Pole Inflation in Supergravity

C. Pallis
Laboratory of Physics, Faculty of Engineering,
Aristotle University of Thessaloniki,
GR-541 24 Thessaloniki, GREECE
E-mail: kpallis@gen.auth.gr

Abstract: We show how we can implement, within Supergravity, chaotic inflation in the presence of a pole of order one or two in the kinetic mixing of the inflaton sector. This pole arises due to the selected logarithmic Kähler potentials K, which parameterize hyperbolic manifolds with scalar curvature related to the coefficient $(-N) < 0$ of a logarithmic term. The associated superpotential W exhibits the same R charge with the inflaton-accompanying superfield and includes all the allowed terms. The role of the inflaton can be played by a gauge singlet or non-singlet superfield. Models with one logarithmic term in K for the inflaton, require $N = 2$, some tuning – of the order of 10^{-5} – between the terms of W and predict a tensor-to-scalar ratio r at the level of 0.001. The tuning can be totally eluded for more structured K’s, with N values increasing with r and spectral index close or even equal to its present central observational value.
1. INTRODUCTION

Among the many scenarios of inflation, the one which stands out in terms of its simplicity, elegance and phenomenological success is chaotic inflation (CI). Most notably, the power-law potentials, employed in models of CI, have the forms

$$V_I = \lambda^2 \phi^n / n \text{ or } V_I = \lambda^2 (\phi^{n/2} - M^2)^2 / n$$

for $M \ll m_P = 1$, (1.1)

which are very common in physics and so it is easy the identification of the inflaton ϕ with a field already present in the theory. E.g., within Higgs inflation (HI) the inflaton could play, at the end of inflation, the role of a Higgs field. However, for $n = 2$ and 4 the theoretically derived values for spectral index n_s and/or tensor-to-scalar ratio r are not consistent with the observational ones [1]. A way out of these inconsistencies is to introduce some non-minimality in the gravitational or the kinetic sector of the theory. In this talk, which is based on Refs. [2, 3], we focus on the latter possibility. Namely, our proposal is tied to the introduction of a pole in the kinetic term of the inflaton field. For this reason we call it for short Pole (chaotic) inflation (PI) [4].

1.1 NON-SUSY SET-UP

The lagrangian of the homogenous inflaton field $\phi = \phi(t)$ with a kinetic mixing takes the form

$$\mathcal{L} = \sqrt{-g} \left(\frac{N_p}{2f_p} \dot{\phi}^2 - V_I(\phi) \right)$$

with $f_p = 1 - \phi^p$, $p > 0$ and $N_p > 0$. (1.2)

Also, g is the determinant of the background Friedmann-Robertson-Walker metric $g^{\mu \nu}$ with signature $(+, -, -, -)$ and dot stands for derivation w.r.t the cosmic time. Concentrating on integer p values we can derive the canonically normalized field, $\hat{\phi}$, as follows

$$\frac{d\hat{\phi}}{d\phi} = J = \sqrt{\frac{N_p}{f_p}} \Rightarrow \hat{\phi} = \sqrt{\frac{N_p}{p}} B(\phi^p, 1/p, 0),$$

where $B(z; m, l)$ represents the incomplete Beta function. Note that $\hat{\phi}$ gets increased above unity for $p < 10$ and $0 \leq \phi \lesssim 1$, facilitating, thereby, the attainment of PI with subplanckian ϕ values. Inverting this function we obtain, e.g.,

$$\phi = \begin{cases}
1 - e^{-\hat{\phi}/\sqrt{N_1}} & \text{for } p = 1, \\
\tanh \left(\frac{\hat{\phi}}{\sqrt{N_2}} \right) & \text{for } p = 2.
\end{cases}$$

(1.4)

As a consequence, Eq. (1.2) can be brought into the form

$$\mathcal{L} = \sqrt{-g} \left(\frac{1}{2} \dot{\hat{\phi}}^2 - V_I(\hat{\phi}) \right).$$

(1.5)

For $\hat{\phi} \gg 1$, $V_I(\hat{\phi})$ – expressed in terms of $\hat{\phi}$ – develops a plateau, and so it becomes suitable for driving inflation of chaotic type called E-Model Inflation [5, 6] (or α-Starobinsky model [7]) and T-Model Inflation [6, 8] for $p = 1$ and 2 respectively.
1.2 INFLATIONARY OBSERVABLES – CONSTRAINTS

The analysis of PI can be performed using the standard slow-roll approximation as analyzed below, together with the relevant observational and theoretical requirements that should be imposed.

(a) The number of e-foldings N_\ast that the scale $k_\ast = 0.05/\text{Mpc}$ experiences during PI must be enough for the resolution of the problems of standard Big Bang, i.e., [9]

$$N_\ast = \frac{\dot{\phi}_\ast}{\dot{\phi}_\ast} = 61.3 + \frac{1 - 3w_{\text{rh}}}{12(1 + w_{\text{rh}})} \ln \frac{\pi^2 g_{\text{th}} T_{\text{th}}^4}{30 V_1(\phi_\ast)} + \frac{1}{4} \ln \frac{V_1(\phi_\ast)^2}{V_1^2(\phi_\ast)} \tag{1.6}$$

where ϕ_\ast is the value of ϕ when k_\ast crosses the inflationary horizon whereas $\dot{\phi}_\ast$ is the value of $\dot{\phi}$ at the end of PI, which can be found, in the slow-roll approximation, from the condition

$$\max \{\varepsilon(\phi_\ast), |\eta(\phi_\ast)|\} = 1, \quad \text{where} \quad \varepsilon = \frac{1}{2} \left(\frac{V_1(\phi_\ast)}{V_1} \right)^2 \quad \text{and} \quad \eta = \frac{V_{1,\dot{\phi}}}{V_1}. \tag{1.7a}$$

Also we assume that PI is followed in turn by an oscillatory phase with mean equation-of-state parameter w_{rh}, radiation and matter domination. We determine it applying the formula [3]

$$w_{\text{rh}} = 2 \frac{\phi_{\text{mn}}}{\dot{\phi}_{\text{mn}}} d\phi J(1 - V_1/V_1(\phi_{\text{mx}}))^{1/2} - 1, \tag{1.7b}$$

where $\phi_{\text{mn}} = \langle \phi \rangle$ is the vacuum expectation value (v.e.v) of ϕ after PI and ϕ_{mx} is the amplitude of the ϕ oscillations [3]. Motivated by implementations [10] of non-thermal leptogenesis, which may follow PI, we set $T_{\text{th}} \simeq 10^9 \text{ GeV}$ for the reheat temperature. Indicative values for the energy-density effective number of degrees of freedom include $g_{\text{th}} = 106.75$ or 228.75 corresponding to the Standard Model (SM) or Minimal SUSY SM (MSSM) spectrum respectively.

(b) The amplitude A_s of the power spectrum of the curvature perturbations generated by ϕ at k_\ast has to be consistent with data [9], i.e.,

$$A_s = V_1(\hat{\phi}_\ast)^2/12 \pi^2 V_1(\hat{\phi}_\ast)^2 \simeq 2.105 \cdot 10^{-9}. \tag{1.8}$$

(c) The remaining inflationary observables (n_s, its running α_s and r) have to be consistent with the latest Planck release 4 (PR4), Baryon Acoustic Oscillations (BAO), CMB-lensing and BICEP/Keck (BK18) data [1,11], i.e.,

$$n_s = 0.965 \pm 0.009 \quad \text{and} \quad r \leq 0.032, \tag{1.9}$$

at 95% confidence level (c.l.) – pertaining to the ΛCDM+r framework with $|\alpha_s| \ll 0.01$. These observables are estimated through the relations

$$n_s = 1 - 6\hat{\varepsilon}_s + 2\hat{\eta}_s, \quad \alpha_s = \frac{2}{3} \left(4\hat{\eta}_s^2 - (n_s - 1)^2 \right) - 2\hat{\xi}_s, \quad \text{and} \quad r = 16\hat{\varepsilon}_s, \tag{1.10}$$

with $\hat{\xi} = V_{1,\dot{\phi}} V_{1,\dot{\phi}\dot{\phi}} / V_1^2$ – the variables with subscript \star are evaluated at $\phi = \phi_\ast$.

(d) The effective theory describing PI has to remain valid up to a UV cutoff scale $\Lambda_{\text{UV}} \simeq m_p$ to ensure the stability of our inflationary solutions, i.e.,

$$V_1(\phi_\ast)^{1/4} \leq \Lambda_{\text{UV}} \quad \text{and} \quad \phi_\ast \leq \Lambda_{\text{UV}}. \tag{1.11}$$
1.3 Results

Using the criteria of Sec. 1.2, we can now analyze the inflationary models based on the potential in Eq. (1.1) and the kinetic mixing in Eq. (1.2) for \(p = 1 \) and 2. The slow-roll parameters are

\[
\varepsilon = \frac{n^2 f_p}{2N_p \phi^2} \quad \text{and} \quad \eta = \frac{n f_p}{N_p \phi^2} (n - 1 - (n + 1)\phi p),
\]

whereas from Eq. (1.6) we can compute

\[
N_* \simeq \begin{cases}
N_1 (\phi_* + f_1 \ln f_1) / n f_1 & \text{for } p = 1, \\
N_2 / 2 f_2 & \text{for } p = 2,
\end{cases}
\]

where \(f_{p*} = f_p(\phi_*) \). Since \(f_{p*} \) appears in the denominator, \(N_* \) increases drastically as \(\phi_* \) approaches unity, assuring thereby the achievement of efficient PI. The relevant tuning can be somehow quantified defining the quantity

\[
\Delta_* = 1 - \phi_*.
\]

The naturalness of the attainment of PI increases with \(\Delta_* \). Imposing the condition of Eq. (1.7) and solving Eq. (1.13) w.r.t \(\phi_* \), we arrive at

\[
\phi_* \ll \phi_* \simeq \begin{cases}
nN_*/(nN_* + N_1) & \text{for } p = 1, \\
\sqrt{2nN_*/(2nN_* + N_2)} & \text{for } p = 2,
\end{cases}
\]

where we neglect the logarithmic contribution in the first of the relations in Eq. (1.13). We remark that PI is attained for \(\phi < 1 \) and so Eq. (1.11) is fulfilled – thanks to the location of the pole at \(\phi = 1 \). On the other hand, Eq. (1.8) implies

\[
\lambda \simeq (3nN_\phi \pi / N_\phi) \begin{cases}
2 & \text{for } p = 1, \\
1 & \text{for } p = 2.
\end{cases}
\]

From Eq. (1.10) we obtain the model’s predictions, i.e.,

\[
n_* \simeq 1 - 2/N_\star, \quad \alpha_* \simeq -2/N_\star^2 \quad \text{and} \quad r \simeq \begin{cases}
8N_1/N_2^2 & \text{for } p = 1, \\
2N_2/N_2^2 & \text{for } p = 2,
\end{cases}
\]

which are independent of \(n \) and for this reason these models are called \(N \)-attractors [5–8]. However, the variation of \(n \) in Eq. (1.1) generates a variation to \(w_{rh} \) in Eq. (1.7b) and via Eq. (1.6) to \(N_* \) which slightly distinguishes the predictions above. E.g., fixing \(N_1 = 10 \) we obtain

\[
w_{rh} \simeq \begin{cases}
-0.08, & N_* \simeq 49.4, \\
0.19, & N_* \simeq 54.6, \\
0.04, & \Delta_* \simeq 0.074, \\
0.04, & n_* \simeq 0.963 r \simeq 0.02 \text{ for } n = \begin{cases}
2, & 4.
\end{cases}
\end{cases}
\]

and \(p = 1 \) with \(\alpha_* \sim 10^{-4} \). Similar \(\alpha_* \) values are obtained setting \(N_2 = 10 \) and \(p = 2 \) which yields

\[
w_{rh} \simeq \begin{cases}
-0.04, & N_* \simeq 50.2, \\
0.23, & N_* \simeq 54.6, \\
0.01, & \Delta_* \simeq 0.024, \\
0.01, & n_* \simeq 0.962 r \simeq 0.0074 \text{ for } n = \begin{cases}
2, & 4.
\end{cases}
\end{cases}
\]
Notice that Δ_\star is larger for $p = 1$. Imposing the bound on r in Eq. (1.5), we can find a robust upper bound on N_{μ}. Namely, we find numerically

\[N_1 \lesssim 19 \quad \text{and} \quad N_2 \lesssim 55. \quad (1.19) \]

Therefore, we can conclude that the presence of f_p in Eq. (1.2) revitalizes CI rendering it fully consistent with the present data in Eq. (1.9) without introducing any complication with the validity of the effective theory. Recall [12] that the last problem plagues models of CI with large non-minimal coupling to gravity for $n > 2$.

1.4 Outline

It would be certainly interesting to inquire if it is possible to realize similar models of PI in a SUSY framework where a lot of the problems of SM are addressed. We below describe how we can formulate PI in the context of Supergravity (SUGRA) in Sec. 2 and we specify six models of PI: three models ($\delta \text{Cl}, \text{Cl}2, \text{Cl}4$) employing a gauge singlet inflaton in Sec. 3 and three ($\delta \text{HI}, \text{HI}4, \text{HI}8$) with a gauge non-singlet inflaton in Sec. 4.

2. Realization of PI Within SUGRA

We start our investigation presenting the basic formulation of scalar theory within SUGRA in Sec. 2.1 and then – in Sec. 2.2 – we outline our strategy in constructing viable models of PI.

2.1 General Set-up

The part of the SUGRA lagrangian including the (complex) scalar fields Z^α can be written as

\[\mathcal{L} = \sqrt{-g} \left(K_{\alpha\bar{\beta}} D_\mu Z^\alpha D^\mu Z^{\bar{\beta}} - V_{\text{SUGRA}} \right), \quad (2.1a) \]

where the kinetic mixing is controlled by the Kähler potential K and the relevant metric defined as

\[K_{\alpha\bar{\beta}} = K_{Z^\alpha Z^{\bar{\beta}}} > 0 \quad \text{with} \quad K^\alpha_{\bar{\beta}} K_{\alpha\bar{\gamma}} = \delta_{\bar{\beta}}^{\bar{\gamma}}. \quad (2.1b) \]

Also, the covariant derivatives for the scalar fields Z^α are given by

\[D_\mu Z^\alpha = \partial_\mu Z^\alpha + ig A_\mu^a T^a_{\alpha\beta} Z^{\bar{\beta}} \quad (2.1c) \]

with A_μ^a being the vector gauge fields, g the (unified) gauge coupling constant and T^a with $a = 1, \ldots, \text{dim}G_{\text{GUT}}$ the generators of a gauge group G_{GUT}. Here and henceforth, the scalar components of the various superfields are denoted by the same superfield symbol.

The SUGRA scalar potential, V_{SUGRA}, is given in terms of K, and the superpotential, W, by

\[V_{\text{SUGRA}} = V_F + V_D \quad \text{with} \quad V_F = e^K \left(K_{\alpha\bar{\beta}} F_\alpha F^{\bar{\beta}} - 3 |W|^2 \right) \quad \text{and} \quad V_D = g^2 \sum_a D_a D_a/2, \quad (2.1d) \]

where a trivial gauge kinetic function is adopted whereas the F- and D-terms read

\[F_\alpha = Z_{2\alpha} + K_{Z^\alpha} W \quad \text{and} \quad D_a = Z_\alpha (T_a^\alpha)^{\beta}_{\rho} K_{\beta\rho} \quad \text{with} \quad K^\alpha = K_{Z^\alpha}. \quad (2.1e) \]

Therefore, the models of PI in Sec. 1.1 can be supersymmetrized, if we select conveniently the functions K and W so that Eqs. (1.1) and (1.2) are reproduced.
2.2 MODELING PI IN SUGRA

We concentrate on PI driven by V_F. To achieve this, we have to assure that $V_D = 0$ during PI. This condition may be attained in the following two cases:

- If the inflaton is (the radial part of) a gauge singlet superfield $Z^2 := \Phi$. In this case, Φ has obviously zero contribution to V_D.
- If the inflaton is the radial part of a conjugate pair of Higgs superfields, $Z^2 := \Phi$ and $Z^3 := \bar{\Phi}$, which are parameterized so as $V_D = 0$ – see Sec. 4.

To achieve a kinetic term in Eq. (2.1a) similar to that in Eq. (1.2) for $p = 1$ and 2, we need to establish suitable K’s so that

$$\langle K \rangle^I = -N \ln f_p \quad \text{and} \quad \langle K_{\alpha \bar{\beta}} \rangle^I = N/f_p^2$$

(2.2)

with N related to N_p – here and henceforth the symbol “$\langle Q \rangle^I$” denotes the value of a quantity Q during PI. However, from the F-term contribution to Eq. (2.1d), we remark that K affects besides the kinetic mixing V_{SUGRA}, which, in turn, depends on the W too. Therefore, f_p is generically expected to emerge also in the denominator of V_{SUGRA} making difficult the establishment of an inflationary era. This problem can be surpassed [2, 3] by two alternative strategies:

- Adjusting W and constraining the prefactor of K’s, so that the pole is removed from V_{SUGRA} thanks to cancellations [2, 3, 15] which introduce some tuning, though.
- Adopting a structured K which yields the desired kinetic terms in Eq. (1.2) but remains invisible from V_{SUGRA} [2, 3, 16]. In such a case, any tuning on the W parameters can be eluded.

In Sec. 3 and 4 we show details on the realization of these scenarios, taking into account that f_1 in Eq. (1.2) can be exclusively associated with a gauge singlet inflaton whereas f_2 can be related to a gauge non-singlet inflaton.

We reserved $\alpha = 1$ for a gauge singlet superfield, $Z^1 = S$ called stabilizer or goldstino, which assists [13] us to formulate PI of chaotic type in SUGRA. Its presence in W is determined as follows:

- It appears linearly in W multiplying its other terms. To achieve technically such a adjustment, we require that S and W are equally charged under a global R symmetry.
- It generates for $\langle S \rangle_1 = 0$ the inflationary potential via the only term of V_{SUGRA} in Eq. (2.1d) which remains alive

$$V_1 = \langle V_F \rangle_1 = \langle e^K K^{S\bar{S}} | W, S \rangle^2 \rangle_1.$$

(2.3)

- It assures the boundedness of V_1. Indeed, if we set $\langle S \rangle_1 = 0$, then $\langle K, W \rangle_1 = 0$ for $\alpha \neq 1$ and $-3|\langle W \rangle_1|^2 = 0$. Obviously, non-vanishing values of the latter term may render V_F unbounded from below.
- It can be stabilized at $\langle S \rangle_1 = 0$ without invoking higher order terms, if we select [14]

$$K_2 = N_S \ln \left(1 + |S|^2 / N_S \right) \quad \Rightarrow \quad \langle K_2^{S\bar{S}} \rangle_1 = 1 \quad \text{with} \quad 0 < N_S < 6.$$

(2.4)

K_2 parameterizes the compact manifold $SU(2)/U(1)$. Note that for $\langle S \rangle_1 = 0$, S is canonically normalized and so we do not mention it again henceforth.
3. PI WITH A GAUGE SINGLET INFLATON

The SUGRA setup for this case is presented in Sec. 3.1 and then – in Sec. 3.2 – we describe the salient features of this model and we expose our results in Sec. 3.3.

3.1 SUGRA SET-UP

This setting is realized in presence of two gauge singlet superfields S and Φ. We adopt the most general renormalizable W consistent with the R symmetry mentioned in Sec. 2.2, i.e.,

$$W = S \left(\lambda_1 \Phi + \lambda_2 \Phi^2 - M^2 \right)$$ \hspace{1cm} (3.1)

where λ_1, λ_2 and M are free parameters. As regards K, this includes, besides K_2 in Eq. (2.4), one of the following K’s, K_{1s} or \tilde{K}_{1s}, which yield a pole of order one in the kinetic term of Φ and share the same geometry – see Ref. [3]. Namely,

$$K_{1s} = -N \ln \left(1 - (\Phi + \Phi^*)/2 \right) \text{ or } \tilde{K}_{1s} = -N \ln \frac{(1 - \Phi/2 - \Phi^*/2)}{(1 - \Phi/2)(1 - \Phi^*/2)} \left(\frac{1}{2} \right),$$ \hspace{1cm} (3.2)

with $\text{Re}(\Phi) < 1$ and $N > 0$. We opt a pole of order one as the simplest choice, although models with a pole of order two were also proposed [5]. The K’s above are invariant under the set of transformations composing a set of matrices which can be related [3] to the group $U(1, 1)$. Based on the K’s above, we can define the following three versions of PI:

- δCl, where the total K is chosen as

$$K_{21s} = K_2 + K_{1s}. \hspace{1cm} (3.3a)$$

The elimination of pole in V_I discussed above can be applied if we set

$$N = 2 \text{ and } r_{21} = -\lambda_2/\lambda_1 \simeq 1 + \delta_{21} \text{ with } \delta_{21} \sim 0 \text{ and } M \ll 1 \hspace{1cm} (3.3b)$$

such that the denominator including the pole in V_I is (almost) cancelled out.

- Cl2 and Cl4, which do not display any denominator in V_I employing

$$\tilde{K}_{21s} = K_2 + \tilde{K}_{1s} \hspace{1cm} (3.4)$$

with free parameters N, λ_1, λ_2 and M. The discrimination of these models depends on which of the two inflaton-dependent terms in Eq. (3.1) dominates – see below.

3.2 STRUCTURE OF THE INFLATIONARY POTENTIAL

An inflationary potential of the type in Eq. (1.1) can be derived from Eq. (2.3) specifying the inflationary trajectory as follows

$$\langle S \rangle_I = 0 \text{ and } \langle \theta \rangle_I := \arg\langle \Phi \rangle_I = 0. \hspace{1cm} (3.5)$$
we arrive at the following master equation for all models – recall that we use Z^δ into the limit of the quite lengthy, exact ones employed in our numerical computation. From them we can appreciate n in Eq. (1.2) and θ, as follows:

Inserting the quantities above into Eq. (2.3) and taking into account Eq. (2.4) and

$$\langle e^K \rangle_1 = \begin{cases} f_1^{-N} & \text{for } K = K_{21s}, \\ 1 & \text{for } K = K_{21s}, \end{cases} \quad (3.6)$$

we arrive at the following master equation

$$V_1 = \lambda^2 \left\{ \left(\phi - r_{21} \phi^2 - M_1^2 \right)^2 / f_1^N \right\} \text{ for } C1, \quad (3.7)$$

where $\phi = \text{Re}(\Phi)$, $r_{ij} = -\lambda_i / \lambda_j$ with $i, j = 1, 2$ and λ and M_i are identified as follows

$$\lambda = \begin{cases} \lambda_1 & \text{and } M_1 = M / \sqrt{\lambda_1} \text{ for } C1 \text{ and } C2, \\ \lambda_2 & \text{and } M_2 = M / \sqrt{\lambda_2} \text{ for } C4. \end{cases} \quad (3.8)$$

As advertised in Sec. [3.1], the pole in f_1 is presumably present in V_1 of $C1$, but it disappears for $C1$ and $C4$. The arrangement of Eq. (3.3), though, renders the pole harmless for $C1$.

The correct description of PI is feasible if we introduce the canonically normalized fields, $\hat{\phi}$ and $\hat{\theta}$, as follows

$$\langle K_{\Phi\Phi} \rangle_1 |\Phi|^2 \approx \frac{1}{2} \left(\hat{\phi}^2 + \hat{\theta}^2 \right) \Rightarrow \frac{d\hat{\phi}}{d\phi} = J = \frac{\sqrt{N/2}}{f_1} \text{ and } \hat{\theta} \simeq J \phi \theta \text{ with } \langle K_{\Phi\Phi} \rangle_1 = \frac{N}{4f_1^2}. \quad (3.9)$$

We see that the relation between ϕ and $\hat{\phi}$ is identical with Eq. (1.3) for $p = 1$, if we do the replacement $N_1 = N/2$. We expect that $C1$ and $C4$ yield similar results with the non-SUSY models of PI with $p = 1$ in Eq. (1.2) and $n = 2$ [or $n = 4$] in Eq. (1.3), whereas $C3$ is totally autonomous.

To check the stability of V_{SUGRA} in Eq. (2.1c) along the trajectory in Eq. (3.5) w.r.t. the fluctuations of Z^α, we construct the mass spectrum of the theory. Our results are summarized in Table 1. Taking into the limit $\delta_{21} = M_1 = 0$ for $C1$, $r_{21} = M_1 = 0$ for $C2$ and $r_{12} = M_2 = 0$ for $C4$, we find the expressions of the masses squared $\hat{m}^2_{\psi^\alpha}$ (with $\chi^\alpha = \theta$ and s) arranged in Table 1. We there display the masses $\hat{m}^2_{\psi^\alpha}$ of the corresponding fermions too – we define $\hat{\psi}_\alpha = J \psi_\alpha$ where ψ_α and ψ_s are the Weyl spinors associated with S and Φ respectively. We notice that the relevant expressions can take a unified form for all models – recall that we use $N = 2$ in $C1$ – and approach, close to $\phi = \phi_s \simeq 1$, rather well the quite lengthy, exact ones employed in our numerical computation. From them we can appreciate the role of $N_5 < 6$ in retaining positive $\hat{m}^2_{\psi^\alpha}$.

We confirm that $\hat{m}^2_{\psi^\alpha} \gg H_1^2 \simeq V_{10}/3$ for $\phi \leq \phi_s$.

\begin{table}[h]
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{FIELDS} & \textbf{EIGEN-} & \textbf{MASSES SQUARED} \\
 & \textbf{states} & \textbf{\(K = K_{21s} / K = \tilde{K}_{21s}\)} \\
\hline
1 real scalar & $\hat{\theta}$ & \hat{m}_θ^2 & $6H_1^2$ \\
2 real scalars & $\hat{\delta}_1, \hat{\delta}_2$ & \hat{m}_δ^2 & $6H_1^2 / N_S$ \\
2 Weyl spinors & $(\hat{\psi}_\Phi \pm \hat{\psi}_S) / \sqrt{2}$ & $\hat{m}_{\psi \pm}^2$ & $6n(1 - \phi)^2 H_1^2 / N\phi^2$ \\
\hline
\end{tabular}
\caption{Mass spectrum of our CI models along the inflationary trajectory of Eq. (3.5) – we take $n = 1$ for $\delta C1$ and $C12$ whereas $n = 2$ for $C4$.}
\end{table}
Namely, with N upper bound on $\delta\overline{C}I_2$ and lensing data-sets are depicted by the dark [light] shaded contours. The relevant field values, parameters and observables corresponding to points shown in the plot are listed in the Table.

3.3 Results

The dynamics of the analyzed models is analytically studied in Ref. [3]. We here focus on the numerical results. After imposing Eqs. (1.6) and (1.8) the free parameters of

$$\delta\overline{C}I_2, \overline{C}I_2, \overline{C}I_4 \text{ are } (\delta_{21}, M_1), (N, r_{21}, M_1) \text{ and } (N, r_{12}, M_2),$$

respectively. Recall that we use $N = 2$ exclusively for $\delta\overline{C}I_2$. Fixing $M_1 = 0.001$ for $\delta\overline{C}I_2, M_1 = 0.01$ and $r_{21} = 0.001$ for $\overline{C}I_2$ and $M_2 = 0.01$ and $r_{12} = 0.001$ for $\overline{C}I_4$, we obtain the curves plotted and compared to the observational data in Fig. 1. We observe that:

(a) For $\delta\overline{C}I_2$ the resulting n_s and r increase with $|\delta_{21}|$ – see solid line in Fig. 1. This increase, though, is more drastic for n_s which covers the whole allowed range in Eq. (1.9). From the considered data we collect the results

$$0 \lesssim \delta_{21}/10^{-5} \lesssim 3.3, \quad 3.5 \lesssim r/10^{-3} \lesssim 5.3 \text{ and } 9 \cdot 10^{-3} \lesssim \Delta_* \lesssim 0.01. \quad (3.10)$$

In all cases we obtain $N_* \approx 44$ consistently with Eq. (1.6) and the resulting $w_{th} \approx -0.237$ from Eq. (1.7b). Fixing $n_s = 0.965$, we find $\delta_{21} = -1.7 \cdot 10^{-5}$ and $r = 0.0044$ – see the leftmost column of the Table of Fig. 1.

(b) For $\overline{C}I_2$ and $\overline{C}I_4$, n_s and r increase with N and Δ_* which increases w.r.t its value in $\delta\overline{C}I_2$. Namely, n_s approaches its central observational value in Eq. (1.9) whereas the bound on r yields an upper bound on N. More quantitatively, for $\overline{C}I_2$ – see dashed line in Fig. 1 – we obtain

$$0.96 \lesssim n_s \lesssim 0.9654, \quad 0.1 \lesssim N \lesssim 65, \quad 0.05 \lesssim \Delta_*/10^{-2} \lesssim 16.7 \text{ and } 0.0025 \lesssim r \lesssim 0.039 \quad (3.11a)$$

with $w_{th} \approx -0.05$ and $N_* \approx 50$. On the other hand, for $\overline{C}I_4$ – see dot-dashed line in Fig. 1 – we obtain

$$0.963 \lesssim n_s \lesssim 0.965, \quad 0.1 \lesssim N \lesssim 55, \quad 0.23 \lesssim \Delta_*/10^{-2} \lesssim 8.5 \text{ and } 0.0001 \lesssim r \lesssim 0.04 \quad (3.11b)$$

Model:	$\delta\overline{C}I_2$	$\overline{C}I_2$	$\overline{C}I_4$
$\delta_{21}/r_{21}/r_{12}$	$-1.7 \cdot 10^{-5}$	0.001	0.001
N	2	10	10
$\phi_*/0.1$	9.9	9.53	9.84
$\Delta_*/(\%)$	1	4.7	2
$\phi_f/0.1$	6.66	3.7	5.6
w_{th}	-0.24	-0.08	0.26
N_*	44.4	51.5	55.5
$\lambda/10^{-5}$	1.2	2.1	1.9
$n_s/0.1$	9.65	9.64	9.65
$-\alpha_*/10^{-4}$	11.4	6.7	6.2
$r/10^{-2}$	0.44	1.3	1.1
Pole Inflation in SUGRA

C. P. Allis

with \(w_{th} \simeq (0.25 - 0.39) \) and \(N_* \simeq 54 - 56 \). In both equations above the lower bound on \(N \) is just artificial. For \(N = 10 \), specific values of parameters and observables are arranged in the rightmost columns of the Table in Fig. [1].

4. PI WITH A GAUGE NON-SINGLET INFLATON

In the present scheme the inflaton field can be identified with the radial component of a conjugate pair of Higgs superfields. We here focus on the Higgs superfields, \(\Phi \) and \(\Phi \), with \(B - L = -1, 1 \) which break the GUT symmetry \(G_{GUT} = G_{SM} \times U(1)_{B-L} \) down to SM gauge group \(G_{SM} \) through their v.e.v.s. We below outline the SUGRA setting in Sec. 4.1 its inflationary outcome in Sec. 4.2) and its predictions in Sec. 4.3. We here update the results of Ref. [2], taking into account the recent data of Ref. [11], and enrich its content adding the model HI8.

4.1 SUGRA SET-UP

In accordance with the imposed symmetries – see Table 2 – we here adopt the following \(W - \) cf. Ref. [17]:

\[
W = S \left(\frac{1}{2} \lambda_2 \Phi \Phi + \lambda_4 (\Phi \Phi)^2 - \frac{1}{4} M^2 \right), \tag{4.1}
\]

where \(\lambda_2, \lambda_4 \) and \(M \) are free parameters. In contrast to Eq. (3.1), we here include the first allowed non-renormalizable term. As we see below, this term assist us to activate the pole-elimination method for \(\delta H1 \) and generates a HI8. On the other hand, the invariance of \(K \) under \(G_{GUT} \) enforces us to introduce a pole of order two within the kinetic terms of \(\Phi - \Phi \) system. One possible option – for another equivalent one see Ref. [2] – is

\[
K_{21} = -N \ln \left(1 - |\Phi|^2 - |\Phi|^2 \right) \quad \text{or} \quad \bar{K}_{21} = -N \ln \frac{1 - |\Phi|^2 - |\Phi|^2}{(1 - 2\Phi \Phi)^{1/2}(1 - 2\Phi^* \Phi)^{1/2}}, \tag{4.2}
\]

which parameterizes the manifold \(\mathcal{M}_{21} = SU(2,1)/(SU(2) \times U(1)) \) [2] with scalar curvature \(\mathcal{R}_{21} = -6/N \) – note that the present \(N \) is twice that defined in the first paper of Ref. [2]. From the selected above \(W \) and \(K \)'s, the following inflationary models emerge:

- \(\delta H1 \), where we employ

\[
K_{221} = K_2 + K_{21} \tag{4.3a}
\]

and ensure an elimination of the singular denominator appearing in \(V_1 \) setting

\[
N = 2 \quad \text{and} \quad r_{42} = -\lambda_4 / \lambda_2 \simeq 1 + \delta_{42} \quad \text{with} \quad \delta_{42} \sim 0 \quad \text{and} \quad M \ll 1. \tag{4.3b}
\]

- \(HI4 \) and \(HI8 \), which do not display any singularity in \(V_1 \), employing

\[
\bar{K}_{221} = K_2 + \bar{K}_{21} \tag{4.4}
\]

with free parameters \(N, \lambda_2, \lambda_4 \) and \(M \). Their discrimination depends on which of the two inflaton-dependent terms in Eq. (4.1) dominates – see below.
4.2 **Structure of the Inflationary Potential**

As in Sec. 3.2, we determine the inflationary potential, V_1, selecting a suitable parameterization of the involved superfields. In particular, we set

$$\Phi = \phi e^{i\theta} \cos \theta_\Phi \text{ and } \bar{\Phi} = \phi e^{i\theta} \sin \theta_\Phi \text{ with } 0 \leq \theta_\Phi \leq \pi/2 \text{ and } S = (s + i\delta)/\sqrt{2}. \quad (4.5)$$

We can easily verify that a D-flat direction is

$$\langle (\theta) \rangle = \langle \bar{\theta} \rangle = 0, \langle \theta_\Phi \rangle = \pi/4 \text{ and } \langle S \rangle = 0, \quad (4.6)$$

which can be qualified as inflationary path. Indeed, for both K’s in Eq. (3.4), the D term due to $B - L$ symmetry during PI is

$$\langle D_{BL} \rangle = N (|\langle \Phi \rangle |^2 - |\langle \Phi \rangle |^2) / (1 - |\langle \Phi \rangle |^2 - |\langle \Phi \rangle |^2) = 0. \quad (4.7)$$

Also, regarding the exponential prefactor of V_1 in Eq. (2.10) we obtain

$$\langle e^K \rangle = \begin{cases} f_2^{-N} & \text{for } K = K_{21}, \\ 1 & \text{for } K = \bar{K}_{21}, \end{cases} \quad (4.8)$$

Substituting it and Eqs. (2.4) and (4.1) into Eq. (2.3), this takes its master form

$$V_1 = \frac{\lambda^2}{16} \begin{cases} \left(\phi^2 - r_{42} \phi^4 - M_2^2 \right)^2 / f_2^N & \text{for } \delta \text{HI,} \\ \left(\phi^2 - r_{42} \phi^4 - M_2^2 \right)^2 & \text{for } \delta \text{HI4,} \\ \left(\phi^4 - r_{24} \phi^2 - M_4^2 \right)^2 & \text{for } \delta \text{HI8,} \end{cases} \quad (4.9)$$

where $r_{ij} = -\lambda_i/\lambda_j$ with $i, j = 1, 2$ and λ and M_i are identified as follows

$$\lambda = \begin{cases} \lambda_2 \text{ and } M_2 = M/\sqrt{\lambda_2} & \text{for } \delta \text{HI and HI4,} \\ \lambda_4 \text{ and } M_4 = M/\sqrt{\lambda_4} & \text{for } \delta \text{HI8.} \end{cases} \quad (4.10)$$

From Eq. (4.9), we infer that the pole in f_2 is presumably present in V_1 of δHI but it disappears in V_1 of HI4 and HI8 and so no N dependence in V_1 arises. The elimination of the pole in the regime of Eq. (4.3E) lets open the realization of δHI, though.

To obtain PI we have to correctly identify the canonically normalized (hatted) fields of the $\Phi - \bar{\Phi}$ system, defined as follows

$$\langle K_{\alpha \bar{\beta}} \rangle \sim \frac{1}{2} \left(\hat{\phi}^2 + \hat{\phi}_+ + \hat{\phi}_- + \hat{\phi}_\Phi \right) \text{ for } \alpha = 2, 3. \quad (4.11a)$$

– recall that $Z^1 = S$ is already canonically normalized for $\langle S \rangle = 0$ as in Eq. (4.6). We find

$$\langle (K_{\alpha \bar{\beta}}) \rangle = \langle M_{\alpha \bar{\beta}} \rangle \text{ with } \langle M_{\alpha \bar{\beta}} \rangle = \frac{\kappa \phi^2}{2} \begin{pmatrix} 2/\phi^2 - 1 & 1 \\ 1 & 2/\phi^2 - 1 \end{pmatrix}, \quad \kappa = f_2. \quad (4.11b)$$

We then diagonalize $\langle M_{\alpha \bar{\beta}} \rangle$ via a similarity transformation, i.e.,

$$U_{\alpha \bar{\beta}} \langle M_{\alpha \bar{\beta}} \rangle U_{\alpha \bar{\beta}}^T = \text{diag} (\kappa_+, \kappa_-), \text{ where } U_{\alpha \bar{\beta}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \quad \kappa_+ = \kappa \text{ and } \kappa_- = \kappa f_2. \quad (4.12)$$
Inserting the expressions above in Eq. (4.11), we obtain the hatted fields

$$\frac{d\hat{\phi}}{d\phi} = J = \frac{\sqrt{2N}}{f_2}, \quad \hat{\theta}_+ \simeq \sqrt{\kappa_+} \phi \theta_+, \quad \hat{\theta}_- \simeq \sqrt{\kappa_-} \phi \theta_- \quad \text{and} \quad \hat{\theta}_\phi \simeq \phi \sqrt{2\kappa_-} (\theta_\phi - \pi/4),$$

(4.13)

where $\theta_{\pm} = (\hat{\theta}_\pm \pm \theta)/\sqrt{2}$. From the first equation above we conclude that Eq. (4.3) for $p = 2$ is reproduced for $N_2 = 2N$. We expect that δH_{I} has similar behavior with δC_{I}, found in Sec. 5.2 whereas δH_{I} [HI8] may be interpreted as supersymmetrization of the non-SUSY models with $p = 2$ in Eq. (4.3) and $n = 4 [n = 8]$ in Eq. (4.1).

Having defined the canonically normalized scalar fields, we can derive the mass spectrum of our models along the direction of Eq. (4.6) and verify its stability against the fluctuations of the non-inflaton fields. Approximate, quite precise though, expressions for $\phi = \phi_+ \sim 1$ are arranged in Table 3. We confine ourselves to the limits $\delta_{42} = M_2 = 0$ for δH_{I}, $r_{42} = M_2 = 0$ for δH_{I} and $r_{24} = M_4 = 0$ for δH_{I}. As in the case of the spectrum in Table 1, $N_5 < 6$ plays a crucial role in retaining positive and heavy enough m^2_{ϕ}. Here, however, we also display the masses, M_{BL}, of the gauge boson A_{BL} (which signals the fact that $U(1)_{B-L}$ is broken during PI) and the masses of the corresponding fermions. The unspecified eigenstate $\psi_{\phi \pm}$ is defined as

$$\psi_{\phi \pm} = (\psi_{\phi \pm} \mp \psi_{\phi \mp})/\sqrt{2} \quad \text{where} \quad \psi_{\phi \pm} = (\psi_{\phi} \pm \psi_{\phi})/\sqrt{2},$$

(4.14)

with the spinors ψ_{ϕ} and $\psi_{\phi \pm}$ being associated with the superfields S and $\Phi - \Phi$. It is also evident that A_{BL} becomes massive absorbing the massless Goldstone boson associated with $\hat{\theta}_-$. The breakdown of $U(1)_{B-L}$ during PI is crucial in order to avoid the production of topological defects during the $B-L$ phase transition, which takes place after end of PI. Indeed, along the direction of Eq. (4.6), V_1 develops a SUSY vacuum lying at the direction

$$\langle S \rangle = 0 \quad \text{and} \quad \langle \phi \rangle = \left\{ \begin{array}{ll} (1 - (1 - 4r_{42}M^2_2)^{1/2})^{1/2} / \sqrt{2r_{42}} & \text{for } \delta H_{\text{I}} \text{ and } H_{\text{I}}^4, \\ (r_{24} + (r_{24}^2 + 4M^2_4)^{1/2})^{1/2} / \sqrt{2} & \text{for } \delta H_{\text{I}}^8, \end{array} \right.$$

(4.15)

i.e., $U(1)_{B-L}$ is finally spontaneously broken via the v.e.v of ϕ.

Table 3: Mass spectrum the models of HI along the inflationary trajectory of Eq. (4.8).
We observe that:

W e observe that:

of the Table in Fig. 2. Eq. (4.16) gives

and various δ_{i2}’s indicated on

the solid line or (ii) HI4 and $r_{i2} = 0.01$ or HI8 and $r_{i2} = 10^{-6}$ and various N’s indicated on the dashed and dot-dashed line respectively. The shaded corridors are identified as in Fig. 1. The relevant field values, parameters and observables corresponding to points shown in the plot are listed in the Table.

4.3 Results

As in Sec. [1,2], we here focus on our numerical results – our analytic ones for δ HI and HI4 are presented in Ref. [2]. After enforcing Eqs. (1.6) and (1.8) – which yield λ together with ϕ_s – the free parameters of the models

$$\delta$ HI, HI4, HI8 are $(\delta_{i2}, M_2), (N, r_{i2}, M_2)$ and $(N, r_{i2}, M_4),$ respectively. Recall that we use $N = 2$ exclusively for δ HI. Also, we determine M_2 and M_4 demanding that the GUT scale within MSSM $M_{\text{GUT}} \simeq 2/2.433 \times 10^{-2}$ is identified with the value of M_{BL} – see Table 3 – at the vacuum of Eq. (4.15). I.e.,

$$\langle M_{BL} \rangle = \frac{\sqrt{2Ng(f)} }{\langle f_2 \rangle} = M_{\text{GUT}} \Rightarrow \langle f \rangle \simeq \frac{M_{\text{GUT}}}{g\sqrt{2N}} \text{ with } g \simeq 0.7, \langle f_2 \rangle \simeq 1 \quad \text{(4.16)}$$

and $\langle f \rangle$ given by Eq. (4.15). By varying the remaining parameters for each model we obtain the allowed curves in the $n_s - r$ plane – see Fig. 2. A comparison with the observational data is also displayed there. We observe that:

(a) For δ HI – see the solid line in Fig. 2 – we obtain results similar to those obtained for δ CI in Sec. [3,4]. Namely, the resulting n_s and r increase with $|\delta_{i2}|$ with n_s covering the whole allowed range in Eq. (1.9). From the considered data we collect the results

$$2 \lesssim -\delta_{i2}/10^{-5} \lesssim 5.5, \ 2 \lesssim r/10^{-3} \lesssim 3.6 \text{ and } 4 \lesssim \Delta_s/10^{-3} \lesssim 4.75. \quad \text{(4.17)}$$

Also, we obtain $N_s \simeq (54.8 - 55.7)$ consistently with Eq. (1.6) and the resulting $w_{rh} \simeq 0.3$ from Eq. (1.7b). Fixing $n_s = 0.965$ we find $\delta_{i2} = -3.6 \cdot 10^{-5}$ and $r = 0.0026$ – see the leftmost column of the Table in Fig. 2. Eq. (4.16) gives $M_2 = 0.00587.$
(b) For HI4 and HI8, ns and r increase with N and Δs which is larger than that obtained in δHI. Namely, ns approaches its central observational value in Eq. (1.9) whereas the bound on r yields an upper bound on N. More specifically, for HI4 – see dashed line in Fig. 2 – we obtain

$$0.963 \lesssim n_s \lesssim 0.964, \ 0.1 \lesssim N \lesssim 36, \ 0.09 \lesssim \Delta_s/10^{-2} \lesssim 7.6 \text{ and } 0.0005 \lesssim r \lesssim 0.039,$$

with \(w_{\text{th}} \simeq 0.3 \) and \(N_s \simeq 56 \). Eq. (4.16) dictates \(M_2 \simeq (0.0013 - 0.0045) \). On the other hand, for HI8 – see dot-dashed line in Fig. 2 – we obtain

$$0.963 \lesssim n_s \lesssim 0.965, \ 0.1 \lesssim N \lesssim 40, \ 0.45 \lesssim \Delta_s/10^{-2} \lesssim 3.8 \text{ and } 0.0001 \lesssim r \lesssim 0.039,$$

with \(w_{\text{th}} \simeq (0.25 - 0.6) \) and \(N_s \simeq (54.6 - 60) \). Eq. (4.16) implies \(M_4 \simeq (1.1 - 690) \cdot 10^{-6} \). In both equations above the lower bound on N is just artificial – as in Eqs. (3.11a) and (3.11b). For \(N = 12 \), specific values of parameters and observables are arranged in the rightmost columns of the Table in Fig. 2. Although HI8 is worse than HI4 regarding the tuning of \(M_4 \) and \(r_{24} \), it leads to \(n_s \) values precisely equal to its central observational one – cf. Eq. (1.9).

5. CONCLUSIONS

We reviewed the implementation of PI first in a non-SUSY and then to a SUSY framework. In the former regime, we confined ourselves to models displaying a kinetic mixing in the inflaton sector with a pole of order one or two and verified their agreement with observations. In the latter regime, we presented two classes of models (CI and HI) depending on whether the inflaton is included into a gauge singlet or non-singlet field. CI and HI are relied on the superpotential in Eqs. (3.1) and (3.1) respectively which respects an R symmetry and include an inflaton accompanying field which facilitates the establishment of PI. In each class of models we singled out three subclasses of models (δCI, CI2 and CI4) and (δHI, HI4 and HI8). The models δCI and δHI are based on the Kähler potentials in Eqs. (3.3a) and (3.3a) whereas (CI2, CI4) and (HI4, HI8) in those shown in Eqs. (3.4) and (3.4). All those Kähler potentials parameterize hyperbolic internal geometries with a kinetic pole of order one for CI and two for HI. The Higgsflaton in the last case implements the breaking of a gauge U(1)B−L symmetry at a scale which may assume a value compatible with the MSSM unification.

All the models excellently match the observations by restricting the free parameters to reasonably ample regions of values. In particular, within δCI and δHI any observationally acceptable ns is attainable by tuning \(\delta_{31} \) and \(\delta_{42} \) respectively to values of the order \(10^{-3} \), whereas r is kept at the level of \(10^{-3} \) – see Eqs. (3.10) and (4.17). On the other hand, CI2, CI4, HI4 and HI8 avoid any tuning, larger r’s are achievable as N increases beyond 2, while ns lies close to its central observational value – see Eqs. (3.11a) and (3.11b) for CI and Eqs. (4.18a) and (4.18b) for HI.

ACKNOWLEDGMENTS I would like to thank A. Marrani, S. Ketov and E.W. Kolb for interesting discussions. This research work was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant” (Project Number: 2251).
REFERENCES

[1] Y. Akrami et al. [Planck Collaboration], Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641, A10 (2020) [arXiv:1807.06211].

[2] C. Pallis, Pole-Induced Higgs Inflation With Hyperbolic Kaehler Geometries, JCAP 05, 043 (2021) [arXiv:2103.05534]; C. Pallis, SU(2, 1)/(SU(2) × U(1)) B-L Higgs Inflation, J. Phys. Conf. Ser. 2105, no. 12, 12 (2021) [arXiv:2109.06618].

[3] C. Pallis, An Alternative Framework for E-Model Inflation in Supergravity, arXiv:2204.01047.

[4] B.J. Broy, M. Galante, D. Roest and A. Westphal, Pole inflation, Shift symmetry and universal corrections, JHEP 12, 149 (2015) [arXiv:1507.02277]; T. Terada, Generalized Pole Inflation: Hilltop, Natural, and Chaotic Inflationary Attractors, Phys. Lett. B 760, 674–678 (2016) [arXiv:1602.07867].

[5] R. Kallosh, A. Linde, and D. Roest, Superconformal Inflationary a-Attractors, JCAP 11, 198 (2013) [arXiv:1311.0472].

[6] R. Kallosh and A. Linde, BICEP/Keck and cosmological attractors, JCAP 12, no. 08, 008 (2021) [arXiv:2110.10902].

[7] J. Ellis, M.A.G. Garcia, D.V. Nanopoulos, K.A. Olive and S. Verner, BICEP/Keck constraints on attractor models of inflation and reheating, Phys. Rev. D 105, no. 4, 043504 (2022) [arXiv:2112.04466].

[8] R. Kallosh and A. Linde, Universality Class in Conformal Inflation, JCAP 07, 002 (2013) [arXiv:1306.5220].

[9] N. Aghanim et al. [Planck Collaboration], Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020) – Erratum: Astron. Astrophys. 652, C4 (2021) [arXiv:1807.06209].

[10] C. Pallis and N. Toumbas, Non-Minimal Higgs Inflation and non-Thermal Leptogenesis in a Supersymmetric Pati-Salam Model, JCAP 12, 002 (2011) [arXiv:1108.1771]; C. Pallis, Gravitational Waves, µ Term & Leptogenesis from B − L Higgs Inflation in Supergravity, Universe 4, no. 1, 13 (2018) [arXiv:1710.05759].

[11] M. Tristram et al., Improved limits on the tensor-to-scalar ratio using BICEP and Planck, Phys. Rev. Lett. 127, 151301 (2021) [arXiv:2112.07961].

[12] C. Pallis, Models of Non-Minimal Chaotic Inflation in Supergravity, PoS Corfu2012, 061 (2013) [arXiv:1307.7815].

[13] R. Kallosh, A. Linde and T. Rube, General inflaton potentials in supergravity, Phys. Rev. D 83, 043507 (2011) [arXiv:1011.5945].

[14] C. Pallis and N. Toumbas, Starobinsky-Type Inflation With Products of Kähler Manifolds, JCAP 05, no. 05, 015 (2016) [arXiv:1512.05657]; C. Pallis and N. Toumbas, Starobinsky Inflation: From Non-SUSY To SUGRA Realizations, Adv. High Energy Phys. 2017, 6759267 (2017) [arXiv:1612.09202].

[15] J. Ellis, D.V. Nanopoulos and K.A. Olive, No-Scale Supergravity Realization of the Starobinsky Model of Inflation, Phys. Rev. Lett. 111, 111301 (2013) – Erratum: Phys. Rev. Lett. 111, no. 12, 129902 (2013) [arXiv:1305.1247].

[16] J.J.M. Carrasco, R. Kallosh, A. Linde and D. Roest, Hyperbolic geometry of cosmological attractors, Phys. Rev. D 92, no. 4, 043501 (2015) [arXiv:1504.05557].

[17] R. Jeannerot, S. Khalil, G. Lazarides and Q. Shafi, Inflation and Monopoles in Supersymmetric SU(4)c × SU(2)c × SU(2)c, JHEP 10, 012 (2000) [hep-ph/0002151].