\(\eta N \) interactions in the nuclear medium. \(\eta \)-nuclear bound states

J. Mareš1,⋆, N. Barnea2, A. Cieplý1, E. Friedman2, and A. Gal2

1 Nuclear Physics Institute, 250 68 ˇRež, Czech Republic
2 Racah Institute of Physics, The Hebrew University, 91904 Jerusalem, Israel

Abstract. We report on our recent study of in-medium \(\eta N \) interactions and \(\eta \)-nuclear quasi-bound states. The \(\eta N \) scattering amplitudes considered in the calculations are constructed within coupled-channel models that incorporate the \(S_{11} N^*(1535) \) resonance. The implications of self-consistent treatment and the role played by subthreshold dynamics are discussed.

1 Introduction

The \(\eta N \) attraction generated by the \(N^*(1535) \) resonance near threshold seems to be strong enough to allow binding of the \(\eta \) meson in nuclei. However, in-medium modifications and strong energy dependence of the \(\eta N \) scattering amplitudes have to be carefully taken into account. This contribution briefly summarizes systematic treatment of energy dependence within self-consistent calculations of \(\eta \) quasi-bound states in selected nuclei (see [1–3] for more details).

2 Methodology

The \(\eta N \) scattering amplitudes are highly model dependent as illustrated in Fig. 1 for meson-baryon interaction models GW [4], CS [5], M2 [6], and GR [7]. The \(\eta N \) amplitudes differ below as well as above the \(\eta N \) threshold, except perhaps common value \(\text{Im} F_{\eta N} \approx 0.2 \) – 0.3 fm at threshold.

The in-medium amplitudes which serve as an input in our many-body self-consistent calculations are obtained from the free-space amplitudes GW and M2 by applying the multiple scattering approach [8] (see Ref. [2] for details). In the GR and CS models, the Pauli principle restricts integration domain in the Green’s function which enters the underlying Lippmann-Schwinger equations [2].

The strong energy dependence of the \(\eta N \) scattering amplitudes \(F_{\eta N}(\sqrt{\text{s}}) \) has to be treated self-consistently [1, 2]. The argument \(\sqrt{\text{s}} \) in the scattering amplitudes is given by

\[
\sqrt{\text{s}} = \sqrt{(\sqrt{\text{s}_{\text{th}}} - B_\eta - B_N)^2 - (\vec{p}_\eta + \vec{p}_N)^2} \leq \sqrt{\text{s}_{\text{th}}},
\]

where \(\sqrt{\text{s}_{\text{th}}} = m_\eta + m_N \) and \(B_\eta \) and \(B_N \) are \(\eta \) and nucleon binding energies. In the nuclear medium (for \(A \gg 1 \) approximated by the lab system) the momentum dependent term causes additional downward energy shift, since \((\vec{p}_\eta + \vec{p}_N)^2 \neq 0 \), which can be approximated as [2]

\[
\delta \sqrt{\text{s}} \approx -B_N \frac{\rho}{\rho_0} - \xi_N T_N\frac{\rho}{\rho_0} - \xi_N \frac{\sqrt{\text{s}}}{\omega N E_N} 2\pi \text{Re} F_{\eta N}(\sqrt{\text{s}}, \rho) \rho, \tag{2}
\]

⋆e-mail: mares@ujf.cas.cz

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
Figure 1. Energy dependence of the real (left panel) and imaginary (right panel) parts of the free ηN scattering amplitude in interaction models GW [4] (dashed), CS [5] (solid), M2 [6] (dot-dashed), and GR [7] (dotted). The vertical line denotes the ηN threshold.

where $\xi_{N(\eta)} = m_{N(\eta)}/(m_N + m_\eta)$, $T_N = 23.0$ MeV at ρ_0, $B_N \approx 8.5$ MeV is the average nucleon binding energy, and $\bar{\rho}$ is the average nuclear density. For attractive scattering amplitudes, all terms in Eq. 2 are negative definite, providing substantial downward energy shift. A variant of Eq. 2 was used in η-nuclear three- and four-body calculations (see Ref. [3] for details).

In few-body ηNN and ηNNN systems, the η-nuclear cluster wave functions were expanded in a hyperspherical basis and the ground-state binding energies were calculated variationally. For the NN interaction, the Minnesota central potential [9] and the Argonne AV4’ potential [10] were used. The ηN interaction was described by energy dependent local ηN potentials that reproduce the ηN scattering amplitudes below threshold in considered interaction models [3].

The conversion widths were evaluated through the expression $\Gamma/2 \approx \langle \Psi_{gs} | -\text{Im} V_{\eta N} | \Psi_{gs} \rangle$, where $V_{\eta N}$ sums overall pairwise ηN interactions \(^1\).

The interaction of the η meson with the nuclear many-body system was described by the Klein–Gordon (KG) equation of the form

$$[\nabla^2 + \tilde{\omega}_\eta^2 - m_\eta^2 - \Pi_\eta(\omega, \rho)] \psi = 0 ,$$

where $\tilde{\omega}_\eta = \omega_\eta - i \Gamma_\eta/2$ is complex energy of η, $\omega_\eta = m_\eta - B_\eta$, and Γ_η is the width of the η-nuclear bound state. The self-energy operator $\Pi_\eta(\sqrt{s}, \rho) \equiv 2 \omega_\eta V_\eta = -(\sqrt{s}/E_N)4\pi F_{\eta N}(\sqrt{s}, \rho)\rho$ was constructed self-consistently using the RMF density distributions in a core nucleus.

It is to be stressed that $\text{Re} F_{\eta N}(\sqrt{s})$ and B_η appear as arguments in the expression for $\delta \sqrt{s}$ (Eq. 2), which in turn serves as an argument for $F_{\eta N}$ and thus for the self-energy Π_η. Therefore, a self-consistency scheme in terms of both Π_η and B_η is required in calculations.

3 Results

Our few-body calculations of the ηNN system found no bound states in the considered coupled-channel models. For ηNNN, a relatively broad and weakly bound state (with η separation energy below 1 MeV) was found for the Minnesota NN potential and one particular variant of the ηN potential

\(^1\)We found an error in normalization in Ref. [3], which made the calculated widths about factor of 2 larger.
that reproduced the GW scattering amplitudes (see Ref. [3] for details). No ηNNN bound states were found using more realistic NN interaction models.

Figure 2. Binding energies (left) and widths (right) of the $1s$ η-nuclear states in selected nuclei calculated using the GR ηN scattering amplitude [7] with different procedures for subthreshold energy shift $\delta \sqrt{s}$.

Figure 2 illustrates the role of the energy dependence of ηN scattering amplitudes in self-consistent evaluations of η nuclear-states in many-body nuclear systems. A comparison is made for the in-medium GR amplitude: our self-consistency scheme based on $\delta \sqrt{s}$ of Eq. 2 (marked $\delta \sqrt{s}$) reduces considerably the GR binding energies and widths with respect to the original calculations of Ref. [7] that used the $\delta \sqrt{s} = -B_\eta$ procedure (marked $-B_\eta$). However, even the reduced GR widths are still quite high, suggesting that η-nuclear states will be extremely difficult to resolve if the GR model is the realistic one.

The model dependence of the ηN scattering amplitudes shown in Fig. 1 manifests itself in the calculations of η-nuclear states. Figure 3 presents binding energies B_η and widths Γ_η calculated for the $1s$ η-nuclear states in selected nuclei using the above ηN amplitudes.

Figure 3. Binding energies (left) and widths (right) of $1s$ η-nuclear states in selected nuclei calculated self-consistently using the M2, GR, CS, and GW ηN scattering amplitudes (see text).
The left panel of Fig. 3 demonstrates that for each of the ηN amplitude models the binding energy increases with A and tends to saturate for large values of A. The hierarchy of the curves reflects the strength of $\text{Re} F_{\eta N}(\sqrt{s})$ in the subthreshold region (see Fig. 1). The M2 amplitude is too weak to produce the $1s$ η bound state in ^{12}C. In contrast, $\text{Re} F_{\eta N}(\sqrt{s})$ of the GW model is strong enough to bind η in ^{12}C and even in lighter nuclei, e.g., it predicts the $1s$ η bound state in ^{4}He with $B_{\eta} = 1.2$ MeV and $\Gamma_{\eta} = 2.3$ MeV (calculated using a static ^{4}He density).

The right panel shows substantial differences between the widths Γ_{η} calculated using the above mentioned models. The CS and GW models yield relatively small uniform widths of order 2 and 4 MeV, respectively. On the other hand, the GR and M2 models predict much larger widths which increase with A. This reflects partly the energy dependence of $\text{Im} F_{\eta N}(\sqrt{s})$ in the subthreshold region and partly the difference in the in-medium renormalization stemming from $\text{Re} F_{\eta N}(\sqrt{s})$. For instance, the large downward energy shift due to the subthreshold amplitude in the GW model (57 MeV at ρ_{0}) causes a particularly large reduction in the strength of the $\text{Im} F_{\eta N}(\sqrt{s})$ input.

The widths calculated here do not include contributions from two-nucleon processes which are estimated to add a few MeV. We may therefore conclude that η-nuclear states could in principle be observed if the CS and GW models turn out to be realistic ones, provided a suitable production/formation reaction is found. Other models give either too large widths or are too weak to generate η-nuclear bound states in lighter nuclei.

This work was supported by the GACR Grant No. P203/15/04301S, as well as by the EU initiative FP7, Hadron-Physics3, under the SPHERE and LEANNIS cooperation programs.

References

[1] E. Friedman, A. Gal, J. Mareš, Phys. Lett. B 725, 334 (2013).
[2] A. Cieplý, E. Friedman, A. Gal, J. Mareš, Nucl. Phys. A 925, 126 (2014).
[3] N. Barnea, E. Friedman, A. Gal, Phys. Lett. B 747, 345 (2015).
[4] A.M. Green, S. Wycech, Phys. Rev. C 71, 014001 (2005).
[5] A. Cieplý, J. Smejkal, Nucl. Phys. A 919, 46 (2013).
[6] M. Mai, P.C. Bruns, U.-G. Meissner, Phys. Rev. D 86, 015201 (2013).
[7] T. Inoue, E. Oset, Nucl. Phys. A 710, 354 (2002); C. García-Recio, T. Inoue, J. Nieves, E. Oset, Phys. Lett. B 550, 47 (2002).
[8] T. Wass, M. Rho and W. Weise, Nucl. Phys. A 617, 449 (1997).
[9] D. R. Thomson, M. LeMere, Y. C. Tang, Nucl. Phys. A 286, 53 (1977).
[10] R. B. Wiringa, S. C. Pieper, Phys. Rev. C 89, 182501 (2002).