Large cardamom (Amomum subulatum Roxburg), is an ancient spice native to North-Eastern India and Southeast Asia, which belongs to the family Zingiberaceae under the order Scitaminae. Large cardamom is mostly affected by a viral disease termed Chirke caused by Large Cardamom Chirke Virus (LCCV). These disease has spread due to drastic changes in the ecosystem, inadequate rain in dry months and absence of good agricultural practices by the farmers resulting in aphid infestations. In the present study, using HiSeq™ 2000 RNA sequencing technology transcriptome sequencing was performed for both control (disease not expressed) and diseased large cardamom leaf tissues. RNA-seq generated 77260968 (7.72 GB) and 72239708 (7.22 GB) paired raw reads for large cardamom control and diseased samples respectively. The raw data were submitted to the NCBI SRA database under the accession numbers SRX2529373 and SRX2529372 and the assembled transcriptomes were submitted to TSA under the accession numbers GIAV01000000 and GIAW01000000 for the control and diseased samples respectively. The raw reads were quality trimmed and assembled de novo using TRINITY assembler which created 156822 (control)
and 148953 (diseased) contigs with N50 values 2107 (control) and 2182 (diseased). The data were used to identify the significantly differentially expressed genes between control and diseased samples.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Data

The dataset contains raw sequencing data obtained through transcriptome sequencing of leaf samples of large cardamom (Amomum subulatum Roxburg). The data files were deposited at NCBI SRA database under project accession no. PRJNA369131. Information generated from the raw data and that of assembly are provided in Table 1 and Fig. 1.
2. Experimental design, materials, and methods

2.1. Plant material

Transcriptome sequencing was carried out in leaf samples of large cardamom (*Amomum subulatum* Roxburg). Large cardamom chirke virus (LCCV) was not expressed in one of the samples which served as the control whereas the disease was expressed in the other sample. Leaf tissues from both sets were collected followed by immediate freezing in liquid nitrogen.

2.2. Total RNA isolation and transcriptome sequencing

RNA extraction was done using a modified protocol of the RNeasy Plant Mini Kit (Qiagen) and CTAB method [1]. RNA integrity and quality analysis were done using 2100 BioAnalyzer (Agilent Technologies). Illumina sequencing was performed using the HiSeq™ 2000 platform as per the manufacturer’s

Plant Material	Control	Diseased
Total number of raw reads	77260968	72239708
Total number of bases	780335768	7296210508
Initial GC%	46	45
Read length	101	101
GC% after trimming	45.5	45
Reads after adapter removal and quality trimming	37733851	35199417
Total contigs	156822	148953
Largest contig	37547	23530
N50	2107	2182
L50	23639	22103
Total Length	172328012	167556334
GC% after assembly	41.97	42.11
Size of the assembly	168.3 MB	163.6 MB
Raw reads mapped to assembly (%)	97.70	97.17
Coverage	44.68	42.73
Scaffolds with any coverage (%)	98.83	99.00

Fig. 1. Representation of numerical difference in gene and peptide count among the control and treatment.
instructions (Illumina, San Diego, CA). RNA-seq generated paired-end strand-specific 77260968 (101 bases) and 72239708 (101 bases) raw reads which correspond to 7.72 GB and 7.22 GB of sequence data for large cardamom control and diseased samples respectively.

2.3. De novo transcriptome assembly

Raw reads were first quality checked using the FastQC [2] tool and the different criteria were cross-checked to determine the integrity of the raw data and based on the quality control data it was determined to trim the raw reads of any adapters present in it. Adapter trimming was done using BBduk [3] against Illumina universal adapters. Non-coding RNAs such as tRNAs, rRNAs, snRNAs, and snoRNAs were filtered using BBSplit [3] against all non-coding RNA sequences of viridiplantae collected from NCBI, based on further quality checking it was determined that the data was ready for assembly. De novo transcriptome assembly was performed using the Trinity [4] assembler program (Trinity Release v 2.8.5) utilizing three consecutive modules: Inchworm, Chrysalis, and Butterfly to generate contigs. The assembler created 156822 and 148953 contigs for control and infected large cardamom samples (Table 1). The assembled transcripts were converted into peptides using Transdecoder [5] and the peptides were clustered using cd-hit [6] to produce non-redundant and representative sequences. Further statistical data were generated from the assembly by means of the QUAST tool [7].

2.4. Confirmation of chirke virus genome sequences in the assembled transcriptome

Virus genome sequences were fetched from NCBI (https://www.ncbi.nlm.nih.gov/nuccore/?term=chirke) and found only 4 sequences for chirke (JN257715.1, MH899149.1, MH899148.1, and MH899147.1). These were aligned to both infected and control sequences using BLAST+ [8]. The Alignment generated 140 hits for the infected sequences. Whereas the control sequence showed one hit from all four of the sequences. This might be due to the dormant virus particles present in the control sequences or possible cross-contamination.

2.5. Quantification of peptides from the transcripts

A total of 156822 transcripts were generated from the control sample while 148953 were generated from the diseased. While converting the transcripts into peptides the control sample generated 76913 peptide sequences while the treatment generated 74060. The obtained peptides were clustered for non-redundancy which resulted in 30498 unique peptides being generated from control compared to the 29512 that were generated from the diseased (Fig. 1).

Acknowledgments

We acknowledge the financial support of Secretary, Spices Board of India, Ministry of Commerce and Industry, Government of India.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.105047.

References

[1] P. Chomczynski, N. Sacchi, The single step method of RNA isolation by acid guanidinium thiocyanate-phenol chloroform extraction: twenty something years on, Nat. Protoc. (2006;1) 581–585, https://doi.org/10.1038/nprot.2006.83.
[2] S. Andrews, FastQC: a quality control tool for high throughput sequence data, Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc, 2010.

[3] Brian Bushnell, BBMap: A Fast, Accurate, Splice-Aware Aligner. United States: N. P., 2014 (Web).

[4] B.J. Haas, A. Papanicolaou, M. Yassour, M. Grabherr, P.D. Blood, J. Bowden, M.B. Couger, D. Eccles, B. Li, M. Lieber, M.D. Macmanes, M. Ott, J. Orvis, N. Pochet, F. Strozzi, N. Weeks, R. Westerman, T. William, C.N. Dewey, R. Henschel, R.D. Leduc, N. Friedman, A. Regev, De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis, Nat. Protoc. 8 (8) (2013 Aug) 1494–1512, https://doi.org/10.1038/nprot.2013.084. Open Access in PMC, Epub 2013 Jul 11. PubMed PMID:23845962.

[5] B.J. Haas, A. Papanicolaou, M. Yassour, M. Grabherr, P.D. Blood, J. Bowden, M.B. Couger, D. Eccles, B. Li, M. Lieber, M.D. Macmanes, M. Ott, J. Orvis, N. Pochet, F. Strozzi, N. Weeks, R. Westerman, T. William, C.N. Dewey, R. Henschel, R.D. LeDuc, N. Friedman, A. Regev, De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis, Nat. Protoc. 8 (8) (2013 Aug) 1494–1512, https://doi.org/10.1038/nprot.2013.084. Epub 2013 Jul 11. PMID: 23845962; PMCID: PMC3875132.

[6] Weizhong Li, Lukasz Jaroszewski, Adam Godzik, Clustering of highly homologous sequences to reduce the size of large protein database, Bioinformatics 17 (2001) 282–283.

[7] Alexey Gurevich, Vladislav Saveliev, Nikolay Vyahhi, Glenn Tesler, QUAST: a quality assessment tool for genome assemblies, Bioinformatics 29 (8) (2013) 1072–1075, https://doi.org/10.1093/bioinformatics/btt086.

[8] C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, T.L. Madden, BLAST+: architecture and applications, BMC Bioinf. 10 (2009 Dec 15) 421, https://doi.org/10.1186/1471-2105-10-421. PMID: 20003500; PMCID: PMC2803857.