INTRODUCTION

Tau pathology is a defining characteristic of a number of human neurodegenerative diseases, including Alzheimer’s disease, progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, chronic traumatic encephalopathy, and some cases of frontotemporal dementia.1,2 Physiologically, tau promotes microtubule assembly and stability. In tauopathies, soluble tau assembles into insoluble filaments, resulting in neurodegeneration.2,3 It remains to be determined which tau species are the most toxic and how toxicity is mediated.

Abnormal protein aggregation underlies the vast majority of human neurodegenerative diseases.3 In some diseases, the aggregates are made of cleavage products of larger proteins, such as Aβ in Alzheimer’s disease4 and amyloid-Bri in familial British dementia5. In other diseases, full-length and truncated proteins co-exist in the aggregates, as is the case of α-synuclein in Parkinson’s disease and dementia with Lewy bodies6,9 and TDP-43 in cases of frontotemporal dementia and amyotrophic lateral sclerosis.10,11 Truncated proteins are often more aggregation prone than their full-length counterparts.12,13

It is being increasingly debated whether tau fragmentation may play a role in the pathogenesis of Alzheimer’s disease. Cleaved tau has been detected in patient brains and in mouse models.14–20 In Alzheimer’s disease, tau fragmentation has been described as an early event. Caspases and calpains have been implicated, with the caspase 3 cleavage after D421 being the most studied.21 More recently, asparagine endopeptidase has also been shown to cleave tau and promote pathology.22 However, the general relevance of tau fragmentation for neurodegeneration has been questioned. Thus, in mouse lines transgenic for human mutant P301S23 or P301L24 tau, cleavage after D421 was a late event and only small amounts of caspase-cleaved tau were detected. Moreover, earlier studies found tau fragmentation to be primarily associated with degradation of the fuzzy filament coat.25,26 Full-length tau is the major component of the paired helical and straight filaments of Alzheimer’s disease.27 On the other hand, truncation of tau increases its propensity to aggregate and it has been suggested that cleaved tau may seed the aggregation of the full-length protein.28–30 Taken together, it is therefore possible that truncation of a small amount of tau can lead to its aggregation and the seeding of full-length tau.

Here we studied the interaction of truncated and full-length human tau. We generated an inducible mouse line (TAU62) overexpressing human 3R tau151–421 (Δtau). This 239 amino acid tau protein extends from the proline-rich region to the caspase cleavage site. We co-expressed it with either wild-type full-length 3R tau or 4R tau,31 or with mutant full-length 4R P301S tau.32 In all double transgenic lines, high-molecular-weight tau, severe nerve cell damage and motor palsy were observed in young mice. Following cessation of truncated tau expression, functional and structural recovery was observed in mice expressing full-length 4R tau. In contrast, young mice double transgenic for full-length 3R and 4R tau were unaffected.

MATERIALS AND METHODS

Production of transgenic mouse lines and doxycycline treatment

An overview of the mouse lines used in this study is provided in Supplementary Table 1. For the neuron-specific, inducible expression of 3R tau151–421 (Δtau), TAU62 transgenic mice were generated by coinjection of

1Institute of Pathology, University Hospital Basel, Basel, Switzerland; 2Department of Neurology, University Hospital Basel, Basel, Switzerland; 3MRC, Laboratory of Molecular Biology, Cambridge, UK and 4Institute of Biomedical Research, Novartis Pharma AG, Basel, Switzerland. Correspondence: Dr DT Winkler, Institute of Pathology and Department of Neurology, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
E-mail: winklerd@uhbs.ch

These two authors contributed equally to this work.
Received 1 September 2015; revised 3 December 2015; accepted 15 December 2015; published online 2 February 2016
Sagittal and transverse serial sections (4 μm) of the brain and spinal cord tissue were quickly removed. The Thy1.2 minigene and ALZ17xALZ31 mice, were heterozygous for the transgenes of interest, unless specified otherwise. All transgenic mice, including P301SxALZ31 mice if not indicated otherwise. The Thy1hTau17x151 transgene was injected into C57BL/6J oocytes. P301SxTAU62, (Thy1hTau)31), 0N3R human tau complementary DNA was cloned into ALZ31 wild-type human 0N3R tau transgenic mice (C57BL/6J-TgN(Thy1hTau)17) has been previously described. 31 For the generation of full-length wild-type 2N4R tau transgenic ALZ17 mice (C57BL/6J-TgN(Thy1hTau)31), 0N3R human wild-type tau fragment (0N3R tau151 of the murine Thy 1.2 minigene, was expressed throughout the central nervous system, as tau hyperphosphorylation at the AT8 epitope, persisted in aged TAU62 mice (Figure 1h). The AT8 epitope, persisted in aged TAU62 mice (Figure 1h). TheTau fragment–induced neurotoxicity

Molecular Psychiatry (2016), 1790 – 1798

S Oczekiel et al
robustly expressed in spinal cord neurons (Figure 1k) where AT8-positive tau accumulated in motor neurons (Figure 1l). Occasional axonal spheroids were seen by Holmes–Luxol staining (Figure 1m). These findings are comparable to those obtained in aged ALZ17 mice.31

Co-expression of Δtau and full-length four-repeat human mutant P301S tau causes early, but reversible, nerve cell dysfunction. We crossed TAU62 mice with tau inclusion-developing four-repeat P301S tau mice (383 amino acid tau isoform with P301S mutation).32 Surprisingly, P301SxTAU62mice showed a drastic motor phenotype at 3 weeks of age (Supplementary Video S1). In contrast, homozygous P301S tau mice developed immobilizing limb paralysis at ~5 to 7 months (Supplementary Video S2), whereas heterozygous mice remained ambulatory until up to 16 months of age. In P301SxTAU62 mice, motor impairment started with gait ataxia at 9 days and had evolved to a severe palsy by 3 weeks of age. Paralysis was reversible when Δtau expression was halted at 3 weeks of age. P301SxTAU62 mice recovered from severe palsy, and their gait normalized within 2–3 weeks (Figures 2a and b, Supplementary Video S3).

Paralysis of P301SxTAU62 mice is associated with the presence of high-molecular-weight tau. In P301S tau mice, paralysis evolves in parallel to tau tangle formation.32 It was therefore surprising that paralyzed P301SxTAU62mice showed only mild pretangle pathology, in the absence of tau filaments (Figures 2c–f, for positive controls see Supplementary Figure 2a). However, the presence of soluble high-molecular-weight tau paralleled the motor impairment (Figure 2g and Supplementary Figure 2b). These tau species comprised Δtau as detected by antibody RD3 (Supplementary Figure 2c). There were

Figure 1. TAU62 mice express Δtau, develop a mild motor phenotype, memory deficits and pretangle pathology. (a) Expression constructs. In the presence of doxycycline, 3R tau151–421 (Δtau) is expressed. In the absence of doxycycline, tTS (tetracycline-controlled transcriptional silencer) binds to TRE (tetracycline-responsive element), preventing the expression of Δtau. (b) Western blot of brain using anti-tau antibody C3 of a 1-month-old TAU62 mouse under doxycycline (Dox on) and 3 days after doxycycline withdrawal (Dox on-off). (c) Tail suspension test on young TAU62 mouse (1 month), aged B6 mouse (18 months) and aged TAU62 mouse (18 months). (d) Object exploration test. Object exploration time of adult TAU62 mice (aged 6 months) and their C57Bl6 littermates. (e–m) Histology of TAU62 mice aged 12 months (e–g) and 18 months (h–m). Immunohistochemistry with C3 of somatomotor cortex and orbital area (e), hippocampus (f), brainstem with tegmental reticular nucleus (g) and spinal cord (k). Immunohistochemistry of brainstem with AT8 (h) and AT100 (i); immunohistochemistry of spinal cord with AT8 (l). Holmes–Luxol (HL) staining shows the presence of spheroids in spinal cord (arrow; inset) (m). The scale bar in (m) corresponds to 60 μm in (h, i and m), 80 μm in (l), 200 μm in (e) and 400 μm in (f, g and k). *P < 0.05.
no tau bands in the sarkosyl-insoluble fraction (Supplementary Figure 2d). Although high-molecular-weight tau forms were absent in young heterozygous P301S tau mice, similar species were observed in aged homozygous mice (Supplementary Figure 2b). After the expression of Δtau had ceased and P301SxTAU62 on-off mice were moving normally, high-molecular-weight tau was no longer detectable (Supplementary Figure 2b).

Reversible axonal damage
The Δtau was widely expressed in the spinal cord of P301SxTAU62 on-off mice, resulting in a reversible pretangle pathology (Supplementary Figures 2e–g). Spinal cord neurons of paralyzed mice showed signs of severe dysfunction with pathological swelling, chromatolysis (Figure 2h) and axonal damage, with extensive accumulation of neurofilaments, partly in the form of spheroids (Figure 2i). The scale bar in (i) corresponds to 5 nm in (l), 40 nm in (f and l), 80 nm in (k), 100 nm in (e) and 200 nm in (c and d). (l–n) Electron microscopy of the spinal cord of paralyzed mice. Only a few isolated microtubules are present in axons (m, arrow). Fragmented Golgi material is seen in nerve cell bodies (n, arrows). The scale bar in (l) corresponds to 5 nm in (l), 220 nm in (m) and 1.4 nm in (n).

Figure 2. Co-expression of 4R P301S tau and Δtau (P301SxTAU62 mice) causes nerve cell dysfunction that is reversible upon cessation of Δtau expression. Paralysis is associated with the presence of soluble high-molecular-weight tau in the absence of sarkosyl-insoluble tau and tau filaments. Paralyzed mice exhibit axonal accumulations of neurofilaments and mitochondria. (a) Heterozygous P301S mouse (aged 3 weeks); paralyzed (aged 3 weeks) and recovered (3 weeks after cessation of Δtau expression) P301SxTAU62 mice (see also Supplementary Videos S1 and S3). (b) Recovery of motor function was assessed by a grid test of P301SxTAU62 mice following the removal of doxycycline at 21 days of age (blue lines). Motor function of heterozygous P301S tau littermates (green line, n = 8). (c) Immunohistochemistry with AT8 of the tegmental reticular nucleus of the brainstem of paralyzed (‘on’) and recovered (‘on-off’) P301SxTAU62 mice; immunohistochemistry with AT100 (d), Gallyas–Braak silver (e) and Thioflavin S staining (f) of the reticular nucleus of paralyzed mice. (g) Western blot with human-specific anti-tau antibody HT7 of brainstem tissue from nontransgenic (B6), TAU62, P301S and P301SxTAU62 mice. (h and i) Holmes–Luxol (HL) staining of spinal cord of paralyzed 3-week-old P301SxTAU62 mice. The arrow in (i) points to a spheroid; (k) immunohistochemistry of paralyzed (‘on’) and recovered (‘on-off’) mice using antibodies against the 200 kDa subunit of neurofilaments (NF200). The scale bar in (c) corresponds to 26 μm in (h), 40 μm in (f and l), 80 μm in (k), 100 μm in (e) and 200 μm in (c and d). (l–n) Electron microscopy of the spinal cord of paralyzed mice. Only a few isolated microtubules are present in axons (m, arrow). Fragmented Golgi material is seen in nerve cell bodies (n, arrows). The scale bar in (l) corresponds to 5 nm in (l), 220 nm in (m) and 1.4 nm in (n).
axonal spheroids (Figures 2i and k). Neurofilament accumulation normalized upon cessation of Δtau expression (Figure 2k).

By electron microscopy, spheroids comprised massed, poorly oriented neurofilaments intermixed with multiple small, congested mitochondria (Figure 2l), compatible with axonal transport disruption. Spinal cord axons of paralyzed P301SxTAU62Δ17 mice contained only sparse microtubules, whereas neurofilaments were abundant (Figure 2m). Widespread fragmentation of the Golgi network was also seen (Figure 2n).

Reversible disruption of the Golgi network, dysregulation of synaptic proteins and mitochondrial mislocalization

When aged 3 weeks, P301SxTAU62Δ17 mice exhibited a fragmented and swollen Golgi network in CA1 pyramidal cells (Supplementary Figures 3a, b, d and e). After Δtau expression was halted, the Golgi structure normalized (Supplementary Figures 3c and f). Synaptophysin immunoreactivity accumulated within the soma of pyramidal cells (Supplementary Figures 3g–i), indicative of transport dysfunction. VAMP2 was lost from CA1 dendrites when Δtau was co-expressed with full-length mutant tau (Supplementary Figures 3k–m). Mitochondria reversibly accumulated within the soma of pyramidal cells, as well as in axons (Supplementary Figures 3n–p).

Reversible neuropathy and myopathy

In paralyzed mice, nerve cell damage was accompanied by an axonal neuropathy (Figures 3a–i and Supplementary Figures 4a–c). The sciatic nerve fibers exhibited vacuolated (Figure 3b) as well as collapsed myelin sheets (Figure 3e), indicating Wallerian degeneration. Neurofilament staining revealed thinned nerve fibers and spotty areas of fiber loss in paralyzed mice (Figure 3h, arrow). Upon motor recovery, myelin debris was no longer detectable and intact nerve fibers of slightly reduced diameter were seen (Figures 3c, f and i). Hindlimb paralysis was associated with muscle wasting (Figure 3k) and marked muscle fiber atrophy (Figure 3n), whereas muscle fibers of heterozygous P301S and TAU62 mice were of normal size (Figures 3k–m and Supplementary Figures 4d and e). Atrophic muscle fibers of paralyzed mice (Figure 3n) were significantly smaller compared with nonparalyzed controls (Figure 3p, P < 0.0001). Both type 1 and 2 fibers were affected and groups of angulated atrophic fibers present, consistent with neurogenic muscle atrophy (Supplementary Figures 4d–g). In parallel with motor improvement, the muscles largely recovered macroscopically (Figure 3k). Recovered mice exhibited partly hypertrophic muscle fibers, with grouping of type 2 fibers, again indicative of neurogenic muscular atrophy (Figure 3o and Supplementary Figure 4g). Upon motor recovery, the percentage of muscle fibers with centralized nuclei was significantly increased in P301SxTAU62Δ17 mice (Figure 3q).

Co-expression of Δtau and full-length four-repeat human wild-type tau causes early and largely irreversible nerve cell dysfunction

In Alzheimer’s disease, tau pathology develops in the absence of MAPT mutations. We therefore crossed TAU62 mice with ALZ17 transgenic mice31 that express wild-type full-length human four-repeat tau (441 amino acid isoform). ALZ17xTAU62Δ17 mice showed a similar phenotype to that of P301SxTAU62Δ17 mice. They developed severe motor palsy within 3 weeks (Figures 4a and b and Supplementary Video S4), and soluble high-molecular-weight tau was present (Figure 4i). Pretangle pathology was accompanied by the accumulation of neurofilaments and the formation of axonal spheroids (Figures 4d–g). Peripheral nerves showed evidence of Wallerian degeneration with ovoid-shaped myelin debris (Figure 4h) with consecutive neurogenic muscle atrophy (Figure 4k). Structural and functional changes were reversible, following the cessation of Δtau expression (Figures 4b, i and l and Supplementary Video S5).

Co-expression of Δtau and full-length three-repeat human wild-type tau causes early and largely irreversible nerve cell dysfunction

We crossed TAU62 mice with ALZ31 transgenic mice that express wild-type full-length three-repeat human tau (352 amino acid tau isoform). ALZ31xTAU62Δ17 mice showed severe and early paralysis (Supplementary Figures 5a and b and Supplementary Video S6), developed soluble high-molecular-weight tau (Supplementary Figure 5c) and pre-tangle pathology, as well as neuronal and muscular damage occurred (Supplementary Figures 5d–i). However, unlike what we observed before, most mice failed to recover when Δtau expression was halted.

Co-expression of two full-length human tau isoforms causes only late nerve cell dysfunction

Slowly progressive, initially mild, motor impairment occurred in mice co-expressing two full-length human tau isoforms (Figures 5a and b). P301SxALZ31 tau mice were still ambulatory at the age of 12 months (Figure 5a and Supplementary Video S7). Similarly, ALZ17xALZ31 tau mice confirmed the absence of severe nerve cell dysfunction (Figure 5b and Supplementary Video S8). Mice from both lines showed robust tau expression, whereas no high molecular tau was detected (Figure 5c and Supplementary Figure 6). They developed only mild motor impairment at the age of 4 months and showed pretangle pathology with extensive AT8 staining (Figures 5d–l).

DISCUSSION

Here we demonstrate the detrimental interplay between truncated and full-length human tau in vivo. Co-expression of truncated tau and full-length wild-type or mutant tau resulted in the formation of soluble, high-molecular-weight tau, severe nerve cell dysfunction, paralysis and marked histopathological changes. Full-length tau and tau truncated at D421 were present in the high-molecular-weight aggregates, consistent with the need for an interaction between the two species. Sarkosyl-insoluble tau or filaments were not present, indicating that nonfilamentous, sarkosyl-soluble, aggregated tau can cause extensive neurotoxicity.

These findings are in agreement with the postulated importance of oligomeric, sarkosyl-soluble tau for the pathogenesis of human tauopathies.40–42 Tau oligomers have been detected in the brains of patients with Alzheimer’s disease and progressive supranuclear palsy.43–45 In transgenic mouse models of tauopathies, nerve cell loss and memory deficits can precede detectable filamentous tau pathology.46–49 Moreover, nerve cell loss has been reported in the absence of filaments in tau-overexpressing Drosophila,49 suggesting that the events that lead from tau accumulation to neurodegeneration may not involve filament formation. Reducing tau overexpression in mice transgenic for human mutant P301L tau has been reported to decrease nerve cell loss, despite the continued formation of tau filaments.50

Of the mouse lines transgenic for full-length tau, only that expressing human mutant P301S tau develops sarkosyl-insoluble tau inclusions, neurodegeneration and paralysis. However, these inclusions form only when animals heterozygous for the transgene are more than 12 months old.51 When crossed with line TAU62, heterozygous P301S tau mice were paralyzed by the age of 3 weeks, in the absence of sarkosyl-insoluble tau. The same was true of mice transgenic for wild-type 4R tau when crossed with the TAU62 line; wild-type 4R tau-expressing mice do not develop tau inclusions or neurodegeneration.51 Whereas soluble oligomeric tau can cause neurotoxicity, it has been reported that either
soluble or insoluble aggregated tau is required for the prion-like propagation of tau assemblies. It will be interesting to see whether the soluble high-molecular-weight tau described here can seed tau assembly.

Similar to Alzheimer’s disease, axonal spheroids filled with small congested mitochondria and neurofilaments accumulated in the bigenic mouse lines, suggestive of axonal transport deficits. Microtubules were sparse in spinal cord axons, where neurofilaments accumulated, reminiscent of what has been described in Alzheimer’s disease and transgenic mouse models of human tauopathies. Axonal transport defects have been reported in a broad spectrum of neurodegenerative diseases, including Alzheimer’s disease, and the term ‘dysferopathies’ has been introduced for this group of disorders. Paralysed P301SxTAU62 mice exhibited dislocated and clustered mitochondria, similar to Alzheimer’s disease and tauopathy models, where perinuclear mitochondrial clumping correlated with the accumulation of soluble tau species. Dispersed and swollen Golgi networks, associated with the somatic accumulation of synaptophysin, suggested disrupted cellular transport mechanisms, similar to previous findings in mice transgenic for human mutant P301L tau. In Alzheimer’s disease, Golgi fragmentation has been

Figure 3. Co-expression of 4R P301S tau and Δtau (P301SxTAU62 mice) causes neuropathy and neurogenic muscle atrophy that are reversible upon cessation of Δtau expression. (a–i) Sciatic nerves stained using Masson’s trichrom stain (a–c), para-phenylenediamine (d–f) and 2f11 immunohistochemistry (g–i). The scale bar in (i) corresponds to 50 μm in (a–c), 32 μm in (d–f) and 25 μm in (g–i). (k) Macroscopic view of hindlimb muscles. From the top: M. gastrocnemius and M. soleus; M. tibialis anterior; M. extensor digitorum longus. (l–o) M. gastrocnemius stained with hematoxylin and eosin (HE). The scale bar in (o) corresponds to 100 μm (for l–o). Quantification of myofiber area (p) and myofibers with internalized nucleus (q). P301S: heterozygous mice transgenic for human mutant P301S tau, aged 3 weeks; TAU62: heterozygous mice expressing 3R tau151–421, aged 3 weeks; P301SxTAU62: paralysed mice, aged 3 weeks; P301SxTAU622m–off: recovered mice, 6 weeks after cessation of the expression of Δtau. ***P < 0.001.
described in nontangle-bearing neurons, consistent with the present findings. The neuronal dysfunction present in the absence of tau filaments in our bigenic mouse models may mirror an early stage of tauopathy in Alzheimer’s disease.

Although we observed partial nerve fiber loss in paralyzed mice, reflecting toxicity of the oligomeric tau species, the palsy appears mainly attributable to functional neuronal impairment. When Δtau expression was halted, the severe limb paralysis largely improved,
despite the continued expression of full-length wild-type 4R or mutant P301S 4R tau. After a lag phase of a few days, paralyzed mice rapidly regained full motor control within 2 days, pointing to a reversible impairment of axonal transport. Rapidly regained nerve fiber function then enables remodeling of atrophic muscle. Only when Δτau had been expressed together with full-length wild-type 3R tau, was paralysis not reversible following the cessation of the expression of truncated tau. Functional recovery thus appears to depend on the presence of mixed 3R/4R tau oligomers. Following cessation of Δτau expression and functional recovery, the high-molecular-weight tau bands disappeared. Co-expression of full-length and Δtau was required, because co-expression of full-length 3R and 4R tau did not cause paralysis.

While the C-terminal end of Δτau constitutes a main tau cleavage site in Alzheimer’s disease, its N-terminal end has been set at the structural transition of the proline-rich region to the acidic N-terminal projection domain of tau. This limitation of our model has been unavoidable, as N-terminal tau cleavage sites are yet poorly characterized, and only few N-terminal cleavage sites, located at the beginning of the acidic region of tau, have been confirmed in situ.

In conclusion, we show here that an interaction between full-length and Δτau can lead to the formation of neurotoxic tau species that interfere with axonal transport. The reversibility of paralysis upon cessation of truncated tau expression augurs well for the development of new therapies for Alzheimer’s disease and other tauopathies.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

We thank Nicholas Gonatas, University of Pennsylvania Medical Center, Philadelphia, PA, for the MG160 antibody, the Microscopy Center of the University of Basel (M Dürrerberger and U Sauder) for experimental help and Professor Ludwig Kappos, University Hospital Basel, for helpful discussions and support of this work. MT and DTW are supported by the Swiss National Science Foundation (310030_135214 to MT and 3232B_123812 to DTW), the Velux Foundation, the Mach-Gaensslen Foundation, the Synapsis Foundation and the D&N Yde Foundation, Switzerland. GF and MG are supported by the Swiss National Science Foundation (310030_135214 to MT and 3100A0_164565 to DTW).

REFERENCES

1 Spillantini MG, Goedert M. Tau pathology and neurodegeneration. Lancet Neurol 2013; 12: 609–622.
2 Spires-Jones TL, Hyman BT. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron 2014; 82: 756–771.
3 Frost B, Hemberg M, Lewis J, Feany MB. Tau promotes neurodegeneration through global chromatin relaxation. Nat Neurosci 2014; 17: 357–366.
4 Rosenmann H. Asparagine endopeptidase cleaves tau and promotes neurodegeneration. Nat Med 2014; 20: 1236–1238.
5 Eisenberg D, Jucker M. The amyloid state of proteins in human diseases. Cell 2012; 148: 1188–1203.
6 Masters CL, Selkoe DJ. Biochemistry of amyloid beta-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2: a006262.
7 Vidal R, Frangione B, Rostagno A, Motter J, Iqbal K, Lee VM. Alzheimer’s disease: aggregation of amyloid beta-protein and neurodegeneration. Nat Rev Neurol 2013; 9: 37–47.
8 Baba M, Nakaji S, Tsu PH, Tomita T, Nakaya K, Lee VM et al. Ubiquitiﬁcation in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 1998; 152: 879–884.
9 Goedert M, Spillantini MG, Del Tredici K, Braak H. 100 years of Lewy pathology. Nat Rev Neurol 2013; 9: 13–24.
10 Neumann M, Sampathu DM, Kwong LK, Truax AC, Miceney MC, Chou TT et al. Ubiquitiﬁcation in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 1998; 152: 879–884.
11 Goedert M, Spillantini MG, Del Tredici K, Braak H. 100 years of Lewy pathology. Nat Rev Neurol 2013; 9: 13–24.
Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)