Optical spin pumping of modulation doped electrons probed by a two-color Kerr rotation technique

H. Hoffmann1, G. V. Astakhov1,2, T. Kiessling1, W. Ossau1, G. Karczewski3, W. Wojtowicz3, J. Kossut3, and L. W. Molenkamp1
1Physikalisches Institut (EP3), Universität Würzburg, 97074 Würzburg, Germany
2A.F.Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St.Petersburg, Russia
3Institute of Physics, Polish Academy of Sciences, 02668 Warsaw, Poland
(Dated: February 6, 2022)

We report on optical spin pumping of modulation electrons in CdTe-based quantum wells with low intrinsic electron density (by 10^{10} cm$^{-2}$). Under continuous wave excitation, we reach a steady state accumulated spin density of about 10^6 cm$^{-2}$. Using a two-color Hanle-MOKE technique, we find a spin relaxation time of 34 ns for the localized electrons in the nearly unperturbed electron gas. Independent variation of the pump and probe energies demonstrates the presence of additional non-localized electrons in the quantum well, whose spin relaxation time is substantially shorter.

PACS numbers: 72.25.Fe, 78.66.Hf, 76.30.Pk

The idea to use the spin of electrons and nuclei rather than the electron charge for information processing has renewed the interest on spin-related phenomena in solids. Spin-based concepts for semiconductor devices require the preparation of a long-lived spin state. Diluted magnetic semiconductors (DMS) exhibit a giant Zeeman splitting, enabling efficient spin selection and injection. An advantage of the II-VI semiconductors is that the magnetic impurities, such as Mn or Cr, are incorporated isoelectronically. This enables the fabrication of high quality DMS structures whose magnetic and electronic properties can be varied independently. II-VI semiconductors as ZnSe or CdTe, whose growth procedure is well optimized, are thus well suited for spin coherence measurements. Most current work in this direction, however, concentrates on GaAs. E.g., a spin memory of free electrons in excess of 100 ns has been reported for bulk n-GaAs. For II-VI’s, the longest lived spin polarization reported so far is by two orders of magnitude shorter and was observed in heavily doped and later in undoped ZnSe quantum wells (QWs).

In strongly conducting samples the D’yakonov-Perel’ (DP) mechanism dominates the spin relaxation. This mechanism is quenched for weakly doped, insulating samples when the electrons are localized. In this case, the hyperfine interaction with the nuclei may result in an extended spin coherence, which can be controlled by electron-electron interactions. Calculations show a non-monotonic behavior for the spin relaxation time vs. doping concentration and suggest that a maximum occurs in the intermediate doping regime, at the onset of the insulator phase. QWs are attractive for such studies as modulation doping provides wide-range variation of the intrinsic electron concentration n_e. The properties of the quasi-two-dimensional electron gas (2DEG) can be monitored through the optical density of neutral excitons (X) and negatively charged trions (T). For slightly doped CdTe QWs, spin relaxation times of 19 ns (Ref. 15) and 30 ns (Ref. 17) in CdTe QWs have recently been reported, exceeding those for comparable GaAs QWs.

In the present paper we report on further experiments on efficient spin pumping of intrinsically present modulation doped electrons in CdTe-based QWs. The samples used for our studies are insulating, with a 2DEG density on the order of 10^{10} cm$^{-2}$. We use a highly sensitive technique, basically a two-color magnetooptical Kerr effect (MOKE) experiment in combination with a Hanle experiment, to probe the net spin polarization under continuous wave (cw) excitation. The Hanle effect (the decrease of polarization under application of in-plane magnetic fields) gives a characteristic magnetic field $B_{1/2}$ for the depolarization of the 2DEG, which directly yields the spin relaxation time τ_s. We find that the two-color Hanle-MOKE experiment is a very sensitive tool for measuring spin relaxation and produces an easily observable signal even at very weak illumination. The technique avoids pulsed excitation and, thus, allows a determination of τ_s for a nearly unperturbed 2DEG.

For cw pumping, a tunable dye-laser is used. The excitation is modulated between σ^+ and σ^- circular polarizations at a frequency of 50 kHz using a photoelastic quartz modulator. The degree of circular polarization of the photoluminescence (PL) is detected by a Si-based avalanche photodiode and a two channel photon counter. The net spin polarization is probed using a linearly polarized cw Ti:sapphire laser. The photoinduced Kerr rotation θ is measured by a balanced diode detector and demodulated by a lock-in amplifier. Both pump and probe beams are focused to the same $d \approx 300 \mu$m-diameter spot. An external magnetic field can be applied in the sample plane (Voigt geometry). All experiments are carried out at a temperature of 1.8 K; the samples are immersed in superfluid helium.

The samples have been grown by molecular-beam epitaxy on (100)-oriented GaAs substrate. We present data for five 200-Å-wide CdTe/Cd$_{0.78}$Mg$_{0.22}$Te multiple quantum wells (MQWs) (see inset in Fig. 1b). The samples are nominally undoped. The low density 2DEGs in the CdTe MQWs are due to residual n-type doping of the Cd$_{0.78}$Mg$_{0.22}$Te barrier. Characteristic PL and reflec-
number of pumped spins in zero magnetic field B with E where the spin lifetime in the sample plane results in spin precession of the experiment. Application of an external magnetic field B increases with rising excitation power (Fig. 2b).

The key results of the optical spin pumping experiments are collected in Fig. 2. Panel (a) shows the Hanle-MOKE signal for a pump energy slightly above, and a probe energy slightly below the trion transition. The Kerr rotation angle θ (and thus the spin polarization) completely vanishes with magnetic field following a Lorentzian

$$\theta = \frac{\theta_i}{1 + (B/B_{1/2})^2}$$

with $B_{1/2} = 0.23$ mT. Here, θ_i is proportional to the number of pumped spins in zero magnetic field $B = 0$ and increases with rising excitation power (Fig. 2a).

Equation (1) allows us to determine τ_s from the experiment. Application of an external magnetic field B in the sample plane results in spin precession of the electron spin around the applied field with Larmor frequency $\omega_L = g_e |\mu_B| B / h$. Here, g_e is electron g-factor. The time evolution of the spin polarization upon delta pulse excitation can be expressed as $\theta(t) = \theta_i \cos(\omega_L t) \exp(-t/\tau_s)$, where the spin lifetime τ_s is related to, but not necessarily equal to, the intrinsic spin memory time τ_s. For the cw limit one needs to integrate over time, which immediately leads to Eq. (1) with $B/B_{1/2} = \omega_L \tau_s$. Thus, one directly obtains $T_s = h/(g_e |\mu_B| B_{1/2})$. With $g_e = -1.64^{22}$ the characteristic magnetic field $B_{1/2} = 0.23$ mT corresponds to $T_s = 30$ ns (Fig. 2a). The exact relationship between the T_s and the spin relaxation time τ_s of the unperturbed 2DEG depends on the pump power P_{pump} and is discussed below. However, it is obvious that $T_s \rightarrow \tau_s$ as $P_{pump} \rightarrow 0$. The data in Fig. 2 suggest that T_s obtained with $P_{pump} = 0.1$ mW corresponds to the low power limit with $\tau_s \gtrsim 30$ ns.

Let us now describe the details of the spin pumping process. Because of the optical selection rules, a circularly polarized photon creates a spin polarized electron. When these polarized electrons replace the previously present unpolarized electrons in the MQW, an effective spin pumping of the 2DEG occurs. Under resonant excitation possible mechanisms are, e.g., spin-dependent formation of the trion singlet state, and electron exchange scattering of the exciton state. A detailed consideration of these mechanisms is beyond the scope of the present work. Lumped together, these processes can be modeled by the introduction of S_e, the maximum obtainable photoduced spin polarization of the 2DEG in the saturation regime. Following the approach for n-GaAs (outlined in Refs. 6,9), the spin pumping rate equations (at zero magnetic field) can be written as

$$\frac{\partial (n_e S)}{\partial t} = G S_e - \frac{G S}{\tau_j} S - \frac{S}{\tau_s} n_e, \quad \frac{\partial n_e}{\partial t} = G - n_e \frac{1}{\tau_j}. \quad (2)$$

The generation rate G is proportional to the excitation power ($G = \gamma P_{pump}$), where γ is a coefficient that depends on spot size and absorption efficiency. S is the actual spin polarization of the 2DEG at a given G. The time τ_j characterizes the spin transfer rate from the 2DEG back to the exciton or trion reservoir. Under steady-state conditions Eqs. (2) yield $\tau_j^{-1} = \gamma P_{pump}/n_e$.
and \(S = S_\gamma T_s/\tau_J \), where

\[
T_s^{-1} = \tau_s^{-1} + \frac{\gamma P_{\text{pump}}}{n_e}. \tag{3}
\]

Following Eq. (3), an extrapolation of \(T_s \) to zero \(P_{\text{pump}} \) yields the intrinsic spin relaxation time of the 2DEG, \(\tau_s = 34 \text{ ns} \).

The (zero field) Kerr rotation angle \(\theta_i \) is proportional to \(\theta_i = \alpha S n_e \), where \(\alpha \) is a function of the detection energy \(E_{\text{probe}} \). Collecting terms, we have

\[
\theta_i = \frac{\alpha \gamma P_{\text{pump}}}{n_e + \frac{\gamma P_{\text{pump}}^s}{\tau_s}} S n_e. \tag{4}
\]

Eq. (4) describes the experimental dependence of \(\theta_i \) on \(P_{\text{pump}} \) very well. Fitting the experimental data in Figs. 2 and c, we find that \(P_{\text{pump}} = 2.2 \text{ mW} \) corresponds to \(\gamma P_{\text{pump}}^s = n_e \). In the arbitrary units of Fig. 2, \(\alpha S n_e \) corresponds to 200.

For comparison with our two-color technique, we also measured the ‘classical’ Hanle curve, analyzing the polarization of the PL at the X emission line. The PL was excited 5 meV above the exciton transition at \(E_{\text{pump}} = 1.605 \text{ eV} \) (Fig. 4). As the exciton binding energy exceeds 10 meV, excitons rather than unbound electron-hole pairs are created. The Hanle data is shown in Fig. 4 and again is well described by Eq. (1) but with \(B_{1/2}' = 220 \text{ mT} \). Note that in this experiment the electron Hanle signal rides on a constant background probably due to the field-independent hole polarization. Formal using \(T_s' = h/(g_e \mu_B B_{1/2}') \) with \(g_e = -1.64 \) yields \(T_s' = 33 \text{ ps} \). The difference between \(B_{1/2}' \) and \(B_{1/2} \) by three orders of magnitude is not surprising. An electron spin precession and relaxation in the exciton may be strongly affected by interaction with a hole, and thus it cannot be directly compared with that of an electron in the 2DEG.

Nevertheless, the photoinduced spin polarization of the 2DEG, \(S_e \), also manifests itself in the ‘classical’ Hanle curve owing to the spin dependent formation of the trion from the exciton. This contribution reveals as a narrow peak appearing on a top of the exciton Hanle curve, and has previously been observed in GaAs QWs. However, upon testing many CdTe-based samples we find that this peak is frequently weak. The signal related to the 2DEG polarization in particular studied samples is enlarged in the inset of Fig. 4. This data is difficult to analyze and a value \(S_e \sim 0.5\% \) can only be estimated as an upper limit. We use this value (obtained at \(P_{\text{pump}} = 20 \text{ mW} \)) for deducing the effective number of probed spins \(N_S \), which is \(N_S = 5 \pi (d/2)^2 S_e n_e \) at high excitation power \((P_{\text{pump}} \gg 2.2 \text{ mW}) \). Assuming a spot size \(d \sim 300 \mu\text{m} \) we obtain \(N_S \sim 2 \times 10^{15} \). This value can be related to the saturation level and thus enables calibration of our Kerr signal to a number of spins (right axis in Fig. 2). Remarkably, the MOKE significantly improves the sensitivity, allowing us to detect as few as \(10^{3} \) spins.

A rough estimate of the exciton recombination time \(\tau_0 \sim 100 \text{ ps} \) allows us to obtain the average number of excitons \(\Delta n_X \) during our cw experiment, using \(\Delta n_X = G n_0 \). At the characteristic pump power \((P_{\text{pump}} = 2.2 \text{ mW}, \text{Fig. 2}) \) where \(G n_0 = n_e \), one has \(\Delta n_X = n_e \tau_0/\tau_s \). The condition \(\Delta n_X \ll n_e \) is obviously fulfilled, which implies that the cw optical pumping induces spin accumulation.

In an additional set of experiments, we measured the photoinduced spin polarization of the 2DEG for different pump and probe energies near the X- and T-
transitions (Fig. 3b). As expected intuitively, the excitation spectrum of the spin polarization (SPE), i.e., \(\theta(E_{\text{pump}}) \), follows the optical density (reflectivity spectrum). This is shown more clearly in the cross-section trace in Fig. 3b. At the same time, the Kerr rotation of the probe, \(\theta(E_{\text{probe}}) \), has opposite sign on the high- and low-energy sides. This behavior is typical for the Kerr rotation when the probe energy passes through a resonance.

In order to demonstrate the advantages of using independent \(E_{\text{pump}} \) and \(E_{\text{probe}} \) energies (two-color mode), we measured the Hanle-MOKE signal at the points labeled as a, b, c, and d in Fig. 3a. The resulting Hanle-MOKE curves are shown in Fig. 3b. We find that in general there can be two contributions to these curves and because of that some of them cannot be described using Eq. 1 (dotted lines in the figure). In order to explain this we assume (with Ref. 27) a spatially inhomogeneous distribution of the electrons. The charged trions are more sensitive to localization (for instance, in the electrostatic potential of ionized donors in the barrier) as compared to their neutral counterparts. As a result, when the detection energy is above the T-transition, only weakly localized electrons are probed. For these electrons an alternative mechanism may dominate the spin relaxation, resulting in a shortening of \(\tau_s \).

In order to fit all experimental data in Fig. 3b we extend Eq. 1 to include two contributions:

\[
\theta = \frac{\theta_1^{(1)}}{1 + (B_i/B_{1/2})^2} + \frac{\theta_1^{(2)}}{1 + (B_i/B_{1/2})^2},
\]

which allows us to fit all four cases well (solid lines in Fig. 3b). The fitting parameters are given in Table I. We observe the following tendency in the data: For detection below the trion transition (1.598 eV) at (points a and c, \(E_{\text{probe}} = 1.597 \) eV) the spin relaxation time is \(\tau_s = 30 \pm 2 \) ns. Shifting the detection energy only 2 meV higher (points b and d, \(E_{\text{probe}} = 1.599 \) eV) but above the trion transition, we observe a dominant contribution with a shorter spin relaxation time \(\tau_s = 5 \pm 1 \) ns, which we tentatively assign to enhanced DP relaxation of non-localized electrons. The relative weight of these contributions (i.e., ratio \(\theta_1^{(2)}/\theta_1^{(1)} \)) depends only slightly on the pump energy when the probe energy is fixed.

In summary, we report on efficient spin pumping of modulation doped electrons in CdTe QWs containing low density \((10^{10} \text{ cm}^{-2}) \) insulating 2DEGs. It is monitored using a technique based on the Kerr rotation, which is sensitive to \(10^3 \) spins. We obtain a spin memory time \(\tau_s = 34 \) ns for an unperturbed 2DEG. We find that our sample exhibits two electron sub-systems, whose spin relaxation time differs a factor six. This observation confirms the importance of electron localization for achieving long-lived spin coherence.

The authors thank R. I. Dzhioev, K. V. Kavokin, M. V. Lazarev and especially V. L. Korenev for fruitful discussions. We also acknowledge D. R. Yakovlev and E. A. Zhukov for providing us with their data on time resolved Kerr rotation before publication. This work was supported by the Deutsche Forschungsgemeinschaft (SFB 410 and 436 RUS 113/843).

Table I: Parameters [in brackets] of fits to Eq. 1

\(E_{\text{pump}} \)	\(E_{\text{probe}} \)	\(\theta_1^{(1)} \)	\(B_i^{(1)} \) (mT)	\(\tau_s^{(1)} \) (ns)	\(B_i^{(2)} \) (mT)	\(\tau_s^{(2)} \) (ns)
Point a	1.600 eV	0.33 [0]	0.23 [0.35]	30 [20]	1.1	6
Point b	1.600 eV	1.5 [-]	0.24 [0.25]	29	1.7	4
Point c	1.598 eV	0.08 [0]	0.23 [0.25]	30 [28]	1.3	5
Point d	1.598 eV	1.98 [-]	0.21	32	1.1	6

* E-mail: astakhov@physik.uni-wuerzburg.de
1 G. Prinz, Phys. Today 48, 58 (1995).
2 R. Fiederling et al., Nature 402, 787 (1999).
3 Y. Ohno et al., Nature 402, 790 (1999).
4 A. Slobodskyy et al., Phys. Rev. Lett 90, 246601 (2003).
5 J.M.Kikkawa and D.D Awschalom, Phys. Rev. Lett. 80, 4313 (1998).
6 R. I. Dzhioev et al., Pis’ma Zh. Éksp. Teor. Fiz. 74, 182 (2001) JETP Lett. 74, 182 (2001).
7 J. M. Kikkawa et al., Science 277, 1284 (1997).
8 H. Kalt et al., J. Crys. Growth 214/215, 630 (2000).
9 Optical Orientation, edited by F. Meyer and B. P. Zakharchenya (North-Holland, Amsterdam, 1984).
10 R. I. Dzhioev et al., Phys. Rev. Lett 88, 256801 (2002).
11 R. I. Dzhioev et al., Phys. Rev. B 66, 245204 (2002).
12 K. Kheng et al., Phys. Rev. Lett. 71, 1752 (1993).
13 P. Kossacki et al., Phys. Rev. B 60, 16018 (1999).
14 G. V. Astakhov et al., Phys. Rev. B 62, 10345 (2000).
15 G. V. Astakhov et al., Phys. Stat. Sol. (b) 243, 858 (2006).
16 E. A. Zhukov et al., Phys. Stat. Sol. (b) 243, 878 (2006).
17 R. I. Dzhioev et al., Phys. Rev. B 66, 153409 (2002).
18 J. Stephens et al., Phys. Rev. Lett 93, 097602 (2004).
19 S. A. Crooker and D. L. Smith, Phys. Rev. Lett 94, 236601 (2005).
20 G.V. Astakhov et al., Phys. Rev. B 71, 201312(R) (2005).
21 G. V. Astakhov et al., Phys. Rev. B 65, 115310 (2002).
22 A. A. Sirenko et al., Phys. Rev. B 56, 2114 (1997).
23 E. A. Zhukov and D. R. Yakovlev, private comm.
24 C. Testelin et al., Phys. Rev. B 55, 2360 (1997).
25 G. Eytan et al., Phys. Rev. Lett. 81, 1666 (1998).