Characterization of the Import Process of a Transit Peptide into Chloroplasts*

Ron van 't Hof‡ and Ben de Kruijff

From the Department of Biochemistry of Membranes, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

In order to get insight into the functioning of transit sequences in chloroplast protein transport, the import of the full-length transit peptide of ferredoxin (trfd) was investigated. trfd rapidly associated with chloroplasts under import conditions and becomes protected against externally added proteases. Import of radiolabeled trfd is inhibited equally efficiently by nonlabeled trfd as well as by the intact precursor of ferredoxin. This strongly suggests that trfd enters the general import pathway of proteins into chloroplasts. trfd import was stimulated by ATP, which is the first demonstration that ATP is involved in membrane translocation of a targeting signal. Imported trfd was membrane-associated but was also partially degraded by internal proteases, most likely present in the stroma, indicating that the membrane-associated fraction of trfd is en route to its functional localization. The degradation products are exported out of the organelle. In contrast to the import of the precursor of ferredoxin, the import of trfd was independent of protease-sensitive components on the chloroplast surface, indicating that the initial binding of precursor proteins may be facilitated by transit sequence-lipid interactions.

Analysis of transit sequences reveals that there is little similarity in amino acid sequences (15). They are enriched in hydroxylated and small hydrophobic amino acids, have a positive charge, and lack acidic amino acids (16, 17). Despite the poor homology in the primary structure of transit sequences (15), they are able to perform their essential and specific functions in protein import processes (i.e. organelle-specific targeting, translocation across the envelope membranes, correct processing, and intraorganellar routing of precursor proteins).

This can be illustrated with the precursor of ferredoxin (prefd), which follows the general import pathway (18), prefd is imported into the chloroplast stroma, where it is subsequently processed (11, 19). The apoprotein is converted into the biologically active holoprotein by insertion of the 2Fe-2S cofactor (20). Import of the largely unfolded prefd is independent of cytosolic factors (21), indicating that prefd itself contains all of the information for organelle-specific targeting and for the productive interaction with the import machinery leading to the translocation across the envelope membranes. Both processes require the presence of a functional transit sequence, because mature proteins do not bind to chloroplasts (22) and attachment of the ferredoxin transit sequence is sufficient to direct a foreign protein to the chloroplast stroma (23). The prefd transit sequence is also required for the interaction with the stromal processing enzyme, because deletions in the C-terminal region of the transit sequence strongly interfere with correct maturation of prefd (24). Very recently, it was demonstrated that prefd causes a transit sequence-dependent reduction in electrochemical resistance of the envelope in intact chloroplasts. The most likely interpretation of this phenomenon was that the transit sequence opens protein-conducting channels (25). How transit sequences function is completely unknown. However, it can be anticipated that they will exert specific interactions with components of the envelope membranes such as proteinaceous receptors (5) and envelope membrane lipids (26).

In order to get insight into the way transit sequences function, we studied the import of the transit peptide of ferredoxin (trfd) into chloroplasts. It is shown that trfd follows the ATP-dependent import pathway as is used by prefd. Import of trfd was independent of protease-sensitive components on the chloroplast surface. Imported trfd is rapidly degraded by internal chloroplast proteases followed by an efficient export of the degradation products.

MATERIALS AND METHODS

General—Dithiothreitol (DTT) and glutathione were obtained from Boehringer Mannheim. Sorbitol, Hepes, and bovine serum albumin were obtained from Sigma.

1 The abbreviations used are: prefd, precursor protein of ferredoxin; apofd, apoprotein of ferredoxin; HPLC, high performance liquid chromatography; trfd, transit peptide of ferredoxin; DTT, dithiothreitol; TCA, trichloroacetic acid; PAGE, polyacrylamide gel electrophoresis; Tricine, N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine.
were from Sigma. Percoll and chromatographic equipment and materials were from Pharmacia (Uppsala, Sweden). L-iodoacetamide was from Fluka (Buchs SG, Switzerland). All other chemicals were of the highest quality available.

Proteins—apofd was prepared out of holoprotein of ferredoxin as described (27). apofd was stored in aliquots in 150 mM Tris/HCl, pH 7.5, at a concentration of 1 mg/ml under nitrogen at –20 °C. Silene prf was purified as described by Pilon et al. (28). The protein was stored in aliquots at a concentration ranging between 1 and 1.5 mg/ml in 25 mM Tris/HCl, pH 7.6, 8 mM urea, and 0.02% (v/v) β-mercaptoethanol under nitrogen at –20 °C.

[3H]prf was obtained by growing Escherichia coli BL21 cells (DE3) containing the prf plasmid in 35 ml of LB medium containing 28 g of ammonium ferrosulfate, 0.2 g of magnesium sulfate, 8 g of potassium dihydrogen phosphate, and 30 g sodium hydrogen phosphate with a pH of 6.9) at 37 °C with the following additions: 0.4% (w/v) glucose, 5 mg/liter thiamin, and 50 mg/liter ampicillin until the optical density was 0.6. Pelleted cells were resuspended in 5 ml of SV medium (0.4% (w/v)) glucose, 5 mg/liter thiamin, and 50 mg/liter ampicillin until the optical density was 0.5. Pelleted cells were resuspended in 5 ml of SV medium (0.4% (w/v)) glucose, 5 mg/liter thiamin, 50 mg/liter ampicillin, and 1 mg of isopropyl-β-D-galactopyranoside. After 30 min, 1.0 mg of [3H]leucine (158 mCi/mmol) (Amersham Corp.) was added, and the cells were allowed to grow for another 3 h.

[3H]prf was purified as described (28), except that the cells were lysed by sonication (Branson) and a smaller gel filtration column (1.5 × 40 cm) was used. Protein concentrations were determined according to Bradford (29) with bovine serum albumin as reference.

Transit Peptide of Ferredoxin—A 47-mer corresponding to the transit sequence of ferredoxin from S. pratsynthesized on an Exell Pepsynthesizer by Millipore (Watford, UK). trf with the sequence ASTLSLVSASLPPKQMPVASSLPTNMQALFGKLKSQRTAM differs only from the sequence deduced from the gene (30) by the absence of the N-terminal methionine, which is post-translationally removed in the cytosol and was blocked at the C terminus with an amide group to avoid the negative charge at this position. trf was purified by reversed phase high performance liquid chromatography (HPLC) as described (26). The purity of the peptide was estimated to be over 98%, as determined by analytical HPLC. The identity of trf was confirmed by N-terminal sequencing of trf and its complete trf by trf-alkaline hydrolysis as described (28) and by quantitative amino acid analysis. Peptide concentrations were determined by the biocinchonic acid protein assay (Pierce) using bovine serum albumin as reference.

Purified trf was labeled by reductive methylation using [14C]formaldehyde (31). In short, 2 mg of trf (0.47 mCi) dissolved in 500 μl of distilled water was added to 500 μl of 20 mM Hapes, pH 7.6, containing 62.5 μmol of sodium cyanoborohydride (NaCN·H3) and 3.75 μmol of [14C]formaldehyde (59 mCi/mmol) (Amersham Corp.) and was incubated for 1.5 h under nitrogen with constant mixing. After the addition of another 62.5 μmol NaCN·H3 and further incubation of 1.5 h, trf was precipitated by 10% (w/v, final concentration) trichloric acid (TCA). The trf precipitate was washed 3 times with ice-cold acetone and, after evaporation of the acetone, dissolved in 0.1 ml of distilled water. A aliquots containing 200 pmol of trf were analyzed for thiol-containing peptides (31) by trf-alkaline hydrolysis as described (28) and by quantitative amino acid analysis. Precipitated trf was dissolved in 200 μl of distilled water to a final concentration of 100 μM trf. Aliquots of 20 μl of trf solution was applied to a small gel filtration column (1.5 × 300 mm) with a Pharmacia Blutechnical column. The gel filtration column was equilibrated with a buffer consisting of 330 mM sorbitol, 50 mM HEPES/KOH, pH 8.0, and 20 μl of trf solution was applied to the gel filtration column. The gel filtration column was washed with 200 μl of distilled water, and the trf was eluted with 200 μl of distilled water. The eluted trf was analyzed for thiol-containing peptides (31) by trf-alkaline hydrolysis as described (28) and by quantitative amino acid analysis. Peptide concentrations were determined by the biocinchonic acid protein assay (Pierce) using bovine serum albumin as reference.

Import Experiments—Chloroplasts were isolated out of 10–12-day-old pea seedlings cv. Fetham First as described (33). Import reactions (28) took place in a buffer consisting of 330 mM sorbitol, 50 mM Hapes, KOH, pH 8.0, 200 μM antipain, 1 mM DTT, and 2 mM Mg-ATP (import buffer), unless indicated otherwise. Import mixtures with a volume of 60 μl were used containing chloroplasts to an equivalent of 60 μg of chlorophyll per A260 measured at 20°C. Chloroplasts were added to (poly)peptide containing import mixtures. Import experiments were carried out without import conditions (i.e., 25°C in the light for 20 min) unless indicated otherwise. After the import experiment, 1 ml of ice-cold import buffer was added to stop the import process, and the samples were divided into two fractions. In the first fraction, the chloroplasts were resolubilized, washed, and analyzed by liquid scintillation counting and gel electrophoresis. This fraction contained both imported and bound trf and prefd molecules. The other fraction was incubated for 15 min at 4°C with 7.5 μg of thermolysin to digest (poly)peptides bound to the chloroplast surface (34) and subsequently treated as above, yielding the amount of trf and prefd imported into the chloroplasts. The chloroplast recovery was determined by measuring the amount of protein according to Bradford (29). The influence of DTT on import and trf import was investigated by import experiments in the presence of DTT concentrations ranging from 0 to 1 mM. Because chlorophyll interferes with the analysis of trf by Tricine/SDS-PAGE (32), the peptide was precipitated by 80% acetone, followed by centrifugation for 5 min at 14,000 rpm. The supernatant, which did not contain trf, was verified by liquid scintillation counting, was removed, and traces of acetone were evaporated. The pellet was resuspended in 6 × urea, 10 mM Tris/HCl, pH 7.6, and 2 mM DTT by sonication for 15 min in a bath sonicator. Samples containing prefd were analyzed directly by SDS-PAGE according to Laemmli (35). Protease pretreated chloroplasts were obtained by incubation of chloroplasts equivalent to 1 mg of chlorophyll with 250 μg of thermolysin for 20 min at 4°C in the dark. Subsequently, the chloroplasts were resolated by centrifugation through a preformed 50% Percoll gradient containing 2 mM EDTA in order to block the thermolysin activity. Chloroplast fractionation was performed by hypertonic lysis in 10 mM Hapes, pH 8.0, followed by a centrifugation for 30 min at 60,000 rpm in a Beckman TLA 100.3 rotor. The membrane pellet was resuspended for further analysis.

To investigate whether chloroplast associated trf was bound to the chloroplast surface, the incubation mixtures were treated with thermolysin, which is not able to enter the chloroplast intermembrane space and which can only digest proteins that are present on the chloroplast surface (34). Interestingly, the majority of the associated trf was not degraded (Fig. 1B). In control experiments, comparable amounts of trf in the import buffer were digested within 30 s by identical amounts of thermolysin (data not shown). Furthermore, trf associated to large unilamellar vesicles with a lipid composition comparable with the chloroplast outer envelope membrane was found to be completely digestable by thermolysin (data not shown). This indicated that binding to lipid surfaces does not result in protection against proteases. It can therefore be concluded that trf had reached a protease-protected position, which we define as “import.” Quantification of this time course experiment (Fig. 1C) shows that association and import of trf is a linear process in time.

The addition of increasing amounts of labeled trf to isolated intact chloroplasts under import conditions led to an increased
Association of trfd to chloroplasts (data not shown). Association and import of \(^{14}\text{C}\)trfd is saturable. Moreover, association and import are tightly coupled over a large range of transit peptide concentrations. From these results it can be calculated that maximal \(16 \pm 2 \times 10^3\) trfd molecules/minute/chloroplast are imported assuming that 30 \(\mu\)g of chlorophyll corresponds to \(4.5 \times 10^7\) chloroplasts (21). The value of the \(V_{max}\) of trfd import is close to the value of the \(V_{max}\) of \(22 \times 10^3\) molecules/minute/chloroplast reported for prefd import (37).

Quantification of the experiment shown in Fig. 1 showed that nearly all chloroplast-associated trfd was present in the trfd band (data not shown). Fractionation of reisolated chloroplasts from incubation mixtures revealed that all chloroplast-associated radioactivity is localized in the membrane fraction (Fig. 2A). These observations do not exclude the possibility that part of the transit peptide is degraded during or after import. That this may be the case is suggested by the observation that the transit sequence cleaved off from imported prefd could not be detected in the membrane fraction nor in the soluble fraction, although it contains 7 of the 13 \(^{3}\text{H}\)leucine residues (Fig. 2B). This demonstrates that the transit sequence is rapidly digested after processing. It should be realized that processing of prefd cannot be observed by Tricine/SDS-PAGE as used in Fig. 2B, because this gel system does not separate prefd from holoprotein of ferredoxin. However, control experiments using SDS-PAGE demonstrated that prefd was correctly processed under the experimental conditions (data not shown).

To get direct insight into possible trfd degradation within chloroplasts, TCA precipitation experiments were done (Fig. 3). Intact trfd in import buffer without chloroplasts (Fig. 3, lane 1) or with chloroplasts in conditions under which no import can take place (Fig. 3, lane 2) can be nearly quantitatively precipitated by TCA. In contrast, a large fraction of trfd incubated with lysed chloroplasts is not precipitable due to digestion by proteases released from the chloroplasts (Fig. 3, lane 3). Under import conditions a substantial fraction (13 \(\pm\) 1\%) of the added \(^{14}\text{C}\) radioactivity is nonprecipitable (Fig. 3, lane 4), which demonstrates that indeed part of the added trfd is degraded, like in case of transit sequence liberated from the import precursor. This is most likely due to digestion inside the chloroplasts, but in principle this could also, in part be due to digestion by proteases liberated from chloroplasts during the incubation. To get an estimate of the maximal contribution of such released proteases, trfd was incubated in the supernatant of chloroplasts preincubated under import conditions. This leads to substantially less (7 \(\pm\) 1\%) degradation (Fig. 3, lane 5). Thus, it has to be concluded that at least 6\% of the added trfd is degraded by internal chloroplast proteases. This has to be compared with 15\% of the added trfd, which is associated as intact trfd to chloroplasts under import conditions (Table I).
In order to determine the localization of the degradation products of trfd, intact chloroplasts were isolated by centrifugation after incubation. In both the resuspended pellet and supernatant, the percentage of intact and degraded trfd was determined by TCA precipitation. Table I demonstrates that under import conditions virtually all chloroplast-associated trfd is intact (TCA-precipitable) and that the degradation products (TCA-nonprecipitable) are present in the chloroplast supernatant. It thus has to be concluded that the trfd degradation products generated by internal chloroplast proteases are rapidly exported.

trfd competes for import of prefd (27). Fig. 4 shows that the reverse is also true. Unlabeled trfd and prefd equally efficiently inhibit the import of [14C]trfd, indicating that prefd and trfd compete for the same limiting import step. Competition is a specific process depending on the transit sequence because apofd is not able to inhibit trfd import (Fig. 4).

Binding and import of precursor proteins into chloroplasts require ATP as energy source (5). ATP also affects chloroplast association and import of [14C]trfd (Fig. 5). In the absence of exogenous ATP, trfd already displays some association and import into chloroplasts. However, increasing the ATP concentration strongly stimulates both trfd association and import, indicating that ATP-consuming proteinaceous components are involved in trfd import. trfd association and import is maximal around 1–2 mM ATP, which is very similar to the ATP concentration of 1 mM at which prefd import is maximal (21).

Digestion of proteinaceous components localized on the chloroplast surface by thermolysin reduces the import of precursor proteins into chloroplasts (33), as is shown for prefd in Fig. 6. In contrast, the import of trfd is hardly affected by protease pretreatment.

DISCUSSION

The aim of this study was to investigate the functioning of transit sequences in chloroplast protein import. The approach was to study the import of the full-length transit...
peptide of ferredoxin.

It was shown that trfd enters the general import pathway of proteins into chloroplasts. This conclusion is based on the following observations. First, associated trfd is largely protected against externally added protease, indicating that trfd has reached an internal chloroplast localization. Second, \(^{14}C \)trfd import is equally efficiently inhibited by nonlabeled trfd and prefd. Third, trfd inhibits the import of prefd into chloroplasts (27). Fourth, trfd import is saturable and occurs with a maximal velocity close to the value of the \(V_{\text{max}} \) of prefd import (37). Finally, trfd import is stimulated by ATP.

This is the first example of a targeting signal for which translocation across a membrane is stimulated by ATP. This differs strikingly from the situation in mitochondria where the translocation step of the presequence is driven by the membrane potential (\(\Delta \psi \)) across the inner membrane (38–41). This difference in the energy required for protein translocation into chloroplasts and mitochondria demonstrates that the mechanisms of protein import into both organelles are fundamentally different. The stimulation of trfd import by ATP can, for instance, be due to interactions of trfd with membrane-associated chaperonines and to the fact that ATP is consumed in transit sequence-chaperone binding/release steps. From a comparison of transit sequences, it was postulated that they are unstructured, which makes them prone to interact with chaperonines (42).

After import, protease-protected intact trfd could be identified solely in the membrane fraction. The absence of trfd in the soluble fraction, which mainly consists of the stroma, could indicate that trfd import is halted at the level of the envelope membranes. This would suggest that interaction of the mature region of precursor proteins with the import machinery is required to complete the import into the stroma. The observation that fusion proteins, for instance consisting of the ferredoxin transit sequence and the yeast mitochondrial manganese superoxide dismutase (23), are correctly imported into the stroma suggests that this presumed interaction should be rather specific. Alternatively, and more likely, the absence of trfd in the stroma could be due to digestion of trfd during or after import. In agreement with this proposal, it was observed that part of the chloroplast-associated trfd was digested by internal chloroplast proteases. This protease activity was not associated to the chloroplast surface because incubation of trfd with chloroplasts, under the condition that no import could take place, resulted in only a marginal trfd degradation. Instead, the degradation was shown to be largely due to internal proteases. This protease activity could be present in the stroma, because the cleaved transit sequence after import of prefd into the stroma could not be detected in the membrane nor in the soluble fraction. The proposed degradation of trfd in the stroma indicates that the membrane-associated protease-protected trfd is en route to its functional localization.

The degradation of transit sequences after import may be required to prevent the accumulation of large amounts of transit sequence, which may very well have a poisoning effect. For instance, the surface-active and membrane-seeking properties of transit sequences (26) could lead to membrane insertion of large amounts of transit sequences, affecting membrane functioning. Furthermore, this result strongly argues against a second long-lived function of transit sequences in chloroplasts.

Surprisingly, although trfd was degraded by internal protease, the degradation products were almost entirely present in the external chloroplast medium. Therefore, the degradation products should be exported out of the chloroplast by a so far unknown mechanism. This transport process could enable the reuse of transit sequence degradation products in the cytosolic protein synthesis.

trfd is imported into chloroplasts along the general import pathway of the precursor protein; therefore differences in import characteristics of trfd and prefd may be related to differences in import requirements of transit sequences and mature part of precursor proteins. One striking difference between trfd and prefd import was the independence of trfd import to protease-sensitive components on the chloroplast surface. Also, the import of outer envelope membrane proteins was shown to be independent of protease-sensitive components on the chloroplast surface (44–46), but these proteins likely follow an alternative pathway (44). Therefore, the protease-sensitive components of the chloroplast surface seem not to be involved in trfd binding and import. This suggests that trfd initially binds to the chloroplast surface by interactions with the membrane lipids. This hypothesis is supported by the observation that prefd inserts, via its transit sequence, efficiently and specifically in lipid monolayers composed of a lipid extract of its target membrane (26) and binds to lipid vesicles (36). Transit sequence-lipid interactions may result in the insertion of the transit sequence in lipid domains (36), enabling the diffusion of precursors to the import machinery in a two-dimensional way, which will be more efficient than via three-dimensional diffusion through the aqueous phase. Besides this, transit sequence-lipid interactions result in the induction of secondary structures in the otherwise unstructured transit peptide, which may function as recognition motive for the import machinery (47). Furthermore, these interactions can result in reorientation of lipid molecules (48). This change in lipid organization can directly be involved in protein import (49) or be required for the activation of the import machinery.

Comparison of the dissociation constants reveals that trfd binds with a 30-fold lower affinity to lipid vesicles than a precursor protein to chloroplasts (22, 36). This suggests that the initial binding to the lipids is followed by an interaction with proteinaceous components of the import machinery.

Recent studies (50–53) have identified several of these proteinaceous components. Schnell et al. (52) and Kessler et al. (53) identified six envelope membrane proteins associated to a translocation intermediate. Two of these proteins, of 34 and 86 kDa, are both integral outer envelope membrane proteins and are supposed to be exposed to the cytosol, due to their sensi-
tivity to externally added proteases. Because trfd import is independent of protease-sensitive components on the chloroplast surface, it is unlikely that the 34- and 86-kDa proteins directly interact with the transit sequence and are involved in precursor protein targeting. Subsequently, it is unlikely that the 34- and 86-kDa proteins have activity to externally added proteases. Because trfd import is independent of protease-sensitive components on the chloroplast surface, it is unlikely that the 34- and 86-kDa proteins directly interact with the transit sequence and are involved in precursor protein targeting. Subsequently, it is unlikely that the 34- and 86-kDa proteins have activity to externally added proteases. Because trfd import is independent of protease-sensitive components on the chloroplast surface, it is unlikely that the 34- and 86-kDa proteins directly interact with the transit sequence and are involved in precursor protein targeting. Subsequently, it is unlikely that the 34- and 86-kDa proteins have activity to externally added proteases.

References

1. Dobberstein, B., Blobel, G., and Chua, N.-H. (1977) Proc Natl Acad Sci USA 74, 1082–1085
2. Reis, B., Wasman, C. C., and Bohnert, H. J. (1978) Mol & Gen Genet 209, 116–121
3. Smeekens, S., Geerts, D., Bauerle, C., and Weisbeek, P. (1989) Mol & Gen Genet 261, 178–182
4. Van der Broek, G., Timko, M. P., Kausch, A. P., Cashmore, A. R., Van Montagne, M., and Herrera-Esterella, J. (1985) Nature 313, 358–363
5. De Boer, A. D., and Weisbeek, P. J. (1991) Biochim Biophys Acta 1071, 221–253
6. Pfisterer, J., Lachmann, P., and Kloppstech, K. (1982) Eur J Biochem 126, 143–148
7. Olsen, L. J., Thog, S. M., Selman, B. R., and Keegstra, K. (1989) J Biol Chem 264, 6724–6729
8. Cornwell, K. L., and Keegstra, K. (1987) Plant Physiol (Bethesda) 85, 780–785
9. Flügge, U. I. (1990) J Bienerg Biomembr 22, 769–787
10. Cline, K., Werner-Wasburne, M., Lubben, T. H., and Keegstra, K. (1985) J Biol Chem 260, 3691–3696
11. Thog, S. M., Bauerle, C., Olsen, L. J., Selman, B. R., and Keegstra, K. (1989) J Biol Chem 264, 6730–6736
12. Pain, D., and Blobel, G. (1987) Proc Natl Acad Sci USA 84, 3288–3292
13. Smith, S. M., and Ellis, R. J. (1979) Nature 278, 662–664
14. Robinson, C., and Ellis, R. J. (1984) Eur J Biochem 142, 337–342
15. Von Hejne, G., Steppuhn, J., and Herrmann, R. G. (1989) Eur J Biochem 180, 535–545
16. Schmidt, G. W., and Mishkind, M. L. (1986) Annu Rev Biochem 55, 879–912
17. Keegstra, K., Olsen, L. J., and Thog, S. M. (1989) Annu Rev Plant Physiol Plant Mol Biol 40, 471–502
18. Huisman, J. G., Moorman, A. F. M., and Verkleij, A. J. (1978) Biochim Biophys Res Commun 82, 1211–1213
19. Smeekens, S., Bauerle, C., Hageman, J., Keegstra, K., and Weisbeek, P. (1986) Cell 46, 365–375
20. Li, H., Thog, S. M., Bauerle, C., and Keegstra, K. (1990) Proc Natl Acad Sci USA 87, 6748–6752
21. Pilon, M., De Krijff, B., and Weisbeek, P. J. (1992) J Biol Chem 267, 2548–2556
22. Friedmann, A. L., and Keegstra, K. (1989) Plant Physiol 99, 993–999
23. Smeekens, S., Van Steeg, H., Bauerle, C., Bettenbroek, H., Keegstra, K., and Weisbeek, P. J. (1987) Plant Mol Biol 9, 377–388
24. Pilon, M., Wrenk, H., Sips, W., De Swaaf, M., Talboom, I., van’t Hof, R., De Korte-Kool, C., Denel, R. A., Weisbeek, P. J., and De Krijff, B. (1995) J Biol Chem 270, 3882–3893
25. Bulychev, A., Pilon, M., Dassen, H., van’t Hof, R., Vredenberg, W., and De Krijff, B. (1994) FEBS Lett 356, 204–206
26. van’t Hof, R., Van Klompenburg, W., Pilon, M., Koebelb, A., De Korte-Kool, C., Denel, R. A., Weisbeek, P. J., and De Krijff, B. (1993) J Biol Chem 268, 4037–4042
27. Pilon, M., Rietveld, A. G., Weisbeek, P. J., and De Krijff, B. (1992) J Biol Chem 267, 19907–19913
28. Pilon, M., DeBoer, A. D., Knols, S. L., Koppelman, M. H. G. M., VanderGraaf, R. M., De Krijff, B., and Weisbeek, P. J. (1990) J Biol Chem 265, 3358–3361
29. Bradford, M. M. (1976) Anal Biochem 72, 248–254
30. Smeekens, S., Van Binsbergen, J., and Weisbeek, P. J. (1985) Nuclei Acids Res 13, 3179–3194
31. Eilers, M., Oppliger, W., and Schatz, G. (1987) Anal Biochem 166, 368–379
32. Cline, K., Werner-Wasburne, M., Lubben, T. H., and Keegstra, K. (1985) J Biol Chem 260, 3691–3696
33. Cline, K., Werner-Wasburne, M., Andrews, J., and Keegstra, K. (1984) Plant Physiol 75, 675–678
34. Laemmli, U. K. (1970) Nature 227, 680–685
35. van ’t Hof, R., and De Krijff, B. (1995) FEBS Lett 361, 35–40
36. Pfeffer, H., and Keegstra, K. (1992d) FEBS Lett 362, 65–78
37. Gasser, S. M., Daum, G., and Schatz, G. (1982) Arch Biochem Biophys 217, 368–373
38. Schleyer, M., Schmidt, B., and Neupert, W. (1982) Eur J Biochem 125, 109–116
39. Pfanner, N., and Neupert, W. (1985) EMBO J 4, 2819–2825
40. Eilers, M., Oppliger, W., and Schatz, G. (1987) EMBO J 6, 1073–1077
41. Von Heijne, G., and Nishikawa, K. (1991) FEBS Lett 278, 3335–3342
42. Guerra, A., America, T., Van Waas, M., and Weisbeek, P. J. (1993) Plant Mol Biol 23, 309–324
43. Li, H. M., Moore, T., and Keegstra, K. (1991) Plant Cell 3, 709–711
44. Salomon, M., Fisher, K., Flügge, U. I., and Soll, J. (1990) Proc Natl Acad Sci USA 87, 5778–5782
45. Wu, C., and Ko, K. (1993) J Biol Chem 268, 19384–19391
46. Horikawa, L., Pilon, M., van’t Hof, R., and De Krijff, B. (1993) FEBS Lett 334, 241–246
47. Chupin, V., van’t Hof, R., and De Krijff, B. (1994) FEBS Lett 350, 104–108
48. Killian, J. A., De Jong, A. M. P., Bijveldt, J., Verkleij, A. J., and De Krijff, B. (1990) EMBO J 9, 815–819
49. Waegemann, K., and Soll, J. (1991) Plant J 1, 149–157
50. Perry, S. E., and Keegstra, K. (1994) Plant Cell 6, 93–105
51. Schnell, D., Kessler, F., and Blobel, G. (1994) Science 266, 1007–1012
52. Kessler, F., Blobel, G., Patel, H. A., and Schnell, D. (1994) Science 266, 1035–1040
Characterization of the Import Process of a Transit Peptide into Chloroplasts
Ron van't Hof and Ben de Kruijff

J. Biol. Chem. 1995, 270:22368-22373.
doi: 10.1074/jbc.270.38.22368

Access the most updated version of this article at http://www.jbc.org/content/270/38/22368

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 53 references, 22 of which can be accessed free at
http://www.jbc.org/content/270/38/22368.full.html#ref-list-1