Phase transition in a stochastic prime number generator

Bartolo Luque1, Lucas Lacasa1,* and Octavio Miramontes2

1Departamento de Matemática Aplicada y Estadística, ETSI Aeronáuticos,
Universidad Politécnica de Madrid, Madrid 28040, Spain
2Departamento de Sistemas Complejos, Instituto de Física,
Universidad Nacional Autónoma de México, 04510 DF, Mexico

(Dated: February 5, 2008)

PACS numbers: 05.70.Fh, 05.10.Ln, 02.10.De, 64.60.-i, 64.60.Cn, 64.60.Fr, 89.20.Ff

We introduce a stochastic algorithm that acts as a prime number generator. The dynamics of such algorithm gives rise to a continuous phase transition which separates a phase where the algorithm is able to reduce a whole set of integers into primes and a phase where the system reaches a frozen state with low prime density. We present both numerical simulations and an analytical approach in terms of an annealed approximation, by means of which the data are collapsed. A critical slowing down phenomenon is also outlined.

From the celebrated coincidence in 1972 between H. Montgomery’s work on the statistics of the spacings between zeros and F. Dyson’s analogous work on eigenvalues of random matrices, we have seen, somewhat unexpectedly, how number theory and physics have built bridges between each other. These connections range from the reinterpretation of the Riemann zeta function as a partition function [1] or the focus of the Riemann Hypothesis via quantum chaos [2], to multifractality in the distribution of primes [3] or computational phase transitions in the number partitioning problem [4], to cite but a few (see [5] for an extensive bibliography).

Prime numbers are mostly found using the classical sieve of Eratosthenes and its recent improvements [6]. Additionally, several methods able to generate probable primes have been put forward [7]. In this paper we additionally, several methods able to generate probable primes have been put forward [8]. In this paper we introduce a stochastic algorithm that acts as a prime number generator. The dynamics of such algorithm gives rise to a continuous phase transition which separates a phase where the system reaches a steady state when no more reactions are achieved, either because every number has become a prime or because rule 2 cannot be satisfied anymore: the algorithm then stops.

In what follows we will firstly present the phase transition that the system seems to exhibit. Second, we will try to interpret this phase transition in terms of a dynamical process embedded in a directed catalytic network, introducing subsequently a proper order parameter. Some analytical arguments in terms of an annealed approximation will then be outlined in an third part, where a data collapse is provided. Finally, a critical slowing down (easy-hard-easy pattern in the algorithmic phase transitions language) is pointed out.

A preliminary indicator of the system’s behavior may be the unit percentage or ratio of primes r, that the system reaches in the steady state. This parameter will characterize the ability of the algorithm to produce primes, for a given N. In figure 1 we plot the behavior of r versus N for several pool sizes M. We clearly see that two separated regimes arise: the first one is characterized by small ratios (low proportion of primes in the stationary state) while in the second one every single number of the system will end up as a prime. The system thus exhibits a sort of phase transition. Note that r is not a well defined order parameter since it does not vanish in the disordered phase. This is due to the fact that following the prime number theorem [9], in a pool of size M there are typically M/ln(M) primes. This residual value of r is not related to the algorithm dynamics. In fact, when N is small the number of reactions until the system reaches the steady state is quite small. Therefore, the residual ratio r ≈ 1/ln(M) is the relevant contribution [10]. It comes thus necessary to define an adequate order parameter that would properly describe the former phase transition.

Let us now see how this phase transition can be understood as a dynamical process embedded in a catalytic
network having integer numbers as the nodes. Consider two numbers of that network, say a and b ($a > b$). These numbers are connected ($a \rightarrow b$) if they are exactly divisible, that is to say, if $a/b = c$ with c being an integer. The topology of similar networks has been studied in [11, 12, 13], concretely in [13] it is shown that this network exhibits scale-free topology [14]: the degree distribution is $P(k) \sim k^{-\lambda}$ with $\lambda = 2$. In our system, fixing N is equivalent to selecting a random subset of nodes in this network. If a and b are selected they may react giving $a/b = c$; in terms of the network this means that the path between nodes a and b is traveled thanks to the catalytic presence of c. We may say that our network is indeed a catalytic one [15, 16] where there are no cycles as attractors but two different stationary phases: (i) for large values of N all resulting paths sink into prime numbers, and (ii) if N is small only a few paths are traveled and no primes are reached. Notice that in this network representation, primes are the only nodes that have input links but no output links (by definition, a prime number is only divisible by the unit and by itself, acting as an absorbing node of the dynamics). When the temporal evolution of this algorithm is explored for small values of N, we observe that the steady state is reached very fast. As a consequence, there are only a few traveled paths over the network and since N is small the probability of catalysis is small as well, hence the paths ending in prime nodes are not traveled. We say in this case that the system freezes in a disordered state. In contrast when N is large enough, many reactions take place and the network is traveled at large. Under these circumstances, an arbitrary node may be catalyzed by a large $N - 1$ quantity of numbers, its probability of reaction being high. Thus, in average all numbers can follow network paths towards the prime nodes: we say that the system reaches an ordered state.

In the light of the preceding arguments, it is meaningful to define an order parameter as the probability $P(N, M)$ that the N numbers extracted from M be primes once the stationary state is reached. In figure 2 the relation between the order parameter P and the control parameter N related to the same simulations that in figure 1 is depicted. Note that P is now a well defined order parameter, as opposed to r. In each case, $N_c(M)$ is the critical value separating the phases $P = 0$ and $P \neq 0$. Observe in figure 2 that N_c increases with the pool size M. In order to describe this size dependence, we need to find some analytical argument by means of which to define a system’s characteristic size. As we will see below, this one will not be M as one would expect.

Note that non-trivial correlations between the values of the N numbers take place at each algorithm’s time step. This leads to highly complex, analytically untractable dynamics. We can try however an annealed approximation in order to break these correlations, assuming that at each time step, the N numbers are randomly generated. In figure 3 we depict for different values of M, the resulting simulations of the function $1 - q$, where $q = q(N, M)$ is the probability that no pair of randomly chosen N numbers from M be divisible between them. Notice that once M is fixed, there is a certain value of N from which the probability of finding at least one reacting pair is almost 1. The behavior of $1 - q$ follows qualitatively the behavior of the order parameter P. In

FIG. 1: The ratio r of prime numbers in the steady state as a function of N for different pool sizes M. Each point is the average of 2×10^4 realizations. For small values of N, the value of r is only related to the amount expected from a random sample. For large values of N, r tends to one: the algorithm is able to reduce the whole system into primes.

FIG. 2: Order parameter P, defined as the probability that all numbers are prime in the steady state versus the control parameter N, for the same pool sizes as for figure 1 (simulations are averaged over 2×10^4 realizations). Inset: scaling of N_c versus $M/\ln(M)$, for pool sizes $M = 2^{10}, 2^{11}, ... , 2^{17}$.
fact, this annealed approximation suggests that once M is fixed in the algorithm, from a certain N we can be sure that at least one reaction will take place. As long as reactions produce new numbers while the total number N is conserved, reactions will then take place until the system reaches a stationary state of only primes.

The probability $p(M)$ of a reaction between two randomly chosen numbers from the pool M, that is to say, the probability that two numbers from $\{2, 3, ..., M\}$ be divisible is:

$$p(M) = \frac{2}{(M-1)^2} \sum_{x=2}^{\lfloor M/2 \rfloor} \frac{M-x}{x} \approx \frac{2 \ln(M)}{M}.$$ \hfill (1)

Obviously, $1-p(M)$ is the probability that two randomly chosen numbers from $\{2, 3, ..., M\}$ are not divisible. From a set containing N randomly chosen numbers, the $N(N-1)/2$ different pairs that we can form are not independent, therefore the probability $q(N, M)$ is not simply $(1-p(M))^{N(N-1)/2}$. Correlations between pairs can however be taken into account through the following ansatz:

$$q(N, M) \approx \left(1 - \frac{2 \ln(M)}{M}\right)^{N^{1/\alpha}},$$ \hfill (2)

where the exponent α characterizes the degree of dependence between pairs. For convenience, we assume that the threshold $N_c(M)$ in this annealed approximation is the one for which half of the configurations reach an ordered state, that is to say, the values for which $q(N_c, M) = 0.5$. This procedure is usual for instance in percolation processes, since the choice of the percolation threshold, related to the definition of a spanning cluster, is somewhat arbitrary in finite size systems \cite{17}. After some algebra and taking a leading-order approximation, we find the scaling relationship:

$$N_c \sim \left(\frac{M}{\ln(M)}\right)^{\alpha}.$$ \hfill (3)

In the inset of figure 3 we plot in log-log the scaling between N_c and $M/\ln(M)$ in the annealed system, which follows equation (3) with $\alpha = 0.48 \pm 0.2$ (note that within the error bar, there is indeed independence between pairs). The goodness of the former scaling suggests that the above ansatz is acceptable.

In appearance, in the prime number generator system,

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{fig3}
\caption{Probability $1 - q(N, M)$ that at least two numbers from N be exactly divisible between them, for different values of M (from left to right: $2^{13}, 2^{14}, 2^{15}, 2^{16}$ and 2^{17}). Each point represents the average of 10^5 realizations. Inset: scaling, in the annealed system, of N_c (defined such that $q(N_c, M) = 0.5$) versus $M/\ln(M)$ for different values of $M = 2^{11}, 2^{12}, ..., 2^{17}$.}
\end{figure}

the characteristic size is M, however the annealed approximation suggests that the true characterization is $M/\ln(M)$. From the point of view of the network this is very reasonable since the amount of primes that we can reach increases with M in a non-linear trend, in fact it grows asymptotically as $M/\ln(M)$ \cite{3}. Coming back to the prime generator system, in order to prove our foregoing conjecture, in the inset of figure 2 we plot in log-log the values of N_c versus $M/\ln(M)$. The scaling suggests the same relationship as equation (3) with a scaling exponent $\alpha = 0.59 \pm 0.05$, that is to say, we find that the transition point shows critical behavior, as expected.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{fig4}
\caption{Collapse of the order parameter P for different values of $M = 2^{14}, 2^{15}, 2^{16}, 2^{17}$, with $\alpha = 0.59$.}
\end{figure}

In order to seek consistency, in figure 4 we collapse several curves $P(N, M)$ for different pool sizes M. For that task we apply generic techniques of finite size scaling, where the size scaling is given by the function $G(M/\ln(M)) = (M/\ln(M))^\alpha$, with $\alpha = 0.59$. Note that the data collapse is excellent. This fact gives credit to the scaling ansatz and provides consistency to the full development. As long as N is indeed an extensive variable and in order
the same probability) from an ordered phase \((N >> N_c) \) where this distribution is in turn a power law \([10]\).

Second, in figure 5 we plot for different pools the behavior of the characteristic time \(\tau \) versus \(N \). \(\tau(N, M) \) is defined as the number of time steps per number that the algorithm needs to perform in order to reach the steady state: this parameter characterizes the relaxation time of the algorithm. Note that in each curve \(\tau(N, M) \) reaches a peaked maximum in a neighborhood of \(N_c(M) \) (any shift is due to finite size effects). Moreover, for larger pools this maximum is larger, diverging in the thermodynamic limit: this behavior is related with a critical slowing down phenomenon \([10]\), which in algorithmic phase transitions is known as an easy-hard-easy pattern.

In summary, in this paper we explored a stochastic algorithm that works as a prime number generator. Many ingredients suggest the presence of a phase transition in the system. This unexpected behavior raises some interesting related questions that will be considered in further work, namely: how the character of such transition is related to with the computational complexity of the algorithm \([13]\)? In which way the algorithm, which produces primes by means of stochastic decomposition, is related to the integer factorization problem and cryptography?

The authors wish to thank D. Zanette, U. Bastolla, A. Robledo and G. García-Naumis for reading our manuscript and providing helpful suggestions, and the Instituto de Física at UNAM for support and hospitality. The research was supported by UNAM-DGAPA grant IN-118306 (OM), grants FIS2006-26382-E and FIS2006-08607 (BL and LL) and the Tomas Brody Lectureship 2007 awarded to BL.

*Electronic address: lucas@dmae.upm.es.

1. B.L. Julia, *Statistical theory of numbers*, from Number Theory and Physics (Springer-Verlag, 1990).
2. M.V. Berry, J.P. Keating, *SIAM Review* **41**, 2 (1999).
3. M. Wolf, *Physica A* **160**, 236-266 (1989).
4. S. Mertens, *Phys. Rev. Lett.* **81**, 20 (1998).
5. M.R. Watkins, Number Theory and Physics archive http://secamlocal.ex.ac.uk/~mwatkins/zeta/physics.htm
6. H. Riesel, *Prime Numbers and computer methods for factorization* (Progress in Mathematics, Birkhauser, Boston, 1994).
7. P. Ribenboim, *The new book of prime number records* (Springer, New York, 1995).
8. P. Dittrich, *Artificial Life* **7**, 3 (2001).
9. M.R. Schroeder, *Number theory in Science and Communications* (Springer, Berlin, 1997).
10. Additional data and simulations concerning this phenomenon will be provided in a further work.
11. G. Corso, *Phys. Rev. E* **69**, 036106 (2004).
12. J.D. Achter, *Phys. Rev. E* **70**, 058103 (2004).
13. T. Zhou, B.H. Wang, P.M. Hui, K.P. Chan, *Physica A* **367**, (2006).
14. R. Albert, A.L. Barabasi, *Rev. Mod. Phys.* **74** (2002).
15. S.A. Kauffman, *The origins of order*. Oxford University Press (1993).
16. S. Jain, S. Krishna, *Phys. Rev. Lett.* **81**, 25 (1998).
17. H. Gould, J. Tobochnik, *An Introduction to Computer Simulation Methods* (Addison-Wesley, 1996).
18. K. Huang, *Statistical mechanics* (John Wiley & Sons, Inc. 1987).
19. R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, L. Troyansky, *Nature* **400** (1999).