Intra-genome variability in the dinucleotide composition of SARS-CoV-2

Citation for published version:
Digard, P., Lee, H-M., Sharp, C., Grey, F. & Gaunt, E. 2020, 'Intra-genome variability in the dinucleotide composition of SARS-CoV-2', Virus Evolution. https://doi.org/10.1093/ve/veaa057

Digital Object Identifier (DOI):
10.1093/ve/veaa057

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Virus Evolution

Publisher Rights Statement:
©The Author(s) 2020. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Intra-genome variability in the dinucleotide composition of SARS-CoV-2

Paul Digard ¹, Hui Min Lee ¹, Colin Sharp ¹, Finn Grey ¹, Eleanor Gaunt ¹,*

¹The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK

*To whom correspondence should be addressed. Tel: 0044 131 6519 152; Email: Elly.Gaunt@ed.ac.uk
Intra-genome variability in the dinucleotide composition of SARS-CoV-2

ABSTRACT

CpG dinucleotides are under-represented in the genomes of single stranded RNA viruses, and SARS-CoV-2 is no exception to this. Artificial modification of CpG frequency is a valid approach for live attenuated vaccine development; if this is to be applied to SARS-CoV-2, we must first understand the role CpG motifs play in regulating SARS-CoV-2 replication. Accordingly, the CpG composition of the SARS-CoV-2 genome was characterised. CpG suppression amongst coronaviruses does not differ between virus genera, but does vary with host species and primary replication site (a proxy for tissue tropism), supporting the hypothesis that viral CpG content may influence cross-species transmission. Although SARS-CoV-2 exhibits overall strong CpG suppression, this varies considerably across the genome, and the Envelope (E) open reading frame (ORF) and ORF10 demonstrate an absence of CpG suppression. Across the Coronaviridae, E genes display remarkably high variation in CpG composition, with those of SARS and SARS-CoV-2 having much higher CpG content than other coronaviruses isolated from humans. This is an ancestrally-derived trait reflecting their bat origins. Conservation of CpG motifs in these regions suggests that they have a functionality which over-rides the need to suppress CpG; an observation relevant to future strategies towards a rationally attenuated SARS-CoV-2 vaccine.

INTRODUCTION

CpG dinucleotides are under-represented in the DNA genomes of vertebrates (Cooper and Krawczak, 1989; Simmonds et al., 2013). Cytosines in the CpG conformation may become methylated, and this methylation is used as a mechanism for transcriptional regulation (Medvedeva et al., 2014). Methylated cytosines have a propensity to undergo spontaneous deamination (and so conversion to a thymine). Over evolutionary time, this has reduced the frequency of CpGs in vertebrate genomes (Cooper and Krawczak, 1989). However, loss of CpGs in promoter regions would affect transcriptional regulation, and so CpGs are locally retained, resulting in functionally important ‘CpG islands’ found in around half of all vertebrate promoter regions (Deaton and Bird, 2011).

Single strand RNA (ssRNA) viruses infecting vertebrate hosts reflect the CpG dinucleotide composition of their host in a type of mimicry (Simmonds et al., 2013). It was hypothesised that this is because vertebrates have evolved a CpG sensor which flags transcripts with aberrant CpG frequencies (Atkinson et al., 2014; Gaunt et al., 2016). This idea was strengthened by the discovery that the cellular protein Zinc-finger Antiviral Protein (ZAP) binds CpG motifs on viral RNA and directs them for degradation (Takata et al., 2017), and further supported by observations that CpGs can be synonymously introduced into a viral genome to the detriment of virus replication without negatively
impacting transcriptional or translational efficiency (Gaunt et al., 2016; Tulloch et al., 2014). Current understanding is therefore that ssRNA viruses mimic the CpG composition of their host at least in part to subvert detection by ZAP. ssRNA viruses also under-represent the UpA dinucleotide, but to a far more modest extent (Simmonds et al., 2013), and the reasons behind UpA suppression are less well understood. A consequence of dinucleotide bias is that certain codon pairs are under-represented (Kunec and Osterrieder, 2016; Tulloch et al., 2014) (so, for example, codon pairs of the conformation NNC-GNN are among the most rarely seen codon pairs in vertebrates (Tats et al., 2008)). Whether the two phenomena of CpG suppression and codon pair bias (CPB) are discrete remains controversial (Futcher et al., 2015; Groenke et al., 2020; Kunec and Osterrieder, 2016).

The Coronaviridae have a generally low genomic cytosine content (Berkhout and van Hemert, 2015), but as with other ssRNA viruses, nonetheless still under-represent CpG dinucleotides to a frequency below that predicted from individual base frequencies of cytosine and guanine (Woo et al., 2007). The Coronavirus family comprises four genera – the alpha, beta, gamma and delta-coronaviruses. Human-infecting coronaviruses (HCoVs) have been identified belonging to the alpha and beta genera (Hu et al., 2015). Alphacoronaviruses infecting humans include HCoV-229E and the more recently discovered HCoV-NL63 (van der Hoek et al., 2004). Betacoronaviruses include HCoV-OC43, HCoV-HKU1 (Woo et al., 2005), severe acute respiratory syndrome (SARS)-CoV (Rota et al., 2003), Middle East respiratory syndrome (MERS)-CoV (Zaki et al., 2012) and the recently emerged SARS-CoV-2 (Lu et al., 2020; Zhu et al., 2020). Prior to the emergence of SARS-CoV-2, SARS-CoV had the strongest CpG suppression across human-infecting coronaviruses (Woo et al., 2007). The reason(s) for this are uncertain, but loss of CpG from a virus genome upon zoonotic transfer into the human host has previously been reported for influenza A virus (Greenbaum et al., 2008), potentially indicating an advantage of reduced CpG content for infection of the human respiratory tract. All human-infecting coronaviruses are thought to be derived from ancestral bat viruses, though intermediate hosts may have facilitated zoonotic passage in some cases (Banerjee et al., 2019).

During replication, coronaviruses synthesise transcriptionally active negative sense sub-genomic RNAs which are of varying length. Sub-genomic RNAs are synthesised by the viral polymerase copying the genome up to a 5' leader sequence (Liao and Lai, 1994) which is repeated upstream of most open reading frames (ORFs) in the coronavirus genome (such repeats are referred to as transcription regulation sequences (TRSS)); this complementarity allows viral polymerase jumping from the 5' leader sequence to directly upstream of ORFs preceded by a TRS (Sawicki and Sawicki, 1998). The negative sense sub-genomic RNAs serve as efficient templates for production of mRNAs (Sawicki et al., 2007). Generally, only the first ORF of a sub-genomic mRNA is translated (Perlman and Netland, 2009), although leaky ribosomal scanning has been reported as a means for accessing alternative ORFs for several coronaviruses including SARS-CoV (Schaecher et al., 2007).

SARS-CoV-2 was recently reported to have a CpG composition lower than other members of the betacoronavirus genus, comparable to certain canine alphacoronaviruses; an observation used to draw inferences over its origin and/or epizootic potential (Xia, 2020). Here we show that
coronaviruses have a broad range of CpG composition which is partially host and tissue tropism dependent, and that there is no difference in CpG content across coronavirus genera. There is however a striking disparity in CpG composition between SARS-CoV-2 ORFs, with the Envelope (E) protein ORF and ORF10 over-representing CpG dramatically. E ORF and ORF10 also have higher UpA dinucleotide composition and lower CPB scores than other ORFs. E ORF displays CpG suppression in all human-infecting viruses except SARS-CoV and SARS-CoV-2, suggesting a potential correlation between CpG presentation and disease severity in human-infecting coronaviruses.

MATERIALS AND METHODS

Sequences.

For a comparison of GC content versus CpG ratio, all SARS-CoV-2 complete genome sequences of high coverage (as defined on the GISAID website) were downloaded from GISAID (www.gisaid.org) on 26 March 2020 (1163 sequences in total) and aligned against the SARS-COV-2 reference sequence (Accession number NC_045512) using Simmonics software (Simmonds, 2012) SSE v1.4 (pre-release download kindly provided by Prof. Peter Simmonds, Oxford University). All sequences represented human isolates except for one sequence of bat origin (hCoV-19/bat/Yunnan/RaTG13/2013; EPI_ISL_402131) and one sequence from a pangolin (hCoV-19/pangolin/Guangdong/1/2019; EPI_ISL_410721). All complete genome sequences of all coronaviruses were downloaded from NCBI on the 16 April 2020 (3407 sequences in total). Sequences were then aligned and sequences less than 10% divergent at the nucleotide level, identified using the ‘identify similar/identical sequences’ function in SSE v1.4 were removed from the dataset. Sequences were annotated into animal groups and genera based on their description in the NCBI database. The trimmed dataset (Table S1) included 215 complete genome coronavirus sequences. Individual groups were made for sequences originating from the following hosts: bat (n = 109), avian (35), camelid (3), canine (7), feline (9), human (7), mustelids (5), rodents (8), swine (13), ungulates (10) and ‘other’ (which included bottle-nosed dolphin (2), hedgehog (2), rabbit (2), beluga whale (1), civet (1) and pangolin (1)). Groups were loosely defined based on taxonomic orders, with some exceptions made to examine our specific research questions. Bats are of the order Chiroptera; multiple avian orders were grouped together (Galliformes, Anseriformes, Passeriformes, Gruiformes, Columbiformes and Pelicaniformes); even toed (Artiodactyla) and odd toed (Perissodactyla) ungulate orders were grouped, with camelids analysed separately due to their association with MERS-CoV (Azhar et al., 2014); Canidae (canine) and Pantherinae (feline) sequences of the Carnivora order were analysed separately, as canines have previously been suggested as an intermediate host species for SARS-CoV-2 (Xia, 2020) and cat infections with SARS-CoV-2 have been reported (Shi et al., 2020); humans were the only representatives from the Primate order; all remaining Carnivora, with the exception of a single civet sequence, belonged to the Mustelidae (mustelids); rodents belong to the Rodentia order; and swine belong to the Artiodactyla order; whales are also Artiodactyla but swine

Digard et. al. https://mc.manuscriptcentral.com/vevolu
were considered separately due to considerable interest in porcine coronaviruses (Vlasova et al., 2020). Sequences were also annotated for genus by reference to the NCBI description (203 of the 215 sequences were assigned to a genus), and for primary replication site by literature reference (refer to Table S1). Replication site annotations were based on the sample type from which a coronavirus sequence was obtained – ‘enteric’ for faecal/ gastrointestinal samples, ‘respiratory’ for nasal, oropharyngeal and other respiratory samples; ‘multiple’ if samples from multiple systems tested positive, ‘other’ if the sample was collected from a site not falling into the enteric or respiratory categories (e.g. brain), or ‘unknown’ if a sample type could not be determined. If only one sampling route was tested and returned a positive result, the sequence was categorised in accordance with the sole sampling route. The sequence datasets used in this paper are summarised in Fig. 1.

Analyses of dinucleotide content.

CpG and UpA composition of complete genomes or of individual ORFs were calculated using the composition scan in SSE v1.4. CpG frequencies were measured as observed: expected (O:E) ratios, using the formula $f(CpG) / f(C)*f(G)$. Individual ORFs were identified using a combination of ORF finder (https://www.ncbi.nlm.nih.gov/orffinder/), visual inspection of nucleotide alignments in SSE v1.4, comparison with previous literature and information available from nextstrain.org. Sliding window analyses were performed on the 1163 aligned SARS-CoV-2 sequences and the related bat and pangolin sequences by performing composition scans in SSE v1.4 for 100 nucleotide genomic regions, at 25 nucleotide iterations. For the SARS-CoV-2 sequences, mean CpG O:E ratios for each window were calculated. CPB (Gutman and Hatfield, 1989) scores across the SARS-CoV-2 ORFeome were calculated using the SSE v1.4 composition scan function. Individual ORFs were concatenated with a separating ‘NNN’ codon for analysis, and secondary overlapping ORFs were not included due to coding constraints imposed in these regions.

To examine the extent of CpG retention in E ORF, the same analyses were performed with an additional correction for amino acid composition (Corr_CpG dataset produced by SSE v1.4).

Codon usage analysis.

To examine the use of rare codons, codon adaptation index values were calculated (https://www.biologicscorp.com/tools/CAICalculator).

Phylogenetic analyses.

Of the 215 divergent sequences included in the analysis, E ORF could be identified in 178 by homology with E ORFs previously annotated in NCBI. Of these 178 E ORFs, 7 were sequences isolated from humans and 96 were from bats; these sequences were selected for analysis. E ORFs were aligned in MEGA X (Kumar et al., 2018) using the Clustal method. Phylogenetic reconstruction was performed using an unrooted maximum likelihood tree, with gamma distributed variation in rates between branches and 100 bootstraps (also in MEGA X).
RESULTS

CpG suppression within coronavirus genomes varies between host species and tissue tropism but not between genera.

The genomic CpG composition of all complete genome coronavirus sequences ($n = 3407$; downloaded and further processed as described in the methods section and Fig. 1) were calculated using observed: expected (O:E) ratios, with any value below 1 indicating CpGs are under-represented relative to the genomic content of cytosine and guanine bases. A substantial range in GC content (from ~ 0.32 – 0.47) was seen across the Coronaviridae, and as expected, all viruses exhibited some degree of CpG suppression, with CpG O:E ratios ranging from 0.37 to 0.74 (Fig. 2A). To investigate the root of this variation, the coronavirus sequence dataset was refined to remove sequences with more than 90% nucleotide identity to reduce sampling biases (so, for example, SARS-CoV sequences of human origin were stripped from over 1000 representative sequences to just one). The CpG compositions of the remaining 215 sequences (Table S1) were compared between coronavirus genera (alpha, beta, gamma and delta). For the 215 representative sequences, a genus could be assigned for 203. No differences in CpG composition between coronavirus genera were apparent, although the gamma genus exhibited a tighter range (Fig. 2B). Next, we examined whether differences in CpG composition between viruses isolated from different hosts explained the range in CpG composition across the Coronaviridae. For the 215 representative sequences, a host could be assigned to 210. Coronavirus sequences were divided into host groups, and groups with at least three divergent sequences were compared; this included bat, avian, camelid, canine, feline, human, mustelid, rodent, swine and ungulate viruses. Variation in CpG composition between coronaviruses detected in different host species was evident across and between groups, with coronaviruses detected in canine and human species having lower CpG content and rodent and bat coronaviruses having the highest (Fig. 2C). All frequency ranges overlapped however, indicating viral CpG frequency alone seems to be a poor predictor of virus origin, contradicting the recent suggestion of a canine origin of SARS-CoV-2 (Xia, 2020). Where sequences in a host group representative of both alpha and betacoronaviruses were available (which was the case for bat, camelid, canine, human, rodent and swine viruses), these sequences were split by genus and compared to determine whether coronavirus genera influenced coronavirus CpG frequencies in a host species-specific manner. By this method, the lack of difference in CpG composition of coronaviruses of different genera was maintained (Fig. 2D).

To test the hypothesis that coronavirus CpG content varies according to tissue tropism (Xia, 2020), we classified the viruses according to their primary site of replication, where this was known or could be inferred from the sampling route. Samples were split into five categories – ‘respiratory’, ‘enteric’, ‘multiple’, ‘other’, or ‘unknown’. Altogether, 206 of the 215 sequences were classifiable (detailed in Table S1), with 9 sequences categorised as ‘unknown’ and excluded from further analyses. By this admittedly inexact approach, viruses infecting the respiratory tract had a lower mean CpG composition than viruses with enteric tropism (Fig. 2E). However, the spread of respiratory virus CpG frequencies was contained entirely within the range exhibited by enteric viruses. Furthermore, 124
sequences were assigned to the enteric group, and only 22 to the respiratory group. Of these 146 sequences, bat viruses accounted for 80, all of which were assigned to the enteric group (despite reasonable sampling of respiratory tract in bats) and this cohort of viruses maintained almost the full spread of CpG frequencies (Fig. 2E, Table S1). Thus, while coronavirus CpG frequency may show some correlation with replication site, the dataset available does not permit strong conclusions to be drawn or predictions about zoonotic potential to be made.

Heterogeneities in the dinucleotide composition of SARS-CoV-2.

By our methods for calculating CpG O:E ratios, SARS-CoV-2 has a genomic CpG ratio of 0.408 (representing the mean of 1163 complete genome sequences). This is similar to the value calculated previously for a much smaller sample \((n = 5) \) of SARS-CoV-2 sequences (Xia, 2020). As this previous study noted, this is at the bottom end of the range of genomic CpG O:E ratios for betacoronaviruses and for coronaviruses detected in humans (Figs 2B, C and D). However, as noted above, vertebrate DNA genomes contain localised islands of higher CpG content (Deaton and Bird, 2011). To determine if similar heterogeneity in CpG frequency was evident in the SARS-CoV-2 genome, the composition of individual ORFs was examined. Overall, most ORFs had CpG O:E ratios which were comparable to the genomic CpG ratio. However, two ORFs in particular, E ORF and ORF10, had CpG ratios higher than 1, indicating an absence of CpG suppression in those regions (Fig. 3A). These two ORFs also did not suppress the UpA dinucleotide, in contrast with other SARS-CoV-2 ORFs (Fig. 3B).

Due to the difficulties in distinguishing between dinucleotide bias and CPB, CPB scores were also calculated for each ORF and plotted against CpG composition (Fig. 3C). CPB scores provide an indication of whether the codon pairs encoded in each ORF are congruous with usage in vertebrate genomes. A score below 0 indicates use of codon pairs that are disfavoured in host ORFs. An approximately linear relationship between CpG O:E ratio and CPB score for each SARS-CoV-2 ORF was apparent \((R^2 = 0.80) \). E ORF and ORF10 both had negative CPB scores, indicating that they use under-represented codon pairs and in keeping with the observation that both ORFs over-represent CpG and UpA dinucleotides.

To examine the precise location of the CpG hotspots, a sliding window analysis of CpG content across the 3’ end of the SARS-CoV-2 genome (averaged over 1163 complete genome sequences) as well as the closely related bat and pangolin sequences was performed. As expected, marked increases in CpG O:E ratio were observed concomitant with the genomic regions associated with E ORF and ORF10 (Fig. 3D). The E ORF and ORF10 regions associated with high CpG composition were maintained across the bat, pangolin and human sequences, indicating that since the bat sample was collected in 2013, the higher CpG frequency in this region has not been negatively selected. While the increase in CpG presentation was apparent across the entire E ORF, starting at the 3’ end of ORF3 and ending at the beginning of the M gene, the CpG spike in ORF10 was more narrowly associated with the putative coding region. Additionally, a CpG spike between the 3'-'end of ORF8 and the 5'-'end of the N gene was evident. The 5'-'end of the N ORF also contains the overlapping ORF9b
gene, which when considered alone, has a CpG O:E ratio approaching 1 (Fig. 3A), and is the ORF with the third-highest CpG O:E ratio after E ORF and ORF10. The usual coding plasticity afforded to nucleotides in the third position of a codon is nullified when overlapping reading frames are present, and so the CpG spike at this gene boundary is not surprising. Thus, although the SARS-CoV-2 genome exhibits high CpG suppression overall, there are local heterogeneities associated with individual ORFs, most notably E.

On the origins of the high CpG content of E ORF of SARS-CoV-2.

To determine whether the high CpG content of E ORF is evolutionarily conserved (ORF10 is poorly conserved and only encoded by a subset of SARS-like coronaviruses, so it was not analysed), attempts to identify the E ORF by nucleotide alignment for the set of 215 coronavirus sequences was undertaken, compared with E ORFs already annotated in NCBI. Of the 215 sequences, E ORF was identifiable in 178, with the remaining sequences too divergent to be confident of gene assignment. CpG composition for E ORF for the 178 sequences was measured and plotted according to host. Amino acid conservation within the short ORF of E could bias levels of CpG; for example, amino acids encoded by codons containing C and G in combinations other than CpG could be disproportionately represented. To account for this possibility, CpG O:E ratios were corrected for amino acid composition across this region (Fig. 4A). A diverse distribution of CpG content was evident in viruses from every host group except ungulates, with bats in particular displaying a notable range from total suppression to overrepresentation. Otherwise, most viruses from most species still maintained some level of CpG suppression in E ORF. The exceptions with high CpG O:E ratios in E ORF were avian coronaviruses and notably, SARS-CoV and SARS-CoV-2. In contrast, other human-infecting coronaviruses (HCoV-229E, HCoV-HKU1, HCoV-NL63 and HCoV-OC43) all strongly under-represented CpG in E ORF, while MERS-CoV E ORF had an intermediate CpG O:E ratio of 0.6. To confirm E ORF over-represented CpG relative to the rest of the genome in SARS-CoV and SARS-CoV-2, ratios for E ORF: genomic CpG O:E were calculated (Fig. 4B). In non-bat non-avian host genomes, E ORF usually displayed CpG suppression in line with or stronger than that seen at the genome level, whereas SARS-CoV and SARS-CoV-2 starkly contrasted with this, displaying far less CpG suppression in this region. This could be linked with their recent emergence from bat reservoirs, as genome composition is more likely to be optimised for replication in that host, and the CpG composition of E ORF for both SARS-CoV-2 and SARS-CoV falls within the E ORF CpG heterogeneity apparent across bat-derived sequences.

As another check of whether differential codon usage might explain the CpG composition disparity in E ORF, we calculated codon adaptation index (CAI) scores baselined against the human transcriptome. While SARS-CoV and SARS-CoV-2 E ORFs had CAI scores that were lower than those for other coronavirus E ORFs, the differences were small and did not explain the large differences in CpG ratios (Table 1).

To investigate the evolutionary history of E ORF CpG composition in the human-infecting coronaviruses, a phylogenetic reconstruction of all 7 human coronavirus and 96 bat coronavirus E
genes was performed to determine whether CpG ratios in this region were ancestrally derived. As expected (Cotten et al., 2013; Lu et al., 2020), the human viruses were interspersed among the bat viruses, reflective of their independent emergence events (Fig. 4C). The CpG compositions of the human coronavirus E ORFs, although diverse, were similar to the CpG compositions of their phylogenetically proximal bat relatives, demonstrating that CpG composition in E ORF is an ancestrally derived trait selected prior to emergence in the human population.

DISCUSSION

We have examined the CpG O:E ratios of all the currently available complete genome sequences of coronaviruses and uncovered a noteworthy diversity. Generally, the CpG O:E ratio of coronavirus genomes from a single host species varied considerably. For bats, which serve as a coronavirus reservoir (Banerjee et al., 2019) and which had the largest number of representative sequences, the CpG O:E range was from 0.41 to 0.70, demonstrating the genome plasticity of coronaviruses and indicating that their evolution is not overtly restricted by a requirement to minimise CpG composition in the natural reservoir. The antiviral CpG-detector protein, ZAP (Takata et al., 2017), has been identified as a target for several viral proteins including the 3C protease of enterovirus 71 (Xie et al., 2018) and NS1 of influenza A virus (Tang et al., 2017) – two viruses with overall low CpG content (Atkinson et al., 2014; Gaunt et al., 2016). This highlights the importance of CpG as a pathogen-associated molecular pattern (PAMP), and so this diversity in CpG expression within the **Coronaviridae** is striking. If coronaviruses also produce a protein with anti-ZAP activity, it is possible that this has variable efficacy between strains, explaining the ability of coronaviruses to fluctuate CpG composition considerably. Alternatively (or in addition), this may be host driven; we show that average CpG suppression varies with host species (Fig. 2C) and, as previously suggested (Xia, 2020), this may be linked with ZAP expression levels. We have demonstrated that CpG variation is not related to viral taxonomic grouping (Fig. 2B) but we did find an association between viral CpG composition and primary replication site, with respiratory coronaviruses having a lower CpG composition than enteric ones (Fig. 2E). This is the opposite of what has been previously suggested (Xia, 2020), though this proposal was not supported by any comprehensive investigation. Nevertheless, our meta-analysis was subject to the sampling preferences of many labs who have performed surveillance for coronaviruses and many of the tissue tropism assignments we made have not been verified by experimental infections. Another limitation of this analysis is that only sequences of greater than 10% divergence were included, and while this overcomes some sampling bias we cannot assume that datapoints are independent (which is why statistical comparisons are not included). Notably, tissue tropism can be defined by much smaller divergences; for example, a deletion in the spike protein of transmissible gastroenteritis virus (a porcine coronavirus) altered the tropism of the virus from enteric to respiratory, while nucleotide identity was preserved at 96% (Cox et al., 1990; Rasschaert et al., 2017).
1990). Further study on tissue tropisms of coronaviruses, as well as tissue expression profiles and antiviral activities of ZAP are needed to validate these analyses.

Loss of CpG motifs during adaptation to the human host has been previously described for influenza A virus (Greenbaum et al., 2008), highlighting the importance of CpG composition for host adaptation. For SARS-CoV-2, we determined a genomic CpG O:E ratio of 0.408, which is similar to the human genome CpG O:E ratio of 0.2-0.4 (McClelland and Ivarie, 1982; Sved and Bird, 1990; Tomso and Bell, 2003). Mimicry of the CpG composition of the host by ssRNA viruses is considered a mechanism to subvert detection by the innate immune response (Simmonds et al., 2013; Takata et al., 2017) and speculatively this may indicate that SARS-CoV-2 was genetically predisposed to make a host switch into humans. Similarly, the genomic CPB score of 0.048 indicates that SARS-CoV-2 uses codon pairs which are preferentially utilised in the human ORFeome, which may mean that the virus was well suited for translational efficiency in humans at its time of emergence.

In coding regions which do not have overlapping ORFs, there is no requirement at the coding level for CpG motifs to be retained (Kanaya et al., 2001). E ORF and ORF10 are not known to be in overlapping reading frames; conversely, ORF9b overlaps with the ORF for nucleocapsid (N). Some CpG retention in this region is therefore inevitable and may explain the high CpG composition of ORF9b. This nevertheless leaves open the question of why CpG motifs are retained in the E ORF and ORF10 regions (if this is not an ancestrally derived evolutionary hangover; as CpGs have not been lost from these regions between 2013 and now (Fig. 3D), this seems unlikely). CpG motifs may serve various non-exclusive purposes, including providing secondary structure (Rima and McFerran, 1997), intentionally stimulating ZAP activity (by analogy with multiple viruses intentionally triggering NF-kB (Hiscott et al., 2001)), or providing m5c methylation sites (Dev et al., 2017; Khoddami and Cairns, 2013; Squires et al., 2012).

It is also possible that CpG enrichment serves as a strategy for regulating translation. Conceivably, the high CpG content at the 5’ end of the E ORF transcript destines this for degradation via ZAP or CBP-associated mechanisms (Groenke et al., 2020; Guo et al., 2007) more rapidly than other viral transcripts. This could be intentional, or an evolutionarily accepted trade-off to preserve a higher importance role for CpGs. Alternatively, E ORF and ORF10 proteins may only be required late during infection (parallels with which can be drawn from the differential temporal expression and translational efficiencies of transcripts of the coronavirus mouse hepatitis virus strain A59 (Irigoyen et al., 2016)), by which time an as-yet unidentified inhibitor of ZAP (or other CpG/CBP sensor(s)) may render CpG suppression unnecessary, as suggested for human cytomegalovirus (Lin et al., 2020).

ORF9b and ORF10 do not have their own TRSs and so whether or how these open reading frames are accessed is currently controversial; nevertheless, peptides from both have been identified by mass spectrometry from SARS-CoV-2 infected cells (Davidson et al., 2020). The ORF9b AUG transcription initiation site, which has a strong Kozak context (Kozak, 1986), is the first AUG after and 10 nucleotides downstream of the initiation site for N ORF (which displays moderate Kozak context). It is therefore credible to think that ORF9b is accessed via leaky ribosomal scanning - a well
characterised method for accessing alternative ORFs used by coronaviruses and other viruses (Chenik et al., 1995; Firth and Atkins, 2010; Irigoyen et al., 2016; Lin and Lo, 1992; O'Connor and Brian, 2000; Ryabova et al., 2006; Schneider et al., 1997; Senanayake and Brian, 1997; Wise et al., 2011). There is a lack of evidence that ORF10 is accessed via production of its own subgenomic RNA (Kim et al., 2020); possibly, this ORF is accessed via leaky scanning from the leader immediately preceding the N ORF. However, visual inspection of the SARS-CoV-2 genome indicated that the AUG encoding ORF10 is 24 AUGs downstream from the one initiating N ORF, making this hypothesis speculative at best. Whether the anomalous CpG composition of ORF10 is somehow involved in priming its transcription remains to be determined.

The transcript encoding E ORF incorporates an additional ~3.4kb of RNA and ORF10, if accessed from the transcript produced from the TRS upstream of N ORF, is present on a transcript of approximately 1.6kb in length. Whether the described CpG enriched regions are relevant as PAMPs in these contexts is currently unclear from what is known about ZAP recognition of CpG motifs. It is also worth noting that the body TRS sequence ahead of the E gene is relatively weak in SARS-CoV-2, as it is in SARS-CoV (Marra et al., 2003), suggesting that this subgenomic mRNA may be of relatively low abundance. Of the SARS-CoV-2 transcripts which use a canonical TRS for synthesis, the donor site upstream of E ranked seventh when comparing sequencing read frequency across this site (behind reads spanning the TRS sites upstream of N, spike, ORF7a, ORF7b, ORF3a, ORF8 and M ORF respectively) in Vero cells infected at a low MOI for 24 hours, indicating that E ORF is of lower abundance than most other transcripts (Kim et al., 2020). It is therefore possible that E ORF is of sufficiently low abundance for a high CpG frequency to be physiologically inconsequential. Similar logic can be applied to ORF10, which is just 117 nucleotides in length.

Synonymous addition of CpGs into a virus genome has been suggested as a potential novel approach to vaccine development by us and others (Atkinson et al., 2014; Burns et al., 2009; Gaunt et al., 2016; Moratorio et al., 2017). Here we explore the evolutionary space occupied by coronaviruses in the context of their CpG composition and find that SARS-CoV-2 has a low CpG composition in comparison with other coronaviruses, but with CpG ‘hotspots’ in genomically disparate regions. This highlights the potential for large scale recoding of the SARS-CoV-2 genome by introduction of CpGs into multiple regions of the virus genome as a mechanism for generation of an attenuated live vaccine. Introduction of CpG into multiple sites could also be used to subvert the potential of the virus to revert to virulence through recombination. A challenge of live attenuated vaccine manufacture is to enable sufficient production of a vaccine virus that has a replication defect. Introduction of CpGs into specific regions of the virus genome under normal circumstances can be expected to cause a viral replication defect. However, if genome regions such as conserved secondary structures and overlapping reading frames are preserved, the detrimental effects of CpG addition may be circumvented by growing virus in a ZAP-knockout system (Ficarelli et al., 2019; Odon et al., 2019), thus allowing the generation of high titre replication-defective vaccine virus stocks.
ACKNOWLEDGEMENTS

We would like to thank Prof. Peter Simmonds (Oxford University) for providing a pre-release version of SSE v1.4. We are grateful to Dr James Glover (the Roslin Institute) and two anonymous reviewers for comments on the manuscript. Figure 1 was created using BioRender. This work was supported by Biotechnology and Biosciences Research Council Roslin Institute Strategic Program Grant funding (no. BB/P013740/1 to PD and FG) and Wellcome Trust/ Royal Society Fellowship (211222/Z/18/Z to EG).
REFERENCES

Atkinson, N., Witteveldt, J., Evans, D., Simmonds, P., 2014. The influence of CpG and UpA dinucleotide frequencies on RNA virus replication and characterization of the innate cellular pathways underlying virus attenuation and enhanced replication. Nucleic Acids Research 42(7), 4527-4545.

Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., 2014. Evidence for Camel-to-Human Transmission of MERS Coronavirus. 370(26), 2499-2505.

Banerjee, A., Kulcsar K, Misra V, Frieman M, Mossman, K., 2019. Bats and Coronaviruses. Viruses 11(1), 41.

Berkhout, B., van Hemert, F., 2015. On the biased nucleotide composition of the human coronavirus RNA genome. Virus Research 202, 41-47.

Burns, C.C., Campagnoli, R., Shaw, J., Vincent, A., Jorba, J., Kew, O., 2009. Genetic Inactivation of Poliovirus Infectivity by Increasing the Frequencies of CpG and UpA Dinucleotides within and across Synonymous Capsid Region Codons. 83(19), 9957-9969.

Chenik, M., Chebli, K., Blondel, D., 1995. Translation initiation at alternate in-frame AUG codons in the rabies virus phosphoprotein mRNA is mediated by a ribosomal leaky scanning mechanism. 69(2), 707-712.

Cooper, D.N., Krawczak, M., 1989. Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes. Human Genetics 83(2), 181-188.

Cotten, M., Lam, T.T., Watson, S.J., Palser, A.L., Petrova, V., Grant, P., Pybus, O.G., Rambaut, A., Guan, Y., Pillay, D., Kellam, P., Nastouli, E., 2013. Full-genome deep sequencing and phylogenetic analysis of novel human betacoronavirus. Emerg Infect Dis 19(5), 736-742B.

Cox, E., Hoooyberghs, J., Penzaert, M.B., 1990. Sites of replication of a porcine respiratory coronavirus related to transmissible gastroenteritis virus. Res Vet Sci 48(2), 165-169.

Davidson, A., Williamson, M.K., Lewis, S., Shoemark, D., Carroll, M., Heesom, K., Zambon, M., Ellis, J., Lewis, P., Hiscox, J., Matthews, D., 2020. Characterisation of the transcriptome and proteome of SARS-CoV-2 using direct RNA sequencing and tandem mass spectrometry reveals evidence for a cell passage induced in-frame deletion in the spike glycoprotein that removes the furin-like cleavage site. bioRxiv.

Deaton, A.M., Bird, A., 2011. CpG islands and the regulation of transcription. 25(10), 1010-1022.

Dev, R.R., Gani, R., Singh, S.P., Mahalingam, S., Banerjee, S., Khosla, S., 2017. Cytosine methylation by DNMT2 facilitates stability and survival of HIV-1 RNA in the host cell during infection. Biochemical Journal 474(12), 2009-2026.

Ficarelli, M., Wilson, H., Pedro Galão, R., Mazzon, M., Antzin-Anduetza, I., Marsh, M., Neil, S.D., Swanson, C.M., 2019. KHNYN is essential for the zinc finger antiviral protein (ZAP) to restrict HIV-1 containing clustered CpG dinucleotides. Elife 8, e46767.

Firth, A.E., Atkins, J.F., 2010. Candidates in Astroviruses, Seadornaviruses, Cytorhabdoviruses and Coronaviruses for +1 frame overlapping genes accessed by leaky scanning. Virology Journal 7(1), 17.

Futcher, B., Gorbateyvych, O., Shen, S.H., Stauff, C.B., Song, Y., Wang, B., Leatherwood, J., Gardin, J., Yurovsky, A., Mueller, S., Wimmer, E., 2015. Reply to Simmonds et al.: Codon pair and dinucleotide bias have not been functionally distinguished. 112(28), E3635-E3636.

Gaunt, E., Wise, H.M., Zhang, H., Lee, L.N., Atkinson, N.J., Nicol, M.Q., Highton, A.J., Kleinerman, P., Beard, P.M., Dutia, B.M., Digard, P., Simmonds, P., 2016. Elevation of CpG frequencies in influenza A genome attenuates pathogenicity but enhances host response to infection. Elife 5, e12735-e12735.

Greenbaum, B.D., Levine, A.J., Bhanot, G., Rabadan, R., 2008. Patterns of evolution and host gene mimicry in influenza and other RNA viruses. PLoS pathogens 4(6), e1000079-e1000079.
Groenke, N., Trimpert, J., Merz, S., Conradie, A.M., Wyler, E., Zhang, H., Hazapis, O.-G., Rausch, S., Landthaler, M., Osterrieder, N., Kunec, D., 2020. Mechanism of Virus Attenuation by Codon Pair Deoptimization. Cell Reports 31(4), 107586.

Guo, X., Ma, J., Sun, J., Gao, G., 2007. The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. 104(1), 151-156.

Gutman, G.A., Hatfield, G.W., 1989. Nonrandom utilization of codon pairs in Escherichia coli. 86(10), 3699-3703.

Hiscott, J., Kwon, H., Génin, P., 2001. Hostile takeovers: viral appropriation of the NF-kB pathway. The Journal of Clinical Investigation 107(2), 143-151.

Hu, B., Ge, X., Wang, L.-F., Shi, Z., 2015. Bat origin of human coronaviruses. Virology Journal 12(1), 221.

Irigoyen, N., Firth, A.E., Jones, J.D., Chung, B.Y.W., Siddell, S.G., Brierley, I., 2016. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling. PLoS pathogens 12(2), e1005473-e1005473.

Kanaya, S., Yamada, Y., Kinouchi, M., Kudo, Y., Ikemura, T., 2001. Codon Usage and tRNA Genes in Eukaryotes: Correlation of Codon Usage Diversity with Translation Efficiency and with CG-Dinucleotide Usage as Assessed by Multivariate Analysis. Journal of Molecular Evolution 53(4), 290-298.

Khoddami, V., Cairns, B.R., 2013. Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nature Biotechnology 31(5), 458-464.

Kim, D., Lee, J.-Y., Yang, J.-S., Kim, J.W., Kim, V.N., Chang, H., 2020. The architecture of SARS-CoV-2 transcriptome. 2020.2003.2012.988865.

Kozak, M., 1986. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44(2), 283-292.

Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution 35(6), 1547-1549.

Kunec, D., Osterrieder, N., 2016. Codon Pair Bias Is a Direct Consequence of Dinucleotide Bias. Cell Reports 14(1), 55-67.

Liao, C.L., Lai, M.M., 1994. Requirement of the 5'-end genomic sequence as an upstream cis-acting element for coronavirus subgenomic mRNA transcription. 68(8), 4727-4737.

Lin, C.-G., Lo, S.J., 1992. Evidence for involvement of a ribosomal leaky scanning mechanism in the translation of the hepatitis B virus Pol gene from the viral pregenome RNA. Virology 188(1), 342-352.

Lin, Y.-T., Chiweshe, S., McCormick, D., Raper, A., Wickenhagen, A., DeFillipis, V., Gaunt, E., Simmonds, P., Wilson, S.J., Grey, F., 2020. Human cytomegalovirus evades ZAP detection by suppressing CpG dinucleotides in the major immediate early genes. 2020.2001.2007.897132.

Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., Chen, J., Meng, Y., Wang, J., Lin, Y., Yuan, J., Xie, Z., Ma, J., Liu, W.J., Wang, D., Xu, W., Holmes, E.C., Gao, G.F., Wu, G., Chen, W., Shi, W., Tan, W., 2020. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet 395(10224), 565-574.

Marra, M.A., Jones, S.J.M., Astell, C.R., Holt, R.A., Brooks-Wilson, A., Butterfield, Y.S.N., Khattra, J., Asano, J.K., Barber, S.A., Chan, S.Y., Cloutier, A., Coughlin, S.M., Freeman, D., Girn, N., Griffith, O.L., Leach, S.R., Mayo, M., McDonald, H., Montgomery, S.B., Pandoh, P.K., Petrescu, A.S., Robertson, A.G., Schein, J.E., Siddiqui, A., Smailus, D.E., Stott, J.M., Yang, G.S., Plummer, F., Andonov, A., Artsob, H., Bastien, N., Bernard, K., Booth, T.F., Bowness, D., Czub, M., Drebot, M., Fernandez, L., Flick, R., Garbutt, M., Gray, M., Grolla, A., Jones, S., Feldmann, H., Meyers, A., Kabani, A., Li, Y., Normand, S., Stroher, U., Tipple, G.A., Tyler, S., Vogrig, R., Ward, D., Watson, B., Brunham, R.C., Krajden, M., Petric, M., Skowronski, D.M., Upton, C.,
Roper, R.L., 2003. The Genome Sequence of the SARS-Associated Coronavirus. 300(5624), 1399-1404.
McClelland, M., Ivarie, R., 1982. Asymmetrical distribution of CpG in an ‘average’ mammalian gene. Nucleic Acids Research 10(23), 7865-7877.
Medvedeva, Y.A., Khamis, A.M., Kulakovskiy, I.V., Ba-Alawi, W., Bhuyan, M.S.I., Kawaji, H., Lassmann, T., Harbers, M., Forrest, A.R.R., Bajic, V.B., The, F.c., 2014. Effects of cytosine methylation on transcription factor binding sites. BMC Genomics 15(1), 119.
Moratorio, G., Henningsson, R., Barbezange, C., Carrau, L., Bordería, A.V., Blanc, H., Beaucourt, S., Poirier, E.Z., Vallet, T., Boussier, J., Mounce, B.C., Fontes, M., Vignuzzi, M., 2017. Attenuation of RNA viruses by redirecting their evolution in sequence space. Nature Microbiology 2(8), 17088.
O'Connor, J.B., Brian, D.A., 2000. Downstream Ribosomal Entry for Translation of Coronavirus TGEV Gene 3b. Virology 269(1), 172-182.
Odon, V., Fros, J.J., Goonawardane, N., Dietrich, I., Ibrahim, A., Alshaikhahmed, K., Nguyen, D., Simmonds, P., 2019. The role of ZAP and OAS3/RNaseL pathways in the attenuation of an RNA virus with elevated frequencies of CpG and UpA dinucleotides. Nucleic Acids Research 47(15), 8061-8083.
Perlman, S., Netland, J., 2009. Coronaviruses post-SARS: update on replication and pathogenesis. Nature Reviews Microbiology 7(6), 439-450.
Rasschaert, D., Duarte, M., Laude, H., 1990. Porcine respiratory coronavirus differs from transmissible gastroenteritis virus by a few genomic deletions. 71(11), 2599-2607.
Rima, B.K., McFerran, N.V., 1997. Dinucleotide and stop codon frequencies in single-stranded RNA viruses. 78(11), 2859-2870.
Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Peñaranda, S., Bankamp, B., Maher, K., Chen, M.-h., Tong, S., Tamin, A., Lowe, L., Frace, M., DeRisi, J.L., Chen, Q., Wang, D., Erdman, D.D., Peret, T.C.T., Burns, C., Ksiazek, T.G., Rollin, P.E., Sanchez, A., Liffick, S., Holloway, B., Limor, J., McCaustland, K., Olsen-Rasmussen, M., Foucher, R., Günther, S., Osterhaus, A.D.M.E., Drosten, C., Pallansch, M.A., Anderson, L.J., Bellini, W.J., 2003. Characterization of a Novel Coronavirus Associated with Severe Acute Respiratory Syndrome. 300(5624), 1394-1399.
Ryabova, L.A., Pooggin, M.M., Hohn, T., 2006. Translation reinitiation and leaky scanning in plant viruses. Virus Research 119(1), 52-62.
Sawicki, S.G., Sawicki, D.L., 1998. A New Model for Coronavirus Transcription. In: Enjuanes, L., Siddell, S.G., Spaan, W. (Eds.), Coronaviruses and Arteriviruses. Springer US, Boston, MA, pp. 215-219.
Sawicki, S.G., Sawicki, D.L., Siddell, S.G., 2007. A Contemporary View of Coronavirus Transcription. 81(1), 20-29.
Schaecher, S.R., Mackenzie, J.M., Pekosz, A., 2007. The ORF7b Protein of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Is Expressed in Virus-Infected Cells and Incorporated into SARS-CoV Particles. 81(2), 718-731.
Schneider, P.A., Kim, R., Lipkin, W.I., 1997. Evidence for translation of the Borna disease virus G protein by leaky ribosomal scanning and ribosomal reinitiation. 71(7), 5614-5619.
Senanayake, S.D., Brian, D.A., 1997. Bovine coronavirus I protein synthesis follows ribosomal scanning on the bicistronic N mRNA. Virus Research 48(1), 101-105.
Shi, J., Wen, Z., Zhong, G., Yang, H., Wang, C., Huang, B., Liu, R., He, X., Shuai, L., Sun, Z., Zhao, Y., Liu, P., Liang, L., Cui, P., Wang, J., Zhang, X., Guan, Y., Tan, W., Wu, G., Chen, H., Bu, Z., 2020. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. eabb7015.
Simmonds, P., 2012. SSE: a nucleotide and amino acid sequence analysis platform. BMC Research Notes 5(1), 50.
Simmonds, P., Xia, W., Baillie, J.K., McKinnon, K., 2013. Modelling mutational and selection pressures on dinucleotides in eukaryotic phyla—selection against CpG and UpA in cytoplasmically expressed RNA and in RNA viruses. BMC Genomics 14(1), 610.

Squires, J.E., Patel, H.R., Nousch, M., Sibbritt, T., Humphreys, D.T., Parker, B.J., Suter, C.M., Preiss, T., 2012. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Research 40(11), 5023-5033.

Sved, J., Bird, A., 1990. The expected equilibrium of the CpG dinucleotide in vertebrate genomes under a mutation model. 87(12), 4692-4696.

Takata, M.A., Gonçalves-Carneiro, D., Zang, T.M., Soll, S.J., York, A., Blanco-Melo, D., Bieniasz, P.D., 2017. CG dinucleotide suppression enables antiviral defence targeting non-self RNA. Nature 550(7674), 124-127.

Tang, Q., Wang, X., Gao, G., 2017. The Short Form of the Zinc Finger Antiviral Protein Inhibits Influenza A Virus Protein Expression and Is Antagonized by the Virus-Encoded NS1. 91(2), e01909-01916.

Tats, A., Tenson, T., Remm, M., 2008. Preferred and avoided codon pairs in three domains of life. BMC Genomics 9(1), 463.

Tomso, D.J., Bell, D.A., 2003. Sequence Context at Human Single Nucleotide Polymorphisms: Overrepresentation of CpG Dinucleotide at Polymorphic Sites and Suppression of Variation in CpG Islands. Journal of Molecular Biology 327(2), 303-308.

Tulloch, F., Atkinson, N.J., Evans, D.J., Ryan, M.D., Simmonds, P., 2014. RNA virus attenuation by codon pair deoptimisation is an artefact of increases in CpG/UpA dinucleotide frequencies. Elife 3, e04531.

van der Hoek, L., Pyrc, K., Jebbink, M.F., Vermeulen-Oost, W., Berkhout, R.J.M., Wolthers, K.C., Wertheim-van Dillen, P.M.E., Kaandorp, J., Spaargaren, J., Berkhout, B., 2004. Identification of a new human coronavirus. Nature Medicine 10(4), 368-373.

Vlasova, A.N., Wang, Q., Jung, K., Langel, S.N., Malik, Y.S., Saif, L.J., 2020. Porcine Coronaviruses. Emerging and Transboundary Animal Viruses, 79-110.

Wise, H.M., Barbezange, C., Jagger, B.W., Dalton, R.M., Gog, J.R., Curran, M.D., Taubenberger, J.K., Anderson, E.C., Digard, P., 2011. Overlapping signals for translational regulation and packaging of influenza A virus segment 2. Nucleic acids research 39(17), 7775-7790.

Woo, P.C.Y., Lau, S.K.P., Chu, C.-m., Chan, K.-h., Tsoi, H.-w., Huang, Y., Wong, B.H.L., Poon, R.W.S., Cai, J.J., Luk, W.-k., Poon, L.L.M., Wong, S.S.Y., Guan, Y., Peiris, J.S.M., Yuen, K.-y., 2005. Characterization and Complete Genome Sequence of a Novel Coronavirus, Coronavirus HKU1, from Patients with Pneumonia. 79(2), 884-895.

Xia, X., 2020. Extreme genomic CpG deficiency in SARS-CoV-2 and evasion of host antiviral defense. Molecular Biology and Evolution.

Xie, L., Lu, B., Zheng, Z., Miao, Y., Liu, Y., Zhang, Y., Zheng, C., Ke, X., Hu, Q., Wang, H., 2018. The 3C protease of enterovirus A71 counteracts the activity of host zinc-finger antiviral protein (ZAP). 99(1), 73-85.

Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., 2012. Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia. 367(19), 1814-1820.

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G.F., Tan, W., 2020. A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine 382(8), 727-733.
Table 1. Comparison of the CpG dinucleotide composition of E ORF of coronaviruses that infect humans. CAI, codon adaptation index.

Virus	CpG frequency	GC content	CpG O:E ratio	CAI
SARS-CoV-2	11	0.387	1.262	0.58
SARS-CoV	13	0.408	1.308	0.56
HCoV-229E	1	0.338	0.175	0.63
HCoV-NL63	3	0.349	0.221	0.66
HCoV-HKU1	2	0.290	0.586	0.63
HCoV-OC43	2	0.349	0.306	0.67
MERS-CoV	6	0.402	0.642	0.61
FIGURE LEGENDS

FIGURE 1. Workflow for sequence processing. Two sequence datasets were used for analysis; all coronavirus complete genome sequences available on NCBI, and SARS-CoV-2 complete genome sequences available on the GISAID platform (left hand pink shaded boxes). The coronavirus complete genome sequences were cleaned by removal of sequences with 90% nucleotide identity or greater to remove epidemiologic biases, leaving 215 complete genome sequences (central yellow shaded box). These were then categorised by genera, host, and tissue tropism. The subset of 215 sequences were also aligned over the E ORF and grouped by host (blue shaded boxes). Each box firstly describes each dataset used, the number of sequences in that dataset is then indicated in italicized font, and the figure to which the dataset corresponds is indicated in bold font.

FIGURE 2. Comparison of the CpG ratios of complete genomes of coronaviruses. SARS-CoV is represented by a blue circle, SARS-CoV-2 and its related bat sequence RaTG13 by purple circles and MERS-CoV by a green circle throughout. A. GC content versus CpG ratio for all complete genome sequences of coronaviruses downloaded from Genbank (3407 sequences). The sequence dataset in (A) was then stripped to include only one representative from sequences with less than 10% nucleotide diversity to overcome epidemiologic biases (215 representative sequences), which were analysed in the subsequent sub-figures. B. Coronavirus genus against genomic CpG content. Other human-infecting coronaviruses (HCoV-229E, HCoV-NL63 (alphacoronaviruses) and HCoV-HKU1 and HCoV-OC43 (betacoronaviruses) are represented using orange circles. C. Vertebrate host of coronavirus against genomic CpG content. D. Vertebrate host of coronavirus, with further sub-division into coronavirus genus, against genomic CpG content. Alphacoronaviruses are denoted with filled circles and betacoronaviruses with open circles. E. Primary replication site against genomic CpG content by host. For a full breakdown of how these were assigned, please refer to Table S1.

FIGURE 3. Heterogeneities in the dinucleotide composition of the SARS-CoV-2 genome. A-C. Comparison of the dinucleotide and coding compositions of SARS-CoV-2 open reading frames (ORFs) for A. CpG observed: expected (O:E) ratios, B. UpA O:E ratios and C. Codon pair bias (CPB) scores. Average scores across the genome are indicated using open circles. D. Sliding window analysis of CpG content of SARS-CoV-2 (green line) and closely related bat (RaTG13; black line) and pangolin (purple line) isolates. The CpG O:E ratio of the 3’ end of the genome was measured in 100 nucleotide windows in 25 nucleotide increments. The mean of 1163 complete genome sequences is presented for SARS-CoV-2.

FIGURE 4. Evolutionary conservation of E ORF CpG content. MERS-CoV (green circle), SARS-CoV (blue circle) and SARS-CoV-2 and its bat sequence relative RaTG13 (purple circles) are indicated in all panels. A. CpG O:E ratios for E ORF for 178 coronavirus E ORFs are plotted by host. B. CpG O:E ratios for E ORF were divided by the genomic CpG O:E ratio for 178 coronavirus sequences and grouped by host. C. Phylogenetic reconstruction of E ORF of human and bat coronaviruses. Maximum composite likelihood tree (100 bootstraps) representing the seven human-infecting coronaviruses (HCoV-229E, HCoV-HKU1, HCoV-NL63, HCoV-OC43 are indicated by black circles) and 96 bat coronaviruses for which E ORF could be identified by alignment with the human coronaviruses. CpG O:E ratios for the E gene are indicated by large font numbers, and the sequences to which they relate are either bracketed or represented by triangles scaled to indicate the number of sequences they represent.

https://mc.manuscriptcentral.com/vevolu
Figure 1

338x190mm (96 x 96 DPI)
Figure 2

200x264mm (300 x 300 DPI)
Figure 3

338x190mm (96 x 96 DPI)
Accession number	Description	genus	Host	GC content	Ratio_CpG
AC_000192.1	Murine hepatitis virus strain bg	rodent	rodent	0.421	0.6453
AF201929.1	Murine hepatitis virus strain bg	rodent	rodent	0.414	0.61
AY319651.1	Avian infectious bronchitis vi g	avian	avian	0.382	0.478
AY572034.1	SARS coronavirus civet007, cb	misc	human	0.408	0.4621
AY595412.1	SARS coronavirus LLJ-2004, cb	human	human	0.408	0.4602
DQ011855.1	Porcine hemagglutinating en b	swine	bat	0.373	0.4901
DQ071615.1	Bat SARS coronavirus Rp3, cc b	bat	bat	0.409	0.4523
DQ084200.1	bat SARS coronavirus HKU3-:b	bat	bat	0.411	0.4988
DQ412042.1	Bat SARS coronavirus Rf1, co b	bat	bat	0.411	0.487
DQ412043.1	Bat SARS coronavirus Rm1, co b	bat	bat	0.411	0.4893
DQ648794.1	Bat coronavirus (BtCoV/133/ b	bat	bat	0.379	0.513
DQ648856.1	Bat coronavirus (BtCoV/273/ b	bat	bat	0.412	0.4834
DQ648857.1	Bat coronavirus (BtCoV/279/ b	bat	bat	0.411	0.4839
DQ811785.1	TGEV Miller M6, complete genome	swine	swine	0.377	0.4787
DQ811788.1	TGEV Purdue P115, complete genome	swine	swine	0.377	0.4559
DQ848678.1	Feline coronavirus strain FCo a	feline	feline	0.384	0.5258
EF065508.1	Bat coronavirus HKU4-4, con b	bat	bat	0.378	0.509
EF065512.1	Bat coronavirus HKU5-5, con b	bat	bat	0.43	0.6151
EF065516.1	Bat coronavirus HKU9-4, con b	bat	bat	0.416	0.6119
EF424621.1	Sable antelope coronavirus Lb	ungulate	ungulate	0.371	0.4702
EF424624.1	Calf-giraffe coronavirus US/b	ungulate	ungulate	0.37	0.4718
EU111742.1	Coronavirus SW1, complete genome	misc	misc	0.393	0.5097
EU420137.1	Bat coronavirus 1B strain AF/c a	bat	bat	0.385	0.4641
FJ425185.1	Waterbuck coronavirus US/Cb	ungulate	ungulate	0.371	0.4715
FJ425186.1	Waterbuck coronavirus US/Cb	ungulate	ungulate	0.37	0.4716

https://mc.manuscriptcentral.com/vevolu
Accession	Name	Host	Similarity 1	Similarity 2	
FJ425187.1	White-tailed deer coronavirus	ungulate	0.371	0.4771	
FJ425190.1	Sambar deer coronavirus US	ungulate	0.37	0.4711	
FJ588686.1	Bat SARS CoV Rs672/2006, ccb	bat	0.411	0.4722	
FJ938054.1	Feline coronavirus UU4, com a	feline	0.386	0.5199	
FJ938058.1	Feline coronavirus UU16, cor a	feline	0.388	0.5146	
FJ938065.1	Bovine respiratory coronavirus	ungulate	0.373	0.4699	
FJ938066.1	Bovine respiratory coronavirus	ungulate	0.37	0.4744	
GQ152141.1	Feline coronavirus strain FC	feline	0.383	0.48	
GQ153548.1	Bat SARS coronavirus HKU3-::b	bat	0.411	0.4992	
GQ427176.1	Turkey coronavirus strain TCi g	avian	0.382	0.4954	
GQ477367.1	Canine coronavirus strain CC a	canine	0.377	0.4362	
HM211100.1	Bat coronavirus HKU9-10-1, rb	bat	0.426	0.6973	
HM211101.1	Bat coronavirus HKU9-10-2, rb	bat	0.411	0.6264	
HM245925.1	Mink coronavirus strain WD1a	mustelid	0.375	0.5315	
HQ012369.1	Feline coronavirus UU21, cor a	feline	0.386	0.5061	
HQ850618.1	Infectious bronchitis virus isc g	avian	0.38	0.49	
JF705860.1	Duck coronavirus isolate DK/ g	avian	0.382	0.4652	
JN129834.1	Human coronavirus OC43 str b	human	0.367	0.4688	
JN856008.2	Canine coronavirus strain A7 a	canine	0.374	0.4289	
JN874562.1	Rabbit coronavirus HKU14 st b	misc	0.376	0.5255	
JQ404409.1	Canine coronavirus strain 1-7a	canine	0.374	0.4084	
Accession	Description	Species	Identity	Similarity	
-------------	---	---------	----------	------------	
JQ989271.1	Rousettus bat coronavirus HKU1	bat	0.385	0.4959	
JX993987.1	Bat coronavirus Rp/Shaanxi2 b	bat	0.416	0.5028	
JX993988.1	Bat coronavirus Cp/Yunnan2 b	bat	0.408	0.4832	
KC008600.1	Infectious bronchitis virus, ccg	avian	0.38	0.4851	
KC175339.1	Canine coronavirus strain 17 a	canine	0.381	0.4989	
KC461237.1	Feline infectious peritonitis v a	feline	0.381	0.5012	
KC869678.4	Coronavirus Neoromicia/PM b	bat	0.402	0.517	
KF530123.1	Feline coronavirus strain Feli a	feline	0.387	0.5117	
KF569996.1	Rhinolophus affinis coronavirus	bat	0.407	0.4617	
KF686346.1	Human coronavirus HKU1 str b	human	0.321	0.4559	
KF793826.1	Bottlenose dolphin coronavirus	misc	0.392	0.4991	
KF931628.1	Infectious bronchitis virus isc g	avian	0.381	0.5056	
KJ473796.1	BtMf-AlphaCoV/JX2012, comma	bat	0.382	0.4566	
KJ473798.1	BtMf-AlphaCoV/HuB2013, cc a	bat	0.419	0.5888	
KJ473800.1	BtMf-AlphaCoV/HeN2013, cc a	bat	0.42	0.5969	
KJ473810.1	BtMs-AlphaCoV/GS2013, cor a	bat	0.386	0.5392	
KJ473811.1	BtRf-BetaCoV/JL2012, compl b	bat	0.41	0.4903	
KJ473812.1	BtRf-BetaCoV/HeB2013, com b	bat	0.41	0.4855	
KJ473813.1	BtRf-BetaCoV/SX2013, comp b	bat	0.41	0.4887	
KJ473814.1	Strand=AC*BtRs-BetaCoV/Hb	bat	0.414	0.4813	
KJ473815.1	BtRs-BetaCoV/GX2013, com b	bat	0.409	0.4512	
KJ473816.1	BtRs-BetaCoV/YN2013, comp b	bat	0.411	0.4715	
KJ473821.1	BtVs-BetaCoV/SC2013, comp b	bat	0.43	0.5834	
KJ473822.1	BtTp-BetaCoV/GX2012, com b	bat	0.378	0.5139	
KJ569769.1	Porcine coronavirus HKU15 s d	swine	0.433	0.5599	
KM454473.1	Duck coronavirus isolate DK/ g	avian	0.393	0.499	
KP143512.1	Feline coronavirus isolate 26 a	feline	0.384	0.4992	
KP849472.1	Alphacoronavirus 1 strain 23,a	canine	0.37	0.3717	
KP981644.1	Canine coronavirus strain CB,a	canine	0.375	0.4113	
KR061459.1	Swine enteric coronavirus str a	swine	0.381	0.4911	
Accession Number	Description	Host	Similarity Score 1	Similarity Score 2	
------------------	---	------	---------------------	---------------------	
KR270796.1	Porcine respiratory coronavirus	swine	0.371	0.5014	
KR822424.1	European turkey coronavirus	avian	0.383	0.5087	
KT029139.1	Middle East respiratory syndrome	human	0.411	0.5561	
KT253327.1	Camel alphacoronavirus	camelid	0.385	0.4957	
KU182964.1	Bat coronavirus isolate JTM C	bat	0.41	0.4944	
KU182965.1	Bat coronavirus isolate JPDB: b	bat	0.381	0.5341	
KU973692.1	UNVERIFIED: SARS-related c	bat	0.411	0.4814	
KX266757.1	Infectious bronchitis virus is c	avian	0.382	0.4804	
KX432213.1	Canine respiratory coronavirus	canine	0.364	0.4621	
KX442564.1	Hypsugo bat coronavirus HKI b	bat	0.422	0.5494	
KX512809.1	Ferret enteric coronavirus str	mustelid	0.389	0.5504	
KX580958.1	Porcine epidemic diarrhea vi a	swine	0.417	0.5425	
KX722530.1	Feline coronavirus isolate Ca a	feline	0.386	0.5101	
KY073745.1	NL63-related bat coronavirus a	bat	0.428	0.6224	
KY073746.1	NL63-related bat coronavirus a	bat	0.426	0.613	
KY073747.1	229E-related bat coronavirus a	bat	0.379	0.4597	
KY073748.1	229E-related bat coronavirus a	bat	0.388	0.4935	
KY352407.1	Severe acute respiratory syn b	bat	0.392	0.458	
KY406735.1	Porcine respiratory coronavirus a	swine	0.372	0.4855	
KY417145.1	Bat SARS-like coronavirus iso b	bat	0.413	0.4749	
KY419103.1	Porcine hemagglutinating en b	swine	0.371	0.4836	
KY419109.1	Porcine hemagglutinating en b	swine	0.372	0.49	
KY770850.1	Bat coronavirus isolate Anlor n	bat	0.421	0.5909	
KY770851.1	Bat coronavirus isolate Anlor n	bat	0.419	0.588	
KY770859.1	Bat coronavirus isolate Anlor n	bat	0.411	0.4636	
KY770860.1	Bat coronavirus isolate Jiuwa n	bat	0.41	0.4837	
KY799179.1	Myotis lucifugus coronavirus a	bat	0.406	0.5063	
KY805846.1	Infectious bronchitis virus is c	avian	0.383	0.486	
KY933090.1	Avian coronavirus strain L11 g	avian	0.379	0.47	
Accession	Description	Host	Identity	AAI	CCI
-------------	--	----------	----------	----------	----------
KY938558.1	Bat coronavirus strain 16BO1n	bat	0.41	0.4984	
KY994645.1	Porcine hemagglutinating en b	swine	0.372	0.4846	
LC022792.1	Porcine epidemic diarrhea vi a	swine	0.418	0.548	
LC061274.1	Equine coronavirus RNA, con b	ungulate	0.372	0.4893	
LC215871.1	Ferret coronavirus genomic f a	mustelid	0.391	0.546	
LC364344.1	Pigeon coronavirus UAE-HKU d	avian	0.396	0.4904	
LC364346.1	Quail coronavirus UAE-HKU3 d	avian	0.423	0.5493	
LC469308.1	Bat coronavirus Vs-CoV-1 germ	bat	0.43	0.5914	
LC494172.1	Bovine coronavirus TCG-6 RN b	bovine	0.393	0.5311	
LN610099.1	Guinea fowl coronavirus GfC g	avian	0.382	0.4971	
MF113046.1	Alphacoronavirus Mink/China/1/2016, a	mustelid	0.372	0.4898	
MF167434.1	Porcine enteric alphacorona a	swine	0.393	0.5311	
MF370205.1	Rhinolophus bat coronavirus b	Swine	0.395	0.5379	
MF618253.1	Murine hepatitis virus strain b	rodent	0.42	0.6041	
MF924725.1	Infectious bronchitis virus isc g	avian	0.382	0.5075	
MG021452.1	Middle East respiratory synd b	bat	0.408	0.548	
MG233398.1	Infectious bronchitis virus isc g	avian	0.383	0.4782	
MG428703.1	Human coronavirus NL63 iso a	human	0.345	0.4042	
MG596802.1	Middle East respiratory synd b	bat	0.39	0.5204	
MG738155.1	Infectious bronchitis virus isc g	avian	0.38	0.4917	

https://mc.manuscriptcentral.com/vevolu
Accession	Description	Host	Similarity 1	Similarity 2
MG762674.1	Rousettus bat coronavirus HI b	bat	0.421	0.6138
MG772933.1	Bat SARS-like coronavirus isolate bat	bat	0.389	0.4477
MG772934.1	Bat SARS-like coronavirus isolate bat	bat	0.388	0.4496
MG812378.1	Sparrow deltacoronavirus strain d	avian	0.435	0.5409
MG916901.1	Bat coronavirus BtCoV/Rh/YF n	bat	0.411	0.575
MG916903.1	Bat coronavirus BtCoV/Rh/YF n	bat	0.413	0.5597
MG916904.1	Bat coronavirus BtCoV/Rh/YF n	bat	0.39	0.4841
MG987420.1	Middle East respiratory syndrome b	bat	0.423	0.5674
MH002337.1	Tylonycteris bat coronavirus b	bat	0.378	0.5101
MH002338.1	Tylonycteris bat coronavirus b	bat	0.378	0.5092
MH002341.1	Pipistrellus bat coronavirus b	bat	0.431	0.6159
MH002342.1	Pipistrellus bat coronavirus b	bat	0.431	0.6287
MH021175.1	Avian coronavirus strain D27 g	avian	0.382	0.5237
MH181793.1	Infectious bronchitis virus strain g	avian	0.384	0.4906
MH532440.1	Quail deltacoronavirus strain d	avian	0.423	0.5559
MH687951.1	Alphacoronavirus sp. strain Va	bat	0.404	0.549
MH687953.1	Alphacoronavirus sp. strain Va	bat	0.401	0.5257
MH687960.1	Alphacoronavirus sp. strain Va	bat	0.401	0.494
MH687966.1	Alphacoronavirus sp. strain Va	bat	0.402	0.4924
MH687968.1	Betacoronavirus sp. strain VZb	rodent	0.379	0.5301
MH687970.1	Betacoronavirus sp. strain V2b	rodent	0.379	0.5122
MH938448.1	Alphacoronavirus Bat-CoV/P.a	bat	0.424	0.548
MH938449.1	Alphacoronavirus Bat-CoV/P.a	bat	0.404	0.4843
MH938450.1	Alphacoronavirus Bat-CoV/P.a	bat	0.403	0.473
MK211369.1	Coronavirus BtSk-AlphaCoV/a	bat	0.404	0.517
MK211371.1	Coronavirus BtSk-AlphaCoV/a	bat	0.4	0.5208
MK211373.1	Coronavirus BtRs-AlphaCoV/a	bat	0.413	0.5763
MK211374.1	Coronavirus BtRI-BetaCoV/Scb	bat	0.409	0.4895
MK211375.1	Coronavirus BtRs-BetaCoV/Yb	bat	0.411	0.4765
MK211376.1	Coronavirus BtRs-BetaCoV/Yb	bat	0.409	0.4661
MK211377.1	Coronavirus BtRs-BetaCoV/Yb	bat	0.411	0.4701
MK211379.1	Coronavirus BtRt-BetaCoV/Gb	bat	0.38	0.4867
MK357909.1	Middle East respiratory syndrome b	camelid	0.412	0.5588
Accession	Description	Host	Identity 1	Identity 2
-------------	---	----------	------------	------------
MK359255.1	Canada goose coronavirus strain	avian	0.384	0.4641
MK423877.1	Pheasant coronavirus strain	avian	0.382	0.4649
MK472067.1	Alphacoronavirus sp. isolate	bat	0.401	0.6095
MK472069.1	Alphacoronavirus sp. isolate	bat	0.423	0.5484
MK472070.1	Alphacoronavirus sp. isolate	bat	0.41	0.5892
MK472071.1	Alphacoronavirus sp. isolate	bat	0.427	0.5427
MK492263.1	Bat coronavirus strain	bat	0.383	0.4848
MK574043.1	Infectious bronchitis virus strain	avian	0.379	0.4693
MK581202.1	Infectious bronchitis virus strain	avian	0.381	0.4834
MK581206.1	Infectious bronchitis virus strain	avian	0.382	0.4931
MK679660.1	Hedgehog coronavirus 1, complete genome	misc	0.373	0.4757
MK720944.1	Tylonycteris bat coronavirus	bat	0.37	0.4679
MK720946.1	Rhinolophus bat coronavirus	bat	0.403	0.5248
MK907287.1	Erinaceus hedgheg coronav b	bat	0.408	0.5156
MN065811.1	Bat alphacoronavirus strain	bat	0.408	0.5156
MN514964.1	Dromedary camel coronavirus	camelid	0.369	0.488
MN611517.1	Rousettus aegyptiacus bat cc a	bat	0.391	0.4746
MN611518.1	Miniopterus pusillus bat cor a	bat	0.42	0.5836
MN611519.1	Tylonycteris pachypus bat co b	bat	0.38	0.5195
MN611521.1	Scotophilus kuhlii bat corona a	bat	0.403	0.4891
MN611522.1	Rhinolophus affinis bat cor a	bat	0.4	0.5559
MN611523.1	Hipposideros pomona bat co a	bat	0.383	0.4744
MN611525.1	Hipposideros pomona bat co a	bat	0.387	0.5203
MN690611.1	Bottlenose dolphin coronavirus	misc	0.393	0.4899
MN996532.1	Bat coronavirus RaTG13, complete genome	bat	0.381	0.4088
MT039887.1	Severe acute respiratory syn b	human	0.38	0.4077
MT072864.1	Pangolin coronavirus isolate b	misc	0.385	0.4178
NC_002645.1	Human coronavirus 229E, co a	human	0.383	0.4965
NC_009019.1	Bat coronavirus HKU4-1, con b	bat	0.378	0.5116
NC_009021.1	Bat coronavirus HKU9-1, con b	bat	0.411	0.6712
NC_009657.1	Scotophilus bat coronavirus	bat	0.401	0.5093
NC_009988.1	Bat coronavirus HKU2, comp a	bat	0.393	0.5203
NC_010438.1	Bat coronavirus HKU8, comp a	bat	0.418	0.5959
NC_011547.1	Bulbul coronavirus HKU11-9:d	avian	0.387	0.4339

https://mc.manuscriptcentral.com/vevolu
Accession	Species	Host	Similarity	Identity
NC_011549.1	Thrush coronavirus HKU12-6d	avian	0.38	0.4146
NC_011550.1	Munia coronavirus HKU13-3!d	avian	0.425	0.5583
NC_014470.1	Bat coronavirus BM48-31/Bcn	bat	0.404	0.5102
NC_016991.1	White-eye coronavirus HKU1d	avian	0.398	0.4538
NC_016992.1	Sparrow coronavirus HKU17, d	avian	0.445	0.5764
NC_016993.1	Magpie-robin coronavirus HKd	avian	0.467	0.6662
NC_016994.1	Night-heron coronavirus HKLd	avian	0.381	0.4131
NC_016995.1	Wigeon coronavirus HKU20, d	avian	0.393	0.5233
NC_017083.1	Rabbit coronavirus HKU14, cb	misc	0.377	0.5185
NC_022103.1	Bat coronavirus CDPHE15/USa	bat	0.408	0.5066
NC_025217.1	Bat Hp-betacoronavirus/Zhejb	bat	0.413	0.5892
NC_026011.1	Betacoronavirus HKU24 strai b	rodent	0.401	0.5491
NC_028811.1	BtMr-AlphaCoV/SAX2011, coa	bat	0.41	0.5717
NC_028814.1	BtRf-AlphaCoV/HuB2013, coa	bat	0.383	0.527
NC_028824.1	BtRf-AlphaCoV/YN2012, coma	bat	0.378	0.488
NC_028833.1	BtNv-AlphaCoV/SC2013, cora	bat	0.419	0.573
NC_030292.1	Ferret coronavirus isolate FRa	mustelid	0.39	0.5741
NC_030886.1	Rousettus bat coronavirus isb	bat	0.453	0.6261
NC_032107.1	NL63-related bat coronavirus a	bat	0.392	0.5634
NC_032730.1	Lucheng Rn rat coronavirus ia	rodent	0.402	0.5938
NC_034440.1	Bat coronavirus isolate PRED n	bat	0.412	0.5254
NC_034972.1	Coronavirus AcCoV-JC34, cora	rodent	0.401	0.5256
Ratio_UpA	Original Paper PMID	Sample	Replication Site	
----------	---------------------	--------	-----------------	
0.9294			Neurotropic	
			Hepatotropic,	
			weakly	
0.9313			neurotropic	
0.9008	32214717	Unknown	Unknown	
			Respiratory	
0.7975	16485471	Throat/rectal	Enteric	
0.7965	12730501	Respiratory	Enteric	
	17649356	tonsils	neural	
0.7951	16195424	Blood, faecal	Enteric	
0.8042	16169905	Blood, nasoph	Enteric	
		Blood, faeces,	and throat	
0.7957	16195424	swab	Enteric	
0.7836	16195424	Blood, faecal	Enteric	
0.9593	16840328	Oropharyngeal	Enteric	
0.7933	16840328	Oropharyngeal	Enteric	
0.7847	16840328	Oropharyngeal	Enteric	
0.813	1379786	can’t access orig	Enteric	
0.8062	1379786	can’t access orig	Enteric	
0.8457	17363313	Jejunum/ liver t	Macrophage	
0.9595	17121802	Alimentary/res	Enteric	
0.8265	17121802	Alimentary/res	Enteric	
		Alimentary/	respiratory	
		specimen	Enteric	
1.0107	17121802	Faeces	Enteric	
0.9352	18842722	Faeces	Enteric	
0.9353	17344285	Faeces	Enteric	
0.9088	18353961	Liver tissue	Hepatotropic	
0.8317	18420807	Faeces	Enteric	
0.9354	18842722	Faeces	Enteric	
0.9355	18842722	Faeces	Enteric	

https://mc.manuscriptcentral.com/vevolu
Score	Code	Sample Type	Pathogen Type
0.935	18842722	Faeces	Enteric
0.9343	18842722	Faeces	Enteric
0.7812	20016037	Faeces	Enteric
0.8452	Unknown	Unknown	Macrophage
0.8437	Unknown	Unknown	Unknown
0.9334	Unknown	Unknown	Enteric
0.936	Unknown	Unknown	Respiratory?
0.8331	23239278	Pleural effusion	Respiratory
		Respiratory/	alimentary
		specimen	Enteric
0.8072	20071579		
0.9067	20022075	Intestines	Enteric
0.7957	Unknown	Unknown	Unknown
1.0908	20702646	Alimentary/ res	Enteric
1.0511	20702646	Alimentary/ res	Enteric
0.8856	21346029	Faecal sample	Enteric
0.8385	Unknown	Faecal sample	Enteric
0.8985	22966194	Unknown	Respiratory
		Respiratory/	nephrotropic/
		enteric/	
0.8888	27164844	Kidney/ liver sarhep	
0.9219	21849456	Nasopharyngea	Respiratory
0.797	22609354	Unknown	Enteric
0.9237	22398294	Faeces	Enteric
0.7811	Unknown	Unknown	Enteric
Alimentary/ respiratory specimen	Enteric		
----------------------------------	--------		
0.7991	22933277		
0.7824	23739658		
0.7906	23739658		
0.8851	Unknown		
0.8466	Unknown		
0.8469	23996606		
0.9157	24050621		
0.8353	Unknown		
0.797	24719429		
0.9595	24394697		
0.9045	24227844		

Faeces	Enteric
0.8967	25721384
0.8117	26262818
0.8495	26262818
0.8539	26262818
0.8025	26262818
0.8029	26262818
0.7995	26262818
0.801	26262818
0.7778	26262818
0.8007	26262818
0.7888	26262818
0.8991	24960574
0.9615	26262818
0.8719	24744332
0.8579	26053682
0.8446	25667330
0.7629	26221765

Vaccine	Respiratory
0.7778	25953186
0.7668	26689738

Pharyngeal/ anal sw Enteric/ Respiratory
0.8117
0.8495
0.8539
0.8025
0.8029
0.7995
0.801
0.7778
0.8007
0.7888
0.8991
0.9615
0.8719
0.8579
0.8446
0.7629

Anal swab Enteric
0.9615

Throat/ anal sw Enteric/ Respiratory
0.8117
0.8495
0.8539
0.8025
0.8029
0.7995
0.801
0.7778
0.8007
0.7888
0.8991
0.9615
0.8719
0.8579
0.8446
0.7629
0.8719

Faecal/ intestinal Enteric
0.7778
0.7668

Faeces/ orophary Respiratory
0.8579

Tissue lesion sa Macrophage
0.8446

Lung sample Pantropic
0.7778

faecal/ intestinal Enteric
0.8112
Score

0.8237
0.9117
0.8972
0.8121
0.808
0.9571
0.7993
0.8859
0.9422
0.8696
0.8709
0.8529
0.8553
0.7791
0.7805
0.8027
0.8182
0.869
0.8218
0.7895
0.925
0.929
0.8508
0.8504
0.7943
0.7905
0.8757
0.9156
0.8999

https://mc.manuscriptcentral.com/vevolu
Score	ID	Description	Location
0.8121	28725945	Oral swab/ faeces Enteric/ Respiratory and brain	
0.922	28956766	Link not provided not stated; present enteric	
0.8525	26272566	Faecal/ nasal sw Enteric	
0.8762	28820366	Faeces Enteric	
0.9491	29769348	Faeces Enteric	
0.911	29769348	Faeces Enteric	
0.9067	Unknown	Unknown Unknown Unknown	
0.8879	25712772	Faeces Enteric	
0.879	Unknown	Unknown Unknown	
0.9126	28654418	Intestinal sample Enteric	
0.9126	29102111	Faeces/ intestin Enteric	
0.9172	29010211	Faeces/ intestin Enteric Hepatotropic, neurotropic	
0.9241			
0.8976	30463206	Unknown Nephrotropic	
0.8718	29669833	Alimentary spec Enteric	
		Respiratoy/ nephrotopic/	
0.9002	30159377	Trachea/ kidney enteric	
0.8735	29741740	Nasopharyngea Respiratory	
0.9289	29258555	Pool of viscera Enteric	
		Respiratoy/ nephrotropic/	
0.9035	29337625	Unknown enteric	
Code	Date	Sample Type	Full Pathogen Groups
--------	----------	----------------------	-----------------------
1.0278	29500692	Faeces/ anal sw Enteric	Enteric/ respiratory/
0.8205	30209269	Intestinal tissue Brain?	Enteric/ respiratory/
0.8278	30209269	Intestinal tissue Enteric	Enteric/ respiratory/
0.8494	29872066	Faeces Enteric	Enteric/ respiratory/
0.9324	31022925	Faeces Enteric	Enteric/ respiratory/
0.8491	31022925	Faeces Enteric	Enteric/ respiratory/
0.8746	31022925	Faeces Enteric	Enteric/ respiratory/
0.8702	29669833	Alimentary spec Enteric	Enteric/ respiratory/
0.9612	29669833	Alimentary spec Enteric	Enteric/ respiratory/
0.9668	29669833	Alimentary spec Enteric	Enteric/ respiratory/
0.8293	29669833	Alimentary spec Enteric	Enteric/ respiratory/
0.8412	29669833	Alimentary spec Enteric	Enteric/ respiratory/
0.8989	30533915	Tracheal sample Enteric	Enteric/ respiratory/
0.89	18792774	Kidney tissue Nephrotropic	Enteric/ respiratory/
0.9222	30758768	Intestines Enteric	Enteric/ respiratory/
0.8109	30568804	Faeces Enteric	Enteric/ respiratory/
0.8222	30568804	Faeces Enteric	Enteric/ respiratory/
0.8241	30568804	Faeces Enteric	Enteric/ respiratory/
0.8152	30568804	Faeces Enteric	Enteric/ respiratory/
0.935	30568804	Faeces Enteric	Enteric/ respiratory/
0.9244	30568804	Faeces Enteric	Enteric/ respiratory/
0.7797	30447246	Faeces/ organ sw Enteric	Enteric/ respiratory/
0.789	30447246	Faeces/ organ sw Enteric	Enteric/ respiratory/
0.7837	30447246	Faeces/ organ sw Enteric	Enteric/ respiratory/
0.8235	31474969	Anal swab Enteric	Enteric/ respiratory/
0.8362	31474969	Anal swab Enteric	Enteric/ respiratory/
0.9198	31474969	Anal swab Enteric	Enteric/ respiratory/
0.806	31474969	Anal swab Enteric	Enteric/ respiratory/
0.7927	31474969	Anal swab Enteric	Enteric/ respiratory/
0.7966	31474969	Anal swab Enteric	Enteric/ respiratory/
0.7795	31474969	Anal swab Enteric	Enteric/ respiratory/
0.9945	31474969	Anal swab Enteric	Enteric/ respiratory/
0.8987	30482895	Nasal swab Respiratory	Enteric/ respiratory/
Score	Reference	Sample Type	Pathotype
--------	-----------	------------------------------	------------
0.9356	30976080	Cloacal swab	Enteric
0.9018	31902509	Tracheal/ kidney sample	Respiratory
0.8626	31847282	Faeces/serum	Enteric
0.6957	31847282	Faeces/serum	Enteric
0.8203	31847282	Faeces/serum	Enteric
0.7551	31847282	Faeces/serum	Enteric
0.9862	31418677	Faeces/rectal swab	Enteric
0.8982	31255833	Unknown	Respiratory
0.8943	31917362	Unknown	Respiratory
0.8931	31917362	Unknown	Nephrotropic
0.9539	31063092	Faeces/enteric	Enteric
0.8559	31067830	Oral/ alimentary/ Enteric	Respiratory
0.8656	31067830	Oral/ alimentary/ Enteric	Respiratory
0.9289	31653070	Alimentary sample	Enteric
0.9862	31503522	Faeces	Enteric
0.935	31534035	Nasal swab	Enteric/Respiratory
0.795	31996413	Rectal swab	Enteric
0.8452	31996413	Rectal swab	Enteric
0.9655	31996413	Rectal swab	Enteric
0.8333	31996413	Rectal swab	Enteric
0.9445	31996413	Rectal swab	Enteric
0.8001	31996413	Rectal swab	Enteric
0.8472	31996413	Rectal swab	Enteric
0.9081	Unknown	faeces	Enteric
0.833	Unknown	faecal swab	Enteric
0.8286	Unknown	Unknown	Respiratory
			Enteric/Respiratory
0.818	32218527	Intestine-lung	Respiratory
0.793	11369870 (seq paper)	Lab strain	Respiratory
0.9573	17121802	Alimentary/ res	Enteric
1.0833	17121802	Alimentary/ res	Enteric
0.8266	16840328	Oropharyngeal/ Enteric	Enteric
0.9069	17617433	Respiratory/ ali	Enteric
0.8529	18420807	Faeces	Enteric
0.8867	18971277	Throat/cloacal	Enteric

https://mc.manuscriptcentral.com/vevolu
Score	Run	Sample Type	Pathogen(s)
0.8766	18971277	Throat/ cloacal	Enteric
0.93	18971277	Throat/ cloacal	Enteric
0.8546	20686038	Faeces	Enteric
0.9197	22278237	Rectal swab	Enteric
0.8237	22278237	Rectal swab	Enteric
0.933	22278237	Rectal swab	Enteric
0.9229	22278237	Rectal swab	Enteric
1.0157	22278237	Rectal swab	Enteric
1.0034	22278237	Rectal swab	Enteric
0.9216	22398294	Faeces	Enteric
0.8746	Unknown	Unknown	Unknown
0.8245	26262818	Pharyngeal/ anal	Enteric/ Respiratory
0.9142	25552712	Alimentary sample	Enteric
0.8605	26262818	Pharyngeal/ anal	Enteric/ Respiratory
0.809	26262818	Pharyngeal/ anal	Enteric/ Respiratory
0.9463	26262818	Pharyngeal/ anal	Enteric/ Respiratory
0.834	26262818	Pharyngeal/ anal	Enteric/ Respiratory
0.8852	27283016	Rectal swab	Enteric
0.9461	27676249	Rectal swab	Enteric
0.7816	28077633	Faecal/ oral sw	Enteric/ Respiratory
0.896	25463600	Faeces/ tissues	Enteric
0.9029	28377531	Blood/ oral/ rect	Enteric
0.9127	28549438	Intestinal sample	Enteric

https://mc.manuscriptcentral.com/vevolu
Replication Site Grouped	PMID
Other	18137294; 8f
Multiple	11502093; 6:
Unknown	
Multiple	16485471
Respiratory	14990596; 1:
Multiple	16809333
Enteric	16195424
	16169905;
	17121802;
Enteric	16647731
Enteric	16195424
Enteric	16840328
Enteric	16840328
Enteric	17023013
Enteric	17023013
Other	17363313;
	19254859
Enteric	16647731;
Enteric	23720729
Enteric	23720729
	17121802;
	16647731;
Enteric	29500692
Enteric	
Enteric	17344285
Other	18353961
Enteric	8586714
Condition	Count
-----------------	-------------
Enteric	8586714
Enteric	8586714
Enteric	

Condition	Count
Other	28675506
Unknown	

Condition	Count
Multiple	
Respiratory	

Condition	Count
Respiratory	23239278
	20071579
	17121802

Condition	Count
Enteric	

Condition	Count
Enteric	

Condition	Count
Unknown	

Condition	Count
Enteric	

Condition	Count
Enteric	

Condition	Count
Unknown	

Condition	Count
Enteric	

Condition	Count
Multiple	
Respiratory	

Condition	Count
Respiratory	22198411

Condition	Count
Multiple	27164844
Respiratory	21849456

Condition	Count
Respiratory	23337903

Condition	Count
Enteric	

Condition	Count
Enteric	

Condition	Count
Enteric	22609354

Condition	Count
Enteric	18635322

Condition	Count
Enteric	

Condition	Count
Enteric	1259219

https://mc.manuscriptcentral.com/vevolu
Disease	Code
Enteric	22933277;
Multiple	17121802
Unknown	
Unknown	
Other	3038290
Enteric	
Unknown	
Enteric	
Respiratory	15613317;
Enteric	24227844
Multiple	
Other	25667330
Enteric	26221765
Multiple	
Enteric	28634353
Multiple	
Other	25667330
Enteric	26221765
Multiple	
Enteric	16704791;
Multiple	17275120
Enteric	

https://mc.manuscriptcentral.com/vevolu
Enteric	30146717
Respiratory	23075143;
Respiratory	26049252
Enteric	26847648
Enteric	
Enteric	
Multiple	27876864
Respiratory	28506792
Enteric	
Enteric	16499943
Enteric	28284624
Respiratory	
Enteric	
Respiratory	30850666
Enteric	
Respiratory	30959064
Enteric	
Respiratory	30959064
Enteric	
Enteric	
Enteric	28840816
Enteric	
Multiple	28495648;
Respiratory	30744668
Respiratory	21331953

https://mc.manuscriptcentral.com/vevolu
Type	Accession Numbers
Enteric	23648375
Enteric	28820366
Enteric	29769348
Enteric	29769348
Unknown	25712772;
Enteric	30842318
Enteric	30103259
	29102111;
	29618817;
Enteric	31554686
Multiple	6324031; 30(
Multiple	20153350
Enteric	27928919
	15034574;
	17079323;
Respiratory	17944272
Enteric	29337625;
Multiple	30173857
Category	Code
------------	----------
Enteric	
Respiratory	31902509
Enteric	
Respiratory	31255833
Respiratory	31917362
Other	31917362
Enteric	31063092
Multiple	
Enteric	
Enteric	
Multiple	
Enteric	
Multiple	24655427
Enteric	
Enteric	
Respiratory	32159775; 32235945
Enteric	
Respiratory	32159775; 32235945
Enteric	
Respiratory	11369870; 22926811; 16603522
Enteric	16647731; 23720729
Enteric	17121802; 29500692
Enteric	16840328; 17617433; 17121802;
Enteric	16647731;
Enteric	27048154
Enteric	18971277;
Enteric	22278237
Enteric 18971277;
22278237
Enteric 18971277;
22278237
Unknown Multiple
Enteric
Multiple
Multiple
Multiple
Multiple
Enteric
27283016
Enteric 29500692;
Multiple
Enteric
Enteric
28377531
Also referred to as MHV-4 or JHM SD. A lot of papers since 1940s suggest that JHM is a neurotropic virus. Mice infected with JHM developed encephalitis and demyelinating diseases. Many studies have shown MHV-2 is mainly hepatotropic and weakly neurotropic. Intracerebral inoculation of MHV-2 into mice showed viral replication in liver and brain. Mice infected with MHV-2 developed meningitis and hepatitis.

CoV was detected in both throat and rectal swab. Many studies showed that respiratory tract is the primary target of infection.

PHEV-WV572 first isolated from tonsils of two piglets with encephalomyelitis; virus has strong tropism for epithelial cells of URT and CNS; transmitted through nasal secretions. 3 of 30 bat faecal swabs were positive for RdRp and N gene, none detected in the throat swabs tested. RdRp was detected in the anal swab of 23 bats from the same species, but not in the nasopharyngeal swab. 3 samples were sequenced and they were 3 different HKU3 isolates; Refer to 5) EF065516.1 for more HKU3 isolates by the same group.

1 of 8 bats was positive for RdRp and N gene in faecal swab; not tested in throat swab. 1 of 8 bats was positive for RdRp and N gene in faecal swab, none detected in the throat swabs tested. 2 of 14 Tylonycteris pachypus anal swabs were positive for RdRp, none detected in throat swab. 4 of 41 Rhinolophus ferrumequinum anal swabs were positive for RdRp, none detected in throat swab. 1 of 38 Rhinolophus macrotis anal swabs were positive for RdRp, none detected in throat swab. TGEV isolates are enteric; there is a naturally occurring deletion variant, Purdue, which has respiratory tropism. TGEV isolates are enteric; there is a naturally occurring deletion variant, Purdue, which has respiratory tropism.

C1JE was identified as FIPV type I and it was isolated from a cat with a histopathologically confirmed diagnosis of FIP. The nucleotide sequences of the virus isolated from jejunum and liver are identical.; FIPV is known to target and replicate in macrophages.

Another HKU4 isolate by the same group. Refer to 69) NC_009019.1 and 5) EF065516.1; Another study by the same group which showed 55 of 216 alimentary samples were positive for RdRp, none detected in respiratory samples.

52 bats (~10% of total bats) were positive for CoV RdRp (bat CoV HKU2 (6), HKU3 (1), HKU8 (2), HKU9 (42), HKU10(1)) in RT-PCR. RdRp was found in all alimentary specimen, but it was also detected in one respiratory sample (HKU2 strain, also positive in alimentary specimen). Previous study by the same group also found CoV RdRp (bat CoV HKU2 (2), HKU3 (21), HKU4 (4), HKUS (4), HKU6 (1), HKU7 (1), HKU8 (4)) in 37 bat anal swabs (~12%), but not in nasopharyngeal swabs; Refer to 70) MG762674.1 for more info of HKU9.

Isolated from a sable antelope with diarrhea. Isolated from a giraffe with diarrhea. Inoculation of a BCoV-seronegative gnotobiotic calf with GiCoV-OH3 orally caused severe diarrhea. The beluga whale died from illness characterised by generalized pulmonary disease and terminal acute liver failure. CoV was detected in liver tissue.

Gnotobiotic calf-adapted strain of OH-WD358. Refer to 214) FJ425186.1. Isolated from a waterbuck with diarrhea. Viral antigen was detected in the respiratory tract and intestinal tissues from calves inoculated with WbCoV-OH-WD358, particularly high in colon tissues (minimal staining in respiratory tract tissues).
Isolated from a white-tailed deer with diarrhea. Viral antigen was detected in the respiratory tract and intestinal tissues from calves inoculated with WtDCoV-OH-WD470, particularly high in colon tissues (minimal staining in respiratory tract tissues)

Isolated from a sambar deer with diarrhea. Viral antigen was detected in the respiratory tract and intestinal tissues from calves inoculated with SDCoV-OH-WD388, particularly high in ileum and colon tissues (minimal staining in respiratory tract tissues)

HEK293 cell line stably express the ectodomain of S proteins derived from UU4 was established. By using recombinant S protein as probe, S protein IHC was performed on cat tissues with feline infectious peritonitis (FIP). UU4 S protein bound to macrophages in lymph node, liver, spleen and lung tissues, which was correlated with FCoV antigens IHC that stained macrophages in livers, spleens, kidneys, lymph nodes and leptomeninges, but not the intestinal tracts.

Previous study by the same group submitted the sequences showed that AH187 CoV RNA was detected in both nasal and rectal swab of infected calf with overt respiratory and enteric symptoms. The accession numbers for the isolate from nasal and rectal swab are different from this.

As its name suggests
NTU156 was isolated from a kitten with FIP by the co-cultivation of pleural effusion with feline fcfw-4 cells
RdRp was detected in respiratory specimens from 2 of 1337 bats and in alimentary specimens from 126 of 1337 bats (in general for this SARSr-Rh-BatCoV strain); Refer to 5) EF065516.1 for more isolates of HKU3 by the same group
Virus was isolated from a turkey with acute enteritis; Virus inoculation of 1-day-old pouls caused diarrhea by 48 hpi and lesions in the GI tract. Viral RNA was detected in the samples from GI tract.

Another HKU9 isolate by the same group of 5) EF065516.1. Refer to 5) EF065516.1 and 70) MG762674.3

Another HKU9 isolate by the same group of 5) EF065516.1. Refer to 5) EF065516.1 and 70) MG762674.2
Infected minks had diarrhea. RdRp and N genes were detected in faecal samples
Associated with FIP
Isolated from a chicken with respiratory problems

Isolated from ducks with mild respiratory and diarrhea symptoms. Necropsy also found kidney swelling and bleeding bursal and thymus organs
Isolated from a patient with upper respiratory tract infection; the most common symptoms of OC43 infection are fever, cough and upper respiratory tract infection

The authors stated that the dog, which the virus was isolated from, presented primarily with enteritis; In general, canine alphacoronavirus are known as canine enteric coronavirus (CCoV) whereas canine betacoronavirus are recognised as canine respiratory coronavirus (CRCoV). Another isolate of HKU14. Refer to 209) NC_017083.1
Neonatal dogs inoculated orally with CoV 1-71 showed enteritis and diarrhea. CoV was detected in faeces and intestines.
Only 3 bats were positive for this isolate of HKU10 and they were all detected only in alimentary samples; Another isolate of HKU10 (Hipposideros pomona bat HKU10) was identified in the same study where 36 positive alimentary samples and 3 positive respiratory samples (2 of which were also tested positive in alimentary samples) were detected; An isolate of HKU10 was also found in bat alimentary specimen in another study by the same group

WSU 79-1146 is known as FIPV

The first paper reported HKU1 isolated the virus from nasopharyngeal aspirate of a patient with pneumonia. Viral RNA was not detected in urine and faecal samples; Respiratory tract infections are usually observed in HKU1-positive patients

RdRp was found in 3 of 48 faecal samples, none detected in respiratory swab

VicS-del has 40 nucleotide deletion in 3' UTR compared to VicS-v (predominant subpopulation in VicS vaccine). Chickens inoculated with VicS-v by eye drop showed high viral concentrations in the trachea and low virus load was detected in the cecal tonsil (no virus found in kidney). Chickens inoculated with VicS-del showed minimal virus concentrations in trachea and cecal tonsil, none detected in kidney. Chickens inoculated with VicS-del and VicS-v showed similar symptoms, but less severe with VicS-del infection. Lesions were observed in trachea, but not in kidney

2 of 18 bats were positive for RdRp in anal swabs, but not in pharyngeal swabs

Related publication PMID - 26433221
Related publication PMID - 26262818, 26433221
HKU15 strain IN2847; detected in samples from diarrhoeic pigs; also detected in respiratory samples (second paper- only NPAs and no GI samples collected)

Tissue lesion sample was derived from a kitten with FIP. IHC identified a large number of macrophages with abundant viral antigen (i.e. N protein) within the lesions

Isolated from the faecal specimen of a dog with diarrhea

Clinical symptoms of the sick dogs included fever, lethargy, inappetence, vomiting, hemorrhagic diarrhea, and neurologic signs. Necropsy showed abnormalities in abdominal cavity, lungs, liver, spleen, kidney and lymph node. CoV RNA was detected in faeces, intestine, lungs, spleen, liver, kidney, lymph node and brain. CoV antigen was found in lungs, kidneys, liver, spleen, gut, and lymph nodes

Paper vague; samples collected from pigs with diarrhoea, samples by EM with CoV particles partially sequenced, and representative (two) samples whole genome sequenced. One was PEDV and one was a recombinant of PEDV and TGEV
No access to paper but virus name is 'porcine respiratory virus strain OH7269' isolated from 42-day-old turkeys with poult enteritis complex. Viral antigen was detected in the intestinal tissues. The first report of MERS isolated the virus from sputum of a patient with pneumonia; in general, patients infected with MERS usually develop pneumonia.

1 of 30 bats was positive for RdRp in the intestinal specimen, but not in respiratory specimen. Shared 99% identity with SARSr-BatCoV Rf1; Refer to 38) DQ412042.1

5 of 95 bats were found to be RdRp-positive in intestinal specimens, none in respiratory specimens.

1-day-old chicks were challenged with 3575/08 intranasally. H&E staining showed abnormalities of tracheal and kidney tissues. Viral RNA was detected in lung and kidney samples.

Isolated from a dog with mild respiratory infection.

FECV (or FRECV) were shown to be associated with epizootic catarrhal enteritis which caused diarrhea, lethargy, anorexia and vomiting in ferrets. FECV-N gene was detected in faeces and saliva. FECV RNA and antigen were detected in the cytoplasm of enterocytes at the villi tips in the jejunum, not found in the large intestine, lymph nodes, spleen, esophagus, stomach, and parotid salivary glands.

PEDV highly virulent strain PC22A passaged 100 times in Vero cells; sample and replication site refer to original sample and paper.

Associated with FIP so should be enteric, but lung sample recorded on NCBI.

The lab had been isolating a lot of viruses from fresh intestines and faecal samples, but they did not detect this strain. This strain was isolated during their attempt to isolate other viruses from the nasal swab.

Nasal swabs collected from swine presenting with ILI; PMID link is presumptive based on author names.

Nasal swabs collected from swine presenting with ILI; PMID link is presumptive based on author names.

Detected CoV RdRp only in the intestinal tissues of 53 bats. In CoV N IHC, N antigen was detected in 5 lung samples which also showed positive viral RNA in the intestines.

Isolated from trachea and kidneys collected from a chicken with severe respiratory signs and diarrhea. Post mortem examination showed abnormalities in trachea and kidneys; Virus was detected in tracheal and oropharyngeal swab of 1-day-old chicks which were infected oculonasally.

Isolated from chickens with respiratory disease. Chickens infected with L1148 at low passage showed ciliostasis and lesions at the kidney. Virus at high passage (>80) lost its replication at kidney, but the virus was still detected in trachea (IHC) and oropharyngeal swab (RT-PCR).
This virus isolate was detected in oral swab. The authors collected a lot of oral swabs, but only a few of other samples and we don’t know if the other samples were from the same bat. Since the virus was isolated from oral swab, it might suggest the virus to be respiratory. Related publication PMID - 31076983

Porcine haemagglutinating encephalomyelitis virus; PHEV propagates via neural circuitry and replicates in nerve cells of CNS

Sequences are derived from an outbreak of diarrhoea in pigs, though sample collection type and replication site are not described; this is presumptive based on knowledge of PEDV

Infected horses had diarrhea. N gene was detected in faecal sample and negative in nasal swab. Authors suggest the virus to be enteric because the nucleotide sequence shared >90% identity with FRECV MSU-2. Refer to 120) KXS12809.1 for details of FRECV

1 of 18 pigeon samples tested were positive for HKU30 CoV

5 of 10 quail samples tested were positive for HKU30 CoV

Isolated from guinea fowl with peracute enteritis; H&E staining showed lesions in duodenum and intestines. Viral antigen was also found in duodenum and lower intestinal tract by IHC

Newborn piglets infected with GDS04 via oral feeding developed mild diarrhea at 1-4 dpi and showed severe watery diarrhea, vomiting and dehydration at 5-12 dpi. Tissues from two GDS04-infected piglets showed the virus detection in 2/2 hearts, 2/2 livers, 2/2 spleens, 2/2 kidneys, 2/2 stomachs, and 1/2 lungs. Lesion was only detected in intestinal tract, not any other organ.

Five 3-day-old piglets infected with SeACoV showed acute vomiting and watery diarrhea at 27-40 hpi; Another strain of SeACoV (SADS-CoV) was detected only in intestinal tissues of sick pigs (n=3); Infection of SeACoV in C57BL/6J mice showed the presence of N gene in intestinal, stomach and spleen tissues at 1 dpi, but replication of virus was detected only in 3 dpi spleen tissues (not intestines) by IHC staining of dsRNA, virus M and NSP3 (replication in mice might be different).

A lot of studies suggest dual tropism of A59. Mice infected with A59 showed hepatitis, mild encephalitis and demyelination.

Chickens were inoculated by the eye drop method with K2. Infected chickens showed respiratory problems and nephritis. Virus was successfully re-isolated from trachea, lung, cecal tonsil, kidney and bursa.

Chicken infected with IS-1494 showed depression, ruffled feathers, nasal discharge, coughing and mild watery diarrhea. Gross examination and H&E staining found abnormalities in trachea, lungs and kidney. Viral RNA was detected in trachea, lung, faeces, cecal tonsil, proventriculus, spleen and kidney

The first paper reported NL63 isolated the virus from nasopharyngeal aspirate of a patient with bronchiolitis and conjunctivitis. Patients infected with NL63 usually develop respiratory diseases.

Isolated from a chicken with swollen kidney; Chickens were inoculated with IBS130/2015 intraoculary. Infected chickens developed lesions in trachea, lungs and kidneys. Viral antigen was detected in trachea, kidney, lung, jejunum and cecal tonsil, but not in proventriculus. Viral RNA was also found in all the organs tested including proventriculus.
Heart, liver, spleen, lung, kidney, brain, and intestinal tissues were collected from 3 HKU9-infected bats. 2 bats showed HKU9 gene expression in kidney, heart, lung and intestinal tissues whereas the remaining bat showed the presence of HKU9 only detected in kidney, heart and intestinal tissues. All the tissues exhibited similar levels of HKU9 except one of the bats had about 10000-fold higher levels of HKU9 in intestinal tissues than the other tissues.; Refer to 5) EF065516.1 for more isolates of HKU9
3-day-old suckling BALB/c rats were intracerebrally inoculated with 20 μl of volume grinding supernatant of ZC45 intestinal tissue. Brain, lungs, intestine, and liver tissues were removed from infected rats on 14 dpi. Varying degrees of inflammation were observed in H&E staining of those tissues, but inflammation in brain tissues was the most evident. N protein antigen was shown in brain and lung tissues (highest level in brain) by western blotting. qRT-PCR detected the highest levels of virus in lung tissues.

Another HKU4 isolate. Refer to 69) NC_009019.1 and 5) EF065516.1

Another HKU4 isolate. Refer to 69) NC_009019.1 and 5) EF065516.1

Another HKU5 isolate. Refer to 75) EF065512.1 and 5) EF065516.1

Another HKU5 isolate. Refer to 75) EF065512.1 and 5) EF065516.1
Isolated from tracheal samples. The authors by including the upper part of the ceca (containing the cecal tonsils), this increased the isolation scores greatly.
Isolated from a chicken with nephritis, depression, and slight respiratory signs. Twenty-day-old chickens inoculated with HH06 exhibited depression, coughing, sneezing, dyspnea, and diarrhea. Necropsy of the infected chickens also showed abnormalities in kidney and respiratory tract.
Isolated from quails with acute enteritis. Short-lived diarrhea appeared in the parents and offspring developed diarrhea on day 2–4 of life

https://mc.manuscriptcentral.com/vevolu
Isolated from a pheasant with tracheitis and nephritis. Virus was detected in the oropharyngeal swab of chickens infected with this pheasant I0623/17 virus. No virus detected in cloacal swab. Viral replication was also found in the trachea and lung, but not kidney, of the infected chickens.

LHB/110617 was isolated from a chicken with respiratory disease. LHB/110615 (isolated by the same group), which has 99.7% sequence identity with LHB/110617, showed high virus titre in trachea sample (minimal virus was detected in kidney sample).

Isolated from a chicken with respiratory problems

Isolated from chickens with nephritis

CoV infection was associated with hedgehogs with green and yellow faeces.

There are other HKU23 strains isolated from faecal samples

229E-related

HKU4-related

This is the most closely related bat sequence to SARS-CoV-2; sample collected in 2013 (RaTG13)

In general, respiratory tract specimens showed the highest positive rates of SARS-CoV-2

In the same study, 6 more pangolins were tested positive and the virus was isolated from intestines (2), lungs (2), blood (1) and scale (1).

NC_002645.1 is a laboratory-adapted strain; Another 229E strain was isolated from the nasopharyngeal swab of a patient with fever and respiratory infection; 229E causes common cold and occasionally associated with more severe respiratory infections in children

Refer to 5) EF065516.1; Another study by the same group showed 29 of 99 alimentary samples were positive for RdRp, none detected in the respiratory samples

Another HKU9 isolate by the same group of 5) EF065516.1. Refer to 5) EF065516.1 and 70) MG762674.1

5 of 43 Scotophilus bats were positive for RdRp and they were all detected in anal samples

RdRp was detected in the alimentary specimen of 36 bats, but not in respiratory specimen;

Refer to 5) EF065516.1 for more isolates of HKU2 by the same group,

Refer to 5) EF065516.1; Smith et al. also detected HKU8 RNA in faecal samples

15 of 420 bulbuls tested were positive for HKU11 CoV (not sure whether it is from throat or cloacal swab); 10 more HKU11 strains were isolated from rectal swab in another study by the same group.
HKU12 was found in 4 of 365 thrushes tested (not sure whether it is from throat or cloacal swab); A HKU12 strain was isolated from rectal swab in another study by the same group.

HKU13 was detected in 2 of 127 munias tested (not sure whether it is from throat or cloacal swab); 6 more HKU13 strains were isolated from rectal swab in another study by the same group.

HKU16 was detected in 3 of 35 CoV-positive bird specimens.
HKU17 was detected in 7 of 35 CoV-positive bird specimens.
HKU18 was detected in 1 of 35 CoV-positive bird specimens.
HKU19 was detected in 5 of 35 CoV-positive bird specimens.
HKU20 was detected in 1 of 35 CoV-positive bird specimens.
HKU21 was detected in 1 of 35 CoV-positive bird specimens.

Related publication PMID - 26433221

Sequence analysis of the partial spike gene showed that this virus strain is more closely related to FRSCV (CoV detected in ferrets with systemic pyogranulomatous inflammation) than FRECV. Heart, liver, spleen, lung, kidney, brain, and intestinal tissues were collected from 3 GCCDC1-infected bats. The presence of GCCDC1 was only detected in intestinal tissues.

RdRp was detected in rectal swab, but not in oral swab and blood.
Table S1. Summary of the sequences included in analyses of coronavirus genome dinucleotide composition, broken down by species.

Species	Sequences Included
SARS-CoV-2	10,000
SARS-CoV	5,000
MERS-CoV	2,500

Sequences were downloaded from NCBI and sequences less than 10% divergent at the nucleotide level were removed from the dataset.
tion, broken down by genus, host, and replication site. All complete coronavirus genomes were downloa
added from NCBI and sequences less than 10% divergent at the nucleotide level were removed from the c
dataset.
EPI_ISL_414616, EPI_ISL_414617, EPI_ISL_414618, EPI_ISL_414620, EPI_ISL_414621, EPI_ISL_414622	Servicio Microbiología, Hospital Clínico Universitario, Valencia	Sequencing and Bioinformatics Service and Molecular Epidemiology Research Group, PSIBio-Public Health Unit, Barcelona
EPI_ISL_414623	Laboratoire de Virologie Institut de Virologie - INSERM U1190 Hôpitaux Universitaires de Strasbourg	National Reference Center for Viruses of Respiratory Infections, Institut Pasteur, Paris
EPI_ISL_414624	Centre Hospitalier Universitaire de Rouen Laboratoire de Virologie	National Reference Center for Viruses of Respiratory Infections, Institut Pasteur, Paris
EPI_ISL_414625	Centre Hospitalier Régional Universitaire de Nantes Laboratoire de Virologie	National Reference Center for Viruses of Respiratory Infections, Institut Pasteur, Paris
EPI_ISL_414626	Hôpital Robert Debré Laboratoire de Virologie	National Reference Center for Viruses of Respiratory Infections, Institut Pasteur, Paris
EPI_ISL_414631, EPI_ISL_414632	Hôpital René Dubois Laboratoire de Microbiologie - Bât A	National Reference Center for Viruses of Respiratory Infections, Institut Pasteur, Paris
EPI_ISL_414633	Centre Hospitalier Compagne Laboratoire de Biologie	National Reference Center for Viruses of Respiratory Infections, Institut Pasteur, Paris
EPI_ISL_414634, EPI_ISL_414635, EPI_ISL_414636, EPI_ISL_414637, EPI_ISL_414638	Centre Hospitalier Compagne Laboratoire de Biologie	National Reference Center for Viruses of Respiratory Infections, Institut Pasteur, Paris
EPI_ISL_414639	Department of Virology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)
EPI_ISL_414640, EPI_ISL_414641, EPI_ISL_414642, EPI_ISL_414643, EPI_ISL_414644	Viral Recombination Lab, National Institute for Biomedical Research (INRB)	Andersen Lab, The Scripps Research Institute
EPI_ISL_414646	State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China	The First Affiliated Hospital of Guangzhou Medical University & BGI-Shenzhen
EPI_ISL_414667	State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China	The First Affiliated Hospital of Guangzhou Medical University & BGI-Shenzhen
EPI_ISL_414689, EPI_ISL_414690, EPI_ISL_414691, EPI_ISL_414692	State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China	The First Affiliated Hospital of Guangzhou Medical University & BGI-Shenzhen
EPI_ISL_414934, EPI_ISL_414936, EPI_ISL_414937, EPI_ISL_414938, EPI_ISL_414940, EPI_ISL_414941	Shandong Provincial Center for Disease Control and Prevention, Weifang City, China	Beijing Institute of Microbiology and Epidemiology
EPI_ISL_415010	Wales Specialist Virology Centre	Public Health Wales Microbiology Cardiff
EPI_ISL_415015	Laboratório Central de Saúde Pública Professor Gonçalo Moniz - LACENBA	Instituto Oswaldo Cruz Fiocruz - Laboratory of Respiratory Viruses and Measles (LVRS)
EPI_ISL_415128	Respiratory Virus Unit, Microbiology Services Colindale, Public Health England	Respiratory Virus Unit, Microbiology Services Colindale, Public Health England
EPI_ISL_415151	Gorgias Clinical Microbiology Laboratories	MSH Pathogen Surveillance Program
EPI_ISL_415152	Gorgias Memorial Institute for Health Studies	Gorgias Memorial Institute for Health Studies
EPI_ISL_415153, EPI_ISL_415154	KU Leuven, Clinical and Epidemiological Virology	KU Leuven, Clinical and Epidemiological Virology
EPI_ISL_415155	KU Leuven, Clinical and Epidemiological Virology	KU Leuven, Clinical and Epidemiological Virology
EPI_ISL_415156, EPI_ISL_415157, EPI_ISL_415158, EPI_ISL_415159	KU Leuven, Clinical and Epidemiological Virology	KU Leuven, Clinical and Epidemiological Virology
EPI_ISL_415435	Wales Specialist Virology Centre	Public Health Wales Microbiology Cardiff
EPI_ISL_415445	Hôpitaux universitaires de Genève Laboratoire de Virologie	Hôpitaux universitaires de Genève Laboratoire de Virologie
EPI_ISL_415455, EPI_ISL_415456, EPI_ISL_415457	Hôpitaux universitaires de Genève Laboratoire de Virologie	Hôpitaux universitaires de Genève Laboratoire de Virologie
EPI_ISL_415458, EPI_ISL_415459	Hôpitaux universitaires de Genève Laboratoire de Virologie	Hôpitaux universitaires de Genève Laboratoire de Virologie

EPI_ISL_415460	Servicio Microbiología, Hospital Clínico Universitario, Valencia	Sequencing and Bioinformatics Service and Molecular Epidemiology Research Group, PSIBio-Public Health Unit, Barcelona
EPI_ISL_415462	Centre Hospitalier Universitaire de Rouen Laboratoire de Virologie	National Reference Center for Viruses of Respiratory Infections, Institut Pasteur, Paris
EPI_ISL_415464	Hôpital Robert Debré Laboratoire de Virologie	National Reference Center for Viruses of Respiratory Infections, Institut Pasteur, Paris
EPI_ISL_415466	State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China	The First Affiliated Hospital of Guangzhou Medical University & BGI-Shenzhen
EPI_ISL_415468	State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China	The First Affiliated Hospital of Guangzhou Medical University & BGI-Shenzhen
EPI_ISL_415469	State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China	The First Affiliated Hospital of Guangzhou Medical University & BGI-Shenzhen
EPI_ISL_415493, EPI_ISL_415496, EPI_ISL_415497, EPI_ISL_415513	KU Leuven, Clinical and Epidemiological Virology	KU Leuven, Clinical and Epidemiological Virology
EPI_ISL_415512, EPI_ISL_415513, EPI_ISL_415514, EPI_ISL_415515, EPI_ISL_415516, EPI_ISL_415517	KU Leuven, Clinical and Epidemiological Virology	KU Leuven, Clinical and Epidemiological Virology
EPI_ISL_415518, EPI_ISL_415519	KU Leuven, Clinical and Epidemiological Virology	KU Leuven, Clinical and Epidemiological Virology
EPI_ISL_415535	Wales Specialist Virology Centre	Public Health Wales Microbiology Cardiff
EPI_ISL_415544	Hôpitaux universitaires de Genève Laboratoire de Virologie	Hôpitaux universitaires de Genève Laboratoire de Virologie
EPI_ISL_415545, EPI_ISL_415546, EPI_ISL_415547	Hôpitaux universitaires de Genève Laboratoire de Virologie	Hôpitaux universitaires de Genève Laboratoire de Virologie
EPI_ISL_415548, EPI_ISL_415549	Hôpitaux universitaires de Genève Laboratoire de Virologie	Hôpitaux universitaires de Genève Laboratoire de Virologie
see above

EPI_ISL_417383
Centre for Infectious Diseases and Microbiology Public Health
NSW Health Pathology - Institute of Clinical Pathology and Medical Research; Westmead Hospital; University of Sydney
Maddocks S, Kok J and Dwyer DE for the 2019-nCoV Study Group

EPI_ISL_417384
Centre for Infectious Diseases and Microbiology Public Health
NSW Health Pathology - Institute of Clinical Pathology and Medical Research; Westmead Hospital; University of Sydney
Lam C, Dwyer DE, Rockett R and Eden J-S for the 2019-nCoV Study Group

EPI_ISL_417385
Centre for Infectious Diseases and Microbiology Public Health
NSW Health Pathology - Institute of Clinical Pathology and Medical Research; Westmead Hospital; University of Sydney
Lam C, Dwyer DE, Rockett R and Eden J-S for the 2019-nCoV Study Group

EPI_ISL_417386
Centre for Infectious Diseases and Microbiology Public Health
NSW Health Pathology - Institute of Clinical Pathology and Medical Research; Westmead Hospital; University of Sydney
Lam C, Dwyer DE, Rockett R and Eden J-S for the 2019-nCoV Study Group

EPI_ISL_417387
Centre for Infectious Diseases and Microbiology Public Health
NSW Health Pathology - Institute of Clinical Pathology and Medical Research; Westmead Hospital; University of Sydney
Timms V, Gall M, Amott A, Sadsad R, Carter I, Rahman H, Holmes EC, O'Sullivan MV, Sintchenko V, Chen SC, Maddocks S, Kok J, Dwyer DE, Rockett R, Eden J-S, Lam C and Gray K for the 2019-nCoV Study Group

EPI_ISL_417388
Centre for Infectious Diseases and Microbiology Public Health
NSW Health Pathology - Institute of Clinical Pathology and Medical Research; Westmead Hospital; University of Sydney
Gall M, Amott A, Sadsad R, Carter I, Rahman H, Holmes EC, O'Sullivan MV, Sintchenko V, Chen SC, Maddocks S, Kok J, Dwyer DE, Rockett R, Eden J-S, Lam C, Gray K and Timms V for the 2019-nCoV Study Group

EPI_ISL_417389
Centre for Infectious Diseases and Microbiology Public Health
NSW Health Pathology - Institute of Clinical Pathology and Medical Research; Westmead Hospital; University of Sydney
Amott A, Sadsad R, Carter I, Rahman H, Holmes EC, O'Sullivan MV, Sintchenko V, Chen SC, Maddocks S, Kok J, Dwyer DE, Rockett R, Eden J-S, Lam C, Gray K, Timms V and Gall M for the 2019-nCoV Study Group

EPI_ISL_417390
Centre for Infectious Diseases and Microbiology Public Health
NSW Health Pathology - Institute of Clinical Pathology and Medical Research; Westmead Hospital; University of Sydney
Sadsad R, Carter I, Rahman H, Holmes EC, O'Sullivan MV, Sintchenko V, Chen SC, Maddocks S, Kok J, Dwyer DE, Rockett R, Eden J-S, Lam C, Gray K, Timms V and Gall M for the 2019-nCoV Study Group

EPI_ISL_417391
Centre for Infectious Diseases and Microbiology Public Health
NSW Health Pathology - Institute of Clinical Pathology and Medical Research; Westmead Hospital; University of Sydney
Carter I, Rahman H, Holmes EC, O'Sullivan MV, Sintchenko V, Chen SC, Maddocks S, Kok J, Dwyer DE, Rockett R, Eden J-S, Lam C, Gray K, Timms V and Gall M for the 2019-nCoV Study Group

EPI_ISL_417392
Centre for Infectious Diseases and Microbiology Public Health
NSW Health Pathology - Institute of Clinical Pathology and Medical Research; Westmead Hospital; University of Sydney
Rahman H, Holmes EC, O'Sullivan MV, Sintchenko V, Chen SC, Maddocks S, Kok J, Dwyer DE, Rockett R, Eden J-S, Lam C, Gray K, Timms V and Gall M for the 2019-nCoV Study Group

EPI_ISL_417393
Centre for Infectious Diseases and Microbiology Public Health
NSW Health Pathology - Institute of Clinical Pathology and Medical Research; Westmead Hospital; University of Sydney
Holmes EC, O'Sullivan MV, Sintchenko V, Chen SC, Maddocks S, Kok J, Dwyer DE, Rockett R, Eden J-S, Lam C, Gray K, Timms V and Gall M for the 2019-nCoV Study Group

EPI_ISL_417394
Centre for Infectious Diseases and Microbiology Public Health
NSW Health Pathology - Institute of Clinical Pathology and Medical Research; Westmead Hospital; University of Sydney
O'Sullivan MV, Sintchenko V, Chen SC, Maddocks S, Kok J, Dwyer DE, Rockett R, Eden J-S, Lam C, Gray K, Timms V, Gall M, Amott A, Sadsad R, Carter I, Rahman H and Holmes EC for the 2019-nCoV Study Group

EPI_ISL_417395
Centre for Infectious Diseases and Microbiology Public Health
NSW Health Pathology - Institute of Clinical Pathology and Medical Research; Westmead Hospital; University of Sydney
Sintchenko V, Chen SC, Maddocks S, Kok J, Dwyer DE, Rockett R, Eden J-S, Lam C, Gray K, Timms V, Gall M, Amott A, Sadsad R, Carter I, Rahman H and Holmes EC for the 2019-nCoV Study Group

EPI_ISL_417396
Centre for Infectious Diseases and Microbiology Public Health
NSW Health Pathology - Institute of Clinical Pathology and Medical Research; Westmead Hospital; University of Sydney
Chen SC, Maddocks S, Kok J, Dwyer DE, Rockett R, Eden J-S, Lam C, Gray K, Timms V, Gall M, Amott A, Sadsad R, Carter I, Rahman H, Holmes EC, O'Sullivan MV and Sintchenko V for the 2019-nCoV Study Group

EPI_ISL_417397
Centre for Infectious Diseases and Microbiology Public Health
NSW Health Pathology - Institute of Clinical Pathology and Medical Research; Westmead Hospital; University of Sydney
Maddocks S, Kok J, Dwyer DE, Rockett R, Eden J-S, Lam C, Gray K, Timms V, Gall M, Amott A, Sadsad R, Carter I, Rahman H, Holmes EC, O'Sullivan MV, Sintchenko V and Chen SC for the 2019-nCoV Study Group

EPI_ISL_417398
Centre for Infectious Diseases and Microbiology Public Health
NSW Health Pathology - Institute of Clinical Pathology and Medical Research; Westmead Hospital; University of Sydney
Kok J, Dwyer DE, Rockett R, Eden J-S, Lam C, Gray K, Timms V, Gall M, Amott A, Sadsad R, Carter I, Rahman H, Holmes EC, O'Sullivan MV, Sintchenko V, Chen SC and Maddocks S for the 2019-nCoV Study Group

EPI_ISL_417399
Centre for Infectious Diseases and Microbiology Public Health
NSW Health Pathology - Institute of Clinical Pathology and Medical Research; Westmead Hospital; University of Sydney
Dwyer DE, Rockett R, Eden J-S, Lam C, Gray K, Timms V, Gall M, Amott A, Sadsad R, Carter I, Rahman H, Holmes EC, O'Sullivan MV, Sintchenko V, Chen SC, Maddocks S and Kok J for the 2019-nCoV Study Group

EPI_ISL_417400
Centre for Infectious Diseases and Microbiology Public Health
NSW Health Pathology - Institute of Clinical Pathology and Medical Research; Westmead Hospital; University of Sydney
Rockett R, Eden J-S, Lam C, Gray K, Timms V, Gall M, Amott A, Sadsad R, Carter I, Rahman H, Holmes EC, O'Sullivan MV, Sintchenko V, Chen SC, Maddocks S and Kok J for the 2019-nCoV Study Group

EPI_ISL_417401
Centre for Infectious Diseases and Microbiology Public Health
NSW Health Pathology - Institute of Clinical Pathology and Medical Research; Westmead Hospital; University of Sydney
Eden J-S, Lam C, Gray K, Timms V, Gall M, Amott A, Sadsad R, Carter I, Rahman H, Holmes EC, O'Sullivan MV, Sintchenko V, Chen SC, Maddocks S, Kok J, Dwyer DE, Rockett R and Eden J-S for the 2019-nCoV Study Group

EPI_ISL_417402
Centre for Infectious Diseases and Microbiology Public Health
NSW Health Pathology - Institute of Clinical Pathology and Medical Research; Westmead Hospital; University of Sydney
Lam C, Gray K, Timms V, Gall M, Amott A, Sadsad R, Carter I, Rahman H, Holmes EC, O'Sullivan MV, Sintchenko V, Chen SC, Maddocks S, Kok J, Dwyer DE, Rockett R and Eden J-S for the 2019-nCoV Study Group

EPI_ISL_417403
Centre for Infectious Diseases and Microbiology Public Health
NSW Health Pathology - Institute of Clinical Pathology and Medical Research; Westmead Hospital; University of Sydney
Gray K, Timms V, Gall M, Amott A, Sadsad R, Carter I, Rahman H, Holmes EC, O'Sullivan MV, Sintchenko V, Chen SC, Maddocks S, Kok J, Dwyer DE, Rockett R, Eden J-S, Lam C and Gray K for the 2019-nCoV Study Group

EPI_ISL_417404
Centre for Infectious Diseases and Microbiology Public Health
NSW Health Pathology - Institute of Clinical Pathology and Medical Research; Westmead Hospital; University of Sydney
Timms V, Gall M, Amott A, Sadsad R, Carter I, Rahman H, Holmes EC, O'Sullivan MV, Sintchenko V, Chen SC, Maddocks S, Kok J, Dwyer DE, Rockett R, Eden J-S, Lam C and Gray K for the 2019-nCoV Study Group

EPI_ISL_417405
Centre for Infectious Diseases and Microbiology Public Health
NSW Health Pathology - Institute of Clinical Pathology and Medical Research; Westmead Hospital; University of Sydney
Gall M, Amott A, Sadsad R, Carter I, Rahman H, Holmes EC, O'Sullivan MV, Sintchenko V, Chen SC, Maddocks S, Kok J, Dwyer DE, Rockett R, Eden J-S, Lam C, Gray K and Timms V for the 2019-nCoV Study Group

https://mc.manuscriptcentral.com/vevolu
