Antifungal Activity and Chemical Composition of Seven Essential Oils to Control the Main Seedborne Fungi of Cucurbits

Marwa Moumni 1,2, Gianfranco Romanazzi 2,* , Basma Najar 3, Luisa Pistelli 3,6, Hajer Ben Amara 1, Kaies Mezrioui 1,2, Olfa Karous 4, Ikbal Chaieb 5 and Mohamed Bechir Allagui 1

Abstract: Essential oils represent novel alternatives to application of synthetic fungicides to control against seedborne pathogens. This study investigated seven essential oils for in vitro growth inhibition of the main seedborne pathogens of cucurbits. Cymbopogon citratus essential oil completely inhibited mycelial growth of Stagonosporopsis cucurbitacearum and Alternaria alternata at 0.6 and 0.9 mg/mL, respectively. At 1 mg/mL, Lavandula dentata, Lavandula hybrida, Melaleuca alternifolia, Lavandula nobilis, and two Origanum majorana essential oils inhibited mycelia growth of A. alternata by 54%, 71%, 68%, 36%, 90%, and 74%, respectively. S. cucurbitacearum mycelia growth was more sensitive to Lavandula essential oils, with inhibition of ~74% at 1 mg/mL. To determine the main compounds in these essential oils that might be responsible for this antifungal activity, they were analyzed by gas chromatography–mass spectrometry (GC-MS). C. citratus essential oil showed cirtal as its main constituent, while L. dentata and L. nobilis essential oils showed eucalyptol. The M. alternifolia and two O. majorana essential oils had terpinen-4-ol as the major constituent, while for L. hybrida essential oil, this was linalool. Thus, in vitro, these essential oils can inhibit the main seedborne fungi of cucurbits, with future in vivo studies now needed to confirm these activities.

Keywords: Alternaria alternata; cucurbits; Cymbopogon citratus; GC-MS; Stagonosporopsis cucurbitacearum

1. Introduction

Cucurbits are an important source of income for countries in the Mediterranean basin, with a total production of nearly 3,356,669 tonnes in 2018 [1]. Squash (Cucurbita maxima Duchesne; Cucurbita moschata Duchesne) is one of the major cucurbits grown in tropical and temperate regions. Cucurbita spp. can be affected by a number of fungal pathogens, which can cause major economic losses [2]. The majority of these fungi are seedborne, such as gummy stem blight (with foliar symptoms) and black rot (with fruit symptoms), which are caused by Stagonosporopsis cucurbitacearum (Fr.) Aveskamp, Gruyter & Verkley (anamorph: Phoma cucurbitacearum (Fr.) Sacc.), synonym Didymella bryoniae (Fuckel) Rehm, and which represent serious diseases that are a major constraint to cucurbit production worldwide [2–4]. Nuangmek et al. [5] reported that losses in cantaloupe can also reach 100% under conditions conducive to S. cucurbitacearum. Alternaria alternata (Fr.) Keissl. is the
agent of leaf spot, which is a further major factor responsible for low cucurbit production. The genus *Alternaria* affects the plant seedlings, leaves, stalks, stems, flowers and fruit. Yield losses of 50% and more can occur under weather conditions that are conducive to leaf spot, and in particular temperatures of 25 to 32 °C associated with 40% relative humidity during the day and 95% at night [6]. Many other pathogens have been detected on cucurbits seeds, such as *Fusarium solani* [7,8], *Alternaria cucumerina* [9], *Paramyrothecium roridum*, and *Albifimbria verrucaria* [10,11].

The most important unit of the squash crop is the seed, which should be of high quality and pathogen free. The propagation of such seedborne fungi is generally controlled by chemical treatments [7,12,13]. Indeed, there have been many studies on chemical control against seedborne *S. cucurbitacearum* [14–16]. Sudisha et al. [17] reported that seed treatment with the Dithane M-45 (Mancozeb 75% WP) fungicide can reduce the incidence of gummy stem blight in muskmelon crops, although this active ingredient was recently refused approval for use in the European Union, so its use will be banned in few months. Chemical fungicides are generally adopted for disinfection, disinfection, and protection of seeds and the emerging plantlets. However, these chemicals can also cause environmental pollution due to their high persistence in the soil and water, because of their slow biodegradability [18,19].

In recent years, alternatives to synthetic fungicides have been investigated due to the extensive use of fungicides for plant and seed treatments, the problems of pathogen resistance to fungicides that this causes, and the increased demand for organic and free-of-residue vegetables [20–23]. Natural organic compound, such as plant extracts and essential oils, are among the environmentally friendly alternatives that are being developed and tested for antifungal activities against seedborne pathogens [24]. Essential oils are a rich source of broad-spectrum antifungal plant-derived metabolites that inhibit both fungal growth and their production of toxic metabolites [25]. Tea tree essential oil contains terpinen-4-ol, 1,8-cineole, and γ-terpinene, and at 2%, it has shown potent inhibition of mycelial growth of *Fusarium graminearum*, *Fusarium culmorum*, and *Pyrenophora graminea* [26]. Riccioni and Orzali [27] reported that tea tree essential oil represents a source of sustainable eco-friendly botanical fungicides, because of its efficacy in the control of seedborne fungi. The genus *Cymbopogon* (Poaceae) is known for its essential oils, especially for extracts of lemongrass (*Cymbopogon citratus* (DC.) Stapf). The in vitro evaluation of the effectiveness of this essential oil on the main seedborne pathogens of cucurbits was reported previously [28–30].

The objectives of the present study were to evaluate the inhibitory effects of seven essential oils that differ in their chemical compositions and to determine what the most important compounds in these seven essential oils might be, using gas chromatography–mass spectrometry (GC-MS) analysis.

2. Results

2.1. In Vitro Inhibition of Fungal Growth by the Seven Essential Oils

The effects of increasing concentrations of seven essential oils on mycelial growth of the fungi *A. alternata* and *S. cucurbitacearum* were investigated. These essential oils were from various sources, and are defined as (see Table 1): *C.cit*, *Cymbopogon citratus* (lemon grass); *L.dent*, *Lavandula dentata* (lavender); *L.hyb*, *Lavandula hybrida* (lavandin); *M.alt*, *Melaleuca alternifoligia* (tea tree); *L.nob*, *Laurus nobilis* (bay laurel); *O.maj1/2*, *Origanum majorana* 1/2 (majoram).

As can be seen in Figures 1 and 2, and as summarized in Tables 2 and 3, all of these essential oils inhibited the growth of these two fungi in a dose-dependent manner. The greatest inhibitory activity was shown by the *C.cit* essential oil, with 100% inhibition of mycelial growth of both *A. alternata* and *S. cucurbitacearum* reached at 0.6 mg/mL and 0.9 mg/mL, respectively (Table 2). *A. alternata* was generally more sensitive to these essential oils than *S. cucurbitacearum*, and at 1 mg/mL essential oils, its mycelia growth was inhibited by 55.0%, 71.5%, 68.2%, 36.1%, 74.2%, and 90.5% by *L.dent*, *L.hyb*, *M.alt*, *L.nob*, *L.cit*, and *O.maj*.
O.maj1, and O.maj2, respectively (Table 2). At the same essential oil concentration, S. cucurbitacearum radial growth was inhibited by 73.5%, 74.0%, 73.7%, 65.3%, 60.0%, and 67.3%, respectively (Table 3). The positive control of the fungicide combination of 25 g/L difenoconazole plus 25 g/L fludioxonil completely inhibited the mycelial growth of A. alternata at all concentrations tested. Against S. cucurbitacearum, this fungicide combination at 0.1, 0.5, and 1 mg/mL inhibited the mycelial growth by 75.7%, 84.9%, and 86.7%, respectively.

In addition, the C.cit essential oil had a fungicidal effect against S. cucurbitacearum from 900 µg/mL. Indeed, for A. alternata, C.cit had fungistatic effects at 0.6 mg/mL and 0.7 mg/mL, and it was fungicidal from 0.8 mg/mL (Table 4). These data show that the C.cit had potent antifungal activity against A. alternata and S. cucurbitacearum with IC50 values of 0.315 mg/mL and 0.102 mg/mL, respectively (Figure 3). The essential oils of L.dent, L.hyb, M.alt, O.maj1, and O.maj2 showed moderate antifungal activities against A. alternata, with IC50 values from 0.473 mg/mL to 0.893 mg/mL, as similarly against S. cucurbitacearum, with IC50 values from 0.322 mg/mL to 0.884 mg/mL. However, L.nob showed only weak antifungal activities against both A. alternata and S. cucurbitacearum, as seen by its relatively high IC50 values of 1.310 mg/mL and 1.248 mg/mL, respectively (Figure 3).

Table 1. Details of the essential oils included in this study.

Code	Species	Family	Common Name	Source
C.cit	*Cymbopogon citratus* (DC.) Stapf	Poaceae	Lemongrass	Biopesticides Laboratory, Regional Centre for Research in Horticulture and Organic Agriculture (CRRHAB), Tunisia
L.dent	*Lavandula dentata* L.	Lamiaceae	Lavender	CRRHAB, Tunisia
L.hyb	*Lavandula hybrida* E.Rev. ex Briq	Lamiaceae	Lavandin	FLORA s.r.l. (Batch N° 161808)
M.alt	*Melaleuca alternifolia* (Maiden & Betche) Cheel	Myrtaceae	Tea tree	FLORA s.r.l. (Batch N° 161960)
L.nob	*Laurus nobilis* L.	Lauraceae	Bay laurel	Medicinal Plants Laboratory, National Institute of Agronomy of Tunisia (INAT)
O.maj1	*Origanum majorana* L.	Lamiaceae	Marjoram	INAT
O.maj2	*Origanum majorana* L.	Lamiaceae	Marjoram	CRRHAB, Tunisia

Figure 1. Representative experiment showing inhibition of *Alternaria alternata* mycelial growth by *Cymbopogon citratus* essential oil at 0.1 to 1 mg/mL and by the fungicide combination of 25 g/L difenoconazole plus 25 g/L fludioxonil at 0.1, 0.5 and 1 mg/mL, as seen after 8 days of incubation at 22 ± 2 °C.
Figure 2. Representative experiment showing inhibition of *Stagonosporopsis cucurbitacearum* mycelial growth by the seven essential oils: *C.cit*, Cymbopogon citratus; *L.dent*, Lavandula dentata; *L.hyb*, Lavandula hybrida; *M.alt*, Melaleuca alternifolia; *L.nob*, Laurus nobilis; *O.maj1/2*, Origanum majorana 1/2, at increasing concentrations (right to left; as indicated) from 0 mg/mL (control) to 1 mg/mL, and by the fungicide combination of 25 g/L difenoconazole plus 25 g/L fludioxonil (positive control) at 0.1, 0.5 and 1 mg/mL, after 7 days of incubation at 22 ± 2 °C.
Table 2. Mycelial growth inhibition of *Alternaria alternata* by the seven essential oils. C.cit, *Cymbopogon citratus*; L.dent, *Lavandula dentata*; L.hyb, *Lavandula hybrid*; M.alt, *Melaleuca alternifolia*; L.nob, *Laurus nobilis*; O.maj1/O.maj2, *Origanum majorana* 1/2, after 7 days of incubation at 22 ± 2 °C.

Essential Oil	Inhibition of Mycelial Growth of *Alternaria alternata* (%) at Increasing Essential Oil Concentrations (mg/mL)	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
C.cit	20.28 ± 4.32	25.03 ± 1.56	43.21 ± 2.33	65.92 ± 6.29	79.14 ± 10.97	100	100	100	100	100	100	
L.dent	9.95 ± 2.30	20.07 ± 3.63	29.99 ± 4.97	44.44 ± 3.13	43.82 ± 1.84	43.00 ± 3.18	37.63 ± 1.65	44.44 ± 0.21	43.00 ± 1.89	54.98 ± 0.83		
L.hyb	31.23 ± 4.40	32.88 ± 4.72	42.38 ± 2.18	50.64 ± 2.89	51.05 ± 2.50	59.31 ± 3.76	63.44 ± 1.64	65.72 ± 1.49	67.37 ± 0.55	71.50 ± 0.95		
M.alt	13.47 ± 5.36	15.74 ± 3.06	21.52 ± 10.17	21.73 ± 5.38	24.00 ± 1.09	25.44 ± 4.42	29.37 ± 3.45	62.00 ± 1.49	67.99 ± 2.33	68.19 ± 2.98		
L.nob	0.58 ± 0.29	0.58 ± 0.29	1.28 ± 0.41	8.72 ± 2.51	12.02 ± 1.56	23.17 ± 2.48	24.00 ± 1.65	25.03 ± 3.41	33.91 ± 4.96	36.08 ± 2.44		
O.maj1	20.07 ± 2.18	37.84 ± 9.68	42.59 ± 2.30	45.48 ± 4.13	47.13 ± 1.80	47.75 ± 1.09	53.12 ± 7.10	60.97 ± 3.41	64.27 ± 3.25	74.18 ± 1.45		
O.maj2	27.10 ± 0.55	31.85 ± 1.99	32.47 ± 1.99	33.91 ± 0.55	37.01 ± 0.41	42.38 ± 1.24	42.59 ± 0.83	46.92 ± 0.55	63.86 ± 1.61	90.50 ± 9.50		
Fungicides *	0.00	100	-	-	-	-	-	-	-	-	100	

Data are means ±SD (*n* = 3). * *25 g/L difenoconazole + 25 g/L fludioxonil. - not tested.

Table 3. Mycelial growth inhibition of *Stagonosporosis cucbitacarum* by the seven essential oils. C.cit, *Cymbopogon citratus*; L.dent, *Lavandula dentata*; L.hyb, *Lavandula hybrid*; M.alt, *Melaleuca alternifolia*; L.nob, *Laurus nobilis*; O.maj1/O.maj2, *Origanum majorana* 1/2, after 7 days of incubation at 22 ± 2 °C.

Essential Oil	Inhibition of Mycelial Growth of *Stagonosporosis cucbitacarum* (%) at Increasing Essential Oil Concentrations (mg/mL)	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
C.cit	51.76 ± 3.86	53.53 ± 1.22	58.24 ± 0.59	67.25 ± 1.37	74.51 ± 3.08	85.49 ± 7.45	82.16 ± 9.00	87.06 ± 6.51	100	100		
L.dent	29.41 ± 0.08	41.18 ± 6.79	47.06 ± 1.36	51.76 ± 0.68	61.37 ± 0.71	62.79 ± 0.71	66.27 ± 0.39	71.37 ± 0.78	73.33 ± 0.39	73.53 ± 0.59		
L.hyb	5.49 ± 1.68	6.27 ± 2.18	10.39 ± 2.05	12.73 ± 1.04	21.57 ± 5.85	22.73 ± 4.43	27.65 ± 4.75	53.92 ± 0.52	63.73 ± 0.85	73.92 ± 3.63		
M.alt	3.92 ± 1.96	22.16 ± 1.04	20.78 ± 3.08	20.59 ± 3.02	30.78 ± 3.16	31.37 ± 4.11	41.96 ± 3.35	60.20 ± 0.71	63.92 ± 0.20	73.73 ± 0.85		
L.nob	0.98 ± 0.71	3.73 ± 3.73	5.88 ± 2.38	5.88 ± 2.37	5.69 ± 0.52	6.67 ± 0.71	11.37 ± 4.37	15.29 ± 4.57	29.22 ± 8.35	65.29 ± 3.83		
O.maj1	0.00	5.69 ± 1.87	8.24 ± 1.22	9.02 ± 1.19	10.98 ± 1.37	33.73 ± 4.31	33.73 ± 3.74	47.45 ± 6.97	54.12 ± 2.96	60.00 ± 1.56		
O.maj2	34.12 ± 4.42	49.22 ± 1.41	54.31 ± 4.27	56.47 ± 1.96	57.25 ± 1.56	58.82 ± 1.04	59.61 ± 1.80	61.57 ± 1.19	63.53 ± 0.34	67.25 ± 1.74		
Fungicides *	0.00	75.69 ± 0.00	-	-	-	-	-	-	-	-	86.67 ± 0.39	

Data are means ±SD (*n* = 3). * *25 g/L difenoconazole + 25 g/L fludioxonil. - not tested.
Table 4. Fungistic and fungicidal activities of *Cymbopogon citratus* essential oil on mycelia growth of *Stagonosporopsis cucurbitacearum* and *Alternaria alternata* after 7 days of incubation at 22 ± 2 °C.

Fungus	Fungicidal Activities	Fungistatic Activities								
	0.6	0.7	0.8	0.9	1					
	Fungicidal	Fungistatic	Fungicidal	Fungistatic	Fungicidal	Fungistatic	Fungicidal	Fungistatic	Fungicidal	Fungistatic
Alternaria alternata	NO	Yes	NO	Yes	Yes	NO	Yes	NO	Yes	NO
Stagonosporopsis cucurbitacearum	-	-	-	-	-	Yes	NO	Yes	NO	- not tested.
Antibiotics 2020, 9, x FOR PEER REVIEW 7 of 16

Figure 3. Inhibitory concentration for 50% reduction (IC50) of mycelial growth of Alternaria alternata (A) and Stagonosporopsis cucurbitacearum (B) by the seven essential oils: C.cit, Cymbopogon citratus; L.dent, Lavandula dentata; L.hyb, Lavandula hybrida; M.alt, Melaleuca alternifolia; L.nob, Laurus nobilis; and O.maj1/2, Origanum majorana 1/2. Data with different letters (a-f) are significantly different between treatments (p ≤ 0.05; Fisher’s LSD).

2.2. Chemical Profiles of the Essential Oils

The 41 components given in Table 5 were identified as comprising from 97.7% (O.maj1) to 100% (L.hyb) of these essential oils. The oxygenated monoterpenes dominated in all of the essential oils, even though these belonged to different plant families and species. They represented more than two-thirds of the fraction in three of the four Lamiaceae: L.dent (81.1%), L.hyb (90.8%), and O.maj2 (66.8%). The oxygenated monoterpenes were also the highest proportionally in C.cit (88.5%) and L.nob (70.3%). On the other hand, the compositions of M.alt and O.maj1 were divided mainly between oxygenated monoterpenes as the main class (48.1%, 49.7%, respectively) and monoterpene hydrocarbons in similar proportions (40.4%, 44.3%, respectively). In more detail, C.cit showed α-citral (geranial; 51.6%) and β-citral (neral; 26.0%), whereby these two major oxygenated monoterpenes represented together over three-quarters of the total composition. In the Lamiaceae, almost two-thirds of L.dent was eucalyptol (63.5%) and β-selinene (4.1%). Instead, the total composition of O.maj1 and O.maj2 included around half and over two-thirds as terpinen-4-ol (44.8%) and p-cymene (68.2%), respectively, followed by γ-terpinene (12.6%) for O.maj1 and α-terpineol (5.4%) for O.maj2. For the two commercial essential oils, the main compounds of L.hyb were linalool (33.7%) and linalyl acetate (27.7%), followed by camphor (9.3%), while M.alt showed terpinen-4-ol (41.1%) as 86% of its oxygenated monoterpenes, with γ-terpinene (16.0%), p-cymene (9.3%), and α-terpinene (6.1%), together representing 78% of the monoterpene hydrocarbons. Finally, more than half of the identified fractions of the Lauraceae L.nob were characterized by the combination of eucalyptol (47.9%) and α-terpinyl acetate (10.2%).
Table 5. Relative levels of the volatile constituents of the different essential oils determined by gas chromatography–mass spectrometry analysis.

Compound a	Class Linear Retention Index	(n-alkane) b	(Adams, 2007) c	Poaceae	Lamiaceae	Myrtaceae	Lauraceae			
		C.cit	L.dent	L.hyb	O.maj1	O.maj2	M.alt	L.nob		
1	α-Pinene mh d	937	932	0.1	0.6	0.5	0.6	2.7	5.6	
2	Sabinene mh	974	969	0.1	-	0.1	4.5	2.2	-	6.7
3	β-Pinene mh	979	974	-	3.1	0.5	0.4	0.2	0.7	5.0
4	β-Myrcene mh	991	988	5.3	-	0.4	1.1	0.6	0.6	1.2
5	α-Terpinene mh	1017	1014	-	-	-	5.7	0.8	6.1	0.8
6	p-Cymene mh	1025	1020	0.3	0.9	0.2	11.3	17.8	9.3	0.6
7	Limonene mh	1030	1024	0.4	1.1	0.8	3.5	2.4	1.0	1.7
8	Eucalyptol om	1032	1026	0.6	63.5	6.5	0.7	0.2	2.8	47.9
9	γ-Terpineol mh	1060	1054	-	-	-	12.6	3.8	16.0	1.4
10	Terpinolene mh	1088	1086	-	-	0.2	3.4	1.2	3.0	0.3
11	Linalool om	1099	1095	0.8	1.8	33.7	1.1	3.6	-	7.4
12	cis-p-Menth-2-en-1-ol om	1122	1118	-	-	-	1.3	0.7	0.1	-
13	trans-Pinocarveol om	1139	1135	-	2.9	-	-	-	-	-
14	trans-p-Menth-2-en-1-ol om	1141	1136	-	-	-	1.2	0.7	0.1	-
15	Camphor om	1145	1141	-	0.5	9.3	-	0.1	-	-
16	γ-Terpineol om	1166	1162	-	1.3	-	-	-	-	0.3
17	endo-Borneol om	1167	1165	-	0.4	4.4	0.1	0.2	-	-
18	p-Mentha-1,5-dien-8-ol om	1170	1166	2.5	-	-	-	-	-	-
19	Terpinen-4-ol om	1177	1174	0.1	1.3	4.5	32.4	50.1	41.1	1.5
20	p-Cymen-8-ol om	1183	1179	1.1	0.3	-	0.3	0.4	-	-
21	Cryptone nt	1186	1183	-	1.3	-	-	-	-	-
22	α-Terpineol om	1189	1186	-	1.6	1.1	6.0	5.4	3.7	1.6
23	Myrtenal om	1198	1195	-	2.7	-	-	-	-	-
24	trans-Piperitol om	1208	1207	-	-	-	1.0	0.6	-	-
25	β-Citral om	1240	1235	25.0	-	-	-	-	-	-
26	Carvone om	1243	1239	0.9	1.6	-	0.2	0.6	-	-
27	Geraniol om	1253	1249	2.7	-	-	-	-	-	-
28	Linalyl acetate om	1257	1254	-	27.7	2.7	2.2	-	0.2	-
29	α-Citral om	1270	1264	51.6	-	-	-	-	-	-
30	2-Undecanone nt	1294	1293	1.2	-	-	-	-	-	-
Table 5. Cont.

Compound a	Class	Linear Retention Index (n-alkane) b	Relative amount (%)	Poaceae	Lamiaceae	Myrtaceae	Lauraceae			
		(Adams, 2007) c		C.cit	L.dent	L.hyb	O.maj1	O.maj2	M.alt	L.nob
31	4-Terpinyl acetate	om 1300	1300	-	-	1.5	1.0	-	-	-
32	Lavandulyl acetate	om 1304	1288	-	-	3.0	-	-	-	-
33	α-Terpinyl acetate	om 1350	1346	-	-	-	0.1	-	-	10.2
34	Methyleugenol	pp 1404	1403	-	-	-	-	-	3.1	
35	β-Caryophyllene	sh 1419	1417	-	-	2.0	2.4	1.6	0.5	0.5
36	Aromandendrene	sh 1440	1439	-	-	-	-	-	2.2	
37	β-Selinene	sh 1486	1489	-	4.1	-	-	-	0.1	
38	Eremophyllene	sh 1498	1492	-	-	-	-	-	1.5	
39	δ-Cadinene	sh 1524	1522	0.2	1.9	0.1	0.2	0.3	-	
40	Caryophyllene oxide	os 1583	1582	-	2.1	-	-	-	-	
41	β-Eudesmol	os 1651	1649	-	2.1	-	-	-	-	

Monoterpene Hydrocarbons

Class	Relative amount (%)	Poaceae	Lamiaceae	Myrtaceae	Lauraceae		
mh	6.5	5.9	3.6	44.3	29.7	40.4	24.0

Oxygenated Monoterpens

Class	Relative amount (%)	Poaceae	Lamiaceae	Myrtaceae	Lauraceae		
om	88.5	81.1	90.8	49.7	66.8	48.1	70.3

Sesquiterpene Hydrocarbons

Class	Relative amount (%)	Poaceae	Lamiaceae	Myrtaceae	Lauraceae	
sh	0.3	4.6	0.2	0.6	1.1	1.8

Oxygenated Sesquiterpenes

Class	Relative amount (%)	Poaceae	Lamiaceae	Myrtaceae	Lauraceae	
pp	3.1	2.2	1.4	-	-	3.6

Penylpropanoids

Class	Relative amount (%)	Poaceae	Lamiaceae	Myrtaceae	Lauraceae	
nt	98.4	99.3	100.0	97.7	99.6	99.5

a Compounds present at ≥1% in at least one of the analyzed essential oils. C.cit: Cympobogon citratus; L.dent: Lavandula dentata; L.hyb: Lavandula hybrida; O.maj1/2: Origanum majorana 1/2; M.alt: Melaleuca alternifolia; L.nob: Laurus nobilis. b Linear retention index relative to n-alkane on the DB5 column. c Linear retention index reported by Adams (2007). d mh: monoterpene hydrocarbons; om: oxygenated monoterpenes; os: oxygenated sesquiterpenes; sh: sesquiterpene hydrocarbons; pp: penylpropanoids; nt: nonterpene derivatives.
3. Discussion

In this study, these in vitro assays for the antifungal activities of these seven essential oils on mycelial growth of two fungi showed that the lemongrass (C. citratus) essential oil was the most effective. The mycelial growth of A. alternata was totally inhibited by application of C. citratus at a moderate concentration, while S. cucurbitacearum was completely inhibited at the highest C. citratus concentration, with fungicidal activity seen in both cases. Only a few studies have investigated lemongrass essential oils and these fungi, with most studies focused on the essential oil activity rather than its composition. Shafique et al. [29] reported total inhibition of A. alternata by a C. citratus essential oil, with an IC50 of 279.13 μL/L, as also reported by Jie et al. [31]. In the same year, Guimarães et al. [32] confirmed in vitro fungitoxic activity on A. alternata, with the essential oil rich in citral (69.3%) and myrcene (23.8%). For the second fungus here, S. cucurbitacearum, Fiori et al. [30] reported 100% inhibition of mycelial growth and spore germination at a rate of 20 μL C. citratus essential oil. Seixas et al. [28] reported the same result at 0.25, 0.5, 0.75, 1, and 1.25 mg/mL C. citratus essential oil. A number of studies have reported these high proportions of the two isomers α-citral and β-citral in C. citratus essential oils, even when collected from different countries [33–37], as also confirmed by the present study. Brügger et al. [38] reported that in addition to the high proportion of citral, their commercial C. citratus essential oil showed relevant amounts of nonan-4-ol (6.5%) and camphene (5.2%). These two compounds were completely absent in the C. citratus essential oil used in the present study. A Brazilian commercial C. citratus essential oil also indicated a different composition, which was rich in nonterpenes, as especially 4,8-dimethyl-3,7-nonadien-2-one (25.0%), 1-heptadec-1-ynyl-cyclopentanol (9.6%), and 7,7-dimethyl-bicycloheptan-2-ol (8.0%); here, the proportion of citral was less than 37% [39]. The antifungal activity of C. citratus essential oil has also been reported against other fungi, including Aspergillus flavus. This activity can be ascribed to the presence of various components such as citral, geraniol, and β-myrcene [37,40]. According to some studies, citral and geranol can indeed inhibit the mycelial growth of Fusarium oxysporum, Colletotrichum gloeosporioides, Bipolaris sp. and A. alternata [41,42]. These major compounds in the C. citratus essential oil also have antioxidant and antimicrobial activities [43]. Furthermore, Kurita et al. [44] defined the fungicidal action of citral as due to its ability to receive electrons from the fungus cell, through charge transfer with an electron donor in the cell, which results in death of the fungus. In previous studies, β-myrcene and geraniol were found in C. citratus essential oil. These compounds with citral can contributed to inhibit the mycelial growth of A. alternata and S. cucurbitacearum.

The cultivated lavender L. dentata essential oil showed eucalyptol (63.5%) as the major compound in the present study, which was higher than that previously reported for both inflorescences (46.3%) and the aerial parts (40.4%) [45]. Iranian lavandin (L. hybrid) has also been characterized by high proportions of oxygenated monoterpene, with eucalyptol (41.1%) as the main component, followed by borneol (20.7%) and camphor (10.8%) [46]. All of these components were present in L. hybrid in the present study, although in lower amounts (6.5%, 4.4%, 9.3%, respectively), with the main component here being linalool (33.7%) and linalyl acetate (27.7%). The antifungal activity of linalool on Candida species was recently studied by Dias et al. [47], who indicated the potential use of this unsaturated monoterpene as a strong candidate with antifungal potency. According to Pitarokili et al. [48], linalyl acetate was inactive against all of the fungi they studied, although it showed weak activity against only Sclerotinia sclerotiorum. On the contrary, they confirmed the antifungal effects of linalool.

Good antifungal effects on mycelial growth of A. alternata were also seen here using the Origanum essential oils. Even though the O. majorana essential oils tested here had the same classes of compounds shown in a Brazilian species studied by Chaves et al. [49], they did not show pulegone as the main compound. An Italian species investigated by Della Pepa et al. [50] was in partial agreement with the present study for the high amount of terpinen-4-ol (29.6%), while a Tunisian oregano species were characterized by similar
terpinen-4-ol content [51,52]. Moreover, Busatta et al. [53] showed that an Egyptian essential oil that was extracted by hydrodistillation of dried leaves of *O. majorana* showed the same dominance of terpinen-4-ol (31.8%) and γ-terpinene (13.0%). Although most studies on the composition of *Origanum* essential oils have agreed on the main compounds from *O. majorana* [54–57], these have indeed varied. The effectiveness of *Origanum* might be due to its high content of terpinen-4-ol, a monoterpene alcohol that is known to have good antifungal activity, as previously reported against *Fusarium avenaceum*, *Fusarium moniliforme*, *Fusarium semitectum*, *F. solani*, *F. oxysporum*, and *F. graminearum* [58,59]. Its fungicidal activity was also reported by Morcia et al. [60], who analyzed its potency on mycotoxigenic plant pathogens. However, Ebani et al. [61] showed weak activity of a tea tree essential oil on *Aspergillus fumigatus* even though terpinen-4-ol was present at relatively high levels. This might be explained by the synergistic effects among all of the different components in each of the essential oils.

The *M. alternifolia* essential oil in the present study was characterized by high levels of terpinen-4-ol (41.1%) and γ-terpinene (16.0%). These are comparable with the data reported by Elmi et al. [62] and Silva et al. [63]. In their investigations of Italian and Brazilian commercial essential oils, they confirmed the predominance of terpinen-4-ol (41.5%, 43.1%, respectively) and γ-terpinene (20.6%, 22.8%, respectively). They also reported relatively high levels of both α-terpinene (9.6%, 9.3%, respectively) and α-terpineol (4.4%, 5.2%, respectively), while in the present study these two compounds were present in lower amounts (6.1%, 3.7%, respectively). It is also interesting to note the high proportion of p-cymene (9.3%) in the present study. In a more recent study, α-terpineol (4.4%) and 1,8-cineol (4.0%) were found in relatively high amounts, together with terpinen-4-ol (30.2%) and γ-terpinene (16.9%) [61]. In the present study, 1,8-cineol was also present but at a lower amount (2.8%).

The *L.nob* profile in the present study was in good agreement with that reported by Dhifi et al. [64], where they also showed high proportions of oxygenated monoterpenes (64.3%), with eucalyptol as the main constituent (46.8%) in their Tunisian species.

4. Materials and Methods

4.1. Origin of the Essential Oils

The lemongrass (*Cymbopogon citratus* (DC.) Stapf), lavender (*Lavandula dentata* L.), sweet marjoram (*Origanum majorana* L.), and bay laurel (*Laurus nobilis* L.) essential oils were provided by different laboratories (see Table 1), where the dried aerial parts of the plants were hydrodistilled using a Clevenger apparatus, as recommended by the European Pharmacopeia. The lavandin (*Lavandula hybrida* E.Rev. ex Briq) and tea tree (*Melaleuca alternifolia* (Maiden & Betche) Cheel) essential oils were from Flora Srl (Lorenzana, Pisa, Italy). The selection of these essential oils was based initially on their availability in our laboratory, and then on the studies in the literature that have reported in vitro activities of some of these against pathogen growth [65–67].

4.2. Fungal Strains

The *A. alternata* (GenBank accession: MK497774) and *S. cucurbitacearum* (GenBank accession: MF401569) strains used in the present study were isolated from infected squash seeds [2]. Pure cultures were transferred into Petri dishes (diameter, 90 mm) with potato dextrose agar (PDA; 42 g/L; Liofilchem Srl, Roseto degli Abruzzi, Italy) and incubated at 22 ± 2 °C with a photoperiod of 12/12 h dark/ ultraviolet light (TL-D 36W BLB 1SL; Philips, Dublin, Ireland).

4.3. In Vitro Antifungal Activities on Mycelial Growth

The antifungal activities of these *C.cit*, *L.dent*, *L.hyb*, *O.maj1*, *O.maj2*, *M.alt*, and *L.nob* essential oils were determined according to their contact phase effects on mycelial growth of *A. alternata* and *S. cucurbitacearum*. For these tests, the essential oils were dissolved in sterilized distilled water with 0.1% (v/v) Tween 20 (Sigma Aldrich, Steinheim, Germany),
to obtain homogeneous emulsions. The autoclaved PDA medium (cooled to 40 °C) had the essential oil emulsions added to obtain the final concentrations of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 mg/mL. The negative control was PDA containing 0.1% (v/v) Tween 20. The positive control was provided by three concentrations (0.1, 0.5, 1 mg/mL) of fungicides as 25 g/L difenoconazole plus 25 g/L fludioxonil (Celest Extra 50 FS; Cambridge, UK). The PDA was mixed and poured immediately into Petri dishes (diameter, 90 mm; 20 mL/plate), and after medium solidification, each plate was inoculated under aseptic conditions with 6 mm plugs of A. alternata or S. cucurbitacearum, taken from the edges of actively growing cultures. The experiments were carried out as three replicates per concentration and treatment. The inoculated plates were sealed with Parafilm and incubated for 7 days at 22 ± 2 °C with a photoperiod of 12/12 h dark/ ultraviolet light (TL-D 36W BLB 1SL; Philips, Dublin, Ireland). The orthogonal diameters of the colonies were measured daily until the control plates were completely covered by the mycelia. Mycelial growth inhibition was calculated based on Equation (1):

\[
\text{Mycelial growth inhibition} (\%) = \left(\frac{dc - dt}{dc}\right) \times 100 \tag{1}
\]

where dc and dt represent the mean diameter of the mycelial growth of the control and treated fungal strains, respectively. Moreover, the IC\(_{50}\) for mycelial growth inhibition of the fungi was determined from the linear regression between the essential oil concentrations and the mycelial growth inhibition.

Experiments were performed to differentiate between the fungicidal and fungistatic activities of the elevated essential oil concentrations against fungi. Here, each of the completely inhibited fungal plugs were transferred to fresh PDA plates to note their viability after 7 days of incubation under the same conditions.

4.4. Gas Chromatography-Mass Spectrometry Analysis

The volatile constituents of each essential oil were analyzed by GC-MS as previously reported [68]. They were processed using a gas chromatograph (Agilent 7890B; Agilent Technologies Inc., Santa Clara, CA, USA) equipped with a capillary column (Agilent HP-5MS; 30 m × 0.25 mm; coating thickness, 0.25 µm; Agilent Technologies Inc., Santa Clara, CA, USA) and a single quadrupole mass detector (Agilent 5977B; Agilent Technologies Inc., Santa Clara, CA, USA). The analytical conditions were as follows: injector temperature, 220 °C; transfer line temperature, 240 °C; oven temperature programmed, from 60 °C to 240 °C at 3 °C/min; carrier gas, helium at 1 mL/min; injection volume, 1 µL (in 0.5% HPLC grade n-hexane solution); split ratio, 1:25. The full scan acquisition parameters were as follows: scan range, 30 m/z to 300 m/z; scan time, 1.0 s (See supplementary materials).

Identification of the constituents was based on comparisons of retention times with those of the authentic standards, with comparisons of their linear retention indices relative to the series of n-hydrocarbons. Computer matching was also used against commercial (NIST 14, Adams) and laboratory developed mass spectra libraries built for pure substances and components of known oils, and against the mass spectrometry literature data [69–74].

4.5. Statistical Analysis

Analysis of variance was calculated using SPSS (version 20, IBM, Armonk, NY, USA). The data were analyzed by analysis of variance (ANOVA). Means were compared using Fisher’s test protected least significant difference at \(p \leq 0.05 \). All of the trials were repeated at least twice, and data are means ± standard error (SE).

5. Conclusions

The management of plant diseases using natural compounds is a great and important need nowadays. The present study has demonstrated the in vitro activities of seven essential oils and their efficacies against the fungi A. alternata and S. cucurbitacearum. These data show that the chemical compositions of essential oils can affect their antimicrobial activities. These essential oils were characterized by high proportions of oxygenated
monoterpenes followed by monoterpane hydrocarbons. Essential oil with citral, β-myrcene, and geraniol as major components (i.e., lemongrass [C. citratus]) controlled these fungi most effectively, followed by essential oils containing terpinen-4-ol or linalool (i.e., marjoram [O. majorana]). Antifungal activity of essential oils can be ascribed to individual effect of major components, and/or due to a synergistic effect of its minor components. Further studies are required to determine the effects of these oils as seed treatments, to evaluate their potential as preventive and curative treatments.

Supplementary Materials: The following are available online https://www.mdpi.com/2079-6382/10/2/104/s1. Figure S1. Chromatogram of Cympobogon citratus. Figure S2. Chromatogram of Lavandula dentata. Figure S3. Chromatogram of Lavandula hybrida. Figure S4. Chromatogram of Origanum majorana1. Figure S5. Chromatogram of Origanum majorana2. Figure S6. Chromatogram of Melaleuca alternifolia. Figure S7. Chromatogram of Laurus nobilis.

Author Contributions: Conceptualization, M.M., G.R., K.M., and M.B.A.; methodology, M.M., G.R., B.N., L.P., H.B.A., K.M., O.K., and I.C.; software, M.M.; validation, M.M., G.R., and M.B.A.; formal analysis, M.M., G.R., and M.B.A.; investigation, M.M., G.R., M.B.A., and B.N.; resources, M.M. and B.N.; data curation, M.M. and B.N.; writing—original draft preparation, M.M., K.M., and B.N.; writing—review and editing, M.M., G.R., M.B.A., B.N., and L.P.; visualization, M.M., G.R., and M.B.A.; supervision, G.R. and M.B.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article or supplementary material.

Acknowledgments: The company FLORA s.r.l. is acknowledged for kindly providing essential oils used for experiments.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References

1. Food and Agriculture Organization of the United Nations. FAOSTAT Data. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 27 October 2020).
2. Moumni, M.; Allagui, M.B.; Mancini, V.; Murolo, S.; Tarchoun, N.; Romanazzi, G. Morphological and molecular identification of seedborne fungi in squash (Cucurbita maxima, Cucurbita moschata). Plant Dis. 2020, 104, 1335–1350. [CrossRef] [PubMed]
3. Moumni, M.; Mancini, V.; Allagui, M.B.; Murolo, S.; Romanazzi, G. Black rot of squash (Cucurbita moschata Duchesne) caused by Stagonosporopsis cucurbitacearum reported in Italy. Phytopathol. Mediterr. 2019, 58, 381–385. [CrossRef]
4. Yao, X.; Li, P.; Xu, J.; Zhang, M.; Ren, R.; Liu, G.; Yang, X. Rapid and sensitive detection of Didymella bryoniae by visual loop-mediated isothermal amplification assay. Front. Microbiol. 2016, 7, 1372. [CrossRef] [PubMed]
5. Nuangmek, W.; Aiduang, W.; Suwannarach, N.; Kumla, J.; Lumyong, S. First report of gummy stem blight caused by Stagonosporopsis cucurbitacearum on cantaloupe in Thailand. Can. J. Plant Pathol. 2018, 40, 306–311. [CrossRef]
6. Töfoli, J.G.; Domingues, R.J. Alternarioses in vegetables: Symptoms, etiology, and integrated management. Biológico 2004, 66, 23–33. [CrossRef]
7. Farrag, E.S.H.; Moharam, M.H.A. Pathogenic fungi transmitted through cucumber seeds and safely elimination by application of peppermint extract and oil. Not. Sci. Biol. 2012, 4, 83–91. [CrossRef]
8. Boughalleb, N.; El Mahjoub, M. In vitro determination of Fusarium spp. infection on watermelon seeds and their localization. Plant Pathol. J. 2006, 5, 178–182. [CrossRef]
9. Gannibal, P.B. Alternaria cucumerina causing leaf spot of pumpkin newly reported in North Caucasus (Russia). New Dis. Rep. 2011, 23, 36. [CrossRef]
10. Fish, W.W.; Bruton, B.D.; Popham, T.W. Cucurbit host range of Myrothecium roridum isolated from watermelon. Am. J. Plant Sci. 2012, 3, 353–359. [CrossRef]
11. Sultana, N.; Ghaffar, A. Pathogenesis and control of Myrothecium spp., the cause of leaf spot on bitter gourd (Momordica charantia Linn.). Pak. J. Bot. 2009, 1, 429–433.
12. Boughalleb, N.; Tarchoun, N.; Dallagi, W. Effect of fungicides on in vitro infestation level of radish, carrot and pepper seeds. Plant Pathol. J. 2006, 3, 388–392. [CrossRef]
13. Yates, I.E.; Arnold, J.W.; Hinton, D.M.; Basinger, W.; Walcott, R.R. *Fusarium verticillioides* induction of maize seed rot and its control. *Can. J. Bot.* 2003, 81, 422–428. [CrossRef]

14. Keinath, A.P. Effect of protectant fungicide application schedules on gummy stem blight epidemics and marketable yield of watermelon. *Plant Dis.* 2000, 84, 254–260. [CrossRef][PubMed]

15. Keinath, A.P.; DuBose, V.B.; May, M.H.; Latin, R.X. Watermelon transmission of seven fungicides intervals to control gummy stem blight in a fall watermelon crop. *Fungic. Nematic. Tests* 1998, 53, 268.

16. Johnson, C.E.; Payne, J.T.; Buckley, J.B. Evaluation of fungicides for gummy stem blight control on watermelon. *Fungic. Nematic. Tests* 1995, 50, 184.

17. Sudisha, J.; Niranjana, S.R.; Shetty, H.S. Transmission of seed-borne infection of muskmelon by *Didymella bryoniae* and effect of seed treatments on disease incidence and yield. *Biol. Control* 2006, 37, 196–205. [CrossRef]

18. Barnard, M.; Padgitt, M.; Uri, N.D. Pesticide use and its measurement. *Int. Pest Control* 1997, 39, 161–164.

19. Misra, G.; Pavlostathis, S.G. Biodegradation kinetics of monoterpenes in liquid and soil-slurry systems.

20. Slamet, A.S.; Nakayasu, A.; Bai, H. The determinants of organic vegetable purchasing in Jabodetabek region, Indonesia. *Foods* 2016, 5, 85. [CrossRef]

21. Antunes, M.D.C.; Cavaco, A.M. The use of essential oils for postharvest decay control. *Rev. Bras. Parasitol. Vet.* 1995, 47, 572–577. [CrossRef]

22. Shaki, S.K.; Patra, M.; Shukla, A.C.; Dikshit, A. Use of essential oil as botanical-pesticide against postharvest spoilage in *Malus pumilo* fruits. *Biocontrol* 2003, 48, 223–232. [CrossRef]

23. Djioua, T.; Charles, F.; Freire, M., Jr.; Filgueiras, H.; Ducamp-Collin, M.; Sallanon, H. Combined effects of postharvest heat treatment and chitosan coating on quality of fresh-cut mangoes (*Mangifera indica L.*). *Int. J. Food Sci. Technol.* 2010, 45, 849–855. [CrossRef]

24. Mancini, V.; Romanazzi, G. Seed treatments to control seedborne fungal pathogens of vegetable crops. *Pest Manage. Sci.* 2014, 70, 860–868. [CrossRef][PubMed]

25. Kishore, G.K.; Pande, S. Natural fungicides for management of phytopathogenic fungi. *Annu. Rev. Plant Pathol.* 2004, 3, 331–356.

26. Terzi, V.; Morcia, V.; Faccioli, P.; Vale, G.; Tacconi, G.; Malnati, M. In vitro antifungal activity of the tea tree (*Melaleuca alternifolia*) essential oil and its major components against plant pathogens. *Lett. Appl. Microbiol.* 2007, 44, 613–618. [CrossRef][PubMed]

27. Riccioni, L.; Orzali, L. Activity of tea tree (*Melaleuca alternifolia*, Cheel) and thyme (*Thymus vulgaris*, Linnaeus) essential oils against some pathogenic seed borne fungi. *J. Essent. Oil Res.* 2011, 23, 43–47. [CrossRef]

28. Seixas, P.T.L.; Castro, H.G.; Cardoso, D.P.; Junior, A.F.C.; do Nascimento, I.R. Bioactivity of essential oils on the fungus *Didymella bryoniae* of the cucumber culture. *Appl. Res. Agrotechnol.* 2012, 5, 61–66. [CrossRef]

29. Shafique, S.; Majeed, R.A.; Shafique, S. *Cymbopogon citrates*: A remedy to control selected *Alternaria* species. *J. Med. Plant Res.* 2012, 6, 1879–1885. [CrossRef][PubMed]

30. Fiori, A.C.G.; de Castro e Castro, B.M.; Soares, M.A.; Wilcken, C.F.; Carvalho, A.G.; Serrão, J.E. Antifungal activities of *Cymbopogon citratus* essential oil and *Cymbopogon nuphar* essential oil on the fungus *Alternaria citrulli* isolated from fermented fish products of Southern Benin. *J. Food Qual. Hazards Control* 2019, 29, 53–67. [CrossRef]

31. Guimarães, L.G.I.; das Graças Cardoso, M.; Souza, P.E.; de Andrade, J.; Vieira, S.S. Antioxidant and fungitoxic activities of the lemongrass essential oil and citral. *Rev. Cienc. Agron.* 2011, 42, 464. [CrossRef]

32. Ortega-Ramírez, L.A.; Gutiérrez-Pacheco, M.M.; Vargas-Arispuro, I.; González-Aguilar, G.A.; Martínez-Téllez, M.A.; Ayala-Zavala, J.F. Inhibition of glucosyltransferase activity and glucon production as an antibiofilm mechanism of lemongrass essential oil against *Escherichia coli* O157: H7. *Antibiotics* 2020, 9, 102. [CrossRef][PubMed]

33. Plata-Rueda, A.; Martínez, L.C.; da Silva Rolim, G.; Coelho, R.P.; Santos, M.H.; de Souza Tavares, W.; Zanuncio, J.C.; Serrão, J.E. Insecticidal and repellent activities of *Cymbopogon citratus* (Poaceae) essential oil and its terpenoids (citral and geranyl acetate) against *Ullomoides dermestoides*. *Crop Prot.* 2020, 137, 105299. [CrossRef]

34. Bermúdez-Vásquez, M.J.; Granados-Chinchilla, F.; Molina, A. Composición química y actividad antimicrobiana del aceite esencial de *Psidium guajava* y *Cymbopogon citratus*. *Agron. Cien. Crít.* 2019, 30, 147–163. [CrossRef]

35. Degnon, R.G.; Allagbé, A.C.; Adjou, E.S.; Dahouenou-Ahoussi, E. Antifungal activities of *Cymbopogon citrates* essential oil against *Aspergillus* species isolated from fermented fish products of Southern Benin. *J. Food Qual. Hazards Control* 2019, 6, 53–57. [CrossRef]

36. Supardin, M.D.; Misran, E.; Mustapha, W.A.W. Effect of material length on kinetics of essential oil hydrodistillation from lemongrass (*Cymbopogon citrates*). *J. Eng. Sci. Technol.* 2019, 14, 810–819.

37. Brügger, B.P.; Martínez, L.C.; Plata-Rueda, A.; de Castro e Castro, B.M.; Soares, M.A.; Wilcken, C.F.; Carvalho, A.G.; Serrão, J.E.; Zanuncio, J.C. Bioactivity of the *Cymbopogon citratus* (Poaceae) essential oil and its terpenoid constituents on the predatory bug, *Podisus nigrispinus* (Heteroptera: Pentatomidae). *Sci. Rep.* 2019, 9, 1–8. [CrossRef]

38. Macedo, I.T.F.; de Oliveira, L.M.B.; André, W.P.P.; de Araújo Filho, J.V.; dos Santos, J.M.L.; Rondon, F.C.M.; Ribeiro, W.L.C.; Camurça-Vasconcelos, A.L.; de Oliveira, E.F.; de Paula, H.C.B.; et al. Anthelmintic effect of *Cymbopogon citratus* essential oil and its nanoemulsion on sheep gastrointestinal nematodes. *Rev. Bras. Parasitol. Vet.* 2019, 28, 522–527. [CrossRef]
40. Sonker, N.; Pandey, A.K.; Singh, P.; Tripathi, N.N. Assessment of Cymbopogon citratus (DC.) stapf essential oil as herbal preservatives based on antifungal, antiaflatoxin, and antiochratoxin activities and in vivo efficacy during storage. J. Food Sci. 2014, 79, M628–M634. [CrossRef]

41. Dalcin, M.S.; Cafee-Filho, A.C.; de Almeida Sarmento, R.; do Nascimento, I.R.; de Souza Ferreira, T.P.; de Sousa Aguiar, R.W.; dos Santos, G.R. Evaluation of essential oils for preventive or curative management of melon gummy stem blight and plant toxicity. J. Med. Plant Res. 2017, 11, 426–432. [CrossRef]

42. Kishore, G.K.; Pande, S.; Harish, S. Evaluation of essential oils and their components for broad-spectrum antifungal activity and control of late leaf spot and crown rot diseases in pepper. Plant Dis. 2007, 91, 375–379. [CrossRef] [PubMed]

43. Fikry, S.; Khalil, N.; Salama, O. Chemical profiling, biostatic and biocidal dynamics of Cymbopogon citratus (DC.) stapf essential oil as herbal preservative based on antifungal, antiaflatoxin, and antiochratoxin activities and in vivo efficacy during storage. J. Anal. Meth. Chem. 2019, 10, 1–9. [CrossRef] [PubMed]

44. Kurita, N.; Makoto, M.; Kurane, R.; Ichimura, K. Antifungal activity of terpinen-4-ol, eugenol, carvone, 1,8-cineole (eucalyptol) and CO2 of the essential oil of Salvia sclarea. J. Agr. Food Chem. 2002, 50, 6688–6691. [CrossRef] [PubMed]

45. Chaves, R.D.S.B.; Martins, R.L.; Rodrigues, A.B.L.; Rabelo, E.D.M.; Farias, A.L.F.; Brandão, L.B.; Santos, L.L.; Galardo, A.K.R.; de Almeida, S.S.M.D.S. Evaluation of larvicidal potential against larvae of Aedes aegypti (Linnaeus, 1762) and of the antimicrobial activity of essential oil obtained from the leaves of Origanum majorana L. PLoS ONE 2020, 15, e0235740. [CrossRef]

46. Dalcin, M.S.; Cafee-Filho, A.C.; do Nascimento, I.R.; de Souza Ferreira, T.P.; de Sousa Aguiar, R.W.; dos Santos, G.R. Evaluation of essential oils for preventive or curative management of melon gummy stem blight and plant toxicity. J. Med. Plant Res. 2017, 11, 426–432. [CrossRef]

47. Dias, I.J.; Trajano, E.R.I.S.; Castro, R.D.; Ferreira, G.L.S.; Medeiros, H.C.M.; Gomes, D.Q.C. Antifungal activity of linalool in cases of Candida spp. isolated from individuals with oral candidiasis. Braz. J. Biol. 2018, 78, 368–374. [CrossRef] [PubMed]

48. Fikry, S.; Khalil, N.; Salama, O. Chemical profiling, biostatic and biocidal dynamics of Cymbopogon citratus (DC.) stapf essential oil as herbal preservative based on antifungal, antiaflatoxin, and antiochratoxin activities and in vivo efficacy during storage. J. Anal. Meth. Chem. 2019, 10, 1–9. [CrossRef] [PubMed]

49. Chaves, R.D.S.B.; Martins, R.L.; Rodrigues, A.B.L.; Rabelo, E.D.M.; Farias, A.L.F.; Brandão, L.B.; Santos, L.L.; Galardo, A.K.R.; de Almeida, S.S.M.D.S. Evaluation of larvicidal potential against larvae of Aedes aegypti (Linnaeus, 1762) and of the antimicrobial activity of essential oil obtained from the leaves of Origanum majorana L. PLoS ONE 2020, 15, e0235740. [CrossRef]

50. Della Pepa, T.; Elshafei, H.S.; Capasso, R.; De Feo, V.; Camele, I.; Nazzaro, F.; Scognamiglio, M.R.; Caputo, L. Antimicrobial and phytotoxic activity of Origanum heracleoticum and O. majorana essential oils growing in Cilento (Southern Italy). Molecules 2019, 24, 2576. [CrossRef]

51. Hajaslau, H.; Mighi, H.; Aouni, M.; Gharsallah, N.; Kadri, A. Chemical composition and in vitro evaluation of antioxidant, antimicrobial, cytotoxicity and anti-acetylcholinesterase properties of Tunisian Origanum majorana L. essential oil. Microb. Pathog. 2016, 95, 86–94. [CrossRef]

52. Busatta, C.; Barbosa, J.; Cardoso, R.I.; Paroul, N.; Rodrigues, M.; de Oliveira, D.; de Oliveira, J.V.; Cansian, R.L. Chemical profiles of essential oils of marjoram (Origanum majorana) and oregano (Origanum vulgare) obtained by hydrodistillation and supercritical CO2. J. Essent. Oil Res. 2017, 29, 367–374. [CrossRef]

53. Fikry, S.; Khalil, N.; Salama, O. Chemical profiling, biostatic and biocidal dynamics of Origanum vulgare L. essential oil. AMB Express 2019, 9, 41. [CrossRef] [PubMed]

54. Jan, S.; Mir, J.I.; Shafi, W.; Faktoo, S.Z.; Singh, D.B.; Alyemeni, M.N.; Ahmad, P. Divergence in tissue-specific expression patterns of genes associated with the terpenoid biosynthesis in two oregano species Origanum vulgare L., and Origanum majorana. Ind. Crops Prod. 2018, 123, 546–555. [CrossRef]

55. Semiz, G.; Semiz, A.; Mercan-Doğan, N. Essential oil composition, total phenolic content, antioxidant and antibiofilm activities of four Origanum species from southeastern turkey. Int. J. Food Prop. 2018, 21, 194–204. [CrossRef]

56. Semiz, G.; Semiz, A.; Mercan-Doğan, N. Essential oil composition, total phenolic content, antioxidant and antibiofilm activities of four Origanum species from southeastern turkey. Int. J. Food Prop. 2018, 21, 194–204. [CrossRef]

57. Sahab, A.F.; Aly, S.; Hathout, A.S.; Ziedan, E.S.H.; Sabry, B.A. Application of some plant essential oils to control Fusarium isolates associated with freshly harvested maize in Egypt. J. Essent. Oil Bear. Plants 2019, 22, 1146–1155. [CrossRef]

58. Szczersianek, M.; Jobling, J.; Morris, S.; Hoflord, P. Essential oil vapours control some common postharvest fungal pathogens. Aust. J. Exp. Agric. 2007, 47, 103–109. [CrossRef]

59. Nardoni, S.; Pisseri, F.; Pistelli, L.; Najar, B.; Luini, M.; Mancianti, F. In vitro activity of 30 essential oils against bovine clinical isolates of Prototheca zopfi and Prototheca watschkae. Vet. Sci. 2018, 5, 45. [CrossRef]

60. Morcia, C.; Malnati, M.; Terzi, V. In vitro antifungal activity of terpenin-4-ol, eugenol, carvone, 1,8-cineole (eucalyptol) and thymol against mycotoxicogenic plant pathogens. Food Addit. Contam. Part A 2012, 29 Part A, 415–422. [CrossRef]

61. Ebani, V.V.; Najar, B.; Bertelloni, F.; Pistelli, L.; Mancianti, F.; Nardoni, S. Chemical composition and in vitro antimicrobial efficacy of sixteen essential oils against Escherichia coli and Aspergillus fumigatus isolated from poultry. Vet. Sci. 2018, 5, 62. [CrossRef]

62. Elmi, A.; Ventrella, D.; Barone, F.; Carnevali, G.; Filippini, G.; Pisi, A.; Benvenuti, S.; Scozzoli, M.; Bacci, M.L. In vitro effects of tea tree oil (Melaleuca alternifolia essential oil) and its principal component terpinen-4-ol on swine spermatozoa. Molecules 2019, 24, 1071. [CrossRef] [PubMed]

63. Silva-Flores, P.G.; Pérez-López, L.A.; Rivas-Galindo, V.M.; Paniagua-Vega, D.; Galindo-Rodriguez, S.A.; Álvarez-Román, R. Simultaneous GC-FID quantification of main components of Rosmarinus officinalis L. and Lavandula dentata essential oils in polymeric nanocapsules for antioxidant application. J. Anal. Meth. Chem. 2019, 2019, 1–9. [CrossRef] [PubMed]
64. Dhifi, W.; Bellili, S.; Jazi, S.; Nasr, S.B.; El Beyrouthy, M.; Mnif, W. Phytochemical composition and antioxidant activity of Tunisian Laurus nobilis. Pak. J. Pharm. Sci. 2018, 31, 2397–2402.

65. Alves, F.M.; De, F.; Franca, K.R.D.S.; Araujo, I.G.D.; Nóbrega, L.P.D.; Xavier, A.L.; Dos, S.; Lima, T.S.; Rodrigues, A.P.M.; Junior, A.F.; et al. Control of Alternaria alternata using melaleuca essential oil (Melaleuca alternifolia). J. Exp. Agric. Int. 2019, 40, 1–10. [CrossRef]

66. Black-Solis, J.; Ventura-Aguilar, R.I.; Correa-Pacheco, Z.; Corona-Rangel, M.L.; Bautista-Baños, S. Preharvest use of biodegradable polyester nets added with cinnamon essential oil and the effect on the storage life of tomatoes and the development of Alternaria alternata. Sci. Hortic. 2019, 245, 65–73. [CrossRef]

67. Soylu, E.M.; Kose, F. Antifungal activities of essential oils against citrus black rot disease agent Alternaria alternata. J. Essent. Oil-Bear. Plants 2015, 18, 894–903. [CrossRef]

68. Najar, B.; Marchioni, I.; Ruffoni, B.; Copetta, A.; Pistelli, L.; Pistelli, L. Volatilomic analysis of four edible flowers from Agastache genus. Molecules 2019, 24, 4480. [CrossRef]

69. Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; p. 1902.

70. Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and Carbowax 20M phases. J. Chromatogr. A 1990, 503, 1–24. [CrossRef]

71. Jennings, W.; Shibamoto, T. Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography, Food/Nahrung; Academic Press: New York, NY, USA; London, UK; Sydney, Australia; Toronto, ON, Canada; San Francisco, CA, USA, 1982.

72. Masada, Y. Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry; John Wiley & Sons, Inc.: New York, NY, USA, 1976.

73. Stenhagen, E.; Abrahamsson, S.; McLafferty, F.W. Registry of Mass Spectral Data; Wiley & Sons: New York, NY, USA, 1974.

74. Swigar, A.A.; Silverstein, R.M. Monoterpenes, Aldrich Chemical Company; Aldrich Chemical Company: Milwaukee, WI, USA, 1981.