Differential geometry

The GBC mass for asymptotically hyperbolic manifolds

La masse de Gauss–Bonnet–Chern sur des variétés asymptotiquement hyperboliques

Yuxin Ge, Guofang Wang, Jie Wu

A Laboratoire d'analyse et de mathématiques appliquées, CNRS UMR 8050, Département de mathématiques, Université Paris-Est–Créteil–Val-de-Marne, 61, avenue du Général-de-Gaulle, 94010 Créteil cedex, France
B Albert-Ludwigs-Universität Freiburg, Mathematisches Institut, Eckerstr. 1, 79104 Freiburg, Germany
C School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, PR China

ABSTRACT

By using the Gauss–Bonnet curvature, we introduce a higher-order mass, the Gauss–Bonnet–Chern mass, for asymptotically hyperbolic manifolds and show that it is a geometric invariant. Moreover, we prove a positive mass theorem for this new mass for asymptotically hyperbolic graphs. Then, we prove the weighted Alexandrov–Fenchel inequalities in the hyperbolic space \mathbb{H}^n for any horospherical convex hypersurface Σ. As an application, we obtain an optimal Penrose-type inequality for this new mass for asymptotically hyperbolic graphs with a horizon type boundary Σ, provided that a dominant energy condition $\tilde{L}_k \geq 0$ holds.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

En utilisant la courbure de Gauss–Bonnet, on introduit une nouvelle masse d'ordre supérieur – la masse de Gauss–Bonnet–Chern –, sur des variétés asymptotiquement hyperboliques. On montre qu'il s'agit d'un invariant géométrique. On démontre également le théorème de masse positive sur des graphes sur l'espace hyperbolique \mathbb{H}^n et des inégalités d'Alexandrov–Fenchel à poids dans \mathbb{H}^n pour toute hypersurface convexe de type horosphérique. Ainsi, on obtient une inégalité de type Penrose optimale pour cette masse sur toute variété asymptotiquement hyperbolique qui est graphe sur \mathbb{H}^n avec un horizon au bord, à condition que la condition d'énergie dominante $\tilde{L}_k \geq 0$ soit satisfaite.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The Riemannian positive mass theorem (PMT), "Any asymptotically flat Riemannian manifold M^n with a suitable decay order and with nonnegative scalar curvature has the nonnegative ADM mass", plays an important role in differential geometry. This theorem was first proved by Schoen and Yau [15] for manifolds of dimension $n \leq 7$ and later for spin manifolds by Witten [17] using spinors. A refinement of the PMT is the Riemannian Penrose inequality:
where m_{ADM} is the ADM mass of the asymptotically flat Riemannian manifold with a horizon Σ and $|\Sigma|$ denotes the area of Σ. (1.1), was proved by Huisken–Ilmanen [11] and Bray [1] for $n = 3$. Later, Bray and Lee [2] generalized Bray’s proof to the case $n \leq 7$. Recently, Lam [12] gave an elegant proof of PMT and (1.1) in all dimensions for an asymptotically flat manifold that can be realized as a graph in \mathbb{R}^{n+1}.

The ADM mass, together with the positive mass theorem, was generalized to asymptotically hyperbolic manifolds in [3,16,19]. For this asymptotically hyperbolic mass, the corresponding Penrose conjecture is:

For asymptotically hyperbolic manifold (\mathcal{M}^n, g) with an outermost horizon Σ, its mass satisfies:

$$m_0^H = m_{\mathcal{H}} \geq \frac{1}{2} \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{n-2}{n}} + \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{n}{n+1}},$$

(1.2)

provided that the dominant energy condition:

$$R_g \geq -n(n-1),$$

(1.3)

holds”. Here R_g denotes the scalar curvature of g. Recently, motivated by the work of Lam [12], Dahl, Gicquaud, and Sakovich [4], on the one hand, and de Lima and Girão [5], on the other hand, proved the Penrose inequality (1.2) for asymptotically hyperbolic graphs over \mathbb{H}^n with the help of a weighted hyperbolic Minkowski inequality, or a weighted hyperbolic Alexandrov–Fenchel inequality:

$$\int \nabla H \, d\mu \geq (n-1)\omega_{n-1} \left\{ \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{n-2}{n}} + \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{n}{n+1}} \right\},$$

(1.4)

if Σ is star-shaped and mean-convex (i.e. $H > 0$), which was proved by de Lima and Girão [5].

Recently motivated by the Gauss–Bonnet gravity, we have introduced the Gauss–Bonnet–Chern mass m_{GBC} for asymptotically flat manifolds by using the following Gauss–Bonnet curvature:

$$L_k := \frac{1}{2k} \left(\sum_{j_1 \leq \cdots \leq j_k} R_{j_1 j_2 \cdots j_k} j_1 j_2 \cdots j_k \right),$$

(1.5)

where $R_{j_1 \cdots j_k}$ is the Riemannian curvature tensor. One can check that L_1 is just the scalar curvature R. For general k, it is just the Euler integrand in Chern’s proof of the Gauss–Bonnet–Chern theorem if $n = 2k$. See a survey of Zhang [18]. A systematic study of L_k was first given by Lovelock [13]. The Gauss–Bonnet–Chern mass m_{GBC} for the asymptotically flat flat manifolds is defined in [6] by:

$$m_k = m_{GBC} = \frac{(n-2k)!}{2k-1(n-1)!\omega_{n-1}} \lim_{r \to \infty} \int_{S_r} P_{(k)}^{ijlm} \partial_m g_{ij} \, d\mu,$$

(1.6)

where ω_{n-1} is the volume of $(n-1)$-dimensional standard unit sphere and S_r is the Euclidean coordinate sphere, $d\mu$ is the volume element on S_r induced by the Euclidean metric and ν is the outward unit normal to S_r in \mathbb{R}^n. Here the $(0, 4)$-tensor $P_{(k)}$ is defined by:

$$P_{(k)}^{ijlm} := \frac{1}{2k} \left(\sum_{j_1 \leq \cdots \leq j_k} R_{j_1 j_2 \cdots j_k} j_1 j_2 \cdots j_k \right).$$

(1.7)

This $(0, 4)$-tensor $P_{(k)}$ has a crucial property that it is divergence-free, which guarantees that the Gauss–Bonnet–Chern mass is well defined and is a geometric invariant in [6]. In [6] and [7], we prove a positive mass theorem in the case where \mathcal{M} is an asymptotically flat graph over \mathbb{R}^n or \mathcal{M} is conformal to \mathbb{R}^n, respectively. For our mass m_{GBC}, a corresponding Penrose conjecture was proposed in [6]:

$$m_k = m_{GBC} \geq \frac{1}{2k} \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{n-2k}{n+1}}.$$

(1.8)

Moreover, we proved in [6] that this conjecture is true for asymptotically flat graphs over $\mathbb{R}^n \setminus \Omega$ by using classical Alexandrov–Fenchel inequalities.
2. Hyperbolic Gauss–Bonnet–Chern mass and its Penrose inequality

In the paper [8], motivated by our previous work, by using the Gauss–Bonnet curvature we introduce a higher-order mass for asymptotically hyperbolic manifolds, which is a generalization of the mass introduced by Wang [16] and Cruțiel–Herzlitz [3]. See also [9,14,19]. However, if we use directly the Gauss–Bonnet curvature L_k, we can only obtain a mass proportional to the usual hyperbolic mass, rather than a new one. In order to define a higher-order mass for asymptotically hyperbolic manifolds, the crucial observation is a slight modification of the Gauss–Bonnet curvature. More precisely, on a Riemannian manifold (\mathcal{M}^n, g), we consider a modified Riemann curvature tensor:

$$
\tilde{\text{Riem}}_{ijkl}(g) = \tilde{R}_{ijkl}(g) := R_{ijkl}(g) + g_{ij}g_{kl} - g_{il}g_{kj}
$$

and a new Gauss–Bonnet curvature with respect to this tensor $\tilde{\text{Riem}}$:

$$
\tilde{L}_k := \frac{1}{2k} \tilde{R}^{1i_2 \cdots i_{2k-1} 2k}_{1j_1 j_2 \cdots j_{2k-1} j_{2k}} \tilde{R}_{i_1 j_1} \cdots \tilde{R}_{i_{2k-1} j_{2k-1} j_{2k}} = \tilde{R}_{stlm} \tilde{P}^{stm}_{(k)},
$$

where

$$
\tilde{P}^{stm}_{(k)} := \frac{1}{2k} \tilde{R}^{1i_2 \cdots i_{2k-1} 3j_1 j_2 \cdots j_{2k-2} j_{2k} 2}_{1j_1 j_2 \cdots j_{2k-1} j_{2k}} \tilde{R}_{i_1 j_1} \cdots \tilde{R}_{i_{2k-1} j_{2k-1} j_{2k}} \tilde{R}_{i_{2k-1} j_{2k}-1 j_{2k}} \cdots \tilde{R}_{i_{2k-2} j_{2k} j_{2k}} g_{i_{2k-3} j_{2k} j_{2k}} g_{i_{2k-4} j_{2k} j_{2k}} g_{i_{2k-6} j_{2k} j_{2k}}.
$$

The tensor $\tilde{P}^{stm}_{(k)}$ has also the crucial property of being divergence free, which enables us to define a new mass.

Let us assume now that $2 \leq k < \frac{n}{2}$. We first introduce a “higher-order” mass for asymptotically hyperbolic manifolds with slower decay.

Definition 2.1. Assume that (\mathcal{M}^n, g) is an asymptotically hyperbolic manifold of decay order $\tau > \frac{n}{4+\gamma}$ and for $V \in \mathbb{N}_{b} := \{V \in C^\infty(\mathbb{H}^n) | \text{Hess}^b V = V b\}$, $V \tilde{L}_k$ is integrable on (\mathcal{M}^n, g). We define the Gauss–Bonnet–Chern mass integral with respect to the diffeomorphism Φ by:

$$
H^\Phi_k (V) = \lim_{r \to \infty} \int \int_S ((V \tilde{\nabla} e_{ij} - e_{ij} \tilde{\nabla} V) \tilde{P}^{mij}_{(k)} V_{m} \text{d}\mu),
$$

where $e_{ij} := ((\Phi^{-1})^* g)_{ij} - b_{ij}$ and $\tilde{\nabla}$ denotes the covariant derivative with respect to the hyperbolic metric b.

This definition is motivated by the work of Cruțiel and Herzlitz [3]. See also [9,14,16,19].

Theorem 2.2. Suppose that (\mathcal{M}^n, g) is an asymptotically hyperbolic manifold of decay order $\tau > \frac{n}{4+\gamma}$ and for $V \in \mathbb{N}_{b}$, $V \tilde{L}_k$ is integrable on (\mathcal{M}^n, g), then the mass functional $H^\Phi_k (V)$ is well defined and does not depend on the choice of the coordinates at infinity used in the definition.

From the mass functional H^Φ_k on \mathbb{N}_b, we define a higher-order mass, the Gauss–Bonnet–Chern mass for asymptotically hyperbolic manifolds as follows:

$$
m_{\mathbb{H}}^k := c(n, k) \inf_{\mathbb{N}_b \cap \{V > 0, \text{Hess}^b V = V b\}} H^\Phi_k (V),
$$

where $c(n, k) = \frac{(n-2k)!}{2^{k-1} (n-1)! (n-2)!}$ is the normalization constant given in (1.6) and η is a Lorentz inner product. One may assume that the infimum in (2.5) is achieved by:

$$
V = V(0) = \cosh r,
$$

where r is the hyperbolic distance to a fixed point $x_0 \in \mathbb{H}^n$. Therefore, we fix $V = V(0) = \cosh r$.

Theorem 2.3 (Positive Mass Theorem). Let $(\mathcal{M}^n, g) = (\mathbb{H}^n, b + V^2 df \otimes df)$ be the graph of a smooth asymptotically hyperbolic function $f : \mathbb{H}^n \to \mathbb{R}$ which satisfies $V \tilde{L}_k$ is integrable and the graph (\mathcal{M}^n, g) is asymptotically hyperbolic of decay order $\tau > \frac{n}{4+\gamma}$. Then we have:

$$
m_{\mathbb{H}}^k = c(n, k) \int_{\mathcal{M}^n} \frac{\sqrt{V \tilde{L}_k} V_g}{\sqrt{1 + V^2 |\nabla f|^2}} \text{d}V_g.
$$

In particular, $\tilde{L}_k \geq 0$ implies $m_{\mathbb{H}}^k \geq 0$.
The condition:
\[L_k \geq 0, \]
(2.7)
is a dominant energy condition, like (1.3). Such a beautiful expression (2.6) was found first by Lam for the scalar curvature \(R \) for asymptotically flat graphs over \(\mathbb{R}^n \), and was generalized for the Gauss–Bonnet curvature in [6]. Dahl, Gicquaud, and Sakovich [4] obtained this formula for asymptotically hyperbolic manifolds with a horizon boundary, as follows.

Theorem 2.4. Let \(\Omega \) be a bounded open set in \(\mathbb{H}^n \) with boundary \(\Sigma = \partial \Omega \). Assume \((\mathcal{M}^n, g) = (\mathbb{H}^n \setminus \Omega, b + V^2 d f \otimes d f) \) is an asymptotically hyperbolic manifold with a horizon \(\Sigma \) (i.e. \(\partial \mathcal{M} = \partial \Omega \subset M \) is minimal) which satisfies that \(V L_k \) is integrable. Moreover, assume that each connected component of \(\Sigma \) is in a level set of \(f \) and \(|\nabla f(x)| \to \infty \) as \(x \to \Sigma \). Then:

\[
m^n_k = c(n, k) \left(\frac{1}{2} \int_{\mathcal{M}^n} \frac{\sqrt{L_k}}{1 + V^2 |\nabla f|^2} \, dV_g + \frac{(2k - 1)!}{2} \int_{\Sigma} V \sigma_{2k-1} \, d\mu \right).
\]

where \(\sigma_k \) denotes \(k \)-th mean curvature of \(\Sigma \) induced by the hyperbolic metric \(b \).

In order to obtain a Penrose-type inequality for the hyperbolic mass \(m^n_k \) for asymptotically hyperbolic graphs with a horizon, we need to establish a “weighted” hyperbolic Alexandrov–Fenchel inequality. A hypersurface in \(\mathbb{H}^n \) is horospherical convex if all principal curvatures are larger than or equal to 1.

Theorem 2.5. Let \(\Sigma \) be a horospherical convex hypersurface in the hyperbolic space \(\mathbb{H}^n \). We have:

\[
\int_{\Sigma} V \sigma_{2k-1} \, d\mu \geq C_{n-1}^{2k-1} \omega_{n-1} \left(\frac{\left| \Sigma \right|}{\omega_{n-1}} \right)^{\frac{n}{n-1}} + \left(\frac{\left| \Sigma \right|}{\omega_{n-1}} \right)^{\frac{n-2k}{n-1}} k.
\]

(2.8)

Equality holds if and only if \(\Sigma \) is a centered geodesic sphere in \(\mathbb{H}^n \).

When \(k = 1 \), inequality (2.8) is just (1.4), which was proved by de Lima and Girão in [5]. These inequalities have their own interest in integral geometry as well as in differential geometry.

As a consequence of Theorems 2.4 and 2.5, the Penrose inequality for the Gauss–Bonnet–Chern mass \(m^n_k \) for asymptotically hyperbolic graphs with horizon boundaries follows.

Theorem 2.6 (Penrose Inequality). Let \(\Omega \) be a bounded open set in \(\mathbb{H}^n \) and \(\Sigma = \partial \Omega \). Assume \((\mathcal{M}^n, g) = (\mathbb{H}^n \setminus \Omega, b + V^2 d f \otimes d f) \) is an asymptotically hyperbolic manifold with a horizon \(\Sigma \) which satisfies that \(V L_k \) is integrable. Moreover, suppose that each connected component of \(\Sigma \) is in a level set of \(f \) and \(|\nabla f(x)| \to \infty \) as \(x \to \Sigma \). Assume that each connected component of \(\Sigma \) is horospherical convex, then:

\[
m^n_k \geq \frac{1}{2^k} \left(\frac{\left| \Sigma \right|}{\omega_{n-1}} \right)^{\frac{n}{n-1}} + \left(\frac{\left| \Sigma \right|}{\omega_{n-1}} \right)^{\frac{n-2k}{n-1}} k,
\]

(2.9)

provided that

\[
L_k \geq 0.
\]

Moreover, equality is achieved by the anti-de Sitter Schwarzschild type metric:

\[
g_{\text{adS-Sch}} = \left(1 + \rho^2 - \frac{2m}{\rho^2} \right)^{-1} \, d\rho^2 + \rho^2 \, d\Omega^2,
\]

(2.10)

which is a generalization of the ordinary one. Here \(\rho = \sinh r \) and \(d\Omega^2 \) is the round metric on \(S^{n-1} \).

References

[1] H.L. Bray, Proof of the Riemannian Penrose inequality using the positive mass theorem, J. Differ. Geom. 59 (2001) 177–267.
[2] H.L. Bray, D.A. Lee, On the Riemannian Penrose inequality in dimensions less than eight, Duke Math. J. 148 (2009) 81–106.
[3] P. Chruściel, M. Herzlich, The mass of asymptotically hyperbolic Riemannian manifolds, Pac. J. Math. 212 (2003) 231–264.
[4] M. Dahl, R. Gicquaud, A. Sakovich, Penrose type inequalities for asymptotically hyperbolic graphs, Ann. Inst. Henri Poincaré 14 (5) (2013) 1135–1168.
[5] L.L. de Lima, F. Girão, An Alexandrov–Fenchel-type inequality in hyperbolic space with an application to a Penrose inequality, arXiv:1209.0669.
[6] Y. Ge, G. Wang, J. Wu, A new mass for asymptotically flat manifolds, arXiv:1211.3645.
[7] Y. Ge, G. Wang, J. Wu, The Gauss–Bonnet–Chern mass of conformally flat manifolds, arXiv:1212.3213, to appear in Int. Math. Res. Not.
[8] Y. Ge, G. Wang, J. Wu, The GBC mass for asymptotically hyperbolic manifolds, preprint.
[9] M. Herzlich, Mass Formulae for Asymptotically Hyperbolic Manifolds, AdS/CFT Correspondence: Einstein Metrics and Their Conformal Boundaries, Eur. Math. Soc., Zurich, 2005, pp. 103–121.
[10] L.-H. Huang, D. Wu, The equality case of the Penrose inequality for asymptotically flat graphs, arXiv:1205.2061.
[11] G. Huisken, T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differ. Geom. 59 (2001) 353–437.
[12] M.-K.G. Lam, The graph cases of the Riemannian positive mass and Penrose inequality in all dimensions, arXiv:1010.4256.
[13] D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498–501.
[14] B. Michel, Geometric invariance of mass-like asymptotic invariants, J. Math. Phys. 52 (5) (2011) 052504.
[15] R. Schoen, S.T. Yau, On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys. 65 (1979) 45–76.
[16] X. Wang, Mass for asymptotically hyperbolic manifolds, J. Differ. Geom. 57 (2001) 273–299.
[17] E. Witten, A new proof of the positive energy theorem, Commun. Math. Phys. 80 (1981) 381–402.
[18] W. Zhang, Lectures on Chern–Weil Theory and Witten Deformations, Nankai Tracts in Mathematics, vol. 4, World Scientific Publishing Co., Inc., River Edge, NJ, 2001.
[19] X. Zhang, A definition of total energy-momenta and the positive mass theorem on asymptotically hyperbolic 3-manifolds. I, Commun. Math. Phys. 249 (2004) 529–548.