S3 Text. Results of the main components of vulnerability and risk.

S3.1. Exposure of the rural communities to the multiple hazards

Exposure to hazards is an important dimension of the overall risks faced by a system or community. The implementation of an SES approach means that the exposure index represents both the exposure of the environmental sub-system to droughts and floods as well as the exposure of the social sub-system. In Table A below, the exposure of all the community clusters studied in the three countries have been presented. In the Vea study area (Ghana), the Kula river community cluster is the most exposed community, followed by communities in the Vea main drain and Valley zone in that order. Communities in the Kanga has the least exposure with an index value of just 0.134. Similarly, in the Dano study area (Burkina Faso), communities in the Loffing-Yabogane cluster are the most exposed to the multiple hazards followed by those in Batiara, Bolembar and Gnipi in that order. In this study area, Meba Pari has the lowest exposure index of 0.225. Also in the Dassari study area (Benin), Porga cluster of communities are the most exposed followed by Tankouri and Setcheniga clusters.

Rank	Community cluster	Exposure index	Community cluster	Exposure index	Community cluster	Exposure index
1	Kula river drain	0.581	Loffing-Yabogane	0.591	Porga	0.405
2	Vea main drain	0.496	Batiara	0.585	Tankouri	0.269
3	Valley zone	0.349	Bolembar	0.554	Setcheniga	0.234
4	Balungu	0.341	Gnipi	0.551	Nagassega	0.224
5	Kolgo-Anateem	0.313	Yo	0.542	Ouriyori	0.222
6	Anafobiisi	0.299	Complan	0.535	Firiouin	0.192
7	Apatanganga	0.297	Tambalan	0.523	Pouri	0.154
8	Samboligo	0.297	Dano sector 1,2,4	0.482	Tetonga	0.139
9	Soe	0.295	Kpeleganie	0.462	Tigniga	0.121
10	Tarongo	0.195	Lare	0.283	Tihoun	0.120
11	Beo Adaboya	0.193	Sarba	0.275	Dassari	0.113
12	Bongo zone	0.164	Dano sector 7	0.236	Koulou	0.044
13	Kanga	0.134	Meba Pari	0.225		

The results show the mean exposure index is highest for communities in the Dano study area (0.45), that for Vea is 0.30 and Dassari communities has mean exposure index of 0.19. Exposure of communities in Dano is also more variable within communities. The variability is estimated at 0.14.
around the mean in Dano and 0.12 in Vea. The higher variability of the exposure index in Dano means significant differences exist between the communities in terms of exposure.

It is interesting to note that exposure of communities followed the same pattern of the Flood Hazard Index maps developed by Asare-Kyei et al. (2015b) where the distribution of flood hazard in the study areas was modelled. In their study, the Kula River and Vea main drain in Vea; Porga in Dassari and Loffing-Yabogone in Dano were reported to be falling in high flood intensity zones. This study reinforces this finding and shows that the exposure index followed the pattern of flood hazard intensity zones. Although, there are other determinants of exposure as can be seen in the indicators used to construct the index, this fact shows the strong effect proximity to high flood intensity zones has on the overall SES exposure to the hazards. Another major driving factor influencing community exposure to multiple occurrences of drought and flood is the indicator measuring the share of the population engaged in agriculture. This indicator measures populations whose livelihood depends solely on agriculture and which have no other income or food sources. As expected, 72% of people in the Dano area belong to this category of ‘Agricultural Dependent Population’ (ADP), 42% in Dassari and Vea having the least number of people (35%) engaged in only agriculture. Although this indicator was ranked second in Dano and first in both Vea and Dassari (Asare-Kyei et al., 2015a), its effect on exposure is still significant.

S.3.2. Susceptibility of the communities to drought and floods

Susceptibility is measured as inherent conditions within the communities that predispose them to be adversely affected by the two hazards. The SES approach measures susceptibility for both the socio-economic and environmental sub-systems. Within the social-economic sub-system, four dimensions comprising ‘poverty and dependencies’, housing, public infrastructure and health and nutrition are considered. Table B below provides details about the susceptibility indices of the communities.

In Table B, the three most susceptible community clusters have been highlighted in grey. Interestingly, all the highly susceptible communities in the Vea area are in the Bongo district. In this study area, Tarongo has the highest susceptibility of 0.693 and Kolgo-Anateem clusters having the least susceptibility. Susceptibility indices in the Dassari area are generally high with a mean of 0.44. Communities in Dano area has a mean of 0.37. However, there are sharp differences in susceptibility indices in the Vea area measured by the standard deviation of 0.12 while communities in the Dassari area record less variability (0.6) from each other.
Table B. Community rankings in terms of susceptibility to the multiple hazards

Rank	Community cluster	Vea study area	Community cluster	Dano study area	Community cluster	Dassari study area
		Susceptibility index		Susceptibility index		Susceptibility index
1	Tarongo	0.693	Bolembar	0.534	Setcheniga	0.537
2	Samboligo	0.594	Yo	0.506	Tetonga	0.505
3	Balungu	0.525	Dano sector 7	0.398	Dassari	0.497
4	Bongo zone	0.473	Complan	0.395	Porga	0.494
5	Kula river drain	0.468	Loffing-Yabogane	0.379	Tigniga	0.476
6	Apatanga	0.438	Dano sector 1,2,4	0.375	Koulou	0.466
7	Beo Adaboya	0.406	Gnikpiere	0.368	Firihoun	0.446
8	Kanga	0.384	Lare	0.349	Tihoun	0.436
9	Anafobiisi	0.382	Sarba	0.334	Tankouri	0.404
10	Vea main drain	0.382	Batiara	0.318	Ouriyori	0.398
11	Valley zone	0.375	Meba Pari	0.302	Nagassega	0.383
12	Soe	0.345	Tambalan	0.290	Pouri	0.343
13	Kolgo-Anateem	0.219	Kpeleganie	0.234		

Mean: 0.437, 0.367, 0.448
Standard deviation: 0.119, 0.814, 0.575

S3.3. Lack of capacity index
Community lack of capacity to cope and adapt to the hazards occurrence is an integral part of the overall vulnerability of the community. Total lack of capacity in this study has been computed from three sub-indices, lack of coping capacity, lack of ecosystem vitality and lack of adaptive capacity to respond to long-term hazards.

Table C presents the lack of capacities existing within the three study areas. In the Vea area, Samboligo, Apatanga and Soe, all in the Bongo district are the three clusters with the least capacity to cope, adapt and have poor state of the environment. In Dano, Loffing-Yabogane, Yo and Complan are the top three communities with least capacity whilst Tankouri, Firihouu and Tetonga in Dassari area have the least capacity. In terms of capacity, there is no significant difference between the three study areas with mean lack of capacity. All are greater than 50% with minimal differences in variability. Lacks of coping and adaptive capacities are major contributors to the total lack of capacity.
Table C. Community rankings in terms of lack of capacity to cope, adapt and ecosystem vitality

Rank	Community cluster	Vea study area	Lack of capacity	Community cluster	Dano study area	Lack of capacity	Community cluster	Dassari study area	Lack of capacity
1	Samboligo	Loffing-Yabogane	0.614		Tankouri	0.616			
2	Apatanga	Yo	0.613		Firihoun	0.658			
3	Soe	Complan	0.606		Tetonga	0.595			
4	Kolgo-Anateem	Tambalan	0.580		Ouriyori	0.587			
5	Balungu	Batiara	0.544		Pouri	0.564			
6	Bongo zone	Kpeleganie	0.534		Tihoun	0.497			
7	Beo Adaboya	Sarba	0.532		Porga	0.495			
8	Vea main drain	Gnikpiere	0.493		Tigniga	0.481			
9	Anafobiisi	Lare	0.475		Nagassega	0.475			
10	Valley zone	Bolembar	0.465		Koulou	0.449			
11	Kanga	Dano sector 1,2,4	0.465		Dassari	0.438			
12	Tarongo	Dano sector 7	0.422		Setcheniga	0.423			
13	Kula river drain	Meba Pari	0.399						
Mean			0.519		0.506			0.519	
Std			0.722		0.634			0.710	