A Review of Ethnomedicinal Plant Resources in Southern Nigeria

K.C. Enebeli-Ekwutoziam, C.B. Aruah, B.O. Ogbonna, U.J. Eze, F.S. Egedeye-Fubara, C.F. Nwankwo, I.N. Oliseyenum, N.W. Udoha, T.N. Afuye, G.N. Asogwa, K.A. Chinweokwu, F.O. Anenih, J.E. Iyamu, I.D. Oboti, N. Nwaizu, J.I, Ajabor, O.Y. Ozadibe, R.A. Otunla, Okoronkwo Bertha Francis and Chukwu Miriam Orji

Correspondence

K.C. Enebeli-Ekwutoziam1, C.B. Aruah1, B.O. Ogbonna1, U.J. Eze1, F.S. Egedeye-Fubara1, C.F. Nwankwo1, I.N. Oliseyenum1, N.W. Udoha1, T.N. Afuye1, G.N. Asogwa1, K.A. Chinweokwu1, F.O. Anenih2, J.E. Iyamu2, I.D. Oboti2, N. Nwaizu2, J.I, Ajabor2, O.Y. Ozadibe2, R.A. Otunla2, Okoronkwo Bertha Francis2 and Chukwu Miriam Orji3

1National Biotechnology Development Agency of Nigeria
2National Biotechnology Development Agency of Nigeria, Bioresources Development Centre (Out Station) Ubulu-Uku, Delta State
3Corresponding Author: katstancity@gmail.com

Ethnobotany Research & Applications 22:13 (2021)

Research

Abstract

Background: The inadequate programs established to eradicate numerous health problems in Nigeria have led to little improvement in the health status, especially in southern Nigeria. Southern Nigeria has a high prevalence rate of malaria, typhoid, fevers, colds and chills, catarrh, flu, river blindness, respiratory disorders, eye problems and skin infections. The strain caused by the dire need to provide a financial health coverage for the family, a poorly developed health care systems and functional surveillance has led to the exploration of alternative medicine by the indigenes of southern Nigeria. This study aims at documenting information on the common plant resources employed in the ethnomedicinal practices of the indigenous people of the Southern Nigeria, and to explore ways of sensitizing genuine conservation efforts in the face of threat of genetic erosion posed to these resources due to anthropogenic activities.

Materials and methods: Onsite ethnomedicinal survey in the study area was carried out between September 2019 and November 2020 to document an indigenous medicinal plant traditional knowledge. Interviews were conducted with the aid of a local language interpreter. Data were obtained using 300 semi-structured questionnaires. Consultations were made on all available information about traditional medicinal plants and ethnomedicinal surveys in Southern Nigeria. Online electronic databases including Google scholar, Research Gate, SciFinder, ScienceDirect and Open Thesis were used to search for relevant literature. Ethnomedicinal data were analyzed using the Relative frequency of citation (RFC), Fidelity level (FL), Relative popularity level (RPL), Use value (UV) and Informant Consensus Factor (ICF).

Results: A total of 236 species belonging to 80 families were reported by this study. Fabaceae was the most represented family having thirty (30) plant species. The three (3) regions had varying frequencies of occurring plants species. South-Western Nigeria represented the region with the highest plant occurrence (47%) followed by South–...
South (31%). Leaves (42.32%) were the most common parts used in the preparation of herbal remedies. Decoctions (48.89%) were the most common method of plant preparation used in herbal remedies. Regional distribution and occurrence of ethnomedicinal plant resources of Southern Nigeria is reported here for the first time.

Conclusion: Medicinal plants play crucial role in the treatment of various ailments by the indigenous people in Southern Nigeria. This study highlights the level of species richness as well as biodiversity in the study area. Bioactivity and toxicity by *in vitro* and *in vivo* standard tests should be made on herbal drug extracts of the presented species for isolation and possible identification of potentially active compounds.

Background

Ethnomedicinal plants are components of effective source of both traditional and modern medicine. In recent times their potency has been proven and approximately 80% of the rural population depend on them as a source of health care (Akinyemi *et al.* 2018 and Abd El-Ghani 2016). Traditional medicine has always been popular among countries of the developing world and its use is becoming acceptable in the industrialized nations (Akinyemi *et al.* 2000).

As defined by WHO (1978), traditional medicine is the total of all knowledge and practical application, whether explicable or not used in diagnosis, prevention, and elimination of physical, mental or social imbalance, and relying exclusively on practice and experience and observations handed down from generation to generation, whether verbally or in writing.

Since ancient times people across the continents including Africa and most notably West Africa, have relied on plants as sources of remedies for the treatment of many diseases (Abd El-Ghani 2016). According to Hostellmann and Marston (2002), orthodox drugs are expensive in developing countries especially West Africa.

Plant genetic resources of Nigeria are a veritable source of therapeutics and pharmaceuticals though the plants are not adequately documented (Gbile & Adesina 1986). Ethnomedicinal practice have long been in existence in southern Nigeria but currently undergoing degradation because of pressure from practitioners of modern medical practice and the lack of proper scientific background in its method of administration. The worldwide renewed interest in traditional medicine is due to insufficient availability of orthodox medicine in poor countries, and the sustenance of healthcare has been achieved by these cultural alternatives (Okujagu 2005). Noteworthy is that despite the renewed interests in the use of ethnomedicinal plants, many of the plants may have gone into extinction long before they are documented (Eke 1999). Over-exploitation of wild population of Plant species, anthropogenic activities and lack of conservation programmes are the major problems encountered with sustainable management of these plant resources, especially in the Southern part of Nigeria (Warnbebe 1998).

It has been observed that ethnomedicinal practitioners tend to hold in secret the identity of plants used for different ailment for fear of lack of future patronage should the sufferer learn to cure himself. To mystify their trade, cultivation of the plants is not encouraged, thus all the collections are virtually from the wild. With the passing away of most of these practitioners along with their wealth of knowledge, a huge loss is made in the body of knowledge dealing with the plants that heal. Often, the discerning ones try to relate this important information to a few close relatives where any interest is shown. This mode of transmission is, however, grossly inadequate in that it lacks continuity (Obute and Osuji 2002).

Health information system (HIS) is a structured repository of data, information, or knowledge that provides support in health care delivery or to promote health development. Health care provision in Nigeria is a function of the three tiers of Government, Federal, State and Local Governments (Adeyemo 2005, Omoruan *et al.* 2009, NHIS 1999). The primary health care system in southern Nigeria is managed by Local Government and supported by the southern States Ministry of Health and private medical practitioners (Olanrewaju & Akanni 2010, Adeyemo 2005). There are some challenges related to the Health Information System (Onwujekwe *et al.* 2010, Uzochukwu *et al.* 2015) and this makes the Federal Government unable to take lead roles in directing stakeholders in the health sector and this has resulted to increased levels of fragmentation (Adeyemo 2005).

Population health is determined by environmental, behavioral, genetic, demographic, social, and economic factors. Medical intelligence and surveillance are important components in the health care system and help to control disease outbreak, bio-attack etc. The role of automated based medical intelligence and surveillance systems alongside traditional manual pattern of document retrieval is widespread in Europe and the West. In contrast, the
Nigerian health care system is still poorly developed, and lacks adequate and functional surveillance systems (Menizibeyya 2011). Presently, the strain caused by the dire need to provide a financial health coverage for the family, a poorly developed health care system and functional surveillance has led to the exploration of alternative medicine by the indigenes of southern Nigeria (Olanrewaju & Akanni 2010).

The inadequate programs designed to address the numerous health problems in Nigeria have led to little improvement in the health status, especially in southern Nigeria (Kajang & Keswet 2016). From causes such as poor nutrition, poor health facilities, availability of trained medical personnel etc. to mode of living, ways of life and occupational hazards involved in occupations like fishing, wine tapping farming. Environmental factors such as those living in the riverine areas and absence of municipal sewage systems has increased the level of waterborne diseases, and as a result has caused major increase in the health challenges of persons living in these regions.

Southern Nigeria has a high prevalence rate of malaria, as studies have shown that the highest prevalence rates are found in the Niger Delta States, and areas surrounding the confluence of the rivers Niger and Benue. All Nigerians are at risk of malaria and the problem is compounded by the increasing resistance of malaria and the cost of effective drugs (Jimoh et al 2007, Okonko et al 2009, Nnadozie 2015, Ezenduka et al 2017). Other ailments prevalent in the region include typhoid (Ojo et al 2009, Clark et al 2010), fevers, colds and chills, catarrh, flu, river blindness (Murray et al 2013), respiratory disorders, eye problems, worm infection (Gillespie 2018), stomach infections (Bryce, et al 2005, Ryan 2016) and skin infections.

The need to review ethnomedicinal plants in Southern Nigeria and their various uses cannot be overemphasized for a number of reasons which includes, a growing number of household resort to alternative medicine for health provisions, widespread use of plants in folk medicine, need to conserve traditional medicinal plants and proper documentation of knowledge about them in order to curtail their imminent loss or erosion. This study aims at documenting information on the common plant resources employed in the ethnomedicinal practices of the indigenous people of the Southern Nigeria, and to explore ways of sensitizing genuine conservation efforts in the face of the genetic erosion threat posed to these resources due to anthropogenic activities.

Materials and Methods

Demographic Data of Southern Nigeria

The study was carried out in Southern Nigeria (Fig. 1) which is made up of three (3) regions (geopolitical zones) namely: the south–east region (S.E) comprising of Anambra state, Imo state, Abia state, Enugu state, Ebonyi state, south–south region (S.S) comprising of Delta state, Edo state, Bayelsa state, Rivers state, Cross rivers state and Akwa-ibom state, and south–west region (S.W) comprising of Lagos state, Ondo state, Ogun state, Ekiti state, Oyo state and Osun state (Fig. 1). These regions are characterized by high rainfall and high humidity for most of the year with an average annual rainfall of 250 cm near the coastal areas and 150 cm in the northern parts of the region. These regions consisted of different ethnic groups of which six (6) were predominant namely, Yoruba (Y.), Igbo (I.), Edo (E.), Bini (B.), Urhobo (U.), Efik (E.), Ikwerre (I.K.), Ibibio (Ib.), Ekpere (Ek.), Kalabari (K.), Ogoni (O.), Oboso-Mbube (O-M.) and Ijaw (Ij.).

Data collection and ethical procedures

The informants were briefed on the objectives of the study and informed consent was obtained from each informant. Onsite ethnomedicinal survey in the study area was carried out between September 2019 and November 2020 to document an indigenous medicinal plant traditional knowledge. Interviews were conducted with the aid of a local language interpreter where necessary. Information such as local names, therapeutic use, plant part used, mode of preparation and regional distribution pattern were obtained through the use of semi-structured questionnaires (Huntington 2000). One hundred questionnaires were administered to the informants in each of the three geopolitical zones which make up Southern Nigeria and this summed up to a total of 300 questionnaires administered for the study. Consultations were made on all available information about traditional medicinal plants and ethnomedicinal surveys in Southern Nigeria. A total of 200 male and female informants from all age-groups were randomly selected for the interview, males comprised 48% and females 52% of which, 80 were traditional herb sellers, 65 community elders and 55 were herbal practitioners (Tables 1 & 2). Sixty informants from the total number of informants were interviewed with the aid of a local language interpreter.
Figure 1. Location of the study area.

Table 1. Demographic data of informant on ethnomedicinal Plant species and their therapeutic application

Respondents	Herbal vendors	Herbal practitioners	Community elders	Total interviewed persons
Male (<40)	10	6	-	16
Male (>40)	25	28	27	80
Female (<40)	12	8	-	20
Female (>40)	33	13	38	84
Total interviews	80	55	65	200
Percentage (%) men	44	62	42	48
Percentage (%) women	56	38	58	52

Table 2. Data on the trade practice of respondents

Respondent	Herbal sellers	Herbal practitioners	Community elders	Total interviewed persons
<40	22	14	-	36
>40	58	41	65	164
Total interviews	80	55	65	200
% <40	27	25	-	18
>40	73	75	100	82

Authentication and validation of species

Medicinal plants reported in the survey were collected, identified using Trees of Nigeria (Keay 1989), flora of Nigeria and West Africa (Hutchinson & Dalziel 1954, 1958, 1968). The identified plants were pressed and deposited at the Bioresources Development Centre, Ubulu-Uku Herbarium (BDU), Delta state. Taxonomic names of plant species were validated from online databases like: The Plant List (http://www.theplantlist.org/), International Legume Database and Information Service (http://www.ildis.org/) and encyclopedia of life (https://eol.org/). Data obtained were collected and tabulated to ascribe botanical names, common names, vernacular names, families of the various plant species as well as their uses.
Online electronic databases including Google scholar, Research Gate, SciFinder, ScienceDirect, IJURB8 and Open Thesis were used to search for relevant literature on previous studies. The key words employed in the electronic search criteria were “Ethnomedicinal surveys”, locations of the surveys South-South, South-East and South-West Nigeria. The following key words were used alongside ethnomedicinal practices, health information systems, medical intelligence, and surveillance.

Data analysis
Data obtained from the study were cleaned prior processing and were analyzed using Statistical Package for Social Science (SPSS) version 23 and Microsoft Office Excel 2016. Socio-demographic data of the respondents were analyzed using a simple descriptive statistical method and reported in a summary of frequency and percentages. On the other hand, ethnomedicinal data were analyzed using the Relative citation frequency (RFC), Fidelity level (FL), Relative popularity level (RPL), Use value (UV) and Informant Consensus Factor (ICF).

Relative frequency of citation (RFC)
Calculations were made for the local importance of each plant species based on the relative frequency of citation (Tardio et al. 2006). The RFC was calculated as follows: number of who mentioned the use of the species (FC) divided by the total number of respondents (N).

\[RFC = \frac{FC}{N} \]

Informant consensus factor (ICF)
Informant consensus factor was calculated in accordance with Herinch et al. (1998) for each category of ailment to authenticate the level of agreement by the informants on the reported cures for a group of ailments.

\[ICF = \frac{N_{ir} - N_t}{N_{ir} - 1} \]

Where \(N_{ir} \) = number of use citations in each category
\(N_t \) = number of species used

Fidelity Level
Fidelity Level was calculated in accordance with Alexiades and Sheldon (1996) for the most frequently reported diseases as

\[FL (\%) = \frac{N_p}{N} \]

Where \(N_p \) = number of informants that claim a plant use to treat a particular disease
\(N \) = number of informants that use the plant as medicine in the treatment of any disease

Relative Popularity Level
Relative popularity level was calculated using the formula below in accordance with Ali-Shtayeh et al. (2000).

\[RPL = \frac{\text{Number of diseases treated by a specific plant species}}{\text{Total number of informants for any disease}} \]

Use value
Use value for each species was calculated in accordance with Savkin et al. (2013) as

\[\text{Use value (UV)} = \sum \omega_i / N \]

Where \(\omega_i \) = number of uses recorded for each species
\(N \) = number of diseases treated by the species

Results
A total of 236 species were reported by this study and this is shown in Table 3. Study quality inconsistencies were recorded in line with local and common names, completeness of herbal drug recipe, plant parts used, ailments treated and route of herbal drug preparation. Two hundred informants provided information on herbal remedies used in 22 ethnomedicinal therapeutic applications (Table 5). The use of single plant species (5%) as well as multiple uses of plant species (95%) in the treatment of various ailments is reported. This study revealed important information gaps that should be addressed as well as the need for standardization of ethnomedicinal practices and studies in Southern Nigeria.
Frequency of family occurrence
A total of eighty (80) families were reported in this study. The results obtained from this study revealed, the family of Fabaceae had the highest frequency of occurrence having thirty (30) plant species, followed by Asteraceae with fourteen (14) species, Euphorbiaceae having thirteen (13) species, Rutaceae having nine (9) species, Curcurbitaceae (8), Annonaceae, Combretaceae, Rubiaceae and Verbenaceae having (6) species each, as well as Apocynaceae, Lamiaceae, Meliaceae and Sterculiaceae having five (5) species each (Table 3, Fig. 2).

![Bar chart showing frequency of family occurrence](image)

Families

![Figure 2. Top sixteen representative families of medicinal plants in Southern Nigeria.](image)

Frequency of plants regional occurrence
In the study area (Southern Nigeria), the three (3) regions had varying frequencies of occurring plants species. South-Western Nigeria represented the region with the highest plant occurrence (47%) followed by South-South (31%) and South-East (22%) (Fig. 3).

Frequency of plants parts used
In the study area, the leaves (42.32%) were the most common parts used in the preparation of herbal remedies followed by the stem/stem bark (20.63%), roots (14%), seeds (6.87%), fruits (7.93%), whole plant (3.9%), sap (1.32%), rhizome (0.52%), corms, flowers, oils, pulp, and gum exudates each having 0.26% (Fig. 4).

Frequency of plant preparation
In the study area (Fig. 5), decoction (48.89%) was the most common method of plant preparation used in herbal remedies followed by infusions (15.29%), poultices (11.33%), juice extracts (8.78%), mastication (5%), tinctures (4.53%), macerations (2.54%), baths and remedies (1.98%), aromatherapy and powdered each having 1.41%, compresses and syrups each having (0.84%).

![Pie chart showing frequency of plant preparation](image)

Figure 3. Frequency of plants regional occurrence.
Table 3. Ethnomedicinal Plants in Southern Nigeria
Family

Abrus precatorius L.
Acacia nilotica (L.)
Acacia senegal (L.)
Acalypha tinnifolia (Schum & Thonn)
Acanthopanax hispidum D.C.
Acanthus montanus (Nees)
Achyranthes aspera L.
Adansonia digitata L.
Adenopus breviflorus Benth.
Adenostemma maunubanum DC.
Afromomum melegueta roscoe K. Schum
Ageratum conyzoides L.
Alchornea cordifolia (Schum & Thonn.) Müll. Arg.
Euphorbiaceae
Ubebe (I.), Epai (IK.), Epa, Eisin (Y.)
Christmas bush
Eye problem, as a detox bitter, wound, Toothache, hemorrhoid, ringworm, rheumatism, gonorrhea, urethral disease, dysentery
Leaves, stem bark, root epidemis
Decoction, juice, pastes, maceration
0.23
76
0.5
0.21
s.e, s.s, s.w
Aiwaodo et al. 2012, Akwaji et al. 2017

Allamanda blanchetii B. & H. Oliv.
Clusiaceae
Egba (I.), Orogboerin (Y.)
Christmas bush
Malaria, tooth ache
Leaves
Decoction
0.07
85
0.1
0.14
s.e, s.w
Akwaji et al. 2017, Iyama & Idu 2015

Allium cepa L.
BDU 90
Liliaceae
Alubosa (Y.), Uta (E.)
Onions
Malaria, convulsions
Leaves
Decoction
0.13
50
0.15
0.11
s.s, s.w
Iyama & Idu 2015

Allium sativum L.
BDU 35
Amaryllidaceae
Ayuu (Y.), Ayo (U.), Uta (E.)
Garlic, Haemorrhage Plant
Highblood pressure, malaria, fever, indigestion and as a tonic
Leaves, stem bark
Decoction, mastication
0.17
88
0.25
0.14
s.s, s.w
Alade et al. 2018

Aloe vera (L.) Burm. f.
BDU 16
Liliaceae
Barbados Aloe
Malaria, hair growth, wounds, skin infections, dysmenorrhea
Leaves
Decoction
0.07
71
0.3
0.29
s.e, s.s, s.w
Alade & Ajibesin 2017, Iyama & Idu 2015

Alstonia boonei DeWild
BDU 44
Apocynaceae
Egbu (I.), Ulodiri (EK.), Ahun (Y.)
Tonic, malaria, asthma, cough, rheumatism, gonorrhea, vermiﬁuge, bladder disease
Leaves, stem bark, roots
Decoction, topical applications, poultice
0.22
90
0.4
0.18
s.e, s.w
Aiwaodo et al. 2012, Akwaji et al. 2017

Anacardium occidentale L. BDU 88
Anacardiaceae
Kanshu (I.), Kasu (Y.), Kasiu (IK.)
Cashew
Fever, malaria, tooth aches, diarrhea, kidney problem, whooping cough
Leaves, stem bark
Decoction, poultice, tincture
0.19
84
0.4
0.18
s.e, s.s, s.w
Akwaji et al. 2017, Iyama & Idu 2015, Lawal et al. 2010

Ananas comosus (L). Merr.
BDU 162
Bromeliaceae
Ope-Oyibo (U.), Ediebo (EK.)
Pineapple
Fever, malaria, hepatitis, typhoid, menstrual disorder, waist pain, purgative, expectorant, emmenagogue
Fruits
Decoction
0.15
80
0.5
0.3
s.s
Aiwaodo et al. 2012, Iyama & Idu 2015

Anethum graveolens L.
BDU 111
Apiaceae
Udumie (K.)
Dill weed
Laxative, improved lactation
Seeds
Decoction, infusion with honey
0.07
85
0.1
0.14
s.s
Ajibesin et al. 2008 & 2012

Anogeissus leiocarpus (D.C). Guill. & Perr.
BDU 64
Combretaceae
Egba-anyn (Y.)
Axle wood
Malaria
Roots
Decoction
0.05
60
0.05
0.1
s.w
Iyama & Idu 2015

Annona muricata L.
BDU 120
Annonaceae
Nangi (K.), Abo (Y.)
Sour sop
Malaria, diarrhea, dysentery, debility, hypertension, heart failure, yellow fever
Leaves
Decoction
0.11
86
0.4
0.32
s.s, s.w
Lawal et al. 2010

Antheecista djalonensis A. Chev.
BDU 148
Loganiaceae
Sapo (Y.)
Cabbage tree
Malaria, anti diuretic, purgative, jaundice
Stem bark
Decoction
0.22
90
0.2
0.09
s.w
Iyama & Idu 2015, Lawal et al. 2010
Common Name	Family	Indigenous Name(s)	Part Used	Application (Mode of Administration)	*C. res. (%)*	*C. cont. (%)*	*C. tot. (%)*	Reference(s)				
Anthonotha macrophylla P.	Fabaceae	Ububa-ikpa (I), Abata (Y.)	Leaves, stem bark, roots, gum exudates	Decoction, infusion, poultices	0.06	75	0.4	Iwuala et al. 2017, Lawal et al. 2010				
Artemisia dracunculus L.	Asteraceae	Nsdegbuawom (O-M)	Leaves	Decoction, infusion, poultices	0.09	50	0.4	Iwuala et al. 2018, Arivaodo et al. 2012				
Aporosa africana (Pers.) C.D Adams	Asteraceae	Oranjuila (K), ifakop (O-M)	Leaves	Juice extract	0.15	90	0.15	Iwuala et al. 2008 & 2012				
Acalypha indica Juss.	Malvaceae	Dongoyaro, Eke-oyibo (Y.)	Leaves, twig	Decoction, infusion	0.26	90	0.15	Iwuala et al. 2015, Lawal et al. 2010				
Basella alba	Solanaceae	Abaju-Okporo (I.)	Bamboo	Decoction, tincture, poultice	0.09	50	0.2	Iwuala et al. 2018, Arivaodo et al. 2012				
Baphia nitida Lodd.	Fabaceae	Abode (K), Ibi (K), Osin (Y.)	Leaves, twig, stem bark, roots	Mastication, poultice	0.13	92	0.1	Iwuala et al. 2008 & 2012				
Baphia pubescens HOOK. F	Fabaceae	Aweew, Urohun, Maajigi (Y.)	Leaves, stem bark, roots	Decoction, infusion	0.03	50	0.5	Iwuala et al. 2010				
Basella alba	Solanaceae	Amunututu (Y.), Gbologi (K.)	Whole plant	Infusion	0.07	71	0.15	Iwuala et al. 2010 & 2012				
Bixa orellana L.	Bixaceae	Ufie, Uhie (I), Aje (Y.)	Leaves, fruits, seeds	Decoction	0.06	75	0.4	Iwuala et al. 2010				
Brachystegia auricoma Harms.	Fabaceae	Aku, Akolodu (Y.), Okwesi (I.), Apaapun (O-U), Oduluka (I.B.)	Seeds	Powdered	0.17	88	0.05	Iwuala et al. 2010				
Brassica nigra (L.)	Brassicaceae	Ogwuujie (K.)	Black mustard	Hypertension, rheumatism, headaches	0.11	86	0.15	Iwuala et al. 2008 & 2012				
Brassica oleracea L.	Brassicaceae	Ogbeagui (K.)	Wild celery	Leaves	0.06	75	0.15	Iwuala et al. 2008 & 2012				
Cannabis sativa L.	Cannabaceae	Ayoju (Y.)	Fungal infections, malaria	Leaves, young twigs	0.03	50	0.1	Iwuala et al. 2010				
Calendula officinalis L.	Asteraceae	Nosi (K),	Heart of Jesus	Skin diseases, wound	Cori	0.06	50	0.1	Iwuala et al. 2008 & 2012			
Canavalia ensiformis (L.) DC.	Fabaceae	Pigei (Y.)	Jack bean	Antacidic, antiseptic	0.06	50	0.1	Iwuala et al. 2010				
Canna indica	Cannaceae	Idio (Y.)	Local birth control, Malaria	Leaves	0.03	50	0.1	Iwuala et al. 2010				
Cannabis sativa L.	Cannabinaceae	Igbo	Indian hemp plant	Pain, stunted hair growth	Leaves, stem	Aromatherapy, poultice	0.15	0.90	0.1	0.06	s.e, s.w	Alade & Ajibesin 2017
---	---	---	---	---	---	---	---	---	---	---	---	---
Carica papaya L.	Caricaceae	Okpurukwakwe (I.), Eto-Obyo (U.)	Papaya, pawpaw	Kidney detox, malaria, fever, diabetes, cancer, eczema, after-shave bumps, waist pain, syphilis, nematode infestations	Leaves, fruit (ripe and unripe), seeds	Decoction, infusion, macerations in Ocimum gratissimum, Garcinia kola seed	0.23	0.76	0.6	0.24	s.e, s.s	Alade & Ajibesin 2017
Carpolobia lutea G. Don	Polygonaceae	Agba, Angelagala (I.), Otunsun (Y.), Ikpafum (IB.)	Cattle stick	Stomach problem, malaria, snake bites, leprosy, fever, ulcer, dermal infection, genital diseases, sterility, diarrhoea, headaches, wounds, rhumatism fever, pain, insanity, aphrodisiac	Leaves, rootbark, roots	Decoction	0.03	0.50	0.8	2.66	s.e, s.s, s.w	Lawal et al. 2010
Cassia fistula L.	Fabaceae	Kassio	Golden shower tree	Purgative, astringent, vermifuge	Fruit	Decoction, tincture	0.13	0.50	0.15	0.11	s.e, s.s, s.w	Lawal et al. 2010, Soladoye et al. 2014
Cassia fistula L.	Fabaceae	Nkwu (IK.)	South sea Islanders	Lactation suppressant, vermifuge, jaundice, infertility	Leaves, stem, whole plant	Decoction, infusion, juice extract	0.05	0.60	0.2	0.4	s.s, s.e	Ajibesin et al. 2008 & 2012
Cecropia peltata (L.) Gaertn.	Bombacaceae	Akpu-ogwu, Araba (I.)	White silk cotton tree	Leprosy, tooth ache, mouth problems, conjunctivitis, eye wounds, fever	Leaves, stembark, root	Decoction, baths, compresses	0.07	0.85	0.4	0.5	s.w	Lawal et al. 2010
Chenopodium ambrosioides L.	Chenopodiaceae	Arunpale (Y.)	Sweet pigweed	Anti-hypertensive, gonorrhea, syphilis, lacticave, febrifuge, cough, tuberculosis	Whole plant	Infusion, maceration	0.1	0.60	0.4	0.4	s.w	Lawal et al. 2010, Alade & Ajibesin 2017
Chromolaena odorata (L.) R. M. King & Robinson	Asteraceae	Nsiegbeuwom (JK.), Obiorakara (I.), Ulikuro (O.)	Siam weed, Avelowo weed	Stomach upsets, wounds, tooth aches, malaria, Typhoid, antimicrobial, headache, dysentery, hemorrhoids	Leaves, leaf sap	Decoction, maceration, poultice, compress	0.17	0.88	0.5	0.26	s.e, s.s	Alade & Ajibesin 2017
Chrysophyllum cainito L.	Sapotaceae	Udala (I.), Agbakumo, elbo (Y.)	African star apple	Diabetes, larynx inflammation, pneumonia, angina, diarrhoea, dysentery, haemorrhage, gonorrhoea, catarh of the bladder	Fruit, stembark	Decoction, infusion, maceration	0.13	0.96	0.5	0.34	s.e, s.w	Lawal et al. 2010
Citrullus colocynthis (L.) Schrad	Cucurbitaceae	Egusi	Bitter apple	Syphilis, stomachache, laxative, skin disease	Leaves, fruits, seed shell	Decoction, powder mixed with palm oil	0.19	0.84	0.2	0.11	s.e, s.s, s.w	Ajibesin et al. 2008 & 2012, Soladoye et al. 2014
Common Name	Family	Scientific Name	Part(s) Used	Uses	Citronellal (s)	s.t.	s.s	s.w	Authors			
-------------	--------	-----------------	--------------	------	----------------	------	-----	-----	---------			
Citrus aurantiifolia (Christm.) Swing.	Rutaceae	*Citrus aurantiifolia* L.	Leaves	Insect bites, sore eyes, dysentery, ophthalmia, Malaria, teething, Malaria	0.25	58	0	0.9	Alade & Ajibesin 2015, Lawal & Idu 2015, Iyama & Idu 2015			
Citrus aurantium L.	Rutaceae	*Citrus aurantium* L.	Leaves	Insect bites, sore eyes, dysentery, skin infections, Malaria, head ache, tooth ache, fever	0.07	71	0.05	0.07	Iyama & Idu 2015			
Citrus limon (L.) Burm. F.	Rutaceae	*Citrus limon* L.	Stembark	Insect bites, sore eyes, dysentery, Malaria, fungal infection	0.26	25	0.05	0.21	Alade & Ajibesin 2017, Ariwaado et al. 2012, Iyama & Idu 2015			
Citrus medica L.	Rutaceae	*Citrus medica*	Fruits	Insect bites, sore eyes, Malaria, teething, Malaria, fungal infection	0.11	77	0.25	0.19	Iwadiso et al. 2012			
Clausena anisata (Willd.) Hook-f.ex. Benth.	Rutaceae	*Clausena anisata* (Willd.) Hook-f	Leaves	Insect bites, sore eyes, dysentery, Malaria, teething, Malaria	0.07	25	0.05	0.05	Iyama & Idu 2015			
Cleistopholis pietosus (Benth.) Engl. & Diels	Rutaceae	*Cleistopholis pietosus*	Leaves, stem bark	Insect bites, sore eyes, dysentery, Malaria, fungal infection	0.08	71	0.05	0.08	Iyama & Idu 2015			
Cnidoscolus ferruginea DC.	Conaraceae	*Cnidoscolus ferruginea*	Leaves	Insect bites, sore eyes, dysentery, Malaria, fungal infection	0.13	77	0.25	0.19	Iwadiso et al. 2012			
Cochlospermum tinctorium A. Rich	Cochlospermaceae	*Cochlospermum tinctorium*	Roots	Insect bites, sore eyes, dysentery, Malaria, fungal infection	0.07	85	0.05	0.17	Iyama & Idu 2015			
Coccoloba ulei L.	Rutaceae	*Coccoloba ulei*	Fruits	Insect bite, sore eyes, dysentery, Malaria, fungal infection	0.15	90	0.4	0.26	Iyama & Idu 2015			
Cola acuminata (P. Beauv.) Schott and Endl.	Sterculiaceae	*Cola acuminata*	Fruits	Insect bites, sore eyes, dysentery, Malaria, fungal infection	0.07	85	0.05	0.07	Iyama & Idu 2015			
Cola nitida K. Schum.	Sterculiaceae	*Cola nitida*	Leaves	Insect bites, sore eyes, dysentery, Malaria, fungal infection	0.11	77	0.3	0.66	Lawal et al. 2010			
Colocasia esculenta (L.) Schott	Araceae	*Colocasia esculenta*	Leaves	Insect bites, sore eyes, dysentery, Malaria, fungal infection	0.03	50	0.1	0.33	Alade & Ajibesin 2008 & 2012			
Scientific Name	Family	English Name	Local Name(s)	Uses & Conditions	Parts Used	Dose	Nature of Treatments	Reference(s)				
-----------------	--------	--------------	---------------	------------------	------------	------	---------------------	--------------				
Combretum racemosum P. Beauv.	Combretaceae	Stem resins, and garlic	Akumocha (IK.), Ajiokobale (Y.), Alele (O.)	Skin disease, malaria, Typhoid fever, cough, arthritis, pain	Leaves, stem bark	0.1	Decoction, poultices	Ajibesin et al. 2008 & 2012, Iyama & Idu 2015, 2017				
Crotalaria retusa L.	Fabaceae	Stem bark	Akwaji (I.)	Antioxidant activity, wound healing, anti-inflammatory	Leaves	0.05	Decoction, poultices	Iyama & Idu 2015				
Crotalaria juncea L.	Fabaceae	Juice extract	Ahihiara (I.), Agibe (Y.)	Antimicrobial activity	Leaves	0.01	Decoction, poultices	Iyama & Idu 2015				
Cyperus sp.	Cyperaceae	Juice extract	Bido (I.)	Antioxidant activity	Roots	0.14	Decoction, poultices	Iyama & Idu 2015				
Cuminum cyminum	Apiaceae	Juice extract	Iyama & Idu 2015	Antimicrobial activity	Seeds	0.05	Decoction, poultices	Iyama & Idu 2015				
Curcuma longa L.	Zingiberaceae	Stem bark	Iyama & Idu 2015	Antimicrobial activity	Leaves	0.03	Decoction, poultices	Iyama & Idu 2015				
Datura stramonium L.	Solanaceae	Juice extract	Iyama & Idu 2015	Antimicrobial activity	Roots	0.05	Decoction, poultices	Iyama & Idu 2015				
Echinocystis lobata (Lindl.) Schult.	Euphorbiaceae	Juice extract	Iyama & Idu 2015	Antimicrobial activity	Seeds	0.05	Decoction, poultices	Iyama & Idu 2015				
Euphorbia hirta	Euphorbiaceae	Juice extract	Iyama & Idu 2015	Antimicrobial activity	Leaves	0.05	Decoction, poultices	Iyama & Idu 2015				
Ficus carica	Moraceae	Juice extract	Iyama & Idu 2015	Antimicrobial activity	Fruits	0.05	Decoction, poultices	Iyama & Idu 2015				
Gaultheria procumbens (L.) A. Gray	Ericaceae	Juice extract	Iyama & Idu 2015	Antimicrobial activity	Leaves	0.05	Decoction, poultices	Iyama & Idu 2015				
Helianthus annuus L.	Asteraceae	Juice extract	Iyama & Idu 2015	Antimicrobial activity	Flowers	0.05	Decoction, poultices	Iyama & Idu 2015				
Hypericum perforatum L.	Hypericaceae	Juice extract	Iyama & Idu 2015	Antimicrobial activity	Flowers	0.05	Decoction, poultices	Iyama & Idu 2015				
Hyptis suaveolens	Lamiaceae	Juice extract	Iyama & Idu 2015	Antimicrobial activity	Leaves	0.05	Decoction, poultices	Iyama & Idu 2015				
Ilex opaca	Aquifoliaceae	Juice extract	Iyama & Idu 2015	Antimicrobial activity	Fruits	0.05	Decoction, poultices	Iyama & Idu 2015				
Leucas aspera	Verbenaceae	Juice extract	Iyama & Idu 2015	Antimicrobial activity	Leaves	0.05	Decoction, poultices	Iyama & Idu 2015				
Lycopersicum esculentum Mill.	Solanaceae	Juice extract	Iyama & Idu 2015	Antimicrobial activity	Fruits	0.05	Decoction, poultices	Iyama & Idu 2015				
Nicotiana tabacum L.	Solanaceae	Juice extract	Iyama & Idu 2015	Antimicrobial activity	Leaves	0.05	Decoction, poultices	Iyama & Idu 2015				
Pelargonium graveolens	Geraniaceae	Juice extract	Iyama & Idu 2015	Antimicrobial activity	Flowers	0.05	Decoction, poultices	Iyama & Idu 2015				
Pyrethrum aureum	Compositae	Juice extract	Iyama & Idu 2015	Antimicrobial activity	Fruits	0.05	Decoction, poultices	Iyama & Idu 2015				
Ruta graveolens	Rutaceae	Juice extract	Iyama & Idu 2015	Antimicrobial activity	Leaves	0.05	Decoction, poultices	Iyama & Idu 2015				
Scutellaria lateriflora	Lamiaceae	Juice extract	Iyama & Idu 2015	Antimicrobial activity	Roots	0.05	Decoction, poultices	Iyama & Idu 2015				
Solanum lycopersicum	Solanaceae	Juice extract	Iyama & Idu 2015	Antimicrobial activity	Fruits	0.05	Decoction, poultices	Iyama & Idu 2015				
Solanum tuberosum	Solanaceae	Juice extract	Iyama & Idu 2015	Antimicrobial activity	Fruits	0.05	Decoction, poultices	Iyama & Idu 2015				
Terminalia catappa	Combretaceae	Juice extract	Iyama & Idu 2015	Antimicrobial activity	Fruits	0.05	Decoction, poultices	Iyama & Idu 2015				
Vernonia amygdalina	Compositae	Juice extract	Iyama & Idu 2015	Antimicrobial activity	Fruits	0.05	Decoction, poultices	Iyama & Idu 2015				
Zingiber officinale	Zingiberaceae	Juice extract	Iyama & Idu 2015	Antimicrobial activity	Leaves	0.05	Decoction, poultices	Iyama & Idu 2015				
Scientific Name	Family	Common Names	Uses	Reference								
-----------------	--------	--------------	------	-----------								
Dalbergia lacinia Vale	Fabaceae	Ojo, abinire (Y.)	Dalbergia Sore throat, pimples, skin disease	Stem	0.03	83	0.15	0.5	s.w	Lawal et al. 2010		
Dalbergia latifolia Roxb.	Fabaceae	Oguon-aja (Y.)	Indian rosewood Yellow fever		0.05	60	0.05	0.1	s.w	Lawal et al. 2010		
Daniellia ogrea Harms.	Fabaceae	Iyaa (Y.)	Nerves soothing, back pain		0.06	75	0.1	0.16	s.w	Lawal et al. 2010		
Dennettia injeeta Bak. BDU 61	Annonaceae	Nii (L.), Azt-igbeni (Y.)	Pepper Fruit		0.23	93	0.1	0.04	s.e, s.w	Iyama & Idu 2015		
Dioscorea guineensis Wild.	Fabaceae	Ugbbe-nim (K.)	Velvet Tamarind Malaria, diarrhea, stomachache, toothache	Leaves	Infusion	0.11	95	0.2	0.18	s.s	Aikwaji et al. 2017	
Dioscorea scandens Sw	Rubiaceae	Onaedi (I.)	After birth womb cleansing in females, vermifuge		0.1	60	0.1	0.1	s.e	Obute 2005 & 2007		
Dioscorea dumetorum (Knuth) Pax	Dioscoreaceae	Oba ocho (I.), E. suru-igbo (Y.)	African bitter Yam									
Dioscorea rotundata Poir	Dioscoreaceae	Fungi (K.)	White yam; West African yam									
Distemonanthus benthamianus Baill.	Fabaceae	Anyarhan (B.), Olasshi (IK.)	African satinwood									
Duraena arborea (Wild.) BDU 30	Dracaenaceae	Odo (IK.)	African dragon tree									
Ekeis guineensis Jacq	Araceae	Nikwu, alku (U.), Obaekpe (U.), Ope, Eyin (Y.)	Oil palm									
Elaeis guineensis Jacq	Araceae	Ikeche (I.)	Goose grass, wiregrass									
Ensete citrulinum (Linn) Gaertn.	Poaceae											
Eremia scorzonera (Simons) G. Don.	Asteraceae	Ntrenie (K.)	Tassel flower									
Eremia sonchifolia (L.) DC	Asteraceae	Ogbonizu (I.), Odunudunodo (Y.)	Yellow tassel flower									
Enanta chinantha Oh BDU 03	Annonaceae	Awopa (Y.)	African yellow wood									
Erythrina abyssinica L.	Fabaceae	Ologbogbe (Y.), Onugboghi (IK.), Echichi (IK.)	Yellow fever									
Erythrina senegalensis D.C.	Fabaceae	Ologbo-tere (Y.),	Parrot tree									

References:
- Iyama & Idu 2015
- Lawal et al. 2010
- Obute 2005 & 2007
- Ajibesin et al. 2008 & 2012
- Aikwaji et al. 2017
- Iyama & Idu. 2010
- Iyama & Idu 2015
- Lawal et al. 2015
- Aikwaji et al. 2017
- Iyama & Idu 2015
- Lawal et al. 2010
- Aikwaji et al. 2017
- Iyama & Idu 2015
| Genus/Species | Family | Common Name | Parts Used | Indications | Dose | Source | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Gossypium hirsutum | Malvaceae | Cotton | Leaves | Decoction, infusion | 0.02 | 75 | 0.15 | 0.8 | Iyama & Idu 2015 |
| Eucalyptus camaldulensis Dehnh. | Myrtaceae | Redgum | Leaves, stem bark | Decoction | 0.09 | 88 | 0.3 | 0.27 | Iyama & Idu 2015 |
| Euphorbia hirta L. | Euphorbiaceae | Spurge | Seeds | Decoction, topical application, aromatherapy | 0.14 | 97 | 0.3 | 0.18 | Akwa et al. 2017, Iyama & Idu 2015 |
| Ficus carica L. | Moraceae | Fig | Roots | Decoction | 0.03 | 83 | 0.05 | 0.16 | Iyama & Idu 2015 |
| Ficus exasperate Vahl. | Moraceae | Fig | Leaves | Decoction | 0.06 | 91 | 0.1 | 0.16 | Iyama & Idu 2015 |
| Ficus Zestapslowe Schmidt | Moraceae | Fig | Leaves | Decoction | 0.06 | 96 | 0.05 | 0.04 | Iyama & Idu 2015 |
| Funtumia elastica (Preuss) Stapf | Apocynaceae | Rubber tree | Roots | Infusion, poultice | 0.13 | 96 | 0.05 | 0.04 | Iyama & Idu 2015 |
| Garcinia kola | Clusiaceae | Bitter kola | Seeds | Infusion, mastication | 0.15 | 80 | 0.3 | 0.2 | Iyama & Idu 2015 |
| Gliricidia sepium Jacq. | Fabaceae | Gliricidia | Leaves | Decoction, poultices of oil extract | 0.06 | 50 | 0.15 | 0.3 | Iyama & Idu 2015 |
| Glycyrrhiza glabra L. | Leguminosae | Liquorice | Leaves, stem bark | Decoction | 0.02 | 50 | 0.3 | 1.3 | Iyama & Idu 2015 |
| Gmelina arborea Roxb. | Verbenaceae | Redwood | Leaves | Decoction | 0.09 | 66 | 0.1 | 0.11 | Iyama & Idu 2015 |
| Gongronema latifolium | Gesneriaceae | Kudzu | Leaves | Decoction with Citrus aurantium juice and Pine juice, juice extract | 0.13 | 96 | 0.4 | 0.26 | Iyama & Idu 2015 |
| Goosypium barbadense L. | Malvaceae | Cotton | Leaves | Decoction | 0.07 | 85 | 0.1 | 0.14 | Iyama & Idu 2015 |
| Goosypium herbaceum L. | Malvaceae | Flax | Leaves | Decoction | 0.03 | 50 | 0.05 | 0.16 | Iyama & Idu 2015 |
| Plant Family | Genus | Scientific Name | Common Names | Plant Part Used | Medical Uses | Dosage Form | Reference |
|-------------|-------|----------------|--------------|-----------------|-------------|------------|-----------|
| Bignoniaceae | Hyptis | suaveolens (L.) Post BOU 128 | Henna | Decoction, infusion | 0.05 | 70 | s.w | Iyama & Idu 2015 |
| Convolvulaceae | Ipomoea | involucrata P. Beauv BOU 129 | Wild Sage | Decoction, infusion | 0.11 | 50 | s.s, s.w | Iyama & Idu 2015 |
| Convolvulaceae | Ipomoea | mauritiana Jacq. BOU 146 | Boundary stick | Decoction, infusion | 0.06 | 50 | s.s, s.w | Akinsi et al. 2008 & 2012 |
| Euphorbiaceae | Jatropha | curcas J.S. Ellis & Soroja BOU 149 | Blood booster | Decoction, juice extract, poultices, soups | 0.21 | 95 | s.s, s.w | Alade & Ajibesin 2017, Akwaji et al. 2017 |
| Euphorbiaceae | Jatropha | gossypifolia L. BOU 150 | Botuje-pupa (Y.) | Decoction, juice extract | 0.1 | 75 | s.w | Iyama & Idu 2015 |
| Crassulaceae | Kalanchoe | pinnata (Lam.) Pers. BOU 169 | Resurrectio plant | Decoction, jace extract, | 0.13 | 80 | s.s, s.w | Alade & Ajibesin 2017, Akinwale et al. 2015 |
| Meliaceae | Kigelia | africana (A. Rich) Benth BOU 165 | Sausage tree | Decoction, infusion | 0.09 | 77 | s.s, s.w | Iyama & Idu 2015, Soladeoye et al. 2014 |
| Anacardiaceae | Lanaria | taraliola A. Rich BOU 170 | Dislocation | 0.06 | 75 | s.w | Lawal et al. 2010 |
| Verbenaceae | Zanthoxyloides | camara L BOU 153 | Wild Sage | Decoction | 0.06 | 75 | s.w | Iyama & Idu 2015 |
| Lythraceae | Lawsonia | inermis L. BOU 177 | Henna plant | Decoction | 0.03 | 50 | s.w | Iyama & Idu 2015 |
| Lecaniodiscus cucupianoloides Planch ex Benth. | Sapindaceae | Akkia (Y.) | Lecaniodiscus cucupianoloides | Malaria, fever, purgative, typhoid, jaundice, cough | Leaves, stem bark, seeds, roots | Decoction | 0.1 | 80 | 0.3 | 0.6 | s.w | Iyama & Idu 2015 |
| Lippia multiflora | Verbenaceae | Emfinin-goroporo, Emfinin-oko (Y.) | Sweet leaf | Malaria | Whole plant | Decoction | 0.06 | 60 | 0.1 | 0.08 | s.w | Iyama & Idu 2015 |
| Zephyra aloata Banks ex Gaertn. f. | BOU 155 | Ochnaceae | Pahan (Y.) | Iron wood | Malaria | Stem bark | Decoction | 0.03 | 50 | 0.1 | 0.16 | s.w | Iyama & Idu 2015 |
| Ludwigia-fuscosilicola (G. Don) Exell | BOU 144 | Onagraceae | Bini-sersen (B.) | Water primrose | Malaria | Leaves | Decoction | 0.06 | 75 | 0.1 | 0.08 | s.s | Iyama & Idu 2015 |
| Zaffu-cylindrical (L) M.J. Roem | BOU 165 | Curcubitaceae | Anamne (K.) | Sponge guard | Malaria | Leaves, stem, seeds, roots | Decoction, infusion | 0.06 | 50 | 0.15 | 0.3 | s.s | Ajibesin et al. 2008 & 2012 |
| Malotus cordifolius | Muell. | Euphorbiaceae | Ebewosa (B.) | Malaria | Leaves | Decoction | 0.05 | 80 | 0.05 | 0.1 | s.s | Iyama & Idu 2015 |
| Mangifera indica L. | BDU 170 | Anarcardiaceae | Mangoro (I.), Mankeo (IK.), Imagolo (U.) | Mango | Malaria, typhoid fever, diabetes, memory enhancer, headache, jaundice, skin disease, astringent, sore throat, dysentery | Baths, decoction, maceration, meals | 0.25 | 60 | 0.55 | 0.22 | s.e, s.s | Alade & Ajibesin 2017, Ariwaodo et al. 2012, Alwiwi et al. 2017 |
| Manihot esculenta Crantz | BOU 172 | Euphorbiaceae | Akpu, jigbe, Ugbon, jaiphu (I.), Imidaka (U.) | Cassava | Eye problems, wound healing, chronic otitis | Leaf juice extract, root decoction | 0.1 | 75 | 0.15 | 0.15 | s.e, s.s | Alade & Ajibesin 2017 |
| Manooma aittisuma A. Chev. | BOU 55 | Sterculiaceae | Ofun (Y.) | African black walnut | Constipation, leprosy, yaws, scabies, syphilis | Decoction, infusion | 0.11 | 95 | 0.3 | 0.22 | s.w | Lawal et al. 2010 |
| Aliaca excelsa (Welw.) C.C. Berg | BOU 183 | Meliaceae | Oje (I.), Iroko (Y.), | Iroko | Malaria, rheumatism, nausea, abdominal pain, insomnia | Stem bark, roots | Decoction | 0.07 | 50 | 0.3 | 0.4 | s.e, s.w | Iyama & Idu 2015, Lawal et al. 2010 |
| Microdesmis zuberula Hook. f. ex Planch. | BOU 166 | Euphorbiaceae | Uperi (I.), Ido-apata (Y.) | Microdesmis zuberula | Malaria | Leaves | Decoction | 0.03 | 50 | 0.05 | 0.16 | s.e, s.w | Iyama & Idu 2015 |
| Miltitaria griffoniana Ball. | BOU 122 | Fabaceae | Ito (Y.) | General weakness | | | | 0.07 | 50 | 0.05 | 0.06 | s.w | Lawal et al. 2010 |
| Momordica balsamina L. | BOU 173 | Cucurbitaceae | Sibfuka, Akbarndene (I.), Ejirin (Y.) | Haemorrhoid | Whole plant | Decoction | 0.06 | 75 | 0.05 | 0.08 | s.e, s.w | Ajibesin et al. 2008 & 2012 |
| Momordica charantia L. | BOU 248 | Cucurbitaceae | Allocase (I.), Akbarndene (IK.), Ejirin-were (Y.), | African cucumber, balsam pear | Malaria, ulcers, burns, skin infections, diabetes, convulsion, vermifuge, aphydosis, gonorrhea, yaws, boils, malignant ulcers, diabetes, gastrointestinal problems, viral diseases, female infertility, malaria | Leaves | Decoction, juice extract | 0.11 | 95 | 0.4 | 0.32 | s.e, s.w | Iyama & Idu 2015, Lawal et al. 2010, Soladoye et al. 2014 |
| Mondia whitei (Hook. f.) Skeels | BOU 186 | Penioplaceae | Issigun (Y.) | Mondia | Malaria | Whole plant, roots | Decoction | 0.06 | 50 | 0.05 | 0.08 | s.w | Iyama & Idu 2015 |

Ethnobotany Research and Applications
Scientific Name	Family	Common Name	Uses	Extracts							
Morinda lucida Benth.	Rubiaceae	Brimstone tree	Malaria, female infertility	Decoction, juice extract	0.11	50	0.1	0.09	s.e, s.w	Iyama & Idu 2015, Soladoye et al. 2014	
Morinda morindaoides (Barker) Milne-Redh	Rubiaceae	Pijiu-awewe, Oju-ologbo (Y.)	Morinda Malaria	Leaves, stem bark	0.05	90	0.05	0.1	s.w	Iyama & Idu 2015	
Morinda oleifera Lam.	Moringaceae	Ewe-igbole (Y.)	Horse radish tree Malaria, vitamin supplement, acute rheumatism	Leaves	0.25	60	0.2	0.08	s.w	Alade & Ajibesin 2017, Iyama & Idu 2015, Lawal et al.2010	
Musa acuminata L.	Musaceae	Dwarf banana	Diabetes	Fruits	0.03	50	0.05	0.16	s.e	Akinsi et al.2017	
Musa paradisiaca L.	Musaceae	Mbana (I), Ogede (Y.)	Plantain Malaria	Leaves, stem bark, fruits	0.06	50	0.1	0.16	s.e, s.w	Iyama & Idu 2015, Alade & Ajibesin 2017, Iyama & Idu 2015	
Musa sapientum L.	Musaceae	Ogede-were (Y.)	Banana Malaria	Decoction	0.05	70	0.05	0.1	s.w	Lawal et al. 2010	
Musanga cerconoides R. Br. ex Tedlie BDU 212	Moraceae	Agbawo, Oro (Y.)	Corkwood Malaria, dysentery, cough, vermifuge	Leaves, stem bark, roots	0.1	75	0.2	0.2	s.w	Akinsi et al.2012	
Napoleonina imperialis P. Beav. BDU 240	Lecythidaceae	Nineloloche, abakalakaba (I.)	Vogel’s Napoleonina Blood clot removal in freshly birthed women	Leaves	0.15	80	0.2	0.13	s.e	Osotimehin & B 2005	
Nasturtium officinale R. Br. BDU 401	Brassicaceae	Aguba (JK.)	Watercress Impotence	Leaves	0.02	50	0.05	0.3	s.s	Ajibesin et al. 2008	
Naucea ddeerinschi (De Wild) Merr. BDU 408	Rubiaceae	Ope (U.), Opepe (Y.)	African peach Malaria	Stem bark	0.06	50	0.05	0.08	s.s, s.w	Iyama & Idu 2015	
Naucea saphroa (Smith) Bruce BDU 452	Rubiaceae	Egbesi (Y.)	African peach Malaria	Decoction	0.21	95	0.4	0.19	s.s, s.w	Akinsi et al.2017, Iyama & Idu 2015	
Newbouldia laevii (Beauv.) Seeman ex Bureau BDU 399	Bignonaceae	Oginisi (O.), Oke-ogirish (I.), Akoko (Y.).	Smooth Newbouldia A, Tree of Life, Fertility tree Eye problems: childbirth, constipation, malaria, septic wounds, convulsion, epilepsy, bleeding, migraine, eye infection, skin disease, infertility	Leaves	0.19	71	0.6	0.28	s.e, s, s, s.w	Akinsi et al.2012, Iyama & Idu 2015, Alade & Ajibesin 2017	
Ocimum gratissimum L.	Lamiaceae	Nchuxwee (I.), Eran, Ufuo-uyo (U.), Efinrin-age (Y.).	Tea bush, Scent leaf Constitution, Diabetes Miletus, vermifuge, malaria	Leases, leaf extract + riscum album	0.25	60	0.2	0.08	s.e, s, s, s.w	Iyama & Idu 2015, Alade & Ajibesin 2017	
Palestra hisuta (Thumb.) Schum. BDU 350	Commmelinaceae	Ikpereatutul (U), Asatie (E.K.)	Palisota Rheumatism, arthritis, malaria, boils, gonorrhea	Leaves, stem	Decoction, infusion, topical application of leaf juice, poultice	0.09	77	0.3	0.14	s.e, s.s	Iyama & Idu 2015
Pausinovi macrophylla Sabine BDU 352	Rosaceae	Abere (Y.)	Neociz oil tree Malaria	Seeds	0.06	50	0.05	0.08	s.w	Iyama & Idu 2015	
Parkia bicolor A. Chev. BDU 125	Fabaceae	Iru (Y.)	Diarrhea, dysentry	Decoction	0.07	85	0.1	0.14	s.e	Lawal et al. 2010	
Species	Family	Common Name	Use(s)	Ethanobotanical Use	Dose	Species	Reference				
---------	--------	-------------	--------	---------------------	------	---------	-----------				
Parquetina nigrescens(Afzel)	*Bullock*	*BDU 246*	African	*parquetina*	Leaves	Decoction, infusion	0.06	75	0.08	*Iyama & Idu* 2015	
Parinacea sativa L.	*BDU 213*	African	*ogbo* (Y.)	*Ewe*	Leaves	Decoction	0.06	50	0.1	*Ajiobum et al.* 2008 & 2013	
Pentaclethra macrophylla Benth.	*BDU 227*	African	*oil bean tree*	Leaves, pod, seeds, stem bark	Poultice of oil extract	0.09	72	0.4	*Akiwajid* et al. 2017		
Piperomia pallucidis (L.) H.B. & K.	*BDU 318*	*Periplocaceae*	African	*parquetina*	Leaves	Decoction	0.11	86	0.1	*Iyama & Idu* 2015	
Pastinaca sativa L.	*BDU 313*	*Apiaceae*	*Parsnip*	*Udeghe* (K.)	Leaves	Decoction	0.06	50	0.1	*Iyama & Idu* 2015	
Pentaclethra macrophylla Benth.	*BDU 227*	African	*oil bean tree*	Leaves, pod, seeds, stem bark	Poultice of oil extract	0.09	72	0.4	*Akiwajid* et al. 2017		
Piper nigrum Schum. & Thonn.	*BDU 191*	*Piperaceae*	African	*Malaria*	*Leaves*	Decoction, Tinctures	0.17	88	0.1	*Iyama & Idu* 2015, *Obute 2005 & 2007*	
Piperocarpus americanum Mill	*BDU 211*	*Lauraceae*	African	*Avocado*	*Leaves*	Decoction, Juice extract	0.17	98	0.2	*Iyama & Idu* 2015, *Akwaji et al.* 2017	
Piper guineense Schum. & Thonn.	*BDU 279*	*Piperaceae*	African	*Climbing black pepper*	*Fruits*	Decoction	0.18	80	0.2	*Iyama & Idu* 2015, *Akwaji et al.* 2017	
Piper nigrum Schum. & Thonn.	*BDU 191*	*Piperaceae*	African	*Uziza* (I.)	*Leaves and seeds*	Decoction, Tinctures	0.17	88	0.1	*Iyama & Idu* 2015, *Obute 2005 & 2007*	
Prunus domestica L.	*BDU 108*	*Rosaceae*	African	*Plum*	*Leaves*	Decoction, Topical application	0.06	75	0.1	*Iyama & Idu* 2015, *Luwai et al.* 2010 & *Ajuwu 2018*	
Plant Name	Family	Common Names	Uses	Parts Used	Preparation	Antimicrobial Activity	References				
------------	--------	--------------	------	------------	-------------	------------------------	------------				
Psidium guajava L.	Myrtaceae	Guava	Anaemia, malaria, diarrhoea, dysentery, spews, stools, fever, pain, female infertility	Leaves, bark, root	Decoction, maceration	0.23	65	0.5	0.19	s.e, s.s, s.w	Alade & Ajibesin 2017, Iyama & Idu 2015, Soladoye et al. 2014, Lawal et al. 2010
Pterocarpus osun Craib	Fabaceae	Camwood	Umbilical cord antisepsic, rheumatism, eczema, gonorrhoea, candidiasis, acne, amenorrhoea	Leaves, bark, root	Decoction, maceration	0.22	90	0.4	0.15	s.w	Akwaig et al. 2017, Lawal et al. 2010
Pterocarpus santalinoides D.C	Fabaceae	Winged fruit	Malaria, anti-ageing	Leaves, stem	Decoction	0.09	72	0.1	0.11	s.e, s.w	Iyama & Idu 2015
Pycanthus angolensis (Welw) Warb.	Myristicaceae	African nutmeg	Malaria, purgative, enema, skin disease	Leaves, stem, root	Decoction, powder	0.09	75	0.2	0.18	s.e, s.w	Iyama & Idu 2015
Ricinus communis L.	Euphorbiaceae	Castor bean	As purgative, stomachaches, as vermifuge skin disease	Leaves, seeds	Decoction, juice, syrup, topical application	0.27	60	0.2	0.4	s.w	Iyama & Idu 2015
Ruwolfia vomitoria Afzel	Apocynaceae	Viperwood, Swizzle stick	Malaria, skin disease, small pox, stomachache, gonorrhoea, waist pain, urogenital tract infection, hemorrhoid	Leaves, roots	Decoction, infusion	0.18	80	0.4	0.22	s.e, s.w	Iyama & Idu 2015
Senna alata (L.) Roxb.	Fabaceae	Candle bush, Ringworm bush	Eczema, ringworm, abscess, inflammation, skin disease, bleeding, dysentery, female infertility, vermifuge	Leaves, roots	Infusion, juice extract poultice	0.13	50	0.4	0.3	s.s	Alade & Ajibesin 2017, Ariwaodo et al. 2012, Soladoye et al. 2014
Senna fistula L.	Fabaceae	Pudding stick, Golden Shower	Malaria	Roots	Decoction	0.05	70	0.05	0.1	s.w	Iyama & Idu 2015
Senna hirsuta (L.) Irwin & Barneby	Fabaceae	Shower tree	Eye ache, ear ache, antimicrobial, skin infection, purgative	Leaves	Juice extract, poultice	0.06	75	0.3	0.41	s.e	Ariwaodo et al. 2012

Ethnobotany Research and Applications
Scientific Name	Family	Common Name	Uses (Cure)	Plant Parts	Uses	Standard Deviation	s.e.s.s	s.w	Reference			
Senna occidentalis (L.) Link	Fabaceae	*Akridiagbara* (L.), *Ewe* (Y.)	Negro coffee, coffee	Leaves, roots	Infusion, poultices	0.08	88	0.2	0.4	s.s	Ajibesin et al. 2008, 2012, Iyama & Idu 2015	
Senna podocarpa Guil. & Perr.	Fabaceae	*Asunwoneble* (Y.)	Senna	Leaves, stem bark	Decoction	0.04	75	0.05	0.13	s.w	Iyama & Idu 2015, Lawal et al. 2010	
Senna javanica Lam.	Fabaceae	*Kasaa*	Malaria, laxatives	Leaves, stem bark	Decoction	0.07	50	0.1	0.14	s.e, s.s, s.w	Iyama & Idu 2015, Lawal et al. 2010	
Scopanita dulcis L.	Plantaginaceae	*Anymideede* (O-M.)	Sweet-broom, licorice weed	Leaves	Juice extract	0.11	95	0.15	0.13	s.s	Babawale et al. 2016, Abere et al. 1993	
Sida arorida Burm. f.	Malvaceae	*Udo, Nulinyriyah* (I.)	Broom weed	Malaria	Stem	Decoction	0.09	77	0.05	0.06	s.e	Iyama & Idu 2015
Solanium lycopersicum L.	Solanaceae	*Tomatos* (I)	Tomatoes, vire berry	Leaves, fruit	Juice extract	0.06	50	0.1	0.16	s.e, s.w	Afolayan 2020	
Solanium nigrescens L.	Solanaceae	*Ebe-ape* (U.), *Anara* (O.)	Black Common Nightshade	Whole plants, leaves	Decoction	0.14	75	0.2	0.14	s.s	Ajibesin et al. 2008, 2012, Iyama & Idu 2015	
Solanostemon monostachyus (P. Beauv.) Briq.	Lamaceae	*Egba* (Ik.)	Measles, malaria	Leaves	Decoction	0.07	50	0.1	0.14	s.s	Ajibesin et al. 2008, 2012	
Songthum bicolor (L.) Moench	Poaceae	*Poroporo-okababa* (Y)	Guinea corn	Leaves	Decoction	0.22	90	0.05	0.02	s.w	Iyama & Idu 2015, Soladoye et al. 2014	
Spigodora campylocarpa P. Beauv	Bignoniaceae	*Ohunu, mogutoro* (Y.)	African tulip, Scarlett bells	Malaria	Stembark	Decoction	0.03	50	0.05	0.16	s.w	Iyama & Idu 2015
Sphenocentrum jojolayanum Pierre	Menispermaceae	*Akerejupon* (Y)	Sphenocentrum	Malaria, female infertility	Roots	Decoction	0.03	50	0.1	0.33	s.w	Iyama & Idu 2015, Soladoye et al. 2014
Spondias mombin L.	Anacardiaceae	*Iyeye* (Y.), *Aginiran* (Ox)	Hoggilum	Leaves, stem bark	Decoction	0.14	71	0.5	0.32	s.s, s.w	Ainaaodio et al. 2012, Iyama & Idu 2015, Soladoye et al. 2014	
Tachytyaspera cayennensis (L.C. Rich) Schua	Verbanaceae	*Ebe* (U.), *Obibo* (Y.), *Mbeku* (K.)	Rats’s rat, Vervaine, Blue Snakeweed	Malaria	Leaves	Decoction	0.05	60	0.1	0.2	s.s, s.w	Ajibesin et al. 2008, 2012, Iyama & Idu 2015, Lawal et al. 2010
Tachytyaspera indica (L.) VanH	Verbanaceae	*Ohudun* (O-M)	Rooter comb	Fever, malaria	Leaves	Juice extract	0.16	90	0.1	0.06	s.s, s.w	Ajibesin et al. 2008, 2012, Iyama & Idu 2015, Lawal et al. 2010
Arceaula setifera Doll.	Sterculiaceae	*Osawe, kukuju* (Y.)	Constipation			0.12	50	0.05	0.04	s.w	Lawal et al. 2010	
Zizania media (L.) Vill.	Caryophyllaceae	*Ahilaosuiko* (IK.)	Chickweed	Leaves	Decoction	0.06	83	0.15	0.3	s.s	Ajibesin et al. 2008, 2012, Iyama & Idu 2015, Lawal et al. 2010	
Synaloe nodiflora Gaertn	Asteraceae	*Alugani* (Y.)	Synedrella	Malaria, sores, skin infection	Leaves	Decoction	0.1	90	0.15	0.15	s.w	Ainaaodio et al. 2012, Iyama & Idu 2015
botanical name	family	common name	parts used	properties and uses								
----------------	--------	-------------	------------	---------------------								
Talnara butisocorum (L.) Juss.	Portulaceae	Segbebeke	Leaves	Juice extract, decoction	0.15	93	0.1	0.06	s.s	Akwaji et al. 2017		
Talnara occidentalis Hook. f.	Cucurbitaceae	*Ligu* (L.)	Fluted pumpkin	Leaves, fruits	Juice extract, poultice	0.3	90	0.4	0.13	s.w	Anwaodo et al. 2012, Soladoye et al. 2014	
Terminalia ivoniarana A. Chev	Combretaceae	Afara-dudo (Y.)	Black afara	Leaves, stem bark	Decoction	0.09	50	0.1	0.16	s.w	Iyama & Idu 2015, Lawal et al. 2010	
Ficus accuminata O. K. Hill	Moraceae	Elifosiviwe (Y.), Akoko (IK.)	Leaves, stem bark	F. and remedies	0.14	96	0.4	0.3	s.s, s.w	Akwaji et al. 2017		
Talnara butisocorum (L.) Juss.	Portulaceae	Segbebeke	Leaves	Juice extract, decoction	0.15	93	0.1	0.06	s.s	Akwaji et al. 2017		
Ficus accuminata O. K. Hill	Moraceae	Elifosiviwe (Y.), Akoko (IK.)	Leaves, stem bark	F. and remedies	0.14	96	0.4	0.3	s.s, s.w	Akwaji et al. 2017		
Ficus accuminata O. K. Hill	Moraceae	Elifosiviwe (Y.), Akoko (IK.)	Leaves, stem bark	F. and remedies	0.14	96	0.4	0.3	s.s, s.w	Akwaji et al. 2017		
Ficus accuminata O. K. Hill	Moraceae	Elifosiviwe (Y.), Akoko (IK.)	Leaves, stem bark	F. and remedies	0.14	96	0.4	0.3	s.s, s.w	Akwaji et al. 2017		
Ficus accuminata O. K. Hill	Moraceae	Elifosiviwe (Y.), Akoko (IK.)	Leaves, stem bark	F. and remedies	0.14	96	0.4	0.3	s.s, s.w	Akwaji et al. 2017		
Ficus accuminata O. K. Hill	Moraceae	Elifosiviwe (Y.), Akoko (IK.)	Leaves, stem bark	F. and remedies	0.14	96	0.4	0.3	s.s, s.w	Akwaji et al. 2017		
Ficus accuminata O. K. Hill	Moraceae	Elifosiviwe (Y.), Akoko (IK.)	Leaves, stem bark	F. and remedies	0.14	96	0.4	0.3	s.s, s.w	Akwaji et al. 2017		
Ficus accuminata O. K. Hill	Moraceae	Elifosiviwe (Y.), Akoko (IK.)	Leaves, stem bark	F. and remedies	0.14	96	0.4	0.3	s.s, s.w	Akwaji et al. 2017		
Ficus accuminata O. K. Hill	Moraceae	Elifosiviwe (Y.), Akoko (IK.)	Leaves, stem bark	F. and remedies	0.14	96	0.4	0.3	s.s, s.w	Akwaji et al. 2017		
Ficus accuminata O. K. Hill	Moraceae	Elifosiviwe (Y.), Akoko (IK.)	Leaves, stem bark	F. and remedies	0.14	96	0.4	0.3	s.s, s.w	Akwaji et al. 2017		
Ficus accuminata O. K. Hill	Moraceae	Elifosiviwe (Y.), Akoko (IK.)	Leaves, stem bark	F. and remedies	0.14	96	0.4	0.3	s.s, s.w	Akwaji et al. 2017		
Ficus accuminata O. K. Hill	Moraceae	Elifosiviwe (Y.), Akoko (IK.)	Leaves, stem bark	F. and remedies	0.14	96	0.4	0.3	s.s, s.w	Akwaji et al. 2017		
Scientific Name	Family	Common Names	Uses	Dosage	Application	Authors	Year					
-----------------------	-------------	--	--	--------	-------------	-----------------------------------	------------					
Tussilago farfara L.	Asteraceae	Coltsfoot, Malaria	Leaves, Decoction	0.05	80	Ajibesin et al. 2008 & 2012						
Urena lobata L.	Malvaceae	Congo jute, Caesar weed	Leaves	0.05	80	Iyama & Idu 2015						
Uvaria chamae P. Beauv	Asteraceae	Cluster pear, leaves, stem bark, roots	Decoction	0.05	80	Iyama & Idu 2015						
Vernonia amygdalina L.	Asteraceae	Bitter leaf, leaves, sap	Juice extract, mastication, poultice	0.13	73	Iyama & Idu 2015						
Xylopia aethiopica (Dunal) A. Rich	Annonaceae	Ethiopian pepper, leaves, seeds	Decoction, tincture, mastication, poultice	0.14	81	Iyama & Idu 2015						
Zanthoxylum leprieurii Guill. & Perr.	Rutaceae	Fagara, Ata (Y.)	Malaria, toothache, rhinitis	0.06	60	Iyama & Idu 2015						
Zanthoxylum zanthoxy-loides Lam.	Rutaceae	Fagara, Ata (Y.)	Asthma, anti-sickling, stem, roots	0.15	80	Lawal et al. 2010						
Figure 4. Frequency of plant parts usage

Figure 5. Method of preparation of herbal remedies.

Frequency of plant therapeutic use
Malaria showed a higher frequency (25.94%) in plant therapeutic applications, followed by skin troubles (10.9%), stomach ailments/vermifuge (10.8%), respiratory ailments (7.38%), dental carries/analgesic (4.86%), infertility/fibroid (4.5%), antiviral (3.96%), bone related issues and sexually transmitted disease each having a value of 3.6%, hemorrhoids, eye troubles and heart disease each having a value of 2.7% respectively (Table 3).

Relative frequency of citation (RFC)
This is a statistical indicative of how users frequently cite a plant for different diseases. The RFC value for the species in southern Nigeria ranged between 0.02-0.30 (Table 4). The highest RFC values for species was reported for *T. occidentale* (0.30), *R. communis* (0.27), *A. precatorius* and *A. indica* (0.26), *C. limon*, *C. citratus*, *M. indica*, *M. oleifera*, *O. gratissimum* and *V. amygdalina* (0.25 each), *A. melegueta*, *A. cordifolia*, *C. papaya*, *C. aurantifolia*, *D. tripetala*, *P. guajava* and *Z. officinale* (0.23 each), *A. montanus*, *A. boonei*, *A. djalonensis*, *E. guineense*, *E. senegalensis* and *P. osun* (0.22 each). On the other hand, the highest RFC values for ethnomedicinal applications (Table 4) was reported for malaria (1.0), skin troubles, stomach troubles/vermifuge (0.4 for each) and respiratory ailments (0.25).

Table 4. Ethnomedicinal application of medicinal plants in Southern Nigeria

Ethnomedicinal applications	Frequency of citation of ailments (FC)	Relative frequency of citation (RFC) RFC¼ FC/N (N = 200)
Malaria	200	1.0
Typhoid	9	0.04
Respiratory diseases	50	0.25
Heart diseases	17	0.08
Bone issues	23	0.12
Skin troubles	77	0.4
Infertility/Fibroid	30	0.15
Convulsions, fainting, stuttering, epilepsy	12	0.06
Stomach troubles /vermifuge	80	0.4
Diabetes	16	0.08
Antiviral	25	0.13
Antibacterial	14	0.07
Antifungal	12	0.06
Aphrodisiac	5	0.03
Eye troubles	17	0.09
Dental cares/ analgesic	32	0.16
Sexually transmitted diseases	23	0.12
Haemorrhoids	17	0.09
Astringent	3	0.02
Insanity/Insomnia	6	0.03
Asperity, anemia, low immunity & sickling	20	0.1
Hair growth	2	0.01
Dysmenorrhreal, amenorrhea & blennorrhagia	12	0.06
Womb fixing & poor lactation	13	0.07
Anti-venoms	8	0.04
Earache & infection	6	0.03
Vaginal/Urogenital infection	6	0.03
Renal ailment/diuretic	7	0.04

Informant consensus factor (ICF)
Malaria and renal ailment (Table 5) had the highest value (0.28), followed by stomach troubles/vermifuge, wound fixing and poor lactation (0.25 each), earache/infection, insanity, insomnia and memory enhancer, vaginal and urogenital infection (0.20 each).

Fidelity level (FL)
Fidelity levels (FL) of the 236 species are presented in Table 3. The results are justified by the relative importance of the species to the indigenes in the study area and the therapeutic effectiveness of the plant species. High FL is an indicative of a particular disease in an area and the use of a species for its cure (Bibi et al. 2014). Species with high FL values are as follows: Elaeis guineense (99), Euphorbia hirta (97), Chrysophyllum cainito, Citrus limon, Cnestis ferruginea, Cymbopogon citratus, Funtumia africana, Gongronema latifolium, Terminalia superba, Dacryodes edulis, Oacis caroata, Dialium guineense, Dracaena arborea, Eleusine indica, Iatropha curcas, Mansonia altissima, Momordica charantia, Nauclea latifolia, Pergularia daemia, Scoparia dulcis, Alstonia boonei, Anthocleista djalonensis, Apilla africana, Azadirachta indica, Cannabis sativa, Cocos nucifera, Erythrina senegalensis, Morinda morindoides, Pterocarpus osun, Sorghum bicolor, Stachyta raphtha indica, Syndrella nodiflora, Telfairia occidentalis, Terminalia avicennioides, Ximenia americana respectively.

Relative popularity level (RPL)
A total of 88 species were frequently cited by the respondents for treating various diseases but only 15 species had high relative popularity level (RPL) and these include: Abrus precatorius (0.8), Afromomum melegueta (0.7), Carica papaya, Newbouldia laevis and Vernonia amygdalina (0.6 each), Alchornea cordifolia, Ananas camosus, Baphia pubescence, Chromolaena odorata, Chrysophyllum cainito, Citrus aurantifolia, Citrus limon, Dalbergia lactea, Psidium guajava, Spondias mombin (0.5 each) respectively. Species most frequently cited by the respondents were accepted as popular while those not frequently cited were viewed as unpopular.
Table 5. Informant consensus factor (ICF) values for 22 different diseases categories

Category of diseases	Number of species	Percentages (% of species)	Number of use citation	Percentages (% of use citation)	ICF value
Malaria	144	61	200	28.7	0.28
Typhoid	8	3.38	9	1.3	0.11
Respiratory disorders	41	17.37	50	7	0.18
Heart related ailment	15	6.4	17	4.4	0.13
Arthritis, rheumatism & bone cares	20	8	23	3.29	0.13
Skin troubles	61	26	77	11	0.22
Infertility	25	11	30	4.3	0.17
Convulsion, fainting, epilepsy & stuttering	10	4	12	1.71	0.18
Stomach troubles	60	25	80	11.49	0.25
Asperity, anemia, low immunity & sickling	17	7	20	2.86	0.15
Dismenorrheal, amenorrhea & blennorrhrea	10	4	12	1.71	0.13
Womb fixing & poor lactation	10	4	13	1.86	0.25
Earache & infection	5	2.1	6	0.85	0.2
Diabetes	14	6	16	2.29	0.13
Viral infection	22	9	25	3.58	0.13
Eye trouble	15	6.35	17	2.43	0.13
Tooth ache & pain	27	11	32	4.58	0.16
Sexually transmitted diseases	20	8	23	3.95	0.13
Hemorrhoid	15	6	17	2.44	0.13
Insanity, insomnia, memory enhancer	5	2	6	0.86	0.2
Vaginal & Urogenital infection	5	2.1	6	0.86	0.2
Renal ailment	6	2.5	7	1	0.28

Use value (UV)

The relative importance of any species is revealed by its use value (Vendruscolo and Mentz 2006). A high use value was given by *Carpolobia lutea* (2.66), *Heliotropium indicum* (1.5), *Citrus limon* (1.41), *Glyphaea brevis* (1.3), *Baphia pubescence* (1.0), *Xylopia aethiopica* (0.72), *Bixa orellana* (0.66), *Anthonotha macrophylla* (0.58), *Ceiba petandra*, *Combretum racemosum*, *Dalbergia lactea* and *Dioscoreae rotundata* (0.5 each) respectively.

Discussion

Southern Nigeria has a high prevalence rate of malaria, typhoid, fevers, colds and chills, catarrh, flu, river blindness, respiratory disorders, eye problems and skin infections. In the past, programs established to eradicate numerous health problems in Nigeria have been inadequate. These have led to little improvement in the health status, especially in southern Nigeria. The study was undertaken to document information on the common plant resources employed in the ethnomedicinal practices of the indigenous people of the southern Nigeria, and to explore ways of sensitizing genuine conservation efforts.

Socio-demographic information and gender-based assessment on the use of medicinal plants by respondents

A high percentage was reported for persons above the age of 40 on the use of medicinal plant (82%) when compared to those below that age (18%). Also, herbal practitioners <40 (25%) and herbal practitioners >40 (75%), herbal vendors < 40 (27%) and herbal vendors > 40 (73%). This may be attributed to a lack of interest in
ethnomedicine by the younger generation due to westernization and a poor communication between the older and younger generation. Similar trends in the area have been reported by Iyama & Idu 2015.

The statistical results show that both male and females make use of medicinal plants. However, women had a higher knowledge of medicinal uses of plants (52%) in the study area than men (48%). This agrees with earlier studies carried out in the area (Iyama & Idu 2015).

Regional biodiversity of southern Nigeria

Biodiversity involves different spheres of biological variety including inter alia, species richness, taxonomic richness, genetic differences in each taxon, communities, ecosystems and landscapes inhabited by organisms and the indigenous knowledge of nature possessed by the indigenes living on the land (Kunwar et al. 2009, Ubom 2010). This review has attempted to assess the ethnomedicinal plant resources in southern Nigeria, highlighting the medicinal uses, mode of preparation and administration of herbal drugs. It also indicates the level of species richness as well as biodiversity in the study area. A total of 236 plant species belonging to 80 families were reported in this research review and these plants have shown certain adaptations to the region. Fabaceae family had the highest occurrence of plant species which numbered 30, Asteraceae 14 and Euphorbiaceae 13. South-Western Nigeria had the highest regional occurrence of plant species of about 47%, south-south 31% and south-east 22%. This suggests a relationship between the use of these medicinal plants, their distribution pattern and level of abundance in Southern Nigeria. Earlier research have reported legumes as having a high level of abundance and wide distribution across the ecological zones of Nigeria (Ayodele & Yang 2012, Iyama & Idu 2015). Furthermore, ethnomedicinal uses of many species reported in this review have been reported by past research (Ariwoodo et al., 2012, Ajibesin et al., 2008, Iyamah & Idu, 2015). The high level of plant species in the South-west of Nigeria may stem from low rate of hydrocarbon mining and crude oil exploratory activities as in the south-south and, gullies and hills in the south-east. Also, it may be due to the high level of preservation of ancient sacred groves, and forest landscapes or sanctuaries by the indigenes of south-western Nigeria for fetish or superstitious reasons.

Therapeutic application of medicinal plants

Medicinal plants play crucial role in the treatment of various ailments by the indigenous people in Southern Nigeria. Enormous health challenges and lack of adequate resources to access primary health care by the indigenes of southern Nigeria have made community elders with vast knowledge on the collection and administration of medicinal plants collaborate to provide treatment with the use of these plants. Basic factors that have promoted the use of these ethnomedicinal plants are affordability and availability, which are favored by the climate, soil type, swamps, water, and sunlight and so are easily cultivated within this region (Ajibesin et al. 2012).

Decoction (48.9%) was the most common method of herbal drug preparation in the study area. Treasure et al. 2021 reported similar findings in the study area on the use of decoction prepared by boiling or steeping the plant material in water.

A higher frequency of use (25.94%) was reported for malaria in plant therapeutic applications. Southern Nigeria is a coastal region noted for its tropical rainforest, high amount of rainfall and sunshine. A major challenge the area has to deal with is problems of poor drainage and waste disposal systems. The higher relative frequency of citation for malaria may arise from high level of infestation and numerous breeding grounds for mosquitoes in the area due to poor drainage and waste disposal systems.
Table 6. Pharmacological applications of Ethnomedicinal Plants of southern Nigeria

Plants/Family	Relative frequency of citation (RFC)	Ethnomedicinal applications/biological activities	Isolated Phytochemicals / Enzymes	Stage of clinical trial	References
Brachystegia eurycoma (Fabaceae)	0.17	Analgesic, anti-inflammatory, antimicrobial, wound healing, antioxidant, blood glucose lowering, liver enzyme lipid profile, gastrointestinal modulating, growth inhibitory, cytotoxic activities	-	Ivv	Atawodi 2017
Tetracarpidium conophorum (Euphorbiaceae)	0.19	Detoxification of venoms, anti-diarrhea activity, male fertility enhancing activities, antioxidant activities, anti-chelating activity, anti-ulcer and wound healing activities, treats stomach disorders, controls high blood pressure	Isolectins from T. conophorum seed extracts, polyphenolic compounds (3-galactoside, lactoside, 3-pentoside, 3-arabinoside, quercetin, p-coumaric-acid and 3and 5-caffeoylquinic acids), alkaloids, steroids and a moderate concentration of tannins	Ivv	Animashaun et al. 1994, Amaral et al. 2004, Periera et al. 2007, Olabinrin et al. 2010, Ezealisiij et al. 2014 a&b, Ikpe 2014, Nwachoko & Jack 2015, Chikezie 2017
Azadirachta indica (Meliaceae)	0.26	Malaria fever, jaundice, syphilis, anthelmintics, skin disease, eczema, ringworm, emetic, laxative, sore throat, antifungal, immunostimulant, antibacterial, antiviral, antimicrobial, measles	Over 135 compounds have being isolated and are mainly grouped into two major classes: isoprenoids and its derivatives – gedunin – possess anti-malarial properties	Ivv, ivv	Udeinya 1993, Dhara et al. 1999, Adesegun & Coker 2001, NNMDA 2005 & 2008, Udeinya et al. 2006, Odugbemi 2008, Alshawsh et al. 2009
Cymbopogon citratus (Poaceae)	0.25	Malaria, cough, sprains, lumbago, stomach tonic, stimulant, cold, chest pains, rheumatic joints, diaphoretic, diuretic, ringworm	Terpenoids, aldehydes, Essential oils like geranial	Ivv, ivv	Bidla et al. 2004, Tchoumbougnang et al. 2005, Odugbemi 2008), NNMDA 2008
Mangifera indica (Anacardiaceae)	0.25	Malaria, yellow fever, anemia, liver disease, diarrhea, diabetes, skin lesion, high blood pressure, hemorrhage, emmenagogue,	Xanthone Glycosides – Mangiferin, saponins, steroids and tannins	Ivv	Awe 1998, NNMDA 2005&2008, Aiyeloa & Bello 2006, Odugbemi 2008
Plant	Scientific Name	Activity	Plant Descriptor	Sources	
---------------------------	-----------------	---	-----------------------------------	--	
Carica papaya	*Carica papaya*	Malaria, gonorrhea, syphilis, amebic dysentery, roundworms, abortifacients, emmenagogue, diabetes, medicinal recipes, hemostatic, hernia, infections of urinogenital systems, blennorrhagia, orchitis, papain enzyme as meat tenderizer, convulsion, mental disorder	Papain	Bhat & Surolia 2001, Odugbemi, 2008, Avwioro 2010	
Psidium guajava	*Psidium guajava*	Malaria fever, diarrhea, stomachache, cough, laxative, dysentery, irregular menstruation sore throat, laryngitis, skin ulcers, astringent, antispasmodic, rheumatism, epilepsy, cholera, convulsions, mouth swelling	Flavonoids, carbohydrates, saponins, anthraquinones and terpenoids	Nundkumar & Ojewole 2002, NNMDA 2005 & 2008, Obute 2006	
Citrus aurantifolia	*Citrus aurantifolia*	Fever, jaundice, stomachache ache, antimicrobials, abdominal ulcer, gonorrhea, carminative, hypertensive, flavoring agents, measles, cough, toothache, anthelmints, scurvy, insecticides	Alkaloids, saponins, flavonoids and glycosides	Obute 2006, Odugbemi *et al.* 2007 & 2008, NNMDA (2013), Bapna *et al.* 2014.	
Enantia chlorantha	*Annonaceae*	Malaria, typhoid fever, antimicrobials, jaundice, rickettsia, infective hepatitis, hemostatic, uterus stimulant, ulcer	Alkaloids, Phenolics	NNMDA 2008, Odugbemi 2008, Ayoade & Musbau 2010.	
Vernonia amygdalina	*Asteraceae*	Malaria, itching, ring worms, weak erection, tonic, astringent, diarrhea, antimicrobials, nervous diseases, gingivitis, toothache,	Bitter sesquiterpenes lactones compounds, (i.e. vernolide, vernodalin, hydroxyvernolide and the steroid	Tona *et al.* 2004, NNMDA 2005, Odugbemi 2008, Omorogie *et al.* 2011	
Species	Value	Common Uses	Related Constituents	Literature References	
------------------------------	-------	---	----------------------	---	
Morinda lucida (Rubiaceae)	0.11	Malaria, typhoid fever, yellow fever, cerebral congestion, dysentery, dressing of wound, diabetes, heart disease, stomachache, purgative, emetic, diuretic, jaundice, flatulence, anti-cancer, low sperm count, analgesic, laxative, trypanocidal activity, ulcers, leprosy, gonorrhea.	Dammacanthal	Awe & Makinde 1998, NNMDA 2005 & 2008, Odugbemi et al. 2007.	
Ocimum gratissimum (Lamiaceae)	0.25	Fever, cough, convulsion, cold, catarrh, bronchitis, colic, chest pain, diarrhea, miscarriage, nasal bleeding, insect repellent, antimicrobials, anthelmintics, hypertension, diabetes, piles, antibacterial.	Essential oils	Ngemenya et al. 2004, Olorunniyi & Morenikeji 2013	
Chromolaena odorata (Asteraceae)	0.17	Malaria fever, typhoid fever, diabetes, diuretic, rheumatic pains, tumor, anti-inflammation, stomach pain, antimicrobial, dysentery, headache, toothache, hemostatic, skin diseases.	Quercetin-4’-methyl ether	Odugbemi 2007 & 2008, Ukpal & Amaechi 2012, Olorunniyi & Morenikeji 2013, Ezenyi et al. 2014	
Anacardium occidentale (Anacardiaceae)	0.19	Malaria, typhoid fever, white coating of the tongue, toothache, sore gums, dysentery, purgative, elephantiasis, leprosy, ringworms, scurvy, diabetes, warts, anthelmintics, caries.	Tannins	Odugbemi 2007 & 2008, Razalia et al. 2008, Olorunniyi & Morenikeji 2013	
Ananas comosus (Bromeliaceae)	0.15	Malaria, Typhoid fever, cough, anthelmintics, digestive.	Bromelian	Rajendra et al. 2012, Olorunniyi & Morenikeji 2013	
Species	Chemical Constituents	Notes	References		
---------------------------------	---	--------------------------------------	---		
Persea americana (Lauraceae)	problems, fibrinolytic action, inhibiting platelet aggregation, interfering with the growth of malignant cells, removing skin (debridement), anti-inflammatory, enhancing drug absorption, purgative, emmenagogue, vermifuge, enzyme bromelaine for meat tenderizer, treats angina pectoris, bronchitis, sinusitis, surgical trauma, osteoarthritis, cardiovascular disease	1,2,4-dihydroxy derivatives aliphatic alcohols, called avocadenols	Dike *et al.* 2012, Falodun *et al.* 2014		
Nauclea latifolia (Rubiaceae)	Malaria, hypertension, analgesic, anti-inflammatory, anti-convulsant, hypoglycaemic, vasorelaxant, diuretic, parasitic skin diseases, peptic ulcer, aphrodisiac, insomnia, gastrointestinal disorders.	Flavonoids, saponin, terpenoids and tannin, Alkaloids.	Benoit-Vicala *et al.* 1998, Traore *et al.* 2000, Odugbemi 2008		
Alstonia boonei (Apocynaceae)	Malaria fever, anti-inflammatory, stomach pain, tonic, anthelmintics, yellow fever, filaria worms, breast development, antidote.	Alkaloid-alstonine, Terpenoids	Tantchou *et al.* 1986, Okpekon *et al.* 2004, NNMDA 2005 & 2008, Obute 2006, Odugbemi 2008, Majekodunmi *et al.* 2008		
The relative frequency of citation value for the species in southern Nigeria ranged between 0.02-0.30. However, the highest RFC values for species were reported for *T. occidentale* (0.30). In ethnomedicinal applications, the highest relative frequency of citation value was reported for malaria (1.0). Relative frequency of citation in ethnomedicinal studies is used to select plant species having high medicinal values for intensive research and drug discovery (Malik *et al.* 2019).

Among the 64 most cited species in this study, 18 species have been investigated for their medicinal potencies based on reports obtained from previous studies on *in vitro* and *in vivo* activities of these plant species (Table 4). Earlier documentation have shown *Azadirachta indica* contains phytochemicals such as alkaloids, flavonoids, terpenoids, saponins, tannins, phenols and cardiac glycosides (Ayeni and Yahaya, 2010), *Chromolaena odorata* contains Quercetin-4’-methyl ether (Odugbemi, 2007 & 2008), *Cymbopogon citratus* contains alkaloids, saponins, tannins, anthraquinones, steroids, phenols and flavonoids (Asaolu *et al.* 2009), and *Tetracarpidium conophorum* contains isolectins isolated from seed extracts, polyphenolic compounds such as 3-galactoside, lactoside, 3-pentoside, 3-arabinoside, quercetin, p-coumaric-acid and 3- and 5-cafeoylquinic acids, alkaloids, steroids and a moderate concentration of tannins (Amaral *et al.* 2004). In same vein, *Vernonia amygdalina* have been reported to contain Bitter sesquiterpenes lactone compounds such as vernolide, vernoldalin, hydro-xyvernolide and the steroid related constituents, vernonoside B1 and vernonoid B1. Dike et al. 2012 stated various protective and therapeutic effects associated with these phytochemicals.

Plants therapeutic uses in southern Nigeria were mostly in the treatment of malaria, skin troubles, stomach ailments and vermifuge, respiratory ailment, dental cares and as analgesic. Plant species reported in the review are either administered singly or in combination with other plants of similar medicinal value in treatment of ailments to provide synergy for total elimination of disease-causing pathogens and aid quick recovery.

Decoction, infusion, poultices, and juices were the most used route in herbal drug preparation. However, plants had high incidence of oral consumption as decoction. The decoctions are usually boiled and drunk, this may indicate that the active ingredients found in most of the plants are not volatile.

Different parts of the medicinal plants are usually employed in preparation of herbal remedies. The parts of medicinal plants mostly used in herbal drug preparation were leaves, followed by stembark and root. Several studies have reported similar observation (Asase *et al.* 2010, Nguta *et al.* 2010, Ighere *et al.* 2011, Olorunnisola *et al.* 2013, Traore *et al.* 2013, Lyama & Idu 2015). A higher preference towards leaves may be resultant of common knowledge of leaves as the main photosynthetic organs in plants. Also, leaves act as storehouse for end products of photosynthesis or exudates which may contain more bioactive secondary metabolites for protection against predators such as Herbivores. Some of these compounds may be of medicinal value to the human body (Bhattarai *et al.* 2006). It has been established that the use of leaves poses less threat to the continued existence of plant species when compared to the use of underground parts like roots, stem, bark, or the use of entire plants (Zheng & Xing, 2009, Lyama & Idu 2015).

The major issues that pose certain limitations on the use of plant as drugs are lack of information on the social, biochemical, and economic benefits that could be derived from the industrial utilization of medicinal plants, poor incentives for standardization of product, little information on the market potential and trading possibilities of these medicinal plants (Oladeji 2016).

Previous studies or documentation

Several studies have been made on the ethnomedicinal plants in selected areas (Ighere *et al.* 2011, Nwazuoma & Dappa 2013, Odugbemi *et al.* 2017, Anowi & Christian 2019, Chijindu *et al.* 2020, Chukwuma *et al.* 2020) or for specific uses (Lyamah & Idu 2015, Babawale *et al.* 2018, Ayeni & Aliyu 2018, Chinedu & Uyanwa 2019, Afolayan *et al.* 2020) across southern Nigeria in the past but not for the whole of southern Nigeria. Ethnomedicinal applications, biological activities, isolated phytochemicals, and active compounds as well as the status of scientific validation of the 18 listed plants, are shown in Table 4. These plants have been previously reported to contain various phytochemicals. Phytochemical extractions like Isolectins from *Tetracarpidium conophorum* seed extracts, polyphenolic compounds like 3-galactoside, lactoside, 3-pentoside, 3-arabinoside, quercetin, p-coumaric-acid and 3- and 5-cafeoylquinic acids (*Tetracarpidium conophorum*), tannins (*Anacardium occidentale, Azadirachta indica*, *Magnifera indica, Nauclea latifolia*, and *Tetracarpidium conophorum*), alkaloids (*Alstonia boonei, Azadirachta indica*, *Nauclea latifolia, Citrus aurantifolia, Enantia chlorantha* and *Tetracarpidium conophorum*), saponins (*Citrus aurantifolia, Psidium guajava, Nauclea latifolia and Mangifera indica*), glycosides (*Citrus aurantifolia* and *Mangifera indica*).
indica), terpenoids (Alstonia boonei, Cymbopogon citratus. Psidium guajava, Vernonia amygdalina and Nauclea latifolia), flavonoids (Citrus aurantiifolia, Psidium guajava and Nauclea latifolia), polyphenolic compounds (Tetracarpidium conophorum), steroids (Tetracarpidium conophorum), essential oils (Cymbopogon citratus and Ocimum gratissimum).

Conclusion
Bioactivity and toxicity by in vitro and in vivo standard tests should be made on herbal drug extracts of the presented species for scientific validation of their efficacy, as well as isolation and possible identification of potentially active compounds. This holds a ray of hope for compounding of phtyo-drugs in an era of growing resistance of pathogenic organisms to chemically synthesized drugs. Increased anthropogenic activities in the coming years could emerge as a potential threat to conservation of biodiversity of plant species in southern Nigeria. Hence, a call is made for conservation of these species for their perpetuation.

Declarations
List of abbreviations: HIS: Health Information System, NHIS: National Health Insurance Scheme, S.E: South–East, S.S: South South, S.W: South West, E: Edo, Y: Yoruba, I: Igbo, B: Bini, U: Urhobo, E: Efik, IK: Ikwerre, IB: Ibibio, EK: Ekpere, K: Kalabari, O: Ogoni, O-M: Oboso-Mbube, U: Ijaw, BDÚ: Bioresources Development Centre Ubulu-Uku Herbarium, FC: citation frequency, N: total number of respondents, ICF: Informant consensus factor, Nur: Number of use citations for a disease category, Nt: Number of species used by informants in a given use category, FL: Fidelity level, RPL: Relative popularity value, UV: Use value.

Ethics approval and consent to participate: Informed prior consent was obtained from all respondents before commencement of the interview. Data were collected with respect to confidentiality, anonymity and consent.

Consent for publication: Not applicable
Availability of data and materials: The data was not deposited in public repositories.
Competing interests: The authors declare no conflict of interest.
Funding: This research did not receive any grant in any manner from funding agencies in the public, commercial, or not-for-profit sectors.
Authors’ contributions: Enebeli-Ekwutoziam Katherine Chinwe, Aruah Blessing Chinene, Ogbonna Blessing Onyemaechi, Eze Uju Judith, Egedeye-Fubura Fubara Fokari, Nwankwo Chigozie Fredrick, Oliseyenum Nelly Ifeoma, Udoha Ngozi Winfred, AfuyeTubosun Nathanial, Asogwa Grace Nkechi: Study design, ethnomedicinal surveys conduction, active participation in structuring of the methodology, manuscript writing, data analysis and interpretation. Enebeli-Ekwutoziam Katherine Chinwe, Aruah Blessing Chinene, Egedeye-Fubura Fubara Fokari, Study conception and supervision, methodology analysis and botanical identification. Chinwuekwo Kris Ada, Anenih Farida Onose, Iyamu James Ekhorutormwen, Oboti Feyinwa Deborah: Contribution to the study design and authorizations of different community heads to conduct the surveys. Nwaizu Nkechi, Ajabor James Ifeanyi, Ozadibe Ogechukwu Yvonne, Otunla Racheal Abosed, Okoronkwo Bertha Francis, Orji Miriam: Work: supervising, contribution to methodology, manuscript improving and review-editing. All authors read, reviewed, and approved the manuscript.

Acknowledements
The authors wish to acknowledge the support provided by the management of Bioresources Development Centre Ubulu-Uku –National Biotechnology Development Agency. The authors extend gratitude to Mrs. Enebeli-Ekwutoziam, K.C. for editing the manuscripts and carrying out statistical analysis of research data, and Ms. Aruah, C.B. for proofreading the manuscripts.

Literature cited
Abd El-Ghani, MM, 2016. Traditional medicinal plants of Nigeria: an overview. Agriculture and Biology Journal of North America 7(5):220-247. doi:10.5251/abjna.2016.7.5.220.247.

Abebe, D, Ayehu, A. 1993. Medicinal Plants and Enigmatic Health Practices of Northern Ethiopia. B.S.P.E., Addis Ababa, Ethiopia.

Abere, TA, Okoye, J, Agroreyo, FO. 2015. Antisickling and toxicological evaluation of the leaves of Scoparia dulcis Linn. (Scrophulariaceae). BMC Pharmacology and Alternative Medicine Journal 15: 414. doi:10.1186/s12906-015-0928-5.
Adesegun SA, Coker HAB. 2001. Plants used in tradition medicine against malaria. Nigerian Journal of Pharmacology 32:50–62.

Adeyemo DO. 2005. Local Government and Health care delivery in Nigeria: A case study. Journal of Human Ecology 18:149–60. doi: 10.1080/09709274.2005.11905822.

Afolayan ID, Sulaiman KA, Okunade WT. 2020. Ethnobotanical survey of plants used in cancer therapy in Iwo and Ibadan, South-Western of Nigeria. Journal of Pharmacy and Pharmacognosy Research 8(5):346-367.http://jppres.com/jppres (Accessed 22/07/2021).

Aiyeloja AA, Bello OA. 2006. Ethnobotanical potentials of common herbs in Nigeria: a case study of Enugu state. Journal of Educational Research and Reviews 1:16-22. http://academicjournals.org/ERRR (Accessed 22/07/2021).

Aja PM, Ugwu OPC, Keke K, Ibere JB, Ekpono EU. 2017. Phytochemical Analysis of Senna occidentalis leaves. IDSOR Journal of Applied Sciences 2(1):75-91. www.idosr.org (Accessed 1/08/2021).

Ajibesin KK, Danladi NB, Uwemedimo FU. 2012. Ethnomedicinal survey of plants used by the indigenes of Rivers State of Nigeria. Pharmaceutical Biology, 50 (9), 1123-1143. doi: 10.3109/13880209.2012.661740.

Ajibesin KK, Ekpo BA, Bala DN, Essien EE, Adesanya SA. 2008. Ethnobotanical survey of Akwa Ibom State of Nigeria. Journal of Ethnopharmacology 115:387-408. doi: 10.1016/j.jep.2007.10.021.

Ajuru MG. 2018. Ethnobotanical inventory of Oguru-ama Town, Degema Local Government Area, Rivers State, Nigeria. Journal of Advances in Biology and Biotechnology 19(2):1-13. doi: 10.9734/JABB/2018/13576.

Akinyemi O, Oyewole SO, Jimoh KA. 2018. Medicinal plants and sustainable human health: a review. Horticulture International 2(4):194-195. doi: 10.15406/hij.2018.02.00051.

Akwaji PI, Eyamand EO, Bassey RA. 2017. Ethnobotanical Survey of Commonly Used Medicinal Plants in Northern Cross River State, Nigeria. World Scientific News 70(2):140-157. www.worldscientificnews.com (Accessed 1/8/2021).

Alade G, Oladele A, Okpako E, Ajibesin K, Olanrewaju A. 2018. A Survey of plants used for family planning in Bayelsa State, southern Nigeria. Journal of Intercultural Ethnopharmacology 7(1):25–44. doi:10.5455/jice.20171202114930.

Alade GO, Ajibesin, KK. 2017. Herbal medicine cleric’s knowledge in sub-urban centre in Niger-Delta Nigeria: a pilot study. Journal of Pharmacy and Pharmacognosy Resesearch 5 (4):200-216. http://jppres.com/jppres (Accessed 1/8/2021).

Alshawsh MA, Mothana RA, Al-shamahy HA, Salah F, Lindequeist AU. 2009. Assessment of anti-malaria activity against Plasmodium falciparum and phytochemical screening of some Yemeni medicinal plants. Evidence Based. BMC Complementary and Alternative Medicine 6:453-456. doi: 10.1093/ecam/nem148.

Amaral JS, Seabra RM, Andrade PB, Valentao P, Pereira JA, Ferreres F. 2004, ‘Phenolic profile in the quality control of walnut (Juglans regia L.) leaves. Food Chemistry 88:373-379. doi: 10.1016/j.foodchem.2004.01.055.

Alexiades MN, Sheldon JW. 1996. Selected guidelines for ethnobotanical research: A Field Manual. Boranx, NY: the New York Botanical Garden, U.S.A.

Ali-Shyayeh MS, Yaniv Z, Mahajna J. 2002. Ethnobotanical survey in the Palestinian area: a classification of the healing potentials of medicinal plants. Journal of Ethnopharmacology 71:221-232. doi: 10.1016/s0378-8741(00)00316-0.

Animashaun T, Togun RA, Hughes RC. 1994. Characterization of isolecitins in Tetracarpidium conophorum seeds (Nigerian Walnut), Glycocon Journal 11(4):299-303. doi: 10.1007/BF00731202.

Anowi CF, Christian UI. 2019. Ethnobotanical surveys of medicinal plants used by the natives of Umuahia, Abia State, Nigeria for the management of diabetes. IOSR Journal of Pharmacy and Biological Sciences 14:05-37. http://www.irosrjournals.org/iosr-jpbs/papers/Vol14-issues5/series-1/81405010537.pdf (Accessed 30/6/2021).

Ariwaodo JO, Chukwuma EC, Adeniji KA. 2012. Some medicinal plant species of Asamagbe stream bank vegetation, Forestry Research Institute of Nigeria, Ibadan. Ethnopharmacology Research and Applications10:541-549. https://www.researchgate.net/publication/281443566_13_JO_Ariwaodo_EC_Chukwuma_KA_Adeniji_2012_Some_Medicinal_Plant_Species_of_Asamagbe_Stream_Bank_Vegetation_Forestry_Research_Institute_of_Nigeria_Ibadan_Ethnobotany_Research_Applications_10_541-549 (Accessed 1/8/2021).

Ethnobotany Research and Applications 33
Asase A, Akwetey GA, Achel DC. 2010. Ethnopharmacological use of herbal remedies for the treatment of malaria in the Dangme West District of Ghana. Journal of Ethnopharmacology 129:367-376. doi: 10.1016/j.ejp.2010.04.001.

Asaolu, MF, Oyeyemi, OA, Olanojukun, JO. 2009. Chemical compositions, phytochemical constituents, and in vitro biological activity of various extracts of *Cymbopogon citratus*. Parkistan Journal of Nutrition 8(12):1920-1922. doi: 10.3923/pin.2009.1920.1922.

Atawodi SE, Iliemene UDE. 2017. Evaluation of *Brachystegia eurycoma* Harmsseed dietary inclusion in the prevention of colon carcinogenesis. Annals of oncology 259. doi: 10.1093/annonc/mdx261.257.

Awwioro G. 2010. Effectiveness of some medicinal plant decoction in the treatment of malaria in Nigeria. Annals of Biology Research 1 (2):230-237. www.scholarsresearchlibrary.com (Accessed 1/8/2021).

Awe SO. 1998. Anti-plasmodial and antipyretic screening of *Mangifera indica* extract. Phytotherapy Research 12:437. doi: 10.1002/(SICI)1099-1573(199809)12:6<437::AID-PTR313>3.0.CO;2-C.

Awe SO, Makinde JM. 1998. Effect of petroleum ether fractions of *Morinda lucida* on, *Plasmodium berghei* in mice. Pharmaceutical Biology 36:301-304. doi: 10.1076/phbi.36.4.301.4581.

Ayeni EA, Aliyu N. 2018. Ethnobotanical survey and documentation of healing river sources among the Yoruba people (Ijesha Land) Nigeria. Journal of Complementary Medicine Research 8:59-70. doi: 10.5455/jcmr.20180504090258.

Ayeni KE, Yahaya SA. 2010. Phytochemical screening of three medicinal plants: neem leaf (*Azadirachta indica*), hibiscus leaf (*Hibiscus rosa-sinensis*) and Speargrass leaf (*Imperata cylindrica*). Continental Journal of Pharmaceutical Science 4:47-50. https://wiloludjournal.fandom.com/wiki/Continental_J_Pharmaecological_Sciences_Volume_4_(2010) (Accessed1/8/2021)

Ayoade AA, Musbau AA. 2010. Antimalaria bioactivity of *Enantia chlorantha* stem bark. Medicinal Plants: Phytochemistry, Pharmacology and Therapeutics 1 (2010), 441-447. https://basicmedicalkey.com/bioactivity-of-enantia-chlorantha-stem-bark/ (Accessed 1/8/2021)

Ayoadele AE, Yang Y. 2012. Diversity and distribution of vascular plants in Nigeria. Qingdao Publishing House, Qingdao, China.

Babawale B, Taiye FR, Adetunji OS. 2016. Ethnobotanical survey of plants used as memory enhancer in 3 states of southwestern Nigeria. Journal of applied pharmaceutical science 6(09):209-214. doi: 10.7324/JAPS.2016.60931.

Balick MJ, Cox PA. 1996. Plants, culture, and people. WH Freeman & Co., Scientific American New York, United States of America.

Bapna S, Ramaiya M, Chowdhary A. 2014. Brine shrimp toxicity and invitro antimalarial activity of *Citrullus aurantifolia* (Christm.) Swingle against *Plasmodium falciparum* 3D7. IOSR Journal of Pharmaceutical and Biological Science 9 (5):24-27. doi: 10.9790/3008-09512427.

Benoit-Vicala F, Valentina A, Cournaca V, Pelissierb Y, Malliea M, Bastidea JM.1998. In vitro anti-plasmodial activity of stem and root extracts of *Nauclea latifolia* S.M. (Rubiaceae). Journal of Ethnopharmacology 61:173-178. doi: 10.1016/s0378-8741(98)00036-1.

Bhat GP, Surolia N. 2001. *In vitro* anti-malaria activity of extracts of three plants used in the traditional medicine of India. Am. J. Trop. Med. Hyg. 65(4):304-8. doi: 10.4269/ajtmh.2001.65.304.

Bhattarai S, Chaudhary RP, Taylor RS. 2006. Ethnomedicinal plants used by the people of Manang district, central Nepal. Journal of Ethnobiology and Ethnomedicine 2:41 doi: 10.1186/1746-4269-2-41.

Bibi T, Ahmad M, Tareen RB, Tareen NM, Jabeen R, Rehman S, Sultana S, Zafar M, Yaseen G. 2014. Ethnobotany of medicinal plants in district Mastung of Balochistan province- Pakistan. Journal of Ethnopharmacology 157:79-89. doi: 10.1016/j.ejp.2014.08.042.

Bidla G, Titanji VPK, Jak G, Gazali GE, Bolad A, Berzins, K. 2004. Anti-plasmodial activity of seven plants used in African folk medicine. Indian Journal of Pharmacology 36, 245-246. http://www.bioline.org.br/request?tc08032 (Accessed 1/8/2021).
Ezealisiji KM, Ijomah SC, Agbo MO. 2014a. Anti-ulcer activity of African walnut, Tetracarpidium conophorum nuts against gastric ulcers in Rats. Asian Pacific Journal of Tropical Disease 4(1):670-673. doi: 10.1016/S2222-1808(14)60772-6.

Ezealisiji KM, Omotosho AE, Udoh R, Agbo MO. 2014b. Wound healing activity of n-hexane and methanol extracts of Tetracarpidium conophorum (Mull. Arg.) Hutch (African Walnut) in Wistar rats. Malaysia Journal of Pharmaceutical Sciences 12(1):79-88. https://www.researchgate.net/publication/273313981_wound_healing_activity_of_n-hexane_and_methanol_extracts_of_tetracarpidium_conophorum_mull_arg_hutch_african_walnut_in_wistar_rats (Accessed 7/6/2021).

Ezenyi IC, Salawu OA, Kulkarni R, Emeje M. 2014. Antiplasmodial activity aided isolation and identification of quercetin-4'-methyl ether in Chromolaena odorata leaf fraction with high activity against chloroquine resistant Plasmodium falciparum. Parasitology Research 113(12):4415-4422. doi:10.1007/s00436-014-4119-y.

Ezenduka CC, Fallieros DR, Godman BB. 2017. Evaluating the treatment cost for uncomplicated malaria at a public healthcare facility in Nigeria and its implications. PharmacoEconomics 1:185-194. doi:10.1007/s41669-017-0021-8.

Falodun A, Imieje V, Erharuyi O, Ahomafor J, Jacob MR, Khan SI, Hamann MT. 2014. Evaluation of three medicinal plants extracts against Plasmodium falciparum and selected microorganisms. African Journal of Traditional, Complementary and Alternative Medicine 11(4):142-146. doi: 10.4314/ajtcam.v11i4.22.

Gbille ZO, Adesina SK. 1986. Nigerian flora and its pharmaceutical potentials. Journal of Ethnopharmacology 19:1-16. doi: 10.1016/0378-8741(87)90135-8.

Giday M, Asfaw Z, Elmqvist T, Woldu Z. 2003. An ethnobotanical study of medicinal plants used by the Zay people in Ethiopia. Journal of Ethnopharmacology 85:43-52. doi: 10.1016/s0378-8741(02)00359-8.
Gillespie S. 2018. What are intestinal worms? In: Healthline, Reviewed by Sampson S. https://www.healthline.com/health/intestinal-worms (Accessed 3/8/2021).

Gill LS. 1992. Ethnomedicinal uses of Plants in Nigeria.Uniben Press, Benin City, Nigeria.

Heinrich M, Ankli A, Frei B, Weimann C, Sticher O. 1998. Medicinal plants in Mexico: Healers’ consensus and cultural importance. Social Science & Medicine 47(11):1859-1871. doi: 10.1016/s0277-9536(98)00181-6.

Hostellmann K, Marston A. 2002. Twenty years of research into medicinal plants: results and perspectives. Phytochemistry Reviews 1:275-285. doi:10.1023/A:1026046026057.

Huntington HP. 2000. Using traditional ecological knowledge in science: methods and applications. Ecological applications 10(5):1270-1274. doi: 10.2307/2641282.

Hutchinson J, Dalziel JM. 1954. Flora of West Tropical Africa. Vol 1 part 1, 2nd Edition. The White Frairs Press, Limited, London, UK.

Hutchinson J, Dalziel JM. 1958. Flora of West Tropical Africa. Volume 1 part 2. The White Frairs Press, Limited, London, UK.

Hutchinson J, Dalziel JM. 1968. Flora of West Tropical Africa. Volume 3 part 1. The White Frairs Press, Limited, London, UK.

Idowu OA, Soniran OT, Ajana O, Aworinde DO. 2009. Ethnobotanical survey of anti-malarial plants used in Ogun State, Southwest Nigeria. African Journal of Pharmacy and Pharmacology 4:055-060. doi: 10.5897/AJPP.9000138.

Idu M, Ndukwu BC, Osemwegie OO. 2007. Ethnobotanical studies of Ethiope Council Area of Delta State, Nigeria. Journal of Plant Science 2:1-13. doi: 10.3923/jps.2007.1.13.

Idu M, Onyibe HI, Timothy O, Erhabor JO. 2008. Ethnomedicinal flora of otuo people of Edo State, Nigeria. Asian Journal of Plant Science 7:8-12. doi: 10.3923/ajps.2008.8.12.

Ighere, DA, Ajiboye TO, Edagbo DE, Borokini TI, Alowonle AA, Micheal C,Giwa A, Adeyemo A. 2011. Ethnobotanical survey of local herbs used for the treatment of malaria fever among the Urhobo people in Delta State, Nigeria. International Journal of Current Research 3:336–339. http://www.journalcra.com (Accessed 1/8/2021).

Ikpeme EV, Ekaluo UB, Udensi O, Ekerette EE, Ekpo PB, Asuquo BO. 2014. Sperm quality and hormone profile of male albino rats fed with seeds of African walnut (Tetracarpidium conophorum, Mull.). Annual Research and Review in Biology 4(9):1379–1386. doi: 10.9734/ARRB/2014/5426.

Iwu MM. 1993. Handbook of African Medicinal Plants. CRC Press, Inc., Corporate Blvd., Florida, USA.

Iyamah PC, Idu M. 2015.Ethnomedicinal survey of plants used in the treatment of malaria in Southern Nigeria. Journal of Ethnopharmacology 173:287-302. doi: 10.1016/j.jep.2015.07.008.

Jimoh A, Sofola O, Petu A, Okorososo T. 2007. Quantifying the economic burden of malaria in Nigeria using the willingness to pay approach. Cost Effect. ResourceAllocation 5:6-13. doi: 110.1186/1478-7547-5-6.

Kajang YG, Keswet LA. 2006. Health challenges in the present democratic era in Nigeria: the place of technology. International Journal of Technical Research and Applications 4 (1):124-129. http://hdl.handle.net/123456789/1443 (Accessed 7/6/2021).

Keay RWJ. 1989. Trees of Nigeria. Clarendon Press, Oxford, Great Britain.

Khan TI, Dular AK, Deepika MS. 2003. Biodiversity conservation in Thar Desert, with emphasis on endemic and medicinal plants. Environmentalist 23:137-144. doi: 10.1023/A:1024835721316.

Kunwar RM, Upretty Y, Burlakoti C, Chowdhary CL, Bussmann RW. 2009. Indigenous use and ethnopharmacology of Medicinal plants in far-West Nepal. Ethnobotany Research and Applications7:5-28. https://www.researchgate.net/publication/229062180_Indigenous_Use_and_Ethnopharmacology_of_Medicinal_Plants_in_Far-West_Nepal (Accessed 1/8/2021).

Lawal IO, Uzokwe NE, Igboanugo ABI, Adio AF, Awosan EA, Nwogwugwu JO, Faloye B, Olatunji BP, Adesoga AA. 2010. Ethnomedicinal information on collation and identification of some medicinal Plants in Research Institutes
Ethnobotany Research and Applications

of South-West Nigeria. African Journal of Pharmacy and Pharmacology 4 (1):001-007. https://academicjournals.org/journal/AJPP/edition/January_2010 (Accessed 3/8/2021).

Majekodunmi SO, Adegoke OA, Odeku OA. 2008. Formulation of the extract of the stem bark of Alstonia boonei as tablet dosage form. Tropical Journal of Pharmaceutical Research 7(2):987-994. doi: 10.4314/tjpr.v7i2.14683.

Menizibeya OW. 2011. The Nigerian health care system: Need for integrating adequate medical intelligence and surveillance systems. Journal of pharmacy and bioallied sciences 3(4): 470-478. doi: 10.4103/0975-7406.90100.

Murray P. 2013. Medical microbiology, 7th Ed. Elsevier Saunders, Philadelphia, U.S.A.

Mustapha AA, Fawibe OO, Ajiboye AA, Agoobla DA. 2014. Ethnobotanical survey of medicinal plants used in the treatment of diabetes in Irepodun Local Government of Osun State of Nigeria. Greener Journal of Biological Sciences 4(2):059-068. doi:10.15580/GJBS.2014.2.010314006.

National Health insurance scheme decree No35 of 1999 Laws of the Federation of Nigeria. https://www.ilo.org (Accessed 1/8/2021).

Ndukwu BC, Ben-Nwadibia NB. 2005. Ethnomedicinal aspects of plants used as spices and condiments in the Niger Delta Area of Nigeria. Ethnobotanical Leaflets 19(10):1-32 https://opensiuc.lib.siu.edu/ebli/vol2005/iss1/10 (Accessed 1/8/2021).

Nguta JM, Mbaria JM, Gakuya DW, Gathumbic PK, Kiamad SG. 2010. Traditional antimalarial phytotherapy remedies used by the South Coast community, Kenya. Journal of Ethnopharmacology 131:256-267. doi: 10.1016/j.jep.2010.06.031.

Ngemenya MN, Tane P, Berzins K, Titanji VPK. 2004. Antiplasmodial activity of some medicinal plants used in Cameroon: preliminary toxicity studies of highly active plant extracts, in proceedings of the 11th Annual Conference of The Cameroon Bioscience Society, December 2004.

Nigeria Health Information System Policy. FMOH, September, 2014. https://ehealth4everyone.com/wpcontent/uploads/2015/09/Nig-Health-Info.pdf (Accessed 1/8/2021)

Nigeria National Health Conference Communiqué, Abuja Nigeria. https://www.ngnhc.org (Accessed 18/11/2020).

Nigeria Natural Medicine Development Agency (NNMDA). 2005. Medicinal Plants of Nigeria South-west Nigeria, vol. 1, NNMDA, Lagos, Nigeria.

Nigeria Natural Medicine Development Agency (NNMDA). 2008. Medicinal Plants of Nigeria Southeast Zone, vol. I, Lisinda Consulting, Lagos, Nigeria.

Nigeria Natural Medicine Development Agency (NNMDA). 2013. Medicinal Plants of Nigeria South-South Zone, vol. I, Koredex Associates, Lagos, Nigeria.

Nnadozie O. 2015. Estimating malaria burden in Nigeria: a geostatistical modeling approach. Geospatial Health 205(10):306. doi: 10.4081/gh.2015.306.

Nundkumar N, Ojewole JAO. 2002. Studies on antiplasmodial properties of some South African plants used as antimalaria remedies in Zulu folk medicine. Experimental and Clinical Pharmacology 24(7):397-401. doi: 10.1358/mf.2002.24.7.696540.

Nwachoko N, Jack IR. 2015, Phytochemical screening, and anti-diarrhea activities of Tetracarpidium conophorum induced in albino rats. Sky Journal of Biochemistry Research 4(4):21-24. http://www.skyjournals.org/SJBR (Accessed 2/8/2021).

Nwauzoma AB, Dappa MS. 2013. Ethnobotanical studies of Port Harcourt metropolis, Nigeria. International Scholarly Research Notices Botany1-11. doi:10.1155/2013/829424.

Obute G. 2005. Ethnomedicinal plant resources of south-eastern Nigeria. Ethnobotanical Leaflets 2005(1):5. https://opensiuc.lib.siu.edu/ebli/vol2005/iss1/5 (Accessed 30/6/2021)

Obute GC. 2007. Ethnomedicinal plant resources of South Eastern Nigeria. African Journal of Interdisciplinary Studies 3(1):90–94. https://opensiuc.lib.siu.edu/ebli/vol2005/iss1/5 (Accessed 9/12/2020).
Obute GC, Osuji LC. 2002. Environmental awareness and dividends: a scientific discourse. African Journal of Interdisciplinary studies 3(1):90-94.

Odugbemi T. 2008. A Textbook of Medicinal Plants from Nigeria Lagos. University of Lagos Press, Nigeria.

Odugbemi TO, Oduyunayo R, Akinsulire I, Albinu E, Fabeku PO. 2007. Medicinal plants useful for malaria therapy in okeibgo, Ondo State, southwest, Nigeria. African Journal of Traditional Complementary and Alternative Medicine 4(2):191-198. doi: 10.4314/AJTCAM.V4I2.31207

Ojo OE, Oyekunle MA, Ogunleye AO, Otesile EB. 2009. E. coli/0157:H7 in food animals in part of S/Western Nigeria: Prevalence and in vitro antimicrobial susceptibility. Tropical veterinarian 26 (3 & 4):23-30. https://scholar.google.com/citations?user=DTDK8LoAAAAJ&hl=en (Accessed 6/7/2021)

Oke JM, Oladosun B, Okunola MC. 1999. Sweet potato (Ipomea batatas) tuber – potential oral anti-diabetic agent. African Journal of Biomedical Research 2(1):13-17. https://www.ajol.info/index.php/ajbr/article/view/14057 (Accessed 3/8/2021).

Okonko IO, Soleyeye FA, AmusanTA, Ogun AA, Udeze AO, Nkang AO, Ejemb J, Faley TOC. 2009. Prevalence of malaria Plasmodium in Abeokuta, Nigeria. Malaysian Journal of Microbiology 5:113-8. doi:10.21161/MJM.16509.

Okpekpon T, Yolou S, Gleye C, Roblot F, Loiseau P, Bories C, Grellier P, Frappier F, Laurens A, Hoquemiller R. 2004. Antiparasitic activities of medicinal plants used in Ivory Coast. Journal of Ethnopharmacology 90: 91-97. doi: 10.1016/j.jep.2003.09.029,

Okujagu TF. 2005. Welcome address at the Zonal training for traditional medicine practitioners, Port- Harcourt, Nigeria. Nigeria National Medicine Development Agency, Federal Ministry of Science and Technology.

Olabinrin BM, Eniyansoro OO, Okoronkwo CO, Olabinrin PF, Olaleye MT.2010. Evaluation of chelating ability of aqueous extract of Tetracarpidium conophorum (African walnut) in vitro. International Journal of Applied Research in Natural Products 3(3):13-18. https://journaldatabase.info/articles/evaluation_chelating_ability_aqueous.html (Accessed 3/7/2021).

Oladeji O. 2016. The characteristics and roles of medicinal plants: some important medicinal plants in Nigeria. Natural Products: An Indian Journal 12 (3):102. https://www.tsjournals.com/articles/the-characteristics-and-roles-of-medicinal-plants-some-important-medicinal-plants-in-nigeria.html (Accessed 3/8/2021).

Oladunmoye MK, Kehinde FY. 2011. Ethnobotanical survey of medicinal plants used in treating viral infections among Yoruba tribe of southwestern Nigeria. African Journal of Microbiology Research 5(19): 2991-3004. doi: 10.5897/AJMR10.004.

Olanrewaju O, Akanni OL. 2010. Health expenditure and health status in Northern and Southern Nigeria: a comparative analysis using NHIA framework. Paper presented at the 2010 CSAE conference held at St. Catherine College, University of Oxford, Oxford, UK.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.192.6678&rep=rep1&type=pdf (Accessed 9/12/2020).

Olorunnisola OS, Adetutu A, Balogun EA, Afolayan AJ. 2013. Ethnobotanical survey of medicinal plants used in the treatment of malaria in Ogbonmoso, South-west, Nigeria. Journal of Ethnopharmacology 150: 71-78. doi: 10.1016/j.jep.2013.07.038.

Olorunniyi OF, Morenikeji OA. 2013. The extent of use of herbal medicine in malaria management in Ido/Osi Local Government Area of Ekiti State, Nigeria. Journal of Medicinal Plants Research 7(42):3171-3178. doi: 10.5897/JMPR2013.5101.

Olowokudejo JD, Kadiri AB, Travish VA. 2008. Ethnobotanical survey of herbal markets and medicinal plants in Lagos, Nigeria. Ethnobotanical Leaflets 12:851-65. https://opensiuc.lib.siu.edu/ebi/voi2008/iss1/116 (Accesssed 3/8/2021).

Omorogie ES, Pal A, Sisodia B. 2011. In vitro antimalarial and cytotoxic activities of leaf extracts of Vernonia amygdalina (Del.). Niger. Journal of Basic and Applied Sciences 19(1):121-126. doi: 10.4314/njbas.v19i1.69356.

Omoran AI, Bamidele AP, Phillips OF. 2009. Social Health Insurance and sustainable health reforms in Nigeria. EthnoMedicine 3:105-10. doi:10.1080/09735070.2009.11886346.
Onwujekwe OE, Obikeze EN, Ogonnia GO, Onoka CA. 2010. Investigating determinants of out-of-pocket spending and strategies for coping with payments for health care in southeast Nigeria. BMC Health Services Research 10(67):1472-6963. doi:10.1186/1472-6963-10-67.

Periera JA, Oliveira SA, Valenta P, Andrade PB, Ferreira IC, Ferreres F. 2007. Walnut (Juglans regia L) polyphenolic compounds, antibacterial activity and antioxidant potentials of different cultivars, Food and Chemical Toxicology 45(11):2287-2295. doi: 10.1016/J.FCT.2007.06.004.

Peters RH. 1991. A critique for Ecology. Cambridge University Press, New York, U.S.A.

Rajendra P, Sapna J, Shraddha K, Ajay K. 2012. Properties and therapeutic application of bromelian: A review. Biotechnology Research International 2012:1-6. doi: 10.1155/2012/976203.

Razalia N, Razaba R, Junita SM, Aziz AA. 2008. Radical scavenging and reducing properties of Cashew shoots (Anacardium occidentale). Food Chemistry 111:38-44. doi: 10.1016/J.FOODCHEM.2008.03.024.

Ryan J, 2018. Boards and Beyond: infectious Disease. Create Space Independent Publishing Platform, U.S.A.

Savikin K, Zdunic G, Menkovc N, Zivkovic J, Cujic N, Tereskenco M, Bigovic D. 2013. Ethnobotanical study on traditional use of medicinal plants in SouthWestern Serbia, Zlatibor district, Journal of Ethnopharmacology 146:803-10. doi: 10.1016/j.jep.2013.02.006.

Soladoyoe MO, Chukwuma EC, Sulaiman OM, Feyisola RT. 2014. Ethnobotanical survey of plants used in the traditional treatment of female infertility in southwestern Nigeria. Ethnobotany Research and Applications 12:081-090. doi:10.17348/ERA.12.0.081-090.

Soladoyoe MO, Lewis GP. 2003. A checklist of Nigerian Legumes. CENRAD Natural Resources Research Assessment and Conservation Series 03, Ibadan, Nigeria, West Africa.

Tantchou TPK, Aldivo J. 1986. Studies on Cameroonian medicinal plants 1: antimalarial activity of the extracts of Alstonia boonei and Guibourtia tessmannii on the Vietnam Smith strain of Plasmodium falciparum. Revue Scientifique et Technique Office International Des Epizooties III (3 and 4):69–77.

Tardio J, Pardo-De-Santayanna M, Morales R. 2006. Ethnobotanical review of wild edible plants in Spain. Botanical Journal of the Linnean Society 152:27-71. doi: 10.1111/J.1095-8339.2006.00549.X.

Tona L, Cimanga RK, Mesia K, Musuamba CT, De Bruyne T, Apers S, HernansN, Van Miert S, Pieters L, Totte J, Vlietinck AJ. 2004. In vitro antiplasmodial activity of extracts and fractions from seven medicinal plants used in the Democratic Republic of Congo. Journal of Ethnopharmacology 93:27–32. doi: 10.1016/j.jep.2004.02.022.

Traore F, Gasquet M, Laget M, Guiraud H, Di-Giorgio C, Azas N, Douombo O,Timon-David P. 2000. Toxicity and genotoxicity of antimalarial alkaloid rich extracts derived from Mytragyna inermis O. Kuntze and Nauclea latifolia. Phytotherapy Research 14:608-611. doi: 10.1002/1099-1573(200012)14:8<608:aaid-prtr667>:3.0.co;2-d.

Treasure IO, Adjene JO, Odigie MO. 2020. Ethnobotanical survey of medicinal plants in Ughelli North Local Government Area of Delta State. Journal of Medicine: Study and Research 3(14):1-9. doi: 10.24966/MSR-5657/100014.

Ubom RM. 2010. Ethnobotany and biodiversity conservation in the Niger Delta, Nigeria. International Journal of Botany 6(3):310-322. doi:10.3923/UB.2010.310.322.

Udeinya UJ, Brown N, Shu EN, Udeinya FI, Quayekeye I. 2006. Fractions of an antimalarial neem-leaf extract have activities superior to chloroquine and are gametocytocidal. Annals of Tropical Medicine and Parasitology 100:17-22. doi: 10.1179/136485906X78508.

Ugboogu OA, Chukwuma EC. 2019. Ethnobotany of Okomu Forest Reserve, Edo, State, Nigeria. Journal of Applied Sciences and Environmental Management 2397:1391-1401. doi: 10.4314/jasem.v23i7.31.

Uzochukwu BSC, Ughasoro MD, Etába E, Okwuosa C, Enuvaladu, E, Onwujekwe OE. 2015. Health care financing in Nigeria: Implications for achieving universal health coverage. Nigerian Journal of Clinical Practice 8(4):437-444. doi: 10.4103/1119-3077.154196.

Wambebe C. 1998. Development of standardized phytomedicines. African Journal of Pharmaceutical Research and Development 3:1-11.
WHO. 1978. Alma Ata Declaration Primary Health Care. Health for all Series No. 1.

WHO. 1978. The promotion and development of traditional medicine. Technical Report No.622, Geneva, Switzerland.

Zheng X, Xing F. 2009. Ethnobotanical study on medicinal plants around Mt. Yinggeling, Hainan Island, China. Journal of Ethnopharmacology 124:197-210. doi: 10.1016/j.jep.2009.04.042.