Hawking radiation with dispersion: the broadened horizon paradigm

Antonin Coutant
Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Am Mühlenberg 1, 14476 Golm, Germany, EU

Renaud Parentani
Laboratoire de Physique Théorique, CNRS UMR 8627, Bâtiment 210, Université Paris-Sud 11, 91405 Orsay Cedex, France

(Dated: February 12, 2014)

We study the spatial properties of the modes responsible for the Hawking effect in the presence of high frequency dispersion. Near the horizon, the modes are regularized on a small distance which only depends on the surface gravity and the scale of dispersion. The regularization explains why the spectrum is hardly affected by dispersion as long as the background geometry does not significantly vary over this composite length. For relevant frequencies, the regularization differs from the usual WKB resolution of wave singularity near a turning point. The latter only applies when the frequency is so high that the Hawking effect is negligible.

INTRODUCTION

For relativistic fields, the stationary modes ϕ_{ω} responsible for the Hawking effect posses a singular behavior on the horizon. Namely, for $|x| \to 0$, one finds

$$\phi_{\omega} \propto |x|^{i\omega/\kappa},$$

(1)

where ω/κ is their Killing frequency in the unit of the surface gravity, and where x is the proper distance from the horizon measured in a freely falling frame. As Eq. (1) is found irrespectively of the mass and the orbital momentum, we can and shall work with massless $1+1$ dimensional fields. The stationary geometry shall be described by the line element

$$ds^2 = dt^2 - (dx - v(x)dt)^2,$$

(2)

where t is the proper time along the freely falling orbits $dx = vdt$, with $v < 0$. The horizon is located at $v^2 = 1$, and in its vicinity, one has $v = -1 + e\kappa x$. The interior of the black hole, $|v| > 1$, is thus $x < 0$.

As understood by Unruh [1], the singular behavior of Eq. (1) unambiguously fixes the temperature of the emitted radiation. Indeed, the regularity of the state across the horizon fixes the ratio of the coefficients weighing ϕ_{ω} on either side of the horizon. Namely, for $|x| \to 0$, one finds

$$\Omega = \omega - vp \sim p \sim \frac{\omega}{\kappa x},$$

(3)

increases without bound as $x \to 0$. This blueshift connects the infrared physics of the low wave number $p \sim \kappa$, to deep ultraviolet physics where the assumption of free field in classical background might break down. This raises the transplanckian question [7,8], namely to what extent the predictions derived from Eq. (1) actually depends on the short distance behavior of the theory.

In analog models [5,9,10], this question can be addressed explicitly since for short wavelengths, one leaves the hydrodynamical (effectively relativistic) regime for some dispersive regime. To characterize the first deviations, we shall consider

$$\Omega^2 = F^2(p) = p^2(1 - p^2/\Lambda^2).$$

(4)

The minus sign means that the dispersion is subluminal (the superluminal case can be treated in a similar way, see Sec.III.E in [11]). Λ defines the momentum scale above which Lorentz invariance ceases to be valid. Its value is determined by the microscopic structure of the medium. Since [5], attention has been mainly given to the modifications of the asymptotic spectrum due to high momentum dispersion [6,11]. In this paper instead, we consider the near horizon properties of the dispersive modes. As could have been expected, short distance dispersion regularizes the logarithmic divergence of Eq. (1), see in particular [17]. Depending on the value of ω/κ, we found that the dispersive modes follow two very distinct behaviors. Nevertheless both involve the same ω-independent composite length scale. Interestingly, this length scale was previously found in numerical analysis of dispersive spectra [11,13]. Our treatment therefore provides a rational explanation for these numerical observations.

NEAR HORIZON BEHAVIOR

We consider a massless field propagating in the geometry of Eq. (2) and obeying the dispersion relation (1). At fixed ω, the mode ϕ_{ω} obeys [5,6]

$$[(\omega + i\partial_x v)(\omega + i\kappa x) - F^2(-i\partial_x)]\phi_{\omega} = 0.$$

(5)
Close to the horizon, one has \(v \sim -1 + \kappa x \). This approximation is valid only for a finite range of \(x \), that we call \(x_{\text{lin}} \). In familiar black hole geometries (such as Schwarzschild), \(x_{\text{lin}} \) is of the order of \(1/\kappa \). Yet, in some media, it might be much smaller, and this significantly affects the spectrum [16]. \(x_{\text{lin}} \) is the first relevant length of the problem.

The first manifestations of short distance dispersion can be seen in geometrical optics, at the level of the characteristics of Eq. (5), solutions of \((\omega - v p)^2 = F^2(p)\). Interestingly, the equation for the wave number, \(dp/dt = -(\partial x/\partial \omega)^{-1} \), is unaffected by dispersion in the near horizon region, and its solution is still \(p = p_0 e^{-\kappa t} \). Instead, the solutions of \(dx/dt = (\partial p/\partial \omega)^{-1} \), critically depend on \(F \). When considered backwards in time, the characteristics are swept away from the horizon at short wavelengths, see Fig 1. Depending on the sign of \(\Omega \), two types of trajectories exist. For \(\omega \) and \(\Omega \) positive, the characteristic first approaches the horizon with \(x > 0 \) as \(p \) increases. Then at the value \(p_{TP} = \omega^{1/3}/3/\kappa \), it bounces back away from the horizon. The locus of the turning point is

\[
x_{TP}(\omega) = \frac{3\kappa}{2\kappa} \frac{\sqrt{\lambda}}{p_{TP}} = \frac{3}{2\kappa} \left(\frac{\omega}{\lambda} \right)^{2/3}.
\]

This expression is valid if \(x_{TP} \) lies within the near horizon region, i.e., \(x_{TP} \ll x_{\text{lin}} \). Eq. (6) gives the first composite length of the problem. For \(\omega > 0 \) but \(\Omega < 0 \), one obtains the trajectory followed by the negative energy “partner". It focuses on the horizon from the left, crosses the horizon, and follows the \(\Omega > 0 \) characteristic.

We just saw that the description of the characteristics is much simpler in \(p \)-space than in \(x \)-space. When abandoning geometrical optics, this is again true. In the near horizon region, using \(\hat{v} = -1 + i\kappa \partial_p \), one finds that the solution of Eq. (5) factorizes in a peculiar form [6]

\[
\hat{\phi}_p(p) = \frac{p^{-i\pi/2}}{\sqrt{2\pi}} e^{-ipx/\kappa} \chi(p) e^{-it\frac{x^2}{\kappa}}.
\]

The first factor is the relativistic mode. Indeed the Fourier transform of Eq. (1) gives \(|p|^{-i\omega/\kappa - 1}\). The function \(\chi \) obeys a \(\omega \)-independent second order equation

\[
-\kappa^2 p^2 \partial_p^2 \chi = F^2(p) \chi.
\]

These simplifications are related to an extra de Sitter symmetry [6]. To solve Eq. (5), we use the

\[1\] In fact, when considered globally, \(v = -1 + \kappa x \) corresponds to de Sitter space. This geometry possesses extra symmetries with respect to a stationary black hole metric. Importantly, one of them is compatible with the existence of preferred (freely falling) frame [13]. Therefore, de Sitter endowed with such a frame offers a simple specific dispersive model. It allows to explicitly compute the modes and the spectrum [15].
\(\mathcal{C}\) and the value of \(\omega\), we see that \(\phi_\omega(x)\) only depends on the adimensional distance \(z = x/d_{\text{br}}\). It should be pointed out that to get this result, we simplified the integrand of Eq. (11) by replacing \(F(p)\) by \(p\) in the amplitude of Eq. (9). This is legitimate in the weak dispersive regime. Indeed, the prefactor modulates \(\phi_\omega\) on scales \(|x| \gtrsim 1/\kappa\). Hence it is irrelevant for our near horizon analysis which is limited to \(|z| = O(1)\), or \(|x| \sim d_{\text{br}}\). For the expressions of the modulation, we refer to Sec.II.A of [11].

When choosing the contour \(\mathcal{C}\), one should pay attention to the location of the branch cut of \(\ln(q)\) which contains the only dependence in \(\omega/\kappa\). Here we shall only analyze the mode that decays inside the horizon. To obtain it, one must integrate on the contour defined in Fig.2. The mode so defined is proportional to the globally defined positive norm outgoing mode \(\phi_\omega^{\text{out}}\). Using the method of [11], this is legitimate in the weak dispersive regime. This is legitimate in the weak dispersive regime. This is legitimate in the weak dispersive regime.

The mode that decays inside the horizon. To obtain it, one must integrate on the contour defined in Fig.2. The mode so defined is proportional to the globally defined positive norm outgoing mode \(\phi_\omega^{\text{out}}\). Using the method of [11], this is legitimate in the weak dispersive regime. This is legitimate in the weak dispersive regime. This is legitimate in the weak dispersive regime.

\[\phi_\omega^{\text{out}}(x) \sim e^{-i\frac{3\pi}{2}} e^{i\frac{3}{2}z^{3/2}} e^{-i\frac{\pi}{2} \ln z} \sqrt{4\pi z^{3/2}} \frac{\beta_\omega}{\alpha_\omega} e^{-i\frac{3}{2}z^{3/2}} e^{-i\frac{\pi}{2} \ln z} \sqrt{4\pi z^{3/2}} \frac{1}{\alpha_\omega} \sqrt{\frac{\kappa}{2\pi\omega}}. \] (12)

For \(\omega/\kappa \ll 1\), one has \(x_{\text{br}} \ll d_{\text{br}}\). However, they also require \(|x| \lesssim x_{\text{in}}\), since \(v \sim -1 + \kappa x\) has been used. When \(\Lambda/\kappa\) is large enough, the spatial range satisfying these three inequalities is quite large. For frequencies \(\omega/\kappa \ll 1\), one has \(x_{\text{br}} < d_{\text{br}}\). Hence Eq. (15a) implies Eq. (15b). For \(\omega \gg \kappa\), one has instead \(x_{\text{br}} > d_{\text{br}}\). However, the Hawking process is then exponentially suppressed. Therefore, (15a) is the most relevant condition to accurately obtain the connection formulae.

Further away from the horizon, the 4 modes are well approximated by a WKB approximation (in \(x\)-space) under the condition, see App.A of [11],

\[\left|\frac{\partial_x \ln[F(p_\omega)v_\omega(p_\omega)]}{p_\omega}\right| \ll 1. \] (16)

Far from the horizon, this gives \(|\partial_x v/\omega| \ll 1\) for the low momentum mode. For high momentum, one gets \(|\partial_x v/\Lambda| \ll 1\) which is very well satisfied since \(\kappa/\Lambda \ll 1\). As a result, short wavelength modes freely propagate. Therefore, the relativistic limit \(\Lambda \to \infty\) in Eq. (5) can be taken safely, and the residual scattering can be obtained using the relativistic equation.

We thus conclude that the total S-matrix factorizes

\[S = \begin{bmatrix} 1 & 0 & 0 & \alpha_\omega \beta_\omega \alpha_\omega \beta_\omega \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}. \] (17)

The two matrices on the left describe the late time, low momentum, scatterings that can be evaluated using the relativistic equation. The first one describes the mixing of the spectator infalling mode with the partner mode. It is an element of \(U(1, 1)\) since these have opposite norms. The second matrix encodes the elastic mode mixing in

\[\begin{align*}
\beta_\omega &= e^{-\frac{\pi}{2} \ln z} \alpha_\omega, \\
|z| &\gg d_{\text{br}}. \\
|z| &\gg x_{\text{br}}.
\end{align*}\] (15a, 15b)

It should now be stressed that these results are valid for \(|x|\) large enough. More precisely, they require

\[|x| \gg x_{\text{br}}. \] (15a)

\[|x| \gg x_{\text{br}}. \] (15b)

\[|x| \gg x_{\text{br}}. \] (15a)

\[|x| \gg x_{\text{br}}. \] (15b)
the outside region and gives the so-called greybody factors [21]. The third matrix on the right describes the early, high momentum, scattering. In the weak dispersive regime, Eq. (12) fixes the norm of the scattering coefficients $|\beta_\omega/\alpha_\omega|^2 = |\beta_\omega/\alpha_\omega|^2 = e^{-2\pi \omega/\kappa}$.

However, because of Eq. (15a), Eq. (12) says nothing about the mode behavior in a close vicinity of the horizon. Performing exactly the integral in Eq. (11), as done in [14], one finds that this behavior is given in terms of sums of hypergeometric functions F_2. Because the exact expressions are cumbersome [3], in what follows, we separately analyze Eq. (11) for low and high frequency. Two distinct regimes clearly appear.

Small frequency regime $\omega \lesssim T_H$

In the limit $\omega \to 0$, we get

$$\phi_0^\omega(x) = \int_c \exp \left(\frac{iqx}{db_{br}} - \frac{iq^3}{3} \right) \frac{dq}{2\pi q}$$ \hspace{1cm} (18)

For the contour of Fig. 2, Eq. (18) is proportional to the primitive integral of the Airy function $A_i(z)$ that vanishes for $x \to -\infty$, see [22]. Calling it $PA_i(z)$, we get

$$\phi_0^\omega(x) = i PA_i \left(-\frac{x}{db_{br}} \right).$$ \hspace{1cm} (19)

This result is consistent with Eq. (12). Indeed, for $\omega \ll T_H$, using $\beta_\omega \sim \alpha_\omega$, Eq. (12) becomes

$$\phi_0^\omega(x) = i \frac{\sin[2/3(x/db_{br})^{3/2} - \pi/4]}{\sqrt{\pi (x/db_{br})^{3/2}}} + i,$$ \hspace{1cm} (20)

which is the large z approximation of Eq. (19). In white hole flows, this mode gives the spatial profile of the undulation studied in [23,24], and observed in [25].

For non-zero $\omega \lesssim T_H$, the first effect implied by Eq. (12) is a modulation of the profile (20) by $\exp(iq/d_{br} \ln(x/db_{br}))$. The location of the first node is given by $x_{zero} \sim dq_{br} e^{\pi \omega/\kappa}$. For $\omega \sim T_H$, we thus have $x_{zero} \sim e^{\pi \omega/\kappa}$. Hence, this modulation possesses a wavelength much larger than d_{br}, possibly even larger than the near horizon size x_{in}. We conclude that it is a subdominant effect, barely visible as long as $\omega \lesssim T_H$. As a result, the first significant effect comes from the $\beta_\omega/\alpha_\omega$ factor. To study it, we decompose the mode in its real and imaginary parts

$$\phi_\omega^\omega(x) = \frac{1}{2} \left[1 + e^{-z_\omega/2} \right] \varphi_\omega(x) + \frac{1}{2} e^{-z_\omega/2} \psi_\omega(x),$$ \hspace{1cm} (21)

where φ_ω and ψ_ω are real functions. To lowest order in ω/κ, φ_ω reduces to Eq. (19). Similarly, ψ_ω is also independent of ω. This is neatly confirmed in Fig. 3. The spatial properties of $\psi_{\omega \rightarrow 0}$ follow from the fact that ψ_0 obeys $-\partial^2_{z} \psi_0 - z \partial_z \psi_0 = \phi_0^\omega(z)$. Its spatial behavior is thus similar to that of Airy functions.

In conclusion, Eqs. (19), (21), and Fig. 3 explicitly give the near horizon properties of dispersive modes for several d_{br} lengths, and for all frequencies in the domain $0 \leq \omega \lesssim 3T_H$, which is the most relevant domain for the Hawking effect. This is our principal result.

Large frequency regime $\omega \gg T_H$

To complete the picture, it is worth examining what happens at large frequencies. When ω is larger than T_H, the β_ω-term in Eq. (12) is exponentially small. The anomalous mode mixing is thus progressively turned off, and one is left with a total reflection. To obtain the mode near the turning point, we now follow the standard procedure. It consists in expanding the phase of the integral of Eq. (11), i.e., $W(z,q) = qz - \frac{1}{2} \ln(q) - \frac{1}{3} q^3$, to third order in $\Delta q = q - q_{tp}$, where $q_{tp}(\omega) = d_{br} p_{tp}$ is the adimensionalized momentum at the turning point. Performing the q-integration, by construction, one obtains an Airy function:

$$\phi_\omega^\omega(x) = \frac{e^{\theta_{tp}}}{3^{1/3} q_{tp}} e^{iz_{tp}/2} \text{Ai} \left(-\frac{z - z_{tp}}{3^{1/3} q_{tp}} \right),$$ \hspace{1cm} (22)

where $z_{tp} = x_{tp}/d_{br}$, see Eq. (6), and where $\theta_{tp} = -\omega/(3\kappa) \ln(\omega/2\kappa) - \omega/(6\kappa)$. Eq. (22) is valid as long as

3 Note also that the integrand of Eq. (11) in [14] differs from ours in several respects.
\[|\Delta q| \ll |\partial^2_x W/\partial q^2 W| \]. Moreover, the range of \(\Delta q \) should be at least of order 1 since one must integrate on several oscillations of \(e^{i\varphi} \) to accurately get an Airy function. Therefore, the inequality becomes

\[
\left| \frac{\partial^2_x W}{\partial q^2 W} \right| \sim \left| \frac{1}{q_{tp}} \right| \sim \frac{1}{d_{br} p_{tp}} \sim \frac{2\kappa}{\omega}^{1/3} \ll 1. \tag{23}
\]

The inequality \(|\Delta q| \ll \left| \frac{2\omega}{3\kappa} \right|^{1/3} \) also restricts the validity range of \(z \) of Eq. (23). Indeed, for \(\Delta z \gtrsim 1 \), the values of \(q \) that mainly contributes to the integral [11] around the saddle point, which increases as \(\Delta z^{1/2} = |z - z_{tp}|^{1/2} \). It implies that \(\phi_\omega(x) \) is correctly approximated by Eq. (22) only for \(\Delta z \ll q_{tp}^3 \), i.e., \(|x - x_{tp}| \ll x_{tp} \). Yet, such interval can contain several \(d_{br} \) lengths since we work at large \(\omega/\kappa \). This is confirmed in Fig. 4. As can be seen, Eq. (22) is valid for larger ranges of \(z = x/d_{br} \) when \(\omega/\kappa \) increases.

![Figure 4. Plot of \(e^{-ix_{tp}p + zd_{br}} \times \phi_\omega(x_{tp} + zd_{br}) \) as a function of \(z \), for \(\Lambda/\kappa = 20 \), various values of \(\omega \), and also compared with the Airy function \(Ai(-z^{3/2}) \). The different curves are normalized to 1 at the turning point \(z_{tp}(\omega) \), which is here set at \(z = 0 \). When \(\omega \) increases, the matching with the Airy function gets better, and for a larger range of \(z \). By numerically comparing the values at the first peak, we found that the error decreases as \(\sim (\kappa/\omega)^\gamma \) with the exponent 1/3.25 \(\lesssim \gamma \lesssim 1/3.15 \), in agreement with Eq. (23) to a good accuracy. Notice that since we factorized \(e^{-ix_{tp}p + zd_{br}} \), Eq. (22) is valid for many short wave lengths oscillations controlled by \(q_{tp} \).

We also point out that Eq. (22) is rapidly modulated by a high wave number \(p_{tp} \), and that the Airy function gives the slowly varying envelope [28]. This scale separation follows from Eq. (23) which implies \(p_{tp} \gg 1/d_{br} \). Hence, for \(\omega \gg T_H \), \(\phi_\omega \) and \(\partial_x \phi_\omega \) are both described by Airy functions. This contrasts with the low frequency regime where there is no rapid modulation, and where only \(\partial_x \phi_\omega \) is described by the Airy function \(Ai \). At low \(\omega/\kappa \), the profile of \(\phi_\omega \) has thus a phase shift of \(\pi/2 \) with respect to that of the \(Ai \) function. This phase shift could be experimentally validated.

In conclusion of this Section, it should be emphasized that Eq. (23) implies that Eq. (22) offers a good approximation only when the Hawking effect is negligible, \(\beta_\omega \ll 1 \). This can understood by noticing that we integrated only over positive values of \(p \) centered around \(p_{tp} \). The contribution of negative \(p \), which is responsible for \(\beta_\omega \neq 0 \), has thus been neglected. As a byproduct, the notion of “\(\omega \)-dependent group velocity horizon” (i.e., the turning point of Eq. (6)) is not relevant for the Hawking effect. Indeed, \(x_{tp} \) can be distinguished from the Killing horizon at \(x = 0 \) only if they are distant by several broadening lengths \(d_{br} \), i.e.,

\[
\frac{x_{tp}}{d_{br}} \sim \left(\frac{\omega}{\kappa} \right)^{2/3} \gg 1, \tag{24}
\]

which is satisfied only when the Hawking radiation is exponentially suppressed.

SMOOTHING OUT SHORT-DISTANCE DETAILS

When computing the corrections to the Hawking spectrum due to dispersion, it is a priori tempting to take into account the \(\omega \)-dependence of Eq. (9). In particular, to optimize the calculation of the spectrum, one could have used the local value of the gradient [27] \(\kappa_{tp}(\omega) = \partial_x v(\omega) \) in the place of \(\kappa_{br}(\omega) \) evaluated at the Killing horizon. Yet, no such dependence was found in numerical analysis of the spectrum [11, 15].

This lack of dependence is corroborated by the above study of near horizon modes which indicates that the best fit for the effective surface gravity should be obtained by averaging \(\partial_x v \) over a broadening length. This is because the finite resolution of the modes will erase the details of the background on scales smaller than \(d_{br} \). In this we recover what was numerically observed in [15]. To clarify this, we consider a background profile separated in two contributions \(v(x) = v_0(x) + \delta v(x) \), where \(v_0 \) is smooth enough so that the approximations used above work, and where \(\delta v \) is a small amplitude perturbation. If this amplitude is small enough, adapting the distorted wave Born approximation [29] to anomalous scattering, we can evaluate the induced correction of the Bogoliubov coefficient. This gives

\[
\delta \beta_\omega = 2i\pi \int \left[\phi^{\text{out}}_\omega (\partial_x v^\text{in}) + \pi^\text{out}_\omega \delta v \partial_x \phi^\text{in}_\omega \right] dx, \tag{25}
\]

where \(\pi(x) \) is the conjugate momentum of \(\phi \) given by \(\pi = (\partial_x + v^\text{in}_\omega) \phi \) and where \(\phi^{\text{in}}_\omega \) (\(\phi^{\text{out}}_\omega \)) designates the incoming (outgoing) positive norm mode of frequency \(\omega \) propagating in the unperturbed flow. From this expression, we clearly see that if the spatial scale of variation of \(\delta v \) is much shorter than \(d_{br} \), the integral is automatically smoothed out. As a result, \(\delta \beta_\omega \) will essentially vanish.
CONCLUSION

Our main conclusion is that in dispersive theories, event horizons effectively acquire a finite spatial extension given by d_{bh} of Eq. (10). We reached this by analyzing the spatial properties of the stationary modes in the near horizon region, and by showing that they are smoothed out on that scale, irrespectively of their frequency. These properties explain that, when the velocity gradient (surface gravity) does not significantly vary over that scale, Hawking radiation is recovered and the S-matrix factorizes according to Eq. (17). In addition, we established that the usual WKB resolution near a turning point becomes valid for high frequencies, precisely in the regime where the Hawking process is negligible.