Prevention of neonatal group B streptococcal disease

Ilinca Ilie¹, Nicolae Gica¹,2, Radu Botezatu¹,2, Mihaela Demetrian¹, Anca Marina Ciobanu¹,2, Brindusa Ana Cimpoca-Raptis¹,2, Corina Gica¹, Gheorghe Peltecu¹,2, Anca Maria Panaitescu¹,2

¹Filantropia Clinical Hospital, Bucharest, Romania
²“Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania

ABSTRACT

Group B streptococcal (GBS) disease and its early onset continues to pose major economic and perinatal implications regarding maternal and neonatal morbidity and mortality rates and methods of treatment. Universal GBS screening via rectovaginal culture is now recommended between 36 and 37 weeks and 6 days of gestation for all pregnant women. Timely identification of groups of women suitable for intravenous intrapartum antibiotic prophylaxis of GBS early onset infection has also proven to be effective, although less so than the universal screening approach.

Keywords: group B Streptococcus, antibiotics, prophylaxis, pregnancy, universal screening

INTRODUCTION

Streptococcus agalactiae, or group B streptococcus (GBS), is an encapsulated Gram-positive diplococcus, an otherwise opportunistic pathogen frequently associated with gastrointestinal and rectovaginal colonization in healthy adult women of childbearing age (11-35%) [1-6].

MATERIAL AND METHODS

We identified data in published literature such as systematic literature reviews, meta-analyses, randomized control trials/controlled clinical trials, observational studies, through searches of PubMed, Medline, WHOLIS and SCOPUS, as well as online surveys of policies from medical societies, clinical practice guideline collections and national and international medical specialty societies from 1980-2020, using keywords such as group B streptococcus, intrapartum antibiotic prophylaxis, neonatal GBS infection.

PREVALENCE OF MATERNAL GBS COLONIZATION

According to a review conducted by Russell et al., it is estimated that around 18% of women are GBS carriers. GBS maternal colonization is more prevalent in the Caribbean (35%), compared to Southern and Eastern Asia (13% and 11%, respectively) [4] and is best studied in high income countries, less so in middle or low-income ones [7-15]. Bacterial serotypes I-V were the most frequently identified colonizing GBS isolates, of which serotype III, associated with invasive disease, was noted in one fourth of the cases studied [4].

Maternal colonization with group B streptococcus has been reported to cause a multitude of conditions ranging from asymptomatic bacteriuria and urinary tract infection to chorioamnionitis, post-
partum endometritis or bacteremia, leading to stillbirth, preterm delivery or puerperal sepsis [16-18].

PREVALENCE OF NEONATAL GBS INFECTION

Up to 50% of infants born to GBS colonized women will develop early onset disease, most commonly within the first 7 days after birth of (about 0.25 cases in 1000 live-born babies [19]), via vertical transmission. A third of the total number of invasive infections will manifest within 7-90 days after birth (about 0.27 cases in 1000 live-born babies [18]) Around to 2-3% of neonatal GBS disease result in either fetal and neonatal mortality, neonatal infection, or loss of pregnancy [19]. Early onset GBS infection frequently manifests as sepsis, pneumonia or, less frequently, meningitis. Late-onset GBS infection may involve severe neurological neonatal consequences, including cognitive delay, cerebral palsy, blindness, hearing loss [20-24], bacteremia, meningitis or, less frequent, organ or soft tissue infection [16-18]. Late onset GBS disease (LOGBSD) transmission remains poorly understood. Possible risk factors for LOGBSD include: maternal GBS colonization, premature delivery [25,26], nosocomial outbreaks [25,27] and breast milk [28-30].

A systematic review in 2012 [15] reported an overall rate of invasive GBS disease among infants of 0.53 in 1000 live-born babies with the highest incidence in Africa (1.21 per 1000 live births) and the lowest incidence in Southeast Asia (0.016 in 1000 live-born babies). The global mortality rate is estimated to be at about 8.4% [8]. Higher mortality rates have been reported in cases of premature newborns with diagnosed GBS early onset infection than in infected infants delivered at term (19.2%, as opposed to 2.1%) [31].

RISK FACTORS FOR GBS COLONIZATION AND GBS EOD

Maternal GBS colonization is favored by the presence of one or more of the following: African-American race, young maternal age (under 20 years), older age or older age at first pregnancy, smoking, obesity, socioeconomic disadvantage, low maternal levels of anti-capsular antigen, multiple pregnancy, meconium-stained amniotic fluid [32-35].

GBS early onset disease (GBS EOD), which presents within 0 to 6 days after birth is caused by vertical transmission from the colonized mother, by either fetal aspiration during labor or neonatal aspiration during birth, or both. Among the risk factors for GBS EOD are included: prior delivery of an infant with GBS disease, diagnosed maternal GBS asymptomatic bacteriuria during the current pregnancy, premature rupture of the membranes, prolonged rupture of the membranes for 12 or more hours before delivery, presence of chorioamnionitis/intra-amniotic infection, intrapartum pyrexia, premature delivery (under 37 weeks of gestation), very low birth weight [7,36-38], presence of another twin with current early-onset GBS infection [6,16,38].

GBD SCREENING METHODS FOR INTRAPARTUM ANTIBIOTIC PROPHYLAXIS

Prevention of GBS EOD can be commonly achieved using two methods: 1) antenatal universal culture-based screening for GBS, best performed from 36 to 37 weeks and 6 days of gestation, using vaginal and rectal cultures in all cases of pregnant women [16] (with the following exceptions: maternal GBS identified in urine during current pregnancy or prior birth of baby with invasive GBS disease [38-41]), or 2) assessing possible risk factors and offering intravenous intrapartum antibiotic prophylaxis to all women with one or more risk factors present.

The universal culture-screening strategy has been proven to be superior in preventing GBS EOD, with a > 50% success rate compared to chemoprophylaxis administered based upon identification of maternal risk factors [7,11,16,42]. Cultures must not be performed earlier than 5 weeks from the estimated date of delivery because in many cases there is transient or intermittent colonization and GBS infection status in early pregnancy may not be relevant in late pregnancy. If, however, more than 5 weeks have passed since the last swab and pregnancy is overdue, additional GBS cultures must be collected, otherwise their predictive value decreases from 94% to around 87%, as reported by Vircrannie et al. [43].

Among the most frequent disadvantages of the risk-based approach, one must note the numerous reports of GBS EOD that occurred in infants of women with no identifiable risk factors. Almost 20% of GBS-positive women did not present GBS EOD risk factors and thus would not have been eligible for intrapartum antibiotic prophylaxis. Therefore, American College of Obstetricians and Gynecologists (ACOG) recommended universal culture-screening method rather than risk-based screening for GBS [39-41]. A meta-analysis published in 2020 comparing intrapartum antibiotic prophylaxis according to GBS screening methods reported that [44]: 1) universal screening reduced the risk for early onset GBS of the newborn; 2) risk assessment did not significantly reduce early-onset GBS of the newborn when compared with no strategy; 3) when reporting on the use of antibiotics, universal screening was not associated with higher antibiotic ad-
ministration rates when compared to risk-assessment strategy (31 versus 29%).

Recently, identification of GBS in cases of women presenting in labor or with unknown GBS status can be achieved using microbiological methods such as nucleic acid amplification testing methods (NAATs) or real-time polymerase chain reaction (PCR) tests. Both methods have higher reported sensitivity and specificity rates compared to generic cultures (90.9%-100% NAATs sensitivity, 93.7% sensitivity [45] and 97.6% specificity in cases of RT-PCR GBS testing [46]).

INTRAPARTUM ANTIBiotic PROPHylAXIS (IAP)

Sixty-three percent of the ninety-five countries listed on the International Federation of Gynecology and Obstetrics (FIGO) website [47] have a national IAP policy, the majority of which (58%) employ both risk factor and microbiological screening methods, whilst 42% only use the risk factor-based approach [48].

IAP policies have been reported in all developed region countries. In upper-middle-income countries, the most used GBS screening methods reported are the microbiological and the risk-based approach, respectively. Microbiological testing is, however, prevalent in high-income countries (54%) as opposed to risk-based screening methods. The majority of low and lower-middle-income countries (76%) reported no IAP policy. A quarter of countries reporting any IAP policy were from lower-middle-income countries (risk-based screening policies). Twenty-five countries reported IAP based on clinical risk factors as specifically previous birth of an infant with GBS EOD (in which case all countries are using the risk-based approach administered IAP). Twenty-three of the twenty-five countries also recommended use of IAP in cases of premature or prolonged rupture of membranes (more than 18 hours) or in cases of antenatal GBS bacteriuria. Thirty-five countries have reported using microbiological GBS testing performed at 35-37 weeks' gestation. Additional microbiological screening was reported in Japan and Bulgaria (at 20 weeks' gestation) and in Poland, Bangladesh, Iran, Thailand and Trinidad and Tobago, where use of RT-PCR testing was noted in cases of patients presenting in labor [49].

ANTIBiotics RECOMMENDED FOR THE TREATMENT GBS COLONIZATION

Intravenous penicillin-based antibiotics remain the main IAP recommendation (83%), with penicillin as the main choice (76%) and ampicillin (24%) as an alternative [49].

In cases of patients with allergic reactions to penicillin, risk for anaphylaxis must be evaluated. If the patient falls into “low risk” category for anaphylaxis based on previous history (isolated maculopapular rash without itching, headache, gastrointestinal distress), cefazolin must be administered, 2 g intravenously as first dose, then 1 g every 8 hours until delivery. If the patient falls into “high risk” category for anaphylaxis based on previous history (previous episode of anaphylaxis, hypotension, angioedema, respiratory distress syndrome, urticaria, pruritic rash occurring within 30 minutes after drug being administrated), susceptibility testing for clindamycin and erythromycin should be performed and administered in case of no adverse reactions [50,51]. Use of these types of medication must be done with care since resistance rates to clindamycin and erythromycin have increased in the last years to 26-43% and 50-55% in the US, respectively [31,52]. Erythromycin is no longer offered for prophylaxis in the US. In case of resistance to erythromycin and susceptibility to clindamycin, 900 mg of clindamycin will be administered intravenously every 8 hours until delivery [39-41]. In the UK, clindamycin is no longer recommended as intrapartum prophylaxis [53]. In case of resistance to clindamycin vancomycin will be administered 2 g intravenously first dose and then 1 g every 12 hours until delivery, with the maximum dosing in adults with normal renal function of 4 g per 24 hours [39-41]. For IAP to be beneficial, at least 4 hours of antibiotic therapy must be performed. Newborns exposed to IAP, especially within 30 minutes to 2 hours before delivery, have an expected serum antibiotic concentration that far exceeds the minimum inhibitory concentration against GBS [54].

There are possible neonatal adverse reactions secondary to IAP exposure, leading to dysbiosis of the infant’s founding microbiome, with potential harmful effects in later life [55-59].

GBS BACTERIURIA

High levels of GBS bacteriuria are a direct result of important rectovaginal GBS colonization. In case of maternal GBS bacteriuria diagnosed in the current pregnancy, intrapartum antibiotic prophylaxis is offered routinely, even if future urine cultures are negative or if treatment is received. Treatment of GBS bacteriuria does not cause long-term eradication of the colonization, therefore, culture-based screening at the recommended gestational age is not routinely recommended [60].

PLANNED CESAREAN DELIVERY

Regardless of the GBS infection status or the gestational age, intrapartum GBS prophylaxis is not recommended in cases of patients with intact amni-
otic membranes who are undergoing a planned cesarean birth and who do not present in labor [16].

VACCINATION AGAINST GBS

Recently, research has been done regarding the possibility of prevention of early and late-onset GBS infection via vaccination in both infants and pregnant women. GBS vaccination, although still under development, is effective in cases where: antibiotic prophylaxis is not suitable or was not administered intrapartum for the required minimum of 4 hours; women present with GBS isolates with antibiotic resistance; or in areas without proper access to antibiotics [61].

REFERENCES

1. Fan S-R, Tasneem U, Liu X-P, Yan S-M. Prevention of Perinatal Group B Streptococcus Infections. Maternal-Fetal Medicine. 2020;20(2):100-9.
2. Regan JA, Klebanoff MA, Nugent RP. The epidemiology of group B streptococcal colonization in pregnancy. Vaginal Infections and Prematurity Study Group. Obstet Gynecol. 1991 Apr;77(4):S04-10.
3. Madrid L, Seale AC, Kohli-Lynch M, Edmond KM, Lawn JE, Heath PT, et al.; Infant GBS Disease Investigator Group. Infant Group B Streptococcal Disease Incidence and Serotypes Worldwide: Systematic Review and Meta-analyses. Clin Infect Dis. 2017 Nov 6;65(suppl_2):S160-S172.
4. Russell NJ, Seale AC, O’Sullivan C, Le Doare K, Heath PT, Lawn JE, et al. Risk of Early-Onset Neonatal Group B Streptococcal Disease With Maternal Colonization Worldwide: Systematic Review and Meta-analyses. Clin Infect Dis. 2017 Nov 6;65(suppl_2):S152-S159.
5. Schrag SJ, Verani JR. Intrapartum antibiotic prophylaxis for the prevention of perinatal group B streptococcal disease: experience in the United States and implications for a potential group B streptococcal vaccine. Vaccine. 2013 Aug 28;31 Suppl 4:D20-6.
6. Puopolo KM, Lynfield R, Cummings JJ; Committee on fetus and newborn; Committee on infectious diseases. Management of infants at Risk for Group B Streptococcal Disease. Pediatrics. 2019 Aug;144(2):e20191881.
7. Verani JR, McGee L, Schrag SJ; Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC). Prevention of perinatal group B streptococcal disease – revised guidelines from CDC, 2010. MMWR Recomm Rep. 2010 Nov 19;59(RR-10):1-36.
8. Centers for Disease Control and Prevention (CDC). Perinatal group B streptococcal disease after universal screening recommendations – United States, 2003-2005. MMWR Morb Mortal Wkly Rep. 2007 Jul 20;56(28):701-5.
9. López Sastre JB, Fernández Colomer B, Coto Cotallo GD, Ramos Aparicio A; Grupo de Hospitales Castrillo. Trends in the epidemiology of neonatal sepsis of vertical transmission in the era of group B streptococcal prevention. Acta Paediatr. 2005 Apr;94(4):451-7.
10. Melin P, Schmitz M, De Mol P, Foidart JM, Rigo J. Group B streptococcus, primary cause of life-threatening infections in infants. Epidemiology and prevention strategy. Rev Med Liege. 1999 May;54(5):460-7.
11. Schrag S, Gorwitz R, Fultz-Butts K, Schuchat A. Prevention of perinatal group B streptococcal disease. Revised guidelines from CDC. MMWR Recomm Rep. 2002 Aug 16;51(RR-11):1-22.
12. Schrag SJ, Zell ER, Lynfield R, Roome A, Arnold KE, et al.; Active Bacterial Core Surveillance Team. A population-based comparison of strategies to prevent early-onset group B streptococcal disease in neonates. N Engl J Med. 2002 Jul 25;347(4):233-9.
13. Schuchat A. Group B streptococcus. Lancet. 1999 Jan 2;353(9146):S1-6.
14. Stoll BJ, Hansen NJ, Sánchez PI, Faiq RG, Poindexter BB, Van Meers KP, et al.; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Early onset neonatal sepsis: the burden of group B Streptococcal and E. coli disease continues. Pediatrics. 2011 May;127(5):S17-26.
15. Edmond KM, Kortsalioudaki C, Scott S, Schrag SJ, Zaidi AK, Cousens S, Heath PT. Group B streptococcal disease in infants aged younger than 3 months: systematic review and meta-analysis. Lancet. 2012 Feb 11;379(9815):S47-56.
16. Prevention of Group B Streptococcal Early-Onset Disease in Newborns: ACOG Committee Opinion, Number 782. Obstet Gynecol. 2019 Jul;134(1):1.
17. Bianchi-Jassir F, Seale AC, Kohli-Lynch M, Lawn JE, Baker CJ, et al. Preterm Birth Associated With Group B Streptococcus Maternal Colonization Worldwide: Systematic Review and Meta-analyses. Clin Infect Dis. 2017 Nov 6;65(suppl_2):S133-S142.
18. Seale AC, Bianchi-Jassir F, Russell NJ, Kohli-Lynch M, Tann CJ, et al. Estimates of the Burden of Group B Streptococcal Disease Worldwide for Pregnant Women, Stillbirths, and Children. Clin Infect Dis. 2017 Nov 6;65(suppl_2):S200-S219.
19. Kristeva M, Tillman C, Goordeen A. Immunization Against Group B Streptococci vs. Intrapartum Antibiotic Prophylaxis in Peripartum Pregnant Women and their Neonates: A Review. Cureus. 2017 Oct 13;9(10):e1775.
20. Liu L, Oza S, Hogan D, Perin J, Rudan I, Lawn JE, Cousens S, Mathers C, Black RE. Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet. 2015 Jan 31;385(9966):430-40.
21. Cho CY, Tang YH, Chen YH, Wang SY, Yang YH, Wang TH, Yeh CC, Wu KG, Jeng MJ. Group B Streptococcus infection in neonates and colonization in pregnant women: An epidemiological retrospective analysis. J Microbiol Immunol Infect. 2019 Apr;52(2):265-272.
22. Lin MC, Chi H, Chiu NC, Huang FY, Ho CS. Factors for poor prognosis of neonatal bacterial meningitis in a medical center in Northern Taiwan. J Microbiol Immunol Infect. 2012 Dec;45(6):442-7.
23. Chen IL, Chiu NC, Chi H, Hsu CH, Chang JH, Huang DT, Huang FY. Changing of bloodstream infections in a medical center neonatal intensive care unit. J Microbiol Immunol Infect. 2017 Aug;50(4):S14-520.
24. Lin MC, Chiu NC, Chi H, Ho CS, Huang FY. Evolving trends of neonatal and childhood bacterial meningitis in northern Taiwan. J Microbiol Immunol Infect. 2015 Jun;48(3):296-301.

CONCLUSIONS

Intrapartum antibiotic prophylaxis has improved neonatal outcome and has helped prevent early onset group B streptococcal disease, although there is emerging research concerning the potential harmful antibiotic effects on infant microbiota and overall resistance to drugs. Screening policies for intrapartum chemoprophylaxis have yet to be implemented worldwide, especially in low-income countries. Further research must still be done into the development of a potential vaccination against GBS.
45. Miller SA, Deak E, Humphries R. Comparison of the AmpliVue, BD Max System, and illumogene Molecular Assays for Detection of Group B Streptococcus in Antenatal Screening Specimens. J Clin Microbiol. 2015 Jun;53(6):1938-41.

46. Feuerschweizer OHM, Silveira SK, Cancellor ACL, da Silva RM, Trevisol DJ, Pereira JR. Diagnostic yield of real-time polymerase chain reaction in the diagnosis of intrapartum maternal rectovaginal colonization by group B Streptococcus: a systematic review with meta-analysis. Diagn Microbiol Infect Dis. 2018 Jun;91(2):99-104.

47. International Federation of Gynecology and Obstetrics. Available at: http://www FIGO.org."/

48. Ledger WL, Blaser MJ. Are we using too many antibiotics during pregnancy? JBIOL. 2013 Nov;120(12):1450-2.

49. Le Doare K, O’Driscoll M, Turner K, Seedat F, Russell NJ, Seale AC, Heath PT, et al.; GBS Intrapartum Antibiotic Investigator Group. Intrapartum Antibiotic Chemoprophylaxis Policies for the Prevention of Group B Streptococcal Disease Worldwide: Systematic Review. Clin Infect Dis. 2017 Nov 6;65(suppl_2):S143-S151.

50. Boyer KM, Gotoff SP. Prevention of early-onset neonatal group B streptococcal disease with selective intrapartum chemoprophylaxis. N Engl J Med. 1986 Jun 26;314(26):1665-9.

51. Lin FY, Brenner RA, Johnson YR, Azimi PH, Philips JB 3rd, Regan JA, Clark P, Weisman LE, Rhoads GG, Kong F, Clemens JD. The effectiveness of risk-based intrapartum chemoprophylaxis for the prevention of early-onset neonatal group B streptococcal disease. Am J Obstet Gynecol. 2001 May;184(6):1204-10.

52. Francois Watkins LK, McGee L, Schrag SJ, Beall BJ, Jain JH, Pondo T, Farley MM, et al. Epidemiology of Invasive Group B Streptococcal Infections Among Nonpregnant Adults in the United States, 2008-2016. JAMA Intern Med. 2019 Apr 1;179(4):479-488.

53. Prevention of Early-onset Neonatal Group B Streptococcal Disease: Green-top Guideline No. 36. JBIOL. 2017 Nov;124(12):e280-e305.

54. Viel-Theriault I, Fell DB, Grynspan D, Redpath S, Thampi N. The translational passage of commonly used intrapartum antibiotics and its impact on the newborn management: A narrative review. Early Hum Dev. 2019 Aug;135:6-10.

55. Butel MJ, Waligora-Dupriet AJ, Wydau-Dematteis S. The developing gut microbiota and its consequences for health. J Dev Orig Health Dis. 2018 Dec;9(6):590-597.

56. Azad MB, Konya T, Persaud RR, Guttmann DS, Chari RS, et al.; CHILD Study Investigators. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. JBIOL. 2016 May;123(6):983-93.

57. Neuman H, Forsythe P, Uzan A, Avni O, Koren O. Antibiotics in early life: dysbiosis and the damage done. FEMS Microbiol Rev. 2018 Jul 1;42(4):489-499.

58. Örtqvist AK, Lundholm C, Halfvarson J, Ludvigsson JF, Almqvist C. Fetal life: dysbiosis and the damage done. JAMA Pediatr. 2018 Dec;172(12):e205142.

59. Miller JE, Wu C, Pedersen LH, de Klerk N, Olsen J, Burgner DP. Maternal antibiotic exposure during pregnancy and hospitalization with infection in offspring: a population-based cohort study. Int J Epidemiol. 2018 Apr 1;47(2):561-571.

60. Allen VM, Yudin MH. No. 276-Management of Group B Streptococcal Bacteriuria in Pregnancy. J Obstet Gynaecol Can. 2018 Feb;40(2):e181-e186.

61. Seale AC, Baker CJ, Berkley JA, Madhi SA, Ordi J, Saha SK, Schrag SJ, Sobanjo-Ter Meulen A, Yekemans J. Vaccines for maternal immunization against Group B Streptococcus disease: WHO perspectives on case ascertainment and case definitions. Vaccine. 2019 Aug 14;37(35):4877-4885.