Experience-Dependent Changes in Myelin Basic Protein Expression in Adult Visual and Somatosensory Cortex

Kathryn M. Murphy1,2*, Steven J. Mancini1, Katherine V. Clayworth2, Keon Arbabi1 and Simon Beshara3†

1McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University, Hamilton, ON, Canada,
2Department of Psychology, Neuroscience & Behaviour, Faculty of Science, McMaster University, Hamilton, ON, Canada,
3Division of Neurology, Department of Medicine, Queen’s University, Kingston, ON, Canada

An experience-driven increase in oligodendrocytes and myelin in the somatosensory cortex (S1) has emerged as a new marker of adult cortical plasticity. That finding contrasts with the view that myelin is a structural brake on plasticity, and that contributes to ending the critical period (CP) in the visual cortex (V1). Despite the evidence that myelin-derived signaling acts to end CP in V1, there is no information about myelin changes during adult plasticity in V1. To address this, we quantified the effect of three manipulations that drive adult plasticity (monocular deprivation (MD), fluoxetine treatment or the combination of MD and fluoxetine) on the expression of myelin basic protein (MBP) in adult rat V1. In tandem, we validated that environmental enrichment (EE) increased cortical myelin by measuring MBP in adult S1. For comparison with the MBP measurements, three plasticity markers were also quantified, the spine markers drebrin E and drebrin A, and a plasticity maintenance marker Ube3A. First, we confirmed that EE increased MBP in S1. Next, that expression of the plasticity markers was affected in S1 by EE and in V1 by the visual manipulations. Finally, we found that after adult MD, MBP increased in the non-deprived V1 hemisphere, but it decreased in the deprived hemisphere, and those changes were not influenced by fluoxetine. Together, the findings suggest that modulation of myelin expression in adult V1 may reflect the levels of visually driven activity rather than synaptic plasticity caused by adult plasticity.

Keywords: visual cortex (V1), somatosensory cortex, monocular deprivation, environmental enrichment (EE), myelin basic protein (MBP), myelin, adult plasticity

INTRODUCTION

In the visual cortex (V1), the developmental increase and signaling of intra-cortical myelin are described as a structural brake on critical period (CP) plasticity (Bavelier et al., 2010). Recent studies of adult somatosensory cortex (S1), however, have shown that enhancing plasticity with environmental enrichment (EE) increases cortical oligodendrocytes and myelination (Hill et al., 2018; Hughes et al., 2018). Those increases suggest that more myelin may be a marker of adult plasticity in S1. There is no similar information about plasticity-related myelin changes in adult V1, and that gap leaves unanswered if myelin plasticity in the adult cortex might differ between S1 and V1. Here, we addressed if manipulations that are known to affect plasticity in adult rodent V1 (e.g., monocular deprivation (MD) and fluoxetine administration) cause changes to myelin expression.
The idea that myelin is a brake on CP plasticity in V1 comes from two lines of evidence. First, V1 has little expression of myelin genes (Lyckman et al., 2008) or proteins (Bjelke and Seiger, 1989; Siu et al., 2015) during the CP when abnormal visual experience (e.g., MD) quickly changes cortical function. Second, myelin signaling in V1 inhibits experience-dependent neurite growth (Schoop et al., 1997) by various myelin-associated inhibitors, including Nogo, MAG, and OMgp (Wang et al., 2002; McGee et al., 2005; Akbik et al., 2012). Knocking out the receptor for Nogo (Nogo-66, NgR) prolongs ocular dominance plasticity in V1 (McGee et al., 2005) while in the somatosensory cortex (S1) it prolongs juvenile-like dendritic spine turnover (Akbik et al., 2013).

In vivo imaging of oligodendrocytes in mouse S1, however, has found that myelination develops slowly past the end of the CP when myelinating cells continue to proliferate and form discontinuous patches of myelin along cortical axons in young adult animals (Hill et al., 2018; Hughes et al., 2018). Also, sensory enrichment is known to enhance plasticity in rodents (Rosenzweig and Bennett, 1996) causes a 5-fold increase in the number of oligodendrocytes and hundreds of new myelin sheaths that remain stable for at least 3 months (Hughes et al., 2018). This rapid experience-dependent increase in myelin suggests that myelination supports plasticity in the adult cortex. Furthermore, several features of myelin sheaths on cortical inhibitory neurons suggest distinct functions related to plasticity (Micheva et al., 2018). Thus, cortical myelin has a broad spectrum of functions linked to plasticity in adult S1. Less is known, however, about myelin plasticity in adult V1.

V1 of adult rodents maintains some ocular dominance plasticity, but it is less than during the CP and requires longer MD to promote a shift (Sawtell et al., 2003; Sato and Stryker, 2008). Combining MD with treatment using fluoxetine, however, reinstates juvenile-like plasticity in adult V1 (Maya Vetencourt et al., 2008) and changes the expression of many plasticity-related proteins (Beshara et al., 2015). Despite this understanding of plasticity in adult V1, there is little information about whether MD or fluoxetine in adult animals affects cortical myelin. In particular, does fluoxetine-enhanced plasticity increase myelin in V1 similar to EE driven changes in S1. To address this, we studied the expression of myelin basic protein (MBP) in adult V1 after manipulating visual experience (MD) or enhancing plasticity (fluoxetine) and compared it with MBP changes in S1 after exposure to an enriched environment (EE). Because both MD and EE affect dendritic spines (Oray et al., 2004; Jung and Herms, 2014) we also measured a pair of markers that regulate spine plasticity and synapse formation (embryonic-type drebrin E and adult-type drebrin A; Koganezawa et al., 2017; Hanamura et al., 2018). Also, an E3 ubiquitin-protein, Ube3A, was measured because it is necessary for MD driven plasticity (Yashiro et al., 2009; Sato and Stryker, 2010), long-term potentiation (Jiang et al., 1998) and there is reduced cortical expression of MBP and other myelin proteins in Ube3A deficient mice (Grier et al., 2015). We found that EE increased MBP in S1 while MD caused hemisphere-specific changes in V1, increasing MBP in the non-deprived hemisphere and decreasing it in the deprived hemisphere. Fluoxetine did not affect the experience-driven changes in MBP even though it did affect the expression of the plasticity markers (drebrin-E, drebrin-A, and Ube3A). These results suggest that the direction of myelin plasticity in the adult cortex depends on whether the neural activity is enhanced or reduced.

MATERIALS AND METHODS

Rearing Conditions and Surgical Procedures

All procedures were approved by the McMaster University Animal Research Ethics Board. We quantified the expression of MBP and markers for dendritic spines (drebrin E and drebrin A) and plasticity maintenance (Ube3A) in S1 and V1 of adult Long-Evans rats. S1 was studied from animals reared individually (n = 12) or group-housed in an enriched environment (EE) consisting of multiple forms of physical stimulation including a large, spacious cage, with four levels connected by three ramps, and a running wheel (Short-term EE (S-EE) 2 weeks n = 6; Long-term EE (L-EE) 66 weeks n = 5; Critter Nation Double Unit Model:162, MidWest Homes For Pets). The toys and location of food and water were changed weekly. The lengths of EE and rearing conditions were select to be similar to previous studies (Baroncelli et al., 2012). V1 was studied from animals reared individually with normal binocular vision (BV n = 6), or one of three manipulations: 1 month of fluoxetine (P70-P98, n = 8), 1 week of MD (P91–98; n = 6), 1-month fluoxetine (P70–98) plus 1 week MD (P91–98; n = 8). Fluoxetine was dissolved in the drinking water (0.2 mg/ml of drinking water), and animals were permitted to self-regulate their intake of food and water. These rearing conditions, including the use of male rats, were selected to be similar to previous studies (Maya Vetencourt et al., 2008).

MD was done by trimming the eyelid margins and suturing them together with 5–0 vicryl. The surgery was performed in an aseptic environment; anesthesia was induced and maintained with gaseous isoflurane (1.5–5%) in oxygen. Eyelids were monitored daily to check for and repair any openings. In the rat, 90% of the visual pathway is crossed so the hemisphere contralateral to the MDed eye was designated the deprived hemisphere and the hemisphere ipsilateral to the MDed eye the non-deprived hemisphere because it still received strong visual stimulation from the open eye (Figure 1A).

Tissue Collection

Animals were euthanized with Euthanyl (sodium pentobarbital, 150 mg/kg) and perfused with cold 0.1 M phosphate-buffered saline (PBS; 4°C; 4–5 ml/min). The brain was removed from the skull, placed in cold PBS, and tissue samples were collected from S1 for the animals reared with EE and V1 for the other animals (Figure 1B). The samples were immediately frozen on dry ice and stored in a −80°C freezer.

Sample Preparation and Immunoblotting

The samples were prepared from the cortical tissue pieces, protein concentrations were carefully equated, and immunoblotting was done using procedures that have been described previously (Beston et al., 2010; Murphy et al., 2014;
importantly, since expression levels of housekeeping proteins such as GAPDH and β-actin can be inconsistent (Lee et al., 2016; Butler et al., 2019), we followed current best practices for Western blotting (Pillai-Kastoori et al., 2020) with a rigorous multi-step protocol using stringent quality control checks at each stage of the sample preparation and immunoblotting (Balsor and Murphy, 2018). Protein concentrations were equated using three replicates of each sample and bicinchoninic acid (BCA) assay (Pierce, Rockford, IL, USA). The colorimetric change was quantified of each sample and bicinchoninic acid (BCA) assay (Pierce, Rockford, IL, USA). The colorimetric change was quantified using three replicates of each sample and bicinchoninic acid (BCA) assay (Pierce, Rockford, IL, USA). The colorimetric change was quantified using three replicates of each sample and bicinchoninic acid (BCA) assay (Pierce, Rockford, IL, USA). The colorimetric change was quantified using three replicates of each sample and bicinchoninic acid (BCA) assay (Pierce, Rockford, IL, USA)

To examine expression levels of protein expression, we plotted histograms of the mean and SEM, for each condition normalized to the control group. To compare between-the-groups we used the bootstrapping method described previously (Beshara et al., 2015). Briefly, the programming language R was used to simulate a dataset of 1,000,000 points with the same mean and SEM as the group being compared. A Monte Carlo simulation was run to compare the groups by randomly sampling N times from the simulated dataset where N was the number of animals in the comparison group (e.g., N = 6) and repeating this step 100,000 times to generate the expected distribution for N animals. Confidence intervals (CI) were calculated from the expected distribution and compared with the observed mean of the group. Groups were considered to be significantly different (i.e., p < 0.05) when the observed mean was outside the 95% CI of the simulated distribution. For each comparison between groups, we ran the bootstrap analysis in both directions, and the more conservative result of the significance test was reported.

Finally, we analyzed the patterns of protein expression changes in V1 for the deprived (contralateral) and non-deprived (ipsilateral) hemispheres by combining the measurements of MBP and Ube3A from this study with data for GluA2, PSD95, gephyrin, synapsin, and synaptophysin from our previous study (Beshara et al., 2015). Hierarchical cluster analysis using the Ward D2 method (Murtagh and Legendre, 2014) was run in R for each condition using all seven proteins and the dendextend function in the Hmisc package. All pairwise Pearson’s R correlations were calculated using rcorr and visualized using heatmap2 in gplots. The proteins were ordered in the matrices using the dendrogram from the hierarchical clustering so proteins with similar patterns were nearby in the matrix. Each correlation in the matrix was color-coded to facilitate visualizing clusters. A table of the Pearson’s R values is in Supplementary Datasheet S2.

Image Manipulation

The bands in each figure are representative of the group and full blots are available in the Supplementary Datasheet S1. The size of the bands was adjusted using a uniform horizontal and vertical transformation, and a single gray-level linear adjustment was applied.
applied to all of the bands to preserve the relative intensity of the bands in the different groups.

RESULTS

Effects of EE, Fluoxetine, MD and Fluoxetine Plus MD on Spine Markers

First, we examined whether the treatments had an effect on plasticity in the cortical areas using drebrin E and drebrin A as markers of dendritic spines. We chose these markers because both EE and MD are known to change spines in S1 and V1, respectively (Oray et al., 2004; Jung and Herms, 2014). Furthermore, there is a developmental shift from more of the immature protein drebrin E to more of the mature protein drebrin A, and it is that increase in drebrin A that facilitates spine maturation (Koganezawa et al., 2017).

In S1, the long-term EE group (−41%, SEM 6.2%, \(p < 0.001 \)) had less drebrin E expression than normal suggesting that this treatment led to fewer nascent spines (Figure 2A). Short-term EE also appeared to have less drebrin E but that difference was not significant. In contrast, drebrin A expression was increased after long-term EE (+76%, SEM 36%, \(p < 0.01 \); Figure 2B), which is consistent with previous studies showing greater stability and larger mature spines after EE (Jung and Herms, 2014).

In V1, we focused on the deprived hemisphere because it is where previous studies found that MD drives spine plasticity (Oray et al., 2004). One week of MD did not significantly change the expression of either drebrin isoform compared with normals and there was only a trend toward increased expression of drebrin E (MD contra, +30%, SEM 18%, n.s.; Figures 2C,D). Fluoxetine treatment, however, whether alone or combined with MD reduced the expression of both drebrin isoforms in V1 (drebrin E: −32%, SEM 6.0%, \(p < 0.001 \); drebrin A: −32%, SEM 3.2%, \(p < 0.001 \); Figures 2C,D). This is one of the few plasticity-related synaptic markers in V1 that is affected by fluoxetine (Beshara et al., 2015).

Since the drebrin isoforms regulate different aspects of spine maturation and there is a developmental shift in the balance between the markers (immature drebrin E; mature drebrin A) we calculated an index to determine if the treatments changed the balance between the drebrin isoforms (Figures 2E,F). The control animals in both V1 and S1 had a balanced expression of drebrin A and E resulting in index values that overlapped zero. In V1, the drebrin isoforms balance was not changed by fluoxetine, MD or the combination of treatments (Figure 2E). In contrast, both short-term (\(p < 0.05 \)) and long-term EE (\(p < 0.01 \)) caused a shift to more drebrin A in S1 than found in the normal young adult (Figure 2F). Taken together, we found that fluoxetine and EE drove different patterns of drebrin plasticity.

Effects of EE on MBP and Ube3A in Somatosensory Cortex

We examined if short-term or long-term EE changed MBP expression in S1. MBP makes up about 30% of all myelin proteins and is comprised of two families: classic- (18.5–21.5 kDa) and Golli-MBP (33–35 kDa). In this study, we quantified the Classic-MBP isoform because it is found in mature oligodendrocytes and myelin sheaths, and is necessary for activity-driven compaction of myelin around axons (Wake et al., 2011).

MBP was increased after short-term EE (+56%, SEM 30%, \(p < 0.05 \)) and appeared to be increased after long-term EE but it was not significant (+27%, SEM 9%, \(p < 0.06 \); Figure 3A). Those...
MBP results show a similar pattern to the EE driven increase reported for oligodendrocytes and myelination in S1 (Hughes et al., 2018). Next, we quantified Ube3A which is necessary for the maintenance of CP experience-dependent plasticity (Yashiro et al., 2009). Ube3A after both the short- and long-term EE was not different from normal, however, the long-term EE group had greater Ube3A expression than the short-term EE group (Figure 3B).

Effects of Fluoxetine and MD on MBP and Ube3A in the Visual Cortex

We examined how fluoxetine, MD and the combination of treatments changed the expression of MBP and Ube3A in V1 (Figure 1B). Fluoxetine alone did not change the expression of MBP (Figure 3C) or Ube3A in V1 (Figure 3D) which contrasts with the reduced expression of both drebrin isoforms (Figures 2C,D). MD, however, caused hemisphere specific changes to MBP expression (Figure 3C). In the non-deprived (ipsi) hemisphere, there was an increase in MBP (MD ipsi: +72%, SEM 32%, p < 0.05) while in the deprived (contra) hemisphere there was a loss of MBP (MD con: −27%, SEM 13%, p < 0.05). When fluoxetine was combined with MD it did not affect the pattern of MBP expression found after MD alone and there continued to be increased expression in the non-deprived hemisphere and loss of expression in the deprived hemisphere (flx MD ipsi: +62%, SEM 18%, p < 0.01; flx MD con: −17%, SEM 4.8%, p < 0.01; Figure 3C).

The pattern of Ube3A changes in V1 did not follow MBP changes. MD caused no change in Ube3A in the non-deprived (ipsi) hemisphere but a loss in the deprived hemisphere...
The combination of fluoxetine and MD caused a recovery of Ube3A in the deprived hemisphere (FLX MD: +56%, SEM 33%, p < 0.01; Figure 3D). While MBP was bidirectionally changed driven by visual experience, increasing in the non-deprived and decreasing in the deprived hemisphere, Ube3A only decreased in the deprived hemisphere. Furthermore, fluoxetine treatment did not affect MBP, but it did affect the other plasticity markers (drebrin and Ube3A), especially when it was combined with MD.

We used unsupervised hierarchical cluster analysis of the data from the deprived (contralateral) and non-deprived (ipsilateral) V1 hemispheres to identify high dimensional patterns in the data. Along with the expression of MBP and Ube3A, protein expression was included for five markers of synaptic plasticity (GluA2, PSD95, Gephyrin, Synapsin, and Synaptophysin) measured previously using tissue samples from the same animals (Beshara et al., 2015). MBP and Ube3A were in separate clusters for both hemispheres of all conditions (Figure 4). In normal animals, MBP clustered with GluA2 while Ube3A clustered with Synapsin, Gephyrin, and PSD95 (Figure 4A). Fluoxetine changed the relationship between MBP and GluA2 to a negative correlation and partitioned them into different clusters, but the Ube3A cluster remained similar to the normal pattern (Figure 4B). After MD, MBP clustered with the postsynaptic markers Gephyrin and PSD95 in the deprived hemisphere while Ube3A clustered with the presynaptic marker Synapsin (Figure 4C). The combination of fluoxetine with MD led to a different pattern in the deprived hemisphere. There MBP clustered with Synapsin while Ube3A clustered with the postsynaptic markers and Synaptophysin (Figure 4D).

In the non-deprived hemisphere, the pattern for MBP and GluA2 was different from normal and those proteins were partitioned into separate clusters (Figure 4E). Ube3A, however, clustered with the same synaptic markers as in normal animals (Figure 4E). Finally, the combination of fluoxetine and MD led to a unique pattern of clusters with MBP and GluA2 in a cluster and Ube3A and Synaptophysin in another cluster (Figure 4F). Interestingly, the increase in MBP in the non-deprived hemisphere led to a negative relationship with GluA2 (Figure 4E), but adding fluoxetine changed it to a positive relationship (Figure 4F) that was similar to the normal pattern between MBP and GluA2 (Figure 4A). Together, these cluster analyses showed that the combination of fluoxetine with MD changed the relationships of MBP with this collection of plasticity markers even though the expression levels of MBP were similarly affected by MD alone or with fluoxetine (Figure 3C).

DISCUSSION

In this study, we quantified MBP expression in S1 and V1 after treatments known to affect adult plasticity in those cortical areas. Sensory enrichment caused an increase in MBP expression in S1 that was similar to a previous finding of an increase in the number of oligodendrocytes (Hughes et al., 2018). Furthermore, the S1 changes to markers of dendritic spines (drebrin A) and plasticity maintenance (Ube3A) were consistent with previous studies showing that enrichment causes an increase in spines (Jung and Herms, 2014) and functional plasticity (Polley et al., 2004). The changes in V1 after MD and fluoxetine treatments were more complicated than the EE driven changes in S1. The increase in the nascent spine marker drebrin E in the deprived hemisphere was consistent with an MD-driven increase in spine motility (Oray et al., 2004; Hofer et al., 2008). The MBP levels in V1, however, appeared to reflect activity levels with increased MBP in the non-deprived hemisphere and decreased MBP in the deprived hemisphere. The high dimensional cluster analyses uncovered more subtle changes including showing that fluoxetine did affect the overall...
Thus, fluoxetine could have a direct effect on the regulation of AMPA receptors (Szasz et al., 2007; Kiss et al., 2012; Vizi et al., 2018) for more active neurons. Future studies are needed to address the functional contributions that experience-dependent changes in cortical myelin have on adult plasticity. Those studies will be timely since interventions, such as the use of the antihistamine clemastine, are being tested to increase cortical myelin in both neurodegeneration and adult plasticity. Those studies will be timely since interventions, such as the use of the antihistamine clemastine, are being tested to increase cortical myelin in both neurodegeneration and adult plasticity. Instead, cortical myelin may have a role in adaptive plasticity in the adult cortex.

The current findings and those of other recent studies highlight that increases in cortical myelin can be more than a structural brake on experience-dependent plasticity. Instead, cortical myelin may have a role in adaptive plasticity in the adult cortex. Future studies are needed to address the functional contributions that experience-dependent changes in cortical myelin have on adult plasticity. Those studies will be timely since interventions, such as the use of the antihistamine clemastine, are being tested to increase cortical myelin in both neurodegeneration and adult plasticity.
neurodevelopmental disorders (Liu et al., 2016; Green et al., 2017; Barak et al., 2019).

DATA AVAILABILITY STATEMENT

The Western Blot data used to support the findings of this study are available from the corresponding author upon request.

ETHICS STATEMENT

The animal study was reviewed and approved by McMaster University Animal Research Ethics Board.

AUTHOR CONTRIBUTIONS

KM designed the research, analyzed the data, and wrote/revised the article. SM designed the research, performed research, analyzed the data, and wrote/revised the article. KC performed

research and analyzed the data. KA analyzed the data and revised the article. SB designed the research, performed research, analyzed the data, and wrote/revised the article.

FUNDING

This research was funded by an Natural Sciences and Engineering Research Council of Canada (NSERC) Grant RGPIN-2015-06215 awarded to KM, NSERC CGS-M award to SM, NSERC CGS-D award to SB. NSERC had no role in the actual research. There are no funds from NSERC or my institution to support open access publishing.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fncel.2020.00056/full#supplementary-material.

REFERENCES

Abbk, F. V., Bhagat, S. M., Patel, P. R., Cafferty, W. B. J., and Strittmatter, S. M. (2013). Anatomical plasticity of adult brain is triggered by Nogo Receptor 1. *Neuron* 77, 859–866. doi: 10.1016/j.neuron.2012.12.027

Abbk, F., Cafferty, W. B. J., and Strittmatter, S. M. (2012). Myelin associated inhibitors: a link between injury-induced and experience-dependent plasticity. *Exp. Neurol.* 235, 43–52. doi: 10.1016/j.expneurol.2011.06.006

Ampuero, E., Rubio, F. J., Falcon, R., Sandoval, M., Diaz-Veliz, G., Gonzalez, R. E., et al. (2010). Chronic fluoxetine treatment induces structural plasticity and selective changes in glutamate receptor subunits in the rat cerebral cortex. *Neuroscience* 169, 98–108. doi: 10.1016/j.neuroscience.2010.04.035

Balsor, J. L., and Murphy, K. M. (2018). “Protocol for a high-throughput semiautomated preparation for filtered synaptosomes,” in *Synaptosomes Neuromethods*, ed. K. Murphy (New York, NY: Humana Press), 57–73.

Barak, B., Zhang, Z., Liu, Y., Nir, A., Trangle, S. S., Ennis, M., et al. (2019). Neuronal deletion of Gtf2i, associated with Williams syndrome, causes behavioral and myelin alterations resculable by a remyelinating drug. *Nat. Neurosci.* 22, 700–708. doi: 10.1038/s41593-019-0380-9

Baroncelli, L., Bonaccorsi, J., Milanese, M., Bonifacino, T., Giribaldi, F., Manno, I., et al. (2012). Enriched experience and recovery from amblyopia in adult rats: impact of motor, social and sensory components. *Neuropsychopharmacology* 62, 2388–2397. doi: 10.1016/j.neuropharm.2012.02.010

Barygin, O. I., Nagaeva, E. I., Tikhonov, D. B., Belinskaya, D. A., Vanchakova, N. P., and Shestakova, N. N. (2017). Inhibition of the NMDA and AMPA receptor channels by antidepressants and antipsychotics. *Brain Res.* 1660, 58–66. doi: 10.1016/j.brainres.2017.01.028

Bavelier, D., Levi, D. M., Li, R. W., Dan, Y., and Hensch, T. K. (2010). Removing brakes on adult brain plasticity: from molecular to behavioral interventions. *J. Neurosci.* 30, 14964–14971. doi: 10.1523/JNEUROSCI.4812-10.2010

Beshara, S., Beston, B. R., Pinto, J. G. A., and Murphy, K. M. (2015). Effects of fluoxetine and visual experience on glutamatergic and GABAergic synaptic proteins in adult rat visual cortex. *eNeuro* 2:ENEURO.0126–15.2015. doi: 10.1523/eoneuro.0126-15.2015

Beston, B. R., Jones, D. G., and Murphy, K. M. (2010). Experience-dependent changes in excitatory and inhibitory receptor subunit expression in visual cortex. *Front. Synaptic Neurosci.* 2:138. doi: 10.3389/insyn.2010.00138

Bjelke, B., and Seiger, Å. (1989). Morphological distribution of MBP-like immunoreactivity in the brain during development. *Int. J. Dev. Neurosci.* 7, 143–164. doi: 10.1016/0736-5748(89)90065-8

Butler, T. A. J., Paul, J. W., Chan, E.-C., Smith, R., and Tolosa, J. M. (2019). Misleading westerns: common quantification mistakes in western blot densitometry and proposed corrective measures. *Biomed. Res. Int.* 2019:5214821. doi: 10.1155/2019/5214821

Demerens, C., Stankoff, B., Logak, M., Anglade, P., Allinquant, B., Couraud, F., et al. (1996). Induction of myelination in the central nervous system by electrical activity. *Proc. Natl. Acad. Sci. USA* 93, 9887–9892. doi: 10.1073/pnas.93.18.9887

Fields, R. D. (2015). A new mechanism of nervous system plasticity: activity-dependent myelination. *Nat. Rev. Neurosci.* 16, 756–767. doi: 10.1038/nrn4023

Gibson, E. M., Purger, D., Mount, C. W., Goldstein, A. K., Lin, G. L., Wood, I. S., et al. (2014). Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. *Science* 344:1252304. doi: 10.1126/science.1252304

Green, A. J., Gelfand, J. M., Cree, B. A., Bevan, C., Boscardin, W. J., Mei, F., et al. (2017). Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. *Lancet* 390, 2481–2489. doi: 10.1016/s0140-6736(17)32346-2

Grier, M. D., Carson, R. P., and Lagrange, A. H. (2015). Of mothers and myelin: aberrant myelination phenotypes in mouse model of Angelman syndrome are dependent on maternal and dietary influences. *Behav. Brain Res.* 291, 260–267. doi: 10.1016/j.bbr.2015.05.045

Hananmura, K., Kamata, Y., Yamazaki, H., Kojima, N., and Shirao, T. (2018). Isoform-dependent regulation of drebrin dynamics in dendritic spines. *Neuroscience* 379, 67–76. doi: 10.1016/j.neuroscience.2018.02.038

Hill, R. A., Li, A. M., and Grutzenzler, J. (2018). Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain. *Nat. Neurosci.* 21, 683–695. doi: 10.1038/s41593-018-0120-6

Hofer, S. B., Mrsic-Flogel, T. D., Bonhoeffer, T., and Hübener, M. (2008). Experience leaves a lasting structural trace in cortical circuits. *Nature* 457, 313–317. doi: 10.1038/nature07487

Hughes, E. G., Orthmann-Murphy, J. L., Langseth, A. J., and Bergles, D. E. (2018). Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. *Nat. Neurosci.* 21, 696–706. doi: 10.1038/s41593-018-0121-5

Jiang, Y. H., Armstrong, D., Albrecht, U., Atkins, C. M., Noebels, J. L., Eichele, G., et al. (1998). Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. *Nature* 21, 799–811. doi: 10.1038/26273

Jung, C. K. E., and Herms, J. (2014). Structural dynamics of dendritic spines are influenced by an environmental enrichment: an in vivo imaging study. *Cereb. Cortex* 24, 377–384. doi: 10.1093/cercor/bhs317

Kaplan, E. S., Cooke, S. F., Komorowski, R. W., Chubykin, A. A., Thomazeau, A., Khibnik, L. A., et al. (2016). Contrastng roles for parvalbumin-expressing...
inhibitory neurons in two forms of adult visual cortical plasticity. *Elife* 5:e11450. doi: 10.7554/eLife.11450

Káradóttir, R., and Attwell, D. (2007). Neurotransmitter receptors in the life and death of oligodendocytes. *Neuroscience* 145, 1426–1438. doi: 10.1016/j.neuroscience.2006.08.070

Kawaguchi, Y., and Kubota, Y. (1997). GABAergic cell subtypes and their synaptic connections in rat frontal cortex. *Cereb. Cortex* 7, 476–486. doi: 10.1093/cercor/bhf676

Kim, H., Kunz, P. A., Mooney, R., Philpot, B. D., and Smith, S. L. (2016). Maternal loss of Ube3a impairs experience-driven dendritic spine maintenance in the developing visual cortex. *J. Neurosci.* 36, 4888–4894. doi: 10.1523/JNEUROSCI.4024-15.2016

Kiss, J. P., Szsaz, B. K., Fodor, L., Mike, A., Lenkey, N., Kurkó, D., et al. (2012). GluN2B-containing NMDA receptors as possible targets for the neuroprotective and antiedoptase effects of fluoxetine. *Neurochem. Int.* 60, 170–176. doi: 10.1016/j.neuint.2011.12.005

Koganezawa, N., Hanamura, K., Sekino, Y., and Shirao, T. (2017). The role of drebrin in dendritic spines. *Mol. Cell. Neurosci.* 84, 85–92. doi: 10.1016/j.mcn.2017.01.004

Kougioumtzidou, E., Shimizu, T., Hamilton, N. B., Tohyama, K., Sprengel, R., Kawaguchi, Y., and Kubota, Y. (1997). GABAergic cell subtypes and their Kiss, J. P., Szasz, B. K., Fodor, L., Mike, A., Lenkey, N., Kurkó, D., et al. (2012). GluN2B-containing NMDA receptors as possible targets for the neuroprotective and antiedoptase effects of fluoxetine. *Neurochem. Int.* 60, 170–176. doi: 10.1016/j.neuint.2011.12.005

Lee, H.-G., Jo, J., Hong, H.-H., Kim, K. K., Park, J.-K., Cho, S.-J., et al. (2016). Critical period-dependent inhibition of neurite outgrowth. *Vision Res.* 127, 222–230. doi: 10.1016/j.visres.2012.07.007

Li, J., Dupree, J. L., Gacias, M., Frawley, R., Sikder, T., Naik, P., et al. (2016). Clemastine enhances myelination in the prefrontal cortex and rescues behavioral changes in socially isolated mice. *J. Neurosci.* 36, 957–962. doi: 10.1523/JNEUROSCI.3608-15.2016

Lyckman, A. W., Horng, S., Leamy, C. A., Tropea, D., Watakabe, A., Van Wart, A., et al. (2008). Gene expression patterns in visual cortex during the critical period: synaptic stabilization and reversal by visual deprivation. *Proc. Natl. Acad. Sci. U S A* 105, 9409–9414. doi: 10.1073/pnas.0710172105

Mayer et al. (2012). GluN2B-containing NMDA receptors as possible targets for the neuroprotective and antiedoptase effects of fluoxetine. *Neurochem. Int.* 60, 170–176. doi: 10.1016/j.neuint.2011.12.005

McGee, A. W., Yang, Y., Fischer, Q. S., Daw, N. W., and Strittmatter, S. M. (2005). Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. *Science* 309, 2222–2226. doi: 10.1126/science.1114362

Micheva, K. D., Chang, E. F., Nana, A. L., Seeley, W. W., Ting, J. T., Cobbbs, C., et al. (2018). Distinctive structural and molecular features of myelinated inhibitory axons in human neocortex. *eNeuro* 5:NEURO.0297–18.2018. doi: 10.1523/JNEUROSCI.0297-18.2018

Micheva, K. D., Wolman, D., Mensh, B. D., Pax, E., Buchanan, J., Smith, S. J., et al. (2016). A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons. *Elife* 5:e15784. doi: 10.7554/eLife.15784

Murphy, K. M., Balsor, J., Beshara, S., Siu, C., and Pinto, J. G. A. (2014). Classic and Golli Myelin Basic Protein have distinct developmental trajectories in human visual cortex. *Front. Neurosci.* 9:138. doi: 10.3389/fnins.2015.00138

Stedehouder, J., Brizee, D., Shpak, G., and Kushner, S. A. (2018). Activity-dependent myelination of parvalbumin interneurons mediated by axonal morphological plasticity. *J. Neurosci.* 38, 3631–3642. doi: 10.1523/JNEUROSCI.0074-18.2018

Stedehouder, J., Couey, J. J., Brizee, D., Hosseini, B., Slotman, J. A., Dermon, C. M. F., et al. (2017). Fast-spiking parvalbumin interneurons are frequently myelinated in the cerebral cortex of mice and humans. *Cereb. Cortex* 27, 5001–5013. doi: 10.1093/cercor/bhx203

Szasz, B. K., Mike, A., Karoly, R., Gerevich, Z., Illes, P., Vizi, E. S., et al. (2007). Direct inhibitory effect of fluoxetine on N-methyl-D-aspartate receptors in the central nervous system. *Biol. Psychiatry* 62, 1303–1309. doi: 10.1016/j.biopsych.2007.04.014

Vizi, E. S., Kisfáli, M., and Lörincz, T. (2013). Role of nonsynaptic GluN2B-containing NMDA receptors in excitotoxicity: evidence that fluoxetine selectively inhibits these receptors and may have neuroprotective effects. *Brain Res. Bull.* 93, 32–38. doi: 10.1016/j.brainresbull.2012.10.005

Wake, H., Lee, P. R., and Fields, R. D. (2011). Control of local protein synthesis and initial events in myelination by action potentials. *Science* 333, 1647–1651. doi: 10.1126/science.1206998

Wallace, M. L., van Woerden, G. M., Elgersma, Y., Smith, S. L., and Philpot, B. D. (2017). Ube3a loss increases excitability and blunts orientation tuning in the visual cortex of Angelman syndrome model mice. *J. Neurophysiol.* 118, 634–646. doi: 10.1152/jn.00618.2016

Wang, K. C., Koprivica, V., Kim, J. A., Sivasankaran, R., Guo, Y., Neve, R. L., et al. (2002). Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. *Nature* 417, 941–944. doi: 10.1038/nature00867

Williams, K., Balsor, J., L., Beshara, S., Beston, B. R., Jones, D. G., and Murphy, K. M. (2015). Experience-dependent central vision deficits: neurobiology and visual acuity. *Vision Res.* 118, 64–78. doi: 10.1016/j.visres.2015.01.021

Yashiro, K., Riday, T. T., Condon, K. H., Roberts, A. C., Bernardo, D. R., Prakash, R., et al. (2009). Ube3a is required for experience-dependent maturation of the neocortex. *Nat. Neurosci.* 12, 777–783. doi: 10.1038/nn.2327

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Murphy, Mancini, Clayworth, Arbabzadeh and Beshara. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.