Mushroom as a product and their role in mycoremediation

Shweta Kulshreshtha¹*, Nupur Mathur² and Pradeep Bhatnagar³

Abstract

Mushroom has been used for consumption as product for a long time due to their flavor and richness in protein. Mushrooms are also known as mycoremediation tool because of their use in remediation of different types of pollutants. Mycoremediation relies on the efficient enzymes, produced by mushroom, for the degradation of various types of substrate and pollutants. Besides waste degradation, mushroom produced a vendible product for consumption. However, sometimes they absorb the pollutant in their mycelium (biosorption process) and cannot be consumed due to absorbed toxicants. This article reviews the achievement and current status of mycoremediation technology based on mushroom cultivation for the remediation of waste and also emphasizes on the importance of mushroom as product. This critical review is also focused on the safety aspects of mushroom cultivation on waste.

Keywords: Biodegradation; Bioremediation; Genotoxicity; Biosorption; Mushroom; Ames test; Product; Industrial waste; Agroindustrial waste; Bioconversion

Introduction

Biological approaches based on industrial and environmental biotechnology is focusing on the development of “clean technologies” which emphasizes on the maximum production, reduced waste generation, treatment and conversion of waste in some useful form. Further, these clean technologies focus on the use of biological methods for the remediation of waste. One such biological method is mycoremediation which is based on the use of fungi and mushroom for the removal of waste from the environment. The mushrooms and other fungi possess enzymatic machinery for the degradation of waste/pollutants and therefore, can be applied for a wide variety of pollutants (Purnomo et al. 2013; Kulshreshtha et al. 2013). However, mushrooms, a basidiomycetous fungus, are becoming more popular nowadays for remediation purposes because it is not only a bioremediation tool but also provide mycelium or fruiting bodies as a source of protein. The efficiency of mushroom species in producing food protein in the form of biomass or fruiting bodies from different wastes lies in their ability to degrade waste via secretion of a variety of hydrolyzing and oxidizing enzymes (Kuforiji and Fasidi 2008; Zhu et al. 2013). This has attracted research attention in the field of mushroom cultivation and waste remediation.

Many reports have published to emphasize the role of mushroom in bioremediation of wastes by the process of biodegradation, biosorption and bioconversion (Akinyele et al. 2012, Kulshreshtha et al. 2013a; Kumhomkul and Panich-pat 2013; Lamrood and Ralegankar 2013). Many scientists have studied the role of different enzymes in the degradation process; degradation products formed by it and conditions affecting the degradation process (Novotný et al. 2004; Akinyele et al. 2011; Zhu et al. 2013). However, safety aspects of the process and products have not been reported so far. There is scarcity of reports indicating the pros and cons of mushroom cultivation on wastes and their further utilization as food. Moreover, mushroom as a product is meagerly reported.

Keeping this in mind, in this review we are discussing the use of mushroom as a biological tool for cleanup the environment. Mushroom is not only a mycoremediation tool but also a product. Mushroom fruiting bodies generated on industrial and agro-industrial wastes are considered as a product. We have also focused on the safety aspects of mushroom cultivation on waste.

* Correspondence: shweta_kulshreshtha@rediffmail.com
1Amity Institute of Biotechnology, Amity University Rajasthan, 14- Gopal Bari, Ajmer Road, A-200, Vaishali Nagar, Jaipur 302021, Rajasthan, India
Full list of author information is available at the end of the article

© 2014 Kulshreshtha et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Mushroom as a product

Mushrooms are the product of biological origin and can be developed from biological wastes, agricultural wastes, agro-industrial wastes and industrial wastes. Besides this, these mushrooms can be used as a source of proteins, amino acids and several biological active molecules which not only provide nutrition but also use for therapeutic purposes (Table 1). Therefore, these can be considered as an important product.

Edible mushrooms are highly nutritious and can be compared with eggs, milk and meat (Oei 2003). Mushroom is a protein rich food and has been considered as the source of single cell protein. These are easily digestible and possess a high amount of amino acids but lacks cholesterol. These possess high quantities of fibers, few sugars and low calories and a high quantity of the amino acids phenylalanine, threonine and tyrosine.

As far as the nutrient profile of mushroom are concerned, these are influenced by many factors including the type of substrate on which these are cultivated. There are some differences in the nutrient content of the mushroom cultivated on different substrates (Mabrouk and Ahwanyi 2008; Akinyele et al. 2011; Kulshreshtha et al. 2013b). However, this change in nutritional content never found to affect their edibility. Therefore, it is still a beneficial technology because it solves two major problems simultaneously i.e. waste accumulation and shortage of proteinaceous food.

Besides, use for edible purpose, mushroom is used for other industrial processes like biopulping and biobleaching. Hence, the importance of this as product cannot be ignored.

Mushroom as mycoremediation tool

Remediation through fungi is also called as mycoremediation. Mycoremediation tool refers to mushrooms and their enzymes due to having ability to degrade a wide variety of environmentally persistent pollutants, transform industrial and agro-industrial wastes into products.

Mycoremidation potential of mushroom

Mushroom uses different methods to decontaminate polluted spots and stimulate the environment. These methods include - (i) Biodegradation (ii) Biosorption (iii) Bioconversion.

Biodegradation

The term ‘Biodegradation’ is used to describe the ultimate degradation and recycling of complex molecule to its mineral constituents. It is the process which leads to complete mineralization of the starting compound to simpler ones like CO2, H2O, NO3 and other inorganic compounds by living organisms. A lot of research has been done on the degradation abilities of mushroom and their enzymes and is depicted in Table 2. Many reports have been published on the compounds produced by degradation of various wastes and factor affecting the processes.

Mushroom can produce extracellular peroxidases, ligninase (lignin peroxidase, manganese dependent peroxidase and laccase), cellulases, pectinases, xylanases and oxidas (Nyanhongo et al. 2007). These are able to oxidize recalcitrant pollutants in vitro. These enzymes are typically induced by their substrates.

These enzymes have also been found to degrade non-polymeric, recalcitrant pollutants such as nitrotoluens (VanAcken et al. 1999), PAHs (Hammel et al. 1991; Johannes et al. 1996), organic and synthetic dyes (Ollikka et al. 1993; Heinfling et al. 1998), and pentachlorophenol (Lin et al. 1990) under in vitro conditions. Recently, it is reported that mushroom species are able to degrade polymers such as plastics (da Luz et al. 2013).

The biodegradation mechanism is very complex. The reason is the influence of other biochemical systems and interactions of ligninolytic enzymes with cytochrome P450 monoxygenase system, hydroxyl radicals and the level of H2O2 which are produced by the mushroom.

Biosorption

The second important process of removal of metals/pollutants from the environment by mushroom is - biosorption. Biosorption is considered as an alternative to the remediation of industrial effluents as well as the recovery of metals present in effluent. Biosorption is a process based on the sorption of metallic ions/pollutants/xenobiotics from effluent by live or dried biomass which often exhibits a marked tolerance towards metals and other adverse

S. no.	Mushroom	As a product	References
1	Pleurotus, Agaricus, Ganoderma Schizophyllan commune, Grifola frondosa Coriolus versicolor, Ganoderma lucidum, Phellinus rimosus	Used as medicine to boost immune responses against cancer	Kodama et al. (2002); Gao et al. (2003); Gameiro et al. (2013); Kang et al. (2012)
2	Pleurotus, Agaricus, Grifola frondosa, Ganoderma lucidum, Phellinus rimosus	Possess antimutagenic or antigenotoxic power to fight against cancer	Gameiro et al. (2013); Kang et al. (2012)
3	Ganoderma lucidum, Phellinus rimosus, Pleurotus florida and Pleurotus pulmonarius	Used as antioxidant and antitumor agent	Aijith and Janardhanan (2007)
4	Pleurotus, Agaricus	Used as food	
conditions (Gavrilescu 2004). Biosorbents can be prepared from mushroom mycelium and spent mushroom compost. The uptake of pollutants/xenobiotics by mushrooms involves a combination of two processes: (i) bioaccumulation i.e. active metabolism-dependent processes, which includes both transport into the cell and partitioning into intracellular components; and (ii) biosorption i.e. the binding of pollutants to the biomass without requiring metabolic energy. Several chemical processes may be involved in biosorption, including adsorption, ion exchange processes and covalent binding. According to Mar’in et al. (1997), the polar groups of proteins, amino acids, lipids and structural polysaccharides (chitin, chitosan, glucans) may be involved in the process of biosorption.

A lot of study has been done on the biosorptive capacity of biomass of mushroom and are shown in Table 3. It is reported that the biosorption capacity of dead biomass may be greater, similar to or less than that of living cells (Mar’in et al. 1997). In the case of biosorption, dead biomass of mushroom offers certain advantages over living cells. Dead mushroom biomass can be obtained from industries as a waste of fermentation processes. Further, this is not sensitive to concentrations of toxicants and their toxicity effects and adverse operating conditions (pH, temperature, nutrient supply, initial metal ion concentration, and the concentration of cells etc.) unlike living mushroom biomass. The uptake of xenobiotic by living cells depends on fungal species and contact time. Biosorption techniques are now becoming very popular for the removal of pollutants. Biosorption is an effective method due to the high uptake capacity and very cost-effective source of the raw material.

Table 2 Role of mushroom in degradation of pollutants

S. no	Mushroom spp.	Waste/Pollutants	Remarks	References
1	Pleurotus ostreatus	Oxo-Biodegradable plastic	Mushrooms degraded the plastic and grew on it.	da Luz et al. (2013)
2	Lentinula edodes	2,4-dichlorophenol	Mushrooms degraded 2,4-dichlorophenol (DCP) by using vanillin as an activator	Tsujiyama et al. (2013)
3	Pleurotus pulmonarius	Radioactive cellulosic-based waste	Waste containing mushroom mycelium was solidified with portland cement and then this solidified waste act as first barrier against the release of radiocontaminants	Eskander et al. (2012)
4	Jelly sp., Schizophyllum commune and Polyporous sp.	malachite green	99.75% (Jelly sp.), 97.5% (Schizophyllum commune), 68.5% (Polyporous sp.2) dye was degraded in 10 days	Rajput et al. (2011)
5	Pleurotus pulmonarius	crude oil	crude oil was degraded	Olusola and Anslem (2010)
6	Coriolus versicolor MKACC 52492	PAH	Mushroom possesses ability to degrade Poly-R 478 which decides its suitability to degrade PAH. Lignin-modifying enzymes laccase, manganese-dependent peroxidase (MnP), and lignin peroxidase (LiP) was found to produce for degradation	Jang et al. (2009)

Table 3 Removal of pollutants by biomass of mushroom using biosorption process

S. no	Mushroom spp.	Pollutants	Remarks	References
1	Agaricus bisporus, Lactarius piperatus	Cadmium (II)	Wild L. piperatus showed higher removal efficiency on Cd(II) ions compared to the cultivated A. bisporus	Nagy et al. (2013)
2	Fomes fasciatus	Copper (II)	Mushroom is efficient in biosorption of Cu (II) ions and hot-alkali treatment increased their affinity for Cu (II) ions	Sutherland and Venkobachar (2013)
3	Pleurotus platypus, Agaricus bisporus, Calocybe indica	Copper, Zinc, Iron, Cadmium, Lead, Nickel	Mushrooms are efficient biosorbent for the removal these ions from aqueous solution	Lamood and Ralegankar (2013)
4	Flammulina velutipes	Copper	Mushroom compost used as biosorbent for removing copper ions from aqueous solution	Luo et al. (2013)
5	Pleurotus tuber-regium	Heavy metals	Pleurotus tuber-regium biosorb the pollutant heavy metals from the soil artificially contaminated with some heavy metals	Oyetayo et al. (2012)
6	Pleurotus ostreatus	Cadmium	Mushrooms possess biosorption capacity and mechanism of biosorption was observed	Tay et al. (2011)
7	Pleurotus sajor-caju	heavy metal Zn	Mushrooms biosorb the heavy metals	Jibran and Milsee Mol (2011)
industries, can be used for cultivation of mushroom which can be further use as a product. Mushroom species cultivated on industrial and agro-industrial wastes are given in Table 4. The choice of the substrate for the cultivation of mushroom is generally determined by the regional availability of the material.

Mushroom cultivation has also been successfully done on various industrial wastes (Singhal et al. 2005; Kulshreshtha et al. 2010; Dulay et al. 2012 and Kulshreshtha et al. 2013b). Applications of mushroom as mycoremediation tool in the bioconversion of these industrial wastes into protein rich mushroom carpophores (fruiting bodies of mushroom), on one hand provides mushroom and on the other hand helps in solving pollution problems, which their disposal may otherwise cause.

Feasibility of the mycoremediation tool and processes

It is extremely important to carry out feasibility study before starting a remediation project in order to determine the best conditions for the process and toxicity in the fruiting bodies. The most important parameters to define a contaminated site are: biodegradability, contaminant distribution, chemical reactivity of the contaminants, soil type and properties, oxygen availability and occurrence of inhibitory substances (Martin et al. 2004). The success of mycoremediation is governed by three important factors—availability of mushroom, accessibility of contaminants and a conductive environment. Therefore, the knowledge on the physiology and ecology of the biological species or consortia involved and the characteristics of the polluted sites are decisive factors to select an adequate mycoremediation protocol (Martin et al. 2004).

Mycoremediation of waste from the environment by mushroom has many advantages but at the same time it is a challenge for the researchers and engineers. Mycoremediation of wastes can be done in in situ and ex situ conditions. When it is carried out on site, it eliminates the need to transport the toxic materials to treatment

Table 4 Bioconversion of waste by mushroom species

S. no.	Mushroom spp.	Bioconversion of waste	Remarks	References
1	Pleurotus citrinopileatus	Handmade paper and cardboard industrial waste	Successfully cultivated. Basidiocarps possessed good nutrient content and no genotoxicity	Kulshreshtha et al. (2013)
2	Pleurotus ostreatus	Extract from the sawdust	Biomass of mushroom was produced in submerged liquid culture were analyzed	Akinyele et al. (2012)
3	Volvariella volvacea	Agro-industrial residues such as cassava, sugar beet pulp, wheat bran and apple pomace	Enzyme activities were measured during the fermentation of substrates	Akinyele et al. (2011)
4	Pleurotus florida	Handmade paper and cardboard industrial waste	Successfully cultivated. Basidiocarps possessed normal morphology and no genotoxicity	Kulshreshtha et al. (2010)
5	Pleurotus	Cotton waste, rice straw, cocoyam peels and sawdusts of Mansonia altissima, Boscia angustifolia and Khaya ivorensis	Successfully cultivated with good crude protein, crude fat and carbohydrate contents in sporophores.	Kuforiji and Fasidi (2009)
6	Pleurotus eous and Lentinus connotus	Paddy straw, sorghum stalk, and banana pseudostem	Waste successfully bioconverted by mushroom with good biological efficiency	Rani et al. (2008)
7	Pleurotus tuber-regium	Nigerian trees; Terminalia superba, Mansonia altissima, Holoptelia grandis and Miliciaexelsa	Grow on trees	Jonathan et al. (2008)
8	Pleurotus tuber-regium	Cotton waste, sawdust of Khaya ivorensis and rice straw	Sclerotia propagated on groundnut shells and cocoyam peels with lipase and phenoloxidase; cellulase, carboxymethyl cellulase enzymatic activities	Kuforiji and Fasidi (2008)
9	Lentinula edodes	Eucalyptus waste	Successfully convert this waste and qualitative and quantitative changes were also measured	Brienzlo et al. (2007)
10	Lentinula edodes	Vineyard pruning (VP), barley straw (BS), and wheat straw	Bioconversion of VP waste with shortest primordium formation, highest biological efficiency, highest yield and shortest production cycle (6 days)	Gaitán- Hernández et al. (2006)
11	Lentinula tigrinus	Wheat straw	Characterize the production of lignocellulotic enzymes and bioconvert the wheat straw	Lechner and Papinutti (2006)
12	V. volvacea	Banana leaves (Musa sapientum lina)	Efficient bioconversion with good yield	Belewu and Belewu (2005)
sites. It is an environmentally friendly approach and needs only a small space, low cost, less skilled persons and can be applied easily in the field. In contrast to above, there are some disadvantages in applying this mycoremediation tool. Mushrooms require time to adapt to the environment and cleanup wastes. Mushroom cultivated on industrial wastes may possess toxicity/genotoxicity. Genotoxicity of mushrooms is influenced by genotoxicants that are present in waste used for their cultivation. Therefore, it is necessary to assess toxicity/genotoxicity of mushrooms if used for bioremediation purpose.

Toxicity level in the fruiting bodies is based on two facts, i.e. biodegradation and biosorption. Mushroom possesses the suitable enzymatic machinery for biodegradation which lead to the degradation of pollutants from the substrate and convert it into less toxic products. This renders the fruiting bodies safe for consumption. Recently, many papers have published which reported that mushroom not only able to degrade pollutants but also able to reduce the toxicity or mutagenicity (Kulshreshtha et al. 2013b; Choi et al. 2013; Malachová et al. 2006). Numerous studies stated that mutagenicity reduction by mushrooms is primarily species dependent. Kulshreshtha et al. (2011) and Kulshreshtha et al. (2013b) reported Pleurotus florida was not found to have genotoxicity, however, Pleurotus citrinopileatus have had genotoxicity in their fruiting bodies when both were cultivated on industrial wastes and the mixture of wheat straw and industrial wastes under the same cultivation conditions.

Toxicity reduction is also dependent on the substrate. Same fungi may have different capability in degrading the different pollutants (Choi et al. 2013) due to the enzymes of mushrooms that are not only involved in degradation but also reducing the effects of toxic and genotoxic pollutants. Several researchers have proved the antimitogenic and antigenotoxic power of mushroom (Mendez-Espinoza et al. 2013; Taira et al. 2005; Milinari et al. 2004; Filipic et al. 2002; Menoli et al. 2001) which may be used to reduce the genotoxicity of the pollutants. Therefore, it is proved that besides having degradation power mushrooms can reduce the genotoxicants and toxic pollutants due to having antimitogenic and antigenotoxic power. These types of species of mushroom can be used for edible purposes and as feed for animals. This concept provides a natural guide to future research which should be focused on the need of research to degrade the pollutants in such a way that their disposal will not create another problem and fruiting bodies can be consumed safely. In contrast to this, absorption of pollutants by mushroom makes them unsuitable for consumption. Many researchers have reported the very high amount of metal content and mutagenicity in the fruiting bodies of mushrooms growing on polluted substrate, naturally or artificially, which is due to the absorption process (Tables 3 and 5). Wild Further information is needed about the level of toxicity in these mushrooms, ignorance of which will cause the associated health related problems.

Biosorption can become a good tool to remediate toxic metals threatening the environment (Lamrood and Ralegankar 2013) but on the other hand, this process generates non-consumable biomass which gives rise to the new problem of disposing it. Usually researchers have been focused on the use of mushroom mycelium for biosorption and compare the abilities of biomass for sorption (Table 3). A very few publications reported the reason of varying power of biosorption to various types of mushroom (Kumhomkul and Panich-pat 2013; Das 2005). This fact may be a decisive factor for further use of mushroom species.

It is proved that mushrooms have different abilities of biosorption, bioremediation, biodegradation and toxicity reduction. In my opinion, researchers should try to first remediate the heavy metals by cultivating high metal absorbing species of mushroom. However, low absorbing

S. no.	Mushroom types	Mutagenicity test results	Reference
1	Nine wild and two cultivated species of Spanish edible mushrooms	The mushrooms were mutagenic to TA100 and TA98 strains	Morales et al., (1990)
2	Wild and commercially grown mushrooms	Presence of microsomal enzymes (S-9) reduced the mutagenic effects of all the mushrooms, with the exception of Agaricus abruptibulbus and Cantharellus cibarius.	Gruter et al., (1991)
3	Agaricus bisporus	Direct-acting mutagenic response in various Salmonella typhimurium strains, TA104. Agaritine was not responsible for the mutagenicity of mushroom extracts	Papaparaskeva et al., (1991)
4	Agaricus bisporus	Agaritine was weakly mutagenic, in the absence of an activation system, in Salmonella typhimurium strain TA104.	Walton et al., (1997)
5	Pleurotus florida cultivated on handmade paper and cardboard industrial waste	Not mutagenic with either TA 98 or TA 100 strain	Kulshreshtha et al., (2011)
6	Pleurotus citrinopileatus cultivated on handmade paper and cardboard industrial waste	Mushroom extract is mutagenic with TA 98 strain	Kulshreshtha et al., (2013)
edible species can be used to cultivate on waste so that absorption of the pollutants can be minimized. Researchers should also try to develop the method of using biomass repeatedly for the biosorption of pollutants which will also reduce the waste generation. The toxicity or genotoxicity of these mushroom species should be assessed and thereafter, non-toxic mushroom species can be used for consumption. However, in the case of remediation of pollutants preference should be given to those species which can degrade the pollutants. The safe species will be selected to remediate a particular type of waste and further use for consumption.

Conclusion
Mushroom is a tremendous boon to the idea of using this for mycoremediation process as a real-world solution. The cultivation of edible mushroom on agricultural and industrial wastes may thus be a value added process capable of converting these discharges, which are otherwise considered to be wastes, into foods and feeds. Besides producing nutritious mushroom, it reduces genotoxicity and toxicity of mushroom species. Mycoremediation through mushroom cultivation will alleviate two of the world’s major problems i.e. waste accumulation and production of proteinaceous food simultaneously. Thus, there is a need for further research towards the exploitation of potential of mushroom as bioremediation tool and its safety aspects for consumption as product.

Competing interests
The authors declare that they have no competing interests.

Acknowledgement
We are thankful to Rajasthan Department of Science and Technology (DST), Jaipur for providing financial support for conducting work (Sanction No. 2005/3951-67). We are also thankful to University Grants commission (UGC) for their support and grant (F. No. 40-113/2011, SR). We are also thankful to DST (Delhi), and Center for International Co-operation in Science (CICS), Chennai for providing travel grant to present my research in an International conference “Bioproduct-2012”.

Author details
1Amiti Institute of Biotechnology, Amity University Rajasthan, 14- Gopal Bari, Ajmer Road, A-200, Vaishali Nagar, Jaipur 302021, Rajasthan, India.
2Department of Zoology, University of Rajasthan, JLN Marg, Jaipur 302005, India.
3Department of Life Sciences, The IIS University, Gurukul Marg, Mansarovar, Jaipur 302003, India.

Received: 15 January 2014 Accepted: 17 January 2014

References
Ajiith TA, Janardhanan KK (2007) Indian Medicinal Mushrooms as a Source of Antioxidant and Antitumor Agents. J Clin Biochem Nutr 40:157–162, doi:10.3164/jcbn.40-157
Akinyele BJ, Olaniyi OO, Arotupin DJ (2011) Biocconversion of selected agricultural wastes and associated enzymes by Volvariella volvacea: An edible mushroom. Res J Microbiol 6:63–70, doi:10.3923/rjm.2011.63.70
Akinyele JB, Fakoya S, Adetuyi CF (2012) Anti-growth factors associated with Pleurotus ostreatus in a submerged liquid fermentation. Malaysian J Microbiol 8:135–140
Belewu MA, Belewu KY (2005) Cultivation of mushroom (Volvariella volvacea) on banana leaves. African J Biotechnol 4:1401–1403
Brienza M, Silvia EM, Milagres AM (2007) Degradation of eucalyptus waste components by Lentinula edodes strains detected by chemical and near-infrared spectroscopy methods. Appl Biochem Biotechnol 141:37–50
Choi YS, Long Y, Kim MJ, Kim Ji, Kim GH (2013) Decolorization and degradation of synthetic dyes by Irper lactaeuc KUC9698. J Environ Sci Health A-Tox Hazard Subst Environ Eng 48:501–508, doi:10.1080/10934523.2013.730419
Da Luz JMR, Paes SA, Nunes MD, da Silva MCS, Kasuya MCM (2013) Degradation of OxO-Biodegradable Plastic by Pleurotus ostreatus. PLoS ONE 8(8):e69386, doi:10.1371/journal.pone.0069386
Das N (2005) Heavy metals biosorption by mushrooms. NRI 4:454–459
Dulay RMR, Parunagao AG, Kalaw SP, Reyes RG (2012) Asperitic cultivation of Coprinus comatus (O. F. Mill.) Gray on various pulp and paper wastes. Mycosphere 3:392–397, doi:10.5943/mycosphere/3/3/10. 392
Eskander SB, Abd El-Aziz SM, El-Sayaad H, Saleh HM (2012) Cerrmentation of bioproducts generated from biodegradation of radioactive cellulolic-based waste simulates by mushroom. ISRN Chemical Engineering, doi:10.5402/2012/529676
Filipc I, Urnek A, Milinicar A (2002) Screening of Basidiomycete mushroom extracts for antigenotoxic and bio-antimutagenic activity. Harmazme 57:416–420
Gaitán-Hernández R, Esqueda M, Gutiérrez A, Sánchez A, Beltrán-García M, Mata G (2006) Bioconversion of agrowastes by (centruroides edodes; The high potential of viticulture residues. Appl Microbiol Biot 71:432–439, doi:10.1007/s00253-005-1571-8
Gameiro PH, Nascimento JS, Rocha BH, Piana CF, Santos RA, Takahashi CS (2013) Antimutagenic effect of aqueous extract from Agaricus brasiliensis on culture of human lymphocytes. J Med Food 16:180–183, doi:10.1089/jmf.2012.0068
Gao Y, Dai X, Chen G, Ye J, Zhou S (2003) A randomized, placebo-controlled, multicenter study of Gondasma lucidum (W. Curt.Fr.) Lloyd (Aphylometriomycetidae) polysacchrides (Ganopoly R) in patients with advanced lung cancer. Int J Med Mushrooms 5:369–381
Gavrilicu M (2004) Removal of heavy metals from the environment by biosorption. Eng Life Sci 4:219–232, doi:10.1002/elsc.200402026
Gruter A, Friederich U, Würgler FE (1991) The mutagenicity of edible mushrooms in a histidine-independent bacterial test system. Food Chem Toxicol 29:119–65
Hammel KE, Green B, Gai WZ (1991) Ring fission of anthracene by a eukaryote. Proc Natl Acad Sci USA 88:10605–10608, doi:10.1073/pnas.88.23.10605
Heinifying MJ, Martínez AT, Martínez M, Bergbauer Zewyuk U (1998) Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl Environ Microbiol 64:2788–2793
Jang KY, Cho SM, Seok SJ, Kong WS, Lim GH, Sung JM (2009) Screening of biodegradable function of indigenous ligno-degrading mushroom using dyes. Mycobiology 37:53–61, doi:10.4489/MYC.2009.37.1.053
Jibran AK, Miliyes M, JP (2011) Pleurotus sajor-caju Protein: A potential biosorptive agent. Adv Bio Tech 11:25–27
Kocharcik C, Maciejczuk A, Hüttermann A (1996) Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds. Appl Microbiol Biot 46:313–317, doi:10.1007/s002530058283
Jonathan SG, Fasidi IO, Ajayi AO, Adeyeye O (2008) Biodegradation of Nigerian wood wastes by Pleurotus tuber-regium (Fries) Singer. Biores Resource Technol 99:807–811, doi:10.1016/j.biotech.2007.01.005
Kang MY, Rico CW, Lee SC (2012) In vitro antioxidant and antimutagenic activities of oak mushoom (Lentinus edodes) and king Oyster mushroom (Pleurotus) (byproducts. Food Sci Biotechnol 21:167–173, doi:10.1007/s10068012-0201-5
Kodama N, Komata K, Nanba H (2002) Can maltake MD-fraction aid cancer patients? Alten Med Rev 7:236–239
Kuforiji OO, Fasidi IO (2008) Enzyme activities of Pleurotus tuber-regium (Fries) Singer, cultivated on selected agricultural wastes. Biores Resource Technol 99:4275–4278, doi:10.1016/j.biotech.2007.08.055
Kuforiji OO, Fasidi IO (2009) Biodegradation of agro-industrial wastes by an edible mushroom Pleurotus tuber-regium (Fr). J Environ Biol 30:355–358
Kulshreshtha S, Mathur N, Bhatnagar P (2011) Pros and cons of P. florida cultivation for managing waste of handmade paper and cardboard industries. IIOAB Journal, spl 245–48
Kulshreshtha S, Mathur N, Bhatnagar P (2013a) Mycoremediation of paper, pulp and cardboard industrial wastes and pollutants. In: Golpateh BM, Danesh YR,
Kulshreshtha et al. AMB Express 2014; 4:29
http://www.amb-express.com/content/4/1/29

Varma A (eds) Fungi as Bioremediators: Soil Biology. Springer Berlin, Heidelberg, pp 77–116
Kulshreshtha S, Mathur N, Bhatnagar P, Jain BL (2010) Bioremediation of industrial wastes through mushroom cultivation. J Environ Biol 31:441–444
Kulshreshtha S, Mathur N, Bhatnagar P, Kulshreshtha S (2013b) Cultivation of Pleurotus citrinopileatus on handmade paper and cardboard industrial wastes. Ind Crop Prod 41:340–346
Kumhonkul T, Panich-pat T (2013) Lead accumulation in the straw mushroom, Volvariella volvaecia, from lead contaminated rice straw and stubble. Bull Environ Contam Toxicol 91:231–234, doi:10.1007/s00128-013-1025-4
Lamroad PY, Falegankar SD (2013) Biosorption of Cu, Zn, Fe, Cd, Pb and Ni by non-treated biomass of some edible mushrooms. Asian J Exp Biol Sci 4:190–195
Lechner BE, Papinutti VL (2006) Production of lignocellulosic enzymes during growth and fruiting of the edible fungus Lentinus tigrinus on wheat straw. Process Biochem 41:594–598, doi:10.1016/j.procbio.2005.08.004
Lin JE, Wang HY, Hickey RF (1990) Degradation kinetics of pentachloro-phenol by Phanerochaete chrysosporium. Biotechnol Bioeng 35:1125–1134, doi:10.1002/bit.260351108
Luo D, YF X, Tan ZL, Li XD (2013) Removal of Cu(II) ions from aqueous solution by the abandoned mushroom compost of Flammulina velutipes. J Environ Biol 34:359–365
Mabrouk EM, Ahwany MD (2008) Production of mannannase by Bacillus amyloliquifaciens 10A1 cultured on potato peels. Afr J Biotechnol 7:1123–1128, doi:10.5897/AJB08K06
Maheza Y, Trusiani S, Saeki H, Oki E, Yoshinaga K, Emi Y, Motoi M, Kohnoe S, Kakei Y, Yano T, Baba H (2012) Biological mechanism and clinical effect of protein-bound polysaccharide K review of development and future perspectives. Surg Today 42:48–28, doi:10.1007/s00595-011-0075-7
Malachová K, Pavlícková Z, Novotný C, Svobodová K, Lednická D, Musílková E (2004) Anti-genotoxic activity of the mushroom Agaricus bisporus from tomato paste. J Environ Mol Mutagen 43:533–540, doi:10.1002/em.20224
Mar’in A, Conti C, Gobbi G (1997) Sorption of lead and caesium by mushrooms. Env Mutagen 26:237–244
Martín A, Conti C, Gobbi G (1997) Sorption of lead and caesium by mushrooms grown in natural conditions. Res Environ Biotechnol 2:35–49
Martín MC, González BA, Blanco SMJ (2004) Biological treatments for contaminated soils: hydrocarbon contamination. Fungal applications in bioremediation treatment. Rev Iberoam Micol 21:103–120
Mendez-Espinao C, Garcia-Nieto E, Esquivel AM, González MM, Bautista EV, Esquerro CC, Santacruz LJ (2013) Antigenotoxic potential of aqueous extracts from the chanterelle mushroom, Cantharellus cibarius (Bulliard) Biocytites) on human mononuclear cell cultures. Int J Med Mushrooms 15:325–32, doi:10.1615/IntJMedMushr.v15.i3.90
Menoli RC, Mantovanis MS, Ribeiro LR, Spert G, Jordão BQ (2001) Antimutagenic factors derived from the edible mushroom Agaricus bisporus and wild Lactarius piporus based bioocomposites. Linear and nonlinear equilibrium modelling and kinetics. J Taiwan Inst Chem E. doi:10.1615/J.tice.2013.08013
Novotny C, Svobodova K, Erbanova P, Cephalin T, Kinslin A, Lang E, Salek V (2004) Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Bio Chem 36:1545–1551, doi:10.1016/S0038-5718(04)00227-3
Mlinaric A, Kac J, Fatur T, Filipic M (2004) Anti-genotoxic activity of the mushroom Pleurotus ostreatus. Mutat Res 586:115–123, doi:10.1016/j.mrgentox.2005.06.007
Oel P (2003) Mushroom cultivation, appropriate technology for mushroom growers. Backhugs Publishers, Leiden, The Netherlands
Olóika P, Alphonmáki K, Leppänen VM, Glumoff T, Rajjola T, Suominen I (1999) Decolorization of azo, triphenylmethane, heterocyclic, and polymeric dyes by lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Appl Environ Microbiol 59:4010–4016
Olusola SA, Anslem EE (2010) Bioremediation of a crude oil polluted soil with Pleurotus Pulmonarius and Glomus Mosseae using Amananthus Hybridus as a test plant. J Biomed Biotechnol 1:111, doi:10.4172/2155-6199.1000113
Oyetayo VO, Adebayo AO, Ibiyemi L (2012) Assessment of the biosorption potential of heavy metals by Pleurotus tuber-regium. Int J Advanced Biol Res 293–297
Papaparakasema C, Ioannides C, Walker R (1991) Agaritine does not mediate the mutagenicity of the edible mushroom Agaricus bisporus. Mutagenesis 6:213–217
Pumorno AS, Mori T, Putra SR, Kondo R (2013) Biotransformation of heptachlor and heptachlor epoxide by white-rot fungus Pleurotus ostreatus. Int Biodet Biodegrad 82:40–44, doi:10.1016/j.ibiod.2013.02.013
Rajput Y, Shi T, Shukla A, Shukla K (2011) Biodegradation of malachite green by wild mushroom of Chhatisgarh. J Exp Biol 269–72
Rani P, Kalyani N, Prathiba K (2008) Evaluation of lignocellulosic wastes for production of edible mushrooms. Appl Biochem Biotechnol 151:151–159, doi:10.1007/s10008-006-8162-y
Singhal V, Kumar A, Rai JP (2005) Bioremediation of pulp and paper mill effluent with Phanerochaete chrysosporium. J Environ Biol 26:525–529
Sutherland C, Venkobachar C (2013) Equilibrium modeling of Cu (II) biosorption onto untreated and treated forest macro-fungus Fomes fuscus. International Journal of Plant, Animal and Environment Sciences 3:193–203
Taira K, Miyashita Y, Okamoto K, Arimoto S, Takahashi E, Negishi T (2005) Novel antimutagenic factors derived from the edible mushroom Agrocybe cylindracea. Mutat Res 586:115–123, doi:10.1016/j.mrgentox.2005.06.007
Tay CC, Liew HHL, Yin CY, Abdul-Talib S, Surif S, Sulaimani AA, Yong SK (2011) Biosorption of Cadmium ions using Pleurotus ostreatus: Growth kinetics, isotherm study and biosorption mechanism. Korean J Chem Eng 28:850–853, doi:10.1007/s11814-010-0455-9
Tsuyljama S, Muraksa T, Takada N (2013) Biodegradation of 2,4-dichlorophenol by shiitake mushroom (Lentinulé edodes) using vanillin as an activator. Biotechnol Lett 35:1079–1083, doi:10.1007/s10529-013-1179-5
VanAken LM, Godfried CM, Peres H, Naveau ASN (1999) Mineralization of 14C-U ring labeled 4-hydroxylamino-2,6-dinitrotoluene by manganese-dependent peroxidase of the white-rot basidiomycete Phlebia radiata. J Biotech 68:159–169
Walton K, Coombs MM, Catterall FS, Walker R, Ioannides C (1997) Bioactivation of the mushroom hydrazine, agartine, to intermediates that bind covalently to proteins and induce mutations in the Ames test. Cancerogenesis 18:1603–1608
Zhu MJ, Du F, Zhang GQ, Wang HX, Ng TB (2013) Purification a lacticase exhibiting d ye decolorizing ability from an edible mushroom Russula vinseaen. Int Biodeterior Biodegrad 82:39–39, doi:10.1016/j.ibiod.2013.02.010

Submit your next manuscript at ➤ springeropen.com