ENDOMORPHISM ALGEBRAS AND Q-TRACES

RUN-QIANG JIAN

Abstract. For a braided vector space (V, σ) with braiding σ of Hecke type, we introduce three associative algebra structures on the space $\bigoplus_{p \geq 0} \text{End}_{p} S_{\sigma}(V)$ of graded endomorphisms of the quantum symmetric algebra $S_{\sigma}(V)$. We use the second product to construct a new trace. This trace is an algebra morphism with respect to the third product. In particular, when V is the fundamental representation of $U_{q}\mathfrak{sl}_{N+1}$ and σ is the action of the R-matrix, this trace is a scalar multiple of the quantum trace of type A.

1. Introduction

More than twenty years ago, H. Osborn studied the space $\bigoplus_{i \geq 0} \text{End} \wedge^{i}(V)$ of graded endomorphisms of the exterior algebra in order to give an algebraic construction of Chern-Weil theory ([8, 9]). He introduced three associative products on this space. The first one is just the composition of endomorphisms. Since the exterior algebra is also a coalgebra, he defined the second one to be the convolution product. And then he combined the first two ones to construct the third product. Assuming that $\dim \wedge^{i}(V) = 1$ for sufficiently large i, he constructed a trace function by using the second product. This trace gives the usual one when it is restricted on $\text{End}(V)$. And it is an algebra morphism when one considers the third product.

On the other side, after the creation of quantum groups by Drinfel’d [4] and Jimbo [5], mathematicians use Yang-Baxter operators to quantize various classical objects in algebra and find many interesting phenomena. Since symmetric algebras and exterior algebras are defined by using flips which are trivial Yang-Baxter operators, it seems quite reasonable and possible to quantize them. In his paper [3], Gurevich studied Yang-Baxter operators of Hecke type, which he called Hecke symmetries. And then he defined the symmetric algebra and the exterior algebra with respect to these operators. They are analogue to the usual ones. Later, different aspects of these algebras were discussed in [4] and [12]. In [11], a very remarkable property of the quantized symmetric algebra was discovered. For some special Yang-Baxter operators, the symmetric one, as Hopf algebra, is isomorphic to the "upper triangular part" of the quantized enveloping algebra associated with a symmetrizable Cartan matrix.

Naturally, it is interesting to see what will happen when one extends Osborn’s trace to the quantum case. Let (V, σ) be a braided vector space with braiding σ of Hecke type, and $S_{\sigma}^{p}(V)$ be the p-th component of the quantum symmetric algebra $S_{\sigma}(V)$ built on (V, σ). We assume that $\dim S_{\sigma}^{M}(V) = 1$ for some M and

Key words and phrases. the third product, q-trace, quantum trace.
with respect to the third product. In particular, let V be the convolution product, the third product and the trace can be constructed step-by-step following the ones in [9]. And this trace, called q-trace, is an algebra morphism with respect to the third product. In particular, let V be the fundamental representation of $\mathcal{U}_q\mathfrak{sl}_{N+1}$ and σ the braiding given by the R-matrix of $\mathcal{U}_q\mathfrak{sl}_{N+1}$. Then σ is of Hecke type and $S_p^2(V)$ vanishes when p is sufficiently large. To our surprise, the q-trace in this case has already existed for more than one decade.

In the theory of quantum groups, there is an important invariant which generalizes the usual trace of endomorphisms. It is the so-called quantum trace. Let C be a ribbon category with unit I, V be an object of C and f be an endomorphism of V. The quantum trace $\text{tr}_q(f)$ of f is an element in the monoid $\text{End}(I)$ (see, e.g., [6]). It coincides with the usual trace when $C = \text{Vect}(k)$. When we take C to be the category of finite dimensional representations of u_q (for the definition, one can see [7]), the quantum trace is given by composing the usual trace with the action of the group-like elements K_i’s. This is a functorial approach. After an easy computation, we can show that our q-trace is a scalar multiple of the quantum trace. So we get a more elementary approach to the quantum trace of type A.

This paper is organized as follows. In Section 2 we define the three products on $\oplus_{p=0}^M \text{End}S_p^2(V)$ for a braided vector space (V, σ) with a braiding σ of Hecke type. Then we construct the q-trace of $\oplus_{p=0}^M \text{End}S_p^2(V)$ and prove that it is an algebra morphism with respect to the third product. In Section 3, we apply our constructions to the special braided vector space (V, σ), where V is the fundamental representation of $\mathcal{U}_q\mathfrak{sl}_{N+1}$ and σ is the braiding given by the R-matrix of $\mathcal{U}_q\mathfrak{sl}_{N+1}$. We prove that the q-trace for this case is just a scalar multiple of the quantum trace of $\mathcal{U}_q\mathfrak{sl}_{N+1}$.

Notation

We fix our ground field to be the complex number field \mathbb{C}.

We denote by \mathfrak{S}_p the symmetric group of $\{1, \ldots, p\}$. For $\{i_1, \ldots, i_k\} \subset \{1, \ldots, p\}$, we denote $l(i_1, \ldots, i_k) = \{\{i_s, i_t\}|1 \leq s < t \leq k, i_s > i_t\}$. And for any $w \in \mathfrak{S}_p$, $l(w) = l(w(1), \ldots, w(p))$. It is just the length of w.

An (i, j)-shuffle is an element $w \in \mathfrak{S}_{i+j}$ such that $w(1) < \cdots < w(i)$ and $w(i+1) < \cdots < w(i+j)$. We denote by $\mathfrak{S}_{i,j}$ the set of all (i, j)-shuffles.

Let V be a vector space. A braiding σ on V is an invertible linear map in $\text{End}(V \otimes V)$ satisfying the quantum Yang-Baxter equation:

$$((\sigma \otimes \text{id}_V)(\text{id}_V \otimes \sigma)(\sigma \otimes \text{id}_V) = (\text{id}_V \otimes \sigma)(\sigma \otimes \text{id}_V))(\text{id}_V \otimes \sigma).$$

A braided vector space (V, σ) is a vector space V equipped with a braiding σ. For any $p \in \mathbb{N}$ and $1 \leq i \leq p-1$, we denote by σ_i the operator $\text{id} \otimes (\sigma \otimes \text{id}^{(p-i-1)}) \in \text{End}(V^{\otimes n})$. For any $w \in \mathfrak{S}_p$, we denote by T_w the corresponding lift of w in the braid group B_p, defined as follows: if $w = s_{i_1} \cdots s_{i_t}$ is any reduced expression of w, where $s_i = (i, i+1)$, then $T_w = \sigma_{i_1} \cdots \sigma_{i_t}$. We also use T_w^{σ} to indicate the action of σ.

Let q be a nonzero number in \mathbb{C}. For $q \neq 1$ and any $n = 0, 1, 2, \ldots$, we denote $(n)_q = (1 - q^n)/(1-q)$, and
In this section, we define the \(q \)-trace and prove that it is an algebra morphism with respect to the third product. We start by recalling some notions and properties of braidings of Hecke type and quantum symmetric algebras for the later use. For more details, one can see \cite{2}, \cite{3}, \cite{11} and \cite{12}.

2. The \(q \)-trace

In this section, we define the \(q \)-trace and prove that it is an algebra morphism with respect to the third product. We start by recalling some notions and properties of braidings of Hecke type and quantum symmetric algebras for the later use. For more details, one can see \cite{2}, \cite{3}, \cite{11} and \cite{12}.

2.1. Braidings of Hecke type and quantum symmetric algebras. Let \((V, \sigma) \) be a braided vector space. The braiding \(\sigma \) is said to be of Hecke type if it satisfies the following Iwahori’s quadratic equation:

\[
(\sigma + \text{id}_{V \otimes V})(\sigma - \nu \text{id}_{V \otimes V}) = 0,
\]

where \(\nu \) is a nonzero scalar in \(\mathbb{C} \).

In the rest of this section, \(\sigma \) is always a braiding of Hecke type with parameter \(\nu \in \mathbb{C}^\times \).

For \(p \geq 1 \), we define \(A^{(p)} = \sum_{w \in S_p} T_w \). The following proposition of \(A^{(p)} \) plays an essential role in the construction of \(q \)-trace. It is due to D. I. Gurevich (\cite{3}, Proposition 2.4).

Proposition 2.1. For \(p \geq 1 \) we have

\[
(A^{(p)})^2 = (p)_q! A^{(p)}.
\]

The image of the map \(\oplus_{p \geq 0} A^{(p)} \) has important algebraic structures on it. The first one is the quantum shuffle product which was introduced by M. Rosso \cite{10} \cite{11}. It generalizes the usual shuffle product on \(T(V) \). For any \(v_1, \ldots, v_{i+j} \in V \), the quantum shuffle product \(sh \) is defined to be

\[
sh((v_1 \otimes \cdots \otimes v_i) \otimes (v_{i+1} \otimes \cdots \otimes v_{i+j})) = \sum_{w \in S_{i,j}} T_w(v_1 \otimes \cdots \otimes v_{i+j}).
\]

We denote by \(T_\sigma(V) \) the quantum shuffle algebra \((T(V), sh) \). The subalgebra \(S_\sigma(V) \) of \(T_\sigma(V) \) generated by \(V \) with respect to the quantum shuffle product is called the quantum symmetric algebra. It is easy to see that \(S_\sigma(V) = \oplus_{p \geq 0} \text{Im}(\sum_{w \in S_p} T_w) \). We denote by \(S_\sigma^p(V) = \text{Im}(\sum_{w \in S_p} T_w) \) the \(p \)-th component of \(S_\sigma(V) \).

The algebra \(T_\sigma(V) \) is a coalgebra with the deconcatenation coproduct \(\delta \):

\[
\delta(v_1 \otimes \cdots \otimes v_n) = \sum_{i=0}^{n} (v_1 \otimes \cdots \otimes v_i) \otimes (v_{i+1} \otimes \cdots \otimes v_n).
\]

We denote by \(\delta_{ij} \) the composition of \(\delta \) with the projection \(T(V) \otimes T(V) \to V^\otimes i \otimes V^\otimes j \). One can show that \((S_\sigma(V), \delta) \) is also a coalgebra (\cite{11}).
2.2. Algebraic structures on $\oplus_{p=0}^{\infty} \text{End} S_p^\nu(V)$. Let σ be a braiding of Hecke type on V such that $\dim S_0^\nu(V) = 1$ for some M and $\dim S_p^\nu(V) = 0$ for $p > M$. For $A \in \oplus_{p=0}^{\infty} \text{End} S_p^\nu(V)$, we write $A = (A_0, A_1, \ldots, A_M)$, where $A_p \in \text{End} S_p^\nu(V)$ is the p-th component of A.

For $A, B \in \oplus_{p=0}^{\infty} \text{End} S_p^\nu(V)$, we define the composition product $A \circ B \in \oplus_{p=0}^{\infty} \text{End} S_p^\nu(V)$ by $$(A \circ B)_p = A_p \circ B_p$$ with the usual composition. Obviously, $\oplus_{p=0}^{\infty} \text{End} S_p^\nu(V)$ is an associative algebra with the two-sided unit element $I = (I_0, I_1, \ldots, I_M)$, where I_p is the identity map of $S_p^\nu(V)$.

We can also define the convolution product $A \ast B \in \oplus_{p=0}^{\infty} \text{End} S_p^\nu(V)$ by $$(A \ast B)_p = \sum_{i=0}^{p} A_i \ast B_{p-i},$$ where $A_i \ast B_j = \text{sh} \circ (A_i \otimes B_j) \circ \delta_{i,j} \in \text{End} S_{i+j}^\nu(V)$. It is well-known that the convolution product of endomorphisms is associative. It follows immediately that $(\oplus_{p=0}^{\infty} \text{End} S_p^\nu(V), \ast)$ is an associative algebra with the two-sided unit element $I_0 = (I_0, 0, \ldots, 0).

Proposition 2.2. For $0 \leq p \leq M$, we have $I_1^p = (p)_\nu! I_p$.

Proof. We first notice that for any $v_1, \ldots, v_p \in V$, $$\text{sh}(v_1 \otimes \text{sh}(v_2 \otimes \cdots \otimes \text{sh}(v_{p-1} \otimes v_p) \cdots)) = A^{(p)}(v_1 \otimes \cdots \otimes v_p).$$

Then $$I_1^p \circ A^{(p)} = A^{(p)} \circ I_1^p \circ A^{(p)} = (A^{(p)})^2 = (p)_\nu! A^{(p)}.$$ \square

Corollary 2.3. For $0 \leq i, j \leq M$ with $i + j \leq M$, we have $$I_i \ast I_j = \binom{\nu + j}{i} \nu! I_{i+j},$$ where $$\binom{\nu + j}{i} = (i + j)! / ((i)! (j)! \nu!).$$

Now we assume that the parameter ν in the Iwahori’s equation is not a root of unity. For any $A \in \text{End} S_0^1(V) = \text{End}(V)$, we define $$e_\nu^{*A} = (I_0, \frac{1}{(1)_\nu!} A, \frac{1}{(2)_\nu!} A^2, \ldots, \frac{1}{(M)_\nu!} A^M).$$ In particular, $e_\nu^{*I_1} = (I_0, I_1, \ldots, I_M)$.

If we write $$(e_\nu^{*A})^{-1} = (I_0, \frac{-1}{(1)_\nu!} A, \frac{\nu}{(2)_\nu!} A^2, \ldots, \frac{(-1)^M \nu^{M(M-1)/2}}{(M)_\nu!} A^M),$$ then $$(e_\nu^{*A})^{-1} \ast e_\nu^{*A} = e_\nu^{*A} \ast (e_\nu^{*A})^{-1} = I_0.$$
We define
\[\alpha : \bigoplus_{p=0}^{M} \text{End}S_{\sigma}^{p}(V) \to \bigoplus_{p=0}^{M} \text{End}S_{\sigma}^{p}(V), \]
\[A \mapsto A \ast e_{\nu}^{*1}. \]

Consequently, \(\alpha \) has an inverse defined by \(\alpha^{-1}(A) = A \ast (e_{\nu}^{*1})^{-1}. \)

Definition 2.4. For any \(A, B \in \bigoplus_{p=0}^{M} \text{End}S_{\sigma}^{p}(V) \), the third product \(A \times B \) of \(A \) and \(B \) is defined to be
\[A \times B = \alpha^{-1}((\alpha A) \circ (\alpha B)) = ((A \ast e_{\nu}^{*1}) \circ (B \ast e_{\nu}^{*1})) \ast (e_{\nu}^{*1})^{-1}. \]

Proposition 2.5. The space \(\bigoplus_{p=0}^{M} \text{End}S_{\sigma}^{p}(V) \) equipped with the third product is an associative algebra with two-sided unit element \(I_0 \).

Proof. For any \(A, B, C \in \bigoplus_{p=0}^{M} \text{End}S_{\sigma}^{p}(V) \), we have
\[(A \times B) \times C = \alpha^{-1}((\alpha (A \times B)) \circ (\alpha C)) \]
\[= \alpha^{-1}((\alpha \circ \alpha^{-1}((\alpha A) \circ (\alpha B))) \circ (\alpha C)) \]
\[= \alpha^{-1}((\alpha A) \circ (\alpha B) \circ (\alpha C)) \]
\[= A \times (B \times C). \]

And
\[I_0 \times A = \alpha^{-1}((\alpha I_0) \circ (\alpha A)) \]
\[= \alpha^{-1}((I_0 \ast e_{\nu}^{*1}) \circ (\alpha A)) \]
\[= \alpha^{-1}(e_{\nu}^{*1} \circ (\alpha A)) \]
\[= \alpha^{-1}(e_{\nu}^{*1}) \circ (\alpha A) \]
\[= A. \]

Similarly, we have that \(A \times I_0 = A. \) \(\square \)

Proposition 2.6. For \(0 \leq r \leq M, A_{i} \in \text{End}S_{\nu}^{i}(V) \) and \(B_{j} \in \text{End}S_{\nu}^{j}(V) \), we have
\[(A_{i} \times B_{j})_{r} = \sum_{s=0}^{r} \binom{\nu(r-1)/2}{s} \nu! ((A_{i} \ast I_{r-s-i}) \circ (B_{j} \ast I_{r-s-j})) \ast I_{s}^{*}, \]
where \(I_{t} = 0 \) for \(t < 0. \)

Proof. The formula follows from the definition of the third product. \(\square \)

Corollary 2.7. We have \((A_{i} \times B_{j})_{r} = 0 \) for \(r < \max(i,j) \) and \((A_{r} \times B_{r})_{r} = A_{r} \circ B_{r}. \)

2.3. **The q-trace.**

Definition 2.8. The q-trace of any \(A \in \bigoplus_{p=0}^{M} \text{End}S_{\sigma}^{p}(V) \) is the unique element \(\text{Tr}_{q}A \in \mathbb{C} \) such that \((\alpha A)_{M} = (\text{Tr}_{q}A)_{I_{M}} \in \text{End}S_{\sigma}^{M}(V). \)

Theorem 2.9. The q-trace is an algebra morphism with respect to the third product. Precisely, for \(A, B \in \bigoplus_{p=0}^{M} \text{End}S_{\sigma}^{p}(V) \), we have
1. \(\text{Tr}_{q}(A + B) = \text{Tr}_{q}A + \text{Tr}_{q}B, \)
2. \(\text{Tr}_q(A \times B) = (\text{Tr}_q A)(\text{Tr}_q B) \),

3. \(\text{Tr}_q(A \times B) = \text{Tr}_q(B \times A) \).

Proof. 1. By the definition, we have

\[
(\alpha(A + B))_M = \sum_{k=0}^{M} (A_k + B_k) * I_{M-k} = (\alpha A)_M + (\alpha B)_M.
\]

So

\[
\text{Tr}_q(A + B)I_M = (\text{Tr}_q A)I_M + (\text{Tr}_q B)I_M = (\text{Tr}_q A + \text{Tr}_q B)I_M.
\]

Therefore \(\text{Tr}_q(A + B) = \text{Tr}_q A + \text{Tr}_q B \).

2. Since \(A \times B = \alpha^{-1}(\alpha A \circ \alpha B) \), we have \(\alpha(A \times B) = (\alpha A) \circ (\alpha B) \). So

\[
(\alpha(A \times B))_M = (\alpha A)_M \circ (\alpha B)_M,
\]

which implies that

\[
\text{Tr}_q(A \times B)I_M = (\text{Tr}_q A)I_M \circ (\text{Tr}_q B)I_M = (\text{Tr}_q A)(\text{Tr}_q B)I_M.
\]

So we have \(\text{Tr}_q(A \times B) = (\text{Tr}_q A)(\text{Tr}_q B) \).

3. It follows from the identity stated in 2 immediately. \(\square \)

3. ANOTHER APPROACH OF THE QUANTUM TRACE

In the previous section we have defined the third product and the q-trace in a general setting. In this section, we study a special case of braided vector spaces which provides an elementary approach to the quantum trace of type \(A \). We first introduce the quantum exterior algebra which is the quantum symmetric algebra related to the fundamental representation of \(\mathcal{U}_q \mathfrak{sl}_{N+1} \). And then we give a more explicit law for the second product in this case. Using the computational result, we give the formula of the q-trace and compare it with the quantum trace of type \(A \).

3.1. **Quantum exterior algebras.** In the rest of this paper, we denote \(V = \mathbb{C}^{N+1} \) and by \(E_{ij} \) the matrix with entry 1 in the position \((i, j)\) and entries 0 elsewhere. The fundamental representation of \(\mathcal{U}_q \mathfrak{sl}_{N+1} \) is the algebra homomorphism \(\rho : \mathcal{U}_q \mathfrak{sl}_{N+1} \rightarrow \text{End} V \),

\[
E_i \mapsto E_{i,i+1},
F_i \mapsto E_{i+1,i},
K_i \mapsto \sum_{l \neq i,i+1} E_{il} + qE_{ii} + q^{-1}E_{i+1,i+1},
\]

where \(E_i \)'s, \(F_i \)'s and \(K_i \)'s are the standard generators of \(\mathcal{U}_q \mathfrak{sl}_{N+1} \).

Then the action of the R-matrix on \(V \otimes V \) is given by

\[
R_{\rho} = q \sum_{i=1}^{N+1} E_{ii} \otimes E_{ii} + \sum_{i \neq j} E_{ij} \otimes E_{ji} + (q - q^{-1}) \sum_{i < j} E_{jj} \otimes E_{ii}.
\]
Let $c = q^{-1}R_{\rho} \in \text{GL}(V \otimes V)$. If we denote by $e_i = (0, \ldots, 0, 1, 0, \ldots, 0)^t \in V$ the unit column vector whose components are zero except the i-th component is 1, then we have:

$$c(e_i \otimes e_j) = \begin{cases} e_i \otimes e_i, & i = j, \\ q^{-1}e_j \otimes e_i, & i < j, \\ q^{-1}e_j \otimes e_i + (1 - q^{-2})e_i \otimes e_j, & i > j. \end{cases}$$

The map c is a braiding on V and satisfies the Iwahori's quadratic equation:

$$(c - \text{id}_{V \otimes V})(c + q^{-2}\text{id}_{V \otimes V}) = 0.$$

Definition 3.1. Let \mathcal{J} be the two-sided ideal generated by $\text{Ker}(\text{id}_{V \otimes V} - c)$ in $T(V)$. The quotient algebra $\underline{\Lambda}_c(V) = T(V)/\mathcal{J}$ is called the quantum exterior algebra on V.

By an easy computation, we have

$$\text{Ker}(\text{id}_{V \otimes V} - c) = \text{Span}_c\{e_i \otimes e_i, q^{-1}e_i \otimes e_j + e_j \otimes e_i (i < j)\}.$$

Let $\pi : T(V) \rightarrow \underline{\Lambda}_c(V)$ be the canonical projection. For any $e_{i_1} \otimes \cdots \otimes e_{i_p} \in T^p(V)$, we denote $e_{i_1} \wedge \cdots \wedge e_{i_p} = \pi(e_{i_1} \otimes \cdots \otimes e_{i_p})$. It follows immediately that:

1. The algebra $\underline{\Lambda}_c(V)$ is graded and generated by $\{e_1, \ldots, e_{N+1}\}$ with the relations:

$$e_i \wedge e_i = 0,$$

and

$$e_j \wedge e_i = -q^{-1}e_i \wedge e_j \ (i < j).$$

2. If we denote by $\underline{\Lambda}_c^p(V)$ the p-th component of $\underline{\Lambda}_c(V)$, then $\dim \underline{\Lambda}_c^{N+1}(V) = 1$ and $\underline{\Lambda}_c^p(V) = 0$ for $p > N + 1$.

3. The set $\{e_{i_1} \wedge \cdots \wedge e_{i_p} | 1 \leq i_1 < \cdots < i_p \leq N + 1, 1 \leq p \leq N + 1\}$ forms a linear basis of $\underline{\Lambda}_c(V)$.

Let $A^{(p)} = \sum_{w \in \mathcal{S}_p} T^{-c}_w$. Then by the following proposition, we can view the quantum exterior algebra as a special quantum symmetric algebra.

Proposition 3.2 (\cite{3}, Proposition 2.13). For $k \geq 1$, we have the following linear isomorphism:

$$\text{Im}A^{(k)} \cong \underline{\Lambda}_c^k(V).$$

We can identify $\underline{\Lambda}_c(V)$ with $S_{-c}(V)$ as linear space. Moreover, since $\text{sh}(A^{(i)} \otimes A^{(j)}) = \sum_{w \in \mathcal{S}_{i+j}} T^{-c}_w(A^{(i)} \otimes A^{(j)}) = A^{i+j}$, the product in $\underline{\Lambda}_c(V)$ is just the quantum shuffle product in $S_{-c}(V)$. The space $\underline{\Lambda}_c(V)$ also inherits the coproduct of $S_{-c}(V)$. It is not difficult to show the following formula for the deconcatenation coproduct on $\underline{\Lambda}_c(V)$: for $1 \leq t \leq p \leq N + 1$ and $1 \leq i_1 < i_2 < \cdots < i_p \leq N + 1$,

$$\delta_{t,p-t}(e_{i_1} \wedge \cdots \wedge e_{i_p}) = \sum_{w \in \mathcal{S}_{i_p-t}} (-q)^{-l(w)}e_{i_1(w)} \wedge \cdots \wedge e_{i_t(w)} \otimes e_{i_t(w)} \wedge \cdots \wedge e_{i_p(w)}.$$
3.2. Explicit law of the second product. In order to give an explicit formula of the q-trace, we describe the convolution product more precisely in our special case.

We define \(c^γ = (c^{-1})^t \), where \(t \) means the transpose of the operator. Then \(c^γ \in \text{GL}(V^* \otimes V^*) \). Let \(\{f_i\} \) be the dual basis of \(\{e_i\} \). We have

\[
c^γ(f_i \otimes f_j) = \begin{cases}
f_i \otimes f_i, & i = j,
qf_j \otimes f_i + (1 - q^2)f_i \otimes f_j, & i < j,
qf_j \otimes f_i, & i > j.
\end{cases}
\]

Obviously \(c^γ \) is a braiding on \(V^* \) and satisfies the Iwahori’s equation:

\[
(c^γ - \text{id}_{V^* \otimes V^*})(c^γ + q^2\text{id}_{V^* \otimes V^*}) = 0.
\]

It is easy to show that \(\Lambda^c(V^*) \), as an algebra, is generated by \(f_i \)'s with the relations:

\[
f_i \wedge f_i = 0, \quad f_j \wedge f_i = -q^{-1}f_i \wedge f_j \quad (i < j).
\]

Therefore the map \(e_i \mapsto f_i \) induces an isomorphism of algebras: \(\Lambda^c(V) \to \Lambda^c(V^*) \).

For any \(s < t \), we have

\[
E_{ij} * E_{kl}(e_s \wedge e_t) = sh(1 \wedge e_t) \delta_{1,1}(e_s \wedge e_t) = sh(1 \wedge e_t - q^{-1}e_t \otimes e_s) = \delta_{s,t} e_i \wedge e_k - q^{-1}\delta_{j,t} e_i \wedge e_k = (\delta_{s,t} - q^{-1}\delta_{j,t})e_i \wedge e_k.
\]

Similarly, \(E_{kl} * E_{ij}(e_s \wedge e_t) = (\delta_{s,t} - q^{-1}\delta_{j,t})e_k \wedge e_i \). So we get that

\[
\begin{cases}
E_{ij} * E_{ik} = E_{ij} * E_{kj} = 0, & \forall i, j, k,
E_{kj} * E_{il} = -q^{-1}E_{ij} * E_{kl}, & \text{if } i < k, \forall j, l,
E_{il} * E_{kj} = -q^{-1}E_{ij} * E_{kl}, & \text{if } j < l, \forall i, k.
\end{cases}
\]

In general, for \(1 \leq i_1 < \cdots < i_p \leq N + 1, \ 1 \leq j_1 < \cdots < j_p \leq N + 1 \) and \(1 \leq l_1 < \cdots < l_p \leq N + 1 \), we have

\[
E_{i_1j_1} * \cdots * E_{i_pj_p}(e_{l_1} \wedge \cdots \wedge e_{l_p}) = \begin{cases}
e_i \wedge \cdots \wedge e_i \wedge e_{j_1} \wedge \cdots \wedge e_{j_p}, & \text{if } j_k = l_k,
0, & \text{otherwise.}
\end{cases}
\]

So the set

\[
\{E_{i_1j_1} * \cdots * E_{i_pj_p} | 1 \leq i_1 < \cdots < i_p \leq N + 1, 1 \leq j_1 < \cdots < j_p \leq N + 1 \}
\]

forms a linear basis of \(\text{End} \Lambda^c(V) \), which implies that \(\oplus_{p=0}^{N+1} \text{End} \Lambda^c(V) \) is an algebra generated by \(\{E_{ij}\} \). As a consequence, we have the following linear isomorphism:

\[
t_p : \text{End} \Lambda^c(V) \to \Lambda^c(V) \otimes \Lambda^c(V^*),
E_{i_1j_1} * \cdots * E_{i_pj_p} \mapsto e_{i_1} \wedge \cdots \wedge e_{i_p} \otimes f_{j_1} \wedge \cdots \wedge f_{j_p}.
\]

If we endow \(\Lambda^c(V) \otimes \Lambda^c(V^*) \) with the tensor algebra structure, then \(\oplus_{p=0}^{N+1} \Lambda^c(V) \otimes \Lambda^c(V^*) \) is a subalgebra.
Proposition 3.3. The map
\[i = \oplus_{p=0}^{N+1} t_p : \bigoplus_{p=0}^{N+1} \text{End} \bigwedge_c^p (V, \ast) \to \bigoplus_{p=0}^{N+1} \bigwedge_c^p (V) \otimes \bigwedge_c^p (V^*) \]
is an isomorphism of algebras.

Proof. In \(\bigoplus_{p=0}^{N+1} \bigwedge_c^p (V) \otimes \bigwedge_c^p (V^*) \), we have
\[
\begin{align*}
(e_i \otimes f_j)(e_i \otimes f_k) &= 0, & \forall i, j, \\
(e_i \otimes f_j)(e_k \otimes f_j) &= 0, & \forall i, j, \\
(e_k \otimes f_j)(e_i \otimes f_i) &= -q^{-1}(e_i \otimes f_j)(e_k \otimes f_j), & \text{if } i < k, \forall j, l, \\
(e_i \otimes f_j)(e_k \otimes f_i) &= -q^{-1}(e_i \otimes f_j)(e_k \otimes f_i), & \text{if } j < l, \forall i, k.
\end{align*}
\]
It shares the same multiplication rule in (1). And \(\bigoplus_{p=0}^{N+1} \bigwedge_c^p (V) \otimes \bigwedge_c^p (V^*) \) is generated by \(e_i \otimes f_j \)'s as an algebra. So we get the conclusion. \(\square \)

3.3. More information about the q-trace. Using the formula (1), we compute the q-trace on \(\bigoplus_{p=0}^{N+1} \text{End} \bigwedge_c^p (V) \). We also give an inductive formula of the q-trace.

Proposition 3.4. For any \(A \in \text{End} \bigwedge_c^1 (V) \) with \(A = \sum_{1 \leq i_1 < \cdots < i_p \leq N+1} a_{i_1 \cdots i_p} E_i^1 \cdots E_i^p \) \(\cdots \) \(E_i^{p-1} \), we have
\[
\text{Tr}_q A = \sum_{w \in \mathfrak{S}_p} (-q)^{-2l(w)} a_{w(1) \cdots w(p)} \Big[\sum_{1 \leq l_1 < \cdots < l_p \leq N+1} q^p \sum_{l_1 < \cdots < l_p \leq N+1} \prod_{i=1}^p q^{-2(i-1)} a_{l_i}^i \Big].
\]

In particular, If \(A \in \text{End} \bigwedge^1_c (V) = \text{End}(V) \) with \(A = \sum a_i^i E_i^i \), then
\[
\text{Tr}_q A = \sum_{i=1}^{N+1} q^{-2(i-1)} a_i^i.
\]

Proof. According to the definition, we have
\[
A \ast I_{N+1-p} = \left(\sum_{1 \leq i_1 < \cdots < i_p \leq N+1} a_{i_1 \cdots i_p} E_{i_1}^1 \ast \cdots \ast E_{i_p}^p \right)
\ast \left(\sum_{1 \leq k_1 < \cdots < k_{N+1-p} \leq N+1} E_{k_1}^1 \ast \cdots \ast E_{k_{N+1-p}}^p \right)
\]
\[
= \sum_{1 \leq i_1 < \cdots < i_p \leq N+1} a_{i_1 \cdots i_p} E_{i_1}^1 \ast \cdots \ast E_{i_p}^p \ast E_{k_1}^1 \ast \cdots \ast E_{k_{N+1-p}}^p \ast k_{N+1-p}
\]
\[
= \sum_{w \in \mathfrak{S}_p, N+1-p} a_{w(1) \cdots w(p)} E_{w(1)}^1 \ast \cdots \ast E_{w(N+1)}^p \ast w(N+1)
\]
\[
= \sum_{w \in \mathfrak{S}_p, N+1-p} (-q)^{-2l(w)} a_{w(1) \cdots w(p)} E_{11}^1 \ast \cdots \ast E_{N+1,N+1}^p
\]
From an easy observation, we know that for any \(w \in \mathfrak{S}_{p,N+1-p} \) with \(w(1) = l_1, \ldots, w(p) = l_p \) we have \(l(w) = (l_1-1) + \cdots + (l_p-p) = (l_1+\cdots+l_p)-(1+p)p/2 \). \(\square \)

Proposition 3.5. For any \(A \in \operatorname{End}(V) \) with \(Ae_i = \sum_{j=1}^{N+1} a^i_j e_j \), and \(0 \leq p \leq N+1 \), we have

\[
\operatorname{Tr}_q A^p = \sum_{i=1}^{n} q^{-2(i-1)} \sum_{j_1, \ldots, j_p} a^i_{j_1} a^i_{j_2} \cdots a^i_{j_p},
\]

and

\[
\operatorname{Tr}_q A^{*p} = \sum_{\theta, \tau} \sum_{w \in \mathfrak{S}_{p,N+1-p}} (-q)^{-2(1-w(1)+l(\theta)+l(\tau))} a_{\theta w(1)} \cdots a_{\theta w(p)}. \]

In particular,

\[
\operatorname{Tr}_q A^{N+1} = \sum_{\theta, \tau} (-q)^{-l(\theta)-l(\tau)} a_{\theta(1)} \cdots a_{\theta(N+1)}. \]

Proof. All identities follows from direct computation. \(\square \)

For a diagonalizable \(A \in \operatorname{End}V \) with \(Ae_i = a^i_i e_i \), we have

\[
\begin{align*}
\operatorname{Tr}_q A^{*N+1} &= (N+1)q_{-2}! a^1_1 \cdots a^{N+1}_{N+1}, \\
\operatorname{Tr}_q A^{*p} &= (p)_{p-2}! \sum_{w \in \mathfrak{S}_{p,N+1-p}} (-q)^{-2(1-w(1)+l(\theta)+l(\tau))} a_{\theta w(1)} \cdots a_{\theta w(p)}, \\
\operatorname{Tr}_q A^{p} &= \sum_{i=0}^{N} (-q)^{-2(i-1)} (a^i_i)^p.
\end{align*}
\]

Let \(\mathbb{C} = V(1) \subset V(2) \subset \cdots \subset V(i) \subset \cdots \) be a sequence of vector spaces with \(V(i) = \text{Span} \{ e_1, \ldots, e_i \} \). We still use \(c \) to denote the action of \(c \) restricted on \(V(i) \) for all \(i \). For any \(1 \leq p \leq N \), we define

\[
(\operatorname{Tr}_q)_{p+1} : \operatorname{End} \bigwedge^{p+1}_c (V_{N+1}) \to \operatorname{End} \bigwedge^p_c (V_{N}),
\]

\[
E_{i_1j_1} \ast \cdots \ast E_{i_{p+1}j_{p+1}} \mapsto E_{i_1j_1} \ast \cdots \ast E_{i_{p}j_{p}} \operatorname{Tr}_q E_{i_{p+1}j_{p+1}},
\]

where \(1 \leq i_1 < \cdots < i_{p+1} \leq N+1 \) and \(1 \leq j_1 < \cdots < j_{p+1} \leq N+1 \).

Proposition 3.6. For any \(A \in \operatorname{End} \bigwedge^p_c (V) \), we have

\[
\operatorname{Tr}_q A = (-q)^{p(p-1)}(\operatorname{Tr}_q)_{1}(\operatorname{Tr}_q)_{2} \cdots (\operatorname{Tr}_q)_{p} A.
\]

Proof. We set \(A = \sum_{1 \leq i_1 < \cdots < i_p \leq N+1} \sum_{1 \leq j_1 < \cdots < j_p \leq N+1} a_{i_1j_1}^{i_1i_p} E_{i_1j_1} \ast \cdots \ast E_{i_pj_p} \). Then

\[
(\operatorname{Tr}_q)_{1}(\operatorname{Tr}_q)_{2} \cdots (\operatorname{Tr}_q)_{p} A
= \sum_{1 \leq i_1 < \cdots < i_p \leq N+1} \sum_{1 \leq j_1 < \cdots < j_p \leq N+1} a_{i_1j_1}^{i_1i_p} \operatorname{Tr}_q E_{i_1j_1} \ast \cdots \ast \operatorname{Tr}_q E_{i_pj_p}
= \sum_{1 \leq i_1 < \cdots < i_p \leq N+1} \sum_{1 \leq j_1 < \cdots < j_p \leq N+1} a_{i_1j_1}^{i_1i_p} \delta_{i_1j_1}(-q)^{-2(i_1-1)} \cdots \delta_{i_pj_p}(-q)^{-2(i_p-1)}
\]
\[\sum_{1 \leq i_1 < \cdots < i_p \leq N+1} a_{i_1 \cdots i_p}^i (-q)^{-2(i_1 + \cdots + i_p - p)} \]

\[= (-q)^{p(1-p)} \text{Tr}_q A. \]

3.4. **The relation between q-traces and quantum traces.** Now we recall the definition of the quantum trace. For more information, one can see \[7\].

We know the positive roots of \(\mathfrak{s}l_{N+1}(\mathbb{C}) \) are

\[
\alpha_1, \quad \alpha_1 + \alpha_2, \quad \alpha_1 + \alpha_2 + \alpha_3, \quad \ldots, \quad \alpha_1 + \cdots + \alpha_N, \\
\alpha_2, \quad \alpha_2 + \alpha_3, \quad \alpha_2 + \alpha_3 + \alpha_4, \quad \ldots, \quad \alpha_2 + \cdots + \alpha_N, \\
\ldots, \\
\alpha_N.
\]

The sum of all positive roots is

\[\sum_{i=1}^{N} i(N + 1 - i)\alpha_i. \]

Set

\[K = K_1^N K_2^{2(N-1)} \cdots K_N^N. \]

For any \(A \in \text{End}(V) \), we call

\[\text{tr}_q(A) = \text{Tr}(\rho(K)A) \]

the *quantum trace* of \(A \), where \(\text{Tr} \) is the usual trace of endomorphisms. By direct computation, one gets that if \(A \in \text{End}(V) \) with \(Ae_i = \sum_{j=1}^{N+1} a_{i,j}^j e_j \), then

\[\text{tr}_q(A) = \sum_{i=1}^{N+1} q^{N-2(i-1)} a_{i,1}^i. \]

Hence, we get that:

Theorem 3.7. For any \(A \in \text{End}(V) \), we have

\[\text{Tr}_q A = q^{-N} \text{tr}_q(A). \]

In general, the quantum trace \(\text{tr}_q A \) for \(A \in \text{End} \wedge^p_c(V) \) is defined by:

\[\text{tr}_q A = \text{tr}(\rho^p(K)A), \]

where \(\rho^p : \mathcal{U}_q \mathfrak{sl}_{N+1} \rightarrow \text{End} \wedge^p_c(V) \) is the representation of \(\mathcal{U}_q \mathfrak{sl}_{N+1} \) on \(\wedge^p_c(V) \) induced by the fundamental representation \(\rho \). For \(1 \leq j_1 < \cdots < j_p \leq N+1 \), we have

\[
\rho^p(K)A(e_{j_1} \wedge \cdots \wedge e_{j_p}) = \rho^p(K) \left(\sum_{1 \leq i_1 < \cdots < i_p \leq N+1} a_{i_1 \cdots i_p}^{j_1 \cdots j_p} e_{i_1} \wedge \cdots \wedge e_{i_p} \right) = \sum_{1 \leq i_1 < \cdots < i_p \leq N+1} a_{j_1 \cdots j_p}^{i_1 \cdots i_p} Ke_{i_1} \wedge \cdots \wedge Ke_{i_p}
\]
\[
\sum_{1 \leq i_1 < \cdots < i_p \leq N+1} a_{i_1 \cdots i_p}^1 q^{p(N+2)-2(i_1+\cdots+i_p)} e_{i_1} \wedge \cdots \wedge e_{i_p},
\]
where the last equality follows from \(K = \text{diag}(q, q^{-2}, \cdots, q^{-N}) \).

So
\[
\operatorname{tr}_q A = \sum_{1 \leq i_1 < \cdots < i_p \leq N+1} q^{p(N+2)-2(i_1+\cdots+i_p)} a_{i_1 \cdots i_p}^1.
\]

Therefore we have the generalization of the above theorem:

Theorem 3.8. For any \(A \in \text{End} \bigwedge^p V \), we have
\[
\operatorname{Tr}_q A = q^{-p(N+1-p)} \operatorname{tr}_q A.
\]

Acknowledgements

This work was partially supported by China-France Mathematics Collaboration Grant 34000-3275100 from Sun Yat-sen University. The author would like to thank Professor Marc Rosso sincerely from whom he got the leading idea of this paper and useful discussions. He would like to thank le DMA de l’ENS de Paris for supplying him a very excellent working environment when he prepared this work. He would like to thank the referee for careful reading and useful comments which improved the clarity of the exposition.

References

[1] V. G. Drinfel’d, Quantum groups, Proc. Int. Cong. Math., Berkeley, (1986) pp. 798-820.
[2] D. Flores de Chela, J. A. Green, Quantum symmetric algebras II, J.Algebra 269 (2003) pp. 610-631.
[3] D. I. Gurevich, Algebraic aspects of the quantum Yang-Baxter equation. (Russian) Algebra i Analiz 2 (1990) pp. 119–148; translation in Leningrad Math. J. 2 (1991) pp. 801–828.
[4] M. Hashimoto, T. Hayashi, Quantum multilinear algebra, Tôhoku Math. J. 44 (1992) pp. 471-521.
[5] M. Jimbo, A \(q \)-difference analogue of \(U(g) \) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985) pp. 63–69.
[6] C. Kassel, Quantum groups, Graduate Texts in Mathematics 155, Springer-Verlag, New York, 1995.
[7] C. Kassel, M. Rosso, V. Turaev, Quantum groups and knot invariants, Panoramas et Synthèses, numéro 5, Société Mathématique de France, pp. 1997.
[8] H. Osborn, The Chern-Weil construction, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Stanford Univ., Stanford, Calif., 1973), Part 1, Amer. Math. Soc. (1975) pp. 383–395.
[9] H. Osborn, The trace as an algebra homomorphism, Enseign. Math. (2) 31 (1985) pp. 213–225.
[10] M. Rosso, Groupes quantiques et algèbres de battage quantiques, C. R. Acad. Sci. Paris I 320 (1995), pp. 145–148.
[11] M. Rosso, Quantum groups and quantum shuffles, Invent. Math. 133 (1998) pp. 399-416.
[12] M. Wambst, Complexes de Koszul quantiques, Ann. Inst. Fourier (Grenoble) 43 (1993) pp. 1089–1156.

DÉPARTEMENT DE MATHÉMATIQUES, UNIVERSITÉ PARIS DIDEROT (PARIS 7), 175, RUE DU CHEVALERET, 75013, PARIS, FRANCE

E-mail address: jian@math.jussieu.fr
Department of Mathematics, Sun Yat-sen University, 135, Xingang Xi Road, 510275, Guangzhou, P. R. China