Energy Extraction and Particle Acceleration Around Rotating Black Hole in Hořava-Lifshitz Gravity

Ahmadjon Abdujabbarov and Bobomurat Ahmedov
Institute of Nuclear Physics, Ulughbek, Tashkent 100214, Uzbekistan
Ulugh Beg Astronomical Institute, Astronomicheskaya 33, Tashkent 100052, Uzbekistan
Inter University Centre for Astronomy & Astrophysics, Post Bag 4, Pune 411007, India

Bahodir Ahmedov
Applied Mathematics and Informatics Department, National University of Uzbekistan, Tashkent 100095, Uzbekistan

(Dated: July 28, 2011)

Penrose process on rotational energy extraction of the black hole (BH) in the original non-projectable Hořava-Lifshitz gravity is studied. The strong dependence of the extracted energy from the special range of parameters of the Hořava-Lifshitz gravity, such as parameter Λ_W and specific angular momentum a has been found. Particle acceleration near the rotating BH in Hořava-Lifshitz gravity has been studied. It is shown that the fundamental parameter of the Hořava-Lifshitz gravity can impose limitation on the the energy of the accelerating particles preventing them from the infinite value.

PACS numbers: 04.50.-h, 04.40.Dg, 97.60.Gb

I. INTRODUCTION

Recently Hořava proposed a UV (Ultra-Violet) complete, non-relativistic gravity theory which is power-counting renormalizable one giving up the Lorentz invariance \([1, 2]\). Since then, many authors paid attention to this scenario to apply it to the black hole (BH) physics \([3–7, 31]\), cosmology \([8–14]\) and observational tests \([18]\). Here we investigate the Penrose process around rotating BHs in the Hořava-Lifshitz gravity theory. The quantum interference effects \([20]\) and the motion of the test particle around BH \([21]\) in Hořava-Lifshitz gravity have been also recently studied.

In the paper \([18]\) the possibility of observationally testing Hořava-Lifshitz gravity at the scale of the Solar System, by considering the classical tests of general relativity (perihelion precession of the planet Mercury, deflection of light by the Sun and the radar echo delay) for the Kehagias-Sfetsos (KS) asymptotically flat black hole solution of Hořava-Lifshitz gravity has been considered. Recently authors of the paper \([19]\) have studied the particle motion in the space-time of a KS black hole. The stability of the Einstein static universe by considering linear homogeneous perturbations in the context of an Infra-Red (IR) modification of Hořava-Lifshitz gravity has been studied in \([22]\). Potentially observable properties of black holes in the deformed Hořava-Lifshitz gravity with Minkowski vacuum: the gravitational lensing and quasinormal modes have been studied in \([23]\). The authors of the paper \([24]\) derived the full set of equations of motion, and then obtained spherically symmetric solutions for UV completed theory of Einstein proposed by Hořava.

Black hole solutions and the full spectrum of spherically symmetric solutions in the five-dimensional nonprojectable Hořava-Lifshitz type gravity theories have been recently studied in \([25]\). Geodesic stability and the spectrum of entropy/area for black hole in Hořava-Lifshitz gravity via quasi-normal modes approach are analyzed in \([26]\). Particle geodesics around Kehagias-Sfetsos black hole in Hořava-Lifshitz gravity are also investigated by authors of the paper \([27]\). Recently observational constraints on Hořava-Lifshitz gravity have been found from the cosmological data \([30]\). Authors of the paper \([31]\) have found all spherical black hole solutions for two, four and six derivative terms in the presence of Cotton tensor.

Recently the rotating black hole solution in the context of the Hořava-Lifshitz gravity has been obtained in \([31]\). In this paper we plan to study the energy extraction mechanism through the Penrose process and particle acceleration mechanisms near the rotating black hole in the Hořava-Lifshitz gravity. Authors of the paper \([32]\) considered Kerr black hole as particle accelerators to arbitrary high energies. The results of the paper \([32]\) have been commented in \([33]\) where authors concluded that astrophysical limitations on the maximal spin, back-reaction effects and sensitivity to the initial conditions impose severe limits on the likelihood of such accelerations. New proposed solution forces us to study the particle acceleration in the gravity theory of Hořava-Lifshitz. Recently Patil and Joshi \([34]\) have shown that the naked singularities that form due to the gravitational collapse of massive stars provide a suitable environment where particles could get accelerated and collide at arbitrarily high center-of-mass energies.

The paper is organized as follows. The description of
the rotating black hole solution and ergosphere around it considered in the Sec. [II]. Penrose process in the
ergosphere of the rotating black hole in Hoˇ rava–Lifshitz gravity has been studied in Sec. [III]. Sec. [IV] is devoted to
study the particle acceleration mechanism near the black hole in Hoˇ rava–Lifshitz gravity. We conclude our results in Sec. [V].

We use a system of units in which c = G = 1, a space-
like signature (−, +, +, +) and a spherical coordinate sys-
tem (t, r, θ, φ). Greek indices are taken to run from 0 to
3, Latin indices from 1 to 3.

II. EXTREME ROTATING BLACK HOLE IN
HOˇ RAVA–LIFSHITZ GRAVITY

The four-dimensional metric of the spher-
symmetric spacetime written in the ADM formalism
[17, 18, 22, 23] has the following form:

\[ds^2 = -N^2c^2dt^2 + g_{ij}(dx^i + N^i dt)(dx^j + N^j dt) , \]

where N is the lapse function, N^i is the shift vector to be defined.

The Hoˇ rava-Lifshitz action describes a nonrelativis-
tic renormalizable theory of gravitation and is given by (see
for more details Ref. [1, 2, 17, 18, 22, 23]):

\[S = \int dt dx^3 \sqrt{-g} N \left[\frac{\kappa^2}{2} (K_{ij} K^{ij} - \lambda_g K^2) \right. \]
\[+ \frac{\kappa^2 \mu}{2 \nu^2} \epsilon^{ijkl} R_{ik} R_{jl} - \frac{\kappa^2 \mu^2}{8} R_{ij} R^{ij} + \frac{\kappa^2 \mu^2}{8 (3 \lambda_g - 1)} \times \left(\frac{4 \lambda_g - 1}{4} R^2 - \Lambda_W R^2 \right) + \frac{\kappa^2}{2 \nu^2} C^{ij} C^{ij} \right], \]

where \(\kappa, \lambda_g, \nu, \mu, \) and \(\Lambda_W \) are constant parameters, the
Cotton tensor is defined as

\[C^{ij} = \epsilon^{ikl} \nabla_k \left(R_{lj} - \frac{1}{4} R \delta_{lj} \right), \]

\[R_{ijkl} \] is the three-dimensional curvature tensor, and the
extrinsic curvature \(K_{ij} \) is defined as

\[K_{ij} = \frac{1}{2N} \left[(\dot{g}_{ij} - \nabla_i N_j - \nabla_j N_i) \right], \]

where dot denotes a derivative with respect to coordinate t.

If one considers up to second derivative terms in the
action [2], one can find the known topological rotating
solutions given by [32] for equations of motion in the
Hoˇ rava-Lifshitz gravity. Since we are considering matter
coupled with the metric in a relativistic way, we can con-
sider the metric in Boyer-Lindquist coordinates instead
of its ADM form which is the solutions of Hoˇ rava-Lifshitz
gravity. In the Einstein’s gravity this spacetime metric
reads in Boyer-Lindquist type coordinates in the follow-
ing form (see, e.g. [31]):

\[ds^2 = -\frac{\Delta_r}{\Sigma^2 \rho^2} \left[dt - a \sin^2 \theta d\varphi \right]^2 + \frac{\rho^2}{\Delta_r} dr^2 \]
\[+ \frac{\rho^2}{\Delta_\theta} d\theta^2 + \frac{\Delta_\theta \sin^2 \theta}{\Sigma^2 \rho^2} \left[adt - (r^2 + a^2) d\varphi \right]^2, \]

where the following notations

\[\Delta_r = (r^2 + a^2) \left(1 + \frac{r^2}{l^2} \right) - 2Mr, \]
\[\Delta_\theta = 1 - \frac{a^2}{l^2}, \]
\[\rho^2 = r^2 + a^2 \cos^2 \theta, \]
\[\Sigma = 1 - \frac{a^2}{l^2}, l^2 = -2/\Lambda_W \]
are introduced, \(M \) is the total mass of the central BH, \(a \)
is the specific angular momentum of the BH. Note that
metric (5) in ADM form can be written as [33]:

\[ds^2 = -\frac{\rho^2 \Delta_r \Delta_\theta}{\Sigma^2 \rho^2} dt^2 + \frac{\rho^2}{\Sigma^2 \rho^2} dr^2 + \frac{\rho^2}{\Delta_\theta} d\theta^2 \]
\[+ \frac{\Sigma^2 \sin^2 \theta}{\Sigma^2 \rho^2} \left[d\varphi - \omega dt \right]^2, \]

where

\[\Xi^2 = (r^2 + a^2)^2 \Delta_\theta - a^2 \Delta_r \sin^2 \theta, \]
\[\omega = -\frac{a}{\Xi} \left[-(r^2 + a^2) \Delta_\theta + \Delta_r \right] \]
The spacetime (6) has a horizon where the four velocity of a corotating observer tends to zero, or the surface \(r = \text{const} \) becomes null. Thus we have:

\[r_+ \simeq (1 - 3\delta)[M + \sqrt{M^2 - a^2(1 + 3\delta)}], \]

where we have introduced small dimensionless parameter
\(\delta = a^2/l^2 \ll 1. \)

The static limit is defined where the time-translation
Killing vector \(e^{\tau}_{(s)} \) becomes null (i.e. \(g_{00} = 0 \)), so the static limit of the BH can be described as

\[r_{st} \simeq (1 - 3\delta) \left\{ \frac{M}{1 + \delta \sin^2 \theta (1 + 3\delta) \cos^2 \theta} \right\}. \]

In the recent paper [35] authors provide the ADM and
Boyer-Lindquist forms of the spacetime metric in Hoˇ rava-
Lifshitz gravity both. From the expression (6) one can
easily see that the results for the radii of event horizon
and static limit will be identical in the ADM and
Boyer-Lindquist ones (For more details about these forms
of spacetime metric presentation in Hoˇ rava-Lifshitz grav-
ity we refer to the papers [31] and [33].).
Considering only the outer horizon, \(r_+ \) and static limit, \(r_{st} \), it can be verified that the static limit always lies outside the horizon. The region between the two is called the ergosphere, where timelike geodesics cannot remain static but can remain stationary due to corotation with the BH with the specific frame dragging velocity at the given location in the ergosphere. This is the region of spacetime where timelike particles with negative angular momentum relative to the BH can have negative energy relative to the infinity. Then, energy could be extracted from the hole by the well-known Penrose process \([37]\).

In Fig. 1 the dependence of the shape of the ergosphere from the small dimensionless parameter \(\delta \) is shown. From the figure one can see, that the relative shape of the ergosphere becomes bigger with increasing the module of the parameter \(\delta \). Although in the polar region there is no ergoregion in the presence of the nonvanishing \(\delta \) parameter, where Penrose process can be realized, near to polar zone ergoregion becomes more bigger than that in the Kerr spacetime. It may increase the efficiency of the Penrose process.

III. ENERGY EXTRACTION OF BLACK HOLE THROUGH PENROSE PROCESS

Due to the existence of an ergosphere around the BH, it is possible to extract energy from BH by means of the Penrose process. Inside the ergosphere, it is possible to have a timelike or null trajectory with the negative total energy. As a result, one can envision a particle falling from infinity into the ergosphere and splitting into two fragments, one of which attains negative energy relative to the infinity and falls into the hole at the pole, while the other fragment would come out by conservation of energy with the energy being greater than that of the original incident particle. This is how the energy could be extracted from the hole by axial accretion of particles with the nonvanishing momentum and \(\delta \) parameter.

Consider the equation of motion of such negative energy particle at the equatorial plane \((\theta = \pi/2, \phi = 0) \). Using the Hamilton-Jacobi formalism the energy \(E \) and angular momentum \(L \) of the particle are given as (see, e.g. [30])

\[
\dot{E} = \frac{m}{\Sigma^2} \left[\frac{1}{2} \left(\frac{2M}{r} + \frac{r^2 + a^2}{l^2} \right) \right] \dot{t} + \frac{a}{\Sigma^2} \left(\frac{2M}{r} + \frac{r^2 + a^2}{l^2} \right) \dot{\phi} ,
\]

\[
\dot{L} = \frac{L}{m} = \frac{1}{\Sigma^2} \left(\frac{2M}{r} + \frac{r^2 + a^2}{l^2} \right) \dot{\phi} + \frac{a}{\Sigma^2} \left(\frac{2M}{r} + \frac{r^2 + a^2}{l^2} \right) \dot{t} ,
\]

From the equations (9) and (10) one can easily obtain the equation of motion as:

\[
\alpha E^2 + \beta E + \gamma + \frac{l^2}{\Sigma^2} \dot{\phi}^2 + m^2 = 0 \ ,
\]

where we have introduced the following notations:

\[
\alpha = \frac{1}{\Sigma^2} \left(\frac{2M}{r} + \frac{r^2 + a^2}{l^2} + a^2 \frac{2M}{r} \right) \Gamma^{-1} ,
\]

\[
\beta = \frac{2aL}{\Sigma^2} \left(\frac{2M}{r} + \frac{r^2 + a^2}{l^2} \right) \Gamma^{-1} ,
\]

\[
\gamma = - \frac{L^2}{\Sigma^2} \left(1 - \frac{2M}{r} + \frac{r^2 + a^2}{l^2} \right) \Gamma^{-1} ,
\]

and

\[
\Gamma = - \frac{1}{\Sigma^2} \left(1 - \frac{2M}{r} + \frac{r^2 + a^2}{l^2} \right) \times \left(\frac{2M}{r} + \frac{r^2 + a^2}{l^2} - a^2 \frac{2M}{r} \right)
\]

\[
\frac{a^2}{\Sigma^2} \left(\frac{r^2 + a^2}{l^2} - \frac{2M}{r} \right) \Gamma^{-1} .
\]

From the equations (9), (10) (11) one can easily obtain the equations of motion in the following form:

\[
\frac{dt}{ds} = \frac{\Sigma^2}{\Sigma^2} \left\{ \left[(r^2 + a^2)^2 - \Delta r a^2 \right] E + \left(\Delta r - r^2 a^2 \right) a L \right\} ,
\]

\[
\frac{d\phi}{ds} = \frac{\Sigma^2}{\Sigma^2} \left\{ \left(\Delta r - a^2 \right) L + (r^2 + a^2 - \Delta r) E \right\} ,
\]

\[
\left(\frac{dr}{ds} \right)^2 = E^2 - V_{\text{eff}} ,
\]

\[
V_{\text{eff}} = \left(1 + \frac{\Delta r a}{\rho^2} \right) E^2 + \frac{\Delta r}{\rho^2} \left(\beta E + \gamma + 1 \right) .
\]

In the Fig. 2 the radial dependence of the effective potential of radial motion of the massive test particle has been shown for the different values of the parameter \(\delta \). Here for the energy and momenta of the particle the following values are taken: \(E/m = 0.9, L/mM = 6.2 \). The presence of the parameter \(\delta \) slightly shifts the shape of the effective potential up.

When the one of two produced particles falls into the central BH, the mass of the BH will change by \(\Delta M = E \). The change in mass can be made as large as one pleases by increasing the mass \(m \) of the infalling particle. However, there is a lower limit on \(\Delta M \) which could be added to the BH corresponding to \(m = 0 \) and \(p^2 = 0 \) \([30]\).

Evaluating all of the required quantities at the horizon \(r_+ \), one can easily get the limit for the change in BH mass as

\[
E_{\text{min}} = L \frac{\delta (a^2 + r_+^2) / a - 2Ma/r_+}{r_+^2 + a^2 - a^2 \delta - r^2 \delta + a^2 2M/r_+} .
\]
From the expression (20) one may conclude that Penrose process can be realized if the condition \(\delta < 2Ma^2/r_+ (a^2 + r_+^2) \) will be satisfied. Since current astrophysical data indicate that parameter \(\delta \) is much less than 1, one may conclude that Penrose process is more realistic process among the energy extraction mechanisms from BH in Ho\'rava-Lifshitz scenario. However, it should be mentioned that in the early Universe when the module of the cosmological constant played important role, energy extraction from the rotating BH could be impossible in Ho\'rava–Lifshitz scenario due to the positivity of the sign of \(E_{\text{min}} \). This limitation for Penrose process does not exist in the standard theory gravity and appears in the modified theory gravity as Ho\'rava–Lifshitz one.

IV. PARTICLE ACCELERATION NEAR THE BLACK HOLE

Let us find the energy \(E_{\text{cm}} \) in the center of mass of system of two colliding particles with energy at infinity \(E_1 \) and \(E_2 \) in the gravitational field described by spacetime metric (19). It can be obtained from
\[
\left(\frac{1}{\sqrt{-g_{00}}} E_{\text{cm}}, 0, 0, 0 \right) = m_1 v_1^\alpha + m_2 v_2^\alpha, \tag{21}
\]
where \(v_1^\mu \) and \(v_2^\nu \) are the 4-velocities of the particles, properly normalized by \(g_{\mu\nu} v^\mu v^\nu = -1 \) and \(m_1, m_2 \) are rest masses of the particles. We will consider two particles with equal mass \((m_1 = m_2 = m_0) \) which has the energy at infinity \(E_1 = E_2 \simeq 1 \). Thus we have
\[
E_{\text{cm}} = m_0 \sqrt{2} \sqrt{1 - g_{\alpha\beta} v_1^\alpha v_2^\beta}, \tag{22}
\]
FIG. 2: The radial dependence of the effective potential of radial motion of the massive test particle for the different values of the dimensionless parameter δ.

Now using the equations (17)-(19) one can obtain expression for the energy of colliding particles near the Hořava-Lifshitz black hole as:

$$E_{\text{c.m.}}^2 = \frac{2m^2\Sigma^2}{r\Delta r} \left\{ \frac{\delta r^5}{a^2} + 2r^2[r(1 + 2\delta) - 1 - 4\delta] - [2a - \delta ra(1 + r^2)](l_1 + l_2) + l_1 l_2[2 - r + \delta r(1 + \frac{r^2}{a^2})] \right. $$
$$+ 2a^2[1 + (1 + 1.5\delta)r] - \sqrt{2(a - l_1)^2 - (a^2\delta - 2a\delta l_1 + l_1^2 + l_1^2\delta + 2r)r - 2\delta + \frac{2\delta l_1}{a} - \frac{l_1^2 + \delta}{a^2}\delta r^3}$$
$$\times \sqrt{2(a - l_2)^2 - (a^2\delta - 2a\delta l_2 + l_2^2 + l_2^2\delta + 2r)r - 2\delta + \frac{2\delta l_2}{a} - \frac{l_2^2 + \delta}{a^2}\delta r^3} \right\}$$

V. CONCLUSION

We have studied the energetics of the rotating black hole in Hořava–Lifshitz gravity. First, we considered the energy extraction mechanism via the Penrose process and found exact expression for limit for the change in BH mass (20) and concluded that Penrose process can be realized if the condition $\delta < \frac{2}{r_{+}M}$ will be satisfied. Since the parameter δ is much less than 1, it is easy to conclude that energy extraction through Penrose process is more realistic process among the energy extraction mechanisms from BH in Hořava-Lifshitz scenario. However, it should be mentioned that in the early Universe when the module of the cosmological constant played important role, energy extraction from the rotating BH could be impossible in Hořava–Lifshitz scenario due to the positivity of the sign of E_{min}. This limitation for Penrose process does not exist in the standard theory gravity and appears in the modified theory gravity as Hořava–Lifshitz one.

In the paper [32] authors underlined that rotating
black hole can, in principle, accelerate the particles falling to the central black hole to arbitrary high energies. Because of some mechanisms such as astrophysical limitations on the maximal spin, back-reaction effects, and sensitivity to the initial conditions, there appears some upper limit for the center of mass energy of the infalling particles. One of the mechanisms offered in this paper is appearing due to the Hořava–Lifshitz gravity correction which prevents particle from the infinite acceleration.

FIG. 3: The radial dependence of the center of mass energy of two infalling particles for the different values of the parameter δ in the case of the extreme black hole (a = M).

Acknowledgments

Authors thank the IUCAA for warm hospitality during their stay in Pune. This research is supported in part by the UzFFR (projects 1-10 and 11-10) and projects FA-F2-F079 and FA-F2-F061 of the UzAS. This work is partially supported by the ICTP through the OEA-PRJ-29 project and the TWAS Associateship grant.

[1] P. Hořava, JHEP 0903, 020 (2009).
[2] P. Hořava, Phys. Rev. D 79, 084008 (2009).
[3] R. G. Cai, L. M. Cao and N. Ohta, Phys. Rev. D 80, 024003 (2009).
[4] R. A. Konoplya, Phys. Lett. B 679, 499 (2009).
[5] S. Chen and J. Jing, Phys. Rev. D 80, 024036 (2009).
[6] A. Castillo and A. Larranaga, Electron. J. Theor. Phys. 11 (2011).
[7] D. Y. Chen, H. Yang and X. T. Zu, Phys. Lett B 681, 463 (2009).
[8] T. Takashi and J. Soda, Phys. Rev. Lett. 102, 231301 (2009).
[9] G. Calcagni, JHEP 09112 (2009).
[10] S. Kalyana Rama, Phys. Rev. D 79, 124031 (2009).
[11] A. Wang and R. Maartens, Phys. Rev. D, 81, 024000 (2010).
[12] C. G. Boehmer, L. Hollenstein, F. S. Lobo and S. S. Seahra, [arXiv:gr-qc/1001.1266].
[13] S. Mukohyama, Class. Quant. Grav. 27, 223101 (2010).
[14] E. N. Saridakis, Eur. Phys. J. C 67, 229 (2010).
[15] M. I. Park, JCAP 1001, 001 (2010).
[16] S. Mukohyama, Physical Review D 80, 064005 (2009).
[17] T. Harko, Z. Kovacs, F.S.N. Lobo, Proc. Roy. Soc. Lond. A Math. Phys. Eng. Sci. 467, 1390 (2011).
[18] F.S.N. Lobo, T. Harko and Z. Kovacs, arXiv:1001.3517v1 [gr-qc].
[19] V. Enolskii, B. Hartmann, V. Kagramanova, J. Kunz, C. Laemmerzahl, P. Sirimachan, arXiv:1106.2408
[20] A. Hakimov, B. Turimov, A. Abdujabbarov and B. Ahmedov, Mod. Phys. Lett. A, 25, 37 3115 (2010).
[21] A. Abdujabbarov, B. Ahmedov, and A. Hakimov, Phys. Rev. D 83, 044053(2011).
[22] C.G. Böhmer and F.S.N. Lobo, Eur. Phys. J. C 70, 1111 (2010).
[23] R. A. Konoplya, Phys. Lett. B 679, 499 (2009).
[24] H. Lü, J. Mei, and C.N. Pope, Phys. Rev. Lett. 103, 091302 (2009).
[25] G. Koutsoumbas, E. Papantonopoulos, P. Paspis, and M. Tsoukalas, Phys. Rev. D 81, 124014 (2010).
[26] G. Koutsoumbas, P. Papastapuli, and C. Tsoukalas, Phys. Rev. D 82, 044046 (2010).
[27] M. R. Setare, D. Momeni, Mod. Phys. Lett. A 26, 151 (2011).
[28] M. R. Setare, D. Momeni, Int. J. Theor. Phys. 50, 106 (2011).
[29] B. Gwak, B.-H. Lee, J. Cosmol. Astropart. Phys. 09 (2010) 031.
[30] S. Dutta, E.N. Saridakis, J. Cosmol. Astropart. Phys. 05 (2010) 013; S. Dutta, E.N. Saridakis, J. Cosmol. Astropart. Phys. 01 (2010) 013.
[31] A. Ghodsi, H. Hadi, Phys. Rev. D, 81, 044016 (2010).
[32] M. Bañados, J. Silk, and S.M. West, Phys. Rev. Lett. 103, 111102 (2009).
[33] E. Berti, V. Cardoso, L. Gualtieri, F. Pretorius, and U. Sperhake, Phys. Rev. Lett. 103, 239001 (2009).
[34] M. Patil and P. S. Joshi, Phys. Rev. D 82, 104049 (2010); Phys. Rev. D 83, 064007 (2011).
[35] D. Klemm, V. Moretti and L. Vanzo, Phys. Rev. D 57, 6127 (1998).
[36] C. W. Misner, K.S. Thorne, and J.A. Wheeler, Gravitation (San Francisco: Freeman, 1973); K. Prabhu, N. Dadhich, Phys. Rev. D 81, 024011 (2010).
[37] R. Penrose, J. Math. Phys. 10, 38 (1969).