Efficiency of In Vitro Regeneration is Dependent on the Genotype and Size of Explant in Tef [Eragrostis tef (Zucc.) Trotter]

Sonia Plaza-Wüthrich1, Regula Blösch1 and Zerihun Tadele1,2*

1Institute of Plant Sciences, University of Bern, Atenbergrain 21, 3013 Bern, Switzerland
2Institute of Biotechnology, Addis Ababa University, P.O. Box 32853, Addis Ababa, Ethiopia

Abstract

Tef [Eragrostis tef (Zucc.) Trotter] is the major cereal crop in the Horn of Africa particularly in Ethiopia where it is staple food for about 50 million people. Its resilience to extreme environmental conditions and high in nutrition makes tef the preferred crop among both farmers and consumers. The efficiency of in vitro regeneration plays significant role in the improvement of crops. We investigated the efficiency of regeneration in 18 tef genotypes (15 landraces and three improved varieties) using three sizes of immature embryos (small, intermediate and large) as an explant. In vitro regeneration was significantly affected by the genotype and the size of the immature embryo used as a donor. Interestingly, the three improved varieties presented very low regeneration efficiencies whereas the landrace Manyi resulted in consistently superior percentage of in vitro regeneration from all three sizes of explants. The findings of this work provide useful insight into the tef germplasm amenable for the regeneration technique which has direct application in techniques such as transformation. It also signifies the importance of using tef landraces instead of improved varieties for in vitro regeneration.

Keywords: Eragrostis tef; Immature embryo; Plantlet; Regeneration; Embryogenesis; tef

Introduction

Tef [Eragrostis tef (Zucc.) Trotter] is a cereal crop extensively cultivated in the Horn of Africa where it is annually cultivated on about 3 million hectares of land in Ethiopia alone [1]. This extensive cultivation of the crop is related to some traits beneficial for farmers and consumers including, i) its tolerance to extreme environmental biotic and abiotic conditions, ii) its gluten-free seeds, hence considered as a healthy food, and iii) high palatability of its straw by livestock. Despite all these useful traits, tef is considered as an orphan crop due to the little scientific research done on the crop. As a result, the crop remains largely unimproved which is associated with poor productivity lodging or displacement of the plant from its upright position is the major cause for inferior yield in tef [2]. Tef has a tall and weak stem which falls on the ground due to wind and rain. The majority of research on tef improvement has been done at the Ethiopian Institute of Agricultural Research where conventional techniques of selection and hybridization are widely implemented to release 35 improved varieties which are suited to diverse agro-ecological regions [3]. The widely cultivated and popular variety called Quncho was developed by the intra-specific crossing between two improved cultivars [4]. The recently published tef genome [5] will accelerate the breeding program if integrated with improvement methods such as tissue culture and genetic transformation.

Tissue culture or also commonly known as in vitro regeneration plays a key role in crop improvement. In addition to its significant contribution in genetic transformation of plants, tissue culture is also useful in developing large-scale clonal propagation of genotypes of interest and producing and propagating disease-free plants [6]. The somaclonal variations induced in the tissue culture are also source of variability in plant breeding [7,8]. The percentage of initial explants converted to plantlets or whole plants referred to the culture efficiency of regeneration. This efficiency is mainly affected by the genotypes and explants. The presence of a strong genetic effect was reported for Arabidopsis [9], wheat [10-12] and rice [13]. Considerable differences in regeneration ability were observed among four Arabidopsis ecotypes, namely Columbia, Landsberg erecta, Cape Verde Island and Wassilewskija based on the source of explant and composition of the culture medium [9]. In wheat, embryogenic capacity or number of somatic embryos formed from cultured immature embryos was mainly altered by the genotype whereby the best performing cultivars scored 1.4-1.8 plants/explant [10].

The source and size of explant affects the efficiency of regeneration. The study in malting barley called Morex showed that smaller embryos (0.5-1.5 mm) had higher regeneration efficiency than larger embryos (1.6-3.0 mm) [14]. Similarly, in Sudan grass (Sorghum sudanense Piper) smaller immature embryos (0.7-1.5 mm) were better than larger ones (1.6-2.5 mm) in the speed and frequency of callus and shoot formation [15].

Diverse in vitro regeneration techniques were studied for tef. The explants used for these investigations were seedlings, roots, and leaves [16,17], seeds [18], immature spikelets or panicles [19,20], and immature embryos [21] in which the latter resulted in substantially high percentage of regeneration. However, since earlier study using immature embryo was made on only two tef genotypes, it did not represent the existing tef germplasm with huge variations. Hence, the present study was made to investigate the efficiencies of in vitro regeneration in 18 tef genotypes with diverse morphological and agronomic properties [22].

Material and Methods

Plant material

Fifteen selected landraces and three improved varieties of tef were used. The 15 landraces were obtained from the National Plant Research and breeding center, Addis Ababa, Ethiopia [23]. The three improved varieties were Quncho, which is a widely cultivated and popular variety and two other obtained from the National Plant Research and breeding center.

*Corresponding author: Zerihun Tadele, Institute of Plant Sciences, University of Bern, Atenbergrain 21, 3013 Bern, Switzerland, Tel: +41 31 631 4956; Fax: +41 31 651 4942; E-mail: zerihun.tadele@ips.unibe.ch

Received July 01, 2015; Accepted July 29, 2015; Published August 04, 2015

Citation: Plaza-Wüthrich S, Blösch R, Tadele Z (2015) Efficiency of In Vitro Regeneration is Dependent on the Genotype and Size of Explant in Tef [Eragrostis tef (Zucc.) Trotter]. Adv Crop Sci Tech 3: 179. doi:10.4172/2329-8863.1000179

Copyright: © 2015 Plaza-Wüthrich S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Germlasm System (NPGS) of the United States Department of Agriculture [23]. They are: Ada (NPGS accession number: 524433), Addisie (524434), Alba (524435), Balami (524436), Beten (524437), Dabbi (524438), Esetite (524439), Gaa Lamine (524440), Gommade (524441), Karadie (524442), Manyi (524443), Red Dave (524445), Rosec (524444), Tull Nasy (524445) and Variegata (524446) while the three improved varieties were Dukem (DZ-01-974), Magna (DZ-01-196), and Tseley (DZ-Cr-37). Donor plants were grown for three weeks under long-day conditions (16 h light, 8 h dark at 21 ± 1°C) before plantlets were transferred to short day conditions (8 h light, 16 h dark at 20 ± 2°C). The soil used consisted of 5/11 parts of topsoil, 4/11 parts of turf and 2/11 parts of quartz sand. Plants were fertilized once a week with Hauert Plantaktiv 16-6-26 N-P-K (Hauert HBG Dünger Schweiz, Grossaffoltern, Switzerland).

Embryo isolation and in vitro regeneration

The procedure for isolating immature embryos from panicles was based on earlier work [21]. Panicles were surface sterilized for 10 minutes with 1% HCl followed by three washings with sterile water. Immature embryos were separated from the sterilized caryopses by squeezing them out through an incision made at its base. Three different sizes of embryos were selected: small and globular (50-100 µm), intermediate (101-350 µm) and large embryos (351-750 µm) (Figure 1). Another distinction between the small and intermediate embryos was the loss of the globular shape in the intermediate ones. Large embryos were extracted from solid endosperm. Thirty immature embryos were plated on 3.5 cm diameter petri dishes containing K99 medium [24] placing the scutellum facing up and incubating in the dark at 25°C ± 2°C. The K99 media contains 90 g/l maltose, 1 g/l glutamine and 2 mg/l of 2,4-D. After two to three weeks in the dark, somatic embryos were transferred to K4NB medium [25] containing 36 g/l maltose, 0.15 g/l glutamine and 0.22 mg/l BAP. The pH of the medium was adjusted to 5.8 where 0.4% phytagel was used as a gelling agent. Plantlets were regenerated under 14-hour photoperiodic conditions for 4 weeks with a sub-culture to fresh medium after 2 weeks. The growth conditions consist of a relative humidity of 50% all day-long and a temperature of 21 ± 2°C during the light period. Plantlets with well-developed root systems were transferred to soil and grown under the same conditions as for the donor plants (see above). After three weeks of hardening in long-day conditions, plants were transferred to short-day room for the production of seeds. Five replicates each containing 30 immature embryos were tested for each tef cultivar and size of the explant (Figure 1).

The efficiencies in somatic embryogenesis, regeneration and culture were enumerated as follows:

- Embryogenesis efficiency, direct (%) = number of embryos/number of explants × 100
- Embryogenesis efficiency, indirect (%) = number of callus/number of explants × 100
- Regeneration efficiency, direct (%) = number of plantlets/number of embryos × 100
- Regeneration efficiency, indirect (%) = number of plantlets/number of callus × 100
- Culture efficiency = number of plantlets/number of explants × 100 [26].

Determination of morphological, phenotypic and yield related traits

Morphological traits including numbers of tillers, panicles and internodes, and lengths of culm, panicle and the second culm internode (starting from the base of the plant) were determined at the flowering time. The length of second culm internode was earlier reported to determine the lodging tolerance [27]. Days to heading or flowering and days to maturity and the grain filling period were also determined. Days to heading was defined as the number of days from sowing until the first flower appeared and days to maturity was the number of days for all the grains of a panicle to mature. The time between flower emergence and grain maturity was defined as grain filling period. At harvesting time, shoot biomass was separated into culms and panicles.
and dried for 24 hours at 60°C in order to determine the dry weight of all culms and panicles. Harvest index was calculated as the ratio of the grain yield to the shoot biomass.

Statistical analysis

Statistical analysis was performed using SPSS Statistical 17.0 (IBM, Chicago, IL). Non-parametric tests were chosen as it is appropriate for the number of replicates used and the non-homogeneity of the variance in order to compare differences between the treatments (p ≤ 0.05). For K independent samples, Kruskal-Wallis tests were used, whereas for two independent samples, Mann-Whitney U tests were employed. For correlation analysis, the Pearson correlation test was used on the mean values of selected traits among efficiencies of embryogenesis, regeneration, and culture.

Results

In vitro regeneration

Steps and the timeline from excising the three sizes of immature embryos to the two paths of somatic embryogenesis, plantlet formation and to finally grown on soil to full maturity are shown in Figure 1. The efficiency of somatic embryogenesis was determined for the three sizes of immature embryos used as an explant as well as for the two types of embryos formed. While the three groups of immature embryos were small (50-100 µm), intermediate (101-350 µm) and large (351-750 µm). Somatic embryos made from immature embryos can be either directly without passing an intermediate callus forming step or indirectly through callus. While direct embryogenesis took two weeks once the embryos were placed on the appropriate media, the indirect embryogenesis took an additional week. The whole procedure starting from embryo isolation to fully mature plants on soil takes 12-13 weeks or about 3 months.

A high diversity was found in the somatic embryogenesis depending on the size of the explant and the type of the tef ecotype. While intermediate-size immature embryos resulted in high percentage of somatic embryogenesis, only low proportion of small explants formed somatic embryos (Figure 2). Regarding small immature embryos, the efficiency of somatic embryos formed varied from less than 10% in Ada, Enatite, Rosea, and the two improved varieties (Magna and Dukem) to more than 70% in Manyi (Figure 2A). Surprisingly, small-size explants from the landrace Rosea did not produce any embryogenic embryos. The proportions of embryos formed through direct and indirect somatic embryogenesis were similar except in Gommadie where significantly higher percentage was formed through direct somatic embryogenesis. In the case of intermediate immature embryos, the percentage of somatic embryogenesis ranged from less than 20% for Ada to around 90% for Gommadie and Manyi (Figure 2B). Unlike small-size embryos which formed the direct or indirect somatic embryogenesis in a similar proportion, in the intermediate-size embryos, the indirect embryogenesis was dominant over the direct one. This favor to the indirect embryogenesis was significant in six landraces, namely Alba, Enatite, Gea Lamie, Karadebi, Rosea and Variqataas well as all the three improved varieties. For large immature embryos used as explants, the percentage of somatic embryogenesis varied from less than 20% in Balami, Rosea and Magna to more than 65% in Addisse, Gommadie and Manyi (Figure 2C). Similar to the intermediate-size embryos, the proportion of indirect embryogenesis was significantly higher than the direct ones for large-size explants except in Gea Lamie landrace where the difference between direct and indirect embryogenesis was negligible.

The efficiency of regeneration which refers to the proportion of somatic embryos that result in plantlet formation were quantified for the three types of explants (small, intermediate and large) and the two forms of somatic embryos (direct and indirect) (Figure 3). Substantial variability in regeneration capacity was observed among the ecotypes, sources of explants and forms of embryos. Using small explants, four genotypes, namely Ada, Dabi, Rosea and Magna, did not form any plantlet while Alba and Balami did not regenerate from indirectly formed embryos (Figure 3A). However, over 70% of regeneration was obtained for Karadebi and Manyi. Regeneration efficiencies were variable between direct and indirect embryogenesis in each genotype although significantly higher values were obtained for directly formed embryos. The proportion of plantlets formed from intermediate-size
immature embryos ranged from less than 10% in Ada, Balami, Enatite and Magna (direct embryogenesis) as well as in Ada, Variegata, Tsedey and Magna (indirect embryogenesis) to more than 70% in Addisie, Beten, Manyi and Variegata (direct embryogenesis), and Gommadie, Manyi and Rosea (indirect embryogenesis) (Figure 3B). Some inconsistencies were observed in some genotypes between the capacity of plantlet formation and somatic embryogenesis. For instance, in Alba cultivar, although the percentage of direct embryogenesis from the small explant and the regeneration from the large explant was high when small starting material was used while in others large explants gave superior results. The large explants from Addise, Gea Lamie and Manyi had extremely high efficiency. Although inconsistencies in performance were observed for the three sizes of embryos, Manyi gave exceptionally high efficiency for all sizes of embryos. Irrespective of the size of immature embryos, all three improved tef varieties performed extremely poorly indicating their low application in regeneration and transformation related studies. The main reason for the culture efficiencies above 100% is due to the friable nature of somatic embryos which resulted in the generation of several viable pieces generated from a single somatic embryo.

Correlations among steps of in vitro regeneration

Pearson correlation coefficients were used to investigate the relationship among the three parameters of regeneration (embryogenesis-, regeneration- and culture-efficiency) and three sizes of immature embryos used as an explant (Table 1). The performance of some landraces was high when small starting material was used while in others large explants gave superior results. The large explants from Addise, Gea Lamie and Manyi had extremely high efficiency. Although inconsistencies in performance were observed for the three sizes of embryos, Manyi gave exceptionally high efficiency for all sizes of embryos. Irrespective of the size of immature embryos, all three improved tef varieties performed extremely poorly indicating their low application in regeneration and transformation related studies. The main reason for the culture efficiencies above 100% is due to the friable nature of somatic embryos which resulted in the generation of several viable pieces generated from a single somatic embryo.

Determination of morphological, phenotypic and yield related traits

The existence of substantial variability in diverse morphological

Genotype	Culture efficiency (%)			
	Landrace	small	intermediate	Large
Ada	0.0 d	1.7 e	13.9 d*	
Addisie	40.0 bc	69.3 a	106.0 a*	
Alba	12.5 c	9.3 cd	5.5 e	
Balami	6.6 d	7.4 d	2.7 e*	
Beten	69.0 b	73.4 a	66.8 b	
Dabbi	36.0 bc	27.0 bc	66.4 b*	
Enatite	0.0 d*	14.5 c	9.3 e	
Gea Lamie	29.0 c	30.8 b	115.8 a*	
Gommadie	54.4 b	99.3 a*	54.1 c	
Karadebi	72.5 b	67.7 ab	34.7 d*	
Manyi	95.8 a	93.9 a	93.1 b	
Red dabi	21.8 c	36.5 b	5.9 d*	
Rosea	0.0 d*	36.4 b	24.4 d	
Tullu Nasy	4.7 d*	16.0 c*	7.9 d*	
Variegata	28.5 c	16.7 c	20.7 d	
Improved				
Dukem	1.8 d*	11.8 c	21.0 d	
Magna	0.0 d	0.0 e	3.7 e	
Tsedey	11.2 c	4.8 d	0.9 e	

Table 1: Culture efficiency of 18 tef genotypes regenerated in vitro from small, intermediate and large immature embryos. Means followed by the same letter are not significantly different (P<0.05) for a same column. An asterisk (*) indicates a significant difference (P<0.05) between the sizes of a specific tef genotype or landrace. A plus (+) indicates a significant difference (P<0.05) among the three sizes of explants.
Table 2: Pearson correlation coefficients among three efficiencies.

	EB	RG	CEF
EB	.874**	.651**	.859**
RG	.827**	.724**	.827**
CEF	.874**	.651**	.911**

Table 3: Selected morphological traits for 18 tef genotypes developed by in vitro regeneration. Values followed by the same letter were not significantly different (P<0.05).

Landrace	NTP	NPP	NIC	CL	PL	SCIL
Ada	2.8	1.0	4.8	1.7	4.5	6.0
Addisie	3.8	2.0	3.9	2.8	5.0	4.6
Alba	4.0	0.8	5.0	1.3	4.3	3.3
Balami	5.2	0.8	4.9	1.0	5.3	6.0
Beten	7.5	1.5	5.7	2.0	5.7	4.5
Dabbi	4.1	2.0	6.5	4.0	4.3	4.0
Enalite	4.7	1.2	5.9	2.3	4.6	5.2
Gea Lamie	6.3	2.0	9.0	3.7	3.7	3.0
Gommadie	3.5	1.0	4.2	1.5	4.7	4.5
Karadebi	3.7	1.2	4.7	2.0	4.6	4.0
Manyi	5.1	1.0	5.6	1.8	5.9	5.6
Redabi	5.9	1.6	8.8	3.3	4.0	4.0
Rosea	5.5	0.2	7.9	2.3	4.2	4.5
Tulu Nasy	5.0	0.4	8.0	1.7	4.2	3.7
Variegata	3.5	0.8	3.4	1.5	4.5	3.7

Table 4: Selected morphological traits for 18 tef genotypes developed by in vitro regeneration. Values followed by the same letter were not significantly different (P<0.05) between plants regenerated by in vitro method (this study) and those produced from seeds [22].

Genotype	NTP	NPP	NIC	CL	PL	SCIL
Ada	2.8	1.0	4.8	1.7	4.5	6.0
Addisie	3.8	2.0	3.9	2.8	5.0	4.6
Alba	4.0	0.8	5.0	1.3	4.3	3.3
Balami	5.2	0.8	4.9	1.0	5.3	6.0
Beten	7.5	1.5	5.7	2.0	5.7	4.5
Dabbi	4.1	2.0	6.5	4.0	4.3	4.0
Enalite	4.7	1.2	5.9	2.3	4.6	5.2
Gea Lamie	6.3	2.0	9.0	3.7	3.7	3.0
Gommadie	3.5	1.0	4.2	1.5	4.7	4.5
Karadebi	3.7	1.2	4.7	2.0	4.6	4.0
Manyi	5.1	1.0	5.6	1.8	5.9	5.6
Redabi	5.9	1.6	8.8	3.3	4.0	4.0
Rosea	5.5	0.2	7.9	2.3	4.2	4.5
Tulu Nasy	5.0	0.4	8.0	1.7	4.2	3.7
Variegata	3.5	0.8	3.4	1.5	4.5	3.7

and phenotypic traits were earlier reported for the same 18 tef ecotypes derived from seed [22,28]. In Table 3, comparisons were made for selected traits between those obtained from the seed [22] and those developed through in vitro regeneration (the current study). Tef lines generated through in vitro method were more robust than those from seeds for key morphological traits especially in the numbers of tillers and numbers of panicles per plant which have positive impact on the productivity of the crop. While most landraces derived from seeds had a maximum of two tillers per plant, those from the in vitro had up to seven tillers per plant. Astonishingly, three landraces (namely, Alba, Balami and Variegata) which did not develop a single tiller when generated from seeds were able to form 3-5 tillers when generated in vitro. Number of panicles which is dependent on the form of the panicle is normally low for plants with compact panicles (e.g. Gommadie) and high for those with loose panicles (e.g. Gea Lamie). Compared to those developed from seeds, up to 3-fold increase in the number of panicles was obtained for those from in vitro regenerated plants. Although substantial variability was obtained among the tef genotypes for the number of internodes per plant, culm length and plant height, differences between those generated from seeds and those from in vitro were not obvious for the three traits.

Significant diversity was also observed for phenotypic and yield related traits among the 18 tef genotypes generated from the seed or from in vitro method (Table 4). However, the differences between those from seed and those from immature embryos were inconsistent for most of the traits. Amazingly, all the three improved tef varieties...
developed from immature embryos were superior over those from the seed for all traits investigated. This positive effect from tissue culture plants was revealed on grain yield (up to 8-fold) and harvest index (up to 3-fold) over those from seed. Although improved varieties were mainly selected based on high grain yield and harvest index, the three improved varieties in the current study were inferior to some land races for these two valuable traits.

Discussion

The diversity in regeneration capacity among teff genotypes indicates the existence of a genetic control of this process which differs among diverse teff lines as earlier reported for *Arabidopsis* [9] and rice [29]. This variation among genotypes might be related to the level of endogenous hormones [30] or the effect of exogenous growth regulators on the level of endogenous hormones through influencing their biosynthesis and distribution [31], which subsequently alters the *in vitro* regeneration responses [32-34]. Interestingly, all three improved teff varieties used in the current study had extremely poor regeneration capacity. This was mainly due to the development of teff varieties in the past focused on selecting genotypes with superior grain yield without considering their *in vitro* regeneration efficiency.

The size and/or age of an explant is also responsible for controlling the frequency and speed of regeneration in plants. Although not a single albino plant or plantlet was observed in the current study, up to 50% of shoots of barley derived from large immature embryos were albinos unlike those from small embryos [14]. The absence of albinos in teff plants developed through *in vitro* regeneration increases the acceptability of the technique by researchers as it has positive impact on the viability and productivity of the crop. Large immature embryos of teff tend to initially form a callus before differentiating into somatic embryo. This indirect somatic embryogenesis requires an additional one week to the direct embryogenesis to form somatic embryos. This makes large embryos less favorable to use as an explant.

Table 4: Phenotypic and yield related traits for 18 teff genotypes regenerated by *in vitro* method. Values followed by the same letter were not significantly different (P<0.05) between plants regenerated by *in vitro* method (this study) and those produced from seeds [22].

Genotype	DH	DM	GFP	WAC	WAP	GY	HI	
Landraces	Invitro							
Ada	61.0 e*	90.0a	95.2 d	110.0c	42.8 a*	20.0e	192.4 a*	292.4de
Addisie	65.7 e	65.5f	94.8 d	90.0ef	31.3 b*	24.5d	744.1 d*	497.8d
Alba	75.3 cd	78.0cd	120.7 b*	105.0cd	45.3 a*	27.0de	1229.3 b*	369.5d
Balami	100.6 b*	86.2a	139.9 a*	108.2c	40.6 a*	22.0e	2137.9 a*	636.5bc
Beten	85.6 c	87.5a	115.6 b*	108.0c	31.3 b*	20.5e	1863.0 a*	964.6a
Dabbi	57.1 f	58.0g	86.2 e	87.4fg	29.9 b	29.4cd	539.8 e	90.2de
Eritale	61.4 e	65.0fg	97.1 d*	118.3a	35.6 a*	53.5c	1340.4 b*	499.6bcd
Gea Lamie	60.3 e	58.0g	82.4 e	87.5fg	22.5d*	29.5c	358.6 f*	195.2e
Gommadie	72.3 d	69.5e	100.6 d*	92.5a	28.1 c	23.0e	814.2 c	776.0ab
Karadebi	63.9 e	60.2f	92.7 d	85.2g	27.8 c	25.0d	959.5 b*	550.7bc
Manyi	81.2 c	86.8a	119.4 b*	107.6c	37.5 a*	20.8e	1347.8 b*	630.8bc
Red dabi	56.9 f	56.5h	84.2 e	83.5g	28.7 c	27.0d	818.8 c*	450.6cd
Rosea	74.6 cd	70.3e	113.6 bc*	103.6c	39.0 a	33.3bc	1196.4 b*	340.3d
Tullu Nasy	47.1 g*	60.0f	70.3 f*	88.8ef	23.6 d	28.8cd	892.7 c*	143.7e
Varigata	64.3 e*	72.4de	91.6 d	90.4e	27.4 c*	18.0e	850.0 c*	345.0d

DH: Days to Heading; DM: Days to Maturity; GFP: Grain Filling Period; WAC: Weight of all Culms; WAP: Weight of all Panicles; GY: Grain Yield per Plant; HI: Harvest Index.

Citation: Plaza-Wüthrich S, Blösch R, Tadele Z (2015) Efficiency of *In Vitro* Regeneration is Dependent on the Genotype and Size of Explant in Tef (*Eragrostis tef* (Zucc.) Trotter). Adv Crop Sci Tech 3: 179. doi:10.4172/2329-8863.1000179

Acknowledgments

Financial and technical support was provided by Syngenta Foundation for Sustainable Agriculture, SystemX.ch and University of Bern. We would like to thank Christopher Ball and Jasmin Sekulovski for taking care of our plants.
References

1. CSA (2014) Agricultural Sample Survey for 2013/14. Addis Ababa, Ethiopia.
2. Assefa K, Yu JK, Zeid M, Belay G, Tefera H, et al. (2011) Breeding tet [Eragrostis tet (Zucc.) Trotter]: conventional and molecular approaches. Plant Breeding 130: 1-9.
3. MoA (2014) Crop Variety Register Issue No. 15. Addis Ababa, Ethiopia.
4. Assefa A, Aley S, Belay G, Metaferia G, Tefera H, et al. (2011) Quncho: the first popular tet variety in Ethiopia. International Journal of Agricultural Sustainability 9: 25-34.
5. Cannarozzi G, Plaza-Wüthrich S, Esfeld K, Larti S, Wilson YS, et al. (2014) Genome and transcriptome sequencing identifies breeding targets in the orphan crop tet [Eragrostis tet (Brom.)]. BMC genetics 15:581.
6. Garcia-Gonzales R, Quiroz K, Carrasco B, Caligari P (2010) Plant tissue culture: Current status, opportunities and challenges. Ciencia E Investigacion Agraria 37: 5-30.
7. Larkin PJ, Scowcroft WR (1981) Somacanional Variation - A Novel Source of Variability from Cell-Cultures for Plant Improvement. Theoretical and Applied Genetics 60: 197-214.
8. Jain SM (2001) Tissue culture-derived variation in crop improvement. Euphytica 118: 153-166.
9. Candela M, Velazquez I, De la Cruz R, Sendino AM, De la Pena A (2001) Differences in in vitro plant regeneration ability among four Arabidopsis thaliana ecotypes. In Vitro Cellular & Developmental Biology-Plant 37: 638-643.
10. Halligolu K, Baenzeriger PS (2005) Screening wheat genotypes for high callus induction and regeneration capability from immature embryo cultures. Journal of Plant Biochemistry and Biotechnology 14: 155-160.
11. Dodig D, Zoric M, Milic N, Nikolic R, Surlan-Momirovic G (2008) Tissue culture and agronomic traits relationship in wheat. Plant Cell Tissue and Organ Culture 95: 107-114.
12. Maddock SE, Lancaster VA, Risiot R, Franklin J (1983) Plant-Regeneration from Cultured Immature Embryos and Inference of 25 Cultivars of Wheat (Triticum-Aestivum). Journal of Experimental Botany 34: 915-926.
13. Ge XJ, Chu ZH, Lin YJ, Wang SP (2006) A tissue culture system for different germplasms of indica rice. Plant cell reports 25: 392-402.
14. Chang Y, von Zitewitz J, Hayes PM, Chen THH (2003) High frequency plant regeneration from immature embryos of an elite barley cultivar (Hordeum vulgare L. cv. Morex). Plant cell reports 21: 733-739.
15. Gupta S, Khanna VK, Singh R, Garg GK (2004) Identification of in vitro responsive immature embryo size for plant regeneration in Sudan grass (Sorghum sudanenses Piper). Indian Journal of Biotechnology 3: 124-127.
16. Bekele E, Klock G, Zimmermann U (1995) Somatic embryogenesis and plant regeneration from leaf and root explants and from seeds of Eragrostis tet (Gramineae). Hereditas 123: 183-189.
17. Mezbib F, Mantell SH, BuchananWollaston V (1997) Callus induction and in vitro regeneration of tet [Eragrostis tet (Zucc.) Trotter] from leaf. Journal of Plant Physiology 151: 368-372.
18. Kebebew A, Gaj MD, Maluszynski M (1998) Somatic embryogenesis and plant regeneration in callus culture of tet [Eragrostis tet (Zucc.) Trotter]. Plant cell reports 18: 154-158.
19. Tefera H, Chapman GP (1992) In vitro Normal and Variant Development of Tef [Eragrostis tef (Zucc.) Trotter] in vitro regeneration frequency in the FR13A rice harbouring the SUB1A gene. Plant Physiology and Biochemistry 39: 377-384.
20. Gugsa L, Sarial AK, Lorz H, Kumleh H (2006) Gynogenic plant regeneration from unpollinated flower explants of Eragrostis tef (Zuccagni) Trotter. Plant cell reports 25: 1287-1293.
21. Gugsa L, Kumleh J (2011) Somatic Embryogenesis and Massive Shoot Regeneration from Immature Embryo Explants of Tef. Biotechnology Research International: 7.
22. Plaza-Wüthrich S, Cannarozzi G, Teade Z (2013) Genetic and phenotypic diversity in selected genotypes of tet [Eragrostis tef (Zucc.) Trotter]. African Journal of Agricultural Research 8: 1041-1049.
23. USDA A, National Genetic Resources Program. Germplasm Resources Information Network - (GRIN). [Online Database] National Germplasm Resources Laboratory, Beltsville, Maryland.
24. Deutsch F, Kumleh J, Ziegenhagen B, Fladung M (2004) Stable haploid poplar callus lines from immature pollen culture. Physiologia Plantarum 120: 613-622.
25. Kumleh J, Serazeldinova L, Hensel G, Becker D, Loerz H (2006) Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnology Journal 4: 251-261.
26. Zale JM, Borchardt-Wier H, Kidwell KK, Stever CM (2004) Callus induction and plant regeneration from mature embryos of a diverse set of wheat genotypes. Plant Cell Tissue and Organ Culture 76: 277-281.
27. Hundera F, Nelson LA, Baenzeriger PS, Bechere E, Tefera H (2000) Association of lodging and some morpho-agronomic traits in tet [Eragrostis tef (Zucc.) Trotter]. Tropical Agriculture 77: 169-173.
28. Ebba T, editor (1975) Tef cultivars. Part II. Dire Dawa, Ethiopia: Addis Ababa University, College of Agriculture.
29. Khalequzzaman M, Haq MD, Hoque E, Aditya TL (2005) Regeneration efficiency and genotypic effect of 15 indica type Bangladesh rice (Oryza sativa L.) landraces. Plant Tissue Cult 15: 33-42.
30. Hess JR, Carman JG (1998) Embryogenic competence of immature wheat embryos: Genotype, donor plant environment, and endogenous hormone levels. Crop Science 38: 249-253.
31. Kaminik M, Motyka V, Vankova R (1997) Regulation of cytokinin content in plant cells. Physiologia Plantarum 101: 869-700.
32. Valdes AE, Orzas RJ, Fernandez B, Centeno ML (2001) Relationships between hormonal contents and the organogenic response in Pinus pinea coryledons. Plant Physiology and Biochemistry 39: 377-384.
33. Kiems M, Slamova Z, Motyka V, Malbeck J, Travnickova A et al. (2011) Changes in cytokinin levels and metabolism in tobacco (Nicotiana tabacum L.) explants during in vitro shoot organogenesis induced by trans-zeatin and dihydrozeatin. Plant Growth Regulation 65: 427-437.
34. Yasmn S, Mensuali-Sodi P, Perata P, Pucciarolli C (2014) Ethylene influences in vitro regeneration frequency in the FR13A rice harbouring the SUB1A gene. Plant Growth Regulation 72: 97-103.
35. Ozen G, Turet M, Atinok S, Sancak C (1998) Efficient callus induction and plant regeneration from mature embryo culture of winter wheat (Triticum aestivum L.) genotypes. Plant cell reports 18: 331-335.
36. Duncan RR, Waskom RM, Nabor MS (1995) In-Vitro Screening and Field-Evaluation of Tissue-Culture-Regenerated Sorghum (Sorghum-Bicolor (L) Moench) for Soil Stress Tolerance. Euphytica 3: 373-380.
37. Adkins SW, Kunanuvatchaidach R, Godwin ID (1995) Changes in cytokinin levels and metabolism in tobacco (Nicotiana tabacum L.) explants during in vitro shoot organogenesis induced by trans-zeatin and dihydrozeatin. Plant Growth Regulation 65: 427-437.
38. Adkins SW, Kunanuvatchaidach R, Godwin ID (1995) Changes in cytokinin levels and metabolism in tobacco (Nicotiana tabacum L.) explants during in vitro shoot organogenesis induced by trans-zeatin and dihydrozeatin. Plant Growth Regulation 65: 427-437.
39. Adkins SW, Kunanuvatchaidach R, Godwin ID (1995) Changes in cytokinin levels and metabolism in tobacco (Nicotiana tabacum L.) explants during in vitro shoot organogenesis induced by trans-zeatin and dihydrozeatin. Plant Growth Regulation 65: 427-437.
40. Adkins SW, Kunanuvatchaidach R, Godwin ID (1995) Changes in cytokinin levels and metabolism in tobacco (Nicotiana tabacum L.) explants during in vitro shoot organogenesis induced by trans-zeatin and dihydrozeatin. Plant Growth Regulation 65: 427-437.