Invariance of Plurigenera

Yum-Tong Siu

September 1997

In this paper we give a proof of the following long conjectured result on the invariance of the plurigenera.

Main Theorem. Let \( \pi : X \to \Delta \) be a projective family of compact complex manifolds parametrized by the open unit 1-disk \( \Delta \). Assume that the family \( \pi : X \to \Delta \) is of general type. Then for every positive integer \( m \) the plurigenus \( \dim \Gamma(X_t, mK_{X_t}) \) is independent of \( t \in \Delta \), where \( X_t = \pi^{-1}(t) \) and \( K_{X_t} \) is the canonical line bundle of \( X_t \).

Notations and Terminology. The canonical line bundle of a complex manifold \( Y \) is denoted by \( K_Y \). The coordinate of the open unit 1-disk \( \Delta \) is denoted by \( t \). Let \( n \) be the complex dimension of each \( X_t \) for \( t \in \Delta \). In the assumption of the Main Theorem the property of the family \( \pi : X \to \Delta \) being of general type means that for every \( t \in \Delta \) there exist a positive integer \( m_t \) and a point \( P_t \in X_t \) with the property that one can find elements \( s_0, s_1, \ldots, s_{n+1} \in \Gamma(X, m_t K_X) \) such that \( s_0 \) is nonzero at \( P_t \) and \( \frac{s_1}{s_0}, \ldots, \frac{s_{n+1}}{s_0} \) form a local coordinate system of \( X \) at \( P_t \). By the family \( \pi : X \to \Delta \) being projective we mean that there exists a positive holomorphic line bundle on \( X \).

Let \( K_{X,\pi} \) be the line bundle on \( X \) whose restriction to \( X_t \) is \( K_{X_t} \) for each \( t \in \Delta \). Since the normal bundle of \( X_t \) in \( X \) is trivial, the two line bundles \( K_X \) and \( K_{X,\pi} \) are naturally isomorphic. Under this natural isomorphism a local section \( s \) of \( K_{X,\pi} \) corresponds to the local section \( s \wedge \pi^*(dt) \) of \( K_X \). Unless there is some risk of confusion, in this paper we will, without any further explicit mention, always identify \( K_{X,\pi} \) with \( K_X \) by this natural isomorphism. Under this identification the Main Theorem is equivalent to the statement that for every \( t \in \Delta \) and every integer \( m \) every element of \( \Gamma(X_t, mK_{X_t}) \) can be extended to an element of \( \Gamma(X, mK_X) \).

The Hermitian metrics of holomorphic line bundles in this paper are allowed to have singularities and may not be smooth. For a Hermitian metric

\[^1\text{Partially supported by a grant from the National Science Foundation.}\]
$h = e^{-\varphi}$ of a holomorphic line bundle $L$ over $X_0$ we denote by $\mathcal{I}_h$ or by $\mathcal{I}_\varphi$ its multiplier ideal sheaf on $X_0$ which by definition means the ideal sheaf on $X_0$ of all local holomorphic function germs $f$ on $X_0$ such that $|f|^2 e^{-\varphi}$ is integrable. For the proof of the Main Theorem, only multiplier ideal sheaves on $X_0$ are considered and no multiplier ideal sheaves on $X$ are used. In the case of a Hermitian metric $\tilde{h} = e^{-\tilde{\varphi}}$ of a holomorphic line bundle $\tilde{L}$ over $X$, for notational simplicity we simply use the notation $\mathcal{I}_{\tilde{h}}$ or $\mathcal{I}_{\tilde{\varphi}}$ to mean the multiplier ideal sheaf for the Hermitian metric $\tilde{h}|X_0 = e^{-\tilde{\varphi}}|X_0$ of the holomorphic line bundle $\tilde{L}|X_0$ over $X_0$ and suppress the notation for restriction to $X_0$.

The stalk of a sheaf $\mathcal{F}$ at a point $P$ is denoted by $\mathcal{F}_P$. The structure sheaf of a complex manifold $Y$ is denoted by $\mathcal{O}_Y$. If $s$ is a global holomorphic section of a holomorphic line bundle $L$ over a complex manifold $Y$ and if $\mathcal{I}$ is an ideal sheaf on $Y$, we say that the germ of $s$ at a point $P$ belongs to $\mathcal{I}_P$ if the holomorphic function germ at $P$ which corresponds to the germ of $s$ at $P$ with respect to some local trivialization of $L$ belongs to $\mathcal{I}_P$. We say that $s$ is everywhere locally contained in $\mathcal{I}$ if at every point $P \in Y$ the germ of $s$ at $P$ belongs to $\mathcal{I}_P$, or equivalently, $s$ belongs to the subset $\Gamma(Y, \mathcal{I} \otimes L)$ of $\Gamma(Y, L)$. If $E$ is another holomorphic line bundle over $Y$ with a Hermitian metric $e^{-\chi}$, we say that $|s|^2 e^{-\chi}$ is uniformly bounded (respectively locally integrable) on $Y$ if at every point $P \in Y$ with respect to some local trivializations of $L$ and $E$ on some open neighborhood $U$ of $P$ the function on $U$ corresponding to $|s|^2 e^{-\chi}$ is uniformly bounded (respectively integrable) on $U$. We say that $s$ is locally $L^2$ with respect to $e^{-\chi}$ on $Y$ if $|s|^2 e^{-\chi}$ is locally integrable on $Y$.

**History and Sketch of the Proof of the Main Theorem.** Iitaka [I69-71] proved the special case of the invariance of the plurigenera in a family of surfaces. His method works only for surfaces because it uses much of the information from the classification of surfaces. Levine [L83, L85] proved that for every positive integer $m$ every element of $\Gamma(X_0, mK_{X_0})$ can be extended to the fiber of $X$ over the double point of $\Delta$ at $t = 0$. So far there is no way to continue the process to get an extension to the fiber of $X$ over a point of $\Delta$ at $t = 0$ of any finite order. Nakayama [Nak86] pointed out that if the relative case of the minimal model program can be carried out for a certain dimension, the conjecture of the invariance of the plurigenera for that dimension would follow directly from it. Thus the invariance of the plurigenera for threefolds...
is a consequence of the completion of the relative case of the minimal model program for the case of threefolds by Kollar and Mori [KM92].

For the proof of the Main Theorem here we use a strategy completely different from those used by the others in the past. We now sketch our strategy and leave out the less essential technical details. There are some unavoidable technical inaccuracies in the sketch due to the suppression of precise details. There are three ingredients in our proof: Nadel’s multiplier ideal sheaves [Nad89], Skoda’s result on the generation of ideals with $L^2$ estimates with respect to a plurisubharmonic weight [Sk72], and the extension theorem of Ohsawa-Takegoshi-Manivel for holomorphic top-degree forms which are $L^2$ with respect to a plurisubharmonic weight [OT87,M93]. The extension theorem of Ohsawa-Takegoshi-Manivel is for the setting of a Stein domain or manifold and a global plurisubharmonic function as weight. Here we adapt it to the case of a projective family of compact complex manifolds and a Hermitian metric of a line bundle with nonnegative curvature current. The adaptation is done by restricting to a Stein Zariski open subset on which the line bundle is globally trivial, because $L^2$ bounds automatically extend the domain of definition from the Zariski open subset to the family of compact manifolds.

We take the $m$th roots of basis elements of $\Gamma(X_0, mK_{X_0})$ for every positive integer $m$ to use them in an infinite series to construct a Hermitian metric $e^{-\phi}$ for $K_{X_0}$. We also take the $m$th roots of basis elements of $\Gamma(X, mK_X)|X_0$ for every positive integer $m$ to use them in an infinite series to construct a Hermitian metric $e^{-\tilde{\phi}}$ for $K_{X_0}$. If for an infinite number of integers $\ell$, the singularity of $e^{-\ell\nu\tilde{\phi}}$ are only worse than that of $e^{-\ell\nu\phi}$ by some fixed amount independent of $\nu$, then the extension theorem of Ohsawa-Takegoshi-Manivel can be applied to yield the Main Theorem.

If the contrary holds, then for some appropriate positive integer $m$ we can construct some Hermitian metric for $mK_{X_0}$ whose singularity is suitably chosen to be between those of $e^{-m\tilde{\phi}}$ and $e^{-m\phi}$ so that, by Skoda’s result, we can use this Hermitian metric to produce an element $s$ of $\Gamma(X_0, mK_{X_0})$ which is $L^2$ with respect to $e^{-(m-1)\tilde{\phi}}$ but not locally $L^2$ with respect to $e^{-m\tilde{\phi}}$ everywhere on $X_0$. On the other hand, by the extension theorem of Ohsawa-Takegoshi-Manivel we can regard $s$ as an $(m-1)K_{X_0}$-valued top-degree form on $X_0$ which is $L^2$ with respect to $e^{-(m-1)\tilde{\phi}}$ and can therefore extend it to an element of $\Gamma(X, mK_X)$. The definition of $e^{-\tilde{\phi}}$ implies that $|s|^2 e^{-m\tilde{\phi}}$ is
locally uniformly bounded on $X_0$ and consequently $s$ is $L^2$ with respect to $e^{-m\tilde{\phi}}$ everywhere on $X_0$, which is a contradiction.

One of the technical details is that the Hermitian metric $e^{-m\tilde{\phi}}$ has to be slightly modified to make sure that its curvature current dominates a smooth positive $(1,1)$-form in order to apply the extension theorem of Ohsawa-Takegoshi-Manivel. For that modification the Kodaira technique of writing some high multiple of a big line bundle as an effective divisor plus an ample line bundle is used.

**Lemma 1.** Let $L$ be a holomorphic line bundle over an $n$-dimensional compact complex manifold $Y$ with a Hermitian metric which is locally of the form $e^{-\xi}$ with $\xi$ plurisubharmonic. Let $I_\xi$ be the multiplier ideal sheaf of the Hermitian metric $e^{-\xi}$. Let $E$ be an ample holomorphic line bundle over $Y$ such that for every point $P$ of $Y$ there are a finite number of elements of $\Gamma(Y, E)$ which all vanish to order at least $n + 1$ at $P$ and which do not simultaneously vanish outside $P$. Then $\Gamma(Y, I_\xi \otimes (L + E + K_Y))$ generates $I_\xi \otimes (L + E + K_Y)$ at every point of $Y$.

**Proof.** The key ingredient is the following result of Skoda [Sk72, Th.1, pp.555-556].

Let $\Omega$ be a pseudoconvex domain in $\mathbb{C}^n$ and $\psi$ be a plurisubharmonic function on $\Omega$. Let $g_1, \ldots, g_p$ be holomorphic functions on $\Omega$. Let $\alpha > 1$ and $q = \inf(n, p - 1)$. Then for every holomorphic function $f$ on $\Omega$ such that

$$\int_\Omega |f|^2 |g|^{-2\alpha q - 2} e^{-\psi} d\lambda < \infty,$$

there exist holomorphic functions $h_1, \ldots, h_p$ on $\Omega$ such that

$$f = \sum_{j=1}^p g_j h_j$$

and

$$\int_\Omega |h|^2 |g|^{-2\alpha q} e^{-\psi} d\lambda \leq \frac{\alpha}{\alpha - 1} \int_\Omega |f|^2 |g|^{-2\alpha q - 2} e^{-\psi} d\lambda,$$

where

$$|g| = \left(\sum_{j=1}^p |g_j|^2\right)^{\frac{1}{2}}, \quad |h| = \left(\sum_{j=1}^p |h_j|^2\right)^{\frac{1}{2}}.$$
and $d\lambda$ is the Euclidean volume element of $\mathbb{C}^n$.

Fix arbitrarily $P_0 \in Y$. Take an arbitrary element $s$ of $(\mathcal{I}_\xi)_{P_0}$. Let $z = (z_1, \ldots, z_n)$ be a local coordinate system on some open neighborhood $U$ of $P_0$ with $z(P_0) = 0$ such that $L|U$ is trivial. Let $\rho$ be a cut-off function centered at $P_0$ so that $\rho$ is a smooth nonnegative-valued function with compact support in $U$ which is identically 1 on some Stein open neighborhood $\Omega$ of $P_0$. Choose $u_1, \ldots, u_N \in \Gamma(Y, E)$ whose common zero-set consists of the single point $P_0$ and which all vanish to order at least $n + 1$ at $P_0$. Let $h_E$ be a smooth Hermitian metric of $E$ whose curvature form is strictly positive at every point of $Y$. Let $0 < \eta < 1$. By the standard techniques of $L^2$ estimates of $\bar{\partial}$, we can solve the equation

$$\bar{\partial} \sigma = \rho \bar{\partial} s$$

for a smooth section $\sigma$ of $L + E + K_Y$ over $Y$ which is $L^2$ with respect to the Hermitian metric

$$\frac{e^{-\xi} (h_E)^{\eta}}{(\sum_{j=1}^N |u_j|^2)^{1-\eta}}$$

of $L + E$. Then $\rho s - \sigma$ is an element of $\Gamma(Y, \mathcal{I}_\xi \otimes (L + E + K_Y))$. Since $\rho \bar{\partial} s$ is identically zero on $\Omega$, it follows that $\sigma$ is holomorphic on $\Omega$. We now apply Skoda’s result to the case $g_j = z_j$ ($1 \leq j \leq n$) with $q = n - 1$ and $\alpha = \frac{(1-\eta)(n+1)-1}{n-1} > 1$ and $\psi = \xi$. (For the case $n = 1$ we simply choose $\alpha$ be any number greater than 1, because in that case $\alpha q$ is always zero.) Let $|z| = (\sum_{j=1}^n |z_j|^2)^{\frac{1}{2}}$. Since $u_1, \ldots, u_N$ all vanish to order at least $n + 1$ at $P_0$, it follows that

$$\int_\Omega |\sigma|^2 e^{-\xi} |z|^{-2q-2} = \int_\Omega |\sigma|^2 e^{-\xi} |z|^{-2(1-\eta)(n+1)} < \infty.$$ 

By Skoda’s result

$$\sigma = \sum_{j=1}^n \tau_j z_j$$

locally at $P_0$ for some $\tau_1, \ldots, \tau_n \in (\mathcal{I}_\xi)_{P_0}$.

Let $J$ be the ideal at $P_0$ generated by elements of $\Gamma(Y, \mathcal{I}_\xi \otimes (L + E + K_Y))$ over $(\mathcal{O}_Y)_{P_0}$. It follows from

$$\rho s - \sigma \in \Gamma(Y, \mathcal{I}_\xi \otimes (L + E + K_Y))$$

and $(\mathcal{O}_Y)_{P_0}$...
that
\[ s \in J + m_{P_0} (\mathcal{I}_\xi)_{P_0}, \]
where \( m_{P_0} \) is the maximum ideal of \( Y \) at \( P_0 \). Since \( s \) is an arbitrary element of \((\mathcal{I}_\xi)_{P_0}\), it follows that
\[ (\mathcal{I}_\xi)_{P_0} \subset J + m_{P_0} (\mathcal{I}_\xi)_{P_0}. \]
Clearly we have \( J \subset (\mathcal{I}_\xi)_{P_0} \). Thus
\[ (\mathcal{I}_\xi)_{P_0} / J \subset m_{P_0} ((\mathcal{I}_\xi)_{P_0} / J). \]
By Nakayama’s lemma,
\[ (\mathcal{I}_\xi)_{P_0} / J = 0 \]
and \( J = (\mathcal{I}_\phi)_{P_0} \). Q.E.D.

For every positive integer \( m \) we choose a basis
\[ s_1^{(m)}, \ldots, s_{q_m}^{(m)} \in \Gamma(X_0, mK_{X_0}) \]
and we choose
\[ \tilde{s}_1^{(m)}, \ldots, \tilde{s}_{\tilde{q}_m}^{(m)} \in \Gamma(X, mK_X) \]
so that
\[ \tilde{s}_1^{(m)}|_{X_0}, \ldots, \tilde{s}_{\tilde{q}_m}^{(m)}|_{X_0} \]
is a basis of \( \Gamma(X, mK_X)|_{X_0} \) and \( \tilde{s}_\nu^{(m)} = s_\nu^{(m)} \) for \( 1 \leq \nu \leq \tilde{q}_m \). We can choose a sequence of positive numbers \( \theta_m \) so that
\[ \sum_{m=1}^{\infty} \theta_m \left( \sum_{\nu=1}^{\tilde{q}_m} \left| s_\nu^{(m)} \right|^2 \right) \]
converges uniformly on compact subsets of \( X_0 \) to a Hermitian metric of \( -K_{X_0} \) and
\[ \sum_{m=1}^{\infty} \theta_m \left( \sum_{\nu=1}^{\tilde{q}_m} \left| \tilde{s}_\nu^{(m)} \right|^2 \right) \]
converges uniformly on compact subsets of \( X \) to a Hermitian metric of \( -K_X \). Locally on \( X_0 \) we define
\[ \varphi = \log \sum_{m=1}^{\infty} \theta_m \left( \sum_{\nu=1}^{\tilde{q}_m} \left| s_\nu^{(m)} \right|^2 \right) \]
so that $e^{-\varphi}$ is a Hermitian metric of $K_{X_0}$. Locally on $X$ we define

$$\tilde{\varphi} = \log \sum_{m=1}^{\infty} \theta_m \left( \sum_{\nu=1}^{q_m} |s^{(m)}_{\nu}|^{\frac{2}{m}} \right)$$

so that $e^{-\tilde{\varphi}}$ is a Hermitian metric of $K_X$.

Since the family $\pi : X \to \Delta$ is of general type, we can choose an integer $m_0 \geq 2$ such that $m_0K_X = D + F$, where $D$ is an effective divisor on $X$ not containing $X_0$ and $F$ is such a high multiple of a positive line bundle on $X$ that

(i) for every point $P \in X_0$ there exist a finite number of elements of $\Gamma(X, F - 2K_X)|X_0$ whose common zero-set consists only of the single point $P$ and which all vanish to order at least $n + 1$ at $P$ and

(ii) a basis of $\Gamma(X, F)|X_0$ embeds $X_0$ as a complex submanifold of some complex projective space.

Let $s_D$ be the canonical section of the holomorphic line bundle $D$ so that the divisor of $s_D$ is $D$. Let

$$u_1, \ldots, u_N \in \Gamma(X, F)$$

such that

$$u_1 | X_0, \ldots, u_N | X_0$$

form a basis of $\Gamma(X, F)|X_0$. From $s_Du_j \in \Gamma(X, m_0K_X) \ (1 \leq j \leq N)$ and the non simultaneous vanishing of $u_1, \ldots, u_N$ at any point of $X_0$ it follows from the definition of $\tilde{\varphi}$ that $|s_D|^{2e^{-m_0\tilde{\varphi}}}|X_0$ is locally uniformly bounded on $X_0$. Let

$$h_F = \frac{1}{\sum_{j=1}^{N} |u_j|^2}$$

and we introduce the Hermitian metric

$$e^{-\psi} = \left( \frac{h_F}{|s_D|^2} \right)^{\frac{1}{m_0}}$$

for the line bundle $K_X$. Choose $0 < \epsilon < 1$ such that $e^{-\epsilon\psi}|X_0$ is locally integrable on $X_0$. For any positive integer $\ell$ we introduce the Hermitian metric

$$h_\ell = e^{-(\ell - \epsilon)\tilde{\varphi} - (m_0 + \epsilon)\psi}$$
for the line bundle \((\ell + m_0)K_{X_0}\).

As stated at the beginning of the paper, in the statement of Lemma 2 below and for the rest of the paper the notation \(\mathcal{I}_{(\ell_\nu + m_0 - 1 - \epsilon)\hat{\varphi} + \epsilon \psi}\) denotes an ideal sheaf on \(X_0\) and not an ideal sheaf on \(X\) and it is the multiplier ideal sheaf for the metric \(e^{-(\ell_\nu + m_0 - 1 - \epsilon)\hat{\varphi} - \epsilon \psi}\) on the holomorphic line bundle \((\ell_\nu + m_0 - 1)K_{X_0}\).

**Lemma 2.** Let \(\ell_0\) be a positive integer. Suppose there exists a sequence of positive integers \(\ell_\nu \nearrow \infty\) \((1 \leq \nu < \infty)\) such that

\[
\mathcal{I}_{h_\nu} \subset \mathcal{I}_{(\ell_\nu + m_0 - 1 - \epsilon)\hat{\varphi} + \epsilon \psi}.
\]

Then any element \(s\) of \(\Gamma(X_0, \ell_0K_{X_0})\) is everywhere locally contained in \(\mathcal{I}_{\ell_0\hat{\varphi}}\).

**Proof.** Without loss of generality we can assume after reindexing the sequence \(\{\ell_\nu\}_{1 \leq \nu < \infty}\) that \(\ell_\nu > 2\ell_0\) for \(1 \leq \nu < \infty\). Take an arbitrary \(P_0 \in X_0\). Let \(\ell_\nu = q_\nu \ell_0 + r_\nu\) with \(0 \leq r_\nu < \ell_0\) \((1 \leq \nu < \infty)\). Take a non-identically-zero \(\sigma \in (\mathcal{O}_X)_{P_0}\) such that \(|\sigma|^2 e^{-\ell_0\varphi}\) is bounded in the supremum norm on some open neighborhood \(U\) of \(P_0\) in \(X_0\) (for example, we can take \(\sigma\) to be the germ at \(P_0\) of some nonzero element of \(\Gamma(X, \ell K_X)|_{X_0}\) for some \(\ell \geq \ell_0\)). Since \(|s^q\varphi|^2 e^{-q_\nu \ell_0\varphi}\) is uniformly bounded on \(X_0\) from the definition of \(\varphi\), it follows from \(0 \leq r_\nu < \ell_0\) and \(\hat{\varphi} \leq \varphi\) and the integrability of \(e^{-\epsilon \psi}\) that the germ of \(s^{q_\nu} \sigma s_D\) at \(P_0\) belongs to \(\left(\mathcal{I}_{h_\nu}\right)_{P_0}\). By the assumption of the Lemma, the germ of \(s^{q_\nu} \sigma s_D\) at \(P_0\) belongs to \(\left(\mathcal{I}_{(\ell_\nu + m_0 - 1 - \epsilon)\hat{\varphi} + \epsilon \psi}\right)_{P_0}\). There exists some relatively compact open neighborhood \(W\) of \(P_0\) in \(U\) with \(K_{X_0}|_W\) trivial such that

\[
\int_W |s^{q_\nu} \sigma s_D|^2 e^{-(\ell_\nu + m_0 - 1 - \epsilon)\hat{\varphi} - \epsilon \psi} < \infty.
\]

Let \(\frac{1}{q_\nu} + \frac{1}{q_\nu'} = 1\). Then \(q_\nu' = \frac{q_\nu}{q_\nu - 1}\) and \(\frac{q_\nu'}{q_\nu} = \frac{1}{q_\nu - 1}\) and we have by Hölder’s inequality

\[
\int_W |s|^2 e^{-\ell_0\hat{\varphi}} = \int_W \left| s^{\frac{1}{q_\nu}} s_D^{\frac{1}{q_\nu'}} \sigma^{\frac{1}{q_\nu'}} s_D^{\frac{1}{q_\nu}} e^{-\ell_0\hat{\varphi}} e^{\frac{s^{q_\nu}}{q_\nu}} e^{\frac{s^{q_\nu'}}{q_\nu'}} \right|^2 e^{-\ell_0\hat{\varphi}} e^{\frac{s^{q_\nu}}{q_\nu}} e^{\frac{s^{q_\nu'}}{q_\nu'}}
\]

is less than

\[
\left( \int_W |s^{q_\nu} \sigma s_D|^2 e^{-q_\nu \ell_0\hat{\varphi} - \epsilon \psi} \right)^{\frac{1}{q_\nu}} \left( \int_W \left| \sigma^{\frac{1}{q_\nu'}} s_D^{\frac{1}{q_\nu}} e^{\frac{s^{q_\nu}}{q_\nu}} e^{\frac{s^{q_\nu'}}{q_\nu'}} \right|^2 e^{\frac{s^{q_\nu}}{q_\nu}} e^{\frac{s^{q_\nu'}}{q_\nu'}} \right)^{\frac{1}{q_\nu'}}
\]



8
\[ \leq C \left( \int_W |s^{\nu_0} \sigma s_D|^2 e^{-((\ell_0 + m_0 - 1)\tilde{\varphi} - \nu_0)} \right)^{1/\nu_0} \left( \int_W \left| \sigma^{-1}_{\nu_0 - 1} s_D^{-1}\right|^2 e^{\nu_0 - 1} \right)^{\nu_0/\nu_0 - 1}, \]

where \( C \) is the supremum of \( e^{\frac{(m_0 + r_0 - 1)\tilde{\varphi}}{\nu_0}} \) on \( W \). For \( q_0 \) sufficiently large,

\[ \int_W \left| \sigma^{-1}_{\nu_0 - 1} s_D^{-1}\right|^2 e^{\nu_0 - 1} < \infty. \]

Hence

\[ \int_W |s|^{2e^{-\ell_0\tilde{\varphi}}} < \infty \]

and the germ of \( s \) at \( P_0 \) belongs to \( (\mathcal{I}_{\ell_0\tilde{\varphi}})_{P_0} \). Q.E.D.

For the next step in our proof of the Main Theorem we need the following extension statement which is an adaptation of the extension theorem of Ohsawa-Takegoshi-Manivel.

**Proposition 3.** Let \( \gamma : Y \to \Delta \) be a projective family of compact complex manifolds parametrized by the open unit 1-disk \( \Delta \). Let \( Y_0 = \gamma^{-1}(0) \) and let \( n \) be the complex dimension of \( Y_0 \). Let \( L \) be a holomorphic line bundle with a Hermitian metric which locally is represented by \( e^{-\chi} \) such that \( \sqrt{-1} \partial\bar{\partial}\chi \geq \omega \) in the sense of currents for some smooth positive \((1,1)\)-form \( \omega \) on \( Y \). Let \( 0 < r < 1 \) and \( \Delta_r = \{ t \in \Delta \mid |t| < r \} \). Then there exists a positive constant \( A_r \) with the following property. For any holomorphic \( L \)-valued \( n \)-form \( f \) on \( Y_0 \) with

\[ \int_{Y_0} |f|^2 e^{-\chi} < \infty, \]

there exists a holomorphic \( L \)-valued \((n + 1)\)-form \( \tilde{f} \) on \( \gamma^{-1}(\Delta_r) \) such that \( \tilde{f}|_{Y_0} = f \land \gamma^*(dt) \) at points of \( Y_0 \) and

\[ \int_Y |\tilde{f}|^2 e^{-\chi} \leq A_r \int_{Y_0} |f|^2 e^{-\chi}. \]

Here no metrics of the tangent bundles of \( Y_0 \) and \( Y \) are needed to define the integrals of the absolute-value squares of top-degree holomorphic forms \( f \) and \( \tilde{f} \) respectively on \( Y_0 \) and \( Y \).

**Proof.** The proof can be easily adapted in the following way from the techniques given in [Si96] for the alternative proof there of the theorem of Ohsawa-Takegoshi. (Proofs can also be obtained by modifying those in [OT83, M93].)
Let \( v \) be a meromorphic section of \( L \) over \( Y \) so that neither the pole-set nor the zero-set of \( v \) contains \( Y_0 \). Choose a complex hypersurface \( Z \) in \( Y \) containing the zero-set and the pole-set of \( v \) such that \( Z \) does not contain \( Y_0 \) and \( Y - Z \) is Stein. For every positive integer \( \nu \) let \( \Omega_\nu \) be a relatively compact Stein open subset of \( X - Z \) with smooth strictly pseudoconvex boundary such that \( \bigcup_{\nu=1}^{\infty} \Omega_\nu = X - Z \) and \( \Omega_\nu \) is relatively compact in \( \Omega_{\nu+1} \). On \( X - Z \) under the isomorphism defined by division by \( v \) the line bundle \( L|_{X - Z} \) is globally trivial. We let \( \tilde{\chi} \) be the plurisubharmonic function \( -\log (|v|^2e^{-\chi}) \) on \( X - Z \).

We now apply the techniques in [Si96] of the alternative proof of the theorem of Ohsawa-Takegoshi to extend, after multiplication by \( \gamma^*(dt) \), the top-degree holomorphic form \( f_v \) on \( \Omega_\nu \cap Y_0 \) which is \( L^2 \) on \( \Omega_\nu \cap Y_0 \) with respect to \( e^{-\tilde{\chi}} \) to a top-degree holomorphic form \( G_\nu \) on \( \gamma^{-1}(\Delta_r) \cap \Omega_\nu \) whose \( L^2 \) norm on \( \gamma^{-1}(\Delta_r) \cap \Omega_\nu \) with respect to \( e^{-\tilde{\chi}} \) is bounded by a finite constant independent of \( \nu \). When we apply the techniques of the alternative proof of the theorem of Ohsawa-Takegoshi, we have to use holomorphic tangent vector fields of the Stein manifold \( \Omega_{\nu+1} \) to get a sequence of smooth plurisubharmonic functions on \( \Omega_\nu \) which approach the plurisubharmonic function \( \tilde{\chi} \) on \( \Omega_\nu \). The extension \( \tilde{f} \) is obtained as the limit of \( G_\nu v \) as \( \nu \) goes to infinity.

The smooth positive \((1,1)\)-form \( \omega \) in the assumption is needed for the \( \nu \)-independent a priori estimates for the solution of the modified \( \bar{\partial} \) equation on \( \gamma^{-1}(\Delta_r) \cap \Omega_\nu \) in the techniques of the alternative proof of the theorem of Ohsawa-Takegoshi. Q.E.D.

**Lemma 4.** If \( m \) is an integer \( \geq 2 \) and if \( s \in \Gamma(X_0, mK_{X_0}) \) is everywhere locally contained in \( \mathcal{I}_{(m-1-\epsilon)\tilde{\varphi}+\epsilon\psi} \), then \( s \) can be extended to an element of \( \Gamma(X, mK_X) \).

**Proof.** We apply Proposition 3 to the case \( L = (m-1)K_X \), \( \chi = (m-1-\epsilon)\tilde{\varphi}+\epsilon\psi \), and \( f = s \) to extend \( s \) to an \( (m-1)K_X \)-valued holomorphic \((n+1)\)-form on \( \pi^{-1}(\Delta_r) \) for some \( 0 < r < 1 \), where \( \Delta_r \) is the open 1-disk of radius \( r \) centered at the origin. Then we use the standard theory of coherent sheaves and Stein spaces to get the extension from \( \pi^{-1}(\Delta_r) \) to all of \( X \). Q.E.D.

**Lemma 5.** If \( m \) is an integer \( \geq 2 \) and if \( s \in \Gamma(X_0, mK_{X_0}) \) is everywhere locally contained in \( \mathcal{I}_{m\tilde{\varphi}} \), then \( s \) can be extended to an element of \( \Gamma(X, mK_X) \).

**Proof.** Since \( s \) is everywhere locally contained in \( \mathcal{I}_{m\tilde{\varphi}} \), we can cover \( X_0 \) by a finite number of open subsets \( U_j \) \((1 \leq j \leq k)\) such that \( K_{X_0}|_{U_j} \) is trivial on
\[ U_j \text{ and} \]
\[
\int_{U_j} |s|^2 e^{-m \tilde{\varphi}} < \infty
\]
for \(1 \leq j \leq k\). Take \(0 < \eta < 1\) and consider the Hermitian metric \(e^{-(m-1)\tilde{\varphi} - \eta \psi}\) for \((m-1)K_X\). We apply Hölder's inequality with \(p = \frac{m}{m-1-\eta}\) and \(p' = \frac{m}{1+\eta} \) to get
\[
\int_{U_j} |s|^2 e^{-(m-1-\eta)\tilde{\varphi} - \eta \psi} \leq \left( \int_{U_j} |s|^2 e^{-m \tilde{\varphi}} \right)^{\frac{m-1-\eta}{m}} \left( \int_{U_j} |s|^2 e^{-m \psi} \right)^{\frac{1+\eta}{m}}.
\]
When \(\eta\) is sufficiently small,
\[
e^{-m \psi} = \left( \frac{h_F}{|s_D|^2} \right)^{\frac{-m \psi}{(1+\eta)m_0}}
\]
is locally integrable at every point of \(X_0\). Hence \(s\) is \(L^2\) as an \((m-1)K_{X_0}\)-valued \(n\)-form on \(X_0\) with respect to the Hermitian metric
\[
e^{-(m-1-\eta)\tilde{\varphi} - \eta \psi}|X_0
\]
whose curvature current, because of the factor \(h_F\), is bounded from below by a smooth positive \((1,1)\)-form on \(X_0\). Now the Lemma follows from Proposition 3 (or Lemma 4). Q.E.D.

**Final Step of the Proof of the Main Theorem.** From the definition of \(h_\ell\) for \(\ell = 1\) we have
\[
(1) \quad \mathcal{I}_{h_1} = \mathcal{I}_{(1-\epsilon)\tilde{\varphi} + (m_0 + \epsilon)\psi} \subset \mathcal{I}_{(m_0 - \epsilon)\tilde{\varphi} + \epsilon \psi},
\]
because \(|s_D|^2 e^{-m_0 \psi}|X_0\) is locally uniformly bounded on \(X_0\). Fix an arbitrary positive integer \(\ell_0\). To prove the Main Theorem, it suffices to show that every element of \(\Gamma(X_0, \ell_0 K_{X_0})\) can be extended to an element of \(\Gamma(X, \ell_0 K_X)\). Suppose the contrary and we are going to derive a contradiction. By Lemma 2 and Lemma 5 we can assume that there exists a positive integer \(\ell_\#\) such that for \(\ell \geq \ell_\#\) we have
\[
\mathcal{I}_{h_\ell} \not\subset \mathcal{I}_{(\ell+m_0-1-\epsilon)\tilde{\varphi} + \epsilon \psi}.
\]
By (1) we know that there is a smallest positive integer $\ell_*$ (which must be at least 2) such that

\begin{equation}
\mathcal{I}_{h_{\ell_*}} \not\subset \mathcal{I}_{(\ell_*+m_0-1-\epsilon)\hat{\varphi}+\epsilon\psi}.
\end{equation}

Then

\begin{equation}
\mathcal{I}_{h_{\ell_*-1}} \subset \mathcal{I}_{(\ell_*-1+m_0-1-\epsilon)\hat{\varphi}+\epsilon\psi}.
\end{equation}

From the choice of $F$ we know that the line bundle $(F|X_0) - K_{X_0}$ over $X_0$ is ample. We now apply Lemma 1 to the case $E = (F|X_0) - 2K_{X_0}$ and $L = \ell_*K_{X_0} + D$ with the Hermitian metric

$$e^{-\xi} = \frac{e^{-(\ell_*-\epsilon)\varphi-\epsilon\psi}}{|s_D|^2}.$$

Each of the two Hermitian metrics $h_{\ell_*}$ and $e^{-\xi}$ is locally bounded on $X_0$ by a positive constant times the other. Hence the two ideal sheaves $\mathcal{I}_\xi$ and $\mathcal{I}_{h_{\ell_*}}$ coincide everywhere on $X_0$. By Lemma 1 it follows from $(\ell_* + m_0 - 1)K_{X_0} = L + E + K_{X_0}$ that $\Gamma(X_0, \mathcal{I}_{h_{\ell_*}} \otimes (\ell_* + m_0 - 1)K_{X_0})$ locally generates $\mathcal{I}_{h_{\ell_*}}$ on $X_0$. From (2) it follows that there exists $s \in \Gamma(X_0, \mathcal{I}_{h_{\ell_*}} \otimes (\ell_* + m_0 - 1)K_{X_0})$ such that

\begin{equation}
s \text{ is not everywhere locally contained in } \mathcal{I}_{(\ell_*+m_0-1-\epsilon)\hat{\varphi}+\epsilon\psi}.
\end{equation}

From (3) and $\mathcal{I}_{h_{\ell_*}} \subset \mathcal{I}_{h_{\ell_*-1}}$ it follows that every element of $\Gamma(X_0, \mathcal{I}_{h_{\ell_*}} \otimes (\ell_* + m_0 - 1)K_{X_0})$ is locally contained in $\mathcal{I}_{(\ell_*-1+m_0-1-\epsilon)\hat{\varphi}+\epsilon\psi}$ at every point of $X_0$. From Lemma 4 it follows that $s$ can be extended to an element $\tilde{s}$ of $\Gamma(X, (\ell_* + m_0 - 1)K_X)$. Since from the definition of $\tilde{\varphi}$ we know that $|\tilde{s}|^2e^{-(\ell_*+m_0-1)\tilde{\varphi}}$ is uniformly bounded on $X_0$, it follows from the integrability of $e^{-\epsilon\psi}$ that $s$ is everywhere locally contained in $\mathcal{I}_{(\ell_*+m_0-1-\epsilon)\tilde{\varphi}+\epsilon\psi}$, which contradicts (4). This concludes the proof of the Main Theorem. Q.E.D.

References.

[169-71] S. Iitaka, Deformations of compact complex surfaces I, II, and III. In: Global Analysis, papers in honor of K. Kodaira, Princeton University Press 1969, pp.267-272; J. Math. Soc. Japan 22 (1970), 247-261; ibid 23 (1971), 692-705.
[KM92] Kollar, J., Mori, S.: Classification of three dimensional flips, Journal of Amer. Math. Soc. 5 (1992), 533-702.
[L83] Levine, M.: Pluri-canonical divisors on Kähler manifolds, Invent. math. 74 (1983), 293-903.
[L85] Levine, M.: Pluri-canonical divisors on Kähler manifolds II, Duke Math. J. 52 (1985), 61-65.
[M93] Manivel, L.: Un théorème de prolongement $L^2$ de sections holomorphes d’un fibré hermitien. Math. Zeitschr. 212, 107-122 (1993).
[Nad89] Nadel, A.: Multiplier ideal sheaves and the existence of Kähler-Einstein metrics of positive scalar curvature, Proc. Natl. Acad. Sci. USA, 86, 7299-7300 (1989), and Ann. of Math., 132, 549-596 (1989).
[Nak86] Nakayama, N.: Invariance of plurigenera of algebraic varieties under minimal model conjecture, Topology 25 (1986), 237-251.
[OT87] Ohsawa, T., Takegoshi, K.: On the extension of $L^2$ holomorphic functions, Math. Z., 195, 191-204 (1987).
[Si96] Siu, Y.-T., The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi, in Geometric Complex Analysis ed. Junjiro Noguchi et al, World Scientific: Singapore, New Jersey, London, Hong Kong 1996, pp. 577-592.
[Sk72] H Skoda, Application des techniques $L^2$ à la théorie des ideaux d’un algèbre de fonctions holomorphes avec poids, Ann. Sci. Ec. Norm. Sup. 5 (1972), 548-580.

Author’s address:

Yum-Tong Siu, Department of Mathematics, Harvard University, Cambridge, MA 02193 (e-mail: siu@math.harvard.edu).