at 0.5, 1, 2, 4, 8, 12, 24 and 48 hours)
	Secondary	1. The total PCA hydromorphone consumption in the first at 24 and 48 post-operative hours
		2. Total hydromorphone demands and delivered doses in the first 24 and 48 post-operative hours
		3. The incidence of nausea and vomiting in the first 24 and 48 post-operative hours
		4. The time for patients to reach discharge eligibility from the PACU/ICU
		5. The time for patients to reach discharge eligibility from hospital
		6. Presence of long term pain as measured with the Numeric Rating Scale (NRS) at days 5, 30 and 60 postoperatively
		7. Karnofsky Performance Scale Index and modified pain treatment satisfaction scale (PTSS) at day 5

| Notes | Funding | This study was supported by the Physicians Services Incorporated Grant (PSI 09-22, PI Andrea Rigamonti). |
Hussien 2020

| Methods | Study design: randomized controlled trial (2 arms)
Study duration: March 2018 to December 2020
Study setting: hospital, single center, Egypt |
|-----------------|--|
| Participants | Patients aged 21–60 years of both genders and prepared to undergo craniotomy under general anesthesia for supratentorial tumors. (n=30)
Inclusion criteria
1. ASA grade I-II
2. Body mass index <35 kg/m²
Exclusion criteria
1. Glasgow coma score < 14
2. Huge tumor with marked midline shift And incision extending beyond the areas covered by regional scalp block
3. Uncontrolled hypertension
Mean age (years, Mean±SD)
1. 54.5±15
Numbers allocated to each arm
1. Group treatment (n = 15)
2. Group control (n = 15)
Male gender
1. Group treatment: 10/5
2. Group control: 11/4 |
| Interventions | Technique and occasion
Scalp block of the following nerves with 0.5% bupivacaine, 2% lidocaine and 1:200,000 epinephrine before skull pinning:
1. The supraorbital and supratrochlear nerves
2. The auriculotemporal nerve
3. The postauricular branches of the greater auricular nerve
4. The greater, lesser, and third occipital nerves
5. The zygomaticotemporal nerve
Dosage
17 mL |
| Outcomes | **Primary**
1. Intra-operative Heart rate (HR) at different times
2. Intraoperative mean arterial pressure changes
Secondary
1. Pain as measured by the visual analogue score during the first 24 hours postoperatively (measured at 0.5, 1, 2, 4, 8, 16 and 24 hours)
2. Time from extubation to the first request of analgesia
3. Total dose of postoperative Fentanyl consumption in the first 24 hours |
| Notes | **Funding**
No funding source reported |
| Methods | Study design: randomized controlled trial (3 arms)
Study duration: not reported
Study setting: hospital, single center, Lithuania |
|---------|---|
| Participants | Adults aged 18 years and over, scheduled for supratentorial craniotomy under general anesthesia (n=120)
Inclusion criteria
1. ASA status I-III
Exclusion criteria
Not reported
Mean age (years, Mean±SD)
Not reported
Numbers allocated to each arm
1. Group B (n ~40)
2. Group I (n ~40)
3. Group S (n ~40)
Male gender
Not reported |
| Interventions | **Technique and occasion**
Scalp block with 0.25% bupivacaine, 1% lidocaine and 1:200,000 adrenaline after skin closure
Dosage
Not reported |
| Outcomes | **Primary**
1. Pain as measured by the visual analogue score during the first 24 hours postoperatively
Secondary
1. Administered ketorolac doses
2. Duration for the requirement of first rescue analgesia |
| Notes | **Funding**
No funding source reported |
| Methods | Study design: randomized controlled trial (3 arms) |
|------------------|---|
| | Study duration: not reported |
| | Study setting: hospital, single center, Lithuania |
| Participants | Adults aged 18 years and over, scheduled for supratentorial craniotomy under general anesthesia (n=75) |
| | **Inclusion criteria** |
| | 1. ASA status I-III |
| | **Exclusion criteria** |
| | Not reported |
| | **Mean age (years, Mean±SD)** |
| | Not reported |
| | **Numbers allocated to each arm** |
| | 1. Group B (n =25) |
| | 2. Group I (n = 25) |
| | 3. Group S (n = 25) |
| | **Male gender** |
| | Not reported |
| Interventions | **Technique and occasion** |
| | Scalp block with 0.25% bupivacaine, 1% lidocaine and 1:200,000 adrenaline after skin closure |
| | **Dosage** |
| | 20ml |
| Outcomes | **Primary** |
| | 1. Pain as measured by the visual analogue score during the first 24 hours postoperatively (measured at 1, 3, 6 and 24 hours) |
| | **Secondary** |
| | 1. Administered ketorolac doses |
| | 2. Duration for the requirement of first rescue analgesia |
| Notes | **Funding** |
| | No funding source reported |
Methods

Study design: randomized controlled trial (3 arms)
Study duration: not reported
Study setting: hospital, single center, Thailand

Participants

Patients aged 16 to 65 years undergoing elective supratentorial craniotomy (n=60)
Inclusion criteria
1. ASA I and II
Exclusion criteria
1. Unable to assess pain
2. Documented allergy to local anesthetics
3. With hypertension
4. History of opioid dependence, coagulopathy, scalp infection, and previous craniotomy

Mean age (years, Mean ± SD)
1. 34.3 ± 11

Numbers allocated to each arm
1. Group 0.5% bupivacaine (n = 20)
2. Group 0.25% bupivacaine (n = 19)
3. Group normal saline (n = 20)

Male gender
1. Group 0.5% bupivacaine: 10/11
2. Group 0.25% bupivacaine: 8/11
3. Group normal saline: 14/6

Interventions

Technique and occasion
Scalp block of the following nerves with 0.5% or 0.25% bupivacaine and 1:200,000 adrenaline before skull pinning:
1. The supraorbital and supratrochlear nerves
2. The auriculotemporal nerve
3. The greater auricular nerve
4. The greater, lesser, and third occipital nerves
5. The zygomaticotemporal nerve

Dosage
Not reported

Outcomes

Primary
1. Pain as measured by the visual analogue score during the first 24 hours postoperatively (measured at 0.5, 1, 1.5, 2, 6, 12 and 24 hours)

Secondary
1. Sedation and nausea vomiting scores and antiemetics given to the patients
2. Time from extubation to the first analgesic given
3. Total morphine consumption in 24 hours post-operatively

Notes

Funding
This study was supported by the Ratchadapiseksompotch Fund, Faculty of Medicine, Chulalongkorn University.
Methods

Participants	Adult patients (aged > 18 years) with a supratentorial brain tumor scheduled for resection. (n=30)
	Inclusion criteria
	Not reported
	Exclusion criteria
	1. Pregnancy
	2. The presence of a preexisting intracranial defect
	3. Allergy to remifentanil or ropivacaine
	4. History of malignant hyperthermia.
	Mean age (years, Mean ± SD)
	Not reported
	Numbers allocated to each arm
	1. Group treatment (n = 14)
	2. Group control (n = 16)
	Male gender
	Not reported

Interventions	**Technique and occasion**
	Scalp block of the following nerves with 0.5% ropivacaine after the induction of anesthesia and endotracheal intubation:
	1. The supraorbital and supratrochlear nerves
	2. The auriculotemporal nerve
	3. The greater, lesser, and third occipital nerves
	4. The zygomaticotemporal nerve
	Dosage
	Not reported

Outcomes	**Primary**
	1. BP and HR during the surgery and in the immediate postoperative period
	2. Intraoperative mean arterial pressure changes total dose of remifentanil and expired concentration of sevoflurane
	Secondary
	1. Pain as measured by the visual analogue score during the first 4 hours postoperatively (measured at 1, 2 and 4 hours)
	2. Total opioid consumption
	3. Incidence of postoperative nausea and vomiting

Notes	**Funding**
	No funding source reported
Methods	Study design: randomized controlled trial (2 arms)
Study duration: not reported	
Study setting: hospital, single center, Canada	
---	---
Participants	Patients aged 18–70 years of both genders and scheduled for an elective supratentorial craniotomy. (n=50)
Inclusion criteria
1. ASA grade I-III
Exclusion criteria
1. Inability to understand a numerical rating scale (NRS)
2. Proven or suspected allergy to local anesthetics or morphine
3. A craniotomy incision extending beyond the field covered by the SNB
4. Chronically treated with opioid medications (>2 week)
5. Presenting with a history of alcohol abuse and with active psychiatric disorders
Mean age (years, Mean±SD)
1. 50.5±13.4
Numbers allocated to each arm
1. Group block (n = 25)
2. Group morphine (n = 25)
Male gender
1. Group block: 14/11
2. Group morphine: 15/10 |
| Interventions | **Technique and occasion**
Scalp block of the following nerves with 0.5% bupivacaine and 2% lidocaine at the end of surgery:
1. The supraorbital and supratrochlear nerves
2. The auriculotemporal nerve
3. The postauricular branches of the greater auricular nerve
4. The greater, lesser, and third occipital nerves
Dosage
20 mL |
| Outcomes | **Primary**
1. Pain as measured by the numerical rating scale during the first 24 hours postoperatively (measured at 1, 2, 4, 8, 12, 16 and 24 hours)
Secondary
1. Cumulative doses of codeine
2. Incidence of nausea, and vomiting as well as periods of confusion
3. Total dose of postoperative Fentanyl consumption in the first 24 hours |
| Notes | **Funding**
This study was supported in part by a Grant from the Canadian Anesthesiologist Society |
Methods | Study design: randomized controlled trial (4 arms)
Study duration: not reported
Study setting: hospital, single center, China

Participants | Patients aged 21–60 years of both genders and prepared to undergoing elective supratentorial craniotomy. (n=60)
Inclusion criteria
1. ASA grade I-III
Exclusion criteria
1. Preoperative use of analgesic
Mean age (years, Mean±SD)
Not reported
Numbers allocated to each arm
1. Group control (n = 10)
2. Group SNB (n = 17)
1. Group WIA (n = 17)
2. Group SCPB (n = 16)
Male gender
Not reported

Interventions | **Technique and occasion**
Scalp block of the following nerves with 0.75% ropivacaine at skin closure before the patient was awakened:
1. The supraorbital and supratrochlear nerves
2. The auriculotemporal nerve
3. The postauricular branches of the greater auricular nerve
4. The greater and lesser nerves
Dosage
Not reported

Outcomes | **Primary**
1. Pain as measured by the visual analogue score during the first 48 hours postoperatively (measured at 4, 8, 12, 16, 24 and 48 hours)
Secondary
Not reported

Notes | **Funding**
No funding source reported
Methods	Study design: randomized controlled trial (2 arms)
	Study duration: not reported
	Study setting: hospital, single center, Canada
Participants	Patients aged 18 to 70 years of both genders and scheduled to undergo a craniotomy for either a supratentorial mass or an aneurysm clipping. (n=30)
	Inclusion criteria
	1. ASA physical status I–III
	Exclusion criteria
	1. Inability to understand or incapacity to use the visual analog scale (VAS)
	2. Proven or suspected allergy to local anesthetics or codeine phosphate
	3. A craniotomy incision extending beyond the field of the block
	4. Chronically (more than 2 weeks) treated with narcotic medications
	Mean age (years, Mean ± SD)
	1. 48 ± 10.4
	Numbers allocated to each arm
	1. Group ropivacaine (n = 15)
	2. Group saline (n = 15)
	Male gender
	1. Group ropivacaine: 8/7
	2. Group saline: 5/10
Interventions	**Technique and occasion**
	Scalp block of the following nerves with 0.75% ropivacaine at skin closure before the patient was awakened:
	1. The supraorbital and supratrochlear nerves
	2. The auriculotemporal nerve
	3. The postauricular branches of the greater auricular nerve
	4. The greater, lesser, and third occipital nerves
	Dosage
	20 mL
Outcomes	**Primary**
	1. Pain as measured by the visual analogue score during the first 48 hours postoperatively (measured at 4, 8, 12, 16, 20, 24 and 48 hours)
	Secondary
	1. Glasgow coma score
	2. Localization of the site of pain
	3. Cumulative doses of codeine
Notes	**Funding**
	No funding source reported