Determination of Optimal Yield of Alumina From Local Clays by Factorially-Designed Experiments

Kenneth Kekpugile Dagde* Nwankwo Chiedozie Onyebuchi
Department of Chemical and Petrochemical Engineering, Rivers State University, Port Harcourt, Rivers State, Nigeria

Abstract
Leaching by use of factorial design experiment was used to investigate the effect of process variables on the yield of alumina obtainable from four local clays from four different locations in Nigeria. Characterization of these clays obtained from previous work was observed in this order: Ikot-Abasi, Enito II, Akpugo and Awgbu containing 56.00%, 8.45%, 25.28% and 14.43% Al₂O₃ respectively. Fractional factorial design was used to develop a mathematical model used in the investigation. The process variables whose effect on alumina leaching investigated were: acid concentration (2M and 10M), calcinations Temperature (200°C and 1000°C), calcinations time (15 and 75 minutes), leaching time (20 and 100 minutes) and particle size (75 and 1000µm) with the experiment conducted at constant boiling temperatures of the acids used (Nitric and Acetic acid). On optimization of the model developed from the factorial design experiment, optimal leaching conditions for each clay samples were obtained with corresponding yields of alumina presented as follows: Ikot-Abasi clay and nitric acid – yield of 78.86% alumina; Ikot-Abasi and Acetic – yield of 50.26% alumina; Enito II and nitric acid – yield of 53.14% alumina; Enito II clay and acetic acid – yield of 30.23% alumina; Awgbu clay and nitric acid – 62.74% alumina yield; Awgbu clay and acetic acid – alumina yield of 43.24%; Akpugo clay and nitric acid – alumina yield 75.43%; Akpugo clay and acetic acid – alumina yield 41.98%. The values of the yields obtained from the model optimization were validated by conducting the leaching experiment again in the laboratory under the optimized process conditions and were observed to closely match with a deviation ranging from 0.21 to 5.55%. From the results obtained, it was observed that the best yield was gotten from Ikot-Abasi clay which contained the highest percentage of alumina content.

DOI: 10.7176/CPER/60-03
Publication date: March 31st 2019

1. Introduction
In line with the recent need for diversification and improvement in our manufacturing industries as well as export, exploring other cheap and economic alternatives to well-known expensive ones for the manufacture of alumina is most welcome. The industrial application of specialty aluminium oxides in refractories, ceramics, polishing and abrasive applications. Large tonnages of aluminium hydroxide, from which alumina is derived, are used in the manufacture of zeolites, coating titania pigments, and as a fire retardant/smoke suppressant. (Osabor et al., 2009)

Nigeria, is known to be blessed with vast amount of clay deposits in various geographical and regional locations, and it is growing in knowledge that most of these clays have significant alumina content which are extractible. (Mark 2010)

Several studies to this effect have been gathering momentum. Ajemba and Onukwuli, 2012 studied the effects of optimization of extracting alumina from the same clay (Nteje clay) using sulphuric acid. Response surface methodology was employed to optimize the sulphuric acid leaching of alumina from the clay based on the central composite rotatable design. Following this, a model was developed with the adequacy tested using the sequential model sum of squares. The optimum conditions generated for the process parameters showed that 81.87% was extractible.

In another recent development, the kinetic study of hydrochloric acid leaching of alumina from Agbaja clay (Kogi State, Nigeria) was investigated. It was observed that obtaining alumina from the clay was seriously hindered due to small surface area and presence of negative surface charges but by improved thermal activation and effects of most other process variables excluding particle size the yield substantially increased. A kinetic equation and optimal conditions were developed with activation energy calculated to be 34KJ/mol (Uchenna et al., 2015).

In the kingdom of Saudi Arabia, kaolinitic clay obtained from Riyadh area (N: 24 00′36″, E: 47″44′03″) was subjected to leaching using hydrochloric acid. The analysis of the aluminium ion present after leaching was carried out using the solar MS Atomic Absorption Spectrophotometer. The results of their experiment showed that 62.9% of alumina present in the local clay was extracted under optimum calcinations conditions of 600°C and 1 hour (Al-Zahrani and Abdul-Majid, 2009).

However, Ajemba and Onukwuli (2012), the other experiments performed have not been able to give a comprehensive outlook of having variable factors working together rather than individually.

In this study, the use of factorial design which is a quite simple approach, to give a new outlook of the process using half-fraction factorial design will be used. The factorial design helps us to study how the yield of alumina is affected by variance of all the operating factors simultaneously where the variation will only be the highest and
lowest values of these factors. The results should provide us with the optimum operating process conditions necessary for extraction of alumina from these clays.

2. Materials and Methods
2.1 Factorial Design Experiment
This experiment was carried out using the fractional factorial design given by 2^k, where k represents the number of process factors (5 in this case). By applying boundary conditions for the highest and lowest values of each process variable, the output (yield) for each case was obtained. The factorial design experiment provides a comprehensive check on the yields obtained with systematic values of the five variables (acid concentration, leaching time, calcinations temperature, calcinations time and particle size) used in the experiment. The un-coded values of the variable X_5, is obtained from the relation: $X_5 = -(X_1X_2X_3X_4)$; where, (-) represents the lowest value for a variable and (+) represents the highest value.

The results obtained from the four clays using the two different acids are presented in Tables 1 and 2. From the experiments, it was observed that the optimal yield of alumina from the factorial experiment was at the stage where the highest values of X_1, X_2, X_3 and X_4 and lowest value of X_5 were combined. The optimum variables were: X_1 – Leaching time – 100 minutes; X_2 – Calcination temperature – 1000°C; X_3 – Calcination time – 75 minutes; X_4 – Acid concentration – 10M and X_5 – Particle size - 75µm.

Further we represented each of the clays thus for simplicity: Ikot-Abasi Clay – A; Enito II Clay – B; Akpugo Clay – C and Awgbu Clay – D.

The experiment is presented in table 1 to 8:

Table 1: Factorial design results for the clays and nitric acid

s/n	X_1	X_2	X_3	X_4	X_5	Yield, Y (%)	Yield, Y (%)	Yield, Y (%)	Yield, Y (%)
1	-	-	-	-	-	27.20	13.62	17.6	15.52
2	+	-	-	-	+	38.07	16.01	20.70	20.22
3	-	+	-	-	+	18.93	19.65	21.34	23.00
4	+	+	-	-	-	31.84	22.86	24.84	24.02
5	-	-	+	-	+	25.10	15.70	32.66	30.84
6	+	-	+	-	-	31.54	29.09	45.22	43.42
7	-	+	+	-	-	39.52	33.29	48.26	48.50
8	+	+	+	-	-	54.14	41.42	62.04	39.78
9	-	-	-	+	+	32.99	28.31	36.60	33.98
10	+	-	-	+	-	57.74	29.81	38.54	35.12
11	-	+	-	+	-	40.96	30.83	39.88	36.00
12	+	+	-	+	-	47.81	32.02	39.86	37.80
13	-	-	+	+	-	65.26	31.11	41.40	43.04
14	+	-	+	+	+	44.76	42.08	46.92	39.24
15	-	+	+	+	+	54.35	33.58	48.24	42.98
16	+	+	+	+	-	77.20	65.43	70.72	66.66
Table 2: Factorial design results for the clays and acetic acid

s/no	X1	X2	X3	X4	X5	Yield, Y (%)	Yield, Y (%)	Yield, Y (%)	Yield, Y (%)
1	-	-	-	-	-	17.55	9.82	11.64	9.94
2	+	-	-	-	+	25.01	11.31	13.86	7.92
3	-	+	-	-	+	16.50	12.24	15.84	9.98
4	+	+	-	-	-	20.95	22.85	18.02	13.92
5	-	-	+	-	+	16.74	15.27	27.10	22.18
6	+	-	+	-	-	21.07	22.78	27.16	27.72
7	-	+	+	-	+	26.35	26.19	31.20	28.28
8	+	+	+	-	+	35.68	28.63	38.86	35.46
9	-	-	-	+	+	25.44	12.89	13.94	16.26
10	+	-	-	+	+	41.22	22.19	18.10	18.04
11	-	+	-	+	+	28.93	22.64	42.82	19.62
12	+	+	-	+	+	31.45	21.90	37.38	35.24
13	-	-	+	+	+	45.39	26.79	28.60	30.90
14	+	-	+	+	+	31.29	27.07	28.10	33.80
15	-	+	+	+	+	34.50	22.94	29.18	31.92
16	+	+	+	+	+	60.65	37.08	49.50	48.36

Based on the experimental results performed and with the aid of the ANOVA model, a two level factorial model for the five factors were developed in the following format:

\[Y = \beta_0 + \beta_1X_1 + \beta_2X_2 + \cdots + \beta_5X_5 + \beta_{12}X_1X_2 + \cdots \]

(1)

The optimal conditions required to give the best yield of alumina was obtained by evaluation of the model equation using linear programming techniques with the aid of MATLAB software.

Using the factorial design, the notation for a multiple linear regression model for a fractional two level experiment with five variables interaction would be:

\[Y = \beta_0 + \beta_1X_1 + \beta_2X_2 + \beta_3X_3 + \beta_4X_4 + \beta_5X_5 + \beta_{12}X_1X_2 + \beta_{13}X_1X_3 + \beta_{14}X_1X_4 + \beta_{15}X_1X_5 + \beta_{23}X_2X_3 + \beta_{24}X_2X_4 + \beta_{25}X_2X_5 + \beta_{34}X_3X_4 + \beta_{35}X_3X_5 + \beta_{45}X_4X_5 + \beta_{123}X_1X_2X_3 + \beta_{124}X_1X_2X_4 + \beta_{125}X_1X_2X_5 + \beta_{134}X_1X_3X_4 + \beta_{135}X_1X_3X_5 + \beta_{145}X_1X_4X_5 + \beta_{234}X_2X_3X_4 + \beta_{235}X_2X_3X_5 + \beta_{245}X_2X_4X_5 + \beta_{345}X_3X_4X_5 + \beta_{1234}X_1X_2X_3X_4 + \beta_{1235}X_1X_2X_3X_5 + \beta_{1245}X_1X_2X_4X_5 + \beta_{1345}X_1X_3X_4X_5 + \beta_{2345}X_2X_3X_4X_5 + \beta_{12345}X_1X_2X_3X_4X_5 + \beta_{23456}X_2X_3X_4X_5X_6 \]

(2)

where \(\beta_i \) represents the coefficients of the variables which could be the overall mean, the independent effect of each factor or the effects of the various interactions between the factors depending on what contextual form they appear.

Simplifying the model equation by assuming that the various interactions between the factors led to negligible terms (i.e. considering only independent events), equation can thus be reduced to:

\[Y = \beta_0 + \beta_1X_1 + \beta_2X_2 + \beta_3X_3 + \beta_4X_4 + \beta_5X_5 + \epsilon \]

(3)

where, \(\beta_0 \) represents the overall mean, \(\beta_i \), \(\beta_2 \), \(\beta_3 \), \(\beta_4 \) and \(\beta_5 \) represents the independent effects of the factors \(X_1, X_2, X_3, X_4 \) and \(X_5 \) respectively. \(\epsilon \) is the random error term or residual and \(Y \) is the yield of alumina.

The ‘best’ values of the coefficients were determined by setting up the sum of squares of the residuals given by,

\[S_r = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1X_{i1} - \beta_2X_{i2} - \beta_3X_{i3} - \beta_4X_{i4} - \beta_5X_{i5})^2 \]

(4)

By minimizing the derivatives of the squares of the residuals by setting all to zero, normal equations were developed from which the matrix was of the form:

\[
\begin{bmatrix}
\sum_{i=1}^{n} x_{i1} & \sum_{i=1}^{n} x_{i2} & \sum_{i=1}^{n} x_{i3} & \sum_{i=1}^{n} x_{i4} & \sum_{i=1}^{n} x_{i5} \\
\sum_{i=1}^{n} x_{i1}^2 & \sum_{i=1}^{n} x_{i2}^2 & \sum_{i=1}^{n} x_{i3}^2 & \sum_{i=1}^{n} x_{i4}^2 & \sum_{i=1}^{n} x_{i5}^2 \\
\sum_{i=1}^{n} x_{i1} x_{i2} & \sum_{i=1}^{n} x_{i3} x_{i2} & \sum_{i=1}^{n} x_{i3} x_{i4} & \sum_{i=1}^{n} x_{i3} x_{i5} & \sum_{i=1}^{n} x_{i4} x_{i5} \\
\sum_{i=1}^{n} x_{i1} x_{i3} & \sum_{i=1}^{n} x_{i2} x_{i3} & \sum_{i=1}^{n} x_{i3} x_{i4} & \sum_{i=1}^{n} x_{i4} x_{i5} & \sum_{i=1}^{n} x_{i5} x_{i5} \\
\sum_{i=1}^{n} x_{i1} x_{i4} & \sum_{i=1}^{n} x_{i2} x_{i4} & \sum_{i=1}^{n} x_{i3} x_{i4} & \sum_{i=1}^{n} x_{i4} x_{i5} & \sum_{i=1}^{n} x_{i5} x_{i5} \\
\sum_{i=1}^{n} x_{i1} x_{i5} & \sum_{i=1}^{n} x_{i2} x_{i5} & \sum_{i=1}^{n} x_{i3} x_{i5} & \sum_{i=1}^{n} x_{i4} x_{i5} & \sum_{i=1}^{n} x_{i5} x_{i5}
\end{bmatrix}
\begin{bmatrix}
\beta_0 \\
\beta_1 \\
\beta_2 \\
\beta_3 \\
\beta_4 \\
\beta_5
\end{bmatrix}
= \begin{bmatrix}
\sum_{i=1}^{n} y_i \\
\sum_{i=1}^{n} y_i x_{i1} \\
\sum_{i=1}^{n} y_i x_{i2} \\
\sum_{i=1}^{n} y_i x_{i3} \\
\sum_{i=1}^{n} y_i x_{i4} \\
\sum_{i=1}^{n} y_i x_{i5}
\end{bmatrix}
\]

(5)
Using the above 6 x 6 matrix, the constants can be solved for with the un-coded form of the factorial design table. For the Awgbu clay and nitric acid, after solving for the constants, the model developed:

\[
Y = 36.2575 + 2.0250X_1 + 3.5850X_2 + 8.0500X_3 + 5.5950X_4 - 2.7775X_5
\]
(6)

Awgbu clay and acetic acid:

\[
Y = 24.3463 + 3.2113X_1 + 3.5013X_2 + 7.9813X_3 + 4.9213X_4 - 0.2513X_5
\]
(7)

Akpugo clay and nitric acid:

\[
Y = 39.1138 + 4.4913X_1 + 4.1588X_2 + 10.3188X_3 + 5.0313X_4 - 0.5688X_5
\]
(8)

Akpugo clay and acetic acid:

\[
Y = 26.9563 + 1.9163X_1 + 5.8938X_2 + 5.5063X_3 + 3.9963X_4 - 1.4238X_5
\]
(9)

Enito II clay and nitric acid:

\[
Y = 30.3006 + 4.5394X_1 + 4.5844X_2 + 6.1619X_3 + 6.3456X_4 - 1.7044X_5
\]
(10)

Enito II clay and acetic acid:

\[
Y = 21.4119 + 2.8144X_1 + 2.8969X_2 + 4.4319X_3 + 2.7756X_4 - 2.3806X_5
\]
(11)

Ikp-Abasi clay and nitric acid:

\[
Y = 42.9631 + 4.8931X_1 + 2.6306X_2 + 6.0206X_3 + 9.6706X_4 - 3.4444X_5
\]
(12)

Ikp-Abasi clay and acetic acid:

\[
Y = 29.9200 + 3.4950X_1 + 1.9563X_2 + 4.0388X_3 + 7.4388X_4 - 2.8438X_5
\]
(13)

Optimization of these models were carried out by method of linear programming using the MATLAB software. The model can be re-written in this format:

\[
Y = 36.2575 + f(x)
\]
(14)

where \(f(x)\) was then optimized to give the results.

Table 3 were used for calculating the coefficient of determination and correlation coefficient which was used to test the accuracy of the models developed.

s/no	\(Y_i\)	\((Y_i - Y_m)^2\)	\(Y = \beta_0 + \beta_1X_1 + \beta_2X_2 + \beta_3X_3 + \beta_4X_4 + \beta_5X_5\)	\((Y_i - \bar{U})^2\)
1	15.52	430.044	19.78	18.1476
2	20.22	257.201	18.275	3.783025
3	23	175.761	21.395	2.57025
4	24.02	149.756	31	48.7204
5	30.84	29.3493	30.325	0.265225
6	43.42	51.3014	39.93	12.1801
7	48.5	149.879	43.05	29.7025
8	39.78	12.408	41.545	3.115225
9	33.98	5.18701	25.415	73.359225
10	35.12	1.29391	35.02	0.01
11	36	0.06631	38.14	4.5796
12	37.8	2.37931	36.635	1.357225
13	43.04	46.0023	47.07	16.2409
14	39.24	8.89531	45.565	40.005625
15	42.98	45.192	48.685	32.547025
16	66.66	924.312	58.29	70.0569

Total 580.12 2289.03 580.12 356.6466

Using the formula:

\[
r^2 = \frac{S_r^2}{S_y^2} \text{ where,}
\]

\[
S_r^2 = \sum (Y_i - Y_m)^2 \text{ and } S_y^2 = \sum (Y_i - \bar{U})^2
\]
(21)

\[
r^2 = 0.8442, \text{and } r = 0.9403
\]
(22)

This showed that 84.42% of the original uncertainty has been explained by this model.
Table 4: Regression analysis of Awgbu clay and acetic acid

s/no	Y_i	(Y_i-Y_m)^2	U = β_0 + β_1X_1 + β_2X_2 + β_3X_3 + β_4X_4 + β_5X_5	(Y_i-U)^2
1	9.94	207.541	4.9824	24.5778
2	7.92	269.823	10.9024	8.8947
3	9.98	206.391	11.4824	2.2572
4	13.92	108.708	18.4076	20.1386
5	22.18	4.69286	20.4424	3.0193
6	27.72	11.3819	27.9476	0.1105
7	28.28	15.474	27.9476	0.1105
8	35.46	123.514	33.8676	2.5357
9	16.26	65.3882	14.3224	3.7543
10	18.04	39.7694	21.8276	4.8735
11	19.62	22.3379	22.3379	0.0012
12	35.24	118.673	27.7476	56.1361
13	31.92	57.3609	37.2876	28.8111
14	48.36	576.658	44.2128	17.1993
Total		389.54	1960.04	389.5408

This showed that 90.25 percent uncertainty has been explained by the model.

Table 5: Regression analysis of Akpugo clay and nitric acid

s/no	Y_i	(Y_i-Y_m)^2	U = β_0 + β_1X_1 + β_2X_2 + β_3X_3 + β_4X_4 + β_5X_5	(Y_i-U)^2
1	17.6	462.844	15.6824	3.6772
2	20.7	339.068	23.5274	7.9942
3	21.34	315.908	22.8624	2.3177
4	24.84	203.741	32.9826	66.3019
5	32.66	41.615	35.1824	6.3625
6	45.22	37.2857	45.3026	0.0068
7	48.26	83.653	44.6376	13.1218
8	62.04	525.611	52.4826	91.3439
9	36.6	6319.19	24.6074	143.8225
10	38.54	0.32925	34.7276	14.5344
11	30.88	67.7955	34.0626	10.1289
12	39.86	0.55681	41.9076	4.1927
13	41.4	5.22671	46.3826	24.8263
14	46.92	60.9368	54.2276	53.4010
15	48.24	83.2875	53.5626	28.3301
16	70.72	998.952	63.6828	49.5222
Total		625.82	3233.17	625.8208

This showed that 83.92 percent uncertainty has been explained by the model.
Table 6: Regression analysis of Akpugo clay and acetic acid

s/no	Y_i	(Y_i-Y_m)^2	U = \beta_0 + \beta_1X_1 + \beta_2X_2 + \beta_3X_3 + \beta_4X_4 + \beta_5X_5	(Y_i-U)^2
1	11.64	234.589	11.0674	0.3279
2	13.86	171.513	12.0524	3.2674
3	15.84	123.572	20.0074	17.3672
4	18.02	79.8575	26.6876	75.1273
5	27.1	0.02065	19.2324	61.8991
6	27.16	0.04149	25.9126	7.1161
7	31.2	18.009	34.8526	16.0593
8	38.86	141.698	51.1226	5.1638
9	13.94	169.424	16.2124	22.9690
10	18.1	78.434	22.8926	143.3384
11	42.82	251.657	30.8476	143.3384
12	37.38	108.654	31.8326	30.7736
13	28.6	2.70175	30.0726	13.7026
14	28.1	1.30805	31.0576	8.7474
15	29.18	4.94484	39.0126	14.4948
16	49.5	508.218	45.6928	96.6800
		Total 431.3	1894.64	507.0559

\[r^2 = 0.7324 \text{ and } r = 0.8558 \]

Meaning that 73.24% of the uncertainty has been explained by the model.

Table 7: Regression analysis of Enito II clay and nitric acid

s/no	Y_i	(Y_i-Y_m)^2	U = \beta_0 + \beta_1X_1 + \beta_2X_2 + \beta_3X_3 + \beta_4X_4 + \beta_5X_5	(Y_i-U)^2
1	13.62	278.242	14.4117	0.6268
2	16.01	204.221	15.3967	0.3761
3	19.65	113.435	23.3517	13.7026
4	22.86	55.3625	30.0319	51.4361
5	15.7	213.178	22.5767	47.2890
6	29.09	1.46555	29.2569	0.0279
7	33.29	8.93651	37.2119	15.3813
8	41.42	123.641	38.1969	10.3884
9	28.31	3.96249	19.5567	76.6203
10	29.81	0.24069	26.2369	12.7670
11	30.83	0.28026	34.1919	11.3024
12	32.02	2.95634	35.1769	9.9660
13	31.11	0.65513	33.4169	5.3218
14	42.08	138.754	34.4019	58.9532
15	33.58	10.7545	42.3569	77.0340
16	65.43	1234.07	49.0371	268.7272
		Total 484.81	2390.16	659.9200

\[r^2 = 0.7239 \text{ and } r = 0.8508 \]

This means that 72.39% of the uncertainty in the model has been removed.
Table 8: Regression analysis of Enito II clay and acetic acid

s/no	Yᵢ	(Yᵢ−Yₘ)²	U = β₀ + β₁X₁ + β₂X₂ + β₃X₃ + β₄X₄ + β₅X₅	(Yᵢ−U)²
1	9.82	134.372	10.8737	1.1103
2	11.31	102.048	11.7413	0.1860
3	12.24	84.1237	11.9063	0.0863
4	22.85	2.06813	22.2963	0.3066
5	15.27	37.7229	14.9763	0.1114
6	22.78	1.8717	25.3663	6.6889
7	26.19	22.8302	25.5313	0.4339
8	28.63	52.101	26.3989	4.9778
9	12.89	72.6228	11.6637	1.5038
10	22.19	60.5444	22.0537	0.0186
11	22.64	1.50823	22.2187	0.1775
12	21.9	0.23824	23.0863	1.4073
13	26.79	28.924	25.2887	2.2539
14	27.07	32.0141	26.1563	0.8348
15	22.94	2.33509	26.3213	11.4332
16	37.08	245.489	36.7113	0.1359

Total 342.59 820.875 342.5904 31.6662

B = 0.9614 J K B = 0.9805

This means that 96.14% of the uncertainty has been explained by the model.

Table 9: Regression analysis of Ikot-Abasi clay and nitric acid

s/no	Yᵢ	(Yᵢ−Yₘ)²	U = β₀ + β₁X₁ + β₂X₂ + β₃X₃ + β₄X₄ + β₅X₅	(Yᵢ−U)²
1	27.2	248.475	23.1926	16.0593
2	38.07	23.9424	26.09	143.5204
3	18.93	577.59	21.565	6.9432
4	31.84	123.723	38.24	40.9600
5	25.1	319.09	28.345	10.5300
6	31.54	130.487	45.02	181.7104
7	39.52	11.8549	40.495	0.9506
8	54.14	124.923	43.3924	115.5109
9	32.99	99.4627	35.645	7.0490
10	57.74	218.357	52.32	29.3764
11	40.96	4.01241	47.795	46.7172
12	47.81	23.4924	50.6924	8.3082
13	65.26	497.152	54.575	114.1692
14	44.76	3.22885	57.4724	161.6051
15	54.35	129.661	52.9474	1.9673
16	77.2	1172.17	69.6224	57.4200

Total 687.41 3707.62 687.4096 942.7974

r² = 0.9614 and r = 0.9805

This means that 96.14% of the uncertainty has been explained by the model.

Table 9: Regression analysis of Ikot-Abasi clay and nitric acid

s/no	Yᵢ	(Yᵢ−Yₘ)²	U = β₀ + β₁X₁ + β₂X₂ + β₃X₃ + β₄X₄ + β₅X₅	(Yᵢ−U)²
1	27.2	248.475	23.1926	16.0593
2	38.07	23.9424	26.09	143.5204
3	18.93	577.59	21.565	6.9432
4	31.84	123.723	38.24	40.9600
5	25.1	319.09	28.345	10.5300
6	31.54	130.487	45.02	181.7104
7	39.52	11.8549	40.495	0.9506
8	54.14	124.923	43.3924	115.5109
9	32.99	99.4627	35.645	7.0490
10	57.74	218.357	52.32	29.3764
11	40.96	4.01241	47.795	46.7172
12	47.81	23.4924	50.6924	8.3082
13	65.26	497.152	54.575	114.1692
14	44.76	3.22885	57.4724	161.6051
15	54.35	129.661	52.9474	1.9673
16	77.2	1172.17	69.6224	57.4200

Total 687.41 3707.62 687.4096 942.7974

r² = 0.7457 and r = 0.8635

This means that 74.57% of the uncertainty has been explained by the model equation (18).
Table 10: Regression analysis of Ikot-Abasi clay and acetic acid

s/no	Y_i	(Y_i-Y_m)^2	U = β_0 + β_1X_1 + β_2X_2 + β_3X_3 + β_4X_4 + β_5X_5	(Y_i-U)^2
1	17.55	153.017	15.8349	2.9416
2	25.01	24.1081	17.1373	61.9794
3	16.5	180.096	14.0599	5.9541
4	20.95	80.4609	26.7375	33.4952
5	16.74	173.712	18.2249	2.2049
6	21.07	78.3225	30.9025	96.6781
7	26.35	12.7449	27.8251	2.1759
8	35.68	33.1776	25.0249	0.1723
9	25.44	20.0704	25.0249	12.3728
10	41.22	1.8769	40.0925	77.4840
11	28.93	0.9801	34.6251	32.4342
12	31.45	2.3409	35.9275	20.0480
13	45.39	239.321	38.7901	43.5587
14	31.29	1.8769	40.0925	77.4840
15	34.5	20.9764	37.0151	6.3257
16	60.65	944.333	49.6927	120.0624
Total	478.72	2093.23	478.72	560.8225

\[r^2 = 0.7321 \text{ and } r = 0.8556 \]

This shows that 73.21% of the uncertainty has been removed by the generated model.

3. Results and Discussion

Table 11: Comparison between model predictions and experimental yields of alumina

	% Yield (MODEL)	% Yield (EXPERIMENT)	% Deviation
Awgbu Clay and Nitric Acid	62.74	60.08	2.66
Awgbu Clay and Acetic Acid	43.24	39.65	3.59
Akpugo Clay and Nitric Acid	75.43	75.22	0.21
Akpugo Clay and Acetic Acid	41.98	36.43	5.55
Enito II Clay and Nitric Acid	53.14	51.09	2.05
Enito II Clay and Acetic Acid	30.23	28.66	1.57
Ikot-Abasi Clay and Nitric Acid	78.66	74.33	4.33
Ikot-Abasi Clay and Acetic Acid	50.26	47.29	2.97

Table 11 shows the yields of alumina obtained by the developed optimization model of the factorial design experiment at optimum operating conditions generated from the developed model. The comparison between optimal model predictions and experimental data showed a percentage deviation ranges from 0.21% to 5.55% indicating very reasonable agreement. The Ikot-Abasi Clay had the highest yields of 78.66% model predictions as compared with 74.33% from experiment with nitric acid while the least yields was obtained from Enito II clay with 30.23% model predictions and 28.66% experimental value with acetic acid.

Also, in terms of the leaching experiments conducted in PART A of this journal, comparing the optimal yield, we have

Table 12: Comparison between yield of alumina obtained from model and leaching experiment

	% Yield (MODEL)	% Yield (LEACHING EXPERIMENT)
Awgbu Clay and Nitric Acid	62.74	70.72
Awgbu Clay and Acetic Acid	43.24	49.50
Akpugo Clay and Nitric Acid	75.43	53.47
Akpugo Clay and Acetic Acid	41.98	43.23
Enito II Clay and Nitric Acid	53.14	65.43
Enito II Clay and Acetic Acid	30.23	37.08
Ikot-Abasi Clay and Nitric Acid	78.66	68.10
Ikot-Abasi Clay and Acetic Acid	50.26	38.07

From Table 12, it is seen that comparing the results from the model with the optimal values from the leaching experiment, the later showed better yield of alumina except for Enito II clay. However, the marginal difference between the yields obtained for the Enito II clay was not very high.

The accuracy of the models developed above were tested as seen by finding their 'coefficient of determination'
which was seen for all to lie above 70% making the model to be quite accurate as a large percentage of uncertainty had been explained (70% and above).
Optimization of the models using MATLAB is presented in the Table 13 for each of the sample:

Process Variables	X₁ (mins)	X₂ (°C)	X₃ (mins)	X₄ (M)	X₅ (µm)	Y (%)
Awgbu Clay and Nitric Acid	31.06	427.5	194.11	4.1	32.21	62.74
Awgbu Clay and Acetic Acid	40.72	348.4	27.96	3.0	7.99	43.24
Akpugo Clay and Nitric Acid	59.34	634.7	219.05	1.6	14.84	41.98
Akpugo Clay and Acetic Acid	43.72	1475.0	63.68	1.3	14.84	41.98
Enito II Clay and Nitric Acid	118.5	919.7	92.56	9.4	190.00	53.14
Enito II Clay and Acetic Acid	37.69	247.8	107.16	2.0	4.90	30.23
Ikot-Abasi Clay and Nitric Acid	3.67	336.4	82.19	26.8	50.81	78.66
Ikot-Abasi Clay and Acetic Acid	43.05	46.4	42.06	18.8	65.33	50.26

It was observed that apart from Akpugo clay and nitric acid, Ikot-Abasi clay and acetic acid where the deviation for the yields were quite high, all others were close in values.

4. Conclusion
The results obtained from the factorial design experiment showed that the dependent variable, i.e. the percent yield of alumina, is significantly affected by the five variables investigated - leaching time, calcination time, calcination temperature, acid concentration and particle size. The models developed from this design showed a simpler and more efficient path in achieving optimal yield of alumina after these models had been optimized. Comparing the values obtained from optimization of the models with experimental results showed not very much deviation. The results obtained showed clearly that Ikot-Abasi, Akpugo and Awgbu clays provided the best yield of alumina achievable from these clays and these could also be tied to the analysis where it was seen that these clays had the highest alumina content as 56.00, 25.28 and 14.23% respectively. The factorial experiment was designed in a way that helped to reduce the total number of experiments where a good number of factors were involved while still achieving a better yields of alumina. From the factorial experiments conducted, it was seen that, the best yield was achieved from the last experiment where the upper limit of all values of factors minus particle size were combined interactively.

References
Abali, Y., Copur, M. and Yavuz, M. (2006). Determination of the Optimum Conditions for Dissolution of Magnesite with H₂SO₄ Solutions, *Indian Journal of Chemical Technology*, 13, 391-397.
Ajemba, R.O. and Onukwuli, O.D. (2012). Studies of the Effects of Hydrochloric Acid-Leaching on the Structural and Adsorptive Performance of Nteje (Nigeria) Clay, *International Journal of Engineering Research and Technology (IJERT)*, 1(3), 1-11.
Ajemba, R.O. and Onukwuli, O.D. (2012). Process Optimization of Sulphuric Acid Leaching of Alumina from Nteje Clay Using Central Composite Rotatable Design, *International Journal of Multidisciplinary Sciences and Engineering*, 3(5), 1-7.
Al-Ajeel, A.A. and Al-Sindy, S.J. (2006). Alumina Recovery from Iraqi Kaolinitic Clay by Hydrochloric Acid Route, *Iraqi Bulletin of Geology and Mining*, 2(1), 67-76.
Al-Zahrani, A.A. and Abdul-Majid, M.H. (2009). Extraction of Alumina from Local Clays by Hydrochloric Acid Process, *Journal of King Abdulaziz University (JKAU)*, 20(2), 29-41.
Aramide, F.O., Alaneme, K.K., Olubambi, P.A. and Borode, J.O. (2014). Characterization of Some Clay Deposit in South West Nigeria, *Leonardo Electronic Journal of Practices and Technology*, 25, 46-57.
Bakr, M.Y. and El-Abd, M.A. (1969). Extraction of Alumina from Egyptian Kaolins and Clays: Part IV – Alumina Extraction by the Hydrochloric Acid Method, *Indian Journal of Technology*, 7, 405-409.
Box, G.E., Hunter, J.S. and Huner, W.G. (2005). *Statistics for Experimenters: Design, Innovation and Discovery*, John Wiley and Sons, New Jersey, USA, 173-233.
Fakolujo, O.S., Olokode, O.S., Aiyedun, P.O., Oyeleke, Y.T., Anyanwu, B.U. and Lee, W.E. (2012). Studies on the Five Selected Clays in Abeokuta, Nigeria, *The Pacific Journal of Science and Technology*, 13(1), 83-90.
Geankoplis, C.J. (2006). *Transport Processes and Separation Process Principles*, Prentice-Hall of India, New Delhi, India, 802-803.
Guggenheim, S. and Martin, R.T. (1995). Definition of Clay and Clay Mineral: Joint Report of the AIPEA Nomenclature and CMS Nomenclature Committees, *Clay and Clay Minerals*, 43(2), 255-256.
Kenny, J.B. (1976). *The Complete Book of Pottery Making*, Isaac Pitman and Sons, London.
Kirk-Othmar. (1998). *Encyclopedia of Chemical Technology, Volume 1: A to Alkaloids*, USA, John Wiley and Sons, USA, 63-64, 251-269.
Kirk-Othmar. (1998). *Encyclopedia of Chemical Technology, Volume 2: Alkanolamines to Antibiotics*, John Wiley and Sons, USA, 130-153.

Liu, Y., Zheng, Y. and Wang, A. (2010). Response Surface Methodology for Optimizing Adsorption Process Parameters for Methylene Blue Removal by a Hydrogel Composite, *Adsorption Science and Technology*, 28, 913-921.

Lori, J.A., Lawal, A.O. and Ekanem, E.J. (2007). Characterization and Optimization of Deferration of Kankara Clay, *ARPN Journal of Engineering and Applied Sciences*, 2(5), 60-74.

Manukaji, J.U. (2013). Industrial Potential of Some Clay Deposits in Kogi State North Central Nigeria, *American Journal of Engineering Research (AJER)*, 2(4), 33-38.

Mark, U. (2010). Characterization of Ibere and Oboro Clay Deposits in Abia State, Nigeria for Refractory Applications, *International Journal of Natural and Applied Sciences*, 6(3), 296-305.

Matthews, P. (2003). *Advanced Chemistry*, Cambridge University Press, London.

Obaje, S.O., Omada, J.I. and Dambatta, U.A. (2013). Clays and their Industrial Applications: Synoptic Review, *International Journal of Science and Technology*, 3(5), 264-270.

Olaremu, A.G. (2015). Sequential Leaching for Production of Alumina from a Nigerian Clay, *International Journal of Engineering Technology, Management and Applied Sciences*, 3(7), 103-109.

Osabor, V.N., Okafor, P.C., Ibe, K.A. and Ayi, A.A. (2009). Characterization of Clays in Odukpani, South Eastern Nigeria, *African Journal of Pure and Applied Chemistry*, 3(5), 79-85.

Ozdemir, M. and Cerisli, H. (2005). Extraction Kinetics of Alunite in Sulfuric Acid and Hydrochloric Acid, *Hydrometallurgy*, 76, 217-224.

Rastall, R.H. (1916). *Agricultural Geology*, Cambridge University Press, London, 88-89.

Uchenna, U., Onukwuli, O.D., Ajemba, R. and Ude, C.N. (2015). Kinetics Studies of Hydrochloric Acid Leaching of Alumina from Agbaja Clay, *International Journal of Research in Advanced Engineering and Technology*, 1(1), 64-72.