Myopenia and precision (P4) medicine

John E. Morley1* & Stefan D. Anker2

1Division of Geriatric Medicine, Saint Louis University School of Medicine, 1402 S. Grand Blvd., M238, St. Louis, MO 63104, USA; 2Division of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Centre Göttingen, Robert-Koch-Straße 40, D-37075, Göttingen, Germany

Abstract

Precision (P4) medicine represents a new medical paradigm that focuses on Personalized, Predictive, Preventive and Participatory approaches. The P4 paradigm is particularly appropriate for moving the care of persons with myopenia forward. Muscular dystrophies are clearly a set of genetically different diseases where genomics are the basis of diagnosis, and genetic modulation via DNA, oligonucleotides and clustered regularly interspaced short palendronic repeats hold great potential for a cure. The utility of personalized genomics for sarcopenia coupled with utilizing a predictive approach for the diagnosis with early preventive strategies is a key to improving sarcopenic outcomes. The importance of understanding different levels of patient enthusiasm and different responses to exercise should guide the participatory phase of sarcopenic treatment. In the case of cachexia, understanding the effects of the different therapies now available through the P4 approach on muscle wasting is a key to management strategies.

Keywords Myopenia; Precision medicine; Muscular dystrophy; Personalized medicine

Myopenia was defined as clinically relevant muscle wasting associated with impairment of muscle function and/or an increase in morbidity and/or mortality.1,2 Conditions producing myopenia could be either congenital or acquired. In adults, the two most common causes of myopenia are cachexia3 and sarcopenia.4

Precision (P4) medicine or patient-centred medicine is a concept developed by the biologist, Leory Hood.5 While he stressed the importance of genomics, metabolimics, transcriptomics and proteomics in developing a personalized profile for each patient to allow more precise care, it also stresses the importance of recognizing the different possible causes of a process in the individual person and the importance of early recognition and prevention of those at risk and the concept that the individual should make their own decision about treatment choices and be actively involved in her own management.6 The tenets of this approach can be summarized by the concept of P4 medicine:

Personalized: Utilizing genomics and other molecular diagnostic tools, as well as environmental and lifestyle characteristics to create a personal diagnostic and management plan.

Predictive: Utilize this available information to recognize the risk of an individual developing a specific disease and the likelihood of them responding to different treatments.

Preventive: Based on this knowledge, each individual has their own primary and secondary prevention plans.

Participatory: The data is shared with the individual who then participates in choosing the treatment choices. In theory, this will lead to better compliance.

While the full implementation of P4 medicine is clearly in the future, many of the components are becoming increasingly available and can proactively be introduced at this time. Myopenia represents a set of conditions where rapid uptake of P4 medicine can occur.

© 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Muscular dystrophy

Muscular dystrophies consist of a variety of genetic disorders resulting in weakening and breakdown of skeletal muscle.7 There are nine main categories of muscular dystrophy and over 30 subtypes. These diseases are related to alterations in the structure or function of the dystrophin protein. They are due to mutations in genes having a critical role in muscle function.

Being able to recognize the genetic mutation that causes each of the forms of muscle dystrophy has opened up a variety of methods by which these genes can be manipulated to reverse the disease process. Both in vitro and studies in animal models have proven this to be possible. Duchenne muscular dystrophy is due to loss of function in the dystrophin gene. Predominantly, this is due to disruption in the dystrophin protein reading frame.7,8 This allows a number of techniques to be developed to provide a precise correction of the dystrophin gene. The length of the dystrophin gene limits the possibility of augmenting the total gene active with cDNAs. For this reason, both viral vectors (adeno-associated and lentiviral) have been developed to introduce truncated microdystrophin or microutrophin into the DNA.9,10 Sleeping beauty transposons represent a nonviral vector approach to insert these microgenes into the genome.11 This approach has led to the improvement of dystrophin function to some extent, but not total cure of the disease. Aartsma-Rus and Krieg12,13 developed eteplirsen, an oligonucleotide that interferes with the splicing process allowing the reading frame to be restored. This leads to a partially functional dystrophin. The FDA, based on small clinical trials, approved eteplirsen for the treatment of Duchenne muscular dystrophy.

Two programmable nucleases, transcription activator-like effector nuclease14 and clustered regularly interspaced short palendronic repeats (CRISPR),15 have been demonstrated to be able to produce gene correction or gene knockout in human stem cells. Adeno-associated virus-mediated and RNA guide CRISPR/Cas 9 systems of gene therapy have been developed that produce partially functional dystrophin genes and improve function in the mdx mouse.16–18 This approach also works in pluripotent human satellite cells.19,20 It is important to recognize that CRISPR gene editing also causes unintended mutations. The precision medicine approaches to treating muscular dystrophy are illustrated in Figure 1.21

P4 medicine in sarcopenia

In the Personalized (P1) approach to sarcopenia, a number of allele variations have been identified to be associated with muscle mass and strength.22–26 These include myostatin (GDF8, K133R), CNTF and its receptor, vitamin D receptor (VDR BsmI), angiotensin-converting medicine, androgen receptor gene (CAG repeats), cyclin-dependent kinase inhibitor 1A, MOD1 and P53 which decreases satellite activation. In addition, small babies predict the presence of low grip strength at 70 years of age.27

The Predictive (P2) phase includes a number of screening tests for early sarcopenia that have been developed. For example, Harada et al.28 used sex, age, BMI and adiponectin and sialic acid levels to have a high sensitivity for persons
with sarcopenia. In addition, the simple SARC-F screen (Table 1) has been shown to be highly predictive of persons who are at risk of developing sarcopenia, loss of muscle function, disability and hospitalization. Further, persons with sarcopenia having accelerated loss of muscle when renal cancer is treated with sorafenib is recognized. Sorafenib also has an increase in toxicity when given to sarcopenia patient with hepatocellular cancer.

In the Preventive (P3) phase of P4 medicine (Table 2), early recognition that those at increased risk of sarcopenia should lead to advice to increase resistance exercise utilizes leucine-enriched essential amino acids or possibly hydroxymethyl butyrate and in persons not getting adequate sunlight to provide 1000 IU vitamin D daily.

This requires that a clear diagnosis of the cause of sarcopenia should be made early in the process. This includes measuring muscle mass and function and a muscle biopsy or measuring C-agrin to determine whether the person has predominantly neuropathic muscle loss or some other cause. Recognition of whether the person has obese sarcopenia represents another part of personalization. A decrease in bioavailable testosterone or low dehydroepiandrosterone levels as a cause of muscle loss should be identified. These persons are more likely to respond to testosterone therapy, particularly if they have congestive heart failure. Blood flow to muscles is a key cause of muscle loss, especially in diabetes mellitus. Finally, cytokine excess plays a major role in muscle loss.

Animals lacking myostatin have increased muscle mass. Myostatin binds to the activin II receptors with higher affinity for the IIb affinity. In older persons, stem cell expression of myostatin is higher than in younger persons. However, the levels of myostatin in younger and older persons vary considerably in different individuals suggesting that individuals may have their own specific myostatin levels. LY2495655, a myostatin antibody, increased muscle mass and improved muscle function. Other studies have shown less dramatic effects of myostatin antibodies in older persons with sarcopenia. A decoy receptor for activin II receptors increased muscle mass was associated with bleeding. Persons who have haemorrhagic telangiectasia have an abnormal activin receptor I. Animal studies suggest that muscle effects are due to the activin II receptor. In humans with sarcopenia related to femoral fracture, there are increased levels of myostatin and increased phosphorylation of Smad

Table 1	SARC-F screen for sarcopenia	
Component	Question	Scoring
Strength	How much difficulty do you have in lifting and carrying 10 pounds?	None = 0
		Some = 1
		A lot or unable = 2
Assistance in walking	How much difficulty do you have walking across a room?	None = 0
		Some = 1
		A lot, use aids or unable = 2
Rise from a chair	How much difficulty do you have transferring from a chair or bed?	None = 0
		Some = 1
		A lot or unable without help = 2
Climb stairs	How much difficulty do you have climbing a flight of 10 stairs?	None = 0
		Some = 1
		A lot or unable = 2
Falls	How many times have you fallen in the last year?	None = 0
		One to three falls = 1
		Four or more falls = 2

*SARC-F scale scores range from 0 to 10 (i.e. 0–2 points for each item; 0 = best to 10 = worst) and represent no sarcopenia (0–3) and sarcopenia.4–10

Table 2	Patient-centred precision (P4) medicine applied to sarcopenia
P1: Predictive:	Recognize persons at risk for sarcopenia based on genetic make-up or being a small baby at birth
P2: Preventive:	Use SARC-F to screen and then introduce resistance exercise, protein supplementation and vitamin D
P3: Personalized:	Diagnose sarcopenia and identify and manage specific causes, for example, poor blood flow to muscles, low testosterone, cytokine excess, obesity, neuropathic, diabetes mellitus and excess myostatin
P4: Participation:	Recognition and identification of specific exercise approaches based on the individual understanding of the person’s muscle type. Work with the person to increase acceptability and understanding of treatment plan and increase compliance
proteins. These findings suggest that anti-myostatin antibodies should be preferentially considered in sarcopenic individuals with muscle elevations of the myostatin/Smad pathways, a perfect example of P4 medicine. Preliminary studies in goats and rabbits using CRISPR/Cas9 to knock out myostatin increased muscle mass but had a number of side effects.

The final component of P4 medicine is Participatory. Patients need to be able to choose which therapies they would prefer. An important component of this is to recognize that response to exercise varies enormously in individuals, and 30% of this appears to be related to the person’s genetic make-up. Churchward et al. have suggested that despite this, all persons have some degree of response to resistance exercise. In the end, the person’s compliance with the exercise and dietary programs remains the major factor deciding the outcome of the therapeutic program. This was nicely shown in the ‘Look Ahead’ study, where those persons in the upper quartile of time spent exercising a week had significantly better outcomes than those in the lowest quartile.

Cachexia

Cachexia is a multifactorial syndrome due to a variety of conditions leading to inflammatory muscle mass loss. While the molecular basis of muscle wasting in cachexia is well established in animals (i.e. cytokines such as TNF, IL-1, IL-6, interferon, TNF receptor adaptor protein, associated with the ubiquitin–proteasome system and elevated myostatin), it is less well established in humans. The variability in humans is the result of the multiple different disease causes and genetic variability.

Management of cancer is one of the leading areas in precision medicine. As already noted, muscle function both affects the side effects of cancer chemotherapy, and the therapy can accelerate muscle loss. Immune checkpoint therapy with its release of a cascade of immune systems to attack the cancer is likely to see an acceleration of muscle loss. For long-term recovery, it will be important to attempt to protect muscle during these times.

It is recognized that persons admitted to hospital lose as much as a kilogram of muscle in 3 days and that those with sepsis lose even more muscle mass and long-term muscle function. As part of personalized medicine, it is essential to see that hospitalized patients get adequate amounts of protein (1.5 to 2 g/day) and have resistance exercise to maintain their muscle mass – neither of these approaches are common in hospitals. There is data to support that ICU patients who get out of bed daily have better outcomes.

Conclusions

P4 medicine represents an explosive new way to approach myopenia. It is clear that the old fashioned approach to medicine that has been disease based will change over the next decade to a personalized medicine where the person’s genetic make-up and other molecular characteristics will determine the approach to the management of disease. To incorporate this into medical practice, we will need to utilize computer-assisted management. The medicine of today lacks precision in diagnosis and therapeutics—personalized medicine will alter modern medicine placing the emphasis on the patients, their genes, their environment, their response to therapies and their participation in their own care. The myopenias represent an area in which a rapid understanding and deployment of P4 medicine will improve the quality of life of large numbers of persons.

Ethics statement

The authors certify that they comply with the ethical guidelines for authorship and publishing of the Journal of Cachexia, Sarcopenia and Muscle.

Conflict of interest

None declared.

References

1. Anker SD, Coats AJ, Morley JE, Rosano G, Bernabei R, von Haehling S, Kalantar-Zadeh K. Muscle wasting disease: a proposal for a new disease classification. *J Circ Res* 2014;5:1–3.
2. Fearon K, Evans WJ, Anker SD. Myopenia — a new universal term for muscle wasting. *J Circ Res* 2011;2:1–3.
3. Evans WJ, Morley JE, Argiles J, Bales C, Baracos V, Guttridge D, Jatoi A, et al. Cachexia: a new definition. *Clin Nutr* 2008;27:793–799.
4. Morley JE, Abbatangelo AM, Argiles JM, Baracos V, Bauer J, Bhasin S, et al. Sarcopenia with limited mobility: an international consensus. *J Am Med Dir Assoc* 2011;12:403–409.
5. Hood L. Systems biology and p4 medicine: past, present, and future. *Rambam Maimonides Med J* 2013;4: e0012.
6. Morley JE, Velas B. Patient-centered (P4) medicine and the older person. *J Am Med Dir Assoc* 2017;18:455–459.
7. Li HL, Fujimoto N, Sasakiwa N, Shirai S, Ohkame T, Sakuma T, et al. Precise correction of the dystrophin gene in...
strategies in therapy of muscular dystrophies. *Bioinformatيك* 2016;https://doi.org/10.11134/S000629791607004X.

21. Morley JE. Pharmacologic options for the treatment of sarcopenia. *Calfic Tissue Int* 2016;98:319–333.

22. Walsh S, Ludlow AT, Metter EJ, Ferrucci L, Roth SM. Replication study of the vitamin D receptor (VDR) genotype association with skeletal muscle traits and sarcopenia. *Aging Clin Exp Res* 2016;28:435–442.

23. Corsi AM, Ferrucci L, Gozzini A, Tanini A, Brandi ML. Myostatin polymorphisms and age-related sarcopenia in the Italian population. *J Am Geriatr Soc* 2002;50:1463.

24. Baldelli S, Cirilo MR. Altered S-nitrosylation of p53 is responsible for impaired antioxidant response in skeletal muscle during aging. *Aging (Albany NY)* 2015;8:3450–3467.

25. Marzetti E, Calvani R, Cesarri M, Buford TW, Lorenzi M, Behnke BJ, Leeuwenburgh C. Mitochondrial dysfunction and sarcopenia of aging: from signaling pathways to clinical implications. *J Biochem Cell Biol* 2013;45:2288–2301.

26. Sayer AA, Syddall HE, Gilbody HJ, Dennison EM, Cooper C. Does sarcopenia originate in early life? Findings from the Hertfordshire cohort study. *J Gerontol A Biol Sci Med Sci* 2004;59:M930–M934.

27. Harada H, Kai H, Shihata R, Niyama H, Nishiyama Y, Murohara T, et al. New diagnostic index for sarcopenia in patients with cardiovascular diseases. *PLoS One* 2017;12:e0178123.

28. Rolland Y, Dupuy C, Abellan Van Kan G, Cesarri M, Vellas B, Faruch M, et al. Sarcopenia screened by the SARC-F questionnaire and physical performances of elderly women: a cross-sectional study. *J Am Med Dir Assoc* 2017;18:https://doi.org/10.1016/j.jamda.2016.10.019. [Epub ahead of print].

29. Tanaka S, Imai K, Kamazaki N, Matsuzaka R, Nozaki K, Maekawa E, et al. Utility of SARC-F for assessing physiological function in elderly patients with cardiovascular disease. *J Am Med Dir Assoc* 2017;18:176–181.

30. Parra-Rodriguez L, Slezij C, Garcia-Gonzalez AI, Malmstrom TK, Cruz-Arenas E, Rosas-Carrasco O. Cross-cultural adaptation and validation of the Spanish-language version of the SARC-F to assess sarcopenia in Mexican community-dwelling older adults. *J Am Med Dir Assoc* 2016;17:1142–1147.

31. Wu TY, Liaw CK, Chen FC, Kuo KL, Chie WC, Yang RS. Sarcopenia screened with SARC-F questionnaire is associated with quality of life and 4-year mortality. *J Am Med Dir Assoc* 2016;17:1129–1135.

32. Barbosa-Silva TG, Menezes AM, Bielmann RM, Malmstrom TK, Gonzalez MC. Grupo de Estudios en Composición Corporal y Nutrición (COCONUT). *J Am Med Dir Assoc* 2016;17:1136–1141.

33. Liccini A, Malmstrom TK. Frailty and sarcopenia as predictors of adverse health outcomes in persons with diabetes mellitus. *J Am Med Dir Assoc* 2016;17:846–851.

34. Malmstrom TK, Miller DK, Simoncik EM, Ferrucci L, Morley JE. SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. *J Cочексия Sarcopenia Muscle* 2016;17:28–36.

35. Woo J, Leung J, Morley JE. Defining sarcopenia in terms of incident adverse outcomes. *J Am Med Dir Assoc* 2015;16:247–252.

36. Woo J, Leung J, Morley JE. Validating the SARC-F: a suitable community screening tool for sarcopenia? *J Am Med Dir Assoc* 2014;15:630–634.

37. Cao L, Chen S, Zou C, Ding X, Gao L, Liao Z, et al. A pilot study of the SARC-F scale on screening sarcopenia and physical disability in the Chinese older people. *J Nutr Health Aging* 2014;18:277–283.

38. Malmstrom TK, Morley JE. SARC-F: a simple questionnaire to rapidly diagnose sarcopenia. *J Am Med Dir Assoc* 2013;14:531–532.

39. Antoun S, Birdsell L, Sawyer MB, Venner P, Escudier B, Barocas VE. Association of skeletal muscle wasting with treatment with sorafenib in patients with advanced renal cell carcinoma: results from a placebo-controlled study. *J Clin Oncol* 2010;28:1054–1060.

40. Mir O, Coriat R, Blanchet B, Durand JP, Boudou-Rouquette P, Michels J, et al. Sarcopenia predicts early dose-limiting toxicities and pharmacokinetics of sorafenib in patients with hepatocellular carcinoma. *PLoS One* 2012;7:e37563.

41. Yoshimura Y, Wakabayashi H, Yamada M, Kim H, Harada A, Arai H. Interventions for treating sarcopenia: a systematic review and meta-analysis of randomized controlled studies. *J Am Med Dir Assoc* 2017;18:553–e1–553.e16.

42. Michel JP. Sarcopenia: there is a need for some steps forward. *J Am Med Dir Assoc* 2015;16:370–380.

43. Chen LK, Liu LK, Woo J, Assantachai P, Euyewng TW, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. *J Am Med Dir Assoc* 2014;15:95–101.

44. Naseef MA, Volpe SL. Protein and exercise in the prevention of sarcopenia and aging. *Nutr Res* 2017;40:1–20.

45. Marzetti E, Calvani R, Cesarri M, Di Bari M, Cherubini A, et al. Physical activity and exercise as countermeasures with treatment for sarcopenia: a systematic review and meta-analysis of randomized controlled studies. *J Am Med Dir Assoc* 2017;18:553–e1–553.e16.

46. Dirks ML, Tieland M, Verdijk LB, Losen M, Niwitik M, Mensink M, et al. Effects of a vitamin D and leucine-enriched whey protein nutritional supplement augments muscle fiber hypertrophy but does not modulate satellite cell content during prolonged resistance-type exercise training in frail elderly. *J Am Med Dir Assoc* 2017;18:608–615.

47. Bauer JM, Verlaan S, Bautmans I, Brandt K, Donini LM, Maggio M, et al. Dietary and physical activity interventions for older adults with sarcopenia. *J Nutr Health Aging* 2014;18:937–948.
supplement on measures of sarcopenia in older adults, the PROVIDE study: a randomized, double-blind, placebo-controlled trial. J Am Med Dir Assoc 2015;16:400–411.

49. Bauer J, Biolo G, Cederholm T, Cesari M, Cruz-Jentoft AJ, Morley JE, et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE study group. J Am Med Dir Assoc 2013;14:542–559.

50. Cruz-Jentoft AJ. Beta-hydroxy-beta-methyl butyrate (HMB): from experimental data to clinical evidence in sarcopenia. Curr Protein Pept Sci 2017; https://doi.org/10.2174/1389203718666170529105026. [Epub ahead of print].

51. Holecek M. Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions. J Cachexia Sarcopenia Muscle 2017; https://doi.org/10.1002/jcm.12208. [Epub ahead of print].

52. Cramer JT, Cruz-Jentoft AJ, Landi F, Hickson M, Zamboni M, Pereira SL, et al. Impacts of high-protein oral nutritional supplements among malnourished men and women with sarcopenia: a multicenter, randomized, double-blind, controlled trial. J Am Med Dir Assoc 2016; 17:1044–1055.

53. Morley JE. The mTOR conundrum: essential for muscle function, but dangerous for survival. J Am Med Dir Assoc 2016;17:963–966.

54. Duque G, Daly RM, Sanders K, Kiel DP. Vitamin D, bones and muscle: myth versus reality, Australas J Ageing 2017;36:8–13.

55. Morley JE. Vitamin D redux. J Am Med Dir Assoc 2009;10:591–592.

56. Morley JE, Krestin R, van der Bij A, von Haehling S. Welcome to the ICD-10 code for sarcopenia. J Cachexia Sarcopenia Muscle 2016;7:512–514.

57. Cao L, Morley JE. Sarcopenia is recognized as an independent condition by an international classification of disease, tenth revision, clinician modification (ICD-10-CM) code. J Am Med Dir Assoc 2016;17:675–677.

58. Morley JE, Cao L. Rapid screening for sarcopenia. J Cachexia Sarcopenia Muscle 2015;6:312–314.

59. Mijarends DM, Schols JM, Meijers JM, Tan FE, Verlaan S, Luiking YC, et al. Instruments to assess sarcopenia and physical frailty in older people living in a community (care) setting: similarities and discrepancies. J Am Med Dir Assoc 2015;16:306–308.

60. Heymsfield SB, Adamek M, Gonzalez MC, Jia G, Thomas DM. Assessing skeletal muscle mass: historical overview and state of the art. J Cachexia Sarcopenia Muscle 2014;5:9–18.

61. Hepple RT. Muscle atrophy is not always sarcopenia. J Appl Physiol (1985) 2012; 113:677–679.

62. Drey M, Krieger B, Sieber CC, Bauer JM, Hettwer S, Bortsch T, DISARCO study group. Motoneuron loss is associated with sarcopenia. J Am Med Dir Assoc 2014;15:435–439.

63. Drey M, Behnes M, Kob R, Lepiorz D, Hettwer S, Bollihmeier C, et al. C-terminal agrin fragment (CAF) reflects renal function in patients suffering from severe sepsis or septic shock. Clin Lab 2015;61:69–76.

64. Rolland Y, Lauwers-Cances V, Cristini C, Abellan van Kan G, Janssen I, Morley JE, Veillas B. Difficulties with physical function associated with obesity, sarcopenia, and sarcopenic-obesity in community-dwelling elderly women: the EPIDOS (EPIdemiologie de l’Osteoporose) study. Am J Clin Nutr 2009;89:1895–1900.

65. Bauqangert RN, Allne SW, Waters DL, Janssen I, Gallagher D, Morley JE. Sarcopenia obesity predicts instrumental activities of daily living disability in the elderly. Obes Res 2004;12:1995–2004.

66. Morley JE. Sarcopenia in the elderly. Fam Pract 2012;29:144–148.

67. Bauqangert RN, Waters DL, Gallagher D, Morley JE, Garry PJ. Predictors of skeletal muscle mass in elderly men and women. Mech Ageing Dev 1999;107:123–136.

68. Rolland Y, Czerwinski S, Abellan van Kan G, Morley JE, Cesari M, Onder G, et al. Sarcopenia: its assessment, etiology, pathogenesis, consequences and future perspectives. J Nutr Health Aging 2008;12:433–450.

69. Haren MT, Siddiqui AM, Armbrecht HJ, Kevorkian RT, Kim MJ, Haas MJ, et al. Testosterone modulates gene expression pathways regulating nutrient accumulation, glucose metabolism and protein turnover in mouse skeletal muscle. Int J Androl 2011;34:55–68.

70. Bassil N, McE, Maggioni AP, Late-life onset hypogonadism: a review. Clin Geriatr Med 2010;26:197–222.

71. Snyder PJ, Bhasin S, Shafer SP, Janssen I, Gallagher D, Morley JE, et al. Testosterone treatment during exercise re habilitation in male patients with chronic heart failure who have low testosterone status: a double-blind randomized controlled feasibility study. Am J Heart 2012;164:894–901.

72. Sakuma K, Aoi W, Yamaguchi A. Molecular mechanisms of sarcopenia and cachexia: recent research advances. Pflugers Arch 2017;469:573–591.

73. Han HQ, Zhou X, Mitch WE, Goldberg AL. Myostatin/activin pathway antagonism: molecular basis and therapeutic potential. Int J Biochem Cell Biol 2013;45:2333–2347.
89. McKay BR, Ogborn DI, Bellamy LM, Ternopolsky MA, Parise G. Myostatin is associated with age-related human muscle stem cell dysfunction. *FASEB J* 2012;26:2509–2521.

90. Ju CR, Chen RC. Serum myostatin levels and skeletal muscle wasting in chronic obstructive pulmonary disease. *Respir Med* 2012;106:102–108.

91. Becker C, Lord SR, Studenski SA, Warden SJ, Fielding RA, Recknor CP, et al. Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. *Lancet Diabetes Endocrinol* 2015;3:948–957.

92. Rooks D, Praestgaard J, Hariry S, Laurent D, Petricou O, Perry RG, et al. Treatment of sarcopenia with bimagrumab: results from a phase II, randomized, controlled, proof-of-concept study. *J Am Geriatr Soc* 2017; https://doi.org/10.1111/jgs.14927 [Epub ahead of print].

93. Attie KM, Borstein NG, Yang Y, Condorn CH, Wilson DM, Pearsall AE, et al. A single ascending-dose study of muscle regulator ACE-031 in healthy volunteers. *Muscle Nerve* 2013;47:416–423.

94. Seo J, Chu H, Lee JS, Kim DY. Mucocutaneous telangiectasia as a diagnostic clue of hereditary hemorrhagic telangiectasia: an activating receptor-like Kinase-1 mutation in a Korean patient. *Ann Dermatol* 2016;28:264–266.

95. Alaa El Din F, Patri S, Thoreau V, Rodriguez-Ballesteros M, Hamade E, Bailly S, et al. Functional and splicing defect analysis of 23 ACVRL1 mutations in a cohort of patients affected by hereditary hemorrhagic telangiectasia. *PLoS One* 2015;10:e0132111.

96. Gonzalez-Montalvo JL, Alarcon T, Gotor P, Queipo R, Velasco R, Hoyos R, et al. Prevalence of sarcopenia in acute hip fracture patients and its influence on short-term clinical outcome. *Geriatr Gerontol Int* 2016;16:1021–1027.

97. Guo R, Wan Y, Xu D, Cui L, Deng M, Zhang G, et al. Generation and evaluation of myostatin knock-out rabbits and goats using CRISPR/Cas9 system. *Sci Rep* 2016; https://doi.org/10.1038/srep29855.

98. Churchward-Venne TA, Tieland M, Verdijk LB, Leenders M, Dirks ML, de Groot LC, van Loon LJ. There are no nonresponders to resistance-type exercise training in older men and women. *J Am Med Dir Assoc* 2015;16:400–411.

99. Dutton GR, Lewis CE. The look AHEAD trial: implications for lifestyle intervention in type 2 diabetes mellitus. *Prog Cardiovasc Dis* 2015;58:69–75.

100. Argiles JM, Anker SD, Evans WJ, Morley JE, Fearon KC, Strasser F, et al. Consensus on cachexia definitions. *J Am Med Dir Assoc* 2010;11:229–230.

101. Onesti JK, Guttridge DC. Inflammation based regulation of cancer cachexia. *Ezoeke CC, Morley JE. Pathophysiology of anorexia in the cancer cachexia syndrome. J Cachexia Sarcopenia Muscle* 2015;6:287–302.

102. Hahn AW, Gill DM, Pal SK, Agarwal N. The future of immune checkpoint cancer therapy after PD-1 and CTLA-4. *Immunotherapy* 2017;9:681–692.

103. Kortebein P, Ferrando A, Lombeida J, Wolfe R, Evans WJ. Effect of 10 days of bed rest on skeletal muscle in healthy older adults. *JAMA* 2007;297:1772–1774.

104. Kress JP, Hall JB. ICU-acquired weakness and recovery from critical illness. *N Engl J Med* 2014;370:1626–1635.

105. Schweickert WD, Kress JP. Implementing early mobilization interventions in mechanically ventilated patients in the ICU. *Chest* 2011;140:1612–1617.

106. von Haehling S, Morley JE, Coats AJS, Anker SD. Ethical guidelines for publishing in the Journal of Cachexia, Sarcopenia and Muscle: update 2015. *J Cachexia Sarcopenia Muscle* 2015;6:315–316.