The genus *Juglanconis* (*Diaporthales*) on *Pterocarya*

Hermann Voglmayr 1,2 · Walter M. Jaklitsch 1,2 · Hamid Mohammadi 3 · Mohammad Kazemzadeh Chakusary 3

Received: 24 September 2018 / Revised: 5 December 2018 / Accepted: 12 December 2018 © The Author(s) 2019

Abstract

Based on molecular phylogenetic analyses of a multigene matrix of partial nuSSU-ITS-LSU rDNA, *cal*, *his*, *ms204*, *rpb1*, *rpb2*, *tef1* and *tub2* sequences, recent European and Iranian collections of *Melanconium pterocaryae* from the type host, *Pterocarya fraxinifolia*, are shown to be distinct from the Japanese *Melanconis pterocaryae* from *Pterocarya rhoifolia*, and both are confirmed as closely related members of the recently described genus *Juglanconis*. Therefore, the new name *Juglanconis japonica* is proposed for *Melanconis pterocaryae*. As no type collection could be traced, *Melanconium pterocaryae* (syn. *J. pterocaryae*) is neotypified, described and illustrated, and it is recorded for Europe for the first time. During field surveys in natural stands of *P. fraxinifolia* in Guilan province (Iran), *Juglanconis pterocaryae* was consistently isolated from tissues affected by branch and trunk cankers, twig dieback and wood necrosis, indicating that it is the causal agent of these diseases. The external and internal symptoms associated with these trunk diseases are described and illustrated.

Keywords *Ascomycota* · *Juglanconidaceae* · Molecular phylogeny · Pathogen · Systematics · 1 new name

Introduction

The Diaporthales (*Ascomycota, Sordariomycetes*) comprise important plant pathogens, but the species diversity and host range of many phytopathologically important lineages are still imperfectly known. Recently, substantial progress was made to tackle the species diversity of several diaporthalean lineages involved in plant diseases by the application of multi-gene phylogenies in combination with morphological studies, e.g. in *Coniella* (Alvarez et al. 2016), *Cytospora* (Lawrence et al. 2018), *Diaporthe* (Guarnaccia et al. 2018) and *Harknessia* (Marin-Felix et al. 2019). These studies revealed a number of undescribed species on various plant hosts of economic importance in silvi-, agri- and horticulture, but also improved our knowledge on the circumscription and host range of already described species.

Based on morphology and molecular phylogenies, the genus *Pterocarya* is the closest relative of the genus *Juglans* in tribe *Juglandinae*, *Juglandaceae* (Manos et al. 2007; Xiang et al. 2016). The genus *Pterocarya* currently comprises about six accepted species, of which five occur in Eastern Asia (Vietnam, China, Korea and Japan), while one species, *P. fraxinifolia*, occurs widely disjunct in Western Asia from Anatolia via the southern Caucasus area to the Caspian forest of Iran (also known as Northern Iran) and Azerbaijan (Rix 2007). In Iran, *P. fraxinifolia* grows wildly in the three northern provinces Golestan, Guilan and Mazandaran, but in recent years, small populations have also been reported in two other western provinces, Lorestan (in the Zagros Mountains) and Ilam (bordering Iraq) (Nabavi et al. 2008). For a long time, native and local people have used young leaves of this tree as an anaesthetic agent for catching fish (Sadighara et al. 2009), for dyeing and as an antifungal agent (Hadjmohammadi and Kamyar 2006; Ebrahimzadeh et al. 2008, 2009). Various parts of this plant are rich in phenolic and flavonoid compounds (Ebrahimzadeh et al. 2008; Nabavi et al. 2008) and may therefore provide interesting bioactive compounds. Although *P. fraxinifolia* is currently of little economic importance in forestry, it has been planted as an ornamental tree throughout...
Europe mainly in large parks (Forrest 2006). So far, although *Pterocarya* species represent important components of Western and Eastern Asian forest ecosystems and are widely planted as ornamental trees, their mycobiota are poorly known and largely understudied.

Voglmayr et al. (2017) recently described the new genus *Juglanconis* for four *Melanconis* species on hosts of tribe *Juglandinae*, viz. three species (*Juglanconis appendiculata*, *J. juglandina*, *J. oblonga*) on various *Juglans* species and one (*J. pterocaryae*) from *Pterocarya* spp. During these investigations, the taxonomy of *J. pterocaryae* proved to be a complex issue that could not be resolved with certainty, as it involved asexual and sexual morphs described from two different *Pterocarya* hosts, i.e. *P. fraxinifolia* and *P. rhoifolia* from Western Asia and Japan, respectively. As first species, the asexual *Melanconium pterocaryae* was described by Kuschke (1913) from *P. fraxinifolia* collected in the Georgian Republic (Abkhazia). The species apparently was not recollected again until Riedl and Ershad (1977) published a record from the same host from Iran. No sexual morph is known from this host, and no specimens or cultures were available for morphological investigations and sequencings. Based on a holomorphic collection from *P. rhoifolia* collected in Japan, Kobayashi (1970) described *Melanconis pterocaryae*, and he considered that his species represented the sexual morph of *Melanconium pterocaryae*, based on similar conidial sizes of the Japanese collection and the original description of *M. pterocaryae* by Kuschke (1913). This synonymy was also accepted by Voglmayr et al. (2017), who accordingly combined the older *Melanconium pterocaryae* into their new genus *Juglanconis*. However, at that time, this synonymy could only be based on morphological evidence, because DNA data were only available for the ex-type culture of the Japanese *Melanconis pterocaryae*, but not for isolates from *P. fraxinifolia*, the type host of the basionym.

Recently, fresh collections from the type host of *Melanconium pterocaryae*, *P. fraxinifolia*, were made in Austria, the Czech Republic and Iran. This enabled us to perform detailed morphological investigations as well as pure culture isolation for sequencing and molecular phylogenetic analyses to resolve the taxonomic status of *Melanconium pterocaryae* and *Melanconis pterocaryae*, the results of which are reported here.

Materials and methods

Field survey and sample collection

During 2013–2017, natural forests in Guilan province (Northern Iran) were surveyed for endophytic fungal pathogens associated with trunk diseases of *Pterocarya fraxinifolia*. Symptomatic branches (1–4 samples from each tree) from trees showing canker and dieback were collected randomly from Asalem (Talesh), Chobar (Shaft), Jirdeh (Shaft), Masal, Rezvanshar (Talesh), Rudbar, Shaft and Talesh. Cross sections of symptomatic branches were examined in order to investigate development of wood necrosis in the wood and the type of necrosis was recorded. For fungal isolations, small wood fragments (5–8 mm) were cut from the margin between healthy and affected wood tissues. Wood discs were surface disinfected by immersion in 2% sodium hypochlorite (NaOCl) for 2 min and rinsed twice in sterile distilled water (SDW). Then they were dried under sterile airflow in the laminar hood and were placed on Petri dishes containing malt extract agar (MEA: 2% malt extract, Merck, Darmstadt, Germany) supplemented with 100 mg/l streptomycin sulphate (MEAS). Petri dishes were incubated at 25 °C for 5–15 days. Growth of endophytic fungi from the tissue segments were subcultured onto fresh MEA plates and incubated at 25 °C. In most cases, cankers and twigs with dieback symptoms were covered with black conidiomata (acervuli). Fungal isolations were made also from conidiomata formed on cankers and twigs. During 2017–2018, cankered branches of *P. fraxinifolia* bearing black conidiomata were also collected in landscape parks in Austria and the Czech Republic and pure cultures isolated from conidia.

Sample sources

Of the 12 isolates of *Juglanconis pterocaryae* from *P. fraxinifolia* included in the morphological and molecular phylogenetic analyses, 10 originated from conidia of fresh specimens and 2 were isolated from diseased host tissues (IRNHM-K116 = IRNHM-JP116 and IRNHM-K151 = IRNHM-JP151). Details of the strains including NCBI GenBank accession numbers of gene sequences used to compute the phylogenetic trees are listed in Table 1. Strain acronyms other than those of official culture collections are used here primarily as strain identifiers throughout the work. Representative isolates have been deposited at the Westerdijk Fungal Biodiversity Centre, Utrecht, The Netherlands (CBS culture collection). Details of the specimens used for morphological investigations are listed in the Taxonomy section under the respective descriptions. Herbarium acronyms are according to Thiers (2018). Specimens have been deposited in the Fungarium of the Department of Botany and Biodiversity Research, University of Vienna (WU).

Morphology

Microscopic observations were made in tap water except where noted. Methods of microscopy included stereomicroscopy using a Nikon SMZ 1500 equipped with a Nikon DS-U2 digital camera, and Nomarski differential interference contrast (DIC) using a Zeiss Axio Imager.A1 compound microscope equipped with a Zeiss Axiocam 506 colour digital camera. Images and data were gathered using the NIS-
Taxon	Strain	Culture collection	Herbarium	Origin	Host	GenBank accession no.	
						ITS-LSU cal his ms204 rpb1 rpb2 tef1 sub2	
Juglanconis							
appendiculata	D140	WU 35956	Greece	J. regia		KY427138 – – – KY427157 – KY427188 KY427207 KY427226	
	D96	WU 35954	Austria	J. nigra		KY427139 – – – KY427158 – KY427190 KY427209 –	
	D96A	WU 35954	Austria	J. nigra		KY427140 – – – KY427158 – KY427190 KY427209 –	
	MC	WU 32010	Greece	J. regia		KY427141 KY427242 – KY427159 KY427174 KY427191 KY427210 KY427227	
	MC2	WU 35957	Spain	J. regia		KY427142 KY427243 – KY427160 KY427175 KY427192 KY427211 KY427228	
	MC4	WU 35958	Spain	J. regia		KY427143 KY427244 – KY427161 KY427176 KY427193 KY427212 KY427229	
	ME17,	CBS 123194	Austria	J. regia		KY427144 KY427245 – KY427162 KY427177 KY427194 KY427213 KY427230	
	W.U.1665,	840932					
	A.R.3581						
	D142	WU 35960	Austria	J. regia		KY427145 – – – KY427157 – KY427195 KY427214 –	
	MC1	WU 35967	Austria	J. regia		KY427146 KY427246 KY427128 KY427163 KY427178 KY427196 KY427215 KY427231	
	MC3	WU 35968	Spain	J. regia		KY427147 KY427247 KY427129 KY427164 KY427179 KY427197 KY427216 KY427232	
	ME16,	CBS 121083	Austria	J. regia		KY427148 KY427248 KY427130 KY427165 KY427180 KY427198 KY427217 KY427233	
	W.U.1450,	843622					
	A.R.3420						
	ME22,	CBS 133343	Austria	J. regia		KY427149 KY427249 KY427131 KY427166 KY427181 KY427199 KY427218 KY427234	
	W.U.1500,	843622					
	A.R.3860						
	ME23	WU 35965	Austria	J. regia		KY427150 KY427250 KY427132 KY427167 KY427182 KY427200 KY427219 KY427235	
	ME14,	CBS 133344	–	USA	J. cinerea	KY427151 KY427251 KY427133 KY427168 KY427183 KY427201 KY427220 KY427236	
	A.R.4413						
	ME15,	CBS 133330	–	USA	J. cinerea	KY427152 KY427252 KY427134 KY427169 KY427184 KY427202 KY427221 KY427237	
	A.R.4529						
	ME18,	MAFF 410216	–	Japan	J. ailanthifolia	KY427153 KY427253 KY427135 KY427170 KY427185 KY427203 KY427222 KY427238	
	M4–1						
	ME19,	MAFF 410217	–	Japan	J. ailanthifolia	KY427154 KY427254 KY427136 KY427171 KY427186 KY427204 KY427223 KY427239	
	M4–10						
	ME20,	MAFF 410079	–	Japan	P. rhoifolia	KY427155 KY427255 KY427137 KY427172 KY427187 KY427205 KY427224 KY427240	
	LFP-M4–8						
Taxon	Strain	Culture collection	Herbarium	Origin	Host	GenBank accession no.	
-----------------------	--------	--------------------	-----------	--------	---------------------------	-----------------------------	
Juglanconis pterocaryaе	D272	CBS 144326	WU 39981	Austria	Pterocarya fraxinifolia	MK229175 MK238308 MK238312	
						MK238314 MK238319 MK238324	
						MK238332 MK238333 MK238338	
Juglanconis pterocaryaе	D275	WU 39983		Austria	Pterocarya fraxinifolia	MK229176 – – – – —	
						MK238325 MK238333 –	
Juglanconis pterocaryaе	D281	WU 39982		Austria	Pterocarya fraxinifolia	MK229177 MK238309 MK238313	
						MK238315 MK238320 MK238326	
						MK238334 MK238339	
Juglanconis pterocaryaе	D267a	IRNHM-JP1	WU 39985	Iran	Pterocarya fraxinifolia	MK229168 – – – – —	
						MK238321 MK238329 –	
Juglanconis pterocaryaе	D267b	IRNHM-JP8	WU 39985	Iran	Pterocarya fraxinifolia	MK229169 – – – – –	
						– – – – – – – –	
Juglanconis pterocaryaе	D268a	IRNHM-JP3	WU 39986	Iran	Pterocarya fraxinifolia	MK229170 – – – – – – –	
						– – – – – – – –	
Juglanconis pterocaryaе	D268b	IRNHM-JP5	WU 39986	Iran	Pterocarya fraxinifolia	MK229171 – – – – – – –	
						– – – – – – – –	
Juglanconis pterocaryaе	D268c	CBS 143631 = IRNHM-JP6	WU 39986	Iran	Pterocarya fraxinifolia	MK229172 – – – – – – –	
						MK238318 MK238322 MK238330	
						MK238337	
Juglanconis pterocaryaе	D269a	IRNHM-JP4	WU 39987	Iran	Pterocarya fraxinifolia	MK229173 – – – – – – –	
						MK238323 MK238331 –	
Juglanconis pterocaryaе	D269b	IRNHM-JP7	WU 39987	Iran	Pterocarya fraxinifolia	MK229174 – – – – – – –	
						– – – – – – – –	
Juglanconis pterocaryaе	K116	IRNHM-JP116	–	Iran	Pterocarya fraxinifolia	MK229178 MK238310 – – – –	
						MK238316 – – – – – – –	
						MK238327 MK238335 MK238340	
Juglanconis pterocaryaе	K151	IRNHM-JP151	–	Iran	Pterocarya fraxinifolia	MK229179 MK238311 – – – –	
						MK238317 – – – – – – –	
						MK238328 MK238336 MK238341	
Melanconis stilbostoma	D143	WU 35970	Poland	Betula pendula	KY427156 – – – – – – –	KY427173 KY427206 KY427225	
Melanconis stilbostoma	MS	CBS 121894	–	Austria	Betula pendula	JQ926229 – – – – – – –	JQ926302 JQ926368
Elements D v. 3.22.15 or Zeiss ZEN Blue Edition software packages. Measurements are reported as maxima and minima in parentheses, and the range representing the mean plus and minus the standard deviation of a number of measurements given in parentheses. Due to poor or untypical sporulation in pure culture, conidial and conidiophore morphology was only studied in detail from natural substrates.

Culture preparation, DNA extraction, PCR and sequencing

Single conidium isolates were prepared and grown on MEA or on 2% corn meal agar plus 2% w/v dextrose (CMD). Growth of liquid culture and extraction of genomic DNA was performed as reported previously (Voglmayr and Jaklitsch 2011; Jaklitsch et al. 2012) using the DNeasy Plant Mini Kit (QIAGen GmbH, Hilden, Germany).

The following eight loci were amplified and used for phylogenetic analyses: partial nuSSU-ITS-LSU rDNA, *cal*, *his*, *ms204*, *rpb1*, *rpb2*, *tefl* and *tub2*; for details on loci and primers see Table 2. PCR products were purified using an enzymatic PCR cleanup (Werle et al. 1994) as described in Voglmayr and Jaklitsch (2008). DNA was cycle-sequenced using the ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit v. 3.1 (Applied Biosystems, Warrington, UK) and the PCR primers; in addition, primers ITS4, LR2R-A and LR3 were used as internal sequencing primers for the ITS-LSU rDNA region and TEF1_INTF and TEFD_iR for *tefl* (Table 2). Sequencing was performed on an automated DNA sequencer (ABI 3730xl Genetic Analyser, Applied Biosystems).

Data analysis

The newly generated sequences were aligned to the sequence alignments of Voglmayr et al. (2017), and a combined matrix of the eight loci (partial SSU-ITS-LSU rDNA, *cal*, *his*, *ms204*, *rpb1*, *rpb2*, *tefl* and *tub2*) was produced for phylogenetic analyses, with two accessions of *Melanconis stilbostoma* added as the outgroup. The GenBank accession numbers of sequences used in these analyses are given in Table 1.

Sequence alignments for phylogenetic analyses were produced with the server version of MAFFT (http://mafft.cbrc.jp/alignment/server), checked and refined using BioEdit v. 7.2.6 (Hall 1999). The combined data matrix contained 8441 characters; viz. 1600 nucleotides of SSU-ITS-LSU, 460 nucleotides of *cal*, 449 nucleotides of *his*, 1037 nucleotides of *ms204*, 711 nucleotides of *rpb1*, 1160 nucleotides of *rpb2*, 1400 nucleotides of *tefl* and 1624 nucleotides of *tub2*.

Maximum parsimony (MP) analyses were performed with PAUP v. 4.0a163 (Swofford 2002). All molecular characters were unordered and given equal weight; analyses were performed with gaps treated as missing data; the COLLAPSE command was set to MINBRLEN. MP analysis of the combined multilocus matrix was done using 1000 replicates of heuristic search with random addition of sequences and subsequent branch swapping (MULTREES option in effect, steepest descent option not in effect). Bootstrap analyses with 1000 replicates were performed in the same way, but using 10 rounds of random sequence addition and subsequent branch swapping during each bootstrap replicate.

Maximum likelihood (ML) analyses were performed with RAxML (Stamatakis 2006) as implemented in raxmlGUI 1.5 (Silvestro and Michalak 2012), using the ML + rapid bootstrap setting and the GTR+GAMMA substitution model with 1000 bootstrap replicates. The matrix was partitioned for the different gene regions.

Results

Field survey and isolation

In the field surveys in the natural forests in Guilan province (Iran), declining trees of *P. fraxinifolia* showed branch and trunk canker, extensive dieback of terminal and lateral branches and death (Fig. 1b, c). Examination of branches from symptomatic trees revealed seven types of wood discoloration in cross sections: brown to black wood streaking, black spots, arch-shaped necrosis, central necrosis, irregular wood necrosis, water necrosis and wedge-shaped necrosis (Fig. 1g–k). Some collected samples showed multiple lesion types on the same sample in cross sections (Fig. 1g–k). A fungus morphologically resembling the genus *Juglanconis* (Voglmayr et al. 2017) was consistently isolated from wood lesions of affected trees (eight isolates). Among those isolates, seven (i.e. one from each different wood lesion type) were selected as representative isolates for further detailed studies. All of these isolates showed the same pure culture, conidioma and conidial characters. Two of these isolates, IRNHM-JP116 and IRNHM-JP151, were also selected for molecular studies. IRNHM-JP116 was isolated from infected tissue of a tree from Masal showing dieback and irregular wood necrosis in cross section, while IRNHM-JP151 was isolated from a tree from Asalem (Talesh) showing branch canker and irregular wood necrosis in cross section. During this work, 24 Iranian and three Austrian isolates were also recovered from conidiomata produced on twigs showing dieback (Fig. 1d–f). All these isolates had the same pure culture, conidioma and conidial characters like the isolates from lesions. In addition to *Juglanconis*, two isolates of *Phaeoacremonium alvesii* (Kazemzadeh Chakusary et al. 2017) and five isolates of *Lasiodiplodia mahajangana* (Kazemzadeh Chakusary et al. 2019) were isolated from affected trees. The field observations indicate that *J. pterocaryae* plays a major role in the decline of *P. fraxinifolia* in the forests of Northern Iran.
The combined multilocus matrix used for phylogenetic analyses comprised 8441 characters, of which 748 were parsimony informative (112 from SSU-ITS-LSU, 41 from cal, 34 from his, 64 from ms204, 35 from rpb1, 178 from rpb2, 173 from tef1 and 111 from tub2). The MP analysis revealed 30 MP trees 1090 steps long, one of which is shown in Fig. 2. Tree topologies of all MP trees were identical except for minor differences within Juglanconis appendiculata and J. pterocaryae. The ML tree revealed by RAxML was identical to the MP tree shown. Melanconis pterocaryae from P. rhoifolia and J. pterocaryae from P. fraxinifolia were revealed as distinct species; the two species were not closest relatives, but the latter was placed basal to the clade containing M. pterocaryae, J. juglandina and J. oblonga with maximum support. Due to the same species epithet, a new name needs to be proposed for Melanconis pterocaryae. All five species of Juglanconis received maximum support in both analyses, as well as the relationships between the species.

Table 2 Details of the loci and primers used in the molecular study

Locus	Primer	Primer sequence (5′−3′)	Orientation	Amplicon size	Reference
SSU-ITS-LSU	V9G	GTAAGCCTGCGCCTTTGTA	Forward		de Hoog and Gerrits van den Ende (1998)
	LR5	TCTCTGAGGGAACCTTCG	Reverse	ca 1.6 kb	Vilgalys and Hester (1990)
	ITS2	TCTCTGAGGGAACCTTCG	Reverse		White et al. (1990)
	LR32	CGGTGTTTCAAGACGGG	Reverse		Vilgalys and Hester (1990)
	LR2R-A2	CAGAGACCCATGACCTTTGTT	Forward		Voglmayr et al. (2012)
cal	CAL-228F	GAGTTCAAGGAGGNGTTTCTCCC	Forward		Carbone and Kohn (1999)
	CAL-737R	CATCTTCTTGGGCACTACGG	Reverse	458 bp	Carbone and Kohn (1999)
his	CYLH3F	AGGTCCACTGTTGTCGAAG	Forward		(Crous et al. 2004)
	H3-1b	GCGGCGAGGATGATGCGCTT	Reverse	438 bp	Glass and Donaldson (1995)
ms204	MSE1F1n1	AAGGGNACCTGSGAGGGCCAC	Forward		Voglmayr and Mehrabi (2018)
	MS5R2n	CCASAGCATGTTGTGCRCTTC	Reverse	ca 1 kb	Voglmayr and Mehrabi (2018)
rpb1	RPB1-Af	GARTGCGCAGGCGTAYTGG	Forward		Stiller and Hall (1997)
	RPB1-6R1asc	ATGACCCATCTRГAYTCTCRTG	Reverse	ca 1.2 kb	Hofstetter et al. (2007)
rpb2	fRPB2-5F	GAVYAGWGWGACTCYTYYG	Forward		Liu et al. (1999)
	fRPB2-7cR	GGGGWYAGGAYCAGAAAGGG	Reverse	ca 1.2 kb	Liu et al. (1999)
	dRPB2-5F	GAYACNAYGAYCAGWYAYTYYG	Forward		Voglmayr et al. (2016)
	dRPB2-7r	AANCCCATDGYCTGTYTDDCCAT	Reverse	ca 1.2 kb	Voglmayr et al. (2012)
tef1	EF1-728F	CATCAGAAGGCTGAGAAAG	Forward		Carbone and Kohn (1999)
	TEF1-LLRev	AACTTGCAGGCAAATGG	Reverse	ca 1.3 kb	Jaklitsch et al. (2005)
	TEF1_INTF2	CCGTGGTTTATCAAGACATG	Forward		Jaklitsch (2009)
	TEFD_iR2	GTCTGGCCTATCTTGGAGAT	Reverse		Voglmayr et al. (2018)
tub2	T1	AACATGCCTGAGATTGAAAGT	Forward		O’Donnell and Cigelnik (1997)
	BtHV2r	CATCAGTGRTGCTGGGAACCTC	Reverse	ca 1 kb	Voglmayr et al. (2017)
	T1D	CAANATGCCTGAAGATGTTGAGT	Forward		This study
	T22D	CATCATCRGTCNGGAACCTC	Reverse	ca 1.6 kb	This study

1 SSU-ITS-LSU, partial nuclear 18S rDNA, internal transcribed spacers and intervening 5.8S rDNA and 28S rDNA amplified and sequenced as a single fragment; cal, calmodulin; his, histone H3; ms204, guanine nucleotide-binding protein subunit beta; rpb1, DNA-directed RNA polymerase II largest subunit; rpb2, DNA-directed RNA polymerase II second largest subunit; tef1, translation elongation factor 1-alpha; tub2, β-tubulin

2 Internal sequencing primers

Molecular phylogeny

The combined multilocus matrix used for phylogenetic analyses comprised 8441 characters, of which 748 were parsimony informative (112 from SSU-ITS-LSU, 41 from cal, 34 from his, 64 from ms204, 35 from rpb1, 178 from rpb2, 173 from tef1 and 111 from tub2), and which is shown in Fig. 2. Tree topologies of all MP trees were identical except for minor differences within Juglanconis appendiculata and J. pterocaryae. The ML tree revealed by RAxML was identical to the MP tree shown. Melanconis pterocaryae from P. rhoifolia and J. pterocaryae from P. fraxinifolia were revealed as distinct species; the two species were not closest relatives, but the latter was placed basal to the clade containing M. pterocaryae, J. juglandina and J. oblonga with maximum support. Due to the same species epithet, a new name needs to be proposed for Melanconis pterocaryae. All five species of Juglanconis received maximum support in both analyses, as well as the relationships between the species.

Taxonomy

Juglanconis japonica (Tak. Kobay.) Voglmayr & Jaklitsch, nom. nov.

MycoBank: MB 828925.

Replaced synonym. *Melanconis pterocaryae* Tak. Kobay., Bull. Govt Forest Exp. Stn Meguro 226: 24. 1970, non *Melanconium pterocaryae* Kuschke, Trudy Tiflissk. Bot. Sada 28: 25. 1913.

Etymology: referring to its occurrence in Japan.
Holotype: Japan, Shizuoka, Fuji, on corticated twigs of *Pterocarya rhoifolia*, 5 Aug. 1968, T. Kobayashi (TFM FPH2623!); ex-type culture MAFF 410079.

Notes: When describing *Melanconium pterocaryae* from *P. rhoifolia* collected in Japan, Kobayashi (1970) considered his species to represent the sexual morph of *Melanconium pterocaryae* from *P. fraxinifolia*, based on similar conidial sizes. This synonymy was also accepted by Voglmayr et al. (2017), who combined the older *Melanconium pterocaryae* into the new genus *Juglanconis*. However, the current molecular phylogenies reveal *Melanconium pterocaryae* to represent a clearly distinct species, which therefore needs a new name. Morphologically, the conidial size of *J. japonica* is similar to that of *J. pterocaryae*, with slightly narrower conidia (11–20 × 5–9 μm vs. 11–22 × 6–11 μm in *J. pterocaryae*); however, the conidia of *J. japonica* usually have in average a distinctly higher length/width ratio, (1.5–)2.0–2.5(–3.1), vs. (1.3–)1.5–2.1(–3.0) in *J. pterocaryae*. For a detailed description and illustrations of the holomorph of *J. japonica* from the holotype, see Voglmayr et al. (2017; as *J. pterocaryae*).

Juglanconis pterocaryae (Kuschke) Voglmayr & Jaklitsch, in Voglmayr, Castlebury & Jaklitsch, Persoonia 38: 150 (2017), emend. Fig. 3.

Basionym. *Melanconium pterocaryae* Kuschke, Trudy Tiflissk. Bot. Sada 28: 25. 1913.

Sexual morph unknown. *Conidiomata* on natural substrate acervular, 0.8–2.2 mm diam, embedded in bark tissues, blackish, inconspicuous, scattered, with central or eccentric conical olivaceous grey stromatic column 300–850 μm wide at the base; at maturity covered by blackish discharged conidial masses forming black spots 0.2–2.5 mm diam or sometimes long cirri on the cortex. *Conidiophores* (11–)17–30(–48) × (3.0–)3.5–4.7(–5.5) μm (n = 74), narrowly cylindrical, simple or branched at the base, smooth, subhyaline to pale brown. *Conidiogenous cells* annelidic with distinct annellations, integrated. *Conidia* (11.2–)13.3–16.8(–22.3) × (6.0–)7.5–9.3(–11.0) μm, l/w = (1.3–)1.5–2.1(–3.0) (n = 980), unicellular, hyaline when immature, medium to dark brown when mature, variable in shape, ellipsoid to elongate, sometimes pip-shaped, often truncate with an abscission scar at the base, densely multiguttulate, thick-walled; wall ca. 0.5–0.8 μm, with distinct ornamentation on the inside of the wall consisting of small irregular confluent verrucae 0.3–0.7 μm diam, with ca. 0.5–1 μm wide gelatinous sheath.

Culture: Colony on CMD at 22 °C reaching 70 mm diam after 7 days; first white, turning cream to greyish brown in the centre, with irregular concentric zones and tufts of woolly aerial mycelium, margin uneven, wavy. Conidial pustules formed on tufts of aerial mycelium after ca 3 weeks, up to 4 mm diam, containing numerous branched conidiophores produced on subhyaline to brown aerial hyphae. Conidia similar to those produced on natural substrate except for slightly smaller size, (8.2–)10.5–13.0(–15.2) × (5.5–)6.8–8.2(–8.8) μm, l/w = (1.2–)1.4–1.8(–2.2) (n = 67).

Habitat and host range: Dead corticated trunks, twigs and branches of *Pterocarya fraxinifolia*.

Distribution: Europe and Western Asia (known from Austria, Czech Republic, Georgian Republic, Iran).

Typification: Austria, Oberösterreich, Bruck an der Leitha, Harrachpark, 25 Mar. 2018, H. Voglmayr (WU 39982; culture D281). Steiermark, Graz, Geidorf, Botanical Garden of the University of Graz (HGB), 5 Feb. 2018, H. Voglmayr (WU 39983; culture D275). Czech Republic, Morava, Lednice landscape park, 1 May 2018, H. Voglmayr (WU 39984). Iran, Shafte, Chobar, 28 Apr. 2017, H. Mohammadi (WU 39988); Shafte, Jirdeh, 25 Apr. 2017, H. Mohammadi (WU 39985a, b; cultures D267a, b); Taleshe, Rezvanshar, 2 May 2017, M. Kazemzadeh Chakusary (WU 39986a, b, c; cultures D268a, b, c = CBS 143631); Taleshe, 2 May 2017, M. Kazemzadeh Chakusary (WU 39978a, b; cultures D269a, b).

Notes: The basionym, *Melanconium pterocaryae*, was described by Kuschke (1913) from the Georgian Republic (Abkhazia) from *P. fraxinifolia*, but until recently, no collections from the original host were available for morphological investigations and for DNA sequencing, and therefore no material from that host could be included in the investigations of Voglmayr et al. (2017). The conidial sizes given in the protologue of *Melanconium pterocaryae* (14–19 × 8–12 μm) are slightly wider than those revealed in the current study (11–22 × 6–11 μm), which is in line with Riedl and Ershad (1977), who also reported narrower conidia (12–15.5 × 6.5–9.5 μm) in their Iranian collection. The conidial size and shape of *J. pterocaryae* can be quite variable between collections but also within the same specimen, probably depending on the environmental conditions during development; we observed slightly smaller conidia in the Iranian collections ((11.2–)12.0–15.5(–19.2) × (6.0–)7.5–9.0(–10.8) μm, l/w = (1.3–)1.5–1.9(–2.6) (n = 567)) than in the Central European ones ((11.5–)14.5–17.8(–22.3) × (6.3–)7.8–9.5(–11.0) μm, l/w = (1.3–)1.6–2.2(–3.0) (n = 413)). However, as the sequences of the Central European and Iranian collections are (almost) identical, this variation is confirmed to represent intraspecific variability. In contrast to the other described *Juglanconis* species, no sexual morph is known for *J. pterocaryae*.
Despite extensive enquiries, no type collection of Melanconium pterocaryae could be traced in Russian or Georgian herbaria. In the apparent lack of an extant type, we here propose a well-developed Austrian collection, for which a culture and sequences are available, as neotype. Although the neotype collection does not originate from the area from where the species was described, we consider this justified, as the P. fraxinifolia accessions (and therefore also its associated Juglanconis) grown in Central Europe likely originate from the Caucasus area, the conidial sizes of the neotype collection and the protologue agree well, and the conspecific Austrian and Iranian Juglanconis accessions confirm a wide distribution of the species that likely corresponds with the distribution of its host.

Discussion

Previous molecular phylogenetic analyses had shown that Melanconis species on Juglans and Pterocarya form a highly supported lineage that is distinct from Melanconis sensu stricto, and the new genus Juglanconis was established for them (Voglmayr et al. 2017), which was classified in the new family Juglanconidaceae. However, in this previous study, only a single Eastern Asian isolate from Pterocarya rhoifolia could be included, but none from the Western Asian P. fraxinifolia. The current molecular phylogenetic analyses (Fig. 2) clearly show that Juglanconis accessions from P. fraxinifolia and P. rhoifolia represent two distinct species, J. pterocaryae and J. japonica, respectively. This is not surprising, as high host specificity in combination with vicariant speciation has been commonly reported in Diaporthales on woody hosts, e.g. in Coryneum (Jiang et al. 2018), Cryptosporella (Mejía et al. 2008, 2011a), Melanconiella...
(Voglmayr et al. 2012), Melanconis (Fan et al. 2016), Plagiostoma (Mejía et al. 2011b; Walker et al. 2014), Stegonsporium and Stilbospora (Voglmayr and Jaklitsch 2008, 2014). In many of these lineages, morphological species identification can be difficult due to lack of a clear morphological distinction, while molecular data but also host ranges are highly
diagnostic on the species level. However, in the Juglanconis species on *Juglans*, host specificity was shown to be rather on the genus than on the species level, as both European species, *J. appendiculata* and *J. juglandina*, were reported from various hosts (the indigenous *Juglans regia* as well as the naturalised North American *J. nigra*), and the North American and Eastern
Asian *Juglanconis oblonga* was likewise confirmed to occur on several *Juglans* species. It remains unclear whether the *Juglanconis* species on *Pterocarya* potentially have wider host ranges, their different host ranges and geographic areas being rather the result of the highly disjoint distribution of their hosts than of host specificity. Interestingly, *Melanconis/Melanconium* spp. have also been recorded from China on *Pterocarya stenoptera* (Farr and Rossman 2018), which has a wide distribution in Eastern Asia, occurring in China, Korea and Japan and is also widely cultivated as a shade tree (Lu et al. 1999). Investigation of isolates from this host could help to shed light on this question.

According to Kazemzadeh Chakusary (2017), *J. pterocaryae* is suspected to be one of the most important fungal agents of *P. fraxinifolia* dieback in Guilan province in Northern Iran. Seven kinds of wood lesions were associated with *P. fraxinifolia* showing decline symptoms in Iran. Similar observations were reported in previous studies conducted on trunk diseases of fruit (Van Niekerk et al. 2011, Cloete et al. 2011, Sami et al. 2014) and ornamental and forest trees (Hashemi and Mohammadi 2016; Kazemzadeh Chakusary et al. 2017). Iranian isolates were recovered from all kinds of wood lesions recorded on *P. fraxinifolia*. Moreover, a large number of acervuli of *J. pterocaryae* were observed on the surface of cankers and twigs showing dieback symptoms. During this study, several Iranian isolates of *J. pterocaryae* were isolated from necrotic wood tissues of *P. fraxinifolia* trees. We did not determine the pathogenicity of these isolates on this woody plant. Therefore, pathogenicity studies will be necessary to evaluate and confirm the importance of this species in trunk diseases of *P. fraxinifolia*.

It is remarkable that *J. pterocaryae* has apparently not been previously reported from Europe, considering its conspicuous symptoms which are similar to those of the well-known black pustular dieback disease of walnut (*Juglans* species) caused by closely related *Juglanconis* species (Graves 1923; Belisario 1999). This may be due to the fact that, compared to *Juglans* spp., *Pterocarya fraxinifolia* has little economic impact and is rather infrequently grown, mainly in botanical gardens, arboreta and large landscape parks. In one Austrian site (Harrachpark), it was found abundantly on large cut as well as recently wind-broken branches, the ejected conidial pustules covering their entire length. This indicates that *J. pterocaryae*, like other Diaporthales, may be commonly present as a latent pathogen in living host tissues, enabling a massive development following the death of the host tissue. *Juglanconis pterocaryae* represents another example of a tree pathogen co-occurring with its hosts in old arboreta and parks far outside their natural distribution; similar cases were, e.g. reported for North American and Southern European *Stegonosporium* spp. following their maple (*Acer*) hosts grown in Central and Western European parks (Voglmayr and Jaklitsch 2014). As these pathogens can have a long latent phase in living host tissue, they are difficult to detect and can be distributed over wide distances with the transport of symptomless but yet infected living trees. Therefore, parks and arboreta are a potential source for the introduction and establishment of alien fungal diseases of trees, and should therefore be regularly monitored especially for problem pathogens of forest trees.

Funding information
Open access funding provided by Austrian Science Fund (FWF). HV received financial support from the Austrian Science Fund (FWF; project P27645-B16). Hamid Mohammadi was supported by Grant Number 93027879 from the Iran National Science Foundation (INSF).

Open Access
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

Alvarez LV, Groenewald JZ, Crous PW (2016) Revising the Schizoporellaceae: *Coniella* and its synonyms *Pilidiella* and *Schizoparme*. Stud Mycol 85:1–34

Belisario A (1999) Cultural characteristics and pathogenicity of *Melanconium juglandinum*. Eur J For Pathol 29:317–322

Carbone I, Kohn LM (1998) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556

Cloete M, Fourie PH, Damm U, Crous PW, Mostert L (2011) Fungi associated with dieback symptoms of apple and pear trees with a special reference to grapevine trunk disease pathogens. Phytopathol Mediterr 50 (Suppl.):S176–S190

Crous PW, Groenewald JZ, Risede JM, Hywel-Jones NL (2004) *Calonectria* species and their *Cylindrocladium* anamorphs: species with sphaeropedunculate vesicles. Stud Mycol 50:415–430

de Hoog GS, Gerrits van den Ende AHG (1998) Molecular diagnostics of clinical strains of filamentous basidiomycetes. Mycoses 41:183–189

Ebrahimzadeh MA, Pourmorad F, Bekhradnia AR (2008) Iron chelating activity, phenol and flavonoid content of some medicinal plants from Iran. Afr J Biotechnol 7:3188–3192

Ebrahimzadeh MA, Nabavi SF, Nabavi SM (2009) Essential oil composition and antioxidant activity of *Pterocarya fraxinifolia*. Pak J Biol Sci 12:957–963

Fan X, Du Z, Liang Y, Tian C (2016) *Melanconis* (*Melanconidaceae*) associated with *Betula* spp. in China. Mycelol Prog 15:40

Farr DF, Rossman AY (2018) Fungal databases - fungus-host distributions, systematic mycology and microbiology laboratory, ARS, USDA. Retrieved August 18, 2018, from http://nt.ars-grin.gov/fungal databases/

Forrest M (2006) Landscape trees and shrubs: selection, use and management. CABl, Wallingford 224 pp

Glass NL, Donaldson G (1995) Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330

Graves AH (1923) The *Melanconis* disease of the butternut (*Juglans cinerea* L.). Phytopathology 13:411–435
Voglmayr H, Friebes G, Gardiennet A, Jaklitsch WM (2018) Barmaelia and Entosordaria in Barmaeliaceae (fam. nov., Xylariales), and critical notes on Anthostomella-like genera based on multi-gene phylogenies. Mycol Prog 17:155–177

Walker DM, Lawrence BR, Wooten JA, Rossman AY, Castlebury LA (2014) Five new species of the highly diverse genus Plagiostoma (Gnomoniaceae, Diaporthales) from Japan. Mycol Prog 13:1057–1067

Werle E, Schneider C, Renner M, Völker M, Fiehn W (1994) Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Res 22:4354–4355

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

Xiang X-G, Wang W, Li RQ, Lin L, Liu Y et al (2016) Large-scale phylogenetic analyses reveal fagalean diversification promoted by the interplay of diasporic environments in the Paleogene. Perspect Plant Ecol Evol Syst 16:101–110