Naringenin Inhibits Superoxide Anion-Induced Inflammatory Pain: Role of Oxidative Stress, Cytokines, Nrf-2 and the NO–cGMP–PKG–K_{ATP}Channel Signaling Pathway

Marília F. Manchope¹, Cássia Calixto-Campos¹, Leticia Coelho-Silva¹, Ana C. Zarpelon¹, Felipe A. Pinho-Ribeiro¹, Sandra R. Georgetti², Marcela M. Baracat², Rúbia Casagrande², Waldiceu A. Verri, Jr¹*¹

¹ Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil, 2 Departamento de Ciências Farmacêuticas, Centro de Ciências de Saúde, Universidade Estadual de Londrina, Londrina, Brazil

Abstract

In the present study, the effect and mechanism of action of the flavonoid naringenin were evaluated in superoxide anion donor (KO₂)-induced inflammatory pain in mice. Naringenin reduced KO₂-induced overt-pain like behavior, mechanical hyperalgesia, and thermal hyperalgesia. The analgesic effect of naringenin depended on the activation of the NO–cGMP–PKG–K_{ATP} signaling pathway. Naringenin also reduced KO₂-induced neutrophil recruitment (myeloperoxidase activity), tissue oxidative stress, and cytokine production. Furthermore, naringenin downregulated KO₂-induced mRNA expression of gp91phox, cyclooxygenase (COX)-2, and preproendothelin-1. Besides, naringenin upregulated KO₂-reduced nuclear factor (erythroid-derived 2)-like 2 (Nrf2) mRNA expression coupled with enhanced heme oxygenase (HO-1) mRNA expression. In conclusion, the present study demonstrates that the use of naringenin represents a potential therapeutic approach reducing superoxide anion-driven inflammatory pain. The antinociceptive, anti-inflammatory and antioxidant effects are mediated via activation of the NO–cGMP–PKG–K_{ATP} channel signaling involving the induction of Nrf2/HO-1 pathway.

Introduction

Pain is an unpleasant sensory and emotional experience, generally in association with tissue injury. During inflammation, pro-inflammatory mediators activate resident cells, recruited cells and nociceptors, thereby driving pain signaling. Nociceptive neurons do not express receptors for all inflammatory molecules, suggesting both direct and indirect activation and
Increased levels of oxidative stress during the inflammatory response also contribute to nociception. For instance, reactive oxygen species (ROS) and reactive nitrogen species (RNS) can act directly and indirectly to induce nociceptor sensitization and activation [2–5]. The superoxide anion (O$_2^-$) is a common form of ROS that can drive nociception [5,6]. O$_2^-$ reacts with nitric oxide (NO) generating peroxynitrite, which also contributes to nociception [3]. Superoxide dismutase (SOD), an enzymatic antioxidant, transforms superoxide anion in hydrogen peroxide, which may also induce nociception [2]. Therefore, O$_2^-$ is a crucial ROS to the biological underpinnings driving nociception. O$_2^-$ increases other pro-inflammatory effects, including increasing vascular permeability [7], inducing cytokine release [8,9] and increasing neutrophil recruitment [9,10], as well as provoking overt pain-like behavior and hyperalgesia [2–5]. In a physiological state, O$_2^-$ levels remain under control by the action of the endogenous antioxidant systems, including SOD, and the endogenous antioxidant reduced glutathione (GSH) [9]. However, the imbalance between oxidants and antioxidants during inflammation leads to oxidative stress. This is important, as inhibiting the production of pro-inflammatory cytokines and ROS limit the development of inflammatory pain [6,11–13].

Naringenin (4',5,7-trihydroxy-flavonone) is a flavonoid which belongs to flavonones class found in citric fruits, including lemon, orange, tangerine and grapefruit [14]. Naringenin inhibits the nociceptive responses in models of formalin-, acetic acid- and capsaicin-induced overt pain, as well as neuropathic pain [15–17]. Naringenin also inhibits inflammation by targeting cyclooxygenase (COX)-2 in ethanol-induced liver injury [18] and in vitro [19]. Moreover, naringenin inhibits phosphorylation of nuclear factor kappaB (NFkB) subunit p65 and mitogen-activated protein kinases (MAPK) in daunorubicin-induced nephrotoxicity [20] as well as inhibiting the EGFR-P3K-Akt/ERK MAPK signaling pathway in human airway epithelial cells [21]. Naringenin also inhibits a number of aspects of oxidative stress, including lipid peroxidation and O$_2^-$ production, as well as restoring GSH levels in UVB-induced oxidative stress in the skin of Hairless mice [22]. Furthermore, naringenin increases SOD in an experimental stroke model, highlighting its wide-acting induction of endogenous antioxidants [23]. In agreement with such antioxidant effects, naringenin also induces nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/ heme oxygenase (HO)-1 in CCl$_4$-induced hepatic inflammation [24]. Some flavonoids can induce antinociception by activating the NO–cGMP–PKG–ATP-sensitive potassium channel (K$_{ATP}$) signaling pathway [25–28]. Activating this signaling pathway is an important mechanism of action of a number of clinical analgesics, such as opioids [25], and some non-steroidal anti-inflammatory drugs including dipyrone [26], diclofenac [27], and indomethacin [28].

Given the above, the current study addresses the analgesic effects of naringenin in a model of O$_2^-$-triggered inflammatory pain. It was also investigated as to whether naringenin’s mechanism of action involves the NO–cGMP–PKG–K$_{ATP}$ channel signaling pathway, the regulation of inflammatory mediators/enzymes and oxidative stress as well as the transcription factor Nrf2, and its downstream target, HO-1.

Materials and Methods

Animals

Male Swiss mice (25 ± 5 g) from Londrina State University were housed in standard plastic cages with free access to food and water, with a light/dark cycle of 12:12 h, at 21°C. All behavioral testing was performed between 9 a.m. and 5 p.m. in a temperature-controlled room. At the end of experiments, mice were anesthetized with isoflurane 3% to minimize suffering (Abbott Park, IL, USA) and killed by cervical dislocation followed by decapitation. The animal
condition was monitored daily and at indicated time points during the experiments. No unexpected animal deaths occurred during this study. Animals' care and handling procedures were in accordance with the International Association for Study of Pain (IASP) guidelines and with the approval of the Ethics Committee of the Londrina State University (process 133666.2013.71).

Drugs and reagents

Potassium superoxide (KO$_2$) (Alfa Aesar, 96.5%, Ward Hill, MA, USA). Naringenin (Santa Cruz Biotechnology, Inc., 98%, Dalla, TX, USA). Saline (NaCl 0.9%; Fresenius Kabi Brazil Ltda. Aquiraz, CE, Brazil). L-NAME (Research Biochemicals, Natick, MA, USA), KT5823 (Calbiochem, San Diego, CA, USA), ODQ [1H-(1,2,4)-oxadiazol-(4,3-a)-quinoxalin-1-one, Tocris Cookson, Baldwin, MO, USA], Glybenclamide, HTAB (Bromide, hexadecyl trimethyl ammonium), dihydrochloride O-dianisidine, GSH (reduced glutathione), EDTA sodium salt, ferric chloride hexahydrate, TPTZ (2,4,6-tripiridil-s-triazine) and Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-11 carboxylic) were purchased from Sigma Chemical Co. (St. Louis, MO, USA). DMSO 2% and Tween 80 (Química Moderna, Barueri, SP, Brazil).

Experimental procedures

Mice were pretreated per orally (po) with 16.7, 50, or 150 mg/kg of naringenin or with vehicle (saline) 1 h before intraplantar (ipl) or intraperitoneal (ip) injection of 30 μg or 1 mg of KO$_2$, respectively [6]. The writhing response was evaluated between 0–20 min after KO$_2$ ip injection and the paw flinching and licking nociceptive responses were quantified during 30 min after ipl injection of KO$_2$. Mechanical and thermal hyperalgesia were evaluated 0.5–7 h after KO$_2$. Inflammatory stimulation with KO$_2$ induced mechanical and thermal hyperalgesia only in the ipsilateral paw, in the side where the stimulus was injected. Myeloperoxidase (MPO) activity was evaluated 7 h after KO$_2$ administration. Mice were pretreated with inhibitors of the NO synthase (L-NAME; 90 mg/kg, ip, 1 h pre-treatment), guanylate cyclase (ODQ, 0.3 mg/kg, ip, 30 min pre-treatment), PKG (KT5823, 0.5 μg/animal, ip, 5 min pre-treatment), K$_{ATP}$ channels (glibenclamide, 0.3 mg/kg, po, 45 min pre-treatment) before naringenin treatment (50 mg/kg, po). After 1 h mice received ipl injection of 30 μg of KO$_2$, and mechanical and thermal hyperalgesia were assessed 0.5–7 h thereafter. Evaluations of oxidative stress (GSH, FRAP, TBARS, NBT) and cytokine production (tumor necrosis factor [TNF]α and interleukin [IL]-10) were carried out, as well as RT-qPCR measures of gp91phox, COX-2, prepro endothelin (ET)-1, Nrf2, HO-1, and IL-33, 3 h after KO$_2$ injection in samples of paw skin.

Overt pain-like behavioral tests

Abdominal writhing was induced by ip injection of 1 mg of KO$_2$ [6]. Immediately after stimulus injection, each mouse was placed individually in a large glass cylinder, and the intensity of nociceptive behavior was quantified by counting the total number of writhings occurring between 0 and 20 min after stimulus injection. The writhing response consists of a contraction of the abdominal muscle together with a stretching of hind limbs, and the intensity was expressed as the cumulative number of abdominal contortions over 20 min. The number of paw flinches and the time spent licking the paw were determined between 0–30 min after ipl injection of 30 μg of KO$_2$. Each mouse was placed in a large glass cylinder immediately after stimulus injection. The intensity of nociceptive behavior was quantified by counting the total number of paw flinches and the time (seconds) spent licking the ipsilateral paw [6].
Mechanical hyperalgesia test
Mechanical hyperalgesia was evaluated by the electronic version of von Frey’s test, as reported previously [29]. In a quiet, temperature controlled room, mice were placed in acrylic cages (12 x 10 x 17 cm) with wire grid floors, 15–30 min before the start of testing. The test consisted of evoking a hind paw flexion reflex with a handheld force transducer (electronic anesthesiometer, IITC Life Science, Woodland Hills, CA) adapted with a 0.5 mm² polypropylene tip. The investigator was trained to apply the tip perpendicularly to the central area of the plantar hind paw with a gradual increase in pressure. The gradual increase in pressure was manually performed in blinded experiments. The upper limit pressure was 15 g. The end-point was characterized by the removal of the paw followed by clear flinching movements. After paw withdrawal, the intensity of the pressure was automatically recorded, and the final value for the response was obtained by averaging three measurements. The animals were tested before and after treatments. The results are expressed by delta (Δ) withdrawal threshold (in grams) calculated by subtracting the mean measurements 0.5, 1, 3, 5 and 7 h after stimulus from the zero-time mean measurements [6].

Thermal hyperalgesia test
Heat thermal hyperalgesia was performed using a hot plate at 55 ± 1°C [6]. The end-point was characterized by the removal of the paw followed by clear paw flinching or licking movements. The upper time was 15 s to avoid possible injury. The results are expressed by total withdrawal latency (in seconds) of measurements obtained 0.5, 1, 3, 5 and 7 h after stimulus [30].

MPO assay
Neutrophil migration to the hind paw skin tissue was evaluated using an MPO kinetic-colorimetric assay, as described previously [6]. Samples of paw skin tissue were collected 7 h after stimulus in ice-cold 50 mM K2HPO4 buffer (pH 6.0) containing 0.5% hexadecyltrimethylammonium bromide (HTAB) and kept at -80°C until use. Samples were homogenized, centrifuged (16,100g x 2 min, 4°C), and the resulting supernatant was assayed for MPO activity spectrophotometrically at 450 nm (Multiskan GO Microplate Spectrophotometer, Thermo Scientific, Vantaa, Finland), with three readings in 1 min. The MPO activity of samples was compared to a standard curve of neutrophils. Briefly, 15 μL of sample was mixed with 200 μL of 50 mM phosphate buffer, pH 6.0, containing 0.167 mg/mL o-dianisidine dihydrochloride and 0.015% hydrogen peroxide. The results are presented as MPO activity (number of neutrophils X 10¹⁰ per g of tissue).

GSH measurement
Paw skin sample was collected and maintained at -80°C for at least 48 h. Sample was homogenized with 200 μL of 0.02 M EDTA. The homogenate was mixed with 25 μL of 50% trichloroacetic acid and was homogenized three times during 15 min. The mixture was centrifuged (15 min x 1500 g x 4°C). The supernatant was added to 200 μL of 0.2 M TRIS buffer, pH 8.2, and 10 μL of 0.01M DTNB. After 5 min, the absorbance was measured at 412 nm against a reagent blank with no supernatant. A standard curve was performed with standard GSH. The results are expressed as GSH nmol per mg paw [31].

FRAP assay
Paw skin sample was collected and immediately homogenized with 500 μL of 1.15% KCl, and was centrifuged (10 min x 200 g x 4°C). The ability of the sample to resist oxidative damage
was determined using FRAP assays [32]. For the FRAP assay, 50 μL of supernatant was mixed with 150 μL of deionized water and 1.5 mL of freshly prepared FRAP reagent. The reaction mixture was incubated at 37°C for 30 min and the absorbance was measured at 595 nm. The results were equated against a Trolox standard curve (1.5–30 μmol/L, final concentrations). The results are expressed as Trolox equivalents per mg of paw.

Superoxide anion production

The quantitation of \(\text{O}_2^- \) production in tissue homogenates was performed using the NBT assay, as described previously [33]. Skin samples were collected 3h after the stimulus. Briefly, 50 μL of the homogenate was incubated with 100 μL of NBT (1 mg/mL) in 96-well plates at 37°C for 1h. The supernatant was carefully removed and the reduced formazan solubilized by adding 120 μL of 2M KOH and 140 μL of DMSO. The NBT reduction was measured at 600 nm using a microplate spectrophotometer reader (Multiskan GO, Thermo Scientific). The tissue weight was used for data normalization; thus the results are expressed as NBT reduction (OD/mg of paw).

Lipid Peroxidation

Tissue lipid peroxidation was assessed by the levels of thiobarbituric acid reactive substances (TBARS) [34]. For this assay, TCA 10% was added to the homogenate and the mixture was centrifuged (1000 g, 3 min, 4°C) to precipitate proteins. The protein-free supernatant was then separated and mixed with TBA (0.67%). The mixture was kept in water bath (15 min, 100°C). Malondialdehyde (MDA), an intermediate product of lipid peroxidation, was determined by difference between absorbances at 535 and 572 nm using a microplate spectrophotometer reader. The results were presented as nmol of MDA per mg of paw [34].

Cytokine measurement

Paw skin samples were collected 3 h after the injection of KO₂, homogenized in 500 μL of ice-cold buffer containing protease inhibitors, centrifuged (3000 rpm x 10 min x 4°C) and the supernatants used to measure, TNF\(\alpha \) and IL-10 levels, by an enzyme-linked immunosorbent assay (ELISA) using eBioscience kits. As a control, the concentrations of these cytokines were determined in animals injected with saline. The results are expressed as picograms (pg) of cytokine per mg of paw.

Reverse transcription and quantitative polymerase chain reaction (RT-qPCR)

RT-qPCR was performed as previously described [33]. Paw skin samples were collected 3h after stimulus and homogenized in trizol reagent, with the total RNA being isolated according to manufacturer’s directions. The purity of total RNA was measured with a spectrophotometer with the wavelength absorption ratio (260/280 nm) being between 1.8 and 2.0 for all preparations. Reverse transcription of total RNA to cDNA, and qPCR were carried out using GoTaq® 2-Step RT-qPCR System (Promega) following the manufacturer’s instructions. The relative gene expression was measured using the comparative \(\Delta\Delta\text{Cq} \) method. The primers used were:

- gp91phox, sense: 5’ − AGCTATGAGGTGGTGATGTTAGTGG − 3’, antisense: 5’ − CACAATATTTGTACCATAGACAGTGTGAG−3’;
- IL-33, sense: 5’ − TCCTTGCTTGGCCAGTATCCA−3’, antisense: 5’ − TGCTCAATGCTCAGACGAC−3’;
- COX-2, sense: 5’ − GTGGAAAACCTCGTCAGA−3’, antisense: 5’ − GCTCGGCTTCAGTTTGGAG−3’;
- proproET-1, sense: 5’ − GTGTGTCTACTTCTGCCACCT−3’, antisense: 5’ − CACCAGCTGCTGATAGATA−3’;
- Nrf2, sense:
5′-TCACACGAGATGAGCTTAGGGCAA-3′, antisense: 5′-TACAGTTCTGGGCGGCGACTTAT-3′; HO-1, sense: 5′-CCCAAAACTGGCCTGTAAAA-3′, antisense: 5′-CGTGGTCAGTCAACATGGAT-3′; β-actin, sense: 5′-AGCTGCGTTTACACCCTTT-3′, antisense: 5′-AAGCCATGCCAATGTTGTCT-3′. The expression of β-actin mRNA was used as a reference gene to normalize data.

Statistical analysis

Results are presented as means ± SEM of measurements made on six mice in each group per experiment, and are representative of two independent experiments. Two-way analysis of variance (ANOVA) was used to compare the groups and doses at all times (curves), when the hyperalgesic responses were measured at different times after the administration or enforcement of the stimuli. The factors analyzed were treatment, time, and time versus treatment interaction. When there was a significant time versus treatment interaction, one-way ANOVA followed by Tukey’s post hoc was performed on each occasion. On the other hand, when the hyperalgesic responses were measured once after the administration or enforcement of the stimuli, the difference between responses were evaluated by one-way ANOVA followed by Tukey’s post hoc. Statistical differences were considered to be significant at \(p < 0.05 \).

Results

Naringenin inhibits KO2-induced overt pain-like behavior

Mice received naringenin (16.7, 50, 150 mg/kg, po) treatment 1h before injection of 1 mg of KO2 ip for the assessment of the total number of writhings, or received 30 \(\mu \)g of KO2 ipl for the evaluation of the total number of paw flinches and time spent licking the paw. The naringenin doses of 50 and 150 mg/kg inhibited KO2-induced writhing response at a similar magnitude of effect, with the 3 mg/kg dose showing no statistically significant effect (Fig 1a). The dose of 50 mg/kg of naringenin was therefore selected for the next experiments. Naringenin also inhibited KO2-induced paw flinches (Fig 1b) and time spent licking the paw (Fig 1c).

Naringenin inhibits KO2-induced mechanical hyperalgesia, thermal hyperalgesia, and MPO activity

Mice received naringenin (50 mg/kg, po) treatment 1h before KO2 injection (30 \(\mu \)g, ipl). Mechanical and thermal hyperalgesia were assessed 0.5, 1, 3, 5 and 7 h after KO2 injection. Naringenin inhibited KO2-induced mechanical and thermal hyperalgesia at all time points (Fig 2a and 2b). Naringenin also reduced KO2-induced increased of MPO activity at 7 h (Fig 2c).

Naringenin inhibits KO2-induced mechanical and thermal hyperalgesia by activating the NO−cGMP−PKG−K\textsubscript{ATP} channel signaling pathway

Mice were treated with inhibitors of a) NO synthase (L-NAME; 90 mg/kg, ip, 1 h pre-treatment), b) guanylate cyclase (ODQ, 0.3 mg/kg, ip, 30 min pre-treatment), c) PKG (KT5823, 0.5 \(\mu \)g/animal, ip, 5 min pre-treatment), and d) the K\textsubscript{ATP} channel (glibenclamide, 0.3 mg/kg, po, 45 min pre-treatment) before naringenin (50 mg/kg, po, 1 h before KO2 injection) administration. After 1h naringenin treatment, mice received a KO2 ipl injection. L-NAME (Fig 3a and 3b), ODQ (Fig 3c and 3d), KT5823 (Fig 3e and 3f), and glibenclamide (Fig 3g and 3h) inhibited the analgesic effect of naringenin in KO2-induced mechanical and thermal hyperalgesia. Therefore, the anti-hyperalgesic mechanism of naringenin depends, at least in part, on activating the NO−cGMP−PKG−K\textsubscript{ATP} channel signaling pathway.
Fig 1. Naringenin inhibits KO2-induced overt pain-like behavior. (a-c) Mice received naringenin (16.7, 50 and 150 mg/kg, po) treatment 1 h before ip injection of 1 mg of KO2 or ip injection of 30 μg of KO2. The total number of writhings was evaluated 0–20 min after ip injection of KO2. (b) The number of paw flinches and (c) time spent licking the paw were evaluated 0–30 min after ip injection of KO2. Results are mean ± SEM of 6 mice per group per experiment, and are representative of 2 independent experiments. *p<0.05 vs. saline group, #p<0.05 vs. KO2 group. One-way ANOVA followed Tukey’s post hoc.

doi:10.1371/journal.pone.0153015.g001
Fig 2. Naringenin inhibits KO₂-induced mechanical hyperalgesia, thermal hyperalgesia and myeloperoxidase (MPO) activity. (a-c) Mice received naringenin (50 mg/kg, po) treatment 1 h before ipl injection of 30 μg of KO₂. Mechanical (a) and thermal (b) hyperalgesia were evaluated between 0.5–7 h after ipl injection of KO₂. (c) At the 7th h after KO₂ injection, paw skin samples were collected for MPO activity assay. Results are mean ± SEM of 6 mice per group per experiment, and are representative of 2 independent experiments. *p<0.05 vs. saline group, #p<0.05 vs. KO₂ group. Repeated measures two-way ANOVA for hyperalgesia data and One-way ANOVA for MPO activity followed Tukey’s post hoc.

doi:10.1371/journal.pone.0153015.g002
Fig 3. Naringenin inhibits KO2-induced mechanical and thermal hyperalgesia by activating NO/cGMP/PKG/KATP channel signaling pathway. Mice received (a,b) L-NAME (NOS inhibitor, 90 mg/kg, ip, 1 h), (c,d) ODQ (guanylate cyclase inhibitor, 0.3 mg/kg, ip, 30 min), (e,f) KT5823 (PKG inhibitor, 0.5 µg/mice, ip, 5 min), or (g,h) glibenclamide (KATP channel inhibitor, 0.3 mg/kg, po, 45 min) treatment before administration of naringenin (50 mg/kg, po). (a-h) 1 h after naringenin administration, mice received an ip injection of 30 µg of KO2. Mechanical (a,c,e,g) and thermal (b,d,f,h) hyperalgesia were evaluated between 0.5–7 h after the ip
injection of KO₂. Results are mean ± SEM of 6 mice per group per experiment, and are representative of 2 independent experiments. *p<0.05 vs. saline group, #p<0.05 vs. KO₂ group. Repeated measures two-way ANOVA followed Tukey’s post hoc.

doi:10.1371/journal.pone.0153015.g003

Naringenin inhibits KO₂-induced oxidative stress
Mice received naringenin (50 mg/kg, po) treatment 1h before KO₂ injection (30 μg, ipl). Samples of paw skin were collected after 3 h for colorimetric assays and RT-qPCR. KO₂ depleted paw skin GSH (Fig 4a) and antioxidant capacity (Fig 4b); and increased lipid peroxidation (Fig 4c) and superoxide anion production (Fig 4d) in the paw skin. Naringenin treatment inhibited these deleterious effects of KO₂ by restoring GSH levels (Fig 4a), and antioxidant capacity (Fig 4b), and inhibiting lipid peroxidation (Fig 4c) and O₂⁻ production (Fig 4d). Corroborating the results on oxidative stress (Fig 4a–4d), naringenin also inhibited KO₂-induced gp91phox mRNA expression, a component of NADPH oxidase, an important source of O₂⁻ production (Fig 4e).

Naringenin inhibits KO₂-induced cytokine production and mRNA expression
The protocol of this section was the same as for Fig 4, with samples analyzed by ELISA and RT-qPCR. Naringenin treatment inhibited KO₂-induced TNFα (Fig 5a) and IL-10 (Fig 5b) production, and IL-33 mRNA expression (Fig 5c).

Naringenin inhibits KO₂-induced COX-2 mRNA expression
The protocol of this section was the same as for Fig 4, with samples analyzed by RT-qPCR. Naringenin treatment inhibited KO₂-induced COX-2 mRNA expression (Fig 6).

Naringenin inhibits KO₂-induced preproET-1 mRNA expression
The protocol of this section was the same as for Fig 4, and samples analyzed by RT-qPCR. Naringenin treatment inhibited KO₂-induced preproET-1 mRNA expression (Fig 7).

Naringenin increases Nrf2/HO-1 mRNA expression
The protocol of this section was the same as for Fig 4, with samples analyzed by RT-qPCR. Naringenin inhibited the KO₂-induced decrease in Nrf2 mRNA expression (Fig 8a), whilst enhancing KO₂-induced HO-1 mRNA expression (Fig 8b).

Discussion
Pain is a multisensory experience, which occurs in response to stimulation of the channels/receptors that depolarizes nociceptor terminals, thereby generating an action potential, which activates synaptic transmission in the dorsal horn of spinal cord. Such processes induce a characteristic set of responses, including hyperalgesia (an increased response to a stimulus that normally provoke pain) and allodynia (pain due to a stimulus that does not normally provoke pain) [1].

Free radicals in biological systems are natural products during interactions between cells, as well as between tissues and organs. However, an imbalance between endogenous oxidants and antioxidants can alter cell homeostasis. Oxidants target proteins, thereby inducing cell damage and contributing to cell death [35]. Free radicals also cause inflammation [36]. Consequently, treatment with antioxidants is a promising approach to control a wide array of pathophysiological events. KO₂ is a O₂⁻ donor, and its injection resulting in nociceptive responses, such as
Fig 4. Naringenin inhibits KO₂-induced oxidative stress and gp91phox mRNA expression. (a-e) Mice received naringenin (50 mg/kg, po) treatment 1 h before ipl injection of 30 μg of KO₂. Paw skin samples were collected 3 h after ipl KO₂ injection. Sample analyses were (a) GSH levels, (b) total antioxidant capacity (FRAP assay), (c) lipid peroxidation (TBARS assay), (d) O₂⁻ production (NBT assay), and (e) gp91phox mRNA expression by RT-qPCR. β-actin was a reference gene to normalize mRNA expression data. Results are mean ± SEM of 6 mice per group per experiment, and are representative of 2 independent experiments. *p<0.05 vs. saline group, #p<0.05 vs. KO₂ group. One-way ANOVA followed Tukey’s post hoc.

doi:10.1371/journal.pone.0153015.g004
Naringenin inhibits KO₂-induced cytokine production and mRNA expression. (a-c) Mice received naringenin (50 mg/kg, po) treatment 1 h before ipl injection of 30 μg of KO₂. Paw skin samples were collected 3 h after ipl KO₂ injection. Sample analyses were (a) TNFα, and (b) IL-10 production by ELISA, and (c) IL-33 mRNA expression by RT-qPCR. β-actin was a reference gene to normalize mRNA expression data. Results are mean ± SEM of 6 mice per group per experiment, and are representative of 2 independent experiments.

*p<0.05 vs. saline group, #p<0.05 vs. KO₂ group. One-way ANOVA followed Tukey’s post hoc.

doi:10.1371/journal.pone.0153015.g005
overt pain-like behavior, as well as mechanical and thermal hyperalgesia, which can be inhibited by analgesics [6]. Data indicates that O$_2^-$-induced pain depends on both direct superoxide anion effects, and indirect effects, partly via the production of peroxynitrite [37]. O$_2^-$ injection triggers inflammatory pain by mechanisms involving cytokine, COX-2 and ET-1 synthesis [6,38,39]. Oxidative stress is involved in the pain of varied inflammatory diseases such as rheumatoid arthritis [40,41], gout [42], delayed onset muscle soreness [43] and diabetes [44].

Fig 6. Naringenin inhibits KO$_2$-induced COX-2 mRNA expression. Mice received naringenin (50 mg/kg, po) treatment 1 h before ipl injection of 30 μg KO$_2$. Paw skin samples were collected 3 h after ipl KO$_2$ injection and analyzed for COX-2 mRNA expression by RT-qPCR. β-actin was a reference gene to normalize mRNA expression data. Results are mean ± SEM of 6 mice per group per experiment, and are representative of 2 independent experiments. *p< 0.05 vs. saline group, #p< 0.05 vs. KO$_2$ group. One-way ANOVA followed Tukey's post hoc.

doi:10.1371/journal.pone.0153015.g006

Fig 7. Naringenin inhibits KO$_2$-induced preproET-1 mRNA expression. Mice received naringenin (50 mg/kg, po) treatment 1 h before ipl injection of 30 μg KO$_2$. Paw skin samples were collected 3 h after ipl KO$_2$ injection for preproET-1 mRNA expression analysis by RT-qPCR. β-actin was a reference gene to normalize mRNA expression data. Results are mean ± SEM of 6 mice per group per experiment, and are representative of 2 independent experiments. *p< 0.05 vs. saline group, #p< 0.05 vs. KO$_2$ group. One-way ANOVA followed Tukey’s post hoc.

doi:10.1371/journal.pone.0153015.g007
Therefore, KO₂-induced inflammatory pain is a useful model to study the action of analgesics that target oxidative stress-dependent events [12].

The therapeutic properties of naringenin include antinociception [15–17], as well as antioxidant [22,23,44–48] and anti-inflammatory activities [18,19,21,22]. However, the analgesic effect and mechanisms of action of naringenin in a model of oxidative stress-triggered inflammatory pain remained to be determined. Herein, we provide the first evidence that naringenin inhibits KO₂-induced overt-pain-like behavior, MPO activity, mechanical hyperalgesia and thermal hyperalgesia via reduction of cytokine production and oxidative stress.

The activation of the NO−cGMP−PKG−KATP channel signaling pathway leads to nociceptor hyperpolarization, thereby reducing nociceptor neuronal transmission [25–28]. The present results show that naringenin inhibits the KO₂-induced mechanical and thermal hyperalgesia, at least in part, by activating the NO−cGMP−PKG−KATP channel signaling pathway. Free radical damage to membrane components leads to cellular dysfunction [49], which, by exposing neoepitopes, will contribute to an autoimmune response, which is receiving increasing interest as to its role in longer-term nociception. GSH is an important redox cellular system, with efficacy partly driven by the direct interactions of sulfhydryl groups (-SH) with ROS, thereby promoting a direct detox reaction [50]. Naringenin was able to restore GSH levels, as well as inhibiting other indicators of oxidative stress, such as FRAP, TBARS, and NBT in the paw skin. The KO₂ solution releases O₂⁻ for up to 10 min [6], however, NBT reduction (O₂⁻ production) occurred in paw skin samples collected 3 h after KO₂ injection. Therefore, O₂⁻ injection induces further O₂⁻. This is corroborated by the results showing KO₂-induced the gp91phox mRNA expression, which was inhibited by naringenin. The gp91phox subunit of NADPH oxidase participates in the electron transfer to oxygen, thereby generating O₂⁻ [51]. O₂⁻-induced pain also depends on hyperalgesic cytokines, with TNFRI deficiency reducing O₂⁻-induced pain and oxidative stress. TNFα-induced hyperalgesia depends on NADPH oxidase activation [38]. Not all cytokines are nociceptive, with IL-10 having anti-hyperalgesic effects [43]. IL-33 is a hyperalgesic cytokine that regulates the production of TNFα and IL-10 [52–55] Naringenin inhibited O₂⁻-induced production of TNFα and IL-10, as well as IL-33 mRNA expression.

Cytokine-induced inflammatory hyperalgesia in turn, depends, at least in part, on COX-2-dependent production of prostanoids such as prostaglandin E₂ and prostacyclin [1]. O₂⁻ also induces COX-2 mRNA expression, with celecoxib (a selective COX-2 inhibitor) diminishing O₂⁻-induced pain [6]. Naringenin inhibited O₂⁻-induced COX-2 mRNA expression. There is also a close relationship between cytokines and ET-1. Endothelin receptor antagonists inhibit cytokine-induced hyperalgesia and cytokines induce preproET-1 mRNA expression and ET-1
production [56,57]. Bosentan, an endothelin receptor antagonist, inhibits O_2^--induced hyperalgesia, and O_2^- induces preproET-1 mRNA expression [39]. Naringenin inhibited O_2^--induced prepro-ET-1 mRNA expression. Furthermore, activation of the ET receptors promotes oxidative stress and reduces the free radical scavenging ability [58]. Therefore, it is likely that ET-1 also contributes to the regulation of oxidative stress. In fact, bosentan inhibited O_2^--induced oxidative stress [39].

Consistent with the naringenin inhibition of cytokine production as well as COX-2 and preproET-1 mRNA expression, naringenin inhibits the activation of the pro-inflammatory transcription factor, NFκB, in several models of inflammation. For instance, naringenin inhibits NFκB activation in dextran sulphate sodium-induced colitis [59], ethanol-induced liver injury [18], streptozotocin-induced diabetes in mice [60] and rats [61], and experimental stroke [23]. Furthermore, naringenin also inhibits NFκB DNA-binding activity in ovalbumin-induced asthma [62] as well as in in vitro studies [63,64]. As such, it is not unlikely that naringenin inhibits KO$_2^-$-induced cytokines production, as well as COX-2 and preproET-1, by inhibiting NFκB induction and activity. Nrf2 is an important transcriptional regulator of the antioxidant response. In fact, Nrf2 activation is essential to the production of endogenous antioxidants such as GSH, thioredoxin system, HO-1, and NQO1 (NAD(P)H dehydrogenase, quinone 1) [65]. Keap-1 detects cellular environment changes such as oxidative stress, resulting in the activation of Nrf2, which readily translocates to the nucleus and upregulates downstream targets such as HO-1 [66]. Furthermore, the activation of the Nrf2/HO-1 pathway inhibits the production of inflammatory molecules such as TNFα [67–69], IL-6 [68,69] and IL-1β [67,68]. Nrf2 indirectly modulates NFκB activity [70], given that Nrf2 and NFκB compete for binding to the nuclear complex, coactivator p300/CBP (E1A binding protein p300/CREB-binding protein) [71]. Importantly, naringenin activates Nrf2 and is an agonist of the aryl hydrocarbon receptor, contributing to reducing the production of reactive oxygen species and inflammatory mediators, as well as modulating specific immune cell activity [47,72]. In the present study, naringenin inhibited the KO$_2^-$-induced decrease in Nrf2 mRNA expression and increased HO-1 mRNA expression. This mechanism might account for the analgesic effect of naringenin in KO$_2^-$-induced inflammation, by inhibiting pro-hyperalgesic cytokine production, and gp91phox as well as inducing antioxidant molecules.

The data presented here suggest that naringenin inhibits O_2^--induced inflammatory overt pain-like behavior, hyperalgesia, and neutrophil recruitment by activating the NO−cGMP −PKG −K$_{ATP}$ channel signaling pathway, as well as inhibiting oxidative stress and cytokine production, coupled to decreasing the mRNA of gp91phox, IL-33, COX-2, and preproET-1, and increasing Nrf2 and HO-1 mRNA expression. These data show for the first time that naringenin inhibits inflammatory pain triggered by O_2^- and its mechanisms. Therefore, suggesting that naringenin is a promising therapeutic approach as an analgesic, antioxidant and anti-inflammatory compound, requiring further investigation in nociception, as well as in the array of other medical conditions where these pathophysiological changes are also evident [73].

Acknowledgments

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Ministério da Ciências Tecnologia e Inovação (MCTI), Secretaria da Ciência, Tecnologia e Ensino Superior (SETI), Fundação Araucária and Parana State Government grants supported this study (Brazil). A.C.Z. received a postdoctoral fellowship from Fundação Araucária/CAPES (Brazil).
Author Contributions
Conceived and designed the experiments: RC WAVJ. Performed the experiments: MFM CCC LCS ACZ FAPR. Analyzed the data: MFM CCC LCS ACZ FAPR SRG MMB RC WAVJ. Contributed reagents/materials/analysis tools: SRG MMB RC WAVJ. Wrote the paper: MFM CCC LCS ACZ FAPR SRG MMB RC WAVJ. Drafted the article or revised it critically for important intellectual content: MFM CCC LCS ACZ FAPR SRG MMB RC WAVJ. Final approval of the version to be published: MFM CCC LCS ACZ FAPR SRG MMB RC WAVJ. Agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved: MFM CCC LCS ACZ FAPR SRG MMB RC WAVJ.

References
1. Verri WA, Cunha TM, Parada CA, Poole S, Cunha FQ, Ferreira SH. Hypernociceptive role of cytokines and chemokines: Targets for analgesic drug development? Pharmacol Ther. 2006; 112: 116–138. doi: 10.1016/j.pharmthera.2006.04.001 PMID: 16730375
2. Keeble JE, Bodkin JV, Liang L, Wodarski R, Davies M, Fernandes ES, et al. Hydrogen peroxide is a novel mediator of inflammatory hyperalgesia, acting via transient receptor potential vanilloid 1-dependent and independent mechanisms. Pain. International Association for the Study of Pain; 2009; 141: 135–142. doi: 10.1016/j.pain.2008.10.025
3. Ndengele MM, Cuzzocrea S, Esposito E, Mazzon E, Matuschak GM, et al. Cyclooxygenases 1 and 2 contribute to peroxynitrite-mediated inflammatory pain hypersensitivity. FASEB J. 2008; 22: 3154–3164. doi: 10.1096/fj.08-108159 PMID: 18497304
4. Salvemini D, Little JW, Doyle T, Neumann WL. Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med. 2011; 51: 951–966. doi: 10.1016/j.freeradbiomed.2011.01.026 PMID: 21277369
5. Wang Z-Q. A Newly Identified Role for Superoxide in Inflammatory Pain. J Pharmacol Exp Ther. 2004; 309: 869–878. doi: 10.1124/jpet.103.064154 PMID: 14988418
6. Maioli NA, Zarpelon AC, Mizokami SS, Calixto-Campos C, Guazelli CFS, Hohmann MSN, et al. The superoxide anion donor, potassium superoxide, induces pain and inflammation in mice through production of reactive oxygen species and cyclooxygenase-2. Brazilian J Med Biol Res. 2015; 48: 321–31. doi: 10.1590/1414-431X20144187
7. Droy-Lefaix MT, Drouet Y, Geraud G, Hosford D, Braquet P. Superoxide dismutase (SOD) and the PAF-antagonist (BN 52021) reduce small intestinal damage induced by ischemia-reperfusion. Free Radic Res Commun. 1991; 12–13 Pt 2: 725–35. PMID: 2060844
8. Matata BM, Galiñanes M. Peroxynitrite is an essential component of cytokines production mechanism in human monocytes through modulation of nuclear factor-kappa B DNA binding activity. J Biol Chem. 2002; 277: 2330–5. doi: 10.1074/jbc.M106393200 PMID: 11706022
9. Salvemini D, Wang ZQ, Zweier JL, Samouilov A, Macarthur H, Misko TP, et al. A nonpeptidyl mimic of superoxide dismutase with therapeutic activity in rats. Science. 1999; 286: 304–6. PMID: 10514375
10. Boughton-Smith NK, Evans SM, Laszlo F, Whittle BJ, Moncada S. The induction of nitric oxide synthase and intestinal vascular permeability by endotoxin in the rat. Br J Pharmacol. 1993; 110: 1189–95 PMID: 7507778
11. Navarro SA, Serafim KGG, Mizokami SS, Hohmann MSN, Casagrande R, Verri WA. Analgesic activity of piracetam: Effect on cytokine production and oxidative stress. Pharmacol Biochem Behav. 2013; 105: 183–192. doi: 10.1016/j.pbb.2013.02.018 PMID: 23474372
12. Fattori V, Pinho-Ribeiro FA, Borghi SM, Alves-Filho JC, Cunha TM, Cunha FQ, et al. Curcumin inhibits superoxide anion-induced pain-like behavior and leukocyte recruitment by increasing Nrf2 expression and reducing NF-κB activation. Inflamm Res. 2015; 64: 993–1003. doi: 10.1007/s00011-015-0885-y PMID: 26456836
13. Calixto-Campos C, Carvalho TT, Hohmann MSN, Pinho-Ribeiro FA, Fattori V, Manchope MF, et al. Vanillic Acid Inhibits Inflammatory Pain by Inhibiting Neutrophil Recruitment, Oxidative Stress, Cytokine Production, and NFκB Activation in Mice. J Nat Prod. 2015; 78: 1799–808. doi: 10.1021/acs.jnatprod.5b00246 PMID: 26192250
14. Lee C, Jeong T, Choi Y, Hyun B, Oh G. Anti-Atherogenic Effect of Citrus Flavonoids, Naringin and Naringenin, Associated with Hepatic ACAT and Aortic VCAM-1 and MCP-1 in High Cholesterol-Fed Rabbits. 2001; 688: 681–688. doi: 10.1006/bbrc.2001.5001
15. Anuja GI, Latha PG, Shine VJ, Suja SR, Shikha P, Kumar KS, et al. Antioedematous and Analgesic Properties of Fertile Fronds of Drynaria quercifolia. Hindawi Publishing Corporation; 2014; 2014: 2–8. doi: 10.1155/2014/302089

16. Kaulaskar S, Bhutada P, Rahigude A, Jain D, Harle U. Effects of naringenin on alldynia and hyperalgesia in rats with chronic constriction injury-induced neuropathic pain. Journal of Chinese integrative medicine. 2012; pp. 1482–9. doi: 10.3736/jcim20121223 PMID: 23257145

17. Hasanein P, Fazeli F. Role of naringenin in protection against diabetic hyperalgesia and tactile alldynia in male Wistar rats. J Physiol Biochem. 2014; 70: 997–1006. doi: 10.1007/s13105-014-0369-5 PMID: 25407136

18. Jayaraman J, Jesudoss VA, Menon VP, Namasivayam N. Anti-inflammatory role of naringenin in rats with ethanol induced liver injury. Toxicol Mech Methods. 2012; 22: 568–576. doi: 10.3109/15376516.2012.707255 PMID: 22900548

19. Chao C-L, Weng C-S, Chang N-C, Lin J-S, Kao S-T, Ho F-M. Naringenin more effectively inhibits inducible nitric oxide synthase and cyclooxygenase-2 expression in macrophages than in microglia. Nutr Res. 2010; 30: 858–64. doi: 10.1016/j.nutres.2010.10.011 PMID: 21147369

20. Karuppaguounder V, Arumugam S, Thanavarayan RA, Pitchaimani V, Sreedhar R, Agrin R, et al. Naringenin ameliorates daunorubicin induced nephrotoxicity by mitigating AT1R, ERK1/2-NFκB p65 mediated inflammation. Int Immunopharmacol. 2015; 28: 154–159. doi: 10.1016/j.intimp.2015.05.050 PMID: 26072060

21. Yang J, Li Q, Zhou XD, Kolosov VP, Perelman JM. Naringenin attenuates mucous hypersecretion by modulating reactive oxygen species production and inhibiting NF-κB activity via EGFR-Pi3K-Akt/ERK MAPKInase signaling in human airway epithelial cells. Mol Cell Biochem. 2011; 351: 29–40. doi: 10.1007/s11010-010-0708-y PMID: 21229383

22. Martinez RM, Pinho-Ribeiro FA, Steffen VS, Caviglione CV, Vignoli JA, Barbosa DS, et al. Naringenin inhibits UVB Irradiation-induced inflammation and Oxidative Stress in the Skin of Hairless Mice. J Nat Prod. 2015; 78: 1647–1655. doi: 10.1021/acs.jnatprod.5b00198

23. Raza SS, Khan MM, Ahmad A, Ashafaq M, Islam F, Wagner A. P., et al. Neuroprotective effect of naringenin on peripheral involvement of the nitric oxide-cGMP pathway in the indomethacin-induced antinociception. Proc Natl Acad Sci U S A. 2013; 120: 157–171. doi: 10.1073/pnas.1206101101

24. Esmeei MA, Alliou M. Naringenin attenuates CCH4-induced hepatic inflammation by the activation of an Nrf2-mediated pathway in rats. Clin Exp Pharmacol Physiol. 2014; 41: 416–22. doi: 10.1111/1440-1681.12230 PMID: 24684352

25. Cunha TM, Roman-Campos D, Lotufo CM, Duarte HL, Souza GR, Verri WA, et al. Morphine peripheral analgesia depends on activation of the PI3Kgamma/AKT/nNOS/NO/KATP signaling pathway. Proc Natl Acad Sci U S A. 2010; 107: 4442–7. doi: 10.1073/pnas.0914733107 PMID: 20147620

26. Duarte ID, dos Santos IR, Lorenzetti BB, Ferreira SH. Analgesia by direct antagonism of nociceptor sensitization involves the arginine-nitric oxide-cGMP pathway. Eur J Pharmacol. 1992; 217: 225–227. doi: 10.1016/0014-2999(92)80087-5 PMID: 1309593

27. Sachs D, Cunha FQ, Ferreira SH. Peripheral analgesic blockade of hypernociception: activation of arginine/NOS/cGMP/protein kinase G/ATP-sensitive K+ channel pathway. Proc Natl Acad Sci U S A. 2004; 101: 3680–8. doi: 10.1073/pnas.0306382101 PMID: 14990791

28. Ventura-Martinez R, Déciga-Campos M, Díaz-Reval MI, González-Trujano ME, López-Muñoz FJ. Peripheral involvement of the nitric oxide-cGMP pathway in the indomethacin-induced antinociception in rat. Eur J Pharmacol. 2004; 503: 43–48. doi: 10.1016/j.ejphar.2004.09.018 PMID: 15496294

29. Cunha TM, Verri WA, Vivancos GG, Moreira IF, Pierina CA, et al. An electronic pressure-meter used in rat. Eur J Pharmacol. 2004; 503: 43

30. Lavich TR, Cordeiro RSB, Silva PMR, e Martins MA. A novel hot-plate test sensitive to hyperalgesic stimuli and non-opioid analgesics. Braz J Med Biol Res. 2005; 38: 445–51. doi: 10.1111/j.1471-4159.2005.0030016

31. Sedia J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulphydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968; 25: 192–205. PMID: 4973948

32. Katalinic V, Modun D, Music I, Boban M. Gender differences in antioxidant capacity of rat tissues determined by 2.2'-azinobis-(3-ethylbenzothiazoline 6-sulfonate; ABTS) and ferric reducing antioxidant power (FRAP) assays. Comp Biochem Physiol C Toxicol Pharmacol. 2005; 140: 43–48. doi: 10.1016/j.cbpc.2005.01.005 PMID: 15792822

33. Hohmann MSN, Cardoso RDR, Pinho-Ribeiro FA, Crespigljo J, Cunha TM, Alves-Filho JC, et al. 5-Lipoxygenase deficieny reduces acetaminophen-induced hepatotoxicity and lethality. Biomed Res Int. 2013; 2013: 627046. doi: 10.1155/2013/627046 PMID: 24288682
34. Guedes RP, Bosco LD, Teixeira CM, Araújo ASR, Llesuy S, Belló-Klein A, et al. Neuropathic pain modifies antioxidant activity in rat spinal cord. Neurochem Res. 2006; 31: 603–9. doi: 10.1007/s11064-006-9058-2 PMID: 16770731

35. Dean RT, Fu S, Stocker R, Davies MJ. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J. 1997; 324

36. Closa D, Folch-Puy E. Oxygen free radicals and the systemic inflammatory response. IUBMB Life. 2004; 56: 185–91. doi: 10.1080/15216540410001701642 PMID: 15230345

37. Khattab MM. TEMPOL, a membrane-permeable radical scavenger, attenuates peroxynitrite-and superoxide anion-enhanced carrageenan-induced paw edema and hyperalgesia: a key role for superoxide anion. Eur J Pharmacol. 2006; 548: 167–73. doi: 10.1016/j.ejphar.2006.08.007 PMID: 16973155

38. Yamacita-Borin FY, Zarpelon AC, Pinho-Ribeiro FA, Fattori V, Alves-Filho JC, Cunha FQ, et al. Superoxide anion-induced pain and inflammation depends on TNFα/TNFR1 signaling in mice. Neurosci Lett. 2015; 605: 53–58. doi: 10.1016/j.neulet.2015.08.015 PMID: 26291484

39. Serafim KGG, Navarro SA, Zarpelon AC, Pinho-Ribeiro FA, Fattori V, Cunha TM, et al. Bosentan, a mixed endothelin receptor antagonist, inhibits superoxide anion-induced pain and inflammation in mice. Naunyn Schmiedebergs Arch Pharmacol. 2015; 388: 1211–1221. doi: 10.1007/s00210-015-1160-2 PMID: 26246053

40. Moon S-J, Woo Y-J, Jeong J-H, Park M-K, Oh H-J, Park J-S, et al. Rebamipide attenuates pain severity and cartilage degeneration in a rat model of osteoarthritis by downregulating oxidative damage and catabolic activity in chondrocytes. Osteoarthritis Cartilage. 2012; 20: 1426–38. doi: 10.1016/j.joca.2012.08.002 PMID: 22890185

41. Fattori V, Amaral FA, Verri WA. Neutrophils and arthritis: Role in disease and pharmacological perspectives. Pharmacol Res. 2016; doi: 10.1016/j.phrs.2016.01.027

42. Ramprasath T, Senthamizharasi M, Vasudevan V, Sasikumar S, Yuvaraj S, Selvam GS. Naringenin inhibits TNF-α induced VSMC proliferation and migration via induction of HO-1. Food Chem Toxicol. 2012; 50: 3025–31. doi: 10.1016/j.fct.2012.06.006 PMID: 22709785

43. Cavia-Saiz M, Busto MD, Pilar-Izquierdo MC, Ortega N, Perez-Mateos M, Muñiz P. Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: A comparative study. J Sci Food Agric. 2010; 90: 1238–1244. doi: 10.1002/jsfa.3959 PMID: 20394007

44. Lou H, Jing X, Wei X, Shi H, Ren D, Zhang X. Naringenin protects against 6-OHDA-induced neurotoxicity via activation of the Nrf2/ARE signaling pathway. Neuropharmacology. 2014; 79: 380–388. doi: 10.1016/j.neuropharm.2013.11.026 PMID: 24333330

45. Ramprasad T, Senthamizharasi M, Vasudevan V, Sasikumar S, Yuvaraj S, Selvam GS. Naringenin confers protection against oxidative stress through upregulation of Nrf2 target genes in cardiomyoblast cells. J Physiol Biochem. 2014; 70: 407–15. doi: 10.1007/s13105-014-0318-3 PMID: 24526395

46. Chtourou Y, Aouey B, Kebieche M, Fetoui H. Protective role of naringin against cisplatin induced oxidative stress, inflammatory response and apoptosis in rat striatum via suppressing ROS-mediated NF-κB and P53 signaling pathways. Chem Biol Interact. 2015; 239: 76–86. doi: 10.1016/j.cbi.2015.06.036 PMID: 26120027

47. Lushchak VI. Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids. 2012; 736837. doi: 10.1155/2012/736837 PMID: 22500213

48. Yu L, Quinn MT, Cross AR, Dinauer MC. Gp91phox is the heme binding subunit of the superoxide-generating NADPH oxidase. Proc Natl Acad Sci. 1998; 95: 7993–7998. doi: 10.1073/pnas.95.14.7993 PMID: 9653128

49. Verri WA, Guerrero ATG, Fukada SY, Valerio DA, Cunha TM, Xu D, et al. IL-33 mediates antigen-induced cutaneous and articular hypernociception in mice. Proc Natl Acad Sci U S A. 2008; 105: 2723–8. doi: 10.1073/pnas.0712116105 PMID: 18250323
53. Magro DAC, Hohmann MSN, Mizokami SS, Cunha TM, Alves-Filho JC, Casagrande R, et al. An interleukin-33/ST2 signaling deficiency reduces overt pain-like behaviors in mice. Braz J Med Biol Res. 2013; 46: 601–6. doi: 10.1590/1414-431X20132894 PMID: 23903682

54. Zarpelon AC, Cunha TM, Alves-Filho JC, Pinto LG, Ferreira SH, McNnes IB, et al. IL-33/ST2 signaling contributes to carrageenan-induced innate inflammation and inflammatory pain: role of cytokines, endothelin-1 and prostaglandin E2. Br J Pharmacol. 2013; 169: 90–101. doi: 10.1111/bph.12110 PMID: 23347081

55. Zarpelon AC, Rodrigues FC, Lopes AH, Souza GR, Carvalho TT, Pinto LG, et al. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain. FASEB J. 2016; 30: 54–65. doi: 10.1096/fj.14-267146 PMID: 26310268

56. Verri WA, Cunha TM, Parada CA, Poole S, Liew FY, Ferreira SH, et al. Antigen-induced inflammatory hepatic hypernociception in mice is mediated by IL-18. Brain Behav Immun. 2007; 21: 535–43. doi: 10.1016/j.bbi.2006.11.005 PMID: 17194566

57. Goto T, Hussein MH, Kato S, Daoud GA-H, Kato T, Sugira T, et al. Endothelin receptor antagonist attenuates oxidative stress in a neonatal sepsis piglet model. Pediatr Res. 2012; 72: 600–5. doi: 10.1038/pr.2012.134 PMID: 23041664

58. Li N, Alam J, Venkatesan MI, Eiguren-Fernandez A, Schmitz D, Di Stefano E, et al. Nrf2 Is a Key Transcription Factor That Regulates Antioxidant Defense in Macrophages and Epithelial Cells: Protecting against Proinflammatory and Oxidizing Effects of Diesel Exhaust Chemicals. J Immunol. American Association of Immunologists; 2004; 173: 3467

59. Lim R, Barker G, Wall CA, Lappas M. Dietary phytophenols curcumin, naringenin and apigenin reduce infection-induced inflammatory and contractile pathways in human placenta, foetal membranes and myometrium. Mol Hum Reprod. 2013; 19: 451–62. doi: 10.1093/molehr/gat015 PMID: 23475986

60. Tsai SJ, Huang CS, Mong MC, Kam WY, Huang HY, Yin MC. Anti-inflammatory and antifibrotic effects of naringenin in diabetic mice. J Agric Food Chem. 2012; 60: 514–521. doi: 10.1021/jf203259h PMID: 22117528

61. Shin HS, Kim H, Kim Y, Kim E, Pae H-O, Chung H-T, et al. Evidence that cisplatin-induced auditory damage is attenuated by downregulation of pro-inflammatory cytokines via Nrf2/Keap1 signaling. J Immunol. 2012; 188: 1248–59. doi: 10.4049/jimmunol.1100221 PMID: 22117528

62. Shin HS, Kim H, Kim Y, Kim E, Pae H-O, Chung H-T, et al. Evidence that cisplatin-induced auditory damage is attenuated by downregulation of pro-inflammatory cytokines via Nrf2/Keap1 signaling. J Immunol. 2012; 188: 1248–59. doi: 10.4049/jimmunol.1100221 PMID: 22117528

63. Li N, Alam J, Venkatesan MI, Eiguren-Fernandez A, Schmitz D, Di Stefano E, et al. Nrf2 Is a Key Transcription Factor That Regulates Antioxidant Defense in Macrophages and Epithelial Cells: Protecting against Proinflammatory and Oxidizing Effects of Diesel Exhaust Chemicals. J Immunol. American Association of Immunologists; 2004; 173: 3467

64. Lim R, Barker G, Wall CA, Lappas M. Dietary phytophenols curcumin, naringenin and apigenin reduce infection-induced inflammatory and contractile pathways in human placenta, foetal membranes and myometrium. Mol Hum Reprod. 2013; 19: 451–62. doi: 10.1093/molehr/gat015 PMID: 23475986

65. Tsai SJ, Lin-Shiau SY, Lin JK. Suppression of nitric oxide synthase and the down-regulation of the activation of NFkappaB in macrophages by resveratrol. Br J Pharmacol. 1999; 126: 673–80. doi: 10.1038/sj.bjp.0702357 PMID: 608. doi: 10.1038/pr.2012.134 PMID: 23041664

66. So H, Kim H, Kim Y, Kim E, Pae H-O, Chung H-T, et al. Evidence that cisplatin-induced auditory damage is attenuated by downregulation of pro-inflammatory cytokines via Nrf2/Keap1 signaling. J Immunol. 2012; 188: 1248–59. doi: 10.4049/jimmunol.1100221 PMID: 22117528

67. Yeligar SM, Machida K, Kaira VK. Ethanol-induced HO-1 and NQO1 are differentially regulated by HIF-1alpha and Nrf2 to attenuate inflammatory cytokine expression. J Biol Chem. 2010; 285: 35359–73. doi: 10.1074/jbc.M110.138636 PMID: 20933719

68. Pan H, Wang H, Wang X, Zhu L, Mao L. The absence of Nrf2 enhances NF-κB-dependent inflammation following scratch injury in mouse primary cultured astrocytes. Mediators Inflamm. 2012; 2012: 217580. doi: 10.1155/2012/217580 PMID: 22529521

69. Kim S-W, Lee H-K, Shin J-H, Lee J-K. Up-down regulation of HO-1 and iNOS gene expressions by ethyl pyruvate via recruiting p300 to Nrf2 and depriving It from p65. Free Radic Biol Med. 2013; 65: 468–76. doi: 10.1016/j.freeradbiomed.2013.07.028 PMID: 23981977
72. Wang H-K, Yeh C-H, Iwamoto T, Satsu H, Shimizu M, Totsuka M. Dietary flavonoid naringenin induces regulatory T cells via an aryl hydrocarbon receptor mediated pathway. J Agric Food Chem. 2012; 60: 2171–8. doi: 10.1021/jf204625y PMID: 22324845

73. Anderson G, Maes M. Oxidative/nitrosative stress and immuno-inflammatory pathways in depression: treatment implications. Curr Pharm Des. 2014; 20: 3812–47. doi: 10.2174/13816128113196660738 PMID: 24180395