Lateral Limit of Superior Sagittal Sinus in Respect to External Part of Sagittal Suture

Pankaj Raj Nepal1, Birat Thapa Magar2

1Department of Neurosurgery, B and C Medical College Teaching Hospital and Research Center, Birtamode, Jhapa, Nepal.
2Department of Neurosurgery Unit -1, Punjab Institute of Neuroscience, Lahore General Hospital, Ferozepur Road, Lahore, Pakistan.

Correspondence:
Dr. Pankaj Raj Nepal, FCPS,
Deputy Medical Director,
Head of Department, Department of Neurosurgery,
B and C Medical College Teaching Hospital and Research Center, Birtamode, Jhapa, Nepal.
Email: pankajrajinepal@gmail.com
Phone no: +9779801098106

Background: Sagittal suture has been used as an external landmark of superior sagittal sinus since the very beginning of neurosurgery. However, most of the time the sinus is not exactly under the suture line, rather, it has some displacement to one side. So, to analyze the variation of the lateral limit of superior sagittal sinus from the external part of sagittal sinus this study was performed. Materials and methods: Consecutive cases of MRI brain with contrast done in B&C Medical College Teaching Hospital was collected over 3 months, Age, gender, right, and left lateral limits of the superior sagittal sinus from the sagittal suture at its mid-point was collected in preformed proforma. Mean and standard deviation was calculated for the continuous variables, ANOVA was done to evaluate the association of gender with the lateral limits of sinus and Pearson correlation was done to see the relation of age with the lateral limits of the sinus. All the analysis was done using IBM SPSS 20. Results: There were a total of 40 patients enrolled in the study. The mean age was 39.8 years with male (75\%) predominance. The lateral right limit of the superior sagittal sinus was up to 23mm and in the left up to 17.1mm from the outer limit of the sagittal suture. There was no significant association of gender with both the right and left limits of the superior sagittal sinus. Similarly, there was no significant correlation of age with the lateral limit of the superior sagittal sinus. Conclusion: The mean existence of superior sagittal sinus is 9.57mm in the right to 5.78mm in the left side from the outer limit of the sagittal suture. However, in extreme stances it's lateral limits can extend up to 17mm in left to 23mm in the right from the outer limit of the sagittal suture.

Key words: Alignment, Lateral limit, Sagittal suture, Superior sagittal sinus.
relation of lateral limits of the sagittal sinus in relation to the sagittal suture. All the cranial MRI was interpreted by the senior author and the limits of superior sagittal sinus, its midline, and the position of the sagittal suture was delineated. Data were collected in terms of age, gender, right and left lateral limits of the superior sagittal sinus from the sagittal suture at its mid-point was collected in preformed proforma (Figure 1). Patients with mass effect, obvious midline shift, or intracranial pathology like mass lesions were excluded from the study. Similarly, cases in which sagittal suture could not be clearly identified were also excluded from the study.

Mean and standard deviation was calculated for the continuous variables, ANOVA was done to evaluate the association of gender with the lateral limits of superior sagittal sinus and Pearson correlation was done to see the relation of age with the lateral limits of the sinus. All the analysis was done using IBM SPSS 20.

Results:

(There was altogether 54 contrast-enhanced cranial MRI performed during the study period out of which 14 were excluded.) Thus altogether 40 patients were enrolled in the study. The mean age was 39.8 (SD 15.5) years with 75% male in the study (Figure 2).

	Minim um	Maximum	Mean	Std. Deviation
age	14	90	39.80	15.547
Right limit	.83	23.00	9.5713	5.41198
Left limit	-4.00	17.10	5.7830	4.85896

There was no significant association of gender with both the right and left limits of the superior sagittal sinus (Table 2).
Table 2: Distribution of gender.

gender	N	Mean	Std. Deviation	P-Value
right_limit				
Male	30	9.904	5.84771	0.249
Female	10	8.573	3.90628	
left_limit				
Male	30	5.777	4.98430	0.133
Female	10	5.801	4.71771	

Similarly, there was no significant correlation of age with either of the lateral limit of the superior sagittal sinus (Table 3 and Table 4).

Table 3: Correlation of age with right limit of the superior sagittal sinus

Correlations	age	Right	
age	Pearson	1	.111
	Sig.	(2-)	.496
	N	40	40

Table 4: Correlation of age with the left limit of superior sagittal sinus

Correlations	age	Left limit	
age	Pearson	1	-.055
	Sig.	(2-)	.736
	N	40	40

Discussion:

The sagittal suture is formed between two parietal bones and runs between coronal and lambdoid suture in the midline. Historically, it is a very good landmark of the superior sagittal sinus and most of the neurosurgeons rely on this landmark for parafalcine parasagittal craniotomies. However, there are reports of sinus injury during such craniotomy which might be due to its presence not being exactly under the sagittal sinus rather displaced to one side or due to its morphological variations. Previous studies done by cadaveric dissection showed around 10-11mm of maximum displacement mainly to the right side of the superior sagittal sinus from the sagittal suture. However, in this study there was a maximum displacement of lateral limits up to 23 mm to the right and 17 mm to the left with its mean displacement similar to the previous studies. This value could help the neurosurgeon in the setting of emergency craniotomy or elective craniotomies in the absence of Neuronavigation for proper placement of burrs and craniotome to prevent sinus injury. In the literature the safety limit of placement of burr hole is somewhere around 15 mm from the midline sagittal suture; however, as for the finding in our study the burr hole placed 25 mm to the right and 20 mm to the left seems necessary to prevent sinus injury in all cases of craniotomy around superior sagittal sinus because even a small dural tear over the lateral limits of the sinus could cause sinus injury.
sinus will also lead to devastating bleeding or air embolism.13

Dural venous sinus seems to make a groove in the inner table of the skull bone and it corresponds to the size of the sinus but it doesn’t seem to grow or shrink with the advancing age.14 Similarly, As noted in previous studies, in this study the relation of a lateral limit of superior sagittal sinus and sagittal suture neither seems to be associated with advancing age nor with the gender.5, 6

The small sample size and non-inclusion of various races and ethnic groups are the main limitation of this study. However, this may be the first morphometric study evaluating the limits of the sagittal sinus in Nepalese population and we believe that a more elaborate study with larger sample size and study of racial and ethnic variation of the limits of the superior sagittal sinus in relation to the sagittal suture would be better for future.

Conclusion:

The mean existence of superior sagittal sinus is 9.57mm in the right to 5.78mm in the left side from the outer limit of the sagittal suture. However, in extreme stances it’s lateral limits can extend up to 17mm in left to 23mm in the right from the outer limit of the sagittal suture.

References:

1. Rice DP. Developmental anatomy of craniofacial sutures. InCraniofacial Sutures 2008 (Vol. 12, pp. 1-21). Karger Publishers.

2. Reis CV, Gusmão SN, Elhadi AM, Dru A, Tazinaffo U, Zabramski JM, Spetzler RF, Preul MC. Midline as a landmark for the position of the superior sagittal sinus on the cranial vault: an anatomical and imaging study. Surgical neurology international. 2015;6.

3. Meier U, Gärtnner F, Knopf W, Klötzer R, Wolf O. The traumatic dural sinus injury—a clinical study. Acta neurochirurgica. 1992 Mar 1;119(1-4):91-3.

4. Wu JJ, Shih CJ. Unusual penetrating injury of the superior sagittal sinus. Surgical neurology. 1982 Jan 1;17(1):43-6.

5. Samadian M, Nazparvar B, Haddadian K, Rezaei O, Khormaei F. The anatomical relation between the superior sagittal sinus and the sagittal suture with surgical considerations. Clinical neurology and neurosurgery. 2011 Feb 1;113(2):89-91.

6. Tubbs RS, Salter G, Elton S, Grabb PA, Oakes WJ. Sagittal suture as an external landmark for the superior sagittal sinus. Journal of neurosurgery. 2001 Jun 1;94(6):985-7.

7. Behera SK, Senapati SB, Mishra SS, Das S. Management of superior sagittal sinus injury encountered in traumatic head injury patients: analysis of 15 cases. Asian journal of neurosurgery. 2015 Jan;10(1):17.

8. Mayfrank L, Gilsbach JM. Interhemispheric approach for microsurgical removal of olfactory groove meningiomas. British journal of neurosurgery. 1996 Jan 1;10(6):541-6.

9. Kim YB, Young WL, Lawton MT. Parafalcine and midline arteriovenous malformations: surgical strategy, techniques, and outcomes. Journal of neurosurgery. 2011 Apr 1;114(4):984-93.

10. Nepal PR, Rijal S. Morphological variation of the confluences of sinuses in head. J Neurol Neurophysiol. 2018 Sep, 9: DOI: 10.4172/2155-9562-C5-073

11. Nepal PR, Rijal S. Outcome Following Decompressive Surgery for Malignant Middle Cerebral Artery Infarction. Eastern Green Neurosurgery. 2020 Jan 29;2(1):23-6.

12. Johnson RD, Maartens NF, Teddy PJ. Technical aspects of decompressive craniectomy for malignant middle cerebral artery infarction. Journal of Clinical Neuroscience. 2011 Aug 1;18(8):1023-7.

13. Rish BL. The repair of dural venous sinus wounds by autogenous venorrhaphy. Journal of neurosurgery. 1971 Oct 1;35(4):392-5.

14. Rijal S, Nepal PR, Bishokarma S, Ranabhat K, Gongal DN. Morphometric Relationship of the Transverse Sinus with Sigmoid Sinus Groove and Jugular Foramen. Nepal Journal of Neuroscience. 2018 Dec 31;15(3):49-53.