Pathogenic role of exosomes and microRNAs in HPV-mediated inflammation and cervical cancer: A review

Javid Sadri Nahand1,2, Mohsen Moghoofei3, Arash Salmaninejad4,5, Zahra Bahmanpour6, Mohammad Karimzadeh1, Mitra Nasiri5, Hamid Reza Mirzaei7, Mohammad Hossein Pourhanifeh8, Farah Bokharaei-Salim9, Hamed Mirzaei10 and Michael R. Hamblin10

1Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
2Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
3Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
4Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
5Department of Medical Genetics, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
6Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
7Department of Medical Immunology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
8Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
9Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA

Cervical cancer (CC) is the fourth most common cause of cancer death in women. The most important risk factor for the development of CC is cervical infection with human papilloma virus (HPV). Inflammation is a protective strategy that is triggered by the host against pathogens such as viral infections that acts rapidly to activate the innate immune response. Inflammation is beneficial if it is brief and well controlled; however, if the inflammation is excessive or it becomes of chronic

Key words: cervical cancer, carcinogenesis, inflammation, HPV, MicroRNAs, Exosomes

Abbreviations: 3’UTR: three prime untranslated region; ANXA1: annexin A1; BCL2: B-cell lymphoma 2; CC: cervical cancer; CCL2: C-C motif chemokine ligand 2; CIN: cervical intraepithelial neoplasia; COX2: cyclooxygenase 2; CRI: cancer-related inflammation; CTL: cytotoxic T cell; DAMPs: damage-associated molecular patterns; DCs: dendritic cells; EGFR: epidermal growth factor receptor; EVs: extracellular vesicles; GCSF: granulocyte colony stimulating factor; HMGB1: high mobility group box protein 1; HPV: human papilloma virus; hTERT: human telomerase reverse transcriptase; IFN: interferon; IKKβ: inhibitor of NFkB kinase beta; IL: interleukin; IRAK1: interleukin-1 receptor-associated kinase 1; Let-7a: lethality 7a; miRNA: micro ribonucleic acid; MMP: matrix metalloproteinase; Nef: HIV-1 negative regulatory factor; NF-κB: nuclear factor kappa light chain enhancer of activated B cells; PAMPs: pathogen-associated molecular patterns; PBMC: peripheral blood mononuclear cells; PDCD4: programmed cell death 4; PRRs: pattern recognition receptors; PTEN: phosphatase and tensin homolog; RISC: RNA-induced silencing complex; RORγt: RAR-related orphan receptor gamma; STAT3: signal transducer and activator of transcription 3; Th2: T-helper lymphocytes type 2; TIMP: tissue inhibitor of metalloproteinase; TLR4: toll-like receptor 4; TNF-α: tumor necrosis factor alpha; TRAF6: TNF receptor associated factor; Treg: regulatory T cells; VEGF: vascular endothelial growth factor; XIAP: X-linked inhibitor of apoptosis protein; YKL-40: chitinase-3-like protein 1

Conflict of Interest: M.R.H. declares the following potential conflicts of interest. Scientific Advisory Boards: Transdermal Cap Inc., Cleveland, OH; BeWell Global Inc., Wan Chai, Hong Kong; Hologenix Inc., Santa Monica, CA; LumitThera Inc., Poulsbo, WA; Vielight, Toronto, Canada; Bright Photomedicine, Sao Paulo, Brazil; Quantum Dynamics LLC, Cambridge, MA; Global Photon Inc., Bee Cave, TX; Medical Coherence, Boston, MA; NeuroThera, Newark, DE; JOOVC Inc., Minneapolis-St. Paul, MN; AIRx Medical, Pleasanton, CA; FJR Industries, Inc., Ramsey, NJ; UVLRx Therapeutics, Oldsmar, FL; Ultralux UV Inc., Lansing, MI; IllumiHeal & Petthera, Shoreline, WA; MB Lasertherapy, Houston, TX; ARRC LED, San Clemente, CA; Varuna Biomedical Corp., Incline Village, NV; Miraxx Light Therapeutics, Inc., Boston, MA; Consulting: Lexington Int., Boca Raton, FL; USHIO Corp, Japan; Merck KGaA, Darmstadt, Germany; Philips Electronics Nederland B.V. Eindhoven, the Netherlands; Johnson & Johnson Inc., Philadelphia, PA; Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany; Stockholdings: Global Photon Inc., Bee Cave, TX; Mitonix, Newark, DE.

Grant sponsor: National Institute of Allergy and Infectious Diseases; Grant numbers: R01AI050875, R21AI121700

DOI: 10.1002/ijc.32688

History: Received 14 Jun 2019; Accepted 10 Sep 2019; Online 30 Sep 2019

Correspondence to: Hamed Mirzaei, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran, Tel.: +98-31-55540022, Fax: +98-31-55540022, E-mail: h.mirzaei2002@gmail.com; or Michael R. Hamblin, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114, USA, E-mail: hamblin@helix.mgh.harvard.edu

International Journal of Cancer: 146, 305–320 (2020) © 2019 IJCC
introduction, it can produce detrimental effects. HPV proteins are involved, both directly and indirectly, in the development of chronic inflammation, which is a causal factor in the development of CC. However, other factors may also have a potential role in stimulating chronic inflammation. MicroRNAs (miRNAs) (a class of noncoding RNAs) are strong regulators of gene expression. They have emerged as key players in several biological processes, including inflammatory pathways. Abnormal expression of miRNAs may be linked to the induction of inflammation that occurs in CC. Exosomes are a subset of extracellular vesicles shed by almost all types of cells, which can function as cargo transfer vehicles. Exosomes contain proteins and genetic material (including miRNAs) derived from their parent cells and can potentially affect recipient cells. Exosomes have recently been recognized to be involved in inflammatory processes and can also affect the immune response. In this review, we discuss the role of HPV proteins, miRNAs and exosomes in the inflammation associated with CC.

Introduction

Worldwide, cervical cancer (CC) ranked as the fourth most commonly diagnosed cancer and the fourth cause of cancer death in women. In 2018, there were an estimated 570,000 cases diagnosed globally, resulting in 311,000 deaths. Almost 85% of these deaths occurred in developing or underdeveloped countries.1,2 The majority of CC cases result from infection with certain subtypes of the human papilloma virus (HPV). The HPV genome has been identified in nearly 95% of CC lesions. Most HPV infections will be cleared spontaneously and are transient in nature. However, persistent infection with certain HPV strains may result in the development of the premalignant condition known as cervical neoplasia.3,4 The integration of the HPV E7 and E6 oncogenes into the host genome is considered to be the key step in the development of CC.5 Immune evasion is an important cause of persistent HPV infection. Because there is no overt viremia or cytolysis after the initial HPV infection in the cervix, there is no inflammation at the early stages and no activation of the innate immune system. The virus completes its life cycle in actively dividing cells employing the host cellular machinery.6 Once established, the persistent infection triggers changes in the secretion of inflammatory cytokines, which in turn leads to immune cell infiltration. In older patients with persistent HPV infection, alterations in the responsiveness of the immune system and increased systemic levels of inflammatory cytokines have been found.7 In clinical studies, this age group is more likely to be diagnosed with CC8 and is more likely to show sustained elevation of cytokines, which contributes to the tumorigenesis of HPV.9

Inflammation is one part of the complicated biological response mounted by body tissues to dangerous stimuli, including pathogens, irritants or injured cells. Inflammation is designed to be a protective response, which involves blood vessels, immune cells and molecular mediators.9 Inflammation acts rapidly to release chemokines and cytokines, which activate the host innate immune response. These mediators operate in concert and facilitate the recruitment of effector cells to the site of injury or infection.10–12 After the elimination of the triggering stimulus and the resolution of the injury, inflammation should be disabled in a programmed manner. However, if the stimulus is persistent, the acute inflammation becomes chronic in nature, and evidence suggests that chronic inflammation is strongly associated with cancer.10,13,14 About 20% of human cancers are associated with chronic inflammation caused by infectious agents, autoimmune diseases and long-term exposure to irritants and other noxious agents. Common causes of persistent inflammation that lead to cancer development, include infection with hepatitis C or B viruses that lead to hepatocellular carcinoma, inflammatory bowel disease that leads to colorectal cancer and infection with Helicobacter pylori that leads to gastric cancer.15 However, the role of HPV infection in the induction of chronic inflammation and the link between chronic inflammation and HPV-induced CC carcinogenesis remains controversial.

Multiple factors are needed for the development of CC, such as the interaction of the virus, host-dependent and environmental factors.16 Furthermore, there is evidence that the epigenetic regulatory machinery can lead to dysregulation of tumor-suppressor genes and activation of oncogenes, triggering the malignant phenotype in cancer cells.17,18 In this regard, micro ribonucleic acids (miRNAs) play a major role as regulators of cell cycle progression, apoptosis, metastasis and chemoresistance.18–20 miRNAs are small noncoding RNAs which regulate the expression of genes at a posttranscriptional level, by incomplete sequence pairing to the three prime untranslated region (3’UTR) region of their target mRNAs.19 Recent studies have identified those miRNAs which have different expression profiles and play an important role in diverse physiological and pathological processes, such as carcinogenesis, viral infections and oncogenesis.19,21 miRNAs have also been implicated in the regulation of both adaptive and innate immune responses, as well as inflammatory networks in various tissues and cell types.21 Inflammatory mediators cause dysregulation of miRNAs and vice versa certain miRNAs operate as inflammatory mediators. Dysregulation of miRNAs has been observed during CC development and several dysregulated miRNAs have the ability to modulate the initiation and development of inflammation-induced cervical carcinogenesis.2,22

Exosomes are nanovesicles about 30–150 nm in size and are released by almost all cell types, under both pathological and physiological conditions. These nanovesicles are involved in intercellular communication at both local and systemic levels.23–25 Exosomes are vehicles that are able to transfer nucleic acids, proteins and lipids from donor cells to recipient cells, thereby influencing the target cell metabolism.26,27 Multiple studies have
assessed the effect of exosomes in neurodegenerative diseases, sepsis, arthritis, inflammatory bowel disease, atherosclerosis and diabetes, and taken together, suggest that exosomes may participate in the development of several inflammatory diseases.28 Although inflammatory mediators (chemokines and cytokines) are the major players in the initiation of the inflammatory response, increasing evidence supports the longer term connection between inflammation and exosomes.28 Immunosuppression and inflammation are well-established factors that govern the progression of cancer, while exosomes derived from tumor cells are also involved in the modulation of inflammation and immune system to promote tumorigenesis. Exosomes originating from gastric cancer or breast cancer cells have been demonstrated to trigger the activation of nuclear factor kappa light chain enhancer of activated B cells (NF-κB), which causes the production and release of pro-inflammatory cytokines, including C-C motif chemokine ligand 2 (CCL2), granulocyte colony stimulating factor (GCSF), tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6).28–30 Furthermore, macrophages treated with exosomes can cooperatively increase the invasive and migratory properties of tumor cells.28 However, the role of CC-derived exosomes in the modulation of inflammation and how they contribute to CC progression has not yet been fully studied. In the present review, we will discuss the role of HPV proteins, miRNAs, exosome-mediated inflammatory responses and how they contribute to the development of CC.

Inflammation and CC

Inflammation means, “to set on fire” and is a protective mechanism triggered by exposure to a myriad of factors, including diseases, infections and trauma. Not surprisingly, the failure of the normal inflammatory program can lead to considerable harmful effects. The inflammatory environment involves a complex network of soluble molecular messengers and biological players, including plasma proteins, cytokines, chemokines, innate and adaptive immune cells, extracellular matrix, stromal fibroblasts and the vascular blood and lymphatic networks. Inflammation can be classified as either acute or chronic depending on the time course. Acute inflammation persists for only a couple of days or weeks at the most. It involves three primary processes: (i) alterations in the vascular diameter; (ii) structural alterations in the microcirculation and (iii) adhesion and transmigration of leukocytes from the microcirculation into the tissue. After eliminating the infection or controlling the initial injury, mechanisms should be immediately activated which limit any type of damage to the host and initiate the tissue repair processes. If for some reason the inflammation continues too long, chronic inflammation can become established, which can persist over months or even years.31 Chronic inflammation takes place for two main reasons: (i) the host is unable to eliminate the original stimulus or (ii) the host cannot carry out the resolution of inflammation program.32 Chronic inflammation involves progressive changes in several kinds of inflammatory cells and can participate in the causation of chronic diseases, such as cardiovascular, arthritis, diabetes, neurological diseases and cancer.33

Researchers have suggested that there is a relationship between inflammation and cancer, but this suggestion is not a thoroughly novel idea, because Rudolf Virchow (1863) demonstrated that inflammation and chronic irritation could lead to cancers.34 Nowadays, inflammation is accepted as a significant cancer hallmark (Fig. 1). It is estimated that an excessive inflammatory response is associated with at least 15–20% of all cancer deaths worldwide.35 Persistent infection with *H. pylori*, hepatitis virus B or C or HPV can cause chronic inflammation in the specific affected organs and increases the risk of cancer.34 Chronic inflammation may also be caused by long-term exposure to noxious chemicals or the presence of chronic autoimmune disease. Cancer related inflammation (CRI) promotes tumor growth that is independent of growth factors, has unlimited replicative potential, shows escape from programmed cell death, resistance to growth inhibition and promotes angiogenesis, cancer cell extravasation and metastasis.36 Some cancer therapies such as radiotherapy or chemotherapy can cause necrotic cell death, which can increase tumor associated inflammation, which can lead on one hand to induction of antitumor immunity, or on the other hand can lead to the development of resistance to therapy.37 The involvement of chronic inflammation has been considered to be important in several cancers, including the colon, lung, gastric and cervical malignancies.38,39

Intrinsic and extrinsic pathways may directly or indirectly activate inflammatory cells, such as macrophages and T cells. Hyperactivation of inflammatory pathways plays a significant role in tumorigenesis, promoting progression from low-grade lesions to high-grade invasive CC lesions.40 NF-κB is a transcription factor implicated in immune cell activation and chronic inflammatory responses. HPV-16 E5, E6 and E7 oncoproteins can trigger activation of the NF-κB pathway, which is correlated with the progression of carcinogenesis in CC. COX-2 is also activated in response to inflammatory stimuli, including cytokines, growth factors and mitogens. NF-κB has been identified as a positive regulator of COX-2. On the other hand, caspase-1 that cleaves pro-IL-1β to mature IL-1β, is an activator of NF-κB. Interestingly, the NF-κB-COX-2/caspase-1 pathway has been demonstrated to be responsible for cell growth, anti-apoptosis and inflammation in CC cells.41 Toll-like receptor 4 (TLR4) is a pattern recognition (or Toll-like) receptor, which is also associated with tumor growth and inflammation in CC. TLR4 signaling initiates cell activation, inflammation and tumor growth through MyD88-dependent and NF-κB-associated signaling pathways. TLR4 downregulation has been demonstrated to be a potential cause of apoptosis in SiHa CC cells.42 Furthermore, epidermal growth factor receptor (EGFR) contributes to extensive crosstalk between other signaling pathways, which are involved in the release of growth factors, cytokines and inflammatory mediators. EGFR overexpression has been found to be related with the induction of inflammation and with poor prognosis in CC patients.42
Cytokines are small, secreted proteins that are released by cells. Cytokine is a general term for secreted mediators of cell–cell communication. Other terms are lymphokines (cytokines secreted by lymphocytes), monokines (cytokines secreted by monocytes), chemokines (cytokines with chemotactic activity) and ILs (cytokines secreted by one type of leukocyte, which act on other leukocytes). Cytokine expression by tumor cells attracts inflammatory cells that result in further tumor growth and progression. Various lines of evidence support this mechanisms occurring in CC. Recent publications have shown a correlation between dysregulation of several cytokines, and the occurrence of cervical precancerous lesions (low-and high-grade squamous intraepithelial lesions), progression from precancer to in situ cancer, further invasion and the final phase of metastasis. For some time, researchers had assumed that cytokines were mainly messenger molecules in the immune system, which guide leucocytes to inflamed sites. Researchers now believe in an association between dysregulated cytokines and a majority of cancers, in which they contribute to cell transformation, rapid growth, survival, angiogenesis, invasion and metastasis. Over 33 cytokines have been already identified, and a number of cytokines or their receptors are significantly altered in the carcinogenesis and metastasis of CC. Cytokines such as IL-6, IL-8, IL12, IL-4R, vascular endothelial growth factor (VEGF), IL-4, IL-10, etc. have been used as biomarkers for assessing the risk of invasive cancer and metastasis. Many cytokines are significantly altered in cervical precancer and cancer, more so in advanced cancer with metastasis. Excessive expression of a number of cytokines, for example, IL-6, IL-17 and IL-8, shows a relationship with tumor growth. On the other hand, different cytokines are associated with the inhibition of HPV replication and tend to suppress tumors; for example, IL-1, TNF-α, transforming growth factor-β and interferon (IFN)-α in the early phases of tumor development.

Infection with HPV is recognized to be the key cause of CC. High expression levels of IFN-γ mRNA have been found in CC patients infected by HPV. Furthermore, it was shown that high levels of TNF-α contributed to monocyte differentiation into mature dendritic cells (DCs) in CC. TNF-α is the most important pro-inflammatory cytokine which is produced by macrophages and monocytes, playing both anticarcinogenic and procarcinogenic roles. Mutations in the A allele and the GA/AA single nucleotide polymorphism in TNF-α j308 have been demonstrated as risk factors for CC development. Another cytokine, IL-6, is associated with persistent HPV infection and with the progression of CC. IL-6 activates the signal transducer and activator of transcription 3 (STAT3) oncogene, which contributes to chronic inflammation in CC. Abnormal STAT3 signaling promotes tumor cell growth, invasion, metastasis and inflammation. Its persistent activation has been proposed to be a marker of poor prognosis in CC. Moreover, T-helper lymphocytes type 2 (Th2) inflammatory cells are elevated during the progression of HPV induced cervical lesions. One of the best studied Th2 type cytokines, IL-10, has been found to be increased in cervical tissues and sera from HPV-infected patients and is correlated with high-grade lesions. In addition to IL-10,
IL-8 plays a causative role in acute inflammation. It has been suggested that elevated production of IL-8 triggered by cell cycle and apoptosis regulator 2 under conditions of oxidative stress has a role in inflammation and progression of CC.\(^{52}\) IL-12 is a heterodimeric pro-inflammatory cytokine with antitumor activity because it promotes cytotoxic T cell (CTL) responses and Th1 adaptive immunity. The polymorphisms in the IL12 gene, \(IL12Brs3212227\) and \(IL12Ars568408\) contribute to the risk of CC.\(^{53}\) Moreover, CCL2 (MCP-1) is another chemokine that regulates infiltration and migration of macrophages/monocytes. It has been suggested that CCL2 expression by CC cells is correlated with an enhanced infiltration by inflammatory macrophages, and reduced disease-free survival in CC patients.\(^{49}\)

Taken together, these lines of evidence suggest the role of chronic inflammation and its mediators in CC progression and development (Fig. 2). Therefore, more complete understanding of the type and function of CC-related inflammation may provide new ways to improve on recent successful immunotherapy approaches and suggest new biomarkers for diagnostic assays and targets for therapy.

HPV and Inflammation in Cervical Cancer

Long-term chronic inflammation due to persistent HPV infection is one potential cause for the development of CC. This is a complex process involving the participation of reactive oxygen and reactive nitrogen species, cytokines, chemokines, growth and cell survival factors, enzymes (including cyclooxygenase [COX] and metalloproteinases), prostaglandins and specific types of miRNAs.\(^{54}\) The collective action of these mediators induces changes in the processes of proliferation, senescence and cell death and also causes mutation and methylation of DNA, and stimulates angiogenesis contributing to development of HPV-induced CC.\(^{54}\) Inflammation is activated when pattern recognition receptors (PRRs) expressed by innate immune system cells recognize pathogen-associated molecular patterns (PAMPs) and/or damage-associated molecular patterns (DAMPs). Once PRRs have detected DAMPs or PAMPs, signaling pathways are triggered, NF-κB is activated and transported to the nucleus. Transcription of several NF-κB-responsive genes leads to expression of proteins that mediate the inflammatory response (e.g., TNFα, IL-6, COX-2).

![Figure 2. Inflammation-related signaling pathways in cervical cancer. CD40, cluster of differentiation 40; Gp130, glycoprotein 130; IκBα: IκB kinase α; Jak, Janus kinase; MyD88, myeloid differentiation primary response 88; NFκB, nuclear factor kappa beta; NIK, nuclear factor κB-inducing kinase; PD1, 3-phosphoinositide-dependent protein kinase-1; STAT3, signal transducer and activator of transcription 3; TLRs, Toll-like receptors; TNF, tumor necrosis factor; TRAF3, TNF receptor-associated factor. [Color figure can be viewed at wileyonlinelibrary.com]](image-url)
and intercellular adhesion molecule), proliferation (cyclin-dependent kinase 2), cell survival (X-linked inhibitor of apoptosis protein [XIAP]), cellular inhibitors of apoptosis 1, B-cell lymphoma 2 [BCL2] and B-cell lymphoma-extra large) and angiogenesis (VEGF).55–58 NF-κB is the key player that connects inflammation and cancer.58 Transcription factors such as STAT3 and NF-κB are activated by inflammatory cytokines, including TNF-α, IL-1β and IL-6. The activation of NF-κB in normal keratinocytes inhibits proliferation and decreases the tendency toward malignant transformation; however, in immortalized keratinocytes, deregulation of NF-κB can support malignant traits both in vivo and in vitro.59 The low levels of NF-κB activation found in low-grade intraepithelial lesions of cervical squamous tissue was shown by IκB-α phosphorylation, and STAT3 was activated in both the suprabasal and basal layers of the uterine cervix infected with HPV-16.60,61 Prabhavathy and colleagues reported that HPV-16 E2 protein potentiated the activation of STAT3 and NF-κB through pro-inflammatory cytokines, and also decreased the E2 protein-mediated apoptotic effects in the HEK 293 cell line. They suggested that cells infected with HPV-16 E2 might have a survival advantage in the presence of chronic inflammation. This is probably a beneficial strategy for the virus life cycle, in which escape from the cell-death process encourages carcinogenesis in epithelial cells infected with HPV.62 Cell sensitivity to apoptosis mediated by TNF-α is regulated via several factors, such as NF-κB and viral infections. Activation of NF-κB plays an important role in regulating cellular sensitivity to TNF-α, by regulating the expression of multiple antiapoptotic genes.63 Increased tumorigenicity of human keratinocytes transformed with HPV-16 was related to TNF-α resistance acquired during HPV infection.64 Prabhavathy et al. studied the effects of TNF-α-mediated NF-κB activation on the senescence induced in response to E2 in HPV-16-integrated SiHa cells. They observed that E2 suppressed the expression of the endogenous E6 gene, and sensitized SiHa cells to TNF-α-induced NF-κB activation. In addition, the expression of the senescence proteins, p16, p21, p27 and p53 was increased, and senescence-associated (SA)-β-galactosidase activity demonstrated that TNF-α enhanced E2-mediated senescence. In our study, reexpression of the E2 gene after TNF-α treatment led to upregulation of antiapoptotic BCL2 protein and other prosurvival genes, including cyclin D1, human telomerase reverse transcriptase (hTERT) and survivin. Concomitantly, the combination of TNF-α and E2 increased cell survival, proliferation and colony formation. Another observation showed the overexpression of key senescence factors (such as high mobility group AT-hook 1, high mobility group box protein 1 [HMGB1], IL-16 and IL-8) was regulated by NF-κB, in cells treated with TNF-α and simultaneously transfected with E2.65

Many studies have demonstrated that chronic inflammation, and its mediators (IL-1, IL-6, IL-8, IL-18, COX, TNF-α, etc.) can make a significant contribution to the progression of CC. Various studies have focused on the interaction between HPV proteins and the inflammatory pathways in HPV-mediated cervical carcinogenesis. The pro-inflammatory cytokines, TNF-α and IL-1α are released after macrophage infiltration of tissue in response to infection or injury; these cytokines are also secreted by human cervical epithelial cells.66–68 Some studies have demonstrated that TNF-α and IL-1α have opposite effects on the growth of immortalized versus normal cervical cells. These cytokines inhibited the proliferation of normal ectocervical or endocervical epithelial-derived cells. In contrast, both TNF-α and IL-1α stimulated the proliferation of several cervical cell lines derived from CC, or cell lines immortalized by HPV-16/18.59,70 Woodworth et al. suggested that TNF-α and IL-1α were mitogenic for immortalized and malignant cervical epithelial cells via the EGFR-dependent signaling pathway, and that release of cytokines may contribute to CC carcinogenesis by providing a growth advantage for the cervical cells in vivo.71

Recent studies have shown that chronic inflammation probably interferes with cellular senescence,72 a normal phenomenon in which a cell stops dividing because of decreased telomere length. Senescent cells release a large amount of inflammatory cytokines such as IL-18, IL-6 and IL-173,74 that have been reported to lead to tumorigenesis and metastasis.75,76 A high level of IL-6 expression has been linked to cellular senescence and carcinogenesis.77,78 Ren et al. showed that HPV-16/18 E6 protein promoted fibroblast senescence through IL-6 and STAT3 signaling. Based on the results of our study, cervical epithelial cells infected with HPV-16/18 can stimulate senescence of fibroblasts by IL-6/STAT3-regulated paracrine and autocrine signaling pathways. This alteration of the microenvironment leads to the development of cervical intraepithelial neoplasia I–II (CIN I–II), progressing to CIN III and finally to CC after a prolonged period of latency.78

IL-10 has been found to be locally overexpressed in biopsies taken from patients with CC or premalignant lesions, and is possibly a marker of a locally immunosuppressed state.79–82 The expression of IL-10 is directly correlated to the grade of cervical lesions associated with HPV infection.83,84 This suggests that IL-10 is expressed by cervical epithelial cells and can modulate cellular immunity and inflammation in the cervical mucosa. Bermúdez-Morales et al.85 reported that the HPV E2 protein could bind to a regulatory region of the IL-10 gene and increase the promoter activity. Furthermore, after expression of HPV-E2 protein, transformed cells also exhibited elevated levels of IL-10 mRNA after HPV infection.85 The increased expression of IL-10 might encourage virus persistence, transformation of cervical cells and tumor development.

Researchers showed that upregulated secretion of IL-10 could possibly suppress immune response against HPV infection in the initial cervical lesions, while upregulated TNF-α and disrupted cytokine secretion (imbalance between Th1 and Th2 cytokines) could be responsible for the poor immune response in late stage lesions. Thus, measuring IL-10 and TNF-α in cervical secretions could be a helpful indicator of the local immune response against HPV lesions. In addition, Clerici et al. found
that systemic immunosuppression (even though it was not specific to HPV infection) was characterized by lower production of IL-2, and the Th2 cytokines IL-4 and IL-10 were higher in CIN compared to normal cervix. Researchers suggested there was an association between higher secretion of Th2 cytokines (and lower secretion of Th1 cytokines) and the development of CIN. El-Sherif et al. used quantitative reverse transcription-polymerase chain reaction to show IL-10 mRNA was reduced in CIN compared to normal cervix (p = 0.04). The IL-10 mRNA levels in CIN were elevated compared to normal cervix. Epithelial IFN-γ mRNA showed a decline in each grade of CIN in comparison normal cervix. Subepithelial IFN-γ mRNA significantly declined in CIN 1, CIN 2 and CIN 3 in comparison to normal cervix. Moreover, subepithelial IFN-γ mRNA was lower in CIN 2 and CIN 3 as compared to CIN 1. Epithelial IL-10 was detected in just 1 out of 11 normal, and 1 out of 25 CIN specimens; however, subepithelial IL-10 was increased in CIN 2 and CIN 3 compared to normal cervix. In conclusion, a Th2-dominant cytokine secretion pattern (increased IL-6, IL-10 and decreased INF-γ, TNF-α) can suppress the immune response against HPV, resulting in persistent infection and lesion progression.

COX-2 is an inducible enzyme, which mediates many inflammatory processes. Overexpression of COX-2 is found in the pathophysiology of many types of cancer and inflammatory disorders. Recent studies have shown that NF-κB is involved in the regulation of COX-2 expression, and blocking activation of NF-κB leads to inhibition of COX-2 expression. The HPV E6 and E7 oncoproteins can lead to up-regulation of COX-2 in both carcinogenesis and cancer progression. Kim and colleagues investigated the effect of HPV-16 E5 protein on COX-2 expression. Their results revealed that E5 increased COX-2 expression through the EGFR-signaling pathway, and that NF-κB and activator protein-1 (AP-1) were involved in the increase in COX-2 expression caused by E5. Thus, the E5 oncoprotein could mediate carcinogenesis of CC (at least partly) by overexpression of COX-2. Table 1 shows a list of HPV proteins, which are involved in inflammation and CC pathogenesis.

HPV type	Viral protein	Target	Effect on inflammation	Note	Reference
16 E6	CD40	Induction	The expression level of CD40 was increased in E6-positive CC, suggesting the presence of CD40 is related to lymph node metastasis and neovascularization		90
16 E7	IL-32	Induction	The high-risk variant of HPV promotes IL-32 expression by E7-mediated COX-2 stimulation		91
16 E2	NF-κB	Induction	E2 enhanced STAT3 and NF-κB gene expression and potentiated NF-κB activation via inflammatory mediators		92
16 E2	NF-κB	Induction	Reexpression of E2 combined with TNF-α in cervical cells affected NF-κB and increased IL-6, IL-8, HMGB1, cyclin D1, hTERT, BCL2 and survivin, promoting cell proliferation and survival		93
16 E6 + E7 NF-κB	Induction	HPV virus stimulated IL-1α and TNF-α. Pro-inflammatory cytokines enhanced amphiregulin expression and proliferation through an EGFR-dependent pathway		94	
16 E2	IL-10	Inhibition	E7 and/or E6 inhibited NF-κB activity in cervical epithelial cells and induced immortalization and cell growth		95
16 E6	IL-1β	Inhibition	IL-10 may be related to virus persistence, cancer development and cervical epithelial cell transformation		85
16 E6	TGF-β1	Inhibition	HPV-E6/E7 induced activation of TGF-beta1		97
16 E7	NF-κB Bp50−p65 Erx	Inhibition	E7 protein induced TLR9 downregulation affecting IFN responses that negatively regulate viral infection		98
16 E6	IFN-γ	Inhibition	The level of IFN-γ was significantly associated with HPV viral load		99
16 E5	COX-2	Induction	E5 protein mediated cervical carcinogenesis least in part by overexpression of COX-2 via AP-1 and NF-κB		100
16 E6	STAT3	Induction	Overexpression of HPV-E6 activated STAT3, elevated IL-6 expression and increased tumor burden in mice with ME180 and C33A tumors		78
The Role and Function of microRNAs in Cervical Cancer Inflammation

Since the initial discovery of miRNAs in 1993, these short non-coding RNA oligonucleotides (~22 nucleotides in length) have been demonstrated to be critical regulatory elements of gene expression at posttranscriptional levels in animals, plants and humans.\(^1^7\) miRNAs can control various biological processes, including cell proliferation and differentiation, cell death, organ function and homeostasis.\(^1^0^2\) miRNAs repress or degrade target messenger RNA mediated by the RNA-induced silencing complex (RISC) by binding to complementary sites in the 3' untranslated region (less commonly, in the 5'UTR) of target mRNAs.\(^1^7\) They have been isolated from the body fluids, cells and tissues of many mammalian species. Around 60% of the human genome have been predicted to be regulated by miRNAs.\(^2^0\) The number of miRNA sequences deposited in the miRBase database is steadily increasing, so that now a single gene may be regulated by several miRNAs, and conversely a single miRNA probably targets several genes.\(^1^0^2\) In humans, the maturation of the miRNA containing transcript (pri-miRNA) is facilitated through cleavage in the nucleus, mediated by Dro sophila ribonuclease III human and DiGeorge syndrome critical region 8 complex. This cleavage generates an ~85 nucleotide long precursor miRNA (pre-miRNA) which is transported into the cytoplasm by exportin 5. Subsequently, the pre-miRNA is cleaved by the endoribonuclease Dicer with RNase motif/HIV-1 TAR RNA binding protein complex to yield a 22 nucleotide miRNA duplex. This duplex is then loaded into the RISC, where miRNAs and their mRNA targets are recruited by members of the Argonaute family. Eventually, the mature miRNA strand is preferentially retained in the functional miRISC complex and negatively regulates its target genes through promoting their degradation or inhibiting their translation.\(^1^7,2^0\)

Even a small change in the expression of miRNAs results in dysregulation of several target genes, so it is not surprising that disruption of miRNA functions has been implicated in the pathogenesis of a broad-spectrum of human diseases, such as cancer, cardiovascular diseases, autoimmune diseases and neurological disorders.\(^1^7,1^0^3\) In cancer, miRNAs may function as tumor suppressors or else as oncogenes (onco-miRNAs), based on the function of their target genes.\(^1^0^4\) The loss of function of tumor suppressor miRNAs contributes to cancer development and progression, because of their function in controlling cell cycle checkpoints and apoptotic pathways. On the other, a number of onco-miRNAs have been recognized to stimulate key steps in the tumor metastatic process.\(^1^9\)

In 2002, the first report of miRNAs being involved in cancer emerged, which reported downregulation of miR-16 and miR-15 (at chromosome 13q14) in chronic lymphocytic leukemia (CLL).\(^1^0^5\) Numerous investigations since then, using microarray methods have addressed the impact of miRNAs in several solid tumors, including hepatocellular carcinoma, colorectal, breast, lung, ovarian, genito-urinary and cervical malignancies.\(^1^6\) A high variability in miRNA expression has been demonstrated in CC and the next section summarizes the miRNAs that play tumor suppressive roles, or are downregulated in CC.

Fan et al. found that miR-429 expression was downregulated in CC tissues. They also identified IKKβ (the primary kinase mediating NF-κB activation) to be a new target of miR-429. It was shown that miR-429 downregulation led to IKKβ/NF-κB pathway activation, IL-6 and IFN-β production and consequently enhancement of inflammation and tumor progression.\(^1^0^6\) Further studies showed that miR-101 was downregulated in CC. COX-2 is considered to be an important functional target of miR-101 in HeLa cells. Due to the role of COX-2 in inflammation and tumor development, miR-101 is probably a tumor suppressor by reducing COX-2 and attenuating cell proliferation, invasion and inflammation.\(^1^0^7\)

It is interesting that high mobility group box 1 (HMGB1) is regulated and targeted by three different miRNAs: miR-34a, miR-1284and miR-142. HMGB1 is an oncogene that induces inflammation and facilitates tumorigenesis and metastasis in CC. There is a reverse association between miR-34a, miR-1284and miR-142 and HMGB1 expression. Therefore, downregulation of miR-34a, miR-1284and miR-142 can enhance CC proliferation, invasion and inflammation by upregulating HMGB1.\(^1^0^8,1^1^0\) HMGB1 expression is one cause of chemoresistance, so that miR-1284 downregulation (a tumor suppressor in CC) increases the resistance of CC cells to cisplatin and inhibits apoptosis via HMGB1 upregulation.\(^1^0^9\) HMGB1 plays a significant role in the lymphatic metastasis in CC patients, and it has been demonstrated that downregulation of miR-142 augments lymphatic metastasis in CC patients.\(^1^1^0\)

Other miRNAs (miR-24, miR-451, lethal 7a [let-7a] and miR-125a) have been shown to be downregulated in CC and can induce inflammation via upregulating their target genes. The first investigation into the relationship between miRNAs and YKL-40 (also known as chitinase-3-like protein 1) in cancer was reported in 2016 by Sun et al. YKL-40 is an inflammatory marker, which is targeted by miR-24. In their report, YKL-40 overexpression along with miR-24 undereexpression were detected in CC cells and were proposed to be responsible for cell proliferation, metastasis, invasion and inflammation in CC.\(^1^1^1\) Another miRNA, miR-451, has an essential function in cell growth and differentiation. Downregulation of miR-451 increased the expression of its target gene, IL-6R (an inflammatory cytokine) in both RKO and HeLa cells. It was discovered that miR-451 has a tumor suppressor activity by targeting IL-6R, so that its downregulation can induce inflammation, invasion, angiogenesis and proliferation in CC cells.\(^1^1^2\)

Analysis of let-7 expression from malignant cervical tissues and in CaSkii, SiHa and HeLa cell lines revealed that let-7 was markedly reduced during cervical carcinogenesis. Let-7a has been identified as a significant regulator of STAT3 levels. STAT3, as mentioned previously, plays a key role linking inflammation and CC. HPV oncoprotein E6 may directly or indirectly lead to let-7a downregulation and promote STAT3 expression. The induction of STAT3 has an effect on the E6 upstream regulatory region.
miR-21 may be implicated in the pro-inflammatory response and may be involved in the progression of cervical cancer. Diverse target genes have been identified for miR-21, including programmed cell death 4 (PDCD4), phosphatase and tensin homolog (PTEN), tissue inhibitor of metalloproteinases-3 (TIMP-3), TNF-α and annexin A1 (ANXA1). miR-21 upregulation increased IL-6 (which is involved in inflammation and tumor development) and α-SMA (a fibroblast marker) in HeLa-conditioned media-treated fibroblasts, while it significantly diminished PDCD4 expression in CC tissues. Alternative downstream targets of miR-21 are PTEN and TIMP-3, which have key functions as STAT3 pathway and MMP-2/MMP-9 negative regulators, respectively. MMP-2 and MMP-9 are downstream target genes of the STAT3 pathway. Taking into account the underexpression of PTEN and TIMP-3 caused by upregulated miR-21 in CC cells, the enhancement of STAT3 activity leads to MMP-2 and MMP-9 upregulation. Upregulation of miR-21 therefore induces inflammation and promotes invasion in CC cells. Another report described ANXA1 as a miR-21 target gene which is reduced when miR-21 is upregulated in CC. ANXA1 is involved in the resolution of inflammation, thus its downregulation by miR-21 increases inflammation and proliferation in CC cells.

TNF-α is one of the most important miR-21 target genes, as a pro-inflammatory cytokine and a regulator of cell growth. miR-21 may cause inflammation in CC by upregulating TNF-α. Interestingly, TNF-α can play both anticancer and prooncancer roles and can be negatively regulated by miR-130a in CC. Low levels of TNF-α can stimulate NF-κB expression to upregulate miR-130a expression. High levels of TNF-α can destroy tumors.
reported. The first confirmation of the contribution of EVs in HPV pathogenesis appeared in 2009, when the presence of extracellular survivin in HPV-18 positive HeLa cells was confirmed.125 Cell medium containing survivin showed anti-apoptotic, proproliferative and metastatic properties based on an inactive T34A mutant.125 The same authors then showed the presence of extracellular survivin within exosomes. They found that proton irradiation of the cells led to the synthesis and release of the exosomes.126 Survivin-positive exosomes were further examined to detect stress-induced proteins within the cargo. In our study, inhibitor of apoptosis proteins (IAPs), including XIAP, c-IAP1, c-IAP2 and livin/ML-IAP, was demonstrated.127,128 The presence of IAPs was dependent on HPV oncoproteins, because the exosomes derived from HeLa cells in which the E6- and E7-proteins had been silenced had less IAPs, although these silenced cells exhibited greater overall exosome secretion compared to control cells.127 The cargo contents of HeLa-derived survivin-positive exosomes were examined for levels of miRNAs.129 Overall, 52 different miRNAs were deregulated, and E6/E7 silencing in

miRNA/Lnc	Expression	Target	Effect on inflammation	Type of HPV-virus	Notes	Reference
miR-429	Down	IKKβ	Induction	–	The activity of NF-κB induced by the reduction of miR-429 expression led to the production of IFN-β and IL-6	106
miR-21	Up	PDCD4	Induction	–	Enhancement of expression levels of IL-6 and α-SMA through upregulation of miR-21	116
miR-130a	Up	TNF-α	NA	–	Created a negative feedback loop between TFFFFx, NF-κB, miR-130a and TNF-α. This feedback may regulate TNF-α production at low concentration and cause NF-κB to be activated leading to upregulation of miR-130a and induced growth of CC cells	122
miR-155	Up	SOCS1	Induction	–	Enhancement of Th17 and Treg cells in PBMC and tissue of patients which leads to increased levels of RORγ, STAT3 and IL-17	120
miR-101	Down	COX-2	Induction	–	Reduction of apoptosis in CC cells	107
miR-34a	Down	HMGB1	Induction	–	Proliferation, migration and invasion elevated via downregulation of miR-34a	108
miR-24	Down	YKL-40	Induction	–	Metastasis, invasion, angiogenesis and epithelial-mesenchymal transition of CC cells induced by overexpression of YKL-40 gene expression	111
miR-451	Down	IL-6R	Induction	–	Invasion, angiogenesis and cell proliferation increased by decreased miR-451 expression	112
let-7a	Down	STAT3	Induction	16	Downregulation of let-7a by E6 leads to stimulation of STAT3 expression. STAT3 has induction effects on the upstream regulatory region of the gene E6	113
miR-21	Up	PTEN	Induction	16	The upregulation of miR-21 decreased PTEN gene expression and then by upregulation of MMP-2 and MMP-9 via STAT3 the invasion of CC cells was elevated	113
miR-21	Up	TNF-α	Induction	–	Increased TNF-α expression by miR-21 affects cell proliferation, which ultimately leads to CC development	123
miR-21	Up	ANXA1	Induction	16	Downregulation of ANXA1 by miR-21 promotes cellular proliferation	118
miR-1284	Down	HMGB1	Induction	–	MIR-1284 by downregulating HMGB1 enhances the sensitivity of CC cells to cisplatin	109
miR-125a	Down	STAT3	Induction	16	E6 and E7 reduced miR-125a expression that leads to elevated of MMP-9, MMP-2 and N-cadherin activities and also blocked G2/M cell cycle arrest	114
miR-142	Down	HMGB1	Induction	–	MIR-142 by targeting HMGB1 suppresses the growth of CC cells	110
miR-146a	Up	TRAF6	Inhibition	18	MIR-146a by targeting TRAF6 and IRAK1 increases viability of CC cells	124
Lnc-SNHG12	Up	miR-125b	Induction	–	MIR-125b was downregulated by Lnc-SNHG12 and led to STAT3 overexpression which led to enhanced migration, proliferation and invasion in CC	115
expression of 23 of these. A majority of the upregulated miRNAs played antiapoptotic, proliferative, and anti-senescence roles. Downregulated miRNAs had the opposite functions. Since 11 of 46 miRNAs within the exosomes were not deregulated in the whole cells, this implies the presence of mechanisms to incorporate specific miRNAs into the exosomes. The HPV-16-positive cell line SiHa was also examined with similar results. This suggests that deregulation of miRNA expression is not specific to HPV genotype. Examination of the miRNAs in exosomes derived from primary keratinocytes transduced with E6 and E7 from HPV-16 or HPV-38 confirmed Honegger et al.’s findings, and they also showed that these miRNAs could be transferred to noninfected keratinocytes. Other authors have shown the presence of long noncoding RNAs within HeLa-derived exosomes, specifically lincRNA-p21, CCND1A1-ncRNA, HOTAIR, TUG1 and GAS5. It should be noted that lincRNA-p21 (an inhibitory factor of p53-dependent transcription) was the lncRNA with the highest overexpression in exosomes compared to parental cells. The horizontal transfer of lincRNA-p21 can affect gene expression in acceptor cells.

As described above, inflammation plays a critical role in cancer progression and immune response. Many studies have shown that exosomes play a critical role in the inflammatory microenvironment in tumors. For example, Wu et al. investigated the biological effect of exosomes derived from gastric cancer cells in macrophage activation. They showed that these exosomes led to cancer progression by triggering the activation of the NF-κB pathway. In many tumors, the NF-κB signaling pathway is constitutively activated and recently it has been shown that palmitoylated proteins present on the surface of exosomes derived from breast cancer cells were involved in the activation of this pathway. Through this mechanism, breast cancer exosomes could stimulate macrophages to release pro-inflammatory mediators such as TNF-α, IL-6, CCL2 and GCSF.

Recently, it was reported that exosomes derived from bacteria-infected macrophages had pro-inflammatory properties. Essadough et al. examined the effect of blocking exosome production on protection against sepsis (the inflammatory response triggered by bacteria). They showed that inhibition of the exosome generation process limited the sepsis-induced inflammatory response. Exosomes originating from HPV-infected cells were also able to carry out horizontal transfer of mRNA, miRNA and cytokines between cells. Therefore, exosomes probably play an immunomodulatory role in the CC microenvironment. The pro-inflammatory cytokine, IL-36γ, has the ability to induce inflammation in keratinocytes via the Wingless/integrase 1 signaling pathway. Rana and colleagues demonstrated the presence of IL-36γ inside exosomes derived from polyinosinic-polycytidylic acid (poly(I:C))-treated keratinocytes. Previous studies have shown that HPV-16 inhibited the poly(I:C)-stimulated expression of some pro-inflammatory genes. It is therefore conceivable that IL-36γ inside exosomes is inhibited by HPV. In accordance with this hypothesis, the deregulated expression of miRNAs for several pro-inflammatory chemokines and cytokines was measured in E7/E6-transduced keratinocytes.

Use of microRNAs and Exosomes for Treatment of HPV-Positive Cervical Cancer

Determining which miRNAs have relationships with different kinds of HPV-mediated cancers is of high importance, because they could be used as HPV-specific biomarkers. Additionally, it is possible that further individualized treatment approaches and novel targeted treatments could be developed. A majority of HPV-positive cancers show differential expression of miRNAs measured in body fluids and or in tumor tissue. Our knowledge of miRNA dysregulation in HPV positive cancers and how this affects their respective target genes is steadily expanding. For instance, expression of the miR-17-92 cluster had a close relationship with the persistent endogenous expression of virally encoded genes, which implies that HPV-16 viral integration may interfere with the blockage of miR-17/92 cluster expression. Anti-miRNA therapy or miRNA replacement therapy, and some alternative/complementary natural product-based therapies could be used to target such miRNAs, and therefore tackle HPV-related cancers.

Some miRNAs possess tumor inhibitory functions. miRNA downregulation in HPV infected cancer cells has been examined in terms of potential treatment possibilities. Badder revealed the contribution of miR-34a to the repression of oncogenic transformation. miR-34a is a tumor suppressing factor, which increases the survival of abnormally transformed cells and leads to G1/G2 cell cycle arrest. Additionally, Wang et al. showed the downregulation of miR-34a in HPV-positive cancers. Thus, replacing miR-34a may be a possible treatment for HPV-positive cancers. Ibrahim et al. showed that miR-143/145 could act as antioncogenic miRNAs against colon cancer. Recent research has shown a correlation between the downregulation of miR-34a or miR-125 and the invasiveness of CC in HPV infected patients. miRNA-based therapies depend on administering miRNA mimetics that may effectively compensate for the missing tumor inhibitory or cell cycle regulatory functions of miRNAs in normal cells. However, up to now, only a few tumor inhibitory miRNAs (such as miR-34a, miR-143/145 and miR-14593) have been proposed as treatment options. These miRNAs would require an efficient drug delivery approach. Another limitation may be non-specific or off-target effects, which could affect the treatment efficacy.

In common with conventional gene therapy, the delivery of miRNA mimetics requires an efficient vector system for delivering the intended gene. A variety of nanoparticles (NPs) have been investigated as gene delivery vehicles. These may be
administered by intratumoral injection or systemically via parenteral injection. Chen et al. and Wiggins et al. explored the possible use of NPs for miRNA delivery using intravenous tail vein injections in mouse models.144,145 Effective delivery of miR-34a mimetics loaded into poly-cationic liposome-hyaluronic acid-based NPs conjugated to a modified GC4 single chain antibody fragment was tested in mice.142 As more candidate miRNA mimetics emerge, the rational for miRNA replacement treatment is gradually advancing from bench to bedside. miR-34a mimetics have already been tested in clinical trials, and other candidates are being proposed.141 Therefore, miR-34a, miR-143/145, miR-125 and other antioncogenic miRNAs would be candidates for miRNA replacement therapy against HPV-related cancers.

Exosomes are being increasingly examined as delivery vehicles for small molecule drugs, and large biological medications and in some disease situations. Exosomes have advantages of stability, bio-compatibility, low immunogenicity and the ability to be externally loaded with a cargo.146 Exosomes have acceptable stability for storage and shipping, which are basic features required for drug delivery vehicles, and represent a cell-free and manageable system. Recently, researchers have explored exosomes for the delivery of small interfering RNAs, miRNAs, short hairpin RNAs and anti-inflammatory or anticancer drugs such as curcumin, paclitaxel or doxorubicin.146 Studies in a mouse model showed that exosomes with HPV-specific activity could be helpful in CC immunotherapy (Figure 3).147 Proteins expressed on the surface membrane of exosomes, could be used

Figure 3. Immunomodulatory effects of exosomes via exposure to inflammatory mediators. (a) Molecular patterns released by tissue damage, apoptotic cells and pathogens stimulate cytokine generation in myeloid cells. Short-term exposure to these factors results in induction of adaptive immune responses (immunostimulation) and acute inflammation. (b) Exosomes released from the tumor microenvironment result in persistent induction of myeloid cells that secrete similar inflammatory factors (chronic inflammation). [Color figure can be viewed at wileyonlinelibrary.com]
as carriers to deliver the remaining proteins within the exosomes. This application will require improved standardized techniques to purify the exosomes and monitor the exosomal contents.

Conclusions

In addition to the known role of persistent infection with high-risk HPV subtypes, long-term chronic inflammation is another important cause of the development of invasive CC. The role of chronic inflammation involves the participation of cytokines, chemokines, cell growth and survival factors, reactive oxygen/nitrogen species and other mediators including metalloproteinase, prostaglandins, COX2 and finally specific types of miRNAs. The collective effects of these mediators promote alterations in proliferation, cell death, senescence and also mutation and angiogenesis. All these factors operating together may contribute to the progression of HPV-induced CC. Persistent infection with high-risk HPV leads to the integration of HPV-DNA into the hosts genome, producing the overexpression of the viral oncoproteins E6 and E7. Accumulating evidence suggests that the expression levels of E6/E7 are increased in cervical inflammation and therefore may play a crucial role in HPV carcinogenesis. Although it is not clear precisely which miRNAs could link inflammation with CC, more mechanistic studies are required to elucidate the contribution of miRNAs to the inflammatory tumor microenvironment and cervical carcinogenesis. It is known that miRNAs are implicated in the regulation of both adaptive and innate immune responses and modulate inflammatory networks in several cells and tissue types. Furthermore, the steadily increasing interest and number of publications on the role of exosomes suggest that this research field will continue to grow. Current knowledge about the role of exosomes in human health and disease is complex, but remains rapidly expanding. Analysis of exosomes can provide information about the state of their parental cells and exosomes are being investigated as biomarkers for prognosis or diagnosis of diseases. Based on the precise exosome contents, they can exhibit both anti-inflammatory and pro-inflammatory effects. The role of exosomes has been studied in the onset, mediation and treatment of several inflammatory diseases, however up to the present time, there have been few studies on their role in inflammation in CC. Considering the multifunctional role of exosomes, further investigation is required to analyze the exosome contents in CC and to understand how exosomes mediate the process of inflammation in CC.

References

1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394–424.
2. Nahand JS, Taghizadeh-Boroujeni S, Karimzadeh M, et al. microRNAs: new prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. J Cell Physiol 2019;234:17064–99.
3. Berman TA, Schiller JT. Human papillomavirus in cervical cancer and oropharyngeal cancer: one cause, two diseases. Cancer 2017;123:2219–29.
4. Shafabakhsh R, Pourhani MH, Mirzaei HR, et al. Targeting regulatory T cells by curcumin: a potential for cancer immunotherapy. Pharmacol Res 2019;147:104353.
5. Sales KI, Katz AA. Inflammatory pathways in cervical cancer—the University of Cape Town’s contribution. S Afr Med J 2012;102:493–6.
6. Stanley M, Pett M, Coleman N. HPV: from infection to cancer. Biochem Soc Trans 2007;35:1456–60.
7. Kemp TJ, Hildesheim A, Garcia-Piñeres A, et al. Elevated systemic levels of inflammatory cytokines in older women with persistent cervical human papillomavirus infection. Cancer Epidemiol Biomarkers Prev 2010;19:1954–9.
8. Yost S, Hoekstra A. Cervical cancer in women over 65: an analysis of screening. Gynecol Oncol Rep 2018;25:48–51.
9. Ferrero-Milián I, Nielsen OH, Andersen PS, et al. Chronic inflammation: importance of NO2D and NALP3 in interleukin-1beta generation. Clin Exp Immunol 2007;147:227–35.
10. Fernandes IV, Fernandes TAAM, De Azevedo JC, et al. Link between chronic inflammation and human papillomavirus-induced carcinogenesis. Oncol Lett 2015;9:1015–26.
11. Medzhitov R. Origin and physiological roles of inflammation. Nature 2008;454:428–35.
12. Mulholland J, Ingham J, Nob B, et al. CCAR2 negatively regulates IL-8 production in cervical cancer cells. Oncotarget 2018;9:1143.
13. Chen X, Han S, Wang S, et al. Interactions of IL-12A and IL-12B polymorphisms on the risk of cervical cancer in Chinese women. Clin Cancer Res 2009;15:400–5.
14. Moghoofei M, Mostafaei S, Nesaei A, et al. Epstein–Barr virus and thyroid cancer: the beginning of a new tale? Viruses 2013;5:1352–66.
15. Chow A, Zhou W, Liu L, et al. Macrophage immunomodulation by breast cancer-derived exosomes requires toll-like receptor 2-mediated activation of NF-kappaB. Sci Rep 2014;4:5750.
16. Wu L, Zhang X, Zhang B, et al. Exosomes derived from gastric cancer cells activate NF-kB pathway in macrophages to promote cancer progression. Tumour Biol 2016;37:12169–80.
17. Abudukeliumu A, Barberis M, Redegeld FA, et al. Predictable irreversible switching between acute and chronic inflammation. Front Immunol 2018;9:1596.
18. Sohnlein O, Steffens S, Hidalgo A, et al. Neutrophils as protagonists and targets in chronic inflammation. Nat Rev Immunol 2017;17:248–61.
19. Xu Q, Tang Y, Hua S. Immunological approaches towards cancer and inflammation: a cross talk. Front Immunol 2018:9:563.
20. Laffont B, Rayner KJ. MicroRNAs in the patho- biology and therapy of atherosclerosis. Ann N Y Acad Sci 2013;1257:539–45.
21. Farazi TA, Hoell JI, Morozov P, et al. MicroRNAs of the immune system: roles in biology and therapy of atherosclerosis. J Cell Physiol 2015;230:2672–90.
22. Alsaweed M, Hartmann P, Geddes D, et al. MicroRNAs in breastmilk and the lactating breast: potential immunoproctectors and developmental regulators for the infant and the mother. Int J Environ Res Public Health 2015;12:13981–4020.
23. Chuang SM, Balsillie FR. Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol 2015;12:584–96.
24. Chen Z, Han Y, Song C, et al. Systematic review and meta-analysis of the prognostic significance of microRNAs in cervical cancer. Oncotarget 2018;19:17141.
25. Alsaawed M, Hartmann P, Geddes D, et al. MicroRNAs in breastmilk and the lactating breast: potential immunoproctectors and developmental regulators for the infant and the mother. Int J Environ Res Public Health 2015;12:13981–4020.
26. Laffont B, Rayner KJ. MicroRNAs in the pathobiology and therapy of atherosclerosis. Curr Cardiol Rep 2017;33:313–24.
27. Davidson-Moncada J, Papavassilou FN, Tam W. MicroRNAs of the immune system: roles in inflammation and cancer. Ann N Y Acad Sci 2010;1183:1183–94.
28. Pardini R, De Maria D, Francavilla A, et al. MicroRNAs as markers of progression in cervical cancer: a systematic review. BMC Cancer 2018;18:696.
29. Helwa I, Cai J, Drewry MD, et al. A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS One 2017;12:e0170628.
30. Alenguer M, Amorim M. Exosome biogenesis, regulation, and function in viral infection. Viruses 2015;7:5686–93.
31. Li M, Rai AJ, DeCastro GJ, et al. An optimized procedure for exosome isolation and analysis using serum samples: application to cancer biomarker discovery. Methods 2015;87:26–30.
32. Li J, Liu K, Liu Y, et al. Exosomes mediate the cell-to-cell transmission of IFN-alpha-induced antiviral activity. Nat Immunol 2013;14:793–803.
33. Mirzaei H, Sahebkar A, Jaafar MR, et al. Diagnostic and therapeutic potential of exosomes in cancer: the beginning of a new tale? J Cell Physiol 2016;231:425–36.
34. Chan BD, Wong WY, Lee MML, et al. Exosomes in inflammation and inflammatory disease. Proteomics 2019;19:1800149.
35. Chow A, Zhou W, Liu L, et al. Macrophage immunomodulation by breast cancer-derived exosomes requires toll-like receptor 2-mediated activation of NF-kappaB. Sci Rep 2014;4:5750.
36. Wu L, Zhang X, Zhang B, et al. Exosomes derived from gastric cancer cells activate NF-kappaB pathway in macrophages to promote cancer progression. Tumour Biol 2016;37:12169–80.
37. Abudukeliumu A, Barberis M, Redegeld FA, et al. Predictable irreversible switching between acute and chronic inflammation. Front Immunol 2018;9:1596.
38. Sohnlein O, Steffens S, Hidalgo A, et al. Neutrophils as protagonists and targets in chronic inflammation. Nat Rev Immunol 2017;17:248–61.
39. Xu Q, Tang Y, Hua S. Immunological approaches towards cancer and inflammation: a cross talk. Front Immunol 2018:9:563.
40. Laffont B, Rayner KJ. MicroRNAs in the pathobiology and therapy of atherosclerosis. Curr Cardiol Rep 2017;33:313–24.
41. Davidson-Moncada J, Papavassilou FN, Tam W. MicroRNAs of the immune system: roles in inflammation and cancer. Ann N Y Acad Sci 2010;1183:1183–94.
42. Pardini R, De Maria D, Francavilla A, et al. MicroRNAs as markers of progression in cervical cancer: a systematic review. BMC Cancer 2018;18:696.
43. Helwa I, Cai J, Drewry MD, et al. A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS One 2017;12:e0170628.
44. Alenguer M, Amorim M. Exosome biogenesis, regulation, and function in viral infection. Viruses 2015;7:5686–93.
45. Li M, Rai AJ, DeCastro GJ, et al. An optimized procedure for exosome isolation and analysis using serum samples: application to cancer biomarker discovery. Methods 2015;87:26–30.
46. Li J, Liu K, Liu Y, et al. Exosomes mediate the cell-to-cell transmission of IFN-alpha-induced antiviral activity. Nat Immunol 2013;14:793–803.
47. Mirzaei H, Sahebkar A, Jaafar MR, et al. Diagnostic and therapeutic potential of exosomes in cancer: the beginning of a new tale? J Cell Physiol 2016;231:425–36.
68. Pollard JW. Lymphophatocyteic cytokines in the female reproductive tract. Curr Opin Immunol 1991;3:772–7.

69. Schmauz R, Okong P, De Villiers EM, et al. Multiple infectious agents in cases of cervical cancer from a high-incidence area in tropical Africa. Int J Cancer 1989;43:805–9.

70. Koutsy LA, Holmes KK, Critchlow CW, et al. A cohort study of the risk of cervical intraepithelial neoplasia grade 2 or 3 in relation to papillomavirus infection. N Engl J Med 1992; 327:1272–8.

71. Craig D, Woodwor T, McMullin E. Interleukin gene expression and HPV infection in cervical cancer: a mechanism for immune response escape. Cancer Invest 2008;26:1037–43.

72. Lee KE, Bar-Sagi D. Oncogenic KRas suppresses interleukin-dependent inactivation. Nat Cell Biol 2001;4:388–9.

73. Kuilman T, Michaloglou C, Vredeveld LC, et al. The microRNA registry. Oncotarget 2013;4:1369–7.

74. Orjalo AV, Bhaumik D, Gengler BK, et al. Cell size is a key factor and therapeutic target in liver disease. J Hepatol 2015;62:448–57.

75. Bermúdez-Morales V, Peralta-Zaragoza O, Alcocer-González J, et al. The microRNA registry. J Hepatol 2020;73:1272–8.

76. Sadri Nahand et al. Int J Cancer: 146, 305–320 (2020) © 2019 UICC
MicroRNAs and exosomes in CC inflammation

114. Fan Z, Cui H, Xu X, et al. MiR-125a suppresses tumor growth, invasion and metastasis in cervical cancer by targeting STAT3. Oncotarget 2015; 6:25266–80.

115. Jin X, Chen XI, Zhang ZF, et al. Long noncoding RNA SNHG12 promotes the progression of cervical cancer via modulating miR-125b/STAT3 axis. J Cell Physiol 2018;234:6624–32.

116. Bumrunthai S, Ekalaksananan T, Evans MF, et al. Up-regulation of miR-21 is associated with cervicitis and human papillomavirus infection in cervical tissues. PLoS One 2015;10:e0127109.

117. Xu L, Xu Q, Li X, et al. MicroRNA-21 regulates the proliferation and apoptosis of cervical cancer cells via tumor necrosis factor-alpha. Mol Med Rep 2017;16:4659–63.

118. McBee W Jr, Gardiner AS, Edwards RP, et al. MicroRNA analysis in human papillomavirus (HPV) associated cervical neoplasia and cancer. J Carcinogene Mutagene 2011;5:1.

119. Zhang J, Wu H, Li P, et al. NF-kappaB-modulated miR-130a targets TNF-alpha in cervical cancer cells. J Transl Med 2014;12:155.

120. Zhang Y, Wang ZC, Zhang ZS, et al. MicroRNA-155 regulates cervical cancer via inducing Th17/Treg imbalance. Eur Rev Med Pharmacol Sci 2018;22:3179–26.

121. Fan Y, Nan Y, Huang J, et al. Up-regulation of inflammation-related LncRNA-IL7R predicts poor clinical outcome in patients with cervical cancer. Biol Rep 2018;38:BSR20180483.

122. Zhang J, Wu H, Li P, et al. NF-kB-modulated miR-130a targets TNF-alpha in cervical cancer cells. J Transl Med 2014;12:155.

123. Xu L, Xu Q, Li X, et al. MicroRNA-21 regulates the proliferation and apoptosis of cervical cancer cells via tumor necrosis factor-alpha. Mol Med Rep 2017;16:4659–63.

124. Hu Q, Song J, Ding B, et al. miR-146a promotes cervical cancer cell viability by targeting IRAK1 and TRAF6. Oncol Rep 2018;39:3015–24.

125. Khan S, Aspe JR, Asumen MG, et al. Extracellular, cell-permeable survivin inhibits apoptosis while promoting proliferative and metastatic potential. Br J Cancer 2009;100:1073–86.

126. Khan S, Jutzy JM, Aspe JR, et al. Survivin is released from cancer cells via exosomes. Apoptosis 2011;16:1–12.

127. Honegger A, Leitl J, Bulkescher J, et al. Silencing of human papillomavirus (HPV) E6/E7 oncogene expression affects both the contents and the amounts of extracellular microvesicles released from HPV-positive cancer cells. Int J Cancer 2013;133:1631–42.

128. Valenzuela MM, Ferguson Bennit HR, Gonda A, et al. Exosomes secreted from human cancer cell lines contain inhibitors of apoptosis (IAP). Cancer Microenviron 2015;8:65–73.

129. Honegger A, Schilling D, Bastian S, et al. Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells. PLoS Pathog 2015;11: e1004712.

130. Chiantore MV, Mangino G, Iuliano M, et al. Human papillomavirus E6 and E7 oncoproteins affect the expression of cancer-related microRNAs: additional evidence in HPV-induced tumourigenesis. J Cancer Res Clin Oncol 2016;142:1751–63.

131. Harden ME, Munger K. Human papillomavirus 16 E6 and E7 oncogene expression alters microRNA expression in extracellular vesicles. Virology 2017;508:63–9.

132. Gezer U, Ozgur E, Cetinkaya M, et al. Long noncoding RNAs with low expression levels in cells are enriched in secreted exosomes. Cell Biol Int 2014;38:1076–9.

133. Huarte M, Guttman M, Feldser D, et al. A large fraction of cellular RNAs in cervical cancer is required for cancer cell growth. Cancer Res 2014;74:1076–83.

134. Console L, Scalise M, Indiveri C. Exosomes in inflammation and role as biomarkers. Clin Chim Acta 2018;488:165–71.

135. Chow A, Zhou W, Liu L, et al. Macrophage immunomodulation by breast cancer-derived exosomes requires toll-like receptor 2-mediated activation of NF-kB. Sci Rep 2014;4:5750.

136. Bridgewood C, Stacey M, Alase A, et al. IL-36γ has proinflammatory effects on human endothelial cells. Exp Dermatol 2017;26:402–8.

137. Wang W, Yu X, Wu C, et al. IL-36γ inhibits differentiation and induction of keratinocytes via Wnt signaling pathway in psoriasis. Int J Med Sci 2017;14:1002–7.

138. Rana AA, Lucas AV, DeVoti J, et al. Poly (I: C) induces controlled release of IL-36γ from keratinocytes in the absence of cell death. Immunol Res 2015;63:228–35.

139. Bader AG, miR-34—a microRNA replacement therapy is headed to the clinic. Front Genet 2012; 3:120.

140. Wang X, Tang S, Le S-Y, et al. aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One 2008;3:e2557.

141. Wang X, Wang HK, McCoy JP, et al. Oncogenic HPV infections interrupt the expression of tumor-suppressive miR-34a through viral oncogene E6. RNA 2009;15:637–47.

142. Ibrahim AF, Weirauch U, Thomas M, et al. MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res 2011;71:5214–24.

143. Ribeiro J, Marinho-Dias J, Monteiro P, et al. miR-33a and miR-125b expression in HPV infection and cervical cancer development. Biomed Res Int 2015;2015:304584.

144. Wiggins JF, Ruffino L, Kelnar K, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res 2010;70:5923–30.

145. Mengino G, Chiantore MV, Iuliano M, et al. Role of extracellular vesicles in human papillomavirus-induced tumorgenesis. Current perspectives in human papillomavirus. London: IntechOpen. 2018.

146. Chen S, Lv M, Fang S, et al. Poly(C) enhanced anti-cervical cancer immunities induced by dendritic cells-derived exosomes. Int J Biol Macromol 2018;113:1182–7.

147. Lattanzi L, Federico M. A strategy of antigen incorporation into exosomes: comparing cross-presentation levels of antigens delivered by engineered exosomes and by lentiviral virus-like particles. Vaccine 2012;30:7229–37.

148. Di Bonito P, Grasso F, Mochi S, et al. Antitumor CDM8+ T cell immunity elicited by HPV-1-based virus-like particles incorporating HPV-16 E7 protein. Virology 2009;395:45–55.

149. Manfredi F, Di Bonito P, Arenaccio C, et al. Incorporation of heterologous proteins in engineered exosomes. Methods Mol Biol 2016; 1448:249–60.

150. Di Bonito P, Ruldl B, Columba-Cabezas S, et al. HPV-E7 delivered by engineered exosomes elicits a protective CD8(+) T cell-mediated immune response. Viruses 2015;7:1079–99.

151. Di Bonito P, Chiozzi C, Arenaccio C, et al. Antitumor HPV E7-specific CTL activity elicited by in vivo engineered exosomes produced through DNA inoculation. Int J Nanomedicine 2017;12:4579–91.

152. Anticioli S, Manfredi F, Chiozzi C, et al. An exosome-based vaccine platform imparts cytotoxic T lymphocyte immunity against viral antigens. Biotechnol J 2018;13:e1700443.

153. Accardi L, Paolini F, Mandarino A, et al. In vivo antitumor effect of an intracellular single-chain antibody fragment against the E7 oncoprotein of human papillomavirus 16. Int J Cancer 2014;134: 2742–7.

154. Verachi F, Percario Z, Di Bonito P, et al. Purification and characterization of antibodies in single-chain format against the E6 oncoprotein of human papillomavirus type 16. Biomed Res Int 2018;2018:6583852.