Internal Ca\(^{2+}\) release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue

Valérie Denis and Martha S. Cyert

Department of Biological Sciences, Stanford University, Stanford, CA 94305

Calcium ions, present inside all eukaryotic cells, are important second messengers in the transduction of biological signals. In mammalian cells, the release of Ca\(^{2+}\) from intracellular compartments is required for signaling and involves the regulated opening of ryanodine and inositol-1,4,5-trisphosphate (IP\(_3\)) receptors. However, in budding yeast, no signaling pathway has been shown to involve Ca\(^{2+}\) release from internal stores, and no homologues of ryanodine or IP\(_3\) receptors exist in the genome. Here we show that hyperosmotic shock provokes a transient increase in cytosolic Ca\(^{2+}\) in vivo. Vacuolar Ca\(^{2+}\), which is the major intracellular Ca\(^{2+}\) store in yeast, is required for this response, whereas extracellular Ca\(^{2+}\) is not. We aimed to identify the channel responsible for this regulated vacuolar Ca\(^{2+}\) release. Here we report that Yvc1p, a vacuolar membrane protein with homology to transient receptor potential (TRP) channels, mediates the hyperosmolarity induced Ca\(^{2+}\) release. After this release, low cytosolic Ca\(^{2+}\) is restored and vacuolar Ca\(^{2+}\) is replenished through the activity of Vcx1p, a Ca\(^{2+}\)/H\(^{+}\) exchanger. These studies reveal a novel mechanism of internal Ca\(^{2+}\) release and establish a new function for TRP channels.

Introduction

Eukaryotic cells can sense a wide variety of environmental stresses, including changes in temperature, pH, osmolarity, and nutrient availability. They respond to these changes through a variety of signal transduction mechanisms, including activation of Ca\(^{2+}\)-dependent signaling pathways. In mammalian cells, various stimuli are known to induce the release of Ca\(^{2+}\) from the endoplasmic or sarcoplasmic reticulum, the primary Ca\(^{2+}\) stores. In yeast, the Ca\(^{2+}\) concentration in the cytosol ([Ca\(^{2+}\)\(_{cyt}\)]\(^{\text{cyt}}\)) has been shown to increase in response to the mating pheromone α factor (Iida et al., 1990), hypotonic shock (Batiza et al., 1996, Beeler et al., 1997), and addition of glucose to starving cells (Nakajima-Shimada et al., 1991). However, none of these increases in [Ca\(^{2+}\)\(_{cyt}\)]\(^{\text{cyt}}\) has been shown to depend on internal Ca\(^{2+}\) release, as opposed to influx from the external media. In the case of hypotonic shock, increases in [Ca\(^{2+}\)\(_{cyt}\)]\(^{\text{cyt}}\) are partially independent from external Ca\(^{2+}\), but there is no direct evidence of internal Ca\(^{2+}\) release (Batiza et al., 1996). Therefore, although yeast possesses many of the conserved elements involved in Ca\(^{2+}\) signaling (i.e., calmodulin, adenylate cyclase, and various protein kinases), signaling through internal Ca\(^{2+}\) release is still speculative in yeast.

If internal Ca\(^{2+}\) release exists in yeast, the vacuole is likely to be involved in this function, as it plays a major role in Ca\(^{2+}\) homeostasis. Indeed, free Ca\(^{2+}\) concentration in the yeast vacuole reaches 1.3 mM, compared with only 10 μM in the endoplasmic reticulum (Halachmi and Eilam, 1989; Strayle et al., 1999). Therefore, the yeast vacuole is the functional counterpart of the mammalian endoplasmic and sarcoplasmic reticulum for Ca\(^{2+}\) storage. Two transporters play complementary roles in sequestering Ca\(^{2+}\) into the vacuole: (a) Vcx1p, a low-affinity Ca\(^{2+}\)/H\(^{+}\) exchanger that rapidly sequesters Ca\(^{2+}\) into the vacuole; and (b) Pmc1p, a high-affinity Ca\(^{2+}\) ATPase required for maintaining low [Ca\(^{2+}\)\(_{cyt}\)]\(^{\text{cyt}}\) (Cunningham and Fink, 1994, 1996; Pozos et al., 1996; Miseta et al., 1999). It has been reported that vacuolar membrane vesicles could release Ca\(^{2+}\) in the presence of IP\(_3\) (Belde et al., 1993); however, the mechanism and the physiological relevance of this effect have not been addressed. Although Ca\(^{2+}\) influx into the vacuole has been well characterized, no protein has been shown to effect vacuolar Ca\(^{2+}\) release.
All cells must repeatedly adapt to hypertonic shock caused by variations in water availability or solutes concentration. Yeast cells are particularly exposed to such changes, and therefore have developed multiple responses to hypertonic stress. Within minutes, cells shrink and the cytoskeleton disassembles (Morris et al., 1986; Chowdhury et al., 1992). Adaptation to these new conditions requires transcriptional induction of stress-responsive genes, as well as the accumulation of intracellular glycerol (Brown et al., 1986; Albertyn et al., 1994; Hirayama et al., 1995; Tamás et al., 1999). This transcriptional activation is mediated in part by the high-osmolarity glycerol (HOG) response pathway, which is composed of a mitogen-activated kinase cascade regulated by at least two independent osmosensors (Brewster et al., 1993; Posas et al., 1998).

Although the response to hypertonic shock has been intensively studied, whether it involves Ca\(^{2+}\) signaling is unknown. In addressing this question, we show that: (a) hypertonic shock induces a transient increase in cytosolic Ca\(^{2+}\) concentrations; (b) the Ca\(^{2+}\) flux comes from the vacuole; and (c) Yvc1p, a homologue of transient receptor potential (TRP) channels, is required for this release. Yvc1p has recently been cloned by Palmer et al. (2001), and has been shown to be a cation-selective channel that can conduct Ca\(^{2+}\), K\(^{+}\), or Na\(^{+}\). This conductance had been previously characterized by electrophysiological methods (Wada et al., 1987; Bertl and Slayman, 1990, 1992; Bertl et al., 1992). The electrophysiological properties of Yvc1p and its presence in the vacuolar fraction suggested that Yvc1p could be a vacuolar Ca\(^{2+}\) channel. In this study we verify this hypothesis using living cells; we demonstrate in vivo, for the first time, that Yvc1p is a vacuolar channel that mediates Ca\(^{2+}\) release in response to hyperosmotic stress.

Results and discussion

To analyze the effect of hypertonic shock on [Ca\(^{2+}\)]\(_{\text{cyt}}\), we added media containing high NaCl, KCl, or sorbitol to cells expressing the cytosolic, luminescent Ca\(^{2+}\) reporter aequorin (Nakajima-Shimada et al., 1991; Batiza et al., 1996), and monitored luminescence (Fig. 1 a). All of these treatments induced an increase in [Ca\(^{2+}\)]\(_{\text{cyt}}\), which peaked ~1 min after the hypertonic shock. [Ca\(^{2+}\)]\(_{\text{cyt}}\) rapidly decreased and returned to its basal level by 5 min. In comparison, addition of Ca\(_{\text{Cl}}\) to the extracellular medium induced a sudden increase in [Ca\(^{2+}\)]\(_{\text{cyt}}\), that peaked within the first second and then decreased rapidly (Fig. 1 a) (Miseta et al., 1999). As shown previously, this decrease is due to Ca\(^{2+}\) sequestration into the vacuole (Miseta et al., 1999). These experiments show that hyperosmotic shock induces a transient increase in cytosolic Ca\(^{2+}\), and that the timing of this response is slower than that induced by simple addition of external Ca\(^{2+}\).

To further investigate this novel Ca\(^{2+}\) response, we examined whether the hyperosmolarity induced Ca\(^{2+}\) flux comes from an external or an internal source. We repeated these experiments using media containing the Ca\(^{2+}\) chelators EGTA or 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-'tetraacetic acid (BAPTA), as well as using low Ca\(^{2+}\) SD medium (see Materials and methods), and observed no differences under these conditions (unpublished data). This strongly suggests that external Ca\(^{2+}\) is not required for the observed cytosolic Ca\(^{2+}\) peak. Next, we asked if the Ca\(^{2+}\) flux is released from internal stores. Because the vacuole plays an important role in Ca\(^{2+}\) storage and homeostasis, we investigated the hyperosmolarity induced Ca\(^{2+}\) flux in mutants with defects in vacuolar Ca\(^{2+}\) storage. In a pmc1\(_{\Delta}\)vcx1\(_{\Delta}\) strain lacking both transporters for vacuolar Ca\(^{2+}\) storage, Ca\(^{2+}\) is not sequestered in the vacuole, and consequently, vacuolar [Ca\(^{2+}\)] is dramatically reduced (Cunningham and Fink, 1996; Pozos et al., 1996). Therefore, if the hyperosmolarity induced Ca\(^{2+}\) flux comes from the vacuole, we expect it to be reduced in this strain. Wild-type, pmc1\(_{\Delta}\), vcx1\(_{\Delta}\), and pmc1\(_{\Delta}\)vcx1\(_{\Delta}\) strains were subjected to high osmolality shock (0.8 M NaCl). Strikingly, the Ca\(^{2+}\) increase was completely absent in the pmc1\(_{\Delta}\)vcx1\(_{\Delta}\) strain (Fig. 1 b). In contrast, the single mutant pmc1\(_{\Delta}\) had a Ca\(^{2+}\) peak comparable to wild-type strain, and the Ca\(^{2+}\) response was increased in the vcx1\(_{\Delta}\) strain (Fig. 1 b). This last observation confirms that
Vcx1p plays a critical role in rapidly sequestering a sudden pulse of cytosolic Ca^{2+} into the vacuole. Indeed, yvc1Δ cells also display a delay in restoring low [Ca^{2+}]_{cyt} after addition of extracellular Ca^{2+} (Miseta et al., 1999). Together, these results strongly suggest that the hyperosmolarity induced Ca^{2+} flux is generated by release of Ca^{2+} from the vacuole. This is the first time that Ca^{2+} release from the vacuole has been shown in vivo in yeast in response to a specific signal.

As a next step, we aimed to identify the channel responsible for this Ca^{2+} release. We examined the yeast genome for putative Ca^{2+} channels and found a candidate ORF, recently characterized as YVC1, that shows significant homology to the TRP family of ion channels (Palmer et al., 2001). The first TRP channel was discovered in Drosophila melanogaster and is required for phototransduction (Montell and Rubin, 1989). Multiple homologues have since been identified in mammals, Xenopus, squid, and worms, and are involved in such diverse sensory functions as pain, heat, olfaction, and osmolarity signaling; they may also be involved in replenishing intracellular Ca^{2+} stores (Putney and McKay, 1999; Harteneck et al., 2000; Clapham et al., 2001). TRP channels have been the subject of intense investigation recently, yet their gating mechanisms and biological role are not fully understood (Harteneck et al., 2000; Clapham et al., 2001). The discovery of a TRP homologue in Saccharomyces cerevisiae prompted us to search other fungal genomes for YVC1 homologues. We found a single homologue in Candida albicans, Neurospora crassa, and in 5 of the 14 hemiascomycetous yeast genomes that have been partially sequenced (Souciet et al., 2000). Next, we analyzed the phylogenetic relationship between these new fungal TRP channels and animal TRPs from worm and mammals (Fig. 2). The resulting tree shows that the newly defined cluster of fungal TRPs forms a distinct subfamily (Fig. 2), in addition to the previously described Short, Osm-like, and Long subfamilies (Harteneck et al., 2000; Clapham et al., 2001), also defined, respectively, as TRPC, TRPV, and TRPM subfamilies (Montell, 2001).

As a first step toward characterizing yeast Yvc1p, we determined its localization in vivo using a COOH-terminal green fluorescent protein (GFP) fusion. Interestingly, Yvc1–GFP was specifically localized to the vacuolar membrane (Fig. 3a). This localization of the yeast TRP homologue is in contrast to other TRP channels studied thus far, which localize to the plasma membrane (Pollock et al., 1995; McKay et al., 2000; Xu and Beech, 2001). Next, we characterized the effect of Yvc1p levels on yeast cell growth. Although yvc1Δ had no apparent growth defects, cells expressing high levels of Yvc1p were extremely sensitive to the presence of CaCl_2 in the medium (Fig. 3b). Furthermore, this sensitivity was Ca^{2+}-specific, as MgCl_2 at the same concentration did not affect growth (Fig. 3b), and cells overexpressing YVC1 did not show increased sensitivity to NaCl or KCl (0.6 to 1.2 M) (unpublished data). This Ca^{2+} sensitivity strongly suggests that Yvc1p, like some other TRP channels, participates in Ca^{2+} homeostasis and acts to increase cytosolic [Ca^{2+}]_{cyt}.

Based on this finding, as well as its localization to the vacuolar membrane, Yvc1p is a good candidate for a Ca^{2+} channel that mediates vacuolar Ca^{2+} release. This hypothesis is also consistent with the electrophysiological properties of YVC1, which has been shown to be permeable to Ca^{2+}, among other cations (Bertl and Slayman, 1990, 1992; Bertl et al., 1992; Palmer et al., 2001).

We tested whether YVC1 was involved in the hyperosmolarity induced Ca^{2+} increase by examining [Ca^{2+}]_{cyt} in cells lacking or overexpressing YVC1. The yvc1Δ strain displayed no significant increase in [Ca^{2+}]_{cyt} after hypertonic treatment (Fig. 3c). In contrast, YVC1 overexpression greatly enhanced the magnitude of the Ca^{2+} peak induced by high osmolarity (Fig. 3c). These results indicate that Yvc1p mediates increased [Ca^{2+}]_{cyt} in response to hypertonic shock. To confirm that this YVC1-mediated Ca^{2+} release is dependent on vacuolar Ca^{2+}, we examined [Ca^{2+}]_{cyt} in pmclΔ, yvc1Δ and pmclΔyvc1Δ strains carrying a yvc1Δ allele or overexpressing YVC1. The pmclΔyvc1Δ strain showed no vacuolar Ca^{2+} release even when YVC1 was overexpressed (Fig. 3d). This is likely due to low vacuolar [Ca^{2+}], and shows that...
YVCI-dependent Ca\(^{2+}\) release comes from the vacuole. As expected, changes in [Ca\(^{2+}\)]\(_{\text{cyt}}\) observed in the Δpmc1 background lacking or overexpressing YVCI were equivalent to those seen in the wild-type strain (unpublished data). In a vcx1Δ background, deletion of YVCI completely eliminated the Ca\(^{2+}\) increase induced by hypertonic shock (Fig. 3 e). In contrast, overexpression of YVCI in the vcx1Δ strain caused a dramatic increase in this Ca\(^{2+}\) response (Fig. 3 e). Thus, overexpression of YVCI and mutational inactivation of VCX1 both increase the amplitude of the hyperosmolarity induced Ca\(^{2+}\) peak, and these two effects are additive. These observations underscore the importance of Vcx1p in antagonizing and potentially modulating YVC1-dependent Ca\(^{2+}\) release. Together, these results show that following hypertonic shock, Yvc1p effects Ca\(^{2+}\) release from the vacuole into the cytosol, and that this release is followed by rapid Ca\(^{2+}\) sequestration into the vacuole by Vcx1p (Fig. 4).

Yeast actively sequester Ca\(^{2+}\) in their vacuole. In these studies we establish that, as in other eukaryotic cells, this Ca\(^{2+}\) can be released into the cytosol in response to external stimuli. We also show that this release is followed by refilling of the internal store. However, two key questions remain: (a) What leads to Yvc1p channel opening; and (b) What are the physiological consequences of Ca\(^{2+}\) release? We investigated whether other environmental changes besides hypertonic shock induced Ca\(^{2+}\) release by Yvc1p. First, we found that the Ca\(^{2+}\) peak induced by injection of extracellular Ca\(^{2+}\) (Fig. 1 a) was not affected by YVCI deletion or overexpression (unpublished data). Thus, in vivo, a brief increase in [Ca\(^{2+}\)]\(_{\text{cyt}}\) is apparently not sufficient to trigger Yvc1p opening, although the YVC1 cation conductance observed in isolated vacuoles is activated by Ca\(^{2+}\) (Wada et al., 1987;
Bertl and Slayman, 1990, 1992; Bertl et al., 1992; Palmer et al., 2001). Other conditions, such as hypertonic shock or the addition of 0.03% SDS or 7% ethanol, also induced a transient increase in cytosolic Ca$^{2+}$ (Batisa et al., 1996; unpublished data); however, YVC1 was similarly not required for these Ca$^{2+}$ peaks (unpublished data). Therefore, the response of Yvc1p to hypertonic shock appears to be specific. We are currently investigating the role of YVC1-mediated Ca$^{2+}$ release in hypertonic stress signaling. The signaling pathway activated by hypertonic shock has been well characterized in yeast, and is composed of the HOG mitogen-activated kinase cascade (Posas et al., 1998). Further studies will examine the relationship between components of the HOG pathway and the Ca$^{2+}$ increase mediated by YVC1.

In conclusion, we show that internal Ca$^{2+}$ release in yeast is mediated by a novel class of Ca$^{2+}$ release channel, which is unrelated to IP$_3$ or ryanodine receptors. Instead, this release requires a homologue of the TRP family of ion channels, Yvc1p. Like TRP channels in multicellular organisms, YVC1 acts in sensory transduction. However, YVC1 is the first TRP channel homologue shown to mediate Ca$^{2+}$ release from an intracellular store.

Materials and methods

Yeast strains and media

Strains were isogenic to YPH499 (MATa ura3–52 lys2–801 ade2–101 trpl–1 Δ63 his3–Δ200 leu2–3,112) (Sikorski and Hieter, 1989). TpYp is MAta pnc1Δ::TRP1; KKY127 is MAta vcy1Δ; KKY124 is MAta pmc1Δ::TRP1 vcy1Δ; VDY23 is MAta yvc1Δ::Kan6; VDY25 is MAta pmc1Δ::TRP1 yvc1Δ::Kan6; VDY31 is MAta vcy1Δ::yvc1Δ::Kan6; and VDY40 is MAta pmc1Δ::TRP1 vcy1Δ::yvc1Δ::Kan6. SD medium (Sherman et al., 1986) contained twice the recommended levels of supplements with 3.5 g of ammonium chloride per liter substituted for ammonium sulfate. Low Ca$^{2+}$-containing twice the desired final concentration of sorbitol, KCl, or NaCl. To ensure that total reconstituted aequorin was not limiting in our assays, we measured the maximal luminescence after addition of 0.1% digitonin. The maximal luminescence was 4,000,000 relative luminescence units or more, which is 10X higher than the highest signal observed in our assays. Because light units cannot be accurately converted into intracellular Ca$^{2+}$ concentrations, our results are presented as relative quantities.

Phylegenetic tree

Evolutionary distances between peptide sequences aligned with ClustalW were calculated with the PHYLIP protein software (Felsenstein, 1993), and the tree was subsequently plotted by the neighbor-joining method (Saitou and Nei, 1987). The GenBank accession numbers for the proteins used are the following (available at GenBank/EMBL/DDJB accession no.): ScYVC1 (S. cerevisiae, YOR087w8w) (Palmer et al., 2001); CaTRP (sequence 11894–9852 from Candida albicans genome contig 1.802); NcTRP (sequence 4727–6751 from N. crassa genome contig 6–2259); rTRP1 (T09050); mOTRPC4 (AA573543); rVRL1 (NP_035836); mCaT1 (BAA95938); rCaT2 (BAA95941); CeOTRPC2 (CAA96644); CeOTRPC1 (T37241); CelOTRPC2 (CAA92726); CelOTRPC1 (CAB02303); mTRPC7 (AK57433); hChaK2 (AAK31202); hTRPC2 (NP_003298); hTRPC4 (NP_060106); mTRPC5 (AA981208); CeSTOR1 (AAA28168); CeSTOR2 (AA921447); eTRP (P19314); mTRPC1 (AABS0622); mTRPC4 (AAC05179); mTRPC5 (AAC13550); mTRPC6 (AAC61466); mTRPC3 (NP_062383); mTRPC7 (AAD42069); and mTRPC2 (AA299505).

We thank Patrick Masson for providing the PEP11/AEQ plasmid, Bertrand Daigan-Fournier for pGRU2, Kim Williams for her advice on aequorin assays, Richard Lewis and Clifford Slayman for helpful discussion, and Vicky Heath, Kim Kafadar, and Sidney Shaw for critical reading of the manuscript.

This work was supported by National Institutes of Health research grant GM48728.

Submitted: 1 November 2001

Revised: 21 November 2001

Accepted: 21 November 2001

References

Albertyn, J., S. Hohmann, J.M. Thevelein, and B.A. Prior. 1994. GDPi, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae and its expression is regulated by the high-osmolarity glycerol response pathway. Mol. Cell. Biol. 14:4135–4144.

Batisa, A.F., T. Schulze, and P.H. Mascon. 1996. Yeast respond to hypertonic shock with a calcium pulse. J. Biol. Chem. 271:23537–23362.

Beeler, T., K. Gable, and T. Dunn. 1997. Activation of divalent cation influx into S. cerevisiae cells by hypertonic downshift. J. Membr. Biol. 160:77–83.

Belde, P.J.M., J.H. Vossen, G.W.F.H. Borst-Pauwels, and A.P.R. Thevenet. 1993. Insitol 1,4,5-trisphosphate releases Ca$^{2+}$ from vacuolar membrane vesicles of Saccharomyces cerevisiae. FEMS Lett. 325:133–138.

Beryl, A., and C.L. Slayman. 1990. Cation-selective channels in the vacuolar membrane of Saccharomyces: dependence on calcium, redox state, and voltage. Proc. Natl. Acad. Sci. USA 87:7824–7828.

Beryl, A., and C.L. Slayman. 1992. Complex modulation of cation channels in the tonoplast and plasma membrane of Saccharomyces cerevisiae: single-channel studies. J. Exp. Biol. 172:271–287.

Beryl, A., D. Gradmann, and C.L. Slayman. 1992. Calcium- and voltage-dependent ion channels in Saccharomyces cerevisiae. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 338:65–72.

Brewster, J.L., P. Devalois, N.D. Dwyer, and T. Forest. 1993. Mammalian T-type Ca$^{2+}$-permeable channels. J. Biol. Chem. 268:13335–13340.

Brown, A.D., K.F. Mackenzie, and K.K. Singh. 1986. Selected aspects of microbial osmoregulation. FEMS Microbiol. Rev. 39:31–36.

Chowdhury, S., K.W. Smith, and M.C. Gustin. 1992. Osmotic stress and the yeast cytoskeleton: phenotype-specific suppression of an actin mutation. J. Cell Biol. 118:561–571.

Clapham, D.E., L.W. Runnels, and C. Strübing. 2001. The TRP ion channel family. Nat. Rev. Neurosci. 6:387–396.

Cunningham, K.W., and G.R. Fink. 1994. Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homologue of plasma nesse and record was read out for every second for 30 s (1-s integration) using a Berto- hold LB9507 luminometer, and was reported in relative luminescence units/s. Hypertonic shock was performed by adding 100 µl SD containing twice the desired final concentration of sorbitol, KCl, or NaCl. To ensure that total reconstituted aequorin was not limiting in our assays, we measured the maximal luminescence after addition of 0.1% digitonin. The maximal luminescence was 4,000,000 relative luminescence units or more, which is 10X higher than the highest signal observed in our assays. Because light units cannot be accurately converted into intracellular Ca$^{2+}$ concentrations, our results are presented as relative quantities.

Aequorin experiments

Yeast carrying the PEP11/AEQ plasmid, provided by Patrick H. Masson (University of Wisconsin-Madison, Madison, WI) (Batiza et al., 1996) were inoculated from a saturated overnight culture to OD$_{600}$ = 0.5 in SD media with 2 µM coelenterazine, and were grown overnight at room temperature to reconstitute aequorin from apoaequorin. For each experiment, an aliquot of 250 µl (OD$_{600}$ = 2–3) was harvested. Cells were resuspended in 100 µl SD media and transferred to luminometer tubes. The baseline luminescence was recorded every second for 30 s (1-s integration) using a Berto-
membrane Ca\(^{2+}\) ATPases. *J. Cell Biol.* 124:351–363.

Cunningham, K.W., and G.R. Fink. 1996. Calcineurin inhibin VCX1-dependent H\(^+\)/Ca\(^{2+}\) exchange and induces Ca\(^{2+}\) ATPases in *Saccharomyces cerevisiae*. *Mol. Biol. Cell.* 16:2226–2237.

Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) version 3.5c. Department of Genetics, University of Washington, Seattle.

Guldener, U., S. Heck, T. Fiedler, J. Beinhauer, and J.H. Hegemann. 1996. A new efficient gene disruption cassette for repeated use in budding yeast. *Nucleic Acids Res.* 24:2519–2524.

Halachmi, D., and Y. Eilam. 1989. Cytosolic and vascular Ca\(^{2+}\) concentrations in yeast cells measured with the Ca\(^{2+}\)-sensitive fluorescence dye indo-1. *FERS Lett.* 256:55–61.

Harteneck, C., T.D. Plant, and G. Schultz. 2000. From worm to man: three subfamilies of TRP channels. *Trends Neurosci.* 23:159–166.

Hirayama, T., T. Maeda, H. Saito, and K. Shinozaki. 1995. Cloning and characterization of seven cDNAs for hyper-osmolarity-responsive (HOR) genes of *Saccharomyces cerevisiae*. *Mol. Gen. Genet.* 249:127–138.

Iida, H., Y. Yagawa, and Y. Anraku. 1994. Cell cycle control by Ca\(^{2+}\) in *Saccharomyces cerevisiae*. *J. Biol. Chem.* 269:13391–13399.

Iida, H., H. Nakamura, T. Ono, M.S. Okumura, and Y. Anraku. 1994. MID1, a novel *Saccharomyces cerevisiae* gene encoding a plasma membrane protein, is required for Ca\(^{2+}\) influx and mating. *Mol. Cell. Biol.* 14:8259–8271.

McKay, R.R., C.L. Szymczek-Seay, J.P. Lievermont, G.S. Bird, C. Zitz, E. Jungling, A. Luckhoff, and J.W. Putney, Jr. 2000. Cloning and expression of the human transient receptor potential 4 (TRP4) gene: localization and functional expression of human TRP4 and TRP3. *Biochem. J.* 351:735–746.

Miseta, A., R. Kellermayer, D.P. Aistello, L. Fu, and D.M. Bedwell. 1999. The vascular Ca\(^{2+}/H\(^+\) exchanger Vcx1p/Hum1p tightly controls cytosolic Ca\(^{2+}\) levels in *S. cerevisiae*. *FERS Lett.* 451:132–136.

Montell, C. 2001. Physiology, phylogeny, and functions of the TRP superfamily of cation channels. *Science's STKE* (http://stke.sciencecare.org/cgi/content/full/OC_sigrans/2001/90/re1).

Montell, C., and G.M. Rubin. 1989. Molecular characterization of the *Drosophila* trp locus: a putative integral membrane protein required for phototransduction. *Neuron.* 2:1313–1323.

Morris, G.J., L. Winners, G.E. Coulson, and K.J. Clarke. 1986. Effect of osmotic stress on the ultrastructure and viability of the yeast *Saccharomyces cerevisiae*. *J. Gen. Microbiol.* 203:2023–2034.

Nakajima-Shimada, J., H. Iida, F.I. Tsuji, and Y. Anraku. 1991. Monitoring of intracellular calcium in *Saccharomyces cerevisiae* with an apoaequorin cDNA expression system. *Proc. Natl. Acad. Sci. USA.* 88:6878–6882.

Palmer, C.P., X.L. Zhou, J. Lin, S.H. Loukin, C. Kung, and Y. Saimi. 2001. A TRP homolog in *Saccharomyces cerevisiae* forms an intracellular Ca(2+)-permeable channel in the yeast vacuolar membrane. *Proc. Natl. Acad. Sci. USA.* 98:7801–7805.

Pollock, J.A., A. Asaf, A. Peretz, C.D. Nichols, M.H. Mojet, R.C. Hardie, and B. Minke. 1995. TRP, a protein essential for inositol-mediated Ca\(^{2+}\) influx is localized adjacent to the calcium stores in *Drosophila* photoreceptors. *J. Neurosci.* 15:3747–3760.

Posas, F., M. Takekawa, and H. Saito. 1998. Signal transduction by MAP kinase cascades in budding yeast. *Curr. Opin. Microbiol.* 1:175–182.

Pozas, T.C., I. Sekler, and M.S. Cyert. 1996. The product of *HUM1*, a novel yeast gene, is required for vacuolar Ca\(^{2+}/H\(^+\) exchange and is related to mammalian Na\(^+)/Ca\(^{2+}\) exchangers. *Mol. Cell. Biol.* 16:3730–3741.

Putney, J.W., and R.R. McKay. 1999. Capacitative calcium entry channels. *Bioscience*. 21:38–46.

Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Mol. Biol. Evol.* 4:406–425.

Sherman, F., G.R. Fink, and J.B. Hicks. 1986. Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 186 pp.

Sikorski, R.S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in *S. cerevisiae*. *Genetics.* 122:19–27.

Souciet, J., M. Aigle, F. Artguenare, G. Blandin, M. Bolton-Fukuhara, E. Bon, P. Brottier, S. Casararegola, J. de Montigny, B. Dujon, et al. 2000. Genomic exploration of the hemiascomycetous yeasts: a set of species for molecular evolution studies. *FEBS Lett.* 487:3–12.

Strayle, J., T. Pozzan, and H.K. Rudolph. 1999. Steady-state free Ca(2+) in the yeast endoplasmic reticulum reaches only 10 microM and is mainly controlled by the secretory pathway pump pmr1. *EMBO J.* 18:4733–4743.

Tamás, M.J., K. Luyten, F.C. Sutherland, A. Hernandez, J. Albertyn, H. Valadi, H. Li, B.A. Prior, S.G. Kilian, J. Ramos, et al. 1999. Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. *Mol. Microbiol.* 31:1087–1104.

Vernet, T., D. Dinard, and D.Y. Thomas. 1987. A family of yeast expression vectors containing the phage \(\lambda\) intergenic region. *Gene.* 52:225–233.

Wada, Y., Y. Oshaumi, M. Tanifuji, M. Kasai, and Y. Anraku. 1987. Vascular ion channel of the yeast *S. cerevisiae*. *J. Biol. Chem.* 262:17260–17263.

Xu, S.Z., and D.J. Beech. 2001. TrpC1 is a membrane-spanning subunit of store-operated Ca(2+) channels in native vascular smooth muscle cells. *Circ. Res.* 88:84–87.