Highly-Efficient Sulfonated UiO-66(Zr) Optical Fiber for Rapid Detection of Trace Levels of Pb$^{2+}$

Marziyeh Nazari1,2, Abbas Amini3,4,5, Nathan T. Eden5, Mikel C. Duke2 and Chun Cheng6 and Matthew R. Hill5,7

Abstract: Lead detection for biological environments, aqueous resources, and medicinal compounds, rely mainly on either utilizing bulky lab equipment such as ICP-OES or ready-made sensors, which are based on colorimetry with some limitations including selectivity and low interference. Remote, rapid and efficient detection of heavy metals in aqueous solutions at ppm and sub-ppm levels have faced significant challenges that requires novel compounds with such ability. Here, a UiO-66(Zr) metal-organic framework (MOF) functionalized with SO$_3$H group (SO$_3$H-UiO-66(Zr)) is deposited on the end-face of an optical fiber to detect lead cations (Pb$^{2+}$) in water at 25.2, 43.5 and 64.0 ppm levels. The SO$_3$H-UiO-66(Zr) system provides a Fabry–Perot sensor by which the lead ions are detected rapidly (milliseconds) at 25.2 ppm aqueous solution reflecting in the wavelength shifts in interference spectrum. The proposed removal mechanism is based on the adsorption of [Pb(OH$_2$)$_6$]$^{2+}$ in water on SO$_3$H-UiO-66(Zr) due to a strong affinity between functionalized MOF and lead. This is the first work that advances a multi-purpose optical fiber-coated functional MOF as an on-site remote chemical sensor for rapid detection of lead cations at extremely low concentrations in an aqueous system.

Keywords: nano-bio detectors and sensors; nano-bio systems; aqueous quality; nanobiotechnology; optical fiber vesicle; sulfonated MOFs

1. Introduction

Lead (Pb$^{2+}$) and other small-scale substances (e.g., soot aerosol, ammonia, and arsenic) [1,2] are known as deadly widespread toxic pollutants in the environment at macro- to nano-scale due to recent industrialization and agricultural activities [3,4]. A serious concern has raised for Canadian [5], the U.S. [6], and old European mega-cities [7] with high amounts of lead nano-substances found in drinking water which are originated from old pipes or chemical reactions occurred in corroded plumbing components [8].

According to American Academy of Family Physicians (AAFP), any level of detectable lead in human blood is abnormal [9]. Recurring exposure to low levels of Pb creates serious health issues for infants and children such as slow development and permanent intellectual disability [10,11]. In addition to various sources, lead can be taken up by fishes and other aquatic organisms from water accumulating in humans tissues after consumption [12].
and then resulting in neurological [13], hematopoietic [14], musculoskeletal [15], cardiac function [16] and reproductive damages [17,18]. Despite the detrimental properties of lead to living objects, there is yet a significant gap to efficiently and abruptly detect and characterize lead at extremely small levels in bioactive compounds [19,20].

Methodologically, atomic absorption spectroscopy (AAS), atomic emission spectroscopy (AES), X-ray fluorescence (XRF), and inductively coupled plasma-optical emission spectrometry (ICP-OES) are the commonly used laboratory techniques for measuring lead contents in drinking water [21]. To use the above expensive and complicated equipment, water samples should be collected on-site, transported to a laboratory, and tested by trained professionals. This process for a large-scale determination of lead concentration is costly, time-consuming, and effortful. As yet, there are considerable efforts to develop sensors to allow discrete measurements of lead contents at-the-source for home-users. The existing detection mechanisms are based on colorimetry [22,23], biosensing [24], and electrochemical configurations [25], which, in addition to their low detection limits, have many other constraints. For instance, matrix interferences in the colorimetric method either disrupt the reaction between the reagent and the analyte or interfere the spectrometric light measurement [21]. In the biosensing method, more complex biological molecules, e.g., Daphnia magna, are needed with higher selectivity and less interference for reagents [26]. In the electrochemical sensing technique, lead-selective membranes are utilized on electrodes, where the response can be impacted by the interference from other ions presented in the water sample, effecting the solution ionic strength and potential drift [21]. Thus, an accessible, fast, sustainable, and efficient technology can fill this gap to detect Pb$^{2+}$ in aqueous resources at low ppm and ppb levels [27].

So far, there are increasing interests in recent years to take advantage of advanced materials to adsorb Pb$^{2+}$ nanoparticles at deficit concentrations from aqueous resources [28–33]. Metal-organic frameworks (MOFs) are highly porous 3D-materials made of metal ions linked with organic ligands. The size and shape of pores are affected by the coordination geometry of metals (e.g., tetrahedral, octahedral) that dictates the number of bounded ligands. Proper selection of metal ions and ligands can yield crystals with ultrahigh porosity as well as high thermal and chemical stability. Among MOFs, UiO-66(Zr) or Zr$_6$O$_4$(OH)$_4$ has a stable crystalline structure in water, introducing it as a promising candidate for sensing the aqueous contaminants and purification purposes [34]. Our recent studies have shown the favorable capability of UiO-66 for removing rhodamine-B [35], methyl viologen [36], and 4-aminopyridine [37] from water contents. The functionalization of UiO-66(Zr) with proper chemical groups is suggested to enhance its low affinity with Pb$^{2+}$ ions.

In this work, a new setup is introduced via functionalization of UiO-66(Zr) with SO$_3$H to capture Pb$^{2+}$ at low ppm levels in aqueous environments. Due to the strong coordination of Pb$^{2+}$ with SO$_3^-$ group, a small quantity of lead (<O.5 ppm) was left in the solution. To create a remote sensing setup for rapid detection within the range of a few milliseconds, the functionalized MOF was coated at the end-face of an optical fiber (single-mode fiber, SMF-28) and used as an in-fiber Fabry–Perot interferometer (FPI) [38]. The changes to the MOF optical properties due to adsorption of Pb$^{2+}$ were detected via wavelength shifts in the interference spectrum.

2. Methods

SO$_3$H-UiO-66(Zr) sensing element was synthesized through a growth solution proposed by Okoro et al. [24] with some modifications. Briefly, ZrCl$_4$ (1.93 g, 8.3 mmol) and monosodium 2-sulfoterephthalate (NaSO$_3$-BDC, 2.2 g, 8.2 mmol) were dissolved under stirring with N,N-dimethylformamide (DMF, 100 mL) and concentrated HCl (37%, 1.3 mL). Then, glacial acetic acid (100%, 16.6 mL; 35 equiv.) was added as a modulator. The mixture was continuously stirred for 2 h and left for 24 h at 120 °C in a pre-heated oven. After naturally cooling down to room temperature, the SO$_3$H-UiO-66(Zr) nanoparticles were centrifuged at 20,000 rpm for 10 min and washed with fresh DMF (at least three times), then with pure methanol (at least three times), and kept under constant
stirring with dichloromethane (DCM) overnight. They were dried for 5 h at 60 °C under reduced pressure.

The SMF-28 optical fiber was made of molten silica glass heated up to 2200 °C and drawn into tubes with varied diameters. In this work, fibers with a cladding diameter of 125 ± 0.7 µm and a core diameter of 8.2 µm were utilized. Before coating, the optical fiber made of SiO₂ glass was treated with hydroxyl (OH) functional groups. A piranha solution was prepared from a 3:1 mixture of sulfuric acid (98%) and hydrogen peroxide (30%), into which optical fibers were cleaved at a right angle and incubated for 30 min. To grow the MOF sensing element on the exposed surface of the optical fibers, the OH-functionalized optical fibers were placed in an untreated precursor solution of SO₃H-UiO-66(Zr), heated at 120 °C for 24 h. After this procedure, the fibers were gently washed with DMF, methanol and DCM, to remove unreacted reagents.

Fabry–Perot interferometry (FPI) was used as the optical detection method. When the light is propagated down to the core of fiber, it interacts with the sensing element. The element is in contact with lead-contaminated water, and by capturing the Pb²⁺, its optical thickness and refractive index change. The reflected light sends this information to the detector, where a custom-written software (MATLAB [39]) processes it [35–37]. The resultant FPI spectrum (interferograms) is obtained in correlation with the lead concentration in distilled (DI) water.

To test the lead uptake capacity of as-synthesized MOF, different amounts of SO₃H-UiO-66(Zr) (10, 15, 20 and 25 mg) were separately added to 5 mL diluted solution with 25.2 (0.12 mM), 43.5 (0.21 mM) and 64.0 (0.31 mM) ppm lead under constant stirring for 10, 30 and 60 min (impregnation). Before taking a sample (aliquot) from the middle of the vial, the solid was separated by centrifuging at 20,000 rpm for 5 min, then resting for 4 h at room temperature. The adsorption mechanism of Pb²⁺ onto SO₃H-UiO-66(Zr) was characterized by X-ray diffraction (XRD), N₂ gas porosimetry, and Fourier-transform infrared spectroscopy (FT-IR) methods (Appendix A).

3. Results and Discussion

3.1. Pb²⁺ Uptake by SO₃H-UiO-66(Zr) Powder

Figure 1a displays the XRD pattern of SO₃H-UiO-66(Zr) and SO₃Pb-UiO-66(Zr) powder. A change in the XRD pattern of the amorphous SO₃H-UiO-66(Zr) sample occurs by appearing the additional peaks in the SO₃Pb-UiO-66(Zr) sample (prescribed to PbSO₄ post-adsorption through peak matching in crystallographic database (Figure A1)). This suggests the formation of a material that matches with the crystallographic geometry of PbSO₄. The cleavage energy of the sulfonate group is prohibitively high under the adsorption conditions (pH = 5.6, room temperature/pressure, and in aqueous environment), and Pb(NO₃)₂ is soluble in water with different crystallographic geometries. The pH was achieved by atmospheric carbon dioxide dissolving into the DI water as a natural process. To avoid addition of interferent compounds to the water/Pb context, the pH was not regulated. Therefore, we conclude that Pb²⁺ cation is absorbed onto the sulfonate groups of SO₃H-UiO-66(Zr) structure where the tetrahedral R-SO₃ of the 2-sulfoterephthalate linker replaces the tetrahedral SO₄ of PbSO₄.

Standard N₂ gas porosimetry measurements confirm the uptake of lead within SO₃H-UiO-66(Zr), where the Brunauer-Emmett-Teller (BET) surface area decreases from 491 m²/g to 12 m²/g upon the lead uptake. Figure 1b shows the pore size distribution of SO₃H-UiO-66(Zr) before/after the lead uptake; this is associated with the additional mass of Pb²⁺ incorporated into the compound as well as the reduction of internal pore volume. The adsorption/desorption isotherms of SO₃H-UiO-66(Zr) before/after the lead uptake are shown in Figure 1c.
Figure 1. (a) XRD curves, (b) Pore size distribution, (c) N\textsubscript{2} adsorption/desorption isotherms, and (d) FT-IR spectra of SO\textsubscript{3}H-UiO-66(Zr) and SO\textsubscript{3}Pb-UiO-66(Zr) powder.

Upon the uptake of Pb2+, significant changes in the observed transmittance reflect the change of dipole moment due to the adsorbed Pb2+. Unchanged peak positions associated with the UiO-66(Zr) framework indicate that the structure does not undergo significant changes while the crystallinity increases (Figure 1d). For instance, the characteristic S=O stretching at 1375 cm-1 and 1167 cm-1 become weaker in the SO\textsubscript{3}Pb-UiO-66(Zr) sample, while C−H stretching peak at 1251 cm-1 has a very low intensity. Defects in SO\textsubscript{3}H-UiO-66(Zr) reduces the density of functional groups that interact with the laser. The reduced transmittance is seen in the figure in the gesture of smaller peaks.

3.2. Pb2+ Uptake of SO\textsubscript{3}H-UiO-66(Zr) Powder

Inductively coupled plasma-optical emission spectrometry (ICP-OES) was conducted to determine the trace level of lead in the aliquots after its impregnation. By nonlinear regression modelling, the equilibrium/optimized level of lead uptake capacity of as-synthesized MOF was determined as 33.7 mg with a maximum 94% uptake (r-squared fit of 99.7%).

Langmuir and Freundlich models are used to investigate the adsorbent/adsorbate interaction in MOFs. Langmuir isotherm assumes that in the uptake process, the adsorbent places itself as a monolayer on the surface of the material. This model can be linearly expressed in the form of Equation (1):

\[
\frac{C_e}{q_e} = \frac{K_L}{q_m} + \frac{C_e}{q_m}
\]

where \(C_e\) is the equilibrium solution concentration (mg/L or ppm), \(q_e\) is the amount of Pb2+ at the equilibrium (mg/g), \(K_L\) is the Langmuir adsorption constant related to the energy of adsorption, and \(q_m\) is the maximum adsorption capacity of the MOF (mg/g). A plot of \(C_e/q_e\) (y-axis) vs. \(C_e\) (x-axis) allows the calculation of \(q_m\) and \(K_L\) parameters (Figure 2a).
Another model, empirical Freundlich isotherm, assumes that the distribution of active sites in the MOF is homogeneous and is linearly expressed in the form of Equation (2):

\[
\ln q_e = \ln K_f + \ln C_e / n
\]

(2)

here, \(C_e\) is the equilibrium solution concentration (mg/L or ppm), \(q_e\) is the amount of Pb\(^{2+}\) at the equilibrium (mg/g), \(K_f\) is the Freundlich adsorption constant, and \(n\) is an empirical value. A plot of \(\ln q_e\) (y-axis) vs. \(\ln C_e\) (x-axis) determines the magnitudes of \(K_f\) and \(n\) (Figure 2b).

Figure 2. Adsorption isotherms fitted by linearized form of (a) Langmuir and (b) Freundlich model for adsorbed Pb\(^{2+}\) by SO\(_3\)H-UiO-66(Zr).

Regression analysis of the data, the average values of \(K_f\), \(K_L\), \(q_m\) and \(n\) are shown in Table 1. In this study, the Freundlich model shows a better predictor than the Langmuir model with slightly higher \(R^2\), suggesting that the uptake of lead cations occurs mainly and homogeneously throughout the entire of MOF framework. Moreover, the calculated average \(n\) value for the adsorption of Pb\(^{2+}\) is 1.66, showing a good efficiency of SO\(_3\)Pb-UiO-66(Zr) for the lead adsorption [40,41].

Table 1. Langmuir and Freundlich isotherm constants for the uptake of lead (II) cation at room temperature.

Langmuir Constants	Freundlich Constants				
\(q_m\) (mg/g)	\(K_L\) (mg/L)	\(R^2\)	\(K_f\)	\(n\)	\(R^2\)
32.77	6.07	0.95	5.51	1.66	0.99

To determine whether a high degree of crystallinity affected the lead uptake, the untreated precursor solution of SO\(_3\)H-UiO-66(Zr) was heated at 120 °C for 48 h (rather 24 h); a highly crystallized as-synthesized MOF was achieved. As seen in the XRD patterns (Figure A2b), more defined Bragg peaks were observed for the MOF heated for 48 h in comparison to the one heated for 24 h. Based on the ICP-OES results, 10 mg of this highly formed MOF led to <0.5 ppm (2.4 µM) left-over lead in the initial 25.2 ppm-solution (99.99% uptake) for all impregnation ranges (10, 30 and 60 min). In contrast, non-functionalized UiO-66(Zr) MOF reduced the lead content from 25.2 ppm to 23.1 ppm after 60 min constant stirring.

3.3. Optical Fiber Sensing

After successfully validating the impregnation of lead within SO\(_3\)H-UiO-66(Zr), the coated element at the tip of optical fiber was utilized as a chemical sensor for the rapid (a few milliseconds) detection of lead in DI water. Figure 3a illustrates the SEM image of a deposited sensing element of sulfonated SO\(_3\)H-UiO-66(Zr) at the tip of optical fiber.
adjacent to a bare optical fiber in Figure 3b. The interference of two reflected beams was recorded using an optical spectrum analyzer (OSA, Ando Japan, AQ6317B, 600–1750 nm). An Agilent 83438A Erbium ASE (Agilent Technologies, Santa Rosa, CA, USA) was used as the light source with the wavelength range of 1500–1600 nm. The OSA was set on a continuous scan mode to record the interference signals every 5 s with a high sensitivity and 0.1 nm resolution.

Figure 3. SEM images of (a) SO$_3$H-UiO-66(Zr) optical fiber sensing element, and (b) bare optical fiber, (c) Interferograms in correlation with a lead concentration in DI water, and (d) EDX spectra of SO$_3$H-UiO-66(Zr) optical fiber sensing element after the lead uptake.

The average of all signals (100 trials) for each concentration was used as the final interference signal for a specific concentration. The fast response of the sensing element towards lead uptake was withdrawn by comparing the shape of signals at different sweeps. Figure 3c shows the spectral positions of the interferogram peak (normalized denoised interference intensity vs. wavelength) generated by SO$_3$H-UiO-66(Zr) sensing element at different lead concentrations. Briefly, the sensor was first placed in DI water for 5 min to
observe the pattern of sensing element upon the exposure to DI water. The same procedure was repeated after immersing the sensor in different lead solutions ("water 2" and "water 3" with 25.2 ppm and 43.5 ppm lead contents, respectively). Upon the introduction of lead nitrate solutions, the position of interferogram peak shifted to longer wavelengths. This indicated an increase in the lead adsorption by $\text{SO}_3\text{H-UiO-66(Zr)}$ sensing element and, thus, the optical thickness.

Energy-Dispersive X-ray (EDX) analysis was performed on the optical fiber sensing element after the lead uptake process, in order to confirm the attachment of lead with $\text{SO}_3\text{H-UiO-66(Zr)}$. As shown in Figure 3d, despite some detection difficulty due to the similarity of the energy of S-Kα and Pb-Mα (2.309 vs. 2.342 keV, respectively), zirconium (Zr) (as the main constituent of Zr-based MOF $\text{SO}_3\text{H-UiO-66}$) had 21.3% weight while Pb possessed 9.6% level in the samples with higher ppm. The presence of sulfur (S) confirmed the $\text{SO}_3\text{H-UiO-66(Zr)}$ structure.

As the reference for lead level in drinking water is 5 µg/L (5 ppb) [42], precision evaluation studies should be conducted to further overcome the detection limit. Nevertheless, optical fibers and $\text{SO}_3\text{H-UiO-66(Zr)}$ are stable within the range of pH 2–9 [43,44]. Yet, the remaining challenge is to consider the sensor in very harsh environments for prolonged periods of time where the wastewater might be extremely acidic or basic. Although the optical fiber sensors were not designed explicitly for this purpose, there is an opportunity to trigger the release of the guest species (Pb^{2+}) using light at a specific wavelength [45]. The pH change [46], ligand exchange [47], and ethanol regeneration solvent [48] have been proposed to recycle MOFs for further usages.

3.4. Mechanism of Pb$^{2+}$ Adsorption

Figure 4 shows the chemistry mechanism where the sensing material coordinates with Pb$^{2+}$ ions via n sulfonate groups, $n \leq 6$.

![Diagram of adsorption of $[\text{Pb(OH}_2\text{)}]_{6}^{2+}$ on $\text{SO}_3\text{H-UiO-66(Zr)}$ in water](image)

As per our data, Pb adsorption occurs in a S-O-Pb$^+$ bonding manner. There are 10 lone pairs of electrons present in the oxygens of sulfonic acid group, where the tetrahedral R-SO$_3$ geometry would prohibit the direct S-Pb bonding. In fact, the presence of a crystalline phase identical to Pb(SO$_4$) is due to the coordination of Pb to SO$_3^-$ group with the O-carbon of 2-sulfonoterephthalic acid replacing one O in Pb(SO$_4$). The rapid uptake of Pb, shown from both the batch adsorption measurements and the optical fiber results, leads to both weak coordination and strong electrostatic attraction between Pb and R-O$^-$. The speciation of Pb(NO$_3$)$_2$ in aqueous solutions at the native pH of \sim5 is mainly Pb$^{2+}$, that exists within a solvation shell of approximately 6 H$_2$O molecules. The adsorptions would, therefore, have the following predominant reactions [49]:

\[
R - \text{SO}_2\text{OH}(s) + \text{Pb}^{2+}(aq) \rightarrow R - \text{SO}_3^- + \text{Pb}^{2+}(aq) + \text{H}_3\text{O}^+(aq) \rightarrow R - \text{SO}_2\text{O} - \text{Pb}^+ \quad (3)
\]

\[
R - \text{SO}_2\text{OH}(s) + \text{Pb}^{2+}(aq) \rightarrow R - \text{SO}_3^- + \text{Pb}^{2+}(aq) + \text{H}_3\text{O}^+(aq) \rightarrow R - \text{SO}_3^- ... \text{Pb}^{2+}_n \quad (4)
\]
Equation (3) demonstrates an electrostatic attraction to a singular sulfonate O_-, while Equation (4) presents the coordination between the delocalized sulfonate e^- and Pb^{2+}. These are shown as a three-step process. The immersion of the MOF into water dissociates the sulfonic acid H^+ rapidly, after which lead is attracted to the sulfonate groups of $\text{SO}_3\text{H}^{-}\text{UiO-66(Zr)}$. Due to the rapid uptake, it is not expected that Pb(O.H.)^{-} is adsorbed onto the sulfonates, as its fractional abundance at pH 5–6 is low relative to the adsorption phenomenon [50].

4. Conclusions

The rapid detection of Pb^{2+} by MOF-coated optical fibers was introduced for the first time. A solvothermal synthesized sulfonic acid functionalized MOF, $\text{SO}_3\text{H-UiO-66(Zr)}$, demonstrated the rapid uptake of lead from $\text{Pb(NO}_3)_2$ solution. The analysis of ICP-OES intensities showed the uptake capacity of $\text{SO}_3\text{H-UiO-66(Zr)}$ as 32.77 mg/g ($R^2 = 0.997$). This MOF was grown on an OH-functionalized SMF-28 conventional single-mode optical fiber that acted as a detector for Pb^{2+} at the ppm-level concentrations. Spectral interferograms indicated the detection of Pb^{2+} down to 25.2 ppm. Such a MOF optical fiber can be implemented as a device for simple/abrupt on-site detection of aqueous Pb^{2+} or possibly other ions at ppm or sub-ppm levels. We envisage that this type of sensor would offer a novel and more effective composite to harvest heavy metals from contaminated water for clean water supply.

Further studies are currently undergoing to investigate the interference effects of a matrix containing more than one cation and anion in water, as other transition metal (II) ions may give a ‘false’ Pb^{2+} detection reading.

Author Contributions: All authors contributed equally. All authors have read and agreed to the published version of the manuscript.

Funding: The Kuwait Foundation for the Advancement of Sciences (KFAS) is acknowledged for funding No. PN18-15EC-01.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Acknowledgments: The authors would like to express their gratitude towards Kristina Konstas, Muhammad M. Sadiq, Farnaz Zadehahmadi, Stephen F. Collins, Horace L. King, and Fairuza Faiz for their great assistance.

Conflicts of Interest: The authors declare no competing interests.

Appendix A

Appendix A.1. Sample Preparation and Analysis Conditions for X-ray Diffraction (XRD) Characterization

The sample was dry ground in a boron carbide mortar and pestle before being loaded into a low volume Si zero background sample holder. A “Bruker D8 Advance A25” X-ray Diffractometer operating under CuKα radiation (40 kV, 40 mA) and equipped with a Lynx Eye XE-T detector was employed to obtain the XRD patterns. The sample was scanned over the 2θ range of 5° to 85° at a step size of 0.02° and a count time of 1.6 s per step and spun at 15 RPM during the data collection.

Analyses were performed on the collected XRD data using the Bruker XRD search match program EVA™ v5. Crystalline phases were identified using the ICDD-JCPDS powder diffraction database. Pawley analyses were performed on the data using the Bruker TOPAS™ v6 program to determine lattice parameters and crystallite size (Table A1). Background signal was described using a combination of Chebyshev polynomial linear interpolation function and $1/x$ function. Cell parameters, vertical sample displacement,
full peak width at half maximum, and peak scale factor were all refined. Error ranges were calculated based on three estimated standard deviations as calculated by TOPAS. A diffractogram pattern of SO$_3$Pb-UiO-66(Zr) at 2θ region (5°–65°) superimposed over the simulated diffractograms of UiO-66 and PbSO$_4$ anglesite is shown in Figure A1.

Table A1. Phase summary of SO$_3$H-UiO-66(Zr).

Lattice Parameter	Crystallite Size	Phase
24 h	NP (amorphous)	NP (amorphous) UiO-66, except the (0 2 2) peak at \sim12° 2θ
48 h	20.678 \pm 0.001 Å	170 \pm 11 nm UiO-66, except the (0 2 2) peak at \sim12° 2θ

Figure A1. Diffractogram pattern of SO$_3$Pb-UiO-66(Zr) at 2θ region (5°–65°), superimposed over the simulated diffractograms of UiO-66 and PbSO$_4$ anglesite.

Appendix A.2. N$_2$ Gas Porosimetry

Gas adsorption isotherms were measured for pressure within the range 0–120 kPa by a volumetric approach using a Micrometrics ASAP 2420 instrument. All samples were transferred to pre-dried and weighted analysis tubes and sealed with Transcal stoppers. They were evacuated and activated under a dynamic vacuum at 10^{-6} Torr at 140 °C for 8 h. Ultra-high purity N$_2$ was used for the experiments. N$_2$ adsorption and desorption measurements were conducted at 77 K. Surface area measurements were performed on N$_2$ isotherms at 77 K using the Brunauer-Emmer-Teller (BET) model with increasing adsorption values of 0.005 to 0.2.

Appendix A.3. Inductively Coupled Plasma-Optical Emission Spectrometry (Icp-Oes) Analysis Method

The samples were analyzed on an as-received basis by acidifying to 5(wt)% HNO$_3$. The solutions were then analyzed by using Varian 730-ES axial ICP-OES. Certified multi-element solutions were used to check the accuracy of the calibration standards and the method.
Appendix A.4. Characterization of SO$_3$H-UiO-66(Zr) (48 H Heating)

Figure A2. (a) N$_2$ adsorption/desorption isotherms and (b) XRD curves of SO$_3$H-Uio-66(Zr) [24 h] and SO$_3$H-Uio-66(Zr) [48 h] powder.

Appendix A.5. Optical Methodology

The interference signal was processed in MATLAB [39] using a special two-stage signal processing algorithm. The first part of the algorithm used Daubechies Wave Transform (DWT) to remove noise from the spectrum. Then, the second part of the algorithm performed frequency domain analysis (fast Fourier transform (FFT)) to determine the response of the SO$_3$H-Uio-66(Zr) to lead concentration in DI water. Table A2 shows the raw data (Normalized denoised interference intensity (NDII) vs. Wavelength) obtained from one sensor after signal processing.

Table A2. Normalized denoised interference intensity (NDII).

Wavelength (nm)	NDII (mW)						
DI Water	25.2 ppm	43.5 ppm	64.0 ppm				
1524.9	0.51753	0.49844	0.47935	0.47701	0.45939	0.49888	
1525.02	0.50941	0.49544	0.48147	0.47317	0.46254	0.49268	
1525.14	0.50486	0.49111	0.47736	0.47044	0.45853	0.49062	
1525.26	0.51375	0.49504	0.47633	0.47243	0.46196	0.49004	
1525.38	0.51785	0.49733	0.47681	0.47322	0.46254	0.49151	
1525.5	0.52234	0.50184	0.48134	0.47885	0.4703	0.49534	
1525.612	0.52747	0.50538	0.47969	0.47626	0.46483	0.49888	
1525.739	0.52657	0.50136	0.47907	0.47243	0.46512	0.49652	
1525.859	0.51843	0.50033	0.48223	0.47731	0.4654	0.49681	
1525.979	0.52216	0.50271	0.48326	0.47507	0.46655	0.49859	
1526.099	0.51376	0.5012	0.48864	0.48326	0.46943	0.49947	
1526.219	0.5233	0.50652	0.48974	0.4814	0.4703	0.50036	
Table A2. Cont.

Wavelength (nm)	NDII (mW)					
DI Water 25.2 ppm	0.52529	0.50493	0.48457	0.4814	0.46799	0.49918
Water 2 43.5 ppm	0.52852	0.50986	0.4912	0.48256	0.47001	0.50273
Water 3 64.0 ppm	0.52389	0.50668	0.48947	0.47955	0.46828	0.50066
1526.698	0.5253	0.50946	0.49362	0.48682	0.46943	0.5033
1526.818	0.52945	0.51289	0.49633	0.48466	0.47347	0.50749
1526.938	0.52949	0.51225	0.49501	0.48581	0.47376	0.506
1527.058	0.53234	0.51329	0.49424	0.48667	0.4755	0.50541
1527.178	0.53325	0.51465	0.49605	0.48657	0.4755	0.506
1527.298	0.53873	0.51937	0.50001	0.49241	0.47898	0.51137
1527.418	0.54171	0.52194	0.50217	0.49306	0.48218	0.51316
1527.537	0.53698	0.51937	0.50176	0.49316	0.48276	0.51047
1527.657	0.54221	0.52226	0.50231	0.49463	0.48247	0.51257
1527.777	0.5467	0.52468	0.50266	0.49412	0.48218	0.51346
1527.897	0.54672	0.52637	0.50602	0.49838	0.48334	0.51436
1528.017	0.54467	0.52685	0.50903	0.49883	0.48684	0.51766
1528.137	0.54123	0.52387	0.50651	0.49767	0.48633	0.51406
1528.257	0.5441	0.52492	0.50574	0.49726	0.48188	0.51496
1528.377	0.54442	0.52669	0.50896	0.49741	0.48392	0.51466
1528.496	0.54698	0.53057	0.51416	0.50437	0.48684	0.51856
1528.616	0.54976	0.53178	0.5138	0.50335	0.48889	0.52006
1528.736	0.55104	0.53137	0.5117	0.5031	0.48684	0.51856
1528.856	0.54944	0.53113	0.51282	0.50452	0.48772	0.52036
1528.976	0.55047	0.53235	0.51423	0.503	0.48801	0.52006
1529.216	0.55852	0.53884	0.51916	0.50962	0.49475	0.527
1529.336	0.555	0.53648	0.51796	0.50804	0.49182	0.52338
1529.456	0.5608	0.5403	0.5198	0.51024	0.49387	0.52579
1529.575	0.5663	0.54471	0.52312	0.51234	0.49681	0.52942
1529.695	0.56668	0.54405	0.52142	0.51275	0.49505	0.5273
1529.815	0.56786	0.5456	0.52334	0.51357	0.49888	0.53003
1529.935	0.56246	0.54226	0.52206	0.51285	0.49593	0.52821
1530.055	0.55992	0.54177	0.52362	0.51111	0.49593	0.5264
1530.175	0.56607	0.54683	0.52759	0.51613	0.50094	0.52851
1530.295	0.56429	0.5474	0.53051	0.51886	0.50153	0.53063
1530.415	0.56896	0.5497	0.53044	0.51819	0.5036	0.53154
1530.534	0.56563	0.54757	0.52951	0.51875	0.50094	0.53033
Table A2. Cont.

Wavelength (nm)	NDII DI Water 25.2 ppm	NDII Water 2 43.5 ppm	NDII Water 3 64.0 ppm			
1529.096	0.55331	0.53405	0.51479	0.50575	0.49123	0.52277
1530.654	0.56891	0.54978	0.53065	0.51839	0.50272	0.53185
1530.774	0.5686	0.55084	0.53308	0.52056	0.5042	0.53215
1530.894	0.57401	0.55429	0.53457	0.52432	0.50538	0.53549
1531.014	0.57661	0.5547	0.53279	0.52329	0.50509	0.53549
1531.134	0.57067	0.55273	0.53479	0.52247	0.50568	0.53428
1531.254	0.57597	0.5552	0.53443	0.52221	0.50686	0.5361
1531.374	0.58032	0.55866	0.537	0.52443	0.50746	0.5361
1531.494	0.57778	0.5575	0.53722	0.52593	0.50746	0.53702
1531.613	0.58055	0.56064	0.54073	0.52784	0.51073	0.53885
1531.733	0.57708	0.55808	0.53908	0.52582	0.50835	0.53732
1531.853	0.58131	0.56113	0.54095	0.5265	0.51043	0.53732
1531.973	0.57906	0.56072	0.54238	0.52909	0.51132	0.53915
1532.093	0.58306	0.56477	0.54648	0.53356	0.51431	0.54129
1532.213	0.58573	0.56809	0.55045	0.53616	0.51849	0.54435
1532.333	0.58018	0.56477	0.54936	0.53512	0.51699	0.54129
1532.453	0.58271	0.56535	0.54799	0.53397	0.5164	0.54098
1532.572	0.58962	0.57	0.55038	0.53679	0.51969	0.54496
1532.692	0.5882	0.57175	0.5553	0.54196	0.52239	0.54619
1532.812	0.59301	0.57575	0.55849	0.54468	0.5257	0.55141
1532.932	0.58986	0.572	0.55414	0.54076	0.52089	0.5465
1533.052	0.5902	0.57141	0.55262	0.53923	0.52239	0.54588
1533.172	0.59337	0.57575	0.55813	0.54311	0.5257	0.5468
1533.292	0.59498	0.57608	0.55718	0.54474	0.52449	0.5468
1533.412	0.59503	0.57658	0.55813	0.54364	0.5263	0.54926
1533.531	0.5945	0.57566	0.55682	0.54238	0.52359	0.54742
1533.651	0.59242	0.57433	0.55624	0.54269	0.52999	0.54496
1533.771	0.59648	0.57901	0.56154	0.54736	0.52901	0.54711
1533.891	0.59699	0.57934	0.56169	0.5482	0.52871	0.54803
1534.011	0.59912	0.58303	0.56694	0.55142	0.53204	0.55111
1534.131	0.60068	0.58286	0.56504	0.55179	0.53204	0.54895
1534.251	0.59938	0.58261	0.56584	0.553	0.53355	0.5508
1534.371	0.60338	0.58622	0.56906	0.55628	0.5398	0.55234
1534.49	0.604	0.58697	0.56994	0.55553	0.53598	0.55234
1534.61	0.60676	0.58967	0.57258	0.55808	0.53962	0.5545
1534.73	0.60637	0.5879	0.56943	0.55866	0.53689	0.55326
1534.85	0.60773	0.58748	0.56723	0.55601	0.53719	0.55203
Table A2. Cont.

Wavelength (nm)	NDII DI Water 25.2 ppm	NDII Water 2 43.5 ppm	NDII Water 3 64.0 ppm	
1534.97	0.60591 0.58807 0.57023 0.55749	0.53719 0.55234		
1535.09	1535.21	1535.33	0.61246 0.59296 0.57346 0.55998	0.54145 0.55419
1535.45	0.61025 0.58874 0.56723 0.55575	0.53689 0.54772		
1535.569	0.61255 0.59161 0.57067 0.55792	0.53932 0.54895		
1535.689	0.61792 0.59668 0.57544 0.56376	0.54328 0.55357		
1535.809	0.61768 0.59829 0.5789 0.56647	0.54756 0.5579		
1535.929	0.61427 0.59541 0.57655 0.56429	0.5442 0.55296		
1536.049	0.61592 0.59693 0.57794 0.56386	0.54603 0.55357		
1536.169	0.62022 0.60015 0.58008 0.5693	0.54786 0.55419		
1536.289	0.61962 0.60177 0.58392 0.57256	0.55247 0.5579		
1536.409	0.61945 0.60202 0.58459 0.57267	0.55339 0.55914		
1536.528	0.61952 0.59888 0.57824 0.56903	0.54878 0.55512		
1536.648	0.61907 0.60024 0.58141 0.57058	0.5497 0.55512		
1536.768	0.6239 0.60321 0.58252 0.57192	0.55124 0.55481		
1536.888	0.62285 0.60372 0.58459 0.5708	0.55124 0.55419		
1537.008	0.62361 0.60432 0.58503 0.57176	0.5537 0.55728		
1537.128	0.62407 0.60355 0.58303 0.5701	0.55154 0.55419		
1537.248	0.62814 0.60662 0.5851 0.57085	0.55216 0.55419		
1537.368	0.62787 0.60704 0.58621 0.5754	0.55308 0.55542		
1537.488	0.63204 0.60935 0.58666 0.57503	0.55647 0.55573		
1537.607	0.63287 0.61106 0.58925 0.5804	0.5924 0.55883		
1537.727	0.63163 0.61063 0.58963 0.58013	0.58832 0.55666		
1537.847	0.63184 0.61088 0.58992 0.58078	0.55893 0.55635		
1537.967	0.63351 0.61242 0.59133 0.58169	0.59955 0.5579		
1538.087	0.63312 0.61491 0.5967 0.58282	0.56264 0.55914		
1538.207	0.63598 0.61757 0.59916 0.58817	0.56481 0.56038		
1538.327	0.63336 0.61697 0.60058 0.58477	0.56295 0.56255		
1538.447	0.63753 0.61868 0.59983 0.58747	0.56481 0.56255		
1538.566	0.63928 0.61765 0.59602 0.58758	0.56512 0.55914		
1538.686	0.64145 0.62083 0.60021 0.59072	0.56792 0.56038		
1538.806	0.64252 0.62402 0.60552 0.59305	0.56947 0.56348		
1538.926	0.63883 0.61963 0.60043 0.58823	0.56699 0.56069		
1539.046	0.64447 0.62144 0.59841 0.58925	0.56761 0.55976		
1539.166	0.63852 0.62015 0.60178 0.58925	0.56885 0.55945		
1539.286	0.64516 0.62583 0.6065 0.59273	0.5729 0.561		
Table A2. Cont.

Wavelength (nm)	NDII (mW)					
DI Water 25.2 ppm	0.6517	0.62929	0.60688	0.59735	0.5729	0.56193
Water 2 43.5 ppm	0.65148	0.62903	0.60658	0.59506	0.57509	0.56131
Water 3 64.0 ppm	0.64663	0.62773	0.60883	0.59588	0.57352	0.55976
1539.406	0.64923	0.62903	0.60883	0.59833	0.57477	0.56224
1539.526	0.65419	0.63328	0.61237	0.60139	0.57696	0.56441
1539.645	0.6544	0.63553	0.61562	0.60434	0.57947	0.56784
1539.765	0.65757	0.63701	0.61645	0.60478	0.58072	0.56628
1539.885	0.66163	0.64093	0.62023	0.60642	0.58607	0.56784
1540.005	0.66687	0.64146	0.62145	0.60878	0.59885	0.56784
1540.125	0.66888	0.64714	0.6254	0.61049	0.59017	0.57033
1540.245	0.66733	0.64635	0.626	0.61401	0.59207	0.5719
1540.365	0.6667	0.63919	0.61758	0.60533	0.58418	0.56753
1540.484	0.6656	0.64504	0.62448	0.61208	0.59143	0.5719
1540.604	0.67077	0.64968	0.62859	0.61467	0.59397	0.57252
1540.724	0.67384	0.65152	0.6292	0.6171	0.59492	0.57534
1540.844	0.6695	0.64924	0.62898	0.6155	0.59555	0.57503
1540.964	0.66931	0.65082	0.63233	0.61809	0.59428	0.57377
1541.084	0.67271	0.65275	0.63279	0.61688	0.59618	0.57534
1541.204	0.68003	0.65645	0.63287	0.62009	0.59936	0.57691
1541.324	0.68196	0.65768	0.6334	0.62347	0.60159	0.57754
1541.444	0.67908	0.65609	0.6331	0.61809	0.60127	0.57817
1541.563	0.67796	0.65733	0.6367	0.62286	0.60478	0.57879
1541.683	0.68338	0.66165	0.63992	0.62485	0.6051	0.58037
1541.803	0.6828	0.66263	0.64246	0.62674	0.60702	0.58194
1542.043	0.68196	0.65768	0.6334	0.62347	0.60159	0.57754
1542.163	0.67908	0.65609	0.6331	0.61809	0.60127	0.57817
1542.283	0.67796	0.65733	0.6367	0.62286	0.60478	0.57879
1542.403	0.68338	0.66165	0.63992	0.62485	0.6051	0.58037
1542.522	0.6828	0.66263	0.64246	0.62674	0.60702	0.58194
1542.642	0.68196	0.65768	0.6334	0.62347	0.60159	0.57754
1542.762	0.67908	0.65609	0.6331	0.61809	0.60127	0.57817
1542.882	0.67796	0.65733	0.6367	0.62286	0.60478	0.57879
1543.002	0.68338	0.66165	0.63992	0.62485	0.6051	0.58037
1543.122	0.6828	0.66263	0.64246	0.62674	0.60702	0.58194
1543.242	0.69194	0.66785	0.64376	0.6307	0.6099	0.58383
1543.362	0.68645	0.66484	0.64323	0.62814	0.60894	0.58509
1543.482	0.68584	0.66519	0.64454	0.63181	0.6099	0.58636
1543.601	0.69129	0.6683	0.64531	0.63209	0.61214	0.58794
1543.721	0.69079	0.66847	0.64615	0.63394	0.61086	0.58762
Wavelength	NDII	NDII	NDII	NDII	NDII	NDII
------------	--------	--------	--------	--------	--------	--------
nm	mW	mW	mW	mW	mW	mW
DI Water	25.2 ppm	Water 2	43.5 ppm	Water 3	64.0 ppm	
1543.841	0.6961	0.67248	0.64886	0.63617	0.61632	0.59238
1543.961	0.69443	0.67141	0.64839	0.63545	0.61407	0.59016
1544.081	0.6941	0.67256	0.65102	0.6364	0.61471	0.59269
1544.201	0.69518	0.67337	0.65156	0.63645	0.616	0.59142
1544.321	0.69867	0.67783	0.65699	0.64178	0.6189	0.59651
1544.441	0.70701	0.68266	0.65831	0.64296	0.62407	0.59874
1544.56	0.70144	0.67836	0.65528	0.64257	0.62245	0.5981
1544.68	0.70117	0.67881	0.65645	0.64313	0.62213	0.59683
1544.8	0.70591	0.6832	0.66049	0.646	0.62569	0.5997
1544.92	0.70794	0.68562	0.6633	0.65182	0.62991	0.60385
1545.04	0.70924	0.68732	0.6654	0.65103	0.63024	0.60706
1545.16	0.70735	0.68661	0.66587	0.65091	0.62991	0.60673
1545.28	0.71117	0.68993	0.66869	0.65391	0.63056	0.6093
1545.4	0.71107	0.69074	0.67041	0.65482	0.63284	0.61123
1545.52	0.71115	0.69192	0.67269	0.65862	0.63317	0.61252
1545.639	0.71684	0.6948	0.67276	0.65879	0.6348	0.61413
1545.759	0.71638	0.69426	0.67214	0.658	0.63317	0.61252
1545.879	0.71627	0.69444	0.67261	0.65788	0.63414	0.61316
1545.999	0.71613	0.69598	0.67583	0.65976	0.63643	0.61478
1546.119	0.71838	0.69742	0.67646	0.66084	0.63741	0.6151
1546.239	0.72598	0.70177	0.67756	0.66409	0.64068	0.61898
1546.359	0.72277	0.70123	0.67969	0.66329	0.64166	0.61962
1546.479	0.7235	0.70195	0.6804	0.66569	0.64396	0.62092
1546.598	0.725	0.70404	0.68308	0.66723	0.64659	0.62222
1546.718	0.72222	0.70277	0.68332	0.6686	0.64462	0.62124
1546.838	0.73196	0.7095	0.68704	0.67038	0.64955	0.62709
1546.958	0.72775	0.70668	0.68561	0.67043	0.64922	0.62774
1547.078	0.73353	0.71151	0.68949	0.67313	0.65318	0.63067
1547.198	0.73033	0.71023	0.69013	0.67336	0.65186	0.631
1547.318	0.73222	0.71169	0.69116	0.67502	0.65252	0.63035
1547.438	0.73384	0.71489	0.69594	0.67761	0.65649	0.63525
1547.557	0.7323	0.71352	0.69474	0.67876	0.65285	0.63394
1547.677	0.73636	0.71599	0.69562	0.67836	0.65517	0.63557
1547.797	0.7328	0.71397	0.69514	0.67761	0.65616	0.63361
1547.917	0.73969	0.71901	0.69833	0.68078	0.65948	0.63885
1548.037	0.7416	0.72112	0.70064	0.68436	0.66147	0.64115
1548.157	0.74294	0.72287	0.7028	0.68587	0.66413	0.64181
Table A2. Cont.

Wavelength (nm)	DI Water 25.2 ppm	Water 2 43.5 ppm	Water 3 64.0 ppm
1548.277	0.74673	0.72645	
1548.397	0.7439	0.72323	
1548.516	0.74703	0.72728	
1548.636	0.75317	0.73236	
1548.756	0.75597	0.73505	
1548.876	0.75013	0.73338	
1548.996	0.75196	0.73236	
1549.116	0.7561	0.73681	
1549.236	0.75338	0.73662	
1549.356	0.75768	0.73885	
1549.475	0.75861	0.74191	
1549.595	0.76076	0.74043	
1549.715	0.75874	0.74108	
1549.835	0.76532	0.74685	
1549.955	0.77077	0.75059	
1550.075	0.76692	0.74891	
1550.195	0.76662	0.74807	
1550.315	0.76931	0.75227	
1550.435	0.77103	0.75415	
1550.554	0.77644	0.75997	
1550.674	0.77855	0.76053	
1550.794	0.77572	0.75846	
1550.914	0.77438	0.75865	
1551.034	0.77538	0.761	
1551.154	0.78577	0.76751	
1551.274	0.77862	0.76373	
1551.394	0.78722	0.76647	
1551.513	0.78558	0.76779	
1551.633	0.78389	0.76789	
1551.753	0.79135	0.77319	
1551.873	0.79585	0.77594	
1551.993	0.79432	0.77509	
1552.113	0.7939	0.77575	
1552.233	0.7995	0.77946	
1552.353	0.80633	0.78795	
Table A2. Cont.

Wavelength (nm)	NDII DI Water 25.2 ppm	NDII Water 2 43.5 ppm	NDII Water 3 64.0 ppm
1552.473	0.80423	0.78661	0.76899
1552.592	0.80431	0.78853	0.77275
1552.712	0.80448	0.78757	0.77066
1552.832	0.80695	0.78968	0.77241
1552.952	0.81271	0.79591	0.77911
1553.072	0.81535	0.79639	0.77743
1553.192	0.81192	0.79514	0.77836
1553.312	0.81002	0.79553	0.78104
1553.432	0.80936	0.79659	0.78382
1553.551	0.81399	0.80063	0.78727
1553.671	0.82159	0.80536	0.78913
1553.791	0.82201	0.80671	0.79141
1553.911	0.82297	0.80584	0.78871
1554.031	0.82577	0.80952	0.79327
1554.151	0.82942	0.81457	0.79972
1554.271	0.83184	0.81612	0.8004
1554.391	0.83197	0.81661	0.80125
1554.51	0.82876	0.81428	0.7998
1554.63	0.83265	0.81895	0.80525
1554.75	0.83875	0.82217	0.80559
1554.87	0.84071	0.82525	0.80969
1554.99	0.83796	0.82344	0.80892
1555.11	0.83917	0.82498	0.81063
1555.23	0.84242	0.82794	0.81346
1555.35	0.8488	0.83216	0.81552
1555.469	0.84929	0.83481	0.82033
1555.589	0.85237	0.83609	0.81981
1555.709	0.85114	0.83668	0.82222
1555.829	0.85743	0.84112	0.82481
1555.949	0.86059	0.84369	0.82679
1556.069	0.85977	0.84497	0.83017
1556.189	0.85971	0.84507	0.83043
1556.309	0.86231	0.84784	0.83337
1556.429	0.86566	0.84943	0.8332
1556.548	0.86356	0.85003	0.8365
1556.668	0.86858	0.8538	0.83902
1556.788	0.87084	0.8551	0.83936

mW = milliwatt
Table A2. Cont.

Wavelength (nm)	NDII 0.25 ppm	NDII 25.2 ppm	NDII 43.5 ppm	NDII 64.0 ppm			
DI Water	0.87313	0.85838	0.84363	0.82758	0.79964	0.81126	
1556.908	0.87394	0.85918	0.84442	0.82929	0.8	0.81163	
1557.148	0.87538	0.86108	0.84678	0.82998	0.8011	0.81568	
1557.268	0.88238	0.86668	0.85098	0.83373	0.80438	0.81863	
1557.388	0.88802	0.87099	0.85396	0.83683	0.80914	0.82159	
1557.507	0.89148	0.8725	0.85352	0.8415	0.81134	0.82345	
1557.627	0.88677	0.87019	0.85361	0.83787	0.81134	0.82345	
1557.747	0.89029	0.873	0.85571	0.84182	0.81317	0.82419	
1557.867	0.89629	0.87895	0.86161	0.84412	0.81795	0.8279	
1558.087	0.89623	0.87976	0.86329	0.84489	0.82164	0.83013	
1558.107	0.89502	0.88238	0.86974	0.85156	0.82423	0.83684	
1558.227	0.89439	0.88127	0.86815	0.84969	0.82312	0.83684	
1558.347	0.90021	0.88471	0.86921	0.85233	0.8246	0.83684	
1558.467	0.90288	0.88755	0.87222	0.85246	0.82682	0.83984	
1558.586	0.90357	0.88927	0.87497	0.85877	0.82979	0.84246	
1558.706	0.91208	0.89344	0.8748	0.85677	0.8309	0.84246	
1558.826	0.90884	0.89364	0.87844	0.86245	0.83462	0.84509	
1558.946	0.91572	0.89904	0.88236	0.86484	0.83909	0.8496	
1559.066	0.92115	0.9018	0.88245	0.86504	0.83947	0.8496	
1559.186	0.92187	0.90426	0.88665	0.87029	0.84021	0.85413	
1559.306	0.92322	0.90641	0.8896	0.8725	0.8462	0.85602	
1559.426	0.92339	0.90753	0.89167	0.87699	0.8492	0.85753	
1559.545	0.92797	0.91031	0.89265	0.87915	0.85409	0.8636	
1559.665	0.92835	0.91041	0.89247	0.87908	0.85259	0.86246	
1559.785	0.93072	0.9138	0.89688	0.8815	0.85711	0.8655	
1559.905	0.93318	0.9171	0.90102	0.88333	0.85975	0.8693	
1560.025	0.93376	0.91906	0.90436	0.88602	0.85975	0.86969	
1560.145	0.9364	0.92133	0.90626	0.88818	0.86429	0.87274	
1560.265	0.93608	0.9204	0.90472	0.8868	0.8624	0.87121	
1560.385	0.93648	0.92123	0.9058	0.89022	0.86392	0.87159	
1560.505	0.94176	0.9265	0.91124	0.89213	0.86505	0.87503	
1560.624	0.94274	0.92785	0.91296	0.89555	0.86847	0.87809	
1560.744	0.94275	0.92858	0.91441	0.89773	0.87075	0.88193	
1560.864	0.94308	0.92879	0.9145	0.89991	0.87227	0.87809	
1560.984	0.94631	0.93159	0.91687	0.90308	0.87266	0.8827	
1561.104	0.94526	0.93325	0.92124	0.90302	0.87647	0.88385	
Wavelength nm	NDII mW						
--------------	--------	--------	--------	--------	--------	--------	--------
1561.224	0.95679	0.93888	0.92097	0.90806	0.88259	0.88847	
1561.344	0.95615	0.94066	0.92517	0.90892	0.88489	0.88963	
1561.464	0.95451	0.9361	0.92471	0.90925	0.88297	0.89002	
1561.583	0.95615	0.94139	0.92663	0.91211	0.88604	0.89388	
1561.703	0.95373	0.9416	0.92947	0.91264	0.88835	0.89272	
1561.823	0.95509	0.94379	0.93249	0.91591	0.8922	0.89775	
1561.943	0.95365	0.94243	0.93121	0.91711	0.8895	0.89775	
1562.063	0.95803	0.94421	0.93039	0.91598	0.88874	0.8962	
1562.183	0.95876	0.94526	0.93176	0.91564	0.89105	0.89737	
1562.303	0.96019	0.94662	0.93305	0.92045	0.89452	0.89853	
1562.423	0.96544	0.95145	0.93746	0.92139	0.89683	0.9028	
1562.542	0.96202	0.95029	0.93856	0.92279	0.89722	0.90164	
1562.662	0.96345	0.95239	0.94133	0.92514	0.90303	0.90436	
1562.782	0.96405	0.95292	0.94179	0.92682	0.90303	0.90475	
1562.902	0.96694	0.95418	0.94142	0.92803	0.90381	0.9067	
1563.022	0.97088	0.95892	0.94696	0.93139	0.90964	0.91177	
1563.142	0.97729	0.96125	0.9452	0.93327	0.91042	0.91099	
1563.262	0.98311	0.96601	0.94891	0.93698	0.91588	0.91412	
1563.382	0.97743	0.96326	0.94909	0.93638	0.91471	0.91334	
1563.501	0.98363	0.96738	0.95113	0.93881	0.9198	0.91568	
1563.621	0.97304	0.96283	0.95262	0.93969	0.91549	0.91647	
1563.741	0.97548	0.96558	0.95568	0.94097	0.91862	0.91725	
1563.861	0.97912	0.96791	0.9567	0.93982	0.92176	0.91961	
1563.981	0.97801	0.96601	0.95401	0.93901	0.9194	0.91647	
1564.101	0.98781	0.97407	0.96033	0.94436	0.92529	0.92	
1564.221	0.98063	0.97067	0.96071	0.94619	0.92529	0.92157	
1564.341	0.97838	0.97057	0.96276	0.94762	0.92765	0.92393	
1564.461	0.98368	0.97322	0.96276	0.94898	0.92883	0.92354	
1564.58	0.9874	0.97695	0.9665	0.9534	0.93278	0.92472	
1564.7	0.99038	0.98036	0.97034	0.9577	0.93831	0.93104	
1564.82	0.9892	0.97855	0.9679	0.95681	0.93633	0.93064	
1564.94	0.98566	0.97823	0.9708	0.95872	0.9399	0.93183	
1565.06	0.98168	0.97493	0.96818	0.95879	0.93792	0.92867	
1565.18	0.9932	0.98261	0.97202	0.96242	0.94347	0.93301	
1565.3	0.99244	0.98303	0.97362	0.9618	0.94506	0.9346	
1565.42	0.98877	0.98143	0.97409	0.96214	0.94625	0.93618	
Table A2. Cont.

Wavelength (nm)	NDII 25.2 ppm mW	NDII 43.5 ppm mW	NDII 64.0 ppm mW
DI Water			
1565.539	0.99264	0.98421	0.97578
1565.659	0.99326	0.98325	0.97324
1565.779	0.99524	0.98678	0.97832
1565.899	0.99464	0.98549	0.97634
1566.019	0.99779	0.98796	0.97813
1566.139	0.9967	0.98817	0.97964
1566.259	1.001	0.99107	0.98114
1566.379	0.99199	0.98817	0.98435
1566.499	0.99769	0.99107	0.98445
1566.618	0.99921	0.99386	0.98851
1566.738	1.00015	0.99386	0.98757
1566.858	0.99771	0.99472	0.99173
1566.978	0.99288	0.99117	0.98946
1567.098	0.99197	0.99408	0.99619
1567.218	0.99499	0.99526	0.99553
1567.338	0.99414	0.99289	0.99164
1567.458	0.99635	0.99537	0.99439
1567.577	0.99623	0.99332	0.99041
1567.697	0.99897	0.99644	0.99391
1567.817	0.99721	0.99547	0.99373
1567.937	0.99596	0.99451	0.99306
1568.057	0.99614	0.99569	0.99524
1568.177	0.99668	0.99634	0.996
1568.297	0.99786	0.99817	0.99848
1568.417	1.00069	0.99892	0.99715
1568.536	0.99799	0.99795	0.99791
1568.656	0.99838	0.99881	0.99924
1568.776	1.00095	1	0.99905
1568.896	0.99784	0.99892	1
1569.016	0.99719	0.99774	0.99829
1569.136	0.99194	0.99483	0.99772
1569.256	0.99605	0.99655	0.99705
1569.376	0.9924	0.99558	0.99876
1569.495	0.98929	0.99236	0.99543
1569.615	0.9903	0.99225	0.9942
1569.735	0.99004	0.99193	0.99382
1569.855	0.9858	0.98967	0.99354
Wavelength (nm)	NDII Water 25.2 ppm	NDII Water 43.5 ppm	NDII Water 64.0 ppm
----------------	----------------------	---------------------	---------------------
1569.975	0.98847	0.99214	0.99581
1570.095	0.98734	0.99096	0.99458
1570.215	0.98598	0.99085	0.99572
1570.335	0.98584	0.98817	0.9905
1570.455	0.98741	0.99085	0.99429
1570.574	0.98662	0.98989	0.99316
1570.694	0.98788	0.99085	0.99382
1570.814	0.98669	0.98978	0.99287
1570.934	0.99066	0.99096	0.99126
1571.054	0.98401	0.98806	0.99211
1571.174	0.98135	0.98635	0.99135
1571.294	0.98314	0.98796	0.99278
1571.414	0.98806	0.98914	0.99022
1571.533	0.97941	0.98207	0.98473
1571.653	0.97832	0.98228	0.98624
1571.773	0.97741	0.98154	0.98567
1571.893	0.97334	0.97908	0.98482
1572.013	0.97069	0.97738	0.98407
1572.133	0.97226	0.97642	0.98058
1572.253	0.97158	0.97674	0.9819
1572.373	0.97191	0.97695	0.98199
1572.493	0.97258	0.97738	0.98218
1572.612	0.96465	0.97078	0.97691
1572.732	0.96542	0.97248	0.97954
1572.852	0.96262	0.96887	0.97512
1572.972	0.96064	0.9676	0.97456
1573.092	0.95602	0.96463	0.97324
1573.212	0.95367	0.96177	0.96987
1573.332	0.95202	0.95935	0.96668
1573.452	0.9468	0.9566	0.9664
1573.571	0.94577	0.95534	0.96491
1573.691	0.95032	0.95766	0.965
1573.811	0.95038	0.95755	0.96472
1573.931	0.94029	0.95092	0.96155
1574.051	0.93684	0.9484	0.95996
1574.171	0.94019	0.9504	0.96061
1574.291	0.93787	0.94966	0.96145
Table A2. Cont.

Wavelength (nm)	NDII 25.2 ppm mW	NDII 43.5 ppm mW	NDII 64.0 ppm mW
DI Water	0.94057	0.9505	0.96043
	0.94442	0.95587	0.96969
	0.94212	0.95159	0.96639
	0.94306	0.95317	0.96887
	0.94107	0.95252	0.96777
	0.93846	0.95252	0.96708
	0.93607	0.94706	0.96112
	0.92962	0.94105	0.95565
	0.9244	0.94307	0.95544
	0.9219	0.94327	0.95555
	0.92879	0.94105	0.95565
	0.92443	0.93912	0.95272
	0.92278	0.93516	0.95142
	0.91926	0.93268	0.9466
	0.91864	0.93103	0.947
	0.9136	0.92809	0.94355
	0.90969	0.9259	0.94409
	0.90866	0.9259	0.93867
	0.90877	0.92161	0.94131
	0.90661	0.92133	0.93766
	0.89853	0.9166	0.93152
	0.89619	0.91351	0.93307
	0.89344	0.90888	0.92581
	0.89323	0.90924	0.9293
	0.89029	0.90499	0.92554
	0.87996	0.89814	0.91965
	0.87895	0.89364	0.91431
	0.87522	0.88535	0.91145
	0.87804	0.89616	0.91524
	0.87059	0.89149	0.91052
	0.88532	0.9054	0.9308
	0.85992	0.87804	0.89616
	0.85749	0.87915	0.89932
	0.8583	0.87889	0.89971
	0.85838	0.88532	0.9054
	0.85589	0.87266	0.89806
	0.85052	0.87071	0.89305
	0.84547	0.86558	0.88818
	0.84388	0.86311	0.88792
	0.84057	0.86043	0.90018
Wavelength nm	DI Water 25.2 ppm mW	Water 2 43.5 ppm mW	Water 3 64.0 ppm mW
---------------	----------------------	----------------------	----------------------
1578.726	0.81845	0.84003	
1578.846	0.81583	0.83806	
1578.966	0.81443	0.8356	
1579.086	0.80873	0.82784	
1579.206	0.80486	0.82451	
1579.326	0.80134	0.82266	
1579.446	0.79802	0.82109	
1579.565	0.78503	0.8102	
1579.685	0.78422	0.80633	
1579.805	0.78272	0.80536	
1579.925	0.77712	0.80092	
1580.045	0.77461	0.79764	
1580.165	0.77084	0.79438	
1580.285	0.76761	0.78968	
1580.405	0.75576	0.78136	
1580.525	0.75866	0.78089	
1580.644	0.75028	0.77632	
1580.764	0.74705	0.773	
1580.884	0.74328	0.76921	
1581.004	0.74383	0.76534	
1581.124	0.73345	0.75771	
1581.244	0.72756	0.75405	
1581.364	0.72969	0.75583	
1581.484	0.71835	0.74555	
1581.603	0.71562	0.74043	
1581.723	0.71143	0.73746	
1581.843	0.70927	0.73273	
1581.963	0.7058	0.73116	
1582.083	0.69731	0.72489	
1582.203	0.69655	0.72241	
1582.323	0.68691	0.71434	
1582.443	0.69047	0.71571	
1582.562	0.68405	0.71078	
1582.682	0.68787	0.71114	
1582.802	0.67707	0.70431	
1582.922	0.68058	0.70395	
Table A2. Cont.

Wavelength nm	NDII mW					
1583.042	0.66695	0.69543	0.72391	0.75247	0.79346	0.80942
1583.162	0.66529	0.69318	0.72107	0.74915	0.7902	0.80722
1583.282	0.65903	0.68993	0.72083	0.7474	0.7902	0.80649
1583.402	0.65319	0.68382	0.71445	0.74397	0.78767	0.80282
1583.521	0.6524	0.68149	0.71058	0.74073	0.78262	0.80026
1583.641	0.64782	0.67595	0.70408	0.73456	0.77579	0.79625
1583.761	0.64309	0.67123	0.69937	0.72878	0.77399	0.7908
1583.881	0.63588	0.66555	0.69522	0.72337	0.76756	0.78319
1584.001	0.63381	0.66165	0.68949	0.71975	0.76399	0.7803
1584.121	0.62773	0.65671	0.68569	0.71568	0.76186	0.77814
1584.241	0.61853	0.64836	0.67819	0.71037	0.7537	0.76916
1584.361	0.60992	0.64154	0.67316	0.70439	0.74735	0.76415
1584.48	0.60254	0.63362	0.6647	0.69597	0.73962	0.75845
1584.6	0.6022	0.63189	0.66158	0.69422	0.73682	0.75596
1584.72	0.59431	0.62592	0.65753	0.69039	0.73333	0.75135
1584.84	0.59387	0.62376	0.65365	0.68749	0.72845	0.74711
1584.96	0.58845	0.61765	0.64685	0.6809	0.72533	0.73972
1585.08	0.57725	0.60943	0.64161	0.6729	0.71771	0.73445
1585.2	0.57635	0.60687	0.63739	0.67233	0.71668	0.72921
1585.32	0.56972	0.60321	0.6367	0.66935	0.71461	0.72851
1585.44	0.56321	0.59888	0.63455	0.66997	0.71288	0.72607
1585.559	0.55866	0.59237	0.62608	0.65811	0.70533	0.71913
1585.679	0.55165	0.58613	0.62061	0.65182	0.69952	0.71255
1585.799	0.54801	0.57951	0.61101	0.64668	0.69441	0.70636
1585.919	0.54668	0.57817	0.60966	0.64392	0.69339	0.70567
1586.039	0.53969	0.57366	0.60763	0.6433	0.69237	0.70361
1586.159	0.53413	0.56668	0.59923	0.6326	0.68324	0.69642
1586.279	0.52738	0.55932	0.59126	0.62641	0.6755	0.68791
1586.399	0.52211	0.5515	0.58089	0.61809	0.6678	0.6781
1586.518	0.51973	0.55068	0.58163	0.61975	0.6678	0.67911
1586.638	0.50932	0.54503	0.58074	0.61749	0.66513	0.67844
1586.758	0.50863	0.54185	0.57507	0.60999	0.65881	0.67339
1586.878	0.49881	0.53291	0.56701	0.60341	0.65186	0.66401
1586.998	0.49703	0.52976	0.56249	0.59789	0.64922	0.65901
1587.118	0.4939	0.52645	0.559	0.59659	0.64363	0.65735
1587.238	0.48947	0.52242	0.55537	0.59169	0.6397	0.65138
1587.358	0.48467	0.51897	0.55327	0.58996	0.64035	0.65138
Wavelength (nm)	NDII 25.2 ppm mW	NDII 43.5 ppm mW	NDII 64.0 ppm mW			
----------------	------------------	------------------	------------------			
1587.478	0.47755	0.51425	0.55095			
1587.597	0.47758	0.51113	0.54468			
1587.717	0.47239	0.50477	0.53715			
1587.837	0.47051	0.5039	0.53729			
1587.957	0.47251	0.50358	0.53465			
1588.077	0.46462	0.49607	0.52752			
1588.197	0.45914	0.48922	0.5193			
1588.317	0.45084	0.48148	0.51212			
1588.437	0.45141	0.48015	0.50889			
1588.556	0.44547	0.47564	0.50581			
1588.676	0.43471	0.46712	0.49953			
1588.796	0.4273	0.45842	0.48954			
1588.916	0.42047	0.45245	0.48443			
1589.036	0.41625	0.44773	0.47921			
1589.156	0.41291	0.4437	0.47449			
1589.276	0.4109	0.44075	0.4706			
1589.396	0.40296	0.43365	0.46434			
1589.516	0.39574	0.42757	0.4594			
1589.635	0.39227	0.42196	0.45165			
1589.755	0.38384	0.4163	0.44876			
1589.875	0.38351	0.41296	0.44241			
1589.995	0.38148	0.41015	0.43882			
1590.115	0.37601	0.4033	0.43059			
1590.235	0.36726	0.39458	0.4219			
1590.355	0.36501	0.3926	0.42019			
1590.474	0.36299	0.3894	0.41581			
1590.594	0.35732	0.38679	0.41626			
1590.714	0.34983	0.3807	0.41157			
1590.834	0.34006	0.37156	0.40306			
1590.954	0.33374	0.36498	0.39622			
1591.074	0.33253	0.36306	0.39359			
1591.194	0.33218	0.36128	0.39038			
1591.314	0.33136	0.35972	0.38808			
1591.434	0.31875	0.35045	0.38215			
1591.553	0.31471	0.34314	0.37157			
1591.673	0.31183	0.34006	0.36829			
1591.793	0.30852	0.33671	0.3649			
Table A2. Cont.

Wavelength (nm)	NDII 25.2 ppm	NDII 43.5 ppm	NDII 64.0 ppm
1591.913	0.30491	0.33337	0.36183
1592.033	0.29943	0.32782	0.35621
1592.153	0.29143	0.31886	0.34629
1592.273	0.29393	0.31749	0.34105
1592.393	0.29109	0.31585	0.34061
1592.512	0.2936	0.31797	0.34234
1592.632	0.28931	0.31352	0.33773
1592.752	0.28369	0.30704	0.33039
1592.872	0.27234	0.29884	0.32534
1592.992	0.2732	0.29851	0.32382
1593.112	0.26826	0.29601	0.32376
1593.232	0.26865	0.2946	0.32055
1593.352	0.26116	0.28802	0.31488
1593.472	0.25245	0.27863	0.30481
1593.591	0.24561	0.27393	0.30225
1593.711	0.24993	0.27327	0.29661
1593.831	0.24602	0.26951	0.293
1593.951	0.23659	0.26144	0.28629
1594.071	0.23407	0.25492	0.27577
1594.191	0.22427	0.24683	0.26939
1594.311	0.22383	0.2458	0.26777
1594.431	0.21726	0.23943	0.2616
1594.55	0.21433	0.23413	0.25393
1594.67	0.21065	0.22993	0.24921
1594.79	0.20236	0.22258	0.2428
1594.91	0.20005	0.21892	0.23779
1595.03	0.19201	0.21428	0.23655
1595.15	0.18687	0.21115	0.23543
1595.27	0.18641	0.20815	0.22989
1595.39	0.17714	0.19984	0.22254
1595.51	0.17003	0.19374	0.21745
1595.629	0.16737	0.18963	0.21189
1595.749	0.17025	0.18981	0.20937
1595.869	0.16465	0.18559	0.20653
1595.989	0.15777	0.17975	0.20173
1596.109	0.15917	0.17733	0.19549
1596.229	0.15205	0.17075	0.18945
Table A2. Cont.

Wavelength (nm)	DI Water 25.2 ppm	Water 2 43.5 ppm	Water 3 64.0 ppm
1596.349	0.1483	0.16799	0.18768
1596.469	0.15143	0.17009	0.18876
1596.588	0.14725	0.16559	0.18393
1596.708	0.1398	0.15856	0.17732
1596.828	0.13635	0.15387	0.17139
1596.948	0.13061	0.15068	0.17075
1597.068	0.13024	0.14968	0.16912
1597.188	0.13361	0.15015	0.16669
1597.308	0.12101	0.14322	0.16543
1597.428	0.123	0.14029	0.15758
1597.547	0.11168	0.13325	0.15482
1597.667	0.11353	0.13169	0.14985
1597.787	0.10959	0.12799	0.14639
1597.907	0.11296	0.12759	0.14222
1598.027	0.10872	0.12511	0.1415
1598.147	0.10307	0.11835	0.13363
1598.267	0.09768	0.1139	0.13012
1598.387	0.09588	0.11242	0.12896
1598.506	0.09783	0.11447	0.13114
1598.626	0.09874	0.11418	0.12962
1598.746	0.09054	0.10727	0.124
1598.866	0.09031	0.10349	0.11667
1598.986	0.08617	0.10107	0.11597
1599.106	0.08495	0.10214	0.11933
1599.226	0.08423	0.0999	0.11557
1599.346	0.08195	0.09659	0.11123
1599.466	0.07659	0.09163	0.10667
1599.585	0.07036	0.08698	0.1036
1599.705	0.07307	0.08698	0.10089
1599.825	0.07467	0.08864	0.10261
1599.945	0.07456	0.0862	0.09784
1600.065	0.06658	0.08091	0.09524
1600.185	0.06177	0.07609	0.09041
1600.305	0.06521	0.07565	0.08609
1600.425	0.06803	0.0791	0.09017
1600.544	0.06521	0.07713	0.08905
1600.664	0.0621	0.07412	0.08614
Wavelength (nm)	NDII 25.2 ppm (mW)	NDII 43.5 ppm (mW)	NDII 64.0 ppm (mW)
---------------	------------------	------------------	------------------
1600.784	0.06797	0.07139	0.07481
1600.904	0.0595	0.06857	0.07764
1601.024	0.05365	0.06397	0.07429
1601.144	0.06275	0.06797	0.07319
1601.264	0.05572	0.06407	0.07242
1601.384	0.05036	0.05735	0.06434
1601.504	0.03907	0.05078	0.06249
1601.623	0.03699	0.04642	0.05585
1601.743	0.04603	0.05094	0.05585
1601.863	0.03358	0.04483	0.05608
1601.983	0.03574	0.04404	0.05234
1602.103	0.03452	0.03982	0.04512
1602.223	0.03154	0.0362	0.04086
1602.343	0.01942	0.03176	0.0441
1602.463	0.03481	0.03756	0.04031
1602.582	0.02745	0.03395	0.04045
1602.702	0.02854	0.03155	0.03456
1602.822	0.0235	0.02832	0.03314
1602.942	0.0235	0.02832	0.03314
1603.062	0.02442	0.03009	0.03576
1603.182	0.02383	0.0278	0.03177
1603.302	0.02276	0.02485	0.02694
1603.422	0.01307	0.01799	0.02291
1603.542	0.0225	0.0202	0.0179
1603.661	0.01551	0.01702	0.01853
1603.781	0.01964	0.0201	0.02056
1603.901	0.00754	0.01328	0.01902
1604.021	0.01217	0.01344	0.01471
1604.141	0.00703	0.01022	0.01341
1604.261	5.9 × 10⁻⁴	0.00738	0.01417
1604.381	0.00491	0.01109	0.01727
1604.5	0.00188	0.00814	0.0144
1604.62	0.00543	0.00819	0.01095
References

1. Akbarnezhad, S.; Amini, A.; Goharrizi, A.S.; Rainey, T.; Morawska, L. Capacity of quartz fibers with high filtration efficiency for capturing soot aerosol particles. *Int. J. Environ. Sci. Technol.* 2018, 15, 1039–1048. [CrossRef]

2. Shi, R.; Huang, C.; Zhang, L.; Amini, A.; Liu, K.; Shi, Y.; Bao, S.; Wang, N.; Cheng, C. Three Dimensional Sculpturing of Vertical Nanowire Arrays by Conventional Photolithography. *Sci. Rep.* 2016, 6, 18886. [CrossRef] [PubMed]

3. Masindi, V.; Muedi, K.L. *Environmental Contamination by Heavy Metals;* IntechOpen: London, UK, 2018; p. 7; [CrossRef]

4. Goel, A.D.; Chowgule, R.V. Outbreak investigation of lead neurotoxicity in children from artificial jewelry cottage industry. *Environ. Health Prev. Med.* 2019, 24, 30. [CrossRef] [PubMed]

5. Docherty, B.; Kariuki, M. Creating an Effective Corrosion Control Program to Eliminate Lead in Drinking Water in Hamilton, Ontario. *J. AWWA* 2019, 111, 28–38. [CrossRef]

6. Zahran, S.; McElmurry, S.P.; Sadler, R.C. Four phases of the Flint Water Crisis: Evidence from blood lead levels in children. *Environ. Res.* 2017, 157, 160–172. [CrossRef]

7. Delile, H.; Blichert-Toft, J.; Goiran, J.P.; Keay, S.; Albarède, F. Lead in ancient Rome’s city waters. *Proc. Natl. Acad. Sci. USA* 2014, 111, 6594–6599. [CrossRef]

8. DeSantis, M.K.; Triantafyllidou, S.; Schock, M.R.; Lytle, D.A. Mineralogical Evidence of Galvanic Corrosion in Drinking Water Lead Pipe Joints. *Environ. Sci. Technol.* 2018, 52, 3365–3374. [CrossRef]

9. Mayans, L. Lead Poisoning in Children. *Ann. Fam. Physician* 2019, 100, 24–30.

10. Cantor, A.G.; Hendrickson, R.; Blazina, I. Screening for Elevated Blood Lead Levels in Children and Pregnant Women: US Preventive Services Task Force Recommendation Statement. *JAMA* 2019, 321, 1502–1509. [CrossRef]

11. Ettinger, A.S.; Egan, K.B.; Homa, D.M.; Brown, M.J. Blood Lead Levels in U.S. Women of Childbearing Age, 1976–2016. *Environ. Health Perspect.* 2020, 128, 17012. [CrossRef]

12. Paul, S.; Mandal, A.; Bhattacharjee, P.; Chakraborty, S.; Paul, R.; Kumar Mukhopadhyay, B. Evaluation of water quality and toxicity after exposure of lead nitrate in fresh water fish, major source of water pollution. *Egypt. J. Aquat. Res.* 2019, 45, 345–351. [CrossRef]

13. Mason, L.H.; Harp, J.P.; Han, D.Y. Pb neurotoxicity: Neuropsychological effects of lead toxicity. *Biomed. Res. Int.* 2014, 2014, 840547. [CrossRef]

14. Cai, S.Z.; Zhao, L.N.; Liu, J.; Ji, Y.T.; Shi, X.Y.; Ma, Z.R.; Lv, X.H.; Chen, K.; Chen, Y. Allicin alleviates lead-induced hematopoietic stem cell aging by up-regulating PKM2. *Biosci. Rep.* 2019, 39, BSR20190243. [CrossRef]

15. Radulescu, A.; Lundgren, S. A pharmacokinetic model of lead absorption and calcium competitive dynamics. *Sci. Rep.* 2019, 9, 14225. [CrossRef]

16. de Mattos, G.F.; Costa, C.; Savio, F.; Alonso, M.; Nicolson, G.L. Lead poisoning: acute exposure of the heart to lead ions promotes changes in cardiac function and Cav1.2 ion channels. *Biophys. Res. Lett.* 2017, 209, 807–825. [CrossRef]

17. Rajendran, S. Lead Toxicity on Male Reproductive System and its Mechanism: A Review. *Res. J. Pharm. Technol.* 2018, 11, 1228–1232. [CrossRef]

18. Kumar, S. Occupational and Environmental Exposure to Lead and Reproductive Health Impairment: An Overview. *Indian J. Occup. Environ. Med.* 2018, 22, 128–137. [CrossRef]

19. Vu, H.H.; Gu, S.; Thiveni, T.; Khan, D.M.; Tuan, Q.L.; Ahn, W.J. Sustainable Treatment for Sulfate and Lead Removal from Battery Wastewater. *Sustainability* 2019, 11, 3497. [CrossRef]

20. Zeng, C.; Hu, H.; Feng, X.; Wang, K.; Zhang, Q. Activating CaCO3 to enhance lead removal from lead-zinc solution to serve as green technology for the purification of mine tailings. *Chemosphere* 2020, 249, 126227. [CrossRef]

21. Tang, X.; Wang, P.Y.; Buchter, G. Ion-Selective Electrodes for Detection of Lead (II) in Drinking Water: A Mini-Review. *Environments* 2018, 5, 95. [CrossRef]

22. Nguyen, H.; Sung, Y.; O’Shaughnessy, K.; Shan, X.; Shih, W.C. Smartphone Nanocolorimetry for On-Demand Lead Detection and Quantitation in Drinking Water. *Anal. Chem.* 2018, 90, 11517–11522. [CrossRef]

23. Zhang, Z.; Ma, P.; Li, J.; Sun, Y.; Shi, H.; Chen, N.; Zhang, X.; Chen, H. Colorimetric and SERS dual-mode detection of lead ions based on Au-Ag core-shell nanospheres: featuring quick screening with ultra-high sensitivity. *Opt. Express* 2019, 27, 29248–29260. [CrossRef]

24. Seitz, H.; Stahl, F.; Walter, J.G. *Catalytically Active Nucleic Acids;* Advances in Biochemical Engineering/Biotechnology; Springer International Publishing: Berlin/Heidelberg, Germany, 2019.

25. Lin, W.C.; Li, Z.; Burns, M.A. A Drinking Water Sensor for Lead and Other Heavy Metals. *Anal. Chem.* 2017, 89, 8748–8756. [CrossRef]

26. Kanellis, V.G. Sensitivity limits of biosensors used for the detection of metals in drinking water. *Biophys. Rev.* 2018, 10, 1415–1426. [CrossRef]

27. Yu, C.; Shao, Z.; Hou, H. A functionalized metal-organic framework decorated with O- groups showing excellent performance for lead(II) removal from aqueous solution. *Chem. Sci.* 2017, 8, 7611–7619. [CrossRef]

28. Fang, X.; Zong, B.; Mao, S. Metal-Organic Framework-Based Sensors for Environmental Contaminant Sensing. *Nano-Micro Lett.* 2018, 10, 64. [CrossRef]
29. Okoro, H.K.; Ayika, S.O.; Ngila, J.C.; Tella, A.C. Rising profile on the use of metal-organic frameworks (MOFs) for the removal of heavy metals from the environment: an overview. *Appl. Water Sci.* 2018, 8, 169. [CrossRef]

30. Kobielska, P.A.; Howarth, A.J.; Farha, O.K.; Nayak, S. Metal-organic frameworks for heavy metal removal from water. *Coord. Chem. Rev.* 2018, 358, 92–107. [CrossRef]

31. Li, W.T.; Hu, Z.J.; Meng, J.; Zhang, X.; Gao, W.; Chen, M.L.; Wang, J.H. Zn-based metal organic framework-covalent organic framework composites for trace lead extraction and fluorescence detection of TNP. *J. Hazard. Mater.* 2021, 411, 125021. [CrossRef]

32. Tang, J.; Chen, Y.; Zhao, M.; Wang, S.; Zhang, L. Phenylthiosemicarbazide-functionalized UiO-66-NH2 as highly efficient adsorbent for the selective removal of lead from aqueous solutions. *J. Hazard. Mater.* 2021, 413, 125278. [CrossRef]

33. Zhao, F.; Yang, W.; Han, Y.; Luo, X.; Tang, W.; Yue, T.; Li, Z. A straightforward strategy to synthesize supramolecular amorphous zirconium metal-organic gel for efficient Pb(II) removal. *Chem. Eng. J.* 2021, 407, 126744. [CrossRef]

34. Wang, C.; Liu, X.; Kese Demir, N.; Chen, J.P.; Li, K. Applications of water stable metal-organic frameworks. *Chem. Soc. Rev.* 2016, 45, 5107–5134. [CrossRef] [PubMed]

35. Nazari, M.; Forouzandeh, M.A.; Divarathne, C.M.; Sidiroglou, F.; Martinez, M.R.; Konstas, K.; Muir, B.W.; Hill, A.J.; Duke, M.C.; Hill, M.R.; et al. UiO-66 MOF end-face-coated optical fiber in aqueous contaminant detection. *Opt. Lett.* 2016, 41, 1696–1699. [CrossRef] [PubMed]

36. Nazari, M.; Amini, A.; Hill, M.R.; Cheng, C.; Samali, B. Physical and chemical reaction sensing in a mixed aqueous solution via metal-organic framework thin-film coated optical fiber. *Microw. Opt. Technol. Lett.* 2020, 62, 72–77. [CrossRef]

37. Nazari, M.; Rubio-Martinez, M.; Babarao, R.; Younis, A.A.; Collins, S.F.; Hill, M.R.; Duke, M.C. Aqueous contaminant detection via UiO-66 thin film optical fiber sensor platform with fast Fourier transform based spectrum analysis. *J. Phys. Appl. Phys.* 2017, 51, 25601. [CrossRef]

38. Vaughan, G.M. *The Fabry–Perot Interferometer: History, Theory, Practice and Applications*; CRC Press: Boca Raton, FL, USA, 2017; p. 604.

39. The Mathworks, Inc. *MATLAB Version 9.5.0.955555 (R2018b)*; The Mathworks, Inc.: Natick, MA, USA, 2018.

40. Khayyun, T.S.; Mseer, A.H. Comparison of the experimental results with the Langmuir and Freundlich models for copper removal on limestone adsorbent. *Appl. Water Sci.* 2019, 9, 170. [CrossRef]

41. Rico, R.; Konstas, K.; Styles, M.J.; Richardson, J.J.; Babarao, R.; Suzuki, K.; Scopec, P.; Falcaro, P. Lead(ii) uptake by aluminium based magnetic framework composites (MFCs) in water. *J. Mater. Chem.* 2015, 3, 19822–19831. [CrossRef]

42. Dignam, T.; Kaufmann, R.B.; LeStourgeon, L.; Mary, J.S. Control of Lead Sources in the United States, 1970–2017: Public Health Progress and Current Challenges to Eliminating Lead Exposure. *J. Public Health Manag. Pract.* 2019, 25, S13–S22. [CrossRef]

43. Evano, N.; Abdi, R.; Poulain, M. Lifetime modeling of silica optical fiber in static fatigue test. *J. Appl. Res. Technol.* 2016, 14, 278–285. [CrossRef]

44. Sun, Y.; Sun, Q.; Huang, H.; Aguilera, B.; Niu, Z.; Perman, J.A.; Ma, S. A molecular-level superhydrophobic external surface to improve the stability of metal-organic frameworks. *J. Mater. Chem.* 2017, 5, 18770–18776. [CrossRef]

45. Nazari, M.; Rubio-Martinez, M.; Tobias, G.; Barrio, J.P.; Babarao, R.; Nazari, F.; Konstas, K.; Muir, B.W.; Collins, S.F.; Hill, A.J.; et al. Metal-Organic-Framework-Coated Optical Fibers as Light-Triggered Drug Delivery Vehicles. *Adv. Funct. Mater.* 2016, 26, 3244–3249. [CrossRef]

46. Krol, A.; Mizerna, K.; Bozym, M. An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. *J. Hazard. Mater.* 2020, 384, 121502. [CrossRef]

47. Zhu, H.; Yuan, J.; Tan, X.; Zhang, W.; Fang, M.; Wang, X. Efficient removal of Pb(II) by Tb-MOFs: Identifying the adsorption mechanism through experimental and theoretical investigations. *Environ. Sci. Nano* 2019, 6, 261–272. [CrossRef]

48. Geisse, A.R.; Ngule, C.M.; Genna, D.T. Removal of lead ions from water using thiophene-functionalized metal-organic frameworks. *Chem. Commun.* 2020, 56, 237–240. [CrossRef]

49. Allahdin, O.; Mabingui, J.; Wartel, M.; Boughriet, A. Removal of Pb(II) ions from aqueous solutions by fixed-BED column using a modified brick: Micro structural, electrokinetic and mechanistic aspects. *Appl. Clay Sci.* 2017, 148, 56–67. [CrossRef]

50. Powell, K.; Brown, P.; Byrne, R.; Gajda, T.; Hefter, G.; Leuz, A.K.; Sjoberg, S.; Wanner, H. Chemical speciation of environmentally significant metals with inorganic ligands. Part 3: IUPAC Technical Report. *Pure Appl. Chem.* 2009, 81, 2425–2476. [CrossRef]