**1 ÚVOD**

Pšenice jednozrnka (*Triticum monococcum* L.) patří k nejstarším domestickovaným druhům pšenice, plán, druh této pšenice byl využíván k lidské výživě už před 10–12 tisíci lety. Nejstarší archeologické nálezy jsou, podobně jako u dvouzrnky, datovány do období 6000 let př. n. l. První zemědělci ji pěstovali na území dnešní Sýrie, Izraele nebo Turecka, odkud se rozšířila do Evropy nebo severní Afriky. Pohádkový ústav, Mostecká 7, 614 00 Brno / RIBM, PLC, Malting Institute, Mostecká 7, CZ-614 00 Brno, e-mail: sachambula@beerresearch.cz; hartman@beerresearch.cz; psota@beerresearch.cz

Recenzovaný článek / Reviewed Paper

**Sachambula, L. – Hartman, I. – Psota, V.: Sladovnická kvalita pšenice jednozrnky.** Kvasny Prum. 61, 2015, č. 10–11, s. 320–325

Zavedená technologie sladování byla přizpůsobena sladování pšenice jednozrnky. Cílem bylo najít optimální variantu sladování při zachování znaků rozhodujících o kvalitě sladu z pšenice jednozrnky na vysoké úrovni. Byly určeny základní vlastnosti zrna pšenice a vzorek byl sladován. Byly zvoleny tři různé délky sladování (120, 144 a 168 hodin) a tři různé stupně domočení (43, 45 a 47%). Kromě základních znaků rozhodujících o kvalitě sladu z pšenice jednozrnky, byla sledována celá řada speciálních znaků. Vzorky pšenice jednozrnky byly zhodnoceny stejním způsobem, který se používá při hodnocení sladovnického ječmene. V některých kvalitativních parametrech dosáhla pšenice jednozrnka srovnatelných výsledků jako sladovnický ječmen.

**Sachambula, L. – Hartman, I. – Psota, V.: Einkorn wheat malting quality.** Kvasny Prum. 61, 2015, No. 10–11, pp. 320–325

Standard malting technology was adapted for malting of einkorn wheat. The aim was to find the optimal variant of malting while maintaining traits decisive for high quality of malt made from einkorn wheat. Basic characters of wheat grain were assessed and the sample was malted. Three different malting times (120, 144, and 168 hours) and three degrees of steeping (43, 45, and 47%) were applied. Besides basic traits decisive for einkorn wheat malt quality, a number of special parameters were also studied. Wheat samples were evaluated by the method used for the evaluation of malting barley. In some quality parameters, einkorn wheat achieved comparable results as malting barley.

**Sachambula, L. – Hartman, I. – Psota, V.: Die Malzqualität des Einkornes.** Kvasny Prum. 61, 2015, Nr. 10–11, S. 320–325

Die zeitgenössische Malzprozeßtechnologie wurde an den Einkornmalzprozeß angepasst. Das Ziel der Arbeit wurde bei der Beibehaltung aller über Malzqualität des Einkornes entscheidenden Parameter auf einem hohen Niveau die optimale Variante des Malzprozesses für Einkorn zu finden. Es wurden die Grundeigenschaften des Einkornes festgestellt, nachher wurde Muster gemälzt. Drei verschiedene Malzprozessdauer (120, 144 und 168 Stunden) und drei verschiedene Weichgraden (43%, 45% und 47%) wurden ausge wählt. Außer über Malzqualität des Einkornes entscheidende Parameter wurden auch andere Spezialparameter verfolgt. Auf dieselbe Weise wie Braugerste wurden die Muster des Einkornes ausgewertet. Einige qualitative Parameter des Einkornes wurden vergleichbar wie diese, die von Auswertung der Braugerste festgestellt wurden.

**Klíčová slova: pšenice jednozrnka, *Triticum monococcum* L., ekologické zemědělství, pěstování, využití, sladovnická kvalita

---

**1 INTRODUCTION**

Einkorn wheat (*Triticum monococcum* L.) belongs to the oldest domesticated wheat species, its wild species were used for human nutrition as early as 10–12 thousand years ago. Similarly as in emmer wheat, the earliest archaeological findings date back to 6,000 B.C. It was grown by first farmers in the territory of today’s Syria, Israel, and Turkey from there it spread to Europe and northern Africa (Konvalina, 2012a). Einkorn prevailed in northern Europe, while in the central and southern parts of the continent, emmer was mostly grown. Einkorn wheat was gradually replaced by more productive tetraploid (emmer wheat, durum wheat) and subsequently hullless hexaploid wheat species (common wheat, spelt wheat) (Konvalina et al., 2012b). In the twenties century, it was locally grown in the territory of Spain, France, Switzerland, Germany, in the Balkans, Turkey, and Morocco.

Along with emmer and spelt wheat, einkorn wheat belongs to the group of hulled wheat species; this means that grains are protected by hulls even after harvest. During harvest, the ear usually disintegrates into individual ear spikelets that are otherwise connected with the spindle. Einkorn wheat has one kernel per a spikelet, petty grains are of an oval shape, thousand grain weight varies from 21–28 g (Konvalina et al., 2012b). Einkorn has a long thin stem susceptible to lodging and characteristic short and very narrow flag leaves (Konvalina et al., 2010). It has high tillering capacity and vitality. Plants are resistant to fungal diseases. Currently, einkorn is grown mainly in the regions less favorable for farming and under the conditions of ecological agricultuure. It is suitable for production of unleavened or puffed products or as feed for monogastric livestock (Konvalina et al., 2012b). In addition, it is used for production of biscuits, pearls or Arabic bread – pita.

In the Czech Republic, einkorn wheat is not included in the Natio nal List of Plant Varieties pursuant to the law 219/2003 Coll. and, consequently, relevant varieties of this plant are not registered here.
2 MATERIÁL A METODY

V České republice není pšenice jednozrnka zahrnuta v druhovém seznamu Zákona 219/2003 Sb. a v důsledku toho nejsou pravidelně odrůdy této pšenice v České republice registrovány. Mohou však být právně chráněny. Osivo žádné české odrůdy pšenice jednozrnka není registrováno v registru genetických zdrojů. Některé zdroje uvádějí, že možnost pěstovat namožené osivo pocházející z genetických zdrojů, nebo využít osivo dovozené (Konvalina et al., 2012b).

V Rakousku se na omeněných plochách pšenice jednozrnka pěstuje. Farmáři využívají vlastní osivo dříve pěstovaných krajových odrůd (Konvalina et al., 2012b). Jedná se například o „Voralberger Einkorn“ nebo odrůdu získanou z genových bank („Ebers Einkorn“ nebo „Leipzig Spät“). Zmiňované „Ebers Einkorn“ je v Rakousku, a i v České republice distribuována společností Bautzner Land. V Maďarsku byla vyšlechtěna z genetických zdrojů ve výzkumné stanici v Martonvásárhely odrůda Mv Akor a je distribuována společností Eitimgt Kft. Tato odrůda je přesvědčivou karaktérou (je možné ji siť na jai a na podzim) a byla slechtena a testována v podmínkách ekologického zemědělství (Konvalina et al., 2012b).

V Německu byly ve minulých letech na šlechticí stanici Breeding Darzau vyšlechty tři ozým odrůdy pšenice jednozrnky Albini, Tif a Terzino (Konvalina et al., 2012b). Komercně se využívá pouze odrůda Terzino, o ostatní odrůdy nebyl v průběhu posledních tří let záměr. Pšenice jednozrnka vznikla na základě s různými genetickými ze různých odrůd setu. Po odsázení šesťebítového semen s ostatními druhy pšenice (Abdel-Aal et al., 2002, 2004a). Tento rozdíl je způsoben nerozpustnou složkou vlákniny (Abdel-Aal et al., 1995). Obsah celkové vlákniny je menší než 10 % a je průkazně nižší než u pšenice tříd a neřeči sety (Abdel-Aal et al., 1995; Grausgruber et al., 2002). Tento rozdíl je způsoben nerozpuštěnou složkou vlákniny (Abdel-Aal et al., 1995).

2 MATERIAL AND METHODS

Pro pokusné sladování byly získány vzorky zrn jednozrnky (vyrobeny Petkom – Petko Angelov ST Rabovo, Bulharsko). V neslaďovaném zrně byly stanoveny obsah dusácích látek (EBC, 2009), obsah škrobu (ISO, 1997), objemová hmotnost (MEBAK, 2006), kličovost, energie klíčení, trčení (EBC, 2009) (tab. 2) a následně bylo tento vzorek sladován.

Pro sladování vzorky pšenice jednozrnky bylo zvoleno devět různých variant sladování, tři různé délky sladování (120, 144 a 168 hodín) a tři různé stupně domočení (43, 45 a 47 %). Podmínky sladování jsou uvedeny v tab. 2. Sladování probíhalo v laboratorní mikrosladovně firmy KVM (Únorov, Česká republika).

Ve vyrobeném sladu byly podle metodik EBC (EBC, 2009) a MEBAK (MEBAK, 2006) stanoveny základní technologické znaky. Výsledky jsou uvedeny v tabulce v souvislosti. Obsah vitamínu E byl stanoven pomocí kolorimetrického testu (EBC, 2009) a enzymatické metodiky (McCleary et al., 1996) nebo Grausgruber et al. (2004a). Protein contents differ significantly, amino acid composition (amount of amino acids per a gram of grain) does not differ substantially (Acquistucci et al., 1995; Grausgruber a Arndorfer, 2002). Total fiber content is less than 10 % and it is provably lower than in durum or common wheat (Abdel-Aal et al., 1995; Grausgruber et al., 2004a). This difference is caused by an insoluble component of the fiber (Abdel-Aal et al., 1995).

Many authors have described a high content of nitrogenous substances but gluten has unstable shape. Low bakery quality of einkorn wheat is due to low gluten strength, low sedimentation levels and rheological properties of dough. For these reasons, einkorn wheat is not suitable for preparation of classical leavened bread (D’Egidio et al., 1993). Gluten quality predestinates the prospective use of einkorn wheat, for example for production of biscuits, cakes and other sweet products.

Einkorn wheat has also a higher carotenoid content compared to the other wheat species (Abdel-Aal et al., 2002, Frégeau-Reid a Abd-Aal, 2005; Hidalgo et. al., 2006). Carotenoids are relatively stable in the endosperm even after longer storage (Hidalgo and Brandolini, 2008), possibly due to lowered lipoxigenase activity (Leenhardt et al., 2006).

The aim of research was to modify the standard technology of malting to adapt it to needs of malting einkorn wheat, and find the optimal variant of malting while maintaining the parameters decisive for einkorn wheat malt quality at high level. Further aim was to summarize complete data on quality of einkorn wheat malt quality.
VÝSLEDKY A DISKUSE

17.11.2015   7:07:06

3 RESULTS AND DISCUSSION

3 VÍSLEDKY A DISKUSE

Obsah dusikatých látek v sušině zrna u hodonoceného vzorku pšenice jednozrnky byl 15,8 % (tab. 2). V literatuře se zpravidla uvádí odběr obšas dusikatých látek v sušině zrn kolem 20 % (Niggemann, 2003). Objemová (hektolitrová) hmotnost dosáhla hodnoty 81,0 kg a obsah škrobu 62 %. Hmotnost tisíce zrn byla pouze 23,1 g, což potvrzují údaje z literatury. Konvalina et al. (2012b) uvádí, že hmotnost škrobu 62 %. Hmotnost tisíce zrn se pohybuje v rozmezí 21–28 g. Zrna byly velmi malá, při čiřiště v rozmezí 32,4–46,6 %.

V literatuře se uvádí, že zrna vyloučená z klásků rychle ztrácí klíčivost (Konvalina et al., 2012b). V literatuře se zpravidla uvádí obdobné příčiny. Průměrná hodnota Kolbachova čísla jednozrnky byla 15,8 % (Konvalina et al., 2012b).



Tab. 1 Podmínky sladování / Table 1 Conditions of malting

| Variants of malting / Different malting variants | Měšení / Steeping (h) | Kličení / Germination (h) | Celková délka sladování / Total malting time (h) | Hvozdění / Kilining (h) | Obsah vody na počátku hvozdění / Water content at the beginning of kilning (g) | Teplota vody / Temperature of water during steeping (°C) | Teplota vody před hvozděním / Temperature before kilning (°C) | Teplota na počátku hvozdění / Temperature at the beginning of kilning (°C) | Teplota na konci hvozdění / Temperature at the end of kilning (°C) |
|--------------------------------------------------|------------------------|--------------------------|-----------------------------------------------|------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| 5D – 43 %                                       | 72                     | 48                       | 120                                           | 22                    | 43                                            | 14 ± 1                                         | 14 ± 1                                         | 55 ± 2                                          | 80 ± 2                                          |
| 5D – 45 %                                       | 72                     | 48                       | 120                                           | 22                    | 45                                            | 14 ± 1                                         | 14 ± 1                                         | 55 ± 2                                          | 80 ± 2                                          |
| 5D – 47 %                                       | 72                     | 48                       | 120                                           | 22                    | 47                                            | 14 ± 1                                         | 14 ± 1                                         | 55 ± 2                                          | 80 ± 2                                          |
| 6D – 43 %                                       | 72                     | 72                       | 144                                           | 22                    | 43                                            | 14 ± 1                                         | 14 ± 1                                         | 55 ± 2                                          | 80 ± 2                                          |
| 6D – 45 %                                       | 72                     | 72                       | 144                                           | 22                    | 45                                            | 14 ± 1                                         | 14 ± 1                                         | 55 ± 2                                          | 80 ± 2                                          |
| 6D – 47 %                                       | 72                     | 72                       | 144                                           | 22                    | 47                                            | 14 ± 1                                         | 14 ± 1                                         | 55 ± 2                                          | 80 ± 2                                          |
| 7D – 43 %                                       | 72                     | 96                       | 168                                           | 22                    | 43                                            | 14 ± 1                                         | 14 ± 1                                         | 55 ± 2                                          | 80 ± 2                                          |
| 7D – 45 %                                       | 72                     | 96                       | 168                                           | 22                    | 45                                            | 14 ± 1                                         | 14 ± 1                                         | 55 ± 2                                          | 80 ± 2                                          |
| 7D – 47 %                                       | 72                     | 96                       | 168                                           | 22                    | 47                                            | 14 ± 1                                         | 14 ± 1                                         | 55 ± 2                                          | 80 ± 2                                          |

Vzorky sladu vyrobené devíti různými technologickými postupy byly analýzovány. Vzorky sladů byly označeny jednotlivými varianty. Průměrný obsah dusikatých látek v sušině sladu byl 15,3 % a průměrná hodnota rozpustného dusíku v sušině sladu byla 5,9 %. Modifikace dusikatých látek vyvážená hodnotou Kolbachova čísla se u sledovaných variant pohybovala v rozmezí 32,4–46,6 %. V literatuře se uvádí, že zrna vyloučená z klásků rychle ztrácí klíčivost (Konvalina et al., 2012b).

3 RESULTS AND DISCUSSION

Content of nitrogenous substances in the grain dry matter of the evaluated einkorn wheat sample was 15.8% (Table 2). In the literature, the content of nitrogenous substances usually varies around 20% (Niggemann, 2003). Volume (hectoliter) weight reached 81.0 kg and starch content 62%. Thousand grain weight was only 23.1 g, which is in compliance with the data from the literature. Konvalina et al. (2012b) claimed that thousand grain weight moved between 21–28 g. Grains were very small, at classification according to size fractions on the sieve with oblong apertures, 63.2% of grains formed the fraction of 2.2 mm below the sieve. Only 31.5% of grains formed the fraction of 2.2 mm above the sieve. The sieving fractions above 2.5 and 2.8 mm were only negligible (2.8 and 0.5%, respectively). In addition, germination capacity (H₂O₂) and germination energy were studied. Germination capacity expressing percentage of viable grains was 90%. Germinative energy, a percentage of germinated grains over a given time, reached 86%. Both these values are relatively low. Grains threshed from the spikelets lose their germination capacity very quickly (Konvalina et al., 2012b).

The samples of malt produced using nine different technological methods were analyzed. Differences between the individual malting variants were assessed. The average content of nitrogenous substances in the malt dry matter prepared from einkorn wheat was 15.3% and the average value of soluble nitrogen in malt was 5.9%. Modification of nitrogenous substance expressed by the value of Kolbach Index varied in the studied variants in the range from 32.4–46.6% (Table 3). The average value of Kolbach Index was 38.6%. The most powerful activity of proteolytic enzymes was recorded in the 7D – 47 % (46.6%) and 7D – 45% (42.4%).

Tab. 2 Analýza zrna pšenice jednozrnky / Table 2 Einkorn grain analyses

| Metody / Methods | Jednotky / Units | Odkazy / References | Hodnota znamku / Value |
|------------------|----------------|-------------------|-----------------------|
| Dusikáté látky (bilkoviny) v zrnu (faktor 5,7) / Protein content of grain (factor 5.7) | % | EBC 2009 | 15.8 |
| Obsah škrobu / Starch content | % | ČSN EN ISO 10520 | 62.0 |
| Objemová hmotnost / Bulk density d.m. | kg | MEBAK 2006 | 81.0 |
| Kličivost (peroxid vodíku) / Germination capacity with hydrogen peroxide | % | EBC 2009 | 90 |
| Energie klíčení / Germination energy | % | EBC 2009 | 86 |
| Hmotnost 1000 zrn / Thousand grain weight d.m. | g | EBC 2009 | 23.1 |
| Podil nad 2,8 mm / Grading > 2.8 mm | % | EBC 2009 | 0.5 |
| Podil nad 2,5 mm / Grading > 2.5 mm | % | EBC 2009 | 2.8 |
| Propad pod 2,2 mm / Waste < 2.2 mm | % | EBC 2009 | 63.2 |
| Příměsi / Admixtures | % | EBC 2009 | 2.0 |
Dúsivá látka (bilkovinově) ve sladu (faktor 5,7) / Protein content of malt (factor 5.7)

Celkový dusík ve sladu, metodou podle Dumase / Total nitrogen of malt, Dumas method

Rozpustný dusík ve sladu, metodou podle Dumase / Soluble nitrogen of malt, Dumas method

Holbachovo číslo / Holbach index

Extrakt šrotu, kongresní sladina / Extract of coarse grind, congress mash

Extrakt mouky, kongresní sladina / Extract of fine grind, congress mash

Rozdíl extraktů / Extract difference

Relativní extrakt při 45 °C / Mash method according to Hartong and Kretschmer VZ 45 °C

Diastatická mohutnost / Diastatic power

Dosažitelný stupeň prokvašení / Achievable degree of steeping

Relativní extrakt při 45 °C / Mash method according to Hartong and Kretschmer VZ 45 °C

Diastatická mohutnost / Diastatic power

Dosažitelný stupeň prokvašení / Achievable degree of steeping

Friabilita / Friability

Obsah vysokomolekulárních β-glukanů, metodou FIA / High molecular weight β-glucan content of malt, FIA

Viskozita sladiny / Viscosity of laboratory wort from malt

pH / pH of laboratory wort

Barva sladiny / Colour of malt, visual method

Doba z cukření / Saccharification time

Čirost sladiny / Appearance (clarity) of wort

Zákal sladiny (90°) / Haze of wort (90°)

Zákal sladiny (12°) / Haze of wort (12°)

Celkové polyfenoly / Total polyphenols

Tab. 3 Analyza sladu pšenice jednozrnky / Table 3 Malt analyses of einkorn

| Metody/Methods | Jednotky/Units | Odkazy/References |
|----------------|---------------|-------------------|
| Dúsivá látka (bilkovinově) ve sladu (faktor 5,7) / Protein content of malt (factor 5.7) | % | EBC 2009 |
| Celkový dusík ve sladu, metodou podle Dumase / Total nitrogen of malt, Dumas method | EBC 2009 |
| Rozpustný dusík ve sladu, metodou podle Dumase / Soluble nitrogen of malt, Dumas method | EBC 2009 |
| Holbachovo číslo / Holbach index | % | EBC 2009 |
| Extrakt šrotu, kongresní sladina / Extract of coarse grind, congress mash | % | EBC 2009 |
| Extrakt mouky, kongresní sladina / Extract of fine grind, congress mash | % | EBC 2009 |
| Rozdíl extraktů / Extract difference | % | MEBAK 2006 |
| Relativní extrakt při 45 °C / Mash method according to Hartong and Kretschmer VZ 45 °C | % | MEBAK 2006 |
| Diastatická mohutnost / Diastatic power | WK u. | EBC 2009 |
| Dosažitelný stupeň prokvašení / Final attenuation of laboratory wort from malt | % | EBC 2009 |
| Friabilita / Friability | % | EBC 2009 |
| Obsah vysokomolekulárních β-glukanů, metodou FIA / High molecular weight β-glucan content of malt, FIA | mg/l | EBC 2009 |
| Viskozita sladiny / Viscosity of laboratory wort from malt | mPa.s | EBC 2009 |
| pH / pH of laboratory wort | | MEBAK 2006 |
| Barva sladiny / Colour of malt, visual method | EBC u. | EBC 2009 |
| Doba z cukření / Saccharification time | min | EBC 2009 |
| Čirost sladiny / Appearance (clarity) of wort | | MEBAK 2006 |
| Zákal sladiny (90°) / Haze of wort (90°) | EBC u. | EBC 2009 |
| Zákal sladiny (12°) / Haze of wort (12°) | EBC u. | EBC 2009 |
| Celkové polyfenoly / Total polyphenols | mg/l | EBC 2009 |
| Obsah vitaminu E / Vitamin E activity | mg/kg | McLaughlin, Weihrauch 1979 |
| Aktivita superoxid dismutázy (SOD) / SOD (superoxide dismutase) | U/g | Březinová-Belcredi et al. 2007 |
| Aktivita lipoxigenázy / (LOX) LOX (lipoxigenase) | U/mg | Tappel et al. 1953 |
| Aktivita α-amilázy / α-amilase | U/g | setem Mega-zyme |
| Aktivita α-amilázy (kolorimetricky) / α-amilase (color.) | D.U. | EBC 2009 |

Vysvětlivky / Explanatory notes:

- 5D, 6D a 7D – celková délka sladování 120, 144 nebo 168 hodin / total malting time 120, 144 or 168 hour
- 43, 45 a 47 % – stupeň domočení / degree of steeping

Malt extract is an important economic parameter affecting fermentation, chemical composition of finished beer and its organoleptic properties (Basařová, 2015). Extract content in all the studied variants was at a good to optimal level. The extract value moved in the interval of 82.0–84.4%. The strongest activity of amylolytic enzymes had the variant 7D – 45% (84.4%). The average value of this parameter was at the level of 83.3%. Relative extract at 45 °C that informs about the extract yield at the given temperature, was low; on average, it achieved the value of 28.5%. A higher content was detected in the seven-day variants, the highest value of relative extract at 45 °C was recorded in the variant 7D – 47% (34.5%).

Sweet wort quality expressed by the apparent final attenuation was low. The average value of all the studied variants was 63.2%. The lowest values were achieved by the variant 5D – 47% (55%). The

byla 38.6 %. Nejsilnější aktivitu proteolytických enzymů měla varian-
ta 7D – 47 % (46.6 %) a 7D – 45 % (42.4 %).

Extrakt sladu je důležitým ekonomickým ukazatelem, ovlivňuje výsledky kvášení, chemické složení hotového piva i jeho organo-
leptické vlastnosti (Basařová, 2015). Obsah extraktu u všech seldo-
vanych variant byl na dobré až optimální úrovni. Hodnota extraktu se pohybovala v intervalu 82,0–84,4 %. Nejsilnější aktivitu amy-
lolytických enzymů měla varianta 7D – 45 % (84,4 %). Průměr-
ná hodnota tohoto znaku byla na úrovni 83,3 %. Relativní extrakt při 45 °C, informující o výtěžku extraktu za dané teploty, byl nízký, v průměru dosáhl hodnoty 28,5 %. Vyšší obsah měl sedmivariantské varianty, nejvyšší hodnotu relativního extraktu při 45 °C měla vari-
anta 7D – 47 % (34,5 %).

Kvalita sladiny vyjádřená dosažitelným stupněm prokvašení byla na nízké úrovni. Průměrná hodnota všech sledovaných variant byla...
Kromě základních znaků rozhodujících o kvalitě sladu z pšenice jednozrnky, byla sledována celá řada specifických znaků (tab. 3). Bylo zjištěno, že sladovnická kvalita einkorn wheat variet byla značně podobná sladovnické kvalitě pšenice jednozrnky, např. aktivita amylolytických enzymů v sladu jednozrnky byla na úrovni 3,5–5,1 J EBC. Sladiny získané ze sladů pšenice jednozrnky byly o nižší koncentrace polifenolů, což je způsobeno vyšší aktivitou polifenoloxidázy, která je produktivní enzym, který aktivuje polifenoloxidázy, aktivita a β-amylyz. Nejvyšší měla vlny rozlišení je naznačeno na tabulce, čímž je zjištěno, že hodnota koncentrace polifenolů v sladu byla velmi nízká. Sladovníkina kvalita einkorn wheat variet byla znázorněna na tabulce 3. Bylo zjištěno, že sladovníkina kvalita einkorn wheat variet byla značně podobná sladovníkina kvalitě einkorn wheat variet, hlavně v části, která se týká polifenoloxidázy. Polifenoloxidáza je enzym, který má aktivitu polifenoloxidázy, aktivita a β-amylyz. Nejvyšší méla vlny rozlišení je naznačeno na tabulce, čímž je zjištěno, že hodnota koncentrace polifenolů v sladu byla velmi nízká. Sladovníkina kvalita einkorn wheat variet byla znázorněna na tabulce 3.

Rozlišení je naznačeno na tabulce 3. Bylo zjištěno, že sladovníkina kvalita einkorn wheat variet byla značně podobná sladovníkina kvalitě pšenice jednozrnky, např. aktivita amylolytických enzymů v sladu jednozrnky byla na úrovni 3,5–5,1 J EBC. Sladiny získané ze sladů pšenice jednozrnky byly o nižší koncentrace polifenolů, což je způsobeno vyšší aktivitou polifenoloxidázy, která je produktivní enzym, který aktivuje polifenoloxidázy, aktivita a β-amylyz. Nejvyšší měla vlny rozlišení je naznačeno na tabulce, čímž je zjištěno, že hodnota koncentrace polifenolů v sladu byla velmi nízká. Sladovníkina kvalita einkorn wheat variet byla znázorněna na tabulce 3. Bylo zjištěno, že sladovníkina kvalita einkorn wheat variet byla značně podobná sladovníkina kvalitě einkorn wheat variet, hlavně v části, která se týká polifenoloxidázy. Polifenoloxidáza je enzym, který má aktivitu polifenoloxidázy, aktivita a β-amylyz. Nejvyšší méla vlny rozlišení je naznačeno na tabulce, čímž je zjištěno, že hodnota koncentrace polifenolů v sladu byla velmi nízká. Sladovníkina kvalita einkorn wheat variet byla znázorněna na tabulce 3.
LITERATURA / REFERENCES

Abdel-Aal, E.-S. M., Huci, P., Sosulski, F. W., 1995: Compositional and nutritional characteristics of spring einkorn and spelt wheats. Cereal Chemistry. 72:521–524.

Abdel-Aal, E.-S. M., Young, J. C., Wood, P. J., Rabalski, I., Huci, P., Falk, D., Fréguèse-Reid, J., 2002: Einkorn: A potential candidate for developing high lutein wheat. Cereal Chem. 79(3): 455–457. DOI:10.1094/CHEM.2002.79.3.455

Acquistucci, R., D’Wgidio, M. G., Vallega, V., 1995: Amino acid composition of selected strains of diploid wheat, Triticum monococcum L. Cereal Chemistry. 71: 213–216.

Basafová, G., Čepička, J., Holežalová, A., Kahler, M., Kubíček, J., Poldírská, M., Voborský, J., 1992: Pivovarsko-slaďanská analýтика. Markanta, Praha.

Basafová, G., 2015. Druhy sladů a jejich vlastnosti. In Basafová, G. ed. Slaďanské technologie a práce s pivovarskou sladou. Hlavíček Brain Team, Praha. ISBN 978-80-87109-47-2.

Belcrediová, N., Ehrenbergerová, J., Havlová, P., 2006: Enzyme superoxide dismutase in grain of barley and malt. Acta univ. agric. et silvic. Mendel, Brn., LIV(2): 7–14.

Boivin, P., 2001: Pro- and anti-oxidant enzymatic activity in malt. Cerevisia, 26(2): 105–115. ISSN 0770-1713.

Borgi, B., Castagna, R., Corbellini, M., Heun, M., Salamini, F., 1996: Breadmaking quality of einkorn wheat (Triticum monococcum ssp. monococcum). Cereal Chemistry, 73: 208–214.

Březinová Belcredi, N., Ehrenbergerová, J., Prýma, J., Havlová, P., 2007: Stanovení aktivity enzymu superoxiddismutazy pomocí Sourdpravý Ransod v rostlinném materiálu Chemice listy, 101(8): 504–508. ISSN 0009-2770

Cavallerio, A., Gianinetti, A., Finocchiaro, F., Delogu, G., Stanca, A. M., 2004: Tocols in hull-less and hulled barley genotypes grown in contrasting environments. J. Cereal Sci. 39: 175–200.

D’Egidio, M. G., Nardi, S., Vallega, V., 1993: Grain, flour, and dough characteristics of selected strains of diploid wheat, Triticum monococcum L. Cereal Chemistry, 70: 298–303.

EBC Analysis Committee, 2009: Analytica-EBCC, Verlag Hans Carl Getränke-Fachverlag, Nürnberg.

Ehrenbergerová, J., Belcrediová, N., Prýma, J., Vaculová, K., Newman, C. W., 2006: Effect of cultivar, year grown, and cropping system on the content of tocopherols and tocotrienols in grains of hulled and hulless barley. Plant Food Hum. Nutr. 61: 145–150. DOI 10.1007/s11130-006-0024-6

Fogarasi, A., Vecseri, B., 2015: A comparative assessment of antioxidant properties, total phenolic content of einkorn, wheat, barley and their malts. Food Chem. 167: 1–6. ISSN 0308-8146.

Fréguèse-Reid, J., Abdel-Aal, E. S. M., 2005: Einkorn: A potential functional wheat and genetic resource. In: Abdel-Aal, E. S. M., Wood, P. (Eds), Speciality grains for food, American Association of Cereal Chemists Inc., Minnesota. 37–62.

Grausgruber, H., Arndorfer, M., 2002: Current situation of einkorn (Triticum monococcum ssp. monococcum) and emmer (Triticum turgidum ssp. dicoccum) cultivation in Austria. Proceedings of the EUCARPIA Cereal Section Meeting, Salsomaggiore, Italy, 21–25. 11. 2002: 45–47.

Grausgruber, H., Sailer, C., Ghambashidze, G., Bolyos, L., Rückenbauer, P., 2004a: Genetic variation in agronomic and qualitative traits of ancient wheat. Proceedings of the 17th EUCARPIA General Congress, Tulln, Austria, 8–11. 9. 2004: 19–22.

The achieved results show that the most suitable length of malting is 168 hours; this means the variant 7D – 45%. This variant of malting provides high extract content while maintaining the other parameters decisive for malt quality at a favorable level.

ACKNOWLEDGEMENTS

This study was performed in the Research Institute of Brewing and Malting, Plc, within solution of the European Educational Program Leonardo da Vinci – Application of Malted Einkorn in Food Industry – Ancient Innovation (2013-1-BG1-LEO05-08705).

The subject matter of this paper was introduced as poster on 26th Brewing and Malting Days.

Translated by Vladimíra Nováková