Physiological strategies of Eichhornia crassipes (Mart.) Solms to tolerate Cr\(^{6+}\) accumulation, compared to a sensitive species Pistia stratiotes L.

Taufik Taufikurahman\(^1\), Andira Rahmawati\(^1\), Muhammad Arief Ardiaysyah\(^1\), Dea Prianka Ayu Ilhamsyah\(^1\), dan Serafina Rosanti\(^1\)

\(^1\)Sekolah Ilmu dan Teknologi Hayati, Institut Teknologi Bandung, Kota Bandung, Indonesia Jalan Ganesha No. 10 Bandung 40132 Indonesia ; e-mail: taufik@sitb.itb.ac.id

ABSTRACT

Chromium in the form of hexavalent chromium (VI) has been known to be harmful to living organisms. Therefore, it is important to treat wastewater from leather tanning industry before being discharged to the environment. The aim of this study is to examine ecophysiological strategies of waterhyacinth (Eichhornia crassipes) to tolerate Cr\(^{6+}\) accumulation in its tissue, compared to sensitive species water lettuce (Pistia stratiotes). The plants were cultivated in containers containing Hoagland medium and treated with some variation of Cr\(^{6+}\) concentrations of Cr\(^{6+}\) i.e. 0, 40, 80 and 120 ppm for 14 days. Some parameters including CAT (catalase), Ascorbate peroxidase (APX), chlorophyll concentration and proline in the plants were measured. The biomass yield of plant in Cr\(^{6+}\) stress was negative (-0.732 to -1.84 g/week) which indicated both E. crassipes and P. stratiotes reduced their growth. The higher the concentration of Cr\(^{6+}\), the lower the chlorophyll contents in the leaves. The lowest of chlorophyll content was in 120 ppm (0.15 mg/g in P. stratiotes and 0.12 mg/g in E. crassipes). The highest of CAT activity in E. crassipes was 109% in 40 ppm Cr\(^{6+}\), while in P. stratiotes was 76% in 120 ppm. Proline content in both E. crassipes and P. stratiotes were not different significantly. In general, E. crassipes plants have the ability to adapt to Cr\(^{6+}\) stress better compared to P. stratiotes which was severely damaged when grown in high Cr\(^{6+}\) concentration. Both plants can remediate waste fairly well (level of elimination 62-68%) during the exposure period of 14 days to Cr\(^{6+}\) solution.

Keywords: Eichhornia crassipes, Hexavalent chromium, Pistia stratiotes, Ecophysiology , Phytoremediation

Citation: Taufikurahman, T., Rahmawati, A., Ardiaysyah, M.A., Ilhamsyah, D.P.A, dan Rosanyi, S. (2020). Physiological Strategies of Eichhornia crassipes (Mart.) Solms to tolerate Cr\(^{6+}\) accumulation, compared to a sensitive species Pistia stratiotes L. Jurnal Ilmu Lingkungan, 18(1), 82-88, doi:10.14710/jil.18.1.82-88
1. Introduction

The development of the leather tanning industry in Indonesia has both positive and negative impact to the society and environment. The positive impact is increasing economic growth for the society because leather tanning industry provides high economic value, however the discharge of untreated wastewater could severely polluting nearby river. Chromium is still the main tanner and is used by 85% of leather tanning industry worldwide [Bacordit et al., 2014]. The chromium in tannery wastewater is discharged into the environment and then it caused stress conditions for aquatic organisms.

Chromium is an element in the earth with various forms, i.e. Cr, Cr⁰, Cr²⁺, Cr³⁺, Cr⁴⁺, Cr⁵⁺, and Cr⁶⁺, however only Cr³⁺ and Cr⁶⁺ are commonly found in environment because of their stability in water and soil. Cr³⁺ has a lower toxicity than Cr⁶⁺, but both of them are still serious threats if they accumulate in high concentration in organisms. In plant, chromium is mostly accumulated in roots [Gomes, et al., 2017], and become immobile in vacuole, but it can also being transferred to other parts through xylem [Taufikurahman et al., 2017]. Under chromium stress, plant reduce its root diameter, root surface area, and number of root hair, affect photosynthesis metabolism, since chromium is also reported to reduced the absorption of Fe, S, and P elements, which are important cofactors in photosynthesis [Gomes, et al., 2017].

Eichhornia crassipes (water hyacinth) and Pistia stratiotes (water lettuce) have been known as phytoaccumulator for Cr which accumulates in wastewater [Gomes, et al., 2017]. Our previous study also showed that E. crassipes and P. stratiotes have the ability as phytoremediator for chromium in water, although P. stratiotes growth was suffered in high Cr concentration [Dawy, 2008]. Plants can develop various strategies to adapt and maintain their lives in stress conditions [Lambers et al., 2008]. Two basic strategies of plant response are accumulators and excluders [Baker, 2008]. In plants, chromium can induces phytotoxicity by interfering growth, nutrient uptake, and photosynthesis. Plants tolerate Cr toxicity via various defense mechanism such as complexation by organic ligands, compartementation into the vacuole, and scavenging ROS via antioxidative enzymes [Shahid et al., 2017]. In this study we investigated ecophysiological strategies of E. crassipes to tolerate Cr⁶⁺ accumulation in its tissue, compared to sensitive species of P. stratiotes.

2. Materials and Method

Cultivation of E. crassipes and P. stratiotes was carried out in 10% strength Hoagland solution using 15-L container, with 3 replicates for 14 days (March–April 2019). The K₂CrO₇ was dissolved in water with various concentration: 0 (control), 40, 80, and 120 ppm. Acidity of medium was adjusted in the range of 5.5-6.8. All parameters were measured on the 14th day, including: fresh weight, number of leaves, chlorophyll content, CAT enzyme activity, APX enzyme activity, and proline content. Chromium content in medium, roots and leaves were measured using Atomic Absorption Spectrophotometry (AAS).

For chlorophyll content measurement, 0.1 g of the plant's fresh weight was extracted using 80% acetone. The extract was added with acetone until the volume reached 10 mL. Chlorophyll content was measured using spectrophotometry at wavelength of 663 nm and 645 nm. Total chlorophyll content was measured using the equation (1),

\[
\text{Chlorophyll} \left(\frac{\mu g}{g} \right) = \frac{0.02A_{663}+0.04A_{645}}{1000 \times \text{wet weight}} \times V_{\text{acetone}} \tag{1}
\]

CAT activity was measured by changes in absorbance of sample at wavelength of 240 nm, while the APX activity was measured at 290 nm. Absorbance was measured every 30 seconds for three minutes. Enzyme activity in a unit was determined as the number of enzyme decomposed in 1 μmol H₂O₂ per minutes at pH 7 and 25°C.

\[
\text{Volume activity} \text{ CAT (unit/mL)} = \frac{\Delta A \times V_s}{0.0436 \times V_s \times \text{fresh weight}} \tag{2}
\]

\[
\text{Enzyme activity CAT (unit/mg)} = \frac{\Delta A \times V_s}{2.8 \times V_s \times \text{fresh weight}} \tag{3}
\]

\[
\text{Enzyme activity} \text{ APX (unit/mL)} = \frac{2.8 \times V_s}{\text{volume activity} \times \text{fresh weight}} \tag{4}
\]

\[
\text{Enzyme activity APX (unit/mg)} = \frac{2.8 \times V_s}{\text{volume activity} \times \text{fresh weight}} \tag{5}
\]

Vq is volume reaction in cuvette (mL) and Vs is sample volume that used (mL). The blank and sample composition for measuring enzyme activity are shown at Table 1 and Table 2.

Component	Blank	Sample
50 mM buffer	920 μL	920 μL
Deionized water	70 μL	70 μL
Sample	10 μL	10 μL
H₂O₂	-	-

Component	Blank	Sample
50 mM buffer	890 μL	890 μL
Ascorbic acid	2 μL	2 μL
Sample	30 μL	30 μL
H₂O₂	20 μL	20 μL

Proline content was measured using Bates method (1973) by extracting leaves and roots in liquid nitrogen with 3% sulfoallicylic acid. The filtrate was filtered, and two mL filtrate was reacted with 2 mL of ninhydrin acid and 2 mL glacial acetic acid for an hour at 100°C in a water bath. The solution was added with 4 mL of toluene by stirring using vortex for 20 seconds. The absorbance of solution with toluene was measured using spectrophotometry at wavelength of 520 nm. The proline content is calculated using equation 6.
The ability of *E. crassipes* and *P. stratiotes* in remediating chromium (VI) was determined by percent of removal, BCF (Bio Concentration Factor) in root and leaves, TF (Translocation Factor), and TI (Tolerance Index). BCF is defined as the concentration ratio of heavy metal in plants compared to concentration heavy metal in medium. Percent of removal, BCF, TF dan TI is determined using equation 7, 8, 9, 10.

\[
\% \text{removal} = \frac{[\text{Cr medium}]_{\text{initial}} - [\text{Cr medium}]_{\text{end}}}{[\text{Cr medium}]_{\text{initial}}} \times 100
\]

\[
BCF = \frac{\text{Cr Concentration in plant}|\text{mg/g}|}{\text{Early Cr concentration in medium}|\text{mg/L}|}
\]

\[
TF = \frac{\text{Cr Concentration in leaves}|\text{mg/g}|}{\text{Cr Concentration in root}|\text{mg/g}|}
\]

\[
TI = \frac{\text{Plant biomass in treatment (g FW)}}{\text{Plant biomass in control (g FW)}}
\]

3. Result and Discussion

Control plants of *P. stratiotes* after cultivated for 14 days showed darker green in color compared to treated *P. stratiotes* (Figure 1). As chromium concentrations increased, plants color was more yellow and showed chlorosis due to accumulation of Cr\(^{6+}\) [Hayat, 2012]. Chromium can enter plant cell through active transport mechanism [Shanker, 2017], and the accumulation of Cr\(^{6+}\) increase ROS in plants will affect biosynthesis of chlorophyll [Lu, 2011]. In *E. crassipes*, this damage was not visibly seen in all Cr\(^{6+}\) concentrations, while in *P. stratiotes* chlorosis already occurred in plants grown at low concentration of Cr\(^{6+}\) (40 ppm). Cell damage in *P. stratiotes* was worse in 80 and 120 ppm, indicated by degradation and decay of plant biomass in both concentrations and caused plant death. Observation on both plants’ morphology indicates that *P. stratiotes* was much more sensitive to Cr\(^{6+}\) exposure than *E. crassipes*.

Yield in biomass of *P. stratiotes* and *E. crassipes* were significantly different (P<0.05) between control and treatment. The negative of biomass yield in stress chromium condition indicated cell damage in plant cell. Chromium concentration 100 ppm can reduce 50% of fresh weight of *Vallisneria spiralis* after 72 hours exposure [Vajpayee, et.al. 2001]. Cell damage is caused by increasing chromium accumulation in cell. The accumulation of chromium causes accumulation of ROS and apoptosis of cell. ROS can cause enzyme damage and disturb cellular activity.

Chlorophyll content of *P. stratiotes* grown in Cr\(^{6+}\) concentrations was significantly different with control (Table 3). The higher chromium concentration in medium, the lower chlorophyll content. Accumulation of chromium seem to disorganize chloroplast structure. In addition, chromium may affect enzyme activity for chlorophyll biosynthesis. In other report, chlorophyll destruction also occured at 100 ppm chromium concentration [Sufia, 2014]. The accumulation of chromium can cause a lack of ferrum and zinc absorption in plant, which will affect chlorophyll biosynthesis. Chlorophyll content in *E. crassipes* grown in Cr\(^{6+}\) concentrations was not significantly different with control (P<0.05). This indicate that *E. crassipes* is tolerant to Cr\(^{6+}\) accumulation.
Chromium removal efficiency in \(P. \) \(\text{stratiotes} \) and \(E. \) \(\text{crassipes} \) is not significantly different, in the range of 62-68\% (Table 4). Chromium removal efficiency in \(E. \) \(\text{crassipes} \) reached 84\% after 11 days of exposure [Mishra dan Tripathi, 2009] and chromium removal efficiency in \(P. \) \(\text{stratiotes} \) reached 100\% after 72 days of exposure [Prajapati \(\text{et al.} \), 2012].

Table 4 The chromium removal efficiency in \(P. \) \(\text{stratiotes} \) and \(E. \) \(\text{crassipes} \)

Sample	\(\text{Cr}^{6+} \) concentration in medium (mg/L)	Removal Efficiency (%)	
	Initial	End	
\(E. \) \(\text{crassipes} \)	40	15.233	62
	80	25.95	68
	120	45.233	62
\(P. \) \(\text{stratiotes} \)	40	14.525	64
	80	27.133	66
	120	39.1	67

An increase in plant biomass may cause an increase in removal efficiency in medium [Smolyakov, 2012]. Biomass reduction in \(P. \) \(\text{stratiotes} \) was higher than \(E. \) \(\text{crassipes} \), especially above 40 ppm chromium concentration. \(E. \) \(\text{crassipes} \) did not increase its biomass so the rate of chromium removal in the medium was also lower at high initial chromium concentrations (more than 40 ppm). \(E. \) \(\text{crassipes} \) is more tolerant than \(P. \) \(\text{stratiotes} \) in chromium concentration above 40 ppm. After 14 days of exposure to high \(\text{Cr}^{6+} \) concentration, leaves and root of \(P. \) \(\text{stratiotes} \) were severely damaged.

\(\text{Cr}^{6+} \) accumulation was seem to increase catalase enzyme activity in \(E. \) \(\text{crassipes} \) (Figure 3). The \(\text{Cr}^{6+} \) concentration that can increase the highest of CAT activity was in 40 ppm (109\%). An increase in \(\text{Cr}^{6+} \) concentration in medium causes accumulation of Reactive Oxygen Species (ROS) in plants which in turn will create cell damage, hence there is an increase of catalase enzyme activity in order to eliminate ROS. Catalase enzyme has a function in decreasing ROS [Sucalho dan Kasmiyanti, 2018]. In contrast, in \(P. \) \(\text{stratiotes} \) the higher \(\text{Cr}^{6+} \) concentration, the lower CAT enzyme activity. The lowest CAT activity was in 120 \(\text{Cr}^{6+} \) concentration (76\%). Beside that, the CAT enzyme activity in 40 ppm and 80 ppm were 39\% and 41\%. A decrease in CAT enzyme activity may be caused by reaction of \(\text{Cr}^{6+} \) with other component [Palace, \(\text{et al.} \), 1992], for example \(\text{Fe}^{2+} \) which can be found in metabolic [Palace, \(\text{et al.} \), 1992; Vernay, \(\text{et al.} \), 2007]. In this study \(P. \) \(\text{stratiotes} \) plants degraded after 14 days of exposure, which indicate its inability to tolerate \(\text{Cr}^{6+} \) accumulation in its tissue.
Meanwhile, the APX enzyme activity decreased significantly in P. Stratiotes (Figure 5). Percentage of decrease in APX enzyme activity were 71% (40 ppm), 67% (80 ppm), and 78% (120 ppm) compared to control.

The same result shown in Brassica juncea L. that APX enzyme activity decreased because of an increase in Cr concentration [Diwan et al., 2010]. This indicates that P. stratiotes is more sensitive to Cr⁶⁺ than E. crassipes. Beside CAT enzyme and APX enzyme, other enzymes such as superoxide dismutase (SOD) and glutathione reductase (GR) also plays a role in defense mechanism against ROS [Madan et al., 2017].

In E. crassipes, proline concentration in leaves of Cr treatment is higher than control (Figure 6). While in P. stratiotes, there is no difference between control and treatment. Other study showed that accumulation proline in plants increase with the increasing of metal concentration in medium [Ojiegba and Fasidi, 2006]. The main function of proline is to keep osmotic cell from oxidative stress and macromolecule stability in cell [Diwan, et al., 2010]. Proline can reduce the free radical molecule which induced by metal stress and prevent ROS forming in cell [Abraham, et al., 2010 dan Gomes, et al., 2017].

Both plants' root BCF have higher value than leaves for all treatments (Table 5). This result is the same result with previous study which E. crassipes use to remediate Cr⁶⁺ from tanning wastewater [Woldemichael, et al., 2011]. Root are part of plant which is directly exposed to chromium in medium and plants have mechanism that minimizes the accumulation of ions in the leaves or stem. The accumulation of ions in the leaves can cause damage to photosynthesis process [Woldemichael, et al., 2011]. Increasing of waste concentration caused increasing of heavy metal accumulation so that the total BCF value decreased [Lu, et al., 2004].

The TF value describe the ability of plant to translocate metals from roots to leaves or stem. The high TF value is more advantageous for remediation because it can decrease waste concentration in root so that the absorption can continue without toxicity in root [Lu, et al., 2004]. In E. crassipes, the higher of Cr⁶⁺ in medium, the higher TF value, while the opposite occurs for P. stratiotes. This result is due to the degradation of P. stratiotes plant in higher Cr⁶⁺ concentration, so it can be concluded that E. crassipes has more ability for chromium compartmentalisation than P. stratiotes. E. crassipes is a better phytoremediator than P. stratiotes.

TI value describe the effect of Cr⁶⁺ to relative growth of plant. In general, TI value of E. crassipes is higher than P. stratiotes in 40 ppm and 80 ppm (Table 6). High TI value means that the plant is tolerant to the treatment [25]. E. crassipes is more tolerant to Cr⁶⁺ exposure than P. stratiotes at 40 and 80 ppm concentrations. TI value at 120 ppm concentration of E. crassipes is supposed to be higher than P. stratiotes because E. crassipes has higher TF value than P. stratiotes, indicating a more efficient mechanism in Cr⁶⁺ compartementalisation. This anomaly may be caused by the non-uniform initial plant size and mass of E. crassipes and the degradation of P. stratiotes plants in 120 ppm Cr⁶⁺ concentration.
4. Conclusion

E. crassipes and P. stratiotes showed different physiological responses at different concentrations of Cr\(^{6+}\). At all Cr\(^{6+}\) concentration, P. stratiotes plants showed inability to tolerate metal accumulation, this is indicated by no new leaf emergence in treated groups during 14 days of exposure, even the plant was dead at 120 ppm Cr\(^{6+}\) concentration, while E. crassipes showed no visible difference between treated groups and control. Relative growth rate of both plants were affected by Cr\(^{6+}\) concentration in medium. Relative growth rate of P. stratiotes plants started to decrease even from the lowest Cr\(^{6+}\) concentration (40 ppm), while relative growth rate of E. crassipes started to decrease from 80 ppm. Increasing Cr\(^{6+}\) concentration results in a decrease in total chlorophyll content in both plants. Both species were able to remediate Cr\(^{6+}\) well with % removal ranging between 62 and 68% for 14 days of exposure. Accumulation of Cr\(^{6+}\) in P. stratiotes resulted in decrease of both CAT and APX enzyme activities, while the opposite occurs in E. crassipes. The increase of CAT and APX enzyme activities indicated physiological strategies of E. crassipes to survive under Cr\(^{6+}\) stress. Proline concentration in E. crassipes also increased with increasing Cr\(^{6+}\) concentrations, but no significant difference was shown in P. stratiotes. BCF value in E. crassipes was decreased and P. stratiotes BCF value increased with increasing Cr\(^{6+}\) concentration. High TF value was shown in E. crassipes, almost two times higher than P. stratiotes indicating higher adaptive ability of E. crassipes towards Cr\(^{6+}\) stress than P. stratiotes.

Acknowledgement

We thank Kemenristekdikti through PDUPT scheme research fund for the year 2018-2019.

Table 5 BCF and TF Value of E. crassipes and P. stratiotes after 14 days exposure to various Cr\(^{6+}\) concentrations

Sample	BCF Root	BCF Leaves	BCF Total	TF
E. crassipes	0	-	-	2.536
	40	9.688	0.401	10.088
	80	5.459	0.204	5.663
	120	3.999	0.097	4.096
P. stratiotes	0	-	-	-
	40	8.141	0.777	8.918
	80	5.124	5.056	10.180
	120	4.172	6.750	10.922

Table 6. TI Value

Sample	TI
P. stratiotes	40 0.440
	80 0.866
	120 0.843
E. crassipes	40 0.911
	80 1.298
	120 0.771

REFERENCE

Abraham, E., Hourton-Cabassa, C., Erdei, L., & Szabados, L. (2010). Methods for determination of proline in plants. In R. Sunlar, *Methods in Molecular Biology* (pp. 317-331). New York: Springer.

Baccodit, A., Armengol, J., Burgh, S. V., & Olle, L. (2014). New challenge in chrome-free leathers: Development of wet-bright process. *Journal of the American Leather Chemist Association*, 109(4), 99-109.

Baker, AJM. 2008. Accumulators and excluders strategies in the response of plants to heavy metals. *Journal of Plant Nutrition*, 3, 1-4.

Dazy, M. E. (2000). Antioxidant enzyme activities as affected by trivalent and hexavalent chromium species in *Fontinalis antipyretica* Hedw. *Chemosphere*, 281-290.

Diwan, H., Ahmad, A., & Iqbal, M. (2010). Uptake-related parameters as indices of phytoremediation potential. *Biologia*, 65/6, 1004-1011.

Diwan, H., Ahmad, A., & Iqbal, M. (2010). Chromium-induced Modulation in the Antioxidant Defense System During Phenological Growth Stages of Indian Mustard. *International Journal of Phytoremediation*, 12, 142-158.

Gomes, M. A., Hauser-Davis, R. A., Suzuki, M. S., & Vitoria, A. P. (2017). Plant chromium uptake and transport, physiological effects and recent advances in molecular investigations. *Ecotoxicology and Environmental Safety*, 140, 55-64.

Hayat, e. a. (2012). Physiological changes induced by chromium stress in plants: an overview. *Protoplasma*, 599-611.

Lammers, H., Chapin, F. S., & Pons, T. L. (2008). *Plant Physiological Ecology* (2nd ed.). Cheddar, UK: Springer.

Liang, Y., Chen, Q., Liu, Q., Zhang, W., & Ding, R. (2003). Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (*Hordeum vulgare* L.). *J. Plant Physiol.*, 160, 1157-1164.

Lu, Q., He, Z. L., Graetz, D. A., Stoffella, P. J., & Yang, X. (2011). Uptake and distribution of metals by *P. stratiotes* (*Pistia stratiotes* L.). *Environmental Science and Pollution Research*, 18(6), 978-986.

Lu, X., Kryuattrachue, M., Poketithiyook, P., Homyok, K. (2004). Removal of cadmium and zinc by *E. crassipes*, *Eichhornia crassipes*. *Science Asia*, 30, 93-103.

Madan, S., Chanchal, & Kaushik, N. (2017). Uptake of chromium in *E. crassipes* (*Eichhornia crassipes*) and its impact on biochemical structure. *Environment Conservation Journal*, 143-148.

Mishra, V., & Tripathi, B. (2009). Accumulation of chromium and zinc from aqueous solutions using *E. crassipes*. *Journal of Hazardous Materials*, 1059-1063.

Odjegba, V. J. & Fasidi, I. O. (2006). Effects of heavy metals on some proximate composition of *Eichhornia crassipes*. J.
Palace, V., Mjewski, H., & Klaverkamp, J. (1992). Interactions among antioxidative defenses in liver of rainbow trout (Oncorhyncus mykiss) exposed to cadmium. *Can. J. Fish. aquat. Sci.*, 50, 156-162.

Prajapati, S., Meravi, N., & Singh, S. (2012). Phytoremediation of Chromium and Cobalt using Pistia stratiotes: A sustainable approach. *Proceedings of the International Academy of Ecology and Environmental Sciences*, 136.

Shahid, M., Shamshad, S., Raffi, M., Khlaied, S., Bibi, I., Niazi, Nk, Dumat, C. Rashid, Ml. 2017. Chromium speciation, bioavailability, uptake, toxicity, and detoxification in soil plant system: A review. *Chemosphere*: 178: 513-533

Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. *Environment international*, 31(5), 739-753.

Smolyakov, B. (2012). Uptake of Zn, Cu, Pb, and Cd by *E. crassipes* in the initial stage of water system remediation. *Applied Geochemistry*, 1214-1219.

Sucayho, & Kasmiyati, S. (2018). Response of Antioxidative Enzymes of Sonchus oleraceus toward Chromium Stress on Different Planting Media. *Jurnal Biologi Indonesia, 14*(1), 51-59.

Sufia, I. (2014). Uptake and distribution of Cr (VI) in *P. stratiotes* L. *International Proceedings of Chemical, Biological and Environmental Engineering (IPCBEE)*, 78, 93-96.

Taufikurahman, T., A Suryati, MR Kadar, NA Wulansari. Phytoremediation of Chromium Polluted Water Using Water Hyacinth (*Eichhornia crassipes* (Mart.) Solms), Water Lettuce (*Pistia stratiotes* L.), and Water Hyssop (Bacopa monnieri L) in a Simulated Constructed Wetland, 2017. *Proceedings of The 7th Annual Basic Science International Conference, Faculty of Science, Brawijaya University*, pp. 147-152.

Vajpayee, P., Rai, U. N., Ali, M. B., Tripathi, R. D., Yadav, V., Sinha, S., & Singh, S. N. (2001). Chromium-induced physiologic changes in *Vallisneria spiralis* L. and its role in phytoremediation of tannery effluent. *Bulletin of Environmental Contamination and Toxicology, 67*(2), 246-256.

Vernay, P., Gauthier-Moussard, C., & Hitmi, A. (2007). Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. *Chemosphere, 68*, 1563-1575.

Woldemichael, D., Zewge, F., Leta, S. (2011). Potential of *E. crassipes* (*Eichhornia crassipes*) for the removal of chromium from tannery effluent in constructed pond system. *Ethip. J. Sci.*, 34 (1), 49-62.