SIMULATED [CII] OBSERVATIONS FOR SPICA/SAFARI

F. Levrier¹, M. Gerin¹, P. Hennebelle¹, E. Falgarone¹, F. Le Petit², and J.R. Goicoechea³

¹LERMA/LRA - UMR 8112 - ENS Paris, 24 rue Lhomond 75231 Paris CEDEX 05, France
²LUTH - UMR 8102 - Observatoire de Paris-Meudon, 5 place Jules Janssen, 92195 Meudon CEDEX, France
³Centro de Astrobiología, CSIC-INTA - Madrid, Spain

ABSTRACT

We investigate the case of [CII] 158µm observations for SPICA/SAFARI using a three-dimensional magnetohydrodynamical (MHD) simulation of the diffuse interstellar medium (ISM) and the Meudon PDR code. The MHD simulation consists of two converging flows of warm gas (10⁴ K) within a cubic box 50 pc in length. The interplay of thermal instability, magnetic field and self-gravity leads to the formation of cold, dense clumps within a warm, turbulent interclump medium. We sample several clumps along a line of sight through the simulated cube and use them as input density profiles in the Meudon PDR code. This allows us to derive intensity predictions for the [CII] 158µm line and provide time estimates for the mapping of a given sky area.

Key words: Galaxies: formation – Stars: formation – MHD – SPICA

1. INTRODUCTION

The fine structure line of ionised carbon [CII] at 157.7 µm is one of the most prominent far infrared (FIR) line. It is widespread in the Milky Way as revealed by the COBE-FIRAS observations, and detected in the diffuse ISM (Ingalls et al. 2002), photo-dissociation regions as well as local and distant galaxies (Maolino et al. 2000 and references therein). [CII] is one of the main cooling lines of the neutral ISM, in all environments where carbon is mostly ionised, that is where UV-photons with \(h\nu \geq 11.3 \text{ eV} \) are available. Unfortunately, the present information on the spatial structure of the [CII] emission is very limited, because of the small telescope size of previous far infrared missions. While Herschel and SOFIA will improve the situation for bright regions, their sensitivity will be limited for the extended emission from either the diffuse interstellar medium, or the outskirts of molecular clouds. The structure of the [CII] emission is expected to reveal the underlying structure of the matter, and provide information on the mechanisms responsible for the fragmentation. In this paper, we explore the perspectives offered by SPICA for mapping the interstellar medium.

2. THE MHD SIMULATION

To model the turbulent interstellar medium, we used a data cube from an MHD simulation performed by Hennebelle et al. (2008) with the RAMSES code (Teyssier, 2002; Fromang et al., 2006), which makes use of adaptive mesh refinement (AMR) methods. The cube is 50 parsecs on each side, with potentially 14 levels of refinement, leading to a maximal resolution of 3 mpc or 630 AU. However, to simplify the analysis, we used a regularly gridded (1024³) version of the cube, with a pixel size \(\sim 0.05 \text{ pc} \).

In the initial setup of the simulation, two converging flows of warm gas (8000 K) are entering the cube along the X axis from two opposite sides. The flows’ velocity is twice the sound speed of the warm neutral medium (WNM), with transverse and longitudinal modulations of 100% amplitude with a 10pc periodicity. Periodic boundary conditions are imposed on the remaining four sides. The simulation includes a consistent treatment of hydrodynamics, magnetic fields, atomic cooling processes and self-gravity, and therefore implies some heavy computing (\(\sim 30,000 \text{ CPU hours} \)).

Figure 1 shows the total gas column density in the cube when viewed along the X direction, which we take as the observer’s direction to ensure statistical homogeneity of the observed field. Our chosen line of sight is displayed, and passes through one of the cold dense clumps formed by thermal instability in the turbulent flow. These clumps are \(10^{3} \text{ cm}^{-3} \) and \(T \sim 10 \text{ K} \) are found along filamentary structures amidst a much more diffuse and hot interclump medium (\(n \sim 1 \text{ cm}^{-3} \) and \(T \sim 10^{4} \text{ K} \)).

Figure 2 shows a total gas density cut through the cube in the X – Y plane containing the line of sight. Complex density structures along this line appear quite clearly.

When it comes to simulating the observation of this field, we shall need to specify the angular pixel size. To match the SAFARI specifications, let us consider that the cloud is located 1.75 kpc away. It is therefore 1.6° across, and the pixel size is 5.75", i.e. that of the SAFARI pixels.

3. PDR CODE

The Meudon PDR code (Le Bourlot et al. 1993; Le Petit et al. 2006) is a publicly available model aimed at describing...
the atomic and molecular structure of interstellar clouds, especially photon-dominated regions (PDR). It considers a plane-parallel slab of gas and dust illuminated on either or both sides by an incoming radiation field which can be the interstellar standard radiation field (ISRF) or the light from a nearby star. The density profile within the slab can either be constant, computed from an isobaric constraint or user-defined. Radiative transfer in the UV is solved at each point in the cloud [10], taking into account continuum absorption by dust grains and molecular absorption lines. Thermal balance is computed via the inclusion of a number of heating (photoelectric effect, cosmic rays) and cooling processes (infrared and millimeter emission lines) and an extensive chemical network. With abundances and level populations of the most prominent species available, line intensities and column densities can be obtained.

Convergence issues make it difficult to run the code reliably on the more diffuse regions. Consequently, we opted to use the entire line of sight as input density profile in the PDR code, but rather extracted dense "clumps" (see Fig. 3) using a threshold value of 50 cm$^{-3}$ - which is about the critical density for C$^+$ in electronic collisions at $T_e = 10^4$ K - and ran the PDR code on these clumps separately.

As explained before, we ran the PDR code a total of four times: once for every clump 1 to 3, and once over the entire cloud 1-3 (marked in red on Fig. 3). Results are summarized on Fig. 4 and in Tab. 1.

The effect of shielding due to the one-dimensional geometry assumed by the PDR code appears quite clearly, as the [CII] emission from the inner regions of the cloud is almost completely suppressed compared to results obtained when running the code on separate clumps. This is of course because photons that are energetic enough ($h\nu \geq 11.3$ eV) to ionize atomic carbon are absorbed on the surface of the cloud and cannot reach these inner regions in the one-dimensional approach.

4. Results

The one-dimensional geometry imposed by the code makes shielding an important point to remember when considering results. The complexity of density structures in the simulation cube implies that the radiation field should be higher in the interior regions than expected from the code, as it can be expected that the photons penetrate deep into the clouds, and, consequently, that the addition of results from separate clumps might give a better idea of the output emission.

To estimate this effect, we also ran the PDR code on the entire "cloud" marked '1-3' on Fig. 3 so in total four times. The density in the small interclump regions does not fall to such low values that the code may not converge.
Figure 4. Local emissivity of the [CII] 158µm line obtained from the Meudon PDR code, along the line of sight. Each plot shows the emissivity computed when using the corresponding clumps from Fig. 3 as input density profiles to the PDR code.

The line being optically thin, Nakagawa et al. (1993), see also optical depths in Tab. [1], we can run the code on clumps and add up contributions from these to obtain a more accurate estimate of column densities and line emissivities.

Table 1. HI column densities, [CII] 158 µm integrated emissivities and line-center optical depths computed by the PDR code for clumps 1, 2, 3, as well as for clump 1-3 (marked in red on Fig. 3). The sums of column densities, integrated emissivities and optical depths for all three clumps are also indicated.

Clump #	N_{HI} (cm$^{-2}$)	$I_{\text{C}^{+}}$ (erg cm$^{-2}$ s$^{-1}$ sr$^{-1}$)	τ_c
1	7.87 10^{19}	6.55 10^{-6}	0.39
2	1.39 10^{20}	5.41 10^{-6}	0.34
3	1.57 10^{20}	6.86 10^{-6}	0.99
1-3	1.70 10^{20}	7.21 10^{-6}	1.19
1+2+3	3.70 10^{20}	1.88 10^{-5}	1.72

The data in Tab. [1] hints at an empirical linear correlation between HI column density and [CII] 158µm integrated emissivity from the cold and dense regions of the cube, which reads

$$\langle I_{\text{C}^{+}} \rangle / 10^{-6} \text{ergs cm}^{-2} \text{s}^{-1} \text{sr}^{-1} = 5 \times \langle N_{\text{HI}} \rangle / 10^{20} \text{cm}^{-2}.$$

Obviously, this is a very crude approach, as one of the five data points is actually derived from three others, and in any case this relationship may well not apply to more diffuse regions. To make a comparison with observational data, we may refer to Ingalls et al. (2002), who give

$$I_{\text{C}^{+}} / 10^{-6} \text{ergs cm}^{-2} \text{s}^{-1} \text{sr}^{-1} = 0.32 \times \left(I_{100} + 2.58 I_{60} \right) / \text{MJy sr}^{-1},$$

using ISO observations of high Galactic latitude clouds and IRAS far infrared data. The FIR-HI correlation is in turn given by Boulanger & Pérault (1988), using IRAS data and combined COBE data (Bennett et al., 1994). On the other hand, the [CII]/HI ratio derived from BART data on the Galactic HII region W43 yields

$$I_{\text{C}^{+}} / 10^{-6} \text{ergs cm}^{-2} \text{s}^{-1} \text{sr}^{-1} = 37 \times \langle N_{\text{HI}} \rangle / 10^{20} \text{cm}^{-2},$$

This shows that the [CII]/HI ratio strongly depends on the physical conditions, and that more work is definitely needed to understand this correlation. For the sake of simplicity, and given that our relationship happens to be a compromise between the observational data above, let us assume that we can use it to straightforwardly derive a [CII] emission map over the entire field.

It remains that what we have in the data cube is the total gas content, so we need to estimate the atomic fraction, which we do crudely using a fit to the data in Fig. 6 of Savage et al. (1977).

This allows us to derive a histogram of [CII] 158 µm line intensities emerging from the cube, using the solid angle value $d\Omega = 6.1 \times 10^{-10} \text{sr}$ for the SAFARI pixels. This histogram is shown on Fig. 5 and we will use it in the next section to estimate a mapping speed for the entire 50 pc × 50pc cloud.

Before that, however, we should estimate the [CII] emission associated with the diffuse regions of the warm ionized medium (WIM) phase, if only to check that this contribution can be neglected. To this end, we used the cosecant law given by Reynolds (1992),

$$I_{\text{C}^{+}}^{\text{WIM}} = 3.6 \times 10^{-7} \csc |b| \text{ ergs cm}^{-2} \text{s}^{-1} \text{sr}^{-1}.$$

To be exact, we use model 2 from Black (1973), although the mean total gas density in our cube is $(n_{\text{tot}}) \simeq 5 \text{ cm}^{-3}$, which would point to model 1. The difference between the two, as far as the derived [CII] intensities are concerned, is negligible.
Given that there is another cosecant law for the H I column density [Dickey & Lockman, 1990],

\[\langle N_{HI} \rangle = (3.84 \csc |b| - 2.11) \times 10^{20} \text{ cm}^{-2}, \]

we may combine the two to have an estimate of the WIM's contribution to [C II] emission,

\[\frac{\langle I_{CII}^{WIM} \rangle}{10^{-6} \text{ ergs cm}^{-2} \text{s}^{-1} \text{sr}^{-1}} = 0.094 \left(\frac{\langle N_{HI} \rangle}{10^{20} \text{ cm}^{-2}} + 2.11 \right). \]

Using the same total gas to H I conversion as before, this time on the mean column densities over the whole field, we find that \(\langle N_{\text{tot}} \rangle = 8.1 \times 10^{20} \text{ cm}^{-2} \) implies a molecular fraction of about 15%, so that \(\langle N_{HI} \rangle = 6.8 \times 10^{20} \text{ cm}^{-2} \) and therefore \(\langle I_{CII}^{WIM} \rangle = 8.3 \times 10^{-7} \text{ ergs cm}^{-2} \text{s}^{-1} \text{sr}^{-1} \), or \(\langle I_{CII}^{WIM} \rangle = 5.1 \times 10^{-19} \text{ W m}^{-2} \) in terms of emerging flux for each pixel in the map. Consequently, this contribution to the total [C II] emission is completely negligible.

5. SAFARI MAPPING SPEED

The focal plane array (FPA) on SAFARI's band 3 (110µm-210µm) is a 20 \times 20 matrix, with a 1.9' \times 1.9' field of view, so to map the entire 1.63° \times 1.63° area we require \((1.63 \times 60/1.9)^2 \approx 2600 \) pointings of the instrument.

The 5–σ, 1-hour sensitivity of SAFARI at 158 µm is \(S_0 = 1.6 \times 10^{-19} \text{ W m}^{-2} \). Therefore, the time \(\tau(T) \) needed to detect an emerging flux \(T \) is \(\tau_0(S_0/T)^2 \), with \(\tau_0 = 5 \) hours. This allows us to estimate the time needed for each of the 2600 pointings, which ranges from ~1 to ~24 seconds. By adding these up, the total time needed to map the entire sky area is \(T \approx 4.5 \) hours. For the same sky area, Herschel would require some 900 hours, making such a project unrealistic.

Of course this neglects the time needed to scan the band, since in Fourier-Transform Spectrometers such as SAFARI, this is done by translating a mirror. Depending on the spectral resolution \(R \) required, this can take from \(\sim 10 \text{ s} \) \((R = 100) \) to up to 3.5 min \((R = 2000) \). For the 2600 pointings mentioned above, this means respectively 7.2 hours and 152 hours. These are long overhead times, but one gets the full 34-210 µm band in return, which may contain many other interesting lines, such as [NII] at 122 µm and 206 µm.

6. CONCLUSIONS AND PERSPECTIVES

This work demonstrates the ability of SPICA/SAFARI to map large areas of the sky in the [CII] line in a much shorter time than what would be possible with Herschel, making it clear that the extraordinary sensitivity of the proposed mission is a definitive asset regarding this type of project.

On another level, the work presented here is part of an ongoing ASTRONET project dubbed STAR FORMAT, which is a German-French collaboration whose two main objectives are:

1/ Producing databases to publicize simulation results from MHD and PDR codes;
2/ Developing MHD, PDR and radiative transfer codes in an interoperable fashion, to allow for a much improved treatment of the physics of the ISM, especially regarding the formation of molecular clouds and dense cores.

With respect to this project, our work shows that a truly three-dimensional PDR code is a must, to adequately deal with the complex geometries of the structures formed in the MHD simulations. The development of parallel computing schemes is also quite inevitable, and it should be noted that the PDR code can already be run on a grid. It is hoped that the present paper can be used as ground work for these developments.

REFERENCES

Bennett, C.L., Fixsen, D.J., Hinshaw, G. et al. 1994, ApJ, 434, 587
Black, J.H. 1975, PhD thesis, Harvard University
Boulanger, F. & Pérault, M. 1988, ApJ, 330, 964
Dickey, J.M. & Lockman, F.J. 1990, ARAA, 28, 215
Fromang, S., Hennebelle, P. & Teyssier, R. 2006, A&A, 457, 371
Goicoechea, J.R. & Le Bourlot, J. 2007, A&A, 467, 1
Hennebelle, P., Banerjee, R., Vázquez-Semadeni, E. et al. 2008, A&A, 486, L43
Ingalls, J.G., Reach, W.T. & Bania, T.M. 2002, ApJ, 579, 289
Le Bourlot, J., Pineau des Forêts, G., Roueff, E. & Flower, D. 1993, A&A, 267, 233
Le Petit, F., Nehmé, C., Le Bourlot, J. & Roueff, E. 2006, ApJS, 164, 506
Maiolino, R., Caselli, P., Nagao, T. et al. 2009, A&A, 500, L1
Nakagawa, T., Doi, Y., Yamashita Yui, Y., et al. 1995, ApJ, 455, L35
Reynolds, R.J. 1992, ApJ, 392, L35
Savage, B.D., Bohlin, R.C., Drake, J.F. & Budich, W. 1977, ApJ, 216, 291
Teyssier, R. 2002, A&A, 385, 337