Ambulance Services Associated with Extreme Temperatures and Fine Particles in a Subtropical Island

Yu-Chun Wang1,7, Yu-Kai Lin2,7, Yi-Jhih Chen1, Shih-Chan Hung3, Yasmin Zafirah1 & Fung-Chang Sung4,5,6*

This study evaluated the association between the risk of events requiring ambulance services and the ambient temperature and particulate matter of 2.5 μm (PM2.5) and 10 μm (PM10) for populations living in subtropical Taiwan. We used a distributed lag nonlinear model with a quasi-Poisson function to assess the roles of ambient temperature, PM10 and PM2.5 in the use of ambulance services for respiratory distress, coma and unconsciousness, chest pain, lying down in public, headaches/dizziness/vertigo/fainting/syncope and out-of-hospital cardiac arrest (OHCA). The relative risk (RR) and 95% confidence interval (CI) of each specific event were calculated in association with the ambient conditions. In general, the events that required ambulance services had a V-shaped or J-shaped association with the temperature, where the risks were higher at extreme temperatures. The RR of each event was significant when the patients were exposed to temperatures in the 5th percentile (<15 °C); patients with OHCA had the highest adjusted RR of 1.61 (95% CI = 1.47–1.77). The risks were also significant for coma/unconsciousness, headaches/dizziness/vertigo/fainting/syncope, and OHCA but not for respiratory distress, chest pain and lying down in public, after exposure to the 99th percentile temperatures of >30 °C. The risks for use of ambulance services increased with PM exposure and were significant for events of respiratory distress, chest pain and OHCA after exposure to the 99th percentile PM2.5 after controlling for temperatures. Events requiring ambulance services were more likely to occur when the ambient temperature was low than when it was high for the population on the subtropical island of Taiwan. The association of the risk of events requiring ambulance services with PM were not as strong as the association with low temperatures.

The increased frequency and intensity of extreme climate events are important public health concerns1. Studies have reported that ambient temperature and air pollution are important factors with significant impacts associated with various morbidities and mortalities2–4. The associations between mortality and the temperature have been characterized by U-shaped, V-shaped and J-shaped curves5–8, with mortality increasing at extremely cold and/or extremely hot temperatures5–8. Studies have also found that the risk of emergency room visits for out-of-hospital cardiac arrest (OHCA) was greater in cold seasons than in hot seasons9–11. In Taiwan, the cumulative 6-day relative risk of emergency room visits for OHCA reaches 1.73 when the mean temperature is 14 °C in comparison to when it is >27 °C after controlling for air pollution12.

Climate conditions have important impacts on the transport and dispersion of air pollutants. The role of pollutants in health impacts may thus vary with climate conditions13. However, studies may emphasize the impacts of air pollution rather than temperature on health, especially for respiratory diseases. One study that used the Danish Diet, Cancer, and Health cohort to follow 53,695 adults aged 50–65 years for a median of 10.2 years14 found that NO2 exposure increased the risk of hospitalization for asthma and chronic obstructive pulmonary

1Department of Environmental Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli, 320, Taiwan. 2Department of Health and Welfare, University of Taipei College of City Management, 101 Zhongcheng Road Sec. 2, Taipei, 111, Taiwan. 3Department of Emergency Services, Ministry of Health and Welfare Nantou Hospital, Nantou, 540, Taiwan. 4Department of Health Services Administration, China Medical University, 91 Hsueh-Shih Road, Taichung, 404, Taiwan. 5Management Office for Health Data, China Medical University Hospital, Taichung, 404, Taiwan. 6Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, 413, Taiwan. 7These authors contributed equally: Yu-Chun Wang and Yu-Kai Lin. *email: fcsung1008@yahoo.com
Many areas without observatory stations, such as Taoyuan, Miaoli, Changhua, Yunlin, and Nantou, the weather data barometric pressure, that were monitored at 25 real-time surface meteorological observatories around Taiwan. The most urbanized area in Taiwan. The daily cause-specific number of these events requiring ambulance services in 15 cities and counties in Taiwan were identified, with the exception of the Taipei metropolitan area, which is the place where ambulances provide emergency services by the cause of the event from 2006 to 2014 were calculated for all regions of Taiwan. This study adopted the relationship between the use of ambulance services and the ambient temperature conditions and fine particulate matter of 2.5 μm and 10 μm (PM_{2.5} and PM_{10}).

Materials and Methods

Data Sources. We obtained the ambulance services data from the Ministry of Health and Welfare, meteorological data from the Central Weather Bureau (CWB) and hourly air pollution monitoring records from the Environmental Protection Administration (EPA) of Taiwan, all from 2006 to 2014. The ambulance services database contained information on the gender and age of the patient, the reason for the ambulance care call, and the location and time the service was dispatched for the event. All personal identification had been scrambled into surrogate numbers for privacy protection before the data file was released to users. From the medical records in the ambulance services data, the patients diagnosed with respiratory distress, coma and unconsciousness, chest pain, headaches/dizziness/vertigo/fainting/syncope, lying down in public, and out-of-hospital cardiac arrest in 15 cities and counties in Taiwan were identified, with the exception of the Taipei metropolitan area, which is the most urbanized area in Taiwan. The daily cause-specific number of these events requiring ambulance services in the area were analyzed for associations with the ambient environmental conditions.

The CWB meteorological records consisted of hourly weather data, which included the average temperature (°C), maximum temperature (°C), minimum temperature (°C), relative humidity (%), wind speed (m/s), and barometric pressure, that were monitored at 25 real-time surface meteorological observatories around Taiwan. For areas without observatory stations, such as Taoyuan, Miaoli, Changhua, Yunlin, and Nantou, the weather data were obtained from the nearest surface meteorological observatory (Fig. 1). The Taiwan air quality monitoring network has been in operation since 1993 and provides hourly records of ambient air pollutants, such as PM_{10}, sulfur dioxide, nitrogen dioxide (NO_{2}), ozone, and carbon monoxide measured at the 76 stationary monitoring stations distributed throughout the island (Fig. 1). PM_{2.5} has been monitored since 2006. Detailed information on the monitoring instruments, stations, and quality assurance criteria are available through the Taiwan EPA website (https://taqm.epa.gov.tw/taqm/en/default.aspx).

Statistical Models. Nonlinear association between the daily ambient environmental and health risks. The daily means and ranges of the ambient environmental characteristics and the numbers of patients receiving ambulance services by the cause of OHCA, respiratory disorders and chest pain, etc., during a period with extreme temperatures. A recent study found a 2-fold increase in the use of emergency ambulance services in Taiwan within a 10-year period. In contrast to visits for nonurgent conditions, which mostly occur at hospital emergency departments, the number of ambulance emergency calls may be attributed to complicated conditions including delayed arrival times, restricted service times, and hard-to-reach locations. Moreover, a call is considered to be covered if it is responded to within a predefined standard time of 10 minutes in an urban area. Most citizens use public ambulance systems as their initial entry points for receiving urgent care. Ambulance call-out data provide new and valuable real-time information that is useful for assessing the impacts of environmental conditions, such as temperature and air pollution, on human health.

Taiwan is a 150 km wide and 350 km long subtropical island within a relatively narrow range of longitude and latitude (22–25°N, 120–122°E) and an annual average temperature of 24°C, which varies from north to south. The mean daily temperatures in urban areas range from 8°C in the winter to 33°C in the summer. The present study evaluated the relationship between the use of ambulance services and the ambient temperature conditions and fine particulate matter of 2.5 μm and 10 μm (PM_{2.5} and PM_{10}).

We used the basis spline (BS) function with 4 degrees of freedom (df) for the daily average temperature to estimate the association between the temperature and the health risk, and the effects were estimated and accumulated for 4 days. Most studies accumulate the lag effects of the ambient temperature on morbidity from a lag of 0 to a lag of 3. The area-specific daily PM_{10} and PM_{2.5} concentrations were included in the model and set with 4 df. The daily NO_{2} concentration, wind speed (ws) and relative humidity (rh) were included in the model and set in the natural spline (NS) function with 4 df. dow indicates the day of the week. The daily deaths from pneumonia and influenza (PI) were also included in the model. The model selection was based on the lower Akaike information criterion value. The relative risk (RR) and the related 95% confidence interval (CI) calculations for each cause of an emergency ambulance service event that was associated with extreme temperatures in the 5th and 99th percentiles relative to 25°C were controlled for the PM and NO_{2} concentrations, wind speed, relative humidity, holiday effect, day of a
week, mortality from pneumonia and influenza, and long-term time trend. We further calculated the relative risk of each cause by the increase of PM\textsubscript{10} relative to 40\(\mu\)g/m3 PM\textsubscript{10} (Q1) and by the increase of PM\textsubscript{2.5} relative to 20\(\mu\)g/m3 PM\textsubscript{2.5} (Q1), without and with controlling for temperature.

Meta-analysis. We calculated the area-specific relative risk and the 95% CI of the cause-specific ambulance events for each county and city in association with the temperature (Supplementary Figs. S1–S6) and the PM\textsubscript{10} (Supplementary Figs. S7–S12) and PM\textsubscript{2.5} concentrations (Supplementary Figs. S13–S18). We further integrated the relative risk of each ambulance services event for all areas into a relative risk of the ambulance services events for the whole Taiwan area through multivariate meta-analysis. The reference temperature was also set at

Figure 1. Locations of weather observatories and ambient air quality monitor stations.
25 °C, which was the temperature related to the lowest ambulance call risk. The meta-analysis was fitted using a random-effects model with maximum likelihood. The heterogeneity was evaluated using a multivariate extension of the I^2 value, where the values (ranging from 0–100%) increased with increasing heterogeneity. All analyses in this study were carried out using the mgcv, dlnm, and mvmeta packages in R version 3.4.0.

Results

Climate characteristics and trends in the use of ambulance services from 2006 to 2014. During the study period, the island-wide daily mean temperature was 23.4 °C (range: 10.6–31.0 °C), with a mean relative humidity of 76.7% (range: 53.9–93.0%), wind speed of 2.56 m/s (range: 1.14–9.84 m/s), NO2 concentration of 14.6 μg/m3 (range: 3.32–35.8 μg/m3), PM10 concentration of 54.0 μg/m3 (range: 17.4–372 μg/m3) and PM2.5 concentration of 30.2 μg/m3 (range: 6.65–106 μg/m3) (Table 1). The mean daily numbers of cases requiring ambulance services were 79.6 for headaches/dizziness/vertigo/fainting/syncope, 53.4 for coma and unconsciousness, 63.0 for respiratory distress, 27.1 for lying down in public, 31.2 for chest pain, and 30.5 for OHCA. Figure 2 shows the monthly cause-specific events that received ambulance services for the whole population of Taiwan; most types of incidents tended to increase from 2006 to 2014 except for OHCA. Annual peaks usually occurred in December and January during the cold season. The event type with the highest incidence was headaches/dizziness/vertigo/fainting/syncope, followed by respiratory distress, coma and unconsciousness, and chest pain. Supplementary Table 1 lists descriptive statistic for age and sex stratified case number from 2006 to 2014 in Taiwan except Taipei and New Taipei city.

Relative risk of events requiring ambulance services in relation to the ambient temperature and levels of PM$_{10}$ and PM$_{2.5}$. Figure 3 shows that the relative risks of the cause-specific events requiring

![Table 1. Characteristics of daily ambient environment conditions and daily cause-specific cases cared by ambulance services in Taiwan from 2006 to 2014.](image-url)

![Figure 2. Monthly trends of cause-specific ambulance services from 2006 to 2014 in Taiwan.](image-url)
Ambulance services were mainly v-shaped in relation to the daily mean temperature for all areas across Taiwan. Compared with the temperature of 25 °C, the risk was greater at low temperatures than at high temperatures, with a relative risk near 2.0 for the incidence of headaches/blackouts/fainting/syncope and OHCA when the temperature was <10 °C. A completely inverse relationship appeared between the incidence of chest pain and the ambient temperatures. Fig. S6 illustrates the area-specific relationships between OHCA and temperature. An elevated RR for OHCA was observed in most areas when the temperature was low, mainly in Taoyuan, Hsinchu, Miaoli, Taichung, Chunghua, Nantou, Yunlin, Tainan, Kaohsiung, Pingtung, and Yilan.

The cause-specific RRs for the use of ambulance services associated with extreme temperatures in the 5th and 99th percentile are presented in Table 2. All 6 types of ambulance services were significantly elevated in the low-temperature environment (<15 °C), with the highest risk found for OHCA (RR = 1.61; 95% CI: 1.47–1.77). However, the risks were not significant at the extremely high temperatures of >30 °C for respiratory distress (RR = 1.01; 95% CI: 0.93–1.09) or chest pain (RR = 0.91; 95% CI: 0.82–1.00).

Figure 4 illustrates that the cause-specific RRs for the use of ambulance services increased with the daily mean PM10 concentration but were not significant. However, significant risks appeared for chest pain, headaches/blackouts/fainting/syncope and OHCA when the PM2.5 concentration reached approximately 90 μg/m3 (Fig. 3).
Figure 4. Relative risk of cause-specific disorders for ambulance services associated with daily PM$_{10}$ concentrations relative to 40 μg/m3 level by meta-analysis after temperature adjusted.

Figure 5. Relative risk of cause-specific disorders for ambulance services associated with daily PM$_{2.5}$ concentrations relative to at 20 μg/m3 level by meta-analysis after temperature adjusted.
Unconsciousness also represented a relatively large proportion of the group in the United States. El Sayed et al. recently reported that 60% of all emergency medical services were for OHCA in the United States. Our study showed that during the study period, headaches/dizziness/vertigo/fainting/syncope was the most prevalent event (27.9%) requiring ambulance services, and lying down in the public was the least frequent event (9.52%), whereas 10.7% of the services were for OHCA.

Event	PM₁₀, 99th percentile RR 95% CI	PM₁₀, 99th percentile RR 95% CI	PM_{2.5}, 99th percentile RR 95% CI	PM_{2.5}, 99th percentile RR 95% CI
Respiratory distress	1.05 (0.97–1.13)	1.09 (1.01–1.18)	1.15 (1.07–1.24)	1.12 (1.07–1.24)
Coma and unconsciousness	1.01 (0.94–1.09)	1.06 (0.99–1.14)	1.04 (0.96–1.14)	1.03 (0.97–1.10)
Chest pain	0.98 (0.88–1.10)	1.03 (0.92–1.14)	1.11 (1.01–1.23)	1.10 (1.00–1.24)
Headache/dizziness/vertigo/fainting/syncope	0.91 (0.86–0.97)	0.99 (0.93–1.06)	1.02 (0.97–1.09)	1.01 (0.96–1.12)
Lying in public	0.99 (0.90–1.09)	1.02 (0.93–1.13)	0.98 (0.88–1.09)	1.00 (0.92–1.11)
Out-of-hospital cardiac arrest	0.96 (0.87–1.06)	1.03 (0.94–1.14)	1.02 (1.00–1.23)	1.02 (1.00–1.23)

Table 3. Cause-specific relative risk (95% confidence interval) of ambulance services associated with daily 99th percentile PM₁₀ (155 μg/m³) and PM_{2.5} (91 μg/m³) relative to Q1 levels (40 μg/m³ and 20 μg/m³, respectively). RR (95% CI), relative risk (95% confidence interval) estimated after controlling for temperature.

The cause-specific relative risks of events requiring ambulance services associated with the daily 99th percentile of PM₁₀ (155 μg/m³) and PM_{2.5} (91 μg/m³) relative to the Q1 levels (40 μg/m³ and 20 μg/m³, respectively) are shown in Table 3. After controlling for temperature, significant risks were observed for respiratory distress (RR = 1.15; 95% CI: 1.07–1.24), chest pain (RR = 1.11; 95% CI: 1.01–1.23) and OHCA (RR = 1.12; 95% CI: 1.02–1.23) when people were exposed to levels of PM_{2.5} in the 99th percentile.

Discussion

Our study assessed the associations between daily usage of ambulance services and the ambient environmental conditions in Taiwan. This study defined extreme heat and cold as daily mean temperatures in the 99th and 5th percentiles of the temperature distribution. Low temperatures (≤ 15 °C) significantly elevated the risks of all ambulance events, with the highest relative risk for OHCA (RR = 1.61; 95% CI: 1.47–1.77). Ambulance care for comas and unconsciousness, OHCA and headaches/dizziness/vertigo/fainting/syncope were also associated with high temperatures (≥ 31 °C). High levels of PM_{2.5} (approximately 90 μg/m³) were found to be associated with minor increases in the risks of ambulance care for respiratory distress, chest pain, and OHCA (relative risk ranges from 1.11 to 1.15).

This study focused on ambulance calls based on the data from several reports. Respiratory diseases impose a large burden worldwide, and some of these diseases are categorized as the most common causes of severe illness and death worldwide. Complainants of respiratory distress account for 13% of the total emergency medical services calls in the United States. Unconsciousness also represented a relatively large proportion of the group requiring emergency medical services. Chest pain was selected because it is involved in a higher frequency of emergency medical services, reaching as high as 14% of calls in the United States. Headache symptoms are the most common disorder and have been reported by approximately 18% of women and 6% of men in the United States. El Sayed et al. recently reported that 60% of all emergency medical services were for OHCA in the United States. Our study showed that during the study period, headaches/dizziness/vertigo/fainting/syncope was the most prevalent event (27.9%) requiring ambulance services, and lying down in the public was the least frequent event (9.52%), whereas 10.7% of the services were for OHCA.

Limited reports have disclosed associations between the number of ambulance calls and the ambient environment. The temperature-health risk associations may vary across locations and health outcomes. A study in Italy evaluated the cause and age stratification of ambulance dispatches in association with biometeorological discomfort and the apparent temperature in the region of Emilia-Romagna, which is located in northern Italy. Greater risks appeared when the daily mean apparent temperature exceeded 30 °C, and the risk increased with age. In Brisbane, the demand for heat-related ambulance calls increased immediately and lasted for 24 hours when the hourly temperature was higher than 27 °C, and the relative risk reached 1.8 when the temperature was 36 °C. A Huainan study in China found that extreme heat and heatwaves were significantly associated with increased emergency ambulance dispatches but that the risk may decrease with higher density and longer duration of the heatwaves. In the present study, we also observed increased ambulance events when the daily mean temperature exceeded 27 °C. However, all events that required ambulance care were even more frequent when the temperature was lower than 18 °C. Studies have consistently reported that the subtropical climate in Taiwan is associated with greater health risks when temperatures are lower than when temperatures are higher.
PM2.5 are inorganic sulfate, organic carbon, trace elements and ammonium50, while PM10 consists of crustal dust, of the body through air exchange with the lungs52. For the present study, the regional associations between the inversion occurs and consequently exacerbates the accumulation of PM10 and PM2.5. We should take note of the PM2.5 in the 75th percentile with the use of ambulance services has been analyzed. The risk was only significant for emergency room visits and ambulance services to death, represents the various patterns for disease severity associated with medical services36. The amount of time from exposure to the ambient environment to the development of chest pain, and OHCA among ambulance services associated with daily PM10 and PM2.5 in the 99th percentile increased after controlling for temperature (Table 3). In addition, the association of daily PM10 and PM2.5 in the 75th percentile with the use of ambulance services has been analyzed. The risk was only significant for respiratory distress and OHCA. Although the mechanism of the interaction between air pollution and temperature remains unclear, some possible explanations have been proposed. The effect of PM2.5 with high temperatures may be linked to the direct or indirect responses of organisms to heat stress. Low temperatures may cause physiologic stress, thus reducing the physiologic response to air pollution; as a result, people are more susceptible to health events also varies with health indicators. The information on this topic remains unclear due to limited population-based studies worldwide. The progression of disease, from early symptoms, outpatient visits, emergency room visits and ambulance services to death, represents the various patterns for disease severity associated with risk factors. Identifying the risks in an earlier stage of disease may provide critical information for population health interventions and policy planning for future medical services.

The associations between the ambient temperature and health indicators, such as mortality, emergency room visits and outpatient visits, are varied due to population variations in health status, socioeconomic, and access to medical services36. The amount of time from exposure to the ambient environment to the development of health events also varies with health indicators. The information on this topic remains unclear due to limited population-based studies worldwide. The progression of disease, from early symptoms, outpatient visits, emergency room visits and ambulance services to death, represents the various patterns for disease severity associated with risk factors. Identifying the risks in an earlier stage of disease may provide critical information for population health interventions and policy planning for future medical services.
The present study has several strengths. The wide data coverage from the Taiwan ambulance services program and all ambient air quality data ensures the representativeness of exposure for the entire population. The confounding factors, such as the holiday effect, day of the week, long-term trends, and risks associated with infectious pneumonia and influenza, were considered in the data analysis models.

Despite the contributions of this study, there were some limitations. First, our work was an ecological study. The risk was not estimated with individual-based data. In addition, information on some factors that may modify the risk associated with ambulance events, such as smoking, drinking, exercise and socioeconomic status, was not available for evaluation. The hourly measurements of the ambient environment associated with cause-specific ambulance services require further investigation to control for these factors. The patient diagnoses in the medical records of the ambulance services were based on observers conducting the services. No ICD codes were provided.

The rapid increase in the demand for ambulance services in Taiwan with extremely high and low temperatures and air pollution events is a critical issue that should be the focus of the government. Our current study reports that extreme temperatures play a more important role than air pollution in increasing the number of ambulance events. Therefore, our research suggests that the public health sector should take several actions, such as examining ambulance calls, especially during extremely cold temperatures and summer activities; providing medical preparation in critical conditions; and providing educational campaigns for the community to increase their awareness.

Conclusions
This population-based study evaluated the association of events requiring ambulance services, including respiratory distress, coma and unconsciousness, chest pain, headaches/dizziness/vertigo/fainting/syncope, lying down in public, and OHCA, with ambient environmental conditions in Taiwan. The population of the island had a higher risk of OHCA in response to exposure to cold temperatures than in response to hot temperatures, although only 10.7% of ambulance services were for OHCA. In addition, ambulance care for coma and unconsciousness and headaches/dizziness/vertigo/fainting/syncope were also elevated in extreme heat exposure. The high levels of PM may slightly increase the frequency of emergency medical care for respiratory distress, chest pain, and OHCA after controlling for temperature. Among the studied ambulance events, the incidence of OHCA was the most vulnerable to extreme temperatures and higher levels of PM$_{2.5}$. This study provides critical information to health authorities for the development of future ambulance service plans.

Received: 2 August 2019; Accepted: 20 January 2020;
Published online: 18 February 2020

References
1. Frumkin, H., Hess, J., Luber, G., Mallay, J. & McGeehin, M. Climate Change: The Public Health Response. Am. J. Public. Health 98, 435–445 (2008).
2. Zhang, Y. et al. Effect of ambient temperature on emergency department visits in Shanghai, China: a time series study. Environmental Health 13, (2014).
3. Guo, Y. et al. Global variation in the effects of ambient temperature on mortality: a systematic evaluation. Epidemiol. 25, 781–789 (2014).
4. Wang, Y. C. et al. Associating emergency room visits with first and prolonged extreme temperature event in Taiwan: A population-based cohort study. Sci. Total. Envi. 416, 97–104 (2012).
5. Curriero, F. C. Temperature and Mortality in 11 Cities of the Eastern United States. Am. J. Epidemiol. 155, 80–87 (2002).
6. McMichael, A. J. et al. International study of temperature, heat and urban mortality: the ‘SOThURM’ project. Int. J. Epidemiol. 37, 1121–1131 (2008).
7. Anderson, B. G. & Bell, M. L. Weather-Related Mortality. Epidemiol. 20, 205–213 (2009).
8. Baccini, M. et al. Heat Effects on Mortality in 15 European Cities. Epidemiol. M. 711–719 (2008).
9. Nishiyama, C. et al. Association of out-of-hospital cardiac arrest with prior activity and ambient temperature. Resuscitation 82, 1008–1012 (2011).
10. Tanigawa-Sugihara, K. et al. Association between atmospheric conditions and occurrence of out-of-hospital cardiac arrest- 10-year population-based survey in Osaka. Circc. J. 77, 2073–2078 (2013).
11. Dai, J. P. et al. Ambient air pollution, temperature and out-of-hospital coronary deaths in Shanghai, China. Envi. Pollut. 203, 116–121 (2015).
12. Wang, Y. C., Chen, Y. C., Ko, C. Y., Guo, Y. L. & Sung, F. C. Pre-existing comorbidity modify emergency room visit for out-of-hospital cardiac arrest in association with ambient environments. PLoS One 13, e0204593 (2018).
13. Chen, K. et al. Two-way effect modifications of air pollution and air temperature on total natural and cardiovascular mortality in eight European urban areas. Env. Int. 116, 186–196 (2018).
14. Andersen, Z. J. et al. Long-term exposure to air pollution and asthma hospitalisations in older adults: a cohort study. Thorsus 67, 6–11 (2012).
15. Cheng, M. F. et al. Air pollution and hospital admissions for pneumonia: are there potentially sensitive groups? Inhal. Toxicol. 21, 1092–1098 (2009).
16. Alessandri, E. et al. Emergency ambulance dispatches and apparent temperature: a time series analysis in Emilia-Romagna, Italy. Env. Res. 111, 1192–1200 (2011).
17. Onozuka, D. & Hagihara, A. Spatial and temporal variation in emergency transport during periods of extreme heat in Japan: A nationwide study. Sci. Total. Envi. 544, 220–229 (2016).
18. Wong, H. T., Lin, T. K. & Lin, J. I. Identifying rural-urban differences in the predictors of emergency ambulance service demand and misuse. J. Formos. Med. Assoc. 118, 324–331 (2019).
19. Lori Uscher-Pines, P., Jesse, P., Arthur, K. & Emily Gillen, A. A. M. Deciding to Visit the Emergency Department for Non-Urgent Conditions: A Systematic Review of the Literature. Am. J. Manag. Care 19(1), 47–59 (2013).
20. Enayati, S., Mayorga, M. E., Rajagopalan, H. K. & Saydam, C. Real-time ambulance redeployment approach to improve service coverage and restricted workload for EMS providers. Omega 79, 67–80 (2018).
21. Meghoo, C. A., Gaiersviky, S., Linchevsky, O., Oomen, B. & Stetsenko, K. Prehospital response to respiratory distress by the public ambulance system in a Ukrainian city. World J. Emerg. Med. 10, 42–45 (2019).
22. Mahmood, M., Thorns, J., Pope, F., Fisher, P. & Vardoulakis, S. Impact of Air Temperature on London Ambulance Call-Out Incidents and Response Times. Climate 5 (2017).
23. Yang, L.-T., Chang, Y.-M., Hsieh, T.-H., Hou, W.-H. & Li, A.-C.-Y. Associations of Ambient Temperature with Mortality Rates of Cardiovascular and Respiratory Diseases in Taiwan: A Subtropical Country. *Acta Cardiol Sin* **2018**, *34*(166), 174 (2018).
24. Gasparini, A., Armstrong, B. & Kenward, M. G. Distributed lag non-linear models. *Stat. Med.* **2009**, *29*, 2224–2324 (2010).
25. Phung, D. et al. Ambient temperature and risk of cardiovascular hospitalization: An updated systematic review and meta-analysis. *Sci. Total. Environ.* **2016**, *550*, 1084–1102 (2016).
26. Vach, T. Conducting Meta-Analyses in R with the *metafor* Package. *Journal of Statistical Software* **2010**, *36*.
27. Organization, W. H. The Global Impact of Respiratory Disease, (2017).
28. Aguilar, S. A. et al. Assessment of the addition of prehospital continuous positive airway pressure (CPAP) to an urban emergency medical services (EMS) system in persons with severe respiratory distress. *J. Emerg. Med.* **2013**, *45*, 210–219.
29. Park, H. A., Ahn, K. O., Shin, S. D., Cha, W. C. & Ro, Y. S. The Effect of Emergency Medical Service Use and Inter-hospital Transfer on Prehospital Delay among Ischemic Stroke Patients: A Multicenter Observational Study. *J. Korosan Med. Sci.* **2016**, *31*, 139–146.
30. Németh, Z. et al. Effect of stress on platelet function in a general hospital setting. *J. Am. Coll. Med. J. Aust.* **2015**, *206*, 30–35.
31. Mukamal, K. J. et al. Weather and air pollution as triggers of severe headaches. *Neurology* **2009**, *72*.
32. El Sayed, M. et al. Measuring the impact of extreme heat and heatwave on hospital admissions: A time-series study in Huaian, China. *Sci. Total. Environ.* **2016**, *571*, 27–33.
33. Guo, Y. et al. Association between ambient temperature and hospital admittance for chest pain in a subtropical city: Taipei, Taiwan. *J. Toxicol. Environ. Health A* **2017**, *80*, 1269–1273.
34. Keatinge, W. R. Conducting Meta-Analyses in R with the *metafor* Package. *Journal of Statistical Software* **2010**, *36*.
35. Kang, S. H. et al. Ambient PM2.5 in the residential area near industrial complexes: Spatiotemporal variation, source apportionment, and health impact. *Sci. Total. Environ.* **2016**, *590–591*, 204–214.
36. Cheng, J. et al. The association between ambient temperature and out-of-hospital cardiac arrest in the Perthe Metropolitan Region: 2000–2010. *J. Epidemiol. Community Health* **2016**, *68*, 6–12 (2014).
37. Straney, L. et al. Association of ozone and particulate air pollution with out-of-hospital cardiac arrest in Helsinki, Finland: evidence for two different etiologies. *J. Expo. Sci. Environ. Epidemiol.* **2013**, *23*, 281–288.
38. Ren, C. & Tong, S. Temperature modifies the health effects of particulate matter in Brisbane, Australia. *Int. J. Biometeorol.* **2006**, *51*, 87–96.
39. Stauffer, M., Schwartz, J., Forastiere, F., Perucci, C. A. & Groppe, S. Does temperature modify the association between air pollution and mortality? A multi-city case-crossover analysis in Italy. *Am. J. Epidemiol.* **2016**, *183*, 1476–1485.
40. Sun, S. et al. Temperature as a modifier of the effects of fine particulate matter on acute mortality in Hong Kong. *Environ. Pollut.* **2015**, *205*, 357–364.
41. Rodrigues, P. C. O., Pinheiro, S. L., Junger, W., Ignotti, E. & Hacon, S. C. Climatic variability and morbidity and mortality associated with particulate matter. *Rev. Saude Publica* **2017**, *51*, 91.
42. Vach, T. Conducting Meta-Analyses in R with the *metafor* Package. *Journal of Statistical Software* **2010**, *36*.
43. Sacks, J. D. et al. Particulate matter-induced health effects: who is susceptible? *Environ Health Perspect.* **2011**, *119*, 446–454.
44. Sell, M. L., Zanobetti, A. & Dominici, F. Evidence on vulnerability and susceptibility to health risks associated with short-term exposure to particulate matter: a systematic review and meta-analysis. *Am. J. Epidemiol.* **2013**, *178*, 865–876.
45. Zipes, D. P. & Wellens, H. J. Sudden cardiac death. *Circulation* **1998**, *98*, 2334–2351.
Author contributions
All authors were involved in designing the study, Y.C.W. and Y.K.L. drafted the manuscript, Y.J.C., Y.C.W. and S.C.H. analyzed the data, and Y.C.W., Y.Z. and F.C.S. finalized the manuscript. All have read and approved the final version of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-59294-8.

Correspondence and requests for materials should be addressed to F.-C.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020