The Exponentially Increasing Rate of Patients Infected with COVID-19 in Iran

Leila Moftakhar, MSc1; Mozhgan Seif, PhD2*

1Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
2Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

Background: Coronavirus, the cause of severe acute respiratory syndrome (COVID-19), is rapidly spreading around the world. Since the number of corona positive patients is increasing sharply in Iran, this study aimed to forecast the number of newly infected patients in the coming days in Iran.

Methods: The data used in this study were obtained from daily reports of the Iranian Ministry of Health and the datasets provided by the Johns Hopkins University including the number of new infected cases from February 19, 2020 to March 21, 2020. The autoregressive integrated moving average (ARIMA) model was applied to predict the number of patients during the next thirty days.

Results: The ARIMA model forecasted an exponential increase in the number of newly detected patients. The result of this study also show that if the spreading pattern continues the same as before, the number of daily new cases would be 3574 by April 20.

Conclusion: Since this disease is highly contagious, health politicians need to make decisions to prevent its spread; otherwise, even the most advanced and capable health care systems would face problems for treating all infected patients and a substantial number of deaths will become inevitable.

Keywords: COVID19, Forecast, Iran

Cite this article as: Moftakhar L, Seif M. The exponentially increasing rate of patients infected with COVID-19 in Iran. Arch Iran Med. 2020;23(4):235–238. doi: 10.34172/aim.2020.03.

*Corresponding Author: Mozhgan Seif, PhD; Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran. Tel: 98 9374322827; Email: m.seif@sums.ac.ir
Iran. New cases are all cases that have been approved by laboratory tests. Data were extracted from two sources. First: the daily reports of the Iranian Ministry of Health and Medical Education, which included the number of new cases, new remissions and new deaths. Second: open datasets provided by the Johns Hopkins University, which provides information cumulatively for the general public.

Statistical Model Building
The autoregressive integrated moving average (ARIMA) model was used for forecasting time-series data in order to forecast the number of newly infected patients. ARIMA (p, d, q) is actually simultaneous fit of other two models including Auto Regressive (p) and Moving Average (q)17. The plot of residuals was used in addition to Autocorrelation and Partial Autocorrelation Functions (ACF & PACF) to assess the model’s goodness of fit. Residuals were also tested to be stationary using Box-Ljung.

Box-Cox is another popular transformation to provide stationary time-series.18 It should be noted that Box-Cox transformation was applied to prepare data for fitting ARIMA(0,1,0), by use of ‘forecast’ package in R software. Statistical significance was set at 0.05 and the model goodness of fit was assessed through inspection of residuals.

Results
The observed trend of new cases from February 18 to March 21, 2020 is displayed in Figure 1. This Figure also shows the forecasted number for thirty days ahead, by ARIMA model (Table 1). Obviously, an exponential increase is clear in the daily number of newly detected patients. According to this prediction, if the spreading pattern continues similarly to the observed pattern, the number of daily new cases would be 3574 by April 20.

The plot of residuals versus observations’ order showed no pattern. It seems that they were randomly scattered around zero (Figure 2a). Autocorrelation and Partial Autocorrelation Functions showed no spike and this implied that there was no remaining auto coloration regarding the residuals (Figure 2). The Shapiro-Wilk test was used to check the normality of residuals (P-value = 0.60), in addition to Normal Probability Plot and Histogram of residuals which did not show any substantial deviation from normality (Figure 3). All residual assessment confirmed goodness of fit for the fitted ARIMA model, as depicted in Figure 1.

Discussion
This study was conducted to forecast the number of the daily new cases infected with COVID-19 until April 20, 2020 in Iran using the ARIMA predicting model. The total number of confirmed patients and deaths in Iran was 21,638 and 1685, respectively, until March 22, 2020. The results of our study indicate that if the spreading pattern continues as before, there will be a sharp increase in the number of new cases in the next days. Based on our predictions, the number of new cases would be 3574 on April 20, 2020 according to ARIMA.

Of course, the accuracy of this prediction depends on the accuracy of applied data and the adequacy of the applied statistical model. Even if the forecast is overestimated and only a fraction of this prediction is realized, Iran’s health care system would face an extremely difficult problem. Given that the disease is transmitted through respiratory droplets and is spreading rapidly, this forecast is important for health planning.

Finally, we must say that we do not have additional evidence that can estimate the exact number of patients, but we hope that our results could help timely decisions by health policy makers in Iran in providing adequate hospital equipment, medical and nursing staff and essentials needs, in order to prevent a more serious crisis.

Limitations
Two major limitations should be considered in this study. First, due to the lack of data at the individual level, including patients’ demographic information, their social networks

![Image](image-url)

Figure 1. Forecasted and 95% Confidence Interval of New Cases with Covid19 in Iran; until April 20, 2020.
and travels, no risk factor for this disease was assessed and studied. Second, the small number of observations for this type of time-series algorithms is another major limitation of this study as models might not be trained very well. However, the prediction of this study may be useful for health decision makers; therefore, it was not reasonable to waste time for data provision.

Conclusion

In conclusion, the result of this study is an alarm for health policy planners and decision makers to make timely decisions regarding the supply of essential equipment for hospitals.

Authors’ Contribution

ML searched and provided data, wrote, edited and critically reviewed manuscript. SM designed the study, performed statistical analysis and wrote the manuscript. The final version of the manuscript was approved by all authors.

Conflict of Interest Disclosures

None.

Table 1. Forecasted Number of Daily New Cases with 95% Confidence Intervals

Days (of 2020)	ARIMA Prediction	95% CI for ARIMA
		Lower
22-Mar	1026.402612	653.1516367
23-Mar	1088.63684	567.8413155
24-Mar	1152.702662	516.4901522
25-Mar	1218.600139	481.6742792
26-Mar	1286.329211	456.8553398
27-Mar	1355.889898	438.8200933
28-Mar	1427.2822	425.7248814
29-Mar	1500.506117	416.4136128
30-Mar	1575.561648	410.1144707
31-Mar	1652.448790	406.2417741
1-Apr	1731.167556	406.5445755
2-Apr	1811.717933	404.5939391
3-Apr	1894.099924	426.825321
4-Apr	1978.31353	409.2417741
5-Apr	2064.358751	413.574742
6-Apr	2152.235587	418.9981334
7-Apr	2241.944038	425.5396791
8-Apr	2333.484103	406.5126804
9-Apr	2426.855384	411.0728024
10-Apr	2522.059079	416.032951
11-Apr	2619.09399	461.3405758
12-Apr	2717.960515	418.9981334
13-Apr	2818.658655	406.5445755
14-Apr	2921.18841	425.5396791
15-Apr	3025.54978	406.5126804
16-Apr	3131.742765	411.0728024
17-Apr	3239.767364	416.032951
18-Apr	3349.623579	462.825321
19-Apr	3461.311409	572.804843
20-Apr	3574.830853	590.1840004

Figure 2. Residual Assessment of ARIMA Model Including (a) Plot of Residuals Versus Observation Order, (b) Auto Correlation Function of Residuals, and (c) Partial Auto Correlation Function of Residuals.

Figure 3. Residual Assessment of ARIMA Model Including (a) Normal Probability of Plot and (b) Histogram of Residuals.

Ethical Statement

In this study we applied the information about the number of new cases with Covid19 in Iran. The data was provided by Johns Hopkins University and Iranian Ministry of Health. Therefore it seems that ethical approval is not required.

References

1. Wan H, Cui JA, Yang GJ. Risk estimation and prediction by modeling the transmission of the novel coronavirus (COVID-19) in mainland China excluding Hubei province. medRxiv. 2020. doi.org/10.1101/2020.03.01.20029629
2. Zhang KK, Xie L, Lawless L, Zhou H, Gao G, Xue C. Characterizing the transmission and identifying the control strategy for COVID-19 through epidemiological modeling, medRxiv. 2020. doi.org/10.1101/2020.02.24.20026773
3. Al-qaness MA, Euwees AA, Fan H, Abd El Aziz M. Optimization
Method for Forecasting Confirmed Cases of COVID-19 in China. J Clin Med. 2020;9(3):674. doi:10.3390/jcm9030674

4. Tang K, Huang Y, Chen M. Novel Coronavirus 2019 (Covid-19) epidemic scale estimation: topological network-based infection dynamic model. medRxiv. 2020. doi.org/10.1101/2020.02.20.20023572

5. McCall B. COVID-19 and artificial intelligence: protecting health-care workers and curbing the spread. Lancet. February 20, 2020. doi: 10.1016/S2589-7500(20)30054-6

6. Song PX, Wang L, Zhou Y, He J, Zhu B, Wang F, et al. An epidemiological forecast model and software assessing interventions on COVID-19 epidemic in China. medRxiv. March 3, 2020. doi: 10.1101/2020.02.29.20029421

7. Nishiura H, Linton NM, Akhmetzhanov AR. Serial interval of novel coronavirus (COVID-19) infections. Int J Infect Dis. 2020. doi: 10.1016/j.ijid.2020.02.060

8. Hu Z, Ge Q, Jin L, Xiong M. Artificial intelligence forecasting of covid-19 in china. arXiv preprint arXiv:200207112. 2020. Available from: https://arxiv.org/abs/2002.07112.

9. Lin Q, Zhao S, Gao D, Lou Y, Yang S, Musa SS, et al. A conceptual model for the outbreak of Coronavirus disease 2019 (COVID-19) in Wuhan, China with individual reaction and governmental action. International Journal of Infectious Diseases. March 04, 2020. doi: 10.1016/j.ijid.2020.02.058

10. Anastassopoulou C, Russo L, Tsakris A, Siettos C. Data-Based Analysis, Modelling and Forecasting of the novel Coronavirus (2019-nCoV) outbreak. medRxiv. March 12, 2020. doi: 10.1101/2020.02.11.20022186.

11. Du Z, Xu X, Wu Y, Wang L, Cowling BJ, Meyers LA. The serial interval of COVID-19 from publicly reported confirmed cases. medRxiv. March 20, 2020. doi: 10.1101/2020.02.19.20025452.

12. Sun K, Chen J, Viboud C. Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: a population-level observational study. Lancet Digital Health. 2020. doi 10.1016/S2589-7500(20)30026-1

13. Organization WH. Novel coronavirus(2019-nCoV); 2020. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports

14. Remuzzi A RG. COVID-19 and Italy: what next? Lancet. 2020. doi: 10.1016/S0140-6736(20)30627-9

15. Muniz-Rodriguez K, Fung IC-H, Ferdosi SR, Ofori SK, Lee Y, Tariq A, et al. Transmission potential of COVID-19 in Iran. medRxiv. 2020. doi:10.1101/2020.03.08.20030643

16. Benvenuto D, Giovanetti M, Vassallo L, Angeletti S, Ciccozzi M. Application of the ARIMA model on the COVID-19 epidemic dataset. Data Brief. 2020;29:105340. doi: 10.1016/j.dib.2020.105340

17. Ansley C, Spivey W, Wroblewski W. A class of transformations for Box-Jenkins seasonal models. J R Stat Soc Ser C Appl Stat. 1977;26(2):173-8. doi: 10.2307/2347025