Monitorização Residencial da Pressão Arterial (MRPA) como alternativa para confirmação diagnóstica de Hipertensão Arterial em adolescentes de uma capital brasileira com pressão de consultório elevada

Home Blood Pressure Monitoring as an Alternative to Confirm Diagnoses of Hypertension in Adolescents with Elevated Office Blood Pressure from a Brazilian State Capital

Thaís Inacio Rolim Póvoa,1,2 Thiago Veiga Jardim,1 Carolina de Souza Carneiro,1 Vanessa Roriz Ferreira,1 Karla Lorena Mendonça,1 Poliana Resende Silva de Morais,1 Flávia Miquetchuc Nogueira Nascente,1 Weimar Kunz Sebba Barroso de Souza,1 Ana Luiza Lima Sousa,1 Paulo César Brandão Veiga Jardim1
Liga de Hipertensão Arterial – Universidade Federal de Goiás;2 Escola Superior de Educação Física e Fisioterapia de Goiás (ESEFFEGO) – Universidade Estadual de Goiás (UEG), Goiânia, GO – Brasil

Resumo

Fundamentos: São desconhecidas as diferenças regionais na utilização da monitorização residencial da pressão arterial (MRPA) como alternativa à monitorização ambulatorial da pressão arterial (MAPA) em adolescentes hipertensos.

Objetivos: Definir se MRPA é uma opção para confirmar diagnóstico de hipertensão arterial em adolescentes de uma capital brasileira com pressão arterial (PA) elevada.

Métodos: Adolescentes (12-18 anos) de escolas públicas e privadas com percentil de PA > 90 foram estudados para comparar e avaliar a concordância entre as medidas de PA, MRPA e MAPA. As medidas de PA de consultório, MRPA e MAPA foram realizadas de acordo com as recomendações das diretrizes. Foram utilizados dispositivos semiautomáticos para medições de PA. Valores de p <0,05 foram considerados significativos.

Resultados: Foram incluídos 133 adolescentes predominantemente do sexo masculino (63,2%) com idade média de 15 ± 1,6 anos. Os valores médios da pressão arterial sistólica e pressão arterial diastólica da MRPA foram semelhantes aos valores de MAPA diurnos (120,3 ± 12,6 mmHg x 121,5 ± 9,8 mmHg – p = 0,111 e 69,4 ± 7,7 mmHg x 70,2 ± 6,6 mmHg – p = 0,139) e inferiores aos valores de consultório (127,3 ± 13,8 mmHg por 74,4 ± 9,5 mmHg – p < 0,001). Os gráficos de Bland-Altman mostraram boa concordância entre MRPA e MAPA.

Conclusões: MRPA é uma opção para confirmar diagnóstico de hipertensão arterial em adolescentes de uma capital brasileira com PA de consultório elevada e pode ser usada como alternativa à MAPA. (Arq Bras Cardiol. 2017; 109(3):241-247)

Palavras-chave: Hipertensão Arterial; Monitorização Ambulatorial da Pressão Arterial; Adolescente; Fatores de Risco.

Abstract

Background: Regional differences of using home blood pressure monitoring (HBPM) as an alternative to ambulatory blood pressure monitoring (ABPM) in hypertensive adolescents are unknown.

Objectives: Define if HBPM is an option to confirm diagnoses of hypertension in adolescents from a Brazilian capital with elevated office blood pressure (BP).

Methods: Adolescents (12-18years) from public and private schools with BP > 90th percentile were studied to compare and evaluate the agreement among office BP measurements, HBPM and ambulatory BP monitoring. Office BP measurements, HBPM and ABPM were performed according to guidelines recommendations. Semi-automatic devices were used for BP measurements. Values of p < 0.05 were considered significant.

Results: We included 133 predominantly males (63.2%) adolescents with a mean age of 15±1.6 years. HBPM systolic blood pressure and diastolic blood pressure mean values were similar to the daytime ABPM values (120.3 ± 12.6 mmHg x 121.5 ± 9.8 mmHg – p = 0.111 and 69.4 ± 7.7 mmHg x 70.2 ± 6.6 mmHg – p = 0.139) and lower than the office measurement values (127.3 ± 13.8 mmHg over 74.4 ± 9.5 mmHg – p < 0.001). The Bland-Altman plots showed good agreement between HBPM and ABPM.

Conclusions: HBPM is an option to confirm diagnoses of hypertension in adolescents from a Brazilian state capital with elevated office BP and can be used as an alternative to ABPM. (Arq Bras Cardiol. 2017; 109(3):241-247)

Keywords: Hypertension; Blood Pressure Monitoring, Ambulatory; Adolescent; Risk Factors.

Correspondência: Thiago de Souza Veiga Jardim • Rua R20 QD 13B LT 7, CEP 74085-634, Jardins Paris, Goiânia, GO – Brasil E-mail: thiagoveiga@cardiol.br, thiagoilorim@hotmail.com Artigo recebido em 19/10/2016, revisado em 08/03/2017, aceito em 12/04/2017

DOI: 10.5935/abc.20170114
Introdução

A Hipertensão Arterial (HA) primária já não é vista como um fenômeno raro na infância e na adolescência. Ela está fortemente relacionada à obesidade, condição que continua a aumentar na população jovem, portanto a prevalência da HA continuará a crescer entre eles. Os valores da pressão arterial são importantes marcadores na avaliação do risco cardiovascular em adultos, no entanto, para crianças e adolescentes, há escassa informação em relação a diferentes métodos de medida de PA, e somente na última década o interesse por esse assunto aumentou.

No Brasil, embora muitos estudos tenham avaliado a prevalência de hipertensão arterial nos adolescentes nos últimos anos, as diferenças nas técnicas de medição e os critérios de normalidade, de acordo com as diferenças regionais, tornam difícil conhecer a prevalência real. Uma revisão sistemática da literatura encontrou a prevalência de 2,5 a 30,9%. O estudo representativo nacional ERICA avaliou 73.399 adolescentes e identificou uma prevalência de 9,6% de hipertensão (valores acima do percentil 95).

Investigar a viabilidade e a confiabilidade dos métodos de avaliação de PA é necessário e contribui para a prática clínica. Para o diagnóstico, as medidas de PA do consultório são o método mais comum e têm um significado prognóstico para o risco cardiovascular em adultos. No entanto, os valores de PA variam devido à estimulação fisiológica e ambiental, o que indica que é necessária uma determinação mais precisa dos valores de PA. A identificação dessa variabilidade pode levar a uma estratificação de risco mais precisa, permitindo, assim, iniciativas de intervenção precoce.

A realização de múltiplas medições de PA num curto período de tempo melhora a reprodutibilidade e aumenta as chances de obter valores de PA precisos. Esta repetição de medições é possível com vários métodos de monitoramento de PA, incluindo monitoramento ambulatorial de PA (MAPA), em que dezenas de medições são realizadas em um período de 24 horas e é considerado o padrãoouro, ou monitoramento residencial da PA (MRPA), em que algumas medições são realizadas durante alguns dias ao longo da semana. O uso de MAPA tem limitações devido aos seus custos mais elevados, por outro lado a MRPA que pode ser uma alternativa diagnóstica potencial, precisa de mais investigação quando usado em adolescentes, particularmente considerando diferenças regionais. MRPA mostra boa viabilidade se realizado pelos próprios adolescentes ou por um adulto responsável com equipamento semiautomático e um protocolo específico.

A indicação mais comum para o uso de MAPA e MRPA neste subgrupo específico de pacientes é para o diagnóstico de hipertensão do avental branco (HAB), caracterizada pela elevação da medida da PA no consultório apesar dos valores normais de MRPA ou MAPA. Outra indicação é detectar a hipertensão mascarada, em que a PA normal está identificada no consultório em pacientes com valores elevados de MRPA ou MAPA.

Para aumentar o conhecimento científico sobre os métodos de medição de PA para adolescentes considerando diferenças regionais, o objetivo deste estudo foi comparar os valores de PA obtidos das medidas de consultório, MRPA e MAPA e avaliar a concordância entre esses métodos.

Métodos

Trata-se de um estudo transversal, aprovado pelo Comitê de Ética em Pesquisa da instituição (Registro: 017/2010).

Sujeitos

Adolescentes com idades entre 12 e 18 anos com PA alterada (≥ 90 percentil para a respectiva idade, sexo e estatura) foram identificados por medida de consultório de uma amostra de 1025 jovens estudantes de 26 escolas. Esta foi uma amostra representativa de adolescentes de uma grande cidade (1.302.001 habitantes) no Centro-Oeste do Brasil. Adicionalmente, foram incluídos 33 adolescentes normotensos. Todos os sujeitos tinham um consentimento informado assinado por seus pais ou responsáveis legais. Os critérios de exclusão foram: defeiciência física; gravidez; doenças crônicas (diabetes mellitus, doença renal ou cardíaca); uso de anti-hipertensivos, antidepressivos, ansiolíticos, anti-inflamatórios esteroidais ou não-esteróides e contraceptivos; e ausência de maturação sexual (indivíduos com estágio de Tanner = 1).

Avaliação antropométrica

A avaliação antropométrica foi realizada por meio da padronização sugerida pela Organização Mundial de Saúde. As variáveis medidas foram peso corporal, altura e circunferência da cintura. Além disso, o índice de massa corporal (IMC) foi calculado.

Medidas de pressão arterial

Medição no consultório

As medidas de consultório foram realizadas por profissionais de saúde treinados, com base na 4ª Task Force Technique. O procedimento ocorreu nas escolas, em dois momentos diferentes (intervalo de uma semana) e com duas medidas (com intervalo de três minutos) em cada ponto temporal. Para a análise, foi considerada a média das medidas da consulta de uma amostra de população jovem, portanto a prevalência da HA continuará a aumentar na última década.

Monitoramento Residencial (MRPA)

O mesmo equipamento, punhos e técnicas que foram utilizados para as medições de consultório foram usados para MRPA. Adolescentes receberam o aparelho na escola e foram instruídos a realizar duas medições (com intervalos de três minutos) durante o dia (entre 06:00 e 10:00) e duas à noite (entre 18:00 e 22:00) durante 6 dias, para um total de 24 leituras. O valor médio global foi considerado para análise, sendo excluídos os exames com medidas<12.

Monitoramento ambulatorial (MAPA)

Foi utilizado um dispositivo Spacelabs® modelo 90207. O tamanho do manguito foi o mesmo da medida do consultório e MRPA e o exame foi realizado com base na...
técnica da American Heart Association. O equipamento foi programado para realizar uma medição a cada 15 minutos durante o dia (das 07:00 às 23:00) e uma medição a cada 20 minutos à noite (das 11:00 às 07:00). Os adolescentes foram instruídos a manter os braços relaxados durante a inflação/deflação e retornar após 24 horas de monitoramento com um relatório contendo suas atividades primárias durante esse período. Os registros em que pelo menos 70% das medidas foram válidas foram aceitos, e para a análise, foi considerada a média de valores diurnos obtidos.

Análise estatística

Os dados foram inseridos em duplicata e validados com o software SPSS (versão 20.0, IBM Chicago, EUA). O teste de Kolmogorov-Smirnov foi utilizado para a avaliação da distribuição dos dados e o teste t de Student pareado para a comparação dos valores de pressão sistólica e diastólica entre os métodos. As variáveis contínuas com distribuição normal são apresentadas como médias e desvios-padrão. O coeficiente de correlação de Pearson foi utilizado para avaliar a correlação entre as medidas de pressão arterial. Valores de p < 0,05 foram considerados significativos. Nós geramos Bland-Altman plots para fornecer uma visualização da concordância entre as medições e um “mountain plot” para fornecer informações sobre a distribuição das diferenças entre os métodos. O método MAPA (medicação diária) foi subtraído dos outros métodos para obtenção do mountain plot. Os gráficos de Bland-Altman e o “mountain plot” foram produzidos usando o software Medcalc (Versão 12.7.0).

Resultados

Entre os 143 adolescentes convidados a participar do estudo, 133 (93%) aceitaram e 10 (7,0%) recusaram. Nenhum sujeito foi excluído devido a critérios de maturação sexual. A amostra final foi composta por 133 adolescentes, sendo 100 com PA alterada e 33 normotensos. Em geral, 63,2% eram do sexo masculino com idade média de 15 (± 1,6) anos. A Tabela 1 apresenta as características da amostra.

A MRPA apresentou valores médios de PAS e PAD que foram semelhantes aos valores diários de MAPA e inferiores aos valores de consultório. A medida do consultório apresentou valores médios superiores aos observados para a MAPA diurna e a correlação entre os métodos foi moderada (Tabela 2).

A média geral da MAPA foi de 118,3 ± 9,1 mmHg para PAS e de 66,4 ± 6,0 mmHg para PAD, significativamente diferentes da média geral de MRPA (PAS, p = 0,009; PAD, p < 0,001) e de medida de consultório (p < 0,001 para PAS e PAD). Uma correlação forte (r = 0,72, p < 0,001) foi encontrada entre PAS de MAPA e MRPA, enquanto uma ligeira correlação (r = 0,39, p = 0,005) foi encontrada para PAD. Houve também uma correlação entre os valores de MAPA e de consultório (r = 0,57 para PAS e r=0,24 para PAD, ambos com p < 0,001).

De acordo com os gráficos de Bland-Altman, verificou-se concordância (e não foram identificados erros sistemáticos) entre MRPA e MAPA diurno para PAS e PAD (Figura 1-A); As médias das diferenças traçadas nas linhas horizontais centrais estavam próximas de zero (1,3 mmHg para PAS e 0,9 mmHg para PAD).

Tabela 1 – Características da amostra (n = 133)

Característica	Média	Desvio Padrão	Mínimo	Máximo
Idade (anos)	15,0	± 1,6	12	17
Peso corporal (kg)	66,5	± 16,3	37,9	131,5
Altura (cm)	167,0	± 7,8	149,0	185,5
IMC (kg/m²)	23,2	± 4,8	15,9	42,5
CC (cm)	75,5	± 10,9	58,0	120,0

IMC: índice de massa corporal; CC: circunferência da cintura.

Tabela 2 – Comparação e correlação entre medidas de PA, domiciliar e ambulatorial (n = 133)

	MAPA diurna	MRPA	Valor de p*	r (Valor de p)
PAS	121,5 ± 9,8	120,3 ± 12,6	0,111	0,70 (< 0,001)
PAD	70,2 ± 6,6	69,4 ± 7,7	0,139	0,60 (< 0,001)
MRPA	Consultório	Consultório		
PAS	121,5 ± 9,8	127,3 ± 13,8	< 0,001	0,60 (< 0,001)
PAD	70,2 ± 6,6	74,4 ± 9,5	< 0,001	0,45 (< 0,001)
Consul	Consultório			
PAS	120,3 ± 12,6	127,3 ± 13,8	< 0,001	0,75 (< 0,001)
PAD	69,4 ± 7,7	74,4 ± 9,5	< 0,001	0,53 (< 0,001)

Valores expressos como média ± desvio padrão. PAS: pressão arterial sistólica (mmHg); PAD: pressão arterial diastólica (mmHg); r: Teste de correlação de Pearson. *Teste t Student pareado.
Figura 1 – Análise da concordância de Bland-Altman entre os valores de pressão arterial sistólica e diastólica (mmHg) determinados por (A) MRPA e MAPA diurno, (B) dia MAPA e consultório e (C) MRPA e consultório.
Figura 2 – Mountain plots para concordância entre (A) pressão arterial sistólica (PAS) e (B) pressão arterial diastólica (PAD) determinada por MAPA diurno (referência) e medida pela MRPA e medida de consultório.

Tanto o MAPA diurno quanto o MRPA concordaram com os valores de medição do consultório; entretanto, a magnitude foi menor: MAPA diurno vs. consultório, diferença nas médias de 5,8 mmHg para PAS e 4,1 mmHg para PAD (Figura 1-B); MRPA vs. consultório, diferença nas médias de 7,0 mmHg para PAS e 5,0 mmHg para PAD (Figura 1-C).

A partir das mountain plots (Figura 2), com MAPA diurno como referência (eixo X), as diferenças entre MRPA e MAPA foram em geral menores do que as observadas entre a medição de consultório e o MAPA diurno.

Discussão
Este estudo fornece informações iniciais sobre a utilização de MRPA em uma amostra brasileira composta exclusivamente de adolescentes, principalmente com níveis de PA superiores aos valores normais. Foram identificados resultados semelhantes aos observados em adultos, para os quais as medidas de consultório apresentam valores mais elevados do que MRPA e MAPA para PAS e PAD. O mesmo fenômeno já foi identificado em outros estudos, em crianças e adolescentes hipertensos, mas apenas com PAS. Em contraste com nossos resultados, as medidas de consultório foram semelhantes à MRPA para indivíduos com mais de 12 anos de idade, de acordo com Stergiou et al., que examinaram uma amostra maior (n = 765); Entretanto, esse estudo apenas observou crianças e adolescentes normotensos. Há indícios de que o tipo de população (hipertensos versus normotensos) interfere nos resultados obtidos por medida de consultório ou MRPA.

Outro aspecto importante da medição de PA é o tipo de equipamento, e na maioria dos estudos foi utilizado o método oscilométrico. Além disso, analisar o protocolo de MRPA é relevante porque, atualmente, não há consenso sobre o número mínimo de medidas necessárias para as...
populações pediátricas. No presente estudo, utilizamos um total de 24 medidas (com um mínimo de 12 medidas) ao longo de 6 dias, enquanto Stergiou et al.26 optaram por um protocolo de 12 medições (com um mínimo de 2 medidas) durante 3 dias. Este menor número de medições em MRPA pode ter contribuído para a concordância com as medições de consultório.

Estudos23,28-30 demonstraram menores valores de MRPA do que de MAPA diurno em crianças e adolescentes, o que pode ser explicado pelos altos níveis de atividade física durante a infância, que pode aumentar os valores de PA.

Neste estudo, o resultado foi diferente, uma vez que os valores de PA medidos pela MRPA foram semelhantes aos obtidos pela MAPA diurna, que é um padrão comumente observado para adultos.18,19 Esse achado provavelmente está relacionado ao fato de que a amostra consiste apenas em adolescentes, que apresentam níveis mais baixos de atividade física durante o dia em relação às crianças.

Em relação à concordância entre os métodos, um número significativo de estudos utilizou o coeficiente de correlação como indicador de concordância; Entretanto, a variabilidade intrínseca da PA torna esse índice, por si só, inapropriado e requer uma análise de variabilidade entre as medições, como a realizada pelos gráficos de Bland-Altman.12 A força de uma correlação entre duas variáveis não indica necessariamente concordância entre elas. Neste estudo, mostrou-se que a correlação entre os três métodos foi moderada; entretanto, utilizando-se a análise de Bland-Altman,16 verificamos que não houve erro sistemático entre os três métodos, particularmente entre MRPA e MAPA diurna, que apresentaram diferença de zero entre as médias das pressões sistólica e diastólica. Este achado sugere que MRPA pode ser usado como um substituto para MAPA quando necessário. No entanto, como MAPA é o padrão-ouro, ainda é considerada a primeira escolha para a confirmação de um diagnóstico após a detecção de PA elevada por medidas de consultório.

Em adultos, MRPA mostra maior confiabilidade e concordância com MAPA do que com a medição de consultório.19,31 Em adolescentes, observamos um fenômeno similar, que também tem sido verificado em outras crianças e adolescentes, em que MRPA apresenta melhor reprodutibilidade do que as medições de consultório.25,32

As diferenças entre as medidas de consultório e os outros métodos podem resultar na superestimação dos valores de PA e, consequentemente, classificar os adolescentes como hipertensos quando na verdade são normotensos. Quando não há confirmação diagnóstica com outros tipos de avaliação como MRPA ou MAPA, os adolescentes podem ser incorretamente diagnosticados, com todas as suas consequências sociais e econômicas, e até mesmo se envolverem em tratamento desnecessário tomando remédios. Por exemplo, em um estudo de Hornsby et al.33 44% das crianças avaliadas como hipertensas por medidas de consultório foram reclassificadas e consideradas como hipertensas do jaleco branco após MAPA.

Sugeriu-se que as medidas de consultório devem ser um método de triagem para adolescentes e para aqueles que apresentam valores PAS ou PAD no percentil > 90, um método de pressão arterial fora do consultório deve ser realizado para confirmar o diagnóstico. MAPA é a opção preferida e MRPA é uma alternativa.1,27

MRPA é mais confortável, fácil de executar e tem um custo menor do que MAPA. Neste estudo, MAPA diurna foi semelhante à MRPA. Portanto, MRPA representa uma alternativa aceitável para um diagnóstico mais preciso. No entanto, quando disponível e financeiramente viável, MAPA deve ser a primeira opção, pois oferece uma avaliação mais abrangente.

Este estudo teve como limitação o uso de valores de normalidade de medidas de consultório propostos para a população americana,1 uma vez que não há estudos brasileiros que propõem valores de normalidade para adolescentes. Existe uma limitação semelhante para o uso da MRPA, uma vez que os dados de normalidade para adolescentes baseiam-se num estudo realizado com estudantes europeus.26

Outra limitação potencial foi a inclusão de adolescentes matriculados nas escolas, que excluíu os adolescentes que estavam fora da escola. Como a amostra estudada foi obtida em escolas públicas e privadas, e como a cobertura do sistema educacional no Brasil é relatada como quase universal, essa limitação foi atenuada.34

São ainda necessários estudos longitudinais com adolescentes que comparem os três métodos – consultório, residência e ambulatório - e estabeleçam critérios de normalidade adequados para diferentes regiões do mundo.

Conclusão

MRPA é uma opção alternativa para confirmar o diagnóstico de hipertensão arterial com resultados comparáveis à MAPA em adolescentes da capital de um estado brasileiro com valores de PA alterados.

Contribuição dos autores

Concepção e desenho da pesquisa, Obtenção de dados, Análise e interpretação dos dados, Análise estatística, Obtenção de financiamento, Redação do manuscrito e Revisão crítica do manuscrito quanto ao conteúdo intelectual: Povoa TIR, Jardim TV, Carneiro CS, Ferreira VR, Mendonça KL, Morais PRS, Nascente FMN, Souza WKSB, Sousa ALL, Jardim PCBV.

Potencial conflito de interesess

Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento

O presente estudo foi financiado pelo CNPq.

Vinculação acadêmica

Este artigo é parte de tese de Doutorado de Thaís Inácio Rolim Povoa pela Universidade Federal de Goiás.
Referências

1. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114(2 Suppl 4th Report):S55-76.

2. Muntner P, He J, Cutler JA, Wildman RP, Whelton PK. Trends in blood pressure among children and adolescents. JAMA. 2004;291(17):2107-13.

3. Lurbe E. Childhood blood pressure: a window to adult hypertension. J Hypertens. 2003;21(11):2001-3.

4. Magalhães MG, Oliveira LM, Christofaro DG, Ritti-Dias RM. Prevalence of high blood pressure in Brazilian adolescents and quality of the employed methodological procedures: systematic review. Rev Bras Epidemiol. 2013;16(4):489-59.

5. Bloch KV, Klein CH, Salgado CM, Jardim Tde S, Velasquez PP. Home blood pressure monitoring in children. J Hypertens. 2003;21(14):1-7.

6. Stergiou GS, Alamara CV, Vazeou A, Stefanidis CJ. Office and out-of-office blood pressure measurement in children. Blood Press Monit. 2004;9(6):293-6.

7. Garrett BN, Salcedo JR, Thompson AM. The role of ambulatory blood pressure monitoring in the evaluation of adolescent hypertension. Clin Exp Hypertens A. 1985;7(2-3):227-34.

8. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, et al. 2003 European Society of Hypertension and of the European Society of Cardiology (ESC) guidelines for the management of arterial hypertension: the Task Force of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2003;24(20):1219-21.

9. Lurbe E, Agabiti-Rosei E, Dominiczak A, Hirth A, et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016;34(10):1887-920.

10. Póvoa et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Fifth Report of the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur J Cardiovasc Prev Rehabil. 2013;20(3):256-74.

11. Lurbe E, Soróf JM, Daniels SR. Clinical and research aspects of ambulatory blood pressure monitoring in children. J Hypertens. 2004;14(1):7-16.

12. Stergiou GS, Alamara CV, Vazeou A, Stefanidis CJ. Office and out-of-office blood pressure measurement in children. Blood Press Monit. 2004;9(6):293-6.

13. Garrett BN, Salcedo JR, Thompson AM. The role of ambulatory blood pressure monitoring in the evaluation of adolescent hypertension. Clin Exp Hypertens A. 1985;7(2-3):227-34.

14. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al; Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42(5):1206-52.

15. Lurbe E, Agabiti-Rosei E, Dominiczak A, Hirth A, et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016;34(10):1887-920.

16. Póvoa et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Fifth Report of the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur J Cardiovasc Prev Rehabil. 2013;20(3):256-74.

17. Lurbe E, Agabiti-Rosei E, Dominiczak A, Hirth A, et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016;34(10):1887-920.

18. Póvoa et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Fifth Report of the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur J Cardiovasc Prev Rehabil. 2013;20(3):256-74.

19. Lurbe E, Agabiti-Rosei E, Dominiczak A, Hirth A, et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016;34(10):1887-920.

20. Póvoa et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Fifth Report of the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur J Cardiovasc Prev Rehabil. 2013;20(3):256-74.

21. Lurbe E, Agabiti-Rosei E, Dominiczak A, Hirth A, et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016;34(10):1887-920.

22. Póvoa et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Fifth Report of the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur J Cardiovasc Prev Rehabil. 2013;20(3):256-74.

23. Lurbe E, Agabiti-Rosei E, Dominiczak A, Hirth A, et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016;34(10):1887-920.