1. Introduction

Panax ginseng Meyer (Araliaceae), is one of the most well-known Chinese herbal medicines, and was formerly a wild plant that is now grown in the northeastern region of China. Generally, *P. ginseng* is primarily cultivated artificially in China; in addition, it is also cultivated in Korea and Japan [1]. Ginseng black spot resulting from *Alternaria panax* Whetlz is a common soil-borne disease, with an annual incidence rate higher than 20–30%. In this study, the bacterial strains with good antagonistic effect against *A. panax* are screened.

Consequently, the effects of biocontrol against ginseng black spot and for growth promotion by *A. panax* are screened. A total of 285 bacterial strains isolated from ginseng rhizosphere soils were screened using the Kirby–Bauer disk diffusion method and the Oxford cup plate assay. We analyzed the antifungal spectrum of *SZ-22* by confronting incubation. To evaluate the efficacy of biocontrol against ginseng black spot and for growth promotion by *SZ-22*, we performed pot experiments in a plastic greenhouse. Taxonomic position of *SZ-22* was identified using morphology, physiological, and biochemical characteristics, 16S ribosomal DNA, and *gyrB* sequences.

Results: *SZ-22* (which was identified as *Brevundimonas terrae*) showed the strongest inhibition rate against *A. panax*, which showed 83.70% inhibition, and it also provided broad-spectrum antifungal effects. The inhibitions of the *SZ-22* bacterial suspension against ginseng black spot reached 82.47% inhibition, which is significantly higher than that of the 25% suspension concentrate azoxystrobin fungicide treatment (\(p < 0.05 \)). Moreover, the *SZ-22* bacterial suspension also caused ginseng plant growth promotion as well as root enhancement.

Conclusion: Although the results of the outdoor pot-culture method were influenced by the pathogen inoculum density, the cropping history of the field site, and the weather conditions, *B. terrae* *SZ-22* controlled ginseng black spot and promoted ginseng growth successfully. This study provides resource for the biocontrol of ginseng black spot.

© 2017 The Korean Society of Ginseng. Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Dothiorella gregaria, lattice) [20]. Preliminary and secondary screening was performed as previously described, with several modifications [19]. Joy and Parke [10] reported the biocontrol potential of Burkholderia cepacia AMMD against Alternaria leaf blight. Thus, biocontrol of ginseng pathogens is an alternative means of reducing the incidence and severity of diseases with no or few negative impacts on the environment compared to chemical controls with fungicides. Screening of highly efficient antagonistic strains is a prerequisite for studies on plant disease protection [11]. Accordingly, it is important to identify microorganisms with the potential for biocontrol.

Previous studies have shown that the rhizosphere acts as an important bridge between plants and soil for the exchange of substances through plant roots and for establishing mutual relationships [12]. The bacteria in rhizospheric soil are responsible for many important ecological functions, such as pest control, and induce disease resistance [13,14]. Using rhizospheric soil bacteria for plant disease control and treatment has been a good strategy toward the efficient biocontrol of plant diseases [15–17]. In the present study, we isolated strain SZ-22 from ginseng rhizosphere soil, which exhibited strong antifungal effects, and we examined its ability to prevent diseases and promote ginseng growth. In addition, we determined the taxonomic status of this strain based on morphological, physiological, and biochemical characteristics.

2. Materials and methods

2.1. Microorganisms

Ginseng rhizosphere soil was collected from the Ginseng Standardized Cultivation Base in Fusong County, Jilin Province, China (Y:42°32’N,127°08’E,537 m). A total of 285 bacteria isolates were isolated from the soil samples and stored at −80 °C until further use. The bacteria were cultured using nutrient agar medium and beef extract—peptone—yeast extract fermentation liquor [18,19]. All the pathogens (A. panax, Phytophthora capsici, Botrytis cinerea, Bipolaris maydis, Fusarium oxysporum, F. bulbigenum, F. graminearum, Dothiorrella gregaria, Alternaria brassicace, Magnaporthe grisea, Rhizoctonia cerealis, B. sorokiniana, Sclerotinia sclerotiorum, and R. solani) used in the present study were maintained on potato dextrose agar medium [18,19].

2.2. Bacterial suspension preparation

Bacterial suspension preparation was performed as previously described with several modifications [19]. Briefly, the bacteria were inoculated into sterilized beef extract—peptone—yeast extract fermentation liquor and shaken at 190 rev/min for 24 h at 32 °C. The resulting fermentation liquor was subsequently subjected to centrifugation (5,000 rev/min, 4 °C) for 30 min. The supernatant was discarded, and the remainder bacteria were washed three times with sterilized deionized water; then, the bacteria were adjusted to 10^8 CFU/mL for subsequent use. Microscopic counting was used to determine the content of the bacterial suspension using a blood count board (25 medium-sized lattice × 16 pint-sized lattice) [20].

2.3. Screening for bacterial antagonistic activity

Preliminary and secondary screening was performed as previously described [19], and A. panax was used as the indicator. The Kirby–Bauer disk diffusion method [21] was used for preliminary screening. Colonies with the best fungistatic effect were selected for secondary screening. The Oxford cup plate assay [18] was used for secondary screening. Then the bacteriostasis rate of the antagonistic strains was calculated. All the pathogens were used for secondary screening using confronting incubation [22].

2.4. Biocontrol and growth promotion by antifungal strains in the plastic greenhouse

Biocontrol and growth promotion were performed as previously described, with several modifications [19]. According to Hessenschuh and Zeller [23], forest soil (from the location in Fusong, China) that infested the pathogenic fungus A. panax was used to evaluate the biocontrol potential of the antifungal strains. The soil matrix was a blending matrix with the ratio of V (infested forest soil)/V (vermiculite) = 2:1. Polypropylene pots [24 cm (diameter) × 16 cm (height)] were filled with 2,500 g of soil matrix. The 2-yr-old ginseng seedlings with developed roots and similar growth were selected and planted, and their roots were disinfected (sodium hypochlorite was used to clean the surface, and the plants were dipped into the water at 50 °C for 5 min). Prior to planting, the ginseng roots were dipped in bacterial suspensions (10^8 CFU/mL) for 25–30 min, and the fungus control or nontreated control ginseng roots were dipped in tap water. A total of three ginseng seedlings were planted into pot, respectively. Ten replicates of each treatment were performed in a completely randomized block design. All treatment combinations were repeated three times.

To evaluate the biocontrol potential of the antifungal strains, the root–cut inoculation was used in the pathogenicity assays [19]. 150 mL of A. panax spore suspension (5 × 10^6 spores/mL) was poured into the soil, and 50 mL of antifungal bacterial suspension, 25% suspension concentrate azoxytribon, and water were also simultaneously poured into each pot, respectively. Treatments with antifungal bacterial suspensions were conducted for five groups, as follows: 100% [volume/volume (v/v)] concentration (10^8 CFU/mL), 80% (v/v) concentration, 60% (v/v) concentration, 50% (v/v) concentration, and 40% (v/v) concentration. For the drug control, 0.25 mg/L of 25% suspension concentrate azoxytribon was used, and for the nontreated control, water was used. The experiments were conducted under plastic greenhouse conditions (approximately 16 h of sunlight at 14–25 °C on average, over a 10–wk period). Ten weeks after inoculation, the disease index and control effect were calculated [24]: The morbidity degree of ginseng black spot can be divided into nine levels according to Wang et al. [4], where 0 = no disease, 1 = disease spot area is less than 5% of the total leaves, 3 = disease spot area is 6–10% of the total leaves, 5 = disease spot area is 11–20% of the total leaves, 7 = disease spot area is 21–50% of the total leaves, 9 = disease spot area is more than 50% of the total area.

To evaluate the influence of the treatment on yield, nine ginseng seedlings were randomly selected after 10 wk; then, the ginseng plant height, whole plant fresh weight, whole plant dry weight, root length, root fresh weight, and root dry mass were measured and recorded.

2.5. Characterization of bacterial strains

Morphological identification, as well as physiological and biochemical characteristics determination [25] were performed in accordance with Bergey’s Manual of Determinative Bacteriology. The 16S ribosomal DNA (rDNA) sequence was amplified using polymerase chain reaction (PCR) [26,27]. The bacterial PCR amplification universal primers [28] 16 S1F: 5′-AGAGTTTGATCTCGGCTACG-3′ and 16S1R: 5′-TACGCTACCTGTTACC-3′ were used. The PCR amplification reaction system and PCR amplification conditions were performed as previously described [19]. The PCR product was purified, sequenced, and submitted to GenBank.
Table 1 Antifungal activity of Selected bacterial Strains against Alternaria panax

Strain	Inhibition rate (%)	Inhibition zone (mm)
SZ-2	72.73 ± 1.81	10.06 ± 0.37
SZ-8	71.33 ± 1.11	7.37 ± 0.21
SZ-14	46.17 ± 1.76	4.43 ± 0.15
SZ-17	50.20 ± 1.06	4.37 ± 0.12
SZ-20	66.93 ± 0.32	5.03 ± 0.32
SZ-22	83.70 ± 0.92	14.30 ± 0.36
SZ-23	57.65 ± 2.27	3.85 ± 0.06
SZ-39	43.03 ± 2.00	2.10 ± 0.10
SZ-51	41.17 ± 0.76	1.73 ± 0.15
SZ-56	65.40 ± 0.70	6.13 ± 0.21
SZ-72	40.33 ± 1.65	1.53 ± 0.06
SZ-76	53.33 ± 0.91	5.33 ± 0.06
SZ-81	55.70 ± 0.60	7.63 ± 0.15

Data in the table are presented as the means ± standard deviation. Different letters in the same column indicate the results of Duncan’s new multiple range test (p < 0.05).

1) The mean values for the inhibition rate represent preliminary screening measured using the Kirby–Bauer disk diffusion method.
2) The mean values for the inhibition zone represent secondary screening measured using the Oxford cup plate assay.

Table 2 Inhibition effect of SZ-2 and SZ-22 against fungal pathogens

Plant pathogen	SZ-2	SZ-22
Alternaria panax	72.73	83.70
Fusarium graminearum	54.10	74.30
Bipolaris maydis	29.77	66.47
Fusarium oxysporum	78.37	59.30
Bipolaris sorokiniana	33.10	53.97
Botrytis cinerea	66.60	50.90
Rhizoctonia solani	46.00	40.06
Alternaria brassica	—	43.43
Sclerotinia sclerotiorum	—	43.33
Fusarium bulbigenum	33.70	38.23
Rhizoctonia cerealis	43.79	33.20
Phytophthora capsici	—	30.10
Magnaporthe grisea	41.47	60.60
Dothiorella gregaria	53.80	60.92

Different letters in the same column by Duncan’s new multiple range test (p < 0.05). The experiment was repeated at least once with three replications/treatment producing similar results and a total of six types of pathogenic fungi, with 83.70% inhibition for A. panax, and less than 50.90–74.30% inhibition for F. graminearum, B. maydis, and a total of five types of pathogenic fungi (Table 2).

3.3. Control efficiency of strains SZ-2 and SZ-22 against ginseng black spot

In soil that was artificially inoculated with A. panax, treating with antifungal strains SZ-2 and SZ-22 resulted in a reduced number of wilted and necrotized plants (Fig. 1). Ten weeks after treatment, at the highest concentration tested, i.e., 100% (v/v), 10^6 CFU/mL), the bacterial suspensions of strains SZ-2 and SZ-22 significantly reduced ginseng black spot caused by A. panax, and the average reduction of ginseng black spot were 69.64% and 82.47% compared with the nontreated control, respectively. The bacterial suspension of SZ-22 at a 60% (v/v) concentration had adequate biocontrol activity (p < 0.05) compared with 25% suspension concentrate azoxystrobin. In addition, the bacterial suspensions of SZ-2 and SZ-22 could weakly control ginseng black spot at 40% or 50% (v/v) concentrations (Figs. 2, 3).

3.4. Influence of strain on ginseng seedling growth

In the pot experiments, strains SZ-2 and SZ-22 all showed growth-promoting effects (Table 3). Among these strains, the growth promotion effect of SZ-22 was the most significant, and the ginseng whole plant fresh weight, whole plant dry weight, root fresh weight, and root dry weight increased by 144.03%, 382.94%, 240.28%, and 144.03%, respectively. The strain SZ-22 promoted the increase in ginseng plant height and root length by 83.05% and 83.05%, respectively, compared with the water control (p < 0.05).

3.5. Morphological, physical, and chemical properties of strains SZ-22

According to the morphological observation results, the SZ-22 colony was irregular and yellow and showed a central uplift, with a moist, transparent surface (Fig. 4A). Under the electron microscope, the cells of strain SZ-22 were ascertained to be rod shaped. The cell size of strain SZ-22 was found to be 0.6–0.7 μm by 2.5–4.1 μm. Strain SZ-22 was identified as a nonspore-forming, gram-negative aerobic bacterium (Fig. 4B).
Table 4, the strain SZ-22 exhibited catalase, oxidase activity, but did not exhibit lipase activity. Nitrate reduction to nitrite was found, but oxidative response was not detected in the oxidative/fermentative test. The Voges–Proskauer was negative. The strain SZ-22 did not utilize citrate, D-xylose, casein, and tyrosine. Amylum, glutin were hydrolyzed by strain SZ-22. The strain SZ-22 utilized L-arabinose, α-D-glucose, and D-mannitol. Strain SZ-22 tolerated well up to 5–7% NaCl in the beef extract peptone medium. According to its morphological, physiological, and biochemical characteristics, strain SZ-22 is similar to Brevundimonas spp.

3.6. Molecular identification

The genomic DNA from SZ-22 was used to amplify 16S rDNA fragments with a length of 1,274 bp, and the products were submitted to GenBank (registration number: KC511111) and BLAST for comparison. Strain SZ-22 showed the highest homology with Brevundimonas sp. X60 (registration number: KF017644), with 99% sequence homology.

The SZ-22 genomic DNA was used to amplify the gyrB gene fragment, and the resulting PCR band of 1,124 bp was consistent with the gyrB gene of Brevundimonas spp. The sequencing results of SZ-22 and known sequences in GenBank were compared, identifying Brevundimonas sp. (registration number: JQ653053.1) with a gyrB gene sequence homology of 99%. The phylogenetic tree is shown in Fig. 5, and it was obtained using the NJ method. Strain SZ-22 belonged to the same branch as Brevundimonas terrae (registration number: DQ335215.1).

Based on the analysis of morphological, physiological, and biochemical indices, 16S rDNA and gyrB gene sequence alignment results, and the phylogenetic tree analysis, strain SZ-22 is related to B. terrae.

4. Discussion

The bacterial source for plant biocontrol has been isolated from plants and cultivated soil. The rhizosphere structure establishes a closer relationship with the plant root system [6,12,31]. The
bacteria in rhizosphere soil exhibit stronger competitiveness and survival abilities when competing for favorable ecological sites. It has been reported that the bacteria in rhizosphere soil can prevent disease and promote production, meeting the screening criteria of biocontrol strains and can be used as biocontrol [32,33]. In the present study, using a systematically flat confrontation method, we screened multiple strains of bacteria from the rhizosphere soil of ginseng plants. Our results showed that SZ-22 has a significant inhibitory effect on Alternaria panax, which caused ginseng black spot.

During the biocontrol of plant diseases, the screening of antagonistic strain and various diseases is still in the research stage. Zhang et al. [34] isolated Bacillus subtilis from NJ-18, and it exhibited broad-spectrum antifungal activity against Blumeria graminis f. sp. tritici and eight other plant pathogenic fungi [34].

Table 3

Treatment	Height (cm)	Plant fresh weight (g)	Plant dry weight (g)	Root fresh weight (g)	Root dry weight (g)	Root length (cm)
SZ-2	34.67 ± 0.32b	9.5 ± 0.37b	3.54 ± 0.35b	3.57 ± 0.34b	1.97 ± 0.02b	18.4 ± 0.2b
SZ-22	38.8 ± 0.75a	17.12 ± 0.8a	6.49 ± 0.47a	9.41 ± 0.25a	3.58 ± 0.05a	26.5 ± 0.17a
CK (water)	21.2 ± 0.56c	7.04 ± 0.09c	1.34 ± 0.02c	2.73 ± 0.04c	0.69 ± 0.02c	11.3 ± 0.2c

Different letters in the same column by Duncan’s new multiple range test (p < 0.05)

Fig. 3. Symptoms of common ginseng black spot on the leaves of ginseng seedlings that developed 10 wk after root irrigation with Alternaria panax (5 × 10⁴ spores/mL). A comparison between ginseng plants obtained from nonbacterized (3, 4) and bacterized ginseng (1, 2) that were treated with bacterial suspensions were attributable to SZ-22 and SZ-2 at a 40% (volume/volume (v/v)) concentration, a 50% (v/v) concentration, a 60% (v/v) concentration, an 80% (v/v) concentration, and a 100% (v/v) concentration, respectively.

Fig. 4. Cultural and morphological characteristics of strain SZ-22, showing (A) yellow irregular-central uplift and (B) rod-shaped bacterial cells of 0.6–0.7 μm (diameter) × ca. 3.2–4.1 μm (length). Bar = 2.0 μm.
Pseudomonads are widely distributed throughout diverse agricultural ecosystems [35], and the broad-spectrum activity of Pseudomonas spp. contributes to their in vitro antifungal activity and in vivo disease control [36]. Lee et al. [37] isolated a new antibiotic called aerugine, which has protective activity against Phytophthora disease and cucumber anthracnose from the culture filtrates of Pseudomonas fluorescens MM-B16. Zeng et al. [38] isolated H-6 endophytic bacteria of Burkholderia endophytic bacteria of Filipendulae, which has protective activity against pepper blight resulting from Phytophthora cactorum. Jang et al. [43] found that B. subtilis and Bacillus amyloliquefaciens can effectively control ginseng root rot resulting from C. destructans (Zins.). Results of the present study showed that SZ-22 bacterial suspension not only has a control effect against ginseng black spot but also has an adequate promoting effect on the growth of ginseng plants, indicating the potential of this bacterium for applications related to the prevention and treatment of ginseng diseases. Through comprehensive morphological, physiological, and biochemical

Table 4

Item Reaction	Item Reaction
Motile +	Gram stain –
Aerobic +	Glutin hydrolys – +
Oxidase test +	Oxidative/fermentative test –
i-ARabinose +	Casein hydrolys test –
i-Xylose –	Decomposition of tyrosine –
2-3-Glucose +	Hydrolyzation of amyium +
Lipase –	Voges-Proskauer –
i-Mannitol +	Growth in 2% NaCl +
Nitrate reduction +	Growth in 5% NaCl +
Catalase +	Growth in 7% NaCl +
Citrate utilization –	Growth in 10% NaCl –

*+, positive (growth or reaction); *−*, negative (unavailable no growth or no reaction), “*±*, weak or delay

In recent years, research on rhizosphere soil bacteria, Pseudomonas, Bacillus, Agrobacterium, and other dominant microbial populations in the plants’ rhizosphere soil showed they can prevent certain diseases and promote plant growth. The disease prevention mechanisms of rhizosphere soil have been summarized as competition, antagonism, and induced plant resistance [39]. Based on this theory, B. subtilis and P. fluorescens have been developed and widely used in a variety of agricultural economic crops [40,41]. Nevertheless, the biocontrol of fungal diseases of ginseng has been little reported. Bae et al. [42] found that Bacillus spp. can be used to prevent and cure root rot resulting from Fusarium solani and Phytophthora blight resulting from Phytophthora cactorum. We have shown that strain SZ-22 exhibits different degrees of inhibition for A. panax, F. graminearum, B. maydis, and other nine plant pathogenic fungi. After repeated verification, the antifungal effect was relatively stable, showing broad-spectrum antifungal activity.

In the present study, by using confronting incubation, we have shown that strain SZ-22 exhibits different degrees of inhibition for A. panax, F. graminearum, B. maydis, and other nine plant pathogenic fungi. After repeated verification, the antifungal effect was relatively stable, showing broad-spectrum antifungal activity.

Fig. 5. Phylogenetic tree based on the gyrB sequences of the antagonistic bacteria. The scale bar indicates the distance in substitutions per nucleotide. The length of each pair of branches represents the distance between sequence pairs, whereas the units at the bottom of the tree indicate the number of substitution events.
discrimination, as well as using 16S rDNA and gyrB gene sequence alignment, the bacterial strain SZ-22 was observed to be identical to B. terrae. Currently, there are no reports providing similar results. The strain SZ-2 was determined as Bacillus methylotrophicus by our laboratory [19]. Moreover, Shanmugam et al. [44] found that the biocontrol strain mixture of B. cepacia TEFP-Sungal and Tricho-derma harzianum S17TH could effectively control rhizome rot of ginger caused by Pythium myriotylum; however, Liu et al. [45] found that individual antagonistic strains performed better than strain combinations, and strains differed significantly in the levels of biocontrol achieved. Therefore, because of the competition between antifungal strains, it might play a role in some negative interaction effects. The inhibition efficacies of SZ-2 and SZ-22 strain mixture against ginseng black spot disease resulting from A. panax still warrant further study.

The fermentation filtrate of SZ-22 showed a significant inhibitory effect against ginseng root rot, suggesting that the antimicrobial substance secreted by B. terrae plays a role in the prevention and treatment of ginseng diseases. This finding might reflect the fact that the pot experiment used in the present study contained a bacterial suspension of SZ-22, but not the fermentation broth strain. The results have also demonstrated the ability of B. terrae to prevent disease and promote growth, suggesting that B. terrae uses “competition as the main, antagonistic and induction as supplement” as a disease prevention mechanism. By occupying a favorable survival locus of the plants and soil, B. terrae strengthens the relationship with plants and indirectly improves the competitive ability of pathogenic bacteria to decrease these microbes in response to limited living space. Moreover, the antagonism of this bacterium combines with the plant’s ability to prevent disease and achieve disease prevention.

5. Conclusion

B. terrae SZ-22, which was isolated as an antifungal bacterium, showed broad-spectrum antifungal ability and exhibited good biocontrol efficacy in vitro. Moreover, the SZ-22 bacterial suspension led to ginseng plant growth promotion. These results indicate that B. terrae SZ-22 can be used as a promising biocontrol agent against the phytopathogenic fungi of P. ginseng. In-depth studies should be carried out in different and complex field conditions to evaluate its biocontrol efficacy and influence on indigenous microbial communities, as well as the effect of agro approaches (chemical fertilizers, pesticides, fungicides, etc.) on B. terrae SZ-22.

Conflicts of interest

All the authors declare that there are no conflicts of interest.

Acknowledgments

This work was financially supported by grants from the Nature Science Foundation of China (31270371) and the Science and Technology Supporting Project of China (2011BAI03B01-02).

References

[1] Jung J, Kim KH, Yang K, Bang KH, Yang TJ. Practical application of DNA markers for high-throughput authentication of Panax ginseng and Panax quinquefolius from commercial ginseng products. J Ginseng Res 2013;38:123–9.

[2] Zhao YF, Zha GX, Wang S, Wu LJ, Yang YJ. Studies on the integrated control of ginseng black spot (Alternaria panax Whetzel) in china. Acta Phytophyl Sin 1990;17:123–6 [in Chinese].

[3] Yu SH, Nishimura S, Hirosawa T. Morphology and pathogenicity of Alternaria panax isolated from Panax schinseng in Japan and Korea. Ann. Phytopathol Soc Jpn 1984;50:313–21.

[4] Wang X, Wang XW, Gao J, Xu HY, Ma DY, Song HM, Feng ZW. Toxicity test and field control effects of different fungicides against Alternaria panax. Agro- env Sci J 2011;30:841–4 [in Chinese].

[5] Kalia A, Gosal SK. Effect of pesticide application on soil microorganisms. Arch. Agron Soil Sci 2011;57:569–96.

[6] Emmert EA, Handelsman J. Biocontrol of plant disease: a (gram +) positive approach. EMBO Reports 1999;1:1–5.

[7] Wood RKS, Tveit M. Control of plant diseases by use of antagonistic organisms. Bot Rev 1955;11:441–92.

[8] Kim SG, Jang Y, Kim HY, Koh YJ, Kim YH. Comparison of microbial fungicides in antagonistic activities related to the biological control of Phytophthora blight in chili pepper caused by Phytophthora capsici. Plant Pathol J 2010;26:340–5.

[9] Young SK, Balan Carlos, Young HK, Yongho J. Biological characteristics of P. nubicola polyoma GBR-1 involved in root rot of stored Korean ginseng. J Ginseng Res 2010;40:43–61.

[10] Joy A, Parke JL. Biocontrol of Alternaria leaf blight on America ginseng by Burkholderia cepacia AMMDD. In: Bailey WG, Whitehead C, Proctor JT, Kyte JT, editors. The challenges of the 21st century — Proc. Int. Ginseng Conf., Van- couver, 1994. Burnaby, Canada: Simon Fraser University; 1995. p. 93–100.

[11] Cardinale BJ, Harvey CT, Gross K, Ives AR. Biodiversity and biocontrol: emergent impacts of a multi-enemy assemblage on pest suppression and crop yield. Ecol Lett 2003;6:857–61.

[12] Toal ME, Yeomans C, Kilham K, Mechag AA. A review of rhizosphere carbon flow modeling. Plant Soil 2000;222:263–81.

[13] Krzyzanowska DM, Potrykus M, Golanowska M, Polonis K, Gwizdek-Wisniewska A, Lokowska E, Jafra S. Rhizosphere bacteria as potential biocontrol agents against soft rot caused by various Pectobacterium and Dickeya spp. strains. J Plant Pathol 2012;94:367–72.

[14] Whipp JM. Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 2001;52:487–511.

[15] Bloomberg GV, Lugtenberg BJ. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 2001;4:343–50.

[16] Ma Y, Prasad MN, Rajkumar M, Freitas H. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metal(loid) soils. Biotechnol Adv 2011;29:248–58.

[17] Shaikh SS, Sayed RZ. Role of plant growth-promoting rhizobacteria and their formulation in biocontrol of plant diseases. In: Arora NK, editor. Plant microbes symbiosis: applied facets. Mahaharashtra, IA: Springer India; 2015. p. 337–51.

[18] Fang ZD. Study methods of plant pathology. 3rd ed. Beijing: China Agriculture Press; 2007, p. 137–8 [in Chinese].

[19] Sun Z, Yang LM. The screening and identification of the antagonistic strain against Cylindrocarpon destructans. J China Agric Univ 2016;21:773–81 [in Chinese].

[20] Shapiro MF, Greenfield S. The complete blood count and leucocyte differential count. An approach to their rational application. Ann Intern Med 1967;106: 65–74.

[21] Jones RN, Ballow CH, Biedenharn DJ. Multi-laboratory assessment of the lineazol spectrum of activity using the Kirby–Bauer disk diffusion method: report of the Zephyr Antimicrobial Potency Study (ZAPS) in the United States. Diagn Microbiol Infect Dis 2001;40:59–66.

[22] Kishore GK, Pande S, Podile AR. Biological control of collar rot disease with broad-spectrum antifungal bacteria associated with groundnut. Can J Microbiol 2005;51:112–32.

[23] Hessenmuller A, Zeller W. Biological control of soilborne Phytophthora species on strawberry with bacterial antagonists: I. Antagonistic effect and colonization of rhizoplane. J Plant Dis Prot 1996;103:602–9.

[24] Yang XD, Gao J, Ma GL, Zhang JH. Improvement on the calculation formula of plant disease control effect. J Jinan Agric Univ 1999;21:46–8 [in Chinese].

[25] George G. Bergey's manual of systematic bacteriology. In: Volume 2: The Proteobacteria, 2nd ed. Berlin: Springer-Verlag; 2005. p. 735–69.

[26] Marshall SM, Melito PL, Woodwell JM, Johnson WH, Rodgers FG, Mulvey MR. Rapid identification of Campylobacter, Arcobacter, and Helicobacter isolates by PCR-restriction fragment length polymorphism analysis of the 16S rDNA gene. J Clin Microbiol 1999;37:4158–60.

[27] Lim CY, Lee KH, Cho MJ, Zhang MW, Kim SY, Myong NH, Lee WK, Rhee KH, Kook YH. Detection of Helicobacter pylori in gastric mucosa of patients with gastroduodenal diseases by PCR-restriction analysis using the RNA polymerase gene (rpoB). J Clin Microbiol 2003;41:3387–91.

[28] Liu WQ, Mao ZC, Yang YH, Xie BY. Analysis of soil bacterial diversity by using P. nigra involved in root rot of stored Korean ginseng. Acta Phytophyl Sin 2001;52:487–511.

[29] Tayeb LA, lefere M, Passet V, Diancourt L, Brisse S, Grimont PA. Comparative phylogeny of Burkholderia, Ralstonia, Comamonas, Brevundimonas and related organisms derived from rpoB, gyrB and rrs gene sequences. Res Microbiol 2008;159:169–77.

[30] Thompson JD, Gibson TJ, Plewniak F, jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–82.

[31] Ramadan EM, Abdel Hafez AA, Hassan EA, Sibler FM. Plant growth promoting rhizobacteria and their potential for biocontrol of phytopathogens. Afr J Microbiol Res 2010;4:865–504.

[32] Guptacharya PN, Jha DN. Plant growth-promoting rhizobacteria (PCPR): emergence in agriculture. World J Microbiol Biotechnol 2012;28:1327–50.

[33] Velumay P, Immanuel JE, Gnanamanickam SS. Rhizosphere bacteria for biocontrol of bacterial blight and growth promotion of rice. Rice Sci 2013;20: 356–62.
[34] Zhang SP, Kuang J, Wang JX, Chen CJ, Zhou MG. Identification of biocontrol bacterial strain N J-18 and its antagonistic activity to several phytopathogenic fungi. Chin Agro Sci Bull 2009;25:213–7 [in Chinese].

[35] Garbeva P, van Veen JA, van Elsas JD. Assessment of the diversity, and antagonism towards Rhizoctonia solani AG3, of Pseudomonas species in soil from different agricultural regimes. FEMS Microbiol Ecol 2004;47:51–64.

[36] Haas D, Keel C. Regulation of antibiotic production in root-colonized Pseudomonas spp., and relevance for biological control of plant disease. Annu Rev Phytopathol 2003;41:117–53.

[37] Lee JY, Moon SS, Hwang BK. Isolation and antifungal and antioomycete activities of aerugine produced by Pseudomonas fluorescens strain MM-816. Appl Environ Microbiol 2003;69:2023–31.

[38] Zeng QG, Zhu D, Yan RM, Zhu F, Wang ZX. Isolation and identification of Endophytic bacteria H-6 with high antifungal activity from Huperzia serrata. Microbiol China 2008;35:512–8 [in Chinese].

[39] Mishra S, Arora NK. Evaluation of rhizospheric Pseudomonas and Bacillus as biocontrol tool for Xanthomonas campestris pv campestris. World J Microbiol Biotechnol 2012;28:693–702.

[40] Broadbent P, Baker KF, Waterworth Y. Bacteria and actinomycetes antagonistic to fungal root pathogens in Australian soils. Aust J Biol Sci 1971;24:925–44.

[41] Weller DM. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 1988;26:379–407.

[42] Bae YS, Park K, Kim CH. Bacillus spp. as biocontrol agents of root rot and Phytophthora blight on ginseng. Plant Pathol J 2004;20:63–6.

[43] Jang YL, Kim SG, Kim YH. Biocontrol efficacies of Bacillus species against Cylindrocarpon destructans causing ginseng root rot. Plant Pathol J 2011;27:333–41.

[44] Shanmugam V, Gupta S, Dohroo NP. Selection of a compatible biocontrol strain mixture based on co-cultivation to control rhizome rot of ginger. Crop Prot 2013;43:119–27.

[45] Liu DQ, Anderson NA, Kinkel IL. Field evaluation of antagonistic Streptomycetes strains on biocontrol of potato scab. Acta Phytopathol Sin 2000;30:237–44 [in Chinese].