Inter-annual variations of wet deposition in Beijing during 2014-2017: implications of below-cloud scavenging of inorganic aerosols

Baozhu Ge1,5*, Danhui Xu1, Oliver Wild2, Xuefeng Yao3, Junhua Wang1,4, Xuechun Chen1, Qixin Tan1,4, Xiaole Pan1, Zifa Wang1,4,5*

1 State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing 100029, China
2 Lancaster Environment Centre, Lancaster University, LA1 4YQ, United Kingdom
3 PLA 96941 Army, Beijing 102206, China
4 University of Chinese Academy of Sciences, Beijing, 100049, China
5 Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

*Correspondence to: Baozhu Ge (gebz@mail.iap.ac.cn) and Zifa Wang (zifawang@mail.iap.ac.cn)

https://doi.org/10.5194/acp-2020-1146
Preprint. Discussion started: 27 November 2020
© Author(s) 2020. CC BY 4.0 License.
Abstract

Wet scavenging is an efficient pathway for the removal of particulate matter (PM) from the atmosphere. High levels of PM have been a major cause of air pollution in Beijing but have decreased sharply under the Air Pollution Prevention and Control Action Plan launched in 2013. In this study, four years of observations of wet deposition have been conducted using a sequential sampling technique to investigate the detailed variation in chemical components through each rainfall event. We find that the major ions, \(\text{SO}_4^{2-}, \text{Ca}^{2+}, \text{NO}_3^- \) and \(\text{NH}_4^+ \), show significant decreases over the 2013-2017 period (decreasing by 39%, 35%, 12% and 25%, respectively), revealing the impacts of the Action Plan. An improved sequential sampling method is developed and implemented to estimate the contribution of below-cloud and in-cloud wet deposition over the four-year period. Overall, below-cloud scavenging accounts for between half and two thirds of wet deposition of the four major ions, with the highest contribution for \(\text{NH}_4^+ \) at 65% and lowest for \(\text{SO}_4^{2-} \) at 50%. The contribution of below-cloud scavenging for \(\text{Ca}^{2+}, \text{SO}_4^{2-} \) and \(\text{NH}_4^+ \) decreases from above 50% in 2014 to below 40% in 2017. This suggests that the Action Plan has mitigated PM pollution in the surface layer and hence decreased scavenging due to the washout process. In contrast, we find little change in the annual volume weighted average concentration for \(\text{NO}_3^- \) where the contribution from below-cloud scavenging remains at ~44% over the period 2015-2017. While highlighting the importance of different wet scavenging processes, this paper presents a unique new perspective on the effects of the Action Plan and clearly identifies oxidized nitrogen species as a major target for future air pollution controls.

Key words: wet scavenging, below-cloud, in-cloud, deposition, PM\(_{2.5}\)
1 Introduction

Atmospheric wet deposition is a key removal pathway for air pollutants and is governed by two main processes: in-cloud and below-cloud scavenging (Goncalves et al., 2002; Andronache, 2003, 2004a; Henzing et al., 2006; Sportisse, 2007; Feng, 2009; Wang et al., 2010; Zhang et al., 2013). The below-cloud scavenging process depends both on the characteristics of the rain, including the raindrop size distribution and rainfall rate, and on the chemical nature of the particles and their concentration in the atmosphere (Chate et al., 2003). Previously, below-cloud scavenging was thought to be less important than in-cloud processes and was simplified or even ignored in many global and regional chemical transport models (CTMs) (Barth et al., 2000; Tang et al., 2005; ENVIRON.Inc, 2005; Textor et al., 2006; Bae et al., 2010). However, more recent extensive research on wet scavenging has found that precipitation, even light rain, can remove 50-80% of the number or mass concentration of below-cloud aerosols, and this is supported by both field measurements and semi-empirical parameterizations of below-cloud scavenging in models (Andronache, 2004b; Zhang et al., 2004; Wang et al., 2014). Xu et al. (2017; 2019) studied the below-cloud scavenging mechanism based on the simultaneous measurement of aerosol components in rainfall and in the air in Beijing. They found that below-cloud scavenging coefficients widely used in CTMs were 1-2 orders of magnitude lower than estimates from observations. This implies that the simulated below-cloud scavenging of aerosols might be significantly underestimated. This could be one reason for the underestimation of SO$_4^{2-}$ and NO$_3^-$ wet deposition in regional models of Asia reported in phase II and III of the Model Inter-Comparison Study for Asia (MICS-Asia) (Wang et al., 2008; Ge et al., 2020) and in global model assessments by the Task Force on Hemispheric Transport of Atmospheric Pollutants (TF-HTAP) (Vet et al., 2014). Bae et al. (2012) added a new below-cloud scavenging parameterization scheme in the CMAQ model and improved the simulation of aerosol wet deposition fluxes in East Asia by as much as a factor of two compared with observations. The below-cloud scavenging process is critical not only for wet deposition but also for the concentration of aerosols in the air and it should be represented appropriately in CTM simulations.
It is important to recognize the contribution of below-cloud scavenging to total wet deposition. However, many studies have found that it is difficult to separate the two wet scavenging processes based on measurement methods alone (Huang et al., 1995; Wang and Wang, 1996; Goncalves et al., 2002; Bertrand et al., 2008; Xu et al., 2017). A commonly used approach to separating below-cloud scavenging from total wet deposition is through sequential sampling (Aikawa et al., 2014; Ge et al., 2016; Aikawa and Hiraki, 2009; Wang et al., 2009; Xu et al., 2017). In this way, precipitation composition during different stages of a rainfall event can be investigated separately in the lab after sampling. The chemical components in later increments of rainfall are thought to be less influenced by the below-cloud scavenging process than by the in-cloud rainout process (Aikawa et al., 2014; 2009). Xu et al. (2017) applied this approach to summer rainfall in Beijing in 2014 and found that more than 50% of deposited sulfate, nitrate and ammonium ions were from below-cloud scavenging. In this study, an innovated method based on exponential curve to chemical ions in rainfall by sequential sampling is developed and implemented to estimate the ratio of below-cloud to in-cloud wet deposition in Beijing over the four-year period between 2014 and 2017. Together with PM$_{2.5}$ concentration measurements, the washout effects of the decreasing air pollutants at near-surface due to the Air Pollution Prevention and Control Action Plan (Action Plan) launched in 2013 (State Council of the People’s Republic of China, 2019) is also investigated to explore the implications of the Action Plain to the precipitation chemistry.

2 Data and methods

2.1 Measurement site and sampling methodology

The measurement site is located on the roof of a two-floor building at the Institute of Atmospheric Physics tower site (IAP-tower, 39° 58’ 28” N, 116° 22’ 1” E) in northern Beijing. It is a typical urban site between the 3rd and 4th ring roads and lying close to the Badaling expressway (Xu et al., 2017; 2019; Sun et al., 2015). Four years of Inter-annual observations of each rainfall event were conducted at this site. Sequential sampling of each rainfall event is employed to catch the evolution of precipitation composition during each event. To investigate the detailed variation in the concentration...
of different chemical components in precipitation, especially the sharp changes occurring during the onset of rainfall, high resolution sampling of rainfall at 1 mm sequential increments was performed using an automatic wet-dry sampler. The rainwater collector uses a circular polyethylene board with a 30 cm diameter and collects up to eight fractions. About 70 ml of rainwater is collected for each of the first seven fractions and the rest of the rainfall is collected in the eighth fraction. Rainfall events where eight fractions are collected and identified as full events, and those with fewer than eight fractions are characterized as incomplete events. Manual sampling methods were used to collect more than eight fractions during heavy rainfall, and these are characterized as extended events. Altogether, 69 full events and 6 extended events were recorded over the 2014-2017 period in Beijing.

After collection, all samples are refrigerated at 0-4 °C and analyzed at the Key Laboratory for Atmospheric Chemistry, Chinese Academy of Meteorological Sciences (CAMS) within one month, following the procedure used for the Acid Rain Monitoring Network run by the China Meteorological Administration (CMA-ARMN) (Tang et al., 2007;2010). Nine ions that include four anions (SO$_4^{2-}$, NO$_3^-$, Cl$^-$ and F$^-$) and five cations (NH$_4^+$, Na$^+$, K$^+$, Ca$^{2+}$ and Mg$^{2+}$) are detected using ion chromatography (IC, Dionex 600, USA). Their relative standard deviations in reproducibility tests are less than 5%. Quality assurance is carried out using routine standard procedure of blind sample inter-comparison organized by CMA (Tang et al., 2010). Quality control is conducted by assessment of the anion-cation balance and by comparison of the calculated and measured conductivity. A more detailed description of the procedure can be found in Ge et al. (2016) and Xu et al. (2017).

2.2 Aerosol measurements

Aerosol mass concentration is recorded in routine measurements for the observation network of the China National Environmental Monitoring Center (CNEMC). PM$_{2.5}$ concentrations are used from the Olympic Park station, a monitoring station located 3 km to the northeast of the IAP-tower sampling site. In addition, an Ambient Ion Monitor-Ion Chromatograph (AIM-IC) developed by URG Corp., Chapel Hill, NC and Dionex Inc., Sunnyvale, CA, is used to measure PM$_{2.5}$ composition at the sampling site.
between 2014 and 2017. This instrument includes a sample collection unit (URG 9000-D) for collection of water-soluble gases and particles in aqueous solution and a sample analysis unit (two ion chromatographs, Dionex ICS-2000 and ICS-5000) for analysis of both anions and cations. The limit of detection of AIM-IC is 0.08 mg/m3 for NH$_4^+$ and 0.1 mg/m3 for the other ions. Aerosol mass concentrations and composition are both measured at 1 h time resolution. Detailed descriptions of the AIM-IC instrumentation can be found in Malaguti et al. (2015) and Markovic et al. (2012). The average concentration of aerosols in the 6 h before each rainfall event is calculated to reflect the air pollution conditions before the event. For comparisons, the yearly average concentration of aerosols has been calculated to represent the normal conditions.

2.3 Estimation of below cloud scavenging

Previous studies have shown that the concentration of chemical ions in precipitation decreases through the progression of a rainfall event and eventually stabilizes at low levels (Aikawa and Hiraki, 2009;2014;Ge et al., 2016;Xu et al., 2017). The rainout and washout contributions to total wet deposition are estimated based on the assumption that the concentrations in later increments can be attributed to scavenging by rainout only. This assumption relies on the efficient scavenging of air pollutants below cloud through the evolution of precipitation. However, the concentration of chemical ions in precipitation may also be affected by many other factors in addition to below-cloud air pollutant concentrations and in-cloud rainout processes. For example, the precipitation intensity may affect the scavenging efficiency of air pollutants below cloud and hence influence wet deposition (Andronache, 2004b;Wang et al., 2014;Xu et al., 2017;2019). Yuan et al. (2014) reported that in central North China high intensity rainfall events of short duration (lasting less than 6 h) are dominant rather than long-duration rainfall that is more common in the Yangtze River Valley. Therefore, the time window for the definition of in cloud stage is very important for estimating the below cloud and in cloud contributions. Previous studies have estimated the concentration of chemical ions scavenged in-cloud based on the subjective judgment that 5 mm of accumulated precipitation is sufficient to identify the contribution of the rainout process (Wang et al., 2009;Aikawa and Hiraki, 2009;Xu et al., 2017). Based on this approach, the
concentration of NO$_3^-$ and SO$_4^{2-}$ in cloud in Japan was found to be 0.70 and 1.30 mg/L, respectively (Aikawa and Hiraki, 2009). In Beijing, high concentration of NH$_4^+$, SO$_4^{2-}$ and NO$_3^-$ during 2007 were found at 2.1~5.5, 3.1~14.9, 1.5~5.9 mg/L, respectively (Wang et al., 2009; Xu et al., 2017).

In this study, a new method based on fitting a curve to the chemical ion concentrations with successive rainfall increments has been developed to estimate the contribution of the rainout process. As shown in Figure 1, an exponential curve is fitted to the median, 25th and 75th percentiles of the chemical ion concentrations in each fraction through the rainfall increments. In theory, the concentration of chemical ions stabilize at higher rainfall increments and this represents the concentration in cloud. However, the decrease during each rainfall event is distinctly different, and this regression method is not fully applicable to all rainfall events in practice. Therefore, the exponential regression method is used to estimate the in-cloud concentration under most circumstances, but where the decreasing trend with the increment of rainfall is not significant, the average value of rainfall increments 6-8 of the event is used. The below cloud contributions to wet deposition of each species are then calculated using the following equations (1-2):

\[
\text{Wetdep}_{\text{below–cloud}} = \sum_{i=1}^{n} (C_i - \bar{C}) \times P_i
\]

(1)

\[
\text{Contribution}_{\text{below–cloud}} = \frac{\text{Wetdep}_{\text{below–cloud}}}{\sum_{i=1}^{n} C_i \times P_i}
\]

(2)

Where, C_i, and \bar{C} represent the concentration of each chemical ion in fraction i and in cloud and P_i represents the volume of rainfall.

3 Results and Discussion

3.1 Inter-annual variations in chemical components

Significant declines in atmospheric PM$_{2.5}$ concentration have been observed nationwide between 2013 and 2017 during the Action Plan (Zhang et al., 2019). However, few studies have investigated the benefits of the Action Plan for wet deposition. A significant increase in NO$_3^-$ in precipitation of 7.6% was observed at a regional background station in North China between 2003 and 2014 (Pu et al., 2017). An decrease in the ratio of SO$_4^{2-}$/NO$_3^-$ mostly due to the decreasing of SO$_4^{2-}$ and increasing...
of NO$_3^-$ suggests the transformation of sulfuric acid type to a mixed type of sulfuric and nitric acid in North China. However, the updated record especially after the Action Plan is important to assess the mitigation of the air pollutants not only in the atmosphere but also in rainfall. A nationwide investigation of the wet deposition of inorganic ions in 320 cities across China was recently made based on observations between 2011 and 2016 from the National Acid Deposition Monitoring Network (NADMN), which was established by the China Meteorological Administration (Li et al., 2019). Briefly, both SO$_4^{2-}$ and NO$_3^-$ across China experienced significant changes before and after 2014, with increases from 2011 to 2014 and then decreases from 2014 to 2016. In order to quantify the influence of the Action Plan on wet deposition in Beijing, four years of observations of each rainfall event are considered in this study. Figure 2 shows the volume weighted average (VWA) of inter-annual mean concentrations of SO$_4^{2-}$, NO$_3^-$, NH$_4^+$, and Ca$^{2+}$ observed in Beijing during 2014 to 2017 along with those reported before 2010 from previous studies (Yang et al., 2012; Pan et al., 2012, 2013) (more detail is provided in Table S1 in supplementary materials). A continuous decrease in VWA concentrations between 1995 and 2017 is found for SO$_4^{2-}$ and Ca$^{2+}$, with decreases of 46% and 542% in the earlier stage (1995-2010) and decreases of 39% and 35% in the later stage (2014-2017). For NO$_3^-$ and NH$_4^+$, increases are found during the earlier stage (~60%) and decreases in the later stage (12% for NO$_3^-$ and 25% for NH$_4^+$). All four components in the later stage show significant decreases, especially for NO$_3^-$ and NH$_4^+$, suggesting that the Action Plan, which was implemented over this period, has a substantial impact. While Ca$^{2+}$ and SO$_4^{2-}$ played a prominent role in precipitation during the earlier stage before 2010, NH$_4^+$ and NO$_3^-$ became the primary components in the later stage after 2010. It should be noted that NH$_4^+$ has a double role in environment pollution because it mitigates acid rain through neutralization, but also acidifies the soil by nitrification. Hence, while sulfur in precipitation has been further reduced under the Action Plan, additional attention is needed for nitrogen to prevent deterioration of the environment by acid rain resulting from nitrate and ammonium.

3.2 Relationship in concentrations in precipitation and the atmosphere

Wet deposition of a substance involves its removal from the associated air mass. The
scavenging ratio H can be estimated by comparing the monthly average concentration in precipitation with that in the air (Okita et al., 1996; Kasper-Giebl et al., 1999; Hicks, 2005; Yamagata et al., 2009). Xu et al. (Xu et al., 2017) first calculated the rainfall event H based on the hourly concentration of aerosol components measured with an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) and AIM-IC in 2014. In this study four years of observation of aerosol components have been undertaken by AIM-IC.

Measurements made in the 6 hours before each rainfall event are averaged to represent the precondition of wet deposition precursors in the atmosphere. Figure 3 shows the relationship between the major chemical ions in precipitation and in the air. The VWA concentration of SO_4^{2-}, NO_3^- and NH_4^+ (hereafter SNA) as well as Ca^{2+} in each rainfall event has been calculated and compared with that in the first 1 mm rainfall fraction, F1#. As shown in Figure 3, positive correlations are found between the concentrations of ions in precipitation and in air, with Pearson correlation coefficients (R) generally higher than 0.7 ($p<0.01$). The concentration in the first fraction should represent a high proportion of below-cloud scavenging due to the washout of air pollutants below clouds by the first rainfall, while the VWA represents a greater contribution from in-cloud removal (Aikawa and Hiraki, 2009; Wang et al., 2009; Xu et al., 2017). Thus, it is reasonable that the correlations are stronger for the first fraction than for the VWA, see Table 1. This indicates that the concentration of chemical ions in precipitation at the start of rainfall is more greatly influenced by aerosols below the cloud. As rainfall continues and below-cloud concentrations are reduced, there is an increased contribution from in-cloud scavenging, which is less influenced by aerosols in the surface layer. This is confirmed by the substantial difference in the two R coefficients for the cation ion Ca^{2+} (0.85 for the first fraction, 0.47 for the VWA), which often exists in coarse particles below cloud. For the fine particle SO_4^{2-} which is present both in and below clouds (Xu et al., 2017), the difference in the two R coefficients is small.

The slope of the linear fits in Figure 3 can be used to calculate the scavenging ratio H, which is the ratio of the ions concentration in precipitation (mg/L) and in air (μg/m3). The H ratio is 0.25×10^6, 0.16×10^6 and 0.15×10^6 for SNA, SO_4^{2-}, NO_3^- and NH_4^+ respectively. This is similar to that reported for rainfall events in 2014 in Beijing.
(0.26×10^6, 0.35×10^6 and 0.14×10^6 for SNA) by Xu et al. (2017) and consistent with those estimated in the eastern United States (0.11-0.38×10^6, 0.38-0.97×10^6 and 0.2-0.75×10^6 for SNA) (Hicks, 2005). Compared with SO_4^{2-} and NH_4^+, the scavenging ratio for NO_3^- shows larger differences between this study and previous studies, corresponding to larger uncertainties to the R between the concentrations of ions in precipitation and in air for VWA in Figure 3a (lower significance p<0.05).

Wet deposition can affect much of the atmospheric column through in-cloud and below-cloud scavenging processes. The vertical column density (VCD) of SO_2 and NO_2 from satellite during 2000s to 2017 is used here to compare with the inter-annual variations in wet deposition in Beijing (Figure S1). Consistent variation of the VCD and the yearly VWA concentration in precipitation is found in S and N. A continuous decrease is found in VCD SO_2 from 2005 to 2017, matching the trend in SO_4^{2-} deposition, while for VCD NO_2 shows an increase from 2001 to 2011, a decrease after 2011 and little change over the period 2014-2017. This implies that the Action Plan not only benefits air pollutants in the surface layer but also those in the total column. Due to faster decreases in emissions of S than N (Zheng et al., 2018), the ratio of S/N in both precipitation (SO_4^{2-}/NO_3^-, μeq/L) and air (SO_4^{2-}/NO_3^-, μg/m^3) are found to decrease, with the change in ratio in precipitation at 281%, 44% and 459% during 1995-2010, 2014-2017 and 1995-2017, and in air at 48% during 2014-2017, respectively, see Figure S2. This is also consistent with the trend reported in whole China during 2000-2015 by Itahashi et al. (2018). The chemical composition of precipitation is directly related to the amount of precipitation, and as a consequence it is difficult to identify inter-annual variations in chemical concentrations. The ratio of S/N in precipitation is a useful index to investigate the relative contributions of these acidifying species. In addition, the ratio of NH_4^+/NO_3^- is investigated here and a clear decrease is found during 2014-2017 both in precipitation and in air. This indicates that NH_4^+ is decreasing faster than NO_3^- . This evidence clearly confirms that nitrate should be the major target for air pollution controls in the next Action Plan.

3.3 Proportion of below cloud scavenging

As described in section 2.3, the in-cloud ion concentration (\bar{C}, in Eq 1) can be derived
from the exponential fit of the observed rainwater concentrations. Table 2 lists the asymptote value and the exponential fitting equation of the evolution of each ion concentration in precipitation with the increment of rainfall. As shown, the asymptote value (hereafter, exponential approach) based on the median data for SO$_4^{2-}$, NO$_3^-$ and NH$_4^+$ was 3.18 mg/L, 2.32 mg/L and 1.39 mg/L, respectively. The SO$_4^{2-}$ and NO$_3^-$ are within the range of reported in cloud concentrations for Beijing (3.33 mg/L and 2.75 mg/L for SO$_4^{2-}$ and NO$_3^-$ in Xu et al., 2017), while the NH$_4^+$ in this study is lower than previous studies (2.51 mg/L in Xu et al., 2017 and 2.1-4.5 mg/L in Wang et al., 2009).

In-cloud concentrations for other ions, i.e., Ca$^{2+}$, F$^-$, Cl$^-$, Na$^+$, K$^+$ and Mg$^{2+}$, are 0.67 mg/L, 0.04 mg/L, 0.27 mg/L, 0.1 mg/L, 0.06 mg/L and 0.08 mg/L, respectively. For comparison, the average concentration in fractions 6 to 8 ($F_6#-F_8#$) in each rainfall event (hereafter, average approach) is used to estimate the in-cloud concentration for events where successive rainwater concentrations do not show an obvious decrease or where other factors such as precipitation intensity are important, see Table 2. Similar results are found for most ions with the exponential and average approach except for NH$_4^+$, F$^-$, K$^+$ and Mg$^{2+}$, where the maximum difference is less than 20% (Table 2). Thus, the replacement of in-cloud concentration by the average value is acceptable for SO$_4^{2-}$, NO$_3^-$, Ca$^{2+}$, Cl$^-$ and Na$^+$ but much uncertainty for the other ions. It is worth noting that for all ions the average approach gives higher estimates of in-cloud concentrations, and this can be recognized as an upper limit for in-cloud concentrations.

Following Eq (2), the contribution of below-cloud scavenging to wet deposition in each rainfall event during 2014-2017 are estimated from the in-cloud concentration. Figure 4 shows the yearly VWA of SNA and Ca$^{2+}$ and the in-cloud and below-cloud contributions. The ratio of yearly median data for below-cloud contribution to the four major components is also shown in Figure 4. Benefiting from the Action Plan, the below-cloud contributions of SO$_4^{2-}$, NO$_3^-$, NH$_4^+$ and Ca$^{2+}$ show decreases from >50% in 2014 to ~40% in 2017. In 2017, the contribution of below-cloud scavenging declines to lower than 40% for SO$_4^{2-}$ and NH$_4^+$, but remains at 44% for NO$_3^-$. Over the four-year period 2014-2017, the average yearly wet deposition for all ions and the below-cloud wet scavenging contributions are given in Table 2. Similar to the concentrations in...
precipitation, the wet deposition of SO_4^{2-}, NO_3^-, NH_4^+ decreased from 21.5 kgS ha$^{-1}$ yr$^{-1}$, 8.9 and 19.0 kg N ha$^{-1}$ yr$^{-1}$ during 2007-2010 (Pan et al., 2012; 2013) to 11.4 kgS ha$^{-1}$ yr$^{-1}$ (3.42×103 mg m$^{-2}$ yr$^{-1}$), 6.9 and 16.7 kgN ha$^{-1}$ yr$^{-1}$ (3.05×103 and 2.15×103 mg m$^{-2}$ yr$^{-1}$) during 2014-2017, respectively. Below-cloud scavenging contributed to almost half of total deposition estimated with the exponential approach (50~60%), higher than the average approach (40~50%).

3.4 Below cloud scavenging impacts on the aerosol

Quyang et al. (2015) reported a significant negative correlation between accumulated rainfall and PM$_{2.5}$ in air during summer time in Beijing, indicating that rainfall has a significant effect in washing out air pollution. Inter-annual observations of both rainfall and aerosol concentration have been conducted in this study. The concentrations of air pollutants generally decrease with increasing wind speed, especially from northerly and northwesterly directions (He et al., 2001; Chan and Yao, 2008; Xu et al., 2017), as cleaner air is brought from these directions when wind speeds are greater than 4 m/s (Gonzalez and Aristizabal, 2012). To avoid this influence from airmass origin, rainfall events associated with low wind speeds (< 2 m/s) have been chosen. Nine events between 2014 and 2017 have been selected to investigate the impacts of rainfall on air pollution. Under these conditions, the variation in PM$_{2.5}$ concentration can be attributed to washout effects alone. For comparison, the monthly average concentration of PM$_{2.5}$ is calculated and displayed with the hourly concentration of PM$_{2.5}$ during the selected rainy day in Figure 5. The hourly atmospheric concentration typically shows a sharp decrease as the rainfall events occur. During the event on June 26-27 2015, the PM$_{2.5}$ concentration decreased from 120 μg/m3 before rainfall to 20 μg/m3 after rainfall. This indicates that the rainfall has a strong cleansing effect on the air pollution. Quyang et al. (2015) reported a significant correlation between the amount of rainfall in summer in Beijing and the decrease in PM$_{2.5}$ with an R^2 higher than 0.67. Fan et al. (2019) found a similar relationship in the Yangtze River Delta, and attributed the washing effect to the amount and speed of the rainfall.

4 Factors influencing below-cloud scavenging

4.1 Rainfall type
The rainfall over the North China Plain in summer time is usually determined by the synoptic system such as the upper-level trough or the cold vortex. The 75 rainfall events have been classified based on synoptic system according to records from the Beijing Meteorological Service (http://bj.cma.gov.cn) with 33 events associated with upper-level troughs, 23 events associated with a cold vortex and 19 events associated with other systems. Figure 6 shows the contributions of below-cloud scavenging for the two major systems. A high contribution from below-cloud scavenging is found for rainfall events associated with an upper-level trough with the median contributions for SO_4^{2-}, NO_3^-, NH_4^+ and Ca^{2+} of 56.2%, 62.1%, 56.3% and 61.9%, respectively. In the contrast, the contributions during rainfall events under cold vortex conditions are significant lower, with the values of 42.2%, 44.5%, 41.7% and 53.9%, respectively. Rainfall events associated with an upper-level trough are usually accompanied by orographic or frontal precipitation and are characterized by long and continuous precipitation (Shou et al., 2000). This suggests that below-cloud scavenging of chemical components is important for this rainfall type due to air mass transport from outside Beijing. In contrast, rainfall events associated with a cold vortex usually originate from strong thermal convection and are characterized by short heavy rainfall (Zhang et al., 2008; Liu et al., 2016; Zheng et al., 2020). This is common during the summer months in Beijing with deep convective clouds (Yu et al., 2011; Gao and He, 2013), and suggests that there is a large contribution from in-cloud scavenging to the total wet deposition.

4.2 Precipitation intensity and rainfall volume

To illustrate the impacts of rainfall on below-cloud aerosol scavenging, the relationship between the below-cloud fraction and the rainfall volume and precipitation intensity are investigated, see Figure 7. Negative correlations in below cloud fraction are found for both the rainfall volume and precipitation intensity, although the relationship with the former is stronger (R: 0.63–0.93 vs. 0.03–0.64). This is consistent with results for 2014 in Beijing reported by Xu et al. (2017). Atmospheric particles are efficiently removed below cloud by washout at the beginning of precipitation events (almost 70% of SNA is removed in the first 2-3 fractions, as shown in Figure 1). As the rainfall progresses, in-cloud rainout makes an increasingly important contribution as below-cloud aerosol...
concentrations fall. Xu et al. (2017) found that heavy summertime rainfall events with more than 40 mm of rainfall usually occur over very short periods of time, usually 2-3 h. This heavy rainfall leads to the scavenging of aerosols in a relatively localized region and prevents the compensation associated with transport of air pollutants from outside the region during longer-duration light rainfall events. This contributes to the decreased contribution of washout processes during the high intensity rainfall events.

5 Conclusions
This paper presents an analysis of below-cloud scavenging from four years of sequential sampling of rainfall events in Beijing from May of 2014 to November of 2017. The concentration of ions in precipitation varied dramatically, with yearly volume weighted averaged concentrations of \(\text{SO}_4^{2-} \), \(\text{NO}_3^- \), \(\text{NH}_4^+ \) and \(\text{Ca}^{2+} \) decreasing by 39%, 12%, 25% and 35% between 2014 and 2017, respectively. Due to faster decreases in \(\text{SO}_4^{2-} \) than \(\text{NO}_3^- \) both in precipitation and in the air during the observation period, there is a significant decrease in S/N ratio in precipitation at 44% and in air at 48%.

Benefiting from the national Air Pollution Prevention and Control Action Plan, the sulfur has been further reduced, while the nitrogen, especially nitrate, needs further attention in the next Action Plan to prevent deterioration of the environment associated with acid rain and photochemical pollution.

A new method has been developed and employed to estimate the below-cloud contribution to wet deposition in Beijing. The new approach suggests that the contribution from below-cloud scavenging is greater than that estimated applying simpler approaches used in previous studies. Overall, the contribution of below-cloud scavenging to the wet deposition of the four major components is important at 50–60%, with the highest contribution for \(\text{NH}_4^+ \) at 65% and lowest for \(\text{SO}_4^{2-} \) at 50%. The contribution of below-cloud scavenging shows a decrease over the period 2014-2017 for \(\text{Ca}^{2+} \), \(\text{SO}_4^{2-} \) and \(\text{NH}_4^+ \), but little change for \(\text{NO}_3^- \) during 2015-2017. Below-cloud scavenging also has a strong cleansing effect on air pollution, and the hourly concentration of PM\(_{2.5}\) is found to decrease sharply as the rainfall events occur, even with the effects from wind swept out have been accounted for.

Rainfall types also influence the contribution of below-cloud scavenging. Seventy-
five rainfall events during the four-year periods were classified based on the local synoptic conditions. Lower contributions from below-cloud scavenging (~40%) are found for the four major ions in rainfall events associated with a cold vortex, while higher contributions (~60%) occurred associated with an upper-level trough. Precipitation volume and intensity both show a negative correlation with the below-cloud fraction. This suggests that atmospheric particles are efficiently removed via washout processes at the beginning of precipitation events. As the event progresses, rainfall in the later fractions shows a greater contribution from in-cloud rainout processes as aerosols in the surface layer have already been scavenged. To better understand the mechanism of washout processes, high resolution of measurement both in precipitation and in the air especially at the beginning of rainfall events are needed in the future.

Acknowledgment

We appreciate CNEMC for providing the data of the 6 criteria pollutants in Beijing. We also appreciate Beijing Municipal Environmental Monitoring Center for providing the aerosol components data in Beijing. This work is supported by the National Natural Science Foundation of China (Grant No 41877313, 91744206, 41620104008), Priority Research Program (XDA19040204) and the Key Deployment Program (ZDRW-CN-2018-1-03) of the Chinese Academy of Sciences.
References:

Aikawa, M., and Hiraki, T.: Washout/rainout contribution in wet deposition estimated by 0.5 mm precipitation sampling/analysis, Atmos Environ, 43, 4935-4939, 2009.

Aikawa, M., Kajino, M., Hiraki, T., and Mukai, H.: The contribution of site to washout and rainout: Precipitation chemistry based on sample analysis from 0.5 mm precipitation increments and numerical simulation, Atmos Environ, 95, 165-174, http://dx.doi.org/10.1016/j.atmosenv.2014.06.015, 2014.

Andronache, C.: Estimated variability of below-cloud aerosol removal by rainfall for observed aerosol size distributions, Atmospheric Chemistry and Physics, 3, 131-143, 2003.

Andronache, C.: Estimates of sulfate aerosol wet scavenging coefficient for locations in the Eastern United States, Atmospheric Environment, 38, 795-804, 10.1016/j.atmosenv.2003.10.035, 2004a.

Andronache, C.: Precipitation removal of ultrafine aerosol particles from the atmospheric boundary layer, J Geophys Res-Atmos, 109, 2004b.

Bae, S. Y., Jung, C. H., and Kim, Y. P.: Derivation and verification of an aerosol dynamics expression for the below-cloud scavenging process using the moment method, J Aerosol Sci, 41, 266-280, 2010.

Bae, S. Y., Park, R. J., Yong, P. K., and Woo, J. H.: Effects of below-cloud scavenging on the regional aerosol budget in East Asia, Atmos Environ, 58, p.14-22, 2012.

Barth, M. C., Rasch, P. J., Kiehl, J. T., Benkovitz, C. M., and Schwartz, S. E.: Sulfur chemistry in the National Center for Atmospheric Research Community Climate Model: Description, evaluation, features, and sensitivity to aqueous chemistry, J Geophys Res-Atmos, 105, 1387-1415, 2000.

Bertrand, G., Celle-Jeanton, H., Laj, P., Rangognio, J., and Chazot, G.: Rainfall chemistry: long range transport versus below cloud scavenging. A two-year study at an inland station (Opme, France), J Atmos Chem, 60, 253-271, 2008.

Chan, C. K., and Yao, X.: Air pollution in mega cities in China, Atmos Environ, 42, 1-42, https://doi.org/10.1016/j.atmosenv.2007.09.003, 2008.

Chate, D. M., Rao, P. S. P., Naik, M. S., Momin, G. A., Safai, P. D., and Ali, K.: Scavenging of aerosols and their chemical species by rain, Atmospheric Environment, 37, 2477-2484, 10.1016/S1352-2310(03)00162-6, 2003.

Fan, F., Lu, E., Ge, B., and Wang, Z.: Analysis on scavenging effect of precipitation on PM2.5 in Jiangsu,Zhejiang and Shanghai area (in chinese abstract), JOURNAL OF THE METEOROLOGICAL SCIENCES, 39, 9, 2019.

Feng, J.: A size - resolved model for below - cloud scavenging of aerosols by snowfall, Journal of Geophysical Research, 114, 10.1029/2008jd011012, 2009.

Gao, Y., and He, L. F.: The phase features of a cold vortex over north China (in English abstract), J Appl Meteor Sci, 24, 704-713, 2013.

Ge, B., Wang, Z., Gbaguidi, A. E., and Zhang, Q.: Source Identification of Acid Rain Arising over Northeast China: Observed Evidence and Model Simulation, Aerosol Air Qual Res, 16, 1366-1377, 10.4209/aaqr.2015.05.0294, 2016.

Ge, B., Itahashi, S., Sato, K., Xu, D., Wang, J., Fan, F., Tan, Q., Fu, J. S., Wang, X.,...
Yamaji, K., Nagashima, T., Li, J., Kajino, M., Liao, H., Zhang, M., Wang, Z., Li, M., Woo, J. H., Kurokawa, J., Pan, Y., Wu, Q., Liu, X., and Wang, Z.: MICS-Asia III: Multi-model comparison of reactive Nitrogen deposition over China, Atmos. Chem. Phys. Discuss., 2020, 1-43, 10.5194/acp-2019-1083, 2020.

Goncalves, F. L. T., Ramos, A. M., Freitas, S., Dias, M. A. S., and Massambani, O.: In-cloud and below-cloud numerical simulation of scavenging processes at Serra Do Mar region, SE Brazil, Atmos Environ, 36, 5245-5255, 2002.

Gonzalez, C. M., and Aristizabal, B. H.: Acid rain and particulate matter dynamics in a mid-sized Andean city: The effect of rain intensity on ion scavenging, Atmos Environ, 60, 164-171, 2012.

Gryspeerdt, E., Stier, P., White, B. A., and Kipling, Z.: Wet scavenging limits the detection of aerosol effects on precipitation, Atmos. Chem. Phys., 15, 7557-7570, 10.5194/acp-15-7557-2015, 2015.

He, K. B., Yang, F. M., Ma, Y. L., Zhang, Q., Yao, X. H., Chan, C. K., Cadle, S., Chan, T., and Mulawa, P.: The characteristics of PM2.5 in Beijing, China, Atmos Environ, 35, 4959-4970, 2001.

Henzing, J. S., Olivie, D. J. L., and van Velthoven, P. F. J.: A parameterization of size resolved below cloud scavenging of aerosols by rain, Atmospheric Chemistry and Physics, 6, 3363-3375, 2006.

Hicks, B. B.: A climatology of wet deposition scavenging ratios for the United States, Atmos Environ, 39, 1585-1596, 2005.

Huang, M., Shen, Z., and Liu, S.: A study on the formation processes of acid rain in some areas of Southwest China (in Chinese), Scientia Atmospherica Sinica, 19, 359-366, 1995.

Itahashi, S., Yumimoto, K., Uno, I., Hayami, H., Fujita, S. I., Pan, Y., and Wang, Y.: A 15-year record (2001–2015) of the ratio of nitrate to non-sea-salt sulfate in precipitation over East Asia, Atmos. Chem. Phys., 18, 2835-2852, 10.5194/acp-18-2835-2018, 2018.

Kasper-Giebl, A., Kalina, M. F., and Puxbaum, H.: Scavenging ratios for sulfate, ammonium and nitrate determined at Mt. Sonnblick (3106 m asl), Atmos Environ, 33, 895-906, 1999.

Li, R., Cui, L., Zhao, Y., Zhang, Z., Sun, T., Li, J., Zhou, W., Meng, Y., Huang, K., and Fu, H.: Wet deposition of inorganic ions in 320 cities across China: spatio-temporal variation, source apportionment, and dominant factors, Atmos. Chem. Phys., 19, 11043-11070, 10.5194/acp-19-11043-2019, 2019.

Liu, X. M., Zhang, M. J., Wang, S. J., Zhao, P. P., Wang, J., and Zhou, P. P.: Estimation and analysis of precipitation cloud base height in China (in english abstract), Meteor Mon, 42, 1135-1145, 2016.

Malaguti, A., Mircea, M., La Torretta, T. M. G., Telloli, C., Petralia, E., Stracquadanio, M., and Berico, M.: Comparison of Online and Offline Methods for Measuring Fine Secondary Inorganic Ions and Carbonaceous Aerosols in the Central Mediterranean Area, Aerosol Air Qual Res, 15, 2641-2653, 2015.

Markovic, M. Z., VandenBoer, T. C., and Murphy, J. G.: Characterization and optimization of an online system for the simultaneous measurement of atmospheric
water-soluble constituents in the gas and particle phases, J Environ Monitor, 14, 1872–1884, 2012.

Okita, T., Hara, H., and Fukuzaki, N.: Measurements of atmospheric SO2 and SO42-, and determination of the wet scavenging coefficient of sulfate aerosols for the winter monsoon season over the Sea of Japan, Atmos Environ, 30, 3733–3739, 1996.

Ouyang, W., Guo, B. B., Cai, G. Q., Li, Q., Han, S., Liu, B., and Liu, X. G.: The washing effect of precipitation on particulate matter and the pollution dynamics of rainwater in downtown Beijing, Sci Total Environ, 505, 306–314, 2015.

Pan, Y. P., Wang, Y. S., Tang, G. Q., and Wu, D.: Wet and dry deposition of atmospheric nitrogen at ten sites in Northern China, Atmos Chem Phys, 12, 6515–6535, 2012.

Pan, Y. P., Wang, Y. S., Tang, G. Q., and Wu, D.: Spatial distribution and temporal variations of atmospheric sulfur deposition in Northern China: insights into the potential acidification risks, Atmos Chem Phys, 13, 1675–1688, 2013.

Pu, W. W., Quan, W. J., Ma, Z. L., Shi, X. F., Zhao, X. J., Zhang, L. N., Wang, Z. F., and Wang, W. Y.: Long-term trend of chemical composition of atmospheric precipitation at a regional background station in Northern China, Sci Total Environ, 580, 1340–1350, 2017.

Seinfeld, J. H., and Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to climate change, Wiley, New York, 2006.

Shou, S. W., Zhu, Q. G., Lin, J. R., and Tang, D. S.: The principles and methods of weather science[M], China Meteorological Press, Beijing, 76-81 pp., 2000.

Sportisse, B.: A review of parameterizations for modelling dry deposition and scavenging of radionuclides, Atmospheric Environment, 41, 2683–2698, 10.1016/j.atmosenv.2006.11.057, 2007.

State Council of the People’s Republic of China, Notice of the general office of the state council on issuing the air pollution prevention and control action plan. http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm. Accessed 21 August 2019.

Sun, Y. L., Wang, Z. F., Du, W., Zhang, Q., Wang, Q. Q., Fu, P. Q., Pan, X. L., Li, J., Jayne, J., and Worsnop, D. R.: Long-term real-time measurements of aerosol particle composition in Beijing, China: seasonal variations, meteorological effects, and source analysis, Atmos Chem Phys, 15, 10149–10165, 2015.

Tang, A. H., Zhuang, G. S., Wang, Y., Yuan, H., and Sun, Y. L.: The chemistry of precipitation and its relation to aerosol in Beijing, Atmos Environ, 39, 3397–3406, DOI 10.1016/j.atmosenv.2005.02.001, 2005.

Tang, J. C. H. B., Yu, X. L., Wang, S., Yao, P., Lv, B., Xu, X. B., and Ding, G.: Evaluation of results of station inter-comparison with blind samples in Acid Rain Monitoring Network in China, Meteorol. Monthly, 33, 75–83, 2007 (in English abstract).

Tang, J., Xu, X., Ba, J., and Wang, S.: Trends of the precipitation acidity over China during 1992–2006, Chinese. Sci. Bul., 5, 1800–1807, doi:10.1007/s11434-009-3618-1, 2010.

Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T.,
Berglen, T., Boucher, O., Chin, M., Dentener, F., Diehl, T., Easter, R., Feichter, H., Fillmore, D., Ghan, S., Ginoux, P., Gong, S., Kristjansson, J. E., Krol, M., Lauer, A., Lamarque, J. F., Liu, X., Montanaro, V., Myhre, G., Penner, J., Pitari, G., Reddy, S., Seland, O., Stier, P., Takemura, T., and Tie, X.: Analysis and quantification of the diversities of aerosol life cycles within AeroCom, Atmos Chem Phys, 6, 1777-1813, 2006.

Vet, R., Artz, R. S., Carou, S., Shaw, M., Ro, C. U., Aas, W., Baker, A., Bowersox, V. C., Dentener, F., Galy-Lacaux, C., Hou, A., Pienaar, J. J., Gillett, R., Forti, M. C., Gromov, S., Hara, H., Khodzher, T., Mahowald, N. M., Nickovic, S., Rao, P. S. P., and Reid, N. W.: A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus, Atmos Environ, 93, 3-100, 2014.

Wang, W. X., and Wang, T.: On acid rain formation in China, Atmos Environ, 30, 4091-4093, 1996.

Wang, X., Zhang, L., and Moran, M. D.: Uncertainty assessment of current size-resolved parameterizations for below-cloud particle scavenging by rain, Atmos. Chem. Phys., 10, 5685-5705, 10.5194/acp-10-5685-2010, 2010.

Wang, X., Zhang, L., and Moran, M. D.: Development of a new semi-empirical parameterization for below-cloud scavenging of size-resolved aerosol particles by both rain and snow, Geosci Model Dev, 7, 799-819, 10.5194/gmd-7-799-2014, 2014.

Wang, Y., Xue, L. I., Li, Y. A. O., Yanan, Z., and Yuepeng, P. A. N.: Variation of pH and Chemical Composition of Precipitation by Multi-step Sampling in Summer of Beijing 2007 (in english abstract), 30, 2715-2721, 2009.

Wang, Z. F., Xie, F. Y., Sakurai, T., Ueda, H., Han, Z. W., Carmichael, G. R., Streets, D., Engardt, M., Holloway, T., Hayami, H., Kajino, M., Thongboonchoo, N., Bennet, C., Park, S. U., Fung, C., Chang, A., Sartelet, K., and Amann, M.: MICS-Asia II: Model inter-comparison and evaluation of acid deposition, Atmos Environ, 42, 3528-3542, 2008.

Xu, D., Ge, B., Chen, X., Sun, Y., Cheng, N., Li, M., Pan, X., Ma, Z., Pan, Y., and Wang, Z.: Multi-method determination of the below-cloud wet scavenging coefficients of aerosols in Beijing, China, Atmos. Chem. Phys., 19, 15569-15581, 10.5194/acp-19-15569-2019, 2019.

Xu, D. H., Ge, B. Z., Wang, Z. F., Sun, Y. L., Chen, Y., Ji, D. S., Yang, T., Ma, Z. Q., Cheng, N. L., Hao, J. Q., and Yao, X. F.: Below-cloud wet scavenging of soluble inorganic ions by rain in Beijing during the summer of 2014, Environ Pollut, 230, 963-973, 10.1016/j.envpol.2017.07.033, 2017.

Yamagata, S., Kobayashi, D., Ohta, S., Murao, N., Shiobara, M., Wada, M., Yabuki, M., Konishi, H., and Yamanouchi, T.: Properties of aerosols and their wet deposition in the arctic spring during ASTAR2004 at Ny-Alesund, Svalbard, Atmos Chem Phys, 9, 261-270, 2009.

Yang, F., Tan, J., Shi, Z. B., Cai, Y., He, K., Ma, Y., Duan, F., Okuda, T., Tanaka, S., and Chen, G.: Five-year record of atmospheric precipitation chemistry in urban Beijing, China, Atmos Chem Phys, 12, 2025-2035, DOI 10.5194/acp-12-2025-2012, 2012.
Yu, Z. Y., He, L. F., Fan, G. Z., Li, Z. C., and Su, Y. L.: The basic features of the severe convection at the background of cold vortex over north china (in English abstract), J Trop Meteor, 27, 89-94, 2011.

Yuan, W. H., Sun, W., Chen, H. M., and Yu, R. C.: Topographic effects on spatiotemporal variations of short-duration rainfall events in warm season of central North China, J Geophys Res-Atmos, 119, 11223-11234, 2014.

Zhang, C., Zhang, Q., Wang, Y., and Liang, X.: Climatology of warm season cold vortices in East Asia: 1979-2005, Meteorol Atmos Phys, 100, 291-301, 2008.

Zhang, L., Michelangeli, D. V., and Taylor, P. A.: Numerical studies of aerosol scavenging by low-level, warm stratiform clouds and precipitation, Atmos Environ, 38, 4653-4665, https://doi.org/10.1016/j.atmosenv.2004.05.042, 2004.

Zhang, L., Wang, X., Moran, M. D., and Feng, J.: Review and uncertainty assessment of size-resolved scavenging coefficient formulations for below-cloud snow scavenging of atmospheric aerosols, Atmospheric Chemistry and Physics, 13, 10005-10025, 10.5194/acp-13-10005-2013, 2013.

Zhang, Q., Zheng, Y. X., Tong, D., Shao, M., Wang, S. X., Zhang, Y. H., Xu, X. D., Wang, J. N., He, H., Liu, W. Q., Ding, Y. H., Lei, Y., Li, J. H., Wang, Z. F., Zhang, X. Y., Wang, Y. S., Cheng, J., Liu, Y., Shi, Q. R., Yan, L., Geng, G. N., Hong, C. P., Li, M., Liu, F., Zheng, B., Cao, J. J., Ding, A. J., Gao, J., Fu, Q. Y., Huo, J. T., Liu, B. X., Liu, Z. R., Yang, F. M., He, K. B., and Hao, J. M.: Drivers of improved PM2.5 air quality in China from 2013 to 2017, P Natl Acad Sci USA, 116, 24463-24469, 2019.

Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys. Discuss., 2018, 1-27, 10.5194/acp-2018-374, 2018.

Zheng, Y. F., Wang L. W., and Du, J. Y.: Comparative Analysis of the Features of Precipitating and Nonprecipitating Ice Clouds in the Beijing-Tianjin-Hebei Region in Summer (in english abstract), Climatic and Environmental Research, 25, 77-89, 10.3878/j.issn.1006-9585.2019.18091, 2020.

Table 1. Correlation of the concentrations of major ions in air in the six hours before rainfall with those in precipitation. Pearson correlation coefficients are presented for monthly volume weighted average (VWA) concentrations and for the first fraction (F1#) in each event.

	SO$_4^{2-}$ (n=13)	NO$_3^-$ (n=14)	NH$_4^+$ (n=13)	Ca$^{2+}$ (n=9)
VWA	0.70a	0.53b	0.65a	0.47
F1#	0.76a	0.62a	0.77a	0.85a

Note: “a” and “b” represent significant correlations at $p<0.01$ and $p<0.05$, respectively.
Table 2. Exponential fitting for the concentrations of major ions in different fractions of rainfall, and the contribution of below-cloud scavenging to total deposition.

Chemical component	Exponential Fitting for 50\(^{th}\) percentile\(^a\)	\(R^2\) (n=11)	Intercept (mg/L)	Below cloud %\(^b\)	Average of F6\#–F8\# (mg/L)	Below cloud %\(^c\)	Difference %\(^d\)	Total wet deposition (mg/m\(^2\)/yr)
SO\(_4^{2-}\)	\(y=3.17+10.28 \times e^{-0.53x}\)	0.85	3.18	50%	3.33	48%	<3%	3423.3
NO\(_3^-\)	\(y=2.32+11.03 \times e^{-0.45x}\)	0.81	2.32	59%	2.59	54%	<6%	3046.5
NH\(_4^+\)	\(y=1.39+5.81 \times e^{-0.28x}\)	0.79	1.39	65%	1.95	51%	<9%	2149.5
Ca\(^{2+}\)	\(y=0.67+6.81 \times e^{-0.66x}\)	0.93	0.67	52%	0.72	48%	<6%	746.0
F\(^-\)	\(y=0.04+0.24 \times e^{-0.35x}\)	0.90	0.04	56%	0.05	40%	<10%	49.0
Cl\(^-\)	\(y=0.27+2.2 \times e^{-0.6x}\)	0.91	0.27	53%	0.29	50%	<5%	309.7
Na\(^+\)	\(y=1.01+1.34 \times e^{-0.94x}\)	0.91	0.10	64%	0.10	64%	<1%	150.6
K\(^+\)	\(y=0.06+0.49 \times e^{-0.47x}\)	0.89	0.06	64%	0.07	58%	<9%	89.8
Mg\(^{2+}\)	\(y=0.08+0.81 \times e^{0.44x}\)	0.83	0.08	61%	0.11	46%	<13%	109.2

\(^{a}\) fitting for the median of each fraction in different rainfall events; \(^{b}\) below cloud portion calculated based on the fitting curve; \(^{c}\) below cloud portion calculated based on the average value of fractions 6 to 8 (F6\#–F8\#) in rainfall events; \(^{d}\) difference in concentrations between adjacent 1 mm increments after 5 mm accumulated precipitation.
Figure 1. Concentrations of SO$_4^{2-}$ (a), NO$_3^-$ (b), NH$_4^+$ (c) and Ca$^{2+}$ (d) in each 1-mm fraction of rainfall (i.e., F1#, F2#, …) over different rainfall events in the observation periods. The red line shows an exponential fitting using the 50th percentile of the data and the red shading indicates the range between the 25th and 75th percentiles.

Figure 2. Time series of annual volume weighted average (VWA) concentration of the four major components NH$_4^+$ (a), Ca$^{2+}$ (b), SO$_4^{2-}$ (c) and NO$_3^-$ (d) in precipitation in
Beijing

Figure 3. Relationships between the concentration of NO$_3^-$ (a), SO$_4^{2-}$ (b), NH$_4^+$ (c) and Ca$^{2+}$ (d) in precipitation and in air in the 6 h before each precipitation event. The red square and blue triangle represented the relationships between the concentration of ions in air with that in F1# and in VWA, respectively.

Figure 4. The annual volume weighted average below-cloud and in-cloud portion of SO$_2^{2-}$ (a), Ca$^{2+}$ (b), NO$_3^-$ (c), and NH$_4^+$ (d) during 2014-2017. The ratio of annual median below-cloud contribution for each component is represented as the black line in each panel.
Figure 5. Diurnal variations in hourly mean PM$_{2.5}$ concentrations (pink line with unfilled circles) during specific rainfall events and on other days in the corresponding month (solid black circles with $\sigma/3$ error bars) along with the sulfate ion concentration in rainfall (red bars).

Figure 6. Contribution of below-cloud scavenging during rainfall events associated with different synoptic conditions.
Figure 7. Contribution of below-cloud scavenging in events with different rainfall volume and precipitation intensity.