Species-specific basic stem-wood densities for twelve indigenous forest and shrubland species of known age, New Zealand

Michael Marden¹,*, Suzanne Lambie² and Larry Burrows³

¹ 31 Haronga Road, Gisborne 4010, New Zealand
² Manaaki Whenua – Landcare Research, Private Bag 3127, Hamilton 3240, New Zealand
³ Manaaki Whenua – Landcare Research, PO Box 69041, Lincoln 7640, New Zealand

*Corresponding author: mardenm@landcareresearch.co.nz
(Received for publication 19 July 2019; accepted in revised form 26 January 2021)

Abstract

Background: Tree carbon estimates for New Zealand indigenous tree and shrub species are largely based on mean basic stem-wood densities derived from a limited number of trees, often of unspecified age and from a limited number of sites throughout New Zealand. Yet stem-wood density values feed directly into New Zealand’s international and national greenhouse gas accounting. We augment existing published basic stem-wood density data with new age-specific values for 12 indigenous forest and shrubland species, including rarely obtained values for trees <6-years old, across 21 widely-distributed sites between latitudes 35° and 46° S, and explore relationships commonly used to estimate carbon stocks.

Methods: The volume of 478 whole stem-wood discs collected at breast height (BH) was determined by water displacement, oven dried, and weighed. Regression analyses were used to determine possible relationships between basic stem-wood density, and tree height, root collar diameter (RCD), and diameter at breast height (DBH). Unbalanced ANOVA was used to determine inter-species differences in basic stem-wood density in 5-yearly age groups (i.e. 0–5 years, 6–10 years etc.) (P<0.05). As specific taxa of Kunzea ericoides (Myrtaceae) has only been identified at some study sites we combine the data from each site, and use the term Kunzea spp. We compare our age- and species-specific results with existing published data where age is specified versus non-age-specific values.

Results: Kunzea spp. and Leptospermum scoparium exhibited positive correlations between basic stem-wood density and tree height, RCD, and DBH. No relationships were established for Melicytus ramiflorus, Coprosma grandiflora, Weinmannia racemosa ≥6-years old, or for Podocarpus totara, Agathis australis, Vitex lucens, and Alectryon excelsus <6-years old. Dacrydium cupressinum and Prumnopitys ferruginea <6-years old exhibited a significant positive relationship with DBH only, while for Dacrycarpus dacrydioides, each correlation was negative. Irrespective of age, basic stem-wood density is not different between the hardwood species L. scoparium and Kunzea spp. but is significantly greater (P<0.001) than that of the remaining, and predominantly softwood species of equivalent age. For Kunzea spp., L. scoparium, Coprosma grandiflora, Weinmannia racemosa, and Melicytus ramiflorus ≥6-years old there was no evidence that basic stem-wood density increased with tree age, and values were within the range of published and unpublished data. For naturally reverting stands of Kunzea spp. located between latitudes 35° to 46° S, basic stem-wood density values tended to increase with decreased elevation and increased temperature.

Conclusions: Increasing basic wood density values in Kunzea spp. with decreased elevation and increased temperature suggest that where local data are available its use would improve the accuracy of biomass estimates both locally and nationally. Furthermore, refining biomass estimates for existing communities of mixed softwood species, stands of regenerating shrubland, and new plantings of indigenous species will require additional basic stem-wood density values for scaling from stem wood volume to total stand biomass.

Keywords: basic stem-wood density, allometric relations, 12 indigenous forest and shrubland species, New Zealand.
Introduction

The variability in basic stem-wood density and age are critical factors influencing estimates of wood biomass and carbon storage capability (Chave et al. 2004, Dale 2013). Stem-wood density values feed directly into New Zealand’s international greenhouse gas accounting of forest carbon stocks, and for internal schemes such as the Emissions Trading Scheme (ETS) (Ministry for Primary Industries 2017), and the 1 Billion Trees Programme (1BT) (Ministry for Primary Industries 2018).

Previously, New Zealand studies have estimated the biomass of indigenous forest stands for tree carbon stocks and sequestration using diameters and height measurements of individual trees in forest inventory plots (Carswell et al. 2012, Scott et al. 2000, Trotter et al. 2005, Beets et al. 2014, Schwendenmann & Mitchell 2014, Dale 2013, Holdaway et al. 2014). When basic wood density values are available for only a limited number of species and locations, wood volume is converted to carbon stocks using generic (as opposed to species-specific) functions based on the basic density of stem-wood (oven-dry mass/‘green’ volume). Where species-specific and/or regional basic stem-wood density values are unavailable, congeneric values are used instead, or in their absence, the mean of all published values e.g. Beets et al. (2012 and unpublished data).

While most early studies in New Zealand collected basic stem-wood density data from sites of well-established indigenous shrubs and trees, age-specific and species-specific stem-wood density data for the early growth period of many species remain elusive. The absence of taxon-specific stem-wood density and age-class distribution data of a wide variety of species over a range of geographic sites introduces uncertainty in the accuracy of New Zealand’s national carbon budget calculations (Scott et al. 2000, Chave et al. 2004, Holdaway 2014). The use of taxon-specific stem-wood density to scale tree volume, as yield or growth, to stem biomass, and from stem biomass to total biomass will improve the accuracy of species-specific allometric equations for estimating tree carbon storage, and avoid potential bias to national carbon budgets.

Furthermore, basic stem-wood density values for a few widespread indigenous species (Entrican et al. 1951, Hall et al. unpublished data), and for species specific with a more restricted geographic range (Wardle 1991), can vary depending on geographic location, though no relationships have been verified with respect to climate or site factors (Hall et al. unpublished data).

Clifton (1990) suggests that basic stem-wood density varies according to the age of the tree, the location of the wood within a tree (outer-wood/inner-wood, base or top of a tree), and while densities have been determined for some of New Zealand’s historically important merchantable wood species (Hinds & Reid 1957, Beets et al. 2012), the age of the trees and variations in basic stem-wood density were not determined, the sample size was generally small, the methods uncertain, and the location vague. Stand basic stem-wood densities will also change with time, influenced by climatic variability and site-specific physical factors, including soil type, slope, aspect, elevation and rainfall regime, all of which can affect growth rates, plant survival, and carbon sequestration rates. Furthermore, as the area of indigenous species plantings and their diversity increases with age, age-specific and species-specific stem-wood density data, will be relevant for Afforestation/Reforestation reporting, for updating the national carbon inventory system (Land Use and Carbon Accounting System – LUCAS), and policy, to reduce net greenhouse gas emissions as required under the Kyoto Protocol (Ministry of the Environment 2010), and for comparison with pre-calculated forest carbon stocks (includes stem, bark, branch, leaves, litter, woody debris, stumps and roots expressed in units of tonnes of CO₂ ha⁻¹), by age, for given forest types in the Emissions Trading Scheme (Ministry for Primary Industries 2017).

We augment existing published basic stem-wood density data with new age-specific values for 12 of New Zealand’s indigenous forest and shrubland species from 21 widely distributed sites located between latitudes 35° to 46° S. We explore relationships between basic stem-wood density and tree parameters commonly used to estimate stem carbon stocks, and applicable to future efforts to reduce the uncertainty of carbon stock estimates for forest and shrubland communities where basic stem-wood density values for different age classes of many species is currently missing.

Methods

Study sites

Basic wood density data was collected from 14 sites located in the North Island and from 7 sites in the South Island of New Zealand with a latitudinal range between 35° and 46° S (Fig. 1). Details of species, elevation, and substrate characteristics are summarised in Table 1, and presented in more detail in Appendix Table A1.

Species nomenclature

Since this study began, there has been a taxonomic revision of the New Zealand Kunzea ericoides (Myrtaceae) complex in New Zealand (de Lange 2014). Ten Kunzea species endemic to New Zealand are now recognised, seven of which are new. Where we have some confidence in the identification of new taxa these are presented in Table 1 and Appendix Table A1. As specific taxa have not been identified for all sites we have not attempted to analyse for possible inter-specific variations in basic stem-wood density for this genus but

1 Beets, P.N., Oliver, G.R, Kimberley, M.O, Pearce, S.H. (2008). Allometric functions for estimating above ground carbon in native forest trees, shrubs and ferns. Scion Report 12679 prepared for the Ministry for the Environment 63 p.

2 Hall, G., Wisser, S., Allen, R., Moore, T., Beets, P., Goulding, C. (1998). Estimate of the carbon stored in New Zealand’s indigenous forest and scrub vegetation for 1990. Landcare Research Contract JNT9798/147 Prepared for Ministry for the Environment, Wellington, New Zealand, 36 p.
instead we combine data for all sites where present and use the generic term *Kunzea* spp.

Wood sampling and density

There are many methods of sampling wood and determining wood density (Chave 2005, Williamson & Wiemann 2010). In this study, wood density is defined as the ratio of the oven-dry mass of a stem-wood disc sampled at a standard height divided by the mass of water displaced by its green volume to give wood specific gravity (WSG). WSG is described as basic wood density or stem-wood density throughout the text.

Discs cut from the stem account for the change in density from pith to bark (Williamson & Wiemann 2010, Beets et al. 2012). Basic stem density measurements of discs were sourced from trees located in areas of naturally regenerating *Kunzea* spp. (sites 2–7, 9, 12–21), regenerating *Leptospermum scoparium* (sites 1, 2, 9, 14, 16, and 21), a lowland shrub community (site 11), a species growth trial of indigenous softwood and hardwood species (site 8), and from an area of low-density plantings of *L. scoparium* (site 10). As the purpose of the research undertaken at each site differed, 256 of the basic stem-wood density measurements were of discs with the bark intact (Cornelissen et al. 2003) (e.g. sites 2, 4-11 & 21) and 222 measurements were of discs with the bark removed (e.g. sites 1, 3, 12-20). All discs were sampled at breast height (BH) (1.4 m above ground-level). The fresh volume of each wood disc was determined by water displacement, then oven dried at 105°C (Cornelissen et al. 2003) and weighed. For multiple-stemmed trees, a disc was cut from each stem, and the density averaged for the tree. Tree age in naturally regenerating stands was based on ring counts of the single oldest stem. The age of the species established in the plant growth trial (site 8) was based on the known date that seedlings were ‘pricked-out’ into seed trays in the nursery. For the site established in *L. scoparium* for honey production (site 10), the year in which 1-year-old, nursery-raised seedlings were planted was known.

For *Melicytus ramiflorus* and *Coprosma grandiflora* (site 11), discs were collected in the field at BH and transported in a sealed container to avoid moisture loss. In the laboratory, discs were soaked before the volume was determined by water displacement. Discs were dried at 80°C until dry and weighed (Cornelissen et al. 2003). Tree height was based on the tallest single stem. Tree age was based on ring counts of a disc cut from a representative stem of the tree.

For *Kunzea* spp. and *L. scoparium* collected from sites 2, 9, and 21, discs were collected at BH and frozen at –20°C. The discs were thawed at room temperature and soaked in water for 2 days before their volume was assessed. As *L. scoparium* and *Kunzea* spp. tend to split during drying making ring counting and measuring difficult, the discs were partially dried at 35°C, the rings counted, and then dried at 80°C and weighed.

For *Kunzea* spp., and *L. scoparium*, tree parameters were predominantly measured in regenerating shrubland >6-years old. Other regenerating shrubland species including *Melicytus ramiflorus*, *Coprosma grandiflora*, and *Weinmannia racemosa* include measurements for a wide range of ages both < and >6-years old while regressions for plot-based *Alectron excelsus*, *Podocarpus totara*, *Agathis australis*, *Dacrydium cupressinum*, *Prumnopitys ferruginea*, *Dacrycarpus dacrydioides* and *Vitex lucens* include only data for trees <6-years old.

Statistical analyses

Linear regression analysis best fitted the data and was used within each tree species to determine the possible relationship between basic stem-wood density and tree height, root collar diameter (RCD), diameter at breast height (DBH), and tree age.

Unbalanced ANOVA with least significant differences (LSD) was used to determine differences in basic stem-wood density between species and for *Kunzea* spp. to assess if densities differed between 17 sites located throughout New Zealand.

Density values were grouped into 5-yearly age classes (e.g. 0–5-years, 6–10 years etc.). Only data sets within a species, and within an age class with three or more replicates (irrespective of the geographical position) were used in the analysis. The average basic stem-wood densities for younger (<6-years old) and older (≥6-years old) trees are compared with published values. For the
TABLE 1: Locations, tree species present, elevation above sea level (asl), and substrate characteristics for 21 study sites sampled for basic wood density. Map co-ordinates are New Zealand Map Grid (NZMG)

Site number and name	Grid reference	Species	Elevation (m)	Substrate
1: Tautoro	173° 50´ 13 15 E, 35° 28´ 52 00 S	*Leptospermum scoparium*	100–140	greywacke argillites and sandstones
2: Waitakere Range	174° 35´ 14 42 E, 37° 00´ 10 17 S	*Kunzea* spp. and *L. scoparium*	40	volcanic andesitic lava, conglomerates, and breccia
3: Nikau Valley	176° 58´ 23 85 E, 38° 01´ 25 27 S	*Kunzea robusta*	40–100	undifferentiated greywacke
4-6: Tolaga Bay	178° 12´ 19 29 E, 38° 20´ 42 58 S	*Kunzea robusta*	64	calcareous sandy siltstones with banded sandstones
7: Waimata Valley	178° 03´ 13 66 E, 38° 28´ 33 84 S	*Kunzea robusta*	207	calcareous sandy siltstones with banded sandstones
8: Gisborne	178° 00´ 16 02 E, 38° 38´ 44 82 S	*Agathis australis, Prumnopitys ferruginea, Podocarpus totara, Dacrycarpus dacrydioides, Dacrydium cupressinum, Alectryon excelsus,* and *Vitex lucens.*	5	alluvial gravels and silt.
9: Turangi	175° 47´ 11 53 E, 39° 09´ 19 20 S	*L. scoparium* and *Kunzea* spp.	800	rhyolitic and andesitic volcanics
10: Lake Tutira	176° 54´ 10 44 E, 39° 14´ 00 44 S	*L. scoparium*	200–375	mudstone, sandstone, and limestone
11: Wainuiomata & Cannons Creek	174° 57´ 19 75 E, 41° 17´ 45 29 S	*Coprosma grandiflora, Weimannia racemosa,* and *Melicytus ramiflorus*	117	alternating dark grey argillite and greywacke sandstone
12: Long Gully	174° 40´ 55 30 E, 41° 18´ 34 82 S	*Kunzea amathicola*	300–400	argillite and greywacke sandstone with rare limestone and volcanics
13: Riversdale	175° 25´ 53 49 E, 41° 30´ 57 74 S	*Kunzea robusta*	60–200	greywacke-like dark grey muddy siltstone with minor conglomerates and spilitic lava
14: Coatbridge	173° 39´ 23 16 E, 41° 29´ 08 99 S	*L. scoparium* and *Kunzea* spp.	200–300	metamorphosed sedimentary lithologies and volcanics
15: Long Spur	175° 32´ 09 01 E, 41° 27´ 22 12 S	*Kunzea robusta*	40–200	sandstone and mudstone, minor conglomerates and volcanics
16: Peggioh	174° 01´ 13 67 E, 41° 51´ 31 57 S	*L. scoparium* and *Kunzea robusta*	200–300	greywacke and argillite with minor volcanics, conglomerates, and rare limestone
17: Shenandoah	172° 15´ 05 30 E, 41° 53´ 36 00 S	*Kunzea ericoides*	200–300	limestone and calcareous siltstone, local sandstone and coal measures
18: Avoca Station	171° 53´ 23 31 E, 43° 11´ 49 51 S	*Kunzea seratina*	420–540	greywacke and argillite with minor volcanics, conglomerates, and rare limestone
19: Eyrewell.	172° 11´ 41 76 E, 43° 22´ 59 35 S	*Kunzea seratina*	200	post-glacial alluvium and glacial outwash gravels
20: Hinewai.	173° 02´ 18 74 E, 43° 49´ 02 85 S	*Kunzea robusta*	20–450	basalt tuff, and associated intrusive rocks
21: Dunedin	170° 36´ 37 14 E, 45° 45´ 11 19 S	*L. scoparium* and *Kunzea robusta*	200–300	loess, basalt and phonolite
earliest of the published data (Kirk 1889, but mostly by Entrican et al. 1951, and republished by Hinds & Reid 1957, Harris 1986, and Clifton 1990), tree age is rarely specified, and variations in basic stem-wood density values derived from merchantable-sized trees after removal of the bark is not given. For comparative purposes we use these few available published values (Appendix Table A2) together with a larger data set of mean age-specific/non-age-specific wood density values (bark removed) collected from Carbon Monitoring System (LUCAS) plots (20m x 20 m) across a wide range of well-established and pre-defined natural forest and shrubland types (Table A2) indicative of advanced succession toward indigenous forest (Hall et al. unpublished data2, Peltzer & Payton unpublished data3, Beets et al. 2012 and unpublished data).

We did not attempt to analyse for the influence of bark thickness on basic stem wood density values (i.e. inclusive versus exclusive of bark), as for the age-range (3- to 105-years old) of the shrubland species presented in this paper, all values were expected to fall well within the range of the published data. In the absence of reliable basic stem-wood density values for individual stems, often determined for only a small sample size of trees with widely varying, or of unknown age, and variability in basic stem-wood density values, the values in this paper are presented as means (Appendix Tables A3–A5).

All statistical analyses were undertaken using Genstat (VSN International, Hemel Hempstead, UK) and were considered significant if P<0.05.

Results

Basic stem-wood density-allometric relationships

For >6-year-old regenerating Kunzea spp. basic stem-wood density was significantly, positively correlated with tree height, as was also the case for L. scoparium (Table 2). Of the plot-based species <6-years old, the correlation for basic stem-wood density with tree height was strongest (and positive) for Prumnopitys ferruginea (Table 2) but was only just statistically significant, probably due to the small sample size (n=7). Interestingly, Dacrycarpus dacrydioides exhibited a significant negative correlation with about 30% of the variation in basic stem-wood density explained by tree height. There were no other significant relationships between basic stem-wood density and tree height for the remaining plot-based or regenerating shrubland species. Basic stem-wood density and RCD were positively correlated for regenerating L. scoparium and Kunzea spp. >6-years old (Table 2). Root collar diameter and density values were negatively correlated for plot-based Dacrycarpus dacrydioides (Table 2). There were no significant correlations between basic stem-wood density and RCD for the remaining plot-based and regenerating shrubland species <6-years old.

Basic stem-wood density and DBH were positively correlated for regenerating L. scoparium, Kunzea spp., plot-based Dacrydium cupressinum and Prumnopitys ferruginea (Table 2) with DBH explaining 17–73% of the variation in density. Basic stem-wood and DBH were negatively correlated for Dacrycarpus dacrydioides (Table 2). There were no significant correlations between basic stem-wood density and DBH for the remaining plot-based and regenerating species.

Basic stem-wood density was not correlated with tree age for low-density plantings of L. scoparium (site 10) between ages 4- and 6-years and increased with increasing tree age (data not shown). Conversely, for naturally reverting stands of L. scoparium, Kunzea spp., Coprosma grandiflora, Melicytus ramiflorus and Weinmannia racemosa, basic stem-wood density values of ≥6-years-old trees were not significant.

Comparisons of mean basic wood densities by age-class

Basic stem-wood density of L. scoparium was greater than for the remainder of the plot-based species trialled for trees <6-years of age (Fig. 2a). Basic stem-wood density was as follows for the various species in this age group: L. scoparium > Alectryon excelsus > Dacrycarpus dacrydioides = Podocarpus totara = Prumnopitys ferruginea = Dacrydium cupressinum > Agathis australis = Vitex lucens.

For naturally regenerating stands between 6–10 and 11–15 years old, Kunzea spp. had greater basic stem-wood density than Melicytus ramiflorus (Fig. 2b). Basic stem-wood density of Kunzea spp. was also greater than Coprosma grandiflora and Melicytus ramiflorus in the 16–20 (Fig. 2b) and 21–25-year-old age class (Fig. 2c). There was no difference in basic stem-wood density between Coprosma grandiflora and Melicytus ramiflorus between 16–20 (Fig. 2b) and 21–25-year-old age classes (Fig. 2c).

In the age classes 26–30, 31–35, 36–40 (Fig. 2c), and 46-50, 51–70 years (Fig. 2d) there were no differences in basic stem-wood density between Kunzea spp. and L. scoparium. However, for the oldest of the age classes their respective densities were significantly greater (P<0.05) than for Weinmannia racemosa of the same age (Fig. 2d).

Irrespective of age, the basic stem-wood density values for both Kunzea spp. and L. scoparium were not significantly different from each other but were significantly greater than that for all other species for which age-specific data was available.

Comparisons of basic stem-wood density values with published data

Basic stem-wood densities for ≥6-year-old specimen trees of L. scoparium, Kunzea spp., Melicytus ramiflorus, Coprosma grandiflora, and Weinmannia racemosa derived from natural stands indicative of advanced succession toward indigenous forest, fall within the range of these published values (Fig. 3a).

Conversely, the mean basic stem-wood density values for trees <6-years old were either bordered on the lower limit of published means of older trees or significantly lower than published values (Fig. 3b).
TABLE 2: Linear regressions between stem-wood density and tree height (m), root collar diameter (RCD; mm), diameter at breast height (DBH; mm) and age (years) for 12 of New Zealand’s indigenous species. Regressions for both *Kunzea* spp. and *L. scoparium* included data from collective sites. Values in bold were statistically significant (*P*<0.05).

Species	Location	No. trees	Site type*	Height	RCD	DBH	Age				
Kunzea spp.	Turangi	22	RS	0.120	<0.001	0.201	<0.001	0.067	0.001	0.004	0.392
	Waimata	32	RS								
	Tolaga Bay	13	RS								
	Dunedin	11	RS								
	Waitakere	6	RS								
	Coatbridge	3	RS								
	Long Gully	5	RS								
	Riversdale	21	RS								
	Eyrewell	2	RS								
	Nikau Valley	56	RS								
Leptospermum scoparium	Turangi	24	RS	0.209	0.003	0.179	0.006	0.166	0.010	0.134	0.002
	Dunedin	2	RS								
Alectryon excelsus	Gisborne	13	PB	0.081	0.345	0.247	0.084	0.216	0.190		
Dacrycarpus dacrydioides	Gisborne	30	PB	0.295	0.002	0.433	<0.001	0.402	<0.001		
Podocarpus totara	Gisborne	9	PB	0.026	0.676	0.379	0.077	0.3	0.127		
Agathis australis	Gisborne	8	PB	0.145	0.352	0.081	0.495	0.023	0.721		
Dacrydium cupressinum	Gisborne	14	PB	0.006	0.8	0.109	0.249	0.426	0.011		
Prumnopitys ferruginea	Gisborne	7	PB	0.579	0.047	0.271	0.231	0.732	0.014		
Vitex lucens	Gisborne	8	PB	0.446	0.071	0.301	0.159	0.278	0.179		
Coprosma grandiflora	Wellington	10	RF	0.071	0.487	0.008	0.806	0.012	0.759	0.158	0.258
Melicytus ramiflorus	Wellington	30	RF	0.006	0.688	0.009	0.615	0	0.961	0.030	0.097
Weinmannia racemosa	Wellington	10	RF	0.183	0.218	0.127	0.311	0.176	0.227	0.002	0.912

RS = regenerating shrubland, PB = plot-based growth trial, RF = regenerating forest
FIGURE 2: Stem-wood density values for: a) species <6-years old from plot-based growth trials; b) 6–10-year-old Kunzea spp. and Leptospermum scoparium, for 11–15-year-old Kunzea spp. and Melicytus ramiflorus, and for 16–20-year-old Kunzea spp., Melicytus ramiflorus, and Coprosma grandiflora older than 6-years collected from regenerating shrubland or forest; c) 21–25-year-old Melicytus ramiflorus and Coprosma grandiflora, and for 26–30-year-old, 31–35-year-old, and 36–40-year-old Kunzea spp. and L. scoparium collected from regenerating shrubland or forest ≥6-years old; and d) 46–50 and 51–70-year-old Kunzea spp., L. scoparium and Weinmannia racemosa collected from ≥6-years-old regenerating shrubland or forest. Error bars represent the standard error of the mean. Sample numbers shown at base of each grey bar. Bars with different letters were significantly different (P<0.05).

FIGURE 3: Comparison of: a) age-specific mean basic stem-wood density values for Kunzea spp. and Leptospermum scoparium ≥6-years old with densities sourced from published and unpublished literature. Density data for trees of known age was analysed separate to that for trees where age was not specified (see Table A2); and b) comparison of mean basic wood densities for trees <6-years old (grey bars) with mean densities of ≥6-year-old trees (dots) as sourced from published and unpublished literature (see Table A2). For Melicytus ramiflorus, Coprosma grandiflora, and Weinmannia racemosa, age-specific mean basic stem-wood density values (white bars in Fig. 3a) are compared with mean densities (dots) sourced from published and unpublished literature where age was not specified. Sample numbers shown at base of each bar. Error bars represent the standard error of the mean.
Geographic distribution in *Kunzea* spp. and *L. scoparium* basic stem-wood density

While there is considerable variation in mean basic stem-wood values within naturally regenerating stands of *Kunzea* spp. and *L. scoparium*, there is no supporting evidence that their density is significantly different between locations within either the North or South Island of New Zealand, between these islands, or between latitudes 35° to 46°S (Fig. 4). For all remaining species there was insufficient basic stem-wood density data to support a similar statistical analysis.

Discussion

Basic wood density is one of the largest sources of variation in estimates of biomass and in the calculation of carbon sequestration (Holdaway et al. 2014), yet these estimates are essential for New Zealand’s international and national reporting of GHG budgets. To date, allometric functions have largely been based on limited stem-wood density data, and where species-specific and/or regional basic stem-wood density values are unavailable, congeneric values have been used instead, or, in their absence, the mean of all published values have been used (Peltzer & Payton unpublished data², Beets et al. unpublished data¹). However, given that the earliest of the published values of basic stem wood density for merchantable timber trees were likely determined following the removal of the bark, a comparison with the means of all age-specific stem-wood densities, whether determined with the bark intact or after the removal of bark, might be considered invalid. Nonetheless, as has been shown in this paper, the basic stem-wood densities of ≥6-year-old trees comprising natural stands indicative of advanced succession toward indigenous forest fall well-within the range of the earlier published values. Furthermore, given the dearth of available data for many of the dominant and larger tree components of New Zealand’s indigenous forests, the diversity of species, and the difficulty of accessing them in remote locations, where species-specific wood density values obtained for indigenous species harvested for timber exist, they serve as valuable reference points.

![Figure 4: Mean basic stem-wood density values for *Kunzea* spp. (17 locations) and *Leptospermum scoparium* (4 locations) trees from naturally regenerating stands distributed throughout the North and South Islands between latitudes 35° and 46°S. Site locations are shown in Figure 1. Annotated site details are tabulated in Table 1 and presented in greater detail in Table A1. Error bars represent the standard error of the mean. Bars with different letters were significantly different (P<0.05).]
At the younger end of the age spectrum, for species typically associated with the early phase of shrubland regeneration, tall statured shrubland classes, and mixed species forests, insufficient basic wood density data together with simple field measurements are a limitation to the development of appropriate allometric functions for improving estimates of biomass and carbon stocks. Furthermore, the use of different methods in the measurement of basic stem wood density (over bark versus under bark) has necessitated the development of equations that account for related variations in basic wood density in the calculation of tree biomass and changes in carbon stocks over time (Hall et al. unpublished data). However, until additional basic stem-wood density data can be collected for a sufficiently diverse range of specimen trees comprising a wide range of indigenous shrubland, forest types, and ages, the continued use of the mean of all available basic stem-wood density values will likely give the best estimate of stem carbon stocks.

Although the basic stem-wood densities of *Kunzea* spp. and *L. scoparium* (both widely distributed shrubland species and a dominant component of regenerating forest on extensive areas of marginal hill country), are not significantly different from each other, they are both significantly higher than those of most of New Zealand’s oldest indigenous forest and other shrubland species typically falling between 400 and 600 kg m\(^{-3}\) (Allen et al. 1992). Therefore, using functions based on the stem-wood density of either *Kunzea* spp. or *L. scoparium* to scale tree volume, as yield or growth, to stem biomass, and from stem biomass to total biomass for different mixed-species indigenous forest communities is likely to overestimate total biomass.

For *Kunzea* spp., while there is variation in intra-specific mean basic stem-wood density values at different sites, there is no evidence from our data that stem-wood density is significantly different between the 17 locations where this species occurs as naturally regenerating shrubland. Trends of increasing wood density values with decreased elevation (Lassen & Okkonen 1969) and increased temperature (Filipescu et al. 2014) have been reported for New Zealand-grown Douglas-fir (Kimberley et al. 2017), and for *P. radiata* basic wood density values show a gradual decrease from sea level to higher elevations, and from north to south (Clifton 1990, Palmer et al. 2013). For *Kunzea* spp., however, while the results support a correlation between decreasing basic wood densities from sea level to higher elevations, there remains little evidence in support of wood densities decreasing north to south.

Other environmental influences, including intolerance to salt (Esler & Astridge 1974), soil fertility (Cown & McConchie 1981), soil moisture retention and stress (Smale 1994), variations in genetics (de Lange 2014) and rainfall distribution, are also likely to affect growth strategies (Wardle 1969), tree form, and ultimately basic stem-wood density of many of New Zealand’s indigenous shrubland and forest species. A site-by-site analysis of these factors was considered beyond the scope of this paper.

Mean basic stem-wood densities of trees <6-years old were either significantly lower, or at the lower end of published values (Fig. 3b), but that within ca. 26 years after establishment, basic stem-wood density values approach that of older trees, and differs little thereafter (Fig. 3a). We therefore concur with Beets et al. (unpublished data) on the strength of this relationship. Differences in basic stem-wood density values between trees <6-years old and older are therefore likely to be primarily a function of their age. Deng et al. (2014) found that stem-wood density of *Pinus massoniana* stems was significantly influenced by tree age, relative heights, and social class, while Beets et al. (2012) confirmed that stem-wood density at each relative height in older trees (age unspecified) was significantly higher than that of younger trees.

Iida (2012) found that low stem-wood density was linked to the propensity of some species to select for vertical growth (tall and thin stemmed with narrow and shallow canopies) and may therefore underlie the interspecific trade-off between effective height gain and a persistent life in the understory (Kohyama 1987, 1993; Kohyama & Hotta 1990). Furthermore, relationships between stem-wood density and tree height may be related to differences in stand density. For example, *L. scoparium* <6-years old in densely-stocked, naturally reverting stands are tall and thin-stemmed and contrast markedly with the shorter and thicker-stemmed trees that develop when planted at low densities (Marden et al. 2020). Perhaps, as has been shown in studies across a range of conifer species (Watt et al. 2011), the basic stem-wood density of *L. scoparium* would be expected to be lower in wider-spaced (planted) stands than in fully stocked stands that have reverted naturally. Unfortunately, insufficient wood density data for *L. scoparium* <6-years old from naturally reverting stands precluded such an analysis.

To reduce net greenhouse gas emissions, as required under the Kyoto Protocol (Ministry of the Environment 2010), a number of government-funded schemes (e.g. Afforestation Grant Schemes (Ministry for Primary Industries 2015a) and the Permanent Forest Sink Initiative (Ministry for Primary Industries 2015b) have been introduced to facilitate natural regeneration of shrubland, and the planting of new areas of forest (exotic and indigenous). Together with the recently announced government goal to plant one billion trees over the next 10 years (1 BT Programme) (Ministry for Primary Industries 2018), ca 1.45 million ha of steep, erosion-prone pastoral hill country considered marginal for long-term agriculture will be targeted for transitioning to a permanent indigenous shrubland or forest (Trotter et al. 2005). In such high-risk areas woody indigenous shrubland largely comprising *Kunzea* spp. and *L. scoparium* has in the past played a significant role in mitigating erosion (Marden & Rowan 1993; Ministry for Primary Industries 2015a, 2015b, 2016). Together with increasing interest in high UMF (unique mānuka factor) values associated with honey produced by *L. scoparium*, the establishment of low-density plantings averaging ca 825 to 1100 stems ha\(^{-1}\) (McPherson & Newstrom-
Lloyd (2018) is seen as an alternative and viable land management option for erosion prone steeplands (Ministry for Primary Industries 2015c).

Using linear regression analyses based on mean wood density values measured for Leptospermum scoparium <6-years old, new plantings at the recommended planting density, would by year 5 amass a forest carbon stock of 6.1 t CO$_2$ ha$^{-1}$ (excluding coarse woody debris and fine litter on the forest floor) (Marden & Lambie 2016). Alternatively, a mixed planting of successional broadleaved and coniferous species would within the same time frame potentially amass a carbon stock of \sim3.8 t CO$_2$ ha$^{-1}$ (Marden et al. 2018), while plantings consisting of a mix of early colonising seral species would amass a forest carbon stock of 8.8 t CO$_2$ ha$^{-1}$ (unpublished). Thus, the establishment of early colonising seral species on marginal land would amass an additional \sim1 t CO$_2$ ha$^{-1}$ over and above the 7.8 t CO$_2$ ha$^{-1}$ estimated for the 5-year period from the date of planting (Ministry for Primary Industries 2017). Conversely, the planting of mixed indigenous broadleaved and coniferous species at the same density would amass \sim4 t CO$_2$ ha$^{-1}$ less, and plantings of Leptospermum scoparium \sim1.7 t CO$_2$ ha$^{-1}$ less. By implication, to achieve a similar level of carbon stock for new plantings of broadleaved and conifer species within this time frame would require an increase in planting density to \sim2000 stems ha$^{-1}$ and for areas planted and managed for mānuka honey production, a planting density of 1200–1300 stems ha$^{-1}$ would be required.

These estimates of carbon stocks are however based on only a few studies of indigenous species that comprise the many shrubland and forest communities present within New Zealand. With the pending conversion of extensive areas of former pastoral land to indigenous shrubland and forest through passive reversion, and by planting, therein lies an opportunity to validate and/or improve the accuracy of current estimates of biomass and carbon stocks during their early growth period, and for a wider range of species, by developing further allometric functions based on species-specific, basic stem-wood density values.

Conclusions

This study presents an analysis of a significant database of previously unpublished basic wood-density values collected for a range of New Zealand’s indigenous shrubland and forest species of varying age, and from sites located throughout both North and South Islands. The findings indicate that for the most geographically widespread shrubland species, Kunzea spp., differences in local site factors may affect tree parameters including basic wood density to a greater extent than wide differences in latitude within the normal growing range of the species. The data do however support trends showing that basic wood density values increase with decreased elevation, and increased temperature and where local data are available its use would improve the accuracy of biomass estimates both locally and nationally. Insufficient site-specific information precludes further comment on other factors (e.g. soil fertility, plant spacing) that likely contribute to variability in basic stem-wood density values.

For each of the species <6-years old for which basic stem-wood densities were collected, their mean values were significantly lower, or at the lower end of published values for trees ≥6-years old after which basic stem-wood density values remain unchanged.

Age-specific basic stem-wood density data is scarce for shrubland communities dominated by mixed softwood species that comprise 90% of the national live tree biomass stock. Furthermore, as their stem-wood density is considerably lower than for hardwood species, additional stem-wood density data are needed for use in combination with species-abundance information from LUCAS plots to update allometric functions applicable to areas of naturally reverting shrubland and to areas of former pastoral land pending their conversion to indigenous shrubland.

As shown for the few indigenous species for which biomass and/or wood density data has been collected, at a planting density of 1000 stems ha$^{-1}$, early colonising seral species would within 5-years amass a higher carbon stock of 8.8 t CO$_2$ ha$^{-1}$ than would plantings of Leptospermum scoparium \sim6.1 t CO$_2$ ha$^{-1}$ or a mixed-species planting of indigenous broadleaved and coniferous species \sim3.8 t CO$_2$ ha$^{-1}$.

To account for the variability in densities between outer-wood (and bark) and inner-wood with tree height, estimates of the mean density of whole stems will require the collection of stem-wood data from discs at intervals along the stem, as opposed to just breast height or by coring.

List of abbreviations

Abbreviation	Description
DBH	Diameter at Breast Height
BH	Breast Height
1BT	One billion Trees Programme
ETS	Emission Trading Scheme
GHG	Greenhouse Gas
LSD	Least significant difference
RCD	Root Collar Diameter
WSG	Wood Specific Gravity

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MM was the primary author. SL compiled the data into spreadsheets and completed the statistical analyses. LB contributed data. All authors read and approved the manuscript.

Acknowledgements

We acknowledge the support of the Tairāwhiti Polytechnic Rural Studies Unit, Gisborne, on whose land the plot-based softwood and hardwood plant
trial was located and to other landowners for allowing access to their respective properties at the time these studies were undertaken. We thank interns Claire Butty (France), Sandra Viel (Germany), Kaisa Valkonen (Finland), and Landcare Research colleague’s Dr Chris Phillips, Alex Watson, Richard Hemming and Scott Bartlam for assistance with data collection. Hawke’s Bay Regional Council provided Stevie and Jack Smidt to assist with data collection at Lake Tutira. John Dando and Ted Pinkney assisted with the collection of discs and growing-ring counts. Graphics were drawn by Nic Faville. Anne Austin edited the script and GIS support was provided by Anne Sutherland of Landcare Research, NZ, Ltd. This paper was reviewed by Dr Mark Smale, thanks also to the anonymous external reviewers for their valuable comment. Over the years, research has been supported by funding from the Ministry of Business, Innovation and Employment, the Sustainable Land Use Research Initiative (SLURI) to Plant and Food, the Ministry for Primary Industries, and the Landcare Research Capability Fund.

Availability of data and materials
Please contact the corresponding author for data requests.

References
Allen, R.B., Partridge, T.R., Lee, W.G., Efford, M. (1992). Ecology of Kunzea ericoides (A. Rich.) J. Thompson (kānuka) in east Otago, New Zealand. New Zealand Journal of Botany, 30, 135-149. https://doi.org/10.1080/0028825X.1992.10412894

Beets, P.N., Kimberley, M.O., Oliver, G.R., Pearce, S.H., Graham, J.D., Brandon, A. (2012). Allometric equations for estimating carbon stocks in natural forest in New Zealand. Forests, 3, 818-839. https://doi.org/10.3390/f3030818

Beets, P.N., Kimberley, M.O., Paul, T.S.H., Oliver, G.R., Pearce, S.H., Buswell, J.M. (2014). The inventory of carbon stocks in New Zealand’s post-1989 natural forest for reporting under the Kyoto Protocol. Forests, 5(9), 2230-2252. https://doi.org/10.3390/f5092230

Bier, H. (1983). The strength properties of small clear specimens of New Zealand-grown timber. Forest Research Institute Bulletin 41. Rotorua, New Zealand: New Zealand Forest Research Institute/New Zealand Forest Service, 29 p.

Bier, H. & R.A.J. Britton (1999). Strength properties of small clear specimens of New Zealand-grown timbers. [Forest Research Institute Bulletin 41 (revised)]. Rotorua, New Zealand: New Zealand Forest Research Institute/New Zealand Forest Service, 27 p.

Carswell, F.E., Burrows, L.E., Hall, G.M.J., Mason, N.W.H., Allen, R.B. (2012). Carbon and plant diversity gain during 200 years of woody succession in lowland New Zealand. New Zealand Journal of Ecology, 36(2), 191-202.

Chave, J., Condit, R., Aguilar, S., Hernandez, A., Lao, S., Perez, R. (2004). Error propagation and scaling for tropical forest biomass estimates. Philosophical Transactions of the Royal Society of London Series B 359: 409-420. https://doi.org/10.1098/rstb.2003.1425

Chave, J. (2005). Measuring wood density for tropical forest trees. A field manual. 7 p. http://www.rainfor.net/upload/ManualsEnglish/wood_density_english%5B1%5D.pdf

Clifton, N.C. (1990). New Zealand timbers exotic and indigenous. The Complete Guide. Wellington, New Zealand: Government Printing Office. 170 p.

Cornelissen, J.H.C., Lavelle, S., Garnier, E., Díaz, S., Buchmann, N., Gurrich, D.E., Reich, PB., ter Steege, H., Morgan, H.D., van der Heijden, M.G.A., Pausas, J.G., Poorter, H. (2004). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. https://doi.org/10.1071/BT02124

Cown, D.J., & McConchie, D.L. (1981). Effects of thinning and fertiliser application on wood properties of Pinus radiata. New Zealand Journal of Forestry Science, 11, 79-91.

Dale, M.J. (2013). Evaluation of methods for quantifying carbon storage of urban trees in New Zealand. Auckland, New Zealand: University of Auckland. http://itreetools.org/documents/36/Evaluation_of_Methods_for_Quantifying_Carbon_Storage_of_Urban_Trees_in_New_Zealand_Dale2013.pdf

de Lange, P.J. (2014). A revision of the New Zealand Kunzea ericoides (Myrtaceae) complex. PhytoKeys, 40, 1-185. https://doi.org/10.3897/phytokeys.40.7973

Deng, X., Zhang, L., Lei, P., Xiang, W., Yan, W. (2014). Variations of wood basic density with tree age and social classes in the axial direction within Pinus massoniana stems in Southern China. Annals of Forest Science, 71, 505-516. https://doi.org/10.1007/s13595-013-0356-y

Entrican, A.R., Ward, W.C., Reid, JS. (1951). The physical and mechanical properties of the principal indigenous woods of New Zealand. Wellington: New Zealand Forest Service, Government Printer; 83 p.

Esler, A.E., Astridge, S.J. (1974). Teatree (Leptospermum) communities of the Waitakere Range, Auckland, New Zealand. New Zealand Journal of Botany, 12, 485-501. https://doi.org/10.1080/0028825X.1974.10428635
Filipescu, C.N., Lowell, E.C., Koppenaal, R., Mitchell, A.K. (2014). Modeling regional and climatic variation in wood density and ring width in intensively managed Douglas-fir. Canadian Journal of Forestry Research, 44, 3, 48-53. https://doi.org/10.1139/cjfr-2013-0275

Geological Map of New Zealand (1967). Scale 1:2 000 000. Wellington, New Zealand: New Zealand Geological Survey/Department of Scientific and Industrial Research.

Harris, J.M. (1986). Wood properties of important New Zealand commercial tree species. In H. Levack (Ed.), Forestry handbook. (pp. 112-114). Wellington, New Zealand: New Zealand Institute of Foresters (Inc).

Hayward, B.W. (1983). Sheet Q 11 Waitakere. Geological Map of New Zealand 1:50 000. Map (1 sheet) and notes (28 p). Wellington, New Zealand: New Zealand Department of Scientific and Industrial Research.

Hessell, J.W.D. (1980). The climate and weather of the Gisborne region. New Zealand Meteorological Service [Miscellaneous Publication 115(8)]. Wellington, New Zealand: Government Printer.

Hewitt, A.E. (2010). New Zealand Soil Classification. Landcare Research Science Series No. 1 (3rd ed.). Lincoln, New Zealand: Manaaki Whenua Press

Hinds, H.V., Reid, J.S. (1957). Forest trees and timbers of New Zealand. [New Zealand Forest Service Bulletin, 12]. 221 p. https://cdm20044.contentdm.oclc.org/digital_api/collection/p20044coll6/id/421/download

Holdaway, R.J., McNeill, S.J., Mason, N.W., Carswell, F.E. (2014). Propagating uncertainty in plot-based estimates of forest carbon stock and carbon stock change. Ecosystems, 17, 627-640. https://doi.org/10.1007/s10021-014-9749-5

Iida, Y., Poorter, L., Sterck, F.J., Kassim, A.R., Kubo, T., Potts, M.D., Kohyama, T.S. (2012). Wood density explains architectural differentiation across 145 co-occurring tropical tree species. Functional Ecology, 26, 274-282. https://doi.org/10.1111/j.1365-2435.2011.01921.x

Jessen, M.R., Crippen, T.F., Page, M.J., Rijkse, M.C., Harmsworth, G.R., McLeod, M. (1999). Land Use Capability classification of the Gisborne-East Coast region: A report to accompany the Second Edition New Zealand Resource Inventory. [Landcare Research Science Series 21] Lincoln, New Zealand: Manaaki Whenua Press.

Kelliher, F.M., Marden, M., Watson, A.J., Arulchelvam, I.M. (1995). Estimating the risk of landsliding using historical extreme river flood data (note). Journal of Hydrology (NZ), 33(2), 123-129.

Kimberley, M.O., McKinley, R.B., Cown, D.J., Moore, J.R. (2017). Modelling the variation in wood density of New Zealand-grown Douglas-fir. New Zealand Journal of Forestry Science, 47: 15. https://doi.org/10.1186/s40490-017-0096-0

Kingma, J.T. (1965). Geological Map of New Zealand 1:250 000 Sheet 6, East Cape (1st edition). Wellington, New Zealand: Department of Scientific and Industrial Research.

Kingma, J.T. (1967). Geological Map of New Zealand 1:250 000 Sheet 12, Wellington (1st edition). Wellington, New Zealand: Department of Scientific and Industrial Research.

Kirk, T. (1889). The forest flora of New Zealand. Wellington, New Zealand: Government Printer.

Kohyama, T. (1987). Significance of architecture and allometry in saplings. Functional Ecology, 1, 399-404 https://doi.org/10.2307/2389797

Kohyama, T. (1993). Size-structured tree populations in gap-dynamic forest - the forest architecture hypothesis for the stable coexistence of species. Journal of Ecology, 81, 131-143. https://doi.org/10.2307/2261230

Kohyama, T. & Hotta, M. (1990). Significance of allometry in tropical saplings. Functional Ecology, 4, 515-521. https://doi.org/10.2307/2389319

Lassen, L.E., & Okkonen, E.A. (1969). Effect of rainfall and elevation on specific gravity of coast Douglas-fir. Wood and Fiber Science, 1, 227-235.

Marden, M., & Lambie, S. (2015). Plot-based growth performance of space-planted mānuka (Leptospermum scoparium) on marginal land, and vulnerability to erosion. [Ministry for Primary Industries Technical Report No: 2015/19] https://eastcoastmanuka.files.wordpress.com/2015/08/lcr-final-report-on-manuka-trials-on-erodible-bill-country.pdf

Marden, M., & Lambie, S. (2016). Plot-based growth performance of space-planted mānuka (Leptospermum scoparium) on marginal land, and vulnerability to erosion. [Ministry for Primary Industries Technical Report No: 2016/20] https://www.mpi.govt.nz/dmsdocument/13915/direct

Marden, M., Lambie, S., Phillips, C. (2018). Biomass and root attributes of eight of New Zealand’s most common indigenous evergreen conifer and broadleaved forest species during the first 5 years of establishment. New Zealand Journal of Forestry Science, 48: 9. https://doi.org/10.1186/s40490-018-0113-y

Marden, M., Lambie, S., Phillips, C. (2020). Potential effectiveness of low-density plantings of mānuka (Leptospermum scoparium) as an erosion mitigation strategy in steeplands, northern Hawke’s Bay, New Zealand New Zealand Journal of Forestry Science, 50: 10. https://doi.org/10.33494/nzjfs502020x82x
Marden, M., Rowan, D. (1993). Protective value of vegetation on Tertiary terrain before and during Cyclone Bola, East Coast, North Island, New Zealand. *New Zealand Journal of Forestry Science*, 23(3), 255-263.

McPherson, A., & Newstrom-Lloyd, L. (2018). Handbook for manuka plantations and farms: profitable and sustainable manuka honey harvesting. 34 p. Ministry for Primary Industries, Wellington, New Zealand. www.treesforbeesnz.org

Ministry for Primary Industries (2015a). A guide to the Afforestation Grant Scheme. Wellington: Ministry for Primary Industries http://www.mpi.govt.nz/funding-and-programmes/forestry/afforestation-grant-scheme/ Accessed 21 May 2017.

Ministry for Primary Industries (2015b). A guide to the Permanent Forest Sink Initiative. Wellington: Ministry for Primary Industries http://www.mpi.govt.nz/funding-and-programmes/forestry/permanent-forest-sink-initiative/afforestation Accessed 2 Aug 2016.

Ministry for Primary Industries. (2015c). High performance mānuka plantations. http://www.mpi.govt.nz/funding-and-programmes/primary-growth-partnership/primary-growth-partnership-programmes/high-performance-manuka-plantations/ Accessed 10 June 2015.

Ministry for Primary Industries (2016). A guide to the Erosion Control Funding Programme (East Coast). Wellington: Ministry for Primary Industries http://www.mpi.govt.nz/funding-and-programmes/forestry/erosion-control-funding-programme/ Accessed 2 Aug 2016.

Ministry for Primary Industries. (2017). A guide to carbon look-up tables for forestry in the Emissions Trading Scheme. Wellington: Ministry for Primary Industries http://www.mpi.govt.nz/growing-and-producing/forestry/forestry-in-the-emissions-trading-scheme/emissions-returns/ Accessed 11 Sept 2017.

Ministry for Primary Industries (2018). The One Billion Trees Programme: Our Future, our billion trees. http://www.treesforbeesnz.org

Ministry of the Environment. (2010). The Kyoto Protocol. http://www.mfe.govt.nz/issues/climate/international/kyoto-protocol.html

New Zealand Geological Survey (1972). South Island (First edition) Geological map of New Zealand 1:1 000,000. Wellington, New Zealand: Department of Scientific and Industrial Research.

New Zealand Meteorological Service. (1966). Summaries of climatological observations at New Zealand stations to 1960. New Zealand Meteorological Service Miscellaneous Publications, 122, 59 p.

New Zealand Meteorological Service. (1973). Rainfall normals for New Zealand 1941-1970. [Miscellaneous Publications, no. 145]. Wellington, New Zealand: Meteorological Service.

New Zealand Meteorological Service. (1984). Meteorological observations for 1984. [Miscellaneous Publications, no. 109]. Wellington, New Zealand: Meteorological Service.

Palmer, D.J., Kimberley, M.O., Cown, D.J., McKinley, R.B. (2013). Assessing prediction accuracy in a regression kriging surface of Pinus radiata outerwood density across New Zealand. *Forest Ecology and Management*, 308, 9-16. https://doi.org/10.1016/j.foreco.2013.07.024

Scott, N.A., White, J.D., Townsend, J.A., Whitehead, D., Leathwick, J.R., Hall, G.M.J., Marden, M., Rogers, G.N.D., Watson, A.J., Whaley, P.T. (2000). Carbon and nitrogen distribution and accumulation in a New Zealand scrubland ecosystem. *Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere*, 30(8), 1246-1255. https://doi.org/10.1139/x00-048

Schwendenmann, L., & Mitchell, N.D. (2014). Carbon accumulation by native trees and soil in an urban park, Auckland. *New Zealand Journal of Ecology*, 38(2), 213-220.

Smale, M.C. (1994). Structure and dynamics of kanuka (*Kunzea ericoides var. ericoides*) heaths on sand dunes in Bay of Plenty, New Zealand. *New Zealand Journal of Botany*, 32, 441-452. https://doi.org/10.1080/0028825X.1994.10412931

Tomlinson, P.R., & Leslie, D.M. (1978). Soils of Dunedin city and environs, New Zealand. [New Zealand Soil Survey Report 37]. Wellington, New Zealand: Soil Bureau.

Trotter, C., Tate, K., Scott, N., Townsend, J., Wilde, H., Lambie, S., Marden, M., Pinkney, T. (2005). Afforestation/reforestation of New Zealand marginal pasture lands by indigenous shrublands: the potential for Kyoto forest sinks. *Annals of Forestry Science*, 62, 865-871. https://doi.org/10.1051/forest:2005077

Wardle, P. (1969). Biological flora of New Zealand: 4. *Phyllocladus alpinus* Hook F. (Podocarpaceae) mountain toatoa, celery pine. *New Zealand Journal of Botany*, 7, 76-95. https://doi.org/10.1080/0028825X.1969.10429103

Wardle, P. (1991). *Vegetation of New Zealand*. Cambridge UK: Cambridge University Press.

Watson, A.J., Marden M., Rowan, D. (1994). Tree species performance and slope stability. In: D.H. Barker (Ed.), *Proceedings of the Institute of Civil Engineers Conference, ‘Vegetation and slopes - stabilisation, protection and ecology’*. University Museum, Oxford, 29-30 September 1994. Pp.161-170. https://doi.org/10.1680/vasspae.20313.0010
Watt, M.S., Zoric, B., Kimberley, M.O., Harrington, J. (2011). Influence of stocking on radial and longitudinal variation in modulus of elasticity, microfibril angle, and density in a 24-year-old Pinus radiata thinning trial. Canadian Journal of Forest Research, 41(7), 1422-1431. https://doi.org/10.1139/x11-070

Williamson, G.B, Wiemann, M.C. (2010). Measuring wood specific gravity correctly. American Journal of Botany, 97(3), 519-524. https://doi.org/10.3732/ajb.0900243
APPENDIX

TABLE A1: Location and physical characteristics of 21 sample sites throughout New Zealand.

Site 1: Tautoro. 8 km south of Kaitaia, Northland (173° 50’ 13 15 E, 35° 28’ 52 00 S). Regenerating *Leptospermum scoparium* (Table A4) stand on gently, southwest-facing slope 100-140 m above sea level. Bedrock consists of greywacke argillites and sandstones (Geological Map of New Zealand, 1967). Soils are deeply weathered and classified as Altic Soils (Hewitt, 2010).

Site 2: Waitakere Range. Within the Waitakere Range (174° 35’ 14 42 E, 37° 00’ 10 17 S) stem-wood discs were collected from naturally reverting stands of well-established *Kunzea* spp. (Table A3) and *L. scoparium* (Table A4) of unknown age. At an elevation of ca. 40 m, slopes ranged between 0 and 35°. The geology comprises volcanic andesitic lava, conglomerates, and breccia of the Waitamata and Waitakere groups of early Miocene (late Otaian-middle Altonian) age. Soils comprise weathered volcanics consisting of yellow-brown granular clay grading to a compact yellow brown to brown subsoil (Hayward, 1983). The climate is relatively mild and moist with annual rainfall of ca. 1250 mm increasing to over 2000 mm in the higher central parts at elevations of ca. 460 m (New Zealand Meteorological Service, 1966).

Site 3: Nikau Valley. 8 km south of Whakatane, Bay of Plenty (176° 58’ 23 85 E, 38° 01’ 25 27 S). Managed, dense, east-facing *Kunzea robusta* (Table A3) stands of all ages 40–100 m above sea level. Bedrock consists of undifferentiated greywacke (Geological Map of New Zealand, 1967). Pumice Soils consisting of Tarawera and Whakatane Ash overly a brown subsoil (Hayward, 1983). The climate is relatively mild and moist with annual rainfall of ca. 1250 mm increasing to over 2000 mm in the higher central parts at elevations of ca. 460 m (New Zealand Meteorological Service, 1966).

Sites 4–6: Tolaga Bay and site 7: Waimata Valley. Sites 4–6 are located approximately 8 km inland of Tolaga Bay (178° 12’ 19 29 E, 38° 20’ 42 58 S), and site 5 is located 15 km inland of Gisborne City (178° 03’ 13 66 E, 38° 28’ 33 84 S). Each site represents an even-canopied stand of naturally reverting *Kunzea robusta* (Table A3) at a different stage of development, the age of which was determined by the history of vegetation clearance, and verified by growth ring counts (Watson et al., 1994). The Tolaga Bay sites occur on slopes between 23° and 32°, have a NW (300°) to NE (60°) aspect, and are at elevations between ca. 64 m and 160 m above sea level. The Waimata site is on a SW aspect at an elevation of 207 m. The underlying bedrock at these sites consists of Pliocene-age calcareous sandy siltsstones with banded sandstones and thick tuffaceous horizons (Kingma, 1965). Soils are a stony colluvium varying from Orthic Recent Soils and their intergrades to Brown Soils (on well-drained sites) and Gley Soils (on poorly drained sites) typical of slopes being eroded or has received sediment mainly as a result of slope processes (Hewitt, 2010). The climate is warm temperate maritime, with moist summers and cool wet winters. Mean annual rainfall varies from about 700 mm at the coast to 2500 mm at higher elevations (New Zealand Meteorological Service, 1973). Lengthy periods of little or no rainfall are common during January to April (mid-summer to late autumn). This region has a history of extreme rainfall events (Kelliher et al., 1995), often associated with storms of tropical origin (e.g. Cyclone Bola in 1988).

Site 8: Gisborne. Five indigenous softwood (*Agathis australis, Prumnopitys ferruginea, Podocarpus totara, Dacrycarpus dacrydioides, Dacrydium cupressinum*) and two hardwood species (*Alectryon excelsus* and *Vitex lucens*) (Table A5) were established as a planting trial to establish their relative growth performance, above-and below-ground, over a 5-year period (Marden et al., 2018). The trial site was located on a low-lying (5 m above sea level), even-surfaced alluvial terrace adjacent to the Tāraheru River, in Gisborne City (178° 00’ 16 02 E, 38° 38’ 44 82 S). The soil is a naturally fertile, free draining, Typic Sandy Brown Soil of the Te Hapara soil series (Hewitt, 2010) with no physical or chemical impediments. Temperatures over summer average 23°C and over winter 12°C and mean annual rainfall is ca. 1200 mm (Hessell, 1980).

Site 9: Turangi. Stands of 25-, 35- and 55-year-old *Kunzea* spp. (Table A3) and *L. scoparium* (Table A4) were selected in Tongariro National Park near Turangi township in the central North Island (175° 47’ 11 53 E, 39° 09’ 19 20 S) at an elevation of 800 m, approaching the maximum elevation at which these species are found (Scott et al., 2000). Mean annual temperature is 11.1°C, and mean annual precipitation is ca 1610 mm. Soils derived from a series of rhyolitic and andesitic volcanic eruptions are classified as Podzolic Orthic Pumice soils of the Rangipo series (Hewitt, 2010).

Site 10: Lake Tutira. *L. scoparium* (Table A4) was planted at Lake Tutira (176° 54’ 10 44 E, 39° 14’ 00 44 S) in 2011 and 2012 at a spacing (3 m × 3 m, ca 1100 stems ha⁻¹) more typical of an exotic plantation forest. Nine permanent sample plots (20 m × 20 m) were established in 2015 (Marden & Lambie, 2015 & 2016). The terrain is 7e3 (Jessen et al., 1999) consisting of Pliocene-age mudstone, sandstone, and limestone subjected to extreme shallow landsliding during storm events. Slight tunnel gullying is also present. Slopes are predominantly west facing, between 21° and 35°, and occur at an elevation of 200°–375 m. Soils are Typic Immature Pallic (Hewitt, 2010).

Site 11: Wainuiomata and Cannons Creek. This site consists of well-established indigenous hardwoods and lowland shrub communities dominated by mixed hardwood *Cuprosma grandiflora, Weinmannia racemosa,* and *Melicytus ramiflorus* (Table A5) shrubs indicative of advanced succession progressing toward indigenous forest. Three plots were installed (174° 57’ 19 75 E, 41° 17’ 45 29 S) on slopes ranging between 17° and 28°, with a southwest aspect between 200° and 240°, and at an elevation of ca 117 m. The geology consists of complexly deformed alternating dark grey...
argillite and greywacke sandstone, rare limestone and minor spilitic lava of Triassic age (Kingma, 1967). Soils are a stony colluvium derived from greywacke bedrock and vary from Orthic Recent Soils and their intergrades to Brown Soils (on well-drained sites) and Gley Soils (on poorly-drained sites) typical of slopes being eroded or has received sediment mainly as a result of slope processes (Hewitt, 2010).

Site 12: Long Gully. 6 km southwest of Wellington (174° 40’ 55 30 E, 41° 18’ 34 82 S). Regenerating wind shorn stands of *Kunzea amathicola* (Table A3) on south-facing slope 300–400 m above sea level. Bedrock consists of alternating argillite and greywacke sandstone with rare limestone and volcanics (Kingma, 1967). Soils are a stony colluvium derived from greywacke bedrock and vary from Orthic Recent Soils to Brown Soils and Gley Soils typical of slopes being eroded or has received sediment mainly as a result of slope processes (Hewitt, 2010).

Site 13: Riversdale. Near White Rock on the SE coast of Wairarapa (175° 25’ 53 49 E, 41° 30’ 57 74 S). Wide range of *Kunzea robusta* (Table A3) stands at different stages of development on mainly southwest-facing slopes 60–200m above sea level. Bedrock consists of metamorphosed sedimentary lithologies and volcanics (New Zealand Geological Survey, 1972). Soils are derived from greywacke bedrock and vary from Brown Soils to Orthic Recent and Gley Soils typical of slopes being eroded or has received sediment mainly as a result of slope processes (Hewitt, 2010).

Site 14: Coatbridge. 12 km west of Renwick, Marlborough (173° 39’ 23 16 E, 41° 29’ 08 99 S) Dense regenerating *Kunzea spp.* (Table A3) and *L. scoparium* (Table A4) on moderate to steep south facing slopes 200–300m above sea level. Bedrock consists of metamorphosed sedimentary lithologies and volcanics (New Zealand Geological Survey, 1972). Soils are derived from greywacke bedrock and vary from Brown Soils to Orthic Recent and Gley Soils typical of slopes being eroded or has received sediment mainly as a result of slope processes (Hewitt, 2010).

Site 15: Long Spur. 9 km south of Tururumuri near the southeast coast of Wairarapa (175° 32’ 09’ 01 E, 41° 27’ 22 12 S). Dense regenerating stands of *Kunzea robusta* (Table A3) on slopes on a range of aspects 40–200 m above sea level. Bedrock consists of graded bedded, fine-grained, sandstone and mudstone, minor conglomerates and spilitic lava (Kingma, 1967). Soils are a stony colluvium derived from greywacke bedrock and vary from Orthic Recent Soils to Brown Soils and Gley Soils typical of slopes being eroded or has received sediment mainly as a result of slope processes (Hewitt, 2010).

Site 16: Peggioh. 10 km west of Ward (174° 01’ 13 67 E, 41° 51’ 31 57 S). Dense, regenerating *Kunzea ericoides* (Table A3) stand on west-facing slope 200–300 m above sea level. Bedrock consists of metamorphosed sedimentary lithologies and volcanics (New Zealand Geological Survey, 1972). Soils are classed as Brown and Melanic Soils (Hewitt, 2010).

Site 17: Shenandoah. 20 km south of Murchison, Buller (172° 15’ 05 30 E, 41° 53’ 36 00 S). Regenerating *Kunzea ericoides* (Table A3) stand on west-facing slope 200–300 m above sea level. Bedrock consists of mainly limestone and calcareous siltstone, local sandstone and coal measures (New Zealand Geological Survey, 1972). Soils are classed as Brown and Melanic Soils (Hewitt, 2010).

Site 18: Avoca Station 22 km south of Cass, Canterbury (171° 53’ 23 31 E, 43° 11’ 49 51 S). Regenerating stands of *Kunzea serotina* (Table A3) on north-facing slopes 420–540 m above sea level. Bedrock consists of interbedded greywacke and argillite with minor volcanics, conglomerates, and rare limestone (New Zealand Geological Survey, 1972). Soils are a stony colluvium derived from greywacke bedrock and vary from Orthic Recent Soils to Brown Soils and Gley Soils typical of slopes being eroded or has received sediment mainly as a result of slope processes (Hewitt, 2010).

Site 19: Eyrewell. 10km south of Oxford and 6km north of Waimakariri River, Canterbury Plains (172° 11’ 41 76 E, 43° 22’ 59 35 S). Fenced remnant *Kunzea serotina* (Table A3) stand 200 m above sea level. Flat floodplain, well drained post-glacial alluvium and glacial outwash gravels (New Zealand Geological Survey, 1972). Soils are classed as Stony Brown Soils (Hewitt, 2010).

Site 20: Hinewai. 5km east of Akaroa, banks Peninsula above Otanerito Bay (173° 02’ 18 74 E, 43° 49’ 02 85 S). Wide range of *Kunzea robusta* (Table A3) stands at different stages of development on steep southeast-facing slopes 20–450 m above sea level. Bedrock consists of basalt tuff and associated intrusive rocks (New Zealand Geological Survey, 1972). Soils are classed as Melanic Soils (Hewitt, 2010).

Site 21: Dunedin. This study site consists of a ca 130 ha mosaic of 2–70 year old stands of *Kunzea robusta* (Table A3) and *L. scoparium* (Table A4) forest located on the western side of the Purakanui Inlet catchment (170° 36’ 37 14 E, 45° 45’ 11 19 S), 16 km north of Dunedin. Soils are described as brown granular loams and clays derived from loess, basalt and phonolite (Tomlinson & Leslie, 1978). Slopes are NE-E facing between 2° and 35°, and at 200–300 m elevation. Annual rainfall is about 680 mm (New Zealand Meteorological Service, 1984).
TABLE A2: Non-age specific basic mean wood density values for old growth indigenous forest and shrubland species

Tree species	Wood density (kg m\(^{-3}\))	Location/number/age	Reference
Leptospermum scoparium (mānuka)	695-714	Woodhill, CMS plot BB114	Payton (pers. comm.)
	906-1042		Kirk (1989)
	892	CMS plots, n=1573	Peltzer & Payton unpublished data
	720	Puketi Forest, Northland	Jager et al. (2014)
Kunzea spp. (kānuka)	671-720	Camp Creek, Woodhill	Payton (pers. comm.)
	757		Clifton (1990), Bier (1983)
	642	Akaroa, n=40, <50 years	Carswell et al. (2012)
	680	Auckland	Schwendenmann (2014)
	772	CMS plots, n=1708	Peltzer & Payton unpublished data
Alectryon excelsus (titoki)	622	Woodhill	Payton (pers. comm.)
	837	CMS plots, n=4	Peltzer & Payton unpublished data
	854		Bier & Britton (1999)
Dacrycarpus dacrydioides (kahikatea)	465	Gray Country, n=5	Kirk (1889)
	410	Gray Country, 152-310 years	Entrican (1951)
	390		Hinds & Reid (1957) in Harris (1986)
	450		Clifton (1990)
	420	CMS plots, n=118	Peltzer & Payton unpublished data
	440	Maungatautari (n=1)	Beets et al. unpublished data
	389	Whirinaki (n=20)	Beets et al. unpublished data
	410	Puketi Forest, Northland	Jager et al. (2014)
	429		Bier & Britton (1999)
Podocarpus totara (totara)	443	14-110 years	Steward (pers. comm.)
	559		Kirk (1889)
	430	Taupo County, n=5, 408-612 years	Entrican (1951)
	410		Hinds & Reid (1957) in Harris (1986)
	480	Taupo County	Clifton (1990)
	480	CMS plots, n=80	Peltzer & Payton unpublished data
	383-407	Whirinaki, n=14	Beets et al. unpublished data
	435		Bier & Britton (1999)
Agathis australis (kauri)	449	10-69 years	Steward (pers. comm.)
	489	126-240 years	Steward (pers. comm.)
	498-595		Kirk (1889)
	520	Waitamata county, n=5	Entrican (1951)
	480	Waitamata	Hinds and Reid (1957) in Harris (1986)
	520	CMS plots, n=1	Peltzer & Payton unpublished data
	470	Puketi Forest, Northland	Jager et al. (2014)
	441	Taranaki, n=20	Beets et al. unpublished data
	495		Bier & Britton (1999)
TABLE A2: continued...

Tree species	Wood density (kg m⁻³)	Location/number/age	Reference
Dacrydium cupressinum	575	Payton (pers. comm.)	Kirk (1889)
(rimu)	550-644	Raurimu, Kaitieke County, n=5, 330-443 years	Enrician (1951)
	520	Central North Island	Hinds & Reid (1957) in Harris (1986)
	490	Central North Island	Bier (1983)
	560	Central North Island	Clifton (1990)
	595	CMS plots, n=456	Peltzer & Payton unpublished data
	558	CMS plots, n=151	Beets et al. unpublished data
	461-466	CMS plots, n=456	Jager et al. (2014)
	460	CMS plots, n=456	Jager et al. (2014)
	504	CMS plots, n=456	Jager et al. (2014)
Prumnopitys ferruginea	787	Raurimu, Kaitieke County, n=5, 248-363 yrs	Kirk (1889)
(miro)	520	Kaitieke County	Enrician (1951)
	510	Kaitieke County	Hinds & Reid (1957) in Harris (1986)
	625	Central North Island	Clifton (1990)
	568	CMS plots, n=151	Peltzer & Payton unpublished data
	592	CMS plots, n=151	Beets et al. unpublished data
	527-531	CMS plots, n=151	Beets et al. unpublished data
	510	CMS plots, n=151	Jager et al. (2014)
Vitex lucens *(puriri)*	573	Auckland	Dale (2013)
	633	CMS plots, n=8	Peltzer & Payton unpublished data
	730	CMS plots, n=8	Jager et al. (2014)
Melicytus ramiflorus	396	Maungatutari, n=6	Beets et al. unpublished data
(mahoe)	585	CMS plot, n=638	Peltzer & Payton unpublished data
	445	Woodhill Forest	Payton (pers. comm.)
	464	CMS plot AU146	Payton (pers. comm.)
Weinmannia racemosa	484	Maungatutari, n=21	Beets et al. unpublished data
(kamahi)	619	CMS plot, n=4175	Peltzer & Payton unpublished data
	542	CMS plot AZ118	Payton (pers. comm.)
	520	CMS plot Q171	Payton (pers. comm.)
	553	CMS plot BF117	Payton (pers. comm.)
	572	CMS plot BF117	Bier & Britton (1999)
Coprosma grandiflora	368	Maungatutari, n=1	Beets et al. unpublished data
(coprosma)	583	CMS plot n=208	Peltzer & Payton unpublished data

Note: Mean basic wood density values from Beets et al. unpublished data are from breast height outer wood at 5–15 cm (measured from bark).

Beets, P.N., Oliver, GR, Kimberley, M.O, Pearce, S.H. (2008). Allometric functions for estimating above ground carbon in native forest trees, shrubs and ferns. Scion Report 12679 prepared for the Ministry for the Environment 63 p.
Location	Age (y)	Ht (m)	RCD (mm)	DBH (mm)	Wood Density (kg m$^{-3}$)
Riversdale	53	9.5	16.0	707	
	52	11.9	15.7	698	
	24	5.9	7.4	706	
	22	6.1	7.3	707	
	22	4.9	7.0	691	
	17	4.8	5.7	721	
	22	4.4	6.0	792	
	22	5.0	7.0	742	
	31	5.9	9.0	710	
	30	6.7	9.3	730	
	21	5.7	7.8	742	
	29	9.7	10.3	763	
	43	8.2	11.6	717	
	50	8.7	11.0	741	
	31	5.8	8.7	737	
	30	7.5	12.1	741	
	31	6.9	8.9	749	
	68	9.9	19.5	715	
	56	10.9	18.8	765	
	45	9.6	19.2	732	
	53	12.3	24.6	699	
	60	12.2	20.4	772	
	30	6.5	9.7	760	
	29	6.6	9.3	713	
	26	7.1	8.7	738	
	8	2.3	1.0	687	
	6	2.4	1.0	640	
	32	8.2	11.2	698	
	24	7.3	9.0	755	
	25	8.6	10.3	725	
	40	8.5	16.4	753	
	41	9.1	16.2	727	
	40	6.5	12.6	749	
	43	10.9	23.3	759	
			32.3	718	
	23	4.3	5.0	796	
	23	4.1	4.8	812	

TABLE A3: Basic stem-wood densities, tree age, height, RCD and DBH of individual *Kunzea* spp. from areas of natural regeneration at: Riversdale (site 13), Turangi (site 9), Shenandoah (site 17), Eyrewell (site 19), Waimata (site 7), Long Gully (site 12), Hinewai (site 20), Tolaga Bay (sites 4-6), Dunedin (site 21), Waitakere (site 2), Avoca (site 18), Coatbridge (site 14), Peggioh (site 16), Long Spur (site 15), and Nikau Valley (site 3).
Location	Age (y)	Ht (m)	RCD (mm)	DBH (mm)	Wood Density (kg m\(^{-3}\))
Waimata					
	15	6.5	110	710	
	21	12.0	120	734	
	16	10.7	113	698	
	18	10.8	119	747	
	20	12.0	141	777	
	19	9.8	130	753	
	16	9.5	142	721	
	20	11.3	143	750	
	18	10.2	141	806	
	17	9.5	120	722	
	19	8.3	108	655	
	19	9.7	104	738	
	16	11.0	134	805	
	15	9.2	103	732	
	31	9.5	136	704	
	26	13.0	154	734	
	23	11.5	120	729	
	29	16.4	181	786	
	31	16.4	187	828	
	29	16.4	165	789	
	30	13.3	147	647	
	29	12.1	138	720	
	31	13.3	151	774	
	26	10.6	153	731	
	26	11.9	155	743	
	31	12.8	122	766	
	37	11.4	117	86	
	22	12.2	143	811	
	24	12.4	108	722	
	35	14.2	149	849	
	29	13.7	98	771	
	34	13.9	154	757	
Long Gully					
	12				781
	15				762
	20				690
	22				760
	26				793
	Hinewai				*747*
					699

Location	Age (y)	Ht (m)	RCD (mm)	DBH (mm)	Wood Density (kg m\(^{-3}\))
Tolaga Bay					
	14	6.6	80	67	758
	13	5.7	74	61	674
	15	7.2	78	60	703
	21	7.2	100	93	790
	15	6.6	54	49	694
	6	5.7	60	50	686
	4	4.6	40	33	647
	6	6.2	60	47	652
	7	6.8	48	37	704
	8	7.4	67	57	730
	4	2.1	24	2.4	605
	3	1.9	15	1.5	660
	4	2.6	36	3.6	714
Dunedin					
	35	10.5	108	97	699
	45	10.5	119	101	702
	38	9.6	81	75	699
	43	11.4	150	130	730
	48	10.9	168	150	671
Waitakere					
	75	18.7	325	247	693
	59	14.7	222	177	724
	37	8.2	72	62	748
	35	8.7	1145	109	704
	42	9.1	120	97	700
	16	7.5	48	44	704

Location	Age (y)	Ht (m)	RCD (mm)	DBH (mm)	Wood Density (kg m\(^{-3}\))
Avoca Station					
	12				781
	15				762
	20				690
	22				760
	26				793
	Hinewai				*747*
					699

TABLE A3: continued
Location	Age (y)	Ht (m)	RCD (mm)	DBH (mm)	Wood Density (kg m$^{-3}$)
Coatbridge	15	758			
	15	697			
	12	782			
Peggioh	764				
	722				
	765				
	810				
	711				
	686				
	713				
	753				
	735				
	749				
	778				
	800				
	779				
	729				
	731				
	746				
	744				
	758				
	689				
	736				
	764				
	713				
Long Spur	708				
	753				
	723				
	768				
	764				
	744				
	701				
	783				
	711				
	786				
Nikau Valley	56	15.5	26.9	725	
	43	12.6	14.3	711	
	40	12.8	13.2	739	
	47	11.4	13.4	734	
	40	12.6	12.8	737	
	39	11.6	12.1	736	
	44	13.7	14.5	724	
	51	11.5	20.1	673	
	62	12.4	20.5	694	
	13	3.7	2.7	603	
	13	3.2	2.7	624	
	11	3.7	2.5	662	
	50	13.7	27.7	731	
	26	7.8	15.5	677	
	27	8.8	15.2	670	
	44	12.5	15.9	696	
	78	16.0	43.2	732	
	46	12.5	14.2	735	
	48	12.6	15.5	765	
	10	4.2	3.5	629	
	10	3.5	4.6	687	
	13	8.5	9.9	687	
	14	8.2	10.0	687	
	29	12.3	10.0	658	
	25	11.5	9.2	592	
	15	7.2	11.4	602	
	31	9.6	8.8	683	
	72	16.9	35.5	612	
	11	3.4	2.6	608	
	11	3.4	3.2	668	
	9	3.5	2.6	626	
	7	3.2	2.5	604	
	70	14.0	31.0	703	
	69	12.1	31.5	714	
	70	12.6	29.5	690	
	37	11.5	14.4	755	
	44	13.0	15.5	673	
	32	12.5	14.8	721	
TABLE A3: continued

Location	Age (y)	Ht (m)	RCD (mm)	DBH (mm)	Wood Density (kg m\(^{-3}\))
	46	11.9	20.8		709
	47	13.8	19.3		710
	42	5.8	6.0		701
	13	4.3	5.2		668
	11	1.2			661
	7	1.5			667
	9	2.3			637
	6	7.0	5.6		698
	12	6.8	5.9		682
Nikau Valley	13	7.0	6.3		653
	16	45	5.4		664
	12	4.5	5.0		629
	11	4.0	5.0		669
	40	8.2	10.5		581
	29	8.2	10.9		630
	30	8.7	10.7		706
	28	7.8	9.7		772
	36	10.9	10.4		757
	29	8.8	10.5		710
TABLE A4: Basic stem-wood densities, tree age, height, RCD and DBH of individual *Leptospermum scoparium* from areas of natural regeneration at Turangi (site 9), Dunedin (site 21), Coatbridge (site 14), Peggioh (site 16), Tautoro (site 1), and from planted stands at Lake Tutira (site 10)

Location	Age (y)	Ht (m)	RCD (mm)	DBH (mm)	Wood Density (kg m\(^{-3}\))
Turangi	29	5.4	38	25	690
	32	5.9	38	28	770
	33	6.1	44	37	660
	39	6.4	42	33	870
	40	5.8	64	46	870
	27	5.5	31	25	720
	39	6.2	47	37	760
	47	5.6	45	37	720
	60	7.5	51	43	720
	21	4.9	36	31	721
	25	5.1	81	36	778
	26	6.3	90	52	756
	28	6.2	42	38	642
	29	5.6	55	37	682
	30	4.6	49	45	684
	31	4.0	54	40	710
	34	6.1	68	59	739
	40	6.7	36	29	672
	48	8.0	100	55	718
	51	6.7	94	44	667
	53	8.4	94	80	710
	55	7.6	96	72	712
	27	5.8	46	31	824
	68	7.8	73	59	716
Coatbridge	14	704	709		
	11	710	710		
	9	723	723		
	8	684	684		
	10	715	715		
	14	719	719		
	11	690	690		
	14	743	743		
	11	682	682		
	14	742	742		
	13	696	696		
	13	734	734		
	14	742	742		
	10	624	624		
	16	692	692		
Dunedin	10	4.0	34	26	665
	11	4.5	42	30	680
	3	2.9	8	6	680
	3	2.1	10	6	690
	3	2.1	3	1	610
	3	2.2	3	3	650
	3	2.8	5	1	590
	3	2.5	5		700
	3	2.0	6	5	650
	4	1.8	5	4	660
	4	2.3	7	4	680
	6	4.2	15	33	697
	6	4.8	96	42	681
	6	2.9	36	7	634
	6	2.3	33	6	724
Lake Tutira	15	704			
	11	710			
	9	723			
	8	684			
	10	715			
	14	719			
	11	690			
	14	743			
	11	682			
	14	742			
	13	696			
	13	734			
	14	742			
	10	624			
	16	692			
	13	694			
	13	637			
	14	686			
	8	689			
	18	704			
	19	718			
	20	700			
	11	680			
	16	744			
	10	735			
	23	718			
	23	744			
	23	611			
	17	666			
	17	704			
TABLE A4: continued

Location	Age (y)	Ht (m)	RCD (mm)	DBH (mm)	Wood Density (kg m$^{-3}$)
Peggioh					
	724	756	645	669	666
			696	684	705
			732	727	656
	730	662	679	724	733
			729	607	610
			739	689	683
				660	
Tautoro					
	656	780	662	679	724
			733	729	607
			739	689	683
				660	
TABLE A5: Basic stem-wood densities, age, height, Root collar diameter (RCD), and Diameter at breast height (DBH) of individual hardwood species from areas of natural regeneration at Wainuiomata (site 11), and hardwood and softwood species from plot trials based at Gisborne (site 8)

Species	Location	Age (y)	Height (m)	RCD (mm)	DBH (mm)	Wood density (kg m$^{-3}$)
Melicytus ramiflorus	Wainuiomata	12	3.7	64	34	541
Melicytus ramiflorus	Wainuiomata	14	4.7	67	55	571
Melicytus ramiflorus	Wainuiomata	18	5.3	114	68	446
Melicytus ramiflorus	Wainuiomata	12	5.3	101	47	484
Melicytus ramiflorus	Wainuiomata	10	3.9	41	28	536
Melicytus ramiflorus	Wainuiomata	13	3.6	56	37	556
Melicytus ramiflorus	Wainuiomata	16	7.2	66	62	423
Melicytus ramiflorus	Wainuiomata	18	7.0	125	106	453
Melicytus ramiflorus	Wainuiomata	11	3.3	39	24	480
Melicytus ramiflorus	Wainuiomata	9	2.9	39	26	490
Melicytus ramiflorus	Wainuiomata	18	6.5	125	51.5	529
Melicytus ramiflorus	Wainuiomata	25	5.4	103	65	533
Melicytus ramiflorus	Wainuiomata	58	9.1	350	175	496
Melicytus ramiflorus	Wainuiomata	51	8.1	258	150	476
Melicytus ramiflorus	Wainuiomata	37	8.8	154	115	513
Melicytus ramiflorus	Wainuiomata	35	7.1	133	92	509
Melicytus ramiflorus	Wainuiomata	36	7.1	178	128	495
Melicytus ramiflorus	Wainuiomata	27	6.5	198	128	519
Melicytus ramiflorus	Wainuiomata	41	7.5	135	96	521
Melicytus ramiflorus	Wainuiomata	23	6.1	137	90	480
Melicytus ramiflorus	Wainuiomata	15	6.4	84	54	429
Melicytus ramiflorus	Wainuiomata	19	5.4	143	82	467
Melicytus ramiflorus	Wainuiomata	19	1.7	92	69	474
Melicytus ramiflorus	Wainuiomata	14	4.5	117	47	430
Melicytus ramiflorus	Wainuiomata	25	5.1	154	102	444
Melicytus ramiflorus	Wainuiomata	17	—	165	65	405
Melicytus ramiflorus	Wainuiomata	17	5.0	130	64	465
Melicytus ramiflorus	Wainuiomata	5	—	47	11	457
Melicytus ramiflorus	Wainuiomata	9	4.7	77	31	464
Melicytus ramiflorus	Wainuiomata	15	4.2	70	45	495
Coprosma grandiflora	Wainuiomata	20	—	128	83	476
Coprosma grandiflora	Wainuiomata	21	6.1	130	88	433
Coprosma grandiflora	Wainuiomata	23	6.1	121	61	460
Coprosma grandiflora	Wainuiomata	17	7.2	106	40	493
Coprosma grandiflora	Wainuiomata	23	6.5	107	68	485
Coprosma grandiflora	Wainuiomata	20	6.0	124	55	465
Coprosma grandiflora	Wainuiomata	17	6.8	109	57	442
Coprosma grandiflora	Wainuiomata	23	5.8	71	53	512
Coprosma grandiflora	Wainuiomata	19	4.0	45	27	426
Coprosma grandiflora	Wainuiomata	18	6.6	92	71	412
Species	Location	Age (y)	Height (m)	RCD (mm)	DBH (mm)	Wood density (kg m$^{-3}$)
------------------------	-----------	---------	------------	----------	----------	---------------------------
Weinmannia racemosa	Wainuiomata	44	6.9	152	115	544
Weinmannia racemosa	Wainuiomata	38	7.6	120	97	576
Weinmannia racemosa	Wainuiomata	26	6.2	89	67	573
Weinmannia racemosa	Wainuiomata	69	10.2	220	143	543
Weinmannia racemosa	Wainuiomata	47	10.3	220	143	543
Weinmannia racemosa	Wainuiomata	30	8.9	215	108	541
Weinmannia racemosa	Wainuiomata	51	10.2	158	128	538
Weinmannia racemosa	Wainuiomata	46	7.7	159	120	509
Alectryon excelsus	Gisborne	5	2.4	34	4	391
Alectryon excelsus	Gisborne	5	2.4	34	13	426
Alectryon excelsus	Gisborne	5	1.9	36	6	429
Alectryon excelsus	Gisborne	5	2.5	50	18	464
Alectryon excelsus	Gisborne	5	2.2	44	9	533
Alectryon excelsus	Gisborne	5	2.2	44	10	478
Alectryon excelsus	Gisborne	5	2.2	43	15	590
Alectryon excelsus	Gisborne	5	2.5	36	11	556
Alectryon excelsus	Gisborne	5	2.5	36	12	467
Alectryon excelsus	Gisborne	5	2.0	28	7	500
Alectryon excelsus	Gisborne	5	2.0	28	6	529
Alectryon excelsus	Gisborne	5	2.7	52	17	618
Alectryon excelsus	Gisborne	5	2.7	52	13	605
Dacrycarpus dacrydioides	Gisborne	4	2.3	36	7	385
Dacrycarpus dacrydioides	Gisborne	4	2.3	36	8	360
Dacrycarpus dacrydioides	Gisborne	4	2.8	39	11	386
Dacrycarpus dacrydioides	Gisborne	4	2.8	39	14	413
Dacrycarpus dacrydioides	Gisborne	4	2.3	32	10	385
Dacrycarpus dacrydioides	Gisborne	4	1.9	25	4	375
Dacrycarpus dacrydioides	Gisborne	4	1.9	25	5	444
Dacrycarpus dacrydioides	Gisborne	4	2.4	31	9	394
Dacrycarpus dacrydioides	Gisborne	4	1.9	34	3	400
Dacrycarpus dacrydioides	Gisborne	4	1.9	34	5	417
Dacrycarpus dacrydioides	Gisborne	4	2.9	42	16	382
Dacrycarpus dacrydioides	Gisborne	4	2.1	34	6	417
Dacrycarpus dacrydioides	Gisborne	4	2.1	23	7	389
Dacrycarpus dacrydioides	Gisborne	4	2.7	43	13	432
Dacrycarpus dacrydioides	Gisborne	4	2.2	30	9	450
Dacrycarpus dacrydioides	Gisborne	4	2.2	30	6	444
Dacrycarpus dacrydioides	Gisborne	5	3.4	63	27	331
Dacrycarpus dacrydioides	Gisborne	5	3.0	57	22	362
Species	Location	Age (y)	Height (m)	RCD (mm)	DBH (mm)	Wood density (kg m\(^{-3}\))
-----------------------------	----------	---------	------------	----------	----------	-----------------------------
Dacrycarpus dacrydioides	Gisborne	5	3.0	57	13	376
Dacrycarpus dacrydioides	Gisborne	5	3.1	48	18	328
Dacrycarpus dacrydioides	Gisborne	5	3.1	49	21	338
Dacrycarpus dacrydioides	Gisborne	5	1.6	47	12	375
Dacrycarpus dacrydioides	Gisborne	5	2.4	43	13	340
Dacrycarpus dacrydioides	Gisborne	5	2.9	47	15	338
Dacrycarpus dacrydioides	Gisborne	5	2.9	47	13	317
Dacrycarpus dacrydioides	Gisborne	5	2.9	47	11	366
Dacrycarpus dacrydioides	Gisborne	5	2.7	45	17	365
Dacrycarpus dacrydioides	Gisborne	5	2.6	54	18	328
Dacrycarpus dacrydioides	Gisborne	5	2.6	54	16	329
Dacrycarpus dacrydioides	Gisborne	5	2.7	32	13	361
Podocarpus totara	Gisborne	5	2.2	43	23	359
Podocarpus totara	Gisborne	5	3.0	57	27	397
Podocarpus totara	Gisborne	5	3.3	60	24	362
Podocarpus totara	Gisborne	5	3.2	64	33	345
Podocarpus totara	Gisborne	5	3.0	50	16	375
Podocarpus totara	Gisborne	5	2.6	50	18	383
Podocarpus totara	Gisborne	5	2.4	49	17	452
Podocarpus totara	Gisborne	5	2.8	41	16	526
Podocarpus totara	Gisborne	5	3.2	49	24	436
Agathis australis	Gisborne	5	1.5	24	7	318
Agathis australis	Gisborne	5	1.5	28	9	286
Agathis australis	Gisborne	5	1.6	21	8	294
Agathis australis	Gisborne	5	1.5	19	5	250
Agathis australis	Gisborne	5	1.7	20	13	210
Agathis australis	Gisborne	5	1.9	25	10	220
Agathis australis	Gisborne	5	1.6	26	10	268
Agathis australis	Gisborne	5	1.8	24	18	326
Dacrydium cupressinum	Gisborne	5	2.3	34	8	484
Dacrydium cupressinum	Gisborne	5	2.2	36	10	463
Dacrydium cupressinum	Gisborne	5	2.2	36	8	484
Dacrydium cupressinum	Gisborne	5	2.0	40	9	417
Dacrydium cupressinum	Gisborne	5	2.0	40	6	385
Dacrydium cupressinum	Gisborne	5	1.5	34	11	482
Dacrydium cupressinum	Gisborne	5	2.3	41	12	471
Dacrydium cupressinum	Gisborne	5	2.5	44	13	483
Dacrydium cupressinum	Gisborne	5	2.4	38	6	385
Dacrydium cupressinum	Gisborne	5	2.4	38	13	462
Dacrydium cupressinum	Gisborne	5	1.9	39	8	435
Dacrydium cupressinum	Gisborne	5	2.2	30	11	455
Species	Location	Age (y)	Height (m)	RCD (mm)	DBH (mm)	Wood density (kg m\(^{-3}\))
----------------------------	----------	---------	------------	----------	----------	-----------------------------
Dacrydium cupressinum	Gisborne	5	2.1	42	10	424
Dacrydium cupressinum	Gisborne	5	2.1	42	8	414
Prumnopitys ferruginea	Gisborne	5	1.5	11	2	333
Prumnopitys ferruginea	Gisborne	5	1.6	30	5	429
Prumnopitys ferruginea	Gisborne	5	1.7	17	3	286
Prumnopitys ferruginea	Gisborne	5	1.5	25	3	250
Prumnopitys ferruginea	Gisborne	5	1.9	28	6	500
Prumnopitys ferruginea	Gisborne	5	1.5	15	2	333
Prumnopitys ferrugínea	Gisborne	5	1.9	24	7	500
Vitex lucens	Gisborne	4	1.9	44	8	302
Vitex lucens	Gisborne	4	1.6	45	5	145
Vitex lucens	Gisborne	5	1.8	95	8	227
Vitex lucens	Gisborne	5	2.2	95	13	354
Vitex lucens	Gisborne	5	2.2	95	10	340
Vitex lucens	Gisborne	5	2.2	95	13	324
Vitex lucens	Gisborne	5	3.3	82	34	335
Vitex lucens	Gisborne	5	3.2	84	40	348