Effect of piperine in the regulation of obesity-induced dyslipidemia in high-fat diet rats

Shreya S. Shah, Gaurang B. Shah¹, Satbeer D. Singh², Priyanshi V. Gohil¹, Kajal Chauhan, Khyati A. Shah, Mehul Chorawala¹

Department of Pharmacology, K.B. Raval College of Pharmacy, Ghandhinagar, ¹Department of Pharmacology, K.B. Institute of Pharm. Edu. and Research, Ghandhinagar, Gujarat, India, ²Crimea Medical University, Simferopol, Ukraine

Received: 30-06-2010
Revised: 26-10-2010
Accepted: 23-02-2011

Correspondence to: Prof. Shreya Shah, E-mail: sss_shrey@yahoo.com

Introduction

Greater consumption of energy leads to an increase in the fat mass (adiposity) and fat-cell enlargement (hypertrophy), producing the characteristic pathology of obesity.[1] The rising tide of obesity is one of the most pressing health issues of our time. Increase in fat mass increases the associated risk conditions such as dyslipidemia, type 2 diabetes mellitus, and coronary heart disease, termed as excessive fat-related metabolic disorders (EFRMD).[2] The brain controls fat storage (i.e. energy homeostasis) by regulating food intake and energy expenditure. Sensory input is received from the body in the form of circulating hormones (leptin, ghrelin, etc.), fuels (glucose, fatty acids, etc.), and vagal efferents from the gut.[3] This information is integrated with clues from the outside world as well as the emotional state of the organism. The brain then initiates the appropriate alterations in food intake and energy expenditure with the ultimate goal of maintaining energy balance. Obesity develops when this system malfunctions.[4]

One of the most important of such centers is the hypothalamus, especially the arcuate nucleus.[5] Among the hypothalamic neuropeptide systems regulating feeding, melanocortins play a prominent role.[6]

Melanocortins (MC) cleaved from pro-opiomelanocortin (POMC), exert their effects by binding to the members of the melanocortin receptor family, in the brain.[7] Increase in the MC-4 receptor activity leads to a decrease in appetite, increased energy expenditure, and increased insulin sensitivity. Thus, an increase in MC-4 activity helps in reducing adiposity (obesity) and its related metabolic syndromes like dyslipidemia.

Increase in MC-4 activity can be achieved by increasing CNS leptin and / or insulin activity, which is dependent upon the peripheral leptin / insulin production, transport across the blood-brain barrier, and effect upon the CNS target...
receptors. Melanocortin activity may also be increased by an endogenous inhibition of inverse agonists (agonist-related peptide) of melanocortin receptors. Alternatively it can also be achieved through selective melanocortin receptor agonists such as piperazine, piperidine, pyridazinone, tetrahydropyran, thiazazole, and diazole derivatives. The diminished activity of MC-4 receptors not only increases the adiposity, but also increases the risk of its associated metabolic syndromes.[8] Therefore piperine, a piperidine derivative can be used as a melanocortin agonist.

Piper nigrum commonly known as black pepper and Piper longum commonly known as long pepper are highly reputed plants in the ayurvedic system of medicine. A phytochemical review reveals the presence of piperine (1-piperoyl piperidine), the major constituent in these plants, which is isolated from its fruits. This constituent of the Piper species has been found to possess a number of therapeutic properties, mainly indicating its use as a bioavailability enhancer. Other indications are in bronchitis, chronic cold, cough, congestion, hemorrhoids, hepatitis, arthritis, chronic dyspepsia, anorexia, chronic asthma, burning heart, colic, rheumatoid / osteoarthritis, juvenile asthma, and so on.[9] Piperine, which is 1-piperoyl piperidine, can be proposed to be used as an a melanocortin-4 agonist. In the light of above mentioned reports, the present investigation was undertaken to study the potential use of piperine in improving the lipid profile in obese animals without suppressing the appetite.

Materials and Methods

Materials

Piperine was purchased from Sigma Aldrich Co., St Louis, USA, and Sibutramine was a generous gift from Intas Pharmaceuticals Ltd, Ahmedabad. All other chemicals used were of analytical grade.

Animals

Male Sprague-Dawley rats weighing 400 – 450 g were used for the present study. They were housed in clean polypropylene cages (three rats / cage) and maintained under controlled room temperature (22 ± 2°C) and humidity (55 ± 5%), with a 12 : 12 hour light and dark cycle. All the rats were fed normal pellet diet (NPD) (commercial rat pellets) and were given water ad libitum before the dietary manipulation. The guidelines of the committee for the purpose of control and supervision of experiments on animals (GPCSEA), Government of India, were followed, and prior permission was sought from the Institutional Animal Ethics Committee for conducting the study.

Experimental Protocol

Male Sprague-Dawley rats were used for the present investigation. The rats were divided into four groups of six animals each.

Group I — Control group
Group II — High-fat diet (HFD) — control group
Group III — HFD + Piperine (suspended in 0.5% carboxy methylcellulose (CMC), p.o), for the last three weeks.
Group IV — HFD + Sibutramine (solution in deionized water, p.o.), for the last three weeks.

Group I was fed NPD, while Groups II, III, and IV were fed HFD for eleven weeks, that is, throughout the study. At the end of the eighth week, groups III and IV were treated with piperine (40 mg / kg)[9] and sibutramine (5 mg / kg), respectively, for three weeks. The composition of HFD[11] is given in Table 1. The following parameters were measured: physical parameters like body weight and food intake[12] and biochemical parameters.[12] At the end of the study, four rats from each group were sacrificed and the fat mass was collected and immediately weighed.[12]

Collection of Blood Samples

At the end of the fourth, eighth, and eleventh weeks, blood was collected under inhalation anesthesia by retro-orbital puncture from overnight fasted animals. Blood was allowed to clot for 30 minutes at room temperature. Serum was separated by centrifugation at 4,000 – 5,000 rpm for 15 minutes and analyzed for serum cholesterol (CHOD-PAP), HDL (PEG-CHOD-PAP), and triglyceride (GPO-PAP) levels using the commercially available diagnostic kits (Span Diagnostics Ltd., Surat, India).

Fat-pad Analysis

At the end of the eleventh week, animals were decapitated between 09:00 and 12:00 hours. They were free to access food and water. After sacrificing by decapitation, the epididymal white adipose tissue and interscapular brown adipose tissue (BAT) were dissected out. The collected fat was weighed immediately and compared with the other groups.

Statistical Analysis

All the values were expressed as mean ± SEM, n = 6 in each group. The statistical analysis for determining the significant difference was performed using the Student’s paired t-test and the Tucky (one way ANOVA test) test. Value of P less than 5% (P < 0.05) was considered statistically significant.

Results

Effect of Piperine on the Physical Parameters

a. Effect of piperine on body weight

Body weight was measured every week till eleven weeks. The body weight of all the HFD groups (groups II, III, IV) was significantly increased compared to the control group (group I) for first eight weeks. Piperine-treated group showed significant reduction in body weight, by 12 – 15% as compared to the HFD-control group (P < 0.05), while the sibutramine-treated group (group IV) exhibited 35 – 40% weight reduction [Figure 1].

b. Effect of piperine on food intake

Supplementing piperine for three weeks with the HFD, exhibited no significant alteration in the food intake as compared to the HFD-control and control group (p < 0.05).

Table 1:

Ingredients	(g / kg)
Powdered NPD	300
Lard	275
Casein	200
Cholesterol	10
Vitamin and mineral mix	60
dl-methionine	03
Sodium chloride	02
Sucrose	150

For example: 60 mg / kg

Sucrose 150

Shah, et al.: Effect of piperine in obesity-induced dyslipidemia

Indian Journal of Pharmacology | June 2011 | Vol 43 | Issue 3 297
Sibutramine treated group exhibited a significant reduction in food intake as compared to the HFD-control group. This indicated a protective effect of piperine in reducing body weight without any alteration in food intake [Figure 2].

Effect of Piperine on Serum Lipid Profile

Serum triglyceride, cholesterol, LDL, and VLDL levels

Table 2:

Parameters	Duration	Control Group-I	HFD-control Group-II	Piperine Group-III	Sibutramine Group-IV
Serum Cholesterol	Fourth week	73.5 ± 6.8	145.8 ± 11.5*	150.4 ± 14.2*	156.2 ± 11.3*
	Eighth week	88.5 ± 8.6	162.9 ± 14.2*	173.5 ± 14.9*	160.9 ± 7.1*
	Eleventh week	98.9 ± 5.4	193.9 ± 16.2*	131.9 ± 11.7**	96.8 ± 5.8**
Serum HDL-Cholesterol	Fourth week	46.9 ± 5.3	31.9 ± 2.9*	33.5 ± 3.5*	30.5 ± 4.5*
	Eighth week	55.3 ± 3.7	25.1 ± 1.8*	25.6 ± 1.9*	23.9 ± 1.9*
	Eleventh week	66.3 ± 3.8	23.2 ± 1.3*	34 ± 3**	46.1 ± 3.7**
Serum LDL-Cholesterol	Fourth week	13.7 ± 4.5	92.3 ± 13.8*	94.2 ± 15.6*	105.2 ± 15.8*
	Eighth week	17.6 ± 5.2	102.2 ± 14.4*	108.7 ± 15.7*	99.6 ± 6.9*
	Eleventh week	14.4 ± 3.8	119.9 ± 29.4*	32.3 ± 2.6**	28.9 ± 12.9**
Serum VLDL-Cholesterol	Fourth week	12.9 ± 0.8	21.8 ± 1.5*	22.8 ± 1.8*	20.5 ± 2.9*
	Eighth week	15.7 ± 5.2	35.7 ± 1.3*	39.3 ± 0.7*	37.5 ± 1.3*
	Eleventh week	12.1 ± 11.8	46.9 ± 11.8*	22.03 ± 1.5**	10.8 ± 8.4**
Serum Triglyceride	Fourth week	64.7 ± 4.2	108.6 ± 7.6*	113.8 ± 9*	102.4 ± 14.6*
	Eighth week	78.4 ± 9.4	178.4 ± 6.7*	196.3 ± 3.1*	187.1 ± 6.6*
	Eleventh week	91.4 ± 3	252.9 ± 15.2*	146 ± 5.2**	107.2 ± 4.7**

All values are expressed as mean ± SEM, n = 6; *P < 0.05 compared to Group-I (control); **P < 0.05 compared to Group-II (HFD-control)

Figure 3: Effect of piperine on epididymal fat mass in high-fat diet animals

Figure 4: Effect of piperine on interscapular fat mass in high-fat diet animals
were significantly increased, while the serum HDL level was significantly decreased in all the HFD groups for the first eight weeks compared to the control group. On treatment with piperine, serum triglyceride, cholesterol, LDL, and VLDL levels were significantly reduced, while the HDL level was significantly increased compared to the HFD control group ($P < 0.05$) [Table 2]. Very similar results were observed with the sibutramine treated group. Thus treatment with piperine showed a significant reduction in the lipid profile related to obesity.

Fat Pad Analysis

As the animals were kept on HFD for 11 weeks, there was an accumulation of visceral, subcutaneous, and interscapular fat. There was a significant reduction in the epididymal (visceral VAT) and interscapular (BAT) fat mass in the piperine-treated group, compared to the HFD-control group [Figures 3 and 4]. This showed the protective effect of piperine in the increased fat mass condition.

Discussion

The present study was undertaken with a therapeutic approach to develop strategies to reduce the worldwide obesity epidemic and a research goal to develop safe and effective drugs, which will not only reduce excessive fat mass, but also its related metabolic syndromes. High-fat diet is one of the main causes leading to excessive fat mass accumulation — obesity — which in turn leads to other metabolic syndromes like dyslipidemia. Thus, a high-fat diet (HFD) model was used to produce dyslipidemia similar to humans.

Increase in body weight and fat deposition are the chief indicators for the gradual progress of obesity. As the animals were fed with HFD, there was an increase in the adiposity, which in turn increased the fat cell mass. Thus, there was an overall increase in body weight. The increased body weight found in HFD rats might be due to the consumption of a diet rich in energy, in the form of saturated fats (lard) and its deposition in various body fat pads, and decreased energy expenditure as compared to NPD-fed animals. However, on treatment with piperine there was a significant decrease in body weight and fat mass, which proved its antiobese action.

Dyslipidemia is the most important relationship of obesity to coronary artery disease. The most common characteristics of dyslipidemia related to obesity are characterized by (i) increased triglycerides, (ii) decreased HDL levels, and (iii) increased dyslipidemia related to obesity are characterized by (i) increased small intestine following the intake of HFD, which proved its antiobese action.

Thus the above results suggests that piperine significantly possesses a lipid lowering effect and anti-obesity activity without any change in appetite. The possible hypothesis, seeing to the structural similarity, is that, piperine being a piperidine derivative, works as an MC-4 receptor agonist. The other mechanism piperine possesses is the thyrogenic activity, thus modulating apolipoprotein levels and insulin resistance in HFD-fed rats, and opening a new window in the management of dyslipidemia by dietary supplementation with nutrients. Moreover piperine also inhibits lipid and lipoprotein accumulation by significantly modulating the enzymes of the lipid metabolism, like Lecithin–cholesterol acyltransferase (LCAT) and Lipoproteins lipase (LPL).

References

1. Fontaine KR, Redden DT, Wang C, Westfall AO, Allison DB. Years of life lost due to obesity. JAMA 2003;289:187-93.
2. Kushner R, Roth J. Assessment of the obese patient. Endocrinol Metab Clin North Am 2003;32:915-33.
3. Saper CB, Chou TC, Elmquist, JK. The need to feed: Homeostatic and hedonic control of eating. Neuron 2002;36:199-211.
4. Balhassan N, Dalgaard LT, Lee CE, Yu J, Funahashi H, Williams T, et al. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 2005;123:493-505.
5. Foster-Schubert KE, Cummings DE. Emerging therapeutic strategies for obesity. Endocr Rev 2006;27:779-93.
6. Schwartz MW, Woods SC, Porte JD, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 2000;404:661-71.
7. Cone RD, Lu D, Koppula S, Vage DJ, Klanglund H, Bostom B, et al. The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation. Recent Prog Horm Res 1996;51:267-317.
8. Bays H. The melanocortin system as a therapeutic treatment target for adiposity and adiposopathy. Drugs R D 2006;7:289-302.
9. Sharma G, Mishra B. Piperine- A therapeutic agent and bioavailability enhancer. J Pharm Res 2007;6:129-33.
10. Vijayakumar RS, Namasivayam N. Lipid-lowering efficacy of piperine from Piper nigrum L. in high-fat diet and antithyroid drug-induced hypercholesterolemic rats. J Food Biochem 2006;30:405-21.
11. Srinivasan K, Viswanad B, Lydia A, Kaul CL, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: Model for type 2 diabetes and pharmacological screening. Pharmacol Res 2005;52:313-20.
12. Banno R, Arima H, Hayashi M, Goto M, Watanabe M, Sato I. Central administration of melanocortin agonist increased insulin sensitivity in diet-induced obese rats. FEBS Lett 2007;591:131-6.
13. Riccardi G, Giacco R, Rivellese AA. Dietary fat, insulin sensitivity and the metabolic syndrome. Clin Nutr 2004;23:447-56.
14. Srinivasan K, Patole PS, Kaul CL, Ramarao P. Reversal of glucose intolerance by pioglitazone in high-fat diet fed rats. Exp Clin Pharmacol 2004;26:327-33.
15. Storlien LH, James DE, Burleigh KM, Chisholm DJ, Kraegen EW. Fat feeding causes widespread in-vivo insulin resistance, decreased energy expenditure and obesity in the rat. Am J Physiol 1986;251:E576-83.
16. Despres JP, Krauss RM. Obesity and lipoprotein metabolism. In: Bray GA, Bouchard C, editors. Handbook of obesity. New York: Marcel Dekker, 2003. p. 415.
17. Howard BV, Ruotolo G, Robbins DC. Obesity and dyslipidemia. Endocrinol Metab Clin North Am 2003;32:855-67.
18. Shafir E. Diabetes in animals: Contribution to the understanding of diabetes by study of its etiopathology in animal models. In: Porter D, Shenw RS, Baron A, editors. Diabetes mellitus. New York: McGraw-Hill, 2003. p. 231-55.
19. Colca JR, Dailey CF, Palazuk BJ, Hillman RM, Dinh DM, Melchior GW. Pioglitazone hydrochloride inhibits cholesterol absorption and lowers plasma cholesterol concentrations in cholesterol-fed rats. Diabetes 1991;40:1669-74.
20. Vijayakumar RS, Nalini N. Piperine, an active principle from Piper nigrum, modulates hormonal and apolipoprotein profiles in hyperlipidemic rats. J Basic Clin Physiol Pharmacol 2006;17:71-86.
