ABSTRACT

Background: We used disability-adjusted life years (DALY) to estimate the cancer burden in Japan for the year 2000.

Methods: We estimated years of life lost (YLL) by using mortality data and years lived with disability (YLD) by using incidence data. The DALY for cancer was calculated as the sum of YLL and YLD.

Results: For all cancers combined, 2,733,884 years of DALY were estimated in men and 2,091,874 years were estimated in women. Among men, stomach and lung cancers accounted for the largest proportions of DALY, followed by liver cancer and colorectal cancer. Among women, the greatest contributors to DALY were stomach, colorectal, breast, and lung cancers.

Conclusions: The national cancer burden in Japan was expressed in terms of DALY, which might be useful in assessing future changes with respect to mortality and morbidity in Japan.

Key words: cancer; DALY; disability-adjusted life years; premature mortality; years lived with disability

INTRODUCTION

In Japan, cancer overtook stroke in the early 1980s as the leading cause of death. Incidence and mortality rates are routinely used to quantify the cancer burden, but these measures are often reported and analyzed separately. Disability-adjusted life years (DALY) was developed in the 1990s for the Global Burden of Disease (GBD) study. Details of the GBD study have been described in textbooks and in a series of published articles. DALY describes the loss of healthy years of life, i.e., the difference between actual and perfect health. It uses time units to estimate disease burden by combining years of life lost (YLL) due to premature mortality with years lived with disability (YLD) in incident cases.

In the present study, we estimated the national cancer burden in Japan for the year 2000 by using a summary health measure to account for the burden of both mortality and incidence.

METHODS

We calculated the DALY for cancer using procedures derived from those described in the GBD study, which summed the YLL and YLD components. The basic formula is expressed as follows:

\[
\text{DALY} = \text{YLL} + \text{YLD}
\]

We computed YLL by multiplying the number of cancer deaths by the number of years of expected remaining life at the respective age of death according to the Japanese life tables for the year 2000, in which life expectancy at birth was 85 years for women and 78 years for men. Mortality data on cancer for the year 2000 were obtained from the Vital Statistics of Japan.

Next, we computed YLD by multiplying the numbers of cancer incidence by both the average duration (in years) of each cancer and a disability weight that reflected the severity of each cancer on a scale from 0 (perfect health) to 1 (death). Nationwide cancer incidence data in 2000 were obtained from estimates of a previous study. We used average durations and disability weights for countries categorized as Established Market Economies in the GBD study, as this information was not available for Japan.
Table 1. Age-standardized incidence and mortality rates per 100,000 for cancer in Japan in 2000

Cancer site	ICD-10	Men							
		Incidence	ASR	Mortality	ASR	Incidence	ASR	Mortality	ASR
All sites	C00–96, D05–06	310,118	263.9	179,140	147.2	228,215	172.7	116,344	72.9
Mouth and pharynx	C00–C14	6650	6.1	3610	3.2	2825	2.1	1456	0.9
Esophagus	C15	13,033	11.1	8706	7.4	2418	1.5	1550	0.9
Stomach	C16	68,992	58.7	32,798	26.7	33,793	22.4	17,852	10.8
Colon (rectum)	C18–C21	54,431	46.9	20,002	16.6	37,706	25.3	16,201	9.5
Liver	C22	27,411	23.6	23,602	20.2	12,642	7.8	10,379	6.0
Gallbladder	C23–24	8,063	6.3	6,913	5.4	9,175	4.8	8,240	4.1
Pancreas	C25	10,967	9.1	10,380	8.6	9,078	5.1	8,714	4.9
Larynx	C32	3,250	2.8	958	0.8	209	0.1	88	0.1
Lung	C33–34	48,184	38.3	39,053	30.7	19,706	12.3	14,671	8.4
Skin	C43–44	3,461	2.9	502	0.4	3,398	2.0	484	0.3
Breast	C50, D05	—	—	—	—	37,389	36.7	9,171	8.1
Cervix uteri	C53	—	—	—	—	7,868	8.1	2,393	2.0
Corpus uterus	C54–C55	—	—	—	—	6,737	12.6	2,809	1.9
Ovary	C56	—	—	—	—	7,490	7.0	3,993	3.2
Prostate	C61	19,825	14.9	7,514	5.4	—	—	—	—
Kidney and urinary organs	C64–C68	17,338	14.6	6,266	4.9	7,199	4.4	3,142	1.6
Central nervous system	C70–C72	2,204	2.5	857	1.0	2,188	2.2	699	0.7
Thyroid	C73	1,642	1.6	411	0.3	6,246	6.1	887	0.5
Hodgkin’s disease and	C81–C85, C96	7,374	6.9	4616	4.0	5,933	4.6	3,366	2.1
lymphoma									
Multiple myeloma	C88–90	2,140	1.7	1,736	1.4	1,980	1.2	1,625	0.9
Leukemia	C91–C95	4,578	5.1	3,970	3.9	3,310	3.3	2,796	2.3
Other		10,575	10.8	7,246	6.3	10,925	3.1	5,828	3.7

*Age-standardized rates (ASRs) were estimated using the World Standard Population.

RESULTS

Table 1 shows the age-standardized rates (ASRs) per 100,000 according to the World Standard Population of incidence and mortality for cancer in Japan for the year 2000. Among men, there were 310,118 incident cases and 179,140 deaths, which respectively corresponded to an age-standardized incidence rate of 263.9 cases and 147.2 deaths per 100,000. Among women, there were 228,215 cases and 116,344 deaths, which corresponded to age-standardized incidence and mortality rates of 172.7 and 72.9 per 100,000, respectively.

Table 2 shows DALY for cancer in Japan for the year 2000: 2,733,884 years in men and 2,091,874 years in women. For most specific cancer sites, YLL contributed to more than 90% of total DALY. In men, lung and stomach cancers accounted for the largest proportions of the burden, with 19.2% and 18.6% of total DALY, respectively, followed by liver cancer at 14.1% and colorectal cancer at 12.4%. Prostate cancer accounted for only 3.0%. DALY per 1000 men was 44.4 years for all cancers combined, among which the highest values were 8.5 years per 1000 men for lung cancer and 8.3 years for stomach cancer, followed by liver cancer and colorectal cancer (6.2 and 5.5 years, respectively). In women, the burden was greatest for stomach cancer, which accounted for 14.7% of total DALY, followed by colorectal cancer at 13.8%, breast cancer at 11.9%, and lung cancer at 11.2%. DALY per 1000 women for all cancers combined was 32.7 years. The highest DALY values per 1000 women were 4.8 years for stomach cancer and 4.5 years for colorectal cancer.

DISCUSSION

We estimated the cancer burden in Japan for the year 2000 by using DALY to account for the burden of both cancer incidence and mortality. The results reflect the contributions of both measures to total cancer burden.

Because cancer is a potentially fatal condition, YLL was the predominant contributor to DALY estimates in the present study, although for most cancer sites the number of incident cases was approximately twice that of deaths. This is consistent with other studies.11,12 A study in France reported that YLL contributed to 98% of DALY for lung cancer in men and 86% of DALY for breast cancer in women,11 while a study in Australia showed a greater than 80% contribution of YLL to total DALY for all cancer.12 A study estimating the cancer burden in Spain in 2000 reported 84% of DALY for cancer (both sexes combined).13 In contrast, for less fatal conditions the impact of YLD might be greater than that of YLL. The DALY for mental disorders and musculoskeletal disease in studies in Australia, for instance, was mainly attributable to YLD.12,14 In addition, differences among studies in the YLL/YLD ratio for DALY might be due to variations in the age structure of the respective populations.
populations, the incidence/mortality ratio, or average age at onset or death.

In the GDB study, social preferences regarding age weighting and the discount rate for future years were considered in the computation of DALY.2,3 The discount rate emphasizes the social value of a healthy year now rather than in the future, while age weighting reflects the fact that a year of life in young adulthood is more valued than a year of life in old age or infancy.2 However, in order to provide actual estimates, we used neither discounting nor age weighting in the present study. Moreover, the use of these adjustments is controversial.2,12,15,16 Indeed, a recent Dutch study used neither,15 but a study estimating cancer burden in Spain used both discount rate and age weighting in their calculations.13 Thus, the characteristics of DALY may differ with the method used and the disease patterns of the studied population.

Cancer incidence data are needed to calculate YLD, but these data are usually available only for a part of a particular country. In the present study, we used data on estimated nationwide incidence for Japan in 2000 from a previous study10 by the Japan Cancer Surveillance Research Group, which has provided regular incidence estimates for many years,10,17,18 using data collected from several population-based cancer registries in Japan.

Public health policies might benefit from using the DALY approach, e.g., in estimating potential health improvements gained by appropriate interventions or prevention programs. The DALY can also be used to estimate cancer burden attributable to major risk factors such as tobacco smoking and environmental factors. Evaluation of antismoking programs, for example, might use this summary measure to quantify “effect gain” from potential reductions in cancer incidence and mortality over time, rather than using separate measures.

In summary, we described the national cancer burden in Japan using a measure that reflected both cancer mortality and incidence. We expect the findings to be useful in assessing future changes with respect to mortality and morbidity in Japan.

ACKNOWLEDGMENTS

The authors express their sincere appreciation to the Japan Cancer Surveillance Research Group for estimating data on cancer incidence in Japan in 2000; these data were essential for the DALY calculation in the present study. The Radiation Effects Research Foundation (RERF), Hiroshima and Nagasaki, Japan is a private, non-profit foundation funded by the Japanese Ministry of Health, Labour and Welfare (MHLW) and the US Department of Energy (DOE), the latter in part through the National Academy of Sciences.

Conflicts of interest: None declared.

Table 2. Disability-adjusted life years (DALY) for cancer in Japan in 2000

Cancer site	Men		Women					
	DALY	% of total DALY	DALY per 1000 men	% of YLL in DALY	DALY	% of total DALY	DALY per 1000 women	% of YLLa in DALY
All sites	273388	100.0	44.4	93.8	2091874	100.0	32.7	95.4
Mouth and pharynx	64993	2.4	1.1	93.7	25883	1.2	0.4	93.5
Esophagus	141636	5.2	2.3	96.6	25455	1.2	0.4	95.4
Stomach	509553	18.6	8.3	90.3	307972	14.7	4.8	94.1
Colorectum	339949	12.4	5.5	85.4	288220	13.8	4.5	89.3
Liver	384265	14.1	6.2	96.9	162507	7.8	2.5	98.5
Gallbladder	87439	3.2	1.4	98.6	109379	5.2	1.7	99.4
Pancreas	158192	5.8	2.6	96.9	133994	6.4	2.1	98.1
Larynx	12980	0.5	0.2	95.8	1374	0.1	0.1	96.7
Lung	524981	19.2	8.5	97.5	234379	11.2	3.7	97.1
Skin	8317	0.3	0.1	92.0	7922	0.4	0.1	91.8
Breast	—	—	—	—	—	—	—	—
Cervix uteri	—	—	—	—	248765	11.9	3.9	95.5
Corpus uterus	—	—	—	—	60296	2.9	0.9	96.5
Ovary	—	—	—	—	54796	2.6	0.9	96.3
Prostate	81657	3.0	1.3	87.9	—	—	—	—
Kidney and urinary organs	85828	3.1	1.4	92.6	44556	2.1	0.7	94.7
Central nervous system	22129	0.8	0.4	96.1	20577	1.0	0.3	96.0
Thyroid	6266	0.2	0.1	89.8	14998	0.7	0.2	84.0
Hodgkin’s disease and	75161	2.8	1.2	96.7	60831	2.9	0.9	96.9
lymphoma	—	—	—	—	—	—	—	—
Multiple myeloma	24017	0.9	0.4	96.8	25369	1.2	0.4	97.4
Leukemia	85548	3.1	1.4	94.6	68487	3.3	1.1	95.1
Other	120973	4.4	2.0	97.4	101675	4.9	1.6	97.5

aYLL denotes years of life lost.
REFERENCES

1. Health and Welfare Statistics Association. Public health trends. J Health Welfare Stat. 2007;54:10–20 (in Japanese).
2. Murray CJ, Lopez AD. The Global Burden of Disease: A comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020. Boston: Harvard University Press. World Health Organization, Harvard School of Public Health, World Bank; 1996.
3. Murray CJ, Lopez AD. The Global Health Statistics: A compendium of incidence, prevalence and mortality estimates for over 200 conditions. Boston: Harvard University Press. World Health Organization, Harvard School of Public Health, World Bank; 1996.
4. Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet. 1997;349:1436–42.
5. Murray CJ, Lopez AD. Regional patterns of disability-free life expectancy and disability-adjusted life expectancy: global Burden of Disease Study. Lancet. 1997;349:1347–52.
6. Murray CJ, Lopez AD. Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet. 1997;349:1269–76.
7. Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet. 1997;349:1498–504.
8. Abridged Life Tables for Japan in 2000. Statistics and Information Department, Minister’s Secretariat, Japanese Government [accessed cited: 2011 Jan 15]. Available from: http://www.mhlw.go.jp/english/database/db-hw/lifetb00/index.html.
9. Ministry of Health Labor and Welfare. Vital Statistic of Japan 2000. Tokyo: Statistics and Information Department, Health and Welfare Statistic Association; 2002.
10. Marugame T, Kamo K, Katanoda K, Ajiki W, Sobue T. Cancer incidence and incidence rates in Japan in 2000: Estimates based on data from 11 population-based cancer registries. Jpn J Clin Oncol. 2006;36:668–75.
11. Lapostolle A, Lefranca A, Gremy I, Spira A. Sensitivity analysis in summary measure of population health in France. Eur J Public Health. 2008;18:195–200.
12. Mathers CD, Vos ET, Stevenson CE, Begg SJ. The burden of disease and injury in Australia. Bull World Health Organ. 2001;79:1076–84.
13. Fernández de Larrea-Baz N, Alvarez-Martín E, Morant-Ginestar C, Génova-Maleras R, Gil A, Pérez-Gómez B, et al. Burden of disease due to cancer in Spain. BMC Public Health. 2009;9:42.
14. Vos T, Mathers CD. The burden of mental disorders: a comparison of methods between the Australian burden of disease studies and the Global Burden of Disease study. Bull World Health Organ. 2000;78:427–38.
15. Melse JM, Essink-Bot ML, Kramers PG, Hoeymans N. A national burden of disease calculation: Dutch disability-adjusted life-years. Dutch Burden of Disease Group. Am J Public Health. 2000;90:1241–7.
16. Fox-Rushby JA, Hanson K. Calculating and presenting disability adjusted life years (DALYs) in cost-effectiveness analysis. Health Policy Plan. 2001;16:326–31.
17. Ajiki W, Tsukuma H, Oshima A; Research Group for Population-based Cancer Registration in Japan. Cancer incidence and incidence rates in Japan in 1999: estimates based on data from 11 population-based cancer registries. Jpn J Clin Oncol. 2004;34:352–6.
18. Matsuda T, Marugame T, Kamo K, Katanoda K, Ajiki W, Sobue T; Japan Cancer Surveillance Research Group. Cancer incidence and incidence rates in Japan in 2002: based on data from 11 population-based cancer registries. Jpn J Clin Oncol. 2008;38:641–8.