Introduction:
The intraspinalenterogenous cyst, also called aneurenterogenous cyst, is a rare congenital disease. It was reported to be local to the C1 to L2 spinal segments, with the majority located in the cervicothoracic region. These cysts result from inappropriate segmentation of the notochord during embryogenesis causing endodermal tissue to remain in the spinal canal. It accounts for only 0.7-1.3% of spinal axis tumors. Only 12.2% of neuroenteric cysts are documented to be intramedullary.

Abstract:
Background: Neuroenteric cysts are rare non-neoplastic lesions arising from a failure of dissolution of the transient neuroenteric canal between the foregut and the notochord. They are most frequently seen in the intradurextramedullary space in the lower cervical and upper thoracic spine.

Case description: A 5 yrs old boy presented to us with the complaints of neck and upper back pain and weakness of all four limbs. MRI scan shows an intradurextramedullary cystic lesion at C6-T1 with significant compression over cord. After patient’s preparation a Posterior approach was used to remove the cysts. Post-operative course was un-eventful. Histological results were consistent with neuroenteric cysts. MRI image of 3 months follow-up shows no residual cysts and the boy has no further complaints.

Conclusion: Neuroenteric cyst (NC) is a rare lesion usual location at lower cervical and upper dorsal area and should be considered among differential diagnoses. Complete excision is the treatment of choice. In most instances a dorsal surgical approach will be satisfactory.

Keywords: Neuroenteric cyst, Laminoplasty, Cervicothoracic, Spinal cord tumor.

Conflict of Interest: There is no conflict of interest relevant to this paper to disclose.

Funding Agency: Was not funded by any institute or any group.

Bang. J Neurosurgery 2021; 11(1): 54-57

DOI: https://doi.org/10.3329/bjns.v11i1.57995

Contribution of Author:
Principal Investigator- Dr. Md. Ruhul Kuddus
Manuscript Preparation- Dr. Md. Bashir Ahammed, Dr. Hasanur Rahman
Data Collection- Dr. Moshiru Rahman, Dr. KM Atiqu Islam, Dr. Samiul Alam Siddik
Editorial Formatting: Dr. Omar Faruk, Dr. Haradhan Debnath

Address of Correspondence: Dr. Md. Ruhul Kuddus, MO, Neurosurgeon, Department of neurosurgery, BSMMU, Mob: 01914331838, email: dr.mrksikder@gmail.com

1. Dr. Md. Ruhul Kuddus, MO, BSMMU
2. Dr. Md. Bashir Ahammed, Assistant registrar, NINS
3. Dr. Hasanur Rahman, Phage A Resident, Department of neurosurgery, DMCH
4. Dr. Moshiru Rahman, Assistant professor, department of Neurosurgery, Holy family Red Crescent medical college hospital.
5. Dr. KM Atiqu Islam, Assistant registrar, NINS
6. Dr. Samiul Alam Siddik, Assistant professor, Department of neurosurgery, Mymensingh Medical College hospital.
7. Dr. Omar Faruk, IMO, DMCH
8. Dr. Haradhan Debnath, Professor Department of neurosurgery, BSMMU.
Matson coined the term neurenteric cyst in 195410. The disease is officially named as enterogenous cyst in 1958 by Harriman11. Previous studies of neurenteric cysts indicates that the disease is slowly progressive and rarely shows symptoms of acute onset1. We report a case of cervical intradural extramedullary enterogenous cyst with severe clinical presentation.

Case Report:

A 5 yrs boy presented with gradually progressive neck and upper back pain with quadripareisis for last 1 yr. the pain was severe in intensity. On examination the baby was conscious and oriented; muscle power of upper limbs was normal excepts weakness in grip in both hand and lower limbs was 4/5. Diminished sensory level found at D4. All jerks were exaggerated. Hoffman’s sign was negative. Autonomic functions were normal.

MRI of cervico-dorsal spine shows well circumscribed elliptical in shape intradural cystic lesion extending from C6 to D2 level with significant cord compression. The lesion was hyper intense in T2 image and isointense in T1 image with no contrast enhancement in postgadolinium image.

Surgery: A C6-T1 laminoplasty was done under GA with prone position. Tumor was reached from Right side without significant cord retraction and removed with capsule. The cyst contains yellowish colored fluid. After removal of cyst the laminae was replaced with titanium mini screw and plate.

Post-operative course: Post operative recovery was uneventful. No new deficit was evident. From 1st POD the symptoms was resolved dramatically. After 2 months a follow-up MRI was done which revealed no residual or recurrence.

Histopathological examination: revealed enterogenous cyst.

Fig-1, 2, 3: Pre-op MRI of cervical spine with contrast.

Fig- 4: Per-operative picture showing cyst removal.

Fig- 5, 6, 7: The boy at 2nd POD. 3 months postoperative image showing no residual cysts.
Discussion:

Enterogenous cysts of the central nervous system, also called neuroenteric cysts or gastrocytomas, were first reported in 1934 by Pussep, who treated a case of intestinoma of the cervical spinal cord. These cysts within the spinal cord are not common. Using Table 1: Literature review

Case	Author, year	Age(years)	Tumour location	Clinical	Surgery	Cyst content	Clinical outcome	Follow-up	Recurrence
1	Harriman DG, 1958	20/M	T3, ID EM, D	Chronic onset	LAM: T2-T4/PA	CSF-like fluid.	Died	1 year	YES
2	Pilz P et al, 1977	22/F	C3-C4, ID EM, V	Acute onset	NO	mucilage	Died	NR	NO
3	Mohanty S et al, 1979	23/F	C5-C7, ID EM, V	Acute onset	LAM: C5-C7/PA	clear colourless fluid.	Improved	10 days	NO
4	Woe PY et al, 1982	1/M	C2, ID EM, V	Acute onset	LAM: C2	clear colourless fluid	Improved	NR	NO
5	Itohura T et al, 1986	4/F	C1-C2, ID EM, D	Chronic onset	LAM: C1-C3/PA	CSF-like fluid	improved	9 months	NO
6	Aoki S et al, 1987	22/F	C2-C3, ID EM, V	Chronic onset	LAM: C1-C4/PA	clear colourless fluid	Improved	4 weeks	NO
7	Lea ME et al, 1992	18/M	C3-C7 ID EM, V	Chronic onset	LAM: C3-C7/PA	NR	Improved	7 days	NO
8	Chiang WH et al, 1992	5/M	T5-T9, ID EM, V	Acute onset	PA	milky white opalescent fluid	Improved	NR	NO
9	Khandelwal N et al, 1993	25/M	T9-T10, IM	Chronic onset	LAM: T8-T11/PA	milky fluid	Improved	3 months	NO
10	Chen IH et al, 1995	30/M	C7-T1, ID EM, V	Chronic onset	LAM: C6-T1/PA	NR	improved	6 months	NO
11	Hamana-O T, 1997	7/M	C4-C6, ID EM, D	Chronic onset	LAM: C5-C6/AA	NR	Improved	NR	NO
12	Lee SH et al, 1999	48/M	T5-T6	Chronic onset	COR: C5-C6/AA	NR	Improved	NR	NO
13	Shetty DS et al, 2000	3/M	C7-T2, ID EM, V	Acute onset	LAM: C6-T3/PA	NR	improved	NR	NR
14	Reinders JW et al, 2001	35/F	T8-T9, IM	Chronic onset	LAM: T8-T9/PA	NR	improved	2 months	NO
15	Martin AJ et al, 2001	35/F	C7-T2, ID EM, V	Acute onset	LAM: T7-T8/PA	sterile, viscous, yellow fluid	Improved	7 months	NO
16	Chang IC, 2003	6/M	C4-C6 ID EM, V	Chronic onset	LAM: C3-C7	xanthochromic fluid	improved	3 years	NO
17	Hidennenzee T, 2003	3/F	C2-C3, ID EM, V	Acute onset	LAM: C2-C4/PA	watery clear fluid	improved	5 years	NO
18	Shenoy SN, 2004	4/M	C7-T1, ID EM, V	Acute onset	LAM: C2-C4/PA	watery clear fluid	poor	3 years	NO
19	3/M	C7-T1, ID EM, V	Acute onset	LAM: C2-C4/PA	watery clear fluid	improved	5 years	NO	
20	16/F	C3-C4, ID EM, V	Chronic onset	LAM: C2-C4/PA	watery clear fluid	excellent	improved	3 years	YES
21	5/F	C6-T8, ID EM, D	Chronic onset	LAM: T6-T8/PA	milky, jelly-like fluid	improved	3 years	YES	
22	Becker GW et al, 2004	59/F	C3-C5, ID EM, V	Acute onset	LAM: C3-C5/AA	yellow keratinous material	maintain	6 months	NO
23	Arslan E et al, 2010	24/F	L2, ID EM, D	Chronic onset	LAM: T2-T4/PA	NR	improved	9 months	YES
24	Zhu M et al, 2010	39/M	T11-T12, IM	Acute onset	LAM: T11-T12	partially calcified	maintain	NR	NO
25	Sadeghi-Hariri B et al, 2012	40/M	C1-L2, IM	Chronic onset	LAM: L1-L2/PA	creamy jelly-like contents	improved	NR	NO
26	He ZG et al, 2015	8/M	C7-T1, ID EM, V	Chronic onset	LAM: C6-T1/PA	NR	Improved	4 months	NO
27	Can A et al, 2018	29/M	C4-C7, ID EM, V	Chronic onset	LAM: C4-T1/PA	Mucinous transparent	Improved	7 months	YES
28	Yuce I et al, 2015	1/M	T3-T4, ID EM, V	Acute onset	LAM: T3-T6/PA	NR	Improved	3 months	NO
29	Jung HS, 2015	50/M	T1, ID EM, V	Acute onset	LAM: T1/PA	yellow-green mucinous fluid	improved	6 months	NO
30	Kejima S et al, 2016	2/M	begin L1-L3, then L1-L2, ID EM, V	Acute onset	LAM: NR	watery clear fluid	improved	35 months	YES
31	Joshi KC et al, 2017	8/M	T3-T6, IM	Chronic onset	LAM: T3-T6/PA	white pebble	Improved	3 months	Ne

C, cervical; CSF, cerebrospinal fluid; COR, corpectomy; D, dorsal; ED, extradural; EM, extramedullary; F, female; ID, intradural; IM, intramedullary; L, lumbar; LAM, laminectomy; M, male; NR, not reported; PA, posterior approach; T, thoracic; V, ventral.
the keywords ‘neurenteric cyst’, ‘enterogenous cyst’, ‘spinal’ and ‘intraspinal’ on PubMed about 30 cases were reported, 6–34 including 10 women and 20 men, with a mean age of 22 years (range 1–59 years) with histological confirmation. They generally arise from the lower cervical to the upper thoracic region of the spinal cord, causing symptoms of spinal compression. Most of these cysts are found with intradural extramedullary location and intramedullary lesions are very rare. About half of these cases are associated with spinal deformities such as spina bifida, hemivertebra and vertebral fusion. Enterogenous cysts have been classified into three groups, according to histological features. Group A is the simplest type, lined by a single layer of cuboidal or columnar epithelial cells with or without cilia. Group B cysts include more complex elements of the gastrointestinal tract or tracheobronchial tree, including mucus glands and smooth muscle in their wall. Group C cysts have ependymal or glial tissue in addition to the elements seen in group B cysts. Most enterogenous cysts belong to group A. However, all our cases had features of group B.

A variety of hypotheses have been suggested regarding the pathogenesis of intraspinal enterogenous cysts, but none are firmly established. They are believed to originate from embryonal dysgenesis. During normal development, the neuroenteric canal closes and the notochord separates from the primitive gut in the third week of embryonic life. It is proposed that during the same period, a transient adhesion occurs between the neural ectoderm and endoderm, or a communication develops along the neuroenteric canal. When such a developmental abnormality persists because of the incomplete separation at this adherence or remnant canal, the cyst forms.

MacKenzie and Gilbert have demonstrated morphological and immunohistochemical similarities between colloid cysts of the third ventricle and spinal enterogenous cysts, suggesting that these lesions are all derived from primitive gut endoderm. Our case was a typical presentation with compressive cervical myelopathy with radiological and clinical presentation. MRI is the main tool of diagnosis. The lesion was extramedullary and intradural cystic lesion with elliptical shape located at the lower cervical and upper dorsal area which is its usual location. Other radiological presentation was typical.

Posterior approach was used for surgery rather than anterior. Laminoplasty of C6-T1 was done. Although some of the author has chosen anterior approach, we think posterior approach is enough for complete removal of the cyst.

Conclusion: Spinal enterogenous cysts are benign lesions with insidious progression, and their early preplanned surgical removal should be the goal of treatment, as the very advanced stage of manifestation can be critical for neural recovery and clinical outcome. Total resection is the first line treatment for patients with neurological impairment.

References:
1. Liu CX, Meng B, Li YB, Bai H, Wu ZX. A rare case of thoracic spinal intradural extramedullary enterogenous cyst with acute onset: case report and literature review. Ann R Coll Surg Engl 2019; 101: e142–e146.
2. Srirachan Gopakumar, Nisha Gadgil, Malcolm F. McDonald, Rod Gadot, Alexander E. Ropper. Neurenteric Cyst: Case Report and Operative Video. Cureus 2020 12(6): e8714. DOI 10.7759/cureus.8714
3. Savage JJ, Casey JN, McNeill IT, Sherman JH: Neurenteric cysts of the spine. J Craniovertebr Junction Spine. 2010, 1:58-63.
4. Vachhani JA, Fassett DR. Intramedullary neurenteric cyst associated with a tethered spinal cord: Case report and literature review. SurgNeurolInt 2012;3:80. Available FREE in open access from: http://www.surgicalneurologyint.com/text.asp?2012/3/1/80/98525.
5. Russell DS, Rubinstein LJ. Pathology of tumors of the nervous system, 5th ed. London: Edward Arnold, 1989;704-6, 721-25.
6. Leech RW. Olafson RA. Epithelial cysts of the neuraxis. Arch Pathol Lab Med 1977; 101:196-202.
7. C Sarkar, KL Karaguiso, S Simeonov, NMHA Rahman. Spinal Enterogenous Cysts: A Clinical, Morphological and Radiological Study of Three Cases. 1996; 16(6): 689-694.
8. Kabbe LS FJF. A clinical and pathological study of two teratomatous cysts of the spinal cord, containing muscus and ciliated cells. SurgGynecObstet 1928; 47: 207-211.
9. Puusepp M: Variete rare de teratome sous-dural de la region cervicale (intestinome). Rev Neurol 1934; 2: 879–886.
10. Holcomb GW, Jr, Matson DD. Thoracic neurenteric cyst. Surgery 1954; 35: 115–121.
11. Savage JJ, Casey JN, McNeil IT, Sherman JH. Neurenteric cysts of the spine. J Craniovertebr Junction Spine 2010; 1(1): 58–63.
12. Knight G, Griffiths T, Williams I. Gastrocytoma of the spinal cord. Br J Surg 1955; 42:635-8.
13. Agnoli AL, Laun A, Shanmayer R. Enterogenous intraspinal cysts. J Neurosurg 1984;61:834-40.
14. Silvermail W Jr, Brown R. Intradural enterogenous cyst. J Neurosurg 1972;36:235-8.
15. Wilkens RH, Odom GL. Spinal intradural cysts. In: Vinkin PJ, Bruyn GW (eds). Handbook of Clinical Neurology Vol. 20. Tumors of the Spine and Spinal Cord, Part II. Amsterdam: North Holland; 1976, pp. 55–102.
16. Bremer JL. Dorsal intestinal fistula: accessory neuroenteric canal; diastematomyelia. Arch Pathol 1952;54:132-8.
17. Small JM. Pre-axial enterogenous cyst (abstract). J NeurolNeurosurg Psych 1962;25:184.
18. Mackenzie IRA, Gilbert JJ. Cysts of the neuraxis of endodermal origin. J NeurolNeurosurg Psych 1991;54:972-5.