LETTER TO THE EDITOR

High response rate to BNT162b2 mRNA COVID-19 vaccine among self-care dialysis patients

Hélène Georgery1, Arnaud Devresse1,2, Jean-Cyr Yombi2,3, Leila Belkhir2,3, Julien De Greef2,3, Anais Scohy4, Nada Kanaan1,2, Benoit Kabamba2,4, Johann Morelle1,2 and Eric Goffin1,2

1Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium, 2Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium, 3Department of Internal Medicine and Infectious Disease, Cliniques universitaires Saint-Luc, Brussels, Belgium and 4Department of Microbiology, Cliniques universitaires Saint-Luc, Brussels, Belgium

Correspondence to: Eric Goffin; E-mail: eric.goffin@uclouvain.be

Coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is particularly life threatening in patients with kidney failure under dialysis [1–3], with mortality rate at 28 days of 21.2% in the ERA-EDTA registry [4] and 25% in the ERACODA (European Renal Association COVID-19 Database) database [5].

Vaccination campaigns have started in most countries, with a robust humoral response in up to 90% of patients on haemodialysis (HD), albeit delayed and at rates below those achieved in healthy controls [6–8], but higher than in kidney transplant recipients (KTRs) under chronic immunosuppression therapy [7, 9, 10]. Very few data are currently available in patients on self-care dialysis. This peculiar population is younger—except for older patients on peritoneal dialysis (PD)—with few comorbidities and less likely to be infected with COVID-19 than in-centre HD patients, as they can easily achieve efficient social distancing because of their home therapy. However, a significant proportion of self-care dialysis patients is still given chronic immunosuppression, mostly to avoid acute rejection of a failed kidney graft, raising the question of the effectiveness of the vaccination.

We assessed the serological response 28 days after the second dose of the BNT162b2 mRNA COVID-19 vaccine (Pfizer-BioNTech) in all adult patients treated in our self-care dialysis unit, with simultaneously two different electro-chemiluminescent immunoassays using a recombinant nucleocapsid (N) antigen and testing for antibodies against the spike protein receptor-binding, with a cut-off index >1.0 and >0.8 U/mL, respectively.

Out of 91 patients in the unit, 13 (14%) refused the vaccination because of a fear of adverse events and/or in line with the conspiracy theory, and 12 (13%) received a delayed vaccination because of hesitations, organizational difficulties or current medical complications. Six patients (7%) had a previous documented SARS-CoV-2 infection. Sixty-six (72%) patients [54% males, median age 54 (19–82) years, 6% diabetics] received two doses of BNT162b2 mRNA COVID-19 vaccine between 26 February and 9 April 2021. Twenty-one (32%) were on self-care HD (in a satellite unit) (SC-HD), 30 (45%) on home HD and 15 (23%) on PD, respectively (Figure 1).

Ten patients (15%) had antibodies against the N antigen; the six patients with a past SARS-CoV-2 infection and four other patients without previous diagnosis of COVID-19. Sixty-four (97%) vaccinated patients mounted a serological response against the spike protein receptor-binding domain. The response rate is very similar (96%) when considering only the 54 patients without history of COVID-19 and without anti-SARS-CoV-2 N antibody.

The total antibody titers were >250 U/mL in 51 (80%) and between 0.8 and 250 U/mL [median titer 18.8 U/mL (6.4–200.3)] in 13 (20%) of them, respectively. Only two patients did not mount a serological response (titers <0.8 U/mL): a 67-year-old cardiac transplant female recipient with calcineurin inhibitors nephrotoxicity as primary renal disease, on mycophenolic mofetil and...
Self-care dialysis population, n=91
- Home HD, n=46
- SC-HD, n=25
- PD, n=20

Declined or postponed vaccination, n=25
- Home HD, n=16
- SC-HD, n=4
- PD, n=5

Included in analysis, n=66
- Home HD, n=30
- SC-HD, n=21
- PD, n=15

Previous SARS-CoV-2 infection*, n=10
- Home HD, n=5
- SC-HD, n=5
- PD, n=0

No previous SARS-CoV-2 infection*, n=56
- SARS-CoV-2 S >250, n=42
- SARS-CoV-2 S 0.8-250, n=12
- SARS-CoV-2 S <0.8, n=2

Table 1. Characteristics of patients under immunosuppressive therapy with serological response and patients without serological response

Age	Sex	Diabetes	Cause of ESKD	Immunosuppressive therapy	Dialysis modality	Reason for immunosuppressive therapy	
Patient 1	28	F	No	Tubulo-interstitial disease	Tac/MMF/Cs	Home HD	Failed renal transplant
Patient 2	41	M	No	Tubulo-interstitial disease	Tac/Cs	Home HD	Liver transplant and failed renal transplant
Patient 3	63	M	No	Glomerulonephritis	Tac/Cs	Home HD	Faded renal transplant
Patient 4	50	M	No	Calcineurin inhibitors nephrotoxicity	Tac	SC-HD	Liver transplant
Patient 5	48	F	No	Glomerulonephritis	MMF/Cs	SC-HD	Systemic lupus erythematosus
Patient 6	34	F	No	Systemic lupus erythematosus	Csa/Cs	PD	Faded renal transplant
Patient 7	69	M	No	Glomerulonephritis	Csa/Cs	Home HD	Faded renal transplant
Patient 8	64	M	No	Glomerulonephritis	Csa	Home HD	Faded renal transplant
Patient 9	54	F	No	Glomerulonephritis	Csa	Home HD	Faded renal transplant
Patient 10	46	M	No	Alport	Csa	PD	Faded renal transplant
Patient 11	74	F	No	ADPKD	Cs	SC-HD	Faded renal transplant
Patient 12	45	F	No	Tubulo-interstitial disease	Cs	SC-HD	Faded renal transplant
Patient 13	21	F	Yes	Renal dysplasia	Cs	Home HD	Prevention of encapsulating peritoneal sclerosis
Patient 14	49	M	No	Tubulo-interstitial disease	Cs	Home HD	Faded renal transplant
Patient 15	69	F	No	Multiple myeloma	Lenalidomide	PD	Multiple myeloma
Patient 16	67	F	No	Calcineurin inhibitors nephrotoxicity	Csa/MMF	PD	Cardiac transplant
Patient 17	71	M	Yes	Diabetic nephropathy	/	PD	NA

ADPKD, autosomal dominant polycystic kidney disease; Cs, corticosteroid; Csa, cyclosporin A; ESKD, end-stage kidney disease; F, female; M, male; MMF, mycophenolate mofetil; NA, not applicable; Tac, tacrolimus.

*Previous SARS-CoV-2 infection defined as positive nasopharyngeal swab or presence of anti-SARS-CoV-2 N antibodies.
cyclosporine as anti-rejection therapy, and a 71-year-old diabetic male, both on PD and older than the patients who mounted a serologic response.

The influence of a chronic immunosuppressive therapy prescription at the time of vaccination was evaluated. Fifty (76%) patients were not given any immunosuppressive therapy: 41 (82%) patients mounted an antibody titer >250 U/mL and 8 patients between 0.8 and 250 [median 59.2 (6.4–200.3)] U/mL, respectively. Sixteen (24%) patients were taking chronic immunosuppressive therapy for various reasons: 10 as a maintenance therapy to avoid acute rejection of a failed kidney transplant, 3 after solid organ (2 liver and 1 heart) transplantation, 1 for multiple myeloma, 1 for systemic lupus erythematosus and 1 as a preventive measure of sclerosing encapsulation peritonitis (Table 1). Fifteen (94%) of them developed a positive serology 28 days after the second vaccine administration, but with lower titers than patients without any immunosuppressive therapy: 10 (67%) had an antibody titer >250 U/mL and 5 between 0.8 and 250 [median 18.8 (7.8–52.2)] U/mL, respectively.

The serological response of patients from our self-care dialysis unit is higher than that of in-centre HD patients [6, 7, 11], suggesting that older age and comorbidities might detrimentally affect the serological response after vaccination, as observed in other populations [12]. Interestingly, 94% of our self-care dialysis patients still given chronic immunosuppression mounted a satisfactory immunization rate, suggesting that the level of immunosuppression and/or the type of immunosuppressant agents used may influence the serologic response, as already suspected [13]. These encouraging results in the efficacy of SARS-CoV-2 vaccination in our self-care dialysis patients emphasize the importance of promoting vaccination in this population.

AUTHORS’ CONTRIBUTIONS

H.G. and E.G. performed the research idea, study design and data analysis. H.G., J.M., A.D., J.D.G., L.B., J.-C.Y., N.K. and E.G. took care of the patients. J.D.G., L.B. and J.-C.Y. organized the vaccination. A.S. and B.K. performed the serologic analysis. All authors discussed and reviewed the manuscript.

CONFLICT OF INTEREST STATEMENT

None declared.

ACKNOWLEDGEMENTS

To the team of the self-care dialysis unit at Cliniques universitaires Saint-Luc for their involvement in the care of the patients.

REFERENCES

1. Gansevoort RT, Hilbrands LB. CKD is a key risk factor for COVID-19 mortality. Nat Rev Nephrol 2020; 16: 705–706
2. Oetjens MT, Luo JZ, Chang A et al. Electronic health record analysis identifies kidney disease as the leading risk factor for hospitalization in confirmed COVID-19 patients. PLoS ONE 2020; 15: e0242182
3. Weinhandl ED, Wetmore JB, Peng Y et al. Initial effects of COVID-19 on patients with ESKD. J Am Soc Nephrol 2021; 32: 1444–1453
4. Jager KJ, Kramer A, Chesnaye NC et al. Results from the ERA-EDTA Registry indicate a high mortality due to COVID-19 in dialysis patients and kidney transplant recipients across Europe. Kidney Int 2020; 98: 1540–1548
5. Hilbrands LB, Duivenvoorden R, Vart P et al.; ERACODA Collaborators. COVID-19-related mortality in kidney transplant and dialysis patients: results of the ERACODA collaboration. Nephrol Dial Transplant 2020; 35: 1973–1983
6. Attias P, Sakhi H, Rieu P et al. Antibody response to the BNT162b2 vaccine in maintenance hemodialysis patients. Kidney Int 2021; 99: 1490–1492.
7. Ikizler TA, Coates PT, Rovin BH et al. Immune response to SARS-CoV-2 infection and vaccination in patients receiving kidney replacement therapy. Kidney Int 2021; 99: 1275–1279
8. Yanay NB, Freiman S, Shapiro M et al. Experience with SARS-CoV-2 BNT162b2 mRNA vaccine in dialysis patients. Kidney Int 2021; 99: 1496–1498
9. Boyarsky BJ, Werbel WA, Avery RK et al. Immunogenicity of a single dose of SARS-CoV-2 messenger RNA vaccine in solid organ transplant recipients. JAMA 2021; 325: 1784–1786
10. Benotmane I, Gautier-Vargas G, Cognard N et al. Low immunization rates among kidney transplant recipients who received two doses of the mRNA-1273 SARS-CoV-2 vaccine. Kidney Int 2021; 99: 1498–1500
11. Lacson E, Argyropoulos CP, Manley HJ et al. Immunogenicity of SARS-CoV-2 vaccine in dialysis. medRxiv 2021; doi: 10.1101/2021.04.08.21254779; preprint: not peer reviewed
12. Yelin I, Katz R, Herzel E et al. Associations of the BNT162b2 COVID-19 vaccine effectiveness with patient age and comorbidities. medRxiv 2021; doi: 10.1101/2021.03.16.21253686; preprint: not peer reviewed
13. Monin L, Laing AG, Munoz-Ruiz M et al. Safety and immunogenicity of one versus two doses of the COVID-19 vaccine BNT162b2 for patients with cancer: interim analysis of a prospective observational study. Lancet Oncol 2021; 22: 765–778