THE OPTICAL AFTERGLOW OF THE GAMMA-RAY BURST GRB 011211

Stephen T. Holland, I. Soszyński, Michael D. Gladders, L. F. Barrientos, P. Berlind, David Bersier, Peter M. Garnavich, Saurabh Jha, and K. Z. Stanek

Received 2002 February 18; accepted 2002 April 24

ABSTRACT

We present early-time optical photometry and spectroscopy of the optical afterglow of the gamma-ray burst GRB 011211. The spectrum of the optical afterglow contains several narrow metal lines that are consistent with the burst’s occurring at a redshift of 2.140 ± 0.001. The optical afterglow decays as a power law with a slope of $\alpha = 0.83 \pm 0.04$ for the first ≈ 2 days after the burst, at which time there is evidence of a break. The slope after the break is ≥ 1.4. There is evidence of rapid variations in the R-band light approximately 0.5 days after the burst. These variations suggest that there are density fluctuations near the gamma-ray burst on spatial scales of approximately 40–125 AU. The magnitude of the break in the light curve, the spectral slope, and the rate of decay in the optical suggest that the burst expanded into an ambient medium that is homogeneous on large scales. We estimate that the local particle density is between approximately 0.1 and 10 cm$^{-3}$ and that the total gamma-ray energy in the burst was $(1.2–1.9) \times 10^{50}$ ergs. This energy is smaller than, but consistent with, the “standard” value of $(5 \pm 2) \times 10^{50}$ ergs. Comparing the observed color of the optical afterglow with predictions of the standard beaming model suggests that the rest-frame V-band extinction in the host galaxy is $\lesssim 0.03$ mag.

Key words: gamma rays: bursts

1. INTRODUCTION

The gamma-ray burst GRB 011211 was detected in the constellation Crater by the BeppoSAX satellite at 19:09:21 UT on 2001 December 11. The burst was a shallow, long event with two peaks and a total duration of approximately 270 s, making it the longest event that has been localized by BeppoSAX. The temporal profiles of the event were similar in gamma rays and X-rays. BeppoSAX measured a gamma-ray fluence of 5×10^{-6} ergs cm$^{-2}$ between 40 and 700 keV (Frontera et al. 2002). Approximately 10 hours after the burst occurred, Gray et al. (2001) identified an optical source within the BeppoSAX error circle that was not present in the second-generation Digitized Sky Survey. Bloom & Berger (2001) and Jensen et al. (2001b) reported that this source was fading, and Soszyński et al. (2001) estimated that it had a power-law decay with a slope of $\alpha = 0.93 \pm 0.06$. Fruchter et al. (2001) found, and Gladders et al. (2001) confirmed, a redshift of $z = 2.14$ based on several absorption lines in the spectrum of the optical afterglow (OA). Burud et al. (2001) identified a host galaxy with $R_{\text{host}} = 24.8 \pm 0.3$ mag and found that the OA is offset 0.5 southeast from the center of this object.

In this paper, we present photometry and spectroscopy of the OA of GRB 011211 taken between ≈ 0.5 and 2.7 days after the burst occurred. Our data suggest that there were rapid fluctuations in the optical flux approximately 12 hr after the burst occurred. We adopt a cosmology with a Hubble parameter of $H_0 = 65$ km s$^{-1}$ Mpc$^{-1}$, a matter density of $\Omega_m = 0.3$, and a cosmological constant of $\Omega_{\Lambda} = 0.7$. For this cosmology, a redshift of $z = 2.140$ corresponds to a luminosity distance of 18.18 Gpc and a distance modulus of 46.30. One arcsecond corresponds to 28.06 comoving kpc, or 8.94 proper kpc. The look-back time is 11.28 Gyr.

Our photometry data were collected at three telescopes: the Optical Gravitational Lensing Experiment (OGLE) 1.3 m telescope at Las Campanas Observatory, the Magellan 6.5 m Walter Baade Telescope at Las Campanas, and the Fred Lawrence Whipple Observatory (FLWO) 1.2 m telescope. The OGLE 1.3 m telescope was equipped with the 8K \times 8K OGLE III CCD, which had a scale of 0.062 pixel$^{-1}$, a gain setting of 1.0 e^- ADU$^{-1}$, and a readout noise of 5 e^-. The Magellan images were taken with the LDSS-2 imaging spectrograph in its imaging mode. It had a scale of 0.026 pixel$^{-1}$, a gain of 1.0 e^- ADU$^{-1}$, and a readout noise of 7 e^-. The FLWO images were taken with the “4-Shooter” CCD mosaic (Szengyorgyi et al. 2002). The pixel scale was 0.67 (binned $\times 2$), the gain was 4.0 e^- ADU$^{-1}$, and...
the readout noise was 10 e^-. A log of the observations is given in Table 1. Figure 1 shows the field containing the OA.

The field stars around GRB 011211 were calibrated on 2002 January 12 (UT) using images taken with the Vatican Advanced Technology Telescope. Landolt standard fields (Landolt 1992) were observed in $UBVRI$ filters throughout the night under photometric conditions. We derived airmass and color corrections and computed magnitudes for eight stars near GRB 011211. These magnitudes and colors are given in Table 2. The magnitudes for the USNO-A2.0 star 0675-11427359 (our star S2) are consistent with those of Henden (2002).

We used DAOPHOT II (Stetson 1987) and ALLSTAR (Stetson & Harris 1988) to perform point-spread function fitting photometry on the calibrated field stars, and on the OA, on each image. A zero-point offset was calculated for each filter on each night and applied to the observed magnitudes. Our calibrated photometry for the OA is presented in Table 1. The two FLWO images in each band were averaged to obtain the final images. The OA was not detected in any of our 2001 December 14 FLWO images. Therefore, we estimated upper limits to the brightness of the OA on 2001 December 14.5 from the limiting magnitudes of these images, which are listed in Table 1.

The OA is consistent with a point source in all of our images. We aligned and co-added all of our R-band images to obtain a deep image (shown in Fig. 1) with a limiting magnitude of $R_{\lim} \approx 23.5 \pm 0.2$. There is no evidence of a host galaxy in this image.

3. SPECTRAL DATA

A spectrum of the OA was obtained with the Magellan 6.5 m Walter Baade Telescope using the LDSS-2 imaging spectrograph on 2001 December 13.3 UT, approximately 1.5 days after the burst. The slit width was 1" and the total exposure time was 4×620 s. The resolution is 12 A. The spectra were reduced in the standard manner, and the wavelength calibration was done using an HeNe arc. Several weak metal lines were identified to determine the redshift of the system. These are listed in Table 3. The mean redshift is $z = 2.140 \pm 0.001$ (standard error). Table 3 also lists the observed and rest-frame equivalent widths for each line.

The measured absorption-line widths for GRB 011211 are quite similar to those observed in GRB 000301C (Jensen et al. 2001a) but weaker than the exceptional case of GRB 000926 (Castro et al. 2002). Both these GRBs have redshifts similar to that of GRB 011211. We also observe an unidentified, broad feature at approximately 4600 A. This may be an additional absorption system along the line of sight, but the signal-to-noise ratio of our spectrum is not high enough to confirm this hypothesis. A plot of the spectrum, with our line identifications, is given in Figure 2.

4. OPTICAL LIGHT CURVE

The VRI light curves of the OA of GRB 011211 are shown in Figure 3. The flux from the host galaxy (Burud et al. 2001) has not been subtracted. The pixel sizes in our images are comparable to the reported offset between the OA and the host (0.5%), so our quoted magnitudes include the flux from both the OA and the host galaxy. However, the host is faint enough that it will contribute only $\approx 0.1\%$ of the light, so our quoted magnitudes include the flux from both the OA and the host galaxy. Therefore, we believe that the

UT Date	JD (2450,000+)	t	Telescope	Magnitude	Seeing (arcsec)	Exposure (s)
V filter:						
Dec 12.3028...	2,255.8063	0.5081	OGLE	20.69 ± 0.05	1.43	600
Dec 13.2668...	2,256.7670	1.4688	OGLE	21.59 ± 0.08	1.32	600
Dec 14.4844...	2,257.9844	2.6862	FLWO	> 22.3 ± 0.2	1.72	2 × 600
R filter:						
Dec 12.2482...	2,255.7482	0.4590	OGLE	20.09 ± 0.07	1.67	180
Dec 12.2500...	2,255.7500	0.4518	Baade	20.28 ± 0.02	1.23	60
Dec 12.2567...	2,255.7567	0.4585	OGLE	20.40 ± 0.04	1.70	600
Dec 12.2771...	2,255.7771	0.4789	OGLE	20.37 ± 0.04	1.58	600
Dec 12.2945...	2,255.7945	0.4963	OGLE	20.25 ± 0.03	1.43	600
Dec 12.3226...	2,255.8226	0.5244	OGLE	20.33 ± 0.04	1.48	600
Dec 12.3400...	2,255.8400	0.5418	OGLE	20.51 ± 0.04	0.83	60
Dec 13.2418...	2,256.7418	1.4436	OGLE	21.48 ± 0.11	1.40	600
Dec 13.3432...	2,256.8432	1.5450	OGLE	21.41 ± 0.07	1.16	600
Dec 13.3147...	2,256.8147	1.5165	Baade	21.35 ± 0.09	0.74	60
Dec 14.5132...	2,258.0132	2.7150	FLWO	> 22.4 ± 0.2	1.68	2 × 900

I filter: | | | | | | |
Dec 12.2662...	2,255.7662	0.4680	OGLE	19.88 ± 0.07	1.57	600
Dec 12.2863...	2,255.7863	0.4881	OGLE	19.90 ± 0.06	1.38	600
Dec 12.3145...	2,255.8145	0.5163	OGLE	19.91 ± 0.05	1.40	600
Dec 12.3307...	2,255.8307	0.5325	OGLE	20.06 ± 0.05	1.31	600
Dec 13.2559...	2,256.7559	1.4577	OGLE	20.78 ± 0.11	1.24	600
Dec 13.3533...	2,256.8333	1.5551	OGLE	20.86 ± 0.11	1.17	600
Dec 14.5133...	2,258.0153	2.7171	FLWO	> 21.0 ± 0.2	1.98	2 × 600

Note.—No corrections for extinction have been applied to the photometry in this table.
Fig. 1.—Combined R-band image of the field of GRB 011211. The OA, and the stars used for calibration (see Table 2), are circled. The USNO-A2.0 star 0675-11427359 (Henden 2001, 2002) is our star S2. Each line indicating direction is 30° long. The horizontal streaks near the bottom of the image are due to a bad column on the OGLE III CCD.

Star	R.A. (J2000)	Decl. (J2000)	V	$U-B$	$B-V$	$V-R$	$V-I$
S0...	11 15 18.02	$-21 56 13.2$	14.42 ± 0.02	0.057 ± 0.036	0.604 ± 0.028	0.353 ± 0.028	0.684 ± 0.028
S1...	11 15 15.52	$-21 56 49.4$	19.75 ± 0.05	1.181 ± 0.071	0.779 ± 0.071	1.484 ± 0.071	
S2...	11 15 19.02	$-21 58 05.1$	18.01 ± 0.03	−0.204 ± 0.050	0.481 ± 0.042	0.326 ± 0.042	0.650 ± 0.042
S3...	11 15 14.21	$-21 58 06.4$	16.42 ± 0.03	0.580 ± 0.050	0.904 ± 0.042	0.556 ± 0.042	1.100 ± 0.042
S4...	11 15 12.82	$-21 58 02.6$	16.51 ± 0.03	0.966 ± 0.050	1.013 ± 0.042	0.653 ± 0.042	1.165 ± 0.042
S5...	11 15 11.88	$-21 57 31.2$	17.52 ± 0.04	1.181 ± 0.064	1.517 ± 0.057	1.053 ± 0.057	2.484 ± 0.057
S6...	11 15 11.05	$-21 56 10.0$	16.49 ± 0.03	0.078 ± 0.050	0.654 ± 0.042	0.387 ± 0.042	0.745 ± 0.042
S7...	11 15 21.96	$-21 58 36.6$	19.45 ± 0.05	...	1.476 ± 0.071	1.012 ± 0.071	2.314 ± 0.071

Note.—These stars are identified in Fig. 1. Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds.
flux from the host galaxy does not significantly affect our results.

We fitted all of the data in Table 1 up to 1.6 days after the burst with a power law of the form

$$M_j = K_j - 2.5 \log(C_j t^{-\alpha}),$$

(1)

where M_j is the magnitude for filter j, K_j is the photometric zero point for filter j taken from Fukugita, Shimasaku, & Ichikawa (1995), t is the time in days since the burst occurred, α is the slope, and C_j is a normalization constant representing the flux from the OA in filter j 1 day after the burst. The best-fitting power law to our data has $\alpha = 0.83 \pm 0.04$ with χ^2/dof = 19.222/14 and an rms residual of 0.09 mag.

Our power-law fit suggests that the OA should have $R = 21.9 \pm 0.1$ at $t = 2.72$ days. However, we find that the OA has $R > 22.4$ at this time, $\approx 5 \sigma$ fainter than the predicted magnitude. This nondetection suggests that a break occurred in the light curve between 1.52 and 2.72 days after the burst. If the break occurred at more than 1.52 days, then the late-time decay has a slope of $\alpha_2 \geq 1.4$, which corresponds to the decay’s becoming steeper by $\Delta \alpha = \alpha_2 - \alpha \geq 0.6$. The FLWO V-band data are consistent with this, but the FLWO I-band data are consistent with there being no break in the light curve. Burud et al. (2001) found $R = 24.8 \pm 0.3$ for the OA 10 days after the burst. If we fit a broken power law to our R-band data and their point, we find a late-time slope of $\alpha_2 = 1.70 \pm 0.26$ and a break time of $t_b = 1.80 \pm 0.62$ days, which are consistent with the estimates of the late-time slope and break time made using only our data.

Figure 3 shows that a single power law with a slope of 0.83 ± 0.04 is a good fit to the VRI data up to 1.52 days after

Table 3

Line	λ (Å)	λ_0 (Å)	z	EW (Å)	EW$_0$ (Å)
Si II/O I	4090.2	1304.4/1304.9	2.1358/2.1346	11.28	3.59
Si IV	4296.1	1368.1	2.1390	5.41	1.72
Cr II	4415.6	1406.3	2.1399	2.17	0.69
Cr II	4457.0	1422.7	2.1398	2.84	0.90
Si II	4794.0	1526.7	2.1401	4.17	1.33
Cr IV	4865.3	1548.2	2.1426	4.08	1.30
Al II	5247.8	1670.8	2.1409	5.11	1.63
Fe II	6875.2	2189.6	2.1399	3.42	1.09

Fig. 2.—Magellan/LDSS-2 spectrum of GRB 011211 taken on 2001 December 13.3. The spectrum was smoothed with a 30 Å boxcar, to make the metal lines more clear, and normalized to the continuum. The absorption lines listed in Table 3 are marked, and their rest-frame wavelengths (in angstroms) are given in parentheses. There is an unidentified broad feature at ≈ 4600 Å. The mean redshift from the identified lines is $z = 2.140 \pm 0.001$ (s.e.).

Fig. 3.—Best-fitting power law to our VRI observations of the OA of GRB 011211. The slope is consistent with the early-time slopes seen for other GRB OAs. The nondetection of the OA on 2001 December 14.5 (represented by the arrows) suggests that the break occurred between 1.6 and 2.7 days after the burst. The photometry has been corrected for Galactic extinction but not for extinction in the host.
the burst. Using equation (1), we find colors of $V-R = 0.27 \pm 0.13$, $V-I = 0.70 \pm 0.13$, and $R-I = 0.43 \pm 0.13$ before the break. We stress that these colors are corrected for Galactic extinction but not for extinction in the host galaxy of GRB 011211. In § 7, we show that the extinction in the host along the line of sight to the burst is probably small compared with the Galactic extinction in that direction. Assuming a spectrum of the form $f_{\nu} \propto \nu^{-\beta}$, we find a weighted mean dereddened spectral slope from these colors of $\beta = 0.61 \pm 0.15$ (s.e.). This is similar to the dereddened spectral slope found for many other GRBs.

5. ENERGY IN THE BURST

The BeppoSAX fluence is 5×10^{-6} ergs cm$^{-2}$ in the 40–700 keV band (Frontera et al. 2002). Applying a cosmological k-correction (Bloom, Frail, & Sari 2001), this fluence corresponds to an isotropic equivalent energy of $E_{\text{iso}} = 7 \times 10^{52}$ ergs between 20 and 2000 keV. Our k-correction assumes that the gamma-ray spectrum has the same form as the Band et al. (1993) spectrum, with $\alpha = -1$, $\beta = -2$, and $E_0 = 150$ keV. These are the canonical values for a GRB’s gamma-ray spectrum, but Band et al. (1993) found that they are not universal and that individual bursts can have very different spectral shapes. We estimated the uncertainty in our k-correction to be $\approx 20\%$ based on changing the spectral shape parameters by factors of 2.

The opening angle θ_0 of a GRB jet is related to the time of the break in the light curve (Rhoads 1999; Sari, Piran, & Halpern 1999). Frail et al. (2001) cast this relation as

$$\theta_0 = 0.057 \left(\frac{t_b}{1 \text{ day}} \right)^{3/8} \left(\frac{1 + z}{2} \right)^{-3/8} \left(\frac{E_{\text{iso}}}{10^{53} \text{ ergs}} \right)^{-1/8}$$

$$\times \left(\frac{\eta_e}{0.2} \right)^{1/8} \left(\frac{n}{0.1 \text{ cm}^{-3}} \right)^{1/8} \text{ rad},$$

(2)

where η_e is the efficiency of converting energy in the ejecta into gamma rays and n is the circumburst particle density. Frail et al. (2000) and Panaitescu & Kumar (2001) find $0.001 \text{ cm}^{-3} \lesssim n \lesssim 3 \text{ cm}^{-3}$ in the vicinity of five GRBs, with a median number density of $n = 0.1 \text{ cm}^{-3}$. Therefore, we adopt this as the circumburst number density. We will assume, as did Frail et al. (2001), that $\eta_e = 0.2$. Equation (2) gives $\theta_0 = 3^\circ 4.4^\circ 2$ for break times of $t_b = 1.5$–2.7 days. From this we estimate that GRB 011211’s total beamed energy in gamma rays, after correcting for the beam geometry, was E, $\approx (1.2$–$1.9) \times 10^{50}$ ergs. This is only ≈ 2 σ smaller than the “standard” total beamed energy in gamma rays of 5×10^{50} ergs (Frail et al. 2001; Piran et al. 2001; Panaitescu & Kumar 2002). This agreement suggests that our assumptions of $\eta_e \approx 0.2$ and $n \approx 0.1 \text{ cm}^{-3}$ are reasonable.

In order for E, to equal the “standard” value, the opening angle of the beam needs to be $\approx 7^\circ$. This corresponds to a break time of ≈ 10 days, which is inconsistent with the observed brightness of the OA on 2001 December 14. An opening angle of 7° can be made consistent with our estimate of the break time by increasing the circumburst particle density to $n \approx 5$–30 cm$^{-3}$. This is at the high end of the range of particle densities found by Frail, Waxman, & Kulkarni (2000) and Panaitescu & Kumar (2001) for several GRBs, but not inconsistent with their results. Therefore, we believe that the environment of GRB 011211 was similar to the environments of other GRBs.

6. AMBIENT MEDIUM NEAR THE BURST

For a collimated outflow into an ambient medium with a number density distribution of the form $n(r) \propto r^{-\delta}$ (Panaitescu, Mészáros, & Rees 1998; Mészáros, Rees, & Wijers 1998), the power-law index δ is related to the observed magnitude of the break in the light curve by $\delta = (4 \alpha - 3)/(\Delta \alpha - 1)$. We find $\Delta \alpha \geq 0.6$, which corresponds to $\delta \leq 1.5$. This is not consistent with expansion into an ambient medium that is dominated by a preexisting stellar wind ($\delta = 2$), but it might be consistent with expansion into a homogeneous medium ($\delta = 0$). If the ambient medium is, on average, uniform, then the magnitude of the break in the light curve should be $\Delta \alpha = \frac{1}{2}$, which implies a late-time slope of $\alpha_2 = 1.6$. This is consistent with the late-time slope that we find (≥ 1.4) from our nondetection of the OA on 2001 December 14. We note that it is also in good agreement with the late-time slope that we find (1.70 ± 0.26) using the data of Burud et al. (2001). Further evidence that the ambient medium is not dominated by a preexisting stellar wind comes from the relationships between the time and spectral evolutions of the flux in a homogeneous medium (Sari et al. 1999) and in a wind (Chevalier & Li 1999). Using the observed prebreak slope of the light curve, a homogeneous medium predicts $\beta = 0.55 \pm 0.03$ for $\delta = 0$ in the fast-cooling regime, which is within 0.5 σ of the observed value. In the slow-cooling regime, the predicted slope is $\beta = 0.22 \pm 0.03$, which is a worse agreement. A preexisting wind implies $\beta = 0.89 \pm 0.03$ for the fast-cooling case and $\beta = 0.22 \pm 0.03$ for the slow-cooling case. Both are worse fits than the fast-cooling homogeneous medium model (although all four cases are within 2.5 σ of the observed value). Therefore, we believe that a homogeneous medium with fast-cooling electrons provides better agreement to the observations than the wind model does. The electron power-law distribution index for this case is $p = 2.1 \pm 0.1$, which is consistent with what is seen in other bursts.

Figure 4 suggests that there may be rapid variations in the R-band light ≈ 0.5 days after the burst. To test this, we subtracted the best-fitting power law from the R-band magnitudes and computed the residuals. The R-band residuals have a weighted mean of -0.02 ± 0.03 with an rms of 0.10 mag. This means that we can reject the hypothesis that the residuals are consistent with random scatter about a power-law decay at the 95% confidence level. Therefore, we believe that the small-scale variations in the R-band light ≈ 0.5 days after the burst may be real. We find no evidence of variability in the I-band data.

Garnavich, Loeb, & Stanek (2000) have postulated that the rapid variability seen in GRB 000301C was due to gravitational microlensing. However, the rapid R-band variations seen in GRB 011211 are much smaller than those seen in the OA of GRB 000301C. An alternative explanation is that there is small-scale structure in the local medium around the burst. Wang & Loeb (2000) find that linear density variations on spatial scales of ≈ 1–104 AU in the ambient medium that a GRB is expanding into can cause rapid fluctuations in the optical flux, similar to those seen in Figure 4. Their methodology predicts fluctuations of approximately 5%–10% over time periods of ≈ 0.25–1.5 hr for GRB 011211. The observed scatter in the R-band magnitudes of several field stars is 0.06 mag, and the rms residual in the OA magnitudes is 0.10 mag. Therefore, the rms fractional variability in the R band at about 0.5 days after the...
burst is $\approx 8\%$ on timescales of ≈ 1–2 hr. This is consistent with the predicted variability.

Using Table 3 of Wang & Loeb (2000) and the values for the isotropic equivalent energy of the burst and the density of the circumburst medium that we found in § 5, we can estimate the size of the density fluctuations near the burst and the radius of the shock front. For $E_{\text{iso}} = 7 \times 10^{52}$ ergs and $n = 0.1$–10 cm$^{-3}$, the observed R-band fluctuations correspond to typical density variations on spatial scales of ≈ 40–125 AU. At 0.5 days after the burst, the radius of the shock front is $\approx 12,000$–$40,000$ AU. (The apparent faster-than-light motion of the shock front is an illusion caused by the highly relativistic velocity of the shock front.) Therefore, the density fluctuations are small compared with the region that has been swept out by the GRB, and our finding that the circumburst environment can be represented by a homogeneous medium is, on average, valid. The density fluctuations are between $\delta n/n \approx 0.3$ (for $n \approx 0.1$ cm$^{-3}$) and ≈ 3 (for $n \approx 10$ cm$^{-3}$). Smaller regions will have larger density fluctuations than larger regions will. These fluctuations are similar to those seen in the interstellar medium in our Galaxy (Diamond et al. 1989; Faison & Goss 2001).

7. EXTINCTION IN THE HOST

We can estimate the amount of extinction in the host galaxy along the line of sight to GRB 011211 by comparing the observed spectral slope after correcting for Galactic reddening ($\beta = 0.61 \pm 0.15$) with the predicted intrinsic slope found in § 6 ($\beta_0 = 0.55 \pm 0.03$). This difference corresponds to $E_{B-V} = 0.02 \pm 0.05$ in the host galaxy, which yields an extinction of $A_V = 0.06 \pm 0.15$ in the observer’s frame. Using the extinction law of Cardelli, Clayton, & Mathis (1989), we find $A_V \lesssim 0.03$ in the rest frame of the burst. This result depends somewhat on the details of the extinction law used, but it suggests that there is no significant extinction along the line of sight to GRB 011211 in its host galaxy.

8. CONCLUSIONS

We present early-time VRI photometry and spectroscopy of the optical afterglow of GRB 011211 starting approximately 0.5 days after the burst. The spectrum contains several narrow metal lines that are consistent with a redshift of 2.140 ± 0.001. There is an unidentified broad feature at ≈ 4600 Å that may be an absorption system along the line of sight to the GRB.

The OA is red, with a spectral slope between 5505 and 8060 Å of $\beta = 0.61 \pm 0.15$ after correcting for Galactic extinction but ignoring extinction in the host. This corresponds to a color of $V-I = 0.70 \pm 0.13$. The magnitude of the break in the optical decay is consistent with the burst’s expanding into an approximately homogeneous medium. If we assume that GRBs have a the standard energy suggested by Frail et al. (2001), Piran et al. (2001), and Panaitescu & Kumar (2002), then the ambient medium near the burst has a particle density of 0.1–10 cm$^{-3}$. Comparing the observed color of the OA with predictions of the standard beaming model suggests that the rest-frame V-band extinction in the host galaxy is $A_V \lesssim 0.03$ mag.

GRB 011211 follows the same broad pattern established by other long-duration GRBs. The OA decays as a power law with a slope of $\alpha = 0.83 \pm 0.04$ for the first ≈ 2 days, and there is evidence of a break occurring between 1.52 and 2.72 days after the burst. The slope of the light curve after the break is $\alpha_2 \geq 1.4$. We find evidence for variations of $\approx 8\%$ in the flux on timescales of 1–2 hr occurring approximately half a day after the burst. Interpreting this in the framework of Wang & Loeb (2000) suggests that there are density fluctuations with scales of approximately 40–125 AU within ≈ 0.05–0.20 pc of the GRB’s progenitor. The discovery of rapid variations in the optical light from a GRB highlights the importance of continuous, high-precision observations of GRBs at early times.

We wish to thank the BeppoSAX team, Scott Barthelmy, and the GRB Coordinates Network (GCN) for rapidly providing precise GRB positions to the astronomical community. We also wish to thank Arne Henden for providing precision photometry of stars in GRB fields. The authors would like to thank the anonymous referee for helpful comments on this paper. S. T. H. and P. M. G. acknowledge support from NASA Long-Term Space Astrophysics grant NAG 5-9364. D. B. has been supported by NSF grant AST 99-79812. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.
REFERENCES

Band, D., et al. 1993, ApJ, 413, 281
Bloom, J. S., & Berger, E. 2001, GCN Circ. 1193
Bloom, J. S., Frail, D. A., & Sari, R. 2001, AJ, 121, 2879
Burud, I., Rhoads, J., Fruchter, A., & Hjorth, J. 2001, GCN Circ. 1213
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Castro, S., Galama, T. J., Harrison, F. A., Holtzman, J. A., Bloom, J. S., Djorgovski, S. G., & Kulkarni, S. R. 2001, ApJ, submitted (astro-ph/0110566)
Chevalier, R. A., & Li, Z.-Y. 1999, ApJ, 520, L29
Diamond, P. J., Goss, W. M., Romney, J. D., Booth, R. S., Kalberla, P. M. W., & Mebold, U. 1989, ApJ, 347, 302
Faison, M. D., & Goss, W. M. 2001, AJ, 121, 2706
Frail, D. A., et al. 2001, ApJ, 562, L55
Frail, D. A., Waxman, E., & Kulkarni, S. R. 2000, ApJ, 537, 191
Frontera, F., et al. 2002, GCN Circ. 1215
Fruchter, A., Vreeswijk, P., Rhoads, J., & Burud, I. 2001, GCN Circ. 1200
Fukugita, M., Shimasaku, K., & Ichikawa, T. 1995, PASP, 107, 945
Fyabo, J. U., et al. 2002, in Lighthouses of the Universe, ed. R. Sunyaev, M. Gilfanov, & E. Churazov (Berlin: Springer), in press
Garnavich, P. M., Loeb, A., & Stanek, K. Z. 2000, ApJ, 544, L11
Gladders, M., Holland, S., Garnavich, P. M., Jha, S., Stanek, K. Z., Bersier, D., & Barrientos, L. F. 2001, GCN Circ. 1209
Grav, T., et al. 2001, GCN Circ. 1191
Henden, A. 2001, GCN Circ. 1197
———. 2002, GCN Circ. 1303
Jensen, B. L., et al. 2001a, A&A, 370, 909
———. 2001b, GCN Circ. 1195
Landolt, A. U. 1992, AJ, 104, 340
Mészáros, P., Rees, M. J., & Wijers, R. A. M. J. 1998, ApJ, 499, 301
Piran, T., Kumar, P., Panaitescu, A., & Piro, L. 2001, ApJ, 560, L167
Panaitescu, A., & Kumar, P. 2001, ApJ, 554, 667
———. 2002, ApJ, 571, 779
Panaitescu, A., Mészáros, P., & Rees, M. J. 1998, ApJ, 503, 314
Rhoads, J. E. 1999, ApJ, 525, 737
Sari, R., Piran, T., & Halpern, J. P. 1999, ApJ, 519, L17
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Soszynski, I., Holland, S. T., Garnavich, P. M., Bersier, D., Jha, S., & Stanek, K. S. 2001, GCN Circ. 1199
Stetson, P. B. 1987, PASP, 99, 191
Stetson, P. B., & Harris, W. E. 1988, AJ, 96, 909
Szentgyorgyi, A. H., et al. 2002, in preparation
Wang, X., & Loeb, A. 2000, ApJ, 535, 788