LEARNING CONTEXT-AWARE ADAPTIVE SOLVERS TO ACCELERATE CONVEX QUADRATIC PROGRAMMING

Haewon Jung, Junyoung Park, Jinkyoo Park
KAIST, South Korea
{zora07,junyoungpark,jinkyoo.park}@kaist.ac.kr

ABSTRACT

Convex quadratic programming (QP) is an important sub-field of mathematical optimization. The alternating direction method of multipliers (ADMM) is a successful method to solve QP. Even though ADMM shows promising results in solving various types of QP, its convergence speed is known to be highly dependent on the step-size parameter ρ. Due to the absence of a general rule for setting ρ, it is often tuned manually or heuristically. In this paper, we propose CA-ADMM (Context-aware Adaptive ADMM) which learns to adaptively adjust ρ to accelerate ADMM. CA-ADMM extracts the spatio-temporal context, which captures the dependency of the primal and dual variables of QP and their temporal evolution during the ADMM iterations. CA-ADMM chooses ρ based on the extracted context. Through extensive numerical experiments, we validated that CA-ADMM effectively generalizes to unseen QP problems with different sizes and classes (i.e., having different QP parameter structures). Furthermore, we verified that CA-ADMM could dynamically adjust ρ considering the stage of the optimization process to accelerate the convergence speed further.

1 INTRODUCTION

Among the optimization classes, quadratic program (QP) is widely used due to its mathematical tractability, e.g., convexity, in various fields such as portfolio optimization (Boyd et al., 2017; Cornuéjols et al., 2018; Boyd et al., 2014; Markowitz, 1952), machine learning (Kečman et al., 2001; Sha et al., 2002), control, (Buijs et al., 2002; Krupa et al., 2022; Bartlett et al., 2002), and communication applications (Luo & Yu, 2006; Hons, 2001). As the necessity to solve large optimization problems increases, it is becoming increasingly important to ensure the scalability of QP for achieving the solution of the large-sized problem accurately and quickly.

Among solution methods to QP, first-order methods (Frank & Wolfe, 1956) owe their popularity due to their superiority in efficiency over other solution methods, for example active set (Wolfe, 1959) and interior points methods (Nesterov & Nemirovskii, 1994). The alternating direction method of multipliers (ADMM) (Gabay & Mercier, 1976; Mathematique et al., 2004) is commonly used for returning high solution quality with relatively small computational expense (Stellato et al., 2020b). Even though ADMM shows satisfactory results in various applications, its convergence speed is highly dependent on both parameters of QP and user-given step-size ρ. In an attempt to resolve these issues, numerous studies have proposed heuristic (Boyd et al., 2011; He et al., 2000; Stellato et al., 2020a) or theory-driven (Ghadimi et al., 2014) methods for deciding ρ. But a strategy for selecting the best performing ρ still needs to be found (Stellato et al., 2020b). Usually ρ is tuned in a case-dependent manner (Boyd et al., 2011; Stellato et al., 2020a; Ghadimi et al., 2014).

Instead of relying on hand-tuning ρ, a recent study (Ichnowski et al., 2021) utilizes reinforcement learning (RL) to learn a policy that adaptively adjusts ρ to accelerate the convergence of ADMM. They model the iterative procedure of ADMM as the Markov decision process (MDP) and apply the generic RL method to train the policy that maps the current ADMM solution states to a scalar value of ρ. This approach shows relative effectiveness over the heuristic method (e.g., OSQP (Stellato et al., 2020a)), but it has several limitations. It uses a scalar value of ρ that cannot adjust ρ differently depending on individual constraints. And, it only considers the current state without its history to determine ρ, and therefore cannot capture the non-stationary aspects of ADMM iterations. This
method inspired us to model the iteration of ADMM as a non-stationary networked system. We developed a more flexible and effective policy for adjusting ρ for all constraints simultaneously and considering the evolution of ADMM states.

In this study, we propose Context-aware Adaptive ADMM (CA-ADMM), an RL-based adaptive ADMM algorithm, to increase the convergence speed of ADMM. To overcome the mentioned limitations of other approaches, we model the iterative solution-finding process of ADMM as the MDP whose context is determined by QP structure (or parameters). We then utilize a graph recurrent neural network (GRNN) to extract (1) the relationship among the primal and dual variables of the QP problem, i.e., its spatial context and (2) the temporal evolutions of the primal and dual variables, i.e., its temporal context. The policy network then utilizes the extracted spatio-temporal context to adjust ρ.

From the extensive numerical experiments, we verified that CA-ADMM adaptively adjusts ρ in consideration of QP structures and the iterative stage of the ADMM to accelerate the convergence speed further. We evaluated CA-ADMM in various QP benchmark datasets and found it to be significantly more efficient than the heuristic and learning-based baselines in number of iterations until convergence. CA-ADMM shows remarkable generalization to the change of problem sizes and, more importantly, benchmark datasets. Through the ablation studies, we also confirmed that both spatial and temporal context extraction schemes are crucial to learning a generalizable ρ policy.

The contributions of the proposed method are summarized below:

- **Spatial relationships**: We propose a heterogeneous graph representation of QP and ADMM state that captures spatial context and verifies its effect on the generalization of the learned policy.
- **Temporal relationships**: We propose to use a temporal context extraction scheme that captures the relationship of ADMM states over the iteration and verifies its effect on the generalization of the learned policy.
- **Performance/Generalization**: CA-ADMM outperforms state-of-the-art heuristics (i.e., OSQP) and learning-based baselines on the training QP problems and, more importantly, out-of-training QP problems, which include large size problems from a variety of domains.

2 RELATED WORKS

Methods for selecting ρ of ADMM. In the ADMM algorithm, step-size ρ plays a vital role in determining the convergence speed and accuracy. For some special cases of QP, there is a method to compute optimal ρ (Ghadimi et al., 2014). However, this method requires linear independence of the constraints, e.g., nullity of A is nonzero, which is difficult to apply in general QP problems. Thus, various heuristics have been proposed to choose ρ (Boyd et al., 2011; He et al., 2000; Stellato et al., 2020a). Typically, the adaptive methods that utilize state-dependent step-size ρ_t show a relatively faster convergence speed than non-adaptive methods. He et al. (2000); Boyd et al. (2011) suggest a rule for adjusting ρ_t depending on the ratio of residuals. OSQP (Stellato et al., 2020a) extends the heuristic rule by adjusting ρ with the values of the primal and dual optimization variables. Even though OSQP shows improved performance, designing such adaptive rules requires tremendous effort. Furthermore, the designed rule for a specific QP problem class is hard to generalize to different QP classes having different sizes, objectives and constraints. Recently, Ichnowski et al. (2021) employed RL to learn a policy for adaptively adjusting ρ depending on the states of ADMM iterations. This method outperforms other baselines, showing the potential that an effective rule for adjusting ρ can be learned without problem-specific knowledge using data. However, this method still does not sufficiently reflect the structural characteristics of the QP and the temporal evolution of ADMM iterations. Both limitations make capturing the proper problem context challenging, limiting its generalization capability to unseen problems of different sizes and with alternate objectives and constraints.

Graph neural network for optimization problems. An optimization problem comprises objective function, decision variables, and constraints. When the optimization variable is a vector, there is typically interaction among components in the decision vector with respect to an objective or constraints. Thus, to capture such interactions, many studies have proposed to use graph representation to model such interactions in optimization problems. Gasse et al. (2019) expresses mixed
integer programming (MIP) using a bipartite graph consisting of two node types, decision variable nodes, and constraint nodes. They express the relationships among variables and the relationships between decision variables and constraints using different kinds of edges whose edge values are associated with the optimization coefficients. Ding et al. (2019) extends the bipartite graph with a new node type, ‘objective’. The objective node represents the linear objective term and is connected to the variable node, with the edge features and coefficient value of the variable component in the objective term. They used the tripartite graph as an input of GCN to predict the solution of MIP.

ML accelerated scientific computing. ML models are employed to predict the results of complex computations, e.g., the solution of ODE and PDE, and the solution of optimization problems, and trained by supervised learning. As these methods tend to be sample inefficient, other approaches learn operators that expedite computation speeds for ODE (Poli et al., 2020; Berto et al., 2021), fixed point iterations (Bai et al., 2021; Park et al., 2021b), and matrix decomposition (Donon et al., 2020). Poli et al. (2020) uses ML to predict the residuals between the accurate and inaccurate ODE solvers and use the predicted residual to expedite ODE solving. Bai et al. (2021); Park et al. (2021b) trains a network to learn alternate fixed point iterations, trained to give the same solution while requiring less iterations to converge. However, the training objective all the listed methods is minimizing the network prediction with the ground truth solution, meaning that those methods are at risk to find invalid solutions. CA-ADMM learns to provide the proper ρ that minimize ADMM iterations, rather than directly predicting the solution of QP. This approach, i.e., choose ρ for ADMM, still guarantees that the found solution remains equal to the original one.

3 Background

Quadratic programming (QP) A quadratic program (QP) associated with N variables and M constraints is an optimization problem having the form of the following:

$$
\begin{align*}
\min_x & \quad \frac{1}{2}x^\top P x + q^\top x \\
\text{subject to} & \quad l \leq Ax \leq u,
\end{align*}
$$

where $x \in \mathbb{R}^N$ is the decision variable, $P \in \mathbb{S}_+^N$ is the positive semi-definite cost matrix, $q \in \mathbb{R}^N$ is the linear cost term, $A \in \mathbb{R}^{M \times N}$ is a $M \times N$ matrix that describes the constraints, and l and u are their lower and upper bounds. QP generally has no closed-form solution except some special cases, for example $A = 0$. Thus, QP is generally solved via some iterative methods.

First-order QP solver Out of the iterative methods to solve QP, the alternating direction method of multipliers (ADMM) has attracted considerable interest due to its simplicity and suitability for various large-scale problems including statistics, machine learning, and control applications. (Boyd et al., 2011). ADMM solves a given QP(P, q, l, A, u) through the following iterative scheme. At each step t, ADMM solves the following system of equations:

$$
\begin{aligned}
\begin{bmatrix}
P + \sigma I & A \\
A^\top & \text{diag}(\rho)^{-1}
\end{bmatrix}
\begin{bmatrix}
x_{t+1} \\
y_{t+1}
\end{bmatrix}
&=
\begin{bmatrix}
\sigma x_t - q \\
z_t - \text{diag}(\rho)^{-1}y_t
\end{bmatrix},
\end{aligned}
$$

where $\sigma > 0$ is the regularization parameter that assures the unique solution of the linear system, $\rho \in \mathbb{R}^M$ is the step-size parameter, and $\text{diag}(\rho) \in \mathbb{R}^{M \times M}$ is a diagonal matrix with elements ρ. By solving Eq. (2), ADMM finds x_{t+1} and y_{t+1}. Then, it updates y_t and z_t with the following equations:

$$
\begin{align}
\tilde{z}_{t+1} & \leftarrow z_t + \text{diag}(\rho)^{-1}(y_{t+1} - y_t) \\
z_{t+1} & \leftarrow \Pi(\tilde{z}_t + \text{diag}(\rho)^{-1}y_t) \\
y_{t+1} & \leftarrow x_t + \text{diag}(\rho)(\tilde{z}_{t+1} - z_{t+1}),
\end{align}
$$

where Π is the projection onto the hyper box $[l, u]$. ADMM proceeds the iteration until the primal residual $r_{t}^\text{primal} = Ax_t - z_t \in \mathbb{R}^M$ and dual residuals $r_{t}^\text{dual} = Px_t + q + A^\top y_t \in \mathbb{R}^N$ are sufficiently small. For instance, the termination criteria are as follows:

$$
||r_{t}^\text{primal}||_\infty \leq e^\text{primal}, ||r_{t}^\text{dual}||_\infty \leq e^\text{dual},$$

where e^primal and e^dual are sufficiently small positive numbers.
Figure 1: An overview of CA-ADMM. CA-ADMM uses the spatio-temporal context, which is extracted by GRNN from the ADMM state observations, to compute ρ for ADMM algorithm.

4 Method

In this section, we present Context-aware Adaptive ADMM (CA-ADMM) that automatically adjusts ρ parameters considering the spatial and temporal contexts of the ADMM to accelerate the convergence of ADMM. We first introduce the contextual MDP formulation of ADMM iterations for solving QP problems and discuss two mechanisms devised to extract the spatial and temporal context from the ADMM iterations.

4.1 Contextual MDP formulation

As shown in Eqs. (2) to (5), ADMM solves QP by iteratively updating the intermediate variables $x_t, y_t,$ and z_t. Also, the updating rule is parameterized with QP variables P, q, l, A, u.

We aim to learn a QP solver that can solve general QP instances whose structures are different from QPs used for training the solver. As shown in Eqs. (2) to (5), ADMM solves QP by iteratively updating the intermediate variables $x_t, y_t,$ and z_t. Also, the updating rule is parameterized with QP variables P, q, l, A, u. In this perspective, we can consider the iteration of ADMM for each QP as a different MDP whose dynamics can be characterized by the structure of QP and the ADMM's updating rule. Based on this perspective, our objective, learning a QP solver that can solve general QP instances, is equivalent to learning an adaptive policy (ADMM operator) that can solve a contextual MDP (QP instance with different parameters).

Assuming we have a QP(P, q, A, l, u), where P, q, A, l, u are the parameters of the QP problem, and ADMM(ϕ), where ϕ is the parameters of the ADMM algorithm. In our study, ϕ is ρ, but it can be any configurable parameter that affects the solution updating procedure. We then define the contextual MDP $M = (X, U, T^c, R, \gamma)$, where $X = \{(x_t, y_t, z_t)\}_{t=1,2,...}$ is the set of states, $U = \{\rho_t\}_{t=1,2,...}$ is the set of actions, $T^c_{\rho}(x, x') = P(x_{t+1} = x'|x_t = x, \rho_t = \rho, c)$ is the transition function whose behaviour is contextualized with the context $c = \{P, q, A, l, u, \phi\}$, R is the reward function that returns 0 when x_t is the terminal state (i.e., the QP problem is solved) and -1 otherwise, and $\gamma \in [0, 1]$ is a discount factor. We set an MDP transition made at every 10 ADMM steps to balance computational cost and acceleration performance. That is, we observe MDP states at every 10 ADMM steps and change ρ_t; thus, during the ten steps, the same actions ρ_t are used for ADMM. As shown in the definition of T^c_{ρ}, the context c alters the solution updating procedure of ADMM (i.e., $T^c_{\rho} \neq T^c_{\rho'}$ to the given state x). Therefore, it is crucial to effectively process the context information c in deriving the policy $\pi_{\phi}(x_t)$ to accelerate the ADMM iteration.

One possible approach to accommodate c is manually designing a feature that serves as (a minimal) sufficient statistic that separates T^c_{ρ} from the other $T^c_{\rho'}$. However, designing such a feature can involve enormous efforts; thus, it derogates the applicability of learned solvers to the new solver classes. Alternatively, we propose to learn a context encoder that extracts the more useful context information from not only the structure of a target QP but also the solution updating history of the ADMM so that we can use context-dependent adaptive policy for adjusting ρ. To successfully
extract the context information from the states, we consider the relationships among the primal and dual variables (i.e., the spatial relationships) and the evolution of primal/dual variables with ADMM iteration (i.e., temporal relationship). To consider such spatio-temporal correlations, we propose an encoder network that is parameterized via a GNN followed by RNN. Fig. 1 visualizes the overall network architecture.

4.2 Extracting Spatial Context Information Via Heterogeneous Graph Neural Network

Heterogeneous graph representation of QP. The primal x_t and dual y_t variables of QP are related via the QP parameters (P, q, A, l, u). As shown in Fig. 2, their relationship can be modeled as a heterogeneous graph where the nodes represent the primal and dual variables, and the edges represent the relationship among these variables. As the roles of primal and dual variables in solving QP are distinctive, it necessitates the graph representation that reflects the different variable type information. Regarding that, we represent the relationships of the variables at t-th MDP step with a directed heterogeneous graph $G_t = (V_t, E_t)$. As the graph construction is only associated with the current t, we omit the step-index t for notational brevity. The node set V consists of the primal and dual node sets V_{primal} and V_{dual}. The n-th primal and m-th dual nodes have node feature s_n^{primal} and s_m^{dual} defined as:

$$s_n^{primal} = \left[\log_{10} r_n^{primal}, \log_{10} ||r_n^{dual}||_{\infty}, I_{r_n^{primal} < \epsilon_{primal}}, I_{r_n^{dual} < \epsilon_{dual}} \right],$$

Encoding ADMM state, (7)

$$s_m^{dual} = \left[\log_{10} r_m^{dual}, \log_{10} ||r_m^{primal}||_{\infty}, I_{r_m^{primal} < \epsilon_{primal}}, y_m, \rho_m, \min(z_m - l_m, u_m - z_m) \right],$$

Encoding ADMM state, (8)

where r_n^{primal} and r_m^{dual} denotes the m-th and n-th element of primal and dual residuals, respectively, $|| \cdot ||_{\infty}$ denotes the infinity norm, $I_{r_n^{primal} < \epsilon_{primal}}$ and $I_{r_n^{dual} < \epsilon_{dual}}$ are the indicators whether the m-th primal and n-th dual residual is smaller than ϵ_{primal} and ϵ_{dual}, respectively. $I_{equality}$ and $I_{inequality}$ are the indicators whether the m-th constraint is equality and inequality, respectively.

The primal and dual node features are designed to capture ADMM state information and the QP structure. However, those node features do not contain information of P, q, or A. We encode such QP problem structure in the edges. The edge set E consists of

- The primal-to-primal edge set E_{p2p} is defined as $\{ e_{ij}^{p2p} | P_{ij} \neq 0 \forall (i, j) \in [1, N] \times [1, N] \}$ where $[1, N] = \{1, 2, \ldots, N\}$, i.e., the edge from the i-th primal node to j-th primal node exists when the corresponding P is not zero. The edge e_{ij}^{p2p} has the feature s_{ij}^{p2p} as $[P_{ij}, q_i]$.
- The primal-to-dual edge set E_{p2d} is defined as $\{ e_{ij}^{p2d} | A_{ji} \neq 0 \forall (i, j) \in [1, N] \times [1, M] \}$. The edge e_{ij}^{p2d} has the feature s_{ij}^{p2d} as $[A_{ji}].$
• The dual-to-primal edge set E^{d2p} is defined as \(\{ e_{ij} | A_{ij} \neq 0 \ \forall (i,j) \in [1, M] \times [1, N] \} \). The edge e^{d2p}_{ij} has the feature s^{d2p}_{ij} as $|A_{ij}|$.

Graph preprocessing for unique QP representation. QP problems have the same optimal decision variables for scale transformation of the objective function and constraints. However, such transformations alter the QP graph representation. To make graph representation invariant to the scale transform, we pre-process QP problems by dividing the elements of P, q, a, A, u with problem-dependent constants. The details of the preprocessing steps are given in Appendix A.

Graph embedding with Hetero GNN. The heterogeneous graph G models the various type of information among the primal and dual variables. To take into account such type information for the node and edge embedding, we propose heterogeneous graph attention (HGA), a variant of type-aware graph attention (Park et al., 2021a), to embed G. HGA employs separate node and edge encoders for each node and edge type. For each edge type, it computes edge embeddings, applies the attention mechanism to compute the weight factors, and then aggregates the resulting edge embeddings via weighted summation. Then, HGA sums the different-type aggregated edge embeddings to form a type-independent edge embedding. Lastly, HGA updates node embeddings by using the type-independent edge embeddings as an input to node encoders. We provide the details of HGA in Appendix B.

4.3 Extracting temporal context via RNN

The previous section discusses extracting context by considering the spatial correlation among the variables within the MDP step. We then discuss extracting the temporal correlations. As verified from numerous optimization literature, deciding ρ based on the multi-stage information (e.g., momentum methods) helps increase the stability and solution quality of solvers. Inspired by that, we consider the time evolution of the ADMM states to extract temporal context. To accomplish that, we use an RNN to extract the temporal context from the ADMM state observations. At the tth step, we consider l historical state observations to extract the temporal context. Specifically, we first apply HGA to G_{t-l}, \ldots, G_{t-1} and then apply GRU (Chung et al., 2014) as follows:

\[
G'_{t-l+\delta} = \text{HGA}(G_{t-l+\delta}) \quad \text{for } \delta = 0, 1, 2, \ldots, l - 1 \tag{9}
\]

\[
\mathcal{H}_{t-l+\delta} = \text{GRU}(\mathcal{V}'_{t-l+\delta}, \mathcal{H}_{t-l+\delta-1}) \quad \text{for } \delta = 1, 2, \ldots, l - 1 \tag{10}
\]

where $G'_{t-l+\delta}$ is updated graph at $t - l + \delta$, $\mathcal{V}'_{t-l+\delta}$ is the set of updated nodes of $G'_{t-l+\delta}$, and $\mathcal{H}_{t-l+\delta}$ are the hidden embeddings. We define the node-wise context C_t at time t as the last hidden embedding \mathcal{H}_{t-1}.

4.4 Adjusting ρ_t using extracted context

We parameterize the policy $\pi_0(G_t, C_t)$ via the HGA followed by an MLP. Since action ρ_t is not defined at t, we exclude ρ_t from the node features of G_t and instead node-wise concatenate C_t to the node features. For the action-value network $Q_0(G_t, \rho_t, C_t)$, we use G_t, ρ_t, and C_t as inputs. $Q_0(G_t, \rho_t, C_t)$ has a similar network architecture as $\pi_0(G_t, C_t)$. We train $\pi_0(G_t, C_t)$ and $Q_0(G_t, \rho_t, C_t)$ on the QP problems of size $10\sim15$ (i.e., $N \in [10, 15]$) with DDPG (Lillicrap et al., 2015) algorithm. Appendix C details the used network architecture and training procedure further.

Comparison to RLQP. Our closest baseline RLQP (Ichnowski et al., 2021) is also trained using RL. At step t, it utilizes the state $x = \{ x^{dual}_m \}_{m=1, \ldots, M}$, with

\[
s^{dual}_m = [\log_{10} || \text{Primal} ||_\infty, \log_{10} || \text{Dual} ||_\infty, y_m, \rho_m, \min(z_m - l_m, u_m - z_m), z_m - (Ax)_m]. \tag{11}
\]

It then uses an shared MLP $\pi_0(s^{dual}_n)$ to compute ρ_n. We observe that the state representation and policy network are insufficient to capture the contextual information for differentiating MDPs. The state representation does not include information of P and q, and the policy network does not explicitly consider the relations among the dual variables. However, as shown in Eq. (2), ADMM iteration results different (x_t, ν_t) with changes in P, q and A, meaning that T^e_t also changes. Therefore, such state representations and network architectures may result in an inability to capture contextual
Table 1: **In-domain results (in # iterations).** Smaller is better (↓). Best in **bold.** We measure the average and standard deviation of ADMM iterations for each QP benchmark. All QP problems are generated to have $10 \leq N \leq 15$.

Method	Random QP	EqQP	Portfolio	SVM	Huber	Control	Lasso
OSQP	81.12 ± 21.93	25.52 ± 0.73	185.18 ± 28.73	183.79 ± 40.88	54.38 ± 5.37	183.79 ± 40.88	106.17 ± 45.70
RLQP	69.42 ± 27.35	20.27 ± 0.49	28.45 ± 5.52	34.14 ± 3.84	25.16 ± 0.66	26.78 ± 15.84	25.61 ± 0.68
CA-ADMM	27.44 ± 4.86	19.61 ± 0.61	20.12 ± 0.47	20.32 ± 0.69	17.52 ± 3.88	19.08 ± 1.01	

Figure 3: **QP size generalization results.** Smaller is better (↓). We plot the average and standard deviation of the iterations as the bold lines and error bars, respectively. The gray area (gray) indicates the training QP sizes.

changes among QP problems. Additionally, using single state observation as the input for $\pi(\theta)$ may also hinder the possibility of capturing temporal context.

5 **Experiments**

We evaluate CA-ADMM in various canonical QP problems such as Random QP, EqQP, Portfolio, SVM, Huber, Control, and Lasso. We use RLQP, another learned ADMM solver (Ichnowski et al., 2021), and OSQP, a heuristic-based solver (Stellato et al., 2020a), as baselines. Training and testing problems are generated according to Appendix D.

In-domain results. It is often the case that a similar optimization is repeatedly solved with only parameter changes. We train the solver using a particular class of QP instances and apply the trained solver to solve the same class of QP problems but with different parameters. We use the number of ADMM iterations until it’s convergence as a performance metric for quantifying the solver speed. Table 1 compares the averages and standard deviations of the ADMM iterations required by different baseline models in solving the QP benchmark problem sets. As shown in Table 1, CA-ADMM exhibits 2 ~ 8x acceleration compared to OSQP, the one of the best heuristic method. We also observed that CA-ADMM consistently outperforms RLQP with a generally smaller standard deviations.

We evaluate the size-transferability and scalability of CA-ADMM by examining whether the models trained using smaller QP problems still perform well on the large QPs. We trained CA-ADMM using small-sized Random QP instances having $10 \sim 15$ variables and applied the trained solve to solve large-scaled Random QP instances having up to 1000 variables. Fig. 3 shows how the number of ADMM iterations varies with the size of QP. As shown in the figure, CA-ADMM requires the least iterations for all sizes of test random QP instances despite having been trained on the smallest setting of $10 \sim 15$. The gap between our method and RLQP becomes larger as the QP size increases. It is interesting to note that OSQP requires relatively few ADMM iterations when the problem size becomes larger. It is possibly because the parameters of OSQP are tuned to solve the medium-sized QPs. We conclude that CA-ADMM learn how to effectively adjust ADMM parameters such that the method can effectively solve even large-sized QP instances.

Cross-domain results. We hypothesize that our learned QP solvers can transfer to new domains more easily than other baselines. To test this hypothesis, we train CA-ADMM and RLQP on Random QP and EqQP datasets, which do not assume specific QP parameter values or constraints. The trained models are evaluated on different QP domains without additional training, i.e., which is equivalent to a zero-shot transfer setting. As shown in Table 2, CA-ADMM consistently outperforms RLQP in absolute ADMM steps and shows less performance degradation when transferring to new domains.
Table 2: Cross-domain results. Zero-shot transfer (Random QP + EqQP) → X, where X \in \{\text{Random QP, EqQP, Portfolio, SVM, Huber, Control, Lasso}\}: Smaller is better (\(\downarrow\)). Best in bold. We measure the average and standard deviation of ADMM iterations for each QP benchmark. The gray colored cell (\(\Box\)) denotes the training problems. Green colored values are the case where the transferred model outperforms the in-domain model. All QP problems are generated to have \(40 \leq N + M \leq 70\).

QP	Random QP	EqQP	Portfolio	SVM	Huber	Control	Lasso
OSQP	160.99 ± 92.21	25.52 ± 0.73	185.18 ± 28.73	183.79 ± 40.88	34.38 ± 5.37	30.38 ± 24.98	106.17 ± 45.70
RLQP (transferred)	65.28 ± 57.75	28.48 ± 0.70	31.80 ± 7.97	37.96 ± 10.16	28.70 ± 0.67	74.60 ± 49.71	29.18 ± 29.18
RLQP (in-domain)	69.42 ± 27.35	20.27 ± 0.49	28.45 ± 5.52	34.14 ± 3.84	25.16 ± 0.66	26.78 ± 15.84	25.61 ± 0.68
CA-ADMM (transferred)	28.52 ± 7.13	19.38 ± 0.64	25.38 ± 7.03	31.26 ± 13.44	19.56 ± 0.92	27.16 ± 4.97	23.84 ± 2.10
CA-ADMM (in-domain)	27.44 ± 4.86	19.61 ± 0.61	20.12 ± 0.47	25.05 ± 2.30	20.32 ± 0.69	17.52 ± 3.88	19.08 ± 1.01

We also observed that for EqQP and Huber CA-ADMM exhibits better performance than in-domain cases. The experiment results indicate that the context encoder plays a crucial role in transferring to different problem classes.

Benchmark QP results. From the above results, we confirm that CA-ADMM outperforms the baseline algorithms in various synthetic datasets. We then evaluate CA-ADMM on the 134 public QP benchmark instances (Maros & Mészáros, 1999), which have different distributions of generating QP parameters (i.e., \(P, q, A, l\) and \(u\)). For these tasks, we trained CA-ADMM and RLQP on Random QP, EqQP, Portfolio, SVM, Huber, Control, and Lasso. As shown in Table 2, CA-ADMM exhibits the lowest iterations for 85 instances. These results indicate that CA-ADMM can generalize to the QP problems that follow completely different generating distributions.

Application to linear programming. Linear programming (LP) is an important class of mathematical optimization. By setting \(P\) as the zero matrix, a QP problem becomes an LP problem. To further understand the generalization capability of CA-ADMM, we apply CA-ADMM trained with \(10 \leq N < 15\) Random QP instances to solve 100 random LP of size \(10 \leq N < 15\). As shown in Table 2, we observed that CA-ADMM shows \(\sim 1.75\) and \(\sim 30.78\) times smaller iterations than RLQP and OSQP while solving all LP instances within 5000 iterations. These results again highlight the generalization capability of CA-ADMM to the different problem classes.

Computational times. We measure the performance of solver with the number of iteration to converge (i.e., solve) as it is independent from the implementation and computational resources. However, having lower computation time is also vital. With a desktop computer equips an AMD Threadripper 2990WX CPU and Nvidia Titan X GPU, we measure the computational times of CA-ADMM, OSQP on GPU and OSQP on CPU. At each MDP step, CA-ADMM and the baseline algorithms compute \(\rho\) via the following three steps: (1) Configuring the linear system and solving it – linear system solving, (2) constructing the state (e.g., graph construction) – state construction, and (3) computing \(\rho\) from the state – \(\rho\) computation. We first measure the average unit computation times (e.g., per MDP step computational time) of the three steps on the various-sized QP problems. As shown in Table 2, the dominating factor is linear system solving step rather than state construction and \(\rho\) computation steps. We then measure the total computation times of each algorithm. As shown Table 3, when the problem size is small, CA-ADMM takes longer than other baselines, especially OSQP. However, as the problem size increases, CA-ADMM takes less time than other baselines due to the reduced number of iterations.

6 Ablation Study

Effect of spatial context extraction methods. To understand the contribution of spatial and temporal context extraction schemes to the performance of our networks, we conduct an ablation study. The variants are HGA that uses spatial context extraction schemes and RLQP that does not use a spatial context extracting scheme. As shown in Table 3, the models using the spatial context (i.e., CA-ADMM
and HGA) outperform the model without the spatial context extraction. The results indicate that the spatial context significantly contributes to higher performance.

Effect of temporal context extraction methods. To further investigate the effects of temporal context, we evaluate CA-ADMM, HGA that exclude GRU (i.e., temporal context extraction scheme) from our model. We also consider RLQP. Table 3 shows that for $N \leq 15$ HGA produces better performance than CA-ADMM, while for $N \geq 15$ the opposite is true. We conclude that the temporal-extraction mechanism is crucial to generalizing to larger QP problems.

Qualitative analysis. Additionally, we visualize the ρ_t of CA-ADMM and HGA during solving a QP problem size of 2,000. As shown in Fig. 4, both of the models gradually decrease ρ_t over the course of optimization. This behavior is similar to the well-known step-size scheduling heuristics implemented in OSQP. We also observed that ρ_t suggested by CA-ADMM generally decreases over the optimization steps. On the other hand, HGA shows the plateau on scheduling ρ_t. We observed similar patterns from the different QP instances with different sizes.

Effect of MDP step interval. We update ρ every $N = 10$ ADMM iteration. In principle, we can adjust ρ at every iteration while solving QP. In general, a smaller N allows the algorithm to change ρ more often and potentially further decrease the number of iterations. However, it is prone to increase the computation time due to frequent linear system solving (i.e., solving Eq. (1)). Having higher N shows the opposite tendency in the iteration and computational time trade-off. Table Table A.9 summarizes the effect of N on the ADMM iterations and computational times. From the results, we confirm that $N = 10$ attains a nice balance of iterations and computational time.

7 Conclusion

To enhance the convergence property of ADMM, we introduced CA-ADMM, a learning-based policy that adaptively adjusts the step-size parameter ρ. We employ a spatio-temporal context encoder that extracts the spatial context, i.e., the correlation among the primal and dual variables, and temporal context, i.e., the temporal evolution of the variables, from the ADMM states. The extracted context contains information about the given QP and optimization procedures, which are used as input to the policy for adjusting ρ for the given QP. We empirically demonstrate that CA-ADMM significantly outperforms the heuristics and learning-based baselines and that CA-ADMM generalizes to the different QP class benchmarks and large-size QPs more effectively.
REFERENCES

Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Neural deep equilibrium solvers. In International Conference on Learning Representations, 2021.

Roscoe A. Bartlett, Lorenz T. Biegler, Johan Backstrom, and Vipin Gopal. Quadratic programming algorithms for large-scale model predictive control. Journal of Process Control, 12(7):775–795, 2002. ISSN 0959-1524. doi: https://doi.org/10.1016/S0959-1524(02)00002-1. URL https://www.sciencedirect.com/science/article/pii/S0959152402000021.

Federico Berto, Stefano Massaroli, Michael Poli, and Jinkyoo Park. Neural solvers for fast and accurate numerical optimal control. In International Conference on Learning Representations, 2021.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. 2011.

Stephen Boyd, Mark T. Mueller, Brendan O’Donoghue, and Yang Wang. Performance bounds and suboptimal policies for multi-period investment. Found. Trends Optim., 1(1):1–72, jan 2014. ISSN 2167-3888. doi: 10.1561/2400000001. URL https://arxiv.org/abs/1705.00109.

J. Buijs, J. Ludlage, W. Van Brempt, and B. De Moor. Quadratic programming in model predictive control for large scale systems. IFAC Proceedings Volumes, 35(1):301–306, 2002. ISSN 1474-6670. doi: https://doi.org/10.3182/20020721-6-ES-1901.00300. URL https://www.sciencedirect.com/science/article/pii/S1474667015387218. 15th IFAC World Congress.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling, 2014. URL https://arxiv.org/abs/1412.3555.

Gérard Cornuéjols, Javier Peña, and Reha Tütüncü. Optimization Methods in Finance. Cambridge University Press, 2 edition, 2018. doi: 10.1017/9781107297340.

Jian-Ya Ding, Chao Zhang, Lei Shen, Shengyin Li, Bing Wang, Yinghui Xu, and Le Song. Accelerating primal solution findings for mixed integer programs based on solution prediction, 2019. URL https://arxiv.org/abs/1906.09575.

Balthazar Donon, Zhengying Liu, Wenzhuo Liu, Isabelle Guyon, Antoine Marot, and Marc Schoenauer. Deep statistical solvers. Advances in Neural Information Processing Systems, 33:7910–7921, 2020.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Research Logistics Quarterly, 3(1-2):95–110, 1956. doi: https://doi.org/10.1002/nav.3800030109. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800030109.

Daniel Gabay and Bertrand Mercier. A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Computers & Mathematics with Applications, 2(1):17–40, 1976. ISSN 0898-1221. doi: https://doi.org/10.1016/0898-1221(76)90003-1. URL https://www.sciencedirect.com/science/article/pii/0898122176900031.

Maxime Gasse, Didier Chéritelat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combinatorial optimization with graph convolutional neural networks. CoRR, abs/1906.01629, 2019. URL http://arxiv.org/abs/1906.01629.

Euhanna Ghadimi, André Teixeira, Iman Shames, and Mikael Johansson. Optimal parameter selection for the alternating direction method of multipliers (admm): Quadratic problems. IEEE Transactions on Automatic Control, 09 2014. doi: 10.1109/TAC.2014.2354892.
Bingsheng He, Hai Yang, and Shengli Wang. Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities. Journal of Optimization Theory and Applications, 106:337–356, 2000.

Erik Hons. Constrained quadratic optimization: Theory and application for wireless communication systems. PhD thesis, University of Waterloo, 2001.

Jeffrey Ichnowski, Paras Jain, Bartolomeo Stellato, Goran Banjac, Michael Luo, Francesco Borrelli, Joseph E. Gonzalez, Ion Stoica, and Ken Goldberg. Accelerating quadratic optimization with reinforcement learning. CoRR, abs/2107.10847, 2021. URL https://arxiv.org/abs/2107.10847.

V. Kecman, T. Arthanari, and I. Hadzic. Lp and qp based learning from empirical data. In IJCNN’01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222), volume 4, pp. 2451–2455 vol.4, 2001. doi: 10.1109/IJCNN.2001.938751.

Pablo Krupa, Ignacio Alvarado, Daniel Limon, and Teodoro Alamo. Implementation of model predictive control for tracking in embedded systems using a sparse extended ADMM algorithm. IEEE Transactions on Control Systems Technology, 30(4):1798–1805, jul 2022. doi: 10.1109/tcst.2021.3128824. URL https://doi.org/10.1109%2Ftcst.2021.3128824.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning, 2015. URL https://arxiv.org/abs/1509.02971.

Zhi-Quan Luo and Wei Yu. An introduction to convex optimization for communications and signal processing. IEEE Journal on Selected Areas in Communications, 24(8):1426–1438, 2006. doi: 10.1109/JSAC.2006.879347.

Harry Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952. ISSN 00221082, 15406261. URL http://www.jstor.org/stable/2975974.

István Maros and Csaba Mészáros. A repository of convex quadratic programming problems. Optimization Methods and Software, 11(1-4):671–681, 1999. doi: 10.1080/10556789908805768. URL https://doi.org/10.1080/10556789908805768.

Modelisation Mathematique, Analyse Man, and Eliane Ecache. Mathematical modelling and numerical analysis esaim: M2an modellisation mathematique et analyse numerique m2an, vol. 36, n. 04 2004.

Yurii Nesterov and Arkadii Nemirovskii. Interior-Point Polynomial Algorithms in Convex Programming. Society for Industrial and Applied Mathematics, 1994. doi: 10.1137/1.9781611970791. URL https://epubs.siam.org/doi/abs/10.1137/1.9781611970791.

Junyoung Park, Sanjar Bakhtiyar, and Jinkyoo Park. Schedulenet: Learn to solve multi-agent scheduling problems with reinforcement learning. arXiv preprint arXiv:2106.03051, 2021a.

Junyoung Park, Jinhyun Choo, and Jinkyoo Park. Convergent graph solvers. In International Conference on Learning Representations, 2021b.

Michael Poli, Stefano Massaroli, Atsushi Yamashita, Hajime Asama, and Jinkyoo Park. Hypersolvers: Toward fast continuous-depth models. Advances in Neural Information Processing Systems, 33:21105–21117, 2020.

Fei Sha, Lawrence Saul, and Daniel Lee. Multiplicative updates for nonnegative quadratic programming in support vector machines. In S. Becker, S. Thrun, and K. Obermayer (eds.), Advances in Neural Information Processing Systems, volume 15. MIT Press, 2002. URL https://proceedings.neurips.cc/paper/2002/file/dc1f622de576e6bc1200fe5de0e5fd2fbd8f-Paper.pdf.

Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen Boyd. OSQP: an operator splitting solver for quadratic programs. Mathematical Computation, 12 (4):637–672, feb 2020a. doi: 10.1007/s12532-020-00179-2. URL https://doi.org/10.1007%2Fs12532-020-00179-2.
Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen Boyd. Osqp: An operator splitting solver for quadratic programs. \textit{Mathematical Programming Computation}, 12 (4):637–672, 2020b.

Philip Wolfe. The simplex method for quadratic programming. \textit{Econometrica}, 27:170, 1959.
A GRAPH PREPROCESSING

In this section, we provide the details of the graph preprocessing scheme that imposes the scale invariant to the heterograph representation. The preprocessing step is done by scaling the objective function, and the constraints. Algorithm 1 and 2 explain the preprocessing procedures.

Algorithm 1: Objective scaling

Input: Quadratic cost matrix \(P \in S^+_N \), linear cost terms \(q \in \mathbb{R}^N \)

Output: Scaled quadratic cost matrix \(P' \in S^+_N \), scale linear cost terms \(q' \in \mathbb{R}^N \)

1. \(n = 1, 2, ... \)
2. \(p^* = \max(n(|P_{nn}|), 2 \max_{(i,j), i \neq j} |P_{ij}|) \) \hspace{1cm} \(\text{// Compute scaler} \)
3. \(P' = P/p^* \)
4. \(q' = q/p^* \)

Algorithm 2: Constraints scaling

Input: constraint matrix \(A \in \mathbb{R}^{M \times N} \), lower bounds \(l \in \mathbb{R}^M \), upper bound \(u \in \mathbb{R}^M \).

Output: Scaled constraint matrix \(A' \in \mathbb{R}^{M \times N} \), Scaled lower bounds \(l' \in \mathbb{R}^M \), Scaled upper bound \(u' \in \mathbb{R}^M \).

6. \(m = 1, 2, ... \)
7. \(a_m^* = \max_n(|A_{mn}|) \) \hspace{1cm} \(\text{// Compute scaler for each row} \)
8. \(A'_m = A_m/a_m^* \)
9. \(l'_m = l_m/a_m^* \)
10. \(u'_m = u_m/a_m^* \)

B DETAILS OF HGA

In this section, we provide the details of the HGA layer.

HGA is composed of edge update, edge aggregation, node update and hetero node aggregation to extract the informative context. This is done by considering each edge type and computing the updated node, edge embedding.

We denote source and destination nodes with the index \(i \) and \(j \) and the edge type with \(k \). \(h_i \) and \(h_j \) denote the source and destination node embedding and \(h_{kij} \) denotes the embedding of the \(k \) type edge between the node \(i \) and \(j \).

Edge update HGA computes the edge embedding \(h'_{ij} \) and the corresponding attention logit \(z_{ij} \) as:

\[
h'_{ij} = HGA_E^k([h_i, h_j, h_{kij}]) \quad (A.1)
\]

\[
z_{ij} = HGA_A^k([h_i, h_j, h_{kij}]), \quad (A.2)
\]

where \(HGA_E^k \) and \(HGA_A^k \) are the hetero edge update function and the hetero attention function for edge type \(k \), respectively. Both functions are parameterized with Multilayer Perceptron (MLP).

Edge aggregation HGA aggregates the typed edges as follows:

\[
\alpha_{ij} = \frac{\exp(z_{ij})}{\sum_{i \in N_k(j)} \exp(z_{ij})} \quad (A.3)
\]

where \(N_k(j) = \{v_i | \text{type of } e_{ij} = k, v_j \in \mathcal{N}(i) \forall i \} \) is the set of all neighborhood of \(v_j \), which type of edge from the element of the set to \(v_j \) is \(k \).

Second, HGA aggregates the messages and produces the type \(k \) message \(m^k_j \) for node \(v_j \).

\[
m^k_j = \sum_{i \in N_k(j)} \alpha_{ij} h'_{ij} \quad (A.4)
\]
Table A.1: The MLP structure of functions in HGA’s first layer

	input dimensions	hidden dimensions	output dimensions	hidden activations	output activation
HGA_E_p2p	8				
HGA_E_p2d	12				
HGA_E_d2p	12				
HGA_A_p2p	8				
HGA_A_p2d	12	[64, 16]	8	LeakyReLU	
HGA_V_p2p	12				
HGA_V_p2d	11				
HGA_V_d2p	16				
HGA_N	8	[64, 32]			

Edge type-aware node update

The aggregated message with edge type \(k \), \(m^k_j \), is used to compute the updated node embedding with edge type \(k \), \(h^k'_j \), as:

\[
h^k_j = \text{HGA}^k_f ([h_j, m^k_j])
\]

(A.5)

where \(\text{HGA}^k_f \) is the hetero node update function, which is composed of MLP.

The above three steps (edge update, edge aggregation, edge type-aware node update) are performed separately on each edge type to preserve the characteristics of the edge type and extract meaningful embeddings.

Hetero Node update

HGA aggregates the updated hetero node feature \(h^k_j \) to produce the updated node embedding \(h'_j \), as follows.

First, HGA computes the attention logit \(d^k_j \) corresponding to \(h^k_j \) as:

\[
d^k_j = \text{HGA}^N_f (h^k_j)
\]

(A.6)

where \(\text{HGA}^N_f \) is the hetero node update function, which is composed of MLP.

Second, HGA computes attention \(\beta^k_j \) using the softmax function with \(d^k_j \):

\[
\beta^k_j = \frac{\exp(d^k_j)}{\sum_{k \in E_{dst}(j)} \exp(d^k_j)}
\]

(A.7)

where \(E_{dst}(j) \) is the set of edge types that has a destination node at \(j \).

Finally, HGA aggregates the per-type the updated messages to compute updated node feature \(h'_j \) for \(v_j \) as:

\[
h'_j = \sum_{k \in E_{dstan}(j)} \beta^k_j h^k_j
\]

(A.8)

C Details of Network Architecture and Training

In this section, we provide the architecture of policy network \(\pi_\theta \) and action-value network \(Q_\phi \).

Policy network \(\pi_\theta \) architecture.

As explained in Section 4.4, the policy network is consist HGA and MLP. We parameterize \(\pi_\theta \) as follows:

\[
\rho_t = \text{MLP}_\theta \left(\text{HGA}_\theta \left(\text{CONCAT}(G_t, C_t) \right) \right).
\]

(A.9)
Table A.2: The MLP structure of functions in HGA’s \(n \) th layer (\(n \geq 2 \))

	input dimensions	hidden dimensions	output dimensions	hidden activations	output activation
HGA\(_{p2p}^E\)					
HGA\(_{p2d}^E\)					
HGA\(_{d2p}^E\)					
HGA\(_{p2p}^A\)					
HGA\(_{p2d}^A\)					
HGA\(_{d2p}^A\)					
HGA\(_{p2p}^V\)					
HGA\(_{p2d}^V\)					
HGA\(_{d2p}^V\)					
HGA\(_N\)	[64, 32]				

where MLP\(_{\theta}\) is two-layered MLP with the hidden dimension [64, 32], the LeakyReLU hidden activation, the ExpTanh (Eq. (A.10)) last activation, and HGA\(_{\theta}\) is a HGA layer.

\[
\text{ExpTanh}(x) = (\tanh(x) + 1) \times 3 + (-3)
\]

(Q network) \(Q_\pi \) architecture. As mentioned in Section 4.4, \(Q_\pi \) has similar architecture to \(\pi_\theta \). We parameterize \(Q_\pi \) as follows:

\[
\rho_t = \text{MLP}_\phi \left(\text{READOUT} \left(\text{HGA}_\phi \left(\text{CONCAT} \left(G_t, C_t, \rho_t \right) \right) \right) \right),
\]

where MLP\(_\phi\) is two-layered MLP with the hidden dimension [64, 32], the LeakyReLU hidden activation, the Identity last activation, HGA\(_\phi\) is a HGA layer, and READOUT is the weighted sum, min, and amx readout function that summarizes node embeddings into a single vector.

Training detail. We train all models with mini-batches of size 128 for 5,000 epochs by using Adam with the fixed learning rate. For \(\pi_\theta \), we set learning rate as \(10^{-4} \) and, for \(Q_\phi \), we set learning rate as \(10^{-3} \). We set history length \(l \) as 3.

D DETAILS OF PROBLEM GENERATION

In this section, we provide the generation scheme of problem classes in OSQP, which is used to train and test our model. Every problem class is based on OSQP (Stellato et al., 2020a), but we modified some settings, such as the percentage of nonzero elements in the matrix or matrix size, to match graph sizes among the problem classes.

D.1 RANDOM QP

\[
\min_x \quad \frac{1}{2} x^\top P x + q^\top x
\]

subject to \(l \leq A x \leq u \).

Problem instances We set a random positive semidefinite matrix \(P \in \mathbb{R}^{n \times n} \) by using matrix multiplication on random matrix \(M \) and its transpose, whose element \(M_{ij} \sim \mathcal{N}(0, 1) \) has only 15% being nonzero elements. We generate the constraint matrix \(x \in \mathbb{R}^{m \times n} \) with \(A_{ij} \sim \mathcal{N}(0, 1) \) with only 45% nonzero elements. We chose upper bound \(u \) with \(u_i \sim (A x)_i + \mathcal{N}(0, 1) \), where \(x \) is randomly chosen vector, and the upper bound \(L_i \) is same as \(-\infty \).
D.2 Equality constrained QP

\[\begin{align*}
\min_x & \quad \frac{1}{2} x^\top P x + q^\top x \\
\text{subject to} & \quad l = A x = u,
\end{align*} \] (A.13)

Problem instances We set a random positive semidefinite matrix \(P \in \mathbb{R}^{n \times n} \) by using matrix multiplication on random matrix \(M \) and its transpose, whose element \(M_{ij} \sim \mathcal{N}(0, 1) \) has only 30% of being nonzero elements. We generate the constraint matrix \(A \in \mathbb{R}^{m \times n} \) with \(A_{ij} \sim \mathcal{N}(0, 1) \) with only 75% nonzero elements. We chose upper bound \(u \) with \(u_i \sim (Ax)_i \), where \(x \) is randomly chosen vector, and the upper bound \(l_i \in l \) is same as \(u_i \).

D.3 Portfolio optimization

\[\begin{align*}
\min_x & \quad \frac{1}{2} x^\top D x + \frac{1}{2} y^\top y - \frac{1}{2\gamma} \mu^\top x \\
\text{subject to} & \quad y = F^\top x, \\
& \quad 1^\top x = 1, \\
& \quad x \geq 0,
\end{align*} \] (A.14)

Problem instances We set the factor loading matrix \(F \in \mathbb{R}^{n \times m} \), whose element \(F_{ij} \sim \mathcal{N}(0, 1) \) as 90% nonzero elements. We generate a diagonal matrix \(D \in \mathbb{R}^{n \times n} \), whose element \(D_{ii} \sim \mathcal{C}(0, 1) \times \sqrt{m} \) is the asset-specific risk. We chose a random vector \(\mu \in \mathbb{R}^n \), whose element \(\mu_i \sim \mathcal{N}(0, 1) \) and is the expected returns.

D.4 Support vector machine (SVM)

\[\begin{align*}
\min_x & \quad x^\top x + \lambda \mathbf{1}^\top t \\
\text{subject to} & \quad t \geq \text{diag}(b) A x + 1, \\
& \quad t \geq 0,
\end{align*} \] (A.15)

Problem instances We set the matrix \(A \in \mathbb{R}^{m \times n} \), which has elements \(A_{ij} \) as follows:

\[A_{ij} = \begin{cases}
\mathcal{N}(\frac{1}{n}, \frac{1}{n}), & i \leq \frac{m}{2} \\
\mathcal{N}(\frac{1}{n}, \frac{1}{n}), & \text{otherwise}
\end{cases} \]

We generate the random vector \(b \in \mathbb{R}^m \) ahead as follows:

\[b_i = \begin{cases}
+1, & i \leq \frac{m}{2} \\
-1, & \text{otherwise}
\end{cases} \]

we choose the scalar \(\lambda \) as \(\frac{1}{2} \).

D.5 Huber fitting

\[\begin{align*}
\min_x & \quad u^\top u + 2M \mathbf{1}^\top (r + s) \\
\text{subject to} & \quad A x - b u = r - s, \\
& \quad r \geq 0, \\
& \quad s \geq 0,
\end{align*} \] (A.16)

Problem instances We set the matrix \(A \in \mathbb{R}^{m \times n} \) with element \(A_{ij} \sim \mathcal{N}(0, 1) \) to have 50% nonzero elements. To generate the vector \(b \in \mathbb{R}^m \), we choose the random vector \(v \in \mathbb{R}^n \) ahead as follows:

\[v_i = \begin{cases}
\mathcal{N}(0, \frac{1}{n}), & \text{with probability } p = 0.95 \\
\mathcal{U}[0, 10], & \text{otherwise}
\end{cases} \]

Then, we set the vector \(b = A(v + \epsilon) \), where \(\epsilon_i \sim \mathcal{N}(0, \frac{1}{n}) \).
Table A.3: Range of n, m which uses for each problem class generation

n	Random QP	EqQP	Portfolio	SVM	Huber	Control	Lasso	En_Random QP
m	Random QP	EqQP	Portfolio	SVM	Huber	Control	Lasso	En_Random QP
10 ~ 15	30 ~ 40	50 ~ 60	5 ~ 6	5 ~ 6	2 ~ 6	5 ~ 6	20 ~ 30	
10 ~ 15	15 ~ 20	5 ~ 6	50 ~ 60	50 ~ 60	1 ~ 3	50 ~ 60	45 ~ 70	

D.6 Optimal Control

\[
\begin{align*}
\min_x & \quad x_T^T Q T x_T + \sum_{t=0}^{T-1} x_t^T Q x_t + u_t^T R u_t \\
\text{subject to} & \quad x_{t+1} = Ax_t + Bu_t, \\
& \quad x_t \in \mathcal{X}, u_t \in \mathcal{U}, \\
& \quad x_0 = x_{\text{init}}.
\end{align*}
\]

Problem instances We set the dynamic $A \in \mathbb{R}^{n \times n}$ as $A = I + \Delta$, where $\Delta_{ij} \sim \mathcal{N}(0,0.01)$. We generate the matrix $B \in \mathbb{R}^{n \times m}$, whose element $B_{ij} \sim \mathcal{N}(0,1)$. We choose state cost mQ as $\text{diag}(q)$, where $q_i \sim \mathcal{U}(0,10)$ with 30% zeros elements in v. We set the weighting parameter γ as 0.1. We set time T as 5.

D.7 Lasso

\[
\begin{align*}
\min_x & \quad \frac{1}{2} y^\top y + \gamma 1^\top t \\
\text{subject to} & \quad y = Ax - b, \\
& \quad -t \leq x \leq t,
\end{align*}
\]

Problem instances We set the matrix $A \in \mathbb{R}^{m \times n}$, whose element $A_{ij} \sim \mathcal{N}(0,1)$ with 90% nonzero elements. To generate the vector $b \in \mathbb{R}^{m}$, we set the sparse vector $v \in \mathbb{R}^{n}$ ahead as follows:

\[
\begin{align*}
v_i = \begin{cases}
0, & \text{with probability } p = 0.5 \\
\mathcal{N}(0, \frac{1}{2}), & \text{otherwise}
\end{cases}
\end{align*}
\]

Then, we chose the vector $b = Av + \epsilon$ where $\epsilon_i \sim \mathcal{N}(0,1)$. We set the weighting parameter γ as $\frac{1}{\frac{1}{2}||A^\top b||_\infty}$.

For the seven problem types mentioned above, the range of variables n and m can be referred to in the Table A.3. The relationship between n and m is also described to facilitate understanding.

D.8 Entire Random QP

\[
\begin{align*}
\min_x & \quad \frac{1}{2} x^\top P x + q^\top x \\
\text{subject to} & \quad l \leq Ax \leq u, \\
& \quad Bx = b.
\end{align*}
\]

Problem instances We set a random positive semidefinite matrix $P \in \mathbb{R}^{n \times n}$ by using matrix multiplication on random matrix M and its transpose, whose element $M_{ij} \sim \mathcal{N}(0,1)$ has only 15% being nonzero elements. We generate the inequality constraint matrix $A \in \mathbb{R}^{m_1 \times n}$ with $A_{ij} \sim \mathcal{N}(0,1)$ with only 60% nonzero elements. We chose upper bound $u \in \mathbb{R}^{m_1}$ with $u_i \sim (Ax)_i + \mathcal{N}(0,1)$, where x is a randomly chosen vector and l_i as $-\infty$. We generate the equality constraint matrix $B \in \mathbb{R}^{m_2 \times n}$ with $B_{ij} \sim \mathcal{N}(0,1)$ with only 60% nonzero elements. We set constant $b \in \mathbb{R}^{m_2}$, with $b_i = (Bx)_i$, where x is a randomly chosen vector at the generating process of vector u. We set m_1, and m_2 as $\lfloor \frac{m}{7} \rfloor$ and $\lfloor \frac{6m}{7} \rfloor$, respectively.
Table A.4: QP size generalization results in table format. Smaller is better (↓). Best in **bold**. We measure the average and standard deviation of the iterations for each QP sizes.

Problem size (N)	CA-ADMM	RLQP	OSQP
10 ~ 15	27.44 ± 4.86	69.42 ± 27.35	81.12 ± 21.93
15 ~ 100	31.70 ± 8.29	101.44 ± 20.00	102.82 ± 31.96
100 ~ 200	34.70 ± 3.07	137.60 ± 20.97	120.00 ± 22.43
200 ~ 300	40.80 ± 4.60	169.40 ± 12.16	143.00 ± 15.54
300 ~ 400	43.40 ± 2.24	186.20 ± 8.42	118.60 ± 15.54
400 ~ 500	46.70 ± 3.69	214.60 ± 9.24	137.80 ± 15.54
500 ~ 600	47.80 ± 3.06	228.20 ± 5.19	131.60 ± 19.78
600 ~ 700	49.10 ± 2.00	234.20 ± 4.83	142.20 ± 13.18
700 ~ 800	48.70 ± 2.56	243.80 ± 7.08	137.60 ± 13.23
800 ~ 900	50.10 ± 1.44	252.40 ± 7.86	130.80 ± 15.11
900 ~ 1000	50.50 ± 1.28	260.80 ± 16.15	130.40 ± 4.71

E DETAIL OF THE EXPERIMENT RESULTS

E.1 DETAILS OF THE IN-DOMAIN EXPERIMENT

In this section, we provide the problem generation, and additional experimental results for the In-domain experiments.

Training data generation For the training set generation, the problems for each class are generated randomly with instance generating rules in (Appendix D). Each problem’s size of QP is described in Table A.3.

Evaluation data generation Table 1’s evaluation data generated in the same way as training data generation. To construct empty intersection between train and test set, each set is generated from a different random seed. To verify the QP size generalization test (Fig. 3, Table A.4), problems are generated randomly for the problem class Random QP with dimension of x in [100, 1000].

Additional results We provide the following Table A.4 to show the numerical results difficult to visualize in Fig. 3.

E.2 DETAILS OF THE CROSS-DOMAIN EXPERIMENT

We provide the problem generation for the cross-domain experiments.

Training data generation We create a new problem class named Entire Random QP that contains both the randomly generated inequality and equality constraints as there is no problem class in OSQP. The form of the QP problem class and instance generating rule are described in Appendix D.8. With the new problem class, we generate the training set with size in Table A.3.

Evaluation data generation For the training set generation, the problems for each class are generated randomly with instance generating rules in (Appendix D). The size of each problem is described in Table A.3.
F ADDITIONAL EXPERIMENTS

F.1 RESULT FOR UNIT COMPUTATIONAL TIME OF THE SIZE GENERALIZATION EXPERIMENT

Table A.5: Unit computational time results for each QP sizes in table format (seconds). Smaller is better (↓). Best in bold.

Problem size	OSQP	RLQP	CA-ADMM	OSQP	RLQP	CA-ADMM						
	State	Linear	μ	Total	State	Linear	μ	Total	State	Linear	μ	Total
	Construction	system	computation	time	Construction	solving	computation	time	Construction	Linear	computation	time
15 ~ 100	0.000	0.003	0.000	0.008	0.000	0.003	0.001	0.008	0.000	0.003	0.001	0.008
100 ~ 200	0.000	0.008	0.000	0.014	0.000	0.008	0.001	0.015	0.000	0.008	0.001	0.014
200 ~ 300	0.000	0.016	0.001	0.056	0.000	0.022	0.001	0.036	0.000	0.045	0.019	0.065
300 ~ 400	0.000	0.079	0.001	0.102	0.000	0.046	0.001	0.070	0.008	0.093	0.127	0.209
400 ~ 500	0.000	0.179	0.003	0.220	0.000	0.100	0.001	0.144	0.007	0.184	0.165	0.454
500 ~ 600	0.000	0.324	0.005	0.792	0.000	0.163	0.001	0.210	0.003	0.360	0.218	0.900
600 ~ 700	0.000	0.499	0.007	0.977	0.000	0.237	0.001	0.334	0.008	0.367	0.231	0.933
700 ~ 800	0.000	0.746	0.010	0.881	0.000	0.374	0.001	0.510	0.007	0.543	0.265	1.250
800 ~ 900	0.000	1.020	0.012	1.204	0.000	0.507	0.001	0.679	0.011	1.051	0.308	1.664
900 ~ 1000	0.000	1.539	0.016	1.778	0.000	0.815	0.001	1.045	0.019	1.599	0.558	2.363

F.2 RESULT FOR TOTAL COMPUTATIONAL TIME OF THE SIZE GENERALIZATION EXPERIMENT

Table A.6: Total computational time results for each QP sizes in table format. Smaller is better (↓). Best in bold. We measure the average of the total time and the MDP steps for each QP sizes.

Problem size	OSQP	RLQP	CA-ADMM	OSQP	RLQP	CA-ADMM
	MDP steps	MDP steps	Total time	MDP steps	MDP steps	Total time
	(Second)	(Second)	(Second)	(Second)	(Second)	(Second)
15 ~ 100	0.008	0.008	0.087	0.008	0.082	0.085
100 ~ 200	0.014	0.015	0.179	0.014	0.213	0.127
200 ~ 300	0.050	0.036	0.734	0.146	1.343	0.535
300 ~ 400	0.102	0.070	1.291	0.314	1.92	1.001
400 ~ 500	0.220	0.144	3.172	0.510	2.18	2.269
500 ~ 600	0.392	0.229	5.416	0.712	3.14	3.588
600 ~ 700	0.577	0.334	8.113	0.912	5.12	5.228
700 ~ 800	0.831	0.510	12.683	1.236	9.500	9.654
800 ~ 900	1.204	0.679	16.609	1.527	12.66	13.233
900 ~ 1000	1.778	1.045	23.472	2.007	18.70	23.74

F.3 RESULT FOR LP EXPERIMENT

Table A.7: LP experiment results. Smaller is better (↓). Best in bold. We measure the average and standard deviation of the iterations and average total computational time for Random LP problems.

Problem size	OSQP	RLQP	CA-ADMM	
	MDP steps	MDP steps	Total time	Solve ratio
	(Second)	(Second)	(Second)	
15 ~ 100	0.008	0.008	0.087	1.00
100 ~ 200	0.014	0.015	0.179	1.00
200 ~ 300	0.050	0.036	0.734	1.00
300 ~ 400	0.102	0.070	1.291	1.00
400 ~ 500	0.220	0.144	3.172	1.00
500 ~ 600	0.392	0.229	5.416	1.00
600 ~ 700	0.577	0.334	8.113	1.00
700 ~ 800	0.831	0.510	12.683	1.00
800 ~ 900	1.204	0.679	16.609	1.00
900 ~ 1000	1.778	1.045	23.472	1.00

a Solve ratio is ratio between solved problems and total generated problems.
Table A.8: QP-benchmark results. (Random QP + EqQP + Portfolio + SVM + Huber + Control + Lasso) \(\rightarrow X \), where \(X \in \{ \text{Maros & Meszaros} \} \): Smaller is better \((\downarrow)\). Best in bold. We measure the iterations and the Total Computation time for each QP benchmark.

Instance	Problem information	Iterations	Computation time (sec.)						
	\(n \) \(m \) nonzeros	CA-ADMM RLQP OSQP	CA-ADMM RLQP OSQP						
AUG2D	20200 30200 80000	16 41 28	0.617 0.878 0.528						
AUG2DC	20200 30200 80400	16 33 27	0.551 0.668 0.46						
AUG2DCQP	20200 30200 80400	82 failed 580	2.679 failed 11.133						
AUG2DQP	20200 30200 80000	110 failed 574	3.518 failed 10.082						
AUG3D	3873 4873 13092	19 42 19	0.23 0.145 0.08						
AUG3DC	3873 4873 14292	17 33 15	0.24 0.145 0.062						
AUG3DCQP	3873 4873 14292	28 38 37	0.39 0.152 0.129						
AUG3DQP	3873 4873 13092	31 70 40	0.56 0.281 0.167						
CONT-050	2597 4998 17199	24 42 19	0.32 0.179 0.072						
CONT-100	10197 19998 69399	19 32 15	0.273 0.137 0.137						
CONT-101	40397 79998 278799	19 32 15	0.576 0.281 0.167						
CVXQP1_M	100 150 9466	41 328 61	0.965 2.445 0.476						
CVXQP1_S	100 150 920	28 56 50	0.335 0.042 0.035						
CVXQP2_L	10000 12500 87467	27 212 43	11.636 78.098 18.781						
CVXQP2_M	10000 12500 8717	25 175 41	0.378 0.53 0.13						
CVXQP2_S	100 125 846	24 126 34	0.308 0.092 0.024						
CVXQP3_L	10000 17500 102465	85 failed 95	306.795 failed 346.485						
CVXQP3_M	10000 17500 10215	212 failed 153	5.46 failed 1.53						
CVXQP3_S	100 175 994	24 51 38	0.368 0.047 0.031						
DPKL01	133 210 1785	20 36 31	0.176 0.033 0.031						
DUTC3	14999 24997 64989	41 328 61	0.965 2.445 0.476						
DUAL1	85 86 7201	17 26 29	0.172 0.024 0.023						
DUAL2	96 97 9112	17 26 21	0.204 0.03 0.024						
DUAL3	111 112 12327	17 24 21	0.181 0.032 0.027						
DUAL4	75 76 5673	17 25 42	0.161 0.021 0.032						
DUALC1	9 224 2025	38 110 66	0.308 0.076 0.044						
DUALC2	7 236 1659	40 210 59	0.324 0.142 0.038						
DUALC5	8 286 2296	39 61 48	0.309 0.047 0.033						
DUALC8	8 511 4096	44 102 64	0.402 0.082 0.052						
EXDATA	3000 6001 2260500	85 3004 86	53.737 1544.541 41.597						
GENHS28	10 18	62	38 110 66	0.308 0.076 0.044					
GOULDQ2P	699 1048 2791	20 33 20	0.165 0.032 0.018						
GOULDQ3P	699 1048 3838	20 33 34	0.17 0.026 0.037						
HS118	15 32 69	769 479 202	6.739 0.27 0.098						
Problem information	Iterations	Total Computation time (Second)							
---------------------	------------	---------------------------------							
		CA-ADMM	RLQP	OSQP	CA-ADMM	RLQP	OSQP		
HS21		22	45	21	0.193	0.031	0.016		
HS268		15	161	15	0.142	0.107	0.011		
HS35		17	19	13	0.143	0.013	0.019		
HS35MOD		14	31	13	0.143	0.024	0.01		
HS51		18	32	19	0.167	0.025	0.023		
HS52		13	29	12	0.164	0.02	0.01		
HS53		17	31	13	0.146	0.02	0.009		
HS76		15	46	39	0.145	0.028	0.022		
HUES-MOD		1830	306	31	524.61	19.032	244.839		
HUESTIS		1830	306	31	522.189	18.395	246.329		
KSIP		25	31	50	0.429	0.087	0.184		
LASER		21	183	48	0.285	0.122	0.032		
LSWET1		25	49	44	0.315	0.068	0.055		
LSWET10		27	31	56	0.409	0.169	0.212		
LSWET11		23	31	56	0.375	0.164	0.23		
LSWET12		26	31	56	0.37	0.166	0.235		
LSWET2		21	31	56	0.399	0.174	0.218		
LSWET3		21	31	56	0.431	0.172	0.215		
LSWET4		21	31	56	0.402	0.173	0.214		
LSWET5		21	15	50	0.429	0.087	0.184		
LSWET6		26	31	56	0.415	0.172	0.229		
LSWET7		21	31	56	0.396	0.17	0.211		
LSWET8		21	31	56	0.406	0.175	0.214		
LSWET9		21	31	56	0.394	0.171	0.215		
LOTSCHID		21	183	48	0.285	0.122	0.032		
MOSARQP1		2500	8512	41	56	0.618	0.163	0.099	
MOSARQP2		900	4820	24	131	0.331	0.204	0.069	
POWELL20		4000	failed	2438	failed	8.85	3.873	0.047	
PRIMAL1		325	6464	23	59	0.913	0.083	0.062	
PRIMAL2		649	9339	14	72	0.614	0.184	0.182	
PRIMAL3		745	856	15	242	0.794	1.662	0.182	
PRIMAL4		1489	19008	17	815	0.769	9.351	0.312	
PRIMALC1		230	2529	58	failed	0.501	failed	failed	
PRIMALC2		231	2078	160	failed	1.335	failed	failed	
PRIMALC5		287	2869	225	failed	2.153	failed	failed	
PRIMALC8		520	5199	79	failed	0.856	failed	failed	
Q25FV47		2151	130523	202	failed	13.749	failed	8.678	
QDALLITTL		97	637	161	failed	30.348	failed	0.079	
QAFIRT		32	124	39	1104	0.415	0.605	failed	
QGANDM		472	3023	113	failed	3.78	failed	failed	
QBEACONF		262	3673	failed	56	failed	0.057	failed	
QBDRE3D		315	1872	failed	847	failed	0.667	failed	
QBRANDY		249	2511	901	failed	31.157	failed	failed	
QCAPRI		353	3852	421	failed	829	13.648	0.737	
QE226		282	4721	173	failed	6.079	2.971	failed	
name	Problem information	Iterations	Total Computation time (Second)						
------------	---------------------	------------	---------------------------------						
n	m	nonzeros	CA-ADMM	RLQP	OSQP	CA-ADMM	RLQP	OSQP	
QETAMACR	688	1088	11613	3303	failed	1290	failed	6.886	2.701
QFFFFF80	854	1378	10635	131	failed	694	failed	6.949	3.034
QFORPLAN	421	582	6112	1950	failed	740	failed	2.654	1.021
QGRDXPN	1092	1708	3739	1991	failed	33	40.741	failed	0.037
QGROW15	645	945	7227	failed	failed	failed	failed	failed	0.07
QGROW22	946	1386	10837	failed	failed	failed	failed	failed	0.11
QGRW7	301	441	3597	failed	failed	failed	failed	failed	0.038
QISRAEL	142	316	3765	49	2518	83	1.705	1.705	
QPCBLEND	83	157	657	33	19	79	0.621	0.07	
QPCO2E11	384	735	4253	failed	failed	87	failed	0.11	
QPCO2E22	143	309	1482	failed	failed	51	failed	0.038	
QPCSTAIR	467	823	4790	failed	failed	739	failed	0.815	
QPILOTNO	2172	3147	16105	361	failed	20	23.219	23.219	
QPTEST	2	4	10	12	43	33	0.138	0.031	
QRECIP	180	271	923	39	271	62	0.504	0.213	
QSC205	203	408	785	19	7	64	0.206	0.007	
QSCAGR25	500	971	2282	129	failed	259	failed	0.215	
QSCAGR7	140	269	602	failed	failed	543	failed	0.331	
QSCF1MX	457	787	4456	failed	failed	382	failed	0.387	
QSCFXM2	914	1574	8285	failed	failed	1176	failed	1.729	
QSCFXM3	1371	2361	11501	1361	failed	729	57.445	failed	
QSCORPII	358	746	1842	69	348	1226	0.314	failed	
QSCRS8	1169	1659	4560	83	failed	1854	failed	failed	
QSCSD1	760	837	4584	41	118	215	0.799	0.195	
QSCSD6	1350	1497	8378	49	289	285	0.818	0.478	
QSCSD8	2750	3147	16214	54	2256	248	1.143	0.814	
QSCSTAP1	480	780	2422	55	483	91	0.464	failed	
QSCSTAP2	1880	2970	10007	42	280	987	0.757	failed	
QSCSTAP3	2480	3960	13262	52	324	1468	1.063	failed	
QEBA	1028	1543	6576	failed	failed	failed	failed	failed	
QSHAREB1	225	342	1436	failed	failed	574	failed	0.38	
QSHAREB2	79	175	873	56	failed	2277	0.892	failed	
QSHELL	1775	2311	74506	failed	failed	71	failed	1.276	
QSHIP04L	2118	2520	8548	123	failed	115	2.916	0.55	
QSHIP04S	1458	1860	5908	111	failed	111	2.713	0.363	
QSHIP08L	4283	5061	86075	125	failed	132	4.887	0.23	
QSHIP08S	2387	3165	32317	278	failed	178	9.257	1.375	
QSHIP12L	5427	6578	144030	741	failed	150	33.934	0.566	
QSHIP12S	2763	3914	44705	failed	failed	144	failed	1.872	
QSIERRA	2036	3263	9582	failed	failed	206	failed	0.487	
QSTAIR	467	823	6293	198	failed	353	6.397	0.671	
QSTANDAT	1075	1434	5576	88	failed	178	failed	0.436	
S268	5	10	55	15	161	15	0.138	0.01	
STADAT1	2001	6000	13998	failed	failed	558	failed	0.815	
STADAT2	2001	6000	13998	failed	failed	558	failed	0.979	
name	n	m	nonzeros	iterations	Computational time (Second)				
----------	------	------	----------	------------	-----------------------------				
STADAT3	4001	12000	27998	failed	failed 702				
STCQP1	4097	6149	66544	22	110 39 6.154 19.142 6.738				
STCQP2	4097	6149	66544	21	109 40 1.529 3.519 1.191				
TAME	2	3	8	19	26 21 0.138 0.019 0.016				
UBH1	18009	30009	72012	93	4757 92 3.348 39.363 0.787				
VALUES	202	203	7846	34	18 37 0.682 0.019 0.031				
YAO	2002	4002	10004	764	528 797 8.107 0.627 0.853				
ZECEVIC2	2	4	7	22	232 36 0.204 0.124 0.021				

F.5 MDP STEP INTERVAL ABLEATION

Table A.9: Step interval ablation results. Smaller is better (↓). Best in bold. We measure the average and standard deviation of the iterations for each step-intervals.

Step-interval	Iterations	Computational time (sec.)
5	27.02	0.194
10	30.42	0.111
50	53.39	0.065
100	65.72	0.050