Sex differences in tissue gene regulation—contributions of three classes of sex-biasing factors

Montgomery Blencowe¹,², Yuichiro Itoh¹,³,⁷, Xuqi Chen¹,³, Yutian Zhao¹, Yanjie Han¹, Benjamin Shou¹, Rebecca McClusky¹,³, Karen Reue⁴, Arthur P. Arnold ¹,²,³*, Xia Yang¹,²,⁴,⁶*

¹Department of Integrative Biology & Physiology, University of California, Los Angeles, California USA
²Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, California USA
³Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California USA
⁴Department of Human Genetics and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, California USA
⁵Molecular Biology Institute, University of California, Los Angeles, California USA
⁶Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California USA
⁷Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California USA

Corresponding Authors
Arthur Arnold, Ph.D.
arnold@ucla.edu
Department of Integrative Biology & Physiology, UCLA
610 Charles E Young Drive South
Los Angeles CA 90095-7239

Xia Yang, Ph.D.
xyang123@ucla.edu
Department of Integrative Biology & Physiology, UCLA
610 Charles E Young Drive South
Los Angeles CA 90095-7239

Running title: Origins of sex difference in gene regulation

Key Words: Sex Differences, Testosterone, Estradiol, Adipose, Liver, Four Core Genotypes, Sex Chromosome, Gonad
Abstract
Sex differences in physiology and disease in mammals result from the effects of three classes of factors that are inherently unequal in males and females: reversible (activational) effects of gonadal hormones, permanent (organizational) effects of gonadal hormones, and cell-autonomous effects of sex chromosomes, as well as genes driven by these classes of factors. Often, these factors act together to cause sex differences in specific phenotypes, but the relative contribution of each and the interactions among them remain unclear. Here, we used the Four Core Genotypes (FCG) mouse model with or without hormone replacement to distinguish the effects of each class of sex-biasing factors on transcriptome regulation in liver and adipose tissues. We found that the activational hormone levels have the strongest influence on gene expression, followed by the organizational gonadal sex effect and, lastly, sex chromosomal effect, along with interactions among the three factors. Tissue specificity was prominent, with a major impact of estradiol on adipose tissue gene regulation, and of testosterone on the liver transcriptome. The networks affected by the three sex-biasing factors include development, immunity and metabolism, and tissue-specific regulators were identified for these networks. Furthermore, the genes affected by individual sex-biasing factors and interactions among factors are associated with human disease traits such as coronary artery disease, diabetes, and inflammatory bowel disease. Our study offers a tissue-specific account of the individual and interactive contributions of major sex-biasing factors to gene regulation that have broad impact on systemic metabolic, endocrine, and immune functions.
INTRODUCTION

The incidence, progression, clinical manifestation, and genetic risks of many diseases, such as metabolic disorders including obesity, non-alcoholic fatty liver disease, and diabetes, differ between females and males (Arnold 2010; Clayton and Collins 2014; Rask-Andersen et al. 2019), which indicates that one sex may have endogenous protective or risk factors that could become targets for therapeutic interventions. Current sexual differentiation theory suggests that three major classes of factors cause sex differences (Arnold 2009; Arnold 2012; Arnold et al. 2013; Schaafsma and Pfaff 2014; Arnold 2017). First, some sex differences are caused by different circulating levels of ovarian and testicular hormones, known as “activational effects”. These differences are reversible because they are eliminated by gonadectomy of adults. Second, certain sex differences persist after gonadectomy in adulthood and represent the effects of permanent or differentiating effects of gonadal hormones, known as “organizational effects,” that form during development. A third class of sex differences are caused by the inequality of action of genes on the X and Y chromosomes in male (XY) and female (XX) cells, and are called “sex chromosome effects”.

To date, few studies have systematically evaluated the relative size and importance of each of these three classes of factors acting on phenotypic or global gene regulation systems (Arnold 2019). For instance, the activational effects of hormones have been established as a significant contributor to sexual dimorphism in metabolic diseases, with additional evidence pointing to sex chromosome effects on obesity and lipid metabolism (Chen et al. 2012; Link et al. 2015; Link et al. 2020). Previous studies have also emphasized the importance of organizational or activational hormone effects that contribute to sex differences in gene expression in the liver (Mode and Gustafsson 2006; van Nas et al. 2009; Waxman and Holloway 2009; Sugathan and Waxman 2013; Zheng et al. 2018). However, the tissue-specific contributions and the interactions of activational, organizational, and sex chromosome effects on gene regulation are poorly investigated.

Here we conduct a systematic investigation to tease apart the three sex-biasing factors in gene regulation (Figure 1). We used the Four Core Genotypes (FCG) mouse model, in which the type of gonad (ovary or testis) is independent of sex chromosome complement (XX or XY) (De Vries et al. 2002; Burgoyne and Arnold 2016). The model is a 2x2 comparison of the effects of sex chromosome complement (XX vs. XY) and type of gonad (ovaries
vs. testes). By varying adult gonadal hormone levels via gonadectomy and subsequent hormonal treatments we also asked how androgens and estrogens influence gene expression as a function of sex chromosome complement and gonadal sex. The design allows comparison of the magnitude of effect of each sex-biasing factor and the interactions among different factors.

Figure 1. Overall Study Design. A. Transfer of Sry gene to Chromosome 3. Sry which is usually located on the Y chromosome was deleted (a spontaneous deletion) and inserted as a transgene onto chromosome 3. B. Production of gonadal male with 4 possible offspring types. A gonadal male mouse with XY + Sry produces 4 gametes which can result in the four core genotypes (FCG). C. FCG. Four types of mouse offspring were produced (two gonadal
males and two gonadal females): XY Sry+ (XYM), XXSry+ (XXM), XX (XXF), XY- (XYF). D. Three varieties of hormone replacement for each group. Each of the four core genotypes underwent a gonadectomy (GDX) at day 75 and were implanted with a capsule that contained either estradiol, testosterone or blank. E. Tissue removal. Two metabolically relevant tissues were selected for removal, the liver and the inguinal adipose tissue, then RNA isolation was completed. F. Gene expression data generation and quality control. Using an Illumina microarray, we measured the transcriptome and then carried out a principal component analysis (PCA) to identify outliers and global patterns. G. Bioinformatics analyses. Differentially expressed genes (DEGs) influenced by individual sex-biasing factors were identified using 3-way ANOVA (chromosomal, gonadal and hormonal effects), 2-way ANOVA (gonadal and chromosomal effects under each hormone condition), and a 1-way ANOVA (estradiol and testosterone treatment effects in individual genotypes). Gene coexpression networks were constructed using MEGENA and differential coexpression modules (DMs) affected by individual sex-basing factors were identified using 3-way, 2-way, and 1-way ANOVAs. DEGs and DMs were analyzed for enrichment of functional categories or biological pathways. The relevance of the DEGs to human disease relevance was assessed via integration with human genome-wide association studies (GWAS) for >70 diseases using the Marker Set Enrichment Analysis (MSEA). Transcription factor analysis and gene regulatory network analysis were additionally conducted on the DEGs derived from the one-way ANOVA.

Using the FCG model, we assessed the role of the three sex-biasing factors on gene expression, molecular pathways, and gene network organization in the liver and adipose tissue, which are central tissues for metabolic and endocrine homeostasis, with adipose tissue additionally contributing to immune functions. We found that all three factors influence gene regulation involved in immune response, cell development, and metabolic processes, but to different degrees and with tissue and molecular specificity. We further integrated sex-biased genes and networks influenced by each sex-biasing factor with diverse diseases in human populations to predict the phenotypic consequences of each sex-biasing factor. This analysis revealed extensive associations of the sex-biased genes with coronary artery disease (CAD), type 2 diabetes (T2D), autoimmune disorders, and a variety of lipid traits. Our study provides a roadmap of the relationship between hormonal and genetic origins of biological sex and prevalent human diseases.

RESULTS

Overall study design

We used FCG mice on a C57BL/6J B6 background. In FCG mice, the Y chromosome (from strain 129) has sustained a spontaneous deletion of Sry, and a Sry transgene is inserted onto chromosome 3 (Burgoyne and Arnold 2016). Here, “male” (M) refers to a mouse with testes, and “female” (F) refers to a mouse with ovaries. FCG mice include XX males (XXM) and females (XXF), and XY males (XYM) and females (XYF; Figure 1). A total of 60
FCG mice were gonadectomized (GDX) at 75 days of age and implanted immediately with medical grade Silastic capsules containing Silastic adhesive only (blank control; B) or testosterone (T) or estradiol (E). This study design produced 12 groups (Figure 1), with 4 groups of FCG mice (XXM, XXF, XYM, XYF) and each group subdivided into B or T or E based on hormonal treatment: XXM_B, XXM_T, XXM_E, XYM_B, XYM_T, XYM_E, XXF_B, XXF_T, XXF_E, XYF_B, XYF_T, XYF_E (4-6/per genotype/per treatment). Liver and inguinal adipose tissues were collected 3 weeks later for transcriptome analysis. The design allowed detection of differences caused by three factors contributing to sex differences in traits. (1) “Sex chromosome effects” were evaluated by comparing XX and XY groups. (2) “Gonadal sex effects” were determined by comparing mice born with ovaries vs. testes. Since mice were analyzed as adults after removal of gonads, the gonadal sex effects represent organizational (long-lasting) effects of gonadal hormones, such as those occurring prenatally, postnatally, or during puberty. This group also includes effects of the Sry gene, which is present in all mice with testes and absent in those with ovaries. Any direct effects of Sry on non-gonadal target tissues would be grouped with effects of gonadal sex. (3) “Hormone treatment effects” refers to the effects of circulating gonadal hormones (activational effects) and were evaluated by comparing E vs. B groups for estradiol effects, and T vs. B groups for testosterone effects.

Global effects of sex chromosome complement, gonadal sex, and hormonal treatments on liver and adipose tissue gene expression

To visualize the overall gene expression trends due to effects of the three-primary sex-biasing components, we conducted principal component analysis (PCA; Supplementary Figure 1). For the adipose tissue, hormonal treatment (Supplementary Figure 1A), sex chromosomes (Supplementary Figure 1B) and gonadal sex (Supplementary Figure 1C) did not clearly separate the groups. However, in the liver there was a separation of groups based on gonadal hormones, particularly in response to testosterone treatment (Supplementary Figure 1D), but not based on chromosomal or gonadal factors (Supplementary Figure 1E, 1F).

We then asked which individual genes in liver and adipose tissues were affected by adult hormone level, gonadal sex, and sex chromosome complement, as well as interactions between these factors, using a 3-Way ANOVA (3WA). Tens to thousands of differentially expressed genes (DEGs) were identified in liver (Figure 2,
Table 1) and adipose tissue (Figure 2, Table 2). In both tissues, hormonal treatments affected the largest numbers of genes, followed by fewer genes that were responsive to gonadal/organizational effects or sex chromosome complement. Testosterone treatment in the liver induced the largest number of DEGs (Figure 2A), whereas in inguinal adipose tissue estradiol treatment affected the greatest number of DEGs (Figure 2D). These results support tissue-specific sensitivity to different hormones.

Figure 2. Bar graphs (A-F) and heatmaps (G-H) representing the number of DEGs for each sex-biasing factor and differential co-expression modules from a 3-way, 2-way, and 1-way ANOVA, respectively. Each bar graph represents the number of DEGs based on each specific statistical analysis at FDR<0.05. A, D represent results from 3-way ANOVAs run separately in testosterone vs. blank groups, and estradiol vs. blank groups to examine hormone, gonad, and sex chromosome effects as well as interaction terms. B and E represent results from 2-way ANOVAs with factors of gonadal sex and sex chromosomes as well as interaction terms, run separately on data from testosterone (T), estradiol (E), and blank (B) treatment groups. C and F represent results from 1-way ANOVAs testing effects of hormonal treatments (vs. Blank) in each of the four genotypes for liver and inguinal adipose tissue. In A and D, bars are colored according to the hormonal treatment variable – data from estradiol vs. blank (pink), or data from testosterone vs. blank (blue). In B and E, colors represent the hormonal treatment condition (testosterone groups blue, estradiol groups pink, and blank groups white) for each of the separate 2-way ANOVAs. In C and F, colors show effects of testosterone vs blank (blue) or estradiol vs blank (pink) in each of the four genotypes. Horm = Hormone, Chr = Sex Chromosome, M = Testes/Sry present, F = Ovaries present, no Sry. G represents the heatmap for liver. H represents the heatmap for adipose tissue. Each heatmap shows results from 1-way ANOVA, 2-way ANOVA and 3-way ANOVA for each test factor hormone (H), chromosome (C), and gonad (G) when treated with testosterone (T), estradiol (E) and blank (B). Interaction terms among H, C, and G were also tested. For instance,
C:G:H indicates the interaction term among the 3 factors in 3-way ANOVA. Each module was annotated with canonical pathways from GO and KEGG. When a module is not annotated with a pathway name, it did not show significant enrichment for genes in any given pathway tested. Colors correspond to the statistical significance of the effects of sex factors on modules in the form of \(-\log_{10}(\text{FDR})\).
Table 1: Liver DEGs affected by sex-biasing factors and the associated GO/KEGG pathways.
Only DEGs with main effects are shown; DEGs significant from analysis of interaction terms between sex-biasing factors are in Supplementary Table 1.

Analysis	Treatment/Genotype group	Sex Factor	DEGs at FDR < 0.05	Top Five DEGs Based on FDR	Top DEGs Based on LogFC	Top GO/KEGG Pathways FDR<0.05	
T + B	Horm	1378	Trpm4, Cx2, Elov3, Cyph4a41, Sult3a1	Up: Elov3, Serpin4-p1, Cyph4a12, Cyph2a1, Slco1a1	Down: Cyph2b13, Fno3, Cx2, Trim47, Ec13	Lipid metabolic process	Organic acid and metabolic process Cellulur lipid metabolic process Primary bile acid biosynthesis
3-way ANOVA	Gonad	93	Cyph3a41, Sult3a1, Cx2b1, Siat10, Ly6a	Up: Cm4, Cyph4a12, Anxa, Lcn13, Cpm8	Down: Glp1, BC013712, Sph, Sult3a1, Cyph3a41	Defense response	Immune system process Response to stress
	Chr	8	Dclcy, Ef2f3cy, Xist, Kdm6a, Tmsb4x	Up: Ef2f3cy, Dclcy, Tmsb4x	Down: Xist, Ntrk2, Kdm6a, Ef2f3cy, Wjdc2	Rig I like receptor signalling pathway Transmembrane receptor protein tyrosine kinase signalling pathway MAPK signalling pathway	
E + B	Horm	333	Cyp17a1, Slt3a1, Trp53tm2, C1qb, Cnmtm	Up: Ptnm3, Lcn13, Jyuna1, Ear4, Aco1	Down: Adam11, Gsta1, 1700009P17Rik, Pld6, Tppp	Carboxylyic acid metabolic process Organic acid metabolic process Monocarboxylic acid metabolic process Complementation and coagulation cascades	
	Gonad	209	Cx2b9, Cyph4a41, Ly, Slt3a1, Cx26	Up: Cyp4a14, Cyph4a12, Fiam2, Sndab4, Akgut6	Down: Cyp3a41, Thy1, BC013712, Tbc1d10c, Cyph18	Defense response	Lipid metabolic process Immune response (SLE)
	Chr	8	Ef2f3cy, Xist, Dclcy, Kdm6a, Ef2f3x	Up: Ef2f3cy, Hecs, Dclcy, Tmsb4x, Mgmn1	Down: Xist, Kdm6a, Ef2f3x	Electron transport Ubiquitin mediated proteolysis Organ morphogenesis	

2-way ANOVA

Analysis	Treatment/Genotype group	Sex Factor	DEGs at FDR < 0.05	Top Five DEGs Based on FDR	Top DEGs Based on LogFC	Top GO/KEGG Pathways FDR<0.05
T	Gonad	9	Lcn13, Cm4, Siat10, Ly, Cx29	Up: Anxa, Lcn13, Cm4, Cyph4a12, Gm4956	Down: Li, Cx29, Siat10, Qpet	Cellular response to stress/nutrient levels/extracellular stimulus Amino Acid Synthesis
	Chr	6	Dclcy, Ef2f3cy, Xist, Kdm6a, Tb7	Up: Ef2f3cy, Tb7, Dclcy, Tmsb4x	Down: Kdm6a, Xist	Traffied mediated ir7 activation in Tb7 signaling Interleukin 8 biosynthetic process
E	Gonad	53	H2-Abl, H2-Ebl, H2-Dmb1, C4d4, Li	Up: Cyp7b1, Plekhb1, Acrtrb, Sh3gb2	Down: Thy1, Tbc1d10c, Gd70b, A467606, S100a8	Asthma Leishmania Infection Allograft rejection Systemic Lupus Erythematosus
	Chr	6	Ef2f3y, Xist, Dclcy, Ats2aol, Kdm6a	Up: Ef2f3y, A1bg, Dclcy	Down: H2-Dmb1, Kdm6a, Xist	Asthma Allergen rejection
B	Gonad	115	Cyp3a41, Slt3a1, Slt3a1, Slt3a1, Slt3a1	Up: Cm4, Cyph4a12, Cyp2a12, Ldgph2, Sndab4	Down: Slt3a1, Cyp3a41, A1bg, C1orf38, Spic	Systemic Lupus Erythematosus Functionalization of Compounds CYP450 arranged by substrate type Biological oxidations
	Chr	5	Ef2f3y, Xist, Dclcy, Kdm6a, Ntrk2	Up: Ef2f3y, Dclcy	Down: Xist, Ntrk2, Kdm6a	Rig I like receptor signaling pathway Aging, Circadian Rhythm Fatty Acid Metabolism

1-way ANOVA Post-hoc

Analysis	Treatment/Genotype group	Sex Factor	DEGs at FDR < 0.05	Top Five DEGs Based on FDR	Top DEGs Based on LogFC	Top GO/KEGG Pathways FDR<0.05
XXF	T	138	Aap4, A1bg, Gas6, Purp1	Up: Cyp4a12b, Serpin4-p1, Elov3, Cyph2a1, Aap4	Down: A1bg, Cyph2b13, Fno3, Slc2a2b, Cux2	Biological Oxidations Metabolism (xenobiotic/drug/glutathione) Immune (complement/interferon)
	XXF	123	Hcg1, Aap4, Cyp2a1, Ilia, Fam11a	Up: Cyp4a12, Elov3, EG241041, Cyp2a1, Fat	Down: Cyph2b13, Fno3, A1bg, Cux2, Ec13	Biological Oxidations Complementary cascade Bile acid metabolism Metabolism (steroid/drug)
	XXY	124	Spry4, Cnlt2, Syba, Akrl1d1, Slco1a1	Up: Serpin4-p1, Elov3, Lcn13, Slco1a1, Cyp4a12a	Down: Cux2, Ec13, Trim47, Irlx3, Akrl1d1	Biological Oxidations Immune system (complement/SLE) Cell development/Wnt signaling Drug/Protein/Bile acid/salt metabolism
	XYM	44	Aep2a3, Unc79, Trim47l, Slco1a1, Lcn13	Up: Serpin4-p1, Elov3, Slco1a1, Lcn13, Gd485g	Down: Fno3, Cux2, Slc2a2b, Trim47l, Unc79	Cell development / Localization Metabolism (Drug/Riboflavin) Immune (Complement/Innate)
	XXY	20	Zip367, Lmb2, Acly2, Prtn3a, Pdlm4	Up: Prtn3a, C1qb, Li, C1qc, Vsig4	Down: A1bg2, Lmb2, Zip367	Signal transduction Metabolic Pathways Complement Pathways Class B2 Secretin Family Receptors
	XFM	2	Klk1b27, Beck	Down Only: Klk1b27, Beck		Developmental Processes
	XXY	29	Slco1a1, Tasor2, Ywhae, Sult3a1, Lcn13	Up: Sult3a1, Lcn13, Slco1a1, Slc11a1, Serpin4a1e	Down: Ywhae, BC016423, Ancr4d2, Spc24, Serpin4a6	Nitrogen/Vitamin/ Steroid Hormones Metabolism Complement/Inflammatory Pathways Signal Transduction/Transcription
	XYM	8	Adam11, Sult3a1, Spc24, Lft2, Gsta4	Up Only: Lft2, Sult3a1, Cyph7a1, Gsta4, Serpin4a6	Immune response (interferon signaling) Protein complex assembly Biological Oxidations/ Metabolism of steroid hormones/Vitamins	

9
Table 2: Inguinal adipose DEGs affected by sex-biasing factors and the associated GO/KEGG pathways.

DEGs significant from analysis of interaction terms between sex-biasing factors are in Supplementary Table 2.

Analysis	Treatment/Genotype Group	Factor	DEGs at FDR < 0.05	Top DEGs Based on FDR	Top DEGs Based on LogFC	GO/KEGG Pathways at FDR<0.05
3-way ANOVA	T + B	Horn	275	Mtap7d4, Ejf2y, Ddx3y, Ecc	Up: Mtap7d4, Ejf2y, Ddx3y, Ecc	Cell Cell Adhesion Protein Signaling Pathway
		Go nad	268	Mtp5, Dnaic1, Aida, Cid1, Slc12a2	Up: Mtp5, Dnaic1, Aida, Cid1, Slc12a2	Multicellular Organismal Development Cell Cell Adhesion Anatomical Structure Development Pathways in Cancer
		Chr	15	Mtp3, Xist, Ddx3y, Ejf23y, Ecc	Up: Mtp3, Xist, Ddx3y, Ejf23y, Ecc	Interleukin 8 biosynthetic process
2-way ANOVA	E + B	Horn	2029	Dnaic1, Garh, Greb1, Fbsw17, Lrg1	Up: Dnaic1, Garh, Greb1, Fbsw17, Lrg1	Protein Metabolic Process Respiratory Electron Transport Focal Adhesion
		Go nad	449	Dnaic1, Prtr, Pr151, Atd4, Ercc2	Up: Mtp5, Dnaic1, Prtr, Pr151, Atd4, Ercc2	Anatomical Structure Development Nitrogen Compound Metabolic Process Aldosterone Sodium Reabsorption
		Chr	11	Ejf23y, Rhm35a, Seph1, Fermi1, Ddx3y	Up: Mtp7d4, Ejf23y, Ddx3y, Ecc	Rig I like receptor signaling pathway Generation of precursor metabolites and energy
						Seleno amino acid metabolism
1-way ANOVA post-hoc	XXF	T	26	Mtp5, Dnaic1, Cid1, Slc12a2	Up: Mtp5, Dnaic1, Cid1, Slc12a2	Cell Carcinoma Cell Development/Differentiation/Wnt Signaling Immune (Antigen Presentation)
		XYF	1	Fabp5	Fabp5 Only: Fabp5	Development Processes
		XXM	13	P2rx5, Krt36, Grik5, F2r15, AA792892	Up: P2rx5, Krt36, Grik5, F2r15, AA792892	Organ Development/Cell Division/cycle Immune (haemostasis, antigen presentation)
		XYM	13	Sephs1, Col4a5, Abpl, Tnnt1	Up: Sephs1, Col4a5, Abpl, Tnnt1	Cell proliferation/Migration
		XXF	E	Echdc1, Spin, H10, Rad9b, S100a14	Up: Echdc1, Spin, H10, Rad9b, S100a14	Immune System (Interferon, Antigen presentation)/ ERK pathways Metabolism (Porphyrim, tryptophan) Cancer/Protein Stabilization
		XYF	E	Fam3f, Csg5r, Galnt9, S100a14, Efna4	Up: Fam3f, Csg5r, Galnt9, S100a14, Efna4	Complement Cascade Transport by Aquaporins Development (Cell migration, cell junction organization, ECM R interaction, Focal Adhesion)
		XXM	E	A6f40025, Eraf, P2rx5, Il1r1, 6330403K07Rik	Up: A6f40025, Eraf, P2rx5, Il1r1, 6330403K07Rik	Complement Cascade/Interferon Signaling ECM Organization Metabolism (Glucose, glutathione, lipid) EGF Pathway/Cell Proliferation
		XYM	E	1700088E04Rik, 6330403K07Rik, Ddx3, 1110021271H04, Cccna1g	Up: 1700088E04Rik, 6330403K07Rik, Ddx3, 1110021271H04, Cccna1g	Immune (Interferon, Trk/ERK signaling) Metabolism (Nicotinamide, Glutathione, lipid) EGF Pathway/Cell Proliferation
Next, we explored the sex chromosome and gonadal effects within each hormonal treatment group using a 2-way ANOVA (2WA). In the liver, the organizational effects of gonad type were strongest in gonadectomized mice without hormone replacement (blank group) (Figure 2B). By contrast, in adipose tissue the gonadal sex effect was most prominent in the estradiol treated groups (Figure 2E), suggesting that estradiol levels augment the enduring differential effects of gonads on the adipose tissue transcriptome. Sex chromosome effects were limited regardless of hormonal treatment status, but captured specific genes important in inflammatory signaling and metabolic pathways.

Lastly, we examined the effects of testosterone and estradiol within individual genotypes using a 1-way ANOVA (1WA) followed by post-hoc analysis. More liver genes were affected by testosterone than by estradiol regardless of genotype, although XYM liver appeared to be less responsive to testosterone than liver from other genotypes (Figure 2C). By contrast, in adipose tissue, estradiol affected more DEGs in XX genotypes (XXM and XXF) than in XY genotypes (XYM and XYF), whereas testosterone had minimal impact on adipose tissue gene expression in all four genotypes (Figure 2F). These results further support tissue-specific effects of estradiol in adipose tissue and testosterone in liver, and indicate that activational effects of hormones also depend on sex chromosome complement and hormonal history (gonadal sex) of the animal. These interactions among the sex-biasing factors were further supported by the numerous DEGs with significant effects from the interaction terms in the ANOVA analyses (Supplementary Table 1). For instance, 31 DEGs were affected by interactions between estradiol and gonad type in adipose tissue, and 2-10 DEGs showed interaction effects between pairs of sex-basing factors in liver (FDR<0.05). In particular, Mpp5 (Membrane Palmitoylated Protein 5, important in cell junction organization and PI3K-AKT signaling) was found to be affected by hormone, gonadal type, and sex chromosome as well as interactions between any two factors and the interaction among all three factors in adipose.

Genes and pathways affected by hormonal treatment

In the liver, the 3WA analysis showed that testosterone treatment induced the greatest number of DEGs with 1378 compared to 333 DEGs from estradiol treatment (Table 1; Figure 2A). The testosterone DEGs were enriched for numerous metabolic pathways including lipid metabolism, organic acid metabolism, and bile acid
biosynthesis (Table 1). Within individual genotypes, testosterone treatment altered 123-138 DEGs in the X XF, XYF, XXM genotypes but only 44 DEGs in the XYM genotype (post-hoc 1WA in Table 1), with development, response to chemicals, immune response, and metabolism being the key over-represented terms. The 333 liver DEGs from estradiol treatment in the 3WA analysis showed enrichment for metabolic (organic acid metabolism, carboxylic acid metabolism) and immune pathways (complement and coagulation). The post-hoc 1WA for estradiol versus blank treatment in individual genotypes showed a high of 29 DEGs for XXM and a low of 2 DEGs for XYF, again with metabolism and immune pathways showing enrichment.

In contrast to liver, we found that the effect of estradiol treatment was more profound (2029 DEGs) than that of testosterone (275 DEGs) in 3WA of the inguinal adipose tissue (Table 2; Figure 2D). These DEGs were enriched for protein metabolism, focal adhesion, and transport pathways. The post-hoc 1WA of estradiol effect showed 395 DEGs for X XF, while XXM, XYF, and X YM each had more than 100 DEGs (Table 2; Figure 2F), with enrichment for developmental, immune, and lipid metabolic processes. Testosterone treatment produced 275 DEGs in adipose tissue in 3WA and a few to tens of DEGs in individual genotypes in 1WA. Pathways enriched include cell-cell adhesion, development, regulation of transcription, and protein signaling.

Overall, both estradiol and testosterone affected genes involved in metabolism, development, and immune function. However, estradiol primarily affected these processes in the adipose tissue, whereas testosterone exhibited influence in the liver. Additionally, the activational effects of hormones depended on the chromosomal and gonadal sex contexts as reflected in the different DEGs between genotypes.

Genes and pathways affected by gonadal sex

In the liver, 3WA analyses revealed 93 DEGs influenced by gonadal sex when testosterone and blank treatment groups were considered, and 209 DEGs in the analysis of estradiol and blank groups (Table 1). These genes were enriched for immune/defense response and lipid metabolism pathways. To further tease apart the effect of gonadal sex in individual hormonal treatment groups, we conducted a 2WA and found that gonadal sex has the strongest influence on inflammatory and metabolism genes in the absence of hormones (blank group; 115 DEGs),
whereas the gonadal sex effects were reduced by estradiol treatment (53 DEGs) and minimized in the testosterone group (9 DEGs; Table 1; Figure 2B).

For the inguinal adipose tissue, gonadal sex showed strong effects on gene expression, with more than twice as many DEGs as in liver tissue in the 3WA analysis (Figure 2A vs. 2D). Genes involved in developmental processes were enriched in these DEGs. Further dissection of the gonadal sex effect in individual hormonal treatment groups in a 2WA analysis showed that the effects of gonadal sex were strongest in the estradiol treatment group (400 DEGs), followed by testosterone group (161 DEGs), and lastly by the blank group (70 DEGs; Figure 2E). In addition to affecting development related genes, gonadal sex also affected genes involved in arginine and proline metabolism in the estradiol treatment group, and cancer-related genes in the testosterone treatment group.

These results support the importance of gonadal sex in regulating development processes in both tissues. However, in the liver, hormonal treatments minimized the effects of gonadal regulation of gene expression, whereas in the adipose tissue, hormones amplified the gonadal influence on gene expression to regulate additional metabolism genes (by estradiol) or cancer-related genes (by testosterone). In both tissues, the gonadal sex effect was more prominent in the estradiol-treated group than in the testosterone-treated group (Figure 2B vs. 2E).

Genes and pathways affected by sex chromosome complement

In both the 3WA and 2WA analyses, ten or fewer genes were found to be significantly affected by sex chromosome complement at FDR < 0.05 in the liver (Table 1; Figure 2C) and 10-22 DEGs were influenced by sex chromosomes in the adipose tissue (Table 2; Figure 2F). Not surprisingly, these genes were mainly sex chromosome genes known to exhibit sex differences in gene expression levels, including Xist, Ddx3y, Kdm6a, Hccs, Cited1, Tlr7 and Eif2s3x/y (Chen et al. 2012; Berletch et al. 2015; Golden et al. 2019; Itoh et al. 2019). However, autosomal genes were also influenced by sex chromosome type in both liver (e.g., Ntrak and H2-dmb1) and adipose tissue (e.g., Mpp5, Rbm35a, and Dnaic1). Overall, the genes influenced by sex chromosome complement are involved in diverse processes including inflammation/immune response (Tlr7, H2-dmb1, Cited1), GPCR signaling (Rbm35a), metabolism (Hccs), and cell junction organization (Mpp5).
Coexpression modules affected by each sex-biasing factor

The above DEG analyses focused on genes that were individually influenced by sex-biasing factors. Sets of genes that are highly coregulated or co-expressed can offer complementary information on coordinated gene regulation by sex-biasing factors that might be missed by the DEG-based analyses. To this end, we constructed gene coexpression networks for each tissue using MEGENA and identified 326 liver and 131 adipose coexpression modules. The first PCs of the coexpression modules, each composed of coregulated genes, were assessed for influence by sex chromosome, gonadal sex, and hormonal treatment factors using 3-, 2-, and 1-WAs.

In the heatmaps summarizing the significance of impact of each sex-biasing factor on individual modules (Figure 2G, 2H), we confirmed the large effect of hormonal treatment in regulating modules enriched for diverse biological pathways. In the liver, testosterone affected modules involved in metabolism (RNA, lipid, protein), development, protein assembly, chemical response, immune system (inflammation, adaptive immune response), apoptosis, and transcription/translation. In adipose tissue, estradiol influenced modules related to focal adhesion, development, metabolism (protein, lipid, oxidative phosphorylation), immune system (complement and coagulation), and translation.

Gonadal sex also showed considerable influence on liver modules related to protein metabolism/assembly, development, stress/immune response, apoptosis, and transcription/translation regulation, whereas in adipose tissue gonadal sex mainly affected developmental and focal adhesion processes, and to a lesser degree, lipid metabolism, biological oxidation, and intracellular signaling modules (Figure 2G).

The coexpression network analysis also confirmed the limited effect of sex chromosomal variation on altering coexpression modules (Figure 2G, 2H). However, in adipose tissue, sex chromosomes showed weak effects on modules related to lipid metabolism and intracellular signaling when estradiol and blank groups were considered, but not when the testosterone group was included (Figure 2H).

Overall, the gene coexpression network analysis offered clearer patterns of tissue-specificity and functional specificity of each sex-biasing factor compared to the DEG-based analysis.

Effect of hormonal treatment on gene expression direction across genotypes
Due to the dominant effect of hormonal treatment as compared to gonadal sex or sex chromosome differences based on the above analyses, we further investigated the differences between testosterone and estradiol treatments in terms of the gene sets they target and the direction of gene expression change within and between tissues.

Overlapping DEGs between testosterone and estradiol treatment

Between testosterone and estradiol DEGs informed by 3WA (Supplementary Figure 2), 226 overlapped in the liver and 383 overlapped for adipose tissue. However, estradiol DEGs in individual genotypes did not overlap with those caused by testosterone in 1WA (p<0.05) in any genotype group (Figure 3). In particular, for the XYF mouse we found no overlapping DEGs in either the liver or adipose DEGs between testosterone and estradiol (Supplementary Figure 3). For other genotypes, we found an insignificant overlap of DEGs affected by the two hormones in the liver (Figure 3A; 3B; 3C) and adipose tissues (Figure 3D; 3E; 3F), and the direction of gene expression changes generally agreed between tissues. However, there were a few exceptions. Fmo3 (Flavin containing monooxygenase 3, important for the breakdown of nitrogen-containing compound) in XXM liver (Figure 3A), and all the shared DEGs in X XF liver (C1qb, C1qc, and Vsig4; complement pathway genes) (Figure 3C) were affected by testosterone (down) and estradiol (up) oppositely.
Figure 3. Venn Diagrams of DEG comparisons and Bar Graphs of overlapping DEGs between estradiol (E vs blank, abbreviated as E) and testosterone (T vs blank, abbreviated as T) treatment for each genotype in liver and adipose. A. Liver XXM. B. Liver XYM. C. Liver XXF. D. Adipose XXM. E. Adipose XYM. F. Adipose XXF. The bar graphs focused on the DEGs that passed an FDR < 0.05 and were overlapping between testosterone and estradiol treatment for each genotype and tissue. To understand the effects of each hormone, we plotted the
log2 fold change of the hormonal effects. The Venn diagrams showcase comparison of DEGs of T effect vs E effect, as well as the top 5 up and down regulated genes for T or E in liver or adipose tissue for each genotype. There was no statistically significant overlap between any comparisons in the Venn diagrams.

Another observation is that DEGs in XXF adipose and XXM liver have noticeably large (>250 fold) increases in gene expression affected by the two hormones (Figure 3A; 3F). These include Lcn13 (Lipocalin-13, involved in glucose metabolism) and Slco1a1 (Solute Carrier Organic Anion Transporter 1A1, important in Na+ independent transport of anions such as prostaglandin E2 and taurocholate) in XXM liver, and Mpp5 (Membrane Palmitoylated Protein 5, important in cell junction organization and PI3K-AKT signaling) and Rfwd3 (Ring finger and WD repeat domain 3, important in ligase activity and p53 binding) in XXF adipose.

Top DEGs specific for estradiol and testosterone for liver and adipose tissue

Besides the overlapping DEGs between hormones, we investigated the top DEGs that were specific for each hormone for each tissue (Supplementary Figure 4; Supplementary Figure 5). Based on the ranked fold-change in liver, Elovl3 (Elongation of Very Long Chain Fatty Acid Elongase 3; >250-fold increase) and Cux2 (Cut Like Homeobox 2, important in DNA binding; ~500-fold decrease) were among the top upregulated and downregulated DEGs affected by testosterone across the four genotypes, respectively. By contrast, no consistent DEGs were found across all genotypes in the estradiol treated group in liver tissue.

In adipose tissue, the top DEGs for testosterone and estradiol generally varied across genotypes. Limited consistency in testosterone DEGs was seen for Mt2 (Metallothionein-2, important in the detoxification of heavy metals) between XXM and XYM, and for estradiol treatment, consistency was seen between XXM and XYM for Hpca (Hippocalcin, involved in calcium binding) and between XXF and XYM for Thbs1 (Thrombospondin 1, important in platelet aggregation).

Identification of potential regulators of sex-biasing factors

Transcription factor (TF) network analysis

To understand the regulatory cascades that explain the large numbers of sex-biased genes affected by hormone treatments, we performed TF analysis using as input DEGs that passed an FDR<0.05 from 1WA (Table
For the testosterone liver DEGs, we identified 67, 66, 60 and 62 TFs for XYM, XXM, XXF and XYF respectively (Figure 4A-D; Supplementary Table 2). As expected, we captured gonadal hormone receptors including Androgen Receptor (AR) as a highly ranked TF in all genotypes and estrogen receptors (ESR1, ESR2, ESRRA) to be TFs with lower rank. We also found NR3C1 (Nuclear receptor subfamily 3; the glucocorticoid receptor important for inflammatory responses and cellular proliferation) to be among the top 5 TFs for all four genotypes and the top-ranked TF for X XF and XYF, which is consistent with a female bias for this TF (Oliva et al. 2020). A number of circadian rhythm TFs were found throughout all genotypes in the liver including CRY1, CRY2, PER1, and PER2, which is consistent with sex differences in body clocks (Anderson and FitzGerald 2020). Additional consistent TFs for testosterone effect in liver across multiple genotypes, where sex bias has been documented to some extent previously, include FOXA1/2, XBP1, HNF4A, SPI1, and CTCF.
An analysis of TFs that may mediate estradiol effects in adipose tissue identified 64, 61, 44 and 53 TFs for XYM, X XM, X XF and XYF respectively (Figure 4E-H; Supplementary Table 3). We found ESR1 and ESR2 as consistent TFs throughout the genotypes, except for XYF, where no classical estradiol or androgen receptor TF was captured. We also identified AR as a top TF in X YM and XYF. Notably, we found many TFs across our genotypes to be consistent with the TFs for female-biased genes in the Anderson et al. human adipose study (Anderson et al. 2020). Out of their top 20 ranked TFs for female-biased genes, we found 17 in our results for estradiol treatment in our genotypes, including ESR1, H2AZ, SUZ12, KDM2B, CEBPB and PPARG. When comparing TFs for consistency across genotypes, the top TFs were generally consistent, except KDM5A, POLR2B, KMT2C and CLOCK were particular to XXF.

When looking into the TFs that mediate estradiol’s effects in X YM for potential male-biased regulation in adipose tissue, we found matches with 13 of the top 20 TFs from the Anderson et al. human adipose study, with top TFs including AR, CTCF, SMC1A, EZH2, ESR1, RAD21 and TP63, many of which were also consistent with additional studies in both mouse (Matthews and Waxman 2019; Anderson et al. 2020) and humans (Oliva et al. 2020).

Gene regulatory network analysis

An alternative and complementary approach to the TF analysis above is to utilize a gene regulatory network approach to decipher the key drivers (KDs) that may drive sex-biased gene alterations in each genotype based on the DEGs found in 1WA (Table 1; Table 2). These KDs may or may not be TFs.
In the liver (Figure 4I), we saw a large overlap between the KDs predicted across all four genotypes for testosterone treatment, but no KDs captured for estradiol treatment. We identified Cyp7b1, which is important in converting cholesterol to bile acids and metabolism of steroid hormones, as among the top 5 KDs for all genotypes. Mgst3 (involved in inflammation), C6 and C8b (complement genes), and Ces3b (xenobiotics detoxification) were top 5 KDs for 3 of the 4 genotypes (Figure 4I). We also identified KDs specific to particular genotypes (Supplementary Table 4) such as Es3l (xenobiotics detoxification) for female gonads, Slc22a27 (anion transport) for XXF, Serpina6 (inflammation) for XYF, and Hsd3b5 (steroid metabolism) for male gonads. Among these KDs, Slc22a27 was previously found to be expressed predominantly in females and Hsd3b5 and Cyp7b1 were male specific (Adams et al. 2015), thus agreeing with our results.

For estradiol, 31 KDs were found for adipose tissue DEGs from the XXF, XXM and XYM genotypes (Figure 4J; Supplementary Table 5). The KDs included Mrcl (response to infection), which is the only overlapping top KD between genotypes XXF and XXM. KDs that were more highly ranked for XXM but still statistically significant in XXF included genes involved in extracellular matrix organization (Prxx2, Mfap2, Col1a2, and Gas7), and those specific to XXF are relevant to lipid synthesis/metabolism (Tbxs1, Pla1a) and immune function (Emr1 and Ccdc109b). Irf7 is the only KD for XYM, which has been recently suggested to be a TF in adipocytes with roles in adipose tissue immunity as well as obesity (Kuroda et al. 2020).

Disease association of the genes affected by sex-biasing factors

Finally, to test the disease relevance of the genes affected by sex-biasing factors, we used a marker set enrichment analysis (MSEA) to detect whether the DEGs highlighted in IWA overlap with genes previously identified to have SNPs associated with diseases/pathogenic traits by GWAS (Figure 5). Of the 73 disease/traits screened for which full GWAS summary statistics is available (Supplementary Table 6), we focused on two broad categories, “cardiometabolic” (Figure 5A;5B) and “autoimmune” (Figure 5C;5D), both of which are known to show sex differences. The cardiometabolic category included Coronary Artery Disease (CAD), Type 2 Diabetes (T2D), fasting glucose level, BMI in women, BMI during childhood, BMI, total cholesterol (TC) level, triglyceride (TG) level, low-density lipoprotein (LDL) cholesterol level, and high-density lipoprotein (HDL) cholesterol level.
The autoimmune category included Irritable Bowel Disease (IBD), Ulcerative Colitis (UC), Crohn's Disease (CD), and Type 1 Diabetes (T1D) (Figure 5C; 5D). For hormone DEGs, we focused on those that are directly relevant to the general human population to understand how testosterone or estradiol can affect disease outcomes on XYM (physiological males) or XXF (physiological females).
Figure 5. Bar graphs showing enrichment of the hormone DEGs and gonadal DEGs for known cardiometabolic and autoimmune diseases based on MSEA analysis. A. Bar graph for association of adipose DEGs from the post hoc one-way ANOVA for ten cardiometabolic diseases/traits. B. Bar graph for association of liver DEGs from the post hoc one-way ANOVA with cardiometabolic diseases/traits. C. Bar graph for association of adipose DEGs from the post hoc one-way ANOVA for five autoimmune diseases. D. Bar graph for association of liver DEGs from the post hoc one-way ANOVA for five autoimmune diseases. E. Bar graph for association of adipose DEGs from the two-way ANOVA for ten cardiometabolic diseases/traits. F. Bar graph for association of liver DEGs from the two-way ANOVA for ten cardiometabolic diseases/traits. A-D. DEGs at an FDR <0.05 derived from the posthoc one-way ANOVA were tested against genetic association signals with cardiometabolic and autoimmune diseases and traits. E and F DEGs at an FDR < 0.05 were tested against genetic association signals with cardiometabolic diseases. Dotted line signifies FDR <0.05 and * denotes enrichment minimally below the FDR< 0.05 cutoff.

Disease association for hormone DEGs

When adipose tissue and cardiometabolic diseases were considered (Figure 5A; Supplementary Table 7), testosterone DEGs from XYM were enriched for GWAS signals for 5 cardiometabolic diseases (T2D and childhood BMI being unique), and those from XXF were associated with 7 cardiometabolic diseases (CAD, BMI in women, TG, and LDL being unique), with 3 shared (Fasting glucose, TC and HDL) between genotypes. In terms of autoimmune diseases (Figure 5C; Supplementary Table 8), testosterone DEGs in XYM were enriched for all diseases and those in XXF for all but IBD. For estradiol DEGs, we found 8 cardiometabolic diseases enriched in XYM (BMI in women, TC, and LDL being unique) and 6 cardiometabolic diseases enriched in XXF (childhood BMI being unique), with 5 shared (CAD, T2D, BMI, TG and HDL) between genotypes. For autoimmune diseases, estradiol DEGs in XYM are enriched for CD and T1D, and those in XXF for CD and IBD. UC appears to be a unique association with testosterone DEGs whereas CD is associated with adipose DEGs of both hormones.

When liver tissue and cardiometabolic traits were analyzed (Figure 5B; Supplementary Table 9), we see low level enrichment but specificity of testosterone DEGs for both T2D and LDL, whereas no estradiol DEGs were enriched for any of the ten traits. For the association of liver DEGs with autoimmune disease (Figure 5D; Supplementary Table 10), we found that testosterone DEGs in XYM to be related to UC and T1D, whereas DEGs in XXF to be related to IBD, UC and T1D. Interestingly, estradiol DEGs from XYM had no association with autoimmune diseases but DEGs in XXF were associated with all autoimmune diseases. Taken together, liver DEGs in XXF (gonadal females) affected by both testosterone and estradiol were enriched for autoimmune diseases, implying the modifiable effect of either hormone in these diseases in females.
Overall, the disease association analyses identified adipose DEG sets altered by both hormones for both cardiometabolic and autoimmune processes. For liver DEGs, the most significant associations were with autoimmune diseases and subtle T2D and LDL associations were identified for liver testosterone DEGs. It is unclear, however, whether the associations would be pathogenic or protective.

Disease association for gonadal sex DEGs

We also used MSEA to detect whether gonadal DEGs highlighted in 2WA (FDR<0.05) overlap with genes previously identified to have SNPs associated with diseases/pathogenic traits by GWAS (Figure 5E-F). For adipose tissue, the gonadal DEGs were particularly enriched in cardiometabolic disease/trait GWAS when on an estradiol background, capturing significance in CAD, T2D, Childhood BMI and HDL traits. Gonadal DEGs on a testosterone background only showed association with HDL and no disease association was captured when no hormone (blank) is the background (Supplementary Table 11). In regard to the liver, gonadal DEGs on an estradiol background were enriched for TC, TG, and LDL GWAS signals (Supplementary Table 12).

Disease association for sex chromosome DEGs

Due to the low number of DEGs captured for the sex chromosome effect, no enrichment results are possible through MSEA, therefore we queried whether sex chromosome DEGs have been previously implicated in human diseases by overlapping the DEGs (FDR<0.05 from 2WA) with candidate genes from the GWAS catalog for 2203 traits. Both adipose tissue and liver DEGs demonstrating sex chromosome effects overlapped with GWAS candidates for both cardiometabolic and autoimmune disease (Supplementary Table 13) as well as various other diseases (Supplementary Table 14).

Disease association for DEGs showing interactions among sex-biasing factors

Similarly, overlapping DEGs that showed interactions among the sex-biasing factors (Supplementary Table 1) with GWAS candidate genes, demonstrated that both liver and adipose DEGs affected by interaction between gonad and hormone, and between sex chromosome and gonad overlapped with numerous autoimmune and cardiometabolic traits and disease (Supplementary Table 15).

DISCUSSION
The variation in physiology and pathophysiology between sexes is established via the modulatory effects of three main classes of sex-biased agents: sex chromosome complement (XX vs. XY), long-lasting organizational effects of hormones secreted by the gonads at critical periods such as prenatally or at puberty, and the acute, transient activational effects of circulating hormones that wax and wane at various life stages (Arnold 2009). The manifestations of these sex-dependent modulators impact disease incidence and severity, including metabolism-related diseases and autoimmune diseases (Voskuhl and Gold 2012; Link and Reue 2017). In this study, we separated the effects of these sex-biasing components using the FCG model, thus enabling the analysis of each contributing factor as well as their interactions in altering gene expression in inguinal adipose and liver tissues, which are relevant in systems metabolism and immunity (Figure 1).

Our data revealed distinct patterns between tissues in the relative contribution of each sex-biasing factor to gene regulation (Table 1; Table 2). In particular, the liver transcriptome is mainly affected by acute effects of testosterone, followed by acute effects of estradiol, organization effect of gonadal sex, and sex chromosome complement, whereas inguinal adipose gene expression is primarily regulated by acute effects of estradiol, followed by gonadal sex, acute effects of testosterone, and sex chromosome complement. The genes and pathways regulated by the sex-biasing factors are largely different between factors, although metabolic, developmental, and immune functions can be regulated by both activational effects of sex hormones and gonadal sex (organizational effects). Sex chromosome effects were primarily associated with genes that reside on X and Y chromosomes, along with a handful of autosomal genes involved in inflammation and metabolic processes that are downstream of the sex-biasing effects of X and Y genes. Lastly, the liver and adipose tissue genes affected by the sex-biasing factors were found to be downstream targets of numerous TFs and network regulators, not just the sex hormone receptors, and show association with human cardiometabolic and autoimmune diseases (Figure 6).
Figure 6. Study Summary. Utilizing the FCG model, we separated the three major classes of sex-biased agents and uncovered their relative contribution to transcriptional alterations in the liver and adipose tissue, the resulting biological processes enriched and finally the diseases associated.

Previously, sex differences in the liver transcriptome have been largely attributed to sex differences in the circadian rhythm and levels of Growth Hormone, which are established because of perinatal organizational masculinization of hypothalamo-pituitary mechanisms controlling Growth Hormone (Mode and Gustafsson 2006; Waxman and Holloway 2009; Sugathan and Waxman 2013). Genes regulated in this manner would be expected to appear in the gonadal effect DEGs. Our results suggest, however, that the acute activational effects of gonadal hormones might be a more important influence, because of the larger number of testosterone or estradiol DEGs.
compared to gonad DEGs. Our results support previous evidence that removal of gonadal hormones in adulthood eliminates most sex differences in mouse liver gene expression (van Nas et al. 2009; Norheim et al. 2019), and that liver-specific knockout of estrogen receptor alpha or androgen receptor altered genes that underlie sex differences in the liver transcriptome (Zheng et al. 2018). It is possible that the effects of gonadal steroids during adulthood are required for some of the organizational effects of testosterone mediated via Growth Hormone action. In contrast to liver, gonadectomy does not eliminate sex differences in the adipose transcriptome (Norheim et al. 2019), which agrees with our finding that the organizational effects of gonads play a strong role, in addition to estradiol, in adipose gene regulation.

Although we observed a large effect of hormonal treatment relative to gonadal sex and sex chromosome complement for both tissues (Figure 2A-F), the striking tissue-specificity for each of the sex-biasing factors observed here highlights that individual tissues have unique sex-biased regulatory mechanisms. Circulating levels of testosterone play a major role in determining sex differences in liver gene expression patterns (Figure 2A), confirming earlier studies (van Nas et al. 2009; Norheim et al. 2019), whereas levels of estradiol as well as gonadal sex are the main factors to drive sex differences in adipose transcriptome (Figure 2D). For adipose tissue, the stronger estradiol effect than testosterone is consistent with evidence that ERs are expressed at higher levels than ARs in adipose tissue, as well as having higher overall expression in females (Shen and Shi 2015a). In the liver, ERs are equally distributed between males and females but are generally expressed at a low level (Eisenfeld and Aten 1987). However, ARs are present at much higher concentrations (Eisenfeld and Aten 1987) and higher expression levels in males compared to females (Shen and Shi 2015a); this agrees with our TF analysis ranking ARs more highly than ERs in the liver for all genotypes.

We found that the gonadal sex factor primarily affects developmental pathways, cell adhesion, and metabolic pathways in adipose (Table 2; Figure 2H), which corroborates past evidence indicating that early gonadal sex status and associated hormonal release play critical roles in the development of sex differences and disease outcomes (Leung et al. 2004; Varlamov et al. 2012; Shen and Shi 2015b). Interestingly, the gonadal sex factor on gene expression is more prominent in mice treated with estradiol rather than testosterone, suggesting that
estradiol may amplify, and testosterone may minimize, the effect of gonadal sex on gene regulation in adipose (Figure 2B; 2E).

Compared to the organizational gonadal sex effects and activational hormone effects, the sex chromosome effects were minimal, and no coherent pathways were found for the sex chromosome-driving DEGs (Table 1; Table 2) or co-expression modules (Figure 2G-H). The DEGs include those known to escape X inactivation (Kdm6a, Eif2s3x, Ddx3x) (Chen et al. 2012; Berletch et al. 2015) and their Y paralogues (Eif2s3y, Ddx3y). The X escapees are expressed higher in XX than XY cells, causing sex differences in several mouse models of metabolic, immune, and neurological diseases (Kaneko and Li 2018; Itoh et al. 2019; Davis et al. 2020; Link et al. 2020). Comparison between XXF and XYF revealed that immune and arrhythmogenic right ventricular cardiomyopathy (ARVC) related pathways are enriched among the DEGs affected by sex chromosome when gonadal hormonal levels are absent (blank group) in these mice that were never masculinized by organizational effects of testicular androgens. This may be relevant to the postmenopausal state in women, which is characterized by an increase in risk of heart and autoimmune disease, potentially driven by sex chromosomal effects.

As our comparative analysis of the three classes of sex-biasing factors clearly determined that the activational effects of gonadal hormones are the dominant factors, we further investigated the main players that may regulate the sex-biased genes, using a gene regulatory network analysis and a TF analysis, revealing both expected and novel findings. In concordance with the importance of hormonal effects and consistent with recent studies searching for tissue-specific sex bias (Anderson et al. 2020; Oliva et al. 2020), TFs for hormone receptors (AR, and ESR1/2) were captured in the majority of genotypes (Figure 4A-4H). Beyond the major hormonal receptors, within the liver numerous circadian related TFs were captured (PER1, PER2, CRY1 and CRY2). Although it is known that males and females have differing biological clocks (Anderson and FitzGerald 2020), the contribution of hormones particularly in this rhythm is far from fully elucidated and our findings support that hormones need to be taken into account in liver circadian rhythm studies. In adipose tissue for estradiol treatment, however, we found that surprisingly the XXF genotype has no significant signal for ERs, which may imply that estradiol’s major contribution in adipose gene regulation is more importantly through TFs such as H2AZ, which have been shown to be essential for estrogen signaling and downstream gene expression (Gévry et al. 2009). In
addition to TFs, we utilized a GRN analysis, revealing non-TF regulators. For the liver GRN (Figure 4I), key driver genes for testosterone DEGs are involved in immune processes (\textit{Mgst3, C6, C8b}), steroid metabolism (\textit{Cyp7b1 and Hsd3b5}), and xenobiotic detoxification (\textit{Ces3b and Es31}). In adipose tissue (Figure 4J), the network is dominated for estradiol signals likely due to the larger number of DEGs as compared to testosterone treatment. Here, we see far fewer shared key drivers across genotypes relative to the results in the liver with testosterone treatment, indicating that estradiol has more finely tuned interactions with the gonadal sex and sex chromosome genotypes than the broad effect of testosterone. The role of the numerous liver and adipose regulators uncovered in our analysis warrant further investigation.

Lastly, to provide context to the health relevance of the liver and adipose sex-biasing DEG sets, we looked for GWAS association of these genes with human diseases/traits. We found that hormone-affected genes in adipose tissue were enriched for genetic variants associated with numerous cardiometabolic diseases/traits, but the enrichment was weaker for the liver DEGs (Figure 5A; 5B). CAD and its related traits (HDL, LDL, TG, TC, BMI and fasting glucose) showed significant and widespread enrichment in adipose DEGs for both testosterone and estradiol. Another important area of sex difference is found within autoimmunity, which occurs more in females (Mauvais-Jarvis et al. 2020). While both adipose and liver DEGs from multiple hormone-genotype combinations were enriched for autoimmune diseases, the liver DEGs, particularly those from the XXF genotype, had more prominent autoimmune association. Beyond the hormonal DEG enrichment in human disease/trait, we also found that DEGs caused by gonad type from both adipose and liver are involved in cardiometabolic disease (Figure 5E; 5F). Finally, despite minimal DEGs captured for the sex chromosome effect as well as the interactions between each sex biasing factors, we found overlap of these DEGs with various disease traits. The DEGs underlying disease associations may explain the differential susceptibility of males and females to these major diseases, and warrant further investigation to distinguish risk versus protection through the genes identified in this study.

The analyses presented in this study show an extensive dissection of the relative contribution of three classes of sex biasing factors on liver and adipose gene expression, their associated biological processes and regulators, and their potential contribution to disease. Despite retrieving numerous new insights, we acknowledge the following limitations. First, gonadectomy and subsequent treatment of hormones may have caused activational effects that do
not match the effects of endogenous physiological changes in the same hormones, leading to more predominant activational effects being observed. Second, the comparison of mice with testes vs. ovaries does not map perfectly onto mice that had organizational effects of testicular vs. ovarian secretions because of the potential effects of the *Sry* transgene, which was present in tissues only of mice with testes. Lastly, only liver and inguinal adipose tissues were investigated, and other tissues warrant examination in future studies.

Overall, our data revealed tissue-specific differential gene expression resulting from the three sex-biasing factors, thereby teasing apart their relative contributions to the differential expression of key genes in a variety of clinically significant pathways including metabolism, immune activity, and development. Importantly, in addition to establishing the critical influence of hormones and their effect on the transcriptome in a tissue specific manner, we also uncovered and highlighted the underappreciated role of the sex chromosomal effect and organizational gonadal effect as well as interactions among sex-biasing factors in global gene regulation. Our findings offer a comprehensive understanding of the origins of sex differences, and each of their potential associations with health and disease.

METHODS

Overall Study Design

In this study we used FCG mice on a C57BL/6J B6 background (B6.Cg-TgSry2Ei Srydl1Rlb/ArnoJ, Jackson Laboratories stock 10905; backcross generation greater than 20), bred at UCLA (De Vries et al. 2002; Burgoyne and Arnold 2016). Gonadal females and males were housed in separate cages and maintained at 23°C with a 12:12 light: dark cycle. Animal studies were performed under approval of the UCLA Institutional Animal Care and Use Committee.

A total of 60 FCG mice, representing 4 genotypes (XXM, XXF, XYM, XYF), were gonadectomized (GDX) at 75 days of age and implanted immediately with medical grade Silastic capsules containing Silastic adhesive only (blank control, (B) or testosterone (T) or estradiol (E) (n=5/genotype/hormone; details in Supplementary Methods). Mice were euthanized 3 weeks later; liver and inguinal adipose tissues were dissected, snap frozen in liquid nitrogen and stored at -80°C for RNA extraction and Illumina microarray analysis.
Genotyping

DNA was extracted from tails or ears using Chelex resin (Bio-Rad, Hercules, CA). The genotype of mice was determined by PCR using the primers described in (Itoh et al. 2015) and (Burgoyne and Arnold 2016).

RNA isolation, microarray hybridization, and quality control

RNA from liver and inguinal adipose tissue was isolated using Trizol (Invitrogen, Carlsbad, CA). Individual samples were hybridized to Illumina MouseRef-8 Expression BeadChips (Illumina, San Diego, CA) by Southern California Genotyping Consortium (SCGC) at UCLA. Principal Component Analysis (PCA) was used to identify three outliers among the adipose samples, which were removed from subsequent analyses.

Identification of differentially expressed genes (DEGs) affected by individual sex-biasing factors

To identify DEGs, we conducted 3-way ANOVA (3WA), 2-way ANOVA (2WA), and 1-way ANOVA (1WA). The 3WA tested the general effects of 3 factors of sex chromosomes, gonad, and hormonal treatments, as well as their interactions. Two sets of 3WA were conducted, one comparing T vs. B, and the other E vs. B, to discriminate separate E or T effects. The 2WA tested the effects of sex chromosomes and gonads as well as their interactions within each hormonal treatment group (T, E, or B) separately. For 1WA, we tested the effects of T (comparing T vs. B) and E (comparing E vs. B) within each genotype. Multiple testing was corrected using the Benjamini-Hochberg (BH) method, and significance level was set to FDR <0.05 to define significant DEGs. Suggestive DEGs at p<0.01 and p<0.05 were also retrieved for analyses that are less sensitive to DEG cutoffs, such as pathway analysis.

Co-expression network construction and identification of co-expression modules affected by individual sex-biasing factors

As co-expression networks can reveal unique biology that cannot be retrieved by DEG analysis (Huan et al. 2015; Cordero et al. 2019; Zhao et al. 2019), we used the Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) (Song and Zhang 2015), a method similar to WGCNA (Langfelder and Horvath 2008), to recognize modules of co-expressed genes affected by the three different sex-biasing factors (details in Supplementary Methods). The unique strength of MEGENA compared to WGCNNA is that it allows a gene to be in multiple modules and produces smaller and more functionally coherent modules. The influence of each sex-biasing factor on the
resulting modules was assessed using the first principle component of each module to represent the expression of that module, followed by 3WA, 2WA, 1WA tests and FDR calculation as described under the DEG analysis section to identify differential modules (DMs) at FDR <0.05 that are influenced by the various sex-biasing factors.

Annotation of the pathways over-represented in the DEGs and DMs

For each of the DEG sets and DMs that were significantly affected by any of the three sex-biasing factors, we conducted pathway enrichment analysis against Gene Ontology (GO) Biological Processes and KEGG pathways using Fisher’s exact test, followed by BH FDR estimation. Pathways that had >5 overlapping genes with the DEGs or DMs and FDR < 0.05 were used to annotate the functions of the DEGs or modules.

Gene regulatory network analysis

To predict potential regulators of the sex-biased DEGs, we used the Weighted Key Driver Analysis (wKDA) function of the Mergeomics pipeline (Shu et al. 2016) and liver and adipose Bayesian networks. In brief, the Bayesian networks were built from multiple large human and mouse transcriptome and genome datasets (Yang et al. 2006; Wang et al. 2007; Emilsson et al. 2008; Schadt et al. 2008; Tu et al. 2012). To identify the hub genes or key driver genes within these tissue-specific networks, we searched for network genes whose neighbors were enriched for DEGs from the corresponding tissues. Bayesian network key driver genes were considered significant if they passed an FDR<0.05. The Bayesian networks of top key drivers were visualized using Cytoscape (Shannon et al. 2003).

Transcription Factor (TF) Analysis

To predict TFs that may regulate the sex-biased DEGs sets, we used the Binding Analysis for Regulation of Transcription (BART) computational method (Wang et al. 2018). We followed the tool’s recommendation of a minimum of 100 DEGs as input and an Irwin-Hall p-value cut off (p < 0.01) for identify TFs.

Marker Set Enrichment Analysis (MSEA) to connect sex biasing DEGs with human diseases or traits

To assess the potential role of the DEGs affected by each of the sex-biasing factors in human diseases, we collected the summary statistics of human GWAS for 73 diseases or traits that are publicly available via GWAS catalog (MacArthur et al. 2017). We used the MSEA function embedded in Mergeomics (Shu et al. 2016) to assess the association of the DEGs with human diseases using a Chi-square like statistic (details in Supplementary Methods).
DATA ACCESS

All raw and processed sequencing data generated in this study have been submitted to the NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE176033.

COMPETING INTEREST STATEMENT

The authors declare no competing interests.

ACKNOWLEDGEMENTS

AA was supported by NIH grants NS043196, HD076125, and HD100298. XY was supported by NIH grants DK104363, DK117850, and HD100298. MB is supported by the American Heart Association Predoctoral Fellowship. We thank Emilie Rissman for advice.

AUTHOR CONTRIBUTIONS

MB formal analysis, visualization and writing of the manuscript. XC experimental work and writing, YI formal analysis, YZ formal analysis and writing, YH formal analysis, BS formal analysis and writing. AA study design, resources, supervision, writing, review and editing. XY analysis design, supervision, writing, review and editing. KR study design, resources, writing, review and editing.

REFERENCES

Adams JM, Otero-Corchon V, Hammond GL, Veldhuis JD, Qi N, Low MJ. 2015. Somatostatin is essential for the sexual dimorphism of GH secretion, corticosteroid-binding globulin production, and corticosterone levels in mice. Endocrinology 156: 1052-1065.

Anderson ST, FitzGerald GA. 2020. Sexual dimorphism in body clocks. Science 369: 1164-1165.

Anderson WD, Soh JY, Innis SE, Dimanche A, Ma L, Langefeld CD, Comeau ME, Das SK, Schadt EE, Björkegren JL. 2020. Sex differences in human adipose tissue gene expression and genetic regulation involve adipogenesis. Genome Res 30: 1379-1392.

Arnold AP. 2009. The organizational–activational hypothesis as the foundation for a unified theory of sexual differentiation of all mammalian tissues. Hormones and behavior 55: 570-578.

Arnold AP. 2010. Promoting the understanding of sex differences to enhance equity and excellence in biomedical science. BioMed Central.

Arnold AP. 2012. The end of gonad-centric sex determination in mammals. Trends in genetics 28: 55-61.

Arnold AP. 2017. A general theory of sexual differentiation. Journal of neuroscience research 95: 291-300.

Arnold AP. 2019. Rethinking sex determination of non-gonadal tissues. Curr Top Dev Biol 134: 289-315.

Arnold AP, Chen X, Link JC, Itoh Y, Reue K. 2013. Cell - autonomous sex determination outside of the gonad. Developmental Dynamics 242: 371-379.

Berleth JB, Ma W, Yang F, Shendure J, Noble WS, Distèche CM, Deng X. 2015. Escape from X inactivation varies in mouse tissues. PLoS Genet 11: e1005079.
Burgoyne PS, Arnold AP. 2016. A primer on the use of mouse models for identifying direct sex chromosome effects that cause sex differences in non-gonadal tissues. *Biology of sex differences* 7: 68.

Chen X, McClusky R, Chen J, Beaven SW, Tontonoz P, Arnold AP, Reue K. 2012. The number of x chromosomes causes sex differences in adiposity in mice. *PLoS Genet* 8: e1002709.

Clayton JA, Collins FS. 2014. Policy: NIH to balance sex in cell and animal studies. *Nature News* 509: 282.

Cordero P, Parikh VN, Chin ET, Erbilgin A, Gloudemans MJ, Shang C, Huang Y, Chang AC, Smith KS, Dewey F et al. 2019. Pathologic gene network rewiring implicates PPP1R3A as a central regulator in pressure overload heart failure. *Nature Communications* 10: 2760.

Davis EJ, Broestl L, Abdulai-Saiku S, Worden K, Bonham LW, Miñones-Moyano E, Moreno AJ, Wang D, Chang K, Williams G et al. 2020. A second X chromosome contributes to resilience in a mouse model of Alzheimer's disease. *Sci Transl Med* 12.

De Vries GI, Rissman EF, Simerly RB, Yang L-Y, Scordalakes EM, Auger CJ, Swain A, Lovell-Badge R, Burgoyne PS, Arnold AP. 2002. A model system for study of sex chromosome effects on sexually dimorphic neural and behavioral traits. *Journal of Neuroscience* 22: 9005-9014.

Eisenfeld AJ, Aten RF. 1987. Estrogen receptors and androgen receptors in the mammalian liver. *Journal of steroid biochemistry* 27: 1109-1118.

Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J, Carlson S, Helgason A, Walters GB, Gunnarsdottir S. 2008. Genetics of gene expression and its effect on disease. *Nature* 452: 423-428.

Gévry N, Hardy S, Jacques P-E, Laflamme L, Svotelis A, Robert F, Gaudreau L. 2009. Histone H2A.Z is essential for estrogen receptor signaling. *Genes Dev* 23: 1522-1533.

Golden LC, Itoh Y, Itoh N, Iyengar S, Coit P, Salama Y, Arnold AP, Sawalha AH, Voskuhl RR. 2019. Parent-of-origin differences in DNA methylation of X chromosome genes in T lymphocytes. *Proceedings of the National Academy of Sciences* 116: 26779-26787.

Huan T, Rong J, Tanriverdi K, Meng Q, Bhattacharya A, McManus DD, Joehanes R, Assimes TL, McPherson R, Samani NJ. 2015. Dissecting the roles of microRNAs in coronary heart disease via integrative genomic analyses. *Arteriosclerosis, thrombosis, and vascular biology* 35: 1011-1021.

Itoh Y, Golden LC, Itoh N, Matsukawa MA, Ren E, Tse V, Arnold AP, Voskuhl RR. 2019. The X-linked histone demethylase Kdm6a in CD4+ T lymphocytes modulates autoimmunity. *J Clin Invest* 129: 3852-3863.

Itoh Y, Mackie R, Kampf K, Domadia S, Brown JD, O’Neill R, Arnold AP. 2015. Four core genotypes mouse model: localization of the Sry transgene and bioassay for testicular hormone levels. *BMC research notes* 8: 69.

Kaneko S, Li X. 2018. X chromosome protects against bladder cancer in females via a KDM6A-dependent epigenetic mechanism. *Sci Adv* 4: eaar5598.

Kuroda M, Nishiguchi M, Ugawa N, Ishikawa E, Kawabata Y, Okamoto S, Sasaki W, Miyatake Y, Sebe M, Masumoto S. 2020. Interferon regulatory factor 7 mediates obesity-associated MCP-1 transcription. *Plos one* 15: e023390.

Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. *BMC bioinformatics* 9: 559.

Leung K-C, Johannsson G, Leong GM, Ho KKY. 2004. Estrogen Regulation of Growth Hormone Action. *Endocrine Reviews* 25: 693-721.
Link JC, Chen X, Prien C, Borja MS, Hammerson B, Oda MN, Arnold AP, Reue K. 2015. Increased High-Density Lipoprotein Cholesterol Levels in Mice With XX Versus XY Sex Chromosomes. *Arteriosclerosis, Thrombosis, and Vascular Biology* 35: 1778-1786.

Link JC, Reue K. 2017. Genetic Basis for Sex Differences in Obesity and Lipid Metabolism. *Annu Rev Nutr* 37: 225-245.

Link JC, Wiese CB, Chen X, Avetisyan R, Ronquillo E, Ma F, Guo X, Yao J, Allison M, Chen YI et al. 2020. X chromosome dosage of histone demethylase KDM5C determines sex differences in adiposity. *J Clin Invest* 130: 5688-5702.

MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, Junkins H, McMahon A, Milano A, Morales J. 2017. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). *Nucleic acids research* 45: D896-D901.

Matthews BJ, Waxman DJ. 2019. CTCF and Cohesin link sex-biased distal regulatory elements to sex-biased gene expression in mouse liver. *bioRxiv* doi:10.1101/577577: 577577.

Mauvais-Jarvis F, Merz NB, Barnes PJ, Brinton RD, Carrero J-J, DeMeo DL, De Vries GJ, Epperson CN, Govindan R, Klein SL. 2020. Sex and gender: modifiers of health, disease, and medicine. *The Lancet* 396: 565-582.

Mode A, Gustafsson JA. 2006. Sex and the liver - a journey through five decades. *Drug Metab Rev* 38: 197-207.

Norheim F, Hasin-Brumshtein Y, Vergnes L, Chella Krishnan K, Pan C, Seldin MM, Hui ST, Mehrabian M, Zhou Z, Gupta S et al. 2019. Gene-by-Sex Interactions in Mitochondrial Functions and Cardio-Metabolic Traits. *Cell Metab* 29: 932-949 e934.

Oliva M, Muñoz-Aguirre M, Kim-Hellmuth S, Wucher V, Gewirtz ADH, Cotter DJ, Parsana P, Kasela S, Balliu B, Viñuela A et al. 2020. The impact of sex on gene expression across human tissues. *Science* 369: 565-582.

Rask-Andersen M, Karlsson T, Ek WE, Johansson Å. 2019. Genome-wide association study of body fat distribution identifies adiposity loci and sex-specific genetic effects. *Nature communications* 10: 339-339.

Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C. 2008. Mapping the genetic architecture of gene expression in human liver. *PLoS Biol* 6: e107.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Res* 13: 2498-2504.

Shen M, Shi H. 2015a. Sex Hormones and Their Receptors Regulate Liver Energy Homeostasis. *Int J Endocrinol* 2015: 294278-294278.

Shen M, Shi H. 2015b. Sex hormones and their receptors regulate liver energy homeostasis. *Int J Endocrinol* 2015.

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S et al. 2016. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. *BMC Genomics* 17: 874.

Song W-M, Zhang B. 2015. Multiscale embedded gene co-expression network analysis. *PLoS computational biology* 11: e1004574.

Sugathan A, Waxman DJ. 2013. Genome-wide analysis of chromatin states reveals distinct mechanisms of sex-dependent gene regulation in male and female mouse liver. *Mol Cell Biol* 33: 3594-3610.
Tu Z, Keller MP, Zhang C, Rabaglia ME, Greenawalt DM, Yang X, Wang I-M, Dai H, Bruss MD, Lum PY. 2012. Integrative analysis of a cross-loci regulation network identifies App as a gene regulating insulin secretion from pancreatic islets. *PLoS Genet* **8**: e1003107.

van Nas A, Guhatakurta D, Wang SS, Yehya N, Horvath S, Zhang B, Ingram-Drake L, Chaudhuri G, Schadt EE, Drake TA et al. 2009. Elucidating the role of gonadal hormones in sexually dimorphic gene coexpression networks. *Endocrinology* **150**: 1235-1249.

Varlamov O, White AE, Carroll JM, Bethea CL, Reddy A, Slayden O, O'Rourke RW, Roberts CT, Jr. 2012. Androgen Effects on Adipose Tissue Architecture and Function in Nonhuman Primates. *Endocrinology* **153**: 3100-3110.

Voskuhl RR, Gold SM. 2012. Sex-related factors in multiple sclerosis susceptibility and progression. *Nat Rev Neurol* **8**: 255-263.

Wang SS, Schadt EE, Wang H, Wang X, Ingram-Drake L, Shi W, Drake TA, Lusis AJ. 2007. Identification of pathways for atherosclerosis in mice: integration of quantitative trait locus analysis and global gene expression data. *Circulation research* **101**: e11-e30.

Wang Z, Civelek M, Miller CL, Sheffield NC, Guertin MJ, Zang C. 2018. BART: a transcription factor prediction tool with query gene sets or epigenomic profiles. *Bioinformatics* **34**: 2867-2869.

Waxman DJ, Holloway MG. 2009. Sex differences in the expression of hepatic drug metabolizing enzymes. *Mol Pharmacol* **76**: 215-228.

Yang X, Schadt EE, Wang S, Wang H, Arnold AP, Ingram-Drake L, Drake TA, Lusis AJ. 2006. Tissue-specific expression and regulation of sexually dimorphic genes in mice. *Genome Res* **16**: 995-1004.

Zhao Y, Jhamb D, Shu L, Arneson D, Rajpal DK, Yang X. 2019. Multi-omics integration reveals molecular networks and regulators of psoriasis. *BMC Systems Biology* **13**: 8.

Zheng D, Wang X, Antonson P, Gustafsson JA, Li Z. 2018. Genomics of sex hormone receptor signaling in hepatic sexual dimorphism. *Mol Cell Endocrinol* **471**: 33-41.
