Could Dark Matter Interactions be an Alternative to Dark Energy?

Spyros Basilakos1 and Manolis Plionis2

1 Research Center for Astronomy, Academy of Athens, GR-11527 Athens, Greece,
2 Institute of Astronomy & Astrophysics, National Observatory of Athens, Thessio 11810, Athens, Greece & Instituto Nacional de Astrofísica, Óptica y Electrónica, 72000 Puebla, Mexico

e-mail: svasil@academyofathens.gr; mplionis@astro.noa.gr

Abstract. We study the global dynamics of the universe within the framework of the Interacting Dark Matter (IDM) scenario. Assuming that the dark matter obeys the collisional Boltzmann equation, we can derive analytical solutions of the global density evolution, which can accommodate an accelerated expansion, equivalent to either the quintessence or the standard Λ models, with the present time located after the inflection point. This is possible if there is a disequilibrium between the DM particle creation and annihilation processes with the former process dominating, which creates an effective source term with negative pressure. Comparing the predicted Hubble expansion of one of the IDM models (the simplest) with observational data we find that the effective annihilation term is quite small, as suggested by a variety of other recent experiments.

Key words. Cosmology: theory, Methods: analytical

1. Introduction

Over the past decade the analysis of high quality cosmological data (supernovae type Ia, CMB, galaxy clustering, etc.) have suggested that we live in a flat and accelerating universe, which contains cold dark matter to explain clustering and an extra component with negative pressure, the vacuum energy (or in a more general setting the dark energy), to explain the observed accelerated cosmic expansion (Spergel et al. 2007; Davis et al. 2007; Kowalski et al. 2008; Komatsu et al. 2009 and references therein). Due to the absence of a physically well-motivated fundamental theory, there have been many theoretical speculations regarding the nature of the above exotic dark energy (DE) among which a cosmological constant, scalar or vector fields (see Weinberg 1989; Wetterich 1995; Caldwell, Dave & Steinhardt 1998; Brax & Martin 1999; Peebles & Ratra 2003; Perivolaropoulos 2003; Brookfield et al. 2006; Boehmer & Harko 2007 and references therein). Due to the absence of a physically well-motivated fundamental theory, there have been many theoretical speculations regarding the nature of the above exotic dark energy (DE) among which a cosmological constant, scalar or vector fields (see Weinberg 1989; Wetterich 1995; Caldwell, Dave & Steinhardt 1998; Brax & Martin 1999; Peebles & Ratra 2003; Perivolaropoulos 2003; Brookfield et al. 2006; Boehmer & Harko 2007 and references therein).

Most of the recent papers in this kind of studies are based on the assumption that the DE evolves independently of the dark matter (DM). The unknown nature of both DM and DE implies that we can not preclude future surprises regarding the interactions in the dark sector. This is very important because interactions between the DM and quintessence could provide possible solutions to the cosmological coincidence problem (Grande, Pelinson & Solá 2009). Recently, several papers have been published in this area (e.g., Amendola et al. 2003; Cai & Wang 2005; Binder & Kremer 2006; Campo et al. 2006; Wang, Lin & Abdalla 2006; Das, Corasaniti, & Khoury 2006; Olivares, Atrio-Barandela & Pavon; He & Wang 2008, and references therein) proposing that the DE and DM could be coupled, assuming also that there is only one type of non-interacting DM.

However, there are other possibilities: (a) It is plausible that the dark matter is self-interacting (IDM) [Spergel & Steinhardt 2000], a possibility that has been proposed to solve discrepancies between theoretical predictions and astrophysical observations, among which the less cuspy halo profiles, predicted by the IDM model, allowing for the observed gamma-ray and microwave emission from the center of our galaxy (Flores & Primack 1994; Moore et al. 1999; Hooper, Finkbeiner & Dobler 2007; Regis & Ullio 2008 and references therein) and the discrepancy between the predicted optical depth, τ, from the Gunn-Peterson test in the spectra of high-z QSOs and the WMAP-based value (e.g., Mapelli, Ferrara & Pierpaoli 2006; Belikov & Hooper 2009; Cirelli, Iocco & Panci 2009 and references therein). It has also been shown that some dark matter interactions could provide an accelerated expansion phase of the Universe (Zimdahl et al. 2001; Balakin et al. 2003; Lima, Silva & Santos 2008), (b) The DM could potentially contain more than one particle species, for example a mixture of cold and warm or hot dark matter (Farrar & Peebles 2004; Gubser & Peebles 2004), with or without inter-component interactions.

In this work we are not concerned with the viability of the different such possibilities, nor with the properties of interacting DM models. The single aim of this work is to investigate whether there are repercussions of DM self-interactions for the global dynamics of the universe and specifically whether such models can yield an accelerated phase of the cosmic expansion, without the need of dark energy. Note that we do not "design"
the fluid interactions to produce the desired accelerated cosmic evolution, as in some previous works (eg., Balakin et al. 2003), but rather we investigate under which circumstances the analytical solution space of the collisional Boltzmann equation, in the expanding Universe, allows for a late accelerated phase of the Universe.

2. Collisional Boltzmann Equation in the Expanding Universe

It is well established that the global dynamics of a homogeneous, isotropic and flat Universe is given by the Friedmann equation:

\[
\frac{\dot{a}}{a} = \frac{8\pi G}{3} \rho ,
\]

with \(\rho \) the total energy-density of the cosmic fluid, containing (in the matter dominated epoch) dark matter, baryons and any type of exotic energy. Differentiating the above, we derive the second Friedmann equation, given by:

\[
\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(2\rho - \frac{\dot{\rho}}{H} \right) .
\]

As we have mentioned in the introduction, the dark matter is usually considered to contain only one type of particle that is stable and neutral. In this work we investigate, using the Boltzmann formulation, the cosmological potential of a scenario in which the dominant “cosmic” fluid does not contain dark energy, is not perfect and at the same time it is not in equilibrium. Although our approach is phenomenological, we will briefly review a variety of physically motivated dark matter self-interaction models, which have appeared in the literature.

The time evolution of the total density of the cosmic fluid is described by the collisional Boltzmann equation:

\[
\frac{d\rho}{dt} + 3H(t)\rho + \kappa \rho^2 - \Psi = 0 ,
\]

where \(H(t) \equiv \dot{a}/a \) is the Hubble function, \(\Psi \) is the rate of creation of the DM particle pairs and \(\kappa (\geq 0) \) is given by:

\[
\kappa = \frac{\langle \sigma u \rangle}{M_*} ,
\]

where \(\sigma \) is the cross-section for annihilation, \(u \) is the mean particle velocity, and \(M_* \) is the mass of the DM particle.

Note that, in the context of a spatially flat FLRW cosmology, for an effective pressure term of:

\[
P = \frac{\kappa \rho^2 - \Psi}{3H} ,
\]

the collisional Boltzmann equation reduces to the usual fluid equation: \(\dot{\rho} + 3H(\rho + P) = 0 \). Inserting eqs.\(^3\) and \(^5\) into eq.(\(^2\)) we now obtain:

\[
\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + \frac{\kappa \rho^2 - \Psi}{H} \right) = -\frac{4\pi G}{3} (\rho + 3P) .
\]

Obviously, a negative pressure (whichever its cause) can effectively act as a repulsive force possibly providing a cosmic acceleration.

In this paper we investigate the effects of DM self-interactions to the global dynamics of the Universe and under which circumstances they can produce a negative pressure and thus provide an alternative to the usual dark energy. It is well known that negative pressure implies tension rather than compression, an impossibility for ideal gases, but not so for some physical systems which depart from thermodynamic equilibrium (Landau & Lifshitz 1985).

The particle annihilation regime has been described by Weinberg (2008), using the collisional Boltzmann formulation, in which the physical properties of the DM interactions are related to massive particles (still being present) which if they carry a conserved additive or multiplicative quantum number, would imply that some particles must be left over after all the antiparticles have annihilated (Weinberg calls them L-particles). The L-particles may annihilate to other particles, which during the period of annihilation can be assumed to be in thermal and chemical equilibrium (see Weinberg 2008). Such a DM self-interacting model has repercussions to the global dynamics of the Universe (see our Case 2 below).

The corresponding effects to the global dynamics of the particle creation regime, providing an effective negative pressure, has also been investigated by a number of authors (eg., Prigogine et al. 1989; Lima et al. 2008 and references therein).

Generally, in the framework of a Boltzmann formalism, a negative pressure could indeed be the outcome of dark matter self-interactions, as suggested in Zimdahl et al. (2001) and Balakin et al. (2003), if an “antifrictional” force is self-consistently exerted on the particles of the cosmic fluid. This possible alternative to dark energy has the caveat of its unknown exact nature, which however is also the case for all dark energy models. Other sources of negative pressure have also been proposed, among which gravitational matter “creation” processes (Zeldovich 1970), viewed through non-equilibrium thermodynamics (Prigogine et al. 1989) or even the C-field of Hoyle & Narlikar (1966). The effects of the former proposal (gravitational matter creation) on the global dynamics of the Universe have been investigated, under the assumption that the particles created are non-interacting (Lima et al. 2008). The merit of all these alternative models is that they unify the dark sector (dark energy and dark matter), since just a single dark component (the dark matter) needs to be introduced in the cosmic fluid.

In what follows we present, in a unified manner, the outcome for the global dynamics of the Universe of different type of dark matter self-interactions, using the Boltzmann formulation in the matter dominated era.
3. The Cosmic Density Evolution for different DM interactions

We proceed to analytically solve eq. (3). We change variables from \(r \) to \(\alpha \) and thus eq. (3) can be written:

\[
\frac{dp}{d\alpha} = f(\alpha)p^2 + g(\alpha)p + R(\alpha)
\]

where

\[
f(\alpha) = -\frac{\kappa}{\alpha H(\alpha)} \quad g(\alpha) = -\frac{3}{\alpha} \quad R(\alpha) = \frac{\Psi(\alpha)}{\alpha H(\alpha)}.
\]

Within this framework, based on eqs. (5) and (8), we can distinguish four possible DM self-interacting cases.

Case 1: \(P = 0 \): If the DM is collisionless or the collisional annihilation and pair creation processes are in equilibrium (ie., \(\Psi = \kappa \rho^2 \)), the corresponding solution of the above differential equation is \(\rho \propto \alpha^{-3} \) (where \(\alpha \) is the scale factor of the universe), and thus we obtain, as we should, the dynamics of the Einstein-de-Sitter model, with \(H(t) = 2/3t \).

Case 2: \(P = \kappa \rho^2 /3H \): If we assume that in the matter era the particle creation term is negligible, \(\Psi = 0 \) \([R(\alpha) = 0] \), (the case discussed in Weinberg 2008), then the corresponding pressure becomes positive. It is clear that eq. (7) becomes a Bernoulli equation, the general solution of which provides the evolution of the global energy-density, which is that corresponding to the IDM ansatz:

\[
\rho(\alpha) = \frac{\alpha^{-3}}{C_2 - \int_1^{\alpha} x^{-3} f(x) dx} = \frac{\alpha^{-3}}{C_2 + \kappa \int_0^{\alpha} \alpha^{-3}(t) dt}.
\]

Prior to the present epoch we have that \(\rho(\alpha) \propto \alpha^{-3} \), while at late enough times \((\alpha \gg 1) \) the above integral converges, which implies that the corresponding global density tends to evolve again as the usual dark matter (see Weinberg 2008), with

\[
\rho(\alpha) \rightarrow \frac{\alpha^{-3}}{C_2 + \kappa \int_0^{\alpha} \alpha^{-3}(t) dt} \propto \alpha^{-3},
\]

where \(t_0 \) is the present age of the Universe. The latter analysis, relevant to the usual weakly interacting massive particle case - Weinberg (2008), leads to the conclusion that the annihilation term has no effect resembling that of dark energy, but does affect the evolution of the self interacting DM component, with the integral in the denominator rapidly converging to a constant (which does depend on the annihilation cross-section).

Case 3: \(P = (\kappa \rho^2 - \Psi)/3H \): For the case of a non-perfect DM fluid (ie., having up to the present time a disequilibrium between the annihilation and particle pair creation processes) we can either have a positive or a negative effective pressure term. Although the latter situation may or may not appear plausible, even the remote such possibility, ie., the case for which the DM particle creation term is larger than the annihilation term \((\kappa \rho^2 - \Psi < 0) \), is of particular interest for its repercussions on the global dynamics of the Universe (see for example Zimdahl et al. 2001; Balakin et al. 2003).

It is interesting to note that this case can be viewed as a generalization of the gravitational matter creation model of Prigogine et al. (1989) [see also Lima et al. 2008 and references therein] in which annihilation processes are also included, although the matter creation component dominates over annihilations. In such a scenario, as well as in any interacting dark-matter model with a left-over residual radiation, a possible contribution from the radiation products to the global dynamics is negligible, as we show in appendix A.

In general, for \(\kappa \neq 0 \) and \(\Psi \neq 0 \) it is not an easy task to solve analytically eq. (7), which is a Riccati equation, due to the fact that it is a non-linear differential equation. However, eq. (7) could be fully solvable if (and only if) a particular solution is known. Indeed, we find that for some special cases regarding the functional form of the interactive term, such as \(\Psi = \Psi(\alpha, H) \), we can derive analytical solutions. We have identified two functional forms for which we can solve the previous differential equation analytically, only one of which is of interest since it provides a \(\alpha \propto \alpha^{-3} \) dependence of the scale factor (see appendix B). This is:

\[
\Psi(\alpha) = \alpha H(\alpha) R(\alpha) = C_1 (m + 3) \alpha m H(\alpha) + \kappa C_1^2 F^m \alpha.
\]

Although, the above functional form was not motivated by some physical theory, but rather phenomenologically by the fact that it provides analytical solutions to the Boltzmann equation, its exact form can be justified \textit{a posteriori} within the framework of IDM (see appendix C).

The general solution of equation (7) for the total energy-density, using eq. (11), is:

\[
\rho(\alpha) = C_1 \alpha^m + \frac{\alpha^{-3} F(\alpha)}{C_2 - \int_1^{\alpha} x^{-3} f(x) F(x) dx},
\]

where the kernel function \(F(\alpha) \) has the form:

\[
F(\alpha) = \exp \left[-2 \kappa C_1 \int_1^{\alpha} \frac{h^{-1}}{H(x)} dx \right].
\]

Note that \(\kappa C_1 \) has units of Gyr\(^{-1} \), while \(m, C_1 \) and \(C_2 \) are the corresponding constants of the problem. Obviously, eq. (12) can be seen as

\[
\rho(\alpha) = \rho_1(\alpha) + \rho_2(\alpha),
\]

where \(\rho_1 = C_1 \alpha^m \) is the density corresponding to the residual “matter creation”, resulting from a possible disequilibrium between the particle creation and annihilation processes, while \(\rho_2 \) can be viewed as the energy density of the self-interacting dark matter particles which are dominated by the annihilation processes. This can be easily understood if we set the constant \(C_1 \) strictly equal to zero, implying that the creation term is negligible, which reduces the current solution (eq. (14)) to that of eq. (9).

Note that near the present epoch as well as at late enough times \((\alpha \gg 1) \), as also in Case 2, the \(\rho_2 \) evolves as the usual dark matter (see also Weinberg 2008). Finally, if both \(\kappa \) and \(\Psi \) tend to zero, the above cosmological model reduces to the usual Einstein-deSitter model (Case 1).

Note that, due to \(\rho > 0 \), the constant \(C_2 \) obeys the following restriction:

\[
C_2 > G(\alpha) = \int_1^{\alpha} x^{-3} f(x) F(x) dx \geq 0.
\]
Evaluating now eq.(12) at the present time \(\alpha = 1, F(\alpha) = 1 \), we obtain the present-time total cosmic density, which is: \(\rho_0 = C_1 + 1/C_2 \), with \(C_1 \geq 0 \) and \(C_2 > 0 \).

4. Case 3: \(P = (\kappa \rho^2 - \Psi)/3H \)

4.1. Conditions to have an inflection point and galaxy formation

In order to have an inflection point at \(\alpha = \alpha_t \) we must have \(\dot{\alpha}_t = 0 \) (see eq. [6]). The latter equality implies that \(\rho + 3P = 0 \) should contain a real root in the interval: \(\alpha \in (0, 1) \). Therefore, with the aid of eqs. (12), (5) and (11), we derive the following condition:

\[
\alpha^{-3} F(H + 2\kappa C_1 \alpha^m) \frac{C_2 - G}{(C_2 - G)^2} + \frac{\kappa \alpha^{-6} F^2}{(C_2 - G)^2} - (m + 2) C_1 \alpha^m H = 0, \quad (17)
\]

from which we obtain that \(m > -2 \) (where \(C_1 > 0, \kappa \geq 0 \) and \(C_2 > 0 \)). Evidently, if we parametrize the constant \(m \) according to \(m = -3(1 + \omega_{\text{DM}}) \), we obtain the condition: \(\omega_{\text{DM}} < -1/3 \), which means that the current model can be viewed as a viable quintessence dark-energy look-alike, as far as the global dynamics is concerned. Indeed, we remind the reader that the same restriction holds for the usual dark energy model in which \(P_0 = \omega_{\text{DM}} \rho_0 (\omega = \text{const}) \).

Since the avenue by which the IDM model provides cosmic acceleration may appear slightly involved, we present in appendix D its correspondence to the usual dark energy models.

Furthermore, in order to have growth of spatial density fluctuations, the effective DM part should be capable of clustering and providing the formation of galaxies, while the effective dark energy term should be close to homogeneous. Indeed in our case the effective term that acts as dark energy is homogeneous in the same sense as in the classical quintessence, while the \(\kappa \rho^2 \) term slightly modifies the pure DM evolution. In any case the interacting DM term after the inflection point tends to an evolution \(\propto \alpha^{-3} \). During the galaxy formation epoch at high-\(\zeta \)'s we expect (due to the functional form of the DM term) that the slope of the interacting DM term is not far from the classical DM evolution (we will explore further these issues in a forthcoming paper).

4.2. Relation to the Standard \(\Lambda \) Cosmology

As an example, we will show that for \(m = 0 \) (or \(\omega_{\text{DM}} = -1 \)) the global dynamics, provided by eq. (12), is equivalent to that of the traditional \(\Lambda \) cosmology. To this end we use \(d\alpha = \alpha/(\alpha H) \) and the basic kernel (eq. [13]) becomes:

\[
F(\alpha) = \exp \left[-2\kappa C_1 \int_{0}^{\alpha} \frac{1}{xH(x)} dx \right] = e^{-2\kappa C_1(t-t_0)}, \quad (18)
\]

where \(t_0 \) is the present age of the universe. In addition, the integral in equation (12) see also eq. (15) takes now the following form: \(G(\alpha) = -\kappa Z(t) \) and \(Z(t) = \int_{0}^{t} e^{-2\kappa C_1(t-t')} dt' \). Note that at the present time we have \(G(1) = 0 \). Therefore, using the above formula, the global density evolution (eq. [12]) can be written:

\[
\rho(\alpha) = C_1 + \alpha^{-3} e^{-2\kappa C_1(t-t_0)} \frac{C_2 - G(\alpha)}{C_2 - G(1)}, \quad (19)
\]

As expected, at early enough times \((t \rightarrow 0) \) the overall density scales according to: \(\kappa(\alpha) \propto \alpha^{-3} \), while close to the present epoch the density evolves according to:

\[
\rho(\alpha) \approx C_1 + \frac{\alpha^{-3}}{C_2}, \quad (20)
\]

which is approximately the corresponding evolution in the \(\Lambda \) cosmology, in which the term \(C_1 \) acts as the constant-vacuum term (\(\rho_{\Lambda} \)) and the \(1/C_2 \) term acts like matter (\(\rho_m \)).

Note that the effective pressure term (eq. [5]), for \(\kappa \rightarrow 0 \), becomes: \(\Psi \sim 3C_1 H \), which implies that: \(P = -\Psi/3H = -C_1 \). Therefore, this case relates to the traditional \(\Lambda \) cosmology, since \(C_1 \) corresponds to \(\rho_{\Lambda} \) (see eq. [20]). We now investigate in detail the dynamics of the \(m = 0 \) model.

From eq. (19), using the usual unit-less \(\Omega \)-like parameterization, we have after some algebra that:

\[
\left(\frac{H}{H_0} \right)^2 = \Omega_{1,0} + \Omega_{1,0} \Omega_{2,0} \alpha^{-3} e^{-2\kappa C_1(t-t_0)} \frac{\Omega_{1,0} + C_1 \Omega_{2,0} Z(t)}{\Omega_{1,0}}, \quad (21)
\]
with \(\Omega_{r,0} = 8\pi G C_1/3H_0^2 \) and \(\Omega_{\Lambda,0} = 8\pi G/3H_0^2 C_2 \), which in the usual \(\Lambda \) cosmology they correspond to \(\Omega_\Lambda \) and \(\Omega_m \), respectively.

We can now attempt to compare the Hubble function of eq. (21) to that corresponding to the usual \(\Lambda \) model. To this end, we use a \(\chi^2 \) minimization between the different models (our IDM eq. (21) or the traditional \(\Lambda \)CDM model) and the Hubble relation derived directly from early type galaxies at high redshifts (Simon, Verde, & Jimenez 2005). For the case of our IDM model we simultaneously fit the two free parameters of the model, i.e., \(\Omega_{2,0} \) and \(\kappa C_1 \) for a flat background \((\Omega_{r,0} = 1 - \Omega_{2,0}) \) with \(H_0 = 72 \text{ km/sec/Mpc} \) and \(t_0 = H_0^{-1} \approx 13.6 \text{ Gyrs} \) (roughly the age of the universe of the corresponding \(\Lambda \) cosmology). This procedure yields, as the best fitted parameters, the following: \(\Omega_{2,0} = 0.3^{+0.05}_{-0.09} \) and \(\log(\kappa C_1) \approx -9.3 \) (with stringent upper limit \(\approx -3 \), but unconstrained towards lower values) with \(\chi^2/\text{d.f.} = 1.29 \) (see left panel of Fig. 1). Using eq.(4) we can now relate the range of values of \(\kappa C_1 \) with the mass of the DM particle from which we obtain that:

\[
M_x = \frac{1.205 \times 10^{-12}}{\kappa C_1} \langle \sigma v \rangle 10^{-22} \text{ GeV},
\]

(22)

(see also right panel of Fig. 1) and since \(\kappa C_1 \) is unbound towards small values, it is consistent with currently accepted lower bounds of \(M_x(\sim 10 \text{GeV}) \) (eg., Cirelli et al. 2009 and references therein). The corresponding Hubble relation (Fig. 2), provided by the best fitted free parameters, is indistinguishable from that of the traditional \(\Lambda \)CDM model, due to the very small value of \(\kappa C_1 \approx 10^{-9.3} \). For completion we also show, as the dashed line, the IDM solution provided by \(M_x \approx 1 \text{eV} \) (\(\kappa C_1 \approx 10^{-3} \)), which is the stringent lower bound found by our analysis. In this case the predicted Hubble expansion deviates significantly from the traditional \(\Lambda \) model at small \(a \) values indicating that it would probably create significant alterations of the standard BBN (eg. Iocco et al. 2009 and references therein).

Although the present analysis does not provide any important constraints on \(M_x \) (within our model), we plan to use in the future a large number of cosmologically relevant data to attempt to place stronger \(M_x \) constraints, also for the general case of section 4.1.

5. Case 4: \(P = -\Psi/3H \)

In this section we will prove that for \(\kappa = 0 \) (negligible annihilation), the global dynamics resembles that of the traditional quintessence cosmology (\(w =\text{constant} \)). Indeed, using again the phenomenologically selected form of \(\Psi \), provided by eq.(11), we have \(R(a) = C_1 (m + 3) a^{-m-1} \). It is then straightforward to obtain the density evolution from eq.(16), as:

\[
\rho(a) = \frac{D}{3} a^{-3} + C_1 a^{m}, \tag{23}
\]

where \(D = C_2 - C_1 \). The conditions under which the current model acts as a quintessence cosmology, are: \(D > 0, C_1 > 0 \) and \(w_{\text{DM}} = -1 - m/3 \), which implies that in order to have an inflection point, the following should be satisfied: \(w_{\text{DM}} < -1/3 \) or \(m > -2 \) (see appendix D). Notice, that the Hubble flow is now given by:

\[
\left(\frac{H}{H_0} \right)^2 = \frac{\Omega_{2,0}a^{-3}}{\Omega_{1,0}a^m} \tag{24}
\]

with \(\Omega_{2,0} = 8\pi G D/3H_0^2 \) and \(\Omega_{1,0} = 8\pi G C_1/3H_0^2 \). Finally, by minimizing the corresponding \(\chi^2 \) (as in section 4.2), we find that the best fit values are \(\Omega_{2,0} \approx 0.28 \) and \(m \approx -0.30 \) \((w_{\text{DM}} \approx -0.90) \) with \(\chi^2/\text{d.f.} = 1.29 \). The corresponding Hubble flow curve is shown in Fig. 2 as the dot-dashed line. Note that this solution is mathematically equivalent to that of the gravitational matter creation model of Lima et al. (2008).

6. Conclusions

In this work we investigate the evolution of the global density of the universe in the framework of an interacting DM scenario by solving analytically the collisional Boltzmann equation in an expanding Universe. A disequilibrium between the DM particle creation and annihilation processes, whichever its cause and in favor of the particle creation term, can create an effective source term with negative pressure which, acting like dark energy, provides an accelerated expansion phase of the universe. There are also solutions for which the present time is located after the inflection point. Finally, comparing the observed Hubble function of a few high-redshift elliptical galaxies with that predicted by our simplest IDM model \((m = 0) \), we find that the effective annihilation term is quite small. In a forthcoming paper we will use a multitude of cosmologically relevant observations to jointly fit the predicted, by our generic IDM model, Hubble relation and thus possibly provide more stringent constraints to the free parameters of the models. We plan also to
derive the perturbation growth factor in order to study structure formation within the IDM model.

Acknowledgements. We thank P.J.E. Peebles for critically reading our paper and for useful comments. Also, we would like to thank the anonymous referee for his/her useful comments and suggestions.

Appendix A: The effect of the decay products

Here we attempt to investigate in the matter-dominated era, whether the possible radiation products due to dark matter interactions can affect the global dynamics. A general coupling can be viewed by the continuity equations of interacting dark matter ρ_{DM} and residual radiation ρ_r.

\[
\frac{d\rho_{DM}}{dt} + 3H(t)\rho_{DM} + \kappa\rho_{DM}^2 - \Psi = Q, \tag{25}
\]

\[
\frac{d\rho_r}{dt} + 4H(t)\rho_r = -Q \tag{26}
\]

where Q is the rate of energy density transfer. If $Q < 0$ then the IDM fluid transfers to residual radiation. As an example we can use a generic model with $Q = -\epsilon\dot{\rho}_r$, where $\epsilon > 0$. Thus, eq. (26) has an exact solution

\[
\dot{\rho}_r = \delta\rho_{0}\alpha^{-4}e^{(t-t_0)} \tag{27}
\]

with t_0 the present age of the Universe. This shows that the contribution of the residual radiation to the global dynamics is negligible in the past, since there is not only the usual $\propto a^{-4}$ dependence of the background radiation but also a further exponential drop, and thus $Q \approx 0$. Therefore we conclude that we can approximate the total energy-density with that of the interacting dark-matter density ($\rho = \rho_{DM}$).

Note, that $1/e$ can be viewed as the mean life time of the residual radiation particles.

Appendix B: Solutions of the Riccati equation

With the aid of the differential equation theory we present solutions that are relevant to our eq. (7). In general a Riccati differential equation is given by

\[
y' = f(x)y^2 + g(x)y + R(x) \tag{28}
\]

and it is fully solvable only when a particular solution is known. Below we present two cases in which analytical solutions are possible.

- Case 1: For the case where:

\[
R(x) = C_1mx^{m-1} - C_1^2x^{2m}f(x) - C_1x^{m}g(x) \tag{29}
\]

the particular solution is x^m and thus the corresponding general solution can be written as:

\[
y(x) = C_1x^m + \Phi(x)\left[C_2 - \int_1^x (f(u)\Phi(u) du)\right]^{-1} \tag{30}
\]

where

\[
\Phi(x) = \exp\left[\int_1^x (2C_1u^m f(u) + g(u)) du\right] \tag{31}
\]

and C_1, C_2 are the integration constants. Using now eq. (8) we get

\[
\Psi(x) = \kappa H(x)R(x) = C_1(m + 3)x^mH(x) + \kappa C_1^2x^{2m}. \tag{32}
\]

- Case 2: For the case where:

\[
R(x) = h'(x) \quad \text{with} \quad g(x) = -f(x)h(x) \tag{33}
\]

the particular solution is $h(x)$ [in our case we have $h(x) = -3x^{-1}H(x)$]. The general solution now becomes:

\[
y(x) = h(x) + \Phi(x)\left[C_2 - \int_1^x (f(u)\Phi(u) du)\right]^{-1} \tag{34}
\]

where

\[
\Phi(x) = \exp\left[\int_1^x (f(u)h(u) du)\right] . \tag{35}
\]

In this framework, using eq. (8) we finally get

\[
\Psi(x) = xH(x)R(x) = -3x^{-1}xH(x)H(x). \tag{36}
\]

Appendix C: Justification of functional form of Ψ

Suppose that we have a non-perfect cosmic fluid in a disequilibrium phase with energy density ρ. Then from the collisional Boltzmann equation, we have:

\[
\Psi = \rho + 3H\rho + \kappa\rho^2 = \frac{d\rho}{da}aH + 3H\rho + \kappa\rho^2 . \tag{37}
\]

Furthermore, we assume that for a convenient period of time the cosmic fluid, in an expanding Universe, is slowly diluted according to $\rho \sim C_1a^{-\alpha}$ ($m \leq 0$). From a mathematical point of view, the latter assumption simply means that a solution of the form $\propto a^{-\alpha}$ is a particular solution of the Boltzmann equation. Therefore, we have finally that:

\[
\Psi \approx C_1(m + 3)a^{\alpha}H + \kappa C_1^2a^{2\alpha}. \tag{38}
\]

Appendix D: Correspondence between our model and the usual Dark Energy models

We remind the reader that for homogeneous and isotropic flat cosmologies ($\Omega_m + \Omega_D = 1$), driven by non-relativistic DM and a DE with a constant equation of state parameter (w), the density evolution of this cosmic fluid can be written as:

\[
\rho(\alpha) = \rho_{0,0}a^{-3} + \rho_{m,0}a^{-3(1+w)} \tag{39}
\]

where $\rho_{m,0}$ and $\rho_{0,0}$ are the present-day DM and DE densities, respectively.

The necessary criteria to have cosmic acceleration and an inflection point in our past ($i \leq i_0$), are: (a) $w < 0$ and (b) $\ddot{a} = 0$, which leads to the conditions:

- Dark Energy models: $P = P_m + P_D = w\rho_D < 0$, $P_m = 0$ with $w < -1/3$.
- IDM models: $P = \kappa\rho^2 - \Psi < 0$ and $m > -2$ (or $w_{IDM} > -1/3$ see section 4).

References

Amendola L., Quercellini C., Tocchini-Valentini D., & Pasqui A., 2003, ApJ, 583, L53
Balakin A.B., Pavon D., Schwarz D.J., & Zimdahl W., 2003, N.J.Phys, 5, 85
Belikov, A.V. & Hooper, D., 2009, arXiv:0904.1210
Binder J.B., & Kremer G.M., 2006, Gen. Rel. Grav. 38, 857
Spyros Basilakos and Manolis Plionis: Dark matter interactions and dark energy

Boehmer C. G., & Harko T., 2007, Eur. Phys. J. C50, 423
Brax P., & Martin J., 1999, Phys. Lett. 468, 40
Brookfield A. W., van de Bruck C., Mota D. F., & Tocchini-Valentini D., 2006, Phys. Rev. Lett., 96, 061301
Caldwell R. R., Dave R., & Steinhardt P. J., 1998, Phys. Rev. Lett., 80, 1582
Cai R.G., & Wang A., 2005, JCAP, 0503, 002
Campo, R., Herrera, R., Olivares, G., & Pavon, D., 2006, Phys. Rev. D., 74, 023501
Cirelli, M., Iocco, F., Panci, P., 2009, arXiv:0907.0719
Das, S., Corasaniti, P.S., & Khoury, J., 2006, Phys. Rev. D, 73, 083509
Davis, T. M., et al., 2007, ApJ, 666, 716
Farrar G.R., & Peebles P.J.E. 2004, ApJ, 604 1
Flores R.A., & Primack J.R., 1994, ApJ, 427, L1
Granada, J., Pelinson A., & Solá, J., 2009, Phys. Rev D., 79, 3006
Gubser S.S., & Peebles P.J.E, 2004, Phys. Rev., D70, 123510
He, J.-H. & Wang, B., 2008, JCAP, 06, 010
Hooper D., Finkbeiner D.P., & Dobler G., 2007, Phys. Rev. D., 76, 3012
Hoyle F., & Narlikar J.V., 1966, Proc, Roy, Soc. A, 290, 143
Komatsu, E., et al., 2009, ApJS, 180, 330
Kowalski, M., et al., 2008, ApJ, 686, 749
Landau L.D., & Lifshitz E. M., Statistical Physics (Pergamon, Oxford, 1985)
Lima J.A.S., Silva F.E., & Santos R.C., 2008, Class. & Quantum Gravity, 25, 205006
Iocco, F., Mangano, G. Miele, G. Pisanti, O., Serpico, P.D., Phs.Rept., 2009, 472
Mapelli, M., Ferrara, A., Pierpaoli, E., 2006, MNRAS, 369, 1719
Moore B. et al. 1999, ApJ, 524, L19
Olivares, G., Atrio-Barandela, F., & Pavon, D., 2008, Phys. Rev. D., 77, 063513
Peebles, P. J. E., & Ratra, B., Rev.Mod.Phys., 2003, 75, 559
Perivolaropoulos L., 2003, Phys. Rev. D., 67, 1351
Prigogine et al. 1989, Gen. Rel.Grav. 21, 767
Regis M., & Ullio P., 2008, astro-ph/0802.0234
Simon J., Verde L., & Jimenez R., 2005, Phys. Rev. D., 71, 123001
Spergel D.N., & Steinhardt P.J. 2000, Phys. Rev. Lett., 84, 3760
Spergel, D. N., et al., 2007, ApJS, 170, 377
Wang, B., Lin, C.-Y., & Abdalla, 2006, Phys. Lett. B., 637, 357
Weinberg S., 1989, Rev. Mod. Phys., 61, 1
Weinberg S., 2008, Cosmology, Oxford University Press
Wetterich C., 1995, A&A, 301, 321
Zimdahl W., Schwarz D.J., Balakin A.B.,& Pavon D., 2001, Phys. Rev. D., 64, 3501
Zeldovich Ya. B., 1970, JETP Lett. 12, 3007