Difficult treatment decisions in autoimmune hepatitis

Albert J Czaja

Albert J Czaja, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN 55905, United States

Author contributions: Czaja AJ researched the topic, wrote the entire article, provided the references and designed the tables.

Correspondence to: Albert J Czaja, MD, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN 55905, United States. czaja.albert@mayo.edu

Telephone: +1-507-2848118 Fax: +1-507-2840538

Received: December 2, 2009 Revised: December 16, 2009
Accepted: December 23, 2009
Published online: February 28, 2010

Abstract

Treatment decisions in autoimmune hepatitis are complicated by the diversity of its clinical presentations, uncertainties about its natural history, evolving opinions regarding treatment end points, varied nature of refractory disease, and plethora of alternative immunosuppressive agents. The goals of this article are to review the difficult treatment decisions and to provide the bases for making sound therapeutic judgments. The English literature on the treatment problems in autoimmune hepatitis were identified by Medline search up to October 2009 and 32 years of personal experience. Autoimmune hepatitis may have an acute severe presentation, mild inflammatory activity, lack autoantibodies, exhibit atypical histological changes (centrilobular zone 3 necrosis or bile duct injury), or have variant features reminiscent of another disease (overlap syndrome). Corticosteroid therapy must be instituted early, applied despite the absence of symptoms, or modified in an individualized fashion. Pursuit of normal liver tests and tissue is the ideal treatment end point, but this objective must be tempered against the risk of side effects. Relapse after treatment withdrawal requires long-term maintenance therapy, preferably with azathioprine. Treatment failure or an incomplete response warrants salvage therapy that can include conventional medications in modified dose or empirical therapies with calcineurin inhibitors or mycophenolate mofetil. Liver transplantation supersedes empirical drug therapy in decompensated patients. Elderly and pregnant patients warrant treatment modifications. Difficult treatment decisions in autoimmune hepatitis can be simplified by recognizing its diverse manifestations and individualizing treatment, pursuing realistic goals, applying appropriate salvage regimens, and identifying problematic patients early.

© 2010 Baishideng. All rights reserved.

Key words: Autoimmune hepatitis; Fulminant hepatitis; Salvage therapy; Treatment end points

Peer reviewer: Tom H Karlsen, MD, Institute of Immunology, Rikshospitalet University Hospital, N-0027 Oslo, Norway

Czaja AJ. Difficult treatment decisions in autoimmune hepatitis. World J Gastroenterol 2010; 16(8): 934-947 Available from: URL: http://www.wjgnet.com/1007-9327/full/v16/i8/934.htm DOI: http://dx.doi.org/10.3748/wjg.v16.i8.934

INTRODUCTION

Corticosteroid therapy is established as an effective treatment for autoimmune hepatitis [1-3]. It induces clinical, laboratory and histological remission in 80% of patients within 3 years [2,4]; the 10- and 20-year life expectancies of treated patients exceed 80% [5,7]; hepatic fibrosis is reduced or prevented in 79% [8,9] and variceal hemorrhage, death from hepatic failure, and deteriorations warranting liver transplantation occur in less than 5% [10,11]. These successes are tempered by the development of severe treatment-related side effects in 13% [12,13], treatment failure in 9% [14], incomplete response in 13% [15], and relapse after drug withdrawal in 50%-86% [2,4,16-18]. Efforts are ongoing to improve results by refining current treatment strategies [19] and by introducing different pharmacological agents, such as cyclosporine [20], tacrolimus [21,22], mycophenolate mofetil [23,24] and budesonide [25,26]. The benefits
from these efforts have not been fully realized, and the management algorithm is still in flux.

Decision Making in Autoimmune Hepatitis

Treatments for autoimmune hepatitis are complicated by the diversity of clinical presentations associated with the disease, uncertainties about the natural history of asymptomatic mild disease, evolving recommendations regarding treatment end points, varied nature of individuals refractory to or intolerant of the conventional therapy, and plethora of alternative immunosuppressive agents. Diagnostic and therapeutic guidelines have been promulgated to codify the recognition and treatment of autoimmune hepatitis, but clinical judgment remains the essence of successful therapy. Decisions to start or withdraw medication, manage a sluggish or absent response, and institute unfamiliar empirical therapy in problematic patients are difficult because they are highly individualized and not amenable to rigorous study.

In this review, the difficult treatment decisions in autoimmune hepatitis are described and the bases for making a sound judgment are provided. Treatment decisions can be guided but not codified, and every management strategy must be directed by the status of the individual patient.

DETECTION TO TREAT ACUTE SEVERE (FULMINANT) HEPATITIS WITH CORTICOSTEROIDS

Autoimmune hepatitis can have an acute severe (fulminant) presentation, or a previously indolent chronic disease can exacerbate spontaneously and appear acute. The diagnosis can be unsuspected if this propensity is not realized. Furthermore, the presence of centrilobular zone 3 necrosis on histological examination can suggest an acute viral or toxic injury. The centrilobular zone 3 pattern can transform to the classical pattern of interface hepatitis as the disease evolves, and its presence early in the disease should not delay the diagnosis or therapy.

The key to recognizing acute severe autoimmune hepatitis is to remember it in the differential diagnosis and to make the designation after viral, drug-induced, toxic and metabolic disorders have been systematically excluded. The diagnosis may include atypical histological findings (centrilobular zone 3 necrosis) or absent classical features (autoantibodies or hypergammaglobulinemia), but it is justified by the completeness of the exclusion effort.

Autoantibodies and hypergammaglobulinemia, especially increased serum IgG level, support the diagnosis of autoimmune hepatitis, but they are neither specific nor required for the diagnosis. Seronegative patients can respond well to corticosteroid treatment, and those with severe presentations should not be denied this potential benefit because of their non-classical phenotype. Confidence in the diagnosis can be enhanced by applying the comprehensive scoring system developed by the International Autoimmune Hepatitis Group (IAIHG). Atypical or absent classical features can be assessed in the context of other findings that may have sufficient strength to carry the diagnosis.

Corticosteroid therapy is effective in 36%-100% of patients with acute severe (fulminant) presentations, and this range of response may reflect in part the timeliness of treatment. The response to corticosteroid therapy should be evident quickly, and the failure of any laboratory test of liver inflammation to improve within 2 wk in a patient with acute severe disease is a justification for considering liver transplantation.

There are no clinical or laboratory features prior to therapy that reliably predict a treatment non-response, but the model of end stage liver disease (MELD) can be useful in assessing risk and quantifying improvement or deterioration. MELD scores ≥ 12 points at presentation have a sensitivity of 97% and specificity of 68% for treatment failure in autoimmune hepatitis, and patients with such scores warrant close scrutiny. Infection has been associated with protracted corticosteroid therapy in patients with acute severe (fulminant) presentations, and treatment should be discontinued promptly whenever there is evidence that the disease is worsening or if there has been no improvement after 2 wk.

DETECTION TO TREAT ASYMPTOMATIC MILD AUTOIMMUNE HEPATITIS

Autoimmune hepatitis may be asymptomatic in 25%-34% of patients, and 25%-85% of individuals can be clas-

Table 1 Conventional corticosteroid treatment regimens for autoimmune hepatitis

Schedule	Monotherapy	Combination therapy
Induction period		
Week 1	60	30
Week 2	40	20
Week 3	30	15
Week 4	30	15
Maintenance period		
Fixed doses until end point	20	10

Conditions that favor each regimen:
- Cytopenia (severe)
- Absent thiopurine methyltransferase activity
- Pregnancy
- Malignancy (active)
- Short trial (< 6 mo)
- Acute severe onset
- Elderly/postmenopausal state
- Osteoporosis
- Brittle diabetes
- Acne
- Emotional instability/psychosis
- Hypertension
- Prolonged therapy

1 Prednisolone can be used in place of prednisone in equivalent doses.
Table 2 Difficult treatment decisions before starting conventional corticosteroid therapy

Problem	Response
Acute severe (fulminant)	Prompt institution of conventional corticosteroid therapy with prednisone monotherapy [59-64]
presentation	Azathioprine, 50 mg/d, can be added later if treatment is to be continued for ≥ 3 mo [60]
	Liver transplantation evaluation if laboratory indices worsen at any time during treatment, especially progressive hyperbilirubinemia, or no improvement after 2 wk [64]
Asymptomatic mild or mild disease	Institute conventional corticosteroid therapy with prednisone in combination with azathioprine [58,60-62]
	3 mg tid, in conjunction with azathioprine, 50 mg/d, if preexistent osteopenia, diabetes, hypertension, obesity, or emotional instability [63-66]
Autoantibody-negativity	Exclude viral, drug, toxic, metabolic causes and celiac disease [60,66]
	Apply codified scoring criteria of IAIHG for probable or definite diagnosis [56,67]
	Institute conventional corticosteroid therapy with prednisone in combination with azathioprine or a higher dose of prednisone alone [67-69]
Overlap syndromes	Conventional corticosteroid therapy alone or in combination with azathioprine if serum alkaline phosphatase level < 2 times ULN [59-60]
	Add ursodesoxycholic acid, 13-15 mg/kg per day, to corticosteroid regimen if serum alkaline phosphatase level ≥ 2 times ULN [60,64]
	Consider ursodesoxycholic acid alone, 13-15 mg/kg per day, if predominant features of PBC with minimal features of autoimmune hepatitis [60,64]

IAIHG: International Autoimmune Hepatitis Group; ULN: Upper limit of the normal.

UNTREATED MILD AUTOIMMUNE HEPATITIS

Untreated mild autoimmune hepatitis does not have a uniformly benign prognosis. Cirrhosis develops in 49% of untreated patients within 15 years [70]; liver failure and hepatocellular carcinoma are possible [71]; asymptomatic patients frequently become symptomatic [72,73]; and 10-year mortality exceeds 10% [74]. Spontaneous resolution is possible, but untreated patients with mild autoimmune hepatitis improve less commonly (12% vs 63%, P = 0.006) and more slowly than treated patients, and they have a lower 10-year survival (67% vs 98%, P = 0.01) [75]. The rapidity of improvement rather than the severity of inflammation may be important in preventing disease progression in mild disease, and protection can be more reliably obtained by instituting treatment [76].

Autoimmune hepatitis is by nature a labile and aggressive disease, and phases of mild disease activity can be interspersed with phases of severe activity that can be aggressive [77,78]. In this context, the true existence of mild autoimmune hepatitis can be questioned, and treatment criteria based on perceptions of disease severity at any single time point fail to recognize this fluctuating nature. The uncertainty that mild disease remains mild indefinitely favors therapy for all such patients. The urgency rather than the need for treatment may be all that is decreased in these individuals (Table 2).

Until randomized clinical trials are performed that compare treatment against no treatment, the management strategy in patients with mild autoimmune hepatitis should lean toward conventional therapy [79] (Table 1). This option eliminates concern regarding unsuspected disease progression, and the treatment response is likely to be rapid and well-tolerated.
endomysium should be sought in all seronegative patients with active liver disease of undetermined cause\cite{82-84} (Table 2).

Confidence in the diagnosis of autoantibody-negative autoimmune hepatitis can be strengthened by applying the comprehensive scoring system of the IAIHG\cite{59}. Seronegative patients can frequently be categorized as having autoimmune hepatitis by this method\cite{60}. Once the diagnosis has been made by the exclusion of other conditions that it might resemble, corticosteroid treatment should be started with regimens identical to those used in classical autoimmune hepatitis\cite{60}. Treatment should not be extended beyond 3 mo if there has been no improvement, and the accuracy of the original diagnosis and the legitimacy of the treatment regimen should be reassessed if the disease worsens despite compliance with the medication schedule.

DECISION TO TREAT OVERLAP SYNDROMES

Patients with autoimmune hepatitis may have findings that suggest concurrent primary sclerosing cholangitis (PSC)\cite{61,67}, primary biliary cirrhosis (PBC)\cite{62,63,85-88}, or a cholestatic syndrome in the absence of PSC and PBC\cite{89,90}. Overlap syndromes lack codified clinical or pathological definitions, and they do not have a particular etiological agent or distinctive pathogenic mechanism\cite{99,100}. The designations are arbitrary and imprecise, and the clinical phenotypes of patients with the same overlap designation are commonly different\cite{60,92,96}.

Twenty percent of patients with autoimmune hepatitis have antimitochondrial antibodies (AMAs)\cite{61,77,100}; 19% have a disproportionate elevation of the serum alkaline phosphate level\cite{97}, 15% have increased serum levels of IgM\cite{81,85-87,94,98,99}; 9% have histological features of bile duct injury\cite{94,100,102}; and 8% have antibodies to the E2 subunit of the pyruvate dehydrogenase complex\cite{87}. Any or all of these features suggest an overlap syndrome with PBC.

Similarly, 16% of patients with autoimmune hepatitis have concurrent inflammatory bowel disease\cite{103,104,105}; 10% (adults) to 50% (children) have biliary changes reminiscent of PSC by magnetic resonance imaging or retrograde endoscopic cholangiography\cite{100,106}; and 13% fail to respond to corticosteroids\cite{106}. Any or all of these features suggest an overlap syndrome with PSC.

The overlap syndrome with PSC may be associated with intrahepatic bile duct changes (small duct PSC)\cite{106,107} or extrahepatic bile duct changes with or without intrahepatic findings (classical PSC). Small duct PSC is probably an early stage of classical PSC as protracted follow-up demonstrates late involvement of the extrahepatic bile ducts in many patients\cite{108,109}. The occurrence of intrahepatic biliary changes in patients with predominant features of autoimmune hepatitis could represent coincidental biliary duct injury associated with the exuberant inflammatory process\cite{94,98,100} or an overlap syndrome with small duct PSC or AMA-negative PBC\cite{106}.

The overlap syndromes are important because they are common, occur in 18% of adults with autoimmune liver disease, and they can respond poorly to corticosteroid therapy\cite{62}. Adults with autoimmune hepatitis, ulcerative colitis and PSC differ in their responses to treatment with corticosteroids\cite{97,99,100}. Cholangiography is important to make these distinctions, and it should be performed in all patients with autoimmune hepatitis and inflammatory bowel disease. Forty-two percent of these individuals will have biliary changes of PSC\cite{104}.

The variant syndromes should be suspected when patients with autoimmune hepatitis manifest clinical, laboratory or histological features of cholestasis or respond poorly to conventional corticosteroid therapy\cite{62}. The serum alkaline phosphate level is useful in distinguishing classical autoimmune hepatitis from its overlap syndromes with PBC and PSC\cite{62}. In children, the serum \(\gamma \) glutamyl transferase (GGT) level is a more reliable indicator of cholestasis than the serum alkaline phosphate level. Bile duct changes are common in advanced fibrotic liver disease regardless of type, and these biliary distortions detected by magnetic resonance imaging must be distinguished from PSC\cite{104}.

Management of the overlap syndromes is empirical and based on the predominant manifestations of the disease (Table 2). Adults with autoimmune hepatitis and features of PBC who have serum alkaline phosphate levels less than twofold higher than ULN can be treated with corticosteroids\cite{62,63,120}. Adults with higher serum alkaline phosphate levels and those with florid duct lesions on histological examination are candidates for treatment with corticosteroids and ursodeoxycholic acid\cite{63,112,113}. Ursodeoxycholic acid alone may be effective in some patients who have predominant features of PBC\cite{64,65}.

Adults with autoimmune hepatitis and PSC are commonly given a trial of prednisone and ursodeoxycholic acid\cite{85}, but in adults with mainly hepatitis features, corticosteroid therapy alone may be beneficial\cite{104}. These patients typically respond less well to treatment than those with mixed features of autoimmune hepatitis and PBC\cite{62,63}. Patients with the cholestatic syndrome in the absence of PBC and PSC can be treated with prednisone, ursodeoxycholic acid, or both depending on the serum alkaline phosphate level\cite{104}. Multicentered collaborative
investigations are needed to codify diagnostic criteria and establish confident treatment algorithms for these non-classical syndromes (Table 2).

The diagnosis of an overlap syndrome implies that its clinical phenotype is outside the boundaries of classical disease, but the point at which this occurs is unknown[94,113]. The features of the classical autoimmune liver diseases are not disease-specific, and they are commonly shared[82,88,114,115]. This commonality of manifestations can cluster in different densities in individual patients and suggest another disease. The overlap syndromes are probably atypical manifestations of a classical disease rather than concurrent diseases or a distinctive pathological entity[93,94,113]. The diagnostic scoring systems of the IAIHG are not discriminative diagnostic indices, and they cannot be used to declare an overlap syndrome, especially because the definition of such an entity has not been codified[88,116,17].

DECISION TO STOP TREATMENT

Twenty-one percent of patients with autoimmune hepatitis achieve a sustained long-term remission after initial corticosteroid treatment, and 28% who relapse after drug withdrawal achieve this same result after retreatment[18]. Autoimmune hepatitis can enter a sustained inactive state after treatment[15,16,7,18], and this possibility has justified efforts to terminate therapy in all patients despite their well-recognized high frequency of relapse[17,2]. Patients who sustain their remission after drug withdrawal have fewer laboratory abnormalities at the time of drug withdrawal than patients who relapse, and the ideal treatment end point is when normal liver tests and tissue have been achieved[8,19-123] (Table 3).

The key laboratory indices to monitor are the serum AST, alanine aminotransferase, bilirubin and γ-globulin levels[121], and these tests should be normal prior to drug withdrawal. The ideal histological end points are normal liver architecture or inactive cirrhosis[15,12,12]. Relapse has been associated with residual plasma cell infiltration in the liver tissue despite the absence of other disruptive changes, and the plasma cells may indicate persistence of the immune response[119,123]. Plasma cell infiltration in the native liver has also been associated with recurrent autoimmune hepatitis after liver transplantation, and it may signal an active pathogenic process[114].

Liver tissue examination immediately prior to drug withdrawal is the only confident method of confirming an ideal treatment end point, but it should not be performed for at least 3 mo after normalization of the laboratory indices. Histological improvement lags behind clinical and laboratory resolution by 3-8 mo[8], and liver tissue examination before this interval will disclose histological features of interface hepatitis in 55% of instances[119].

The presence of interface hepatitis on the follow-up tissue examination justifies the continuation of therapy for an additional 6 mo before reconsidering drug withdrawal. Another liver tissue examination is not necessary if the histological findings 6 mo earlier have shown improvement during treatment and the inflammatory changes have been mild. The frequency of relapse after full resolution of the laboratory and histological features can be reduced from 86%[17] to 60%[121], and in some instances, as low as 20%[15].

Full resolution of liver tests and tissue is an ideal treatment end point, but it may be achievable in only 40% of patients[121]. Relentless pursuit of an ideal end point may be hazardous because the likelihood of a full response must be balanced against the risk of treatment related side effects[12,15]. Seventy-seven percent of patients who respond will do so within 24 mo, and patients aged ≥ 60 yr if an ideal or satisfactory end point has not been achieved ≤ 24 mo (incomplete response end point)[11,19,123].

Problem	Response
Determining treatment end point	Continue conventional therapy until normal serum AST, ALT, bilirubin and γ-globulin levels and normal liver tissue or inactive cirrhosis (ideal end point)[99,122]
Continue conventional therapy until serum AST ≤ 2 times ULN, bilirubin and γ-globulin levels normal, and portal hepatitis or minimally active cirrhosis (satisfactory end point)[13,14]	
Decrease dose of culprit drug or discontinue its use if side effects emerge (drug toxicity end point)[12,13]	
Limit conventional corticosteroid treatment of patients aged ≥ 60 yr if an ideal or satisfactory end point has not been achieved ≤ 24 mo (incomplete response end point)[11,19,123]	
Relapse after drug withdrawal	Institute original therapy until clinical and laboratory resolution, then increase azathioprine dose to 2 mg/kg per day as dose of prednisone is withdrawn[119,123]
Continue daily azathioprine in fixed dose indefinitely[12,13]	
Use low dose prednisone (< 10 mg/d) if severe cytopenia (leukocyte counts < 2.5 × 10^9/L or platelet counts < 50 × 10^9/L) or other azathioprine intolerances[12,13]	
Use low dose prednisone (2.5-5 mg/d) to supplement azathioprine maintenance if abnormal serum AST level[119,123]	
Treatment failure	Prednisone, 60 mg/d, or prednisone, 30 mg/d, in combination with azathioprine, 150 mg/d, for at least 1 mo, then dose reductions by 10 mg for prednisone and 50 mg for azathioprine each month of laboratory improvement until conventional doses reached[12,13,12]
Evaluate for liver transplantation if minimal criteria for listing (MELD ≥ 15 points) are met[10-12]	
Incomplete response	Azathioprine (2 mg/kg per day) indefinitely after corticosteroid withdrawal[12,12]
Low-dose prednisone (< 10 mg/d) if azathioprine intolerance[12,13]	
Adjustments to maintain serum AST level ≤ 3 times ULN[11,19]	

MELD: Model of end stage liver disease; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase.
February 28, 2010 | Volume 16 | Issue 8 | 939

Czaja AJ. Treatment of autoimmune hepatitis

Problem	Response
Empirical salvage drugs	Consider cyclosporine (5-6 mg/kg per day)\(^{[14,15]}\) or tacrolimus (4 mg bid\(^{[21,22,110]}\) if progressive disease on conventional treatment
Consider mycophenolate mofetil (1 g bid) if corticosteroid or azathioprine intolerance\(^{[54,130,131]}\)	
Consider budesonide (3 mg tid) as frontline therapy if mild disease or if azathioprine maintenance is insufficient after relapse or incomplete response\(^{[25,26]}\)	
Complete benefit-risk and cost analyses before use\(^{[26,134]}\)	
Liver transplantation	Empirical trial must not supersede liver transplantation\(^{[11,130,131]}\)
Elderly patients (aged ≥ 60 yr)	**Restrict conventional therapy to combination regimen**\(^{[50]}\)
Limit initial treatment to ≤ 24 mo\(^{[105]}\)	
Institute azathioprine maintenance therapy (2 mg/kg per day) if initial response is incomplete at 24 mo\(^{[48]}\)	
Consider liver transplantation if features of decompensation emerge\(^{[42]}\)	
Pregnant patients	**Counsel regarding risks of prematurity and infant mortality**\(^{[56,67]}\)
Institute high-risk obstetrical care\(^{[91,92]}\)	
Avoid azathioprine if possible\(^{[91,94]}\)	
Reduce doses of predniol to lowest levels to stabilize if not resolve laboratory indices\(^{[99]}\)	
Reestablish conventional prednisone doses prior to delivery\(^{[94]}\)	
Be alert to post-partum flares\(^{[16,143,144]}\)	

HLA DRB1*04 than young adults, and this phenotype has been associated with a quicker and better treatment response than other HLA phenotypes\(^{[138-142]}\). The inability to induce resolution within 24 mo of therapy portends the development of treatment-related side effects\(^{[11,143]}\), and it justifies a change in the end point strategy.

Improvements during the initial 24 mo of therapy may still be sufficient to consider drug withdrawal despite the absence of an ideal response. The disappearance of symptoms, improvement of the serum AST levels to less than twofold greater than ULN, normalization of the serum bilirubin and γ-globulin levels, and histological improvement to portal hepatitis or minimally active cirrhosis have been associated with a sustainable remission for at least 6 mo in 50% of cases, and these improvements during therapy constitute a satisfactory but not ideal end point\(^{[11,16,72]}\). A protracted interval of quiescent disease that requires no therapy is a desirable achievement, and it may be long-term despite the absence of an ideal response. Discontinuation of therapy after achieving satisfactory milestones should be considered at the 24-mo interval or at any earlier point in the course of treatment if signs of drug intolerance have emerged\(^{[14,143]}\) (Table 3).

Failure to achieve an ideal or satisfactory response by 24 mo requires reassessment of the individual clinical situation. Ninety-four percent of patients aged ≥ 60 years who achieve an ideal or satisfactory end point do so within 24 mo\(^{[11]}\), and those elderly patients who have not done so are best treated with a long-term maintenance strategy designed to reduce or eliminate the corticosteroid dose and replace it with azathioprine\(^{[126-128]}\) (Table 4). Similarly, patients who have shown little improvement during this interval or who are manifesting corticosteroid-related side effects should be treated with long-term azathioprine maintenance\(^{[126,127]}\) (Table 3).

In contrast, 36% of adults aged ≤ 40 years achieve an ideal or satisfactory end point beyond 24 mo of therapy\(^{[11]}\), and their original treatment regimen can be maintained for an additional 12 mo if they are drug tolerant. Eighty-one percent of the adults aged ≤ 40 years who respond do so within 36 mo\(^{[11]}\), and those who do not are candidates for maintenance therapy with azathioprine. Most patients with autoimmune hepatitis do relapse and require long-term maintenance treatment\(^{[4,16,18]}\) but the patients who are able to achieve a sustained long-term remission should not be penalized by blanket consensus to continuous initial therapy\(^{[54]}\).

| **DECISION TO TREAT AFTER RELAPSE** |

Relapse after drug withdrawal constitutes a recrudescence of inflammatory activity that is typified by the reappearance of interface hepatitis in the liver biopsy specimens\(^{[3]}\). Laboratory correlations with histological findings after drug withdrawal have indicated that an increase in the serum AST level to at least threefold higher than ULN is invariably associated with interface hepatitis, and liver tissue examination is not required to diagnose this occurrence\(^{[133]}\).

Reinstitution of the original treatment schedule rapidly suppresses the exacerbation, and another clinical, laboratory and histological remission can be achieved\(^{[16]}\). Subsequent treatment withdrawal is typically followed by another relapse, and the sequence of relapse, drug withdrawal, and relapse can be repeated indefinitely\(^{[16]}\). With each exacerbation and retreatment, the frequency of achieving a sustained remission decreases (14% after three retreatments)\(^{[106]}\); the occurrence of drug-related side effects escalates (70% after two retreatments)\(^{[106]}\); and the cumulative frequencies of progression to cirrhosis (38%) and liver failure increase (20%)\(^{[170]}\). The optimal time to prevent these outcomes is after the first relapse, and repeated administrations of the original treatment regimen are not advised.

The preferred management of relapse is to institute long-term treatment with azathioprine after the first exacerbation and repeated administrations of the original treatment regimen are not advised.

Table 4 Difficult treatment decisions after conventional corticosteroid therapy

Problem	Response
Elderly patients (aged ≥ 60 yr)	Restrict conventional therapy to combination regimen\(^{[10]}\)
Limit initial treatment to ≤ 24 mo\(^{[105]}\)	
Institute azathioprine maintenance therapy (2 mg/kg per day) if initial response is incomplete at 24 mo\(^{[48]}\)	
Consider liver transplantation if features of decompensation emerge\(^{[42]}\)	
Pregnant patients	Counsel regarding risks of prematurity and infant mortality\(^{[56,67]}\)
Institute high-risk obstetrical care\(^{[91,92]}\)	
Avoid azathioprine if possible\(^{[91,94]}\)	
Reduce doses of predniol to lowest levels to stabilize if not resolve laboratory indices\(^{[99]}\)	
Reestablish conventional prednisone doses prior to delivery\(^{[94]}\)	
Be alert to post-partum flares\(^{[16,143,144]}\)	

WJG | www.wjgnet.com
treatment, and then the dose of prednisone is gradually withdrawn as the dose of azathioprine is increased to 2 mg/kg daily. Azathioprine is then continued indefinitely as a maintenance therapy. Eighty-seven percent of patients are able to sustain clinical and laboratory remission in this fashion over 10 years\(^{[126,127]}\). The most common side effect is arthralgia associated with corticosteroid withdrawal (63%). Myelosuppression and lymphopenia occur in 7% and 57% of patients, respectively, and malignancies of diverse cell types and uncertain association with therapy have developed in 8%\(^{[128]}\).

Prednisone in low dose can be used instead of azathioprine for long-term maintenance if there is preexistent or evolving cytopenia\(^{[129]}\). Similar to prednisone, observation intervals for up to 149 mo have indicated satisfactory outcomes that have justified continued application of the strategy. Side effects associated with the earlier conventional corticosteroid treatments improve or disappear in 85% of patients; new side effects do not develop; and survival is unaffected when compared with patients who receive standard dose corticosteroid therapy after relapse\(^{[129]}\). Recent studies in patients followed for as long as 43 years (median, 13.5 years) have confirmed that the low-dose prednisone strategy can be used effectively and safely in the long term\(^{[171]}\).

DECISION TO TREAT THE ADVERSE RESPONSE

The unsatisfactory responses to initial corticosteroid therapy are treatment failure, incomplete response, and drug toxicity. Each adverse outcome justifies a treatment modification.

Treatment failure

Treatment failure connotes clinical, laboratory, and histological worsening despite compliance with the original treatment schedule\(^{[129]}\). Nine percent of patients fail treatment\(^{[14,15,129]}\), and high-dose therapy with prednisone (30 mg/d) in conjunction with azathioprine (150 mg/d) or prednisone alone (60 mg/d) is the preferred initial approach to this problem\(^{[15,23,54,55]}\) (Table 3). Doses of medication are maintained at this level for 1 mo before improvements in the laboratory tests justify an attempt at dose reduction. The dose of prednisone is reduced by 10 mg and the dose of azathioprine is reduced by 50 mg each month that the serum AST level improves, until the original conventional doses are reached\(^{[19,54,55]}\). Seventy percent of patients improve their clinical and laboratory findings within 2 years, but histological resolution is achieved in only 20%\(^{[129]}\). Most patients remain on therapy indefinitely. Manifestations of liver decompensation during high-dose therapy (encephalopathy, ascites, or variceal hemorrhage) are indications for liver transplantation\(^{[130]}\).

Thirteen percent of patients have an incomplete response to conventional treatment\(^{[15,19,54,55]}\). The clinical, laboratory, and histological findings improve, but the improvements are insufficient to constitute an ideal or satisfactory end point. These patients are unlikely to enter remission if therapy is continued beyond 36 mo (< 3% occurrence)\(^{[11,134]}\), and they are candidates for indefinite maintenance therapy with azathioprine alone\(^{[15,23,54,55]}\) or low-dose prednisone\(^{[128,172]}\) at that time (Table 3). Treatments should be adjusted to maintain the serum AST level below threefold greater than ULN if possible to reduce the likelihood of an aggressive histological lesion\(^{[130]}\).

Drug toxicity

Drug toxicity compels dose reduction or premature discontinuation of the offending drug in 13% of patients\(^{[13]}\). Cytopenia, nausea, emotional lability, hypertension, cosmetic changes, and diabetes are typically dose-related, and these consequences can improve with dose reduction\(^{[55]}\). Severe reactions, including psychosis, extreme cytopenia (leukocyte counts < 2.5 × 10^9/L or platelet counts < 50 × 10^9/L), and symptomatic osteopenia with or without vertebral compression, justify immediate discontinuation of the offending agent\(^{[55]}\). In these patients, the single tolerated drug (prednisone or azathioprine) is continued in adjusted dose to suppress inflammatory activity. Routine phenotyping or genotyping for thiopurine methyltransferase deficiency has not been predictive of azathioprine-induced toxicity at the low doses of azathioprine (50-150 mg/d) used to treat autoimmune hepatitis\(^{[172-174]}\). Accordingly, routine screening for this enzyme activity has not been established\(^{[15]}\).

DECISION TO INSTITUTE EMPIRICAL SALVAGE THERAPY

Multiple immunosuppressive agents have emerged mainly from the transplantation arena, and they have site-specific actions of theoretical advantage in the treatment of autoimmune hepatitis\(^{[175-177]}\). Many such agents have been used empirically in small, single-institution, treatment trials with some success, and they have been proposed as salvage therapies\(^{[178]}\). None has been studied rigorously in controlled or comparative treatment trials; all must be used off-label in autoimmune hepatitis; and none has been incorporated into standard management algorithms. Target populations, dosing schedules, safety profiles and cost analyses are lacking, and the nature of the clinical situation that requires rescue is also unclear\(^{[15,160]}\).

The major clinical problems that warrant rescue are worsening of the liver disease despite compliance with the standard corticosteroid regimen (treatment failure) and corticosteroid or azathioprine intolerance (drug
In the former instance, the patient must be rescued from the liver disease, and in the latter instance, the patient must be rescued from the treatment. There are conventional corticosteroid- and azathioprine-based strategies for each of these contingencies, but new pharmacological agents have a theoretical basis and burgeoning experience that support their use.\(^{[15]}\)

The calcineurin inhibitor, cyclosporine, and the purine antagonist, mycophenolate mofetil, have generated the most interest (Table 4). Numerous studies have described successful salvage of patients with corticosteroid intolerance or treatment failure by administering cyclosporine\(^{[144,146]}\), and similar results in fewer studies have been described with tacrolimus\(^{[21,22,151,152]}\). In a representative study, cyclosporine improved the laboratory tests of liver inflammation, reduced the histological activity index, and was well tolerated when administered for 26 wk\(^{[26]}\).

Mycophenolate mofetil has induced clinical and laboratory improvements in 39%-84% of patients, and it has allowed discontinuation of corticosteroid treatment in most patients\(^{[23,24,151,154-159]}\) (Table 4). Non-response or drug intolerance (nausea, vomiting, pancreatitis, rash, alopecia, deep venous thrombosis, and diarrhea) has been described in 34%-78% of patients treated with mycophenolate mofetil, and the potential benefits of this drug must be balanced against these deficiencies. Salvage therapy regardless of the drug is inconsistently effective, potentially toxic, interminable, and expensive.\(^{[156]}\) Liver transplantation may offer the most reliable form of rescue, and it must be considered carefully as an alternative to empirical new drug therapy in every salvage situation.\(^{[158]}\) (Table 4).

The results of salvage therapy with cyclosporine, tacrolimus or mycophenolate mofetil can be improved by selecting the patients who are most likely to respond. The major reason for treatment failure with these agents is uncertainty about the correct target population and the proper timing, dosing and duration of treatment. Patients may advance quickly beyond drug rescue, and many patients may need a new liver rather than a new drug.\(^{[38]}\) The ideal candidates for cyclosporine therapy are patients who have failed corticosteroid treatment or been intolerant of the conventional medications and who are still below minimal listing criteria for liver transplantation (MELD scores < 15 points).\(^{[151]}\) Transplantation should be considered at the first sign of liver decompensation (usually the development of ascites) during the new drug regimen.\(^{[156]}\) (Table 4).

Children with autoimmune hepatitis and cholangiographic features of sclerosing cholangitis (overlap syndrome) respond poorly to mycophenolate mofetil\(^{[24,178]}\), as do adult patients who are failing conventional treatment.\(^{[158]}\) Therapy with mycophenolate mofetil should be considered mainly in adults with azathioprine intolerance\(^{[158]}\) and children with non-response to conventional corticosteroid regimens.\(^{[24]}\) The metabolism of mycophenolate mofetil is independent of the thiorpurine methyltransferase pathway, and it can be considered in patients with known thiopurine methyltransferase deficiency.

Budesonide has promise as an alternative frontline therapy in treatment-naïve patients with autoimmune hepatitis\(^{[25,179,180]}\), but it has been variably successful as a salvage therapy in corticosteroid-treated patients with treatment failure or corticosteroid dependence.\(^{[26,181]}\) Furthermore, it can be associated with glucocorticoid side effects, particularly in patients with cirrhosis and portosystemic shunting.\(^{[161,181]}\) Similarly, treatment with ursodeoxycholic acid has not allowed consistent withdrawal from corticosteroid therapy or rescue from treatment failure.\(^{[162]}\)

DECISION TO TREAT THE ELDERLY

Twenty percent of adults with autoimmune hepatitis develop the disease after the age of 60 years\(^{[53,183,184]}\), and these patients have a greater degree of hepatic fibrosis at presentation than young adults aged < 40 years\(^{[185]}\) and higher frequencies of ascites\(^{[184]}\) and cirrhosis.\(^{[186]}\) These findings suggest that the elderly have aggressive liver disease that is commonly indolent and unsuspected. Symptoms of fatigue and myalgia may be attributed to the aging process; concurrent immune diseases, such as rheumatoid arthritis, may mask the underlying liver disease; and liver test abnormalities may be ascribed to the medications used for other ailments. The proper diagnosis may also trigger concern about side effects associated with corticosteroid therapy and result in reluctance to treat the condition in a standard fashion.\(^{[186]}\) These concerns are justified, but they do not mitigate the need for treatment or portend a dismal outcome.

The indications for treatment and the initial treatment regimens are the same for the elderly as for young adults.\(^{[24]}\) The preferred schedule is prednisone in combination with azathioprine (Table 1). Elderly patients enter remission as commonly as young adults (61% vs 59%), and they fail treatment less often (5% vs 24%, \(P = 0.03\)).\(^{[158]}\) Relapse, sustained remission, death from liver failure or need for liver transplantation occur as commonly in the elderly as in young adults\(^{[118]}\), and the elderly respond more quickly to medication.\(^{[11]}\) Patients aged \(\geq 60\) years enter remission within 6 mo more frequently than adults aged < 40 years (18% vs 2%, \(P = 0.02\)), and most have achieved an ideal or satisfactory end point of therapy within 24 mo (94% vs 64%, \(P = 0.003\)).\(^{[111]}\)

The development of side effects associated with medication relates mainly to the duration of initial therapy and the cumulative durations of subsequent corticosteroid treatment.\(^{[129]}\) Protracted corticosteroid therapy for > 24 mo and retreatment with corticosteroids after multiple relapses must be avoided to reduce the occurrence of vertebral compression and progressive osteopenia.\(^{[13]}\) The risk of treatment-related complications in the elderly underscores the importance of limiting corticosteroid therapy to < 24 mo. Azathioprine maintenance therapy (2 mg/kg per day) should be instituted if...
Czaja AJ. Treatment of autoimmune hepatitis

treatment is to be extended beyond 24 mo or be required after the first relapse[10,124] (Table 4).

A bone maintenance regimen should also be prescribed for all elderly patients undergoing initial corticosteroid treatment[13,30,124]. Regular weight-bearing exercise should be emphasized, and calcium (1-1.5 g/d), vitamin D3 (400-800 U/d), and alendronate (70 mg/wk) should be considered as adjuvant therapies. An annual bone density assessment can guide the vigor of the bone maintenance schedule. Budesonide (3 mg tid) can be considered as an empirical supplement to long-term azathioprine maintenance if liver inflammation is controlled inadequately[19,124]. Liver transplantation is effective in rescuing elderly patients with liver failure who have been screened for other comorbidity. The 5-year survival after liver transplantation in carefully screened elderly patients is comparable to that of young adults (80% in patients aged 60-65 years and 73% in patients aged > 65 years vs 78% in patients aged 18-59 years). Elderly patients also have fewer episodes of acute cellular rejection[112].

DECISION TO TREAT PREGNANT WOMEN

Pregnancy complicates the management of autoimmune hepatitis because of the risks that the liver disease and its treatment pose for the mother and the fetus (Table 4). Perinatal mortality is 4%[163]; serious complications develop in 9%[163]; caesarian section is required in 17%; stillbirths occur in 5%; and fetal loss is 21%[164]. These outcomes are better than those in mothers with diabetes, but they do indicate the need for high-risk obstetrical care[165]. The presence of maternal antibodies to SLA and extractable nuclear antigens (Ro/SSA) is associated with a complicated course[166].

Azathioprine is associated with congenital malformations in pregnant mice, and it is a category D drug for pregnancy[165]. The odds ratio for having a child with congenital malformations while taking azathioprine for inflammatory bowel disease is 3.4, whereas it is negligible in similarly treated pregnant women with systemic lupus erythematosus[166]. There have been no reports of congenital malformations in the children of mothers treated with azathioprine for autoimmune hepatitis[166], and there have been no serious consequences associated with breast feeding of these infants[167]. Nevertheless, the placenta is only a partial barrier to the metabolites of azathioprine[168]; there have been rigorously designed studies that confirm the safety of azathioprine in pregnant women with autoimmune hepatitis[166]; and azathioprine is not an essential medication in the management of the disease[19,30]. The preferred treatment during pregnancy is with prednisone alone.

Autoimmune hepatitis can improve during pregnancy possibly because the high blood levels of estrogen promote a cytokine shift from a type 1 cytotoxic profile to an anti-inflammatory type 2 profile[168,169]. The reduced inflammatory activity may allow a reduction in the dose of prednisone or its elimination[169]. Exacerbations of disease activity are common after delivery (12%-86%), presumably because the falling blood concentrations of estrogen facilitate a cytokine shift back to the cytotoxic type 1 profile[163,164,169]. These flares must be anticipated, and conventional dosing with prednisone should be resumed during the third trimester (Table 4).

Women with autoimmune hepatitis should not be discouraged from pregnancy, but they must be counseled about the increased frequency of prematurity and fetal loss, the normal low occurrence of congenital defects, the theoretical hazards of azathioprine during pregnancy, the possibility of an exacerbation of the liver disease after delivery, the need for high-risk obstetrical care, and the reasons for regular medical assessment during and after the pregnancy[160].

CONCLUSION

Current corticosteroid regimens (Table 1) are effective in the management of most patients with autoimmune hepatitis, and new pharmacological agents with powerful site-specific actions promise to strengthen the therapeutic repertoire. These treatments must be adapted and integrated to satisfy individual clinical situations. Established therapies can be improved by defining end points that permit optimal opportunity for resolution without extending beyond achievable goals and introducing undue risk of drug toxicity. The ideal treatment end point is normalization of liver tests and liver tissue, and the expected duration of initial therapy to achieve this end point is ≤ 24 mo (Table 2).

Autoimmune hepatitis is by nature an aggressive liver disease with fluctuating activity. Mild asymptomatic disease may be a temporary condition, and corticosteroid therapy should be considered for all patients regardless of disease activity at presentation. Other variations in the clinical phenotype, including acute severe (fulminant) presentations, absence of autoantibodies, and cholestatic presentations, of overlap syndromes), warrant management appropriate for the predominant manifestations of the disease (Table 2).

Relapse after drug withdrawal justifies a long-term maintenance regimen with azathioprine, and azathioprine can also be used as a single-drug therapy for patients with an incomplete response to conventional schedules. Treatment adjustments are warranted in elderly patients who respond slowly and in pregnant patients in whom azathioprine avoidance is prudent and postpartum exacerbations are possible (Tables 3 and 4).

Empiric salvage therapy includes the calcineurin inhibitors (cyclosporine and tacrolimus) and mycophenolate mofetil, and they can be introduced judiciously for otherwise refractory inflammation (cyclosporine or tacrolimus) or drug intolerance (mycophenolate mofetil) (Table 4). Salvage therapy is expensive, unproven, associated with its own toxicity, inconsistently effective, and poorly guided. It should never supersede indications for liver transplantation.
Treatment decisions in autoimmune hepatitis will not be difficult if they are guided by an awareness of the phenotypic diversity of the disease, realistic therapeutic expectations, willingness to make individualized adjustments according to the clinical need, and familiarity with the alternative empirical therapies.

REFERENCES

1. Cook GC, Mulligan R, Sherlock S. Controlled prospective trial of corticosteroid therapy in active chronic hepatitis. Q J Med 1971; 40: 159-185
2. Soloway RD, Summerskill WH, Baggenstoss AH, Geall MG, Gitnick GL, Elveback IR, Schoenfield LJ. Clinical, biochemical, and histological remission of severe chronic active liver disease: a controlled study of treatments and early prognosis. Gastroenterology 1972; 63: 820-833
3. Murray-Lyon IM, Stern RB, Williams R. Controlled trial of prednisone and azathioprine in active chronic hepatitis. Lancet 1973; I: 735-737
4. Kanzler S, Löhrl H, Gerken G, Galle PR, Lohse AW. Long-term management and prognosis of autoimmune hepatitis (AIH): a single center experience. Z Gastroenterol 2001; 39: 339-341, 344-348
5. Roberts SK, Therneau TM, Czaja AJ. Prognosis of histological cirrhosis in type 1 autoimmune hepatitis. Gastroenterology 1996; 110: 848-857
6. Floreni A, Niro G, Rosa Rizzetto E, Antoniassi S, Ferrara F, Carderi I, Baldov B, Premoli A, Olivero F, Morello E, Durazzo M. Type 1 autoimmune hepatitis: clinical course and outcome in an Italian multicentre study. Aliment Pharmacol Ther 2006; 24: 1051-1057
7. Seo S, Tourtounjian R, Conrad A, Blatt L, Tong MJ. Favorable outcomes of autoimmune hepatitis in a community clinic setting. J Gastroenterol Hepatol 2008; 23: 1410-1414
8. Czaja AJ, Carpenter HA. Decreased fibrosis during corticosteroid therapy of autoimmune hepatitis. J Hepatol 2004; 40: 646-652
9. Mohamadnejad M, Malekzadeh R, Nasser-Moghaddam S, Hagh-Azali S, Rajakshani N, Tavangar SM, Sedaghat M, Alimovahamadi SM. Impact of immunosuppressive treatment on liver fibrosis in autoimmune hepatitis. Dig Dis Sci 2005; 50: 547-551
10. Czaja AJ, Wolf AM, Summerskill WH. Development and early prognosis of esophageal varices in severe chronic active liver disease (CALD) treated with prednisone. Gastroenterology 1979; 77: 629-633
11. Czaja AJ. Rapidity of treatment response and outcome in type 1 autoimmune hepatitis. J Hepatol 2009; 51: 161-167
12. Czaja AJ, Beaver SJ, Shiels MT. Sustained remission after corticosteroid therapy of severe hepatitis B surface antigen-negative chronic active hepatitis. Gastroenterology 1987; 92: 251-255
13. Czaja AJ. Safety issues in the management of autoimmune hepatitis. Expert Opin Drug Saf 2008; 7: 319-333
14. Montano-Loza AJ, Carpenter HA, Czaja AJ. Features associated with treatment failure in type 1 autoimmune hepatitis and predictive value of the model of end-stage liver disease. Hepatology 2007; 46: 1138-1145
15. Czaja AJ, Davis GL, Ludwig J, Taswell HF. Complete resolution of inflammatory activity following corticosteroid treatment of HBsAg-negative chronic active hepatitis. Hepatology 1984; 4: 622-627
16. Czaja AJ, Ammon HV, Summerskill WH. Clinical features and prognosis of severe chronic active liver disease (CALD) after corticosteroid-induced remission. Gastroenterology 1980; 78: 518-523
17. Hegarty JE, Nouri Aria KT, Portmann B, Eddleston AL, Williams R. Relapse following treatment withdrawal in patients with autoimmune chronic active hepatitis. Hepatology 1983; 3: 685-689
18. Czaja AJ, Meron KV, Carpenter HA. Sustained remission after corticosteroid therapy for type 1 autoimmune hepatitis: a retrospective analysis. Hepatology 2002; 35: 890-897
19. Czaja AJ. Current and future treatments of autoimmune hepatitis. Expert Rev Gastroenterol Hepatol 2009; 3: 269-291
20. Malekzadeh R, Nasser-Moghaddam S, Kaviani MJ, Taheri H, Kamalian N, Soteoudeh M. Cyclosporin A is a promising alternative to corticosteroids in autoimmune hepatitis. Dig Dis Sci 2001; 46: 1521-1527
21. Van Thiel DH, Wright H, Carroll P, Abu-Elmagd K, Rodriguez-Rilo H, McMichael J, Irish W, Starzl TE. Tacrolimus: a potential new treatment for autoimmune chronic active hepatitis: results of an open-label preliminary trial. Am J Gastroenterol 1995; 90: 771-776
22. Aqel BA, Machicao V, Rosser B, Satyaranaraya R, Harnois DM, Dickson RC. Efficacy of tacrolimus in the treatment of steroid refractory autoimmune hepatitis. J Clin Gastroenterol 2004; 38: 805-809
23. Czaja AJ, Carpenter HA. Empiric therapy of autoimmune hepatitis with mycophenolate mofetil: comparison with conventional therapy for refractory disease. J Clin Gastroenterol 2005; 39: 819-825
24. Aw MM, Dhawan A, Samyn M, Bargiota A, Mieli-Vergani G. Mycophenolate mofetil as rescue treatment for autoimmune liver disease in children: a 5-year follow-up. J Hepatol 2009; 51: 156-160
25. Wiegand J, Schuler A, Kanzler S, Lohse A, Beuers U, Kreisel W, Spengler U, Koletzko S, Jansen PL, Hochhaus G, Möllmann HW, Pröls M, Manns MP. Budesonide in previously untreated autoimmune hepatitis. Liver Int 2005; 25: 927-934
26. Zandieh I, Krygier D, Wong V, Howard J, Worobetz L, Minuk G, Witt-Sullivan H, Yoshida EM. The use of budesonide in the treatment of autoimmune hepatitis in Canada. Can J Gastroenterol 2008; 22: 389-392
27. Czaja AJ. Diverse manifestations and evolving treatments of autoimmune hepatitis. Minerva Gastroenterol Dietol 2005; 51: 313-333
28. Czaja AJ, Bianchi FB, Carpenter HA, Krawitt EL, Lohse AW, Manns MP, McFarlane IG, Mieli-Vergani G, Toda G, Vergani D, Vierling J, Zeniya M. Treatment challenges and investigational opportunities in autoimmune hepatitis. Hepatology 2005; 41: 207-215
29. Czaja AJ, Bayraktar Y. Non-classical phenotypes of autoimmune hepatitis and advances in diagnosis and treatment. World J Gastroenterol 2009; 15: 2314-2328
30. Czaja AJ. Special clinical challenges in autoimmune hepatitis: the elderly, males, pregnancy, mild disease, fulminant onset, and nonwhite patients. Semin Liver Dis 2009; 29: 315-330
31. Álvarez F, Berg PA, Bianchi FB, Bianchi L, Burroughs AK, Cançado EL, Chapman RW, Cooksley WG, Czaja AJ, Desmet VJ, Donaldson PT, Eddleston AL, Fainboim L, Heathcote J, Homberg JC, Hoofnagle JH, Kakumu S, Krawitt EL, Mackay IR, MacSween RN, Maddrey WC, Manns MP, McFarlane IG, Meyer zum Büschenfelde KH, Zeniya M. International Autoimmune Hepatitis Group Report: review of criteria for diagnosis of autoimmune hepatitis. J Hepatol 1999; 31: 929-938
32. Hennes EM, Zeniya M, Czaja AJ, Parès A, Dalekos GN, Krawitt EL, Bittencourt PL, Porta G, Boberg KM, Hofer H, Bianchi FB, Shibata M, Schramm C, Eisenmann de Torres B, Galle PR, McFarlane I, Dienes HP, Lohse AW. Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology 2008; 48: 169-176
33. Maggiore G, Porta G, Bernard O, Hachdouel M, Alvarez F, Homberg JC, Alagille D. Autoimmune hepatitis with initial presentation as acute hepatic failure in young children. J Pediatr 1990; 116: 260-262
Czaja AJ. Treatment of autoimmune hepatitis

Herzog D, Rasquin-Weber AM, Debray D, Alvarez F. Subfulminant hepatic failure in autoimmune hepatitis type 1: an unusual form of presentation. J Hepatol 1997; 27: 578-582

Kessler WR, Cummings OW, Eckert G, Chalasani N, Lu-meng L, Kwo PY. Fulminant hepatic failure as the initial presenta-tion of acute autoimmune hepatitis. Clin Gastroenterol Hepatol 2004; 2: 625-631

Miyake Y, Iwasaki Y, Terada R, Onishi T, Okamoto R, Sakai N, Sakaguchi K, Shiratori Y. Clinical characteristics of fulminant-type autoimmune hepatitis: an analysis of eleven cases. Aliment Pharmacol Ther 2006; 23: 1347-1357

Burgart LJ, Batts KP, Ludwig J, Nikias GA, Czaja AJ. Recent-onset autoimmune hepatitis. Biopsy findings and clinical correlations. Am J Surg Pathol 1995; 19: 699-708

Singh R, Nair S, Farr G, Mason A, Perrillo R. Acute autoim-mune hepatitis presenting with centronidal liver disease: case report and review of the literature. Am J Gastroenterol 2002; 97: 2670-2673

Okano N, Yamamoto K, Sakaguchi K, Miyake Y, Shimada N, Hakoda T, Terada R, Baba S, Suzuki T, Tsuji T. Clinicopathological features of acute-onset autoimmune hepatitis. Hepatol Res 2003; 25: 263-270

Misrahi J, Thiim M, Graeme-Cook FM. Autoimmune hepa-titis with centrilobular necrosis. Am J Surg Pathol 2004; 28: 471-478

Hofer H, Oesterreicher C, Wrba F, Ferenci P, Penner E. Centrilobular necrosis in autoimmune hepatitis: a histological feature associated with acute clinical presentation. J Clin Pathol 2006; 59: 246-249

Miyake Y, Iwasaki Y, Terada R, Onishi T, Okamoto R, Takaguchi K, Ikeda H, Makino Y, Kohasi H, Sakaguchi K, Shiratori Y. Clinical features of Japanese type 1 autoimmune hepatitis patients with zone III necrosis. Hepatol Res 2007; 37: 801-805

Czaja AJ. Autoimmune hepatitis. Part B: diagnosis. Expert Rev Gastroenterol Hepatol 2007; 1: 129-143

Nikias GA, Batts KP, Czaja AJ. The nature and prognostic implications of autoimmune hepatitis with an acute presenta-tion. J Hepatol 1994; 21: 866-871

Czaja AJ, Carpenter HA. Validation of scoring system for diagnosis of autoimmune hepatitis. Dig Dis Sci 1996; 41: 305-314

Czaja AJ. Performance parameters of the diagnostic scor-ing systems for autoimmune hepatitis. Hepatology 2008; 48: 1540-1548

Czaja AJ, Hay JE, Rakela J. Clinical features and prognostic implications of severe corticosteroid-treated cryptogenic chronic active hepatitis. Mayo Clin Proc 1990, 65: 23-30

Czaja AJ, Carpenter HA, Santrach PJ, Moore SB, Homburger HA. The nature and prognosis of severe cryptogenic chronic active hepatitis. Gastroenterology 1993; 104: 1755-1761

Gassert DJ, Garcia H, Tanaka K, Reinus JF. Corticosteroid-responsive cryptogenic chronic hepatitis: evidence for seno-gative autoimmune hepatitis. Dig Dis Sci 2007; 52: 2433-2437

Heringlake S, Schütte A, Flemming P, Schmigiel W, Manns MP, Tillmann HL. Presumed cryptogenic liver disease in Germany: High prevalence of autoantibody-negative auto-immune hepatitis, low prevalence of NASH, no evidence for occult viral etiology. Z Gastroenterol 2009; 47: 417-423

Viruet EJ, Torres EA. Steroid therapy in fulminant hepatic failure secondary to autoimmune hepatitis. P R Health Sci J 1998; 17: 297-300

Ichai P, Duclos-Vallée JC, Guettier C, Hamida SB, Antonini WJG, Herkel J, Kanzler S, Galle PR, Dienes HP, Schramm C, Lohse AW. Serologic markers compared with liver biopsy for monitoring disease activity in autoimmune hepatitis. J Clin Gastroenterol 2008; 42: 926-930
76 Baeres M, Herkel J, Czaja AJ, Wies I, Kanzler S, Cancado EL, Porta G, Nishioha M, Simon T, Daenrich C, Schlumberger W, Galle PR, Lohse AW. Establishment of standardised SLA/LP immunocassays: specificity for autoimmune hepatitits, worldwide occurrence, and clinical characteristics. Gut 2001; 50: 254-264

77 Targan SR, Landers C, Vidrich A, Czaja AJ. High-titer antineutrophil cytoplasmic antibodies in type-1 autoimmune hepatitis. Gastroenterology 1995; 108: 1159-1166

78 Volta U, De Franceschi L, Lari F, Molinari N, Zoli M, Bianchi FB. Coeliac disease hidden by cryptogenic hypertransaminasemia. Lancet 1998; 352: 26-29

79 Kaukinen K, Halme L, Collin P, Färkkila M, Mäki M, Vehmanen P, Partanen J, Höckerstedt K. Celiac disease in patients with severe liver disease: gluten-free diet may reverse hepatic failure. Gastroenterology 2002; 122: 881-888

80 Abd A, Meddings J, Swain M. Liver abnormalities in celiac disease. Clin Gastroenterol Hepatol 2004; 2: 107-112

81 Stevens FM, McLoughlin RM. Is celiac disease a potentially treatable cause of liver failure? Eur J Gastroenterol Hepatol 2005; 17: 1015-1016

82 Volta U, Granito A, De Franceschi L, Petrolini N, Bianchi FB. Autoimmune hepatitis overlap syndrome of primary biliary cirrhosis and primary sclerosing cholangitis: an 16-year prospective study. J Hepatol 2002; 36: 499-504

83 Jaskowski TD, Schroder C, Martins TB, Litwin CM, Hill HR. IgA antibodies against endomysium and transglutaminase: a comparison of methods. J Clin Lab Anal 2001; 15: 108-111

84 Green PH, Barry M, Matsutani M, Serologic tests for celiac disease. Gastroenterology 2003; 124: 585-596; author reply 586

85 Gohlke F, Lohse AW, Diemers HP, Löhr H, Märker-Hermann M, Gerken G, Meyer zum Büschenfelde KH. Evidence for an overlap syndrome of autoimmune hepatitis and primary sclerosing cholangitis. J Hepatol 1996; 24: 699-705

86 McNair AN, Moloney M, Portmann BC, Williams R, McFarlane IG. Autoimmune hepatitis overlapping with primary sclerosing cholangitis in five cases. Am J Gastroenterol 1998; 93: 777-784

87 Floreni A, Rizzotto ER, Ferrara F, Carderi I, Caroli D, Blasone L, Baldo V. Clinical course and outcome of autoimmune hepatitis/primary sclerosing cholangitis overlap syndrome. J Hepatol 2005; 42: 1516-1522

88 Talwalkar JA, Keach JC, Angulo P, Lindor KD. Overlap of autoimmune hepatitis and primary biliary cirrhosis: an evaluation of a modified scoring system. Am J Gastroenterol 2002; 97: 1191-1197

89 Waddell MJS, Lefkowitch J, Berk PD. Evolution from primary biliary cirrhosis to primary biliary cirrhosis/autoimmune hepatitis overlap syndrome. Semin Liver Dis 2008; 28: 128-134

90 Czaja AJ, Carpenter HA. Autoimmune hepatitis with incident histologic features of bile duct injury. Hepatology 2001; 34: 659-665

91 Czaja AJ, Muratori P, Muratori L, Carpenter HA, Bianchi FB. Diagnostic and therapeutic implications of bile duct injury in hepatitits. Liver Int 2004; 24: 322-329

92 Czaja AJ. The variant forms of autoimmune hepatitis. Ann Intern Med 1996; 125: 588-598

93 Czaja AJ. Variant forms of autoimmune hepatitis. Curr Gastroenterol Rep 1999; 1: 63-70

94 Heathcote J. Variant syndromes of autoimmune hepatitis. Clin Liver Dis 2002; 6: 669-684

95 Rust C, Beuers U. Overlap syndromes among autoimmune liver diseases, World J Gastroenterol 2008; 14: 3568-3573

96 Al-Chalabi T, Portmann BC, Bernal W, McFarlane IG, Heneghan MA. Autoimmune hepatitis overlap syndromes: an evaluation of treatment response, long-term outcome and survival. Aliment Pharmacol Ther 2008; 28: 209-220

97 Nezu S, Tanaka A, Yasui H, Imamura M, Nakajima H, Ishida H, Takahashi S. Presence of antimitochondrial autoantibodies in patients with autoimmune hepatitis. J Gastroenterol Hepatol 2006; 21: 1448-1454

98 Montano-Loza AJ, Carpenter HA, Czaja AJ. Frequency, behavior, and prognostic implications of antimitochondrial antibodies in type 1 autoimmune hepatitis. J Clin Gastroenterol 2008; 42: 1047-1053

99 Mishima S, Omagari K, Ohba K, Kodokawa Y, Masuda J, Mishima R, Kinoshita H, Hayashida K, Isomoto H, Shikuku S, Mizuta Y, Kohno S. Clinical implications of antimitochondrial antibodies in type 1 autoimmune hepatitis: a longitudinal study. Hepatogastroenterology 2008; 55: 221-227

100 O’Brien C, Joshi S, Feld JJ, Guindi M, Dienes HP, Heathcote EJ. Long-term follow-up of antimitochondrial antibody-positive autoimmune hepatitis. Hepatology 2008; 48: 550-556

101 Ludwig J, Czaja AJ, Dickson ER, LaRusso NF, Wiesner RH. Manifestations of nonsuppurative cholangitis in chronic hepatobiliary diseases: morphologic spectrum, clinical correlations and terminology. Liver 1984; 4: 105-116

102 Czaja AJ, Carpenter HA, Santrach PJ, Moore SB. Autoimmune hepatitis within the spectrum of autoimmune liver disease. Hepatology 2000; 31: 1231-1238

103 Czaja AJ, Carpenter HA, Manns MP. Antibodies to soluble liver antigen, P4501D6, and mitochondrial complexes in chronic hepatitis. Gastroenterology 1993; 105: 1522-1528

104 Perdigoto R, Carpenter HA, Czaja AJ. Frequency and significance of chronic ulcerative colitis in severe corticosteroid-treated autoimmune hepatitis. J Hepatol 1992; 14: 325-331

105 Bittencourt PL, Farias AQ, Porta G, Canclado EL, Miura I, Pugliese R, Kallj J, Goldberg AC, Carrilho FJ. Frequency of concurrent autoimmune disorders in patients with autoimmune hepatitis: effect of age, gender, and genetic background. J Clin Gastroenterol 2008; 42: 300-305

106 Abdalian R, Dhar P, Jhaveri K, Haider M, Guindi M, Heathcote EJ. Prevalence of sclerosing cholangitis in adults with autoimmune hepatitis: evaluating the role of routine magnetic resonance imaging. Hepatology 2008; 47: 949-957

107 Gregorio GV, Portmann B, Karani J, Harrison P, Donaldson PT, Vergani D, Mieli-Vergani G. Autoimmune hepatitis/sclerosing cholangitis overlap syndrome in childhood: a 16-year prospective study. Hepatology 2001; 33: 544-553

108 Wee A, Ludwig J. Pericholangitis in chronic ulcerative colitis: primary sclerosing cholangitis of the small bile ducts? Ann Intern Med 1985; 102: 581-587

109 Angulo P, Maor-Kendler Y, Lindor KD. Small-duct primary sclerosing cholangitis: a long-term follow-up study. Hepatology 2002; 35: 1494-1500

110 Kim WR, Ludwig J, Lindor KD. Variant forms of cholestatic diseases involving small bile ducts in adults. Am J Gastroenterol 2000; 95: 1130-1138

111 Lewin M, Vilgrain V, Ozene V, Lemoine M, Wendum D, Paradis V, Ziol M, Arrivé L, Beaugrand M, Poupon R, Valla D, Chazouilleres O, Corpechot C. Prevalence of sclerosing cholangitis in adults with autoimmune hepatitis: a prospective study. J Hepatol 2009; 50: 328-337

112 Chazouilleres O, Wendum D, Serfaty L, Rosmorduc O, Poupon R. Long term outcome and response to therapy of primary biliary cirrhosis-autoimmune hepatitis overlap syndrome. J Hepatol 2006; 44: 400-406

113 Czaja AJ. Overlap syndrome of primary biliary cirrhosis and autoimmune hepatitis: a foray across diagnostic boundaries. J Hepatol 2006; 44: 251-252

114 Czaja AJ, dos Santos RM, Porto A, Santrach PJ, Moore SB. Immune phenotype of chronic liver disease. Dig Dis Sci 1998; 43: 2149-2155

115 Czaja AJ, Santrach PJ, Breanndan Moore S. Shared genetic risk factors in autoimmune liver disease. Dig Dis Sci 2001; 46: 140-147

116 Boberg KM, Fausa O, Haaland T, Holter E, Mellbye OJ,
Czaja AJ. Treatment of autoimmune hepatitis

Spurkland A, SchrumpeF. Features of autoimmune hepatitis in primary sclerosing cholangitis: an evaluation of 114 primary sclerosing cholangitis patients according to a scoring system for the diagnosis of autoimmune hepatitis. *Hepatology* 1996; 23: 1369-1376

Farias AQ, Goncalves LL, Bittencourt PL, De Melo ES, Abrantes-Lemos CP, Porta G, Nakhle MC, Carrilho FJ, Cancado EL. Applicability of the IAIGH scoring system to the diagnosis of antimitochondrial/anti-M2 seropositive variant form of autoimmune hepatitis. *J Gastroenterol Hepatol* 2006; 21: 887-893

Mistilis SP, Skyring AP, Blackburn CR. Natural history of active chronic hepatitis. I. Clinical features, course, diagnostic criteria, morbidity, mortality and survival. *Australas Ann Med* 1968; 17: 214-225

Verma S, Gunawan B, Mandler M, Govindraj S, Redeker A. Factors predicting relapse and poor outcome in type I autoimmune hepatitis: role of cirrhosis development, patterns of transaminases during remission and plasma cell activity in the liver biopsy. *Am J Gastroenterol* 2004; 99: 1510-1516

Miyake Y, Iwasaki Y, Terada R, Takagi S, Okamaoto R, Ikeda RH, Sakai N, Makino Y, Kobashi H, Takaguchi K, Sakaguchi K, Shiratori Y. Persistent normalization of serum alanine aminotransferase levels improves the prognosis of type 1 autoimmune hepatitis. *J Hepatol* 2005; 43: 951-957

Montano-Loza AJ, Carpenter HA, Czaja AJ. Improving the end point of corticosteroid therapy in type 1 autoimmune hepatitis to reduce the frequency of relapse. *Am J Gastroenterol* 2007; 102: 1005-1012

Al-Chalabi T, Heneghan MA. Remission in autoimmune hepatitis: what is it, and can it ever be achieved? *Am J Gastroenterol* 2007; 102: 1013-1015

Czaja AJ, Carpenter HA. Histological features associated with relapse after corticosteroid withdrawal in type 1 autoimmune hepatitis. *Liver Int* 2003; 23: 116-123

Czaja AJ. Clinical features, differential diagnosis and treatment of autoimmune hepatitis in the elderly. *Drugs Aging* 2008; 25: 219-239

Wang KK, Czaja AJ. Prognosis of corticosteroid-treated hepatitis B surface antigen-negative chronic active hepatitis in postmenopausal women: a retrospective analysis. *Gastroenterology* 1989; 97: 1288-1293

Stellon AJ, Keating JJ, Johnson PJ, McFarlane IG, Williams R. Maintenance of remission in autoimmune chronic active hepatitis with azathioprine after corticosteroid withdrawal. *Hepatology* 1988; 8: 781-784

Johnson PJ, McFarlane IG, Williams R. Azathioprine for long-term maintenance of remission in autoimmune hepatitis. *N Engl J Med* 1995; 333: 958-963

Czaja AJ. Low-dose corticosteroid therapy after multiple relapses of severe HBsAg-negative chronic active hepatitis. *Hepatology* 1990; 11: 1044-1049

Schalm SW, Ammon HV, Summerskill WH. Failure of customary treatment in chronic active liver disease: causes and management. *Ann Clin Res* 1976; 8: 221-227

Sanchez-Urdazpal L, Czaja AJ, van Hooe B, Krom RA, Wisse EE. Prognostic features and role of liver transplantation in severe corticosteroid-treated autoimmune chronic active hepatitis. *Hepatology* 1992; 15: 215-221

Vogel A, Heinrich E, Bahr MJ, Rifai K, Flemming P, Arndt C, Blankenhauer J, Nashan B, Mans M, Strupp M. Long-term outcome of liver transplantation for autoimmune hepatitis. *Clin Transplant* 2004; 18: 62-69

Cross TJ, Antoniades CG, Muijens P, Al-Chalabi T, Aluvinha V, Agarwal K, Portmann BC, Rela M, Heaton ND, O’Grady JG, Heneghan MA. Liver transplantation in patients over 60 and 65 years: an evaluation of long-term outcomes and survival. *Liver Transpl* 2007; 13: 1382-1388

Czaja AJ, Wolf AM, Baggenstoss AH. Laboratory assessment of severe chronic active liver disease during and after corticosteroid therapy: correlation of serum transaminase and gamma globulin levels with histologic features. *Gastroenterology* 1981; 80: 687-692

Montano-Loza AJ, Masoulette AL, Ma M, Bastiampillai RJ, Bain VG, Tandon P. Risk factors for recurrence of autoimmune hepatitis after liver transplantation. *Liver Transpl* 2009; 15: 1254-1261

Murasko DM, Goonewardene IM. T-cell function in aging: mechanisms of decline. *Annu Rev Gerontol Geriatr* 1990; 10: 71-96

Schwab R, Russo C, Weksler ME. Altered major histocompatibility complex-restricted antigen recognition by T cells from elderly humans. *Eur J Immunol* 1992; 22: 2989-2993

Ben-Yehuda A, Weksler ME. Immune senescence: mechanisms and clinical implications. *Cancer Invest* 1992; 10: 525-531

Czaja AJ, Carpenter HA. Distinctive clinical phenotype and treatment outcome of type 1 autoimmune hepatitis in the elderly. *Hepatology* 2006; 43: 532-538

Czaja AJ, Carpenter HA, Santrach PJ, Moore SB. Significance of HLA DR4 in type 1 autoimmune hepatitis. *Gastroenterology* 1993; 105: 1502-1507

Czaja AJ, Stettell MD, Thomson LJ, Santrach PJ, Moore SB, Donaldson PT, Williams R. Associations between alleles of the major histocompatibility complex and type 1 autoimmune hepatitis. *Hepatology* 1997; 25: 317-323

Stettell MD, Donaldson PT, Thomson LJ, Santrach PJ, Moore SB, Czaja AJ, Williams R. Allelic basis for HLA-encoded susceptibility to type 1 autoimmune hepatitis. *Gastroenterology* 1997; 112: 2028-2035

Montano-Loza AJ, Carpenter HA, Czaja AJ. Clinical significance of HLA DRB103-DRB104 in type 1 autoimmune hepatitis. *Liver Int* 2006; 26: 1201-1208

Kanzler S, Gerken G, Löhr H, Galle PR, Meyer zum Büschenfelde KH, Lohse AW. Duration of immunosuppressive therapy in autoimmune hepatitis. *J Hepatol* 2001; 34: 355-356

Mistilis SP, Vickers CR, Darroch MH, McCarthy SW. Cyclosporin, a new treatment for autoimmune chronic active hepatitis. *Med J Aust* 1985; 143: 463-465

Hyams JS, Ballow M, Leichtner AM. Cyclosporine treatment of autoimmune chronic active hepatitis. *Gastroenterology* 1987; 93: 890-893

Person JL, McHutchison JC, Fong TL, Redeker AG. A case of cyclosporine-sensitive, steroid-resistant, autoimmune chronic active hepatitis. *J Clin Gastroenterol* 1993; 17: 317-320

Sherman KE, Narkewicz M, Pinto PC. Cyclosporine in the management of corticosteroid-resistant type 1 autoimmune chronic active hepatitis. *J Hepatol* 1994; 21: 1040-1047

Jackson LD, Song E. Cyclosporin in the treatment of corticosteroid-resistant autoimmune chronic active hepatitis. *Gut* 1995; 36: 459-461

Fernandes NF, Redeker AG, Vierling JM, Villamil FG, Fong TL. Cyclosporine therapy in patients with steroid resistant autoimmune hepatitis. *Am J Gastroenterol* 1999; 94: 241-248

Debray D, Maggiore G, Girardet JP, Malliet E, Bernard O. Efficacy of cyclosporin A in children with type 2 autoimmune hepatitis. *J Pediatr* 1999; 135: 111-114

Chatur N, Ramji A, Bain VG, Ma MM, Marotta PJ, Ghen CN, Lilly LB, Heathcote EJ, Deschenes M, Lee SS, Steinbrecher UP, Yoshida EM. Transplant immunosuppressive agents in non-transplant chronic autoimmune hepatitis: the Canadian association for the study of liver (CASL) experience with mycophenolate mofetil and tacrolimus. *Liver Int* 2005; 25: 723-727

Larsen FS, Vainer B, Eefsen M, Bjerring PN, Adel Hansen B. Low-dose tacrolimus ameliorates liver inflammation and fibrosis in steroid refractory autoimmune hepatitis. *World J Gastroenterol* 2007; 13: 3232-3236

Czaja AJ. Mycophenolate mofetil to the rescue in autoimmune hepatitis: a fresh sprout on the decision tree. *J Hepatol*
Czaja AJ. Treatment of autoimmune hepatitis