Polynomial bounds for chromatic number.
I. Excluding a biclique and an induced tree

Alex Scott1
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK

Paul Seymour2
Princeton University, Princeton, NJ 08544

Sophie Spirkl3
University of Waterloo, Waterloo, Ontario N2L3G1, Canada

February 17, 2021; revised June 26, 2024

1Research supported by EPSRC grant EP/V007327/1.
2Supported by AFOSR grants A9550-19-1-0187 and FA9550-22-1-0234, and by NSF grants DMS-1800053 and DMS-2154169.
3We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), [funding reference number RGPIN-2020-03912]. Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG), [numéro de référence RGPIN-2020-03912].
Abstract

Let H be a tree. It was proved by Rödl that graphs that do not contain H as an induced subgraph, and do not contain the complete bipartite graph $K_{t,t}$ as a subgraph, have bounded chromatic number. Kierstead and Penrice strengthened this, showing that such graphs have bounded degeneracy. Here we give a further strengthening, proving that for every tree H, the degeneracy is at most polynomial in t. This answers a question of Bonamy, Bousquet, Pilipczuk, Rzążewski, Thomassé and Walczak.
1 Introduction

The Gyárfás-Sumner conjecture [6, 15] asserts:

1.1 Conjecture: For every forest H, there is a function f such that $\chi(G) \leq f(\omega(G))$ for every H-free graph G.

(We use $\chi(G)$ and $\omega(G)$ to denote the chromatic number and the clique number of a graph G, and a graph is H-free if it has no induced subgraph isomorphic to H.) One attractive feature of this conjecture is that it is best possible in a sense: for every graph H that is not a forest, there is no function f as in 1.1 (because, as shown by Erdős [4], there are graphs with arbitrarily large chromatic number and girth). The conjecture has been proved for some special families of trees (see, for example, [3, 7, 8, 9, 11, 12, 13]) but remains open in general.

A class C of graphs is χ-bounded if there is a function f such that $\chi(G) \leq f(\omega(G))$ for every graph G that is an induced subgraph of a member of C (see [14] for a survey). Thus the Gyárfás-Sumner conjecture asserts that the class of all H-free graphs is χ-bounded, for every forest H. For some χ-bounded classes, the function f can be taken to be polynomial, and it remains open whether for every forest H, there is a polynomial f that satisfies 1.1. (Indeed, Esperet [5] made the even stronger conjecture that, for every χ-bounded class, f can always be chosen to be a polynomial, but this has recently been shown to be false [2].)

The complete bipartite graph with parts of cardinality s, t is denoted by $K_{s,t}$. Let us define $\tau(G)$ to be the largest t such that G contains $K_{t,t}$ as a subgraph (not necessarily induced). It was proved by Rödl (mentioned in [10], and see also [8]) that the analogue of the Gyárfás-Sumner conjecture is true if we replace $\omega(G)$ by $\tau(G)$. Explicitly:

1.2 For every forest H, there is a function f such that $\chi(G) \leq f(\tau(G))$ for every H-free graph G.

This has the same attractive feature that the result is best possible (in the same sense).

This result was strengthened by Kierstead and Penrice. Let us say a graph G is d-degenerate (where $d \geq 0$ is an integer) if every nonnull subgraph has a vertex of degree at most d; and the degeneracy $\partial(G)$ of G is the smallest d such that G is d-degenerate. Then $\chi(G) \leq \partial(G) + 1$, and so the following result of Kierstead and Penrice [9] is a strengthening of 1.2:

1.3 For every forest H, there is a function f such that $\partial(G) \leq f(\tau(G))$ for every H-free graph G.

What about the analogue of Esperet’s question: do 1.2 and 1.3 remain true if we require f to be a polynomial in $\tau(G)$? This question was raised by Bonamy, Bousquet, Pilipczuk, Rzążewski, Thomassé and Walczak in [1], and they proved it when H is a path, that is:

1.4 For every path H, there exists $c > 0$ such that $\partial(G) \leq \tau(G)^c$ for every H-free graph G.

In this paper we answer the question completely. Our main result is:

1.5 For every forest H, there exists $c > 0$ such that $\partial(G) \leq \tau(G)^c$ for every H-free graph G.

We also look at a related question: what can we say about $\chi(G)$ and $\partial(G)$ if G is H-free and does not contain $K_{s,t}$ as a subgraph? More exactly, if H, s are fixed, how do $\chi(G)$ and $\partial(G)$ depend on t? We will show that the dependence is in fact linear in t: 1
1.6 For every forest H and every integer $s > 0$, there exists $c > 0$ such that for every graph G and every integer $t > 0$, if G is H-free and does not contain $K_{s,t}$ as a subgraph, then $\partial(G) \leq ct$.

We also prove a weaker result, that under the same hypotheses, $\chi(G) \leq ct$, and for this the bound on c is a small function of s, H.

Finally, there is a second pretty theorem in the paper [1] of Bonamy, Bousquet, Pilipczuk, Rzążewski, Thomassé and Walczak:

1.7 Let ℓ be an integer; then there exists $c > 0$ such that $\partial(G) \leq \tau(G)^c$ for every graph G with no induced cycle of length at least ℓ.

We give a new proof of this, simpler than that in [1].

In this paper, all graphs are finite and have no loops or parallel edges. We denote by $|H|$ the number of vertices of a graph H. If $X \subseteq V(G)$, we denote the subgraph of G induced on X by $G[X]$. We use “G-adjacent” to mean adjacent in G, and “G-neighbour” to mean a neighbour in G, and so on.

2 Producing a path-induced rooted tree.

We will prove 1.5 in this section and the next. We need to show that if a graph G has degeneracy at least some very large polynomial in t (independent of G), and does not contain $K_{t,t}$ as a subgraph, then it contains any desired tree as an induced subgraph. We will show this in two stages: in this section we will show that G contains a large (with degrees a somewhat smaller polynomial in t) “path-induced” tree, and in the next section we will convert this to the desired induced tree. “Path-induced” means that each path of the tree starting at the root is an induced path of G; so we should be talking about rooted trees. Let us say this carefully.

A rooted tree (H, r) consists of a tree H and a vertex r of H called the root. A rooted subtree of (H, r) means a rooted tree (J, r) where J is a subtree of H and $r \in V(J)$. The height of (H, r) is the length (number of vertices) of the longest path of H with one end r. If $u, v \in V(H)$ are adjacent and u lies on the path of H between v, r, we say v is a child of u and u is the parent of v. The spread of H is the maximum over all vertices $u \in V(H)$ of the number of children of u. (Thus the spread is usually one less than the maximum degree.) Let H be a subgraph of G (not necessarily induced), where (H, r) is a rooted tree. We say that (H, r) is a path-induced rooted subgraph of G if every path of H with one end r is an induced subgraph of G.

Let $\zeta, \eta \geq 1$. The rooted tree (H, r) is (ζ, η)-uniform if

- every vertex with a child has exactly ζ children;
- every vertex with no child is joined to r by a path of H of length exactly η.

We need two lemmas:

2.1 Let $k, \zeta, \eta \geq 1$ with $\zeta \geq 2$, and let $(H_1, r_1), \ldots, (H_k, r_k)$ be $(k\zeta^{n+1}, \eta)$-uniform rooted trees, each a subgraph of a graph G, such that $r_i \notin V(H_j)$ for all distinct $i, j \in \{1, \ldots, k\}$. Then for $1 \leq i \leq k$ there is a (ζ, η)-uniform rooted subtree (H'_i, r_i) of (H_i, r_i), such that the trees H'_1, \ldots, H'_k are pairwise vertex-disjoint.
Proof. Choose \(j \leq k \) maximum such that there are \((\zeta, \eta)\)-uniform rooted subtrees \((H'_i, r_i)\) of \((H_i, r_i)\) for \(1 \leq i \leq j\), such that the trees \(H'_1, \ldots, H'_j\) are pairwise vertex-disjoint. Let \(X = V(H'_1) \cup \cdots \cup V(H'_j) \). Thus \(|X| \leq j\zeta^{\eta+1} \), since each \(H'_i \) has
\[1 + \zeta + \zeta^2 + \cdots + \zeta^\eta \leq \zeta^{\eta+1} \]
vertices (here we use that \(\zeta \geq 2 \)). Suppose that \(j < k \). Then each vertex of \((H_{j+1}, r_{j+1})\) with a child has at least \((k - j)\zeta^{\eta+1} \geq \zeta^{\eta+1} \geq \zeta \) children not in \(X \); and since \(r_{j+1} \notin X \), it follows that there is a \((\zeta, \eta)\)-uniform rooted subtree \((H'_{j+1}, r_{j+1})\) of \((H_{j+1}, r_{j+1})\) vertex-disjoint from \(X \), contrary to the maximality of \(j \). Thus \(j = k \), and this proves 2.1.

Let \((T, r)\) be a rooted tree, where \(T \) is a subgraph of \(G \). For \(t > 0 \), a vertex \(u \in V(G) \) is \(t\)-bad for \((T, r)\) if there is a vertex \(v \in V(T) \) such that \(u \) is distinct from and \(G\)-adjacent to more than \(d(1 - 1/t) \) children of \(w \), where \(d \) is the number of children of \(w \). We will often use the following:

2.2 Let \(t, \eta \geq 1 \) and \(\zeta \geq 2 \) be integers. Let \((T, r)\) be a \((t\zeta, \eta)\)-uniform rooted tree, where \(T \) is a subgraph of \(G \); and let \(u \in V(G) \setminus V(T) \). If \(u \) is not \(t\)-bad for \((T, r)\), then there is a \((\zeta, \eta)\)-uniform rooted subtree \((S, r)\) of \((T, r)\) such that \(u \) has no \(G\)-neighbour in \(V(S) \) except possibly \(r \).

We omit the proof, which is clear. The second lemma is:

2.3 Let \(t, \eta \geq 1 \) and \(\zeta \geq 2 \) be integers, where \(t \) divides \(\zeta \). Let \(G \) be a graph that does not contain \(K_{t, t} \) as a subgraph, and let \((T, r)\) be a \((\zeta, \eta)\)-uniform rooted tree, where \(T \) is a subgraph of \(G \). Then fewer than \(\zeta^\eta \) vertices in \(V(G) \) are \(t\)-bad for \((T, r)\).

Proof. There are \(\zeta^\eta/(\zeta - 1) \) vertices in \(V(T) \) that have children (since \(\zeta \geq 2 \)). Let \(w \in V(T) \) with \(\zeta \) children, and let \(C_w \) be the set of its children in \((T, r)\). Suppose that there are \(t \) distinct vertices \(u_1, \ldots, u_t \) in \(V(G) \) such that each is \(G\)-nonadjacent to more than \(|C_w|/t \) vertices of \(C_w \), and hence to at least \(|C_w|/1/t + 1 \) such vertices, since \(t \) divides \(|C_w| \).

It follows that each \(u_i \) is equal or \(|C_w|/t - 1 \) \(G\)-nonadjacent to at most \(|C_w|/t - 1 \) vertices of \(C_w \), and so at most \(t(|C_w|/t - 1) \) vertices of \(C_w \) belong to or have a \(G\)-non-neighbour in \(\{u_1, \ldots, u_t\} \). Consequently at least \(t \) vertices in \(C_w \) are \(G\)-adjacent to all of \(u_1, \ldots, u_t \), contradicting that \(G \) does not contain \(K_{t, t} \) as a subgraph. Thus there are at most \(t - 1 \leq \zeta - 1 \) vertices in \(V(G) \) with more than \(|C_w|/(t - 1)/t \) \(G\)-neighbours in \(C_w \). So the number of vertices in \(V(G) \) that are \(t\)-bad for \((T, r)\) is at most \(\zeta - 1 \) times the number of vertices of \(T \) that have children, and so smaller than \(\zeta^\eta \). This proves 2.3.

The main result of this section is the following:

2.4 Let \(\eta > 0 \) be an integer and let \(c = (\eta + 1)! \). Let \(\zeta \geq 2 \), and let \((H, r)\) be a rooted tree of height at most \(\eta \), and spread at most \(\zeta \). Let \(t \geq 1 \) be an integer, and suppose that the graph \(G \) does not contain \(K_{t, t} \) as a subgraph, and does not contain a rooted tree isomorphic to \((H, r)\) as a path-induced rooted subgraph. Then \(d(G) \leq (\zeta t)^c \).

Proof. We may assume that \(t \geq 2 \). We proceed by induction on \(\eta \). If \(\eta = 1 \), it follows that \(G \) has maximum degree at most \(\zeta - 1 \), since it does not contain \((H, r)\) as a path-induced rooted subgraph; and so \(d(G) \leq \zeta - 1 \leq (\zeta t)^c \) as required. So we may assume that \(\eta \geq 2 \), and the result holds for all
rooted trees with height less than \(\eta \). Let \(c' = \eta! \) and \(\zeta' = t\zeta^{\eta+1} \). Let us say a limb is a \((\zeta', \eta - 1)\)-uniform rooted tree that is a path-induced rooted subgraph of \(G \).

(1) For each vertex \(u \), there are at most \(\zeta - 1 \) \(G \)-neighbours \(v \) of \(u \) with the property that there is a limb \((J, v)\) of \(G \) such that \(u \notin V(J) \) and \(u \) is not \(t \)-bad for \((J, v)\).

Suppose there are \(\zeta \) such vertices \(v_1, \ldots, v_\zeta \), and let the corresponding limbs be \((J_i, v_i)\) for \(1 \leq i \leq \zeta \). By 2.2, for \(1 \leq i \leq \zeta \), there is a \((\zeta^{\eta+1}, \eta - 1)\)-uniform rooted subtree \((J'_i, v_i)\) of \((J_i, v_i)\), such that \(u \) has no neighbour in \(V(J'_i) \) except \(v_i \). By 2.1, there is a \((\zeta, \eta - 1)\)-uniform rooted subtree \((H'_i, r_i)\) of \((J'_i, r_i)\) for \(1 \leq i \leq \zeta \), such that the trees \(H'_1, \ldots, H'_\zeta \) are pairwise vertex-disjoint. But then adding \(u \) to the union of these trees gives a \((\zeta, \eta)\)-uniform rooted tree, and it is path-induced in \(G \), and contains a rooted induced subgraph isomorphic to \((H, r)\), a contradiction. This proves (1).

Let \(P \) be the set of vertices \(v \) of \(G \) such that there is a limb with root \(v \), and let \(Q = V(G) \setminus P \). For each \(v \in P \), there is at least one limb with root \(v \); select one, and call it \((J_v, v)\). For each edge \(e \) with at least one end in \(P \), select one such end, and call it the head of \(e \).

- Let \(A \) be the set of all edges with both ends in \(Q \);
- Let \(B \) be the set of all edges \(uv \) of \(G \) with head \(v \), such that \(u \notin V(J_v) \), and \(u \) is not \(t \)-bad for \((J_v, v)\);
- Let \(C \) be the set of all edges \(uv \) of \(G \) with head \(v \), such that \(u \notin V(J_v) \), and \(u \) is \(t \)-bad for \((J_v, v)\);
- Let \(D \) be the set of all edges \(uv \) of \(G \) with head \(v \), such that \(u \in V(J_v) \).

Thus every edge of \(G \) belongs to exactly one of \(A, B, C, D \). Since \(G[Q] \) does not contain a limb, the inductive hypothesis implies that \(\partial(G[Q]) \leq (\zeta t)^{c'} \). Consequently

\[
|A| \leq (\zeta t)^{c'} |Q| \leq (\zeta t)^{c'} |G|.
\]

By (1), for each vertex \(u \in V(G) \), there are at most \(\zeta - 1 \) edges \(uv \in B \) with head \(v \); and so

\[
|B| \leq (\zeta - 1) |G|.
\]

For each \(v \in P \), there are at most \(\zeta^{\eta-1} \) edges \(uv \in C \) with head \(v \) by 2.3, and so

\[
|C| \leq \zeta^{\eta-1} |P| \leq \zeta^{\eta-1} |G|.
\]

For each \(v \in P \), since \((J_v, v)\) is path-induced, there are at most \(\zeta' \) edges \(uv \in D \) with head \(v \), and so

\[
|D| \leq \zeta' |P| \leq \zeta' |G|.
\]

Summing, we deduce that

\[
|E(G)| \leq \left((\zeta' t)^{c'} + (\zeta - 1) + \zeta^{\eta-1} + \zeta' \right) |G|,
\]
and so some vertex of \(G \) has degree at most \(2 \left((\zeta' t)^{c'} + (\zeta - 1) + \zeta^{\eta - 1} + \zeta' \right) \). Since this also holds for every non-null induced subgraph of \(G \), we deduce that
\[
\partial(G) \leq 2 \left((\zeta' t)^{c'} + (\zeta - 1) + \zeta^{\eta - 1} + \zeta' \right).
\]

We recall that \(\zeta' = t\zeta^{\eta + 1} \) and \(c = (\eta + 1)c' \); and so
\[
\partial(G) \leq 2 \left(c^{(\eta + 1)c'} t^{c'} + (\zeta - 1) + \zeta^{\eta - 1} + \zeta^{\eta + 1} t \right)
\leq 2c \left(t^{c'} + 1 + t^{\eta - 1} + t \right)
\leq 8c t^{c'} \leq \zeta c t^{c'}
\]
(since \(c \geq c' + 3 \) and \(t \geq 2 \)). This proves 2.4.

We remark that 2.4 implies 1.4, and a strengthening:

2.5 If \(H \) is a path, and \(t \geq 1 \) is an integer, and \(G \) is \(H \)-free and does not contain \(K_{t,t} \) as a subgraph, then \(\partial(G) \leq (2t)^{|H|!} \).

Proof. Let \(\zeta = 2 \), and \(\eta = |E(H)| = |H| - 1 \). Let \(r \) be one end of \(H \). Then \(G \) does not contain \((H, r)\) as a path-induced rooted subgraph, and so \(\partial(G) \leq (2t)^{|H|!} \) by 2.4. This proves 2.5.

3 Growing a tree

If \((T, r)\) is a rooted tree and \(v \in V(T) \), the **height of \(v \)** in \((T, r)\) is the number of edges in the path between \(v, r \); and so the height of \((T, r)\) is the largest of the heights of its vertices. Let \((T, r)\) be a rooted tree, and let \((S, r)\) be a rooted subtree. The graph obtained from \(T \) by deleting all the edges of \(S \) is disconnected, and each of its components contains a unique vertex of \(S \); for each \(v \in V(S) \), let \(T_v \) be the component that contains \(v \in V(S) \). We call the rooted tree \((T_v, v)\) the **decoration of \(S \) at \(v \) in \(T \)**.

Let \(G \) be a graph, let \((S, r)\) be a rooted tree, and let \(\zeta \geq 2 \) and \(\eta \geq 1 \). We say that \((S, r)\) is \((\zeta, \eta) \)-decorated in \(G \) if \(S \) is an induced subgraph of \(G \) with height at most \(\eta - 1 \), and there is a rooted tree \((T, r)\) with the following properties:

- \((S, r)\) is a rooted subtree of \((T, r)\), and \((T, r)\) is a path-induced rooted subgraph of \(G \);
- for each \(u \in V(S) \) and \(v \in V(T) \setminus V(S) \), if \(u, v \) are \(G \)-adjacent then they are \(T \)-adjacent;
- for each \(v \in V(S) \), the decoration of \(S \) at \(v \) in \(T \) is \((\zeta, \eta - h)\)-uniform, where \(h \) is the height of \(v \) in \((S, r)\).

Thus, informally, \(T \) is obtained from \(S \) by attaching to \(S \) uniform trees rooted at each vertex of \(S \). Note that \(T \) is only required to be path-induced: the various uniform trees that are attached to \(S \) might have edges between them.

In view of 2.4, if we have a graph \(G \) with huge degeneracy that does not contain \(K_{t,t} \), then it contains a \((\zeta, \eta)\)-uniform rooted tree \((T, r)\) as a path-induced rooted subgraph; and consequently
there is a one-vertex rooted tree (S, r) that is (ζ, η)-decorated in G. The next result shows that if we start with ζ large enough, then by reducing ζ we can grow S into any larger tree that we wish, and that will prove 1.5.

3.1 Let $\eta, t \geq 1$ and $\zeta \geq 2$ be integers, let G be a graph that does not contain $K_{t,t}$ as a subgraph, and let (S', r) be a (ζ', η)-decorated rooted tree in G, where $\zeta' \geq (\zeta t)^{\eta} |S'| + \zeta t$. Let $p \in V(S')$ with height in (S', r) less than η. Then there is a G-neighbour q of p, with $q \in V(G) \setminus V(S')$, and with no other G-neighbour in $V(S')$, such that, if S denotes the tree obtained from S' by adding q and the edge pq, then (S, r) is a (ζ, η)-decorated rooted tree in G.

Proof. For each $v \in V(S')$, let $h(v)$ denote the height of v in (S', r). Since (S', r) is (ζ', η)-decorated in G, it follows that S' is an induced subgraph of G, and there is a rooted tree (T', r) such that

- (S', r) is a rooted subtree of (T', r), and (T', r) is a path-induced rooted subgraph of G;
- for each $u \in V(S')$ and $v \in V(T') \setminus V(S')$, if u, v are G-adjacent then they are T'-adjacent;
- for each $v \in V(S')$, the decoration of S' at v in T' is $(\zeta', \eta - h(v))$-uniform.

For each $v \in V(S')$, let (T_v, v) be the decoration of S' at v in T'. Since T_p is $(\zeta', \eta - h(p))$-uniform, and $h(p) \leq \eta$, it follows that p has ζ' children in (T_p, p). We need to select one of these children, say q, to add to S', forming S. Any one of them would make a larger induced tree when added to S', so (S', r) is (ζ, η)-decorated. But in order to make the new rooted tree (ζ, η)-decorated, we will delete from T' all vertices of T' that are G-adjacent and not T'-adjacent to q, and doing so must not destroy too much of T'.

For each $v \in V(S')$, let (S_v, v) be a $(t\zeta, \eta - h(v))$-uniform rooted subtree of (T_v, v). By 2.3, there are fewer than $(t\zeta)^{t - h(v)} \leq (t\zeta)^{\eta}$ vertices not in $V(S_v)$ that are t-bad for (S_v, v), and so there are fewer than $(t\zeta)^{|S'|}$ children of p in (T_p, p) that are t-bad for one of the rooted trees (S_v, v) $(v \in V(S'))$. Also, since (S_p, p) is path-induced, every G-neighbour of p in $V(S_p)$ is an S_p-neighbour of p; so there are only $t\zeta$ children of p in (T_p, p) that belong to $V(S_p)$. Since $\zeta' \geq (\zeta t)^{\eta} |S'| + \zeta t$, there is a child q of p in (T_p, p) that is t-bad for none of the trees (S_v, v) $(v \in V(S'))$ and does not belong to $V(S_p)$.

Let Q be the component containing q of the graph obtained from T' by deleting $V(S)$; thus (Q, q) is $(\zeta', \eta - h(p) - 1)$-uniform, and so we may choose a $(\zeta, \eta - h(p) - 1)$-uniform rooted subtree (R_v, v) of (Q, q). Note that q has no neighbours in $V(Q)$ except its neighbours in T', since (T', r) is path-induced. Since q is not t-bad for any of the rooted trees (S_v, v) $(v \in V(S'))$, it follows by 2.2 that for each v there is a $(\zeta, \eta - h(v))$-uniform rooted subtree (R_v, v) of (S_v, v) such that q has no G-neighbour in $V(R_v)$ except possibly v, and q is G-adjacent to v if and only if they are T'-adjacent (that is, $v = p$), since $v \in V(S')$ and (S', r) is (ζ', η)-decorated. Let S be the tree induced on $V(S') \cup \{q\}$, and let T be the union of T', the trees R_v $(v \in V(S') \cup \{q\})$ and the edge pq. Then S satisfies the theorem, because the tree T exists. This proves 3.1.

We deduce 1.5, which we restate in a strengthened form:

3.2 Let $\eta, t \geq 1$ and $\zeta \geq 2$. For every rooted tree (H, s) with height at most η and spread at most ζ, let $c = (\eta + 3)! |H|$; then $\partial(G) \leq (|H| \zeta t)^c$ for every H-free graph G that does not contain $K_{t,t}$ as a subgraph.
Proof. Choose $\eta \geq 1$ and $\zeta \geq 2$ such that (H,s) has height at most η and spread at most ζ. Let H have k vertices. Define $\zeta_k = \zeta$, and for $i = k-1,k-2,\ldots,1$ let $\zeta_i = k(t\zeta_{i+1})^\eta$. Thus $\zeta_i \geq i(t\zeta_{i+1})^\eta + t\zeta_{i+1}$.

Let G be an H-free graph that does not contain $K_{s,t}$ as a subgraph. Suppose that G contains a one-vertex rooted tree that is (ζ_1,η)-decorated in G. Choose a maximal rooted subtree (F,s) of (H,s) such that there is a rooted subtree (S,r) of G, isomorphic to (F,s), such that (S,r) is (ζ_i,η)-decorated in G, where $i = |F|$. By 3.1, $i = k$; and so G contains an induced subgraph isomorphic to H, a contradiction.

Thus G contains no one-vertex rooted tree that is (ζ_1,η)-decorated in G. Hence G contains no (ζ_1,η)-uniform rooted tree as a path-induced rooted subgraph, and so by 2.4 (applied with (H,r) replaced by a (ζ_1,η)-uniform rooted tree), $\partial(G) \leq (\zeta_1 t)^d$ where $d = (\eta + 1)!$.

Now $\zeta_k = \zeta$, and $\zeta_{k-1} = k(t\zeta)^\eta$. For all i with $1 \leq i \leq k-2$, $\zeta_{i+1} \geq k\zeta i^\eta$, and so $\zeta_i = k(t\zeta_{i+1})^\eta \leq \zeta_i^{\eta+1}$. Consequently

$$\zeta_1 \leq \zeta_{k-1}^{(k-2)(\eta+1)} \leq (k(t\zeta)^\eta)^{(k-2)(\eta+1)} \leq (k\zeta t)^{(k-2)(\eta+1)^2}.$$

So $\partial(G) \leq (k\zeta t)^c$ where $c = (k-2)(\eta + 1)^2(\eta + 1)! + (\eta + 1)! \leq (\eta + 3)!k$. This proves 3.2.

Now $\zeta_k = \zeta$, and $\zeta_{k-1} = (k-1)\zeta \eta i^\eta + \zeta t$. For all i with $1 \leq i \leq k-2$, $\zeta_{i+1} \geq i(\eta+1)^\eta$, and so $\zeta_i = i(\eta+1)^\eta \leq \zeta_i^{\eta+1}$. Consequently

$$\zeta_1 \leq \zeta_{k-1}^{(k-2)(\eta+1)} \leq (k\zeta \eta i^\eta)^{(k-2)(\eta+1)} \leq (k\zeta t)^{(k-2)(\eta+1)^2}.$$

So $\partial(G) \leq (k\zeta t)^c$ where $c = (k-2)(\eta + 1)^2(\eta + 1)! + (\eta + 1)! \leq (\eta + 3)!k$. This proves 3.2.

4 Excluding $K_{s,t}$

In this section we prove 1.6, and before that we prove a weaker statement, with $\partial(G)$ replaced by $\chi(G)$. For the latter we need the following lemma:

4.1 Let J be a digraph such that every vertex has outdegree at most k. Then the undirected graph underlying J has chromatic number at most $2k + 1$.

Proof. Let G be the undirected graph underlying J. Since every subgraph of G has the property that its edges can be directed so that it has outdegree at most k, it follows that every such subgraph H has at most $k|H|$ edges; and therefore (if it is non-null) has a vertex of degree at most $2k$. Consequently G is $2k$-degenerate, and so is $(2k + 1)$-colourable. This proves 4.1.

We use 4.1 to prove the following (which we include here because the proof gives a relatively small constant c, although the fact that some c exists follows from 1.6):

4.2 Let H be a tree and $s \geq 1$ an integer, and let $c = (2s|H|)^{s+|H|}$. Then for every H-free graph G and every integer $t \geq 1$, if G does not contain $K_{s,t}$ as a subgraph then $\chi(G) \leq ct$.

7
Proof. We will prove this by induction on $|H|$ (for the same value of s). Let H be a tree and $s \geq 0$ an integer, and suppose the theorem holds for all smaller trees and the same value of s. We may assume that $|H| \geq 3$, since the theorem is true for trees with at most two vertices; let $p \in V(H)$ have degree one, and let q be its H-neighbour. Let H' be obtained by deleting p from H. Let $c' = (2s|H'|)^{s+|H'|}$. We observe that

$$(1)\ c \geq \max\ ((|H| - 2)^{s-1}, (s-1)(|H| - 2), (2(s-2)(|H| - 2) + 1)c' + 1).$$

Let $t \geq 1$ be an integer, and let G be an H-free graph not containing $K_{s,t}$ as a subgraph. We will show that $\chi(G) \leq ct$. Suppose that this is false, and choose a minimal induced subgraph G' of G with $\chi(G') > ct$. It follows that every vertex of G' has degree at least ct (since c is an integer).

Let $v \in V(G')$. We say a subset $X \subseteq V(G') \setminus \{v\}$ is a v-bag if there is an isomorphism from H' to $G[X \cup \{v\}]$ that maps q to v. (Thus each v-bag has cardinality $|H| - 2$.)

Let $v \in V(G')$, and suppose that there are $s - 1$ pairwise disjoint v-bags, say X_1, \ldots, X_{s-1}. Since G is H-free, every G-neighbour u of v either belongs to X_i or has a G-neighbour in X_i, for $1 \leq i \leq s - 1$. In particular, every G-neighbour u of v not in $X_1 \cup \cdots \cup X_{s-1}$ has a G-neighbour in each of X_1, \ldots, X_{s-1}. But for each choice of $x_i \in X_i$ ($1 \leq i \leq s - 1$) there are at most $t - 1$ G-neighbours of v G-adjacent to each of x_1, \ldots, x_{s-1} (since they are also all adjacent to v, and G has no $K_{s,t}$ subgraph). Consequently there are at most $(t - 1)(|H| - 2)^{s-1}$ G-neighbours of v not in $X_1 \cup \cdots \cup X_{s-1}$; and hence

$$(s - 1)(|H| - 2) + (t - 1)(|H| - 2)^{s-1} > ct.$$

Since $ct = c + c(t - 1)$, and $(s - 1)(|H| - 2) < c$, and $(t - 1)(|H| - 2)^{s-1} \leq c(t - 1)$, this contradicts (1); so there is no such choice of X_1, \ldots, X_{s-1}.

Choose an integer r maximum such that there are r pairwise disjoint v-bags, say X_1, \ldots, X_r. Consequently $r \leq s - 2$. Let $Y_v = X_1 \cup \cdots \cup X_r$; then from the maximality of r, $X \cap Y_v \neq \emptyset$ for every v-bag X. Moreover $|Y_v| \leq (s - 2)(|H| - 2)$.

Let J be the digraph with vertex set $V(G')$ in which every vertex in Y_v is J-adjacent from v, for each $v \in V(G')$. Thus J has maximum outdegree at most $(s - 2)(|H| - 2)$, and so by 4.1, the undirected graph J' underlying J has chromatic number at most $2(s - 2)(|H| - 2) + 1$; and so $V(G') = V(J')$ can be partitioned into $2(s - 2)(|H| - 2) + 1$ sets each of which is a stable set of J'. Let Z be one of these sets. Then $G[Z]$ is H'-free (because otherwise there would be a vertex $v \in Z$, and a subset $X \subseteq Z \setminus \{v\}$, and an isomorphism from H' to $G[X \cup \{v\}]$ mapping q to v, and hence with $X \cap Y_v \neq \emptyset$; but no vertex of Y_v belongs to Z, since Z is stable in J'). From the inductive hypothesis, $\chi(Z) \leq c't$, and hence

$$ct < \chi(G) = \chi(G') \leq (2(s-2)(|H| - 2) + 1)c't$$

contrary to (1). This proves 4.2.

To prove 1.6, we will need the following strengthening of 1.3, also proved in [9]:

4.3 For every forest H, and every integer $s > 0$, there is a tree S such that for every H-free graph G, if G contains S as a subgraph, then G contains $K_{s,s}$ as a subgraph.

Now we prove 1.6, which we restate:
4.4 For every forest H and every integer $s > 0$, there exists $c > 0$ such that for every graph G and every integer $t > 0$, if G is H-free and does not contain $K_{s,t}$ as a subgraph, then $\partial(G) < ct$.

Proof. Let S be as in 4.3, and let $c = |S|^s$; we will show that c satisfies the theorem. Let $t > 0$ be an integer, and let G be an H-free graph that does not contain $K_{s,t}$ as a subgraph. Suppose that $\partial(G) \geq ct$, and choose G minimal with these properties: then every vertex of G has degree at least ct.

(1) Let R be a tree. If every vertex of G has degree at least $t|R|^s$, then G contains a subgraph T isomorphic to R, and $V(T)$ can be ordered as $\{t_1, \ldots, t_n\}$, such that for $1 \leq i \leq n$, t_i is G-adjacent to at most $s - 1$ of t_1, \ldots, t_{i-1}.

We prove this by induction on $|R|$. We may assume that $|R| > 1$; let $p \in V(R)$ have degree one in R, and let q be its R-neighbour. Let R' be obtained from R by deleting p. From the inductive hypothesis, G contains a subgraph T' isomorphic to R', and its vertex set can be ordered as $\{t_1, \ldots, t_{n-1}\}$, such that for $1 \leq i \leq n - 1$, t_i is G-adjacent to at most $s - 1$ of t_1, \ldots, t_{i-1}. Choose $v \in V(T')$ such that some isomorphism from R' to T' maps q to v. If some G-neighbour u of v does not belong to $V(T')$ and has at most $s - 1$ G-neighbours in $V(T')$, then we may set $t_n = u$ as required; so we may assume that every G-neighbour u of v in G either belongs to $V(T')$ or has at most s G-neighbours in $V(T')$.

Let $X \subseteq V(T')$ with $|X| = s$. If there are at least t vertices in $V(G)$ that are G-adjacent to every vertex in X, then G contains $K_{s,t}$ as a subgraph, a contradiction. So for each such X, there are at most $t - 1$ vertices in $V(G)$ that are G-adjacent to every vertex in X. Since there are at most $|R|^s$ choices of X, there are at most $(t - 1)|R|^s$ vertices in $V(G) \setminus V(T')$ that have at least s G-neighbours in $V(T')$. Consequently v has at most $(t - 1)|R|^s$ G-neighbours not in $V(T')$. But it has at most $|R'|$ G-neighbours in $V(T')$ and so the degree of v in G is at most $(t - 1)|R|^s + |R'| < t|R|^s$. This proves (1).

Each vertex of G has degree at least $ct = t|S|^s$; let us apply (1) taking $R = S$. We deduce that G contains a subgraph T isomorphic to S, and its vertex set can be ordered as $\{t_1, \ldots, t_n\}$, such that for $1 \leq i \leq n$, t_i is G-adjacent in G to at most $s - 1$ of t_1, \ldots, t_{i-1}. By 4.3, $G[V(T)]$ contains $K_{s,s}$ as a subgraph. Choose i maximum such that t_i belongs to this subgraph; then t_i is G-adjacent to at least s vertices that are earlier in the ordering, a contradiction. This proves 4.4.

5 Long holes

There is another result in the paper by Bonamy et al. [1]:

5.1 Let $\ell \geq 2$ be an integer; then there exists $c > 0$ such that $\partial(G) \leq \tau(G)^c$ for every graph G with no induced cycle of length at least ℓ.

In this section we give a simpler proof of this result.

Let $\eta, \ell \geq 1$ be integers. We say a rooted tree (H, r) is (t, η)-tapering if (H, r) has height η, and every vertex $v \in V(H)$ of height $i < \eta$ has exactly $t^{\eta-i}$ children. For each $v \in V(H)$, let $h(v)$ be its height in (H, r).

Let G be a graph. A map ϕ from $V(H)$ into $V(G)$ is a (t, η)-infusion of (H, r) into G if
• for all distinct $u, v \in V(H)$, if $u, v \in V(H)$ are H-adjacent then $\phi(u), \phi(v)$ are distinct and G-adjacent;

• for each $u \in V(H)$, if v, w are distinct children of u in (H, r), then $\phi(v) \neq \phi(w)$;

• for every path P of H with one end r, the vertices $\phi(v)$ ($v \in V(P)$) are all distinct; and

• for every path P of H with one end r, and for all distinct $u, v \in V(P)$, $\phi(u), \phi(v)$ are G-adjacent if and only if u, v are H-adjacent.

Let ϕ be a (t, η)-infusion into G. We define $V(\phi) = \{\phi(v) : v \in V(H)\}$, and we define the root of ϕ to be $\phi(r)$. We say $u \in V(G)$ is t-bad for ϕ if there exists $v \in V(H)$ with $h(v) < \eta$, such that u is distinct from and G-adjacent to $\phi(w)$ for more than $(t - 1)t^{\eta-h(v)-1}$ children w of v in (H, r). Then we have:

5.2 Let $t, \eta \geq 1$ be integers, let (H, r) be a (t, η)-tapering rooted tree, let G be a graph not containing $K_{t,t}$ as a subgraph, and let ϕ be a (t, η)-infusion of (H, r) into G. There are at most t^{η^2} vertices in G that are t-bad for ϕ.

The proof is like that for 2.3, using that H has at most t^{η^2} vertices that have children, and we omit it.

The next result strengthens 1.7:

5.3 Let $\eta \geq 2$ be an integer, and let G be a graph with no induced cycle of length more than η. For every integer $t \geq 1$, if G does not contain $K_{t,t}$ as a subgraph then $\partial(G) \leq t^{7\eta^2}$.

Proof. Let $t \geq 1$ be an integer, and let G be a graph with no induced cycle of length more than η that does not contain $K_{t,t}$. We may assume that $t \geq 2$. Let (H, r) be a (t, η)-tapering rooted tree (not necessarily contained in G).

(1) If $u \in V(G)$ and v_i is a G-neighbour of u for $1 \leq i \leq t^\eta$, all distinct, and for each i there is a (t, η)-infusion of (H, r) into G with root v_i, such that $u \notin V(\phi_i)$, and u is not t-bad for ϕ_i, then there is a (t, η)-infusion of (H, r) into G, with root u.

Let (H', r) be a $(t, \eta - 1)$-tapering rooted subtree or (H, r). It follows (analogously to 2.2) that for $1 \leq i \leq t^\eta$, there is a $(t, \eta - 1)$-infusion ϕ'_i of (H', r) into G such that u has no G-neighbour in $V(\phi'_i)$ except v_i. Let us number the components of $H \setminus \{r\}$ as H_1, \ldots, H_{t^η}. Let $\psi(r) = v$, and for $1 \leq i \leq t^\eta$ and each $v \in V(H_i)$, define $\psi(v) = \phi'_i(w)$ where w is the parent of v in (H, r). Then ψ is a (t, η)-infusion of (H, r) into G, with root v. This proves (1).

In these circumstances we say that ψ, constructed as in the proof of (1), is derived from the sequence $(\phi_i : 1 \leq i \leq t^\eta)$.

If P is a path of H with length η and one end r, and ϕ is a (t, η)-infusion of (H, r) into G, then ϕ maps P to an induced path $\phi(P)$ of G with length η and with one end the root of ϕ. We call $\phi(P)$ a column of ϕ. We observe that if ψ is derived from $(\phi_i : 1 \leq i \leq t^\eta)$ as above, then for every column Q of ψ, there is a column Q' of one of ϕ_i ($1 \leq i \leq t^\eta$), say of ϕ', such that $Q \setminus \psi(r)$ is a subpath of Q'. Let us call (ϕ', Q') a shift of (ϕ, Q).
Let \mathcal{A}_t be the set of all (t, η)-infusions of (H, r) into G. Inductively for $i > 1$, let \mathcal{A}_i be the set of all (t, η)-infusions ϕ such that for some choice of $\phi_1, \phi_2, \ldots, \phi_{i-1} \in \mathcal{A}_{i-1}$, ϕ is derived from the sequence $(\phi_j : 1 \leq j \leq t\eta)$. Thus $\mathcal{A}_i \subseteq \mathcal{A}_{i-1}$ for each i. There are two cases: either \mathcal{A}_i is empty for some i, or it remains nonempty for all values of i. Suppose first that \mathcal{A}_i is nonempty for all i, and let \mathcal{A} be the intersection of all the sets \mathcal{A}_i ($i \geq 1$). Choose $\phi_1 \in \mathcal{A}$, and let Q_1 be a column of ϕ_1. Since ϕ_1 is derived from some members of \mathcal{A}, there exists $\phi_2 \in \mathcal{A}$ with root u_2, and a column Q_2 of ϕ_2, such that (ϕ_2, Q_2) is a shift of (ϕ_1, Q_1). Similarly we can choose an infinite sequence (ϕ_i, Q_i) ($i = 1, 2, 3 \ldots$) such that each $\phi_i \in \mathcal{A}$ and each (ϕ, Q_i) is a shift of its predecessor. Let v_i be the root of ϕ_i for each i. Then $v_i, v_{i+1}, \ldots, v_{i+n}$ are the vertices in order of Q_i for each i; and so form an induced path of G. Since G is finite, there exists $j > 0$ such that v_j is adjacent to one of v_1, \ldots, v_{j-2}; choose a minimum such value of j, and choose $i \leq j-2$ maximum such that v_i, v_j are adjacent. Then $\{v_i, \ldots, v_j\}$ induces a cycle of G of length more than η, a contradiction.

So the second case holds, that is, \mathcal{A}_i is empty for some i. Choose k minimum such that $\mathcal{A}_{k+1} = \emptyset$. For $1 \leq i \leq k$ let X_i be the set of all vertices v such that v is the root of a member of \mathcal{A}_i and not the root of any member of \mathcal{A}_{i+1}. Thus the sets X_1, \ldots, X_k are pairwise disjoint. Let X_0 be the set of vertices that are not the root of any member of \mathcal{A}_1; so the sets X_0, \ldots, X_k form a partition of $V(G)$. For each edge e of G with an end in one of X_1, \ldots, X_k, choose i maximum such that e has an end in X_i, let v be an end of e in X_i, and call v the head of e. For each $v \in X_i$, choose $\phi_v \in \mathcal{A}_i$ with root v. (Thus $\phi_v \notin \mathcal{A}_{i+1}$ from the definition of X_i.)

- Let A be the set of all edges of G with both ends in X_0;
- Let B be the set of all edges uv with head v such that $u \notin V(\phi_v)$ and u is not bad for ϕ_v;
- Let C be the set of all edges uv with head v such that $u \notin V(\phi_v)$ and u is bad for ϕ_v;
- Let D be the set of all edges uv with head v such that $u \in V(\phi_v)$.

Since there is no (t, η)-infusion of (H, r) into $G[X_0]$, it follows that $G[X_0]$ does not contain a (ζ, η)-uniform tree as a path-induced rooted subgraph, where $\zeta = t\eta$, and so $\partial(G[X_0]) \leq (\zeta t)(\eta+1)!$ from 2.4.

Hence
$$|A| \leq (\zeta t)(\eta+1)!|G|.$$

For each $u \in V(G)$, with $u \in X_i$ say, there do not exist $t\eta$ neighbours v of u such that uv has head v and belongs to B, since there is no (t, η)-infusion of (H, r) with root u that is derived from members of \mathcal{A}_i. Hence
$$|B| \leq t\eta|G|.$$

For each $v \in V(G)$, there are at most $t\eta$ neighbours u of v such that the edge uv has head v and belongs to C, by 5.2; so
$$|C| \leq t\eta^2|G|.$$

Finally, for each $v \in V(G)$, there are at most $t\eta$ neighbours u of v such that the edge uv has head v and belongs to D; so
$$|D| \leq t\eta|G|.$$

Summing, we obtain
$$|E(G)| \leq \left((t^{\eta+1})(\eta+1)! + t\eta + t\eta^2 + t\eta^3\right)|G| \leq \left(t^{(\eta+2)!} + t\eta^2\right)|G| \leq t\eta^2/2.$$

Consequently $\partial(G) \leq t\eta^2$. This proves 5.3.

11
Acknowledgement

We would like to express our thanks to András Gyárfás, who clarified the somewhat confusing history of the authorship of 1.2 for us. Thanks also to a referee for a careful and helpful reading.

References

[1] M. Bonamy, N. Bousquet, M. Pilipczuk, P. Rzążewski, S. Thomassé and B. Walczak, “Degeneracy of P_t-free and C_{2t}-free graphs with no large complete bipartite subgraphs”, J. Combinatorial Theory, Ser. B 152 (2022), 353–378 arXiv:2012.03686.

[2] M. Briański, J. Davies and B. Walczak, “Separating polynomial χ-boundedness from χ-boundedness”, arXiv:2201.08814.

[3] M. Chudnovsky, A. Scott and P. Seymour, “Induced subgraphs of graphs with large chromatic number. XII. Distant stars”, J. Graph Theory 92 (2019), 237–254, arXiv:1711.08612.

[4] P. Erdős, “Graph theory and probability”, Canadian J. Math. 11 (1959), 34–38.

[5] L. Esperet, Graph Colorings, Flows and Perfect Matchings, Habilitation thesis, Université Grenoble Alpes (2017), 24.

[6] A. Gyárfás, “On Ramsey covering-numbers”, in Infinite and Finite Sets, Vol. II (Colloq., Keszthely, 1973), Coll. Math. Soc. János Bolyai 10, 801–816.

[7] A. Gyárfás, “Problems from the world surrounding perfect graphs”, Proceedings of the International Conference on Combinatorial Analysis and its Applications, (Pokrzywna, 1985), Zastos. Mat. 19 (1987), 413–441.

[8] A. Gyárfás, E. Szemerédi and Zs. Tuza, “Induced subtrees in graphs of large chromatic number”, Discrete Math. 30 (1980), 235–344.

[9] H. A. Kierstead and S. G. Penrice, “Radius two trees specify χ-bounded classes”, J. Graph Theory 18 (1994), 119–129.

[10] H. A. Kierstead and V. Rödl, “Applications of hypergraph coloring to coloring graphs not inducing certain trees”, Discrete Math. 150 (1996), 187–193.

[11] H. A. Kierstead and Y. Zhu, “Radius three trees in graphs with large chromatic number”, SIAM J. Disc. Math. 17 (2004), 571–581.

[12] A. Scott, “Induced trees in graphs of large chromatic number”, J. Graph Theory 24 (1997), 297–311.

[13] A. Scott and P. Seymour, “Induced subgraphs of graphs with large chromatic number. XIII. New brooms”, European J. Combinatorics 84 (2020), 103024, arXiv:1807.03768.

[14] A. Scott and P. Seymour, “A survey of χ-boundedness”, J. Graph Theory 95 (2020), 473–504, arXiv:1812.07500.
[15] D. P. Sumner, “Subtrees of a graph and chromatic number”, in *The Theory and Applications of Graphs*, (G. Chartrand, ed.), John Wiley & Sons, New York (1981), 557–576.