Distinct Conformation of ATP Molecule in Solution and on Protein

Eri Kobayashi¹, Kei Yura¹,²,³ and Yoshinori Nagai⁴

¹Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan
²Center for Informational Biology, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan
³Center for Simulation Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan
⁴Faculty of Political Science and Economics, Kokushikan University, 4-28-1, Setagaya, Tokyo 154-8515, Japan

Received August 27, 2012; accepted December 12, 2012

Adenosine triphosphate (ATP) is a versatile molecule used mainly for energy and a phosphate source. The hydrolysis of γ phosphate initiates the reactions and these reactions almost always start when ATP binds to protein. Therefore, there should be a mechanism to prevent spontaneous hydrolysis reaction and a mechanism to lead ATP to a pure energy source or to a phosphate source. To address these questions, we extensively analyzed the effect of protein to ATP conformation based on the sampling of the ATP solution conformations obtained from molecular dynamics simulation and the sampling of ATP structures bound to protein found in a protein structure database. The comparison revealed mainly the following three points; 1) The ribose ring in ATP molecule, which puckers in many ways in solution, tends to assume either C²′exo or C²′endo when it binds to protein. 2) The adenine ring in ATP molecule, which takes open-book motion with the two ring structures, has two distinct structures when ATP binds to protein. 3) The glycosyl-bond and the bond between phosphate and the ribose have unique torsion angles, when ATP binds to protein. The combination of torsion angles found in protein-bound forms is under-represented in ATP molecule in water. These findings suggest that ATP-binding protein exerts forces on ATP molecule to assume a conformation that is rarely found in solution, and that this conformation change should be a trigger for the reactions on ATP molecule.

Key words: adenosine triphosphate, curvature, database analysis, molecular dynamics simulation, torsion angle

Adenosine triphosphate (ATP) is a widely used molecule in the cell for an energy source. A textbook example of the use of ATP is a chemical bond formation between two substrates coupled with ATP hydrolysis catalyzed by an enzyme. In this reaction, a phosphoanhydride bond between β and γ phosphate groups is cleaved, and the released energy is used to condense the substrates. The released energy can also be a trigger for alteration of the conformation of protein. In either case, the remaining adenosine diphosphate (ADP) and the inorganic phosphate are released to water. Some of the reactions yield an inorganic diphosphate by cleaving the bond between α and β phosphate groups. Other than the reaction to gain energy, ATP is utilized as a source for phosphate group, adenosine monophosphate (AMP) and adenine. These chemical groups are utilized for phosphorylation that transfers the inorganic phosphate to the substrate, adenylation that transfers AMP to the substrate, and adenosylation that transfers adenosyl to the substrate, respectively.

The use of the same ATP molecules in a variety of chemical reactions is evidently based on its versatility in the conformation, but the mechanism for regulating the conformation for distinct functions has not been addressed. The ATP molecule that undertakes a hydrolysis between β and γ phosphate groups, for instance, should block the chemical reaction pathways to phosphorylation, adenylation and others, otherwise the unrelated functions would be carried...
out. In addition, ATP molecule in water needs to have a certain mechanism to stay away from the chemically reactive situations leading to a spontaneous hydrolysis.

These conjectures can be tested by protein structure database analysis and computer simulation. Accumulation of the coordinate data of ATP bound to the proteins enabled us to obtain ATP conformations on proteins at the variety of functions. Improvements in simulation techniques and computer hardware enable us to sample conformations of ATP in water. Comparisons of these ATP conformations will give us a clue to solidify the conjecture.

Here, we compared the structures of ATP molecules in Protein Data Bank (PDB) and those sampled from the molecular dynamics (MD) simulation. We found that the conformation of protein-bound ATP is under-represented in ATP in water, which suggests that ATP molecule should be forced to take a specific conformation on a protein to initiate biological functions.

Methods

Choosing proteins with ATP molecule from PDB

Three-dimensional coordinate data of protein structure with ATP were selected from PDB. The protein entries with coordinates of ATP were first selected on Het-PDB Navi, using “ATP” as a query term. Redundancy in entries was eliminated by grouping the proteins with their sequence identity. The interactions between protein chain and ATP molecule were detected by differences in accessible surface areas of the protein chain when the area was calculated with and without the ATP molecule. We calculated the accessible surface area by the in-house program and the program is now available at http://cib.cf.ocha.ac.jp/bitool/ASA/. The calculation is based on the method of Shrake and Rupley. Chains with less than 60 amino acid residues were discarded. Classification of proteins by sequence identity was carried out using BLASTClust. The sequence identity for the classification was set to 25%. From each group, a protein chain with the best resolution was selected as the representative.

Conformation sampling of ATP molecule by molecular dynamics simulation

Molecular dynamics simulation of ATP was performed to sample conformations of ATP in water. The initial structure of ATP was taken from the three-dimensional structure data of *Thermus thermophilus* D-alanine:D-alanine ligase (PDB ID, 2zdq). The ATP numbered 1501 in A chain was used. For the calculation, GROMACS 4.0.4 was used. We employed a standard NPT procedure for the simulation described in the manual of GROMACS. We used the force field for ATP molecule implemented in ffG43a1.rtp file. The file described the parameters for all the atoms of ATP except for methyl hydrogen atoms, which were united to the bonded carbon atoms. A hydrogen atom not described in PDB file was geometrically generated at an allowed position. The geometric center of the ATP molecule was then placed at the center of a cube with $2.7 \times 10^4 \, \text{Å}^3$ volume filled with water molecules with periodic boundary condition. By removing water molecule overlapping with ATP, the number of water molecules was settled to 876. After minimizing the energy of the system by steepest decent method and performing molecular dynamics with restraint on ATP in 1 ns, we performed 2 ns simulation of ATP in solvent with 2 fs step size. The temperature was set in 300 K. Cutoff distance of van der Waals and electrostatic interactions was set to 10 Å. We ran ten different sets of the simulation starting with a different random-number seed. From each trajectory file, coordinates of ATP in every 0.1 ps were retrieved and snapshot structures from the latter 1 ns simulation were used for analyses.

Comparison of ATP structures: torsion angle and ring curvature

Conformations of ATP molecules in protein-bound and free forms were compared by torsion angles of bonds and flatness of ring structures.

Torsion angles in ATP were defined as shown in Figure 1. The definition is the same as the ones commonly used in DNA and RNA (see Chapter 5 of Schlick T., for instance). A torsion angle of a glycosyl bond (C1′-N9), for example, is defined by O4′, C1′, N9 and C4. The *cis* position of O4′ and C4 is defined as zero degree and the clockwise rotation of the N9-C4 bond viewed in C1′-N9 direction is defined as a positive rotation.

Flatness of the ring structure of ribose and adenine was calculated using discrete Gaussian curvature (K) and mean...
Figure 2 The definition of the discrete Gaussian and mean curvatures at the gravity center.

curvature \((H) \) descriptions (Fig. 2). The Gaussian curvature at a point on a surface is defined as a product of the maximum and minimum curvatures of a plane embedding the normal vector of the point (the principal curvatures), and the mean curvature is defined as a mean of the principal curvatures. With both curvatures, the degree of flatness and of puckering of a ring structure can be described. Here we employed the definition of the discrete Gaussian and mean curvatures described in references 14 and 15. The discrete Gaussian curvature at the gravity center of a ring can be calculated as:

\[
K = \frac{3(2\pi - \sum_{<i,j>} \theta_{ij})}{\sum_{<i,j>} A_{ij}}
\]

and the discrete mean curvature at the gravity center can be calculated as:

\[
H = \frac{3\sum_{<i,j>} (\pi - \delta_{ij}) l_i}{\sum_{<i,j>} A_{ij}}
\]

In these calculations, \(A_{ij} \) is the area of triangle spanned by atoms \(i, j \) and the gravity center of the ring, \(\theta_{ij} \) is the angle in radian between the two lines, the line connecting atom \(i \) and the gravity center, and the line connecting atom \(j \) and the gravity center, \(\delta_{ij} \) is the torsion angle in radian between two triangles over the line drawn between atom \(i \) and the gravity center, and \(l_i \) is the length of the line drawn between atom \(i \) and the gravity center. The subscripts \(i \) and \(j \) go over all the atoms for the ring. For the curvature calculation of the ribose, namely C1’, C2’, C3’, C4’ and O4’ atoms were used. Curvature calculation for the two ring structures in adenine was done separately. For the curvature calculation of the six-membered ring in the adenine, N1, C2, N3, C4, C5 and C6 atoms were used, and of the five-membered ring, C4, C5, N7, C8, and N9 atoms were used. The relative orientation of the two rings in the adenine was described by the flatness of the pseudo-hexagon consisting of C6, C5, N7, N9, C4 and N3 atoms.

Intuitively, the discrete Gaussian curvature measures whether the surface is curved or not, whilst the discrete mean curvature measures the degree of the mixture of the concaveness and convexness. In this analysis, the Gaussian curvature at the gravity center of the ring is always negative. The sign of the mean curvature depends on the strength of concaveness and convexness of the ring structure at the gravity center. Flatness and puckering of the ring can be described by both curvatures through concaveness and convexness.

Results and Discussion

Coordinate set of ATP from PDB

The set of proteins with ATP in PDB is shown in Table 1. There were 188 unique protein-ATP complex. The uniqueness was defined by the sequence identity of the proteins. No proteins in the set have sequence identity more than 25% based on the calculation by BLASTClust\(^16\). The biological uniqueness of these proteins was checked based on UniProt\(^14\) ID. UniProt ID is basically built by protein function abbreviation with a species name abbreviation connected by an underscore. None of the entries in Table 1 has the same protein function based on the UniProt ID.

We checked through the literatures of all these data for the biological function of ATP molecules and tabulated them based on the function. We found that 43 were for energy extraction through Pi hydrolysis, 42 for phosphorylation, 29 for energy extraction through PPi hydrolysis, 15 for adenylation, 3 for adenosylation and the remaining 56 were miscellaneous or function unknown (Table 1).

Molecular dynamics simulation of ATP in solvent

One of the results for 2 ns ATP simulations is shown in Figure 3. For the first 200 ps, the structure of ATP molecule seemed to oscillate amongst a limited number of conformations, but after that the molecule assumed many types of conformations. The behaviour in detail was different in different runs of simulation (Supplementary Figs. 1A–I), but the overall tendency and the scale of fluctuation were quite similar. For the analyses hereafter, we used all the conformations obtained in the latter 1 ns of ten runs, namely 100,000 samples of the conformations.

Sufficiency of conformation sampling in this set of simulations is important in the following analyses. Figure 3 and Supplementary Figure 1 showed that, after 1 ns of simulation, ATP molecule underwent a compact and an extended conformations for a couple of times. These back-and-forth trajectories suggest that ATP molecule assumed quite a number of different conformations. In the following analyses, the analysis applied on conformations from each trajectory and the one applied to all as a whole did not show significant differences with a minor exception. This behaviour of the data suggests that the reasonable number of con-
Table 1: Functional classification of ATP-binding proteins

Protein Name	Family	PDB ID	chain	resol	Uniprot ID
ATP hydrolysis, Pi is released					
vacuumal protein sorting-associating	AAA ATPase family	2zan	A	3.00	VPS4B_MOUSE
protein 4B	N-ethylmaleide sensitive factor	1nsf	A	1.90	NSF_CRGR
FbpC nucleotide-binding domain	ABC transporter domain	3fq	A	1.90	FBPC_NEIG1
histidine permease	ABC transporter superfamily	1b0u	A	1.50	HISP_SALTY
maltase/maltodextrin transport	ABC transporter superfamily	1q12	A	2.60	MALK_ECOLI
protein MalK					
ATP-binding cassette sub-family B meber 6		3nb9	A	2.10	ABCB6_HUMAN
alpha actin 1	actin family	2fxu	A	1.35	ACTS_RABIT
actin-related protein 2	actin family	1tyq	B	2.55	ARP3_BOVIN
arsenical Pump-driving ATPase	arsA ATPase family	1ii0	B	2.40	ARSA1_ECOLI
ATP synthase subunit alpha	ATPase alpha/beta chains family	2orv	A	2.10	ATPA_THEMA
v-type ATP synthase beta chain	ATPase alpha/beta chains family	3h2q	A	2.10	VAPI_METMA
biotin carboxylase	biotin carboxylation domain	1dv2	A	2.50	ACCC_ECOLI
sarcoplasmic/endoplasmic reticulumium	cation transport ATPase (P-type) family	3ar4	A	2.15	AT2A1_RABIT
calcium ATPase 1	GroEL chaperonin (HSP60) family	1kp8	A	2.00	CH60_ECOLI
heat shock locus U (HslU)	ctpX chaperone family	1d0o	A	3.00	HSLU_ECOLI
DNA mismatch repair protein Mhl1	DNA mismatch repair mutLhexB family	3na3	A	2.50	MLH1_HUMAN
DNA mismatch repair protein MutS	DNA mismatch repair mutS family	1w7a	A	2.27	MTS_ECOLI
PurL. Formylglycinamide ribonucleotide	FGAMS family	2hs0	A	2.52	PURL_THEMA
amidotransferase					
Gar synthetase (PurD)	GARS family	2yw2	A	1.80	PUR2_AQUAE
aspartyl-glutamyl-tRNA amidotransferase	gatB/gatE family	3brh	H	3.00	GATB_AQUAE
subunit B					
70kDa heat shock cognate protein	heat shock protein 70 family	1kax	A	1.70	HSP7C_BOVIN
PerA DNA helicase	helicase family	1qph	B	2.50	PCRA_BACST
nitrogenase iron protein 1	nihH/ihcI/ihfI. family	2cev	A	2.50	NIH1_AZ0V1
cell division inhibitor MinD	parA family	3qpl	A	2.34	MIND_ECOLI
bacterial chromosome segregation protein	ParAB family	2bek	A	1.80	Q72H90_THE12
SoJ 5-formaminomimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5-monophosphate synthetase	phosphorylase mutase family	2r7l	A	2.10	PURP_METJA
phosphoribosylaminomimidazole carboxylase	ATPase subunit	1kje	B	1.60	PURK_ECOLI
subunit B	purK/purT family	2fsg	B	2.20	SECA_ECOLI
Holliday junction DNA helicase RuvB	RuvB family	1j7k	A	1.80	RUVB_THEMA
phosphoribosylaminomimidazole-	SAICAR synthetase family	1obd	A	1.40	PUR7 YEAST
succinocarboxamide synthase					
translocase SecA subunit	secA family	1svm	C	1.94	LT SYV0
largent T antigen helicase domain	SF3 helicase domain	1svm	C	1.94	LT SYV0
Psp operon transcriptional activator	sigma-54 factor interaction domain	2x9e	A	1.80	PSSP_ECOLI
(PspF)	Rad50 ABC-ATPase N-terminal domain	1cu	A	1.60	RAD50_PYRFU
sulfiredoxin	sulfiredoxin family	3cyi	A	1.80	SRXN1_HUMAN
NTPase P4 (molecular motor)	superfamily 4 helicase motif	2vhq	A	2.15	Q9M058 9VIRU
transglutaminase 2	Transglutaminase family	3y6	A	3.14	TG2M_ECOLI
EcoR124I restriction enzyme HSDR subunit	typeI restriction enzyme	2w00	B	2.60	Q30R3_ECOLX
UvrABC component UvrB	uvrB family	1d9z	A	3.15	UVRB BACCA
switching motility protein PifT	not classified	2eww	A	3.20	O66950_AQUAE
transcriptional regulatory protein ZraR	not classified	1jo1	E	3.00	ZRA_SALTY
myosin II heavy chain	not classified	1fmw	A	2.15	MYS2 DICDI
dehtiobiotin synthetase	not classified	1as2	A	1.80	BIOD_ECOLI

Table 2: Functional classification of ATP-binding proteins

Protein Name	Family	PDB ID	chain	resol	Uniprot ID
ATP hydrolysis, Pi is transferred					
isocitrate dehydrogenase kinase/phosphatase (AceK)	AceK family	3eps	A	2.80	ACEK_ECO57
cAMP-dependent protein kinase	AGC Ser/Thr protein kinase family	3fq	E	1.60	KAPCA_MOUSE
protein kinase C iota type	AGC Ser/Thr protein kinase family: PKC subfamily	3a8w	B	2.10	KPCI_HUMAN
G protein coupled receptor kinase 1	AGC Ser/Thr protein kinase family: GRK kinase family	3e4w	B	2.70	RK_BOVIN
(erythro-6 of different states)	myosin heavy chain kinase A	3mi	B	2.20	MHCKA DICDI
Isopentenyl phosphate kinase	Amino acid kinase family	3li5	C	1.99	Q9HLX1_THEAC
anti-sigma F factor	anti-sigma-factor family	1tid	A	2.50	SP2AB BACST
ribokinase	carbohydrate kinase phK family	3tkh	A	1.88	AF989 KLEP7
casein kinase-1	CK1 Ser/Thr protein kinase family	1csn	A	2.00	CK1_SCHPO
ATP hydrolysis, Pi is transferred (phosphorylation)

Protein Name	Family	PDB ID	chain	resol	Uniprot ID
dephospho-CoA kinase	coaE family	1jjv	A	2.00	COAE_HAEIN
mevalonate kinase	GHMP kinase family	1kvk	A	2.40	KIME_RAT
gluconate kinase	gluconokinase gnt/gntV family	1ko5	A	2.28	GNTK_ECOLI
Inositol 1,4,5-triphosphate 3-kinase B	inositol phosphokinase (IPK) family	2aqx	A	2.50	IPKB_RAT
KaiC	kaiC family	2gbl	A	2.80	KAIC_SYNHP4
l-seryl-tRNA kinase	L-seryl-tRNA(Sec) kinase family	3aml	A	2.40	PSTK_METHIA
NAD kinase	NAD kinase family	1zbs	A	1.70	PPNK_ARCFU
nucleotide diphosphate kinase	NDK family	1wkl	B	2.20	NDK_THET8
pyruvate dehydrogenase kinase isoform 2	PDK/BCKDK protein kinase family	2bu2	A	2.40	PDK2_HUMAN
phosphoenolpyruvate carboxykinase	phosphoenolpyruvate carboxykinase family	2olr	A	1.60	PCK_ECOLI
phosphofructokinase	phosphofructokinase family	3o8l	A	3.20	K6PF_RABBIT
phosphoglycerate kinase	phosphoglycerate kinase family	1jdj	A	1.90	PGK1_PIG
phosphatidylinositol 3-kinase catalytic subunit	PI3/P4-kinase family	1e8x	A	2.20	PK3CG_PIG
polyphosphate kinase	polyphosphate kinase family	1xdp	A	2.50	PPK_ECOLI
Pantothenate kinase	prokaryotic pantothenate kinase family	2sfs	A	2.80	COAA_MYCTU
cell division protein kinase 2	protein kinase superfamily	2ech	A	1.70	CDK2_HUMAN
pyridoxine kinase	pyridoxine kinase family	2ddo	A	2.60	PDXK_ECOLI
Rio1 serine kinase	RIO-type Ser/Thr kinase family	1aq9	A	2.10	KPYM_RABIT
Rio2 serine kinase	RIO-type Ser/Thr kinase family	1ap9	A	2.00	ROI1_ARCFU
mitotic checkpoint serine/threonin-protein kinase Bub1	Ser/Thr protein kinase family	1aq7	A	2.30	SKY1_YEAST
SR protein kinase	shikimate kinase family	2hyw	A	1.85	AROK_MYCTU
Tau2 kinase domain	STE20 subfamily	1acr	A	2.10	TAO2K_RAT
thymidylate kinase	thymidylate kinase family	1eq2	C	1.70	THYM_BACSU
thiazole kinase	Thz kinase family	1eqs	C	2.50	THIM_BACSU
MET receptor tyrosine kinase	Tyr protein kinase family	3fcj	B	1.52	AIL467_HUMAN
phosphofructokinase	not classified	3fs5	B	2.70	Q15648_9TRYP
D-alanine-D-alanine ligase	not classified	2dqj	B	2.70	Q5SHZ4_THET8
chloramphenicol phosphotransferase	not classified	1qjx	B	2.50	CTP_STRYL
aminoglycoside phosphotransferase	not classified	3hav	B	2.50	Q96V67_ENTFC
Thiamine monophosphate kinase	not classified	3cr7	B	2.30	O67883_AQUAE
UMP kinase	not classified	2jjx	B	2.82	Q81S73_BACAN

ATP hydrolysis, PPi is released (energy extraction reaction)

Protein Name	Family	PDB ID	chain	resol	Uniprot ID
adenylate cyclase type 5	adenyl cyclase class-4/guanylyl cyclase family	3c16	A	2.87	ADCY5_CANFA
argininosuccinate synthetase	argininosuccinate synthase family	1kp3	A	2.00	ASSY_ECOLI
beta-lactam synthetase	asparagine synthetase family	1mb9	B	2.11	BLS_STRCL
Acyl-coenzyme A synthetase Acs2A	ATP-dependent AMP-binding enzyme family	3ce5	A	1.60	ACS2A_HUMAN
D-alanine-polyporphoribitol ligase subunit 1	ATP-dependent AMP-binding enzyme family	3fce	A	1.90	DLT4_AQUAE
DNA ligase from bacteriophage T7	ATP-dependent DNA ligase family	1a0f	A	2.60	DNL1_BPT7
tryptophan-tRNA synthetase	class-I aminoacyl-tRNA synthetase family	1mau	A	2.15	SYW_BACST
glutamyl-tRNA synthetase	class-I aminoacyl-tRNA synthetase family	1jgj	A	1.80	SYE_THET8
glutaminyl-tRNA synthetase	class-I aminoacyl-tRNA synthetase family	1gry	A	2.50	SQO_ECOLI
tyrosine-tRNA synthetase	class-I aminoacyl-tRNA synthetase family	1h3c	A	2.90	SYG_HUMAN
tryptophanyl-tRNA synthetase	class-I aminoacyl-tRNA synthetase family	2qui	A	2.40	SYW_HUMAN
histidyl-tRNA synthetase	class-I aminoacyl-tRNA synthetase family	1kmc	A	2.80	SYH_ECOLI
prolyl-tRNA synthetase	class-II aminoacyl-tRNA synthetase family	2i4o	A	2.40	SYP_RHOPA
class II AARS homologue (bll0957)	class-II aminoacyl-tRNA synthetase family	3mey	A	2.50	Q99V78_BRAJA
lysyl-tRNA synthetase	class-II aminoacyl-tRNA synthetase family	3bjj	A	2.31	SYK_HUMAN
glycyl-tRNA synthetase	class-II aminoacyl-tRNA synthetase family	2a77	A	2.70	SYG_HUMAN
pyrolysyl-tRNA synthetase	class-II aminoacyl-tRNA synthetase family	2q7g	A	1.90	PLYS_METMA
aspartyl-tRNA synthetase	class-II aminoacyl-tRNA synthetase family	3inem	B	1.89	SYD_PYRKO
Threonyl-tRNA synthetase	class-II aminoacyl-tRNA synthetase family	1nyr	A	2.80	SYT_STAAM
alanyl-tRNA synthetase	class-II aminoacyl-tRNA synthetase family	1yrf	A	2.15	SYA_AQUAE
seryl-tRNA synthetase	class-II aminoacyl-tRNA synthetase family	3ss	B	1.95	Q384V4_9TRYP
tRNA-lysyl-synthetase	tRNA(Leu)-lysyl-synthetase family	2e89	A	2.50	TILS_AQUAE
prolyl-tRNA synthetase	not classified	2j3m	B	2.30	Q5SHZ4_THET8
seryl-tRNA synthetase	not classified	2caj	B	2.20	Q464N5_METBA
NH3-dependent NAD+ synthetase	NAD synthetase family	1xmg	B	1.70	NADE_HELPI
ATP hydrolysis, PPi is released (energy extraction reaction)

Protein Name Family	PDB ID	chain	resol	Uniprot ID	
bacteriophage phi 6 RNA dependent RNA polymerase	Pol	h11	A	3.00	RDRP_BPPH6
tRNA CCA-pyrophosphorylase	tRNA nucleotidyltransferase/poly(A) polymerase family	3h39	B	2.85	Q9WZ14_THEMA
polyA polymerase	tRNA nucleotidyltransferase/poly(A) polymerase family	3aqn	A	3.30	C9QS13_ECOD1
RNA editing ligase Mp52	not classified	1xdn	A	1.20	RLGM1_ECOD1

ATP hydrolysis, PPi is released and AMP is transferred (adenylation)

Protein Name Family	PDB ID	chain	resol	Uniprot ID	
nicotinamide mononucleotide (NMN) adenyltransferase	archael NMN adenyltransferase family	19a	A	2.00	NADM_METJA
phosphopantetheine adenyltransferase	bacterial coaD family	1gn8	A	1.83	COAD_ECOLI
glucose-1-phosphate adenyltransferase small subunit	bacterial/plant glucose-1-phosphate adenyltransferase family	1yp3	C	2.60	GLGS_SOLTU
DNA polymerase IV	DNA polymerase type-Y family	3m9o	B	2.00	DPO42_SULSO
adenylytransferase ThIF	hesA/moeB/thiF family	1zfn	A	2.75	THIF_ECOLI
lipote-protein ligase A	lplA family	2aru	A	2.50	LPLA_THEAC
nicotinate-nucleotide adenyltransferase	nadD family	1yun	A	2.00	NADD_PSEAE
pantoate-beta-alanine ligase	pantothenate synthetase family	2a84	A	1.55	PANC_MCYUT
polyA polymerase	poly(A) polymerase family	2q66	A	1.80	PAP_YEAST
tRNA CCA-pyrophosphylase	tRNA nucleotidyltransferase/poly(A) polymerase family	3ovb	A	1.95	CCA_ARCFU
ubiquitin-activating enzyme E1C (Uba3) ubiquitin-activating E1 family	ubiquitin-activating E1 family	1rn	B	3.60	UBA3_HUMAN
ubiquitin-like 2 activating enzyme E1B ubiquitin-activating E1 family	ubiquitin-activating E1 family	1yq8	D	2.25	ULE1B_HUMAN
ubiquitin-like modifier-activating enzyme 5 ubiquitin-activating E1 family	ubiquitin-activating E1 family	3h8v	A	2.00	UBA5_HUMAN
biotin protein ligase	not classified	2dto	A	1.50	O78848_PYRHO
FMN adenyltransferase	not classified	3g59	A	1.87	Q6FNA9_CANGA

ATP hydrolysis, PPi is released and adenosine is transferred (adenosylation)

Protein Name Family	PDB ID	chain	resol	Uniprot ID	
methionine adenosyltransferase	AdoMet synthase family	1o9	A	2.90	METK1_RAT
CoB(l)alanin adenosyltransferase	Cob(l)alanin adenosyltransferase family	1g5t	A	1.80	BTUR_SALSO
CoB(l)yrinic acid A,C-diamide adenyltransferase	cobalamin adenyltransferase family	3xct	A	2.50	MMAB_HUMAN

Others

Protein Name Family	PDB ID	chain	resol	Uniprot ID	
7,8-dihydro-6-hydroxymethylpterin- pyrophosphokinase	HPPK family	1dy3	A	2.00	HPPK_ECOLI
Preneck appendage protein	not classified	3gn	A	2.15	B3VMP8_BPPH2
ATPsynthase epsilon subunit	ATPase epsilon chain family	2ezy	A	1.92	ATPB_BAC3
probable ATP-dependent RNA helicase Ddx58	helicase family	3irr	A	2.15	DDX58_HUMAN
NAD-dependent malic enzyme	malic enzymes family	1goz	A	2.20	MAOM_HUMAN
DCP2 protein	Nudix hydrolase family	2km	B	2.80	DCP2_SCHPO
acetylglutamate kinase-like protein	P(II) protein family	2rd	D	2.51	GLNB_ARATH
STRADalpha	STE Ser/Thr protein kinase family	3gni	N	2.35	STRAA_HUMAN
redox-sensing transcriptional repressor Rex transient receptor potential cation channel subfamily V member 1	transcriptional regulatory rex family	2vz3	B	2.00	REX_BACSU
polyhedrin	transient receptor	2pm	A	2.70	TRPV1_RAT
pertussis toxin subunit 4	not classified	2oh5	A	1.98	O10693_CPVB
non-biological protein	not classified	1bcp	E	2.70	TOX4_BORPE
5'-AMP-activated protein kinase catalytic subunit alpha-1	5'-AMP-activated protein kinase gamma subunit family	2v92	E	2.40	AAKG1_RAT
apoptosis regulator Ced4	AAA+ family/CARD domain/NB-ARC domain	2a5y	B	2.60	CED4_CAEEL
Clp1(inactive form)	Clp1 family	2mpi	A	2.95	CLP1_YEAST
Rck dmain of YuaA protein	ktcA potassium transport (TC 2.A.38.4) family	2hu	A	2.25	KTRA_BACSU
nitrogen regulatory protein P-II	P(II) protein family	2kp	A	1.20	GLNB_SYNE7
O-sialoglycoprotein endopeptidase (probably miss annotation, in reality, AP endonuclease)	peptidase M22 family	2ivp	A	2.50	GCP_PYRAB
Rat synapsin 1	synapsin family	1pk	A	2.10	SYN1_RAT
formations was obtained in the ten runs of 2 ns simulation.

Comparison of ribose conformations

Curvature of ribose in ATP had different distributions between the one calculated from the snapshot conformation in MD simulation and the one from PDB data (Fig. 4). The Gaussian curvature of the ribose from MD simulation had normal-like distribution around -0.11 and the mean curvature had normal-like distribution around 0.02. This behaviour was almost the same in each trajectory of ten runs (Supplementary Fig. 2). The distribution of the mean curvature of the ribose from PDB was more or less the same as the distribution from MD simulation, but the distribution of the Gaussian curvature of the ribose from PDB was not in the normal form and about 70% of them lay between -0.10 and -0.05. The value of the Gaussian curvature is always negative by definition, and when the value is close to zero, the ring structure is close to a flat structure. Therefore, the comparison of the structures above suggests that the ribose in ATP is off the plane when it exists in water, but is

Protein Name	Family	PDB ID	chain	resol	Uniprot ID
putative uncharacterized protein TTHA0350	not classified	3a88	A	1.70	Q5SLE3_THET8
phosphofructokinase	not classified	3opy	B	3.05	Q8TG00_PICPA
chloride channel protein 5 (clc-5)	chloride channel family	2j9l	C	2.30	CLCN5_HUMAN
gluconate kinase	FGGY kinase family	3i13	A	2.00	Q5FM28_LACAC
Hypothetical protein YtbG	fmt family/sugar epimerase family	127e	D	3.00	ARNA_ECOLI
ATP-dependent molecular chaperone Hsp82	heat shock protein 90 family	2cg9	B	3.10	HSP82_YEAST
DNA packaging protein Gp17	myoviridae large terminase family	2o0h	A	1.88	TERL_BPT4
AP44a hydrolase	Nadix hydrolase family	2pyw	B	2.00	PYRI_METJA
aspartate carbamoyltransferase regulatory chain	(Pyrl)				
ribonucleotide reductase R1	ribonucleoside diphosphate reductase large				
SMC protein	SMC family				
molybdenum storage protein subunit alpha	UMP kinase family	2gox	A	1.60	MOSA_AZOV
uncharacterized protein	universal stress protein A family	3cis	G	2.90	O06189_MYCTU
Actin-depolymerizing factor Brevin	villin/gelsolin family	2fgh	A	2.80	GELS_HORSE
ethanolamine utilization protein EutJ	not classified	3hiq	A	2.80	
universal stress protein F	not classified	3fox	A	1.58	A6T8F5_KLEP7
alcaligin biosynthesis protein	not classified	2o0y	A	1.96	P94255_BORBR
l-proline dehydrogenase alpha subunit	not classified	1y56	A	2.86	OS9088_PYRHO
FtsA	not classified	1eg4	T	2.60	Q9WUZ0_THEMA
NTRC-like two-domain protein	not classified	3fka	A	2.10	
hemerythrin-like domain protein DcrH	not classified	3a9t	A	2.37	Q9REU3_DESVU
Protein Mj1225	not classified	3liz	A	2.20	Y1225_METJA
pyridoxal kinase	not classified	3bq	A	2.00	Q88Y85_LACPL
ATP-CoB(I)alamin adenosyltransferase	not classified	2hz	A	1.80	Q2SZ99_BURTA
ciblamin adenosyltransferase PduO-like protein	not classified	3gah	A	1.17	Q50E12_LACRE
putative ribokinase II	not classified	3iq0	B	1.79	Q8FD38_ECOL6
Universal stress protein family	not classified	2ez8	A	1.55	Q5JSV7_TheT8
phosphofructokinase	not classified	3ie7	A	1.60	Q92985_LISIN
acomromobactin synthetase protein (ACSD)	not classified	2o9j	A	2.00	Q93A88_ERWCH
MccB	not classified	3hn5	A	1.90	Q47506_ECOLX
HipA	not classified	3dnt	B	1.66	HIPA_ECOLI
pyruvate carboxylase	not classified	3bg5	A	2.80	Q99UY8_STAM
probable ATP-dependent DNA ligase D	not classified	2fck	B	1.90	Q91IX7_PSEAE
ParA ATPase	not classified	3ea0	B	2.20	Q8KF94_CHLIE
small nucleolar RNP similar to Gar1	not classified	2hvy	B	2.30	Q8U029_PYRFU

Figure 3 Root mean square deviation (RMSD) of ATP during the simulation. The calculation was done between the initial structure and structures of every 0.1 ps. All 36 atoms including hydrogen atoms were used in the calculation. Four snapshot structures were drawn in the graph. From left to right, conformations of 0 ps, 1,437 ps, 1,513 ps and 1,899 ps. This graph and the following ones were drawn by R. Number of runs is ten. Figure 9.
restricted to relatively planar structure when bound to a protein. This difference is not that obvious when the structures are compared in torsion angles of the ribose ring. The torsion angles τ_0 and τ_4 can be good indicators of puckering structure of ribose ring. As shown in Figure 5, a cluster of structures at the first quadrant ($\tau_0>0$ and $\tau_4>0$) is $C2'$ exo conformation, the second quadrant ($\tau_0<0$ and $\tau_4>0$) is $O4'$ endo conformation, the third quadrant ($\tau_0<0$ and $\tau_4<0$) is basically $C2'$ endo conformation, and the fourth quadrant ($\tau_0>0$ and $\tau_4<0$) is $O4'$ exo conformation. In water, $C2'$ exo and $C2'$ endo conformations was highly dominated followed by $O4'$ endo conformation. When the distribution in different ten runs of simulation was examined (Supplementary Fig. 3), four runs (trajectories 01, 03, 06, 07) had more numbers of $C2'$ exo conformations and two runs (trajectories 05, 09) had more numbers of $C2'$ endo conformations. As a whole, there is a tendency to prefer both $C2'$ exo and $C2'$ endo conformations in water. When ATP bound to protein, the number of $C2'$ exo and $C2'$ endo conformations were more or less the same and $O4'$ endo conformation was less populated.

The difference in puckering seemingly has a connection to the biological role of ATP molecules. Out of 188 protein-bound ATP molecules in the dataset, 43 ATP molecules were for energy extraction through Pi hydrolysis, and 42 ATP molecules were for phosphorylation (Table 1). About 50% of 43 plus 42 ATP molecules took either $C2'$ exo or $C2'$ endo conformation. Interestingly, 33% of ATP molecules in energy extraction group (the maximum portion in the group) took $C2'$ endo conformation, and 33% of ATP molecules in phosphorylation group (the maximum portion in the group) took $C2'$ exo conformation.

Comparison of adenine conformation

We analyzed the conformation of adenine in two separate rings, namely five-membered ring and six-membered ring. The five-membered ring had a flat conformation during the MD simulation with an occasional slight deviation (Fig. 6). The distribution of the black dots in the figure, which forms an eastbound comet shape in any runs of simulation (Supplementary Fig. 4), suggests that the five-membered ring in adenine should undergo puckering in a very slight scale. The five-membered rings of adenine in the ATP molecules in PDB took a very flat conformation as visualized in the figure by red dots. Almost all the dots were found at the head of the comet shape, where both Gaussian and mean curvatures were very close to zero.

The conformation of six-membered ring in adenine had different characteristics compared with the five-membered ring. In the conformation obtained by the MD simulation, the distribution of the Gaussian curvature was significantly different from that for the five-membered ring (Fig. 7). In the Gaussian curvature, the absolute value of the center of the distribution was significantly greater, and the width of
the distribution was significantly wider than those of five-membered ring. The magnitude of distribution in the mean curvature was also greater than that of five-membered ring. These differences evidently appeared in any runs of the simulations (Supplementary Fig. 5). All of these facts indicate that the six-membered ring in solution was deviated from a flat structure in a greater scale compared with the five-membered ring. These deviations from flatness were, however, considerably adjusted when ATP molecule bound to a protein. The distribution of Gaussian curvature of six-membered ring in PDB protruded out to the east direction from the distribution of the Gaussian curvature and squeezed to the center of the mean curvature of ATP in water (red dots in Fig. 7). The six-membered ring of adenine was apparently flattened by the protein, to the extent of the flatness that rarely appeared in ATP in water.

Adenine structure can be approximated to two flat rings that oscillate at the connection and the oscillation motion can be observed in the MD simulation. We described the oscillation motion by defining a pseudo-ring across the two rings and calculated Gaussian and mean curvatures (Fig. 8). In the conformation obtained from the MD simulation, both Gaussian and mean curvatures had normal-like distribution and a crescent-shape distribution when combined; two edges of the crescent consisted of the conformations in the long tail of the Gaussian curvature. These distributions were observed in trajectories of ten runs (Supplementary Fig. 6). In the conformations from PDB, however, the values of the mean curvature were virtually zero and the values of the Gaussian curvature distributed around two peaks, namely the peaks at −0.75 and at −0.68. The former conformations mostly lay within the distribution of ATP in solution, but the latter conformations lay out of the range of the distribution of ATP in solution. The distribution of Gaussian curvature in PDB had no clear correlation to other values such as buriedness of ATP molecule to the protein or the function of ATP molecules, and hence the physicochemical explanation for this distinction needs further study. It seems that, due to some structural constraints, the conformation with Gaussian curvature −0.70 is prohibited in the adenine ring.

Different distributions of torsion angles between the conformations of MD simulation and of PDB

The torsion around the chemical bond between the phosphate unit and the ribose (γ), and that around the glycosyl bond connecting the ribose and adenine (χ) are apparently far more flexible than the torsion angles around the bonds for ribose and adenine rings in ATP molecule (Fig. 1). How-
however, the torsion angles around these bonds in conformations from MD simulation were heavily populated at only two states. When the conformations were counted with the bins of torsion angles digitized by 10 degrees, the densely populated bins were represented by a pair of torsion angles \(\gamma=-170\) and \(\chi=70\), and by a pair of \(\gamma=60\) and \(\chi=60\). Both conformations were found around 1.0% of the whole population (Fig. 9). Different trajectories had peak population in different torsion angle pairs (Supplementary Fig. 7), but the two peaks in Figure 9 were almost consistently as one of the top peaks in all trajectories. The noticeable exceptions were trajectories 5 and 6. Both trajectories did have a peak at \(\gamma=-60\) and \(\chi=60\), but did not have a peak at \(\gamma=-170\) and \(\chi=70\). The torsion angles \(\gamma=-90\) to \(-180\) represents a trans conformation between O5' and C3'. The torsion angle \(\chi=60\) represents a gauche\(^*\) or syn conformation between the ribose and the adenine. Obviously the ATP molecule assumes a compact conformation by syn conformation in water.

Peaks in a pair of torsion angles were found in different values in the conformations from PDB. The most heavily populated pair of angles was \(\gamma=50, \chi=-150\) (3.4%), followed by \(\gamma=50, \chi=-160\) (2.9%) and \(\gamma=40, \chi=-120\) (2.9%) (Fig. 9). The torsion angle \(\gamma=50\) represents a cis conformation between O5' and C3'. \(\chi=-120\) to \(-160\) represents an anti conformation between the ribose and the adenine. When bound to a protein, the ATP molecule is extended over the protein.

In the population derived from MD simulation, the proportion of the conformations abundant in PDB was approximately half of the most populated conformation. Both the conformations with \(\gamma=50\) and \(\chi=-150\) and the conformations with \(\gamma=50\) and \(\chi=-160\) occupied about 0.4%, and the conformations with \(\gamma=40\) and \(\chi=-120\) about 0.2%. In trajectory 6 in ten runs of simulations, 1% of the population was found in a pair of torsion angles close to the conformations found in PDB. This is, however, the only run with the dense population and none of the nine others had the dense population at the corresponding torsion angle pairs. On the other hand, in the population of PDB, the proportion of the conformations abundant in MD simulation was virtually none. These results strongly suggest that during the process of ATP binding to protein, the protein should exert forces on ATP molecule to assume the specific conformation that were under-represented in solution.

As mentioned above, there were three sets of torsion angles in ATP molecules that often appeared in PDB. These three sets were virtually grouped into two, namely, a pair of \(50\leq\gamma<60\) and \(-160<\chi\leq-140\), and a pair of \(40\leq\gamma<50\) and \(-120<\chi\leq-110\) (Fig. 9). When we examined the function of ATP molecules in both peaks, we found that the proteins in the former peak had ATP for phosphorylation function twice as many as those in the latter peak (the second group in Table 1). Mildvan discussed in his review\(^{17}\) and his works with the coworkers, that the former peak of \(\chi\) angle (they called low-antiglycosyl torsional angle) was found in ATP-Mn\(^{2+}\) binary complex and represented presumably an inactive form, and that the latter peak of \(\chi\) angle (they called high-antiglycosyl torsional angle) was found in ATP-Mn\(^{2+}\)-kinase ternary complex and presumably represented an active form. Combined with the current analyses, we suggest that the former peak (\(50\leq\gamma<60\) and \(-160<\chi\leq-140\)) is the set of torsion angles for inactive form and may be easily crystalized. And the latter (\(40\leq\gamma<50\) and \(-120<\chi\leq-110\)) peak is the torsion angles for active form and may be difficult for crystalization, because the conformation initiates chemical reactions. This may explain the difference in the density of population in two peaks. The over-representation of ATP molecules for phosphorylation in the former peaks can be explained by the possibility that they were much easily crystallized in the inactive form.

Conclusion

In this paper, we extensively analyzed the effect of protein to ATP conformations. It has been implicitly assumed that protein affects on ATP conformation when it binds, but there were no comprehensive study on this issue.

Based on the sampling of the ATP solution structures
obtained from MD simulation, and the sampling of ATP structures bound to a protein in Protein Data Bank, the following three characteristics were found.

1) The ribose ring in ATP molecule, which is flexible in solution, tends to assume C2′ exo or C2′ endo conformation when it binds to protein. Proteins that use ATP for energy source tend to bind ATP with C2′ endo forms. Proteins that use ATP for phosphorylation tend to bind ATP with C2′ exo forms.

2) The adenine ring in ATP molecule, which assumes open-book motion with the two ring structures, has two distinct structures when ATP binds to protein. One of the structures is commonly found in solution but the other not. The physicochemical background of this distinction needs further study.

3) The torsion angles of glycosyl bond (χ) and the bond between phosphate unit and the ribose (γ) take unique values when ATP binds to protein. The combination of the torsion angles well populated in solution rarely found in the ATP molecule on the protein. There are two well-populated torsion angles in ATP bound to proteins, one of which may represent active form and the other inactive form.

These findings suggest that ATP-binding protein forces ATP to take rare conformation in solution when ATP binds to protein, and that this conformational change exerted by the protein should be the trigger for the cleavage of the γ phosphate group.

Finding a conformation of the bound ligand is a big issue in protein-ligand docking problem18,19,20. The widely used methods introduced MD to search for the conformation of the ligand placed close to the protein. The current study implies that, in the case of ATP molecule, protein-bound conformation can hardly be achieved by simple MD simulation, as shown that flatness of the ring structures and the χ and γ torsion angles for protein-bound ATP rarely appears in solution. Therefore, a sophisticated MD simulation that includes both a ligand and a protein at once is, at least, necessary to sample the conformations for protein-ligand complex. In addition, the failure in finding the appropriate conformation in MD simulation can be circumvented by a database search (database sampling), in case the protein-ligand conformations are abundant in the database.

Acknowledgement

K.Y. was supported by Targeted Proteins Research Program (TPRP) and by Platform for Drug Discovery, Informatics, and Structural Life Science from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.
References

1. Senez, J. C. Some considerations on the energetics of bacterial growth. *Bacteriol Rev.* 26, 95–107 (1962).

2. Kitamura, K., Tokunaga, M., Esaki, S., Hikokoshi-Iwane, A. & Yanagida, T. Mechanism of muscle contraction based on stochastic properties of single actomyosin motors observed in vitro. *BIOPHYSICS* 1, 1–19 (2005).

3. Arnez, J. G. & Moras, D. Structural and functional considerations of the aminoacylation reaction. *Trends Biochem. Sci.* 22, 211–216 (1997).

4. Tarrant, M. K. & Cole, P. A. The chemical biology of protein phosphorylation. *Annu. Rev. Biochem.* 78, 797–825 (2009).

5. Schulman, B. A. & Harper, J. W. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. *Nat. Rev. Mol. Cell Biol.* 10, 319–331 (2009).

6. Bauer, C. B., Fonseca, M. V., Holden, H. M., Thoden, J. B., Thompson, T. B., Escalante-Semerena, J. C. & Rayment, I. Three-Dimensional Structure of ATP:corrinoid adenosyltransferase from *Salmonella typhimurium* in its free state, complexed with MgATP, or complexed with hydroxycobalamin and MgATP. *Biochemistry* 40, 361–374 (2001).

7. Berman, H. M., Henrick, K. & Nakamura, H. Announcing the worldwide Protein Data Bank. *Nat. Struct. Biol.* 10, 980 (2003).

8. Yamaguchi, A., Iida, K., Matsui, N., Tomoda, S., Yura, K. & Go, M. Het-PDB Navi.: A database for protein-small molecule interactions. *J. Biochem.* (Tokyo) 135, 79–84 (2004).

9. Shrake, A. & Rupley, J. A. Environment and exposure to solvent of protein atoms. Lysozyme and insulin. *J. Mol. Biol.* 79, 351–364 (1973).

10. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res.* 25, 3389–3402 (1997).

11. Kitamura, Y., Ebihara, A., Agari, Y., Shinkai, A., Hirotsu, K. & Kuramitsu, S. Structure of D-alanine-D-alanine ligase from *Thermus thermophilus* HB8: cumulative conformational change and enzyme-ligand interactions. *Acta Crystallogr. D Biol. Crystallogr.* 65, 1098–1106 (2009).

12. Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. *J. Chem. Theory Comput.* 4, 435–447 (2008).

13. Schlick, T. *Molecular Modeling and Simulation: An Interdisciplinary Guide, 2nd Edition* (Springer, New York, 2010).

14. Hyde, S. T., Ninham, B. W. & Zemb, T. Phase boundary for ternary microemulsions. Predictions of a Geometric Model. *J. Phys. Chem.* 93, 1464–1471 (1989).

15. Hyde, S. T., Barnes, I. S. & Ninham, B. W. Curvature energy of surfactant interfaces confined to the plaquettes of a cubic lattice. *Langmuir* 6, 1055–1062 (1990).

16. The UniProt Consortium. Ongoing and future developments at the Universal Protein Resource. *Nucleic Acids Res.* 39, D214–D219 (2011).

17. Mildvan, A. S. Mechanisms of signaling and related enzymes. *PROTEINS: Structure, Function, and Genetics* 29, 401–416 (1997).

18. Jones, G., Willett, P., Glen, R. C., Leach, A. R. & Taylor, R. Development and validation of a genetic algorithm for flexible docking. *J. Mol. Biol.* 267, 727–748 (1997).

19. Huang, S.-Y. & Zou, X. Advances and challenges in protein-ligand docking. *Int. J. Mol. Sci.* 11, 3016–3034 (2010).

20. Kokubo, H., Tanaka, T. & Okamura, Y. Ab initio prediction of protein-ligand binding structures by replica-exchange umbrella sampling simulations. *J. Comp. Chem.* 32, 2810–2821 (2011).

21. R Development Core Team. *R: A language and environment for statistical computing*. (R Foundation for Statistical Computing, Vienna, Austria 2011).