Various ester derivatives from esterification reaction of secondary metabolite compounds: a review

Abstract
Secondary metabolite compounds have a very diverse structure that is widely used as a source of new drug discovery because they have a variety of bioactivity. But in its development, there are several problems related to these compounds including low bioavailability, low solubility and instability in the metabolic process. Modification of the structure of secondary metabolites is used to answer all these problems. One of the processes was by synthesizing the ester derivative compounds through the chemical and enzymatic esterification reaction. Esters derivatives of secondary metabolite compounds can increase the diversity of structures, allow for increased biological activity and even new biological activity of these compounds. This review will discuss various processes of modification of the structure of secondary metabolite compounds through chemical and enzymatic esterification reactions that have been reported from 1994-2019.

Keywords: synthesis, esterification reaction, secondary metabolite compounds, ester derivatives, enzymatic

Introduction
Natural product compounds were obtained from various organisms. Natural product compound consists of primary and secondary metabolites. Primary metabolites are compounds produced by living things and are essential in the process of cell metabolism for cell survival. Primary metabolites are consisting of carbohydrates, fats, proteins and nucleic acids. Secondary metabolites are compounds that are only found in certain organisms or groups of organisms and are found in nature in limited quantities. Secondary metabolite compounds consist of terpenoids, steroids, phenyl propanoids, flavonoids, stylenoids and alkaloids. Natural product compounds have extraordinary potential to be developed into high value products both as pharmaceutical products, nutritional products, functional foods, and cosmetics.

Secondary metabolites have a very diverse structure that is widely used as a source of new drug discovery because it has a variety of bioactivity. Even though there are many secondary metabolite compounds that have the potential to become new drug candidates, there are still some problems related to these compounds. These problems include bioavailability and low solubility and instability in the metabolic process. Therefore, many structural modifications are made to natural product compounds to enrich new structures, allowing an increase their biological activity and even new biological activity of these compounds, so that the discovery of new drugs is growing. One of the processed of structural modification is by synthesising its ester through the esterification reaction.

Esterification reaction is a reaction between carboxylic acid compounds and their derivatives with alcohol to form ester compounds. Esterification reaction of secondary metabolite compounds can be done through esterification reactions by chemical or enzymatic reactions. Esterification reaction using a chemical catalyst is used because the process is relatively easy, but the selectivity is low and requires expensive costs. In recent years, the reaction approach using enzyme catalysts is in great demand. The enzymatic approach is preferred because of its high catalytic efficiency, enables easier and efficient separation of compounds, mild reaction conditions, require lower costs and environmentally friendly processes. Based on several studies have reported that the lipase enzyme has been widely used as a catalyst for ester synthesis. Lipase (EC 3.1.1.3) functions to catalyze various reactions such as, esterification, hydrolysis and transesterification. Some lipase enzymes used for catalysts in esterification reagents include Lipozyme TLIM, Lipozyme 435, Novozym 435, Porcine pancreatic lipase.

So far there has not been review that discusses the various processes of the esterification reaction of secondary metabolite compounds. Therefore, this article will discuss the process of modification of the structure of secondary metabolite compounds through chemical and enzymatic esterification reactions that have been reported from 1994-2019. This review aims to provide various references regarding the synthesis of esters derived from secondary metabolites.

Ester derivatives from various secondary metabolites
Ester derivatives of cinnamic acid
Cinnamic acid is one of the phenolic compounds of the phenyl propanoid group. Several researchers have reported the synthesis of esters from cinnamic acid (1) through enzymatic esterification reactions in solvent free or organic solvent systems. Some of these esters include ethyl cinnamate (2), butyl cinnamate (3), benzyl cinnamate (4) and cinnamic acid L-ascorbate (5). Ethyl cinnamate was synthesized from esterification reaction with Lipozyme TLIM catalyst. The reaction mixture containing cinnamic acid and ethanol in isooctane was incubated in incubator shaker at 40˚C at 170 rpm and produced high yield of 86%. Several researches were synthesized ethyl cinnamate (2), but the yield is very low. Synthesis of ethyl cinnamate (2) was also catalyzed by Novozym 435 enzyme through esterification reaction of cinnamic acid with ethanol. Yield of ethyl cinnamate is very low (2%) and requires a long-time reaction.
days).

Other researchers have synthesized ethyl cinnamate (2) using Porcine lipase as a biocatalyst. Ethyl cinnamate (2) was synthesized by enzymatic reactions using Novozym 435 lipase and the yield of 35.2%.

Butyl cinnamate (3) was synthesized from esterification reaction of cinnamic acid (1) with the Novozym 435 lipase catalyst. The reaction mixture containing cinnamic acid (1), butanol in hexane and incubated in a temperature-controlled incubator shaker at 30°C at 250rpm. Benzyl cinnamate (4) was synthesized from esterification reaction of cinnamic acid (1) with benzyl alcohol and catalyzed by Lipozyme TLIM in several organic solvents such as acetone, trichloromethane, methylbenzene, and isoctane. The reaction mixture was incubated in an incubator shaker at 150rpm at 40°C. Based on this reaction, isoctane media produced the highest yield. L-ascorbyl cinnamate (5) was synthesized through esterification reaction which is catalyzed by Lipozyme TLIM and Novozym 435 enzyme in various solvents including methanol, ethanol, acetonitrile, and acetone. Acetone and acetonitrile were reported to be the most suitable media. Lipase catalyzed using Lipozyme TLIM dan Novozym 435 gave a maximum yield of 99%. Addition of Ph-TiO2 to the enzymatic esterification reaction for formation of cinnamyl ester was reported to increase catalytic efficiency in the reaction (Figure 1) (Figure 2) (Table 1).

Table 1: Reagents, conditions and yield in esterification reactions of cinnamic acid

Compounds	R reagent	Enzyme	Yield (%)	Reference
(2)	EtOH	Lipozyme TLIM	86	Wang et al., 18
(3)	Butanol	Novozym 435	46	Jakovetic et al., 16
(4)	Benzyl alcohol	Lipozyme TLIM	79.88	Wang et al., 27
(5)	L-ascorbic acid	Lipozyme TLIM Novozym 435	99	Zhang. 15

Figure 1: Structure of cinnamic acid compounds and cinnamic acid derivative esters.

Figure 2: Esterification reaction of cinnamic acid with enzyme catalyst.

Ester derivatives of eugenol

Eugenol (6) is one of the phenolic compounds from phenylpropanoid group. Eugenol (6) was isolated from various plants including *Eugenia caryophyllata*, *Pimenta racemosa*, *Cinnamomum verum*, *Caryophyllus aromaticus*, and *Syzygium aromaticum*. Several ester compounds from eugenol were synthesized through chemical and enzymatic esterification. Eugenol derivative esters compounds that were reported their synthesis process, include eugenyl acetate or 4-allyl-2-methoxyphenyl acetate (7), eugenyl caprylate (8), and eugenyl benzoate (9) (Figure 3).

![Figure 3: Structure of eugenol compound and eugenol derivative esters.](image-url)

Eugenyl acetate [4-allyl-2-methoxyphenyl acetate] (7) can be synthesized through reaction of eugenol (6) with acetic anhydride and pyridine to give yield of 63.20%. Eugenyl acetate (7) was also synthesized from reaction of eugenol (6) with acetic anhydride and NaOAc to produce eugenyl acetat (7) of 63.65%. In addition, the synthesis of eugenyl acetate (7) was carried out through an esterification reaction between acetic anhydride and NaOH and produced 86.87% eugenyl acetate product.

Several researchers have also reported the synthesis of eugenyl acetate (7) through an enzymatic esterification reaction using Lipozyme TLIM lipase and Novozym 435 as a catalyst and acetic anhydride as an acyl donor. Eugenyl acetate is also produced by esterification of eugenol (6) and acetic anhydride in SC-CO2 using two lipase enzymes as catalysts namely Lipozyme 435 and Novozym 435. Eugenyl acetate was also produced by esterification of eugenol (6) and acetic anhydride in SC-CO2 using two lipase enzymes as catalysts namely Lipozyme 435 and Novozym 435. The Novozym 435 gave higher yield than Lipozyme 435.

Eugenyl caprylate (8) was produced through the esterification of eugenol (6) with caprylic acid using Lipozyme TLIM as a catalyst. Eugenol (6), caprylic acid and Lipozyme TLIM enzyme were reacted into the n-hexane solvent at 65°C and stirred at 250rpm for 259 minutes. This condition was optimum to give good yield of 72%. Eugenyl benzoate (9) was synthesized by an enzymatic reaction between benzoic acid and eugenol (6) using S. aureus lipase [24] and Rhizomucor miehei lipase as a biocatalyst. The reaction mixture was incubated and shaken with heating. The yield of eugenol benzoate products through enzymatic esterification reaction using S. aureus lipase and Rhizomucor miehei were 56.13% and 65% (Figure 4) (Table 2).
Various ester derivatives from esterification reaction of secondary metabolite compounds: a review

Table 2 Reagents, conditions and yield in esterification reactions of cinnamic acid

Compounds	R Reagent	Catalyst/Enzyme	T (°C)	Yield (%)	Reference	
(7)	Acetic anhydride	Pyridine	Rt	63.2	Carasso et al.	
(8)	Caprylic acid	Lipozyme TLIM	65	72	Chaibakhsh et al.	
(9)	Benzoic Acid	S. aureus lipase	41	75	Horchani et al.	

Figure 4 Esterification reaction of Eugenol.

Ester derivatives of quercetin

Quercetin (10) is one of the phenolic compounds from flavonoid group. Several ester compounds from Quercetin (10) were synthesized through chemical and enzymatic esterification reaction. 3,3',4',7-tetraacetate quercetin (11) have been synthesized through the esterification reaction between quercetin (10) with acetic anhydride and using pyridine as a catalyst at room temperature for three hours. This process produced 75% of esters. 3,3',5,7-tetraacetate quercetin (12) was produced by the esterification reaction of acetic anhydride and pyridine at room temperature for 24 hours and gave yield of 70%. 3,3',4',7-tetraethylcarbamate quercetin (13) was synthesized from the mixture of quercetin, ethylbromo acetate, K₂CO₃, KI, and acetone at 55°C for 6 hours.

3,3',4',7-tetraisobutyrate quercetin (14), 3,3',4',7-tetrapivalate quercetin (15), and 3,3',4',7-tetrapibenzoate quercetin (16) were obtained from the reaction of quercetin (10) and several acid anhydrides with pyridine as a catalyst at various conditions. 3,3',4',7-tetraisobutyrate quercetin (14) was produced from the reaction of 1mol of quercetin (10), 12.6mol of Isobutyric anhydride and pyridine at 70°C for 2 hours and produced good yield of 96%. 3,3',4',7-tetrapivalate quercetin (15) was synthesized through the reaction between 1mol of quercetin (10) with 24mol of pivalate anhydride and pyridine at 65°C for 45 minutes and produced ester product (15) of 85%. While 3,3',4',7-tetrapibenzoate quercetin (16) was synthesized from the reaction of 1mol of quercetin (10) with 12.6mol of benzoyl chloride and pyridine at 70°C for 2 hours and produced 72% ester product.

Several researches have also reported the process of the synthesis of quercetin pentaasil compounds. 3,3',4',5,7-pentaacetate quercetin (17) was synthesized from the reaction between quercetin (10) with acetic anhydride and pyridine as catalysts in various conditions, including heated at temperature of 55°C for 6 hours, at 65°C for 5 hours with yield of 79%, at room temperature for 24 hours and at 80°C for 5 days. 3,5,7,3',4'-pentaasidecarboxylate quercetin (18), 3,5,7,3',4'-pentapivalate quercetin (19), and 3,5,7,3',4'-pentabenzanoate quercetin (20) were obtained by the esterification reaction between quercetin (10) with some acid anhydrides and pyridine as catalyst at various conditions. 3,5,7,3',4'-pentaisobutyrate quercetin (18) was produced from the reaction between 3 mol of quercetin (10) with 30 mol of isobutyric anhydride and pyridine at 65°C for 2 hours and produced good yield of 97%. 3,5,7,3',4'-pentapivalate quercetin (19) was produced through the reaction of 1 mol of quercetin (10) with 30 mol of pivaloyl chloride and pyridine at 65°C for 2 hours and produced of 87% ester. While 3,5,7,3',4'-pentabenzoate quercetin (20) was synthesized by the esterification reaction of 1 mol of quercetin (10) with 30 mol of benzoic acid and pyridine at room temperature for 3 hours and gave good yield of 98% (Figure 5) (Table 3).

Table 3 Reagents, conditions and yield in esterification reactions of quercetin

Compounds	R Reagent	Catalyst/Enzyme	T (°C)	Yield (%)	Reference
(11)	Acetic anhydride	Pyridine	Rt	75.00	Mattarei et al.
(12)	Acetic anhydride	Pyridine	Rt	70.00	Ortega et al.
(13)	Ethylbromo acetate	K₂CO₃	55	95.00	Hu et al.
(14)	Isobutyric anhydride	Pyridine	70	96.00	Mattarei et al.
(15)	Pivalic anhydride	Pyridine	65	85.00	Mattarei et al.
(16)	Benzoyl chloride	Pyridine	70	72.00	Mattarei et al.
Various ester derivatives from esterification reaction of secondary metabolite compounds: a review

Ester derivatives of resveratrols

Resveratrol (21) is a polyphenol compound derived from stilbenoid which is contained in a variety of plants including grapes and nuts. Several ester derivatives of resveratrol (21) have been synthesized through the esterification reaction through chemical and enzymatic reactions. Ester of resveratrol that has been reported in the synthesis process include 4'-acetate resveratrol (22), 4'-isobutyrate resveratrol (23), 4'-butyrate resveratrol (24), 4'-pivalate resveratrol (25), 4'-benzoate resveratrol (26), 3-acetate resveratrol (27), 3,4',5-triacetate resveratrol (28), 4'-octanoate resveratrol (29) 3,5-dioctanoate resveratrol (30) and 3,4',5-trioctanoate resveratrol.

Selective resveratrol esterification reaction at position 4' such as 4'-acetate resveratrol (22), 4'-isobutyrate resveratrol (23), 4'-butyrate resveratrol (24), 4'-pivalate resveratrol (25), and 4'-benzoate resveratrol (26) is carried out under thermodynamic conditions using acid anhydrides and NaH base catalysts. The 4'-acetate resveratrol (22) was also synthesized through the reaction between acetic anhydride and various base catalysts and solvents. Each reaction condition includes acetic anhydride, K₂CO₃ base, and EtOH solvent at room temperature; acetic anhydride, base InCl₃, and MeCN solvent at room temperature and acetic anhydride, Et,N base, and DMSO at 65°C. The reaction used Et,N and DMSO solvents gave a maximum yield of 4'-acetate resveratrol (22) of 47.00%.²⁵

The mixture of 4-acetate resveratrol (22) and 3-acetate resveratrol (27) was synthesized by reaction between resveratrol and acetic anhydride with some base catalysts such as pyridine, NaOH, K₂CO₃, and NaH and some Lewis base catalysts such as FeCl₃, NiCl₂, InCl₃, ErCl₃, TiCl₄, 4H₂O, and TiO₂, and used several solvents such as acetic acid, THF, MeCN, CH₂Cl₂, EtOH, H₂O and DMSO. The reaction used of NaH base, and THF solvents give 4'-acetate resveratrol (22) and 3-acetate resveratrol (27) products most at 47.00% and 9.40%.³⁶ 3,4',5-triacetate resveratrol (28) was synthesized through the reaction between resveratrol and acetyl chloride, Et,N, and acetone for 16 hours at room temperature. This reaction produced ester of 78%. 3,4',5-triacetate resveratrol (28) was also synthesized from the reaction of resveratrol with acetic anhydride, pyridine and acetic acid solvent and the reaction between resveratrol with acetyl chloride and pyridine and CH₂Cl₂ solvent at room temperature.³⁶ 4'-octanoate resveratrol (29), 3,5-dioctanoate resveratrol (30) and 3,4',5-trioctanoate resveratrol (31) were mixed products from the reaction between octanoyl chloride as an acyl donor with Et,N and ethyl acetate solvents at 25°C for 12 hours.

Several researchers also reported the processes of resveratrol ester synthesis through enzymatic reactions. 4-acetate resveratrol (22) and 3,5,4'-triacetate resveratrol (28) were obtained through an enzymatic esterification reaction. 4-acetate resveratrol (22) was synthesized by added the enzyme Candida antartica to the resveratrol solution (dissolved in t-amyl alcohol solvent) containing vinyl acetate. 3,5,4'-triacetate resveratrol (28) was synthesized by added the enzyme Candida antartica into resveratrol solution (dissolved in t-amyl alcohol solvent) containing vinyl acetate. The mixture was incubated at 40°C at 400rpm (Figure 6) (Table 4).⁴²

Citation: Rosyda M, Aminah NS, Kristanti AN. Various ester derivatives from esterification reaction of secondary metabolite compounds: a review. MOJ Eco Environ Sci. 2020;5(3):141-151. DOI: 10.15406/mojes.2020.05.00187
Various ester derivatives from esterification reaction of secondary metabolite compounds: a review

Compounds	R₁	R₂	R₃
(22)	H	H	COCH₃
(23)	H	H	COCH(CH₃)₂
(24)	H	H	COC_H₃
(25)	H	H	COC(CH₃)₃
(26)	H	H	COPh
(27)	H	COCH₃	H
(28)	COCH₃	COCH₃	COCH₃
(29)	H	H	COC_H₁₇
(30)	H	COC_H₁₇	COC_H₁₇
(31)	COC_H₈	COC_H₁₇	COC_H₁₇

Table 4: Reagents, conditions and yield in esterification reactions of resveratrol

Compounds	R Reagent	Catalyst/Enzyme	T (˚C)	Yield (%)	Reference
(22)	Acetic anhydride	Et₃N	65	47.00	Lepart et al.,²⁴
	Acetic anhydride	NaH	65	40.00	Acerson & Andrus,⁴⁰
	Vinyl acetate	Candida antartica	40.00		Nicolosi et al.,⁴²
(23)	Isobutyric anhydride	NaH	65	43.00	Acerson & Andrus,⁴⁰
(24)	Anhydride butirat	NaH	65	46.00	Acerson & Andrus,⁴⁰
(25)	Anhydride pivalat	NaH	65	58.00	Acerson & Andrus,⁴⁰
(26)	Benzil klorida	K2CO3	65	32.00	Acerson & Andrus,⁴⁰
(27)	Acetic anhydride	NaH	65	9.40	Acerson & Andrus,⁴⁰
	Acetic anhydride	Candida antartica	40	30.00	Nicolosi et al.,⁴²
(28)	Acetyl chloride	Et₃N	rt	78.00	Jing,⁴¹
(29)	Octanoyl chloride	Et₃N	25	*ND	Hu et al.⁴
(30)	Octanoyl chloride	Et₃N	25	*ND	Hu et al.⁶
(31)	Octanoyl chloride	Et₃N	25	*ND	Hu et al.⁶

*ND, no data

Ester derivatives of terpenes

Several kaurenoic esters namely methylkaur-16-en-19-oate (33), butylkaur-16-en-19-oate (34), Benzylkaur-16-en-19-oate (35), 4-chlorobenzylkaur-16-en-19-oat (36), 4-bromobenzylkaur-16-en-19-oat (37), 4-florobenzylkaur-16-en-19-oat (38), 4-nitrobenzylkaur-16-en-19-oat (39) have been synthesized from kaurenoic acid. These compounds were obtained through the esterification reaction of kaurenoic acid with suitable alkyl halides namely CH₃I for (33), C₄H₉Br for (34), PhCH₂Br for (35), PhCH₂Br for (36), 4-BrPhCH₂Br for (37), 4-FPhCH₂Br for (38), and 4-NO₂PhCH₂Br for (39), in KOH-acetone at 25˚C (Figure 7) (Figure 8) (Table 5),⁵³

43

Derivative ester of betulinic acid (40), namely bentulinyl hexanoate (41) has been synthesized from the reaction between betulinic Acid with hexanoyl chloride and DMAP (4-dimethylamino pyridine) as catalyst in CH₂Cl₂. The reaction mixture was reacted at room temperature for 24-48 hours. This process gave yield of 94% (Figure 9).⁴⁴

Table 5: Yields of kaurenoic esters compound

Compounds	(33)	(34)	(35)	(36)	(37)	(38)	(39)
Yield (%)	89	71	91	48	74	37	21

Citation: Rosyda M, Aminah NS, Kristanti AN. Various ester derivatives from esterification reaction of secondary metabolite compounds: a review. _MOJ Eco Environ Sci._ 2020;5(3):141–151. DOI: 10.15406/mojes.2020.05.00187
Various ester derivatives from esterification reaction of secondary metabolite compounds: a review

Figure 7 Structure of kaurenoic acid compound and kaurenoic acid derivative esters.

Figure 8 Esterification reaction of kaurenoic acid.

Figure 9 Esterification reaction of betulonic acid.

Terpenoid ester compounds have also been synthesized through an esterification reaction with an enzymatic catalyst. Geranyl acetate and geraniol benzoate ester compounds have been synthesized from geraniol [3,7-dimethylocta-2,6-dien-1-ol (42)] namely 3,7-dimethylocta-2,6-dien-1-yl acetate (43) and 3,7-dimethylocta-2,6-dien-1-yl benzoate (44). 3,7-dimethylocta-2,6-dien-1-yl benzoate (44) was synthesized by the reaction between 3,7-dimethylocta-2,6-dien-1-ol (42) and vinyl acetate in toluene with the enzyme Pseudomonas cepacia lipase as a catalyst at 55°C for 3 hours. This reaction produced 99% of ester. Whereas 3,7-dimethylocta-2,6-dien-1-yl benzoate (44) was obtained by the esterification reaction of 3,7-dimethylocta-2,6-dien-1-ol (42) with benzoic acid, diethylazodicarbonicilicate (DED) and triphenylphosphite (PPh₃) in THF at 0°C. This process produced 95% ester product (Figure 10).

Other terpene ester derivatives have also been synthesized. 2-(4-methylocyclohex-3-en-1-yl) propan-2-yl acetate (46) was synthesized from 2-(4-methylocyclohex-3-en-1-yl) propan-2-ol (45) and acetic anhydride in supercritical carbon dioxide (SC-CO₂) with enzymatic catalysis using C. rugosa lipase. The reaction mixture of (45) compound and acetic anhydride is added to the reactor, followed by addition of C. rugosa lipase. After that CO₂ is pumped into the reactor and the esterification reaction is carried out at 10MPa and 50°C for 1.5 hours with at 250rpm. This process produced 53% of ester. 3,7-dimethylox-2-en-1-yl acetate (48) was synthesized from 3,7-dimethylocta-2,6-dien-1-ol (47) with vinyl acetate in n-hexane solvent. The reaction was catalyzed by Pseudomonas sp. The reaction mixture was incubated at 30°C at 200rpm for 24 hours. The geraniol benzoate ester namely (1S)-2-isopropyl-5-methylcyclohexene-1-yl benzoate (50) was produced through the Mitsunobu esterification reaction of (1R)-2-isopropyl-5-methylcyclohexene-1-ol (51) with benzoic acid, diethylazodicarbonicilicate (DED) and triphenylphosphite (PPh₃) in THF at 0°C. This process gave yield of 95% (Figure 11) (Figure 12).

The process of synthesis of ester compounds from citronellol was also reported. The citronellol acetate (52) was synthesized by the reaction of citronellol (51) with vinyl acetate in n-hexane solvent and catalyzed by Pseudomonas sp. The reaction mixture was incubated at 30°C at 200rpm for 24 hours. This process gave ester product of 80.2%. The citronellol acetate (52) was also synthesized by the enzymatic reaction using the Carica papaya lipase as a catalyst to give yield of 99%. The citronellol acetate (52) was also obtained from the reaction mixture of dry n-hexane, citronellol (51), acetic acid and catalyzed by Candida antarctica lipase. The reaction mixture was incubated at 30°C and 200rpm to give an ester product of 98%. The citronellol malonate (53) was synthesized using the C. rugosa enzyme as a catalyst. Malonic acid was reacted with citronellol (51) and inserted into a reactor that contains the lipase enzyme at 310K. This process produced yield of 98% (Figure 13).

Ester derivative of menthol namely mentyl propionate (55), was synthesized through the enzymatic reaction using the lipase enzyme AY-30 from Candida cylindracea. Menthol (54) was dissolved in n-hexane and reacted with propionic anhydride. The mixture was incubated for 48 hours at 30°C. Yield of ester product is 30% (Figure 14).

The esterification of terpenes was also used ionic liquids as catalysts in reactions. Geraniol acetate (43), terpineol acetate (46) citronellol acetate (52), and mirceneol acetate (57) was synthesized using Sulfonyl Functionalized Ionic Liquids (SFILs) as a catalyst. Terpenol acetate was obtained by reacted each terpenol using acetic anhydride with catalyst (SFILs). The stericification by SFILs catalysts gave high yield more than 90% (Figure 15).

Citation: Rosyda M, Aminah NS, Kristanti AN. Various ester derivatives from esterification reaction of secondary metabolite compounds: a review. MOJ Eco Environ Sci. 2020;5(3):141–151. DOI: 10.15406/mojes.2020.05.00187
Various ester derivatives from esterification reaction of secondary metabolite compounds: a review

Several esters of terpenoids alcohol with phenolic acid were synthesized including 1,3,3-trimethylbicyclo[2.2.1]-heptan-2-yl-3,4-dihydroxybenzoate (58), 1,3,3-trimethylbicyclo[2.2.1]-heptan-2-yl-3,4,5-trihydroxybenzoate (59), 1,3,3-trimethylbicyclo[2.2.1]-heptan-2-yl-3-(4-hydroxy-3-methoxyphenyl)acrylate (60), 1,3,3-trimethylbicyclo[2.2.1]-heptan-2-yl-3-(3,4-dihydroxyphenyl)acrylate (61). All of these esters were synthesized by estrification reaction of monoterpenic fencol with various phenolic acids (protokatekuat acid for (58) compound, gallic acid for (59) compound, caffeic acid for (60) compound, and ferulic acids for (61) compound) and N,N-Dicyclohexylcarbodiimide (DCC) in THF for 24 hours at room temperature (Figure 16) (Figure 17).

Figure 13: Formation reaction of citronellol esters.

1. Propionic anhydride
2. Candida cylindracea
3. n-heksane

Figure 14: Esterification reaction of menthol.

Figure 15: Formation Reaction of Esters: A. geraniol acetate, B. terpineol acetate, C. citronellol acetate and D. mirceneol acetate.

Citation: Rosyda M, Aminah NS, Kristanti AN. Various ester derivatives from esterification reaction of secondary metabolite compounds: a review. MOJ Eco Environ Sci. 2020;5(3):141–151. DOI: 10.15406/mojes.2020.05.00187
Various ester derivatives from esterification reaction of secondary metabolite compounds: a review

Esterification reaction in secondary metabolites is used to produce compounds that have different biological activities that are even better than the original compounds. The compound eugenol acetate has been reported to have better anticancer activity compared to eugenol. Eugenol acetate compounds more actively inhibit the growth of KB cancer cells (oral squamous carcinoma cells) and DU-145 (androgeninsensitive prostate cancer cells) with IC₅₀ values of eugenol acetate and eugenol in KB cells respectively 21.26×10⁻⁶ mol.L⁻¹ and 28.48×10⁻⁶ mol.L⁻¹ and DU-145 cells respectively 21.5×10⁻⁶ mol.L⁻¹ and 30.39×10⁻⁶ mol.L⁻¹. The addition of acetyl groups to eugenol was reported to increase the anti-inflammatory activity of eugenol because it can increase the selectivity of inhibiting prostaglandin formation in the COX-2 (cyclooxygenase 2) pathway. The eugenol acetate has also been reported to have potential as a compound that can be used in larvicidal formulations because the toxicity of eugenol acetate against *Aedes aegypti* larvae is higher than eugenol with an LC₅₀ value of 0.102mg/mL. Therefore, eugenol benzoate has the potential as an antioxidant drug because it has been reported to have more antioxidant activity than the BHT used as a control. The antioxidant activity of eugenol benzoate is higher compared to eugenol with IC₅₀ value for each compound that is 18.21µg/mL and 20.20µg/mL.

Several ester derivatives of quercetin were reported for their biological activity. 3,3',4',7-tetraacetate quercetin was reported to have a different biological activity that is potentially antiviral to Human Respiratory Syncytial Virus (hRSV) which is a virus that causes pneumonia. This biological activity is not owned by quercetin. This biological activity is not owned by quercetin because it is able to inhibit the production of Nitrogen Oxide (NO) which acts as a proinflammatory mediator synthesized by inducible nitric oxide synthase (iNOS).

3,3',4',7-tetraethylcarbamate quercetin was reported to have higher permeability than quercetin so that they can be able to more easily cross human epithelial cells (CaCo-2 cells). The transport rate of 3,3',4',7-tetraethylcarbamate quercetin is significantly higher than the quercetin of 5.23×10⁻³ cm/s, whereas the transport rate of quercetin is (10) 2.82×10⁻³ cm/s. 3,3',4',5,7-pentaacetate quercetin was reported to have higher bioavailability compared to quercetin to human epithelial cells (MDCK-1 and MDCK-2). This compound was also reported to have anticancer activity against glioma cells whereas the quercetin did not have anticancer properties against glioma cells. In addition, this compound was reported to have antiviral activity against Human Respiratory Syncytial Virus.

The biological activity of resveratrol ester derivatives was also reported. 4'-acetate resveratrol was reported to have antiangiogenic activity. This compound significantly increased more than 3.3 times the gene expression of angiogenic factors including extracellular matrix proteins (elastin and collagen III, IV), SIRT 1, MTA1 (metalloproteinas), FBN1 (skin aging biomarkers fibrillin), LAMB1 (laminin), PCNA (proliferating cell nuclear antigen), and skin growth factors (HBEFG, IGFI, NGF, and TGF). The 4'-acetate resveratrol compound also decreased the expression of inflammatory and aging skin molecular genes (COX-2, IL-1, IL-6, IL-8). Based on these data, 4'-acetate resveratrol has the potential for the prevention and treatment of skin aging.

The 4'-octanoate resveratrol, 3,5-dioctanoate resveratrol and 3,4',5-trioctanoate resveratrol observed the stability of the gastrointestinal digestive system model and compared with resveratrol. The results reported that the bound caprilate substituents were relatively stable without hydrolysis in the mouth and gastric phase. However, in the intestine, the caprilate substituents are not hydrolyzed and release resveratrol. This shows that caprilate esters from resveratrol can be absorbed by the intestinal lumen in the form of free resveratrol.

Methylkaur-16-en-19-oat, Butylkaur-16-en-19-oat, Benzylkaur-16-en-19-oat, 4-Chlorobenzylkaur-16-en-19-oat, 4-Bromobenzylkaur-16-en-19-oat, 4-Fluorobenzylkaur-16-en-19-oat, 4-Nitrobenzylkaur-16-en-19-oat were reported to have lower antifungal activity than the original compound namely kaurenoid acid. Bentulinil hexanoate compound was reported to have antitumor activity against cells SF-295, HCT-116, PC-3 and HL-60 but the activity of bentulinil hexanoate (41) on each tumor cell is still lower compared to bentulnic Acid. Esterification of bentulnic Acid causes a decrease in antitumor (Table 6).
Table Continued...

No.	Compounds	Bioactivity	Reference
(38)	1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl-3-(3,4-dihydroxyphenyl)acrylate	lipoygenase enzyme inhibitors	Sadegian et al.,53
(39)	1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl-3-(3,4-dihydroxyphenyl)acrylate	lipoygenase enzyme inhibitors	Sadegian et al.,53

Conclusion

Secondary metabolite compounds have a very diverse structure that is widely used as a source of new drug discovery because they have a variety of bioactivity. These compounds can be modified by esterification reaction with chemical and enzymatic reactions. Esters derivatives of secondary metabolite compounds can increase the diversity of structures, allow for increased biological activity and even new biological activity of these compounds. Based on this review, some of the ester compounds produced have not yet reported for their biological activity. In addition, there has not been much modification of the structure of other secondary metabolite compounds. Therefore, further research is needed to increase the diversity of structures and enable the discovery of potential new biological activities, so that the discovery of new drugs is developing.

Acknowledgments

None.

Funding

None.

Conflicts of interest

The authors declare there are no conflicts of interest.

References

1. Dewick PM. *Medicinal natural product: a biosynthetis approach.* 3rd Ed. UK: John Willey & Son; 2009.
2. Zhang L, demain L. Natural products: drug discovery and therapeutic medicine integrated approach. US: Humana Press; 2005.
3. Yao H, Liu J, Xu S, et al. The structural modification of natural products for novel drug discovery. *Expert Opinion on Drug Discovery.* 2016;12(2):121–140.
4. Biasutto L, Ester ME, Umberto UD, et al. Ester-based precursors to increase the bioavailability of quercetin. *Journal of Medicinal Chemistry.* 2007;50:241–253.
5. Hu J, Zou X, He,Y, et al. Esterification of quercetin increases its transport across human caco-2 cells. *Journal of Food Science.* 2016;15(7):4722–4736.
6. Hu XP, Yin FW, Zhou DY, et al. Stability of resveratrol esters with caprylic acid during simulated *in vitro* gastrointestinal digestion, *Food Chemistry.* 2019;276:675–679.
7. Galan GC, Murcia AB, Lafuente FR, et al. Potential of different enzyme immobilization strategies to improve enzyme performance. *Synthesis Catalyst.* 2011;353:2885–2904.
8. Martins AB, Graebin NG, Lorenzon ASG, et al. Rapid and high yields of synthesis of butyl acetate catalyzed by Novozym 435: Reaction optimization by response surface methodology. *Process Biochemistry.* 2011;46:2311–2316.
9. Sangaleter-Gerhard N, CeA M, Risco V, et al. In situ biodiesel production from greasy sewage sludge using acid and enzymatic catalysts. *Bioresource Technology.* 2015;179:63–70.
10. Cipolatti EP, Valério A, Henriques RO, et al. Nanomaterials for biocatalyst immobilization-state of the art and future. *Journal of Food Chemistry.* 2016;6:104675–104692
Various ester derivatives from esterification reaction of secondary metabolite compounds: a review

11. Compton DL, Laszlo JA, Berhow MA. Lipase-catalyzed synthesis of ferulate esters. Journal of Oil Chemistry. 2000;7(5):513–519.

12. Jaeger KE, Eggert T. Lipases for biotechnology. Biotechnology. 2002;1:390–397.

13. Guyot B, Bosqette B, Pina M, et al. Esterification of phenolic acids from green coffee with an immobilized lipase from Candida antarctica in solvent-free medium. Biotechnology Letters. 1997;19(6):529–532.

14. Sharma CK, Chauhan GS, Kanwar SS. Synthesis of medically important ethyl cinnamate ester by porcine pancreatic lipase immobilized on poly (AAc-co-HPMA-co-EGDMA) hydrogel. Journal of Applied Polymer Science. 2011;121:2674–2679.

15. Zhang DH, Li YQ, Li C, et al. Kinetics of enzymatic synthesis of L-ascorbyl acetate by Lipzyme TLIM and Novozym 435. Biotechnology Bioprocess. 2012;17:60–66.

16. Jakovetic SM, Lukovic ND, Boskovic-Vragolovic NM, et al. Comparative study of batch and fluidized bed bioreactions for lipase-catalyzed ethyl cinnamate synthesis. Industrial and Engineering Chemistry Research, 2013;52:16689–16697.

17. Vanin AB, Orlando T, Piazza SP, et al. Antimicrobial and antioxidant activities of clove essential oil and eugenyl acetate produced by enzymatic esterification. Application Biochemistry Biotechnology. 2014;8(8):327–332.

18. Wang Y, Zhang DH, Zhang JY, et al. High-yield synthesis of bioactive ethyl cinnamate by enzymatic esterification of cinnamic acid. Food Chemistry. 2016;190:629–633.

19. Machado JR, Pereira GN, Oliveira Z, et al. Synthesis of eugenyl acetate by immobilized lipase in a packed bed reactor and evaluation of its larvicidal activity. Arabian Journal of Chemistry. 2011;4:889–892.

20. Badgujar KC, Bhanage BM. Synthesis of geranyl acetate in non-aqueous media using immobilized Pseudomonas cepacia lipase on biodegradable polymer film: Kinetic modelling and chain length effect study. Process Biochem. 2014;49:1304–1313.

21. Chen B, Liu H, Guo Z, et al. Lipase-catalyzed esterification of ferulic acid with oleyl alcohol in ionic liquid/isooctane binary systems. Journal of Food Chemistry. 2011;5:1256–1263.

22. Carrasso H, Espinoza L, Cardile V, et al. Lipase-catalyzed esterification of diethyl succinate and diethyl maleate using fungal lipases. Tetrahedron. 2007;63:1527–1537.

23. Riswanto FD, O. Synthesis of acetyl eugenol from eugenol and acetic acid in anhydride with the sodium hydroxide catalyst. Brazilian Chemical Society. 2011;121:2674–2679.

24. Horchani H, Salem NB, Zarai Z, et al. Enzymatic synthesis of eugenol benzoate by immobilized Staphylococcus aureus lipase: Optimization using response surface methodology and determination of antioxidant activity. Bioresource Technology. 2010;101:2809–2817.

25. Dell’AliBMI, Marco BD, Grasso S, et al. Quercetin derivatives as potent inducers of selective cytotoxicity in glioma cells. European Journal of Pharmaceutical Sciences. 2017;101:56–65.

26. Lefhert ED, Acerson MJ, Andrus MB. Synthesis and skin gene analysis of 4-acetoxy-resveratrol (4AR), therapeutic entral for dermal applications. Bioorganic & Medicinal Chemistry Letters. 2016;26(14):3258–3262.

27. Wang Y, Zhang DH, Chen N, et al. Synthesis of benzy1 cinnamate by enzymatic esterification of cinnamic acid. Bioresource Technology. 2015;198:256–261.

28. Wang Y, Zhang DH, Chen N, et al. Synthesis of benzy1 cinnamate by enzymatic esterification of cinnamic acid. Bioresource Technology. 2015;198:256–261.
47. Akoh CC, Yee LN. Lipase-catalyzed transesterification of primary terpene alcohols with vinyl esters in organic media. *Journal of Molecular Catalysis Enzymatic*. 1998;4:149–153.

48. You P, Su E, Yang X, et al. Carica papaya lipase-catalyzed synthesis of terpene esters. *Journal of Molecular Catalysis B: Enzymatic*. 2011;71:152–158.

49. Claon PA, Akoh CC. Effect of reaction parameters on SP435 lipase-catalyzed synthesis of citronellyl acetate in organic solvent. *Enzyme and Microbial Technology*. 1994;16(10):835–838.

50. Serri NA, Kamaruddin AH, Len K YT. A continuous esterification of malonic acid with citronellol using packed bed reactor: Investigation of parameter and kinetics study. *Food and Bioproducts Processing*. 2010;8(8):327–332.

51. Wu WH, Akoh CC, Phillips RS. Lipase-catalyzed stereoselective esterification of menthol in organic solvents using acid anhydrides as acylating agents. *Enzyme and Microbial Technology*. 1996;18:538–539.

52. Tao DJ, Dong Y, Cao ZJ, et al. Tuning the acidity of sulfonic functionalized ionic liquids for highly efficient and selective synthesis of terpene esters. *Journal of Industrial and Engineering Chemistry*. 2016;41:122–129.

53. Sadeghian H, Seyedi MS, Jafari Z. Design and synthesis of new esters of terpenoid alcohols as 15-lipoxygenase inhibitors. *Iranian Journal of Basic Medical Sciences*. 2018;21:7.

54. Bertinotti A, Carrea G, Ottolina G, et al. Regioselective Esterification of Polyhydroxylated Steroids by *Candida antarctica* Lipase B. *Tetrahedron*. 1994;54(46):13165–13172.

55. Rezaei Z, Khbarnidheh S, Zarshenas M, et al. Esterification of tertiary alcohols in steroids under different conditions. *Journal of Molecular Catalysis A: Chemical*. 2007;276:57–61.