Internal pH regulation facilitates \textit{in situ} long-term acclimation of massive corals to end-of-century carbon dioxide conditions

M. Wall1, J. Fietzke1, G. M. Schmidt2, A Fink3, L. C. Hofmann4,5, D. de Beer3 & K.E. Fabricius5

The resilience of tropical corals to ocean acidification depends on their ability to regulate the pH within their calcifying fluid (pH\textsubscript{cf}). Recent work suggests pH\textsubscript{cf} homeostasis under short-term exposure to pCO\textsubscript{2} conditions predicted for 2100, but it is still unclear if pH\textsubscript{cf} homeostasis can be maintained throughout a corals lifetime. At CO\textsubscript{2} seeps in Papua New Guinea, massive \textit{Porites} corals have grown along a natural seawater pH gradient for decades. This natural gradient, ranging from pH 8.1–7.4, provides an ideal platform to determine corals' pH\textsubscript{cf} (using boron isotopes). \textit{Porites} maintained a similar pH\textsubscript{cf} (~8.24) at both a control (pH 8.1) and seep-influenced site (pH 7.9). Internal pH\textsubscript{cf} was slightly reduced (8.12) at seawater pH 7.6, and decreased to 7.94 at a site with a seawater pH of 7.4. A growth response model based on pH\textsubscript{cf} mirrors the observed distribution patterns of this species in the field. We suggest \textit{Porites} has the capacity to acclimate after long-time exposure to end-of-century reduced seawater pH conditions and that strong control over pH\textsubscript{cf} represents a key mechanism to persist in future oceans. Only beyond end-of-century pCO\textsubscript{2} conditions do they face their current physiological limit of pH homeostasis and pH\textsubscript{cf} begins to decrease.

Tropical corals are the foundation species for coral reefs, the most diverse marine ecosystems in the world. The persistence of a species-rich reef-associated community will depend on the ability of corals to maintain net growth under future pCO\textsubscript{2} conditions. To date our understanding of the fate of corals in the face of ocean acidification is based on controlled laboratory studies1,2, mesocosm studies mimicking coral community composition3–5, and field sites that function as natural ocean acidification analogues6–8. These efforts have provided strong evidence that many tropical corals will respond to future predicted pCO\textsubscript{2} conditions with a decline in growth. However, corals actively establish a proton (H+) gradient by pumping protons out of the calicoblastic space between tissue and skeleton where calcification takes place, maintaining the pH of the calcifying fluid (pH\textsubscript{cf}) well above seawater pH (pHT)9,10. Therefore, the aragonite saturation state at the site of calcification is elevated relative to seawater, which likely fosters calcification.

The magnitude of the pH\textsubscript{cf} up-regulation can be derived indirectly by measuring the skeletal boron isotopic composition (∆\textdegree{11}B) – an established pH proxy that appears to vary with pH\textsubscript{cf} at the calcification site9,11–14. Thus, it can be and is already used to determine the corals’ ability to elevate the pH\textsubscript{cf} at the site of calcification11,14–17. Culturing experiments have revealed that a reduction in seawater pH\textsubscript{T} is not directly reflected in the skeletal boron isotopic composition11–13, as the decline in skeletal ∆\textdegree{11}B, and hence internal pH\textsubscript{cf}, is less than the change in seawater pH\textsubscript{T}. At low seawater pH\textsubscript{T}, internal pH\textsubscript{cf} is still elevated compared to seawater pH\textsubscript{T} (up-regulation intensity, where ∆pH = pH\textsubscript{cf} – pH\textsubscript{T}18–20), but it does not reach those internal pH\textsubscript{cf} levels observed under control conditions11,18. Based on the observed relationship between internal pH\textsubscript{T} and seawater pH\textsubscript{T} from laboratory studies, McCulloch \textit{et al.}14 projected a continuous decline in growth under ocean acidification using their internal pH regulation and abiotic calcification (IpHRAC) model. The projected decline is species-specific, with massive \textit{Porites} being regarded as a rather robust coral taxon. A recent short-term study, however, observed that corals

1GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany. 2Alfred-Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany. 3Max-Planck Institute for Marine Microbiology, Bremen, Germany. 4Marine Botany, Bremen Center for Marine Research and Education, University of Bremen, Germany. 5Australian Institute for Marine Science, Townsville, Australia. Correspondence and requests for materials should be addressed to M.W. (email: mwall@geomar.de)
exposed to reduced seawater pH₄ conditions in an in situ mesocosm experiment can maintain their internal pH₄₁ irrespective of seawater pH₂ down to pH₂ 7.74. While these data provide hope for coral persistence in the future, they cannot tell whether corals can maintain their internal pH₄ in the long-term in their natural environment or if they are able to acclimate after long-term exposure to future ocean seawater pH₂.

Volcanic carbon dioxide seeps in Milne Bay Province, Papua New Guinea (PNG) represent an ideal natural laboratory to investigate the effect of a seawater pH₂ gradient on coral skeletal δ¹¹B and pH₄₁ up-regulation. A previous study found that at these seeps, massive Porites corals dominate coral reefs at seawater pH₂ levels projected for the end of the century (~7.8), and growth rates are similar compared to adjacent control sites. At a seawater pH₂ of 7.7, reef formation ceases, and only a few scattered colonies of massive Porites are found close to a major seep site where seawater pH₂ is severely reduced (Supplementary Fig. S1). No corals are found below a seawater pH₂ of ~7.4, where seagrasses dominate the environment. These distributional data contrast with projections based on the previously mentioned laboratory findings, but allow testing of whether or not pH₄₁ up-regulation is a key mechanism that allows Porites to dominate the PNG seeps and maintain pH₄₁ homeostasis during their lifetime.

To investigate the corals’ ability to regulate their internal pH₄₁ in situ along a seawater pH₂ gradient, we studied skeletal samples of massive Porites colonies from the CO₂ seeps in PNG. Fourteen corals were sampled from four sites, namely a control site (8.1 pH₂), intermediate site (7.9 pH₂), low pH₂ site (7.6 pH₂), and extreme site (7.4 pH₂; Supplementary Fig. S1, Table S1,3). We tested whether the IpHRAC model can be used to reproduce the observed pattern in Porites distribution and growth by inferring the internal pH₄₁ from the skeletal boron isotopic signature. We used high-resolution boron measurements to address whether strong natural variations in seawater pH₂ (as observed at the seep sites) are reflected in the skeletal boron isotopic signature. This has important implications for the use of δ¹¹B to distinguish between sites of high-seawater pH₂ variability (e.g., internal wave influenced reefs, upwelling) and sites with more stable conditions.

Results and Discussion

We derived the first δ¹¹B-pH₂ relationship for tropical corals collected along a natural pH₂ gradient (Fig. 1A). The observed relationship of δ¹¹B against the mean seawater pH₂ values recorded at the four sites (Supplementary Figs S3 and 4, Table S3) differs from previous laboratory findings (Fig. 1A). The δ¹¹B values of the five corals from the control site agreed well, but could not be distinguished from those corals collected at the intermediate site, while those from the low pH₂ site were lower than and significantly different from the control site (mean of all colonies per site ± s.e.m.: control site 20.91‰ ± 0.26 and low pH site 19.48‰ ± 0.40, respectively, Supplementary Table S5). At the extreme site the δ¹¹B values were significantly lower than δ¹¹B at all other sites (Fig. 1A, Supplementary Tables S4,5). In contrast to laboratory studies (using the same genus Porites and two other genera namely Acropora and Stylophora, Fig. 1A), the here observed trend does not allow the reconstruction of seawater pH₂. This is similar to a recent study16 (see also Supplementary Material: “Average boron isotopic signature, variability and corresponding internal calcifying conditions”). Also our study and this recent work16 show that variations between individuals are often greater than the effect of external environmental conditions on the coral isotopic composition (e.g., individual differences at control = 1‰ and intermediate site = 1.09‰, compared to an average difference of 0.34‰). Corresponding pH₂ values suggest that the corals’ internal pH₂ remained within a narrow range, with mean values ranging from 8.30 to 7.83, while the seawater pH₂ changed from 8.1 to 7.4 (Fig. 1B), as confirmed by direct pH₂ measurements. This underlines a strong physiological control on their internal pH₄₁ irrespective of seawater pH₂. The pH up-regulation (ΔpH) effort was significantly higher at all seep-influenced sites compared to the control site (mean of all colonies per site ± s.e.m.: control site 0.14 ± 0.02 pH units, intermediate site 0.31 ± 0.04, low pH site 0.52 ± 0.04 and extreme site 0.54 ± 0.05, respectively; Supplementary Table S4,5). The highest mean ΔpH up-regulation observed in any of the studied colonies was 0.68 ± 0.03 (Fig. 2).

The corals in this study were growing within a few hundred meters distance from each other, under similar physicochemical settings excluding pCO₂ (e.g., similar water flow, salinity, temperature, nutrient levels, total alkalinity)²⁵. Under long-term exposure to these natural environmental conditions, the corals showed the ability to compensate for reduced external seawater pH₂ by increasing internal pH₄₁ up-regulation. Combined with results from a recent study16, our results suggest corals can maintain pH₄₁ homeostasis and highlight that even corals exposed to pCO₂ conditions predicted for the end of the century for their entire lifetime can maintain internal pH₄₁. Only beyond this threshold do they face their current physiological limit, where pH₄₁ begins to decrease.

We calculated relative rates of calcification based on our internal pH₄₁ values using the IpHRAC model: G = k₄(x – x₂)(1-x) (see McCulloch et al., and Materials and Methods for more details). Fabricius et al. only measured growth at vent sites with seawater pH₂ levels not lower than 7.75 (expected seawater pH₂ values for the end of the century), not covering the seawater pH₂ range of this study. We used their measured growth ratio and compared it to the relative growth rate calculated by the IpHRAC model based on our derived pH₄₁. The similarity in growth (G) between our intermediate site and the control site (Gintermediate/Gcontrol = 1.23 to 0.91; Supplementary Table S6) corroborates the lack of calcification response observed in a previous study. Hence, we used the model to extrapolate growth for the other two sites (low pH₂ and extreme site). Calcification rates at the low pH₂ site are still similar to present day rates and become reduced at the extreme site. Overall, our modelled growth response mirrors the coral distribution observed at the PNG sites.

The IpHRAC model from McCulloch et al. for Porites (Fig. 3) suggests a continuous decline in growth and contrasts to the model derived using our data from the PNG seeps. Here we found a similar growth rate for control, intermediate and low pH₂ site before growth rates decrease to the extreme site (Fig. 3). The ΔpH up-regulation intensity potentially reaches a physiological limit and becomes energetically expensive at the extreme site. This site corresponds to the limit of Porites occurrence at the PNG seeps, beyond which the coral do not grow. Corals at seawater pH₂ levels of 7.9 potentially acclimate to these pCO₂ conditions by enhancing internal pH₄₁ up-regulation. Laboratory studies have also shown a curvilinear growth response even with
similar growth rates at a pCO$_2$ of 2553 ppm (pH$_T$ = 7.32) compared to pre-industrial levels (Fig. 3). In the latter study24, they did not test whether internal pH$_{cf}$ was similarly elevated at pCO$_2$ 324 and 2553 ppm. Our study and a recent pH$_{cf}$ homeostasis hypothesis16 would indicate that pH$_{cf}$ in corals exposed to both treatments should be similarly elevated, but this still needs to be validated for the experiment by Castillo et al.24. Considering the short duration (95 days) of their experiment, it is questionable whether the corals would be able to maintain calcification at 2553 ppm CO$_2$ for longer periods of time, considering the expected increase in energy demand at ecological time scales. Our calcification model (Fig. 3) suggests that even the very robust Porites corals would have reduced rates of calcification when exposed to levels that are far beyond those projected for the end of the century for a lifetime. Calcification is an energy expensive process and hence, the increased up-regulation at the seep sites requires more energy that must be provided in order for the corals to acclimate. The expected increase in seawater dissolved inorganic carbon in future oceans may enhance photosynthesis, and consequently provide more energy to the corals at the intermediate and low pH$_T$ sites to cover their increased daily budget without negative consequence11,13. However, the increase in photosynthesis might not be sufficient to maintain a high pH$_{cf}$. Furthermore, it is not known what other physiological and metabolic trade-offs the corals may face, potentially affecting the calcification response and also their viability. Here we support previous findings that internal pH$_{cf}$ up-regulation mitigates ocean acidification9. Thus, pH$_{cf}$ up-regulation represents a mechanism that can make corals more resilient to future pCO$_2$ conditions14. Venn et al.9 cultured corals under various pCO$_2$ levels and observed a similar calcification response as modelled here. However, in contrast to our observations their directly measured internal pH$_{cf}$ decreased with external seawater pH changes. They explored two potential
models (extended models of McCulloch et al.14) and tested whether they can explain their observed calcification rates based on their internal pH\textsubscript{cf} values. One model assumes constant energy investment and proton removal rate, and the second model is based on a variable proton removal rates. Their second model more closely represents their corals’ response with an initial increase and then a decrease in proton removal rate. We do not have independent measurements of calcification rates for the low pH\textsubscript{T} and extreme sites. Such data would allow to test whether the modelled growth values (based on mainly the boron derived internal pH\textsubscript{cf}) also match measured growth data for these sites as they did for the intermediate site. What we wanted to point out here is that while for our intermediate site boron derived internal pH\textsubscript{cf} and modelled growth agree, internal pH\textsubscript{cf} is likely not the only determining factor for calcification rates. Hence, the variable proton removal model revealed a very important aspect: to fully understand the calcification response we need to constrain more than just internal pH\textsubscript{cf} and calcification rates. Studies investigating gene regulation variation as a consequence of increasing pCO\textsubscript{2} conditions26,27 indicated that full suite of processes are potentially affected by ocean acidification and can affect calcification rates. For instance, after short-term exposure to near-future seawater pH\textsubscript{T} conditions, corals responded with an up-regulation of genes involved in ion transport (in particular Ca2+-transporters like Ca-ATPase that also affects internal pH\textsubscript{b, o}) and bicarbonate transporters26. Such a response might help to maintain the internal pH\textsubscript{T} and calcification rate. In the same study26, short-term exposure of corals to pH\textsubscript{T} 7.2 resulted in a down-regulation of

\[\text{Figure 2. Massive *Porites* corals pH up-regulation.} \] Internal pH up-regulation intensity of corals collected (\(\Delta\text{pH}\)) along a natural seawater pH (pH\textsubscript{T} in total scale) gradient. Symbols display mean \(\pm\) SE values for each coral colony collected at four sites with known pH\textsubscript{T} conditions. Solid black lines indicate regression analysis following a second-order polynomial fit (thick black line) with 95% confidence interval (thin black lines).

\[\text{Figure 3. Growth response modelled for massive *Porites* corals at the Papua New Guinea seeps.} \] The modelled growth response displays relative changes in calcification rate (relative calcification rate = mean control/mean site). Black circles and error bars represent means \(\pm 1\) SE per site and the black solid line indicates a second-order polynomial fit for the growth model in this study. The growth response curve is compared to published growth responses: McCulloch et al.19 (dark grey dashed line) and Castillo et al.24 (light grey dashed line).
ion transporters and potentially can explain physiological limits in growth. Ocean acidification also can affect a wide range of cellular processes that are not directly linked to biomineralization. These studies indicate the need for a more comprehensive approach combining physiological and transcriptomic investigations with ecological and geochemical studies.

Natural analogues to ocean acidification, such as the PNG seeps, provide unique opportunities for studying the potential effects of elevated pCO2 on coral reefs, but they also have limitations, e.g. strong fluctuations in pH/CO2 and close connectivity to undisturbed areas that supply propagules. The physiological consequences of such strong pH fluctuations are still not fully understood. Recent studies have shown that growth in coral recruits was higher under fluctuating pCO2 conditions than under constant reduced pH, and that exposure to strong temperature variations resulted in an improved stress-resistance and faster acclimation in corals. Similarly, the hypothesized pH homeostasis observed during the free ocean carbon enrichment (FOCE) experiment, argues that the seasonal seawater pH variations the corals are facing are a driver for stronger control on their internal pHe environment. Thus, the fluctuating conditions could potentially foster acclimation to low seawater pH. Daily swings in pCO2 or strong fluctuating seawater pH conditions are not unusual in coral reefs. At the CO2 seeps in PNG, Porites is able to cope with the projected near-future increase in pCO2, in contrast to most other coral species, including the structurally complex species that form the habitat for many reef-associated organisms. Responses to pCO2 also vary between regions with naturally reduced seawater pH3,35,36, as changes in seawater pH are not the only factor in the field and act in concert with the full suite of environmental variability (e.g. seasonality, differences in current regimes, etc.). In addition, boron isotopic composition is highly variable at high spatial resolution and, in our study, irrespective of seawater pH variability. This agrees with the conclusion that such δ11B variations reflect the effect of biological processes on skeletal isotopic composition rather than external seawater pH variations. In particular, since the control site corals (where the seawater pH is stable) showed the same skeletal variations. Several factors are thought to contribute to these internal variations in pH, but they are not yet fully understood (see also Supplementary Material: Average boron isotopic signature, variability and corresponding internal calcifying conditions).

Our study shows that massive Porites will be able to persist in the oceans of 2100, due to observed similar growth rates to present day conditions, enhanced photosynthesis and also its ability to maintain a high internal pH. All of these factors contribute to Porites’ dominance at the Papua New Guinea CO2 seeps. Enhanced pH up-regulation enables them to sustain their present day calcification rate up to pCO2 levels projected for the end of the century. From massive Porites at the PNG seeps, we have observed that this species has the potential to adjust and maintain their internal pH even after lifetime exposure to increased pCO2. For more sensitive corals, it needs to be elucidated whether or not they are able to maintain their internal pH. Our study underlines that conclusions projected from laboratory studies alone need to be treated with caution, and should be complemented by results from field studies. Together with a recent study we emphasize that seawater pH reconstruction from Porites need to be taken with caution. Both studies underline this genus ability to exert strong physiological control. Such local acclimations represent one possibility for resisting future changes. It is thus essential to understand what allows corals in a certain environment to acclimate, and whether other species in other regions have the same capacity to adjust to future changes.

Material and Methods

Site description and coral core collection. Fourteen coral cores were collected during three research cruises from four sites that differed in their seeping intensity: an extreme site, a low pH site, an intermediate site, and a control site (Supplementary Material: sites and coral sample overview, Table S1, Fig. S1). The seawater pH and total alkalinity (TA) measured in discrete water samples. The carbonate chemistry was calculated from seawater pH and TA for the four sites (Supplementary Material: Seawater pH characterization at the collection sites and seawater carbonate chemistry, Figs S3-4, Table S3).

Sample preparation and analyses. Coral skeletons were bleached for 24 h, thoroughly washed with milli-Q and dried overnight at 50 °C. Subsequently, they were embedded in resin, cut along the growth axis, ground and polished. From long cores, a piece approx. 5 mm wide and 1 cm long oriented along the growth axis was prepared for boron analysis and carefully ground and polished. The δ11B composition was measured with a laser ablation multi collector inductive coupled plasma mass spectrometer (Thermo Fisher MC-ICP-MS AXIOM, connected to a UP193fx laser ablation system of New Wave Research, equipped with an excimer 193 nm laser) following the method by Fietzke et al.,(7) (Supplementary Material: Boron isotopic signature, Table S2).

Data analyses. The data reduction followed Fietzke et al.,(7) This yielded one δ11B value per sample and session with an average precision of 1‰ (1 SD) for approx. 2.5 μg of carbonate sample. A minimum of 15 individual values of δ11B spread over the core surface from the upper few mm of each coral colony were measured to obtain a representative data set per sample. The data set reflects the high variability in δ11B for a single colony. For each individual δ11B value the internal pH and ΔpH was calculated. Individual values per colony were averaged to yield values that reflect the average δ11B value, the average internal pH and ΔpH (see below).

Each individual δ11B value was translated into internal pH values following equation (1) with a seawater δ11Bsw of 39.61‰, a fractionation factor (αB) of 1.0272 and pK_B of 8.56.

$$pH_{cf} = pK_B^* - \log \left[\frac{\delta^{11}B_{sw} - \delta^{11}B_c}{\alpha_B \times \delta^{11}B_c - \delta^{11}B_{sw} + 1000 \times (\alpha_B - 1)} \right]$$

(1)
Following the method in Trotter et al.18, the superimposed physiological pH control was calculated using the equation:

\[
\Delta \text{pH} = \text{pH}_{\text{cf}} - \text{pH}_T
\]

(2)

and related to the seawater pH\textsubscript{T} to quantify the extent of the physiological control on the internal pH\textsubscript{cf}.

Calcification rate (G) was calculated following the McCulloch et al.14 IpHRAC model: \(G = k^*(\delta_T - 1)^n\). Seawater dissolved inorganic carbon concentration [DIC\textsubscript{sw}] was calculated by the R package seacarb41 using the equation:

\[
\text{DIC}_{\text{sw}} = \text{DIC}_{\text{sw0}} + \text{DIC}_{\text{ic}} - \text{DIC}_{\text{sw}}\text{DIC}_{\text{sw0}}
\]

\(\text{DIC}_{\text{sw0}}\) calculated for constant temperature and with the temperature-dependent rate law constant \(k\) = 0.0177 T* + 1.47 T* + 14.9 and \(\text{DIC}_{\text{sw}}\text{DIC}_{\text{sw0}}\) = 0.0628 T* + 0.0985.

Data analysis and visualisation was done with R Studio version 3.0.1 (R Development Core Team, 2015). The regression analysis and growth model fit were done using a generalized linear model. An AIC criterion was used to find the best-fit comparing linear vs polynomial (2nd and 3rd order) fits. The software package visreg (2.0–4) was used to visualize the best fit.

References

1. Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S. & Hoegh-Guldberg, O. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc. Natl. Acad. Sci. USA 105, 17442–17446 (2008).
2. Leclercq, N., Gattuso, J.-P. & Jaubert, J. CO\textsubscript{2} partial pressure controls the calcification rate of a coral community. Glob. Chang. Biol. 6, 329–334 (2000).
3. Langdon, C. et al. Effect of calcium carbonate saturation state on calcification rate of an experimental coral reef. Global Biogeochem. Cycles 14, 639–654 (2000).
4. Jokiel, P. L. et al. Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27, 473–483 (2008).
5. Dove, S. G. et al. Future reef decalcification under a business-as-usual CO\textsubscript{2} emission scenario. Proc. Natl. Acad. Sci. USA 110, 15342–15347 (2013).
6. Fabricius, K. E. et al. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat. Clim. Chang. 1, 165–169 (2011).
7. Crook, E. D., Cohen, A. L., Rebolledo-vieyra, M., Hernandez, L. & Paytan, A. Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification. Proc. Natl. Acad. Sci. USA 110, 11044–11049 (2013).
8. Shamberger, K. E. F. et al. Diverse coral communities in naturally acidified waters of a Western Pacific reef. Geophys. Res. Lett. 41, 499–504 (2014).
9. Venn, A. A. et al. Impact of seawater acidification on pH at the tissue – skeleton interface and calcification in reef corals. Proc. Natl. Acad. Sci. USA 110, 1634–1639 (2013).
10. Al-Horani, F., Al-Moghрабی, S. M. & de Beer, D. Microsensor study of photosynthesis and calcification in the scleractinian coral, *G. fascicularis*: active internal carbon cycle. J. Exp. Mar. Biol. Ecol. 288, 1–15 (2003).
11. Holcomb, M. et al. Coral calcifying fluid pH dictates response to ocean acidification. Sci. Rep. 4, 5207 (2014).
12. Krief, S. et al. Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochim. Cosmochim. Acta 74, 4988–5001 (2010).
13. Hönnisch, B. et al. Assessing scleractinian corals as recorders for paleo-pH: Empirical calibration and vital effects. Geochim. Cosmochim. Acta 68, 3675–3685 (2004).
14. McCulloch, M., Falter, J., Trotter, J. & Montagna, P. Coral calcification response to ocean acidification and global warming through pH up-regulation. Nat. Clim. Chang. 2, 623–627 (2012).
15. Allison, N., Finch, A. & EIMF, A. δ13C, Sr, Mg and B in a modern coral: the relationship between calcification site pH and skeletal chemistry. Geochim. Cosmochim. Acta 74, 1790–1800 (2010).
16. Georgiou, L. et al. pH homeostasis during coral calcification in a free ocean CO\textsubscript{2} enrichment (FOCE) experiment, Heron Island reef flats. Great Barrier Reef. Proc. Natl. Acad. Sci. USA 112, 13219–13224 (2015).
17. Rollion-Bard, C., Chaussidon, M. & France-Lanord, C. pH control on oxygen isotopic composition of symbiotic corals. Earth Planet. Sci. Lett. 215, 275–288 (2003).
18. Trotter, J. et al. Quantifying the pH ‘vital effect’ in the temperate zooxanthellate coral *C. aequalis*: Validation of the boron seawater pH proxy. Earth Planet. Sci. Lett. 303, 163–173 (2011).
19. McCulloch, M. et al. Resilience of cold-water scleractinian corals to ocean acidification: Boron isotopic systematics of pH and saturation state up-regulation. Geochim. Cosmochim. Acta 87, 21–34 (2012).
20. Anagnostou, E., Huang, K., You, C., Sikes, E. L. & Sherrill, R. M. Evaluation of boron isotope ratio as a pH proxy in the deep sea coral *P. dianthus*: Evidence of physiologically pH adjustment. Earth Planet. Sci. Lett. 349–350, 251–260 (2012).
21. Schmidt, G. M. et al. Coral community composition and reef development at the Similan Islands, Andaman Sea, in response to strong environmental variations. Mar. Ecol. Prog. Ser. 456, 113–126 (2012).
22. Hofmann, G. E. et al. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS One 6, e28983 (2011).
23. Uthicke, S., Moniglino, P. & Fabricius, K. E. High risk of extinction of benthic foraminifera in this century due to ocean acidification. Sci. Rep. 3, 1–5 (2013).
24. Castillo, K. D., Ries, J. B., Bruno, J. F. & Westfield, I. T. The reef-building coral *S. siderea* under global warming and ocean acidification. J. Exp. Mar. Biol. Ecol. 471, 232–239 (2015).
31. Oliver, T. A. & Palumbi, S. R. Do fluctuating temperature environments elevate coral thermal tolerance? *Coral Reefs* **30**, 429–440 (2011).

32. Price, N. N., Martz, T. R., Brainard, R. E. & Smith, J. E. Diel Variability in Seawater pH Relates to Calcification and Benthic Community Structure on Coral Reefs. *PLoS One* **7**, 1–9 (2012).

33. Crook, E. D., Potts, D., Rebollo-Beyra, M., Hernandez, L. & Paytan, A. Calcifying coral abundance near low-ph springs: implications for future ocean acidification. *Coral Reefs* **31**, 239–245 (2012).

34. Fabricius, K. E., De’ath, G., Noonan, S. & Uthicke, S. Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities. *Proc. R. Soc. B* **281**, 20132479 (2014).

35. Barkley, H. C. *et al.* Changes in coral reef communities across a natural gradient in seawater pH. *Sci. Adv.* **1**, e1500328 (2015).

36. Inoue, S., Kayanne, H., Yamamoto, S. & Kurihara, H. Spatial community shift from hard to soft corals in acidified water. *Nat. Clim. Chang.* **3**, 1–5 (2013).

37. Fietzke, J. *et al.* Boron isotope ratio determination in carbonates via LA-MC-ICP-MS using soda-lime glass standards as reference material. *J. Anal. At. Spectrom.* **25**, 1953 (2010).

38. Foster, G. L. Seawater pH, pCO2 and [CO3\(^-\)] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera. *Earth Planet. Sci. Lett.* **271**, 254–266 (2008).

39. Klochko, K., Kaufman, A. J., Yao, W., Byrne, R. H. & Tossell, J. A. Experimental measurement of boron isotope fractionation in seawater. *Earth Planet. Sci. Lett.* **248**, 276–285 (2006).

40. Dickson, A. G. Standard potential of the reaction: AgCl\(_{(s)}\) + \(\frac{1}{2}\)H\(_2\)(g) = Ag\(_{(s)}\) + HCl\(_{(aq)}\) and the standard acidity constant of the ion HSO\(_4\)^– in synthetic seawater from 273/15 to 318.15K. *J. Chem. Thermodyn.* **22**, 113–127 (1990).

41. Gattuso, J.-P. & Lavigne, H. Technical Note: Approaches and software tools to investigate the impact of ocean acidification. *Biogeosciences* **6**, 2121–2133 (2009).

Acknowledgements

We thank the families of Upa-Upasina for allowing us to study their coral reefs. Many thanks also to the National Research Institute of Papua New Guinea, the crew of the MV Chertan, and QantasLink, for logistic support. The study was funded by German Federal Ministry for Education and Research project BIOACID II (Consortium 3: Natural CO2-rich reefs as windows into the future: Acclimatization of marine life to long-term ocean acidification and consequences for biogeochemical cycle, WP 3.5: Structural and Chemical Changes in biogenic carbonates Grant number: 03F0655A), the Great Barrier Reef Foundation’s “Resilient Coral Reefs Successfully Adapting to Climate Change” research and development programme in collaboration with the Australian Government, and the Australian Institute of Marine Science.

Author Contributions

M.W., J.F. and K.E.F. designed the experiments. M.W., L.C.H., A.F., D.d.B. and K.E.F. performed field research. M.W. and J.F. analysed the samples. A.F. and D.d.B. provided pH measurements. M.W., K.E. and A.F. analysed data. M.W., J.F., G.M.S., L.C.H., A.F., D.d.B. and K.E.F. were involved in the preparation of the manuscript.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Wall, M. *et al.* Internal pH regulation facilitates *in situ* long-term acclimation of massive corals to end-of-century carbon dioxide conditions. *Sci. Rep.* **6**, 30688; doi: 10.1038/srep30688 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016