Supplementary Information

Supplementary Figure S1: Genes were selected through systematic search on PubMed database, looking for “name of drug”, “multiple myeloma or plasma cell leukemia”, and “pharmacogenetics or pharmacogenomics or polymorphisms”. GeneMANIA network analysis was performed on the global list of pharmacogenetic marker genes to reveal their potential associations, in terms of co-expression, co-localization, physical interactions, shared protein domains and pathways. Significant networks that were identified for all the listed genes (a) and for the ones specifically involved in the most representative pathways, DNA repair/response to DNA damage (b) and drug biotransformation (c), are reported.

Supplementary Table S1: Analysis of “The Pharmacogenomics Knowledgebase”, clinical information of germline genetic variation and efficacy/safety [1–45].

Table S1. Analysis of “The Pharmacogenomics Knowledgebase”, clinical information of germline genetic variation and efficacy/safety.

Drug	Gene	SNP	Alleles	Amico Acid	Translation	Haplotypes	Annotation	Reference
Cyclophosphamide	ABCB1	rs10276036	C>T		ABCB1*13		Efficacy	Caronia et al., 2011 [1]
		rs1128503	A>G		ABCB1*13		Efficacy	Caronia et al., 2011 [1]
		rs2032582	A>T;	Ser893 Ala; Ser893 Thr	ABCB1*13	Efficacy	Bray et al., 2010 [2]	
		rs4148737	T>C					Caronia et al., 2011 [1]
	ABCC3	rs4148416	C>T	Gly1013 Gly			Efficacy	Caronia et al., 2011 [1]
	ABCC4	rs9561778	G>A;				Toxicity/ADR	Low et al., 2009 [3]
		rs698	T>C;	Ile350 Val			Efficacy	Khrunin et al., 2014 [4]
	ALDH1A	rs6151031	-				Toxicity/ADR	Ekhart et al., 2008 [5]
	CYP2B6	rs12721655	A>G	Lys139Glu	CYP2B6*8, CYP2B6*13, CYP2B6*13A, CYP2B6*13B	Efficacy	Bray et al., 2010 [2]	
rs2279343	A>G	Lys262Arg	CYP2B6*4, CYP2B6*4A, CYP2B6*4B, CYP2B6*4C, CYP2B6*4D, CYP2B6*6, CYP2B6*6A, CYP2B6*6B, CYP2B6*6C, CYP2B6*7, CYP2B6*7A, CYP2B6*7B, CYP2B6*13, CYP2B6*13A, CYP2B6*13B, CYP2B6*16, CYP2B6*19, CYP2B6*20, CYP2B6*26, CYP2B6*34, CYP2B6*36, CYP2B6*37, CYP2B6*38	Toxicity/ADR	Rocha et al., 2009 [7]			
rs3211371	C>T	Arg487Cys	CYP2B6*5, CYP2B6*5A, CYP2B6*5B, CYP2B6*5C, CYP2B6*7, CYP2B6*7A, CYP2B6*7B	Toxicity/ADR	Bray et al., 2010 [2]			
Gene	SNP	Chromosome	Effect	Reference	Type	Reference		
-----------	----------	------------	--------	----------------------	--------------------------	--		
CYP2B6	rs3745274		G>T	Gln172His	Toxicity/ADR; Dosage	Bray et al., 2010 [2]; Rocha et al., 2009 [7]		
CYP2B6	rs8192709		C>T	Arg22Cys	Toxicity/ADR	Rocha et al., 2009 [7]		
CYP2C19	rs4244285		G>A; C,G>C	Pro227Pro	Efficacy; Toxicity/ADR	Bray et al., 2010 [2]; Ngamjanyaporn et al., 2011 [8]		
CYP2E1	rs2070676		G>C	-	Efficacy, Toxicity/ADR	Khrunin et al., 2012 [9]		
	rs6413432		T>A	-	Efficacy	Khrunin et al., 2012 [9]		
CYP3A4	rs2740574		C>T	-	Toxicity/ADR	Su et al., 2010 [10]		
EPHX1	rs1051740		T>C	Tyr113His	Toxicity/ADR	Khrunin et al., 2014 [4]		
ERCC1	rs11615		A>G	Asn118Asn	Toxicity/ADR	Khrunin et al., 2010 [11]; Khrunin et al., 2012 [9]		
ERCC2	rs1799793		C>T	Asp288Asn	Efficacy, Toxicity/ADR	Khrunin et al., 2010 [11]; Khrunin et al., 2012 [9]		
Gene	SNP ID/Allele	Effect	Outcome	Reference				
----------	---------------	--------	---------	------------------------------------				
GATA3	rs3824662	C>A	Efficacy	Perez-Andreu et al., 2013 [12]				
GSTA1,	rs3957357	A>G	Toxicity/ADR	Khrunin et al., 2010 [11]; Khrunin et al., 2012 [9]				
GSTA6P								
GSTM3	rs1799735	C>CCT, C>	Toxicity/ADR	Khrunin et al., 2010 [11]; Khrunin et al., 2012 [9]				
GSTP1	rs1695	A>G	Ile105Val	Efficacy	Khrunin et al., 2010 [11]; Khrunin et al., 2012 [9]			
GSTP1	rs1695	A>G	Ile105Val	Toxicity/ADR	Oliveira et al., 2010 [13]; Zhang et al., 2011 [14]			
LIG3	rs1052536	C>T	Toxicity/ADR	Khrunin et al., 2014 [4]				
MTHFR	rs1801133	G>A	Ala140Val	Toxicity/ADR	Henríquez-Hernández et al., 2010 [15]; Robien et al., 2004 [16]; Patiño-García et al., 2009 [17]			
MTR	rs1805087	A>G	Asp919Gly	Toxicity/ADR	Cui et al., 2011 [18]; Patiño-García et al., 2009 [17]			
MUTYH	rs3219484	C>T	Val22Met	Toxicity/ADR	Khrunin et al., 2014 [4]			
Genes	Gene Identifier	SNP	Allele Changes	Protein Changes	Study Details			
-------	----------------	-----	---------------	----------------	---------------			
NAT2	rs1801280	T>C	Ile114Thr	Toxicity/ADR	Khrunin et al., 2014 [4]			
NOS3	rs1799983	T>G	Asp298Glu	Efficacy	Choi et al., 2009 [19]			
	rs2070744	C>T	-	-	Efficacy	Choi et al., 2009 [19]		
NQO1	rs1800566	G>A	Pro149Ser	Efficacy	Fagerholm et al., 2008 [20]; Jamieson et al., 2011 [21]; Khrunin et al., 2014 [4]; Kolesar et al., 2002 [22]; Kolesar et al., 2011 [23]; Siegel et al., 1999 [24]; Siegel et al., 2001 [25]; Smith et al., 2001 [26]			
NQO2	rs1143684	C>T	Leu47Phe	Efficacy	Jamieson et al., 2011 [21]			
RAD52	rs11226	G>A	-	-	Toxicity/ADR	Khrunin et al., 2014 [4]		
SLC22A16	rs12210538	A>G	Met409Thr	Toxicity/ADR	Bray et al., 2010 [2]			
	rs6907567	A>G	Asn104Asn	Efficacy	Bray et al., 2010 [2]			
	rs723685	A>G	Val252Ala	-	Dosage	Bray et al., 2010 [2]		
SOD2	rs4880	A>G	Val116Ala	Efficacy	Glynn et al., 2009 [27]			
Gene	rs Number	Allele	Protein Change	Refseq Alleles	Effect	Sources		
-----------	------------	---------	----------------	-------------------------	---------------	---		
TP53	rs1042522	G>C	Pro33Arg	-	Efficacy,	Henríquez-Hernández et al., 2010 [15]; Huang et al., 2008 [28];		
					Toxicity/ADR	Khrunin et al., 2010 [11]; Khrunin et al., 2012 [9]; Kim et al., 2009 [29]		
TPMT	rs1142345	T>C	Tyr240Cys	TPMT*3A, TPMT*3C,	Efficacy	Khrunin et al., 2014 [4]		
				TPMT*3D, TPMT*3E				
VEGFA	rs2010963	C>G	-	-	Efficacy	Orlandi et al., 2013 [30]		
XRCC1	rs25487	T>C	Glu399Arg	-	Efficacy,	Khrunin et al., 2010 [11]; Khrunin et al., 2012 [9]		
					Toxicity/ADR			
Dexamethasone GATA3	rs3824662	C>A	-	-	Efficacy	Perez-Andreu et al., 2013 [12]		
ABCB1	rs10276036	C>T	-	ABCB1*13	Efficacy	Caronia et al., 2011 [1]		
	rs1045642	A>T; A>G	Ile1145Ile	ABCB1*13	Efficacy	Cizmarikova et al., 2010 [31]; Giovannetti et al., 2011 [32]; Greén et al., 2012 [33]; Kafka et al., 2003 [34]; Lal et al., 2008 [35]		
	rs1128503	A>G	Gly412Gly	ABCB1*13	Efficacy	Caronia et al., 2011 [1]		
	rs2032582	A>T; A>C	Ser893Ala; Ser893Thr	ABCB1*13	Efficacy; Pharmacocynetic	Bray et al., 2010 [2]; Lal et al., 2008 [35]		
	rs4148737	T>C	-	-	Efficacy	Caronia et al., 2011 [1]		
ABCC1	rs45511401	G>T	Gly671Val	-	Toxicity/ADR	Wojnowski et al., 2005 [36]		
ABCC2	rs17222723	T>A	Val1188Glu	-	Toxicity/ADR	Wojnowski et al., 2005 [36]		
	rs187710	G>A	Cys1515Tyr	-	Toxicity/ADR	Wojnowski et al., 2005 [36]		
ABCC3	rs4148416	C>T	Gly1013Gly	-	Efficacy	Caronia et al., 2011 [1]		
ABCC4	rs9561778	G>A; G>T	-	-	Toxicity/ADR	Low et al., 2009 [3]		
CBR1	rs20572	C>T	Ala209Ala	-	Dosage	Lal et al., 2008 [37]		
CBR3	rs8133052	G>A	Cys4Tyr	-	Efficacy,	Fan et al., 2008 [39]		
					Toxicity/ADR	Wojnowski et al., 2005 [36]		
CYBA	rs4673	A>G	Tyr72His	-	Toxicity/ADR	Wojnowski et al., 2005 [36]		
SNP	rsID	Allele	Gene Symbol	rsID	Allele	Gene Symbol	Function	Ref.
------------	------------	--------	-------------	------	--------	-------------	----------------	----------------------------
CYP2B6	rs12721655	A>G	Lys139Glu				Efficacy	Bray *2010 [2]
	rs3211371	C>T	Arg487Cys				Toxicity/ADR	Bray *2010 [2]
	rs3745274	G>T	Gln172His				Dosage	Bray *2010 [2]
CYP2C19	rs4244285	G>A; C>G	Pro227Pro				Efficacy	Bray *2010 [2]
GATA3	rs3824662	C>A	-				Efficacy	Perez-Andreu *2013 [12]
GST1	rs3957357	A>G	-				Efficacy	Gelderblom *2014 [40]
GSTM1	GSTM1 null		-				Efficacy, Toxicity/ADR	Altés *2013 [41]
Gene	rsID	SNP	Allele	Effect	Reference			
------	------	-----	--------	--------	-----------			
MTR	rs1805087	A>G	Asp919Gly	-	Toxicity/ADR			
	rs1883112	G>A	-	-	Toxicity/ADR			
	rs1799983	T>G	Asp298Glu	-	Efficacy			
	rs2070744	C>T	-	-	Efficacy			
NCF4	rs1800566	G>A	Pro149Ser	-	Efficacy			
NOS3	rs1143684	C>T	Leu47Phe	-	Efficacy			
NQO1	rs13058338	T>A	-	-	Toxicity/ADR			
	rs12210538	A>G	Met497Thr	-	Toxicity/ADR			
	rs9607567	A>G	Asn104Asn	-	Efficacy			
	rs714368	T>C	His49Arg	-	Other			
	rs723685	A>G	Val252Ala	-	Dosage			
NQO2	rs12238472	C>T	Arg1268Gln	-	Toxicity			
	rs2227291	G>C	Val767Leu	-	toxicity			
	rs12418	G>A	-	-	efficacy			
	rs1871450	G>A	-	-	toxicity/toxicity			
	rs4148943	C>T	-	-	efficacy			
	rs4148945	C>T	-	-	efficacy/toxicity			
	rs4148947	T>C	-	-	efficacy			
	rs148950	G>A	-	-	efficacy/toxicity			
	rs730720	C>T	-	-	efficacy			
CYP4B1	rs4646487	C>T	Arg173Trp	CYP4B1*3, CYP4B1*6	toxicity			
polymorphism	rsID	SNP	AA change	effect	reference			
--------------	------	-----	-----------	--------	-----------			
NAT2								
rs1799931		G>A	Gly286Glu	toxicity	Deeken et al., 2010 [43]			
PPARD								
rs1883322		C>T	-	efficacy	Deeken et al., 2010 [43]			
rs2016520		C>T	-	efficacy	Deeken et al., 2010 [43]			
rs3734254		C>T	-	efficacy	Deeken et al., 2010 [43]			
rs6922548		A>G	-	efficacy	Deeken et al., 2010 [43]			
rs7769719		G>A	-	efficacy	Deeken et al., 2010 [43]			
SLC10A2								
rs2301159		G>A	-	toxicity	Deeken et al., 2010 [43]			
SPG7								
rs12960		G>A	Arg688Gln	toxicity	Deeken et al., 2010 [43]			
rs2292954		A>G	Thr503Ala	toxicity	Deeken et al., 2010 [43]			
SULT1C4								
rs1402467		C>G	Asp5Glu	-	efficacy	Deeken et al., 2010 [43]		
ABCB1								
rs10276036		C>T	-	ABCB1*13	Caronia et al., 2011 [1]			
rs1045642		A>G	Ile1145Ile	ABCB1*13	Ceppi et al., 2014 [44]			
rs1128503		A>G	Gly412Gly	ABCB1*13	Caronia et al., 2011 [1]			
rs4148737		T>C	-	Efficacy	Caronia et al., 2011 [1]			
rs4728709		G>A	-	Toxicity/ADR	Ceppi et al., 2014 [44]			
ABCC3								
rs4148416		C>T	Gly1013Gly	-	Efficacy	Caronia et al., 2011 [1]		
ACTG1								
rs1135989		G>A	Ala403Ala	-	Toxicity/ADR	Ceppi et al., 2014 [44]		
CAPG								
rs3770102		G>T	-	-	Toxicity/ADR	Ceppi et al., 2014 [44]		
CEPT2		C>T	-	-	Toxicity/ADR	Diouf et al., 2015 [45]		
GATA3		C>A	-	Efficacy	Perez-Andreu et al., 2013 [12]			
MTR		A>G	Asp919Gly	-	Toxicity/ADR	Patiño-García et al., 2009 [17]; Cui et al., 2011 [18]		

ADR—adverse drug reaction.
Figure S1. Gene networks of pharmacogenetic markers performed with GeneMANIA. (a) All listed genes; (b) genes involved in DNA repair/response to DNA damage; (c) genes involved in drug biotransformation.
References

1. Caronia, D.; Patiño-Garcia, A.; Peréz-Martínez, A.; Pita, G.; Moreno, L.T.; Zalacain-Díez, M.; Molina, B.; Colmenero, I.; Sierrasúmaga, L.; Benítez, J.; et al. Effect of ABCB1 and ABCC3 polymorphisms on osteosarcoma survival after chemotherapy: A pharmacogenetic study. *PLoS ONE* 2011, 6, e26091.

2. Bray, J.; Sludden, J.; Griffin, M.J.; Cole, M.; Verrill, M.; Jamieson, D.; Boddy, A.V. Influence of pharmacogenetics on response and toxicity in breast cancer patients treated with doxorubicin and cyclophosphamide. *Br. J. Cancer* 2010, 102, 1003–1009.

3. Low, S.-K.; Kiyotani, K.; Mushiroda, T.; Daigo, Y.; Nakamura, Y.; Zembutsu, H. Association study of genetic polymorphism in ABCC4 with cyclophosphamide-induced adverse drug reactions in breast cancer patients. *J. Hum. Genet.* 2009, 54, 564–571.

4. Khrunin, A.V.; Khokhrin, D.V.; Moisseev, A.A.; Gorbunova, V.A.; Limborska, S.A. Pharmacogenomic assessment of cisplatin-based chemotherapy outcomes in ovarian cancer. *Pharmacogenomics* 2014, 15, 329–337.

5. Ekhart, C.; Doodeman, V.D.; Rodenhuis, S.; Smits, P.H.M.; Beijnen, J.H.; Huitema, A.D.R. Influence of polymorphisms of drug metabolizing enzymes (*CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, GSTA1, GSTP1, ALDH1A1 and ALDH3A1*) on the pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide. *Pharmacogenom. Genom.* 2008, 18, 515–523.

6. Johnson, G.G.; Lin, K.; Cox, T.F.; Oates, M.; Sibson, D.R.; Eccles, R.; Lloyd, B.; Gardiner, L.-J.; Carr, D.F.; Pirmohamed, M.; et al. *CYP2B6* is an independent determinant of inferior response to fludarabine plus cyclophosphamide in chronic lymphocytic leukemia. *Blood* 2013, 122, 4253–4258.

7. Rocha, V.; Porcher, R.; Fernandes, J.F.; Filion, A.; Bittencourt, H.; Silva, W.; Vilela, G.; Zanette, D.L.; Ferry, C.; Larghero, J.; et al. Association of drug metabolism gene polymorphisms with toxicities, graft-versus-host disease and survival after HLA-identical sibling hematopoietic stem cell transplantation for patients with leukemia. *Leukemia* 2009, 23, 545–556.

8. Ngamjanyaporn, P.; Thakkinstian, A.; Verasertniyom, O.; Chatchaipun, P.; Vanichapuntu, M.; Nantiruj, K.; Totemchokchakarn, K.; Attia, J.; Janwityanujit, S. Pharmacogenetics of cyclophosphamide and *CYP2C19* polymorphism in Thai systemic lupus erythematosus. *Rheumatol. Int.* 2011, 31, 1215–1218.

9. Khrunin, A.; Ivanova, F.; Moisseev, A.; Khokhrin, D.; Sleptsova, Y.; Gorbunova, V.; Limborska, S. Pharmacogenomics of cisplatin-based chemotherapy in ovarian cancer patients of different ethnic origins. *Pharmacogenomics* 2012, 13, 171–178.

10. Su, H.I.; Sammel, M.D.; Velders, L.; Horn, M.; Stankiewicz, C.; Matro, J.; Gracia, C.R.; Green, J.; DeMichele, A. Association of cyclophosphamide drug-metabolizing enzyme polymorphisms and chemotherapy-related ovarian failure in breast cancer survivors. *Fertil. Steril.* 2010, 94, 645–654.

11. Khrunin, A.V.; Moisseev, A.; Gorbunova, V.; Limborska, S. Genetic polymorphisms and the efficacy and toxicity of cisplatin-based chemotherapy in ovarian cancer patients. *Pharmacogenom. J.* 2010, 10, 54–61.

12. Perez-Andreu, V.; Roberts, K.G.; Harvey, R.C.; Yang, W.; Cheng, C.; Pei, D.; Xu, H.; Gastier-Foster, J.; Lim, J.Y.-S.; Chen, I.-M.; et al. Inherited *GATA3* variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse. *Nat. Genet.* 2013, 45, 1494–1498.
13. Oliveira, A.L.; Rodrigues, F.F.O.; Santos, R.E.; Aoki, T.; Rocha, M.N.; Longui, C.A.; Melo, M.B. "GSTT1, GSTM1, and GSTP1 polymorphisms and chemotherapy response in locally advanced breast cancer." *Genet. Mol. Res.* **2010**, 9, 1045–1053.

14. Zhang, B.-L.; Sun, T.; Zhang, B.-N.; Zheng, S.; Lü, N.; Xu, B.-H.; Wang, X.; Chen, G.-J.; Yu, D.-K.; Lin, D.-X. "Polymorphisms of GSTP1 is associated with differences of chemotherapy response and toxicity in breast cancer." *Chin. Med. J.* **2011**, 124, 199–204.

15. Henríquez-Hernández, L.A.; Murias-Rosales, A.; González-Hernández, A.; de León, A.C.; Diaz-Chico, N.; Fernández-Pérez, L. "Distribution of TYMS, MTHFR, p53 and MDR1 gene polymorphisms in patients with breast cancer treated with neoadjuvant chemotherapy." *Cancer Epidemiol.* **2010**, **34**, 634–638.

16. Robien, K.; Schubert, M.M.; Bruemmer, B.; Lloid, M.E.; Potter, J.D.; Ulrich, C.M. "Predictors of oral mucositis in patients receiving hematopoietic cell transplants for chronic myelogenous leukemia." *J. Clin. Oncol.* **2004**, 22, 1268–1275.

17. Patiño-García, A.; Zalacaín, M.; Marrodán, L.; San-Julián, M.; Sierrasesúmag, L. "Methotrexate in pediatric osteosarcoma: Response and toxicity in relation to genetic polymorphisms and dihydrofolate reductase and reduced folate carrier 1 expression." *J. Pediatr.* **2009**, 154, 688–693.

18. Cui, L.-H.; Yu, Z.; Zhang, T.-T.; Shin, M.-H.; Kim, H.-N.; Choi, J.-S. "Influence of polymorphisms in MTHFR 677 C→T, TYMS 3R→2R and MTR 2756 A→G on NSCLC risk and response to platinum-based chemotherapy in advanced NSCLC." *Pharmacogenomics* **2011**, **12**, 797–808.

19. Choi, J.-Y.; Barlow, W.E.; Albain, K.S.; Hong, C.-C.; Blanco, J.G.; Livingston, R.B.; Davis, W.; Rae, J.M.; Yeh, I.-T.; Hutchins, L.F.; et al. "Nitric oxide synthase variants and disease-free survival among treated and untreated breast cancer patients in a Southwest Oncology Group clinical trial." *Clin. Cancer Res.* **2009**, **15**, 5258–5266.

20. Fagerholm, R.; Hofstetter, B.; Tommiska, J.; Aaltonen, K.; Vrtel, R.; Syrjäkoski, K.; Kallioniemi, A.; Kilpivaara, O.; Mannermaa, A.; Kosma, V.-M.; et al. "NAD(P)H:quinone oxidoreductase 1 NQO1*2 genotype (P187S) is a strong prognostic and predictive factor in breast cancer." *Nat. Genet.* **2008**, **40**, 844–853.

21. Jamieson, D.; Cresti, N.; Bray, J.; Sludden, J.; Griffin, M.J.; Hawsawi, N.M.; Famie, E.; Mould, E.V.A.; Verrill, M.W.; May, F.E.B.; et al. "Two minor NQO1 and NQO2 alleles predict poor response of breast cancer patients to adjuvant doxorubicin and cyclophosphamide therapy." *Pharmacogenom. Genom.* **2011**, **21**, 808–819.

22. Kolesar, J.M.; Pritchard, S.C.; Kerr, K.M.; Kim, K.; Nicolson, M.C.; McLeod, H. "Evaluation of NQO1 gene expression and variant allele in human NSCLC tumors and matched normal lung tissue." *Int. J. Oncol.* **2002**, **21**, 1119–1124.

23. Kolesar, J.M.; Dahlberg, S.E.; Marsh, S.; McLeod, H.L.; Johnson, D.H.; Keller, S.M.; Schiller, J.H. "The NQO1*2/*2 polymorphism is associated with poor overall survival in patients following resection of stages II and IIIa non-small cell lung cancer." *Oncol. Rep.* **2011**, **25**, 1765–1772.

24. Siegel, D.; McGuinness, S.M.; Winski, S.L.; Ross, D. "Genotype-phenotype relationships in studies of a polymorphism in NAD(P)H:quinone oxidoreductase 1." *Pharmacogenetics* **1999**, **9**, 113–121.
25. Siegel, D.; Anwar, A.; Winski, S.L.; Kepa, J.K.; Zolman, K.L.; Ross, D. Rapid polyubiquitination and proteasomal degradation of a mutant form of NAD(P)H:quinone oxidoreductase 1. *Mol. Pharmacol.* **2001**, *59*, 263–268.

26. Smith, M.T.; Wang, Y.; Kane, E.; Rollinson, S.; Wiemels, J.L.; Roman, E.; Roddam, P.; Cartwright, R.; Morgan, G. Low NAD(P)H:quinone oxidoreductase 1 activity is associated with increased risk of acute leukemia in adults. *Blood* **2001**, *97*, 1422–1426.

27. Glynn, S.A.; Boersma, B.J.; Howe, T.M.; Edvardsen, H.; Geisler, S.B.; Goodman, J.E.; Ridnour, L.A.; Lønning, P.E.; Børresen-Dale, A.-L.; Naume, B.; et al. A mitochondrial target sequence polymorphism in manganese superoxide dismutase predicts inferior survival in breast cancer patients treated with cyclophospham ide. *Clin. Cancer Res.* **2009**, *15*, 4165–4173.

28. Huang, Z.-H.; Hua, D.; Li, L.-H.; Zhu, J.-D. Prognostic role of p53 codon 72 polymorphism in gastric cancer patients treated with fluorouracil-based adjuvant chemotherapy. *J. Cancer Res. Clin. Oncol.* **2008**, *134*, 1129–1134.

29. Kim, J.G.; Sohn, S.K.; Chae, Y.S.; Song, H.S.; Kwon, K.-Y.; Do, Y.R.; Kim, M.K.; Lee, K.H.; Hyun, M.S.; Lee, W.S.; et al. TP53 codon 72 polymorphism associated with prognosis in patients with advanced gastric cancer treated with paclitaxel and cisplatin. *Cancer Chemother. Pharmacol.* **2009**, *64*, 355–360.

30. Orlandi, P.; Fontana, A.; Fioravanti, A.; di Desidero, T.; Galli, L.; Derosa, L.; Canu, B.; Marconcini, R.; Biasco, E.; Solini, A.; et al. VEGF-A polymorphisms predict progression-free survival among advanced castration-resistant prostate cancer patients treated with metronomic cyclophosphamide. *Br. J. Cancer* **2013**, *109*, 957–964.

31. Cizmarikova, M.; Wagnerova, M.; Schonova, L.; Habalova, V.; Kohut, A.; Linkova, A.; Sarissky, M.; Mojzis, J.; Mirossay, L.; Mirossay, A. *MDR1* (C3435T) polymorphism: Relation to the risk of breast cancer and therapeutic outcome. *Pharmacogenom. J.* **2010**, *10*, 62–69.

32. Giovannetti, E.; Pacetti, P.; Reni, M.; Leon, L.G.; Mambrini, A.; Vasile, E.; Ghidini, M.; Funel, N.; Lucchesi, M.; Cereda, S.; et al. Association between DNA-repair polymorphisms and survival in pancreatic cancer patients treated with combination chemotherapy. *Pharmacogenomics* **2011**, *12*, 1641–1652.

33. Gréen, H.; Falk, I.J.; Lotfi, K.; Paul, E.; Hermansson, M.; Rosenquist, R.; Paul, C.; Nahì, H. Association of *ABCB1* polymorphisms with survival and *in vitro* cytotoxicity in de novo acute myeloid leukemia with normal karyotype. *Pharmacogenom. J.* **2012**, *12*, 111–118.

34. Kafka, A.; Sauer, G.; Jaeger, C.; Grundmann, R.; Kreienberg, R.; Zeillinger, R.; Deissler, H. Polymorphism C3435T of the *MDR-1* gene predicts response to preoperative chemotherapy in locally advanced breast cancer. *Int. J. Oncol.* **2003**, *22*, 1117–1121.

35. Lal, S.; Wong, Z.W.; Sandanaraj, E.; Xiang, X.; Ang, P.C.S.; Lee, E.J.D.; Chowbay, B. Influence of *ABCB1* and *ABCG2* polymorphisms on doxorubicin disposition in Asian breast cancer patients. *Cancer Sci.* **2008**, *99*, 816–823.

36. Wojnowski, L.; Kulle, B.; Schirmer, M.; Schlüter, G.; Schmidt, A.; Rosenberger, A.; Vonhof, S.; Bickeböller, H.; Toliat, M.R.; Suk, E.-K.; et al. NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. *Circulation* **2005**, *112*, 3754–3762.
37. Lal, S.; Sandanaraj, E.; Wong, Z.W.; Ang, P.C.S.; Wong, N.S.; Lee, E.J.D.; Chowbay, B. CBR1 and CBR3 pharmacogenetics and their influence on doxorubicin disposition in Asian breast cancer patients. *Cancer Sci.* 2008, 99, 2045–2054.

38. Gonzalez-Covarrubias, V.; Zhang, J.; Kalabus, J.L.; Relling, M.V; Blanco, J.G. Pharmacogenetics of human carbonyl reductase 1 (CBR1) in livers from black and white donors. *Drug Metab. Dispos.* 2009, 37, 400–407.

39. Fan, L.; Goh, B.-C.; Wong, C.-I.; Sukri, N.; Lim, S.-E.; Tan, S.-H.; Guo, J.-Y.; Lim, R.; Yap, H.-L.; Khoo, Y.-M.; *et al.* Genotype of human carbonyl reductase CBR3 correlates with doxorubicin disposition and toxicity. *Pharmacogenom. Genom.* 2008, 18, 621–631.

40. Gelderblom, H.; Blay, J.Y.; Seddon, B.M.; Leahy, M.; Ray-Coquard, I.; Sleijfer, S.; Kerst, J.M.; Rutkowski, P.; Bauer, S.; Ouali, M.; *et al.* Brostallicin versus doxorubicin as first-line chemotherapy in patients with advanced or metastatic soft tissue sarcoma: An European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group randomised phase II and pharmacogeneti. *Eur. J. Cancer* 2014, 50, 388–396.

41. Altés, A.; Paré, L.; Esquirol, A.; Xicoy, B.; Rámila, E.; Vicente, L.; López, R.; Orriols, J.; Vall-llovera, F.; Sánchez-González, B.; *et al.* Pharmacogenetic analysis in the treatment of Hodgkin lymphoma. *Leuk. Lymphoma* 2013, 54, 1706–1712.

42. Lal, S.; Wong, Z.W.; Jada, S.R.; Xiang, X.; Chen Shu, X.; Ang, P.C.S.; Figg, W.D.; Lee, E.J.; Chowbay, B. Novel SLC22A16 polymorphisms and influence on doxorubicin pharmacokinetics in Asian breast cancer patients. *Pharmacogenomics* 2007, 8, 567–575.

43. Deeken, J.F.; Cormier, T.; Price, D.K.; Sissung, T.M.; Steinberg, S.M.; Tran, K.; Liewehr, D.J.; Dahut, W.L.; Miao, X.; Figg, W.D. A pharmacogenetic study of docetaxel and thalidomide in patients with castration-resistant prostate cancer using the DMET genotyping platform. *Pharmacogenom. J.* 2010, 10, 191–199.

44. Ceppi, F.; Langlois-Pelletier, C.; Gagné, V.; Rousseau, J.; Ciolino, C.; de Lorenzo, S.; Kevin, K.M.; Cijov, D.; Sallan, S.E.; Silverman, L.B.; *et al.* Polymorphisms of the vincristine pathway and response to treatment in children with childhood acute lymphoblastic leukemia. *Pharmacogenomics* 2014, 15, 1105–1116.

45. Diouf, B.; Crews, K.R.; Lew, G.; Pei, D.; Cheng, C.; Bao, J.; Zheng, J.J.; Yang, W.; Fan, Y.; Wheeler, H.E.; *et al.* Association of an inherited genetic variant with vincristine-related peripheral neuropathy in children with acute lymphoblastic leukemia. *JAMA* 2015, 313, 815–823.