Meta-analysis of genetic association studies on gestational diabetes mellitus

Ravi BHUSHAN
Banaras Hindu University https://orcid.org/0000-0002-9889-2072
Sonal Upadhyay
Institute of Science, Banaras Hindu University
Shally AWASTHI
Department of Pediatrics, King George’s Medical University
Monika Panday (✉ monikapandeybiotec@gmail.com)
Institute of Science, Banaras Hindu University

Systematic Review

Keywords: Genetic variants, Gestational Diabetes Mellitus, Insulin secretion, SNPs

Posted Date: December 2nd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1127993/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Several molecular epidemiological studies have analyzed the associations between genetic variants and the risk of gestational diabetes mellitus (GDM). However, all these studies suffer from inconsistent and conflicting results owing to relatively smaller sample sizes, fewer genetic variants included in the research, and limited statistical power. Hence, a coherent review and meta-analysis were carried out to provide a quantitative summary related to the associations of commonly studied SNPs with GDM risk.

Methods

Eligible studies were retrieved from PubMed, updated on Dec. 2019. Based on several inclusion and exclusion criteria, 71 articles with 42928 GDM patients and 77793 controls were finally considered for meta-analysis. The genotype data from 23 variants of sixteen genes were statistically analyzed using RevMan v 5.2 software. Newcastle-Ottawa Scale (NOS) was used to assess the quality of the research article. Heterogeneity among studies was tested by I^2 and odds ratio with 95% confidence interval (CI) was carried out for all five genetic models.

Results

The overall combined odds ratio reveals that variants like MTNR1B (rs1083963, rs1387153), GCK (rs1799884), CANP10 (rs3792267), and GCKR (rs780094) are significantly associated with GDM in all genetic models while CANP10 (rs5030952), ADRB (rs4994) and FTO (rs8050136) are not significantly associated with GDM in any genetic models. Variants MTNR1B (rs1083963, rs1387153) and GCK (rs1799884) are associated with increased risk (OR>1, p<0.05) of GDM, and all these are related to insulin secretion. Other variants related to insulin secretion like TCF7L2 (rs7903146) and SLC30A8 (rs1326634) are also associated with increased risk (OR>1, p<0.05) of GDM. On the contrary, CANP10 (rs3792267) and GCKR (rs780094) are found associated with decreased risk (OR<1, p<0.05) of GDM. Other variants are significantly associated with the GDM in at least one or more genetic models.

Conclusion

Our study identified that most of the variants related to insulin secretions like MTNR1B (rs1083963), GCK (rs1799884), TCF7L2 (rs7903146), GCKR (rs780094), and SLC30A8 (rs1326634) are more strongly associated (p<0.005) with GDM as compared to the variants related to the insulin resistance like PPARG (rs1801282), IRS1 (rs1801278) and ADIPOQ (rs266729).

Introduction

Gestational diabetes mellitus (GDM), a complex metabolic disorder, is defined as any degree of carbohydrate intolerance with onset or first recognition during pregnancy (American Diabetes Association, 2010). Risk factors include maternal age, pre-pregnancy obesity, and previous delivery of a newborn with congenital malformations such as macrosomia, previous/prior history of GDM, cesarean section, and a family history of diabetes in first degree relatives (Reece et al., 2009). However, intrinsic factors like environmental interaction and genetic predisposition can’t remain unaddressed (Shaat and Groop, 2007). Women with GDM had an increased risk of developing diabetes type 2 which accounts for 90% of cases of diabetes. GDM can progress when a genetic susceptibility to pancreatic islets cells are exposed to incremental insulin resistance during pregnancy. GDM is often associated with adverse pregnancy outcomes, including fetal macrosomia, stillbirth, neonatal metabolic disturbances, and related problems, and causes short- and long-term complications in women and their offspring (Bellamy et al., 2009; "Gestational Diabetes Mellitus," 2004; Reece et al., 2009). GDM women are at over seven-fold higher risk of developing type 2 diabetes mellitus (T2DM) later in life (Bellamy et al., 2009).

The Burden of GDM is growing at a much higher rate in developing and low-to-middle income countries than in developed countries. The prevalence of GDM varies widely from 1.8–25.1% of all pregnancies. It is higher among the Middle East and North Africa, South Asia, and Western Pacific regions while lowest in Europe (Zhu and Zhang, 2016). In the western world, the incidence of GDM is about 1–3% of all pregnancies while 5–10% in Asian pregnancies (Shaat and Groop, 2007). In India, the incidence of GDM is estimated to be 10-14.3% which is much higher than in developed countries (Lowe et al., 2016). This significant variation in its prevalence is attributed to racial and ethnic differences a social-economic variations (Zhu and Zhang, 2016). The Asian/Pacific Islander women have a higher incidence of GDM than non-Hispanic white, Black, or Hispanic women (Chu et al., 2009; Kim et al., 2012). Due to racial and regional differences in GDM prevalence, exploring the relationship of susceptible gene polymorphism in GDM women of different racial backgrounds will be quite informative.

In this study, we systematically analyzed all the current evidence regarding the genetic associations of GDM to quantitatively summarize the effect size of replicated single nucleotide polymorphisms (SNPs) on GDM risk and identify the possible sources of heterogeneity among the eligible researchers. A total of 23 different SNPs related to 16 genes were included for meta-analysis. These sixteen genes are namely TCF7L2 (Transcription factor 7-like 2), MTNR1B (Melatonin receptor 1B), FTO (Alpha-ketoglutarate-dependent dioxygenase), PPARG (Peroxisome proliferator-activated receptor-gamma), GCK (Glucokinase), GCKR (Glucokinase Regulator), ADIPOQ (Adiponectin), TNF (Tumor necrosis factor), IRS1 (Insulin receptor substrate 1), KNCN11 (Potassium inwardly-rectifying channel, subfamily J, member 1), IGFBP2 (Insulin-like growth factor 2 mRNA-binding protein 2), ADRB3 (Adrenoceptor beta 3), CDKAL1 (CDK5 regulatory subunit associated protein 1-like 1), HNF1A (Hepatocyte nuclear factor 1-alpha), CANP10 (Calpain-10), and SLC30A8 (Solute carrier family 30 member 8). These genes and their respective SNPs were involved in pathways like type 1 diabetes mellitus, type1 diabetes mellitus, insulin signalling pathway, Maturity onset diabetes of the young, PPAR signalling pathway, Adipocytokine signalling pathway, glycolysis, and amino sugar metabolism. To the best of our
knowledge, several studies reporting the association of different SNPs to GDM are present. However, a single study including all polymorphisms is lacking. Herein, we present a meta-analysis including all polymorphisms associated with GDM studied so far.

Materials And Methods

Search strategy

A systematic literature search in the PubMed, Scopus and Google Scholar databases (Canese et al., n.d.) was carried out for each Single Nucleotide Polymorphism (SNPs) studied so far from 1994 to 2019 for their association with GDM. The keywords used for article search were “SNPs” OR “Polymorphism” OR “Variant” OR “Genotype” OR “SNPs” AND Diabetes, Gestational [MESH] OR “Diabetes, Pregnancy-Induced” OR “Pregnancy-Induced Diabetes” OR “Gestational Diabetes” OR “Diabetes Mellitus, Gestational” OR “Gestational Diabetes Mellitus.” Cross-references were also screened for the literature retrieved.

Study selection

The inclusion criteria considered for selection of eligible studies were as follows: (1) English publication (2) Studies with case-control design (3) proper diagnostic criteria for Gestational Diabetes Mellitus (GDM) (4) studies with adequate data for genotyping in case and control (5) literature with sufficient data to estimate the odds ratio (ORs) with 95% confidence interval (CI). The Criteria included for exclusion were as follows: (1) Abstract, reviews, and meta-analysis (2) studies with duplicate data (3) studies without control design (4) Irrelevant studies with insufficient data. All identified studies were critically reviewed by two investigators independently to determine their eligibility for inclusion or exclusion in meta-analysis. Screening based on inclusion and exclusion criteria led to the identification of a total of 71 potential studies containing 42928 GDM patients and 77793 controls to be included in the meta-analysis.

Methodological quality appraisal

The modified Newcastle-Ottawa Scale (NOS) (Cook and Reed, 2015) was employed to identify high-quality research. The methodological quality of each study was assessed for three parameters: selection (0-4 points), comparability (0-2 points), and exposure (0-3 points). Each meeting point was given a score, and thus each study was scored from 0 to 9. According to the modified NOS, articles with no less than five scores were defined as high quality.

Data extraction

All 71 eligible studies were independently reviewed by two reviewers, and the following information was extracted from each study: first author, publication year, ethnicity, country, mean age, genotyping method, gene, genetic variants, size of the sample, number of cases and controls, study design, genotype distribution in case and control groups, allele frequency and NOS quality score. Disagreements were resolved through discussion with all authors.

Statistical analysis

All statistical analysis was performed using REVMAN software version 5.2 (Schmidt et al., 2019). The P-values <0.05 were considered statistically significant unless otherwise emphasized. To explore the significant deviation from HWE among controls in each study, the Chi-square test was calculated (Wigginton et al., 2005). OR and 95% CI were used to calculate the strength of associations between different polymorphisms and GDM susceptibility. I² tests were utilized to assess the heterogeneity of ORs (Higgins, 2003). If I² < 50%, the heterogeneity was regarded as not significant. The associations between genetic polymorphisms and GDM were examined under the allele model (A vs B, where A is the risk allele), the recessive model (AA vs AB + BB), the dominant model (AB + AA vs. BB), the homozygous contrast model (AA vs. BB), and the heterozygote contrast model (AA vs. AB).

Networking and KEGG pathway enrichment

All sixteen genes were uploaded in STRING v 11.0 (Mering, 2003), and a PPI network was constructed. All these genes were also enriched for their biological process, molecular function, and KEGG pathways using DAVID v 6.7 (Huang et al., 2009).

Results

Literature search and Characteristics of eligible Studies

According to the search strategy, a total of 243 articles were initially retrieved from PubMed, Scopus and Google Scholar (Fig. 1). After excluding 15 duplicate articles, a total of 228 articles were considered for full-text review. Among these, meta-analysis (n=13), review (n=4), and articles related to other disease and non-clinical data (n=97) were excluded, leaving 114 articles for eligibility check. Further, thirty-seven articles were excluded due to insufficient data, and four abstracts were also excluded. Finally, 75 articles with a total of 42928 GDM cases and 77793 controls were included in the meta-analysis study. The characteristics of the studies included in the meta-analysis are summarized in Table 1. All included studies were published from 1994 to 2019 and were of moderate to high quality, with NOS scores of more than five stars. The studies had a heterogeneous population with all three races. These 71 studies include a total of 23 polymorphisms related to 16 genes. The genotype and allele distribution for each of these polymorphisms is listed in Table 2. The genotype distribution of the control group was in accordance with HWE in all studies (P > 0.05).

Overall meta-analysis
In the present study, a total of 23 SNPs related to 16 different genes were analyzed. Characteristic features of genes and their related alleles are provided in Table 3. Of these, CANP10 and TCF7L2 have three polymorphisms; MTNR1B, FTO, and GCKR have two polymorphisms, while the rest genes have only one SNP included in the study (Fig. 2A). Association between all twenty-three polymorphism and GDM risk were assessed in five genetic models, and detailed results have been shown in Table 4. Out of 23 SNPs analyzed, the results showed that only 17 SNPs were significantly associated with GDM risk in at least one genetic model (Fig. 2B and D, Table 4). A total of 13 polymorphisms regarding genotypes in the dominant model, 11 polymorphisms regarding genotypes in the recessive model, 14 polymorphisms regarding genotypes in the homozygous model, ten polymorphisms regarding genotypes in the heterozygote model and ten polymorphisms regarding genotypes in the allele model were found to be significantly (p<0.05) associated with GDM risk (Fig. 2D). The four polymorphisms, namely rs780094 (GCKR), rs1387153 (MTNR1B), rs1799884 (GCK), rs1083963 (MTNR1B) were showing significant association (p<0.05) with GDM risk in all five genetic models (Fig. 2C). On the other hand, two polymorphisms (rs3792267, rs9939609) exclusively present the dominant, recessive, homozygote, and heterozygote model each while another two polymorphisms (rs2975760, rs12255572) exclusively present in the dominant, recessive, homozygote, and allele models were found to be significantly (p<0.05) associated with GDM risk (Fig. 2C).

Association between polymorphisms and GDM

In all five genetic models analyzed, the number of polymorphisms associated with increased risk (OR>1) of GDM is larger than those polymorphisms which have protective effects (OR<1) (Fig 3A). Analysis of all 23 SNPs in the dominant genetic model revealed significant heterogeneity (p<0.05) in only seven polymorphisms. Thus, a random-effect model was conducted to pool results for total OR estimation. Genotype analysis indicates that all these seven polymorphisms are significantly associated with increased risk (OR>1, p<0.05) of GDM (Supplementary file 1). In recessive models (Fig. 3B), significant heterogeneity (p<0.05) was found in 10 polymorphisms out of 23 analyzed. Random effect model showed significant protective association (OR=1) of eight polymorphisms while two polymorphisms GCK rs1799884 (OR = 1.77(1.56-2.00); I² = 86%, p=0.00001) and TCF7L2 rs12255572 (OR = 2.24(1.81-2.77); I² = 87%, p<0.00001) are significantly associated with increased risk (OR=1) of GDM. In the homozygote model (Fig. 3B), significant heterogeneity was observed in total eleven polymorphisms, of which ten were strongly associated with increased risk (OR>1) of GDM while only one, i.e., GCKR rs780094 was showing protective association (OR = 0.52(0.38-0.70); I² = 83%, p=0.00001). A significant heterogeneity (p<0.05) was observed in six polymorphisms out of 23 in the analysis of the heterozygote model (Fig. 3B). Genetic analysis through the random effect model revealed that five polymorphisms are significantly associated with increased risk (OR>1) of GDM while GCKR rs780094 showed protective association (OR = 0.72(0.53-0.97); p = 0.03). Genotypes in the allele model (Fig. 3B) revealed a total of nine significant (p<0.05) heterogeneity, of which six were significantly associated with increased risk (OR>1) while three were showing protective association (OR<1) for GDM. The overall results revealed the significant heterogeneity (p<0.05) of five polymorphisms, namely rs1326634 (SLC30A8), rs780094 (GCKR) rs1083963 (MTNR1B), rs7903146 (TCF7L2), rs9939609 (FTO) in all five genetic models analyzed. Among these five, rs780094 (GCKR) rs1083963 (MTNR1B) were significant for overall effect in all five genetic models analyzed. Polymorphisms rs1799884 (GCK) and rs1387153 (MTNR1B) were also significantly associated with the disease. However, they are not significant at the heterogeneity level in all five genetic models analyzed.

Association of GDM with genetic variants related to insulin secretion

Transcription factor 7-like 2 (TCF7L2)

This meta-analysis studied three variants of TCF7L2, namely rs7903146, rs12255372, and rs7901695, which were studied in this meta-analysis rs7903146 was the most widely studied variant in the association with GDM. A meta-analysis of twenty-five studies (Cho et al., 2009; de Melo et al., 2015; Ekelund et al., 2012; Franzago et al., 2018; Freathy et al., 2010; Huerta-Chagoya et al., 2015; Khan et al., 2019; Lauenborg et al., 2009; Pagán et al., 2014; Papadopoulou et al., 2011; Papadopoulou et al., 2011; Pappa et al., 2011; Reyes-López et al., 2014; Rizk et al., et al., 2012) involving a total of 16672 controls and 6692 GDM cases, showed the significantly (p<0.0001 except Recessive Model) increased susceptibility for the rs7903146 allele or genetic models (Fig. 4) associated with an increased risk of GDM (Dominant Model: OR=1.59; Recessive model: OR=1.03; Homozygote Model: OR=2.03; Heterozygote Model: OR=1.46; Allelic model: OR=1.60). Overall heterogeneity was substantial under all comparisons (I²: 43%-92%).

For rs12255372, a total of eleven studies (Cho et al., 2009; de Melo et al., 2015; Pagán et al., 2014; Papadopoulou et al., 2011; Popova et al., 2017; Reyes-López et al., 2019, 2014; Rizk et al., et al., 2012) involving 2923 controls and 2842 GDM cases, while only five studies involving 1233 controls and 2093 GDM cases for rs7901695 (Gorczyca-Siudak et al., 2016; Pagán et al., 2014; Papadopoulou et al., 2011; Stuebe et al., 2013) were included for the data synthesis. Overall-effect analysis showed significantly increased susceptibility for the rs12255372 allele or genetic models (Supplementary fig. 1A) with increased GDM risk (Dominant Model: OR=1.37; Recessive model: OR=2.24; Homozygote Model: OR=1.69; Heterozygote Model: OR=1.10; Allelic model: OR=1.80). In the case of rs7901695, significantly increased susceptibility with increased GDM risk was found only in the dominant (OR=1.41; p=0.01) and homozygote model (OR=1.69; p=0.0005) (Supplementary fig. 2A). Overall heterogeneity for rs12255372 ranged from moderate to considerable (20%-87%), while for rs7901695, it was substantial (41%-95%).

Glucokinase (GCK)

The rs1799884 variant in the GCK gene has been widely investigated in GDM risk (Chiu et al., 2000; Freathy et al., 2010; Popova et al., 2017; Shaat et al., 2006; Tarnowski et al., 2017; Zaidi et al., 1997). In the present meta-analysis, for rs1799884, a total of eight studies involving 7923 controls and 2416 GDM cases were analyzed for five genetic models. There was significantly (p<0.00001) increased susceptibility for the rs1799884 allele or genetic models (Fig. 5) with increased GDM risk (Dominant Model: OR=1.88; Recessive model: OR=1.77; Homozygote Model: OR=1.98; Heterozygote Model: OR=1.62; Allelic model: OR=1.52). Overall heterogeneity for rs1799884 was very less (0-40%) except recessive models (86%).

Glucokinase Receptor (GCKR)
Two variants of GCKR, namely rs780094 and rs1260326, have been investigated in the present study. A total of seven studies involving 2317 controls and 667 GDM cases for the rs780094 variant (Angeheb-Oliveira et al., 2017; Jamalpour et al., 2018; Stuebe et al., 2013; Tamowski et al., 2017) (Fig. 6A) while four studies involving 1230 controls and 462 GDM cases for the rs1260326 variant (de Melo et al., 2015; Franzago et al., 2018; Stuebe et al., 2013) (Fig. 6B) were assessed and analyzed in the present study. Overall-effect analysis indicated the significantly (p<0.05, except recessive model in both variant) decreased susceptibility for both variants in homozygote (rs780094: rs1260326, OR=0.52:0.51), heterozygote (rs780094: rs1260326, OR=0.72:0.66) and allelic model (rs780094: rs1260326, OR=0.51:0.54).

Melatonin receptor 1B (MTNR1B)

Kim et al. (2011) first studied the two variants of MTNR1B, namely rs10830963 and rs1387153. For rs10830963, a total of fourteen studies (Alharbi et al., 2019; Ao et al., 2015; Grotenfelt et al., 2016; Junior et al., 2015; Kim et al., 2011; Liu et al., 2010; Popova et al., 2017; Tamowski et al., 2017; Vejrazkova et al., 2014; Vlassi et al., 2012; Wang et al., 2011) involving 5121 controls and 4564 GDM cases were analyzed, while for rs1387153, a total of five studies (Alharbi et al., 2019; Kim et al., 2011; Liu et al., 2010; Popova et al., 2017; Vlassi et al., 2012) involving 2139 controls and 2138 GDM cases were included in the present study. In the case of rs10830963, the overall-effect analysis revealed the significantly(p<0.0001) increased susceptibility with increased GDM risk in all genetic models except recessive model (Dominant Model: OR-1.81; Homozygote Model: OR-2.82; Heterozygote Model: OR-1.82; Allelic model: OR-1.85) (Fig. 7A). Similarly, for the rs1387153, the significantly increased susceptibility with increased GDM risk was found in all genetic models except the recessive model (Dominant Model: OR-1.68; Homozygote Model: OR-3.42; Heterozygote Model: OR-1.73; Allelic model: OR-2.0) (Fig. 7B). Overall heterogeneity for rs10830963 was considerable (64%-88%) while for rs1387153 it was highly variable (0%-90%).

Zinc transporter 8 (SLC30A8)

The rs1326634 variant in SLC30A8 has recently gained much interest in GDM risk. In the present meta-analysis, a total of six studies (Cho et al., 2009; Dereke et al., 2012; Khan et al., 2019; Lauenborg et al., 2009; Teleginski et al., 2017) involving 3861 controls and 1946 GDM cases were analyzed. Overall-effect analysis showed the significantly (p<0.0001) increased susceptibility with increased GDM risk only in the dominant (OR-1.91) and heterozygote model (OR-2.90), while in the allelic models, there was significantly (p<0.05) decreased susceptibility (OR-0.76) associated with GDM risk (Fig. 8).

Gene-interaction, functional and pathway enrichment

The protein-protein interaction network reveals a high degree of interaction among these sixteen genes (Fig. 9A). Gene ontology enrichment analysis highlights the role of these sixteen genes in significant biological processes like regulation of glucose metabolism and insulin secretion, cellular response to insulin stimulus, and fatty acid oxidation (Fig. 9B). Significant pathways being regulated by these genes are the PPAR signalling pathway, mTOR signalling pathway, Maturity onset of diabetes in young (MODI), and type II diabetes mellitus pathway (Fig. 9C).

Heterogeneity

Heterogeneity was measured in all comparisons. Both Cochrane’s Q test and I-square statistic suggest different levels of heterogeneity (from less/no to very severe) across all studies or for each subgroup. Hence, both the fixed effect model and random effect model were employed to pool all studies. Moderate (I^2=50%) or no heterogeneity (I^2=0%) was found in seven SNPs namely rs3792267 (CANP10), rs5030952 (CANP10), rs4994 (ADRB3), rs1801278 (RS1), rs1800629 (TFN), rs1260326 (GCKR), and rs8050136 (FTO), out of 23 SNPs analyzed. The remaining sixteen SNPs show considerable (I^2, 50% - 90%) and substantial (I^2, 75% - 100%) heterogeneity.

Sensitivity analysis

For maternal genotype sensitivity analysis, the overall OR after exclusion of any individual study showed no change, ranging from 0.71 to 0.81, including the robust at-risk effect of the rs1326634, rs7754840 rs1083963, rs9939609 genotype against gestational diabetes.

Publication bias analysis

Egger’s test was performed to assess the publication bias. No statistically significant evidence of publication bias was observed for studies included in the analyses.

Discussion

In the present meta-analysis, all studied genetic variants related to type1 and type2 diabetes was investigated for their association with the GDM risk. Several previous studies have included only a few variants or have missed some variants (Ref.). Moreover, the pathophysiology of GDM shares similarities with type1 (insufficient insulin secretion) and type2 diabetes (insulin resistance). Both insulin insufficiency and insulin resistance play a significant role in the development and progression of GDM. Besides, these two pathways, glucose and lipid metabolism pathway, also play an essential role in the pathophysiology of GDM. Hence in this meta-analysis, we have used rigorous statistical analysis to rule out the most significantly associated variants with increased GDM risk and related pathways. Further, we also tried to identify those pathways whose genetic variants are strongly associated with the increased GDM risk. Thus, our replication study provides a more comprehensive and concise summary of the currently available evidence regarding GDM genetic variants.

Pregnancy is accompanied by a number of changes in metabolic activity, which helps in dwelling the interaction between mothers and growing fetuses to meet their energy needs. There is a slight enhancement of insulin sensitivity seen during early gestation; however, this insulin sensitivity declines during 12-14 weeks. Moreover, in the third trimester, this insulin sensitivity increases, and these values, as reported in some cases, approach the values of T2DM. This
condition is termed GDM; evidence has reported that GDM develops when a genetic predisposition of pancreatic islet B-cells impairment is unmasked by the increased insulin resistance during pregnancy. A GWAS study confirmed the association of various SNPs with impaired b-cell function (MTNR1), insulin resistance, and abnormal utilization of glucose (GCK, CANP10). We came across many studies with heterogeneous results, and this variation is liable to ethnicity, study design, and tissue is taken. Overall, we observed that variants related to insulin secretions pathways like MTNR1B (rs1083963), GCK (rs1799884), TCF7L2 (rs7903146), GCKR (rs780094), and SLC30A8 (rs1326634) are more strongly associated (p<0.005) with increased GDM compared to the variants related to the insulin resistance like PPAR (rs1801282), IRS1 (rs1801278) and ADIPOQ (rs266729).

The MTNR1B polymorphisms

The MTNR is reported to modulate pancreatic islet B-cells function. Our study coincides with the result of Kim et al., who first reported a significant association of GDM with MTNR1B rs1387153. A study conducted by Zheng et al. in 2013 observed the T allele of rs1387153 associated with increased risk of GDM, Vlassi et al. (2012) studies supported. However, the study on Chinese women conducted by Wang et al. disregarded the findings.

The GCK polymorphisms

The Glucokinase (GCK) with the rs1799884 has been widely studied in different ethnic populations with conflicting results. Chiu et al. and Zaidi et al. reported no association between GDM and rs1799884. However, Shaat et al., Freathy et al., Santas et al. found significant association when they conducted research on a relatively larger population. Our replication study also aligned with their findings and the meta-analysis also presented the significant association with no significant heterogeneity.

The CANP10 polymorphism

The CAPN10 gene belongs to the calpain family and is a Ca2+ dependent intracellular cysteine protease. CAPN10 is found to be involved in glucose homeostasis as it regulates the activity of pancreatic B islet-cells, liver, skeletal muscle, and adipocytes. However, the direct association between GDM and rs3792267 remains elusive due to reported contradictory results (Heinz et al., Luo et al., N Shaat et al., Thomas et al.)

Conclusion

The superiority of this study was that multiple databases were included to search the literature as thoroughly as possible. The subgroup and random effect analysis were utilized to decline heterogeneity, and the comprehensive assessment of publication bias was done, which identified the results of our study effectively and reliably. These findings suggest insulin resistance or defects in insulin secretion have major implications in aetiology in GDM however ethnicity plays a crucial role in it.

Declarations

Conflict of Interest

Authors declare no any conflict of interest.

References

Alharbi, K.K., Al-Sulaiman, A.M., Bin Shedaid, M.K., Al-Shangiti, A.M., Marie, M., Al-Sheikh, Y.A., Ali Khan, I., 2019. MTNR1B genetic polymorphisms as risk factors for gestational diabetes mellitus: a case-control study in a single tertiary care center. Ann Saudi Med 39, 309–318. https://doi.org/10.5144/0256-4947.2019.309
American Diabetes Association, 2010. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 33, S62–S69. https://doi.org/10.2337/dc10-S062
Anghebem-Oliveira, M.I., Webber, S., Alberton, D., de Souza, E.M., Klassen, G., Picheth, G., Rego, F.G. de M., 2017. The GCKR Gene Polymorphism rs780094 is a Risk Factor for Gestational Diabetes in a Brazilian Population. J. Clin. Lab. Anal. 31, e22035. https://doi.org/10.1002/jcla.22035
Ao, D., Wang, H., Wang, L., Song, J., Yang, H., Wang, Y., 2015. The rs2237892 Polymorphism in KCNQ1 Influences Gestational Diabetes Mellitus and Glucose Levels: A Case-Control Study and Meta-Analysis. PLoS ONE 10, e0128901. https://doi.org/10.1371/journal.pone.0128901
Bellamy, L., Casas, J.-P., Hingorani, A.D., Williams, D., 2009. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. The Lancet 373, 1773–1779. https://doi.org/10.1016/S0140-6736(09)60731-5
Canese, K., Jentsch, J., Myers, C., n.d. 2. PubMed: The Bibliographic Database 12.
Chiu, K.C., Chuang, L.-M., Yoon, C., Saad, M.F., 2000. [No title found]. BMC Genet 1, 2. https://doi.org/10.1186/1471-2156-1-2
Cho, Y.M., Kim, T.H., Lim, S., Choi, S.H., Shin, H.D., Lee, H.K., Park, K.S., Jang, H.C., 2009. Type 2 diabetes-associated genetic variants discovered in the recent genome-wide association studies are related to gestational diabetes mellitus in the Korean population. Diabetologia 52, 253–261.
https://doi.org/10.1007/s00125-008-1196-4
Chu, S.Y., Abe, K., Hall, L.R., Kim, S.Y., Njoroge, T., Qin, C., 2009. Gestational diabetes mellitus: All Asians are not alike. Preventive Medicine 49, 265–268.
https://doi.org/10.1016/j.ypmed.2009.07.001
Lowe, W.L., Scholtens, D.M., Sandler, V., Hayes, M.G., 2016. Genetics of Gestational Diabetes Mellitus and Maternal Metabolism. Curr Diab Rep 16, 15.

Dereke, J., Nilsson, C., Landin-Olsson, M., Hillman, M., 2012. Prevalence of transportor 8 antibodies in gestational diabetes mellitus. Diabetic Medicine 29, e436–e439. https://doi.org/10.1111/j.1464-5491.2012.03766.x

Ekelund, M., Shaat, N., Almgren, P., Anderberg, E., Landin-Olsson, M., Lyssenko, V., Groop, L., Bemtorp, K., 2012. Genetic prediction of postpartum diabetes in women with gestational diabetes mellitus. Diabetes Research and Clinical Practice 97, 394–398. https://doi.org/10.1016/j.diabres.2012.04.020

Franzoni, M., Fraticelli, F., Marchetti, D., Celentano, C., Liberati, M., Stuppia, L., Vitacolonna, E., 2018. Nutrigenetic variants and cardio-metabolic risk in women with or without gestational diabetes. Diabetes Research and Clinical Practice 137, 64–71. https://doi.org/10.1016/j.diabres.2018.01.001

Freathy, R.M., Hayes, M.G., Urbanek, M., Lowe, L.P., Lee, H., Ackerman, C., Frayling, T.M., Cox, N.J., Dunger, D.B., Dyer, A.R., Hattersley, A.T., Metzger, B.E., Lowe, W.L., for the HAO Study Cooperative Research Group, 2010. Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study: Common Genetic Variants in GCK and TCF7L2 Are Associated With Fasting and Postchallenge Glucose Levels in Pregnancy and With the New Consensus Definition of Gestational Diabetes Mellitus From the International Association of Diabetes and Pregnancy Study Groups. Diabetes 59, 2682–2689. https://doi.org/10.2337/db10-0177

Gestational Diabetes Mellitus, 2004. . Diabetes Care 27, S88–S90. https://doi.org/10.2337/diacare.27.2007.S88

Huang, D.W., Sherman, B.T., Lempicki, R.A., 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44–57. https://doi.org/10.1038/nprot.2008.211

Huerta-Chagoya, A., Vázquez-Cárdenas, P., Moreno-Macías, H., Tapia-Maruri, L., Rodríguez-Guillén, R., López-Vite, E., García-Escalante, G., Escobedo-Aguirre, F., Parra-Covarrubias, A., Cordero-Briefo, R., Manzo-Carrillo, L., Zacarías-Castillo, R., Vargas-García, C., Aguilar-Salinas, C., Tusie-Luna, T., 2015. Genetic Determinants for Gestational Diabetes Mellitus and Related Metabolic Traits in Mexican Women. PLoS ONE 10, e0126408. https://doi.org/10.1371/journal.pone.0126408

Jamalpour, S., Zain, S.M., Mosavat, M., Mohamed, Z., Omar, S.Z., 2018. A case-control study and meta-analysis confirm glucokinase regulatory gene rs780094 is a risk factor for gestational diabetes mellitus. Gene 650, 34–40. https://doi.org/10.1016/j.gene.2018.01.091

Junior, J.P.L., Freiger, H.R., dos Santos-Weiss, I.C.R., de Souza, E.M., Rego, F.G.M., Picheth, G., Alberton, D., 2015. The MTNR1B gene polymorphism rs10830963 is associated with gestational diabetes in a Brazilian population. Gene 568, 114–115. https://doi.org/10.1016/j.gene.2018.01.091

Kim, J.Y., Cheong, H.S., Park, B.-L., Baik, S.H., Park, S., Lee, S.W., Kim, M.-H., Chung, J.H., Choi, J.S., Kim, M.-Y., Yang, J.-H., Shin, H.D., Kim, S.-H., 2015. Melatonin receptor 1 B polymorphisms associated with the risk of gestational diabetes mellitus. BMC Med Genet 12, 82. https://doi.org/10.1186/1471-2350-12-82

Kim, S., England, L., Sappenfield, W., Wilson, H., Bish, C., Salihu, H., Sharma, A., 2012. Racial/Ethnic Differences in the Percentage of Gestational Diabetes Mellitus Cases Attributable to Overweight and Obesity, Florida, 2004-2007. Prev. Chronic. Dis. https://doi.org/10.5888/pcd9.110249

Lauenborg, J., Grarup, N., Damm, P., Borch-Johnsen, K., Jørgensen, T., Pedersen, O., Hansen, T., 2009. Common Type 2 Diabetes Risk Gene Variants Associate with Gestational Diabetes. The Journal of Clinical Endocrinology & Metabolism 94, 145–150. https://doi.org/10.1210/jc.2008-1336

Liu, C., Wu, Y., Li, H., Qi, Q., Langenberg, C., Loos, R.J., Lin, X., 2010. MTNR1B Research article rs10830963 is associated with fasting plasma glucose, HbA1C and impaired beta-cell function in Chinese Hans from Shanghai 7.

Lowe, W.L., Scholtens, D.M., Sandler, V., Hayes, M.G., 2016. Genetics of Gestational Diabetes Mellitus and Maternal Metabolism. Curr Diab Rep 16, 15. https://doi.org/10.1007/s11892-015-0709-z

Mering, C. v. 2003. STRING: a database of predicted functional associations between proteins. Nucleic Acids Research 31, 258–261. https://doi.org/10.1093/nar/gkg034
Gestational diabetes mellitus is associated with TCF7L2 gene polymorphisms independent of HLA-DQB1*0602 genotypes and islet cell autoantibodies: TCF7L2 and HLA-DQB1 in gestational diabetes mellitus. Diabetic Medicine 28, 1018–1027. https://doi.org/10.1111/j.1464-5491.2011.03359.x

Pappa, K.I., Gazouli, M., Economou, K., Daskalakis, G., Anastasiou, E., Anagnost, N.P., Amtaaklis, A., 2011. Gestational diabetes mellitus shares polymorphisms of genes associated with insulin resistance and type 2 diabetes in the Greek population. Gynecological Endocrinology 27, 267–272. https://doi.org/10.3109/09513590.2010.496069

Popova, P.V., Klyushina, A.A., Vasilyeva, L.B., Tkachuk, A.S., Bolotko, Y.A., Gerasimov, A.S., Pustozero, E.A., Kravchuk, E.N., Predeus, A., Kostareva, A.A., Grineva, E.N., 2017. Effect of gene-lifestyle interaction on gestational diabetes risk. Oncotarget 8, 112024–112035. https://doi.org/10.18632/oncotarget.22999

Reece, E.A., Leguizamón, G., Wiznitzer, A., 2009. Gestational diabetes: the need for a common ground. The Lancet 373, 1789–1797. https://doi.org/10.1016/S0140-6736(09)60515-8

Reyes-López, R., Pérez-Luque, E., Malacara, J.M., 2019. Relationship of lactation, BMI, and rs12255372 TCF7L2 polymorphism on the conversion to type 2 diabetes mellitus in women with previous gestational diabetes. Gynecological Endocrinology 35, 412–416. https://doi.org/10.1080/09513590.2018.1531984

Reyes-López, R., Pérez-Luque, E., Malacara, J.M., 2014. Metabolic, hormonal characteristics and genetic variants of TCF7L2 associated with development of gestational diabetes mellitus in Mexican women: TCF7L2 Gene in GDM Mexican Women. Diabetes Metab Res Rev 30, 701–706. https://doi.org/10.1002/dmrr.2538

Rizk, N., Al-Al, K.A., Jose, E., Al-Katheri, A., Sumbul, B., Shaltout, H., Shaltout, T., n.d. Qatar University, Doha, Qatar Hamad Medical Corporation, Doha, Qatar nassrizk@qu.edu.qa 1.

Schmidt, L., Shokraneh, F., Steinhausen, K., Adams, C.E., 2019. Introducing RAPTOR: RevMan Parsing Tool for Reviewers. Syst Rev 8, 151. https://doi.org/10.1186/s13643-019-1070-0

Shaht, N., Groop, L., 2007. Genetics of Gestational Diabetes Mellitus. CMC 14, 569–583. https://doi.org/10.2174/0929867077880059643

Shaht, N., Karlsson, E., Lemmark, Å., Ivarsson, S., Lynch, K., Parikh, H., Almgren, P., Berntorp, K., Groop, L., 2006. Common variants in MODY genes increase the risk of gestational diabetes mellitus. Diabetologia 49, 1545–1551. https://doi.org/10.1007/s00125-006-0258-8

Shaht, N., Lemmark, Å., Karlsson, E., Ivarsson, S., Parikh, H., Berntorp, K., Groop, L., 2007. A variant in the transcription factor 7-like 2 (TCF7L2) gene is associated with an increased risk of gestational diabetes mellitus. Diabetologia 50, 972–979. https://doi.org/10.1007/s00125-007-0623-2

Stuebe, A., Wise, A., Nguyen, T., Herring, A., North, K., Siega-Riz, A., 2013. Maternal Genotype and Gestational Diabetes. Amer J Perinatol 31, 069–076. https://doi.org/10.1055/s-0033-1334451

Tarnowski, M., Malinowski, D., Safranow, K., Dziedziejko, V., Czerewaty, M., Pawlik, A., 2017. Hematopoietically expressed homeobox (HHEX) gene polymorphism (rs5015480) is associated with increased risk of gestational diabetes: Genetic polymorphisms and gestational diabetes. Clin Genet 91, 843–848. https://doi.org/10.1111/cge.12875

Teleginski, A., Welter, M., Frigeri, H.R., Réa, R.R., Souza, E.M., Alberton, D., Rego, F.G.M., Picheth, G., 2017. Leptin (rs7799039) and solute carrier family 30 zinc transporter (rs13266634) polymorphisms in Euro-Brazilian pregnant women with gestational diabetes. Genet. Mol. Res. 16.

Thomas, N., Mahesh, D.M., Chapla, A., Paul, J., Shwetha, N., Christina, F., Asha, H.S., 2014. Does TCF7L2 polymorphisms increase the risk of gestational diabetes mellitus in South Indian population? EJEA. https://doi.org/10.1530/endoabs.34.P270

Včelák, J., Vejražková, D., Vaňková, M., Lukášová, P., Bradnová, O., Hálková, T., Bešťák, J., Andělová, K., Kvasničková, H., Hoskocová, P., Vondra, K., Vrbiková, J., Bendlová, B., 2012. T2D Risk Haplotypes of the TCF7L2 Gene in the Czech Population Sample: the Association With Free Fatty Acids Composition. Physiol Res 229–240. https://doi.org/10.33549/physiolres.932272

Vejražková, D., Lukasova, P., Vankova, M., Vcelak, J., Bradnova, O., Cirmanova, V., Andelova, K., Krejci, H., Bendlova, B., 2014. MTNR1B Genetic Variability Is Associated with Gestational Diabetes in Czech Women. International Journal of Endocrinology 2014, 1–7. https://doi.org/10.1155/2014/508923

Vlassi, M., Gazouli, M., Paltoglou, G., Christopoulos, P., Florentin, L., Kassi, G., Mastorakos, G., 2012. The rs10830963 variant of melatonin receptor MTNR1B is associated with increased risk for gestational diabetes mellitus in a Greek population. Hormones 11, 70–76. https://doi.org/10.1007/BF03401539

Wang, Y., Nie, M., Li, W., Ping, F., Hu, Y., Ma, L., Gao, J., Liu, J., 2011. Association of Six Single Nucleotide Polymorphisms with Gestational Diabetes Mellitus in a Chinese Population. PLoS ONE 6, e26953. https://doi.org/10.1371/journal.pone.0026953
Wigginton, J.E., Cutler, D.J., Abecasis, G.R., 2005. A Note on Exact Tests of Hardy-Weinberg Equilibrium. The American Journal of Human Genetics 76, 887–893. https://doi.org/10.1086/429864

Zaidi, F.K., Wareham, N.J., McCarthy, M.I., Holdstock, J., Kalloo-Hosein, H., Krook, A., Swinn, R.A., O’Rahilly, S., 1997. Homozygosity for a Common Polymorphism in the Islet-specific Promoter of the Glucokinase Gene is Associated with a Reduced Early Insulin Response to Oral Glucose in Pregnant Women. Diabet. Med. 14, 228–234. https://doi.org/10.1002/(SICI)1096-9136(199703)14:3<228::AID-DIA330>3.0.CO;2-N

Zhu, Y., Zhang, C., 2016. Prevalence of Gestational Diabetes and Risk of Progression to Type 2 Diabetes: a Global Perspective. Curr Diab Rep 16, 7. https://doi.org/10.1007/s11892-015-0699-x

Tables

Table 1: Characteristics of the studies included in the meta-analysis
Sl. No.	Author (Year)	Study Design	Ethnicity	Country	No. of Controls	No. of Cases	Mean Age cases/controls	GDM Criteria	Genotyping Method	NOS Score
1	N. Shaat et al. (2004)	Case–control	Arabian	Sweden	122	100	31.9/NA	OGTT-2 hour	RFLP–PCR	6
2	N. Shaat et al. (2005)	Case–control	Caucasian	Sweden	1189	587	32.2/30.5	EASD-DPSG criteria	TaqMan allelic discrimination assay	6
3	N. Shaat et al. (2006)	Case–control	Caucasian	Sweden	1229	642	32.3/30.5	EASD-DPSG criteria	RFLP–PCR	6
4	N. Shaat et al. (2007)	Case–control	Caucasian	Sweden	1111	585	32.3/30.5	EASD-DPSG criteria	TaqMan allelic discrimination assay	6
5	Popova et al. (2017)	Case–control	Caucasian	Russia	179	278	31.8/29.4		IADPSG	NA
6	Cho et al. (2009)	Case–control	Asian	Korea	627	868	32/64.7		TaqMan allelic discrimination assay	6
7	Lauenborg et al. (2009)	Case–control	Caucasian	Denmark	2353	276	43.1/45.2	WHO criteria 1999	TaqMan allelic discrimination assay	7
8	Freathy et al. (2010)	Case–control	Caucasian	Australia and UK	3811	614	NA	IADPSG 2010 criteria	TaqMan allelic discrimination assay	5
9	SF de Melo et al. (2015)	Case–control	Caucasian	Brazil	200	200	33.0 ± 6.4	ADA	Taq-Man assay	7
10	M Franzago et al. (2018)	Case–control	Caucasian	Italy	124	104	26.0 ± 8.4	IADPSG	HRM	5
11	RR Lopez et al. (2014)	Case–control	Hispanic/Latino	Mexico	108	90	29/31	ADA	PCR	6
12	Thomas et al. (2014)	Case–control	Asian	India	49	117	NA	NA	PCR	5
13	Thomas et al. (2013)	Case–control	Caucasian	Germany	297	204	NA	NA	PCR	6
14	Beysel et al. (2019)	Case–control	Caucasian	Turkey	145	160	29.16/28.01	OGTT-2 hour	RT-PCR	5
15	Pappa et al. (2011)	Case–control	Caucasian	Greece	107	148	32.5/26.67	Fourth IWCADM criteria	RFLP–PCR	6
16	S. Jamalpour et al. (2017)	Case–control	Asian	Malaysia	582	182	31.31/29.89	75-g mOGTT	Sequenom MassARRAY	6
17	A Pagan et al. (2014)	Case–control	Caucasian	Spain	24	45	31.2/34.31	OM/NDDG	Sequencing	6
18	A Papadpoupolou et al. (2011)	Case–control	White	Sweden	1110	803	NA	IADPSG	Taq-Man assay	6
19	Wang et al. (2011)	Case–control	Asian	China	1029	700	32.0/30.0	ADA criteria	TaqMan allelic discrimination assay	6
20	Stuebe et al. (2014)	Case–control	Caucasian	US, African	792	52	NA	Other criteria	Sequenom iPLEX platform	6
21	Chao Li et al. (2013)	Case–control	Asia	China	480	350	NA	NA	Sequencing	6
22	Chao Li et al. (2018)	Case–control	Asia	China	243	215	NA	NA	RFLP–PCR	4
23	Rizk et al. (2011)	Case–control	Caucasian	Qatar	74	40	NA	TaqMan allelic discrimination assay	5	
No.	Authors	Case–control	Ethnicity	Country	Number	Mean	Standard Deviation	Methodology	Allele Specific Assay	Genotyping Assay
-----	-----------------------	--------------	-----------	----------	--------	------	---------------------	------------------------------	----------------------	------------------
24	Shi et al. (2014)	Case–control	Asian	China	100	100	27.4/24.2	IADPSG	NA	TaqMan SNP Genotyping Assay
25	DG Siudak et al. (2016)	Case–control	Caucasian	Poland	26	50	30.36/30.88	NA	TAqMan SNP Genotyping Assay	
26	IA Khan et al. (2018)	Case–control	Asian	India	150	137	26.7/27.6	OGTT-2 hour	RFLP–PCR	
27	Vlassi et al. (2012)	Case–control	Caucasian	Greece	91	77	35.45/31.39	ADA criteria	RFLP–PCR	
28	Vcelak et al. (2012)	Case–control	Caucasian	Greece	376	261	35.45/31.39	ADA criteria	RFLP–PCR	
29	Aris et al. (2012)	Case–control	Asian	Malay	114	173	NA	ADA criteria	Illumina	
30	M. Ekelund et al. (2012)	Case–control	Caucasian	Sweeden	41	125	32.2/32.8	NA	TaqMan SNP Genotyping Assay	
31	KK Alharbi et al. (2019)	Case–control	Asian	Korea	966	908	33.17/32.24	Carpenter and Coustan criteria	TaqMan allelic discrimination assay	3
32	Liu et al. (2015)	Case–control	Asian	China	674	674	31.8/28.78	OGTT	Mass spectrometry	
33	JY Kim et al. (2011)	Case–control	African	Korea	966	908	33.17/32.24	Carpenter and Coustan criteria	TaqMan allelic discrimination assay	3
34	Saucedo et al. (2017)	Case–control	Caucasian	Mexico	81	80	30 (26.7–32.8)	ADA criteria	TaqMan assay	
35	Tok et al. (2006)	Case–control	Caucasian	Turkey	100	62	NA	NDDG criteria	RFLP–PCR	
36	S Chon et al. (2013)	Case–control	East Asian	Korea	41	94	29.2/26.7	NA	TaqMan SNP Genotyping Assay	
37	M. Tarnowski et al. (2017)	Case–control	Caucasian	Poland	207	204	29.3 ± 5.9	IADPSG	TaqMan SNP Genotyping Assay	
38	Z. Liang et al. (2010)	Case–control	Asian	China	79	50	NA	PCR	TaqMan SNP Genotyping Assay	
39	G Silva et al. (2011)	Case–control	Caucasian	Brazil	168	79	NA	RFLP–PCR		
40	Fallucca et al. (2006)	Case–control	Caucasian	Italy	277	309	34.1/32.7	Carpenter and Coustan criteria	TaqMan SNP Genotyping Assay	
41	Zhang X. et al. (2019)	Case–control	Asian	China	152	138	28.2/27.5	NA	TaqMan SNP Genotyping Assay	
42	Heinz et al. (2014)	Case–control	Caucasian	Austria	40	43	31.0/33.6	NA	TaqMan SNP Genotyping Assay	
43	Luo et al. (2009)	Case–control	Asian	China	120	42	28.5/29.1	NA	TaqMan SNP Genotyping Assay	
44	Deng et al. (2011)	Case–control	Asian	China	91	87	29.7/31.8	OGTT	Sequencing	
45	Tarnowski et al. (2017)	Case–control	European	Poland	207	99	NA	RT-PCR		
46	Vejrazkova et al. (2014)	Case–control	European	Czech	422	458	NA	TaqMan SNP Genotyping Assay		
47	Junior et al. (2017)	Case–control	NA	NA	183	183	NA	PCR		
48	NE. Grotenfelt et al. (2016)	Case–control	Caucasian	Finland	106	120	NA	Sequenom iPLEX		
49	Cheng et al. (2010)	Case–control	Asian	China	173	55	27/29.6	PCR–denaturing HPLC		
50	Yan et al. (2014)	Case–control	East Asian	China	180	156	NA	RFLP		
51	Du et al. (2012)	Case–control	East Asian	China	69	66	NA	RFLP		
52	Papa et al. (2011)	Case–control	Caucasian	Greece	107	148	32.5/26.67	Fourth IWCGDM	RFLP–PCR	
Study	Type	Ethnicity	Country	Cases	Controls	Sex	Criteria	Methodology	Reference	
------------------------------	------------------	-----------	---------	-------	----------	-----	--	---------------------------	-----------	
Heude et al. (2011)	Case-control	Caucasian	France	1587	109	NA	50-g glucose load	RFLP–PCR or TaqMan allelic	5	
Chiu et al. (1994)	Case-control	Caucasian	USA	99	97	NA	OGTT 2 h glucose	PCR-SSCP	6	
Zaidi et al. (1997)	Case-control	Caucasian	UK	92	47	NA	OGTT 2 h glucose	RFLP–PCR	5	
Santos et al. (2010)	Case-control	Caucasian	Brazil	600	150	NA	ADA 2009 criteria	RFLP–PCR	6	
Kan et al. (2014)	Case-control	Asian	China	100	100	30.7/30.9	OGTT	TaqMan Allelic discrimination assay		5
Huerta-Chagoya et al. (2015)	Case-control	Latino	Mexico/Hispanic/	342	408	NA	Carpenter and Coustan		5	
Klein et al. (2012)	Case-control	Caucasian	Australia	125	125	NA	IADPSG		6	
J. Dereke et al. (2016)	Case-control	Arabian	Sweden	536	511	NA	EASD	PCR-RFLP	7	
A. Teleginski et al. (2017)	Case-control	Caucasian	Brazil	180	134	NA	SBD	TaqMan	5	
Festa et al. (1997)	Case-control	Caucasian	Austria	109	70	NA	OGTT 1 h	RFLP–PCR	6	
Alevizavaki et al. (2000)	Case-control	Caucasian	Greek	130	176	NA	ADA criteria	RFLP–PCR	5	
Tsai et al. (2004)	Case-control	Asian	China	258	41	NA	OGTT (not specified)	RFLP–PCR	6	
Noury et al. (2018)	Case-control	Caucasian	Egypt	51	47	NA	ADA criteria	TaqMan Allelic discrimination assay	5	
Wu et al. (2015)	Case-control	Asian	China	180	153	23.3 ± 2.1	IADPSG	PCR-RFLP		5
Kanthimathi et al. (2015)	Case-control	Asian	India	910	495	27.5 ± 2.4	IADPSG system	MassARRAY		7
Beltcheva et al. (2014)	Case-control	Caucasian	America	259	130	NA	NA	TaqMan	6	
Pavlik et al. (2017)	Case-control	Europe	Poland	207	204	NA	NA	TaqMan	7	
Chang et al. (2005)	Case-control	Asian	China	35	35	30/28	OGTT (not specified)	RFLP–PCR	6	
Montazeri et al. (2010)	Case-control	Asian	Malaysia	102	110	NA	WHO criteria 1999	RFLP–PCR	5	
Flores et al. (2013)	Case-control	NA	NA	44	51	NA	NA	NA	NA	
A Oliveira et al. (2016)	Case-control	Caucasian	Brazil	125	127	32.7 ± 6.3	ADA criteria	Taq-Man assay		5
A. Pagan et al. (2014)	Case-control	Caucasian	Spain	25	45	30.95 ± 0.86	NDDG	Direct sequencing		6
Imran et al. (2014)	Case-control	Asian	India	150	137	24/26.7	NA	RFLP–PCR	6	

Table 2: Genotype and allele distribution among cases and controls in included studies
Sl. No.	Author (Year)	Gene [Variants]	Number of Participants	Genotypes in Control	Genotypes in GDM	M	Minor Allele	Ct																																																											
1	N. Shaat et al. (2004)	PPARG [rs1801282]Arabian	122 100	106 15 1 91 9 0	G 6.1																																																														
		PPARG [rs1801282]Scandinavian	428 400	317 105 6 286 111 3	G 1.2																																																														
		PPARG [rs1801282]	550 500	423 120 7 377 120 3	G 1.2																																																														
2	N. Shaat et al. (2005)	IRS1 [rs1801278]	1189 587	1078 111 0 534 49 4	A 4.																																																														
		KCNJ11 [rs5219]	1180 588	440 576 164 185 310 93	T 3.6																																																														
		CANP10 [rs2975760]	1181 226	787 351 43 32 177 17	C 1.6																																																														
		CANP10 [rs3792267]	1181 577	620 476 85 305 220 52	A 27																																																														
3	N. Shaat et al. (2006)	GCK [rs1799884]	1229 642	889 316 24 435 181 26	A 14																																																														
		HNF1A [rs1169288]	1214 614	559 508 147 242 298 74	T 3.2																																																														
4	N. Shaat et al. (2007)	TCF7L2 [rs7903146]	1111 585	650 392 69 271 255 59	T 2.3																																																														
		PPARG [rs1801282]	1232 637	918 298 16 468 158 11	G 1.5																																																														
		ADRB3 [rs4994]	1227 639	1060 158 9 534 100 5	G 7.3																																																														
5	Popova et al. (2017)	TCF7L2 [rs7903146]	179 278	104 63 12 161 104 13	T 2.4																																																														
		TCF7L2 [rs12255372]	176 276	110 56 10 168 93 14	T 2.1																																																														
		MTNR1B [rs10830963]	243 215	87 121 35 54 102 59	G 3.5																																																														
		MTNR1B [rs10830963]	179 278	93 69 17 96 133 49	G 2.5																																																														
		MTNR1B [rs1387153]	179 278	93 75 11 104 131 43	T 2.7																																																														
		FTO [rs9939609]	275 176	79 136 60 61 87 28	A 4.2																																																														
		GCK [rs1799884]	179 278	142 37 0 185 81 12	A 1.6																																																														
		IRS1 [rs1801278]	179 278	160 19 0 257 21 0	A 5.3																																																														
		KCNJ11 [rs5219]	179 278	56 92 31 102 122 54	T 4.3																																																														
		IGFBP2 [rs4402960]	179 278	77 76 26 120 134 24	T 3.6																																																														
		CDKAL1 [rs7754840]	179 278	81 85 13 116 128 34	C 3.1																																																														
6	Cho et al. (2009)	TCF7L2 [rs7903146]	627 868	596 31 0 803 63 2	T 2.3																																																														
		TCF7L2 [rs12255372]	630 867	628 2 0 860 7 0	T 0.3																																																														
		FTO [rs8050136]	629 864	486 132 11 643 208 13	A 1.2																																																														
		PPARG [rs1801282]	632 865	567 63 2 793 71 1	G 5.3																																																														
		KCNJ11 [rs5219]	629 846	254 273 102 298 407 141	T 3.7																																																														
		IGFBP2 [rs4402960]	627 857	313 257 57 389 365 103	T 2.5																																																														
		CDKAL1 [rs7754840]	630 863	178 319 133 171 389 303	C 4.6																																																														
		SLC30A8 [rs13266634]	627 861	107 306 214 126 372 363	C 5.6																																																														
7	Lauenborg et al. (2009)	TCF7L2 [rs7903146]	2353 276	1292 863 198 118 125 33	T 2.6																																																														
		FTO [rs9939609]	2329 276	833 1101 395 82 133 61	A 4.6																																																														
		PPARG [rs1801282]	2383 265	1790 542 51 201 60 4	G 1.5																																																														
		KCNJ11 [rs5219]	2411 255	985 1101 325 91 124 40	T 3.6																																																														
		IGFBP2 [rs4402960]	2334 274	1138 972 224 115 132 27	T 3.6																																																														
		SLC30A8 [rs13266634]	2344 279	266 998 1080 22 119 138	C 6.7																																																														
	Study	Gene	SNP	Minor allele	Total Cases	Total Controls	OR	95% CI	p-value																																																										
---	-------------------------------	-----------	------------	--------------	-------------	---------------	-----	-------------	---------																																																										
8	Freathy et al. (2010)	TCF7L2	rs7903146	T	381 11	614 1884 1557	370	293 246	75 2.1																																																										
		TCF7L2	rs7903146	T	3197	614 1591 1311	295	293 246	75 2.1																																																										
		TCF7L2	rs7903146	T	1706	384 1549 157	0	338 46	0 4.																																																										
		GCK	rs1799884	T	3811	614 2575 1114	122	388 194	32 17.																																																										
		GCK	rs1799884	T	1706	384 1375 311	20	288 91	5 1.																																																										
9	SF de Melo et al. (2015)	TCF7L2	rs7903146	T	200 200	98 86	16	76 104	20 2.1																																																										
		TCF7L2	rs12255372	T	200 200	102 75	23	92 88	20 3.																																																										
		FTO	rs9939609	A	200 200	71 97	32	68 100	32 4.																																																										
		FTO	rs8050136	A	200 200	74 96	30	73 102	25 3.																																																										
		GCKR	rs1260326	A	200 200	74 96	30	73 102	25 3.																																																										
10	M Franzago et al. (2018)	TCF7L2	rs7903146	T	124 104	59 48	17	38 38	28 3.																																																										
		FTO	rs9939609	A	124 104	38 60	26	33 42	29 4.																																																										
		PPARG	rs1801282	T	124 104	101 23	0	79 25	0 9.																																																										
		GCKR	rs1260326	T	124 104	26 68	30	25 58	21 5.																																																										
11	RR López et al. (2014)	TCF7L2	rs7903146	T	108 90	81 23	4	55 29	6 14.																																																										
		TCF7L2	rs12255372	T	108 90	101 5	2	60 23	7 4.																																																										
		TCF7L2	rs12255372	T	83 47	62 18	3	29 11	7 14.																																																										
12	Thomas et al. (2014)	TCF7L2	rs7903146	T	49 117	27 18	4	55 46	16 2.1																																																										
		TCF7L2	rs12255372	T	49 116	33 14	2	70 38	8 1.																																																										
13	Thomas et al. (2013)	CANP10	rs5030952	T	297 204	253 42	2	180 23	1 7.																																																										
		CANP10	rs3792267	A	297 204	152 122	23	103 78	23 2.																																																										
14	Beysel et al. (2019)	FTO	rs9939609	A	145 160	73 54	18	59 62	39 31.																																																										
		FTO	rs9939609	A	101 90	40 52	9	31 45	14 3.																																																										
		HNF1A	rs1169288	T	101 90	57 37	7	36 46	8 2.1																																																										
		HNF1A	rs1169288	T	145 160	50 78	17	33 94	33 3.																																																										
15	Pappa et al. (2011)	TCF7L2	rs7903146	T	107 148	62 38	7	49 81	18 2.4																																																										
		IRS1	rs1801278	A	107 148	60 40	7	58 73	17 2.																																																										
		KCNJ11	rs52219	T	107 148	70 33	4	96 42	10 1.5																																																										
16	Jamalpour et al. (2017)	GCKR	rs780094	A	582 182	84 284	214	18 69	95 61.																																																										
		GCKR	rs780094	A	163 48	23 76	64	5 30	13 6.																																																										
		GCKR	rs780094	A	102 32	16 47	39	3 13	16 6.1																																																										
17	A Pagán et al. (2014)	TCF7L2	rs7903146	T	24 45	10 12	2	19 18	8 3.																																																										
		TCF7L2	rs12255372	T	25 45	9 14	2	19 20	6 3.																																																										
		TCF7L2	rs7901695	T	25 45	10 13	2	17 20	8 3.4																																																										
18	A Papadppoulo et al. (2011)	TCF7L2	rs7903146	T	1110 803	644 384	82	363 352	88 2.4																																																										
		TCF7L2	rs12255372	T	1102 801	633 385	84	387 333	81 2.																																																										
		TCF7L2	rs7901695	C	1102 794	607 405	90	343 356	95 2.																																																										
19	Wang et al. (2011)	MTNR1B	rs10830963	G	1029 700	329 509	191	199 364	137 4.2																																																										
Study/Genotype	rsID	Gene/SNP	Minor Allele	Major Allele	Minor Allele Frequency	Major Allele Frequency	Alpha Appliance Tag	p-Value																																																											
-----------------	----------	------------	--------------	--------------	------------------------	------------------------	---------------------	---------																																																											
Steube et al. (2014)	IGFBP2 [rs4402960]	1025	705	605	361	1	T	23																																																											
CDKAL1 [rs7754840]	1020	697	197	512	311	159	339	199	C	55																																																									
GCKR [rs780094]	792	52	266	376	24	23	5	A	42																																																										
Vlassi et al. (2017)	GCKR [rs1260326]	840	56	291	395	25	26	5	T	41																																																									
Chao Li et al. (2013)	MTNR1B [rs10830963]	480	350	172	233	75	113	158	79	G	35																																																								
Chao Li et al. (2018)	MTNR1B [rs10830963]	243	215	87	121	35	54	102	59	G	35																																																								
Chao Li et al. (2014)	PPARG [rs1801282]	78	72	67	11	0	65	7	0	G	71																																																								
Rizk et al. (2011)	TCF7L2 [rs7903146]	74	40	29	37	8	16	18	6	T	35																																																								
TCF7L2 [rs12255372]	74	40	25	38	11	6	28	6	T	40																																																									
Shi et al. (2014)	TCF7L2 [rs7903146]	100	100	55	38	7	40	36	24	T	26																																																								
DG Siudak et al. (2016)	TCF7L2 [rs7903146]	26	50	10	15	1	19	29	2	T	32																																																								
IA Khan et al. (2018)	TCF7L2 [rs7903146]	150	137	76	63	11	53	60	24	T	25																																																								
Vlassi et al. (2012)	MTNR1B [rs10830963]	98	77	56	30	12	30	31	16	G	27																																																								
MTNR1B [rs1387153]	98	77	52	35	11	39	26	12	T	25																																																									
Vcelak et al. (2012)	TCF7L2 [rs7903146]	376	261	156	185	35	142	102	17	T	32																																																								
TCF7L2 [rs12255372]	376	260	206	147	23	123	115	22	T	25																																																									
Aris et al. (2012)	TCF7L2 [rs7903146]	114	173	0	15	99	1	43	129	T	9																																																								
CDKAL1 [rs7754840]	MTNR1B [rs1387153]	113	169	64	37	12	64	81	24	C	26																																																								
M. Ekelund et al. (2012)	TCF7L2 [rs7903146]	476	125	239	195	42	49	56	20	T	25																																																								
FTQ [rs8050136]	480	126	180	223	77	39	62	25	A	35																																																									
KK Alharbi et al. (2019)	MTNR1B [rs10830963]	200	200	96	65	39	64	87	49	G	36																																																								
MTNR1B [rs1387153]	200	200	91	81	28	64	92	44	T	34																																																									
Liu et al. (2015)	MTNR1B [rs10830963]	674	674	195	362	117	162	334	178	G	44																																																								
MTNR1B [rs1387153]	690	674	367	246	77	341	228	105	T	26																																																									
JY Kim et al. (2011)	MTNR1B [rs10830963]	966	908	294	469	203	217	435	256	G	45																																																								
MTNR1B [rs1387153]	972	909	313	455	204	235	433	241	T	44																																																									
Saucedo et al. (2017)	FTQ [rs9939609]	80	80	59	20	1	61	18	1	A	13																																																								
FTQ [rs8050136]	80	80	59	20	1	61	18	1	A	13																																																									
Tok et al. (2006)	PPARG [rs1801282]	100	62	84	16	0	50	12	0	G	8																																																								
IRS1 [rs1801278]	100	62	89	11	0	53	9	0	A	5																																																									
S Chon et al. (2013)	PPARG [rs1801282]	41	94	34	7	0	89	5	0	G	8																																																								
IGFBP2 [rs4402960]	41	94	15	24	2	57	30	7	T	34																																																									
M. Tarnowski et al (2017)	GCK [rs1799884]	207	204	163	42	2	147	52	5	A	11																																																								
GCKR [rs780094]	207	204	73	101	33	77	99	28	C	40																																																									
No.	Reference	Gene	SNP ID	Meta	NA1	NA2	NA3	NA4	NA5	NA6	NA7	NA8	NA9	NA10	NA11	NA12	NA13	NA14	NA15	NA16	NA17	NA18	NA19	NA20	NA21	NA22	NA23	NA24	NA25	NA26	NA27	NA28	NA29	NA30	NA31	NA32	NA33	NA34	NA35	NA36	NA37	NA38	NA39	NA40	NA41	NA42	NA43	NA44	NA45	NA46	NA47	NA48	NA49	NA50	NA51	NA52	NA53	NA54	NA55	NA56	NA57	NA58	NA59	NA60	NA61	NA62	NA63
	Study	Gene	rs	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14																																																		
---	------------------------------	----------------	------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----																																																		
64	Noury et al. (2018)	CDKAL1 [rs7754840]	51	47	8	23	20	3	26	18	C	61																																																							
65	Wu et al (2015)	CDKAL1 [rs7754840]	180	153	52	95	33	45	79	29	C	44																																																							
66	Kanthimathi et al. (2015)	CDKAL1 [rs7754840]	910	495	46	306	558	49	172	274	C	76																																																							
67	Beltcheva et al. (2014)	ADIPOQ [rs266729]	259	130	126	103	30	80	44	6	G	31																																																							
68	Pawlik et al. (2017)	ADIPOQ [rs266729]	207	204	115	75	17	92	91	21	G	26																																																							
69	Chang et al. (2005)	TNF [rs1800629]	35	35	22	5	8	10	7	18	A	36																																																							
70	Montazeri et al. (2010)	TNF [rs1800629]	102	110	94	6	2	103	4	3	A	4.1																																																							
71	Flores et al. (2013)	TNF [rs1800629]	44	51	39	5	0	43	7	1	A	5																																																							
72	A Oliveira et al. (2016)	GCKR [rs780094]	125	127	43	68	14	64	48	15	C	36																																																							
73	A. Pagan et al. (2014)	FTO [rs9939609]	25	45	5	15	5	23	15	7	A	5																																																							
74	Imran et al. (2014)	CANP10 [rs2975760]	150	137	97	42	11	85	40	12	C	21																																																							

Table 3: Features of genes and genetic variants included in the meta-analysis
Sl. No.	Gene	Description	SNPs	Alleles	Variants	Biological Process
1	TCF7L2	Transcription factor 7-like 2	[rs7903146]	C>G / C>T	Intron Variant	positive regulation of insulin secretion
			[rs12255372]	G>A / G>T	Intron Variant	
			[rs7901695]	T>C	Intron Variant	
2	MTNR1B	Melatonin receptor 1B	[rs10830963]	C>G	Intron Variant	negative regulation of insulin secretion
			[rs1387153]	C>T	None	
3	FTO	Alpha-ketoglutarate-dependent dioxygenase	[rs9939609]	T>A	Intron Variant	regulation of lipid storage
			[rs8050136]	C>A	Intron Variant	
4	PPARG	Peroxisome proliferator-activated receptor	[rs1801282]	C>G	Missense Variant	cellular response to insulin stimulus
	gamma	gamma				
5	GCK	Glucokinase	[rs1799884]	G>A	2KB Upstream Variant	positive regulation of insulin secretion
6	GCKR	Glucokinase Regulator	[rs780094]	T>C	Intron Variant	negative regulation of glucokinase activity
			[rs1260326]	C>T	Missense Variant	
7	ADIPOQ	Adiponectin	[rs266729]	C>A / C>G / C>T	2KB Upstream Variant	cellular response to insulin stimulus
8	TNF	Tumor necrosis factor	[rs1800629]	G>A	2KB Upstream Variant	negative regulation of glucose import
9	IRS1	Insulin receptor substrate 1	[rs1801278]	C>G / C>T	Missense Variant	insulin receptor signaling pathway
10	KCNJ11	Potassium inwardly rectifying channel,	[rs5219]	C>T	Stop Gained	negative regulation of insulin secretion
	subfamily J, member 11					
11	IGF2BP2	Insulin-like growth factor 2 mRNA-binding	[rs4402960]	G>T	Intron Variant	regulation of cytokine biosynthetic process
	protein 2	protein 2				
12	ADRB3	Adrenoceptor beta 3	[rs4994]	T>C	Missense Variant	carbohydrate metabolic process
13	CDKL1	CDK5 regulatory subunit associated protein	[rs7754840]	G>A / G>C / G>T	Intron Variant	maintenance of translational fidelity
	1-like 1	protein 1-like 1				
14	HNF1A	Hepatocyte nuclear factor 1-alpha	[rs1169288]	G>T	Missense Variant	insulin secretion
15	CANP10	Calpain-10	[rs2975760]	T>C	Intron Variant	positive regulation of insulin secretion
			[rs5030952]	C>G / C>T	None	
			[rs3792267]	G>A	Intron Variant	
16	SLC30A8	Solute carrier family 30 member 8	[rs13266634]	C>A / C>T	Missense Variant	positive regulation of insulin secretion

Table 4: Association between GDM risk and genetic variants
S.no.	Gene	rs ID	Genotype	Model	Heterogeneity	Overall effect	p-value	p-value
					r² Value	p-value	OR (95% C.I.)	
1	SLC30A8	rs1326634	CC vs.TT+ CT	Dominant	92%	<0.00001	1.91(1.57-2.32)	<0.00001
			TT vs. CC+CT	Recessive	77%	0.0006	0.99(0.81-1.19)	0.88
			TT vs. CC	Homozygote	86%	<0.00001	0.88(0.71-1.08)	0.22
			TT vs. CT	Heterozygote	96%	<0.00001	2.90(2.26-3.72)	<0.00001
			C vs. T allele	Allele	75%	0.001	0.76(0.58-1.00)	0.05
2	CANP10	rs3792267	GG vs. AA+ GA	Dominant	13%	0.33	1.40(1.04-1.88)	0.03
			AA vs. GG+GA	Recessive	83%	0.001	0.64(0.47-0.86)	0.003
			AA vs. GG	Homozygote	21%	0.28	0.72(0.53-0.98)	0.03
			AA vs. GA	Heterozygote	10%	0.34	0.66(0.48-0.91)	0.01
			G vs. A allele	Allele	6%	0.37	0.99(0.71-1.38)	0.95
3	CANP10	rs5030952	CC vs.TT+ CT	Dominant	0%	0.44	2.24(1.96-5.20)	0.06
			TT vs. CC+CT	Recessive	82%	0.004	0.71(0.45-1.11)	0.13
			TT vs. CC	Homozygote	0%	0.66	1.88(0.77-4.6)	0.16
			TT vs. CT	Heterozygote	0%	0.42	2.24(0.86-5.88)	0.1
			C vs. T allele	Allele	0%	0.48	1.09(0.71-1.68)	0.71
4	CANP10	rs2975760	TT vs.CC+ TC	Dominant	0%	0.39	0.49(0.32-0.75)	0.01
			CC vs. TT+TC	Recessive	93%	<0.00001	0.31(0.28-0.49)	<0.00001
			CC vs. TT	Homozygote	92%	<0.00001	3.84(2.34-6.31)	<0.00001
			CC vs. TC	Heterozygote	67%	0.05	1.16(0.76-1.77)	0.5
			T vs. C allele	Allele	92%	<0.00001	2.92(1.96-4.35)	<0.00001
5	HNF1A	rs1169288	GG vs.TT+ GT	Dominant	83%	0.07	1.17(0.90-1.52)	0.23
			TT vs. GG+GT	Recessive	0%	0.39	0.34(0.26-0.44)	0.00001
			TT vs. GG	Homozygote	84%	0.002	1.68(1.25-2.26)	0.0005
			TT vs. GT	Heterozygote	61%	0.08	0.95(0.72-1.26)	0.74
			G vs. T allele	Allele	75%	0.02	2.42(1.55-3.77)	<0.00001
6	CDKAL1	rs7754840	GG vs.CC+ GC	Dominant	93%	<0.00001	1.78(1.55-2.04)	<0.00001
			CC vs. GG+GC	Recessive	89%	<0.00001	0.90(0.78-1.04)	0.14
			CC vs. GG	Homozygote	97%	<0.00001	2.70(2.26-3.21)	<0.00001
			CC vs. GC	Heterozygote	93%	<0.00001	1.86(1.59-2.71)	<0.00001
			G vs. C allele	Allele	73%	0.001	1.11(0.83-1.48)	0.48
7	ADRB3	rs4994	TT vs.CC+ TC	Dominant	60%	0.08	0.68(0.30-1.56)	0.31
			CC vs. TT+TC	Recessive	48%	0.12	1.13(0.91-1.41)	0.28
			CC vs. TT	Homozygote	0%	0.7	0.79(0.32-1.94)	0.61
			CC vs. TC	Heterozygote	0%	0.56	0.83(0.33-2.09)	0.69
			T vs. C allele	Allele	0%	0.55	0.74(0.43-1.28)	0.28
8	IGFBP2	rs4402960	GG vs.TT+ GT	Dominant	0%	0.5	1.28(1.04-1.56)	0.02
			TT vs. GG+GT	Recessive	91%	<0.00001	0.25(0.20-0.32)	<0.00001
			TT vs. GG	Homozygote	65%	0.02	1.33(1.08-1.65)	0.008
			TT vs. GT	Heterozygote	70%	0.01	1.08(0.87-1.33)	0.5
			G vs. T allele	Allele	59%	0.04	1.05(0.78-1.33)	0.14
9	KCNJ11	rs5219	CC vs.TT+ CT	Dominant	31%	0.22	1.07(0.91-1.25)	0.43
			TT vs. CC+CT	Recessive	92%	<0.00001	1.05(0.91-1.22)	0.43
Gene	rs Number	Term	Effect	Minor Allele	Frequency	P Value	OR 95% CI	OR 95% CI
------	-----------	-------	--------	--------------	-----------	---------	-----------	-----------
			Homozygote		95%	<0.0001	1.47(1.22-1.76)	<0.0001
			Heterozygote		0%	0.5	1.19(0.96-1.47)	0.12
			Allele		0%	0.83	1.23(0.88-1.73)	0.22
10	IRS1	rs1801278	GG vs. AA+ GA	Dominant	28%	0.25	3.10(1.38-6.94)	0.006
			AA vs. GG+GA	Recessive	56%	0.06	0.98(0.77-1.25)	0.87
			AA vs. GG	Homozygote	0%	0.45	4.50(1.92-10.56)	0.0006
			AA vs. GA	Heterozygote	47%	0.15	2.53(1.10-5.83)	0.03
			G vs. A allele	Allele	0%	0.42	1.66(1.05-2.62)	0.03
11	TNF	rs1800629	GG vs. AA+ GA	Dominant	73%	0.01	2.49(1.19-5.22)	0.02
			AA vs. GG+GA	Recessive	13%	0.33	1.07(0.67-1.79)	0.78
			AA vs. GG	Homozygote	0%	0.92	1.71(0.73-4.00)	0.21
			AA vs. GA	Heterozygote	2%	0.38	0.96(0.35-2.63)	0.94
			G vs. A allele	Allele	0%	0.54	1.64(1.02-2.51)	0.04
12	ADIPOQ	rs266729	CC vs.GG+ CG	Dominant	57%	0.07	0.85(0.56-1.29)	0.45
			GG vs. CC+CG	Recessive	89%	<0.0001	0.58(0.41-0.83)	0.003
			GG vs. CC	Homozygote	77%	<0.005	0.88(0.57-1.36)	0.57
			GG vs. CG	Heterozygote	0%	0.43	0.75(0.47-1.20)	0.23
			C vs. G allele	Allele	81%	<0.001	1.06(0.76-1.48)	0.73
13	GCKR	rs1260326	CC vs.TT+ CT	Dominant	0%	0.56	0.68(0.48-0.96)	0.03
			TT vs. CC+CT	Recessive	61%	0.05	1.25(0.91-1.72)	0.17
			TT vs. CC	Homozygote	34%	0.21	0.51(0.31-0.84)	0.008
			TT vs. CT	Heterozygote	0%	0.64	0.66(0.45-0.98)	0.04
			C vs. T allele	Allele	18%	0.3	0.54(0.33-0.87)	0.01
14	GCKR	rs780094	TT vs.CC+ TC	Dominant	87%	<0.0001	1.35(1.02-1.770)	0.03
			CC vs. TT+TC	Recessive	83%	<0.0001	0.69(0.53-0.90)	0.06
			CC vs. TT	Homozygote	51%	0.06	0.52(0.38-0.70)	<0.00001
			CC vs. TC	Heterozygote	65%	<0.008	0.72(0.53-0.97)	0.03
			T vs. C allele	Allele	56%	<0.04	0.51(0.39-0.67)	<0.00001
15	GCK	rs1799884	GG vs. AA+ GA	Dominant	22%	0.27	1.88(1.42-2.47)	<0.00001
			AA vs. GG+GA	Recessive	86%	<0.0001	1.77(1.56-2.00)	<0.00001
			AA vs. GG	Homozygote	0%	0.41	1.98(1.50-2.62)	<0.00001
			AA vs. GA	Heterozygote	13%	0.33	1.62(1.22-2.17)	0.001
			G vs. A allele	Allele	0%	0.9	1.52(1.11-2.09)	0.001
16	FTO	rs8050136	CC vs. AA+ CA	Dominant	65%	0.04	1.30(0.92-1.83)	0.14
			AA vs. CC+CA	Recessive	69%	0.02	1.01(0.83-1.23)	0.89
			AA vs. CC	Homozygote	48%	0.12	1.18(0.78-1.77)	0.43
			AA vs. CA	Heterozygote	0%	0.53	0.92(0.64-1.35)	0.68
			C vs. A allele	Allele	81%	0.001	0.86(0.37-1.32)	0.5
17	MTNR1B	rs1387153	CC vs.TT+ CT	Dominant	8%	0.36	1.68(1.43-1.98)	<0.00001
			TT vs. CC+CT	Recessive	94%	<0.0001	0.69(0.57-0.83)	<0.00001
			TT vs. CC	Homozygote	90%	<0.0001	3.42(2.69-4.36)	<0.00001
			TT vs. CT	Heterozygote	0%	0.62	1.73(1.43-2.10)	<0.00001
			C vs. T allele	Allele	66%	<0.02	2.0(1.64-3.24)	<0.00001
18	TCF7L2	rs7901695	TT vs.CC+ TC	Dominant	66%	0.02	1.41(1.07-1.85)	0.01
	Gene	rs Number	Model	Frequency	Odds Ratio	95% CI	P-value	
-----	--------	-----------	-------	-----------	------------	----------------	---------	
19	TCF7L2	rs7903146	CC vs. TT+TC	Recessive	95%	<0.00001	1.16(0.90-1.48)	0.25
			CC vs. TT	Homozygote	84%	<0.0001	1.69(1.26-2.27)	0.0005
			CC vs. TC	Heterozygote	41%	0.14	1.25(0.94-1.57)	0.13
			T vs. C allele	Allele	82%	0.0002	0.89(0.64-1.23)	0.48
			CC vs. TT	Homozygote	84%	<0.0001	1.69(1.26-2.27)	0.0005
			TT vs. CC	Recessive	63%	<0.00001	2.03(1.79-2.31)	<0.00001
			TT vs. CT	Heterozygote	45%	0.01	1.46(1.29-1.66)	<0.00001
			T vs. C allele	Allele	66%	<0.00001	1.60(1.38-1.86)	<0.00001
20	TCF7L2	rs12255572	GG vs. TT+GT	Dominant	43%	0.02	1.59(1.42-1.78)	<0.00001
			TT vs. GG+GT	Recessive	87%	<0.00001	2.24(1.81-2.77)	<0.00001
			TT vs. GG	Homozygote	38%	0.11	1.69(1.33-2.15)	<0.00001
			TT vs. GT	Heterozygote	21%	0.25	1.10(0.86-1.41)	0.44
			G vs. T allele	Allele	56%	0.01	1.80(1.41-2.30)	<0.00001
21	MTNR1B	rs1083963	CC vs. GG+CG	Dominant	64%	0.006	1.81(1.63-2.02)	<0.00001
			GG vs. CC+CG	Recessive	87%	<0.00001	0.55(0.49-0.61)	<0.00001
			GG vs. CC	Homozygote	88%	<0.00001	2.82(2.42-3.30)	<0.00001
			GG vs. CG	Heterozygote	72%	<0.00001	1.82(1.61-2.06)	<0.00001
			C vs. G allele	Allele	79%	<0.00001	1.85(1.50-2.29)	<0.00001
22	FTO	rs9939609	TT vs. AA+TA	Dominant	66%	0.004	1.32(1.08-1.62)	0.007
			AA vs. TT+TA	Recessive	82%	<0.00001	0.72(0.60-0.86)	0.00004
			AA vs. TT	Homozygote	86%	<0.00001	1.86(1.42-2.43)	<0.00001
			AA vs. TA	Heterozygote	64%	0.007	1.40(1.11-1.75)	0.004
			T vs. A allele	Allele	77%	<0.00001	1.16(0.87-1.55)	0.3
23	PPARG	rs1801282	CC vs. GG+CG	Dominant	0%	0.7	0.72(0.44-1.15)	0.17
			GG vs. CC+CG	Recessive	46%	0.03	0.95(0.85-1.07)	0.41
			GG vs. CC	Homozygote	13%	0.32	0.69(0.57-1.38)	0.59
			GG vs. CG	Heterozygote	0%	0.5	0.62(0.38-1.00)	0.05
			C vs. G allele	Allele	77%	<0.00001	0.55(0.43-0.70)	<0.00001

Figures
Figure 1: Flow chart showing selection of studies for inclusion in meta-analysis.

Flow chart showing selection of studies for inclusion in meta-analysis
Figure 2

Venn diagram and Bar graph: Bar graph is showing the genes and their associated variants which have been included in the study. TCF7L2, MTNR1B, FTO, GCKR and CANP10 have more than one variant. Venn diagram shows the number of variants which have been found to be significantly associated with GDM risk in all five genetic models. Out of 23 variants analyzed, only four variants namely rs780094, rs1387153, rs1799884, and rs1083963 have been found to be significantly associated with increased risk of GDM.

Figure 3

Distribution of OR among SNPs in different model
Odds Ratio distribution: A. Most of the SNPs have odds ratio greater than one in all genetic models analyzed (except recessive; OR<1) and hence are associated with increased risk of GDM. B. Value of ORs significantly associated with GDM among different genetic models have been plotted.

Figure 4

Forest plot: of association between TCF7L2 rs7903146 polymorphism and risk of gestational diabetes (all genetic model). The shadowed squares and their lateral tips indicate the ORs and the corresponding 95% CIs in individual studies, with the sizes of squares proportional to weights used in the meta-analyses. The central lines and lateral tips of the diamonds indicate the pooled ORs and the corresponding 95% CIs. The solid vertical lines indicate no effect.
Figure 5

Forest plot: The risk of GDM in association of genetic variants GCK rs1799884. The shadowed squares and their lateral tips indicate the ORs and the corresponding 95% CIs in individual studies, with the sizes of squares proportional to weights used in the meta-analyses. The central lines and lateral tips of the diamonds indicate the pooled ORs and the corresponding 95% CIs. The solid vertical lines indicate no effect.
Figure 6

Forest plot: The risk of GDM in association of genetic variants GCKR rs780904. The shadowed squares and their lateral tips indicate the ORs and the corresponding 95% CIs in individual studies, with the sizes of squares proportional to weights used in the meta-analyses. The central lines and lateral tips of the diamonds indicate the pooled ORs and the corresponding 95% CIs. The solid vertical lines indicate no effect.
Figure 7

Forest plot: The risk of GDM in association of genetic variants of MTNR1B A. rs1083963 B. rs1387153. The shadowed squares and their lateral tips indicate the ORs and the corresponding 95% CIs in individual studies, with the sizes of squares proportional to weights used in the meta-analyses. The central lines and lateral tips of the diamonds indicate the pooled ORs and the corresponding 95% CIs. The solid vertical lines indicate no effect.
Figure 8

Forest plot: The risk of GDM in association of genetic variants SLC30A8 rs1326634. The shadowed squares and their lateral tips indicate the ORs and the corresponding 95% CIs in individual studies, with the sizes of squares proportional to weights used in the meta-analyses. The central lines and lateral tips of the diamonds indicate the pooled ORs and the corresponding 95% CIs. The solid vertical lines indicate no effect.
Figure 9

Networking, GO and KEGG pathway enrichment. A. String network of all 16 genes shows the high interconnection among these genes. B. Gene Ontology (GO) enrichment analysis revealed major function; processes and cellular components related to these genes and have been plotted against log of p-value. C. Significant pathways associated with these have been plotted against log of p-value.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Supplemteryfile1.xlsx
- SF1.tif
- SF2.tif