State-of-the-art research on “lymphomas: role of molecular imaging for staging, prognostic evaluation, and treatment response”

Lale Kostakoglu1* and Bruce D. Cheson2

1 Department of Radiology, Mount Sinai Medical Center, New York, NY, USA
2 Division of Hematology-Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Hospital, Washington, DC, USA

INTRODUCTION

The lymphomas are a heterogeneous group of diseases with respect to their biology, treatment, and prognosis. Despite the high rate of cure of Hodgkin lymphoma (HL) and diffuse large B-cell lymphoma (DLBCL), there is a need to alter therapy in patients unlikely to benefit from standard treatment, while reducing treatment intensity in patients with low risk disease. To achieve this goal requires not only an accurate staging system, but strong baseline risk factors (prognostic), and/or those early during therapy (predictive factors) to define the optimal treatment strategy. Positron emission tomography (PET) using F-18-fluorodeoxyglucose (FDG), integrated with computed tomography (CT) (PET/CT) has become widely used in the staging and evaluation of therapy response in lymphomas, and may provide the means for such an individualized approach.

HISTOPATHOLOGIC LYMPHOMA SUBTYPES

F-18-fluorodeoxyglucose-avidity varies among the various lymphoma subtypes, the most routinely avid being HL, DLBCL, Burkitt, mantle cell (MCL), follicular lymphoma (FL) with a PET/CT sensitivity of 85–100% (1–6). There is currently no established role for the clinical usefulness of FDG-PET/CT in the less common indolent NHLs including marginal zone lymphomas (MZL), chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), and lymphoplasmacytic lymphoma (LPL), that tend to have limited and variable FDG-avidity (3, 7–12). About 10% of NHLs are of T-cell origin (13) and FDG-PET avidity is variable; being most reliable for the more aggressive, nodal subtypes including peripheral T-cell lymphoma not otherwise specified and anaplastic large cell lymphoma (12, 13).

F-18-fluorodeoxyglucose-avidity appears to correlate with aggressiveness of lymphomas (14, 15) and imaging with FDG-PET may be helpful in identifying a potential site of histologic transformation. It is important to note that SUVs exceeding 10 yields 80% certainty for the identification of aggressive behavior (16, 17), particularly, in Richter’s transformation for patients with CLL/SLL (18).

STAGING OF LYMPHOMAS

Ann Arbor staging, the most widely used system, has evolved over the past 40 years to incorporate CT (19, 20). Nevertheless, anatomic imaging relies on size and location and, therefore, is unable to distinguish malignant from benign lymph nodes (21). Numerous studies and a meta-analysis demonstrate that FDG-PET is more accurate than CT at initial staging with a maximum joint sensitivity and specificity of 96% on a lesion basis (22), which far exceeded the corresponding values for contrast-enhanced computed tomography (CEPT) (2, 9, 22–26). Discordance between PET and CECT findings occurs in approximately one third of patients at initial staging, predominantly, in favor of PET/CT imaging (22, 24, 26–32); however, stage is uncommonly altered (in up to 30% of patients), and treatment is rarely changed (in up to 15% of patients) with no evidence that outcome is improved as a result of these data (2, 24–29, 36–42). It is important to realize that the
widespread use of systemic chemotherapy in lymphoma patients appears to mitigate the need for a precise determination of the anatomic extent of disease; however, staging PET/CT is integral to evaluation of subsequent response to therapy.

The International Harmonization Project (IHP) recommends a baseline FDG-PET scan for HL and DLBCL because of their consistent FDG-avidity and potential curability (33). For other subtypes, FDG-PET imaging is recommended for clinical trials, particularly, when response rate is the primary objective. The current National Comprehensive Cancer Network guidelines (NCCN) recommend baseline PET imaging as an essential test in HL, DLBCL, AIDS related B-cell lymphomas and as a useful test in selected cases in FL, MZL, MCL, but does not recommend it in CLL/SLL (34, 35).

PET PLUS CECT AT STAGING
Whether the addition of a CECT improves the sensitivity and specificity of PET remains controversial (24, 25, 32, 41–46). In a series of 103 NHL and HL patients, Raanani et al. reported that the addition of CECT to PET/CT changed management in only about 10% of patients while FDG/PECT resulted in a management change in almost 50% of HL patients compared with CECT alone (41). However this study described neither what type of treatment changes occurred nor whether outcome was altered. In a group of 47 NHL or HL patients, Rodriguez-Vigil et al. reported no significant differences between the use of unenhanced low-dose PET/CT and contrast-enhanced full-dose PET/CT, although PET/CECT produced fewer indeterminate findings and identified a higher number of extranodal sites (42). These results suggest a marginal benefit with the addition of CECT to PET examination. In current practice, management of lymphoma usually requires both CECT and low-dose FDG-PET/CT for morphologic and metabolic assessment, respectively. However, this strategy increases patient radiation exposure by up to twofold (45).

Contrast-enhanced computed tomography is advisable in patients with abdominal lymphomas for distinguishing lymph nodes from non-opacified bowel loops and vessels, and where more precise measuring of node size is indicated. In rare cases with head and neck involvement, CECT may be useful to differentiate physiologic uptake from enlarged cervical lymph nodes. While in lymphomas with variable and low-grade FDG uptake including CLL/SLL and MZL, and some PTCL (3, 8, 14, 47, 48), CECT should be the imaging modality of choice. Further consideration for the use of both FDG-PET and CECT includes patients who are planned to undergo radiotherapy.

FDG-PET IN BONE MARROW INVOLVEMENT
Accurate assessment of the BM is crucial because it often upstages disease, leading to alterations in therapy strategy (5, 6). Lymphoma involvement of the BM is more common in patients with NHL (20–30%) (49, 50), especially, in indolent subtypes and MCL compared to those with HL (10%). BM biopsy is known to have a substantial false-negative rate due to the small volume of samples (51), and that it does not evaluate marrow involvement outside the pelvis. The sensitivity of PET in detecting BM involvement in HL and NHL, primarily in DLBCL, is about 90 and 75%, respectively (52–59) while only a sensitivity of 50% was achieved in indolent NHL (52, 53). The lower sensitivity seen in DLBCL can be explained by discordant lymphoid infiltrates representing the low-grade component of disease that lowers the sensitivity of FDG-PET imaging (49, 50). Although BMB remains essential for the diagnostic work-up only rarely do the early stage HL patients have BM involvement (58–60). BMB should no longer be recommended for staging clinically advanced HL because the marrow is virtually never involved in the absence of constitutional symptoms or other evidence of stage IV disease (60). Consequently, routine BMB should be restricted to patients with NHL. Patients with DLBCL rarely have a positive bone marrow biopsy in the absence of focal or diffuse involvement by PET-CT, or who have other evidence of advanced disease and, therefore, this procedure should be restricted to those with a positive scan to assess for the presence of a discordant histology. Even in indicated patients FDG-PET should precede BMB and biopsy or MRI could be pursued for confirmation of a positive PET finding. In the post-therapy setting, one should be mindful of the reactive BM changes induced by the colony stimulating factors (i.e., G-CSF). A 4–6 week period of time should be allowed before post-therapy PET imaging in patients who have received G-CSF to minimize the risk of a false-positive interpretation of the BM.

INDOLENT LYMPHOMAS
Limited FDG-PET data exist for FDG-PET in low-grade NHL (7, 70–74). In 45 untreated FL patients, Le Dortz et al. reported a median PFS of 48 and 17.2 months in the PET/CT-negative and positive groups, respectively, after four or six cycles of induction immunochemotherapy (7). Similar results were obtained by Bishu et al. in a retrospective review of 31 FL patients treated mainly with R-CHOP therapy (70). In another series of 39 relapsed or refractory FL patients, after completion of bendamustine therapy, the percent reduction in SUVmax (70 vs. 29%) and in maximum perpendicular diameters (78 vs. 48%) were significantly greater in
patients achieving a CR than in those with non-CR (71). The use of PET at the end-of-treatment in high-tumor-burden FL is supported by the emerging data. The utility of FDG-PET/CT in assessing response at the end of induction immunochemotherapy was suggested by the Primary Rituximab and Maintenance (PRIMA) study by the GELA in high-tumor-burden FL patients (72, 73). Patients remaining PET-positive had a significantly inferior PFS at 42 months than in those who became PET-negative (33 vs. 71%, \(p < 0.001 \)) in a subgroup of 122 patients (73). Similarly in a prospective study of 121 previously untreated high-tumor-burden FL patients at the end-of-treatment (first-line immunochemotherapy with six cycles of R-CHOP plus two cycles of rituximab, without rituximab maintenance) (74). When the response was assessed using Deauville criteria, with a median follow-up of 23 months, 2 year PFS was 87% for final PET-negative vs. 51% for final PET-positive patients (\(p < 0.001 \)), respectively. End-of-treatment, but not interim scans, were predictive of 2 year OS for positive and negative scans (\(p = 0.013 \)).

STEM CELL TRANSPLANTATION

A current standard treatment for relapsed or refractory HL involves high-dose chemotherapy and autologous hematopoietic stem cell transplantation (HDT/ASCT), offering long-term disease free survival in more than 50% of transplanted patients (75). Favorable outcome is largely a function of chemosensitivity at the time of ASCT (76–84). In recent studies in HL, best ASCT response was obtained in patients with chemosensitive disease who were PET-negative (76–80) after salvage therapy regardless of the chemotherapy that induced the response (79). A recent meta-analysis from 12 studies with 630 patients (187 HL; 313 DLBCL) reported a sensitivity of 69% and specificity of 81% (83). Additiona, PET-positive disease was associated with a significantly inferior 3 year PFS or EFS (31–41%) compared with patients who had PET-negative results following salvage chemotherapy prior to ASCT (75–82%) (76–84). Similar results were obtained in a retrospective case-series of 39 primary refractory or relapsed DLBCL patients with 3 year PFS of 35% vs. 81% for patients with positive pre-ASCT PET vs. those who had a negative PET (\(p = 0.003 \)) (85). Consequently, post-salvage therapy FDG is recommended to differentiate patients with a better prognosis following ASCT from others with unfavorable prognosis.

RESPONSE EVALUATION DURING THERAPY

Rapid response to chemotherapy is a recognized surrogate marker of chemosensitivity in both HL and DLBCL with an attendant high likelihood of a longer PFS (86). Persistent FDG uptake after two to four cycles of chemotherapy is associated with relapse rates ranging from 50 to 100%, while the relapse rate in interim-PET-negative patients is usually lower than 10% (87–92). In a meta-analysis, interim FDG-PET yielded an overall sensitivity of 81% and a specificity of 97% for advanced-stage HL, and a sensitivity of 78% and a specificity of 87% for DLBCL (93). Nonetheless, more recently, the results obtained for DLBCL patients were less convincing (94).

In advanced-stage HL patients (\(n = 260 \)), after two cycles (PET2) of standard therapy, Gallamini et al. reported treatment failure in 86% of PET2-positive patients after a median follow-up of 2.2 years while 95% of PET2-negative patients remained in CR (88). Interim-PET results have also been shown to be a stronger predictive factor for PFS than the International Prognostic Score (IPS) (88, 91). Similarly, in another non-randomized prospective study of mixed stage HL patients, Cerci et al. reported a 3-year EFS of 55 and 94% for PET2-positive and negative patients, respectively (\(p < 0.001 \)) (95). However, these data should also be interpreted with caution because IPS categories were not restricted to advanced-stage patients and unfavorable factors were disregarded in the stage classification.

The role of FDG-PET in the prediction of ultimate outcome is clearer in advanced-stage than early stage HL (93–103). Hutchings et al. reported a PPV of only 30% for an interim-PET after two or three cycles of ABVD chemotherapy in early stage HL (90, 91) while the NPV was high at 95%. More recently, in limited stage non-bulky HL patients the enthusiasm for interim-PET imaging has been tempered with no clear difference noted between PET2-positive and negative patients with respect to PFS (87 vs. 91%; \(p = 0.57 \)) (98). By contrast, end-chemotherapy PET was highly predictive of PFS (94 vs. 54%; \(p < 0.0001 \)). However, these are retrospective data with no control imposed over PET acquisition protocols and standardization of timing which are essential factors to provide reliability and reproducibility for the results.

Another important consideration is that the effectiveness of therapy has an influence on the predictive value of any given predictive marker. Using a slightly less effective chemotherapy regimen (doxorubicin, vinblastine, and gemcitabine), in a non-randomized prospective study of early non-bulky HL, Straus et al. reported a lower than expected 2 year PFS at 88% for PET2-negative patients while the PFS was 54% in the PET2-positive group (\(p = 0.0009 \), 96, 97). Similarly, in a randomized, prospective trial by Le Roux et al. early and advanced-stage HL patients were treated with a therapeutic strategy adapted to baseline prognostic factors, interim-PET after four cycles of ABVD (PET4) and CECT (99). The negative NPV and PPV for the interim FDG-PET predicting 2 year PFS were 96 and 16%, respectively (\(p < 0.0001 \)). The inferior PPV obtained in this study is not surprising as treatment intensification schemes may negate the predictive value of PET positivity.

Based on compelling data on interim-PET in advanced-stage HL, multiple PET-directed randomized studies were initiated to determine the outcome of therapy escalation in non-responding patients as well as de-escalation in patients who achieve an early CR. But, only few have reported interim results (100–104). In the HD15 trial of the German Hodgkin Study Group (GHSG), HL patients (stages IIb, III, IV) were initially randomized to one of three induction regimens (102). Those with a residual mass of at least 2.5 cm underwent a PET scan. Patients with a negative study were not further treated, whereas those with a positive scan received involved field radiation. The frequency of consolidative IFRT was only 11% compared with 70% in prior studies antedating the use of PET scans, with no difference in overall survival. In a retrospective analysis of a prospective study by Gallamini et al. in advanced-stage HL (GITIL/HD0607) when the treatment of PET2-positive patients was escalated to BEACOPP (bleomycin, etoposide, adriamycin, cyclophosphamide, vincristine, procarbazine, and prednisone) regimen the FFS was 95% in PET2
negative and 62% in PET2-positive groups \((p < 0.0001) \) with a median follow-up of 34 months which was superior to the 15% in patients whose therapy was unchanged \((103) \). Another adaptive therapy trial in advanced-stage HL by Dann et al. using not only interim-PET results but also the IPS for stratifying patients into different therapy arms reported a 10-year PFS of 83% in interim-PET-positive patients compared with 93% for those with a negative interim-PET \((n.s.) \) suggesting that unfavorable outcomes can be overcome by therapy intensification \((100) \).

In the RAPID trial, patients with limited stage disease received three cycles of ABVD \((104) \). Those who were PET-positive received an additional cycle followed by radiation therapy. The negative patients were randomized to involved field RT or observation, the latter being shown to be non-inferior. These results support the use of PET in risk-adapted strategies.

In DLBCL, while FDG-PET at completion of therapy is a good predictor of outcome, the value of an interim-PET remains controversial because of its low PPV \((93) \). Although earlier studies supported a role for an interim FDG-PET performed after two to four cycles of standard chemotherapy, the results of these and later studies varied significantly among patient groups \((105–107) \). The 2-year PFS for the PET-negative groups was 82–93% in PET-negative while the PFS for the PET-positive groups varied from 0 to 43%. These differences in PET results may be related to varying follow-up periods, patient populations, and different types of treatments employed, i.e., standard chemotherapy alone or with immunotherapy (rituximab). To further clarify the clinical relevance of interim FDG-PET, in a risk-adapted dose-dense immunochemotherapy program, Moskowitz et al. reported similar PFS for interim-PET-positive/biopsy-negative patients and in interim-PET-negative patients during a follow-up of 44 months \((94) \). In PET-positive patients, repeat biopsy was negative in 87%, and 51% of these patients remained progression-free after consolidation therapy during follow-up.

To date, the majority of interim FDG-PET studies have used visual criteria. However, the results of the GELA trial \((LNH2007-3B) \) of 85 high-risk DLBCL patients suggested that those patients whose tumors had a percent SUV change \((3B) \) of 85 high-risk DLBCL patients suggested that those patients visual criteria. However, the results of the GELA trial \((LNH2007-87% \), and 51% of these patients remained progression-free after follow-up.

In another study of 421 patients with mixed histologies including HL, aggressive NHL, and FL after first complete remission, serial six monthly FDG-PET scans enabled detection of relapse within 18 months of therapy \((115) \). There are also conflicting results reporting a PPV of only 30% for FDG-PET in HL patients \((116) \).

In summary, survival does not appear to be affected by mode of detection of recurrent lymphoma or the frequency of imaging. The low PPV associated with follow-up FDG-PET scans negates their clinical value in identifying patients who would benefit from additional treatment \((117, 118) \).

SURVEILLANCE FOLLOWING FIRST-LINE THERAPY

Despite improvements in survival rates, relapses occur in approximately 30–50% of advanced-stage HL and DLBCL patients following first-line therapy \((110–112) \). In a meta-analysis, the sensitivity and specificity of FDG-PET in identifying disease relapse for HL were 50–100 and 67–100%, respectively, and for NHL 33–77 and 82–100%, respectively, irrespective of a residual mass on CT \((113) \). In a recent study of HL and aggressive NHL, more than 60% of relapses were diagnosed clinically, especially, in aggressive NHL and in cases with extranodal involvement. Although HL relapses were more commonly detected by FDG-PET scans because of clinically silent disease, no survival benefit was proven \((114) \). In another study of 421 patients with mixed histologies including HL, aggressive NHL, and FL after first complete remission, serial six monthly FDG-PET scans enabled detection of relapse within 18 months of therapy \((115) \). There are also conflicting results reporting a PPV of only 30% for FDG-PET in HL patients \((116) \).

GENERAL CONSIDERATIONS AND RECOMMENDATIONS

TIMING OF FDG-PET IMAGING

- Interim-PET should be scheduled within 4–5 days of start of the subsequent therapy cycle to minimize false-positive results produced by the florid inflammatory response that peaks at around day 10 of chemotherapy initiation \((118, 119) \).
- The timing of FDG-PET studies after chemotherapy completion is more flexible, a 6- to 8-week window after end of therapy should be observed to allow for inflammation to subside and to minimize false-positive results caused by the inflammatory response associated with rituximab therapy \((120) \).
- Although, the bulk of existing data supports the use of interim-PET after two cycles of treatment in HL, there is no established optimal timing with regards to therapy cycles. If and when a paradigm shift toward tailored approach is established, performing PET after two cycles seems reasonable. There is also evidence that PET after one cycle has a high negative predictive value with respect to PFS \((121, 122) \).

STANDARDIZATION OF FDG-PET INTERPRETATION

- The International Harmonization Project criteria were developed for evaluation of response after completion of therapy. IHP criteria use the mediastinal blood pool as an internal reference for lesions of 2.0 cm or larger to discriminate a positive finding from a negative \((118) \).
- To increase the specificity of PET readings, the definition of a positive interim-PET result has evolved from any uptake above background to uptake intensity that is equal to the mediastinal blood pool, i.e., IHP criteria \((118) \), and more recently to an intensity exceeding the background in the liver \((122, 123) \).
- For interim-PET readings, a relatively high cut off is appropriate to measure chemosensitivity. Recently proposed “Deauville criteria” yield a flexible reading scheme suitable for different...
The use of quantitation to improve upon visual assessment was recently validated in a retrospective cohort of 260 advanced-stage HL patients treated with ABVD (124). After a mean follow-up of 27.2 months, the 3-year PFS of PET2-positive and negative patients were 28 and 95%, respectively (p < 0.001). The binary concordance between paired reviewers was high (k Cohen: 0.84).

The widely recognized challenge to the integration of interim-PET into management schemes is the variability and the high false-positive rates associated with visual evaluation, particularly in those with bulky residual masses.

SEMI-QUANTITATIVE EVALUATION

- Metabolic changes determined by the SUV which is adjusted with the kinetics of in vivo therapy response.
- The change in tumor SUVmax before and after treatment can be used as a measure of response. However, strict adherence to protocols for all imaging periods are necessary because SUV measurements depend on multiple variables including time interval after injection, blood glucose level, body weight, and technical PET parameters.
- The use of quantitation to improve upon visual assessment was explored in DLBCL after two and four cycles of chemotherapy by Casanosnov et al. (108, 125). The results of this study have been previously discussed in Section “Early Response Evaluation during Therapy.”
- Further studies are needed to define a widely accepted semi-quantitative approach for lymphoma, probably with slightly different values for each subtype.

FUTURE DIRECTIONS IN QUANTITATIVE PET ASSESSMENTS

- Disease bulk at initial presentation has long been a known adverse prognostic factor, particularly in early stage HL (126). Several methods can be used to measure disease bulk, including the mediastinum-thoracic ratio and maximum size of the largest mass. However, studies are underway to evaluate PET-based metabolic tumor volume (MTV) or total lesion glycolysis (TLG) as more accurate methods to determine disease burden by accounting for the whole body tumor volume using sophisticated software systems (127–130).
- Preliminary MTV data are available for patients with DLBCL (131, 132). In 169 stage II–III DLBCL patients treated with R-CHOP, multivariate analysis revealed an association between high MTV group and lower PFS and OS during a median follow-up of 36 months (p < 0.001), but not with stage III (p = 0.054) (131). These results suggest a higher predictive power for MTV compared to Ann Arbor staging in DLBCL patients.
- The prognostic value of these automated volumetric methods will be determined after the establishment of the optimal method for determining the most accurate tumor volume.
18. Bruzzi JF, Macapinlac H, Tsimberidon AM, Truong MT, Keating MJ, Maron EM, et al. Detection of Richter's transformation of chronic lymphocytic leukemia by PET/CT. J Nucl Med (2006) 47:1267–73.

19. Lister TA, Crowther D, Sutcliffe SB, Glattstein E, Canellos GP, Young RC, et al. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin's disease: Cotswold meeting. J Clin Oncol (1989) 7:1630–6.

20. Rosenberg S. Validity of the Ann Arbor staging system classification for the non-Hodgkin's lymphomas. Cancer Treat Rep (1977) 61:1023–7.

21. Nyman R, Forsgren G, Glimelius B. Long-term follow-up of residual mediastinal masses in treated Hodgkin's disease using MR imaging. Acta Radiol (1996) 37:323–6. doi:10.3109/02841859609177659.

22. Isaci CR, Lu P, Blaufox MD. A metaanalysis of 18F-2-deoxy-2-fluoro-n-glucose positron emission tomography in the staging and restaging of patients with lymphoma. Cancer (2005) 104:1066–74. doi:10.1002/cncr.21253.

23. Moog F, Bangerter M, Diederichs CG, Gühnnah M, Merkle E, Frickhofen N, et al. Extranodal malignant lymphoma: detection with FDG PET versus CT. Radiology (1998) 206:580–6.

24. Hutchings M, Loft A, Hansen M, Pedersen LM, Berthelsen AK, Keding S, et al. Position emission tomography with or without computed tomography in the primary staging of Hodgkin's lymphoma. Haematologica (2006) 91:482–9.

25. Schaefer NG, Hany TF, Taverna CG, Guhlmann A, Merkle E, Frickhofen N, et al. 18F-FDG PET/CT findings in patients with lymphoma: initial experience. Ann Oncol (2011) 22:671–80. doi:10.1093/annonc/mdq403.

26. Carr R, Barrington SF, Madan B, O'Doherty MJ, Saunders CA, van der Walt J, et al. Detection of lymphoma in bone marrow by whole-body positron emission tomography. Blood (1998) 91:3340–6.

27. Tatsami M, Cohade C, Nakamoto Y, Fishman EK, Wabl RL. Direct comparison of FDG PET and CT findings in patients with lymphoma: initial experience. Radiology (2005) 237:1038–45. doi: 10.1148/radiol.2373045555.

28. Cheson BD, Pfisterer B, Iwied ME, Gascony RD, Specht L, Horning SJ, et al. Revised response criteria for malignant lymphoma. J Clin Oncol (2007) 25:579–86. doi: 10.1200/JCO.2006.09.2403.

29. National Comprehensive Cancer Network. Hodgkin Lymphoma. NCCN v2 (2012). Available at: http://www.nccn.org/professionals/physician_gls/pdf/hodgkins.pdf.

30. National Comprehensive Cancer Network. Non-Hodgkin Lymphoma. NCCN v3 (2012). Available at: http://www.nccn.org/professionals/physician_gls/pdf/nhl.pdf.

31. Gooding WE, O'Doherty MJ, Hain SF, Rankin S, Mikhail G. 2-Fluorine-18-fluoro-2-deoxy-2-D glucose positron emission tomography in the pretreatment staging of Hodgkin disease: influence on patient management in a single institution. Ann Oncol (2006) 14:11273–9. doi:10.1093/annonc/dmi198.

32. Pelosi E, Pregno P, Penna D, Deandrea D, Chiappella A, Limerurtti G, et al. Role of whole body [18F]fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) and conventional techniques in the staging of patients with Hodgkin and aggressive non-Hodgkin lymphoma. Radiol Med (2008) 113:578–90. doi:10.1007/s11547-008-0264-7.

33. Rigacci L, Vitolo U, Nasi L, Merli F, Gallamini A, Pregno P, et al. Positron emission tomography in the staging of patients with Hodgkin's lymphoma: a prospective multicentric study by the Intergroupo Italiano Linfomi. Ann Hematol (2007) 86:897–903. doi: 10.1007/s00277-007-0356-9.

34. Wirth A, Seymour JF, Hicks RJ, Ware R, Fisher R, Prince M, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography, gallium-67 scintigraphy, and conventional staging for Hodgkin's disease and non-Hodgkin's lymphoma. Ann Med (2002) 34:112–6. doi:10.1080/07853890212803666.

35. Munker R, Glass J, Griffeth LK, Satzter K, Ziegler SI, Münzing W, Müller SP, et al. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med (2005) 46:608.

36. Pinilla I, Gómez-León N, Del Campo-DeL Val L, et al. Diagnostic value of CT, PET and combined PET/CT performed with low-dose unenhanced CT and full-dose enhanced CT in the initial staging of lymphoma. Q J Nucl Med Mol Imaging (2011) 55:567–75.

37. Beal KP, Yeung HW, Yahlom J. FDG-PET scanning for detection and staging of extranodal marginal zone lymphomas of the MALT type: a report of 42 cases. Ann Oncol (2005) 16:673–80. doi:10.1093/annonc/mdi793.

38. Hoffmann M, Wöhrer S, Beckerer A, Chott A, Streube K, Kletter K, et al. 18F-fluoro-deoxyglucose positron emission tomography in lymphoma of mucosa-associated lymphoid tissue: histology makes the difference. Ann Oncol (2006) 17:1761–5. doi:10.1093/annonc/mdi793.

39. Chung R, Liu R, Wei P, Lee J, Hanson J, Belch AR, et al. Concordant but not discordant bone marrow involvement in diffuse large B-cell lymphoma predicts a poor clinical outcome independent of the International prognostic index. Blood (2007) 110:1278–82. doi:10.1182/blood-2007-01-070300.

40. Campbell J, Seymour JF, Matthews J, Wolf M, Stone J, Juneca S. The prognostic impact of bone marrow involvement in patients with diffuse large cell lymphoma varies according to the degree of infiltration and presence of discordant marrow involvement. J Eur J Haematol (2006) 77:473–6. doi:10.1111/j.1600-0609.2006.01644.x.

41. Palomino EE, Fotopoulos AD, Ioanidis JP. 18F FDG PET for evaluation of bone marrow infiltration in staging of lymphoma: a meta-analysis. J Nucl Med (2005) 46:958–63.
Kostakoglu and Cheson
FDG-PET/CT in lymphoma

52. Wu LM, Chen FY, Jiang XX, Gu HY, Yin Y, Xu JR. (18)F-FDG PET, combined FDG-PET/CT and MRI for evaluation of bone marrow infiltration in staging of lymphoma: a systematic review and meta-analysis. *Eur J Radiol* (2012) 8:303–11. doi:10.1016/j.ejrad.2010.11.020

53. Wang J, Weiss LM, Chang KL, Slovak ML, Gaal K, Forman SJ, et al. Diagnostic utility of bilateral bone marrow examination: significance of morphologic and ancillary technique study in malignancy. *Cancer* (2002) 94:1522–31. doi:10.1002/cncr.10364

54. Chen YK, Yeh CL, Tsai CC, Liang JA, Chen JH, Kao CH. F-18 FDG PET for evaluation of bone marrow involvement in non-Hodgkin lymphoma: a meta-analysis. *Clin Nucl Med* (2011) 36:553–9. doi:10.1097/RLU.0b013e3182127eaf

55. Cheng G, Chen W, Chanmoodrat N, Torgian DA, Zhuang H, Allevi A. Biopsy versus FDG PET/CT in the initial examination of bone marrow involvement in pediatric lymphoma patients. *Eur J Nucl Med Mol Imaging* (2011) 38:1469–76. doi:10.1007/s00259-011-1815-z

56. Shafer NG, Strobel K, Taverna A. Biopsy versus FDG PET/CT in lymphoma. *Eur J Nucl Med Mol Imaging* (2011) 38:1469–76. doi:10.1007/s00259-011-1815-z

57. Núñez R, Rini JN, Tronco GG, Shaefer NG, Strobel K, Taverna A. The role of positron emission tomography (PET) in the management of lymphoma patients. *Ann Oncol* (1999) 10:181–4. doi:10.1093/annovl/10.1.181

58. Comerius M, Fabry U, Neuber J, Bieglmayer M, Oisea R, Buell U. Positron emission tomography with 18F-FDG to detect residual disease after therapy for malignant lymphoma. *Nukleonik* (1998) 19:1055–63. doi:10.1097/00006231-199811000-00005

59. Mihaela NG, Timothy AR, O'Doherty MJ, Hain S, Maisey MN. 18-FDG-PET as a prognostic indicator of the treatment non-Hodgkin's Lymphoma-comparison with CT. *Lymphat Res Biol* (2000) 39:543–53. doi:10.1111/1473-5765.t01-1-00191

60. Dittmann H, Sokler M, Kollmannberger C, Dohmen BM, Baumann G, Kopp A, et al. Comparison of 18FDG-PET with CT scans in the evaluation of patients with residual and recurrent Hodgkin's lymphoma. *Oncol Rep* (2001) 8:1393–5.

61. Spaepen K, Stroobants S, Dupont P, Van Steenweghe S, Thomas J, Vandenberge P, et al. Prognostic value of positron emission tomography (PET) with fluorine-18 fluorodeoxyglucose ([18F]FDG) after first line chemotherapy in non-Hodgkin's lymphomas: is ([18F]FDG PET a valid alternative to conventional diagnostic methods? *J Clin Oncol* (2001) 19:414–9.

62. Mikhael NG, Mainwaring P, Nunnan T, Timothy AR. Prognostic value of interim and post treatment FDG-PET scanning in the management of Hodgkin lymphoma [abstract]. *Ann Oncol* (2002) 13(Suppl 2):C1.

63. Wiedmann E, Baican B, Hertel A, Baum RP, Chow KU, Knupp B, et al. Positron emission tomography (PET) for staging and evaluation of response to treatment in patients with Hodgkin's disease. *Leuk Lymphoma* (1999) 34:545–51.

64. Hueltenschmidt B, Sauter-Bihl ML, Lang O, Maul FD, Fischer J, Mergenthaler HG, et al. Whole body positron emission tomography in the treatment of Hodgkin disease. *Cancer* (2001) 91:302–10. doi:10.1002/1097-0142(200111)91:2<302::AID-CNCR1002>3.0.CO;2-W

65. Bisha S, Quigley JM, Bishu SR, Olsasky SM, Stem RA, Shostrom VK, et al. Predictive value and diagnostic accuracy of F-18 fluorodeoxyglucose positron emission tomography grade 1 and 2 follicular lymphoma. *Leuk Lymphoma* (2007) 48:1548–55. doi:10.1080/1042819070134915

66. Tateshi U, Tatsumi M, Terauchi T, Ishizawa K, Ogura M, Tobinai K. Relevance of monitoring metabolic reduction in patients with relapsed or refractory follicular and mantle cell lymphoma receiving bendamustine: a multicenter study. *Cancer Sci* (2011) 102:414–8. doi:10.1111/j.1349-7006.2010.01810.x

67. Salles G, Seymour JF, Offner F, Lopez-Guillermo A, Belada D, Xeri L, et al. Rituximab maintenance for 2 years in patients with high tumour burden follicular lymphoma responding to rituximab plus chemotherapy (PRIMA): a phase 3, randomised controlled trial. *Lancet* (2011) 377:42–51. doi:10.1016/S0140-6736(10)61275-7

68. Trotman J, Fouss M, Lamy T, Seymour JF, Sonnet A, Janikova A, et al. Positron emission tomography-computed tomography (PET-CT) after induction therapy is highly predictive of patient outcome in follicular lymphoma: analysis of PET-CT in a subset of PRIMA trial participants. *J Clin Oncol* (2011) 29:3194–200. doi:10.1200/JCO.2011.35.0736

69. Dupuis J, Berriolo-Riedinger A, Julian A, Brice P, Tychy-Pinel C, Tilly H, et al. Impact of [18F]fluorodeoxyglucose positron emission tomography response evaluation in patients with high-tumour burden follicular lymphoma treated with immunotherapy: a prospective study from the Grouped Etudes des Lymphomes de l’Adulte and GOELAMS. *J Clin Oncol* (2012) 30:4317–22. doi:10.1200/JCO.2012.43.0934

70. Brice P, Bouabdallah R, Moreau P, Divine M, Andre M, Aoudjane M, et al. Prognostic factors for survival after high-dose therapy and autologous stem cell transplantation for patients with relapsing Hodgkin’s disease: analysis of 280 patients from the French registry. Société Française de Greffe de Moelle. *Bone Marrow Transplant* (1997) 20:21–6. doi:10.1038/sj.bmt.2800838

71. Moskovitz CH, Yahalom J, Zelenetz AD, Zhang Z, Filipa D, Teruya-Feldstein J, et al. High-dose chemo-radiotherapy for relapsed or refractory Hodgkin lymphoma and the significance of pre-transplant functional imaging. *Br J Haematol* (2010) 148:899–7. doi:10.1111/j.1365-2457.2009.04837.x

72. Smetzer JP, Cashen AF, Zhang Q, Homb A, Dehdashi F, Abboud CN, et al. Prognostic significance of FDG-PET in relapsed or refractory classical Hodgkin lymphoma treated with standard salvage chemotherapy and autologous stem cell transplantation. * Biol Blood Marrow Transplant* (2011) 17:1146–52. doi:10.1016/j.bbmt.2011.04.011

73. Moskovitz AJ, Yahalom J, Kewalramani T, Maragulia JC, Vanak JM, Zelenetz AD, et al. Pre-transplantation functional imaging predicts outcome following autologous stem cell transplantation for relapsed and refractory Hodgkin lymphoma. *Blood* (2010) 116:4934–7. doi:10.1182/blood-2010-05-282756

74. Moskovitz CH, Matsauer MJ, Zelenetz AD, Nimer SD, Gericetano J, Hamlin P, et al. Normalization of pre-ASCT, FDG-PET imaging with second-line, non-cross-resistant, chemotherapy programs improves event-free survival in patients with Hodgkin lymphoma. *Blood* (2012) 119:1665–70. doi:10.1182/blood-2011-10-388058

75. Sucak GT, Ozkurt ZN, Sayani E, Yasar DG, Akdemir ÖÜ, Aki Z, et al. Early post-transplantation positron emission tomography in patients with Hodgkin lymphoma is an independent prognostic factor with an impact on overall survival. *Ann Hematol* (2011) 90:1291–7. doi:10.1007/s00277-011-1209-0

76. Schot B, van Imhoff G, Pruim M, Lenga E. Predictive value of early positron emission tomography
in chemosensitive relapsed lymphoma. Br J Haematol (2003) 129:282-7. doi:10.1046/j.1365-2451.2003.04953.x

82. Schot BW, Zijlstra JM, Sluiter WJ, van Imhoff GW, Pruim J, Vaalburg W, et al. Early FDG-PET assessment in combination with clinical risk scores determines prognosis in recurring lymphoma. Blood (2007) 109:186–91. doi:10.1182/blood-2005-11-006957

83. Terasawa T, Dabahreh IJ, Nihashi T. Fluorine-18-fluorodeoxyglucose positron emission tomography in response assessment after high-dose chemotherapy for lymphoma: a systematic review and meta-analysis. Oncologist (2010) 15:750–9. doi:10.1634/theoncologist.2010-0054

84. Poulov LS, Thanos L, Ziakas PD. Unifying the predictive value of pretransplant FDG-PET in patients with lymphoma: a review and meta-analysis of published trials. Eur J Nucl Med Mol Imaging (2010) 37:156–62. doi:10.1007/s00259-009-1258-y

85. Dickinson M, Hoyt R, Roberts AW, Grigg A, Seymour JF, Prince WM, et al. Early interim 18F-FDG PET/CT criteria better predict response than each test alone? Br J Haematol (2010) 150:39–45. doi:10.1111/j.1365-2451.2010.08162.x

86. Hare R, Sawka CA, Franssen E, Berinstein HL. Significance of a partial or slow response to front-line chemotherapy in the management of intermediate-grade or high-grade non-Hodgkin's lymphoma: a literature review. J Clin Oncol (1994) 12:1074–8.

87. Gallamini A, Rigacci L, Merli F, Nasli L, Bosi A, Capodanno I, et al. The predictive value of positron emission tomography scanning performed after two courses of standard therapy on treatment outcome in advanced stage Hodgkin's disease. Haematologica (2006) 91:475–81.

88. Gallamini A, Hutchings M, Rigacci L, Specht L, Merli F, Hansen M, et al. Early interim [18F]fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced stage Hodgkin's lymphoma: a report from a joint Italian-Danish study. J Clin Oncol (2007) 25:3746–52. doi:10.1200/JCO.2007.11.6525

89. Zinzani PL, Tani M, Fant S, Alinari L, Musuraca G, Marchi E, et al. Early positron emission tomography (PET) restaging-a predictive final response in Hodgkin's disease patients. Ann Oncol (2006) 17:1296–300. doi:10.1093/annonc/mdi122

90. Hutchings M, Mikhael NG, Fields PA, Nunan T, Timothy AR. Prognostic value of interim FDG-PET after two or three cycles of chemotherapy in Hodgkin lymphoma. Ann Oncol (2005) 16:1160–8. doi:10.1093/annonc/mdi200

91. Hutchings M, Loft A, Hansen M, Pedersen LM, Buhl T, Jurlander J, et al. FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood (2006) 107:52–9. doi:10.1182/blood-2005-06-2252

92. Zinzani PL, Rigacci L, Stefoni V, Broccoli A, Puccini B, Castagnoli A, et al. Early interim 18F-FDG PET in Hodgkin's lymphoma: evaluation on 304 patients. Eur J Nucl Med Mol Imaging (2012) 39:4–12. doi:10.1007/s00259-011-1916-8

93. Terasawa T, Lau J, Bardet S, Couturier O, Hotta T, Hutchings M, et al. Fluorine-18-fluorodeoxyglucose positron emission tomography for interim response assessment of advanced-stage Hodgkin's lymphoma and diffuse large B-cell lymphoma: a systematic review. J Clin Oncol (2009) 27:1906–13. doi:10.1200/JCO.2008.16.0861

94. Moskowitz CH, Schoeder H, Teruya-Feldstein J, Sima C, Iasonos A, Porlock CS, et al. Risk-adapted dose-dense immunotherapy determined by interim FDG-PET in advanced-stage diffuse large B-cell lymphoma. J Clin Oncol (2010) 28:1896–903. doi:10.1200/JCO.2009.26.5942

95. Cerci JJ, Pracchia LF, Linardi CC, Puccini B, Castagnoli A, et al. 18F-FDG PET after 2 cycles of chemotherapy predicts treatment failure in patients with clinical stage IA and IIA Hodgkin lymphoma and a ‘negative’ PET scan predicts outcome in non-bulky limited-stage Hodgkin’s lymphoma. Ann Oncol (2011) 22:910–5. doi:10.1093/annonc/mdj549

96. Leon PY, Gastinne T, Le Gouill S, van Imhoff GW, Pruim J, Vaalburg W, et al. The predictive value of interim FDG-PET/CT in Hodgkin’s lymphoma patients treated with interim response-adapted strategy: comparison of International Harmonization Project (IHP), Gallamini and London criteria. Eur J Nucl Med Mol Imaging (2011) 38:1064–71. doi:10.1007/s00259-011-1741-0

97. Kostakoglu L, Schoeder H, Johnson JL, Hall NC, Schwartz LH, Strauss DJ, et al. Interim FDG PET imaging in CALGB 50203 trial of stage I-II non-bulky Hodgkin lymphoma: would using combined PET and CT criteria better predict response than each test alone? Leuk Lymphoma (2012) 53:1243–50. doi:10.1080/10428194.2012.676173

98. Barnes JA, LaCasse AS, Zakotynski K, Israel D, Feng Y, Neuberg D, et al. End-of-treatment but not interim PET scan predicts outcome in non-bulky limited-stage Hodgkin's lymphoma. Ann Oncol (2011) 22:910–5. doi:10.1093/annonc/mdj549

99. Le Roux PY, Gastinne T, Le Gouill S, van Imhoff GW, Pruim J, Vaalburg W, et al. Role of interim-PET positive after two cycles of ABVD. Results of the UK NCRI RADI trial 54th ASH Annual Meeting (2012). Abstract 547 p.

100. Haouzin C, Itti E, Rahmouini A, Brice P, Rain JD, Belhadj K, et al. [18F]Fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in aggressive lymphoma: an early prognostic tool for predicting patient outcome. Blood (2005) 106:1376–81. doi:10.1182/blood-2005-01-0272

101. Mikhael NG, Hutchings M, Fields PA, O'Doherty MJ, Timothy AR. FDG-PET after two to three cycles of chemotherapy predicts progression-free and overall survival in high-grade non-Hodgkin lymphoma. Ann Oncol (2005) 16:1514–23. doi:10.1093/annonc/mdi272

102. Spaepen K, Streebouts S, Dupont P, Vandenberge P, Thonas J, de Grooth T, et al. Early restaging positron emission tomography with [18F]-fluorodeoxyglucose predicts outcome in patients with aggressive non-Hodgkin's lymphoma. Ann Oncol (2002) 13:3356–63. doi:10.1093/annonc/mdf256

103. Casasnovas RO, Meignan M, Berriolo-Riedinger A, Bardet S, Julian A, Theulembont C, et al. SUVmax reduction improves early prognosis value of interim positron emission tomography scans in diffuse large B-cell lymphoma. Blood (2011) 118:57–43. doi:10.1182/blood-2010-12-327767

104. The Lymphoma Academic Research Organisation. GA in Newly Diagnosed Diffuse Large B Cell Lymphoma (GAINED) (NCT01569099). (2012). Available from: http://www.clinicaltrials.gov/ct2/show/NCT01569099?term=GAINED%2C+PET%2C+casonovasrank=1

105. Qaddus F, Armitage JO. Salvage therapy for Hodgkin’s lymphoma.
111. Engert A, Eichenauer DA, Dreyling M. Hodgkin's lymphoma: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol (2009) 20(Suppl 4):108–9. doi:10.1093/annonc/mdp144

112. Friedberg JW, Mauch PM, Rimsza LM, Fisher RI. Non-Hodgkin's lymphomas. 8th ed. In: DeVita VT, Lawrence TS, Rosenberg SA editors. DeVita, Hellman, and Rosenberg's Cancer: Principles and Practice of Oncology. Philadelphia, PA: Lippincott Williams & Wilkins (2008), p. 2098–166.

113. Terasawa T, Nihashi T, Hotta T, Nagai H. 18F-FDG PET for posttherapy assessment of Hodgkin's disease and aggressive non-Hodgkin's lymphoma: a systematic review. J Nucl Med (2008) 49:13–21. doi:10.2967/jnumed.107.058967

114. Goldschmidt N, Or O, Klein M, Savitsky B, Paltiel O. The role of routine imaging procedures in the detection of relapse of patients with Hodgkin lymphoma and aggressive non-Hodgkin lymphoma. Ann Hematol (2011) 90:165–71. doi:10.1007/s00277-010-1044-8

115. Zinzani PL, Stefoni V, Tani M, Fanti S, Musuraca G, Castellucci P, et al. Role of [18F]fluorodeoxyglucose positron emission tomography scan in the follow-up of lymphoma. J Clin Oncol (2009) 27:1781–7. doi:10.1200/JCO.2008.16.1513

116. Lee AI, Zuckerman DS, Van den Abbeele AD, Aquino SL, Crowley D, Toomey C, et al. Surveillance imaging of Hodgkin lymphoma patients in first remission: a clinical and economic analysis. Cancer (2010) 116:3835. doi:10.1002/cncr.25249

117. Josting A, Diehl V. Current treatment strategies in early stage Hodgkin’s disease. Carr Treat Options Oncol (2003) 4:297–305. doi:10.1007/s11864-003-0005-z

118. Cheson B. The case against heavy PETing. J Clin Oncol (2009) 117:1742–3. doi:10.1200/JCO.2008.20.1665

119. Jauweid ME, Stroobants S, Hoeckstra OS, Montaghy FM, Dietlein M, Guermazi A, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the imaging Subcommittee of the International Harmonization Project in International Journal of Hematol (2007) 82:571–8. doi:10.1200/JCO.2006.08.2305

120. Spaepen K, Stroobants S, Dupont P, Bormans G, Balzarini J, Verhoe G, et al. [(18)F]FDG PET monitoring of tumour response to chemotherapy: does [(18)F]FDG uptake correlate with the viable tumour cell fraction? Eur J Nucl Med Mol Imaging (2003) 30:682–8. doi:10.1007/s00259-003-1120-6

121. Han HS, Escalon MP, Hsiao B, Serafini A, Lossos IS. High incidence of false-positive PET scans in patients with aggressive non-Hodgkin’s lymphoma treated with rituximab-containing regimens. Ann Oncol (2009) 2:209. doi:10.1093/annonc/mdn629

122. Kostakoglu L, Goldsmith SJ, Leonard JP, Christos P, Furman RR, Atasever T, et al. FDG-PET after 1 cycle of therapy predicts outcome in diffuse large cell lymphoma and classic Hodgkin disease. Cancer (2006) 107:2678–87. doi:10.1002/cncr.22276

123. Barrington SE, Qian W, Somer EJ, Franchiortto A, Bagini B, Brun E, et al. Concordance between four of tumour delineation methodol- J Clin Oncol (2011) 90(2):1191–202. doi:10.1007/s00259-011-1755-7

124. Meignan M, Gallamini A, Hautve S, Musuraca G, Castellucci P, et al. Concordance between four of tumour delineation methodol- J Clin Oncol (2010) 28:1824–33. doi:10.1007/s00259-010-1490-5

125. Biggi A, Gallamini A, Chauvie S, Hutchings M, Kostakoglu L, Greggi M, et al. International validation study for interim PET in ABVD-treated, advanced-stage Hodgkin lymphoma: interpretation criteria and concordance rate among reviewers. J Nucl Med (2013) 54:683–90. doi:10.2967/jnumed.112.110890

126. Lin C, Itti E, Hainou C, Petegnief Y, Luciani A, Dupuis J, et al. Early 18F-FDG PET for prediction of progression in patients with diffuse large B-cell lymphoma: SUV-based assessment versus visual analysis. J Nucl Med (2007) 48:1626–32. doi:10.2967/jnumed.107.42093

127. Diehl V, De D, Harris NL, Mauch PM. Hodgkin lymphoma. 8th ed. In: DeVita VT, Lawrence TS, Rosenberg SA editors. DeVita, Hellman, and Rosenberg’s Cancer: Principles and Practice of Oncol- Philadelphia, PA: Lippincott Williams & Wilkins (2008), p. 2167–213.

128. Hatt M, Cheze Le Rest C, Pradier O, Visvikis D. Automatic PET tumour delineation for patient’s follow-up and therapy assessment. J Nucl Med (2009) 50:182.

129. Hatt M, Vivikis D, Albargbach NM, Tixier F, Pradier O, Cheze Le Rest C. Prognostic value of 18F-FDG PET image-based parameters in oesophageal cancer and impact of tumour delineation metodol- Eur J Nucl Med Mol Imaging (2011) 38:1191–202. doi:10.1007/s00259-011-1755-7

130. Werner-Wasik M, Nelson AD, Choi A, Arazi Y, Faulhaber PF, Kang F, et al. What is the best way to contour lung tumors on PET scans? Multiserveral validation of a gradient-based method using a NSCLC digital PET phantom. Int J Radiat Oncol Biol Phys (2012) 82:1164–71. doi:10.1016/j.ijrobp.2010.12.055

131. Song MK, Chung JS, Shin HI, Lee SM, Lee SE, Lee HS, et al. Clinical significance of metabolic tumor volume by PET/CT in stages II and III of diffuse large B cell lymphoma without extranodal site involvement. Ann Hematol (2012) 91:697–703. doi:10.1007/s00277-011-1357-2

132. Song MK, Chung JS, Shin HI, Moon JH, Lee JO, Lee HS, et al. Prognostic value of meta- bolic tumor volume by PET/CT in primary gastrointestinal diffuse large B cell lymphoma. Cancer Sci (2012) 103:477–82. doi:10.1111/j.1349-7006.2011.02164.x

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any com- mercial or financial relationships that could be construed as a potential con- flict of interest.

Received: 10 April 2013; paper pending published: 05 July 2013; accepted: 02 August 2013; published online: 04 Sep- tember 2013.

Citation: Kostakoglu L and Cheson BD (2013) State-of-the-art research on “lym- phomas: role of molecular imaging for staging, prognostic evaluation, and treat- ment response”. Front. Oncol. 3:212. doi:10.3389/fonc.2013.00212

This article was submitted to Cancer Imaging and Diagnosis, a section of the journal Frontiers in Oncology. Copyright © 2013 Kostakoglu and Che- son. This is an open-access article distrib- uted under the terms of the Creative Com- mons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the origin- al author(s) or licensor are credited and that the original publication in this jour- nal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.