A note on modular Terwilliger algebras of association schemes

Yu Jiang

Received: 18 August 2021 / Accepted: 3 October 2021 / Published online: 9 October 2021
© The Managing Editors 2021

Abstract
Let p denote a prime number. In this note, we focus on the modular Terwilliger algebras of association schemes defined in Hanaki (Graphs Combin, 2021, https://doi.org/10.1007/s00373-021-02363-0). We define the primary module of a modular Terwilliger algebra of an association scheme and determine all its composition factors up to isomorphism. We then characterize the p'-valenced association schemes in terms of numerous properties of their modular Terwilliger algebras. We conclude our investigation with a few corollaries and questions on the modular Terwilliger algebras of association schemes.

Keywords Association scheme · Modular Terwilliger algebra · p'-valenced scheme

Mathematics Subject Classification 05E30 primary · 05E10 secondary

1 Introduction
In this present note, we study a class of associative algebras which are associated to the association schemes of finite valency (or schemes as we shall simply say) in a similar way as the subconstituent algebras (also known as Terwilliger algebras) defined by Terwilliger in Terwilliger (1992) are associated to the distance regular graphs. While the original Terwilliger algebras were defined only for the distance regular graphs that are equivalent to the symmetric schemes of class two, Terwilliger algebras can also be defined for arbitrary schemes. Terwilliger algebras of schemes are finite-dimensional semisimple \mathbb{C}-algebras. In Hanaki (2021), Hanaki introduced the Terwilliger algebras of schemes over an arbitrary commutative unital ring. In this present note, we are interested in the Terwilliger algebras of schemes over a field of positive characteristic.
Following Hanaki (2021), we call these algebras the modular Terwilliger algebras of schemes.

The primary module of a Terwilliger algebra of a scheme S is an irreducible module of this algebra. It closely relates to the structure of S (see Egge (2000); Terwilliger (1992, 1993a, b)). We define the primary module for a modular Terwilliger algebra of S (see Definition 3.2). So it is natural to study the primary module of a modular Terwilliger algebra of S. As the first main result of this note, in Theorem 3.15, we determine all composition factors of the primary module of a modular Terwilliger algebra of S up to isomorphism.

The p'-valenced schemes enjoy many algebraic properties. For example, according to (Hanaki 2021, Theorem 3.4), a modular Terwilliger algebra of S is semisimple only if S is a p'-valenced scheme. This listed example motivates us to characterize the p'-valenced schemes in terms of some properties of their modular Terwilliger algebras. As the second main result of this note, in Theorem 4.21, we characterize the p'-valenced schemes in terms of numerous properties of their modular Terwilliger algebras.

The organization of this note is as follows. The basic notation and preliminaries are given in Section 2. Two main results are proved in Sections 3 and 4, respectively.

2 Basic notation and preliminaries

For a general background on association schemes, one may refer to Bannai and Ito (1984), Zieschang (1996), or Zieschang (2005).

2.1 General conventions

Throughout the present note, fix a field \mathbb{F} of positive characteristic p and a nonempty finite set X. Let \mathbb{N} be the set of all natural numbers. Set $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. If $a, b \in \mathbb{N}_0$, put $[a, b] = \{c \in \mathbb{N}_0 : a \leq c \leq b\}$. For a nonempty subset Y of an \mathbb{F}-linear space, write $\langle Y \rangle_\mathbb{F}$ for the \mathbb{F}-linear space generated by Y. By convention, $\langle \emptyset \rangle_\mathbb{F}$ is the zero space. The addition, the multiplication, and the scalar multiplication of matrices in this note are the usual matrix operations. A scheme means an association scheme on X. All modules are finitely generated left modules.

2.2 Schemes

Let $S = \{R_0, R_1, \ldots, R_d\}$ be a partition of the Cartesian product $X \times X$. Then S is a scheme of class d if the following conditions hold:

1. $R_0 = \{(x, x) : x \in X\};$
2. For any $i \in [0, d]$, there is $i' \in [0, d]$ such that $\{(x, y) : (y, x) \in R_i\} = R_i' \in S;$
3. For any $i, j, \ell \in [0, d]$ and $(x, y), (\tilde{x}, \tilde{y}) \in R_\ell$, the following equality holds: $|\{\tilde{z} \in X : (x, \tilde{z}) \in R_i, (\tilde{z}, y) \in R_j\}| = |\{\tilde{z} \in X : (\tilde{x}, \tilde{z}) \in R_i, (z, \tilde{y}) \in R_j\}|.$
Throughout the whole note, \(S = \{ R_0, R_1, \ldots, R_d \} \) is a fixed scheme of class \(d \). By (iii), for any \(i, j, \ell \in [0, d] \) and \((x, y) \in R_i \), there exists a constant \(p^\ell_{ij} \in \mathbb{N}_0 \) such that \(p^\ell_{ij} = |\{ z \in X : (x, z) \in R_i, (z, y) \in R_j \}| \). Let \(i \in [0, d] \) and \(x, y \in X \). Set \(xR_i = \{ z \in X : (x, z) \in R_i \} \). Write \(k_i \) for \(p^0_{ii} \). The number \(k_i \) is called the valency of \(R_i \). Observe that \(|xR_i| = |yR_i| = k_i \). Hence \(k_i > 0 \) since \(R_i \neq \emptyset \). If \(n \in \mathbb{N}_0 \), set \(S_n = \{ j \in [0, d] : p^n | k_j \) and \(p^{n+1} \nmid k_j \} \). Call \(S \) a \(p \)’-valenced scheme if \(S_0 = [0, d] \). Put \(O_\emptyset(S) = \{ R_j \in S : k_j = 1 \} \). Note that \(R_0 \in O_\emptyset(S) \). We list a lemma as follows.

Lemma 2.1 (Bannai and Ito 1984, Proposition 2.2 (vi)) Let \(i, j, \ell \in [0, d] \). Then
\[
k_\ell p^\ell_{ij} = k_i p^\ell_{j\ell} = k_j p^\ell_{i\ell}.
\]

2.3 Algebras

Let \(\mathbb{Z} \) be the integer ring and \(\mathbb{F}_p \) be the prime subfield of \(\mathbb{F} \). Given \(a \in \mathbb{Z} \), let \(\overline{a} \) be the image of \(a \) under the unital ring homomorphism from \(\mathbb{Z} \) to \(\mathbb{F}_p \).

Let \(A \) be a finite-dimensional associative unital \(\mathbb{F} \)-algebra and \(B \) be a two-sided ideal of \(A \). Call \(B \) a nilpotent ideal of \(A \) if there is \(m \in \mathbb{N} \) such that the product of any \(m \) elements of \(B \) is the zero element of \(A \). Let \(\text{Rad}(A) \) be the Jacobson radical of \(A \). Recall that \(\text{Rad}(A) \) is the sum of all nilpotent two-sided ideals of \(A \). Let \(U \) be a nonzero \(A \)-module and \(V, W \) be \(A \)-modules. Call \(U \) an irreducible \(A \)-module if \(U \) has no nonzero proper \(A \)-submodule. Call \(U \) an indecomposable \(A \)-module if \(U \) is not a direct sum of two nonzero \(A \)-submodules. Let \(\text{Ann}_A(V) = \{ \hat{a} \in A : \hat{a} \hat{v} = 0 \forall \hat{v} \in V \} \). Observe that \(\text{Ann}_A(V) \) is a two-sided ideal of \(A \). If \(V \) is an irreducible \(A \)-module, it is known that \(\text{Rad}(A) \subseteq \text{Ann}_A(V) \). If \(W \) is an \(A \)-submodule of \(V \), \(V/W \) denotes the quotient \(A \)-module of \(V \) with respect to \(W \). A composition series of \(U \) of length \(n \) is an \(A \)-submodule series \(U_n \subset U_{n-1} \subset \cdots \subset U_1 \subset U_0 = U \) of \(U \), where \(U_n \) is the zero module and \(U_{q-1}/U_q \) is an irreducible \(A \)-module for every \(q \in [1, n] \). Call \(U_{q-1}/U_q \) a composition factor of \(U \) for every \(q \in [1, n] \). By the Jordan-Hölder Theorem, all composition factors of \(U \) are independent of the choice of composition series of \(U \) up to permutation and isomorphism. So the length of a composition series of \(U \) is an invariant of \(U \). Call this invariant the composition length of \(U \).

2.4 Modular Terwilliger algebras of schemes

Let \(\mathbb{F}^X \) be the \(\mathbb{F} \)-linear space of \(\mathbb{F} \)-column vectors whose coordinates are labeled by the elements of \(X \). Let \(\mathbf{1} \) and \(\mathbf{0} \) be the all-one column vector and the all-zero column vector in \(\mathbb{F}^X \), respectively. Let \(M_X(\mathbb{F}) \) be the full matrix algebra of \(\mathbb{F} \)-square matrices whose rows and columns are labeled by the elements of \(X \). Let \(I, J, O \) denote the identity matrix, the all-one matrix, and the all-zero matrix in \(M_X(\mathbb{F}) \), respectively. If \(Z \in M_X(\mathbb{F}) \), let \(Z^t \) denote the transpose of \(Z \). Let \(y, z \in X \) and \(E_{yz} \) denote the \((0, 1) \)-matrix in \(M_X(\mathbb{F}) \) whose unique nonzero entry is the \((y, z)\)-entry.

Let \(i, j \in [0, d] \). The adjacenty \(\mathbb{F} \)-matrix with respect to \(R_i \), denoted by \(A_i \), is the matrix \(\sum_{(x, y) \in R_i} E_{xy} \). The dual \(\mathbb{F} \)-idempotent with respect to \(y \) and \(R_i \), denoted by \(E_i^*(y) \), is the matrix \(\sum_{z \in y R_i} E_{yz} \). Let \(\delta_{\alpha \beta} \) denote the Kronecker delta of integers \(\alpha \) and \(\beta \).
Lemma 2.2 Let $i, j, \ell \in [0, d]$.

(i) (Hanaki 2021, Lemma 3.2) $E_i^* A_j E_\ell^* 1 = p_{ij}^\ell E_i^* 1$. In particular, $E_i^* A_j E_\ell^* J = p_{ij}^\ell E_i^* J$.

(ii) (Jiang 2020, Lemma 3.2) If $E_i^* A_j E_\ell^* \neq 0$ and $\min\{k_i, k_\ell\} = 1$, then $E_i^* A_j E_\ell^* = E_i^* J E_\ell^*$.

(iii) Every element of T is a finite F-linear combination of elements of $\bigcup_{m \in \mathbb{N}_0} T_m$.

Proof For (iii), $A_0, A_1, \ldots, A_d, E_0^*, E_1^*, \ldots, E_d^*$ belong to $\bigcup_{m \in \mathbb{N}_0} T_m$ by (2), (3), (6). Notice that $\bigcup_{m \in \mathbb{N}_0} T_m$ is a unital F-subalgebra of T by (6). So $T = \bigcup_{m \in \mathbb{N}_0} T_m$ by the definition of T. (iii) thus follows as $T = \bigcup_{m \in \mathbb{N}_0} T_m$ and $\dim_F T \in \mathbb{N}$. \qed

3 Primary modules of modular Terwilliger algebras of schemes

In this section, we define the primary module of T and study its basic properties. In particular, we determine all its composition factors up to isomorphism. For our purpose, notice that $M_X(F)$ acts on F^X by left multiplication. We first list a lemma.
Lemma 3.1 The following statements hold:

(i) \{E^*_h 1 : i \in [0, d]\} is an F-linearly independent subset of R^X of cardinality $d + 1$.

(ii) \{\langle E^*_h 1 : i \in [0, d]\rangle\} is a T-module under the left multiplication action of T.

(iii) Assume that $n \in \mathbb{N}$. Then \{\langle E^*_i 1 : i \in [0, d], p^n | k_i\rangle\} is a T-module under the left multiplication action of T.

Proof For (i), for every $h \in [0, d]$, notice that $E^*_h 1 \neq 0$ by the definitions of E^*_h and 1. Suppose that there exist $c_0, c_1, \ldots, c_d \in F$ such that $\bigcup^{d}_{i=0}(c_i) \cap (F \setminus \{0\}) \neq \emptyset$ and $\sum^{d}_{i=0} c_i E^*_i 1 = 0$. So there is $j \in [0, d]$ such that $c_j \neq 0$. By (3), observe that $c_j E^*_j 1 = E^*_j (\sum^{d}_{i=0} c_i E^*_i 1) = E^*_j 0 = 0$. Since $E^*_j 1 \neq 0$, we thus have $c_j = 0$, which contradicts the inequality $c_j \neq 0$. So \{\langle E^*_i 1 : i \in [0, d]\rangle\} is an F-linearly independent subset of R^X. We also note that $|\langle E^*_i 1 : i \in [0, d]\rangle| = d + 1$ by (3). (i) thus follows.

Let $a, b, c \in [0, d]$. For (ii), by (3) and Lemma 2.2 (i), $E^*_a A_b E^*_c E^*_h 1 = \delta_{ch} p^a_{hb} E^*_a 1$ for every $h \in [0, d]$. In particular, notice that $E^*_a A_b E^*_c E^*_h 1 \in \langle \langle E^*_i 1 : i \in [0, d]\rangle\rangle_F$ for every $h \in [0, d]$. Hence, since $\langle \langle E^*_i 1 : i \in [0, d]\rangle\rangle_F$ is an F-linear space and a, b, c are chosen from $[0, d]$ arbitrarily, (ii) thus follows from Lemma 2.2 (iii) and (6).

For (iii), notice that (iii) is trivial if $\langle \langle E^*_i 1 : i \in [0, d]\rangle, p^n | k_i\rangle\rangle_F = \{0\}$. We thus assume further that $\langle \langle E^*_i 1 : i \in [0, d]\rangle, p^n | k_i\rangle\rangle_F \neq \{0\}$. For every $h \in [0, d]$ and $p^n | k_h$, we claim that $E^*_a A_b E^*_c E^*_h 1 \in \langle \langle E^*_i 1 : i \in [0, d]\rangle, p^n | k_i\rangle\rangle_F$. Suppose that there is $\ell \in [0, d]$ such that $E^*_a A_b E^*_c E^*_h 1 \notin \langle \langle E^*_i 1 : i \in [0, d]\rangle, p^n | k_i\rangle\rangle_F$ and $p^n | k_\ell$. So $E^*_a A_b E^*_c E^*_h 1 \neq 0$. So $E^*_a A_b E^*_c E^*_h 1 = p^a_{\ell b'} E^*_a 1 \notin \langle \langle E^*_i 1 : i \in [0, d]\rangle, p^n | k_i\rangle\rangle_F$ by (3) and Lemma 2.2 (i). We thus have $p^a | p^a_{\ell b'}$ and $p^n | k_\ell$. Since $p^n | k_\ell$, $p^n | k_\ell$, and $k_\ell p^a_{\ell b'} = k_\ell p^a_{\ell b'}$ by Lemma 2.1, observe that $p | p^a_{\ell b'}$, which contradicts the fact $p \nmid p^a_{\ell b'}$. The desired claim follows. As $\langle \langle E^*_i 1 : i \in [0, d]\rangle, p^n | k_i\rangle\rangle_F$ is an F-linear space and a, b, c are chosen from $[0, d]$ arbitrarily, (iii) is proved by combining Lemma 2.2 (iii), (6), and the proven claim. \(\square\)

We are now ready to define the primary module of T.

Definition 3.2 The T-module in Lemma 3.1 (ii) is similar to the primary module of a Terwilliger algebra of S (see (Terwilliger 1992, Lemma 3.6)). Call the T-module in Lemma 3.1 (ii) the primary module of T and denote it by W_0. Let $n \in \mathbb{N}$. Let W_n denote the T-module in Lemma 3.1 (iii). For every $m \in \mathbb{N}_0$, note that W_{m+1} is a T-submodule of W_m. Notice that $W_1 \subset W_0$. Notice that $\dim_F W_0 = d + 1$ by Lemma 3.1 (i).

Lemma 3.3 Let $n \in \mathbb{N}_0$.

(i) If $S_m = \emptyset$ for every $n < m \in \mathbb{N}$, then $W_m = \{0\}$ for every $n < m \in \mathbb{N}$.

(ii) W_n / W_{n+1} has an F-basis $\{E^*_i 1 + W_{n+1} : i \in S_n\}$ of cardinality $|S_n|$.

Proof By Definition 3.2 and the definition of S_n, $W_m = \langle \langle E^*_i 1 : i \in \bigcup_{m \leq q \in \mathbb{N}} S_q\rangle\rangle_F$ for every $n < m \in \mathbb{N}$. By hypotheses, $W_m = \{0\}$ for every $n < m \in \mathbb{N}$. (i) is shown. (ii) is proved by combining Lemma 3.1 (i), Definition 3.2, the definition of S_n. \(\square\)

The following lemma contains more properties of the objects in Definition 3.2.
Lemma 3.4 The following statements hold:

(i) \(W_1 \) is the unique maximal \(T \)-submodule of \(W_0 \).

(ii) \(W_0 \) is an indecomposable \(T \)-module.

(iii) \(W_0/W_1 \) is an irreducible \(T \)-module.

(iv) \(W_0 \) is an irreducible \(T \)-module if and only if \(S \) is a \(p' \)-valenced scheme.

(v) Let \(n \in \mathbb{N}_0 \) and \(U \) denote a \(T \)-submodule of \(W_n/W_{n+1} \). Then there do not exist \(T \)-submodules \(V, W \) of \(W_{n+1} \) such that \(W \subset V \) and \(U \cong V/W \) as \(T \)-modules.

Proof For (i), by the definitions of \(W_0 \) and \(W_1 \), \(W_1 \) is a proper \(T \)-submodule of \(W_0 \). Let \(M \) denote a maximal \(T \)-submodule of \(W_0 \). According to the definition of \(W_0 \), we pick \(\sum_{i=0}^d c_i E_i^* 1 \in M \), where \(c_i \in \mathbb{F} \) for every \(i \in [0, d] \). For every \(i \in [0, d] \), we claim that \(c_i = 0 \) if \(p \nmid k_i \). Suppose that there exists \(j \in [0, d] \) such that \(p \nmid k_j \) and \(c_j \neq 0 \). Let \(\ell \in [0, d] \). Notice that \(E_\ell^* J E_j^* \in T \) by (2) and the definition of \(T \). Since \(M \) is a \(T \)-submodule of \(W_0 \), notice that \(E_\ell^* J E_j^* (\sum_{i=0}^d c_i E_i^* 1) = c_j E_\ell^* J E_j^* 1 = c_j k_j E_\ell^* 1 \in M \) by (3) and (5). Hence \(E_j^* 1 \in M \) as \(c_j \neq 0 \) and \(p \nmid k_j \). Since \(\ell \) is chosen from \([0, d]\) arbitrarily and \(M \) is a maximal \(T \)-submodule of \(W_0 \), we thus have \(W_0 \nsubseteq M \subset W_0 \), which is a contradiction. So the desired claim follows. Since \(\sum_{i=0}^d c_i E_i^* 1 \) is chosen from \(M \) arbitrarily, by the proven claim and the definition of \(W_1 \), observe that \(M \subseteq W_1 \subset W_0 \), which implies that \(M = W_1 \) since \(M \) is a maximal \(T \)-submodule of \(W_0 \). Since \(M \) is chosen from the set of all maximal \(T \)-submodules of \(W_0 \) arbitrarily, \(W_1 \) is the unique maximal \(T \)-submodule of \(W_0 \). (i) is proved.

For (ii), \(W_0 \neq \{0\} \) since \(\dim \mathbb{F} W_0 = d + 1 > 0 \). Suppose that there exist nonzero \(T \)-modules \(N_1 \) and \(N_2 \) such that \(W_0 = N_1 \oplus N_2 \). Hence \(W_0 \) has at least two distinct maximal \(T \)-submodules, which contradicts (i). Therefore \(W_0 \) is an indecomposable \(T \)-module, (ii) is shown.

For (iii), note that (iii) is from (i).

For (iv), by (i) and (iii), \(W_0 \) is an irreducible \(T \)-module if and only if \(W_1 = \{0\} \). By the definition of \(W_1 \), note that \(W_1 = \{0\} \) if and only if \(S \) is a \(p' \)-valenced scheme. (iv) thus follows.

For (v), there is no loss to assume further that \(U \neq \{0 + W_{n+1}\} \). By Lemma 3.3 (ii), pick \(\sum_{u \in S_n} e_u E_u^* 1 + W_{n+1} \in U \setminus \{0 + W_{n+1}\} \), where \(e_u \in \mathbb{F} \) for every \(u \in S_n \). So there is \(v \in S_n \) such that \(e_v \neq 0 \). As \(U \) is a \(T \)-submodule of \(W_n/W_{n+1} \), by (3) and Lemma 3.3 (ii), \(0 + W_{n+1} \neq e_v E_v^* 1 + W_{n+1} = E_v^* (\sum_{u \in S_n} e_u E_u^* 1 + W_{n+1}) \in U \). Suppose that there exist \(T \)-submodules \(V, W \) of \(W_{n+1} \) such that \(W \subset V \) and \(U \cong V/W \) as \(T \)-modules. Let \(\phi \) be a \(T \)-isomorphism from \(U \) and \(V/W \). Since \(\phi \) is injective and \(0 + W_{n+1} \neq e_v E_v^* 1 + W_{n+1} \in U \), notice that \(0 + W \neq \phi(e_v E_v^* 1 + W_{n+1}) \in V/W \). Since \(v \in S_n \), by the definitions of \(S_n \) and \(W_{n+1} \), (3) tells us that \(E_v^* \in \text{Ann}_T(W_{n+1}) \). In particular, as \(W \subset V \subseteq W_{n+1} \), notice that \(E_v^* \phi(e_v E_v^* 1 + W_{n+1}) = 0 + W \). As \(\phi \) is a \(T \)-isomorphism, by (3) again, we thus can deduce that

\[
0 + W \neq \phi(e_v E_v^* 1 + W_{n+1}) = \phi(E_v^* (e_v E_v^* 1 + W_{n+1})) = E_v^* \phi(e_v E_v^* 1 + W_{n+1}) = 0 + W,
\]

which is impossible. So there are not \(T \)-submodules \(V, W \) of \(W_{n+1} \) such that \(W \subset V \) and \(U \cong V/W \) as \(T \)-modules. (v) is proved. \(\square \)
For further discussion, we need the following conditions and lemma.

Condition 3.5 Let \sim denote a binary relation on $[0, d]$, where, for any $i, j \in [0, d]$, $i \sim j$ if and only if the following conditions hold:

(i) There are $m \in \mathbb{N}_0$ and sequence $i_0, j_0, \ell_0, i_1, j_1, \ell_1, \ldots, i_m, j_m, \ell_m$ of $[0, d]$ such that $i_0 = i$, $\ell_m = j$, $p \uparrow \prod_{a=0}^{m} p_{i_a,j_a}^{\ell_a}$, and $\ell_{b-1} = i_b$ for every $b \in [1, m]$;

(ii) There are $n \in \mathbb{N}_0$ and sequence $r_0, s_0, t_0, r_1, s_1, t_1, \ldots, r_n, s_n, t_n$ of $[0, d]$ such that $r_0 = j$, $t_n = i$, $p \uparrow \prod_{c=0}^{n} p_{r_c,s_c}^{t_c}$, and $t_{e-1} = r_e$ for every $e \in [1, n]$.

Example 3.6 Let us illustrate the definition of \sim by examples. Assume that $p > 2$ and S is the scheme of order 12, No. 21 in Hanaki (2020). Notice that $S = \{ R_0, R_1, R_2, R_3, R_4 \}$, where $3' = p_{4,4} = p_3^4 = 4$. So $3 \sim 4$ as the sequence $3, 4$ satisfies Condition 3.5 (i) and the sequence $4, 3$ satisfies Condition 3.5 (ii). Note that $3 \sim 3$ as the sequence $3, 4, 4, 3$ satisfies Condition 3.5 (i) and (ii).

Lemma 3.7 The binary relation \sim is an equivalence relation on $[0, d]$.

Proof Let $i, j, \ell \in [0, d]$. Notice that $0' = 0$ and $p_{i0}^j = 1$ by the definition of p_{i0}^j. Hence the sequence $i, 0, i$ satisfies Condition 3.5 (i) and (ii), which implies that $i \sim i$. Since i is chosen from $[0, d]$ arbitrarily, \sim is reflexive.

Assume that $i \sim j$. According to Condition 3.5 (i) and (ii), we have the following two facts:

(i) There are $m_1 \in \mathbb{N}_0$ and sequence $i_0, j_0, \ell_0, i_1, j_1, \ell_1, \ldots, i_{m_1}, j_{m_1}, \ell_{m_1}$ of $[0, d]$ such that $i_0 = i$, $\ell_{m_1} = j$, $p \uparrow \prod_{a=0}^{m_1} p_{i_a,j_a}^{\ell_a}$, and $\ell_{b-1} = i_b$ for every $b \in [1, m_1]$.

(ii) There are $n_1 \in \mathbb{N}_0$ and sequence $r_0, s_0, t_0, r_1, s_1, t_1, \ldots, r_{n_1}, s_{n_1}, t_{n_1}$ of $[0, d]$ such that $r_0 = j$, $t_{n_1} = i$, $p \uparrow \prod_{c=0}^{n_1} p_{r_c,s_c}^{t_c}$, and $t_{e-1} = r_e$ for every $e \in [1, n_1]$.

We thus have $j \sim i$ as Condition 3.5 (i) follows from (ii) and Condition 3.5 (ii) follows from (i). So \sim is symmetric.

Assume further that $j \sim \ell$. According to Condition 3.5 (i) and (ii), we have the following two facts:

(iii) There are $m_2 \in \mathbb{N}_0$ and sequence $u_0, v_0, w_0, u_1, v_1, w_1, \ldots, u_{m_2}, v_{m_2}, w_{m_2}$ of $[0, d]$ such that $u_0 = j$, $w_{m_2} = \ell$, $p \uparrow \prod_{f=0}^{m_2} p_{u_f,v_f}^{w_f}$, and $w_{g-1} = u_g$ for every $g \in [1, m_2]$.

(iv) There are $n_2 \in \mathbb{N}_0$ and sequence $x_0, y_0, z_0, x_1, y_1, z_1, \ldots, x_{n_2}, y_{n_2}, z_{n_2}$ of $[0, d]$ such that $x_0 = \ell$, $z_{n_2} = j$, $p \uparrow \prod_{h=0}^{n_2} p_{x_h,y_h}^{z_h}$, and $z_{k-1} = x_k$ for every $k \in [1, n_2]$.

Set $i_{m_1+f+1} = u_f, j_{m_1+f+1} = v_f$, and $\ell_{m_1+f+1} = w_f$ for every $f \in [0, m_2]$. We also put $x_{n_2+c+1} = r_c, y_{n_2+c+1} = s_c$, and $z_{n_2+c+1} = t_c$ for every $c \in [0, n_1]$. By (i) and (iii), observe that $i_0 = i$, $\ell_{m_1+m_2+1} = \ell$, $p \uparrow \prod_{r=0}^{m_1+m_2+1} p_{i_r,j_r}^{\ell_r}$, and $\ell_{s-1} = i_s$ for every $s \in [1, m_1+m_2+1]$. According to (ii) and (iv), observe that $x_0 = \ell$, $z_{n_1+n_2+1} = i$, $p \uparrow \prod_{a=0}^{n_1+n_2+1} p_{x_a,y_a}^{z_a}$, and $z_{v-1} = x_v$ for every $v \in [1, n_1+n_2+1]$. We thus have $i \sim \ell$ as the sequence $i_0, j_0, \ell_0, i_1, j_1, \ell_1, \ldots, i_{m_1+m_2+1}, j_{m_1+m_2+1}, \ell_{m_1+m_2+1}$ satisfies Condition 3.5 (i) and the sequence $x_0, y_0, z_0, x_1, y_1, z_1, \ldots, x_{n_1+n_2+1}, y_{n_1+n_2+1}, z_{n_1+n_2+1}$ satisfies Condition 3.5 (ii). Therefore \sim is transitive. The desired lemma thus follows from the definition of an equivalence relation on a set.

\square
For further discussion, we also need the following notation and lemma.

Notation 3.8 Let \(n \in \mathbb{N}_0 \) and \(\sim_n \) denote a binary relation on \(S_n \), where, for any \(i, j \in S_n \), \(i \sim_n j \) if and only if \(i \sim j \). As \(S_n \subseteq [0, d] \), by Lemma 3.7, notice that \(\sim_n \) is an equivalence relation on \(S_n \). If \(S_n \neq \emptyset \), let \(Q_n \) be the quotient set of \(S_n \) with respect to \(\sim_n \). If \(S_n = \emptyset \), set \(Q_n = \emptyset \).

Lemma 3.9 Assume that \(n \in \mathbb{N}_0 \), \(Q_n \neq \emptyset \), and \(C \in Q_n \).

(i) \(\emptyset \neq C \subseteq S_n \).

(ii) \(\langle \{ E_i^* + W_{n+1} : i \in C \} \rangle_F \) is a nonzero \(T \)-submodule of \(W_n/W_{n+1} \).

(iii) \(\langle \{ E_i^* + W_{n+1} : i \in C \} \rangle_F \) is an irreducible \(T \)-submodule of \(W_n/W_{n+1} \).

Proof As \(Q_n \neq \emptyset \), by the definition of \(Q_n \), \(Q_n \) is a partition of \(S_n \). (i) thus follows.

By (i) and Lemma 3.3 (ii), \(\langle 0 + W_{n+1} \rangle \neq \langle \{ E_i^* + W_{n+1} : i \in C \} \rangle_F \subseteq W_n/W_{n+1} \). Let \(a, b, c \in [0, d] \). We claim that \(E_a^* A_b E_c^* (E_i^* + W_{n+1}) \in \langle \{ E_i^* + W_{n+1} : i \in C \} \rangle_F \) for every \(h \in C \). We suppose that \(E_a^* A_b E_c^* (E_i^* + W_{n+1}) \notin \langle \{ E_i^* + W_{n+1} : i \in C \} \rangle_F \) and \(j \in C \). Therefore \(E_a^* A_b E_c^* (E_j^* + W_{n+1}) \neq 0 + W_{n+1} \). So \(E_a^* A_b E_c^* E_j^* 1 \notin W_{n+1} \), which implies that \(c = j \) and

\[
0 \neq p_{ jb} a E_a^* 1 = E_a^* A_b E_c^* E_j^* 1 \notin W_{n+1}
\]

by (3) and Lemma 2.2 (i). So we have \(p \upharpoonright p_{jb} a \). Notice that \(E_a^* 1 + W_{n+1} \in W_n/W_{n+1} \) as \(E_a^* A_b E_c^* (E_i^* + W_{n+1}) \in W_n/W_{n+1} \), (7) holds, and \(p \upharpoonright p_{jb} a \). Moreover, notice that \(E_a^* 1 \notin W_{n+1} \) as (7) holds. Therefore \(a \in S_n \) by Lemmas 3.3 (ii) and 3.1 (i). Since \(j \in C \), by (i), notice that \(j \in S_n \). As \(a, j \in S_n \), \(p \upharpoonright p_{ab} a \), and \(k_a p_{ab} a = k_j p_{ab} j \) by Lemma 2.1, notice that \(p \upharpoonright p_{ab} j \) by the definition of \(S_n \). So we have \(j \sim a \) and \(j \sim a \) since the sequence \(a, j \), \(a \) satisfies Condition 3.5 (i) and the sequence \(a, b, j \) satisfies Condition 3.5 (ii). As \(j \in C, j \sim a, a, \) and \(C \) is an equivalence class of \(S_n \) with respect to \(\sim_n \), notice that \(a \in C \). So \(E_a^* A_b E_c^* (E_j^* + W_{n+1}) \in \langle \{ E_i^* + W_{n+1} : i \in C \} \rangle_F \) by (7). We have a contradiction as \(E_a^* A_b E_c^* (E_j^* + W_{n+1}) \notin \langle \{ E_i^* + W_{n+1} : i \in C \} \rangle_F \). The desired claim thus follows. As we have known that \(\langle \{ E_i^* + W_{n+1} : i \in C \} \rangle_F \) is a nonzero \(\mathbb{F} \)-linear subspace of \(W_n/W_{n+1} \) and \(a, b, c \) are chosen from \([0, d]\) arbitrarily, (ii) is proved by combining Lemma 2.2 (iii), (6), and the proven claim.

For (iii), we first suppose that the \(T \)-module \(\langle \{ E_i^* + W_{n+1} : i \in C \} \rangle_F \) in (ii) has a nonzero proper \(T \)-submodule \(U \). Pick \(\sum_{i \in C} c_i E_i^* 1 + W_{n+1} \in U \setminus \{0\} \), where \(c_i \in \mathbb{F} \) for every \(i \in C \). So there exists \(k \in C \) such that \(c_k \neq 0 \). Let \(\ell \in C \). Notice that \(\ell \sim k \) and \(\ell \sim k \) as \(C \) is an equivalence class of \(S_n \) with respect to \(\sim_n \). By Condition 3.5 (i), there are \(m \in \mathbb{N}_0 \) and sequence \(i_0, j_0, \ell_0, i_1, j_1, \ell_1, \ldots, i_m, j_m, \ell_m \) of \([0, d]\) such that \(i_0 = \ell, \ell_m = k, p \upharpoonright \prod_{e=0}^m p_{e \ell_e} e \), and \(\ell_{f-1} = i_f \) for every \(f \in [1, m] \). Let \(\gamma \)

\[
\prod_{e=0}^m p_{e \ell_e} e
\]

Since \(c_k \neq 0 \) and \(p \upharpoonright \gamma \), notice that \(c_k \gamma \neq 0 \). Since \(U \) is a \(T \)-submodule of the \(T \)-module \(\langle \{ E_i^* + W_{n+1} : i \in C \} \rangle_F \) in (ii), by (6), (3), and Lemma 2.2 (i), notice that \(\prod_{e=0}^m (E_{i_e}^* A_{j_e} E_{\ell_e}) (\sum_{i \in C} c_i E_i^* 1 + W_{n+1}) = c_k \gamma \langle E_i^* 1 + W_{n+1} + U \rangle \). We thus have \(E_i^* 1 + W_{n+1} + U \) as \(c_k \gamma \neq 0 \). Since \(\ell \) is chosen from \(C \) arbitrarily, notice that \(\langle E_i^* 1 + W_{n+1} + U \rangle \subseteq U \subseteq \langle \{ E_i^* + W_{n+1} : i \in C \} \rangle_F \), which is impossible. So the \(T \)-module \(\langle \{ E_i^* + W_{n+1} : i \in C \} \rangle_F \) in (ii) has no nonzero proper \(T \)-submodule. (iii) thus follows.

\(\square \)
We now can introduce the following notation.

Notation 3.10 Assume that $n \in \mathbb{N}_0$, $Q_n \neq \emptyset$, and $C \in Q_n$. Let $Irr_n(C)$ denote the irreducible T-submodule of W_n/W_{n+1} in Lemma 3.9 (iii). By combining Lemmas 3.9 (i), (iii), and 3.3 (ii), notice that $Irr_n(C)$ has an \mathbb{F}-basis $\{E_i^*1 + W_{n+1} : i \in C\}$ of cardinality $|C|$. Write $B_n(C)$ for $\{E_i^*1 + W_{n+1} : i \in C\}$.

We need the following three lemmas to deduce the main result of this section.

Lemma 3.11 Assume that $n_m \in \mathbb{N}_0$, $Q_{n_m} \neq \emptyset$, and $C_m \in Q_{n_m}$ for every $m \in \{1, 2\}$. Then $Irr_n(C_1) \cong Irr_n(C_2)$ as T-modules if and only if $n_1 = n_2$ and $C_1 = C_2$.

Proof If $n_1 = n_2$ and $C_1 = C_2$, $Irr_n(C_1) = Irr_n(C_2)$ by the definitions of $Irr_n(C_1)$ and $Irr_n(C_2)$. So $Irr_n(C_1) \cong Irr_n(C_2)$ as T-modules. Conversely, we assume that $Irr_n(C_1) \cong Irr_n(C_2)$ as T-modules. By the definitions of $Irr_n(C_1)$ and $Irr_n(C_2)$, $Irr_n(C_m)$ is an irreducible T-submodule of $W_{n_m}/W_{n_{m+1}}$ for every $m \in \{1, 2\}$.

If $n_1 < n_2$, by the Correspondence Theorem for Modules, there is a T-submodule U of W_{n_2} such that $W_{n_2+1} \cup U \subseteq W_{n_1+1}$ and $U/W_{n_2+1} = Irr_n(C_2)$ as T-modules. We thus have a contradiction by Lemma 3.4 (v). If $n_1 > n_2$, according to the Correspondence Theorem for Modules again, there exists a T-submodule V of W_{n_1} such that $W_{n_1+1} \subseteq V \subseteq W_{n_2+1}$ and $V/W_{n_1+1} = Irr_n(C_1) \cong Irr_n(C_2)$ as T-modules. We also have a contradiction by Lemma 3.4 (v). So $n_1 = n_2$.

Set $n = n_1 = n_2$. Let ϕ denote a T-isomorphism from $Irr_n(C_1)$ to $Irr_n(C_2)$. Pick $i \in C_1$. Since $B_n(C_1)$ is an \mathbb{F}-basis of $Irr_n(C_1)$, $0 + W_{n+1} \neq E_i^*1 + W_{n+1} \in B_n(C_1)$. As ϕ is injective, we thus have $0 + W_{n+1} \neq \phi(E_i^*1 + W_{n+1}) \in B_n(C_2)$. Moreover, as $B_n(C_2)$ is an \mathbb{F}-basis of $Irr_n(C_2)$, $\phi(E_i^*1 + W_{n+1})$ is an \mathbb{F}-linear combination of the elements of $B_n(C_2)$. Suppose that $C_1 \neq C_2$. Since C_1 and C_2 are distinct equivalence classes of S_n with respect to \sim_n, notice that $C_1 \cap C_2 = \emptyset$ and $i \notin C_2$. By (3), we thus have $E_i^*(E_i^*1 + W_{n+1}) = 0 + W_{n+1}$ for every $E_i^*1 + W_{n+1} \in B_n(C_2)$. As (3) holds and ϕ is a T-isomorphism, we thus can deduce that

$$0 + W_{n+1} \neq \phi(E_i^*1 + W_{n+1}) = \phi(E_i^*(E_i^*1 + W_{n+1})) = E_i^*\phi(E_i^*1 + W_{n+1}) = 0 + W_{n+1},$$

which is a contradiction. We thus have $C_1 = C_2$. The proof is now complete. \square

Lemma 3.12 Let $n \in \mathbb{N}_0$.

(i) $W_n/W_{n+1} = \{0 + W_{n+1}\}$ if and only if $Q_n = \emptyset$.

(ii) If $Q_n \neq \emptyset$, then $W_n/W_{n+1} = \bigoplus_{C \in Q_n} Irr_n(C)$.

(iii) If Q_n contains precisely m elements C_1, C_2, \ldots, C_m, then there is a T-submodule series $W_{n+1} = U_n \cup U_{n-1} \subseteq \cdots \subseteq U_1 \subseteq U_0 = W_n$ of W_n such that $U_q - U_{q-1}/U_q \cong Irr_n(C_q)$ as T-modules for every $q \in \{1, m\}$.

Proof For (i), by the definition of Q_n, observe that $Q_n = \emptyset$ if and only if $S_n = \emptyset$. We also have $\dim_{\mathbb{F}} W_n/W_{n+1} = |S_n|$ by Lemma 3.3 (ii). So $W_n/W_{n+1} = \{0 + W_{n+1}\}$ if and only if $Q_n = \emptyset$. The proof of (i) is now complete.
For (ii), as \(Q_n \neq \emptyset \), the definition of \(Q_n \) tells us that \(Q_n \) is a partition of \(S_n \). By Lemmas 3.9 (i) and 3.3 (ii), we thus have \(\bigcup_{i \in Q_n} B_n(C) = \{ E_i^* 1 + W_{n+1} : i \in S_n \} \), where \(B_n(C^{(1)}) \cap B_n(C^{(2)}) = \emptyset \) if \(C^{(1)}, C^{(2)} \in Q_n \) and \(C^{(1)} \neq C^{(2)} \). By Lemma 3.3 (ii) again, we thus can deduce that \(W_n/W_{n+1} = \bigoplus_{C \in Q_n} (B_n(C)) \) is the proof of (ii) is now complete.

For (iii), we set \(V_q = \text{Irr}_n(C_q) \oplus \text{Irr}_n(C_{q+1}) \oplus \cdots \oplus \text{Irr}_n(C_m) \) for every \(q \in [1, m] \). By (ii), observe that \(W_n/W_{n+1} = V_1 \). By the Correspondence Theorem for Modules, there exists a \(T \)-submodule series \(W_{n+1} = U_m \subset U_{m-1} \subset \cdots \subset U_1 \subset U_0 = W_n \) of \(W_n \) such that \(U_{q-1}/U_m = V_q \) for every \(q \in [1, m] \). In particular, \(U_{m-1}/U_m = \text{Irr}_n(C_m) \) as \(T \)-modules. For every \(r \in [1, m-1] \), by the Third Isomorphism Theorem, note that \(U_{r-1}/U_r \cong (U_{r-1}/U_m)/(U_r/U_m) \) for every \(r \in [1, m-1] \), by the Third Isomorphism Theorem, note that \(U_{r-1}/U_r \cong (U_{r-1}/U_m)/(U_r/U_m) = V_r/V_{r+1} \cong \text{Irr}_n(C_r) \) as \(T \)-modules. For every \(r \in [1, m-1] \), by the Third Isomorphism Theorem, note that \(U_{r-1}/U_r \cong (U_{r-1}/U_m)/(U_r/U_m) = V_r/V_{r+1} \cong \text{Irr}_n(C_r) \) as \(T \)-modules. The proof of (iii) is now complete. \(\square \)

Remark 3.13 We have \(|Q_0| = 1 \) and \(Q_0 = \{ S_0 \} \) by Lemmas 3.4 (iii) and 3.12 (ii).

Lemma 3.14 Let \(\epsilon = \max \{ m \in \mathbb{N}_0 : \exists i \in [0, d], \ p^m | k_i \} \). Then there exists a \(T \)-submodule series \(\{ 0 \} = W_{\epsilon+1} \subset W_\epsilon \subset W_{\epsilon-1} \subset \cdots \subset W_1 \subset W_0 \) of \(W_0 \), where, for every \(n \in [0, \epsilon], \)

\[
W_n/W_{n+1} = \left\{ \begin{array}{ll}
\bigoplus_{C \in Q_n} \text{Irr}_n(C), & \text{if } Q_n \neq \emptyset, \\
\{ 0 \} + W_{n+1}], & \text{if } Q_n = \emptyset.
\end{array} \right.
\]

Proof By the definitions of \(\epsilon \) and \(S_i \), observe that \(S_\epsilon \neq \emptyset = S_q \) for every \(\epsilon < q \in \mathbb{N} \). So \(W_{\epsilon+1} = \{ 0 \} \subset W_\epsilon \) by Lemma 3.3 (i) and (ii). So the desired \(T \)-module series follows from Definition 3.12. The desired equality is from Lemma 3.12 (i) and (ii). \(\square \)

We are now ready to deduce the main result of this section.

Theorem 3.15 Let \(\epsilon = \max \{ m \in \mathbb{N}_0 : \exists i \in [0, d], \ p^m | k_i \} \). Let \(Q \) denote the set \(\{ n \in [0, \epsilon] : Q_n \neq \emptyset \} \).

(i) \(\bigcup_{q \in Q} \bigcup_{C \in Q_q} \{ \text{Irr}_q(C) \} \) is the set of all composition factors of \(W_0 \) with respect to a composition series of \(W_0 \). Furthermore, \(\bigcup_{q \in Q} \bigcup_{C \in Q_q} \{ \text{Irr}_q(C) \} \) is a complete set of representatives of isomorphic classes of all composition factors of \(W_0 \).

(ii) \(\sum_{q \in Q} |Q_q| \) equals the composition length of \(W_0 \). Furthermore, \(\sum_{q \in Q} |Q_q| \) equals the number of isomorphic classes of all composition factors of \(W_0 \).

Proof For (i), by Lemmas 3.14 and 3.12 (iii), there exists a composition series of \(W_0 \) whose successive subquotients are precisely the elements of \(\bigcup_{q \in Q} \bigcup_{C \in Q_q} \{ \text{Irr}_q(C) \} \). So the first statement of (i) holds. By Lemma 3.11, any two distinct elements of \(\bigcup_{q \in Q} \bigcup_{C \in Q_q} \{ \text{Irr}_q(C) \} \) are not isomorphic to each other as \(T \)-modules. So the second statement of (i) is from the first one and the Jordan-Hölder Theorem. (i) is shown.

For (ii), by the first statement of (i) and the definition of the composition length of \(W_0 \), the composition length of \(W_0 \) is \(|\bigcup_{q \in Q} \bigcup_{C \in Q_q} \{ \text{Irr}_q(C) \}|. \) By Lemma 3.11,

\[
\bigcup_{q \in Q} \bigcup_{C \in Q_q} \{ \text{Irr}_q(C) \} = \sum_{q \in Q} \sum_{C \in Q_q} 1 = \sum_{q \in Q} |Q_q|.
\]

\(\square \) Springer
The first statement of (ii) thus follows. The second statement of (ii) comes from the second statement of (i) and (8). (ii) is proved. □

Remark 3.16 Let \(A \) be a finite-dimensional associative unital \(\mathbb{F} \)-algebra. Call an \(A \)-module a multiplicity free \(A \)-module if its composition length equals the number of isomorphic classes of all its composition factors. By Lemma 3.4 (ii) and Theorem 3.15 (ii), notice that \(W_0 \) is an indecomposable multiplicity free \(T \)-module.

Example 3.17 Let us illustrate Theorem 3.15 by an example. Assume that \(p = 2 \) and \(S \) is the scheme in Example 3.6. Notice that \(k_0 = k_1 = 1, k_2 = 2, k_3 = k_4 = 4, \) \(S_0 = \{0, 1\}, S_1 = \{2\}, S_2 = \{3, 4\}, \epsilon = 2, \) and \(Q = \{0, 1, 2\} \). By Remark 3.13, note that \(Q_0 = \{(0, 1)\} \) and \(Q_1 = \{\{2\}\} \). Let \(i, j \in \{0, 4\} \). For every \(\ell \in \{2, 4\} \), \(2 \nmid p^i_j \) if and only if \(i = \ell \) and \(j \in \{0, 1\} \), which implies that \(Q_2 = \{(3), \{4\}\} \) and \(\langle (E_1^* 1) \rangle \) is a \(1 \)-submodule of \(W_0 \) for every \(\ell \in \{2, 4\} \). According to Theorem 3.15 (i), notice that \(\{\text{Irr}_0((0, 1)), \text{Irr}_1(\{2\}), \text{Irr}_2(\{3\}), \text{Irr}_2(\{4\})\} \) is a complete set of representatives of isomorphic classes of all composition factors of \(W_0 \). By Theorem 3.15 (ii), note that the composition length of \(W_0 \) is four.

The following corollary is an application of Lemmas 3.12 and 3.14.

Corollary 3.18 The following statements are equivalent:

(i) For any \(T \)-submodules \(U \) and \(V \) of \(W_0 \), we have either \(U \subseteq V \) or \(V \subseteq U \);
(ii) For every \(n \in \mathbb{N}_0 \), we have either \(W_{n+1} = W_n \) or \(W_{n+1} \) is the unique maximal \(T \)-submodule of \(W_n \).

Proof We prove (ii) by (i). Let \(q \in \mathbb{N}_0 \). Assume further that \(W_q \neq W_{q+1} \). Therefore \(W_{q+1} \subset W_q \) by Definition 3.2. Suppose that \(W_{q+1} \) is not a maximal \(T \)-submodule of \(W_q \). The nonzero \(T \)-module \(W_q/W_{q+1} \) is not an irreducible \(T \)-module. By combining Lemma 3.12 (i), (ii), and the Correspondence Theorem for Modules, notice that \(W_q \) has at least two distinct maximal \(T \)-submodules. Let \(M \) and \(N \) be distinct maximal \(T \)-submodules of \(W_q \). By (i), notice that either \(M \subseteq N \subseteq W_0 \) or \(N \subseteq M \subseteq W_0 \). We thus have a contradiction since \(M \) and \(N \) are distinct maximal \(T \)-submodules of \(W_q \). So \(W_{q+1} \) is a maximal \(T \)-submodule of \(W_q \). By (i), we can also get a similar contradiction if we suppose that the maximal \(T \)-submodule \(W_{q+1} \) is not the unique maximal \(T \)-submodule of \(W_q \). As \(q \) is chosen from \(\mathbb{N}_0 \) arbitrarily, (ii) thus follows.

We prove (i) by (ii). Let \(\epsilon = \max\{m \in \mathbb{N}_0 : \exists i \in \{0, d\}, p^m \nmid k_i\} \). Let \(W \) denote a nonzero \(T \)-submodule of \(W_0 \). We have \(\{0\} = W_{\epsilon+1} \subset W_\epsilon \subset \cdots \subset W_1 \subset W_0 \) by Lemma 3.14. So there exists \(r \in \{0, \epsilon\} \) such that \(W \subseteq W_r \) and \(W \nsubseteq W_{r+1} \). Hence \(W_r \neq W_{r+1} \), which implies that \(W_{r+1} \) is the unique maximal \(T \)-submodule of \(W_r \) by (ii). Suppose that \(W \neq W_r \). Then \(W \subseteq W_{r+1} \) since \(W \subset W_r \) and \(W_{r+1} \) is the unique maximal \(T \)-submodule of \(W_r \). We thus have a contradiction since \(W \nsubseteq W_{r+1} \).

Therefore \(W = W_r \). As \(W \) is an arbitrarily chosen nonzero \(T \)-submodule of \(W_0 \), every \(T \)-submodule of \(W_0 \) is one of the \(T \)-modules \(W_0, W_1, \ldots, W_{\epsilon+1}. \) (i) thus follows from Lemma 3.14. □

We end this section with the following remarks.
Remark 3.19 Let A be a finite-dimensional associative unital \mathbb{F}-algebra. Call an A-module a uniserial A-module if, for any A-submodules U and V of this A-module, we have either $U \subseteq V$ or $V \subseteq U$. Corollary 3.18 describes a criterion to determine whether W_0 is a uniserial T-module.

Remark 3.20 Observe that W_0 is a uniserial T-module if $d = 1$. In general, W_0 may not be a uniserial T-module. In Example 3.17, observe that W_1 is a direct sum of its T-submodules $\langle\{E^*_2 1\}\rangle_{\mathbb{F}}, \langle\{E^*_3 1\}\rangle_{\mathbb{F}}, \langle\{E^*_4 1\}\rangle_{\mathbb{F}}$. Hence W_0 of this case is not a uniserial T-module by Lemma 3.1 (i) and the definition of a uniserial T-module.

4 Some characterizations of p'-valenced schemes

In this section, we characterize the p'-valenced schemes in terms of the properties of their modular Terwilliger algebras. We recall the notations in Definition 3.2 and Notation 3.10. By (2), $E^*_i J E^*_j \in T$ for any $i, j \in [0, d]$. We first present a lemma.

Lemma 4.1 The following statements hold:

(i) $\{E^*_i J E^*_j : i, j \in [0, d]\}$ is an \mathbb{F}-linearly independent set of cardinality $(d + 1)^2$.

(ii) $\langle\{E^*_i J E^*_j : i, j \in [0, d]\}\rangle_{\mathbb{F}}$ is a two-sided ideal of T.

(iii) $\langle\{E^*_i J E^*_j : i, j \in [0, d], p \mid k_i k_j\}\rangle_{\mathbb{F}}$ is a two-sided ideal of T.

(iv) Assume that $\ell \in [0, d]$. Then $\langle\{E^*_i J E^*_\ell : i \in [0, d]\}\rangle_{\mathbb{F}}$ is a T-module under the left multiplication action of T.

Proof For (i), suppose that $\sum_{i=0}^{d} \sum_{j=0}^{d} c_{ij} E^*_i J E^*_j = 0$, where $\sum_{i=0}^{d} \sum_{j=0}^{d} (c_{ij}) \subseteq \mathbb{F}$ and $(\bigcup_{i=0}^{d} \bigcup_{j=0}^{d} (c_{ij})) \cap (\mathbb{F} \setminus \{0\}) \neq \emptyset$. So there exist $g, h \in [0, d]$ such that $c_{gh} \neq 0$. Hence $c_{gh} E^*_g J E^*_h = E^*_s (\sum_{i=0}^{d} \sum_{j=0}^{d} c_{ij} E^*_i J E^*_j) E^*_h = E^*_s O E^*_h = O$ by (3). By (4), we thus deduce that $c_{gh} = 0$, which contradicts the inequality $c_{gh} \neq 0$. Therefore $\{E^*_i J E^*_j : i, j \in [0, d]\}$ is an \mathbb{F}-linearly independent set. According to (3) and (4) again, we also note that $\langle\{E^*_i J E^*_j : i, j \in [0, d]\}\rangle = (d + 1)^2$.

Let $a, b, c \in [0, d]$. For (ii), according to (1), (3), and Lemma 2.2 (i), observe that $E^*_a J E^*_v E^*_a E^*_b E^*_c E^*_v = (E^*_a A_{vb} E^*_a E^*_b E^*_c E^*_v)' = (\delta_{av} p_{vb} E^*_a J E^*_v)' = \delta_{av} p_{vb} E^*_a J E^*_v$ and $E^*_a E^*_b E^*_c E^*_a J E^*_v = \delta_{cua} p_{ab} E^*_a J E^*_v$ for any $u, v \in [0, d]$. In particular, $E^*_a A_{vb} E^*_a J E^*_v$ and $E^*_a J E^*_v E^*_a A_{vb} E^*_c$ are contained in $\langle\{E^*_i J E^*_j : i, j \in [0, d]\}\rangle_{\mathbb{F}}$ for any $u, v \in [0, d]$. Since $\langle\{E^*_i J E^*_j : i, j \in [0, d]\}\rangle_{\mathbb{F}}$ is an \mathbb{F}-linear space and a, b, c are chosen from $[0, d]$ arbitrarily, (ii) thus follows from Lemma 2.2 (iii) and (6).

For (iii), notice that (iii) is trivial if $\langle\{E^*_i J E^*_j : i, j \in [0, d], p \mid k_i k_j\}\rangle_{\mathbb{F}} = \{O\}$. We thus assume further that $\langle\{E^*_i J E^*_j : i, j \in [0, d], p \mid k_i k_j\}\rangle_{\mathbb{F}} \neq \{O\}$. Let $r, s \in [0, d]$ and $p \mid k_r k_s$. Observe that $p \mid k_r k_s$ if $p \mid p_{rs}^c$. Otherwise, suppose that $p \nmid p_{rs}^c$ and $p \nmid k_r k_s$. As $p \mid k_r k_s$ and $p \mid k_r k_s$, observe that $p \mid k_s k_r$. As $p \mid k_s k_r$ and $p \mid k_r k_s$, and $p \mid k_s k_r$ by Lemma 2.1, we thus have $p \mid p_{rs}^c$, which contradicts the assumption $p \mid p_{rs}^c$. So we have $E^*_c A_{vb} E^*_a E^*_c E^*_v E^*_s = \delta_{as} p_{sb} E^*_a J E^*_v \in \langle\{E^*_i J E^*_j : i, j \in [0, d], p \mid k_i k_j\}\rangle_{\mathbb{F}}$ by (3) and Lemma 2.2 (i). So $E^*_r J E^*_s E^*_a E^*_b E^*_c E^*_v = \langle\{E^*_i J E^*_j : i, j \in [0, d], p \mid k_i k_j\}\rangle_{\mathbb{F}}$ as $E^*_r J E^*_s E^*_a E^*_b E^*_c = (E^*_a A_{vb} E^*_a E^*_c E^*_v)' = \delta_{as} p_{sb} E^*_a J E^*_v$ by (1). Notice that $p \mid k_3 k_5$ if $p \nmid p_{r3}^b$. Otherwise, suppose that $p \mid p_{r3}^b$, and $p \mid k_a k_s$. Since $p \mid k_r k_s$ and $p \mid k_a k_s$,
note that $p \nmid k_a$ and $p \mid k_r$. Since $k_ap_{rb}^a = k_rp_{ab}^r$, by Lemma 2.1, we thus have $p \mid p_{rb}^a$, which contradicts the assumption $p \nmid p_{rb}^a$. By (3) and Lemma 2.2 (i), we thus have $E_a^*A_bE_c^*E_i^*JE_j^* = \delta_{cr}p_{rb}^aE_c^*E_i^*JE_j^* \in \langle \{E_i^*JE_j^*: i, j \in [0, d], p \nmid k_ik_j\}\rangle$. We thus deduce that $E_i^*JE_j^* = \sum_{i,j}E_c^*E_i^*E_j^* \in \langle \{E_i^*JE_j^*: i, j \in [0, d], p \nmid k_ik_j\}\rangle$ for any $u, v \in [0, d]$ and $p \nmid k_a, k_b$. Since $\langle \{E_i^*JE_j^*: i, j \in [0, d], p \nmid k_ik_j\}\rangle$ is an F-linear space and a, b, c are chosen from $[0, d]$ arbitrarily, (iii) thus follows from Lemma 2.2 (ii) and (6).

For (iv), by (3) and Lemma 2.2 (i), $E_a^*A_bE_c^*E_i^*JE_j^* = \delta_{cr}p_{rb}^aE_c^*E_i^*JE_j^*$ for every $u \in [0, d]$. Since $\langle \{E_i^*JE_j^*: i \in [0, d]\}\rangle$ is an F-linear space and a, b, c are chosen from $[0, d]$ arbitrarily, (iv) thus follows from Lemma 2.2 (iii) and (6).

The following notation will be heavily used in the following discussion.

Notation 4.2 Denote the two-sided ideals of T in Lemma 4.1 (ii) and (iii) by B_0 and B_1, respectively. So B_0 is a T-module under the left multiplication action of T. Let τB_0 denote this T-module. Notice that T itself is also a T-module under the left multiplication action of T. Let τT denote this T-module. Let $\ell \in [0, d]$. Denote the T-module in Lemma 4.1 (iv) by M_ℓ. Observe that $B_1 \subseteq B_0 \subseteq T$, $M_\ell \subseteq \tau B_0 \subseteq \tau T$, $\dim_F B_0 = \dim_F \tau B_0 = (d + 1)^2$, $\dim_F M_\ell = d + 1$, and B_0 is an F-subalgebra of T.

The following lemma summarizes some properties of the objects in Notation 4.2.

Lemma 4.3 The following statements hold:

(i) B_1 is the unique maximal two-sided ideal of the F-subalgebra B_0 of T.
(ii) The matrix product of any three elements of B_1 is O.
(iii) B_1 is a nilpotent two-sided ideal of T. In particular, $B_1 \subseteq \text{Rad}(T)$.
(iv) Assume that $\ell \in [0, d]$. Then $\tau M_\ell \cong W_0$ as T-modules.
(v) τB_0 is isomorphic to a direct sum of $d + 1$ copies of W_0 as T-modules.

Proof For (i), by the definitions of B_0 and B_1, B_1 is a proper two-sided ideal of the F-subalgebra B_0 of T. Let M be a maximal two-sided ideal of the F-subalgebra B_0 of T. According to the definition of B_0, pick $\sum_{i=0}^d \sum_{j=0}^d c_{ij}E_i^*JE_j^* \in M$, where $c_{ij} \in F$ for any $i, j \in [0, d]$. For any $i, j \in [0, d]$, we claim that $c_{ij} = 0$ if $p \nmid k_ik_j$. Suppose that there exist $a, b \in [0, d]$ such that $p \nmid k_ik_j$. Let $a, c \in [0, d]$. Observe that $E_c^*JE_a^*, E_b^*JE_c^* \in B_0$ by the definition of B_0. Since M is a two-sided ideal of the F-subalgebra B_0 of T, $c_abk_bk_aE_c^*JE_e^* = E_c^*JE_a^*(\sum_{i=0}^d \sum_{j=0}^d c_{ij}E_i^*JE_j^*)E_b^*JE_e^* \in M$ by (3) and (5). Hence $E_c^*JE_e^* \in M$ as $c_ab \neq 0$ and $p \nmid k_ik_j$, $E_b^*JE_c^*$ are chosen from $[0, d]$ arbitrarily and M is a maximal two-sided ideal of the F-subalgebra B_0 of T, we thus have $B_0 \subseteq M \subseteq B_0$, which is impossible. Hence the desired claim follows. Since $\sum_{i=0}^d \sum_{j=0}^d c_{ij}E_i^*JE_j^*$ is chosen from M arbitrarily, by the proven claim and the definition of B_1, notice that $M \subseteq B_1 \subseteq B_0$, which implies that $M = B_1$ as M is a maximal two-sided ideal of the F-subalgebra B_0 of T. As M is an arbitrarily chosen maximal two-sided ideal of the F-subalgebra B_0 of T, B_1 is the unique maximal two-sided ideal of the F-subalgebra B_0 of T. (i) is proved.

\[\text{Springer}\]
For (ii), notice that (ii) is trivial if $B_1 = \{O\}$. We assume further that $B_1 \neq \{O\}$. Let $g, h, r, s, u, v \in [0, d]$, where $p \mid k_gk_h$, $p \mid k_rk_s$, and $p \mid k uk_v$. We thus deduce that

$$E^*_gJE^*_rJ^*E^*_uJE^*_v = \delta_{hr}\delta_{su}E^*_gJE^*_rJ^*E^*_uJE^*_v = \delta_{hr}\delta_{su}k_rk_sE^*_gJE^*_v = O \quad (9)$$

by (3) and (5). As g, h, r, s, u, v are chosen from $[0, d]$ arbitrarily, (ii) thus follows from (9) and the definition of B_1.

For (iii), as B_1 is a two-sided ideal of T, (iii) is shown by (ii).

For (iv), by the definitions of W_0 and M_ℓ, let ϕ be the F-linear homomorphism from W_0 to M_ℓ that sends every $E^*_i 1$ to $E^*_iJE^*_*$. By Lemmas 3.1 (i) and 4.1 (i), ϕ is an F-linear isomorphism. Observe that ϕ is also a T-isomorphism by combining the definition of W_0, the definition of M_ℓ, Lemma 2.2 (i), (iii), and (6). We are done.

For (v), by the definition of $T B_0$ and Lemma 4.1 (i), notice that $T B_0 = \bigoplus_{i=0}^d M_i$. (v) thus follows from (iv).

Remark 4.4 In general, the matrix product of any two elements of B_1 may not be O. Assume that S is not a p'-valenced scheme. Then there exists $R_i \in S$ such that $p \mid k_i$. Notice that $O \neq E^*_iJE^*_* = \left((E^*_iJ E^*_{O_0} + E^*_0JE^*_*)^2 \right) \in B_1$ by (3), (4), (5).

Remark 4.5 The containment in Lemma 4.3 (iii) may be strict (see (Hanaki 2021, 5.1)). The containment in Lemma 4.3 (iii) may become equality (see (Jiang 2020, Theorems B and C)).

The following lemma contains some characterizations of the p'-valenced schemes.

Lemma 4.6 The following statements are equivalent:

(i) S is a p'-valenced scheme;

(ii) The F-subalgebra B_0 of T is unital. Its identity element is central in T;

(iii) There exists a two-sided ideal D of T such that T is a direct sum of B_0 and D;

(iv) The F-subalgebra B_0 of T is isomorphic to a full matrix algebra over a division F-algebra as F-algebras.

Proof We prove (ii) by (i). Set $e_{B_0} = \sum_{i=0}^d k_i^{-1} E^*_iJE^*_i \in B_0$ by (i) and the definition of B_0. By (3) and (5), $E^*_aJE^*_bE_{B_0} = E^*_bE^*_aJE^*_b = E^*_aJE^*_b$ for any $a, b \in [0, d]$. So e_{B_0} is the identity element of the F-subalgebra B_0 of T by the definition of B_0. By combining (3), (1), Lemmas 2.2 (i), and 2.1, notice that

$$E^*_a A_b E^*_c e_{B_0} = k_c^{-1} p^{-1}_{cb} E^*_a JE^*_c = k_a^{-1} p^{-1}_{ab} E^*_a JE^*_c = (E^*_c A_b E^*_a e_{B_0})' = e_{B_0} E^*_a A_b E^*_c$$

for any $a, b, c \in [0, d]$. So e_{B_0} is a central element of T by Lemma 2.2 (iii) and (6). The proof of (ii) is now complete.

We prove (iii) by (ii). By (ii), there exists $f_{B_0} \in B_0$ such that f_{B_0} is the identity element of the F-subalgebra B_0 of T and f_{B_0} is a central element of T. Let D denote $\{(I - f_{B_0})Z : Z \in T\}$. As f_{B_0} is a central element of T, notice that D is a two-sided ideal of T by the definition of D. As f_{B_0} is the identity element of the F-subalgebra
B_0 of T, notice that $f_{B_0}^2 = f_{B_0}, (I - f_{B_0})^2 = I - f_{B_0}$, and $f_{B_0}(I - f_{B_0}) = O$, which implies that $B_0 \cap D = \{O\}$ by the definition of D. As B_0 is a two-sided ideal of T and $Z = f_{B_0}Z + (I - f_{B_0})Z$ for every $Z \in T$, we thus get that T is a direct sum of B_0 and D. The proof of (iii) is now complete.

We prove (i) by (iii). Since $I \in T$ and B_0 is a two-sided ideal of T, by (iii), notice that the F-subalgebra B_0 of T is a unital F-algebra. By the definition of B_0, assume that $\sum_{i=0}^d \sum_{j=0}^d c_{ij} E_i^* J E_j^*$ is the identity element of the F-subalgebra B_0 of T, where $c_{ij} \in F$ for any $i, j \in [0, d]$. Suppose that S is not a p'-valenced scheme. Then there exists $\ell \in [0, d]$ such that $\ell \mid k_{\ell}$. Moreover, observe that $O \neq E_{\ell}^* J E_{\ell}^* \in B_0$ by (4).

So (iv) follows from the Artin-Wedderburn Theorem.

We prove (iv) by (i). Notice that $B_1 = \{O\}$ by (i) and the definition of B_1. As (i) implies (ii), by Lemma 4.3 (i), the F-subalgebra B_0 of T is a simple unital F-algebra.

We prove (i) by (iv). By (iv), observe that the F-subalgebra B_0 of T is a simple unital F-algebra. So it has no nonzero proper two-sided ideal. Hence $B_1 = \{O\}$ by Lemma 4.3 (i). (i) thus follows from the definition of B_1.}

For further discussion, we need the following two lemmas.

Lemma 4.7 Let $n \in \mathbb{N}_0$ and $i_m, j_m, \ell_m \in [0, d]$ for every $m \in [0, n]$.

(i) If $\min \bigcup_{m=0}^n \{k_{i_m}, k_{\ell_m}\} = 1$, then $\prod_{m=0}^n (E_{i_m}^* A_{j_m} E_{\ell_m}^*) \in \langle \{E_{i_0}^* J E_{\ell_0}^*\} \rangle_F$.

(ii) If $k_{i_0} = 1$ or $k_{\ell_0} = 1$, then $\prod_{m=0}^n (E_{i_m}^* A_{j_m} E_{\ell_m}^*) \in \langle \{E_{i_0}^* J E_{\ell_0}^*\} \rangle_F$.

Proof We may assume further that $\prod_{m=0}^n (E_{i_m}^* A_{j_m} E_{\ell_m}^*) \neq O$. For (i), note that there is $q \in [0, n]$ such that $\min \{k_{i_q}, k_{\ell_q}\} = 1$. Moreover, $E_{i_q}^* A_{j_q} E_{\ell_q}^* \neq O$ by (6) and the fact $\prod_{m=0}^n (E_{i_m}^* A_{j_m} E_{\ell_m}^*) \neq O$. We thus have $E_{i_q}^* A_{j_q} E_{\ell_q}^* = E_{i_q}^* J E_{\ell_q}^*$ by Lemma 2.2 (ii). (i) is shown by combining the equality $E_{i_q}^* A_{j_q} E_{\ell_q}^* = E_{i_q}^* J E_{\ell_q}^*$, (6), (3), (1), and Lemma 2.2 (i). As (ii) is a special case of (i), (ii) is proved by (i).\[\square\]

Lemma 4.8 If $Z \in \text{Ann}_T(W_0)$, then $ZE_i^* = O$ for every $R_i \in O_{\theta}(S)$.

Proof Suppose that there exists $R_j \in O_{\theta}(S)$ such that $ZE_j^* \neq O$. We thus deduce that $O \neq ZE_j^* = IZE_j^* = \sum_{i=0}^d E_i^* Z E_j^*$ by (2). So there exists $\ell \in [0, d]$ such that $E_{\ell}^* Z E_j^* \neq O$. Since $k_j = 1, Z \in \text{Ann}_T(W_0)$, and $\text{Ann}_T(W_0)$ is a two-sided ideal of T, by (3), Lemmas 2.2 (iii), 4.7 (ii), we thus have $E_{\ell}^* Z E_j^* = c_{\ell j} Z E_{\ell}^* J E_j^* \in \text{Ann}_T(W_0)$, where $0 \neq c_{\ell j} \in F$. Since $k_j = 1$ and $E_{\ell}^* 1 \in W_0$ by the definition of W_0, by (3) and (5), we thus have $E_{\ell}^* Z E_j^* E_{\ell}^* 1 = c_{\ell j} Z E_{\ell}^* J E_j^* 1 = c_{\ell j} Z E_{\ell}^* 1 \neq 0$, which contradicts the definition of $\text{Ann}_T(W_0)$. The desired lemma thus follows. \[\square\]

The following lemma includes some characterizations of the p'-valenced schemes.

Lemma 4.9 The following statements are equivalent:

(i) S is a p'-valenced scheme;
(ii) If \(Z \in \text{Ann}_T(W_0) \), then \(E_i^*Z = ZE_i^* = 0 \) for every \(R_i \in O_\theta(S) \);

(iii) If \(\tilde{Z} \in \text{Rad}(T) \), then \(E_i^*\tilde{Z} = \tilde{Z}E_i^* = 0 \) for every \(R_i \in O_\theta(S) \).

Proof We prove (ii) by (i). By Lemma 4.8, it is enough to check that \(E_i^*Z = O \) for every \(R_i \in O_\theta(S) \). Suppose that there is \(R_j \in O_\theta(S) \) such that \(E_j^*Z \neq O \). We thus have \(O \neq E_j^*Z = E_j^*Z1 = \sum_{i=0}^d E_j^*Z^i E_i^* \) by (2). So there exists \(\ell \in [0, d] \) such that \(E_j^*ZE_\ell^* \neq O \). Since \(k_j = 1, Z \in \text{Ann}_T(W_0) \), and \(\text{Ann}_T(W_0) \) is a two-sided ideal of \(T \), by (3), Lemmas 2.2 (iii), 4.7 (ii), we thus have \(E_j^*ZE_\ell^* = c_{j \ell}E_j^*J E_\ell^* \in \text{Ann}_T(W_0) \)

where \(0 \neq c_{j \ell}E_\ell^* \in \mathbb{F} \). Since \(E_\ell^*1 \in W_0 \) by the definition of \(W_0 \), according to (3) and (5), we thus have \(E_j^*ZE_\ell^* E_\ell^*1 = c_{j \ell}E_j^*J E_\ell^*1 = c_{j \ell}k_\ell E_j^*1 \).

By (i), notice that \(p \nmid k_\ell \) and \(E_j^*ZE_\ell^* E_\ell^*1 = c_{j \ell}k_\ell E_j^*1 \neq 0 \). The inequality \(E_j^*ZE_\ell^* E_\ell^*1 \neq 0 \) contradicts the definition of \(\text{Ann}_T(W_0) \). (ii) thus follows.

We prove (iii) by (i). Observe that \(\text{Rad}(T) \subseteq \text{Ann}_T(W_0) \) by (i) and Lemma 3.4 (iv). Observe that (ii) holds since (i) holds. (iii) thus follows from the containment \(\text{Rad}(T) \subseteq \text{Ann}_T(W_0) \) and (ii).

We prove (i) by (ii) or (iii). Suppose that (i) does not hold. There exists \(a \in [0, d] \) such that \(p \nmid k_a \). Notice that \(O \neq E_0^*E_0^*J E_a^* = E_0^*J E_a^* \in \text{Rad}(T) \) by combining (3), (4), the definition of \(B_1 \), and Lemma 4.3 (iii). By (3) and (5), \(E_0^*J E_a^* E_0^*1 = 0 \) for every \(b \in [0, d] \). So \(E_0^*J E_a^* \in \text{Ann}_T(W_0) \) by the definitions of \(W_0 \) and \(\text{Ann}_T(W_0) \).

Hence we have \(O \neq E_0^*E_0^*J E_a^* = E_0^*J E_a^* \in \text{Rad}(T) \cap \text{Ann}_T(W_0) \), which contradicts (ii) and (iii) as \(R_0 \in O_\theta(S) \). Therefore (i) follows if (ii) or (iii) holds. \(\square \)

Remark 4.10 By (Hanaki 2021, Theorem 3.4), the equality \(\text{Rad}(T) = \{ O \} \) holds only if \(S \) is a \(p' \)-valenced scheme. Since \(\text{Rad}(T) = \{ O \} \) implies that Lemma 4.9 (iii) holds, this result can also be verified by Lemma 4.9. In general, \(\text{Rad}(T) \) may not be \(\{ O \} \) even if \(S \) is a \(p' \)-valenced scheme (see (Hanaki 2021, 5.1)).

Example 4.11 In general, notice that \(\text{Rad}(T) \) may not equal \(\text{Ann}_T(W_0) \) even if \(S \) is a \(p' \)-valenced scheme. Let us illustrate this fact by a counterexample. Assume that \(p > 2 \) and \(S \) is the scheme of order 5, No. 2 in Hanaki (2020). Observe that \(S = \{ R_0, R_1, R_2 \}, \) where \(k_0 = 1 \) and \(k_1 = k_2 = 2 \). Hence \(S \) is a \(p' \)-valenced scheme. By computation, \(O \neq E_1^*A_1 E_2^* - E_1^*A_2 E_2^* \in \text{Ann}_T(W_0) \). However, \(\text{Rad}(T) = \{ O \} \) by (Jiang 2020, Theorem B).

The following lemma describes a characterization of the \(p' \)-valenced schemes.

Lemma 4.12 The following statements are equivalent:

(i) \(S \) is a \(p' \)-valenced scheme;

(ii) For every decomposition of \(TT \) into a direct sum of indecomposable \(T \)-modules,

there exist exactly \(d + 1 \) indecomposable direct summands isomorphic to \(W_0 \) as \(T \)-modules.

Proof We prove (ii) by (i). By (i) and Lemma 4.6 (iii), there is a two-sided ideal \(D \) of \(T \) such that \(T \) is a direct sum of \(B_0 \) and \(D \). Hence \(D \) is a \(T \)-module under the left multiplication action of \(T \). Use \(TD \) to denote this \(T \)-module. Hence \(T = TB_0 \oplus TD \).

Notice that \(W_0 \) is not isomorphic to a direct summand of \(TD \) for every decomposition
of TD into a direct sum of T-modules. Otherwise, we suppose that there indeed exist T-submodules M and N of TD such that $TD = M \oplus N$ and $M \cong W_0$ as T-modules.

By (i) and Lemma 4.6 (ii), the F-subalgebra B_0 of T is unital. Moreover, its identity element f_{B_0} is a central element of T. Since T is a direct sum of the two-sided ideals B_0 and D, notice that $I - f_{B_0}$ is also the identity element of the F-subalgebra D of T.

By Lemma 4.3 (v) and the definition of W_0, we thus deduce that $f_{B_0}E_i^*1 = E_i^*1$ for every $i \in [0, d]$. As $TD = M \oplus N$ and $M \cong W_0$ as T-modules, by the definition of W_0 again, we can also deduce that $(I - f_{B_0})E_i^*1 = E_i^*1$ for every $i \in [0, d]$. Since $f_{B_0}(I - f_{B_0}) = O, 0 = f_{B_0}(I - f_{B_0})E_i^*1 = E_i^*1 \neq 0$ for every $i \in [0, d]$, which is a contradiction. Since $TD = B_0 \oplus TD$ and Lemmas 4.3 (v), 3.4 (ii) hold, we thus observe that there exists a decomposition of TD into a direct sum of indecomposable T-modules such that exactly $d + 1$ indecomposable direct summands are isomorphic to W_0 as T-modules. (ii) thus follows from the Krull-Schmidt Theorem.

For any given T-submodule U of TD, claim that $U \subseteq B_0$ if $U \cong W_0$ as T-modules. Assume that $U \cong W_0$ as T-modules. Let ϕ denote a T-isomorphism from W_0 to U. Notice that W_0 has an F-basis $\{E_i^*1 : i \in [0, d]\}$ by the definition of W_0 and Lemma 3.1 (i). Since ϕ is a T-isomorphism and $1 = \sum_{i=0}^d E_i^*1 \in W_0$ by (2), we thus get that $\{E_i^*\phi(1) : i \in [0, d]\}$ is an F-basis of U. Since $k_0 = 1$, $\phi(1) \in U$, and $U \subseteq TD$, $E_0^*\phi(1) \in \langle \{E_i^*JE_i^* : i \in [0, d]\}\rangle_F$ by combining (3), Lemmas 2.2 (iii), and 4.7 (ii). Hence $E_0^*\phi(1) \in B_0$ by the definition of B_0. As ϕ is a T-isomorphism and $k_0 = 1$, by (5), notice that $E_0^*\phi(1) = \phi(E_i^*1) = \phi(E_i^*JE_i^*1) = E_i^*JE_i^*\phi(1)$ for every $i \in [0, d]$. As $E_i^*\phi(1) \in B_0$ and B_0 is a two-sided ideal of T, we thus deduce that $E_i^*\phi(1) \in B_0$ for every $i \in [0, d]$. The desired claim thus follows as B_0 contains an F-basis of U.

We prove (i) by (ii). By (ii), there exist T-submodules V and W of TD such that $TD = V \oplus W$ and V is isomorphic to a direct sum of $d + 1$ copies of W_0 as T-modules. Therefore $V \subseteq B_0$ by the Krull-Schmidt Theorem and the proven claim. Moreover, as $\dim F W_0 = d + 1$ and $\dim F B_0 = (d + 1)^2$, we also observe that $\dim F V = \dim F B_0$.

We have $V = B_0$ and $TD = B_0 \oplus W$. So there exist $f_V \in B_0$ and $f_W \in W$ such that $I = f_V + f_W$. As B_0 is a two-sided ideal of T and W is a T-submodule of TD, notice that $Zf_W \in B_0 \cap W$ for every $Z \in B_0$. As $TD = B_0 \oplus W$, $Zf_W = O$ for every $Z \in B_0$. Hence $Zf_V = Z$ for every $Z \in B_0$. Suppose that (i) does not hold. Then there exists $j \in [0, d]$ such that $p \mid k_j$. Since $f_V \in B_0$, by the definition of B_0, notice that $f_V \in \langle \{E_i^*JE^*_\ell : i, \ell \in [0, d]\}\rangle_F$. Since $E_j^*JE^*_\ell \in B_0$, we thus deduce that $O = E_j^*JE_i^*f_V = E_j^*JE_i^* \neq O$ by combining (3), (4), (5), and the known result that $Zf_V = Z$ for every $Z \in B_0$. So we have a contradiction. (i) thus follows.

For further discussion, we recall the following definition and present a lemma.

Definition 4.13 Let U be a T-module. Let $\text{Hom}_F(U, F)$ denote the F-linear space generated by all linear functionals from U to F. By Lemma 2.2 (iii), (6), and (1), $Z' \in T$ for every $Z \in T$. Let T act on $\text{Hom}_F(U, F)$ by setting $(Z\psi)(\hat{u}) = \psi(Z'\hat{u})$ for any $Z \in T$, $\psi \in \text{Hom}_F(U, F)$, and $\hat{u} \in U$. So $\text{Hom}_F(U, F)$ is a T-module under the defined action of T. Call this T-module the contragredient T-module of U. Let U^0 denote the contragredient T-module of U. Notice that $\dim F U^0 = \dim F U$. Call U a self-contragredient T-module if $U \cong U^0$ as T-modules.
Lemma 4.14 If \(n \in \mathbb{N}_0 \), \(Q_n \neq \emptyset \), and \(C \in Q_n \), then \(Irr_n(C) \) is a self-contragredient \(T \)-module.

Proof Note that \(C \subseteq S_n \) by Lemma 3.9 (i). By the definition of \(S_n \), for every \(h \in S_n \), there is \(q_h \in \mathbb{N} \) such that \(k_h = p^n q_h \) and \(p \uparrow q_h \). By Notation 3.10, recall that \(Irr_n(C) \) has an \(\mathbb{F} \)-basis \(\{ E_i^* 1 + W_{n+1} : i \in C \} \) of cardinality \(|C| \). In particular, observe that \(\{ q_i^{-1} E_i^* 1 + W_{n+1} : i \in C \} \) is also an \(\mathbb{F} \)-basis of \(Irr_n(C) \) and \(\dim \mathbb{F} \, Irr_n(C)^c = |C| \).

For every \(i \in C \), let \(\psi_i \) denote the linear functional from \(Irr_n(C) \) to \(\mathbb{F} \) that sends \(E_j^* 1 + W_{n+1} \) to \(\delta_{ij} \) for every \(j \in C \). Since \(\{ q_i^{-1} E_i^* 1 + W_{n+1} : i \in C \} \) is an \(\mathbb{F} \)-basis of \(Irr_n(C) \), notice that \(\{ \psi_i : i \in C \} \) is an \(\mathbb{F} \)-basis of \(Irr_n(C)^c \). Let \(\Phi \) be the \(\mathbb{F} \)-linear isomorphism from \(Irr_n(C) \) to \(Irr_n(C)^c \) that sends \(q_i^{-1} E_i^* 1 + W_{n+1} \) to \(\psi_i \) for every \(i \in C \). By Definition 4.13, it is enough to check that \(\Phi \) is a \(T \)-isomorphism. Let \(a, b, c \in \{0, d\} \). We list three cases to prove that \(\Phi \) preserves the action of \(E_a^* A_b E_c^* \).

Case 1: \(a \notin C \).

As \(a \notin C \) and \(\{ E_i^* 1 + W_{n+1} : i \in C \} \) is an \(\mathbb{F} \)-basis of \(Irr_n(C) \), by (3), \(E_a^* A_b E_c^* \psi_i \) is the zero element of \(Irr_n(C)^c \) for every \(i \in C \). Notice that \(E_a^* A_b E_c^* (q_i^{-1} E_i^* 1 + W_{n+1}) \) equals \(0 + W_{n+1} \) for every \(i \in C \). Otherwise, suppose that there is \(\ell \in C \) such that \(E_a^* A_b E_c^* (q_i^{-1} E_i^* 1 + W_{n+1}) \neq 0 + W_{n+1} \). Since \(Irr_n(C) \) is a \(T \)-submodule of \(W_n / W_{n+1} \) with an \(\mathbb{F} \)-basis \(\{ E_i^* 1 + W_{n+1} : i \in C \} \), by combining (3), Lemmas 2.2 (i), 3.1 (i), \(a \in C \), which is absurd as \(a \notin C \). Hence \(\Phi \) preserves the action of \(E_a^* A_b E_c^* \).

Case 2: \(c \notin C \).

As \(c \notin C \), by (3), \(E_a^* A_b E_c^* (q_i^{-1} E_i^* 1 + W_{n+1}) = 0 + W_{n+1} \) for every \(i \in C \). Observe that \(E_a^* A_b E_c^* (E_i^* 1 + W_{n+1}) = 0 + W_{n+1} \) for every \(i \in C \). Otherwise, suppose that there exists \(c \in C \) such that \(E_a^* A_b E_c^* (E_i^* 1 + W_{n+1}) \neq 0 + W_{n+1} \). Since \(Irr_n(C) \) is a \(T \)-submodule of \(W_n / W_{n+1} \) with an \(\mathbb{F} \)-basis \(\{ E_i^* 1 + W_{n+1} : i \in C \} \), by combining (3), Lemmas 2.2 (i), 3.1 (i), \(c \in C \), which is absurd as \(c \notin C \). As \(E_i^* 1 + W_{n+1} : i \in C \) is an \(\mathbb{F} \)-basis of \(Irr_n(C) \) and (1) holds, we thus notice that \(E_a^* A_b E_c^* \psi_i \) is the zero element of \(Irr_n(C)^c \) for every \(i \in C \). So \(\Phi \) preserves the action of \(E_a^* A_b E_c^* \) by the definition of \(\Phi \) and the fact that \(\{ q_i^{-1} E_i^* 1 + W_{n+1} : i \in C \} \) is an \(\mathbb{F} \)-basis of \(Irr_n(C) \).

Case 3: \(a, c \in C \).

Let \(v \in C \). Since \(k_a = p^n q_a \) and \(k_v = p^n q_v \), notice that \(q_a p^{a'}_{vb'} = q_v p^{a'}_{ab} \) by Lemma 2.1. As \(a \in C \), by combining (3), Lemma 2.2 (i), and the definition of \(\Phi \), we thus have

\[
\Phi(E_a^* A_b E_c^* (q_v^{-1} E_v^* 1 + W_{n+1})) = \Phi(\delta_{cv} q_v^{-1} p^{a'}_{vb'} (E_a^* 1 + W_{n+1})) = \Phi(\delta_{cv} q_a^{-1} p^{a'}_{ab} (E_a^* 1 + W_{n+1})) = \delta_{cv} p^{a'}_{ab} \psi_a.
\]

By the definition of \(\Phi \) again, we also have \(E_a^* A_b E_c^* (q_v^{-1} E_v^* 1 + W_{n+1}) = E_a^* A_b E_c^* \psi_v \). Let \(w \in C \). As \(c \in C \), by combining (3), (1), and Lemma 2.2 (i),
notice that

$$\delta_{cv} \overline{p_{ab}}^v \psi_a(E_w^* 1 + W_{n+1}) = \delta_{cv} \delta_{aw} \overline{p_{wb}}^v = \delta_{cv} \delta_{aw} \overline{p_{wb}}^v$$

which implies that $\delta_{cv} \overline{p_{ab}}^v \psi_a = E_a^* A_b E_c^* \psi_v$ since $\{E_i^* 1 + W_{n+1} : i \in C\}$ is an F-basis of $\text{Irr}_{n}(C)$ and v is chosen from C arbitrarily. We thus deduce that

$$\Phi(E_a^* A_b E_c^* (\overline{q_v}^{-1} E_v^* 1 + W_{n+1})) = \delta_{cv} \overline{p_{ab}}^v \psi_a = E_a^* A_b E_c^* \psi_v$$

Therefore Φ preserves the action of $E_a^* A_b E_c^*$ since $\{\overline{q_v}^{-1} E_v^* 1 + W_{n+1} : i \in C\}$ is an F-basis of $\text{Irr}_{n}(C)$ and v is chosen from C arbitrarily.

By Cases 1, 2, 3, Φ preserves the action of $E_a^* A_b E_c^*$. As a, b, c are chosen from $[0, d]$ arbitrarily, by Lemma 2.2 (iii) and (6), we thus obtain that Φ is a T-isomorphism. The desired lemma thus follows. \(\square\)

The following lemma gives a characterization of the p'-valenced schemes.

Lemma 4.15 The following statements are equivalent:

(i) S is a p'-valenced scheme;

(ii) W_0 is a self-contragredient T-module.

Proof We prove (ii) by (i). By (i), note that $S_0 = [0, d]$. By combining Lemmas 3.4 (iii), (iv), 3.12 (ii), Remark 3.13, $W_0 = \text{Irr}_0([0, d])$. So (ii) is from Lemma 4.14.

We prove (i) by (ii). Since $\dim F W_0^c = \dim F W_0 = d + 1$, let $\{\psi_i : i \in [0, d]\}$ be an F-basis of W_0^c. By (ii), let Φ denote a T-isomorphism from W_0 to W_0^c. So there exist $c_0, c_1, \ldots, c_d \in F$ such that $\Phi(E_0^* 1) = \sum_{i=0}^{d} c_i \psi_i$. Suppose that (i) does not hold. Then there is $j \in [0, d]$ such that $p \mid k_j$. Notice that $E_j^* J \in T$ by (2). By (3) and (5), $J E_j^* E_0^* 1 = 0$ for every $i \in [0, d]$. As $\{E_i^* 1 : i \in [0, d]\}$ is an F-basis of W_0, by (1), we thus get that $E_j^* J \psi_i$ is the zero element of W_0^c for every $i \in [0, d]$. Since Φ is a T-isomorphism, $\Phi(E_j^* J E_0^* 1) = E_j^* J \Phi(E_0^* 1) = \sum_{i=0}^{d} c_i E_j^* J \psi_i$, which implies that $E_j^* J E_0^* 1 = 0$. This is absurd as $E_j^* J E_0^* 1 = E_j^* 1 \neq 0$ by (5). (i) thus follows. \(\square\)

For our purpose, we also introduce the following notation and list four lemmas.

Notation 4.16 Let U denote a T-module. Define $E_i^* U = \{E_i^* \hat{u} : \hat{u} \in U\}$ for every $i \in [0, d]$. For every $i \in [0, d]$, note that $E_i^* U$ is an F-linear subspace of U. Therefore $\dim F U \geq \dim F E_i^* U$ for every $i \in [0, d]$.

Lemma 4.17 The following statements are equivalent:

(i) $U \cong W_0/W_1$ as T-modules;

(ii) U is an irreducible T-module satisfying $\dim F E_i^* U > 0$ for some $R_i \in O_\theta(S)$.

\(\square\) Springer
Proof We prove (ii) by (i). By (i) and Lemma 3.4 (iii), U is an irreducible T-module. Note that $\{E_j^*1 + W_1 : j \in S_0\}$ is an F-basis of W_0/W_1 by Lemma 3.3 (ii). As $0 \in S_0$, we thus have $\dim_F E_0^*(W_0/W_1) = 1 > 0$ by (3) and the definition of $E_0^*(W_0/W_1)$. So $\dim_F E_0^*U = 1 > 0$ by (i) and the definition of E_0^*U. (ii) follows as $R_0 \in O_\theta(S)$.

We prove (i) by (ii). As U is an irreducible T-module, U is a T-module generated by a single element. So $T T/V \cong U$ as T-modules for some T-submodule V of $T T$. As $\dim_F E_i^*U > 0$ for some $R_i \in O_\theta(S)$ and $T T/V \cong U$ as T-modules, according to the definition of E_i^*U, there exists $Z \in T$ such that $E_i^*Z + V \neq O + V$. So $E_i^*Z + V = E_i^*ZI + V = \sum_0^d E_i^*Z E_j^* + V \neq O + V$ by (2). Hence there exists $c \in [0, d]$ such that $E_i^*Z E_c^* + V \neq O + V$. Notice that $k_i = 1 = R_i \in O_\theta(S)$. We thus have $E_i^*Z E_c^* + V = c_i E_i^*Z E_c^* + V \neq O + V$ and $0 \neq c_i E_i Z \in F$ by combining (3), Lemmas 2.2 (iii), 4.7 (ii). In particular, $\langle\{E_i^*J E_c^* + V : j \in [0, d]\}\rangle_F \neq \{O + V\}$.

We claim that $\langle\{E_i^*J E_c^* + V : j \in [0, d]\}\rangle_F = T T/V$. As $T T/V \cong U$ as T-modules and U is an irreducible T-module, we thus have $\langle\{E_i^*J E_c^* + V : j \in [0, d]\}\rangle_F \neq \{O + V\}$, the desired claim follows if we verify that $\langle\{E_i^*J E_c^* + V : j \in [0, d]\}\rangle_F$ is a T-submodule of $T T/V$. Let $a, b, c \in [0, d]$. For every $h \in [0, d]$, notice that $E_i^*A_b E_i^*E_h^*E_c^* + V = \delta_{cb} p_h^*\overline{e_i^*A_h} E_i^*E_c^* + V$ by (3) and Lemma 2.2 (i). So $\langle\{E_i^*A_b E_i^*E_h^*E_c^* + V : j \in [0, d]\}\rangle_F$ is an F-linear space and a, b, c are chosen from $[0, d]$ arbitrarily, we thus get that $\langle\{E_i^*J E_c^* + V : j \in [0, d]\}\rangle_F$ is a T-submodule of $T T/V$ by Lemma 2.2 (iii) and (6).

The desired claim thus follows. By the definition of M_ℓ and the proven claim, there exists an obvious surjective T-homomorphism from M_ℓ to $T T/V$. So there is a surjective T-homomorphism from W_0 to $T T/V$ by Lemma 4.3 (iv). As U is an irreducible T-module and $T T/V \cong U$ as T-modules, by Lemma 3.4 (i), $W_0/W_1 \cong T T/V \cong U$ as T-modules. (i) is proved. □

Lemma 4.18 The following statements are equivalent:

(i) S is a p'-valanced scheme;

(ii) U is an irreducible T-module satisfying $\dim_F E_i^*U > 0$ for some $R_i \in O_\theta(S)$ if and only if $U \cong W_0$ as T-modules.

Proof We prove (ii) by (i). According to (i) and Lemma 3.4 (iv), observe that W_0 is an irreducible T-module. So $W_1 = \{0\}$ by Lemma 3.4 (i). Therefore (ii) follows from Lemma 4.17. We prove (i) by (ii). By (ii) and Lemma 4.17, we have $W_0 \cong W_0/W_1$ as T-modules. So W_0 is an irreducible T-module by Lemma 3.4 (iii). Therefore (i) follows from 3.4 (iv). □

Lemma 4.19 If S is a p'-valanced scheme, the following statements are equivalent:

(i) $U \cong W_0$ as T-modules;

(ii) U is a T-module satisfying $\dim_F U = d+1 \geq \dim_F E_i^*U > 0$ for some $R_i \in O_\theta(S)$.

Proof We prove (ii) by (i). We recall that W_0 has an F-basis $\{E_j^*1 : j \in [0, d]\}$ and $\dim_F W_0 = d+1$. By (3) and the definition of $E_0^*W_0$, note that $\dim_F E_0^*W_0 = 1 > 0$. So we have $\dim_F U = d+1 \geq \dim_F E_0^*U = 1 > 0$ by (i) and the definition of E_0^*U. (ii) thus follows as $R_0 \in O_\theta(S)$.
Theorem 4.21 The following statements are equivalent:

We are now ready to present the main result of this section.

We prove (i) by (ii). By (ii), notice that \(\dim_{\mathbb{F}} E_i^* U > 0 \) for some \(R_i \in O_{\emptyset}(S) \). Pick an element of an \(\mathbb{F} \)-basis of \(E_i^* U \). Let \(M \) denote the \(T \)-submodule of \(U \) generated by this chosen element. So there exists a \(T \)-submodule \(V \) of \(\tau T \) such that \(\tau T / V \cong M \) as \(T \)-modules. Since \(M \) contains an element of an \(\mathbb{F} \)-basis of \(E_i^* U \) and \(\tau T / V \cong M \) as \(T \)-modules, according to the definition of \(E_i^* U \), notice that there is \(Z \in T \) such that \(E_i^*(Z+V) = E_i^*Z + V \neq O + V \). So \(E_i^*Z + V = E_i^*Z1 + V = \sum_{j=0}^d E_i^*E_j^* + V \neq O + V \) by (2). Hence there exists \(\ell \in [0, d] \) such that \(E_i^*E_j^* + V \neq O + V \). Notice that \(k_1 = 1 \) as \(R_i \in O_{\emptyset}(S) \). We thus have \(E_i^*E_j^* + V = c_{i\ell}Z E_i^*E_j^* + V \neq O + V \) and \(0 \neq c_{i\ell}Z \in \mathbb{F} \) by combining (3), Lemmas 2.2 (iii), 4.7 (ii). In particular, notice that \(O + V \neq E_i^*E_j^* + V \in \{ E_i^*E_j^* + V : j \in [0, d] \} \mathbb{F} \).

We claim that \(\langle \{ E_i^*E_j^* + V : j \in [0, d] \} \rangle_{\mathbb{F}} = \tau T / V \cong M = U \). As we have known that \(\langle \{ E_i^*E_j^* + V : j \in [0, d] \} \rangle_{\mathbb{F}} \subseteq \tau T / V \cong M \subseteq U \), the desired claim thus follows if we can verify that \(\dim_{\mathbb{F}} \langle \{ E_i^*E_j^* + V : j \in [0, d] \} \rangle_{\mathbb{F}} = \dim_{\mathbb{F}} U \).

We now suppose that \(\sum_{j=0}^d c_j E_i^*E_j^* + V = O + V \), where \(\bigcup_{j=0}^d \{ c_j \} \subseteq \mathbb{F} \) and \((\bigcup_{j=0}^d \{ c_j \}) \cap (\mathbb{F} \setminus \{ 0 \}) \neq \emptyset \). Therefore there exists \(a \in [0, d] \) such that \(c_a \neq 0 \). According to (3), observe that \(c_a E_a^*E_i^* + V = E_a^* (\sum_{j=0}^d c_j E_j^*E_i^* + V) = E_a^*(O + V) = O + V \), which implies that \(E_a^*E_i^* + V = O + V \) as \(c_a \neq 0 \). As \(S \) is a \(p' \)-valenced scheme, notice that \(p \nmid k_a \). By (3) and (5), we thus have \(k_a E_a^*E_i^* + V = E_i^*E_a^*(E_a^*E_i^* + V) = O + V \) and \(E_a^*E_i^* + V = O + V \), which contradicts the inequality \(E_i^*E_j^* + V \neq O + V \). Hence we deduce that \(\dim_{\mathbb{F}} \langle \{ E_i^*E_j^* + V : j \in [0, d] \} \rangle_{\mathbb{F}} = d + 1 \). The desired claim thus follows as \(\dim_{\mathbb{F}} U = d + 1 \) by (ii).

By the definition of \(M_\ell \) and the proven claim, there exists an obvious surjective \(T \)-homomorphism from \(M_\ell \) to \(\tau T / V \). So there exists a surjective \(T \)-homomorphism from \(W_0 \) to \(\tau T / V \) by Lemma 4.3 (iv). According to the proven claim and (ii), notice that \(\tau T / V \cong U \) as \(T \)-modules and \(\dim_{\mathbb{F}} U = \dim_{\mathbb{F}} W_0 = d + 1 \). (i) thus follows. □

Lemma 4.20 Assume that the following statements are equivalent:

(i) \(U \cong W_0 \) as \(T \)-modules;
(ii) \(U \) is a \(T \)-module satisfying \(\dim_{\mathbb{F}} U = d + 1 \geq \dim_{\mathbb{F}} E_i^* U > 0 \) for some \(R_i \in O_{\emptyset}(S) \).

Then \(S \) is a \(p' \)-valenced scheme.

Proof Recall that \(W_0 \) has an \(\mathbb{F} \)-basis \(\{ E_j^* U : j \in [0, d] \} \). For every \(j \in [0, d] \), let \(\psi_j \) denote the linear functional from \(W_0 \) to \(\mathbb{F} \) that sends \(E_j^* U \) to \(\delta_{j\ell} \) for every \(\ell \in [0, d] \). Notice that \(\{ \psi_j : j \in [0, d] \} \) is an \(\mathbb{F} \)-basis of \(W_0^\circ \) and \(\dim_{\mathbb{F}} W_0^\circ = d + 1 \). According to the definition of \(E_0^* W_0^\circ \), (1), and (3), notice that \(E_0^* W_0^\circ = \langle \{ \psi_0 \} \rangle_{\mathbb{F}} \). So we have \(\dim_{\mathbb{F}} W_0^\circ = d + 1 \geq \dim_{\mathbb{F}} E_0^* W_0^\circ = 1 > 0 \). Since \(R_0 \in O_{\emptyset}(S) \) and (ii) implies (i), \(W_0 \) is a self-contragredient \(T \)-module. So \(S \) is a \(p' \)-valenced scheme by Lemma 4.15. □

We are now ready to present the main result of this section.

Theorem 4.21 The following statements are equivalent:

(i) \(S \) is a \(p' \)-valenced scheme;
(ii) The \(\mathbb{F} \)-subalgebra \(B_0 \) of \(T \) is unital. Its identity element is central in \(T \);
There exists a two-sided ideal \(D \) of \(T \) such that \(T \) is a direct sum of \(B_0 \) and \(D \);

The \(F \)-subalgebra \(B_0 \) of \(T \) is isomorphic to a full matrix algebra over a division \(F \)-algebra as \(F \)-algebras;

If \(Z \in \text{Ann}_T(W_0) \), then \(E_i^*Z = ZE_i^* = O \) for every \(R_i \in O_\theta(S) \);

If \(\tilde{Z} \in \text{Rad}(T) \), then \(E_i^*\tilde{Z} = \tilde{Z}E_i^* = O \) for every \(R_i \in O_\theta(S) \);

For every decomposition of \(T \) into a direct sum of indecomposable \(T \)-modules, there exist exactly \(d + 1 \) indecomposable direct summands isomorphic to \(W_0 \) as \(T \)-modules;

\(W_0 \) is an irreducible \(T \)-module;

\(W_0 \) is a self-contragredient \(T \)-module;

\(U \) is a \(T \)-module satisfying \(\dim_F E_j^*U > 0 \) for some \(R_j \in O_\theta(S) \) if and only if \(U \cong W_0 \) as \(T \)-modules.

Proof (i) is equivalent to all the other listed statements by combining Lemmas 4.6, 4.9, 4.12, 3.4 (iv), 4.15, 4.18, 4.19, and 4.20. Hence the desired theorem follows.

Let \(FG \) be the group algebra of a finite group \(G \) over \(F \). Note that \(FG \) itself is an \(FG \)-module under the left multiplication action of \(FG \). Denote this \(FG \)-module by \(FGFG \). It is known that the following statements are equivalent:

(i) The principal block algebra of \(FG \) is a simple unital \(F \)-algebra;

(ii) The Jacobson radical of \(FG \) is the zero ideal;

(iii) For every decomposition of \(FGFG \) into a direct sum of indecomposable \(FG \)-modules, there exists exactly one indecomposable direct summand isomorphic to the trivial \(FG \)-module as \(FG \)-modules.

The following corollary tells us that similar statements about \(T \) are also equivalent. Its proof comes from the Artin-Wedderburn Theorem and Theorem 4.21.

Corollary 4.22 The following statements are equivalent:

(i) The \(F \)-subalgebra \(B_0 \) of \(T \) is a simple unital \(F \)-algebra;

(ii) If \(Z \in \text{Rad}(T) \), then \(E_i^*Z = ZE_i^* = O \) for every \(R_i \in O_\theta(S) \);

(iii) For every decomposition of \(T \) into a direct sum of indecomposable \(T \)-modules, there exist exactly \(d + 1 \) indecomposable direct summands isomorphic to \(W_0 \) as \(T \)-modules.

We close this note by proposing two questions motivated by our main results.

Every composition factor of \(W_0 \) is an irreducible self-contragredient \(T \)-module by Theorem 3.15 and Lemma 4.14. This fact motivates us to ask the following question.

Question 4.23 Can one determine all irreducible self-contragredient \(T \)-modules up to isomorphism?

We call an indecomposable \(T \)-module a semiprimary \(T \)-module if this \(T \)-module satisfies Lemma 4.19 (ii). It is obvious that \(W_0 \) and \(W_0^\circ \) are semiprimary \(T \)-modules. By Theorem 4.21, note that a semiprimary \(T \)-module may not be isomorphic to \(W_0 \) as \(T \)-modules. So the notion of a semiprimary \(T \)-module generalizes the notion of the
primary \(T \)-module. The definition of a semiprimary \(T \)-module motivates us to ask the following question.

Question 4.24 Can one determine all semiprimary \(T \)-modules up to isomorphism?

Acknowledgements The author thanks a referee for his or her helpful comments. The present work is supported by the Mathematical Center in Akademgorodok under Agreement No. 075-15-2019-1613 with the Ministry of Science and Higher Education of the Russian Federation.

References

Bannai, E., Ito, T.: Algebraic Combinatorics I: Association Schemes. Benjamin/Cummings, Menlo Park (1984)

Egge, E.: A generalization of the Terwilliger algebra. J. Algebra 233, 213–252 (2000)

Hanaki, A.: Modular Terwilliger algebras of association schemes. Graphs Combin. (2021). https://doi.org/10.1007/s00373-021-02363-0

Hanaki, A.: Classification of small association schemes (Version 20200126). Zenodo. (2020). https://doi.org/10.5281/zenodo.3627821

Jiang, Y.: On Terwilliger \(F \)-algebras of quasi-thin association schemes (2020). arXiv:2012.14811

Terwilliger, P.: The subconstituent algebra of an association scheme. I. J. Algebraic Combin. 1, 363–388 (1992)

Terwilliger, P.: The subconstituent algebra of an association scheme. II. J. Algebraic Combin. 2, 73–103 (1993)

Terwilliger, P.: The subconstituent algebra of an association scheme. III. J. Algebraic Combin. 2, 177–210 (1993)

Zieschang, P.-H.: An Algebraic Approach to Association Schemes. Lecture Notes in Math, vol. 1628. Springer, Berlin (1996)

Zieschang, P.-H.: Theory of Association Schemes. Springer, Berlin (2005). (Spring Monogr. Math.)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.