Feshbach Resonance due to Coherent Λ-Σ Coupling in $^7\Lambda$He

San San Mona, Tin Tin Nwea, Khin Swe Myintb, Y. Akaishic

aDepartment of Physics, Mandalay University, Myanmar.
bPro-Rector, Mandalay University, Myanmar.
cCollege of Science and Technology, Nihon University, Chiba, Japan and RIKEN Nishina Center, Saitama, Japan.

Abstract

Coherent Λ-Σ coupling effect in $^7\Lambda$He is analyzed within three-body framework of two coupled channels, Λ-t-t and Σ-τ-t, where τ represents trinucleon which is either 3H or 3He. The hyperon-trinucleon ($Y\tau$) and trinucleon-trinucleon ($\tau\tau$) interactions are derived by folding G-matrices of YN and NN interactions with trinucleon density distributions. It is found that the binding energy of $^7\Lambda$He is 4.04 MeV below the $\Lambda+t+t$ threshold without Λ-Σ coupling and the binding energy is increased to 4.46 MeV when the coupling effect is included. This state is 7.85 MeV above the 6He+Λ threshold and it may have a chance to be observed as a Feshbach resonance in $^7\Lambda$Li ($e,e'K^+$) $^7\Lambda$He experiment done at Jefferson Lab.

Keywords:
Feshbach resonance: coherent Λ-Σ coupling: hyperon-trinucleon interaction

PACS:

1. Introduction

Significance of Λ-Σ coupling effect in binding mechanism of light Λ-hypernuclei has long been recognized and discussed in the references [1, 2]. Admixture of Σ states in Λ-hypernuclei is probably an important aspect of hypernuclear dynamics. There are two coupling schemes namely incoherent and coherent Λ-Σ couplings [3]. Incoherent Λ-Σ coupling means a nucleon changes to an excited level after the interaction, while the other process where a nucleon remains in its ground state after converting Λ to Σ, is called coherent Λ-Σ coupling. In the latter case, all the nucleons have an equal chance to interact with the converted Σ and coupling effect contributed from each nucleon is added coherently. Harada [4] has successfully fitted the experimental spectra of 4He (stopped K^-, π^-) [5] and 4He (in-flight K^-, π^-) [6] production reactions by taking into account the coherent Λ-Σ coupling effect. Furthermore, all the s-shell Λ hypernuclear binding energies are well reproduced only after the coherent Λ-Σ coupling effect has been included [3, 7].

It has been found that the coherent coupling contribution is significantly large on the order of 1 MeV in $^4\Lambda$H and $^4\Lambda$He ground states.

Email address: pro-rector@mptmail.net.mm (Khin Swe Myint)
2. Coupled-channel three-body cluster model of $^7\Lambda$He

Having considered the above mentioned findings, we analyze a structure of $^7\Lambda$He in continuum by using three-body model of Λ-t-t, Σ^0-t-t and Σ-h-t coupled channels to investigate the coherent Λ-Σ coupling effect. The coupling between Λ-Σ^0 gives coherent Λ-Σ coupling, while Lane term of Σ^0-Σ-h coupling plays a significant role in forming $^{3}_2H$ \cite{8}. All these couplings are included in our analysis. To solve three-body calculation, we employ Kamimura’s coupled rearrangement-channel method \cite{9}.

Three-body Hamiltonian of the Λ-t-t diagonal part, which we explicitly show for explanation here, is

$$H_{\Lambda \Lambda} = -\frac{\hbar^2}{2\mu_c}\Delta_{\vec{k}} - \frac{\hbar^2}{2\mu_c}\Delta_{\vec{r}} + \{V_m(\vec{r}_1) + V_\Lambda(\vec{r}_2) + V_{\Sigma}(\vec{r}_3)\} + V_{\text{Pauli}}(\vec{r}_1, \vec{r}_2),$$

(1)

where V_{Pauli} expresses Pauli exclusion effect between two tritons. In orthogonality-condition model (OCM) \cite{10},

$$V_{\text{Pauli}}(\vec{r}, \vec{r}') = \lim_{\lambda \to \infty} \lambda \sum_{\vec{r}} |\Phi_{\vec{r}}(\vec{r}) \rangle \langle \Phi_{\vec{r}}(\vec{r}')|,$$

(2)

where $\Phi_{\vec{r}}(\vec{r})$ is the Pauli forbidden state. Total wave function of the Λ-t-t channel is expanded in Gaussian bases which are spanned over three rearrangement-channels as follows,

$$\Psi_{\Lambda \Lambda}(\vec{r}, \vec{R}) = \sum_{c=1}^{3} \sum_{l, j, \ell} A_{l, j, \ell}^{(c)} e^{-i(\vec{r} - \vec{R})^2} e^{-i(\vec{r}_1 - \vec{R})^2}.$$

(3)

Wave functions of the other channels Σ^0-t-t and Σ-h-t are treated in a similar way.

The YN interaction used in our computations is a phase equivalent potential of the Nijmegen model-D YN potential \cite{11}. Then, hyperon-trinucleon potentials are obtained by folding the effective interaction, i.e. G-matrix of the above YN potential with trinucleon density distributions \cite{12}. They are expressed in five-range Gaussian form, the range and strength parameters of which are slightly modified so as to reproduce the empirical Λ binding energy of $^{4}_1H(0^+)$ and $^{4}_\Lambda H(1^+)$, and the expansion coefficients for $I = 1/2$ are given in Table 1. Trinucleon-trinucleon (τ-τ) interaction is obtained by doubly folding G-matrix of Tamagaki’s OPEG NN potential with trinucleon density distributions. This τ-τ potential is spin-isospin dependent, and does not give any bound state of triton-triton two-body system in OCM treatment.

State	$^4_1H(0^+)$	$^4_\Lambda H(1^+)$				
	$V_{\Lambda}(\Lambda \tau \tau)$	$V_{\Sigma}(\Sigma \tau \tau)$	$V_{\Lambda}(\Lambda \tau \tau)$	$V_{\Sigma}(\Sigma \tau \tau)$	$V_{\Lambda}(\Lambda \tau \tau)$	
k	$V_{\Lambda}(\Lambda \tau \tau)$	$V_{\Sigma}(\Sigma \tau \tau)$	$V_{\Lambda}(\Lambda \tau \tau)$	$V_{\Sigma}(\Sigma \tau \tau)$	$V_{\Lambda}(\Lambda \tau \tau)$	
1	1.7284	9.4720	-3.5575	0.36869	1.9558	-0.16822
2	50.838	69.234	4.2647	43.237	65.877	7.1105
3	-63.595	-105.09	32.682	-57.877	-44.391	0.70109
4	6.2861	10.130	-4.0631	5.1858	2.1056	-1.3503
5	-1.1202	-2.3001	0.8537	-0.86971	-0.61958	0.12653

Table 1: The hyperon-trinucleon interactions in MeV for $^4_1H(0^+)$ and $^4_\Lambda H(1^+)$. The range parameters are $\mu_1 = 1.00$ fm, $\mu_2 = 1.37$ fm, $\mu_3 = 1.87$ fm, $\mu_4 = 2.56$ fm, $\mu_5 = 3.50$ fm.
3. Results and discussions

From our calculation, a bound state is found to be at \(4.46\) MeV below the \(t + t + \Lambda\) threshold and about \(7.85\) MeV above the \(^6\text{He} + \Lambda\) threshold as shown in Fig. 1. It is a Feshbach resonance state \([13]\), because it lies in continuum region of the open channels such as \(^6\text{He} + \Lambda\), \(^6\text{He} + n\), \(^5\Lambda\text{He} + n + n\) and \(\alpha + n + n + \Lambda\) channels.

\[
\begin{array}{c|c}
\hline
\text{Channel} & \text{Energy (MeV)} \\
\hline
 t + t + \Lambda & 12.31 \\
 \Lambda^4\text{He} + t & 10.28 \\
 \hline
\end{array}
\]

Figure 1: The obtained Feshbach-resonance state of \(t + t + \Lambda\). It is shown together with the thresholds of various channels.

A possible way to populate this resonance state, \(^7\text{He}^*\), is through \((e, e'K^+)\) electro-production reaction on \(^7\text{Li}\) target. Formation of \(^7\text{He}^*\) through the \(tt\Lambda\) resonance is described with \(s\)-channel interaction model as shown in Fig. 2. Formation and decay spectra are analyzed, as explained in Ref. [14], by using Yamaguchi-type separable (i.e. \(s\)-channel) potential:

\[
\langle \vec{k} | V_{ij} | \vec{k}' \rangle = g_i(\vec{k}) U_{ij} g_j(\vec{k}'), \quad g_i(\vec{k}) = \frac{\Lambda^2_i}{\Lambda^2_i + \vec{k}^2},
\]

where \(i, j = t, \Lambda^4\text{He}, \Lambda^6\text{He}\).

Figure 2: Production and decay mechanisms of the \(tt\Lambda\) resonance state through \(^7\text{Li}\ (e, e'K^+)\) reaction.

Missing-mass spectrum and invariant-mass spectrum can be obtained by detecting emitted particles \(e'\) and \(K^+\) and decay particle \(\Lambda\), respectively. The effect of interaction range on the
missing-mass spectrum is investigated by varying the range parameter of 4H-t interaction from 0.3 to 0.9 fm.

Figure 3 shows the missing-mass spectrum calculated with 3 MeV width of the $tt\Lambda$ resonance. We have compared this missing-mass spectrum with JLab experimental spectrum \cite{15}, where a peak structure is found at about 7 MeV above the 6He+Λ threshold, which might correspond to our resonance state. A crude explanation of why a narrow peak appears in continuum region is such that; similarity in structures between α-t and $t-t$ may give a strong population of $tt\Lambda$ state, while different structures between $t-t$ and 8He ensure the formation of quasi-stable Feshbach resonance. However, a recent experimental spectrum of 7Li ($e, e'K^+$) 7He displays only a prominent peak below the 6He+Λ threshold in bound region \cite{16}. In order to clarify the possible existence of Feshbach resonance in 7Li system, electro-production or equivalent experiments on 7Li target with high statistics are highly awaited.

Two of the authors, San San Mon and Khin Swe Myint, would like to thank the organizing committee for the support to attend the Conference.

\begin{thebibliography}{99}
 \bibitem{1} Y. Nogami and E. Satoh, Nucl. Phys. B 19 (1970) 93.
 \bibitem{2} B. F. Gibson, A. Goldberg and M.S. Weiss, Phys. Rev. C 6 (1972) 741.
 \bibitem{3} Y. Akaishi, T. Harada, S. Shinmura and Khin Swe Myint, Phys. Rev. Lett. 84 (2000) 3539.
 \bibitem{4} T. Harada, Phys. Rev. Lett. 81 (1998) 5287.
 \bibitem{5} R. Hayano et al., Phys. Lett. 231 (1989) 355.
 \bibitem{6} T. Nagae et al., Phys. Rev. Lett. 80 (1998) 1605.
 \bibitem{7} H. Nemura, Y. Akaishi and Y. Suzuki, Phys. Rev. Lett. 89 (2002) 142504.
 \bibitem{8} T. Harada, S. Shinmura, Y. Akaishi and H. Tanaka, Nucl. Phys. A 507 (1990) 715.
 \bibitem{9} M. Kamimura, Phys. Rev. A 38 (1998) 621.
 \bibitem{10} S. Saito, Prog. Theor. Phys. 41 (1969) 705.
 \bibitem{11} M.M. Nagels, Th. A. Rijken and J.J. de Swart, Phys. Rev. D 12 (1975) 744.
 \bibitem{12} Sandar Myint Oo, PhD Thesis, University of Mandalay (2004).
 \bibitem{13} H. Feshbach, Ann. Phys. 5 (1958) 357; 19 (1962) 287.
 \bibitem{14} Y. Akaishi, Khin Swe Myint and T. Yamazaki, Proc. Jpn. Acad. B 84 (2008) 264.
 \bibitem{15} L. Yuan et al., Phys. Rev. C 73 (2006) 044607.
 \bibitem{16} O. Hashimoto, these Proceedings.
\end{thebibliography}