GOALS-JWST: Unveiling the Heavily Dust Obscured Compact Sources in the Merging Galaxy IIZw096

Hanae Inami,1 Jason Surace,2 Lee Armus,2 Aaron S. Evans,3,4 Kirsten L. Larson,5 Loreto Barcos-Munoz,3,4 Sabrina Stierwalt,6 Joseph M. Mazzarella,9 George C. Privon,3,7 Yiqing Song,1,3 Sean Linden,8 Christopher C. Hayward,9 Torsten Börker,10 Vivian U,11 Thomas Bohn,1 Vassilis Charmandaris,12,13,14 Tania Diaz-Santos,2,15 Justin H. Howell,12,13,14 Thomas Lai,2 Anne M. Medling,15,16 Jeffrey A. Rich,17 Susanne Aalto,18 Philip Appleton,2 Michael J. I. Brown,19 Shunshi Hoshioka,1 Kazushi Iwasawa2,6,23 Francisca Kemper,21 David Law,22 Matthew A. Malkan23, Jason Marshall,24 Eric J. Murphy,22 David Sanders,25 and Paul van der Werf26

1 Hiroshima Astrophysical Science Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
2 IPAC, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125
3 National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA
4 Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22903, USA
5 AURA for the European Space Agency (ESA), Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
6 Occidental College, Physics Department, 1600 Campus Road, Los Angeles, CA 90042
7 Department of Astronomy, University of Florida, P.O. Box 112055, Gainesville, FL 32611, USA
8 Department of Astronomy, University of Massachusetts at Amherst, Amherst, MA 01003, USA
9 Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA
10 European Space Agency, Space Telescope Science Institute, Baltimore, Maryland, USA
11 Department of Physics and Astronomy, 4159 Frederick Reines Hall, University of California, Irvine, CA 92697, USA
12 Department of Physics, University of Crete, Heraklion, 71003, Greece
13 Institute of Astrophysics, Foundation for Research and Technology-Hellas (FORTH), Heraklion, 70013, Greece
14 School of Sciences, European University Cyprus, Diogenes street, Engomi, 1516 Nicosia, Cyprus
15 Department of Physics & Astronomy and Ritter Astrophysical Research Center, University of Toledo, Toledo, OH 43606, USA
16 ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D)
17 The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101
18 Department of Space, Earth and Environment, Chalmers University of Technology, 412 96 Gothenburg, Sweden
19 School of Physics & Astronomy, Monash University, Clayton, VIC 3800, Australia
20 Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (IEEC-UB), Martí i Franquès, 1, 08028 Barcelona, Spain
21 ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
22 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218, USA
23 Department of Physics & Astronomy, UCLA, Los Angeles, CA 90095-1547
24 Glendale Community College, 1500 N. Verdugo Rd., Glendale, CA 91208
25 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822
26 Leiden Observatory, Leiden University, NL-2300 RA Leiden, Netherlands

ABSTRACT

We have used the Mid-Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST) to obtain the first spatially resolved, mid-infrared (mid-IR) images of IIZw096, a merging luminous infrared galaxy (LIRG) at $z = 0.036$. Previous observations with the Spitzer Space Telescope suggested that the vast majority of the total IR luminosity (L_{IR}) of the system originated from a small region outside of the two merging nuclei. New observations with JWST/MIRI now allow an accurate measurement of the location and luminosity density of the source that is responsible for the bulk of the IR emission. We estimate that 40–70% of the IR bolometric luminosity, or $3 - 5 \times 10^{11} \, L_{\odot}$, arises from a source no larger than 175 pc in radius, suggesting a luminosity density of at least $3 - 5 \times 10^{12} \, L_{\odot} \, \text{kpc}^{-2}$. In addition, we detect 11 other star forming sources, five of which were previously unknown. The MIRI

Corresponding author: Hanae Inami
hanae@hiroshima-u.ac.jp
F1500W/F560W colors of most of these sources, including the source responsible for the bulk of the far-IR emission, are much redder than the nuclei of local LIRGs. These observations reveal the power of JWST to disentangle the complex regions at the hearts of merging, dusty galaxies.

Keywords: Luminous infrared galaxies (946) — Galaxy mergers (608) — Infrared astronomy (786) — Infrared sources (793)

1. INTRODUCTION

IIZw096 (CGCG448-020, IRAS20550+1656) is a merging, luminous infrared galaxy (LIRG) at $z = 0.0361$ with an infrared (IR) luminosity of $L_{\text{IR}, 8-1000\,\mu\text{m}} = 8.7 \times 10^{11}L_{\odot}$, one of the more than 200 LIRGs in the Great Observatories All-sky LIRGs Survey (GOALS; Armus et al. 2009). Previous imaging with the Spitzer Space Telescope revealed that the majority (up to 80%) of the infrared luminosity of the entire system comes from a region outside of the merging nuclei (Inami et al. 2010), making it an even more extreme analog of the well known Antennae Galaxies (Mirabel et al. 1998; Brandl et al. 2009).

The system consists of regions A, C, and D (Figure 1b) along with a merging spiral galaxy to the north-west (Goldader et al. 1997). Regions C and D are not detected at ultraviolet or optical wavelengths with the Hubble Space Telescope (HST), but only at near-IR and longer wavelengths (Inami et al. 2010; Barcos-Muñoz et al. 2017; Wu et al. 2022; Song et al. 2022). Although the Spitzer/MIPS 24µm image suggested that a single compact source in region D dominates the emission, the large beam size made it impossible to resolve the exact location of the immense far-IR emission. The superior sensitivity and resolving power of the James Webb Space Telescope (JWST) lets us pinpoint the source that is responsible for the intense IR emission and study its complex environment on sub-kpc scales for the mid-IR for the first time.

Here, we present high-spatial resolution mid-IR imaging of IIZw096 taken with the JWST Mid-InfraRed Instrument (MIRI; Rieke et al. 2015; Bouchet et al. 2015). Throughout this paper, we adopt a cosmology with $H_0 = 70\,\text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}$, $\Omega_M = 0.28$ and $\Omega_{\Lambda} = 0.72$. The redshift of IIZw096 ($z = 0.0361$) corresponds to a luminosity distance of 160Mpc and a projected physical scale of 725pc arcsec$^{-1}$.

2. OBSERVATIONS AND DATA REDUCTION

The JWST observations were performed under the Directors Discretionary Time Early Release Science (ERS) program 1328 (PI: Armus). Images of IIZw096 were obtained on July 2, 2022 with a MIRI subarray (SUB128) using the F560W, F770W and F1500W filters. The pointing was centered at 314.35167°,17.12769° (J2000), where the prominent mid-IR emission was identified with Spitzer. The observations were dithered and exposure times set to avoid saturation (46, 48, and 48 seconds, respectively). The data were reduced with the standard JWST calibration pipeline (Gordon et al. 2015) and up-to-date reference files from the Calibration References Data System. The images in this work, including HST, are aligned to the Gaia Data Release 3 catalog (Gaia Collaboration et al. 2016, 2021).

3. RESULTS

The ∼ 10× improvement in the spatial resolution of JWST compared to Spitzer resolves the mid-IR emission into individual clumps down to scales of $\lesssim 100 - 200$pc, enabling measurements of mid-IR color and L_{IR} surface density to study the nature of IIZw096.

3.1. Mid-IR Clumps in the Disturbed Region

Individual sources are identified with the DAOFIND algorithm (Stetson 1987) in the F770W SUB128 subarray image, which have the highest signal-to-noise ratio (SNR), using the Python photutils package (Astropy Collaboration et al. 2013, 2018). The detection threshold is 5σ. The sources detected in the F770W image are used as priors for photometry in all three bands (Figure 1). We assign identification (ID) numbers for the detected sources in ascending order of R.A. For a subset of sources shown in Wu et al. (2022), we also refer to their source names (Figure 1b). The same 12 clumps are detected in the F560W image, while in the F1500W image, four of them (IDs 4, 9, 10, 11/C0) lie on the structure of the point spread function (PSF) of the brightest source (ID 8/D1), making confident detections and flux measurements difficult. Thus, we only report their upper limits.

As shown in Figure 1, the most prominent mid-IR source is ID 8 (source D1), lying 0.47′′ northeast of ID 7 (source D0). Although ID 8 is fainter than ID 7 in the HST/NICMOS 1.6µm image, its emission exceeds ID 7 at 5.6µm and 7.7µm by a factor of three. At 15µm, the ID 8-to-ID 7 flux ratio increases to about five. Although
Figure 1. Multi-band near- and mid-IR imaging of IIZw096. (a) HST/ACS F435W (0.4µm) image of the IIZw096 system with Spitzer/MIPS 24µm contours in orange. The FoV of the JWST/MIRI SUB128 subarray is centered on the dust-obsured region (dotted box). (b) HST/NICMOS F160W (1.6µm) image of the obscured region. Region names from Goldader et al. (1997) are shown, as are a subset of the sources identified by Wu et al. (2022) (red pluses). (c)–(e) JWST/MIRI SUB128 images taken with the F560W, F770W, and F150W filters. The MIRI images are shown with a logarithmic scale. Red circles indicate the locations of the detected sources with a size corresponding to the beam FWHM. Gray circles indicate sources detected in F560W and F770W but not confidently detected at F1500W. (f) False color image made with JWST/MIRI F560W (red), HST/NICMOS F160W (green), and HST/ACS F435W (blue). All images are shown with north up and east to the left. These images show that while the complexity of IIZw096 was evident from the near-IR HST data, the true nature of the dust emission and the source of the power is only finally revealed with JWST.

Table 1. Flux density of the clumps detected at F560W, F770W, and F1500W.

ID	RA	Dec	F560W (mJy)	F770W (mJy)	F1500W (mJy)
1	314.350210	17.126499	0.51±0.03	3.12±0.23	8.56±0.40
2	314.350342	17.126498	0.35±0.03	2.62±0.17	7.10±0.25
3	314.350638	17.126226	0.13±0.01	0.85±0.08	2.79±0.19
4	314.351233	17.127361	0.13±0.03	0.97±0.05	<1.87
5	314.351263	17.127169	0.30±0.02	1.60±0.05	3.40±0.18
6	314.351444	17.127124	0.13±0.03	0.86±0.03	2.27±0.13
7/8/D1	314.351423	17.127521	1.79±0.05	8.60±0.30	32.16±1.74
8/1D1	314.351552	17.127566	1.17±0.04	25.40±2.21	155.39±12.62
9	314.351688	17.127728	0.31±0.04	1.91±0.14	<4.07
10	314.351945	17.127588	0.15±0.03	0.75±0.09	<2.80
11/C0	314.351972	17.127732	0.39±0.03	1.09±0.18	<0.73
12	314.352156	17.127821	0.11±0.01	0.67±0.04	2.31±0.14

Total 10.45±0.33 48.52±1.94 214.06±4.04

ID 7 was previously speculated to be associated with the bulk of the total IR emission due to its prominence at 1.6µm (Inami et al. 2010), the majority of the mid-IR emission in fact originates from ID 8.

There are five mid-IR bright clumps (IDs 1, 4, 5, 6, and 12) that are either not detected or have extremely low SNR in the HST 1.6µm image. ID 1 is in the less dusty region A to the southwest. The three sources, IDs 4, 5, and 6, are south of ID 7. The remaining one, ID 12, is located 2.27" northeast of ID 8. Interestingly, these new mid-IR selected sources are not concentrated in the dustiest region, but spread throughout the perturbed region.

Additional structure is evident in the MIRI image, outside of the main power source in the IIZw096 system (Figure 1f). Region A, which accounts for most of the optical emission, hosts a number of clumps in the MIRI...
data. Around region C, the emission peaks at 1.6μm but fades towards the mid-IR.

3.2. Mid-IR Colors of the Clumps

Aperture photometry was employed to measure the flux of the detected clumps, except for IDs 7 and 8 due to their relative proximity (see below). The aperture radii used for F560W, F770W, and F1500W are 0.27″, 0.28″, and 0.30″, respectively, with aperture corrections of 0.65, 0.65, and 0.50. Aperture photometry in the F1500W image was performed after subtracting ID 8, due to its prominent PSF pattern (note that the PSF has not been subtracted in Figure 1c). The source subtraction was performed using a PSF generated by WebbPSF (Perrin et al. 2012, 2014). To account for the extremely red color of ID 8, a power-law spectrum with a spectral slope of 3, resembling the mid-IR color of IIZw096, was used to generate the PSF. This provides a more accurate flux measurement of the sources around ID 8.

To extract the fluxes of IDs 7 and 8, a simultaneous two-dimensional Gaussian fit was performed in the F560W and F770W images. In the F1500W image, the flux of ID 8, which dominates the emission, was also extracted via a simultaneous two-dimensional Gaussian fit. However, we did not adopt the flux of ID 7 from this fit because this source lies on the Airy ring of ID 8. Instead, the flux of ID 7 was derived from a single Gaussian fit to the image after subtraction of ID 8 to minimize contamination from the PSF.

The local background was measured using a 3σ-clipped median in various annuli. They have a minimum inner radius 2.4× the half-width half-maximum (HWHM) of the PSF and a maximum radius that is 14× (for F560W and F770W) and 7× (F1500W) the PSF HWHM in steps of 0.05″ around each source. During this process, the other detected sources were masked out to avoid background over-estimation. Each of the measured background levels was separately subtracted from the measured flux, providing a distribution of fluxes for each source. The median value of this distribution is reported as the final flux density in Table 1. The 16th and 84th percentiles were adopted as the flux uncertainties.

Based on the measured fluxes in all three MIRI bands, we show the F1500W/F560W − F770W/F560W color-color diagram in Figure 2. These colors are a sensitive measure of the mid-IR continuum slope, and the F770W/F560W color is also sensitive to any PAH emission at 7.7μm. The individual clumps detected in the MIRI SUB128 images are shown in the left panel. We also present the same diagram for local LIRG nuclei using Spitzer/IRS low-resolution spectra taken with the Short-Low (SL; 5.5 − 14.5μm) and Long-Low (LL; 14 − 38μm) spectroscopy (Stierwalt et al. 2013, 2014). We generated synthetic photometry from the spectra using the MIRI filter curves and the Python synphot package (STScI Development Team 2018). The SL and LL slits fully cover regions C and D. The LL slit also covers region A. As expected from the IRS spectra (Inami et al. 2010; Stierwalt et al. 2013), the F1500W/F560W color from the synthetic photometry of the dust-obscured region in IIZw096 is an outlier with a much redder color than the rest of the local LIRGs. With JWST/MIRI, we are now able to decompose the emission into individual clumps to study the distribution of their mid-IR colors.

The summed flux of all the clumps in color space agrees well with the color measured with the much larger beam of Spitzer/IRS (Figure 2 right). All but one of the MIRI clumps show redder colors (F1500W/F560W ≥ 15) than most of the local LIRG nuclei, except for ID 5, which has F1500W/F560W= 11 ± 0.7. ID 8 (D1) is the reddest, while ID 7 (D0) has a comparable F1500W/F560W color to the other clumps. The newly detected source ID 12 is the second reddest, along with IDs 2 and 3 having excess emission at 15μm and 7.7μm compared to most of the other sources.

The F770W/F560W colors of the clumps are spread over a range of 4 ≤ F770W/F560W ≤ 8. As expected since they dominate the mid-IR flux, the F770W/F560W colors of the two brightest sources, IDs 7 and 8, agree well with the color of IIZw096 derived from the synthetic photometry on the IRS spectrum. The remaining sources, except for IDs 5, 10 and 11 are redder with F770W/F560W ≥ 6. These red sources have F770W/F560W colors consistent with strong PAH emission. The bluer sources suggest weaker PAH emission or an excess of hot dust. The F770W/F560W colors of IDs 7 and 8 are comparable to sources with 6.2μm PAH equivalent widths (EQWs) of about half that seen in pure starburst nuclei, which is consistent with the direct measurement in the IRS spectrum (6.2μm PAH EQW= 0.26μm; Inami et al. 2010) and may indicate an excess of very hot dust.

3.3. Infrared Luminosity Surface Density

To estimate the luminosity density of each clump in the MIRI image, we first use the measured flux to estimate L_{IR}. Assuming that the 15μm flux correlates with L_{IR}, we compute the fractional contribution of each

1 The aperture correction values are from the PSF encircled energy at https://jwst-docs.stsci.edu/jwst-mid-infrared-instrument/miri-performance/miri-point-spread-functions

2 https://www.stsci.edu/jwst/science-planning/proposal-planning-toolbox/psf-simulation-tool
Figure 2. [Left] F1500W/F560W–F770W/F560W color-color diagram for all clumps detected in the MIRI images. For sources without a detection in the F1500W image, upper limits are indicated by downward arrows. [Right] For comparison, the same diagram but showing the colors of local LIRG nuclei derived from synthetic photometry on the Spitzer/IRS low-resolution spectra. The data points are color-coded by the 6.2µm PAH EQW measured from the spectra. The color derived from the total flux of the MIRI clumps in the left panel is shown as a star. In the Spitzer slit that covers the merger-induced dusty region, IIZw096 has one of the reddest F1500W/F560W colors among local LIRGs.

clump to the total 15µm flux. The flux of the diffuse emission is measured with an aperture of radius 7" centered on the F1500W image with the total flux of all the clumps being subtracted. The resulting flux density of the diffuse emission is 190mJy \(^3\). Finally, the \(L_{\text{IR}}\) estimated in the obscured region (6.87 × 10\(^{11}\) L\(_\odot\); Inami et al. 2010) is scaled by these fractions to calculate the \(L_{\text{IR}}\) of each component. The resulting \(L_{\text{IR}}\) for ID 8 (D1) is 3 × 10\(^{11}\) L\(_\odot\), corresponding to a SFR of 40M\(_\odot\) yr\(^{-1}\) (assuming a Kroupa initial mass function; Kennicutt 1998; Kroupa 2001; Madau & Dickinson 2014). This rises to 5 × 10\(^{11}\) L\(_\odot\) or a SFR of 60M\(_\odot\) yr\(^{-1}\) if we assume that the diffuse emission at 15µm does not contribute to \(L_{\text{IR}}\) at all, because this ascribes more of the \(L_{\text{IR}}\) to ID 8.

As an alternative, we derive a bolometric correction factor from the ensemble of GOALS nuclei to estimate \(L_{\text{IR}}\) of each clump. This factor is calculated using the 29 GOALS nuclei with similar colors to the clumps in IIZw096; F1500W/F560W > 10 and F770W/F560W > 4 shown in Figure 2 (right). From this we obtain a median bolometric correction factor \((L_{\text{IR}}/L_\odot(15\mu m))\) of 4 ± 3. This yields \(L_{\text{IR}} = (5 ± 4) \times 10^{11}\) L\(_\odot\) for ID 8 (D1). This is consistent with the \(L_{\text{IR}}\) estimate above, where the total \(L_{\text{IR}}\) in the dust-embedded region is split up based on the 15µm flux fraction of each clump.

Because ID 8 (D1) is unresolved, the MIRI PSF size at 15µm limits its radius to < 175pc. Thus, a lower limit on the \(L_{\text{IR}}\) surface density \((\Sigma L_{\text{IR}})\) is > 3–5 × 10\(^{12}\) L\(_\odot\) kpc\(^{-2}\). This corresponds to a SFR surface density of > 400 – 600M\(_\odot\) yr\(^{-1}\) kpc\(^{-2}\) if powered by star formation.

4. DISCUSSION

Our JWST imaging has revealed the complexity of the dustiest region of the merging galaxy, IIZw096. The three main components in the perturbed region show a wide variety of optical-infrared colors and morphologies, with a mix of bright, unresolved clumps and diffuse emission. This suggests a range in properties, such as extinction, SFR, age, and dust temperature in this ongoing merger.

Although ID 7 (D0) is the brightest source at 1.6µm, the JWST mid-IR data demonstrate that ID 8 (D1) generates the bulk of the total IR emission in IIZw096. The location of ID 8 also coincides with two OH megamasers (Miguel et al. 2011; Wu et al. 2022) \(^4\). Megamasers are often found in merging (U)LIRGs, in close proximity to the nuclei (e.g., Roberts et al. 2021), marking regions of extremely high gas density and strong far-IR radiation.

The emission we have targeted with JWST is clearly responsible for the bulk of the luminosity in IIZw096 and it arises from outside of the prominent two merg-

\(^3\) In F560W and F770W, diffuse emission fluxes measured with the same method are 18mJy and 90mJy, respectively.

\(^4\) IIZw096 also hosts an H\(_2\)O megamaser (Wiggins et al. 2016; Kuo et al. 2018), but its exact location is unknown.
ing galaxies, one of which is the spiral galaxy to the northwest that lies outside of the MIRI SUB128 FoV (Figure 1a). However, it is possible that ID 8 is a third nucleus in this system. Given the observed mid-IR morphology, region A+C+D could be a single disrupted galaxy or it could be two galaxies with source A0 being one nucleus and ID 8 (D1) being the other. The diffuse, extended emission around ID 8 would then be the remnants of the third galaxy’s disk. The estimated stellar mass of ID 8 is $\sim 10^{9}M_{\odot}$ and there is a similarly large mass of gas in this region (Inami et al. 2010; Wu et al. 2022). These estimates might indicate ID 8 is a partially stripped third nucleus. Although the current MIRI SUB128 images do not provide evidence for either the two- or three-body merger scenario, our upcoming JWST/NIRCam imaging and the deeper MIRI full-array imaging (ERS program 1328) may elucidate this question.

ID 8 (D1) generates 40 – 70% of the total IR emission of the IIZw096 system, corresponding to an L_{IR} surface density of $> 3 - 5 \times 10^{12}L_{\odot}$ kpc$^{-2}$. This is $\sim 10\times$ the characteristic surface brightness of starbursts, but comparable to super star clusters (Meurer et al. 1997) including some in the Antennae Galaxies (Brandl et al. 2009). The L_{IR} surface density limit of ID 8 is also consistent with the ULIRG nuclei studied at 12.5μm with Keck (Soifer et al. 2000, 2001). In addition, the 33GHz continuum imaging (0.1” resolution) taken with the Very Large Array shows that the peak emission is located at ID 8 (Song et al. 2022). These authors estimated a SFR surface density of $470\pm60 M_{\odot}$ yr$^{-1}$ kpc$^{-2}$, corresponding to an L_{IR} surface density of $(3.9 \pm 0.5) \times 10^{12}L_{\odot}$ kpc$^{-2}$, which agrees with the value derived from the mid-IR.

The clumps in the disturbed region, including ID 8 (D1), are much redder in F1500W/F560W than local LIRG nuclei. Based on the 7.7μm silicate optical depth ($\tau_{7.7\mu m} \sim 1$) derived from Spitzer/IRS spectroscopy, the V-band extinction is estimated to be ≥ 19mag (Inami et al. 2010). The unusually red colors of IIZw096 could be due to extremely young starbursts triggered by the most recent merger. The other LIRG with a very red F1500W/F560W color, IRAS22491-1808, is also an on-going merger with bright clumps of star formation (Surace 1998; Surace et al. 1998).

The F770W/F560W color traces the 7.7μm PAH emission and is also a good proxy for the 6.2μm PAH EQW (Figure 2 right). Using the 6.2μm PAH EQW as a diagnostic of starbursts and active galactic nuclei (AGN; e.g., Brandl et al. 2006; Armus et al. 2007), the clumps with F770W/F560W ≥ 5 are consistent with pure star formation. However, the color of ID 8 (D1) is in the range where an AGN cannot be ruled out. Although analysis of X-ray spectra of IIZw096 obtained with Chandra, XMM-Newton, and NuSTAR also favor star formation, the non-detection of ID 8 by NuSTAR does not rule out a Compton-thick AGN if the column density exceeds 10^{25}cm$^{-2}$ (Iwasawa et al. 2011; Ricci et al. 2021). In fact, given the molecular mass measured for ID 8 within an aperture of $0.29\times0.16''$ (Wu et al. 2022), the estimated column density is $\sim 10^{25}$cm$^{-2}$. Our upcoming mid-IR and near-IR spectroscopic data (ERS program 1328) are expected to shed additional light on the underlying energy source of this heavily obscured source. JWST imaging and spectroscopic observations of other merging galaxies should produce more examples of extremely red, dusty star-forming clumps in and around their nuclei, letting us directly relate the properties of the sources in IIZw096, and inform models of merger-induced star formation. One such source, VV114, is the subject of three companion papers from the same ERS program (Evans et al., Rich et al., Linden et al., in prep).

5. CONCLUSIONS

The JWST/MIRI imaging demonstrates uncharted aspects of the dust emission from the extremely luminous, merging galaxy IIZw096. The high spatial resolution and high sensitivity mid-IR imaging of this work yields the following findings:

- For the first time, we have spatially resolved the mid-IR emission of the merger-induced heavily dust-obscured region of IIZw096. We identify the source (ID 8/D1) that is responsible for the bulk of the mid-IR emission, accounting for 40 – 70% of the total IR emission of the system.

- In total, 12 clumps are detected in the F770W (and F560W) image, five of which are newly identified and were not detected or had low SNR detections at 1.6μm with HST/NICMOS. Most of the clumps have similar F1500W/F560W colors, ranging from ~ 15 to 25. These colors are about twice as red as local LIRG nuclei, but agree with the colors derived from synthetic photometry on Spitzer spectra of this system. Among LIRG nuclei, the F770W/F560W colors roughly correlate with the 6.2μm PAH EQW, and therefore the clumps have colors indicative of 6.2μm PAH EQWs from $\sim 0.3\mu$m to 0.6μm, slightly lower than but including pure star formation.

- The estimated L_{IR} of ID 8 (D1) is $3 - 5 \times 10^{11}L_{\odot}$, which corresponds to a SFR of $40 - 60 M_{\odot}$ yr$^{-1}$ if it is star-forming. As the source is unresolved, we estimate its L_{IR} surface density to be
$> 3 - 5 \times 10^{12} L_\odot \text{kpc}^{-2}$ or a SFR surface density of $> 400 - 600 M_\odot \text{yr}^{-1} \text{kpc}^{-2}$. Such high surface densities put source D1 in a range comparable to young super star clusters and ULIRG nuclei.

The JWST mid-IR imaging described in this Letter has revealed a hidden aspect of IIZw096, and has opened a door towards identifying heavily dust-obscured sources which cannot be found at shorter wavelengths. Future planned spectroscopic observations of IIZw096 will provide additional information on the nature of the dust, ionized gas, and warm molecular gas in and around the disturbed region of this luminous merging galaxy.

This work is based on observations made with the NASA/ESA/CSA James Webb Space Telescope. These observations are associated with program 1328. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is funded by the National Aeronautics and Space Administration and operated by the California Institute of Technology. HI acknowledges support from JSPS KAKENHI Grant Number JP19K23462 and the Ito Foundation for Promotion of Science. YS is supported by the NSF through grant AST 1816838 and the Grote Reber Fellowship Program administered by the Associated Universities, Inc./ National Radio Astronomy Observatory. The Flatiron Institute is supported by the Simons Foundation. V.U acknowledges funding support from NASA Astrophysics Data Analysis Program (ADAP) grant 80NSSC20K0450. AMM acknowledges support from the National Science Foundation under Grant No. 2009416. S.A. gratefully acknowledges support by the Spanish MCIN under grant PID2019-105510GB-C33/AEI/10.13039/501100011033.

Facilities: JWST (MIRI), HST (ACS, NICMOS)

NED

Software: astropy (Astropy Collaboration et al. 2013, 2018), synphot (STScI Development Team 2018), WebbPSF (Perrin et al. 2012, 2014)

REFERENCES

Armus, L., Charmandaris, V., Bernard-Salas, J., et al. 2007, The Astrophysical Journal, 656, 148, doi: 10.1086/510107

Armus, L., Mazzarella, J. M., Evans, A. S., et al. 2009, Publications of the Astronomical Society of the Pacific, 121, 559, doi: 10.1086/600092

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, Astronomy and Astrophysics, 558, A33, doi: 10.1051/0004-6361/201322068

Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M., et al. 2018, The Astronomical Journal, 156, 123, doi: 10.3847/1538-3881/aabc4f

Barcos-Muñoz, L., Leroy, A. K., Evans, A. S., et al. 2017, The Astrophysical Journal, 843, 117, doi: 10.3847/1538-4357/aa789a

Bouchet, P., García-Marín, M., Lagage, P. O., et al. 2015, Publications of the Astronomical Society of the Pacific, 127, 612, doi: 10.1086/682254

Brandl, B. R., Bernard-Salas, J., Spoon, H. W. W., et al. 2006, The Astrophysical Journal, 653, 1129, doi: 10.1086/508849
Brandl, B. R., Snijders, L., den Brok, M., et al. 2009, The Astrophysical Journal, 699, 1982, doi: 10.1088/0004-637X/699/2/1982
Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al. 2016, Astronomy and Astrophysics, 595, A1, doi: 10.1051/0004-6361/201629272
Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2021, Astronomy and Astrophysics, 649, A1, doi: 10.1051/0004-6361/202039657
Goldader, J. D., Goldader, D. L., Joseph, R. D., Doyon, R., & Sanders, D. B. 1997, The Astronomical Journal, 113, 1569, doi: 10.1086/118374
Gordon, K. D., Chen, C. H., Anderson, R. E., et al. 2015, Publications of the Astronomical Society of the Pacific, 127, 584, doi: 10.1086/682252
Inami, H., Armus, L., Surace, J. A., et al. 2010, The Astronomical Journal, 140, 63, doi: 10.1088/0004-6256/140/1/63
Kennicutt, Jr., R. C. 1998, The Astrophysical Journal, 498, 541, doi: 10.1086/305588
Kroupa, P. 2001, Monthly Notices of the Royal Astronomical Society, 322, 231, doi: 10.1046/j.1365-8711.2001.04022.x
Kuo, C. Y., Constantin, A., Braatz, J. A., et al. 2018, The Astrophysical Journal, 860, 169, doi: 10.3847/1538-4357/aac498
Madau, P., & Dickinson, M. 2014, Annual Review of Astronomy and Astrophysics, vol. 52, p.415-486, 52, 415, doi: 10.1146/annurev-astro-081811-125615
Meurer, G. R., Heckman, T. M., Lehnert, M. D., Leitherer, C., & Lowenthal, J. 1997, The Astronomical Journal, 114, 54, doi: 10.1086/118452
Migenes, V., Coziol, R., Cooprider, K., et al. 2011, Monthly Notices of the Royal Astronomical Society, 416, 1267, doi: 10.1111/j.1365-2966.2011.19124.x
Mirabel, I. F., Vigroux, L., Charmandaris, V., et al. 1998, Astronomy and Astrophysics, 333, L1. https://ui.adsabs.harvard.edu/abs/1998A&A...333L...1M/abstract
Perrin, M. D., Sivaramakrishnan, A., Lajoie, C.-P., et al. 2014, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 9143, 91433X, doi: 10.1117/12.2056689
Perrin, M. D., Soummer, R., Elliott, E. M., Laloo, M. D., & Sivaramakrishnan, A. 2012, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 8442, 84423D, doi: 10.1117/12.925230
Ricci, C., Privon, G. C., Pfeifle, R. W., et al. 2021, Monthly Notices of the Royal Astronomical Society, 506, 5935, doi: 10.1093/mnras/stab2052
Rieke, G. H., Wright, G. S., B¨ oker, T., et al. 2015, Publications of the Astronomical Society of the Pacific, 127, 584, doi: 10.1086/682252
Roberts, H., Darling, J., & Baker, A. J. 2021, The Astrophysical Journal, 911, 38, doi: 10.3847/1538-4357/abe944
Soifer, B. T., Neugebauer, G., Matthews, K., et al. 2000, The Astronomical Journal, 119, 509, doi: 10.1086/301233
—. 2001, The Astronomical Journal, 122, 1213, doi: 10.1086/322119
Song, Y., Linden, S. T., Evans, A. S., et al. 2022, The Astrophysical Journal, (submitted)
Stetson, P. B. 1987, Publications of the Astronomical Society of the Pacific, 99, 191, doi: 10.1086/131977
Stierwalt, S., Armus, L., Surace, J. A., et al. 2013, The Astrophysical Journal Supplement Series, 206, 1, doi: 10.1088/0067-0049/206/1/1
Stierwalt, S., Armus, L., Charmandaris, V., et al. 2014, The Astrophysical Journal, 790, 124, doi: 10.1088/0004-637X/790/2/124
STScI Development Team. 2018, Astrophysics Source Code Library, ascl:1811.001. https://ui.adsabs.harvard.edu/abs/2018ascl.soft11001S
Surace, J. A. 1998, PhD thesis, University of Hawaii, Manoa, Institute for Astronomy. https://ui.adsabs.harvard.edu/abs/1998PhDT........1S
Surace, J. A., Sanders, D. B., Vacca, W. D., Veilleux, S., & Mazzarella, J. M. 1998, The Astrophysical Journal, 492, 116, doi: 10.1086/305028
Wiggins, B. K., Migenes, V., & Smidt, J. M. 2016, The Astrophysical Journal, 816, 55, doi: 10.3847/0004-637X/816/2/55
Wu, H., Wu, Z., Sotsnikova, Y., et al. 2022, Astronomy and Astrophysics, 661, A125, doi: 10.1051/0004-6361/202142854