Perturbation on Hyperfine-enhanced 141Pr Nuclear Spin Dynamics Associated with Antiferroquadrupolar Order in PrV$_2$Al$_{20}$

T. U. Ito1,2 W. Higemoto1,2,3, A. Sakai4, M. Tsujimoto4, and S. Nakatsuji4

1 Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
2 J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
3 Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
4 Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan

The nature of multipolar order and hyperfine-enhanced (HE) 141Pr nuclear spin dynamics in PrV$_2$Al$_{20}$ was investigated using the muon spin relaxation technique. No explicit sign of time-reversal symmetry breaking was found below the multipolar order temperature $T_Q \sim 0.6$ K in a zero applied field as anticipated on the basis of the antiferroquadrupolar (AFQ) order picture proposed by Sakai and Nakatsuji [J. Phys. Soc. Jpn. 80, 063701 (2011)]. Further evidence of the nonmagnetic ground state was obtained from the observation of HE 141Pr nuclear spin fluctuations in the MHz scale. A marked increase in the muon spin-lattice relaxation rate ($1/T_{1,\mu}$) was observed below 1 K with decreasing temperature, which was attributed to the perturbation on the HE 141Pr nuclear spin dynamics associated with the development of AFQ correlations. The longitudinal field dependence of $1/T_{1,\mu}$ revealed that the enhanced 141Pr nuclear spin accidentally has an effective gyromagnetic ratio close to that of the muon.

PACS numbers: 75.25.Dk, 71.70.Jp, 71.27.+a, 76.75.+i

I. INTRODUCTION

Recently, considerable attention has been paid to the quadrupolar degrees of freedom (DOF) of $4f$-electrons in Pr-based compounds with the non-Kramers Γ_3 crystalline-electric-field (CEF) ground doublet. Various novel phenomena related to Γ_{3g} quadrupoles, such as incommensurate quadrupolar order, multi-channel Kondo effects, quadrupolar quantum criticality, and consequent heavy fermion superconductivity, have been intensively studied [1–7]. However, experimental techniques to probe quadrupolar properties are still quite limited. The development of new methodologies is critical for the further advancement of this research field.

The hyperfine enhancement of 141Pr nuclear magnetism is a common phenomenon for Γ_3 and Γ_3 CEF ground multiplets without dipolar DOF [8–11]. This effect arises from the Van Vleck-like admixture of magnetic CEF excited multiplets into the nonmagnetic ground multiplets as a result of strong intra-atomic hyperfine coupling [8]. The 141Pr nuclear spin-spin interaction is mediated by electronic exchange between hyperfine-induced $4f$ moments. Therefore, the $4f$ quadrupolar state in the Γ_3 ground doublet can potentially be probed via hyperfine-enhanced (HE) 141Pr nuclear spin dynamics.

In this paper, we report an observation of quadrupole-induced perturbation on HE 141Pr nuclear spin dynamics in the Γ_3 ground doublet system PrV$_2$Al$_{20}$ using the muon spin relaxation (μSR) technique. PrV$_2$Al$_{20}$ shows multipolar order at $T_Q \sim 0.6$ K, which is well below the temperature corresponding to the first excited CEF level at $\Delta_{cz}/k_B \sim 40$ K [3]. The primary order parameter is supposed to be a Γ_{3g} quadrupole based on active multipolar DOF in the Γ_3 ground doublet, entropy release $\sim R \ln 2$, and magnetization ~ 2 [12]. These are similar to those in isostructural PrTi$_2$Al$_{20}$ ($T_Q \sim 2.0$ K [5], $\Delta_{cz}/k_B \sim 65$ K [12]); however, the field dependences of the specific heat anomalies at T_Q are totally different. The width of the specific heat peak becomes broader with increasing field in PrTi$_2$Al$_{20}$, whereas it is almost field-independent in PrV$_2$Al$_{20}$ [5]. These responses to applied magnetic fields suggest ferro- and antiferro-quadrupolar (FQ and AFQ) order in Ti and V compounds, respectively. In PrTi$_2$Al$_{20}$, the FQ order has been definitely identified from microscopic points of view using μSR, NMR, and neutron scattering techniques and the primary order parameter has been determined to be an O_2^2-type Γ_{3g} quadrupolar moment [13–15]. By contrast, no direct microscopic evidence of the putative AFQ order in PrV$_2$Al$_{20}$ has been provided to date. Herein, we first establish the nonmagnetic nature of the primary order parameter in PrV$_2$Al$_{20}$ from the μSR point of view using its high sensitivity to local magnetic fields. This provides a strong justification for the AFQ order and AFQ quantum criticality at ambient pressure [5, 7, 16]. Next, we show that the muon spin-lattice relaxation rate ($1/T_{1,\mu}$) exhibits a step-like change at around T_Q, which can be attributed to the perturbation on the strength of electron-mediated 141Pr nuclear spin interactions. A comparison is made with the flat temperature dependence of $1/T_{1,\mu}$ reported for the FQ compound PrTi$_2$Al$_{20}$ [14].

II. EXPERIMENTAL

Single-crystalline samples of PrV$_2$Al$_{20}$ were prepared by the Al self-flux method [5]. Pulsed μSR measurements...
were performed under a zero applied field (ZF) and longitudinal magnetic fields (B_0) at the D1 area of the J-PARC muon facility, Tokai, Japan, using the D01 spectrometer. μSR spectra were recorded over the temperature ranges of 0.045–3 K and 3–40 K with a 3He-4He dilution refrigerator and a conventional 4He flow cryostat, respectively. The PrV$_2$Al$_{20}$ single crystals were randomly aligned and glued on silver sample holders. Spin-polarized single-bunch muon pulses were incident on the samples with initial muon spin polarization $P(t = 0)$ antiparallel to the beam incident direction. μ-decay positrons were detected by forward and backward positron counters. Because our samples do not show any sign of superconductivity down to 0.045 K, a possibility of time-reversal symmetry breaking associated with superconductivity can be ignored.

III. RESULTS AND DISCUSSION

Figure 1(a) shows the ZF-μSR spectra of PrV$_2$Al$_{20}$ at 4.2 and 0.045 K. $P(t)$ is the projection of $P(t)$ onto the beam incident axis and has been normalized after subtracting the background signal from the silver sample holders. $P(t)$ at 4.2 K above T_Q exhibits a Gaussian-like damping in the early-time region and a slight recovery after 6 μs. These features can be modeled well with the function

$$P(t) = e^{-t/T_{1,\mu}} G_{KT}(t; \Delta, B_0 = 0)$$

$$= \frac{1}{3} e^{-t/T_{1,\mu}} + \frac{2}{3} (1 - \Delta^2 t^2) e^{-\frac{1}{2} \Delta^2 t^2 - t/T_{1,\mu}},$$

where the exponential function describes T_1 relaxation caused by magnetic fluctuations, and the static Gaussian Kubo-Toyabe function $G_{KT}(t; \Delta, B_0)$ with the relaxation rate Δ express loss of muon spin coherence under static local fields with an isotropic Gaussian probability distribution $[17]$. This model was also adopted in Ref. [14] to describe ZF-μSR in PrTi$_2$Al$_{20}$, where the primary origins of the fluctuating and static local fields were determined to be HE 141Pr and bare 27Al nuclear spins, respectively. These imply a similar mechanism is also in effect in PrV$_2$Al$_{20}$.

The damping of the spectrum at 0.045 K is obviously faster than that at 4.2 K. Supposing that the additional damping were entirely due to the development of static local fields below T_Q, the extra field spread would be roughly estimated to be $(\tau_{0.045K} - \tau_{4.2K})^{1/2}/\gamma_\mu \sim 4 \times 10^{-4}$ T, where τ is the $1/e$ width, and γ_μ (= $2\pi \times 135.53$ MHz/T) is the muon gyromagnetic ratio. On the other hand, muons in SmTi$_2$Al$_{20}$ with a 0.51μ_B/Sm ordered moment feel a local field of $\sim 5 \times 10^{-2}$ T $[18, 19]$. From a simple scaling, the magnitude of the hypothetical ordered moment in PrV$_2$Al$_{20}$ is estimated to be $4 \times 10^{-3} \mu_B/Pr$. This is too small to be associated with the entropy release ~ 0.5Rln2 at T_Q $[20]$. Therefore, the possibility of magnetic order and consequent development of static local fields is ruled out in PrV$_2$Al$_{20}$. The ZF spectrum at 0.045 K is more exponential-like in shape as shown in the inset of Fig. 1(a). This suggests that the additional damping is primarily due to an increase in $1/T_{1,\mu}$. Further evidence can be obtained by carefully investigating the 1/3 component as the first term in Eq. (1). The relaxation of this component is caused by the T_1 process under effective longitudinal fields associated with the longitudinal component of the static nuclear dipolar fields along $P(t = 0)$ $[17]$. Therefore, the loss of the recovery after 6 μs at 0.045 K manifests the increase in $1/T_{1,\mu}$. From our ZF-μSR measurements, no explicit proof of time-reversal symmetry breaking was found below T_Q. This strongly suggests that the order parameter is a time-reversal-even multipole, supporting the AFQ order scenario from a microscopic point of view. Note that a T_{xyz}-type magnetic octupole is also active in the Γ_3 subspace $[21]$. Our results suggest that T_{xyz} octupolar order is unlikely in our samples.

ZF-μSR spectra were fit to Eq. (1) to extract the tem-
temperature dependences of Δ and $1/T_{1, \mu}$. First, fits were performed in the entire temperature range with Δ and $1/T_{1, \mu}$ being free. The values of Δ obtained from the fits were almost constant above 3 K. This is reasonable because Δ resulting from the 27Al and 51V nuclear dipolar moments is expected to be independent of temperature in the temperature range where muons are immobile. The uncertainty in Δ steeply increases below 3 K as T_1 relaxation becomes dominant. This hinders the precise estimation of $1/T_{1, \mu}$ at low temperatures; therefore, we fixed Δ to the average value above 3 K and fit the spectra below 3 K with only $1/T_{1, \mu}$ being free. Satisfactory fits were obtained, as shown by the solid curves in Fig. 1(a).

The values of Δ and $1/T_{1, \mu}$ for PrV$_2$Al$_2$ are shown by the solid triangles and squares, respectively, in Fig. 1(b). Those for PrTi$_2$Al$_2$ from Ref. [14] are also plotted with corresponding open symbols. The Δ values of both compounds are in good agreement, further demonstrating the validity of our model and fitting procedure for PrV$_2$Al$_2$.

The root-mean-square (rms) width of the Gaussian local field distribution $\Delta/\gamma_\mu \sim 3.5 \times 10^{-4}$ T is reasonable for abundant 27Al and 51V nuclei [19]. The $1/T_{1, \mu}$ of PrV$_2$Al$_2$ exhibits a double-plateau structure, as shown in Fig. 1(b). An increase in $1/T_{1, \mu}$ with decreasing temperature in the temperature range of 6-40 K is ascribed to the development of HE 141Pr nuclear moments associated with the increased Van Vleck contribution in magnetic susceptibility. The first plateau in the temperature range of 1-6 K suggests that exchange-mediated 141Pr spin-spin interactions are fully developed and the 141Pr nuclear spin fluctuation rate ν is consequently temperature-independent. In PrTi$_2$Al$_2$, this plateau extends down to 0.1 K without any significant anomaly at $T_Q \sim 2.0$ K. By contrast, the $1/T_{1, \mu}$ of PrV$_2$Al$_2$ clearly increases with decreasing temperature below 1 K, and a second plateau forms below $T_Q \sim 0.6$ K. This behavior suggests that the exchange-mediated 141Pr nuclear spin interactions are effectively weakened as AFQ correlations develop below 1 K. The significant difference between the FQ and AFQ compounds implies that the antiferro-type correlation might be essential for this perturbation.

Note that low energy magnetic excitations in a magnetically ordered state can also contribute to the T_1 relaxation. When this process is dominant, however, $1/T_{1, \mu}$ should steeply decrease with decreasing temperature as the low energy excitations are suppressed. This is clearly not the case in PrV$_2$Al$_2$, and therefore this possibility is excluded.

One may associate the difference between T_Q and the onset temperature of the increase in $1/T_{1, \mu}$ with a possibility of muon-charge-induced nucleation of a quadrupolar cluster slightly above T_Q. Unfortunately, it is difficult to completely rule out such a possibility from our data. However, even if that is the case, the sharp contrast between the FQ and AFQ compounds still suggests the importance of AFQ correlations for understanding the behavior of $1/T_{1, \mu}$ in PrV$_2$Al$_2$.

Figure 2 shows the B_0-dependences of $1/T_{1, \mu}$ in PrV$_2$Al$_2$ at 4.2 and 0.045 K. The $1/T_{1, \mu}$ value for $B_0 > 0$ was obtained from fits to $P(t) = e^{-t/T_{1,*}}G_{KT}(t; \Delta, B_0)$ with Δ being fixed to the average value in ZF. The validity of our single-T_1 model can be visually checked in $B_0 \geq 0.01$ T, where $G_{KT}(t; \Delta, B_0) \sim 1$ holds. All spectra above 0.01 T follow a single-exponential function well, as the example shown in the inset of Fig. 2 illustrates. The influence of avoided level crossing resonance [20] with 27Al seems negligible since the $1/T_{1, \mu}$-B_0 curves show smooth changes without any significant anomaly.

The $1/T_{1, \mu}$, owing to the dipolar coupling between HE 141Pr nuclear and muon spins in B_0 is described by

$$
\frac{1}{T_{1, \mu}} = \frac{\sigma_B^2 \gamma_\mu^2}{5} \left\{ \frac{3\nu}{\nu^2 + \gamma_\mu^2 B_0^2} + \frac{\nu}{\nu^2 + [\gamma_\mu + \gamma_j^*]^2 B_0^2} + \frac{6\nu}{\nu^2 + [\gamma_\mu + \gamma_j^*]^2 B_0^2} \right\},
$$

where σ_B and γ_j^* are the rms width of the local field distribution and the effective gyromagnetic ratio for the HE 141Pr nuclear spin, respectively [17, 21]. γ_j^* is enhanced by a factor of $(1 + K)$ compared to the bare 141Pr gyromagnetic ratio ($\gamma_j = 2\pi \times 13.054(2)$ MHz/T [22]), where K is the 141Pr Knight shift. As an approximation, we use an orientation-averaged K in the AFQ ordered state, where anisotropy in K is expected to arise because of the splitting of the Γ_3 doublet. A simpler form of Eq. (2) with $\gamma_j^* = 0$ is frequently used, as was adopted in Ref. [14] for fitting $1/T_{1, \mu}(B_0)$ of PrTi$_2$Al$_2$. When γ_j^* is comparable with γ_μ (namely, $K \sim 9.4$), the second term in Eq. (2) results in a high-field tail in the plot of $1/T_{1, \mu}$ versus B_0.

![FIG. 2: B_0-dependences of $1/T_{1, \mu}$ at 4.2 K (circles) and 0.045 K (squares) in PrV$_2$Al$_2$. The horizontal axis is on a linear scale for $B_0 < 10^{-3}$ T and on a log scale for $B_0 > 10^{-3}$ T. The solid curves represent the best fits to Eq. (2). The broken line illustrates the slope of functions that follow a B_0^2 dependence. The inset shows the μSR spectrum at 4.2 K in $B_0 = 0.01$ T.](image-url)
This should be the case in PrV$_2$Al$_2$ because K is roughly estimated to be 12 by the relationship $K = a_{hf} / |J_{f}|$, where a_{hf} (= 187.7 mol/emu) is the hyperfine coupling constant for Pr$^{3+}$ and χ_{hf} (= 0.067 emu/mol at 2 K) is the molar 4f susceptibility. Fits to Eq. (2) were performed without restraints on σ_B, ν, and K. Satisfactory fits were obtained, as shown by the solid curves in Fig. 2.

The fitting parameters for 4.2 and 0.045 K are listed in Table I. The MHZ-scale ν is typical of exchange-mediated 141Pr nuclear spin-spin interactions in nonmagnetic CEF ground states [10, 14, 21, 24, 26], further justifying our model. A marked reduction in ν at 0.045 K clarifies that the step-like increase in $1/\tau$ below 1 K in ZF is mainly due to the slowing down of 141Pr nuclear spin fluctuations. Taking ν at 0.045 K as a measure of the effective nuclear exchange constant $|J_{nuc}| / h$ in the ground state, we can estimate the 141Pr nuclear order temperature T_{NO} using the following relationship: $T_{NO} = |J_{nuc}| (I + 1) / 3k_B$, where $I = 5/2$ is the 141Pr nuclear spin. Accordingly, T_{NO} for PrV$_2$Al$_2$ is estimated to be 89(5) μK, slightly lower than that estimated for PrTi$_2$Al$_2$ [14]. The value of σ_B is significantly larger than $\Delta / \gamma_{\mu} \approx 3.5 \times 10^{-6}$ T associated with 27Al and 51V nuclei. Together with the large K, this is consistent with the hyperfine enhancement picture. Such an effect occurs only when the Pr$^{3+}$ ground state does not involve active dipolar DOF [24]. Therefore, our observation of the HE 141Pr nuclear spin dynamics provides further microscopic evidence of the nonmagnetic Γ_4 ground doublet and AFQ order in PrV$_2$Al$_2$. A slight decrease in σ_B at the lower temperature can likely be ascribed to a change in the shape of the local field distribution because of the anisotropy in K expected in the AFQ ordered state. The K values at 0.045 and 4.2 K agree within the error. This is reasonable because the splitting of the Γ_3 doublet does not change the orientation-averaged value of single-ion Van Vleck susceptibility when the Γ_3 splitting is negligibly small compared to Δ_{cz}. The fit to the data at 0.045 K slightly deviates at 0.1 T, as shown in Fig. 2. This might be due to the anisotropy in K below T_Q, which is not explicitly taken into account in Eq. (2).

The temperature dependence of $1/\tau_{1,\mu}$ for PrV$_2$Al$_2$ shown in Fig. II(b) indicates that ν ($\propto |J_{nuc}|$) begins to decrease below 1 K and levels off around T_Q. This behavior suggests that the strength of the 141Pr nuclear spin coupling is effectively weakened as AFQ correlations develop. One possible origin for this reduction is intra-atomic electric quadrupolar coupling between 4f and 141Pr quadrupolar moments. Here we assume that the 4f ground state is one of the eigenstates for the O_2^2 quadrupolar operator. Six-fold degenerate 141Pr spin wavefunctions split into $|I_z = \pm 1/2|$, $|\pm 3/2|$, and $|\pm 5/2|$ under the electric field gradient arising from the on-site O_2^0 moment. These levels are separated by $h\nu_Q$ ($\pm 1/2 \leftrightarrow \pm 3/2$) and $2h\nu_Q$ ($\pm 3/2 \leftrightarrow \pm 5/2$). Following the treatment in Ref. [27], we estimated ν_Q to be 1.6 MHz using the radial (r^{-3}) $M = 5.369 \ a_0^{-3}$, the Sternheimer factor $R_{hf} = 0.1308$ [28], and the 141Pr quadrupolar moment $Q = -0.059$ barn [22]. The estimated ν_Q is not negligible compared with the unperturbed ν at 4.2 K; thus, the intra-atomic quadrupolar coupling can significantly reduce the transition probabilities between the separated levels.

Other possible origins for the effective reduction in $|J_{nuc}|$ come from the path of the 141Pr nuclear spin exchange. Considering that this is mediated by the Ruderman-Kittel-Kasuya-Yoshida interactions between 4f dipolar moments induced by the intra-atomic hyperfine interaction, the orientation-averaged $|J_{nuc}|$ can be approximately expressed as

$$|J_{nuc}| = \left(\frac{\gamma_{\mu} h}{g_{IB}} \right)^2 |J_{ff}| \cdot \text{Tr}[K_+ K_-]/3, \quad (3)$$

where $g_{\mu} (= 4/5)$ is the Landé g-factor for Pr$^{3+}$, $|J_{ff}|$ is the 4f exchange constant, and K_{\pm} are 141Pr Knight shift tensors for the two closest Pr ions. This relation suggests that perturbation of $\text{Tr}[K_+ K_-]/3$ and/or $|J_{ff}|$ can be responsible for the reduction in $|J_{nuc}|$. Here we focus on the contribution from the Knight shift factor because any change in $|J_{ff}|$ is expected to be relatively small. Calculating the single-ion Van Vleck susceptibility for the O_2^2-eigenstates yields the diagonal K_{\pm} with a set of principal values expressed as $(K \mp K_a, K \mp K_a, K \pm 2K_a)$, where K_a is an anisotropic part. Consequently, $\text{Tr}[K_+ K_-]/3$ is evaluated to be $K^2 - 2K_a^2$, which is smaller than K^2 for the paraquadrupolar state and thus is consistent with the reduced $|J_{nuc}|$. A similar conclusion is also reached for O_2^0-eigenstates.

The intra-atomic quadrupolar coupling should also be in effect in the FQ compound PrTi$_2$Al$_2$, which can decrease ν. The flat temperature dependence of $1/\tau_{1,\mu}$ in PrTi$_2$Al$_2$ suggests that other contributions compensate for this “decoupling” effect. In the case of the O_2^0-type FQ order, the Knight shift factor in Eq. (3) is replaced with $\text{Tr}[K_+ K_-]/3 = K^2 + 2K_a^2$. The enhancement in $|J_{nuc}|$ because of this factor may be a source of the compensation.

IV. CONCLUSION

μSR is sensitive to slow spin fluctuations in the MHz scale and thus is appropriate for probing HE 141Pr nu-
clear spin dynamics. In this study, we used μSR to
demonstrate for the first time that the AFQ correlations
of 4f electrons can significantly perturb the strength of
the HE 141Pr nuclear spin-spin interaction in PrV$_2$Al$_{20}$.
This paves the way for an alternative approach to inves-
tigate quadrupolar correlations in Pr-based compounds
using local spin probes via the observation of HE 141Pr
nuclear spin dynamics.

ACKNOWLEDGMENTS

We thank the staff of J-PARC for facility operation
and Y. Tokunaga, S. Kambe, H. S. Suzuki, and Y. Mat-
sumoto for helpful discussions. This work was partly sup-
ported by Grants-in-Aid for Scientific Research (Grants
No. 24710101 and No. 25707030) and Program for
Advancing Strategic International Networks to Acceler-
ate the Circulation of Talented Researchers (Grant No.
R2604) from the Japan Society for the Promotion of Sci-
ence, and by Grants-in-Aid for Scientific Research on In-
novative Areas (Grants No. 23108002, No. 26108717,
No. 15H05882, and No. 15H05883) from the Ministry of
Education, Culture, Sports, Science, and Technology of
Japan.

* ito.takashi15@jaea.go.jp

[1] T. Onimaru, T. Sakakibara, N. Aso, H. Yoshizawa,
H. S. Suzuki, and T. Takeuchi: Phys. Rev. Lett. 94,
197201 (2005).
[2] A. Yatskar, W.P. Beyermann, R. Movshovich, and
P.C. Canfield: Phys. Rev. Lett. 77, 3637 (1996).
[3] H. Tanida, H. S. Suzuki, S. Takagi, H. Onodera, and
K. Tanigaki: J. Phys. Soc. Jpn. 75, 073705 (2006).
[4] T. Onimaru, K.T. Matsumoto, Y.F. Inoue, K. Umeo,
T. Sakakibara, Y. Karaki, M. Kubota, and T. Takahatake:
Phys. Rev. Lett. 106, 177001 (2011).
[5] A. Sakai and S. Nakatsuji: J. Phys. Soc. Jpn. 80, 063701
(2011).
[6] K. Matsubayashi, T. Tanaka, A. Sakai, S. Nakatsuji,
Y. Kubo, and Y. Uwatoko: Phys. Rev. Lett. 109, 187004
(2012).
[7] M. Tsujimoto, Y. Matsumoto, T. Tomita, A. Sakai, and
S. Nakatsuji: Phys. Rev. Lett. 113, 267001 (2014).
[8] B. Bealemy, Physica (Utrecht) 69, 317 (1973).
[9] S. Abe, D. Takahashi, H. Mizuno, A. Ryu, S. Asada,
S. Nakaer, K. Matsumoto, H. Suzuki, and T. Kitai: Phys-
ica B 329-333, 637 (2003).
[10] T.U. Ito, W. Higemoto, K. Ohishi, N. Nishida,
R.H. Heffner, Y. Aoki, A. Amato, T. Onimaru, and
H.S. Suzuki: Phys. Rev. Lett. 102, 096403 (2009).
[11] O. Iwakami, Y. Namisashi, S. Abe, K. Matsumoto,
G. Ano, M. Akatsu, K. Mitsumoto, Y. Nemoto,
N. Takeda, T. Goto, and H. Kitazawa: Phys. Rev. B
90, 100402(R) (2014).
[12] Y. Shimura, Y. Ohta, T. Sakakibara, A. Sakai,
and S. Nakatsuji: J. Phys. Soc. Jpn. 82, 043705 (2013).
[13] T.J. Sato, S. Ibu, Y. Nambu, T. Yamazaki, T. Hong,
A. Sakai, and S. Nakatsuji: Phys. Rev. B 86, 184419
(2012).
[14] T.U. Ito, W. Higemoto, H. Luetkens, C. Baines, A. Sakai,
and S. Nakatsuji: J. Phys. Soc. Jpn. 80, 113703 (2011).
[15] Y. Tokunaga, H. Sakai, S. Kambe, S. Nakatsuji, and
H. Harima: Phys. Rev. B 88, 085124 (2013).
[16] Y. Shimura, M. Tsujimoto, B. Zeng, L. Balicas, A. Sakai,
and S. Nakatsuji: Phys. Rev. B 91, 241102(R) (2015).
[17] R.S. Hayano, Y.J. Uemura, J. Imazato, N. Nishida,
T. Yamazaki, and R. Kubo: Phys. Rev. B 20, 850 (1979).
[18] R. Higashinakia, T. Maruyama, A. Nakama, R. Miyazaki,
Y. Aoki, and H. Sato: J. Phys. Soc. Jpn. 80, 093703
(2011).
[19] T.U. Ito, W. Higemoto, K. Ninomiya, A. Sakai,
and S. Nakatsuji: J. Phys. Soc. Jpn. 81, SB050 (2012).
[20] S.R. Kreitzman, J.H. Brewer, D.R. Harshman, R. Kei-
tel, D.L. Williams, K.M. Crowe, and E. J. Ansaldi:
Phys. Rev. Lett. 56, 181 (1986).
[21] L. Shu, D.E. MacLaughlin, Y. Aoki, Y. Tunashima,
Y. Yonezawa, S. Sanada, D. Kikuchi, H. Sato,
R.H. Heffner, W. Higemoto, K. Ohishi, T.U. Ito,
O.O. Bernal, A.D. Hillier, R. Kadono, A. Koda,
K. Ishida, H. Sugawara, N.A. Frederick, W.M. Yuhasz,
T.A. Sayles, T. Yanagisawa, and M.B. Maple:
Phys. Rev. B 76, 014527 (2007).
[22] N. J. Stone: Atomic Data and Nucl. Data Tables
90, 75 (2005).
[23] K. Andres and S. Darack: Physica B & C 86, 1071
(1977).
[24] D.E. MacLaughlin, R.H. Heffner, G.J. Nieuwenhuys,
P.C. Canfield, A. Amato, C. Baines, A. Schenck,
G.M. Luke, Y. Fudamoto, and Y.J. Uemura:
Phys. Rev. B 61, 555 (2000).
[25] Y. Aoki, A. Tsuchiya, T. Kanayama, S.R. Saha, H. Sug-
awara, H. Sato, W. Higemoto, A. Koda, K. Ohishi,
K. Nishiyama, and R. Kadono: Phys. Rev. Lett. 91,
067003 (2003).
[26] Y. Tokunaga, H. Sakai, H. Chudo, S. Kambe, H. Yasuoka,
H.S. Suzuki, R.E. Walstedt, Y. Homma, D. Aoki, and
Y. Shiokawa: Phys. Rev. B 82, 104401 (2010).
[27] K. Ikushima, H. Yasuoka, S. Tsutsui, M. Saeki, S. Nasu,
and M. Date: J. Phys. Soc. Jpn. 67, 65 (1998).
[28] R.M. Sternheimer: Phys. Rev. 146, 140 (1966).