THE SYNTHESIS OF 1,5-DIARYL-4-ARYLTHIOPYRROLIDIN-2-ONES BY ARYLSULFENYLATION OF STYRYL ACETIC ACID N-ARYLAMIDES

N.M.Tsyzyoryk, I.Yu.Danyliuk, A.I.Vaskevych*, R.I.Vaskevych, M.V.Vovk

Institute of Organic Chemistry of the National Academy of Science of Ukraine
5, Murmanska Str., 02660, Kyiv, Ukraine. E-mail: mvovk@ioch.kiev.ua

*National Technical University of Ukraine "KPI"

Key words: styryl acetic acid amides; electrophilic intramolecular cyclization; arylsulfenyl chlorides; pyrrolidin-2-ones

The role of the electrophilic intramolecular cyclization (EIC) reaction of unsaturated carboxylic acid amides has been described for the design of arylthio-containing lactams and lactones. In order to identify the effect of the styryl moiety on regioselectivity of the electrophilic intramolecular cyclization process styryl acetic acid amides with electron-donating substituents in para-position of the styryl moiety have been studied. It has been found that these compounds react with phenyl and p-tolylsulfenylchlorides in nitromethane in the presence of lithium perchlorate as a “doping additive” to form 1,5-diaryl-4-arylthiopyrrolidin-2-ones with the yield of 60-66%. It is most likely that the reaction found includes the formation of the episulfonium cation stabilized by the perchlorate-anion followed by 5-endo-cyclization onto the nitrogen atom of the amide group. The structure of the compounds synthesized has been confirmed by their spectral parameters. In particular, the IR-spectra contain strong absorption bands C=O at 1703-1703 cm\(^{-1}\), and \(^1^H\) NMR-spectra of the compounds obtained are characterized by two protons multiple shifts of the H3 pyrrolidine ring at 2.52-2.64 and 3.08-3.22 ppm, respectively, \(^1^H\) proton multiple shifts at 3.61-3.76 ppm and \(^1^H\) at 4.99-5.09 ppm. Formation of the pyrrolidine ring as a result of cyclization has been reliably proven by \(^1^C\) NMR-spectra with the typical signals of carbon atoms: C1 (37 ppm), C4 (48 ppm), C6 (69 ppm) and C2 (177 ppm).

СИНТЕЗ 1,5-ДІАРИЛ-4-АРИЛТІОПІРРОЛІДІН-2-ОНІВ РЕАКЦІЄЮ АРИЛСУЛЬФЕНИЛЮВАННЯ Н-АРИЛАМИДІВ СТИРИЛОЦТОВОЇ КИСЛОТИ

Н.М.Цизорик, І.Ю.Данилюк, А.І.Васькевич, Р.І.Васькевич, М.В.Вовк

Ключові слова: аміди стирилуксусної кислоти; електрофільна внутримолекулярна циклізація; арілсульфенілхлориди; пірролідин-2-они

Підкреслена роль реакції електрофільної внутрішньомолекулярної циклізації (ЕВЦ) амідів ненасичених карбонових кислот для побудови сульфаніловмісних лактамних та лактонних структур. З метою виявлення впливу стирильного фрагменту на регіоселективність процесу електрофільної внутрішньомолекулярної циклізації досліджено ряд анілідів стирилоуксусних кислот з донорними замісниками в пара-положенні арильного стирильного фрагмента на регіоселективність процесу електрофільної внутрішньомолекулярної циклізації. Зокрема, в ІЧ-спектрах присутні інтенсивні смуги поглинання груп С=О при 1703-1703 см\(^{-1}\), а також в спектрах ЯМР відносяться мультиплетом протонів Н3 пірролідинового цикла відповідно при 2.52-2.64 та 3.08-3.22 м.д., а також мультиплетами протонів Н4 при 3.61-3.76 м.д. та Н5 при 4.99-5.09 м.д. Формування в результаті циклізації пірролідинового ядра надійно доведено спектрами ЯМР 13С зі спектральними сигналиами атомів вуглецю: С1 (37 м.д.), С4 (48 м.д.), С6 (69 м.д.) та С2 (177 м.д.).

СИНТЕЗ 1,5-ДІАРИЛ-4-АРИЛГІПРОЛІДІН-2-ОНІВ РЕАКЦІЄЮ АРИЛСУЛЬФЕНИЛЮВАННЯ Н-АРИЛАМИДІВ СТИРИЛОЦТОВОЇ КИСЛОТИ

Н.М.Цизорик, І.Ю.Данилюк, А.І.Васькевич, Р.І.Васькевич, М.В.Вовк

Ключові слова: аміди стирилуксусної кислоти; електрофільна внутримолекулярна циклізація; арілсульфенілхлориди; пірролідин-2-они

Підкреслена роль реакції електрофільної внутрішньомолекулярної циклізації (ЕВЦ) амідів ненасичених карбонових кислот для побудови сульфаніловмісних лактамних та лактонних структур. З метою виявлення впливу стирильного фрагменту на регіоселективність процесу електрофільної внутрішньомолекулярної циклізації досліджено ряд анілідів стирилоуксусних кислот з донорними замісниками в пара-положенні арильного стирильного фрагмента на регіоселективність процесу електрофільної внутрішньомолекулярної циклізації. Зокрема, в Іч-спектрах присутні інтенсивні полоси поглинання груп С=О при 1703-1703 см\(^{-1}\), а також в спектрах ЯМР відносяться мультиплетом протонів Н3 пірролідинового цикла відповідно при 2.52-2.64 та 3.08-3.22 м.д., а також мультиплетами протонів Н4 при 3.61-3.76 м.д. та Н5 при 4.99-5.09 м.д. Формування в результаті циклізації пірролідинового ядра надійно доведено спектрами ЯМР 13С зі спектральними сигналиами атомів вуглецю: С1 (37 м.д.), С4 (48 м.д.), С6 (69 м.д.) та С2 (177 м.д.).
4-Thio-functionalized \( \gamma \)-lactams (pyrrolidine-2-ones) are important building blocks in the synthesis of carbapenems – \( \beta \)-lactam antibiotics with a wide spectrum of action. Obtaining compounds of this type described in literature is based on multistage transformations of methyl aspartate [1] or dimethyl 3-hydroxyglutamate [2]. Taking into consideration the biological and synthetic potential of pyrrolidine-2-one compounds [3-6] the problem of developing effective ways to obtain new derivatives, in particular, suitable to various modifications of arylsulfanyl groups is urgent today. The results of our previous studies indicate that the electrophilic intramolecular cyclization of unsaturated carboxylic acids amides using arylsulfenyl chlorides is a convenient method for designing arylthio-containing lactam and lactone compounds [7-9]. It seemed quite reasonable to study the effect of electron-donating groups in the amide moiety shows the possibility of formation of benzazepin-2-one, lactam and lactone compounds [7-9]. The electronic nature in the amide moiety indicates regioselectivity of the electrophilic intramolecular cyclization of unsaturated carboxylic acid amides using arylsulfenyl chlorides favours the nitrogen atom in the amide moiety as a result of cyclization has been reliably confirmed by \( ^{13} \)C NMR-spectra with the typical signals of carbon atoms: \( C_1 \) (37 ppm), \( C_1 \) (48 ppm), \( C_2 \) (69 ppm), \( C_2 \) (172 ppm).

**Experimental Part**

IR-spectra were recorded on a Vertex 70 spectrophotometer in KBr tablets. \( ^1 \)H and \( ^{13} \)C NMR-spectra were registered on a Varian VXR-400 spectrometer (399.97 and 125.74 MHz, respectively); TMC was used as an internal standard. HPLC-MS measurements were performed on an Agilent 1100\( \text{DAD}\text{HSD}\text{VLG}\) 119562 instrument.

The general method for the synthesis of 1,5-diaryl-4-aryltiopyrrolidin-2-ones 3a-f. To the mixture of 2 mmol of amide 1a-1d and 2 mmol of lithium perchlorate in 10 mL of nitromethane add dropwise the solution of 2 mmol of arylsulfenyl chloride 2a-2b in 6 mL of nitromethane while stirring at room temperature. Stir the reaction mixture for 10 h and evaporate under vacuum. Crystallize the solid residue from ethanol.

5-(4-Methylphenyl)-1-phenyl-4-(phenylthio)pyrrolidin-2-one 3a. Yield – 64%, oil. \( ^1 \)H NMR-spectrum (CDCl\(_3\)), \( \delta \) ppm.: 2.27 s (3H, CH\(_3\)), 2.54-2.64 m (1H, CH), 3.10-3.21 m (1H, CH), 3.66-3.72 m (1H, CH), 5.04 d (1H, CH\(_2\)/2 Hz), 6.92-7.45 m (14HAr). \( ^{13} \)C NMR-spectrum (CDCl\(_3\)), \( \delta \) ppm.: 21.07 (CH\(_3\)), 37.52 (C\(_1\)), 48.30 (C\(_5\)), 69.82 (C\(_3\)), 122.13, 125.22, 125.71, 128.17, 128.78, 129.35, 129.85, 132.95, 133.16, 136.15, 138.07, 138.18 (C\(_{aryl}\)), 172.36 (C\(_1\)), 359.5. Mass spectrum: \( m/2 \) 360.0 [M+1]+. Found, %: C 76.88; H 5.85; N 3.93. \( C_{23}H_{21}NOS \). Calculated, %: C 76.84; H 5.89; N 3.90. M 359.5.

5-(4-Methylphenyl)-4-[(4-methylphenyl)thio]-1-phenylpyrrolidin-2-one 3b. Yield – 60%. M.p.

\[
\text{Scheme}
\]

\begin{equation}
1: \text{Ar} = \text{Ph}, \text{R} = 4-\text{Me} (a), 4-\text{i-Pr} (b), 4-\text{tert-Bu} (c), \text{Ar} = 4-\text{MeC}_6\text{H}_4, \text{R} = 4-\text{tert-Bu} (d); 2: \text{Ar} = \text{Ph} (a), 4-\text{MeC}_6\text{H}_4 (b); \text{R} = 4-\text{i-Pr}, \text{Ar} = \text{Ph}, \text{Ar}' = \text{Ph} (c), 4-\text{MeC}_6\text{H}_4 (d); \text{R} = 4-\text{tert-Bu}, \text{Ar} = \text{Ph}, \text{Ar}' = \text{Ph} (e), 4-\text{MeC}_6\text{H}_4 (f).
\end{equation}
5-(4-(tert-Butylphenyl)-1-(4-methylphenyl)-4-(phenylthio)pyrrolidin-2-one 3f. Yield – 62%. M.p. – 149-150°C. IR-spectrum, ν, cm⁻¹: 1704 (C=O). ¹H NMR-spectrum (CDCl₃), δ, ppm.: 1.25 s (9H, 3CH₃), 2.34 s (3H, CH₃), 2.53-2.62 m (1H, CH), 3.09-3.20 m (1H, CH), 3.61-3.68 m (1H, CH), 5.03-5.07 m (1H, CH), 6.92-7.41 m (13Hₕ). ¹³C NMR-spectrum (CDCl₃), δ, ppm.: 21.15 (CH₃), 31.27 (CH₃-tert-Bu), 34.55 (C₇(tert-Bu)), 37.39 (C₇), 48.52 (C₇), 69.69 (C₇), 122.03, 125.38, 126.01, 128.89, 133.25, 136.38, 138.31, 146.92 (C₆). Mass spectrum: m/z 416.2 [M⁺₁]. Found, %: C 78.08; H 7.00; N 3.34. C₂₇H₂₉NOS. Calculated, %: C 78.03; H 7.03; N 3.37. M 415.5.

Conclusions

The effective method for the synthesis of 1,5-diarylylpyrrolidin-2-ones based on the arylsulfenylalkylation reaction of N-aryl amides of styryl acetic acids containing electron-donating substituents in the aryl ring of the styryl moiety has been developed.

References

1. Seki M., Yamanaka T., Kondo K. J. Org. Chem., 2000, Vol. 65, pp.517-522.
2. Kobayashi S., Kobayashi K., Hiroi K. Synlett, 1999, pp.909-912.
3. Joie C., Deckers K., Enders P. Synthesis, 2014, Vol. 46, pp.799-808.
4. Pelletier S. M.-C., Ray P. C., Dixon D. J. Org. Let., 2009, Vol. 11, pp.4512-4515.
5. Anderson J. C., Horsfall L. R., Kalogirou A. S., Mills M. R., Stepney G. J., Tizzard G. J. J. Org. Chem., 2012, Vol. 77, pp.6186-6198.
6. Heinrich D. M., Flanagan J. U., Jamieson S. M. F., Silva S., Rigoreay L. J., Trinier E., Raynkom T., Turnbull A. P., Penny W. A. Eur. J. Med. Chem. 2013, Vol. 62, pp.729-744.
7. Tszirorik N. M., Vaskevich A. I., Rusanov E. B., Staninets V. I., Vovk M. V. Russ. J. Org. Chem., 2011, Vol. 47, pp.1146-1152.
8. Tszirorik N. M., Vaskevich A. I., Rusanov E. B., Staninets V. I., Vovk M. V. Russ. J. Org. Chem., 2012, Vol. 48, pp.193-201.
9. Tszirorik N. M., Vaskevich A. I., Rusanov E. B., Rozenko A. B., Vovk M. V. Russ. J. Org. Chem., 2014, Vol. 50, pp.1397-1408.
10. Tszirorik N. M., Vaskevich A. I., Staninets V. I., Rusanov E. B., Vovk M. V. Russ. J. Org. Chem., 2012, Vol. 48, pp.1536-1543.
11. Zefirov N. S., Smith V. A., Rodrik I. V., Krimmer M. Z. Doklady Akademii Nauk SSSR, 1978, Vol. 240, pp.858-860.
12. Krimmer M. Z., Shumshurin A. A. Doklady Akademii Nauk SSSR, 1973, Vol. 209, pp.866-866.
13. Tszirorik N. M., Vaskevich A. I., Vaskevich R. I., Vovk M. V. Russ. J. Org. Chem., 2015, Vol. 51, p.226.
14. Vaskevich A. I., Tszirorik N. M., Staninets V. I., Rusanov E. B., Vovk M. V. Russ. J. Org. Chem., 2012, Vol. 48, p.1536.