Optimal sub-Poissonian light generation from twin beams by photon-number resolving detectors

Marco Lamperti,1 Alessia Allevi,1,2 Maria Bondani,3,2 Radek Machulka,4 Václav Michálek,5 Ondřej Haderka,4 and Jan Peřina Jr.4

1 Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy
2 CNISM UdR Como, Via Valleggio 11, 22100 Como, Italy
3 Istituto di Fotonica e Nanotecnologie, CNR, Via Valleggio 11, 22100 Como, Italy
4 RCPTM, Joint Laboratory of Optics of PU and Inst. Phys. AS CR, 17. listopadu 12, 77146 Olomouc, Czech Republic
5 Institute of Physics AS CR, Joint Laboratory of Optics, 17. listopadu 50a, 77146 Olomouc, Czech Republic

We generate nonclassical conditional states by exploiting the quantum correlations of multi-mode twin-beam states endowed with a sizeable number of photons. A strong relation between the sub-shot-noise correlations exhibited by twin beams and the sub-Poissonian character of the conditional states is experimentally revealed. It determines optimal conditions for sub-Poissonian light generation.

I. INTRODUCTION

During the last decade, the generation of nonclassical states in the continuous variable domain by means of conditional measurements has been extensively investigated for many quantum-optical applications, including quantum information processing, quantum computing and quantum cryptography [1–3]. In general, conditional quantum-state preparation schemes benefit from the existence of correlations between a signal mode and an ancilla system, such as two output ports of a beamsplitter [4], signal and idler modes in spontaneous parametric down-conversion (SPDC) [5], cavity mode and atomic levels in cavity QED [6]. The schemes are based on the fact that, when some observable is measured on the ancilla, the state of the signal mode is irreversibly modified. In principle, conditional measurements are not directly related to nonclassicality since also classical conditional states can be prepared (e.g., by photon subtraction on thermal states or phase-averaged coherent states [7–8]). From the experimental point of view, the production of nonclassical states by means of conditional measurements has been achieved in the macroscopic regime by starting from a nondegenerate optical parametric oscillator operated above threshold [9,10], in the mesoscopic domain by selecting a small specific interval in a very noisy condition [11], and at very low level by a number of photon-counting detectors, mostly operated in single-photon regime [12–16].

It is worth noting that the use of photon-counting detectors instead of single-photon detectors offers the possibility not only to enhance the heralding of single-photon states by suppressing higher photon-number components [17,19], but also to perform multiple photon-counting operations in order to produce quasi-Fock states endowed with a number of photons larger than 1.

The possibility to extend the experimental results presented so far to a more mesoscopic photon-number domain, where the states are more robust with respect to losses, is thus desirable and still subject to active research. Indeed, the main limitation to achieve this goal is related to the performances of the available detectors. For instance, the fiber-loop detectors can work only at very low light level due to number of single-photon detectors that constitute their structure [15,20,21]. Silicon photomultipliers are characterized by dark counts and cross-talk effect [22,25]. EMCCD and iCCD cameras are rather noisy because of the gain spreading [5,26], superconductors, such as the transition-edge sensor (TES) [27] and the superconducting nanowires [28] must operate at cryogenic temperatures and thus are rather cumbersome. The detectors we used to perform our experimental work are commercial photon-counting detectors, usually called hybrid photodetectors (HPD, mod. R10467U-40, Hamamatsu, Japan), whose main limitation is given by the actual detection efficiency, which is much lower than 50% due to the non perfect photon-number resolution. Nevertheless, in this work we demonstrate that thanks to the good linearity of such detectors, it is possible to generate nonclassical conditional states from a multimode twin beam (TWB) with sizeable numbers of photons. A systematic study of the quantum properties of the TWB state, given in terms of the noise reduction factor [11], is performed to show that the optimal generation of sub-Poissonian conditional states strongly depends on the existence of nonclassical correlations [29,31], but it is also affected by several other experimental parameters.

II. MULTIMODE TWB IN THE MESOSCOPIC PHOTON-NUMBER REGIME

In general, TWB states are intrinsically spectrally multimode [32]. We have already demonstrated that a com-
pact description of multimode TWB is given by

$$|\psi_{\mu}\rangle = \sum_{n=0}^{\infty} \sqrt{p^n_{\mu}}|n^\otimes\rangle_s \otimes |n^\otimes\rangle_i,$$

(1)

where $|n^\otimes\rangle = \delta(n - \sum_{k=1}^{\mu} n_k) \otimes \delta(n_k)$ represents the n-photon state coming from μ equally-populated modes that impinge on the detector and

$$p^n_{\mu} = \frac{(n + \mu - 1)!}{n!(\mu - 1)!(N/\mu + 1)^n(\mu/N + 1)^n}$$

(2)

is the multimode thermal photon-number probability distribution for N mean-photon number. The TWB state in Eq. (1) exhibits pairwise correlations, which are preserved even when the state is detected by non-ideal detection efficiency ($\eta < 1$). The quantification of such correlations can be experimentally obtained by measuring the noise reduction factor $R = \sigma^2(m_1 - m_2)/(m_1 + m_2)$, where m_j is the number of detected photons in the j arm, $(m_1 + m_2)$ represents the shot-noise level, symbol $\langle \rangle$ denotes the mean value of the distribution and $\sigma^2()$ indicates the variance. R is a good nonclassicality criterion because it is possible to demonstrate that for nonclassical states $1 - \eta < R < 1$ [34]. When one of the two parties, say the idler beam, is detected and m_2 photons are obtained in the measurement, it is possible to demonstrate that the conditional state in the signal arm is characterized by a Fano factor $F = \sigma^2(m)/\langle m \rangle$ that, in the case of a multimode TWB state [35, 36], reads as follows

$$F = (1-\eta)\frac{M(m_2 + \mu)(M + \eta\mu)}{(M + \mu)(M + \eta\mu)(M + \mu) - \eta\mu(M + \mu) + 1}$$

(3)

where η is the overall detection efficiency that is assumed equal in the two arms and for each of the μ modes, and M is the mean number of detected photons of the unconditional state: $M = \eta N$.

As shown in Fig. 1, the SPDC process was obtained by sending the third-harmonics (at 266 nm) of a cavity-dumped Kerr-lens mode-locked Ti:Sapphire laser (Mira 900, Coherent Inc. and PulseSwitch, A.P.E.) to a type-I BBO crystal (8x8x5 mm3, cut angle $\varphi_c = 48$ deg). The pulses, whose duration was set at 144 fs, were delivered at 11 kHz to match the maximum repetition rate of the detection apparatus. The pump-beam profile was well approximated by a plane wave, its polarization was adjusted by means of a half-wave plate (HWP) and its power was changed by a variable neutral density filter (ND). We collected two non-collinear frequency-degenerate (at 532 nm) parties of the TWB state at a distance of 200 mm from the BBO crystal. In each arm the light, spectrally filtered by a bandpass filter (BPF), was selected by an iris with variable aperture (PH), focused into a multimode fiber (MF, 600-µm-core diameter) and delivered to a photon-counting detector. In particular, we used two hybrid photodetectors, whose declared quantum efficiency is $\sim 50\%$ in the spectral region we investigated [35, 36]. The TWB was generated in the linear gain regime, as testified by Fig. 2(a), in which we show the mean number of photons measured in the idler arm as a function of the pump mean powers for different iris sizes. Dots: experimental data, lines: theoretical expectations according to Eq. (2).

FIG. 2. Panel(a): Mean number of detected photons in the idler arm as a function of the pump mean powers for different iris sizes. Dots: experimental data, lines: linear fits. Panel(b): Detected photon-number distributions of some realizations of TWB. Dots: experimental data, lines: theoretical expectations according to Eq. (2).

III. EXPERIMENTAL CHARACTERIZATION OF QUANTUM PROPERTIES OF TWB

Quantum properties of the TWB state were investigated by measuring the pulse-by-pulse sub-shot-noise correlations at different pump mean powers and for different choices of the collection iris size. It is important to remark that our results have been obtained in terms of detected photons by processing the experimental data.
in a self-consistent way \cite{35,36} without any a-priori calibration of the detection chain and any background subtraction. In Fig. 3(a), we plot \(R \) as a function of the pump mean power for different choices of the iris size. It is almost evident that the noise reduction is independent of the pump power, which was changed by means of a half-wave plate in order to keep the beam profile constant. In fact, we have already demonstrated that changing the pump beam intensity by also varying the beam size determines a strong variation of \(R \) \cite{11}. Moreover, it is important to notice that this behavior is more evident in the macroscopic regime, in which the effects of the electronic noise on the one side and of the laser fluctuations on the other side make the investigation of quantum properties more challenging. The dependence of the noise reduction factor on the iris size for fixed choices of the pump mean power is shown in Fig. 3(b), in which \(R \) exhibits a minimum as a function of the iris size. The minimum occurs when the irises are \(\sim 3\text{-mm} \) wide and coincides with the selection of the largest possible correlated portions of the twin cones \cite{37}. When the irises are smaller, the number of collected photon pairs decreases and the noise-reduction factor \(R \) increases because of geometrical filtering inside the correlated areas of twin beams \cite{38}. On the other hand, larger values of iris sizes exceeding the width of the cone do not substantially increase the collection of twin components, but the detection of unpaired areas contributions. In both panels of Fig. 3 the theoretical expectations, shown as lines for guiding the eye, are obtained by using the experimental parameters, determined in a self-consistent way as described in \cite{8}, in the definition of \(R \) given in \cite{29} for the case of a single-mode state and here extended to the multimode case. In particular, the multimode expression of \(R \) reads as

\[
R = 1 - 2\eta \sqrt{\frac{\langle m_1 \rangle \langle m_2 \rangle}{\langle m_1 \rangle + \langle m_2 \rangle}} + \frac{(\langle m_1 \rangle \langle m_2 \rangle)^2}{\mu(\langle m_1 \rangle + \langle m_2 \rangle)}.
\]

where \(\langle m_1 \rangle \) and \(\langle m_2 \rangle \) are the experimental mean values of detected photons, \(\eta \) was calculated by imposing \(R = \sigma^2(m_1 - m_2)/(\langle m_1 \rangle + \langle m_2 \rangle) = 1 - \eta \), that is by assuming that the measured state is actually a twin beam and \(\mu \) is the average of the values of the modes in signal and idler which have been determined by using the first two moments of the detected-photon distribution, namely \(\mu_i = \langle m_i \rangle^2/(\sigma^2(m_i) - \langle m_i \rangle) \), \(i = 1, 2 \).

\section{IV. Sub-Poissonian Light Generation}

By exploiting the TWB states characterized above, we performed conditional measurements by selecting one or two photons in the idler beam, thus obtaining the conditional states \(\varrho_{m=1} \) and \(\varrho_{m=2} \) on the signal beam, respectively. This choice gives us the possibility to show that our detection apparatus can be used to perform conclusive photon subtractions by exploiting the photon-counting capability of our detectors. In particular, we remark that the results obtained in the case \(\varrho_{m=1} \) are definitely different from those that can be achieved by employing single-photon detectors operated in Geiger ON/OFF mode because we do not need to assume that the output states contain 1 photon at most. The two conditioning operations presented in this work are useful to investigate the dependence of the nonclassical nature of the conditional states on the different experimental parameters involved in their production. The non-classicality of the conditional states can be quantified by measuring the Fano factor of detected photons. In general, for any state detected with Bernoullian probability, the mean value and the variance of the detected-photon distribution read as \(\langle m \rangle = \eta \langle n \rangle \) and \(\sigma^2(m) = \eta^2 \sigma^2(n) + \eta(1 - \eta) \langle n \rangle \), respectively, where \(\eta \) is the overall detection efficiency. The Fano factor for detected photons is thus given by \(F_n = \eta F_n + (1 - \eta) \), where \(F_n \) is the Fano factor for photons. If \(F_n \leq 1 \), the light is nonclassical and is called sub-Poissonian. Note that the value 1 for the boundary between classical and nonclassical behavior still holds for detected photons. It is interesting to notice that the minimum value of this expression coincides with the minimum value of noise reduction factor \(R = 1 - \eta \) in the noiseless limit. In Fig. 4 we plot \(F_n \) for \(\varrho_{m=1} \) (panel (a)) and \(\varrho_{m=2} \) (panel (b)) as a function of the iris size for four choices of the pump power. We ascribe the discrepancy between experimental data (coloured dots) and theoretical expectations (coloured open symbols + lines, which are a guide for the eye) to possible fluctuations caused by the limited number of experimental data giving the conditional states. For the same reason, the data corresponding to the same low pump mean power (i.e. 31.2 \(\mu \text{W} \)) are characterized.
by bigger error bars in the case $\theta_{m_2=2}$. Despite this, the minima of F_m as functions of the iris size coincide with the minimum value of R of the TWB states. We notice that the irregularities in the theoretical curves are due to the fact that, as in the case of Fig. 3, the theoretical expectations were evaluated at each data point in the very values of the experimental parameters (the mean number of photons is in the range 0-3.2; the number of modes varies from 2 to 200, whereas the overall detection efficiency changes from 0.06 to 0.17) as calculated from the data. The experimental results confirm

that the amount of nonclassicality in a twin-beam state represents the critical parameter for sub-Poissonian-light generation. Moreover, the largest sub-Poissonianity, that is the lowest value of Fano factor F_m, is obtained for low pump powers, i.e. when the twin beam is weak. This experimental conclusion is predicted by theory considering F_m as a function of M for $\eta = 0.15$ and different choices of μ in the case $m_2 = 1$ (solid line in Fig. 5(a)) and $m_2 = 2$ (dots). It is evident that the lower the mean value of the unconditioned state, the more sub-Poissonian the conditional state is. However, we note that the weaker the twin beam the smaller the post-selection probability in this regime, which imposes restrictions from the practical point of view.

It is worth noting that also the number of modes μ influences the achievable values of Fano factor F_m. The larger the number of modes, the smaller the values of Fano factor (see Fig. 5(b)). In fact, larger values of μ lead to narrower photon-pair statistics (transition from thermal to Poissonian distributions) that improves the post-selection capability of the applied scheme for non-ideal detection efficiency η.

FIG. 4. Fano factor F_m of the conditional states obtained on the signal by detecting $m_2 = 1$ (panel (a)) and $m_2 = 2$ (panel (b)) photons on the idler. The different colours correspond to different pump mean values. Dots: experimental data, Open symbols + lines: theoretical expectations.

FIG. 5. Panel (a): Simulations of F_m as a function of M for different choices of μ. Panel (b): Simulations of F_m as a function of μ for different choices of M. In both panels the quantum efficiency is $\eta = 0.15$ and the conditioning values are $m_2 = 1$ (solid lines) and $m_2 = 2$ (dots).

V. CONCLUSIONS

In conclusion, we have experimentally generated sub-Poissonian conditional states in the low gain regime starting from a multimode TWB state. By exploiting the linearity of our hybrid photodetectors, we have confirmed the correspondence of optimal generation conditions of sub-Poissonian conditional states with those needed for nonclassical pairwise correlations, even in the case of a limited quantum efficiency. In principle, similar results can be obtained by choosing larger conditioning values. Of course, to achieve this goal, larger samples of data are required in order to accumulate enough statistics. Moreover, the experimental scheme presented in the paper could be exploited for the production of conditional states optimized to have selected properties, such as a given mean value or a given amount of sub-Poissonianity. Finally, in a previous paper we have already demonstrated that conditioning operations generate conditional states that are also non-Gaussian. This property, together with nonclassicality, is crucial for the realization of some quantum information protocols, such as entanglement distillation. However, according to the simulations presented in Ref. 33, the behavior of non-Gaussianity as a function of the different experimental parameters is not the same as that exhibited by the Fano factor. Work is in progress to find the best compromise between sub-Poissonianity and non-Gaussianity for the exploitation of the states in real protocols.
VI. ACKNOWLEDGMENTS

The research leading to these results has been supported by MIUR (FIRB LiChIS - RBFR10YQ3H). Support by projects P205/12/O382 of GA ČR and projects CZ.1.05/2.1.00/03.0058 and CZ.1.07/2.3.00/20.0058 of MSMT ČR are acknowledged.

[1] I. A. Walmsley and M. G. Raymer, “Toward Quantum-Information Processing with Photons,” Science 307, 1733–1734 (2005).
[2] T. C. Ralph, “Quantum optical systems for the implementation of quantum information processing,” Rep. Prog. Phys. 69, 853–898 (2006).
[3] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[4] M. Takeoka and M. Sasaki “Conditional generation of an arbitrary superposition of coherent states,” Phys. Rev. A 75, 064302 (2007).
[5] O. Haderka, J. Peˇ rina Jr., M. Hamar, and J. Peˇ rina, “Direct measurement and reconstruction of nonclassical features of twin beams generated in spontaneous parametric down-conversion,” Phys. Rev. A 71, 033815 (2005).
[6] J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[7] A. Allevi, A. Andreoni, M. Bondani, M. G. Genoni, and S. Olivares, “Reliable source of conditional states from single-mode pulsed thermal fields by multiple-photon subtraction,” Phys. Rev. A 82, 013816 (2010).
[8] A. Allevi, S. Olivares, M. G. A. Paris, and M. Bondani, “Generation of non-Gaussian Pulsed States by Conditional Measurements,” Conference Paper - Quantum Information and Measurement, Berlin, German (2012).
[9] J. Laurat, T. Coudreau, N. Treps, A. Maitre, and C. Fabre, “Conditional Preparation of a Quantum State in the Continuous Variable Regime: Generation of a sub-Poissonian State from Twin Beams,” Phys. Rev. Lett. 91, 213601 (2003).
[10] J. Laurat, T. Coudreau, N. Treps, A. Maitre, and C. Fabre, “Conditional preparation of a nonclassical state in the continuous-variable regime: Theoretical study,” Phys. Rev. A 69, 033808 (2004).
[11] M. Bondani, A. Allevi, G. Zambra, M. G. A. Paris, and A. Andreoni, “Sub-shot-noise photon-number correlation in a mesoscopic twin beam of light,” Phys. Rev. A 76, 013833 (2007).
[12] M. S. Kim, E. Park, P. L. Knight, H. Jeong, “Nonclassicality of a photon-subtracted Gaussian field,” Phys. Rev. A 71, 043805 (2005).
[13] A. Zavatta, V. Parigi, and M. Bellini, “Experimental nonclassicality of single-photon-added thermal light states,” Phys. Rev. A 75, 052106 (2007).
[14] A. Ourjoumtsev, A. Dantan, R. Tualle-Broui, and P. Grangier, “Increasing Entanglement between Gaussian States by Coherent Photon Subtraction, Phys. Rev. Lett. 98, 030502 (2007).
[15] H. Takahashi, J. S. Neergaard-Nielsen, M. Takeuchi, M. Takeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, “Entanglement distillation from Gaussian input states,” Nature Photon. 4, 178–181 (2010).
[16] A. M. Branczyk, T. C. Ralph, W. Helwig, and C. Silberhorn, “Optimized generation of heralded Fock states using parametric down-conversion,” New J. Phys. 12, 063001 (2010).
[17] J. Peˇ rina Jr., O. Haderka and J. Soubusta, “Quantum cryptography using a photon source based on postselection from entangled two-photon states,” Phys. Rev. A 64, 052305 (2001).
[18] O. Haderka, M. Hamar and J. Peˇ rina Jr., “Experimental multi-photon-resolving detector using a single avalanche photodiode,” Eur. Phys. J. D 28, 149–154 (2004).
[19] A. Christ and C. Silberhorn, “Limits on the deterministic creation of pure single-photon states using parametric down-conversion,” Phys. Rev. A 85, 023829 (2012).
[20] J. Reháček, Z. Hradil, O. Haderka, J. Peˇ rina Jr., and M. Hamar, “Multiple-photon resolving fiber-loop detector,” Phys. Rev. A 67, 061801(R) (2003).
[21] M. J. Fitz, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
[22] I. Afek, A. Natan, O. Ambar, and Y. Silberberg, “Quantum state measurements using multipixel photon detectors,” Phys. Rev. A 79, 043830 (2009).
[23] M. Ramilli, A. Allevi, V. Chmill, M. Bondani, M. Caccia, and A. Andreoni, “Photon-number statistics with silicon photomultipliers,” J. Opt. Soc. Am. B 27, 852–862 (2010).
[24] L. Dovrat, M. Bakstein, D. Istrati, A. Shaham, and H. S. Eisenberg, “Measurements of the dependence of the photon-number distribution on the number of modes in parametric down-conversion,” Opt. Express 20, 2266–2276 (2012).
[25] D. A. Kalashnikov, S.-H. Tan, T. Sh. Iskakov, M. V. Chekhova, and L. A. Krivitsky, “Measurement of two-mode squeezing with photon number resolving multipixel detectors,” Opt. Lett. 37, 2829–2831 (2013).
[26] J.-L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of Sub-Shot-Noise Correlations of Spatial Fluctuations in the Photon-Counting Regime,” Phys. Rev. Lett. 101, 233604 (2008).
[27] A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032–3040 (2008).
[28] G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, B. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79,
705–707 (2001).

[29] J. Peřina, J. Křepelka, J. Peřina Jr., M. Bondani, A. Allevi, and A. Andreoni, “Experimental joint signal-idler quasidistributions and photon-number statistics for mesoscopic twin beams,” Phys. Rev. A 76, 043806 (2007).

[30] J. Peřina, J. Křepelka, J. Peřina Jr., M. Bondani, A. Allevi, and A. Andreoni, “Correlations in photon-numbers and integrated intensities in parametric processes involving three optical fields,” Eur. Phys. J. D 53, 373–382 (2009).

[31] J. Peřina Jr., O. Haderka, V. Michálek, and M. Hamar, “State reconstruction of a multimode twin beam using photodetection,” Phys. Rev. A 87, 022108 (2013).

[32] J. Peřina and J. Křepelka, “Multimode description of spontaneous parametric down-conversion,” J. Opt. B: Quantum Semiclass. Opt. 7, 246–252 (2005).

[33] A. Allevi, A. Andreoni, F. A. Beduini, M. Bondani, M. G. Genoni, S. Olivares, and M. G. A. Paris, “Conditional measurements on multimode pairwise entangled states from spontaneous parametric downconversion,” European Phys. Lett. 92, 20007 (2010).

[34] J. Peřina and J. Křepelka J., “Joint probability distributions of stimulated parametric down-conversion for controllable nonclassical fluctuations,” Eur. Phys. J. D 281, 4705–4711 (2008).

[35] M. Bondani, A. Allevi, A. Agliati, and A. Andreoni, “Self-consistent characterization of light statistics,” J. Mod. Opt. 56, 226–231 (2009).

[36] M. Bondani, A. Allevi, and A. Andreoni, “Light statistics by non-calibrated linear photodetectors,” Adv. Sci. Lett. 2, 463–468 (2009).

[37] I. N. Agafonov, M. V. Chekhova, and G. Leuchs, “Two-color bright squeezed vacuum,” Phys. Rev. A 82, 011801(R) (2010).

[38] M. Hamar, J. Peřina Jr., O. Haderka, and V. Michálek, “Transverse coherence of photon pairs generated in spontaneous parametric downconversion,” Phys. Rev. A 81, 043827 (2010).

[39] A. Agliati, M. Bondani, A. Andreoni, G. De Cillis, and M. G. A. Paris, “Quantum and classical correlations of intense beams of light investigated via joint photodetection,” J. Opt. B: Quantum Semiclass. Opt. 7, S652–S663 (2005).