Penetration of Breast Cancer Susceptibility Genes From the eMERGE III Network

Xiao Fan, PhD, Julia Wynn, MS, Ning Shang, PhD, Cong Liu, PhD, Alexander Fedotov, PhD, Miranda L.G. Hallquist, MS, Adam H. Buchanan, MS, Marc S. Williams, MD, Maureen E. Smith, MS, Christin Hoell, MS, Laura J. Rasmussen-Torvik, PhD, Josh F. Peterson, MD, Georgia L. Wiesner, MD, Andrea M. Murad, MS, Gail P. Jarvik, MD, Adam S. Gordon, MD, Elisabeth A. Rosenthal, PhD, Ian B. Stanaway, PhD, David R. Crosslin, PhD, Eric B. Larson, MD, Kathleen A. Leppig, MD, Nora B. Henrikson, PhD, Janet L. Williams, MS, Rongling Li, PhD, Scott Hebbring, PhD, Chunhua Weng, PhD, Yufeng Shen, PhD, Katherine D. Crew, MD, Wendy K. Chung, MD, PhD

1Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA, 2Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA, 3Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA, 4Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, NY, USA, 5Genomic Medicine Institute, Geisinger, Danville, PA, USA, 6Department of Medicine, Northwestern University, Chicago Feinberg School of Medicine, Chicago, IL, USA, 7Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA, 8Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA, 9Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA, 10Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA, 11Department of Medical Genetics, University of Washington Medical Center, Seattle, WA, USA, 12Department of Biomedical Informatics and Medical Education, University of Washington Medical Center, Seattle, WA, USA, 13Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA, 14Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, USA, 15Center for Precision Medicine Research, Marshfield Clinic, Marshfield, WI, USA, 16Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA, and 17Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA

*Correspondence to: Wendy K. Chung, MD, PhD, Department of Pediatrics and Medicine, Columbia University Irving Medical Center, 1150 St, Nicholas Avenue, Floor 6, Suite 620, New York, NY 10032, USA (e-mail: wkc15@cumc.columbia.edu).

Abstract

Background: Unbiased estimates of penetrance are challenging but critically important to make informed choices about strategies for risk management through increased surveillance and risk-reducing interventions. Methods: We studied the penetration and clinical outcomes of 7 breast cancer susceptibility genes (BRCA1, BRCA2, TP53, CHEK2, ATM, PALB2, and PTEN) in almost 13 458 participants unselected for personal or family history of breast cancer. We identified 242 female participants with pathogenic or likely pathogenic variants in 1 of the 7 genes for penetrance analyses, and 147 women did not previously know their genetic results. Results: Out of the 147 women, 32 women were diagnosed with breast cancer at an average age of 52.8 years. Estimated penetrance by age 60 years ranged from 17.8% to 43.8%, depending on the gene. In clinical-impact analysis, 42.3% (95% confidence interval = 31.3% to 53.3%) of women had taken actions related to their genetic results, and 2 new breast cancer cases were identified within the first 12 months after genetic results disclosure. Conclusions: Our study provides population-based penetrance estimates for the understudied genes CHEK2, ATM, and PALB2 and highlights the importance of using unselected populations for penetrance studies. It also demonstrates the potential clinical impact of genetic testing to improve health care through early diagnosis and preventative screening.

Received: 8 October 2020; Revised: 8 February 2021; Accepted: 22 April 2021
© The Author(s) 2021. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com.
65%-85% and 70%-84%, respectively (3,11–13). In contrast, a population-based study estimated penetrance of 52% (16%) for \(\text{BRCA1} \) and 32% (SD – 17%) for \(\text{BRCA2} \) by age 70 years (14). The difference highlights the importance of unbiased penetrance estimate, although the latter is more challenging to recruit a sufficiently large number of individuals with pathogenic variants in the breast cancer susceptibility genes. Unbiased estimates of penetrance are critically important to accurately estimate risk over the life course and make informed choices about strategies for risk management through increased surveillance and risk-reducing interventions including prophylactic surgery. This can only be done if population-based genetic testing is deployed.

A few studies have estimated the penetrance of \(\text{BRCA1/2} \) pathogenic variants in the general population (14–16). Population-based penetrance estimates are not available for the other breast cancer susceptibility genes with lower frequency of pathogenic variants (eg, \(\text{TP53} \) and \(\text{PTEN} \)), more recently identified genes (eg, \(\text{PALB2} \)), and those that likely have more moderate penetrance (eg, \(\text{ATM} \) and \(\text{CHEK2} \)). Increasingly, there is consideration of population-based genomic health screening for adults for conditions for which surveillance is effective, including breast cancer (17). Our study objective is to provide less biased estimates of breast cancer penetrance in women for the commonly assessed breast cancer susceptibility genes (18) in clinical genetic testing.

Methods

Study Cohort and Sequencing Panel

In phase III of the Electronic Medical Records and Genomics (eMERGE) network, 13,458 female participants were enrolled at 10 clinical sites and had sequencing for a panel of 109 genes (19). The focus of this analysis is 7 breast cancer susceptibility genes included on the eMERGE III panel (\(\text{BRCA1} \), \(\text{BRCA2} \), \(\text{PALB2} \), \(\text{PTEN} \), \(\text{TP53} \), \(\text{ATM} \), and \(\text{CHEK2} \)). All 7 genes have shown strong or moderate association with breast cancer in previous studies (9,10). Variants identified through sequencing were classified according to the American College of Medical Genetics and Genomics and Association for Molecular Pathology guidelines (20,21) with ClinGen sequence variant interpretation working group modifications for codes PM2, PM3, BA1, PP5/BP6, PS2/PM6, and PV51, which can be found on ClinGen’s website (https://clinicalgenome.org/working-groups/sequence-variant-interpretation/). Variant classification and genetic reports were provided by Clinical Laboratory Improvement Amendments (CLIA)-certified laboratories (19). Pathogenic or likely pathogenic (P/LP) variants were confirmed by Sanger sequencing (19). We focused on female participants in this study as the risk for breast cancer in men with P/LP variants is statistically significantly lower than that for women. Putative somatic variants (variant allele fraction in blood samples <0.3) were excluded from downstream analysis. Participants who previously knew their genetic results may be more likely to seek genetic answers after a diagnosis of cancer, so they may be more likely to have a higher risk for breast cancer or have undergone risk reduction or enhanced surveillance actions after they received their genetic results. Therefore, only women with P/LP variants who were unaware of the genetic risk were included in the penetrance and clinical impact analysis. For clinical impact analysis, the sample was further restricted to those participants who consented to return of results (RoR) (22) and did not have breast cancer before RoR. We assessed clinical impact at 12 months post-RoR. All 10 clinical sites obtained consent from participants under institutional review board-approved protocols (23).

Identification of Breast Cancer Diagnosis and Post-RoR Risk Management

The electronic health records (EHR) of participants with breast cancer susceptibility P/LP variants were manually queried at 12 months post-RoR for any history of incident breast cancer and the date recorded in the EHR to ascertain if the event occurred prior to or after RoR. We measured the post-RoR performance of the National Comprehensive Cancer Network (24,25) guideline-recommended risk management including breast cancer surveillance and prevention procedures such as breast magnetic resonance imaging (MRI), breast ultrasound, mammograms, breast cancer risk-reducing medication, and prophylactic mastectomy and oophorectomy. We also recorded breast biopsies as a diagnostic test. Records were queried for prior patient knowledge of the identified breast cancer susceptibility P/LP variants. EHR extraction was completed at each clinical site and entered into a central REDCap database (26,27).

Statistical Analysis

We used Kaplan-Meier method (28) to estimate the age-specific penetrance of breast cancer in the women with P/LP variants in each breast cancer susceptibility gene. The participants were censored at their current age or age of prophylactic mastectomy. We reestimated penetrance whenever an event (breast cancer diagnosis or censor) occurred in the curve of penetrance of breast cancer. We also estimated breast cancer penetrance by decade from 30 to 70 years. Confidence intervals (CI) were calculated using Greenwood formula (29). We used 2-sided binomial test to estimate P value and set significance level as .05. The analysis was done in R version 3.6.3.

Results

Clinical Characteristics

Of the 13,458 eMERGE III female individuals who were sequenced (Supplementary Table 1, available online), we identified 242 women with at least 1 P/LP variant in 1 of the 7 breast cancer susceptibility genes. A flowchart of inclusion criteria for participants is shown in Figure 1. We retained 147 women who had germline P/LP variants and did not know their genetic results for the penetrance analysis. The clinical characteristics of this female cohort are shown in Table 1 and Supplementary Figure 1 (available online). The majority (73.5%) were of European and non-Latina ancestry, followed by 15.6% African American, 8.8% Latina, and 2.7% East Asian by self-reported ancestry. The average age was 55.1 (SD = 18) years. One woman had 2 P/LP variants including 1 frameshift variant in \(\text{BRCA2} \) and 1 missense variant in \(\text{CHEK2} \). By the date of last chart review, 32 (21.8%, 95% CI = 15.1% to 28.5%) women had developed breast cancer, and 2 of them were diagnosed post-RoR. The average age of breast cancer diagnosis was 52.8 years (95% CI = 30.8 to 74.8), and 4 (2.7%, 95% CI = 0.8% to 5.4%) women had a prophylactic mastectomy or oophorectomy after eMERGE RoR. Although not statistically significant (P = .11), by age 50 years, a higher proportion of African American (7 out of 13, 53.8%) and Latina (5 out of 11, 45.5%) individuals developed breast cancer.
c.1100delC (n = BRCA2) function (LoF) including frameshift, stop-gain, or splice for monly reported variant type in this cohort was putative loss-of-
85 putative LoF variants that were annotated in ClinVar with at putative LoF variants beside 2 deletions. Compared with 90% of both penetrance and clinical-impact analysis. Percentage was calculated for each gene.

Return of results (RoR) row shows the number of women who received their genetic results and did not have breast cancer before the RoR.

Breast cancer status was ascertained by the last chart review. Genes were sorted alphabetically. One woman with 2 P/LP variants in BRCA2 and CHEK2 was included in both penetrance and clinical-impact analysis. Percentage was calculated for each gene.

Prevalence and Penetrance
Among 147 women with at least 1 P/LP variant in the 7 breast cancer susceptibility genes, 56 (0.38%, 95% CI = 0.30% to 0.46%) unselected individuals had BRCA1/2 P/LP variants. This prevalence of 0.38% is consistent with the 0.2%-0.7% prevalence of BRCA1/2 P/LP variants reported in previous studies (9,15,30,31). The frequency of BRCA1/2 P/LP variants differs across race and ethnicity: 41.7% in the 108 European-ancestry individuals, 30.4% in the 23 African Americans, 15.4% in the 13 Latina, and 50.0% in the 4 Asians. CHEK2 P/LP variants are also common and were present in 48 (0.33%, 95% CI = 0.25% to 0.40%) female individuals without previous genetic results. Most (68.8%) of the 48 individuals had 1 of 2 common CHEK2 variants c.470T>C (n = 26) or c.1100delC (n = 7). The prevalence of individuals with the 2 CHEK2 variants ranges from 0.0% to 4.9% in European populations (Supplementary Table 4, available online). This implies CHEK2 P/LP variants might be more common than BRCA1/2 P/LP variants in certain European populations. ATM and PALB2 P/LP variants accounted for 14.3% and 10.2%, respectively, of those 147 women.

Shown in Table 2, BRCA1 and TP53 had high breast cancer penetrance and included early-onset breast cancer diagnosed before age 50 years. BRCA2, ATM, PALB2, and CHEK2 were more commonly associated with later-onset breast cancer, for which the penetrance estimates ranged from 19% to 31% by age 60 years. Even the moderate-penetrance genes conferred a measurably higher risk of breast cancer than average-risk women.

Table 1. Clinical characteristics of 147 women with germline pathogenic or likely pathogenic variants in the 7 breast cancer (BC) susceptibility genes

Characteristic	All 7 BC susceptibility genes	ATM	BRCA1	BRCA2	CHEK2	PALB2	PTEN	TP53
No. of women	147	21	17	39	48	15	3	5
Mean age (SD), y	55 (18)	63 (13)	43 (19)	50 (17)	59 (16)	61 (19)	32 (22)	51 (25)
Race/ethnicity, No. (%)								
Europe	108 (73.5)	10 (47.6)	15 (88.2)	30 (76.9)	40 (83.3)	9 (60.0)	2 (66.7)	2 (40.0)
African American	23 (15.6)	6 (28.6)	2 (11.8)	5 (12.8)	2 (4.2)	5 (33.3)	1 (33.3)	2 (40.0)
Latina	13 (8.8)	4 (19.0)	0 (0.0)	2 (5.1)	5 (10.4)	1 (6.7)	0 (0.0)	1 (20.0)
East Asian	4 (2.7)	1 (4.8)	0 (0.0)	2 (5.1)	1 (2.1)	0 (0.0)	0 (0.0)	0 (0.0)
Mean age of diagnosis (SD), y								
BC, No. (%)	32 (21.8)	6 (28.6)	3 (17.6)	6 (15.4)	11 (22.9)	4 (26.7)	0 (0.0)	2 (40.0)
BC after testing, No. (%)	2 (1.4)	1 (4.8)	0 (0.0)	0 (0.0)	1 (2.1)	0 (0.0)	0 (0.0)	0 (0.0)
Prophylactic mastectomy, No. (%)	3 (2.0)	0 (0.0)	1 (5.9)	1 (2.6)	1 (2.1)	0 (0.0)	0 (0.0)	0 (0.0)
RoR, No. (%)	78 (53.1)	14 (66.7)	8 (47.1)	21 (53.8)	31 (64.6)	4 (26.7)	1 (33.3)	0 (0.0)

*Breast cancer status was ascertained by the last chart review. Genes were sorted alphabetically. One woman with 2 P/LP variants in BRCA2 and CHEK2 was included in both penetrance and clinical-impact analysis. Percentage was calculated for each gene.

*Return of results (RoR) row shows the number of women who received their genetic results and did not have breast cancer before the RoR.
Table 2. Penetrance (95% confidence interval) by decades of 6 breast cancer susceptibility genes

Gene	<30 y	<40 y	<50 y	<60 y	<70 y
ATM	0.0 (0.0 to 0.0)	0.0 (0.0 to 0.0)	10.3 (8.7 to 11.8)	25.5 (18.9 to 32.1)	31.2 (21.8 to 40.7)
BRCA1	0.0 (0.0 to 0.0)	0.0 (0.0 to 0.0)	33.3 (17.9 to 48.7)	33.3 (17.9 to 48.7)*	33.3 (17.9 to 48.7)*
BRCA2	0.0 (0.0 to 0.0)	3.3 (3.1 to 3.6)	11.1 (9.6 to 12.5)	19.8 (15.9 to 23.6)	19.8 (15.9 to 23.6)
CHEK2	0.0 (0.0 to 0.0)	2.4 (2.3 to 2.5)	7.2 (6.6 to 7.8)	17.8 (15.2 to 20.4)	23.6 (19.4 to 27.8)
PALB2	0.0 (0.0 to 0.0)	0.0 (0.0 to 0.0)	8.3 (6.9 to 9.8)	23.0 (16.2 to 29.8)	29.4 (19.4 to 39.4)
TP53	0.0 (0.0 to 0.0)*	25.0 (10.9 to 39.1)*	43.8 (8.7 to 78.8)*	43.8 (8.7 to 78.8)*	43.8 (8.7 to 78.8)*
General populationb	—	0.6	2.1	4.5	7.8

*aWhen the number of uncensored women who had P/LP variants is below 5 (sample size is too small), the penetrance estimate is not accurate.

Our estimated penetrance for ATM was 23.6% (95% CI = 19.4% to 27.8%) by age 70 years (Table 2).

We identified 3 women with P/LP variants in PTEN. None of the women had breast cancer with the current ages of 15, 24, and 57 years. The penetrance of PTEN was not further analyzed because of the limited sample size.

Of the 5 women with TP53 P/LP variants, 3 of them had missense variants. Two women with missense variants developed breast cancer at the ages of 37.1 and 44.4 years. Although the sample size is small, breast cancer penetrance for TP53 was estimated at 43.8% (95% CI = 8.7% to 78.8%) by age 50 years (Table 2).

Clinical Impact

We limited the analysis of clinical impact after RoR to the 78 women not previously aware of the genetic results and without a breast cancer diagnosis before RoR (data not shown). Based on the chart review at 12 months post-RoR, 26 women had mammograms, 11 had breast MRI, and 5 had breast ultrasound. Three women had breast biopsies that led to the diagnosis of a new breast cancer in 2 women. From the perspective of risk reduction, 3 women had prophylactic bilateral mastectomies and 1 also had a prophylactic oophorectomy, and another woman had only a prophylactic oophorectomy. One woman started tamoxifen to reduce breast cancer risk. Overall, 33 (42.3%, 95% CI = 31.3% to 53.3%) women took 1 or more clinical actions, not including the breast biopsies, and 9 (11.5%, 95% CI = 4.4% to 18.7%) had at least 2 breast cancer surveillance procedures after RoR.

Discussion

Our study enrollment criteria were broad, and the 147 women used in the penetrance analysis were among approximately 13000 adult female participants unscreened for personal or family history of breast cancer. Therefore, our penetrance estimates apply to a general adult female population.

Across the 7 studied genes, BRCA1 and TP53 variants were associated with high penetrance, and variants in BRCA2, ATM, PALB2, and CHEK2 had more moderate penetrance. Our findings suggest that CHEK2 P/LP variants could be as prevalent as BRCA1/2 in certain populations such as the Finnish and Polish with CHEK2 founder variants.

Comparing penetrance estimates from the eMERGE cohort with the previous studies (Figure 2), the penetrance by age is comparable for all genes, although there are some statistically significant differences at certain ages. For example, our estimated penetrance for ATM by age 50 years was 10.3% (95% CI =
8.7% to 11.8%), which is statistically significantly higher than 6.0% (95% CI = 4.6% to 7.4%) reported by Marabelli et al. (33), however, the absolute difference is small. The penetrance for CHEK2 in our study is higher than that reported by Gronwald et al. (34), but their study did not provide confidence intervals. Our CHEK2 estimates are similar to those estimated in a large recent study (9). These results, based on small sample sizes, should be validated when larger numbers of participants are available.

We highlight the importance of estimating penetrance by comparing penetrance estimates before and after removing women who knew their genetic results prior to enrollment in eMERGE. Penetration of BRCA1/2 increased dramatically when women who knew their genetic result were included (Supplementary Figure 2, available online), suggesting use of selected populations inflates penetrance estimates. Our strategy of excluding women with previous genetic test results is less biased than previous methods using women selected for family history. However, women who were previously tested are more likely to have a family history of cancer, so our penetrance estimates may be potentially deflated by removing more women with family history of cancer compared with a general population.

Routine genetic screening could lead to improvement in long-term clinical outcomes with tailored health surveillance. Among 242 women with P/LP variants in the 7 genes, 147 (61%) of them were not previously aware of their genetic results. This research supports the feasibility of identification of women at increased risk of breast cancer on a population level.

The 7 genes we studied are included in the National Comprehensive Cancer Network–suggested breast cancer gene panel for cancer risk management. Among 74 women who first learned their genetic results through eMERGE, 42.3% (95% CI = 31.3% to 53.3%) had taken actions related to their genetic results within 12 months, although the uptake of mammograms (33.3%), breast MRI (14.1%), and mastectomy (3.8%) was lower than that found in a study of women with BRCA1/2 P/LP variants in which uptake of the same actions was 45.8%, 32.2%, and 3.5%, respectively, within the first year post-RoR (30). With this small sample size of 74 women, 2 new breast cancer cases were diagnosed within 12 months after RoR, demonstrating the potential impact of returning this information.

Although eMERGE III had more than 13 000 female participants sequenced, the number of women with P/LP variants in breast cancer susceptibility genes is small compared with studies selected for family history. Unbiased penetrance estimates using larger sample sizes are still needed and could impact breast cancer surveillance for women with P/LP variants in understudied genes such as PALB2 and ATM. This study only recruited living participants, so those deceased individuals with P/LP variants are not represented in our penetrance estimates.

The genes we studied are commonly tested clinically when assessing breast cancer risk (18). Other genes that are less commonly associated with breast cancer but are included with comprehensive clinical breast cancer genetic assessments including CDH1, STK11, NBN, and NF1 are not included in the eMERGE III gene panel because of the low prevalence and unclear penetrance. Future studies with much larger sample sizes are needed to estimate penetrance for genes with low population prevalence.

A large portion of women did not consent to receive their genetic results, were already aware of their results prior to participation in eMERGE III, or had developed breast cancer before RoR, limiting the sample size for the clinical outcome analysis.
We only have access to data from the EHR at the eMERGE sites, therefore, clinical actions performed outside of the eMERGE sites were not assessed. One-year of follow-up may be insufficient to assess impact, but we were limited by the project period. There was no feasibility across eMERGE sites across results were returned (22) that could have resulted in differences in participant understanding and actions taken. We did not assess lifestyle modifications adopted by participants to reduce cancer risk such as maintaining a healthy body weight, performing moderate physical activity, and reducing alcohol consumption.

Our study highlights the challenges of unbiased recruitment for sufficiently large numbers of people to estimate cancer risk as we consider population-based genetic testing and risk stratification. We demonstrate that genetic screening for breast cancer susceptibility genes has the potential to diagnose cancers at earlier more treatable stages with enhanced surveillance and to perform risk reducing surgeries such as prophylactic mastectomies and oophorectomies.

Funding
This work was supported by the NHGRI through the following grants: U01HG8657 (Group Health Cooperative/University of Washington); U01HG8685 (Brigham and Women’s Hospital); U01HG8672 (Vanderbilt University Medical Center); U10HG8666 (Cincinnati Children’s Hospital Medical Center); U01HG6379 (Mayo Clinic); U01HG8679 (Geisinger Clinic); U01HG8680 (Columbia University Health Sciences); U01HG8684 (Children's Hospital of Philadelphia); U01HG8673 (Northwestern University); U01HG8701 (Vanderbilt University Medical Center serving as the Coordinating Center); U01HG8767 (Partners Healthcare/Broad Institute); and U01HG8664 (Baylor College of Medicine).

Notes
Role of the funder: The funder, National Human Genome Research Institute (NHGRI), had a role in study design, collection, analysis, and interpretation of the data, writing the manuscript, and decision to submit the manuscript for publication. The program director for eMERGE at NHGRI, Rongling Li, reviewed and revised this manuscript and approved the submission of the manuscript.

Disclosures: AM Murad is a paid consultant for Concert Genetics. The other authors have no conflicts of interest to disclose.

Author contributions: Conceptualization: WK, KDC; project administration: AF; data generation: MLGH, AHB, MSW, MES, CH, LJR, JFP, GLW, AMM, GPJ, ASG, EAR, IBS, DRC, EBL, KAL, NBH, JLW, SH, JW, NS, CW, KDC, WK; data curation: XF, JW, NS, WK, MLGH, AHB, MSW, MES, CH, LJR, JFP, GLW, AMM, GPJ, ASG, EAR, IBS, DRC, EBL, KAL, NBH, JLW, SH; formal analysis and visualization: XF; writing original draft: XF, JW, WK, KDC; supervision: WK, KDC, YS. All authors reviewed the manuscript and approved the submission of this manuscript.

Acknowledgements: The authors acknowledge the participating patients and families who generously contributed to the eMERGE III data. We thank the participating sites and coordinating centers for the participant recruitment and follow-up data collection and data curation.

Data Availability
All data are publicly available in the dbGaP repository under phs001616.v1.p2. https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001616.v2.p2.

References
1. Narod SA, Foulkes WD. BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer. 2004;4(9):665–676.
2. Wooster R, Bignell G, Lancaster J, et al. Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995;378(6559):789–792.
3. Ford D, Easton DF, Stratton M, et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet. 1998;62(3):676–689.
4. Van Neste-Heijboer H, van den Ouweland A, Klijn J, et al.; for the CHEK2-Breast Cancer Consortium. Low-penetrance susceptibility to breast cancer due to CHEK2(I1101delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet. 2002;31(1):55–59.
5. Evans DG, Shenston A, Woodward E, et al. Penetrance estimates for BRCA1 and BRCA2 based on genetic testing in a clinical cancer genetics service setting: risks of breast/ovarian cancer quoted should reflect the cancer burden in the family. BMC Cancer. 2008;8(1):155.
6. Minkiel EV, Zerr I, Collins SJ, et al. Ascertainment bias causes false signal of anticipation in genetic prone disease. Am J Hum Genet. 2014;95(6):371–382.
7. Turner H, Jackson L. Evidence for penetrance in patients without a family history of disease: a systematic review. Eur J Hum Genet. 2020;28(5):539–550.
8. Antoniou A, Pharoah PDP, Narod S, et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet. 2003;72(5):1117–1130.
9. Hu C, Hart SN, Gnaoualiou R, et al. A population-based study of genes previously implicated in breast cancer. N Engl J Med. 2011;364(5):440–451.
10. Breast Cancer Association Consortium. Breast cancer risk genes—association analysis in more than 153,000 women. N Engl J Med. 2011;364:428–439.
11. Kuchenbaecker KB, Hopper JL, Barnes DR et al.; and the BRCA1 and BRCA2 Cohort Consortium. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317(23):2402–2416.
12. Antoniou AC, Durocher F, Smith P, et al.; for the INHERIT BRCA3 program members. BRCA1 and BRCA2 mutational frequency in 26,051 women: the OADISEC and BRCA2PRO models and estimation of penetrance in high-risk French-Canadian families. Breast Cancer Res. 2006;8(1):R3.
13. Easton DF, Ford D, Bishop DT. Breast and ovarian cancer incidence in BRCA1 mutation carriers. Breast Cancer Linkage Consortium. Am J Hum Genet. 1995;56(5):625–271.
14. Gabai-Kapara E, Lahad A, Kaufman B, et al. Population-based screening for breast and ovarian cancer risk due to BRCA1 and BRCA2. Proc Natl Acad Sci USA. 2014;111(39):14205–14210.
15. Abul-Husn NS, Soper ER, O’Duffy JA, et al.; for the Regeneron Genetics Center. Exome sequencing reveals a high prevalence of BRCA1 and BRCA2 founder variants in a diverse population-based biobank. Genome Med. 2019;12(1):12.
16. Grynszky MJ, Elhanan G, Morales Rosado JA, et al. Population genetic screening efficiently identifies carriers of autosomal dominant diseases. Nat Med. 2020;26(8):1235–1239.
17. Buchanan AH, Lester Kirchner H, Schwartz MLB, et al. Clinical outcomes of a genomic screening program for actionable genetic conditions. Genet Med. 2020;22(11):1874–1882.
18. National Comprehensive Cancer Network. Genetic/familial high-risk assessment: breast, ovarian, and pancreatic (version 1.2020).
19. eMERGE Consortium. Harmonizing clinical sequencing and interpretation for the eMERGE III network. Am J Hum Genet. 2019;105(5):588–605.
20. Richards S, Aziz N, Bale S, et al.; for the ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–424.
21. Riggs ER, Andersen EF, Cherry AM, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020;22(2):245–257.
22. Vonder E, et al. Returning results in the genomic era: initial experiences of the eMERGE network. J Pers Med. 2020;10(1):30.
23. Fossey R, Kochan D, Winkler E, et al. Ethical considerations related to return of results from genomic medicine projects: the eMERGE Network (phase III) experience. J Pers Med. 2018;8(1):2.
24. National Comprehensive Cancer Network. Breast cancer risk reduction (version 1.2020). 2020. https://www.nccn.org/professionals/physician_gls/pdf/breast_risk.pdf. Accessed August 1, 2020.
25. National Comprehensive Cancer Network. Breast cancer screening and diagnosis (version 1.2019); 2019. https://www.nccn.org/professionals/physician_gls/pdf/breast-screening.pdf. Accessed August 1, 2020.

26. Harris PA, Taylor R, Minor BL, et al.; for the REDCap Consortium. The REDCap consortium: building an international community of software platform partners. J Biomed Inform. 2019;95:103208.

27. Harris PA, Taylor R, Thielke R, et al. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–381.

28. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53(282):457–481.

29. Greenwood M. A report on the natural duration of cancer. In: Ministry of Health Reports on Public Health and Medical Subjects. London: H.M.S.O; 1926:1–26.

30. Hao J, et al. Healthcare utilization and costs after receiving a positive BRCA1/2 result from a genomic screening program. J Pers Med. 2020;10(1):7.

31. Lippi G, Mattiuzzi C, Montagnana M. BRCA population screening for predicting breast cancer: For or against? Ann Transl Med. 2017;5(13):275.

32. SEER Cancer Statistics Review. Table 4.17 cancer of the female breast (invasive). 1975-2017. https://seer.cancer.gov/csr/1975_2017/browse_csr.php?sectionSEL¼4&pageSEL¼sect_04_table.17. Accessed August 1, 2020.

33. Marabelli M, Cheng SC, Parmigiani G. Penetrance of ATM gene mutations in breast cancer: a meta-analysis of different measures of risk. Genet Epidemiol. 2016;40(5):425–431.

34. Gronwald J, Cybulski C, Pieniak W, et al. Cancer risks in first-degree relatives of CHEK2 mutation carriers: effects of mutation type and cancer site in proband. Br J Cancer. 2009;100(9):1508–1512.

35. Antoniou AC, Casadei S, Heikkinen T, et al. Breast-cancer risk in families with mutations in PALB2. N Engl J Med. 2014;371(6):497–506.

36. Han M-R, Zheng W, Cai Q, et al. Evaluating genetic variants associated with breast cancer risk in high and moderate-penetrance genes in Asians. Carcinogenesis. 2017;38(5):511–518.

37. Mai PL, Best AF, Peters JA, et al. Risks of first and subsequent cancers among TP53 mutation carriers in the National Cancer Institute Li-Fraumeni syndrome cohort. Cancer. 2016;122(23):3673–3681.

38. Maxwell KN, Dornchek SM, Nathanson KL, et al. Population frequency of germline BRCA1/2 mutations. J Clin Oncol. 2016;34(34):4183–4185.

39. Kilpivaara O, Valtteristo P, Falck J, et al. CHEK2 variant I157T may be associated with increased breast cancer risk. Int J Cancer. 2004;111(4):543–547.

40. Han FF, Guo CL, Liu LH. The effect of CHEK2 variant I157T on cancer susceptibility: evidence from a meta-analysis. DNA Cell Biol. 2013;32(6):329–335.

41. Liu C, Wang Y, Wang Q-S, et al. The CHEK2 I157T variant and breast cancer susceptibility: a systematic review and meta-analysis. Asian Pac J Cancer Prev. 2012;13(4):1355–1360.

42. Valtteristo P, Bartkova J, Derola H, et al. A CHEK2 genetic variant contributing to a substantial fraction of familial breast cancer. Am J Hum Genet. 2002;71(2):432–438.

43. CHEK2 Breast Cancer Case-Control Consortium. CHEK21100delC and susceptibility to breast cancer: a collaborative analysis involving 10,860 breast cancer cases and 9,065 controls from 10 studies. Am J Hum Genet. 2004;74(8):1175–1182.