Gangliocytic paraganglioma: An overview and future perspective

Yoichiro Okubo

ORCID number: Yoichiro Okubo (0000-0002-7079-4454).

Author contributions: Okubo Y conceptualized this editorial, integrated the data, and wrote the manuscript.

Supported by JSPS KAKENHI, No. JP17K08713 from the Ministry of Education, Culture, Sports, Science and Technology of Japan; and Kanagawa Prefectural Hospitals Cancer Fund, No. 20182019-Nenndo.

Conflict-of-interest statement: The author has no conflict of interest to declare.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Received: March 2, 2019
Peer-review started: March 4, 2019
First decision: August 2, 2019
Revised: August 17, 2019
Accepted: August 21, 2019
Article in press: August 21, 2019
Published online: September 24, 2019

Abstract

Gangliocytic paraganglioma (GP) is rare neuroendocrine tumor (NET) with a good prognosis that commonly arising from duodenum. Although the tumor is characterized by its unique triphasic cells (epithelioid, spindle, and ganglion-like cells), the proportions of these three tumor cells vary widely from case to case, and occasionally, morphological and immunohistochemical similarities are found between GP and NET G1 (carcinoid tumors). Further, GP accounts for a substantial number of duodenal NETs. Therefore, GP continues to be misdiagnosed, most often as NET G1. However, GP has a better prognosis than NET G1, and it is important to differentiate GP from NET G1. In this article, I wish to provide up-to-date clinicopathological information to help oncologists gain better insight into the diagnosis and clinical management of this tumor.

Key words: Neuroendocrine tumor; Gangliocytic paraganglioma; Progesterone receptor; Pancreatic polypeptide; Literature survey

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Although gangliocytic paraganglioma (GP) has been regarded as a rare neuroendocrine tumor (NET), GP accounts for a significant number of duodenal NETs. Morphological and immunohistochemical similarities between GP and NET G1 often lead to misdiagnoses of both. However, the prognosis is often better for patients with GP than for those with NET G1. Therefore, it is important to differentiate GP from NET G1. This editorial provides up-to-date data on the clinicopathological characteristics of GP and emphasizes the importance of confirming progesterone receptor and pancreatic polypeptide immunoreactivity for differentiating GP from NET G1.

Citation: Okubo Y. Gangliocytic paraganglioma: An overview and future perspective. World J Clin Oncol 2019; 10(9): 300-302
URL: https://www.wjgnet.com/2218-4333/full/v10/i9/300.htm
DOI: https://dx.doi.org/10.5306/wjco.v10.i9.300
INTRODUCTION

Gangliocytic paraganglioma (GP) is a rare tumor with a good prognosis that commonly arises from the small intestine (especially, duodenum). Gastrointestinal neuroendocrine tumors (NETs) have a low, but gradually increasing, incidence worldwide[1]. Specifically, the overall prognosis for patients with gastrointestinal NETs has improved and has been favorable[2], but some investigators have reported 5-year survival rates of patients with NET G1 of approximately 80%[3]. Although few patients with liver metastases[4-7] and one with fatal GP[6] have been reported, GP shows a benign course more frequently than NET G1. Thus, it is important to distinguish between GP and NET G1. However, morphological and immunohistochemical similarities between GP and NET G1 may lead to misdiagnosis[8,9]. Thus, oncologists, clinicians, and pathologists should be aware of the concept of GP because our previous study suggests that GP accounts for a consistent proportion of NETs arising from the duodenum[10]. In this editorial, I would like to discuss the overview and future perspectives of GP, on the basis of our up-to-date systematic review.

Data from 263 patients with GP were collected and analyzed[11]. The vast majority of GPs arose in the duodenum (89.7%). The mean age of patients with GP was 53.5 years. A slight male-to-female predominance was observed, with a ratio of approximately 3:2. Gastrointestinal bleeding and abdominal pain were commonly reported (47.9% and 44.7%, respectively), and many patients were asymptomatic. The mean tumor size was 25.7 mm, and notably, the proportion of the three characteristic GP cells (epithelioid, spindle, and ganglion-like cells) varied considerably from case to case. For a correct diagnosis of GP, pathologists should be aware of the histopathological heterogeneity of this tumor.

Lymph node and liver metastases were observed in approximately 10% and 1% of patients with GP, respectively. Notably, our statistical analysis showed that the depth of invasion was the most significant risk factor for lymph node metastases (tumor size has little effect on lymph node metastasis)[11]. These findings and the associated histological heterogeneity indicate that GP may have hamartomatous characteristics.

To date, pancreaticoduodenectomy is the generally preferred treatment for GP. However, since GP grows slower than NET G1, less invasive procedures (especially endoscopic procedures) have gradually increased in popularity[12]. In fact, in our systematic review, 27 patients underwent endoscopic procedures and showed favorable outcomes, with the exception of one patient who required additional surgery because of a positive surgical margin.

However, to perform less invasive procedures, a definite diagnosis of GP before surgery is essential. Unfortunately, it is difficult to diagnose GP based on a usual biopsy because of the inaccessibility of the tumor (GP is often in a submucosal layer or deeper) and the similarities between GP and NET G1. To solve the first problem, a boring biopsy may be effective because it obtains submucosal tissue. In fact, some patients were successfully diagnosed with GP following multiple boring biopsies[13]. To solve the second problem, I wish to emphasize the usefulness of immunohistochemical examination of pancreatic polypeptide and progesterone receptor levels. GP epithelioid cells show positivity for both markers, and NET G1 shows negativity, and this difference helps distinguish between GP and NET G1. The main differences between GP and NET G1 are summarized in Table 1.

CONCLUSION

Occasionally, GP is misdiagnosed as NET G1, and immunohistochemical examinations of progesterone receptor and pancreatic polypeptide levels help differentiate GPs. Accurate GP identification will facilitate the use of less invasive treatment procedures.
Table 1 Differences in gangliocytic paraganglioma and gastrointestinal neuroendocrine tumor G1

Predominant site of the primary tumor	Gangliocytic paraganglioma	Gastrointestinal neuroendocrine tumor G1
5-yr survival rates	Excellent (approximately 100%)	Good (approximately 80%)
Incidence	Extremely rare	Relatively rare, but gradually increasing, incidence worldwide
Morphological findings obtained by surgery	Epithelioid, spindle, and ganglion-like cells	Nesting, trabecular pattern, and/or rosette formation with nuclear palisading
Immunohistochemistry (pancreatic polypeptide and progesterone receptor)	Epithelioid cells show positive reactivity for both.	Tumor cells show negative reactivity for both
Perspective	Accurate diagnosis of gangliocytic paraganglioma will facilitate the use of less invasive treatment procedures	

REFERENCES

1. Okubo Y, Kasajima R, Suzuki M, Miyagi Y, Motohashi O, Shiozawa M, Yoshioka E, Washimi K, Kawachi K, Kameda Y, Yokose T. Risk factors associated with the progression and metastases of hindgut neuroendocrine tumors: a retrospective study. BMC Cancer 2017; 17: 769 [PMID: 29145818 DOI: 10.1186/s12885-017-3769-4]

2. Shen H, Yu Z, Zhao J, Li NZ, Pan WS. Early diagnosis and treatment of gastrointestinal neuroendocrine tumors. Oncol Lett 2016; 12: 3385-3392 [PMID: 27990009 DOI: 10.3892/ol.2016.5062]

3. Pape UF, Jann H, Müller-Nordhorn J, Bockelbrink A, Berndt U, Willich SN, Koch M, Röcken C, Rindi G, Wiedenmann B. Prognostic relevance of a novel TNM classification system for upper gastroenteropancreatic neuroendocrine tumors. Cancer 2008; 113: 256-265 [PMID: 18506737 DOI: 10.1002/cncr.23549]

4. Amin SM, Albrechtsen NW, Forster J, Damjanov I. Gangliocytic paraganglioma of duodenum metastatic to lymph nodes and liver and extending into the retropancreatic space. Pathologica 2013; 105: 90-93 [PMID: 24047055]

5. Rowsell C, Coburn N, Chetty R. Gangliocytic paraganglioma: a rare case with metastases of all 3 elements to liver and lymph nodes. Ann Diagn Pathol 2011; 15: 467-471 [PMID: 21036639 DOI: 10.1016/j.anndiapath.2010.07.009]

6. Li B, Li Y, Tian XY, Luo BN, Li Z. Malignant gangliocytic paraganglioma of the duodenum with distant metastases and a lethal course. World J Gastroenterol 2014; 20: 15454-15461 [PMID: 25386095 DOI: 10.3748/wjg.v20.i41.15454]

7. Okubo Y, Yokose T, Motohashi O, Miyagi Y, Yoshioka E, Suzuki M, Washimi K, Kawachi K, Nito M, Nemoto T, Shibuya K, Kameda Y. Duodenal Rare Neuroendocrine Tumor: Clinicopathological Characteristics of Patients with Gangliocytic Paraganglioma. Gastroenterol Res Pract 2016; 2016: 5257312 [PMID: 28096810 DOI: 10.1155/2016/5257312]

8. Okubo Y. Gangliocytic Paraganglioma is Often Misdiagnosed as Neuroendocrine Tumor G1. Arch Pathol Lab Med 2017; 141: 1309 [PMID: 28968157 DOI: 10.5858/arpa.2017-0102-LE]

9. Okubo Y. Gangliocytic Paraganglioma: a Diagnostic Pitfall of Rare Neuroendocrine Tumor. Endocr Pathol 2017; 28: 186 [PMID: 28378267 DOI: 10.1007/s12022-017-9481-8]

10. Okubo Y, Nemoto T, Wakayama M, Tsuchi N, Shimozaki M, Ishiwatari T, Aki K, Tsuichiai M, Azuma H, Katsura K, Fujii T, Nishigami T, Yokose T, Okkuru Y, Shibuya K. Gangliocytic paraganglioma: a multi-institutional retrospective study in Japan. BMC Cancer 2015; 15: 269 [PMID: 25886293 DOI: 10.1186/s12885-015-1308-8]

11. Okubo Y, Yoshioka E, Suzuki M, Washimi K, Kawachi K, Kameda Y, Yokose T. Diagnosis, Pathological Findings, and Clinical Management of Gangliocytic Paraganglioma: A Systematic Review. Front Oncol 2018; 8: 291 [PMID: 30101131 DOI: 10.3389/fonc.2018.00291]

12. Papacosstantinou D, Machairas N, Damaskou V, Zavras N, Kontopoulou C, Machairas A. Duodenal gangliocytic paraganglioma, successfully treated by local surgical excision-a case report. Int J Surg Case Rep 2017; 32: 5-8 [PMID: 28213067 DOI: 10.1016/j.ijscr.2017.01.046]

13. Matsubayashi H, Ishiwatari H, Matsui T, Fujise S, Uesaka K, Sugita T, Okamura Y, Yamamoto Y, Ashida R, Ito T, Sasaki K, Ono H. Gangliocytic Paraganglioma of the Minor Papilla of the Duodenum. Intern Med 2017; 56: 1029-1035 [PMID: 28458307 DOI: 10.2169/internalmedicine.56.7812]
