Joint Solution for the Online 3D Photorealistic Mapping Using SfM and SLAM

Hyunga Choi¹, ChangHyun Jun¹, Shang Li Yuen¹, HyunGi Cho¹ and Nakju Lett Doh¹,*

1 School of Electrical Engineering, Korea University, Seoul, Korea
* Corresponding author E-mail: nakju@korea.ac.kr

Received 22 May 2012; Accepted 29 Aug 2012
DOI: 10.5772/52854

Abstract This paper proposes a novel hybrid solution of SfM (Structure from Motion) and SLAM (Simultaneous Localization And Mapping) for the online generation of a 3D photorealistic map. As it is well known, the SfM can generate a 3D photo map, but it is difficult to get the real-scale as well as to build an online map (i.e., the map cannot be generated on the fly). In contrast, while SLAM frameworks are suitable for online real-scale mapping, they are not adequate for 3D photo map generation. To create a synergy effect, the proposed method combines SfM and SLAM. The way of combination is to use SfM for the generation of local maps and to utilize SLAM for a fusion of local maps in a globally consistent manner. Experimental results show that the proposed hybrid approach enables online 3D photorealistic mapping.

Keywords SLAM, SfM, Mapping, Photorealistic, 3 dimensional, Online mapping

1. Introduction

Space recognition, i.e., to build a consistent 3D map while estimating the location of a mobile robot, has been one of the major issues in computer vision and robotic research. This space recognition has been referred to as SfM (Structure from Motion) [1-4] among computer vision researchers and SLAM (Simultaneous Localization And Mapping) [5-8, 14] by the robotics community. SfM and SLAM are the same in that SfM (SLAM) aims to build a consistent structure (map) through a successive estimation of motion (localization). However, they are different in the following ways:

• SfM considers only inter-consistency of the map and does not contain the real-scale information [2] while SLAM handles the real-scale as well as inter-consistency [7-8].
• SfM optimizes the map after a loop-closing which is an incidence where the robot revisits the same place after a series of motions [9-10] while SLAM can conduct that optimization even before the loop-closing [8]. In other words, SfM is a batch method while SLAM is a sequential approach.
• SfM has its advantage in dealing with image features in 3D space [3-4] while SLAM techniques are specialized in handling 2D geometric features [8].
other words, SfM is more suitable for 3D photo mapping than SLAM.

Among those three statements, the former two are the advantages of SLAM and the latter one is its weakness (and vice versa for SfM). In this paper, we show that the combination of SfM and SLAM enables an online generation of a 3D photorealistic map.

The core concept is illustrated in Fig. 1. First of all the SfM is used for the generation of a local photo map without real-scale. Then SLAM, which estimates the 3D locations among the local maps, calculates the real-scale as well as generates a globally consistent map. This approach also enables online mapping by virtue of SLAM techniques.

![Figure 1. Illustration of the core concept: SfM for the local map generation and SLAM for the globally consistent mapping.](image)

Two sets of validations have been conducted. The first set is an automatic online mapping for a small scale which validated the feasibility of the proposed approach in the real space. The second set of experiments is a 3D mapping for a larger scale than the first one and it has been conducted in a semi-autonomous way.

This paper is organized as follows: section 2 proposes a method that combines previously well-known techniques for the generation of an online 3D photorealistic map. Two sets of experiments are explained in section 3, followed by the conclusion.

2. Proposed Solution

As mentioned in the introduction, the major contribution of this paper is to generate local maps without real-scale by SfM and then bind them into one global map using SLAM as the robot moves. Here, the SfM consists of four procedures: 1) two-view triangulation (section 2.1) which optimally estimates the 3D location of overlapped image features out of two images, 2) RANSAC refinement (section 2.2) for the rejection of outliers which frequently arise under varying light conditions, 3) image stitching (section 2.3) for the incremental photo generation and 4) texture mapping (section 2.4) that re-projects the stitched image to the corresponding 3D points. Note that those procedures are applied for each local map and the generated local maps have their own coordinates which do not contain the global information. Also, note that those local maps are consistent up to scale.

While building those local maps, the 3D SLAM procedures (section 2.5) are integrated in a way that the rotation and translation of the robot is embedded into the procedure of two-view triangulation. In this way, each local map is re-scaled into a real one and the optimization procedure can be conducted even before the loop-closing (i.e., the online approach is enabled).

However, it should be noted that our contribution is to propose a way of integration of previous methods so that our aim can be implemented. Thus, in the following subsections, we briefly introduce the algorithms by referring to related papers.

2.1. Two-view Triangulation

While the robot moves, images are captured by the camera mounted on the robot. The images are taken in such a way that an overlap for two consecutive shots exists. From these images, image features called SURF [11] are extracted and its 3D coordinates without real-scale are calculated. The major theory behind this calculation is described in [2] and its schematic diagram is given in Fig. 2.

![Figure 2. Triangulation of 3D points using two-view geometry.](image)

The general equation that transforms a homogeneous SURF point \(x \in \mathbb{R}^3 \) relative to the world coordinate \((0)\) to a homogeneous SURF point \(x' \in \mathbb{R}^3 \) relative to the image coordinate is given as

\[
\mathbf{x}' = \mathbf{P} \mathbf{x} = \mathbf{K} [\mathbf{R} | \mathbf{t}] \mathbf{x} \quad (1)
\]

where \(\mathbf{K} \) is the camera calibration matrix, \(\mathbf{R} \) and \(\mathbf{t} \) are the \(3 \times 3 \) rotation matrix and the \(3 \times 1 \) translation vector of the
image, respectively. When a 3D point x is projected onto two images with different positions and orientations, we have two equations of $x = Fx$ and $x' = F'x$ for the first and the second image, respectively. Considering the constraint that, given the rotations (\mathbf{R} and \mathbf{R}') and translations (t and t'), their locations in each frame are epipolar lines (1 and $1'$) through epipoles (e and e'), we can formulate the equation,

$$
\begin{bmatrix}
x\mathbf{p}^T - \mathbf{p}'^T \\
y\mathbf{p}^T - \mathbf{p}'^T \\
x'\mathbf{p}^T - \mathbf{p}'^T \\
y'\mathbf{p}^T - \mathbf{p}'^T
\end{bmatrix}
\begin{bmatrix}
x_u \\
y_u \\
z_w \\
w_u
\end{bmatrix}
= \mathbf{A}X
$$

where \mathbf{p}' (or \mathbf{p}'') are the rows of \mathbf{P} (or \mathbf{P}') and x, y (or x', y') are first two elements of x' (or x'). The solution that the homogenous 3D point x minimizes \mathbf{AX}, subject to $|X|=1$ is the last column of eigenvector ν' from the SVD of $\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}'$ where the columns of \mathbf{U} are eigenvectors of $\mathbf{A} \mathbf{A}'$ and the columns of \mathbf{V} are eigenvectors of $\mathbf{A}' \mathbf{A}$. Here, Σ is a diagonal matrix with its components of singular values.

2.2. RANSAC Refinement

Depending on the structure of the experimentation, one may classify inliers and outliers from multiple 3D SURF features. In our implementation, it has been assumed that the features are extracted out of plane (i.e., affine assumption) and we used the RANSAC (RANdom SAMple Consensus) [12] algorithm to exclude as many outliers as possible. This RANSAC algorithm has been known to be a robust and effective solution for the estimation of plane equations by including as many inliers as possible based on a defined threshold.

Algorithm 1. Pseudo code for the RANSAC [12]

```
Input : The triangulated 3D points
Output : The estimated plane $\pi^*$ that contains the largest number of inliers
1. Initialize $g^* \rightarrow 0$ and $\pi^* \rightarrow 0$
2. repeat
3. Three 3D points are randomly selected
4. A plane equation $\pi$ is derived from these three points
5. Compute the distance $d$ for all 3D points corresponding to this value of $\pi$
6. Identify the number of inliers $g$ for which $d < 0.02 m$
7. if $g > g^*$ then
8. $g \rightarrow g^*$
9. $\pi \rightarrow \pi^*$
10. end if
11. until number of inliers is stable
```

The pseudo code for this implementation is given in Algorithm 1. The result before and after the RANSAC procedure is shown in Fig. 3.

![Figure 3. Results of estimated 3D coordinates (a) before and (b) after the RANSAC refinement from which it can be verified that most outliers have been excluded.](image)

2.3. Image Stitching

After the estimation of the 3D points, it is possible to back-project 2D image features on them using a linear equation. Instead of projecting each 2D image directly onto the 3D map, a better result is achieved by implementing the image registration based upon the homography matrix \mathbf{H} [13]. To compute the homography matrix \mathbf{H}, a direct linear transformation (DLT) algorithm [13] is used and images are registered to corresponding 3D points. The pseudo code for this procedure is given in Algorithm 2.

Algorithm 2. Pseudo code for the homography based image stitching [13]

```
Input : A series of captured images for stitching from single wall plane, corresponding points between captured images
Output : A stitched image
```

Hyung Choi, ChangHyun Jun, Shang Li Yuen, HyunGi Cho and Nakju Lett Doh: Joint Solution for the Online 3D Photorealistic Mapping Using SfM and SLAM
Given \(n \) images captured from a single wall plane

\[\text{for } i = 1 \rightarrow n - 1 \text{ do} \]

1. Find \(m \geq 4 \) correspondences \(x_i \leftrightarrow x_{i+1} \) between image \(i \) and image \(i+1 \)
2. Form the projective transformation matrix \(Ah = 0 \)
3. Compute \(h \) from SVD of \(A \)
4. Form the homography matrix \(H \) by using estimated value of \(h \)
5. Transform the image \(i + 1 \) using this homography matrix \(H \)
6. Remove the overlapped region between image \(i + 1 \) and image \(i \)
7. Merge the modified image \(i + 1 \rightarrow \) image \(i \)
8. Set image \(i \rightarrow \) image \(i + 1 \)

\[\text{end for} \]

\[\text{(a)} \]

\[\text{(b)} \]

Figure 4. Images taken by a calibrated camera in (a) are being stitched based on their homography matrices as in (b).

The results are shown in Fig. 4. Here note that the distortion is caused by the accumulated error from the projective ambiguity that occurs between images.

2.4 Texture Mapping

After stitching all images together, the 2D image features are recalculated using the homography matrices and they are being back-projected onto the 3D points using a linear equation. This linear back-projection equation is in the form of \(\lambda p = 0 \) and the projection can then be written as,

\[
\begin{bmatrix}
 x_1 \\
 y_1 \\
 1
\end{bmatrix}
\begin{bmatrix}
 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -x_2 x_1 \\
 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & -y_2 x_1 \\
 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -z_2 x_1 \\
 x_2 \\
 y_2 \\
 1
\end{bmatrix}
\begin{bmatrix}
 x_1' \\
 y_1' \\
 z_1'
\end{bmatrix}
= \lambda p = 0 \tag{3}
\]

where \(x_1', y_1' \) are \(x, y \) values of 2D image points \(x_i \) and \(x_2', y_2', z_2' \) are \(x, y, z \) values of 3D point \(x_i \). Here \(p \) is the vector containing the entries of the projection matrix \(\lambda \). The matrix \(\lambda \) has 12 elements and 11 degrees of freedom (DOF), therefore, at least 5.5 feature points are needed to minimize the error in \([\lambda p] \), subject to \(|p| = 1 \). After calculating the matrix \(\lambda \), all of the pixels from each 2D image are being back-projected onto the 3D map. As mentioned in the previous section, the least-squares solution for \(p \) is calculated using the eigenvector column of \(v' \) that corresponds to the smallest eigenvalue in the SVD of matrix \(\lambda \).

2.5 SLAM

Although SLAM has received much attention within the robotics community, there are not many reports that address the 3D SLAM problem. The authors believe the state of the art approach is a paper by Pathak et al. [14] which builds a 3D map by matching planes out of two consecutive point clouds. This procedure is conducted by an algorithm named MUMC (the Minimally Uncertain Maximum Consensus) which tries to minimize the geometric errors of two overlapped planes by checking various conditions.

We have implemented their algorithm as shown in Fig. 5 and found out that it is robust and accurate enough to be used for our purpose. However, it should be noted that this is not suitable for an unstructured environment such as an indoor space with few planes.

Figure 5. SLAM can optimally estimate the robot position even before a loop-closure. Here the circles are estimated robot position and the planes, which were extracted out of 3D point clouds, visualize surrounding environment.

3. Experimental Validation

For experimental validation, a mobile robot equipped with a tilting laser range finder (LRF, Hokuyo UTM-30LX) and a calibrated stereo camera (Bumblebee BBX-
1352C) is used (Fig. 6). During the experimentation, two sets of motions are needed. (1) The robot motion from one location to the next and (2) the tilting of the LRF for the acquisition of 3D point clouds. Those motions which do not have a relevant relationship with the proposed method were conducted either manually or by the pre-programmed routine.

As the robot moves, 3D point clouds and photos are acquired. Using these data, a supervising program which calls relevant algorithms automatically generates an online 3D photorealistic map as shown in Figs. 7 and 8.

To verify the metric accuracy of the map, the coordinates of 3D SURF were overlaid with 3D planes which were extracted out of an accurate LRF, as shown in Fig. 9. The error was defined to be the normal distance between the SURF feature and the plane. In this case, the error was calculated to be 0.0181 m with its standard deviation of 0.0245 m.

There are a total of 11 sets of data and the execution time for each set was calculated to be 3.82 sec using an Intel i7 870 CPU. Most of the time is used for the SURF feature extraction and matching. Considering that the tilting motion of LRF takes about 5 sec, this execution time is adequate enough for the real-time implementation in our case. However, we believe that our future research should focus on genuine real-time implementation.
adopting either parallel computing or the system-on-chip technique to speed this process up to the second or micro-second level, respectively.

Also, note that the map is successfully generated even though there is no loop-closure by aid of the SLAM algorithm. Readers who are interested in this implementation may download all the related source codes and data sets in [15].

As this experimentation covered a small area and does not consider the ceiling, one more experiment was conducted using the 41 data sets. The results are shown in Fig. 10 and the robot path is plotted in Fig. 11.

Figure 10. 3D photo-realistic map out of 41 data sets.

Figure 11. The path of the robot from the top view. Here dashed lines are robot location and the grey triangle is the camera’s field of view. The walls were plotted as large dots and the ceiling was removed for clarity.

However, this latter experiment is not fully automatic because we manually divided the photo into two regions: wall and ceiling. Also, because of the lack of well-defined SURF features, we manually indicated image features so that they could be stitched by the program.

4. Conclusion

This paper proposed a hybrid solution which combines SfM and SLAM for the online generation of a 3D photorealistic map. SfM and SLAM are the same in that SfM (SLAM) aims to build a consistent structure (map) through a successive estimation of motion (localization). In our approach, we combined the advantages of both approaches: 3D and photo mapping from SfM and online real-scale mapping from SLAM. For that purpose, SfM was used for local map generation and SLAM was utilized for consistent global mapping.

Two sets of experiments were performed for plane-based environments from which it was validated that the proposed method can enable online 3D photorealistic mapping. The geometric error was calculated to be 0.0181m which is sufficient in the field of robotic mapping and the map was generated online with minimal a priori knowledge.

In the future, the authors plan to develop an algorithm without prior knowledge by enhancing the feature extraction techniques. Also, the authors plan to apply the method to an environment which consists of various non-plane geometric components.

5. Acknowledgements

This work was supported by multiple funds of the Global Frontier Program on ‘Human-centered Interaction for Coexistence’ funded by the National Research Foundation (NRF-M1AXA003-2011-0031648), the Program of ‘the National Robotics Research Center for Autonomous Navigation’ supported by the National IT Industry Promotion Agency of Korea (NIPA-2012-H1502-12-1002), and Korea University Grant.

6. References

[1] Nister D (2004) An efficient solution to the five-point relative pose problem. IEEE Transactions on Pattern Analysis and Machine Intelligence 26: 756–777.
[2] Hartley R, Zisserman A (2004) Multiple View Geometry in Computer Vision, 2nd ed. Cambridge: Cambridge University Press. 153-157, 310-315p.
[3] Snavely N, Seitz S, Szeliski R (2006) Photo tourism: Exploring photo collections in 3D. ACM Transactions on Graphics. 25(3): 835–846.
[4] Furukawa Y, Curless B, Seitz S, Szeliski R (2009) Reconstructing building interiors from images. In Proceedings of the International Conference on Computer Vision(ICCV):80-87
[5] Durrant-Whyte H, Bailey T (2006) Simultaneous Localization and Mapping: Part I. IEEE Robotics & Automation Magazine 13(2): 99-110.
[6] Frese U (2006) A discussion of Simultaneous Localization and Mapping. Autonomous Robots 20: 25-42.
[7] Castellanos J, Montiel J, Neira J, Tardos J (1999) The SPmap: A Probabilistic Framework for Simultaneous Localization and Map Building. IEEE Transactions on Robotics and Automation 15(5): 948-952.

[8] Montemerlo M, Thrun S, Koller D, Wegbreit B (2002) FastSLam: A Factored Solution to the Simultaneous Localization and Mapping Problem. In Proceedings of the AAAI National Conference on Artificial Intelligence: 593-598.

[9] Triggs B, McLauchlan P, Hartley R, Fitzgibbon A (2000) Bundle Adjustment: A Modern Synthesis. Vision Algorithms: Theory and Practice, LNCS: 298-375.

[10] Lourakis M, Argyros A (2009) SBA: A software package for generic sparse bundle adjustment. ACM Transactions on Mathematical Software 36: 1–30.

[11] Bay H, Ess A, Tuytelaars T, Gool LV (2008) SURF: Speeded Up Robust Features. Computer Vision and Image Understanding 110(3):346–359

[12] Fischler MA, Bolles RC (1987) Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. IEEE Robotics & Automation Magazine 13(3): 108-117.

[13] Abdel-Aziz YI, Karara HM (1971) Direct Linear Transformation from Comparator Coordinates into Object Space Coordinates in Closerange Photogrammetry. In Proceedings of the Symposium on Close-Range Photogrammetry 1: 1-19.

[14] Pathak K, Birk A, Vaskevicius N, Poppinga J (2010) Fast registration based on noisy planes with unknown correspondences for 3d mapping. IEEE Transactions on Robotics 26:424–441.

[15] Online 3D Photorealistic Mapping, Available: http://sites.google.com/site/nakjudoh/2012-IJARS.htm. Accessed 2012 Aug. 21.