New examples of Weierstrass semigroups associated with a double covering of a curve on a Hirzebruch surface of degree one

Kenta Watanabe

Received: 22 July 2021 / Accepted: 26 January 2022 / Published online: 11 February 2022 © The Managing Editors 2022

Abstract
Let $\varphi: \Sigma_1 \rightarrow \mathbb{P}^2$ be a blow up at a point on \mathbb{P}^2. Let C be the proper transform of a smooth plane curve of degree $d \geq 4$ by φ, and let P be a point on C. Let $\pi: \tilde{C} \rightarrow C$ be a double covering branched along the reduced divisor on C obtained as the intersection of C and a reduced divisor in $|−2K_{\Sigma_1}|$ containing P. In this paper, we investigate the Weierstrass semigroup $H(\tilde{P})$ at the ramification point \tilde{P} of π over P, in the case where the intersection multiplicity at $\varphi(P)$ of $\varphi(C)$ and the tangent line at $\varphi(P)$ of $\varphi(C)$ is $d − 1$.

Keywords Weierstrass semigroup · Double covering of a curve · Hirzebruch surface · Normalization of a curve

Mathematics Subject Classification 14J26 · 14H51 · 14H55

1 Introduction

We work over the complex number field \mathbb{C}. Let C be a smooth projective curve, and let P be a point on C. Then we call a natural number n satisfying
\[
h^0(\mathcal{O}_C ((n − 1)P)) = h^0(\mathcal{O}_C (nP)),
\]
a gap at P on C. Let \mathbb{N}_0 be the additive monoid consisting of non-negative integers. If we let $G(P)$ be the set of gaps at P on C, the set $\mathbb{N}_0 \setminus G(P)$ forms an additive monoid. We call it the Weierstrass semigroup at P on C, and denote it by $H(P)$. If the genus of C is g, then the cardinality of $G(P)$ coincides with g and it is called the genus of $H(P)$.
Assume that C is a double covering of \mathbb{P}^1, that is, C is hyperelliptic. Then the ramification points of it are Weierstrass points. Hence, in general, it is natural and interesting to consider the problem of whether the ramification points of a given double covering of a curve are Weierstrass.

Let $\pi : \tilde{C} \to C$ be a double covering, let P be a branch point of it, and let \tilde{P} be the ramification point of π over P. Then we consider the Weierstrass semigroup $H(\tilde{P})$ called the double covering type. If the genus of \tilde{C} is g and $C = \mathbb{P}^1$, $H(\tilde{P})$ is generated by 2 and $2g + 1$. Komeda (2011) has determined the all possible Weierstrass semigroups $H(\tilde{P})$, in the case where the genus g of C is 3 and the genus of \tilde{C} is $g \geq 9$. On the other hand, in the case where C is a smooth plane curve of degree $d \geq 4$ and the intersection multiplicity at P of C and the tangent line at P of C is d or $d - 1$, we have determined $H(\tilde{P})$, under the condition that the branch locus of π is the reduced divisor on C of degree $6d$ obtained as the intersection of C and a reduced divisor on \mathbb{P}^2 of degree 6 (Watanabe 2013; Watanabe and Komeda 2015). If \tilde{C} is smooth, that is, the branch divisor of π is reduced, the computations of the Weierstrass semigroups at the ramification points are interesting from the point of view of the classification of Weierstrass points on a curve. However, in this paper, we will focus on the Weierstrass semigroups at the points on a curve obtained by the normalization of \tilde{C}, in the case where the branch divisor of π is not reduced.

Let $\varphi : \Sigma_1 \to \mathbb{P}^2$ be a blow up at a point on \mathbb{P}^2. Then we call the surface Σ_1 a Hirzebruch surface. Let E be the exceptional divisor of φ, and we denote by L the total transform of a line on \mathbb{P}^2 by φ. Then we note that the Picard lattice $\text{Pic}(\Sigma_1)$ of Σ_1 is generated by the classes of E and L. In the previous work, we had the following result.

Theorem 1.1 [Watanabe (2019), Theorem 1.2] Let C be a smooth curve on Σ_1 which is linearly equivalent to the divisor $dL - E$ with $d \geq 4$. Let $\pi : \tilde{C} \to C$ be a double covering of C with a branch point P, $\pi^{-1}(P) = \{\tilde{P}\}$, and assume that there exists an effective divisor $T_P \in |L|$ such that $T_P|_C = dP$. Moreover, let M_d be the following condition.

M_d: There exists a double covering $\tilde{\pi} : X \to \Sigma_1$ branched along a reduced divisor belonging to $| - 2K_{\Sigma_1}|$ such that $\tilde{C} \subset X$ and $\tilde{\pi}|_{\tilde{C}} = \pi$.

Then, we have the following results.

(a) If $P \in E$, then the following conditions are equivalent.

(i) M_d holds.

(ii) $H(\tilde{P}) = 2H(P) + (6d - 3)N_0$.

(b) If $P \notin E$ and M_d holds, then $H(\tilde{P}) = 2H(P) + (6d - 1)N_0 + (2d^2 + 1)N_0$.

In Theorem 1.1, if the double covering π satisfies the condition M_d, \tilde{C} is the normalization of the double covering of $\varphi(C)$ branched along the divisor obtained as the restriction to $\varphi(C)$ of a reduced divisor on \mathbb{P}^2 of degree 6 which has a singularity at $\varphi(E)$. However, conversely, it is difficult to consider the problem of whether π satisfies the condition M_d, even if the Weierstrass semigroup $H(\tilde{P})$ at the ramification point \tilde{P} of π over the branch point P is given. In this paper, we will investigate the Weierstrass semigroup $H(\tilde{P})$, in the case where C is the proper transform of a smooth plane curve of degree $d \geq 4$ by φ, and the intersection multiplicity at $\varphi(P)$ of $\varphi(C)$.
and the tangent line at $\varphi(P)$ of $\varphi(C)$ is $d - 1$. Moreover, we consider a necessary and sufficient condition for a double covering π of a smooth curve on a Hirzebruch surface to satisfy the condition M_d. Our main theorem is the following.

Theorem 1.2 Let L, E, and C be as in Theorem 1.1. Let $\pi : \tilde{C} \rightarrow C$ be a double covering which has a branch point P on C. We set $\pi^{-1}(P) = \{ \tilde{P} \}$. Assume that there exist $T_P \in |L|$, a point $Q \in C$ with $Q \neq P$, and $T_Q \in |L|$ such that $T_P|_C = (d - 1)P + Q$ and $T_Q|_C = dQ$, and let M_d be the following condition.

M_d: There exists a double covering $\tilde{\pi} : X \rightarrow \Sigma_1$ branched along a reduced divisor belonging to $|-2K\Sigma_1|$ such that $\tilde{C} \subset X$ and $\tilde{\pi}|_{\tilde{C}} = \pi$. Then we get the following results.

(a) If $Q \in E$, then the following conditions are equivalent.

(i) π satisfies M_d.

(ii) $H(\tilde{P}) = 2H(P) + (8d - 9)N_0 + \cdots + (8d - 9 + 2r(d - 2))N_0$

+ $\cdots + (8d - 9 + 2(d - 3)(d - 2))N_0$.

(b) If $P \in E$, then we get the following assertion.

(i) If π satisfies M_d, then $H(\tilde{P}) = 2H(P) + (8d - 11)N_0$

+ $\cdots + (8d - 11 + 2r(d - 2))N_0 + \cdots + (8d - 11 + 2(d - 4)(d - 2))N_0$.

(ii) Assume that Q is a branch point of π, and let \tilde{Q} be the ramification point over Q. If $2d^2 - 3 \notin H(\tilde{P})$ and $6d - 1 \in H(\tilde{Q})$, then π satisfies M_d.

(c) If $P \notin E$, $Q \notin E$, and π satisfies M_d, then $H(\tilde{P}) = 2H(P) + (8d - 9)N_0$

+ $\cdots + (8d - 9 + 2r(d - 2))N_0 + \cdots + (8d - 9 + 2(d - 4)(d - 2))N_0 + (2d^2 - 1)N_0$.

In Theorem 1.2(b), if $H(\tilde{P})$ is the Weierstrass semigroup as in (i), then $2d^2 - 3 \notin H(\tilde{P})$. This means that the assertion of (ii) gives the converse assertion of (i), under the condition that $H(\tilde{Q}) = 2H(Q) + (6d - 1)N_0 + (2d^2 + 1)N_0$.

Notations and Conventions A curve and a surface are smooth and projective. For a curve or a surface Y, we denote a canonical divisor of Y by K_Y. If C is a curve on a surface Y, by the adjunction formula, $K_C = (K_Y + C)|_C$. For a curve C, we denote the genus of C by $g(C)$. For a divisor D on a curve or a surface, we denote by $|D|$ the linear system defined by it. If two divisors D_1 and D_2 belong to the same linear system, we will write $D_1 \sim D_2$. For two divisors D_1 and D_2 on a surface Y and $R \in \text{Supp } D_1 \cap \text{Supp } D_2$, we denote by $I_R(D_1 \cap D_2)$ the intersection multiplicity at R of D_1 and D_2. We call the minimum degree of pencils on a curve C the **gonality** of C.

A submonoid $H \subset \mathbb{N}_0$ is called a **numerical semigroup** if the set $\mathbb{N}_0 \setminus H$ is a finite set. The **genus** of a numerical semigroup H is defined by the cardinality of $\mathbb{N}_0 \setminus H$, and it is denoted by $g(H)$. For a numerical semigroup \tilde{H}, we set

$$d_2(\tilde{H}) := \left\{ \frac{h}{2} \mid h \text{ is even and } h \in \tilde{H} \right\},$$

which is a numerical semigroup.
2 Proof of Theorem 1.2

In this section, we will give a proof of Theorem 1.2 and some examples of it. Assume that the notation is as in Theorem 1.2. Then C is the proper transform of a smooth curve of degree $d \geq 4$ by the blow up $\varphi : \Sigma \to \mathbb{P}^2$ at a point on \mathbb{P}^2. Moreover, it is well known that $d_2(H(\tilde{P})) = H(P)$ (cf. Torres (1994)). Hence, the results on the computation of the Weierstrass semigroup at a Weierstrass point on a smooth plane curve are often used to compute the Weierstrass semigroup $H(\tilde{P})$. First of all, we recall the following useful result.

Lemma 2.1 [cf. Kang and Kim (2007) Tables 3 and 4]. Let C be a plane curve of degree $d \geq 4$, and let $P \in C$. Then, we have the following results.

(i) If $I_P(C \cap T_P) = d$, then $H(P) = d\mathbb{N}_0 + (d-1)\mathbb{N}_0$.

(ii) If there exists a point $Q \in C$ with $T_P|_C = (d-1)P + Q$ and $I_Q(C \cap T_Q) = d$, then

$$H(P) = (d-1)\mathbb{N}_0 + \cdots + (d-1 + r(d-2)) \mathbb{N}_0 + \cdots + \left(d-1 + (d-2)^2\right) \mathbb{N}_0.$$

Here, we denote the tangent line of C at R by T_R.

Proof of Theorem 1.2. Let $\tilde{\pi} : X \to \Sigma$ be a double covering of Σ as in the condition M_d. Since $K_\Sigma \sim -3L + E$ and \tilde{C} is smooth, C intersects transversely the branch locus of $\tilde{\pi}$ at $6d - 2$ distinct smooth points of it. Let $\eta : \tilde{X} \to X$ be a minimal resolution of X. Since \tilde{C} is smooth, it does not contain any singular point of X. Hence, $\eta^{-1}(\tilde{C}) = \tilde{C}$. Since the exceptional divisor of η does not intersect $\eta^{-1}(\tilde{C})$, we have $K_{\tilde{C}} \sim \tilde{C}$. From now on we set $D := (\tilde{\pi} \circ \eta)^*D$, for a divisor D on Σ.

(a) (i) \implies (ii) We classify divisors D on Σ which are linearly equivalent to C and such that $D|_C$ is effective to investigate the set of gaps $G(\tilde{P})$ at \tilde{P}. Let $L_P \in |L|$ be a divisor such that $P \in L_P$ and $L_P \neq T_P$. For $0 \leq s \leq d$ and $0 \leq t \leq \min(d-2, d-s)$, we set $D_1 = sT_P + tL_P + (d-s-t)T_Q - E$. Moreover, we set $D_2 = (d+1)T_P - T_Q - E$. Since $I_P(\tilde{D}_1 \cap \tilde{C}) = 2s(d-1) + 2t$, we have $2s(d-1)+2t+1 \in \mathbb{N}_0 \setminus H(\tilde{P}).$ Since $K_{\tilde{C}} = \tilde{D}_2|_{\tilde{C}} = (2d^2-2)\tilde{P}, 2d^2-1 \in \mathbb{N}_0 \setminus H(\tilde{P}).$ We set $G = \{ h \in \mathbb{N}_0 \setminus H(\tilde{P}) \mid h \text{ is odd} \}. Then we have

$$G = \{ 2s(d-1) + 2t + 1 \mid 0 \leq s \leq d, \ 0 \leq t \leq \min\{d-2, d-s\} \} \cup \left\{ 2d^2 - 1 \right\} .$$

Indeed, by easy computation, the cardinality of the set on the right hand side is $d^2 + 3d - 2$, and it coincides with $g(\tilde{C}) - g(C)$. On the other hand, since $d_2(H(\tilde{P})) = H(P)$, the cardinality of the set of even gaps at \tilde{P} is $g(C)$ which is the genus of $H(P)$. If $2s(d-1) + 2(d-s) + 3 \leq 2(s+1)(d-1) - 1$, then $s \geq 3$. Hence, the minimum odd number of $H(\tilde{P})$ is $8d - 9$. We have $2H(P) + (8d - 9)\mathbb{N}_0 \subset H(\tilde{P})$. Let n be an odd number satisfying $n \in H(\tilde{P}) \setminus (2H(P) + (8d - 9)\mathbb{N}_0)$. Any integer $m \geq 2g(C)$ belongs to $H(P)$, and hence, $8d - 9 + 2m \in 2H(P) + (8d - 9)\mathbb{N}_0$. Therefore, $n \leq 8d - 9 + 2(2g(C) - 1) = 2d^2 + 2d - 7.$
Assume that \(2d^2 + 1 \leq n \leq 2d^2 + 2d - 7\). Then there exists an odd number \(k\) such that \(3 \leq k \leq 2d - 5\) and \(n = 2(d + 2)(d - 1) - k\). We set
\[
l = \frac{2d - 3 - k}{2}\quad\text{and}\quad m = \frac{k - 1}{2}.
\]
Then since \(m \leq (d - 2)l\), there exist integers \(r_1, \ldots, r_l\) such that \(m = \sum_{i=1}^{l} r_i\) and \(0 \leq r_i \leq d - 2\) for each \(1 \leq i \leq l\). Hence, we have
\[n - (8d - 9) = 2l(d - 1) + 2m(d - 2) \in 2H(P) .\]
This is a contradiction.

Assume that \(2d^2 - 2d + 3 \leq n \leq 2d^2 - 3\). Then there exists an odd number \(k\) such that \(1 \leq k \leq 2d - 5\) and \(n = 2(d^2 - 1) - k\). Since
\[n - (8d - 9) = (2d - 5 - k)(d - 1) + (k - 1)(d - 2) \notin 2H(P),\]
we have \(k = 2d - 5\). Hence, we have \(n = 8d - 9 + 2(d - 3)(d - 2) = 2d^2 - 2d + 3\).
Assume that there exists an integer \(s\) satisfying
\[3 \leq s \leq d - 1\quad\text{and}\quad 2s(d - 1) + 2(d - s) + 3 \leq n \leq 2(s + 1)(d - 1) - 1 .\]
Then there exists an odd number \(k\) with \(1 \leq k \leq 2s - 5\) and \(n = 2(s + 1)(d - 1) - k\). Since \(n - (8d - 9) = (2s - 5 - k)(d - 1) + (k - 1)(d - 2) \notin 2H(P)\), we have \(k = 2s - 5\). This means that there exists an integer \(r\) with \(0 \leq r \leq d - 4\) and \(n = 8d - 9 + 2r(d - 2)\). Therefore, we have the assertion.

(ii) \implies (i) \ Let \(B\) be the branch divisor of \(\pi\). Then by the Hurwitz formula, there exists an effective divisor \(D\) of degree \(3d - 1\) on \(C\) with \(B \sim 2D\). We set \(D' = -K_{\Sigma_1}\cdot C - D\). Since \(T_P|_{C} \sim T_Q|_{C}\), we have \((d - 1)P \sim (d - 1)Q\). Since \(C\) is linearly equivalent to \(dT_P - E\) as a divisor on \(\Sigma_1\), if we set \(F = K_C + D' + P\), we have \(F \sim d^2P - D\). Since \(\text{deg}(D') = 0\), we show that \(h^0(O_C(-(D')) > 0\) to prove that \(B \in |-2K_{\Sigma_1}|. \) Assume that \(h^0(O_C(-D')) = 0\). Since \(K_C + F - P = -D\), we have \(h^0(O_C(K_C - F + P)) = h^0(O_C(K_C - F)) = 0\). This means that \(h^0(O_C(d^2P - D)) = h^0(O_C((d^2 - 1)P - D)) + 1\). On the other hand, since \(d^2 \in H(P)\), we have \(h^0(O_C(d^2P)) = h^0(O_C((d^2 - 1)P)) + 1\). Since
\[h^0(O_C(2d^2P)) = h^0(O_C(d^2P)) + h^0(O_C(d^2P - D))\]
and \(h^0(O_C((2d^2 - 2)P)) = h^0(O_C((d^2 - 1)P) + h^0(O_C((d^2 - 1)P - D))\), we have \(h^0(O_C(2d^2P)) = h^0(O_C((2d^2 - 2)P)) + 2\). This contradicts the fact that \(2d^2 - 1 \notin H(P)\). Hence, \(\pi\) satisfies \(M_d\).

(b) (i) By the same way as above, we determine the set of gaps \(G(\tilde{P})\) at \(\tilde{P}\). Let \(L_P\) be as above. For \(0 \leq s \leq d\) and \(0 \leq t \leq \min(d - 2, d - s)\) with \((s, t) \neq (0, 0)\), we set
Let $n \leq \min\{d-2, d-s\}$, and $(s, t) \neq (0, 0) \cup \{2d^2 - 2d + 1, 2d^2 - 3\}$.

If $2s(d-1)+2(d-s)+1 \leq 2(s+1)(d-1)-3$, then $s \geq 3$. Hence, the minimum odd number of $H(\tilde{P})$ is $8d - 11$. Therefore, we have $2H(P) + (8d - 11)N_0 \subset H(\tilde{P})$. Let n be an odd number such that $n \in H(\tilde{P}) \setminus (2H(P) + (8d - 11)N_0)$. Then we have $n \leq 8d - 11 + 2(2g(C) - 1) = 2d^2 + 2d - 9$. We note that there exists an integer s satisfying $3 \leq s \leq d - 1$, and $2s(d-1) + 2(d-s) + 1 \leq n \leq (s+1)(d-1)-3$. In fact, if we assume that $2d^2 - 2d + 3 \leq n \leq 2d^2 - 5$, there exists an odd number k such that $3 \leq k \leq 2d - 5$ and $n = 2(d^2 - 1) - k$. Hence, we have

$$n - (8d - 11) = (2d - 3 - k)(d - 1) + (k - 3)(d - 2) \in 2H(P).$$

This is a contradiction. If we assume that $2d^2 - 1 \leq n \leq 2d^2 + 2d - 9$, then there exists an odd number k such that $5 \leq k \leq 2d - 3$ and $n = 2(d + 2)(d - 1) - k$. Hence, we have

$$n - (8d - 11) = (2d - 1 - k)(d - 1) + (k - 3)(d - 2) \in 2H(P).$$

This is a contradiction. Therefore, there exists an odd number k such that $3 \leq k \leq 2s - 3$ and $n = 2(s+1)(d-1) - k$.

Since $n - (8d - 11) = (2s - 3 - k)(d - 1) + (k - 3)(d - 2) \notin 2H(P)$, we have $k = 2s - 3$. Therefore, there exists an integer r such that $0 \leq r \leq d - 4$ and $n = 8d - 11 + 2r(d - 2)$. Hence, we have the assertion.

(ii) Let D be a divisor with $B \sim 2D$ for the branch divisor B of π. We set $D' = -K_{\Sigma_1}|C - D - Q$. Since $E \cap C = \{P\}$, by the same reason as above, if we set $F = K_C + D + P$, we have $F \sim (d^2 - 1)P - D$. Then we have $h^0(O_C(-D')) > 0$. Assume that $h^0(O_C(-D')) = 0$. Then $h^0(O_C(K_C - F)) = 0$. This means that $h^0(O_C((d^2 - 1)P - D)) = h^0(O_C((d^2 - 2)P - D)) + 1$. On the other hand, since $d^2 - 1 \in H(P)$, we have $h^0(O_C((d^2 - 1)P)) = h^0(O_C((d^2 - 2)P)) + 1$. Since $h^0(O_C((2d^2 - 2)\tilde{P})) = h^0(O_C((d^2 - 1)P)) + h^0(O_C((d^2 - 1)P - D))$ and $h^0(O_C((2d^2 - 4)\tilde{P})) = h^0(O_C((d^2 - 2)P)) + h^0(O_C((d^2 - 2)P - D))$, we have $h^0(O_C((2d^2 - 2)\tilde{P})) = h^0(O_C((2d^2 - 4)\tilde{P})) + 2$. However, this contradicts the assumption that $2d^2 - 3 \notin H(\tilde{P})$. Since $\deg(-D') = 1$, there exists a point \tilde{Q}' on C belonging to $|-D'|$. Then we have

$$D \sim -K_{\Sigma_1}|C - Q + \tilde{Q}' .$$ (2.1)
On the other hand, since $T_Q|_C = dQ$, by Lemma 2.1 (i), we have $3d \in H(Q)$. Hence, we have $6d \in H(\tilde{Q})$. Moreover, by the assumption that $6d - 1 \in H(\tilde{Q})$, we have $h^0(\mathcal{O}_{\tilde{C}}(6d\tilde{Q})) = h^0(\mathcal{O}_{\tilde{C}}((6d - 2)\tilde{Q})) + 2$. Here, we set $D'' \sim 3dQ - D$. Since $h^0(\mathcal{O}_{\tilde{C}}(6d\tilde{Q})) = h^0(\mathcal{O}_{\tilde{C}}(3d\tilde{Q})) + h^0(\mathcal{O}_{\tilde{C}}(D''))$ and

$$h^0\left(\mathcal{O}_{\tilde{C}}\left((6d - 2)\tilde{Q}\right)\right) = h^0\left(\mathcal{O}_{\tilde{C}}\left((3d - 1)\tilde{Q}\right)\right) + h^0\left(\mathcal{O}_{\tilde{C}}\left(D'' - \tilde{Q}\right)\right),$$

we have

$$h^0\left(\mathcal{O}_{\tilde{C}}\left(D''\right)\right) = h^0\left(\mathcal{O}_{\tilde{C}}\left(D'' - \tilde{Q}\right)\right) + 1 > 0. \quad (2.2)$$

Since $\deg(D'') = 1$, there exists a point Q' on C belonging to $|D''|$. Since, by the linear equivalence (2.1),

$$3dQ - Q'' \sim D \sim (3T_Q - E)|_C - Q + Q' = 3dQ - P - Q + Q',$$

we have $P + Q = Q' + Q''$. Since C is isomorphic to the smooth plane curve $\varphi(C)$ via φ, the gonality of C is $d - 1$ and the divisor $(T_P - E)|_C = (d - 2)P + Q$ gives a gonality pencil on C. Hence, $\dim|P + Q| = 0$. This means that $P + Q = Q' + Q''$. By the equality (2.2), we have $Q'' \neq Q'$, and hence, we have $Q' = Q$ and $Q'' = P$. Therefore, we have $D \sim -K_{\Sigma_1}|_{\tilde{C}}$ and hence, π satisfies M_d.

(c) We set $C \cap E = \{R\}$. Let $L_{Q,R}, L_{P,R} \in |L|$ be divisors such that $Q, R \in L_{Q,R}$ and $P, R \in L_{P,R}$. For integers s and t satisfying $0 \leq s \leq d, 0 \leq t \leq \min\{d - 2, d - s\}$, and $(s, t) \neq (d, 0)$ we set

$$D_1 = sT_P + tL_{P,R} + (d - s - t)L_{Q,R} - E.$$

Moreover, we set $D_2 = L_{P,R} + dT_P - T_Q - E$ and $D_3 = L_{Q,R} + dT_P - T_Q - E$. Since $I_{\tilde{P}}(\tilde{D}_1 \cap \tilde{C}) = 2s(d - 1) + 2t$, we have $2s(d - 1) + 2t + 1 \in \mathbb{N}_0 \setminus H(\tilde{P})$. Since $I_{\tilde{P}}(\tilde{D}_2 \cap \tilde{C}) = 2d(d - 1) + 2$, we have $2d^2 - 2d + 3 \in \mathbb{N}_0 \setminus H(\tilde{P})$. Since $I_{\tilde{P}}(\tilde{D}_3 \cap \tilde{C}) = 2d(d - 1)$, we have $2d(d - 1) + 1 \in \mathbb{N}_0 \setminus H(\tilde{P})$. We set $G = \{h \in \mathbb{N}_0 \setminus H(\tilde{P}) \mid h \text{ is odd}\}$. Then, by the same reason as above, we have

$$G = \{2s(d - 1) + 2t + 1 \mid 0 \leq s \leq d, \ 0 \leq t \leq \min\{d - 2, d - s\}\} \cup \left\{2d^2 - 2d + 3\right\}.$$

If $2s(d - 1) + 2(d - s) + 3 \leq 2(s + 1)(d - 1) - 1$, then $s \geq 3$. Hence, the minimum odd number of $H(\tilde{P})$ is $8d - 9$. We have $2H(P) + (8d - 9)\mathbb{N}_0 \subset H(\tilde{P})$. Let n be an odd number satisfying $n \in H(\tilde{P}) \setminus (2H(P) + (8d - 9)\mathbb{N}_0)$. Then we have $n \leq 8d - 9 + 2(2g(C) - 1) = 2d^2 + 2d - 7$. By the same reason as in the proof of (a), the case that $2d^2 + 1 \leq n \leq 2d^2 + 2d - 7$ does not occur.

Assume that $2d^2 - 2d + 5 \leq n \leq 2d^2 - 1$. Then there exists an odd number k such that $-1 \leq k \leq 2d - 7$ and $n = (d^2 - 1) - k$. Since

$$n - (8d - 9) = (2d - 5 - k)(d - 1) + (k - 1)(d - 2) \notin 2H(P),$$
we have \(k = -1 \). Hence, we have \(n = 2d^2 - 1 \).

Assume that there exists an integer \(s \) satisfying

\[
3 \leq s \leq d - 1 \text{ and } 2s(d - 1) + 2(d - s) + 3 \leq n \leq 2(s + 1)(d - 1) - 1.
\]

By the same reason as in the proof of (a), there exists an integer \(r \) such that \(0 \leq r \leq d - 4 \) and \(n = 8d - 9 + 2r(d - 2) \). Therefore, we have the assertion. \(\square \)

We can construct an example for each case as in Theorem 1.2.

Example 2.1. Let \(B_0 \subset \mathbb{P}^2 \) be a reduced and irreducible divisor of degree 6 defined by an equation \(f(x, y, z) = 0 \). Assume that \(B_0 \) has a double point \(R \), and \(B_0 \) does not have other singularity. Let \(X_0 \) be the hypersurface in \(\mathbb{P}(1, 1, 1, 3) \) defined by the equation \(w^2 = f(x, y, z) \). Let \(X \) be the blow up at the point on \(X_0 \) corresponding to \(R \). If \(\varphi : \Sigma_1 \rightarrow \mathbb{P}^2 \) is the blow up at \(R \) and \(B \) is the proper transform of \(B_0 \) by \(\varphi \), \(X \) is obtained as the double covering \(\tilde{\pi} : X \rightarrow \Sigma_1 \) of \(\Sigma_1 \) branched along \(B \).

Let \(C_0 \subset \mathbb{P}^2 \) be the plane curve defined by the equation \(yz^{d-1} + x^{d-1}z + y^d = 0 \). Assume that \(R \in C_0 \) and \(C_0 \) intersects transversely \(B_0 \) at other smooth points of \(B_0 \). Let \(C \) be the proper transform of \(C_0 \) by \(\varphi \). Moreover, we set \(\varphi^{-1}(R) = E \). We note that if we let \(L \in |\varphi^*O_{\mathbb{P}^2}(1)| \) be a divisor, then \(C \in |dL - E| \). We set \(\tilde{C} := \tilde{\pi}^{-1}(C) \).

Then \(\tilde{\pi} \) induces the double covering \(\pi : \tilde{C} \rightarrow C \) branched along the divisor \(B \cap C \) on \(C \). We set \(\varphi^{-1}(0 : 0 : 1) \cap C = \{P\} \). Assume that \(P \) is a branch point of \(\pi \) and we set \(\pi^{-1}(P) = \{\tilde{P}\} \).

(a) We consider the case where \(R = (1 : 0 : 0) \). We set \(E \cap C = \{Q\} \). Since \(T_R|C_0 = dR \) and \(T_{\varphi(P)}|C_0 = (d - 1)\varphi(P) + R \), if we set \(T_Q = \varphi^{-1}(T_R) \) and \(T_P = \varphi^{-1}(T_{\varphi(P)}) \), we have \(T_Q|C = dQ \) and \(T_P|C = (d - 1)P + Q \). Here, \(T_R \) and \(T_{\varphi(P)} \) are the tangent lines of \(C_0 \) at \(R \) and \(\varphi(P) \), respectively. Hence, \(H(\tilde{P}) \) coincides with the Weierstrass semigroup as in Theorem 1.2 (a) (ii).

(b) We consider the case where \(R = (0 : 0 : 1) \). Then \(P \in E \). We note that if \(I_R(C_0 \cap B_0) = 3 \), this case can occur. We set \(\varphi^{-1}(1 : 0 : 0) = \{Q\} \). Since \(T_R|C_0 = (d - 1)R + \varphi(Q) \) and \(T_{\varphi(Q)}|C_0 = d\varphi(Q) \), if we set \(T_P = \varphi^{-1}(T_R) \) and \(T_Q = \varphi^{-1}(T_{\varphi(Q)}) \), we have \(T_P|C = (d - 1)P + Q \) and \(T_Q|C = dQ \). Hence, \(H(\tilde{P}) \) coincides with the Weierstrass semigroup as in Theorem 1.2 (b) (i).

(c) We consider the case where \(R \neq (1 : 0 : 0) \) and \(R \neq (0 : 0 : 1) \). If we set \(\varphi^{-1}(1 : 0 : 0) = \{Q\} \), \(T_P = \varphi^{-1}(T_{\varphi(P)}) \), and \(T_Q = \varphi^{-1}(T_{\varphi(Q)}) \), by the same reason as above, \(H(\tilde{P}) \) coincides with the Weierstrass semigroup as in Theorem 1.2 (c).

Acknowledgements I would like to thank Jiryo Komeda and the referee for the helpful comments concerning this work.

References

Kang, E., Kim, S.J.: A Weierstrass semigroup at a pair of inflection points on a smooth plane curve. Bull. Korean Math. Soc. 44(2), 369–378 (2007)

Komeda, J.: On Weierstrass semigroups of double coverings of genus three curves. Semigroup Forum 83, 479–488 (2011)
Torres, F.: Weierstrass points and double coverings of curves with application: symmetric numerical semi-
groups which cannot be realized as Weierstrass semigroups. Manuscr. Math. 83, 39–58 (1994)
Watanabe, K.: An example of the Weierstrass semigroup of a pointed curve on K3 surfaces. Semigroup
Forum 86, 395–403 (2013)
Watanabe, K.: A double covering of curves on a Hirzebruch surface of degree one and Weierstrass semi-
groups. Semigroup Forum 98, 422–429 (2019)
Watanabe, K., Komeda, J.: On extensions of a double covering of plane curves and Weierstrass semigroups
of the double covering type. Semigroup Forum 91, 517–523 (2015)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.