Article title: Freshwater Integrated Multitrophic Aquaculture (FIMTA) technology in Lake Victoria
Authors: Nicholas Outa[1]
Affiliations: Department of Fisheries and Natural Resources, Maseno University, P. O. Box, Provate Bag, Maseno, Kenya[1]
Orcid ids: 0000-0002-4085-0398[1]
Contact e-mail: nichouta@gmail.com
License information: This work has been published open access under Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Conditions, terms of use and publishing policy can be found at https://www.scienceopen.com/.
Preprint statement: This article is a preprint and has not been peer-reviewed, under consideration and submitted to AfricArXiv Preprints for open peer review.
DOI: 10.14293/111.000/000016.v1
Preprint first posted online: 17 January 2021
Freshwater Integrated Multitrophic Aquaculture (FIMTA) technology in Lake Victoria

Concept developed by:
Nicholas Outa

Department of Fisheries and Natural Resources, Maseno University
P.O. Box Private Bag, Maseno, Kenya
nichouta@gmail.com +254 723 052 865

The decline in capture fisheries of the world has necessitated the production of fish under different aquaculture systems to bridge the gap in demand. According to FAO, 2016, aquaculture contributes about 50% of fish consumed worldwide. Today, the total annual fish production in Kenya is estimated at about 150,000 metric tons, against annual demand of 500,000 (J. Munguti et al., 2020). With the ever increasing human population, and demand for fish, technologies to improve aquaculture production must be embraced to bridge fish supply gap and to achieve nutritional sufficiency (Njiru et al., 2019). One of these technologies is cage aquaculture which is the rearing of fish(es) in water bodies like dams, lakes, ponds and reservoirs in floating enclosures that allow free flow and exchange of water between the cage and the outer water body (Chakraborty, 2010). The frames of the cages can be made from bamboo, metal or High Density Poly Ethylene (HDPE). With the challenges associated with pond aquaculture such as competition for land with other uses and susceptibility to floods, cage aquaculture has gained recognition and is rapidly expanding in Kenya and world over. In Kenya, for example, the use of cages to produce fish is relatively new and is being practiced in Lake Victoria in the five riparian Counties of Migori, Homabay, Kisumu, Siaya and Busia (Anjejo, 2017). By 2017, there were about 3,696 fish cages spread throughout the lake and produced 318 metric tons valued at 9.6 million USD (Orina et al., 2018). These cages have several negative impacts on the lake’s environment as highlighted below.
The problem associated with fish cages is the organic pollution from the leachates coming from them. The leachates include uneaten feeds, fish feaces and other wastes the sink to the lakes.
bottom (Ombwa et al., 2018). Upon decomposition, these wastes can lead to a reduction in O₂ concentration which can have negative effects on both the caged and wild fish. These organic wastes can also be mineralized into inorganic constituents becoming nutrients which can spur growth of algae in the lake resulting in eutrophication (Dias et al., 2011). With the cage aquaculture expanding rapidly in Lake Victoria, there is an urgent need to come up with methods to reduce its negative effects on the lake’s environment.

One of the most effective technologies that can be used to reduce the negative impacts of fish cages in the lake is Integrated Multitrophic Aquaculture (IMTA) or Freshwater Integrated Multitrophic Aquaculture (FIMTA) in the context of freshwater systems like Lake Victoria. This technology involves rearing organisms that feed at different trophic levels of the food web (Thomas, 2011). It helps reduce wastage of resources (feeds and space) since wastes from one trophic level is utilized by organism in a lower level. It essentially involves the rearing of a fed organism (fish), organic extractive organism (filter feeders; mostly bivalves) and inorganic extractive plants. The fed organism (tilapia which is a pelagic feeder) is fed on complete diet, the excess and uneaten feeds are eaten by catfish (bottom feeder). The feaces and other wastes from the cage is taken up by the filter feeder (bivalves or gastropods) and the inorganic wastes and minerals utilized by aquatic plants as nutrients (Lee, 2019). This method has been shown to reduce feed wastage by over 40% and to increase profit margins (Park et al., 2018). This is because fish feeds contribute 40 to 60% of the cost of running aquaculture enterprises (Ali & Jauncey, 2004; J. M. Munguti et al., 2014).

According to Sukhdhane et al., (2018) and Thomas, (2011), the advantages of this technology include;

a) It is environmentally friendly

b) Enhances diversification in aquaculture through production of different products under the same systems

c) Increases profits since it makes good use of space, factors of production like cage materials and feeds

d) It reduces the risks associated with aquaculture production systems since there are chances of at least one of the products doing well even under unforeseen challenges during the production cycle.
The limitation facing the adoption of IMTA/FIMTA in Lake Victoria is the lack of comprehensive research and data of this technology in freshwater ecosystems. There is therefore need to explore the FIMTA in Lake Victoria to not only reduce the negative impacts of fish cages on the lake but also diversify production and increase profits from aquaculture within the lake.

Figure 3: IMTA setup in Marine in a marine ecosystem

(https://www.aquaculturealliance.org/advocate/integrated-multi-trophic-aquaculture-part-1/)
References

Ali, M. Z., & Jauncey, K. (2004). Evaluation of mixed feeding schedules with respect to compensatory growth and body composition in African catfish Clarias gariepinus. *Aquaculture Nutrition, 10*(1), 39–45.

Anjejo, K. (2017). *Cage Fish Farming and Its Effects on Livelihoods of Fisherfolk Within Anyanga Beach, Siaya County, Kenya*. 1–81.

Chakraborty, S. B. (2010). Determination of Ideal Stocking Density for Cage Culture of Monosex Nile Tilapia (*Oreochromis niloticus*) in India. *Proceedings of the Zoological Society, 63*, 53–59.

Dias, J. D., Takahashi, É. M., Santana, N. F., & Bonecker, C. C. (2011). Impact of fish cage-culture on the community structure of zooplankton in a tropical reservoir. *Iheringia - Serie Zoologia, 101*(1–2), 75–84.

Granada, L., Sousa, N., Lopes, S., & Lemos, M. F. L. (2016). Is integrated multitrophic aquaculture the solution to the sectors’ major challenges? – a review. *Reviews in Aquaculture, 8*(3), 283–300.

https://www.aquaculturealliance.org/advocate/integrated-multi-trophic-aquaculture-part-1/

Lee, C. S. (2019). Challenges and opportunities of IMTA in Hawaii and beyond. *Bulletin of Japan Fisheries Research and Education Agency, 49*(49), 129–134.

Munguti, J. M., Musa, S., Orina, P. S., Kyule, D. N., Opiyo, M. A., Charo-Karisa, H., & Ogello, E. O. (2014). An overview of current status of Kenyan fish feed industry and feed management practices, challenges and opportunities. *International Journal of Fisheries and Aquatic Sciences, 1*(6), 128–137.

Munguti, J., Obiero, K., Musa, S., Mwaluma, J., Orina, P., Opiyo, M., Kyule, D., Mirera, D., Ochiewo, J., & (Eds). (2020). *State of Aquaculture Report 2020: Towards Nutrition Sensitive Fish Food Systems. Kenya Marine and Fisheries Research Institute, Mombasa, Kenya*.

Njiru, J. M., Aura, C. M., & Okechi, J. K. (2019). Cage fish culture in Lake Victoria: A boon or a disaster in waiting? *Fisheries Management and Ecology, 26*(5), 426–434.
Ombwa, V., Aura, C., Odada, E., Ogari, Z., Ogik, W., Ogwai, K., Chelangat, M., Achieng, M., & Onienga, P. (2018). The socio-economic impact of Cage Culture in Lake Victoria for informed decision making. Technical Report: KMF/RS/2017/C1.8 (II), 8(ii), 1–48.

Park, M., Shin, S. K., Do, Y. H., Yarish, C., & Kim, J. K. (2018). Application of open water integrated multi-trophic aquaculture to intensive monoculture: A review of the current status and challenges in Korea. Aquaculture, 497(July), 174–183.

Sukhdhane, K. S., Kripa, V., Vase, V. K., & Mojjada, S. K. (2018). Integrated multi-trophic aquaculture systems: A solution for sustainability. Aquaculture Asia, 22(4), 26–29.

Thomas, S. A. (2011). White Paper-Integrated Multi-Trophic Aquaculture: A Workshop. IMTA Workshop 14- 15 Sept 2010, May, 45.