A CLOSED FORMULA FOR THE GENERATING FUNCTION OF p-BERNOULLI NUMBERS

LEVENT KARGIN

Vocational School of Technical Sciences, Akdeniz University, Antalya TR-07058 Turkey.
E-Mail levenfkargin48@gmail.com

MOURAD RAHMANI

USTHB, Faculty of Mathematics, P.O. Box 32, El Alia 16111, Algiers, Algeria.
E-Mail mrahmani@usthb.dz

ABSTRACT. In this paper, using geometric polynomials, we obtain a generating function of p-Bernoulli numbers in terms of harmonic numbers. As consequences of this generating function, we derive closed formulas for the finite summation of Bernoulli and harmonic numbers involving Stirling numbers of the second kind. We also give a relationship between the p-Bernoulli numbers and the generalized Bernoulli polynomials.

Mathematics Subject Classification (2010): 11B68, 11B83.
Key words: Bernoulli polynomials and Bernoulli numbers, generating functions, geometric polynomials, harmonic numbers, Stirling numbers of the first and second kind.

1. Introduction. The Bernoulli numbers B_n are defined by

$$\sum_{n=0}^{\infty} B_n \frac{t^n}{n!} = \frac{t}{e^t - 1} \quad (|t| < 2\pi)$$

and the recurrence formula for B_n has the form

$$B_0 = 1 \text{ and } \sum_{k=0}^{n} \binom{n+1}{k} B_k = 0 \text{ for } n \geq 1.$$

In order to compute the B_n faster, Kaneko [11] (also see [1]) established the following recurrence relation

$$\sum_{k=0}^{n+1} \binom{n+1}{k} \tilde{B}_{n+k} = 0,$$

where $\tilde{B}_n = (n+1) B_n$.

More recently, Rahmani [15] introduced the p-Bernoulli numbers $B_{n,p}$ by constructing an infinite matrix as follows: the first row of the matrix $B_{0,p} = 1$, the
first column of the matrix $B_{n,0} = B_n$ and each entry $B_{n,p}$ is given recursively by

$$B_{n+1,p} = pB_{n,p} - \frac{(p+1)^2}{p+2} B_{n,p+1}, \text{ for } n, p \geq 0.$$

These numbers have an explicit formula involving the Stirling numbers of the second kind

$$(1.1) \quad B_{n,p} = \sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{k+p+1}{k}^{-1} k!,$$

and are closely related to Bernoulli numbers by the following formula

$$(1.2) \quad B_{n,p} = \frac{p+1}{p!} \sum_{j=0}^{p} (-1)^j \left[\begin{array}{c} p \\ j \end{array} \right] B_{n+j},$$

where $\left[\begin{array}{c} n \\ k \end{array} \right]$ is the Stirling number of the first kind [10]. Moreover, for every integer $p \geq -1$, we have the following generating function

$$(1.3) \quad \sum_{n \geq 0} B_{n,p} \frac{t^n}{n!} = {}_2F_1 \left(1, 1; p+2; 1-e^t \right),$$

where ${}_2F_1 \left(a, b; c; z \right)$ denotes the Gaussian hypergeometric function defined by

$${}_2F_1 \left(a, b; c; z \right) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n} \frac{z^n}{n!},$$

The first few generating functions for $B_{n,p}$ ($p = 1, 2$ and 3 in (1.3)) are

$$\sum_{n=0}^{\infty} B_{n,1} \frac{t^n}{n!} = \frac{2(t-1)e^t + 1}{(e^t - 1)^2},$$

$$\sum_{n=0}^{\infty} B_{n,2} \frac{t^n}{n!} = \frac{3(2t-3)e^{2t} + 4e^t - 1}{2(e^t - 1)^3},$$

$$\sum_{n=0}^{\infty} B_{n,3} \frac{t^n}{n!} = \frac{2(6t-11)e^{3t} + 18e^{2t} - 9e^t + 2}{3(e^t - 1)^4}.$$

The main purpose of this study is to give a close form of the above results as

$$(1.4) \quad \sum_{n=0}^{\infty} B_{n,p} \frac{t^n}{n!} = \frac{(p+1)(t-H_p)e^{pt}}{(e^t - 1)^{p+1}} + (p+1) \sum_{k=1}^{p} \binom{p}{k} \frac{H_k}{(e^t - 1)^{k+1}},$$

where H_n is the harmonic numbers, defined by [10, p. 258]

$$H_n = \sum_{j=1}^{n} \frac{1}{j}.$$
As a consequence of (1.4), we have closed formulas for the finite summation of Bernoulli and harmonic numbers.

For the proof of (1.4), we use some properties of geometric polynomials. The geometric polynomials \(w_n(x) \) are defined by means of the following generating function [17]

\[
\frac{1}{1 - x (e^t - 1)} = \sum_{n=0}^{\infty} w_n(x) \frac{t^n}{n!},
\]

and have the explicit formula

\[
w_n(x) = \sum_{k=0}^{n} \binom{n}{k} k! x^k,
\]

where \(\binom{n}{k} \) is the Stirling number of the second kind [10, 14]. The Stirling numbers of the second kind are defined by means of the following generating function

\[
\sum_{n=0}^{\infty} \binom{n}{k} \frac{t^n}{n!} = \frac{(e^t - 1)^k}{k!}.
\]

Some other properties of geometric polynomials can be found in [3, 4, 5, 6, 8, 12].

2. **A new generating function for \(p \)-Bernoulli numbers.** In this section, the main theorem and its applications are given. Employing the geometric polynomials, we derive the following result concerning the generating function of \(p \)-Bernoulli numbers.

Theorem 2.1. For \(p \geq 0 \), the following generating function holds true:

\[
\sum_{n=0}^{\infty} B_{n,p} \frac{t^n}{n!} = (p + 1) \frac{t - H_p}{(e^t - 1)^{p+1}} + (p + 1) \sum_{k=1}^{p} \binom{p}{k} \frac{H_k}{(e^t - 1)^{k+1}}.
\]

For the proof of main theorem, we first need the following proposition.

Proposition 2.2. For \(n > p \geq 0 \), we have

\[
\frac{(-1)^p}{(p + 1)!} B_{n,p} = \int_{0}^{x_3} \cdots \int_{0}^{x_2} \int_{0}^{x_1} w_n(x_1) dx_1 dx_2 \cdots dx_{p-1} dx_p.
\]

Proof. If we integrate both sides of (1.6) with respect to \(x_1 \) from 0 to \(x_2 \), we have

\[
\int_{0}^{x_2} w_n(x_1) dx_1 = \sum_{k=0}^{n} \binom{n}{k} k! \frac{x_2^{k+1}}{k + 1}.
\]
Integrating both sides of the above equation with respect to x_2 from 0 to x_3, we obtain
\[
\int_0^{x_3} \int_0^{x_2} w_n(x_1) \, dx_1 \, dx_2 = \sum_{k=0}^{n} \binom{n}{k} k! \frac{x_3^{k+2}}{(k+1)(k+2)}.
\]

Applying the same procedure for $p - 1$ times yields
\[
\int_0^{x_p} \ldots \int_0^{x_2} \int_0^{x_1} w_n(x_1) \, dx_1 \, dx_2 \ldots \, dx_{p-1} = \sum_{k=0}^{n} \binom{n}{k} k! \frac{x_{p+k}}{(k+1) \ldots (k+p)}.
\]

Finally, integrating both sides of the above equation with respect to x_p from -1 to 0 and using (1.1) gives the desired equation.

We note that taking $p = 0$ in (2.2) gives [13, Theorem 1.2]. Now, we are ready to give the proof of the main theorem.

Proof. (Proof of Theorem 2.1) Multiplying both sides of (2.2) with $\frac{t^n}{n!}$ and summing over n from 0 to infinity, we have
\[
\frac{(-1)^p}{(p+1)!} \sum_{n=0}^{\infty} B_{n,p} \frac{t^n}{n!} = \int_{-1}^{0} \int_0^{x_p} \ldots \int_0^{x_2} \left(\sum_{n=0}^{\infty} \int_0^{x_1} w_n(x_1) \frac{t^n}{n!} \, dx_1 \right) \, dx_2 \ldots \, dx_{p-1} \, dx_p.
\]

If we evaluate the innermost integral, we obtain
\[
\int_0^{x_2} \frac{1}{1 - x_1 (e^t - 1)} \, dx_1 = \frac{-1}{e^t - 1} \ln \left(1 - x_2 (e^t - 1)\right).
\]

We integrate both sides of this equation with respect to x_2 from 0 to x_3
\[
\frac{-1}{e^t - 1} \int_0^{x_3} \ln \left(1 - x_2 (e^t - 1)\right) \, dx_2
\]
\[
= \frac{1}{(e^t - 1)^2} \left[(1 - x_3 (e^t - 1)) \ln \left(1 - x_3 (e^t - 1)\right) - (1 - x_3 (e^t - 1)) + 1 \right].
\]
For induction on \(p \), let us assume that the following equation holds

\[
(2.3) \quad \int_0^{x_p} \ldots \int_0^{x_3} \int_0^{x_2} w_n(x_1) \, dx_1 \, dx_2 \ldots dx_{p-1} \\
= \frac{(-1)^p}{(e^t - 1)^p (p-1)!} \left(1 - x_p (e^t - 1) \right)^{p-1} \ln \left(1 - x_p (e^t - 1) \right) \\
- \frac{(-1)^p}{(e^t - 1)^p (p-1)!} \left[H_{p-1} \left(1 - x_p (e^t - 1) \right)^{p-1} + H_{p-1} \right] \\
+ \sum_{k=1}^{p-2} \frac{(-1)^{p-k} H_{p-1-k} x_k^k}{(e^t - 1)^p (p-1-k)! k!}.
\]

Now, we want to prove that (2.3) implies the case \(p+1 \). Let us integrate both sides of (2.3) with respect to \(x_p \) from 0 to \(y \). Then we have

\[
\int_0^y \int_0^{x_p} \ldots \int_0^{x_3} \int_0^{x_2} w_n(x_1) \, dx_1 \, dx_2 \ldots dx_{p-1} \, dx_p \\
= \frac{(-1)^p}{(e^t - 1)^p (p-1)!} \int_0^y \left(1 - x_p (e^t - 1) \right)^{p-1} \ln \left(1 - x_p (e^t - 1) \right) \, dx_p \\
- \frac{(-1)^p H_{p-1}}{(e^t - 1)^p (p-1)!} \int_0^y \left(1 - x_p (e^t - 1) \right)^{p-1} \, dx_p \\
+ \frac{(-1)^p H_{p-1}}{(e^t - 1)^p (p-1)!} \int_0^y dx_p + \sum_{k=1}^{p-2} \frac{(-1)^{p-k} H_{p-1-k}}{(e^t - 1)^p (p-1-k)! k!} \int_0^y x_k^k \, dx_p.
\]

The first integral in the right hand-side equals

\[
(2.4) \quad \frac{(-1)^p}{(e^t - 1)^p (p-1)!} \int_0^y \left(1 - x_p (e^t - 1) \right)^{p-1} \ln \left(1 - x_p (e^t - 1) \right) \, dx_p \\
= \frac{(-1)^{p+1}}{(e^t - 1)^{p+1} p!} \left[(1 - y (e^t - 1))^p \ln \left(1 - y (e^t - 1) \right) - \frac{(1 - y (e^t - 1))^p}{p} + \frac{1}{p} \right].
\]

For the second integral in the right hand-side, we obtain

\[
(2.5) \quad \frac{(-1)^p H_{p-1}}{(e^t - 1)^p (p-1)!} \int_0^y \left(1 - x_p (e^t - 1) \right)^{p-1} \, dx_p \\
= \frac{(-1)^{p+1} H_{p-1}}{(e^t - 1)^{p+1} p!} \left(1 - y (e^t - 1) \right)^p - \frac{(-1)^{p+1} H_{p-1}}{(e^t - 1)^{p+1} p!}.
\]
For the third and fourth integrals, we find
\begin{equation}
(2.6) \quad \frac{(-1)^p H_{p-1}}{(e^t - 1)^p (p - 1)!} \int_0^y \frac{d x_p}{0} = \frac{(-1)^{p+1} H_{p-1}}{(e^t - 1)^p (p - 1)!} y
\end{equation}
and
\begin{equation}
(2.7) \quad \sum_{k=1}^{p-2} \frac{(-1)^{p-k} H_{p-1-k}}{(e^t - 1)^{p-k} (p - 1 - k)! k!} \int_0^y \frac{x_k^k d x_p}{0} = \sum_{k=2}^{p-1} \frac{(-1)^{p+1-k} H_{p-k} y^k}{(e^t - 1)^{p+1-k} (p - k)! k!},
\end{equation}
respectively. Combining (2.4), (2.5), (2.6) and (2.7), we achieve that
\begin{equation}
\int_0^y \int_0^{x_2} \cdots \int_0^{x_2} \int_0 \cdots \int_0 w_n(x_1) d x_1 d x_2 \cdots d x_p d x_p = \frac{(-1)^{p+1}}{(e^t - 1)^{p+1} p!} (1 - y (e^t - 1))^p \ln (1 - y (e^t - 1))
\end{equation}
\begin{equation}
- \frac{(-1)^{p+1}}{(e^t - 1)^{p+1} p!} [H_p (1 - y (e^t - 1))^p + H_p] + \sum_{k=1}^{p-1} \frac{(-1)^{p+1-k} H_{p-k} y^k}{(e^t - 1)^{p+1-k} (p - k)! k!}.
\end{equation}
Finally, setting $y = -1$ in the above equation and using (2.2), we arrive at the desired equation. \hfill \square

As an application of Theorem 2.1, we give the following theorem.

Theorem 2.3. For $n > p \geq 0$, we have
\begin{equation}
(2.8) \quad \sum_{k=p+1}^{n} \left(\begin{array}{c} n \\ k \\ p+1 \end{array} \right) B_{n-k,p} = \frac{p^{n-1} (n - p H_p)}{p!} + \sum_{j=1}^{p} \left(\begin{array}{c} n \\ p-j \end{array} \right) H_j.
\end{equation}

Proof. Multiplying both sides of (2.1) with $\frac{(e^t - 1)^{p+1} (p+1)!}{(p+1)!}$ and using (1.7), the left hand side of (2.1) becomes
\begin{equation}
(2.9) \quad \frac{(e^t - 1)^{p+1}}{(p+1)!} \sum_{n=0}^{\infty} B_{n,p} \frac{t^n}{n!} = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \left(\begin{array}{c} k \\ p+1 \end{array} \right) B_{n,p} \frac{t^{n+k}}{k! n!}
\end{equation}
\begin{equation}
= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \\ p+1 \end{array} \right) B_{n-k,p} \right) \frac{t^n}{n!}.
\end{equation}
From the right hand side of (2.1), we obtain
\begin{equation}
(2.10) \quad \frac{t e^t}{p!} - \frac{H_p e^t}{p!} + \sum_{k=1}^{p} \frac{H_k (e^t - 1)^{p-k}}{k! (p-k)!}
\end{equation}
\begin{equation}
= \sum_{n=1}^{\infty} \left(\frac{p^{n-1} (n - p H_p)}{p!} + \sum_{k=1}^{p} \frac{H_k}{k!} \left(\begin{array}{c} n \\ p-k \end{array} \right) \right) \frac{t^n}{n!}.
\end{equation}
Finally, comparing the coefficients of $\frac{t^n}{n!}$ in (2.9) and (2.10) completes the proof. \hfill \Box

Using (1.2) in Theorem 2.3 gives the following corollary.

Corollary 2.4. For $n > p \geq 0$,

$$\sum_{k=p+1}^{n} \sum_{j=0}^{p} \binom{n}{k} \binom{k}{p+1} \binom{p}{j} (-1)^j B_{n-j-k}$$

$$= \frac{p^{n-1} (n - pH_p)}{p + 1} + \frac{p!}{p + 1} \sum_{j=1}^{p} \binom{n}{p-j} \frac{H_j}{j!}.$$

As a consequence of Corollary 2.4, the following sums are obtained $(p = 1, 2)$:

$$\sum_{k=2}^{n} \binom{n}{k} \binom{k}{2} B_{n+1-k} = -\frac{1}{2} (n - 1),$$

$$\sum_{k=3}^{n} \binom{n}{k} \binom{k}{3} (B_{n+2-k} - B_{n+1-k}) = \frac{2^{n-1} (n - 3) + 2}{3}.$$

Setting $n = p + 1$ in Theorem 2.3 and using $B_{0,p} = 1$, we arrive at the following corollary.

Corollary 2.5. For $p \geq 1$, we obtain a new closed formula for the finite summation of harmonic numbers

$$\sum_{j=1}^{p} \binom{p+1}{p-j} \frac{H_j}{j!} = 1 - \frac{p^p (p(1 - H_p) + 1)}{p!}.$$

Our final proposition will show the relationship between the p-Bernoulli numbers and the generalized Bernoulli polynomials. Recall that the generalized Bernoulli polynomials $B^{(\alpha)}_n(x)$ of degree n in x are defined by the exponential generating function

$$\left(\frac{t}{e^t - 1} \right)^\alpha e^{xt} = \sum_{n=0}^{\infty} B^{(\alpha)}_n(x) \frac{t^n}{n!} \quad (|t| < 2\pi; \ 1^\alpha := 1)$$

for arbitrary parameter α. In particular $B^{(1)}_n(0) := B^{(\alpha)}_n$ denotes the generalized Bernoulli numbers of order α, and $B^{(1)}_n(x)$ denotes the classical Bernoulli polynomials. For a recent treatment see [2, 7, 9, 14, 16].

Proposition 2.6. For $p \geq 0$, we have

$$B_{n,p} = \frac{p+1}{p!} \frac{B^{(p+1)}_{n+p}}{n+p} - \frac{H_p}{p!} \frac{B^{(p+1)}_{n+p+1}}{n+p+1} + \sum_{k=0}^{p} \frac{\binom{p+1}{k+1} H_k}{k+1} \frac{B^{(k+1)}_{n+k+1}}{n+k+1}.$$
Proof. By (2.1) and (2.11) we have
\[
\sum_{n=0}^{\infty} B_{n,p} \frac{t^n}{n!} = (p+1) \left(\sum_{n=0}^{\infty} B_{n}^{(p+1)} (p) \frac{t^{n-p}}{n!} - H_p \sum_{n=0}^{\infty} B_{n}^{(p+1)} (p) \frac{t^{n-p-1}}{n!} \right) + (p+1) \sum_{k=1}^{p} \binom{p}{k} H_k \sum_{n=0}^{\infty} B_{n}^{(k+1)} \frac{t^{n-k-1}}{n!}.
\]
This simplifies to
\[
\sum_{n=0}^{\infty} B_{n,p} \frac{t^n}{n!} = (p+1) \sum_{n=0}^{\infty} \left(\frac{n!B_{n+p}^{(p+1)} (p)}{(n+p)!} - H_p \frac{n!B_{n+p+1}^{(p+1)} (p)}{(n+p+1)!} \right) \frac{t^n}{n!} + (p+1) \sum_{n=0}^{\infty} \sum_{k=1}^{p} \binom{p}{k} H_k \frac{n!B_{n+k+1}^{(k+1)} (p)}{(n+k+1)!} \frac{t^n}{n!}.
\]
Equating the coefficient of \(\frac{t^n}{n!} \), we get the result. □

Acknowledgments. We would like to thank the referees for their valuable suggestions which improved the quality of the paper.

References

1. H. Belbachir and M. Rahmani, On Gessel-Kaneko’s identity for Bernoulli numbers. With an appendix by Ira M. Gessel, Appl. Anal. Discrete Math. 7 (2013), 1–10.
2. M.A. Boutiche, M. Rahmani, and H.M. Srivastava, Explicit formulas associated with some families of generalized Bernoulli and Euler polynomials, Mediterr. J. Math. 14 (2017), 89, doi: 10.1007/s00009-017-0891-0.
3. K.N. Boyadzhiev, A series transformation formula and related polynomials, Int. J. Math. Math. Sci. 23 (2005), 3849–3866.
4. ---------------, Apostol-Bernoulli functions, derivative polynomials and Eulerian polynomials, Adv. Appl. Discrete Math. 1 (2008), 109–122.
5. ---------------, Close encounters with the Stirling numbers of the second kind, Math. Mag. 85 (2012), 252–266.
6. K.N. Boyadzhiev and A. Dil, Geometric polynomials: properties and applications to series with zeta values, Anal. Math. 42 (2016), 203–224.
7. J. Choi, Explicit formulas for Bernoulli polynomials of order \(n \), Indian J. Pure Appl. Math. 27 (1996), 667–674.
8. A. Dil and V. Kurt, Investigating geometric and exponential polynomials with Euler-Seidel matrices, J. Integer Seq. 14 (2011), Article 11.4.6.
9. N. Elezović, Generalized Bernoulli polynomials and numbers, revisited, Mediterr. J. Math. 13 (2016), 141, doi:10.1007/s00009-014-0498-7.
10. R.L. Graham, D.E. Knuth, and O. Patashnik, *Concrete Mathematics*, Addison-Wesley Publ. Com., New York, 1994.

11. M. Kaneko, A recurrence formula for the Bernoulli numbers, *Proc. Japan Acad. Ser. A Math. Sci.* 71 (1995), 192–193.

12. L. Kargin, Some formulae for products of geometric polynomials with applications, *J. Integer Seq.* 20 (2017), Article 17.4.4.

13. B.C. Kellner, Identities between polynomials related to Stirling and harmonic numbers, *Integers* 14 (2014), #A54.

14. J. Quaintance and H.W. Gould, *Combinatorial identities for Stirling numbers. The unpublished notes of H.W. Gould*, World Scientific Publishing Co. Pte. Ltd., Singapore, 2016.

15. M. Rahmani, On p-Bernoulli numbers and polynomials, *J. Number Theory* 157 (2015), 350–366.

16. H.M. Srivastava and J. Choi, *Zeta and q-Zeta functions and associated series and integrals*, Elsevier, Inc., Amsterdam, 2012.

17. S.M. Tanny, On some numbers related to the Bell numbers, *Canad. Math. Bull.* 17 (1974), 733–738.

Received 25 July, 2017 and in revised form 10 November, 2017.