The clp-PR and sam-RM prediction intervals

Let $X(s) = [X^T(s)_1, \ldots, X^T(s)_g]^T$, where $X(s)_i = [x_{ij}, j \in s_i]^T$, and $y(s) = [y^T(s)_1, \ldots, y^T(s)_g]^T$, where $y(s)_i = [y_{ij}, j \in s_i]^T$. Following Prasad & Rao (1990), Datta & Lahiri (2000) showed that $E(\hat{M}_i^{clp} - \eta_i)^2$, the unconditional MSE of \hat{M}_i^{clp} for predicting η_i, can be approximated to second order by

$$\text{MSE}_{PR,i} = g_1i(\theta) + g_2i(\theta) + g_3i(\theta) + o_p(g^{-1}).$$

where

$$g_1i(\theta) = (1 - \gamma_i)\sigma_a^2,$$

$$g_2i(\theta) = (\bar{x}_i - \gamma_i\bar{x}_{i(s)})^T (X^T(s)_i V^{-1}(s)_i X(s)_i)^{-1} (\bar{x}_i - \gamma_i\bar{x}_{i(s)})$$

$$g_3i(\theta) = (1 - \gamma_i)^2\gamma_i\sigma_e^4\sigma_a^{-2}M(\theta),$$

with $M(\theta) = \sigma_a^4 \text{Var}(\hat{\sigma}_a^2) + \sigma_e^4 \text{Var}(\hat{\sigma}_e^2) - 2\sigma_a^2\sigma_e^2 \text{Cov}(\hat{\sigma}_a^2, \hat{\sigma}_e^2)$. The asymptotic variances and covariance of the REML estimators $\hat{\sigma}_a^2$ and $\hat{\sigma}_e^2$ needed in $M(\theta)$ (i.e. under fixed or bounded small area size
asymptotics) are given by

\[
\text{Var}(\hat{\sigma}_a^2) = \frac{2}{a} \sum_{i=1}^{g} \left\{ \frac{s_i - 1}{\sigma_e^4 + (\sigma_e^2 + s_i \sigma_a^2)^2} \right\},
\]

\[
\text{Var}(\hat{\sigma}_e^2) = \frac{2}{a} \sum_{i=1}^{g} \frac{s_i^2}{(\sigma_e^2 + s_i \sigma_a^2)^2},
\]

\[
\text{Cov}(\hat{\sigma}_a^2, \hat{\sigma}_e^2) = -\frac{2}{a} \sum_{i=1}^{g} \frac{s_i}{(\sigma_e^2 + s_i \sigma_a^2)^2},
\]

where

\[
a = \left\{ \sum_{i=1}^{g} \frac{s_i^2}{(\sigma_e^2 + s_i \sigma_a^2)^2} \right\} \left[\sum_{i=1}^{g} \left\{ \frac{s_i - 1}{\sigma_e^4 + (\sigma_e^2 + s_i \sigma_a^2)^2} \right\} - \sum_{i=1}^{g} \frac{s_i}{(\sigma_e^2 + s_i \sigma_a^2)^2} \right].
\]

Rao & Molina (2015) showed that \(E(\hat{\mathcal{M}}_{i}^{\text{sam}} - \bar{y}_i)^2\), the unconditional MSE of \(\hat{\mathcal{M}}_{i}^{\text{sam}}\) for prediction \(\bar{y}_i\) can be approximated to second order by

\[
\text{MSE}_{\text{RM},i} = k_i^2 \left[g_{1i}(\theta) + \tilde{g}_{2i}(\theta) + g_{3i}(\theta) \right] + (N_i - n_i) \sigma_e^2 / N_i^2,
\]

where \(\tilde{g}_{2i}(\theta)\) is obtained from \(g_{2i}(\theta)\) by replacing \(\bar{x}_i\) with \(\bar{x}_{i(r)}\).

Using the second-order approximations, unbiased estimators of \(\text{MSE}_{\text{PR}}\) (Datta & Lahiri 2000) and of \(\text{MSE}_{\text{RM}}\) (Rao & Molina 2015) are respectively given by

\[
\overline{\text{MSE}}_{\text{PR},i} = g_{1i}(\hat{\theta}) + g_{2i}(\hat{\theta}) + 2g_{3i}(\hat{\theta}).
\]

and

\[
\text{MSE}_{\text{RM},i} = k_i^2 \left[g_{1i}(\hat{\theta}) + \tilde{g}_{2i}(\hat{\theta}) + 2g_{3i}(\hat{\theta}) \right] + (N_i - n_i) \sigma_e^2 / N_i^2.
\]

Based on the above approximations, 100(1 - \epsilon)% prediction intervals for \(\hat{\eta}_i\) and \(\bar{y}_i\) are

\[
[\hat{\mathcal{M}}_{i}^{\text{clp}} - \Phi^{-1}(1 - \epsilon/2)\overline{\text{MSE}}_{\text{PR},i}^{1/2}, \hat{\mathcal{M}}_{i}^{\text{clp}} + \Phi^{-1}(1 - \epsilon/2)\overline{\text{MSE}}_{\text{PR},i}^{1/2}]
\]

\[2\]
and

$$[\hat{M}_i^{\text{sam}} - \Phi^{-1}(1 - \varepsilon/2)\overline{\text{MSE}_{\text{RM},i}}, \hat{M}_i^{\text{sam}} + \Phi^{-1}(1 - \varepsilon/2)\overline{\text{MSE}_{\text{RM},i}}],$$

respectively.

A simulation result for the Chatterjee et al (2008) prediction interval

Table S1: Simulated coverage and length of prediction intervals when \(\alpha_i\) has a mixture distribution and \(e_{ij}\) has a normal distribution with variances \(\hat{\sigma}_\alpha^2 = 64\) and \(\hat{\sigma}_e^2 = 100\), respectively.

Method	sam-LW	clp-LW	clp-PR	clp-Chatterjee			
	Area						
	N_i	n_i	Cvge	Rlen	Cvge	Rlen	
	1	40	20	0.956 0.03	0.948 0.03	0.974 0.23	0.739 1.65
	2	86	43	0.945 0.03	0.931 0.06	0.982 0.26	0.846 2.75
	3	166	42	0.962 0.06	0.966 0.05	0.972 0.15	0.765 2.38
	4	105	26	0.965 0.07	0.956 0.06	0.966 0.12	0.701 1.67
	5	181	45	0.967 0.03	0.966 0.03	0.977 0.13	0.767 2.42
	6	190	48	0.951 0.03	0.954 0.02	0.966 0.13	0.772 2.5
	7	47	20	0.95 0.03	0.947 0.01	0.966 0.17	0.724 1.52
	8	124	31	0.965 0.05	0.954 0.03	0.966 0.1	0.716 1.84
	9	183	46	0.953 0.04	0.954 0.03	0.973 0.14	0.782 2.47
	10	128	32	0.963 0.05	0.957 0.05	0.971 0.13	0.753 1.94
	11	113	28	0.961 0.04	0.956 0.02	0.962 0.09	0.703 1.69
	12	193	48	0.96 0.05	0.953 0.04	0.974 0.15	0.767 2.56
	13	113	28	0.966 0.08	0.963 0.06	0.966 0.13	0.715 1.78
	14	148	37	0.966 0.09	0.964 0.08	0.973 0.17	0.788 2.25
	15	132	33	0.954 0.02	0.948 0.01	0.97 0.08	0.721 1.87
Additional results for the consumer expenditure population

Table S2: Simulated relative design-bias and design RMSEs of the point estimators sam and clp, together with the design-averages of the LW, RM and PR estimators of their RMSEs for the consumer expenditure on fresh milk products in each state in 2002. The states are in the same order as in Table 3. * identifies states in Group 3 and † identifies states in Group 2.

STATE	ARB-sam	ARB-clp	AVE-LW	AVE-RM	AVE-PR	RMSE-sam-T	RMSE-clp-T
16	-0.0167	-0.0332	0.4412	0.3701	0.3763	0.2755	0.2250
50†	-0.0533	-0.1113	0.4486	0.3733	0.3746	0.5242	0.5983
31	0.0450	0.0867	0.4790	0.3858	0.3746	0.2973	0.3749
22†	0.0799	0.1501	0.4840	0.3876	0.3745	0.3085	0.5257
21	0.0261	0.0497	0.4888	0.3895	0.3754	0.2457	0.2650
15	-0.0139	-0.0240	0.4933	0.3910	0.3756	0.2740	0.2237
32†	-0.0768	-0.1400	0.4976	0.3922	0.3750	0.5596	0.7582
37†	0.0847	0.1472	0.5016	0.3932	0.3745	0.3679	0.5272
1	0.0025	0.0041	0.4104	0.3430	0.3618	0.1645	0.1375
45	0.0007	-0.0032	0.4143	0.3457	0.3623	0.3675	0.2918
2 *	-0.0725	-0.1447	0.3886	0.3282	0.3552	0.5809	0.8875
9 *	0.1437	0.2606	0.3788	0.3239	0.3543	0.5889	0.9045
41	-0.0082	-0.0185	0.3728	0.3168	0.3487	0.2795	0.2061
49	0.0020	0.0021	0.3562	0.3064	0.3454	0.2485	0.2101
18	0.0210	0.0403	0.3463	0.2993	0.3413	0.3341	0.2771
27 *	-0.0566	-0.1176	0.3395	0.2944	0.3379	0.5262	0.7639
8†	-0.0333	-0.0663	0.3268	0.2854	0.3323	0.4196	0.4474
13	0.0072	0.0114	0.3102	0.2733	0.3237	0.2245	0.1691
24†	0.0520	0.1032	0.3053	0.2705	0.3237	0.3205	0.4699
29	0.0145	0.0307	0.2990	0.2653	0.3191	0.1706	0.1718
53	-0.0090	-0.0213	0.2945	0.2622	0.3176	0.1861	0.1671
55	0.0647	0.0868	0.4673	0.3542	0.3526	0.3316	0.3692
51	-0.0024	-0.0033	0.4692	0.3549	0.3532	0.2490	0.2035
25	-0.0063	-0.0094	0.4519	0.3469	0.3487	0.2044	0.1659
4	-0.0097	-0.0141	0.4468	0.3442	0.3473	0.2772	0.2411
26	0.0318	0.0442	0.4327	0.3371	0.3429	0.2713	0.2599
34	0.0141	0.0187	0.4053	0.3230	0.3340	0.2577	0.2243
17	0.0271	0.0370	0.4057	0.3229	0.3337	0.2180	0.2137
39	0.0113	0.0147	0.3397	0.2868	0.3073	0.2111	0.1869
42	0.0455	0.0572	0.3181	0.2741	0.2969	0.2882	0.2954
36	0.0002	-0.0003	0.3064	0.2668	0.2909	0.2584	0.2304
12	-0.0286	-0.0389	0.3040	0.2653	0.2897	0.2679	0.2762
48	0.0234	0.0305	0.2942	0.2591	0.2840	0.2436	0.2388
6	-0.0184	-0.0254	0.2577	0.2351	0.2618	0.2309	0.2338
Prediction intervals treating the random effects as fixed

To treat the random effects as fixed, we rewrite the model (2.1) and (2.2) as a regression model

\[y_{ij} = z_{ij}^* \chi + e_{ij}, \quad \text{for} \ j = 1, \ldots, N_i, \ i = 1, \ldots, g, \]

where \(z_{ij}^* = [u_i^T, x_i^{(w)}^T, v_i^T]^T \) with \(v_i \) a \(g \)-vector of zeros with a one in position \(i \), and \(\chi = [\xi^T, \beta_z^T, \alpha_1, \ldots, \alpha_g]^T \) with \(\sum_{i=1}^{g} \alpha_i = 0 \). The normal maximum likelihood estimator \(\hat{\chi} \) of \(\chi \) is the (constrained) ordinary least squares estimator which can be computed using \(\text{lm} \) in R with the sum to zero constraint on the \(\alpha_i \). The optimal model-based predictor of \(\bar{y}_i \) is the composite estimator

\[\hat{y}_i^{\text{com-fixed}} = (1 - k_i) \bar{y}_{i(s)} + k_i \bar{z}_i^{*T} \hat{\chi}, \]

where \(\bar{z}_i^{*(r)} = [u_i^T, \bar{x}_i^{(w)(r)}^T, v_i^T]^T \) and an approximate 100(1 - \(\epsilon \))% prediction interval for \(\bar{y}_i \) is

\[\left[\bar{y}_i^{\text{com-fixed}} - \Phi^{-1}(1 - \epsilon / 2) k_i \left\{ \frac{\hat{\sigma}_e^2}{N_i - n_i} + \bar{z}_i^{*(r)} \hat{V}_\chi \bar{z}_i^{*} \right\}^{1/2}, \bar{y}_i^{\text{com-fixed}} + \Phi^{-1}(1 - \epsilon / 2) k_i \left\{ \frac{\hat{\sigma}_e^2}{N_i - n_i} + \bar{z}_i^{*(r)} \hat{V}_\chi \bar{z}_i^{*} \right\}^{1/2} \right], \]

where \(\hat{\sigma}_e^2 \) estimates \(\sigma_e^2 \), and \(\hat{V}_\chi \) estimates the variance of \(\hat{\chi} \). Similarly, a synthetic estimator of \(\bar{y}_i \) is

\[\bar{y}_i^{\text{syn-fixed}} = \bar{z}_i^* \chi, \]

where \(\bar{z}_i^* = [u_i^T, x_i^{(w)}^T, v_i^T]^T \), and a second approximate 100(1 - \(\epsilon \))% prediction interval for \(\bar{y}_i \) is

\[\left[\bar{y}_i^{\text{syn-fixed}} - \Phi^{-1}(1 - \epsilon / 2) (\bar{z}_i^* \hat{V}_\chi \bar{z}_i^*)^{1/2}, \bar{y}_i^{\text{syn-fixed}} + \Phi^{-1}(1 - \epsilon / 2) (\bar{z}_i^* \hat{V}_\chi \bar{z}_i^*)^{1/2} \right]. \]
Design-based simulation

Tables S3 and S4 show the empirical design-coverage and the design-average relative length of the intervals for the settings with variances $\sigma_a^2 = 4$ and $\sigma_e^2 = 100$ when e_{ij} has a normal distribution and α_i has either a normal distribution or a mixture distribution; settings with non-normal e_{ij} are included in the supplementary material. The areas are again presented and labeled in order of increasing size. The Monte Carlo standard errors for the design-coverage probabilities are approximately less than 0.01.

In all settings, the model holds and the within area variances are constant. Nonetheless, when σ_e^2/σ_a^2 is large (as in Tables S3 and S4), the kind of results we saw in Table 3 occur. In Table S3, there are 5 Group 3 areas, numbers 6 ($\hat{\alpha}/\hat{\sigma}_a = -1.278$, $n_6 = 20$), 7 ($\hat{\alpha}/\hat{\sigma}_a = -1.115$, $n_7 = 27$), 21 ($\hat{\alpha}_{21}/\hat{\sigma}_a = -1.359$, $n_{21} = 41$), 24 ($\hat{\alpha}_{24}/\hat{\sigma}_a = 0.991$, $n_{24} = 46$) and 28 ($\hat{\alpha}_{28}/\hat{\sigma}_a = 1.195$, $n_{28} = 52$), and 6 Group 2 areas, numbers 2 ($\hat{\alpha}/\hat{\sigma}_a = -0.290$, $n_2 = 5$), 4 ($\hat{\alpha}/\hat{\sigma}_a = 0.860$, $n_4 = 17$), 10 ($\hat{\alpha}/\hat{\sigma}_a = 0.948$, $n_{10} = 32$), 15 ($\hat{\alpha}/\hat{\sigma}_a = 0.797$, $n_{15} = 36$), 22 ($\hat{\alpha}_{22}/\hat{\sigma}_a = -0.837$, $n_{22} = 42$) and 25 ($\hat{\alpha}_{25}/\hat{\sigma}_a = 0.810$, $n_{25} = 48$). In Table S4, there are 4 Group 3 areas, numbers 11 ($\hat{\alpha}/\hat{\sigma}_a = 1.073$, $n_{11} = 31$), 16 ($\hat{\alpha}_{16}/\hat{\sigma}_a = -0.807$, $n_{16} = 34$), 25 ($\hat{\alpha}_{25}/\hat{\sigma}_a = -1.941$, $n_{25} = 44$) and 28 ($\hat{\alpha}_{28}/\hat{\sigma}_a = 1.257$, $n_{28} = 53$), and 2 Group 2 areas, numbers 2 ($\hat{\alpha}/\hat{\sigma}_a = -0.613$, $n_2 = 7$) and 10 ($\hat{\alpha}/\hat{\sigma}_a = 0.789$, $n_{10} = 31$). On the other hand, when σ_e^2/σ_a^2 is not large, there are no Group 2 or 3 areas. Overall, we see that when σ_e^2/σ_a^2 is large, areas with extreme EBLUPs and small to moderate sample sizes are more difficult than other areas to estimate well in the design-based framework.
Table S3: Simulated design-coverage and design-average length of confidence intervals when α_i and e_{ij} have normal distributions with variances $\sigma^2_{\alpha} = 4$ and $\sigma^2_e = 100$, respectively. * identifies states in Group 3 and † identifies states in Group 2.

Method	N_i	n_i	α_i/σ^2_α	Direct Estimator	sam-LW	sam-RM	clp-LW	clp-PR	
				Cvge	Alen	Cvge	Alen	Cvge	Alen
Area									
1	123	4	0.079	0.999	7.418	1.000	4.915	0.998	2.243
2†	147	5	-0.290	0.994	7.151	1.000	4.393	0.941	2.162
3	114	7	0.079	1.000	5.468	1.000	3.660	0.997	2.090
4†	40	17	0.860	0.994	2.322	0.964	1.838	0.898	1.554
5	49	17	-0.073	1.000	3.166	0.997	1.959	0.989	1.610
6†	46	20	-1.278	0.981	2.192	0.916	1.680	0.821	1.450
7†	54	27	-1.115	0.995	2.121	0.937	1.360	0.903	1.227
8	57	28	0.637	0.987	1.479	0.976	1.297	0.985	1.347
9	107	32	-0.193	1.000	2.144	0.987	1.497	0.976	1.479
10†	108	32	0.948	0.998	2.272	0.966	1.482	0.919	1.298
11	111	33	-0.426	1.000	2.223	0.982	1.433	0.985	1.365
12	115	34	-0.013	1.000	2.202	0.994	1.439	0.977	1.269
13	112	34	0.304	0.998	2.170	0.974	1.430	0.950	1.264
14	113	34	-0.229	1.000	2.223	0.982	1.433	0.994	1.433
15†	120	36	0.797	0.998	2.094	0.955	1.394	0.923	1.239
16	122	37	0.015	1.000	2.061	0.992	1.371	0.984	1.222
17	74	37	0.060	0.999	1.812	0.970	1.162	0.953	1.073
18	128	38	-0.402	0.998	1.994	0.984	1.360	0.967	1.213
19	81	40	-0.174	1.000	1.555	0.995	1.124	0.988	1.042
20	136	41	-0.096	1.000	1.892	0.981	1.305	0.968	1.174
21†	82	41	-1.359	0.998	1.667	0.920	1.104	0.893	1.026
22†	141	42	-0.837	1.000	2.299	0.957	1.292	0.933	1.165
23	153	46	-0.379	1.000	1.958	0.979	1.232	0.966	1.121
24†	152	46	0.991	0.999	2.000	0.942	1.231	0.894	1.119
25†	97	48	0.810	0.999	1.579	0.962	1.025	0.949	0.962
26	171	51	0.156	0.999	1.819	0.984	1.172	0.974	1.075
27	172	52	-0.453	1.000	1.720	0.980	1.158	0.967	1.064
28†	174	52	1.195	0.996	1.899	0.931	1.161	0.898	1.066
29	183	55	-0.208	0.998	1.827	0.980	1.127	0.965	1.041
30	185	56	0.392	1.000	1.796	0.974	1.115	0.964	1.033
Corn data

We examine the corn data presented in Battese et al (1988). This data set comprises 37 observations on the area of corn (hectares) per segment spread across 12 counties, as shown in Table S5. The objective was to predict the average area of corn (HECTARECORN) per segment in these counties. Satellite data on the number of pixels representing corn (PIXELCORN) and the number of pixels representing soybeans (PIXELSOYBEAN) in each segment were used as auxiliary variables. Additionally, we had access to the area population means for the number of pixels corresponding to corn and soybeans in each county.

We pre-processed the auxiliary variables by centering them around their respective population means, distinguishing these new variables by appending `cent` to the variable names. Further, we incorporated the population means, distinguished by appending `avg` to the variable names, as variables distinguishing between counties. This provided us with $p_b = 2$ between county variables and $p_w = 2$ within county variables.

We then fitted the model (0.1)

$$
\text{HECTARECORN}_{ij} = \beta_0 + \beta_1 \text{PIXELCORN}avg_i + \beta_2 \text{PIXELSOY}avg_i + \beta_3 \text{PIXELCORN}cent_{ij} + \beta_4 \text{PIXELSOY}cent_{ij} + \alpha_i + e_{ij}.
$$

We used the `lmer` function to estimate the parameters in the model and calculated 3 point estimates, the county sample mean, small area mean (sam) estimator and conditional linear predictor (clp), as well as the design-based variance of the sample mean (DE), the mean squared error of our proposed approximation (LW), the Prasad-Rao (PR) and Rao-Molina (RM) mean squared error estimates. The results are presented in in Table S5.

We see in Table S5, that the sam and clp predictors are very similar. The LW estimator of the MSE
proposed in this study is larger than both the RM and PR estimators when the sample size is very small, specifically in the range from 1 to 4. Nevertheless, the difference between the proposed LW estimator and both RM and PR estimators tends to decrease with increasing sample size. Notably, when the sample size reaches 6, the proposed LW estimator is smaller than both the RM and PR estimators. There is no simple pattern in the relationship between the sample mean and the sam/clp predictors or between the variance of the direct estimator, DE, and the other MSE estimators.
Table S4: Simulated design-coverage and design-average length of confidence intervals when α_i has a mixture distribution and e_{ij} has a normal distribution with variances $\hat{\sigma}_\alpha^2 = 4$ and $\hat{\sigma}_e^2 = 100$, respectively. * identifies states in Group 3 and † identifies states in Group 2.

Method	N_i	n_i	$\alpha_i/\hat{\sigma}_\alpha^2$	sam-LW	sam-RM	clp-LW	clp-PR
				Cvge	Alen	Cvge	Alen
Baseline	1	146	0.117	0.998	6.302	1.000	4.867
	2†	113	-0.613	0.967	5.017	0.998	3.613
	3	77	0.098	1.000	4.783	0.997	1.863
	4	40	-0.010	1.000	3.251	0.994	1.911
	5	47	-0.035	1.000	2.748	0.994	1.504
	6	42	0.367	1.000	3.438	0.990	1.542
	7	49	-0.245	1.000	3.372	0.995	1.507
	8	60	0.506	1.000	2.257	0.981	1.274
	9	104	-0.004	1.000	2.123	0.996	1.485
	10†	103	0.789	0.999	2.355	0.961	1.236
	11†	102	1.073	0.996	2.056	0.933	1.235
	12	109	0.084	1.000	2.220	0.991	1.435
	13	112	-0.115	1.000	2.261	0.999	1.413
	14	114	0.006	1.000	2.105	0.995	1.418
	15	113	-0.031	0.999	2.314	0.996	1.415
	16†	114	-0.807	1.000	2.452	0.929	1.418
	17	74	0.143	1.000	1.512	0.997	1.417
	18	75	-0.375	0.999	1.869	0.960	1.417
	19	125	-0.197	0.998	2.068	0.980	1.616
	20	127	-0.049	0.999	1.945	0.992	1.340
	21	134	-0.299	1.000	2.169	0.981	1.307
	22	82	0.487	0.998	1.752	0.969	1.090
	23	86	0.171	0.999	1.667	0.965	1.064
	24	147	-0.265	0.997	1.831	0.987	1.246
	25†	148	-1.941	0.961	1.962	0.704	1.247
	26	88	0.267	1.000	1.609	0.977	1.052
	27	91	0.019	1.000	1.631	0.994	1.023
	28†	176	1.257	0.998	1.772	0.924	1.133
	29	181	-0.127	0.999	1.930	0.984	1.125
	30	200	0.063	0.991	1.604	0.987	1.066

Table S5: Small area estimation for reported hectares of corn in 12 Iowa Counties

County	Area size	sample size	sample mean	DE	sam-LW	sam-RM	clp-LW	clp-PR
Cerro Gordo	545	1	0.199	165.760	—	104.929	100.367	105.800
Hamilton	566	1	-0.159	96.320	—	144.880	100.512	100.716
Worth	395	1	-0.147	76.080	—	120.919	95.523	93.796
Humboldt	424	2	0.329	150.875	1180.862	100.694	100.456	105.204
Franklin	564	3	0.212	158.623	10.786	137.060	100.514	77.220
Pocahontas	570	3	-0.086	102.523	624.721	111.231	101.547	78.461
Winnebago	402	3	-0.042	112.773	308.713	116.989	101.322	77.190
Wright	567	3	0.242	144.297	966.822	119.754	101.544	78.962
Webster	687	4	0.075	117.595	112.743	111.870	101.836	76.117
Hancock	569	5	-0.205	109.382	48.621	121.837	101.947	59.873
Kossuth	965	5	-0.033	110.252	29.218	112.278	60.933	58.861
Hardin	556	6	-0.251	114.810	205.886	127.496	50.491	54.477

RM is intended to be used with sam; PR is intended to be used with clp.