Appendix B - List of end points for the active substance and the representative formulation

Identity, Physical and Chemical Properties, Details of Uses, Further Information

(Regulation (EU) N° 283/2013, Annex Part A, points 1.3 and 3.2)

Active substance (ISO Common Name)	Benthiavalicarb-isopropyl (modified ISO common name) Benthiavalicarb (ISO approved name for the free acid). The given data belong to the isopropyl ester of parent acid benthiavalicarb
Function	Fungicide
Rapporteur Member State	Poland
Co-rapporteur Member State	France

Identity (Regulation (EU) N° 283/2013, Annex Part A, point 1)

Chemical name (IUPAC)	Benthiavalicarb-isopropyl: isopropyl [(S)-1-[[[(R)-1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]carbamoyl]-2-methylpropyl]carbamate Benthiavalicarb: [(S)-1-[[[(1R)-1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]carbamoyl]-2-methylpropyl]carbamic acid
Chemical name (CA)	Benthiavalicarb-isopropyl: 1-methylethyl [(S)-1-[[[(1R)-1-(6-fluoro-2-benzo-thiazoyl)ethyl]amino]carbonyl]-2-methylpropyl]carbamate Benthiavalicarb: [[(S)-1-[[[(1R)-1-(6-fluoro-2-benzo-thiazoyl)ethyl]amino]carbonyl]-2-methylpropyl]carbamic acid
CIPAC No	744 (benthiavalicarb as free acid) 744.204 (benthiavalicarb-isopropyl as ester)
CAS No	413615-35-7 (benthiavalicarb) 177406-68-7 (benthiavalicarb-isopropyl as ester)
EC No (EINECS or ELINCS)	605-799-5
FAO Specification (including year of publication)	-
Minimum purity of the active substance as manufactured	930 g/kg
Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured	toluene - 1 g/kg
Location of the (proposed) reference specification (for significant impurities)	RAR Volume 4 (October 2018)
Molecular formula
C_{18}H_{24}F_{3}N_{3}O_{3}S

Molar mass
381.47 g/mol

Structural formula
Physical and chemical properties (Regulation (EU) N° 283/2013, Annex Part A, point 2)

Property	Value
Melting point	153.1°C and 169.5°C (> 99.96% pure)
Boiling point	no data available; decomposes before boiling
Temperature of decomposition	240°C (> 99.96% pure)
Appearance	white powder (> 99.96% pure)
	white powder (94.0% pure)
Vapour pressure	< 3.0 × 10⁻⁴ Pa at 25°C (100% pure)
Henry’s law constant	4.53 × 10⁻³ Pa.m³.mol⁻¹ at 20°C (100% pure)
Solubility in water	13.14 mg/L at 20°C (pH ~6.3) (100% pure)
	10.96 mg/L at 20°C and pH 5 (100% pure)
	12.76 mg/L at 20°C and pH 9 (100% pure)
Solubility in organic solvents	in acetone 25.4 g/L at 20°C (> 99.96% pure)
	in xylene 0.501 g/L at 20°C (> 99.96% pure)
	in heptane 2.15 × 10⁻² g/L at 20°C (> 99.96% pure)
	in ethyl acetate 19.4 g/L at 20°C (> 99.96% pure)
	in 1,2-dichloroethane 11.5 g/L at 20°C (> 99.96% pure)
	in methanol 41.7 g/L at 20°C (> 99.96% pure)
Surface tension	63.1 mN/m at 22°C in 90% saturated solution (94.0% pure)
Partition coefficient	2.56 at ca. 22°C (pH unadjusted) (100% pure)
	2.63 at ca. 22°C and pH 5 (100% pure)
	2.62 at ca. 22°C and pH 9 (100% pure)
Dissociation constant	does not dissociate between pH 1 and 13
UV/VIS absorption (max.) incl. ε	solution λ_max (nm) ε (l.mol⁻¹.cm⁻¹)
	distilled water 219.0 24,424
	0.1 M HCl 219.0 23,891
	0.1 M NaOH 220.5 23,075
	ε = 1.298 l.mol⁻¹.cm⁻² at λ = 292.5 nm
Flammability	not flammable (94.0% pure)
Explosive properties	not explosive (94.0% pure)
Oxidising properties	not oxidising (94.0% pure)
Summary of representative uses evaluated, for which all risk assessments needed to be completed (benthiavalicarb) (Regulation (EU) N° 284/2013, Annex Part A, points 3, 4)

Crop and/or situation (a)	Member State or Country	Product name	F G or I (b)	Pests or Group of pests controlled (c)	Preparation	Application	Application rate per treatment	PHI (days) (m)	Remarks
potato (SOLTU)	BEL DEU GBR IRL NLD POL	KIF-230 15% WG	F	late blight Phytophthora infestans (PHYTIN)	WG	150 g/kg	5 days	7.5-30	75
				treatment of aerial parts downward spraying with tractor-mounted equipment				250-1000	
				after emergence up to 3 days before harvest (BBCH 11-97) spring-summer (May-Sep)					
				spring-summer (May-Sep) (BBCH 11-97)					
				number min-max (k)	1-8				
				Interval between application (min)	5 days				
				g a.s./L min-max (l)	7.5-30				
				Water L/ha min-max	250-1000				
				g a.s./ha min-max (l)	75				
				PHI - minimum pre-harvest interval	3	Timing of application: at beginning of infestation and/or when first symptoms become visible			

(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)
(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)
(c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds
(d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
(e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide
(f) All abbreviations used must be explained
(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant- type of equipment used must be indicated

(i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypr). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).
(j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
(k) Indicate the minimum and maximum number of applications possible under practical conditions of use
(l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
(m) PHI - minimum pre-harvest interval
Further information, Efficacy

Effectiveness (Regulation (EU) N° 284/2013, Annex Part A, point 6.2)

Proposed label claim: preventive action against late potato blight using KIF-230 15% WG at a use rate of 500 g product per hectare

Adverse effects on field crops (Regulation (EU) N° 284/2013, Annex Part A, point 6.4)

No evidence of any adverse effects on treated plants; no evidence of unintended side effects on adjacent crops, succeeding crops, seed viability or beneficial and other non-target organisms

Observations on other undesirable or unintended side-effects (Regulation (EU) N° 284/2013, Annex Part A, point 6.5)

The representative use/GAP is supported

Groundwater metabolites: Screening for biological activity (SANCO/221/2000-rev.10-final Step 3 a Stage 1)

Activity against target organism

| No data; not required |
Methods of Analysis

Analytical methods for the active substance (Regulation (EU) N° 283/2013, Annex Part A, point 4.1 and Regulation (EU) N° 284/2013, Annex Part A, point 5.2)

Technical a.s. (analytical technique)	KIF-230R-L: normal phase chiral HPLC with UV detection (254 nm)
Impurities in technical a.s. (analytical technique)	Toluene: headspace GC with FID detection
Plant protection product (analytical technique)	KIF-230R-L: normal phase chiral HPLC with UV detection (254 nm)
	Relevant Impurities:
	Toluene: headspace GC with MS detector.

Analytical methods for residues (Regulation (EU) N° 283/2013, Annex Part A, point 4.2 & point 7.4.2)

Residue definitions for monitoring purposes

	Sum of fruit and root crops: benthiavalicarb-isopropyl (KIF-230R-L), its diastereomer (KIF-230S-L) and their respective enantiomers (KIF-230S-D and -R-D), expressed as benthiavalicarb-isopropyl
Food of plant origin	Open
Food of animal origin	Bentiavalicarb-isopropyl (KIF-230R-L)
Soil	Bentiavalicarb-isopropyl (KIF-230R-L)
Sediment	Bentiavalicarb-isopropyl (KIF-230R-L)
Water	Bentiavalicarb-isopropyl (KIF-230R-L)
drinking/ground	Bentiavalicarb-isopropyl (KIF-230R-L)
Air	Bentiavalicarb-isopropyl (KIF-230R-L)
Body fluids and tissues	Bentiavalicarb-isopropyl (KIF-230R-L) and its diastereomer (KIF-230S-L)
Monitoring/Enforcement methods

For	Method Description
Food/feed of plant origin (analytical technique and LOQ for methods for monitoring purposes)	DFG S19 multi-residue method with reverse phase HPLC-MS/MS in MRM mode at LOQ of 0.01 mg/kg for each analyte (KIF-230R-L and -S-L)
Food/feed of animal origin (analytical technique and LOQ for methods for monitoring purposes)	Pending on the final residue definition for monitoring in food and feed of animal origin analytical methods might be required.
Soil (analytical technique and LOQ)	Reverse phase HPLC-MS/MS in MRM mode with LOQ of 0.01 mg/kg (KIF-230R-L)
Water (analytical technique and LOQ)	Reverse phase HPLC-MS/MS in MRM mode with LOQ of 0.05 µg/l (KIF-230R-L)
Air (analytical technique and LOQ)	Reverse phase HPLC-MS/MS in MRM mode with LOQ of 0.75 ng/l (KIF-230R-L)
Body fluids and tissues (analytical technique and LOQ)	Reverse phase non-enantioselective HPLC-MS/MS in MRM mode with LOQ of 0.05 mg/l for body fluids and 0.01 mg/kg in animal tissues for each analyte (KIF-230R-L and -S-L)

Classification and labelling with regard to physical and chemical data (Regulation (EU) N° 283/2013, Annex Part A, point 10)

Substance	Classification
Benthiavalicarb-isopropyl	no classification
	no classification

1 Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.
Impact on Human and Animal Health

Absorption, distribution, metabolism and excretion (toxicokinetics) (Regulation (EU) N° 283/2013, Annex Part A, point 5.1)

Parameter	Value
Rate and extent of oral absorption/systemic bioavailability	89 - 97% within 48 h (for single dose of 5 mg/kg); 41 - 54% within 48 h (for single dose of 400 mg/kg)
Toxicokinetics	Values for [benzyl-14C]-Benthiavalicarb and [valyl-14C]-Benthiavalicarb at 5 mg/kg bw: t_{max}: 2-6 hr; C_{max}: 0.52-0.68 µg/mL
Distribution	Widely distributed (gastro-intestinal tract, bile duct, urinary bladder, liver and kidney)
Potential for bioaccumulation	No evidence for true accumulation
Rate and extent of excretion	Rapid and extensive (73 - 86% within 48 h), mainly via faeces (65%) and urine (12%)
Metabolism in animals	Extensively metabolised; main metabolite B11 (glucoronic acid conjugate of hydroxylated derivative); hydroxylation plus glucoronic acid and glutathione conjugation (major pathways), cleavage of amide bond (minor pathway)

In vitro metabolism Data gap

Toxicologically relevant compounds (animals and plants) Bentiavalicarb-isopropyl (KIF-230R-L), its diastereomer (KIF-230S-L) and their enantiomers (KIF-230S-D and KIF-230R-D)

Toxicologically relevant compounds (environment) Bentiavalicarb-isopropyl (KIF-230R-L) and the metabolites KIF-230-M-1 and -M-5 (based on higher acute oral toxicity compared to the parent compound) and KIF-230-M-4 (based on mutagenic potential).

Acute toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.2)

Route	Value
Rat LD₅₀ oral	> 5000 mg/kg bw
Rat LD₅₀ dermal	> 2000 mg/kg bw
Rat LC₅₀ inhalation	> 4.6 mg/l air for 4 hours (whole body)
Skin irritation	not irritating
Eye irritation	not irritating
Skin sensitisation	sensitising (maximisation test) Skin Sens. Cat 1B (H317)
Phototoxicity	No data provided (data gap)

Short-term toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.3)

Route	Value
Target organ / critical effect	Mouse: liver (increased absolute and relative organ weight, histo-pathological effects (necrosis, hypertrophy, bile duct proliferation); and anaemia (red blood cell deficiency)) Rat: liver (increased absolute and relative organ weight, changes in clinical serum parameters (free and total cholesterol, GGT, phospholipids, total protein), hepatocyte hypertrophy, anaemia (haemoglobin deficiency)) Dog: liver (increased absolute and relative liver weight; changes in clinical serum parameters (free
fatty acids, serum albumin and albumin/globulin ratio), hepatocyte hypertrophy; thymus (changes in absolute and relative organ weight; spleen (hemosiderin pigment deposits); anaemia (haemoglobin deficiency)

Relevant oral NOAEL	28-day dog: 300 mg/kg bw per day
	90-day mouse: 33.0 mg/kg bw per day
	90-day rat: 14.1 mg/kg bw per day
	90-day dog: 40 mg/kg bw per day
	1-year dog: 40 mg/kg bw per day
Relevant dermal NOAEL	28-day rat: 300 mg/kg bw per day
Relevant inhalation NOAEL	No data; not required

Genotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.4)

In vitro studies
- Bacterial gene mutation assay: negative in 11/13 batches
- Clastogenicity in mammalian cells: negative
- Gene mutation in mammalian cells: negative
- Unscheduled DNA synthesis: negative
- Comet assay: negative

In vivo studies
- Mouse bone marrow micronucleus test: negative
- Unscheduled DNA synthesis: negative
- Transgenic rodent mutation assay: negative

Photomutagenicity
- No data; not required

Potential for genotoxicity
- Benthiavalicarb-isopropyl is unlikely to be genotoxic

Long-term toxicity and carcinogenicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.5)

Long-term effects (target organ/critical effect)
Mouse: liver (absolute and relative organ weight, gross lesions, non-neo-plastic lesions (hypertrophy, fatty change, foci of cellular alteration, anisonucleosis, necrosis, accumulation of macrophages, lymphocyte infiltration, bile duct proliferation, extramedullary hematopoiesis); thymus: atrophy without any histopathological lesions; thyroid: follicular cell hyperplasia, dilated thyroid follicles.

Rat: kidney (increased absolute and relative organ weight, histopathological lesions (glomerulosclerosis, calculus, chronic nephropathy, tubular dilatation); liver (increased absolute and relative organ weight, changes in clinical chemistry parameters (GGT, free and total cholesterol, phospholipids), histopathological lesions (hypertrophy, fatty changes, foci of cellular alterations, spongiosis)]

| Relevant long-term NOAEL | 2-year mouse: 13.7 mg/kg bw per day |
| | 2-year rat: 9.9 mg/kg bw per day |

Carcinogenicity (target organ, tumour type)
Mouse: liver (hepatocellular adenoma, hepatoblastoma, carcinoma); thyroid (follicular cell adenoma); uterus adenocarcinoma

Rat: liver (hepatocellular adenoma); uterus (adenocarcinoma)

| Relevant NOAEL for carcinogenicity | 2-year mouse: 13.7 mg/kg bw per day |

Cat. 1B (H350)
Reproductive toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.6)

Reproduction toxicity

Reproduction target / critical effect	Parental toxicity: increased absolute and relative liver weight, slight hepatocyte hypertrophy	Reproductive effects: no adverse effects on fertility or reproductive performance	Offspring toxicity: increased absolute and relative liver weight, decreased absolute and relative thymus and spleen weights
Relevant parental NOAEL	10.0 mg/kg bw per day	--	
Relevant reproductive NOAEL	702.5 mg/kg bw per day	--	
Relevant offspring NOAEL	67.2 mg/kg bw per day	--	

Developmental toxicity

Developmental target / critical effect	Rat: maternal toxicity: increased absolute and relative adrenal and liver weights	developmental toxicity: visceral malformations	Rabbit: maternal toxicity: increased relative liver weight, two incidences of abortion	developmental toxicity: skeletal retardation, and dwarfism at the highest dose
Relevant maternal NOAEL	rat: 10 mg/kg bw per day	--	rabbit: 20 mg/kg bw per day	
Relevant developmental NOAEL	rat: 100 mg/kg bw per day	--	rabbit: 20 mg/kg bw per day	

Neurotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.7)

Neurotoxicity	Decreased motor activity (LOAEL 2000 mg/kg bw)	--
Acute neurotoxicity	Decreased motor activity at top dose 1853.7 mg/kg bw per day on week 4	--
Repeated neurotoxicity	no data; not required	--
Additional studies (e.g. delayed neurotoxicity, developmental neurotoxicity)		
Other toxicological studies (Regulation (EU) No 283/2013, Annex Part A, point 5.8)

Supplementary studies on the active substance	Immunotoxicological potential: benthiavalicarb-isopropyl is unlikely to be immunotoxic
Mechanical studies:	
Hepatocarcinogenicity studies in rats (*in vivo*)	KIF-230 TG is not an initiating agent in rat liver
KIF-230 TG is a promoting agent in rat liver	
Two-stage transformation assay (*in vitro*)	KIF-230 TG is not an initiating or promoting agent in mouse
BALB/c 3T3 fibroblasts	
DMEs and hepatocyte proliferation in mice	specific CYP enzyme induction (CYP1A2, CYP2B1/2 and CYP3A2), hepatocyte hypertrophy; no increased hepatocellular proliferation
DMEs and hepatocyte proliferation in rats	specific CYP enzyme induction (CYP1A1/2, CYP2B1/2 and CYP3A2), no increased hepatocellular proliferation
Cultured human hepatocytes	Specific CYP enzyme induction (CYP2B6 and CYP3A4) indicating CAR activation, although effect on PXR cannot be excluded; minor increases in CYP1A1 and CYP1A2, indicating no AHR activation; no increased replicative DNA synthesis.
Oxidative DNA damage: no effect on 8-OHdG level	
Mechanism study of thyroid tumours in rats	evidence for rodent specific liver mediated thyroid tumours (not relevant for humans): increased T4 UDGPT activity, decreased serum T4 levels, slight increase of TSH levels
Mechanism study of thyroid tumours in mice	evidence for rodent specific liver mediated thyroid tumours (not relevant for humans): increased T4 UDGPT activity, decreased serum T4 levels, no or slight increase of TSH levels
Endocrine disrupting properties

T modality:
Dog one-year study: increase in absolute and relative thyroid weight.
Rat combined chronic and carcinogenicity study: thyroid follicular cell hyperplasia at 52 weeks.
Rat mechanistic studies: changes in thyroid hormones and TSH
Mouse carcinogenicity study: thyroid follicular cell hyperplasia and adenoma.

EAS modalities:
Rat carcinogenicity study: uterine adenocarcinoma, increase levels of circulating estradiol
Mouse 90-day study: reduced number of corpora lutea
Mouse: carcinogenicity study: reduced number of corpora lutea, ovary atrophy, uterine angiectasis.
Dog 90 day-study: delay in sexual maturity.

Conclusions on ED properties
ED criteria for human health according to point 3.6.5 of Annex II of Reg 1107/2009 as amended by Commission Regulation (EU) 2018/605, are considered met for EATS modalities.

Studies performed on metabolites or impurities

Acute oral toxicity
- KIF-230-M-1: LD$_{50}$ = 467 - 545 mg/kg bw
- KIF-230-M-3: LD$_{50}$ > 2000 mg/kg bw
- KIF-230-M-4: LD$_{50}$ > 2000 mg/kg bw
- KIF-230-M-5: LD$_{50}$ = 545 - 605 mg/kg bw
- KIF-230-M-15: LD$_{50}$ > 2000 mg/kg bw
- KIF-230S-L: LD$_{50}$ > 2000 mg/kg bw
- KIF-230-I-1(R): LD$_{50}$ > 2000 mg/kg bw
- KIF-230-I-1(S): LD$_{50}$ = 2000 mg/kg bw
- KIF-230-I-4: LD$_{50}$ > 2000 mg/kg bw
- KIF-230-I-12: LD$_{50}$ = 840 - 1198 mg/kg bw
- KIF-230-I-13: LD$_{50}$ > 2000 mg/kg bw

Bacterial gene mutation assay (Ames test)
- KIF-230-M-1: negative ± S9 mixture
- KIF-230-M-3: negative ± S9 mixture
- KIF-230-M-4: positive + S9 mixture (strain TA98)
- KIF-230-M-5: negative ± S9 mixture
- KIF-230-M-15: negative ± S9 mixture
- KIF-230S-L: negative ± S9 mixture
- KIF-230-I-1(R): negative ± S9 mixture
- KIF-230-I-1(S): negative ± S9 mixture
- KIF-230-I-4: negative ± S9 mixture
- KIF-230-I-12: positive + S9 mixture (strain TA98)
- KIF-230-I-13: positive ± S9 mixture

For KIF-230-M-1, KIF-230-M-4 and KIF-230-M-5 no data available (data gap) for: gene mutation in mammalian cells, clastogenicity and aneugenicity potential and general toxicity (see also section Residues).

Medical data (Regulation (EU) N° 283/2013, Annex Part A, point 5.9)

No detrimental effects on health of manufacturing personnel
Summary (Regulation (EU) N°1107/2009, Annex II, point 3.1 and 3.6)

	Value (mg/kg bw (per day))	Study	Uncertainty factor
Acceptable Daily Intake (ADI)	0.1	rat 2-year chronic	100
Acute Reference Dose (ARfD)	6.7	acute oral neurotoxicity study in rat	100
Acceptable Operator Exposure Level (AOEL)	0.1	developmental toxicity study in the rat	100
Acute Acceptable Operator Exposure Level (AAOEL)	6.7	acute oral neurotoxicity study in rat	300

*Extra UF of 3 was applied in the absence of NOAEL.

EFSA 2007; European Commission, 2008:
ADI: 0.1 mg/kg bw per day based on the 2-year rat study (UF=100); ARfD and AAOEL not set.
AOEL: 0.1 mg/kg bw per day based on the teratogenicity study in the rat (UF=100).

Dermal absorption (Regulation (EU) N° 284/2013, Annex Part A, point 7.3)

Representative formulation (KIF-230 15% WG)

- Concentrate: 1% (in vitro human skin study)
- Spray dilution: 13.1% (in vitro human skin study)

Exposure scenarios (Regulation (EU) N° 284/2013, Annex Part A, point 7.2)

Operators

- Use: potatoes, tractor-mounted boom spraying, application rate 75 g a.s./ha
- EFSA AOEM model (% AOEL % AAOEL)
 - Workwear without PPE: 3 0.3
 - Margin of Exposure: 3400
 - Workwear with PPE (1): 1 8200

(1) Gloves during mixing/loading and application

Workers

- EFSA AOEM model (DT50: 5.2 days; DFR: 0.1545 µg/cm²; Inspection and irrigation:)
 - Workwear without PPE: 0.94
 - Margin of Exposure: 10600

Bystanders and residents

- EFSA AOEM model (default values):
 - Bystanders (adult): all pathways < 1
 - Bystanders (children): all pathways < 1
 - Margin of exposure: >10000

- Buffer zone 2-3m:
 - Residents (adult): mean value 1
 - Residents (children): mean value 3
 - Margin of exposure: adult: 10500 child: 3500
Classification with regard to toxicological data (Regulation (EU) No 283/2013, Annex Part A, Section 10)

Substance: Bentiavalicarb-isopropyl
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]²:
No current harmonised classification
A CLH report proposing classification as category 2 carcinogen based on uterine adenocarcinoma incidence observed in rats is available on ECHA website (CLH Report, January 2021)³
According to the peer review, criteria for harmonised classification according to Regulation (EC) No 1272/2008 may be met for:
Skin Sens. Cat 1B
H317: May cause an allergic skin reaction
Carc. Cat. 1B
H350: May cause cancer

² Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

³ https://echa.europa.eu/documents/10162/07ad73f0-8d62-6bd6-3ce1-cc84ea5427c3
Residues in or on treated products food and feed

Metabolism in plants (Regulation (EU) N° 283/2013, Annex Part A, points 6.2.1, 6.5.1, 6.6.1 and 6.7.1)

Primary crops (Plant groups covered)	Crop groups	Crop(s)	Application(s)	DAT (days)
Fruit crops	grapes	foliar spray mature crop (6 x 0.1 kg a.s./ha)	17	
	tomatoes	foliar spray mature crop (6 x 0.1 kg a.s./ha)	14, 28, 35, 49, 56	
Root crops	potatoes	1. foliar spray immature crop (1 x 0.1 kg a.s./ha)	12	
		2. post-emergence soil incorp (1 x 0.1 kg a.s./ha)	90	
		3. foliar spray mature crop (6 x 0.1 kg a.s./ha)	14	
Leafy crops		-	-	-
Cereal (small grain)		-	-	-
Other		-	-	-

Benthiavalicarb-isopropyl (KIF-230R-L) labelled at benzyl ring and L-valyl side chain has been investigated in fruits (grapes, tomatoes) by foliar applications and in root crops (potatoes) by foliar and soil applications. In grapes, tomatoes and potato foliage, KIF-230R-L is the major residue. In potato tubers, KIF-230R-L was present for 4.7% of TRRs, benzene-hydroxylated compounds and sugar conjugates of KIF-230R-L constituted the remaining radioactivity. In potato foliage, no stereo-isomeric conversion was observed; in grapes, KIF-230S-L present at 10-20% of KIF-230R-L residue.

Rotational crops (metabolic pattern)

Rotational crops (metabolic pattern)	Crop groups	PBI (days)	Comments
Root/tuber crops	-	-	-
Leafy crops	-	-	-
Cereal (small grain)	-	-	-
Other	-	-	-

Rotational crop and primary crop metabolism similar?

Although benthiavalicarb-isopropyl is moderately persistent in soil, its uses lead to formation of relevant soil metabolites M1 and M5 (see section 4) that need further investigation. Two rotational field trials were provided for lettuce, carrot and barley. They were conducted at lower dose rate (6x0.75 kg/ha) compared to the proposed use (8x0.75 kg/ha) and analyzed for KIF-230R-L, S-isomer, and M1, M4, M5 metabolites. Since the concentration of residues in the soil at planting was limited (see details below), additional data on the comparative plant uptake of the soil metabolites (M1, M4, M5) and the parent is necessary (data gap). Currently no residue definitions are proposed for rotational crops due to lack of data.

Processed commodities (standard hydrolysis study)

Conditions	parent (KIF-230R-L) + impurity (KIF-230-M-4)
20 min, 90°C, pH 4	
60 min, 100°C, pH 5	
20 min, 120°C, pH 6	

KIF-230R-L is hydrolytically stable (94-97%-AR); KIF-230-M-4 is impurity in [14C]-KIF-230.

Isomeric conversion of KIF-230R-L into S-L was significant in raisins up to 74% ratio of S-L/R-L, in wine up to 28%, in ketchup tomatoes up to 50%, and in puree 21%.
Residue pattern in processed commodities similar to residue pattern in raw commodities?	Yes

| Plant residue definition for monitoring (RD-Mo) | Benthiavalicarb-isopropyl (KIF-230R-L), its diastereomer (KIF-230S-L) and their respective enantiomers (KIF-230S-D and KIF-230R-D), expressed as benthiavalicarb-isopropyl. This residue definition applies to primary fruits and root crops and to the processed commodities |
| Plant residue definition for risk assessment (RD-RA) | Benthiavalicarb-isopropyl (KIF-230R-L), its diastereomer (KIF-230S-L) and their respective enantiomers (KIF-230S-D and KIF-230R-D), expressed as benthiavalicarb-isopropyl. This residue definition applies to primary fruits and root crops and to the processed commodities |

Conversion factor (monitoring to risk assessment) | |

Currently residue definitions for rotational crops cannot be derived due to lack of data.

Metabolism in livestock (Regulation (EU) No 283/2013, Annex Part A, points 6.2.2, 6.2.3, 6.2.4, 6.2.5 6.7.1)

Animals covered	Animal	Dose (mg/kg bw/d)	Duration (days)	N rate/comment
Laying hen	-	-	-	-
Goat/Cow	-	-	-	-
Pig	-	-	-	-
Fish	-	-	-	-

The calculated DB intake from the representative uses of potatoes as animal feed item was below the trigger value of 0.004 mg/kg bw/day. Thus, it was concluded that livestock metabolism studies were not needed. However, the residues in succeeded crops was not fully investigated and therefore might need to be reconsidered in the view of the identified data gap.

Time needed to reach a plateau concentration in milk and eggs (days)	-
Animal residue definition for monitoring (RD-Mo)	OPEN
Animal residue definition for risk assessment (RD-RA)	OPEN
Conversion factor (monitoring to risk assessment)	-
Metabolism in rat and ruminant similar (Yes/No)	-
Fat soluble residues (Yes/No)	-

Residues in succeeding crops (Regulation (EU) No 283/2013, Annex Part A, point 6.6.2)

Confined rotational crop study (Quantitative aspect) | - |
Field rotational crop study

Two trials grown after treated potatoes with (6 x 0.75g/ha) were submitted for barley, carrots, lettuce at PBIs 1, 6 - 8 and 12 months.

Max. concentration in soil (0-20 cm): - KIF-230R-L: 0.08 mg/kg (8 DALA); KIF-230-M-1: < 0.01 mg/kg (8 DALA), KIF-230-M-5: 0.02 mg/kg (8 DALA); KIF-230S-L and -M-4: < 0.003 mg/kg (any time).

In potatoes, highest residue - KIF-230R-L: < 0.01 mg/kg; KIF-230S-L, -M-1, -M-4 and -M-5: < 0.003 mg/kg.
In lettuce, barley (grains and straw) and carrots (roots and leaves), highest residue - KIF-230R-L, S-L, -M-5, -M-4 and -M-1: < 0.003 mg/kg (any PBI).

Stability of residues (Regulation (EU) N° 283/2013, Annex Part A, point 6.1)

Plant products (Category)	Commodity	T (°C)	Stability (Month)
High water content	Tomatoes	≤ -18	12 12 - - - -
	Lettuce		- - 6 6 6 6
High oil content	Oil seed rape	≤ -18	12 12 - - - -
High protein content	Field beans	≤ -18	12 12 - - - -
High starch content	Potatoes	≤ -18	12 12 - - - -
	Carrot root		- - 6 6 6 Not stable
High acid content	Grapes	≤ -18	6 - - - - -
Dry commodities	Barley straw	≤ -18	6 6 6 3 Not stable

Throughout all the storage stability studies, acceptable storage stability of parent bentiavalicarb-isopropyl can be demonstrated for up to 6 months in all crop categories according to the current recommendations.
Summary of residues data from the supervised residue trials (Regulation (EU) No 283/2013, Annex Part A, point 6.3)

Crop	Region/Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)
Representative uses			8 trials were conducted throughout Europe. KIF-230 15% WG was applied by broadcast foliar spraying at ca. 1 x the application rate with 5-days re-treatment intervals and a PHI of 3 days.			
Potatoes	NEU	KIF-230R-L: 1 x < 0.001 (LOD); 3 x < 0.01 (LOQ) KIF-230S-L: 4 x < 0.001 (LOD)				
Potatoes	SEU	KIF-230R-L: 2 x < 0.001 (LOD); 2 x < 0.01 (LOQ) KIF-230S-L: 4 x < 0.001 (LOD)			0.02 (LOQ)	< 0.01
					< 0.01	

Summary of the data on formulation equivalence

Crop	Region	Residue data (mg/kg)	Recommendations/comments

Summary of data on residues in pollen and bee products (Regulation (EU) No 283/2013, Annex Part A, point 6.10.1)

Product(s)	Region	Residue data (mg/kg)	Recommendations/comments

(a): NEU or SEU for northern or southern outdoor trials in EU member states (N+SEU if both zones), Indoor for glasshouse/protected crops, Country if non-EU location.

(b): Residue levels in trials conducted according to GAP reported in ascending order (e.g. 3x <0.01, 0.01, 6x 0.02, 0.04, 0.08, 3x 0.10, 2x 0.15, 0.17). When residue definition for monitoring and risk assessment differs, use Mo/RA to differentiate data expressed according to the residue definition for Monitoring and Risk Assessment.

(c): HR: Highest residue. When residue definition for monitoring and risk assessment differs, HR according to residue definition for monitoring reported in brackets (HR\textsubscript{Mo}).

(d): STMR: Supervised Trials Median Residue. When residue definition for monitoring and risk assessment differs, STMR according to definition for monitoring reported in brackets (STMR\textsubscript{Mo}).
Inputs for animal burden calculations

Feed commodity	Median dietary burden (mg/kg)	Comment	Maximum dietary burden (mg/kg)	Comment
potato, culls	-	not calculated, not required	0.01	HR
potato, process waste	-	not calculated, not required	0.01	STMR
potato, dried pulp	-	not calculated, not required	0.01	STMR
Residues from livestock feeding studies (Regulation (EU) N° 283/2013, Annex Part A, points 6.4.1, 6.4.2, 6.4.3 and 6.4.4)- (open, pending the finalisation of the rotational crops assessment)

MRL calculations	Ruminant	Pig/Swine	Poultry	Fish	
Highest expected intake (mg/kg bw/d) (mg/kg DM for fish)	Beef cattle 0.0012	Ram/Ewe 0.0015	Breeding 0.0010	Broiler 0.0006	Carp N/A
	Dairy cattle 0.0016	Lamb 0.0011	Finishing 0.0009	Layer 0.0004	Trout N/A
Intake >0.004 mg/kg bw	No	No	No	Turkey 0.0007	Fish intake >0.1 mg/kg DM
Feeding study submitted	No	No	No	No	No

Representative feeding level (mg/kg bw/d, mg/kg DM for fish) and N rates	Level	Beef: -	Dairy: -	Level	Lamb: -	Ewe: -	Level	breed: -	finish: -	Level	broiler: -	turkey: -	layer: -	Level	carp: -	trout: -
Muscle	Estimated HR(a) at 1N	MRL proposals														
Fat																
Meat(b)																
Liver																
Kidney																
Milk(a)																
Eggs																

Method of calculation(c):
(a): Estimated HR calculated at 1N level (estimated mean level for milk).
(b): HR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry
(c): The OECD guidance document on residues in livestock (series on pesticides 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by intrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.
STMR calculations	Ruminant	Pig/Swine	Poultry	Fish
Median expected intake	Beef cattle	Breeding	Broiler	Carp
(mg/kg bw/d)	-	-	-	-
(mg/kg DM for fish)	Dairy cattle	Finishing	Layer	-
	-	-	-	Beef
	Ram/Ewe	-	-	-
	Breeding	-	-	-
	Ewe	-	-	-
	Broiler	-	-	-
	Lamb	-	-	-
	Finishing	-	-	-
	Turkey	-	-	-
Representative feeding level	Level	Level	Level	Level
(mg/kg bw/d, mg/kg DM for fish)	Beef: -	Lamb : -	broiler: -	carp: -
	Dairy: -	Ewe: -	turkey: -	-
	Level	Level	layer: -	-
	Mean level	Level	Level	Level
in feeding level	Estimated STMR(b)	Estimated STMR(b)	Estimated STMR(b)	Estimated STMR(b)
	at 1N	at 1N	at 1N	at 1N
Muscle				
Fat				
Meat(a)				
Liver				
Kidney				
Milk				
Eggs				
Method of calculation(c)				

(a): STMR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry

(b): When the mean level is set at the LOQ, the STMR is set at the LOQ.

(c): The OECD guidance document on residues in livestock (series on pesticide 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by intrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.
Conversion Factors (CF) for monitoring to risk assessment

Not required.

Processing factors (Regulation (EU) N° 283/2013, Annex Part A, points 6.5.2 and 6.5.3)

Not required

PRIMo 3.1
Consumer risk assessment limited to the representative uses on potatoes) and is provisional only.

	0.1 mg/kg bw per day
TMDI (% ADI, according to EFSA PRIMo)	Highest TMDI: 0.1% ADI (NL toddler)
NTMDI (% ADI, according to (to be specified))	Highest NTMDI: -
IEDI (% ADI, according to EFSA PRIMo)	Highest IEDI: -
NEDI (% ADI, according to (to be specified))	Highest NEDI: -

Factors included in the calculations

ARfD

| 6.7 mg/kg bw |

IESTI (% ARfD, according to EFSA PRIMo)

| Highest IESTI: 0.05% ARfD |

NESTI (% ARfD, according to (to be specified))

| Highest NESTI: Not required |

Factors included in IESTI and NESTI

Assessment of negligible exposure under realistic conditions of use:
The concentration of bethiavalicarb-isopropyl residues in potatoes were below the LOQ of 0.01 mg/kg. However, the assessment of residues in rotational crops (fate and magnitude of residues) is not finalised and therefore residues in edible crops and feed items cannot be excluded.

Proposed MRLs (Regulation (EU) No 283/2013, Annex Part A, points 6.7.2 and 6.7.3)

Code	Commodity/Group	MRL/Import tolerance (mg/kg) and Comments	
0211000	potatoes	0.02 (*) mg/kg	MRL derived for a more critical GAP, supported by adequate data, without consumer risk and in compliance with existing MRL

Animal commodities

| - | - | - | No MRL available; default MRL of 0.01 mg/kg is considered or a specific LOQ, i.e. 0.05 mg/kg in honey and other apiculture products |
Environmental fate and behaviour

Route of degradation (aerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.1)

Mineralisation after 100 days	44.8% after 120 days; [Val-2-14C]-label (n=1) 3.6 - 11.7% after 120 days; [Bz-U-14C]-label (n=4)
Non-extractable residues after 100 days	36.3% after 120 days; [Val-2-14C]-label (n=1) 22.5 - 58.2% after 120 days; [Bz-U-14C]-label (n=4)
Metabolites requiring further consideration - name and/or code, % of applied (range and maximum)	[Bz-U-14C]-label KIF-230-M-1, max. 4.5 - 27.7% at 120 d (n=4) KIF-230-M-3, max. 2.2 - 12.3% at 28 - 30 d (n=4) KIF-230-M-4, max. 7.6 - 9.8% at 28 - 30 d (n=4) KIF-230-M-5, max. 12.1 - 26.8% at 28 - 30 d (n=4) KIF-230-M-8, max. 2.6% at 14 d (n=1) (minor under aerobic conditions)

Route of degradation (anaerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.2)

Mineralisation after 100 days	0.5% after 120 days; [Bz-U-14C]-label (n=1)
Non-extractable residues after 100 days	25.5% after 120 days; [Bz-U-14C]-label (n=1)
Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)	[Bz-U-14C]-label KIF-230-M-3, max. 24.2 at 271 d (n=1) KIF-230-M-4, max. 11.9% at 120 d (n=1) KIF-230-M-5, max. 12.4% at 61 d (n=1) KIF-230-M-8, max. 8.1% at 120 d (n=1 relevant for prolonged anaerobic condition)

Route of degradation (photolysis) on soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)	[Bz-U-14C]-label, light exposed KIF-230-M-1, max. 12.1% at 30 d (n=1) KIF-230-M-3, max. 3.8% at 30 d (n=1) KIF-230-M-4, max. 3.5% at 30 d (n=1) KIF-230-M-5, max. 6.4% at 12 d (n=1)
Mineralisation at study end	1.5% after 30 days; [Bz-U-14C]-label (n=1)
Non-extractable residues at study end	32.8% after 30 days; [Bz-U-14C]-label (n=1)

Rate of degradation in soil (aerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Parent	Dark aerobic conditions						
Soil type	14C-labels	pH*	T (°C) / θ (% MWHC)	DT50/DT90 (d)	norm. DT50 (d)	χ²/ν (%)	Method of calculation
sandy loam	[Val-2-14C]	7.0	20 / 45	16.2 / 53.4	18.8	3.69	SFO*
	[Bz-U-14C]			21.9 / 72.7		4.17	SFO
sandy loam	[Bz-U-14C]	5.1	20 / 45	16.4 / 54.6	16.4	8.91	SFO*
silt loam	[Bz-U-14C]	6.7	20 / 45	11.1 / 36.7	11.1	5.25	SFO*
clay loam	[Bz-U-14C]	7.7	20 / 45	10.6 / 35.4	10.6	8.57	SFO*
Geometric mean (if not pH dependent)	13.8						
pH dependence: no

* measured in water
* for trigger and modelling

Rate of degradation in soil (aerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

KIF-230-M-5

Dark aerobic conditions. Precursor from which the ffM was derived was parent.

Soil type	pH	T (°C) / θ (% MWHC)	DT$_{50}$/DT$_{90}$ (d)	ffM k_f/k_{dp}	norm. DT$_{50}$ (d)	χ^2_{err} (%)	Method of calculation
sandy loam	7.0	20 / 45	28.8 / 95.8	0.224	28.8	28.3	SFO*
sandy loam	5.1	20 / 45	66.2 / 220	0.384	66.2	20.9	SFO*
silt loam	6.7	20 / 45	42.8 / 142	0.214	42.8	7.64	SFO*
clay loam	7.7	20 / 45	15.6 / 52.0	0.384	15.6	19.5	SFO*

KIF-230-M-5

Dark aerobic conditions. Metabolite dosed.

Soil type	pH	T (°C) / θ (% MWHC)	DT$_{50}$/DT$_{90}$ (d)	ffM k_f/k_{dp}	norm. DT$_{50}$ (d)	χ^2_{err} (%)	Method of calculation
silt loam	5.7	20 / 43	42.8 / 1480	-	100	3.85	DFOP§ (k1=0.02918; k2=0.00693; g=0.6885)
loamy sand	4.9	20 / 39	26.2 / 178	-	65.2	3.37	DFOP§ (k1=0.6724; k2=0.01063; g=0.3391)
loam	7.2	20 / 66	2.13 / 24.2	-	9.76	3.99	DFOP§ (k1=1.652; k2=0.07105; g=0.4336)

Geometric mean (if not pH dependent) 36.2

Arithmetic mean

pH dependence: no

* measured in water
* for trigger and modelling
§ DT$_{50}$ from slow phase of DFOP model used for modelling

KIF-230-M-4

Dark aerobic conditions. Metabolite dosed.

Soil type	pH	T (°C) / θ (% MWHC)	DT$_{50}$/DT$_{90}$ (d)	ffM k_f/k_{dp}	DT$_{50}$=DT$_{90}$/3.32§ (d)	χ^2_{err} (%)	Method of calculation
sandy loam	5.5	20 / 45	0.08 / 82.0	-	24.7	14.0	DFOP (k1=0.5014 h$^{-1}$; k2=0.0003 h$^{-1}$; g=0.804)
silt loam	6.7	20 / 45	0.06 / 33.7	-	10.1	6.46	DFOP (k1=0.5975 h$^{-1}$; k2=0.0004 h$^{-1}$; g=0.859)
clay loam	8.0	20 / 45	0.18 / 64.3	-	19.4	5.55	DFOP (k1=0.3446 h$^{-1}$; k2=0.0008 h$^{-1}$; g=0.642)

Geometric mean (if not pH dependent) 16.9§

Arithmetic mean

Geometric mean (if not pH dependent) 16.9§

Arithmetic mean
Pesticide Risk Assessment of Benthiavalicarb

KIF-230-M-3

Dark aerobic conditions. Metabolite dosed.

Soil type	pH	T (°C) / 0 (% MWHC)	DT$_{50}$/DT$_{90}$ (d)	ff$_M$ k/r$_{dp}$	norm. DT$_{50}$ (d)	χ^2_{err} (%)	Method of calculation
sandy loam	5.5	20 / 45	6.93 / 23.0	-	6.93	7.78	SFO*
silt loam	6.7	20 / 45	7.34 / 24.4	-	7.34	5.87	SFO*
clay loam	8.0	20 / 45	2.34 / 19.8	-	5.55	5.53 (α=1.053; β=2.509)	FOMC*

Geometric mean * (if not pH dependent) 6.56

Arithmetic mean

pH dependence: no

measured in water

DT$_{50}$ from DFOP DT$_{90}$/3.32 to be used for modelling

KIF-230-M-1

Dark aerobic conditions. Metabolite dosed.

Soil type	pH	T (°C) / 0 (% MWHC)	DT$_{50}$/DT$_{90}$ (d)	ff$_M$ k/r$_{dp}$	norm. DT$_{50}$ (d)	χ^2_{err} (%)	Method of calculation
sandy loam	5.5	20 / 45	12.7 / 249	-	116	3.95	DFOP* (k1=0.125; k2=0.006; g=0.594)
silt loam	6.7	20 / 45	3.83 / 15.5	-	4.7~	6.84	DFOP* (k1=0.197; k2=0.0000693; g=0.943)
clay loam	8.0	20 / 45	7.42 / 67.6	-	20.4~	3.51	DFOP* (k1=0.170; k2=0.019; g=0.629)

Geometric mean (if not pH dependent) 2.3

Arithmetic mean

pH dependence: no

measured in water

DT$_{50}$ from slow phase of DFOP model to be used for modelling

~ DFOP DT$_{90}$/ 3.32 to be used for modelling

KIF-230-M-8

Dark aerobic conditions. Metabolite dosed.

Soil type	pH	T (°C) / 0 (% MWHC)	DT$_{50}$/DT$_{90}$ (d)	ff$_M$ k/r$_{dp}$	norm. DT$_{50}$ (d)	χ^2_{err} (%)	Method of calculation
silt loam	5.8	21 / 65	2.87 / 9.53	-	3.15	4.81	SFO*
loamy sand	5.4	21 / 54	7.44 / 24.7	-	8.18	5.97	SFO*
loam	7.2	21 / 66	1.85 / 6.14	-	2.03	3.72	SFO*

Geometric mean * (if not pH dependent) 3.74

Notes:

- # measured in water
- § pH dependence: no
- § DT$_{50}$ from DFOP DT$_{90}$/3.32 to be used for modelling
- § DFOP DT$_{90}$/ 3.32 to be used for modelling
- * SFO visually and statistically acceptable (χ^2_{err} = 8.18%), SFO DT$_{50}$ used for modelling
- § FOMC ($\alpha=1.053; \beta=2.509$)
- § Geometric mean
- § Arithmetic mean
Arithmetic mean

pH dependence: no

* measured in water
* for trigger and modelling
§ A correction factor of 1.099 was applied to normalise DT₅₀ to 20°C

Rate of degradation field soil dissipation studies (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.1)

Parent	No data, not required					
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).					
pH⁰	Depth (cm)	DT₅₀ (d) Actual	DT₅₀(d) actual	St. (χ²)	DT₅₀ (d) Norm⁰	Method of calculation
Geometric mean (if not pH dependent)						
pH dependence,						

Metabolite KIF-230-M-1	Data gap					
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).					
pH⁰	Depth (cm)	DT₅₀ (d) Actual	DT₅₀(d) actual	St. (χ²)	DT₅₀ (d) Norm⁰	Method of calculation
Geometric mean (if not pH dependent)						
pH dependence,						

Metabolite KIF-230-M-5	Data gap					
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).					
pH⁰	Depth (cm)	DT₅₀ (d) Actual	DT₅₀(d) actual	St. (χ²)	DT₅₀ (d) Norm⁰	Method of calculation
Geometric mean (if not pH dependent)						
pH dependence,						

Combined laboratory and field kinetic endpoints for modelling (when not from different populations)

Rate of degradation in soil active substance, normalised geometric mean (if not pH dependent)

Rate of degradation in soil transformation products, normalised geometric mean (if not pH dependent)

Kinetic formation fraction (f. f. kᵣ / kᵩ) of transformation products, arithmetic mean

Laboratory endpoints used for modelling

Laboratory endpoints used for modelling

Laboratory endpoints used for modelling
Soil accumulation (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.2)

Soil accumulation and plateau concentration

Soil type	14C-labels	pH #	T (°C) / % MWHC	DT50/DT90 (d)	norm. DT50 (d)	χ² err (%)	Method of calculation
sandy loam	[Bz-U-14C]	7.0	20 / flooded	39.9 / 133	39.9	3.11	SFO
Geometric mean (if not pH dependent)					39.9		

* measured in water

Rate of degradation in soil (anaerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Rate of degradation in soil (anaerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.4 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Parent	Soil photolysis*					
Soil type	Light source	pH #	t. °C / % MWHC	DT50 / DT90 (d)	St. (χ²)	Method of calculation
silt loam	xenon lamp	7.4	25 / ~30	20.4 / 67.8	8.48	SFO

* degradation is faster in the dark control and therefore soil photolysis is not expected to be a significant degradation process for benthiavalicarb.

Soil adsorption active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)
Soil Type and Adsorption Properties

Soil Type	OC %	Soil pH	K_d (mL/g)	K_doc (mL/g)	K_F (mL/g)	K_Foc (mL/g)	1/n
Sandy loam PT102	2.5	7.1	3.9 - 7.6	155.6 - 302.3	4.6	182.1	0.87
Loam	5.4	7.5	5.7 - 12.3	106.0 - 227.2	6.5	121.3	0.85
Silt loam	2.5	6.8	5.6 - 13.4	222.1 - 536.8	6.5	258.2	0.84
Sand	0.4	7.0	0.7 - 1.0	168.1 - 242.8	0.8	193.8	0.93
Clay loam PT103	1.3	5.5	1.8 - 2.3	135.2 - 173.8	1.9	147.4	0.93
Geometric mean (if not pH dependent)							
Arithmetic mean (if not pH dependent)							0.88

* Measured in water

Soil Adsorption Transformation Products

Soil adsorption transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

KIF-230-M-5

Soil Type	OC %	Soil pH	K_d (mL/g)	K_doc (mL/g)	K_F (mL/g)	K_Foc (mL/g)	1/n
Loam	2.49	7.03	30.2 - 83.6	351.0 - 547.2	24.7	990.1	0.81
Loamy sand	0.68	4.90	5.41 - 14.6	289.2 - 517.3	4.5	666.0	0.795
Silt loam	1.11	7.52	14.1 - 33.2	176.4 - 259.4	11.1	1003.6	0.831
Geometric mean (if not pH dependent)							
Arithmetic mean (if not pH dependent)							0.809

* Measured in water

KIF-230-M-4

Soil Type	OC %	Soil pH	K_d (mL/g)	K_doc (mL/g)	K_F (mL/g)	K_Foc (mL/g)	1/n
Loam	2.49	7.03	2.83 - 10.3	85.2 - 531.0	2.0	80.1	0.766
Loamy sand	0.68	4.90	1.49 - 2.62	220.0 - 512.9	1.4	209.0	0.876
Silt loam	1.11	7.52	0.95 - 5.03	106.3 - 501.5	0.7	59.8	0.687
Geometric mean (if not pH dependent)							
Arithmetic mean (if not pH dependent)							0.777

* Measured in water

KIF-230-M-3

Soil Type	OC %	Soil pH	K_d (mL/g)	K_doc (mL/g)	K_F (mL/g)	K_Foc (mL/g)	1/n
Loam	2.8	7.1	3.4 - 9.1	121.2 - 326.7	4.2	148.8	0.81
Clay loam	4.7	8.0	4.3 - 12.9	92.4 - 275.4	5.5	116.4	0.79
Sandy loam	0.8	5.1	1.5 - 3.7	186.1 - 465.6	1.9	241.0	0.82
Geometric mean (if not pH dependent)							
Arithmetic mean (if not pH dependent)							0.81

* Measured in water
KIF-230-M-1

Soil Type	OC %	Soil pH	K_d (mL/g)	K_dsc (mL/g)	K_F (mL/g)	K_Foc (mL/g)	1/n
Loam	2.8	7.1	5.4 - 18.3	193.1 - 653.3	6.6	237.2	0.78
Clay loam	4.7	8.0	9.6 - 39.0	203.8 - 830.2	11.2	239.2	0.76
Sandy loam	0.8	5.1	2.7 - 8.4	335.0 - 1048	3.4	422.3	0.78

Geometric mean (if not pH dependent) - 288.3
Arithmetic mean (if not pH dependent) - 0.77

pH dependence: No

* Measured in water

KIF-230-M-8

Soil Type	OC %	Soil pH	K_d (mL/g)	K_dsc (mL/g)	K_F (mL/g)	K_Foc (mL/g)	1/n
Sandy loam	1.7	5.5	0.97	56	1.00	57	0.87
Sandy loam	0.7	5.8	0.45	68	0.54	81	0.83
Loam	2.0	7.2	1.70	86	1.63	82	0.80

Geometric mean (if not pH dependent) - 72
Arithmetic mean (if not pH dependent) - 0.83

pH dependence: No

* Measured in water

Mobility in soil column leaching active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Column leaching: No data; not required

Mobility in soil column leaching transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Column leaching: No data; not required

Lysimeter / field leaching studies (Regulation (EU) N° 283/2013, Annex Part A, points 7.1.4.2 / 7.1.4.3 and Regulation (EU) N° 284/2013, Annex Part A, points 9.1.2.2 / 9.1.2.3)

Lysimeter/ field leaching studies: No data; not required

Hydrolytic degradation (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.1.1)

Hydrolytic degradation of the active substance and metabolites > 10 %

- pH 5: stable at 25°C
- pH 7: stable at 25°C
- pH 9: stable at 25°C
Aqueous photochemical degradation (Regulation (EU) N° 283/2013, Annex Part A, points 7.2.1.2 / 7.2.1.3)

Photolytic degradation of active substance and metabolites above 10 %

DT$_{50}$: 16.2 - 543.0 days (buffer solutions)
natural light, 41°N; DT$_{50}$: 795 days (SHW) (4)
No metabolites > 5% AR

Quantum yield of direct phototransformation in water at $\Sigma > 290$ nm

No data; not required

‘Ready biodegradability’ (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.1)

Readily biodegradable
(Yes/no)
No

Aerobic mineralisation in surface water (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.2
and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.1)

System identifier (indicate fresh, estuarine or marine)	pH	pH	t & °C	DT$_{50}$/DT$_{90}$ whole sys. (suspended sediment test)	St. (χ^2)	DT$_{50}$/DT$_{90}$ Water (pelagic test)	St. (χ^2)	Method of calculation
Fresh	8.3	N/A	22.9	N/A	N/A	11 µg/l: 49.9 / 82.2	3.49	HS
						108 µg/l: 103 / 256	1.59	HS

& Temperature of incubation
N/A Not applicable

KIF-230-M-5
max. in total system 25.1% after 62 days

System identifier (indicate fresh, estuarine or marine)	pH	pH	t & °C	DT$_{50}$/DT$_{90}$ whole sys. (suspended sediment test)	St. (χ^2)	DT$_{50}$/DT$_{90}$ Water (pelagic test)	St. (χ^2)	Method of calculation

& Temperature of incubation
N/A Not applicable

KIF-230-M-4
max. in total system 23.7% after 62 days

System identifier (indicate fresh, estuarine or marine)	pH	pH	t & °C	DT$_{50}$/DT$_{90}$ whole sys. (suspended sediment test)	St. (χ^2)	DT$_{50}$/DT$_{90}$ Water (pelagic test)	St. (χ^2)	Method of calculation

& Temperature of incubation
N/A Not applicable

KIF-230-M-8
max. in total system 10.1% after 62 days

(4) SHW: synthetic humic water
System identifier (indicate fresh, estuarine or marine)	pH water phase	pH sed	t. & °C(b)	DT$_{50}$/DT$_{90}$ whole sys. (suspended sediment test)	St. (χ^2)	DT$_{50}$/DT$_{90}$ Water (pelagic test)	St. (χ^2)	Method of calculation
KIF-230-M-3	max. in total system 4.8% after 62 days							
System identifier (indicate fresh, estuarine or marine)	pH water phase	pH sed	t. & °C(b)	DT$_{50}$/DT$_{90}$ whole sys. (suspended sediment test)	St. (χ^2)	DT$_{50}$/DT$_{90}$ Water (pelagic test)	St. (χ^2)	Method of calculation
	-	-	-	-	-	-	-	-
& Temperature of incubation				N/A				N/A

Mineralisation and non extractable residues (for parent dosed experiments)

System identifier	pH water phase	pH sed	Mineralisation	Non-extractable residues (suspended sediment test)	Non-extractable residues (end of the study) (suspended sediment test)
Fresh	8.3	N/A	0.5% after 28 d	N/A	N/A

Water / sediment study (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.2)

System	pH water	pH sed	T (°C)	DT$_{50}$/DT$_{90}$ whole syst.	χ^2_{err} (%)	DT$_{50}$/DT$_{90}$ Water	χ^2_{err} (%)	DT$_{50}$/DT$_{90}$ sediment	χ^2_{err} (%)	Method of calculation
Pond	8.0	7.2	20	18.2 / 60.6	1.51	-	3.69 / 21.5	17.2 / 57.3	5.52	level P-I, SFO
Lake	4.8	6.1	20	15.1 / 50.0	7.15	-	7.71 / 25.6	25.7 / 85.3	5.88	level P-I, DFOP
Geometric mean (DT$_{50}$):	16.6	-	21.0	-	-	-	-	-	-	level P-I, SFO

KIF-230-M-1 Max. in total system 5.1% after 100 days and increasing towards study end

Distribution (max. in water 0.4% after 14 days; max. in sediment 5.1% after 100 days)

System	pH water	pH sed	T (°C)	DT$_{50}$/DT$_{90}$ whole syst.	χ^2_{err} (%)	DT$_{50}$/DT$_{90}$ Water	χ^2_{err} (%)	DT$_{50}$/DT$_{90}$ sediment	χ^2_{err} (%)	Method of calculation
Pond	-	-	-	-	-	-	-	-	-	-
Lake	-	-	-	-	-	-	-	-	-	-
Geometric mean (DT$_{50}$):	1000	1000	1000	worst case default						
KIF-230-M-3 Max. in total system 32.5% after 100 days
Distribution (max. in water 6.1% after 100 days; max. in sediment 26.3% after 100 days)

System	pH water	pH sed.	T (°C)	DT50/DT90 whole syst.	χ^2_{err} (%)	DT50/DT90 Water	χ^2_{err} (%)	DT50/DT90 sediment	χ^2_{err} (%)	Method of calculation
Pond	-	-	-	-	-	-	-	-	-	-
Lake	-	-	-	-	-	-	-	-	-	-

Geometric mean (DT50): 1000

KIF-230-M-4 Max. in total system 22.7% after 30 days
Distribution (max. in water 0.4% after 30 days; max. in sediment 22.7% after 30 days)

System	pH water	pH sed.	T (°C)	DT50/DT90 whole syst.	χ^2_{err} (%)	DT50/DT90 Water	χ^2_{err} (%)	DT50/DT90 sediment	χ^2_{err} (%)	Method of calculation
Pond	-	-	-	-	-	-	-	-	-	-
Lake	-	-	-	-	-	-	-	-	-	-

Geometric mean (DT50): 1000

KIF-230-M-5 Max. in total system 11.9% after 59 days
Distribution (max. in water 2.4% after 14 days; max. in sediment 11.9% after 59 days)

System	pH water	pH sed.	T (°C)	DT50/DT90 whole syst.	χ^2_{err} (%)	DT50/DT90 Water	χ^2_{err} (%)	DT50/DT90 sediment	χ^2_{err} (%)	Method of calculation
Pond	-	-	-	-	-	-	-	-	-	-
Lake	-	-	-	-	-	-	-	-	-	-

Geometric mean (DT50): 1000

Mineralisation and non extractable residues (from parent dosed experiments)

Water / sediment system	pH water phase	pH sed	Mineralisation (end of the study)	Non-extractable residues in sediment	Non-extractable residues in sediment (end of the study)
pond	8.0	7.2	3.8% after 100 days	40.6% after 100 days	40.6% after 100 days
lake	4.8	6.1	0.9% after 100 days	36.4% after 100 days	36.4% after 100 days

Fate and behaviour in air (Regulation (EU) N° 283/2013, Annex Part A, point 7.3.1)

Direct photolysis in air: No data; not required

Photochemical oxidative degradation in air: DT50 of 4.68 hours (0.195 day; 1.5 \times 10^6 OH/cm^3) calculated with Atkinson’s model (AOPWIN v1.92).

Volatilisation: From plant surfaces: not tested
From soil surfaces: not tested

Metabolites: DT50 of 4.68 hours (12-day; 1.5 \times 10^6 OH/cm^3) calculated with Atkinson’s model (AOPWIN v1.92).

Residues requiring further assessment (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.1)

Environmental occurring residues requiring further assessment by other disciplines (toxicology and ecotoxicology) and or requiring consideration for groundwater exposure: Soil: KIF-230R-L, -M-5, -M-4, -M-3, -M-1, -M-8 (only relevant when prolonged anaerobic conditions are expected)
Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2)

| Surface water: KIF-230R-L, -M-5, -M-4, -M-3, -M-1, -M-8 (only relevant when prolonged anaerobic conditions are expected) |
| Sediment: KIF-230R-L, -M-5, -M-4, -M-3, -M-1, -M-8 (only relevant when prolonged anaerobic conditions are expected) |
| Ground water: KIF-230R-L, -M-5, -M-4, -M-3, -M-1, -M-8 (only relevant when prolonged anaerobic conditions are expected) |
| Air: KIF-230R-L |

Monitoring data, if available (Regulation (EU) N° 283/2013, Annex Part A, point 7.5)

Soil (indicate location and type of study)	Not available
Surface water (indicate location and type of study)	Not available
Ground water (indicate location and type of study)	Not available
Air (indicate location and type of study)	Not available

PEC soil (Regulation (EU) N° 284/2013, Annex Part A, points 9.1.3 / 9.3.1)

| Parent Method of calculation |
DT₅₀:	18.8 days
kinetics:	SFO
field or laboratory:	representative worst case from laboratory studies

| Application data |
crop:	potatoes
depth of soil layer:	5 cm
soil bulk density:	1.5 g/cm³
crop interception factor:	15%
number of applications:	8
interval:	5 days
application rate(s):	75 g a.s./ha

PEC₅₅,₆₅,₆₅ (mg/kg)	single application actual	single application time weighted average	multiple application actual	multiple application time weighted average
initial short term 1 d	0.085	0.083	0.389	0.382
2 d	0.082	0.083	0.375	0.375
4 d	0.079	0.079	0.336	0.362
long term 7 d	0.066	0.075	0.301	0.347
28 d	0.030	0.053	0.139	0.308
50 d	0.013	0.039	0.062	0.263
100 d	0.002	0.022	0.010	0.175
plateau concentration	no accumulation			

PEC₅₅,₆₅,₆₅ (mg/kg)
KIF-230-M-5

Method of calculation

Molecular weight relative to parent: 0.5144

DT$_{50}$ (d): 446 d (based on the longest not normalized DT$_{90}$/3.32)

Note: The DT$_{90}$/3.32 as the worst case was used although the best fit kinetic parameters ($k_1 = 0.02918$, $k_2 = 0.00693$, $g=0.685$, DT$_{50}$ = 24 days (fast phase) DT$_{50}$= 100 days (slow phase)) should have been used.

Kinetics: DFOP

Field or Lab: worst case from laboratory studies

Application data

Application rate assumed: 10.3 g/ha (corresponding to maximum of ~26.8 % of applied parent in case of sequential modelling of a single application)

PEC$_S$ (mg/kg)	single application	single application	multiple application	multiple application
	actual	time weighted average	actual	time weighted average
initial	0.0454		0.178	
short term	1 d	0.0453	0.0453	0.178
	2 d	0.0452	0.0453	0.177
	4 d	0.0451	0.0452	0.177
	7 d	0.0449	0.0451	0.176
	28 d	0.0435	0.0444	0.170
	50 d	0.0421	0.0437	0.165
	100 d	0.0389	0.0420	0.152
plateau	concentration	0.051 mg/kg	0.418 mg/kg	

KIF-230-M-4

Method of calculation

Molecular weight relative to parent: 0.5117

DT$_{50}$ (d): 24.7 days (DT$_{90}$/3.32)

Kinetics: DFOP

Field or Lab: worst case from laboratory studies

Application data

Application rate assumed: 3.76 g/ha (corresponding to a maximum of ~9.8% of applied parent in case of sequential modelling of a single application)

PEC$_S$ (mg/kg)	single application	single application	multiple application	multiple application
	actual	time weighted average	actual	time weighted average
initial	0.0043		0.0195	
short term	1 d	0.0041	0.0042	0.0188
	2 d	0.0040	0.0041	0.0182
	4 d	0.0037	0.0040	0.0169
	7 d	0.0033	0.0038	0.0151
	28 d	0.0015	0.0033	0.0070
	50 d	0.0007	0.0031	0.0031
	100 d	0.0001	0.0005	0.0005
plateau	concentration	no accumulation	0.0208 mg/kg	

KIF-230-M-3

Method of calculation

Molecular weight relative to parent: 0.5170

DT$_{50}$ (d): 7.34 days
Kinetics: SFO

Field or Lab: worst case from laboratory studies

Application rate assumed: 4.77 g/ha (corresponding to a maximum of 12.3% of applied parent in case of sequential modelling of a single application)

PEC₅ (mg/kg)	single application actual	single application time weighted average	multiple application actual	multiple application time weighted average
Initial	0.0054	0.0053	0.0247	0.0243
short term	1 d	0.0052	0.0053	0.0238
	2 d	0.0050	0.0052	0.0230
	4 d	0.0046	0.0050	0.0214
long term	7 d	0.0042	0.0048	0.0191
	28 d	0.0019	0.0034	0.0088
	50 d	0.0008	0.0025	0.0039
	100 d	< 0.0001	0.0014	0.0006

Plateau concentration: no accumulation

KIF-230-M-1

Method of calculation

Molecular weight relative to parent: 0.4435

DT₅₀ (d): 116 (k₁ = 0.125; k₂ = 0.00060; g = 0.594)

Kinetics: DFOP

Field or Lab: worst case from laboratory studies

Application rate assumed: 9.21 g/ha (corresponding to a maximum of 27.7% of applied parent in case of sequential modelling of a single application)

PEC₅ (mg/kg)	single application actual	single application time weighted average	multiple application actual	multiple application time weighted average
Initial	0.0104	0.0102	0.0478	0.0469
short term	1 d	0.0101	0.0102	0.0461
	2 d	0.0097	0.0101	0.0445
	4 d	0.0090	0.0097	0.0413
long term	7 d	0.0081	0.0092	0.0370
	28 d	0.0037	0.0065	0.0171
	50 d	0.0016	0.0048	0.0076
	100 d	0.0002	0.0027	0.0012

Plateau concentration: 0.0119 mg/kg

KIF-230-M-8

Method of calculation

Molecular weight relative to parent: 0.6246

DT₅₀ (d): 7.44 days

Kinetics: SFO

Field or Lab: worst case from laboratory studies

Application rate assumed: 1.22 g/ha (corresponding to a maximum of 2.6% of applied parent in case of sequential modelling of a single application)
PECs (mg/kg)

	single application	multiple application		
	actual	time weighted average	actual	time weighted average
Initial				
short term				
1 d	0.0017	0.0016	0.0076	0.0075
2 d	0.0016	0.0016	0.0073	0.0073
4 d	0.0014	0.0015	0.0066	0.0071
long term				
7 d	0.0013	0.0015	0.0059	0.0068
28 d	0.0006	0.0010	0.0027	0.0060
50 d	0.0003	0.0008	0.0012	0.0051
100 d	0.0000	0.0004	0.0002	0.0034

plateau concentration: no accumulation

PEC ground water (Regulation (EU) N° 284/2013, Annex Part A, point 9.2.4.1)

Method of calculation and type of study *(e.g. modelling, field leaching, lysimeter)*

Metabolites:	M-5	M-4	M-3	M-1	M-8
crop uptake factor:	0.0	0.0	0.0	0.0	0.0
solubility in water (mg/l):	13100	30.0	1970	172	611
vapour pressure (Pa):	0.101	0.0015	0.00056	1.9×10⁻⁵	0.00102
norm DT₅₀ (days):	50.3*	58.4∞	6.56	164§	3.74
formation fraction:	0.386*	1	1	1	1
Kᵦ (geometric mean):	871.4	100.0	161.0	288.3	72
l/n (arithmetic mean):	0.809	0.777	0.81	0.77	0.83

* Future PECgw calculations for metabolite M-5 should be performed with a DT50 of 36.2 and ff value of 0.302
∞ Future PECgw calculations for metabolite M-4 should be performed with a DT50 of 16.9
§ Future PECgw calculations for metabolite M-1 should be performed with a DT50 of 22.3 d

For field and lysimeter studies: not submitted
Location: N/A
Study type (e.g. lysimeter, field leaching): N/A
Soil properties (pH, OC, MWHC): N/A
Application dates: N/A
Crop (estimated interception): N/A
Number of applications: N/A
Average annual rainfall (mm): N/A
Average annual leachate volume (mm): N/A

Application rate

Gross application rate:	75 g a.s./ha	
Crop growth stage:	leaf development	flowering/senescence
Crop interception:	15%	85% / 50%
Net application rate:	63.75 g a.s./ha	11.25 / 37.5 g a.s/ha
PEC\textsubscript{(gw)} - FOCUS modelling results (80th percentile annual average concentration at 1m)

PEARL 4.4.4	Scenario	parent (µg/l)	M-5 (µg/l)	M-4 (µg/l)	M-3 (µg/l)	M-1 (µg/l)	M-8 (µg/l)
Châteaudun (C)	< 0.001	< 0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001
Hamburg (H)	< 0.001	< 0.001	0.067	< 0.001	< 0.001	< 0.001	< 0.001
Jokioinen (J)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Kremsmünster (K)	< 0.001	< 0.001	0.024	< 0.001	< 0.001	< 0.001	< 0.001
Okehampton (Ok)	< 0.001	< 0.001	0.054	< 0.001	< 0.001	< 0.001	< 0.001
Piacenza (P)	< 0.001	< 0.001	0.031	< 0.001	< 0.001	< 0.001	< 0.001
Porto (O)	< 0.001	< 0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sevilla (S)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Thiva (T)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

PELMO 5.5.3	Scenario	parent (µg/l)	M-5 (µg/l)	M-4 (µg/l)	M-3 (µg/l)	M-1 (µg/l)	M-8 (µg/l)
Châteaudun (C)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Hamburg (H)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Jokioinen (J)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Kremsmünster (K)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Okehampton (Ok)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Piacenza (P)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

PELMO 5.5.3	Scenario	parent (µg/l)	M-5 (µg/l)	M-4 (µg/l)	M-3 (µg/l)	M-1 (µg/l)	M-8 (µg/l)
Châteaudun (C)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Hamburg (H)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Jokioinen (J)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Kremsmünster (K)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Okehampton (Ok)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Piacenza (P)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
MACRO 5.5.4 potatoes (BBCH 10-19)

Scenario	Parent (µg/l)	M-5 (µg/l)	M-4 (µg/l)	M-3 (µg/l)	M-1 (µg/l)	M-8 (µg/l)
Châteaudun (C)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Hamburg (H)	N/A	N/A	N/A	N/A	N/A	N/A
Jokioinen (J)	N/A	N/A	N/A	N/A	N/A	N/A
Kremsmünster (K)	N/A	N/A	N/A	N/A	N/A	N/A
Okehampton (Ok)	N/A	N/A	N/A	N/A	N/A	N/A
Piacenza (P)	N/A	N/A	N/A	N/A	N/A	N/A
Porto (O)	N/A	N/A	N/A	N/A	N/A	N/A
Sevilla (S)	N/A	N/A	N/A	N/A	N/A	N/A
Thiva (T)	N/A	N/A	N/A	N/A	N/A	N/A

MACRO 5.5.4 potatoes (BBCH 40-99)

Scenario	Parent (µg/l)	M-5 (µg/l)	M-4 (µg/l)	M-3 (µg/l)	M-1 (µg/l)	M-8 (µg/l)
Châteaudun (C)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Hamburg (H)	N/A	N/A	N/A	N/A	N/A	N/A
Jokioinen (J)	N/A	N/A	N/A	N/A	N/A	N/A
Kremsmünster (K)	N/A	N/A	N/A	N/A	N/A	N/A
Okehampton (Ok)	N/A	N/A	N/A	N/A	N/A	N/A
Piacenza (P)	N/A	N/A	N/A	N/A	N/A	N/A
Porto (O)	N/A	N/A	N/A	N/A	N/A	N/A
Sevilla (S)	N/A	N/A	N/A	N/A	N/A	N/A
Thiva (T)	N/A	N/A	N/A	N/A	N/A	N/A

PEC_{gw} From lysimeter / field studies

	1st year	2nd year	3rd year
Parent			
Annual average (µg/L)	N/A	N/A	N/A

	1st year	2nd year	3rd year
Metabolite X			
Annual average (µg/L)	N/A	N/A	N/A

PEC surface water and PEC sediment (Regulation (EU) No 284/2013, Annex Part A, points 9.2.5 / 9.3.1)

Parameters used in FOCUS Step 1 and Step 2	Molecular weight: 381.47 g/mol
Parameters used in FOCUS Step 3 and Step 4	FOCUS software: FOCUS SWASH v. 5.1; TOXSWA version 5.5.3
	Water solubility: 13.1 mg/l
	Vapour pressure: 3.0E-4
	Keq: 174.7
	l/n: 0.88
	Q_{10} factor: 2.58
B-value (Walker equation): 0.7
Crop uptake factor: 0

Application rate
Crop and growth stage: potatoes (BBCH 10-19) - worst case
Number of applications: 8
Interval: 5 days
Application rate(s): 75 g a.s./ha
Application window: Step 1 and 2: N, summer (Jun-Sep); S, spring (Mar-May)

Potatoes in Step 3: 16th March to 6th August

Application window	PECsw (µg/l)	PECsed (µg/kg)		
	actual	TWA	actual	TWA
All				
0	167.73		283.39	
7	124.44	144.62	217.40	251.96
21	69.357	111.03	121.17	193.73
28	51.778	98.305	90.457	171.57

FOCUS STEP 1 scenario

days after overall maximum	PECsw (µg/l)	PECsed (µg/kg)		
	actual	TWA	actual	TWA
Northern Europe				
0	12.332		20.740	
7	9.581	10.867	16.453	18.671
21	5.7915	8.6349	9.9691	14.852
28	4.5081	7.7571	7.7601	13.344
Southern Europe				
0	23.325		39.946	
7	18.139	20.617	31.224	35.475
21	10.991	16.386	18.919	28.200
28	8.5556	14.720	14.727	25.335

FOCUS STEP 2 scenario

days after overall maximum	PECsw (µg/l)	PECsed (µg/kg)		
	actual	TWA	actual	TWA
Northern Europe				
0	12.332		20.740	
7	9.581	10.867	16.453	18.671
21	5.7915	8.6349	9.9691	14.852
28	4.5081	7.7571	7.7601	13.344
Southern Europe				
0	23.325		39.946	
7	18.139	20.617	31.224	35.475
21	10.991	16.386	18.919	28.200
28	8.5556	14.720	14.727	25.335

Step 3

Product & Use	Scenario	Application Window	PECsw (µg/L)	PECsed (µg/L)
Potatoes				
8 x 75 g a.s./ha	D3-Ditch	11-May	0.215	0.040
		08-Sep	0.102	0.065
		D4-Pond	0.137	0.135
		16-Sep	0.350	0.349
		D4-Stream	0.187	0.133
		16-Sep	0.205	0.202
		D6-Ditch	0.215	0.038
		08-Jul	0.073	0.044
		D6-Ditch (2nd)	1.095	0.436
		18-Nov	0.506	0.460
		R1-Pond	0.155	0.142
		01-Sep	0.280	0.279
		R1-Stream	0.939	0.121
		01-Sep	0.626	0.439
		R2-Stream	1.253	0.270
		08-Jun	0.739	0.487
		R3-Stream	3.238	0.479
		25-Aug	1.275	0.640

Step 4 10 m vegetative filter strip and 10 m no-pray buffer strip

Product & Use	Scenario	Application Window	PECsw (µg/L)	PECsed (µg/L)
Potatoes				
8 x 75 g a.s./ha	D3-Ditch	11-May	0.0491	0.0121
		08-Sep	0.0320	0.0211
		D4-Pond	0.1371	0.1357
		16-Sep	0.3520	0.3517
		D4-Stream	0.1632	0.1325
		16-Sep	0.2053	0.2022
		D6-Ditch	0.0448	0.0115
		08-Jul	0.0229	0.0155
		D6-Ditch (2nd)	1.0950	0.4356
		18-Nov	0.4947	0.4487
Step 4 20 m vegetative filter strip and 20 m no-pray buffer strip

Product & Use	Scenario	Application Window	PECsw (µg/L)	PECsed (µg/L)			
		First	Last	Global max	7-day TWA	Global max	7-day TWA
Potatoes 8 x 75 g a.s./ha	D3-Ditch	11-May	08-Sep	0.00262	0.0064	0.0175	0.0116
	D4-Pond	23-May	16-Sep	0.1357	0.1343	0.3443	0.3440
	D4-Stream	23-May	16-Sep	0.1632	0.1325	0.2053	0.2022
	D6-Ditch	11-Apr	08-Jul	0.0245	0.0108	0.0166	0.0147
	D6-Ditch (2nd)	06-Aug	18-Nov	1.0950	0.4356	0.4922	0.4464
	R1-Pond	06-May	01-Sep	0.0364	0.0339	0.0764	0.0761
	R1-Stream	06-May	01-Sep	0.2224	0.0289	0.0900	0.0557
	R2-Stream	16-Mar	08-Jun	0.2953	0.0639	0.1365	0.0843
	R3-Stream	11-Apr	25-Aug	0.7748	0.1149	0.3058	0.1476

KIF-230-M-5

FOCUS Calculator: STEPS 1-2 in FOCUS version 3.2

Parameters used in FOCUS Step 1 and Step 2

- Molecular weight: 196.24 g/mol
- Metabolite in: soil and water
- K_{oc}: 871.4 ml/g (geometric mean)
- DT$_{50}$ in soil: not required, Step 1 calculation only
- DT$_{50}$ in water/sediment: 1000 d (worst case default)
- DT$_{50}$ in water: not required, Step 1 calculation only
- DT$_{50}$ in sediment: not required, Step 1 calculation only
- Crop interception: not required, Step 1 calculation only
- Max. occurrence observed in soil: 26.8 %
- Max. occurrence observed in water/sediment: 25.1 % (Note: 11.9% should be used for future calculations)

Parameters used in FOCUS Step 3

- FOCUS software: not performed
- Water solubility: 13,100 mg/l
- Vapour pressure: N/A
- K_{oc}: N/A
- 1/n: N/A
- Q$_{10}$ factor: 2.58
- B-value (Walker equation): 0.7
- Crop uptake factor: N/A
- Metabolite kinetically generated in simulation (y/n): N/A
- Formation fraction in soil: N/A
- Formation fraction in water/sediment: N/A

Application rate

- Crop and growth stage: potatoes (BBCH 10-19) - worst case
- Number of applications: 8
- Interval: 5 days
- Application rate(s): 75 g a.s./ha
- Application window: N, summer (Jun-Sep); S, spring (Mar-May)

Main routes of entry

- drainage and run-off
Parameters used in FOCUS Step 1 and Step 2

FOCUS Calculator: STEPS 1-2 in FOCUS version 3.2
Molecular weight: 195.21 g/mol
Metabolite in: soil and water
K_{oc}: 100.0 ml/g (geometric mean)
DT_{50} in soil: not required, Step 1 calculation only
DT_{50} in water/sediment: 1000 d (worst case default)
DT_{50} in water: not required, Step 1 calculation only
DT_{50} in sediment: not required, Step 1 calculation only
Crop interception: not required, Step 1 calculation only
Max. occurrence observed in soil: 9.8%
Max. occurrence observed in water/sediment: 23.7% (Note: 22.7% should be used for future calculations)

Parameters used in FOCUS Step 3

| FOCUS software: not performed |
| Water solubility: 30.0 mg/l |
| Vapour pressure: N/A |
| K_{oc}: N/A |
| $1/n$: N/A |
| Q_{10} factor: 2.58 |
| B-value (Walker equation): 0.7 |
| Crop uptake factor: N/A |
| Metabolite kinetically generated in simulation (y/n): N/A |
| Formation fraction in soil: N/A |
| Formation fraction in water/sediment: N/A |

Application rate

- Crop and growth stage: potatoes (BBCH 10-19) - worst case
- Number of applications: 8
- Interval: 5 days
- Application rate(s): 75 g a.s./ha
- Application window: N, summer (Jun-Sep); S, spring (Mar-May)

Main routes of entry

- Drainage and run-off

FOCUS STEP 1 scenario

scenario	days after overall maximum	actual	TWA	actual	TWA
All	0	25.279		214.11	
	7	24.778	24.865	215.91	216.23
	21	24.538	24.727	213.83	215.32
	28	24.420	24.665	212.79	214.82

KIF-230-M-4

FOCUS Calculator: STEPS 1-2 in FOCUS version 3.2
Molecular weight: 197.22 g/mol
Metabolite in: soil and water
K_{oc}: 161.0 ml/g (geometric mean)
DT$_{50}$ in soil: not required, Step 1 calculation only
DT$_{50}$ in water/sediment: 1000 d (worst case default)
DT$_{50}$ in water: not required, Step 1 calculation only
DT$_{50}$ in sediment: not required, Step 1 calculation only
Crop interception: not required, Step 1 calculation only
Max. occurrence observed in soil: 12.3%
Max. occurrence observed in water/sediment: 32.5%

Parameters used in FOCUS Step 3
- FOCUS software: not performed
- Water solubility: 1970 mg/l
- Vapour pressure: N/A
- K_{oc}: N/A
- $1/n$: N/A
- Q$_{10}$ factor: 2.58
- B-value (Walker equation): 0.7
- Crop uptake factor: N/A
- Metabolite kinetically generated in simulation (y/n): N/A
- Formation fraction in soil: N/A
- Formation fraction in water/sediment: N/A

Application rate
- Crop and growth stage: potatoes (BBCH 10-19) - worst case
- Number of applications: 8
- Interval: 5 days
- Application rate(s): 75 g a.s./ha
- Application window: N, summer (Jun-Sep); S, spring (Mar-May)

Main routes of entry
- drainage and run-off

FOCUS STEP 1 scenario	days after overall maximum	PEC$_{SW}$ (µg/l)	PEC$_{SED}$ (µg/kg)		
		actual	TWA	Actual	TWA
All	0	39.064	61.400		
	7	38.712	38.817	62.326	62.389
	21	38.338	38.622	61.724	62.146
	28	38.152	38.528	61.425	62.003

KIF-230-M-1
- FOCUS Calculator: STEPS 1-2 in FOCUS version 3.2

Parameters used in FOCUS Step 1 and Step 2
- Molecular weight: 169.17 g/mol
- Metabolite in: soil and water
- K_{oc}: 288.3 ml/g (geometric mean)
- DT$_{50}$ in soil: not required, Step 1 calculation only
- DT$_{50}$ in water/sediment: 1000 d (worst case default)
- DT$_{50}$ in water: not required, Step 1 calculation only
- DT$_{50}$ in sediment: not required, Step 1 calculation only
- Crop interception: not required, Step 1 calculation only
- Max. occurrence observed in soil: 27.7%
- Max. occurrence observed in water/sediment: 5.1%

Parameters used in FOCUS Step 3
- FOCUS software: not performed
- Water solubility: 172 mg/l
- Vapour pressure: N/A
- K_{oc}: N/A
- $1/n$: N/A
- Q$_{10}$ factor: 2.58
- B-value (Walker equation): 0.7
Crop uptake factor: N/A
Metabolite kinetically generated in simulation (y/n): N/A
Formation fraction in soil: N/A
Formation fraction in water/sediment: N/A

Application rate

Crop and growth stage: potatoes (BBCH 10-19) - worst case
Number of applications: 8
Interval: 5 days
Application rate(s): 75 g a.s./ha
Application window: N, summer (Jun-Sep); S, spring (Mar-May)

Main routes of entry

drainage and run-off

FOCUS STEP 1 scenario	days after overall maximum	PEC_{SW} (µg/l) actual	PEC_{SW} (µg/l) TWA	PEC_{SED} (µg/kg) actual	PEC_{SED} (µg/kg) TWA
All	0	21.139	60.583		
	7	21.002	21.055	60.548	60.677
	21	20.799	20.952	59.964	60.395
	28	20.698	20.901	59.673	60.252

KIF-230-M-8

FOCUS Calculator: STEPS 1-2 in FOCUS version 3.2

Parameters used in FOCUS Step 1 and Step 2

Molecular weight: 238.27 g/mol
Metabolite in: soil and water
K_{oc}: 72 ml/g (geometric mean)
DT_{50} in soil: not required, Step 1 calculation only
DT_{50} in water/sediment: 1000 d (worst case default)
DT_{50} in water: not required, Step 1 calculation only
DT_{50} in sediment: not required, Step 1 calculation only
Crop interception: not required, Step 1 calculation only
Max. occurrence observed in soil: 2.6%
Max. occurrence observed in water/sediment: 10.1% (Note: 2.6% should be used for future calculations)

Parameters used in FOCUS Step 3

FOCUS software: not performed
Water solubility: 611 mg/l
Vapour pressure: N/A
K_{oc}: N/A
I/n: N/A
Q_{10} factor: 2.58
B-value (Walker equation): 0.7
Crop uptake factor: N/A
Metabolite kinetically generated in simulation (y/n): N/A
Formation fraction in soil: N/A
Formation fraction in water/sediment: N/A

Application rate

Crop and growth stage: potatoes (BBCH 10-19) - worst case
Number of applications: 8
Interval: 5 days
Application rate(s): 75 g a.s./ha
Application window: N, summer (Jun-Sep); S, spring (Mar-May)

Main routes of entry

drainage and run-off
Estimation of concentrations from other routes of exposure (Regulation (EU) N° 284/2013, Annex Part A, point 9.4)

FOCUS STEP 1 scenario	days after overall maximum	PEC_{SW} (µg/l)	PEC_{SED} (µg/kg)		
		actual	TWA	actual	TWA
All	0	14.823	10.422		
	7	14.722	14.759	10.600	10.609
	21	14.579	14.687	10.497	10.568
	28	14.509	14.651	10.446	10.544

Method of calculation
No exposure through dust drift, exposure via sewers or run-off from hard surfaces

EC

Maximum concentration
No data; not required
Ecotoxicology
Effects on birds and other terrestrial vertebrates (Regulation (EU) N° 283/2013, Annex Part A, point 8.1 and Regulation (EU) N° 284/2013, Annex Part A, point 10.1)

Species	Test substance	Time scale	End point	Toxicity (mg/kg bw per day)
Birds				
Colinus virginianus	Benthiavalicarb-isopropyl	Acute	LD₅₀	>2000
Anas platyrhynchos	Benthiavalicarb-isopropyl	Acute	LD₅₀	>2000
-	Benthiavalicarb-isopropyl	Acute	LD₅₀	3776² (extrapolation)
Colinus virginianus	Benthiavalicarb-isopropyl	Short-term	LC₅₀	937
Anas platyrhynchos	Benthiavalicarb-isopropyl	Short-term	LC₅₀	1442
-	Benthiavalicarb-isopropyl	Long-term	LD₅₀/10	200.0
Colinus virginianus	Benthiavalicarb-isopropyl	Long-term	NOAEL	105.0
Mammals				
Rat, mouse	Benthiavalicarb-isopropyl	Acute	LD₅₀	>5000
Rat	KIF-230S-L (inactive isomer)	Acute	LD₅₀	>2000
Rat	KIF-230 15% WG	Acute	LD₅₀	>2000
Rat	Metabolite KIF-230-M-1	Acute	LD₅₀	467.0
Rat	Metabolite KIF-230-M-3	Acute	LD₅₀	>2000
Rat	Metabolite KIF-230-M-4	Acute	LD₅₀	>2000
Rat	Metabolite KIF-230-M-5	Acute	LD₅₀	545.0
Rat	Metabolite KIF-230-M-15	Acute	LD₅₀	>2000
Rabbit	Benthiavalicarb-isopropyl	Long-term	NOAEL	20.0
Endocrine disrupting properties (Annex Part A, points 8.1.5)

Wild mammals

T-modality:
In the mammalian studies only effects at organ level were observed (changes in thyroid histopathology), but no other more apical effects that could be linked to the thyroid mode of action were noted. Taking this into account, effects observed at organ level were considered to be population non-relevant, in line with indications of the ECHA/EFSA guidance document and the common practice.

EAS-modalities:
For mammals as non-target organisms, the population relevance of the adverse effects observed in mammalian studies could neither be confirmed nor excluded due to the uncertainties in the dataset and the poorly investigated MoA. Taking this into account, no firm conclusion could be drawn regarding the ED properties of benthiavalicarb on mammals as non-target organisms for the EAS-modalities

Non-mammalian species
For non-mammalian species neither the endocrine activity nor the endocrine adversity was sufficiently investigated. The available study with birds (according to OECD TG 206) only provide little information on the potential ED properties of benthiavalicarb. Further data would be needed to draw a conclusion.

Additional higher tier studies (Annex Part A, points 10.1.1.2):
- Not required

Terrestrial vertebrate wildlife (birds, mammals, reptile and amphibians) (Annex Part A, points 8.1.4, 10.1.3):
- Not required

\(^1\) extrapolation factor of 1.888 was applied to LD\(_{50}\) value due to lack of mortality and 10 animals of each species in the test

Values in \textbf{bold} were used in the risk assessment
Toxicity/exposure ratios for terrestrial vertebrates (Regulation (EU) N° 284/2013, Part A, Annex point 10.1)

Potatoes at 8x75.0 g a.s./ha with 5 days interval, BBCH 11-97

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Birds)					
All	Small omnivorous bird	Acute	27.8	135.8	10
All	Small omnivorous bird	Long-term	8.1	13.0	5
Tier 1 (Birds): Not required					
Higher tier (birds): Not required					
Screening Step (Mammals)					
All	Small herbivorous mammal	Acute	20.7	>241.5	10
All	Small herbivorous mammal	Long-term	6.0	3.3	5
Tier 1 (Mammals)					
BBCH 10-19	Small insectivorous mammal	Long-term	0.52	38.5	5
BBCH ≥20	Small insectivorous mammal	Long-term	0.24	83.3	5
BBCH ≥40	Small herbivorous mammal	Long-term	2.71	7.4	5
BBCH 10-40	Large herbivorous mammal	Long-term	1.78	11.2	5
BBCH ≥40	Large herbivorous mammal	Long-term	0.54	37.0	5
BBCH 10-39	Small omnivorous mammal	Long-term	0.97	20.6	5
BBCH ≥40	Small omnivorous mammal	Long-term	0.29	69.0	5
Higher tier (Mammals): Not required					

Risk from bioaccumulation and food chain behaviour
Not relevant, log Pow values of the active substance and all metabolites all <3

Risk from consumption of contaminated water

Leaf scenario:
The morphology of the crops indicated in GAP table does not facilitate the collection of rain/irrigation water in reservoirs that are large enough to attract birds and mammals.
Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Puddle scenario, Screening step	**Benthiavalicarb-isopropyl**				
Birds:					
1) acute: 235.5 g a.s./ha/3776 mg a.s./kg bw <50 (koc<500 L/kg), TER calculation not needed					
2) long-term: 235.5 g a.s./ha/105.0 mg a.s./kg bw/d <50 (koc<500 L/kg), TER calculation not needed					
Mammals:					
1) acute: 235.5 g a.s./ha/5000 mg a.s./kg bw <50 (koc<500 L/kg), TER calculation not needed					
2) long-term: 235.5 g a.s./ha/20.0 mg a.s./kg bw/d <50 (koc<500 L/kg), TER calculation not needed					
Metabolite KIF-230-M-1					
Birds:					
1) acute: 28.70 g/ha/377.6 mg/kg bw <50 (koc<500 L/kg), TER calculation not needed					
2) long-term: 28.70 g/ha/10.5 mg/kg bw/d <50 (koc<500 L/kg), TER calculation not needed					
Mammals:					
1) acute: 28.70 g/ha/467 mg/kg bw <50 (koc<500 L/kg), TER calculation not needed					
2) long-term: 28.70 g/ha/2.0 mg a.s./kg bw/d <50 (koc<500 L/kg), TER calculation not needed					
Metabolite KIF-230-M-3					
Birds:					
1) acute: 15.06 g/ha/377.6 mg/kg bw <50 (koc<500 L/kg), TER calculation not needed					
2) long-term: 15.06 g/ha/10.5 mg/kg bw/d <50 (koc<500 L/kg), TER calculation not needed					
Mammals:					
1) acute: 15.06 g/ha/2000 mg/kg bw <50 (koc<500 L/kg), TER calculation not needed					
2) long-term: 15.06 g/ha/2.0 mg a.s./kg bw/d <50 (koc<500 L/kg), TER calculation not needed					
Metabolite KIF-230-M-4					
Birds:					
1) acute: 11.77 g/ha/377.6 mg/kg bw <50 (koc<500 L/kg), TER calculation not needed					
2) long-term: 11.77 g/ha/10.5 mg/kg bw/d <50 (koc<500 L/kg), TER calculation not needed					
Mammals:					
1) acute: 11.77 g/ha/2000 mg/kg bw <50 (koc<500 L/kg), TER calculation not needed					
2) long-term: 11.77 g/ha/2.0 mg a.s./kg bw/d <50 (koc<500 L/kg), TER calculation not needed					
Metabolite KIF-230-M-5					
Birds:					
1) acute: 32.19 g/ha/377.6 mg/kg bw <3000 (koc≥500 L/kg), TER calculation not needed					
2) long-term: 32.19 g/ha/10.5 mg/kg bw/d <3000 (koc≥500 L/kg), TER calculation not needed					
Mammals:					
1) acute: 32.19 g/ha/545 mg/kg bw <3000 (koc≥500 L/kg), TER calculation not needed					
2) long-term: 32.19 g/ha/2.0 mg a.s./kg bw/d <3000 (koc≥500 L/kg), TER calculation not needed					

Toxicity data for all aquatic tested species (Regulation (EU) N° 283/2013, Annex Part A, points 8.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.2)

Group	Test substance	Time-scale (Test type)	End point	Toxicity 1)
Laboratory tests				
Group	Test substance	Time-scale (Test type)	End point	Toxicity 1)
-----------------------	---------------------------------	------------------------	--------------------	-------------
Fish				
Oncorhynchus mykiss	Benthiavalicarb-isopropyl	Acute 96 hr (flow-through)	Mortality, LC₅₀	>10.0 mg a.s./L (nom)
Cyprinus carpio	Benthiavalicarb-isopropyl	Acute 96 hr (flow-through)	Mortality, LC₅₀	>10.0 mg a.s./L (nom)
Lepomis macrochirus	Benthiavalicarb-isopropyl	Acute 96 hr (flow-through)	Mortality, LC₅₀	>10.0 mg a.s./L (nom)
Oncorhynchus mykiss	KIF-230 15% WG	Acute 96 hr (static)	Mortality, LC₅₀	>100.0 mg prep./L (>15.5 mg a.s./L (nom))
Danio rerio	Benthiavalicarb-isopropyl	Chronic 35 d (ELS, semi-static)	Growth, development, behaviour, NOEC	≥5.0 mg a.s./L (nom)
Oncorhynchus mykiss	Benthiavalicarb-isopropyl	Chronic 28 d (Fish juvenile growth test, flow-through)	Growth, NOEC	1.0 mg a.s./L (nom)
Oncorhynchus mykiss	Metabolite KIF-230-M-1	Acute 96 hr (static)	Mortality, LC₅₀	14.2 mg pm/L (nom)
Oncorhynchus mykiss	Metabolite KIF-230-M-3	Acute 96 hr (static)	Mortality, LC₅₀	40.5 mg pm/L (nom)
Oncorhynchus mykiss	Metabolite KIF-230-M-4	Acute 96 hr (static)	Mortality, LC₅₀	>3.36 mg pm/L (nom)
Oncorhynchus mykiss	Metabolite KIF-230-M-5	Acute 96 hr (semi-static)	Mortality, LC₅₀	>10.0 mg pm/L (nom)
Oncorhynchus mykiss	Metabolite KIF-230-M-8	Acute 96 hr (semi-static)	Mortality, LC₅₀	>100.0 mg pm/L (nom)
Aquatic invertebrates				
Daphnia magna	Benthiavalicarb-isopropyl	Acute 48 h (static)	Immobilisation, EC₅₀	>10.0 mg a.s./L (nom)
Daphnia magna	KIF-230 15% WG	Acute 48 h (semi-static)	Immobilisation, EC₅₀	>100.0 mg prep./L (>15.5 mg a.s./L (nom))
Daphnia magna	Benthiavalicarb-isopropyl	Chronic 21 d (semi-static)	Reproduction, NOEC	3.0 mg a.s./L (nom)
			Reproduction, EC₁₀	4.30 mg a.s./L (nom)
			Reproduction, EC₂₀	4.91 mg a.s./L (nom)
Daphnia magna	Metabolite KIF-230-M-1	Acute 48 h (static)	Immobilisation, EC₅₀	14.0 mg pm/L (nom)
Daphnia magna	Metabolite KIF-230-M-3	Acute 48 h (static)	Immobilisation, EC₅₀	55.3 mg pm/L (nom)
Daphnia magna	Metabolite KIF-230-M-4	Acute 48 h (static)	Immobilisation, EC₅₀	6.28 mg pm/L (nom)
Daphnia magna	Metabolite KIF-230-M-5	Acute 48 h (semi-static)	Immobilisation, EC₅₀	>10.0 mg pm/L (nom)
Pesticide Risk Assessment

Daphnia magna

Test substance	Time-scale (Test type)	End point	Toxicity 1)
Metabolite KIF-230-M-8	Acute 48 h (static)	Immobilisation, EC₅₀	>100.0 mg pm/L (nom)

Sediment-dwelling organisms:

Studies not performed and not required due to lack of insecticidal activity of benthiavalicarb-isopropyl and its metabolites

Algae

Test substance	Time-scale (Test type)	Growth rate: Eᵣ₅₀ NOEᵣ	Yield: Eᵢ₅₀ NOEᵢ	Toxicity 1)
Selenstrum capricornutum Benthiavalicarb-isopropyl 72 h (static)	Growth rate: Eᵣ₅₀ NOEᵣ	Yield: Eᵢ₅₀ NOEᵢ	>10.0 mg a.s./L (nom) 2.5 mg a.s./L	
Pseudokirchneriella subcapitata Metabolite KIF-230-M-1 72 h (static)	Growth rate: Eᵣ₅₀ NOEᵣ	Yield: Eᵢ₅₀ NOEᵢ	38.6 mg pm/L (nom) 30.1 mg pm/L	
Pseudokirchneriella subcapitata Metabolite KIF-230-M-3 72 h (static)	Growth rate: Eᵣ₅₀ NOEᵣ	Yield: Eᵢ₅₀ NOEᵢ	90.9 mg pm/L (nom) 42.0 mg pm/L	
Pseudokirchneriella subcapitata Metabolite KIF-230-M-4 72 h (static)	Growth rate: Eᵣ₅₀ NOEᵣ	Yield: Eᵢ₅₀ NOEᵢ	>10.0 mg pm/L (nom) 7.42 mg pm/L	
Pseudokirchneriella subcapitata Metabolite KIF-230-M-5 72 h (static)	Growth rate: Eᵣ₅₀ NOEᵣ	Yield: Eᵢ₅₀ NOEᵢ	71.1 mg pm/L (nom) 44.0 mg pm/L	
Pseudokirchneriella subcapitata Metabolite KIF-230-M-8 72 h (static)	Growth rate: Eᵣ₅₀ NOEᵣ	Yield: Eᵢ₅₀ NOEᵢ	>100.0 mg pm/L (nom)	

1) Toxicity values in parentheses refer to nominal concentrations.
Group Test substance Time-scale (Test type) End point Toxicity

Higher plant: Studies not required since benthiavalicarb-isopropyl is not a herbicide and does not exhibit herbicidal activity.
Further testing on aquatic organisms Not required
Potential endocrine disrupting properties (Annex Part A, point 8.2.3)
For non-mammalian species neither the endocrine activity nor the endocrine adversity was sufficiently investigated. The available studies with fish (according to OECD TG 206) only provide little information on the potential ED properties of benthiavalicarb. Further data would be needed to draw a conclusion.

1) (**nom**) nominal concentration; (**mm**) mean measured concentration; prep.: preparation; a.s.: active substance; pm: pure metabolite

Values in **bold** were used in the risk assessment
Bioconcentration in fish (Annex Part A, point 8.2.2.3)

	Bentiavaliarb-isopropyl	KIF-230-M-1	KIF-230-M-3	KIF-230-M-4	KIF-230-M-5	KIF-230-M-8
logP_{O/W}	2.56	2.30	2.26	2.58	1.70	1.84
Steady-state bioconcentration factor (BCF) (total wet weight/normalised to 5% lipid content)						
Uptake/depuration kinetics BCF (total wet weight/normalised to 5% lipid content)						
Annex VI Trigger for the bioconcentration factor						
Clearance time (days) (CT₅₀)						
(CT₉₀)						
Level and nature of residues (%) in organisms after the 14 day depuration phase						
Higher tier study						

* based on total 14C or on specific compounds
Tier-1 RAC_{SW} values for aquatic organisms

Substance	Time-scale	Group of species	Endpoint [µg/L]	Assessment factor	Tier-1 RAC_{SW}
Benthiavalicarb-isopropyl	Acute	Fish	>10 000	100	>100
	Acute	Aquatic invertebrates	>10 000	100	>100
	Chronic	Fish	1000	10	100
	Chronic	Aquatic invertebrates	3000	10	300
	Chronic	Algae	>10 000	10	>1000
KIF-230-M-1	Acute	Fish	14 200	100	142
	Acute	Aquatic invertebrates	14 000	100	140
	Chronic	Algae	38 600	10	3860
KIF-230-M-3	Acute	Fish	40 500	100	405
	Acute	Aquatic invertebrates	55 300	100	553
	Chronic	Algae	90 900	10	9090
KIF-230-M-4	Acute	Fish	>3360	100	>33.6
	Acute	Aquatic invertebrates	6240	100	62.4
	Chronic	Algae	>10 000	10	>1000
KIF-230-M-5	Acute	Fish	>10 000	100	>100
	Acute	Aquatic invertebrates	>10 000	100	>100
	Chronic	Algae	71 100	10	7110
KIF-230-M-8	Acute	Fish	>100 000	100	>1000
	Acute	Aquatic invertebrates	>100 000	100	>1000
	Chronic	Algae	>100 000	10	>10 000

Values in **bold** were used in the risk assessment.
Toxicity/exposure ratios for the most sensitive aquatic organisms (Regulation (EU) N° 284/2013, Annex Part A, point 10.2)

FOCUS$_{sw}$ step 1-3 - TERs for benthiavalicarb-isopropyl – 8x75.0 g a.s./ha with 5 days interval, BBCH 11-97

Scenario	PEC global max (µg L)	Tier 1-RAC$_{SW,A}$/PECSW	Tier 1-RAC$_{SW,Ch}$/PECSW
FOCUS Step 1	163.73	>0.61	0.61
FOCUS Step 2 North Europe	12.332	>8.1	8.4
	23.325	>4.3	4.3
FOCUS Step 3			
D3 / ditch			
D4 / pond			
D5 / stream			
R1 / pond			
R2 / stream			
R3 / stream			
R4 / stream			
Ditch			
Pond			
Stream			

Trigger 1 1

Values in **bold** indicate unacceptable risk

FOCUS$_{sw}$ step 1 - TERs for metabolite KIF-230-M-1

Scenario	PEC global max (µg L)	Tier 1-RAC$_{SW,A}$/PECSW	Tier 1-RAC$_{SW,Ch}$/PECSW
FOCUS Step 1	21.139	6.6	182.6

Trigger 1 1

FOCUS$_{sw}$ step 1 - TERs for metabolite KIF-230-M-3

Scenario	PEC global max (µg L)	Tier 1-RAC$_{SW,A}$/PECSW	Tier 1-RAC$_{SW,Ch}$/PECSW
FOCUS Step 1	39.064	10.4	232.7

Trigger 1 1
FOCUSsw step 1 - TERs for metabolite KIF-230-M-4

Scenario	PEC global max (µg L)	Tier 1-RAC_{SW,A} / PEC_{SW}	Tier 1-RAC_{SW,Ch} / PEC_{SW}
FOCUS Step 1	25.471	>33.6 µg/L	>1000 µg/L

Trigger

1 1

FOCUSsw step 1 - TERs for metabolite KIF-230-M-5

Scenario	PEC global max (µg L)	Tier 1-RAC_{SW,A} / PEC_{SW}	Tier 1-RAC_{SW,Ch} / PEC_{SW}
FOCUS Step 1	29.899	>100 µg/L	7110 µg/L

Trigger

1 1

FOCUSsw step 1 - TERs for metabolite KIF-230-M-8

Scenario	PEC global max (µg L)	Tier 1-RAC_{SW,A} / PEC_{SW}	Tier 1-RAC_{SW,Ch} / PEC_{SW}
FOCUS Step 1	14.823	>1000 µg/L	>10 000 µg/L

Trigger

1 1
Effects on bees (Regulation (EU) No 283/2013, Annex Part A, point 8.3.1 and Regulation (EU) No 284/2013 Annex Part A, point 10.3.1)*

Species	Test substance	Time scale/type of endpoint	End point	Toxicity
Apis mellifera	Benthiavalicarb-isopropyl	Acute	Oral toxicity (LD₅₀)	>100.0 µg a.s./bee
Apis mellifera	KIF-230 15% WG	Acute	Oral toxicity (LD₅₀)	>100.0 µg a.s./bee
Bombus terrestris	KIF-230 15% WG	Acute	Oral toxicity (LD₅₀)	>740.5 µg a.s./bumblebee
Apis mellifera	Benthiavalicarb-isopropyl	Acute	Contact toxicity (LD₅₀)	>100.0 µg a.s./bee
Apis mellifera	KIF-230 15% WG	Acute	Contact toxicity (LD₅₀)	>100.0 µg a.s./bee
Bombus terrestris	KIF-230 15% WG	Acute	Contact toxicity (LD₅₀)	>148.1 µg a.s./bumblebee
Apis mellifera	KIF-230 15% WG	Chronic	10 d-LDD50 NOEDD	>124.6 µg a.s./bee/day
Apis mellifera	Benthiavalicarb-isopropyl	Bee brood development	NOED larvae	3.69 µg a.s./larva/developmental period
			Mortality	2.5 µg a.s./larva
			LD₁₀	13.312 µg a.s./larva
			ED₁₀	2.13 µg a.s./larva
			Emergence	10.46 µg a.s./larva
			LD₂₀	
			ED₂₀	

Potential for accumulative toxicity: No

Semi-field test (Cage and tunnel test): Not required

Field tests: Not required
Risk Assessment for honey bees based on EC (2002)

Application on potatoes at 8x75.0 g a.s./ha

Test substance	Route	Hazard quotient	Annex VI Trigger
Benthiavalicarb-isopropyl	Contact	<0.75	50
Benthiavalicarb-isopropyl	Oral	<0.75	50

Risk assessment for potatoes at 8x75.0 g a.s./ha with 5 days interval, BBCH 11-97 based on EFSA (2013)

Species	Test substance	Risk quotient	HQ/ETR	Trigger
Apis mellifera	Benthiavalicarb-isopropyl	HQcontact	<0.75	<42
Bombus terrestris	Benthiavalicarb-isopropyl	HQcontact	<0.10	<7
Apis mellifera	Benthiavalicarb-isopropyl	ETRacute adult oral	<0.006	<0.2
Bombus terrestris	Benthiavalicarb-isopropyl	ETRacute adult oral	<0.006	<0.036
Apis mellifera	Benthiavalicarb-isopropyl	ETRchronic adult oral	<0.005	<0.03
Apis mellifera	Benthiavalicarb-isopropyl	ETRlarvae	0.09	<0.2

Screening risk assessment for bees exposed to benthiavalicarb-isopropyl via guttation fluid

Risk quotient	W [µL/bee]	Solubility in water [µg/µL]	PEC (% of solubility) [µg/µL]	Endpoint	Value	Result	Trigger
ETRacute adult oral	11.4	0.01314	0.01314 (100%)	LD50oral	>100.0 µg a.s./bee	<0.0015	<0.2
ETRchronic adult oral	11.4	0.01314	0.003 (22%)	LD50chronic,oral	>124.6 µg a.s./bee/day	<0.0003	<0.03
ETRlarvae	111.0	0.01314	0.0095 (72%)	NOEDlarvae	3.69 µg a.s./larvae/day	0.286	<0.2

Values in **bold** indicate unacceptable risk

Screening risk assessment for bees exposed to benthiavalicarb-isopropyl via surface water

Risk quotient	W [µL/bee]	Step 1 PECsw.max [µg/µL]	Endpoint	Value	Result	Trigger
ETRacute adult oral	11.4	0.00017	LD50oral	>100.0 µg a.s./bee	<0.0001	<0.2
ETRchronic adult oral	11.4	0.00017	LD50chronic,oral	>124.6 µg a.s./bee/day	<0.0001	<0.03
ETRlarvae	111.0	0.00017	NOEDlarvae	3.69 µg a.s./larvae/day	0.005	<0.2
Effects on other arthropod species (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.2)

Laboratory tests with standard sensitive species

Species	Test Substance	End point	Toxicity
Typhlodromus pyri	KIF-230 15% WG	Mortality, LR₅₀ Reproduction, ER₅₀	>75.0 g a.s./ha
			>75.0 g a.s./ha
Typhlodromus pyri	KIF-230 15% WG	Mortality, LR₅₀ Reproduction, ER₅₀	>262.5 g a.s./ha
			>262.5 g a.s./ha
Aphidius rhopalosiphi	KIF-230 15% WG	Mortality, LR₅₀ Reproduction, ER₅₀	>75.0 g a.s./ha
			>75.0 g a.s./ha
Aphidius rhopalosiphi	KIF-230 15% WG	Mortality, LR₅₀ Reproduction, ER₅₀	>262.5 g a.s./ha
			>262.5 g a.s./ha
Additional species			
Chrysoperla carnea	KIF-230 15% WG	Mortality, LR₅₀ Reproduction, ER₅₀	>75.0 g a.s./ha
			>75.0 g a.s./ha
Poecilus cupreus	KIF-230 15% WG	Mortality, LR₅₀ Reproduction, ER₅₀	>75.0 g a.s./ha
			>75.0 g a.s./ha

First tier risk assessment for potatoes at 8x75.0 g a.s./ha g a.s./ha with 5 days interval, BBCH 11-97

Test substance	Species	Effect (LR₅₀ g a.s./ha)	HQ in-field	HQ off-field for 1 m distance	Trigger	
KIF-230 15% WG	Typhlodromus pyri	>262.5	<1.0 (foliar)	<1.6 (soil)	<0.02	2
KIF-230 15% WG	Aphidius rhopalosiphi	>262.5	<1.0 (foliar)	<1.6 (soil)	<0.02	2
Extended laboratory tests, aged residue tests:
Not required, acceptable risk at Tier 1

Semi-field tests :	Not required
Field studies:	Not required
Additional specific test:	Not required

Effects on non-target soil meso- and macro fauna; effects on soil nitrogen transformation
(Regulation (EU) N° 283/2013, Annex Part A, points 8.4, 8.5, and Regulation (EU) N° 284/2013 Annex Part A, points 10.4, 10.5)

Test organism	Test substance	Application method of test a.s./OM	Time scale	End point	Toxicity
Earthworms					
Eisenia fetida	Benthiavalicarb-isopropyl	Mixing with soil, 10% OM	Chronic	Reproduction	EC₁₀: not calculated NOEC = 324.0 mg a.s./kg dw soil (NOEC_corr = 162.0 mg a.s./kg dw soil)
Eisenia fetida	Metabolite KIF-230-M-1	Mixing with soil, 10% OM	Chronic	Reproduction	EC₁₀ = 203.4 mg pm/kg dw soil EC₂₀ = 249.7 mg pm/kg dw soil NOEC = 180.0 mg pm/kg dw soil (NOEC_corr = 90.0 mg pm/kg dw soil)

Other soil macroorganisms:
Benthiavalicarb-isopropyl, metabolite KIF-230-M-3 and metabolite KIF-230-M-4: studies not required due to soil DT₉₀ values <100 days.
Metabolite KIF-230-M-1 and KIF-230-M-5: soil DT₉₀ values in range 100-365 days, but studies not required due to TER values for earthworms far above the trigger and effects on soil micro-organisms <25%.

pm: pure metabolite
Values in **bold** were used in the risk assessment

Higher tier testing (e.g. modelling or field studies): Not required
Nitrogen transformation Benthiavalicarb-isopropyl Nitrate formation +2.38% effect at day 28 at 4.0 mg a.s./kg d.w.soil

Nitrogen transformation Metabolite KIF-230-M-1 Nitrate formation -6.35% effect at day 28 at 0.5 mg pm/kg d.w.soil

Nitrogen transformation Metabolite KIF-230-M-3 Nitrate formation -21.5% effect at day 28 at 0.25 mg pm/kg d.w.soil

Toxicity/exposure ratios for soil organisms

Potatoes at 8x75.0 g a.s./ha g a.s./ha with 5 days interval, BBCH 11-97

Test organism	Test substance	Time scale	Soil PEC	TER	Trigger
Earthworms					
Eisenia fetida	Benthiavalicarb-isopropyl	Chronic	0.389 (initial)	416.5	5
Eisenia fetida	Metabolite KIF-230-M-1	Chronic	0.0597 (accumulation)	1,507.5	5
Eisenia fetida	Metabolite KIF-230-M-3	Chronic	0.0247 (initial)	655.9	1) 5
Eisenia fetida	Metabolite KIF-230-M-4	Chronic	0.0208 (accumulation)	778.8	1) 5
Eisenia fetida	Metabolite KIF-230-M-5	Chronic	0.418 (accumulation)	38.8	1) 5
Eisenia fetida	Metabolite KIF-230-M-8 2)	Chronic	0.0076 (initial)	2,135.6	1) 5

Other soil macroorganisms:
Not required

1) In absence of experimentally derived data, 10 times toxicity of the parent was assumed as a worst case.
2) Relevant only for prolonged anaerobic conditions.

Effects on terrestrial non target higher plants (Regulation (EU) N° 283/2013, Annex Part A, point 8.6 and Regulation (EU) N° 284/2013 Annex Part A, point 10.6)

Screening data

Screening glasshouse and field trials demonstrated that benthiavalicarb-isopropyl is not phytotoxic at rates ranging from 150 to 10000 g a.s./ha. In all tests and at all rates 0% effects were observed. Worst case predicted off-field rate of KIF-230 15% WG (i.e. 9.12 g a.s./ha, calculated with consideration of annual cumulative rate of 8x75.0 g a.s./ha and spray drift of 1.52% relevant for 8 applications, according to Ganzelmeier drift data) is more than 16 times lower than the single lowest application rate (i.e. 150 g a.s./ha) at which 0% phytotoxic effects were observed during screening trials.

Laboratory dose response tests

Studies not required since benthiavalicarb-isopropyl is a fungicide and does not exhibit herbicidal activity
Effects on biological methods for sewage treatment (Regulation (EU) N° 283/2013, Annex Part A, point 8.8)

Test type/organism	end point
Activated sludge	EC\textsubscript{50} > 100.0 mg a.s./L

Monitoring data (Regulation (EU) N° 283/2013, Annex Part A, point 8.9 and Regulation (EU) N° 284/2013, Annex Part A, point 10.8)

Not required

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2)
Ecotoxicologically relevant compounds \(^1\)

Compartiment	Compound
soil	Benthiavalicarb-isopropyl (KIF-230R-\textsubscript{L})
water	Benthiavalicarb-isopropyl (KIF-230R-\textsubscript{L})
sediment	Benthiavalicarb-isopropyl (KIF-230R-\textsubscript{L})
groundwater	Benthiavalicarb-isopropyl (KIF-230R-\textsubscript{L})

\(^1\) metabolites are considered relevant when, based on the risk assessment, they pose a risk comparable or higher than the parent

Classification and labelling with regard to ecotoxicological data (Regulation (EU) N° 283/2013, Annex Part A, Section 10)

Substance	Classification
Benthiavalicarb-isopropyl	None

According to the peer review, criteria for harmonised classification according to Regulation (EC) No 1272/2008 may be met for:

Substance	Classification
	Chronic 2, H411
	(NOEC for fish is 1.0 mg a.s./L, i.e. \(\leq 1.0\) mg/L, and substance is not rapidly degradable)

\(^5\) Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1–1355.