Extraction of volatile organic compounds from leaves of Ambrosia artemisiifolia L. and Artemisia annua L. by headspace-solid phase micro extraction and simultaneous distillation extraction and analysis by gas chromatography/mass spectrometry

Ji Hyeon Son 1 · Md Atikul Islam 1,2 · Joon Ho Hong 3 · Ji Young Jeong 1 · Ok Yeon Song 1 · Hui Eun Kim 1 · Naeem Khan 4 · Nargis Jamila 5 · Kyong Su Kim 1

Received: 7 July 2020 / Revised: 11 December 2020 / Accepted: 30 December 2020 / Published online: 19 February 2021
© The Author(s) 2021

Abstract This study was designed to analyze the volatile organic compounds in the leaves of Ambrosia artemisiifolia L. and Artemisia annua L. from Korea. For extraction of volatile compounds, headspace-solid phase micro extraction (HS-SPME) and simultaneous distillation extraction (SDE) were applied and analyzed by gas chromatography/mass spectrometry (GC/MS). From the results, SDE extraction was found to give the highest concentration of volatile compounds with an average concentration of 1,237.79 mg/kg for A. annua L. leaves compared to 1,122.73 mg/kg by HS-SPME technique. A total of 116 volatile organic compounds were identified, including 76 similar volatile organic compounds detected by both the methods of extraction in leaves of subject species at varying concentrations. Among these 33 volatile organic compounds were reported for the first time from the subject plant species. Thus the present research findings extend the characterization of volatile organic compounds from leaves of A. annua L. and A. artemisiifolia L. species and reported some distinguishing compounds which may be used for their discrimination.

Keywords Ambrosia artemisiifolia L. leaves · Artemisia annua L. leaves · Volatile organic compound · Headspace-solid phase micro extraction (HS-SPME) · Simultaneous distillation extraction (SDE) · Gas chromatography/mass spectrometry (GC/MS)

Introduction
Ambrosia artemisiifolia L. (common ragweed) leaves are highly allergenic pollens, causing great agricultural losses (Molinaro et al., 2016). These have negative impact on the diversity of plant species, richness and the composition of their vegetation is a topic of on-going discussion (Sölter
et al., 2012). This species is indigenous to North America (Basset and Crompton, 1975) but also found abroad in South Asia, such as South Korea (Kil et al., 2004) and China (Sang et al., 2011; Xie et al., 2010). The allopathic action of *A. artemisiifolia* L. leaves has already been reported in literature, while knowledge of their volatile organic compounds was still lacking.

In comparison, *Artemisia annua* L. (sweet wormwood) is a medicinal herb; native to South East Asia, including South Korea, China, and India (Wu et al., 2017). This plant has been used for many centuries in the treatment of malaria, fever, flavouring of sprit, perfumes, folk medicine and industrial purposes (Bilia et al., 2008; Ma et al., 2007; Nekoei et al., 2012). Recently, *A. annua* L. leaves were found to be effective against human leukemia, tumour, small-cell lung carcinomas, and breast cancer carcinomas (Efferth and Willmar, 2007). Due to the similar appearance, consumers and manufacturers are confused to separate *A. annua* L. leaves in the market from *A. artemisiifolia* L. leaves.

Headspace-solid phase micro extraction (HS-SPME) is a quick, solvent less, and simple method for analysis of volatile organic compounds (Holt, 2001; Kataoka et al., 2000; Zhang et al., 1994). This technique is a non-invasive and non-destructive that avoids solvent impurity contamination (Heath and Reineccius, 1986). It combines sampling, extraction, and concentration into a simple continuous process (Adam et al., 2005). In contrary, Likens and Nickerson developed simultaneous distillation–extraction (SDE) is a traditional and widely used method for extraction of volatile organic compounds (Islam et al., 2020). Gu et al. (2009) indicated that SDE has outstanding high performance and reproducibility compared to other conventional methods such as hydro distillation and steam distillation.

Some wild toxic plants are morphologically very similar to important medicinal plants. When such wild toxic plants are accidentally taken, instead of medicinal plants for different purposes, they cause many problems. According to Kim and Jang (2019), in South Korea, 42 patients faced abdominal pain after intake of *A. artemisiifolia* L. leaves instead of *A. annua* L. leaves. So, it was very important to understand the volatile organic compounds characteristics of leaves of both the subject species selected for current study and to find out the distinguishing marker compounds. From literature search it was come to know that HS-SPME and SDE techniques were not used to isolate volatile organic compounds from *A. artemisiifolia* L. leaves and also there was no comparative study found on the volatile organic compounds of *A. artemisiifolia* L. leaves and *A. annua* L. leaves. In the current analysis, therefore both HS-SPME and SDE techniques coupled to GC/MS analysis were applied to establish the comparative results of volatile organic compounds profile of *A. artemisiifolia* L. leaves and *A. annua* L. leaves. It was also attempted to report distinguishing marker volatile organic compounds which may be used for their identification.

Materials and methods

Sample collection

Figures and taxonomy of the sampled plants are shown in Fig. 1. In February 2018, the authentic *A. artemisiifolia* L. leaves and *A. annua* L. leaves were collected in triplicate from Korea native plants growers farm association corporation, Seongnam-si, Republic of Korea. These two leave varieties were thoroughly washed with clean water, followed by rinsing with distilled water. Then, using a blender (MR 350CA, Braun, Spain) the leaves were crushed, transferred to polythene bags, properly labelled and used for volatile compounds extraction and GCMS analysis.

Chemicals and reagents

All chemicals and reagents used in this study were purchased from Sigma-Aldrich Co. (St. Louis, MO, USA) and Thermo Fisher Scientific (Waltham, MA, USA). The water purification system (Millepore Corporation, Beds., USA) was used to prepare ultra-pure water. For the re-distillation of the organic solvents (n-pentane and diethyl ether), a wire spiral packed double distilling apparatus (Normschliff Geratebau, Wertheim, Germany) was used. Anhydrous sodium sulphate was burned overnight at 650 °C in furnace (F 6000, Barnsted Thermolyne Co., IA., USA) and then used for dehydration of organic solvent.

Extraction of volatile compounds using HS-SPME technique

Around 2.0 g of each homogenized sample of *A. artemisiifolia* L. leaves and *A. annua* L. leaves were taken into 15.0 mL headspace clear glass vials (Supelco, PA., USA) and then injected 50.0 μL (100 ppm in n-pentane) n-butyl benzene as an internal standard. After that, the headspace glass vial was hold on for 30 min in equilibrium temperature at 70 °C and then SPME fibre (50/30 μm DVB/CAR/PDMS, Supelco) was exposed for 5 min to absorb volatile organic compounds. Finally, the temperature of the injector was maintained at 250 °C, and the fibre was kept in GC/MS objector for 5 min to analyse the volatile organic compounds.
Extraction of volatile compounds using SDE technique

Every 30.0 g homogenized sample was mixed with 1,000 mL of distilled water and the pH was adjusted at 7.0 by dilute NaOH/HCl solution. For the quantitative analysis of volatile organic compounds, 100 ppm, 10 mL n-butyl benzene was added as an internal standard. Volatile organic compounds were extracted from both leaves by modified simultaneous distillation extraction (SDE, Likens & Nickerson types) apparatus with 100 mL redistilled n-pentane:diethyl ether (1:1, v/v) mixture. The experiment was maintained under normal atmospheric pressure for 3 h (Schultz et al., 1977). The SDE extract was dehydrated overnight by adding 10 g of anhydrous Na₂SO₄. Finally, the vigreux column was used to concentrate the extract volume to 1.5 mL. After that, it was again concentrated to 0.5 mL under N₂ gas mild flush. Finally, the concentrated extract was injected into the GC/MS system for determination of volatile organic compounds (Khan et al., 2015).

Analysis of volatile organic compounds by GC/MS

The quantitative analysis of volatile organic compounds was carried out by Shimadzu GC/MS, QP-2010 (Shimadzu, Japan) with the EI (electron impact) mode. The ionization voltage was 70 eV, and temperatures of the injector and of ion source were maintained at 250 °C and 220 °C, respectively. The volatile organic compounds were isolated by GC column DB-5 (60 m × 0.25 mm i.d., film thickness 0.25 μm, Phenomenex, USA) and the mass spectra scanned were from 41 to 500 m/z. The GC/MS oven temperature was set as follows; 40 °C (5 min isothermal) raised to 220 °C at 2 °C/min and then to 280 °C at 10 °C/min (10 min isothermal). Helium gas at flow rate of 1.0 mL/min was used as the carrier gas. The sample injector volume was 1.0 μL and the split ratio was 1:20 (Islam et al., 2020).

Identification and quantification of volatile organic compounds

The A. artemisiifolia L. leaves and A. annua L. leaves volatile organic compounds were identified by the spectral databases, including NIST 12, FFNSC 2012, and WILEY 7. In addition, our own mass spectral data books were applied (Davies, 1990). Moreover, evaluations of retention indices to reference data were studied (Adams, 2007). The retention time of solutes of standard n-alkanes (C₈–C₂₀) mixture was used as an external reference (Jeon et al., 2017). The quantitative assessment of volatile organic compounds was carried out with the help of peak area percentage of the internal standard by using the formula:

\[
\text{Volatile organic compounds amount (mg/kg)} = \frac{P_c \times 1000}{P_i \times A_s}
\]

where, \(P_i\) = Peak area (internal standard).
\(A_s\) = Amount of sample (g).
\(P_c\) = Peak area (component in sample).

Statistical Analysis

The volatile organic compounds were calculated in triplicate, and the data was evaluated using the Software Version 20 (IBM, New York, USA) of Statistical Package for Social Sciences (SPSS). The final results were reported as mean ± standard deviation (mg/kg).
Results and discussions

The GC/MS chromatograms of volatile compounds of various extracts from A. artemisiifolia L. leaves and A. annua L. leaves via HS-SPME and SDE techniques were as displayed in Fig. 2a–d. The identified volatile organic compounds detail such as retention index (RI), compound names, molecular formulae (MF), molecular weights (MW), peak areas %, and their concentrations were as shown in Table 1. From the results it was found that both the leaves contain a wide range of volatile organic compounds. In published literature, it has been reported that both the leaves contain around 30–35 compounds (Nekoei et al., 2012; Wang et al., 2006).

In the current analysis, leaves of both plants were extracted for volatile compounds by HS-SPME and SDE. The extracts were analyzed by GC/MS, which identified more compounds compared to already reported studies (Haghighian et al., 2008). A total of 116 volatile organic compounds were identified from the subject leaves and this study thus reported 33 volatile organic compounds for the first time in comparison to published literature (Table 1, marked bold). The total amount of volatile organic compounds for A. artemisiifolia L. leaves and A. annua L. leaves ranged from 651.53 mg/kg to 1,122.73 mg/kg and 566.1 mg/kg to 1,237.79 mg/kg through HS-SPME and SDE techniques, respectively.

Volatile compounds of A. artemisiifolia L. leaves by HS-SPME technique

A total of 46 volatile organic compounds were identified in A. artemisiifolia L. leaves amounting 651.53 mg/kg (Table 1). These included 28 hydrocarbons (76.49%, 499.20 mg/kg), 7 alcohols (11.62%, 75.81 mg/kg), 4 ketones (3.92%, 25.59 mg/kg), 3 ethers (4.09%, 26.70 mg/kg), 3 aldehydes (0.61%, 3.97 mg/kg), and 1 ester (3.1%, 20.26 mg/kg) (Table 2). The terpene group compounds (99.12%, 646.91 mg/kg) were the maximum in A. artemisiifolia L. leaves; which included 21 sesquiterpene hydrocarbons (67.58%, 441.00 mg/kg), 6 oxygenated sesquiterpenes (12.73%, 83.12 mg/kg), 8 oxygenated monoterpenes (9.9%, 64.59 mg/kg), and 7 monoterpene hydrocarbons (8.91%, 58.20 mg/kg) (Table 3). The highest concentration of volatile organic compounds were of β-caryophyllene (12.08%, 78.64 mg/kg), followed by γ- muurolene (6.49%, 42.39 mg/kg), spathulenol (6.13%, 40.04 mg/kg), and δ-cadinene (4.5%, 29.40 mg/kg). A. artemisiifolia L. leaves gave 6 compounds including phenyl acetaldehyde, (E)-β-ocimene, artemisia alcohol, germacrene B, palustrol, and γ-humuleneepoxide II by HS-SPME which were not detected by SDE extraction (Table 1).

Volatile compounds of A. annua L. leaves by HS-SPME technique

From Table 1, the amount of volatile organic compounds from A. annua L. leaves was found as 566.10 mg/kg by HS-SPME method. These included a total of 41 volatile organic compounds, with 17 hydrocarbons (27.67%, 153.84 mg/kg), 7 ketones (21.96%, 122.07 mg/kg), 7 alcohols (8.48%, 37.92 mg/kg), 5 aldehydes (1.19%, 6.57 mg/kg), 3 ethers (39.96%, 229.35 mg/kg), and 2 esters (2.97%, 16.35 mg/kg). As per Table 3, terpene group compounds were having the highest concentration (97.26%, 540.18 mg/kg), which consisted of 5 oxygenated sesquiterpenes (47.93%, 275.01 mg/kg), 13 sesquiterpene hydrocarbons (26.25%, 146.04 mg/kg), 13 oxygenated monoterpenes (21.66%, 111.33 mg/kg), and 4 monoterpane hydrocarbons (1.42%, 7.80 mg/kg). The major volatile organic compounds were caryophyllene oxide (31.90%, 186.48 mg/kg) followed by camphor (11.80%, 65.76 mg/kg), β-selinene (8.29%, 46.65 mg/kg), β-caryophyllene (5.76%, 31.68 mg/kg), alloaromadendrene epoxide (5.33%, 29.31 mg/kg), phytone (5.02%, 27.99 mg/kg), and aromandendrene (5.02%, 27.99 mg/kg). The HS-SPME method found 6 compounds such as cuminaldehyde, benzyl pentanoate, α-acoradiene, alloaromadendrene epoxide, 4-cadinene-7-ol, and phytone, which were not detected by SDE analysis (Table 2). In literature other studies have also reported artemisia ketone, yomogi alcohol, camphor, and β-selinene in A. annua L. leaves (Nekoei et al., 2012; Reale et al., 2011). Thus current research findings are line with the published research studies.

Volatile compounds of A. artemisiifolia L. leaves by SDE technique

The amount of volatile organic compounds in A. artemisiifolia L. leaves by SDE extraction was 1,122.73 mg/kg. A total of 49 volatile organic compounds were reported (Table 1), belonging to different chemical groups such as 26 hydrocarbons (51.76%, 577.58 mg/kg), 12 alcohols (32.29%, 360.52 mg/kg), 5 aldehydes (3.42%, 38.16 mg/kg), 4 ketones (1.79%, 19.96 mg/kg), 1 ether (9.42%, 105.12 mg/kg), and 1 ester (1.92%, 21.39 mg/kg). The terpene group (94.67%, 1,056.58 mg/kg) was the major class of volatile organic compounds in A. artemisiifolia L. leaves, with 22 sesquiterpene hydrocarbons (45.01%, 502.32 mg/kg), 5 oxygenated sesquiterpenes (31.84%, 355.39 mg/kg), 6 oxygenated monoterpenes (11.07%, 123.61 mg/kg), and 37 monoterpene hydrocarbons (6.75%, 75.26 mg/kg) (Table 3). The major volatile
organic compounds detected were spathulenol (12.45%, 138.92 mg/kg), caryophyllene oxide (9.42%, 105.12 mg/kg), α-cumene (5.75%, 64.22 mg/kg), valencene (5.26%, 58.96 mg/kg), borneol (5.09%, 56.82 mg/kg), and β-caryophyllene (4.61%, 51.45 mg/kg). A. artemisiifolia L. leaves were found to have 12 volatile organic compounds such as sulcatone, benzene acetaldehyde, linalool, β-bourbonene, β-cubebene, neryl acetone, β-sesqui sabine, junenol, and α-guaiol which were reported by SDE and not by HS-SPME technique (Table 1). Wang et al., (2006) have reported by steam distillation method that the germacerene D, limonene, and α-pinene are present in A. artesimisifolia L. leaves.

Volatile compounds of A. annua L. leaves by SDE extraction

As shown in Table 1, the amount of volatile organic compounds in A. annua L. leaves was 1,237.79 mg/kg by SDE method. These were 71 compounds belonging to specific chemical functional groups including 26 alcohols (26.47%, 323.25 mg/kg), 22 hydrocarbons (31.35%, 390.32 mg/kg), 11 aldehydes (1.87%, 23.41 mg/kg), 7 ketones (16.01%, 199.05 mg/kg), 3 ethers (21.49%, 267.14 mg/kg), 1 ester (2.16%, 26.88 mg/kg). The highest proportion was of terpene group compounds (92.02%, 1,138.84 mg/kg) which included 23 oxygenated monoterpenes, 11 sesquiterpene hydrocarbons, 2 oxygenated sesquiterpenes, and 11 monoterpenic hydrocarbons having 40.17%, 493.56 mg/kg; 27.80%, 346.09 mg/kg; 20.50%, 254.96 mg/kg and 3.55%, 44.23 mg/kg, respectively.
No	R.I.	Compound name	M.F.	M.W.	HS-SPME	SDE			
		Ambrosia artemisiifolia L							
		Artemisia annua L.							
1	706	3-Methylbutanalb	C₅H₁₀O	87	–	–			
2	719	1-Pentene-3-ol	C₅H₁₀O	86	–	–			
3	727	Pentanalb	C₅H₁₀	86	–	–			
4	729	2-Ethylfuran	C₆H₁₂	96	–	–			
5	754	2-Methyl-1-butanol	C₅H₁₀O	88	–	–			
6	767	(E)-2-Pentenalb	C₅H₁₀O	84	–	–			
7	775	1-Pentanolb	C₅H₁₀O	88	–	–			
8	794	2-Hexanone	C₅H₁₂O	100	–	–			
9	802	Hexanalb	C₅H₁₀O	100	0.15 ± 0.00	0.95 ± 0.04			
10	836	Furfuralb	C₅H₁₀O	96	–	–			
11	855	(E)-2-Hexenalb	C₅H₁₀O	98	–	–			
12	857	(Z)-3-Hexen-1-ol	C₅H₁₀O	100	–	–			
13	871	1-Hexanolb	C₅H₁₂O	102	–	–			
14	880	Heptanalb	C₆H₁₂O	114	–	–			
15	894	2-Heptanone	C₆H₁₂O	114	–	–			
16	928	*-Thujene	C₆H₁₄O	136	–	–			
17	935	*-Pinene	C₆H₁₄O	136	1.87 ± 0.00	12.19 ± 0.02			
18	950	Camphene	C₆H₁₄O	136	0.15 ± 0.00	1.00 ± 0.00			
19	956	2,4-Thujadiene	C₆H₁₄O	134	–	–			
20	960	(E)-2-heptenalb	C₆H₁₄	134	–	–			
21	965	Benzaldehyde	C₆H₁₄O	196	0.29 ± 0.02	1.88 ± 0.02			
22	975	Sabine	C₆H₁₄O	136	0.10 ± 0.00	0.67 ± 0.00			
23	979	*-Pinene	C₆H₁₄O	136	0.12 ± 0.00	0.79 ± 0.00			
24	990	Salicytone	C₇H₈O	126	–	–			
25	992	*-Myrcene	C₇H₈O	136	1.80 ± 0.02	11.73 ± 0.08			
26	1001	Yomogi alcohol	C₈H₁₀O	154	–	–			
27	1015	(E,E)-2,4-Heptadienalb	C₈H₁₀O	110	–	–			
28	1019	*-Terpinene	C₈H₁₄O	136	–	–			
29	1027	p-Cymene	C₈H₁₄O	134	–	–			
30	1031	Limonene	C₈H₁₄	136	3.89 ± 0.02	25.40 ± 0.04			
31	1035	1,8-Cineole	C₈H₁₄O	154	0.47 ± 0.00	3.04 ± 0.02			
32	1040	Benzyl alcohol	C₈H₁₀O	108	–	–			
33	1049	Benzene acetaldehyde	C₉H₁₂O	120	–	–			
34	1050	Phenyl acetaldehyde	C₉H₁₂O	120	0.17 ± 0.00	1.14 ± 0.00			
35	1052	(E,)-β-Ocimene	C₉H₁₄O	136	0.98 ± 0.02	6.42 ± 0.04			
LS	1059	n-Butylbenzene	C₉H₁₄O	134	–	–			
No.	Rf	Compound name	M.W.	HS-SPME	M.W.	SDE	Area (%)	Area (%)	Area (%)
-----	----	----------------	------	---------	------	-----	----------	----------	----------
36	0.06	2-Terpineol	136	0.06	0.06	-	-	-	-
37	0.07	2-Acetophenone	152	0.07	0.07	-	-	-	-
38	0.08	2-Hexanone	154	0.08	0.08	-	-	-	-
39	0.11	2-Methylpropanoic acid	150	0.11	0.11	-	-	-	-
40	0.13	2-Butanone	150	0.13	0.13	-	-	-	-
41	0.15	2-Methylbutanone	150	0.15	0.15	-	-	-	-
42	0.17	2-Heptanone	150	0.17	0.17	-	-	-	-
43	0.20	2-Octanone	154	0.20	0.20	-	-	-	-
44	0.22	2-Nonanone	158	0.22	0.22	-	-	-	-
45	0.24	2-Decanone	162	0.24	0.24	-	-	-	-
46	0.27	2-Tridecanone	166	0.27	0.27	-	-	-	-
47	0.30	2-Tetradecanone	170	0.30	0.30	-	-	-	-

Table 1 continued
No	R.I.	Compound name	M.F.	M.W.	HS-SPME	SDE		
			C15H24	204				
72	1391	(Z)-β-Elemene	2.14 ± 0.00	13.95 ± 0.10	–	–		
73	1392	Modiphenene	0.23 ± 0.00	1.26 ± 0.00	–	–		
74	1395	Benzyl pentanoate	0.26 ± 0.01	1.44 ± 0.02	–	–		
75	1396	β-Bourbonene	0.42 ± 0.00	4.67 ± 0.02	–	–		
76	1399	β-Cubebene	2.60 ± 0.02	28.96 ± 0.16	–	–		
77	1409	(Z)-Jasmone	0.60 ± 0.02	7.41 ± 0.30	–	–		
78	1421	α-Gurjumene	0.96 ± 0.00	10.73 ± 0.08	–	–		
79	1424	β-Caryophyllene	4.61 ± 0.04	51.45 ± 0.22	7.80 ± 0.04	97.04 ± 0.33		
80	1441	β-Copaene	1.19 ± 0.02	13.27 ± 0.06	0.59 ± 0.02	7.40 ± 0.20		
81	1443	(Z)-α-Bergamotene	3.21 ± 0.04	35.82 ± 0.10	–	–		
82	1444	Aromandrened	–	–	–	–		
83	1455	Germacrene D	0.59 ± 0.00	6.62 ± 0.02	–	–		
84	1456	Dihydropseudoionone	0.14 ± 0.00	0.75 ± 0.00	–	–		
85	1461	(E)-β-Farnesene	1.27 ± 0.04	15.85 ± 0.06	–	–		
86	1466	α-Caryophyllene	2.92 ± 0.04	32.58 ± 0.12	1.31 ± 0.02	16.31 ± 0.08		
87	1468	(Z)-4,5-Muroladiene	2.92 ± 0.04	32.58 ± 0.12	1.31 ± 0.02	16.31 ± 0.08		
88	1471	α-Acoradiene	–	–	–	–		
89	1483	α-Curcumene	5.75 ± 0.04	64.22 ± 0.20	–	–		
90	1488	γ-Murolene	1.01 ± 0.02	11.28 ± 0.08	3.79 ± 0.01	47.18 ± 0.44		
91	1490	Valencene	5.26 ± 0.04	58.69 ± 0.18	–	–		
92	1494	Germacrene D	2.14 ± 0.02	26.66 ± 0.24	–	–		
93	1496	(E)-β-Ionone	–	–	–	–		
94	1500	β-Seineine	1.62 ± 0.02	18.10 ± 0.08	4.20 ± 0.03	52.23 ± 0.13		
95	1505	β-Seineine	0.90 ± 0.00	10.05 ± 0.02	–	–		
96	1506	α-Murolene	1.37 ± 0.02	15.25 ± 0.04	–	–		
97	1509	β-Isobolene	1.70 ± 0.02	18.96 ± 0.06	–	–		
98	1514	γ-Cadinene	1.18 ± 0.01	14.71 ± 0.04	–	–		
99	1517	β-Sesquisabinene	1.83 ± 0.02	20.46 ± 0.06	–	–		
100	1518	α-Cadinene	2.75 ± 0.05	30.74 ± 0.10	2.47 ± 0.01	30.77 ± 0.10		
101	1523	(E)-Cadin-1,4-diene	1.41 ± 0.02	15.68 ± 0.05	–	–		
102	1529	α-Calacorene	1.82 ± 0.02	20.27 ± 0.03	–	–		
103	1536	(E)-Nerolidol	3.04 ± 0.00	33.91 ± 0.08	–	–		
104	1537	(Z)-Nerolidol	–	–	–	–		
105	1553	Caryophyllene oxide	2.11 ± 0.02	20.80 ± 0.04	–	–		
106	1564	Germacrene B	–	–	–	–		
No	R.I	Compound name	M.F	M.W	HS-SPME	SDE		
----	-----	---------------	-----	-----	---------	-----		
					Ambrosia artemisiifolia L	Artemisia annua L	Ambrosia artemisiifolia L	Artemisia annua L
			Area (%)	(mg/kg)	Area (%)	(mg/kg)	Area (%)	(mg/kg)
108	1570	Junenol^a	C₁₅H₂₆O	222	–	–	2.88 ± 0.04	32.19 ± 0.08
109	1571	α-Guaiol^a	C₁₅H₂₆O	222	–	–	4.05 ± 0.06	45.25 ± 0.06
110	1576	Palustrol^b	C₁₅H₂₆O	222	0.27 ± 0.00	1.73 ± 0.01	–	–
111	1578	Spathulenol^c	C₁₅H₂₆O	220	6.13 ± 0.10	40.04 ± 0.22	–	–
112	1610	Salvial-4(14)-en-1-one^d	C₁₅H₂₅O	220	1.81 ± 0.08	11.84 ± 0.20	2.58 ± 0.02	14.22 ± 0.06
113	1616	α-Humuleneoxide II^e	C₁₅H₂₅O	220	0.31 ± 0.00	2.05 ± 0.02	–	–
114	1626	Alloaromadendrene epoxide^f	C₁₅H₂₅O	220	–	–	5.33 ± 0.08	29.31 ± 0.04
115	1649	4-Cadinene-7-ol^g	C₁₅H₂₅O	222	–	–	3.10 ± 0.02	17.01 ± 0.06
116	1847	Phytone^h	C₁₈H₃₆O	268	–	–	5.02 ± 0.02	27.99 ± 0.11
		Total			100.00	651.53	100.00	566.10

Bold mark compounds name = Firstly reported volatile organic compounds in this study, – = Not detected

^a Alcohol
^b Aldehyde
^c Ester
^d Hydrocarbon
^e Ketone
^f Ether
^g Miscellaneous

Data were reported by mean ± standard deviation (n = 3); 0.00 = The value is less than 0.01, *RI Retention index, **M.F Molecular formula, ***M.W Molecular weight, I.S. Internal standard;
Table 3. The major volatile organic compounds were caryophyllene oxide (18.83%, 234.16 mg/kg) followed by camphor (10.66%, 132.61 mg/kg), \(\beta \)-caryophyllene (7.80%, 97.04 mg/kg), (E)-pinocarveol (5.27%, 65.55 mg/kg), and \(\beta \)-selinene (4.20%, 52.23 mg/kg). In the current study, 14 volatile organic compounds were found only by SDE compared to HS-SPME method. Both extractions of A. artemisiifolia L. leaves identified compounds such as \(\gamma \)-terpinene, phenethyl alcohol, \(\alpha \)-campholenal, camphene hydrate, (Z)-chrysanthenol, p-cymen-8-ol, \(\alpha \)-terpineol, (Z)-carveol, indole, 2-methoxy-4-vinylphenol, eugenol, (Z)-jasmone, and (Z)-nerolidol (Table 1). In literature, similar compounds such as erythritol, camphor, germacrene D, artesimia ketone, \(\alpha \)-caryophillene, \(\alpha \)-cuvebene have already been detected by steam distillation and hydrodistillation in A. artemisiifolia L. leaves (Bilia et al., 2008; Haghighian et al., 2008; Juteau et al., 2002; Tzenkova et al., 2010; Vidic et al., 2018).

Comparison of extraction techniques and identification marker compounds

Headspace-solid phase micro extraction (HS-SPME) is used to extract volatile organic compounds with short time and to extract more volatile monoterpenes. Simultaneous distilled extraction (SDE) is capable of extracting higher amount of volatile organic compounds and requires longer extraction time at high temperature. Both techniques have been used for volatile compounds in the past around the world (Majcher and Jelenı́, 2009). Some researchers have compared HS-SPME with other conventional methods and have reported that the HS-SPME method as more significant than other traditional methods for the determination of volatile organic compounds in herbs (Majcher and Jelenı́ 2009; Yang et al., 2011). The SDE technique may subsequently increase the low volatile organic compounds with a high molecular weight, such as straight-chain acids, and sesquiterpenes.
In the current study, 116 volatile organic compounds were reported, with 11 compounds (hexanal, α-pinene, benzaldehyde, limonene, borneol, α-copaene, β-caryophyllene, α-caryophyllene, β-selinene, δ-cadinene, and caryophyllene oxide) identified in the leaves of both species applying the 2 extraction methods. From Table 3, the sesquiterpene hydrocarbons (67.58%, 441 mg/kg) were relatively in higher content in A. artemisiifolia L. leaves whereas oxygenated sesquiterpenes (47.93%, 275.01 mg/kg) were detected in higher concentrations in A. annua L. leaves by HS-SPME technique. Both HS-SPME and SDE methods extracted more terpene hydrocarbons from A. artemisiifolia L. leaves and oxygenated terpene compounds from A. annua L. leaves.

Volatile organic compounds are liable for flavour, aroma and bioactivity. In addition, these have importance for chemical fingerprinting. The chemical elements have various forms of plant essential oils, which are regularly used to identify the variety or to improve the chemotypes. In the current study, both leaves were found to consist of mainly hydrocarbons, ethers, and alcoholic type of volatile organic compounds.

Each country and possibly each region may have a distinct type of A. annua L. leaves and A. artemisiifolia L. leaves essential oil, called chemotypes. Different chemotypes such as erythritol, champhore, germacrene D, artemisia ketone, α-caryophyllene, and α-cuvebene have been reported for most of the A. annua L. leaves essential oil in literature (Bilia et al., 2008; Haghighian et al., 2008; Juteau et al., 2002; Tzenkova et al., 2010; Vidic et al., 2018; Wang et al., 2006). In this study, spathulenol, caryophyllene oxide, and β-caryophyllene chemotypes were observed in A. artemisiifolia L. leaves whereas caryophyllene oxide, champhor, and β-selinene chemotypes were detected in A. annua L. leaves. This variation may be due to the geographical and ecological conditions, time of harvesting, and age of the plant (Bagamboula et al., 2004).

In conclusion, this study determined the volatile organic compounds from A. artemisiifolia L. leaves and A. annua L. leaves using HS-SPME and SDE extraction methods coupled with GC/MS analysis. The results demonstrated remarkable differences in identified volatile compounds concentration in both leaves by 2 extraction methods. The highest concentration of volatile organic compounds was detected in A. annua L. leaves (1,237.79 mg/kg) by SDE technique whereas the lowest value was observed in the same leaves (566.1 mg/kg) by HS-SPME extraction. A total of 116 volatile components were identified, extracted by SDE compared to 71 volatile organic compounds by HS-SPME technique, while 33 volatile organic compounds were detected for the first time compared to published literature on A. artemisiifolia L. leaves and A. annua L. leaves. The common major volatile organic compounds (caryophyllene oxide and champhor) were detected in leaves of both samples. The identified marker compounds in A. artemisiifolia L were γ-muurolene and spathulenol while β-selinene and caryophyllene were reported in A. annua L. leaves. Thus, the present findings extend the characterization of volatile organic compounds of A. annua L. leaves and A. artemisiifolia L. leaves and reported some distinguishing compounds which may be used for their characterization.

Acknowledgements This research was supported by a grant (17162MFDS065) from Ministry of Food and Drug Safety, Republic of Korea.

Compliance with ethical standards

Conflict of interest Authors have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Adam M, Juklová M, Bajer T, Eisner A, Ventura K. Comparison of three different solid-phase microextraction fibres for analysis of essential oils in yacon (Smallanthus sonchifolius) leaves. J Chromatogr. A 1084: 2-6 (2005)

Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry. Carol Stream, IL: Allured Publishing Corporation, Vol 456 (2007)

Bagamboula CF, Uyttendaele M, Debevere J. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food Microbiol. 21: 33-42 (2004)

Basset JJ, Crompton CW. The biology of Canadian weeds, A. artemisiifolia L. and A. psilostachya. Can. J. Plant Sci. 55: 463-476 (1975)

Bilia AR, Flaminì G, Morgenni F, Isacchi B, FrancescoVincieri F. GC-MS analysis of the volatile constituents of essential oil and aromatic waters of Artemisia annua L. at different development stages. Nat. Prod. Commun. 3: 2075-2078 (2008)

Davies NW. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and Carbowax 20M phases. J. Chromatogr. A 503: 1-24 (1990)

Efferth T, Willmar SA. Antiplasmodial and antitumor activity of artemisinin-from bench to bedside. Planta Med. 73: 299-309 (2007)

Gu X, Zhang Z, Wan X, Jing J, Yao C, Shao W. Simultaneous distillation extraction of some volatile flavor components from...
Pu-erh tea samples comparison with steam distillation-liquid/liquid extraction and soxhlet extraction. Int. J. Anal. Chem. 1-6 (2009)

Haghighian F, Aliakbar A, Javaherdshtsi M. The growth regulatory, deterency and ovicidal activity of worm wood [Artemisia annua L.] on Tribolium confusum Duv. and identification of its chemical constituents by GC-MS. Pestcydy 1-2: 51-59 (2008)

Heath HB. Reineccius G. Flavour Chemistry and Technology; Van Nostrand Reinhold Co. New York, USA. (1986)

Holt RU. Mechanisms effecting analysis of volatile flavour components by solid-phase microextraction and gas chromatography. J. Chromatogr. A 937(1-2): 107-114 (2001)

Islam MA, Ryu KY, Khan N, Song OY, Jeong JY, Son JH, Jamila N, Kim KS. Determination of the volatile compounds in five varieties of Piper betle L. from Bangladesh using simultaneous distillation extraction and gas chromatography/mass spectrometry (SDE-GC/MS). Anal. Lett. 1-8 (2020)

Jeon DB, Hong YS, Lee GH, Park YM, Lee CM, Nho EY, Choi JY, Jamila N, Khan N, Kim KS. Determination of volatile organic compounds, catechins, caffeine and theanine in Jukro tea at three growth stages by chromatographic and spectrometric methods. Food Chem. 219: 443-452 (2017)

Juteau F, Masotti V, Bessiere JM, Dherbomez M, Viano J. Antibacterial and antioxidant activities of Artemisia annua essential oil. Fitoterapia 73: 532-535 (2002)

Kataoka H, Lord HL, Pawliszyn J. Applications of solid-phase microextraction in food analysis. J. Chromatogr. A 880: 35-62 (2000)

Khan N, Jamila N, Choi JY, Nho EY, Hussain I, Kim KS. Effect of gamma-irradiation on the volatile flavor profile of fennel (Foeniculum vulgare Mill.) from Pakistan. Pak. J. Bot. 47: 1839-1846 (2015)

Kil JH, Shim KC, Park SH, Koh KS, Suh MH, Ku YB, Suh SU, Oh HK, Kong HY. Distributions of Naturalized Alien Plants in South Korea. Weed Technol. 18: 1493-1495 (2004)

Kim GS, Jang CS. Development of DNA-based Species-specific Real-time PCR Markers for Discrimination Between Artemisia annua and Ambrosia artesimiofolia, and Their Application in Commercial Food Products and Digested Samples by Artificial Gastric Juice. pp. 154-154. In: Proceedings of the Korean Society of Crop Science Conference. (2019)

Ma C, Wang H, Lu X, Li H, Liu B, Xu G. Analysis of Artemisia annua L. volatile oil by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. J. Chromatogr. A 1150: 50-53 (2007)

Majcher M, Jeleš HH. Comparison of suitability of SPME, SAFE and SDE methods for isolation of flavor compounds from extruded potato snacks. J. Food Compos. Anal. 22: 606-612 (2009)

Molinaro F, Monterumici CM, Ferrero A, Tabasso S, Negre M. Bioherbicidal activity of a germacranolide sesquiterpene dilactone from Ambrosia artesimiofolia L. J. Environ. Sci. Health B. 51: 847-852 (2016)

Nekoei M, Mohammadhosseini M, Akhlaghi H. Chemical composition of the volatile oils from the aerial parts of Artemisia annua L. (Asteraceae) by using head space solid phase microextraction and hydromdistillation methods prior to gas chromatographic-mass spectrometric determination: A comparative investigation. J. Essent. Oil-Bear. Plants 15: 926-933 (2012)

Reale S, Fasciani P, Pace L, Angelis FD, Marcozzi G. Volatile fingerprints of artemisinin-rich Artemisia annua cultivars by headspace solid-phase microextraction gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 25: 2511-2516 (2011)

Sang W, Liu X, Axmacher JC. Germination and emergence of Ambrosia artesimiofolia L. under changing environmental conditions in China. Plant Species Biol. 26: 125-33 (2011)

Schultz TH, Flath RA, Mon TR, Egglein SB, Teranishi R. Isolation of volatile components from a model system. J. Agr. Food Chem. 3: 446-9 (1977)

Söltér U, Starfinger U, Verschwele A. HALT Ambrosia-complex research on the invasive alien plant ragweed (Ambrosia artemisiofolia L.) in Europe. Julius-Kühn-Archiv. 434: 627 (2012)

Tzenkova R, Kamenarska Z, Draganov A, Atanassov A. Composition of Artemisia annua essential oil obtained from species growing wild in Bulgaria. Biotechnol. Biotechnol. Equip. 24: 1833-1835 (2010)

Vidic D, Čopra-Janičijević A, Miloš M, Maksimović M. Effects of Different Methods of Isolation on Volatile Composition of Artemisia annua L. Int. J. Anal. Chem. 1-6 (2018)

Wang P, Kong CH, Zhang CX. Chemical composition and antimicrobial activity of the essential oil from Ambrosia trifida L. Molecules 549-555 (2006)

Wu Y, Jiang X, Zhang L, Zhou Y. Chemical composition and biological activities of volatile oils in different periods of growth of Artemisia annua L. from China. J. Essent. Oil-Bear. Plants 20: 1320-1330 (2017)

Xie LJ, Zeng RS, Bi HH, Song YY, Wang RL, Su YJ, Chen M, Chen S, Liu YH. Allelochemical mediated invasion of exotic plants in China. Allelopathy J. 25: 31-50 (2010)

Yang Y, Xiao Y, Liu B, Fang X, Yang W, Xu J. Comparison of headspace solid-phase microextraction with conventional extraction for the analysis of the volatile components in Melia azedarach. Talanta 86: 356-361 (2011)

Zhang Z, Yang MJ, Pawliszyn J. Solid-phase microextraction. A solvent-free alternative for sample preparation. Anal. Chem. 66: 844-853 (1994)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.