Taxonomic structure of rumen calf microbiome when feeding with a fat supplement

B S Nurzhanov, Yu I Levakhin, Sh G Rakhmatullin, G K Duskaev

Federal Research Centre of Biological Systems and Agro-Technologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000, Russia

Email: baer.nurzhanov@mail.ru

Abstract. It is known that the use of native fats for feeding ruminants causes an inhibitory effect on the rumen microflora. One of the problems with the use of fats protected by various technologies is a change in the composition of the rumen microflora. It is necessary to improve existing and create new types of protected fats.

The research object was 12 red steppe calves divided by three groups - the control one and two experimental ones (n = 3). The animals of experimental group I were fed with a Palmatrix fat-containing supplement at a dose of 0.4 kg/head, and the animals of group II - an experimental supplement (ES) at a dose of 0.25 kg/head.

The use of Palmatrix contributed to the growth of Firmicutes microorganisms (1.74%), Candidatus Saccharibacteria (by 4.5%), Actinobacteria (by 1.83%) and reduced the number of Bacteroidetes bacteria (5.19%), Verrucomicrobia (by 0.75%). Feeding group II with ES increased the number of Saccharibacteriagenerairecertaesidis bacteria (by 14.77%) in comparison with experimental group I. The combination of fat supplements with components reduced the number of Bacilli, Negativicutes and Bacteroidia bacteria by 14.77%, 9.54 and 8.12%, respectively.

Keywords: calf, sequencing, taxonomy, bacteria, rumen, fat supplement

1. Introduction

On the basis of numerous studies, experimental material has been accumulated. It reveals the relationship between the diet, ratio of rumen fermentation products and microbiomes [1-5] which play a crucial role in metabolic processes [6, 7], affect productivity and animal health [8-10].

At the same time, rumen bacteria play an important role in metabolism of fat-containing substances due to the fact that a significant part of lipids entering the intestine are lipids of microorganisms whose role in the hydrogenation of unsaturated fatty acids, the hydrolysis of lipids and their synthesis from non-lipid components is crucial. It is known that at low rates of lipolysis, intensity of hydrogenation decreases [11, 12].

Since microbiocenoses and their interaction plays a key role in animal productivity, evaluation of fat supplements for microflora is of great interest [13–15]. The composition and vital activity of the rumen microbiome is determined by many factors, including types of bacteria responsible for maintaining the pH in the rumen, production and use of lactate and volatile fat acids [16, 17].

The aim of the article is to study the taxonomic structure of the rumen microbiome when feeding calves with a modified fat supplement.
2. Materials and methods
For research, 12 bulls were selected (12 months of age), three groups were formed according to the principle of analogs: the control group and two experimental ones (three animals in each group). The study was conducted in 4 replications. Equipment of the Testing Center of the Central Clinical Hospital of the BST RAS (accreditation certificate No. RA.RU.211ПΦ59) was used for the study. The content and basic ration (BR) were identical (grass hay, corn silage, crushed barley, fodder syrup, premix); animals of experimental group I were fed with a fat-containing supplement 1 (a combination of protected fats produced on the basis of palm oils with fat content of 86.9% fat, calcium content of 9%, metabolic energy of 30 MJ/kg) at a dose of 0.4 kg/head; group II was fed with a fat supplement 2 (combination of protected fats produced on the basis of palm oil with 80% of crude fat, 5-7% of crude protein and 5-7% of sugar and substances that stimulate the development of microflora, including sugar, essential amino acids, etc. The energy value was 30.1 MJ/kg at a dose of 0.25 kg/head.

Sampling of the rumen microbiome was carried out according to the traditional method, using sterile equipment. The sample were placed into sterile Eppendorf microtubes (NuovaAptaca SRL, Italy), frozen at -70 °C (ULUF65 freezer ARCTICO, Denmark) and kept without re-thawing.

The genomic DNA was isolated from control and experimental samples using the method of chemical extraction. Each sample was incubated in 300 μl of sterile lysis buffer (20 mmol/l EDTA, 1400 mmol/l NaCl, 100 mmol/l Tris-HCl, pH 7.5) with 5a 0 μl lysozyme (100 mg/ml) added at 37 °C for 30 min followed by the addition of a 10 μl of proteinase K (10 mg/ml) and a 1% sodium dodecyl sulfate. The mixture was incubated for 30 min at 60°C. The DNA was purified by phenol-chloroform and chloroform, precipitated at -20 °C for 4 hours or longer after adding sodium acetate and three volumes of absolute ethanol. After extraction with phenol-chloroform-isooamyl alcohol (25: 24: 1) and chloroform-isooamyl alcohol (24: 1), the DNA in the aqueous phase was precipitated with ammonium acetate (1 mol/L to 10% v/v) and the three-fold volume of anhydrous ethanol at -20 °C. After centrifuging and double washing with 80% ethanol, the DNA was dried and dissolved in TE-buffer. To assess whether contamination was introduced during the DNA extraction, the negative parallel control was established by treating 100 μl of autoclaved deionized water using the same method. DNA purity was checked by electrophoresis in a 1.5% agarose gel. DNA concentration was quantified using a Qubit 2.0 fluorometer with a high sensitivity dsDNA assay (LifeTechnologies).

Preparing of DNA libraries and sequencing were carried out at the Center for Collective Use “Persistence of Microorganisms” of the Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences (Orenburg, Russia).

Statistical processing was performed using "Statistica 10 RU", calculating the average value (M), standard deviation (σ), standard deviation error (m). The level of value was considered significant at <0.05.

3. Results and discussion
Results of the study of the taxonomic profile of rumen bacteria when feeding calves with fat supplements indicate changes in the composition of the microbiome (Table).

The use of fat-containing supplement 1 increased Firmicutes phylum microorganisms (by 1.74%), Saccharibacteria (by 4.5%; p<0.05), Actinobacteria (by 1.83%) and reduced Bacteroidetes phylum (by 5.19%; p<0.05) and Verrucomicrobia (by 0.75%) bacteria. Thus, the high content of palm oil in the supplement did not have a significant effect on the number of bacteria; a decrease in some phyla was observed. The likelihood that palm oil reduces the number of bacteria was emphasized in [18].

The similar trend was observed for fat-containing supplement 2. The use of fat-containing supplement 2 when feeding animals of group II contributed to the development of phyla Saccharibacteria (by 19.28%; p<0.05), Spirochaetes (by 1.64%), Actinobacteria (by 0.62%) bacteria. Further analysis shows that in the first and second cases, there is an increase in the Saccharibacteria phylum. It is known that representatives of the latter are associated with the splitting of cicatricial cellulose [19]; this fact indicates the positive effect of the composition of fat-containing supplement 2 on the development of cellulolytic bacteria.
Table 1. Effects of the taxonomic profile of the rumen when feeding with fat supplements

Phylum, class	Blood line, genus	Groups	control	experimental 1	experimenta2
Firmicutes					
Clostridia					
Ruminococaceae			54.65±1.02	56.39±1.06*	40.17±1.54*
Ruminococaceae			28.63±0.89	54.97±1.24*	37.03±0.99*
Clostridium			7.59±0.25	35.04±0.81*	28.55±0.67*
Ruminococcus			0.30±0.01	4.35±0.05	4.00±0.07
Oscillibacter			1.17±0.30	1.72±0.22	5.22±0.49
Clostridiales			1.22±0.04	0.19±0.03	1.33±0.07
Lachnospiraceae			0.08±0.01	0.64±0.34	0.39±0.01
Butyrivibrio			0.08±0.02	1.54±0.02	0.85±0.14
Lachnospiraceae			0.05±0.003	0.23±0.35	0.21±0.17
Christensenellaceae			16.52±0.27	4.56±0.33	3.08±0.74
Christensenella			9.24±1.01	2.84±0.46	1.67±0.29
Clostridiales			2.32±0.67	0.20±0.11	0.29±0.08
Pseudobutyrivibrio			1.87±0.81	0.56±0.45	0.65±0.91
Other			1.78±0.05	0.02±0.004	0.03±0.002
Clostridiales			1.31±0.07	0.93±0.08	0.44±0.03
Christensenellaceae			3.37±0.16	3.99±0.24	3.20±0.27
Christensenella			0.47±0.04	6.76±0.62	1.13±0.07
Clostridiales			0.38±0.04	4.48±0.38	0.99±0.05
Anaerovorax			0.35±0.06	3.46±0.44	0.92±0.07
Other			0.30±0.09	0.14±0.05	0.08±0.02
Other			0.15±0.02	0.07±0.004	1.56±0.74
Other			0.21±0.06	0.02±0.001	0.19±0.03
Bacilli					
Streptococaceae			15.09±0.92	0.28±0.07*	0.32±0.08*
Streptococcus			13.71±0.67	0.05±0.003	0.04±0.002
Carnobacteriaceae			13.71±0.67	0.05±0.003	0.04±0.002
Jeotgalibaca			0.99±0.03	0.03±0.002	0.00±0.003
Other			0.69±0.08	0.03±0.07	0.00±0.003
Other			0.3±0.05	0.20±0.03	0.28±0.06
Negativicutes					
Acidaminococaceae			10.58±0.92	1.04±0.21*	1.05±0.20*
Succiniclasticum			9.72±0.88	1.01±0.21	0.86±0.17
Other			9.72±0.88	1.01±0.21	0.86±0.17*
Other			0.85±0.05	0.03±0.001	0.19±0.03
Phylum, class	Blood line, genus	Groups control	Groups experimental 2	Groups experimental 2	
--------------	------------------	----------------	----------------------	----------------------	
Bacteroidetes		39.27±1.62	34.08±1.44	33.89±1.51	
Bacteroidetes		37.99±1.46	30.28±1.41	29.88±1.20	
Deltaproteobacteria		25.02±1.15	1.34±0.05	10.01±0.42	
Prevotella		22.45±1.03	0.92±1.01	7.89±0.38	
Paraprevotella		1.55±0.12	0.10±0.001	1.01±0.04	
Prevotellaceae		0.89±0.07	0.32±0.04	1.07±0.06	
Rikenellaceae		1.20±0.004	0.05±0.002	12.38±0.92	
Burkholderiaceae		10.62±0.57	18.58±0.89	12.38±0.92	
Porphyromonadaceae		1.97±0.09	5.43±0.14	5.99±0.20	
Porphyromonadaceae		1.76±0.08	4.36±0.08	4.78±0.03	
Paludibacter		0.19±0.006	0.02±0.001	0.06±0.001	
Rikenellaceae		0.02±0.004	0.88±0.05	1.17±0.04	
Rikenellaceae		0.26±0.009	4.73±0.38	1.36±0.17	
Other		0.18±0.007	4.61±0.34	1.33±0.05	
Other		0.08±0.002	0.12±0.002	0.03±0.001	
Other		0.12±0.003	0.20±0.004	0.14±0.003	
Other		1.28±0.06	3.8±0.07	4.01±0.05	
Saccharibacteria		1.19±0.14	5.70±0.36*	20.47±0.71*	
Saccharibacteria		1.19±0.14	5.70±0.36*	20.47±0.71*	
Spirochaetes		0.24±0.007	0.08±0.005	1.18±0.29	
Leptospiraceae		0.24±0.007	0.08±0.005	1.88±0.29	
Leptospira		0.24±0.007	0.08±0.005	1.88±0.29	
Proteobacteria		0.82±0.09*	1.33±0.08*	1.13±0.08*	
Betaproteobacteria		0.06±0.004	0.22±0.005	1.13±0.08*	
Burkholderiaceae		0.05±0.003	0.19±0.004	1.13±0.08*	
Ralstonia		0.01±0.001	0.17±0.001	1.13±0.08*	
Other		0.39±0.006	0.03±0.002	1.13±0.08*	
Deltaproteobacteria		0.27±0.02	0.02±0.003	0.32±0.004	
Bdellovibrionaceae		0.12±0.01	0.02±0.003	0.13±0.01	
Vampirovibrio		0.12±0.01	0.02±0.003	0.13±0.01	
Other		0.15±0.01	0.00±0.002	0.19±0.03	
Other		1.26±0.05	0.74±0.06	0.59±0.03	
Actinobacteria		0.37±0.04	2.21±0.15*	0.99±0.04*	
Actinobacteria		0.37±0.04	2.21±0.15*	0.99±0.04*	
Coriobacteriales		0.04±0.001	0.23±0.002	0.45±0.02	
Coriobacterineae		0.04±0.001	0.23±0.002	0.45±0.02	
Other		0.33±0.04	1.98±0.14*	0.55±0.02*	
verrucomicrobia		0.82±0.07	0.07±0.002	0.12±0.02	
Subdivision 5		0.82±0.07	0.07±0.002	0.12±0.02	
Other		1.56±0.24	0.64±0.04	1.34±0.27	

* - P≤0.05 compared to the control group.
The quantitative change in microorganisms was due to an increase in the number of Clostridia bacteria (by 26.34 and 8.4%, p<0.05), Saccharibacteria (by 4.51 and 19.28%, 8.40%) and Actinobacteria (by 0.83 and 0.62%, p≤0.0).

Feeding of group II with supplements increases the number of Saccharibacteria bacteria (by 14.77%) in comparison with experimental group I. The combination of fat supplement c with components stimulating their development reduced Bacilli, Negativicutes and Bacteriodia bacteria compared to the control group by 14.77%, 9.54 and 8.12%, respectively.

The use of fat supplements contributed to the better development of Ruminococcaceae (by 27.45 and 20.96%), Christensenellaceae (by 6.29 and 0.66%), Porphromonadaceae (by 3.46 and 4.03%), Rikenellaceae (by 4.47 and 1.09%) bacteria. In previous studies using palm oil in ruminants, there were no significant changes in the number of rumen bacteria [20].

At the same time, the number of Lachnospiraceae (by 11.96 and 13.44%), Streptococcaceae (by 8.71 and 8.86%), Prevotellaceae (by 23.69 and 15.01%) bacteria decreased. This decrease was due to a decrease in the number of bacteria of Lachnospiraceae, Streptococcus, Succiniclasticum, Prevotella. An experimental fat supplement increased the number of bacteria of Ruminococcaceae by 11.85%, Ruminococcus - by 4.05%, Christensenella - by 0.66%; 3.02%.

The need for further research is obvious, as current information on the effect of fat acids on the growth and development of bacterial populations is contradictory. For example, it is known that bacteria had different effects on oil with different concentrations of concentrates, especially Actetitomaculum, Lachnospira and Prevotella [21].

4. Conclusion
Formation of the scar microbiota depends on many factors, including feed components. Fat supplements are promising substances that can modulate the development of Saccharibacteria and Actinobacteria phylum bacteria against the background of significant changes in the Saccharibacteria and Actinobacteria classes.

5. Acknowledgements
The studies were carried out in accordance with the research plan for 2019–2020 of the Federal Research Center for Biological Systems and Agrotechnology’s of the Russian Academy of Sciences No. 0761-2019-0005.

References
[1] Taranovich A S 2010 "Protected" fats and proteins used for feeding highly productive cows Dairy and beef cattle breeding 4C 18–20
[2] Adeyemi K D, Sabow A B, Aghwan Z A, Ebrahim M, Samsudin A A, Alimon A R and Sazili A Q 2016 Serum fatty acids, biochemical indices and antioxidant status in goats fed canola oil and palm oil blend J. Anim. Sci. Technol. 6(58)
[3] Crystal M W, Hahn S W, Shawn L A, John J W, Terry E E, Ivette N R-M, Woerner D, Sponsler M and Hyungchul H 2015 A comparison of supplemental calcium soap of palm fatty acids versus tallow in a corn-based finishing diet for feedlot steers J. Anim. Sci. Technol. 57(25)
[4] Karimov I, Duskaev G, Inchagova K and Kartabaeva M 2017 Inhibition of bacterial Quorum sensing by the ruminal fluid of cattle Int. J. of Geomate 13(40) 88–92
[5] Logachev K, Karimov I, Duskaev G, Frolov A, Tulebaev S and Zav’yalov O 2015 Study of Intercellular Interaction of Ruminal Microorganisms of Beef Cattle Asian J. of Animal Sci. 9 248–53
[6] de Souza J and Lock A L 2018 Short communication: Comparison of a palmitic acid-enriched triglyceride supplement and calcium salts of palm fatty acids supplement on production responses of dairy cows J. Dairy Sci. Apr 101(4) 3110–7
[7] Bayat A R, Tapio I, Vilkki J, Shingfield K and Leskinen H 2018 Plant oil supplements reduce methane emissions and improve milk fatty acid composition in dairy cows fed grass silage-based diets without affecting milk yield *J. Dairy Sci.* Feb 101(2) 1136–51

[8] Palmquist D L and Jenkins T C 2017 A 100-Year Review: Fat feeding of dairy cows *J. Dairy Sci.* Dec 100(12) 10061–77

[9] ZeidAli-Nejad A, Ghorbani G R, Kargar S, Sadeghi-Sefidmazgi A, Pezeshki A and Ghaffari M H 2018 Nutrient intake, rumen fermentation and growth performance of dairy calves fed extruded full-fat soybean as a replacement for soybean meal *Animal.* Apr 12(4) 733–40

[10] Huws S A, Lee M R, Muetzel S M, Scott M B, Wallace R J and Scollan N D 2010 Forage type and fish oil cause shifts in rumen bacterial diversity *FEMS Microbiol. Ecol.* Aug 73(2) 396–407

[11] Myer P R, Smith T P, Wells J E, Kuehn L A and Freely H C 2015 Rumen microbiome from steers differing in feed efficiency *PLoS One* 10(6) e0129174

[12] Stevenson D M and Weimer P J 2007 Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR *Appl. Microbiol. Biotechnol.* May 75(1) 165–74

[13] NurAtikah I, Alimon A R, Yaakub H, Abdullah N, Jahromi M F, Ivan M and Samsudin A A 2018 Profiling of rumen fermentation, microbial population and digestibility in goats fed with dietary oils containing different fatty acids *BMC Vet. Res.* Nov 14 14(1) 344

[14] Palmquist D L and Weiss W P 1994 Blood and hydrolyzed feather meals as sources of undegradable protein in high fat diets for cows in early lactation *J. Dairy Sci.* 77 1630–43

[15] Naik P K 2013 Bypass fat in dairy ration-A review *Animal Nutrition and Feed Technol.* 13 147–63

[16] Loganathan R, Subramaniam K M, Radhakrishnan A K, Choo Y M and Teng K T 2017 Health-promoting effects of red palm oil: evidence from animal and human studies *Nutr. Rev.* Feb 1 75(2) 98–113

[17] Stoffel C M, Crump P M and Armentano L E 2015 Effect of dietary fatty acid supplements, varying in fatty acid composition, on milk fat secretion in dairy cattle fed diets supplemented to less than 3% total fatty acids *J. Dairy Sci.* Jan 98(1) 431–42

[18] Abubakr A, Alimon A R, Yaakub H, Abdullah N and Ivan M 2014 Effect of Feeding Palm Oil By-Products Based Diets on Total Bacteria, Cellulolytic Bacteria and Methanogenic Archaea in the Rumen of Goats *PLoS One* 9(4) e95713

[19] Opdah L J, Gonda M G and St-Pierre B 2018 Identification of Uncultured Bacterial Species from Firmicutes, Bacteroidetes and CANDIDATUS Saccharibacteria as Candidate Cellulose Utilizers from the Rumen of Beef Cows *Microorganisms* Mar 6(1) 17

[20] Atikah I N, Alimon A R, Yaakub H, Abdullah N, Jahromi M F, Ivan M and Samsudin A A 2018 Profiling of rumen fermentation, microbial population and digestibility in goats fed with dietary oils containing different fatty acids *BMC Vet. Res.* 14 344

[21] Zened A, Troegeler-Meynadier A, Nicot M C, Combes S, Cauquil L, Farizon Y and Enjalbert F 2011 Starch and oil in the donor cow diet and starch in substrate differently affect the in vitro ruminalbiohydrogenation of linoleic and linolenic acids *J. Dairy Sci.* 64, 5634–45