Catalytic Asymmetric C–H Arylation of \(\eta^6 \)-AreneChromium Complexes: Facile Access to Planar-Chiral Phosphines

Maríaa Batuecas,† Junfei Luo,† Ivana Gergelitsová,†,‡ Katrin Kraemer,† Daniel Whitaker,† Inigo J. Vitorica-Yrezabal,† and Igor Larrosa*,†

†School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
‡Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic

Supporting Information

ABSTRACT: A catalytic asymmetric direct C–H arylation of \(\eta^6 \)-arene chromium complexes to obtain planar-chiral compounds is reported. The use of the hemilabile ligand \(\text{H}_8 \text{BINAP}(O) \) is key to providing high enantioselectivity in this transformation. We show that this methodology opens the door to the synthesis of a variety of planar-chiral chromium derivatives which can be easily transformed into planar chiral mono- or diphosphines. Mechanistic studies, including synthesis and characterization of Pd and Ag complexes and their detection in the reaction mixture, suggest a Pd-catalyzed/Ag-promoted catalytic system where Ag carries out the C–H activation step.

KEYWORDS: asymmetric catalysis, C–H activation, (arene)-chromium complexes, planar-chirality, chiral ligands

1. INTRODUCTION

Unsymmetrically substituted metallocenes and \(\eta^6 \)-arene chromium complexes are two notable families of planar-chiral transition-metal organometallic complexes, and they have extensively been applied as stoichiometric auxiliaries and/or starting materials for asymmetric synthesis of biologically interesting substances.1,2 Derivatives of ferrocene have been extensively investigated as optically active ligands in catalysis.3 In contrast, the use of (arene)chromium complexes as chiral ligands has been significantly less explored with only a small selection of such ligands reported to date (Figure 1). In spite of this, a variety of (arene)Cr(CO)\(_3\) based chiral ligands have been successfully used in asymmetric C–C bond formation reactions, such as cross-coupling reactions,4 addition of dialkylzinc to benzaldehyde,4,5 1,4-additions to Michael acceptors,4,5 hydrovinylations,4,5 1,2-additions of phenylboroxines to imines5 and nucleophilic substitutions.6b,8 Such ligands have also been employed in asymmetric reductions,8b,9 hydroaminations,8b hydroborations,10 and hydroisilylations.11

Formation of optically active (arene)chromium species is usually accomplished by means of either resolution of racemates,12 or asymmetric synthesis via diastereoselective complexation,13 diasteree- or enantioselective deprotonation/electrophile quenching14 and nucleophilic addition/hydride abstraction sequences15 (Scheme 1a–c). All these methods employ stoichiometric chiral reagents or auxiliaries. Additionally, many of these processes are hampered by the use of sensitive organometallic reagents, poor functional group compatibility, and/or low atom economy. Conversely, the

more attractive access to nonracemic (arene)chromium complexes via asymmetric catalysis has been significantly less explored. Uemura first reported the desymmetrization of o-...
Scheme 1. Synthesis of Planar-Chiral (Arene)Cr(CO)₃ Complexes

2. RESULTS AND DISCUSSION

2.1. Optimization of the Conditions of the Direct Asymmetric C–H Arylation. We have recently demonstrated that (fluoroarene)Cr(CO)₃ complexes such as 1a can undergo Pd-catalyzed direct arylation affording excellent yields of ortho-substituted biaryls with high regioselectivity. A combination of stoichiometric and kinetic mechanistic studies showed that PPh₃ ligated Ag(I)-carboxylates are responsible for the C–H activation step. With this in mind, we envisaged that the process could be rendered asymmetric in the presence of a chiral phosphine ligand suitable for distinguishing between the two enantiotopic C–H bonds of a prochiral complex. Furthermore, the presence of a C–F bond in the aromatic core should allow for the subsequent easy transformation of the resulting products into chiral arylphosphine derivatives via phosphinolysis.

We started our investigation testing similar conditions to those reported for the (nonasymmetric) ortho-arylation of (fluorobenzene)Cr(CO)₃ (1a) complexes as a benchmark for reactivity. Under these conditions good reactivity was observed with 41% of racemic monoarylated product 3aa and 31% of bisarylated 4aa formed (Table 1, entry 1). We then replaced Pd(PPh₃)₄ with Pd(dba)₂ and (S)-BINAP (L₁), but under these conditions no reactivity was observed (entry 2). We had previously observed that the use of the highly hindered amine TMP (2,2,6,6-tetramethylpiperidine) as an additive enhances the reactivity of η⁶-coordinated arenes toward C–H arylation. Gratifyingly, the use of this additive promoted the reaction, forming monoarylated chromium complex 3aa in 28% yield and a low but promising enantioselectivity (38:62 er) (entry 3). A screen of Pd(II) sources revealed that Pd(CH₃CN)₄(BF₄)₂ gave similar yield to Pd(dba)₂ with a slightly higher enantiomeric ratio (entry 4). Given that the carboxylic acid is involved in the C–H activation step, we expected the enantioselectivity of the process to be heavily influenced by the nature of the carboxylate. Indeed, carboxylic acid screening showed that dicyclohexylacetic acid enhanced the reactivity and, importantly, the enantioselectivity (er: 18:82−16:84, entries 5 and 6). Conversely, reaction in the absence of the carboxylic acid gave a low yield of arylation and the enantiomeric ratio dropped to 55:45 (entry 7). Reactivity was completely shut down in the absence of silver carbonate (entry 8), whereas in the absence of K₂CO₃ a slightly lower yield and enantioselectivity were obtained (entry 9). Unreacted starting material was observed in all reactions. In some cases, free arene(s) was detected due to decomplexation...
of starting material and/or product and/or bisarylated byproduct.

We then set out to explore a variety of chiral ligands (Table 2). In comparison with BINAP (L1), the more sterically hindered 3,5-xyllyl-BINAP (L2) gave a similar arylation yield but significantly lower enantioselectivity (Table 2, entries 1 and 2). On exploring the effect of the bite angle, we found that SegPhos (L3), with its smaller bite angle than L1, decreased the enantiomeric ratio while keeping similar reactivity; DIOP (L4), which has a larger bite angle than L1, also gave very low enantioselectivity (entries 3 and 4), suggesting that bite angles similar to that of L1 were ideal for this transformation. Good conversion but low ee was observed when the monophosphine MeO-MOP (L5) was used (entry 5). Phosphoramide MonoPhos (L6) and the P,N-ligand PPFA (L7) both completely inhibited the reaction (entries 6 and 7), while H8-BINAP (L8) led to similar reactivity to its unsaturated counterpart BINAP (L1) but with slightly higher ee (entry 8). Finally, we tested BINAP(O) (L9), a ligand that has been rarely used in asymmetric catalysis, which contains both a strong and a weak donor atom, providing it the ability to act as a di- or monodentate ligand. Interestingly, in the presence of this hemilabile ligand, the yield and enantioselectivity of the process increased up to 47% and 14:86 er, respectively (entry 9).

Entry	Conditions	Yield 3aa (%)	ee 3aa (%)	Yield 4aa (%)	ee 4aa (%)
1 †	Pd(PPh3)3, 1-AdCO2H	41	–	31	
2	Pd(dba)2, 1-AdCO2H	0	–	0	
3	Pd(dba)2, 1-AdCO2H, 2 equiv TMP	28	38:62	9	
4	Pd(CH3CN)2(BF4)2, 1-AdCO2H, 2 equiv TMP	28	36:64	7	
5	Pd(CH3CN)2(BF4)2, Cy2CHCO2H, 2 equiv TMP	39	18:82	33	
6 ‡	Pd(CH3CN)2(BF4)2, Cy2CHCO2H, 2 equiv TMP	43	16:84	39	
7 ‡	Pd(CH3CN)2(BF4)2, 2 equiv TMP	24	55:45	2	
8 ‡	Pd(CH3CN)2(BF4)2, Cy2CHCO2H, 2 equiv TMP	0	–	0	
9 ‡	Pd(CH3CN)2(BF4)2, Cy2CHCO2H, 2 equiv TMP	40	19:81	27	

Table 2. Screening of Chiral Ligands in the Asymmetric C–H Arylation of Complex 1a with 2a

All hydrogen atoms are omitted for clarity.

We then set out to explore a variety of chiral ligands (Table 2). In comparison with BINAP (L1), the more sterically hindered 3,5-xyllyl-BINAP (L2) gave a similar arylation yield but significantly lower enantioselectivity (Table 2, entries 1 and 2). On exploring the effect of the bite angle, we found that SegPhos (L3), with its smaller bite angle than L1, decreased the enantiomeric ratio while keeping similar reactivity; DIOP (L4), which has a larger bite angle than L1, also gave very low enantioselectivity (entries 3 and 4), suggesting that bite angles similar to that of L1 were ideal for this transformation. Good conversion but low ee was observed when the monophosphine MeO-MOP (L5) was used (entry 5). Phosphoramide MonoPhos (L6) and the P,N-ligand PPFA (L7) both completely inhibited the reaction (entries 6 and 7), while H8-BINAP (L8) led to similar reactivity to its unsaturated counterpart BINAP (L1) but with slightly higher ee (entry 8). Finally, we tested BINAP(O) (L9), a ligand that has been rarely used in asymmetric catalysis, which contains both a strong and a weak donor atom, providing it the ability to act as a di- or monodentate ligand. Interestingly, in the presence of this hemilabile ligand, the yield and enantioselectivity of the process increased up to 47% and 14:86 er, respectively (entry 9).

2.2. Synthesis and Reactivity of H8-BINAP(O) and H8-BINAP Derivatives

As the best results of reactivity and selectivity were found when H8-BINAP (L8) and BINAP(O) (L9) were used as chiral ligands, we decided to synthesize H8-BINAP(O) and other partially hydrogenated BINAP variants to test them as chiral ligands in the C–H asymmetric arylation of chromium complexes.

Scheme 3. Synthesis and ORTEP Plot of (R)-H8-BINAP(O) Ligand (L10)

All hydrogen atoms are omitted for clarity.
confirmed by X-ray diffraction analysis (Scheme 3). With the aim of investigating the influence on the modification of electronic and steric properties of the H₈-BINAP(O) ligand on the reactivity and enantioselectivity of the reaction, we synthesized a range of H₈-BINAP derivatives (L11−L18) following similar experimental procedures to those reported for their BINAP analogues (see Supporting Information).

Gratifyingly, when H₈-BINAP(O) (L10) was tested as the ligand, high reactivity and enantioselectivity were observed for the arylation of 1a (Table 3, entry 1). We then tested ligands in which the weaker donor atom of the mono-oxidized H₈-BINAP(O) ligand on the reactivity and enantioselectivity of the reaction, we synthesized a range of H₈-BINAP derivatives (L11−L18) following similar experimental procedures to those reported for their BINAP analogues (see Supporting Information).

Gratifyingly, when H₈-BINAP(O) (L10) was tested as the ligand, high reactivity and enantioselectivity were observed for the arylation of 1a (Table 3, entry 1). We then tested ligands

Table 3. Screening of H₈-BINAP Derivatives in the Asymmetric C–H Arylation of Complex 1a with 2a

Entry	Ligand	Yield 3aa (%)a	er 3aa b	Yield 4aa (%)b
1	(S)-L10	42	7.93	27
2	(S)-L11	33	46.54	16
3	(S)-L12	27	46.54	7
4	(S)-L13	37	27.73	22
5	(S)-L14	33	50.50	19
6	(S)-L15	46	10.90	24
7	(S)-L16	37	20.80	20
8	(S)-L17	37	27.73	22
9	(S)-L18	40	18.82	22

Determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as internal standard. b Determined by HPLC (Chiralpak IB hexane/isopropyl alcohol).

in which the weaker donor atom of the mono-oxidized H₈-BINAP(O) was substituted by different functional groups. When the chiral ligand contained an ester group (L11) reactivity decreased while the product obtained was almost racemic (entry 2). A similar result was observed with a ligand bearing an alcohol substituent (L12) (entry 3). Interestingly, the more coordinating amide-derivative (L13) yielded 37% of product 3aa with a moderate 27:73 er (entry 4). These results demonstrate that the oxidized phosphine is essential to achieve high enantioselectivity. To evaluate the influence of the phosphine fragment, we tested the bis-oxidized H₈-BINAP ligand (L14). This led to a racemic product in similar yield to that obtained in the absence of chiral ligand (29% of 3aa and 12% of 4aa), indicating that the phosphine moiety is necessary for coordination to the metal center. Once we had established that the combination of phosphine−phosphine oxide is the most adequate for achieving high reactivity and enantioselectivity, we decided to investigate the influence of the substituents in both of these groups. A ligand containing the P(O)(4-methoxyphenyl), fragment (L15) gave analogous results to H₈-BINAP(O) ligand (L10) in terms of both reactivity and er (entry 6). However, when the phenyl groups were replaced by 3,5-dimethylphenyl groups (L16), both reactivity and enantioselectivity decreased (entry 7). The same scenario, but with even lower er, was observed when the aryl groups of the oxidized phosphine were replaced by alkylic cyclopentyl fragments (L17) (entry 8). Finally, replacing the phenyl groups in the PPh₃ fragment with the more electron-donating 4-methoxyphenyl substituents (L18), led to only a moderate enantiomeric ratio (entry 9).

2.3. Enantioselective C–H Activation of (η⁶-Fluoroarene)Cr(CO)₃ Complexes. With the optimized conditions for the asymmetric arylation reaction, we set out to explore the generality of the methodology with respect to the fluoroarene chromium complex (Scheme 4a). Unsubstituted fluoroarene chromium derivatives showed good reactivity and er (3aa,ab). The presence of a methyl substituent on the fluoroarene did not produce a significant difference in terms of yield or enantiomeric ratio (3bb); however, when the substituent was an ester or a methoxy group a slight decrease in the enantiomeric ratio was observed (3bc,db). Interestingly, when the fluoroarene core contains a masked aldehyde in the form of a 1,3-dioxane group, the enantioenriched product was obtained in a 97:3 enantiomeric ratio (3eb). Different protecting groups for the aldehyde gave similar results of yield and enantioselectivity to 1,3-dioxane (3ff,gb,gc). The absolute configuration of the planar-chiral products could be unambiguously confirmed by X-ray diffraction analysis of a monocrystal of enantioenriched 3aa, showing that when (R)-L10 is used as a chiral ligand, the major isomer obtained is (S)-3aa (Figure 2).

Then, we turned our attention to the effect of substitution at the iodoarene coupling partner (Scheme 4b). A variety of functional groups at the para- and meta-positions of iodoarenes, including electron-donating and electron-withdrawing substituents, were tolerated, allowing the corresponding chiral biaryl chromium complexes 3 in moderate yield and high enantioselectivities. The reaction is compatible with carbonyl functionalities such as ester, ketone, and aldehydes (3ea,ek,el). Nitrogen-containing substituents, such as nitro (3ed) and cyano (3ec), can be present on the iodoarene. The reaction is also compatible with Br and Cl substituents (3eg,em), which would allow for further functionalization via cross-couplings, CF₃ substituents (3ef) and 3,5-disubstituted iodoarenes (3eo). For p-substituted iodoarenes, higher er values are obtained with electron-poor arenes (3ea–3eg) than with electron-rich derivatives (3ei). However, similar enantioselectivities were observed for m-substituted iodoarenes regardless of their electronic properties (3ek–3en). On the other hand, ortho-substituted iodoarenes showed low reactivity (3ap,aq).

Analysis over time of the reaction of 1e with 2b shows that at low conversions the product 3eb is formed in 92:8 er. However, the er increases steadily throughout the reaction, in parallel to the formation of bisarylation product 4eb, with er reaching 98:2 when 27% of bisarylated 4eb has been formed (see SI). This suggests that the observed er values in Scheme 4 are the result of an asymmetric C–H arylation step compounded with a kinetic resolution of the product.
2.4. Mechanistic Studies. 2.4.1. Role of Ag(I) Salts in Asymmetric Arylation of (Fluoroarene)Cr(CO)₃ Complexes. Recent studies by our group on Pd-catalyzed direct functionalization of aryl C−H bonds in the presence of silver salts revealed that phosphine ligated silver carboxylate can metalate the C−H bonds in arenes bound to a Cr(CO)₃ fragment, the resulting arylsilver(I) complex is then proposed to transfer its aryl moiety to a palladium intermediate. Similar conclusions were also drawn by Sanford and Hartwig, in the case of thiophenes and (poly)fluoroarenes, and we have recently exploited this activation mode to develop the first direct α−arylation of benzo[b]thiophenes and thiophenes at room temperature.

As this reaction did not proceed in the absence of silver (Table 1, entry 8), we hypothesized that in this case the silver salt would also be involved in the C−H bond cleavage step. To test this hypothesis, we studied the H/D exchange of 1e with 10 equiv of D₂O in the presence of different combinations of additives (Table 4). No deuteration was observed when 1e was submitted to the standard reaction conditions in the absence of the silver salt (Table 4, entry 1). Deutered complex d₁-1e was not detected when the reaction was carried out only in the presence of Ag₂CO₃ (entry 2), or in combination with the chiral ligand L₁₀ with or without the carboxylic acid (entries 3−4). Importantly, in entries 2−4, the silver salt was appreciably insoluble in toluene. On the other hand, addition of TMP to Ag₂CO₃ led to formation of 32% of d₁-1e (entry 5). This is consistent with a higher solubility of the Ag-salt either through coordination or increased solvent polarity. Addition of 5.5 mol % of L₁₀ led to an increased H/D exchange of 54% (entry 6), consistent with an enhanced rate of C−H activation of the Ag-L₁₀ complex. Similarly enhanced H/D exchange was obtained when both L₁₀ and the carboxylate were added in the presence of TMP (entry 7). Interestingly, ¹H and ³¹P NMR analysis of the reaction mixture in entry 7 revealed the presence of a Ag-L₁₀ complex. These results are consistent submitted to the standard reaction conditions in the absence of the silver salt (Table 4, entry 1). Deutered complex d₁-1e was not detected when the reaction was carried out only in the presence of Ag₂CO₃ (entry 2), or in combination with the chiral ligand L₁₀ with or without the carboxylic acid (entries 3−4). Importantl
with a silver(I)-mediated C–H activation step in operation under the present reaction conditions that likely involves a coordinated L10 ligand.

Reaction of silver carboxylate 8 with 1 equiv of (R)-H8-BINAP(O) ((R)-L10) in CH2Cl2 at room temperature afforded the phosphine-ligated Ag(I) carboxylate 9 in 96% yield (eq 1). Its structure was confirmed by X-ray diffraction analysis (Figure 3). 1H and 31P NMR analysis of 9 matched with those observed in the reaction mixture of Table 4, entry 7, confirming the presence of the Ag-L10 complex. Furthermore, 31P NMR analysis of the reaction of 1e with 2i under our standard conditions, after 2 h (Figure 4a), clearly showed resonances corresponding to the (R)-H8-BINAP(O)-ligated silver carboxylate 9, strongly suggesting its participation in the catalytic cycle (Figure 4b).

Interestingly, another smaller set of signals, presumably corresponding to a PdL* compound, were present in the 31P NMR spectrum of the reaction mixture (Figure 4a). We speculated that these could correspond to Pd-complexes 11 or 12 (Scheme 5). Complex 11 was synthesized via the Buchwald-type palladium derivative 10,41 which underwent smooth oxidative addition with 4-iodoanisole to give 11 (Scheme 5). The structure of 11 was confirmed by single-crystal X-ray diffraction analysis (Figure 5). 12 was prepared from 11 by reaction with AgO2CCHCy2 (8). Comparison of the 31P NMR of both 11 and 12 with those observed in the analysis of the catalytic reaction mixture, revealed that the small set of signals in the latter corresponded to 12 (Figure 4c). This analysis highlights that the ligand L10 can coordinate to both Ag and Pd in the reaction. While qualitative analysis suggests that the majority of L10 would be coordinated to Ag, it cannot be discarded that it also plays a role in the reactivity of the Pd-species.

2.4.2. Proposed Catalytic Cycle. From the experiments above and previous work in the field,27 we propose the bimetallic catalytic cycle outlined in Scheme 6 to be in

Figure 3. ORTEP plot of (R)-H8-BINAP(O)-ligated silver carboxylate 9. Selected bonds and angles: P(1)–Ag(1), 2.330(2) Å; P(2)–Ag(1), 3.463(2) Å; O(1)–Ag(1), 3.270(4) Å; O(2)–Ag(1), 2.797(5) Å; O(3)–Ag(1), 2.107(5) Å; O(3)–Ag(1)–P(1), 123.35°. All hydrogen atoms omitted for clarity.

Figure 4. 31P NMR spectra in CDCl3 of (a) reaction mixture of 1e with 2i under asymmetric catalytic conditions after 2 h; (b) (R)-H8-BINAP(O)-ligated silver carboxylate 9; (c) L*PdAr-carboxylate 12.

Scheme 5. Synthesis of H8-BINAP(O)-Ligated Palladium Complexes

Figure 5. ORTEP plot of (R)-H8-BINAP(O)-ligated IArPd complex 11. Selected bonds and angles: I–Pd, 2.6352(9) Å; Pd–P(1), 2.282(2) Å; Pd–O(1), 2.234(6) Å; Pd–C(45), 1.980(10) Å; P(1)–Pd–I, 167.66(6)°; O(1)–Pd–I, 93.88(17)°; O(1)–Pd–P(1), 87.32(18)°; C(45)–Pd–I, 85.8(3)°; C(45)–Pd–P(1), 94.1(3)°; C(45)–Pd–O(1), 174.7(3)°. All hydrogen atoms are omitted for clarity.
operation. In this mechanism, a Pd(0)-L10 complex A undergoes oxidative addition to B, which after transmetalation affords arylcarboxylate-Pd derivative C, structurally related to complex 12. In a parallel catalytic cycle, silver carboxylate E carries out C–H activation on η6-coordinated arene I to form arylsilver intermediate F, presumably by a carboxylate assisted CMD mechanism.37 Transmetalation from silver intermediate F to the palladium-arylcarboxylate C38 would form D, which would in turn release the product 3 after reductive elimination. We propose that L10 is coordinated to both Ag and Pd, throughout the process. Two possible enantiodetermining steps must thus be considered: an enantioselective C–H activation by complex E, followed by a fast transmetalation with C, or alternatively a fast reversible C–H activation, followed by a rate and enantioselectivity determining transmetalation. However, further experiments will be necessary to understand this process fully, which is further complicated by the low solubility of some of the species in toluene.

2.5. Synthesis and Derivatization of Enantioenriched Planar-Chiral (Arene)Chromium Tricarbonyl Phosphines. The presence of a C–F bond in the aromatic core of the chiral (arene)chromium complexes allows easy functionalization via a variety of nucleophilic aromatic substitutions,12 including phosphination reactions, to obtain arylphosphine derivatives easily.

Nelson and co-workers investigated the effectiveness of optically active arylmonoamine chromium complexes as ligands in asymmetric catalysis in the Pd(II)-catalyzed alkylation of allylic acetates under Trost’s conditions,8 thus demonstrating that chromium-complexed arylphosphines provide chiral equivalents of triarylphosphine ligands that are ubiquitous in late transition-metal chemistry and catalysis. To test the applicability of our approach for the synthesis of new planar-chiral phosphines we carried out the asymmetric arylation of 4-iodobenzonitrile (Scheme 6, 3ec). Reaction of the aldehyde derivative 3ec with potassium diphenylphosphide resulted in nucleophilic aromatic substitution to afford the chiral planar triarylphosphine (Scheme 7a). The protected aldehyde on 13 provides an ideal handle for further derivatization and tuning of electronic properties of this chiral phosphine. Accordingly, treatment of 13 under acidic conditions revealed the aldehyde to obtain 14, which could then be reduced by NaBH4 to the alcohol derivative 15 (Scheme 7b). Both the aldehyde in 14 and the alcohol in 15 could then be easily transformed into a variety of functionalities. Over the past few decades, chiral diphosphines have proven to be among the most useful and versatile ligands for metal-catalyzed asymmetric reactions and the design and preparation of such diphosphines remains as active an area of research as ever.35 The synthesis of C4-symmetric diphosphine ligands has long received the most attention, due perhaps to the relative ease of obtaining these molecules.44 However, studies have showed that C3 symmetry is not a necessary condition for obtaining highly enantioselective ligands.45 Our functionalized planar chiral phosphines, such as 14 and 15, are ideal starting points for the synthesis of novel classes of planar chiral diphosphines. Reaction of the aldehyde derivative 14 with p-(diphenylphosphino)benzylamine in the presence of a catalytic amount of acid afforded the diphosphine-imine derivative 16 in quantitative yield. This compound can be reduced by benzyltriphenylphosphonium tetrahydroborate to give the corresponding chiral amine-diphosphine derivative 17, providing a novel class of bidentate chiral phosphines (Scheme 7b).

3. CONCLUSIONS

In conclusion, we have developed the first protocol for catalytic direct C–H asymmetric arylation of (η6-arene)chromiumtricarbonyl complexes to afford enantioenriched planar-chiral products in one step. The development of this methodology required the synthesis of a new family of H4-BINAP derivatives, finding that H4-BINAP(O) was the most suitable chiral ligand for the reaction. Optimized catalytic conditions were applied to a variety of iodoarenes and (fluoroarene)Cr(CO)3 complexes affording the corresponding chiral products in good yield and excellent enantioselectivity. Mechanistic studies suggest that the reaction proceeds through a Pd/Ag bimetallic double catalytic cycle where the C–H
activation is carried out by Ag. These enantioenriched arylcomplexes can be used for the synthesis of chiral planar monodentate phosphines and a new class of chiral planar bidentate phosphines. The application of these new chiral ligands to asymmetric catalysis is currently under investigation.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.9b00918.

Experimental procedures and characterization data (PDF)
- Data for C₄₄H₄₀OP₂ (CIF)
- Data for C₅₈H₅₈AgO₂P₂C₆H₁₀O, 0.78(H₂O) (CIF)
- Data for C₁₇H₁₆CrF₂O₅ (CIF)
- Data for C₃₂H₂₄CrNO₅P, C₅H₁₂ (CIF)
- Data for C₃₅H₃₆O₇P₄, CH₂Cl₂ (CIF)

AUTHOR INFORMATION

Corresponding Author
*I. Larroso. E-mail: igor.larroso@manchester.ac.uk.

ORCID

Igor Larroso: 0000-0002-5391-7424

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge the Engineering and Physical Sciences Research Council (EPSRC, EP/L014017/2) and the Marie Skłodowska Curie actions (IF-702177 to M.B.) for funding.

REFERENCES

(1) (a) Pape, A. R.; Kalippapan, K. P.; Kündig, E. P. Transition-Metal-Mediated Deaomratization Reactions. *Chem. Rev.* 2000, 100, 2917−2940. (b) Rose-Munch, F.; Rose, E. In *Modern Arone Chemistry*; Astruc, D., Ed.; Wiley-VCH: Weinheim, 2001; pp 368−399.
(2) (a) Ibrah, H. Asymmetric Catalysis Using Planar Chiral Arone Chromium Complexes. *Chem. Rev.* 2002, 2465−2473. (b) Kündig, E. P.; Pache, S. H. In *Science of Synthesis*; Imamoto, T., Ed.; Thieme: Stuttgart/New York, 2002, Vol. 2, pp 155−228.
(3) (a) Schmalz, H-G.; Siegel, S. In *Transition Metals for Organic Synthesis. Building Blocks and Fine Chemicals*; Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, 2001, Vol. 1, pp 550−559. (b) Uemura, M.; Benzylic Activation and Stereochemical Control in Reactions of Tricarbonyl-Arene-Cr(CO)₃ Complexes. In *Organic Reactions*; Uemura, M., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; Vol. 30, pp 218−268.
(4) (a) Rosillo, M.; Domínguez, G.; Pérez-Castells, J. Chromium Arene Complexes in Organic Synthesis. *Chem. Rev.* 2007, 106, 1589−1604. (b) Patra, M.; Merz, K.; Metzler-Nolte, N. Planar Chiral (η⁴-Arene)Cr(CO)₃ Containing Carboxylic Acid Derivatives: Synthesis and Use in the Preparation of Organometallic Analogues of the Antibiotic Platensimycin. *Dalton Trans.* 2012, 41, 112−117.
(5) (a) Schmalz, H-G.; Schmalz, H-G. Chiral Cr(η⁴-Arene)-Cr(CO)₃ Complexes in Organic Synthesis: A Short and Highly Selective Synthesis of the 18-nor-seco-Pseudopterosin Aglycone. *Tetrahedron Lett.* 1997, 38, 4545−4548. (b) Schellhaas, K.; Schmalz, H-G.; Bats, J. W. Chiral [η⁴-Arene-Cr(CO)₃] Complexes as Synthetic Building Blocks: A Short Enantioselective Total Synthesis of (+)-Pitolcaul. *Chem. - Eur. J.* 1998, 4, 57−66. (d) Ratni, H.; Kündig, E. P. Synthesis of (−)-Subasine(1) via a Planar Chiral [(η⁴-arene)Cr(CO)₃] Complex. *Org. Lett.* 1999, 1, 1997−1999.

(6) (a) Kamikawa, K.; Uemura, M. Stereoselective Synthesis of Axially Chiral Bisaryl Utilizing Planar Chiral (Arene)chromium Complexes. *Synlett* 2000, 938−949. (b) Monovich, L. G.; Le Huez, Y.; Rönn, M.; Molander, G. A. Total Synthesis of (−)-Steganone Utilizing a Samarium(II) Iodide Promoted 8-Endo Ketyl-Olefination Cyclization. *J. Am. Chem. Soc.* 2000, 122, 52−57. (g) Bringmann, G.; Guldé, T.; Guldé, T. A. M.; Breuning, M. Atroposelective Total Synthesis of Axially Chiral Bicyl Natural Products. *Chem. Rev.* 2011, 111, 563−639.
(7) (a) Hayashi, T. In *Ferrocenes*; Togni, A., Hayashi, T., Eds.; Wiley-VCH: Weinheim, 1995; pp 105−142. (b) Togni, A. In *Metalloccenes*; Togni, A., Halterman, R. L., Eds.; Wiley-VCH: Weinheim, 1998; Vol. 2, pp 685−722. (c) Fu, G. C. Enantioselective Nucleophilic Catalysis with “Planar-Chiral” Heterocycles. *Acc. Chem. Res.* 2000, 33, 412−420. (d) Dai, L-X.; Tu, T.; You, S-L.; Deng, W-P.; Hou, X-L. Asymmetric Catalysis with Chiral Ferrocene Ligands. *Acc. Chem. Res.* 2003, 36, 659−667. (e) Colacot, T. J. A Concise Update on the Applications of Chiral Ferrocenyl Phosphines in Homogeneous Catalysis Leading to Organic Synthesis. *Chem. Rev.* 2003, 103, 3101−3118. (f) Barbaro, P.; Bianchini, C.; Giambastiani, G.; Parisel, S. L. Progress in Stereoselective Catalysis by Metal Complexes with Chiral Ferrocenyl Phosphines. *Coord. Chem. Rev.* 2004, 248, 2131−2150. (g) Fu, G. C. Asymmetric Catalysis with “Planar-Chiral” Derivatives of 4-(Dimethylamino)pyridine. *Acc. Chem. Res.* 2004, 37, 542−547. (h) Gomez Arrayas, R. G.; Adrio, J.; Carretero, J. C. Recent Applications of Chiral Ferrocene Ligands in Asymmetric Catalysis. *Angew. Chem., Int. Ed.* 2006, 45, 7764−7715.
(1) (f) Fu, G. C. Applications of Planar-Chiral Heterocycles as Ligands in Asymmetric Catalysis. *Acc. Chem. Res.* 2006, 39, 853−860. (j) Gantner, C. In *Phosphorus Ligands in Asymmetric Catalysis*; Börner, A., Ed.; Wiley-VCH: Weinheim, 2008; pp 393−407.
(2) (a) Uemura, M.; Miyake, R.; Nishimura, H.; Matsumoto, Y.; Hayashi, T. New Chiral Phosphine Ligands Containing (η⁴-Arene)chromium and Catalytic Asymmetric Cross-Coupling Reactions. *Tetrahedron: Asymmetry* 1992, 3, 213−216.
(3) (a) Uemura, M.; Miyake, R.; Nakayama, K.; Shiro, M.; Hayashi, Y. Chiral (η⁴-Arene)chromium Complexes in Organic Synthesis: Stereoselective Synthesis of Chiral (Arene)chromium Complexes Possessing Amine and Hydroxy Groups and Their Application to Asymmetric Reactions. *J. Org. Chem.* 1993, 58, 1238−1244.
(4) (a) Ogawara, M.; Wu, W-Y.; Arase, S.; Watanabe, S.; Morita, T.; Takahashi, T.; Kamikawa, K. Kinetic Resolution of Planar-Chiral (η⁴-Arene)chromium Complexes by Molybdenium-Catalyzed Asymmetric Ring-Closing Metathesis. *Angew. Chem., Int. Ed.* 2012, 51, 2951−2955.
(5) (a) Ogawara, M.; Tseng, Y-Y.; Arase, S.; Morita, T.; Nakaya, T.; Wu, W-Y.; Takahashi, T.; Kamikawa, K. Phosphine–Olefins Ligands Based on a Planar-Chiral (η⁴-Arene)chromium Scaffold: Design, Synthesis, and Application in Asymmetric Catalysis. *J. Am. Chem. Soc.* 2014, 136, 9377−9384.
(6) (a) Englert, U.; Haerter, R.; Vasen, D.; Salzer, A.; Eggeling, E. B.; Vogt, D. Optically Active Transition-Metal Complexes. 9. A General Stereoselective Route to α-Chiral (R)-Tricarbonyl(η⁴-ethylbenzene) chromium Complexes. Novel Organometallic Phosphine Catalysts for the Asymmetric Hydrovinylation Reaction. *Organometallics* 1999, 18, 4390−4398.
(7) (a) Hayashi, Y.; Sakai, H.; Kaneta, N.; Uemura, M. New Chiral Chelating Phosphine Complexes Containing Tricarbonyl(η⁴-Arene)chromium for Highly Enantioselective Allylic Alkylation. *J. Organomet. Chem.* 1995, 503, 143−148. (b) Nelson, S. G.; Hilliker, M. A. Stereoselective Synthesis of Monodentate Phosphine Ligands Based on Chiral η⁴-Cr[arene] Templates. *Org. Lett.* 1999, 1, 1379−1382.
(8) (a) Han, J. W.; Jang, H-Y.; Chung, Y. K. Synthesis and Use in Palladium-Catalyzed Asymmetric Allylic Alkylation of New Planar Chiral Chromium Complexes of 1,2-Disubstituted Arenes Having...
Modified Ligands: Enantioselective Preparation and Configurational A. Arene-Chromium-Tricarconyl Complexes: Stereoselective Reactions
Du (Benzaldehyde)tricarbonylchromium Complexes. A.; Mangeney, P.; Marek, I.; Rose-Munch, F.; Rose, E.; Semra, A.;
375
376.
Agbossou, F. Synthesis and Application in Enantioselective Hydro-
tetralone Derivatives. Nishimura, H.; Hayashi, Y. Kinetic Resolution of (194. (c) Nakamura, K.; Ishihara, K.; Ohno, A.; Uemura, M.;
1939. (b) Davies, S. G.; Goodfellow, C. L. Stereoselective Synthesis of α-Substituted α-Methoxybenzyl Alcohols via Stereoselective Additions to Kinetically Resolved α-Anisaldehyde-
tricarbonyl)chromium. J. Chem. Soc., Perkin Trans. 1 1989, 192–
198. (c) Nakamura, K.; Ishihara, K.; Ohno, A.; Uemura, M.; Nishimura, H.; Hayashi, Y. Kinetic Resolution of (η5-Arene)
chromium Complexes by a Lipase. Tetrahedron Lett. 1990, 31, 3603–3604. (d) Bromley, L. A.; Davies, S. G.; Goodfellow, C. L. Stereoselective Synthesis of Homochiral Alpha Substituted α-Methoxybenzyl Alcohols V2Q, Nucleophilic Additions to Kinetically Resolved Homochiral Tricarbonyl (η5-anisaldehyde)-
tricarbonyl)chromium. J. Org. Chem. 1991, 2, 139–156. (e) Malézieux, B.; Jaouen, G.; Salatín, J.; Howell, J. A. S.; Pain, M. G.; Mcardle, P.; O’Gara, M.; Cunningham, D. Enzymatic Generation of Planar Chirality in the (Arene)tricarbonylchromium Series. Tetrahedron: Asymmetry 1992, 3, 375–375.
1939. (b) Davies, S. G.; Goodfellow, C. L. Stereoselective Synthesis of Homochiral Alpha Substituted α-Methoxybenzyl Alcohols V2Q, Nucleophilic Additions to Kinetically Resolved Homochiral Tricarbonyl (η5-anisaldehyde)-
tricarbonyl)chromium. J. Org. Chem. 1991, 2, 139–156. (e) Malézieux, B.; Jaouen, G.; Salatín, J.; Howell, J. A. S.; Pain, M. G.; Mcardle, P.; O’Gara, M.; Cunningham, D. Enzymatic Generation of Planar Chirality in the (Arene)tricarbonylchromium Series. Tetrahedron: Asymmetry 1992, 3, 375–375.
(12) (a) Solladie-Cavallo, A.; Solladie, G.; Tsamo, A.; Armand, E. P. Enantioselective Synthesis of [Cr(η5-Arene)(CO)3] Complexes via Nucleophilic Addition/Hydride Abstraction. Helv. Chim. Acta 1997, 80, 2023–2026. (b) Fretzen, A.; Ripa, A.; Liu, R.; Bernardini, G.; König, E. P. 1,2-Disubstituted [(η5-Arene)Cr(CO)3] Complexes by Sequential Nucleophilic Addition/endo-Hydride Abstraction. Chem. – Eur. J. 1998, 4, 251–259.
(15) (a) Fretzen, A.; König, E. P. Enantioselective Synthesis of Planar Chromium (π(η5-Arene)(CO)) Complexes via Nucleophilic Addition/Hydride Abstraction. Helv. Chim. Acta 1997, 80, 2023–2026. (b) Fretzen, A.; Ripa, A.; Liu, R.; Bernardini, G.; König, E. P. 1,2-Disubstituted [(η5-Arene)Cr(CO)3] Complexes by Sequential Nucleophilic Addition/endo-Hydride Abstraction. Chem. – Eur. J. 1998, 4, 251–259.
(16) Uemura, M.; Nishiumi, H.; Hayashi, T. Catalytic Asymmetric Induction of Planar Chirality by Palladium-Catalyzed Asymmetric Cross-Coupling of a meso (Arene)chromium Complex. Tetrahedron Lett. 1993, 34, 107–110.
(17) (a) Gotov, B.; Schmalz, H.-G. A Catalytic-Enantioselective Entry to Planar Chromium π-Complexes: Enantioselective Methylocarbo-nylation of 1,2-Dichlorobenzene–Cr(CO)3. Org. Lett. 2001, 3, 1753–1756. (b) Böttcher, A.; Schmalz, H.-G. Catalytic-Enantioselective Methylocarbonylation of 1,3-Dichloroarenetricarbonyl(chromium(0) Complexes: A Desymmetrization Approach to Planar Chirality. Synlett 2003, 1595–1598.
(18) (a) König, E. P.; Chaudhuri, P. D.; House, D.; Bernardini, G. Catalytic Enantioselective Hydrogenolysis of [(Cr(CO)3)(5,8-Dibromonaphthalene)]. Angew. Chem., Int. Ed. 2006, 45, 1092–1095. (b) Mercier, A.; Urbaneja, X.; Yeo, W. C.; Chaudhuri, P. D.; Cumming, G. R.; House, D.; Bernardini, G.; König, E. P. Asymmetric Catalytic Hydrogenolysis of Aryl Halide Bonds in Fused Arene Chromium and Ruthenium Complexes. Chem. – Eur. J. 2010, 16, 6285–6299.
(19) Kamikawa, K.; Harada, K.; Uemura, M. Catalytic Asymmetric Induction of Planar Chirality: Palladium Catalyzed Intramolecular Mizoroki–Heck Reaction of Prochiral (Arene)chromium Complexes. Tetrahedron: Asymmetry 2005, 16, 1419–1433.
(20) (a) Murai, M.; Uenishi, J.; Uemura, M. Gold(I)-Catalyzed Asymmetric Synthesis of Planar Chiral Arene Chromium Complexes. Org. Lett. 2010, 12, 4788–4791. (b) Murai, M.; Sota, Y.; Onohara, Y.; Uenishi, J.; Uemura, M. Gold(I)-Catalyzed Asymmetric Induction of Planar Chirality by Intramolecular Nucleophilic Addition to Chromium-Complexed Alkynylarenes: Asymmetric Synthesis of Planar Chiral (1H-Isocromene and 1,2-Dihydrosquinoilino)-chromium Complexes. J. Org. Chem. 2013, 78, 10986–10995.
(21) For selected recent publications, see for example: (a) Liao, K.; Negretti, S.; Musuá, D. G.; Bassa, J.; Davies, H. M. L. Site-Selective and Stereoselective Functionalization of Unactivated C–H Bonds. Nature 2016, 533, 230–234. (b) Chen, G.; Gong, W.; Zhuang, Z.; András, M. S.; Chen, Y.-Q.; Hong, X.; Yang, Y.-F.; Liu, T.; Houk, K. N.; Yu, J.-Q. Lindig-Accelerated Enantioselective Methylene C(sp3)–H Bond Activation. Science 2016, 353, 1023–1027. (c) Chen, X.; Cheng, Z.; Guo, J.; Lu, Z. Asymmetric Remote C-H Borylation of A. Planar Chiral Arene Tricarbonylchromium Complexes via Enantioselective Deprotonation/Electrophile Addition Reactions. Tetrahedron Lett. 1994, 35, 3497–3500. (e) Alexakis, A.; Kanger, T.; Mangeney, P.; Rose-Munch, F.; Perrotey, A.; Rose, E. Enantioselective ortho-Lithiation of Aminals of Benzaldehyde Chromiumtricarbonyl Complex. Tetrahedron: Asymmetry 1995, 6, 47–58. (f) Alexakis, A.; Kanger, T.; Mangeney, P.; Rose-Munch, F.; Perrotey, A.; Rose, E. Enantioselective Ortho-Lithiation of Benzalde-hyde Chromiumtricarbonyl Complex. Tetrahedron: Asymmetry 1995, 6, 2135–2138. (g) Han, J. W.; Son, S. U.; Chung, Y. K. Chiral Auxiliary-Directed Asymmetric Ortho-Lithiation of (Arene)- tricarbonylchromium Complexes. J. Org. Chem. 1997, 62, 8264–8267. (h) Gibson née Thomas, S. E.; Reddington, E. G. Asymmetric Functionalization of Tricarbonylchromium(0) Complexes of Arenes by Non-Racemic Chiral Bases. Chem. Commun. 2000, 989–996. (i) Tan, Y.-L.; Widdowson, D. A.; Wilhelm, R. Reversal of Asymmetric Induction in Arenetricarbonyl-chromium(0) Complexes via Diliithiation with the (−)-Sparteine/BuLi System and Enantioselective Quench. Synlett 2001, 2001, 1632–1634. (j) Alexakis, A.; Tomassini, A.; Andrey, O.; Bernardini, G. Diastereoselective Alkylation of (Arene)tricarbonylchromium and Ferrocene Complexes Using a Chiral, C-Symmetrical 1,2-Diamine as Auxiliary. Eur. J. Org. Chem. 2005, 2005, 1332–1339.
(22) For reviews, see: (a) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Transition Metal-Catalyzed C–H Activation Reactions: Diastereo- and Enantioselectivity. Chem. Rev. 2009, 108, 3242–3272. (b) Peng, H. M.; Dai, L.-X.; You, S.-L. Enantioselective Palladium-Catalyzed Direct Alkylation and Olefination Reaction of Simple Arenes. Angew. Chem., Int. Ed. 2010, 49, 5826–5828. (c) Wencel-Delord, J.; Colobert, F. Asymmetric C(sp3)–H Activation. Chem. - Eur. J. 2013, 19, 14010–14017. (d) Engle, K. M.; Yu, J.-Q. Developing Ligands for Palladium(II)-Catalyzed C–H Functionalization: Intimate Dialogue between Ligand and Substrate. J. Org. Chem. 2013, 78, 8927–8955. (e) Zheng, C.; You, S.-L. Recent Development of Direct Asymmetric Functionalization of Inert C–H Bonds. RSC Adv. 2014, 4, 6173–6214. (f) Ye, B.; Cramer, N. Chiral Cyclopentadienyls: Enabling Ligands for Asymmetric Rh(III)-Catalyzed C–H Functionalizations. Acc. Chem. Res. 2015, 48, 1308–1318. (g) You, S.-L. In Asymmetric Functionalization of C–H Bonds; You, S.-L., Ed.; RSC: Cambridge, 2015. (h) Newton, C. G.; Wang, S.-G.; Oliveira, C. C.; Cramer, N. Catalytic Enantioselective Transformations Involving C–H Bond Cleavage by Transition-Metal Complexes. Chem. Rev. 2017, 117, 8908–8976. (i) Saint-Denis, T. G.; Zhu, R.-Y.; Chen, G.; Wu, Q.-F.; Yu, J.-Q. Enantioselective C(sp3)–H Bond Activation by Chiral Transition Metal Catalysts. Science 2018, 359, eaao4798.

(23) For recent reviews, see: (a) Arae, S.; Ogasawara, M. Catalytic Asymmetric Synthetic Planar-Chiral Transition-Metal complexes. Tetrahedron Lett. 2015, 56, 1751–1761. (b) Lopez, L. A.; Lopez, E. Recent Advances in Transition Metal-Catalyzed C–H Bond Functionalization of Ferrocene Derivatives. Dalton. Trans. 2015, 44, 10128–10135. (c) Zhu, D.-Y.; Chen, P.; Xia, J.-B. Synthesis of Planar Chiral Ferrocenes via Transition-Metal Catalyzed Enantioselective C–H Activation. ChemCatChem 2016, 8, 68–73. (d) Gao, D.-W.; Gu, Q.; Zheng, C.; You, S.-L. Synthesis of Planar Chiral Ferrocenes via Transition-Metal-Catalyzed Direct C–H Bond Functionalization. Acc. Chem. Res. 2017, 50, 351–365. (e) Sokolov, V. I.; Troitskaya, L. L.; Reutov, O. A. Asymmetric Cyclopalladation of Dimethylaminomethylferrocene. J. Organomet. Chem. 1979, 182, 537–546. (b) Günyüz, M. E.; Richards, C. J. Synthesis of Planar Chiral Phosphapalladacycles by N-Acyl Amido Mediated Enantioselective Palladation. Organometallics 2009, 28, 5833–5836. (c) Zhang, H.; Cui, X.; Yao, X.; Wang, H.; Zhang, J.; Wu, Y. Directly Fused Highly Substituted Naphthalenes via Pd-Catalyzed Dehydrogenative Annulation of N,N-Dimethylaminomethyl Ferrocene Using a Redox Process with a Substrate. Org. Lett. 2012, 14, 3012–3015. (d) Gao, D.-W.; Shi, Y.-C.; Gu, Q.; Zhao, Z.-L.; You, S.-L. Enantioselective Synthesis of Planar Chiral Ferrocenes via PalladiumCatalyzed Direct Coupling with Arylboronic Acids. J. Am. Chem. Soc. 2013, 135, 86–89. (e) Pi, C.; Li, Y.; Cui, X.; Zhang, H.; Han, Y.; Wu, Y. Redox of Ferrocene Controlled Asymmetric Dehydrogenative Heck Reaction via Palladium-Catalyzed Dual C–H Bond Activation. Chem. Sci. 2013, 4, 2675–2679. (f) Shi, Y.-C.; Yang, R.-F.; Gao, D.-W.; You, S.-L. Enantioselective Synthesis of Planar Chiral Ferrocenes via Palladium-Catalyzed Annulation with Diarylthynes. Beilstein J. Org. Chem. 2013, 9, 1891–1896. (g) Cheng, G.-J.; Chen, P.; Sun, T.-Y.; Zhang, X.; Yu, J.-Q.; Wu, Y.-D. A Combined IM-MS/DFT Study on [Pd(MPAA)]-Catalyzed Enantioselective C–H Activation: Relay of Chirality through a Rigid Framework. Chem. - Eur. J. 2015, 21, 11180–11188. (h) Xu, J.; Liu, Y.; Zhang, J.; Xu, X.; Jin, Z. Palladium-Catalyzed Enantioselective C(sp2)–H Arylation of Ferroceny Ketones Enabled by a Chiral Transparent Directing Group. Chem. Commun. 2018, 54, 689–692.

(25) (a) Fukuzawa, S.-Y.; Yamamoto, M.; Hosaka, M.; Kikuchi, S. Preparation of Chiral Homoannularly Bridged N,N-Ferrocenyl Ligands by Intramolecular Coupling of 1,5-Dihydroferrrocenes and Their Application in Asymmetric Allylic Substitution Reactions. Eur. J. Org. Chem. 2007, 2007, 5540–5545. (b) Gao, D.-W.; Yin, Q.; Gu, Q.; You, S.-L. Enantioselective Synthesis of Planar Chiral Ferrocenes via Pd[0]Catalyzed Intramolecular Direct C–H Bond Arylation. J. Am. Chem. Soc. 2014, 136, 4841–4844. (c) Deng, R.; Huang, Y.; Ma, X.; Li, G.; Zhu, R.; Wang, B.; Kang, Y.-B.; Gu, Z. Palladium-Catalyzed Intramolecular Asymmetric C–H Functionalization/Cyclization Reaction of Metalloones: An Efficient Approach toward the Synthesis of Planar Chiral Metalloones. J. Am. Chem. Soc. 2014, 136, 4472–4475. (d) Ma, X.; Gu, Z. Palladium-Catalyzed Intramolecular C–H Bond Functionalization/Arylation: an Enantioselective Approach to Planar Chiral Quinulinoferrocenes. RSC Adv. 2014, 4, 36241–36244. (e) Liu, L.; Zhang, A.-A.; Zhao, R.-J.; Li, F.; Meng, T.-J.; Ishida, N.; Murakami, M.; Zhao, W.-X. Asymmetric Synthesis of Planar Chiral Ferrocenes by Enantioselective Intramolecular C–H Arylation of N-(2-Haloaryl)ferrocencarboxamides. Org. Lett. 2014, 16, 5336–5338. (f) Gao, D.-W.; Zheng, C.; Gu, Q.; You, S.-L. Pd-Catalyzed Highly Enantioselective Synthesis of Planar Chiral Ferrocenylpyridine Derivatives. Organometallics 2015, 34, 4618–4625. (g) Gao, D.-W.; Gu, Y.; Wang, S.-B.; Gu, Q.; You, S.-L. Palladium(0)-Catalyzed Asymmetric C–H Allylenylation for Efficient Synthesis of Planar Chiral Ferrocenes. Organometallics 2016, 35, 3227–3233. (h) Nottingam, C.; Müller-Bunz, H.; Guiry, P. J. A Family of Chiral Ferrocenyl Diols:Modular Synthesis, Solid-State Characterization, and Application in Asymmetric Organocatalysis. Angew. Chem., Int. Ed. 2016, 55, 11115–11119. (i) Luo, S.; Xiong, Z.; Lu, Y.; Zhu, Q. Enantioselective Synthesis of Planar Chiral Pyridoferrrocenes via Palladium-Catalyzed Imidoylative Cyclization Reactions. Org. Lett. 2018, 20, 1837–1840.

(26) (a) Ricci, P.; Krämer, K.; Cambeiro, X. C.; Larrosa, I. Arene–Metal π-Complexation as a Traceless Reactivity Enhancer for C–H Arylation. J. Am. Chem. Soc. 2013, 135, 13258–13261. (b) Whiakfer, D.; Batuecas, M.; Ricci, P.; Larrosa, I. A Direct Arylation-Cyclisation Reaction for the Construction of Medium-Sized Rings. Chem. - Eur. J. 2013, 20, 12763–12766. (27) Whiakfer, D.; Burés, J.; Larrosa, I. Ag(I)-Catalyzed C–H Activation: The Role of the Ag(I) Salt in Pd/Ag Mediated C–H Arylation of Electron-Deficient Arenes. J. Am. Chem. Soc. 2016, 138, 8384–8387.

(28) Comte, V.; Tranchier, J. P.; Rose-Munch, F.; Rose, E.; Perrey, D.; Richard, P.; Möise, C. Reactivity of Metallocorphosphate Anions with Electrophile (Arene)ricarbonylmetal Complexes. Eur. J. Inorg. Chem. 2003, 2003, 1893–1899.

(29) Ricci, P.; Krämer, K.; Larrosa, I. Tuning Reactivity and Site Selectivity of Simple Arenes in C–H Activation: Ortho-Arylation of Anisoles via Arene–Metal π-Complexation. J. Am. Chem. Soc. 2014, 136, 18082–18086.

(30) More optimization details can be found in the Supporting Information.
(34) Gladiali, S.; Dore, A.; Fabbrì, D. Novel Heterobidentate Ligands for Asymmetric Catalysis: Synthesis and Rhodium-catalysed Reactions of S-Alkyl (R)-2-Diphenylphosphino-1′′-binaphthyl-2′-thiol. *Tetrahedron: Asymmetry* **1994**, *5*, 1143–1146.

(35) Kurtz, L.; Lee, G.; Morgans, D.; Waldyke, M. J.; Ward, T. Stereospecific Functionalization of (R)-(−)-1,1′′-Bi-2-naphthyl Triflate. *Tetrahedron Lett.* **1990**, *31*, 6321–6324.

(36) Berthold, M.; Mignani, G.; Woodward, G.; Lemaire, M. Modified BINAP: The How and the Why. *Chem. Rev.* **2005**, *105*, 1801–1836.

(37) Lotz, M. D.; Camasso, N. M.; Canty, A. J.; Sanford, M. S. Role of Silver Salts in Palladium-Catalyzed Arene and Heteroaromatic C−H Functionalization Reactions. *Organo metallics* **2017**, *36*, 165–171.

(38) Lee, S. Y.; Hartwig, J. F. Palladium-Catalyzed, Site-Selective Direct Allylation of Aryl C−H Bonds by Silver-Mediated C−H Activation: A Synthetic and Mechanistic Investigation. *J. Am. Chem. Soc.* **2016**, *138*, 15278–15284.

(39) Colletto, C.; Panigrahi, A.; Fernández-Casado, J.; Larroso, I. Ag(I)−C−H Activation Enables Near-Room-Temperature Direct Arylation of Benzyl[6]hิphiromes. *J. Am. Chem. Soc.* **2018**, *140*, 9638–9643.

(40) For examples on silver carboxylates ligated by a phosphine, see: (a) Ng, S. W.; Othman, A. H. Silver Acetate-Triphenylphosphine Complexes. *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1997**, *53*, 1396–1400. (b) Paramonov, S. E.; Kuzmina, N. P.; Troyanov, S. I. Synthesis and Crystal Structure of Silver(I) Carboxylate Complexes, Ag[P(Bu)₃][CH₃COO] and Ag[Ph(CF₃COO)]. *J. Organomet. Chem.* **2003**, *622*, 837–841. (c) Partyka, D. V.; Deligonul, N. Phosphine- and Carbene-Ligated Silver Carboxylates: Easily-Accessed Synthons for Reactions with Silylated Nucleophiles. *Inorg. Chem.* **2009**, *48*, 9463–9475.

(41) Bruno, N. C.; Niljianskul, N.; Buchwald, S. L. N-Substituted 2-Aminobiphenylpalladium Methanesulfonate Precatalysts and Their Use in C−C and C−N Cross-Couplings. *J. Org. Chem.* **2014**, *79*, 4161–4166.

(42) For reviews, see: (a) Semmelhack, M. F.; Chlenov, A. In *Transition Metal Arene π-Complexes in Organic Synthesis and Catalysis*; Kündig, E. P., Ed.; Springer: Berlin, Heidelberg, 2004; pp 43–69. For selected examples, see: (b) Yamamoto, Y.; Danjo, H.; Yamaguchi, K.; Inoguchi, K.; Sakuraba, S.; Achiwa, K.; Morimoto, T.; Achiwa, K. A New Type of Atropisomerically Pure Diphosphane: A New Ligand and Its Applications in Palladium-Catalyzed Asymmetric Allylic Substitution Reactions. *Tetrahedron Lett.* **2016**, *57*, 845–848. (j) Sartorius, F.; Trebing, M.; Brückner, C.; Brückner, R. Reducing Diastereomorphous Bis(phosphineoxide) Atroposomers to One AtropisomERICALLY Pure Diphosphane: A New Ligand and a Novel Ligand-Preparation Design. *Chem. - Eur. J.* **2017**, *23*, 17463–17468. (k) Diehl née Knobloch, E.; Brückner, R. Turning the Nitrogen Atoms of an Ar₂-CH₂-N-CH₂-PAR₂ Motif into Uniquely Configured Stereocenters: A Novel Diphosphane Design for Asymmetric Catalysis. *Chem. - Eur. J.* **2018**, *24*, 3429–3433. (44) For review and books, see: (a) Whitesell, J. K. C; Symmetry and Asymmetric Induction. *Chem. Rev.* **1989**, *89*, 1581–1590. (b) Kagan, H. B. In *Asymmetric Synthesis*; Morrison, J. D., Ed.; Academic Press: Orlando, FL, 1985; Vol. 5, pp 1–39. (c) Brunner, H.; Zettlmeier, W. *Handbook of Enantioselective Catalysis with Transition Metal Complexes*; Vol. II; VCH: Weinheim, 1993.

(45) (a) Inoguchi, K.; Sakuraba, S.; Achiwa, K. Design Concepts for Developing Highly Efficient Chiral Bisphosphine Ligands in Rhodium-Catalyzed Asymmetric Hydrogenations. *Synlett* **1992**, 169–178. (b) Togni, A.; Breutel, C.; Schnyder, A.; Spindler, F.; Landert, H.; Tijani, A. A Novel Easily Accessible Chiral Ferrocenylphosphine for Highly Enantioselective Hydrogenation, Allylic Alkylation, and Hydroboration Reactions. *J. Am. Chem. Soc.* **1994**, *116*, 4062–4066. (c) Yoshihara, K.; Yamamoto, N.; Murata, M.; Awano, K.; Morimoto, T.; Achiwa, K. A New Type of AtropisomERICALLY Pure Biphosphinephosphine Ligand, (R)-MOC-BIMP and Its Use in Efficient Asymmetric Hydrogenation of α-Amino-ketone and Itaconic Acid. *Tetrahedron: Asymmetry* **1992**, *3*, 13–16. (d) Cereghetti, M.; Arnold, W.; Broger, E. A.; Rageot, A.; (R) and (S)-6′,6′-Dimethyl- and 6′,6′-Dimethoxy-2,2′-diido-1′′-biphénylene: Versatile Intermediates for the Synthesis of AtropisomERICALLY Pure Diphosphane Ligands. *Tetrahedron Lett.* **1996**, *37*, 5347–5350. (e) Franchi, G.; Faraone, F.; Leitner, W. Asymmetric Catalysis with Chiral Phosphate/Phosphoramidite Ligands Derived from Quinoline (QUINAPHOS). *Angew. Chem., Int. Ed.* **2000**, *39*, 1428–1430.