Design a high power pulse transformer for c-band klystron modulator

Y LIU1,2, M GU1, Q YUAN1, X Zhou 1, Y WU1 and Z CHEN1

1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2University of Chinese Academy of Sciences, Beijing 100049, China

Email: liuyongfang@sinap.ac.cn

Abstract. Shanghai soft X-ray Free Electron Lasers (SXFEL) used C-band accelerator structure to accelerate electrons at SINAP (Shanghai Institute of Applied Physics). 50MW C-band klystron and 110MW modulator are used to provide power supply for accelerator structure. In order to meet the modulator-klystron demands, a reliable and stable high power pulse transformer is indispensable. In this paper, the key design points for the high voltage pulse transformer are presented. The methods of shortening rise time and diminishing flattop droop are highlighted.

1. Introduction

The main requirement for driving the klystron are peak voltage 350KV, peak current 320A, 10Hz repetition rate and 6 micro seconds pulse width (FWHM) with 3 micro second flat-top \cite{1}. To meet the requirement of 50MW C-band klystron, an optimized high power transformer were developed. The major specification of the pulse transformer is listed in table 1.

Pulse transformer is a significant component that is used for transmitting pulse waveform and power. Simple schematic diagram and the waveform in the secondary coil of pulse transformer is shown in figure 1. It is a good design for a pulse transformer with faster rise time, longer flattop width, smaller flattop droop and smaller flattop oscillation. Excellent transmission performance depends not only on the parameter of pulse transformer itself but also on the parameter of PFN (pulse forming network) and klystron load. So when we design a pulse transformer we need consider both of the transformer and the klystron modulator.

In this paper, the background overview and main specification of high power pulse transformer are presented \cite{2}. The equivalent circuit and distribution parameter of high power pulse transformer are analysed and optimal design methodology is summarized. Meanwhile, relevant experiments results are given.
Figure 1. Simple schematic diagram and waveform in secondary coil of pulse transformer.

Table 1: Major specification of pulse transformer

Primary	Secondary		
Beam voltage	22kV	Beam voltage	350kV
Beam current	5100A	Beam current	320A
Rise time (5-95%)	0.5 µs	Rise time (5-95%)	0.9 µs
Fall time (95-5%)	0.5 µs	Fall time (95-5%)	1.2 µs
Flattop (95-95%)	5.5µs	Flattop (98-98%)	3 µs
FWHM (50-50%)	6µs	Flattop ripple	0.25%
Repeat frequency	10 Hz	Flattop droop	2%

2. Modeling analysis

2.1. Electrical Equivalent Circuit

The electrical equivalent circuit of a step-up pulse transformer is shown as figure 2.

Figure 2. Equivalent circuit of a step-up pulse transformer.

R_c denotes core loss resistance, such as Hysteresis loss and Eddy current loss. r denotes resistance of pulse generator source. K is coupling coefficient between primary and secondary ($K=1$ for ideal). C_{d1} and C_{d2} are winding line distribution capacity. C_w denotes stray capacitance between primary and secondary winding. L_p denotes primary inductance. L_s denotes secondary inductance. R_L denotes load impedance. N denotes step-up ratio of pulse transformer. C_t denotes capacitance between primarily winding and grand. L_t denotes charging inductance connected with C_t in series.
2.2. Shorten Rise Time

Generally, we can neglect the effect of R_c, L_p, L_t and C_t during rise leading edge analysis [3]. In this case, the equivalent circuit of pulse transformer is showing as figure 3.

![Figure 3. Equivalent circuit used to analysis rise time.](image)

Rise time is determined by leakage inductance and distributed capacitance [4-6]. It can be given by the following equation (1).

\[
T_r \propto \sqrt{L_e C_d}
\]

(1)

Figure 4 shows the waveform with different number of L_e and C_d. As can be seen from the figure, for a given value of C_d, larger L_e makes slower rise time and for a given value of L_e, smaller C_d brings faster rise time and smaller overshoot.

![Figure 4. Waveform with different number of L_e and C_d.](image)

L_e can be calculated by equation (2). It also can be easily measured by a LCR meter.

\[
L_e = \frac{\mu_0}{2} \cdot \frac{C_L d^2 n_p^2}{L_c}
\]

(2)

Where μ_0 is the permeability of vacuum ($4\pi \times 10^{-7}$H/m). C_L is one turn length of primary winding. d is distance between primary and secondary winding. L_c is secondary coil height. n_p is primary winding turns.

We can choose effective tactics to reduction leakage inductance, such as using closed core, cone-shape windings, and close bifilar winding and so on. Leakage inductance is 2.25uH for calculate and 2.3uH for measurement.

Distributed capacitance include distribute capacitance between primary and secondary winding and distribute capacitance about klystron. Total distributed capacitance is 40nF which is measured by LCR meter.
2.3. Flattop Droop and Primary Inductance

Flattop droop is determined by primary inductance [7-9]. We can use the following circuit (figure 5) to analyze flattop droop.

\[
L_p \geq \frac{1 + R_L + R_{PFN}}{(R_L + R_{PFN}) + \ln(\frac{1}{\beta})} \approx \frac{R_L + R_{PFN}}{(R_L + R_{PFN}) + \Delta}
\]

(3)

Figure 6 shows the flattop droop simulation result with different primary inductance in C band klystron modulator design.

3. Test result

Figure 7 shows the picture of pulse transformer after fabricated. The transformer is placed in a metallic tank filling with transformer oil which is used as insulator and coolant. After the system Assembly, experimental study was carried out. Figure 8 shows the measured output waveform. The waveform is obtained by a precise high voltage divider which divide ratio is 1:10450. Peak voltage and current achieve 380KV and 368A compared with the design numbers of 350KV and 320A. Rise and fall time also faster than design parameters. Due to fast rise and fall time, the pulse transformer use smaller full width at half maximum time to achieve 3us flattop width. Table 2 summarizes the test parameters of output waveform of pulse transformer.
4. Conclusion
Pulse transformer as a key technology for C-band accelerating structure has been studied in SINAP. We use some detailed equivalent circuit to analysis the behaviour of pulse transformer, especially for shorting rise time and reducing flattop droop. It was indicated by the result of experiments that the pulse
transformer met the requests of practical target. The circuit model and analysis method can be used to make further study of more high voltage X-band klystron pulse transformer.

Acknowledgements
The project was supported by the National Natural Science Foundation of China (No. Y715221061) and the National Key Research and Development Program of China (NO.614103061). We would like to thank Lin LIU, Huaitian LI and other staff members at MV Company for their supports with ideal and discussion.

References
[1] Z Zhao et al. Status of the SXFEL Facility. Applied Sciences, 2017, 7(6): 607
[2] Zhang Z and Tan X. Review of High Power Pulse Transformer Design. Physics Procedia, 2012, 32:566-574
[3] Wang Y et al. Optimal Design and Experimental Study of Pulse Transformers with Fast Rise Time and Large Pulse Duration. IEEE Transactions on Plasma Science, 2014, 42(2):300-306
[4] Pan F et al. Design Procedure of the Leakage Inductance for a Pulse Transformer Considering Winding Structures. IEEE Transactions on Plasma Science, 2017, 45(9): 2504-2510
[5] Candolfi S et al. Hybrid design optimization of high voltage pulse transformers for Klystron modulators. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(6):3617-3624
[6] Candolfi S, et al. Evaluation of insulation systems for the optimal design of high voltage pulse transformers, in Proc. The 2014 IEEE International Power Modulator and High Voltage Conference (IPMHVC 2014). Santa Fe, New Mexico, June 2014, pp.557-560
[7] Blume S, et al. Design and Optimization Procedure for High-Voltage Pulse Power Transformers. IEEE Transactions on Plasma Science, 2015, 43(10):3385-3391
[8] Baktash A and Vahedi A. Design of a Wound Core Pulse Transformer Using Multiobjective Optimization Method. IEEE Transactions on Plasma Science, 2015, 43(3):857-863
[9] Zhang Z et al. Compact megavolt pulse transformer with inner magnetic core and conical secondary windings, in proc. The 20th IEEE Pulsed Power Conference (PPC 2015). Austin, Texas, USA, May 2015, pp.1-5.