HDAC11 regulates type I interferon signaling through defatty-acylation of SHMT2

Ji Cao, Lei Sun, Pornpun Aramsangtiengchai, Nicole A. Spiegelman, Xiaoyu Zhang, Weishan Huang, Edward Seto, and Hening Lin

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China; George Washington University Cancer Center, Washington, DC 20037; Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853; and Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853

Edited by Vern L. Schramm, Albert Einstein College of Medicine, Bronx, NY, and approved January 31, 2019 (received for review September 5, 2018)

The smallest histone deacetylase (HDAC) and the only class IV HDAC member, HDAC11, is reported to regulate immune activation and tumorigenesis, yet its biochemical function is largely unknown. Here we identify HDAC11 as an efficient lysine defatty-acylase that is >10,000-fold more efficient than its deacetylase activity. Through proteomics studies, we hypothesized and later biochemically validated SHMT2 as a defatty-acylation substrate of HDAC11. HDAC11-catalyzed defatty-acylation did not affect the enzymatic activity of SHMT2. Instead, it affects the ability of SHMT2 to regulate type I IFN receptor ubiquitination and cell surface level. Correspondingly, HDAC11 depletion increased type I IFN signaling in both cell culture and mice. This study not only demonstrates that HDAC11 has an activity that is much more efficient than the corresponding deacetylase activity, but also expands the physiological functions of HDAC11 and protein lysine fatty acylation, which opens up opportunities to develop HDAC11-specific inhibitors as therapeutics to modulate immune responses.

Results

HDAC11 is an Efficient Lysine Defatty-Acylase. To study the enzymatic activity of HDAC11, we first tested recombinant HDAC11 purified from HEK293T cells (SI Appendix, Fig. S1A) on H3K9 peptides bearing different acyl groups (Fig. 1A). Using an HPLC-based assay, we found that HDAC11 could efficiently remove long-chain fatty-acyl groups (myristoyl, palmitoyl, and 3-hydroxydodecanoyl) from H3K9 peptides (Fig. 1A and B). Surprisingly, HDAC11 failed to remove smaller acyl groups, including octanoyl and decanoyl, from H3K9 peptides (Fig. 1A and B). Many other acyl groups tested, including lipoyl, succinyl, and glutaryl, on H3K9 peptides were not HDAC11 substrates (Fig. 1A). We also used a few different peptide sequences. We detected demyristoylation activity of HDAC11 on H2BK12 and TNFα peptides, but did not detect any deacylation activity on H2BK12 and α-tubulin peptides (SI Appendix, Fig. S1B).

Mouse HDAC11 also exhibited efficient demyristoylation activity (SI Appendix, Fig. S1C). Since N-terminal glycine myristoylation is a well-known posttranslational modification, we also tested whether HDAC11 could catalyze glycine demyristoylation. No glycine

Significance

HDAC11 is the only class IV member of the histone deacetylase (HDAC) family, and very little is known about its biological function. The work here reveals its efficient and physiologically relevant activity. The regulation of SHMT2 and interferon signaling expands the known biological function of protein lysine fatty acylation, which has only recently started to be appreciated. Furthermore, a compelling molecular mechanism is proposed to connect HDAC11 to immune response. The finding opens exciting opportunities to develop HDAC11-specific inhibitors to treat human diseases that would benefit from increased type I interferon signaling, such as viral infection, multiple sclerosis, and cancer.

Author contributions: J.C., L.S., P.A., E.S., and H.L. designed research; J.C., L.S., P.A., X.Z., W.H., and E.S. performed research; N.A.S. contributed new reagents/analytic tools; J.C. and H.L. analyzed data; and J.C. and H.L. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Present address: Department of Biochemistry, Faculty of Science, Burapha University, 20131 Chonburi, Thailand.

Present address: Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803.

To whom correspondence should be addressed. Email: hl379@cornell.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815365116/-/DCSupplemental.

Published online February 28, 2019.
demystroylation activity was detected on p21-activated kinase 2 (PAK2) and Gα peptides (SI Appendix, Fig. S1D).

To rule out that the defatty-acylation activity was from a contaminating protein in the HDAC11 preparation, we further constructed and purified four catalytic mutants of HDAC11 that lack the general acid catalytic residue (Y304H) or zinc-binding residues (D181A, H183A, and D261A). Wild-type (WT) HDAC11, but not the catalytic mutants, could remove myristoyl group from the H3K9 peptide (Fig. 1C and SI Appendix, Fig. S1E). Furthermore, we also detected the demystroylation activity of recombinant HDAC11 purified from Saccharomyces cerevisiae (SI Appendix, Fig. S1F).

We have previously identified SIRT2 and SIRT6 as functional lysine defatty-acylases (18, 21). Compared with SIRT2 and SIRT6, HDAC11 exhibited the most efficient and specific demystroylation activity (SI Appendix, Fig. S1G). Kinetics studies (Fig. 1D) showed that the \(k_m \) value for the myristoyl H3K9 peptide was 17.3 \(\mu M \), and catalytic efficiency (\(k_{cat}/k_m \) value) is \(1.54 \times 10^{-4} \) \(M^{-1}s^{-1} \). For deacylation, we could not obtain the \(k_{cat} \) value because no activity was observed. But based on the detection limit of the HPLC assay, we estimated the upper limit of the \(k_{cat}/k_m \) value to be 1 \(M^{-1}s^{-1} \). Thus, the lysine defatty-acylation activity of HDAC11 is >10,000-fold more efficient than its deacetylation activity in vitro.

Proteomic Approach Identifies Putative Defatty-Acylation Substrates of HDAC11. To address whether the efficient defatty-acylation activity of HDAC11 is physiologically relevant, we first tested the effect of HDAC11 knockdown (KD) on global lysine fatty-acylation level in MCF-7 cells. Using a metabolic labeling method (SI Appendix, Fig. S2A) with the Alk14 probe (an alkynyl-tagged fatty acid analog) for protein myristoylation and palmitoylation (18, 22), intracellular fatty-acylated proteins were labeled. The labeled proteins were then conjugated to a fluorescent tag (BODIPY-azide). After precipitating the proteins, hydroxylamine was used to remove cysteine acylation, and then the lysine-acylated proteins were pulled down with streptavidin, treated with hydroxylamine, and analyzed by mass spectrometry. A protein with a fatty-acylation level in MCF-7 cells using a metabolic labeling method with Alk14 and the alkynyl-labeled proteins were conjugated to a biotin tag (biotin-azide) via click chemistry. The modified proteins were pulled down with streptavidin, treated with hydroxylamine, and analyzed by mass spectrometry. A protein with heavy/light (H/L) ratio higher than 1 in SILAC could be a potential substrate of HDAC11. To remove false positives and simplify downstream validation studies, we further filtered our data using the following criteria: H/L ratio ≥1.2, H/L variability ≤30%, and with at least two unique peptides identified. Based on these criteria, we identified 7 and 71 proteins in the two repeats, respectively (see top 7 and 71 hits, respectively, listed in SI).

Proteomic Approach Identifies Potential Defatty-Acylation Substrates of HDAC11. (A) The effect of HDAC11 knockdown (KD) on global lysine fatty-acylation level in MCF-7 cells using a metabolic labeling method with Alk14. (B) Alk14 labeling and SILAC to identify proteins with increased acylation in cells with HDAC11 KO compared with WT cells.

Fig. 2. Proteomic approach identifies potential defatty-acylation substrates of HDAC11. (A) The effect of HDAC11 knockdown (KD) on global lysine fatty-acylation level in MCF-7 cells using a metabolic labeling method with Alk14. (B) Alk14 labeling and SILAC to identify proteins with increased acylation in cells with HDAC11 KO compared with WT cells.
SHMT2 Is a Defatty-Acylation Substrate of HDAC11 in Cells. Two SHMTs, SHMT1 and SHMT2, are known in mammals. Examining the sequences of the SHMT proteins identified from the proteomics studies indicated that SHMT2 was the isoform identified in the proteomics. We first tested whether SHMT2 was fatty-acylated using Alk14 labeling (SI Appendix, Fig. S2D). Although some background fluorescent signal without Alk14 was detected, Alk14 treatment increased the fluorescent signal of Flag-tagged SHMT2 (Flag-SHMT2), but not SHMT1 (Fig. 3A and SI Appendix, Fig. S2E), suggesting that SHMT2 contained acylation. Moreover, we detected the acylation of endogenous SHMT2 in cells (Fig. 3B) using Alk14 labeling, biotin-azide conjugation, and streptavidin pulldown, followed by immunoblotting against SHMT2. Therefore, our data suggested that SHMT2 is a fatty-acylated protein. Coimmunoprecipitation studies showed that Flag-SHMT2 interacted with HA-HDAC11 when expressed in HEK 293T cells (SI Appendix, Fig. S2F).

To determine whether SHMT2 is a substrate of HDAC11, we first examined whether recombinant HDAC11 could remove the fatty-acylation on SHMT2 in vitro. Flag-SHMT2 was expressed in HEK 293T cells and labeled with Alk14. Immunoprecipitated Flag-SHMT2 was incubated with HDAC11 WT or the Y304H mutant of HDAC11. Then a fluorescent tag (BODIPY-azide) was conjugated using click chemistry, and the fatty acylation level of SHMT2 was detected using in-gel fluorescence. WT, but not mutant, HDAC11 significantly decreased the fluorescent signal on SHMT2 (Fig. 3C), suggesting that HDAC11 can directly remove the fatty acyl groups on SHMT2.

In HEK 293T cells, coexpression of SHMT2 and WT HDAC11 decreased the fatty-acylation level on SHMT2, compared with cells without HDAC11 overexpression or cells overexpressing the Y304H mutant (3D). Due to the high background of full-length SHMT2 (Fig. 3A and D), we also conducted the experiment using a truncated SHMT2 (SHMT2 Δ134), which lacked the mitochondrial localization signal and was used for identifying lysine fatty-acylation site (see below). SHMT2 Δ134 had no detectable background fluorescence signal (Fig. 3E). WT HDAC11, but not the zinc-binding D181A mutant, decreased the fatty-acylation level on SHMT2 Δ134 (Fig. 3E). Thus, the enzymatic activity of HDAC11 is required for controlling SHMT2 fatty acylation in cells. In MCF-7 cells, HDAC11 KD significantly increased the fatty-acylation level of the endogenous SHMT2, compared with control KD (Fig. 3F). Similar results were also observed in A549 cells (SI Appendix, Figs. S2B and S3A). Collectively, our data support the hypothesis that HDAC11 regulates the fatty-acylation level of SHMT2.

We next sought to determine which lysine residue of SHMT2 was the fatty-acylation site. We first constructed a series of N terminus truncated forms of SHMT2 (Δ21, Δ134, and Δ202) (Fig. 3G) to narrow down the modification region. All three truncated forms still had lysine fatty-acylation (Fig. 3H), suggesting the lysine modification site is localized between residues 203 and 504 of SHMT2, which contained 16 lysine residues. We mutated each of the 16 lysines (K) to arginine (R). Among them, 14 mutants were successfully expressed in HEK 293T cells (SI Appendix, Fig. S3B). Of the 14 mutants, only the K245R mutant significantly decreased the fatty acylation level, suggesting K245 is the major acylation site (Fig. 3I and SI Appendix, Fig. S3B).

Interestingly, this lysine residue is not conserved in SHMT1, which shares >60% identity with SHMT2 (SI Appendix, Fig. S3C). SHMT1 did not contain fatty acylation (SI Appendix, Fig. S2D), which further supported that K245 is the major lysine fatty acylation site in SHMT2.

HDAC11 Defatty-Acylation of SHMT2 Regulates IFNα1 Internalization and Stability. We next investigated the biological function of SHMT2 lysine fatty acylation. SHMT2, a metabolic enzyme involved in one-carbon metabolism, catalyzes the reversible interconversion of serine and tetrahydrofolate to glycine and methylenetetrahydrofolate (23, 24). We first tested whether fatty acylation might affect the enzymatic activity of SHMT2. The enzymatic activity

Appendix, Tables S1 and S2). Among them, only two proteins, serine hydroxymethyltransferase (SHMT) and protein LYLRC (MTDH), were identified from both SILACs. It should be noted that based on our previous experience, identifying the defatty-acylation substrates of HDACs by such proteomic experiments is very difficult because of the high false positive rates—many factors could cause the high false positive rates, such as hydroxylamine-resistant cysteine acylation and protein abundance change, as well as the low stoichiometry of the lysine fatty acylation. Thus, without further biochemical validation, none of the hits identified should be considered as true HDAC11 substrates. We focused on validation studies of SHMT here.
SHMT2 K245R mutant was not significantly different from that of WT SHMT2 (SI Appendix, Fig. S4D). Similarly, the enzymatic activity of SHMT2 was not significantly changed when coexpressed with either WT or the Y304H mutant of HDAC11 in 293T cells (SI Appendix, Fig. S4F). These observations indicated that fatty-acylation did not affect SHMT2 enzymatic activity. In line with this, we also did not detect any difference in the oligomeric states of SHMT2 in HDAC11 knockout cells (SI Appendix, Fig. S4C). However, we did detect a small amount of SHMT2 that was localized in the cytosol (SI Appendix, Fig. S4E), which was consistent with previous reports (23, 26).

Given that the natural cytosolic isoform of SHMT2 (also known as SHMT2α, referred to as Δ21 mutant here) also had lysine fatty-acylation (Fig. 3E and SI Appendix, Fig. S4F), we believe that lysine fatty acylation mainly occurred in the cytosolic SHMT2α. Cytosolic SHMT2 was known to direct the BRCC36-containing complex (BRISC, a complex with deubiquitination activity) to deubiquitinate type I IFN receptor chain 1 (IFNαR1) and thus decrease the internalization and increase the stability of IFNαR1 (26). We thus tested whether HDAC11 affects the internalization of IFNαR1. As shown in Fig. 4A and B, cell surface IFNαR1 significantly decreased upon IFNα treatment in WT, but not in HDAC11 KO cells. Given that the total IFNαR1 level was not significantly affected by HDAC11 KO (Fig. 4C), the data support the hypothesis that HDAC11 KO decreases the internalization or promoted the recycling of IFNαR1. Consistent with this, HDAC11 KO significantly decreased the ubiquitination level of IFNαR1 compared with WT cells (Fig. 4C).

Lysine fatty-acylation has been shown to regulate the subcellular localization of certain proteins (21, 27). We hypothesized that the lysine fatty-acylation of SHMT2 may also function to recruit SHMT2 to the plasma membrane, where IFNαR1 is normally localized. To our surprise, we did not observe any obvious plasma membrane localization of cytosolic SHMT2α. However, interestingly, we found the colocalization of cytosolic SHMT2α with late endosome/lysosome marker LAMP1 was significantly enhanced by HDAC11 KO under IFNα treatment (Fig. 4 D and E). Importantly, for the SHMT2α K245R mutant that cannot be acylated, HDAC11 KO did not increase its co-localization with LAMP1 under IFNα treatment (Fig. 4 D and E). These results demonstrate that under IFNα treatment, lysine fatty-acylation promotes its translocation to late endosomes/lysosomes, where internalized IFNα is trafficked to. It is likely that by promoting SHMT2 late endosome/lysosome targeting and thus the deubiquitination of internalized IFNαR1, HDAC11 KO would promote the recycling of IFNαR1 back to the plasma membrane.

HDAC11 Regulates Type I IFN Signaling. IFNαR1 is important for type I IFN signaling, which controls the activation of many genes that are important for immune response (28). The cell surface level of IFNαR1 could affect the activation of downstream genes in type I IFN-treated cells (26, 29). Thus, HDAC11 may regulate type I IFN signaling via fatty-acylation of SHMT2. To test this, we measured expression of two classic IFNα-driven genes, ISG15 and PKR (28). ISG15 and PKR mRNA levels were increased in HDAC11 knockout cells more than those in WT HAP1 cells (Fig. S4). To validate that the increase of IFNαR1 downstream genes was caused by the depletion of HDAC11, we reintroduced mouse HDAC11 in HDAC11 KO HAP1 cells. As expected, reexpressing mouse HDAC11 in HDAC11 KO HAP1 cells diminished the increase of ISG15 and PKR expression (SI Appendix, Fig. S5A). Similarly, ISG15 and PKR mRNA levels were higher in HDAC11 KD than in control KD MCF-7 cells (Fig. S5B).

(e) Statistical analysis of the colocalization of SHMT2α with LAMP1 with and without IFNα treatment using Pearson’s coefficient. Each dot represents one cell; center lines represent the mean values. *P < 0.05, ***P < 0.001.

Fig. 4. HDAC11 defatty-acylation of SHMT2 regulates IFNαR1 cell surface level. (A) Cell surface IFNαR1 levels before and after 2 h IFNα treatment in HDAC11 WT and KO HAP1 cells monitored using flow cytometry. Images from one of three biological replicates are shown. (B) The relative surface IFNαR1 levels upon IFNα treatment in WT and HDAC11 KO HAP1 cells at indicated time points. Error bars represent SD in three biological replicates. (C) The ubiquitination level of IFNαR1 after treating HDAC11 WT and KO HAP1 cells with IFNα. Quantification of the relative level of IFNαR1 ubiquitination is shown on the Right. Statistical analysis: values with error bars indicate mean ± SD of three replicates, and “NS” indicates no statistical difference. (D) Immunofluorescence showing the colocalization of SHMT2α (Δ21) with LAMP1 in HAP1 HDAC11 WT and KO cells upon IFNα treatment.
Furthermore, knockdown of SHMT2 or KIAA0157, key components of BRISC (26), diminished the increase of ISG15 and PKR mRNA level in HDAC11 KO HAP1 cells (Fig. 5 C and SI Appendix, Fig. S5 B and C), further supporting the idea that HDAC11 antagonizes type I IFN signaling via defatty-acylation of SHMT2α, decreasing the recruitment of BRISC and increasing the ubiquitination of IFNαR1.

Type I IFN is released by mammalian cells in response to viral infections and helps cells to heighten their antiviral defense (28). Therefore, we investigated whether HDAC11 could affect the viral defense of cells. We treated WT and HDAC11 KO HAP1 cells with IFNα before infecting cells with lentiviruses carrying the GFP gene. The protein expression level of GFP would be reduced if there was increased antiviral defense due to increased IFNαR1 signaling in HDAC11 KO cells. Consistent with our hypothesis, HDAC11 KO cells had reduced GFP protein levels compared with WT HAP1 cells (SI Appendix, Fig. S5 D).

We next investigated whether the effect of HDAC11 on type I IFN signaling is largely through lysine fatty-acylation of SHMT2. Using ISG15 and PKR mRNA levels as the readout, we assessed the ability of WT SHMT2 and K245R mutant to affect the increase of IFNαR1 downstream genes in WT and HDAC11 KO HAP1 cells (Fig. 5D). In WT HAP1 cells, expressing WT SHMT2 and K245R mutant resulted in no significant changes of ISG15 and PKR mRNA level after IFNα treatment (Fig. 5E). In contrast, expressing K245R mutant SHMT2, but not WT, compromised the increase of ISG15 and PKR mRNA level in HDAC11 KO cells (Fig. 5E). These results support the hypothesis that the HDAC11 regulates type I IFN signaling via controlling lysine fatty-acylation of SHMT2.

To validate this phenotype in vivo, we further examined the IFNαR1 signaling in HDAC11 KO mice infected with vesicular stomatitis virus (VSV). The ISG15 and PKR mRNA levels in the lung and liver were analyzed 2 d postinfection by VSV. As shown in Fig. 6A, VSV viral infection up-regulated levels of the ISG15 and PKR mRNA as expected. In line with the role of HDAC11 in regulating IFNαR1 signaling in cells, we observed a significant increase in the levels of ISG15 and PKR mRNA in lung and liver tissues from VSV-infected HDAC11 KO mice compared with those from WT animals (Fig. 6A), consistent with the model that HDAC11 could antagonize type I IFN signaling. Unfortunately, we could not do the survival analysis because the virus was effectively cleared in both WT and HDAC11 KO mice.

Discussion

In this study, we have identified HDAC11 as an efficient lysine defatty-acylase with catalytic efficiency >10,000-fold better than its predecessor HDAC1 (10).

Fig. 5. HDAC11 regulates type I IFN signaling. (A) The relative mRNA levels of IFNαR1 downstream genes, ISG15 and PKR, in IFNα-treated HDAC11 WT and KO HAP1 cells were quantified by RT-PCR and normalized to GAPDH expression. (B) The relative mRNA levels of ISG15 and PKR in IFNα-treated control and HDAC11 KO MCF-7 cells were quantified by RT-PCR and normalized to GAPDH expression. (C) The effect of SHMT2 KD on the relative mRNA level of ISG15 and PKR in HDAC11 KO HAP1 cells. (D) Western blot showing the overexpression of SHMT2 WT and K245R mutant in HDAC11 WT and KO HAP1 cells. (E) The effect of WT and the K245R mutant of SHMT2 on the relative mRNA level of ISG15 and PKR in HDAC11 WT and KO HAP1 cells. *P < 0.05, **P < 0.01.

Fig. 6. HDAC11 regulates type I IFN signaling in vivo. (A) WT and HDAC11 KO mice were injected with VSV for 2 d, and the lung and liver were harvested for mRNA analysis. The relative mRNA levels of IFNαR1 downstream genes, ISG15 and PKR, were quantified by RT-PCR and normalized to GAPDH expression. Bars indicate mean values. *P < 0.05. (B) Scheme showing the potential mechanism via which HDAC11 negatively regulates type I IFN signaling by controlling SHMT2 lysine fatty acylation.
deacetylase activity. Consistent with two recent reports (19, 20) (we coordinated with these two groups and deposited manuscripts on BioRxiv on the same day), our data demonstrated that HDAC11 has an activity that is much more efficient than its deacetylase activity. HDAC8 was recently reported to have deacetylase activity, but the catalytic efficiency is only 2–3 folds better than that of deacetylase (12). The studies with HDAC11 suggest that the zinc-dependent HDACs are similar to the sirtuin family of HDACs, where several members preferentially recognize acetyl lysine modifications other than acetyl lysine, while some can remove multiple modifications with similar efficiencies (11, 13). Among the zinc-dependent HDACs, class IIa HDACs lack detectable deacetylase activity (1). The finding that HDAC11 has an efficient deacetylase activity suggests that class IIa HDACs may also remove currently unknown acetyl lysine modifications.

Our study identified a posttranslational mechanism that regulates a multifunctional protein, SHMT2. SHMT2 is a mitochondrial enzyme involved in one carbon metabolism (23, 24). A shorter isofrom, SHMT2a, which lacks the mitochondrial localization sequence, is present in the cytosol and nucleus (21). The metabolic function of SHMT2 is thought to be critical for cancer cells (30). Recently, SHMT2a was also reported to recruit the BRISC complex to IFNαR1 to promote the deubiquitination of IFNαR1 (26). Our study indicates that SHMT2a is regulated by lysine fatty acylation, which has only been known to occur on a few proteins in mammalian cells (18, 21, 27, 31, 32). Our study revealed the physiological function of HDAC11 by connecting it to the IFN-signaling pathway. It has been reported that HDAC11 overexpression suppresses LPS-stimulated IL-10 transcription, while HDAC11 knockdown increases LPS-stimulated IL-10 transcription. This was explained by a model where HDAC11 binds to IL-10 promoter and deacetylates histones to suppress IL-10 transcription (10). In contrast, the HDAC11-IFNαR1 regulation that we discovered here is different. Our model is based on the more efficient deacetylase activity of HDAC11, while the previous model is based on the deacetylase activity of HDAC11. The two models may not be mutually exclusive, since it is possible that HDAC11’s deacetylase activity could be increased upon chromatin binding, which allows for deacetylation of histones, while it functions efficiently as deacetylase in the cytosol. A similar mechanistic function has been reported for SIRT6, a member of the NAD+-dependent HDAC (27, 33).

We demonstrated here that the regulation of the IFN-signaling pathway is physiologically relevant for the antiviral response in human cells and in mice. Mice lacking HDAC11 exhibited increased IFN signaling. This finding significantly expands the physiological function of HDAC11 and opens up opportunities to develop HDAC11-specific inhibitors as therapeutics to treat disease where increased type I IFN signaling is beneficial, such as viral infection (34), multiple sclerosis (35), or cancer (36). The ability to target the HDAC11-SHMT2 nodule to up- or down-regulate type I IFN signaling may have significant power in modulating immune responses in a case-dependent manner for clinical benefits.

Materials and Methods

Full details of materials and methods, including expression and purification of HDAC11, enzymatic activity assay, detection of lysine fatty acylation, SILAC proteomic experiments, and analysis of IFNαR1 internalization and ubiquitination, are provided in SI Appendix.

ACKNOWLEDGMENTS. We thank Drs. Sheng Zhang and levgen Motorykin for help with the SILAC experiments, Cornell University Imaging Facility for confocal microscopy, which is supported by NIH Grant S10RR025502, and Cornell University NMR Facility, which is supported by NSF Grant CHE-1531632. This work is supported by Howard Hughes Medical Institute, Cornell University, and a grant from NIH/National Institute of Diabetes and Digestive and Hormonal Diseases, DK107868. The Orbisvision mass spectrometer is supported by NIH Grant SIG 15100D17992-01.

1. Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nat Rev Genet 10:32-42.
2. Seto E, Yoshida M (2014) Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6:a018713.
3. Yang XJ, Seto E (2008) The Rpd3S/Mi-1 family of lysine deacetylases: From bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 9:206-218.
4. Gregoretti IV, Lee YM, Goodson HV (2004) Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. J Mol Biol 338:17-31.
5. Gao L, Cueto MA, Asselbergs F, Atadja P (2002) Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 277:25748-25755.
6. Sahakin E, et al. (2015) Histone deacetylase 11: A novel epigenetic regulator of myeloid derived suppressor cell expansion and function. J Immunol 195:2809-2818.
7. Deubzer HE, et al. (2013) HDAC11 is a novel drug target in carcinomas. Int J Cancer 132:2200-2208.
8. Buglio D, et al. (2011) HDAC11 plays an essential role in regulating OX40 ligand expression in Hodgkin lymphoma. Blood 117:2910-2917.
9. Li MY, et al. (2016) Interleukin-13 suppresses interleukin-10 via inhibiting A20 in peripheral B cells of patients with food allergy. Oncotarget 7:79914-79924.
10. Villagra A, et al. (2009) The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 10:92-100.
11. Jing H, Lin H (2015) Sirtuins in epigenetic regulation. Chem Rev 115:2350-2375.
12. Aramangiascheki P, et al. (2016) HDAC8 catalyzes the hydrolysis of long chain fatty acyl lysine. ACS Chem Biol 11:2685-2692.
13. Feldman JL, Baeza J, Denu JM (2013) Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacetylation by mammalian sirtuins. J Biol Chem 288:33150-33156.
14. Madsen AS, Olsen CA (2012) Profiling of substrates for zinc-dependent lysine deacetylase enzymes. HDAC3 exhibits deacetylase activity in vitro. Arq Chem Int Ed Engl 51:9083-9087.
15. He B, Hu J, Zhang X, Lin H (2014) Thymosin pentides as cell-permeable Sirt6 inhibitors. Org Biomol Chem 12:7498-7502.
16. Du J, et al. (2011) Sirt5 is a NAD-dependent protein lysine deamylase and deacetylase. Science 334:806-809.
17. Peng C, et al. (2011) The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics 10:M111.012658.
18. Zhang X, et al. (2016) SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496:110-113.