Cartilage Reshaping: An Overview of the State of the Art

1,2 Amir M. Karamzadeh, 3 Emil N. Sobol, 1 Alexandre Rasouli,
1,4 J. Stuart Nelson, 5 Thomas E. Milner, 1,2,4 Brian J. F. Wong

1 Beckman Laser Institute and Medical Clinic, 1002 Health Sciences Road East,
University of California Irvine, CA 92612
2 Department of Otolaryngology-Head and Neck Surgery, 101 The City Drive, Bld. 25,
Rt, 81, University of California, Irvine, Orange, CA 92868
3 Institute of Laser and Information Technologies, Russian Academy of Sciences,
Troitsk, Russia 142092
4 The Whitaker Center for Biomedical Engineering, Samueli School of Engineering,
University of California Irvine, Irvine, CA, 92612
5 Dept. of Electrical and Computer Engineering, University of Texas at Austin, Austin,
TX 78712-1084

ABSTRACT

The laser irradiation of cartilage results in a plastic deformation of the tissue allowing for the
creation of new stable shapes. During photothermal stimulation, mechanically deformed cartilage
undergoes a temperature dependent phase transition, which results in accelerated stress relaxation of the
tissue matrix. Cartilage specimens thus reshaped can be used to recreate the underlying framework of
structures in the head and neck. Optimization of this process has required an understanding of the
biophysical processes accompanying reshaping and also determination of the laser dosimetry parameters,
which maintain graft viability. Extensive in vitro, ex-vivo, and in vivo animal investigations, as well as
human trials, have been conducted. This technology is now in use to correct septal deviations in an office-
based setting. While the emphasis of clinical investigation has focused on septoplasty procedures, laser
mediated cartilage reshaping may have application in surgical procedures involving the trachea, laryngeal
framework, external ear, and nasal tip. Future directions for research and device design are discussed.

Keywords: Cartilage, Laser Mediated Cartilage Reshaping, Stress Relaxation, Otolaryngology, Plastic
Surgery, Phase Transformations
1.0 INTRODUCTION

Cartilage is a dense connective tissue, best described as a gel of non-diffusible macromolecules reinforced by collagen fibers. Cartilage is composed of 60-80% water and a small volume fraction of cells (chondrocytes) within the extracellular matrix. Cartilage provides structural support for many structures in the head and neck and forms the articular surfaces in load bearing joints. In the head and neck, disease, congenital malformation, traumatic injury or ablative surgery may alter the morphology of these structures resulting in functional deficits. Reconstruction (carving, morselizing, scoring, or suturing) of cartilaginous defects often require the use of non-vascularized cartilage autografts. The limitations of these techniques result from the potential donor site morbidity that occurs during tissue harvest, as well as the inability to appropriately accommodate the donor graft to the geometric constraints of the recipient site. Although a variety of treatment strategies have been proposed for the regeneration or repair of diseased and deformed cartilage, the development of an alternative method to alter cartilage shape without surgery has until recently remained elusive.

In 1993, Emil Sobol introduced a novel method of reshaping cartilage using non-ablative laser irradiation to accelerate mechanical stress relaxation and permanently modify graft shape\(^1\). A growing body of basic and clinical data supports the use of this new technology for potential therapy for diseased cartilage and anatomical defects. In this review, we will discuss the biophysical process involved in laser-mediated cartilage reshaping and summarize the current clinical experience of this technology.

1.1 Biophysical Process

Cartilage resists deformation due to the molecular forces generated between water and proteoglycan molecules, which balance the applied load. Focal irradiation to regions of the cartilage specimen where maximum stress is distributed leads to stress relaxation and shape change (Figure 1).

![Figure 1](image)

Figure 1. Illustration of the laser reshaping process: (A) Mechanically deformed cartilage; (B) Laser irradiation; (3) Stable shape change.

Measurements of tissue optical, mechanical, and thermal properties during photothermal heating identified characteristic changes in tissue properties that occurred within a critical temperature range of 60-70°C. Real-time internal stress measurements indicate that when cartilage reaches this temperature, mechanical stress relaxation occurs\(^8\). The onset of accelerated stress relaxation also corresponds to the observation of a peak in diffusely reflected light from a visible wavelength probe laser. These real-time indices have been used to control the laser reshaping of cartilage tissue\(^10\), maintaining tissue temperatures below the threshold for protein denaturation (70°C). However, precise control of the temporal and spatial aspects of the heating process remains a challenge.
Studies published by Sviridov and others indicate that a “therapeutic window” for effective reshaping exists between laser fluence and irradiation time. This “window” will vary with tissue thickness and laser wavelength. Insufficient energy or laser exposure time results in inadequate shape change without significant alteration of the extracellular matrix, while overheating will create stable shapes, but may result in significant thermal injury (Figure 2). To optimize laser mediated cartilage reshaping, the heating process must be precisely controlled, as loss of chondrocyte viability may result in complete graft resorption, infection, and/or necrosis. Recent studies have indicated that chondrocyte viability decreases with prolonged or repeated laser irradiation.

Figure 2. Representation of the optimal laser parameters for effective cartilage reshaping.

1.3 Mechanism of Action

Though the precise mechanism of action of laser-assisted reshaping is still under investigation, the process is likely dependent on a temperature (70°C) sensitive bound-to-free water phase transition. Sobol and others have postulated that under moderate laser heating, internal stress relaxation occurs when water bound to the proteoglycans is liberated. If this process occurs without damaging the matrix macromolecules then stable shape change occurs. Several phenomenological mechanisms have been proposed to account for reshaping: (1) local mineralization of the proteoglycans negative charges by Na+ and Ca+ cations occurs without altering the collagen and proteoglycan microstructure; (2) temperature dependent depolymerization of proteoglycan aggregates followed by a re-formation of the proteoglycan structure without significant denaturation of the extracellular matrix; and (3) short-time disruption of bonds between the collagen and proteoglycan subunits, facilitating a decrease in internal stress by altering the spatial structure of the proteoglycans. Indirect supportive evidence for the first two theories where gained by Sobol et al (1999) with the aid of AFM and light scattering techniques measurements. Following 30 seconds of irradiation from a CO2 laser, small (submicron) crystals form within the irradiation zone. These have subsequently been found to consist of sodium carbonate and calcium carbonate, which may contribute to both short-term and long-term stability, respectively. Further molecular and chemical studies will continue to provide important information on the underpinnings of the mechanism of action.
1.4 Graft Shaping Techniques

Cartilage can be reshaped using either diffuse or focal irradiation. Using diffuse laser irradiation, the entire specimen is heated (bulk heating) using relatively low power densities to create gently curved shape changes in the tissue (Figure 3a). Ex vivo experiments have shown that though shape change occurs, there is some degree of shape memory that may result in the reduction of curvature (Figure 4). To compensate for this effect, the graft must be "over-bent" during reshaping so that the target configuration is attained after stabilization.

![Figure 3. Illustration of Diffuse (A) and Focal (B) Irradiation techniques used to reshape cartilage.](image)

Using focal laser irradiation, the regions of maximum stress (in a deformed specimen) are irradiated using relatively high power densities in order to reshape cartilage with relatively acute angles (Figure 3b). This approach has been used clinically to correct nasal septal defects (see below), and in animal studies to reshape ears and crushed tracheal rings. Despite clinical implementation and several *in vivo* studies (see below) cellular viability following this intense photothermal interaction has not been determined using vigorous techniques.

![Figure 4. Schematic representation of the “memory effect” following laser reshaping.](image)
1.5 In Vivo and Clinical Studies

The first reported clinical studies (three patients) were performed in Crete in 1992, by E. Helidonis and colleagues\(^1\), who removed segments of deformed nasal septal cartilage, straightened using CO\(_2\) laser irradiation, and then re-implanted the grafts in their normal anatomic position. This prompted a series of animal experiments, as the precise laser dosimetry accounting for the phenomena was unknown.

In 1994 V. Ovchinnikov et al, in Russia used a CO\(_2\) and holmium laser to reshape the auricular cartilage of five rabbits (in vivo)\(^{18}\). In 1995, Z. Wang (United States), used a 1.44\(\mu\)m laser to reshape the collapsed tracheal rings of three dogs\(^{19}\). Between 1997 (Ovchinnikov et al, Russia) and 1998 (Jones et al, United Kingdom) two studies where conducted to assess the long-term results after laser reshaping of ear cartilage from seventeen pigs using a holmium laser.

In 1998, Ovchinnikov and coworkers (Russia), began using a holmium laser to correct nasal-septal defects (septoplasty). In conventional septoplasty surgery, the procedure is performed in the operating suite under general anesthesia. Post-operative complications include bleeding, pain, infection and the usual risks of anesthesia, with recovery often taking several weeks. With laser-assisted septoplasty, the procedure in done in the office using aerosolized local anesthesia. A double-pronged metal spreader, specifically designed for this application, is placed within the affected nasal airway. The obstructing septal cartilage is pushed mediially to open the airway. An optical wire is introduced intranasally and the cartilage is irradiated (6-8s pulses) from the cephalic to caudal end. The spreading apparatus is removed from the nostril and replaced by a cotton pledget. The optical fiber is then placed into the unaffected nostril and used to irradiate the newly reshaped cartilage from the opposite side. This painless and bloodless procedure takes ten minutes to complete. E. Sobol and colleagues (2000) reported results of a study incorporating 40 patients\(^{20}\). Rhino-gastrometrical examinations before and at 6 months following laser reshaping indicate significant improvement in the nasal airflow of 32 of the 40 patients. Six of the eight non-responders benefited from retreatment using a higher fluence. Post-operative fiberoptic nasal endoscopy illustrates a marked and stable increase in the nasal airway patency.

2.0 CONCLUSIONS

The growing body of evidence thus far clearly illustrates the potential impact of laser-assisted shaping in surgery involving cartilaginous structures. Studies are currently under way to better understand the photothermal effects on chondrocytes, develop biophysical models, and elucidate the mechanism of action of laser reshaping. Optimization of laser dosimetry, development of clinical instrumentation, and further clinical trials are areas requiring further investigation. Data from these studies will no doubt further refine our efforts toward making this novel technique a clinical procedure with many applications in the fields of Otolaryngology, Orthopedics, and Plastic/Reconstructive Surgery.

ACKNOWLEDGEMENTS

The authors would like to thank the following agencies for financial support: Office of Naval Research (N00014-94-0874), National Institutes of Health (1 K08 DC 00170-01, AR-43419, RR-01192, and HL-59472), The Whitaker Foundation (WF- 21025), and the Department of Energy (95-3800459), INTAS (97-1430), Russian Foundation of Basic Research (99-02-16855) and the Airforce Office of Scientific Research.
REFERENCES:

1. Helidonis C, Sobol E, Kavvalos G, Bizakis J, Cristodoulou P, Velegrakis G, Segas J, Bagratashvili VN. “Laser Shaping of Composite Cartilage Grafts,” *Am J of Otolaryngol*, 14, pp410-412,1993

2. Helidonis A, Sobol E, Velegrakis G, Bizakis J, “Shaping of Nasal Septal Cartilage with the Carbon Dioxide Laser- a Preliminary Report of an Experimental Study,” *Lasers in Med Sci*, 9, pp51-54,1994.

3. Sobol E, Bagratashvili V, Omel’chenko A, Alexander I, Kitai MS, Jones N, Zenger V, Nasedkin AN, Isaev M, Karlov V, Shekhter A, “Laser Shaping of Cartilage, *Proc SPIE*, 2128, pp43-49,1994.

4. Sobol, E, Bagratashvili V, Sviridov A, Omel’Chenko AI, Kitai MS, Jones N, Zenger V, Nasedkin AN, Isaev M, Karlov V, Shekhter A, “Cartilage Reshaping With Holmium Laser” *Proc SPIE*, 2623, pp556-559,1996.

5. Sobol E, Bagratashvili V, Sviridov A, Omel’ Chenko AI, Shechter AB, Howdle S, Helidonis E. “Phenomenon of Cartilage Shaping using Moderate Heating and its Application in Otorhinolaryngology,” *Proc SPIE*, 2623, pp560-564,1996.

6. Sobol E, Sviridov A, Bagratashvili V, Omel’ Chenko AI, Shechter AB, Dosnes S, Howdle S, Jones N, “Stress Relaxation and Cartilage Shaping under Laser Radiation,” *Proc SPIE*: 2681, pp 358-363, 1996.

7. Wong BJF, Milner TE, Anvari B, Sviridov A, Omel’ Chenko AI, Bagratashvili V, Sobol E, Nelson JS, “Measurement of Radiometric Surface Temperature and Integrated Back-Scattered Light Intensity During Feedback Controlled Laser-Assisted Cartilage Reshaping.” *Lasers Med Sci*; 13: pp66-72,1998

8. Wong BJF, Milner TE, Kim HK, Nelson JS, Sobol E. “Stress Relaxation of Porcine Septal Cartilage During Nd:YAG ($\lambda=1.32 \mu m$) Laser Irradiation: Mechanical, Optical, and Thermal Responses,” *J Biomed Optics*, 3, pp 409-14, 1998

9. Sviridov A, Sobol EN, Jones NS, Lowes J, “Effect of Holmium Laser Radiation on Stress, Temperature and Structure Alterations in Cartilage,” *Lasers Med Sci*, 13, pp 73-77, 1998

10. Wong BHF, Milner TE, Harrington A, Ro J, Dao X, Sobol EN, Nelson JS. “Feedback Controlled Cartilage Reshaping.” *Arch Facial Plast Surg*, 1, pp 282-287, 1999.

11. Wong BJF, Milner TE, Kim HK, Telenkov S, Chew CF, Sobol EN, Nelson JS. “Characterization Of Temperature Dependent Biophysical Properties During Laser Mediated Cartilage Reshaping,” *IEEE J Selected Top Quantum Electronics*, 35, pp 532-9,1999

12. Bagratashvili VV, Sobol EN, Sviridov A, Omel’ Chenko AI, Popov VK, “Thermal and Diffusion Processes in Laser-induced Stress Relaxation and Reshaping of Cartilage,” *J Biomech*, 30, pp 813-817, 1997

13. Madsen SJ, Chu E, Wong BJF, “The Optical Properties of Porcine Nasal Cartilage,” *IEEE J Selected Top Quantum Electronics*, 5, pp 1127-1133, 1999
14. Sobol EN, Kitai M, Jones N, Sviridov A, Milner T, Wong BJF, “Heating and Structure Alteration in Cartilage Under Laser Radiation,” *IEEE J Selected Top Quantum Electronics*, 35, 532-9, 1999

15. Wong BJF, Milner TE, Kim HK, Chao K, Sun CH, Sobol EN, Nelson JS. “Proteoglycan Synthesis in Porcine Nasal Cartilage Following Nd:YAG(λ=1.32μm) Laser Mediated Reshaping,” *Photochem Photobiol B.*, 71(2), pp 218-24, 2000.

16. Sobol EN, Sviridov A, Bagratashvili VV, Omel'chenko AI, Kitai M, and Popov VK. Mechanism Of Laser-Induced Stress Relaxation In Cartilage, *SPIE Proceedings*, 2975, pp310-315, 1997

17. Sobol EN, Omel'chenko AI, Mertig M and Pompe W. “Scanning Force Microscopy Of The Fine Structure Of Cartilage Irradiated With A CO2 Laser,” *Lasers in Medical Science* (in press)

18. Ovchinnikov YM, Nikiforova GN, Svistushkin V, Sobol EN, Sviridov A and Omel'chenko A. “Modification Of Cartilage Form In Response To Laser Radiation,” *Annals of Otorhinolaryngology*, 3, pp 5-10, 1995

19. Wang Z, Pankratove MM, Perrault DF, Shapshay SM. “Endoscopic Laser-Assisted Reshaping of Collapsed Tracheal Cartilage: A Laboratory Study,” *Ann Otol Rhin Laryngol*, 105, pp 176-181, 1996.

20. Sobol EN, Sviridov A, Bagratashvili VV, Omel'chenko A, Ovchinnikov YM, Shechter AB, Svistushkin V, Shinaev A. “Laser Reshaping Of Nasal Septum: Clinical Results For 40 Patients,” *SPIE Proceeding 2000*: 3907 (in press)