Sucho v povodí horní Metuje v letech 2014–2019

JAN KAŠPÁREK

Klíčová slova: hydrologické sucho — hydrologická bilance — polická křídová pánev

SOUHRN

V letech 2014–2019 bylo na území České republiky historické sucho. Oddělení hydrologického sucho v letech 2014–2019Sucho v povodí horní Metuje v letech 2014–2019

In the years 2014–2019, there was a historic drought in the Czech Republic.

JAN KAŠPÁREK

Key words: hydrological drought — hydrological balance — Police Cretaceous basin

ABSTRACT

In the years 2014–2019, there was a historic drought in the Czech Republic. The Department of Hydrology and Hydrogeology of the T. G. Masaryk Water Research Institute has been carrying out long-term hydrological and hydrogeological observations in the upper Metuje basin where this drought manifested itself significantly. The upper part of the catchment area of the Metuje River is located in the Police Cretaceous basin geological formation. Due to subsoil with low permeability and great thickness of Cretaceous sandstones, there is a large storage of quality groundwater, which is used for water supply to numerous municipalities and towns in Eastern Bohemia. The monitored catchment area is closed by a water gauging station on the Metuje River in the town of Teplice nad Metují (M XII). The station is located on the river in a small distance below the Skalský fault. The structure of the Skalský fault is impermeable to groundwater flow and the fault transversely intersects the whole Police basin. There are abundant springs above and at the Skalský fault and groundwater is directly recharged into the river there. Up to the profile of the water gauging station the river basin is thus hydrologically closed. This feature of the catchment area allows a relatively precise division of precipitation into evaporation, surface runoff and groundwater runoff. The Bučnice meteorological station is operated in the centre of the upper Metuje basin. Groundwater levels of deep aquifers and one shallow aquifer are measured by observation wells there. Additional water gauging stations operate on the Metuje River and on the Zdohovský potok.

To analyse the issue of drought, hydrological balance of the river basin was used. Available data from 1970 to 2019 were checked, specified and used as an input into the Bilan model. The input into the model consisted of series of atmospheric precipitation (P) and air temperatures (T). Parameters of the model were calibrated to match the values of series of total measured runoff (R) and modelled runoff (RM). Outputs of the model include modelled runoff from the river basin, evaporation (ET), groundwater recharge and base flow (BF). The Bilan model also calculates potential evapotranspiration (PET) and groundwater storage (GS).

Air temperature measured at the Bučnice meteorological station has a continuous upward trend over the observation period (a gradient of 0.04°C/year). In order to determine the contribution of warming to the drought of 2014–2019 and its overall impact on runoff from the basin, hydrological conditions in the basin have been modelled by the Bilan programme also for a variant without this warming.

This has resulted in determining the primary cause of the drought, namely a decrease in atmospheric precipitation by 8.6 mm/month in comparison with the average, and a corresponding decrease in runoff. In the modelled variant
V letech 2014–2019 zasáhlo území střední Evropy historické sucho. Bezprostřední přičinou sucha byla opakující se dlouhodobě nezvyklé cirkulační podmínky, které brány postupu frontálních systémů do střední Evropy. Zda je tato změna pravdépodobně ojedinělou anomálií, periodou pravidelného cyklu, nebo následkem změn klimatu, bude možné věděrně posoudit až zpětně. V tomto příspěvku bude upřesněn podíl dvou hlavních příčin sucha – nižších atmosférických srážek a zvýšené teploty vzduchu.

VÚV TGM provádí dlouhodobou a nepřetržitou pozorování klimatických, hydrologických a hydrogeologických parametrů v povodí horní Metuje, data získaná z těchto pozorování byla použita k analýze problematiky sucha v daném regionu.

HYDROGEOLOGICKÉ POMĚRY POVDÍ HORNÍ METUJE

Schematická situace horního povodí Metuje je na obr. 1. Sledované území je povodí horní Metuje po polohou vodoměrné stanice označované M XII na jižním okraji města Teplice nad Metují. Toto povodí leží v horní části polické pánve, která je tvořena geologickými útvary kříd a triasu. Plošná rozloha polické pánve je větší než morfologická plocha povodí Metuje. Druhým významným tokem je na severozápadě Dřevíč.

Křidové a triásové sedimenty ve vysoké mocnosti (v centrální částí přes 500 m) leží na permo-karbonské vnitrosudetské (dolnoslezské) pánvi. Toto málo propustné podloží spolu s brachysynklínálním (miskovitě prohnutou) polohou uholení pánvi umožňuje akumulaci velkého objemu podzemní vody v křidovém a triasovém útvaru. Krásný [6] oblast horního povodí Metuje po skalský zlom popisuje jako „severní zvodněný systém“ polické pánvi se samostatným oběžem podzemní vody.

Atmosférické srážky dotvárají zásobu podzemní vody v celé ploše pánvi [1]. Proudní podzemní vody po překonání provzdušněného horninového prostředí (zóna aerace) je již komplikované. Propustnost jednotlivých vrstev sedimentů je rozdílná, jsou zde ověřeny dobře propustné vrstvy a vrstvy izolační. Těleso křidového útvaru je tektonicky značně rozrušeno a tyto poruchy a pukliny mohou být podle druhu výplně propustné, nebo izolační. Hynie [2] uvádí možný izolační vliv ve vyšší poloze a drenážní v hloubce i na strukturu jedné poruchy. Těle z brachysynklinálního prohnutí pánvi předpokládá poruchy k povrchu převažně stačené a k podloží rozveřená.

V tomto prostoru členitým prostředí lze definovat dva významně samostatné kolec - kolec kvádrových pískovců D a kolec pískovců cenomanských A. Méně významný je kolektor ve vrstvách turonu (C), významný izolátor jsou slínovce spodního turonu.

V cenomanských pískovcích, které jsou částečně překryty sedimenty Metuje, je kolektor A. Ten se dále dělí na vyšší položený kolektor A2 (rohovcové vrstvy) a na u báze křidového útvaru ležící kolektor A1, jenž je spojité s podložním kolektorem triasu T. Tento spodní kolektor A1/T má velmi dobrou propustnost a odvádí většinu, možná všech podzemní vodu z kolektoru A k výveří v Teplicích, nad a u skalského zlomu (tzv. teplický výronový okrsek). Skalský zlom je pro průdušní podzemní vody nepropustný, zvědová jej hladinu a rozděluje polický pánv přes dva hydrogeologicky takřka samostatné celky.

V kvádrových pískovcích Adršpašsko-teplických skal (coniacko-teplické souvrství) se nachází průdušný členitá zvodněná pánv. Tento kolektor je od níže položeného kolektoru C izolován málo propustnými slínovicí a tak podzemní voda odtéká četnými prameny na erozní úrovní toků, které se do této slínovcové vrstvy zablokovaly. Ve skalních městech je mnoho drobných pramenů, na severovýchodním okraji jsou skutek v údolí Metuje čtyři vydatné prameny odsudějící vodu k Metuji tu nejsou.

ÚVOD

INTRODUCTION

In 2014–2019 Central Europe was hit by a historic drought. The immediate cause of the drought was repeated long-term unusual circulation conditions that prevented frontal systems to move to Central Europe. It will be possible only in retrospect to make a credible assessment about whether this change in flow is a one-off anomaly, a period within a regular cycle or the result of climate change. This paper specifies the contribution of two main causes of draught, namely lower atmospheric precipitation and increased air temperature.

The T. G. Masaryk Water Research Institute has been carrying out long-term continuous observations of climatological, hydrological and hydrogeological parameters in the upper Metuje basin. Data obtained from these observations have been used to analyse the issue of drought in the region.

HYDROGEOLOGICAL CONDITIONS IN THE UPPER METUJE BASIN

Fig. 1 shows a schematic situation of the upper Metuje basin. The monitored area comprises the upper Metuje basin up to the location of a water gauging station marked M XII on the Southern outskirts of the town of Teplice nad Metují. This catchment area lies in the upper part of the Police basin, which is made of Cretaceous and Triassic geological formations. The Police basin is larger than the morphological area of the Metuje basin. A second significant watercourse is the Dřevíč Creek in the North-West.

Cretaceous and Triassic sediments of great thickness (exceeding 500 m in the central part) lie on the Permian-Carboniferous inner-Sudetenland (Lower-Silesian) basin. This subsoil that has low permeability and the brachysyncline (dish-shaped) placement of the basin allows accumulation of a large volume of groundwater in the Cretaceous and Triassic formation. Krásný [6] describes the upper Metuje basin up to the Skalský fault as a “Northern aquiferous system” of the Police basin with an independent groundwater circulation.

Atmospheric precipitation recharges groundwater storage in the whole area of the basin [1].

After groundwater overcomes the aerated rock environment (the aeration zone), its further flow is complicated. The permeability of individual sediment layers differs since both layers with good permeability and isolating ones have been established here. The body of the Cretaceous formation has been technically considerably eroded and these faults and joints can be permeable or isolating depending on the type of filling. Hynie [2] mentions a potential isolating effect in upper locations and a drainage effect in the depth even in the structure of a single fault. It may also be assumed from the brachysyncline curvature of the basin that faults near the surface are predominantly compressed and faults near the subsoil are open.

Two important individual aquifers may be designated in this varied environment, an aquifer of cuboid-shaped sandstones (D) and an aquifer of Cenomanian sandstones (A). There is an aquifer of minor importance in the Turonian layers (C) since marlites of the Lower Turonian acts as a significant isolator.

Aquifer A is located in Cenomanian sandstones that are partially covered by Turonian sediments. This aquifer is divided into aquifer A2 (chert layers) located higher and aquifer A1 situated at the base of the Cretaceous formation and connected with the Triassic subsoil aquifer (T). The A1/T lower aquifer has very

without long-term warming, evaporation and the decrease in runoff would both have been by 4 mm/month lower. In the overall hydrological balance, the long-term air temperature increase has a direct impact on a rise in evaporation, which results in a decline in total runoff as well as base flow. Runoff at the M XII outlet of the basin has a long-term declining trend of 2 l/s/year.
Z mnoha poddělných měření průtoků a vydatnosti pramenů měla být zjištěna skladba průměrných průtoků a odtoků podzemní vody do Metuje (tab. 1). Plošné rozložení dotace podzemních vod srážkami lze posoudit podle specifických odtoků. Jejich porovnání pro dílčí oblasti povodí je uvedeno také v tab. 1.

OVLIVNĚNÍ PŘIROZENÝCH HYDROGEOLOGICKÝCH POMĚRŮ V POVODÍ HORNÍ METUJE

Zásoba podzemní vody v polické pánvi, resp. možnost jejího využití pro vodárské zásobování potravinou vodu, byla zkoumána od poloviny 20. století. Ota Hynie prováděl rozsáhlý počáteční průzkum, dále v průběhu roku pokračoval národní podnik Vodní zdroje, práce vedl geolog Vojtěch Kněžek.

Tab. 1. Skladba odtoku a specifické odtoky dílčích částí povodí Metuje

Vodní tok/pramen	Průměrné spec. odtoky a vydatnosti [l.s⁻¹]	Poměr k odtoku v profilu M XII [%]	Kolektor	Průměrný specifický odtok [l.s⁻¹.km⁻²]
Metuje ze skal	53	6,4	D C	8,5
Adršpašský potok	80	9,7	C	7
Mořské oko	8	1,0	D	
Jezírko	4	0,5	D	
Metuje nad Zdolňovským potokem	145	17,6	7,3	
Zdolňovský potok	150	18,2	C D	6,7
Metuje M VII	295	35,8	7	
Prameny Spálený mlyn	22	2,7	D	
Bučnice	26	3,2	C D	6,5
Metuje M VIII	376	45,6	7,9	
Pramen Bučnice	2	0,2	D	
Pramen Děd	5	0,6	D	
Pramen u kempu	1	0,1	D	
Výronový úsek po Orlik	55	6,7	Pozn. 1.	
Skalní potok	80	9,7	D	11
Pramen odtok vodárna	1	0,1	D	
Pramen Antoniček	5	0,6	A ?	
Hornoteplický potok	37	4,5	C	6
TVO a odběr	215	26,1	A	
Skalský potok	12	1,5	D	
Bohdašínský potok	36	4,4	C	5,5
Metuje M XII	825	100,0	11	

Poznámky k tab. 1. Uvedené průtoky a vydatnosti reprezentují průměrné hodnoty. v suchých obdobích průtoky Adršpašského, Zdolňovského, Hornoteplického a Bohdašínského potoka klesají k nule. Hodnoty *podtržené jsou měřené, uvedené normálním řezem písma dopočítané, kurzívou odvozené.*

Pozn. 1. Výronový úsek do Metuje od profilu M VIII po Orlik nelze jednoznačně přiřadit k jedinému kolektoru.
Od konce 60. let jsou v povodí horní Metuje v teplickém výronovém okrsku vodárenské odběry podzemní vody a její odvedení mimo povodí. Jako prvním byl jímán pramen Sokol k zásobování obce Meziměstí (cca 1968–2003). Od začátku 90. let je podzemní voda čerpána z hlubokých vrtů (VS-5 a VS-15) v blízkosti pramene Rybárna k zásobování větší oblasti napojené na Východočeskou vodárenskou soustavu. Mimo teplický výronový okrsek je čerpán vrt VS-13. Odběrem vody z pramene kromě deficitu průtoku odpovídajícího odběru k žádnému ovlivnění přirozeného režimu nedošlo. Čerpání podzemní vody z vrtů ovlivňuje proudění a hladinu podzemní vody v pánvi, po zahájení odběrů je patrný pokles hladiny podzemní vody v kolektorech A1T a A2. Předpokládáme, že pokud je zachován přirozený odtok podzemní vody v teplickém výronovém okrsku, k významnému ovlivnění zásoby podzemní vody nedochází.

Lze předpokládat, že přirozené podmínky proudění podzemní vody ovlivňuje také samotná existence mnoha hydrogeologických a jiných vrtů. V pánvi jsou desítky vystrojených vrtů, mnohé nevhodným technickým provedením

Numerous longitudinal measurements of the discharge and abundance of springs established the composition of average discharge and runoff of groundwater to the Metuje River (Tab. 1). Spatial division of groundwater recharge by precipitation may be assessed according to specific runoffs. Their comparison for sub-parts of the basin is also presented in Tab. 1.

IMPACT ON NATURAL HYDROGEOLOGICAL CONDITIONS IN THE UPPER METUJE BASIN

Groundwater storage in the Police basin and the possibility of its use for drinking water supply has been investigated since the mid-20th century. Ota Hynie carried out an extensive initial exploration, which was followed by a national enterprise Vodní zdroje where the exploration was led by geologist Vojtěch Kněžek.

Watercourse/spring	Average specific runoffs and abundance [l.s⁻¹]	Ratio to runoff in the M XII profile [%]	Aquifer	Average specific runoff [l.s⁻¹.km⁻²]
Metuje from the rocks	53	64	D C	8.5
Adršpašský Creek	80	9.7	C	7
Mořské oko spring	8	1.0	D	
Ježírko spring	4	0.5	D	
Metuje above the Zdoňovský Creek	145	17.6		7.3
Zdoňovský Creek	150	18.2	C D	6.7
Metuje M VII	295	35.8		7
Spálený mlýn springs	22	2.7	D	
Bučnice Creek	26	3.2	C D	6.5
Metuje M VIII	376	45.6		79
Bučnice spring	2	0.2	D	
Děd spring	5	0.6	D	
Spring at the campsite	1	0.1	D	
Outflow zone up to Orlík	55	6.7	Note No. 1.	
Skalní Creek	80	9.7	D	11
Spring/Outlet at a water company	1	0.1	D	
Antoniček spring	5	0.6	A ?	
Hornoteplický Creek	37	4.5	C	6
Teplice outflow zone and water supply	215	26.1	A	
Skalský Creek	12	1.5	D	
Bohdašínský Creek	36	4.4	C	5.5
Metuje M XII	825	100.0		11

Notes to Tab. 1. The given discharge and abundance values represent average values. In periods of drought the discharge of Adršpašský, Zdoňovský, Hornoteplický and Bohdašínský Creeks drop to zero. Underlined values are measured, those in Roman font are calculated and those in italic are derived.

Note No. 1. The outflow section to the Metuje River from the M VIII profile up to Orlík cannot be clearly assigned to a single aquifer.
propojují kolektory, karotážní měření vertikální průdušení podzemní vody vrtém často potvrzují. Staré vrtě jsou ve špatném stavu a rozsah propojení kolektorů se u nich v čase mění. Na západním okraji podzemní vody v dalším čerpání důlních vod na uhlíhodných místech. Od hranice křidového útvaru 1 200 m na západ byl v roce 1993, a to z velké hloubky (~460 m n. m.), v množství průměrně 60 l.s⁻¹. Po zatažení až na celé polické pánev mohla nastat také snížená hladiny podzemní vody v důsledku čerpání důlních vod na uhlíhodných místech. Od hranice křidového útvaru 1 200 m na západ byl v roce 1993, a to z velké hloubky (~460 m n. m.), v množství průměrně 60 l.s⁻¹. Po zatopení dolu od roku 1996 vodní voda volně odtéká starou štoliou v údolí Jívky. Po ukončení čerpání, během zatáčení důlních prací ani po zatopení dolu nebyla na chodu a úroveň podzemní vody v křidových pánech značně zvýšena, který by vybočoval z běžného režimu a dlouhodobého chodu. Vliv čerpání a ukončení čerpání důlních vod na hydrogeologické poměry v polické pánevě je zanedbatelný až žádný, a to v souladu s předpokládanou malou propustností perma-karbonského podloží pánve.

POZOROVÁNÍ V POVODÍ HORNÍ METUJE

VÚ TGM se na průzkumu polické pánve podílí od roku 1964, při řešení mnoha úkolů spolupracuje především s podnikem Vodní zdroje, a. s., Českým hydro-meteorologickým ústavem (ČHMÚ) a společností Progeo, s. r. o. Většina zpracovaných úkolů obsahovala řešení bilanční rovnice povodí a zpřesňování jejich složek, a to v povodí horní Metuje, dílčím experimentálním povodí Bučnice [3] a v celé polické pánevě. Souvislé datové řady vyhodnocených hydrogeologických, hydrogeologických a klimatických pozorování pro povodí horní Metuje jsou k dispozici od roku 1970.

Závěrný profil pro měření průtoku–odtoku pro toto povodí je M XII na dolní hranici města Teplice. Profil vodoměrny stanice je betonový jez s propustí, provedeným jako blokového zpracování až měrného přelivu. Přístrojová měření vody měření průtoků hydrometrickou vrtulí a vyhodnocení průtoku na základě je blízká složenému měrnému přelivu. Přístrojová měření hladiny, k dispozici od roku 1970.

Hladinu podzemní vody sleduje trojice vrtů. Od roku 1972 probíhá měření hladiny ve vrtu VS-3. Úroveň hladiny tohoto vrtu je dána proponím vící kolektorů, významný je především vliv zvětšení kolektoru rohovcových vrtů A2. Bažinný kolektor A1/T je v roce 1992, spolu s novějšími vodou pro těchto stanic. Hladinu podzemní vody v severní části polické pánev sleduje také pozorovací objekty čtverce Bučnice, dostupná data byla k upřesnění vodotokům poměrů využita.

Na pozorovacích stanicích Bučnice probíhá od roku 1970 základní klimatické pozorování, měření atmosférických sněžen a teploty vzduchu. Od roku 1999 je zde v provozu automatická meteorologická stanice.

Zjednodušená situace polohy povodí horní Metuje v polické páne a umístění pozorovacích objektů je na obr. 1.

Since the late 1960s, groundwater in the Teplice outflow zone of the upper Metuje basin has been used for water supply and the taken away from the catchment area. The first spring to be used was the Sokol spring, which supplied the Meziměstí municipality (approximately 1968–2003). Since the early 1990s groundwater has been drawn from deep wells (VS-5 and VS-15) in the vicinity of the Rybárna spring to supply a more extensive area connected to the Eastern-Bohemian water system. Outside the Teplice outflow zone, water is also drawn from the VS-13 well. Besides a flow deficit corresponding with the abstraction, water abstraction from the spring has not had any impact on the natural regime. Drawing of groundwater from the wells has an impact on groundwater flow and level in the basin. After the above abstractions have started, groundwater level in aquifers A1T and A2 has dropped. It may be assumed that as long as natural groundwater runoff is maintained in the Teplice outflow zone, groundwater storage is not significantly affected.

It may be presumed that natural groundwater flow conditions are also influenced by the shear existence of numerous hydrogeological and other wells. There are dozens of fitted wells in the basin, many of which interconnect aquifers because of their inadequate technical execution. Logging measurements often confirm vertical water flows through the wells. Old wells are in a poor condition and the extent of aquifer interconnection changes over time. Deep exploratory wells were drilled in the Western boundary of the catchment area (for the sake of exploring a coal deposit) and it is not known whether they have been liquidated with a view to a potential impact on the groundwater regime. Groundwater level in the Northern part of the Police basin could also be influenced by a decrease in groundwater level as a result of abstraction of mining water in coal mines. The Kateřina mine was located 1,200 m to the West of the Cretaceous formation boundary. Groundwork at this mine reached nearly the subsoil of Cretaceous rocks. Mining water was drawn here approximately from the early 20th century until 1993 from a great depth (460 m below sea level) in the average amount of 60 l.s⁻¹. After the mine was flooded in 1996, mining water has been flowing away freely through an old gallery in the Jívka Creek valley. Changes in groundwater flow and level in the Cretaceous basin that would deviate from the ordinary regime and long-term flow were observed neither after water drawing was finished nor during the flooding of the mine and/or after it has been flooded. The impact of the drawing of groundwater and its termination on hydrogeological conditions in the Police basin is therefore negligible to zero in line with the assumed low permeability of the Permian-Carboniferous subsoil of the basin.

OBSERVATIONS IN THE UPPER METUJE BASIN

The T. G. Masaryk Water Research Institute has been taking part in the exploration of the Police basin since 1964 and has cooperated on numerous tasks especially with the Vodní zdroje enterprise, the Czech Hydrometeorological Institute and Progeo. Most processed tasks have involved solving the balance equation of the basin and specification of its components in the upper Metuje basin, in a partial experimental Bučnice basin [3] and in the whole Police basin. Continuous data series of evaluated hydrological, hydrogeological and climatological observations regarding the upper Metuje basin have been available since 1970.

The M XII outlet of the basin on the lower outskirts of the town of Teplice is used for measuring discharge and runoff in this basin. The water gauging station is a concrete weir with a sluice, the execution of which is close to a compound measuring wastewater. Instrumental water level measurements, discharge measurements by a hydrometric propeller and discharge evaluation have been taking place there continuously since 1970. The Metuje basin up to the M XII profile comprises an area of 74.39 km². There are also additional water gauging stations in the Metuje basin, namely the M VIII profile on the Metuje.
VYHODOLOGY SUCHA 2014–2019

V letech 2014–2019 byly zaznamenány nejmenší měřené hodnoty průtoků za celou dobu pozorování na všech pozorovaných profi lech a nejnižší úrovně hladiny podzemní vody ve vrtech. Na závěr profi le M XII bylo provedeno několik hydrometrických měření nejnižších hodnot. Celkový průběh průtoku a základního odtoku (odvozeného z úrovní hladiny podzemní vody, viz níže) k profi lu M XII je v grafu na obr. 2.

Oběh vody v krajině popisuje bilanční rovnice, jež pro povodí horní Metuje obsahuje následující složky: Voda vstupuje do povodí ve formě atmosférických srážek a dále existuje přítok podzemní vody ze sousedních povodí. Voda ze spadlých atmosférických srážek přirozeně odchází z povodí výparem a povrchovým odtokem a především v období vegetačního klidu vsakuje do podzemních kolektorů. Větší část podzemní vody vyvěrá v povodí horní Metuje, menší množství odtéká mimo povodí. Na bilanci se také podílí změna zásoby podzemní vody. Část podzemní vody je odváděna vodárenským odběrem mimo povodí. Nádrže povrchové vody v povodí horní Metuje nejsou, objem vody v korytech toků je pro dlouhodobou bilanci zanedbatelný [3]. Jednotlivě uvedené členy bilanční rovnice jsou následně blíže specifikovány v samostatných kapitolách.

K řešení problému sucha v povodí horní Metuje byly v největší míře měřeny a úsporu spolehlivého měření průtoků povodí a na jejich hodnoty byl optimalizován hydrologický model Bilan. Primárně vstupy modelu Bilan jsou atmosférické srážky a teplota vzduchu, měření těchto klimatických veličin je z podstaty metody měření přesnější než u dat hydrologických. Ke zpracování dat byly použity řady měsíčních úhrnů/průměrů, především s ohledem na započítání vodárenských odběrů, které jsou v měsíčních hodnotách k dispozici.

River near Skalní mlýn where observations have been taking place since 1970 as well as a newer additional profile M VII (2017) below a confluence of the Metuje River and the Zdnoňovský Creek. Observations at the Z VI outlet the of the Zdnoňovský Creek have been taking place since 1996. Measurements performed by these stations specify runoff conditions of individual parts of the catchment area and they also specify and check measurements at the M XII outlet of the basin.

Groundwater level is monitored by three wells. Since 1972 water level has been measured at the VS-3 well. The water level in this well is the result of an interconnection of multiple aquifers, of which especially the A2 aquifer of chert layers has a significant impact. The A1/T basal aquifer has been monitored by the V-28 well since 1990. Conditions in the Quaternary upper aquifer have been monitored by two wells located near each other, namely V-6 (since 1970) and NS, which are evaluated jointly. Groundwater level in the Northern part of the Police basin has also been monitored by observation objects of the Czech Hydrometeorological Institute. Available data have been used to specify runoff conditions.

Basic climatological observations, measurements of atmospheric precipitation and air temperature have been taken place at the Bučnice observation station since 1970. Since 1999 an automatic meteorological station has been in operation there.

Fig. 1 presents a simplified situation of the location of the upper Metuje River catchment area in the Police basin as well as the location of the observation objects.
ATMOSFÉRNÍ SRÁŽKY

Po vypočtu úhrnů měsíčních srážek v povodí Metuje byla použita data ze srážkoměru pozorovací stanice Bučnice. Ta je umístěna přibližně ve středu povodí horní Metuje, na louce při soutoku potoka Bučnice s Metují, v nadmořské výšce 490 m n. m. Většina plochy povodí je tak ve vyšší nadmořské výšce, než v jaké jsou měřeny srážky, což bylo zohledněno navýšením srážek při vyhodnocení.

Rozdíl mezi srážkami zachycenými standardním srážkoměrem ve výšce 1 m a srážkami měřenými na úrovni terénu byl opraven podle zjištění Klínera [3] koeficientem 1,02 pro kopalné a 1,05 pro sněhové srážky.

Úhrny srážek měřené na stanici Bučnice jsou velmi blízké srážkovým úhrnům stanoveným ČHMÚ pro povodí Metuje k níže položenému profilu Maršov. Za vyhodnocené období hydrologických roků 1970–2019 byl průměrný roční úhrn srážek pro stanici Bučnice 747 mm, pro Metuji po Maršov (ČHMÚ) 751 mm. Srážky od roku 1970 do roku 2019 nevykazují trend dlouhodobé změny.

PŘÍTOK PODZEMNÍ VODY ZE SOUSEDNÝCH POVODÍ A ODTOK PODZEMNÍ VODY MIMO POVODÍ

Plocha sedimentů polické pánve je plošně větší než morfologické povodí horní Metuje. V křídové pánvi je také horní povodí toku Dřevíče, který opouští křídu přibližně ve středu povodí. Plocha sedimentů polické pánve je plošně větší než morfologické povodí horní Metuje.

Obr. 2. Průtok a základní odtok v profilu Metuje M XII

Fig. 2. Discharge and base flow in the Metuje M XII profile

EVALUATION OF DROUGHT IN 2014–2019

In 2014–2019 the lowest measured discharge rates were recorded over the whole observation period at all observed profiles as well as the lowest groundwater levels in the wells. Several hydrometric measurements of the lowest discharges were made at the M XII outlet of the basin. Fig. 2 presents total discharge and base flow (derived from groundwater levels, see below) to the M XII profile.

Water circulation in the landscape is described by a balance equation that contains the following components for the upper Metuje basin: water enters the catchment area in the form of atmospheric precipitation plus there is inflow of groundwater from neighbouring catchment areas. Water from atmospheric precipitation leaves the catchment area naturally by evaporation and surface runoff and especially in the vegetative rest period it is absorbed in underground aquifers. A larger part of groundwater springs to the surface in the upper Metuje basin and a smaller part flows away from the catchment area. A change in groundwater storage also contributes to the balance. A part of groundwater is drained away from the catchment area for water supply purposes. There are no surface water reservoirs in the upper Metuje basin and water volume in stream beds is negligible for the long-term balance [3].

Individual components of the balance equation are specified in greater detail in separate chapters.

To address the issue of drought in the upper Metuje basin, individual components of the balance equation of the catchment area have been specified as much as possible and the Bilan hydrological model has been optimised to their values. Primary inputs into the Bilan model include atmospheric precipitation and air temperature. Measurement of these climatological variables is more precise than hydrological data due to the nature of the measurement. Series of monthly totals/averages have been used for data processing, especially with regard to including water supply, which is available in monthly values.

ATMOSPHERIC PRECIPITATION

Data from a rain gauge at the Bučnice observation station have been used to calculate monthly precipitation totals in the Metuje basin. The rain gauge is located approximately in the centre of the upper Metuje basin on a meadow near the confluence of the Bučnice Creek and the Metuje River at a height of 490 metres above sea level. Most of the catchment area is thus located at
Příbližnou hodnotu odtoku podzemní vody lze zjistit analýzou závislosti mezi úrovní hladiny podzemní vody a odtokem v závěrném profilu povodí horní Metuje M XII (separace základního odtoku metodou Kněžek–Kliner). Za tímto účelem byla porovnána hladina podzemní vody na konci více vybraných období poklesu ve vrtech VS-3, V-20, V-28, V-6 a výdatnosti pramě Mošké oko s odpovídajícími poklesy průtoku na profilu M XII. Pro potlačení vlivu vodárenských odběrů a případných dlouhodobých změn parametrů pozorovacích vrtů bylo hodnocení období rozděleno na pět desetičtytých úseků. Taktéž získaný průběh základního odtoku podzemní vody je zobrazen na obr. 2.

Přítok podzemní vody kolektory AIT a A2 z přilehlých sousedních povodí navýšuje výdatnost teplíčského výronového okrsku, měkké kolektory se odvodňují prameny v příslušných povodích.

Podle podílu teplíčského výronového okrsku na celkovém základním odtoku a velikosti plochy mimo povodí, ze které pochází tento přítok, byla ze základního odtoku dopočítána příbližná hodnota tohoto přítoku. O tento přítok podzemní vody z oblasti mimo povodí horní Metuje byl celkový odtok z povodí zmenšen.

S odtokem podzemní vody mimo povodí souvisí i problematika propustnosti skálského zlomu. Skálský zlom kříží údolí Metuje v dolní části města Teplice nad Metují, přesněji se zde kříží skálský zlom s zeolitem polickým, který určuje v Teplichích morfológie údolí řeky. Nad a na skálském zlomu je dolní část teplíčského výronového okrsku, pramen Rybárna (také Pstruhárna, Prameniště, Ježíkovo) a říček u Teplic kříží údolí Metuje. Křížení údolí Metuje v dolní části města Teplice, je dáno umístěním údolí s vysokou úrovní hladiny vody s rozdílem 4 m, což je příznak podzemní vody z povodí Metuje, které pramení z povodí horní Metuje a vyražá v údolí Metuje několik set metrů pod závěrným profilu M XII. K započítání množství podzemní vody z oblasti mimo povodí horní Metuje byl podzemní vody z povodí horní Metuje vyražán podle průtoku VTEI/4.

ODTOK Z POVDŮ

Odtok z povodí je vypočten podle průtoku v závěrném profilu Metuje M XII. Tímto měným profilom pro jeho polohu pod dělí skálským zlomem a koncem teplíčského výronového okrsku odtéká většina vody z povodí. Vliv krátkého úseku toku nad profilem M XII od konce teplíčského výronového okrsku, ve ztrátové oblasti pod skálským zlomem, byl zvýšen na základě měření a odhadu na ztrátu 10 l/s. Měrná křivka a měrný profil byly zkontrolované, za dobu poznávacího období pokles průtoku v M XII profilu 11 l/s. k profilu Hronov, který zůstává celou dobu pod závěrným profilu M XII specifického odtoku podzemní vody z povodí horní Metuje. Přítok podzemní vody z povodí z povodí horní Metuje byl celkový odtok z povodí zmenšen.

VODÁRENSKÉ ODBĚRY ODVEDENÉ MIMO POVDŮ

Odběratelům podzemní vody je v povodí několik, nejvýznamnější jsou Vodovody a kanalizace Náchod, a. s., jejichž přítoky povodí horní Metuje z povodí horní Metuje. Horní Metuje a přísunové povodí se člení na dva větší systémy podzemní vody, na plochu 11 l/s. k profilu Hronov, který zůstává celou dobu pod závěrným profilu M XII specifického odtoku podzemní vody z povodí horní Metuje. Přítok podzemní vody z povodí horní Metuje byl celkový odtok z povodí zmenšen.

a higher altitude than where precipitation is measured, which has been taken into account in the evaluation by increasing precipitation.

The difference between precipitation captured by a standard rain gauge at a height of 1 m and precipitation measured at ground level has been corrected in accordance with Kliner’s findings [3] by a coefficient of 1.02 for rainfall and 1.05 for snowfall.

Precipitation totals measured at the Bučnice station are very close to precipitation totals determined by the Czech Hydrometeorological Institute for the Metuje basin up to the Maršov profile at a lower altitude. Over the evaluated period of hydrological years 1970–2019, the average annual precipitation total at the Bučnice station stood at 747 mm and at Metuje up to Maršov at 751 mm (CHMI). Precipitation between 1970 and 2019 does not show a trend of a long-term change.

INFLOW OF GROUNDWATER FROM NEIGHBOURING CATCHMENT AREAS AND GROUNDWATER RUNOFF AWAY FROM THE CATCHMENT AREA

The area of the Police basin sediments is larger than the morphological catchment area of the upper Metuje River. The upper catchment area of the Dřevíč Creek is also located in the Cretaceous basin. This watercourse leaves the Cretaceous below the municipality of Janovice and its catchment area in the Police basin amounts to 11.2 km². The boundaries of the basin (Triassic) in the North are located in the catchment areas of the Zadma River and the Scinawka (Stěnava) River. According to established groundwater levels and a hydroisopiezoe map put together by Uhlik [4] on the basis of these levels, groundwater flows to the central area where the Metuje river system is located due to a slanting of the sediment layers. There is also a small site (in the Zdoňovský Creek catchment area) where groundwater flows away from the basin in the Northern direction to the Zadna catchment area. In the South of the upper Metuje basin groundwater flows away from the basin from a site to the South of the Skalský fault. A larger part of the catchment area of the Bohdašínský Creek, a left-bank tributary of the Metuje River, plus a small area on the right-bank side of the river are located there. The inflow and runoff of groundwater from areas outside the upper Metuje basin are marked in a map (Fig. 1). Assuming that the division of rainwater into evaporation, surface runoff and groundwater recharge is the same in the basin, the difference in the area where recharge and deficit occurs may be evaluated for inflow/runoff. This difference is marked in a map (Fig. 1). Assuming that the division of rainwater into evaporation, surface runoff and groundwater recharge is the same in the basin, the difference in the area where recharge and deficit occurs may be evaluated for inflow/runoff. This difference is marked in a map (Fig. 1).
odebrané vody byla použita data ze souborů státních vodohospodářské bilance k profilu Maršov. Velikost vodárenského odběru byla pro výpočet snížena o průměrnou hodnotu odběru z vrtu VS-15, 20 l/s. Tento vodárenský vrt leží ve struktuře skalského zlomu, úroveň hladiny podzemní vody v tomto vrtu je v neovlivněném stavu nižší než hladina řeky [5]. Většina až všechna voda čerpána tímto vrtem již nenáleží k bilancované oblasti severního zvodněného systému polické pánve.

Celkový odtok daný pro kalibraci hydrologického modelu Bilan byl opraven o velikost realizovaných odběrů podzemní vody a výměnu podzemní vody se sousedními povodími.

ZTRÁTA VODY VÝPAREM

Ztráta vody výparem, především evapotranspirace ve vegetačním období, je počítána modelem Bilan na základě teploty vzduchu a dostupného množství vody v půdě.

Teplota vzduchu ve 2 m nad povrchem je přístrojově měřena meteorologickou stanici Bučnice. Teplota má průměrný stoupající trend 0,04 °C za rok. Průběh teploty je znázorněn na obr. 3. Pro srovnání jsou vykresleny i teploty pro povodí Metuje po Maršov nad Metují a dlouhá časová řada pro povodí Labe v Děčíně.

Groundwater runoff away from the catchment area is related to the permeability issue of the Skalský fault. The Skalský fault crosses the Metuje valley in the lower part of the town of Teplice nad Metují, or rather the Skalský fault crosses there with the Police fault, which determines the river valley morphology in Teplice. Above and at the Skalský fault there is the lower part of the Teplice outflow zone, the Rybárna spring (also known as Pstruhárna, Prameniště or Jeziřko) and a section of the watercourse with a direct recharge by groundwater in the bed. As knowledge is gradually obtained about this interesting site, the complicated and varied nature of hydrogeological conditions is becoming apparent, opinions are changing and starting to differ on the possibility of groundwater flow through or across the fault structure [5, 6]. The difference in groundwater level above and below the Skalský fault is approximately 40 m. Above the fault in the Teplice outflow zone piezometric water level is above the ground. Groundwater may permeate through the fault structure or overflow the fault via a Quaternary fluvial meadow. An estimate of the amount of groundwater that overcomes the fault is highly uncertain and for the sake of the balance the Skalský fault is considered impermeable. Values of the average long-term specific runoff support this assumption. Specific runoff of the Metuje River up to the M XII profile stands at 11.1 l/s/km² and up to the Hronov profile that closes the whole Police basin it stands at 11.0 l/s/km². Specific runoff of the neighbouring Dřevíč Creek amounts to 10.4 l/s/km² (data obtained from water gauging stations of the Czech Hydrometeorological Institute).

RUNOFF FROM THE CATCHMENT AREA

Runoff from the catchment area has been calculated according to discharge in the M XII outflow of the Metuje basin. Most water flows away from the catchment area through this gauging station due to its location below the dividing Skalský fault and at the end of the Teplice outflow zone. The impact of the short section of the watercourse above the M XII profile from the end of the Teplice outflow zone in the deficit area below the Skalský fault has been evaluated on the basis of measurements and estimated deficit of 10 l/s. The rating curve and the gauging station have been checked and it has been established that hydraulic parameters were not changed over the observation period of 1970–2019. Discharge measured by this water gauging station is checked on the basis of a discharge at a water gauging station in Maršov nad Metují that is located downstream and operated by the Czech Hydrometeorological Institute.

WATER SUPPLY TAKEN AWAY FROM THE CATCHMENT AREA

There are several groundwater users in the catchment area, the most important being Vodovody a kanalizace Náchod, a.s., which operates a system of water wells in Teplice nad Metují and takes water away from the catchment area by the Teplice–Bohuslavice water transfer. Water used by the town of Teplice nad Metují is also drained away from the upper Metuje basin. An outflow from a waste water treatment station flows into the Metuje River several hundred metres below the M XII outlet of the basin. Data from the national water management balance files regarding the Maršov profile have been used in order to calculate the amount of drawn water. The water supply has been reduced for calculation purposes by the average value of water drawn from well VS-15, 20 l/s. This water well lies in the Skalský fault structure and groundwater level in this well is lower than the river level without any impact [5]. A majority up to all the water drawn from this well does not belong to the assessed area of the Northern aquiferous system of the Police basin.

The total runoff input for calibrating the Bilan hydrological model has been adjusted by the amount of effected groundwater supply and groundwater exchange with the neighbouring catchment areas.
Vstupními hodnotami modelu jsou časové řady měsíčních výšek srážek v povodí a řady průměrných měsíčních teplot vzduchu. Při odhadu parametrů modelu se zadávají řady měsíčních odtokových výšek v závěrovém profilu povodí.

Výpočtem byly získány potenciální evapotranspirace, územní výpar, infiltrace do zóny aerence, průtok z celého povodí, zásoba vody ve sněhu, zásoba vody v půdě a zásoba podzemní vody. Celkový odtok je modelován jako součet tří složek: dvě složky přímého odtoku (zahrnující i hypodermický odtok) a základní odtok. Základní odtok lze ztotožnit s drenáží podzemní vody do říční sítě po závěrovém průtoku.

Při kalibraci modelu byly pro data z 90. let patrné rozdíly mezi modelovaným a měřeným odtokem. Podrobnější kontrolou podle zprávy Uhlíka [4] byly zjištěny nesrovnalosti dostupných hodnot odběrů. Pro kalibraci byl úsek největších dat vynechán, nebyly použity hydrologické roky 1990–1999. Úroveň hladiny podzemní vody byla na začátku a konci vynechaného úseku podobná.

Ke kalibraci modelu Bilan bylo třeba zvýšit atmosférické srážky koeficientem 1,105, který zohledňuje vliv nadmořské výšky stanice Bučnice.

Při kalibraci modelu bylo třeba zvýšit atmosférické srážky koeficientem 1,105, který zohledňuje vliv nadmořské výšky stanice Bučnice.
Určení vlivu zvyšování teploty vzduchu na odtok

K posouzení podílu vlivu poklesu atmosférických srážek a nárůstu teploty vzduchu byl proveden výpočet odtoku s upravenou teplotou vzduchu, při použití měřených úhrnů srážek a původních parametrů nastavení kalibrace modelu. Měřené hodnoty teploty vzduchu byly pro toto vyhodnocení modelu Bilan ve věku 1970–2019 upraveny na nulový trend zvyšování teploty.

Porovnání výstupů modelu Bilan pro období sucha 2014–2019 s celým sledovaným obdobím 1970–2019 a porovnání pro modelovou variantu bez zvýšení teploty jsou v tab. 2.

V období 2014–2019 byl průměrný modelovaný měsíční odtok RM o 8,9 mm menší než průměrný měsíční odtok za celé období pozorování 1970–2019. Tento pokles odpovídá poklesu průměrných měsíčních srážek P o 8,7 mm.

Ve vztahu k průměrným teplotám za celé období 1970–2019 byly teploty v období sucha 2014–2019 nadprůměrné, resp. odpovídající stoupajícímu trendu teploty.

The model has eight free parameters. To estimate them, water-measurement observation profiles use an optimisation programme that seeks parameters so as to reach a minimum value of the selected criterion for matching modelled runoff with observed data.

When the model was calibrated, there were apparent differences in data from the 1990s regarding modelled and measured runoff. An in-depth examination in accordance with Uhlík’s report [4] has established discrepancies of available water supply values. For the purposes of calibration, the section of uncertain data was omitted and hydrological years 1990–1999 were not used. Groundwater level at the beginning and at the end of the omitted section was similar.

So as to calibrate the Bilan model, atmospheric precipitation has had to be increased by a coefficient of 1.105, which takes into account the impact of the altitude of the Bučnice rain gauging station.

| Tab. 2. Měsíční průměry veličin hydrologické bilance z období 1970–2019 a z období 2014–2019 ve variantách pozorovaných teplot a teplot vzduchu bez rostoucího trendu |
Měsíční hodnoty	Teplota měřená	Teplota bez trendu	Změna			
	1970–2019	2014–2019	1970–2019	2014–2019	2014–2019	
Atmosférické srážky [mm]	P	69,1	60,4	69,2	60,6	0,2
Odtok modelovaný [mm]	RM	29,7	20,8	32,0	24,5	3,7
Základní odtok [mm]	BF	20,7	14,5	22,9	18,3	3,7
Potenciální evapotranspirace [mm]	PET	42,1	45,6	39,0	39,8	-5,8
Evapotranspirace [mm]	ET	39,4	40,1	37,0	36,5	-3,7
Průměrná teplota vzduchu [°C]	T	5,9	7,2	4,9	5,3	-1,9

Zásoba podzemní vody [mm]
K 31. 10. 2013 GS
K 31. 10. 2019 GS
Změna
Měsíčně

| Tab. 3. Celkový vliv zvyšování teploty vzduchu |
|-----------------|-----------------|-----------------|
| Měsíční průměrný úhrn [mm] | Měsíční trend [mm] |
| | T real | T kor | T real | T kor |
| Měření | Atmosférické srážky | P | 69,1 | 69,2 | -0,004 | -0,0037 |
| Měřený odtok | R | 29,1 | -0,01 |
| Bilan | Modelovaný odtok | RM | 29,7 | 32,0 | -0,01 | -0,002 |
| Základní odtok | BF | 20,7 | 22,9 | -0,007 | -0,0001 |
| Zásoba podzemní vody | GS | 171,8 | 190,1 | -0,064 | -0,004 |
| Potenciální evapotranspirace | PET | 42,1 | 39,0 | 0,014 | 0,003 |
| Evapotranspirace | ET | 39,4 | 37,0 | 0,009 | 0,002 |
| Teplota [°C] (měsíční průměr) | T | 5,9 | 4,9 | 0,004 | 0 |
Podíl dlouhodobého zvýšení teploty na snížení odtoku v důsledku růstu výparu je významný. Pokud by ke zvýšení teploty nedocházelo, pak by výpar za období 2014–2019 byl podprůměrný a celkový rozdíl ztráty výparu by byl menší o 3,7 mm měsíčně. Tento deficit výparu by se projevil odpovídajícím zvýšením hodnoty základního odtoku BF a celkového odtoku RM.

Složka základního odtoku z klesající zásoby podzemní vody není příliš významná. Celkový pokles zásoby podzemní vody za období od začátku roku 2014 do konce roku 2019 byl 38,7 mm. Pro tento pokles odpovídá pokles objemu podzemní vody o 2,88 mil. m³. Porovnání dlouhodobých bilancí povodí horní Metuje pro celé pozorované období 1970–2019 je v tab. 3.

Atmosférické srážky za celé sledované období vykazují mírný pokles, ten však není, na rozdíl od růstu teploty, trvalého rázu. V období 1970–2013 před začátkem sucha vykazoval měsíční srážkový úhrn růst 0,009 mm. Při vyhodnocení sledovaného období po dekadách ve třech dekadách srážky stoupají, ve dvou dekadách klesají, zatímco vzestup teploty vzduchu nastal ve všech dekadách.

Vliv navýšení výparu a odpovídajícího poklesu odtoku v důsledku oteplení vzduchu je patrný, porovnáním tendencí lze přibližně určit vztaž poklesu odtoku o 2,5 mm/měsíc při zvýšení teploty o 1 °C.

Dlouhodobý trend poklesu základního odtoku v důsledku stoupajících měsíčních srážek je významný, měsíční průměr byl v období 1970–2019 38,7 mm. V období 2014–2019 byl 38,7 mm. Pro tento pokles odpovídá pokles objemu podzemní vody o 2,88 mil. m³. Celkový pokles odtoku v důsledku růstu teploty v teplickém výronovém okrsku a změny jeho funkce z dotace na odběr vody z povodí podzemní vody. Tím dojde ke zvětšení základního odtoku v říční síti.

Dlouhodobý trend poklesu základního odtoku v důsledku stoupajících měsíčních srážek je významný, měsíční průměr byl v období 1970–2019 38,7 mm. V období 2014–2019 byl 38,7 mm. Pro tento pokles odpovídá pokles objemu podzemní vody o 2,88 mil. m³. Celkový pokles odtoku v důsledku růstu teploty v teplickém výronovém okrsku a změny jeho funkce z dotace na odběr vody z povodí podzemní vody. Tím dojde ke zvětšení základního odtoku v říční síti.

Primární příčinou sucha v období 2014–2019 v povodí horní Metuje byl pokles atmosférických průměrných měsíčních srážek o 8,6 mm oproti dlouhodobému průměru. Měsíční průměr vzhledem k výskytu základního odtoku v teplickém výronovém okrsku byl 150 l/s, nejvyšší hodnoty byly obvykle kolem 100 l/s. Na celkovém základním odtoku z povodí horní Metuje se v suchých obdobích teplící výronový okrsek podílel jednou polovičně. Pokud bude pokles odtoku pokračovat, v budoucnu nastanou problémy s nedostatkem povrchové vody.

ZÁVĚR

Primární příčinou sucha v období 2014–2019 v povodí horní Metuje byl pokles atmosférických průměrných měsíčních srážek o 8,6 mm oproti dlouhodobému průměru. Měsíční průměr vzhledem k výskytu základního odtoku v teplickém výronovém okrsku byl 150 l/s, nejvyšší hodnoty byly obvykle kolem 100 l/s. Na celkovém základním odtoku z povodí horní Metuje se v suchých obdobích teplící výronový okrsek podílel jednou polovičně. Pokud bude pokles odtoku pokračovat, v budoucnu nastanou problémy s nedostatkem povrchové vody.

DETERMINING THE IMPACT OF INCREASING AIR TEMPERATURE ON RUNOFF

A calculation of runoff with adjusted air temperature has been made, using measured precipitation totals and the original model calibration parameters in order to assess the contribution of the impact of a decrease in atmospheric precipitation and an increase in air temperature. Measured air temperatures in the period of 1970–2019 have been adjusted for a zero trend of temperature increase for the purpose of this evaluation by the Bilan model.

Tab. 2 presents a comparison of outputs of the Bilan model for the drought period of 2014–2019 with the whole observation period of 1970–2019 and a comparison for the model variant without an increase in temperature. In 2014–2019 the average modelled monthly runoff (RM) was by 8.9 mm smaller than the average monthly runoff over the whole observation period of 1970–2019. This decline corresponds with the decrease in average monthly precipitation P by 8.7 mm.

In relation to average temperatures over the whole period of 1970–2019, temperatures in the drought period of 2014–2019 were above average or rather in line with the rising temperature trend.

The contribution of the long-term temperature rise to a decline in runoff as a result of an increase in evaporation is significant. If temperature had not increased, evaporation over the period of 2014–2019 would have been below average and the total difference in a loss caused by evaporation would have been by 3.7 mm/month smaller. This evaporation deficit would have manifested itself by a corresponding increase in the value of base flow (BF) and total runoff (RM).
The base flow component is not very significant in decreasing groundwater storage. The overall decrease in groundwater storage over the period from the beginning of 2014 until the end of 2019 amounted to 38.7 mm. A decrease in the volume of groundwater by 2.88 mil. m3 corresponds with this decline. Tab. 3 presents a comparison of long-term balances of the upper Metuje basin over the whole observation period of 1970–2019.

Atmospheric precipitation over the whole monitored period shows a moderate decline, which is however not permanent in nature as opposed to the rising temperature. In the period of 1970–2013 before the drought started, the monthly precipitation total grew by 0.009 mm. When the observation period is evaluated by decades, it may be noted that precipitation saw a rise in three decades and a decline in two decades whereas air temperature increased in all the decades.

Tab. 2. Monthly averages of hydrological balance quantities from the period of 1970–2019 and from the period of 2014–2019, in a variant of observed air temperatures and a variant of air temperatures without an increasing trend

Monthly values	Quantity	Measured temperature	Temperature without an increasing trend	Change		
		1970–2019	2014–2019	1970–2019	2014–2019	2014–2019
Atmospheric precipitation [mm]	P	69.1	60.4	69.2	60.6	0.2
Modeled runoff [mm]	RM	29.7	20.8	32.0	24.5	**3.7**
Base flow [mm]	BF	20.7	14.5	22.9	18.3	**3.7**
Potential evapotranspiration [mm]	PET	42.1	45.6	39.0	39.8	**-5.8**
Evapotranspiration [mm]	ET	39.4	40.1	37.0	36.5	**-3.7**
Average air temperature [°C]	T	5.9	7.2	4.9	5.3	**-1.9**

Groundwater storage [mm]

As at 31/10/2013	GS	132.3	166.8	**34.5**
As at 31/10/2019	GS	93.6	139.1	**45.6**
Change		38.7	27.6	**-11.1**
Per month		0.5	0.4	**-0.2**

Tab. 3. Overall effect of rising air temperature

Measurement	Average monthly total [mm]	Monthly trend [mm]			
	T real	T cor.	T real	T cor.	
Atmospheric precipitation	P	69.1	69.2	**-0.004**	**-0.0037**
Modeled runoff	R	29.1			
Base flow	BF	20.7	22.9	**-0.007**	**-0.0001**
Groundwater storage	GS	171.8	190.1	**-0.064**	**-0.004**
Potential evapotranspiration	PET	42.1	39.0	**0.014**	**0.003**
Evapotranspiration	ET	39.4	37.0	**0.009**	**0.002**
Temperature [°C]	T	5.9	4.9	**0.004**	**0.0**

Literatura

[1] SVOBODA, M. Hydrologická bilance povodí se zaměřením k využití podzemních vod. Praha: Výzkumný ústav vodohospodářský T. G. Masaryka, 1969.
[2] HYNIE, O. Zajištění vodních zdrojů skupinového vodovodu pro Hradec Králové a okolí v Polické křídlové pánvi. Palivo a voda. 1949, roč. 29, č. 7.
[3] KLINER, K. Rozdělení srážek na evapotranspiraci a tvorbu podzemních vod metodou komplexní bilance povodí. Praha: Výzkumný ústav vodohospodářský T. G. Masaryka, 1971.
[4] UHLÍK, J. Analýza klimatické změny v povodí Horní Metuje po Hronov. Roztoky u Prahy: PROGEO, 2008.
[5] KNĚŽEK, V. Závěrečné zhodnocení Pitná voda. Praha: Vodní zdroje, 1975.
[6] KRAŠNY, J. Optimalizace využití a ochrany podzemních vod s ohledem na ostatní složky životního prostředí: Polická pánv. Praha: Ústav hydrogeologie, inženýrské geologie a užité geofyziky Přírodovědecké fakulty Univerzity Karlovy, 1995.
[7] VIZINA, A., HORÁČEK, S., HANEL, M. Nové možnosti modelu Bilan. Vodohospodářské technicko-ekonomické informace. 2015, roč. 57 (4-5), s. 7–10.
There is a clear impact of an increase in evaporation and a corresponding decline in runoff as a result of rising air temperature. When the trends are compared, it may be determined that runoff declines by 2.5 mm when temperature increases by 1°C.

The long-term trend of a decline in base flow as a result of a rising contribution of evaporation stands at 0.007 mm/month (if the drought of 2014–2019 and the cold year 1971 at the beginning of the observation are not included, the trend in the period of 1972–2013 stands at 0.006 mm/month). The lower value of a decline in runoff of 0.006 mm/month corresponds with a trend of a decline in discharge at the M XII profile of 2 l/s/year. The base flow value is significant with regard to water supply. Groundwater runoff was maintained in the Teplice outflow zone throughout the whole drought period of 2014–2019. The lowest measured value of abundance of the Teplice outflow zone stood at 150 l/s and the smallest calculated value was around 100 l/s. In periods of drought, the Teplice outflow zone contributes to the total base flow from the upper Metuje basin by one half. If runoff continues to decrease, problems will occur in the future with the amount of surface water. If there is a larger decline or if the natural runoff in the Teplice outflow zone ceases to exist and its function changes from a recharge to a deficit one, problems may also arise with groundwater quality in the vicinity of the water supply sites.

CONCLUSION

The primary cause of drought in the period of 2014–2019 was a decrease in average monthly atmospheric precipitation by 8.6 mm/month in the upper Metuje basin in comparison with the long-term average. The monthly average precipitation total in the period of drought stood at 60 mm/month, of which 40 mm was evaporated and 21 mm of water flew away from the catchment area or was used for water supply (1 mm of the flown-away water comes from the decreasing groundwater storage). The impact of a long-term increase in air temperature is significant. If warming had not been taking place, only 36 mm/month would have evaporated according to a model simulation and the value of the (base) monthly runoff would have been by 4 mm larger. This increase corresponds with an increase in discharge at the M XII profile by 110 l/s.

Warming has been manifesting itself by a decline in runoff from the catchment area long-term, not only in the extreme period of 2014–2019. Measures aimed at mitigating this unfavourable trend may lower evaporation and surface runoff in favour of groundwater recharge. This would increase base flow in the river system. Positive measures in the landscape include appropriately located ponds and deep pools that enable water accumulation and especially its seepage into groundwater. On the contrary, wetlands and shallow reservoirs in drainage areas may have a rather negative effect since they support evaporation. Measures in the landscape should therefore be expertly assessed from a hydrological and hydrogeological perspective.