Supplementary information

Determination of ADH in textiles using HPLC-MS/MS method and the study of its adsorption behaviour towards formaldehyde

Jinxiong Tao,*,a Ziwei Lin,a Haixuan Zhang,a Zhuoming Wu a and Haihui Cao b

a Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518000, P. R. China
b Embry (China) Garments Co. Ltd, Shenzhen, Guangdong, 518000, P. R. China.
*Corresponding author: E-mail: taojinxiong@yeah.net; Tel: +86-0755-27528470

Fig. S1 The separation effect of different columns
Table S1 Determination value of ADH in textiles under different extracting modes

sample	extracting mode	testing results, mg kg\(^{-1}\)		
		parallel sample 1	parallel sample 2	average
A	shaking bath extraction	15	15	15
	ultrasonic extraction	16	16	16
B	shaking bath extraction	417	413	415
	ultrasonic extraction	444	441	442
C	shaking bath extraction	650	644	647
	ultrasonic extraction	669	681	675

Fig. S2 Comparison of the extraction efficiencies on ADH in textiles under different extracting modes

Table S2 Recovery rate and RSD values of ADH determination in real samples

Items	Added (mg L\(^{-1}\))	Testing results	
	0.20	0.50	1.00
Found (mg L\(^{-1}\))	0.20	0.43	0.86
	0.19	0.44	0.85
	0.19	0.44	0.86
	0.19	0.43	0.87
	0.19	0.44	0.87
	0.19	0.44	0.87
	0.20	0.44	0.88
	0.20	0.44	0.89
Average value/(mg L\(^{-1}\))	0.19	0.44	0.87
Recovery (%)	95	88	87
SD (mg L\(^{-1}\))	0.005	0.021	0.045
RSD (%)	2.7	4.8	5.2
Fig. S3 Photographs of samples S0, S3, S5 and S11

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{NH} \quad \text{NH}_2 & + & \text{H} \quad \text{H} \\
\text{O} & \quad \text{C} & \quad \text{C} & \quad \text{O} & \quad \text{O} \\
\text{H}_2\text{N} & \quad \text{NH} \quad \text{NH} \quad \text{NH}_2 & + & \text{H}_2\text{O}
\end{align*}
\]

Fig. S4 Reaction mechanism of ADH and formaldehyde in the balance of adsorption and desorption.