On finite groups with all simple modules of low
dimension in characteristic p

Geoffrey R. Robinson

September 23, 2020

Abstract

We offer a short and reasonably elementary proof that if G is a finite
group, F is an algebraically closed field of prime characteristic p, and
all simple FG-modules have dimension less than p, then G has a normal
Sylow p-subgroup.

1 Introduction

Let G be a finite group, p be a prime, and let F be an algebraically closed field of
characteristic p. We recall that $O_p(G)$ acts trivially on each simple FG-module. We
will prove that if each simple FG-module has dimension less than p, then G has a normal Sylow p-subgroup. This may be compared with an analogous result for ordinary irreducible representations proved in [1] by Isaacs and Passman, where the resulting normal Sylow p-subgroup is necessarily Abelian, which need not be the case in the present modular context.

We will make use of the following reciprocity theorem, which appears in [2] with a proof using properties of the Reynolds ideal of $Z(FG)$, but which may also be proved using projective homomorphisms: if H is a subgroup of G and S is simple FG-module, T is a simple FH-module, then the multiplicity of the projective cover of S as a summand of $\text{Ind}_G^H(T)$ is equal to the multiplicity of the projective cover of T as a summand of $\text{Res}_H^G(S)$.

Now we prove our main:

Theorem: Let G be a finite group and F be an algebraically closed field of
prime characteristic p. Suppose that every simple FG-module has dimension
less than p. Then G has a normal Sylow p-subgroup.

Proof: We proceed by induction on $|G|$. Since $O_p(G)$ acts trivially on every
simple FG-module, we may suppose that $O_p(G) = 1$, but that p divides $|G|$.

Since the hypotheses imply (on consideration of the composition factors of
the respective regular modules) that for any section K of G, each simple FK-
module has dimension less than p, we may suppose by induction that every
proper section K of G has a normal Sylow p-subgroup.
We claim that $P \cap P^g = 1$ for all $g \in G \setminus N_G(P)$. It suffices to prove that $N_G(V) \leq N_G(P)$ whenever $1 \neq V \leq P$. Since $O_p(G) = 1$, we have $N_G(V) < G$ for all such V. Hence, by induction, we know that $N_G(V)$ has a normal (and hence unique) Sylow p-subgroup for each such V. It follows that $N_G(V)$ is contained in the normalizer of its unique Sylow p-subgroup, so, using induction on $[P : V]$ (and the fact that $N_P(V) > V$ whenever $V < P$), the claim follows.

Now $N_G(P) < G$ and we have $\text{Ind}_{N_G(P)}^G(F) = F \oplus M$ where M is a (non-zero) projective FG-module, using Mackey decomposition, for example. Let Q be a projective indecomposable summand of M, and let S be the socle of Q (which is also isomorphic to the head of Q). Then the multiplicity of the projective cover of the trivial $FN_G(P)$-module F as a summand of $\text{Res}_{N_G(P)}^G(S)$ is strictly positive by the above reciprocity theorem (applied with the trivial $FN_G(P)$-module F in place of T). Hence $\dim_F(S) \geq |P|$, contrary to our assumption that each simple FG-module has dimension less than p. This contradiction shows that $|G|$ is not divisible by p, and so completes the proof of the Theorem.

2 References

[1] Isaacs, I.M and Passman, D.S.; A characterization of groups in terms of the degree of their characters, Pacific J. Math., 15, 3, (1965), 877-903.

[2] Robinson, G.R.; On projective summands of induced modules, Journal of Algebra, 122, (1989), 106-111.