Concise Review: Pancreatic Cancer and Bone Marrow-Derived Stem Cells

WOJCIECH BŁOGOWSKI,¹ TOMASZ BODNARZUK,² TERESA STARZYŃSKA³

Key Words. Bone marrow • Cancer • Pancreas • Stem cells

ABSTRACT

Pancreatic adenocarcinoma remains one of the most challenging diseases of modern gastroenterology, and, even though considerable effort has been put into understanding its pathogenesis, the exact molecular mechanisms underlying the development and/or systemic progression of this malignancy still remain unclear. Recently, much attention has been paid to the potential role of bone marrow-derived stem cells (BMSCs) in this malignancy. Hence, herein, we comprehensively review the most recent discoveries and current achievements and concepts in this field. Specifically, we discuss the significance of identifying pancreatic cancer stem cells and novel therapeutic approaches involving molecular interference of their metabolism. We also describe advances in the current understanding of the biochemical and molecular mechanisms responsible for BMSC mobilization during pancreatic cancer development and systemic spread. Finally, we summarize experimental, translational, and/or clinical evidence regarding the contribution of bone marrow-derived mesenchymal stem cells, endothelial progenitor cells, hematopoietic stem/progenitor cells, and pancreatic stellate cells in pancreatic cancer development/progression. We also present their potential therapeutic value for the treatment of this deadly malignancy in humans.

SIGNIFICANCE

Different bone marrow-derived stem cell populations contribute to the development and/or progression of pancreatic cancer, and they might also be a promising "weapon" that can be used for anticancer treatments in humans. Even though the exact role of these stem cells in pancreatic cancer development and/or progression in humans still remains unclear, this concept continues to drive a completely novel scientific avenue in pancreatic cancer research and gives rise to innovative ideas regarding novel therapeutic modalities that can be safely offered to patients.

INTRODUCTION

Pancreatic cancer remains one of the most challenging diseases of modern gastroenterology, affecting more than 330,000 patients worldwide annually, and is associated with an exceptionally high mortality rate. This dramatic prognosis can be explained by the fact that, for most patients, pancreatic cancer is diagnosed at the final (metastatic) stage of progression, whereas only few of the affected individuals are diagnosed at an early (local) stage of pancreatic adenocarcinoma. Unfortunately, the disease itself seems to be extremely aggressive. Even in patients subjected to the surgical removal of the cancerous lesions and intensive chemo/radiotherapy, the overall survival remains very low. Over the last few years, several clinical studies have highlighted multiple risk factors for pancreatic cancer, including age, male gender, smoking, and obesity [1]. Additionally, several precancerous lesions have recently been defined, and, owing to the progress in diagnostic imaging and laboratory measurements, the detection of pancreatic cancer at earlier stages became technically possible. Nevertheless, despite significant progress in and efforts being put into identifying the molecular mechanisms responsible for pancreatic cancer development and more aggressive treatment strategies, this disease remains deadly and is associated with an unclear pathogenesis.

CONCEPT OF CANCER (STEM) CELLS

Our current understanding of the pancreatic cancer pathogenesis is based on a long-term model of a step-by-step progression from a local pancreatic abnormality, termed pancreatic intraepithelial neoplasia, to the development of an adequate "clone" of aggressive immortal cancer cells that are responsible for the initiation, progression, and systemic spread of the disease [2]. According to experimental studies, among the several types of cancer cells that are present within the
pancreatic tumor microenvironment, only a very small proportion (<1%) possesses the unique molecular armament necessary for tumor initiation and metastasis. This cell population is generally termed “pancreatic cancer stem cells” and is believed to be atop the hierarchy of all cancer (stem) cells [3–7]. In pancreatic adenocarcinoma, the probable molecular characteristics of this cell population have already been proposed. Recent studies have shown that this highly tumorigenic cancer cell subpopulation expresses CD44, CD24, and epithelial-specific antigen and presents an upregulation of crucial genes responsible for self-renewal. However, others have highlighted that pancreatic cancer stem cells may express other/additional receptors and/or markers on their surface, such as CD133, PANC-1, CXCR4 (the receptor for chemokreceptor stromal-derived factor-1 [SDF-1]), and c-Met (the tyrosine kinase receptor for hepatocyte growth factor [HGF]), as well as intracellular molecules like aldehyde dehydrogenase-1. Taken together, these findings suggest that, at different molecular levels, biological factors protect these cells from death induced by chemotherapeutic agents and enable their (almost unlimited) proliferation and survival [3–14].

The preliminary identification of pancreatic cancer stem cells led to the development of innovative therapeutic concepts. Although this discovery has not resulted in any specific “anti-stem cell” therapy, it immediately stimulated researchers’ interest to develop and examine the efficiency of multiple substances that interfere with various molecular pathways defining the high aggressiveness and proliferation capacity of these cells. For example, recent analyses of reagents such as quercetin, Delta-like ligand 4 (DLL4) blocking antibodies, and γ-secretase inhibitors demonstrated promising results in preclinical studies [12–14]. However, the identification of pancreatic cancer stem cells also provided researchers with novel questions regarding the pathogenesis of this deadly disease. For example, very little is known about the exact origin of these cells. There is evidence demonstrating that various stem cells exist within both the exocrine and endocrine compartments in the pancreatic environment. Moreover, several types of pancreatic cells are capable of undergoing successful transdifferentiation and de-differentiation (reviewed in detail in [15–17]). Nevertheless, how and/or whether these cells may give rise to pancreatic cancer (stem cells) remains speculative. Whether they even originate from the pancreas itself or from other organs/sources, such as the bone marrow (BM) environment, also remains unclear.

Bone Marrow-Pancreatic Cancer Axis

The BM is known to be an extremely rich source of stem cells and, within its environment, different populations of stem and/or progenitor cells can be found, including endothelial progenitor cells (EPCs), mesenchymal stem cells (MSCs), and hematopoietic stem/progenitor cells (HSPCs). These play diverse roles in the regeneration of blood compartments and other connective tissues and organs, including those of the gastrointestinal (GI) tract. General characteristics of these bone marrow-derived stem cell (BMSC) populations are presented in supplemental online Figure 1.

The fact that different BMSC populations may play an important role in the development of a GI cancer has been revealed by Houghton et al. [18], who demonstrated in a mouse model of chronic gastritis that BM-derived cells egress from the BM environment, are mobilized to the inflamed gastric tissue and repopulate it, and may undergo all cardinal stages of histological transformation that lead to the development of gastric cancer. Within time, animal and experimental reports confirmed the significance of BMSCs in the pathogenesis of different types of neoplasm developing in various organs, such as the lung, brain, and/or GI tract malignancies [19–21]. Further translational evidence confirming the existence of BMSC mobilization toward the developing tumor in humans was provided through a detailed molecular analysis of tumor specimens derived from patients that underwent BM transplantation because of hematological malignancies. Using immunostaining and fluorescence in situ hybridization analysis for sex chromosomes sequences in sex-mismatched grafts, researchers found that, in such transplant recipients, multiple cell types, derived from the tumor microenvironment, are of donor (allogeneic) origin. Such donor-derived BMSCs were detected in multiple types of neoplasm in humans, including lung adenocarcinomas, laryngeal squamous cell carcinomas, glioblastomas, Kaposi sarcomas, and/or GI cancers [22, 23]. Interestingly, in our recent studies, we observed an intensified systemic trafficking of BMSCs in patients with gastric and pancreatic cancer. This process did not seem to be associated with the clinical stage of the disease and occurred in patients presenting with both early and advanced disease [21, 24].

The exact biochemical and/or molecular signals responsible for such crosstalk between the developing tumor (in the pancreas) and the BM environment that stimulate such systemic activation of BMSCs remain unknown. It has been proposed that the most important molecule orchestrating stem cells’ egress from the BM, their systemic mobilization, and anchoring within the side of a developing tumor, is a chemokine, SDF-1, also known as C-X-C motif chemokine 12 (CXCL12). This substance is synthesized in response to local hypoxia via upregulation of the HIF-1α transcription factor [25]. However, our and others’ reports revealed that during the development of pancreatic cancer in humans, SDF-1 systemic levels do not increase and do not correlate with the absolute number of circulating BMSCs [21, 24, 26]. Similar results were also observed for another powerful mobilizer of BMSCs, granulocyte-colony stimulating factor (G-CSF), which is commonly used as a pharmaceutical agent to stimulate BMSC systemic mobilization in hematological settings. In multiple studies, researchers found that systemic G-CSF levels are also comparable between healthy individuals and patients with different types of pancreatic neoplasm [27, 28]. This discrepancy may be explained by the presence of a high proinflammatory setting that accompanies pancreatic cancer development in humans. This is associated with higher activity of proteolytic enzymes such as metalloproteinases, which are present both at the systemic and local levels [29, 30] and may result in the inactivation of BMSC chemokreceptors. Thus, researchers focused their efforts on other substances—mainly immune-related molecules, bioactive lipids, and growth factors—because these are involved in the formation of an immune-modulated microenvironment in pancreatic cancer, contribute to the development and/or progression of pancreatic malignancies, and, therefore, might potentially affect BMSC homeostasis and function [24, 28, 31]. Based on these studies, several substances that seemed to participate in a biochemical crosstalk between the BM and the developing pancreatic cancer have been identified. These involved anaphylatoxins of the complement cascade and/or biopolymers, such as C5a and C5b-9/membrane attack complex (MAC), sphingosine- and ceramide-derivatives, HGF, and cytokines (mainly interleukin [IL]-6 and IL-8) [24, 28]. The exact function of these substances
on the regulation of BMSC homeostasis has not been fully examined. However, it is well established that these molecules influence the function and/or development of the (pancreatic) tumor microenvironment, local BM homeostasis, and BMSC metabolic/proliferative activity and/or survival, as well as the systemic immune balance at different levels—epigenetic, (intra)cellular, and/or systemic (Figs. 1, 2; Table 1) [32–60]. Given that (in translational and clinical studies) these substances exert a significant influence on pancreatic cancer development/progression, the fact that their levels correlate with absolute numbers of circulating BMSCs found in peripheral blood samples derived from patients with pancreatic adenocarcinoma is particularly important. Interestingly, several therapeutic inhibitors of these biochemical substances are currently tested in various experimental and/or clinical studies, bringing promising results. For example, great hopes are associated with a novel agent (drug XL184), which inhibits the HGF/c-met axis. This substance has already been demonstrated to reduce pancreatic tumor burden in experimental animals [8]. In addition, modulators of sphingosine-1-phosphate signaling are being tested as potential therapeutics for patients with cancer. Drugs such as fingolimod were proven to inhibit cancer growth and its invasiveness [61, 62]. Importantly, this drug is already being used for the treatment of patients with multiple sclerosis and, according to clinical results, is tolerated relatively well by patients and has quite limited side effects [63]. Moreover, complement cascade inhibitors, such as eculizumab, which is mainly used in the transplantation and/or hematological setting, are promising candidate drugs for use in patients with pancreatic malignancy. In fact, multiple experimental studies demonstrated that the inhibition of the action/generation of the complement cascade’s anaphylatoxins reduces the aggressiveness, growth, and metastatic potential of pancreatic cancer cells (reviewed in detail in [64]).

CONTRIBUTION OF BMSCS TO PANCREATIC CANCER DEVELOPMENT AND THEIR POTENTIAL THERAPEUTIC USE

Independent of the multiple mechanisms orchestrating systemic biochemical crosstalk between pancreatic cancer and the BM environment, the actual contribution of BMSCs to pancreatic cancer development remains unclear. The exact role of BMSCs in the pathogenesis of human malignancies in general and pancreatic cancer in particular has generated an intensive debate. Although this phenomenon has not yet been fully elucidated, it was proven that various BMSC populations possess different molecular properties, contributing to pancreatic malignancy development and systemic spread. For example, the pancreatic cancer stem cells share many similarities with BM-derived very small embryonic/epiblast-like stem cells (VSELs), which represent a very small percentage of BMSCs, possess high expression of “embryonic” genes (such as Oct-4 and/or Nanog) and are mobilized into the peripheral blood in patients with pancreatic cancer. Their absolute numbers also correlate with HGF levels [24]. Interestingly, intensified accumulation of such small Oct-4+ cells has already been detected in pancreatic cancer samples, and this has been associated with greater invasiveness and proliferation potential, as well as with the presence of extensive metastasis and multidrug resistance [65–67]. However, results suggest that not all BMSC...
populations may play a significant direct role in the development of human malignancies. Among the usually examined BMSC populations, researchers share a common view that the population of BM-derived MSCs seems to be especially involved into the development and progression of (pancreatic) cancer, whereas the contributions of EPCs and HSPCs remain less evident and are rather indirect (supplemental online Table 1) [68–76]. These experimental observations are in agreement with our previous clinical studies of patients with gastric neoplasms and pancreatic cancer, indicating a very selective mobilization of BMSCs, mainly of VSELs and MSCs, in patients with these types of cancers [21, 24].

MSCs in Pancreatic Cancer

MSCs possess the molecular potential to influence and direct several cardinal processes that are crucial for the development of malignancies, because these cells are a rich source of various biochemical mediators (growth-modulating factors and/or cytokines). These mediators may modulate the function of immune cells, both at the local and systemic level; provide the necessary signaling, promoting the development of tumor and its specific microenvironment; stimulate the formation of morphological structures that support the survival of cancer cells; and enable evasion from the immune system attack within the tumor environment (supplemental online Table 1). With respect to pancreatic cancer, it has been shown that MSCs preferentially migrate to the pancreatic cancer stroma and may support neoangiogenesis. Surprisingly, some studies demonstrated that both of these properties of MSCs may also be of potential therapeutic use. These SCs may be used as vectors for the successful delivery of proapoptotic and/or antiproliferative signals to pancreatic cancer cells/environment, resulting in the inhibition of tumor growth and/or limitation of new vessel formation in experimental animals [68–71].

EPCs in Pancreatic Cancer

In contrast, BM-derived EPCs do not seem to influence such diverse and numerous processes during carcinogenesis when compared with MSCs. These cells only seem to promote vasculo-genesis through different molecular pathways. This function has been observed in multiple types of malignancy (reviewed in detail.
However, HSPCs may indirectly modulate tumor growth via cells that do not give rise to pancreatic adenocarcinoma per se. In solid tumors, including pancreatic cancer, HSPCs seem to modulate tumor growth. Interestingly, intensified systemic mobilization of EPCs favoring immune tolerance toward a malignant microenvironment, and increase permeability of BM endothelium thereby enabling egress of BMSCs.

HSPCs in Pancreatic Cancer

In solid tumors, including pancreatic cancer, HSPCs seem to modulate the immune system function. It has been shown that these cells do not give rise to pancreatic adenocarcinoma per se. However, HSPCs may indirectly modulate tumor growth via differentiation into inflammatory cells and myofibroblasts, which, in turn, may promote (local) deregulation of the immune profile, favoring immune tolerance toward a malignant microenvironment and generate appropriate factors, promoting growth and/or proliferation of cancer cells (supplemental online Table 1).

Although HSPC transplantation is a commonly used therapeutic modality for the treatment of congenital blood disorders and/or leukemia, during the last decade, there have been some attempts to use (allo) transplanted HSPCs for the treatment of pancreatic cancer [78–81]. These first translational reports are based on the analysis of a total of 22 patients with locally advanced or metastatic disease, who, in most cases (21 of 22), received BM transplant from human leukocyte antigen-matched family relatives and underwent a reduced intensity conditioning before transplantation. After BM transplantation, a successful engraftment of such BM-derived SCs was observed in approximately 90% of patients with pancreatic cancer. For one patient, a complete response (defined as a lack of clinical evidence of a tumor mass in a computed tomography scan for at least 4 weeks) was observed, whereas in four individuals, a partial or minor response.
(defined as either >50% or 25–50% decrease in tumor size, respectively) was visible. Eight patients had stable disease. Unfortunately, the application of this experimental treatment did not translate into increased survival of these patients, which was approximately 139 days (median value), and, in most cases, tumor progression led to death of the affected individuals. Interestingly, the overall survival of these individuals after BM transplantation was not significantly associated with clinical or general laboratory parameters. However, the authors noticed that patients with pancreatic cancer, who developed chronic graft-versus-host disease after BM transplantation, tended to survive longer (the difference was close to statistical significance). They also identified two factors that were significantly associated with longer survival after BM transplantation—the number of transplanted cells over 4×10^6 cells per kg and an Eastern Cooperative Oncology Group performance status grade below 2 [81].

Other Populations of BM-Derived (Stem/Progenitor) Cells

Finally, it seems important to highlight that, besides the aforementioned well-known populations of BMSCs, other less-defined types of (stem/progenitor) cells originating from the BM may also contribute to the development/progression of pancreatic cancer. For example, as mentioned before, we demonstrated that among various BMSCs, a population of recently discovered small SCs—VSELs—intensively egresses from the BM environment, and increased numbers of these SCs circulate in peripheral blood derived from patients with pancreatic cancer [24]. Currently the concept of VSELs is a matter of a lively debate, because some investigators challenged the existence of such SCs, whereas others provided further reports about the significance of VSELs in regeneration of various organs and cancerogenesis [21, 82–84]. Therefore, the eventual role of these BMSCs in pancreatic adenocarcinoma development/progression still needs to be defined and will undoubtedly be intensively examined within upcoming years. Furthermore, one cannot exclude the potential significance of another population of cells, pancreatic stellate cells (PSCs), in the development/progression of pancreatic cancer. It is estimated that approximately 5%–18% of PSCs participating in pancreatic regeneration after injury stimuli are derived from cells originating from the BM [85, 86]. Although it is generally believed that these cells contribute to the generation of pancreatic fibrosis during cancer development, still, recent reports suggest that action of these cells may be time- and context-dependent. Paradoxically, these cells seem to initially protect from pancreatic cancer development/progression and, at later stages, promote systemic spread of this disease. This occurs mainly because PSCs are involved in and influenced by a complex network of interactions from the side of immune, endothelial, and cancer cells, which may totally subvert PSC function (reviewed in detail in [87–89]). Nevertheless, further (clinical) studies are undoubtedly needed to confirm all these experimental observations and verify their significance for eventual therapeutic approaches.

Conclusion and Further Challenges

In summary, the studies presented demonstrate that different BMSC populations contribute to the development and/or progression of pancreatic cancer, and they might also be a promising weapon that can be used for anticancer treatments in humans. Even though the exact role of these stem cells in pancreatic cancer development and/or progression in humans still remains unclear, this concept continues to drive a completely novel scientific avenue in pancreatic cancer research and gives rise to innovative ideas regarding novel therapeutic modalities that can be safely offered to patients. Unfortunately, many concerns and challenges still need to be addressed in this field. Currently, the main focus is on the precise molecular characterization of the origin and metabolism of pancreatic cancer stem cells, the identification and/or modulation of signaling orchestrating BMSC function and/or homeostasis in individuals affected by pancreatic adenocarcinoma, and the potential applications of genetically modified and/or (allo) transplanted BMSCs in the clinical setting. Hopefully, these new molecular and clinical approaches will deliver promising results and sufficiently increase our chances of successfully fighting off and curing pancreatic cancer in the next few years.

Acknowledgments

W.B. is supported by the Foundation for Polish Science START stipend.

Author Contributions

W.B.: conception and design, literature search, manuscript writing, manuscript editing, final approval of manuscript; T.B. and T.S.: conception and design, literature search, manuscript editing, final approval of manuscript.

Disclosure of Potential Conflicts of Interest

The authors indicated no potential conflicts of interest.

References

1. Maisonneuve P, Lowenfels AB. Risk factors for pancreatic cancer: A summary review of meta-analytical studies. Int J Epidemiol 2015;44:186–198.
2. Real FX, Cibrián-Uhalte E, Martinelli P. Pancreatic cancer development and progression: Remodeling the model. Gastroenterology 2008;135:724–728.
3. Hermann PC, Huber SL, Herrler T et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007;1:313–323.
4. Abel EV, Simeone DM. Biology and clinical applications of pancreatic cancer stem cells. Gastroenterology 2013;144:1241–1248.
5. Zhan HK, Xu JW, Wu D et al. Pancreatic cancer stem cells: New insight into a stubborn disease. Cancer Lett 2013;357:429–437.
6. Li C, Heidt DG, Dalerba P et al. Identification of pancreatic cancer stem cells. Cancer Res 2007;67:1030–1037.
7. Birchmeier C, Ghezzi E. Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol 1998;8:404–410.
8. Li C, Wu JJ, Hynes M et al. c-Met is a marker of pancreatic cancer stem cells and therapeutic target. Gastroenterology 2011;141:2218–2227.
9. Kim MP, Fleming JB, Wang H et al. ALDH activity selectively defines an enhanced tumor-initiating cell population relative to CD133 expression in human pancreatic adenocarcinoma. PLoS One 2011;6:e20636.
10. Nomura A, Banerjee S, Chugh R et al. CD133 initiates tumors, induces epithelial-mesenchymal transition and increases metastasis in pancreatic cancer. Oncotarget 2015;6:8313–8322.
11. Adikrisna R, Tanaka S, Muramatsu S et al. Identification of pancreatic cancer stem cells...
and selective toxicity of chemotherapeutic agents. Gastroenterology 2012;143:234–245.

12 Yen W-C, Fischer MM, Hynes M et al. Anti-DLL4 has broad spectrum activity in pancreatic cancer dependent on targeting DLL4-Notch signaling in both pancreatic cancer stem cells and vasculature cells. Clin Cancer Res 2012;18:5374–5386.

13 Mizuma M, Rasheed ZA, Yabuchis S et al. The gamma secretase inhibitor MRK-003 attenuates pancreatic cancer growth in preclinical models. Mol Cancer Ther 2012;11:1999–2009.

14 Urtasun N, Vidal-Pla A, Pérez-Torres S et al. C-X-C chemokine receptor 4 expression is sensitive to dual inhibition of IGFR and ErbB receptors. BMC Cancer 2015;15:223.

15 Yalniz M, Pour PM. Are there any stem cells in the pancreas? Pancreas 2005;31:108–118.

16 Achiller M, Seiler C, Tost M et al. Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: A comparative study in transgenic mice and human tissues. J Pathol 2012;226:723–734.

17 Cano DA, Hrebók M, Zemen P. Pancreatic development and disease. Gastroenterology 2007;132:745–752.

18 Houghton J, Stoicov C, Nomura S et al. Gastric cancer originating from bone marrow-derived cells. Science 2004;306:1568–1571.

19 Varon C, Dubus P, Mazurier F et al. Helicobacter pylori infection recruits bone marrow-derived cells that participate in gastric neoplasia in mice. Gastroenterology 2012;142:281–291.

20 Wu XZ, Chen D, Xie GR. Bone marrow-derived cells: Roles in solid tumor. Minireview. Neoplasma 2007;54:1–6.

21 Blugoski W, Zuba-Surma E, Salata D et al. Peripheral trafficking of bone marrow-derived stem cells in patients with different types of gastric neoplastic diseases. Oncol Immunology 2015;6:e109979.

22 Avital I, Moreira AL, Klimstra DS et al. Donor-derived human bone marrow cells contribute to solid organ cancers developing after bone marrow transplantation. Stem Cells 2007;25:2903–2909.

23 Worthley DL, Ruszkiewicz A, Davies R et al. Interleukin-6 is required for pancreatic cancer cell resistance to the chemotherapeutic gemcitabine drug. Mol Cancer Ther 2009;8:809–820.

24 Heo K, Park KA, Kim YH et al. Sphingosine 1-phosphate regulates vascular endothelial growth factor expression in endothelial cells. BMB Rep 2009;42:685–690.

25 Kong Y, Wang H, Lin T et al. Sphingosine-1-phosphate/S1P receptors signaling modulates cell migration in human bone marrow-derived mesenchymal stem cells. Mediators Inflamm 2014;2014:653569.

26 Golan K, Vagima Y, Ludin A et al. S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood 2012;119:2478–2488.

27 Kong Y, Wang H, Wang S et al. FTY720, a sphingosine-1-phosphate receptor modulator, improves liver fibrosis in a mouse model by impairing the motility of bone marrow-derived mesenchymal stem cells. Inflammation 2014;37:1326–1336.

28 Liu B, Wang Z, Li HY et al. Pim-3 promotes human pancreatic cancer growth by regulating tumor vascularization. Oncol Rep 2014;31:2625–2634.

29 Watanabe S, Kishimoto T, Yoshioka S. Hepatocyte growth factor inhibits anoikis of pancreatic carcinoma cells through phosphatidylinositol 3-kinase pathway. Pancreas 2011;40:608–617.

30 Zhu GH, Huang C, Qiu ZI et al. Expression and prognostic significance of CD151, c-Met, and integrin alpha3/alpha6 in pancreatic ductal adenocarcinoma. Dis Dig Sci 2011;56:1090–1098.

31 Lu T, Yang C, Sun H et al. FGFR4 and HGF promote differentiation of mouse bone marrow mesenchymal stem cells into hepatocytes via the MAPK pathway. Genet Mol Res 2013;12:415–424.

32 Eom YW, Oh JE, Lee JC et al. The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 2014;445:162–167.

33 van de Kamp J, Jahnen-Dechert W, Rath B et al. Hepatocyte growth factor-loaded biomaterials for mesenchymal stem cell recruitment. Stem Cells Int 2013;2013:529605.

34 Lehwald N, Duhme C, Wildner M et al. HGF and SDF–1 mediated mobilization of CD133+ BMSC for hepatic regeneration following extensive liver resection. Liver Int 2014;34:89–101.

35 Jafari A, Shirvanker N, Marquez-Curtis LA et al. The HGF/c-Met axis synergizes with G-CSF in the mobilization of hematopoietic stem/progenitor cells. Stem Cells Dev 2010;19:1140–1151.

36 Lesina M, Kurkowski MU, Ludes K et al. Stat3/Socs activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 2011;19:456–469.

37 Zhang Y, Yan W, Collins MA et al. Interleukin-6 is required for pancreatic cancer progression by promoting MAPK signaling activation and oxidative stress resistance. Cancer Res 2013;73:6359–6374.

38 Lesina M, Windmann SM, Neuhöfer P et al. Interleukin-6 in inflammatory and malignant diseases of the pancreas. Semin Immunol 2014;26:80–87.

39 Holmer R, Goumas FA, Waetzig GH et al. Interleukin-6: A villain in the drama of pancreatic cancer development and progression. Hepatobiliary Pancreat Dis Int 2014;13:379–390.

40 Pricola KL, Kuhn NZ, Haleem-Smith H et al. Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism. J Cell Biochem 2009;108:577–588.

41 del Carmen Rodriguez M, Bernad A, Aracil M. Interleukin-6 deficiency affects bone marrow stromal precursors, resulting in defective hematopoietic support. Blood 2004;103:3349–3354.

42 Chen Y, Shi M, Yu GZ et al. Interleukin-8, a promising predictor for prognosis of pancreatic cancer. World J Gastroenterol 2012;18:1123–1129.

43 Li M, Zhang Y, Feurino LW et al. Interleukin-8 increases vascular endothelial growth factor and neuropilin expression and stimulates ERK activation in human pancreatic cancer. Cancer Sci 2009;99:733–737.

44 Shi Q, Abbuzzese JL, Huang S et al. Constitutive and inducible interleukin 8 expression by hypoxia and acidosis renders human pancreatic cancer cells more tumorigenic and metastatic. Clin Cancer Res 1999;5:3711–3721.

45 Laterveer L, Lindley U, Hamilton MS et al. Interleukin-8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and long-term myeloidphenoid repopulating ability. Blood 1995;85:2269–2275.
pancreatic cancer cells. Cancer Lett 2007;254: 288–297.

62 Shen Y, Wang X, Xia W et al. Antiproliferative and overadditive effects of rapamycin and FTY720 in pancreatic cancer cells in vitro. Transplant Proc 2008;40:1727–1733.

63 Sanford M. Fingolimod: A review of its use in relapsing-remitting multiple sclerosis. Drugs 2014;74:1411–1433.

64 Rutkowski MJ, Sughrue ME, Kane AJ et al. Cancer and the complement cascade. Mol Cancer Res 2010;8:1453–1465.

65 Wang D, Zhu H, Zhu Y et al. CD133 (+)/CD44(+)//Oct4(+) stem-like cells isolated from Panc-1 cell line may contribute to multi-resistance and metastasis of pancreatic cancer. Acta Histochem 2013;115:349–356.

66 Wen J, Park JY, Park KH et al. Oct4 and Nanog expression is associated with early stages of pancreatic carcinogenesis. Pancreas 2010;39: 622–626.

67 Lin H, Sun LH, Han W et al. Knockdown of OCT4 suppresses the growth and invasion of pancreatic cancer cells through inhibition of the AKT pathway. Mol Med Rep 2014;10: 1335–1342.

68 Koh BI, Kang Y. The pro-metastatic role of bone marrow-derived cells: A focus on MSCs and regulatory T cells. EMBO Rep 2012;13: 412–422.

69 Sun YP, Zhang BL, Duan JW et al. Effect of NK4 transduction in bone marrow-derived mesenchymal stem cells on biological characteristics of pancreatic cancer cells. Int J Mol Sci 2014;15: 3729–3745.

70 Zischek C, Niess H, Ischenko I et al. Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma. Ann Surg 2009;250:747–753.

71 Beckermann BM, Kalifatidis G, Groth A et al. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer 2008;99:622–631.

72 Dome B, Timar J, Ladanyi A et al. Circulating endothelial cells, bone marrow-derived endothelial progenitor cells and proangiogenic hematopoietic cells in cancer: From biology to therapy. Crit Rev Oncol Hematol 2009;69: 108–124.

73 Li A, Cheng XJ, Moro A et al. CXCR2-dependent endothelial progenitor cell mobilization in pancreatic cancer growth. Transl Oncol 2011;4:20–28.

74 Fu P, Chen J, Tian Y et al. Anti-tumor effect of hematopoietic cells carrying the gene of ribonuclease inhibitor. Cancer Gene Ther 2005;12:268–275.

75 Pan JJ, Oh SH, Lee WC et al. Bone marrow-derived progenitor cells could modulate pancreatic cancer tumorigenesis via peritumoral microenvironment in a rat model. Oncol Res 2009;17:339–345.

76 Starling A, Brugger P, Schauer D et al. Myelosuppression of thrombocytes and monocytes is associated with a lack of synergy between chemotherapy and anti-VEGF treatment. Neoplasia 2011;13:419–427.

77 Khakoo AY, Finkel T. Endothelial progenitor cells in rats. Cell Res 2010;20:288–298.

78 Lin H, Sun LH, Han W et al. Knockdown of OCT4 suppresses the growth and invasion of pancreatic cancer cells through inhibition of the AKT pathway. Mol Med Rep 2014;10: 1335–1342.

79 Takahashi T, Omuro Y, Matsumoto G et al. Nonmyeloablative allogeneic stem cell transplantation for patients with unresectable pancreatic cancer. Pancreas 2004;28:e65–e69.

80 Kanda Y, Komatsu Y, Akahane M et al. Graft-versus-tumor effect against advanced pancreatic cancer after allogeneic reduced-intensity stem cell transplantation. Transplantation 2005;79:821–827.

81 Kanda Y, Omuro Y, Baba E et al. Allo-SCT using reduced-intensity conditioning against advanced pancreatic cancer: A Japanese survey. Bone Marrow Transplant 2008;42:99–103.

82 Jung Y, Kim JK, Shiozawa Y et al. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun 2013;4:1795.

83 Miyanishi M, Mori Y, Seita J et al. Do pluripotent stem cells exist in adult mice as very small embryonic stem cells? Stem Cell Rep 2013;1:198–208.

84 Bhartiya D, Patel H. Very small embryonic-like stem cells are involved in pancreatic regeneration and their dysfunction with age may lead to diabetes and cancer. Stem Cell Res Ther 2015;6:96.

85 Sparmann G, Kruse ML, Hofmeister-Mielke Nat et al. Bone marrow-derived pancreatic stellate cells in rats. Cell Res 2010;20:288–298.

86 Marrache F, Pendyala S, Bhagat G et al. Role of bone marrow-derived cells in experimental chronic pancreatitis. Gut 2008;57:1113–1120.

87 Apte M, Pirola RC, Wilson JS. Pancreatic stellate cell: Physiologic role, role in fibrosis and cancer. Curr Opin Gastroenterol 2015;31: 416–423.

88 Liu Y, Du L. Role of pancreatic stellate cells and perisinus in pancreatic cancer progression. Tumour Biol 2015;36:3171–3177.

89 Pothula SP, Xu Z, Goldstein D. Key role of pancreatic stellate cells in pancreatic cancer. Cancer Lett 2015 (in press).