Part 3: Case Studies
Outline

- **Part 1:** How do networks form, evolve, collapse?
- **Part 2:** What tools can we use to study networks?
- **Part 3:** Case studies
 - How do ideas diffuse through a network?
 - How to detect communities?
 - How do we detect anomalies in networks?
Part 3: Case Studies

● Q4: How do ideas diffuse through a network?
 – Cascades
 – Epidemiological modeling of cascades
 – Outbreak detection

● Q5: How can we extract communities?
 – Using PCA on structure
 – Factorization

● Q6: What sort of anomaly detection can we perform?
 – Fraud detection on E-bay
 – Spam detection
Cascading Behavior in Large Blog Graphs

How does information propagate over the blogosphere?

J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, M. Hurst. Cascading Behavior in Large Blog Graphs. SDM 2007.
Immediate Goals

- **Temporal questions:** Does popularity have half-life?
- **Topological questions:** What topological patterns do posts and blogs follow? What shapes do cascades take on? Stars? Chains? Something else?
- **Models:** Can we build a generative model that mimics properties of cascades?
Cascades on the Blogosphere

Blogosphere
blogs + posts

Blog network
links among blogs

Post network
links among posts

Cascade is graph induced by a
time ordered propagation of
information (edges)
Blog data

- 45,000 blogs participating in cascades
- All their posts for 3 months (Aug-Sept ‘05)
- 2.4 million posts
- ~5 million links (245,404 inside the dataset)
Temporal Observations

How does post popularity change over time?

- Does popularity decay at a constant rate?

- With an exponential ("half life")?
Temporal Observations

How does post popularity change over time?

Post popularity dropoff follows a power law...

\[\log(\text{# in-links}) = a \log(\text{days after post}) \]
Temporal Observations

How does post popularity change over time?

Post popularity dropoff follows a power law identical to that found in communication response times in [Vazquez+2006].

Observation 1: The probability that a post written at time t_p acquires a link at time $t_p + \Delta$ is:

$p(t_p + \Delta) \propto \Delta^{-1.5}$
What is topology of blogs?

44,356 nodes, 122,153 edges. Half of blogs belong to largest connected component.

In- and out-degree follow power law distribution. In-degree exponent -1.7, out-degree exponent -3.

Strong rich-get-richer phenomena.
Post Network

2.4M nodes, 250K edges

Both in- and out-degree follow power laws. In-degree exponent -2.1, out-degree exponent -3.
Topological patterns: Cascades

- Procedure for gathering cascades:
 - Find all initiators (nodes with out-degree 0)
 - Follow in-links
 - Produces directed acyclic graph
 - Count cascade shapes (use our multi-level graph isomorphism testing algorithm)
Topological Observations

How do we measure how information flows through the network?

Common cascade shapes extracted using algorithms in [Leskovec, Singh, Kleinberg; PAKDD 2006].
Topological Observations

What graph properties do cascades exhibit?

Cascade size distributions also follow power law.

Observation 2: The probability of observing a cascade on n nodes follows a Zipf distribution:

$$p(n) \propto n^{-2}$$
Topological Observations

What graph properties do cascades exhibit?

Stars and chains also follow a power law, with different exponents (star -3.1, chain -8.5).
Epidemiological models

- We consider modeling cascade generation as an epidemic, with ideas as viruses.
- We use the SIS (flu-like) model:
 - At any time, an entity is in one of two states: {
 - susceptible or infected.
 }
 - One parameter β determines how easily spreading conversations are.
 - [Hethcote2000]
We consider modeling cascade generation as an epidemic, with ideas as viruses.

We use the SIS (flu-like) model:
- At any time, an entity is in one of two states: susceptible or infected.
- One parameter β determines how easily spreading conversations are.
- [Hethcote2000]
Epidemiological models

- We consider modeling cascade generation as an epidemic, with ideas as viruses.
- We use the SIS (flu-like) model:
 - At any time, an entity is in one of two states: susceptible or infected.
 - One parameter β determines how easily spreading conversations are.
 - [Hethcote2000]
Epidemiological models

- We consider modeling cascade generation as an epidemic, with ideas as viruses.
- We use the SIS (flu-like) model:
 - At any time, an entity is in one of two states: susceptible or infected.
 - One parameter β determines how easily spreading conversations are.
 - [Hethcote2000]
Epidemiological models

- We consider modeling cascade generation as an **epidemic**, with ideas as viruses.
- We use the SIS (flu-like) model:
 - At any time, an entity is in one of two states: **susceptible** or **infected**.
 - One parameter β determines how easily spreading conversations are.
 - [Hethcote2000]
Epidemiological models

- We consider modeling cascade generation as an **epidemic**, with ideas as viruses.
- We use the SIS (flu-like) model:
 - At any time, an entity is in one of two states: **susceptible** or **infected**.
 - One parameter β determines how easily spreading conversations are.
 - [Hethcote2000]
Epidemiological models

- We consider modeling cascade generation as an epidemic, with ideas as viruses.
- We use the SIS (flu-like) model:
 - At any time, an entity is in one of two states: susceptible or infected.
 - One parameter β determines how easily spreading conversations are.
 - [Hethcote2000]
Epidemiological models

- We consider modeling cascade generation as an epidemic, with ideas as viruses.
- We use the SIS (flu-like) model:
 - At any time, an entity is in one of two states: susceptible or infected.
 - One parameter β determines how easily spreading conversations are.
 - [Hethcote2000]
Cascade Generation Model

0. Begin with Blog Net.
Cascade Generation Model

0. Begin with Blog Net, but ignore edge weights.

Example—
B1 links to B2, B2 links to B1, B4 links to B2 and B1, as well as itself
B3 is isolated, linking to itself.
1. Randomly pick a blog to infect, add node to cascade
Cascade Generation Model

2. Infect each in-linked neighbor with probability β.

$B_1 \rightarrow B_2 \rightarrow B_3 \rightarrow B_4$
Cascade Generation Model

2. Infect each in-linked neighbor with probability β.

\[B_1 \xrightarrow{\text{INFECT}} B_2 \xrightarrow{\text{DO NOT INFECT}} B_3 \xrightarrow{\text{INFECT}} B_4 \]
3. Add infected neighbors to cascade.
Cascade Generation Model

4. Set “old” infected nodes to uninfected.
4. Set “old” infected nodes to uninfected. Repeat steps 2-4 until no nodes are infected.
4. Set “old” infected nodes to uninfected. Repeat steps 2-4 until no nodes are infected.
4. Set “old” infected nodes to uninfected. Repeat steps 2-4 until no nodes are infected.
Experimental Results

Generative model produces realistic cascades

$\beta=0.025$

Most frequent cascades
Conclusions

● Temporal observations
 – Post popularity-dropoff follows power law (exponent= -1.5)

● Topological observations
 – Power-laws in degree distribution, cascade sizes
 – “Stars” are more common than “chains”

● Cascade generating model
 – Based on epidemiology
 – Matches frequent cascades, size power laws
Part 3: Case Studies

Q4: How do ideas diffuse through a network?
 - Cascades
 - Epidemiological modeling of cascades
 - Outbreak detection

Q5: How can we extract communities?
 - Using PCA on structure
 - Factorization

Q6: What sort of anomaly detection can we perform?
 - Fraud detection on E-bay
 - Spam detection
Outbreak detection

- Problems of finding sources of contamination in water networks and finding “hot” stories on blogs are isomorphic.
 - Minimize time to detection, population affected
 - Maximize probability of detection.
 - Minimize sensor placement cost.

McGlohon, Faloutsos ICWSM 2008
CELF: Main idea

- Given a graph $G(V,E)$
- and a budget of B sensors
- and data on how contaminations spread over the network:
 - for each contamination i we know the time $T(i, u)$ when it contaminated node u
- Minimize time to detect outbreak
- **CELF** algorithm uses submodularity and lazy evaluation

J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, N. Glance. "Cost-effective Outbreak Detection in Networks" KDD 2007
Blogs: Comparison to heuristics

Benefit (higher=better)
“Best 10 blogs to read”

http://www.cs.cmu.edu/~jure/blogs/blogs-uc-pa.html

NP - number of posts, IL- in-links, OLO- blog out links, OLA- all out links

k	PA score	Blog	NP	IL	OLO	OLA
1	0.1283	http://instapundit.com	4593	4636	1890	5255
2	0.1822	http://donsurber.blogspot.com	1534	1206	679	3495
3	0.2224	http://sciencepolitics.blogspot.com	924	576	888	2701
4	0.2592	http://www.watcherofweasels.com	261	941	1733	3630
5	0.2923	http://michellemalkin.com	1839	12642	1179	6323
6	0.3152	http://blogometer.nationaljournal.com	189	2313	3669	9272
7	0.3353	http://themodulator.org	475	717	1844	4944
8	0.3508	http://www.bloggersblog.com	895	247	1244	10201
9	0.3654	http://www.boingboing.net	5776	6337	1024	6183
10	0.3778	http://atrios.blogspot.com	4682	3205	795	3102
Part 3: Case Studies

Q4: How do ideas diffuse through a network?
- Cascades
- Epidemiological modeling of cascades
- Outbreak detection

Q5: How can we extract communities?
- Using PCA on structure
- Factorization

Q6: What sort of anomaly detection can we perform?
- Fraud detection on E-bay
- Spam detection
• Cascades take on different shapes (sorted by frequency):

How can we use cascades to identify communities?
PCA on cascade types

- Perform PCA on sparse matrix.
- Use log(count+1)
- Project onto 2 PC...

~9,000 cascade types

	slashdot	boingboing		
...	4.6	2.1	.09	
...	3.2	1.1	3.4	.07
...	4.2	...		
...	5.1	...		
...	2.1	1.1		
...	.67	...		
...	.01	...		
PCA on cascade types

- Observation: Content of blogs and cascade behavior are often related.

- Distinct clusters for “conservative” and “humorous” blogs (hand-labeling).

M. McGlohon, J. Leskovec, C. Faloutsos, M. Hurst, N. Glance. Finding Patterns in Blog Shapes and Blog Evolution. ICWSM 2007.
PCA on cascade types

- Observation: Content of blogs and cascade behavior are often related.

- Distinct clusters for “conservative” and “humorous” blogs (hand-labeling).

M. McGlohon, J. Leskovec, C. Faloutsos, M. Hurst, N. Glance. Finding Patterns in Blog Shapes and Blog Evolution. ICWSM 2007.
Part 3: Case Studies

● Q4: How do ideas diffuse through a network?
 – Cascades
 – Epidemiological modeling of cascades
 – Outbreak detection

● Q5: How can we extract communities?
 – Using PCA on structure
 – Factorization

● Q6: What sort of anomaly detection can we perform?
 – Fraud detection on E-bay
 – Spam detection
Community Factorization

- Yun Chi, Shenghuo Zhu, Xiaodan Song, Junichi Tatemura, Belle L. Tseng. Structural and temporal analysis of the blogosphere through community factorization. KDD 07

- Main idea: Use tensor factorization to identify subgraphs over time.
Community Factorization Results

- Hurricane Katrina community
- Blog info community
Part 3: Case Studies

- **Q4**: How do ideas diffuse through a network?
 - Cascades
 - Epidemiological modeling of cascades
 - Outbreak detection

- **Q5**: How can we extract communities?
 - Using PCA on structure
 - Factorization

- **Q6**: What sort of anomaly detection can we perform?
 - Fraud detection on E-bay
 - Spam detection
E-bay Fraud detection

Dectects ‘non-delivery’ fraud: seller takes $$ and disappears

Shashank Pandit, Duen Horng Chau, Samuel Wang, and Christos Faloutsos. NetProbe: A Fast and Scalable System for Fraud Detection in Online Auction Networks WWW 07.
E-bay Fraud detection - NetProbe

Suspected fraudster — this user has been behaving much like the other suspects by trading with the similar sets of possible accomplices.
Idea: ‘Accomplices’, and Belief Propagation

- 3 types of nodes: honest, fraud, accomplices
- ‘Accomplices’ never do fraud
 - give high ratings to fraudsters-to-be

Belief propagation intuition:

- If I am honest, my neighbors are either honest or ‘accomplices’
- If I’m an accomplice, my neighbors are either honest or fraud
Part 3: Case Studies

- Q4: How do ideas diffuse through a network?
 - Cascades
 - Epidemiological modeling of cascades
 - Outbreak detection

- Q5: How can we extract communities?
 - Using PCA on structure
 - Factorization

- Q6: What sort of anomaly detection can we perform?
 - Fraud detection on E-bay
 - Spam detection
Spam detection

- Kolari, Java, Finin, 2006:
- Studying link structure can help detect spam in blogs.
- Splogs may deviate from power law degree distribution found in authentic blogs.
Conclusion

- Presented patterns found in real graphs (power-law degrees, giant connected component, densification, shrinking diameter)
- Demonstrated tools to solve problems (matrix tools, tensors, self-similarity)
- Showed some examples of using these tools for applications to social media (viral marketing, community detection, anomaly detection).
Thanks

- Jimeng Sun (IBM)
- Tamara Kolda (Sandia)
- Deepay Chakrabarti (Yahoo!)
- Jure Leskovec (CMU)
● Epidemiology and viral marketing

- Adar, E. & Adamic, L. A. (2005), Tracking Information Epidemics in Blogspace, *in 'WI '05: Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence',* IEEE Computer Society, Washington, DC, USA, pp. 207--214.

- Bailey, N. (1975), *The Mathematical Theory of Infectious Diseases and its Applications*, Griffin, London.

- Equiluz, V. M. & Klemm, K. (2002), 'Epidemic threshold in structured scale-free networks', *arXiv:cond-mat/02055439*.

- Gruhl, D.; Guha, R.; Liben-Nowell, D. & Tomkins, A. (2004), Information Diffusion Through Blogspace, *in 'WWW '04*.

- Hethcote, H. W. (2000), 'The Mathematics of Infectious Diseases', *SIAM Rev. 42*(4), 599--653.
– Kempe, D.; Kleinberg, J. & Tardos, E. (2003), Maximizing the Spread of Influence through a Social Network, *in 'KDD '03'*.

– Leskovec, J.; McGlohon, M.; Faloutsos, C.; Glance, N. & Hurst, M. (2007), Cascading Behavior in Large Blog Graphs: Patterns and a Model, *in 'Society of Applied and Industrial Mathematics: Data Mining (SDM07)'*.

– Leskovec, J.; Singh, A. & Kleinberg, J. (2006), Patterns of Influence in a Recommendation Network, *in 'Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)'*.

– Leskovec, J.; Adamic, L. A. & Huberman, B. A. (2006), The dynamics of viral marketing, *in 'EC '06: Proceedings of the 7th ACM Conference on Electronic Commerce', ACM Press, New York, NY, USA, pp. 228--237*.

– Leskovec, J; Krause, A.; Guestrin, C.; Faloutsos, C.; VanBriesen, J.; Glance, N. Cost-effective outbreak detection in networks. *In SIGKDD 2007*.
– Newman, M. E. J. (2005), 'Threshold effects for two pathogens spreading on a network', *Physical Review Letters* **95**, 108701.

– Newman, M. E. J. (2002), 'The spread of epidemic disease on networks', *Physical Review Letters* **66**, 016128.

– Richardson, M. & Domingos, P. (2002), 'Mining Knowledge-Sharing Sites for Viral Marketing'.

– Wang, Y.; Chakrabarti, D.; Wang, C. & Faloutsos, C. (2003), Epidemic Spreading in Real Networks: An Eigenvalue Viewpoint., *in 'SRDS'*., pp. 25-34.
Community detection

- Chi, Y.; Zhu, S.; Song, X.; Tatemura, J. & Tseng, B. L. (2007), Structural and temporal analysis of the blogosphere through community factorization, in 'KDD '07: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining', ACM, New York, NY, USA, pp. 163--172.

- McGlohon, M.; Leskovec, J.; Faloutsos, C.; Hurst, M. & Glance, N. (2007), Finding Patterns in Blog Shapes and Blog Evolution, in 'International Conference on Weblogs and Social Media'.
Spam/Anomaly detection

- Kolari, P.; Java, A. & Finin, T. (2006), Characterizing the Splogosphere, in 'Proceedings of the 3rd Annual Workshop on Weblogging Ecosystem: Aggregation, Analysis and Dynamics, 15th World Wide Web Conference', University of Maryland, Baltimore County.

- Pandit, S.; Chau, D. H.; Wang, S. & Faloutsos, C. (2007), Netprobe: a fast and scalable system for fraud detection in online auction networks, in 'WWW '07: Proceedings of the 16th international conference on World Wide Web', ACM, New York, NY, USA, pp. 201--210.
Questions?

- Mary McGlohon
 mmcgloho@cs.cmu.edu
 www.cs.cmu.edu/~mmcgloho

- Christos Faloutsos
 christos@cs.cmu.edu
 www.cs.cmu.edu/~christos