Oscillating Evolution of a Mammalian Locus with Overlapping Reading Frames: An XLαs/ALEX Relay

Anton Nekrutenko1,2,3*, Samir Wadhawan1,2,3, Paula Goetting-Minesky2,4, Kateryna D. Makova4

1 Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America 2 Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania, United States of America 3 The Huck Institutes for Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America 4 Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America

XLαs and ALEX are structurally unrelated mammalian proteins translated from alternative overlapping reading frames of a single transcript. Not only are they encoded by the same locus, but a specific XLαs/ALEX interaction is essential for G-protein signaling in neuroendocrine cells. A disruption of this interaction leads to abnormal human phenotypes, including mental retardation and growth deficiency. The region of overlap between the two reading frames evolves at a remarkable speed: the divergence between human and mouse ALEX polypeptides makes them virtually unalignable. To trace the evolution of this puzzling locus, we sequenced it in apes, Old World monkeys, and a New World monkey. We show that the overlap between the two reading frames and the physical interaction between the two proteins force the locus to evolve in an unprecedented way. Namely, to maintain two overlapping protein-coding regions the locus is forced to have high GC content, which significantly elevates its intrinsic evolutionary rate. However, the two encoded proteins cannot afford to change too quickly relative to each other as this may impair their interaction and lead to severe physiological consequences. As a result XLαs and ALEX evolve in an oscillating fashion constantly balancing the rates of amino acid replacements. This is the first example of a rapidly evolving locus encoding interacting proteins via overlapping reading frames, with a possible link to the origin of species-specific neurological differences.

Citation: Nekrutenko A, Wadhawan S, Goetting-Minesky P, Makova KD (2005) Oscillating evolution of a mammalian locus with overlapping reading frames: An XLαs/ALEX relay. PLoS Genet 1(2): e18.

Received March 25, 2005; Accepted June 23, 2005; Published August 12, 2005

Copyright: © 2005 Nekrutenko et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abbreviations: ALEX, alternative gene product encoded by the XL-exon; NG, Nei-Gojobori; XLαs, extra large form of Gx

Editor: Takashi Gojobori, National Institute of Genetics, Japan

*To whom correspondence should be addressed. E-mail: anton@bx.psu.edu
considerable selective constraint. Yet the XL-exon evolves at a remarkable pace: the nucleotide identity between human and mouse XL-exon is only 71%, and the amino acid identity between human and mouse ALEX is 53% [13]. For comparison, the average nucleotide and amino acid identities between human and mouse protein-coding genes and their protein products are 86% and 89%, respectively [14]. Why would a locus encoding two essential signaling proteins evolve so rapidly?

Results/Discussion

To take a closer look at the evolutionary dynamics of XLs and ALEX, we sequenced the XL-exon from eight primates and immediately found striking differences within the repeat-containing region (we used XL-exon boundaries as described in Hayward et al. [4]; also see Methods). All studied species that included human, apes (chimpanzee, gorilla, orangutan, and gibbon), Old World monkeys (colobus and macaque), and a New World monkey (squirrel monkey) varied in the number of repeat units and an additional insertion at position B. Gibbon, colobus, macaque, and squirrel monkey contained an additional insertion at position H. Assuming that the sequenced alleles are fixed in the respective primate populations, XL-exon experienced an episode of repeat expansion in the greater ape lineage followed by a dramatic repeat loss on the branch leading from the human/chimpanzee ancestor to modern humans (Figure 2). Note that in all sampled species both reading frames remain intact regardless of the insertion/deletion events. The observed pattern may have implications for the evolution of species-specific neurological and metabolic differences (discussed below) since the variation in the number of repeats has profound developmental and physiological effects [5,11,12].

Next, we analyzed the pattern of nucleotide substitutions within the XL-exon (excluding the repeat-containing region) and observed a striking oscillation of amino acid replacement rates between the XLs and ALEX. The interaction between the two proteins imposes a unique constraint: if one protein changes the other needs to rapidly “evolve” a compensatory substitution to preserve the mutual affinity. Although this cannot be observed directly in our data because such changes are likely to occur within each lineage in rapid succession, the overall effect of this process should result in similar rates of amino acid replacements in the two proteins. To test this hypothesis we compared nucleotide substitutions between XLs and ALEX frames in sequenced species. Classical measures of nucleotide substitution rates such as K_s and K_A [15] are not directly applicable here because of the interdependence of the two overlapping frames [16–18]. However, these measures can be used in a relative context. Specifically, the ratio of nonsynonymous rates between the two frames ($\frac{K_N}{K_{ALEX}}$) can be used to test the equality of amino acid replacement rates between the two proteins. To carry out this analysis we reconstructed a phylogenetic tree using unambiguously aligning portions of the XL-exon. For every branch of the tree we computed the $\frac{K_N}{K_{ALEX}}$ ratio using maximum likelihood estimates of nonsynonymous rates for each frame (Figure 2). Ratios vary considerably among

Oscillating Evolution

![Figure 1. Alignment of Internal Repeat Region in XLs and ALEX Polypeptides](image-url)

Black boxes highlight the position of the disease-linked repeat in the 14-unit human allele (H_s). Sequences upstream and downstream of the shown region can be aligned unambiguously. Species abbreviations as follows: Hs, *Homo sapiens* (human); Pt, *Pan troglodytes* (chimpanzee); Gg, *Gorilla gorilla* (gorilla); Pp, *Pongo pygmaeus* (orangutan); Hl, *Hylobates lar* (gibbon); Ca, *Colobus angolensis* (colobus monkey); Mm, *Macaca mulatta* (macaque); Sb, *Saimiri boliviensis* (squirrel monkey).

DOI: 10.1371/journal.pgen.0010018.g001

Synopsis

One of the possible ways to achieve tight co-expression of two proteins is to encode them within a single mRNA. The GNAS1 gene in mammals does just that: it encodes two interacting signaling polypeptides within a single transcript using nested reading frames shifted one nucleotide relative to each other. The exceptionally high GC content of the region where the two reading frames overlap diminishes the probability of encountering stop codons but makes the locus highly mutable. To preserve their ability to interact functionally with each other despite the high mutation rate, the two polypeptides appear to evolve in an oscillating fashion, trying to maintain approximately equal rates of amino acid substitutions. This unexpected observation provides new insights into the evolution of mostly overlooked overlapping coding regions in eukaryotic genomes.

Results/Discussion

To take a closer look at the evolutionary dynamics of XLs and ALEX, we sequenced the XL-exon from eight primates and immediately found striking differences within the repeat-containing region (we used XL-exon boundaries as described in Hayward et al. [4]; also see Methods). All studied species that included human, apes (chimpanzee, gorilla, orangutan, and gibbon), Old World monkeys (colobus and macaque), and a New World monkey (squirrel monkey) varied in the number of repeat units and an additional insertion at position B. Gibbon, colobus, macaque, and squirrel monkey contained an additional insertion at position H. Assuming that the sequenced alleles are fixed in the respective primate populations, XL-exon experienced an episode of repeat expansion in the greater ape lineage followed by a dramatic repeat loss on the branch leading from the human/chimpanzee ancestor to modern humans (Figure 2). Note that in all sampled species both reading frames remain intact regardless of the insertion/deletion events. The observed pattern may have implications for the evolution of species-specific neurological and metabolic differences (discussed below) since the variation in the number of repeats has profound developmental and physiological effects [5,11,12].

Next, we analyzed the pattern of nucleotide substitutions within the XL-exon (excluding the repeat-containing region) and observed a striking oscillation of amino acid replacement rates between the XLs and ALEX. The interaction between the two proteins imposes a unique constraint: if one protein changes the other needs to rapidly “evolve” a compensatory substitution to preserve the mutual affinity. Although this cannot be observed directly in our data because such changes are likely to occur within each lineage in rapid succession, the overall effect of this process should result in similar rates of amino acid replacements in the two proteins. To test this hypothesis we compared nucleotide substitutions between XLs and ALEX frames in sequenced species. Classical measures of nucleotide substitution rates such as K_s and K_A [15] are not directly applicable here because of the interdependence of the two overlapping frames [16–18]. However, these measures can be used in a relative context. Specifically, the ratio of nonsynonymous rates between the two frames ($\frac{K_N}{K_{ALEX}}$) can be used to test the equality of amino acid replacement rates between the two proteins. To carry out this analysis we reconstructed a phylogenetic tree using unambiguously aligning portions of the XL-exon. For every branch of the tree we computed the $\frac{K_N}{K_{ALEX}}$ ratio using maximum likelihood estimates of nonsynonymous rates for each frame (Figure 2). Ratios vary considerably among
branches. For example, branches originating from node 3 (3→Pp and 3→2) show opposing XL/\(K_A\) ratios. However, none of the ratios is significantly different from 1 (p-values from Fisher’s exact test are between 0.14 and 0.77), supporting our hypothesis that the two proteins constantly co-evolve and maintain XL/\(K_A\) of approximately 1.

A possible caveat of this analysis is the use of internal nodes because the likelihood method we employed to estimate branch-specific rates was not intended to handle coding sequences with multiple reading frames. To address this, we estimated pairwise \(K_A\) between XL and ALEX reading frames. For this purpose we developed a neighbor-dependent modification of the Nei–Gojobori (NG) method [19]. Unlike the classical NG, our method estimates the number of synonymous and nonsynonymous changes in a given frame (i.e., XL frame) without considering any pathways that would create nonsense codons in the other frame (i.e., ALEX). The resulting estimates were only slightly different from the NG, Yang-Nielsen [20], and likelihood [21] methods, as the high GC content of XL-exon (68% in human) decreases the chance of encountering pathways that contain nonsense codons (Table 1). We used the new \(K_A\) estimates to calculate the XL/\(K_A\) ratio for each pair of species. Again, although the ratios varied substantially, none was significantly different from 1 (at 1% level; Table 1). The observed oscillation of the XL/\(K_A\) ratio around 1 likely implies constant adjustment between the two proteins aimed at maintaining mutual affinity.

The phenomenon of oscillation is also confirmed by the pattern of nucleotide substitutions at different codon positions. Third codon positions of the XL frame, where most changes are synonymous, correspond to second codon

Figure 2. Evolutionary Oscillation between XL and ALEX Frames Revealed from Nucleotide Substitution Analysis

The ratio of maximum likelihood estimates of nonsynonymous rates between the two frames (XL/\(K_A\)) is shown on each branch. A series of colored bars above each branch shows the number of nucleotide substitutions at each codon position reconstructed using parsimony. Each bar represents a single substitution. The codon positions are numbered as follows: black letters on white background (XL frame); white letters on black background (ALEX frame). Boxes at the ends of external branches show repeat structure of the XL-exon in each species (white = deletion). Species abbreviations are as in Figure 1.

DOI: 10.1371/journal.pgen.0010018.g002
positions of the ALEX frame where all substitutions lead to amino acid replacements. Similarly, third codon positions of the ALEX frame overlap with first codon positions of the XL\(_2\)s and ALEX frames. For instance, the most abundant codons in XL\(_2\)s and ALEX frames are GCC (10.6%) and CCG (8.9%), respectively (Figure 3). For comparison, average frequencies of these codons in humans (estimated from RefSeq genes) are 2.8% and 0.7%, respectively. The GC content may be driven up by a selection acting against mutations to A and T, as these can lead to the formation of stop codons (TAA, TAG, TGA) in either of the two frames. To test this hypothesis, we simulated the eight sequences in our dataset using three different codon independent NG method.

The high GC content of the XL-exon (ranging from 68% in human to 71% in squirrel monkey) is “the blessing and the curse” of the locus: it appears to be required for the maintenance of the two reading frames, but inevitably leads to a high substitution rate. A consequence of the high GC content is the abundance of GC-rich codons in the XL\(_2\)s and ALEX frames. For instance, the most abundant codons in XL\(_2\)s and ALEX frames are GCC (10.6%) and CCG (8.9%), respectively (Figure 3). For comparison, average frequencies of these codons in humans (estimated from RefSeq genes) are 2.8% and 0.7%, respectively. The GC content may be driven up by a selection acting against mutations to A and T, as these can lead to the formation of stop codons (TAA, TAG, TGA) in either of the two frames. To test this hypothesis, we simulated the eight sequences in our dataset using three different codon frequency tables compiled from (1) all human RefSeq genes,

Table 1. Pairwise Synonymous and Nonsynonymous Rates in XL\(_2\)s and ALEX Protein-Coding Regions

Species Pair	\(\frac{K_{s}}{K_{a}}\)	Synonymous Rate	Nonsynonymous Rate	Synonymous Rate	Nonsynonymous Rate
Human/chimp	1.334	0.000	0.000	0.004	0.004
Human/gorilla	2.080	0.005	0.005	0.008	0.009
Human/orangutan	0.932	0.019	0.019	0.017	0.018
Human/gibbon	1.711	0.025	0.025	0.039	0.040
Human/colobus	0.769	0.077	0.082	0.044	0.045
Human/macaque	0.841	0.061	0.063	0.037	0.039
Human/squirrel monkey	0.814	0.101	0.110	0.064	0.066
Chimpanzee/gorilla	1.873	0.005	0.005	0.012	0.013
Chimpanzee/orangutan	0.833	0.019	0.019	0.013	0.014
Chimpanzee/gibbon	1.125	0.025	0.026	0.041	0.042
Chimpanzee/colobus	0.724	0.077	0.082	0.040	0.041
Chimpanzee/macaque	0.786	0.060	0.062	0.033	0.035
Chimpanzee/squirrel monkey	0.788	0.010	0.010	0.059	0.061
Gorilla/orangutan	1.001	0.024	0.024	0.020	0.021
Gorilla/gibbon	1.211	0.025	0.027	0.039	0.041
Gorilla/colobus	0.830	0.077	0.082	0.047	0.049
Gorilla/macaque	0.923	0.060	0.063	0.040	0.042
Gorilla/squirrel monkey	0.831	0.010	0.010	0.067	0.069
Orangutan/gibbon	0.965	0.034	0.035	0.042	0.043
Orangutan/colobus	0.654	0.067	0.092	0.041	0.043
Orangutan/macaque	0.705	0.067	0.070	0.034	0.036
Orangutan/squirrel monkey	0.750	0.105	0.113	0.061	0.063
Gibbon/colobus	0.862	0.075	0.081	0.055	0.057
Gibbon/macaque	0.908	0.058	0.062	0.048	0.050
Gibbon/squirrel monkey	0.902	0.099	0.109	0.082	0.086
Colobus/macaque	0.894	0.038	0.040	0.025	0.026
Colobus/squirrel monkey	0.803	0.098	0.107	0.057	0.058
Macaque/macaque	0.767	0.102	0.111	0.055	0.057

Table 2. An Example of Recurrent Substitutions in Human and Apes

Species	mRNA	XL\(_2\)s	ALEX
Human	GCC\(_{3}\)GCC\(_{3}\)GCC\(_{3}\)	AP\(_{3}\)	RP\(_{3}\)
Chimpanzee	\ldots GCC\(_{3}\) C\(_{3}\) \ldots	\ldots AP\(_{3}\)	\ldots QP\(_{3}\)
Gorilla	\ldots \ldots \ldots	\ldots AP\(_{3}\)	\ldots QP\(_{3}\)
Orangutan	\ldots GCC\(_{3}\) C\(_{3}\) \ldots	\ldots AP\(_{3}\)	\ldots QP\(_{3}\)

Dots indicate residues identical to human. Translations of XL\(_2\)s and ALEX start with the first and the second nucleotides of shown mRNA segment.

DOI: 10.1371/journal.pgen.0010018.t002
(2) XLαs reading frame, and (3) ALEX reading frame. All other parameters (phylogenetic tree, branch lengths, transition/transversion ratio, codon number, and the K_a/K_s ratio as estimated from the original dataset) were fixed, and each simulation was performed 1,000,000 times. Each set of simulated sequences was examined for the presence of alternative reading frames. For example, for every set of sequences simulated using XLαs codon frequencies, we looked for the presence of an alternative reading frame in $+1$ phase. None of the sets from the first simulation (RefSeq codon frequencies) contained such frames, whereas approximately 1% of sets in each of the second (XLαs codon frequencies) and the third (ALEX codon frequencies) simulations contained alternative frames in $+1$ and -1 positions, respectively. Thus the high GC content allows for overlapping reading frames.

The high GC content also leads to an excess of CpG dinucleotides, which occupy approximately 20% of XL-exon (108–119 CpG sites or 18%–21% of the sequence length, depending on the species). This is significantly higher than in the majority of primate sequences (empirical $p = 0.0013$): the proportion of CpG sites in human protein-coding regions from the RefSeq database have narrow distribution with a mean of 7% (99% confidence interval: [7.17%; 7.43%]). In mammals, mutation rate at CpG dinucleotides is 10–20 times higher than at other sites [23–25]. As a result, although CpG sites occupy only approximately 20% of the sequence in our dataset, approximately 50% of the observed nucleotide substitutions (responsible for approximately 30% of amino acid replacements) occur at these sites (Table 3). In this analysis we do not correct for multiple substitutions because existing models cannot be used in the context of XLαs/ALEX locus. Thus, the actual rate of evolution of XL-exon is even higher than observed. Remarkably, the majority of potential deamination events at CpG sites (CpG \rightarrow CpA and CpG \rightarrow TpG transitions) do not create stop codons in either of the two reading frames. Indeed, the in silico deamination of all CpG sites (109–118 replacements, depending on the species) to either TpG or CpA created only four stop codons in the XLαs and none in the ALEX frame in each species. In contrast, the simulated deamination caused on average 140 and 129 amino acid changes in XLαs and in ALEX, respectively. Therefore, high GC content leads to the high intrinsic mutability of the XL-exon but allows avoidance of stop codons.

These results suggest the following model of XLαs/ALEX evolution that favors purifying selection acting on the two proteins. The benefit in encoding the two signal transduction proteins within the same mRNA molecule might be the tight expression coupling: it guarantees that the two proteins are made at the same place and at the same time. To maintain two long, overlapping reading frames the XL-exon must contain an excess of GC-rich codons, but this also leads to the elevated frequency of mutation-prone CpG dinucleotides. Because the two proteins physically interact, they must accumulate amino acid substitutions in concert: neither can change too much relative to the other as their mutual affinity may become adversely affected. Therefore, a nonsynonymous mutation causing a deleterious change in affinity must be quickly corrected by either reversal or compensatory change [26]. The high mutation rate of the XL-exon, which is due to the high frequency of CpG sites, may allow such “corrective” changes to occur quickly. The reversals and/ or compensatory changes likely occur in rapid succession, keeping the overall ratio of nonsynonymous changes (K_a/K_s) close to 1 for a given lineage, a phenomenon observed in our data (see Figure 2). The shortcoming of this stochastic process is that by constantly adjusting to each other, XLαs and ALEX may drift beyond the acceptable level of mutual affinity. One way to overcome this situation might be by changing the number of internal repeat units that may serve as sandbags on an air balloon—allowing rapid changes in affinity in a single step (e.g., an addition/deletion of a single repeat unit in humans causes a significant change in affinity [12]). This may explain remarkable variation in the number of internal repeat units in human and apes. This simple model implies that the two
proteins evolve under a purifying selection scenario and that the observed high substitution rate is a consequence of the high GC content imposed by the need to maintain two reading frames.

We cannot rule out an alternative adaptive evolution explanation of the variation in the number of repeats and the pattern of amino acid changes in XLαs and ALEX. XLαs and ALEX are predominantly expressed in neuroendocrine tissues where they likely play a role in the development and maintenance of neurological functions [5,12,27]. In particular, XLαs expression is evident in distinct regions of the brain controlling processing of sensory information (locus coeruleus) and innervation of orofacial muscles (i.e., facial nucleus) [5]. Individuals with disrupted XLαs/ALEX interactions have multiple neurological complications, including feeding motility problems, psychomotor retardation, and disturbed behavior [12]. It is therefore plausible that amino acid replacements and the variation in the internal repeat number may have been associated with the adaptation of G-protein signaling to specific neurological functions, perhaps specific to humans. However, to reliably distinguish between the possibilities of purifying and positive selection, it is necessary to experimentally measure XLαs/ALEX affinities in primates—a direction currently pursued by our laboratories.

Is the XLαs/ALEX locus the only example of extensively overlapping reading frames in mammals? Only three additional cases are known where protein products of both reading frames were biochemically characterized. These include genes for the cyclin D-dependent kinase inhibitor INK4a [28], X-box protein 1 [29], and a region of overlap between 4E-BP3 and MASK [30]. Discovery of genes with alternative reading frames is hampered by our disbelief in their existence. For example, ALEX was discovered long after the XLαs gene had been identified [9,13]. Early results from our laboratories indicate that there are many more genes (possibly hundreds) potentially encoding multiple proteins via alternative reading frames. In each case the alternative reading frame is conserved in all known mammalian orthologs of a gene. Similarly to XLαs, most of these genes have been known for some time but the presence of the alternative reading frame has never been discovered. Biochemical characterization of these alternative products is underway and may assist us in discerning yet another facet of mammalian gene organization and evolution.

Materials and Methods

Amplification and sequencing of XL-exon. The entire XL-exon was amplified from genomic DNA in all eight species, using primers 990F and 2954R or 2428R (Table 4). These primers were designed using published human sequence [4]. Specifically positions 318 and 511 within XL-exon were considered to be starts of XLαs and ALEX coding regions, respectively (as defined in [31] and [13]). PCR conditions were as follows: 1.75 U Taq (Expand High Fidelity PCR System; Roche Diagnostics, Mannheim, Germany), 0.2 mM dNTPs, 300 nM of each primer, 1 ng/μl template DNA, PCR buffer with MgCl₂.
written in PERL programming language and is available from the authors upon request. The only difference from the classical NG algorithm [19] is that pathways creating stop codons in the alternative reading frame are ignored by our method. For example, let us consider the alignment in Table 5.

The alignment contains two reading frames: frame 0 starting at position 0 and frame 1 starting at position 1. The second codon of frame 0 contains two substitutions, and so there are two possible parsimonious pathways:

\[
\text{GTC} \rightarrow \text{GCC} \rightarrow \text{GCA} \quad (1)
\]

\[
\text{GTC} \rightarrow \text{GTA} \rightarrow \text{GCA} \quad (2)
\]

Pathway 2 would convert the second codon of frame 1 into a stop (TAG), and so it is not considered by our method.

To test whether the GC content of the XL-exon is required for the coexistence of the two reading frames, we first estimated codon frequencies in (1) human RefSeq genes, (2) XL.8s reading frame, and (3) ALEX reading frame. This procedure was performed using a custom-designed PERL script. Coding regions of human RefSeq genes were downloaded from the National Center for Biotechnology Information ftp site (ftp://ftp.ncbi.nlm.nih.gov). We then used the evolver program of the PAML package to simulate 1,000,000 sequence sets, using the three codon frequency tables. Each set contained eight sequences corresponding to primate species used in this study. All other parameters accepted by evolver (phylogenetic tree, branch lengths, transition/transversion ratio, codon number, and the \(K_s/K_o \) ratio) were taken from codeml output generated during nucleotide substitution analysis of our data and were fixed in all three simulations. Each set of simulated sequences was then inspected for the presence of +1 and −1 overlapping reading frames. A set of simulated sequences was considered to have an overlapping reading frames if such frame was greater than or equal to 1,000 bp and was conserved in all eight sequences within the set.

Analysis of substitutions at CpG sites was carried out using a collection of PERL script, which can be obtained upon request.

Supporting Information

Accession Numbers

Sequences reported in this paper have been deposited in GenBank (http://www.ncbi.nlm.nih.gov/genbank) under the following accession numbers: Homo sapiens (AF249808), Colobus angolensis (AY771990), Gorilla gorilla, Macaca mulatta, Saimiri boliviensis, Homo sapiens, and Pan troglodytes (AY898801–AY898805), Hylobates lar (AY478714), and Pongo pygmaeus (AY787145).

Acknowledgments

We thank Ross Hardison, Webb Miller, Davis Ng, and the members of the Center for Comparative Genomics and Bioinformatics for helpful insights and discussions. Genomic DNA for chimpanzee and macaque was obtained from the Coriell Institute for Medical Research. The study was supported by funds from the Pennsylvania State University, the Huck Institutes for Life Sciences, and the National Institutes of Health. **Competing interests.** The authors have declared that no competing interests exist.

Author contributions. AN, SW, and KM conceived and designed the experiments. SW and PGM performed the experiments. AN analyzed the data. KM contributed reagents/materials/analysis tools. AN wrote the paper.

Table 4. Amplification and Sequencing Primers

Primer	Sequence
990F	5′-CCC CTG AGG AGA TGC CAT T-3′
1400F	5′-AGG AGG AGG CAG CAG AGA TG-3′
2954R	5′-GGA CAC GAA YAC ACA CCA AGC A-3′
2428R	5′-CCC TCC GTG GAA CTT TAC ACG-3′
2345R	5′-CCG TTC TCC AGG GCT TCT GTG-3′
Hs-317R	5′-CCC ATG GTC GGA CTC GTC-3′
Hs-679	5′-ATC TGG ATC GGC TGG GGC-3′
Hs-674	5′-TCC ATC TCA GAG CCC CCA G-3′
Gg-640F	5′-GCC CCA GCC GAT CCA GAT-3′
Gg-396R	5′-CTG CTC TGC GAC TGG CCC-3′
Pp-249R	5′-AGG TGG CCA GGT GTG GTC T-3′
Pp-625R	5′-GGG TCT CAG CAG CGG CA-3′
Pp-277F	5′-GCA GCC TCA GGC GAT ACC-3′
Pp-951R	5′-GAG TCA GGA TGC GTG G-3′
Pp-698F	5′-CTC CCG CTG CTG AGA AGA CC-3′
Hl-487R	5′-GAT GAA CCT TGC TGC TGG C-3′
Hl-594F	5′-CCC TGG GGC TCC TGA G-3′
Hl-624R	5′-CCA GCA GGC AGC ACT G-3′
Hl-531R	5′-GTC TCA GGC GCA AGG G-3′
Ca-442F	5′-GAG TAG GGC GAT CCG CAG-3′
Ca-165F	5′-GGA AGC AGC GAT GAG AGG-3′
Ca-185F	5′-GCA GCA CAG CCC GAG AGC-3′
Ca-628F	5′-GCT CTC AGC AGC AGG-3′
Ca-589F	5′-CCT GCG GCT GAT GAC-3′
Ca-773F	5′-CTG CCG AGC CCG CTA CTC-3′
Ca-627R	5′-GCT CTC AGC AGC AGG-3′
Ca-34FR	5′-GGA GCC GGG ATC TTC TGG G-3′
Ca-486R	5′-AGG TCA GGA TGG CTT CTT-3′
Sb-805F	5′-GCT GCA TCT CTA GGC ACC-3′
Sb-150R	5′-CTG GGC TGG GCA CTC TCA-3′
Sb-429R	5′-CTG CTT CTA GAG CCC G-3′
Sb-Ax4-123R	5′-TTC TGG AGG TGG GGA GAA-3′
Sb-642R	5′-GTC TGA GCC GCA GGG-3′
Sb-403F	5′-ACA GAT CCC CTG CCG CC-3′
Sb-614F	5′-CCA GCC GAT CTA GGG C-3′

Table 5. Sample Alignment Parameters for Neighbor-Dependent Modification of the NG Method

Parameter	Value
Position	0123456
Species A	CAAGTCC
Species B	CAAGCC
Changes	**

Species abbreviations as in Figure 1. DOI: 10.1371/journal.pgen.0010018.004
References
1. Harris BA (1988) Complete cDNA sequence of a human stimulatory GTP-binding protein alpha subunit. Nucleic Acids Res 16: 3385.
2. Levine MA, Modl WS, O’Brien SJ (1993) Mapping of the gene encoding the alpha subunit of the stimulatory G protein of adenylyl cyclase (GNAS1) to 20q13.2—q13.3 in human by in situ hybridization. Genomics 11: 478–479.
3. Kotani T, Itoh H, Akiyama S, Ushiku Y (1988) Isolation and characterization of the human Gs alpha gene. Proc Natl Acad Sci U S A 85: 2081–2085.
4. Hayward BE, Kamiya M, Strain I, Moran V, Campbell R, et al. (1998) The human GNAS1 gene is imprinted and encodes distinct paternally and biallelically expressed G proteins. Proc Natl Acad Sci U S A 95: 10038–10043.
5. Plagge A, Gordon K, Dean W, Boiani R, Cinti S, et al. (2004) The imprinted signaling protein XL alpha s is required for postnatal adaptation to feeding. Nat Genet 36: 818–826.
6. Klemke M, Pasolli HA, Kehlenbach RH, Offermanns S, Schultz G, et al. (2000) Characterization of the extra-large G protein alpha-subunit XLalphas. I. Signal transduction properties. J Biol Chem 275: 33633–33640.
7. Pasolli HA, Klemke M, Kehlenbach RH, Wang Y, Hutten WB (2000) Characterization of the extra-large G protein alpha-subunit XLalphas. II. Signal transduction properties. J Biol Chem 275: 33622–33632.
8. Zakut H, Ehrlich G, Ayallon A, Prody CA, Malinger G, et al. (1990) Acetylcholinesterase and butyrylcholinesterase genes coamplify in primary ovarian carcinomas. J Clin Invest 86: 900–908.
9. Kehlenbach RH, Mathies J, Hutten WB (1994) XL alpha s is a new type of G protein. Nature 372: 894–899.
10. Kehlenbach RH, Mathies J, Hutten WB (1995) XL-alpha-s is a new type of G protein. CORRECTION. Nature 375: 253.
11. Freson K, Hoyaerts MF, Jaeken J, Eysen M, Arnout J, et al. (2001) Genetic variation of the extra-large stimulatory G-protein alpha-subunit leads to Go hyperactivation in platelets and is a risk factor for bleeding. Thromb Haemost 86: 733–738.
12. Freson K, Jaeken J, Van Helvoirt M, de Zegher F, Wittersnelong G, et al. (2003) Functional polymorphisms in the paternally expressed XLalphas and its cofactor ALEX decrease their mutual interaction and enhance receptor-mediated CAMP formation. Hum Mol Genet 12: 1121–1130.
13. Klemke M, Kehlenbach RH, Hutten WB (2001) Two overlapping reading frames in a single exon encode interacting proteins—A novel way of gene usage. EMBO J 20: 3849–3860.
14. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562.
15. Li WH (1997) Molecular evolution. Sunderland (Massachusetts): Sinauer. 481 p.
16. Rogozin IB, Spiridonov AN, Sorkin AV, Wolf YI, Jordan IK, et al. (2002) Purifying and directional selection in overlapping prokaryotic genes. Trends Genet 18: 228–232.
17. Pedersen AM, Jensen JL (2001) A dependent-rates model and an MCMC-based methodology for the maximum-likelihood analysis of sequences with overlapping reading frames. Mol Biol Evol 18: 763–776.
18. Sigalov DC (2009) Stability and evolution of overlapping genes. Evolution Int J Org Evolution 54: 731–739.
19. Nei M, Gojobori T (1980) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3: 498–510.
20. Yang Z, Nielsen R (2000) Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 17: 32–43.
21. Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11: 725–736.
22. Yang Z (1998) Likelihood ratio tests for detecting positive selection and application to primate lysosome evolution. Mol Biol Evol 15: 568–573.
23. Giannelli F, Anagnostopoulus T, Green PM (1999) Mutation rates in humans. II. Sporadic mutation-specific rates and rate of detrimental human mutations inferred from hemophilia B. Am J Hum Genet 65: 1589–1587.
24. Ehlersberger I, Metzler D, Schwarz G, Paabo S (2002) Genomewide comparison of DNA sequences between humans and chimpanzees. Am J Hum Genet 70: 1490–1497.
25. Krawczak M, Ball EV, Cooper DN (1998) Neighboring-nucleotide effects on the rates of germ-line single-base-pair substitution in human genes. Am J Hum Genet 63: 474–488.
26. Kondrashov AS, Sunyaev S, Kondrashov FA (2002) Dobzhansky-Muller incompatibilities in protein evolution. Proc Natl Acad Sci U S A 99: 14878–14883.
27. Abramowitz J, Grenet D, Birnbaumer M, Torres HH, Birnbaumer L (2004) XLalphas, the extra-long form of the alpha-subunit of the Gs G protein, is significantly longer than suspected, and so is its companion Alex. Proc Natl Acad Sci U S A 101: 8366–8371.
28. Quelle DE, Zindy F, Ashmun RA, Sherr CJ (1995) Alternative reading frames of the Inka tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83: 993–1000.
29. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, et al. (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415: 92–96.
30. Poulin F, Bruschiene A, Sonenberg N (2003) Gene fusion and overlapping reading frames in the mammalian genes for 4E-BP3 and MASK. J Biol Chem 278: 23296–23297.
31. Hayward BE, Moran V, Strain L, Bonthron DT (1998) Bidirectional imprinting of a single gene: GNAS1 encodes maternally, paternally, and biallelically derived proteins. Proc Natl Acad Sci U S A 95: 15475–15480.
32. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680.
33. Yang Z (1997) PAML: A program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13: 555–556.
34. Yang Z, Bielaszwki JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15: 496–505.