Management strategies of Barrett's esophagus

Giovanni D De Palma

Abstract
Barrett's esophagus is a condition resulting from chronic gastro-esophageal reflux disease with a documented risk of esophageal adenocarcinoma. Current strategies for improved survival in patients with Barrett's adenocarcinoma focus on detection of dysplasia. This can be obtained by screening programs in high-risk cohorts of patients and/or endoscopic biopsy surveillance of patients with known Barrett's esophagus (BE). Several therapies have been developed in attempts to reverse BE and reduce cancer risk. Aggressive medical management of acid reflux, lifestyle modifications, antireflux surgery, and endoscopic treatments have been recommended for many patients with BE. Whether these interventions are cost-effective or reduce mortality from esophageal cancer remains controversial. Current treatment requires combinations of endoscopic mucosal resection techniques to eliminate visible lesions followed by ablation of residual metaplastic tissue. Esophagectomy is currently indicated in multifocal high-grade neoplasia or mucosal Barrett's carcinoma which cannot be managed by endoscopic approach.

INTRODUCTION
Barrett's esophagus (BE) is a condition resulting from chronic gastro-esophageal reflux disease (GERD). The clinical importance of the definition of BE is that it should identify a lesion documented to be at risk of esophageal adenocarcinoma.

Presently, the diagnosis of BE is based on a combination of endoscopic and histologic criteria\(^1,2\). The diagnosis of BE is established when intestinal metaplasia (IM) is found in biopsy specimens obtained from salmon-colored mucosa in the distal esophagus proximal to the gastro-esophageal junction (Figure 1).

DIAGNOSIS
The diagnosis of BE requires systematic biopsy of the abnormal-appearing esophageal mucosa to document IM and to detect dysplasia\(^3\). The “Seattle” protocol with random four-quadrant biopsies taken at 1-2-cm intervals along the endoscopically visible BE is the current recommended procedure in guidelines for the detection of dysplasia in patients with established BE\(^4\). BE is currently graded with use of the Prague circumference and maximum criteria, which is a standardized, validated system based on the circumferential and
maximal extent of the columnar-lined esophagus[7,9].

THE PROBLEM: WHY, WHO, WHEN AND HOW TO TREAT FOR BE

BE develops in in approximately 5\% to 15\% of patients with gastro-esophageal reflux undergoing endoscopic evaluation and in 1\% to 2\% of unselected population undergoing endoscopy[10-14]. Evidence from one case series suggests that at least 60\% of patients with BE develop the disease as a result of chronic reflux; other condition of mucosal inflammation of the lower esophagus, such as mucosal damage by chemotherapy, non-steroidal anti-inflammatory drugs, and viral infections are associated with the development of BE in about 1\% of cases respectively[15-19].

BE is associated with an increased risk of adenocarcinoma of the esophagus. Patients with BE are about 40 times more likely to have esophageal adenocarcinoma (EAC) than those without IM. The risk for an individual patient with BE has been estimated to range from 1 in 50 to 1 in 200 patient-years, or roughly 0.5\% per year. Recent large cohort studies suggest the rate of progression is 0.1\%–0.3\% per year[20-23].

Barrett’s adenocarcinoma is considered a multistep process evolving from normal squamous mucosa to metaplasia to dysplasia to carcinoma. Why such a progression occurs, who is at risk, and what promotes these changes remain unclear. Clinical and demographic factors, such as, age, male gender, longer duration and increased frequency of GERD symptoms, length of BE segment are associated with modestly increased odds of progression to EAC in some studies[24,29]. Biomarkers such as aneuploidy and p53 loss have been recently associated with increased risk of progression to high-grade dysplasia (HGD) and/or EAC[24,37].

At present, the strongest known predictor of cancer risk in the setting of BE is the degree of dysplasia. Subjects with no dysplasia have extremely low cancer rates for the five years following the index endoscopy. Conversely, subjects with HGD have rates reported as high as 10\% per year[38-40].

It is of paramount importance that the correct diagnosis is established. In many instances, especially in the presence of severe inflammation, there is an inter-observer disagreement on the diagnosis and grading of dysplasia. All biopsies with suspected dysplasia should be reviewed by a second “expert” pathologist[41-43].

Several therapies have been developed in attempts to reverse BE and reduce cancer risk. Aggressive medical management of acid reflux, lifestyle modifications, anti-reflux surgery[44-49], and endoscopic treatments[50-52] have been recommended for many patients with BE. Whether these interventions are cost-effective or reduce mortality from esophageal cancer remains controversial.

MANAGEMENT STRATEGIES

Screening and surveillance for BE

Current strategies for improved survival in patients with Barrett’s adenocarcinoma focus on detection of dysplasia. This can be obtained by screening programs in high-risk cohorts of patients and/or endoscopic biopsy surveillance of patients with known BE.

There is inadequate evidence of benefit to recommend endoscopic screening for BE in the general population of patients with GERD who do not have risk factors[53-58]. Well-established risk factors for BE include age older than 50 years, male sex, white race, chronic GERD[1-5], hiatal hernia[59], elevated body mass index, and intra-abdominal distribution of body fat[60,61]. The risk factors can be used to determine the threshold for endoscopy in patients with GERD to screen for the presence of BE[2].

Endoscopic surveillance for patients with BE is recommended to identify curable neoplasia. Survey data indicate that although surveillance is widely practiced, there is marked variability in the technique and interval of surveillance because practice guidelines are not widely followed (Table 1)[62].

Endoscopic imaging for the detection of dysplasia and early cancer: Endoscopy with multiple systematic biopsies (the “Seattle” protocol) is needed for the detection of dysplasia or adenocarcinoma for the surveillance of BE. This approach, requiring a large number of
biopsies, is time consuming and has several limitations, including sampling error and inconsistent histological interpretation.

Several endoscopic imaging techniques to improve the accuracy of endoscopic diagnosis, have been developed and tested recently, with variable results. Enhanced optical imaging techniques may improve the efficiency and accuracy of endoscopic surveillance. Enhanced techniques can generally be categorized as broad-field (red-flag) techniques, such as high-definition/high-resolution white-light endoscopy (HD-WLE) and narrow-band imaging (NBI), and focal techniques, such as confocal laser endomicroscopy (CLE). The broad-field techniques are good for providing an overview of the entire BE segment, and point out an area of interest, whereas focal techniques can provide greater detail of the area of interest (Figures 2 and 3).

Recent reports demonstrated that, in BE patients undergoing surveillance endoscopy, CLE imaging with targeted biopsies significantly improved the yield of biopsies for dysplasia compared with standard endoscopy with random biopsies when CLE imaging is conducted on suspect areas evidenced with both HD-WLE and NBI. Similarly, CLE was useful as a tool to identify nondysplastic BE, and hence potentially to reduce the number of biopsies needed.

Table 1 Guidelines for evaluation and management of Barrett’s esophagus

ACG	ASGE	AGA	BSG	
No-dysplasia	Two esophageal examination with biopsy within 1 yr and follow up with endoscopy every 3 yr	Two consecutive esophageal examination with biopsy within 1 yr and follow up with endoscopy every 3 yr	Assess within 1 yr and if no dysplasia, defer for 5 yr or until cancer therapy is not possible of life expectancy is limited	Surveillance every 2 yr, if appropriate
Indefinite		Repeat biopsy after 8 wk of acid suppression, if evidence of acute inflammation due to gastro-esophageal acid reflux		Assess with extensive biopsies after course of proton pump inhibitors and return to routine surveillance, if no definite dysplasia at 6 mo
LGD				Extensive biopsy after intensive acid suppression for 8-12 wk; surveillance every 6 mo if dysplasia persist; surveillance intervals of 2-3 yr if regression occurs on two sequential examinations
HGD	Document any mucosal irregularities, repeat esophageal examination with biopsy within 3 mo, with pathologist’s confirmation, to eliminate the possibility of cancer; follow up with endoscopic mucosal resection in the case of any mucosal irregularity; then intense endoscopic surveillance every 3 mo or an intervention, such as esophagectomy or ablation, in the case of flat mucosa	Diagnosis should be confirmed by a pathologist; surgical candidates can choose to have a surgery or endoscopic therapy; follow up patients who choose surveillance every 3 mo for 1 yr with several large biopsies every 1 cm along esophagus; after 1 yr without cancer detection, surveillance duration can be lengthened, provided dysplastic changes are absent on two subsequent examinations	Diagnosis should be confirmed by two pathologists (if there is disagreement about the presence of dysplasia then re-examine in 2 yr)	Esophagectomy recommended if changes persist after intensive acid suppression, if PPI surveillance can be offered provided follow up with endoscopy is every 3 mo with a minimum of eight biopsies every 2 cm along esophagus

ACG: American College of Gastroenterology; ASGE: American Society for Gastrointestinal Endoscopy; AGA: American Gastroenterological Association; BSG: British Society of Gastroenterology; LGD: Low-grade dysplasia; HGD: High-grade dysplasia.

DRUG THERAPY

Acid suppressive therapy, specifically proton pump inhibitors (PPIs), has been shown to improve symptoms and to heal and prevent relapse of erosive esophagitis in patients with BE. Evidence to support use of PPIs, in patients with BE solely to reduce risk of progression to dysplasia or cancer is indirect and has not been proven in a long-term controlled trial. Epidemiologic data suggest a lower risk of progression in PPI users. There is also some evidence to suggest that long-term therapy may induce regression of IM and promote the development of squamous islands.

There is epidemiologic and experimental evidence to suggest that chemoprevention using non-steroidal anti-inflammatory drugs, aspirin, and selective cyclooxygenase-2 inhibitors may reduce the risk of cancer in BE patients. However, human trials to date has not proved that these treatments are associated with a lower risk for neoplastic progression.

The A phase III, randomised study of aspirin and esoprosalzolé chemoprevention in Barrett’s metaplasia trial currently underway is seeking to determine the effects of high- and low-dose proton pump inhibitor therapy with and without low-dose aspirin as BE chemoprevention.
Endoscopic treatment is focused on destruction of the existing metaplastic-dysplastic tissue using different modalities that eliminate the mucosa. The theory behind endoscopic treatment is that the injury of the metaplastic-dysplastic BE combined with vigorous acid suppression or with antireflux surgery would lead to reversion of the BE to squamous epithelium and reduce the risk of progression to cancer\cite{111-115}.

Endoscopic treatment modalities include endoscopic resection techniques such as endoscopic mucosal resection and endoscopic submucosal dissection\cite{114} and endoscopic ablation therapy\cite{116,117}, such as argon plasma coagulation (APC)\cite{118,119}, laser ablation, photodynamic therapy (PDT)\cite{120}, radiofrequency ablation (RFA)\cite{121,122}, and cryotherapy\cite{123-127}.

Current treatment requires combinations of mucosal resection techniques to eliminate visible lesions followed by ablation of residual metaplastic tissue. Endoscopic resection of focal lesions is currently the only method to accurately and reliably determine the depth of invasion of a superficial lesion since it is the only endoscopic technique that provides histology.

Several studies have reported on a variety of ablation methods and have demonstrated difficulty in achieving complete eradication of BE. Thermal ablative modalities, such as APC, and laser therapy suffer from several pitfalls including a not homogeneous ablation of the
mucosa and inconsistent depth of tissue penetration causing that some glands can persist under the neosquamous epithelium\cite{128,129}.

At present, after the areas of mucosal abnormality are removed, ablation of the residual Barrett's mucosa is most commonly performed with PDT or RFA. Photodynamic therapy has been proved to be effective for dysplasia, with a success rate of \(> 90\%\). However, following this treatment, there is a high rate of complication and side effects, mainly characterized by strictures and photosensitivity\cite{132,136-138}. Radiofrequency ablation is associated with fewer complications since it has a limited depth of injury, although stricture formation is approximately \(6\%\) in some prospective series\cite{133,137}. After RFA, complete eradication of dysplasia was reported in \(> 90\%\) of patients with LGD and \(> 80\%\) of patients with HGD, 1 year after the initial treatment. After 3 years, complete eradication of dysplasia and complete eradication of IM was reported in \(98\%\) and \(91\%\) of patients, respectively. At 5 years follow up, complete eradication of IM was demonstrated in \(92\%\) of the patients\cite{138-142}.

Buried metaplasia is reported less frequently after RFA (< 1%) than after other different ablative endoscopic therapies, including PDT. However RFA is a relatively new procedure and, therefore, available studies on RFA describe only brief follow-up intervals\cite{131,143}.

Because of the esophagus remains after endoscopic therapy, surveillance endoscopy at regular intervals, is necessary, even after complete ablation of BE has been accomplished.

SURGICAL THERAPY

As development of BE is based on gastro-esophageal reflux, a potential concept would be to stop reflux by anti-reflux surgery and thereby interrupt the mechanisms of malignant degeneration. Patients who are appropriate surgical candidates may elect anti-reflux surgery\cite{2,120,130-132}. Fundoplication effectively controls reflux symptoms in most patients\cite{149,150}. Surgical control of reflux disease, however, has not been found to be associated with a decrease in the incidence of esophageal cancer\cite{145,146}.

Before the advent of endoscopic therapies, esophagectomy was the primary treatment option for patients with HGD.

Esophagectomy offers the most definite treatment in patients with BE with HGD (in particular in patients with multifocal HGD) since it eliminates all of the Barrett's epithelium preventing the risk of progression. In patients with HGD, a benefit of esophagectomy includes the treatment of an occult carcinoma (surgical series summarizing the incidence of occult adenocarcinoma, in patients with the preoperative diagnosis of HGD in resected series show an incidence ranging from \(0\%\) to \(73\%\))\cite{139,137-138}.

The standard surgical resection in most patients includes a total esophagectomy with a transhiatal or trans-thoracic approach, and reconstruction with gastric pull-up or tubularized gastric conduit and the anastomosis performed in the neck or the high chest. In some cases esophageal resection could be performed minimally invasively. Limited vagal-sparing surgery like esophageal stripping or Merendino’s operation is currently indicated in multifocal high-grade neoplasia or mucosal Barrett's carcinoma which cannot be managed by endoscopic approach. Strong consideration should be given for the performance of surgery in a high-volume hospital, by a specialty-trained surgeon with a large-volume esophageal practice\cite{146,147}.

CONCLUSION

BE is a premalignant condition, with dysplasia usually preceding the development of adenocarcinoma. Patients with chronic reflux, especially white males, have the highest risk. Reducing reflux either medically or surgically may diminish the occurrence and/or progression of disease. Management of BE may vary from essentially a surveillance strategy to highly invasive esophagectomy.

Several therapies have been developed in attempts to reverse BE and reduce cancer risk, such as medical management of acid reflux, antireflux surgery, and endoscopic treatments. Whether these interventions are cost-effective or reduce mortality from esophageal cancer remains controversial. Endoscopic mucosal ablation techniques show promise as emerging therapeutic options. Current treatment requires combinations of endoscopic mucosal resection techniques to eliminate visible lesions followed by ablation of residual metastatic tissue. Esophagectomy is currently indicated in multifocal high-grade neoplasia or mucosal Barrett’s carcinoma which cannot be managed by endoscopic approach.

REFERENCES

1. Sampliner RE. Updated guidelines for the diagnosis, surveillance, and therapy of Barrett's esophagus. *Am J Gastroenterol* 2002; 97: 1898-1909.
2. Spechler SJ, Sharma P, Souza RF, Inadomi JM, Shaheen NJ. American Gastroenterological Association medical position statement on the management of Barrett’s esophagus. *Gastroenterology* 2011; 140: 1084-1091.
3. Wang KK, Sampliner RE. Updated guidelines 2008 for the diagnosis, surveillance and therapy of Barrett’s esophagus. *Am J Gastroenterol* 2008; 103: 788-797.
4. Sharma P, McQuaid K, Dent J, Fennerty MB, Sampliner R, Spechler S, Cameron A, Corley D, Falk G, Goldblum J, Hunter J, Jankowski J, Lundell L, Reid B, Shaheen NJ, Sonnenberg A, Wang K, Weinstein W. A critical review of the diagnosis and management of Barrett’s esophagus: the AGA Chicago Workshop. *Gastroenterology* 2004; 127: 310-330.
5. Hirota WK, Zuckerman MJ, Adler DG, Davila RE, Egan J, Leighton JA, Qureshi WA, Rajan E, Fanelli R, Wheeler-Harbaugh J, Baron TH, Faigel DO. AGSE guideline: the role of endoscopy in the surveillance of premalignant conditions of the upper GI tract. *Gastrointest Endosc* 2006; 63: 570-580.
6. Reid BJ, Blount PL, Feng Z, Levine DS. Optimizing endoscopic biopsy detection of early cancers in Barrett’s high-grade dysplasia. *Am J Gastroenterol* 2000; 95: 3979-2006.
7. Anand O, Wani S, Sharma P. When and how to grade Barrett’s columnar metaplasia: the Prague system. *Best Pract Res Clin Gastroenterol* 2008; 22: 661-669.
Sharma P, Dent J, Armstrong D, Bergman JJ, Gossner L, Hoshihara Y, Jankowski JA, Jungard O, Lundell L, Tytgat GN, Vieth M. The development and validation of an endoscopic grading system for Barrett’s esophagus: the Prague C & a; M criteria. Gastroenterology 2006; 131: 1392-1399

Vahabzadeh B, Seetharam AB, Cook MB, Wani S, Rastogi A, Bansal A, Early DS, Sharma P. Validation of the Prague C & a; M criteria for the endoscopic grading of Barrett’s esophagus by gastroenterology trainees: a multicenter study. Gastrointest Endosc 2012; 75: 236-241

Falk GW. Barrett’s esophagus. Gastroenterology 2002; 122: 1569-1591

Csendes A, Smok G, Quiróz J, Burdiles P, Rojas J, Castro C, A. Clinical, endoscopic, and functional studies in 408 patients with Barrett’s esophagus, compared to 174 cases of intestinal metaplasia of the cardia. Am J Gastroenterol 2002; 97: 554-564

Lagergren J, Bergström R, Lindgren A, Nyrén O. Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N Engl J Med 1999; 340: 825-831

Solaymani-Dodaran M, Logan RF, West J, Card T, Coupland C. Risk of oesophageal cancer in Barrett’s oesophagus and gastro-oesophageal reflux. Gut 2010; 59: 1603-1606

Cameron AJ. Epidemiology of columnar-lined esophagus and adenocarcinoma. Gastroenterology Clin North Am 1997; 26: 487-494

Jankowski JA, Harrison RF, Perry I, Balkwill F, Tselепис J. Barrett’s metaplasia. Lancet 2000; 356: 2079-2085

Moayyedi P, Talley NJ. Gastro-oesophageal reflux disease. Lancet 2006; 367: 2086-2100

Ronkeni A, Aro P, Kroz I, Kontulainen J, Kärkkäinen J, Syrjänsaari J, Luotonen M, Ylikahri R. Prevalence of Barrett’s oesophagus in the general population: an endoscopic study. Gastroenterology 2005; 129: 1828-1831

Qumseya BJ, Wolfsen CL, Wolfsen HC. Reflux disease and Barrett’s oesophagus. Endoscopy 2011; 43: 962-965

Tytgat GN. Recent developments in gastroesophageal reflux disease and Barrett’s esophagus: ANNO 2012. J Dig Dis 2012; 13: 291-295

Hvid-Jensen F, Pedersen L, Drewes AM, Sørensen HT, Funch-Jensen P. Incidence of adenocarcinoma among patients with Barrett’s oesophagus. N Engl J Med 2011; 365: 1375-1385

Bhat S, Cohen HG, Youssef J, Johnston BT, McManus DT, Gavin AT, Murray LJ. Risk of malignant progression in Barrett’s esophagus patients: results from a large population-based study. J Natl Cancer Inst 2011; 103: 1049-1057

Wani S. Population-based estimates of cancer and mortality in Barrett’s esophagus: implications for the future. Clin Gastroenterol Hepatol 2011; 9: 723-724

Conteduca V, Sansonno D, Ingrassia G, Marangi S, Russi S, Lauletta G, Dammacco F. Barrett’s esophagus and esophageal cancer: an overview. Int J Oncol 2012; 41: 414-424

Spechler SJ. The natural history of dysplasia and cancer in esophagitis and Barrett’s esophagus. J Clin Gastroenterol 2003; 36: 52-55; discussion 526-528

Wiseman EF, Ang YS. Risk factors for neoplastic progression in Barrett’s esophagus. World J Gastroenterol 2011; 17: 3672-3683

Bobryshev YV. Killingsworth MC, Lord RV. Structural alterations of the mucosa stroma in the Barrett’s esophagus metaplasia-dysplasia-adenocarcinoma sequence. J Gastroenterol Hepatol 2012; 27: 1498-1504

Wani S, Falk GW, Post J, Yerian L, Hall M, Wang A, Gupta N, Gaddam S, Singh M, Singh V, Chuang KY, Bookhand V, Gannon T, Kozlowski J, Sud P, Bansal A, Mathur SC, Young P, Cash B, Goldblum J, Lieberman DA, Sampliner RE, Sharma P. Risk factors for progression of low-grade dysplasia in patients with Barrett’s esophagus. Gastroenterology 2011; 141: 1179-1186.e1

Sikkema M, Looman CW, Steyerberg EW, Kerkhof NJ, Kastelein F, van Dekken H, van Vuuren AJ, Bode WA, van der Valk H, Ouwendijk RJ, Giard R, Lesterhuis W, Heinhuus R, Klinkenberg EC, Meijer GA, ter Berg F, Arends JW, Kolkmann JJ, van Baaren J, de Vries RA, Mulder AH, van Tilburg AJ, Offerhaus GJ, ten Kate FJ, Kusters JG, Kuipers EJ, Siersema PD. Predictors for neoplastic progression in patients with Barrett’s Esophagus: a prospective cohort study. Am J Gastroenterol 2011; 106: 1231-1238

di Pietro M, O’Donovan M, Fitzgerald RC. Where is the truth when it comes to cancer risk in Barrett’s esophagus? Gastroenterology 2012; 142: 1245-1247

Souza RF, Meltzer SJ. The molecular basis for carcinogenesis in metaplastic columnar-lined esophagus. Gastroenterol Clin North Am 1997; 26: 583-597

Souza RF. The molecular basis of carcinogenesis in Barrett’s esophagus. J Gastrointest Surg 2010; 14: 937-940

Moyes LH, Going JJ. Still waiting for predictive biomarkers in Barrett’s oesophagus. J Clin Pathol 2011; 64: 742-750

Chen H, Fang Y, Tevebaugh W, Orlando RC, Shaheen NJ, Chen X. Molecular mechanisms of Barrett’s esophagus. Dig Dis Sci 2011; 56: 3405-3426

Cohan S, Orme J, Savas N, Saha R, Eck J, Enszari A, Kuzu I, Palubikyoglu M. Evaluation of Barrett’s esophagus with CK7, CK20, p53, Ki67, and cyclooxygenase expressions using chromoendoscopy. Dis Esophagus 2012 May 16 [Epub ahead of print]

Rabinovich PS, Longton G, Blount PL, Levine DS, Reid BJ. Predictors of progression in Barrett’s esophagus III: baseline flow cytometric variables. Am J Gastroenterol 2001; 96: 3071-3083

Reid BJ, Prevo LJ, Galipeau PC, Sanchez CA, Longton G, Levine DS, Blount PL, Rabinovich PS. Predictors of progression in Barrett’s esophagus II: baseline 17p (p53) loss of heterozygosity identifies a patient subset at increased risk for neoplastic progression. Am J Gastroenterol 2001; 96: 2839-2848

Babar M, Ryan AW, Anderson LA, Segurado R, Turner G, Murray LJ, Murphy SJ, Johnston BT, Comber H, Reynolds JV, McManus R. Genes of the Interleukin-18 Pathway Are Associated With Susceptibility to Barrett’s Esophagus and Esophageal Adenocarcinoma. Am J Gastroenterol 2012; 107: 1331-1341

Wester AP, Sharma P, Topalovski M, Richards R, Cheriyan R, Dixon A. Long-term follow-up of Barrett’s high-grade dysplasia. Am J Gastroenterol 2000; 95: 1888-1893

Miros M, Kerlin P, Walker N. Only patients with dysplasia progress to adenocarcinoma in Barrett’s oesophagus. Gut 1991; 32: 1441-1446

Desai TK, Krishnan K, Samala N, Singh J, Cluley J, Perla S, Howden CW. The incidence of oesophageal adenocarcinoma in non-photographic Barrett’s oesophagus: a meta-analysis. Gut 2012; 61: 970-976

Yantiss RK. Diagnostic challenges in the pathologic evaluation of Barrett esophagus. Arch Pathol Lab Med 2010; 134: 1589-1600

Wani S, Mathur S, Sharma P. How to manage a Barrett’s esophagus patient with low-grade dysplasia. Clin Gastroenterol Hepatol 2009; 7: 27-32

Montgomery E, Bronner MP, Goldblum JR, Greenkorn J, Haber MM, Hart J, Lamps LW, Lauwers GY, Lazenby AJ, Lewin DW, Robert ME, Toledano AY, Shyr Y, Washington K. Reproducibility of the diagnosis of dysplasia in Barrett esophagus: a reaffirmation. Hum Pathol 2001; 32: 368-378

Spechler SJ, Sharma P, Souza RF, Inadomi JM, Shaheen NJ. American Gastroenterological Association technical review on the management of Barrett’s esophagus. Gastroenterology 2011; 140: e18-52; quiz e13

Lekatos L, Karidis NP, Dimitroulis D, Tsigiris C, Kouraklis G, Nikiteas N. Barrett’s esophagus with high-grade dysplasia
De Palma GD. Diagnosis and treatment of Barrett’s esophagus.
the detection of Barrett’s epithelium and Barrett’s associated neoplasia. World J Gastroenterol 2012; 18: 1921-1925
76 De Palma GD. Confocal laser endomicroscopy in the “in vivo” histological diagnosis of the gastrointestinal tract. World J Gastroenterol 2009; 15: 5770-5775
77 Kiesslich R, Gossner L, Goetz M, Dahlmann A, Vieth M, Stolte M, Hoffmann A, Jung M, Nafe B, Galie PR, Neurath MF. In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy. Clin Gastroenterol Hepatol 2006; 4: 979-987
78 Meining A, Saur D, Bajbouj M, Becker V, Pelletier E, Höfler H, von Weyher CH, Schmid RM, Prinz C. In vivo histopathology for detection of gastrointestinal neoplasia with a portable, confocal miniprobe: an examiner blinded analysis. Clin Gastroenterol Hepatol 2009; 7: 536-543
79 Dunbar KB. Endomicroscopy in the evaluation of Barrett’s esophagus. Curr Opin Gastroenterol 2011; 27: 374-382
80 Canto MI. Endomicroscopy of Barrett’s Esophagus. Gastroenterol Clin North Am 2010; 39: 759-769
81 Pohl H, Rösch T, Vieth M, Koch M, Becker V, Anders M, Khalifa AC, Meining A. Miniprobe confocal laser microscopy for the detection of invisible neoplasia in patients with Barrett’s esophagus. Gut 2008; 57: 966-971
82 Dunbar KB, Okolo P, Montgomery E, Canto MI. Confocal laser endomicroscopy in Barrett’s esophagus and endoscopically inapparent Barrett’s neoplasia: a prospective, randomized, double-blind, controlled, crossover trial. Gastrointest Endosc 2009; 70: 645-654
83 Wallace MB, Sharma P, Lightdale C, Wolfson H, Corson E, Bussolino F, Bajbouj M, Bansal A, Rastogi A, Abrams J, Crook JE, Meining A. Preliminary accuracy and interobserver agreement for the detection of intraepithelial neoplasia in Barrett’s esophagus with probe-based confocal laser endomicroscopy. Gastrointest Endosc 2010; 72: 19-24
84 Konda VJ, Chennat JS, Hart J, Waxman I. Confocal laser endomicroscopy: potential in the management of Barrett’s esophagus. Dis Esophagus 2010; 23: E21-263
85 Falk GW. Probe-based confocal endomicroscopy in Barrett’s esophagus: the real deal or another tease? Gastrointest Endosc 2011; 74: 473-476
86 Bertani H, Pigo F, Dabizzi E, Frazzoni M, Mirante VG, Mammo M, Manta R, Coniglario R. Advances in Endoscopic Visualization of Barrett’s Esophagus: The Role of Confocal Laser Endomicroscopy. Gastroenterol Res Pract 2012; 2012: 493561
87 Bajbouj M, Vieth M, Rösch T, Mielke S, Becker V, Anders M, Pohl H, Madisch A, Schuster T, Schmid RM, Meining A. Probe-based confocal laser endomicroscopy compared with standard four-quadrant biopsy for evaluation of neoplasia in Barrett’s esophagus. Endoscopy 2010; 42: 435-440
88 Sharma P, Meining AR, Corson E, Lightdale CJ, Wolfson HC, Bansal A, Bajbouj M, Galmiche JP, Abrams JA, Rastogi A, Gupta N, Michalek JE, Lauwers GY, Wallace MB. Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial. Gastrointest Endosc 2011; 74: 465-472
89 Becker V, Vieth M, Bajbouj M, Schmid RM, Meining A. Confocal laser scanning fluorescence microscopy for in vivo determination of microvessel density in Barrett’s esophagus. Endoscopy 2008; 40: 888-891
90 Klinkenberg-Knol EC, Niel F, Dent J, Snel P, Mitchell B, Prichard P, Lloyd D, Havu N, Frame MH, Romanj C, Wulan A. Long-term omeprazole treatment in resistant gastroesophageal reflux disease: efficacy, safety, and influence on gastric mucosa. Gastroenterology 2000; 119: 1111-1119
91 Becher A, El-Serag H. Systematic review: the association between symptomatic response to proton pump inhibitors and health-related quality of life in patients with gastroesophageal reflux disease. Aliment Pharmacol Ther 2011; 34: 618-627
92 Peters FT, Ganesh S, Kuipers EJ, Sluiter WJ, Klinkenberg-Knol EC, Lamers CB, Kleibeuker JH. Endoscopic regression of Barrett’s esophagus during omeprazole treatment: a randomised double blind study. Gut 1999; 45: 489-494
93 Sririsan R, Katz PO, Ramakrishnan A, Katzka DA, Vela MF, Castell DO. Maximal acid reflux control for Barrett’s oesophagus: feasible and effective. Aliment Pharmacol Ther 2001; 15: 519-524
94 Wilkinson SP, Biddlestone L, Gore S, Shepherd NA. Regression of columnar-lined (Barrett’s) oesophagus with omeprazole 40 mg daily: results of 5 years of continuous therapy. Aliment Pharmacol Ther 1999; 13: 1205-1209
95 Abu-Sneineh A, Tam W, Schoeman M, Fraser R, Ruszkiewicz AR, Smith E, Drew PA, Dent J, Holloway RH. The effects of high-dose omeprazole on gastric and oesophageal acid exposure and molecular markers in Barrett’s oesophagus. Aliment Pharmacol Ther 2010; 32: 1023-1030
96 Kastelein F, Spanader MC, Biermann K, Vucelic B, Kuipers EJ, Bruno MJ. Role of acid suppression in the development and progression of dysplasia in patients with Barrett’s esophagus. Dig Dis 2011; 29: 499-506
97 El-Serag HB, Aguirre TV, Sanders CB, Kuebeler S, Bhattacharyya A, Sampliner RE. Proton pump inhibitors are associated with reduced incidence of dysplasia in Barrett’s esophagus. Am J Gastroenterol 2004; 99: 1877-1883
98 Hillman LC, Chiragakis L, Shadbolt B, Kaye JL, Clarke AC. Effect of proton pump inhibitors on markers of risk for high-grade dysplasia and oesophageal cancer in Barrett’s oesophagus. Aliment Pharmacol Ther 2008; 27: 321-326
99 Gore S, Healey CJ, Sutton R, Eyre-Brook IA, Gear MW, Shepherd NA, Wilkinson SP. Regression of columnar lined (Barrett’s) oesophagus with continuous omeprazole therapy. Aliment Pharmacol Ther 1993; 7: 623-628
100 Corley DA, Kerlikowske K, Verma R, Buffer P. Protective association of aspirin/NSAIDs and esophageal cancer: a systematic review and meta-analysis. Gastroenterology 2003; 124: 47-56
101 Nguyen DM, Richardson P, El-Serag HB. Medications (NSAIDs, statins, proton pump inhibitors) and the risk of esophageal adenocarcinoma in patients with Barrett’s esophagus. Gastroenterology 2010; 138: 2260-2266
102 Thrift AP, Pandey N, Smith KJ, Green AC, Webb PM, Whiteman DC. The use of nonsteroidal anti-inflammatory drugs and the risk of Barrett’s oesophagus. Aliment Pharmacol Ther 2011; 34: 1235-1244
103 Liao LM, Vaughan TL, Corley DA, Cook MB, Casson AG, Kamangar F, Abnet CC, Risch HA, Giffen C, Freedman ND, Chow WH, Sadeghi S, Pandeya N, Whiteman DC, Murray LJ, Bernstein L, Gammon MD, Wu AH. Nonsteroidal anti-inflammatory drug use reduces risk of adenocarcinomas of the esophagus and esophageo-gastric junction in a pooled analysis. Gastroenterology 2012; 142: 442-452.e5; quiz e22-23
104 Omer ZB, Ananthakrishnan AN, Nattinger KJ, Cole EB, Lin JJ, Kong CY, Hur C. Aspirin protects against Barrett’s esophagus in a multivariate logistic regression analysis. Clin Gastroenterol Hepatol 2012; 10: 722-727
105 Butter NS, Wang KK, Anderson MA, Dierkhising RA, Pacifico RJ, Krishnadath KK, Lutzke LS. The effect of selective cyclooxygenase-2 inhibition in Barrett’s esophagus epithelium: an in vitro study. J Natl Cancer Inst 2002; 94: 422-429
106 Butter NS, Wang KK, Leontovich O, Westcott JY, Pacifico RJ, Anderson MA, Krishnadath KK, Lutzke LS, Burgart LJ. Chemoprevention of esophageal adenocarcinoma by COX-2 inhibitors in an animal model of Barrett’s esophagus. Gastroenterology 2002; 122: 1110-1119
107 Heath EI, Canto MI, Pantosdios S, Montgomery E, Weinsten WM, Herman JG, Dannenberg AJ, Yang VW, Shar AO, Hawk E, Forastiere AA. Secondary chemoprevention of Barrett’s esophagus with celecoxib: results of a randomized
trial. J Natl Cancer Inst 2007; 99: 545-557
108 Winberg H, Lindblad M, Lagergren J, Dahlstrand H. Risk factors and chemoprevention in Barrett’s esophagus—an update. Scand J Gastroenterol 2012; 47: 397-406
109 Jankowski J, Moayyedi P. Re: Cost-effectiveness of aspirin chemoprevention for Barrett’s esophagus. J Natl Cancer Inst 2004; 96: 885-887; author reply 888
110 Jankowski J, Sharma P. Review article: approaches to Barrett’s esophagus treatment—the role of proton pump inhibitors and other interventions. Aliment Pharmacol Ther 2004; 19 Suppl 1: 54-59
111 Tantau M, Mosteau O, Pop T, Tantau A, Mester G. Endoscopic therapy of Barrett’s esophagus and esophageal adenocarcinoma. J Gastrointestin Liver Dis 2010; 19: 213-217
112 Ducroz-Jacobs EM, Martin RC. Endoscopic therapy for Barrett’s esophagus: a review of its emerging role in optimal diagnosis and endoluminal therapy. Ann Surg Oncol 2012; 19: 1575-1582
113 Leggett CL, Prasad GA. High-grade dysplasia and intramucosal adenocarcinoma in Barrett’s esophagus: the role of endoscopic eradication therapy. Curr Opin Gastroenterol 2012; 28: 354-361
114 Ortiz-Fernández-Sordo J, Parra-Blanco A, García-Varona A, Rodríguez-Peláez M, Madrigal-Hoyos E, Waxman I, Rodríguez L. Endoscopic resection techniques and ablative therapies for Barrett’s neoplasia. World J Gastrointest Endosc 2011; 3: 171-182
115 Halsey KD, Greenwald BD. Cryotherapy in the management of esophageal dysplasia and malignancy. Gastrointest Endosc Clin N Am 2010; 20: 75-87, vii-viii
116 Garman KS, Shaheen NJ. Ablative therapies for Barrett’s esophagus. Curr Gastroenterol Rep 2011; 13: 226-239
117 Muguruma N, Okamoto K, Kinura T, Kishi K, Okahisa T, Okamura S, Takayama T. Endoscopic ablation therapy for gastrointestinal superficial neoplasia. Dig Endosc 2012; 24: 139-149
118 Ackroyd R, Tam W, Schoeman M, Devitt PG, Watson DL. Prospective randomized controlled trial of argon plasma coagulation ablation versus endoscopic surveillance of patients with Barrett’s esophagus after antireflux surgery. Gastrointest Endosc 2004; 59: 1-7
119 Byrne JP, Armstrong GR, Attwood SE. Restoration of the normal squamous lining in Barrett’s esophagus by argon beam plasma coagulation. Am J Gastroenterol 1998; 93: 1810-1815
120 Wang KK, Kim JY. Photodynamic therapy in Barrett’s esophagus. Gastrointest Endosc Clin N Am 2003; 13: 483-489, vii
121 Bulsiewicz WJ, Shaheen NJ. The role of radiofrequency ablation in the management of Barrett’s esophagus. Gastrointest Endosc Clin N Am 2011; 21: 713-736
122 Terheggen G, Schumacher B, Neuhaus H. [Radiofrequency ablation using the HALO system in the treatment of Barrett’s oesophagus]. Z Gastroenterol 2012; 50: 601-610
123 Greenwald BD, Dumot JA. Cryotherapy for Barrett’s esophagus and esophageal cancer. Curr Opin Gastroenterol 2011; 27: 363-367
124 Xue HB, Tan HH, Liu WZ, Chen XY, Feng N, Gao YJ, Song Y, Zhao YJ, Cai ZZ. A pilot study of endoscopic spray cryotherapy by pressurized carbon dioxide gas for Barrett’s esophagus. Endoscopy 2011; 43: 379-385
125 Chen AM, Pasricha PJ. Cryotherapy for Barrett’s esophagus: Who, how, and why? Gastrointest Endosc Clin N Am 2011; 21: 111-118
126 Shaheen NJ, Greenwald BD, Peery AF, Dumot JA, Nishioka NS, Wolfsen HC, Burdick JS, Abrams JA, Wang KK, Mallat D, Johnston MH, Zlass AM, Smith JO, Barthel JS, Lightdale CJ. Safety and efficacy of endoscopic spray cryotherapy for Barrett’s esophagus with high-grade dysplasia. Gastrointest Endosc 2010; 71: 680-685
127 Dumot JA, Vargo JJ, Falk GW, Frey L, Lopez R, Rice TW. An open-label, prospective trial of cryospray ablation for Barrett’s esophagus high-grade dysplasia and early esophageal cancer in high-risk patients. Gastrointest Endosc 2009; 70: 635-644
128 Van Laethem JL, Peny MO, Salmon I, Cremer M, Devière J. Intramuscosal adenocarcinoma arising under squamous re-epithelialisation of Barrett’s oesophagus. Gut 2000; 46: 574-577
129 Shand A, Dallal H, Palmer K, Ghosh S, MacIntyre M. Adenocarcinoma arising in column lined oesophagus following treatment with argon plasma coagulation. Gut 2001; 48: 580-581
130 Overholt BF, Wang KK, Burdick JS, Lightdale CJ, Kimmy M, Nava HR, N. All. Radiofrequency ablation of Barrett’s esophagus: outcomes from a prospective multicenter trial. Endoscopy 2005; 37: 185-195
131 Lydady WD, Corbett FS, Kuperman DA, Kalvaria I, Mavriles NG, Shughoury AB, Pruitt RE. Radiofrequency ablation of Barrett’s esophagus: outcomes of 429 patients from a multicenter community practice registry. Endoscopy 2010; 42: 272-278
132 Fleischer DE, Overholt BF, Sharma VK, Reymunde A, Kimmy MB, Chuttani R, Berres M, El C. Long-term results of photodynamic therapy with 5-aminolevulinic acid for superficial Barrett’s cancer and high-grade intraepithelial neoplasia. Gastrointest Endosc 2005; 62: 24-30
133 Sharma VK, Wang KK, Overholt BF, Lightdale CJ, Fennerty MB, Doan PJ, Pleskow DK, Chuttani R, Reymunde A, Santiago N, Chang KJ, Kimmy MB, Fleischer DE. Balloon-based, circumferential, endoscopic radiofrequency ablation of Barrett’s esophagus: 1-year follow-up of 100 patients. Gastrointest Endosc 2007; 65: 185-195
134 dos Santos RS, Bizekis C, Ebrignt M, DeSimone M, Daly BD, Fernando HC. Radiofrequency ablation for Barrett’s esophagus and low-grade dysplasia in combination with an antireflux procedure: a new paradigm. J Thorac Cardiovasc Surg 2010; 139: 713-716
135 Shaheen NJ, Overholt BF, Sampliner RE, Wolfsen HC, Wang KK, Fleischer DE, Sharma VK, Eisen GM, Fennerty MB, Hunter JG, Bronner MP, Goldblum JR, Bennett AE, Mashimo H, Rothstein RI, Gordon SR, Edmundowicz SA, Muthusamy VR, Chang KJ, Kimmy MB, Spechler SJ, Siddiqui AA, Souza RF, Infantolino A, Dumot JA, Falk GW, Galakono JA, Jabe BA, Hawes RH, Hofman BJ, Sharma P, Chak A, Lightdale CJ. Durability of radiofrequency ablation in Barrett’s esophagus with dysplasia. Gastroenterology 2011; 141: 460-468
136 Shaheen NJ, Sharma P, Overholt BF, Wolfsen HC, Sampliner RE, Wang KK, Galakono JA, Bronner MP, Goldblum JR, Bennett AE, Jabe BA, Eisen GM, Fennerty MB, Hunter JG, Fleischer DE, Sharma VK, Hawes RH, Hofman BJ, Rothstein RI, Gordon SR, Mashimo H, Chak KJ, Muthusamy VR, Edmundowicz SA, Spechler SJ, Siddiqui AA, Souza RF, Infantolino A, Falk GW, Kimmy MB, Madiar IC, Chak A, Lightdale CJ. Radiofrequency ablation in Barrett’s esophagus with dysplasia. N Engl J Med 2009; 360: 2277-2288
