Stool antigen tests for the management of Helicobacter pylori infection

Tadashi Shimoyama

Tadashi Shimoyama, Department of Gastroenterology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
Author contributions: Shimoyama T solely contributed to this manuscript.
Correspondence to: Tadashi Shimoyama, MD, PhD, Department of Gastroenterology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan. tsimo-hki@umin.ac.jp
Telephone: +81-172-395053 Fax: +81-172-375946
Received: September 26, 2013 Revised: October 29, 2013
Accepted: November 12, 2013
Published online: December 7, 2013

Abstract

Stool antigen tests (SATs) are noninvasive diagnostic modules for Helicobacter pylori (H. pylori) infection. Two types of SATs exist for the diagnosis of H. pylori infection, one based on enzyme immunoassay (EIA) and another on immunochromatography (ICA). SATs do not require expensive chemical agents or specified equipment; hence, they are less expensive compared with the urea breath test. Both European and Japanese guidelines have shown that EIA-based SATs using monoclonal antibodies are useful for primary diagnosis as well as for the assessment of eradication therapy. ICA-based tests do not require particular equipment and are therefore useful in developing countries. SATs are also useful for the diagnosis of H. pylori infection in children and post gastric surgery patients. SATs performed via EIA can assess H. pylori infection in a large number of subjects, almost as well as serology. Thus, SATs would be useful or detecting current infection in such a survey to identify and eradicate H. pylori infection. The accuracy of SATs is lower when the stool samples are unformed or watery, because H. pylori-specific antigens in the stool samples are diluted. Temperature and the interval between stool sample collection and measurement also affect the results of SATs.

The choice of test kit depends on the sensitivity and specificity in each region and the circumstances of each patient.

Key words: Helicobacter pylori; Stool antigen test; Diagnosis; Enzyme immunoassay; Immunochromatography

Core tip: Stool antigen tests (SATs) are relatively inexpensive noninvasive tests. Several guidelines on Helicobacter pylori (H. pylori) infection from around the world indicate that SATs using monoclonal antibodies are useful for primary diagnosis as well as for assessing the results of eradication therapy. SATs are also useful for diagnosing H. pylori infection in children and post gastric surgery patients. The choice of test kit depends on the accuracy in each population and the circumstances of each patient.

Shimoyama T. Stool antigen tests for the management of Helicobacter pylori infection. World J Gastroenterol 2013; 19(45): 8188-8191. Available from: URL: http://www.wjgnet.com/1007-9327/full/v19/i45/8188.htm DOI: http://dx.doi.org/10.3748/wjg.v19.i45.8188

INTRODUCTION

Infection by Helicobacter pylori (H. pylori) has been implicated in the pathogenesis of gastro-duodenal diseases. Several guidelines on H. pylori infection from around the world indicate that eradication of H. pylori would result in a reduction of the incidence of gastro-duodenal diseases, including gastric cancer, and would decrease new infections in future generations.[1,2] Following the recommendation of the Japanese guidelines for the management
of *H. pylori* infection (2009 revised edition), in 2013, the Japanese health insurance system approved the coverage of the diagnosis and eradication of *H. pylori* in all infected patients[10]. Consequently, an expansion in the role of *H. pylori* diagnostic tests will accompany the increased number of patients undergoing *H. pylori* testing and eradication.

Stool antigen tests (SATs) are noninvasive diagnostic modules for *H. pylori* infection and were introduced after the urea breath test (UBT). Early SATs used an enzyme immunoassay (EIA) based on polyclonal antibodies. While they provided reliable results in the diagnosis of *H. pylori* infection, controversial results were sometimes observed in the post-eradication assessment because of false-positives[11,12]. Monoclonal antibody-based techniques generally have higher specificity. SATs based on monoclonal antibodies have been developed, and have been found to be more accurate than those using polyclonal antibodies[13-15]. A meta-analysis also showed that the specificity of SATs based on monoclonal antibodies was 0.97 (95% CI: 0.96-0.98)[16]. Both European and Japanese guidelines have indicated that SATs using monoclonal antibodies are useful for primary diagnosis as well as for the assessment of eradication therapy[10,13].

Two types of SATs exist for the diagnosis of *H. pylori* infection, one based on EIA and another on immunochromatography (ICA). Although both types of tests are highly sensitivity and specificity, a recent study showed that currently available ICA-based tests provide less reliable results than EIA-based tests[17]. However, ICA-based tests are easy to perform and are useful for in-office rapid diagnoses of *H. pylori* infection[10]. ICA-based tests do not require specialized equipment; therefore, they would be useful in developing countries.

DIAGNOSIS

Comparison with UBT

Among non-invasive diagnostic tests, SAT and UBT have higher accuracy than serological or urinary antibody-based tests[1,3]. The American Gastroenterological Association recommends both SAT and UBT for the diagnosis of *H. pylori* infection in patients with dyspepsia[18]. While UBT has been considered the most reliable noninvasive test for the diagnosis of *H. pylori* infection, it has several limitations. The cost of UBT is still relatively high because of the price of [13C]-urea (approximately 30.3 USD) and the cost of measuring [14C]CO₂. In contrast, SATs do not require expensive chemical agents and special equipment and hence are less expensive (1400 JPY; approximately 14.2 USD). In addition, patients are required to fast before UBT testing, but not before a SAT. Furthermore, proton pump inhibitor (PPI) administration modulates gastric pH, resulting in lower urease activity of *H. pylori* in the stomach. UBT detects gastric mucosal urease activity; therefore, false-negative results are noted in patients who have been taking PPIs[19]. It is therefore generally recommended that PPI administration be discontinued 2 wk before UBT testing[3]. PPIs can similarly influence SAT testing[20,21] results, but some monoclonal antibody-based SATs that are currently available are not affected by PPIs[22]. Such SATs, which do not require PPI discontinuation, are useful for the management of *H. pylori* infection in patients with gastroesophageal reflux diseases or those taking nonsteroidal anti-inflammatory drugs.

Diagnosis in children and post gastric surgery patients

A systematic review and meta-analysis showed that SATs using a monoclonal antibody-based EIA are useful for the diagnosis of *H. pylori* infection in children[23]. UBT is also highly accurate in children older than 6 years, while studies from developed countries showed that its specificity was less than 90% in very young children[16,17]. By contrast, both monoclonal SAT and UBT were reliable in young children aged 6-30 mo in South American developing countries[24]. These results indicate that monoclonal antibody-based SATs are the most effective tests for children in populations with both high and low prevalences of *H. pylori* infection[18,19].

In patients who received distal gastrectomy, the accuracy of UBT was lower than that of a biopsy urease test[25]. However, in Japanese patients who underwent distal gastrectomy, the specificity of SAT was 90.5% while that of UBT was only 59.1%[26].

Mass survey and screening

In mass surveys, with regard to technique and cost, serology has generally been used despite its lower specificity[3]. SATs performed via EIA can assess *H. pylori* infection in a large number of subjects, almost as well as serology. In 994 healthy Japanese adults who participated in a mass survey, concordance of the results of SAT and serology was over 90%[26]. However, in that study, the positivity of SATs was significantly lower than that of serology in 303 subjects with severe atrophic gastritis. In the gastric mucosa of patients with severe atrophic gastritis and intestinal metaplasia, colonization by *H. pylori* is decreased or non-existent. Therefore, in the setting of a mass survey, serology is useful for the detection of both current and past infection. SATs should be used to detect current infection in such a survey to identify and eradicate *H. pylori* infection for the prevention of gastric malignancies.

ASSESSMENT OF ERADICATION

To date, many studies have demonstrated the usefulness of SATs in the evaluation of the results of eradication therapy. Recent guidelines of the European Helicobacter Study Group (EHSG) recommend both UBT and laboratory-based monoclonal SAT[27]. After eradication therapy, the amount of *H. pylori* colonization in the stomach would be reduced, even when eradication therapy was unsuccessful. Therefore, SATs should be performed to detect the reduced number of bacteria. Among laboratory-based monoclonal SATs, the Premier Platinum
Shimoyama T. H. pylori stool antigen test

HpSA Plus (HpSA ELISA II; Meridian Diagnostics, Inc., Cincinnati, OH, United States), which uses multiple murine monoclonal antibodies, seems to be accurate. We previously demonstrated the significantly higher sensitivity of HpSA ELISA II to that of the Testmate Pylori Antigen EIA (TPAg EIA; Wakamoto Pharmaceutical Co. Ltd., and Kyowa Medex, Tokyo, Japan), which uses a single monoclonal antibody. HpSA ELISA II produced a higher positive predictive value, although the TPAg EIA provided efficient results.

In the guidelines of the EHSG, laboratory-based tests, but not in-office tests, are recommended for the evaluation of treatment results. However, recent observations indicate that some in-office monoclonal antibody-based tests can accurately evaluate the results of eradication treatment. In-office tests allow physicians to evaluate the results of eradication therapy in a single visit and the next eradication therapy can be started on the same day in non-eradicated patients. In-office tests do not require specialized equipment; therefore, they would be suitable in institutes that cannot measure CO₂.

PPI administration should be discontinued 2 wk before evaluating treatment results by UBT or SATs. However, as described above, the results of certain SATs are not affected by PPIs. Actually, in a small series of 22 Japanese patients, we showed that the results of eradication therapy assessed by TPAg EIA during PPI administration were the same as those determined by UBT 4 wk after discontinuing PPI in 21 patients.

In several guidelines, evaluation of the results of eradication therapy by SATs should be performed at least 4 wk after finishing the treatment. However, as described above, the results of certain SATs are not affected by PPIs. Actually, in a small series of 22 Japanese patients, we showed that the results of eradication therapy assessed by TPAg EIA during PPI administration were the same as those determined by UBT 4 wk after discontinuing PPI in 21 patients.

In summary, SATs are relatively inexpensive noninvasive tests. SATs using monoclonal antibodies are useful for primary diagnosis as well as for the assessment of eradication therapy. SATs are also useful in the management of H. pylori infection in children and post gastric surgery patients. In the future, SATs should be used in mass surveys to identify and eradicate H. pylori infection for the prevention of gastric malignancies. The choice of test kit depends on the sensitivity and specificity in each region and the circumstances of each patient.

CONCLUSION

In summary, SATs are relatively inexpensive noninvasive tests. SATs using monoclonal antibodies are useful for primary diagnosis as well as for the assessment of eradication therapy. SATs are also useful in the management of H. pylori infection in children and post gastric surgery patients. In the future, SATs should be used in mass surveys to identify and eradicate H. pylori infection for the prevention of gastric malignancies. The choice of test kit depends on the sensitivity and specificity in each region and the circumstances of each patient.

REFERENCES

1. Malfertheiner P, Megraud F, O’Morain CA, Atherton J, Axon AT, Bazzoli F, Gensini GF, Gibson JP, Graham DY, Rokkas T, El-Omar EM, Kuipers EJ. Management of Helicobacter pylori infection—the Maastricht IV/Florence Consensus Report. Gut 2012; 61: 646-664 [PMID: 22491499 DOI: 10.1136/gutjnl-2012-302884]

2. Fock KM, Katelaris P, Sugano K, Ang TL, Hunt R, Talley NJ, Lam SK, Xiao SD, Tan HJ, Wu CY, Jung HC, Hoang BH, Kachintorn U, Goh KL, Chiba T, Rani AA. Second Asia-Pacific Consensus Guidelines for Helicobacter pylori infection. J Gastroenterol Hepatol 2009; 24: 1587-1603 [PMID: 19786600 DOI: 10.1111/j.1440-1746.2009.05982.x]

3. Asaka M, Kato M, Takahashi S, Fukuda Y, Sugiyama T, Ota H, Uemura N, Murakami K, Satoh K, Sugano K. Guidelines for the management of Helicobacter pylori infection in Japan: 2009 revised edition. Helicobacter 2010; 15: 1-20 [PMID: 20302585]

4. Odaka T, Yamaguchi T, Koyama H, Saisho H, Nomura F. Evaluation of the Helicobacter pylori stool antigen test for monitoring eradication therapy. Am J Gastroenterol 2002; 97: 594-599 [PMID: 11922552 DOI: 10.1111/j.1572-0241.2002.00535.x]

5. Veijola L, Oksanen A, Lötjönen T, Sipponen P, Karvonen AL, Rautelin H. Comparison of three stool antigen tests in confirming Helicobacter pylori eradication in adults. Scand J Gastroenterol 2005; 40: 395-401 [PMID: 16028433 DOI: 10.1080/0036552051012154]

6. Dominguez J, Forné M, Blanco S, Prat C, Gali N, Latorre I, Viver JM, Ausina V. Comparison of a monoclonal with a polyclonal antibody-based enzyme immunoassay stool test in diagnosing Helicobacter pylori infection before and after eradication therapy. Aliment Pharmacol Ther 2006; 23: 1735-1740 [PMID: 16817917 DOI: 10.1111/
Helicobacter pylori infection in infants and toddlers in South America: concordance between [13C]urea breath test and monoclonal H. pylori stool antigen test. J Clin Microbiol 2013; 51: 3735-3740 [PMID: 24006099]

Cardenas VM, Dominguez DC, Puentes FA, Aragaki CC, Goodman KJ, Graham DY, Fukuda Y. Evaluation of a novel stool native catalase antigen test for Helicobacter pylori infection in asymptomatic North American children. J Pediatr Gastroenterol Nutr 2008; 46: 399-402 [PMID: 18367951 DOI: 10.1097/MPG.0b013e318148aeb88]

Adamopoulos AB, Stergiou GS, Sakizlis GN, Tiniakos DG, Nasothimiou EG, Sioutis DK, Achimastos AD. Diagnostic value of rapid urease test and urea breath test for Helicobacter pylori detection in patients with Billroth II gastrectomy: a prospective controlled trial. Dig Liver Dis 2009; 41: 4-8 [PMID: 18665759 DOI: 10.1016/j.dld.2008.05.010]

Yan J, Yamaguchi T, Odaka T, Suzuki T, Ohyama N, Hara T, Sudo K, Nakamura K, Denda T, Takiguchi N, Yokosuka O, Nomura F. Stool antigen test is a reliable method to detect Helicobacter pylori in the gastric remnant after distal gastrectomy for gastric cancer. J Clin Gastroenterol 2010; 44: 73-74 [PMID: 19687754 DOI: 10.1097/MJC.0b013e3181aae65e]

Shimoyama T, Oyama T, Matsuzaka M, Danjo K, Nakaji S, Fukuda S. Comparison of a stool antigen test and serology for the diagnosis of Helicobacter pylori infection in mass survey. Helicobacter 2009; 14: 87-90 [PMID: 19298335 DOI: 10.1111/j.1572-0241.2009.00672.x]

Sato M, Shimoyama T, Takahashi R, Kajiyama H, Sano Y, Sakaedani N, Kato A, Hirata H, Fukuda Y. Characterization and usefulness of stool antigen tests using a monoclonal antibody to Helicobacter pylori catalase. J Gastroenterol Hepatol 2012; 27 Suppl 3: 23-28 [PMID: 22486678 DOI: 10.1111/j.1440-1746.2012.07066.x]

Shimoyama T, Kobayashi I, Kato C, Kodama M, Fukuda Y. Comparison of monoclonal antibody-based stool antigen tests to determine the results of Helicobacter pylori eradication therapy. Scand J Gastroenterol 2010; 45: 1431-1434 [PMID: 20965725 DOI: 10.1080/0033510100359741]

Kaklikkaya N, Akdogan RA, Ozgur O, Uzun DY, Cobanoğlu U, Dinc U, Gungor E, Darbanca PA, Arslan M, Aydin F, Erturk M. Evaluation of a new rapid lateral flow chromatography test for the diagnosis of Helicobacter pylori. Saudi Med J 2006; 27: 799-803 [PMID: 16758038]

Shimoyama T, Kato C, Kodama M, Kobayashi I, Fukuda Y. Application of a monoclonal antibody-based stool antigen test to evaluate the results of Helicobacter pylori eradication therapy. Jpn J Infect Dis 2010; 63: 287-289 [PMID: 21128516 DOI: 10.1012/JCM.01205-12]

Saez J, Belda S, Santibañez M, Rodriguez JC, Sola-Vera J, Galiana A, Ruiz-Garcia M, Brotons A, Lopez-Girona E, Girone E, Sillero C, Royo G. Real-time PCR for diagnosing Helicobacter pylori infection in patients with upper gastrointestinal bleeding: comparison with other classical diagnostic methods. J Clin Microbiol 2012; 50: 3233-3237 [PMID: 22837325 DOI: 10.1128/JCM.01205-12]

Ritchie B, Brewster D, Tran CD, McNeil Y, Zacharakis B, Davidson GP, Butler RN. Lack of diagnostic accuracy of the monoclonal stool antigen test for detection of Helicobacter pylori infection in young Australian aboriginal children. Pediatr Infect Dis J 2009; 28: 287-289 [PMID: 19258925 DOI: 10.1097/INF.0b013e31818e039b]

P-Reviewers: Naito Y, Nagahara H, Said ZNA, Slomiany BL
S-Editor: Gou SX L-Editor: Stewart GJ E-Editor: Zhang DN
