Screening of underlying genetic biomarkers for ankylosing spondylitis

XUTAO FAN1, BAO Qi1, LONGFEI MA2 and FENGYU MA3

1Department of Spine Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029; 2Graduate School of Jining Medical University, Jining, Shandong 272067; 3Department of Spine Surgery, People’s Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China

Received August 6, 2018; Accepted March 6, 2019

DOI: 10.3892/mmr.2019.10188

Abstract. Genetic biomarkers for the diagnosis of ankylosing spondylitis (AS) remain unreported except for human leukocyte antigen B27 (HLA-B27). Therefore, the aim of the present study was to screen the differentially expressed genes (DEGs), and those that also possess differential single nucleotide polymorphism (SNP) loci, in the whole blood of AS patients compared with healthy controls by integrating two mRNA expression profiles (GSE73754 and GSE25101) and SNP microarray data (GSE39428) collected from the Gene Expression Omnibus (GEO). Using the t-test, 1,056 and 1,073 DEGs were identified in the GSE73754 and GSE25101 datasets, respectively. Among them, 234 DEGs and 1,073 DEGs were identified in the GSE73754 and GSE39428 datasets, resulting in identification of two common genes [eukaryotic translation elongation factor 1 epsilon 1 (EEF1E1) and serpin family A member 1 (SERPINA1)]. Their expression levels were significantly upregulated and the average expression log r ratios of SNP sites in these genes were significantly higher in AS patients than those in controls. Function enrichment analysis revealed that EEF1E1 was involved in AS by influencing the aminoacyl-tRNA biosynthesis, while SERPINA1 may be associated with AS by participating in platelet degranulation. However, only the genotype and allele frequencies of SNPs (rs7763907 and rs7751386) in EEF1E1 between AS and controls were significantly different between AS and the controls, but not SERPINA1. These findings suggest that EEF1E1 may be an underlying genetic biomarker for the diagnosis of AS.

Introduction

Ankylosing spondylitis (AS) is a common inflammatory rheumatic disease, with an estimated prevalence (per 10,000) of 23.8 in Europe, 16.7 in Asia, 31.9 in North America, 10.2 in Latin America and 7.4 in Africa (1). AS mainly affects the spine and sacroiliac joints in the pelvis to cause low back pain, stiffness and functional disability, which seriously influence the quality of life of patients and impose a heavy economic burden on both family and society (2). Therefore, there is a need for the timely diagnosis and effective treatment of AS.

Although the pathogenesis remains not clearly defined, accumulating evidence has suggested that AS is highly heritable. Human leukocyte antigen (HLA)-B27, a class I surface antigen encoded by B locus in the major histocompatibility complex (MHC) on the short (p) arm of chromosome 6, is one of the convincing genetic factors associated with AS (3). HLA-B27 was reported to be present in 94.3% of patients with AS, but only 9.34% in organ donors (4). The expression of HLA-B27 was found to be significantly higher in patients with AS than that in healthy subjects (5). Meta-analyses indicated that HLA-B27 genetic polymorphism B2704 and B2702 may be risk factors, while B2703, B2706, B2707, B2727, B2729 and B2747 may be protective factors for AS (6,7). HLA-B27-positive patients had a significantly younger age at symptom onset, more uveitis, and a higher frequency of peripheral and hip joint involvement than HLA-B27-negative patients (7,8). Thus, HLA-B27 has been the most commonly used biomarker for the diagnosis of AS (9). However, twin and family studies suggest that HLA-B27 only can explain less than 30% of the overall risk for AS (10,11), meaning there are other genes related with the genetic disorder of AS. Recently, scholars have also aimed to investigate other inflammatory biomarkers for AS, including interleukin (IL)-8 (12), tumor necrosis factor (TNF)-α (13), C-reactive protein (hsCRP) (14) and C-C motif chemokine 11 (CCL11) (15), but studies that have focused on the genetic biomarkers are limited (16,17).

The aim of the present study was to integrate the microarray data of mRNA and the single nucleotide polymorphism (SNP) expression profile in whole blood of AS patients and healthy controls to screen for differentially expressed genes (DEGs), and those that also possess differential SNP loci,
which has not been previously performed. These SNP-related DEGs may be crucial genetic biomarkers for AS.

Materials and methods

Microarray data. Three microarray datasets under accession nos. GSE73754 (18), GSE25101 (19) and GSE39428 (20,21) were downloaded from the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/). GSE73754 (platform: GPL10558; Illumina HumanHT-12 V4.0 expression BeadChip) detected the gene expression profile in whole blood samples from 52 AS and 20 healthy controls; GSE25101 (platform: GPL6947; Illumina HumanHT-12 V3.0 expression BeadChip) compared the gene expression profile in whole blood samples between 16 AS and 20 healthy controls; and GSE39428 (GPL15779; Illumina custom human SNP VeraCode microarray) analyzed the SNPs in 384 genes of 51 AS and 163 healthy controls.

Data normalization. For the two expression data from the Illumina platform, the TXT. data were downloaded and preprocessed using the Linear Models for Microarray data (LIMMA) method (22) (version 3.34.0; http://www.bioconductor.org/packages/release/bioc/html/limma.html) in the Bioconductor R package (version 3.4.1; http://www.R-project.org/), including base-2 logarithmic (log2) transformation and quantile normalization. The SNP signal spectrum in the GSE39428 dataset was preprocessed using hidden Markov model (HMM)-based program PennCNV (23) (version 1.0.4; http://penncnv.openbioinformatics.org/en/latest/), including the following steps: i) the signal intensity of the A and B alleles in each SNP were extracted and quantile normalized using the quantile method; ii) the normalize_alfy_genome_cluster.pl procedure in the PennCNV package was used to calculate the Log R ratio (LRR) and B allele frequency (BAF) in each SNP, resulting in the generation of baf. files; the kcolumn.pl procedure in the PennCNV package was utilized to split the baf. files to signal intensity of single sample; the copy number variation (CNV) was detected using the detect_cn.v.pl procedure in the PennCNV package.

Differential analysis of mRNAs and SNPs. The DEGs between control and AS in the GSE73754 and GSE25101 datasets were identified using the LIMMA method (22) based on the t-test where statistical significance was set to logFC(fold change) >0.263 and Benjamini and Hochberg adjusted (24) false discovery rate (FDR) <0.05. Hierarchical clustering heatmap illustrating the expression intensity and direction of the common DEGs in two mRNA datasets was constructed using the heatmap R package (version 1.0.8; https://cran.r-project.org/web/packages/heatmap) based on Euclidean distance. The differential SNPs were screened by comparing the LRR between AS and controls by using the Student's t-test. The genotype and allele frequencies of SNPs in DEGs between AS and controls were also compared using the Chi-square test (or Fisher's exact test), with P-value <0.05 set as the threshold value.

PPI (protein-protein interaction) network construction. The interaction pairs of the common DEGs were retrieved from the STRING 10.0 (Search Tool for the Retrieval of Interacting Genes; http://string db.org/) database (25) and then the PPI network was visualized using the Cytoscape software (version 3.6.1; www.cytoscape.org/) (26). Four topological characteristics of the genes in the PPI network, including degree [the number of edges (interactions) of a node (protein)], betweenness centrality (BC, the number of shortest paths that run through a node), closeness centrality (CC, the average length of the shortest paths between one node and any other node in the network) and average path length (APL, the average of distances between all pairs of nodes), were calculated using the CytoNCA plugin in Cytoscape software (http://apps.cytoscape.org/apps/cytoscape) (27), the overlapped genes of the top 35 in four parameters were suggested as crucial genes.

To identify functionally related and highly interconnected clusters from the PPI network, module analysis was carried out by using the Molecular Complex Detection (MCODE) plugin of Cytoscape software under the followed parameters: Degree cutoff =2, Node score cutoff =0.2 and K-core =2 (ftp://ftp.mshri.on.ca/pub/BIND/Tools/MCODE) (28).

Function enrichment analysis. The underlying functions of common DEGs between two mRNA datasets, genes in the PPI and modules enrichment analyses were predicted using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool (version 6.8; http://david.abcc.ncifcrf.gov). P<0.05 was chosen as the threshold to determine the significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) terms which were visualized using R language.

Results

Identification of DEGs. Based on the threshold (FDR <0.05 and logFCI >0.263), a total of 1,056 and 1,073 DEGs were identified between AS and controls for GSE73754 and GSE25101 datasets, respectively. After comparison analysis,
105 upregulated and 129 downregulated DEGs were found to be shared in both two datasets. The hierarchical clustering heatmap suggested that these 234 common DEGs could well distinguish AS from control samples (Fig. 1).

Function enrichment analysis for the common DEGs. DAVID database was used to predict the underlying functions of the common DEGs. The results showed that 8 significant KEGG pathways (Fig. 2) were enriched, such as hsa05130:Pathogenic *Escherichia coli* infection (*TLR4*, toll like receptor 4) and hsa04145:Phagosome (*TLR4*) (Table I). In addition, 23 significant GO biological process (BP) terms including Go:0006418~*trna aminoacylation for protein translation* (*EEF1E1*, eukaryotic translation elongation factor 1 epsilon 1; *YARS*, tyrosyl-trNA synthetase), Go:0051092~*positive regulation of NF-κB transcription factor activity* (*TLR4*), Go:0050776~*regulation of immune response* (*KLRD1*, killer cell lectin like receptor d 1), and Go:0050776~*negative regulation of interleukin-6 production* (*TLR4*) (Table II) were enriched (Fig. 3 and Table I).

PPI network. After mapping the DEGs to the STRING database, 356 interaction pairs were obtained which were used for constructing the PPI network where 154 nodes (64 upregulated and 88 downregulated) were included (Fig. 4). By calculating degree, BC, CC and APL, and comparing genes ranked as the top 30, *HDAC1* (histone deacetylase 1), *YARS*, *EPRS* (glutamyl-prolyl-trNA synthetase), *APEX1* (apurinic/apyrimidinic endodeoxyribonuclease 1), *ACTG1* (actin γ 1), *MDH2* (malate dehydrogenase 2), *TNF* (tumor necrosis factor), *CCT3* (chaperonin containing TCP1 subunit 3), *TLR4* (Toll-like receptor 4), *TUBB* (tubulin β class I), *FCGR2A* (Fc fragment of IgG receptor IIa), *KLRD1* (killer cell lectin-like receptor D1) and *FASN* (fatty acid synthase) were found to be shared by these 4 topological characteristics, suggesting they were hub genes for AS (Tables II and III).

Subsequently, four functionally related and highly interconnected modules were screened (Fig. 5). The genes in module 1 were associated with aminoacyl-trNA biosynthesis (*YARS*) (Fig. 5A); the genes in module 2 were related with natural killer cell mediated cytotoxicity (*KLRD1*) and immune response (*KLRD1*) (Fig. 5B); the genes in module 3 were enriched in GO terms of platelet degranulation (*SERPINA1*) (Fig. 5D) (Table IV).

Integration of SNP microarray and expression profile data. The lrr of each SNP for 384 genes in AS and control samples was computed. The lrr in most samples were lower than 1, indicating the presence of copy number deletions. Subsequently, the statistical difference in lrr of each SNP between AS and control samples were determined by Student's t-test, with 122 differential SNP identified. After overlapping the genes having differential SNP with the DEGs, two common genes (*EEF1E1* and *SERPINA1*) were obtained. *SERPINA1* was upregulated in AS (Fig. 6A) and the average expression LRR of the rs6575424 polymorphism in AS samples was
Table I. Function enrichment for the differentially expressed genes between patients with ankylosing spondylitis and controls.

Category	Term	P-value	Genes
KEGG_PATHWAY	hsa05130:Pathogenic *Escherichia coli* infection	9.97E-03	ACTG1, TUBB, EZR, TLR4, TUBA1B
KEGG_PATHWAY	hsa04145:Phagosome	1.36E-02	ACTG1, TUBB, NCF4, TLR4, FCGR2A, M6PR, TUBA1B, HLA-DRA
KEGG_PATHWAY	hsa04650:Natural killer cell mediated cytotoxicity	1.58E-02	IFNAR2, TNFSF10, TNF, CD247, KLRD1, SH2D1B, HCST
KEGG_PATHWAY	hsa00061:Fatty acid biosynthesis	1.90E-02	ACSL1, FASN, ACSL4
KEGG_PATHWAY	hsa05164:Influenza A	2.56E-02	ACTG1, IFNAR2, TNFSF10, TNF, MAP2K4, TLR4, IVNS1ABP, HLA-DRA
KEGG_PATHWAY	hsa05140:Leishmaniasis	3.01E-02	TNF, NCF4, TLR4, FCGR2A, HLA-DRA
KEGG_PATHWAY	hsa00071:Fatty acid degradation	3.63E-02	ACSL1, ECHS1, ACSL4, ALDH9A1
KEGG_PATHWAY	hsa01212:Fatty acid metabolism	4.52E-02	ACSL1, FASN, ECHS1, ACSL4
GOTERM_BP_DIRECT	GO:0007166—cell surface receptor signaling pathway	5.44E-05	CD8A, CD247, EYL, BIRC2, ADGR1, IFNAR2, TNFSF10, ADRB2, KLRG1, NUP62, TDP2, CD81, CDA, KLRD1
GOTERM_BP_DIRECT	GO:0006418—aRNA aminoacylation for protein translation	1.67E-03	YARS, EEF1E1, AARS, EPRS, QARS
GOTERM_BP_DIRECT	GO:0043123—positive regulation of I-kappaB kinase/NF-kappaB signaling	4.76E-03	CARD11, TNFSF10, TNF, NUP62, PINK1, CXXC5, BIRC2, S100A12
GOTERM_BP_DIRECT	GO:0051092—positive regulation of NF-kappaB transcription factor activity	7.34E-03	CARD11, IRAK3, NLRC4, TNF, PRKCH, TLR4, S100A12
GOTERM_BP_DIRECT	GO:0050776—regulation of immune response	8.11E-03	CARD11, CD96, CD8A, CD247, CD81, KLRD1, SH2D1B, HCST
GOTERM_BP_DIRECT	GO:2001240—negative regulation of extrinsic apoptotic signaling pathway in absence of ligand	1.17E-02	TNF, ZC3HC1, MCL1, CX3CR1
GOTERM_BP_DIRECT	GO:0030890—positive regulation of B cell proliferation	1.35E-02	CARD11, CD81, TLR4, ADA
GOTERM_BP_DIRECT	GO:2000377—regulation of reactive oxygen species metabolic process	2.66E-02	TNF, PINK1, BIRC2
GOTERM_BP_DIRECT	GO:0071353—cellular response to interleukin-4	3.74E-02	XBP1, FASN, TUBA1B
GOTERM_BP_DIRECT	GO:0032715—negative regulation of interleukin-6 production	4.96E-02	IRAK3, TNF, TLR4
GOTERM_MF_DIRECT	GO:0005515—protein binding	3.50E-10	PDLIM7, PPP2R5A, TLR1, CNOT2, TLR4, RNF216, CCT3, ARID1A, TGFA, SERPINA1
GOTERM_MF_DIRECT	GO:0044822—poly(A) RNA binding	1.11E-04	ABCF1, CCT3, ZNF207, EXOSC10, HNRNPM, EZR, FASN, APEX1, YARS, MDH2
GOTERM_MF_DIRECT	GO:0005524—ATP binding	5.01E-03	ABCF1, PINK1, MAP4K1, QARS, CCT3, TRIB1, ACTG1, EPRS, ADK, EIF4A1
GOTERM_MF_DIRECT	GO:0042288—MHC class I protein binding	2.42E-02	TUBB, CD8A, ATP5A1
GOTERM_MF_DIRECT	GO:0031625—ubiquitin protein ligase binding	3.16E-02	ACTG1, RPA2, TUBB, XBP1, SLC25A5, RALB, PINK1, TUBA1B, TRIB1
GOTERM_MF_DIRECT	GO:0047485—protein N-terminus binding	3.59E-02	RPA2, HDAC1, BIRC2, GLRX, FEZ1
GOTERM_CC_DIRECT	GO:0070062—extracellular exosome	3.20E-06	HIST2H2AA3, CAPZ2A, PTGS1, CCT3, PDHB, RTN3, ACTG1, N4BP2L2, CCNY, LILRA5
significantly higher than that in the controls (0.05 vs. -0.14, P=6.57E-07) (Fig. 6B); EEF1E1 was also upregulated in aS (Fig. 6a) and the average expression LRRs of rs7763907 (-4.88 vs. -5.91, P=0.048), rs9328453 (0.07 vs. -0.12, P=3.69e-05) (Fig. 6B), rs7751386 (-0.85 vs. -1.49, P=2.52e-04), and rs12660697 (0.08 vs. -0.02, P=0.02) polymorphisms in aS samples were significantly higher than that in controls.

Furthermore, the genotype and allele frequencies of SNPs in EEF1E1 and SERPINA1 between aS and controls were compared using the chi-square (or Fisher's exact) test. The results showed there were significant differences in the genotype and allele frequencies of rs7763907 between aS and control samples. The genotype frequency of rs7751386 between aS and control samples was also significantly differential.

These findings suggest that these two polymorphic sites of the EEF1E1 gene may be associated with the susceptibility to acquire AS (Table V).

Discussion
In the present study, two crucial genes (EEF1E1 and SERPINA1) were identified for the diagnosis of ankylosing spondylitis (AS) by analyzing two mRNA expression profile datasets and one single nucleotide polymorphism (SNP) dataset. Their expression levels were significantly upregulated and the average expression LRRs of SNP sites in these genes were significantly higher in AS patients that those in the controls. EEF1E1 was involved in AS by influencing aminoacyl-tRNA biosynthesis, while SERPINA1 may be associated with AS by participating in platelet degranulation.
Table II. Topological characteristics.

Genes	Value
TNF	24
EPRS	19
ACTG1	17
YARS	16
TLR4	14
HDAC1	14
CCT7	14
NOP56	13
MDH2	13
IMP3	12
CCT3	12
EIF4A1	12
ATP5A1	11
POLR1C	11
GNAI3	10
CS	10
ATIC	10
APEX1	9
NOP2	9
SNRPB	9
CD247	9
KLRD1	9
DDX47	8
AARS	8
MCL1	8
SRSF5	8
TUBB	8
FASN	8
FCGR2A	7

B, Closeness centrality

Genes	Value
APEX1	0.3349
ADA	0.3333
FASN	0.3318
CS	0.3288
ATIC	0.3281
TLR4	0.3274
EZR	0.3244
DDB1	0.3237
CCT7	0.3230
AARS	0.3223
KLRD1	0.3216
TUBB	0.3216

C, Betweenness centrality

Genes	Value
TNF	0.2996
ACTG1	0.2278
HDAC1	0.1883
YARS	0.0824
EPRS	0.0783
TLR4	0.0753
GNAI3	0.0745
CD247	0.0743
APEX1	0.0688
RALB	0.0622
ALDH9A1	0.0559
EIF4A1	0.0558
ADA	0.0508
FASN	0.0507
KLRD1	0.0499
TUBB	0.0491
FCGR2A	0.0430
MDH2	0.0382
EZR	0.0360
CYB5R4	0.0359
CCT3	0.0337
PRKCH	0.0316
MCL1	0.0315
NUP214	0.0289
HIST2H2AA3	0.0288
SERPINA1	0.0286
TDP2	0.0282
SHOC2	0.0274
MAP4K1	0.0273
5269

EEF1E1, also known as aminoacyl-tRNA synthetase-interacting multifunctional protein 3 (AIMP3/p18), was initially found to encode an auxiliary component of the macromolecular aminoacyl-tRNA synthase complex that catalyzes the ligation of a specific amino acid to its compatible cognate tRNA to form an aminoacyl-tRNA to initiate protein translation (29,30). Thus, EEF1E1 may be upregulated to promote the development of various types of cancer (31). However, recent studies indicate that EEF1E1 may also function as a tumor-suppressor (32,33) by upregulating the growth factor- or ras-dependent induction of p53 (34,35). Cells with loss of EEF1E1 were found to exhibit impaired p53 transactivity and genomic instability and thus were found to become susceptible to cell malignant transformation (36). In addition, in RA synovial tissues, 80% of p53-positive cells were found to be TUNEL-positive (39). These results indicate that upregulation of the p53 gene may result in chronic inflammation and apoptosis in RA patients. In addition, other members of the AIMP families, such as AIMP1, were also found to promote the expression of pro-inflammatory genes in monocytes/macrophages and dendritic cells (40) and induce cytokine (i.e. TNF-α)-dependent apoptosis (41). The antibody atliximab was reported to neutralize the expression of AIMP1 and then block the AIMP1-mediated production of inflammatory cytokines, ultimately attenuating collagen-induced arthritis (42). Accordingly, we speculate that EEF1E1 may also be involved in inflammation of AS by upregulating p53 and pro-inflammatory cytokines. In line with this hypothesis, our results showed that EEF1E1 was upregulated in the whole blood of AS patients compared with the control. Upregulation of EEF1E1 may be attributed to genetic mutations (rs7763907 and rs7751386) since the LRR of AS was significantly higher than that of controls and the genotype and allele frequencies were significantly different. However, further experimental validation is needed as studies investigating the SNPs of EEF1E1 are limited apart from the study of Liu et al that showed the number of risk alleles of rs12199241 in AIMP3 to be significantly associated with high DNA damage level (43).

SERPINA1 is a gene that encodes alpha-1-antitrypsin (AAT). It was found that the AAT concentration was higher in AS patients under active phase than the patients with remission/partial remission (44). In addition, the carboxyl terminal fragment of AAT was demonstrated to significantly induce the production of pro-inflammatory molecules (gelatinase B, monocyte chemoattractant protein-1 and IL-6) in human monocytes by interactions with the CD36 scavenger receptor and low density lipoprotein (LDL) receptor (45). These findings suggest that SERPINA1 may be a potential biomarker for the diagnosis of AS and evaluation of the efficacy of treatment by influencing inflammation. In line with these studies, we also found that SERPINA1 was upregulated in AS patients and it participated in GO terms

Table II. Continued.

Table III. Overlapping DEGs according to topological features (degree, closeness centrality, betweenness centrality and average path length).

Genes	Value	Common genes	Expression
RNF126	1.0000	HDAC1	Down
KLHL2	1.0000	YARS	Down
FBXO21	1.0000	EPRS	Down
GPBP1	1.0000	APEX1	Down
PLEKHF1	1.0000	ACTG1	Down
RTN3	1.0000	MDH2	Down
RRAGD	1.0000	TNF	Down
TNT	2.5000	CCT3	Down
HDAC1	2.5342	TLR4	Up
ACTG1	2.5959	TUBB	Down
CCT3	2.7740	FCGR2A	Up
YARS	2.7808	KLRD1	Down
EPRS	2.8014	FASN	Down
ALDH9A1	2.8493		
FCGR2A	2.9178		
MDH2	2.9521		
APEX1	2.9863		
ADA	3.0000		
FASN	3.0137		
CS	3.0411		
ATIC	3.0479		
TLR4	3.0548		
EZR	3.0822		
DDB1	3.0890		
CCT7	3.0959		
AARS	3.1027		
KLRD1	3.1096		
TUBB	3.1096		
CYB5R4	3.1096		

Table II. Continued.

Genes	Value
RNF126	1.0000
KLHL2	1.0000
FBXO21	1.0000
GPBP1	1.0000
PLEKHF1	1.0000
RTN3	1.0000
RRAGD	1.0000
TNT	2.5000
HDAC1	2.5342
ACTG1	2.5959
CCT3	2.7740
YARS	2.7808
EPRS	2.8014
ALDH9A1	2.8493
FCGR2A	2.9178
MDH2	2.9521
APEX1	2.9863
ADA	3.0000
FASN	3.0137
CS	3.0411
ATIC	3.0479
TLR4	3.0548
EZR	3.0822
DDB1	3.0890
CCT7	3.0959
AARS	3.1027
KLRD1	3.1096
TUBB	3.1096
CYB5R4	3.1096

Table III. Overlapping DEGs according to topological features (degree, closeness centrality, betweenness centrality and average path length).

Genes	Value	Common genes	Expression
RNF126	1.0000	HDAC1	Down
KLHL2	1.0000	YARS	Down
FBXO21	1.0000	EPRS	Down
GPBP1	1.0000	APEX1	Down
PLEKHF1	1.0000	ACTG1	Down
RTN3	1.0000	MDH2	Down
RRAGD	1.0000	TNF	Down
TNT	2.5000	CCT3	Down
HDAC1	2.5342	TLR4	Up
ACTG1	2.5959	TUBB	Down
CCT3	2.7740	FCGR2A	Up
YARS	2.7808	KLRD1	Down
EPRS	2.8014	FASN	Down
ALDH9A1	2.8493		
FCGR2A	2.9178		
MDH2	2.9521		
APEX1	2.9863		
ADA	3.0000		
FASN	3.0137		
CS	3.0411		
ATIC	3.0479		
TLR4	3.0548		
EZR	3.0822		
DDB1	3.0890		
CCT7	3.0959		
AARS	3.1027		
KLRD1	3.1096		
TUBB	3.1096		
CYB5R4	3.1096		
Figure 4. Protein-protein interaction network using the common differentially expressed genes in the two mRNA expression profile datasets (GSE73754 and GSE25101). The network is constructed using the interaction data from the STRING 10.0 database via the Cytoscape software. Orange, upregulated; blue, downregulated. The larger size of the node (protein) indicates a higher degree (interaction relationships). FC, fold change; STRING, Search Tool for the Retrieval of Interacting Genes.

Figure 5. Modules extracted from the protein-protein interaction network. (A) Module 1; (B) Module 2; (C) Module 3; (D) Module 4. The modules are extracted using Molecular Complex Detection (MCODE) plugin of Cytoscape software. Orange, upregulated; blue, downregulated. The larger size of the node (protein) indicates the higher degree (interaction relationships).
of platelet degranulation. Platelet-specific degranulation gene Munc13-4 knockout mice were shown to display a reduction in airway hyper-responsiveness and eosinophilic inflammation, indirectly confirming the pro-inflammatory roles of SERPIN1 in AS (46). Importantly, a study was conducted to use TaqMan method to genotype tag SNPs (rs2753934, Table IV. Function enrichment for genes in modules.

Category	Term	P-value	Genes
KEGG_PATHWAY	hsa00970:Aminoacyl-tRNA biosynthesis	8.99E-05	YARS, AARS, QARS
GERM_BP_DIRECT	GO:0006418-tRNA aminoacylation for protein translation	3.31E-05	YARS, AARS, QARS
GERM_BP_DIRECT	GO:0006457–protein folding	6.76E-04	CCT7, AARS, CCT3
GERM_BP_DIRECT	GO:1904871–positive regulation of protein localization to Cajal body	1.90E-03	CCT7, CCT3
GERM_BP_DIRECT	GO:1904874–positive regulation of telomerase RNA localization to Cajal body	3.57E-03	CCT7, CCT3
GERM_BP_DIRECT	GO:0032212–positive regulation of telomere maintenance via telomerase	7.60E-03	CCT7, CCT3
GERM_BP_DIRECT	GO:0007339–binding of sperm to zona pellucida	8.31E-03	CCT7, CCT3
GERM_BP_DIRECT	GO:1901998–toxin transport	8.55E-03	CCT7, CCT3
GERM_BP_DIRECT	GO:0050821–protein stabilization	3.20E-02	CCT7, CCT3
KEGG_PATHWAY	hsa04650:Natural killer cell mediated cytotoxicity	4.23E-03	TNFSF10, CD247, KLRD1, HCST
GERM_BP_DIRECT	hsa03013:RNA transport	1.10E-02	NUP214, NUP62, EIF4A1, GEMIN4
GERM_BP_DIRECT	GO:0007166–cell surface receptor signaling pathway	3.33E-04	TNFSF10, NUP62, CD247, BIRC2, KLRD1
GERM_BP_DIRECT	GO:0016032–viral process	4.64E-04	NUP214, NUP62, HDAC1, CD247, EIF4A1
GERM_BP_DIRECT	GO:0043066–negative regulation of apoptotic process	2.21E-03	MCL1, NUP62, HDAC1, BCL2A1, BIRC2
GERM_BP_DIRECT	GO:0043123–positive regulation of I-kappaB kinase/NF-kappaB signaling	1.70E-02	TNFSF10, NUP62, BIRC2
GERM_BP_DIRECT	GO:0050776–regulation of immune response	2.06E-02	CD247, KLRD1, HCST
GERM_BP_DIRECT	GO:0043044–ATP-dependent chromatin remodeling	2.84E-02	HDAC1, SMARCA5
GERM_BP_DIRECT	GO:0006364–tRNA processing	2.90E-02	EXOSC10, NOP56, GEMIN4
GERM_BP_DIRECT	GO:0006409–tRNA export from nucleus	3.93E-02	NUP214, NUP62
GERM_BP_DIRECT	GO:0010827–regulation of glucose transport	4.05E-02	NUP214, NUP62
GERM_BP_DIRECT	GO:0097192–extrinsic apoptotic signaling pathway in absence of ligand	4.17E-02	MCL1, BCL2A1
KEGG_PATHWAY	hsa01100:Metabolic pathways	1.94E-02	ATIC, EPRS, ATP5A1, MDH2
GERM_BP_DIRECT	GO:0006888–ER to Golgi vesicle-mediated transport	1.32E-03	TGFA, SERPIN1, PROS1
GERM_BP_DIRECT	GO:0048566–embryonic digestive tract development	5.70E-03	TNF, ADA
GERM_BP_DIRECT	GO:0048208–COPII vesicle coating	2.16E-02	TGFA, SERPIN1
GERM_BP_DIRECT	GO:0002576–platelet degranulation	3.62E-02	SERPIN1, PROS1
GERM_BP_DIRECT	GO:0000187–activation of MAPK activity	3.76E-02	TNF, TGFA
GERM_BP_DIRECT	GO:0010951–negative regulation of endopeptidase activity	4.25E-02	SERPIN1, PROS1

KEGG, Kyoto encyclopedia of Genes and Genomes; GO, Gene Ontology; BP, biological process.
Table V. Genotype and allele frequency of SNP loci for SERPINA1 and EEF1E1.

Genes	SNP	Genotype	AS	Control	P-value	Allele	AS	Control	P-value
SERPINA1	rs6575424	AA	9	12	0.077	A	25	79	0.665
		AB	16	67	<0.001	B	42	151	
		BB	26	84					
EEF1E1	rs7763907	AB	1	0	<0.001	A	4	4	0.047
		BB	13	5		B	14	5	
		NC	37	154					
	rs9328453	AA	0	4					
		BB	51	163	1.000	A	0	3	1.000
		NC	37	154					
	rs7751386	AA	7	2	<0.001	A	12	41	1.000
		AB	5	39		B	25	80	
		BB	20	41					
		NC	19	81					
	rs1266097	AA	0	1	0.631	A	4	10	0.749
		AB	4	9		B	51	162	
		BB	47	153					

SNP, single nucleotide polymorphism; AS, ankylosing spondylitis.

Figure 6. The expression levels and LRR of SNP loci of EEF1E1 and SERPINA1. (A) The expression levels of EEF1E1 and SERPINA1 in blood samples of GSE73754 (AS: n=52; Ctrl: n=20) and GSE25101 (AS: n=16; Ctrl: n=20) datasets, respectively. *P<0.05; ***P<0.001. (B) LRR of SNPs in blood samples of GSE39428 (AS: n=51; Ctrl: n=163). Only the most significant SNPs were displayed. The t-test was used to determine the difference in expression and LRR between AS and Ctrl. AS, ankylosing spondylitis; Ctrl, control; LRR, Log R ratios; SNP, single nucleotide polymorphism.
rs2749531 and rs6575424) in SERPINA1 of 56 AS cases and 160 healthy controls. The results revealed an increased expression of AAT in synovial membranes of AS compared with control samples, but no significant association was observed between the AAT polymorphism and AS (47). This also seems to be in accordance with our results and indicates that SERPINA1 may not be a genetically related biomarker for AS.

However, there were some limitations to the present study. First, this study was only performed to preliminarily screen the potential genetic biomarkers for AS. Further experiments are necessary, including clinical confirmation of the association between the polymorphism of EEF1E1 and SERPINA1 and the risk of AS and patient prognosis; clinical validation of the expression of EEF1E1 and SERPINA1; clinical (correlation analysis), in vitro (site-directed mutagenesis to construct the expression vector with different alleles, transfection of monocytes or osteoblasts followed by detection of cell proliferation, inflammatory factor release or mineralization) and in vivo (mutation knockout in animal models followed by assessment of histology and bone joint) verification of the association between gene polymorphisms and their expressions as well as corresponding phenotypic changes. Second, the SNP microarray used in this study only analyzed the SNPs in specific 384 genes, but not all the genes. Additional SNP discovery by deep sequencing with a larger sample size is essential to obtain more genetic biomarkers.

In conclusion, our findings preliminarily suggest that EEF1E1 may be an underlying novel, important genetic biomarker for the diagnosis of AS. Its rs7763907 and rs7751386 polymorphisms may lead to its upregulated expression and then promote the transcription of p53 and pro-inflammatory cytokines, leading to the development of AS.

Acknowledgements

Not applicable.

Funding

No funding was received.

Availability of data and materials

The microarray data GSE73754 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73754), GSE25101 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25101) and GSE39428 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39428) were downloaded from the GEO database in NCBI.

Authors’ contributions

XF was involved in the conception and design, analysis and interpretation of data and drafted the initial manuscript. BQ collected the data. LM and FM contributed to the interpretation of the data. BQ, LM and FM revised the manuscript critically for important intellectual content. All authors read and approved the manuscript and agree to be accountable for all aspects of the research in ensuring that the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Dean LE, Jones GT, MacDonald AG, Downham C, Sturrock RD and Macfarlane GJ: Global prevalence of ankylosing spondylitis. Rheumatology (Oxford) 53: 650-657, 2014.
2. Healey EL, Haywood KL, Jordan KP, Garratt AM and Packham JC: Patients with well-established ankylosing spondylitis show limited deterioration in a ten-year prospective cohort study. Clin Rheumatol 32: 67-72, 2013.
3. Chen B, Li J, He C, Li D, Tong W, Zou Y and Xu W: Role of HLA-B27 in the pathogenesis of ankylosing spondylitis. Mol Med Rep 15: 1943-1951, 2017.
4. Fernández-Suero JL, Alonso C, Blanco FJ, Rodríguez-Gómez M, Galdo F and González-Gay MA: Prevalence of HLA-B27 and subtypes of HLA-B27 associated with ankylosing spondylitis in Galicia, Spain. Clin Exp Rheumatol 22: 465-468, 2004.
5. Cauil A, Desolle G, Fiorillo MT, Vaccu A, Mameli A, Bitti P, Passi G, Sorrentino R and Mathieu A: Increased level of HLA-B27 expression in ankylosing spondylitis patients compared with healthy HLA-B27-positive subjects: A possible further susceptibility factor for the development of disease. Rheumatology (Oxford) 41(12): 1375-1379, 2002.
6. Yang T, Duan Z, Wu S, Liu S, Zeng Z, Li G, Wang S, Fan D, Ye D, Xu S, et al: Association of HLA-B27 genetic polymorphisms with ankylosing spondylitis susceptibility worldwide: A meta-analysis. Mod Rheumatol 24: 150-161, 2014.
7. Lin H and Gong YZ: Association of HLA-B27 with ankylosing spondylitis and clinical features of the HLA-B27-associated ankylosing spondylitis: A meta-analysis. Rheumatol Int 37: 1267-1280, 2017.
8. Kim TJ, Na KS, Lee HJ, Lee B and Kim TH: HLA-B27 homozygosity has no influence on clinical manifestations and functional disability in ankylosing spondylitis. Clin Exp Rheumatol 27: 574-579, 2009.
9. Zhang L, Zhang YJ, Chen J, Huang XL, Fang GS, Yang LJ, Duan Y and Wang J: The association of HLA-B27 and Klebsiella pneumoniae in ankylosing spondylitis: A systematic review. Microb Pathog 117: 49-54, 2018.
10. Brown MA, Kennedy LG, Macgregor AJ, Darke C, Duncan E, Shafiot J, Taylor A, Calin A and Wordsworth P: Susceptibility to ankylosing spondylitis in twins: The role of genes, HLA, and the environment. Arthritis Rheum 40: 1823-1828, 1997.
11. Brophy S, Hickey S, Menon A, Taylor G, Bradbury L, Hamersma J and Calin A: Concordance of disease severity among family members with ankylosing spondylitis? J Rheumatol 31: 1775-1778, 2004.
12. Azevedo VF, Faria-Neto JR, Stinghen A, Lorenzetti PG, Miller WP, Gonçalves BP, Szyhta CC and Pecotis-Filho R: IL-8 but not other biomarkers of endothelial damage is associated with disease activity in patients with ankylosing spondylitis without treatment with anti-TNF agents. Rheumatol Int 33: 1779-1783, 2013.
13. Gonza-Lezlohoz L, Fajardo-Robldeo NS, Saldanha-Cruz AM, Moreno-Sandoval IV, Bonilla-Lara D, Zavaleta-Muñiz S, Nava-Zavala AH, Hernandez-Cuervo P, Rocha-Muñoz A, Rodriguez-Jimenez NA, et al: Association of adipokines, interleukin-6, and tumor necrosis factor-α concentrations with clinical characteristics and presence of spinal syndesmophytes in patients with ankylosing spondylitis: A cross-sectional study. J Int Med Res 45: 1024-1035, 2017.
14. Sundström B, Ljung L and Wällberg-Jonsson S: Exercise habits and C-reactive protein may predict development of spinal immobility in patients with ankylosing spondylitis. Clin Rheumatol 37: 2888-2895, 2018.

15. Sohn DH, Jeong H, Roh JS, Lee HN, Kim E, Koh JH and Lee SG: Serum CCL11 level is associated with radiographic spinal damage in patients with ankylosing spondylitis. Rheumatol 48: 1455-1464, 2018.

16. Ruan WF, Xie JT, Jin Q, Wang WD and Ping AS: The diagnostic and prognostic role of interleukin 12B and interleukin 6R gene polymorphism in patients with ankylosing spondylitis. J Clin Rheumatol 24: 218-24, 2018.

17. Ma HJ, Yin QF, Wu Y and Guo MH: TNF-α-308 polymorphism determines clinical manifestations and therapeutic response of ankylosing spondylitis in Han chinese. Med Clin (Barc) 149: 517-522, 2017.

18. Gracey E, Yao Y, Green B, Qaiyum Z, Baglaenko Y, Lin A, Anton A, Ayearest R, Yip P and Inman RD: Sexual dimorphism in the Tnfr2 signature of ankylosing spondylitis. Arthritis Rheumatol 68: 679-689, 2015.

19. Pimentel-Santos FM, Ligeiro D, Matos M, Mourão AF, Costa J, Santos H, Barcelos A, Godinho F, Pinto P, Cruz M, et al.: Whole blood transcriptional profiling in ankylosing spondylitis identifies novel candidate genes that might contribute to the inflammatory and tissue-destructive disease aspects. Arthritis Res Ther 13: 205, 2011.

20. Chang X, Xu B, Wang L, Wang Y, Wang Y and Yan S: Investigating a pathogenic role for TXNDC5 in tumors. Int J Oncol 43: 1871-1884, 2013.

21. Chang X, Zheng Y, Yang Q, Wang L, Pan J, Xia Y, Yan X and Han J: Carbonic anhydrase I (CA1) is involved in the process of bone formation and is susceptible to ankylosing spondylitis. Arthritis Res Ther 14: R176, 2012.

22. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W and Smyth GK: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43: e47, 2015.

23. Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SFA, Hakonarson H and Bucan M: PennCNV: An integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 17: 1665-1674, 2007.

24. Benjamini Y, Drai D, Elmer G, Kafkafi N and Golani I: Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125: 279-284, 2001.

25. Szkalarczyk D, Franceschini A, Wyder S,弗Lundus K, Keller D, Haertwig F, Cerami E, Simonovic M, Roth A, Santos A, Tsafou KP, et al.: STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database Issue): D447-D452, 2015.

26. Kohl M, Wiese S and Warscheid B: Cytoscape: Software for visualization and analysis of biological networks. Methods Mol Biol 696: 291-303, 2011.

27. Tang Y, Li M, Wang J, Pan Y and Wu FX: CytoNCA: A cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems 127: 67-72, 2015.

28. Bader GD and Hogue CW: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4: 2, 2003.

29. Ku MJ and Lee SY: Contributions of aminoacyl-tRNA synthetase-interacting multifunctional protein-3 to mammalian translation initiation. Amino Acids 44: 1241-1245, 2013.

30. Kang T, Kwon NH, Lee JY, Park MC, Kang E, Kim HH, Kang TJ and Kim S: AIMP3/p18 controls translational initiation by mediating the delivery of charged initiator tRNA to initiation complex. J Mol Biol 423: 475-481, 2012.

31. Hassan MK, Kumar D, Naik M and Dixit M: The expression profile and prognostic significance of eukaryotic translation elongation factors in different cancers. PLoS One 13: e0191377, 2018.

32. Yu X, Zheng H, Chan MT and Wu WK: HULC: An oncogenic long non-coding RNA in human cancer. J Cell Mol Med 21: 410-417, 2017.

33. Kim SS, Hur SY, Kim YR, Yoo NJ and Lee SH: Expression of AIMP1, 2 and 3, the scaffolds for the multi-tRNA synthetase complex, is downregulated in gastric and colorectal cancer. Tumori 97: 380-385, 2011.

34. Park BJ, Oh YS, Park SY, Choi SJ, Rudolph C, Schlegelberger B and Kim S: AIMP3 haploinsufficiency disrupts oncogene-induced p53 activation and genomic stability. Cancer Res 66: 6913-6918, 2006.

35. Han JM, Park BJ, Sang GP, Oh YS, Choi SJ, Sang WL, Hwang SK, Chang SH, Cho MH and Kim S: AIMP2/p38, the scaffold for the multi-tRNA synthetase complex, responds to genotoxic stresses via p53. Proc Natl Acad Sci USA 105: 11206-11211, 2008.

36. Gurung PM, Vreakumarasivam A, Williamson M, Counsell N, Douglas J, Tan WS, Feber A, Crabb SJ, Short SC, Freeman A, et al.: Loss of expression of the tumour suppressor gene AIMP3 predicts survival following radiotherapy in muscle-invasive bladder cancer. Int J Cancer 136: 709-720, 2015.

37. Lee S, Yu KR, Ryu YS, Oh YS, Hong IS, Kim HS, Lee JY, Kim S, Seo KW and Kang KS: miR-543 and miR-590-3p regulate human mesenchymal stem cell aging via direct targeting of AIMP3/p18. Age (Dordr) 36: 9724, 2014.

38. Abou-Shousha SA, Salah E and Wagdy E: Study of P53 in peripheral blood and synovial mononuclear cells of rheumatoid arthritis and osteoarthritis patients and its relation to the degree of disease activity. Egypt J Immunol 12: 61-70, 2005.

39. Chou CT, Yang JS and Lee MK: Aporoptosis in rheumatoid arthritis-expression of Fas, Fas-L, p53, and Bcl-2 in rheumatoid synovial tissues. J Pathol 193: 110-116, 2001.

40. Liang D, Halpert MM, Konduri V and Decker WK: Stepping out of the cytosol: AIMP1/p34 potentiates the link between innate and adaptive immunity. Int Rev Immunol 34: 367-381, 2015.

41. Chou JW, Kim DG, Park MC, Um JY, Han JM, Park SG, Choi EC and Kim S: AIMP2 promotes TNF-alpha-dependent apoptosis via ubiquitin-mediated degradation of TRAF2. J Cell Sci 122: 2710-2715, 2009.

42. Hong SH, Cho JG, Yoon KJ, Lim DS, Kim CH, Lee SW and Park SG: The antibody atiliximab attenuates collagen-induced arthritis by neutralizing AIMP1, an inflammatory cytokine that enhances osteoclastogenesis. Biomaterials 44: 45-54, 2015.

43. Liu J, Zhu M, Chen W, Xie K, Shen W, Yuan J, Cheng Y, Geng L, Wang Y, Jin G, et al.: Genetic variants in multisynthetase complex genes are associated with DNA damage levels in chinese populations. Mutat Res 786: 8-13, 2016.

44. Ozgocmen S, Godekmerdan A and Ozkurt-Zengin F: Acute-phase response, clinical measures and disease activity in ankylosing spondylitis. Joint Bone Spine 74: 249-253, 2007.

45. Jancauskienė S, Moraga F and Lindgren S: C-terminal fragment of alphal-antitrypsin activates human monocytes to a pro-inflammatory state through interactions with the CD36 scavenger receptor and LDL receptor. Atherosclerosis 158: 41-51, 2001.

46. Cardenas EI, Breaux K, Da Q, Flores JR, Ramos MA, Tuvim MJ, Burns AR, Rumbaut RE and Adachi R: Platelet Munc13-4 regulates hemostasis, thrombosis and airway inflammation. Haematologica 103: 1235-1244, 2018.

47. Sun S, Fang K, Zhao Y, Yan X and Chang X: Increased expression of alpha 1-antitrypsin in the synovial tissues of patients with ankylosing spondylitis. Clin Exp Rheumatol 30: 39-44, 2012.