LARGE DEVIATIONS FOR VALUES OF L-FUNCTIONS ATTACHED TO CUSP FORMS IN THE LEVEL ASPECT

MASAHIRO MINE

Abstract. We study the distribution of values of automorphic L-functions in a family of holomorphic cusp forms with prime level. We prove an asymptotic formula for a certain density function closely related to this value-distribution. The formula is applied to estimate large values of L-functions.

1. Introduction

Let q be a prime number. Denote by \(S_2(q) \) the space of holomorphic cusp forms for the congruence subgroup \(\Gamma_0(q) \) of weight 2 with trivial nebentypus. We describe the Fourier series expansion of \(f \in S_2(q) \) at infinity as

\[
f(z) = \sum_{n=1}^{\infty} a_f(n) \sqrt{n} \exp(2\pi i nz)
\]

for \(z \in \mathbb{C} \) with \(\text{Im}(z) > 0 \) so that the automorphic L-function

\[
L(s, f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s}
\]

has the critical strip \(0 \leq \Re(s) \leq 1 \). The behavior of the values \(L(s, f) \) in the critical strip has received attention by many researchers. Put \(q(s) = q(|s| + 3)^2 \) for \(s \in \mathbb{C} \). By a standard method of L-functions, we have the convexity bound

\[
L(s, f) \ll q(s)^{(1-\sigma)/2+\epsilon}
\]

for \(s = \sigma + it \) with \(0 \leq \sigma \leq 1 \), where \(\epsilon \) is any positive real number. Then the work of reducing the exponent in (1.1) proceeded, and some results are included in [13, Theorem 5.19]. The Grand Riemann Hypothesis (GRH) is also useful to derive a sharp upper bound of \(\log L(s, f) \) for \(\Re(s) > 1/2 \). Let \(B_2(q) \) be a basis of \(S_2(q) \) consisting of primitive cusp forms. Throughout this paper, \(\log_j \) indicates the \(j \)-fold iterated natural logarithm, that is,

\[
\log_1 = \log \quad \text{and} \quad \log_{j+1} = \log(\log_j)
\]

for \(j \geq 1 \). Then GRH implies

\[
\log L(s, f) \ll \left(\frac{\log q(s)}{2\sigma - 1} \right)^{2-2\sigma} \log_2 q(s)
\]

for \(s = \sigma + it \) with \(1/2 < \sigma \leq 5/4 \) if \(f \) belongs to \(B_2(q) \); see [13, Theorem 5.19]. It is believed that even (1.2) is not best possible. Moreover, the true order of the

2020 Mathematics Subject Classification. Primary 11F66; Secondary 60F10.

Key words and phrases. automorphic L-function, value-distribution, large deviation, M-function.
magnitude of log $L(\sigma, f)$ is expected to be $(\log q)^{1-\sigma+o(1)}$ for $1/2 < \sigma < 1$ by some probabilistic observations. Define the distribution function

$$\Phi_q(\sigma, \tau) = \frac{\# \{ f \in B_2(q) \mid \log L(\sigma, f) > \tau \}}{\# B_2(q)}$$

for $\sigma > 1/2$ and $\tau \in \mathbb{R}$. Then it is reasonable to consider the decay of $\Phi_q(\sigma, \tau)$ with respect to τ such that $\tau \approx (\log q)^{1-\sigma+o(1)}$ for $1/2 < \sigma < 1$. For technical reasons, the weighted distribution function

$$\tilde{\Phi}_q(\sigma, \tau) = \left(\sum_{f \in B_2(q)} \omega_f \right)^{-1} \sum_{f \in B_2(q)} \omega_f$$

is usually easier to deal with, where $\omega_f = (4\pi \langle f, f \rangle)^{-1}$ is the harmonic weight, and $\langle f, g \rangle$ indicates the Petersson inner product on $\Gamma_0(q) \backslash \mathbb{H}$. Lamzouri [15] proved that there exist positive constants $A(\sigma)$ and $c(\sigma)$ satisfying

$$\tilde{\Phi}_q(\sigma, \tau) = \exp \left(-A(\sigma) \frac{\tau^{1-\sigma}}{1-\sigma} (\log \tau)^{1-\sigma} \left(1 + O \left(\frac{1}{\sqrt{\log \tau}} + r(\log q, \tau) \right) \right) \right)$$

uniformly in the range $1 \ll \tau \leq c(\sigma)(\log q)^{1-\sigma}(\log_2 q)^{-1}$, where

$$r(y, \tau) = \left(\frac{\tau}{y^{1-\sigma}(\log y)^{-1}} \right)^{(\sigma-\frac{1}{2})/(1-\sigma)}.$$

One can deduce from [1.3] a similar result for the distribution function $\Phi_q(\sigma, \tau)$. Recall the following facts on cusp forms:

$$\# B_2(q) = \frac{q}{12} + O(1); \quad \sum_{f \in B_2(q)} \omega_f = 1 + O \left(q^{-3/2} \log q \right);$$

$$q^{-1}(\log q)^{-3} \ll \omega_f \ll q^{-1} \log q.$$

See [24] and [5, (1.16) and (1.17)]. Thus the relation

$$\log \Phi_q(\sigma, \tau) = \log \tilde{\Phi}_q(\sigma, \tau) + O(\log_2 q)$$

follows from the definitions of $\Phi_q(\sigma, \tau)$ and $\tilde{\Phi}_q(\sigma, \tau)$. It implies that (1.3) remains valid for $\Phi_q(\sigma, \tau)$ in a suitable range of τ. The purpose of this paper is to provide a more precise formula of $\Phi_q(\sigma, \tau)$ for $1/2 < \sigma < 1$ in the same range of τ as in the result of Lamzouri. Furthermore, we consider an analogous issue on $\Phi_q(1, \tau)$. Note that several authors [14, 18, 27] proved asymptotic formulas of $\Phi_q(1, \tau)$ that look quite different from (1.3); see (1.9) below.

1.1. **Statement of results.** Let $\sigma > 1/2$ and $\tau \in \mathbb{R}$. We begin with the limiting distribution function

$$\Phi(\sigma, \tau) = \lim_{q \to \infty} \Phi_q(\sigma, \tau).$$

The author [23] showed the existence of a continuous function $\mathcal{M}_\sigma : \mathbb{R} \to \mathbb{R}_{\geq 0}$ such that $\Phi(\sigma, \tau)$ satisfies the identity

$$\Phi(\sigma, \tau) = \int_{\tau}^{\infty} \mathcal{M}_\sigma(x) \, dx,$$
Nevertheless, we see that Theorem 1.1 yields the formula
\[\sigma \text{ only on} \]

Furthermore, the polynomial \(A \) where
\(A \) is large enough. Here, the implied constant depends on \(0 < a < 2 \).

A similar formula was also proved by Liu–Royer–Wu \([18]\) for the L-functions. Then, we define
\[(1.7) \quad \mathcal{M}_\sigma(\tau + x) = \frac{F_\sigma(\kappa) e^{-\kappa(\tau + x)}}{\sqrt{f_\sigma''(\kappa)}} \left\{ \exp \left(-\frac{x^2}{2 f_\sigma''(\kappa)} \right) + O \left(\kappa^{\frac{1}{2} \sqrt{\log \kappa}} \right) \right\} \]

uniformly for all \(x \in \mathbb{R} \) if \(\tau > 0 \) is large enough, where the implied constant depends only on \(\sigma \).

Remark that the main term of (1.7) dominates the error term only if \(|x| \) is small. Nevertheless, we see that Theorem 1.1 yields the formula
\[\Phi(\sigma, \tau) = \int_0^\infty \mathcal{M}_\sigma(\tau + x) |dx| \]
\[= \frac{F_\sigma(\kappa) e^{-\kappa \tau}}{\kappa \sqrt{2 \pi f_\sigma''(\kappa)}} \left\{ 1 + O \left(\kappa^{\frac{1}{2} \sqrt{\log \kappa}} \right) \right\} \]
for \(1/2 < \sigma \leq 1 \). A similar formula was also proved by Liu–Royer–Wu \([18]\) for the limiting distribution function \(\Phi(1, \tau) := \lim_{\nu \to \infty} \Phi_\nu(1, \tau) \). In Section 3 we study the asymptotic behaviors of \(f_\sigma(\kappa) \) and its derivatives. Then we derive the following corollaries of Theorem 1.1. Throughout this paper, \(I_\nu(u) \) denotes the modified Bessel function of the first kind of order \(\nu \), and we put \(g(u) = \log(I_1(2u))/u \).

Corollary 1.2. Let \(1/2 < \sigma < 1 \) and \(N \in \mathbb{Z}_{\geq 1} \). For \(n = 0, \ldots, N - 1 \), there exist polynomials \(A_{n,\sigma}(x) \) of degree at most \(n \) with \(A_{0,\sigma}(x) \equiv 1 \) such that the formula
\[\Phi(\sigma, \tau) = \exp \left(-A(\sigma) \tau^{\frac{1}{1-\sigma}} (\log \tau)^{\frac{1}{\sigma-1}} \sum_{n=0}^{N-1} \frac{A_{n,\sigma}(\log_2 \tau)}{(\log \tau)^n} + O \left(\left(\frac{\log_2 \tau}{\log \tau} \right)^N \right) \right) \]
holds if \(\tau > 0 \) is large enough. Here, the implied constant depends on \(\sigma \) and \(N \), and \(A(\sigma) \) is the positive constant determined as
\[A(\sigma) = (1 - \sigma) \left(\frac{1 - \sigma}{\sigma} \int_0^\infty g(y^{-\sigma}) \, dy \right)^{-\frac{1}{\sigma-1}}. \]

Furthermore, the polynomial \(A_{1,\sigma}(x) \) is obtained as
\[A_{1,\sigma}(x) = \frac{\sigma}{1 - \sigma} \left\{ x - \log \left(\frac{1 - \sigma}{\sigma} a_0(\sigma) \right) + \frac{1 - \sigma}{\sigma} a_1(\sigma) \right\}, \]
where \(a_0(\sigma) \) and \(a_1(\sigma) \) are the constants represented as
\[a_0(\sigma) = \int_0^\infty g(y^{-\sigma}) \, dy \quad \text{and} \quad a_1(\sigma) = \int_0^\infty g(y^{-\sigma}) \log y \, dy. \]
To simplify the statement in the case $\sigma = 1$, we put $\tau = 2 \log t + 2\gamma$ by using Euler’s constant $\gamma = 0.577\ldots$. Then we have

$$
\Phi_q(1, \tau) = \frac{\# \{ f \in B_2(q) \mid L(1, f) > (e^\gamma t)^2 \}}{\#B_2(q)}.
$$

For $u > 0$, we define the function $g_*(u)$ as

$$
g_*(u) = \begin{cases}
g(u) & \text{if } 0 < u \leq 1, \\
g(u) - 2u & \text{if } u > 1. \end{cases}
$$

The following corollary is a variant of [18, Theorem 1.5] which was originally stated for the distribution function $\tilde{\Phi}(1, \tau)$.

Corollary 1.3. Let $N \in \mathbb{Z}_{\geq 1}$ and put $\tau = 2 \log t + 2\gamma$. For $n = 0, \ldots, N - 1$, there exist real numbers a_n with $a_0 = 1$ such that the formula

$$
\Phi(1, \tau) = \exp \left(-\frac{e^t - A}{t} \left(\sum_{n=0}^{N-1} a_n \frac{t^n}{n^n} + O \left(\frac{1}{t^N} \right) \right) \right)
$$

holds if $t > 0$ is large enough. Here, the implied constant depends on N, and A is the constant determined as

$$
A = 1 + \frac{1}{2} \int_0^{\infty} g_*(y^{-1}) \, dy - \log 2.
$$

Furthermore, the real number a_1 is obtained as

$$
a_1 = -\frac{1}{8} a_0^2 + \frac{1}{2} a_1 + \frac{1}{2};
$$

where a_0 and a_1 are the constants represented as

$$
a_0 = \int_0^{\infty} g_*(y^{-1}) \, dy \quad \text{and} \quad a_1 = \int_0^{\infty} g_*(y^{-1}) \log y \, dy.
$$

Then, we proceed to study the distribution function $\Phi_q(\sigma, \tau)$ for $1/2 < \sigma < 1$. Using a certain asymptotic formula for complex moments of $L(\sigma, f)$ proved in [23], we associate $\Phi_q(\sigma, \tau)$ with $\Phi(\sigma, \tau)$ as follows.

Theorem 1.4. Let $B \geq 1$ be a real number.

(i) For $1/2 < \sigma < 1$, there exists a positive constant $c(\sigma, B)$ such that

$$
\Phi_q(\sigma, \tau) = \Phi(\sigma, \tau) \left(1 + O \left(\frac{1}{(\log q)^B} + \frac{(\tau \log \tau)^{1-\sigma}}{(\log q)^\sigma} \right) \right)
$$

holds uniformly in the range $1 \ll \tau \leq c(\sigma, B)(\log q)^{1-\sigma}(\log_2 q)^{-1}$, where the implied constant depends on σ and B.

(ii) Put $\tau = 2 \log t + 2\gamma$. Then there exists a positive constant $c(B)$ such that

$$
\Phi_q(1, \tau) = \Phi(1, \tau) \left(1 + O \left(\frac{1}{(\log q)^B} + \frac{e^t}{(\log q)(\log_2 q \log_3 q)^{-1}} \right) \right)
$$

holds uniformly in the range $1 \ll t \leq \log_2 q - \log_3 q - \log_4 q - c(B)$, where the implied constant depends on B.

From Corollary [12] and Theorem [13](i), we deduce the following result on $\Phi_q(\sigma, \tau)$ for $1/2 < \sigma < 1$. It refines [13] in the desired range of τ.
Corollary 1.5. Let $1/2 < \sigma < 1$ and $N \in \mathbb{Z}_{\geq 1}$. Then there exists a positive constant $c(\sigma)$ such that
\[
\Phi_q(\sigma, \tau) = \exp \left(-A(\sigma) t \frac{1}{\tau} \left(\log \tau \right)^{\frac{1}{2}} \sum_{n=0}^{N-1} A_n,\sigma \left(\log \tau \right)^n + O \left(\frac{\left(\log \tau \right)^N}{\log \tau} \right) \right)
\]
holds uniformly in the range $1 \ll \tau \leq c(\sigma)(\log q)^{1-\sigma}(\log 2q)^{-1}$, where $A(\sigma)$ and $A_n,\sigma(x)$ are as in Corollary 1.3. Here, the implied constant depends on σ and N.

Remark. (i) For $\sigma > 1/2$ and $\tau \in \mathbb{R}$, we define another distribution function
\[
\Psi_q(\sigma, \tau) = \frac{\# \{ f \in B_2(q) \mid \log L(\sigma, f) < -\tau \}}{\# B_2(q)}.
\]
Then the limiting distribution function $\Psi(\sigma, \tau) := \lim_{q \to \infty} \Psi_q(\sigma, \tau)$ satisfies
\[
\Psi(\sigma, \tau) = \int_{-\infty}^{-\tau} M_\sigma(x) \, dx = \int_{-\infty}^{0} M_\sigma(-\tau + x) \, dx.
\]
For $1/2 < \sigma \leq 1$, one can prove a formula for $M_\sigma(-\tau + x)$ similar to (1.7) by replacing $F_\sigma(\kappa)$ and $f_\sigma(\kappa)$ of (1.6) with $F_\sigma(-\kappa)$ and $f_\sigma(-\kappa)$, respectively. We see that Corollaries 1.2 and 1.3 remain true for $\Psi(\sigma, \tau)$. Furthermore, the method for the proof of Theorem 1.4 is available to compare $\Psi_q(\sigma, \tau)$ with $\Psi(\sigma, \tau)$. As a result, one can prove that $\Psi_q(\sigma, \tau)$ satisfies the same asymptotic formulas as $\Phi_q(\sigma, \tau)$ described in Corollaries 1.5 and 1.6.

(ii) Liu–Royer–Wu also showed a result similar to Theorem 1.4 (ii) in a family of cusp forms of weight $k \geq 12$ and level 1 as $k \to \infty$. If we adopt totally the same method for the purpose of comparing $\Phi_q(1, \tau)$ with $\Phi(1, \tau)$, then the admissible range of t is to be obtained as $1 \equiv t \leq T(q)$, where
\[
T(q) = \log_2 q - \frac{5}{2} \log_3 q - \log_4 q - c
\]
with a constant $c > 0$; see [18, Theorem 2]. However, this is narrower than Lamzouri’s range $1 \ll t \leq \log_2 q - \log_3 q - 2\log_4 q$. In this paper, we present a modified method of comparing $\Phi_q(\sigma, \tau)$ with $\Phi(\sigma, \tau)$ for $1/2 < \sigma \leq 1$ so as to fill this gap.
1.2. Related results for other zeta and L-functions. The value-distributions of zeta and L-functions of degree one are classical topics in analytic number theory. For the Riemann zeta-function $\zeta(s)$, we define the distribution function

$$\Phi_{1,T}(\sigma, \tau) = \frac{1}{T} \text{meas} \{ t \in [0, T] \mid \log |\zeta(\sigma + it)| > \tau \},$$

where $\text{meas}(S)$ is the Lebesgue measure of a set $S \subset \mathbb{R}$. For the Dirichlet L-function attached to the quadratic character $\chi_d(n) = (\frac{d}{n})$, we also define

$$\Phi_{2,x}(\sigma, \tau) = \left(\sum_{|d| \leq x} 1 \right)^{-1} \sum_{|d| \leq x} 1,$$

where \sum^b indicates the sum over fundamental discriminants. We explore several results of $\Phi_{1,T}(\sigma, \tau)$ and $\Phi_{2,x}(\sigma, \tau)$ for comparisons with the results described in Section 1.1. First, we note that there exist the limiting distribution functions

$$\Phi_{1}(\sigma, \tau) = \lim_{T \to \infty} \Phi_{1,T}(\sigma, \tau) \quad \text{and} \quad \Phi_{2}(\sigma, \tau) = \lim_{x \to \infty} \Phi_{2,x}(\sigma, \tau)$$

for $\sigma > 1/2$ and $\tau \in \mathbb{R}$, which were essentially proved by Bohr–Jessen $[2,3]$ for $\Phi_{1}(\sigma, \tau)$ and by Chowla–Erdős $[4]$ for $\Phi_{2}(\sigma, \tau)$. The estimates of these distribution functions were improved along with the work of applying methods of probability theory to problems of number theory. In particular, Granville–Soundararajan $[9,10]$ applied the saddle-point method to derive the formulas

$$\Phi_j(1, \tau) = \exp \left(-e^{\tau - A_j} \left(1 + O \left(\frac{1}{\sqrt{T}} \right) \right) \right),$$

for $j = 1, 2$, where we put $\tau = \log t + \gamma$, and A_j are the constants determined as follows. Define $g_1(u) = \log I_0(u)$ and $g_2(u) = \log \cosh(u)$ for $u > 0$, and put

$$g_{j,*}(u) = \begin{cases} g_j(u) & \text{if } 0 < u \leq 1, \\ g_j(u) - u & \text{if } u > 1 \end{cases}$$

similarly to (1.8). By these functions, the constants A_j are represented as

$$A_j = 1 + \int_{0}^{\infty} g_{j,*}(y^{-1}) \, dy.$$

Then, Wu $[26]$ improved formula (1.10) in the form

$$\Phi_2(1, \tau) = \exp \left(-e^{1-A_2} \left(\frac{N-1}{t} \sum_{n=0}^{N-1} \frac{\alpha_n}{t^n} + O \left(\frac{1}{t^{N}} \right) \right) \right),$$

where $\alpha_0, \ldots, \alpha_{N-1}$ are real numbers such that $\alpha_0 = 1$. Wu’s method was also based on the saddle-point method, but the treatment of the saddle-point was slightly different from Granville–Soundararajan’s one. We prove Theorem 1.1 by modifying the method of $[26]$ rather than $[9,10]$. Furthermore, Theorem 1.4 is regarded as an analogue of the formula

$$\Phi_{2,x}(1, \tau) = \Phi_{2}(1, \tau) \left(1 + O \left(\frac{1}{(\log x)^b} + \frac{e^{t}}{(\log x \log_2 x)(\log_2 x)^2} \right) \right),$$

for $\sigma > 1/2$ and $\tau \in \mathbb{R}$. Wu’s method was also based on the saddle-point method, but the treatment of the saddle-point was slightly different from Granville–Soundararajan’s one. We prove Theorem 1.1 by modifying the method of $[26]$ rather than $[9,10]$. Furthermore, Theorem 1.4 is regarded as an analogue of the formula

$$\Phi_{2,x}(1, \tau) = \Phi_{2}(1, \tau) \left(1 + O \left(\frac{1}{(\log x)^b} + \frac{e^{t}}{(\log x \log_2 x)(\log_2 x)^2} \right) \right),$$
which was shown in [9] uniformly in the range $1 \ll t \leq \log_2 x - 2 \log_3 x + \log_4 q - 20$. Asymptotic behaviors of $\Phi_j(\sigma, \tau)$ for $1/2 < \sigma < 1$ were studied by Lamzouri [15]. Let $A_j(\sigma)$ be the positive constants determined by

$$A_j(\sigma) = (1 - \sigma) \left(\frac{1 - \sigma}{\sigma} \int_0^\infty g_j(y^{-\sigma}) \, dy \right)^{-1}. \tag{2.1}$$

Then he proved the asymptotic formulas

$$\Phi_j(\sigma, \tau) = \exp \left(-A_j(\sigma) \tau^{1-\sigma} (\log \tau)^{\frac{1}{1-\sigma}} \left(1 + O \left(\frac{1}{\sqrt{\log \tau}} \right) \right) \right)$$

for $j = 1, 2$. Note that a similar result for $j = 1$ was seen in the earlier work of Hattori–Matsumoto [11]. Finally, an analogue of (1.11) for $\Phi_1(\sigma, \tau)$ was achieved by Lamzouri–Lester–Radziwiłł [16, Theorem 1.3]. See also [8] for a refinement.

Organization of the paper. This paper consists of five sections.

- **Section 2** is devoted to show some lemmas on certain functions $G_p(z)$ and $G(z)$ defined by the p-adic Plancherel measure and the Sato–Tate measure.
- In **Section 3**, we prove asymptotic formulas for the function $f_\sigma(\kappa)$ of (1.6). The main ingredient is to sum up the local components $f_\sigma(p)$ which are approximated by using the functions $G_p(z)$ and $G(z)$ of Section 2.
- **Section 4** is further divided into three subsections. In Section 4.1, we make preparations for the saddle-point method. Then we complete the proof of Theorem 1.1 in Section 4.2. After that, we show corollaries of Theorem 1.1 in Section 4.3.
- In **Section 5**, we present a method of comparing $\Phi_q(\sigma, \tau)$ with $\Phi(\sigma, \tau)$, which is based on the Esseen inequality of probability theory. We finally prove Theorem 1.4 and its corollaries to end this paper.

Acknowledgment. The author would like to thank Kenta Endo and Shōta Inoue for helpful discussions. The work of this paper was supported by Grant-in-Aid for JSPS Fellows (Grant Number JP21J00529).

2. Preliminary Lemmas

Let p be a prime number. Denote by μ_p the p-adic Plancherel measure on the interval $[0, \pi]$ defined as

$$d\mu_p(\theta) = \left(1 + \frac{1}{p} \right) \left(1 - \frac{2 \cos 2\theta}{p} + \frac{1}{p^2} \right)^{-1} \frac{2}{\pi} \sin^2 \theta \, d\theta. \tag{2.1}$$

Then μ_p converges weakly to the Sato–Tate measure μ_∞ as $p \to \infty$. In this section, we show some preliminary lemmas on the functions

$$G_p(z) = \int_0^\pi \exp(2z \cos \theta) \, d\mu_p(\theta) \quad \text{and} \quad G(z) = \int_0^\pi \exp(2z \cos \theta) \, d\mu_\infty(\theta)$$

defined for $z = u + iv \in \mathbb{C}$. Note that $G(z)$ is an even entire function represented as

$$G(z) = \frac{1}{\pi} \int_0^\pi \exp(2z \cos \theta)(1 - \cos 2\theta) \, d\theta$$

$$= I_0(2z) - I_2(2z) = \frac{I_1(2z)}{z} \tag{2.3}$$

where

$$I_n(z) = \frac{1}{\pi} \int_0^\pi \exp(2z \cos \theta) \cos^n \theta \, d\theta.$$
by definition. Thus, we deduce the following properties of $G(z)$ from the results of
the Bessel functions; see [25].

Lemma 2.1.

(i) All zeros of $G(z)$ lie on the imaginary axis. In particular, the
ordinate of the first zero on the upper half-plane is $7.66\ldots$.

(ii) Let $z \in \mathbb{C}$ with $\text{Re}(z) > 0$. Then we have

$$
G(z) = \frac{1}{\sqrt{4\pi}} \frac{\exp(2z)}{z^{3/2}} (1 + O(|z|^{-1}))
$$

as $|z| \to \infty$. Here, the branch of $z^{3/2}$ is chosen so that it is real-valued on
the positive real axis.

(iii) We have $G(z) = 1 + \frac{2}{z^2} + O(|z|^4)$ as $|z| \to 0$.

With regard to the function $G_p(z)$, there seems to be no simple representations by
the Bessel functions such as (2.3). On the other hand, we know that $G_p(z) \to G(z)$
uniformly as $p \to \infty$. More precisely, we prove the following result.

Lemma 2.2. Let $z = u + iv$ with $u > 0$ and $|v| \leq u$. Then we have uniformly

$$
G_p(z) = G(z) \left(1 + O\left(p^{-1}\right)\right)
$$

for every prime number p.

Proof. Since we have

$$
\left(1 + \frac{1}{p}\right) \left(1 - \frac{2\cos 2\theta}{p} + \frac{1}{p^2}\right)^{-1} = 1 + O(p^{-1})
$$

for all $\theta \in [0, \pi]$, the difference between $G_p(z)$ and $G(z)$ is evaluated as

$$
G_p(z) - G(z) \ll p^{-1} \int_0^\pi \exp(2u\cos \theta) \frac{2}{\pi} \sin^2 \theta \, d\theta = p^{-1} G(u).
$$

By Lemma 2.1 (ii), we have $|G(z)| \asymp G(u)$ for $z = u + iv$ with $u > 0$ and $|v| \leq u$. Hence we obtain

$$
\frac{G_p(z) - G(z)}{G(z)} \ll p^{-1},
$$

which yields the desired formula. \hfill \Box

By Lemma 2.1 (i), one can define $g(z) = \log G(z)$ as a holomorphic function
on the right half-plane $\text{Re}(z) > 0$, where the branch of the logarithm is taken so
that $g(u) \in \mathbb{R}$ for $u > 0$. Then we deduce the following estimates of $g(u)$ and its
derivatives from Lemma 2.1 (ii), (iii).

Lemma 2.3. We have

$$
g(u) = \begin{cases}
O(u^2) & \text{if } 0 < u \leq 1, \\
2u + O(\log u) & \text{if } u > 1,
\end{cases}
$$

and for all $j \geq 2$,

$$
g^{(j)}(u) = \begin{cases}
O(j!) & \text{if } 0 < u \leq 1, \\
O(2^j j! u^{-j}) & \text{if } u > 1.
\end{cases}
$$
Proof. Let \(z \in \mathbb{C} \) with \(\text{Re}(z) > 1/2 \). Using Lemma 2.1 (ii), we derive the formula

\[
g(z) = 2z - \frac{3}{2} \log z - \frac{1}{2} \log 4\pi + h(z),
\]

where \(h(z) \) is a holomorphic function such that \(h(z) \ll |z|^{-1} \). It yields the desired estimate of \(g(u) \) for \(u > 1 \). We also obtain

\[
g^{(j)}(z) = 2\delta_{j,1} + (j - 1)! \frac{3(-1)^j}{2^j} + h^{(j)}(z)
\]

for all \(j \geq 1 \), where \(\delta_{j,1} \) equals to 1 if \(j = 1 \) and 0 otherwise. For \(u > 1 \), Cauchy’s integral formula yields

\[
h^{(j)}(u) = \frac{j!}{2\pi i} \int \frac{h(z)}{(z-u)^{j+1}} \, dz \ll 2^j j! u^{-j-1},
\]

and therefore the results on the derivatives follow. The results for \(0 < u \leq 1 \) can be proved similarly. Indeed, we deduce from Lemma 2.1 (iii) that \(g(z) = \frac{1}{2} z^2 + O(|z|^4) \) for \(|z| \leq 1 \). Then the upper bounds of \(g(u) \) and \(g'(u) \) follow immediately. For \(j \geq 2 \), we again use Cauchy’s integral formula to obtain

\[
g^{(j)}(u) = \frac{j!}{2\pi i} \int \frac{g(z)}{(z-u)^{j+1}} \, dz \ll j! u^{-j-1}
\]

by noting that \(g(z) \) is bounded on the disk \(|z| \leq 2 \). \(\square \)

Let \(n \) and \(j \) be non-negative integers. If \(1/2 < \sigma < 1 \), then the integral

\[
g_{n,j}(\sigma) = \int_0^\infty \frac{g^{(j)}(u)}{u^{\frac{1}{2}+1-j}} (\log u)^n \, du
\]

is finite by Lemma 2.3. If \(\sigma = 1 \), we modify the function \(g(u) \) by \(g_*(u) \) as in (1.8). Then we again deduce from Lemma 2.3 that the integral

\[
g_{n,j} = \int_0^\infty \frac{g_*(j)}{u^{\frac{1}{2}-j}} (\log u)^n \, du
\]

is finite. Moreover, it can be easily check that \(g_{0,j}(\sigma) \ll j! \) and \(g_{0,j} \ll j! \) by the integrations by parts. The constants \(a_0(\sigma), a_1(\sigma), a_0, a_1 \) of Corollaries 1.2 and 1.3 are related to these integrals when \(n = 0, 1 \).

3. Estimates of cumulant-generating functions

Let \(\Theta = (\Theta_p)_p \) be a sequence of independent random variables distributed on the interval \([0, \pi]\) according to the measure \(\mu_p \) of (2.1). Then we define

\[
L(\sigma, \Theta) = \prod_p \left(1 - 2(\cos \Theta_p)p^{-\sigma} + p^{-2\sigma} \right)^{-1}.
\]

We see that \(L(\sigma, \Theta) \) presents an \(\mathbb{R} \)-valued random variable for \(\sigma > 1/2 \) since the right-hand side of (3.1) converges almost surely. For \(\theta \in [0, \pi] \), we also define

\[
\lambda_{p,\sigma}(\theta) = \sum_{m=1}^\infty \frac{\cos(m\theta)}{m} p^{-m\sigma}.
\]
Then we have \(\log L(\sigma, \Theta) = \sum_p 2\lambda_{p, \sigma}(\Theta_p) \) for \(\sigma > 1/2 \). The random Euler product \(L(\sigma, \Theta) \) is associated with the value-distribution of \(L(\sigma, f) \). Indeed, the limiting distribution function \(\Phi(\sigma, \tau) \) of \(\text{(1.4)} \) is represented as

\[
\Phi(\sigma, \tau) = \mathbb{P}(\log L(\sigma, \Theta) > \tau)
\]

for \(\sigma > 1/2 \) and \(\tau \in \mathbb{R} \), where \(\mathbb{P}(E) \) denotes the probability of an event \(E \). Thus, the \(M \)-function \(M_\sigma \) is a probability density function of the random variable \(\log L(\sigma, \Theta) \).

It was proved in \([23]\) that the moment-generating function

\[
F_\sigma(s) = \mathbb{E} [\exp(s \log L(\sigma, \Theta))] = \int_{\mathbb{R}} e^{sx} M_\sigma(x) \, dx
\]

is defined for all \(s = u + iv \in \mathbb{C} \) and has the infinite product representation

\[
(3.3) \quad F_\sigma(s) = \prod_p F_{\sigma, p}(s),
\]

where \(F_{\sigma, p}(s) = \mathbb{E} [\exp(2s \lambda_{p, \sigma}(\Theta_p))] \). The goal of this section is to show the following formulas of the cumulant-generating function \(f_\sigma(\kappa) = \log F_\sigma(\kappa) \) and its derivatives.

Proposition 3.1. Let \(1/2 < \sigma < 1 \) and \(N \in \mathbb{Z}_{\geq 1} \). For all \(j \geq 0 \), we obtain

\[
f^{(j)}_\sigma(\kappa) = \frac{\kappa^{j-1}}{\log \kappa} \left\{ \sum_{n=0}^{N-1} \frac{g_{n,j}(\sigma)}{(\log \kappa)^n} + O \left(\frac{2^j j!}{(\log \kappa)^N} \right) \right\}
\]

if \(\kappa > 0 \) is large enough. Here, \(g_{n,j}(\sigma) \) are defined as \(\text{(2.4)} \), and the implied constants depend on \(\sigma \) and \(N \).

Proposition 3.2. Let \(N \in \mathbb{Z}_{\geq 1} \). Then we obtain

\[
f_1(\kappa) = 2\kappa(\log_2 \kappa + \gamma) + \frac{\kappa}{\log \kappa} \left\{ \sum_{n=0}^{N-1} \frac{g_{n,0}}{(\log \kappa)^n} + O \left(\frac{1}{(\log \kappa)^N} \right) \right\},
\]

\[
f'_1(\kappa) = 2(\log_2 \kappa + \gamma) + \frac{1}{\log \kappa} \left\{ \sum_{n=0}^{N-1} \frac{g_{n,1}}{(\log \kappa)^n} + O \left(\frac{1}{(\log \kappa)^N} \right) \right\},
\]

and for all \(j \geq 2 \),

\[
f^{(j)}_1(\kappa) = \frac{\kappa^{j-1}}{\log \kappa} \left\{ \sum_{n=0}^{N-1} \frac{g_{n,j}}{(\log \kappa)^n} + O \left(\frac{2^j j!}{(\log \kappa)^N} \right) \right\}
\]

if \(\kappa > 0 \) is large enough. Here, \(g_{n,j} \) are defined as \(\text{(2.5)} \), and the implied constants depend on \(N \).

Let \(1/2 < \sigma \leq 1 \) and \(N \in \mathbb{Z}_{\geq 1} \). For \(\kappa \geq 6 \), we determine the parameters \(y_1, y_2 \) such that \(2 \leq y_1 < y_2 \) by the equations

\[
\kappa y_1^{-2\sigma} = \delta \quad \text{and} \quad \kappa y_2^{-\sigma} = (\log \kappa \log_2 \kappa)^{-\sigma N/(2\sigma - 1)},
\]

where \(\delta > 0 \) is a small absolute constant chosen later. Then we show three lemmas on the local factors \(F_{\sigma, p}(s) \) of \(\text{(3.3)} \) toward the proofs of Propositions 3.1 and 3.2.

Lemma 3.3. Let \(1/2 < \sigma \leq 1 \) and \(\kappa \geq 6 \). For any \(p \leq y_1 \), we have

\[
F_{\sigma, p}(s) = \frac{1}{\sqrt{4\pi}} \left(\frac{\exp(2s \lambda_{p, \sigma}(0))}{(s|\lambda''_{p, \sigma}(0)|)^{3/2}} \right)(1 + p^{-1})(1 - p^{-1})^{-2} \left(1 + O \left(\frac{1}{\sqrt{\kappa}} \right) \right)
\]
uniformly in the disk $|s - \kappa| \leq \kappa/2$, where $\lambda_{p,\sigma}(\theta)$ is defined as (3.2), and the implied constant depends only on the choice of δ.

Proof. Let $\Lambda_{p}(\theta) = (1 + p^{-1})(1 - 2(\cos \theta)p^{-1} + p^{-2})^{-1}$. We represent $F_{\sigma,p}(s)$ as

$$F_{\sigma,p}(s) = \frac{2}{\pi} \int_{0}^{\pi} \exp(2s\lambda_{p,\sigma}(\theta))\Lambda_{p}(2\theta) \sin^{2} \theta \, d\theta.$$

Then we estimate the integral by noting that $\lambda_{p,\sigma}(\theta)$ takes the maximum value at $\theta = 0$ in the interval $[0, \pi]$. Recall that $\lambda_{p,\sigma}'(0) = 0$ and $\lambda_{p,\sigma}''(0) < 0$. By the Taylor series expansion, we have

$$\lambda_{p,\sigma}(\theta) = \lambda_{p,\sigma}(0) + \frac{\lambda_{p,\sigma}''(0)}{2} \theta^{2} \mu_{p,\sigma}(\theta),$$

where $\mu_{p,\sigma}(\theta)$ is a function of θ represented as

$$\mu_{p,\sigma}(\theta) = 1 + \sum_{j=1}^{\infty} \frac{\lambda_{p,\sigma}^{(j+2)}(0)}{(j+2)!} \theta^{j}.$$

The derivatives of $\lambda_{p,\sigma}(\theta)$ at $\theta = 0$ are evaluated as

$$\lambda_{p,\sigma}''(0) = -\sum_{m=1}^{\infty} mp^{-m\sigma} \approx p^{-\sigma}$$

and $\lambda_{p,\sigma}^{(k)}(0) \ll k!p^{-\sigma}$ for all $k \geq 3$, where the implied constants are absolute. Thus the coefficients of the power series (3.4) are uniformly bounded, and moreover, there exists a small absolute constant $c > 0$ such that $\mu_{p,\sigma}(\theta) = 1 + O(|\theta|)$ holds uniformly for $|\theta| \leq c$.

Then, we consider the integral

$$I_{1} = \int_{0}^{c} \exp \left(s \lambda_{p,\sigma}(\theta) - \lambda_{p,\sigma}(0) \right) \Lambda_{p}(2\theta) \sin^{2} \theta \, d\theta$$

$$= \int_{0}^{c} \exp \left(s \lambda_{p,\sigma}''(0)\theta^{2} \mu_{p,\sigma}(\theta) \right) \Lambda_{p}(2\theta) \sin^{2} \theta \, d\theta.$$

We make a change of variables such that $\phi = \theta^{2} \mu_{p,\sigma}(\theta)$. For $|\theta| \leq c$, we have

$$\Lambda_{p}(2\theta) = \Lambda_{p}(0) \left(1 + O(\phi) \right),$$

$$\sin^{2} \theta = \phi \left(1 + O(\sqrt{\phi}) \right),$$

$$\frac{d\theta}{d\phi} = \frac{1}{2\sqrt{\phi}} \left(1 + O(\sqrt{\phi}) \right)$$

with absolute implied constants. Hence we obtain

$$I_{1} = \frac{1}{2} \Lambda_{p}(0) \int_{0}^{c_{1}} \exp \left(s \lambda_{p,\sigma}''(0)\phi \right) \sqrt{\phi} \left(1 + O(\sqrt{\phi}) \right) \, d\phi,$$

where we put $c_{1} = c^{2} \mu_{p,\sigma}(c)$. To derive the main term, we see that

$$\int_{0}^{\infty} \exp \left(s \lambda_{p,\sigma}''(0)\phi \right) \sqrt{\phi} \, d\phi = \int_{0}^{\infty} \exp \left(-s|\lambda_{p,\sigma}''(0)|\phi \right) \sqrt{\phi} \, d\phi$$

$$= \sqrt{\frac{\pi}{2}} \frac{1}{(s|\lambda_{p,\sigma}''(0)|)^{3/2}}.$$
by noting that $\lambda''_{p,\sigma}(0) < 0$ and $\text{Re}(s) > 0$. Therefore, I_1 is calculated as

$$I_1 = \frac{1}{2} \Lambda_p(0) \left(\frac{\sqrt{\pi}}{2} \frac{1}{|s|^{3/2}} - I_{1,1} + I_{1,2} \right),$$

where $I_{1,1}$ and $I_{1,2}$ are the following integrals:

$$I_{1,1} = \int_{c_1}^{\infty} \exp \left(-s|\lambda''_{p,\sigma}(0)||\phi| \right) \sqrt{\phi} \, d\phi;$$

$$I_{1,2} = \int_{0}^{c_1} \exp \left(-s|\lambda''_{p,\sigma}(0)||\phi| \right) O(\phi) \, d\phi.$$

We recall that $\lambda''_{p,\sigma}(0) \asymp p^{-\sigma}$ and $c_1 = \mu_{p,\sigma}(c)e^2 \asymp 1$ for every p. Write $s = u + iv$. Then $u \asymp \kappa$ holds in the disk $|s - \kappa| \leq \kappa/2$. Thus, we evaluate these integrals as

$$I_{1,1} \ll \exp \left(-\frac{u|\lambda''_{p,\sigma}(0)||c_1}{2} \right) \frac{1}{|u|^{3/2}} \ll (kp^{-\sigma})^{-2},$$

$$I_{1,2} \ll \int_{0}^{\infty} \exp \left(-u|\lambda''_{p,\sigma}(0)||\phi| \right) \phi \, d\phi \ll (kp^{-\sigma})^{-2}.$$

Note further that $|s| \asymp \kappa$ in the disk $|s - \kappa| \leq \kappa/2$. Hence formula (3.3) yields

$$I_1 = \frac{\sqrt{\pi}}{4} \frac{\Lambda_p(0)}{|s|^{3/2}} \left(1 + O \left(\frac{(|s|^{-3/2})}{(kp^{-\sigma})^2} \right) \right)$$

$$= \frac{\sqrt{\pi}}{4} \frac{\Lambda_p(0)}{|s|^{3/2}} \left(1 + O \left(\frac{1}{\sqrt{\kappa}} \right) \right)$$

since $kp^{-\sigma} \gg \sqrt{\kappa}$ for any $p \leq y_1$. The remaining work is to estimate the integral

$$I_2 = \int_{c}^{\pi} \exp \left(2s(\lambda_{p,\sigma}(\theta) - \lambda_{p,\sigma}(0)) \right) \Lambda_p(2\theta) \sin^2 \theta \, d\theta.$$

The function $\lambda_{p,\sigma}(\theta)$ is decreasing on the interval $[0, \pi]$. Therefore we obtain

$$I_2 \ll \exp \left(2u(\lambda_{p,\sigma}(c) - \lambda_{p,\sigma}(0)) \right) \int_{0}^{c} |\Lambda_p(2\theta)| \sin^2 \theta \, d\theta$$

$$\ll \exp \left(-u|\lambda''_{p,\sigma}(0)||c^2 \mu_{p,\sigma}(c)| \right).$$

Since $u \asymp \kappa$, $c^2 \mu_{p,\sigma}(c) \asymp 1$, and $\lambda''_{p,\sigma}(0) \asymp p^{-\sigma}$, we have $I_2 \ll (kp^{-\sigma})^{-2}$. It yields

$$I_2 = \frac{\Lambda_p(0)}{(s|\lambda''_{p,\sigma}(0)||)^{3/2}} O \left(\frac{1}{\sqrt{\kappa}} \right)$$

due to $\Lambda_p(0) > 1$ for every p. Combining (3.6) and (3.7), we conclude

$$F_{\sigma,p}(s) = 2 \pi \exp(2s\lambda_{p,\sigma}(0))(I_1 + I_2)$$

$$= \frac{1}{\sqrt{4\pi}} \frac{\exp(2s\lambda_{p,\sigma}(0))}{(s|\lambda''_{p,\sigma}(0)||)^{3/2}} \Lambda_p(0) \left(1 + O \left(\frac{1}{\sqrt{\kappa}} \right) \right)$$

as desired. \square

Lemma 3.4. Let $1/2 < \sigma \leq 1$ and $\kappa \geq 6$. For any $p > y_1$, we have

$$F_{\sigma,p}(s) = G(sp^{-\sigma}) \left(1 + O \left(\frac{(kp^{-\sigma})^2 + p^{-1}}{\sqrt{\kappa}} \right) \right)$$

uniformly in the disk $|s - \kappa| \leq \kappa/2$, where $G(z)$ is defined as (2.2).
Proof. Using the formula \(\exp(z) = 1 + O(|z|) \) with \(|z| \leq 1 \), we have
\[
\exp(2s\lambda_{p,\sigma}(\theta)) = \exp \left(2s(\cos \theta)p^{-\sigma} + O \left(|s|p^{-2\sigma} \right) \right) \\
= \exp \left(2s(\cos \theta)p^{-\sigma} \right) \left(1 + O \left(\kappa p^{-2\sigma} \right) \right)
\]
since \(|s|p^{-2\sigma} \ll \kappa p^{-2\sigma} \leq \delta \) is valid in the disk \(|s - \kappa| \leq \kappa/2 \) for any \(p > y_1 \). Hence \(F_{\sigma,p}(s) \) is estimated as
\[
F_{\sigma,p}(s) = \int_0^\pi \exp \left(2s(\cos \theta)p^{-\sigma} \right) \left(1 + O \left(\kappa p^{-2\sigma} \right) \right) d\mu_p(\theta) \\
= G_p(sp^{-\sigma}) + O \left(\kappa p^{-2\sigma} G_p(up^{-\sigma}) \right),
\]
where \(G_p(z) \) is defined as (2.2), and we write \(s = u + iv \). By Lemma 2.2 we obtain
\[
F_{\sigma,p}(s) = G(sp^{-\sigma}) \left(1 + O \left(p^{-1} + \kappa p^{-2\sigma} \frac{G(up^{-\sigma})}{G(sp^{-\sigma})} \right) \right).
\]
Recall that the estimate \(|G(sp^{-\sigma})| \asymp G(up^{-\sigma}) \) holds in the disk \(|s - \kappa| \leq \kappa/2 \) by Lemma 2.2(ii). Thus the result follows. \(\square \)

Lemma 3.5. Let \(1/2 < \sigma \leq 1 \) and \(\kappa \geq 6 \). For any \(p \geq y_2 \), we have
\[
F_{\sigma,p}(s) = 1 + O \left(\kappa^2 p^{-2\sigma} \right)
\]
uniformly in the disk \(|s - \kappa| \leq \kappa/2 \).

Proof. By the Taylor series expansion, we have
\[
\exp(s\lambda_{p,\sigma}(\theta)) = 1 + 2s(\cos \theta)p^{-\sigma} + O \left(\kappa^2 p^{-2\sigma} \right)
\]
since \(|s|p^{-\sigma} \ll \kappa p^{-\sigma} \leq 1 \) is valid in the disk \(|s - \kappa| \leq \kappa/2 \) for any \(p \geq y_2 \). By simple calculations, we find the equalities
\[
\int_0^\pi d\mu_p(\theta) = 1 \quad \text{and} \quad \int_0^\pi (\cos \theta) d\mu_p(\theta) = 0.
\]
Hence we obtain the conclusion. \(\square \)

Let \(s = u + iv \) with \(|s - \kappa| \leq \kappa/2 \). If \(\kappa > 0 \) is large enough, then we deduce from Lemma 3.3 that \(F_{\sigma,p}(s) \neq 0 \) for \(p \leq y_1 \). Using Lemma 3.4 we also obtain \(F_{\sigma,p}(s) \neq 0 \) for \(p > y_1 \) if \(\delta \) is small enough. Therefore one can define \(f_{\sigma,p}(s) = \log F_{\sigma,p}(s) \) as a holomorphic function on \(|s - \kappa| \leq \kappa/2 \) for any prime number \(p \), where the branch is chosen so that \(f_{\sigma,p}(u) \in \mathbb{R} \) if \(u > 0 \). Then formula (3.3) yields
\[
f_{\sigma}(s) = \sum_p f_{\sigma,p}(s).
\]
Furthermore, we immediately deduce the following results from the above lemmas.

Lemma 3.6. Let \(\kappa > 0 \) be a large real number. Then the following asymptotic formulas hold uniformly in the disk \(|s - \kappa| \leq \kappa/2 \).

(i) For any \(p \leq y_1 \), we have
\[
f_{\sigma,p}(s) = 2s\lambda_{p,\sigma}(0) - \frac{3}{2} \log(|s|\lambda''_{p,\sigma}(0)) - \frac{1}{2} \log 4\pi + O \left(\frac{1}{\sqrt{\kappa}} + p^{-1} \right),
\]
where \(\lambda_{p,\sigma}(\theta) \) is defined as (3.2).
(ii) For any \(y_1 < p < y_2 \), we have
\[
f_{\sigma,p}(s) = g(sp^{-\sigma}) + O \left(\kappa p^{-2\sigma} + p^{-1} \right),
\]
where \(g(z) = \log G(z) \) as in Section 2.

(iii) For any \(p \geq y_2 \), we have \(f_{\sigma,p}(s) = O \left(\kappa^2 p^{-2\sigma} \right) \).

Proof of Proposition 3.1. By (3.8), we obtain
\[
(3.9) \quad f_{\sigma}^{(j)}(\kappa) = \left(\sum_{p \leq y_1} + \sum_{y_1 < p < y_2} + \sum_{p \geq y_2} \right) f_{\sigma,p}^{(j)}(\kappa)
\]
for all \(j \geq 0 \). Let \(p \leq y_1 \). We deduce from Lemma 3.6 (i) the formula
\[
f_{\sigma,p}(\kappa) = 2\kappa \lambda_{p,\sigma}(0) + O \left(\log(\kappa p^{-\sigma}) \right)
\]
by recalling \(\lambda_{p,\sigma}'(0) \approx p^{-\sigma} \). Then, we apply Cauchy’s integral formula in a way similar to the proof of Lemma 2.3. We obtain
\[
(3.10) \quad f_{\sigma,p}^{(j)}(\kappa) = 2\kappa \lambda_{p,\sigma}(0) + O \left(\kappa^{-1} \right) \quad \text{and} \quad f_{\sigma,p}^{(j)}(\kappa) \ll 2^j j! \kappa^{-j}
\]
for all \(j \geq 2 \). Therefore, the upper bounds \(f_{\sigma,p}^{(j)}(\kappa) \ll 2^j j! \kappa^{-j+1}p^{-\sigma} \) hold for all \(j \geq 0 \) since \(\kappa p^{-\sigma} \gg \sqrt{\kappa} \) for \(p \leq y_1 \). Recalling that \(y_1 \approx \kappa^{1/2} \), we estimate the first sum of (3.9) as
\[
\sum_{p \leq y_1} f_{\sigma,p}^{(j)}(\kappa) \ll 2^j j! \kappa^{-j+1} \frac{y_1^{1-\sigma}}{\log y_1} \ll 2^j j! \frac{\kappa^{\frac{1}{2} - j}}{\log \kappa}.
\]
Then, we consider the third sum of (3.9). Let \(p \geq y_2 \). We use Lemma 3.6 (ii) to derive the bounds \(f_{\sigma,p}^{(j)}(\kappa) \ll 2^j j! \kappa^{-j+2}p^{-2\sigma} \) for all \(j \geq 0 \). Thus we obtain
\[
\sum_{p \geq y_2} f_{\sigma,p}^{(j)}(\kappa) \ll 2^j j! \kappa^{-j+2} \frac{y_2^{1-2\sigma}}{\log y_2} \ll 2^j j! \frac{\kappa^{\frac{1}{2} - j}}{(\log \kappa)^{N+1}}
\]
from the choice of \(y_2 \). The main term comes from the second sum of (3.9). Using Lemma 3.6 (ii), we have
\[
f_{\sigma,p}^{(j)}(\kappa) = p^{-\sigma} g^{(j)}(kp^{-\sigma}) + O \left(2^j j! \kappa^{-j-1}p^{-2\sigma} + 2^j j! \kappa^{-j}p^{-1} \right)
\]
for \(y_1 < p < y_2 \). Note that
\[
\sum_{y_1 < p < y_2} \left(2^j j! \kappa^{1-j}p^{-2\sigma} + 2^j j! \kappa^{-j}p^{-1} \right) \ll 2^j j! \frac{\kappa^{\frac{1}{2} - j}}{\log \kappa} + 2^j j! \kappa^{-j} \log_2 \kappa.
\]
Put \(u(y) = \kappa y^{-\sigma} \). Then we obtain
\[
\sum_{y_1 < p < y_2} f_{\sigma,p}^{(j)}(\kappa) = \kappa^{-j} \sum_{y_1 < p < y_2} u(p)^j g^{(j)}(u(p)) + O \left(2^j j! \frac{\kappa^{\frac{1}{2} - j}}{\log \kappa} + 2^j j! \kappa^{-j} \log_2 \kappa \right).
\]
From the above, we deduce
\[
(3.10) \quad f_{\sigma}^{(j)}(\kappa) = \kappa^{-j} \sum_{y_1 < p < y_2} u(p)^j g^{(j)}(u(p)) + O \left(2^j j! \frac{\kappa^{\frac{1}{2} - j}}{(\log \kappa)^{N+1}} \right).
\]
for all \(j \geq 0 \) with implied constants depending on \(\sigma \) and \(N \). We approximate the sum in (3.10) by using the prime number theorem in the form
\[
\pi(y) = \int_{2}^{y} \frac{dy}{\log y} + O \left(y e^{-8\sqrt{\log y}} \right),
\]
where \(\pi(y) \) counts as usual the prime numbers not exceeding \(y \). We obtain
\[
\sum_{y_1 < p < y_2} u(p)^j \sigma^j(u(p)) = \int_{y_1}^{y_2} u(y)^j \sigma^j(u(y)) \frac{dy}{\log y} + E
\]
by the partial summation, where
\[
E \ll u(y_1)^j \sigma^j(u(y_1)) y_1 e^{-8\sqrt{\log y_1}} + u(y_2)^j \sigma^j(u(y_2)) y_2 e^{-8\sqrt{\log y_2}}
\]
\[+ e^{-8\sqrt{\log y_1}} \int_{y_1}^{y_2} u(y)^j \sigma^j(u(y)) dy.\]
We put \(y_1 = \kappa^{1/\sigma} \). By the choices of these parameters, we have \(0 < u(y_2) < 1 \), \(u(y_3) = 1 \), and \(u(y_1) > 1 \). Hence Lemma 2.2 yields
\[
E \ll 2^j j! u(y_1)^2 y_1 e^{-8\sqrt{\log y_1}} + j! u(y_2)^2 y_2 e^{-8\sqrt{\log y_2}}
\]
\[+ 2^j j! e^{-8\sqrt{\log y_1}} \int_{y_1}^{y_2} u(y)^2 dy + 2^j j! e^{-8\sqrt{\log y_1}} \int_{y_1}^{y_2} u(y)^2 dy
\]
\[\ll 2^j j! \kappa^{1/\sigma} \left(\log \kappa \right)^N.\]
The integral in (3.11) is calculated as follows. Changing the variables, we have
\[
\int_{y_1}^{y_2} u(y)^j \sigma^j(u(y)) \frac{dy}{\log y} = \kappa^j \int_{u_1}^{u_2} \frac{g^{(j)}(u)}{u^{1/2 + 1 - j} \log(u/\kappa)} du,
\]
where \(u_1 = u(y_1) \) and \(u_2 = u(y_2) \). For \(u_2 \leq u \leq u_1 \), the asymptotic formula
\[
\frac{1}{\log(u/\kappa)} = \frac{1}{\log \kappa} \left\{ \sum_{n=0}^{N-1} \left(\frac{\log u}{\log \kappa} \right)^n + O \left(\left(\frac{\log u}{\log \kappa} \right)^N \right) \right\}
\]
is valid, which yields
\[
\int_{y_1}^{y_2} u(y)^j \sigma^j(u(y)) \frac{dy}{\log y} = \kappa^{1/2 - j} \log \kappa \left\{ \sum_{n=0}^{N-1} \frac{1}{(\log \kappa)^n} \int_{u_2}^{u_1} \frac{g^{(j)}(u)}{u^{1/2 + 1 - j}} (\log u)^n du
\]
\[+ O \left(\frac{1}{(\log \kappa)^N} \int_{u_2}^{u_1} \frac{|g^{(j)}(u)|}{u^{1/2 + 1 - j}} |\log u|^N du \right) \right\}.
\]
Let \(g_{n,j}(\sigma) \) denote the constants of (2.4). Then we have
\[
\int_{u_2}^{u_1} \frac{g^{(j)}(u)}{u^{1/2 + 1 - j}} (\log u)^n du = g_{n,j}(\sigma) + E_{n,j}
\]
for all \(n = 0, \ldots, N - 1 \), where \(E_{n,j} \) are evaluated as
\[
E_{n,j} \ll 2^j j! \int_{0}^{u_2} u^{1 - \frac{n}{2}} |\log u|^n du + 2^j j! \int_{u_1}^{\infty} u^{1 - \frac{n}{2}} |\log u|^n du \ll \frac{2^j j!}{(\log \kappa)^N}
\]
As a result, we find that the integral is estimated as

\[\int_{u_1}^{u_2} \frac{|g^{(j)}(u)|}{u^{1-\frac{1}{\sigma}}} \log u \, du \leq \int_{0}^{\infty} \frac{|g^{(j)}(u)|}{u^{1-\frac{1}{\sigma}}} \log u \, du \ll 2^j j! . \]

As a result, we find that the integral is estimated as

\[\int_{y_1}^{y_2} u(y)^j g^{(j)}(u(y)) \frac{dy}{\log y} = \frac{\kappa^\frac{1}{\sigma} - j}{\log \kappa} \left\{ \sum_{n=0}^{N-1} \frac{\theta_{n,j}(\sigma)}{(\log \kappa)^n} + O\left(\frac{2^j j!}{(\log \kappa)^N} \right) \right\} . \]

Combined with (3.10) and (3.11), it deduces the asymptotic formula

\[f_{\sigma}^{(j)}(\kappa) = \kappa^{-j} \int_{y_1}^{y_2} u(y)^j g^{(j)}(u(y)) \frac{dy}{\log y} + O\left(\frac{2^j j!}{(\log \kappa)^{N+1}} \right) \]

which completes the proof of Proposition 3.1.

Proof of Proposition 3.2 If \(j \geq 2 \), then the desired formula of \(f_{1}^{(j)}(\kappa) \) can be shown by an argument similar to the proof of Proposition 3.1. We hereby present the proof when \(j = 0 \). By Lemma 3.6 (i), we have

\[f_{1,p}(\kappa) = -2\kappa \log(1 - p^{-1}) + O\left(\log(\kappa p^{-1}) \right) \]

for any \(p \leq y_1 \). Recalling the definition of \(g_*(u) \), we deduce from Lemma 3.6 (ii) the formulas

\[f_{1,p}(\kappa) = \begin{cases} g_*(\kappa p^{-1}) + 2\kappa p^{-1} + O\left(\kappa p^{-2} + p^{-1} \right) & \text{if } y_1 < p < \kappa, \\ g_*(\kappa p^{-1}) + O\left(\kappa p^{-2} + p^{-1} \right) & \text{if } \kappa \leq p < y_2. \end{cases} \]

Therefore the sum of terms for \(p < y_2 \) is calculated as

\[\sum_{p < y_2} f_{1,p}(\kappa) = -2\kappa \sum_{p < \kappa} \log(1 - p^{-1}) + \sum_{y_1 < p < y_2} g_*(\kappa p^{-1}) + E, \]

where the error term \(E \) is evaluated as

\[E = 2\kappa \sum_{y_1 < p < \kappa} \{ \log(1 - p^{-1}) + p^{-1} \} + O\left(\sum_{p < y_1} \log(\kappa p^{-1}) + \sum_{y_1 < p < y_2} (\kappa p^{-2} + p^{-1}) \right). \]

Furthermore, we use the estimate \(\log(1 - x) = -x + O(x^2) \) with \(|x| < 1 \) to obtain

\[E \ll \sum_{y_1 < p < \kappa} \kappa p^{-2} + \sum_{p < y_1} \log(\kappa p^{-1}) + \sum_{y_1 < p < y_2} (\kappa p^{-2} + p^{-1}) \]

\[\ll \frac{\kappa}{y_1 \log y_1} + \frac{(\log \kappa)y_1}{\log y_1} + \log(y_2) \ll \sqrt{\kappa}. \]

Applying the asymptotic formula

\[-\sum_{p < y} \log(1 - p^{-1}) = \log_2 y + \gamma + O\left(e^{-2\sqrt{\log y}} \right), \]
we derive

\[\sum_{p < y_2} f_{1,p}(\kappa) = 2\kappa(\log_2 \kappa + \gamma) + \sum_{y_1 < p < y_2} g_*(\kappa p^{-1}) + O\left(\kappa e^{-2\sqrt{\log \kappa}}\right). \]

Then we estimate the contribution of terms for \(p \geq y_2 \). By Lemma 3.6 (iii), we obtain

\[\sum_{p \geq y_2} f_{1,p}(\kappa) \ll \frac{\kappa^2}{y_2 \log y_2} \ll \frac{\kappa}{(\log \kappa)^N+1}, \]

where the implied constant depends on \(N \). Combining (3.12) and (3.13), we obtain

\[f_1(\kappa) = 2\kappa(\log_2 \kappa + \gamma) + \sum_{y_1 < p < y_2} g_*(\kappa p^{-1}) + O\left(\frac{\kappa}{(\log \kappa)^N+1}\right). \]

The work of estimating the sum in (3.14) remains, but one can show

\[\sum_{y_1 < p < y_2} g_*(\kappa p^{-1}) = \frac{\kappa}{\log \kappa} \left\{ \sum_{n=0}^{N-1} \frac{g_{0,n}}{(\log \kappa)^n} + O\left(\frac{1}{(\log \kappa)^N}\right) \right\} \]

along the same line as the proof of Proposition 3.1. Hence the desired asymptotic formula of \(f_1(\kappa) \) follows. In addition, the proof for \(f'_1(\kappa) \) is given in a similar way, and we omit the proof. \(\square \)

4. Probability density functions

4.1. Approximation of the saddle-point. As seen in [14, 15, 18], the saddle-point method is useful to show asymptotic formulas such as (1.3) and (1.9). Here, the saddle-point stands for the solution \(\kappa = \kappa(\sigma, \tau) \) to the equation

\[f'_\sigma(\kappa) = \tau, \]

where \(f_\sigma(\kappa) \) is the cumulant-generating function defined by (1.3). We approximate the saddle-point by extending the method of Liu–Royer–Wu [18]. First, we prove the existence and uniqueness of the solution of (4.1).

Lemma 4.1. Let \(\sigma > 1/2 \) and \(\tau > 0 \). Then there exists a unique real number \(\kappa = \kappa(\sigma, \tau) > 0 \) for which (1.1) is satisfied. We have \(\kappa(\sigma, \tau) \to \infty \) as \(\tau \to \infty \).

Proof. Since \(f_\sigma(\kappa) = \log F_\sigma(\kappa) \), we calculate its second derivative as

\[f''_\sigma(\kappa) = \frac{F''_\sigma(\kappa) F_\sigma(\kappa) - F'_\sigma(\kappa)^2}{F_\sigma(\kappa)^2} = \frac{1}{F_\sigma(\kappa)} \int_{\mathbb{R}} (x - f'_\sigma(\kappa))^2 e^{\kappa x}M_\sigma(x) \, dx. \]

This implies \(f''_\sigma(\kappa) > 0 \), and thus \(f'_\sigma(\kappa) \) is strictly increasing for \(\kappa > 0 \). Furthermore,

\[\mathbb{E} \left[\log L(\sigma, \Theta) \right] = \sum_p \sum_{m=1}^\infty \frac{1}{m} \mathbb{E} \left[\cos(m \Theta_p) \right] p^{-m \sigma} = 0 \]

since \(\mathbb{E} \left[\cos(m \Theta_p) \right] = 0 \) for all \(m \geq 1 \). Hence the value \(f'_\sigma(0) \) is calculated as

\[f'_\sigma(0) = \frac{F'_\sigma(0)}{F_\sigma(0)} = \mathbb{E} \left[\log L(\sigma, \Theta) \right] = 0. \]

Therefore we obtain the conclusion. \(\square \)
Then, we apply Propositions 3.1 and 3.2 to derive the following results on the saddle-point \(\kappa = \kappa(\sigma, \tau) \) for \(1/2 < \sigma \leq 1 \).

Proposition 4.2. Let \(N \in \mathbb{Z}_{\geq 1} \). Denote by \(\kappa = \kappa(\sigma, \tau) \) the solution of (4.1) with \(1/2 < \sigma \leq 1 \). For \(n = 0, \ldots, N - 1 \), there exist polynomials \(B_{n, \sigma}(x) \) of degree at most \(n \) with \(B_{0, \sigma}(x) = 1 \) such that the formula

\[
\kappa = B(\sigma)(\tau \log \tau)^{1-\sigma} \left\{ \sum_{n=0}^{N-1} \frac{B_{n, \sigma}(\log_2 \tau)}{(\log \tau)^n} + O \left(\left(\frac{\log_2 \tau}{\log \tau} \right)^N \right) \right\}
\]

holds if \(\tau > 0 \) is large enough. Here, the implied constant depends on \(\sigma \) and \(N \), and \(B(\sigma) \) is the positive constant determined as

\[
\begin{align*}
B(\sigma) &= \left(\frac{1 - \sigma}{\sigma} g_{0,1}(\sigma) \right)^{-\frac{\sigma}{1-\sigma}}. \\
B_{1, \sigma}(x) &= \frac{\sigma}{1 - \sigma} x + \log B(\sigma) - \frac{g_{1,1}(\sigma)}{g_{0,1}(\sigma)},
\end{align*}
\]

where \(g_{0,1}(\sigma) \) and \(g_{1,1}(\sigma) \) are the constants defined by (2.4).

Proof. First, we apply Proposition 3.1 with \(N = 1 \). It yields the formula

\[
\tau = g_{0,1}(\sigma) \kappa^{1-\sigma} \left(1 + O \left(\frac{1}{\log \kappa} \right) \right).
\]

Furthermore, the logarithm is estimated as

\[
\log \tau = \frac{1 - \sigma}{\sigma} (\log \kappa) \left(1 + O \left(\frac{\log_2 \kappa}{\log \kappa} \right) \right),
\]

and therefore \(\log \tau \asymp \log \kappa \) follows. Put \(\kappa = B(\sigma)(\tau \log \tau)^{1-\sigma} (1 + h_\sigma(\tau)) \). Then we deduce from (4.3) and (4.4) that \(h_\sigma(\tau) \) satisfies

\[
h_\sigma(\tau) \ll \frac{\log_2 \kappa}{\log \kappa} \ll \frac{\log_2 \tau}{\log \tau},
\]

which derives the result when \(N = 1 \). To consider the case \(N = 2 \), we calculate the terms \(\kappa^{1-\sigma} \) and \(\log \kappa \) as

\[
\begin{align*}
\kappa^{1-\sigma} &= B(\sigma) \left(\frac{1-\sigma}{\sigma} \right) (\tau \log \tau) \left\{ 1 + \frac{1 - \sigma}{\sigma} h_\sigma(\tau) + O \left(\left(\frac{\log_2 \tau}{\log \tau} \right)^2 \right) \right\}, \\
\log \kappa &= \frac{\sigma}{1 - \sigma} (\log \tau) \left\{ 1 + \frac{\log_2 \tau + \frac{1-\sigma}{\sigma} \log B(\sigma)}{\log \tau} + O \left(\left(\frac{\log_2 \tau}{\log \tau} \right)^2 \right) \right\},
\end{align*}
\]

by using \(\kappa = B(\sigma)(\tau \log \tau)^{1-\sigma} (1 + h_\sigma(\tau)) \) and (4.5). We insert them to the formula

\[
\tau = g_{0,1}(\sigma) \kappa^{1-\sigma} \left\{ 1 + \frac{g_{1,1}(\sigma)}{g_{0,1}(\sigma)} \frac{1}{\log \kappa} + O \left(\frac{1}{(\log \kappa)^2} \right) \right\}
\]
which is a consequence of Proposition 3.1 with $N = 2$. Then the identity
\[
\tau = \tau\left\{ 1 + \frac{1 - \sigma}{\sigma} h_\sigma(\tau) - \frac{\log \tau}{\log \sigma} + \frac{\log \tau}{\log \sigma} + O\left(\left(\frac{\log \tau}{\log \sigma} \right)^2 \right) \right\}
\]
follows. Therefore, we see that $h_\sigma(\tau)$ satisfies
\[
h_\sigma(\tau) = \frac{1}{\log \tau} \left(\frac{\sigma}{1 - \sigma} \log \tau + \log B(\sigma) - \frac{B_{1,1}(\sigma)}{B_{0,1}(\sigma)} \right) + O\left(\left(\frac{\log \tau}{\log \sigma} \right)^2 \right)
\]
\[
= \frac{B_{1,\sigma}(\log \tau)}{\log \tau} + O\left(\left(\frac{\log \tau}{\log \sigma} \right)^2 \right).
\]
It derives the desired result when $N = 2$. For $m \geq 2$, we assume that it is valid further when $N = 1, \ldots, m$. Note that the asymptotic formula
\[
(4.6) \quad \tau = g_{0,1}(\sigma) \kappa_{\frac{1 - \sigma}{\sigma}} \left\{ 1 + \sum_{j=1}^{m} \frac{g_{j,1}(\sigma)}{g_{0,1}(\sigma)} \frac{\log \tau}{(\log \tau) j} \right\} + O\left(\left(\frac{\log \tau}{\log \sigma} \right)^{m+1} \right)
\]
follows from Proposition 3.1 with $N = m + 1$. If we put
\[
\kappa = B(\sigma)(\log \tau)_{\frac{1 - \sigma}{\sigma}} \left\{ 1 + \sum_{n=0}^{m-1} \frac{B_{n,\sigma}(\log \tau)}{(\log \tau) n} + h_{m,\sigma}(\tau) \right\},
\]
then the inductive assumption gives the upper bound
\[
(4.7) \quad h_{m,\sigma}(\tau) \ll \left(\frac{\log \tau}{\log \sigma} \right)^m.
\]
Hence the terms $\kappa_{\frac{1 - \sigma}{\sigma}}$ and $\log \kappa$ are calculated as
\[
\kappa_{\frac{1 - \sigma}{\sigma}} = B(\sigma)(\log \tau)_{\frac{1 - \sigma}{\sigma}} \left\{ 1 + \sum_{n=1}^{m} \frac{C_{n,\sigma}(\log \tau)}{(\log \tau) n} \right\}
\]
\[
+ \frac{1 - \sigma}{\sigma} h_{m,\sigma}(\tau) + O\left(\left(\frac{\log \tau}{\log \sigma} \right)^{m+1} \right),
\]
\[
\log \kappa = \frac{\sigma}{1 - \sigma} (\log \tau)_{\frac{1 - \sigma}{\sigma}} \left\{ 1 + \sum_{n=1}^{m} \frac{C^*_{n,\sigma}(\log \tau)}{(\log \tau) n} \right\} + O\left(\left(\frac{\log \tau}{\log \sigma} \right)^{m+1} \right),
\]
where $C_{n,\sigma}(x)$ and $C^*_{n,\sigma}(x)$ are polynomials of degree at most n. Then formula (4.6) deduces the identity
\[
\tau = \tau\left\{ 1 + \sum_{n=1}^{m} \frac{D_{n,\sigma}(\log \tau)}{(\log \tau) n} + \frac{1 - \sigma}{\sigma} h_{m,\sigma}(\tau) + O\left(\left(\frac{\log \tau}{\log \sigma} \right)^{m+1} \right) \right\}
\]
with some polynomials $D_{n,\sigma}(x)$ of degree at most n. Therefore we obtain
\[
h_{m,\sigma}(\tau) = -\frac{\sigma}{1 - \sigma} \sum_{n=1}^{m} \frac{D_{n,\sigma}(\log \tau)}{(\log \tau) n} + O\left(\left(\frac{\log \tau}{\log \sigma} \right)^{m+1} \right).
By inductive assumption (4.7), we see that
\[D_{1,\sigma}(x) = \cdots = D_{m-1,\sigma}(x) = 0. \]
Hence the formula
\[h_{m,\sigma}(\tau) = \frac{\sigma}{1 - \sigma} \frac{D_{m,\sigma}(\log_2 \tau)}{(\log \tau)^m} + O \left(\left(\frac{\log \tau}{\log \tau} \right)^{m+1} \right) \]
follows, which asserts that the desired result is valid when \(N = m + 1. \) \(\square \)

Proposition 4.3. Let \(N \in \mathbb{Z}_{\geq 1} \) and put \(\tau = 2 \log t + 2\gamma. \) Denote by \(\kappa = \kappa(1, \tau) \) the solution of (4.1) with \(\sigma = 1. \) For \(n = 0, \ldots, N - 1, \) there exist real numbers \(b_n \) with \(b_0 = 1 \) such that the formula
\[\kappa = \exp \left(t - \frac{1}{2} g_{0,1} \right) \left\{ \sum_{n=0}^{N-1} b_n t^n + O \left(\frac{1}{tN} \right) \right\} \]
holds if \(t > 0 \) is large enough. Here, the implied constant depends on \(N. \) Furthermore, the real number \(b_1 \) is obtained as
\[b_1 = -\frac{1}{8} g_{0,1} - \frac{1}{2} g_{1,1}, \]
where \(g_{0,1} \) and \(g_{1,1} \) are the constants defined by (2.5).

Proof. By Proposition 3.2 with \(N = 1, \) we have
\[2 \log t = 2 \log_2 \kappa + \frac{g_{0,1}}{\log \kappa} + O \left(\frac{1}{(\log \kappa)^2} \right) \]
since we put \(\tau = 2 \log t + 2\gamma. \) Therefore the asymptotic formula
\[t = (\log \kappa) \exp \left(\frac{g_{0,1}}{2 \log \kappa} + O \left(\frac{1}{(\log \kappa)^2} \right) \right) = \log \kappa + \frac{1}{2} g_{0,1} + O \left(\frac{1}{t} \right) \]
follows by noting that \(t \asymp \log \kappa \) holds. If we use Proposition 3.2 with \(N \geq 2, \) then one can prove more generally
\[t = \log \kappa + \frac{1}{2} g_{0,1} + \sum_{n=1}^{N-1} \beta_n t^n + O \left(\frac{1}{tN} \right) \]
by induction on \(N, \) where \(\beta_n \) are real numbers such that \(\beta_1 = \frac{1}{2} g_{0,1}^2 + \frac{1}{2} g_{1,1}. \) See also the proof of [13, Lemma 8.1] for an analogous argument. From the above, we obtain the asymptotic formula
\[\kappa = \exp \left(t - \frac{1}{2} g_{0,1} - \sum_{n=1}^{N-1} \frac{\beta_n}{\log \kappa} + O \left(\frac{1}{tN} \right) \right) \]
\[= \exp \left(t - \frac{1}{2} g_{0,1} \right) \left\{ \sum_{n=0}^{N-1} b_n t^n + O \left(\frac{1}{tN} \right) \right\} \]
as desired, where \(b_n \) are real numbers such that \(b_0 = 1 \) and \(b_1 = -\beta_1. \) \(\square \)
4.2. **Proof of Theorem 1.1** Let $\sigma > 1/2$ and $\tau > 0$. Denote by $\kappa = \kappa(\sigma, \tau)$ the solution of (1.1). Using the density function M_σ of (1.5), we define

$$N_\sigma(x; \tau) = \frac{e^{\kappa(x+\tau)}}{F_\sigma(\kappa)} M_\sigma(x + \tau)$$

for $x \in \mathbb{R}$, where $F_\sigma(\kappa)$ is the moment-generating function of (1.6). To begin with, we show the following lemmas on the function $N_\sigma(x; \tau)$.

Lemma 4.4. Let $\sigma > 1/2$ and $\tau > 0$. Then $N_\sigma(w; \tau)$ is a non-negative continuous function satisfying the equalities

$$\int_\mathbb{R} N_\sigma(x; \tau) \, dx = 1 \quad \text{and} \quad \int_\mathbb{R} N_\sigma(x; \tau) x \, dx = 0.$$

Proof. By the definition of N_σ, the Fourier transform is represented as

$$\mathcal{N}_\sigma(v; \tau) := \int_\mathbb{R} N_\sigma(x; \tau) e^{ivx} \, dx = e^{-iv\kappa} \frac{F_\sigma(\kappa + iv)}{F_\sigma(\kappa)}.$$

Thus we have $\mathcal{N}_\sigma(0; \tau) = 1$, and furthermore,

$$\left. \frac{d}{dv} \mathcal{N}_\sigma(v; \tau) \right|_{v=0} = -i\tau + i f'_\sigma(\kappa) = 0$$

due to (4.11). Hence the result follows since we have the identities

$$\left. \frac{d^k}{dv^k} \mathcal{N}_\sigma(v; \tau) \right|_{v=0} = i^k \int_\mathbb{R} N_\sigma(x; \tau) x^k \, dx$$

for all $k \geq 0$. \hfill \Box

Lemma 4.5. Let $1/2 < \sigma \leq 1$ and $\tau > 0$ be a large real number. Then there exist positive constants $c_1(\sigma)$ and $c_2(\sigma)$ such that we have

$$|\mathcal{N}_\sigma(v; \tau)| \leq \exp\left(-c_2(\sigma) v^2 \frac{\kappa^{1/2 - 2}}{\log \kappa} \right)$$

if $|v| \leq c_1(\sigma)\kappa$ is satisfied.

Proof. By formula (4.10), it is sufficient to evaluate $|F_\sigma(s)|/F_\sigma(\kappa)$ with $s = \kappa + iv$. Recall that the function F_σ satisfies (3.3). Then we obtain

$$\left| \frac{F_\sigma(s)}{F_\sigma(\kappa)} \right| \leq \prod_{Q_1 < p < Q_2} \left| \frac{F_{\sigma,p}(s)}{F_{\sigma,p}(\kappa)} \right|$$

for $Q_1, Q_2 > 0$ since the inequality $|F_{\sigma,p}(s)| \leq F_{\sigma,p}(\kappa)$ holds for every p. We deduce from Lemmas 2.1 and 3.3 that

$$F_{\sigma,p}(s) = \frac{1}{\sqrt{4\pi}} \frac{\exp(2sp^{-\sigma})}{(sp^{-\sigma})^{3/2}} (1 + h_{\sigma,p}(s))$$

for any $p > y_1$ in the disk $|s - \kappa| \leq \kappa/2$, where $h_{\sigma,p}(s)$ is a holomorphic function such that $h_{\sigma,p}(s) \ll \kappa^{-1}p^{\sigma} + \kappa p^{-2\sigma} + p^{-1}$. By Cauchy’s integral formula, we have

$$h^{(j)}_{\sigma,p}(\kappa) \ll 2^j j! \kappa^{-j} \left(\kappa^{-1}p^{\sigma} + \kappa p^{-2\sigma} + p^{-1} \right)$$
for all $j \geq 0$. Then, we choose the parameters $Q_1, Q_2 > 0$ as

\[Q_1 = \left(\frac{\kappa}{\epsilon_1} \right)^{\frac{1}{2}} \quad \text{and} \quad Q_2 = (\epsilon_2 \kappa)^{\frac{1}{2}} \]

with small positive constants $\epsilon_j = \epsilon_j(\sigma)$. For $Q_1 < p < Q_2$, formula (4.12) yields

\[
\log \frac{|F_{\sigma,p}(s)|}{F_{\sigma,p}(\kappa)} = \frac{3}{2} \Re \log \left(1 + \frac{i v}{\kappa} \right) + \Re \left(1 + \frac{h_{\sigma,p}(s) - h_{\sigma,p}(\kappa)}{1 + h_{\sigma,p}(\kappa)} \right) \\
= -\frac{3 v^2}{4 \kappa^2} + \Re \left(h_{\sigma,p}(s) - h_{\sigma,p}(\kappa) \right) + O \left(\frac{v^3}{\kappa^3} + |h_{\sigma,p}(s) - h_{\sigma,p}(\kappa)|^2 \right)
\]

if $|v| \leq c_1 \kappa$ is satisfied with a small positive constant $c_1 = c_1(\sigma)$. Remark that $h'_{\sigma,p}(\kappa)$ is real by definition. By (4.14), we have

\[
\Re (h_{\sigma,p}(s) - h_{\sigma,p}(\kappa)) \leq \sum_{j=2}^{\infty} \frac{|h_{\sigma,p}(\kappa)|}{j!} |v|^j
\]

\[
\leq \frac{v^2}{\kappa^2} (\kappa^{-1} p^\sigma + \kappa p^{-2\sigma} + p^{-1})
\]

and furthermore,

\[
|h_{\sigma,p}(s) - h_{\sigma,p}(\kappa)|^2 \leq \frac{v^2}{\kappa^2} (\kappa^{-1} p^\sigma + \kappa p^{-2\sigma} + p^{-1})
\]

for $Q_1 < p < Q_2$. Therefore we deduce

\[
\log \frac{|F_{\sigma,p}(s)|}{F_{\sigma,p}(\kappa)} = \left(-\frac{3}{4} + O \left(\frac{|v|}{\kappa} + \kappa^{-1} p^\sigma + \kappa p^{-2\sigma} + p^{-1} \right) \right) \frac{v^2}{\kappa^2} \leq -\frac{1}{2} \frac{v^2}{\kappa^2}
\]

for $Q_1 < p < Q_2$ if $c_1, \epsilon_1, \epsilon_2 > 0$ are small enough, and $\kappa = \kappa(\sigma, \tau) > 0$ is large enough. By the prime number theorem, we obtain the inequality

\[
\sum_{Q_1 < p < Q_2} \log \frac{|F_{\sigma,p}(s)|}{F_{\sigma,p}(\kappa)} \leq -\frac{1}{4} \frac{v^2}{\kappa^2} \log Q_2
\]

Inserting (4.14), we conclude that

\[
\prod_{Q_1 < p < Q_2} \frac{|F_{\sigma,p}(s)|}{F_{\sigma,p}(\kappa)} \leq \exp \left(-c_2(\sigma) p^\frac{1}{2} \kappa^{\frac{1}{2} - 2} \frac{1}{\log \kappa} \right)
\]

with some positive constant $c_2(\sigma)$, which completes the proof. \hfill \square

Lemma 4.6. Let $1/2 < \sigma \leq 1$ and $\tau > 0$ be a large real number. For any $c > 0$, there exists a positive constant $c_3(\sigma, c)$ such that we have

\[
|\tilde{N}_\sigma(v; \tau)| \leq \exp \left(-c_3(\sigma, c) \frac{|v|^{1/2}}{\log |v|} \right)
\]

if $|v| > ck$ is satisfied.

Proof. Similarly to (4.11), we have the inequality

\[
\frac{|F_\sigma(s)|}{F_\sigma(\kappa)} \leq \prod_{p > Q_1} \frac{|F_{\sigma,p}(s)|}{F_{\sigma,p}(\kappa)}
\]
for $Q_3 > 0$. If the condition $|s|p^{-\sigma} < \delta$ is valid with a small positive constant $\delta = \delta(\sigma, c)$, then $F_{\sigma,p}(s)$ is calculated as

$$F_{\sigma,p}(s) = 1 + 2sp^{-\sigma}E[\cos \Theta_p] + s^2p^{-2\sigma}E[(\cos \Theta_p)^2] + O(|s|^3p^{-3\sigma})$$

$$= 1 + \frac{1}{4}s^2p^{-2\sigma} + O(|s|^2p^{-2\sigma-1} + |s|^3p^{-3\sigma})$$

by using the equalities

$$E[\cos \Theta_p] = 0 \quad \text{and} \quad E[(\cos \Theta_p)^2] = \frac{1}{4}\left(1 + \frac{1}{p}\right).$$

It yields the asymptotic formula

$$\log F_{\sigma,p}(s) = \frac{1}{4}s^2p^{-2\sigma} + O(|s|^2p^{-2\sigma-1} + |s|^3p^{-3\sigma})$$

if Q_3 is large and δ is small. Then, we choose the parameter $Q_3 > 0$ as

$$(4.15) \quad Q_3 = \left(\frac{4}{\delta^2}v\right)^{1/\sigma}$$

so that the condition $|s|p^{-\sigma} < \delta$ is satisfied for $p > Q_3$. Since $\text{Re}(s^2) = \kappa^2 - v^2$ with $s = \kappa + iv$, we obtain

$$\log \frac{|F_{\sigma,p}(s)|}{F_{\sigma,p}(\kappa)} = \left(-1 + O\left(p^{-1} + vp^{-\sigma}\right)\right)v^2p^{-2\sigma} \leq -\frac{1}{8}v^2p^{-2\sigma}$$

for $p > Q_3$ if $\delta > 0$ is sufficiently small, and $\kappa = \kappa(\sigma, \tau) > 0$ is sufficiently large. By the prime number theorem, we have

$$\sum_{p > Q_3} \log \frac{|F_{\sigma,p}(s)|}{F_{\sigma,p}(\kappa)} \leq -\frac{v^2}{8} \sum_{p > Q_3} p^{-2\sigma} \leq -\frac{v^2}{16(2\sigma - 1) \log Q_3} Q_3^{1-2\sigma}$$

$$(\text{4.15})$$

Inserting $$(\text{4.15})$$ to this, we derive the inequality

$$\prod_{p > Q_3} \left|\frac{F_{\sigma,p}(s)}{F_{\sigma,p}(\kappa)}\right| \leq \exp\left(-c_3(\sigma, c)\frac{|v|^{1/\sigma}}{\log |v|}\right)$$

with some positive constant $c_3(\sigma, c)$ if $\kappa > 0$ is large. Hence the result follows. \hfill \Box

Proof of Theorem 1.1. Let $1/2 < \sigma \leq 1$. By the definition of the function \mathcal{N}_σ, the desired result follows if we have

$$(4.16) \quad \mathcal{N}_\sigma(x; \tau) = \frac{1}{\sqrt{f''_\sigma(\kappa)}} \left\{ \exp\left(-\frac{x^2}{2f''_\sigma(\kappa)}\right) + O\left(\kappa^{-\frac{1}{2}}\sqrt{\log \kappa}\right) \right\}.$$

To show this, we use the inverse formula

$$(4.17) \quad \mathcal{N}_\sigma(x; \tau) = \int_{\mathbb{R}} \tilde{N}_\sigma(v; \tau)e^{-ixv}dv$$

which is justified by Lemmas 4.3 and 4.5. Note that $\tilde{N}_\sigma(v; \tau)$ is represented as

$$\tilde{N}_\sigma(v; \tau) = \exp\left(-\frac{f''_\sigma(\kappa)}{2}v^2\right)W(iv)$$
by (4.10), where W is the following entire function:
\[
W(z) = \exp \left(-\tau z - \frac{f''(\kappa)}{2} z^2 \right) \frac{F_\sigma(z + \kappa)}{F_\sigma(\kappa)}
\]

Put $\lambda = \kappa^{1 - \frac{i}{\sigma}}$. Then we have
\[
\int_{-\lambda}^{\lambda} \hat{N}_\sigma(v; \tau) e^{-ixv} |dv| = \int_{-\lambda}^{\lambda} \exp \left(-\frac{f''(\kappa)}{2} v^2 \right) e^{-ixv} |dv| \\
+ \int_{-\lambda}^{\lambda} \exp \left(-\frac{f''(\kappa)}{2} v^2 \right) (W(iv) - 1) e^{-ixv} |dv|
= I_{1,1} + I_{1,2},
\]
say. For any $a, b > 0$ with $ab^2 > 1$, we have
\[
\int_{-\infty}^{\infty} \exp(-av^2) e^{-ixv} |dv| = \frac{1}{\sqrt{2a}} \exp \left(-\frac{x^2}{4a} \right), \\
\int_{b}^{\infty} \exp(-av^2) |dv| \ll \frac{1}{\sqrt{2a}} \exp(-ab^2).
\]
Therefore the first integral $I_{1,1}$ is estimated as
\[
I_{1,1} = \frac{1}{\sqrt{f''(\kappa)}} \left\{ \exp \left(-\frac{\sigma}{2 f''(\kappa)} \right) + O \left(\exp \left(-\frac{f''(\kappa)}{2} \lambda^2 \right) \right) \right\}
\]
since $f''(\kappa) \lambda^2 \leq \kappa^{\frac{3}{2}} (\log \kappa)^{-1} \to \infty$ as $\kappa \to \infty$ by Propositions 3.1 and 3.2. The second integral $I_{1,2}$ is evaluated as follows. We see that $W(z)$ is represented as
\[
W(z) = \exp \left(f_\sigma(z + \kappa) - f_\sigma(\kappa) - f'_\sigma(\kappa) z - \frac{f''(\kappa)}{2} z^2 \right) \\
= \exp \left(\sum_{j=3}^{\infty} \frac{f^{(j)}(\kappa)}{j!} z^j \right)
\]
at least near the origin. Thus we have $W(z) = 1 + \sum_{j \geq 3} w_j z^j / j!$, where
\[
w_j = \sum_{k=1}^{\lfloor j/3 \rfloor} \frac{1}{k!} \sum_{j_1 + \cdots + j_k = j, j_k \geq 3} \binom{j}{j_1, \ldots, j_k} f^{(j_1)}(\kappa) \cdots f^{(j_k)}(\kappa).
\]
Additionally, we have the inequality
\[
1 + \sum_{j \geq 3} \frac{|w_j|}{j!} |z|^j \\
\leq 1 + \sum_{j \geq 3} \frac{1}{j!} \left\{ \sum_{k=1}^{\lfloor j/3 \rfloor} \frac{1}{k!} \sum_{j_1 + \cdots + j_k = j, j_k \geq 3} \binom{j}{j_1, \ldots, j_k} |f^{(j_1)}(\kappa)| \cdots |f^{(j_k)}(\kappa)| \right\} |z|^j \\
= \exp \left(\sum_{j=3}^{\infty} \frac{|f^{(j)}(\kappa)|}{j!} |z|^j \right)
\]
for any \(z \in \mathbb{C} \). Then, we deduce from Propositions 3.1 and 3.2 the upper bounds

\[
f^{(j)}(\sigma) \leq C_j \frac{\kappa^{\frac{1}{2}-j}}{\log \kappa}
\]

for all \(j \geq 3 \) by recalling that \(g_{0,j}(\sigma) \leq j! \) and \(g_{0,j} \leq j! \). By this, we obtain

\[
\sum_{j=3}^{\infty} \frac{|f^{(j)}(\sigma)|}{j!} |v|^j \leq \frac{C_3}{\log \kappa} \sum_{j=3}^{\infty} \left(\frac{|v|}{\kappa} \right)^j \leq \frac{C_3}{\log \kappa} |v|^3
\]

for \(|v| \leq \lambda \) with the implied constant depending only on \(\sigma \). Remark that \(\kappa^{\frac{1}{2}-3} |v|^3 \) is bounded for \(|v| \leq \lambda \). Hence we obtain from (4.19) that

\[
\sum_{j=3}^{\infty} \frac{|w_j|}{j!} |v|^j \leq \sum_{n=1}^{\infty} \frac{1}{n!} \left(\frac{C_3}{\log \kappa} |v|^3 \right)^n \leq \frac{C_3}{\log \kappa} |v|^3,
\]

where \(C = C(\sigma) \) is a positive constant. As a result, we evaluate \(I_{1,2} \) as

\[
|I_{1,2}| \leq \int_{-\lambda}^{\lambda} \exp \left(-\frac{f''(\sigma)}{2} v^2 \right) \left(\sum_{j=3}^{\infty} \frac{|w_j|}{j!} |v|^j \right) |dv| \leq \frac{C_3}{\log \kappa} \int_{0}^{\infty} \exp \left(-\frac{f''(\sigma)}{2} v^2 \right) v^3 dv \leq \frac{C_3}{\log \kappa} \frac{1}{f''(\sigma)(\kappa)^2}.
\]

We further note that Propositions 3.1 and 3.2 provide the bound

\[
\frac{1}{\log \kappa} \frac{1}{f''(\sigma)(\kappa)} \leq \kappa^{-\frac{1}{2\pi}} \sqrt{\log \kappa}.
\]

Therefore, the integral \(I_{1,2} \) is evaluated as

\[
I_{1,2} \leq \frac{1}{\sqrt{f''(\sigma)}} \kappa^{-\frac{1}{2\pi}} \sqrt{\log \kappa}.
\]

Combining (4.18) and (4.20), we derive

\[
\int_{-\lambda}^{\lambda} \tilde{N}(v; \tau) e^{-ixv} |dv| = \frac{1}{\sqrt{f''(\sigma)}} \left\{ \exp \left(-\frac{x^2}{2f''(\sigma)} \right) + O \left(\kappa^{-\frac{1}{2\pi}} \sqrt{\log \kappa} \right) \right\}.
\]

Thus, the remaining work is to bound the integral

\[
I_2 = \int_{|v| > \lambda} \tilde{N}(v; \tau) e^{-ixv} |dv|.
\]

Let \(c_1(\sigma), c_2(\sigma), \) and \(c_3(\sigma, c) \) denote the positive constants of Lemmas 4.5 and 4.6 and put \(c_3(\sigma) = c_3(\sigma, c_1(\sigma)) \). By these lemmas, we have

\[
I_2 \leq \int_{\lambda}^{c_1(\sigma)\kappa} \exp \left(-c_2(\sigma) v^2 \frac{\kappa^{\frac{3}{2}}}{\log \kappa} \right) dv + \int_{c_1(\sigma)\kappa}^{\infty} \exp \left(-c_3(\sigma) \frac{v^2}{\log v} \right) dv \leq \exp \left(-c_2(\sigma) \frac{\kappa^{\frac{3}{2}}}{\log \kappa} \right) + \exp \left(-c_3(\sigma) \frac{\kappa^{\frac{3}{2}}}{\log \kappa} \right),
\]
where \(c_2'(\sigma) \) and \(c_3'(\sigma) \) are positive constants. Finally, we again use Propositions 3.1 and 3.2 to deduce

\[
I_2 \ll \frac{1}{\sqrt{f''_\sigma(\kappa)}} \kappa^{-\frac{1}{2}} \sqrt{\log \kappa}.
\]

Hence we obtain the result by formula (4.17).

\[
\square
\]

4.3. Corollaries. As stated in Section 1.1, one can deduce from Theorem 1.1 several results on the distribution function \(\Phi(\sigma, \tau) \) for \(1/2 < \sigma \leq 1 \).

Corollary 4.7. With the same assumption as in Theorem 1.1, we obtain

\[
\Phi(\sigma, \tau) = \frac{F_\sigma(\kappa)e^{-\kappa \tau}}{\kappa \sqrt{2\pi f''_\sigma(\kappa)}} \left\{ 1 + O \left(\kappa^{-\frac{1}{2}} \sqrt{\log \kappa} \right) \right\}
\]

if \(\tau > 0 \) is large enough, where the implied constant depends on \(\sigma \).

Proof. By Theorem 1.1, we calculate \(\Phi(\sigma, \tau) \) as

\[
\Phi(\sigma, \tau) = \int_0^\infty M_\sigma(\tau + x) |dx|
\]

\[
= \frac{F_\sigma(\kappa)e^{-\kappa \tau}}{\sqrt{f''_\sigma(\kappa)}} \left\{ \int_0^\infty \exp \left(-\kappa x - \frac{x^2}{2f''_\sigma(\kappa)} \right) |dx| + O \left(\kappa^{-\frac{1}{2}} \sqrt{\log \kappa} \right) \int_0^\infty e^{-\kappa x} |dx| \right\}
\]

\[
= \frac{F_\sigma(\kappa)e^{-\kappa \tau}}{\kappa \sqrt{2\pi f''_\sigma(\kappa)}} \left\{ \int_0^\infty \exp \left(-x - \frac{x^2}{2\kappa^2 f''_\sigma(\kappa)} \right) dx + O \left(\kappa^{-\frac{1}{2}} \sqrt{\log \kappa} \right) \right\}.
\]

Furthermore, we have the asymptotic formula

\[
\int_0^\infty \exp \left(-x - \frac{x^2}{2\kappa^2 f''_\sigma(\kappa)} \right) dx = 1 + O \left(\frac{1}{\kappa^2 f''_\sigma(\kappa)} \right)
\]

\[
= 1 + O \left(\kappa^{-\frac{1}{2}} \log \kappa \right)
\]

by using Propositions 3.1 and 3.2. Hence we obtain the conclusion. \(\square \)

We further deduce from Corollary 4.7 the formula

\[
\log \Phi(\sigma, \tau) = f_\sigma(\kappa) - \kappa \tau + O \left(\log \kappa + \log f''_\sigma(\kappa) \right)
\]

\[
= f_\sigma(\kappa) - \kappa f''_\sigma(\kappa) + O(\log \kappa)
\]

for \(1/2 < \sigma \leq 1 \) by recalling \(\tau = f''_\sigma(\kappa) \) and \(f''_\sigma(\kappa) \geq \kappa^{\frac{1-2\sigma}{2}} (\log \kappa)^{-1} \). By this, we prove Corollaries 1.2 and 1.3 as below.

Proof of Corollary 1.2. Let \(1/2 < \sigma < 1 \). Then it follows from Proposition 3.1 that

\[
\log \Phi(\sigma, \tau) = -\frac{\kappa^{\frac{1}{2}}}{\log \kappa} \left\{ \sum_{n=0}^{N-1} \frac{c_n(\sigma)}{(\log \kappa)^n} + O \left(\frac{1}{(\log \kappa)^N} \right) \right\}
\]

\[
= -c_0(\sigma) \kappa^{\frac{1}{2}} \left\{ 1 + \sum_{n=1}^{N-1} \frac{c_n(\sigma)}{c_0(\sigma)} \frac{1}{(\log \kappa)^n} + O \left(\frac{1}{(\log \kappa)^N} \right) \right\}
\]
holds for any $N \in \mathbb{Z}_{\geq 1}$, where we put $c_n(\sigma) = g_{n,1}(\sigma) - g_{n,0}(\sigma)$. Here, we interpret $\sum_{n=1}^{N-1} = 0$ if $N = 1$. Moreover, we have

$$\kappa^\frac{1}{2} = B(\sigma)^\frac{1}{2}(\tau \log \tau)^\frac{1}{2\sigma} \left\{ 1 + \sum_{n=1}^{N-1} \frac{D_{n,\sigma}(\log_2 \tau)}{(\log \tau)^n} + O \left(\left(\frac{\log_2 \tau}{\log \tau} \right)^N \right) \right\},$$

$$\log \kappa = \frac{\sigma}{1 - \sigma} (\log \tau) \left\{ 1 + \sum_{n=1}^{N-1} \frac{D^*_n(\log_2 \tau)}{(\log \tau)^n} + O \left(\left(\frac{\log_2 \tau}{\log \tau} \right)^N \right) \right\}$$

by Proposition 4.2, where $B(\sigma)$ is determined as (4.2), and $D_{n,\sigma}(x)$ and $D^*_n(x)$ are polynomials of degree at most n. One can calculate the polynomials when $n = 1$ as

$$D_{1,\sigma}(x) = \frac{1}{\sigma} B_{1,\sigma}(x)$$

$$= \frac{1}{1 - \sigma} \left(\frac{1 - \sigma}{\sigma} g_{0,1}(\sigma) \right) - \frac{1}{\sigma} g_{1,1}(\sigma),$$

$$D^*_{1,\sigma}(x) = x + \frac{1 - \sigma}{\sigma} \log B(\sigma)$$

$$= x - \log \left(\frac{1 - \sigma}{\sigma} g_{0,1}(\sigma) \right)$$

with $B_{1,\sigma}(x)$ as in Proposition 4.2. Then, (4.21) derives

$$\log \Phi(\sigma, \tau) = -A(\sigma) \tau^{\frac{1}{\sigma} (\log \tau)} + \sum_{n=0}^{N-1} A_n(\log_2 \tau) \left(\frac{\log_2 \tau}{\log \tau} \right)^n + O \left(\left(\frac{\log_2 \tau}{\log \tau} \right)^N \right),$$

where $A(\sigma)$ is given by $A(\sigma) = c_0(\sigma) B(\sigma)^\frac{1}{2}(1 - \sigma)/\sigma$, and $A_n(\sigma)$ are polynomials of degree at most n such that $A_{0,\sigma}(x) = 1$. Note that $g_{0,0}(\sigma)$ and $g_{0,1}(\sigma)$ satisfy the relations

$$g_{0,0}(\sigma) = \frac{1}{\sigma} g_{0,1}(\sigma) \quad \text{and} \quad g_{0,1}(\sigma) = \int_0^\infty g(y^{-\sigma}) \, dy$$

by definition. Hence $A(\sigma)$ is represented as

$$A(\sigma) = c_0(\sigma) B(\sigma)^\frac{1}{2}(1 - \sigma)/\sigma = (1 - \sigma) \left(\frac{1 - \sigma}{\sigma} g_{0,1}(\sigma) \right)^{-\frac{1}{\sigma}}.$$

Finally, we calculate the polynomial $A_{1,\sigma}(x)$. By formula (4.21), we have

$$\log \Phi(\sigma, \tau) = -c_0(\sigma) B(\sigma)^\frac{1}{2}(\tau \log \tau)^\frac{1}{\sigma} \left\{ 1 + \frac{D_{1,\sigma}(\log_2 \tau)}{\log \tau} + O \left(\left(\frac{\log_2 \tau}{\log \tau} \right)^2 \right) \right\}$$

$$\times \frac{1 - \sigma}{\sigma} (\log \tau)^{-1} \left\{ 1 - \frac{D^*_{1,\sigma}(\log_2 \tau)}{\log \tau} + O \left(\left(\frac{\log_2 \tau}{\log \tau} \right)^2 \right) \right\}$$

$$\times \left\{ 1 + \frac{c_1(\sigma)}{c_0(\sigma)} \frac{1 - \sigma}{\sigma} (\log \tau)^{-1} + O \left(\left(\frac{\log_2 \tau}{\log \tau} \right)^2 \right) \right\}$$

$$= A(\sigma) \tau^{\frac{1}{\sigma} (\log \tau)} + O \left(\left(\frac{\log_2 \tau}{\log \tau} \right)^2 \right),$$
where
\[
A_{1,\sigma}(x) = D_{1,\sigma}(x) - D_{1,\sigma}^*(x) + \frac{c_1(\sigma) 1 - \sigma}{c_0(\sigma)} \sigma
\]
\[
= D_{1,\sigma}(x) - D_{1,\sigma}^*(x) + \frac{1}{\sigma} g_{1,1}(\sigma) - g_{1,0}(\sigma).
\]

Using (4.22) and (4.23), we have
\[
A_{1,\sigma}(x) = \frac{\sigma}{1 - \sigma} x - \frac{\sigma}{1 - \sigma} \log \left(\frac{1 - \sigma}{\sigma} g_{0,1}(\sigma) \right) - \frac{1}{\sigma} g_{1,0}(\sigma).
\]
Thus we obtain the desired representation of \(A_{1,\sigma}(x) \) by noting that
\[
g_{1,0}(\sigma) = -\sigma \int_0^\infty g(y^{-\sigma}) \log y \, dy.
\]
\[\square\]

Proof of Corollary 1.2. In this case, we apply Proposition 3.2 to deduce
\[
\log \Phi(1, \tau) = -\frac{\kappa}{\log \kappa} \left\{ \sum_{n=0}^{N-1} \frac{c_n}{(\log \kappa)^n} + O \left(\frac{1}{(\log \kappa)^N} \right) \right\}
\]
\[
= -\frac{2\kappa}{\log \kappa} \left\{ 1 + \sum_{n=1}^{N-1} \frac{c_n}{2 (\log \kappa)^n} + O \left(\frac{1}{(\log \kappa)^N} \right) \right\},
\]
where \(c_n = g_{n,1} - g_{n,0} \). Here, we remark that \(c_0 = 2 \) since we have
\[
g_{0,1} = \lim_{\epsilon \to 0} \left[\frac{g_*(u)}{u} \right]_{0}^{1-\epsilon} + \left[\frac{g_*(u)}{u} \right]_{1+\epsilon}^{\infty} + \int_0^\infty \frac{g_*(u)}{u^2} \, du = 2 + g_{0,0}
\]
by integrating by parts. Furthermore, we deduce from Proposition 4.3 and (4.8) the asymptotic formulas
\[
\kappa = \exp \left(t - \frac{1}{2} g_{0,1} \right) \left\{ 1 + \frac{b_1}{t} + \sum_{n=2}^{N-1} \frac{b_n}{t^n} + O \left(\frac{1}{t^N} \right) \right\},
\]
\[
\log \kappa = t \left\{ 1 - \frac{g_{0,1}}{2t} - \sum_{n=2}^{N-1} \frac{\beta_{n-1}}{t^n} + O \left(\frac{1}{t^N} \right) \right\},
\]
where \(b_n \) and \(\beta_n \) are real numbers such that \(b_1 = -\beta_1 = -\frac{1}{2} g_{0,1} - \frac{1}{2} g_{1,1} \). Using these formulas, we obtain
\[
\log \Phi(1, \tau) = -\frac{e^{t-A}}{t} \left\{ \sum_{n=0}^{N-1} \frac{a_n}{t^n} + O \left(\frac{1}{t^N} \right) \right\}
\]
by (4.24), where \(A \) is given by
\[
A = \frac{1}{2} g_{0,1} - \log 2 = 1 + \frac{1}{2} g_{0,0} - \log 2,
\]
and \(a_n \) are real numbers such that \(a_0 = 1 \) and
\[
a_1 = b_1 + \frac{1}{2} g_{0,1} + \frac{1}{2} c_1 = -\frac{1}{8} g_{0,1} - \frac{1}{2} g_{1,0} + \frac{1}{2}.
\]
Finally, we see that $g_{0,1}$ and $g_{1,0}$ are represented as

$$g_{0,1} = \int_{0}^{\infty} g_*(y^{-1}) \, dy \quad \text{and} \quad g_{1,0} = - \int_{0}^{\infty} g_*(y^{-1}) \log y \, dy.$$

Hence we complete the proof. \qed

Remark 4.8. The constant A of this paper is consistent with the constant A_k of Lamzouri [14, Theorem 0.2] when $k = 1$, while he represented it in a slightly different form. Especially, we have

$$A_1 = 1 + \int_{0}^{\infty} \frac{h_*(u)}{u^2} \, du$$

according to the representation by Lamzouri, where $h_*(u)$ is defined as

$$h_*(u) = \begin{cases}
 h(u) & \text{if } 0 < u < 1, \\
 h(u) - u & \text{if } u \geq 1
\end{cases}$$

by using the cumulant-generating function

$$h(u) = \log \left(\frac{2}{\pi} \int_{0}^{\pi} \exp(u \cos \theta) \sin^2 \theta \, d\theta \right).$$

Then we have $h(2u) = g(u)$, and therefore, we see that

$$A_1 = 1 + \frac{1}{2} \int_{0}^{\infty} \frac{h_*(2u)}{u^2} \, du$$

$$= 1 + \frac{1}{2} \int_{0}^{\infty} \frac{g_*(u)}{u^2} \, du + \frac{1}{2} \int_{1/2}^{1} \frac{h_*(2u) - g_*(u)}{u^2} \, du$$

$$= 1 + \frac{1}{2} \int_{0}^{\infty} \frac{g_*(u)}{u^2} \, du - \log 2$$

which equals to A of this paper. We further remark that A should be consistent with the constant γ_0 of Liu–Royer–Wu [18, Corollary 1.5]. However, it appears that they miscalculated the value of γ_0 by forgetting the term $- \log 2$.

5. Comparisons of distribution functions

In this section, we prove Theorem [14] and its corollaries. For this, we apply the following asymptotic formula on the complex moments of $L(\sigma, f)$ which was obtained in the previous paper of the author [23].

Proposition 5.1. Let $1/2 < \sigma \leq 1$ and $B \geq 1$. Then there exist positive constants $a = a(\sigma, B)$, $b = b(\sigma, B)$ and a subset $\mathcal{E}_q = \mathcal{E}_q(\sigma, B)$ of $B_2(q)$ such that

$$\frac{1}{\#B_2(q)} \sum_{f \in B_2(q) \setminus \mathcal{E}_q} L(\sigma, f)^s = F_\sigma(s) + O \left(\frac{F_\sigma(\kappa)}{\log q} B^2 + 2 \right)$$

holds uniformly for $s = \kappa + iv \in \mathbb{C}$ with $|s| \leq aR_\sigma(q)$, where we define

$$R_\sigma(q) = \begin{cases}
 (\log q)^\sigma & \text{if } 1/2 < \sigma < 1, \\
 (\log q)(\log q \log_2 q \log_3 q)^{-1} & \text{if } \sigma = 1.
\end{cases}$$
Furthermore, we have

\begin{equation}
\#\mathcal{E}_q \ll q \exp \left(-b \frac{\log q}{\log_2 q}\right).
\end{equation}

The implied constants in (5.1) and (5.2) depend on \(\sigma\) and \(B\).

Note that similar results were obtained by Cogdell–Michel [3] and Lamzouri [15] for the averages weighted by \(\omega_f = (4\pi(f, f))^{-1}\). The results were applied to study the weighted distribution functions \(\Phi_q(\sigma, \tau)\) and \(\Phi(\sigma, \tau)\) in [14, 15]. However, the method of this paper is different from theirs in terms of our using the following Esseen inequality.

Lemma 5.2 (Esseen inequality [19]). Let \(P\) and \(Q\) be two probability measures on \((\mathbb{R}, \mathcal{B}(\mathbb{R}))\) with distribution functions \(\Phi(\xi) = P((-\infty, \xi])\) and \(\Psi(\xi) = Q((-\infty, \xi])\), respectively. Assume that \(\Psi\) is differentiable, and that \(K = \sup_{\xi \in \mathbb{R}} |\Psi'(\xi)|\) is finite. Then we have

\begin{equation}
\sup_{\xi \in \mathbb{R}} |\Phi(\xi) - \Psi(\xi)| \leq \frac{2}{\pi} \int_0^R \frac{\phi(v) - \psi(v)}{v} dv + \frac{24K}{\pi} R^{-1}
\end{equation}

for every \(R > 0\), where \(\phi\) and \(\psi\) are the characteristic functions defined as

\[\phi(v) = \int_{\mathbb{R}} e^{ivx} dP(x)\quad \text{and} \quad \psi(v) = \int_{\mathbb{R}} e^{ivx} dQ(x).\]

Let \(1/2 < \sigma \leq 1\) and \(B \geq 1\). Define the functions \(U\) and \(V\) on \(\mathbb{R}\) as

\[U(\xi) = \frac{\# \{ f \in B_{2}(q) \setminus \mathcal{E}_q \mid \log L(\sigma, f) \leq \xi \}}{\#B_{2}(q) \setminus \mathcal{E}_q},\]

\[V(\xi) = \int_{-\infty}^\xi M_{\sigma}(x) \, dx,\]

where \(E_q = E_q(\sigma, B)\) is the subset of \(B_{2}(q)\) as in Proposition 5.1. Then we apply Lemma 5.2 with the probability measures defined as

\[P(A) = \frac{\int_{\mathbb{R}} 1_{A+\tau}(\xi) e^{\xi} dU(\xi)}{\int_{\mathbb{R}} e^{\xi} dU(\xi)}\quad \text{and} \quad Q(A) = \frac{\int_{\mathbb{R}} 1_{A+\tau}(\xi) e^{\xi} dV(\xi)}{\int_{\mathbb{R}} e^{\xi} dV(\xi)}\]

for \(A \in \mathcal{B}(\mathbb{R})\), where \(\kappa = \kappa(\sigma, \tau)\) is the solution to equation (4.1). Here, we denote by \(A + \tau\) the set \(\{a + \tau \mid a \in A\}\), and \(1_S\) is the indicator function of a set \(S \subset \mathbb{R}\). We further put \(\Phi(\xi) = P((-\infty, \xi])\) and \(\Psi(\xi) = Q((-\infty, \xi])\) as above.

Lemma 5.3. With the notation above, we have

\[\sup_{\xi \in \mathbb{R}} |\Phi(\xi) - \Psi(\xi)| \ll \frac{1}{(\log q)^{B+1}} + \frac{1}{R_\sigma(q) \sqrt{T_\sigma(q)}},\]

if the condition \(\kappa \leq aR_\sigma(q)/2\) is satisfied with the positive constant \(a = a(\sigma, B)\) of Proposition 5.1. Here, the implied constant depends on \(\sigma\) and \(B\).

Proof. First, we check the assumption on \(\Psi\) of Lemma 5.2. Note that the identity

\[Q(A) = \frac{1}{F_\sigma(\kappa)} \int_{A+\tau} e^{\kappa x} M_{\sigma}(x) \, dx = \int_{A} N_{\sigma}(x; \tau) \, dx\]
holds for the function N_σ of (4.9). Thus $\Psi(\xi) = \int_{-\infty}^{\xi} N_\sigma(x; \tau) \, dx$ is differentiable, and we have

$$K = \sup_{\xi \in \mathbb{R}} |\Psi'(|\xi|) = \sup_{\xi \in \mathbb{R}} \frac{N_\sigma(\xi; \tau)}{\sqrt{2\pi}} \ll \frac{1}{\sqrt{f_\sigma^2(\kappa)}} < \infty$$

by asymptotic formula (4.16). Hence Lemma 5.2 is available for the probability measures P and Q. Next, we have the formula

$$\int_{\mathbb{R}} e^{(\nu + iv)\xi} \, dU(\xi) = \frac{1}{\# B_2(q) \setminus \mathcal{E}_q} \sum_{f \in B_2(q) \setminus \mathcal{E}_q} L(\sigma, f)^{\nu + iv}$$

$$= \frac{1}{\# B_2(q)} \sum_{f \in B_2(q) \setminus \mathcal{E}_q} L(\sigma, f)^{\nu + iv} + O\left(\exp\left(-\frac{b}{\log q} \log q \right) F_\sigma(\kappa)\right)$$

by applying (5.2). Furthermore, the equality

$$\int_{\mathbb{R}} e^{(\nu + iv)\xi} \, dV(\xi) = F(\nu + iv)$$

is valid by definition. With the above preparations, we determine the parameter $R > 0$ as $R = aR_\sigma(q)/2$ so that $|\kappa + iv| \leq aR_\sigma(q)$ is satisfied for $0 < v < R$. Then Proposition 5.1 yields

$$\int_{\mathbb{R}} e^{(\nu + iv)\xi} \, dU(\xi) = \int_{\mathbb{R}} e^{(\nu + iv)\xi} \, dV(\xi) + O\left(\frac{F_\sigma(\kappa)}{(\log q)^{B + 2}}\right)$$

for $0 < v < R$. In addition, we see similarly that

$$\int_{\mathbb{R}} e^{\nu \xi} \, dU(\xi) \simeq \int_{\mathbb{R}} e^{\nu \xi} \, dV(\xi) = F_\sigma(\kappa)$$

holds. Using these formulas, we evaluate the integral of the right-hand side of (5.3) as follows. The characteristic functions ϕ and ψ are calculated as

$$\phi(v) = \frac{\int_{\mathbb{R}} e^{(\nu + iv)\xi} \, dU(\xi)}{\int_{\mathbb{R}} e^{\nu \xi} \, dU(\xi)} e^{-iv\tau} \quad \text{and} \quad \psi(v) = \frac{\int_{\mathbb{R}} e^{(\nu + iv)\xi} \, dV(\xi)}{\int_{\mathbb{R}} e^{\nu \xi} \, dV(\xi)} e^{-iv\tau}.$$

Hence we obtain

$$|\phi(v) - \psi(v)| \leq \frac{\left|\int_{\mathbb{R}} e^{(\nu + iv)\xi} \, d(U - V)(\xi)\right|}{\int_{\mathbb{R}} e^{\nu \xi} \, dV(\xi)} \leq \frac{\left|\int_{\mathbb{R}} e^{\nu \xi} \, d(U - V)(\xi)\right|}{\int_{\mathbb{R}} e^{\nu \xi} \, dV(\xi)} \ll (\log q)^{-B - 2}$$

for $0 < v < R$ by using (5.20) and (5.6). Put $r = \exp(-L \log q / \log_2 q)$ with a constant $L = L(\sigma, B) > 0$ chosen later. Then we have

$$\int_{r}^{R} \frac{|\phi(v) - \psi(v)|}{v} \, du \ll \left(\log \frac{R}{r}\right) (\log q)^{-B - 2} \ll (\log q)^{-B - 1}.$$
For $0 < v \leq r$, we estimate $\phi(v)$ and $\psi(v)$ by using the formula $e^{i \theta} = 1 + O(|\theta|)$ with arbitrary $\theta \in \mathbb{R}$. We have
\[
\int_{\mathbb{R}} e^{(\kappa + iv) \xi} dU(\xi) = \int_{\mathbb{R}} e^{\kappa \xi} dU(\xi) + O \left(v \int_{\mathbb{R}} |\xi| e^{\kappa \xi} dU(\xi) \right).
\]
By the Cauchy–Schwarz inequality and (5.6), we obtain
\[
\int_{\mathbb{R}} |\xi| e^{\kappa \xi} dU(\xi) \ll \sqrt{M_q} F_\sigma(2\kappa),
\]
where we put
\[
M_q = \int_{\mathbb{R}} |\xi|^2 dU(\xi) = \frac{1}{\#B_2(q) \setminus \mathcal{E}_q} \sum_{f \in B_2(q) \setminus \mathcal{E}_q} |\log L(\sigma, f)|^2.
\]
Thus, ϕ is estimated as
\[
\phi(v) = e^{-iv\tau} \left(1 + O \left(v \sqrt{M_q} \frac{\sqrt{F_\sigma(2\kappa)}}{F_\sigma(\kappa)} \right) \right)
\]
by recalling (5.7). In a similar way, we obtain the formula
\[
\psi(v) = e^{-iv\tau} \left(1 + O \left(v \sqrt{M} \frac{\sqrt{F_\sigma(2\kappa)}}{F_\sigma(\kappa)} \right) \right),
\]
where M is the constant represented as
\[
M = \int_{\mathbb{R}} |\xi|^2 dV(\xi) = \int_{\mathbb{R}} |x|^2 M_\sigma(x) |dx|.
\]
One can deduce from Proposition 5.1 the estimate $M_q - M \ll F_\sigma(\kappa)(\log q)^{-B}$ by differentiating both sides of (5.1) in s. Additionally, we use Propositions 3.1 and 3.2 to derive the bounds
\[
\sqrt{F_\sigma(2\kappa)} = \exp \left(\frac{1}{2} f_\sigma(2\kappa) \right) \leq \begin{cases}
\exp \left(\frac{L_1}{\log \kappa} \right) & \text{if } 1/2 < \sigma < 1, \\
\exp (L_1 \log_2 \kappa) & \text{if } \sigma = 1,
\end{cases}
\]
where $L_1 = L_1(\sigma)$ is a positive constant. Since $\kappa \leq aR_\sigma(q)/2$, there exists a positive constant $L_2 = L_2(\sigma, B)$ such that
\[
\sqrt{F_\sigma(2\kappa)} \leq \exp \left(L_2 \log q \frac{\log_2 q}{\log_2 q} \right)
\]
in both cases $1/2 < \sigma < 1$ and $\sigma = 1$. Hence, we evaluate the difference between ϕ and ψ as
\[
|\phi(v) - \psi(v)| \ll v \left| \sqrt{M_q} - \sqrt{M} \right| \frac{\sqrt{F_\sigma(2\kappa)}}{F_\sigma(\kappa)} \ll v \exp \left(L_2 \log q \frac{\log q}{\log_2 q} \right)
\]
by (5.9) and (5.10). Then, we choose the constant $L > 0$ in the definition of r as $L = 2L_2$. We have
\[
\int_0^r \frac{|\phi(v) - \psi(v)|}{v} du \ll \exp \left(-L_2 \log q \frac{\log q}{\log_2 q} \right).
\]
Combining (5.4), (5.8), and (5.11), we deduce from Lemma 5.2 the desired result.
Proof of Theorem 1.4. For $1/2 < \sigma \leq 1$, we define
\[
\Phi^*_q(\sigma, \tau) = \frac{\# \{ f \in B_2(q) \setminus E_q \mid \log L(\sigma, f) > \tau \}}{\# B_2(q) \setminus E_q},
\]
where $E_q = E_q(\sigma, B)$ is the subset of $B_2(q)$ as in Proposition 5.1. Then the identities
\[
\Phi^*_q(\sigma, \tau) = e^{-\tau \kappa} \int_{\mathbb{R}} e^{\kappa \xi} dU(\xi) \int_0^\infty e^{-\kappa \xi} d\Phi(\xi),
\]
\[
\Phi(\sigma, \tau) = e^{-\tau \kappa} \int_{\mathbb{R}} e^{\kappa \xi} dV(\xi) \int_0^\infty e^{-\kappa \xi} d\Phi(\xi)
\]
hold by the definitions of the probability measures P and Q. Therefore we have
\[
(5.12) \quad |\Phi^*_q(\sigma, \tau) - \Phi(\sigma, \tau)| \leq e^{-\tau \kappa} \int_{\mathbb{R}} e^{\kappa \xi} d\Phi(\xi) \left| \int_{\mathbb{R}} e^{\kappa \xi} d(U - V)(\xi) \right|
\]
\[
+ e^{-\tau \kappa} \int_{\mathbb{R}} e^{\kappa \xi} dU(\xi) \left| \int_0^\infty e^{-\kappa \xi} d(\Phi - \Psi)(\xi) \right|.
\]
Suppose that the condition $\kappa \leq aR_\sigma(q)/2$ is satisfied. Since $\Psi(\xi)$ is represented as $\Psi(\xi) = \int_{-\infty}^{\xi} N_\sigma(x; \tau) \, dx$, the upper bound
\[
\int_0^\infty e^{-\kappa \xi} d\Psi(\xi) = \int_0^\infty e^{-\kappa \xi} N_\sigma(x; \tau) \, dx \ll \frac{1}{\kappa \sqrt{f''_\sigma(\kappa)}}
\]
follows from asymptotic formula (4.16). Using (5.5), we further deduce
\[
\int_{\mathbb{R}} e^{\kappa \xi} d(U - V)(\xi) \ll \frac{F_\sigma(\kappa)}{(\log q)^B}.
\]
Thus the first term of (5.12) is estimated as
\[
(5.13) \quad e^{-\tau \kappa} \int_{\mathbb{R}} e^{\kappa \xi} d\Phi(\xi) \left| \int_{\mathbb{R}} e^{\kappa \xi} d(U - V)(\xi) \right| \ll \frac{\Phi(\sigma, \tau)}{(\log q)^B}
\]
by Corollary 4.7. Next, we estimate the second term of (5.12) by applying (5.6) and Lemma 5.3. We have
\[
\int_0^\infty e^{-\kappa \xi} d(\Phi - \Psi)(\xi) \ll \sup_{\xi \in \mathbb{R}} |\Phi(\xi) - \Psi(\xi)|
\]
\[
\ll \frac{1}{(\log q)^{B+1}} + \frac{1}{R_\sigma(q) \sqrt{f''_\sigma(\kappa)}}
\]
by the integration by parts. Hence we derive
\[
e^{-\tau \kappa} \int_{\mathbb{R}} e^{\kappa \xi} dU(\xi) \left| \int_0^\infty e^{-\kappa \xi} d(\Phi - \Psi)(\xi) \right| \ll \Phi(\sigma, \tau) \left(\frac{\kappa \sqrt{f''_\sigma(\kappa)}}{(\log q)^{B+1}} + \frac{\kappa}{R_\sigma(q)} \right)
\]
by using Corollary 4.7 again. Furthermore, in both cases $1/2 < \sigma < 1$ and $\sigma = 1$, the estimate $\kappa \sqrt{f''_\sigma(\kappa)} \ll \log q$ follows from Propositions 3.1 and 3.2 since we suppose that κ satisfies $\kappa \leq aR_\sigma(q)/2$. It yields
\[
(5.14) \quad e^{-\tau \kappa} \int_{\mathbb{R}} e^{\kappa \xi} dU(\xi) \left| \int_0^\infty e^{-\kappa \xi} d(\Phi - \Psi)(\xi) \right| \ll \Phi(\sigma, \tau) \left(\frac{1}{(\log q)^B} + \frac{\kappa}{R_\sigma(q)} \right).
\]
By (5.13) and (5.14), we obtain
\[\Phi_q^*(\sigma, \tau) - \Phi(\sigma, \tau) \ll \Phi(\sigma, \tau) \left(\frac{1}{(\log q)^B} + \frac{\kappa}{R_{\sigma}(q)} \right). \]

The difference between \(\Phi_q(\sigma, \tau) \) and \(\Phi_q^*(\sigma, \tau) \) can be evaluated as
\[\Phi_q(\sigma, \tau) - \Phi_q^*(\sigma, \tau) \ll \exp\left(-b\frac{\log q}{\log_2 q}\right) \]
by using (5.2). Hence we arrive at the formula
\[\Phi_q(\sigma, \tau) = \Phi(\sigma, \tau) \left(1 + O\left(\frac{1}{(\log q)^B} + \frac{\kappa}{R_{\sigma}(q)} \right) \right) + O\left(\exp\left(-b\frac{\log q}{\log_2 q}\right) \right) \]
for \(\frac{1}{2} < \sigma \leq 1 \). In the case \(\frac{1}{2} < \sigma < 1 \), we recall that \(\kappa \) satisfies \(\kappa \asymp (\tau \log \tau)^{\frac{1}{1-\sigma}} \)
by Proposition 4.2. Thus one can take a small positive constant \(c(\sigma, B) \) so that the condition \(\kappa \leq aR_{\sigma}(q)/2 \) holds for \(1 \ll \tau \leq c(\sigma, B)(\log q)^{1-\sigma}(\log_2 q)^{-1} \). Furthermore, Corollary 1.2 yields
\[\Phi(\sigma, \tau) \gg \exp\left(-b\frac{\log q}{2\log_2 q}\right) \]
in the range \(1 \ll \tau \leq c(\sigma, B)(\log q)^{1-\sigma}(\log_2 q)^{-1} \) if \(c(\sigma, B) \) is sufficiently small. Thus, the desired conclusion
\[\Phi_q(\sigma, \tau) = \Phi(\sigma, \tau) \left(1 + O\left(\frac{1}{(\log q)^B} + \frac{(\tau \log \tau)^{\frac{1}{1-\sigma}}}{(\log q)^{\sigma}} \right) \right) \]
follows from (5.15). If \(\sigma = 1 \), then we have \(\kappa \asymp e^t \) by Proposition 4.3, where we put \(\tau = 2\log t + 2\gamma \). Hence there exists a large positive constant \(c(B) \) such that \(\kappa \leq aR_1(q)/2 \) holds for \(1 \ll t \leq \log_2 q - \log_3 q - \log_4 q - c(B) \). In this case, we have the lower bound
\[\Phi(1, \tau) \gg \exp\left(-b\frac{\log q}{2\log_2 q}\right) \]
by Corollary 1.3 in the range \(1 \ll t \leq \log_2 q - \log_3 q - \log_4 q - c(B) \) with \(c(B) \) large enough. Therefore (5.15) yields
\[\Phi_q(1, \tau) = \Phi(1, \tau) \left(1 + O\left(\frac{1}{(\log q)^B} + \frac{e^t}{(\log q)(\log_2 q \log_3 q)^{-1}} \right) \right) \]
as desired.

Proof of Corollaries 1.5 and 1.6 If we put \(\Phi_q(\sigma, \tau) = \Phi(\sigma, \tau)(1 + E_q(\sigma, \tau)) \), then Theorem 1.4 (i) deduces the bound
\[E_q(\sigma, \tau) \ll \frac{1}{\log q} + \frac{(\tau \log \tau)^{\frac{1}{1-\sigma}}}{(\log q)^{\sigma}}. \]
for $1/2 < \sigma < 1$ in the range $1 \ll \tau \leq c(\sigma, 1)(\log q)^{1-\sigma}(\log_2 q)^{-1}$. We further apply Corollary 1.2 to obtain
\[
\log \Phi_q(\sigma, \tau) = \log \Phi(\sigma, \tau) + O \left(|E_q(\sigma, \tau)| \right)
\]
\[
= -A(\sigma) \tau^{1-\sigma} \left(\log \tau \right)^{-1} \sum_{n=0}^{N-1} A_{n, \sigma} \frac{\log_2 \tau}{\log \tau} + O \left(\left(\log \tau \log \tau \right)^N \frac{\log \tau}{\log \tau} \right)
\]

It completes the proof of Corollary 1.5 since we obtain
\[
\tau^{1-\sigma} \left(\log \tau \right)^{-1} |E_q(\sigma, \tau)| \ll \left(\frac{\log \tau}{\log \tau} \right)^N
\]
in the range $1 \ll \tau \leq c(\sigma, 1)(\log q)^{1-\sigma}(\log_2 q)^{-1}$ by (5.16). Corollary 1.6 can be proved similarly. \hfill \square

References

[1] V. Blomer, G. Harcos, and P. Michel, *Bounds for modular L-functions in the level aspect*, Ann. Sci. École Norm. Sup. (4) **40** (2007), no. 5, 697–740. MR 2382859
[2] H. Bohr and B. Jessen, *Über die Werteverteilung der Riemannschen Zetafunktion*, Acta Math. **54** (1930), no. 1, 1–35. MR 1555301
[3] , *Über die Werteverteilung der Riemannschen Zetafunktion*, Acta Math. **58** (1932), no. 1, 1–55. MR 1555343
[4] S. Chowla and P. Erdős, *A theorem on the distribution of the values of L-functions*, J. Indian Math. Soc. (N.S.) **15** (1951), 11–18. MR 44566
[5] J. Cogdell and P. Michel, *On the complex moments of symmetric power L-functions at $s = 1$*, Int. Math. Res. Not. (2004), no. 31, 1561–1617. MR 2035001
[6] W. Duke, J. B. Friedlander, and H. Iwaniec, *Bounds for automorphic L-functions. II*, Invent. Math. **115** (1994), no. 2, 219–239. MR 1258904
[7] *Bounds for automorphic L-functions. III*, Invent. Math. **143** (2001), no. 2, 221–248. MR 1835388
[8] K. Endo, S. Inoue, and M. Mine, *On the value-distribution of iterated integrals of the logarithm of the Riemann zeta-function II: Probabilistic aspects*, 2021, preprint, https://arxiv.org/abs/2105.04781
[9] A. Granville and K. Soundararajan, *The distribution of values of $L(1, \chi_d)$*, Geom. Funct. Anal. **13** (2003), no. 5, 992–1028. MR 2024414
[10] , *Extreme values of $|\zeta(1 + it)|$*, The Riemann zeta function and related themes: papers in honour of Professor K. Ramachandra, Ramanujan Math. Soc. Lect. Notes Ser., vol. 2, Ramanujan Math. Soc., Mysore, 2006, pp. 65–80. MR 2335187
[11] T. Hattori and K. Matsumoto, *A limit theorem for Bohr-Jessen’s probability measures of the Riemann zeta-function*, J. Reine Angew. Math. **507** (1999), 219–232. MR 1670215
[12] Y. Ihara, *On “M-functions” closely related to the distribution of L'/L-values*, Publ. Res. Inst. Math. Sci. **44** (2008), no. 3, 893–954. MR 2451613
[13] H. Iwaniec and E. Kowalski, *Analytic number theory*, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214
[14] Y. Lamzouri, *Distribution of values of L-functions at the edge of the critical strip*, Proc. Lond. Math. Soc. (3) **100** (2010), no. 3, 835–863. MR 2640292
[15] , *On the distribution of extreme values of zeta and L-functions in the strip $\frac{1}{2} < \sigma < 1$*, Int. Math. Res. Not. IMRN (2011), no. 23, 5449–5503. MR 2855075
[16] Y. Lamzouri, S. J. Lester, and M. Radziwiłł, *Discrepancy bounds for the distribution of the Riemann zeta-function and applications*, J. Anal. Math. **139** (2019), no. 2, 453–494. MR 4041109
[17] P. Lebacque and A. Zykin, *On M-functions associated with modular forms*, Mosc. Math. J. **18** (2018), no. 3, 437–472. MR 3860846

[18] J. Liu, E. Royer, and J. Wu, *On a conjecture of Montgomery-Vaughan on extreme values of automorphic L-functions at 1*, Anatomy of integers, CRM Proc. Lecture Notes, vol. 46, Amer. Math. Soc., Providence, RI, 2008, pp. 217–245. MR 2437979

[19] M. Loève, *Probability theory. I*, fourth ed., Springer-Verlag, New York-Heidelberg, 1977, Graduate Texts in Mathematics, Vol. 45. MR 0651017

[20] K. Matsumoto and Y. Umegaki, *On the value-distribution of the difference between logarithms of two symmetric power L-functions*, Int. J. Number Theory **14** (2018), no. 7, 2045–2081. MR 3831410

[21] M. Mine, *On the density function for the value-distribution of automorphic L-functions*, J. Number Theory **198** (2019), 176–199. MR 3912935

[22] M. Mine, *On the value-distribution of symmetric power L-functions*, Number theory: Arithmetic, Diophantine and Transcendence, Proceeding of Ropar Conference, RMS-Lecture Notes Series, vol. 26, Ramanujan Math. Soc., Mysore, 2020, pp. 147–167.

[23] M. Mine, *Probability density functions attached to random Euler products for automorphic L-functions*, 2020, preprint, https://arxiv.org/abs/2011.07504.

[24] T. Miyake, *Modular forms*, english ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2006, Translated from the 1976 Japanese original by Yoshitaka Maeda. MR 2194815

[25] G. N. Watson, *A treatise on the theory of Bessel functions*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995, Reprint of the second (1944) edition. MR 1349110

[26] J. Wu, *Note on a paper by A. Granville and K. Soundararajan: “The distribution of values of $L(1, \chi_d)$”*, J. Number Theory **123** (2007), no. 2, 329–351. MR 2300818

[27] X. Xiao, *Distribution of values of symmetric power L-functions at the edge of the critical strip*, J. Number Theory **164** (2016), 223–268. MR 3474387

Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan

Email address: m-mine@sophia.ac.jp