Computation of the asymptotic states of modulated open quantum systems with a numerically exact realization of the quantum trajectory method

V. Volokitin, A. Liniov, I. Meyerov, M. Hartmann, M. Ivanchenko, P. Hänggi, and S. Denisov

1Mathematical Software and Supercomputing Technologies Department, Lobachevsky State University of Nizhny Novgorod, Russia
2Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86135 Augsburg, Germany
3Department of Applied Mathematics, Lobachevsky State University of Nizhny Novgorod, Russia

Quantum systems out of equilibrium are presently a subject of active research, both in theoretical and experimental domains. In this work we consider time-periodically modulated quantum systems which are in contact with a stationary environment. Within the framework of a quantum master equation, the asymptotic states of such systems are described by time-periodic density operators. Resolution of these operators constitutes a non-trivial computational task. Approaches based on spectral and iterative methods are restricted to systems with the dimension of the hosting Hilbert space \(\dim \mathcal{H} = N \lesssim 300 \), while the direct long-time numerical integration of the master equation becomes increasingly problematic for \(N \gtrsim 400 \), especially when the coupling to the environment is weak. To go beyond this limit, we use the quantum trajectory method which unravels master equation for the density operator into a set of stochastic processes for wave functions. The asymptotic density matrix is calculated by performing a statistical sampling over the ensemble of quantum trajectories, preceded by a long transient propagation. We follow the ideology of event-driven programming and construct a new algorithmic realization of the method. The algorithm is computationally efficient, allowing for long 'leaps' forward in time, and is numerically exact in the sense that, being given the list of uniformly distributed (on the unit interval) random numbers, \(\{ \eta_1, \eta_2, \ldots, \eta_n \} \), one could propagate a quantum trajectory (with \(\eta_i \)'s as norm thresholds) in a numerically exact way. By using a scalable \(N \)-particle quantum model, we demonstrate that the algorithm allows us to resolve the asymptotic density operator of the model system with \(N = 2000 \) states on a regular-size computer cluster, thus reaching the scale on which numerical studies of modulated Hamiltonian systems are currently performed.

I. INTRODUCTION

Most of in vivo quantum systems are interacting with an environment. Although often weak, this interaction becomes relevant when studying the evolution of a system over long time scales. In particular, the asymptotic state of such an open system depends both on the unitary action induced by the system Hamiltonian, and the action of the environment, conventionally termed 'dissipation'. A recent concept of "engineering by dissipation" \cite{1–5}: i.e., the creation of designated pure and highly entangled states of many-body quantum systems by using specially designed dissipative operators, has promoted the role of quantum dissipation to the same level of importance as unitary evolution.

The use of time-periodic modulations constitutes another means to manipulate the states of a quantum system. In the coherent limit, when the system is decoupled from the environment, the modulations imply an explicit time-periodicity of the system Hamiltonian, \(H(t+T) = H(t) \). The dynamics of the system are determined by the basis of time-periodic Floquet eigenstates \cite{6} \cite{8} \cite{10}. The properties of the Floquet states depend on various modulation parameters. Modulations being resonant with intrinsic system frequencies may create a set of non-equilibrium eigenstates with properties drastically different from those of time-independent Hamiltonians. Modulations enrich the physics occurring in fields such as quantum optics, optomechanics, solid state and ultra-cold atom physics \cite{8} \cite{11} and disclose a whole spectrum of new phenomena \cite{12} \cite{10}.

What are the possible physical prospects of a synergy between environment-induced decoherence and periodic modulations when both aspects impact a \(N \)-state quantum system? Of course, this question should be rephrased more precisely, depending on the context of the problem. However, we are confident that a partial answer to this question, even in his most general form, will be appreciated by several communities working on many-body localization (MBL) \cite{17} \cite{21}, Floquet topological insulators \cite{15}, and dissipative engineering \cite{14}.

There exist several approaches to address the evolution of open quantum systems \cite{22}. A popular (especially in the context of quantum optics \cite{23}) approach is based on the quantum master equation with the generator \(\mathcal{L} \) of the Lindblad form \cite{24} \cite{25} (we set \(\hbar = 1 \)):

\[
\dot{\rho} = \mathcal{L}(\rho) = -i[H(t), \rho] + \sum_{k=1}^{K} \gamma_k(t) \cdot \mathcal{D}_k(\rho),
\]

\[
\mathcal{D}_k(\rho) = V_k \rho V_k^\dagger - \frac{1}{2} \{V_k^\dagger V_k, \rho\}.
\]

Here, \(\rho \) denotes the system density matrix, while the set of quantum jump operators, \(V_k, k = 1, \ldots, K \), capture the action of the environment on the system. The jump operators act on the coherent system dynamics via \(K \) 'channels' with time-dependent rates \(\gamma_k(t) \). Finally, \(\{,\} \) and \(\{,\} \) denote the commutator and the anti-commutator, respectively.
As an object of mathematical physics, Eq. (1) exhibits a specifically tailored structure and possesses a variety of important properties \[25\]. In the case of a time-independent, stationary Hamiltonian \(H(t) = H \), the generator \(L \) induces a continuous set of completely positive quantum maps \(\rho_t = e^{Lt} \). Under some conditions, the system evolves from an initial state \(\rho_{\text{init}} \) towards a unique and time-independent asymptotic state \(\rho^\text{att} \), \(\lim_{t \to \infty} \rho_t |\psi_{\text{init}}\rangle \langle \psi_{\text{init}}| = \rho^\text{att} \). When time-periodic modulations are present, Eq. (1) preserves the complete positivity of the time evolution if all those coupling rates are non-negative at any instance of time, \(\gamma_k(t) \ge 0, \forall t \) \[24\]. Under certain, experimentally relevant assumptions an approximation in terms of a “time-dependent Hamiltonian and a time-independent dissipation” provides a suitable approximation \[25\].

Here, we address the particular case of quench-like, periodic modulations of period \(T \) with the time-periodic dependence of the Hamiltonian \(H(t), t \in [0, T] \), consisting of a switch between several constant Hamiltonians. A common choice is a setup composed of two Hamiltonians,

\[
H(t) = \begin{cases}
H_1, & \text{for } 0 \leq t \text{ mod } T < \tau \\
H_2, & \text{for } \tau \leq t \text{ mod } T < T,
\end{cases}
\]

with \(\tau \in [0, T] \). This minimal form has recently been used to investigate the connection between integrability and thermalization \[19, 26, 27\] or, alike, for disorder-induced localization \[18\] in coherent periodically modulated many-body systems.

From a mathematical point of view, Eqs. (1) define a linear operator equation with a time-periodic generator \(L(t) \). Therefore, Floquet theory applies and asymptotic solutions of the equation are time-periodic with temporal density operator obeying \(\rho^\text{att}(\tau + nT) = \rho^\text{att}(\tau), \tau \in [0, T] \) and \(n \in \mathbb{Z}^+ \). The main objective here consists in explicit numerical evaluation of the matrix form of this operator.

To use spectral methods (complete/partial diagonalization and different kinds of iterative algorithms \[29\]) to calculate \(\rho^\text{att} \) as an eigenelement of the corresponding Floquet map \(\mathcal{P}(T) = e^{L_2(T-\tau)}e^{L_1\tau} \) would imply that one has to deal with \(N^2 \) computationally expensive operations. In the case of periodically modulated systems it restricts the use of spectral methods to \(N \leq 300 \) \[30\].

A direct propagation of Eq. (1) for a time span long enough for \(\rho(t) \) to approach the quantum attractor is not feasible for \(N \gtrsim 400 \) for at least two reasons: Direct propagation requires to numerically propagate \(N^2 \gtrsim 1.6 \cdot 10^5 \) complex differential equations with time-dependent coefficients, so that the accuracy might become problematic for large evolution times. Although the accuracy may be improved by implementing high(er)-order integration schemes \[31\] or Faber and Newton polynomial integrators \[32\], this approach is hardly parallelizable so one could not benefit by propagating equations on a cluster \[33\].

Systems containing \(N = 400 \) states may still be too small, for example, to explore MBL effects in open periodically-modulated systems. Is it possible to exceed this limit? If so, to what extent is this feasible? We attempt to answer these two questions by first unraveling the quantum master equation \[1\] into a set of stochastic realizations, by resorting to the celebrated method of “quantum trajectories” \[30–39\]. This method allows one to transform the problem of the numerical solution of Eqs. (1) into a task of statistical sampling over quantum trajectories which form vectors of the size \(N \). The price to be paid for the reduction from \(N^2 \) to \(N \) is that we now have to sample over many realizations. This problem is very well suited for parallelization and we thus can benefit from the use of a computer cluster. If the number of realizations \(N \) becomes large, the sampling of the density operator \(\rho(t) \) with the initial condition \(\rho_{\text{init}} = \langle \psi_{\text{init}} | \langle \psi_{\text{init}} \rangle \) converges to the solution of Eq. (1) \[36, 37\] provided that the propagation of the trajectories was perform in the exact way (we discuss the precise meaning of this in Section III).

We address the generic system Eqs. (1), with no conditions imposed on the operators \(H(t) \) and \(V_k \) (for example, they need not be local \[34, 35\] and with no a priori knowledge of the attractor state. The are two important issues. First is the time \(t_p \) after which the trajectories are sampled. To guarantee that the asymptotic regime is reached, this time has to exceed the longest relaxation timescale of the system. Practically, this means that the sampling over trajectories started at time \(t_p = ST \), with integer \(S \gg 1 \), does converge to a density operator, which is close to the asymptotic \(\rho^\text{att}(\tau = 0) \). Second, in order to minimize numerical errors due to long propagation, we devise an integration scheme based on a set of exponential propagators. For quench-like periodic modulations this implies a finite number of propagators which can be pre-calculated and stored locally on each cluster node, as we discuss in the next section.

For a scalable model, a periodically rocked and dissipative dimer with \(N - 1 \) interacting bosons, we find that the statistical variance of the sampling does not grow infinitely with \(t_p \), but rather saturates to a limit-cycle evolution. Therefore, the number of trajectories \(M_p(\epsilon) \) needed to estimate elements of \(\rho^\text{att} \) with accuracy \(\epsilon \) (defined with some matrix norm), remains finite. Assuming that the propagation can be performed for an arbitrary large time \(t_p \) with required accuracy, we are left with the only problem to sample over a sufficiently large number of trajectories.

In addition, in the asymptotic limit, the sampling of \(\rho^\text{att}(\tau = 0) \) can be performed over individual trajectories stroboscopically, after each period \(T \). This increases the efficiency of sampling via the use of the same trajectory without having to initiate yet a new trajectory and then propagating it up to time \(t_p \). Our results confirm that by implementing this approach on a cluster, it is possible to
resolve attractors of periodically modulated open systems with several thousand quantum states, thus increasing \(N \) by one order of magnitude.

The present work is organized as follows: In Section II we outline the method of quantum trajectories and describe the algorithmic realization of the method. Statistical aspects of sampling are briefly discussed in Section III. In Section IV we introduce a scalable model system which serves as a testbed for the algorithm. Section V is devoted to the implementation of the algorithm on a cluster together with an analysis of its performance and scalability. Section VI reports numerical results obtained for the test case. The findings of the study are summarized together with an outline of further perspectives in the final Section VII.

II. QUANTUM TRAJECTORY AS AN EVENT-DRIVEN PROCESS

To sample the solution of Eqs. (1, 2) up to some time \(t_p \) using quantum trajectories (also known under the labels of quantum jump method [38] or the Monte Carlo wave function method [37]) we first have to calculate the effective non-Hermitian Hamiltonian

\[
\tilde{H}(t) = H(t) - \frac{i}{2} \sum_{k=1}^{K} V_k^\dagger V_k, \tag{3}
\]

and then proceed along the following path of instructions [36]:

1. initiate the trajectory in a pure state \(|\psi^{\text{init}}\rangle \);
2. draw a random number \(\eta \) which is uniformly distributed on the unit interval;
3. propagate the quantum state \(|\psi(t)\rangle \) in time using the effective Hamiltonian \(\tilde{H}(t) \);
4. the squared norm \(\|\psi(t)\|^2 \) decays monotonically. When the equality \(\eta = \|\psi(t)\|^2 \) is reached, stop the propagation and normalize the state vector, \(|\psi(t)\rangle \rightarrow |\psi(t)\rangle /\|\psi(t)\| \);
5. perform a quantum jump: select the jump operator \(D_k \) with probability \(p_k = \gamma_k \|D_k|\psi(t)\rangle\|^2 / \sum_{k=1}^{K} \gamma_k \|D_k|\psi(t)\rangle\|^2 \) and apply the transformation \(|\psi(t)\rangle \rightarrow D_k |\psi(t)\rangle /\|D_k|\psi(t)\rangle\| \);
6. repeat steps 2 - 5 until the desired time \(t_p \) is reached.

The density matrix can then be sampled from a set of \(M_r \) realizations as \(q(t_p; M_r) = 1/M_r \sum_{r=1}^{M_r} |\psi_j(t_p)\rangle \langle \psi_j(t_p)| \). Formally, in the limit \(M_r \rightarrow \infty \), the result \(q(t_p; M_r) \) converges towards the solution of Eq. (1) at time \(t_p \) for the given initial density matrix \(\rho^{\text{init}} = |\psi^{\text{init}}\rangle \langle \psi^{\text{init}}| \) [22, 36]. The density matrix can also be sampled at any other instance of time \(t \in [0, t_p] \). This does not affect the propagation of the trajectory and only demands normalization of the state vector \(|\psi(t)\rangle \) before updating \(q(t; M_r) \rightarrow q(t; M_r + 1) \). More specifically, an element of the density matrix, \(q_{ls}(t) \), should be sampled as

\[
q_{ls}(t; M_r) = \frac{1}{M_r} \sum_{j=1}^{M_r} c_{j,l}(t) \cdot c_{j,s}(t), \tag{4}
\]

where \(c_{j,l}(t) \) is the \(l \)-th coefficient of the expansion (in the same basis \{\(|\psi_j(t)\rangle \}, k = 1, \ldots, N \) used to express the density matrix) of the normalized wave-function, \(|\psi_j(t)\rangle = \sum_{k=1}^{N} c_{j,k}(t) |k\rangle \).

The recipe contains two key steps: (i) propagation (step 3) and (ii) determination of the time of the next jump (step 4). The waiting time, i.e., the time between two consecutive jumps, cannot be obtained without actual propagation of the trajectory (except in a few cases [22, 36]). This time must be obtained along with the numerical integration by using the non-Hermitian Hamiltonian \(\tilde{H}(t) \). One has to propagate a trajectory, monitor the decaying squared norm of the wave vector and determine the instant of time when the squared norm equals the randomly chosen value \(\eta \). In most of the existing studies, this was realized with a step-by-step Euler method. This approach, although having a physical interpretation [36], is not suitable for our purpose because it corresponds to the expansion of Eq. (1) to the first order in a time step \(\delta t \); consequently, a reasonable accuracy of the sampling can be achieved with extremely small values of \(\delta t \) only [40].

Several improvements based on higher-order (with respect to \(\delta t \)) unraveling schemes [43, 44] have been put forward. The accuracy of the sampling – for the same number of realizations \(M_r \) and time step \(\delta t \) – can be improved substantially by increasing the order of the integration scheme [43]. In QuTiP, an open-source toolbox in Python to simulate dynamics of open quantum systems [31], Adams method (up to 12-th order) and backward differentiation formula (up to fifth order) with adaptive time step are implemented. In this respect, this is presently the most advanced implementation, to the best of our knowledge. In addition, QuTiP supports time-dependent Hamiltonians and allows for multi-processor parallelization. The original publication [31] addressed scalability and performance of the QuTiP package and demonstrated that a stationary model with \(N = 8000 \) states can be propagated. However, the results remained restricted to averaging over a few quantum trajectories and relatively short propagation time \(t_p \). Also, the issues of accuracy and convergence to an asymptotic state with the number of sampled trajectories were not discussed.

In contrast, aside of reaching large \(N \), we are concerned about the following two issues. First, there is the accuracy of propagation. As \(t_p \) has to be extremely large in order to be able to sample a state close to the attractor state \(\rho^{\text{att}} \) (note that up to now the method of quantum trajectories was used mainly to analyze short-time relax-
ation and transient regimes in terms of some observables; e.g. see in Refs. [21]), the accumulating error due to the discrete approximation of the continuous evolution with the effective Hamiltonian \tilde{H} can emerge sizable. These errors may cause serious problems, for example, when dealing with the delicate issue of MBL phenomena. Sec-

errors may cause serious problems, for example, when

discrete approximation of the continuous evolution with
e.g. see in Refs. [21]), the accumulating error due to the

determination of the time of the jump. This constitutes yet another factor which can blur the quality of the sam-
pling scheme. On the other side, we want to maximize the speed (in terms of computational time) of the propa-
gation. If these two problems are successfully overcome, the only remaining problem left is to obtain a sufficiently large number of realizations. Here, we handle both is-

III. STATISTICAL ERROR(S) OF SAMPLING

We next discuss the problem of statistical errors. We assume that the integration of quantum trajectories is performed in a numerically exact way, i.e., when the list of consequent norm thresholds, $\{\eta_1, \eta_2, ..., \eta_n\}$, and the initial state, $\tilde{\psi}_{\text{init}} = |\psi_{\text{init}}\rangle\langle\psi_{\text{init}}|$, are given, the corresponding trajectory can be calculated numerically exact.

Consider the sampling of a variable $X(t)$ over an en-
semble of realizations $\{X_j(t)\}$, $j = 1, ..., M_r$, with the aim to estimate its mean $\bar{X}(t)$. Examples would be the expectation value of an operator $\langle \hat{A} \rangle$ or an element of the density matrix (as in our case). In addition to the mean (average) of the variable, $\bar{X}(t; M_r) = \frac{1}{M_r} \sum_{j=1}^{M_r} X_j(t)$, we can also calculate its variance $\sigma(t; M_r)$,

$$\var [X(t); M_r] = \frac{1}{M_r} \sum_{j=1}^{M_r} \left(X_j(t) - \bar{X}(t; M_r) \right)^2,$$

which here for systems possessing a finite Hilbert space dimension N is assumed to converge to a generally time-
dependent value $\var [X(t)]$ in the limit $M_r \rightarrow \infty$. Dif-
ferent trajectories are statistical independent. There-
fore, the central limit theorem applies and, for large M_r, the probability density function (pdf) of the mean $\bar{X}(t; M_r)$ can be approximated by a Gaussian pdf cen-
tered at $\bar{X}(t)$ with the standard deviation $\sigma(t; M_r) = \sqrt{\var(X; M_r)/M_r}$.

In the framework of local and global quantities [37], elements of the density matrix correspond to the for-
mer. That means that in order to resolve their values we need $M_r \gg N$ realizations. In addition, they are small for large N, $\gamma_{kl} \sim \mathcal{O}(N^{-1})$, and the standard criterium of a trustful sampling, $\sigma(M_r)/\gamma_{kl} \ll 1$, implies that $M_r \gg N^2$. Such a massive sampling is unfeasible if $N \gtrsim 10^3$, even when used on a supercomputer. However, this constitutes a sufficient condition which greatly over-
estimates (hopefully) the number of realizations needed for a reasonable resolution of the density matrix, as we scrutinize for our test case below. This presents yet an-
other aspect of the sampling with quantum trajectories we aim to gain more specific insight.

Another issue we like to mention is the time evolution of the variance $\var[\gamma_{kl}(t)]$. Evidently, it cannot grow to infinity simply because the absolute values of the coefficients $c_s(t)$ do not exceed one. Therefore, there is an upper limit $\var[\gamma_{kl}(t)] \approx 1$. On the other hand, for completely random and uniformly distributed values of $c_s(t)$ we find $\var[\gamma_{kl}(t)] \propto N^{-1}$. By using a scalable model we show that (i) the variances saturate in course of propaga-
tion to time-periodic values, $\var[\gamma_{kl}(t+T)] = \var[\gamma_{kl}(t)]$, which in addition (ii) allow for an accurate estimation of the density matrix elements with less than N^2 realizations.
IV. A MODEL

As a testbed for the algorithm we use an open physical system made up of \(N - 1 \) indistinguishable interacting bosons which hop between a periodically rocked dimer. The system Hamiltonian rusingeads explicitly:

\[
H(t) = -J \left(b_1^\dagger b_2 + b_2^\dagger b_1 \right) + \frac{U}{2(N-1)} \sum_{g=1,2} n_g (n_g - 1) + \varepsilon(t) (n_2 - n_1).
\]

Here, \(J \) denotes the tunneling amplitude, \(U \) is the interaction strength, and \(\varepsilon(t) \) presents a periodically varying modulation of the local potential in time. In particular, we choose \(\varepsilon(t) = \varepsilon(t+T) = \mu_0 + \mu_1 Q(t) \), where \(\mu_0 \) and \(\mu_1 \) denote a static and a dynamically varying, respectively, energy offset between the two sites. \(Q(t) \) itself is a periodically varying, unbiased two-valued quench-function within one full period \(T \); more specifically, \(Q(t) = \frac{1}{2} \) within \(0 < \tau < T/2 \) and \(Q(t) = -\frac{1}{2} \) for the second half period \(T/2 < \tau \leq T \). The boson operators \(b_g \) and \(b_g^\dagger \) are the annihilation and creation operators on site \(g \in \{1, 2\} \), while \(n_g = b_g^\dagger b_g \) is the particle number operator. The system Hilbert space has dimension \(N \) and can be spanned with the \(N \) Fock basis vectors, labeled by the number of boson on the first site \(n, \{n+1\}, n = 0, ..., N - 1 \). Thus, the model size is controlled by the total number of bosons. The Hamiltonian \(\rho \) has been used for theoretical studies before in Refs. [49–51] and, as well, has been implemented in recent experiments [52, 53].

For the single jump operator we use [54],

\[
V = (b_1^\dagger + b_2^\dagger)(b_1 - b_2),
\]

which attempts to ‘synchronize’ the dynamics on the sites by constantly recycling anti-symmetric out-phase modes into symmetric in-phase ones. The dissipative coupling constant \(\gamma = \gamma_0/\sqrt{N-1} \) is taken to be time-independent. Since the jump operator is non-Hermitian, the propagators \(\mathcal{P}_t \) are not unital and the attractor does not assume the maximally mixed state, \(\rho^{\text{mix}} \neq 1/N \).

The Hamiltonian \(\rho \) is non-integrable when \(U \neq 0 \); therefore, an analytical solution of the corresponding Lindblad equation is not available. However, in the limit \(N \rightarrow \infty \) the dynamics can be approximated by mean-field equations for the expectation values of the three pseudo-spin operators \(S_x = \frac{1}{\sqrt{N-1}} \left(b_1^\dagger b_2 + b_2^\dagger b_1 \right) \),

\[
S_y = -i \frac{1}{\sqrt{N-1}} \left(b_1^\dagger b_2 - b_2^\dagger b_1 \right), \quad S_z = \frac{1}{N-1} (n_1 - n_2).
\]

For a large number of atoms, the commutator \([S_x, S_y] = [iS_z/(N-1)]^{N-2} \rightarrow 0 \) and similarly for other cyclic permutations. Replacing operators with their expectation values, \(\langle S_x \rangle = tr[\rho S_x] \), and denoting \(\langle S_k \rangle \) by \(S_k \), we find the semi-classical equations of motion [55]

\[
\frac{dS_x}{dt} = 2\varepsilon(t)S_y - 2US_z S_y + 8\gamma_0 \left(S_y^2 + S_z^2 \right),
\]

\[
\frac{dS_y}{dt} = -2\varepsilon(t)S_x + 2U S_x S_z + 2JS_z - 8\gamma_0 S_x S_y,
\]

\[
\frac{dS_z}{dt} = -2JS_y - 8\gamma_0 S_x S_z.
\]

As \(S_y^2 + S_z^2 = 1/4 \) is a constant of motion, we can reduce the mean-field evolution to the surface of a Bloch sphere, \((S_x, S_y, S_z) = \frac{1}{2}[\cos(\varphi) \sin(\vartheta), \sin(\varphi) \sin(\vartheta), \cos(\vartheta)] \), yielding the equations of motion

\[
\dot{\varphi} = 2J \frac{\cos(\vartheta)}{\sin(\vartheta)} \cos(\varphi) - 2\varepsilon(t) + U \cos(\varphi) - 4\gamma_0 \frac{\sin(\varphi)}{\sin(\vartheta)}, \quad \dot{\vartheta} = 2J \sin(\varphi) + 4\gamma_0 \cos(\varphi) \cos(\vartheta).
\]

The density matrix \(\rho \) of the system with \(N - 1 \) bosons can be visualized on the same Bloch sphere by plotting the Husimi distribution \(p(\theta, \varphi) \), obtained by projecting \(\rho \) on the set of the generalized SU(2) coherent states, \(|\theta, \varphi\rangle = \sum_{j=0}^{N-1} \sqrt{\binom{N-1}{j}} \left[\cos(\theta/2) \right]^j \left[e^{i\varphi} \sin(\theta/2) \right]^{N-1-j} |j\rangle \) [56, 57]. The visual comparison of the Husimi distribution with the mean-field solution, Eq. (9), will serve as a test of the meaningfulness of the sampled density matrix \(\rho(t_p; M_t) \).

V. IMPLEMENTATION ON A CLUSTER AND PERFORMANCE

Next we describe a high-performance implementation of the algorithm on a supercomputer and analyze the scalability of its implementation by using the model system [6, 7]. Numerical experiments were performed on the “Lobachevsky” supercomputer [68] at the Lobachevsky State University of Nizhny Novgorod. We employed up to 32 computing nodes, with the following configuration per node: 2× Intel Xeon E5 – 2660 CPU (8 cores, 2.2 GHz), 64 GB RAM, OS CentOS 6.4. We use Intel Math Kernel Library (MKL), Intel C/C++ Compiler, and Intel MPI from Intel Parallel Studio XE [59].

Table I. Scaling efficiency on shared memory.
Number of threads

1
2
4
8
16

Using Eq. (3), we start with two effective non-Hermitian Hamiltonians, \(\tilde{H_1} \) and \(\tilde{H_2} \), describing the
quench-like modulations, Eq. 2, as represented by a pair of complex double-precision $N \times N$ matrices. An initial pure state $|\psi^{\text{init}}\rangle$ is represented by a complex-valued double-precision vector. The propagation operator yields a wave function for a single sample. We follow the straightforward approach to parallelization with an independent random sampling. Namely, the computational load is distributed among supercomputer nodes by the standard Message Passing Interface (MPI). On each node we employ the OpenMP threads to parallelize sampling. Computationally intensive operations are implemented by calling BLAS functions from Intel MKL in sequential mode.

The code consists of three main steps. First, the program initializes MPI, allocates memory, reads parameters and the matrices of the pre-calculated exponential propagators from configuration files. The propagators are calculated independently on each cluster node. On the second step all OpenMP threads in all MPI processes independently propagate several quantum trajectories starting from the initial state $|\psi^{\text{init}}\rangle$.

Algorithm 1: propagation of a quantum trajectory with exponential operators and bisection method

1: set $\delta t = \delta t_0$ & $s = 0$
2: while $||\psi(t)||^2 > \eta$ do
3: calculate $\tilde{\psi}(t) = P_{\delta t} |\psi(t)\rangle$
4: if $||\tilde{\psi}(t)||^2 < \eta$ & $s < S$ then
5: $s = s + 1$
6: else
7: $|\psi(t)\rangle = |\tilde{\psi}(t)\rangle$
8: $t = t + \delta t$
9: while $s > 0$ & $\delta t = n \cdot \delta t_{s-1}, n \in \mathbb{Z}^+$ do
10: $s = s - 1$; $\delta t = \delta t_s$
11: end while
12: end if
13: end while

The propagation is realized by using the step-decimation technique. This pseudo-code is presented in Algorithm 1. The maximal depth S, the time steps $\delta t_s = 2^{-s} \delta t$, and the exponential propagators $P_{\delta t_s}, s = 0, \ldots, S$ are pre-loaded. The program is initiated with $s = 0$, but later on it is taken from the previous propagation loop step. This step is fully parallel; it contains a matrix-vector multiplication that is the most computationally intensive part of the algorithm. This operation is performed with the zgemv MKL subroutine. During the third step all samples on each node are accumulated into the density matrix. Next, these matrices are collected in the rank 0 MPI process. Finally, one evaluates the resulting density matrix. This matrix is written to the output file, the dynamic memory is deallocated and the MPI is finalized.

The efficient utilization of a supercomputer requires a reasonable scaling on the distributed memory. In this regard, quantum trajectories possess an ideal parallelization potential. The method realizes the general Monte Carlo paradigm with independent simulations and without substantial load imbalance. The transfer of the resulting data is the only data interchange between nodes. We ran numerical simulations utilizing up to 32 nodes of the supercomputer and found that the implementation scales almost linearly with the number of nodes. Next, we consider the performance and the scaling efficiency of the implementation on 16 CPU cores with shared memory. To start, the number of MPI processes and OpenMP threads have to be chosen. We tried several different configurations; namely, 1 process \times 16 threads, 2 processes \times 8 threads, 4 processes \times 4 threads, 8 processes \times 2 threads, and 16 processes \times 1 thread. We did not find a substantial difference in performance and chose the option 1 MPI process with 16 OpenMP threads mode for illustration. It is known that setting a relevant affinity mask to pin threads to CPU cores usually affects performance and scalability. In this regard, we used the following settings: KMP AFFINITY=granulatiny=fine,scatter. For all performance measurements in this section we considered the model setup, Eqs. (6, 7), with 63 bosons (i.e., with dimension $N = 2^6 = 64$) and 640 trajectories. The results of our computational experiments are summarized in Table I. Upon inspection this shows that our implementation allows 87% scaling efficiency on 16 CPU cores with shared memory.

Then, we ran the Intel VTune Amplifier XE profiler to find main time-consuming parts of our implementation. As a result we found that the high-performance implementation of the dense matrix-vector multiplication with zgemv takes more than 99% of the total computation time. This in turn means that there is no potential for further optimization of the code.

Finally, we estimate the computation time to propagate a single trajectory on a single-core as a function of
FIG. 2. (a) Structure of the sampled stroboscopic density matrix $\rho_{\text{att}}(0)$ ($N = 1024$) and (b) time evolution of the mean $\bar{\rho}_{11}(t)$ (thick blue line) and variance $\text{var}[\rho_{11}(t)]$ (thin red line) for $t \in [40T, 50T]$. The system size is $N = 256$ and the sampling was performed over 10^5 independent trajectories initiated at the state $|\psi_{\text{init}}\rangle = |1\rangle$ and then propagated to the time $t_p = 50T$. The inset depicts the limit-cycle evolution of the means and variances for two diagonal elements, $\rho_{1,1}$ and $\rho_{128,128}$, during one period of modulations, $t \in [1000T, 1001T]$. Curves for later periods are indistinguishable from the presented ones. The parameters are the same as in Fig. 1.

VI. APPLICATIONS

We now report the results of our simulations obtained for the model given by Eqs. (6 - 7). We start with the performance of the algorithm, Table II. The idea of the algorithm mimics a float: The algorithm constantly attempts to ‘float to the surface’, i.e., to increase the time step of integration towards its maximal value δt_0 while every next jump pulls it downwards to δt_S, see Fig. 1. The average time between two consequent jumps is the mean of the local maxima in the depicted saw-like time sequence of δt. There is no problem in overestimating δt_0, simply because the time step will rarely reach its maximum. The shortest time step, δt_S, or, equivalently, the depth S, is tuned to the values needed to reach the desired accuracy.

Next we turn to the averages $\bar{\rho}_{kl}(t)$ over realizations and the corresponding statistical variances $\text{var}[\rho_{kl}(t)]$ of the matrix elements. Both quantifiers converge to “limit cycles” if the propagation time $t_p = nT + \tau$, $n \in \mathbb{Z}^+$, $\tau \in [0, T)$, is much larger than all relaxation times. This means that for $n \gg 1$ the density matrix converges to a time-periodic quantum attractor, i.e., $\bar{\rho}_{kl}(t + T) = \bar{\rho}_{kl}(t)$ [see Fig. 2(a)] and the variances also become time-periodic functions, $\text{var}[\rho_{kl}(t + T)] = \text{var}[\rho_{kl}(t)]$ [see Fig. 2(b)]. The crumpled caustic-like shapes of the limit cycles is a result of the projection on a plane of a global limit-cycle living in N^4-dimensional space: the limit-cycles are not topological products of N^2 two-dimensional limit cycles; elements of the asymptotic density matrix do not evolve independently, they do interact so that their means and variances are correlated.

In the asymptotic regime, the sampling can be performed stroboscopically, i.e., after every period T. In our simulations we used $t_p = 1000T$ as the transient time and

\begin{table}[h]
\centering
\begin{tabular}{cc}
Number of states, N & Time of computations, in seconds \\
\hline
64 & 0.37 \\
128 & 2.3 \\
256 & 16 \\
512 & 153 \\
1024 & 1153 \\
2048 & 8642 \\
4096* & 64785 \\
\hline
\end{tabular}
\caption{Single-core computation time to propagate a trajectory over one period T as a function of N. The parameters are $J = 1$, $\mu_0 = 1.5$, $\mu_1 = 1$, $U = 3$, $\gamma_0 = 0.1$, and $S = 20$.}
\end{table}
then performed the stroboscopic sampling of $\varrho_{\text{att}}(\tau = 0)$. The attractor density matrix at any other instant of time $\tau \in [0, T]$ can be sampled by shifting the starting time of the sampling, $t_p \rightarrow t_p + \tau$, or also by performing an extra-sampling at all needed intermediate points.

For relatively small system sizes, $N \simeq 100$, we can obtain a numerically exact asymptotic solution, calculated as the kernel of the Floquet map minus identity, $(P_T - 1)\varrho^{\text{ex}}(0) = 0$. It allows us to quantify convergence of the sampled density matrix – with the increase of the number of sampled trajectories, M_r, – to the asymptotic state. The error is defined as the spectral norm of the difference matrix, $\epsilon = \|\varrho^{\text{att}}(mT) - \varrho^*(\tau = 0)\|$. We find that, for the chosen set of parameters, the sampled solution converges to an attractor already after $t_p > 50T$, such that the observed error remains essentially time-independent. The resulting plot demonstrates that the sampling error scales as $1/\sqrt{M_r}$ (as expected for an independent Monte Carlo sampling) with no signatures of saturation; see Fig. 3.

With 4000 samples per trajectory (that amounts to an additional propagation for the time $4000T$) it became possible to collect $M_r = 10^5$ samples for the model system of the dimension $N = 1024$ (i.e., $N - 1 = 1023$ indistinguishable bosons) by running the program on 32 cores during three days. The Husimi distribution of the sampled density matrix is depicted in Fig. 4. There is an intriguing similarity between the distribution of the quantum attractor and the phase-space structure of the classical attractor (i.e., its stroboscopic section, to be more precise) produced by the mean-field equations. This allows us to conjecture that the attractor density matrix was resolved with a good accuracy. The 128 cores allowed us to sample the same number of realizations for the model with dimension $N = 2048$ during approximately one week.

VII. CONCLUSIONS

The objective of this study was to estimate the numerical horizon of a high-accuracy sampling of non-equilibrium dissipative states of periodically driven quantum systems by using a high-precision realization of the quantum trajectory method. We demonstrated that, by implementing the algorithm on computer cluster with ≤ 128 cores, it is possible to resolve time-periodic asymptotic density operator of driven open quantum systems of several thousand of states on a time scale of a few days. The benefit of gaining access to the whole density matrix is the possibility to extract more detailed information about the non-equilibrium regimes which is encoded in the matrix structure of the density operator, such as the purity and many-body entanglement.

We would like to surmise on possible optimization of the sampling procedure. An immediate idea is to use an optimal initial state $|\psi_{\text{init}}\rangle$ in order to reduce the transient time t_p. When it is about resolving the asymptotic density operator as a function of the value of a param-

FIG. 3. Spectral norm of the difference between the density matrix stroboscopically sampled with quantum trajectory algorithm and numerically exact asymptotic solution, $\epsilon = \|\varrho^{\text{att}}(mT) - \varrho^*(\tau = 0)\|$, for the dimer model, Eqs. (6, 7). Here $N = 100$, $J = 1$, $\mu_0 = 1.5$, $\mu_1 = 1$, $U = 3$, $\gamma_0 = 0.1$.

FIG. 4. Attractors of the dimer model, Eqs. (6, 7). Husimi distribution of the attractor density matrix $\varrho^{\text{att}}(0)$ of the dimer with $N - 1 = 1023$ bosons (top) and classical attractor of the corresponding mean-field systems, Eq. (8) (bottom panel). The density matrix was sampled with 10^5 stroboscopic realizations. The parameters are $J = 1$, $\mu_0 = 1.5$, $\mu_1 = 1$, $U = 3$, $\gamma_0 = 0.1$.
Research areas where 'quantum attractors' are of potential interest have been already mentioned in the introduction. Here, we like to recall them. First, this is many-body localization [17] where the action of temporal modulations [18, 19] and dissipation [20, 21] so far have been considered separately. A combined action of both factors in MBL systems of non-regular topology presents an intriguing challenge. The next issue is the survival of Floquet topological insulators [13] in the presence of dissipation or creation of new types of insulating Floquet states with synthetic dissipators, are timely objectives of interest for practical applications. Finally, our numerically exact realization of quantum trajectory method can be used to explore - in a very accurate way - the thermodynamics of quantum jump trajectories [64] in complex periodically-modulated open quantum systems and search for non-equilibrium analogs of dissipative phase transitions [65].

VIII. ACKNOWLEDGMENTS

The authors acknowledge support of the Russian Science Foundation grant No. 15-12-20029. The authors also thank I. Vakulchik for the help with preparing the figures.
A generalization of the TEBD technique to non-Hermitian operators was used for the propagation step in Refs. [41, 42]. Similar to its Hermitian predecessor, that method can only be implemented for lattice systems. Also, it guarantees correct asymptotic results only when there is no distant entanglement build-ups in the course of the system evolution.

[40] A. J. Daley, J. M. Taylor, S. Diehl, M. Baranov, and P. Zoller, Phys. Rev. Lett. 102, 040402 (2009).

[41] L. Bonnes and A. M. Läuchli, arXiv:1411.4831 (2014).

[42] J. Steinbach, B. M. Garraway, and P. L. Knight, Phys. Rev. A 51, 3302 (1995).

[43] H.-P. Breuer, U. Dorner, and F. Petruccione, Comp. Phys. Comm. 132, 30 (2000).

[44] K. J. Aström and B. Bernhardsson, Comparison of periodic and event based sampling for first-order stochastic systems, In Preprints 14th World Congress of IFAC, Beijing, P.R. China, July 1999.; K. J. Aström and B. Bernhardsson, Systems with Lebesgue sampling, Lecture Notes in Control and Information Sciences 286 (2002) 1-10.

[45] S. Rotter and M. Diesmann, Biol. Cybern. 81, 381 (1999).

[46] C. Moler and Ch. Van Loan, SIAM Rev. 45, 3 (2003).

[47] D. E. Knuth, The Art of Computer Programming, Vol. 3 (Pearson Ed., US, 1998).

[48] A. Vardi and J. R. Anglin, Phys. Rev. Lett. 86, 568 (2001).

[49] F. Trimborn, D. Witthaut, and S. Wimberger, J. Phys. B: At. Mol. Opt. Phys. 41, 171001 (2008).

[50] D. Poletti, J.-S. Bernier, A. Georges, and C. Kollath, Phys. Rev. Lett. 109, 045302 (2012).

[51] A. Perelomov, Generalized coherent states and their applications (Springer, Berlin 1986).

[52] Intel® Parallel Studio XE 2015. https://software.intel.com/en-us/intel-parallel-studio-xe

[53] The components of the initial state vector are taken independent and identically uniformly distributed in $[-1/2, 1/2]$, and then the vector is normalized to unity.