Materials Research Express

Effect of surface patterning using femtosecond laser on micromechanical and structural properties of micromechanical sensors

Mahmoud A Al-Gawati1,2,3, Abdulaziz Alhazaa1,2, Hamad Albrithen1,2,4, Jamal Alnofiay5 and Abdullah Alodhayb1,2,6

1 Research Chair for Tribology, Surface, and Interface Sciences, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
2 Aramco Laboratory for Applied Sensing Research, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
3 Department of Physics, College of Education, Thamar University, Dhamar, Yemen
4 K.A.CARE Energy Research and Innovation Center at Riyadh, Riyadh, Saudi Arabia
5 Department of Physics, College of Science, Taif University, Taif, Saudi Arabia
E-mail: aalodhayb@ksu.edu.sa

Keywords: femtosecond laser, microcantilever, resonance frequency, spring constant, quality factor

Abstract
A femtosecond laser can be used to fabricate microstructures on a silicon microcantilever surface with high precession and minimal sidewall defects. The aim of this study is to investigate the effect of the creation of microgrooves and sub-microgrooves on the resonance frequency, quality factor, and spring constant of a silicon microcantilever. A single pass of a femtosecond laser with a wavelength of 1026 nm was used to fabricate microgrooves on the microcantilever surface. Different numbers of microgrooves were fabricated on each microcantilever using the femtosecond laser micromachining technique. The separation distance between the center of the two microgrooves was 7 μm. The microstructure of the fabricated microgrooves was investigated through field emission electron microscopy. The resonance frequency increased with the number of microgrooves, but the quality factor of the patterned microcantilever was higher than that of the unpatterned microcantilever. The spring constant increased with the number of microgrooves, increasing from 18.96 to 38.04 mN/m for microcantilevers with 1 and 7 microgrooves, respectively.

1. Introduction
Within the past decade, microcantilevers have been increasingly developed and employed as measurement and detection probes owing to their small size, movability, and low cost compared to other detection techniques [1–4]. Microcantilevers have been used for trace material detection, such as explosives and heavy metal traces [5–10]. Furthermore, they have been used in medical and biological analyses, such as the detection of cancer biomarkers, viruses, and blood fat [11–17]. The surface modification of microcantilever sensors can increase the sensitivity in detecting materials on the pico gram scale. Surface patterning of a microcantilever significantly influences its mechanical properties [18]. The surface patterning of a microcantilever can be achieved using several methods, such as lithography, chemical anodization, and deposition of nanoparticles on the cantilever surface [18, 19]. Microstructures and sub-microstructures can be induced on the silicon microcantilever surface using a femtosecond laser with small sidewall defects and high precision owing to the ultrashort time of the pulses. The fabrication of microstructures and nanostructures on a cantilever surface enhances the sensitivity of the microcantilever by increasing the interfacial surface area for molecular adsorption [18]. However, the surface nanostructuring of the microcantilever has a significant effect on the mechanical properties, such as the resonance frequency, spring constant, and Young’s modulus [18]. The microcantilever surface is typically coated with a functionalization layer for adsorbing specific materials. Adsorbed molecules will cause a change in the
resonance frequency because of the increase in the microcantilever effective mass. The sensitivity of the microcantilever depends on the spectral resolution, which is related to the quality factor of the resonant mode, expressed in equation (1) [20]:

\[Q = \frac{2\pi \text{ stored vibrational energy}}{\text{energy lost per cycle of vibration}} = \frac{f_0}{\Delta f} \]

where \(Q \) is the quality factor, \(f_0 \) is the resonance frequency of the mode, and \(\Delta f \) is the full width at half maximum of the resonance peak. When the adsorbed mass is uniformly distributed, the microcantilever resonance frequency decreases. The relationship between the resonance frequency and the mass is expressed using equation (2):

\[\omega_0 = \sqrt{\frac{k}{m}} \]

Where \(\omega_0 \) is the resonance angular frequency of the microcantilever, \(k \) is the spring constant, and \(m \) is the effective mass of the microcantilever, \(m \) is expressed as

\[m = 0.243 \rho L(w t), \]

Where \(\rho \) is the mass density, 0.243 is the correction factor that reflects the nonuniformity of the microcantilever mass, \(L, w, \) and \(t \) is the length, width, and thickness of the microcantilever, respectively. However, despite adsorbing the mass on the microcantilever surface, the resonance frequency often increases because of changes in the spring constant owing to changes in Young’s modulus (E) [18, 19, 22].

2. Experimental procedure

2.1. Femtosecond laser patterning of microcantilever surfaces

A rectangular, \((100) \) silicon microcantilever array with a free end was purchased from Micromotive (Germany). Each microcantilever in the array had a length, width, and thickness of 500, 90, and 1 \(\mu m \), respectively. A femtosecond laser wavelength (\(\lambda \)) of 1026 nm with a pulse duration of 220 fs and a repetition rate of 100 kHz was focused on the microcantilever surface using a 4X objective with a numerical aperture (NA) of 0.1, an average laser power of 31 mW, and a scan speed of 10 mm s\(^{-1}\). The cantilever chip was fixed on the 3D XYZ programmable translation stage. The radius of the Gaussian laser beam (\(W_0 \)) is 12.517 \(\mu m \) which is given by equation (4) [23]

\[W_0 = \frac{1.22 \lambda}{\text{NA}} \]

The laser fluence (\(F \)) is 0.12596 J cm\(^{-2}\) which is calculated by equation (5) [24, 25]

\[F = \frac{2 P}{R \pi W_0^2} = \frac{2E_p}{\pi W_0^2} \]

where \(P \) is the average laser power, \(R \) repetition rate, and \(E_p \) is the pulse energy.

Single microgroove was fabricated on microcantilever number 1 and 2 microgrooves on microcantilever number 2 up to 7 microgrooves on microcantilever number 7. Each microgroove was fabricated to a length of 500 \(\mu m \); the separation distance between the centers of the two microgrooves was 7 \(\mu m \). Each microgroove was composed of sub-microgrooves in a direction nearly perpendicular to the microgroove direction as illustrated in figure 1. The patterned microcantilevers were immersed in piranha solution for 5 min, followed by immersion in ethanol and deionized water, to remove the debris. Subsequently, the patterned microcantilevers were dried in a drier at 250 °C for 10 min. Microstructure of the fabricated microgrooves on the \((100) \) silicon surface was investigated by using field emission electron microscope (Fe-SEM), width, and length of the induced sub-microgrooves, and the separation distance between two induced sub-microgrooves were calculated from the (FE-SEM) images, the depth of the induced sub-micro-groove were measured by using Atomic force microscope (AFM).

2.2. Resonance frequency measurements

The resonance frequency values of the microcantilevers were measured before and after patterning. A picomeasure PM3 system from Fourien Inc., Canada, was used for the resonance frequency measurements. The resonance quality factor of microcantilevers was calculated using equation (1). The spring constant was calculated using equations (2) and (3). Equation (3) was used to calculate the effective mass of the microcantilever. For the patterned microcantilevers, the mass was calculated in two parts: \(m_1 \) and \(m_2 \), where \(m_1 \) is the mass of the unpatterned region,
and \(m_2 \) is the mass of the patterned region, as illustrated in figure 1. Figure 2 shows a simple diagram of the measurement system.

3. Results and discussion

Figure 3 shows the microstructure of the fabricated microgroove on the cantilever surface by using linear horizontal polarized femtosecond laser. In each microgroove composed of induced sub-microgrooves in a direction perpendicular to the microgroove direction with a deviation of a few degrees. The width, length, and depth of the induced sub-microgrooves were \(224 \pm 9.51 \) nm, \(6.3 \pm 0.076 \) \(\mu \)m, and \(441 \pm 1.20 \) nm, respectively. The separation distance between two induced sub-microgrooves was \(513 \pm 4.086 \) nm. These induced sub-microgrooves are laser induced periodic surface structures (LIPSS). It has been reported in literature that LIPSS on the silicon surface are aligned perpendicular to the laser polarization orientation \([26, 27]\). When the ultrafast laser pulses are absorbed on the material surface, the Surface Plasmon (SP)-laser interference will induce low spatial frequency LIPSS (LSFL), which is called initial sub-microgrooves with periodicity near the laser wavelength \([26, 28–30]\). As the number of femtosecond laser pulses increases, a new
electromagnetic mode will be generated which induces new sub-microgrooves in the regions between each two initial sub-microgrooves hence the periodicity of LIPSS decreased \[30\]. Figures 4 and 5 show that the fundamental resonance frequency of the microcantilevers increased as the number of microgrooves increased. The increase in the resonance frequency was caused by two factors. The first factor was the decrease in the effective mass owing to ablation, and the second factor was the changes in Young’s modulus and spring constant.

Figure 4. Frequency of microcantilevers without and with microgrooves: (a) 1 microgroove (b) 2 microgrooves (c) 3 microgrooves (d) 4 microgrooves (e) 5 microgrooves (f) 6 microgrooves (g) 7 microgrooves.
due to the change in the microstructure of the patterned microcantilever [18]. The quality factor of the patterned microcantilevers is higher than the quality factor of the unpatterned microcantilevers, as depicted in figure 6. The quality factor of the patterned microcantilevers increased owing to the increase in the total vibrational energy and decrease in the energy loss. Different loss energy sources exist, such as internal material loss, loss from cantilever to its substrate, and viscous (acoustic) loss to the surrounding medium [31, 32]. The total quality factor (Q) corresponding to the energy loss is determined using equation (6): [31, 32]

\[
\frac{1}{Q} = \frac{1}{Q_i} + \frac{1}{Q_s} + \frac{1}{Q_a}.
\]

where \(Q_i\), \(Q_s\), and \(Q_a\) are the corresponding quality factors to the internal material loss, loss from cantilever to its substrate, and loss viscous (and acoustic), respectively. The sub-microgrooves on the microcantilever surface caused a decrease in the energy loss from the cantilever to the chip substrate through its support. The quality factor of the microcantilevers 5, 6, and 7 decreased owing to the increase of the number of sub-microgrooves on the microcantilever surface which causes an increase in the internal energy loss. Enhancement of the microcantilever quality factor leads to a reduction of the energy loss consequently the microcantilever sensitivity for target molecules will be increased [20]. The spring constant of the microcantilevers increased with the number of microgrooves fabricated on the microcantilever surface, as shown in figure 7. The spring constant increased from 18.96 to 38.04 mN m\(^{-1}\) for microcantilevers with 1 and 7 microgrooves, respectively. The increase in spring constant values is attributed to the decrease of effective mass and changes in the microstructure.
of microcantilever which, in turn, causes a change in the mechanical properties of the microcantilever such as its moment of inertia. Figure 8 shows that the effective mass decreases as the number of microgrooves increases due to the increasing of the ablated volume. The effective masses were 25.22882 and 23.79602 pg for the microcantilevers with 1 and 7 microgrooves, respectively. The spring constant increased with a high ratio, compared with the ratio of decreasing of the effective mass, which indicated that the noticeable increase in the spring constant was attributed to the changes in Young’s modulus and moment of inertia of the microcantilever which is confirmed by equation (7) [33]:

$$k = \frac{3E}{L^3} I$$

(7)

Where E is Young’s modulus and I is the moment of inertia of the microcantilever. For a rectangular cantilever, equation (7) is redefined as equation (8) [34]:

$$k = \frac{E w t^3}{4L^3}$$

(8)

The spring constant equation can be expressed as equation (9) [21, 35]

$$k = 2\pi^3 \omega \sqrt{\frac{\rho}{E}} (f)^3$$

(9)
Figures 9 and 10 show that the inverse of square resonance angular frequency does not linearly depend on the number of microgrooves and microcantilever effective mass; this confirms that the changes in resonance frequency and spring constant does not only depend on the changes in the microcantilever effective mass, but it also related to the effect of femtosecond laser surface patterning on the Young’s modulus and microstructure of the microcantilever.

4. Conclusion

Microgrooves were successfully fabricated on the microcantilever surfaces using a femtosecond laser, having a separation distance of 7 μm between the center of each two grooves. The resonance frequency was seen to be significantly depending on the number of microgrooves, specifically it increased with the increase of the number of microgrooves owing to the reduction of the effective mass and the changes in Young’s modulus. The spring constant in addition increased due to the increase in the resonance frequency.

The fabrication of microgrooves and sub-microgrooves on the microcantilever surface decreased the energy dissipation. Hence, the quality factor of the microcantilever for patterned microcantilevers increased, compared with that for microcantilevers before performing laser patterning.
Acknowledgments

The author is grateful to the Deanship of Scientific Research, King Saud University for funding through Vice Deanship of Scientific Research Chairs.

ORCID iDs

Abdulaziz Alhazaa https://orcid.org/0000-0002-6213-6662
Abdullah Alodhayb https://orcid.org/0000-0003-0202-8712

References

[1] Datar R, Kim S, Jeon S, Hesketh P, Manalis S, Boisea A and Thundat T 2009 Cantilever sensors: nanomechanical tools for diagnostics MRS Bull. 34 449–51
[2] Fayam A F, Trevor W and Voitchovsky K 2018 Determining the spring constant of arbitrarily shaped cantilevers in viscous environments Appl. Phys. Lett. 112 083101
[3] Bagheri M, Chae I, Lee D, Kim S and Thundat T 2014 Selective detection of physisorbed hydrocarbons using photothermal cantilever deflection spectroscopy Sens. Actuat. B-Chem. 191 765–9
[4] Alodhayb A 2020 Modeling of an optically heated MEMS-based micromechanical bimaterial sensor for heat capacitance measurements of single biological cells Sensors-Basel 20 215
[5] Larry S and Thundat Thomas G 2008 Nanosensors for trace explosive detection Mater. Today 11 28–36
[6] Krause A R, Van Neste C, Senesac L, Thundat T and Finot E 2008 Trace explosive detection using photothermal deflection spectroscopy J. Appl. Phys. 103 094908
[7] Alodhayb A, Rahma S, Rahama S, Valluru G K, Georgiou P E and Beaulieu L Y 2014 Detection of calcium ions using gold-coated micro-cantilever sensors using upper- and lower- rim functionalized calix [4] arenes Sensors Actuators B 203 766–73
[8] Alodhayb A N, Braim M, Beaulieu L Y, Valluru G, Rahama S, Oraby A K and Georgiou P E 2016 Metal ion binding properties of a bimodal triazolyl-functionalized calix [4] arene on a multi-array microcantilever system. Synthesis, fluorescence and DFT computation studies RSC Adv. 6 1387–96
[9] Rota D R, Darja A D and Kale N S 2020 Ultrasensitive detection of Cadmium ions using a microcantilever-based piezoresistive sensor for groundwater Beilstein Archives 2020 44
[10] Rigo A, Cezaro A M D, Muenchen D K, Martinazzzo J, Brezolin A N, Hoehne L and Steffens C 2019 Cantilever nanobiosensor based on the enzyme urease for detection of heavy metals Braz. J. Chem. Eng. 36 1429–37
[11] Kim S, Lee D and Thundat T 2014 Photothermal cantilever deflection spectroscopy EPJ Techniques and Instrumentation 1 7
[12] Lee D, Kim S, Jeon S and Thundat T 2014 Direct detection and speciation of trace explosives using a nanoporous multifunctional microcantilever Anal. Chem. 86 5077–82
[13] Wang J et al 2016 A high accuracy cantilever array sensor for early liver cancer diagnosis Biomed. Microdevices 18 110
[14] Etayash H, McGee A R, Kaur K and Thundat T 2016 Nanomechanical sandwich assay for multiple cancer biomarkers in breast cancer cell-derived exosomes Nanoscale 8 15137–41
[15] Rota D and Darja A D 2018 Heavy metal ion detection in water using mems based sensor Mater. Today 5 1530–6
[16] Alodhayb A, Brown N, Saydur Rahman S M, Harrigan R and Beaulieu L Y 2013 Towards detecting the human immunodeficiency virus using microcantilever sensors Appl. Phys. Lett. 102 173106
[17] Alodhayb A, Rahma S, Rahama S, Georgiou P E and Beaulieu L Y 2016 A 16-microcantilever array sensing system for the rapid and simultaneous detection of analyte Sensor. Actuat. B-Chem. 237 459–69
[18] Lee D, Zandieh O, Kim S, Jeon S and Thundat T 2015 Sensitive and selective detection of hydrocarbon/water vapor mixtures with a nanoporous silicon microcantilever Sensor. Actuat. B-Chem. 206 84–9
[19] Lee D, Kim S, Jung N, Thundat T and Jeon S 2009 Effects of gold patterning on the bending profile and frequency response of a microcantilever J. Appl. Phys. 106 024310
[20] Yamamura K Y, Stowe T D, Chow E M, Pfafman T, Kennedy T W, Stipe B C and Rugar D 2000 Quality factors in micron- and submicron-thick cantilevers J. Microelectromech. S 9 117–25
[21] Finot E, Passian A and Thundat T 2008 Measurement of mechanical properties of cantilever shaped materials Sensors 8 5497–541
[22] Chen G Y, Thundat T, Wachter E A and Warmack R J 1995 Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers J. Appl. Phys. 77 3618–22
[23] Huang H, Yang L M and Liu J 2012 Direct welding of fused silica with femtosecond fiber laser SPIE (Laser-Based Micro-and Nanopackaging and Assembly VI) 8244 824403
[24] Zemaitis A, Gaidys M, Brikas M, Gečys P, Račiukaitis G and Gedvilas M 2018 Advanced laser scanning for highly-efficient ablation and ultrafast surface structuring: experiment and model Sci. Rep. 8 1–14
[25] Tshabalala L C, Nuili C P, Fwamba J C, Popoola P and Pityana S L 2017 Surface texturing of SiAlON ceramic by femtosecond pulsed laser Proceedings Manufacturing 7 660–7
[26] Bonse J, Hohm S, Kerner S V, Rosenfeld A and Krüger J 2016 Laser-induced periodic surface structures—a scientific evergreen IEEE J. Sel. Top. Quantum Electron. 23
[27] Le Harizic R, Menzel M, Henning S, Heilmann A, Stracke F and Zimmermann H 2014 Cross-sectional study of high spatial frequency ripples performed on silicon using nanojoule femtosecond laser pulses at high repetition rate Appl. Surf. Sci. 305 670–3
[28] Bonse J, Rosenfeld A and Krüger J 2011 Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures Appl. Surf. Sci. 257 5420–3
[29] Huang M, Zhao F, Cheng Y, Xu N and Xu Z 2009 Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser ACS Nano 3 4062–70
[30] Huang M, Cheng Y, Zhao F and Xu Z 2013 The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale Ann. Phys. 525 74–86
[31] Tudor M J, Andres M V, Fouldis K W H and Naden J M 1988 Silicon resonator sensors: interrogation techniques and characteristics IEEE Proc. 135 364–8
[32] Sandberg R, Molhave K, Boisen A and Svendsen W 2005 Effect of gold coating on the Q-factor of a resonant cantilever J. Micromech. Microeng. 15 2249
[33] Ying Z C, Reitsma M G and Gates R S 2007 Direct measurement of cantilever spring constants and correction for cantilever irregularities using an instrumented indenter Rev. Sci. Instrum. 78 063708
[34] Lavrik N V, Sepaniak M J and Datskos P G 2004 Cantilever transducers as a platform for chemical and biological sensors Rev. Sci. Instrum. 75 2229–53
[35] Cleveland J P, Manne S, Bocek D and Hansma P K 1993 A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy Rev. Sci. Instrum. 64 403–5