Evidence for magnetic fractional excitations in a Kitaev quantum-spin-liquid candidate α-RuCl₃

Kejing Ran,¹,² Honghui Wang,¹,² Song Bao,² Zhengwei Cai,² Yanyan Shangguan,² Zhen Ma,²,³ Wei Wang,⁴ Zhao-Yang Dong,⁵ P. Čermák,⁶,⁷ A. Schneidewind,⁶ Siqin Meng,⁸,⁹ Zhilun Lu,⁸,¹⁰ Shun-Li Yu,²,¹¹ Jian-Xin Li,²,¹¹ and Jinsheng Wen²,¹¹

¹School of Physical Science and Technology and ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 200031, China
²National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
³Institute for Advanced Materials, Hubei Normal University, Huangshi 435002, China
⁴School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
⁵Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
⁶Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
⁷Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Ke Karlova 5, 121 16, Praha, Czech Republic
⁸Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1 D-14109 Berlin, Germany
⁹China Institute of Atomic Energy, Beijing 102413, China
¹⁰The Henry Royce Institute and Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Sheffield, S1 3JD, United Kingdom
¹¹Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

α-RuCl₃ has been studied extensively because of its proximity to the Kitaev quantum-spin-liquid (QSL) phase and the possibility of approaching it by tuning the competing interactions. Here we present the first polarized inelastic neutron scattering study on α-RuCl₃ single crystals to explore the scattering continuum around the Γ point at the Brillouin zone center, which was hypothesized to be resulting from the Kitaev QSL state but without concrete evidence. With polarization analyses, we find that while the spin-wave excitations around the M point vanish above the transition temperature T_N, the pure magnetic continuous excitations around the Γ point are robust against temperature. Furthermore, by calculating the dynamical spin-spin correlation function using the cluster perturbation theory, we derive magnetic dispersion spectra based on the K-Γ model, which involves with a ferromagnetic Kitaev interaction of ~7.2 meV and an off-diagonal interaction of 5.6 meV. We find this model can reproduce not only the spin-wave excitation spectra around the M point, but also the non-spin-wave continuous magnetic excitations around the Γ point. These results provide evidence for the existence of fractional excitations around the Γ point originating from the Kitaev QSL state, and further support the validity of the K-Γ model as the effective minimal spin model to describe α-RuCl₃.

Quantum spin liquids (QSLs) with fractionalized spin excitations and long-range entanglement have drawn a lot of attention since Anderson first proposed the QSL state within the resonating-valence-bond (RVB) model [11] and used it to explain the high-temperature superconductivity [2]. Typically, QSL states have been proposed in triangular and kagome lattices where antiferromagnetic interactions are highly frustrated due to the geometrical constrain, and therefore there remain strong quantum fluctuations in these systems that prevent spins from establishing a long-range order as observed in a usual magnet at low temperatures [3,7]. Besides the RVB model which was built upon geometrical frustration, the Kitaev model defined on the ideal two-dimensional honeycomb lattice with spin S = 1/2, is an exactly soluble model with the QSL ground state [8]. On a honeycomb lattice, there is no geometrical frustration, and it is the anisotropic bond-dependent Kitaev interactions that lead to the frustration on a single site and give rise to the “Kitaev” QSL state [3,9]. A Kitaev QSL can host fractional excitations represented by e.g., Majorana fermions, which behave as anyons obeying the non-Abelian statistics under magnetic field, and allow to be braided for fault-tolerant topological quantum computation [8,10,12].

In general, for a spin-only system, it is unrealistic to find the bond-dependent Kitaev interactions which underlie the Kitaev QSL, as the spin interactions ought to be isotropic along the three symmetry-equivalent bonds in a honeycomb lattice. One plausible approach of realizing the anisotropic Kitaev interaction is to resort to spin-orbital-coupling (SOC) assisted Mott insulators, where the effective moment J_eff = 1/2 is an entanglement of the orbital moment L = 1 and spin moment S = 1/2 [9,13,14]. This idea was initially applied to iridates such as Na₂IrO₃ where iridium and oxygen ions form edge-shared IrO₆ octahedra, and the 5d iridium ions with strong SOC and J_eff = 1/2 form a two-dimensional honeycomb network [13,15,22]. The geometrical configuration suppresses the isotropic Heisenberg interaction while on the other hand promotes the anisotropic Kitaev interaction in the aid of the large SOC and strong interactions.
spatial anisotropy of the d orbitals \[\text{[13 24]. These features should have made iridates a promising platform to investigate the Kitaev physics. However, these materials suffer from the following problems: i) the presence of monoclinic and trigonal distortions renders the applicability of the localized J_{eff} picture to these materials questionable \[22 24 25]. ii) iridium has a large neutron absorption cross section and thus it is difficult to carry out inelastic neutron scattering (INS) measurements to extract the magnetic interactions; iii) large-size and high-quality single crystals are not available \[24].

Therefore, more efforts have been devoted into α-RuCl$_3$ with the honeycomb lattice recently, which can also realize the SOC-assisted $J_{\text{eff}} = 1/2$ Mott insulating state, despite the weaker SOC effect of the 4d Ru$^{3+}$ \[26 27]. Although the low-temperature phase is not the long-sought Kitaev QSL but zigzag ordered phase instead \[27 31], it is shown to exhibit salient Kitaev interactions due to the close-to-ideal bond configuration in the RuCl$_6$ octahedron \[29 31 39]. Notably, the zigzag order is close to the Kitaev QSL phase in the phase diagram and is fragile subject to external magnetic field \[28 40–46] or pressure \[47–49]. More intriguingly, a moderate in-plane magnetic field may drive the system into a QSL phase \[50–54]. In the zigzag phase, INS experiments show that the excitations are mostly concentrated around the M and Γ points of the two-dimensional Brillouin zone, as sketched in Fig. 1(a). While it is generally believed the gapped sharp excitations around the M point are spin waves associated with the magnetic order, the origin of the broad continuum around the Γ point is still controversial \[20 31 57 59]. On the one hand, various spectroscopic results, such as Raman scattering \[55 56], optical THz spectroscopy \[57 59], and INS spectra \[29 37 60], show a nearly temperature-independent excitation continuum around the Γ point, which is reminiscent of the fractionalized excitations originating from the Kitaev QSL state. On the other hand, because of the small scattering angle around the Γ point, the broad continuum feature in the INS experiment could be due to the nuclear scattering \[37], which is also temperature independent. In addition, it has been argued that the continuum feature may originate from the incoherent excitations caused by strong magnetic anharmonicity \[51]. Therefore, it is critical to distinguish whether the continuum is fractional magnetic excitation or nuclear scattering.

Polarized neutron scattering experiment from which pure magnetic scattering can be obtained will help solve this problem \[61 62]. However, because of the much reduced scattering cross section in a polarized neutron experiment, it is very challenging to obtain meaningful results for thin single crystals like α-RuCl$_3$.

In this Letter, we report polarized neutron scattering study on 2-g high-quality α-RuCl$_3$ single crystals. The data allow us to distinguish magnetic scattering from nuclear scattering. Our polarization results show that the broad continuous excitations around the Γ point are of magnetic origin, which are persistent at temperatures far above the magnetic ordering temperature T_N. In contrast, the spin-wave excitations around the M point disappear above T_N. Moreover, by comparing the calculation results using Kitaev-off-diagonal (K-Γ) and Kitaev-Heisenberg (K-J) models with the unpolarized neutron experimental data, we find that the K-Γ model with a ferromagnetic $K = -7.2$ meV and Γ = 5.6 meV can describe both the low-energy response of the spin-wave excitations associated with the zigzag ordered state around the M point, and the continuous magnetic excitations around the Γ point. These results are consistent with the presence of fractional magnetic excitations in α-RuCl$_3$ and further support the K-Γ model to be the minimal effective spin model in describing the system.

High-quality single crystals of α-RuCl$_3$ were grown using the chemical-vapor-transport method with α-RuCl$_3$ powders. The sheet-like crystals had a natural a-b plane as the cleavage plane and had a typical size of $10 \times 10 \times 1$ mm3, which weighed about 60 mg a piece. Both susceptibility measurements and specific heat measurements showed a sharp antiferromagnetic phase transition at ~ 7.5 K \[31 44 51]. Polarized neutron scattering measurements were performed on PANDA, a cold neutron triple-axis spectrometer with the polarized option located at FRM II \[63]. XYZ-Difference method for neutron polarization analysis \[61] was used to separate the magnetic scattering from nuclear coherent, nuclear spin incoherent, isotopic incoherent and background contributions. Unpolarized neutron scattering measurements were carried out on a cold neutron triple-axis spec-
in which the spin makes a 180° rotation as spin flip (SF), and scattering with no spin direction change as non spin flip (NSF).

We used the P3₁12 notation with a = b = 5.96 Å, and c = 17.2 Å as the lattice constants. The wave vector \(\mathbf{Q} \) was described by \((HKL) \) reciprocal lattice units (r.l.u.) of \((a^*, b^*, c^*) = (4\pi/\sqrt{3}a, 4\pi/\sqrt{3}b, 2\pi/c) \).

According to the polarized neutron scattering rules \[65\], when the neutron polarization direction \(\mathbf{P} \) is parallel to the scattering vector \(\mathbf{Q} \), magnetic and nuclear scatterings are detected in the SF and NSF channels, respectively. In the experiment, we polarized neutrons along the scattering vector first. Here we take \((0, 0, 1.5)\) and \((1, 1, 1)\) as the \(\Gamma \) point since neutron scattering experiment cannot access the \(\Gamma \) point at \(\mathbf{Q} = 0 \). Figure 2 shows energy scans at the \(\Gamma \) point measured at 1.8 and 25 K with polarized neutrons in the SF mode. The neutron polarization used was \(\mathbf{P} \| \mathbf{Q} \). (c) and (d) Pure magnetic intensities at the \(\Gamma \) point measured at 1.8 and 25 K, obtained by \(I^\text{mag} = I^\text{mag}_v + I^\text{mag}_w = 2I^\text{SF}_v - I^\text{SF}_v - I^\text{SF}_w \). (e) and (f) Same as in (c) and (d) but at the M point. Solid lines through data are guides to the eye. Dashed lines denote the background.

FIG. 2. (a) and (b) Energy scans of \(\alpha \)-RuCl₃ at the \(\Gamma \) point \((0, 0, 1.5)\) measured at 1.8 and 25 K with polarized neutrons in the spin-flip (SF) and non-spin-flip (NSF) modes. The neutron polarization used was \(\mathbf{P} \| \mathbf{Q} \). (c) and (d) Same scans as in (a) and (b) but at the M point \((0.5, 0, 0)\). Lines through data are guides to the eye. Errors represent one standard deviation throughout the paper.

FIG. 3. (a) and (b) Energy scans at the \(\Gamma \) point measured at 1.8 and 25 K with polarized neutrons in the SF mode. The neutron polarization used was \(\mathbf{P} \perp \mathbf{Q} \). \(I^\text{SF}_v \) and \(I^\text{SF}_w \) are scattering intensities for SF mode in directions of perpendicular and up with respect to \(\mathbf{Q} \). (c) and (d) Pure magnetic intensities around the \(\Gamma \) point measured at 1.8 and 25 K, obtained by \(I^\text{mag} = I^\text{mag}_v + I^\text{mag}_w = 2I^\text{SF}_v - I^\text{SF}_v - I^\text{SF}_w \). (e) and (f) Same as in (c) and (d) but at the M point. Solid lines through data are guides to the eye. Dashed lines denote the background.
high temperature is that the low-temperature excitations have some interactions with the spin-wave excitations. For comparison, we also measured the excitations at the M point, which is the wave vector of the zigzag magnetic order $[27, 31]$. As shown in Fig. 2(c), a magnetic peak is observed at $T = 1.8$ K in the SF channel on top of the sloping background obtained in the NSF channel. As expected, this peak disappears when the temperature is above the T_N, consistent with it being the spin-wave excitations arising from the zigzag magnetic order $[29, 31, 37]$. The different temperature dependence of the excitations at the Γ and M points and the persistence of the magnetic excitations at the Γ point further prove that these excitations are magnetic, fractionalized, and robust within a certain temperature window $[60, 66]$.

Although all the magnetic scattering is present in the SF channel when $P \parallel Q\parallel$, the total intensity contains some background resulting from the incoherent nuclear spin scattering with an intensity contribution of $2 I_{\text{inc}}$ [65]. In order to deduce this term and obtain pure magnetic scattering intensities, we polarized the neutron beam to the two directions ν and ω perpendicular to $Q\parallel$ as illustrated in Fig. 1(b) and performed the same scans as in Fig. 2(a) to obtain I_{w}^{SF} and I_{w}^{SF}, as shown in Fig. 3(a) and (b). Pure magnetic scattering intensities are given by $I_{w+v}^{\text{mag}} = I_{\text{mag}}^{w} + I_{\text{mag}}^{v} = 2 I_{w}^{\text{SF}} - I_{v}^{\text{SF}} - I_{w}^{\text{SF}}$ [65]. The so-obtained intensities at the Γ point are shown in Fig. 3(c) and (d). It can be seen that they exist at both low and high temperatures. The temperature-stable magnetic excitations at the Γ point are evident of the fractional excitations which are originated from the Kitaev QSL state. For comparison, the pure magnetic intensities at the M point are shown in Fig. 3(e) and (f). In contrast to those at the Γ point, the magnetic excitations at the M point are only observed at the low temperature. The observations that the pure magnetic intensities I_{mag}^{w+v} at the Γ point remain constant against temperature while those of spin waves at the M point are completely vanishing above the T_N indicate the emergence of fractional excitations at a higher temperature above the T_N $[60, 66]$.

After pinning down the origin of the excitations at the Γ point, we next discuss the effective spin model to describe the magnetic excitations at both the Γ and M points, in contrast to previous attempts where the excitations around the two momenta were treated separately using different models $[29, 31, 35, 37]$. To do this, we first performed unpolarized INS measurements at $T = 1.8$ K to obtain the magnetic dispersion as shown in Fig. 4(a). There are clear magnetic excitations weakly dispersing from both the Γ and M points. A broad continuum with a gap of ~ 1.8 meV appears around the Γ point, consistent with the polarization data and earlier results $[37, 45, 60]$. To describe these data, we first consider the $K-\Gamma$ model that we used to fit the spin-wave excitations in our previous works $[31, 65]$. Its Hamiltonian can be written as,

$$H_{K-\Gamma} = \sum_{i<j} \left[KS_i^x S_j^x + \Gamma (S_i^a S_j^a + S_i^b S_j^b) \right].$$ \hspace{1cm} (1)$$

Here, $\gamma = x, y, z$ labels the three nearest-neighbor bonds on the honeycomb lattice, and (α, β, γ) is a permutation of (x, y, z) with α and β labeling the two remaining directions on a γ bond. We calculated the dynamical spin-spin correlation function using the cluster perturbation theory, which has been successfully applied to other magnetically frustrated systems $[67]$. The calculated results with one typical parameter set of ferromagnetic $K = -7.2$ meV and $\Gamma = 5.6$ meV are shown in Fig. 4(b). These parameters ensures that the system is in the zigzag order phase $[19, 65]$, and are consistent with our previous works $[31, 65]$. Compared to the experimental spectra shown in Fig. 4(a), it is clear that both the excitations at the M and Γ points can be well captured.

![FIG. 4. (a) Magnetic dispersion along [H00] at T=1.8 K obtained by plotting the points marked with white cross dots. Left side of the dispersion from $H=0.5$ to 0 r.l.u is the mirror symmetrical figure on the right from $H=0$ to 0.5 r.l.u. (b) Magnetic excitation spectrum of the $K-\Gamma$ model for $\Gamma/K = -0.73$ with $K < 0$. (c) Theoretical magnetic excitation spectra for the zigzag phases of the $K-J$ model for $J/K = -0.36$ with $K > 0$.](image-url)
by this model. As we demonstrated in Refs. 31–35, the spin-wave excitations should only be observed to disperse from the M point around 2 meV and reach the band top at the Γ point at $E \sim 4$ meV within the K-Γ model. In Fig. 4(a) and (b), the continuous excitation spectra around the Γ point drop to a much lower energy of ~ 2 meV, therefore they should not be coherent spin waves but represent fractional excitations, supporting our polarization analyses.

For comparison, we also consider the widely proposed K-J model for Kitaev materials 13–15, 18, 19:

$$H_{K-J} = \sum_{\langle ij \rangle} (J S_i^z S_j^z + K S_i^\alpha S_j^\alpha).$$

(2)

The calculated results with $K = 9.8$ meV and $J = -3.6$ meV using the cluster perturbation theory are shown in Fig. 4(c). Although the parameter set places the system in the correct zigzag order phase in the phase diagram constructed using the K-J model 13, 15, 18, 19, and produces the spin-wave excitations dispersing from the M point, the calculation deviates from experimental observations in various aspects. First, the spin-wave excitations are gapless, in contrast to the gapped spectra shown in Fig. 4(a). Second, the low-energy excitations near the Γ point are absent. Third, the Kitaev interaction is antiferromagnetic, contradicting previous reports on the ferromagnetic Kitaev interaction in α-RuCl₃ 31, 35, 37, 39. Therefore, the comparison between the experimental spectra and the theoretical results from different models not only confirms that the K-Γ model is a more appropriate minimal spin model to describe α-RuCl₃ 31, 35, 37, but also represents as evidence that there present continuous fractional magnetic excitations near the Γ point. We note, however, in addition to the dominant K and $Γ$ terms, other finite longer-range terms, although small, may be necessary to stabilize the zigzag order state 36, 66.

To conclude, we study the magnetic excitations by carrying out polarized INS measurements on high-quality α-RuCl₃ single crystals. We find that there exist pure continuous magnetic excitations near the Γ point, which are robust against temperature, as opposed to the spin waves near the M point that vanish above T_N. In addition, our calculation using the cluster perturbation theory shows that the K-Γ model with a ferromagnetic $K = -7.2$ meV and a comparable $Γ = 5.6$ meV not only can reproduce the spin-wave excitations near the M point, but also the continuous excitations near the Γ point. These results are evident that there exist exotic fractional excitations in α-RuCl₃ due to its proximity to the Kitaev QSL state.

However, considering the weak cross sections of the polarized experiment, further investigations with better statistics by using more single crystals, increasing the counting time, or optimizing the polarization options, should be helpful to solidify the conclusion. Potentially, one can learn details about the anisotropic interactions and magnetizations with more serious polarization analysis because the scattering intensities contain both an interference and a Chiral magnetic scattering term 68. In Ref. 66 it was proposed that the bond-dependent fractional excitations in α-RuCl₃ can be manifested in the equal-time structure factor $S^\gamma(Q)$ ($\gamma = x, y, z$ represents different spin components) in the intermediate temperature range. We believe this is an interesting proposal worth of future efforts. Furthermore, for systems like α-RuCl₃, strongly spin-orbital-coupling may give rise to complex spin excitations like hybrid modes, the existence of frustrated anisotropic interactions will naturally lead to noticeable anharmonic effects [52]. These may better explain the enhancement of the low-temperature excitations at the Γ point as observed experimentally.

The work was supported by National Key Projects for Research and Development of China with Grant No. 2021YFA1400400, the National Natural Science Foundation of China with Grant Nos. 11822405, 12074174, 12074175, 11774152, 11904170, 12004249, 12004251 and 12004191, Natural Science Foundation of Jiangsu Province with Grant Nos. BK20180006, BK20190436 and BK20200738, Shanghai Sailing Program with Grant Nos. 20YF1430600 and 21YF1429200, Fundamental Research Funds for the Central Universities with Grant No. 020414380183, and the Office of International Cooperation and Exchanges of Nanjing University. The experiment at FLEXX was carried out under proposal No. 172-05993CR using beamtime allocated in the HZB-CIAE collaboration on the scientific use of instruments.

* These authors contributed equally to the work.

1. P.W. Anderson, “Resonating valence bonds: A new kind of insulator?” Mater. Res. Bull. 8, 153–160 (1973).
2. P. W. Anderson, “The Resonating Valence Bond State in La₂CuO₄ and Superconductivity,” Science 235, 1196–1198 (1987).
3. Leon Balents, “Spin liquids in frustrated magnets,” Nature 464, 199–208 (2010).
4. Yi Zhou, Kazushi Kanoda, and Tai-Kai Ng, “Quantum spin liquid states,” Rev. Mod. Phys. 89, 025003 (2017).
5. Lucile Savary and Leon Balents, “Quantum spin liquids: a review,” Rep. Pro. Phys. 80, 016502 (2017).
6. Jinsheng Wen, Shun-Li Yu, Shiyian Li, Weiqiang Yu, and Jian-Xin Li, “Experimental identification of quantum spin liquids,” npj Quant. Mater. 4, 12 (2019).
7. C. Bröholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R. Norman, and T. Senthil, “Quantum spin liquids,” Science 367 (2020).
8. Alexei Kitaev, “Anyons in an exactly solved model and beyond,” Ann. Phys. 321, 2–111 (2006).
9. Simon Trebst, “Kitaev materials,” arXiv:1701.07056
“Mott Insulators in the Chiral Spin-Orbit Coupling Limit: From Heisenberg to a Quantum Compass and Kitaev Models,” Phys. Rev. Lett. 102, 017205 (2009).

[14] Jeffrey G. Rau, Eric Kin-Ho Lee, and Hae-Young Kee, “Spin-orbit physics giving rise to novel phases in correlated systems: Iriridates and related materials,” Ann. Rev. Condens. Matter Phys. 7, 195–221 (2016).

[15] Jiří Chaloupka, George Jackeli, and Giniyat Khaliullin, “Kitaev-Heisenberg Model on a Honeycomb Lattice: Possible Exotic Phases in Iridium Oxides A_2IrO_3,” Phys. Rev. Lett. 105, 027204 (2010).

[16] Iham Kimchi and Yi-Zhuang You, “Kitaev-Heisenberg-J_2-J_3 model for the iridates A_2IrO_3,” Phys. Rev. B 84, 180407 (2011).

[17] Yogesh Singh, S. Manni, J. Reuther, T. Berlijn, R. Thomale, W. Ku, S. Trebst, and P. Gegenwart, “Relevance of the Heisenberg-Kitaev Model for the Honeycomb Lattice Iridates A_2IrO_3,” Phys. Rev. Lett. 108, 127203 (2012).

[18] Jiří Chaloupka, George Jackeli, and Giniyat Khaliullin, “Zigzag Magnetic Order in the Iridium Oxide Na_2IrO_3,” Phys. Rev. Lett. 110, 097204 (2013).

[19] Jeffrey G. Rau, Eric Kin-Ho Lee, and Hae-Young Kee, “Generic Spin Model for the Honeycomb Iridates beyond the Kitaev Limit,” Phys. Rev. Lett. 112, 077204 (2014).

[20] Yuriy Sizyuk, Craig Price, Peter Wölfle, and Natalia B. Perkins, “Importance of anisotropic exchange interactions in honeycomb iridates: Minimal model for zigzag antiferromagnetic order in Na_2IrO_3,” Phys. Rev. B 90, 155126 (2014).

[21] Sae Hwan Chun, Jong-Woo Kim, JungHo Kim, H. Zheng, Constantinos C. Stoumpos, C. D. Malliakas, J. F. Mitchell, Kavita Mehlawat, Yogesh Singh, Y. Choi, T. Gog, A. Al-Zein, M. Moretti Sala, M. Krisch, J. Chaloupka, G. Jackeli, G. Khaliullin, and B. J. Kim, “Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na_2IrO_3,” Nat. Phys. 11, 462–466 (2015).

[22] Stephen M Winter, Alexander A Tsiglin, Maria Daghofer, Jeroen van den Brink, Yogesh Singh, Philipp Gegenwart, and Roser Valentì, “Models and materials for generalized Kitaev magnetism,” J. Phys. Condens. Matter 29, 493002 (2017).

[23] Stephen M. Winter, Ying Li, Harald O. Jeschke, and Roser Valentì, “Challenges in design of Kitaev materials: Magnetic interactions from competing energy scales,” Phys. Rev. B 93, 214431 (2016).

[24] I. I. Mazin, Harald O. Jeschke, Kateryna Foyevtsova, Roser Valentì, and D. I. Khomskii, “Na_2IrO_3 as a Molecular Orbital Crystal,” Phys. Rev. Lett. 109, 197201 (2012).

[25] Kateryna Foyevtsova, Harald O. Jeschke, I. I. Mazin, D. I. Khomskii, and Roser Valentì, “ab initio analysis of the tight-binding parameters and magnetic interactions in Na_2IrO_3,” Phys. Rev. B 88, 035107 (2013).

[26] K. W. Plumb, J. P. Clancy, L. J. Sandilands, V. Vijay Shankar, Y. F. Hu, K. S. Burch, Hae-Young Kee, and Young-June Kim, “Magnetic order in $\alpha-RuCl_3$: A honeycomb-lattice quantum magnet with strong spin-orbit coupling,” Phys. Rev. B 91, 144420 (2015).

[27] J. A. Sears, M. Songvilay, K. W. Plumb, J. P. Clancy, Y. Qiu, Y. Zhao, D. Parshall, and Young-June Kim, “Magnetic order in $\alpha-RuCl_3$: A honeycomb-lattice quantum magnet with strong spin-orbit coupling,” Phys. Rev. B 91, 144420 (2015).

[28] R. D. Johnson, S. C. Williams, A. A. Haghhighjad, R. Singleton, V. Zapf, P. Manuel, I. I. Mazin, Y. Li, H. O. Jeschke, R. Valentì, and R. Coldea, “Monoclinic crystal structure of $\alpha-RuCl_3$ and the zigzag antiferromagnetic ground state,” Phys. Rev. B 92, 235119 (2015).

[29] A. Banerjee, C. A. Bridges, J. Q. Yan, A. A. Aczel, L. Li, M. B. Stone, G. E. Granroth, M. D. Lumsden, Y. Liu, J. Knolle, S. Bhattacharjee, D. L. Kovrizhin, R. Moessner, D. A. Tennant, D. G. Mandrus, and S. E. Nagler, “Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet,” Nat. Mater. 15, 733–740 (2016).

[30] H. B. Cao, A. Banerjee, J.-Q. Yan, C. A. Bridges, M. D. Lumsden, D. G. Mandrus, D. A. Tennant, B. C. Chakov, S. O. Kiryukhin, and S. E. Nagler, “Low-temperature crystal and magnetic structure of $\alpha-RuCl_3$,” Phys. Rev. B 93, 134423 (2016).

[31] Kejing Ran, Jinghui Wang, Wei Wang, Zhao-Yang Dong, Xiao Ren, Song Bao, Shichao Li, Zhen Ma, Yuan Gan, Youtian Zhang, J. T. Park, Guochu Deng, S. Danilkin, Shun-Li Yu, Jian-Xin Li, and Jinsheng Wen, “Spin-Wave Excitations Evidencing the Kitaev Interaction in Single Crystalline $\alpha-RuCl_3$,” Phys. Rev. Lett. 118, 107203 (2017).

[32] Heung-Sik Kim, Vijay Shankar V., Andrei Catuneanu, and Hae-Young Kee, “Kitaev magnetism in honeycomb RuCl$_3$ with intermediate spin-orbit coupling,” Phys. Rev. B 91, 241110 (2015).

[33] Luke J. Sandilands, Yao Tian, Anjan A. Reijnders, Heung-Sik Kim, K. W. Plumb, Young-June Kim, Hae-Young Kee, and Kenneth S. Burch, “Spin-orbit excitations and electronic structure of the putative Kitaev magnet $\alpha-RuCl_3$,” Phys. Rev. B 93, 075144 (2016).

[34] Heung-Sik Kim and Hae-Young Kee, “Crystal structure and magnetism in $\alpha-RuCl_3$: An ab initio study,” Phys. Rev. B 93, 155143 (2016).

[35] Wei Wang, Zhao-Yang Dong, Shun-Li Yu, and Jian-Xin Li, “Theoretical investigation of magnetic dynamics in $\alpha-RuCl_3$,” Phys. Rev. B 96, 115103 (2017).

[36] Lukas Janssen, Eric C. Andreade, and Matthias Vojta, “Magnetization processes of zigzag states on the honeycomb lattice: Identifying spin models for $\alpha-RuCl_3$ and Na_2IrO_3,” Phys. Rev. B 96, 064430 (2017).

[37] Arnab Banerjee, Jiaqiang Yan, Johannes Knolle, Craig A. Bridges, Matthew B. Stone, Mark D. Lumsden, David G. Mandrus, David A. Tennant, Roderich Moessner, and Stephen E. Nagler, “Neutron scattering in the ab initio magnetic base of Na_2IrO_3, $\alpha-RuCl_3$, and Na_3RuO_4,” Phys. Rev. B 96, 064430 (2017).

[38] Matthias Gohlke, Gideon Wachtel, Youhei Yamaji, Frank Pollmann, and Yong Baek Kim, “Quantum spin liquid signatures in Kitaev-like frustrated magnets,” Phys. Rev. B 97, 075126 (2018).
[39] Jennifer A. Sears, Li Errn Chern, Subin Kim, Pablo J. Bereciartua, Sonia Francoual, Yong Baek Kim, and Young-June Kim, “Ferromagnetic Kitaev interaction and the origin of large magnetic anisotropy in \(\text{Ir}_2\text{RuCl}_4\),” Nat. Phys. 16, 837–840 (2020).

[40] Yumi Kubota, Hidekazu Tanaka, Toshio Ono, Yasuo Narumi, and Koichi Kindo, “Successive magnetic phase transitions in \(\alpha\)-RuCl\(_3\): XY-like frustrated magnet on the honeycomb lattice,” Phys. Rev. B 91, 094422 (2015).

[41] M. Majumder, M. Schmidt, H. Rosner, A. A. Tsirlin, H. Yashouka, and M. Baenitz, “Anisotropic Ru\(^{3+}\) 4d\(^6\) magnetism in the \(\alpha\)-RuCl\(_3\) honeycomb system: Susceptibility, specific heat, and zero-field NMR,” Phys. Rev. B 91, 180401 (2015).

[42] J. A. Sears, Y. Zhao, Z. Xu, J. W. Lynn, and Young-June Kim, “Phase diagram of \(\alpha\)-RuCl\(_3\) in an in-plane magnetic field,” Phys. Rev. B 95, 180411 (2017).

[43] Takuya Aoyama, Yoshinao Hasegawa, Shojiro Kimura, Tsuyoshi Kimura, and Kenya Ohgushi, “Anisotropic magnetodopedelectric effect in the honeycomb-type magnet \(\alpha\)-RuCl\(_3\),” Phys. Rev. B 95, 245104 (2017).

[44] Y. J. Yu, Y. Xu, K. J. Ran, J. M. Ni, Y. Y. Huang, J. H. Wang, J. S. Wen, and S. Y. Li, “Ultralow-Temperature Thermal Conductivity of the Kitaev Honeycomb Magnet \(\alpha\)-RuCl\(_3\) across the Field-Induced Phase Transition,” Phys. Rev. Lett. 120, 067202 (2018).

[45] Arnab Banerjee, Paula Lampen-Kelley, Johannes Knolle, Christian Balz, Adam Anthony Aczel, Barry Winn, Yaohua Liu, Daniel Pajerowski, Jiayang Yan, Craig A. Bridges, Andrei T. Savici, Bryan C. Chakoumakos, Mark D. Lumsden, David Alan Tennant, Roderich Moessner, David G. Mandrus, and Stephen E. Nagler, “Excitations in the field-induced quantum spin liquid state of \(\alpha\)-RuCl\(_3\),” npj Quant. Mater. 3, 8 (2018).

[46] Christian Balz, Paula Lampen-Kelley, Arnab Banerjee, Jiayang Yan, Zhihun Lu, Xinzhe Hu, Wei Wang, and Weiqiang Yu, “High-pressure magnetization and NMR studies of \(\alpha\)-RuCl\(_3\),” Phys. Rev. B 96, 205147 (2017).

[47] G. Bastien, G. Garbarino, R. Yadav, F. J. Martinez-Casado, R. Beltrán-Rodríguez, Q. Stahl, M. Kusch, S. P. Limandri, R. Ray, P. Lampen-Kelley, D. G. Mandrus, S. E. Nagler, M. Roslova, A. Isaeva, T. Doert, L. Hozoi, A. U. B. Wolter, B. Bünchner, J. Geck, and J. van den Brink, “Pressure-induced dimerization and valence bond crystal formation in the Kitaev-Heisenberg magnet \(\alpha\)-RuCl\(_3\),” Phys. Rev. B 97, 241108 (2018).

[48] Zhe Wang, Jing Guo, F. F. Taffi, Anthony Hegg, Sudeshna Sen, Vladimir A. Sidorov, Le Wang, Shu Cai, Wei Yi, Yazhou Zhou, Honghong Wang, Shan Zhang, Ke Yang, Aiguo Li, Xiaodong Li, Yanchun Li, Jing Liu, Youguo Shi, Wei Ku, Qi Wu, Robert J. Cava, and Liling Sun, “Pressure-induced melting of magnetic order and emergence of a new quantum state in \(\alpha\)-RuCl\(_3\),” Phys. Rev. B 97, 245149 (2018).

[49] S.-H. Baek, S.-H. Do, K.-Y. Choi, Y. S. Kwon, A. U. B. Wolter, S. Nishimoto, Jeroen van den Brink, and B. Bünchner, “Evidence for a Field-Induced Quantum Spin Liquid in \(\alpha\)-RuCl\(_3\),” Phys. Rev. Lett. 119, 037201 (2017).

[50] Jiacheng Zheng, Kejing Ran, Tianrun Li, Jinghui Wang, Pengshuai Wang, Bin Liu, Zheng-Xin Liu, B. Normand, Jinsheng Wen, and Weiqiang Yu, “Gapless Spin Excitations in the Field-Induced Quantum Spin Liquid Phase of \(\alpha\)-RuCl\(_3\),” Phys. Rev. Lett. 119, 227208 (2017).

[51] Zheng-Xin Liu and B. Normand, “Dirac and chiral quantum spin liquids on the honeycomb lattice in a magnetic field,” Phys. Rev. Lett. 120, 187201 (2018).

[52] Y. Kasahara, T. Ohnishi, Y. Mizukami, O. Tanaka, Sixiao Ma, K. Sugii, N. Kurita, H. Tanaka, J. Nasu, Y. Motome, T. Shibuchi, and Y. Matsuda, “Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid,” Nature 559, 227–231 (2018).

[53] Stephen M. Winter, Kira Riedl, Pavel A. Maksimov, Alexander L. Chernyshev, Andreas Honecker, and Roser Valentí, “Breakdown of magnons in a strongly spin-orbital coupled magnet,” Nat. Commun. 8, 1152 (2017).

[54] Luke J. Sandilands, Yao Tian, Kemp W. Plumb, Young-June Kim, and Kenneth S. Burch, “Scattering Continuum and Possible Fractionalized Excitations in \(\alpha\)-RuCl\(_3\),” Phys. Rev. Lett. 114, 174201 (2015).

[55] J. Nasu, J. Knolle, D. L. Kovrizhin, Y. Motome, and R. Moessner, “Fermionic response from fractionalization in an insulating two-dimensional magnet,” Nat. Phys. 12, 912–915 (2016).

[56] A. Little, Liang Wu, P. Lampen-Kelley, A. Banerjee, S. Patankar, D. Rees, C. A. Bridges, J.-Q. Yan, D. Mandrus, S. E. Nagler, and J. Orenstein, “Antiferromagnetic Resonance and Terahertz Continuum in \(\alpha\)-RuCl\(_3\),” Phys. Rev. Lett. 119, 227201 (2017).

[57] Zhe Wang, S. Reschke, D. Hivonen, S.-H. Do, K.-Y. Choi, M. Gensch, U. Nagel, T. Rö om, and A. Loidl, “Magnetic Excitations and Continuum of a Possibly Field-Induced Quantum Spin Liquid in \(\alpha\)-RuCl\(_3\),” Phys. Rev. Lett. 119, 227202 (2017).

[58] S. Reschke, F. Mayer, Zhe Wang, Seung-Hwan Do, K.-Y. Choi, and A. Loidl, “Electronic and phonon excitations in \(\alpha\)-RuCl\(_3\),” Phys. Rev. B 96, 165120 (2017).

[59] Seung-Hwan Do, Sang-Youn Park, Junki Yoshitake, Joji Nasu, Yukitoshi Motome, Yong Seung Kwon, D. T. Adroja, D. J. Voneshen, Kyoo Kim, T. H. Jang, J. H. Park, Kwang-Yong Choi, and Sungdae Ji, “Majorana fermions in the Kitaev quantum spin system \(\alpha\)-RuCl\(_3\),” Nat. Phys. 13, 1079 (2017).

[60] R. Nathans, C. G. Shull, G. Shirane, and A. Andresen, “The use of polarized neutrons in determining the magnetic scattering by iron and nickel,” J. Phys. Chem. Solids 10, 138–146 (1959).

[61] R. M. Moon, T. Rüste, and W. C. Koehler, “Polarization analysis of thermal-neutron scattering,” Phys. Rev. 181, 920–931 (1969).

[62] A. Schneidewind and P. Čermák, “PANDA: Cold three axes spectrometer,” J. Large Scale Res. Facil. 1, A12 (2015).

[63] O. Schaeppf and H. Capellmann, “Neutron scattering with a triple-axis spectrometer,” Phys. Status Solidi A 135, 359 (1993).

[64] G. Shirane, S. M. Shapiro, and J. M. Tranquada, Neutron Scattering with a Triple-Axis Spectrometer: Basic Techniques (Cambridge University Press, Cambridge, 2002).

[65] Han Li, Dai-Wei Qu, Hao-Kai Zhang, Yi-Zhen Jia, Shou-Shu Gong, Yang Qi, and Wei Li, “Universal thermody-
[67] Shun-Li Yu, Wei Wang, Zhao-Yang Dong, Zi-Jian Yao, and Jian-Xin Li, “Deconfinement of spinons in frustrated spin systems: Spectral perspective,” Phys. Rev. B 98, 134410 (2018).

[68] Werner Schweika, “XYZ-polarisation analysis of diffuse magnetic neutron scattering from single crystals,” J. Phys.: Conf. Ser. 211, 012026 (2010).