The effectiveness of community neurorehabilitation for persons with an acquired brain injury

Mitchell, E., Philips, N., Ahern, E., McGettrick, G., Mockler, D., Fitzpatrick, K., & Trepel, D. (2021). The effectiveness of community neurorehabilitation for persons with an acquired brain injury. HRB Open Research, 4(25). https://doi.org/10.12688/hrbopenres.13196.1

Published in:
HRB Open Research

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2021 the authors.
This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Jul. 2021
The effectiveness of community neurorehabilitation for persons with an acquired brain injury: protocol for a systematic review [version 1; peer review: awaiting peer review]

Eileen Mitchell1-3, Nicola Philips1,2,4, Elayne Ahern1,2,5, Grainne McGettrick4, David Mockler2, Kyle Fitzpatrick1,2, Dominic Trepel1,2

1Global Brain Health Institute (Trinity College Dublin | University of California, San Francisco), Dublin, Ireland
2Trinity College Dublin, the University of Dublin, Republic of Ireland, Dublin, Ireland
3Queen's University Belfast, Belfast, UK
4Acquired Brain Injury, Dublin, Ireland
5University of Limerick, limerick, Ireland

Abstract

Background: Acquired brain injury (ABI) refers to any type of brain damage after birth. ABI from either traumatic or non-traumatic origin is a leading cause of death and long-term disability globally. The impact of an ABI can be cognitive and/or physical, greatly affecting their ability to function independently. With a lack of specialist inpatient rehabilitation facilities and services many of these survivors reside within the community either alone, with family or in residential facilities. Up-to-date evidence is required to indicate which forms of community rehabilitation are most effective in improving cognitive and physical outcomes for survivors. This systematic review aims to explore the clinical effectiveness of community neuro-rehabilitation services for persons living with an ABI.

Methods: A systematic review of relevant electronic databases will be undertaken to identify eligible published randomised controlled trials. The PRISMA statement will be used to guide the systematic review. From running the initial search, we aim to submit the paper for publishing within 6 months. This process will be completed using Covidence software. Two reviewers will independently screen the search results and select studies using pre-defined selection criteria, extract data from and assess risk of bias for selected studies.

Discussion: This systematic review will aim to explore the clinical effectiveness of community neuro-rehabilitation services for persons with an ABI. It plans to review and synthesize the current best available evidence base. A goal of this study is to positively inform
ongoing service development within a quality framework.

Systematic review registration: PROSPERO CRD42020148604
(26/02/2020)

Keywords
Acquired Brain Injury, Community, Neuro-rehabilitation, Systematic Review

Corresponding author: Eileen Mitchell (emitchell09@qub.ac.uk)

Author roles:
- Mitchell E: Project Administration, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing
- Philips N: Writing – Original Draft Preparation, Writing – Review & Editing
- Ahern E: Data Curation, Project Administration, Writing – Review & Editing
- McGettrick G: Supervision
- Mockler D: Investigation, Methodology, Project Administration
- Fitzpatrick K: Investigation, Methodology
- Trepel D: Supervision

Competing interests: No competing interests were disclosed.

Grant information: EM receives funding from Irish Research Council and Acquired Brain Injury Ireland, through Enterprise Partnership Scheme (Postdoctoral) scheme. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2021 Mitchell E et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Mitchell E, Philips N, Ahern E et al. The effectiveness of community neurorehabilitation for persons with an acquired brain injury: protocol for a systematic review [version 1; peer review: awaiting peer review] HRB Open Research 2021, 4:25 https://doi.org/10.12688/hrbopenres.13196.1

First published: 25 Feb 2021, 4:25 https://doi.org/10.12688/hrbopenres.13196.1
Background

Acquired brain injury (ABI) is an umbrella term describing any injury sustained to the brain since birth. The Royal College of Physicians and the British Society for Rehabilitation Medicine (2003) define ABI as an inclusive category that embraces acute (rapid onset) brain injury of any cause, including brain injuries sustained traumatically (traumatic brain injury; TBI) such as following a road traffic accident; or damage acquired non-traumatically following surgery, brain illness, toxic or metabolic insult, or most commonly, stroke.

ABI from either traumatic or non-traumatic origin is a leading cause of death, disability, and high healthcare costs globally. Brain injuries of a traumatic nature (TBI) are estimated to cost €33 billion in direct and indirect costs across Europe. In addition to the long-term effects of ABI on an individual, the costs borne by society are substantial, encompassing pre-hospital care, emergency, hospitalisation, outpatient rehabilitation, and indirect losses due to lost workplace contribution. Of the overall burden of neurological disorders, ABI accounts for over half of all disability-adjusted life years lost and nearly 70% of all related deaths. Prevalence rates for TBI estimate 55.5 million cases, while the incidence of TBI has increased over time reflecting growth in the size of the population but also accounting for an aging population. This makes TBI, and more broadly, ABI, a pressing public health concern. With an ever-increasing unmet rehabilitation need, it makes the requirement for suitable services ever more pressing.

At the World Health Organisation (WHO) Rehabilitation 2030: a call for action, calls for coordinated and collaborative global action for rehabilitation services generally.

The impact of an ABI can be physical and/or cognitive, greatly affecting an individual’s level of function in a myriad of psychosocial or occupational domains, either temporarily or permanently. The magnitude of impairment can be classified as either mild, moderate, or severe ABI. It often leaves the survivor with an acquired disability that they and their family must adapt to, with little or no preparation. It is estimated that 35,000 people in Ireland between the ages of 16–65 are living with an ongoing disability resulting from ABI (approx. 7.25 persons for every 1000). The number of persons experiencing an ABI greatly exceeds the available rehabilitative services in Ireland, hence many ABI survivors reside in the community with varying access to community-based neurorehabilitation, families struggling to cope and inappropriate placements in nursing homes. This situation is not unique to Ireland, with the need only set to increase due to global health, demographic trends and ageing population.

Neurorehabilitation involves a multidisciplinary approach to assessing individual needs to best help the individual to regain and optimise function, while preventing further deterioration. The ability to support an individual with ABI in the community would allow for increased service capacity and reduce waiting lists, but also help ensure optimal outcomes during recovery.

It is reported internationally that community-based neurorehabilitation services are not adequately supported, with access to vital services often dependent on geographical location. This coupled with a trend of shortening hospital inpatient stays places an increased reliance on community services, showing the need to investigate how to best meet the ongoing rehabilitation needs of people with ABI. In Ireland, the 2019 Neurorehabilitation Implementation Framework outlined specific issues pertaining to long waiting lists, this included limited access to specialist neurorehabilitation services, alongside a scarcity of community-based neurorehabilitation. Consequently, the lack of neurorehabilitation services has been acknowledged to account for the inappropriate use of beds in acute hospitals, with similar findings being reported internationally. Acquired Brain Injury Ireland and other stakeholders have advocated to prioritise the implementation of neurorehabilitation services embedded in a policy framework and supported by evidence-based data that verifies improved outcomes for individuals with ABI.

A Cochrane review of 19 studies on multidisciplinary rehabilitation for ABI amongst adults of working age demonstrated that, for those with moderate to severe ABIs, intensive neurorehabilitation showed earlier gains, whilst timely rehabilitation was better than delayed treatment. This review also concluded that following acute services, community-based neurorehabilitation is necessary for the patients’ ongoing needs and goals, yet there is limited evidence for such community-based services, as only 3 relevant studies were identified. A review by Doig et al. (2010), inclusive of 17 studies, demonstrated that community-based or home-based rehabilitation showed at least equivalent outcomes, and often superior outcomes, when compared to outpatient clinic settings (e.g. day hospital). Albeit, the majority of studies included a stroke population which may limit the generalisability of findings, but this nevertheless supports efforts to increase the provision of neurorehabilitation services for ABI in the community context.

Neurorehabilitative services overall aim is to help the individual achieve optimal function in interaction with their environment. Resultantly, the use of outcome measures tends to be quite heterogeneous, including but not limited to consciousness, motor and sensory function, cognition, occupational functioning, community integration, and independence in daily activities. Without a core outcome data set the variation in outcome measures across the literature limits the potential of additional analysis and hinders the ability to draw conclusive therapeutic recommendations. Kwakkel et al. (2017) provide progress in this area by providing recommendations of standardized measurements during stroke recovery. These recommendations, to keep validity across stroke trials, are limited to the stroke population and not the wider ABI population. This is an area warranting further development.

A larger emphasis on rehabilitation for cognitive, behavioural, psychological and social domains has been recommended following long-term outcomes of individuals with TBI; the physical and vocational rehabilitation of these participants was deemed successful in light of the fact that neurorehabilitation programmes tend to more so incorporate physical and occupational therapy. Physical and cognitive outcomes are
frequently used to assess intervention effectiveness for ABI as these are common deficient areas following ABI, are modifiable factors that can be targeted during rehabilitation, and are relied upon for day-to-day activities. Thus, addressing cognitive and physical functioning in a multidisciplinary approach may be integral to ensuring transfer to psychosocial domains. Many reviews to date have tended to focus on physical or cognitive outcomes following ABI suggesting benefits for function, albeit the variance owing to differences in age, type of injury, and treatment content/delivery cannot be overlooked. Few of these reviews have focused on community-dwelling individuals with ABI (self-management programs), but to the best of our knowledge, no reviews have exclusively considered a multidisciplinary approach for ABI in the community context. Considering the service needs reported by individuals within the first year of recovery from ABI, a focus on the continuity of care into the community is paramount.

In comparison to previous literature that has largely assessed single discipline neurorehabilitation and summarised findings across inpatient and community-based contexts, the aim of this review is to determine the effectiveness of multidisciplinary community-based neurorehabilitation for individuals with ABI, which include cognitive or physical functioning outcomes as either primary or secondary outcomes. The objectives are: (a) review RCTs pertaining to community-based rehabilitation for ABI provided by a multidisciplinary team of healthcare professionals to improve physical and/or cognitive function, relative to usual care; (b) determine how the content and delivery of community-based neurorehabilitation relates to improvements in cognitive and/or physical function following ABI, (c) make recommendations for the provision and outcome evaluation of community-based neurorehabilitation services.

Methods/design

We will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline for this review (see Figure 1). In accordance with the PRISMA-P guidelines, this protocol was submitted to the International Prospective Register of Systematic Reviews in November 2019. The protocol

![Figure 1. PRISMA Flow diagram.](image-url)
Studies which are inpatient based.

- Reported on at least one of the following outcomes: cognitive
- Assesses the effectiveness of Neuro-rehabilitation
- Is community based

Exclusion criteria

- Paediatric population (<18 years)
- Randomised controlled trial (RCT) with control group of usual care, and any setting which is not in-patients. We will not include settings will include the home, out-patient clinics, day hospitals as rehabilitation provided to persons with a diagnosis of ABI. These interventions will be delivered or overseen by allied health professionals in a community setting. For the purpose of this review, a neurorehabilitation intervention will also be detailed by Langhorne, Bernhardt & Kwakkel (2011) including; goal setting; high intensity practice, increased therapy or intervention; multi-disciplinary team care and task specific training. It is widely accepted that for neurorehabilitation to be effective it needs to be timely, in the correct setting and by the required health professional. For the purposes of this review, a neurorehabilitation intervention will also be defined as any non-surgical or non pharmacological intervention provided to persons with a diagnosis of ABI. These interventions will be delivered or overseen by allied health professionals in a community setting. For the purpose of this review, community settings will include the home, out-patient clinics, day hospitals and any setting which is not in-patients. We will not include neurorehabilitation interventions primarily addressing problems related to communication, swallowing or medical management of an ABI.

Cognitive rehabilitation involves engaging broad domains, abilities and everyday processes, which are applied in basic and abstract ‘real-world’ situations and settings in order to address functioning and performance in respect to an individual’s goals. Cognitive rehabilitation can include but is not exclusive to cognitive training, cognitive retraining, cognitive remediation, cognitive processing, brain training, executive functioning training, memory training, cognitive recovery and cognitive endurance.

Physical rehabilitation aims to enhance and restore physical function to help improve independence and quality of life. These include training methods aimed at improving an individual’s ability to complete activities of daily living with more independence. Physical rehabilitation can include but is not exclusive to motor function, motor ability, physical training, physical recovery, balance, physical ability and physical independence.

The review will include studies that involve the provision of neuro-rehabilitation interventions addressing functioning, specifically relating to cognitive and/or physical domains. A rehabilitative programme will be considered as neurorehabilitation if it was described as such by the authors, or if it included a description of programme components that adhered to the rehabilitation principles set out by Langhorne, Bernhardt & Kwakkel (2011) detailed above, with the overall aim to restore or maximise function. Neurorehabilitative input may be received from an individual health professional or an interdisciplinary/ multidisciplinary team.

Comparators

As the reviewers aim to investigate the clinical effectiveness of neuro-rehabilitation interventions, the studies must include an experimental group of therapy being compared to usual care, attention control, or waitlist control. Usual care is a term used in real world studies to describe the full spectrum of patient care services.

Table 1. Eligibility criteria for screened references.

Inclusion criteria	Exclusion criteria
1 Adults (>18 years of age) currently living in the community with an acquired brain injury	Participants who have a diagnosis of a degenerative neurological condition or congenital neurological diagnosis.
2 Assesses the effectiveness of Neuro-rehabilitation	Paediatric population (<18 years)
3 Is community based	Studies which are inpatient based.
4 Randomised controlled trial (RCT) with control group of usual care, waitlist control or attention control.	Single arm trial (no comparator)
5 Reported on at least one of the following outcomes: cognitive function or physical function, assessed using a reliable and valid scale	Studies where participants are in receipt of therapies that were not neuro-rehabilitative focused.
Types of outcome measures
ABI's, dependent on the site and severity of injury, have the potential to impact cognitive and physical domains as well as many other areas such as behavioural, environmental, psycho-social and communicative. Cognitive and physical abilities are imperative for an individual to maintain independence in everyday functional tasks. Therefore, our primary outcome will be a measure of function specifically relating to physical or cognitive abilities, as assessed using valid and reliable scales. Outcomes will focus on data pre and post intervention.

Functional outcomes for both cognitive and physical function can include (but are not limited to) the following, as informed by the core outcome sets for traumatic brain injuries and outcomes frequently used in stroke rehabilitation:

Cognitive functional outcomes can measure cognition, memory and/or attention. These domains may be measured by the following outcome measures; Rey Auditory Verbal Learning Test (RAVLT), Trail Making Test (TMT), processing speed index from Wechsler Adult Intelligence Scale (WAIS)-III or WAIS-IV.

Physical function outcomes can measure motor function, self care activities, balance, activities of daily living (ADL’s) and personal activities of daily living (PADL’s). These domains may be measured by the following outcome measures; Bartel index, modified Rankin Scale, Rivermead Mobility Index, Action Research Arm Test, Berg Balance Scale, Functional Independence measure (FIM) motor subscale, Wolf Motor Function Scale, 2-Minute Walk Test, 5-Minute Walk Test.

Where relevant, secondary outcomes focusing on the broader domains of function such as social interaction, improved participation, and psychosocial adjustment will also be extracted from included studies.

Search methods for identification of studies
A comprehensive systematic literature search will be conducted in the following databases: EMBASE, MEDLINE, PsycINFO, Cochrane Library, Web of Science. Included studies will be restricted to those published from 1st January 2010 to 31st December 2019, and available in English. This time frame has been selected to include the growing interest in neuro rehabilitation in the last decade and to generate sufficient data for analysis.

Search terms will include a combination of the following: Neurorehabilitation AND Acquired Brain Injury AND Community.

Full search terms are available as extended data.

Data extraction and management
The aforementioned search keywords will be used to conduct the search on the previously listed search engines with references compiled in a library on the reference management software (EndNote). Duplicates will then be removed. Titles of studies will be screened independently by two review authors to identify studies that potentially meet the inclusion and exclusion criteria outlined above. The filtered articles will then be screened by their abstracts. The full text of these potentially eligible studies will be retrieved and will be independently assessed for eligibility by two review team members. Any disagreement between reviewers regarding study eligibility will be resolved through discussion and consensus, while a third reviewer will be sought for final decision if consensus is not met. A standardised form will be used to extract relevant data from the included studies. Data to be extracted will include context, participants, study design, intervention description, outcome measure used to assess physical/cognitive functioning, findings and quality of the study. The Covidence software will be utilised to streamline and standardise this process, this will make the systematic review efficient and transparent. Table 2 gives an overview of the data to be extracted from eligible papers.

Publication details	Authors, year of publication, Country, Setting, Sponsorship Source, Research Institution
Methods	Study design, inclusion criteria, exclusion criteria
Population	Type of ABI, severity of ABI, time after stroke onset, baseline N, mean age, % female (for the neurorehabilitation and comparator group separately, where relevant)
Neurorehabilitation	Duration of neurorehabilitation, treatment description, dose or frequency of sessions, delivery format (e.g. face-to-face, online), individual or group sessions, who delivered the neurorehabilitation
Comparator	Comparator description, dose or frequency of sessions, delivery format, individual or group sessions, who delivered the comparison treatment
Outcomes	Outcome measure, time point (e.g. post-treatment, 6-month follow-up), Mean and Standard Deviation for the neurorehabilitation and comparator group (or when not reported, other relevant summary or inferential statistics for calculation of effect sizes)
Assessment of risk of bias
We will follow the Cochrane Collaboration tool for assessing risk of bias for randomised trials as outlined in Chapter 8 of the Cochrane Handbook for Systematic Reviews of Interventions and use the version 2 of the Cochrane risk-of-bias tool (Rob 2.0) for randomized trials.²⁸

Data synthesis
A narrative data synthesis will be conducted for all included studies describing patient/rehabilitation characteristics, choice of comparator group, outcome measures, and follow-up assessment points, if applicable. If a sample of studies are deemed sufficiently consistent to enable the pooling of results, they will be synthesised for a meta-analysis using RevMan software. Outcomes will be broadly classified into 2 domains, either cognitive or physical; within these domains similar outcome measures will be grouped (e.g. Berg Balance Scale, assessing balance, will be categorised within the physical domain). At minimum of 2 studies will be required for meta-analysis of any subdomain. Cohen’s d effect size will be calculated as the standardised mean difference between the neurorehabilitation group and comparator group in the cognitive/physical outcome measure at post-treatment, divided by the pooled standard deviation. Inverse-variance weighted, random effects modelling will be conducted to generate a weighted mean effect size and confidence intervals. Effect sizes will be described in accordance with the recommended cut-offs, >0.20 = small, >0.50 = medium, >0.80 = large.³⁹ Heterogeneity will be analysed using the Q statistic chi-squared χ^2 test, with the I^2 index used to quantify the percentage of variability across the studies. If heterogeneity is significant ($p < 0.10$ alpha level, as recommended by Cochrane),³⁶ then appropriate moderator or subgroup analyses will be conducted to determine the explanatory potential of patient/rehabilitation characteristics on the effectiveness of neurorehabilitation.

This study will aim to conduct a quantitative synthesis with combined results to produce a single measure using a random-effects model unless there are few trials (2 or less)³⁹, in which case we will use a fixed effect model. If there is substantial heterogeneity, then results will not be combined and a narrative summary will be completed. A risk of bias assessment of included studies will be summarized in a table and results and implications will be critically discussed.

Dissemination of information
The findings of this systematic review will be disseminated through peer-reviewed publication. Additionally, findings will be presented at both national and international conferences and via a Public and Patient Involvement group of adults living with an ABI.

Study status
The original search was conducted in March 2020 and a second updated search was conducted in January 2021 respectively. We have completed the initial screening process and are in the process of currently beginning to data extract information from selected studies.

Discussion
Persons with ABI undergo a wide range of experiences and outcomes dependent on their social situation, location and extent of injury.¹³⁻¹⁵,²⁰ In Ireland, due to a lack of specialist inpatient facilities the majority of these survivors reside within the community either independently, with family or in residential facilities.²⁰ It is not currently clear what the most clinically effective interventions for this population of clients is. The results of this systematic review will summarize the available evidence regarding the clinical effectiveness of neurorehabilitation focusing on interventions in the community addressing cognitive and physical outcomes.

Data availability
Underlying data
No data are associated with this article.

Extended data
Zenodo: Extended data file - Neuropsychological rehabilitation interventions for people - extended file. https://zenodo.org/record/4446710#.YAVpROj7SUk

This project contains the following extended data:
- Additional file 1 – Search strategy .docx (Search strategy for the database searches in {MEDLINE, Embase, and CENTRAL})

Reporting guidelines
Zenodo: PRISMA-P checklist for ‘The effectiveness of community neurorehabilitation for persons with an acquired brain injury: protocol for a systematic review’ https://zenodo.org/record/4446710#.YAVpROj7SUk

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

References

1. Turner-Stokes L: Royal College of Physicians and British Society of Rehabilitation Medicine. Rehabilitation following acquired brain injury: National clinical guidelines. London: RCP, BSRM, 2003. Reference Source

2. Chen A, Bushmeneva K, Zagorski B, et al.: Direct cost associated with acquired brain injury in Ontario. BMC Neurol. 2012; 12(1): 76. PubMed Abstract | Publisher Full Text | Free Full Text

3. Myburgh JA, Cooper DJ, Finfer SR, et al.: Epidemiology and 12-month
outcomes from traumatic brain injury in Australia and New Zealand. J Trauma. 2008; 64(4): 854–62. PubMed Abstract | Publisher Full Text
4. Teasell R, Bayona N, Marshall S, et al.: A systematic review of the rehabilitation of moderate to severe acquired brain injuries. Brain Inj. 2007; 21(1): 107–12. PubMed Abstract | Publisher Full Text
5. Olesen J, Gustavsson A, Svensson M, et al.: The economic cost of brain disorders in Europe. Eur J Neurol. 2012; 19(1): 155–62. PubMed Abstract | Publisher Full Text
6. Scholten AC, Haagsmaj JA, Panneman MIM, et al.: Traumatic brain injury in the Netherlands: incidence, costs and disability-adjusted life years. PLoS One. 2014; 9(10): e110905. PubMed Abstract | Publisher Full Text | Free Full Text
7. GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators: Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019; 18(1): 56–87. PubMed Abstract | Publisher Full Text | Free Full Text
8. World Health Organisation (n.d). (Accessed November 2019). Reference Source
9. Patel M, Tilting K, Lawrence E, et al.: Relationships between long-term stroke disability, handicap and health-related quality of life. Age Ageing. 2006; 35(3): 273–5. PubMed Abstract | Publisher Full Text
10. Neurological Association of Ireland: The future of neurological conditions in Ireland: A challenge for healthcare an opportunity for change. 2017. Reference Source
11. König M, Beurskens EA, Snoep L, et al.: Effects of timing and intensity of neurorehabilitation on functional outcome after traumatic brain injury: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2018; 99(6): 1149–59.e1. PubMed Abstract | Publisher Full Text
12. Robinson CA, Matsuda PN, Ciol MA, et al.: Participation in community walking following stroke: the influence of self-perceived environmental barriers. Phys Ther. 2013; 93(5): 620–7. PubMed Abstract | Publisher Full Text
13. Doig E, Fleming J, Kuijpers P, et al.: Comparison of rehabilitation outcomes in day hospital and home settings for people with acquired brain injury – a systematic review. Disabil Rehabil. 2016; 38(25): 2061–77. PubMed Abstract | Publisher Full Text
14. Health Services Executive: National strategy & policy for the provision of neuro-rehabilitation services in Ireland. Dublin: Health Service Executive; 2011. Reference Source
15. Burke S, McGeeTrick G, Foley K, et al.: The 2019 Neuro-Rehabilitation Implementation Framework in Ireland: challenges for implementation and the implications for people with brain injuries. Health Policy. 2020; 124(3): 225–230. PubMed Abstract | Publisher Full Text
16. Turner-Stokes L, Pick A, Nair A, et al.: Multi-disciplinary rehabilitation for acquired brain injury in adults of working age. Cochrane Database Syst Rev. 2015;(12): CD006170. PubMed Abstract | Publisher Full Text
17. Kwakkel G, Lannin NA, Borschmann K, et al.: Standardized measurement of sensorimotor recovery in stroke trials: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int J Stroke. 2017; 12(5): 451–61. PubMed Abstract | Publisher Full Text
18. Kirkham JI, Davis K, Altman DG, et al.: Core outcome Set-STANDards for development: the COS-STAD recommendations. PLoS Med. 2017; 14(11): e1002447. PubMed Abstract | Publisher Full Text | Free Full Text
19. Ponsford JL, Downing MG, Oliver J, et al.: Longitudinal follow-up of patients with traumatic brain injury: outcome at two, five, and ten years post-injury. J Neuropsychiatry. 2014; 31(1): 64–77. PubMed Abstract | Publisher Full Text
20. Nicholson S, Snienhotta TF, van Wijk F, et al.: A systematic review of perceived barriers and motivators to physical activity after stroke. Int J Stroke. 2013; 8(5): 357–64. PubMed Abstract | Publisher Full Text
21. Whyte E, Skidmore E, Aizenstein H, et al.: Cognitive impairment in acquired brain injury: a predictor of rehabilitation outcomes and an opportunity for novel interventions. PM R. 2011; 3(6 suppl 1): S45–S51. PubMed Abstract | Publisher Full Text | Free Full Text
22. Chi NF, Huang YC, Chiu HY, et al.: Systematic Review and Meta-Analysis of Home-Based Rehabilitation on Improving Physical Function Among Home-Dwelling Patients With a Stroke. Arch Phys Med Rehabil. 2019; 101(2): 359–373. PubMed Abstract | Publisher Full Text
23. Jones TM, Dean CM, Hush JM, et al.: A systematic review of the efficacy of self-management programs for increasing physical activity in community-dwelling adults with acquired brain injury (ABI). Syst Rev. 2015; 4: 51. PubMed Abstract | Publisher Full Text | Free Full Text
24. Rogers JM, Foard R, Stalnov R, et al.: General and domain-specific effectiveness of cognitive remediation after stroke: systematic literature review and meta-analysis. Neuropsychol Rev. 2018; 28(3): 285–309. PubMed Abstract | Publisher Full Text
25. van Heuven C, Wolters Gregório G, Wade D: Evidence-based cognitive rehabilitation after acquired brain injury: a systematic review of content of treatment. Neuropsychol Rehabil. 2012; 22(5): 653–73. PubMed Abstract | Publisher Full Text
26. Corrigan JD, Whitenec G, Mellick D: Perceived needs following traumatic brain injury. J Head Trauma Rehabil. 2004; 19(3): 205–16. PubMed Abstract | Publisher Full Text
27. Innovation: Covidence systematic review software. Veritas Health Innovation Melbourne, VIC. 2016.
28. Eapen BR: EndNote X. Oxford Journals. 2016. PubMed Abstract | Publisher Full Text
29. Collaboration C: Review manager (RevMan) [computer program], Version; 2014.
30. StaataCorp L: Stata data analysis and statistical Software. Special Edition Release. 2007; 10: 733.
31. Turner-Stokes L: Evidence for the effectiveness of multi-disciplinary rehabilitation following acquired brain injury: a synthesis of two systematic approaches. J Rehabil Med. 2008; 40(9): 691–701. PubMed Abstract | Publisher Full Text
32. Langhorne P, Bernhardt J, Kwakkel G: Stroke rehabilitation. Lancet. 2011; 377(9778): 1693–702. PubMed Abstract | Publisher Full Text
33. Bahr-Fuchs A, Clare L, Woods B: Cognitive training and cognitive rehabilitation for mild to moderate Alzheimer’s disease and vascular dementia. Cochrane Database Syst Rev. 2013; 3(6): CD003260. PubMed Abstract | Publisher Full Text | Free Full Text
34. Thompson BT, Schoenfeld D: Usual care as the control group in clinical trials of nonpharmacologic interventions. Proc Am Thorac Soc. 2007; 4(7): 577–82. PubMed Abstract | Publisher Full Text
35. Wilde EA, Whitenec GG, Bogner J, et al.: Recommendations for the Use of Common Outcome Measures in Traumatic Brain Injury Research. Arch Phys Med Rehabil. 2010; 91(11): 1650–60.e17. PubMed Abstract | Publisher Full Text
36. Ali M, Fulton R, Quinn T, et al.: How well do standard stroke outcome measures reflect quality of life? A retrospective analysis of clinical trial data. Stroke. 2013; 44(11): 3161–5. PubMed Abstract | Publisher Full Text
37. Mitchell E, Ahern E, Sanjib S, et al.: Extended data file - Neuropsychological rehabilitation interventions for people - extended file. Zenodo. 2020. http://www.doi.org/10.5281/zenodo.4446710
38. Higgins JP, Savovic J, Page MJ, et al.: Assessing risk of bias in a randomized trial. Cochrane Handbook for Systematic Reviews of Interventions. 2019; 205–28. Publisher Full Text
39. Cohen J: Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Erlbaum. 1988. Reference Source
40. Chaimani A, Caldwell D, Li T, et al.: Chapter 11: Undertaking network meta-analyses. Cochrane handbook for systematic reviews of interventions. 2nd Edition Chichester (UK): John Wiley & Sons. 2019. Publisher Full Text
41. Deeks J, Higgins JP, Altman DG, et al.: Analysing data and undertaking meta-analyses. Cochrane handbook for systematic reviews of interventions. 2019; 241–84. Publisher Full Text