Causal Spin Foams

Giorgio Immirzi
Colle Ballone, Montopoli di Sabina (Italy)
e-mail: giorgio.immirzi@pg.infn.it

Abstract

I discuss how to impose causality in spin-foam models, separating forward and backward propagation, turning a given triangulation to a ‘causal set’. I show that the criteria proposed to identify the forward, causal sector of the theory are equivalent. Essential to the argument is the closure condition for each 4-simplex.

1 Introduction

The spin-foam models of quantum gravity\[1\] are an attempt to realize the idea of quantizing Regge Calculus \[2\], discretizing space-time in a simplicial complex, and calculating a ‘partition function’ integrating over all possible configurations. However, a partition function is not really an approximation to a path integral: it does not distinguish the past from the future. This is just like the Wheeler De Witt equation, which unlike the Schrödinger equation knows no time, and is expected to give a ‘forward’ and a ‘backward’ propagation\[3\][4]. But I would argue that the two should be separated, and that the forward is the causal one.

A symptom that something is missing to the model comes from the asymptotic analysis of the model of Engle-Livine-Pereira-Rovelli\[7\] and Freidel-Krasnov\[8\] performed by J.Barrett et al.\[9\] and Mu Xin Han et al.\[10\]. A saddle-point expansion gives in the limit for the contribution of each triangle Δ_{ab}, shared by tetrahedra e_a and e_b in a 4-simplex v, a Regge-like expression:

$$N_{ab} e^{iA_{ab} \Theta_{ab}} + N_{ab} e^{-iA_{ab} \Theta_{ab}}$$ (1.1)

A_{ab} the area of the triangle, Θ_{ab} the (hyperbolic) dihedral angle between e_a and e_b. The second term in (1.1) is there because in the expansion one finds two saddle points, related by a parity reflection; very much like what one finds in the simple model studied in [3]; this is the ‘cosine problem’ [11].

Some time ago D.Oriti and E.Livine[5], in an analysis of the original model[1], emphasized the importance of introducing an element of causality in the model; and indeed the approach to quantum gravity based on dynamical triangulations became ‘causal dynamical triangulation’[6] when it was decided that causality was the missing ingredient.

A possible way to impose causality on a spinfoam model has been suggested by M.Cortes and L.Smolin[12], based on the work of W.Wieland[13]. Simplifying, for each tetrahedron e one has a closure constraint for the area tensors S_{IJ}^I of its triangles, and for each 4-simplex v a closure constraint for the volume vectors V_{ev}^I of its tetrahedra[14]

$$\sum_{f \in e} S_{IJ}^I = 0; \quad \sum_{e \in v} V_{ev}^I = 0$$ (1.2)

i.e. the sum of the oriented areas and of the oriented volumes must be zero; I shall define these quantities more precisely below. It is also commonly assumed that all tetrahedra
are space-like\(^1\) i.e. all the \(V_e^I\) are time-like, the actual volume being \(V_v = \frac{1}{6}\sqrt{-V_e^0 V_{el}}\). But if the \(V_e^I\) are assumed time-like, they can only sum to zero for each \(v\) if some \(V_e^0\) are positive, some negative; some tetrahedra must be oriented forward, some backward, the closure condition becoming a sort of Kirchhoff law for each 4-simplex. A given triangulation, if this orientation is dictated a priori, becomes a sort of ‘causal set’ in the sense of R. Sorkin\(^15\), or an ‘energetic causal set’ \(^12\); a simple detailed example will be shown in the last section of this paper.

In this way the model becomes ‘causal’; but to give a single term in (1.1) the configurations over which one integrates have to be limited to the forward oriented ones; proposals on how to identify them have been made and investigated in \(^10\) \(^17\) \(^19\). I will show that the different formulations are equivalent. In \(^10\) it is also shown that (under appropriate non-degeneracy hypotheses) the configurations that satisfy the saddle point conditions also satisfy the 4-simplex closure. So it is not just 4-simplex closure, but the preordained orientation of all tetrahedra what limits the configurations over which one integrates.

I assume that I am given a triangulation of 4-space to a simplicial complex \(\mathcal{K}\), with dual skeleton the 2-complex \(\mathcal{C}\), made of 4-simplices/vertices \(v\), tetrahedra/edges \(e\), triangles/faces \(f\). The only boundaries of \(\mathcal{K}\) are an initial and a final triangulation of \(S^3\); the simplest case is the pentachoron, which has 5 vertices, for which I give details in the last section.

A combinatorial notion of orientation for a 4-simplex is given by an ordering of its vertices \((abced)\), or \((P_1, ..., P_5)\), which induces an orientation of its 5 tetrahedra \(
\{(abed), (abe)c, (abde), (aced), (bcde)\}\), that in turn determines the orientation of the triangles e.g. \((abed) : (bced), (cad), (abed), (bac)\). With these rules, each triangle within a 4-simplex is in two tetrahedra with opposite orientation. Even permutations of vertices do not change orientation, odd ones reverse it. \(\mathcal{K}\) must be orientable, meaning that an order of the vertices can be chosen for each 4-simplex such that each tetrahedron belongs to two 4-simplices with opposite orientation. For example:

\[
(abced') : \quad abcd \quad ab'c e \quad abde' \quad ace'd \quad bcde' \\
(abd'c'e') : \quad ab'dc \quad ab'd e \quad ab'e' c \quad ade' c \quad bdc'e'
\]

Regge’s original idea\(^2\) was that each 4-simplex \(v\) is a chunk of 4-space with a flat inside, curvature residing in the bones (triangles/faces) \(f\); \(e^I_\mu\) is a tetrad 1-form in a coordinate patch covering \(v\); Lorentz transformations connect the frames in the tetrahedron \(e = v \cap v'\), overlap of two 4-simplices. The spacetime curvature shows up when going round a bone with successive transformations one does not come back to the original frame.

The 4-volume form \(e^0 \wedge e^1 \wedge e^2 \wedge e^3\) characterizes the ‘geometric’ orientation of the 4-simplex; integrated, it gives for each 4-simplex a positive 4-volume \(V_v\), and each tetrahedron \(e \in v\) a 3-volume 4-vector \(V_e^I = \int e^I_{JKL} e^J \wedge e^K \wedge e^L\). The 4 triangles that bound each tetrahedron have area tensors \(S^{IJ}_{f}\), with the crucial property that \(\eta_{IJ} V_e^I S^{f}_{f} V_e^J = 0\); these area tensors are chosen as independent variables instead of the tetrads. Within a 4-simplex \((1, ..., 5)\) tetrahedra can be labeled by the vertex they do not include, triangles

\(^1\)in a previous paper\(^16\) I worried that time-like tetrahedra might be needed to model specific spacetimes. Ignoring the background one may well decide a-priori their absence, crucial to the argument that follows.

\(^2\)another point of view\(^19\) is that the second term in (1.1) accounts for the contribution of ‘anti-spacetimes’ fluctuations, regions of negative lapse function; from the point of view of this paper and of \(^10\), 4-simplices with negative \(V_v\) separated from the rest by degenerate 4-simplices. I find difficult to reconcile this with the overall causal structure of the model.
by the tetrahedra they border. One can easily derive that classically, for each 4-simplex, area tensors, 3-volume vectors and 4 volume are related as:

\[
\epsilon^{IJKL} V_{eK} V_{eL} = 2 V_4^I S_e^{IJ}, \quad \epsilon^{IJKL} V_2^I V_3^J V_4^K V_5^L = V_4^3
\]

(1.3)

Since we assume all tetrahedra to be space-like, all the 4-vectors \(V_I \) are time-like, pointing in opposite time directions for a tetrahedron shared by \(v \) and \(v' \); this links the ‘combinatorial’ and the ‘geometric’ notion of orientation.

2

For a given triangulation the spinfoam amplitude \(A(K) \) is the integral over all holonomies \(g_{ev'} \in SL(2, \mathbb{C}) \) of the product of the face amplitudes \(A_f \) associated to each face/triangle. Each holonomy is factorized as \(g_{ev'} = g_{ve} g_{ev'} \), \(g_{ve} = g_{ev}^{-1} \) if \(e = v \cap v' \), and a ‘simplicity projector’ is inserted for each \(e \) in the chain. For example, for a face of 3 steps:

\[
A_f = \text{Tr} P_j g_{e_1 v_1 e_2} g_{e_2 v_2 e_3} g_{e_3 v_3 e_1}
\]

the trace taken in a rep. \((j_f, \gamma_{j_f}) \) of \(SL(2, \mathbb{C}) \), and

\[
P_j = \sum_m |(j, \gamma j)m \rangle \langle (j, \gamma j)m| := \sum_m |jm\rangle(jm|.
\]

(2.1)

This form reflects the key points of the EPRL model: one only sums over the ‘\(\gamma \)-simple’ representations of the \(SL(2, \mathbb{C}) \), i.e. those with indices \((j, \gamma j) \), \(j \) a (half)-integer, and over the lowest \(SU(2) \) within their decomposition; the areas of the triangles \(A_f = \sqrt{\frac{1}{2} S_f^{IJ} S_f^{IJ}} \) are quantized and given by \(\gamma j \).

Explicitly, the general expression for the spinfoam amplitude is:

\[
A(K) = \int \prod dg_{ev} \prod_f A_f = \int \prod dg_{ev} \prod_{jj} d_{jj} \sum_{mm'} |(jjm|g_{ve}^{-1} g_{ve'}|jjm')\ldots(jjm''|g_{ve}^{-1} g_{ve'}|jjm)\rangle
\]

(2.2)

where link/tetrahedron \(e \) enters \(v \), \(e' \) leaves it. In the appendix I show how to express the projectors in terms of coherent states, and to rewrite this expression as:

\[
A(K) = \sum_{jj} \int \prod dg_{ev} \prod_{ve} dn_{ef} <n_{ef}|g_{ve}^{-1} g_{ve'}|n'_{ef}>^{2jj} \angle <n'_{ef}|g_{ve}^{-1} g_{ve'}|n'_{ef}>^{jj(\gamma + 1) + 1} <n_{ef}|g_{ve}^{-1} g_{ve'}|n_{ef}>^{-jj(\gamma - 1) + 1} = \sum_{jj} \int \prod dg_{ev} \prod_{ve} dn_{ef} e^{iS}
\]

(2.3)

The last line above prepares the ground for the saddle point analysis of the large \(j \) behaviour, which we expect to be dominated by the ‘critical configurations’, where \(ReS = \frac{\partial S}{\partial g_{ev}} = \frac{\partial S}{\partial n_{ef}} = 0 \). We now have two sets of integrals, over the link group element \(g_{ev} \) and
over the \(\mathbf{n}_{ef} \), which can be interpreted as normal to the triangle. The two sets give independent descriptions of the geometry, which are linked for critical configurations which extremise \(S \).

For a 4-simplex \(v \) the volume vectors of the five tetrahedra can be taken, up to a proportionality constant, as

\[
V^I_v = \epsilon_v g^I_{veJ} T^J
\]

where \(T^I = (1, 0, 0, 0) \), and \(\epsilon_v = \pm 1 \) determines the orientation of the tetrahedron in \(v \), which must be preassigned; if \(e = v \cap v' \), \(\epsilon_{ve} = -\epsilon_{v'e} \). By eq. \((1.3)\) these vectors determine the 4-volume of the 4-simplex \(V_4 \), and the area tensors of the triangles \(S_{IJ}^{(ee')} \). On the other hand from \((2.3)\) we see that the quantum theory gives the triangles quantized areas, with unit normals \(\mathbf{n}_{ef} \), so that

\[
\ast S_{IJ}^{(ee')} = A^{(f)} g_{eeK} g_{eeL} (T \wedge (0, \mathbf{n}_{ef}) \theta_{KL}^{(ff)})
\]

Do these two descriptions agree? Eq. \((1.3)\) written for \(\ast S_{ee'}^{[IJ]} \) reads

\[
V^I_v V^J_{e'} - V^J_v V^I_{e'} = -2 V_4 \ast S_{ee'}^{[IJ]} \tag{2.6}
\]

If we multiply this equation by \(\ast S_{ee'IJ}^{(ef)} \) and replace in it \((2.5)\) we obtain:

\[
V_4 A_{ee'}^2 = A_{ee'} \epsilon_{ee'} (g_{ee} g_{ee'} - g_{ee} g_{ee'}) T^K T^L \eta_{IM} \eta_{JN} g^{LK} g^{MN} (T \wedge (0, \mathbf{n}_{ee'}))^{PQ} = \\
= A_{ee'} \left(-\epsilon_{ee'} (g_{ee} g_{ee'} - g_{ee} g_{ee'}) \right)^{PQ} \tag{2.7}
\]

which is my key equation. According to J.Engle, to get the ‘proper vertex amplitude’ \([17]\), with the desired asymptotic behaviour \([18]\), one should limit the integrations to the configurations for which the RHS of this equation is positive. This agrees nicely with what MuXin Han et al. find \([10]\): in the forward time-oriented sector of the theory the 4-volumes \(V_4 \) of all 4-simplices are positive. We see therefore that the criteria proposed to identify the forward, causal sector of the theory are equivalent.

In conclusion, to give a causal structure to a spin-foam theory we must use orientable triangulations, with a-priori given orientations for the tetrahedra, and limit the integrations to give positive 4-volumes to all 4-simplices, or equivalently to proper vertex amplitudes.

3 An example: the evolution of the pentachoron.

The ‘pentachoron’ is a simple model for \(S^3 \), with an exotic name: five points all connected to each other. One could think of more ambitious models along the same lines, with 19 or 124 vertices \([20][21]\). Following the rules explained in \([20]\), a triangulation evolving a pentachoron \((abcde)\) at \(t=0 \) to a later pentachoron \((a'b'c'd'e')\) at \(t=1 \) can be realized connecting with edges all the vertices of the first to the vertices of the second, but omitting the edges \((aa'), (bb'), (cc'), (dd'), (ee')\); in this way we realize a division of the spacetime \(S^3 \otimes R \) between \(t=0 \) and \(t=1 \) in 30 4-simplices. This triangulation can be proved to be orientable, i.e. it can be organized so that each of the 70 tetrahedra is in two 4-simplices with opposite orientation, for ex.

\[
\begin{align*}
(abcde') : & \quad abcd \quad abe'c \quad abde' \quad ace'd \quad bcde' \\
(abd'e') : & \quad abdc \quad abe'd \quad ab'c'e \quad ade'c \quad bd'e'
\end{align*}
\]

\((3.1)\)
and can therefore be described by a graph like the one below; this graph is meant to explain the sense in which this evolution can be regarded as a mini-causal-set: the pentagons represent 4-simplices, the oriented lines linking them the tetrahedra they share or, in the dual interpretation, the discrete spin connection $g_{vv'}$:

However, one should not take it too literally; the initial pentachoron (abcde) comes before the final (a'b'c'd'e'), but that notion does not apply to the intermediate stages; there is no sense in which (abcde') comes 'before' (abdc'e'). This may well be the more interesting lesson to be drawn from the example.

I would like to thank Carlo Rovelli for some crucial suggestions on an earlier version of the manuscript, Dimitri Marinelli for help with the graph, Antonia Micol Frassino for suggesting improvements, Sachindeo Vaidya for the warm hospitality at the Indian Institute of Science, and Sumati Surya for the hospitality at the Raman Research Institute in Bangalore.

Appendix: The spinfoam amplitude

In this appendix I shall give a quick derivation of the expression for the spinfoam amplitude, following [22][10]. One uses the unitary irreducible representations (k,ν) of $\text{SL}(2,\mathbb{C})$, which act as $g \triangleright f(z) = f(zg)$ on functions of the spinor $z = \begin{pmatrix} z_0 \\ z_1 \end{pmatrix}$ such that $f(\lambda z) = \lambda^{-1+i\nu+k} \bar{\lambda}^{-1+i\nu-k} f(z)$. The Hilbert space $\mathcal{H}_{k,\nu}$ of such functions can be realized as the space of the functions $f \in L_2(\text{SU}(2))$ such that $f(e^{i\sigma_3 u}) = e^{2ik\varphi} f(u)$. A complete orthonormal set is: $\{|(k,\nu);jm\rangle\}$, $j \geq k$, $m \in (-j,j)$.

Writing $g = \begin{pmatrix} a & c \\ b & d \end{pmatrix} = kh = \begin{pmatrix} \lambda^{-1} & \mu \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} \beta & -\bar{\alpha} \\ \bar{\alpha} & \beta \end{pmatrix}$, $h \in \text{SU}(2)$, and defining: $ug := k(g,u)h(g,u)$, the action of $g \in \text{SL}(2,\mathbb{C})$ on the basis for this space will be:

$$<u|g|(k,\nu);jm> = \sqrt{d_j} \lambda(g,u)^{-k+i\nu-1} \bar{\lambda}(g,u)^{k+i\nu-1} D_{km}^j(h(g,u)) \quad (3.2)$$

with $d_j = 2j+1$, having taken (α,β) as the spinor, and $\mathcal{H}_{k,\nu} = \bigoplus_{j \geq k} \mathcal{H}_j$, \mathcal{H}_j the space on which the j-th representation of $\text{SU}(2)$ acts. In the expressions that follow the λ-s appear in pairs and may be taken real. The 'simplicity constraints' limit the representations that appear in the amplitude to be of the 'gamma-simple' type $(k,\nu) = (j,\gamma_j)$, and the $\text{SU}(2)$ representation to be the lowest. With these preliminaries, in the expression (2.2) for the ELPR/FK spinfoam amplitude, using the (3.2) and inserting a complete set, each matrix
element can be written as:

\[(jm|g^{-1}g'|jm') = d_j \int_{SU(2)} du \frac{D_j^{jm}(h(g, u))D_j^{jm}(h(g', u))}{\lambda(g, u)^{2\gamma_j + 2}\lambda(g', u)^{-2\gamma_j + 2}} = d_j \int_{SU(2)} du \frac{<jj|h(g, u)^{\dagger}|jj><jj|h(g', u)|jm'>}{\lambda(g, u)^{2\gamma_j + 2}\lambda(g', u)^{-2\gamma_j + 2}} \]

(3.3)

therefore in the expression of \(A_f\) the trace of the product can be rearranged as a product of matrix elements of the form:

\[<jj|h(g', u')h(g, u)^{\dagger}|jj> = <\frac{1}{2}\lambda(g, u)^{-1}\frac{1}{2} > > 2j = \]

\[<\frac{1}{2}\lambda(g', u')^{-1}\frac{1}{2} > > 2j = \]

\[\left(\frac{<\frac{1}{2}\lambda(g', u')^{-1}\frac{1}{2} >}{\lambda(g', u')\lambda(g, u)} \right)^{2j} = \left(\frac{<\sigma|g^{\dagger-1}g^{-1}|\sigma>}{\lambda(g', u')\lambda(g, u)} \right)^{2j}. \]

Here I have used: \(k(g, u)|\frac{1}{2}\lambda > = \lambda(g, u)^{-1}\frac{1}{2} > , \lambda(g, u) = [\frac{1}{2}\lambda|g^{\dagger-1}g^{-1}|\frac{1}{2} >]^{1/2},\) and defined the coherent states \(|n> = |u\frac{1}{2}\lambda >\) with \(\sigma \cdot n = u\sigma_3 u^\dagger.\) Replacing these expressions in \((2.2),\) we obtain the equation \((2.3)\) given in the text:

\[A(K) = \sum_{j_f} d_{j_f} \int \prod_{ve} dg_{ve} \prod_{v \in f} d_{ne_f} \frac{<n_f|g^{\dagger-1}g^{-1}|n_f>}{\lambda(g_{ve}, u')^{2j_f(i\gamma+1)+2}\lambda(g_{ve}, u)^{-2j_f(i\gamma-1)+2}}. \]

References

[1] J. W. Barrett and L. Crane, ‘A Lorentzian signature model for quantum general relativity’, Class. Quant. Grav. 17 (2000) 3101, [arXiv:gr-qc/9904025].

[2] Tullio Regge, ‘General relativity without coordinates’, Il Nuovo Cimento 19 558b (1961)

[3] Daniele Colosi, Carlo Rovelli, ‘A simple background-independent hamiltonian quantum model’, Phys.Rev. D68 104008 (2003), [gr-qc/0306059]

[4] Carlo Rovelli, ‘The strange equation of quantum gravity’, Class. Quantum Grav. 32 (2015) 124005, [arXiv:1506.00927]

[5] D. Oriti, ‘The Feynman propagator for spin foam quantum gravity’, Phys.Rev.Lett. 94 (2005) 111301, [gr-qc/0410134]; E. R. Livine and D. Oriti, ‘Implementing causality in the spin foam quantum geometry’, Nucl.Phys. B663 (2003) 231, [gr-qc/0210064]

[6] J. Ambjorn, J. Jurkiewicz, R. Loll, ‘Quantum Gravity, or The Art of Building Spacetime’, in “Approaches to Quantum Gravity”, ed. D.Oriti, Cambridge University Press.

[7] J. Engle, R. Pereira, C. Rovelli and E. Livine “LQG vertex with finite Immirzi parameter”, Nucl. Phys. B799 (2008) 136–149, [arXiv:0711.0146]

[8] L. Freidel, K. Krasnov, “A new spin-foam model for 4-d quantum gravity”, Class. Quant. Grav. 25 (2008) 125018, [arXiv:0708.1595].
[9] John W. Barrett, Richard J. Dowdall, Winston J. Fairbairn, Frank Hellmann, Roberto Pereira, "Lorentzian spin foam amplitudes: graphical calculus and asymptotics", Class. Quant. Grav. 27, 165009 (2010), arXiv: 0907.2440.

[10] Muxin Han, Thomas Krajewski, 'Path Integral Representation of Lorentzian Spinfoam Model, Asymptotics, and Simplicial Geometries' Class. Quantum Grav. 31 (2014) 015009, arXiv:1304.5626

[11] Marko Vojinović, 'Cosine problem in EPRL/FK spinfoam model', Gen. Relativ. Gravit. 46, 1616 (2014), arXiv:1307.5352

[12] Marina Cortes, Lee Smolin, 'Spin foam models as energetic causal sets', Phys. Rev. D 93, 084039 (2016), arXiv:1407.0032

[13] Wolfgang M. Wieland, 'New action for simplicial gravity in four dimensions', Class.Quant.Grav. 32 (2015) 015016, arXiv:1407.0025

[14] M.Caselle, A.D’Adda, L.Magnea, ‘Regge calculus as a local theory of the Poincaré group’, Phys.Lett. B 232 (1989) 457

[15] L.Bombelli, J.Lee, D.Meyer and R.Sorkin, ‘Space-Time as a causal set’, Phys.Rev.Lett. 59 521 (1987).

[16] Giorgio Immirzi, ‘A note on the spinor construction of Spin Foam amplitudes’, Class.Quant.Grav. 31 (2014) 095016, arXiv:1311.6942

[17] Jonathan Engle, Antonia Zipfel, 'The Lorentzian proper vertex amplitude. Classical analysis and quantum derivation, Phys. Rev. D 94, 064024 (2016), arXiv:1502.04640

[18] Jonathan Engle, Ilya Vilensky, Antonia Zipfel, 'The Lorentzian proper vertex amplitude: Asymptotics', Phys. Rev. D 94, 064025 (2016), arXiv: 1505.06683

[19] Carlo Rovelli, Edward Wilson-Ewing, ‘Discrete Symmetries in Covariant LQG’, Phys. Rev. D 86 064002 (2012), arXiv:1205.0733
Marios Christodoulou, Miklos Langvik, Aldo Riello, Christian Röken, Carlo Rovelli, ‘Divergences and Orientation in Spinfoams’, Class.Quant.Grav.30 055009, (2010), arXiv:1207.5156
Marios Christodoulou, Aldo Riello, Carlo Rovelli ‘How to detect an anti-spacetime’, arXiv:1206.3903

[20] J. W. Barrett, M. Galassi, W. A. Miller, R. D. Sorkin, P. A. Tuckey, R. M. Williams, ‘A Parallelizable Implicit Evolution Scheme for Regge Calculus’, Int.J.Theor.Phys 36 (1997) 815, arXiv:gr-qc/9411008

[21] Rex G. Liu, Ruth M. Williams, ‘Cosmological modelling with Regge calculus’, arXiv:1510.05771; 'Regge calculus models of closed lattice universes', Phys. Rev. D 93, 023502 (2016), arXiv:1502.03000; 'Regge calculus models of the closed vacuum Λ-FLRW universe', Phys. Rev. D 93, 024032 (2016), arXiv:1501.07614

[22] Carlo Rovelli, 'Simple model for quantum general relativity from loop quantum gravity', J.Phys.Conf.Ser.314:012006,2011, arXiv:1010.1939

[23] Joseph Ben Geloun, Razvan Gurau, Vincent Rivasseau, ‘EPRL/FK Group Field Theory’, Europhys.Lett.92:60008,2010, arXiv:1008.0354