Chlornitrofen (CNP) was widely used in large quantities as a herbicide in rice paddy fields in Japan during 1965–1994. Recently, there has been concern that chemicals in the environment may disrupt the endocrine function of wildlife and humans, and little is known about the effect of CNP on endocrine function. We have developed reporter gene assays for human androgen receptor (hAR) and human estrogen receptor-α (hERα) using Chinese hamster ovary cells. Using this assay method, we measured CNP and its amino derivative (CNP-amino) for hAR and hERα agonist/antagonist activities, comparing them with several well-known AR antagonists or ER agonists. We found that CNP and CNP-amino have potent antiandrogenic activities as well as estrogenic activities. The order of their antiandrogenic activity was CNP > vinclozolin > p,p′-DDT = p,p′-DDE > CNP-amino, and the order of their estrogenic activity was p,p′-DDT > CNP-amino > p,p′-DDE > vinclozolin, and that of their binding potencies to hERα was CNP > p,p′-DDT = p,p′-DDE > CNP-amino > vinclozolin. These results suggest that both CNP and CNP-amino act as endocrine disruptors via AR and ERs in humans and other animals. Our reporter gene assays are highly sensitive and specific and are suitable for screening AR and ER agonists/antagonists among numerous environmental chemicals. Key words: antiandrogenic activity, Chinese hamster ovary cells, chlornitrofen, chlornitrofen-amino, estrogenic activity, human androgen receptor, human estrogen receptor-α, reporter gene assay, \textit{Environ Health Perspect} 111:497–502 (2003).

doi:10.1289/ehp.5724 available via http://dx.doi.org [Online 1 November 2002]

Recently, it has been well documented that several chemicals from agricultural, industrial, and household sources possess endocrine-disrupting properties that are a potential threat to human and wildlife reproduction (Colburn 1995; Colborn et al. 1993; Jensen et al. 1995). The mechanism of action of these effects is considered to consist mainly of agonistic or antagonistic effects on hormone receptors. For example, it has already been reported that several pesticides or their metabolites such as vinclozolin, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethene (p,p′-DDE), fenitrothion, and procyomidone are androgen receptor (AR) antagonists (Kelce et al. 1995; Ostry et al. 1999; Tamura et al. 2001; Wong et al. 1995) and that pesticides such as 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (p,p′-DDT) and methoxychlor are estrogen receptor (ER) agonists (Chen et al. 1997; Shelby et al. 1996). Moreover, it has been reported that some of the environmental estrogens such as 1,1,1-trichloro-2-(p-chlorophenyl)-2-(o-chlorophenyl)ethene (p,p′-DDE), bisphenol A, and butyl benzyl phthalate also have antiandrogenic activity (Sohoni and Sumpter 1998). Although CNP and CNP-amino are thought to form methemoglobin, induce hepatic drug-metabolizing enzymes, and display mutagenicity (Hanioki et al. 1995; Miyashita et al. 1981, 1983; Oguri et al. 1995), the endocrine-disrupting effects of CNP or CNP-amino have not yet been described.

The reporter gene assay has been widely used as an \textit{in vitro} method for clarifying the ligand–receptor interaction by receptor agonists and antagonists. To detect the (anti)hormonal activities of environmental chemicals, some investigators have performed reporter gene assays using yeast cells, HepG2 cells, Hela cells, and so forth (Gaibo et al. 1997; Maness et al. 1998; Nishikawa et al. 1999; Satō et al. 2000). However, these assays all encounter problems in the membrane transport of chemicals, sensitivity, or complicated procedures. In this study, we established two transient reporter gene assays for detecting transcriptional activities via AR and ER activities using transfection reagent FuGene6 and Chinese hamster ovary (CHO) cells based on the method of Vinggaard et al. (1999). The method is rapid, sensitive, and reproducible. Using this assay, we investigated the effects of CNP and CNP-amino on androgenic and estrogenic activities. In addition, the binding affinities of CNP and CNP-amino to human androgen receptor (hAR) and human estrogen receptor-α (hERα) were also investigated using a receptor competitive-binding assay (Satoh et al. 2000, 2001). Here we provide the first evidence that CNP and CNP-amino might be endocrine-disrupting chemicals with both antiandrogenic and estrogenic activities that act via hormone receptors.

Materials and Methods

\textbf{Chemicals and cell culture materials.} 5α-Dihydrotestosterone (DHT, 95% pure), testosterone (> 97% pure), 17β-estradiol (E2, > 97% pure), estrone (98% pure), progesterone (98% pure), cortisol (> 97% pure), and dimethylsulfoxide (DMSO), used for confirming the specificity of the assay system, was obtained from Sigma-Aldrich (St. Louis, Missouri). Other reagents were obtained from the sources specified in the text.

\textbf{Reported gene assays.} Two transient reporter gene assays for detecting transcriptional activities via AR and ER activities using transfection reagent FuGene6 and Chinese hamster ovary (CHO) cells were established. The first procedure is described in detail in the Materials and Methods section. The second procedure is described in detail in the Materials and Methods section. In this study, we established two transient reporter gene assays for detecting transcriptional activities via AR and ER activities using transfection reagent FuGene6 and Chinese hamster ovary (CHO) cells based on the method of Vinggaard et al. (1999). The mechanism of action of these effects is considered to consist mainly of agonistic or antagonistic effects on hormone receptors. For example, it has already been reported that several pesticides or their metabolites such as vinclozolin, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethene (p,p′-DDE), fenitrothion, and procyomidone are androgen receptor (AR) antagonists (Kelce et al. 1995; Ostry et al. 1999; Tamura et al. 2001; Wong et al. 1995) and that pesticides such as 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (p,p′-DDT) and methoxychlor are estrogen receptor (ER) agonists (Chen et al. 1997; Shelby et al. 1996). Moreover, it has been reported that some of the environmental estrogens such as 1,1,1-trichloro-2-(p-chlorophenyl)-2-(o-chlorophenyl)ethene (p,p′-DDE), bisphenol A, and butyl benzyl phthalate also have antiandrogenic activity (Sohoni and Sumpter 1998). Although CNP and CNP-amino are thought to form methemoglobin, induce hepatic drug-metabolizing enzymes, and display mutagenicity (Hanioki et al. 1995; Miyashita et al. 1981, 1983; Oguri et al. 1995), the endocrine-disrupting effects of CNP or CNP-amino have not yet been described.

The reporter gene assay has been widely used as an \textit{in vitro} method for clarifying the ligand–receptor interaction by receptor agonists and antagonists. To detect the (anti)hormonal activities of environmental chemicals, some investigators have performed reporter gene assays using yeast cells, HepG2 cells, Hela cells, and so forth (Gaibo et al. 1997; Maness et al. 1998; Nishikawa et al. 1999; Satō et al. 2000). However, these assays all encounter problems in the membrane transport of chemicals, sensitivity, or complicated procedures. In this study, we established two transient reporter gene assays for detecting transcriptional activities via AR and ER activities using transfection reagent FuGene6 and Chinese hamster ovary (CHO) cells based on the method of Vinggaard et al. (1999). The method is rapid, sensitive, and reproducible. Using this assay, we investigated the effects of CNP and CNP-amino on androgenic and estrogenic activities. In addition, the binding affinities of CNP and CNP-amino to human androgen receptor (hAR) and human estrogen receptor-α (hERα) were also investigated using a receptor competitive-binding assay (Satoh et al. 2000, 2001). Here we provide the first evidence that CNP and CNP-amino might be endocrine-disrupting chemicals with both antiandrogenic and estrogenic activities that act via hormone receptors.

Materials and Methods

\textbf{Chemicals and cell culture materials.} 5α-Dihydrotestosterone (DHT, 95% pure), testosterone (> 97% pure), 17β-estradiol (E2, > 97% pure), estrone (98% pure), progesterone (98% pure), cortisol (> 97% pure), and dimethylsulfoxide (DMSO), used for confirming the specificity of the assay system, was obtained from Sigma-Aldrich (St. Louis, Missouri). Other reagents were obtained from the sources specified in the text.

\textbf{Reported gene assays.} Two transient reporter gene assays for detecting transcriptional activities via AR and ER activities using transfection reagent FuGene6 and Chinese hamster ovary (CHO) cells were established. The first procedure is described in detail in the Materials and Methods section.
were purchased from Wako Pure Chemical Industries (Osaka, Japan). CNP (99% pure), CNP-amino (> 98.5% pure), vinclozolin (> 99% pure), p,p’-DDT (> 99% pure), o,p’-DDT (> 99% pure), and tamoxifen citrate (98% pure) were also obtained from Wako Pure Chemical Industries. p,p’-DDE (99% pure) was obtained from GL Sciences (Tokyo, Japan). Fetal bovine serum (FBS) and charcoal–dextran-treated FBS (CD-FBS) were purchased from Sigma (USA). Dulbecco’s modified Eagle’s minimal essential medium (DMEM/F-12) and penicillin–streptomycin solution (antibiotics) were purchased from Invitrogen (CA, USA). Fetal bovine serum (FBS) and charcoal–dextran–treated FBS (CD-FBS) were obtained from Hyclone (Logan, UT, USA). CHO-K1 cells obtained from the American Type Culture Collection were grown at 37°C in DMEM/F-12 supplemented with 10% FBS and antibiotics.

Construction of plasmids. AR cDNA and ERα cDNA were cloned by reverse transcriptase–polymerase chain reaction from human prostate and human placenta RNA (Clontech, Palo Alto, CA, USA), respectively. The sequences of the cloned hAR and hERα cDNA were verified and were inserted into mammalian expression vector pZeoSV2(-) (Invitrogen, San Diego, CA, USA), creating pZeoSV2AR and pcDNAERα, respectively.

We constructed a reporter plasmid for the AR-mediated transcriptional assay (AR assay) based on the mammalian inducible expression vector pIND/Hygro (Invitrogen), which originally contains ecdysone/glucocorticoid-responsive element (ecdysone/GRE). Briefly, the luciferase gene (digested HindIII and XbaI) from plG3-3 basic was cloned into pIND/Hygro, creating pIND-LUC. To remove the ecdysone/GRE and create a new multicloning site (MCS), pIND/Hygro was digested with smal. The digested fragment (about 1,500 bp of smal-smal) contains a minimal heat shock (hs) promoter without ecdysone/GRE. Then, the oligonucleotides 5’-GATCTATCGATCTAGGATGTCCTCAGAATATTCCC-3’ and 5’-GGGATATCTCAGAGGATCTCTAGAATCGAGTG-3’ (containing BglII, Clal, XbaI, BamHI, XhoI, EcoRV) were ligated to this small-smal fragment from pIND/Hygro and then digested with BglII and HindIII (about 300 bp, contains MCS and hs). This small fragment was inserted into the pIND-LUC (digested with BglII and HindIII), creating pIND-MCS-LUC. To introduce the androgen responsive element (ARE) into the newly created MCS, kinated oligonucleotides 5’-gatcatcatAGTACGtgaTGTTCTcaagaa-3’ and 5’-gacctttCGAAACGatcaCGTACT atagtc-gtcgtt but1 (flanking the BglII site) containing ARE of the C3 gene of prostatic binding protein (Karvonen et al. 1997) were ligated and then inserted into the BglII site of the pIND-MCS-LUC, creating pINDARE (Figure 2A).

For the ERα-mediated transcriptional assay (ERα assay), we constructed a reporter plasmid pGL3-tkERE based on the pGL3 basic vector. A plasmid pRL-TK (Promega) was digested with AvaI, then digested with HindIII, creating pGL3-tkERE and pGL3-tkERE/Hygro. A fragment was inserted into the blunt-ended BglII/HindIII site of the pGL3 basic vector, creating pGL3-tk. This vector has the minimal tk (~40 to +31) promoter and carries only the TATA box of the regulatory element. Then the kinated strands of the oligonucleotides containing a perfectly palindromic estrogen-responsive element (ERE, AGGTCA cag TGACCt) from the Xenopus vitellogenin gene (Klein-Hitpass et al. 1986) were cloned into the kpnI site of pGL3-tk, creating pGL3-tkERE (Figure 2B). Sequencing verified that the pIND-ARE and the pGL3-tkERE carried four tandem repeats of ARE or ERE upstream of their promoter.

Reporter gene assays for hAR and hERα. The host CHO-K1 cells were plated in 96-well microtiter plates (Nalge, Nunc, Denmark) at a density of 8,400 cells per well in phenol red-free DMEM/F-12 containing 5% CD-FBS (complete medium) 1 day before transfections. For detection of hAR activity, we transfected cells with 2.5 ng pZeoSV2AR, 62.5 ng pIND-ARE, and 5.0 ng pRL-SV40 per well using the transfection reagent FuGene6. For detection of hERα activity, we transfected cells with 6.25 ng pcDNAERα, 62.5 ng pGL3-tkERE, and 5.0 ng pRL-SV40 per well. After a 3-hr transfection period, cells were dosed with various concentrations of test compounds or with 0.1% DMSO (vehicle control) in complete medium. For measurement of hAR and hERα antagonist activity, we added 10⁻¹⁰ M of DHT and 10⁻¹¹ M of E₂ to the cell cultures, respectively. After an incubation period of 24 hr, cells were rinsed with phosphate-buffered saline (pH 7.4) and lysed with passive lysis buffer (50 µL/well) provided with the dual-luciferase reporter assay kit. The firefly luciferase activity was measured before measuring Renilla luciferase activity in one reaction tube with 5-µL aliquots of cell lysates using the dual-luciferase reporter assay system following the manufacturer’s instructions with a MiniLumat LB 9506 luminometer (Berthold, Germany). We normalized the firefly luciferase activity to the Renilla luciferase activity.

Competitive binding assay for AR and ERTα. We determined competitive binding of pGL3-3 basic against the binding of the index hormone to AR by non-radioisotopic receptor binding assay using a ligand screening system-androgen receptor kit (Toyobo Co., Ltd., Osaka, Japan) as reported by Satoh et al. (2001). The solutions of human AR, unlabeled testosterone, and test chemical (competitor) dissolved in DMSO were reacted at 4°C for 1 hr. The liberated testosterone was allowed to compete with the antagonist antibody and peroxidase-labeled testosterone at 4°C for 1 hr. After plates were washed with a wash solution, the substrate solution was added. We measured the developed color at 450 nm on a microplate-spectrophotometer (MPRA4i; TOSOH Co., Ltd., Tokyo, Japan).

Competitive binding assay of CNP and CNP-amino to ERα was performed using a ligand screening system-estrogen receptor α kit (Toyobo Co., Ltd., Osaka, Japan) as reported by Satoh et al. (2000). Briefly, the solutions of human ERTα, unlabeled E₂, and test chemical dissolved in DMSO were reacted at 4°C for 1 hr. The liberated E₂ was normalized with the firefly luciferase activity to the Renilla luciferase activity.
allowed to compete with the anti-E\textsubscript{2} antibody and peroxidase-labeled E\textsubscript{2} at 4°C for 1 hr. We then assayed the developed color as described above for AR binding assay.

We calculated the binding levels of the chemicals to the respective receptors from the decreases in absorbance rate. We used mibolerone and diethylstilbestrol (DES) as positive controls from the AR and ER\textalpha-binding kits, respectively.

Data analysis. We evaluated the statistical significance of differences using the Student’s t-test (two-tailed, equal variance) calculated by software (Excel; Microsoft, Redmond, WA, USA). The level of significance was p < 0.05. Data are presented as the mean and, where shown, the SD of at least three separate experiments with duplicate wells.

Results

Sensitivity and specificity of the reporter assays for hAR and hER\textalpha. We established two transient reporter gene assays for detecting transcriptional activities via hAR and hER\textalpha using transfection reagent FuGene6 and CHO cells. To confirm the sensitivity and specificity of our reporter gene assays, we tested various endogenous steroids for hAR- and hER\textalpha-mediated transcriptional activities, respectively. Figure 3A shows the results for androgenic activity. The androgenic activity of DHT was observed in a dose-dependent manner at concentrations above 10-11M, and the maximum induction was 16-fold that of the solvent control. The androgenic activity of testosterone was observed at concentrations above 10-10 M, and its transcriptional activity was approximately 1/10 that of DHT. Cortisol was also able to stimulate luciferase synthesis, but the activity was about 1/1,000 that of DHT. E\textsubscript{2}, estrone, and progesterone showed only low activity at the concentrations tested.

The results for estrogenic activity are shown in Figure 3B. E\textsubscript{2} activity became detectable at the concentrations of more than 10-12 M, and the maximum induction was 9-fold that of the solvent control. The E\textsubscript{2} metabolite, estrone, was as effective as E\textsubscript{2} at inducing luciferase activity. DHT showed approximately 1/2,000 the intensity of E\textsubscript{2} and estrone. Testosterone and cortisol were also tested and found positive by this assay at high concentrations. Progesterone was inactive at the concentration tested.

Effects of CNP and CNP-amino on the hAR- and hER\textalpha-mediated reporter gene assays. To investigate whether CNP and CNP-amino have endocrine-disrupting effects, we determined their androgenic and estrogenic activities using the two assay systems described above. Figure 4A shows the hAR-mediated transcriptional activities of CNP, CNP-amino, vinclozolin, p,p’-DDE, and o,p’-DDT at a concentration of 10-3 M in the absence or presence of 10-10 M DHT. CNP was weakly androgenic, but CNP-amino, as well as vinclozolin, p,p’-DDE, and o,p’-DDT displayed no androgenicity (Figure 4A). CNP and CNP-amino, however, inhibited the hAR-mediated transcriptional activity by DHT, as did the AR antagonists vinclozolin, p,p’-DDE, and o,p’-DDT (Figure 4A).

The dose-responsive inhibitory effects of CNP and CNP-amino on DHT-induced androgenic response are depicted in Figure 4B. CNP showed an antiandrogenic effect in a dose-dependent manner at concentrations from 10-8 to 10-6 M, but the inhibition curve of CNP turned upward at the concentrations > 10-6 M. CNP-amino showed an antiandrogenic effect at concentrations of 10-7 – 10-5M. These effects of CNP and CNP-amino were detectable without changes of CNP.

Figure 5A shows the hER\textalpha-mediated transcriptional activities induced by CNP, CNP-amino, p,p’-DDE, and o,p’-DDT at a concentration of 10-5 M and by therapeutic antiestrogen, tamoxifen, at concentrations of 10-8 and 10-7 M in the absence or presence of 10-11 M E\textsubscript{2}. CNP and CNP-amino exhibited potent estrogenic activity, as did p,p’-DDT...
and o,p’-DDT, the ER agonists, at the concentration of 10⁻⁵ M, but tamoxifen was inactive at 10⁻⁸ and 10⁻⁷ M (Figure 5A). In the presence of 10⁻¹¹ M E₂, CNP, CNP-amino, p,p’-DDT, and o,p’-DDT did not show any significant differences from the vehicles, whereas tamoxifen inhibited the estrogenic activity of E₂ in a dose-dependent manner at 10⁻⁸ and 10⁻⁷ M (Figure 5A). The dose–response curves for the estrogenic activities of CNP and CNP-amino are shown together with those of p,p’-DDT, o,p’-DDT, and tamoxifen in Figure 5B. When the estrogenic potencies of each compound were expressed as the concentration showing 50% the estrogenic activity of 10⁻¹⁰ M E₂ (EC₅₀), the EC₅₀ values of CNP, CNP-amino, p,p’-DDT, and o,p’-DDT were 1.0 × 10⁻⁵ M, 9.3 × 10⁻⁷ M, 3.8 × 10⁻⁶ M, and 4.6 × 10⁻⁷ M, respectively. The order of the estrogenic potencies of the five compounds was as follows: o,p’-DDT > CNP-amino > p,p’-DDT > CNP.

Competitive inhibition of the binding of testosterone and estradiol to hAR and hERα by CNP and CNP-amino. Figure 6A shows the competition curves depicting the effects of various doses of CNP, CNP-amino, vinclozolin, p,p’-DDE, o,p’-DDT, and mibolerone, a synthetic anabolic testosterone, on the binding of testosterone to hAR. CNP and CNP-amino inhibited the binding of testosterone to hAR in a dose-dependent manner, as did p,p’-DDE, o,p’-DDT, and mibolerone, and complete inhibition was achieved by CNP and CNP-amino at concentrations > 10⁻⁴ M and 10⁻³ M, respectively. Vinclozolin, in contrast, showed very low binding affinity for hAR. The IC₅₀ (concentration of test compound exhibiting 50% inhibition against the binding of testosterone to hAR) values were obtained from the curves, and the relative binding affinities for hAR (RBA-A) were expressed as the ratio of the IC₅₀ of mibolerone to that of each compound (Table 1). The IC₅₀ values of CNP and CNP-amino were 2.2 × 10⁻⁷ M and 5.7 × 10⁻⁶ M, respectively. The RBA-A of CNP and CNP-amino were 8.64 and 0.33, compared to 100 for mibolerone.

Figure 6B shows the competition curves depicting the effects of CNP, CNP-amino, p,p’-DDE, and DES, a synthetic estrogenic drug, on the binding of E₂ to hERα. The effect of CNP on the binding of E₂ to hERα was very low, similar to that of p,p’-DDT. However, CNP-amino and o,p’-DDT showed inhibition ranging from 3 × 10⁻⁶ to 10⁻⁴ M and 3 × 10⁻¹⁰ to 10⁻⁴ M, respectively. The IC₅₀ (concentration of test compound exhibiting 50% inhibition against the binding of E₂ to hERα) values were obtained from the curves, and the relative binding affinities for hERα (RBA-E) were expressed as the ratio of the IC₅₀ of E₂ to that of each compound (Table 1). The IC₅₀ values of CNP and CNP-amino were > 1 × 10⁻³ M and 2.4 × 10⁻⁵ M, respectively. The RBA-E of CNP and CNP-amino were < 0.0009 and 0.036 compared to 100 for DES.

Discussion

In this study, we first developed the hAR- and hERα-mediated reporter gene assays using CHO-K1 cells to examine the effects of CNP and CNP-amino on sex hormone receptors. Our AR and ER assay systems showed high sensitivity to androgenic and estrogenic compounds, respectively, when compared with other assay systems using yeast cells and

![Figure 5](image1.png)

Figure 5. Effects of CNP and CNP-amino on human ERα activity. (A) CHO cells, transiently cotransfected with pcDNAERα, pGL3-tkERE and pRL-SV40, were incubated with the vehicle control (0.1% DMSO) or 10⁻⁵ M of CNP, CNP-amino, p,p’-DDT, or o,p’-DDT, or 10⁻⁴ M of tamoxifen in the absence or presence of 10⁻¹¹ M E₂. Values represent the means ± SD of three independent experiments and are presented as mean fold-induction over the vehicle control. (B) Cells were incubated with various concentrations of CNP, CNP-amino, p,p’-DDT, or o,p’-DDT. Values represent the means ± SD of three independent experiments and are presented as percentage induction, with 100% activity defined as the activity achieved with 10⁻¹⁰ M E₂.

*Significant difference at p < 0.05 by Student’s t-test.

![Figure 6](image2.png)

Figure 6. Competitive binding of CNP and CNP-amino to human AR and human ERα. Competitive binding assay was carried out using a ligand screening system-androgen receptor kit (A) and an ER kit (B). Percentage of testosterone bound to hAR was calculated as (optical density in the presence of competitor – optical density in the presence of 3 × 10⁻⁷ M mibolerone)/[optical density in the absence of competitor – optical density in the presence of 3 × 10⁻⁷ M DES]) × 100. Percentage of E₂ bound to hERα was calculated as (optical density in the presence of competitor – optical density in the presence of 3 × 10⁻⁷ M DES)/[optical density in the absence of competitor – optical density in the presence of 3 × 10⁻⁷ M DES]) × 100. Each point is the mean ± SD of three independent experiments with duplicate wells.

Compound	IC₅₀ (M)	RBA-A	IC₅₀ (M)	RBA-E
Mibolerone	1.9 × 10⁻⁸	100	ND	ND
DES	ND	ND	8.6 × 10⁻⁹	100
CNP	2.2 × 10⁻⁷	0.64	> 10⁻³	< 0.0009
CNP-amino	5.7 × 10⁻⁷	0.33	2.4 × 10⁻⁵	0.036
Vinclozolin	1.5 × 10⁻⁴	0.013	ND	ND
p,p’-DDT	ND	ND	> 10⁻³	< 0.0009
p,p’-DDE	5.4 × 10⁻⁶	0.35	ND	ND
p,p’-DDE	5.6 × 10⁻⁶	0.34	9.1 × 10⁻⁷	0.95

ND, no data.

IC₅₀, the concentration of test compound exhibiting 50% inhibition against the binding of testosterone to hAR. RBA-A, relative binding affinity for hAR. IC₅₀, the concentration of test compound exhibiting 50% inhibition against the binding of E₂ to hERα. RBA-E, relative binding affinity for hERα.
HepG2 cells (Gaido et al. 1997; Maness et al. 1998; Nishikawa et al. 1999). This is thought to be the result of the high transfection efficiency of the FuGene transfection reagent for CHO cells, as reported by Vinaggaard et al. (1999). In addition, our assay systems were highly specific to androgenic and estrogenic compounds, similar to the results obtained by Gaido et al. (1997) with yeast cells. These results suggest that both the hAR and hERα assays described in the present study are superior to other reporter gene assays in terms of rapidity, sensitivity, and reproducibility and are useful in identifying endocrine disruptors via AR and ERα from a large number of chemicals.

Using our assay systems, we examined the activities of CNP and CNP-amino measured by our AR and ER assay systems mediated by way of the binding of CNP and CNP-amino to AR and ERα. The binding abilities of CNP and CNP-amino, as well as p,p′-DDE and o,p′-DDT, for hAR were consistent with the antiandrogenic activity defined in the reporter gene assay. In contrast, vinclozolin, which showed potent antiandrogenic activity in the hAR assay, showed poor binding ability to hAR. Kelce et al. (1994) reported that metabolites of vinclozolin exhibited a potent binding ability to AR, whereas the parent compound showed little activity. In this context, it is likely that CHO-K1 cells possess at least some biotransformation capacity, producing metabolites of vinclozolin, as Vinaggaard et al. (1999) pointed out. The binding ability of CNP-amino and o,p′-DDT for hERα well reflected the hERα-transcriptional activation, whereas that of CNP and p,p′-DDE for hERα was somewhat low and did not correlate well with the hERα-transcriptional activation. The latter discrepancy may represent a difference in sensitivity between the reporter gene assay and receptor-binding assay.

In this study, we demonstrated for the first time that CNP and CNP-amino possess both antiandrogenic and estrogenic activities similar to o,p′-DDT. This in turn indicates that, in terms of the environment, CNP and CNP-amino should be considered serious endocrine-disrupting agents similar to other well-known AR antagonists or ER agonists. The present study also demonstrates the effectiveness of our reporter gene assays for detecting chemical interactions with hAR and hERα and for discerning receptor agonists from antagonists. It has been reported that many chemicals have more than one type of activity, and, in particular, a single chemical can have pleiotropic effects, being able to bind to both the androgen and estrogen receptors (Gaido et al. 2000; Satoh et al. 2001; Sohoni and Sumpter 1998). At present, we are searching for similar effects in various chemicals using our reporter gene assays.

There are a number of points of interest in the chemical structures of CNP and CNP-amino. The difference in chemical structure between CNP and CNP-amino is that a nitro group connected to the benzene ring in CNP is replaced by an amino group. This indicates that the difference between the nitro and amino group in their structure regulates their binding affinities to hAR and hERα and that the nitro group of CNP and the amino group of CNP-amino may play important roles in the transcriptional activity through the binding to the ligand-binding domain of hAR and hERα, respectively. Such a phenomenon may occur in other diphenylether herbicides such as nitrofen, chlorometoxynil, and bifenox, which have molecular structures similar to that of CNP and are converted to corresponding amino derivatives in the environment (Kuwatsuka 1977). Furthermore, Tamura et al. (2001) demonstrated that the organophosphate insecticide fenitrothion, which has a nitro group connected to the benzene ring similar to pharmaceutical antiandrogenic flu tamide, possesses potent antiandrogenic activity in vivo and in vitro. The existence of nitrobenzene in the molecular structure may be an important key in identifying antiandrogenic compounds.

Because vinclozolin and p,p′-DDE, which were used as positive control chemicals in this study, are known to have in vivo antiandrogenic activity (Gray et al. 1994; Kelce et al. 1995, 1997), further studies are required to confirm the AR antagonist and ER agonist effects of CNP and CNP-amino by in vivo assays such as the Hershberger antiandrogen assay (Kelce et al. 1997; Lambright et al. 2000) and the uterotrophic assay (Odam et al. 1997).

References

Adachi Y. 1994. Changes in the concentrations of chlornitrofen (CNP) and CNP-amino in river and faucet water in Niigata, Japan [in Japanese]. Jpn J Hyg 48:1095–1098.

Chen CW, Hurd C, Vorobjkina DP, Arnold SF, Notides AC. 1997. Transcriptional activation of the human estrogen receptor by DDT isomers and metabolites in yeast and MCF-7 cells. Biochem Pharmacol 53:1161–1172.

Colborn T. 1995. Environmental estrogenic health implications for humans and wildlife. Environ Health Perspect 103:135–136.

Colborn T, vom Saal FS, Soto AM. 1993. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101:279–384.

Gaido KW, Leonard LS, Sould JC, Babai D, Portier CJ, et al. 1997. Evaluation of chemicals with endocrine modulating activity in a yeast-based steroid hormone receptor gene transcription assay. Toxicol Appl Pharmacol 142:205–212.

Gaido KW, Maness SC, McDonnell DP, Dohal SS, Kupfer D, Safe S. 2000. Interaction of methoxychlor and related compounds with estrogen receptor α and β, and androgen receptor: structure-activity studies. Mol Pharmacol 58:852–858.

Gray LE Jr, Ostby JB, Kelce WR. 1994. Developmental effects of an environmental antiandrogen: the fungicide vinclozolin alters sex differentiation of the male rat. Toxicol Appl Pharmacol 126:46–52.

Hanioka N, Nakano K, Jinno H, Hamamura M, Takahashi A, Yoda R, et al. 1995. Induction of hepatic drug-metabolizing enzymes by chlornitrofen (CNP) and CNP-amino in rats and mice. Chemosphere 30:1297–1309.

Jensen TK, Toppari J, Keiding N, Skakkebaek NE. 1995. Do environmental estrogens contribute to the decline in male reproductive health? Clin Chem 41:1896–1901.

Kervonen U, Kallio PJ, Jenne DA, Pahimoin JI. 1992. Interaction of androgen receptors with androgen response element in intact cells. J Biol Chem 272:15973–15979.

Kelce WR, Monosson E, Gamcsik MP, Laws SC, Gray LE Jr. 1994. Environmental hormone disruptors: evidence that vinclozolin developmental toxicity is mediated by antiandrogenic metabolites. Toxicol Appl Pharmacol 126:276–285.

Kelce WR, Stone CR, Laws SC, Gray LE, Kempainen JA, Wilson EM. 1995. Persistent DDT metabolite p,p′-DDE is a potent androgen receptor antagonist. Nature 375:581–585.

Kelce WR, Lambright CR, Gray LE Jr., Roberts KP. 1997. Vinclozolin and p,p′-DDE alter androgen-dependent gene expression: in vivo confirmation of an androgen receptor-mediated mechanism. Toxicol Appl Pharmacol 142:192–200.

Kelce WR, Wilson EM. 1997. Environmental antiandrogens: developmental effects, molecular mechanism, and clinical implications. J Mol Med 75:189–207.

Klein-Hitpass L, Schorpp M, Wagner U, Ryffel GU. 1986. An estrogen-responsive element derived from the 5´ flanking sequences of the mouse uterus estrogen-responsive element: structure and function. Mol Cell Endocrinol 46:107–116.
region of the Xenopus vitellogenin A2 gene functions in transfected human cells. Cell 47: 1003–1006.

Kuwatsuka S. 1977. Studies on the fate and behavior of herbicides in soil and plant [in Japanese]. J Pesticide Sci 2:201–213.

Lambright C, Ostby J, Bobseine K, Wilson V, Hotchkiss AK, Mann PC, et al. 2000. Cellular and molecular mechanisms of action of linuron: an antiandrogenic herbicide that produces reproductive malformations in male rats. Toxicol Sci 56:389–399.

Maness SC, McDonnell DP, Gaido KW. 1998. Inhibition of androgen receptor-dependent transcriptional activity by DDT isomers and methoxychlor in HepG2 human hepatoma cells. Toxicol Appl Pharmacol 151:135–142.

Masunaga S, Sakurai T, Nakanishi J. 1998. Dioxin mass balance in Tokyo Bay and Kasumigaura Lake basin [in Japanese]. Vol 24, No.1. Bulletin of the Institute of Environmental Science and Technology, Yokohama National University, Yokohama, Japan, 1–10.

Miyachi M, Haga M, Takou Y, Uematsu T. 1983. Mutagenic activity of chlorinated 4-nitrobenzyl ethers and their nitroso- and amino-derivatives. Chem-Biol Interact 44:133–141.

Miyachi M, Koizumi M, Uematsu T. 1981. Studies on the toxicity of chlorinated α,β-hydroxybenzoates to human estrogen receptors in vitro and in vivo. Biochem Pharmacol 30:3341–3346.

Nishikawa T, Nishikawa J, Kanayama T, Dakeyama F, Saito K, Goto J, Dakeyama F, Matsuo M, Nishihara T. 1999. Lack of estrogen and antiestrogen activity of pyrethroid insecticides in three in vitro assays based on classic estrogen receptor α-mediated mechanisms. Toxicol Sci 57:54–60.

Sato K, Nagai F, Aoki N. 2001. Several environmental pollutants have binding affinities for androgen receptor and estrogen receptor α. J Health Sci 47:495–501.

Sato K, Nagai F, Aoki N, Nishihana M. 2000. Competitive binding of some alkyl p-hydroxybenzoates to human estrogen receptor α and β [in Japanese]. Yakugaku Zasshi 120:1429–1433.

Shelby MD, Newbold RR, Tully DB, Chae K, Davis VL. 1996. Assessing environmental chemicals for estrogenicity using a combination of in vitro and in vivo assays. Environ Health Perspect 104:1296–1300.

Shimotori H, Kuwatsuka S. 1978. Absorption, translocation and metabolism of CNP, a diphenyl ether herbicide, and its amino derivative in rice plants. J Pesticide Sci 3:267–275.

Sohoni P, Sumpter JP. 1998. Several environmental oestrogens are also anti-androgens. J Endocrinol 158:327–339.

Suzuki S, Sato N, Takahashi K, Kamo E, Kikuchi H, Ishizawa I, et al. 1983. Residues of CNP metabolites in fish and shellfish [in Japanese]. J Food Hyg Soc Jpn 24:187–193.

Tamura H, Maness SC, Reischmann K, Dorman GC, Gray LE, Gaido KW. 2001. Androgen receptor antagonism by the organophosphate insecticide fenitrothion. Toxicol Sci 60:56–62.

Vinggaard AM, Joergensen ECB, Larsen JC. 1999. Rapid and sensitive reporter gene assays for detection of antiandrogenic and estrogenic effects of environmental chemicals. Toxicol Appl Pharmacol 155:150–160.

Watanabe N, Ishida N, Ishihara Y, Katayama Y, Kitayama S. 1981. Pursuit of residue of organochlorine pesticides in freshwater fish, Isaza (Chaenogobius izzaka TANAKA) [in Japanese]. J Pesticide Sci 6:31–36.

Watanabe S, Watanabe S, Ita K. 1983. Investigation on the contamination of freshwater fish with herbicides (CNP, chlomethoxylin, benthiocarb and malinate). J Pesticide Sci 8:47–53.

Wong C, Kelce WR, Mar M, Wilson EM. 1995. Androgen receptor antagonist versus agonist activities of the fungicide vinclozolin relative to hydroxyflutamide. J Biol Chem 270:19998–20003.

Yamagishi T, Akiyama K. 1981. 1,3,5-Trichloro-2-(4-nitrophenox)benzene (CNP) in water, sediments, and shellfish of the Ishikari River. Bull Environ Contam Toxicol 37:344–349.