Review

Interactions between APP secretases and inflammatory mediators

Magdalena Sastre*1, Jochen Walter2 and Steve M Gentleman1

Address: 1Division of Neuroscience and Mental Health, Imperial College London, The Hammersmith Hospital, Du cane Road, London W12 0NN, UK and 2Department of Neurology, University Bonn, Bonn, Germany

Email: Magdalena Sastre* - m.sastre@imperial.ac.uk; Jochen Walter - jochen.walter@ukb.uni-bonn.de; Steve M Gentleman - s.gentleman@imperial.ac.uk

* Corresponding author

Abstract

There is now a large body of evidence linking inflammation to Alzheimer’s disease (AD). This association manifests itself neuropathologically in the presence of activated microglia and astrocytes around neuritic plaques and increased levels of inflammatory mediators in the brains of AD patients. It is considered that amyloid-β peptide (Aβ), which is derived from the processing of the longer amyloid precursor protein (APP), could be the most important stimulator of this response, and therefore determining the role of the different secretases involved in its generation is essential for a better understanding of the regulation of inflammation in AD. The finding that certain non-steroidal anti-inflammatory drugs (NSAIDs) can affect the processing of APP by inhibiting β- and γ-secretases, together with recent revelations that these enzymes may be regulated by inflammation, suggest that they could be an interesting target for anti-inflammatory drugs. In this review we will discuss some of these issues and the role of the secretases in inflammation, independent of their effect on Aβ formation.

Introduction

Alzheimer’s disease (AD) is a devastating neurological disease affecting more than 26 million people around the world, and there are indications that this number will quadruple by 2050. Age is the most significant risk factor and it is estimated that 50% of people over 85 have either AD or Mild Cognitive Impairment (MCI). Brains of individuals with AD manifest massive neuronal and synaptic loss in certain areas which result in the memory impairment and disorientation associated with this disease. The neuroanatomical study of a typical AD brain reveals the presence of two characteristic lesions: extracellular amyloid (or senile plaques) and intracellular neurofibrillary tangles composed primarily of hyperphosphorylated tau protein [1]. Amyloid plaques contain small amyloid-β peptides (Aβ), which are toxic products from the catalytic cleavage of a larger amyloid precursor protein (APP) [1,2].

In 1907 Alois Alzheimer described unique structures in the cerebral cortex of a 55 year old woman with progressive dementia that are now referred to as senile plaques [3]. Histological methods used to demonstrate plaques including thioflavine S, various silver stains, and immunocytochemical stains reveal various biochemical components of plaques. Aβ has been reported to have heterogeneous carboxyl termini, and Aβ1–40 and Aβ1–42 appear to be the major species in the parenchymal deposits. It is this C-terminal variation that has been most often associated with pathogenicity, with Aβ1–42 found to be the most toxic form [1,2]. Aβ is found in normal cerebrospinal fluid and in conditioned media from various tissue...
culture cell lines [4-6], suggesting that it is produced and secreted constitutively.

Aβ deposition is considered a major pathogenic step in the development of AD. Evidence supporting the amyloid hypothesis has been extensively reviewed [7]. On the other hand, there is also the view that Aβ plaque formation is an epiphenomenon and its pathophysiological functions still remain unclear. In this regard, it has been shown that in people with AD the density of Aβ plaques correlates poorly with the severity of dementia [8]. There are, however, indications that dendritic and synaptic injury occur early in the course of the disease and that protofibrils and oligomers of Aβ40 and Aβ42 could cause neuronal dysfunction [9]. In addition, a recent study carried out using multiphoton laser confocal microscopy showed that in the early stages of the disease, microplaques can damage neighbouring axons and dendrites within days [10]. Furthermore, intraneuronal Aβ has also been implicated in the onset of cognitive dysfunction [11].

APP is a type 1 integral membrane protein [12] that resembles a signal-transduction receptor. It is synthesized in the ER, post-translationally modified in the Golgi (including N- and O-linked glycosylation, sulfation and phosphorylation), and transported to the cell surface via the secretory pathway. APP is also endocytosed from the cell surface and processed in the endosomal-lysosomal pathway [13,14], although autophagic vacuoles may also be a site for Aβ production [15]. Alternative processing pathways of APP have been described (Figure 1).

Proteolysis of APP by α-secretase or β-secretase leads to the secretion of α-APPs or β-APPs. This generates C-terminal fragments of 10 kDa and 12 kDa respectively, which are inserted in the membrane. These fragments can be cut by γ-secretase to release the peptides P3 and Aβ. Two further cleavage sites, termed ε and ζ, have been identified in the CTF.

and contribute to the progression of the disease [21,22]. A common feature in the brain of AD patients is the presence of astrocytes and microglia surrounding the senile amyloid plaques, already described by Alois Alzheimer in 1907.

The first evidence for an excessive inflammatory process in AD came from a study carried out in AD and Down syndrome brains that showed increased levels of S100 and IL-1 [23]. Since then, many of the cytokines and chemokines that have been studied in AD, including IL-1β, IL-6, TNF-α, IL-8, TGF-β and macrophage inflammatory protein-1α (MIP-1α) have been found to have altered expression compared with control individuals [22]. Animal models of Alzheimer’s disease, such as the APP transgenic line Tg2576 carrying the Swedish mutation, also show enhanced levels for TNF-α, IL-1β, IL-1α, chemoattractant protein-1, COX-2 and complement component 1q [24,25]. In addition, an increased risk of AD has been associated with several polymorphisms of proinflammatory genes, including IL-1 [26], IL-6 [27], TNF-α [28], and α1-antichymotrypsin [29].

Clinical investigation and studies in AD animal models have reinforced the suggestion that inflammatory changes in the AD brain are an early and prominent feature. In support of this hypothesis, imaging studies have detected microglial activation in patients at very early clinical
Activated microglia can reduce Aβ accumulation by increasing its phagocytosis or extracellular degradation [43-45]. Microglia also release trophic factors such as the glia-derived neurotrophic factor (GDNF), which is neuroprotective [46]. In addition, certain cytokines have an anti-inflammatory effect, such as IL-1 receptor antagonist (IL-1Ra), IL-4, IL-10 and TGF-β [22,47]. It was recently reported that the interaction between newly formed amyloid plaque and microglia shows that, unless further activated, microglia do not successfully clear plaques but may well restrict their growth, leading to a steady state of plaque size after initial formation [10].

Further support for the involvement of inflammation with the pathogenesis of AD came from the finding in epidemiological studies that treatment with non-steroidal anti-inflammatory drugs (NSAIDs) was associated with a reduced risk of developing AD. A meta-analysis of nine studies revealed that the benefit was greater with long-term use than with intermediate use [48]. Recently, a modified Mini-Mental State Examination reported that NSAIDs use prevented cognitive decline in older adults if started in midlife (prior to age 65) rather than late in life (after age 65). This effect was more pronounced in those who had one or more APOE e4 alleles [49]. However, the possible preventive effect of NSAIDs has not been yet confirmed in clinical trials. The failure of the trials may be attributed to the facts that the benefit of NSAIDs may only be observed in early phases of the disease, that is, they are preventive and not curative, and also to the choice of NSAID, mostly COX-2-specific inhibitors because (i) only a subset of NSAIDs are able to lower Aβ production and (ii) this capacity appears to be COX-2 independent [50]. In animals, the beneficial effects of NSAIDs have been confirmed, showing behavioural improvement and reductions in glial activation, in Aβ levels and plaque size [45,51-55]. In vitro studies have revealed several potential targets for NSAIDs, including Nfkb, Rho-GTPases, PPARγ and secretases [50]. However, the inhibition of the canonical targets of NSAIDs, cyclooxygenase-1 and -2 (COX-1 and COX-2), do not seem to be responsible for the protective effect of NSAIDs in AD. On the contrary, COX-2 inhibitors may raise Aβ1–42 secretion [56].

The finding that NSAIDs could affect APP processing and that certain NSAIDs can inhibit β and γ-secretases with the recent revelation that secretases may be influenced by inflammation indicates that they could be an interesting target for anti-inflammatory drugs [50].

Secretases and inflammation

α-Secretase

APP is cleaved by α-secretase in the centre of the Aβ domain. Three related metalloproteases of the ADAM (a disintegrin and metalloprotease) family, ADAM-9,
ADAM-10 and ADAM-17, also termed TACE (tumor necrosis factor converting enzyme), appear to exert α-secretase activity [16,57]. A confirmation that ADAM10 is involved in α-secretase activity came from studies in transgenic mice. A moderate neuronal over-expression of ADAM10 in mice transgenic for human APP([V717I]) showed increased secretion of the neurotrophic soluble α-secretase-released N-terminal APP domain (α-APPS), reduced formation of Aβ peptides, and prevention of their deposition in plaques [58]. Functionally, in these mice impaired long-term potentiation and cognitive deficits were alleviated. Expression of mutant catalytically inactive ADAM10 led to an enhancement of the number and size of amyloid plaques in the brains of double-transgenic mice. These results provided the first in vivo evidence for a proteinase of the ADAM family as an α-secretase of APP, revealed activation of ADAM10 as a promising therapeutic target, and supported the hypothesis that a decrease in α-secretase activity contributes to the development of AD [58]. Another candidate with α-secretase activity is BACE2, which likewise cleaves within the Aβ domain and abrogates Aβ formation [57] (Figure 1).

ADAM proteinases have emerged as the major protein family that mediates ectodomain shedding, the proteolytic release of extracellular domains from their membrane-bound precursors. Proteolytic cleavage or ectodomain shedding is an additional mechanism whereby cells can regulate the proteins expressed on their cell surface. In many cases, soluble ectodomains are biologically active as mediators of functions ascribed to their transmembrane counterparts [59]. ADAM-like sheddases activate, for instance, growth factors and cytokines, thus regulating signalling pathways that are important in development and pathological processes such as cancer [60]. ADAM17 and 10 appear to play a particularly prominent role in ectodomain shedding of inflammatory proteins at all stages of leukocyte recruitment. Soluble TNF-α is released from its membrane-bound precursor by shedding through ADAM17 [61]. In vivo studies have shown that many, but not all, of the inflammatory effects of TNF-α require cleavage and shedding from the cell surface. Besides TNF-α, ADAM17 cleaves ectodomains of other receptors and ligands, such as TNFR2 and L-selectin [62]. In addition, it was recently shown that IL-1R2 can be proteolytically processed in a manner similar to APP [63]. IL-1R2 undergoes ectodomain shedding in an α-secretase manner, resulting in the secretion of the IL-1R2 ectodomain and the generation of a C-terminal fragment.

That α-secretase is involved in inflammation is supported by the observation that ADAM-10 is expressed constitutively by astrocytes in the normal and inflamed human CNS [64]. ADAM10 and ADAM-17 are also enriched in microglia [65]. The functions of ADAMs in microglia are complex and they do not only have pro-inflammatory and neurotoxic properties but also reparative ones [66]. In fact, IL-1α has been reported to increase ADAM-17 and ADAM-10 levels and α-secretase activity in human astrocytic cultures [67]. More recently, it has been shown that the proinflammatory cytokines TNF-α, IFN-γ and IL-1β, as well as TGF-β and LPS, are able to increase ADAM10 activity, leading to a loss in E-cadherin expression, which is another substrate for this secretase [68].

On the other hand, it has been also reported that various NSAIDs (including nimesulide, ibuprofen and indomethacin) stimulate the non-amyloidogenic secretion of sAPPα from neuroblastoma cells [69]. Shedding of sAPPα induced by nimesulide and thalidomide was modulated by inhibitors of PKV and Erk MAPK, indicating that NSAIDs activate the Erk MAPK signalling cascade. However, these results have not been reproduced by other groups [70,71].

β-Secretase

β-Secretase (BACE1 for β-site APP cleaving enzyme) was cloned and identified as a type I transmembrane aspartyl protease [72]. BACE1 cleaves APP at the N-terminal position of Aβ. BACE1 deficiency precludes Aβ formation in transgenic mice, and does not cause or promote any neurological or phenotypic abnormalities. However, it has been recently demonstrated that BACE1 knockout mice exhibit a number of schizophrenia-like behavioural traits, most likely because BACE1 is involved in the cleavage of neuregulin-1, which has been linked to the pathogenesis of schizophrenia and related psychiatric disorders [73]. Because BACE1 inactivation rescues memory deficits in transgenic mice [74], this strongly supports the importance of BACE1 as a therapeutic target in AD.

BACE1 is primarily expressed in neurons [72,75,76], but it can also be expressed in astrocytes under conditions of chronic stress [77] and in old transgenic mice [76,32]. In addition, in young transgenic mice, neuronal BACE1 was induced in the proximity of activated microglia and astrocytes [32]. These observations lead to the conclusion that BACE1 expression is regulated by inflammatory events. BACE1 has also been found up-regulated in neuronal cultures upon exposure to pro-inflammatory cytokines [70,78], under oxidative stress in NT2 neurons [79], and in the hippocampus of rats after experimental traumatic brain injury [39]. In addition, BACE1 protein levels, activity and the β-secretase product (β-CTF) are increased in brain of sporadic AD patients [80,81] as well as in platelets and CSF from AD and MCI patients [82-84]. These alterations in BACE1 expression and activity indicate a transcriptional and/or translational regulation of BACE1 expression in the brain [85]. Interestingly, consensus binding sites for various transcription factors that are
known to be regulated by inflammation (such as NFκB, PPARγ and STAT1) are present in the BACE1 promoter.

Transcriptional regulation

NFκB

NFκB sites are present in the promoters of APP [86], presenilin and BACE1 [87]. In neurons exposed to soluble Aβ peptides and in TNFα-activated glial cells the mutation of the BACE1 promoter NFκB site led to significant decreases in promoter activity, indicating an activating role for NFκB in BACE1 expression in Aβ [87]. In addition, some NSAIDs such as flurbiprofen and indomethacin, which target NFκB, have been shown to be effective at decreasing amyloid load in *in vitro* and also in APP transgenic mice [54,55,88]. A recent report showed that deletion of TNFα1 death receptor (TNFα1R) in APP23 transgenic mice inhibited Aβ generation reducing BACE1 levels and activity via the NFκB pathway [89].

The effect of NFκB on BACE1 promoter could be direct or through changes in PPARγ, because PPARγ agonists can antagonize the activity of transcription factors such as NFκB [50].

PPARγ

PPARγ is a transcription factor that is involved in the regulation of the metabolism of glucose and lipids, in cellular differentiation as well as in the control of transcription of a wide range of inflammatory genes. A consensus binding site for PPARγ was found in the BACE1 promoter. PPARγ activation by agonists such as thiazolidinediones (TZD) and certain NSAIDs such as ibuprofen, indomethacin and naproxen results in a decrease of BACE1 transcription, expression and activity [70]. Furthermore, lack of PPARγ led to an increase of BACE1 promoter activity [90], which suggested that PPARγ could be a repressor of BACE1.

PPARγ levels are decreased in AD brain, indicating that inflammatory events may decrease PPARγ transcription. Furthermore, *in vitro* experiments have shown that inflammatory cytokines and oxidative stress decrease PPARγ levels. Therefore, these findings suggest the existence of a down-regulation of PPARγ under inflammatory conditions, which would result in an increase in BACE1 transcription and Aβ generation. This effect could be prevented by modulation of PPARγ activity by NSAIDs, which have been shown to increase the levels of PPARγ in adipocytes and neurons [90,53].

STAT-1

STAT-1 can bind directly to a putative STAT1 binding sequence in the BACE1 promoter. A recent study showed that when STAT1 becomes phosphorylated by IFNγ-mediated activation of JAK2 and ERK1/2, STAT1 binds to BACE1 promoter region to increase BACE1 protein expression in astrocytes [91]. On the other hand, another report has demonstrated that IFNγ-receptor knockout mice crossed with Tg2576 mice expressing the human Swedish mutant APP had reduced gliosis and amyloid plaque compared with Tg2756 animals, apparently by decreasing TNFα secretion and the number of reactive astrocytes expressing BACE1 in cortex and hippocampus [78].

Post-transcriptional modifications

Evidence has been presented for regulation of BACE1 expression at the translational level. The untranslated 5'-BACE1 transcript leader contains upstream open reading frames (uORF) that can reduce the translation of the main open reading frame [92,93]. It remains unclear as to whether BACE1 translation is constitutively repressed or whether the repression may be alleviated upon physiological and pathophysiological stimuli [85]. Potentially, the identification of proteins specifically binding to long, GC-rich 5'UTR may yield new insights into the possible regulation of BACE1 translation. Evidence for these mechanisms was shown by Zacchetti et al., who described that the 5'-UTR-dependent translational repression of BACE1 may be alleviated in activated astrocytes [94]. Therefore, it seems that inflammation may play also a role in the translational regulation of BACE1.

γ-Secretase

γ-Secretase is a protein complex of four essential membrane proteins called aph-1, pen-2, nicastrin and presenilin (PS). While aph-1, pen-2 and nicastrin function in the assembly and subcellular transport of γ-secretase and in the recognition of protein substrates [95-97]. PS proteins are members of an aspartyl protease family and represent the catalytically active components of the γ-secretase complex [98]. PS1 and PS2 proteins are homologous polypeptide membrane proteins critically involved in intramembraneous cleavage of APP and a number of other type I membrane proteins [98-100]. Accordingly, PS proteins have been implicated in different biological processes, including the regulation of cell differentiation and death, calcium homeostasis, cell adhesion, and subcellular trafficking of several membrane proteins. Mutations in PS are associated with familial forms of early onset Alzheimer’s disease (AD) and increase the ratio of Aβ42/Aβ40 by either elevating production of the elongated, highly fibrillogenic Aβ42 or by decreasing the generation of Aβ40 [57,101,102].

γ-Secretase and inflammation

It was recently published that activated microglia and astrocytes have enhanced expression of PS and nicastrin following brain damage [42]. Although glial cells express PS1, it is not known if PS1 mutations alter glial cell func-
tions. Carriers of PS FAD associated mutations not only show earlier deposition of Aβ in β-amyloid plaques, but also inflammatory processes in the brain [90]. On the other hand, it is unclear whether PS FAD associated mutations cause neuroinflammation by promoting formation and deposition of Aβ42 or by triggering other processes. In PS1 associated FAD brain, distinct 'inflammatory plaques' have been described, that lack reactivity for apolipoprotein E and Aβ in the core, but revealed association with reactive microglia and astrocytes, suggesting that mutations in PS1 could also induce Aβ independent neuroinflammation in Early Onset Alzheimer’s disease (EOAD) [103]. In addition, studies using knock-in mice for PS1 FAD mutations have revealed an enhanced inflammatory cytokine response to immune challenge with bacterial lipopolysaccharide (LPS). LPS-induced levels of mRNAs encoding TNFα, IL-1α, IL-1β, IL-1 receptor antagonist, and IL-6 were significantly greater in the hippocampus and cerebral cortex of PS1 mutant mice as compared to wild-type mice. These findings demonstrate an adverse effect of PS1 mutations on microglial cells that results in their hyperactivation under pro-inflammatory conditions, which may, together with direct effects of mutant PS1 in neurons, contribute to the neurodegenerative process in AD [104].

Additional evidence for an Aβ independent role of PS proteins in inflammation comes from studies with conditional knockout mice lacking both PS genes in the postnatal forebrain. These mice display strong age-dependent neurodegeneration and impairment of cognitive function [105]. Gene profiling revealed up-regulation of several pro-inflammatory genes, including glial fibrillary acidic protein, complement component C1q, and cathepsin S. Also, activated microglia were detected in the brain of these mice. Since Aβ production is strongly reduced upon deletion of PS in forebrain neurons, these data indicate that impairment of PS function could also trigger inflammation independent of Aβ [105]. Analogously, the cleavage of other substrates for PS, such as Notch, could also have some effect on brain inflammation. It was shown that mice transgenic for antisense Notch and normal mice treated with inhibitors of γ-secretase showed reduced damage to brain cells and improved functional outcome in a model of focal ischemic stroke. These mice had a reduced number of activated microglial cells in the brain after ischemic perfusion [106].

NSAIDs and γ-secretase

As described above several NSAIDs decrease the risk for development of AD. Although the molecular mechanism(s) underlying this protective activity remain to be identified, certain NSAID could directly modulate γ-secretase activity [107]. Thus, besides suppression of inflammatory processes via inhibition of COX dependent biosynthesis of pro-inflammatory prostaglandins, the protective role of NSAIDs could also involve altered generation of Aβ. Indeed, several NSAIDs, including ibuprofen, sulindac sulphide, and indomethacin could decrease the levels of secreted Aβ42 [108,54,109]. Importantly, generation of Aβ40 is largely unaltered by these compounds, indicating that certain NSAIDs modulate rather than inhibit γ-secretase activity. The decrease in Aβ42 production was associated with increased generation of Aβ38 suggesting a shift in the cleavage specificity of the protease [107]. However, more recently it has been shown that the generation of Aβ38 and Aβ42 is independent and differently affected by FAD mutations in P5 as well as by modulators of γ-secretase [110]. After the initial identification of ibuprofen, sulindac sulphide, and indomethacin as selective Aβ42 lowering drugs, several other NSAIDs, including flurbiprofen and fenoprofen have been shown to exert similar effects [54]. Because Aβ42 lowering activity was also observed with several derivatives of NSAIDs that do not inhibit COX, and was also present in COX1/2 deficient cell lines, the modulation of γ-secretase activity is unlikely to be mediated via COX enzymes [107]. Surprisingly, the PPARα antagonist fenofibrate and some COX-2 specific inhibitors could even increase Aβ42 production [56,111,112]. Whether additional effects of NSAIDs on NFκB and PPARα or PPARγ (see above) contribute to the Aβ42 lowering activity remains to be investigated in more detail. However, certain NSAIDs decrease Aβ42 production in vitro with purified γ-secretase complex, indicating NFκB and PPARγ independent effects [113,114]. Interestingly, FAD associated mutations in PS1 could cause insensitivity of γ-secretase to Aβ42 lowering NSAIDs [115]. Because direct interaction of NSAIDs with the presenilins or other components of the γ-secretase complex has not been shown so far, the molecular mechanisms for the action of NSAIDs are unclear. Since NSAIDs reveal Aβ42 lowering activity at relatively high doses (IC_{50} values of 25 – 500 μM) at which they could also affect biophysical properties of biological membranes, the modulation of γ-secretase specificity might also involve interference with membrane fluidity and/or accessibility of substrate to the enzyme [116]. Nonetheless, since NSAIDs, even at higher concentrations did not inhibit cleavage of Notch and ErbB4 or alter AICD formation, this class of inhibitors might be valuable compounds to selectively decrease Aβ42 production without affecting important intracellular signaling pathways, thereby reducing potential side effects in clinical applications.

In preclinical studies, long-term treatment of APP transgenic Tg2576 mice with ibuprofen and indomethacin were effective in reducing the plaque pathology [51,117]. Also, acute treatment with additional NSAIDs, sulindac...
Table 1: Comparison of the effects of NSAIDs on APP secretases. The decrease in BACE1 was detected under inflammatory conditions.

NSAIDs	activity	α-secretase	β-secretase	γ-secretase			
Ibuprofen	PPARγ activator	↑ (69) (70,71)	↓ (70,90)	↓A	42	A	40 (108)
Indomethacin	PPARγ activator NFκB inhibitor	↑ (69) (71)	↓ (70,90)	↓A	42	A	40 (108)
Naproxen	PPARγ activator	↑	↓ (70,90)	A	42	A	40 (108)
Flurbiprofen	NFκB inhibitor	↑	↑	↓A	42	A	40 (54,108)
Aspirin	COX-1 inhibitor	↑	↑	A	42	A	40 (108)
Sulindac sulphide	COX-1 inhibitor	↑	↑	↓A	42	A	40 (108)
Celecoxib	COX-2 inhibitor	↑	↑	↑A	42	A	40 (56)
Fenofibrate	PPARα activator	↑	↑	↑A	42	A	40 (56)

Figure 2
Schematic representation of the interactions between inflammatory processes and APP processing. Aβ generation by BACE1 and γ-secretase induces an inflammatory response, which involves the activation of microglia and astrocytes and the release of pro-inflammatory cytokines. This inflammatory response could be enhanced by brain trauma or by PS1 mutations, probably also by increased Aβ production. Inflammatory cytokines have been involved in the aggregation of Aβ [121]. Moreover, cytokines can affect the expression of secretases and APP, influencing their transcription, translation and/or activation [122]. Non-steroidal anti-inflammatory drug treatment could reverse the effect of inflammation on BACE1 transcription, modulate the cleavage site of γ-secretase and decrease the secretion of cytokines and the number of microglia and astrocytes. On the other hand, α-secretase has been involved in the shedding of certain cytokines, potentiating their activity. See text for further details of individual interactions. Numbers on the diagram correspond to the appropriate references in the review.
Conclusion

In summary, in this review we have tried to give a perspective on the wide variety of interactions between inflammatory mediators and APP secretases. On the one hand, pro-inflammatory cytokines are able to increase the levels and/or activity of some secretases, such as α-secretase and BACE1. On the other hand, NSAIDs are able to modulate the activity of the secretases by regulating their levels in the case of BACE1, or by directly shifting the cleavage site of γ-secretase (see Table 1). In addition it now seems that α-secretase plays a particularly prominent role in ectodomain shedding of inflammatory proteins, thus regulating the activity of cytokines such as TNFα. Bringing all this together, it is clear that the association between inflammation and AD, as suggested by the wealth of epidemiological, clinical and laboratory data, is based on a series of complex molecular interactions that we are only just beginning to understand in detail (Figure 2). The initial signs are encouraging but further work is needed in this area to determine whether modification of these interactions can provide a viable therapeutic target for the treatment of AD.

List of abbreviations

ADAM: a disintegrin and metalloprotease; ApoE: Apolipoprotein E; COX: cyclooxygenase; EOAD: Early Onset Alzheimer’s Disease; FAD: Familial Alzheimer’s Disease; II: Interleukin; iNOS: inducible nitric oxide synthase; MCI: mild cognitive impairment; NFKB: nuclear factor kappa B; NSAIDs: Non-steroidal anti-inflammatory drugs; PPAR: Peroxisome Proliferator-activated receptor; PS: presenilin; STAT: Signal transducers and activators of transcription; TNFα: Transforming Necrosis Factor-α; TZD: thiazolidinedione

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MS wrote most of the first draft, JW wrote the part of γ-secretase and SMG wrote the section on trauma. All authors were involved in the design of the figures and editing of the manuscript.

Acknowledgements

SMG is funded by NIH grant AG12411.

References

1. Selkoe DJ: Folding proteins in fatal ways. Nature 2003, 42:900-904.
2. Selkoe DJ: Alzheimer’s disease is a synaptic failure. Science 2002, 298:789-791.
3. Alzheimer A: Ueber eine eigenartige Erkrankung der Hirnrinde. Centrblatt für Nervenheilkunde und Psychiatrie 1907, 30:177-179.
4. Shojo M, Golde TE, Ghiso J, Cheung TT, Estus S, Shaffer LM, Caix D, McKay DM, Tintner R, Frangioni B, Younkin SG: Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science 1992, 258:126-129.
5. Haass C, Schlossmacher MG, Hung AY, Vigo-Pelfrey C, Mellon A, Ostaszewski BL, Lieberburg I, Koo EH, Schenk D, Teplow DB, Selkoe DJ: Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 1992, 359:322-325.
6. Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Doyee H, Davis D, Sinha S, Schlossmacher M, Whaley J, Swindlehurst C, McCormak R, Wolfert R, Selkoe D, Lieberburg I, Schenk D: Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature 1992, 359:325-327.
7. Walsh DM, Selkoe DJ: Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 2004, 44:181-193.
8. Braak H, Braak E: Evolution of neuronal changes in the course of Alzheimer’s disease. J Neural Transm 1998:127-140.
9. Walsh D, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ: Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002, 416:535-539.
10. Meyer-Luehmann M, Spires-Jones TL, Prada C, Lee M, Dovey H, Davis D, Sinha S, Schlossmacher M, Whaley J, Swindlehurst C, McCormak R, Wolfert R, Selkoe D, Lieberburg I, Schenk D. Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature 1992, 359:325-327.
11. Williams LM, Oddo S, Green KN, McGaugh JL, Laferla FM: Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 2005, 45:675-688.
12. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Mueller-Hill B: The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 1987, 325:733-736.
27. Papassotiropoulos A, Bagli M, Jessen F, Bayer TA, Maier W, Rao ML, Nicoll JA, Mrak RE, Graham DI, Stewart J, Wilcock G, MacGowan S, Benzing WC, Wujek JR, Ward EK, Shaffer D, Ashe KH, Younkin SG, Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, White CL 3rd, Araoz C: Brain interleukin-1 and S100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci USA 1989, 86:7611-7615.

28. McCusker SM, Curran MD, Dyan KB, McCullagh CD, Urquhart DD, Arnaud L, Robakis NK, Figueiredo-Pereira ME: Increased expression of the interleukin-1 gene polymorphisms with Alzheimer’s disease. J Biol Chem 2000, 275:20291-20297.

35. Arnaud L, Robakis NK, Figueiredo-Pereira ME: Inflammation and Alzheimer’s disease. Neuron 2005, 37:25-45.

36. McCusker SM, Curran MD, Dyan KB, McCullagh CD, Urquhart DD, Arnaud L, Robakis NK, Figueiredo-Pereira ME: Inflammation and Alzheimer’s disease. Neuron 2005, 37:25-45.

52. Lim GP, Yang F, Chu T, Gahtan E, Ubeda O, Beech W, Overmier JB, Lim GP, Yang F, Chu T, Gahtan E, Ubeda O, Beech W, Overmier JB, Heneka MT, Sastre M, Dumitrescu-Ozimek L, Hanke A, Dewachter I, Heneka MT, Sastre M, Dumitrescu-Ozimek L, Hanke A, Dewachter I, Nevache D, Jones T, Banati RB: Focal glial activation coincides with pathology and inflammation in a mouse model for Alzheimer’s disease. J Neuroinflammation 2007, 4:36.

57. Arwa Y, Amendola A, Grigoriadis N, Hartmann T, Rapoport J, Sho- hammi E, Stein R: Increased expression of the –secretase components presenilin-1 and nicastrin in activated astrocytes and microglia following traumatic brain injury. Glia 2008, 56:552-567.

64. Hayden KM, Zandi PP, Khachaturian AS, Szekely CA, Fotuhi M, Norton MC, Tischler JT, Parnes LS, Corcoran GK, Lyketsos CG, Breitner JC, Welsh-Bohmer KA, Cache County Investigators: Does NSAID use modify cognitive trajectories in the elderly? The Cache County Study. Neurology 2007, 69:275-282.

65. Lleo A, Galea E, Sastre M: Molecular targets of non-steroidal anti-inflammatory drugs in neurodegenerative diseases. Cell Mol Life Sci 2007, 64:1403-1418.

66. Lim GP, Yang F, Chu T, Chen P, Beech W, Teter B, Tran T, Ubeda O, Ashe KH, Frautschy SA, Cole GM: Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci 2000, 20:5709-5714.

67. Lim GP, Yang F, Chu T, Gahtan E, Ubeda O, Beech W, Overmier JB, Hsiao-Ashec K, Frautschy SA, Cole GM: Ibuprofen effects on Alzheimer pathology and open field activity in APPsw transgenic mice. Neurobiol Aging 2001, 22:983-991.

68. Heneka MT, Sastre M, Dumitrescu-Ozimek L, Hanke A, Dewachter I, Kuiper C, O’brian K, Klockgether T, Van Leuven F, Landreth GE: Acute treatment with the PPARα agonist pioglitazone and ibuprofen reduces glial inflammation and Aβ-42 levels in APPsw transgenic mice. Brain Res 2005, 1068:442-453.

69. Eriksson LS, Sagi SG, Smith TE, Wegeen S, Das P, McCandlen DC, Ozoys VV, Jessen T, Zawitz KH, Koo EH, Golde TE: NSAIDs and endonucleases of flurbiprofen target gamma-secretase and lower Aβ-42 in vivo. J Clin Invest 2003, 112:440-449.

70. Sung S, Yang H, Uruy K, Lee EB, Zhao L, Shimener D, Trojanowski JQ, Lee V, Pratico D: Modulation of nuclear factor-kappa B activity by indomethacin influences Abeta levels but not A beta precursor protein metabolism in a model of Alzheimer’s disease. Am J Pathol 2004, 165:2197-2206.
56. Kuuk T, Murphy MP, Erikson JL, Sagi SA, Weggen S, Smith TE, Ladd T, Khan MA, Kache R, Beard J, Dodson M, Meric S, Ozols VV, Anastasiadis PZ, Das P, Faust A, Koo EH, Golde TE: Diverse compounds mimic Alzheimer disease-causing mutations by augmenting Aβ1-42 production. Nat Med 2005, 11:545-550.

57. Tani RE, Bertram L: Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 2005, 121:341-352.

58. Postina R, Schroeder A, Dewachter I, Bohl J, Schmitz U, Kojro E, Prinzem C, Endres K, Hiencke C, Blessing M, Flampe P, Dequenne A, Godaux E, van Leuven F, Fahrenholz F: A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 2004, 113:1456-1464.

59. Garton KJ, Gough PJ, Raines EW: Emerging roles for ectodomain shedding in the regulation of inflammatory responses. J Leukoc Biol 2009, 76:1105-1116.

60. Ball T, Black RA, White JM: Increased expression of the amyloid precursor protein through regulation of alpha-secretase activity in Alzheimer’s disease. J Neuroinflammation 2007, 4:25 http://www.jneuroinflammation.com/content/5/1/25

61. Tanzi RE, Bertram L: The genetics of Alzheimer’s disease. Neuron 2005, 47:7-15.

62. Kuhn PH, Marjaux E, Imhof A, Di Strooper B, Haass C, Lichtenthaler VW: A disintegrin-metalloproteinase deficiency in an Alzheimer disease mouse model. J Biol Chem 2007, 282:10371-10379.

63. Nuttall RK, Silva C, Hader W, Bar-Or A, Patel KD, Edwards DR, Yong VW: Metalloproteinases are enriched in microglia compared with leukocytes and they regulate cytokine levels in activated microglia. J Biol Chem 2006, 281:516-526.

64. Yang VW: Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci 2005, 6:931-944.

65. Bandyopadhyay T, Schoz F, Kolman P, Cahill CM, Lahiri DK, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Stuhl T, Gunther A, Schliebs R, Penkowa M, Bigl V, Rossner S: Astrocytic expression of the amyloidogenic BACE1 promoter in the CNS. J Biol Chem 2007, 282:17373-17384.

66. Ugur S, Moccia E, Lavoie MA, Davanzo R, Pricetti CU, Melian J, Weggen S: Nonsteroidal Anti-Inflammatory Drugs and Ectodomain Shedding of the Amyloid Precursor Protein. Neurodegener Dis 2008 in press.

67. Savonenko AV, Melnikova T, Laird FM, Stewart KA, Price DL, Wong PC: Alteration of BACE1-dependent NRG1/Erbb4 signaling and schizophrenia-like phenotypes in BACE1-null mice. Proc Natl Acad Sci USA 2008, 105:5585-5590.

68. Ohno M, Sametsky EA, Younkin LH, Oakley T, Younkin SG, Citron M, Vassar R, Dieterich JF: BACE1 Deficiency Rescues Memory Deficits and Cholinergic Dysfunction in a Mouse Model of Alzheimer’s Disease. Neuron 2004, 41:37-43.

69. Bigl M, Apelt J, Luscheikina EA, Lange-Dohna C, Rossner S, Schliebs R: Expression of beta-secretase mRNA in transgenic Tg2576 mouse brain with Alzheimer plaque pathology. Neurosci Lett 2002, 309:107-110.

70. Rossner S, Apelt J, Schliebs R, Perez-Polo JR, Bigl V: Neuronal and glial beta-secretase (BACE) protein expression in transgenic Tg2576 mice with amyloid plaque pathology. J Neurosci Res 2001, 64:437-446.

71. Aikawa Y, Irie Y, Kato K, Aihara Y, Kato M, Morita K, Tsujimoto Y, Matsuzawa M: OX40 ligand stress increases expression and activity of BACE in NT2 neurons. Neurol Sci 2002, 10:279-288.

72. Holsinger RM, McLean CA, Beyerreuther K, Masters CL, Evin G: Increased expression of the amyloid precursor beta-secretase in Alzheimer’s disease. J Neurosci 2002, 21:783-788.

73. Bartl B, Black RA: White JM: ADAMs: focus on the protease domain. Curr Opin Cell Biol 1998, 10:654-659.

74. Kuhn PH, Marjaux E, Imhof A, De Strooper B, Haass C, Lichtenthaler VW: Regulation of intramembrane proteolysis of the interleukin-1 receptor by alpha-, beta-, and gamma-secretase. J Biol Chem 2007, 282:19862-19995.

75. Keisier BC, Pichsel H, Neuen-Jacob E, Tourtellotte WW, Hartung HP: ADAM-10 and ADAM-17 in the inflamed human CNS. J Clin Invest 2004, 42:398-405.

76. Nustall RK, Silva C, Hierd W, Bar-Or A, Patel KD, Edwards DR, Yong VW: Metalloproteinases are enriched in microglia compared with leukocytes and they regulate cytokine levels in activated microglia. J Biol Chem 2005, 280:516-526.

77. Yang VW: Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci 2005, 6:931-944.
92. Lammich S, Schobel S, Zimmer AK, Lichtenthal SF, Haass C: Expression of the Alzheimer protease BACE1 is suppressed via its F-untreated region. EMBO Rep 2004, 5:620-625.

93. Rogers G Jr, Edelman GM, Mauro VP: Differential utilization of upstream AUGs in the beta-secretase mRNA suggests that a shunting mechanism regulates translation. Proc Natl Acad Sci USA 2004, 101:2794-2799.

94. De Pietri Tonelli D, Mihalovich M, Di Cesare A, Codazzi F, Grohovaz F, Zacchetti D: Translational regulation of BACE-1 expression in neuronal and non-neuronal cells. Nucleic Acids Res 2004, 32:1808-1817.

95. Takasugi N, Tomita T, Hayashi I, Tsuruoka M, Niimura M, Takahashi Y, Thinakaran G, Iwatsubo T: The role of presenilin cofactors in the gamma-secretase complex. Nature 2003, 422:438-441.

96. Yu G, Nishimura M, Arakawa S, Levitan D, Zhang L, Tandon A, Song YQ, Rogoeva E, Chen F, Kawarai T, Supala A, Levesque L, Yu H, Yang DS, Holmes E, Milman P, Liang Y, Zhang DM, Xu DH, Sato C, Roge T, Smith M, Janus C, Zhang X, Aksenov M, Farmure TS, Horser S, Bruni A, Fraser P, St George-Hyslop P: Nicastrin modulates presenilin-mediated notch/gpl-1 signal transduction and betaAPP processing. Nature 2000, 407:48-54.

97. Shah S, Lee SF, Tabuchi K, Hao YH, Yu C, LabPlant Q, Ball H, Dann CE, Sudhof TC, Yu G: Nicastrin functions as a gamma-secretase-substrate receptor. Cell 2005, 122:435-447.

98. Haass C, Steiner H: Alzheimer disease gamma-secretase: a complex story of GxGD-type presenilin proteases. Trends Cell Biol 2002, 12:556-562.

99. Anverset W, De Strooper B: A cell biological perspective on Alzheimer's disease. Annu Rev Dev Biol 2002, 18:25-51.

100. Selkoe DJ: Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 2001, 81:741-766.

101. Younkin SG: The role of A beta 42 in Alzheimer's disease. J Biol Chem 2004, 279:289-292.

102. Kennedy JL, Farrer LA, Andreasen NC, Mayeux R, George-Hyslop P, Younkin SG, Selkoe DJ: Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer's disease: old and new mechanisms of action. J Neurochem 2004, 91:521-536.

103. Gasparini L, Ongini E, Wilcock D, Morgan D: Activity of flurbiprofen and chemically related anti-inflammatory drugs in models of Alzheimer's disease. Brain Res Brain Res Rev 2005, 48:400-408.

104. Beher D, Clarke EE, Wrigley JD, Martin AC, Nadin A, Churcher I, Shearman MS: Selected non-steroidal anti-inflammatory drugs and their derivatives target gamma-secretase at a novel site. J Biol Chem 2004, 279:43419-43426.

105. Clarke EE, Churcher I, Ellis S, Wrigley JD, Lewis HD, Harrison T, Shearman MS, Beher D: Intra- or intercomplex binding to the gamma-secretase enzyme. A model to differentiate inhibitor classes. J Biol Chem 2006, 281:31279-31289.

106. Czirr E, Leuchtenberger S, Donner-Goscek C, Schneider A, Jucker M, Koo EH, Pietrzik CU, Baumann K, Weggen S: Insensitivity to Abeta42-lowering non-steroidal anti-inflammatory drugs and gamma-secretase inhibitors is common among aggressive presenilin-1 mutations. J Biol Chem 2007, 282:24504-24513.

107. Rogers JT, Leiter LM, McPhee J, Cahill CM, Zhan SS, Potter H, Nilsson LM, Shearman MS, Beher D: Identification of novel 'inflammatory' compounds. J Neurochem 2004, 91:1672-1677.

108. Szekely CA, Green RC, Breitner JC, Ostbye T, Beiser AS, Corrada MM, Coppola D, Morgan D, Gordon M: Microglial activation and beta-amyloid deposition in a mouse model of Alzheimer's disease. J Neurosci 2004, 24:46907-46914.

109. Scott DJ, Fusi G, Merchant KM: Lack of specific amyloid-beta(1-42) suppression by nonsteroidal anti-inflammatory drugs in young, plaque-free Tg2576 mice and in guinea pig neuronal cultures. J Pharmacol Exp Ther 2005, 312:399-406.

110. Vlad SC, Miller DR, Kowell NW, Felson DT: Protective effects of NSAIDs on the development of Alzheimer disease. Neurology 2008, 70:1672-1677.

111. Guo JT, Yu J, Grass D, de Beer FC, Kindy MS: Inflammation depletes cerebrovascular function in an animal model of amyloidosis. J Neurosci 2002, 22:950-959.

112. Rogers JT, Leiter LM, McPhee J, Cahill CM, Zhan SS, Potter H, Nilsson MN: The role of presenilin cofactors in the gamma-secretase complex. J Biol Chem 2004, 279:6421-6427.

113. Page RM, Baumann K, Tomioka M, Perez-Revuelta BI, Fukumori A, Jacobsen H, Flohr A, Luебbers T, Ozmen L, Steiner H, Haass C: Generation of Abeta38 and Abeta42 is independently and differentially affected by familial Alzheimer disease-associated presenilin mutations and gamma-secretase modulation. J Biol Chem 2008, 283:677-683.

114. Gasparini L, Ongini E, Wilcock D: Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer's disease: old and new mechanisms of action. J Neurochem 2004, 91:521-536.