Dimenzijske promjene staklenoionomernih cementa i giomera tijekom stvrdnjivanja materijala

Dimensional Changes of Glass Ionomers and a Giomer during the Setting Time

Svrha: Cilj ovoga rada bio je postupkom digitalne laserske interferometrije odrediti dimenzijske promjene konvencionalnih staklenoionomernih cementa, smolom modificiranog staklenoionomernog cementa i giomera tijekom stvrdnjivanja materijala. Također se želio odrediti utjecaj različitih programi (visoki, postupni, niski) polimerizacijskog uređaja na dimenzijske promjene svjetlom polimerizirajućih materijala.

Materijali i postupci: Određeno je linearno skupljanje konvencionalnih staklenoionomernih cementa (K Sic Fuji IX Extra (F9E), Fuji IX Fast (F9F), Ketac Molar Aplicap (KM) i Ketac Molar Quick Aplicap (KMQ), zatim smolom modificiranog staklenoionomernog cementa (SM Sic) Fuji II LC (F2LC) te giomera Beautifil II (B2). Svi ispitani materijali bili su nijanse A3, a svi staklenoionomerni cementi kapsulirani. Uzorci diskoidnog oblika (n = 10, d = 10 mm, h = 0,85 mm) pripremljeni su prema uputama proizvođača za svaki ispitani materijal i svaki polimerizacijski program (za svjetlom polimerizirajuće materijale). Svjetlosno polimerizirajući uzorci polimerizirani su LED uređajem za polimerizaciju (Bluephase G2, Ivoclar-Vivadent, Schaan, Lihtenštajn). Dimenzijske promjene tijekom stvrdnjivanja zabilježene su u stvarnom vremenu. Rezultati su analizirani ANOVA-om, a Tukeyjев post hoc test korišten je za višestruke usporedbe (α < 1 %).

Rezultati: Svi ispitani materijali imali su početnu tekspanziju i naknadno skupljanje. KM i KMQ značajno su se manje skupljali od SM Sic-a polimeriziranog bilo kojim od triju polimerizacijskih programa. B2 se manje skupljao od F2LC-a. Zaključak: Stupanj polimerizacijskog skupljanja SM Sic-a može utjecati na trajnost restauracije.

Sažetak

Svrljig: Cilj ovog rada bio je postupkom digitalne laserske interferometrije odrediti dimenzijske promjene konvencionalnih staklenoionomernih cementa, smolom modificiranog staklenoionomernog cementa i giomera tijekom stvrdnjivanja materijala. Također se želio odrediti utjecaj različitih polimerizacijskih programa (visoki, postupni, niski) polimerizacijskog uređaja na dimenzijske promjene svjetlom polimerizirajućih materijala.

Materijali i postupci: Određeno je linearno skupljanje konvencionalnih staklenoionomernih cementa (K Sic Fuji IX Extra (F9E), Fuji IX Fast (F9F), Ketac Molar Aplicap (KM) i Ketac Molar Quick Aplicap (KMQ), zatim smolom modificiranog staklenoionomernog cementa (SM Sic) Fuji II LC (F2LC) te giomera Beautifil II (B2). Svi ispitani materijali bili su nijanse A3, a svi staklenoionomerni cementi kapsulirani. Uzorci diskoidnog oblika (n = 10, d = 10 mm, h = 0,85 mm) pripremljeni su prema uputama proizvođača za svaki ispitani materijal i svaki polimerizacijski program (za svjetlom polimerizirajuće materijale). Svjetlosno polimerizirajući uzorci polimerizirani su LED uređajem za polimerizaciju (Bluephase G2, Ivoclar-Vivadent, Schaan, Lihtenštajn). Dimenzijske promjene tijekom stvrdnjivanja zabilježene su u stvarnom vremenu. Rezultati su analizirani ANOVA-om, a Tukeyjев post hoc test korišten je za višestruke usporedbe (α < 1 %).

Rezultati: Svi ispitani materijali imali su početnu tekspanziju i naknadno skupljanje. KM i KMQ značajno su se manje skupljali od SM Sic-a polimeriziranog bilo kojim od triju polimerizacijskih programa. B2 se manje skupljao od F2LC-a. Zaključak: Stupanj polimerizacijskog skupljanja SM Sic-a može utjecati na trajnost restauracije.

Ključne riječi

staklenoionomerni cementi; stomatološko polimerizirajuće svjetlo; dentalni materijali; polimerizacija; skupljanje materijala

Introduction

Modern restorative dentistry is still faced with the problem of marginal gap formation. Adhesive technology, i.e. direct chemical bonding and/or micromechanical adhesion to tooth structure, did not solve the issue of the marginal gap and consequent microleakage (1, 2). The phenomenon of microleakage may lead to serious problems such as postoperative sensitivity, penetration of bacteria, which causes secondary caries and inflammatory reaction of the pulp, tooth discoloration, and eventually loss of the restoration (3).

Dimensional changes of materials during setting change the structure of the material and may influence the adhesion thereby greatly contributing to creating the marginal gap followed by microleakage (3-5). Similarity in dimensional changes occurring during the setting of restorative materials and thermal expansion of the tooth may play an important role in marginal gap minimization (6). According to the liter-
ne važan su čimbenik za dugotrajnost restauracija (7 – 10). Stres koji nastaje zbog dimenzijalnih promjena ovisi o stupnju skupljanja i modulu elasticity materijala (11, 12).

Polimerizacija kompozitnih smola može se podijeliti na pred-gel i poslije-gel fazu. Tijekom pred-gel faze molekule monomera mogu se kretati unutar polimerne mreže te se tačno smanjuje polimerizacijski stres. Međutim, u poslije-gel fazi monomeri se imobiliziraju porastom viskoznosti polimerne matrice, što rezultira velikim stresom u samom zubu i na adhezivnoj površini (12, 13). Postupna polimerizacija materijala preporuča se za smanjenje polimerizacijskog stresa i posljedičnog mikropropuštanja (14).

Staklenioionomerni cementi (SIC) hidrofilni su materijali koji imaju široku kliničku primjenu zahvaljujući kemiji koja osigurava ponovljujuću tvrđanju na tvrda zuba tkiva, otpuštanju fluorida i biokompatibilnosti (1). Danas je komercijalno dostupno mnogo SIC-ova za kliničku upotrebu, a uzajamno se razlikuju prema sastavu praha, tekućine ili obju komponenata. Sastav SIC-ova optimiziran je za specifične kliničke indikacije. Prema mehanizmu stvrdnjivanja mogu se razlikovati dvije glavne skupine – konvencionalni SIC (K SIC) (stvrdnjava se kiselo-lužnom reakcijom i smolom modificirani SIC (SM SIC) (stvrdnjava se kiselo-lužnom reakcijom i polimerizacijskom smolu). Reakcija stvrdnjivanja SM SIC-a složenija je jer se obje reakcije događaju istodobno te tako utječu jedna na drugu (15).

Giomersi su materijali proizvedeni na temelju smola te su prema osnovnom sastavu slični kompozitnim materijalima, ali za razliku od kompozita kao punilo sadržavaju staklenioionomernu komponentu koja je već reagirala, nazvanu prvočvadnom reakciju (PRG). PRG punila dobivaću se potpunom ili djelomičnom reakcijom staklenioionomernog praha s polikarbonilnim kiselinama (16, 17).

Dimenzije promjena koje nastaju zbog kontrakcije materijala mogu se opisati kao linearna i volumišna kontrakcija (18). Za određivanje volumne kontrakcije najčešće se koriste metode vodenog ili živina dilatometara (3, 4, 18-23). Watts i Cash koristili su se indirektnom metodom, metodom odstupanja ili disk la koji osigurava ponovljenost mjerenja polimerizacijskog skupljanja. Izračunali su volumnu kontrakciju u post-gel fazi iz linearnog pomaka diska koji je smješten na mjerenom prstenu (24). Grajower i Guellman odredili su dimenziku promjenu SIC-a s pomoću linearnog pretvornika (25). Watts i Cash koristili su sastav kompoziti slični kompozitnim materijalima, te su razvijali novi metod digitalne laserske interferometrije kako bi se odredila dimenzije kompozita SIC-a (22, 25). U ovoj studiji izračunili su dimenziju promjene linearne dimenzije kompozita SIC-a (22, 25). U ovom istraživanju prvi je put korišteni metod digitalne laserske interferometrije kako bi se odredila dimenzija promjena linearnih kompozita SIC-a (22, 25). U ovom istraživanju prvi je put korišteni metod digitalne laserske interferometrije kako bi se odredila dimenzija promjena linearnih kompozita SIC-a (22, 25). U ovom istraživanju prvi je put korišteni metod digitalne laserske interferometrije kako bi se odredila dimenzija promjena linearnih kompozita SIC-a (22, 25).

Cilj ovoga rada bio je odrediti linearni dimenzijalni promjene K SIC-ova, SM SIC-a i giomera u stvarnom vremenu stvrdnjivanja materijala te procijeniti utjecaj triju različitih polimerizacijskih programa polimerizacijskog uređaja temeljenog na svjetlim diodama (LED) na dimenzije promjene SM SIC-ova i giomera.
Testirane su sljedeće istraživačke hipoteze:
1. na dimenzije promjenje utječat će vrsta materijala (giomer i SM SIC imat će sličan stupanj skupljanja, a K SIC će imati niži stupanj skupljanja od SM SIC-a i giomera)
2. polimerizacijski programi utječat će na dimenzije promjene svjetlom polimerizirajućih materijala.

Materijali i metode

Odabir materijala

U istraživanje su uključena četiri konvencionalna SIC-a (K SIC) – Fuji IX Extra (F9E), Fuji IX Fast (F9F), Ketac Molar Aplicap (KM), Ketac Molar Quick (KMQ), zatim svjetlom polimerizirajući smolom modificirani SIC (SM SIC) Fuji II LC (F2LC) i giomer Beautifil II (B2). Svi ispitivani materijali navedeni u tablici 1 bili su nijanske A3, a svi SIC-ovi bili su pakirani u kapsulama.

Materijal	Kod	Code	Vrsta materijala	Type of material	Proizvođač	Manufacturer	LOT	LOT	Primjena	Aplication
Fuji IX EXTRA	F9E		K SIC	CGIC	GC Corporation, Tokio, Japan	1009205	Restaurativni	Restorative		
Fuji IX FAST	F9F		K SIC	CGIC	GC Corporation, Tokio, Japan	1005251	Restaurativni	Restorative		
Ketac Molar Aplicap	KM		K SIC	CGIC	3M ESPE, Seefeld, Njemačka	425688	Restaurativni	Restorative		
Ketac Molar Quick Aplicap	KMQ		K SIC	CGIC	3M ESPE, Seefeld, Njemačka	416807	Restaurativni	Restorative		
Fuji II LC	F2LC		SM SIC	CGIC	GC Corporation, Tokio, Japan	1009277	Restaurativni	Restorative		
Beautifil II	B2		Giomer	Giomer	Shofu Inc., Kjoto, Japan	041008	Restaurativni	Restorative		

GIC and giomer.

Research hypotheses tested were:
1. Dimensional changes will be affected by the material type (giomer and RM GIC are expected to show a similar degree of shrinkage, while CGICs are expected to show a lower degree of shrinkage than RM GICs and giomer).
2. Dimensional changes of light-curable materials will be influenced by curing modes.

Materials and methods

Materials selection

This study evaluated four conventional GIC (CGICs): Fuji IX Extra (F9E), Fuji IX Fast (F9F), Ketac Molar Aplicap (KM), and Ketac Molar Quick (KMQ), a light-curable resin-modified GIC (RM GIC): Fuji II LC (F2LC) and a giomer: Beautifil II (B2). All tested materials, listed in Table 1, were of shade A3, while all of the GICs were encapsulated.

Specimen preparation

10 discoid specimens (d=10 mm, h=0.85 mm) were prepared for each tested material (and curing mode, for light-curable materials), 10 discoid specimens (d=10 mm, h=0.85 mm) were prepared. The encapsulated materials (F9E, F9F, KM, KMQ and F2LC) were mixed according to the manufacturer's instructions. An adequate amount of material was extruded onto a polyethylene terephthalate (PET) film in a stainless steel ring mold of 1 mm height, covered with another sheet of PET film and compressed using a flat stainless steel plate. The total thickness of the specimen (0.85 mm) was the result of subtracting the thickness of two PET sheets from the thickness of the ring mold (1 mm). The non-encapsulated material (B2) was applied onto the PET film using a spatula. Specimen preparation was performed in the dark room with red light to avoid curing effect of ambient light on light-curable materials. Light-curable materials were cured using LED curing unit (Bluephase G2, Ivoclar-Vivadent, Schaan, Liechtenstein) for 20 s with one of the following light-curing modes: “high” (1100 mW/cm²), “soft” (650-1100 mW/cm²) and “low” (650 mW/cm²).
Digitalna laserska interferometrija

Promjene dimenzija izračunate su iz eksperimentalnih mjerenja dobivenih s pomoću digitalnog laserskog interferometrijskog uređaja shematski prikazanog na slici 1. Diskoidni uzorci bili su s obje strane pokriveni PET folijama i umetnuti između dviju staklenih ploča. Gornja staklena ploča imala je reflektirajuću površinu i djelovala je kao zrcalo. Nosač uzorka bio je oblikovan tako da omogućiti fotopolimerizaciju uzorka s jedne strane i istodobno mjerenje promjene debljine uzorka s druge strane. Mikrometar je postavljen kako bi se omogućila ručna kompenzacija pomicanja gornje površine uzorka koja je prekrivena zrcalom. Upotrijebljen je na kraju svakog mjerenja kako bi se utvrdila konačna vrijednost linearnog skupljanja uzorka.

Snop svjetla koji izlazi iz He-Ne lasera (Spectra Physics, snaga = 25 mW, valna duljina = 632.8 nm) prvo je proširen i kolimiran, a zatim usmjeren na ploču nosača uzorka. Ploča tu usmjerenih svjetlosti reflektira s pomoću dvaju ravnih zrcala, jednim smještenim na gornjoj površini uzorka i drugim izvan uzorka, čime se formiraju dvije zrake svjetlosti – objektna i referentna. Obje zrake su zatim pod malim kutom usmjerene na CCD senzor od 752 × 582 piksela, omogućujući brzinu snimanja od 25 sličica u sekundi. Dobivene slike interferencijalnih pruga nose faznu informaciju uzorka. Za vremenski ovisne dimenzijalne promjene položaj pruga također se mijenja u vremenu, a tražene vrijednosti promjene dimenzije računaju se numerički. Za SIC-ove sva su mjerenja počela približno 45 sekunda nakon završetka miješanja kapsula, a trajala su do kraja vremena stvrdnjivanja koje su određili odgovarajući proizvođači (za F9F, F9E, KM, KMQ do 6 min. i za F2LC do 5 min.). U slučaju giomer (B2), mjerenja su počela istodobno s početkom svjetlosne polimerizacije i trajala su pet minuta. Interferogrami snimljeni tijekom navedenog vremena analizirani su računalnim programom pripremljenim u LabVIEW-u 2011. (National instruments, Austin, Texas, SAD) prema već opisanom postupku (26).

Statistička analiza

Linearne dimenzijalne promjene dobivene digitalnom laserskom interferometrijskim računanjima su analizirane na statističnoj varijanci (ANOVA-om) i Tukeyjevim post hoc testom za višestruke usporede (α = 0.01).

Rezultati

Svi testirani K SIC-ovi pokazali su početnu ekspanziju koju je slijedilo skupljanje materijala (slika 2.). KM se značajno manje skupljao od F9E-a i F9F-a (p < 0,01), a KMQ se značajno manje skupljao od F9F-a (p < 0,01)

Najviše se skupio F9F, a ostali materijali sljedećim redoslijedom – F9E, KMQ i KM.

SM SIC i giomer također su imali početnu ekspanziju i naknadno skupljali u svim trima načinima polimerizacije (slika 2.). Razlike između polimerizacijskih programa bile su statistički značajne samo za B2 između visokog i niskog polimerizacijskog programa. U tim su slučajevima linearni di-

Digital laser interferometry

Dimensional changes were calculated from experimental measurements obtained by using digital laser interferometry device schematically shown in Figure 1. The discoid specimens were covered on both sides with PET foils and sandwiched between two glass plates. The upper glass plate had a reflective surface and acted as a mirror. The specimen carrier was designed to allow photopolymerization of the specimen from one side and simultaneous measurements of thickness variation of the specimen from the other side. A micrometer was mounted to enable manual compensation of the displacement of the upper surface of the specimen, which was covered by a mirror. The micrometer was used at the end of each measurement to verify the final value for linear shrinkage of the specimen.

The beam emerging from the He-Ne laser (Spectra Physics, power = 25 mW, wavelength = 632.8 nm) was first expanded and collimated and then steered onto the specimen carrier plate. The plate reflected incident light by means of two flat mirrors, one placed on the upper surface of the specimen and the other outside of the specimen, thus forming two beams, the object beam and the reference beam. Subsequently, both beams were directed at a small angle to the CCD sensor with 752×582 pixels allowing the recording rate of 25 frames per second. The resulting interference fringe patterns carried the specimen phase information. For the time-dependent dimensional changes of the specimen, the location of fringes was also time-dependent and the required values were evaluated numerically. For GICs, all of the measurements started approximately 45 s after the end of mixing until the end of the setting time specified by respective manufacturers (for F9E, F9E, KM, KMQ up to 6 min and for F2LC up to 5 min).

In the case of giomer (B2), measurements started concurrently with the initiation of light curing and lasted for 5 min. The interferograms recorded during the aforementioned time were analyzed using a custom-made computer program prepared in LabVIEW 2011 (National Instruments, Austin, Texas, USA) according to the previously described procedure (26).

Statistical Analysis

The linear dimensional changes obtained using digital laser interferometry were analyzed by analysis of variance (ANOVA), and Tukey post hoc test for multiple comparisons (α = 0.01).

Results

All of the tested CGICs showed an initial setting expansion, followed by shrinkage (Figure 2). KM showed significantly lower shrinkage than F9E and F9F (p<0.01), while KMQ showed significantly lower shrinkage than F9F (p<0.01).

The largest curing shrinkage had F9F followed by F9E, KMQ and KM.

RM GIC and giomer showed an initial setting expansion and a subsequent setting shrinkage in all three curing modes (Figure 2). The differences among curing modes were statistically significant only in B2 between the “high”
menzijske promjene bile značajno veće za visoki polimerizacijski program (B2 1,15 ± 0,23 %) u usporedbi s niskim (B2 0,80 ± 0,17 %) (p < 0,01) (tablica 3.).

B2 je imao nižu skupljanju od F2LC-a, ali je značajno niža skupljanje B2 u usporedbi s F2LC-om izmereno za niski polimerizacijski program (p < 0,01) (tablica 3.). Uspoređujući dimenzijske promjene K SIC-a i SM SIC-a, značajna razlika utvrđena je samo usporedbom KM-a i KMQ-a s F2LC-om – KM i KMQ imali su značajno niže skupljanje od F2LC-a polimeriziranog bilo kojim od triju polimerizacijskih programa (slika 2.).

Ekspanzija K SIC-a trajala je dulje od ekspanzije SM SIC-a. Vrijeme ekspanzije iznosilo je KM 4,0 ± 0,7 min, KMQ 3,4 ± 0,8 min, F9F 2,0 ± 0,4 min i F9E 0,8 ± 0,3 min. F2LC imao je ekspanziju tijekom početnih 0,1 ± 0,06 minuta, a B2 tijekom 0,1 ± 0,03 minuta svjetlosne polimerizacije.
Rasprava

Razmatrajući suvremene SIC-ove – brojnost, raznolikost i njihovu sve češću primjenu u širokom spektru kliničkih indikacija u smislu neizbježnog skupljanja materijala sa svim mogućim posljedicama – nameće se važnost novih spoznaja o njihovim dimenzijalnim promjenama. Neki istraživači navode da se SIC-ovi mogu smatrati materijalima s niskim skupljanjem (3, 19), a drugi pak ističu da se SIC-ovi mogu značajno skupljati u usporedbi čak sa skupljanjem kompozitnih materijala (19).

U literaturi su opisane različite metode mjerenja dimenzijalnih promjena SIC-ova. Unatoč njihovim specifičnostima, za većinu je zajednička procjena ukupnih dimenzijalnih promjena bez mogućnosti njihova praćenja u stvarnom vremenu (3, 4, 18 – 25).

Mjerenja u uređaju digitalne laserske interferometrije po- čela su odmah nakon pripreme uzorka i trajala su do kraja stvrdnjavanja materijala. Priprema uzoraka trajala je otprilike 45 sekунда nakon završetka miješanja kapsula. U početnoj fazi stvrdnjavanja za sve je materijale zabilježena faza ekspan- zije materijala (slika 2.). Stoga je moguće pretpostaviti da je ekspanzija postojala i tijekom pripremanja uzorka, dakle 45 sekunde prije početka interferometrijskih mjerenja. Ekspanzija KM-a trajala je 4,0 ± 0,7 min, a KMQ-a 3,4 ± 0,8 min., no oba su materijala pokazala manje vrijednosti skupljanja u usporedbi sa skupljanjem drugih SIC-ova. Preostala dva K SIC-a (F9F i F9E) imala su ekspanziju od 2,0 ± 0,4 min., odnosno 0,8 ± 0,3 minuta. SM SIC i giomer (F2LC i B2) tako- der su imali lagan ekspanziju tijekom osvjetlivanja. Iz kri- vulja na slici 2. vidljivo je da se K SIC-ovi šire između prvih 0,8 ± 0,3 minuta do 4,0 ± 0,7 minuta, a SM SIC i giomeri šire se tijekom početnih 10 sekunda svjetlosne polimerizacije. Može se pretpostaviti da je inicijalno širenje materijala ko- ji sadržavaju smolastu komponentu ograničeno polimerizacijom monomera i umreživanjem.

Bilo bi korisno kada bi ekspanzija, koja se pojavljuje ra- no tijekom stvrdnjavanja, trajala dulje jer bi se tako moglo smanjiti vrijednosti skupljanja i kompenzirati negativne učinke skupljanja (14). Kao što je već spomenuto, K SIC-ova imala su veću i dulju ekspanziju u usporedbi s ekspanzijom SM SIC-ova. Početno širenje F2LC-a i B2 bilo je manje u uspo- redbi s njihovim skupljanjem (slika 2.). Unatoč očuvanju ek- spanziji, zbog velike varijabilnosti između uzoraka u ranoj fazii mjerenja nije bilo moguće precizno izmeriti. Ta rana ekspanzija također je zabilježena u studiji Bryanta i Mahlera (19), ali nije određena zbog nestabilnosti materijala u ranoj fazi procesa stvrdnjavanja.

Dosađenje studije potvrdile su da dimenzijeske promjene materijala tijekom stvrdnjavanja ovise o njegovu kemij- skom sastavu i o eksperimentalnim uvjetima (3). Budući da K SIC-ovi ne sadržavaju smolaste monomere, mogu se smatra- ti sporostvrdnjavajućim materijalima, što stvara manji stres na adhezivnoj površini između zuba i restauracije (19). No doda- ta smola mijerena način stvrdnjavanja SM SIC-a, što rezulti- ra većim skupljanjem u odnosu prema K SIC-u (21, 29 –31).

U ovom istraživanju vrijednosti linearne skupljanja K SIC-ova bile su manje u usporedbi sa svjetlosno polimerizira-
nima materijalima i iznosile su između 0,47 % i 1,32 %, vrijednosti linearnog skupljanja SM SIC-ova bile su između 1,11 % i 1,65 %, a giomerja između 0,80 % i 1,15 %. KM se značajno manje skupljao u usporedbi s F9E-om i F9F-om. KMQ također se manje skupljalo u usporedbi s F9E-om i F9F-om, no statistička značajnost postojala je samo u usporedbi KMQ-a s F9F-om. Manje skupljanje KM-a i KMQ-a u usporedbi s F9E-om i F9F-om može se pripisati veličini čestica praška. Prosječna veličina čestica u KM-i i KMQ-manja je (4,7 µm i 6,6 µm) u usporedbi s česticama praška u F9E-i u F9F-u (14,9 µm i 7,13 µm) (32, 33). Manje čestice značajno manje skupljanje zbog manjeg razmaka između njih i razmjerno manjeg volumena matriksa (34). Neki autori navode da veći omjer praša i tekućine smanjuje skupljanje jer dio čestica praška ne reagira u matrici visokog viskoziteta (19). To je suprotno našim rezultatima jer su se F9E i F9F koji su formulirani s većim omjerom praška i tekućine (F9F 3,6 g: 1 g, F9E 4,0 g: 1,2 g) (33), snažnije skupljali od KM-a i KMQ-a koji imaju manji omjer prašak/tekućina (3,4 g KM: 1 g i KMQ 3,4 g: 1 g). No uspoređujući KM i KMQ, koji su imali isti omjer praška i tekućine (3,4 g: 1g), ali različitu veličinu čestica (KM 4,7 µm i KMQ 6,6 µm), može se zaključiti da veličina čestica ima veći utjecaj na skupljanje negoli omjer praška/tekućina.

Unatoč mnogoštovila objavljenih podataka o skupljanju materijala, teško je usporediti rezultate različitih studija zbog varijacija u metodologiji, različitih uvjeta ispitivanja, različitih SIC materijala i polimerizacije uređajima različitih intenziteta svjetlosti. Nekoliko je studija pokazalo da volumno skupljanje različitih SIC-ova i kompozitnih materijala varira od 2 % do 5 % (3, 18, 19, 35). To volumno skupljanje odgovara linearnom skupljanju od 0,75 % do 1,72 %, što se podudara s našim rezultatima skupljanja koji su u rasponu od 0,47 % do 1,65 %. No konkretno brojčane vrijednosti dobivena u našem radu ne mogu se izrazno usporediti s onima iz drugih studija zbog jedinstvene geometrije uzoraka i uvjeta mjerenja. Glavno ograničenje našeg eksperimentalnog postavka jest da pozicioniranje diskoidnih uzoraka velikog promjera između PET folija na koje je materijal djelomično pričvršćen može djelovati kao vanjski ograničavajući čimbenik na skupljanje materijala. Stioviše, sama težina zrcala koje je postavljeno na površinu nestvrdnutog uzorka može porediti optički seg i smjer skupljanja.

Polimerizacijski program dodatni je važan čimbenik u polimerizacijom skupljanju svjetom polimeriziranih materijala. Iz slike 2, vidi se da skupljanje B2 i F2LC-a ovisi o intenzitetu svjetlosti. B2 se značajno manje skupljalo kada je polimeriziran niskim polimerizacijskim programom u usporedbi s visokim. Utjecaj polimerizacijskog programa bio je vidljiv i u skupljanju F2LC-a, ali razlika između polimerizacijskih programa nije bila statistički značajna. Tijekom polimerizacije B2 i F2LC-a niskim polimerizacijskim programom manje skupljanje je zabilježeno u fazi izlaganja svjetlu nižeg intenziteta, a porast skupljanja s povećanjem intenziteta svjetla. Za giomere zabilježeno je značajno manje skupljanje tijekom niskog polimerizacijskog programa u odnosu prema visokom. Neki autori navode da smanjeni intenzitet svjetla usporava polimerizaciju, što pridonosi smanjenju polimerizacijskog skupljanja (36).
U ovom istraživanju se F2LC mnogo više skupljao negoli B2. Moguće da velike pre-polimerizirane S-PRG čestice pu­nila, kod kojih se kiselolužnata reakcija dogodila već tijekom proizvodnje giomera, pridonijelo manjem polimerizacijskom skupljanju (37). Drugi autori također su izmjerili veće skup­ljanje SM SIC-ova negoli kompozitnih materijala, što se sla­že s našim nalazima o većem skupljanju F2LC-a u usporedbi sa skupljanjem kod giomera (38, 39).

Treba istaknuti da su uvjeti ispitivanja u našoj studiji od­govali kliničkim uvjetima pri izradi restauracije. Mjerenje skupljanja trajalo je malo dulje od vremena preporučenog za obradu restauracije prema uputama proizvođača. Mjerili smo skupljanje materijala prije nego što se izloži slini ili vodenom mediju. U ranijim istraživanjima već je dokazan utjecaj razli­čitih eksperimentalnih uvjeta (25). Zbog hidrofilne prirode i strukture staklenionomernog cementa, apsorpcija vode po­tiče djelomičnu kompenzaciju skupljanja (21). No materijal prolazi kroz određene dimenzijske promjene prije bilo kakvog kontakta sa slinom. Zato se skupljanje događa dok je cement još zaštićen od izlaganja vodi.

curing of B2 and F2LC, the “soft” curing mode led to the lower shrinkage in the stage of exposure to the lower intensity light and increased with the increase in light intensity. For the giomer, the “low” curing mode produced significantly lower curing shrinkage than the “high” curing mode. Some authors concluded that reduced light intensity leads to slower curing and be beneficial for reducing the setting shrinkage (36). In this study, F2LC showed a more extensive shrinkage than B2. It is possible that the acid-base reaction occurring during the manufacturing of giomer resulted in large pre-polimerized S-PRG fillers that produced less curing shrinkage (37). Other authors also reported higher shrinkage of RM GIC than composite materials, which concurs with our findings of a higher shrinkage in F2LC compared to that in giomer (38, 39).

It should be emphasized that test conditions in our study corresponded to the clinical conditions of restoration placement. Measurement lasted a little bit longer than the manufacturer recommended finishing time. We measured shrinkage of material prior to their exposure to saliva or aqueous media. In some previous studies, the influence of different test condition has already been proven (25). Due to the hydrophilic nature and the structure of glass ionomer cement, water sorption leads to partial compensation of the shrinkage (21). However, the material passes through a certain extent of dimensional changes before any contact with the saliva. Thus, the setting shrinkage takes place while the cement is still protected against water exposure.

Zaključak
Rezultati ovog istraživanja pokazuju da dimenzijske promjene tijekom stvrdnjavanja ovise o vrsti materijala – KSIC-ovi imali su niži stupanj skupljanja od SM SIC-a i giome­ra. Prva hipoteza djelomično je prihvaćena; obzirom na usporedbu KM-a i KMQ-a s F2LC-om polimeriziranim sa svim trima polimerizacijskim programima, te usporedbu KM-a s B2 polimeriziranim visokim polimerizacijskim programom.

Razlike između polimerizacijskih programa bile su statistički značajne samo za B2 između visokog i niskog polime­rizacijskog programa. Za F2LC nije zabilježena značajna razlika između triju polimerizacijskih programa.

Ekspansija materijala tijekom početnog vremena stvrd­njavanja, što smanjuje neto iznos skupljanja, bila je veća i tra­jala je dulje kod K SIC-a u usporedbi sa SM SIC-om i gio­merom.

Zahvale
Zahvaljujemo tvrtkama GC Corporation, 3M ESPE i Shofu Inc. za darovane materijale.

Sukob interesa
Autori ne navode sukob interesa.

Conclusion
The results of this study show that dimensional changes during setting depended on the material type: the CGICs showed a lower degree of shrinkage than the RM GIC and the giomer. The first hypothesis was partially accepted; considering the comparison between KM and KMQ with F2LC polymerized with all of the three curing modes, as well as the comparison between KM with B2 polymerized with the “high” curing mode.

The differences among curing modes were statistically sig­nificant only in B2 between the “high” and the “low” curing mode. There was no significant difference in F2LC between the three curing modes.

The material expansion during the initial setting time, which reduces the net amount of curing shrinkage, was higher and lasted longer in the CGICs compared to the RM GIC and the giomer.

Acknowledgments
We would like to thank GC Corporation, 3M ESPE and Shofu Inc. for the donated materials.

Conflict of interest
None declared.
Abstract

Objectives: The aim of this study was to evaluate dimensional changes of conventional glass ionomer cements during light curing, using digital laser interferometry. Additionally, the influence of different curing modes (“high”, “soft”, and “low”) of a light-emitting diode (LED) curing unit on dimensional changes was evaluated.

Materials and methods: Linear curing shrinkage of conventional glass ionomer cements (CGICs): Fuji IX Extra (F9E), Fuji IX Fast (F9F), Ketac Molar Aplicap (KM), Ketac Molar Quick Aplicap (KMQ), resin-modified glass ionomer cement (RM GIC): Fuji II LC (F2LC) and Giomer: Beauthiful II (B2) was analyzed. All tested materials were of shade A3, while all of the GICs were incrementally placed. Discolored samples were used for testing. Digital laser interferometer was used to record linear shrinkage during curing. The results were analyzed by ANOVA, and Tukey post hoc test was used for multiple comparisons (α = 0.05).

Results: All tested materials showed an initial setting expansion and a subsequent setting shrinkage. KM and KMQ had significantly lower setting shrinkage than RM GIC polymerized using any of the three curing modes. B2 showed lower shrinkage compared to F2LC. Conclusions: The extent of curing shrinkage in RM GIC measured in this study can affect longevity of restorations.

References

1. Gladys S, Van Meerbeeck B, Braem M, Lamberchts P, Vanherle G. Comparative physico-mechanical characterization of five clinically available glass ionomer restorative materials. J Dent Res. 1997 Apr;76(4):883-94.

2. Masih S, Thomas AM, Koshy G, Joshi J L. Comparative evaluation of the microleakage of two modified glass ionomer cements on primary molars. An in vivo study. J Indian Soc Pedod Pedod Dent. 2011 Apr-Jun;29(2):125-9.

3. Attin T, Buchalla W, Kielbassa AM, Hellwig E. Curing shrinkage and volumetric changes of resin-modified glass ionomer restorative materials. Dent Mater. 1995 Nov;11(6):359-62.

4. Watts DC, Kisumbi BK, Toworce GK. Dimensional changes of res/in/onomer restoratives in aqueous and neutral media. Dent Mater. 2000 Mar;16(2):89-96.

5. Sidhu SK, Sheriff M, Watson TF. The effects of maturity and dehydration shrinkage on resin-modified glass-ionomer restorations. J Dent Res. 1997 Aug;76(8):1495-501.

6. Xie D, Brantley WA, Culbertson, Wang G. Mechanical properties and microstructures of glass-ionomer cements. Dent Mater. 2000 Mar;16(2):129-38.

7. Kim Y, Hirano S, Hirasawa T. Physical properties of glass-ionomer cements. Dent Mater. J 1998 Mar;17(1):68-76.

8. Ėmamieh S, Ghasemi A, Torabzadeh H. Hygroscopic expansion of aesthetic restorative materials: One-year report. J Dent. 2011;8(1):25-32.

9. Tamborinco D, Versluis A, Pintado MR, DeLong R, Douglas WH. Tooth deformation patterns in molars after composite restoration. Dent Mater. 2004 Jul;20(6):535-42.

10. Bouillon D, Versluis A, Braga R. Polymerization stress, shrinkage and elastic modulus of current low-shrinkage dental resin composites measured by crack analysis. Dent Mater. 2012 Sep;28(9):e143-9.

11. Boaro LCC, Gonçalves F, Guimarães TC, Ferracane JL, Versluis A, Braga R. Polymerization stress, shrinkage and elastic modulus of current low-shrinkage restorative composites. Dent Mater. 2010 Dec;26(12):1144-50.

12. Knezevic A, Demoli N, Tarle Z, Negovetic Mandic V. Utjecaj intenziteta prskalca na mere usprao, a radialnu pritisku u materijalu. Oper Odontol Orala Cir Bucal. 2008 May-Aug;75(2):125-33.