233U/236U signature allows to distinguish environmental emissions of civil nuclear industry from weapons fallout

K. Hain1✉, P. Steier1, M.B. Froehlich2, R. Golser1, X. Hou3, J. Lachner1,7, T. Nomura4, J. Qiao3, F. Quinto5 & A. Sakaguchi6

Isotopic ratios of radioactive releases into the environment are useful signatures for contamination source assessment. Uranium is known to behave conservatively in sea water so that a ratio of uranium trace isotopes may serve as a superior oceanographic tracer. Here we present data on the atomic 233U/236U ratio analyzed in representative environmental samples finding ratios of (0.1–3.7)×10⁻². The ratios detected in compartments of the environment affected by releases of nuclear power production or by weapons fallout differ by one order of magnitude. Significant amounts of 233U were only released in nuclear weapons fallout, either produced by fast neutron reactions or directly by 233U-fueled devices. This makes the 233U/236U ratio a promising new fingerprint for radioactive emissions. Our findings indicate a higher release of 233U by nuclear weapons tests before the maximum of global fallout in 1963, setting constraints on the design of the nuclear weapons employed.
The long-lived uranium (U) isotope 236U ($T_{1/2} = 2.342 \times 10^5$ years1) is increasingly adopted as environmental tracer with advantageous chemical properties especially for oceanography2–3. U shows a conservative behavior in sea water and therefore can be transported over long distances in this environment. In oxidizing conditions of surface and ocean water, uranium is present in oxidation state VI as uranyl ion (UO$_2^+$)6–7. In the presence of complexing ligands such as carbonates or phosphates, which are readily available in ocean water, the solubility of U(VI) is enhanced by orders of magnitude8–10 leading to the conservative behavior. An advantage of 236U compared with the naturally occurring and therefore more abundant U isotopes 234U, 235U, and 238U, is the high sensitivity to small anthropogenic U inputs to the large reservoir of environmental U. Considerable amounts of anthropogenic 236U have been released into the environment by atmospheric nuclear weapons tests, reprocessing plants and reactor accidents. The total deposition as global fallout has been estimated at 900–1400 kg11 and from reprocessing plants at 115–250 kg5. This clearly dominates over the natural global inventory of this isotope (a few kg)12. For time-resolved archives, elevated 236U/238U atom ratios can be attributed to a specific contamination source if the emission history is well-known. This has been successfully demonstrated for global fallout in coral cores from the Caribbean Sea13 and the Northwest Pacific Ocean4, for releases from the Sellafield reprocessing plant in sediments and water from the Irish Sea14,15 and also for the contamination from the reactor accident in soils collected close to Chernobyl16. In these cases, the 236U/238U atom ratio serves as tracer for ocean currents5,17,18. However, in systems affected by several contamination sources with complex water circulation processes, such as the Mediterranean Sea19 or the Arctic Ocean20, the lack of a second anthropogenic U isotope is a disadvantage compared with plutonium (Pu). Isotopic ratios of two anthropogenic nuclides, such as 240Pu/239Pu, allow further insight than that provided by a single isotope concentration or its ratio to an also naturally occurring isotope like 238U. Isotopic ratios strongly depend on the production mechanism and hence, the emission source, which allows discrimination between possible origins of the contamination21,22. However, because Pu is a particle-reactive element, it shows high sedimentation rates in environmental waters (sea, river and fresh water reservoirs) because of the presence of colloids, and it is not well suited as a tracer for water transport processes. Recent technical developments at the Vienna Environmental Research Accelerator (VERA) enable low-level detection techniques (AMS) measurements of anthropogenic 236U ($T_{1/2} = 1.592 \times 10^7$ years5) in the environment. The low environmental abundance of 233U is a challenge even for the highly sensitive detection technique AMS so that previous publications on 233U either analyzed its concentration in samples collected close to a contamination source23,24 or used 233U, which had been added to the environmental sample, to normalize the 236U results for mass spectrometric measurements. The combination of environmental 233U and 236U could play a similar role for the U isotopic system as 240Pu/239Pu for the Pu system. The isotopic ratio 233U/236U stays undisturbed by chemical fractionation in the environment as well as during sample preparation, simplifying the interpretation of the measurement results in the presence of mixing and dilution processes.

In the present study, the abundances of both 233U and 236U and the resulting 233U/236U atom ratios were investigated in samples from different natural reservoirs including corals from the Pacific Ocean, samples from the Irish and the Baltic Sea and peat bog samples from the Black Forest, Southwest Germany, which are influenced by different contamination sources. Our findings indicate a considerably lower production of 233U relative to 236U in thermal nuclear power plants compared with nuclear weapons which agrees with our understanding of the possible production mechanisms of the two isotopes. Consequently, the 233U/236U ratio has a great potential for emission source identification and hence as tracer for water transport processes. Furthermore, a time shift of ~ 7 years in the deposition peak of 233U from global fallout compared with 236U was observed which indicates a more intense use of enriched uranium in thermonuclear weapons or releases from 233U-fueled weapons during the early phase of the US nuclear weapons tests and gives insights into nuclear weapons design where details still remain classified.

Results

Sources for anthropogenic 233U. In general, the main emission sources for anthropogenic radionuclides are either atmospheric nuclear weapons tests or nuclear industry, i.e., reprocessing plants or reactor accidents. Since the vast majority of nuclear power plants which have been in operation until today have used a thermal neutron spectrum and U as fuel, the production of 235U in nuclear reactors is strongly suppressed compared with 238U25. Both, official sources, e.g.,26,28 and unauthorized web sites29 on nuclear weapons design are naturally scarce or impossible to verify. Yet, even though there are information sources stating that at least one nuclear weapons test using a mixture of 233U and 239Pu as fuel has been conducted (“Teapot MET”, April 195529), to our best knowledge, all nuclear weapon programs were clearly dominated by 235U or 238U. 239Pu based weapons30. In short, the most relevant production path for 233U via the reaction 235U(n,2n)233U requires fast neutrons with energies above 13 MeV31. A contribution from the thorium fuel cycle32 producing 233U by thermal neutron capture on 232Th can be considered as negligible. In contrast, 236U can be also produced in nuclear power plants and fission bombs via 235U (n,γ)236U using thermal neutrons, apart from the production by fast neutrons in thermonuclear weapons via the reaction 238U (n,3n)236U. Therefore, a significant production can be expected in thermonuclear weapons containing uranium enriched in 235U (sometimes referred to as oralloy). Fallout from the low-yield device “Teapot MET” (22 kt) mentioned in39 can be assumed to be mainly locally restricted to the surrounding area of Nevada test-site (NTS)34. However, it is generally accepted that surface detonations of kilotons bombs cause tropospheric fallout, which is deposited in a band around the globe at the latitude of the test site (20°–50° N for NTS)35. Therefore, a contribution from the MET test to the total inventory of 236U at the latitude band of NTS is, in principle, possible but can be expected to decrease in an eastward direction36. A detailed discussion of the production mechanisms of 235U and 236U can be found in the Methods section.

Selection of sample materials. The 233U and 236U content of samples from five different locations, which are summarized in Table 1, were analyzed in this study. Samples comprises sea water and sediment as well as a peat and coral core. In four cases, chemically separated U in an iron oxide matrix was available from archived AMS sputter targets (the kind of sample holder suitable for the AMS ion source) in which 236U was previously determined. 233U is often added as a chemical yield tracer, however, only samples which have not been spiked with 233U during sample preparation were considered in the present work. If available, the 236U/238U data obtained in the corresponding previous study are listed in Table 1 with one sigma uncertainty. A more detailed sample description can be found in the Methods section.
The global fallout signature of 233U/236U in a peat bog core. The 236U/238U and the 235U/238U atomic ratios measured in the peat core are plotted against the age of the respective peat layer in Fig. 1a, dated by using the unsupported 210Pb method.37 Values for the 236U/238U ratios range from 7.2 \times 10$^{-7}$ to 9.2 \times 10$^{-6}$ and for 235U/238U from 1.1 \times 10$^{-8}$ to 1.8 \times 10$^{-7}$ (see also Supplementary Table 1). The observed 235U concentration in this environment, which is not directly influenced by any nuclear source except global fallout as shown by analyzing the Pu nuclide vector,38, is almost two orders of magnitude lower than the 238U concentration. The 236U/238U data obtained in the present study agree reasonably well with the previously published data for the peat core37 (compare Supplementary Fig. 1).

Both depth profiles of 236U/238U and 235U/238U ratios (Fig. 1a) show a pronounced peak with the maximum value in 1961.5 and in 1955.3, respectively. The explosion yield of atmospheric nuclear weapons tests is narrowly distributed with an expectation value of 1959.5 and a standard deviation of 3.1 years (see Fig. 1b). This means around 90% of the total explosion yield of all atmospheric weapons tests (440 Mt39) was released within only one decade and marks the most active phase of atmospheric nuclear weapons testing. Two main phases of atmospheric testing can be identified in Fig. 1b, i.e., 1952–1958 and 1961–1962, leading to the maximum global fallout in 1963, to which the 236U/238U maximum in the peat core was attributed37,39. The 236U as well as the 235U bomb peak detected in the peat core is approximated by Gaussian fits (black and gray solid lines) with similar widths, i.e., 19 ± 1 years and 18.6 ± 0.9 years (FWHM). As both nuclides were deposited predominantly during a rather narrow time interval, the peak shape results from migration of U in the peat. In contrast to the 235U peak, the baseline of the 236U/238U does not reach pre-nuclear levels for younger layers as additional releases might have occurred. The resulting 235U peak (peak center at AD 1953.5 ± 0.5) is shifted by 6.8 years towards older ages with respect to the 236U bomb peak (peak center at AD 1960.3 ± 0.4).

This indicates that the maximum release of 235U happened before the maximum deposition of global fallout and hence, can be attributed to the earlier testing phase, i.e., 1952–1958. Regarding the number of tests, the respective estimated yield and the altitude at which the tests were conducted, it can be deduced that atmospheric fallout from the earlier period was dominated by the U.S. program whereas the fallout maximum in 1963 was dominated by the USSR weapon tests39 (see Supplementary Table 2). Considering the sampling location, the detected 236U contamination can be therefore attributed either to some early thermonuclear explosions conducted by the US at the Pacific Proving Grounds (PPG) which are said to have used orally as tamper material29 or unﬁssioned 233U from the “Teapot MET” explosion in 1955.

The overall 235U/238U ratio for nuclear weapons fallout was calculated from the peak area of the two Gaussian ﬁts of the 236U/238U and the 235U/238U data. In both cases, the sample with the age AD 1920.7 and a 236U/238U and 235U/238U atom ratio of (7.5 ± 1.5) \times 10$^{-7}$ and (1.1 ± 0.3) \times 10$^{-9}$, respectively, serves as upper limit for the blank level which does not signiﬁcantly affect the value of the overall 235U/236U isotopic ratio.

Dividing the peak area yields an average 235U/236U ratio of (1.40 ± 0.15) \times 10$^{-2}$. This value can be considered representative for compartments of the environment which do not preserve a high time resolution, and are only affected by global fallout. If the 236U/238U peak is disentangled according to the two phases of nuclear weapons testing (dashed black curves in Fig. 1a), a 235U/238U ratio of (5.1 ± 1.1) \times 10$^{-2}$ for the earlier phase is obtained (see Discussion section for details).

The close-in fallout signature of the PPG in a coral core. The 235U/236U and 236U/238U atom ratios determined in the corals from Kume Island are presented in Fig. 2 as a function of the age (see also Supplementary Table 3). The stated 1σ uncertainties of the 235U/236U ratio are clearly dominated by the comparably low statistics in case of the 235U measurement due to the low abundance of 235U in the corals and the availability of material left in some AMS sputter targets from the previous study.

In general, the 236U/238U and the 235U/238U atom ratio with a maximum of (1.05 ± 0.05) \times 10$^{-8}$ and (1.6 ± 0.2) \times 10$^{-10}$, respectively, are almost three orders of magnitude lower than in the peat core. In the ocean water, fallout U is mixed with higher concentrations of natural U than in the peat bog so that the fallout signature is diluted before the U is concentrated in the corals. The level of the 236U/238U ratio for pre-nuclear samples is (1.0 ± 0.2) \times 10$^{-10}$ and <3.1\times10$^{-12}$ for 235U/238U, respectively. Whereas two peaks of the 236U/238U data in 1954 and 1958 can be clearly identified in Fig. 2, there is only one maximum in the 235U/238U measurement data which is statistically significant, that is in the year 1958. The uncertainty of the 235U/238U ratio
at 1955 unfortunately is too large to consider this data point as reliable. On the basis of the present data a maximum of the $^{233}\text{U}/^{238}\text{U}$ atom ratio in 1955, therefore, cannot be unequivocally identified. The center of the maximum of the $^{233}\text{U}/^{238}\text{U}$ ratio in 1958 coincides exactly with the maximum of the $^{236}\text{U}/^{238}\text{U}$ ratio which shows that also the $^{233}\text{U}/^{238}\text{U}$ ratio in the corals is strongly affected by the close-in fallout from the PPG. Following the argumentation given by Nomura et al.40 who attributed the second peak at 1958 to the operation Hardtack I, our results suggest a considerable use of oralloy during this test series. However, no information about the tamper material in operation Hardtack I is available to us at present. While no good data was obtained for the year 1955, there is clearly no maximum in 1954 corresponding to the first peak in the $^{233}\text{U}/^{238}\text{U}$ atom ratio. This finding indicates that large quantities of ^{236}U, but not of ^{233}U, have been produced by the devices tested before 1954. This is in good agreement with the claim that Castle Nectar in 1954 was the first thermonuclear explosion with an oralloy tamper29. It also agrees with the assumption that the Ivy King test in 1952 was a pure oralloy fission device41 and hence, did not generate enough fast neutrons required for the build-up of ^{233}U. Nevertheless, the ^{233}U abundance in the marine environment of the Pacific Ocean seems to gradually increase from 1953 on, suggesting that ^{233}U has been produced from the very first thermonuclear weapons, even though to a much smaller extent.

The weighted average of the $^{233}\text{U}/^{236}\text{U}$ ratio (see Fig. 3) was calculated from the measured $^{233}\text{U}/^{238}\text{U}$ and $^{236}\text{U}/^{238}\text{U}$ ratios for three time periods (I-III) that are characterized by a different $^{233}\text{U}/^{236}\text{U}$ ratio. The ratios for samples before 1949 are not shown in this figure, as in most cases only upper limits for the $^{233}\text{U}/^{236}\text{U}$ ratio were obtained because of the low ^{233}U concentrations. In period I with no significant ^{233}U production, i.e., until 1956, the average $^{233}\text{U}/^{236}\text{U} = (0.31 \pm 0.07) \times 10^{-2}$ is much lower than for the period 1957–1962. Period II is characterized by an increased release of ^{233}U probably caused...
The 233U/236U ratios detected in Irish Sea sediment range from 9.6×10⁻⁹ to 5.9×10⁻⁸ and, hence, are comparable to the ratios found in the peat core (see Supplementary Table 4 for details). The 233U/236U ratios of three samples, which have been diluted by a factor of 100, show a high uncertainty (Fig 4) and therefore have a low significance for the interpretation of the 233U/236U ratios in the sediment.

The 233U count rate from the undiluted samples was four orders of magnitude higher than from a U sample considered as instrumental blank for 235U. Consequently, a clear 233U signal was detected, but as shown by the depth profile in Fig. 4, the 233U/236U ratios in the sediment core are significantly lower than in the peat and the coral core. The weighted average from the sediment samples (n = 7) results in 233U/236U = (0.13 ± 0.02)×10⁻², which is consistent with the ratio determined in Irish Sea water of (0.11 ± 0.01)×10⁻². Hence, the weighted average of 233U/236U = (0.12 ± 0.01)×10⁻² in the Irish Sea, close to the reprocessing plant Sellafield, is one order of magnitude lower than in nuclear weapons fallout found in the peat and coral core. In accordance with the theoretical discussion of the 235U and 236U production mechanisms in the Methods section, we attribute this low ratio to the U releases from the reprocessing plant because it indicates the lack of neutrons with energies above the threshold for the 233U (n,3n)233U reaction. The elevated ratio of the sample from 19 cm depth deviates significantly from the calculated average; nevertheless it also clearly shows the low ratio expected for reactor dominated anthropogenic input.

Fig. 2 Measurement results from coral samples. 236U/238U (black squares) and 233U/238U atom ratio (gray dots) in the Kume coral core as a function of time. The measurement uncertainties shown are ±1 σ (s.e.m). The data points are connected by solid lines (bold for 236U) to guide the eye. The maximum at 1955 is not statistically significant and thus, not linked to the neighboring points.

Mixing of different source terms in the Danish straits. The measured 233U/238U, 236U/238U and 233U/236U ratios in two samples from the Danish straits (Kattegat) are given in Table 2. These two samples were collected in a similar region at a distance of only ~40 km from each other and, as expected, show very similar values for the three atom ratios. The 236U/238U ratio is clearly elevated with respect to the natural abundance, which confirms the mainly anthropogenic origin of 236U in the Danish straits. The 233U/238U ratio is quite low and comparable to the ratios found in the modern layers of the coral core from the Pacific Ocean. Within the uncertainties the 233U/236U ratios of the two samples are indistinguishable and the resulting average of (0.45 ± 0.02)×10⁻² is situated between the value attributed to the reprocessing plant Sellafield (0.12 ± 0.01)×10⁻² and to the global fallout (1.40 ± 0.15)×10⁻². This is consistent with the picture of the Danish straits being a mixing zone of water masses carrying global fallout signature with waters containing uranium originating from the reprocessing plants as well as fallout from the Chernobyl accident.

As discussed in the previous section, no difference in the 233U/236U ratio between reprocessing plants and NPPs can be expected, and in this way no differentiation between a Chernobyl and a La Hague/Sellafield fraction is possible. However, the contribution of uranium from generic nuclear fuel and global fallout can be calculated by using a two end member linear mixing model, as commonly applied to Pu ratios, e.g., in21. The average 233U/236U ratio of the two Kattegat water samples and the 235U/236U ratio of global fallout (1.40 ± 0.15)×10⁻² from the peat core and that of nuclear fuel (0.12 ± 0.01)×10⁻² from the Irish Sea sediments yields a global fallout fraction of (25.8 ± 3.4)% at the sampling location in the Danish straits. As expected, the larger contribution comes from the nuclear power industry which is most probably caused by the considerable releases from the reprocessing plants as discussed before in this paper and in previous publications5,18,42.

Discussion
Environments affected by the Sellafield reprocessing plant or by nuclear weapons fallout were found to differ by one order of magnitude.
The solid blue lines indicate the weighted average for the respective time period (I-III) and the dashed lines the corresponding 1σ uncertainty (s.e.m.).

Fig. 3 $^{233}\text{U}/^{236}\text{U}$ ratio in coral samples. $^{233}\text{U}/^{236}\text{U}$ (black squares) calculated from the measurement results for the Kume coral core with ±1σ uncertainty. The horizontal blue line marks the weighted average ratio in the Irish Sea sediment core collected close to the Sellafield reprocessing plant and in Irish Sea water (IAEA-381) with ±1σ uncertainty (s.e.m.).

Fig. 4 $^{233}\text{U}/^{236}\text{U}$ ratio in the Irish Sea. Depth profile of the $^{233}\text{U}/^{236}\text{U}$ atom ratio in the Irish Sea sediment core collected close to the Sellafield reprocessing plant and in Irish Sea water (IAEA-381) with ±1σ uncertainty. Increased uncertainties of three samples at depths 11 cm, 23 cm and 47 cm are caused by low counting statistics on ^{233}U due to preceding dilution (1:100) of the material. The horizontal blue line marks the weighted average for the $^{233}\text{U}/^{236}\text{U}$ ratio in the Irish Sea with ±1σ uncertainty (s.e.m.).

The magnitude in their $^{233}\text{U}/^{236}\text{U}$ atom ratio. Reservoirs exposed to global fallout from nuclear weapons testing showed a $^{233}\text{U}/^{236}\text{U}$ ratio of around 1.4×10^{-2}. Depending on the contribution from close-in (PPG) fallout $^{233}\text{U}/^{236}\text{U}$ ratios up to 1.8×10^{-2} were found in a coral core from the Pacific Ocean. In contrast, the very low $^{233}\text{U}/^{236}\text{U}$ ratio of $(0.12 \pm 0.01) \times 10^{-2}$ detected close to Sellafield can be generally assigned to spent fuel from thermal NPPs. By analyzing the $^{240}\text{Pu}/^{239}\text{Pu}$ atom ratio and the $^{238}\text{Pu}/^{239}+^{240}\text{Pu}$ activity ratio, it has been shown that the present sediment core is neither influenced by the reprocessing of weapon-grade plutonium from the early operation of the reprocessing plant nor by global fallout, but carries the signature of high burn-up Pu which is characteristic for spent fuel from NPPs. At present, the large majority of all NPPs in operation is still based on the U fuel cycle and uses a thermal neutron spectrum, so that the different $^{233}\text{U}/^{238}\text{U}$ ratio allows a discrimination between emissions from civil nuclear industry and nuclear weapons fallout.

This finding is in good agreement with our theoretical considerations on the production of ^{233}U (see “Methods” section for details) from which we conclude that a significant production of ^{233}U is only possible in thermonuclear weapons using a tamper of highly enriched ^{235}U but not in U-based thermal nuclear power plants. However, the $^{233}\text{U}/^{236}\text{U}$ ratio from the period of testing at the PPG (II) is too low to explain the ratio found for global fallout, as the peat samples suggest a considerable dilution of the ^{233}U signal from the PPG by ^{239}Pu produced in a later phase of atmospheric nuclear weapons testing. If we assume that the input of anthropogenic uranium (U) can be attributed in a simplified view to only two time intervals corresponding to the two most active phase of atmospheric nuclear weapons testing, i.e., 1952–1958 and 1961/62 (compare Fig. 1b), then we can disentangle the isotopic signatures of the two phases. The dashed black curves in Fig. 1a show the fit of the corresponding Gaussian peaks to the data from the peat core. For this, we assume that all ^{233}U originates from the PPG and thus shows up in the peak corresponding to the earlier phase of testing. This fixes the time offset of the peat data vs. the UNSCEAR data for the explosion yields (Fig. 1b) to −2.3 years and the width of the distribution with $\sigma = 16.8$ years. The offset is calculated from a shift of the ^{233}U peak center at 1953.5 compared with the center of the distribution published by UNSCEAR at 1955.8 and is probably caused by the migration of U in the peat. The time difference between the $^{233}\text{U}/^{236}\text{U}$ and the $^{236}\text{U}/^{238}\text{U}$ peak center is taken as 5.9 years according to the UNSCEAR data. The ratio of the areas for the earlier time interval corresponds to $^{233}\text{U}/^{236}\text{U} = (5.1 \pm 1.1) \times 10^{-2}$. This is significantly higher than source ratio of $(1.81 \pm 0.15) \times 10^{-2}$ determined for the PPG in the coral samples. This points to an additional source of ^{233}U for which the ^{233}U-fueled “Teapot MET” explosion is a potential candidate. In order to estimate the contribution from the “Teapot MET” test to the global fallout, the source function of ^{233}U could be assessed sampling at different distances to the Nevada Test Site. As we can explain the peat data...
Table 2 236U/238U, 233U/238U and 233U/236U results for two selected samples collected at the strait between Denmark and Sweden.

Sample name	Location	233U counts	233U/236U	236U/238U	233U/236U [10^{-7}]
2015-0587	56.57° N, 12.12° E	396	(6.08 ± 0.31) \cdot 10^{-11}	(1.34 ± 0.02) \cdot 10^{-8}	0.45 ± 0.02
2015-0622	56.93° N, 12.20° E	513	(5.15 ± 0.47) \cdot 10^{-11}	(1.18 ± 0.03) \cdot 10^{-8}	0.44 ± 0.04

Uncertainties are given in ±1 σ (s.e.m.).

without a 233U source in the later testing phase (1961–1962), a substantial use of oralloy in thermonuclear weapons seems unlikely. This phase was dominated by the USSR testing for which little information is available. At least, initial plans of the USSR suggest the use of natural or even depleted uranium as tamper in the RDS-37 device, which was the first staged thermonuclear bomb tested by the USSR in November 1955. Our findings, therefore, impose constraints on the weapons design and the resulting source terms also for other radionuclides released into the environment by nuclear weapons tests.

For close-in fallout from the PPG, our data from the coral core already suggest a strong correlation between the 233U/236U ratio and the 235U enrichment of the thermonuclear device. One of the reported aims of Hardtack I was the development of tactical nuclear weapons which should result in smaller and more efficient devices. As it is known that a higher yield per mass of the device and thus a higher efficiency can be achieved by replacing natural uranium tamper by oralloy, it is well conceivable that such devices were tested during Hardtack I. In addition, elevated 236U/239Pu ratios found in corals at Enewetak Atoll from the same time period also point to an oralloy tamper in one or more of the explosions during this test series. Analysis of local fallout 233U/236U ratio from test sites can, therefore, add information on the fuel used during the different test series. Samples from the former USSR test sites Semipalatinsk (Kazakhstan) and Novaya Zemlya (Arctic Ocean) would be especially interesting because even less information on the USSR weapons design is available.

In addition, the study of the 233U/236U ratios at the different test sites is necessary to assess the effect of in situ production of 233U by neutron capture on 232Th contained in the soil/rocks which might offer the possibility to distinguish local and global fallout. This could be especially relevant for surface and low altitude explosions, during which the surface material was exposed to the nuclear fireball and got incorporated into the blast of the explosion. Child and Hotchkis found 233U concentrations up to a factor of 100 higher within a 200 km zone around ground zero at Emu field and on the Montebello Islands, which they attributed to in situ production, followed by mobilization of the irradiated material. In contrast to this spatially very restricted local fallout from low-yield weapons tests, global fallout is known to have been caused by the large, in particular thermonuclear tests conducted at the PPG by the US and at Novaya Zemlya test site by the USSR. Therefore, small scale explosions, conducted also at other test sites like the Semipalatinsk or Nevada test site, can be considered as a negligible contribution to the in situ produced 233U in global fallout. The estimation of the global budget of in situ produced 233U is very difficult, as the production and mobilization rate depends on a number of parameters which are not sufficiently well known to the authors. The 233U data from the peat core indicate a minor contribution from the Novaya Zemlya test site where the test program was dominated by air tests in contrast to the near-surface explosions at the PPG where coral sand from the atolls was incorporated into the blast. For example, the Tsar bomb in October 1961 (50 Mt explosion yield) is known to have strongly affected the surface of Novaya Zemlya so that a mobilization of irradiated material and thus, in situ produced 233U, could be expected. Nevertheless, the measured 233U data do not show a significant contribution from the later testing phase in 1961–62.

Apart from the mentioned local effects, the large potential for emission source identification in combination with the conservative behavior of U in oxic natural waters, makes the 233U/236U ratio well suited for tracing environmental transport processes. Compared with other mobile radionuclides, which are already used for oceanography, e.g., 137Cs, 129I, 99Tc and the corresponding ratios, the 233U/236U ratio is independent from the emission history of the specific source, as it only depends on the fuel and the neutron spectrum and can be considered as more reliable. Especially, in complex oceanographic settings like the Baltic Sea with several contamination sources, i.e., global fallout, the reprocessing plants La Hague and Sellafield and fallout from Chernobyl, the detection of 235U/238U in addition to 236U/238U can quantify the contribution from global fallout. This was demonstrated for two samples collected at the Danish straits (Kattegat) for which a global fallout contribution of 25% was obtained. In case of a nuclear accident, the surplus of potential U releases to the background due to nuclear weapons can now be quantified.

In addition to the samples analyzed in the present study, which were collected in the Northern Hemisphere, future studies should aim to map the 233U/238U ratio for the Southern Hemisphere. As observed for Pu isotopes, isotopic ratios on the Southern Hemisphere show a higher variability, because weapons fallout is dominated by the local fallout of the French tests in French Polynesia and the British tests in Australia. A next step in method development will be establishing a standard material for 233U/236U to be shared with other AMS laboratories.

Methods

Detailed sample description and preparation. The 236U/238U atom ratio was determined in seven samples from different depths of a sediment core (3–47 cm) from the Irish Sea which was collected by the Federal Maritime and Hydrographic Agency, Germany. Previous work suggests that the core showed no good stratigraphy but was probably mixed by environmental reworking. The 238U/236U ratios determined in the sediment samples ranged from 1.35-10^{-3} to 4.36-10^{-3} and thus, were considerably elevated compared with natural background (10^{-4} to 10^{-10}) or global fallout (≈ 5-10^{-11}). The samples were clearly affected by the large amounts of uranium from spent fuel discharged by the Sellafield reprocessing plant. At the beginning of the plant operation in the 1950s and 60s, effluents were characterized by a low 239Pu/239Pu isotopic ratio (<0.07) due to the production of weapon-grade Pu. Later emissions originated from the reprocessing of spent fuel from thermal Nuclear Power Plants showed 239Pu/239Pu ratios higher than 0.20. Dating of the sediment core using its 241Pu content resulted in a maximum age of 34.0 ± 0.4 years before 2010 and, therefore, an isotopic signature of high burn-up fuel from NPPs was expected. This has been confirmed by the high 240Pu/239Pu ratios ranging from 0.20 to 0.33 detected in the sediment core. Since the 240U count rates detected from the Irish Sea sediment were considerably larger than 1000 s^{-1} in 2014, and thus prone to cross-contamination, the first batch of three original samples was diluted by approximately a factor 100.

As addition to the sediment samples, Irish Sea water, i.e., the certified reference material IAEA-381, now available as IAEA-443, was analyzed with respect to its 231U/236U atom ratio within the scope of the present study. For this sample, no
archived separated U target material was available and thus it was prepared from the original reference material. A U-solution sample of 239U concentration over the past 80 years starting from 1992 as youngest age in an undisturbed ombrotrophic peat core was obtained in27. The layers of the peat core were dated by using the unsupported 210Pb method. The data for the 238U/234U ratio showed a clear bomb peak with a maximum 238U/232U ratio of (7.4 ± 0.4) x 10^-4 at a depth corresponding to AD 1959. This is in good agreement with the active phase of atmospheric nuclear weapons testing in the late 1950s and early 1960s. The analysis of the Pu isotopic ratios supports the finding that the peat is exclusively affected by global fallout38. Within the scope of the present study, the 226U and 228U concentrations were analyzed in 23 samples from the peat core covering the relevant time span from 1921 to 1992. Due to their annual growth bands, corals represent a high-resolution archive of U, which is incorporated into the carbonate skeleton of the corals from the ocean water.

The 236U/238U ratios detected in the corals from Kume Island were clearly influenced by the close-in fallout39 from the high-yield nuclear weapons tests conducted by the USA at the Pacific Proving Grounds (PPG), the Marshall Islands. The PPG are located in the North Equatorial current, which transported the close-in fallout west and then, turning into the Kuroshio current, to the northeast, passing the location of Kume Island. Two distinct peaks were found with a maximum 236U/238U ratio of (11.0 ± 1.2) x 10^-4 and (8.55 ± 1.17) x 10^-4, respectively, in the years of most intense weapons testing at the PPG regarding the yield of the explosions (Supplementary Table 1). Consequently, the two maxima were attributed to the two largest test series at the PPG, i.e., Operation Castle in 1954 and Hardtack I in 1958. In the present study, the 236U/238U ratio was analyzed in coral samples from Kume Island corresponding to the time interval from 1939 to 1970 with annual resolution. From an on-going project on the distribution and temporal evolution of the 226U concentration in the Baltic Sea42, two samples collected in the strait between Denmark and Sweden (Kattegat) were chosen for additional 233U analysis. The Danish straits are a very interesting maritime environment for the study of the physio-chemical behavior of U, as brackish water from the Baltic Sea mixes with saline water from the North Sea and the Atlantic Ocean. Using the distribution of 226Ra and 233U in the North Sea, it has been shown29 that releases from Sellafield and in particular from La Hague, are transported towards the Danish coast by the respective sea currents. This leads to the mixing of uranium originating from the reprocessing plants with U from global fallout. Accordingly, 236U/238U ratios detected in sea water from the Danish straits were found to be around four times higher than expected from global fallout indicating the presence of at least one additional contamination source42. Here, emissions from the reprocessing plants as well as fallout from the Chernobyl accident have to be considered as possible explanations.

Accelerator Mass Spectrometry requires the uranium to be embedded in several mg of solid material, usually FeOx, which means that a specific sample preparation has to be applied to the original environmental sample. A detailed description of the chemical extraction and purification of uranium from the different types of sample material is given in the respective previous publications, i.e., Irish Sea sediment53, peat bog54, and Baltic Sea sediment55. Some archived samples pressed into sputter targets for the ion source of VERA could be directly reprocessed with thermal neutron capture on 232Th (reaction (4)), which has a cross-section of 7.37 barn, especially in minerals with elevated 232Th content, e.g., monazite. Peppard et al. demonstrated the presence of natural 233U in pitchblende and Brazilian monazite concentrate by isolating the decay product 233Ac. They observed a mass ratio of 233U/238U of (1.3 ± 0.2) x 10^-13 in pitchblende and (4 ± 2) x 10^-14 in monazite. We have detected isotopic ratios of 232U/U in yellowcake samples in the range of several 10^-14 at the Vienna Environmental Research Accelerator (VERA), as part of this work.

When discussing anthropogenic sources for 233U, it has to be noted that from a neutronics point of view, 233U is very well suited as fuel for nuclear power plants and also for nuclear weapons. According to reaction (4), it can be efficiently bred from 232Th which is the starting point for the proposed thorium fuel cycle32. In that way, 1500 kg of 233U were synthesized in the USA68. Several reactor prototypes were operated especially in the 60s and 70s, e.g., the pebble-bed reactor in Germany, or the DRAGON experimental reactor in England. However, these prototypes or research reactors are by far outnumbered by the industrial application of the uranium fuel cycle in NPPs using a thermal neutron spectrum and the reprocessing of the fuel involved. Only extremely small amounts of 233U are produced in U-fueled NPPs because of the small cross-sections involved.
(reactions (1)–(3)). Furthermore, the average energy of neutrons emitted by the thermal fission of 235U is around 2 MeV with the energy distribution for the number of neutrons $N(E)$ being described by the well-known Watt spectrum. Integration of the corresponding empirical formula

$$N(E) = 4.75 \cdot 10^6 \sinh \left(2E \right)^{0.5} \cdot e^{-E}$$ \hspace{1cm} (5)

with E given in MeV, results in a fraction of only 2.4% of all fission neutrons with energies above the threshold for $(n,2n)$ reactions, i.e., 6 MeV, and of 0.01% with energies above 13 MeV, the threshold for $(n,3n)$ reactions. In contrast, 235U shows a thermal neutron capture cross-section of 95 b, so that considerable amounts of 236U are produced in NPPs. This difference in the production mechanisms of 235U and 236U is supported by the very low 235U/236U ratios of 10^{-6} obtained by reactor model calculations for the fuel of pressurized water reactors.25

Apart from the direct release by 235U-fueled weapons, i.e., the “MET” explosion of operation “Teapot” mentioned before, the only relevant production path for 235U seems to be the reaction 235U$(n,2n)$U. Neutrons with energies of 14.1 MeV are provided in a thermonuclear device by the fusion reaction of deuterium and tritium69 via

$$d + t \rightarrow \alpha (3.5 \text{ MeV}) + n (14.1 \text{ MeV})$$ \hspace{1cm} (6)

Supplementary Table 1 gives an overview over the largest explosions regarding the yield during the era of atmospheric testing. The largest pure fission bomb tested purportedly using enriched 235U, Ivy King, had a yield of 0.5 Mt11,70. For weapons tests with higher explosion yields, a device-dependent percentage of the energy is produced by fusion reactions that means neutrons above the threshold energy for the build-up of 233U were released in the corresponding devices. Comparing Supplementary Fig. 1, the cross-section for the 235U$(n,3n)$U reaction at this neutron energy is maximum 0.1 b whereas the 235U$(n,3n)$U reaction has a cross-section of around 0.5 b. Therefore, a high 233U/236U ratio can only be expected in thermonuclear weapons containing uranium enriched in 235U (e.g., oralloy, more than 90 % enriched)26. It has been reported that in the well-known Teller-Ulam configuration of thermonuclear weapons, oralloy was used as so-called blanket or tamper in a few devices which exploded during the period of atmospheric testings, i.e., Castle Nectar (1954) and Redwing Cherokee (1956)26 with an explosion yield of 1.7 Mt and 3.8 Mt, respectively.

Due to the limited experimental data on the production cross-section of 233U (compare Supplementary Fig. 1) and the lack of information on the construction details of nuclear devices, a theoretical prediction of the 235U/236U ratio in global fallout can only be roughly estimated. Assuming a nuclear device with an average enrichment of 60% and only considering the 14 MeV cross-sections for the respective $(n,3n)$ reactions results in a 231U/236U ratio of 4 %. Production of 236U via neutron capture on 235U can be neglected as the corresponding cross-section is below 10^{-3} b for 14 MeV neutrons65. This theoretical value for the 235U/236U ratio only serves as an estimate for the order of magnitude; the production of both nuclides is more complicated than described before, because of possible destruction and repeated capture processes. As most nuclear devices are supposed to have been equipped with a tamper made from natural uranium, the ratio in global fallout is probably further decreased. In general, the environmental 231U concentrations are expected to be about 100 times lower than those of 236U, i.e., 231U/236U $\approx 1 \%$. To summarize, on average, fallout from nuclear weapons tests should show a higher 235U/236U ratio than emissions from thermal nuclear power plants or reprocessing plants which is in agreement with our measurement results and allows source identification for environmental contamination.

Data availability

The source data underlying Figs. 1a, 2, 3 and Table 2 are provided as Source Data files on https://vera2.rad.univie.ac.at/share/WWW_Exchange/public/Hain2020_Uranium-233/

Received: 3 September 2019; Accepted: 13 February 2020;
Published online: 09 March 2020

References

1. Magill, J., Pfennig, G. & Galy, J. Karlsruher Nuklidkarte - 7th edn. (Forschungszentrum Karlsruhe GmbH, Karlsruhe, 2006).
2. Christl, M., Casacuberta, N., Lachner, J., Herrmann, J. & Synal, H.-A. Anthropogenic 236U in the North Sea—a closer look into a source region. Environ. Sci. Technol. 21, 12146–12153 (2017).
3. Zigl, R., Steier, P., Sakata, K. & Sakaguchi, A. Vertical distribution of 236U in the North Pacific Ocean. J. Environ. Radioact. 169–170, 70–78 (2017).
4. Sakaguchi, A. et al. Temporal and vertical distributions of anthropogenic 236U in the Japan Sea using a coral core and seawater samples. J. Geophys. Res. Oceans 121, 1–4 (2016).
5. Casacuberta, N. et al. A first transect of 236U in the North Atlantic Ocean. Geochim. Cosmochim. Acta 133, 34–46 (2014).
6. Takeno, N. Atlas of Eh-pH Diagrams, Geological Survey of Japan Open File Report 419. Technical Report, (National Institute of Advanced Industrial Science and Technology, Research Center for Deep Geological Environments, 2005).
7. Lehto, J. & Hou, X. Chemistry and Analysis of Radionuclides (Wiley-VCH, Weinlag, Weinheim, 2011).
8. Langmuir, D. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim. Cosmochim. Acta 42, 547–569 (1978).
9. Cotton, S. Lanthanide and Actinide Chemistry (John Wiley & Sons Ltd., Chichester, 2006).
10. Djogic, R., Sipos, L. & Branica, M. Characterization of uranium(VI) in seawater. Limnol. Oceanogr. 31, 1122–1131 (1986).
11. Sakaguchi, A. et al. First results on 236U levels in global fallout. Sci. Total Environ. 407, 4238–4242 (2009).
12. Steier, P., Pumplin, C. & Elmer, W. Natural and anthropogenic 236U in environmental samples. Nucl. Instrum. Methods Phys. Res. Sect. B 266, 2246–2250 (2008).
13. Winkler, S. R., Steier, P. & Carilli, J. Bomb fall-out 236U as a global oceanic tracer using an annually resolved coral core. Earth Planet. Sci. Lett. 359–360, 124–130 (2012).
14. Smrek, M., Hrnecek, E., Steier, P. & Wallner, G. Determination of U, Pu and Am isotopes in Irish Sea sediment by a combination of AMS and radiometric methods. J. Environ. Radioact. 102, 333–338 (2011).
15. Povinec, P. et al. Certified reference material for radionuclides in seawater IAEA-381 (Irish Sea Water). Nucl. Instrum. Methods Phys. Res., Sect. B 251, 369–374 (2002).
16. Boulyga, S. F. & Heumann, K. G. Determination of extremely low 236U/236U ratio in environmental samples by sector-field inductively coupled plasma mass spectrometry using high-efficiency sample introduction. J. Environ. Radioact. 88, 1–10 (2006).
17. Sakaguchi, A. et al. Uranium-236 as a new oceanic tracer: a first depth profile in the Japan Sea and comparison with caesium-137. Earth Planet. Sci. Lett. 333–334, 165–170 (2012).
18. Christl, M. et al. Status of 236U analyses at ETH Zurich and the distribution of 235U and 236U in the North Sea in 2009. Nucl. Instrum. Methods Phys. Res. Sect. B 361, 510–516 (2015).
19. Chamizo, E., López-Lora, M., Bressac, M., Levy, I. & Pham, M. Excess of 236U in global fallout. Sci. Total Environ. 565, 767–776 (2016).
20. Casacuberta, N. et al. First 236U data from the Arctic Ocean and use of stable 236U/236U and 236U/Th as a new dual tracer. Earth Planet. Sci. Lett. 440, 127–134 (2016).
21. Lindahl, P., Lee, S.-H., Worsfold, P. & Keith-Roach, M. Plutonium isotope tracers for ocean processes: a review. Mar. Environ. Res. 69, 73–84 (2010).
22. Cooper, L. W., Kelley, J. M., A., B. L., Orlandini, K. A. & Grebmeier, J. M. Sources of the transuranic elements plutonium and neptunium in arctic marine sediments. Mar. Chem. 69, 253–276 (2000).
23. Tumey, S. J. et al. Ultra-sensitive measurements of 235U by accelerator mass spectrometry for national security applications. J. Radioanal. Nucl. Chem. 282, 721 (2009).
24. Child, D. P. & Hotchkis, M. A. C. Plutonium and uranium contamination in soils from former nuclear weapon test sites in Australia. Nucl. Instrum. Methods Phys. Res. Sect. B 294, 642–646 (2013).
25. Nagelii, R. E. Calculation of the Radionuclides in PWR Spent Fuel Samples for SFR Experiment Planning. Technical Report, (Sandia National Laboratories, Albuquerque, NM 87123, USA, 2004).
26. Gladek, F. R. et al. Operation Hardtack I - 1958 (unclassified). Technical Report. (Defense Nuclear Agency: Washington, D.C. 20305, 1982).

27. Berkhouse, I. et al. Operation Dominic (unclassified). Technical Report. (Defense Nuclear Agency: Washington, D.C. 20305, 1983).

28. Neyman, M. B. & Sadilenko, K. Thermonuclear Weapons (unclassified). (Military Publishing House, Ministry of Defense USSR, 1960). Reproduced by the Armed Services Technical Information Center, USA.

29. Sublette, C. The nuclear weapon archive - a guide to nuclear weapons. http://nuclearweaponarchive.org/ (2003).

30. Moody, K. J., Grant, P. M. & Hutcheon, I. D. Nuclear Forensic Analysis, 2nd edn. (CRC Press, Boca Raton, 2015).

31. Gorbachev, V. M., Zamyatin, Y. S. & Lbov, A. A. Nuclear Reactions in Heavy Elements (Pergamon Press Ltd., Oxford, 1980).

32. Lewis, W. H. How Much Money Do the Rich Oceans for Power? Exploiting the Uranium-Thorium Fission Cycle, Report AECL-1961. Technical Report (Atomic Energy of Canada Limited: Chalk River, Ontario, Canada, 1964).

33. Simon, S. L., Bouville, A. & Beck, H. L. The geographic distribution of Pu isotopes and implications for postdepositional migration of fallout radionuclides. Environ. Sci. Technol. 44, 434–439 (2010).

34. Romney, E. M., Lindberg, R. C., Hawthorne, H., Bystrom, B. & Larson, K. H. Occurrence of the transuranium elements in seawater using flow injection extraction chromatography and accelerator mass spectrometry. Anal. Chem. 87, 7411–7417 (2015).

35. Gladeck, F. R et al. Operation Hardtack I - 1958 (unclassified). Technical Report. (Defense Nuclear Agency: Washington, D.C. 20305, 1982). http://digitalarchive.wilsoncenter.org/document/106750 (CTBTO, Vienna, Austria, 2012).

36. Smith, S. R. et al. The actinide beamline at VERA. Nucl. Instrum. Methods Phys. Res. Sect. B 248, 82–86 (2019).

37. Lachner, J., Christl, M., Vockenhuber, C. & Synal, H.-A. Detection of UH3 and TH3 molecules and 3U background studies with low-energy AMS. Nucl. Instrum. Methods Phys. Res. Sect. B 294, 364–368 (2013).

38. Barlow, R. G. & Sadilenko, K. Thermonuclear Weapons (unclassified). (Military Publishing House, Ministry of Defense USSR, 1960). Reproduced by the Armed Services Technical Information Center, USA.

39. Lewis, W. H. How Much Money Do the Rich Oceans for Power? Exploiting the Uranium-Thorium Fission Cycle, Report AECL-1961. Technical Report (Atomic Energy of Canada Limited: Chalk River, Ontario, Canada, 1964).

40. Lachner, J., Christl, M., Vockenhuber, C. & Synal, H.-A. Detection of UH3 and TH3 molecules and 3U background studies with low-energy AMS. Nucl. Instrum. Methods Phys. Res. Sect. B 294, 364–368 (2013).

41. Lachner, J., Christl, M., Vockenhuber, C. & Synal, H.-A. Detection of UH3 and TH3 molecules and 3U background studies with low-energy AMS. Nucl. Instrum. Methods Phys. Res. Sect. B 294, 364–368 (2013).

42. Steier, P. et al. The actinide beamline at VERA. Nucl. Instrum. Methods Phys. Res. Sect. B 233–244, 67–71 (2004).

43. Steier, P. et al. He stripping for AMS of 238U and other actinides using a 3 MV tandem accelerator. Nucl. Instrum. Methods Phys. Res. Sect. B 361, 458–464 (2015).

44. Tsaletka, R. & Lapitskii, A. V. Occurrence of the transuranium elements in nature. Russ. Chem. Rev. 29, 684–689 (1960).

45. Chadwick, M. B. et al. F/B-VII.1: Nuclear data for science and technology: cross sections, covariances, fusion product yields and decay data. Nucl. Data Sheets 112 Database Version of 2017-03-06, www-nds.iaea.org/exfor/endf.htm (2011).

46. Okuta, N. et al. Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): international collaboration between Nuclear Reaction Data Centres (NRDC). Nucl. Data Sheets 120, 277–276 (2014). Database Version of 2017-03-02, www-nds.iaea.org/exfor/endf.htm.

47. Lung, M. & Greomm, O. Perspectives of the thorium fuel cycle. Nucl. Eng. Des. 180, 133–146 (2000).

48. Al var, R. M. Plasma Physics and Fusion Energy (Cambridge University Press, Cambridge, 2007).

49. Simon, S. L. & Robinson, W. L. A compilation of nuclear weapons test detonation data for U.S. Pacific Ocean tests. Health Phys. 73, 258–264 (1997).

Acknowledgments
Open access funding provided by University of Vienna.

Author contributions
K.H. wrote the manuscript and performed the AMS measurements together with P.S., who initiated the study. Data evaluation and interpretation was done by K.H., P.S., J.L., and R.G. M.B.F. was responsible for the sample preparation of the Irish Sea sediments, who initiated the study. Data evaluation and interpretation was done by K.H., P.S., J.L., and R.G. M.B.F. was responsible for the sample preparation of the Irish Sea sediments.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-15008-2.

Correspondence and requests for materials should be addressed to K.H.

Peer review information
Nature Communications thanks David Richards and the other anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at https://www.nature.com/reprints

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
