Computational prediction of microRNAs in marine bacteria of the genus *Thalassospira*

Thi Hoang Yen Dang¹, Sonika Tyagi²,³, Glenn D’Cunha², Mrinal Bhave¹, Russell Crawford⁴, Elena P. Ivanova¹,⁴,⁵,*

¹ Swinburne University of Technology, Hawthorn, Australia, ² Australian Genome Research Facility Ltd, The Walter and Eliza Hall Institute, 1G Royal Pde, Parkville, Melbourne, Victoria, Australia, ³ School of Biological Sciences, Monash University, Clayton, Victoria, ⁴ RMIT University, Melbourne, Australia, ⁵ Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russian Federation

* elena.ivanova@rmit.edu.au

Abstract

MicroRNAs (miRNAs) are key players in regulation of gene expression at post-transcription level in eukaryotic cells. miRNAs have been intensively studied in plants, animals and viruses. The investigations of bacterial miRNAs have gained less attention, except for the recent studies on miRNAs derived from *Streptococcus mutans* ATCC 25175 and *Escherichia coli* DH10B. In this study, high-throughput sequencing approach was employed to investigate the miRNA population in bacteria of the genus *Thalassospira* using both the miRDeep2 and CID-miRNA methods. A total of 984 putative miRNAs were identified in 9 species of the genus *Thalassospira* using both miRDeep and CID-miRNA analyses. Fifty seven conserved putative miRNAs were found in different species of the genus *Thalassospira*, and up to 6 miRNAs were found to be present at different locations in the *T. alkalitolerans* JCM 18968ᵀ, *T. lucentensis* QMT2ᵀ and *T. xianhensis* P-4ᵀ. None of the putative miRNAs was found to share sequence to the reported miRNAs in *E. coli* DH10B and *S. mutans* ATCC 25175. The findings provide a comprehensive list of computationally identified miRNAs in 9 bacterial species of the genus *Thalassospira* and addressed the existing knowledge gap on the presence of miRNAs in the *Thalassospira* genomes.

Introduction

MicroRNA (miRNA) is a class of small, non-coding RNA molecules containing 19–22 nucleotides. Since the discovery of miRNA in *Caenorhabditis elegans* [1], a large number of predicted miRNA molecules has been reported in animals, plants and viruses as key players in regulation of gene expression networks [2–5]. In bacteria, the small non-coding RNAs (sRNAs) have been demonstrated to have a similar function to eukaryotic miRNA, in modulating the target mRNAs in various ways at a post-transcriptional level [6]. A number of sRNAs have been identified in bacteria, some of which were identified in marine bacteria such as *Vibrio* spp. and *Synechococcus* spp. that are functional analogues to plant miRNAs in response to environmental changes [7, 8]. The investigations of bacterial miRNAs, however, have gained little...
microRNAs in marine bacteria of the genus *Thalassospira*

attention, except for the recent studies on miRNAs derived from *Streptococcus mutans* ATCC 25175 and *Escherichia coli* DH10B [9, 10].

The genus *Thalassospira* includes Gram-negative, aerobic and halophilic bacteria dwelling in a marine environment [11]. Bacteria of this genus are involved in the biodegradation of a variety of hydrocarbons [12–14]. For example, *T. tepidiphila* 1-1B and *T. povalilytica* Zumi 95T have the ability to degrade polycyclic aromatic hydrocarbons and polyvinyl alcohol [12, 13]; and *T. australica* NP 3b2T is able to utilise poly (ethylene) terephthalate (PET) plastic as a carbon source [14]. Currently the genus *Thalassospira* is comprised of 10 validly named species, of which the whole genome sequences of four species (*T. australica* NP 3b2T, *T. lucentensis* QMT2T, *T. profundimar*is WP0211T and *T. xiamenensis* M-5T) have been assembled and deposited in public databases [15–17]. The presence of miRNAs in bacteria of this genus has, however, not been demonstrated. Here, the investigation of miRNA populations was carried out using 9 validly named *Thalassospira* species, i.e., *T. alkalitolerans* JCM 18968T, *T. lucentensis* QMT2T, *T. mesophila* JCM 18969T, *T. povalilytica* Zumi 95T, *T. profundimar*is WP0211T, *T. tepidiphila* 1-1B, *T. xiamenensis* M-5T, *T. xianhensis* P-4T and *T. australica* NP 3b2T. Since *Thalassospira lohaferi* 139Z-12T was not validly published until 2015 [11], this species was not included in this study. A deep sequencing approach has been used to identify miRNAs in bacteria in other studies [10]. Thus, the aim of this work was to identify the potential miRNAs in bacteria of the genus *Thalassospira* using computational approaches from small RNA sequence dataset generated by high-throughput sequencing technology.

Materials and methods

Bacterial strains and growth conditions

Nine type strains of *Thalassospira* species were obtained from various culture collections and used in this study. *T. australica* JCM 31222T, *T. alkalitolerans* JCM 18968T, *T. mesophila* JCM 18969T, *T. povalilytica* JCM 18746T, *T. tepidiphila* JCM 14578T and *T. xianhensis* JCM 14850T were obtained from RIKEN BRC-Japan Collection of Microorganisms (JCM) and *T. lucentensis* DSM 14000T, *T. profundimar*is DSM 17430T and *T. xiamenensis* DSM 17429T were obtained from German Collection of Microorganisms and Cell Cultures (DSMZ). Bacteria were aerobically grown at their stationary phase in marine broth 2216 (BD, U.S.A.) at 22 °C for 48 h [18, 19]. Bacterial cells were collected by centrifugation and used for RNA extraction or stored at -80°C in marine broth 2216 (BD, USA) supplemented with 20% (v/v) glycerol.

RNA isolation and construction of small RNA libraries

Total RNAs were extracted from bacterial cells of *Thalassospira* species using TRIzol reagent (Bioline, Australia) according to the manufacturer’s instructions. The RNA concentration and purity were determined by measuring the absorbance at 260 nm and A260/A280 ratio using Nanodrop (ThermoFisher, Australia). The integrity of extracted RNAs was examined by a Bioanalyzer (Agilent Technology, USA). A RIN value ≥ 5 was applied for selection of good RNA quality with RIN (RNA integrity number) generated for each sample based on the ratio of ribosomal bands and the presence or absence of degradation products on the electrophoretic image. Small RNA-Seq libraries were prepared using the TruSeq Small RNA library preparation kit for Illumina (New England Biolabs, USA). Briefly, rRNA was depleted with RiboZero. RNAs were fragmented by heat and divalent cations and the 3’ strand cDNA was synthesised with SuperScript II Reverse Transcriptase (Invitrogen). The DNA fragments were 3’ adenylated, ligated with 3’ and 5’ adapters and amplified via PCR (13 cycles). The amplified products were loaded on 6% polyacrylamide for small RNA (18–35 nucleotides) selection. The amplicons of small RNA were purified and sequenced using Illumina Hiseq2500 sequencing.

Competing interests: The authors have declared that no competing interests exist.
platform with 50 bp single end chemistry. The raw sequencing data generated from this study was submitted to the NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra) under accession number PRJNA505357.

Bioinformatics analysis of bacterial miRNAs

The raw reads (18–35 nucleotides) generated from the Illumina sequencing were first filtered by removing any contaminations including rDNA, Illumina small RNA adapter sequences or low-quality reads with < 18 nt length using Cutadapt [20]. The remaining reads after filtering were then aligned against the *Thalassospira* genome sequences available in the NCBI database using Bowtie (version 1.1.2) with parameters setting (-n 0 -e 80 -l 18 -a -m 5—best–strata) [21]. The whole genome sequences used as references for these 9 *Thalassospira* species were listed in S1 Table. The mapped sequences to genomes were further processed to remove redundancy and normalised expression was computed as CPM (Reads counts per Million) [22].

After normalisation, these mapped sequences were used to predict miRNAs. Two different miRNA prediction algorithms, miRDeep2 and CID-miRNA were used to detect miRNA in this study. The miRDeep2 software (version 2.0.0.7, http://www.mdc-berlin.de/rajewsky/miRDeep) was utilised to predict miRNAs based on an investigation of the secondary structure of the miRNA precursor sequences and integration of miRNA precursors with Dicer, providing the precursors and mature miRNA sequences [23]. CID-miRNA [24] is a method to identify miRNA precursors based on secondary structure filter and an algorithm of stochastic context free grammar (SCFG) [24]. This method only predicts the miRNA precursors. Therefore, *MatureBayes* (http://mirna.imbb.forth.gr/MatureBayes.html) was employed to identify mature miRNAs based on the sequence and structure of the miRNA precursors provided by CID-miRNA [25]. The small sequences mapped to the genome were processed through miRDeep2 ver2.0.0.7 as well as CID-miRNA and *MatureBayes* for identifying mature miRNAs with default parameters. The detected mature miRNAs were further investigated by searching any shared miRNA sequences generated in both methods using BLAST algorithm (version 4) with default setting. The potential precursor sequences predicted by both methods were also BLAST-searched to find any shared precursor sequences. Any shared miRNA sequences were then confirmed using ClustalW2 (https://www.ebi.ac.uk/Tools/msa/clustalw2/) with default setting. In order to find any conserved miRNA across the genus, the predicted mature miRNAs were aligned to those reported in *Escherichia coli* DH10B and *Streptococcus mutans* ATCC 25175 [9, 10]. The candidates were also aligned to miRNAs predicted within the genus *Thalassospira* to identify any conserved miRNAs across all bacteria within the genus.

Phylogenetic analysis and genome comparison

The 16S rRNA gene sequences of validly described *Thalassospira* species were collected from NCBI (https://www.ncbi.nlm.nih.gov/) and compared using the ClustalW2 (https://www.ebi.ac.uk/Tools/msa/clustalw2/) with default setting. Evolutionary phylogenetic trees were then generated using the neighbour-joining (NJ) algorithm [26]. Genetic distances for the NJ tree were calculated using Kimura’s two-parameter model [27], with the robustness of 1,000 replications, using MEGA 7 software [28].

Results and discussion

Generation of small RNA libraries and data evaluation

Small RNA-seq libraries were constructed for nine *Thalassospira* species, including *T. alkalitolerans* JCM 18968T, *T. lucentensis* QMT2T, *T. mesophila* JCM 18969T, *T. povalilytica* Zumi 95T,
Table 1. Bacterial small RNA-Seq data yield from HiSeq2500 sequencing.

Samples	T. australica NP 3b²	T. alkalitolerans JCM 18968²	T. lucentensis QMT2²	T. mesophila JCM 18969²	T. povalitlytica Zumi 95²	T. profundimaris WP0211²	T. tepidiphila 1-1B²	T. xiamenensis M-5²	T. xianhensis P-4²
Original number of reads	22,991,595	31,431,409	28,737,289	27,213,115	28,225,762	25,272,618	25,641,708	28,144,650	24,546,591
Reads after filter and collapse	3,177,403	5,068,260	4,606,730	2,954,668	3,761,719	5,327,201	4,368,445	1,712,391	3,300,999
Reads aligning to reference genome	2,285,671	160,990	2,511,917	102,497	95,972	2,046,567	1,230,299	1,143,173	631,902
Aligned reads, %	71.94	3.18	54.53	3.47	2.55	38.42	28.16	66.76	19.14

a: total reads obtained from different bacterial species
b: reads obtained after filtering
c: reads were aligned to the Thalassospira genome sequences using the Bowtie algorithm. The reads obtained from this experiment were set from 18–33 nt using an Illumina genome analyser with a low error rate (0.005 error per base).

Identification of miRNAs using the mirDeep2 method

Identification of bacterial miRNAs is in early stages in comparison to that in animals and plants. Therefore, no specific method has been developed for investigation of miRNAs in bacteria. miRDeep2 software (http://www.mdc-berlin.de/rajewsky/miRDeep) was first presented as an algorithm to predict miRNA in human and animals [23]. This software was later used to successfully identify miRNAs in plant [29]. Based on the applicability in different organisms, miRDeep2 software was, therefore, employed to detect putative bacterial miRNAs from the millions of short sequences generated from the dataset. The miRDeep2 software was designed to detect putative miRNAs based on an investigation of the secondary structure of the miRNA precursor sequences. The potential miRNA precursors were then integrated with a model for miRNA precursor processing using Dicer, releasing the mature miRNA sequences, star

T. profundimaris WP0211², T. tepidiphila 1-1B², T. xiamenensis M-5², T. xianhensis P-4² and T. australica NP 3b². Next-generation small RNA-seq was used for detection of the presence of small RNAs. The results yielded 242,204,737 sequence reads of 18–33 nucleotides (nt) length, ranging from 22.99 to 31.43 million reads for 9 libraries (Table 1). The reads were curated for any contamination or artefacts such as rDNA or Illumina small RNA adaptor sequences using Cutadapt [20]. The cleaned reads were then aligned to the Thalassospira genome sequences available in the NCBI database using Bowtie software [21]. Since the whole genome sequences of T. australica NP 3b², T. lucentensis QMT2², T. profundimaris WP0211² and T. xiamenensis M-5² were available in the NCBI database, the small RNA sequence reads were aligned to these genome sequences. The remaining 5 Thalassospira species that did not have the whole genome sequence were aligned to these references based on their phylogenetically closest species [14] (S1 Table, S1 Fig). By aligning 34.23 million collapsed reads from nine species of the genus Thalassospira to the genome sequences available in NCBI, it was found that a proportion of cleaned reads was mappable to the reference genomes, ranging from 38.42% to 71.94% for 4 species with available genome sequences and from 2.55% to 28.16% for the remaining 5 species without whole genome sequenced (Table 1). The aligned reads were further analysed for miRNA identification.

https://doi.org/10.1371/journal.pone.0212996.t001
sequences (also called miRNA5p and miRNA3p sequences) and the loop [23]. By using miR-Deep2, 86 potential miRNA precursor sequences could be identified from the dataset. The mature miRNA, star sequence and the loop were also identified within each precursor (Fig 1).

The identified 86 putative mature miRNAs were located in either the 5' arm or the 3' arm of the precursors, with 11 sequences from *T. australica* NP 3b2T, 11 from *T. lucentensis* QMT2T, 14 from *T. profundimarisa* WP0211T, 6 from *T. xiamenensis* M-5T, 11 from *T. alkalitolerans* JCM 18968T, 5 from *T. mesophila* JCM 18969T, 4 from *T. povalilytica* Zumi 95T, 9 from *T. tepidiphila* 1-1BT and 15 from *T. xianhensis* P-4T (Table 2) being obtained.
miRNA name*	Location	Sequence (5'-3')	Length (nucleotides)	Number of reads
T. australica NP 3b				
T.aust_3p_10018	JRIE0100008.1_scaffold_30_10018	TAACGTCGTGGTCTTCGGGATT	20	2252
T.aust_5p_26441	JRIE0100032.1_scaffold_0_26441	CTTGGGAGCGTGGGCCGCTCC	20	845
T.aust_3p_11556	JRIE0100009.1_scaffold_3_11556	TTTTGACTGATGCACACCGGTAT	25	151
T.aust_5p_26002	JRIE0100032.1_scaffold_0_26002	TTGGGCGGGTGAGGGGACC	19	88
T.aust_5p_15617	JRIE0100009.1_scaffold_3_15617	ATCTCCCTCCCGCAACCA	18	2888
T.aust_5p_9704	JRIE0100009.1_scaffold_3_9704	ATGGGGCTGACGACGAGCGGCT	24	15
T.aust_3p_23062	JRIE01000031.1_scaffold_1_23062	CTTGGCAGGCTGGGCGCTCC	20	845
T.aust_5p_26002	JRIE0100032.1_scaffold_0_26002	TTGGGCGGGTGAGGGGACC	19	88
T.aust_5p_15617	JRIE0100009.1_scaffold_3_15617	ATCTCCCTCCCGCAACCA	18	2888
T.aust_5p_9704	JRIE0100009.1_scaffold_3_9704	ATGGGGCTGACGACGAGCGGCT	24	15
T.aust_3p_23062	JRIE01000031.1_scaffold_1_23062	CTTGGCAGGCTGGGCGCTCC	20	845
T.aust_5p_26002	JRIE0100032.1_scaffold_0_26002	TTGGGCGGGTGAGGGGACC	19	88
T.aust_5p_15617	JRIE0100009.1_scaffold_3_15617	ATCTCCCTCCCGCAACCA	18	2888
T.aust_5p_9704	JRIE0100009.1_scaffold_3_9704	ATGGGGCTGACGACGAGCGGCT	24	15
T.aust_3p_23062	JRIE01000031.1_scaffold_1_23062	CTTGGCAGGCTGGGCGCTCC	20	845
T.aust_5p_26002	JRIE0100032.1_scaffold_0_26002	TTGGGCGGGTGAGGGGACC	19	88
T. alkalitolerans JCM 18968				
T.alka_5p_5662	ATWN01000007.1_5662	TTACCGGTGGTGAAGGCGCTGA	22	15
T.alka_3p_6962	ATWN01000007.1_6962	TTACCGGTGGTGAAGGCGCTGA	22	15
T.alka_3p_6323	ATWN01000007.1_6323	TTACCGGTGGTGAAGGCGCTGA	22	15
T.alka_5p_1438	ATWN01000007.1_1438	TTACCGGTGGTGAAGGCGCTGA	22	15
T.alka_3p_6324	ATWN01000007.1_6324	TTACCGGTGGTGAAGGCGCTGA	22	15
T.alka_5p_1438	ATWN01000007.1_1438	TTACCGGTGGTGAAGGCGCTGA	22	15
T.alka_3p_6324	ATWN01000007.1_6324	TTACCGGTGGTGAAGGCGCTGA	22	15
T.alka_5p_1438	ATWN01000007.1_1438	TTACCGGTGGTGAAGGCGCTGA	22	15
T.alka_3p_6324	ATWN01000007.1_6324	TTACCGGTGGTGAAGGCGCTGA	22	15
T. lucentensis QMT2				
T.luca_5p_27853	ATWN01000007.1_27853	TCCAGGGTGCCTACGCTGACT	23	13160
T.luca_3p_31831	ATWN01000007.1_31831	TCCAGGGTGCCTACGCTGACT	23	13160
T.luca_3p_14305	ATWN01000007.1_14305	TCCAGGGTGCCTACGCTGACT	23	13160
T.luca_3p_11956	ATWN01000007.1_11956	TCCAGGGTGCCTACGCTGACT	23	13160
T.luca_3p_26600	ATWN01000007.1_26600	TCCAGGGTGCCTACGCTGACT	23	13160
T.luca_3p_10500	ATWN01000007.1_10500	TCCAGGGTGCCTACGCTGACT	23	13160
T.luca_3p_13875	ATWN01000007.1_13875	TCCAGGGTGCCTACGCTGACT	23	13160
T.luca_3p_12006	ATWN01000007.1_12006	TCCAGGGTGCCTACGCTGACT	23	13160
T.luca_3p_14218	ATWN01000007.1_14218	TCCAGGGTGCCTACGCTGACT	23	13160
T.luca_3p_14713	ATWN01000007.1_14713	TCCAGGGTGCCTACGCTGACT	23	13160
T.luca_3p_22254	ATWN01000007.1_22254	TCCAGGGTGCCTACGCTGACT	23	13160
T. mesophila JCM 18969				
T.meso_5p_3464	ATWN01000007.1_3464	ATGACATGCTGAGACGAGCGGCT	22	13160
T.meso_5p_3562	ATWN01000007.1_3562	ATGACATGCTGAGACGAGCGGCT	22	13160
T.meso_5p_3026	ATWN01000007.1_3026	ATGACATGCTGAGACGAGCGGCT	22	13160
T.meso_5p_2868	ATWN01000007.1_2868	ATGACATGCTGAGACGAGCGGCT	22	13160
T.meso_5p_3086	ATWN01000007.1_3086	ATGACATGCTGAGACGAGCGGCT	22	13160
T. profundimaris WP0211				
T.pova_5p_4964	AMRN01000007.1_4964	ATGACATGCTGAGACGAGCGGCT	22	13160
T.pova_5p_4720	AMRN01000007.1_4720	ATGACATGCTGAGACGAGCGGCT	22	13160
T.pova_5p_661	AMRN01000007.1_661	ATGACATGCTGAGACGAGCGGCT	22	13160
T.pova_5p_390	AMRN01000007.1_390	ATGACATGCTGAGACGAGCGGCT	22	13160

Continued
miRNA name	Location	Sequence (5'-3')	Length (nucleotides)	Number of reads
T.prof_5p_35057	AMRN01000009.1_35057	ATCGCTGAccCGCGGCTGACCG	24	1316
T.prof_5p_36012	AMRN01000010.1_36012	GTCGGTTGCTGGGACACATTG	22	1679
T.prof_5p_14768	AMRN01000003.1_14768	ATCCCTGCCGGCAACCA	18	721
T.prof_5p_660	AMRN01000001.1_660	CTTATCGACACCCGAGAC	19	1702
T.prof_5p_26017	AMRN01000006.1_26017	ATCCCTGAAATGGTATAGGCTTCC	25	57
T.prof_5p_3_15266	AMRN01000003.1_15266	ATACAACTGATGTCGCCTGC	20	693
T.prof_5p_2_6017	AMRN01000006.1_26017	ATCACGTTGAGCCAAAAGAAAAGC	24	18
T.prof_5p_1_5266	AMRN01000003.1_15266	ATACAACTGATGTCGCCTGC	20	693
T.prof_3p_2_147	AMRN01000001.1_14768	ATCCTCGGAATAGGTATAGGCTTCC	25	57
T.prof_3p_2_6033	AMRN01000004.1_20338	ATCAATCGCCGGGATCATGATCCC	24	76
T.prof_5p_1_2543	AMRN01000002.1_12543	ATCATGCGGCTTGGCACCATAATC	20	2
T.prof_5p_2_2228	AMRN01000001.1_2228	TTCTGGGATATGACCCGAGAC	24	10
T.prof_5p_3_2_6017	AMRN01000006.1_26017	ATCACGTTGAGCCAAAAGAAAAGC	24	18
T.prof_3p_8_152	AMRN01000002.1_8152	ATATATGACGTCCGTTGCGA	19	90
T.prof_5p_1_6607	AMRN01000006.1_16607	TTTACAGCTGATGACCCGAGAC	21	9
T.prof_5p_2_2262	AMRN01000001.1_2228	GTCCGGTGGTCTGGGCACCATG	22	252
T.prof_5p_2_2762	AMRN01000001.1_2762	GAGCTGGCTGGTGGGATCTGGGAT	24	148
T.prof_5p_1_19992	AMRN01000008.1_19992	GGGCCGAGATAGAAAGCAACAG	23	17
T.prof_5p_3_8570	AMRN01000003.1_8570	ATCCCTGCCGGCAACCA	18	1315
T.prof_5p_1_11638	AMRN01000004.1_11638	ATATAGGCTTGGCACCATAATC	20	2
T.prof_5p_2_21088	AMRN01000009.1_21088	ATTTAGATCTGGGACATCCGGGAC	23	65
T.prof_3p_4_9	AMRN01000004.1_49	ATCCTGAGCCGGGACATCCGGGAC	20	6
T.prof_3p_8_570	AMRN01000003.1_8570	ATCCCTGCCGGCAACCA	18	1135
T.prof_3p_1_1638	AMRN01000004.1_11638	ATATTGATCTGGGACATCCGGGAC	23	65
T.prof_3p_1_2288	AMRN01000001.1_2288	TTCTGGGATATGACCCGAGAC	24	10
T.prof_3p_4_1_9992	AMRN01000005.1_19992	GGGCCGAGATAGAAAGCAACAG	23	17
T.xiap_5p_3_12910	CP004388.1_12910	CTGGCCGCCGGTATGCTCGCATC	23	2582
T.xiap_5p_3_18209	CP004388.1_18209	ATGCACCTGCCGGCACC	21	47
T.xiap_5p_3_1950	CP004388.1_1950	ACATGGCTGGTGGGATCTGGGAT	24	148
T.xiap_5p_3_25207	CP004388.1_25207	AAACGAGAAAGAATAGCAACAGA	23	27
T.xiap_5p_3_3097	CP004388.1_3097	ATCCCTGCCGGCAACCA	18	1315
T.xiap_3p_3_13589	CP004388.1_13589	TTTCCGGATATGACCCGAGAC	24	14
T.xiap_3p_3_3269	CP004388.1_3269	AAAACGAGAAAGAATAGCAACAGA	23	27
T.xiap_3p_3_9480	CP004388.1_9480	ATCCCTGCCGGCAACCA	18	1315
T.xiap_3p_3_19360	CP004388.1_19360	ATTTAGTCCGCGTCGAC	20	13
T.xiap_3p_3_38616	CP004388.1_38616	CAAACGAGAAAGAATAGCAACAGA	23	27
T.xiap_3p_3_35228	CP004388.1_35228	AAACGAGAAAGAATAGCAACAGA	23	27
T.xiap_3p_3_13589	CP004388.1_13589	TTTCCGGATATGACCCGAGAC	24	14
T.xiap_3p_3_34659	CP004388.1_34659	ATCCCTGCCGGCAACCA	18	1315
T.xiap_3p_3_4479	CP004388.1_4479	ATCCCTGCCGGCAACCA	18	1315
T.xiap_3p_3_32022	CP004388.1_32022	ATCCCTGCCGGCAACCA	18	1315

*: The identified miRNAs were named as <name of bacteria>_<_location of miRNA in the precursor>_<_position of miRNA in the genome>.

https://doi.org/10.1371/journal.pone.0212996.t002
The identified putative miRNAs are 18–25 nucleotides in length (Table 2), which is in the range previously reported for animal and plant miRNAs [30]. These results are also consistent with the length distribution of miRNAs recently detected in *E. coli* DH10B and *Streptococcus mutans* ATCC 25175 [8, 9]. Based on the number of read counts, these putative miRNAs appear to have various expression levels among nine libraries, ranging from one to thousands of reads in each library, under the normal growth condition. Among the 86 detected putative miRNAs, the highest expression was found in T.prof_5p_16873, with 50145 reads, while the lowest expression was shared between T.alka_5p_4136 and T.alka_5p_1889 with only one read each being found in the libraries. Of the 86 detected putative miRNAs, thirteen were in high abundance, with over a thousand reads [10] with three miRNAs from *T. australica* NP 3b2T, four from *T. lucentensis* QMT2T, four from *T. profundimaris* WP0211T and one each from *T. tepidiphila* 1-1B and *T. xiamenensis* M-5T being identified. The high degree of expression of these putative miRNAs suggested that they may play specific roles involving in the growth and development processes of these bacteria (Fig 2).

Fig 2. Expression of miRNAs detected in bacteria of the genus *Thalassospira*. Based on number of reads, the high degree of expression of miRNAs was found in *T. australica* NP 3b2T, *T. lucentensis* QMT2T, *T. profundimaris* WP0211T, *T. tepidiphila* 1-1B and *T. xiamenensis* M-5T.
https://doi.org/10.1371/journal.pone.0212996.g002
Identification of miRNAs using CID-miRNA method

The 86 putative miRNAs detected in nine *Thalassospira* species using miRDeep method appeared to be rather low in number compared to 400 miRNAs identified in *E. coli* DH10B [10] and 900 miRNAs in *Streptococcus mutans* ATCC 25175 [9]. Therefore, an alternative method, CID-miRNA [24] was employed in the expectation of identifying further potential miRNAs from the dataset. CID-miRNA is a web-server developed for the identification of the miRNA precursors based on the secondary structure filter and an algorithm of stochastic context-free grammar (SCFG) [24]. The server was first used to predict the potential miRNA precursors in human genome [24] which was later applied in animals such as mouse, zebrafish and sea squirt [31]. Using this method, 449 potential miRNA precursors were identified from over 242 million reads of *T. australica* NP 3b2T (77 potential miRNA precursors), *T. lucentensis* QMT2T (161), *T. profundimaris* WP0211T (78), *T. xiamensis* M-5T (16), *T. alkalitolerans* JCM 18968T (21), *T. mesophila* JCM 18969T (1), *T. pavalilicytica* Zumi 95T (2), *T. tepidiphila* 1-1B T (61) and *T. xianhensis* P-4T (32).

In order to identify the mature miRNAs, these precursor sequences were further analysed by employing another web tool, *MatureBayes* (http://mirna.imbb.forth.gr/MatureBayes.html). *MatureBayes* is designed to incorporate to the Naïve Bayes classifier for identifying the putative mature miRNA molecules based on the sequence and structure of the miRNA precursors [25]. This tool provided putative mature miRNA positions in the 5’ and 3’ direction of the miRNA precursors, resulting in 898 putative mature miRNAs in the 9 *Thalassospira* species, comprised of *T. australica* NP 3b2 (154 miRNAs), *T. lucentensis* QMT2T (322 miRNAs), *T. profundimaris* WP0211 (156 miRNAs), *T. xiamensis* M-5T (32 miRNAs), *T. alkalitolerans* JCM 18968T (42 miRNAs), *T. mesophila* JCM 18969T (2 miRNAs), *T. pavalilicytica* Zumi 95T (4 miRNAs), *T. tepidiphila* 1-1B T (122 miRNAs) and *T. xianhensis* P-4T (64 miRNAs) (S2 Table). These identified putative miRNAs were used for further analysis of miRNA conservation.

Comparison of bacterial miRNAs identified using miRDeep2 and CID-miRNA

In order to determine whether any miRNAs were detected by both methods, miRNA data generated from miRDeep were BLAST-searched to those produced by CID-miRNA. The results showed that there were no shared putative mature miRNA sequences. miRDeep2 predicts putative miRNAs based on distribution of minimum free energy (MFE) and stability of secondary structure established for nematode, *C. elegans*, while CID-miRNA utilised secondary structure filter and stochastic context free grammar trained on human miRNAs [23, 24]. The differences of parameter setting may cause no overlap of putative mature miRNA sequences detected in both methods. Thakur et al [32] also pointed out that application of new parameters improved the accuracy of plant miRNA prediction using miRDeep in compared to the default setting for animals.

Study on miRNA biogenesis showed that one or more mature miRNAs can be produced from one pre-miRNA molecule [33]. These identified putative miRNAs, therefore, were aligned to the potential precursor miRNA sequences generated by both methods. BLAST-search between putative mature miRNA sequences identified from miRDeep2 and the potential precursor miRNAs detected by CID-miRNA was carried out and vice versa. 5 putative mature miRNA sequences identified by CID-miRNA (T.luce_5 p_228121, T.luce_3 p_228121, T.xian_5 p_2738, T.xian_5 p_2740 and T.xian_3 p_2740) were found to locate in 3 potential precursor miRNAs producing T.luce_5 p_11956, T.xian_5 p_4477 and T.xian_3 p_4479 from miRDeep2. The precursor miRNA sequences producing 5 putative mature miRNAs from CID-miRNA were then aligned to 3 potential precursor miRNAs from miRDeep2 using
ClustalW2. The result showed the overlap of 3 precursor miRNAs predicted in both methods in which the putative mature miRNAs identified by each method located at different positions within the precursor sequences (Fig 3).

The shared sequences from the same Thalassospira species proved the probability of putative mature miRNAs finding in both methods. Thus, a total of 984 putative miRNA candidates were preliminarily obtained from both methods with default setting together for 9 species (Table 3). Further work, such as real time PCR or Northern blot analysis, is needed to verify these putative miRNAs.

![Fig 3. Sharing sequences of potential miRNA precursors identified in both miRDeep2 and CID-miRNA methods.](https://doi.org/10.1371/journal.pone.0212996.g003)

Table 3. Identification of miRNAs using miRDeep2 and CID-miRNA methods.

Organism	miRDeep2 analysis	CID-miRNA analysis	Total
T. alkalitolerans JCM 18968^T	11	42	53
T. australica NP 3b2^T	11	154	165
T. lucentensis QMT2^T	11	322	333
T. mesophila JCM 18969^T	5	2	7
T. povallityca Zumi 95^T	4	4	8
T. profundimaris WP0211^T	14	156	170
T. tepidiphila 1-1B^T	9	122	131
T. xianhensis P-4^T	15	64	79
T. xiamenensis M-5^T	6	32	38

https://doi.org/10.1371/journal.pone.0212996.t003
Conservation of miRNAs in the genus *Thalassospira* and miRNAs previously described in *Streptococcus mutans* ATCC 25175 and *E. coli* DH10B

Previous studies showed the conservation of some miRNAs across animals or the plant kingdom [34, 35]; however, novel sequences can only be found in a particular species. The conserved and novel miRNAs in bacteria still remain largely unknown, in comparison to intensive studies of miRNAs in eukaryotic organisms and viruses. In this study, 984 putative miRNA candidates of the genus *Thalassospira* were BLAST-searched against those reported for *E. coli* DH10B (400 miRNAs) and *S. mutans* ATCC 25175 (900 miRNAs) [9, 10] in order to identify any conserved miRNA. However, no conserved sequences could be found without any mismatch or with three and fewer nucleotide substitution. *E. coli* is an enteric bacterium commonly found in low intestine of humans and animals [36], *S. mutans* is an oral pathogen that causes human dental caries [37], while bacteria of the *Thalassospira* genus are environmental bacteria [14]. The differences in their characteristics may influence the low degree of conservation of miRNAs among these bacteria. The results obtained in this study is in agreement with previous studies that reported the lack of significant sequence similarity in non-coding RNA homologues of different bacterial species [38, 39].

In order to identify any conserved miRNAs among species of the genus *Thalassospira*, the putative miRNA sequences obtained were compared. It appears that the nine species shared 57 common putative miRNAs. Among these, *T. profundimaris* WP0211T and *T. tepidiphila* 1-1B1 had the highest number of conserved miRNAs, with 45 sequences presenting in both species. Five putative miRNAs in *T. alkalitolerans* JCM 18968T were also found in the *T. lucentensis* QMT2T, while *T. xianhensis* P-4T and *T. xiamenensis* M-5T shared 4 conserved sequences. One sequence was shared between *T. australica* NP 3b2T and *T. tepidiphila* 1-1B1, *T. lucentensis* QMT2T and *T. tepidiphila* 1-1B1 and *T. lucentensis* QMT2T and *T. mesophila* JCM 18969T (Table 4). As seen from the data, *T. lucentensis* QMT2T has identical miRNA sequences as *T. alkalitolerans* JCM 18968T (5 sequences), *T. tepidiphila* 1-1B1 (1) and *T. mesophila* JCM 18969T (1), while *T. tepidiphila* 1-1B1 also shared sequences with *T. profundimaris* WP0211T (45) and *T. australica* NP 3b2T (1).

A comparative analysis of 16S rRNA sequence similarities revealed that the highest number of common miRNAs shared by the phylogenetically close species; e.g., *T. tepidiphila* 1-1B1 were found to be phylogenetically closely related to *T. profundimaris* WP0211T (99.3% sequence similarity); *T. xianhensis* P-4T and *T. xiamenensis* M-5T also shared 99.3% 16S rRNA similarity, while *T. mesophila* JCM 18969T and *T. alkalitolerans* JCM 18968T shared 95.3% and 94.9% of 16S rRNA sequence similarity, respectively, with *T. lucentensis* QMT2T [14]. Conserved miRNA sequences found in these species may indicate a close genetic relationship and that these miRNAs have a similar role in the regulation of the growth and development of bacteria. It is interesting to note that two species, *T. australica* NP 3b2T and *T. tepidiphila* 1-1B1, which are capable of hydrocarbon degradation [12, 14], shared one conserved miRNAs and the potential targets of this putative miRNA needs to be investigated for any role related to this process. In addition, *T. alkalitolerans* JCM 18968T, *T. lucentensis* QMT2T and *T. xianhensis* P-4T were also found to have the same sequence presented in different genomic locations (Table 5). These miRNAs can have an influence on their expression and function at different genomic locations [40]. It will be of great interest to identify the target mRNA of these miRNAs and investigate their roles and the mechanisms of gene regulation in the physiology of these unique environmental bacteria.
Table 4. Conserved miRNAs in different species of bacteria of the genus *Thalassospira.*

miRNA sequence	*T. alkalitolerans* JCM 18968^T	*T. australica* NP 3b2^T	*T. lucentensis* QMT2^T	*T. mesophila* JCM 18969^T	*T. profundimarisa* WP0211^T	*T. tepidiphila* 1^B^T	*T. xianhensis* P-4^T	*T. xiamenensis* M-5^T
TTATCCGGACCCTTTAATTAT	T. alka_5p_4942	T. luce_5p_520914						
CATAATATTGTTCCGAACT	T. alka_3p_4942	T. luce_3p_520914						
ATCAAGTCGAGCCATGACCAT	T. alka_5p_1819	T. luce_5p_218949						
TCAGCAATCGCGTTCTATCG	T. alka_5p_4684	T. luce_5p_498538						
CGTCGTCGATCGCTTTGCGC	T. alka_3p_4684	T. luce_3p_498538						
AGCGACAACGCCGGTGGAATCA	T. profu_5p_37885	T. tepi_5p_24769						
GGCACCACGTGTTGGTTCTTC	T. profu_3p_37885	T. tepi_3p_24769						
AAGAAGCACGCTCGGCCAGCA	T. profu_5p_14495	T. tepi_5p_9431						
GCCCGCGTGCTCGCAACTGCGTT	T. profu_3p_14495	T. tepi_3p_9431						
ATCAAAGCGGCGGCTGATT	T. profu_5p_9602	T. tepi_5p_6592						
TTCCGCTTTTTTGTTCGAG	T. profu_3p_9602	T. tepi_3p_6592						
AAATCATCGATCGCTTTTCTTC	T. profu_5p_49348	T. tepi_5p_33046						
AACTTTGTGCTGCTTTGCTC	T. profu_3p_49348	T. tepi_3p_33046						
CGCCGGCTGGCTGTTGCCGAA	T. profu_5p_45214	T. tepi_5p_29936						
AACGCTGTTGCTGCGACCCG	T. profu_5p_45214	T. tepi_3p_29936						
CGGTGCCAATTCGGACCCACAC	T. profu_5p_29989	T. tepi_5p_19433						
CTTATAGCGGAATGCGCCCTG	T. profu_3p_29989	T. tepi_5p_19433						
AACAAACCAGCAAGGCAATG	T. profu_5p_41148	T. tepi_5p_26936						
TTGGGTTTGGCTGTTGATT	T. profu_3p_41148	T. tepi_5p_26936						
GGCGGAAAGTTCGCCCTGCCG	T. profu_5p_54785	T. tepi_5p_36487						
TTGCCAGCGCTGAAAGGCT	T. profu_3p_54785	T. tepi_3p_36487						
CAATCTGTGCTGCTGGAATC	T. profu_5p_30109	T. tepi_5p_19555						
CGTATCTGCTTCGTTAGGATA	T. profu_3p_30109	T. tepi_3p_19555						
TGCCATACTGCGAGCGAGGCTG	T. profu_5p_7879	T. tepi_3p_5471						
TGTCGAGCGGCTGTTGCTCGGT	T. profu_3p_7879	T. tepi_3p_5471						

(Continued)
Table 4. (Continued)

miRNA sequence	T. alkalitolerans JCM 18968	T. australica NP 3b2	T. lucentensis QMT2	T. mesophilica JCM 18969	T. profundimaris WP02111	T. tepidiphila 1-1B	T. xianhensis P-4	T. xiamenensis M-5
CACCGATGCAAGATCTTCG	T. profu_5p_778	T. tepi_5p_20938						
TTCCATATCGTGCTTGATCA	T. profu_3p_778	T. tepi_5p_20938						
ATATTGATGTGCAATAATGTGCA	T. profu_5p_32260	T. tepi_5p_20938						
GCGTTGGAGGATGCAATGCA	T. profu_3p_32260	T. tepi_5p_20938						
CTATGAGTAATGGCGCACGA	T. profu_3p_3800	T. tepi_5p_2570						
TGTAATGTTCTCTATCTGCA	T. profu_5p_19048	T. tepi_5p_11782						
TGCGGTTGGCGGTAACACCGCGG	T. profu_3p_19048	T. tepi_5p_11782						
TTCAACACGCGCGGTGATGGA	T. profu_5p_38661	T. tepi_5p_25251						
ATTTGATTGCCCTAAAGG	T. profu_5p_42425	T. tepi_5p_25251						
GTTTTTGTAGTATGTAACCTG	T. profu_3p_42425	T. tepi_5p_27927						
ATGCTCAACTGACACGCGAT	T. profu_3p_42425	T. tepi_5p_27927						
AGCAAAAGCTGCCCTAATTAAGG	T. profu_5p_21694	T. tepi_5p_13698						
CTCTGCTTTCAGACGAAATT	T. profu_5p_21694	T. tepi_5p_13698						
TGTTTTTCTGACGTGTTC	T. profu_5p_49945	T. tepi_5p_33271						
GCTTTTTCTCAAAAAGGTTT	T. profu_5p_49945	T. tepi_5p_33271						
TTGCTGTCAAAACAGCAAGGA	T. profu_5p_17170	T. tepi_5p_11264						
AAGGATTGCCGTCGGCTATTACT	T. profu_5p_17170	T. tepi_5p_11264						
TGAGCGAGAGCTTTCCTCAT	T. profu_5p_51572	T. tepi_5p_34376						
AGGTGCGCTTTCGATACCCCGG	T. profu_3p_51572	T. tepi_5p_34376						
GTCGCGTTGTCGCCTTGT	T. profu_5p_12216	T. tepi_5p_8405						
TTCAAGGACCGGTGACTGTG	T. profu_3p_12216	T. tepi_3p_8405						
AGACGTGACCTTGGGTGCCT	T. xian_5p_16668	T. xiam_5p_26826						

(Continued)
Table 4. (Continued)

miRNA sequence	T. alkali tolerans JCM 18968^T	T. australica NP 3b2^T	T. lucentensis QMT2^T	T. mesophila JCM 18969^T	T. profundimar is WP0211^T	T. tepidiphila 1-1B^T	T. xianhensis P-4^T	T. xiamenensis M-5^T
CGTCTTTTTTATGCTGGTGG	T. xian_3p_16668	T. xiam_3p_26826	T. xian_5p_6822	T. xiam_5p_11702	T. xian_3p_6822	T. xian_3p_11702	T. xian_3p_6822	T. xian_3p_11702
CAATTTAATCCCTACGCCG	T. aust_3p_16668	T. aust_3p_26826	T. aust_5p_11702	T. aust_5p_11702	T. aust_5p_6822	T. aust_5p_11702	T. aust_5p_6822	T. aust_5p_11702
AGGGTTTTTTATGGTGGTC	T. tepi_3p_26826	T. tepi_3p_11702	T. tepi_5p_6822	T. tepi_5p_11702	T. tepi_5p_6822	T. tepi_5p_11702	T. tepi_5p_6822	T. tepi_5p_11702
CAATTAAACATTTGACCCATG	T. luce_3p_16668	T. luce_3p_26826	T. luce_5p_11702	T. luce_5p_11702	T. luce_5p_6822	T. luce_5p_11702	T. luce_5p_6822	T. luce_5p_11702

https://doi.org/10.1371/journal.pone.0212996.t004
Conclusions

Over 242 million reads of 18 to 33 nucleotides length were generated from nine bacterial species using high-throughput sequencing technology. Using miRDeep2 and CID-miRNA analyses, a total of 984 putative miRNAs were eventually identified, with typical miRNA length of 19–25 nucleotides. Compared to other species, these detected putative miRNAs were not conserved to those reported in *E. coli* DH10B and *S. mutans* ATCC 25175. This study presents the first comprehensive list of computationally identified miRNAs in 9 bacterial species of the genus *Thalassospira* without experimental verification. The further work, however, is needed to validate these candidates experimentally. In addition, further identification of miRNA targets will provide insights into the fundamental functions of miRNAs in the physiology of these bacteria.

Supporting information

S1 Fig. Phylogenetic tree of valid species of the genus *Thalassospira*. (DOCX)

S1 Table. Whole genome sequences of bacteria of the genus *Thalassospira* available in GenBank. (DOCX)

S2 Table. miRNAs retrieved from bacteria of the genus *Thalassospira* as identified by CID-miRNA analysis. (DOCX)

Author Contributions

Conceptualization: Thi Hoang Yen Dang, Sonika Tyagi, Elena P. Ivanova.

Investigation: Thi Hoang Yen Dang, Glenn D’Cunha, Elena P. Ivanova.

Methodology: Thi Hoang Yen Dang, Sonika Tyagi.

Writing – original draft: Thi Hoang Yen Dang, Elena P. Ivanova.

Writing – review & editing: Mrinal Bhave, Russell Crawford, Elena P. Ivanova.

References

1. Lee RC, Feinbaum RL, Ambros V. The *C. elegans* heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75(5):843–54. https://doi.org/10.1016/0092-8674(93)90529-Y PMID: 8252621

2. Cullen BR. Viruses and microRNAs. Nature Genet. 2006; 38:S25–S30. https://doi.org/10.1038/ng1793 PMID: 16736021

Table 5. miRNAs present in different locations of the same *Thalassospira* species.

miRNA sequence	*T. alkalitolerans JCM 18968* T	*T. lucentensis QMT2* T	*T. xianhensis P-4* T
AATTAATGGGTCTCCTGACC	T.alka_3p_6323 T.alka_3p_6324		
ATCCGGCCGTCGCGGGAATGA			T. xian_3p_2740 T. xian_3p_2738
TGGGTCGTGCACGTACTTTTAG	T. luce_5p_528656 T. luce_5p_528636		
TGGGTCGTGCACGTACTTTTAG	T. luce_3p_528656 T. luce_3p_528636		
TGGGTCGTGCACGTACTTTTAG	T. luce_5p_389406 T. luce_5p_389408		
TCACCCGACCCTGACCATGGTGC	T. luce_3p_389406 T. luce_3p_389408		

https://doi.org/10.1371/journal.pone.0212996.t005

PLOS ONE | https://doi.org/10.1371/journal.pone.0212996 March 12, 2019 15 / 17
3. Takeda A, Watanabe Y. Small RNA world in plants. Tanpakushitsu Kakusan Koso. 2006; 51(16 Suppl):2463–70. PMID: 17471964
4. Gottesman S. Micros for microbes: Non-coding regulatory RNAs in bacteria. Trends Genet. 2005; 21 (7):399–404. https://doi.org/10.1016/j.tig.2005.05.008 PMID: 15913835
5. Plasterk RHA. Micro RNAs in animal development. Cell. 2006; 124(5):877–81. https://doi.org/10.1016/j.cell.2006.02.030 PMID: 16530032
6. Gottesman S, Storz G. Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol. 2011; 3(12).
7. Gierga G, Voss B, Hess WR. Non-coding RNAs in marine Synechococcus and their regulation under environmentally relevant stress conditions. ISME Journal. 2012; 6(8):1544–57. https://doi.org/10.1038/ismej.2011.215 PMID: 22258101
8. Nguyen A, Jacq A. Small RNAs in the Vibrionaceae: An ocean still to be explored. Wiley Interdiscip Rev RNA. 2014; 5(3):381–92. https://doi.org/10.1002/wrna.1218 PMID: 24458378
9. Plasterk RHA. Micro RNAs in animal development. Cell. 2006; 124(5):877–81. https://doi.org/10.1016/j.cell.2006.02.030 PMID: 16530032
10. Kang SM, Choi JW, Lee Y, Hong SH, Lee HJ. Identification of microRNA-Size, Small RNAs in Escherichia coli. Curr Microbiol. 2013; 67(5):609–13. https://doi.org/10.1007/s00284-013-0411-9 PMID: 23783561
11. Shivaaji S, Sathyarayana Reddy G, Sundareswaran VR, Thomas C. Description of Thalassospira lohafexi sp. nov., isolated from Southern Ocean, Antarctica. Arch Microbiol. 2015; 197(5):827–37. https://doi.org/10.1007/s00203-015-1092-5 PMID: 25702315
12. Nogi Y, Yoshizumi M, Miyazaki M. Thalassospira povalilytica sp. nov., a polyvinyl-alcohol-degrading marine bacterium. Int J Syst Evol Microbiol. 2014; 64(PART 4):1149–53. https://doi.org/10.1099/ijs.0.058321-0
13. Nogi Y, Yoshizumi M, Miyazaki M. Thalassospira povalilytica sp. nov., a polyvinyl-alcohol-degrading marine bacterium. Int J Syst Evol Microbiol. 2014; 64(PART 4):1149–53. https://doi.org/10.1099/ijs.0.058321-0
14. Ivanova EP, López-Pérez M, Webb HK, Ng HJ, Dang THY, Zhukova NV, et al. Thalassospira australica sp. nov., isolated from seawater. Antonie van Leeuwenhoek. 2016; 109(8):1091–100. https://doi.org/10.1007/s10482-016-0710-9 PMID: 27180097
15. Lai Q, Shao Z. Genome sequence of Thalassospira xiamenensis type strain M-5. J Bacteriol. 2012; 194(24):6957–60. https://doi.org/10.1128/JB.01904-12 PMC3209216
16. Lai Q, Shao Z. Genome sequence of Thalassospira profundimaris type strain WP0211. J Bacteriol. 2012; 194(24):6956–60. https://doi.org/10.1128/JB.01903-12 PMC3510614. PMID: 23290215
17. López-Pérez M, Rodriguez-Valera F, Webb HK, Crawford RJ, Ivanova EP. Genome Sequence of “Thalassospira australica” NP3b2T Isolated from St. Kilda Beach, Tasman Sea. Genom Announc. 2014; 2 (6):e01139–14. https://doi.org/10.1128/genomA.01139-14 PMID: 25995631
18. Hütz A, Schubert K, Overmann J. Thalassospira sp. isolated from the oligotrophic eastern mediterranean sea exhibits chemotaxis toward inorganic phosphate during starvation. Appl Environ Microbiol. 2011; 77(13):4412–21. https://doi.org/10.1128/AEM.00490-11 PMID: 21802377
19. Hu J, Zhang L, Lu X, Zeng S, Zhang Y, Xu H, et al. Medium optimization and fermentation kinetics for κ-carrageenanase production by Thalassospira sp. Fjfst-332. Molecules. 2016; 21(11):1479. https://doi.org/10.3390/molecules21111479 PMID: 27827964
20. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal. 2011; 17(1):1–3. https://doi.org/10.14806/ez.17.1.200 pp. 10–12.
21. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009; 10(3):1–10. https://doi.org/10.1186/gb-2009-10-3-r25 PMID: 19261174
22. Ozhuner E, Eldem V, Ipek A, Okay S, Sakcali S, Zhang B, et al. Boron stress responsive miRNAs and their targets in barley. PLoS ONE. 2013; 8(3). https://doi.org/10.1371/journal.pone.0059543 PubMed Central PMCID: PMCPMC3608689. PMID: 23555702
23. Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspani R, Knespel S, et al. Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechn. 2008; 26(4):407–15. https://doi.org/10.1038/nbt.1394 PMID: 18392026
24. Tyagi S, Vaz C, Gupta V, Bhattacharyya D, Srinivasan A, et al. CID-miRNA: A web server for prediction of novel miRNA precursors in human genome. Biochem Biophys Res Commun. 2008; 372(4):831–4. https://doi.org/10.1016/j.bbrc.2008.05.134 PMID: 18522801
25. Gkirtzou K, Tsamardinos I, Tsakalides P, Poirazi P. MatureBayes: a probabilistic algorithm for identifying the mature miRNA within novel precursors. PLoS ONE. 2010; 5(8):1–14. https://doi.org/10.1371/journal.pone.0011843 PMID: 20700506

26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987; 4(4):406–25. https://doi.org/10.1093/oxfordjournals.molbev.a040454 PMID: 3447015

27. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980; 16(2):111–20. https://doi.org/10.1007/BF01731581 PMID: 7463489

28. Hall BG. Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol. 2013; 30(5):1229–35. https://doi.org/10.1093/molbev/mst012 PMID: 23486614

29. Hackenberg M, Huang PJ, Huang CY, Shi BJ, Gustafson P, Langridge P. A Comprehensive expression profile of miRNAs and other classes of non-coding small RNAs in barley under phosphorus-deficient and-sufficient conditions. DNA Research. 2013; 20(2):109–25. https://doi.org/10.1093/dnares/dss037 PMID: 23266877

30. Millar AA, Waterhouse PM. Plant and animal microRNAs: Similarities and differences. Funct Integr Genomics. 2005; 5(3):129–35. https://doi.org/10.1007/s10142-005-0145-2 PMID: 15875226

31. Tempel S, Tahi F. A fast ab-initio method for predicting miRNA precursors in genomes. Nucleic Acids Research. 2012; 40(11):1–9. https://doi.org/10.1093/nar/gks146 PMID: 22362754

32. Thakur V, Wanchana S, Xu M, Bruskiewich R, Quick WP, Mosig A, et al. Characterization of statistical features for plant microRNA prediction. BMC Genomics. 2011; 12:108. https://doi.org/10.1186/1471-2164-12-108 PMID: 21324149

33. Bologna NG, Schapire AL, Palatnik JF. Processing of plant microRNA precursors. Briefings in Functional Genomics. 2013; 12(1):37–45. https://doi.org/10.1093/bfgp/els050 PMID: 23148323

34. Wheeler BM, Heimberg AM, Moy VN, Sperling EA, Holstein TW, Heber S, et al. The deep evolution of metazoan miRNAs. Evol Dev. 2009; 11(1):50–68. https://doi.org/10.1111/j.1525-142X.2008.00302.x PMID: 19196333

35. Schreiber AW, Shi B-J, Huang C-Y, Langridge P, Baumann U. Discovery of barley miRNAs through deep sequencing of short reads. BMC Genomics. 2011; 12:1–21. https://doi.org/10.1186/1471-2164-12-129 WOS:000288489600001. PMID: 21352554

36. Kaper JB, Nataro JP, Mobley HLT. Pathogenic Escherichia coli. Nature Rev Microbiol. 2004; 2(2):123–40. https://doi.org/10.1038/nrmicro818 PMID: 15040260

37. Adić D, McShan WM, McLaughlin RE, Savić G, Chang J, Carson MB, et al. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci USA. 2002; 99(22):14434–9. https://doi.org/10.1073/pnas.172501299 PMID: 12397186

38. Zhao T, Zhang R, Wang M. Prediction of candidate small non-coding RNAs in by Agrobacterium by computational analysis. Journal of Biomedical Research. 2010; 24(1):33–42. https://doi.org/10.1016/S1674-8301(10)60006-1 PMID: 23554609

39. Livny J, Waldor MK. Identification of small RNAs in diverse bacterial species. Current Opinion in Microbiology. 2007; 10(2):96–101. https://doi.org/10.1016/j.mib.2007.03.005 PMID: 17383222

40. Paczynska P, Grzeszmi A, Szydiowski M. Distribution of miRNA genes in the pig genome. BMC Genetics. 2015; 16(1):1–12. https://doi.org/10.1186/s12863-015-0166-3 PMC4318388. PMID: 25632794