MetaBAT: An Efficient Tool for Accurately Reconstructing Single Genomes from Complex Microbial Communities

Don Kang
Metagenomics at Gene or Pathway Levels

20,000 New Cellulase **Genes**

Expression of Methanogenesis **Pathways**

A

B pre-incubation

C

Wasn’t me!
But, Genomes would be Better!

- Able to get a full picture of metabolic capacity of an individual member of the community
- Study genome dynamics of individual members
 - Genome-wide sweep, gene gain/loss analysis
- Understanding inter-species interaction
How can we construct single genomes from metagenomic data?
Genome Reconstruction from Metagenomic Data

- Metagenome
- Shotgun Sequencing
- Reads
- Initial Assembly
- Contigs
Genome Reconstruction from Metagenonomic Data

Metagenome → Shotgun Sequencing → Reads → Initial Assembly → Contigs → “Binning”
Existing Binning Methods

- **Reference Based Binning**
 - Phylogeny based

- **De novo Binning**
 - Sequence composition
 - Abundance
 - Both

 - Inaccurate for complex metagenomes
 - Manual
 - Not scalable for many samples
Co-Abundance (coverage covariance) Binning
Abundance (Coverage) Binning

Ideally, contigs from the same genome should have the same coverage. But, single abundance cannot differentiate multiple genomes of similar abundance?
Co-abundance Binning

Multiple samples (libraries) help to differentiate the similar abundance in single sample (library).
Design Goals for Binning Software

- **Automated Unsupervised Co-abundance Binning**
 - Integration of tetranucleotide frequency (TNF) and (or) abundance (ABD) as features
 - Handling of multiple ABDs from samples

- **Highly Efficient**
 - A couple of hours to bin millions of contigs having thousands of samples
 - Runnable in a single node (<20G memory)

- **Reproducible and Reliable**
 - Robust to noise in contigs or samples
 - Designed to have high specificity than sensitivity

- **Flexible**
 - Handle any number of samples
 - Adjustable parameter setting to change sensitivity and specificity

- **Simple**
 - Easy to run and fully automated
Run MetaBAT!

runMetaBat.sh assembly.fasta *.bam
Benchmarks of Automated Metagenome Binners With A Medium Sized Data Set

- 5 binning methods
- 264 human gut metagenomic samples (ERP000108)
 - Assembled into 200K contigs
 - Used a method (CheckM) to estimate completeness and precision based on single copy genes
The Contestants

- MetaBAT
 - Sequence composition (TNF) + Co-abundance
- CONCOCT
 - Sequence composition + Co-abundance
- GroopM
 - Sequence composition + Co-abundance
 - Optional manual steps
- MaxBin
 - Sequence composition + Abundance
- Canopy
 - General purpose clustering algorithm
 - Co-abundance only
MetaBAT found the most genomes

For details, refer to https://bitbucket.org/berkeleylab/metabat/wiki/Benchmark_MetaHIT
MetaBAT runs very efficiently

Comparison	MetaBAT	Canopy	CONCOCT	MaxBin	GroopM**
Number of Bins Identified (>200kb)	234	223	260	168	335
Number of Genomes Detected (Precision > .9 & Recall > .3)	130	96	64	39	28
Wall Time (16 cores; 32 hyper-threads)	00:03:36	00:02:31*	82:19:53	06:49:39	12:19:12
Peak Memory Usage (for binning step)	3.0G	1.6G*	7G	5.8G	6.3G

*Canopy only use abundance table as input, so it should have taken more time and memory to read and write sequence data like the others
**Manual steps were not used

For details, refer to https://bitbucket.org/berkeleylab/metabat/wiki/Benchmark_MetaHIT
Binners complement each other

MetaBAT

CONCOCT

MaxBin

Canopy

130/144 (90%)
Can MetaBAT Scale to Huge Data Set?

- 1704 human gut metagenomic samples (ERP002061)
- >1M contigs over 1kb
- Only MetaBAT and Canopy was able to handle the amount of data
- 3 hours in a single node (with 32 threads using 17G memory)
- MetaBAT produced 790 (out of 1634) genome bins with >30% completeness and <5% contamination
- Using genome bins as seeds, we recruited & reassembled reads to improve the quality of bins.
The Quality of Genome Bins Approximates High Quality Draft Genomes

MetaBAT MGS
+ Reassembly Draft Genomes

342/373 (92%)
Acknowledgement

Zhong Wang
Rob Egan
Jeff Froula