ABSTRACT
Molecular diagnostic tests can be used to provide rapid identification of staphylococcal species in blood culture bottles to help improve antimicrobial stewardship. However, alterations in the target nucleic acid sequences of the microorganisms or their antimicrobial resistance genes can lead to false-negative results. We determined the whole-genome sequences of 4 blood culture isolates of \textit{Staphylococcus aureus} and 2 control organisms to understand the genetic basis of genotypetype-phenotype discrepancies when using the Xpert MRSA/SA BC test (in vitro diagnostic medical device [IVD]). Three methicillin-resistant \textit{S. aureus} (MRSA) isolates each had a different insertion of a genetic element in the staphylococcal cassette chromosome (SCC\textit{mec})-orfX junction region that led to a misclassification as methicillin-susceptible \textit{S. aureus} (MSSA). One strain contained a deletion in \textit{spa}, which produced a false \textit{S. aureus}-negative result. A control strain of \textit{S. aureus} that harbored an SCC\textit{mec} element but no meca (an empty cassette) was correctly called MSSA by the Xpert test. The second control contained an SCC\textit{M1} insertion. The updated Xpert MRSA/SA BC test successfully detected both \textit{spa} and SCC\textit{mec} variants of MRSA and correctly identified empty-cassette strains of \textit{S. aureus} as MSSA. Among a sample of 252 MSSA isolates from the United States and Europe, 3.9\% contained empty SCC\textit{mec} cassettes, 1.6\% carried SCC\textit{M1}, <1\% had \textit{spa} deletions, and <1\% contained SCC\textit{mec} variants other than those with SCC\textit{M1}. These data suggest that genetic variations that may interfere with Xpert MRSA/SA BC test results remain rare. Results for all the isolates were correct when tested with the updated assay.

KEYWORDS
MRSA, SCC\textit{mec}, oxacillin resistance, empty cassette

\textit{Staphylococcus aureus} and methicillin-resistant \textit{S. aureus} (MRSA) continue to be leading causes of bloodstream infections (BSI) (1). Molecular diagnostic tests to identify the presence of methicillin-susceptible \textit{S. aureus} (MSSA) and MRSA isolates in clinical specimens, including blood culture bottles and wounds, are being used with increasing frequency to guide antimicrobial therapy for staphylococcal infections (2, 3). The results of molecular diagnostic tests, such as those that employ PCR or other nucleic acid amplification strategies, can aid antimicrobial stewardship efforts (4, 5). However, results reported by molecular tests can be confounded by changes in target nucleic acid sequences. This is especially true with pathogens, such as \textit{S. aureus}, for which 15 to 20\% of the genome may contain mobile genetic elements (MGE) (6). MGE often carry antimicrobial resistance genes or virulence determinants and can insert into, or adjacent to, staphylococcal cassette chromosome \textit{mec} (SCC\textit{mec}) elements, altering the target of a molecular test and sometimes the organism’s phenotype (7, 8). Differ-
ences between the results of phenotypic and genotypic tests reported by the labora-
tory for blood cultures can be confusing for physicians and can affect therapeutic
regimens.

In this study, we determined the whole-genome sequences of four blood culture
isolates and two control strains of *S. aureus* to understand the genetic basis of the
discrepancies observed between the genotype of the isolates determined by the Xpert
MRSA/SA BC test (Cepheid, Sunnyvale, CA), which received FDA clearance in June 2013
(here referred to as Xpert MRSA/SA BC 2013), and the phenotypic results of antimicro-
bial susceptibility tests. We then obtained a convenience sample of MSSA isolates
collected from laboratories in the United States and Europe to determine the preva-
ience of the mobile elements, such as SCC*_{mec},* and genetic changes, such as empty
cassettes and *spa* mutations, that may affect PCR results. These results were compared
with those of an updated version of the Xpert MRSA/SA BC test, which received FDA
clearance in June 2019 (here referred to as Xpert MRSA/SA BC 2019).

MATERIALS AND METHODS

Bacterial strains. The *S. aureus* isolates used in the study are listed in Table 1, along with their U.S.
state of origin, oxacillin and cefoxitin susceptibility test results, and other resistance genes identified from
whole-genome sequencing (WGS). Isolates were selected from a collection of 30 *S. aureus* strains
investigated over the last 4 years that demonstrated phenotype-genotype discrepancies between Xpert
MRSA/SA BC test results and the results of phenotypic susceptibility testing. The most common insertion
elements noted from DNA sequence analysis were included in this study (e.g., SCC*_{mec},* represented
approximately one-third of the elements identified). Organisms were identified using Gram stain,
catalase, and coagulase testing and *Pos ID* type 3 MicroScan WalkAway identification panels (Beckman
Coulter, Brea, CA). Antimicrobial susceptibility testing was performed using the MicroScan WalkAway Pos
MIC panel type 29 (Beckman Coulter) according to the manufacturer’s instructions. The isolates were also
tested using the disk diffusion method according to Clinical and Laboratory Standards Institute (CLSI)
guidelines (9) using both cefoxitin and oxacillin disks and interpreted using CLSI document M100, the
28th edition for cefoxitin (10) and the 22nd edition for oxacillin (11). A cefoxitin induction test was
performed by inoculating a Mueller-Hinton plate with a 0.5 McFarland suspension of the organism,
placing a 30-µg cefoxitin disk in the middle of the plate, and incubating the plate overnight at 35°C.
Growth was taken from the inner edge of the zone of inhibition and used to prepare the inoculum for
a second disk diffusion test. Colonies within the zone of inhibition were tested by MicroScan MIC panels
to confirm oxacillin resistance. Quality control organisms for antimicrobial susceptibility testing included
S. aureus ATCC 29213, *S. aureus* ATCC 25923, *S. aureus* ATCC 43300, *S. aureus* ATCC BAA-977, *Enterococcus
aeocallis* ATCC 29212, and *Escherichia coli* ATCC 35218.

PCR. A 50-µl aliquot from a positive blood culture bottle showing Gram-positive cocci in clusters was
tested using the Xpert MRSA/SA BC 2013 test *(in vitro diagnostic medical device [IVD]) (Xpert MRSA/SA
BC 2013; Cepheid, Sunnyvale, CA)* as described by the manufacturer. The test has three targets: the gene
encoding staphyloccocal protein A (*spa*), the methicillin resistance gene *mecA* (*mec*), and the junction
region between *orfX* in the *S. aureus* chromosome and the SCC*_{mec}*. In this version of the assay,
all three targets must be positive for a result of MRSA to be reported. However, *S. aureus* is reported as
positive if *spa* is positive whether or not any other targets are positive. In the updated version of the
Xpert MRSA/SA BC 2013 test, rule-based algorithms are applied to the results of the three targets to
differentiate between MSSA and MRSA. Under the rule-based algorithms, MRSA isolates that are positive
only for the *spa* and *mec* targets, or positive for *mec* and SCC*_{mec}*, targets are reported as MRSA if
the conditions of the rules are met. There are no changes to the probes, primers, buffers, amplification
conditions, or intended use in the Xpert MRSA/SA BC 2019 test. The isolates were tested with both the
former and updated versions of the Xpert MRSA/SA BC test. Cycle threshold (*Ct*) values for the *spa*, *mec*,
and SCC*_{mec}*_ targets were used to identify potential *spa* variants, empty-cassette strains (*spa*~, *mec~,*
and SCC*_{mec}~*), and SCC*_{mec}* variants (*spa*~, *mec~,* and SCC*_{mec}~*), which were con-
dirmed by DNA sequence analysis (see below). Quality control organisms for PCR included *S. aureus* ATCC
25923 (MSSA) and *S. aureus* ATCC 43300 (MRSA; SCC*_{mec}*) and *S. epidermidis.*

Whole-genome sequencing and analysis. Genetic sequencing was undertaken with pure cultures of
S. aureus grown overnight at 35°C in tryptic soy broth (Hardy Diagnostics, Santa Maria, CA). Nucleic
acid was extracted from the broth cultures using the Sigma-Aldrich (St. Louis, MO) GeneElute bacterial
genomic DNA kit according to the manufacturer’s instructions. Concentrations of DNA were determined
by the UV light absorbance method using the NanoPhotometer system (Implen, Munich, Germany).
Sequencing libraries were prepared from extracted genomic DNA using a Nextera XT (Illumina, San
Diego, CA) kit and rapid barcoding kit (Oxford Nanopore Technologies, Oxford, United Kingdom).
Libraries were quantified with a Qubit 4 fluorometer, using a double-stranded DNA (dsDNA) high-
sensitivity assay kit (Invitrogen, Carlsbad, CA). Resultant libraries were sequenced on both short-read and
long-read sequencing platforms, accordingly. Libraries prepared with the Nextera kit were sequenced on
the MiSeq (Illumina) using V3 reagent chemistry with 301-cycle paired-end reads. Libraries prepared with
the rapid barcoding kit were sequenced on the MinION (Oxford Nanopore Technologies) using flow cell
R9.4.1. Hybrid assemblies were generated from short- and long-read fastq files using Unicycler v0.4.6 (12),
Isolate (state)	Cefoxitin ZOI (mm)	Oxacillin ZOI (mm)	Cefoxitin screen (µg/ml)	Oxacillin MIC (µg/ml)	Antibiotic resistance gene(s)
16439 (MA)	6	6	≥4	2	aadD, blaZ, mecA, norA, Msr(A), Emr(A), Mph(C)
16445 (ME)	24 (8)	6 (with haze)	≤4 (≥4)	2	aadD, blaZ, mecA, norA, Msr(A), Emr(A), Mph(C)
15100 (NC)	24 (18)	18 (6 with haze)	≥4	0.5 (≥2)	aph(3’)-III, ant(6)-Ia, blaZ, mecA, norA, Msr(A), Mph(C)
16514 (KS)	16	6	≥4	2	aph(3’)-III, ant(6)-Ia, blaz, mecA, norA, Msr(A), Mph(C)
15077 (OR)	25	13	≤4	0.5	aph(3’)-III, ant(6)-Ia, blaz, mecA, norA, Msr(A), Mph(C)
15050 (WA)	25	17	≤4	≤0.25	aph(3’)-III, ant(6)-Ia, blaz, mecA, norA, Msr(A), Mph(C)

*AST, antimicrobial susceptibility testing; ZOI, zone of inhibition measured with disk diffusion testing.

*Results in parentheses were obtained after exposure to cefoxitin (i.e., induction testing).
a software pipeline that performs a series of operations that include adapter trimming, quality control, error correction, assembly, and scaffolding. The software was used with default settings. Genomes were annotated using prokka 1.12 (13) and analyzed using Center for Genomic Epidemiology (CGE) online tools (14). SnapGene Viewer (GSL Biotech, snapgene.com), and BioNumerics v7.6 (Applied Maths, Sint-Martens-Latem, Belgium).

Surveillance study. One hundred fifty-two phenotypically MSSA isolates collected from hospitalized patients in the United States in 2016, and 100 isolates of MSSA from hospitalized patients in Europe in 2017, were obtained from JMI Laboratories (North Liberty, IA), focusing on prevalence of SCCmec, spa variants, and empty cassettes, as indicated by analysis of the 30 discrepant isolates. These isolates were part of the SENTRY Antimicrobial Surveillance Program. Organisms were identified as *S. aureus* as previously described (15). Isolates were tested initially with the Xpert MRSA/SA BC 2013 test using 50 µl of a 0.5 McFarland suspension of colonies in pure culture prepared in MicroScan sterile inoculum water (Beckman Coulter). (This is considered off-label testing.) Isolates were tested for the presence of the *mec*, and SCCmec targets and then screened with the following two sets of PCR primers specific for SCCmec/SCCmec elements: 5'-TAGGATTGAGCTAGCTTTTCG-3' and 5'-ATTCTCGATCGGAGGGT-3' (2.4-kb product at 58°C) and 5'-CTCCAGAACTAAGATTCCAGT-3' and 5'-GGTTTTCCTGAATGTCGG-3' (1.4-kb product at 58°C). Isolates were also tested using the Xpert MRSA/SA BC 2019 test.

Accession number(s). Accession numbers for the sequences described can be found under NCBI BioProject accession number PRJNA553568.

RESULTS

The isolate characteristics, PCR cycle threshold (C<T>) values obtained when tested with the Xpert MRSA/SA BC 2013 test, and interpretations with the updated Xpert MRSA/SA BC 2019 test, rule-based algorithms are shown in Table 2. A schematic of the genetic alterations observed by WGS in the six *S. aureus* isolates is shown in Fig. 1.

SCC insertion element 1: ACME. Results for the Xpert MRSA/SA BC 2013 test performed on a positive blood culture bottle initially were reported as MRSA negative and *S. aureus* positive. However, the isolate (16439) recovered from the bottle was phenotypically MRSA by both MIC and disk diffusion testing (Table 1). The C<T> values for the test were 16.3 for *spa* (positive), 16.4 for *mec* (positive), and 0 for SCCmec (negative) (Table 2). Sequencing of the SCCmec element compared to a reference SCCmec II sequence (*S. aureus* strain N315, GenBank accession number D86934.2) revealed the insertion of an ~12-kb truncated arginine catabolic mobile element (ACME) (16) between orfX and SCCmec (Fig. 1). The insertion prevented amplification of the orfX-SCCmec target region because the forward and reverse primer sites were now ~12 kb apart. Thus, the C<T> value of SCCmec target was 0.

SCC insertion element 2: SCCmec. Xpert MRSA/SA BC 2013 test results from a positive blood culture bottle were reported as MRSA negative and *S. aureus* positive, while the isolate (16445) recovered from the bottle was phenotypically susceptible to cefotaxin by both MIC and disk diffusion testing, although it was resistant to oxacillin by both MIC and disk diffusion testing (Table 1). The C<T> values for the Xpert test were 17.5 for *spa* (positive), 17.6 for *mec* (positive), and 0 for SCCmec (negative) (Table 2). The SCCmec element compared to reference sequence *S. aureus* strain M03-68 SCCmec IVg element (GenBank accession number DQ106887.1) revealed the insertion of an ~14-kb SCCmec element (17) adjacent to orfX and upstream of SCCmec IV(2B) (Fig. 1). The insertion of the SCCmec element prevented detection of the SCCmec target in a manner similar to the insertion of the ACME described above, i.e., by separating the sequences targeted by the primers by ~14 kb.

SCC insertion element 3: SCC6838-like element. Xpert MRSA/SA BC 2013 performed on blood culture isolate 15100 returned a result of MRSA negative and *S. aureus* positive, with C<T> values of 17.7 for *spa* (positive), 17.8 for *mec* (positive), and 0 for SCC (negative). The isolate was phenotypically MSSA by disk diffusion testing. However, because the Xpert test result was *mecA* positive, a cefotaxin induction test was performed on the isolate and MRSA colonies were recovered from inside the zone of inhibition (18) (Table 1). The Xpert MRSA/SA BC 2013 test result performed on the MRSA colony was still MRSA negative and *S. aureus* positive, with an SCCmec C<T> value of 0 (Table 2). Sequencing of the SCCmec element using MRSA strain N315 (GenBank accession number D86934.2) as a reference revealed the insertion of an ~10-kb element between orfX and the reference SCCmec type II region. The insertion was a truncated version of the SCCmec element (19) (designated ΨSCCmec, which separated
Isolate	Typing/WGS result	Additional element(s) identified\(^b\)	Genetic alteration	PCR cycle threshold value	Xpert MRSA/SA BC 2013 result	Xpert MRSA/SA BC 2019 result
16439	3390 t002/II(2A)	None	ACME insertion in orfX	16.3 16.4 0	MRSA negative, S. aureus positive	MRSA positive, S. aureus positive
16445	8 Undefined/IV(2B) ccr class 4	SCC\(_{M1}\) insertion in orfX	17.5 17.6 0	MRSA negative, S. aureus positive	MRSA positive, S. aureus positive	
15100	5 t002/II(2A) ccr class 5	VsCC\(_{M1}\) insertion in orfX	17.7 17.8 0	MRSA negative, S. aureus positive	MRSA positive, S. aureus positive	
16514	8 t008/IVa(2B) None	23-bp deletion in spa	0 14.7 15.9	MRSA negative, S. aureus negative	MRSA positive, S. aureus positive	
15077	5 t002/none ccr class 4	Deletion of mecA empty cassette, SCC\(_{M1}\) insertion in orfX	21.1 0 22.6	MRSA negative, S. aureus positive	MRSA negative, S. aureus positive	
15050	5 t002/none ccr class 4	SCC\(_{M1}\) insertion in orfX	18.2 0 0	MRSA negative, S. aureus positive	MRSA negative, S. aureus positive	

\(^a\) MLST, multilocus sequence type.

\(^b\) Results obtained with CGE SCC\(_{M1}\)Finder.
were MRSA negative and S. aureus negative. The CT values for the test were 0 for spa (negative), 14.7 for mec (positive), and 15.9 for SCCmec (positive) (Table 2). The isolate (16514) recovered from the bottle was phenotypically MRSA by both MIC and disk diffusion testing (Table 1), which was consistent with the PCR genotype (mec negative). Although the genotype and phenotype were concordant, sequencing and analysis of the SCCmec element were undertaken to understand the extent of the mecA deletion. The reference for SCCmec type II was S. aureus strain N315 (GenBank accession number CP027476.1).

Isolate 15077 revealed the total absence of mecA sequence, but there were remnants of SCCmec and an SCCmec element inserted at a second attB site, 84 bp downstream of the 3’ end of orfX, but missing mecA (empty cassette strain) (e), and MSSA isolate 15050 with SCCmec element, inserted at attBSCC, but no SCCmec remnants, for comparison with isolate 15077 (f).

The forward and reverse SCCmec primers by approximately 10 kb, preventing amplification of the SCCmec target.

spa gene variant MRSA. Xpert MRSA/SA BC2013 results on the positive blood culture bottle containing Gram-positive cocci in clusters were MRSA negative and S. aureus negative. The Ct values for the test were 0 for spa (negative), 14.7 for mec (positive), and 15.9 for SCCmec (positive) (Table 2). The isolate (16514) recovered from the bottle was phenotypically MRSA by both MIC and disk diffusion testing (Table 1). Genomic analysis and comparison to the spa region of the reference S. aureus NRS384 genome (USA300 strain, GenBank accession number CP027476.1) revealed a deletion of 23 bp in the spa gene that prevented binding of the probe and precluded amplification of the spa target by the Xpert MRSA/SA BC 2013 test (Fig. 1).

MSSA empty-cassette strain. An Xpert MRSA/SA BC2013 test performed on a blood culture isolate returned a result of MRSA negative and S. aureus positive. The Ct values were 21.1 for spa (positive), 0 for mec (negative), and 22.6 for SCCmec (positive) (Table 2). The isolate (15077) was phenotypically MSSA by both MIC and disk diffusion testing (Table 1), which was consistent with the PCR genotype (mec negative). Although the genotype and phenotype were concordant, sequencing and analysis of the SCCmec element were undertaken to understand the extent of the mecA deletion. The reference for SCCmec type II was S. aureus strain N315 (GenBank accession number D86934.2). Isolate 15077 revealed the total absence of mecA sequence, but there were remnants...
TABLE 3 Characterization of genetic alterations in 252 phenotypically methicillin-susceptible *S. aureus* isolates from the United States and Europe using Xpert MRSA/SA BC 2013 test

Phenotype	Genetic alteration	No. (%) of strains in which the alteration was detected
MSSA	No alterations detected	234 (92.9)
MSSA	Empty cassette	9 (3.6)
MSSA	SCCM\(_1\) insertion	4 (1.6)
MSSA	Empty cassette, *spa* variant	1 (0.4)
MSSA	Empty cassette with SCCM\(_1\) insertion	1 (0.4)
MSSA	*spa* variant	1 (0.4)
Oxacillin-susceptible MRSA	SCCmec variant	1 (0.4)
Oxacillin-susceptible MRSA	No alterations detected	1 (0.4)

Algorithm change. The Xpert MRSA/SA BC 2019 test with the new rule-based algorithms for analyzing the \(C_T\) values for each of the three targets was performed on the six organisms described above. The results are shown in Table 2. For each of the organisms, the genotype reported with the Xpert MRSA/SA BC 2019 test was consistent with its oxacillin antimicrobial susceptibility test phenotype.

Surveillance study. Table 3 shows the genetic characterization of the 252 phenotypically MSSA isolates from hospitals across the United States and Europe. The distributions of the genetic alterations in the *S. aureus* isolates from the United States and selected countries in Europe are presented in Tables 4 and 5, respectively, and in Tables S1 and S2 in the supplemental material. Although all the isolates were phenotypically oxacillin susceptible, two were positive for *mecA* by Xpert MRSA/SA BC 2013, i.e., oxacillin-susceptible MRSA (OS-MRSA) (21). Both isolates yielded oxacillin-resistant colonies when grown in the presence of cefoxitin.

There were 11 empty-cassette strains in total (4.4% of isolates) for which an SCCmec element or remnant sequences were present by sequence analysis but lacked the *mecA* gene (Table 3). Two also had additional genetic alterations (i.e., insertion of SCCM\(_1\) or a *spa* deletion). Among the empty cassette strains from the United States, two were from Oregon (both *spa* type t002), and one each was obtained from Massachusetts (*spa* type t121), Minnesota (*spa* type t922), and New York (*spa* type t5500) (data not shown). One of the empty-cassette isolates from Oregon was also positive for the SCCM\(_1\) element of an SCCmec element, specifically a sequence matching the orfX-SCCmec junction type ii, as reported by Hill-Cawthorne et al. (20). To further characterize the deletion, we compared the orfX-SCC\(_{M1}\) junction of strain 15077 to that of strain 15050, which was also an MSSA of *spa* type t002 and multilocus sequence type 6 (ST-5) and contained an SCCM\(_1\) insertion. Although similar in sequence, the orfX-SCCmec junction type ii sequence was not found in strain 15050 (Fig. 1), indicating that the deletions that generated the empty cassette were different from those in these otherwise similar strains.

TABLE 4 Genetic alterations identified in 152 methicillin-susceptible *S. aureus* isolates collected in the United States

State	MSSA, no alterations detected	MSSA, empty cassette	Oxacillin-susceptible MRSA	Oxacillin-susceptible MRSA, SCCmec variant	MSSA with SCCM\(_1\) insertion	MSSA, empty cassette, with SCCM\(_1\) insertion	Total
NY	7	1	1	1	1	1	10
NJ	6	1	1	1	1	1	7
WA	4	1	1	1	1	1	5
NC	3	1	1	1	1	1	4
MN	3	1	1	1	1	1	4
MA	3	1	1	1	1	1	4
OR	1	1	1	1	1	1	2
Others	116	4	1	1	3	1	116
Total	142	4	1	1	3	1	152
and further characterized by WGS (strain 15077) (Tables 1 to 4 and Fig. 1). For the European MSSA isolates, two with empty cassettes were obtained from Portugal (spa types t008 and t174), one was from Italy (an undefined spa type), one was from Ireland (t022), and one was from Russia (t127). Two MSSA isolates with mutations in spa were also identified: one was obtained from France and the other from Russia. The latter also had an empty cassette, suggesting a massive deletion of genetic material (not further characterized). spa types could not be established for either of the two isolates due to the genetic alterations affecting the variable Xr region of the spa gene (data not shown). Four isolates containing an SCCM1 element were identified (1.6% of all isolates tested, 2% if the empty cassette with SCCM1 is included). These were from New Jersey, New York, Washington, and Germany. All the isolates were tested with Xpert MRSA/SA BC 2019, which correctly identified all the MRSA isolates. However, two MSSA isolates with spa deletions were reported as MRSA negative, S. aureus negative, since the all targets in the test were negative.

DISCUSSION

Although molecular diagnostic tests can provide rapid answers to guide therapeutic decisions for positive blood cultures that contain Gram-positive cocci in clusters, S. aureus strains containing a variety of genetic variations, such as insertions, deletions, and mutations within target sequences, can affect the accuracy of results (19, 20, 22–25). In this study, we noted a diverse set of genetic insertions leading to an MRSA-negative, S. aureus-positive result with Xpert MRSA/S BC 2013 before the new algorithms were introduced. The first three cases were isolates of MRSA in which the orfX-SCCMec junction sequence was altered by insertions of additional genetic elements using the same attachment site as SCCmec to integrate in orfX, as previously described (16, 23). This prevented the formation of PCR products. Interestingly, all three insertions were unique. The first was a truncated type II ACME (Δ ACME II) similar to the one described by Shore and colleagues; however, our isolate contained the arc gene cluster but not the opp gene cluster (16). The ACME has been reported previously for coagulase-negative staphylococci (CoNS) (26) and for the MRSA pulsed-field gel electrophoresis type USA300, where it is located downstream of SCCmec type IV (27). In our case, the Δ ACME II is followed by an ST-5-like SCCmec type II. A similar strain was described by Urushibara and colleagues (28). Additionally, the CI region observed in this study did not harbor a truncated J1 region of SCCmec type I (ΔJ1 SCCmec type I) between the ACME and SCCmec or immediately after orfX, as reported in the above-mentioned studies (16, 28). It has been hypothesized that the presence of an ACME adjacent to orfX and upstream of SCCmec could indicate integration of ACME into the chromosome prior to acquisition of SCCmec (16).

In the second case, we identified an SCCm1 element downstream of orfX and upstream of SCCmec type IV, similar to those described in prior studies (17, 29). Screening of 252 MSSA isolates from the United States and Europe identified only five isolates with SCCm1 insertions; one MSSA isolate was from Germany and four isolates

TABLE 5 Genetic alterations identified in 152 methicillin-susceptible S. aureus isolates collected in Europe

Country	MSSA, no alterations detected	MSSA, empty cassette	MSSA, empty cassette, spa variant	MSSA, spa variant	MSSA with SCCm1 insertion	Total
Germany	11					12
France	9	1				10
Italy	9					10
Ireland	5					6
Russia	4	1				6
Portugal	2					4
Other countries	52	5	1	1	1	52
Total	92					100
were from the United States. Sequencing of all SCC\textsubscript{M1}-positive \textit{S. aureus} isolates showed the element inserted directly after orfX in MSSA strain 15050 (and in 2 additional strains), in MRSA strain 16445, and in an empty-cassette strain (15077), suggesting that acquisition of this element can occur in \textit{mecA}-positive as well as \textit{mecA}-negative strains. Apparently, excision of \textit{SCCMec} can occur independently of SCC\textsubscript{M1}. The primers used to screen our convenience sample for the presence of SCC\textsubscript{M1} elements did not differentiate between SCC\textsubscript{M1} and SCC\textsubscript{266} (19); however, analysis of published SCC\textsubscript{266} and SCC\textsubscript{M1} sequences (GenBank accession numbers AB774374.1 and HE858191.1, respectively) showed that SCC\textsubscript{266} elements contain an IS\textsubscript{431} element, which is not present in SCC\textsubscript{M1}. All the SCC\textsubscript{M1}/SCC\textsubscript{266} elements identified in this study do not contain IS\textsubscript{431}, so they are likely SCC\textsubscript{M1}.

The genetic element identified in isolate 15100 carried a class 5 cassette chromosome recombinase (ccr) and partially matched the SCC\textsubscript{6838} element described by Zhang et al. (19). However, in our case, this element preceded \textit{SCCMec} type II, rather than a type I.

Isolates with \textit{SCCMec} variants are reported by the Xpert MRSA/SA BC 2013 test as MRSA negative and \textit{S. aureus} positive and could potentially lead to undertreatment of a patient until standardized phenotypic susceptibility testing results become available. However, not every oxacillin-susceptible phenotypic test result is accurate (18, 21). During this study, we encountered three \textit{S. aureus} isolates that were initially reported as susceptible to cefoxitin or oxacillin but expressed methicillin resistance once exposed to cefoxitin. This phenomenon, often referred to generically as induction, was recently shown by Goering et al. (30) to be a result of mutations in \textit{mecA} that restore the MRSA phenotype by repairing stop codons or missense mutations.

In isolate 16514, a 23-bp deletion in the \textit{spa} gene caused an MRSA-negative, \textit{S. aureus}-negative result with the Xpert MRSA/SA BC 2013 test because a positive \textit{spa} result is required for \textit{S. aureus} identification. This isolate was reported correctly as MRSA positive by the Xpert MRSA/SA BC 2019 test. Deletions and rearrangements in the \textit{spa} region, although rare, have been reported as the cause of failed \textit{spa} typing. For example, a 2009 study by Baum and colleagues reported that 4.7% of MSSA and 0.7% of MRSA strains that failed \textit{spa} typing did so because of deletions that ranged between 161 and 705 bp and in two cases (0.1% of isolates tested) encompassed the entire \textit{spa} gene (31). Deletions in \textit{spa} have been observed among MRSA strains from inpatients in hospitals receiving antibiotics, suggesting that antibiotic pressure may contribute to these changes (22, 32, 33). In contrast, our survey of \textit{S. aureus} isolates in the United States and Europe identified only two isolates with mutations in the \textit{spa} gene, constituting only 0.8% of the isolates tested, suggesting that this is a rarer phenomenon among MSSA than reported previously. This may be due in part to the fact that we only tested blood isolates, for which having mutations in this major virulence factor may place strains at a selective disadvantage for survival (34).

Empty-cassette \textit{S. aureus} strains occur when \textit{mecA} is deleted from the \textit{SCCMec} element but portions of \textit{SCCMec} remain in the \textit{attB} site within orfX. Such isolates are usually reported correctly as MRSA negative and \textit{S. aureus} positive both by the Xpert MRSA/SA BC 2013 test and by the Xpert MRSA/SA BC 2019 test. However, a false-positive MRSA result may occur if a methicillin-resistant coagulase-negative staphylococcus (CoNS), such as \textit{Staphylococcus epidermidis}, is present in the same positive blood culture vial as an empty-cassette \textit{S. aureus} strain. The presence of \textit{mecA} from CoNS, combined with the \textit{spa} and \textit{SCCMec} from \textit{S. aureus}, can yield a discordant result of MRSA (23), although we did not encounter this combination of organisms in our study.

In summary, while a variety of genetic alterations can occur in \textit{S. aureus} isolates that impact the results of molecular tests, none of these appear to be common in either the United States or Europe. A limitation of our study is that we focused only on MSSA isolates in the surveillance study because we were trying to identify OS-MRSA isolates, empty-cassette strains, and those with insertion elements, particularly SCC\textsubscript{M1}, in the orfX region. Testing of MRSA isolates may have identified additional strains with genetic alterations. Nonetheless, the new rule-based algorithms of the Xpert MRSA/SA BC 2019
test provided correct results for MRSA isolates with spa variants or SCCmec variants, including the three types of genetic insertions noted here.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/JCM.01195-19.

SUPPLEMENTAL FILE 1

PDF file, 0.1 MB.

ACKNOWLEDGMENTS

MRSA Consortium members include Megan Farrington, Shirley Maneth, and Margaret Noddin.

F.C.T., I.A.T., and S.D. are employees of Cepheid, and R.V.G. and R.E.M. have received research funding from Cepheid. Funding for this study was provided by Cepheid.

REFERENCES

1. Kourtiis AP, Hatfield K, Baggis J, Mu Y, See I, Epson E, Nadle J, Kainer MA, Dumyati G, Petit S, Ray SM, Emerging Infections Program MRSA author group, Ham D, Capers C, Ewing H, Coffin N, McDonald LC, Jernigan J, Cardo D. 2019. Vital signs: epidemiology and recent trends in methillin-resistant and in methillin-susceptible Staphylococcus aureus bloodstream infections—United States, MMWR Morb Mortal Wkly Rep 68:214–219. https://doi.org/10.15585/mmwr.mm6809e1.

2. May LS, Rothman RE, Miller LG, Brooks G, Zocchi M, Zatorski C, Dugas AF, ware CE, Jordan JA. 2015. A randomized clinical trial comparing use of rapid molecular testing for Staphylococcus aureus for patients with cutaneous abscesses in the emergency department with standard of care. Infect Control Hosp Epidemiol 36:1423–1430. https://doi.org/10.1017/ice.2015.202.

3. Stamper PD, Cai M, Howard T, Speser S, Carroll KC. 2007. Clinical validation of the molecular BD GeneOhm StaphSR assay for direct detection of Staphylococcus aureus and methillin-resistant Staphylococcus aureus in positive blood cultures. J Clin Microbiol 45:2191–2196. https://doi.org/10.1128/JCM.00552-07.

4. Bauer KA, West JE, Balada-Llasat JM, Pancholi P, Stevenson KB, Goff DA. 2010. An antimicrobial stewardship program’s impact with rapid polymerase chain reaction methicillin-resistant Staphylococcus aureus S. aureus blood culture test in patients with S. aureus bacteremia. Clin Infect Dis 51:1074–1080. https://doi.org/10.1086/656623.

5. Banerjee R, Teng CB, Cunningham SA, Ihde SM, Steckelberg JM, Moriarty JP, Shah ND, Mandrekar JN, Patel R. 2015. Randomized trial of rapid multiplex polymerase chain reaction-based blood culture identification and susceptibility testing. Clin Infect Dis 61:1071–1080. https://doi.org/10.1093/cid/cvu447.

6. Lindsay JA. 2014. Staphylococcus aureus genomics and the impact of horizontal gene transfer. Int J Med Microbiol 304:103–109. https://doi.org/10.1016/j.ijmm.2013.11.010.

7. Blanc DS, Basset P, Nahimana-Tessemo I, Jaton K, Greub G, Zanetti G. 2011. High proportion of wrongly identified methicillin-resistant Staphylococcus aureus isolates in positive blood cultures collected in the United States. J Clin Microbiol 49:722–724. https://doi.org/10.1128/JCM.01998-10.

8. Snyder JW, Munier GK, Heckman SA, Camp P, Overman TL. 2009. Failure of the BD GeneOhm StaphSR assay for direct detection of methillin-resistant and methillin-susceptible Staphylococcus aureus isolates in positive blood cultures collected in the United States. J Clin Microbiol 47:3747–3748. https://doi.org/10.1128/JCM.01391-09.

9. Clinical and Laboratory Standards Institute. 2018. Performance standards for antimicrobial disk susceptibility tests, 13th ed. CLSI standard M02. Clinical and Laboratory Standards Institute, Wayne, PA.

10. Clinical and Laboratory Standards Institute. 2018. Performance standards for antimicrobial susceptibility testing, 28th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute, Wayne, PA.

11. Clinical and Laboratory Standards Institute. 2012. Performance standards for antimicrobial susceptibility testing, Twenty-second informational supplement, M100-S22. Clinical and Laboratory Standards Institute, Wayne, PA.

12. Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595. https://doi.org/10.1371/journal.pcbi.1005595.

13. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153.

14. Thomsen MC, Ahrenfeldt J, Cisneros JL, Juritz V, Larsen MV, Hasman H, Aarestrup FM, Lund G. 2016. A bacterial analysis platform: an integrated system for analysing bacterial whole genome sequencing data for clinical diagnostics and surveillance. PLoS One 11:e0157718. https://doi.org/10.1371/journal.pone.0157718.

15. Diekema DJ, Pfaffer MA, Shortridge D, Zervos M, Jones RN. 2019. Twenty-year trends in antimicrobial susceptibilities among Staphylococcus aureus from the SENTRY antimicrobial surveillance program. Open Forum Infect Dis 6:547–553. https://doi.org/10.1093/ofid/ofy270.

16. Shore AC, Rossney AS, Brennan OM, Kinnevey PM, Humphreys H, Sullivan DJ, Goering RV, Ehrlich R, Monecke S, Coleman DC. 2011. Characterization of a novel arginine catabolic mobile element (ACME) and staphylococcal chromosomal cassette mec composite island with significant homology to Staphylococcus epidermidis ACME type II in methicillin-resistant Staphylococcus aureus genotype ST22-MRSA-IV. Antimicrob Agents Chemother 55:1896–1905. https://doi.org/10.1128/AAC.01247-12.

17. Shore AC, Brennan OM, Deasy EC, Rossney AS, Kinnevey PM, Ehrlich R, Monecke S, Coleman DC. 2012. DNA microarray profiling of a diverse collection of nosocomial methillin-resistant Staphylococcus aureus isolates assigns the majority to the correct sequence type and staphylococcal cassette chromosome mec (SCCmec) type and results in the subsequent identification and characterization of novel SCCmec-SCCM1 composite islands. Antimicrob Agents Chemother 56:5340–5355. https://doi.org/10.1128/AAC.01247-12.

18. Penn C, Moddrell C, Tickler IA, Henthorne MA, Kehrl R, Goering RV, Tenover FC. 2013. Wound infections caused by inducible methillin-resistant Staphylococcus aureus strains. J Glob Antimicrob Resist 1:79–83. https://doi.org/10.1016/j.jgar.2013.03.009.

19. Zhang M, Ito T, Li S, Misawa S, Kondo S, Miida T, Ohsaka A, Hiramatsu K. 2013. Analysis of staphylococcal cassette chromosome mec in BD GeneOhm MRSA assay-negative strains. Antimicrob Agents Chemother 57:2890–2891. https://doi.org/10.1128/AAC.00714-13.

20. Hill-Cawthorne GA, Hudson LO, El Ghany MF, Piepenburg O, Nair M, Dodgson A, Forrest MS, Clark TG, Pain A. 2014. Recombinations in staphylococcal cassette chromosome mec elements compromise the molecular detection of methillin resistance in Staphylococcus aureus. PLoS One 9:e101419. https://doi.org/10.1371/journal.pone.0101419.

21. Tenover FC, Tickler IT. 2015. Is that Staphylococcus aureus isolate really methillin susceptible? Clin Microbiol News 37:80–84.

22. Lee GH, Pang S, Coombs GW. 2018. Misidentification of Staphylococcus aureus by the Cepheid Xpert MRSA/SA BC assay due to deletions in the spa gene. J Clin Microbiol 56:e00530-18. https://doi.org/10.1128/JCM.00530-18.

23. Tunsjo HS, Kalyanasundaram S, Worren MM, Leegaard TM, Moen A. 2017. High frequency of occupied attB regions in Norwegian Staphylococcus aureus isolates supports a two-step MRSA screening algorithm. Eur J Clin Microbiol Infect Dis 36:65–74. https://doi.org/10.1007/s10096-016-2771-0.
24. Shore AC, Rossney AS, O’Connell B, Herrera CM, Sullivan DJ, Humphreys H, Coleman DC. 2008. Detection of staphylococcal cassette chromosome mec-associated DNA segments in multiresistant methicillin-susceptible Staphylococcus aureus (MSSA) and identification of Staphylococcus epidermidis ccrAB4 in both methicillin-resistant S. aureus and MSSA. Antimicrob Agents Chemother 52:4407–4419. https://doi.org/10.1128/AAC.00447-08.

25. Lindqvist M, Isaksson B, Grub C, Jonassen TO, Hallgren A. 2012. Detection and characterisation of SCCmec remnants in multiresistant methicillin-susceptible Staphylococcus aureus causing a clonal outbreak in a Swedish county. Eur J Clin Microbiol Infect Dis 31:141–147. https://doi.org/10.1007/s10096-011-1286-y.

26. Diep BA, Stone GG, Basuino L, Graber CJ, Miller A, Des Etages SA, Jones A, Palazzolo-Ballance AM, Perdreau-Remington F, Sensabaugh GF, DeLeo FR, Chambers HF. 2008. The arginine catabolic mobile element and staphylococcal chromosomal cassette mec linkage: convergence of virulence and resistance in the USA300 clone of methicillin-resistant Staphylococcus aureus. J Infect Dis 197:1523–1530. https://doi.org/10.1086/587907.

27. Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, Lin F, Lin J, Carleton HA, Mongodin EF, Sensabaugh GF, Perdreau-Remington F. 2006. Complete genome sequence of USA300, an epidemic clone of meticillin-resistant Staphylococcus aureus. J Infect Dis 197:1523–1530. https://doi.org/10.1086/587907.

28. Urushibara N, Kawaguchiya M, Kobayashi N. 2012. Two novel arginine catabolic mobile elements and staphylococcal chromosome cassette mec composite islands in community-acquired methicillin-resistant Staphylococcus aureus genotypes STS-MRSA-V and STS-MRSA-IL. J Antimicrob Chemother 67:1828–1834. https://doi.org/10.1093/jac/dks157.

29. Bartels MD, Hansen LH, Boye K, Sorensen SJ, Westh H. 2011. An unexpected location of the arginine catabolic mobile element (ACME) in a USA300-related MRSA strain. PLoS One 6:e16193. https://doi.org/10.1371/journal.pone.0016193.

30. Goering RV, Swartzendruber EA, Obradovich AE, Tickler IA, Tenover FC. 2019. Emergence of oxacillin resistance in stealth methicillin-resistant Staphylococcus aureus due to mecA sequence instability. Antimicrob Agents Chemother 63:e00558–19. https://doi.org/10.1128/AAC.00558-19.

31. Baum C, Haslinger-Löffler B, Westh H, Boye K, Peters G, Neumann C, Kahl BC. 2009. Non-spa-typeable clinical Staphylococcus aureus strains are naturally occurring protein A mutants. J Clin Microbiol 47:3624–3629. https://doi.org/10.1128/JCM.00941-09.

32. Votintseva AA, Fung R, Miller RR, Knox K, Godwin H, Wyllie DH, Bowden R, Crook DW, Walker AS. 2014. Prevalence of Staphylococcus aureus protein A (spa) mutants in the community and hospitals in Oxfordshire. BMC Microbiol 14:63. https://doi.org/10.1186/1471-2180-14-63.

33. Kahl BC, Mellmann A, Deiwick S, Peters G, Harmsen D. 2005. Variation of the polymorphic region X of the protein A gene during persistent airway infection of cystic fibrosis patients reflects two independent mechanisms of genetic change in Staphylococcus aureus. J Clin Microbiol 43:502–505. https://doi.org/10.1128/JCM.43.1.502-505.2005.

34. Hong X, Qin J, Li T, Dai Y, Wang Y, Liu Q, He L, Lu H, Gao Q, Lin Y, Li M. 2016. Staphylococcal protein A promotes colonization and immune evasion of the epidemic healthcare-associated MRSA ST239. Front Microbiol 7:951–965. https://doi.org/10.3389/fmicb.2016.00951.