Quasi-randomness is determined by the distribution of copies of a fixed graph in equicardinal large sets

Raphael Yuster *

Abstract

For every fixed graph H and every fixed $0 < \alpha < 1$, we show that if a graph G has the property that all subsets of size αn contain the “correct” number of copies of H one would expect to find in the random graph $G(n, p)$ then G behaves like the random graph $G(n, p)$; that is, it is p-quasi-random in the sense of Chung, Graham, and Wilson [4]. This solves a conjecture raised by Shapira [8] and solves in a strong sense an open problem of Simonovits and Sós [9].

1 Introduction

The theory of quasi-random graphs asks the following fundamental question: which properties of graphs are such that any graph that satisfies them, resembles an appropriate random graph (namely, the graph satisfies the properties that a random graph would satisfy, with high probability). Such properties are called quasi-random.

The theory of quasi-random graphs was initiated by Thomason [10, 11] and then followed by Chung, Graham and Wilson who proved the fundamental theorem of quasi-random graphs [4]. Since then there have been many papers on this subject (see, e.g. the excellent survey [6]). Quasi-random properties were also studied for other combinatorial structures such as set systems [1], tournaments [2], and hypergraphs [3]. There are also some very recent results on quasi-random groups [5] and generalized quasi-random graphs [7].

In order to formally define p-quasi-randomness we need to state the fundamental theorem of quasi-random graphs. As usual, a labeled copy of a graph H in a graph G is an injective mapping ϕ from $V(H)$ to $V(G)$ that maps edges to edges. That is $(x, y) \in E(H)$ implies $(\phi(x), \phi(y)) \in E(G)$. For a set of vertices $U \subset V(G)$ we denote by $H[U]$ the number of labeled copies of H in the subgraph of G induced by U and by $e(U)$ the number of edges of G with both endpoints in U. A graph sequence (G_n) is an infinite sequence of graphs $\{G_1, G_2, \ldots\}$ where G_n has n vertices. The following result of Chung, Graham, and Wilson [4] shows that many properties of different nature

*Department of Mathematics, University of Haifa, Haifa 31905, Israel. E-mail: raphy@math.haifa.ac.il
are equivalent to the notion of quasi-randomness, defined using edge distribution. The original theorem lists seven such equivalent properties, but we only state four of them here.

Theorem 1 (Chung, Graham, and Wilson [4]) Fix any $1 < p < 1$. For any graph sequence (G_n) the following properties are equivalent:

- **P$_1(t)$:** For an even integer $t \geq 4$, let C_t denote the cycle of length t. Then $e(G_n) = \frac{1}{2}pn^2 + o(n^2)$ and $C_t[G_n] = p^t n^t + o(n^t)$.

- **P$_2$:** For any subset of vertices $U \subseteq V(G_n)$ we have $e(U) = \frac{1}{2}p|U|^2 + o(n^2)$.

- **P$_3$:** For any subset of vertices $U \subseteq V(G_n)$ of size $n/2$ we have $e(U) = \frac{1}{2}p|U|^2 + o(n^2)$.

- **P$_4(\alpha)$:** Fix an $\alpha \in (0, \frac{1}{2})$. For any $U \subseteq V(G_n)$ of size αn we have $e(U, V \setminus U) = p\alpha(1 - \alpha)n^2 + o(n^2)$.

The formal meaning of the properties being equivalent is expressed, as usual, using ϵ, δ notation. For example the meaning that P_3 implies P_2 is that for any $\epsilon > 0$ there exist $\delta = \delta(\epsilon)$ and $N = N(\epsilon)$ so that for all $n > N$, if G is a graph with n vertices having the property that any subset of vertices U of size $n/2$ satisfies $|e(U) - \frac{1}{2}p|U|^2| < \delta n^2$ then also for any subset of vertices W we have $|e(W) - \frac{1}{2}p|W|^2| < \epsilon n^2$.

Given Theorem 1 we say that a graph property is p-quasi-random if it is equivalent to any (and therefore all) of the four properties defined in that theorem. (We will usually just say quasi-random instead of p-quasi-random since p is fixed throughout the proofs). Note, that each of the four properties in Theorem 1 is a property we would expect $G(n, p)$ to satisfy with high probability.

It is far from true, however, that any property that almost surely holds for $G(n, p)$ is quasi-random. For example, it is easy to see that having vertex degrees $np(1 + o(1))$ is not a quasi-random property (just take vertex-disjoint cliques of size roughly np each). An important family of non quasi-random properties are those requiring the graphs in the sequence to have the correct number of copies of a fixed graph H. Note that $P_1(t)$ guarantees that for any even t, if a graph sequence has the correct number of edges as well as the correct number of copies of $H = C_t$ then the sequence is quasi-random. As observed in [4] this is not true for all graphs. In fact, already for $H = K_3$ there are simple constructions showing that this is not true.

Simonovits and Sós observed that the standard counter-examples showing that for some graphs H, having the correct number of copies of H is not enough to guarantee quasi-randomness, have the property that the number of copies of H in some of the induced subgraphs of these counter-examples deviates significantly from what it should be. As quasi-randomness is a hereditary property, in the sense that we expect a sub-structure of a random-like object to be random-like as well, they introduced the following variant of property P_1 of Theorem 1 where now we require all subsets of vertices to contains the “correct” number of copies of H.
Definition 1.1 (\mathcal{P}_H) For a fixed graph H with h vertices and r edges, we say that a graph sequence (G_n) satisfies \mathcal{P}_H if all subsets of vertices $U \subset V(G_n)$ with $|U| = \alpha n$ satisfy $H[U] = p|U|^h + o(n^h)$.

As opposed to \mathcal{P}_1, which is quasi-random only for even cycles, Simonovits and Sós [9] showed that \mathcal{P}_H is quasi-random for any nonempty graph H.

Theorem 2 For any fixed H that has edges, property \mathcal{P}_H is quasi-random.

We can view property \mathcal{P}_H as a generalization of property \mathcal{P}_2 in Theorem 1 since \mathcal{P}_2 is just the special case \mathcal{P}_{K_2}. Now, property \mathcal{P}_3 in Theorem 1 guarantees that in order to infer that a sequence is quasi-random, and thus satisfies \mathcal{P}_2, it is enough to require only the sets of vertices of size $n/2$ to contain the correct number of edges. An open problem raised by Simonovits and Sós [9], and in a stronger form by Shapira [8], is that the analogous condition also holds for any H. Namely, in order to infer that a sequence is quasi-random, and thus satisfies \mathcal{P}_H, it is enough, say, to require only the sets of vertices of size $n/2$ to contain the correct number of copies of H. Shapira [8] proved that it is enough to consider sets of vertices of size $n/(h+1)$. Hence, in his result, the cardinality of the sets depends on h. Thus, if H has 1000 vertices, Shpiras’s result shows that it suffices to check vertex subsets having a fraction smaller than $1/1000$ of the total number of vertices. His proof method cannot be extended to obtain the same result for fractions larger than $1/(h + \epsilon)$.

In this paper we settle the above mentioned open problem completely. In fact, we show that for any H, not only is it enough to check only subsets of size $n/2$, but, more generally, we show that it is enough to check subsets of size αn for any fixed $\alpha \in (0, 1)$. More formally, we define:

Definition 1.2 ($\mathcal{P}_{H,\alpha}$) For a fixed graph H with h vertices and r edges and fixed $0 < \alpha < 1$ we say that a graph sequence (G_n) satisfies $\mathcal{P}_{H,\alpha}$ if all subsets of vertices $U \subset V(G_n)$ with $|U| = \lfloor \alpha n \rfloor$ satisfy $H[U] = p'|U|^h + o(n^h)$.

Our main result is, therefore:

Theorem 3 For any fixed graph H and any fixed $0 < \alpha < 1$, property $\mathcal{P}_{H,\alpha}$ is quasi-random.

2 Proof of the main result

For the remainder of this section let H be a fixed graph with $h > 1$ vertices and $r > 0$ edges, and let $\alpha \in (0, 1)$ be fixed. Throughout this section we ignore rounding issues and, in particular, assume that αn is an integer, as this has no effect on the asymptotic nature of the results.

Suppose that the graph sequence (G_n) satisfies $\mathcal{P}_{H,\alpha}$. We will prove that it is quasi-random by showing that it also satisfies \mathcal{P}_H. In other words, we need to prove the following lemma which, together with Theorem 2 yields Theorem 3.
Lemma 2.1 For any $\epsilon > 0$ there exists $N = N(\epsilon, h, \alpha)$ and $\delta = \delta(\epsilon, h, \alpha)$ so that for all $n > N$, if G is a graph with n vertices satisfying that for all $U \subseteq V(G)$ with $|U| = \alpha n$ we have $|H[U] - p^r|U|^h| < \delta n^h$ then G also satisfies that for all $W \subseteq V(G)$ we have $|H[W] - p^r|W|^h| < \epsilon n^h$.

Proof: Suppose therefore that $\epsilon > 0$ is given. Let $N = N(\epsilon, h, \alpha)$, $\epsilon' = \epsilon'(\epsilon, h, \alpha)$ and $\delta = \delta(\epsilon, h, \alpha)$ be parameters to be chosen so that N is sufficiently large and $\delta \ll \epsilon'$ are both sufficiently small to satisfy the inequalities that will follow, and it will be clear that they are indeed only functions of ϵ, h, and α.

Now, let G be a graph with $n > N$ vertices satisfying that for all $U \subseteq V(G)$ with $|U| = \alpha n$ we have $|H[U] - p^r|U|^h| < \delta n^h$. Consider any subset $W \subseteq V(G)$. We need to prove that $|H[W] - p^r|W|^h| < \epsilon n^h$.

For convenience, set $k = \alpha n$. Let us first prove this for the case where $|W| = m > k$. This case can rather easily be proved via a simple counting argument. Denote by \mathcal{U} the set of $\binom{m}{k}$ k-subsets of W. Hence, by the given condition on k-subsets,

$$
\binom{m}{k}(p^r k^h - \delta n^h) < \sum_{U \in \mathcal{U}} H[U] < \binom{m}{k}(p^r k^h + \delta n^h). \tag{1}
$$

Every copy of H in W appears in precisely $\binom{m-h}{k-h}$ distinct $U \in \mathcal{U}$. it follows from (1) that

$$
H[W] = \frac{1}{\binom{m-h}{k-h}} \sum_{U \in \mathcal{U}} H[U] < \frac{\binom{m}{k}}{\binom{m-h}{k-h}}(p^r k^h + \delta n^h) < p^r m^h + \frac{\epsilon'}{2} n^h, \tag{2}
$$

and similarly from (1)

$$
H[W] = \frac{1}{\binom{m-h}{k-h}} \sum_{U \in \mathcal{U}} H[U] > \frac{\binom{m}{k}}{\binom{m-h}{k-h}}(p^r k^h - \delta n^h) > p^r m^h - \frac{\epsilon'}{2} n^h. \tag{3}
$$

We now consider the case where $|W| = m = \beta n < \alpha n = k$. Notice that we can assume that $\beta \geq \epsilon$ since otherwise the result is trivially true. The set \mathcal{H} of H-subgraphs of G can be partitioned into $h + 1$ types, according to the number of vertices they have in W. Hence, for $j = 0, \ldots, h$ let \mathcal{H}_j be the set of H-subgraphs of G that contain precisely j vertices in $V \setminus W$. Notice that, by definition, $|\mathcal{H}_0| = H[W]$. For convenience, denote $w_j = |\mathcal{H}_j|/n^h$. We therefore have

$$
w_0 + w_1 + \cdots + w_h = \frac{|\mathcal{H}|}{n^h} = \frac{H[V]}{n^h} = p^r + \mu \tag{4}
$$

where $|\mu| < \epsilon'/2$.

Define $\lambda = \frac{(1-\alpha)}{h+1}$ and set $k_i = k + i\lambda n$ for $i = 1, \ldots, h$. Let $Y_i \subseteq V \setminus W$ be a random set of $k_i - m$ vertices, chosen uniformly at random from all $\binom{n-m}{k_i-m}$ subsets of size $k_i - m$ of $V \setminus W$. Denote $K_i = Y_i \cup W$ and notice that $|K_i| = k_i > \alpha n$. We will now estimate the number of elements of \mathcal{H}_j.
that “survive” in K_i. Formally, let $\mathcal{H}_{j,i}$ be the set of elements of \mathcal{H}_j that have all of their vertices in K_i, and let $m_{j,i} = |\mathcal{H}_{j,i}|$. Clearly, $m_{0,i} = H[W]$ since $W \subset K_i$. Furthermore, by (2) and (3),

\[m_{0,i} + m_{1,i} + \cdots + m_{h,i} = H[K_i] = p^r k_i^h + \rho_i n^h \tag{5} \]

where ρ_i is a random variable with $|\rho_i| < \epsilon'/2$.

For an H-copy $T \in \mathcal{H}_j$ we compute the probability $p_{j,i}$ that $T \in H[K_i]$. Since $T \in H[K_i]$ if and only if all the j vertices of T in $V \setminus W$ appear in Y_i we have

\[p_{j,i} = \frac{\binom{n-m-j}{k_i-m-j}}{\binom{n-m}{k_i-m}} = \frac{(k_i - m) \cdots (k_i - m - j + 1)}{(n-m) \cdots (n-m-j+1)}. \]

Defining $x_i = (k_i - m)/(n - m)$ and noticing that

\[x_i = \frac{k_i - m}{n - m} = \frac{\alpha - \beta}{1 - \beta} + \frac{\lambda}{1 - \beta} i \]

it follows that

\[|p_{j,i} - x_i|^j < \frac{\epsilon'}{2}. \tag{6} \]

Clearly, the expectation of $m_{j,i}$ is $E[m_{j,i}] = p_{j,i} |\mathcal{H}_j|$. By linearity of expectation we have from (5) that

\[E[m_{0,i}] + E[m_{1,i}] + \cdots + E[m_{h,i}] = E[H[K_i]] = p^r k_i^h + E[\rho_i] n^h. \]

Dividing the last equality by n^h we obtain

\[p_{0,i} w_0 + \cdots + p_{h,i} w_h = p^r (\alpha + \lambda i)^h + E[\rho_i]. \tag{7} \]

By (6) and (7) we therefore have

\[\sum_{j=0}^h x_i^j w_j = p^r (\alpha + \lambda i)^h + \mu_i \tag{8} \]

where $\mu_i = E[\rho_i] + \zeta_i$ and $|\zeta_i| < \epsilon'/2$. Since also $|\rho_i| < \epsilon'/2$ we have that $|\mu_i| < \epsilon'$.

Now, (4) and (8) form together a system of $h + 1$ linear equations with the $h + 1$ variables w_0, \ldots, w_h. The coefficient matrix of this system is just the Vandermonde matrix $A = A(x_1, \ldots, x_h, 1)$. Since $x_1, \ldots, x_h, 1$ are all distinct, and, in fact, the gap between any two of them is at least $\lambda/(1 - \beta) = (1 - \alpha)/(h + 1)(1 - \beta)) \geq (1 - \alpha)/(h + 1)$, we have that the system has a unique solution which is $A^{-1} b$ where $b \in R^{h+1}$ is the column vector whose i'th coordinate is $p^r (\alpha + \lambda i)^h + \mu_i$ for $i = 1, \ldots, h$ and whose last coordinate is $p^r + \mu$. Consider now the vector b^* which is the same as b, just without the μ_i’s. Namely $b^* \in R^{h+1}$ is the column vector whose i'th coordinate is $p^r (\alpha + \lambda i)^h$ for $i = 1, \ldots, h$ and whose last coordinate is p^r. Then the system $A^{-1} b^*$
also has a unique solution and, in fact, we know exactly what this solution is. It is the vector
\(w^* = (w_0^*, \ldots, w_h^*) \) where
\[
w_j^* = p^r \binom{h}{j} \beta^{h-j}(1-\beta)^j.
\]
Indeed, it is straightforward to verify the equality
\[
\sum_{j=0}^{h} p^r \binom{h}{j} \beta^{h-j}(1-\beta)^j = p^r
\]
and, for all \(i = 1, \ldots, h \) the equalities
\[
\sum_{j=0}^{h} \left(\frac{\alpha - \beta}{1-\beta} + \frac{\lambda}{1-\beta} \right)^j p^r \binom{h}{j} \beta^{h-j}(1-\beta)^j = p^r (\alpha + \lambda h)^h.
\]
Now, since the mapping \(F : R^{h+1} \to R^{h+1} \) mapping a vector \(c \) to \(A^{-1}c \) is continuous, we know that for \(\epsilon' \) sufficiently small, if each coordinate of \(c \) has absolute value less than \(\epsilon' \), then each coordinate of \(A^{-1}c \) has absolute value at most \(\epsilon \). Now, define \(c = b - b^* = (\mu_1, \ldots, \mu_h, \mu) \). Then we have that each coordinate \(w_i \) of \(A^{-1}b \) differs from the corresponding coordinate \(w_i^* \) of \(A^{-1}b^* \) by at most \(\epsilon \). In particular,
\[
|w_0 - w_0^*| = |w_0 - p^r \beta^h| < \epsilon.
\]
Hence,
\[
|H[W] - n^h p^r \beta^h| = |H[W] - p^r |W|^h| < \epsilon n^h
\]
as required.

References

[1] F.R.K. Chung and R.L. Graham. Quasi-random set systems. *Journal of the AMS* 4 (1991), 151–196.

[2] F.R.K. Chung and R.L. Graham. Quasi-random tournaments. *Journal of Graph Theory* 15 (1991), 173–198.

[3] F.R.K. Chung and R.L. Graham. Quasi-random hypergraphs. *Random Structures and Algorithms* 1 (1990), 105–124.

[4] F.R.K. Chung, R.L. Graham, and R.M. Wilson. Quasi-random graphs. *Combinatorica* 9 (1989), 345–362.

[5] T. Gowers. Quasirandom groups. manuscript, 2006.
[6] M. Krivelevich and B. Sudakov. Pseudo-random graphs. *More sets, graphs and numbers*, E. Györi, G.O.H. Katona and L. Lovász, Eds., Bolyai Society Mathematical Studies Vol. 15, 199–262.

[7] L. Lovász and V.T. Sós. Generalized quasirandom graphs. *Journal of Combinatorial Theory Series B* 98 (2008), 146–163.

[8] A. Shapira. Quasi-randomness and the distribution of copies of a fixed graph. *Combinatorica*, to appear.

[9] M. Simonovits and V.T. Sós. Hereditarily extended properties, quasi-random graphs and not necessarily induced subgraphs. *Combinatorica* 17 (1997), 577–596.

[10] A. Thomason. Pseudo-random graphs. *Proc. of Random Graphs*, Poznań 1985, M. Karoński, ed., Annals of Discrete Math. 33 (North Holland 1987), 307–331.

[11] A. Thomason. Random graphs, strongly regular graphs and pseudo-random graphs. *Surveys in Combinatorics*, C. Whitehead, ed., LMS Lecture Note Series 123 (1987), 173–195.