Contemporaneous observations of the radio galaxy NGC 1275 from radio to very high energy γ-rays

J. Aleksic1, S. Ansoldi2, L. A. Antonelli3, P. Antonanz4, A. Babic5, P. Bangale6, U. Barres de Almeida6, J. A. Barrio5, J. Becerra González7, W. Bednarek3, K. Berger8, E. Bernardini10, A. Biland11, O. Blanch1, R. K. Bock6, S. Bonnefoy1, G. Bonnoli3, F. Borracci6, T. Bretz12,25, E. Carmona13, A. Carosi3, D. Carreto Fidalgo12, P. Colin6, E. Colombo8, J. L. Contreras7, J. Cortina1, S. Covino3, P. Da Vela4, F. Dazzi2, A. De Angelis2, G. De Caneva10, B. De Lotto2, C. Delgado Mendez13, M. Doert14, A. Domínguez15,26, D. Dominis Prester5, D. Dorner12, M. Doro16, S. Einecke14, D. Eisenacher12, D. Elsaesser12, E. Farina17, F. Ferenc5, M. V. Fonseca7, L. Font18, K. Franzen14, C. Fruck6, R. J. García López8, M. Garcaarczyk10, D. Garrido Terrats18, M. Gaug18, G. Giavitto1, N. Godinovic6, A. González Muñoz1, S. R. Gozzini10, A. Hadamek14, D. Hadascz19, A. Herrero8, D. Hildebrand11, J. Hose6, D. Hrupec3, W. Idec9, V. Kadenius20, H. Kellermann6, M. L. Knoetig11, J. Krause6, J. Kushida21, A. La Barbera3, D. Lelas9, N. Lewandowska12, E. Lindfors20,27, S. Lombardi3, M. López7, R. López-Coto1, A. López-Oramas1, I. Lozano7, M. Makariev22, K. Mallot10, G. Maneva22, N. Mankuzhiyil2, K. Mannheim12, L. Maraschi3, B. Marcote23, M. Mariotti16, M. Martí1, D. Mazin6, U. Menzel6, M. Meucci4, J. M. Miranda4, R. Mirzoyan6, A. Moralejo1, P. Munar-Adrover23, D. Nakajima21, A. Niedzwiecki9, K. Nilsson20,27, N. Nowak6, R. Orito21, A. Overkemping14, S. Paiano16, M. Palatiello2, D. Panek16, R. Paolletti14, J. M. Paredes25, X. Paredes-Fortuny23, S. Partini4, M. Persic23, F. Prada15,28, P. G. Prada Moroni24, E. Prandini16, S. Preziuso1, I. Puljak3, R. Reintal20, W. Rhode14, M. Ribó23, J. Rico1, J. Rodriguez Garcia6, S. Rügamer12, A. Saggion16, T. Saito21, K. Saito21, M. Salvati3, K. Satalecka7, V. Scalzotto16, V. Scapin7, C. Schultz16, T. Schweizer6, S. N. Shore24, A. Sillanpää20, J. Sitarek1, I. Snidaric9, D. Sobczynska9, F. Spanier12, V. Stamatescu1, A. Stamerra3, T. Steinbring12, J. Storcz12, S. Sun6, T. Suric5, L. Takalo20, F. Tavecchio3, T. Terzić5, D. Tesar20, M. Tesliva6, J. Thaele14, O. Tibolla12, D. F. Torres19, T. Toyama6, A. Treves17, M. Uellenbeck14, P. Vogler11, R. M. Wagner6,20, F. Zandanel15,30, R. Zanin25 (\textit{The MAGIC Collaboration}), and B. Balmaverde31, J. Kataoka32, R. Rekola20, and Y. Takahashi32.

(Affiliations can be found after the references)

Received: October 28, 2013 / Accepted: January 23, 2014

ABSTRACT

Aims. The radio galaxy NGC 1275, recently identified as a very high energy (VHE, >100 GeV) γ-ray emitter by MAGIC, is one of the few non-blazar active galactic nuclei detected in the VHE regime. The purpose of this work is to better understand the origin of the γ-ray emission and locate it within the galaxy.

Methods. We studied contemporaneous multi-frequency observations of NGC 1275 and modeled the overall spectral energy distribution. We analyzed unpublished MAGIC observations carried out between October 2009 and February 2010, and the previously published observations taken between August 2010 and February 2011. We studied the multi-band variability and correlations by analyzing data of \textit{Fermi}-LAT in the 100 MeV–100 GeV energy band, as well as \textit{Chandra} (X-ray), KVA (optical), and MOJAVE (radio) data taken during the same period.

Results. Using customized Monte Carlo simulations corresponding to early MAGIC stereoscopic data, we detect NGC 1275 also in the earlier MAGIC campaign. The flux level and energy spectra are similar to the results of the second campaign. The monthly light curve above 100 GeV shows a hint of variability at the 3.6 σ level. In the \textit{Fermi}-LAT band, both flux and spectral shape variabilities are reported. The optical light curve is also variable and shows a clear correlation with the γ-ray flux above 100 MeV. In radio, three compact components are resolved in the innermost part of the jet. One of these components shows a similar trend as the \textit{Fermi}-LAT and KVA light curves. The γ-ray spectra measured simultaneously with MAGIC and \textit{Fermi}-LAT from 100 MeV to 650 GeV can be well fitted either by a log-parabola or by a power-law with a sub-exponential cutoff for the two observation campaigns. A single-zone synchrotron-self-Compton model, with an electron spectrum following a power-law with an exponential cutoff, can explain the broadband spectral energy distribution and the multi-frequency behavior of the source. However, this model suggests an untypical low bulk-Lorentz factor or a velocity alignment closer to the line of sight than the pc-scale radio jet.

Key words. galaxies: active - galaxies: jets - galaxies (NGC 1275/3C 84) - gamma rays: galaxies
1. Introduction

The radio galaxy NGC 1275 is the central dominant galaxy of the Perseus cluster (Abell 426). It is a well-known active galactic nucleus (AGN) already included in the original study of Seyfert (1943). In fact, it is a rather complex object with very peculiar characteristics that might be the result of massive gas accretion from the cluster cooling flow or from a recent merging event (Conselice et al. 2003). The main features, in addition to the central AGN, are remarkable gas filaments that are tens of kpc long and emit strong hydrogen lines (Lynds 1970), and a foreground galaxy that falls toward NGC 1275 (Cauet et al. 1992).

In radio, the emission is dominated by a very bright compact source (3C84) at the center of the galaxy. The core-dominated morphology with asymmetrical jets at both kpc (Pedlar et al. 1990) and pc scales (Asada et al. 2006) looks like a Fanaroff-Riley type I (FR I) radio galaxy with a jet axis relatively close to the line of sight. The faint counter jet measured with Very Long Baseline Interferometry (VLBI) suggests a jet angle of 30°–55° in the core region (Vermeulen et al. 1994; Walker et al. 1994; Asada et al. 2006). At larger scales, there is evidence of jet bending (Pedlar et al. 1994). The flux and morphology of the core radio emission are variable. Recent observations showed that an outburst is on-going since 2005 (Nagai et al. 2010). At sub-pc scales, a new component appeared near the nucleus in 2007 and continues to grow in flux as it travels away from the nucleus. Since 2010, its brightness at 15 GHz has exceeded that of the nucleus (Nagai et al. 2012).

The X-ray emission is dominated by the thermal emission of the intrachannel medium cooling flow in the cluster central region (Churazov et al. 2003; Fabian et al. 2011). However, a non-thermal component from the nucleus is detected with high-resolution instruments (Churazov et al. 2003; Balmaverde et al. 2006), which follows a hard power-law X-ray emission that matches the extrapolation of the AGN power-law X-ray emission well.

In γ-rays, emission from both the cluster and the AGN was expected. A first hint of high-energy emission from the NGC 1275 region was found in the COS B data (1975–1982) Strong & Bignami (1983) but was not confirmed by the next instrument CGRO-EGRET, which started observations one decade later (1991–2000) Reimer at al. (2003). After the first four months of the all-sky survey with Fermi-LAT in 2008, γ-ray emission from NGC 1275 was clearly result in the discovery of γ-ray emission above 300 GeV from IC 310, another radio galaxy of the Perseus cluster (Aleksić et al. 2010a, 2014).

In the second campaign (Camp. 2), observations were instead taken in the standard full-stereo trigger mode (recorded events are triggered simultaneously by both telescopes). It resulted in the first detection of NGC 1275 at energies above 100 GeV (Aleksić et al. 2012a).

The soft-stereo trigger allows us to analyze MAGIC-I data in single mode but has a slightly higher energy threshold for stereoscopic data than the full-stereo trig-
ger. However, above \(\sim 150 \text{ GeV} \) data collected in both campaigns are almost identical and can be treated as a uniform data sample. This was the case for the study of the \(\gamma \)-ray emission induced by cosmic-ray population in the Perseus cluster (Aleksić et al. [2012]). Instead, for data analysis below \(150 \text{ GeV} \) (as performed here), the two campaigns must be analyzed separately.

Both surveys were performed in the false-source tracking (wobble) mode (Fomin et al. 1994), with data equally split into two (Camp. 1) or four (Camp. 2) pointing positions located symmetrically at 0.4° from NGC 1275. Observations were carried out at low zenith angles (<35°), which resulted in an analysis energy threshold (defined as the peak of the \(\gamma \)-ray energy distribution for a Crab-like spectrum) of 100 GeV.

The data analysis was performed using the standard software package MARS (Aliu et al. 2009), which includes the latest standard routines for stereoscopic analysis (Aleksić et al. [2012]; Lombardi et al. [2011]). The \(\gamma \)-ray selection cuts were optimized by means of contemporaneous Crab Nebula data and Monte Carlo simulations. The background was estimated from mirror regions (off-regions) corresponding to the source position in the camera during the other wobble pointing. Thus, depending on the number of wobble positions used in the campaign, a single off-region (Camp. 1) or three off-regions (Camp. 2) were considered. While the standard Monte Carlo simulations were used for the analysis of Camp. 2 data (reported in Aleksić et al. [2012]), the data analysis of the first campaign required new dedicated simulations to fully take into account the non-standard trigger condition at the lowest energies (<150 GeV).

After applying standard quality checks based on the rate of the stereo events and the distributions of basic image parameters, 39.0 h (Camp. 1) and 45.7 h (Camp. 2) of data were selected to derive the results presented here. The rejected data were affected mainly by poor atmospheric conditions during the data taking.

The \(\gamma \)-ray signal from the NGC 1275 is detected only at low energies. Fig. 1 shows the \(\theta^2 \) plots obtained with Camp. 1 data (October 2009 – February 2010) for analysis cuts corresponding to an energy threshold of 100 GeV. We found an excess of 742 (+86) events in the fiducial signal region with \(\theta^2 < 0.026 \text{ degree}^2 \), corresponding to a significance of 6.1 \(\sigma \), calculated according to the Eq. 17 of Li & Ma (1983). During the second campaign (August 2010 – February 2011), an excess of 522\(\pm \)81 events above the same energy threshold was detected with a significance of 6.6 \(\sigma \). Detailed Camp. 2 results are reported in Aleksić et al. (2012).

The significance skymap above 100 GeV for the first campaign is shown in Fig. 2. The central hot spot (\(\sim 60 \sigma \)) corresponding to the NGC 1275 position is consistent with a point-like source. Conversely to the skymap above 400 GeV reported in Aleksić et al. (2010) for the same period, the radio galaxy IC 310 is not visible in the \(\sim 100 \text{ GeV} \) skymap due to its very hard spectrum.

The unfolded differential energy spectra of the source derived from the two observational campaigns are shown in Fig. 3. The error bars represent the statistical uncertainties only, but for the power-law fit parameterization the systematic effects\(^1\) are also taken into account. For Camp. 1, the spectrum between 65 GeV and 650 GeV can be described by a simple power-law \((\chi^2/\text{d.o.f} = 4.86/3) \)

\[
\frac{d\mathcal{F}}{dE} = f_0 \left(\frac{E}{100 \text{ GeV}} \right)^{-\Gamma},
\]

with a photon index \(\Gamma = 4.0 \pm 0.5_{\text{stat}} \pm 0.3_{\text{syst}} \) and a normalization constant at 100 GeV \(f_0 = (5.0 \pm 0.9_{\text{stat}} \pm 1.1_{\text{syst}}) \times 10^{-10} \text{ cm}^{-2} \text{s}^{-1} \text{ TeV}^{-1} \). The spectrum of Camp. 2 corresponds to the result reported in Aleksić et al. (2012):\(^2\)

\(^1\) The parameter \(\theta^2 \) is the square angular distance between the reconstructed source of the events and the nominal positions of the expected source.

\(^2\) The systematic errors of the flux normalization and the energy spectral slope considered here have been estimated to be lower than 23\% and \(\pm 0.3 \), respectively, whereas the systematic uncertainty on the energy scale is 17\%. These values are more conservative than those presented in Aleksić et al. (2012), because of the flux weakness and the spectral steepness of NGC 1275, as measured by MAGIC.
we fixed the normalization of both Galactic and extra-galactic diffuse backgrounds to the average values determined from the whole observing period described in this paper (from August 4, 2008 to February 21, 2011). The early portion of the data between August 4, 2008 and August 13, 2009 coincides with the early LAT observations of NGC 1275 presented in Kataoka et al. (2010) (see also Brown & Adams 2011). The systematic uncertainties on the flux were estimated as 10% at 100 MeV, decreasing to 5% at 560 MeV, and increasing to 10% at 10 GeV and higher (Ackermann et al. 2012).

Panel (b) of Fig. 4 shows the \(\gamma \)-ray flux above 100 MeV of NGC 1275 from September 25, 2009 to February 18, 2011 binned at one-week intervals. In each bin, the significance of the NGC 1275 detection is higher than the test statistic \(\chi^2 > 10 \) and the ratio of flux error to flux is below 0.5 (\(\delta F / F \lesssim 0.5 \), see Nolan et al. 2012). There is a general trend of increasing flux toward the end of the observations, and several episodes of large flares with a flux variability as fast as one week.

Fig. 5 shows the Fermi-LAT spectral energy distributions (SED) derived for the two MAGIC-observation campaigns (MJD 55123–55241 for Camp. 1 and MJD 55417–55595 for Camp. 2) compared with that obtained for the first year given in Kataoka et al. (2010). The spectra were obtained from nine independent energy bins: (0.1–0.2, 0.2–0.4, 0.4–0.8, 0.8–1.6, 1.6–3.2, 3.2–6.4, 6.4–12.8, 12.8–25.6, and 25.6–51.2) GeV. The general spectral shape can be approximated by a power-law function with a photon index \(\Gamma \simeq 2 \), slightly curving down toward the highest energies. Substantial spectral evolution can be seen in different observational periods, both in the flux and peak frequencies of the \(\gamma \)-ray emissions. The Camp. 2 mean GeV flux is about twice as high as during the first MAGIC campaign, and the Camp. 2 SED shows a clear curvature peaking around 1 GeV, whereas the first-year SED is constantly decreasing with energy. However, above a few GeV all the spectra reach similar fluxes. The \(\gamma \)-ray flux seems more variable at low energy. The precise fit characterization of the LAT spectrum is discussed together with the MAGIC data in Section 3.3.

2.2. Fermi-LAT

The Large Area Telescope (LAT) is a pair-conversion telescope onboard the Fermi \(\gamma \)-ray Space Telescope, designed to cover the energy band from 20 MeV to higher than 300 GeV (Atwood et al. 2009). The observations used here comprise all scientific data obtained between August 4, 2008 and February 21, 2011. We applied a zenith angle cut of 100° to greatly reduce \(\gamma \)-rays from Earth’s limb. The same zenith cut is also accounted for in the exposure calculation using the LAT Science Tool gtlike. We used the “Source” class events (Ackermann et al. 2012), which is the recommended class for regular analysis. In our analysis, Science Tools version v9r27p1 and instrumental response functions P7SOURCE_V6 were used. The lower energy bound was set at 100 MeV and the region of interest (ROI) radius at 10° (see Abdo et al. 2009). All the nearby sources in the 2FGL catalog (Nolan et al. 2012) were included in the model of the ROI, fixing their spectral index and letting their normalization free in the fit. Since no variability is expected for the underlying background diffuse emission,
Aleksić et al. (MAGIC collaboration): NGC 1275 multi-frequency observation

Fig. 4. Multi-frequency light curves of NGC 1275 from October 2009 to February 2011. The vertical gray lines show the exact observation dates with MAGIC. (a) The MAGIC LC above 100 GeV in monthly bins. The thick dashed lines represent the constant fit for both observation campaigns. For data showing an excess <1σ, upper limits (black arrows) are calculated assuming a spectral index Γ=4.0, using the Rolke et al. 2005 method with a confidence level of 95% and a total systematic uncertainty of 30%. (b) The Fermi-LAT LC above 100 MeV has a weekly binning. (c) The KVA R-band LC shows the core continuum flux corrected for Galactic extinction. The constant systematic error (±0.6 mJy) induced by the host-galaxy and emission-line subtraction is not included in the error bars. (d) The VLBA LCs show the 15 GHz emission from the three innermost components of the radio jet.

2.3. Chandra X-ray Observatory

The ACIS detector onboard the Chandra X-ray Observatory is a spectrometer with very high angular resolution (∼0.5′) operating in the range of 0.2–10 keV. In the public archive, we found seven observations performed during the MAGIC observing period (namely ObsId 11713, 11714, 12025, 12033, 12036, and 12037; PI Fabian). In NGC 1275, the nuclear X-ray flux is high enough that pileup is potentially a severe problem. For an on-axis observation, PIMMS estimates a total pileup fraction of about 52% (i.e. more than half of the incident photons are either combined into piled events or removed because their energy is higher than the spacecraft threshold). The nucleus was not the primary target of these observations and no observing strategy for minimizing nuclear pileup was actuated (e.g. selecting a subarray to reduce the nominal frame integration time). However, this set of observations was centered several arc-minutes away from the nucleus (3.2′–7.6′), and this reduces the pileup because at larger offset the effective area of the mirrors is lower and the point-spread function (PSF) is larger. We analyzed the three observations with offset angles >7.5′ (ObsId 12025, 12033, 12036) that are less affected by the pileup. The measured counts to frame are still higher than the typical threshold (0.1–0.2, e.g. Massaro et al. 2012) above which the pileup is a problem. Thus, a pileup model is statistically required to fit the data.

We applied the standard data reduction procedure using the Chandra Interactive Analysis of Observations CIAO 4.4, with Chandra Calibration Database CAL-DB version 4.4.1. We generated a new level = 2 event file by applying the standard grade, status, and good time filters. We rebinned the spectrum using a 25-count threshold and fitted the spectrum in the range 0.5–9.5 keV. The three spectra were fitted simultaneously by adopting the model pileup×phabs[mekal+zphabs(powerlaw)] in XSPEC version: 12.7.1, where mekal models the thermal and line emissions of the hot diffuse gas, powerlaw is the non-thermal power-law emission from the jet, pileup reproduces the

http://cxc.harvard.edu/ciao/guides/acis_data.html
pileup effect and, phabs and zphabs correspond to the Galactic and internal absorptions. The metal abundance and hydrogen density of mekal were fixed to 0.7 solar value and 0.1 cm\(^{-3}\), respectively. The temperature and normalization are obtained from the fit (\(kT = 0.30 \pm 0.01\) keV). For the absorption, we fixed the hydrogen column density from the Galaxy \((N_{H,gal} = 1.5 \times 10^{21}\) cm\(^{-2}\)) and let free the internal absorption \((zN_{H} = 5.6 \pm 0.2 \times 10^{21}\) cm\(^{-2}\)).

The power-law slope \(\Gamma\) is strongly affected by the pileup effect, which reduces the counts at lower energy (because two or more photons are counted as one) and increases the counts at high energy. This creates a kind of degeneracy, and we decided to fix the parameter \(\Gamma\) in the model. All the parameters of the powerlaw and mekal models were linked, except for the normalization. Table 1 provides the results of the fit for several power-law slope assumptions and Fig. 6 shows the measured energy spectra and the fit models for \(\Gamma = 2.5\).

Table 1. Unabsorbed integral flux of the NGC 1275 non-thermal power-law core emission in the range 2-10 keV obtained from Chandra observations assuming different power-law slopes.

ObsId	Date	\(\Gamma\)	\(\chi^2\) (d.o.f.)	\(F(2-10\text{ keV})\) \(\times 10^{-11}\) erg cm\(^{-2}\) s\(^{-1}\)
12025	2009-11-25	2.5	1.26 ± 0.1	1.6168 (1075)
12033	2009-11-27	2.0	1.27 ± 0.1	1.0374 (1075)
12036	2009-12-02	2.0	1.35 ± 0.1	1.3928 (1075)
12025	2009-11-25	2.5	1.50 ± 0.1	1.3928 (1075)
12025	2009-11-27	2.5	1.50 ± 0.1	1.3928 (1075)
12036	2009-12-02	2.0	1.71 ± 0.1	1.3928 (1075)

\(\text{(*) Integral flux in } 10^{-11} \text{ erg cm}^{-2} \text{ s}^{-1} \text{ (uncertainties at } \pm 1\sigma)\)

2.4. KVA and NOT

NGC 1275 has been monitored in the optical R-band by the Tuorla blazar monitoring program\(^4\) since October 2009. The observations are performed using the KVA 35 cm telescope located at La Palma. The data were reduced using the standard data analysis pipeline and the magnitudes were measured with differential photometry with an aperture of 5.0\(''\) and the comparison stars from Fiorucci et al. (1998). The observed magnitudes varied between 13.05 and 13.3. The magnitudes were converted to flux using the standard formula \(S = S_0 \cdot 10^{-0.4 \cdot m_{\text{mag}}/2.5}\) and \(S_0 = 3080\) Jy.

To calculate the intrinsic emission from the core, the measured magnitudes over the MAGIC observing periods have to be averaged, the host galaxy subtracted, and the resulting data de-reddened. Additionally, the core flux is contaminated by emission lines that also need to be subtracted. To estimate the contributions of the host galaxy and the emission lines to the raw KVA measurements, NGC 1275 was observed with the Nordic Optical Telescope (NOT) on November 15, 2011 using the ALFOSC instrument. Five 60 s R-band exposures and two spectra using grism 4 and slit 1\(''\) were obtained. The images were reduced and combined using the standard IRAF tasks. The methodology of Nilsson et al. (2007) was used to estimate the contribution of the host galaxy. In short, the method is based on fitting a two-dimensional nucleus plus host galaxy model to the image and convolving the model with the PSF derived from the stars in the same field of view. The resulting host galaxy flux based on the aperture used is 11.08 ± 0.55 mJy. The line contamination is estimated from the spectrum of NGC 1275 by integrating the observed line flux within the NOT R-band filter. We find that the line contamination in the R-band is 0.9 mJy, that is only ~10% of the host flux. The host and line contaminations were then subtracted to derive the core continuum non-thermal flux, which was corrected for Galactic extinction (de-reddened) using the extinction value from Schlegel et al. (1998). The measured

\(http://users.utu.fi/kani/1m\)
fluxes are shown together with the multi-frequency light curves (Fig. 4). The mean fluxes over the two MAGIC campaigns are (4.1 ± 0.6) mJy for Camp. 1 and (6.5 ± 0.6) mJy for Camp. 2.

2.5. MOJAVE observations

The Very Long Baseline Array (VLBA) is a radio interferometer using ten antennas 25 m in diameter located across the USA between Hawaii and the Virgin Islands. Thanks to its very long baselines (up to 8600 km), angular resolutions down to milli-arcseconds (mas) can be achieved. The Monitoring Of Jets in AGNs with VLBA Experiments (MOJAVE) program is constantly observing a set of bright AGNs in the northern hemisphere at 15 GHz (Lister et al. 2009).

The calibrated data of the MOJAVE program were reduced using the NRAO Astronomical Imaging Processing System (AIPS). In this work, we analyzed five epochs covering the time interval from October 2009 to February 2011. Fig. 7 shows the total intensity images of the central region (∼1 pc) at 15 GHz, featuring three bright components C1, C2, and C3. Generally C1 is understood to be the nuclear core emission. C3 corresponds to the rapidly growing component that recently appeared (Nagai et al. 2010). The position and flux density for each component was derived using the task JMFIT, which fits a Gaussian function to a selected area in the image plane. The obtained flux densities are listed in Table 2 and are shown in panel (d) of Fig. 4. We consider the VLBA accuracy of amplitude calibration as the dominant uncertainty (at the level of 5%). While the flux densities of C1 and C2 do not show considerable variability, the intensity of C3 significantly increases between the beginning and the end of the observational campaign (as reported Table 2).

2.6. Other multi-frequency data

NGC 1275 is a famous and bright object that is observed at many frequencies. Some observations are regularly published in scientific journals and can be used for our broadband study without dedicated data processing.

NGC 1275 was part of the Early Release Compact Source Catalogue of the Planck microwave observatory (Planck Collaboration 2011, and references therein). This catalog contains NGC 1275 observations taken during two periods: from August 29 to September 4, 2009 and from February 10 to 19, 2010. Both periods are close to the first MAGIC observation campaign. More recent Planck observations taken from August 29 to September 4, 2010, corresponding to the second MAGIC campaign, are reported in Giommi et al. (2012). The derived spectrum between 30 GHz and 857 GHz agrees well with the one reported in Giommi et al. (2012). The obtained spectrum from MOJAVE data at 15 GHz.

Epoch	C1 (Jy)	C2 (Jy)	C3 (Jy)
2009-10-09	5.80 ± 0.29	5.79 ± 0.29	5.54 ± 0.27
2010-08-06	5.84 ± 0.29	5.74 ± 0.29	5.80 ± 0.43
2010-09-29	5.48 ± 0.27	4.53 ± 0.23	9.42 ± 0.47
2010-11-20	5.59 ± 0.28	5.62 ± 0.28	9.20 ± 0.46
2011-02-27	5.13 ± 0.26	4.97 ± 0.25	9.21 ± 0.46

3. Interpretations

3.1. Data contamination

The majority of known VHE γ-ray emitting AGNs are blazars, that is, their jet points directly to the observer. In these cases, the non-thermal jet emission is highly boosted

http://swift.gsfc.nasa.gov/results/bst70mon/SWIFT J0319.7p4132
and dominates other components. It is rather simple to subtract the background emission from the host galaxy. For NGC 1275, however, this is much more difficult. Thermal and non-thermal radiations can be emitted by extended structures in the host galaxy or even the host cluster of galaxies. Thus, observations with different angular resolution can integrate signal from different regions.

While the rapid and strong variability measured by Fermi-LAT implies that the γ-ray emission is largely dominated by a compact source most likely close to the nucleus, there are strong indications that at other frequencies other emitting components contribute significantly to the observed flux. In optical, the KVA measurements were corrected for both the host-galaxy and emission-line contributions. They are still significantly higher than previous Hubble Space Telescope (HST) measurements taken in 1994–1995 (Chiaberge et al. 1993; Baldi et al. 2010) when the radio core emission was similar to its level in 2009–2011 (see Effelsberg light curve in Nagai et al. 2010). The HST observations are characterized by an extremely good angular resolution, allowing the emission to be pinpointed from the innermost regions of the jet. The small discrepancy between our measurement and the HST results might be explained by temporal variability, but also by the limited angular resolution of KVA, which may contain large-scale jet contributions. In radio, VLBA provides an extremely good angular resolution which allows us to resolve three components in the sub-pc core region. However, this resolution (∼0.01 pc) is still insufficient to probe the γ-ray emission-region size expected from the week-scale variability (∼0.01 pc). Sub-structures not resolved by VLBA can therefore exist. Planck and UVOT both have relatively broad angular resolution and their measurements are most likely contaminated by large-scale emission. Thus our results from radio to X-rays should be considered firstly as upper limits of the low-energy counterpart of the γ-ray emitting region.

3.2. Optical γ-ray correlation

We measured flux variability at different energy bands (Fig. 3). The light curves for GeV γ-rays, optical, and the C3 radio component all show a similar trend. The intense monitoring in optical and GeV γ-rays allows us to study this correlation more deeply. For every time bin of the Fermi-LAT results from radio to X-rays should be considered firstly as upper limits of the low-energy counterpart of the γ-ray emitting region.

Fig. 8. NGC 1275 γ-ray flux above 100 MeV (Fermi-LAT) as a function of the optical continuum core flux density (KVA). The dotted and dashed lines represent the linear and quadratic fit, respectively. The solid line is the best fit with a free correlation factor ($F_\gamma = \alpha (F_{\text{opt}})^\beta$ with $\beta = 1.32$).

3.3. Fit of γ-ray SED

The photon indices of the energy spectrum measured quasi-simultaneously with Fermi-LAT ($\Gamma \geq 2$) and MAGIC ($\Gamma \simeq 4$) are very different. Fig. 9 shows the SED between 100 MeV and 650 GeV corresponding to the two observation campaigns. We fitted several functions to these SEDs, taking into account only the statistical errors of each data point. Table 3 gives the functional forms used and the fit results.

A power-law fit is completely excluded, as suggested by previous VHE upper limits contemporaneous to Fermi-LAT data in 2008 (Acciari et al. 2009; Aleksić et al. 2010). Power-law spectra with an exponential cutoff fits the first campaign well but does not match the second one, where the LAT data clearly show a curvature. Assuming a softer cutoff (a power-law with a sub-exponential cutoff), one can fit both campaigns quite well. This gives a photon index of $\Gamma \simeq 1.75$ at low energy, which matches well the non-thermal power-law component seen in X-ray by Chandra (Balmaverde et al. 2006) and Swift-BAT (Ajello et al. 2009). As explained in Acciari et al. 2009, this function corresponds to the γ-ray spectral shape expected for the inverse Compton emission of an electron with a free correlation factor ($F_\gamma = \alpha (F_{\text{opt}})^\beta$ with $\beta = 1.32$).
population with an energy distribution following a power law with an exponential cutoff at high energy.6

Finally, a curved power-law (log parabola) provides the best fit for Camp. 2 data and a reasonably good fit for Camp. 1. It allows us to determine the peak energy of the SED, which varies marginally from 2.8±1.5 GeV (Camp. 1) to 1.1±0.2 GeV (Camp. 2).

3.4. Broadband SED and emission models

Nearly simultaneous SEDs for Camp.1 and Camp. 2, assembled with the data described in the previous section, are reported in Fig. 10 (red symbols) and Fig. 11 (blue symbols), respectively. The non-thermal X-ray component spectra from Dalmaverde et al. (2006) (Chandra) and Ajello et al. (2009) (Swift/BAT), as well as the optical-IR measurement by HST (Chiaberge et al. 1999; Baldi et al. 2010), are also reported (green symbols).

The data hint at a double-peaked SED, similar to the other TeV-emitting AGNs. The similarity of this SED with that of blazars is a clear indication that the broadband emission arises in the relativistic jet. The available data provide an excellent description of the high-energy bump of the SED. In particular, it is possible to constrain the position of the peak with good accuracy. On the other hand, the low-energy bump is poorly constrained by our radio-to-UV simultaneous data, which are more likely dominated by larger scale emission regions. The correlation between the optical and the γ-ray LC suggests that the non-thermal continuum from the NGC 1275 nucleus is dominated by the emission from the same region. We assume that the low-energy component of this region is at the level of our KVA measurements corrected for the host-galaxy and line emissions.

For our model, we assumed, as a starting point, that the emission is coming from a unique uniform spherical region (a bulk plasma) moving along the jet. We reproduced the SED using a synchrotron self-Compton (SSC) model (for details see Maraschi & Tavecchio 2003) considering an electron-density energy distribution of the form \[N(\gamma) = K \gamma^{-\alpha} \exp(-\gamma/\gamma_c) \] with a Lorentz factor \(\gamma \geq \gamma_{\text{min}} \). Such a very simple distribution is naturally expected in the case of Fermi-I type shock acceleration (e.g. Blandford & Eichler 1987) and it is also supported by the γ-ray SED fits of Section 3.3. The other physical parameters specifying the model are the intensity of the magnetic field, \(B \) (assumed to be tangled), the source radius, \(R \), and the Doppler factor, \(\delta \). The latter parameter is given by \(\delta = 1/\Gamma_b (1 - \beta_0 \cos \theta) \), where \(\beta_0 \) is bulk speed of the plasma, \(\Gamma_b \) is the bulk Lorentz factor, \(\Gamma_b = [1 - (\beta_0^2)]^{-1/2} \), and \(\theta \) is the angle between the bulk velocity and the line of sight. Our model accordingly had only seven independent parameters (K, \(n \), \(\gamma_{\text{min}} \), \(\gamma_c \), \(B \), \(R \), and \(\delta \)).

Table 3. Parameters of the NGC 1275 γ-ray SED fit over the energy range 0.1 – 650 GeV, for different fit functions:

Epoch	\(f_0 \)	\(\Gamma \)	\(E_c \)	\(\chi^2/\text{dof} \)	Prob.
Camp. 1	111±8	2.38±0.03	57.4±8	3.6e-9	
Camp. 2	176±7	2.41±0.02	317/10	3.6e-2	

\(f_0 \) in 10\(^{-10}\) GeV\(^{-1}\) cm\(^{-2}\) s\(^{-1}\) for the power law with exponential cutoff.

\(f_0 \) in 10\(^{-10}\) GeV\(^{-1}\) cm\(^{-2}\) s\(^{-1}\) for the power law with exponential cutoff.

\(f_0 \) in 10\(^{-10}\) GeV\(^{-1}\) cm\(^{-2}\) s\(^{-1}\) for the log parabola.

\(f_0 \) in 10\(^{-10}\) GeV\(^{-1}\) cm\(^{-2}\) s\(^{-1}\) for the power law with exponential cutoff.

\(f_0 \) in 10\(^{-10}\) GeV\(^{-1}\) cm\(^{-2}\) s\(^{-1}\) for the power law with exponential cutoff.

\(f_0 \) in 10\(^{-10}\) GeV\(^{-1}\) cm\(^{-2}\) s\(^{-1}\) for the log parabola.

\(f_0 \) in 10\(^{-10}\) GeV\(^{-1}\) cm\(^{-2}\) s\(^{-1}\) for the power law with exponential cutoff.

\(f_0 \) in 10\(^{-10}\) GeV\(^{-1}\) cm\(^{-2}\) s\(^{-1}\) for the power law with exponential cutoff.

\(f_0 \) in 10\(^{-10}\) GeV\(^{-1}\) cm\(^{-2}\) s\(^{-1}\) for the power law with exponential cutoff.

\(f_0 \) in 10\(^{-10}\) GeV\(^{-1}\) cm\(^{-2}\) s\(^{-1}\) for the log parabola.

\(f_0 \) in 10\(^{-10}\) GeV\(^{-1}\) cm\(^{-2}\) s\(^{-1}\) for the power law with exponential cutoff.

\(f_0 \) in 10\(^{-10}\) GeV\(^{-1}\) cm\(^{-2}\) s\(^{-1}\) for the power law with exponential cutoff.

\(f_0 \) in 10\(^{-10}\) GeV\(^{-1}\) cm\(^{-2}\) s\(^{-1}\) for the log parabola.

\(f_0 \) in 10\(^{-10}\) GeV\(^{-1}\) cm\(^{-2}\) s\(^{-1}\) for the power law with exponential cutoff.

\(f_0 \) in 10\(^{-10}\) GeV\(^{-1}\) cm\(^{-2}\) s\(^{-1}\) for the power law with exponential cutoff.

\(f_0 \) in 10\(^{-10}\) GeV\(^{-1}\) cm\(^{-2}\) s\(^{-1}\) for the log parabola.
Following the radio counter-jet evidence (Vermeulen et al. 1994, Walker et al. 1994, Asaola et al. 2006), we first assumed an observing angle $\theta = 30^\circ$, which is the lowest angle compatible with the radio observations. The highest value of the Doppler factor allowed was then $\delta = 2$, reached for a bulk Lorentz factor $\Gamma_b = 2$. After fixing the Doppler factor, the source size can be constrained by the observed variability timescale in the Fermi-LAT band, $t_{\text{var}} \approx 1$ week, which limits the radius through the causality relation $R < c t_{\text{var}} \delta \approx 4 \times 10^{16}$ cm, rather similar to the sizes used in most blazar models.

During Camp.1 the Fermi-LAT LC is smoother and the constraint on the radius must be relaxed to light-month scales: $R/\delta < 10^{17}$ cm.

Table 4. Parameters for the models reported in Figs. [10][111] For both epochs the table reports the result obtained for two different choices of Doppler factor, $\delta = 2$ and 4. The parameters are the magnetic field B, the particle density K, the source radius R, the minimum electron Lorentz factor, γ_{min}, the cutoff Lorentz factor γ_c, and the electron spectrum slope n.

δ	B [mG]	K [10^6 cm$^{-3}$]	R [10^{20} cm]	γ_{min}	γ_c	n	
Camp. 1	4	42	20	7.9	100	2.2	2.55
	2	170	18	8.2	100	3.5	2.55
Camp. 2	4	38	9	8.2	100	0.9	2.4
	2	380	14.7	4.1	100	1.5	2.4

The frequency of the synchrotron peak is ν_{syn}, the minimum electron Lorentz factor, γ_e, and taking the limit $a_1 = a$ and $a_2 > 1$.

Following the radio counter-jet evidence, we first assumed an observing angle $\theta = 30^\circ$, which is the lowest angle compatible with the radio observations. The highest value of the Doppler factor allowed was then $\delta = 2$, reached for a bulk Lorentz factor $\Gamma_b = 2$. After fixing the Doppler factor, the source size can be constrained by the observed variability timescale in the Fermi-LAT band, $t_{\text{var}} \approx 1$ week, which limits the radius through the causality relation $R < c t_{\text{var}} \delta \approx 4 \times 10^{16}$ cm, rather similar to the sizes used in most blazar models.

During Camp.1 the Fermi-LAT LC is smoother and the constraint on the radius must be relaxed to light-month scales: $R/\delta < 10^{17}$ cm.

Some estimates of the other physical parameters can be derived with simple arguments. While the peak of the SSC bump arises from scattering in the Klein-Nishina (KN) regime, its frequency can be directly used to estimate the Lorentz factor γ_e of the electrons at the high-energy cutoff. Following Tavecchio et al. (1998), the frequency of the SSC peak, ν_{SSC}, is given as $h\nu_{\text{SSC}} \simeq m_e c^2 \gamma_e g(\alpha)$, where $g(\alpha) = \exp[1/(\alpha - 1)]$ is a function of the energy-flux spectral slope of the rising edge of the synchrotron and inverse Compton bumps, $\alpha = (\nu - 1)/2$. The fit of the SSC bump with a power-law with a super-exponential cutoff, reported in Section 5.3 provides a good estimation of the rising edge slope $\alpha \simeq 0.75 \pm 0.1$ (the fit parameter Γ is the power-law index of the photon flux, $\Gamma = \alpha + 1$). This value also agrees well with the spectral slope measured in hard X-rays with Swift-BAT ($\alpha = 0.7-0.9$ Ajello et al. 2009). For $\alpha = 0.75$, the value of $\gamma_e \simeq 0.02$. The SSC peak is measured around $\nu_{\text{SSC}} \simeq 10^{24}$ Hz, implying $\gamma_e \simeq 2 \times 10^5$. The frequency of the synchrotron peak ν_s is now found as $\nu_s \simeq 2.8 \times 10^{17} B_{17}^{-2.3}$ Hz. The condition Tavecchio et al. (1998) that the SSC peak is produced by scatterings in the KN regime is $h\nu_s c/\delta > m_e c^2$, which, after some operations, can be expressed as a limit for the magnetic field, $B > R_{e} \gamma_c^{-3} G$, where $R_{e} = 4.4 \times 10^{13} G$ is the critical magnetic field. Inserting the value above for γ_c, we found $B > 4 \times 10^{-3}$ G.

An estimate of the magnetic field can be derived from the ratio between the synchrotron and SSC luminosities, $L_s/L_{\text{SSC}} \simeq U_B/U_{\text{rad}}$, where $U_B = B^2/8\pi$ is the magnetic energy density and U_{rad} is the synchrotron radiation energy density Tavecchio et al. 1998. The latter can be calculated from $U_{\text{rad}} \simeq L_s/(4\pi R^2 c^3 \delta^4)$. Assuming the SSC emission occurs in the KN regime reduces the radiation energy density available for the emission. However, in first approximation one can neglect this effect (this derived value is formally a lower limit of the magnetic field). Finally, the magnetic field can be expressed as $B \approx (2/c)^{3/2} R^{-1/2} L_{\text{SSC}}^{1/2}$. Deriving the luminosities from the SED and using $R = 4 \times 10^{16}$ cm, we obtain $B \simeq 0.1 G$. This value is well above the limit for the KN regime calculated above, confirming the previous assumption.

Table 5 reports the parameters obtained for the emission model, shown as dashed curves in Figs. [10][11]. The frequency of the synchrotron peak is relatively high ($>10^{16}$ Hz) and the model predicts soft X-ray emission dominated by the end of the synchrotron hump. The expected X-ray flux is much higher than the archival Chandra data and shows a very different spectral shape. This would rule out our model if the data were simultaneous. However, this Chandra observation (ObsID 3404) was taken in 2002, long before the renewed activity in radio band started in 2005, and the X-ray emission may have changed dramatically. Compared with the contemporaneous Chandra data analyzed in section 2.3, our SED model for Camp.1 agrees well when one assumes (as must be done because the strong pileup does not allow us to estimate it) a photon index $\Gamma = 2.5$ as expected from the model. For Camp.2, the expected X-ray flux is even higher and the UV emission almost reaches the Swift-UVOT data. The simultaneous data do not rule out our model but the overall shape with a synchrotron peak in X-ray seems unlikely. The X-ray flux has never been measured at such a high level. A lower synchrotron peak frequency (in optical) would be more natural. It is very important to know the slope of the X-ray spectrum to determine the position of the synchrotron peak. Unfortunately, the quality of the contemporaneous Chandra data, which are strongly affected by pileup, does not allow us to derive strong constraints. An X-ray emission from either synchrotron ($\Gamma = 2.5$) or inverse Compton ($\Gamma = 1.7$) is possible.

As discussed in Tavecchio & Ghisellini (2008) and Aleksić et al. (2010b), a small “distance” between the SED peaks is unavoidable for low Doppler factors. In order to increase the separation between the peaks, which would shift the synchrotron bump to lower frequencies, we are forced to increase δ. In fact, using the relations developed above, it is relatively easy to see that (for a fixed ν_{SSC}) the synchrotron peak frequency is related to the corresponding Doppler factor by $\nu_s \propto \delta^{-4}$. In Figs. [10][11] and Table 4 we also report the models for a Doppler factor that is twice as large, $\delta = 4$ (solid lines). According to the scaling above, the syn-
Fig. 10. NGC 1275 SED for the epoch of Camp. 1 (October 2009 – February 2010). Red symbols show nearly simultaneous data from MOJAVE, KVA, Chandra (when assuming a power-law slope $\Gamma = 2.5$), Fermi-LAT, and MAGIC. Contemporaneous Planck data from the Planck Collaboration (2011) are also shown with red circles. The red star in radio shows the level of the individual sub-pc components (C1, C2, and C3 have nearly the same flux). Green bow-ties in the X-ray band represent archival Planck Collaboration (2011) are also shown with red circles.

Fig. 11. NGC 1275 SED for the epoch of Camp. 2 (August 2010 – February 2011). Symbols as in Fig. 10. Blue symbols show nearly simultaneous data from MOJAVE, KVA, Fermi-LAT and MAGIC analyzed here, and contemporaneous Swift-UVOT and Planck data from Giommi et al. (2012). In radio, the level of the sub-pc components C1 (blue star) and C3 (blue triangle) are also shown.

The optical flux remains at the same level, while the UV and X-ray emission decrease significantly. Our model with $\delta = 4$ would be almost compatible with the hard X-ray spectrum reported in Balmaverde et al. (2006). This value of the Doppler factor is disfavored, however, since it requires an angle smaller than 15° between the plasma bulk velocity and the line of sight.

4. Discussion
The overall SED of NGC 1275 suggests blazar-like emission. A one-zone SSC model can fit the data assuming a jet-viewing angle ($\theta_v = 30^\circ$) compatible with the radio observation. All parameters (possibly with the exception of the bulk Lorentz factor Γ_b) derived from this modeling are in the range of the values typically obtained for VHE γ-ray emitting BL Lac objects (e.g., Tavecchio et al. 2010). Another interesting result concerns the required slope of the electron energy distribution, which is close to 2.5. This value agrees well with recent simulations by Sironi & Spitkovsky (2011), who showed that for low values of the jet magnetization (such as those derived by our SED modeling) Fermi-I shock acceleration proceeds efficiently, leading to power-law tails with slope $n = 2.5$.

All these elements support the view that the γ-ray emission of NGC 1275 originates from a misaligned BL Lac jet, in the same way as for the other VHE γ-ray emitting galaxies, and consistent with the unification scheme (e.g., Urry & Padovani 1995). A notable exception, however, is the bulk Lorentz factor, constrained to have a lower value ($\Gamma_b \gtrsim 2$) than the typical $\Gamma_b > 10$ inferred in BL Lacs. Indeed, with a jet-viewing angle $\theta_v \approx 30^\circ$, a larger Γ_b would imply a smaller Doppler factor, while our model with $\delta = 2$ already seems at the lower edge of the acceptable range (a lower δ would imply a smaller distance between the two SED peaks, inducing a too high X-ray flux). Such a low Γ_b would indicate either that the jet of NGC 1275 is ejected at a lower speed than in blazars, or that the jet suffers strong acceleration/deceleration in the vicinity of the central engine. The kinematics of the radio knots might suggest acceleration along the NGC 1275 jet (Dhawan et al. 1998). Its γ-ray emitting region might then be closer to the central black hole than for typical blazars (before the bulk is accelerated to its full speed).

However, a larger bulk Lorentz factor would be possible with a smaller jet-sight angle θ_v. For example, a bulk emitting region with $\Gamma_b = 10$ would be seen with a Doppler factor $\delta = 2$ for $\theta_v = 17^\circ$ and with $\delta = 4$ for $\theta_v = 12^\circ$. In the past, a smaller viewing angle has been suggested for the innermost jet (Krichbaum et al. 1992; Veron 1978). The NGC 1275 core could then be a BL Lac with strong jet bending at larger scale. The high energy non-thermal continuum of NGC 1275 could be also dominated by a sub-structure of the jet that...
points closer to our direction than the overall radio jet. Such scenarios have previously been proposed to explain the γ-ray emission from other TeV radio galaxies (M87 and Centaurus A). This sub-structure could originate from the jet formation zone near the central black-hole where the jet is less collimated (Lenain et al. 2008), or from mini-jets in the main jet induced by magnetic reconnections (Gianios et al. 2011; Cui et al. 2012). Alternatively, the emission can arise in a magneto-centrifugally accelerated flow (e.g., Rieger & Mannheim 2002), whose weak collimation would be compatible with the large viewing angles inferred for radio galaxies.

One may notice that our model predicts a much lower flux at 15 GHz than the VLBA measurements, even in a single sub-structure. This is related to the relatively high energy peak of the synchrotron component. The radio emission could come from another, more external, region where the low-energy electrons could diffuse. The variability of such an external component should be much smoother. The similarity long-term trend of the C3 component and the GeV γ-ray emission makes it a suitable candidate for hosting the γ-ray emitting region. However, the apparent velocity of this component, $\beta_{\text{app}} = 0.23$ (Nagai et al. 2010), is much too slow compared with the apparent velocity of the emitting region of our one-zone SSC model. For $\theta_c = 30^\circ$ and $\Gamma_b = 2$, the expected apparent velocity is superluminal, $\beta_{\text{app}} = \frac{\beta \sin(\theta_c)}{1 - \beta \cos(\theta_c)} \simeq 1.7$. The models with smaller viewing angle would have even larger β_{app}. Indeed, the C3 radio component and the γ-ray source may not be co-spatial but the increasing emission in both may simply be connected to a general increasing activity of the AGN. Moreover, no clear correlation on short timescales was found by Nagai et al. (2012).

The difficulty in determining the correct bulk Lorentz factor of the jet is not specific to NGC 1275 but is a general problem of the AGN unification scheme, the so-called bulk Lorentz factor crisis (Henri et al. 2006). While one-zone SSC models of TeV blazars require a large Lorentz factor ($\Gamma_b > 10$), geometrical beaming arguments on FR I radio galaxy - BL Lac unification predict a low value ($\Gamma_b \approx 3$) (Chiaberge et al. 2000). More complex models that assume, for example, a structured jet with different emission zones (Ghisellini et al. 2003) or blob-speed changes along the jet (Georganopoulos & Kazanas 2003), must be developed to solve this crisis. The simultaneous broadband observations of NGC 1275 reported here provide a rare view of a very likely misaligned BL Lac object. They provide new constraints on models developed to reconcile the VHE γ-ray observations and the unification scheme of AGNs.

5. Summary and conclusion

We analyzed multi-frequency observations of NGC 1275 contemporaneous to two MAGIC observation campaigns carried out from October 2009 to February 2011. MAGIC data analysis, with an energy threshold of 100 GeV, resulted in the detection of the source during both campaigns separately, confirming that NGC 1275 belongs to the very exclusive club of radio galaxies detected at VHE. The ~65–650 GeV spectra measured with MAGIC are very similar for both campaigns. The monthly VHE LC shows only a hint of variability (3.6σ) during the first campaign. Fermi–LAT results between 100 MeV and ~50 GeV present different features. The LAT LC shows a clear week-scale variability, and the two derived spectra, corresponding to each of the MAGIC campaigns, show differences in both flux intensity and spectral shape. Nevertheless, the combined LAT/MAGIC spectra can be well fit by both a log parabola and a power law with a sub-exponential cutoff. The SED-peak energies of the log parabolic fits are 2.8 ± 1.5 GeV (Camp. 1) and 1.1 ± 0.2 GeV (Camp. 2). The sub-exponential cutoff energies are 13.1 ± 4.2 GeV (Camp. 1) and 5.0 ± 1.6 GeV (Camp. 2). The rapid variability and spectral evolution imply that the γ-ray emitting region is a compact zone in the AGN. The KVA R-band LC, corrected for host-galaxy and emission-line contaminations, shows a shape very similar to the Fermi–LAT LC. This almost linear correlation strongly suggests that the optical counterpart of the very compact γ-ray emitting region dominates the corrected KVA result. The 15 GHz MOJAVE data allowed us to derive the LC of the three innermost radio components. The recently born C3 component shows a similar LC trend as the KVA and LAT LCs. This makes this jet feature a possible candidate for the γ-ray emitting region.

We modeled the simultaneous broadband SED with a simple one-zone SSC emission model assuming a power-law with an exponential cutoff for the electron energy distribution. While the high-energy peak is well constrained by the LAT and MAGIC data, at low energy most of our simultaneous data must be considered as upper limits due to possible contaminations. We assumed as optical flux the corrected KVA data, which show correlation with the γ-ray flux. The relatively large angle between the NGC 1275 jet and the line of sight ($\theta_c = 30^\circ – 55^\circ$) strongly limits the Doppler factor δ. A model with $\delta = 2$ ($\theta_c = 30^\circ$ and $\Gamma_b = 2$) can fit the SED of both epochs and explain the multi-frequency behavior (optical-GeV correlation and rapid variability). However, the expected X-ray level is in contrast with the Chandra measurements and models with lower δ would hardly match the data as they would imply a too small spread between the low- and high-energy SED peaks. On the other hand, models with larger δ (such as $\delta = 4$) would fit the SED well, but would require smaller θ_c. In fact, the parameters of our models are in the typical range found for BL Lacs, except for the bulk Lorentz factor. NGC 1275 might accordingly be a misaligned BL Lac with a particularly low bulk Lorentz factor, or it might be more aligned than we think. Assuming a smaller θ_c (10–15°), larger bulk Lorentz factors ($\Gamma_b > 10$) are possible. A γ-ray emitting region with a velocity more aligned to the line of sight than the pc-scale radio jet could be explained by jet bending in the innermost region, a larger jet opening angle near the central black hole, or mini-jets within the main jet. Multi-zone models would certainly be more appropriate for interpreting the NGC 1275 AGN emission and its connection to BL Lac objects.

Acknowledgements. The MAGIC collaboration would like to thank the Instituto de Astrofísica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The support of the German BMBF and MPG, the Italian INFN, the Swiss National Fund SNF, and the Spanish MICINN is gratefully acknowledged. This work was also supported by the CPAN CSD2007-00042 and MultiDark CSD2009-00064 projects of the Spanish Consolider-Ingenio 2010 programme, by grant D902-353 of the Bulgarian NSF, by grant 127740 of the Academy of Finland, by the DFG Cluster of Excellence “Origin and Structure of the Universe”, by the DFG Collaborative Research Centers SFB821/C4 and SFB876/C3, and by the Polish MNiSW grant 745/N-HESS-MAGIC/2010/0.
The *Fermi*-LAT Collaboration acknowledges ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat à l’Énergie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucléaire et de Physique des Particules in France, the Agencia Espacial Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council, and the Swedish National Space Board in Sweden.

Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d’Études Spatiales in France.

This research has made use of data from the MOJAVE database that is maintained by the MOJAVE team (Lister et al. 2009).

References

Abdo, A. A., et al. (*Fermi* collaboration) 2009, ApJ, 699, 31
Acilli, V. A., et al. (VERITAS collaboration) 2009, ApJ, 706, L275
Ackermann, M., et al. (*Fermi* collaboration) 2012, ApJS, 203, 4
Ajello, M., debating, P., Cappelluti, N. et al. 2009 ApJ, 690, 367
Aleskić, J., et al. (MAGIC collaboration) 2010a, ApJ, 723, L207
Aleskić, J., et al. (MAGIC collaboration) 2010b, ApJ, 710, 634
Aleskić, J., et al. (MAGIC collaboration) 2012a, A&A, 539, L2
Aleskić, J., et al. (MAGIC collaboration) 2012b, A&A, 541, 99
Aleskić, J., et al. (MAGIC collaboration) 2012c, Astropart. Phys., 35, 435
Aleskić, J., et al. (MAGIC collaboration) 2014, A&A in press, arXiv:1305.5147
Aliu, E. et al. (MAGIC collaboration) 2009, Astropart. Phys., 30, 293
Asada, K., Kameno, S., Shen, Z-Q. et al. 2006, Publ. Astron. Soc. Japan, 58, 261
Atwood, W. B., Abdo, A. A., et al. 2009, ApJ, 697, 1071
Baldi, R. D., Chiaberge, M., Capetti, A., et al. 2010, ApJ, 725, 2426
Balmaverde, B., Capetti, A., Grandi P. et al. 2006, A&A, 451, 35
Blandford, R., & Eichler, D. 1987, Phys. Rep., 154, 1
Brown, A. M. & Adams J. 2011, MNRAS, 413, 2785
Cautel, A., Woodgate, B. E., Brown, L. W. et al. 1992, ApJ, 388, 301
Celotti, A., & Ghisellini, G. 2008, MNRAS, 385, 283
Chiaberge, M., Capetti, A., & Celotti, A. 1999, A&A, 349, 77
Chiaberge, M., Celotti, A., et al. 2000, A&A, 358, 104
Churazov, E., Forman, W., et al. 2003 ApJ, 590, 225
Conselice, C., Gallegher, J. S., & Wyse, R. F. G. 2001, The Astronomical Journal, 123, 2281
Colafrancesco, S., Marchegiani P., & Giommi P. 2010, A&A, 519, 82
Cui, Y.-D., Yuan, Y.-F., Li, Y.-R., & Wang, J.-M. 2012, ApJ, 746 177
Davis, J. E. 2001, ApJ, 562, 575
Dhawan, V., Kellermann K. I. & Romney J. D. 1998, ApJ, 498, L111
Eckert D. & Paltini S. 2009, A&A, 495, 415
Edelson, R. A. Krolak J. H. 1988 ApJ, 333, 646
Fabian, A. C., Sanders, J. S. et al. 2011, MNRAS, 418, 2154
Fiorucci M., Tosti G. & Rizzi N., 1998, PASP 110, 105
Fomin, V. P., Stepian, A. A., Lambet, R. C., al. 1994, Astropart. Phys., 2, 137
Ghisellini, G., Tavecchio, F. & Chiaberge M. 2005, A&A, 432, 401.
Ghisellini, G., Tavecchio, F., et al. 2010, MNRAS, 402, 497
Georganopoulos, M., & Kazanas, D., 2003, ApJ, 594, L27
Giannios, D., Uzdensky, D. A. & Begelman, M.C. 2010, MNRAS, 402, 1649
Giommi, P., Polenta, G., Lahteenmaki, A. et al. 2012, A&A 541, 160
Goetting, N., et al. (HEGRA Collaboration) 2001, Proc. of 27th ICRC, Hamburg, 2669
Henri, G. & Saugé L. 2006 ApJ, 640, 185
Hillas, A. M. 1985, Proc. of 19th ICRC, La Jolla, 445
Kataoka, J., Stawarz, L., Cheung, C. C. et al. 2010, ApJ, 715, 554
Krichbaum, T. P., Witzel, A. et al. 1992, A&A, 260, 33
Lenain, J.-P., Boisson, C. et al. 2008, A&A, 478, 111
Li, T.-P. & Ma, Y.-Q. 1983, ApJ, 272, 317
Lister, M. L., Aller, H. D., Aller, M. F. et al. 2009, The Astronomical Journal, 137, 3718

Lombardi, S., et al. (MAGIC collaboration) 2011, Proc. of 32nd ICRC, Beijin, China, August 2011, arXiv:1109.6195
Lynds, R. 1970, ApJLetters, 159, L151
Maraschi, L. & Tavecchio, F. 2003, ApJ, 593, 667
Massaro, F., Tremlay, G. R., Harris, D. E et al. 2012, ApJS, 203, 31
Nagai, H., Suzuki, K. et al. 2010, Publ. Astron. Soc. Japan, 62, L11
Nagai, H., Orienti, M., Kino, M. et al. 2012, MNRAS, 423, L122
Nagai, H., Kino, M., Ninumaet, K. et al. 2013, Publ. Astron. Soc. Japan, 65, 24
Nilsson, K., Pasanen, M., Takalo, L et al. 2007, A&A, 475, 199
Nolan, P. L., Abdo, A. A., Ackermann, M. et al. 2012, ApJS, 199, 31
Papale, A., Ghatane, H. S. et al. 1990, MNRAS, 246, 477
Perkins, J. S., et al. (VERITAS Collaboration) 2006, ApJ, 644, 148
Pinzke, A. & Pfrommer, C. 2010, MNRAS, 409, 2, 449
Reimer, O., Pohl, M. et al. 2003, ApJ, 588, 155
Rieger, F. M. & Mannheim, K. 2002, A&A, 396, 833
Rolle, W. A., López, A. M., & Conrad, J. 2005, Nucl. Instrum. Meth., A551, 493
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Seyfert, C. K. 1943, ApJ, 97, 28.
Sironi, L. & Spitkovsky, A. 2011, ApJ, 726, 75
Strong A. W. & Bignami G. F. 1983 ApJ, 274, 549
Tavecchio, F., Maraschi, L., & Ghisellini, G. 1998, ApJ, 509, 608
Tavecchio, F., & Ghisellini, G. 2008, MNRAS, 385, L98
Tavecchio, F., Ghisellini G., Ghirlanda G., Foschini L., & Maraschi L., 2010, MNRAS, 401, 1570
Urry, C. M., & Padovani, P. 1995, PASP, 107, 803
Vermeulen, R. C., Readhead, A. C. S. & Backer, D. C. 1994, ApJ, 430, L41
Veron, P. 1978, Nature 272, 430
Walker, R. C., Romney, J. D. & Benson, J. M. 1994, ApJ, 430, L45
Aleksić et al. (MAGIC collaboration): NGC 1275 multi-frequency observation

Institution	Location
1. IFAE, Edifici Cdx., Campus UAB, E-08193 Bellaterra, Spain	Spanish University
2. Università di Udine, and INFN Trieste, I-33100 Udine, Italy	Italian University
3. INAF National Institute for Astrophysics, I-00136 Rome, Italy	Italian University
4. Università di Siena, and INFN Pisa, I-53100 Siena, Italy	Italian University
5. Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka and University of Split, HR-10000 Zagreb, Croatia	Croatian University
6. Max-Planck-Institut für Physik, D-80895 München, Germany	German University
7. Universidad Complutense, E-28040 Madrid, Spain	Spanish University
8. Inst. de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Spain	Spanish University
9. University of Lodz, PL-90236 Lodz, Poland	Polish University
10. Deutsches Elektronen-Synchrotron (DESY), D-15738 Zeuthen, Germany	German University
11. ETH Zurich, CH-8093 Zurich, Switzerland	Swiss University
12. Universität Würzburg, D-97074 Würzburg, Germany	German University
13. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, E-28040 Madrid, Spain	Spanish University
14. Technische Universität Dortmund, D-44221 Dortmund, Germany	German University
15. Inst. de Astrofísica de Andalucía (CSIC), E-18080 Granada, Spain	Spanish University
16. Università di Padova and INFN, I-35131 Padova, Italy	Italian University
17. Università dell’Insubria, Como, I-22100 Como, Italy	Italian University
18. Unitat de Física de les Radiacions, Departament de Física, and CERES-IEEC, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain	Spanish University
19. Institut de Ciències de l’Espai (IEEC-CSIC), E-08193 Bellaterra, Spain	Spanish University
20. Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Department of Physics, University of Oulu, Finland	Finnish University
21. Japanese MAGIC Consortium, Division of Physics and Astronomy, Kyoto University, Japan	Japanese University
22. Inst. for Nucl. Research and Nucl. Energy, BG-1784 Sofia, Bulgaria	Bulgarian University
23. Universitat de Barcelona (ICC/IEEC), E-08028 Barcelona, Spain	Spanish University
24. Università di Pisa, and INFN Pisa, I-56126 Pisa, Italy	Italian University
25. now at Ecole polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland	Swiss University
26. now at Department of Physics & Astronomy, UC Riverside, CA 92521, USA	American University
27. now at Finnish Centre for Astronomy with ESO (FINCA), Turku, Finland	Finnish University
28. also at Instituto de Física Teorica, UAM/CSIC, E-28049 Madrid, Spain	Spanish University
29. Now at Stockholms universitet, Oskar Klein Centre for Cosmoparticle Physics	Swedish University
30. now at GRAPPA Institute, University of Amsterdam, 1098XH Amsterdam, Netherlands	Dutch University
31. INAF - Osservatorio Astrofisico di Torino, Strada Osservatorio 20, 10025 Pino Torinese, Italy	Italian University
32. Waseda University, Tokyo, Japan	Japanese University