Development and Validation of Novel Analytical Simultaneous Estimation Based UV Spectrophotometric Method for Doxycycline and Levofloxacin Determination

Yogesh N. Gholse 1,* , Dinesh R. Chaple 1 , Rahul H. Kasliwal 1

1 Department of Pharmaceutics, Priyadarshini J. L. College of Pharmacy, Electronic Zone Building, Hingna Road, MIDC, Nagpur- 440016, Dist-Nagpur (M.S.) India
* Correspondence: yg_83@rediffmail.com (Y.N.G.); Scopus Author ID: 54890775600

Received: 8.07.2021; Revised: 25.09.2021; Accepted: 28.09.2021; Published: 19.10.2021

Abstract: The thorough literature study uncovered that none of the most perceived pharmacopeias or any journals includes a method for simultaneous estimation of Doxycycline and Levofloxacin in combination by UV/Visible spectroscopy. So, it was felt fundamental to build up a system that will serve as a solid, precise UV technique for the simultaneous estimation of Doxycycline and Levofloxacin. DOXH and LVXH showed λmax at 273nm and 287nm respectively, and iso-absorptive point at 280nm in Phosphate buffer pH 6.8 prepared in Water: Methanol (80:20) dissolvable solvent system. Beer Lambert's law obeyed by both drugs within the concentration range of 2-20 μg/ml & r² values of 0.9999 and 0.9998, which shows the good linearity. The method has been validated statistically and quantitatively regarding linearity, precision, LOD, LOQ, accuracy, and specificity according to the ICH guidelines. LOD for DOXH and LVXH were found to be 1.41 and 0.63 μg/ml, the LOQ was 4.30 and 1.92 μg/ml, respectively. Percent recovery at recovery level of 80%, 100% & 120% for DOXH was found to be 99.7, 99.66 & 99.69 & for LVXH 99.58, 99.66 & 99.63 respectively. Intra-day, Inter-day & precision analysis by different analyst was found to be 0.767, 0.563, 0.440 %RSD for DOXH & 0.507, 0.532, 0.708 % RSD for LVXH. Sandell's sensitivity was discovered to be adequate, and this shows that extremely less measure of the two medications can be successfully recognized by this technique. Finally, it was concluded, the developed & validated method was helpful and appropriate for regular quality analysis and simultaneous determination of drug products containing DOXH and LVXH in combination.

Keywords: doxycycline hyclate; levofloxacin hemihydrate; synthetic mixture; simultaneous estimation; UV-Visible spectrophotometric method.

© 2021 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Doxycycline hyclate (DOXH), C24H33ClN2O10 (CAS No. 24390-14-5), is a hygroscopic, yellowish powder, freely soluble in water & solute in methanol[1] having Mol. Wt. 512.94 g/mol[2]. It is a wide range of effective semisynthetic[3] long-acting hydrochloride hemiethanol hemihydrate of Doxycycline got from Oxytetracycline[4, 5] having considerably more dissolvability power than doxycycline monohydrate, because of which it is broadly used in drug production[6]. It shows broad-spectrum effectiveness towards gram +ve and gram -ve microorganisms, including Bartonella, Streptococcus Pyogenes, Hemoplasma, Spirochetes, Chlamydia Elis, Enterococci, Ehrlichia, Actinomyces sp., Anaplasma Nocardia, Toxoplasma,
Plasmodium Species, Mycoplasma, Protozoa, and a few anaerobic varieties[7]. It inhibits matrix metalloproteinases (MMP’s)[8] which are engaged with various immune and inflammatory reactions, for example, periodontitis, gum disease, degenerative rheumatic illnesses, and degenerative vascular issues[9, 10] consequently it is utilized to cure periodontitis and related risk problems like respiratory issues[11], diabetes mellitus[12], cardiovascular problems[13], foetoapahtic changes in incubation period[14], alveolar bone misfortune[15] and so on. DOXH is acted by inhibiting protein synthesis and the alteration of cytoplasmic film penetrability inside the susceptible organism[5]. DOXH is additionally used in the cure and treatment of relapsing fever, acne, chronic prostatitis, respiratory infections, sinusitis, Lyme sickness, syphilis, exacerbations of bronchitis in patients with COPD, brucellosis, chronic intestinal amoebiasis, non-gonococcal urethritis, cervicitis, urinary tract infection, chlamydia, provocative pelvic illness, rickettsial diseases, and threatening radiations that are regularly connected with malignancies[16] and ovary, lung & breast cancer, exact treatment (for beginning therapy of all blended disease) and other sexually transmitted diseases[4, 5, 17]. Indian Pharmacopeia[18], British Pharmacopeia[19], United States Pharmacopeia[20], European Pharmacopeia[21], and Japanese Pharmacopeia[22] having DOXH official monograph.

Levofloxacin hemihydrate (LVXH), C36H42F2N6O9 (CAS No. 138199-71-0), is an off-white to yellow, odorless translucent powder, sparingly soluble in water & methanol, having Mol. wt. 740.7 g/mol.[23] LVXH is an L-isomer of ofloxacin[24], second-generation synthetic fluoroquinolones alluded to as respiratory quinolone[25]. It shows broad-spectrum bactericidal effectiveness towards gram +ve and gram -ve aerobes[26, 27] shows more prominent movement towards gram-positive microbes yet lesser action toward gram-negative microorganisms. It hinders the supercoiling movement of bacterial DNA gyrase and topoisomerase – II and IV, fundamental proteins in the multiplication of bacterial DNA, which brings about the stopping of DNA replication. Topoisomerase IV is necessary to separate DNA that has been imitated preceding bacterial cell division[24]. Bacteria are unable to divide due to an interrupted cell division cycle as DNA is not separated. As supercoiling of DNA is caused by DNA gyrase, it will fit in the recently shaped cells[28]. The said mechanisms are responsible for the killing of the bacteria. LVXH has application in the treatment of airway infections[29], conjunctivitis, urinary tract infections, acute bacterial sinusitis, chronic bronchitis, chronic prostatitis, mastitis, community-acquired and nosocomial pneumonia, abdominal infections, gastroenteritis, topical infections, and acute pyelonephritis[30–32]. It is a principal drug in the management of MDR tuberculosis[33]. It is likewise used to treat irresistible loose bowels brought about by E. coli, Campylobacter jejuni, and Shigella microorganisms. It is official in the United States pharmacopeia[34]. Chemical Structures and IUPAC names of Doxycycline hyclate and Levofloxacin hemihydrate were given in Table 1. The literature survey uncovers a few logical techniques for Doxycycline estimation viz. UV method[35, 36], Derived spectroscopic methods[37], UV spectrophotometric absorption ratio method[38], Chemiluminescence[39], HPLC[40–42], HPLC-UV[43], Thin-layer chromatography[44], HPTLC[45], RP-HPLC[46–48], Optical fiber sensor[49], Sequential injection chromatographic analysis[50], Lanthanide sensitized luminescence[51], IR spectroscopy[52], Solid surface phosphorescence[53], Flow-injection analysis/merging zones technique[54], HPLC-DAD and LC–ESI–MS analysis[3], Internal solid contact sensor based on conducting polypyrrole[55], HPLC–UV and LC-MS–MS[56], HPLC-MS[57], Micellar electrokinetic
capillary chromatography[58], Ion-selective electrode potentiometry[59], Chemometric-Assisted Spectrophotometric Method[60], Capillary electrophoresis[61], Fluorimetry[62], TLC-fluorescence scanning densitometry[63], Titrimetry[64], Cyclodextrin based fluorosensor[65] and techniques for Levofloxacin estimation viz. UV method[66–68], HPLC[69], RP-HPLC[70–73], HPTLC[74], HPLC–FLD–DAD[75], HPLC-MS[76], Micellar liquid chromatography[77, 78], Spectrofluorometric methods[79, 80], UPLC[81], UPLC-MS/MS[82], HPLC with UV detection[83, 84], Vibrational Spectroscopy[85], Fluorometric detection[86], Atomic Absorption Spectrometry[87], HPLC - Tandem mass spectrometry[88], RP-UFLC[89], Capillary electrophoresis with electrochemiluminescence detection[90], Adsorptive square-wave anodic – stripping voltammetry[91], Chemiluminescence[92], Hydrotropy and first derivative UV spectroscopy[93], Conductometric, Potentiometric[94] and Flow injection analysis method[95], which are monotonous, awkward, slow processing time, expensive process due to need of costly reagents, use high degree temperatures and some buffer solutions, require extraction, have been accounted for quantitative assessment of DOXH and LVXH alone and in combine dosage forms. The standard procedure is given in the British Pharmacopoeia[96].

Table 1. Structure and IUPAC Name of Doxycycline hyclate[97] and Levofloxacin hemihydrate[98].

Drug Structure	IUPAC Name
![Doxycycline](image1.png)	(4S,4aR,5S,5aR,6R,12aR)-4-(dimethylamino)-1,5,10,11,12-pentalhydroxy-6-methyl-3,12-dioxo-4a,5,5a,6-tetrahydro-4H-tetracene-2-carboxamide;ethanol;hydrate
![Levofloxacin](image2.png)	(2S)-7-fluoro-2-methyl-6-(4-methylpiperazin-1-yl)-10-oxo-4-oxa-1-azatricyclo[7.3.1.0]trideca-5(13),6,8,11-tetraene-11-carboxylic acid

All of these strategies are less delicate, including tedious systems like warming and extraction, exorbitant reagents, etc. Also, reported techniques were not much cost-effective as far as the above factors, so the current investigation was embraced. The thorough literature study uncovered that none of the most perceived pharmacopeias or any journals includes simultaneous determination technique for DOXH and LVXH in combination by UV/Visible spectroscopy. Obvious spectrophotometry, due to straightforwardness, cost-effectivity, selectivity, reasonable exactness, and accuracy, have stayed serious in a period of chromatographic methods for drug examination. So, it was felt fundamental to build up a system that will serve as a solid, precise UV technique for the simultaneous estimation of DOXH and LVXH. The current examination was completed in the perspective of setting up a simple, quick, precise, cost-effective, and robust UV technique for simultaneous determination of DOXH and LVXH in combination drug products.
The main objective of the current study is to develop and validate the UV-Visible spectrophotometric techniques for the quantitative assessment of DOXH and LVXH in a synthetic mixture which is also applicable for their combined pharmaceutical formulations to build up exactness and precision of determining results without using expensive reagents and instrumentation.

2. Materials and Methods

Analytically pure free samples of DOXH and LVXH were procured from Micro Labs Limited, Bangalore and The Madras Pharmaceuticals, Karappakam, Chennai, respectively. Double distilled water, methanol, and the other reagents used were of AR grade.

2.1. Instruments.

A double beam UV-Visible spectrophotometer (Shimadzu UV-1800), 10mm matched quartered cell with UV-probe software, pH meter, Ultra sonicator, and calibrated Precision balance model Citizen Cy220 (0.1mg sensitivity) were used for the experimental purpose.

2.2. Solvent system.

After several trial-and-error experimentations on various solvents in different proportions, finally Distilled water and Methanol mixture in the ratio 80:20 was selected as a solvent system for method development procedure considering solubility of both the drugs, i.e., DOXH and LVXH in the respective solvent.

2.3. Preparation of Phosphate Buffer pH 6.8.

Dissolve 28.80gm of Disodium Hydrogen Phosphate and 11.45gm of Potassium Dihydrogen Phosphate in the required quantity of selected solvent system to produce 1000 ml.[99]

2.4. Standard stock solution of DOXH.

A precisely weighed amount of DOXH (10 mg) was taken in a 10ml volumetric flask, dissolved, and diluted with prepared Phosphate Buffer pH 6.8 to acquire a working-standard solution of 1000μg/ml concentration. From this solution adequate amount was pipetted out and diluted with the prepared Phosphate Buffer pH 6.8 to acquire working dilutions in a concentration range of 2 to 20μg/ml.

2.5. Standard stock solution of LVXH.

A precisely weighed amount of LVXH (10 mg) was taken in a 10ml volumetric flask, dissolved, and diluted with prepared Phosphate Buffer pH 6.8 to acquire a working-standard solution of 1000μg/ml concentration. From this solution adequate amount was pipetted out and diluted with the prepared Phosphate Buffer pH 6.8 to acquire working dilutions in a concentration range of 2 to 20μg/ml.
2.6. Mixed standard stock solution.

The mixed standard stock solution of DOXH and LVXH in the ratio of 1:1 was prepared from standard stock solutions (1000μg/ml) using Phosphate Buffer pH 6.8.

2.7. Absorption maxima and Iso-absorptive point determination.

The standard solution (10μg/ml) was examined in the range mode over the scope of 200-400 nm utilizing a 100nm/min scanned speed, 1 cm quartz cell for absorption maxima determination, and overlain spectra preparation.

2.8. Calibration curve preparation.

Working dilutions of 2 - 20 μg/ml concentrations of DOXH and LVXH were prepared using Phosphate Buffer pH 6.8. Absorbance was recorded for DOXH and LVXH at 273nm and 287nm, respectively, and a standard calibration curve was prepared.

2.9. Absorbance additivity study.

Absorbance additivity data was obtained by measuring the absorbance of working standard dilutions of individual drugs (2μg/ml) and their mixture (1:1) at selected wavelengths, i.e., 273nm and 287nm.

2.10. Absorptivity determination.

The absorbances were estimated at the chosen wavelengths, i.e., 273nm and 287nm that are absorption maxima's of DOXH and LVXH individually and absorptivity (A 1%, 1 cm) of DOXH and LVXH at λmax, i.e., 273nm and 287nm, respectively, were calculated from the mean of three different absorbance readings by using the following formula.

\[A (1\%, 1\ cm) = \frac{\text{Absorbance}}{\text{Concentration (g/100ml)}} \]

Finally, the mean of all absorptivity values was calculated as ax and ay at 273nm and 287nm, respectively.

2.11. Simultaneous equation method development.

On the off chance that a mixture has two different absorbing drugs, which shows absorbance at the λmax of the each other, it very well might be feasible to estimate the two drugs by the procedure of simultaneous equation. Two wavelengths chosen for the technique are \(\lambda_1 - 273\)nm and \(\lambda_2 - 287\)nm that is absorption maxima’s of DOXH and LVXH individually in Phosphate Buffer pH 6.8. Concentrations in the given mixture were estimated by using the following equations-

By considering DOXH and LVXH having concentrations, \(C_x\) and \(C_y\) respectively, in a synthetic mixture, the following two equations were designed at \(\lambda_1\ (\lambda_{\text{max}} - 273\text{nm})\) and \(\lambda_2\ (\lambda_{\text{max}} - 287\text{nm})\) as:

At \(\lambda_1\ (\lambda_{\text{max}} - 273\text{nm})\),
\[A_1 = ax_1 \cdot b \cdot C_x + ay_1 \cdot b \cdot C_y \] ……….. Equ. 1

At \(\lambda_2\ (\lambda_{\text{max}} - 287\text{nm})\),
\[A_2 = ax_2 \cdot b \cdot C_x + ay_2 \cdot b \cdot C_y \] ……….. Equ. 2

where,
Cx & Cy = DOXH and LVXH Concentrations respectively.
A₁ & A₂ = Absorbance of DOXH and LVXH synthetic mixture at 273 nm & 287 nm respectively.
ax₁ & ax₂ = DOXH Absorptivity value at 273 nm & 287 nm respectively.
ay₁ & ay₂ = LVXH Absorptivity value at 273 nm & 287 nm respectively.
b = 1, for 1 cm cell measurement
Rearranging Equ. 2

\[Cy = A_2 - ax_2 \frac{Cx}{ay_2} \] ………………Equ. 3

Substitute this value of Cy in Equ. 1 & after rearranging we get:

\[Cx = A_1 ay_2 - A_2 ay_1 / ay_2 ax_1 - ax_2 ay_1 \] ………………Equ. 4

\[Cy = A_1 ax_2 - A_2 ax_1 / ax_2 ay_1 - ax_1 ay_2 \] ………………Equ. 5

2.12. Validation protocol.

ICH Q2B guidelines were followed for the Linearity, Range, Precision, Specificity, LOD, LOQ, Sensitivity, and Accuracy studies which were performed for the validation of the proposed method. [100, 101].

2.12.1. Linearity and range.

Various effective concentrations of DOXH and LVXH standard solution were investigated for assessing the linearity & range[102].

2.12.2. Precision.

The closeness of agreement (level of dispersing) between a series of determinations obtained from multiple sampling of the similar homogeneous sample under the endorsed conditions is known as precision. Precision was completed by performing inter-day, intraday, and different analysts on the same day, utilizing 10μg/ml concentration. In an intraday variation, the absorbances were estimated multiple times in a day. In Inter-day variation, the sample was analyzed on three successive days. %RSD values were determined, which ought to be under 2 %[103, 104].

2.12.3. Specificity.

Spectra of both the standard solution and the prepared drug sample solutions for the study was recorded to affirm the specificity of the proposed analytical method [105, 106].

2.12.4. Limit of detection.

The minimum concentration of a sample that can be estimated but not necessarily as an exact value is known as the Limit of detection (LOD). It can be obtained by determining the signal-to-noise ratio, using International Conference on Harmonization (ICH) guidelines Q2 (R1) formula as given below:

\[LOD = 3.3 \times \sigma/s \]

where, \(\sigma \) = Standard deviation of the y-intercept of regression lines,
\(S \) = Slope of a calibration curve
2.12.5. Limit of Quantitation.

The minimum concentration of a sample that can be quantitatively estimated with suitable precision and accuracy is known as the Limit of quantification (LOQ).

\[\text{LOQ} = 10 \times \frac{\sigma}{s} \]

where, \(\sigma \) = Standard deviation of the y-intercept of regression lines,
\(S \) = Slope of a calibration curve

2.12.6. Sensitivity.

Sensitivity refers to the smallest amount that can be precisely estimated. It additionally shows the limit of the technique to record or gauge small variations in concentrations. On account of spectrophotometric strategies, a parameter known as "Sandell's Sensitivity" is utilized to assess the method's sensitivity. It is the amount needed to give an absorbance of 0.001 units in one square centimeter way.

2.12.7. Accuracy.

The accuracy determination was performed using the standard addition method. The pre-quantified 10μg/ml sample solution of DOXH and LVXH were spiked with an extra 80, 100, and 120% of the standard DOXH and LVXH pure drug. Absorbances were measured at 273nm, and 287 nm (\(\lambda_{\text{max}} \) of DOXH and LVXH, respectively), and the concentration of both drugs can be determined. These mixtures were analyzed, and %RSD values were estimated by the proposed developed method. The procedure was repeated thrice. The percentage recovery of the samples, %RSD, and the percentage were calculated at each concentration level[104, 107].

3. Results and Discussion

The proposed developed novel analytical method was found to be sensitive, simple, economical, accurate, and precise. The given method has been validated according to ICH guidelines.

3.1. Absorption maxima and Iso-absorptive point determination.

DOXH and LVXH showed an absorbance maxima peak at \(\lambda_{\text{max}} \) 273nm and 287nm separately and were selected to develop the simultaneous equation method. Overlain spectra of the DOXH and LVXH depicted the occurrence of two peaks at 273nm and 287nm. Additionally, an iso-absorptive point was observed at 280nm (Figure 1).

3.2. Calibration curve preparation.

The absorbance of DOXH is obtained in a range of 0.155 to 1.073 at 273nm, and for LVXH is obtained in a range of 0.123 to 1.220 at 287nm. A standard calibration curve was obtained linear with \(r^2 \) estimation of 0.9999 and 0.9998. (Table 2) (Figure 2)
LEVOFLOXACIN - Raw Data

Abs.
0.664 0.600 0.400 0.200 0.000 -0.055

λ_{max} - 287.20nm

(a)

DOXYCYCLIN2 - Raw Data

Abs.
0.839 0.600 0.400 0.200 -0.023

λ_{max} - 273.40nm

(b)
Figure 1. (a) Spectra of Doxycycline hyclate (λ max- 273nm); (b) Levofloxacin hemihydrate (λ max- 287nm); (c) Overlain Spectra of Doxycycline hyclate (λ max- 273nm) and Levofloxacin hemihydrate (λ max- 287nm) showing the iso-absorptive point at 280 nm.

Table 2. Calibration curve absorbance readings and Absorptivity of DOXH and LVXH.

Sr. No.	Conc. (µg/ml)	Absorbance 273nm	Absorptivity 273nm	Absorbance 287nm	Absorptivity 287nm
1	2	0.155	0.054	775	0.031
2	4	0.248	0.137	620	0.072
3	6	0.371	0.250	618.3	0.174
4	8	0.475	0.344	593.7	0.255
Table 3. Absorbance readings of Doxycyclin hyclate:Levofloxacin hemihydrate (1:1) synthetic mixture.

Sr. No.	Conc. (µg/ml)	Doxycycline hyclate	Levofloxacin hemihydrate	
	Absorbance	Absorptivity	Absorbance	Absorptivity
	273nm 287nm	273nm 287nm	273nm 287nm	273nm 287nm
5	10	0.564 0.423	0.376 0.608	376 608
6	12	0.662 0.511	0.456 0.727	380 605.8
7	14	0.751 0.590	0.524 0.856	374.2 611.4
8	16	0.876 0.705	0.603 0.962	376.8 601.2
9	18	0.982 0.801	0.694 1.089	385.5 605
10	20	1.073 0.882	0.781 1.220	390.5 610

Mean (ax) 588.85 405.59 Mean (ay) 322.67 610.97

3.3. Absorbance additivity study.

This study shows the significant difference between the theoretical and practical absorbance of a synthetic mixture (Table 4).
Figure 2. Calibration Curve of (a) Doxycycline hyclate; (b) Levofloxacin hemihydrate; (c) Doxycycline hyclate:Levofloxacin hemihydrate (1:1) synthetic mixture at 273 nm, 287 nm & 280 nm.

Table 4. Absorbance additivity study.

Sr. No.	DOXH 273nm	DOXH 287nm	LVXH 273nm	LVXH 287nm	Theoretical Absorbance of Mixture 273nm	Theoretical Absorbance of Mixture 287nm	Practical Absorbance of Mixture 273nm	Practical Absorbance of Mixture 287nm
1.	0.155	0.054	0.031	0.123	0.186	0.177	0.184	0.174
2.	0.156	0.052	0.033	0.124	0.189	0.176	0.187	0.175
3.	0.156	0.053	0.031	0.121	0.187	0.174	0.186	0.172
4.	0.153	0.054	0.03	0.123	0.183	0.177	0.181	0.174
5.	0.155	0.056	0.032	0.121	0.187	0.177	0.185	0.173

at λ_{max} 287nm: $y = 0.0604x + 0.0053$

$R^2 = 0.9998$
3.4. Absorptivity determination.

Absorptivity readings of DOXH and LVXH at 273nm and 287nm are shown in Table 2. Average absorptivity values of DOXH were found to be 588.85 at 273nm and 405.59 at 287nm. Average absorptivity values of LVXH were found to be 322.67 at 273nm and 610.97 at 287nm.

3.5. Simultaneous equation method development.

To find out the concentration of DOXH and LVXH in a synthetic mixture, the following simultaneous equations were used to calculate the concentration of individual drugs:

For DOXH concentration measurement,
\[C_x = A_1 ay_2 - A_2 ay_1 / ay_2 ax_1 - ax_2 ay_1 \]

For LVXH concentration measurement, use Equ. 3 i.e.
\[C_y = A_2 - ax_2 C_x / ay_2 \]

This equation is further used and validated for a synthetic mixture's DOXH (Cx) and LVXH (Cy).

3.6. Validation protocol.

3.6.1. Linearity and range.

Selected methods showed linearity within the 2-20 µg/ml concentration range for DOXH and LVXH, and the correlation coefficient values, \(r^2\) for UV spectroscopy, were 0.9999 and 0.9998 at \(\lambda\text{max} 273\text{nm}\) and 287nm, respectively. Absorbance vs. concentration relation of DOXH and LVXH shows linear correlation. The linearity of the connection among absorbance and concentration was dictated by plotting the calibration curve for DOXH and LVXH separately shown in Figure 2 (a) & (b), respectively. The results of the linearity are given in Table 2.

3.6.2. Precision.

Intra-day precision of the proposed method was found to be 0.767 % RSD for DOXH and 0.507 % RSD for LVXH, Inter-days precision of the proposed method was found to be 0.563 % RSD for DOXH, and 0.532 % RSD for LVXH, Precision analysis by the different analyst of the method was found to be 0.440 % RSD for DOXH and 0.708 % RSD for LVXH (Table 5).

Sr. No.	Intraday DOXH	Intraday LVXH	Interday DOXH	Interday LVXH	Different Analyst DOXH	Different Analyst LVXH
1.	100.23	100.68	102.31	100.13	102.51	101.29
2.	101.71	100.48	101.54	101.17	101.35	101.48
3.	100.65	101.36	102.38	100.68	101.48	102.51
4.	102.41	101.51	101.14	100.25	101.64	101.48
5.	101.54	100.18	102.68	101.54	101.27	100.25
Mean	101.30	100.84	102.01	100.75	101.65	101.40
±SD	0.777	0.511	0.575	0.536	0.447	0.718
% RSD	0.767	0.507	0.563	0.532	0.440	0.708

Table 5. Precision analysis by Intraday, Interday, and Different Analyst parameters.
3.6.3. Specificity.

The spectra obtained from the DOXH and LVXH solution were discovered to be identical to those acquired for the standard solution (Fig. 1).

Table 6. Specificity analysis at different parameters.

Sr. No.	Parameters	DOXH*	LVXH*
1.	Room Temp.	102.21	101.35
2.	Acid (0.1N HCL)	83.24	74.36
3.	Alkali (0.1N NaOH)	91.51	90.21
4.	Oxide (3% H₂O₂)	85.64	87.35
5.	Heat 24hr (60°C)	95.37	92.54

*mean of three determination

3.6.4. Limit of Detection

The estimation of LOD values of DOXH and LVXH were found to be 1.41 and 0.63 μg/ml, respectively (Table 9).

3.6.5. Limit of Quantitation.

The estimation of LOQ values of DOXH and LVXH were found to be 4.30 and 1.92 μg/ml, respectively (Table 9).

3.6.6. Sensitivity.

Sensitivity analysis shows promising results in terms of method validation. Sandell's sensitivity was discovered to be adequate and acceptable (Table 9).

3.6.7. Accuracy.

Percent recovery for DOXH at recovery level of 80% was found to be 99.7, at recovery level of 100% was found to be 99.66, and at recovery level of 120% was found to be 99.69.

Table 7. Recovery analysis of proposed method at three different recovery levels.

Sr. No.	Recovery level	Amount of pure drug added (μg/ml)	Amount of drug estimated (μg/ml)	Percent drug estimated	
		DOXH	LVXH	DOXH	LVXH
1.	80%	8	8	8	8
		7.98	7.97	99.75	99.62
		Mean 99.7	99.58		
		±SD 0.058	0.058		
		% RSD 0.059	0.059		
2.	100%	10	10	10	10
		9.97	9.96	99.7	99.6
		Mean 99.66	99.66		
		±SD 0.047	0.094		
		% RSD 0.047	0.094		
3.	120%	12	12	12	12
		11.96	11.97	99.66	99.75
		Mean 99.69	99.63		
		±SD 0.039	0.103		
		% RSD 0.039	0.104		
Percent recovery for LVXH at recovery level of 80% was found to be 99.58, at recovery level of 100% was found to be 99.66, and at recovery level of 120% was found to be 99.63 (Table 7). In this method, the amount of the individual drug was estimated by solving the simultaneous equation at 273nm and 287nm using the respective absorptivity value.

Sr. No.	Amount of drug taken for assay (µg/ml)	Amount of drug estimated (µg/ml)	Percent drug estimated	
	DOXH	LVXH	DOXH	LVXH
1.	10	10	99.7	99.8
2.	10	10	99.8	101.2
3.	10	10	99.6	101.1
4.	10	10	99.1	99.7
5.	10	10	99.7	101.1
Mean			100.26	100.58
±SD			0.646	0.679
% RSD			0.645	0.675

Table 9. Optical properties and validation parameters of Doxycycline hyclate and Levofloxacin hemihydrate.

Sr. No.	Parameters	DOXH	LVXH
1.	λ max	273nm	287nm
2.	Beer Lambert’s linear Conc. range (µg/ml)	2 - 20	2 - 20
3.	Mean Absorptivity values	588.85	610.97
4.	Sandell’s sensitivity	0.294	0.237
5.	Regression equation	y = 0.0511x + 0.054	
6.	Correlation coefficient (r²)	0.9999	0.9998
7.	Slope (m)	0.0511	0.0604
8.	Intercept (c)	0.054	0.0053
9.	SD of Intercept	0.0069	0.0036
10.	LOD (µg/ml)	1.41	0.63
11.	LOQ (µg/ml)	4.30	1.92
12.	Intraday precision % RSD	0.767	0.507
13.	Interday precision % RSD	0.563	0.532
14.	Precision by different analyst % RSD	0.440	0.708
15.	Percent Recovery (at 80% level)	99.7	99.58
16.	Percent Recovery (at 100% level)	99.66	99.66
17.	Percent Recovery (at 120% level)	99.69	99.63

Overlain spectra of the DOXH and LVXH depicted an iso-absorptive point observed at 280nm. For method development, two absorbance maxima, i.e., λmax 273nm and 287nm, were selected at which DOXH and LVXH show the linear relationship between absorption and concentration with r² values of 0.9999 and 0.9998 in a range of 2-20 µg/ml concentration. Correlation coefficients of the regression (r²) values are used to validate the linearity of the calibration curves, and a higher value of r² indicates the precision and acceptable linearity of the developed method. Lower % RSD values in all precision study parameters were below 1%, which means within a range specified by ICH, which reflects the good, acceptable accuracy, preciseness, and repeatability/reproducibility property of the proposed developed method. The addition of DOXH and LVXH standard solutions for recovery analysis did not change spectra' qualities, which confirms the proposed method's validity. Lower values of LOD & LOQ confirm the acceptable sensitivity of the proposed method. Sandell's sensitivity was discovered to be adequate, and this shows that extremely less measure of the two medications can be
successfully recognized by this technique. Greater recovery values indicate the acceptable repeatability and accuracy of the proposed method.

4. Conclusions

Regression analysis (Linearity and Range) for both the drugs was > 0.999, indicating the validated method's precision. Repeatability and inter and intra-day precision were studied where %RSD was found to be less than 1 for both drugs. A lower value of LOD and LOQ confirms the sensitivity of the specified method. System suitability, the mean % RSD was found to be less than 1 for both DOXH and LVXH, which was found to be well within the acceptable limit.

All these factors lead to the conclusion that the above-validated method mentioned in this paper for simultaneous estimation of DOXH and LVXH by the spectrophotometric technique can be recommended for regular quality control analysis in the synthetic mixture and their combined pharmaceutical dosage forms, and it was found to be simple, accurate, precise, sensitive, reproducible, economical and rapid. The solvents used for the proposed methods were inexpensive and simple to prepare. This method was adopted to be used in a quality control study for regular drug analysis.

Funding

This research received no external funding.

Acknowledgments

Authors are thankful to Micro Labs Limited, Bangalore and The Madras Pharmaceuticals, Karappakam, Chennai for providing gift samples of DOXH and LVXH, respectively. Authors are also thankful to the Principal and management of Priyadarshini J. L. College of Pharmacy, Nagpur- 440016 Dist-Nagpur (M.S.) India, for providing necessary facilities to carry out the research work.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Jantratid, E.; Strauch, S.; Becker, C.; Dressman, J.B.; Amidon, G.L.; Junginger, H.E.; Kopp, S.; Midha, K.K.; Shah, V.P.; Stavchansky, S.; Barends, D.M. Biowaiver monographs for immediate release solid oral dosage forms: Doxycycline hyclate. *J Pharm Sci* 2010, 99, 1639-1653, https://doi.org/10.1002/jps.21954.
2. Tawfeeq, A.H.; Qassim, B.B. A green method for assay of doxycycline hyclate using continuous flow injection/merging zones technique via coupling with azo metol in aqueous medium, *Voprosy Khimii I Khimicheskoi Tekhnologii* 2020, 4, 31-37, https://doi.org/10.32434/0321-4095-2020-131-4-31-37.
3. Fiori, J.; Grassigli, G.; Filippi, P.; Gotti, R.; Cavrini, V. HPLC-DAD and LC–ESI–MS analysis of doxycycline and related impurities in doxipan mix, a medicated premix for incorporation in medicated feedstuff. *J Pharm Biomed Anal* 2005, 37, 979-985, https://doi.org/10.1016/j.jpba.2004.06.017.
4. Kleemann, A.; Engel, J.; Kutscher, B. Pharmaceutical Substances—Synthesis; Patents, Applications. 4th ed.; Reichert D. Thieme: Stuttgart. 1999; 2286. https://doi.org/10.1021/op000004o.
5. Joshi, N.; Miller, D.Q. Doxycycline revisited. *Arch Intern Med* 1997, 157, 1421-1428, https://doi.org/10.1001/archinte.157.13.1421.
6. Abraham, W.; Abuye, H.; Kebede, S.; Suleman, S. In vitro comparative quality assessment of different brands of doxycycline hyclate finished dosage forms: capsule and tablet in jimma town, south-west ethiopia. Adv Pharmacol Pharmaceut Sci 2021, 1, 1-10, https://doi.org/10.1155/2021/6645876.

7. Cinquina, A.L.; Roberti, P.; Giannetti, L.; Longo, F.; Draisci, R.; Fagiolo, A.; Briziol, N.R. Determination of enrofloxacin and its metabolite ciprofloxacin in goat milk by high-performance liquid chromatography with diode-array detection. Optimization and validation. J Chromatogr 2003, 987, 221-226, https://doi.org/10.1016/s0021-9673(02)01800-9.

8. Altoe, L.S.; Alves, R.S.; Miranda, L.L.; Sarandy, M.M.; Bastos, D.S.S.; Goncalves-Santos, E.; Novaes, R.D.; Goncalves, R.V. Doxycycline hyclate modulates antioxidant defenses, matrix metalloproteinases, and cox-2 activity accelerating skin wound healing by secondary intention in rats. Oxid Med Cell Longev 2021, 3, 1-16, https://doi.org/10.1155/2021/4681041.

9. Axisa, B.; Naylor, A.R.; Bell, P.R.; Thompson, M.M. Simple and reliable method of doxycycline determination in human plasma and biological tissues. J Chromatogr B Biomed Sci Appl 2000, 744, 359-365, https://doi.org/10.1016/s0378-4347(00)002619.

10. Skulasen, S.; Ingolfsson, E.; Kristmundsdottir, T. Development of a simple HPLC method for separation of doxycycline and its degradation products. J Pharm Biomed Anal 2003, 33, 667-672, https://doi.org/10.1016/s0731-7085(03)00316-9.

11. Scannapieco, F.A.; Role of oral bacteria in respiratory infection. J Periodontol 1999, 70, 793-802, https://doi.org/10.1902/jop.1999.70.7.793.

12. Grossi, S.G.; Genco, R.J. Periodontal disease and diabetes mellitus: A two-way relationship. Ann Periodontol 1998, 3, 51-61, https://doi.org/10.1902/annals.1998.3.1.51.

13. Buhlin, K.; Gustafsson, A.; Pockley, A.G.; Frostegard, J.; Klinge, B. Risk factors for cardiovascular disease in patients with periodontitis. Eur Heart J 2003, 24, 2099-2107, https://doi.org/10.1016/j.euhj.2003.09.016.

14. Lopez, N.J.; Smith, P.C.; Gutierrez, J. Higher risk of preterm birth and low birth weight in women with periodontal disease. J Dent Res 2002, 81, 58-63, https://doi.org/10.1177/00220345208100113.

15. Grossi, S.G.; Genco, R.J.; Machtei, E.E.; Ho, A.W.; Koch, G.; Dunford, R.; Zambon, J.J.; Hausmann E. Assessment of risk for periodontal disease. II. Risk indicators for alveolar bone loss. J Periodontol 1995, 66, 23-29, https://doi.org/10.1902/jop.1995.66.1.23.

16. Yellin, A. Doxycycline for malignant effusions; Ann Thorac Surg 1994, 57, 1053-1054, https://doi.org/10.1016/0022-0345(94)90246-1.

17. Pourmoslemi, S.; Mirfakhræ, S.; Yaripour, S.; Mohammadi, A. Development and validation of a stability-indicating RP-HPLC method for rapid determination of doxycycline in pharmaceutical bulk and dosage forms. Pharm Sci 2016, 22, 96-104, https://doi.org/10.15171/PS.2016.16.

18. The Indian Pharmacopoeial Commission, Indian Pharmacopoeia, Government of India, Ministry of Health and Family Welfare, 6th ed; The controller of publication, Ghaziabad, 2010, 2, 1024.

19. British Pharmacopoeia: Doxycycline hyclate, HMSO Publication, The Department of Health, Social Services and Public Safety, The Stationary Office Ltd., London 2010, 1, 874.

20. USP 32, NF 27, The United States Pharmacopeia: Doxycycline 2009; 2.

21. European Pharmacopoeia 7.0. Strasbourg: European Directorate for the Quality of Medicines & HealthCare, Council of Europe 2008, 5.

22. Japanese Pharmacopoeia, 15th ed; Society of Japanese Pharmacopoeia 2006, 2.

23. WHO, Revision of the monograph on levofloxacin hemihydrate draft proposal for The International Pharmacopoeia, World Health Organization, Working document QAS/17.717/Rev1 2019.

24. Sweetman, S.C. Martindale: The Complete Drug Reference. 37th ed; The Pharmaceutical Press, London, 2010, 1.

25. The Indian Pharmacopoeial Commission, Indian Pharmacopoeia, Government of India, Ministry of Health and Family Welfare, 6th ed; The controller of publication, Ghaziabad 2010, 2, 1124.

26. Une, T.; Fujimoto, T.; Sato, K.; Osada, Y. In vitro activity of DR-3355, an optically active ofloxacin. Antimicrob Agents Chemother 1988, 32, 1336-1340, https://doi.org/10.1128/aac.32.9.1336.

27. Hayakawa, I.; Atarashi, S.; Yokohama, S.; Imamura, M.; Sakano, K.; Furukawa, M. Synthesis and antibacterial activities of optically active ofloxacin. Antimicrob Agents Chemother 1986, 29, 163-164, https://doi.org/10.1128/AAC.29.1.163.

28. Moffat, A.C.; Osselton, M.D.; Widdop, B. Clarke's Analysis of Drugs and Poisons, 3rd ed.; Pharmaceutical Press, London 2004, 736, https://doi.org/10.1080/10915810500527093.

https://biointerfaceresearch.com/
29. Nakayama, I.; Yamaji, E. Clinical multicenter studies on surgical infections caused by bacteroides fragilis. *Anaerobe* 2003, 9, 71-74, https://doi.org/10.1016/S1075-9964(03)00031-3.
30. Drugbank online, Chemical structure search, https://go.drugbank.com/structures/search/small_molecule_drugs/structure (accessed on 01th June 2021).
31. Block, J.; Beale, J.; Wilson, C.O.; Delgado, J.N. Wilson and Grisvold’s. Textbook of Organic Medicinal Chemistry, 11th ed.; Lippincott–Raven, Philadelphia, United States 2004; 526.
32. Hardman, J.G.; Limbird, L.E.; Gilman, A.G. Goodman and Gilman's The Pharmacological Basis of Therapeutics. 10th Ed.; McGraw Hill, New York, 2001; 416, https://doi.org/10.1021/jm020026w.
33. Ghimire, S.; Maharjan, B.; Jongedijk, E.M.; Kosterink, J.G.W.; Ghimire, G.R.; Touw, D.J.; Werf, T.S.; Shrestha, B.; Alffenaar, J.W.C. Evaluation of saliva as a potential alternative sampling matrix for therapeutic drug monitoring of levofloxacin in patients with multidrug-resistant tuberculosis. *Antimicrob Agents Chemother* 2019, 63, e02379-18, https://doi.org/10.1128/AAC.02379-18.
34. Williams, D.A.; Lemke, T. Foy's Principles of Medicinal Chemistry, 5th ed.; Lippincott, Williams & Wilkins 2002, 547.
35. Patil, M.S.; Khatal, S.T.; Ranpise, A.S.; Thorve, J.P.; Naik, S.S.; Jain, A.S. Development and validation of UV spectrometric method for estimation of doxycycline hyclate. *World J Pharm Res* 2020, 9, 2037-2050, https://doi.org/10.20959/wjpr20207-17946.
36. Hasan, K.M.M.; Haque, A.; Kobir, S.M.A.; Hossain, M. Quantification of doxycycline hyclate in different pharmaceutical samples by UV assay. *Euro J Bio Res* 2016, 6, 275-286, https://doi.org/10.5281/zenodo.163091.
37. Salinas, F.; Nevada, J.J.B.; Espinosa A. Determination of oxytetracycline and doxycycline in pharmaceutical compounds, urine and honey by derivative spectrophotometry. *Analyst* 1989, 114, 1141-1145, https://doi.org/10.1039/AN89891401141.
38. Oza, M.K.; Patel, S.A. Simultaneous spectrophotometric determination of doxycycline monohydrate and ornidazole in synthetic mixture. *Inter Res J Pharm* 2015, 6, 265-268, https://doi.org/10.7897/2230-8407.06458.
39. Han, S.; Liu, E.; Li, H. Determination of tetracycline, chlortetracycline and oxytetracycline by flow injection with inhibitory chemiluminescence detection using copper(II) as a probe ion. *Luminescence* 2006, 21, 106-111, https://doi.org/10.1002/bio.893.
40. Selvadurai, M.; Meyyanathan, S.N.; Rajan, S.; Padmanaban, G.; Suresh, B. Determination of doxycycline in human plasma by liquid chromatography-mass spectrometry after liquid-liquid extraction and its application in human pharmacokinetics studies. *J Bioequi Bioavail* 2010, 2, 93-97, https://doi.org/10.4172/jbb.1000038.
41. Lai, X.; Liu, J.; Xu, X.; Li, J.; Zhang, B.; Wei, L.; Cai, H.; Cheng, X. Ultrasensitive high-performance liquid chromatography determination of tetracycline antibiotics and their 4-epimer derivatives based on dual effect of methanesulfonic acid. *J Sep Sci* 2020, 43, 398-405, https://doi.org/10.1002/jssc.201900618.
42. Mileva, R. Determination of free doxycycline concentrations in the plasma and milk of sheep and in the plasma of rabbits by using the HPLC method. *Maced Vet Rev* 2019, 42, 123-130, https://doi.org/10.2478/macvetrev-2019-0016.
43. Kogawa, A.C.; Salgado, H.R.N. Quantification of doxycycline hyclate in tablets by HPLC-UV method. *J Chromatogr Sci* 2013, 51, 919-925, https://doi.org/10.1093/chromsci/bms190.
44. Naidong, W.; Geelen, S.; Roets, E.; Hoogmartens, J. Assay and purity control of oxytetracycline and doxycycline by thin-layer chromatography – a comparison with liquid chromatography. *J Pharm Biomed Anal* 1990, 8, 891-896, https://doi.org/10.1016/0731-7085(90)80138-f.
45. Kumssa, L.; Layloff, T.; Hymete, A.; Ashenef, A. High performance thin layer chromatography (HPTLC) method development and validation for determination of doxycycline hyclate in capsule and tablet formulations. *Acta Chromatogr* 2021, 1, 1-9, https://doi.org/10.1556/1326.2021.00926.
46. Darwish, K.M.; Salama, I.; Mostafa, S.; El-Sadek, M. RP-HPLC/pre-column derivatization for analysis of omeprazole, tinidazole, doxycycline and clarithromycin. *J Chromatogr Sci* 2013, 51, 566-576, https://doi.org/10.1093/chromsci/bms167.
47. Dhal, C.; Ahmad, F.J.; Chauhan, A.; Jyothi, M.; Singh, R.M.; Saini, P.K.; Mathur, S.C.; Singh, G.N. Quality by design approach for simultaneous estimation of doxycycline hyclate and curcumin by RP-HPLC method. *Indian J Pharm Sci* 2015, 77, 723-728, https://doi.org/10.4103/0250-474X.174992.
48. Pourmosleimi, S.; Mirfakhraee, S.; Yaripour, S.; Mohammadi, A. Development and validation of a stability-indicating RP-HPLC method for rapid determination of doxycycline in pharmaceutical bulk and dosage forms. *Pharm Sci* **2016**, *22*, 96-104, https://doi.org/10.15171/PS.2016.16.

49. Liu, W.; Wang, Y.; Tang, J.; Shen, G.; Yu, R. Optical fiber sensor for tetracycline antibiotics based on fluorescence quenching of covalently immobilized anthracene. *Analyst* **1998**, *123*, 365-369, https://doi.org/10.1039/a705963i.

50. Satiński, D.; Santos, L.M.; Solich, H.S.; Montenegro, M.C.; Araujo, A.N. Sequential injection chromatographic determination of ambroxol hydrochloride and doxycycline in pharmaceutical preparations. *Talanta* **2005**, *68*, 214-218, https://doi.org/10.1016/j.talanta.2005.06.059.

51. Izquierdo, P.; Gomez-Hens, A.; Perez-Bendito, D. Simultaneous stopped flow determination of tetracycline and doxycycline in serum based on lanthanide-sensitized luminescence. *Anal Lett* **1994**, *27*, 2303-2316, https://doi.org/10.1080/00032719408005984.

52. Assi, S.; Arafat, B.; Lawson-Wood, K.; Robertson, I. Authentication of antibiotics using portable near-infrared spectroscopy and multivariate data analysis. *Appl Spectrosc* **2021**, *75*, 434-444, https://doi.org/10.1177/0003702820958081.

53. Xie, H.; Dong, C.; Jin, W.; Wei, Y.; Liu, C.; Zhang, S.; Zhou, B. Solid surface room temperature phosphorescence of tetracycline antibiotics. *Anal Chim Acta* **1996**, *319*, 239-247, https://doi.org/10.1016/0003-2670(95)00478-5.

54. Tawfeeq, A.H.; Qassim, B.B. A Novel method of CFIA/Merging zones technique for assay of Doxycycline in bulk and pharmaceutical preparation depending on Azo dye formation. *Res J Pharm Technol* **2021**, *14*, 67-74, https://doi.org/10.5958/0974-360X.2021.00013.5.

55. Sun, X.X.; Aboul-Enein, H.Y. Internal solid contact sensor for the determination of doxycycline hydrochloride in pharmaceutical formulation. *Talanta* **2002**, *58*, 387-396, https://doi.org/10.1016/s0039-9140(02)00292-8.

56. Sanderson, H.; Ingerslev, F.; Brain, R.A.; Halling-Sorensen, B.; Bestari, J.K.; Wilson, C.J.; Johnson, D.J.; Solomon, K.R. Dissipation of oxytetracycline, chlortetracycline, tetracycline and doxycycline using HPLC–UV and LC–MS–MS under aquatic semifield microcosm conditions. *Chemosphere* **2005**, *60*, 619-629, https://doi.org/10.1016/j.chemosphere.2005.01.035.

57. Permana, A.D.; Tekko, I.A.; McCarthy, H.O.; Donnelly, R.F. New HPLC–MS method for rapid and simultaneous quantification of doxycycline, diethylcarbamazine and albendazole metabolites in rat plasma and organs after concomitant oral administration. *J Pharma Biomed Anal* **2019**, *170*, 243-253, https://doi.org/10.1016/j.jpba.2019.03.047.

58. Injac, R.; Kac, J.; Kreft, S.; Strukelj, B. Determination of doxycycline in pharmaceuticals and human urine by micellar electrokinetic capillary chromatography. *Anal Bioanal Chem* **2007**, *387*, 695-701, https://doi.org/10.1007/s00216-006-0900-9.

59. Ali, T.A.; Mohamed, G.G.; El-Sonbati, A.Z.; Diab, M.A.; Elkfass, A.M. A potentiometric sensor for determination of doxycycline hydrochloride in pharmaceutical preparation and biological fluids. *Russ J Electrochem* **2018**, *54*, 1081-1095, https://doi.org/10.1134/S1023193518120029.

60. Eticha, T.; Kahsay, G.; Asefa, F.; Halu, T.; Gebretsadik, H.; Gebretsadikan, T.; Thangabalan, B. Chemometric-assisted spectrophotometric method for the simultaneous determination of ciprofloxacin and doxycycline hyclate in pharmaceutical formulations. *J Anal Methods Chem* **2018**, *11*, 1-5, https://doi.org/10.1155/2018/9538435.

61. Sarkaya, K.; Gokturk, I.; Yilmaz, F.; Denizli, A. Chiral separations by capillary electrophoresis and related techniques with different chiral selectors: A review. *Hacet J Bio Chem* **2021**, *49*, 253-303, https://doi.org/10.15671/hjbc.815414.

62. Bogert, C.V.; Kroon, A.M. Fluorimetric determination of tetracyclines in small blood and tissue samples. *J Pharm Sci* **1981**, *70*, 186-189, https://doi.org/10.1002/jps.2600700218.

63. Xie, H.Z.; Dong, C.; Fan, Y.; Liu, C.S. Determination of doxycycline, tetracycline and oxytetracycline simultaneously by TLC fluorescence scanning densitometry. *Anal Lett* **1997**, *30*, 79-90, https://doi.org/10.1080/00032719708002292.

64. Ramesh, P.J.; Basavaiah, K.; Divya, M.R.; Rajendraprasad, N.; Vinay, K.B. Titrimetric and spectrophotometric determination of doxycycline hyclate using bromate-bromide, methyl orange and indigo carmine. *Chem Ind Chem Eng Q* **2010**, *16*, 139–148, https://doi.org/10.2298/Ciceq091208020r.
65. Gong, Z.; Zhang, Z. Determination of tetracyclines with a modified β-cyclodextrin based fluorosensor. *Anal Chim Acta* **1997**, *351*, 205-210, https://doi.org/10.1016/S0003-2670(97)00343-7.

66. El-Yabzi, A.F.; Khamis, E.F.; Youssef, R.M.; El-Sayed, M.A.; Aboukhalil, F.M. Green analytical methods for simultaneous determination of compounds having relatively disparate absorbance; application to antibiotic formulation of azithromycin and levofloxacin. *Helion 2020*, 6, e04819, https://doi.org/10.1016/j.helion.2020.e04819.

67. Wang, Q.; Wang, G.; Xie, S.; Zhao, X.; Zhang, Y. Comparison of high-performance liquid chromatography and ultraviolet-visible spectrophotometry to determine the best method to assess Levofloxacin released from mesoporous silica microspheres/nano-hydroxyapatite composite scaffolds. *Exp Ther Med* **2019**, *17*, 2694-2702, https://doi.org/10.3892/etm.2019.7238.

68. Alffenara, J.W.C.; Jongdijk, E.M.; Winkel, C.A.J.; Sariko, M.; Heyssel, S.K.; Mpagama, S.; Touw, D.J. A mobile microwave UV/visible light spectrophotometer for the measurement of levofloxacin in saliva. *J Antimicrob Chemother* **2021**, 76, 423-429, https://doi.org/10.1093/jac/dkaa420.

69. Neckel, U.; Joukhadar, C.; Frossard, M.; Jager, W.; Muller, M.; Mayer, B.X. Simultaneous determination of levofloxacin and ciprofloxacin in microdialysates and plasma by high performance liquid chromatography. *Analytica Chimica Acta* **2002**, 463, 199-206, https://doi.org/10.1016/S0003-2670(02)00429-4.

70. Sheikh, N.A.; Tripathi, A.S.; Chitra, V.; Choudhury, A.; Dewani, A.P. Development and validation of RP-HPLC assay for levofloxacin in rat plasma and saliva: application to pharmacokinetic studies. *Afr J Pharm Pharmacol* **2011**, 5, 1612-1618, https://doi.org/10.5897/AJPP11.001.

71. Spandana, K.; Rathnagar, C.; Bhavana, K. Method development and validation for the simultaneous estimation of levofloxacin and cepodoxime proxetil by using RP-HPLC in combined tablet dosage form. *Mat Sci Res India* **2014**, 11, 67-73, https://dx.doi.org/10.13005/msri/110109.

72. Babu, N.P.; Ramachandran, R.D.; Bhavani, K.G. Development and validation of stability indicating RP-HPLC method for quantitative estimation of levofloxacin injection 5mg/ml dosage form. *Curr Trends Biotechnol Pharm* **2020**, 15, 51-61, https://doi.org/10.5530/ctbp.2021.1.6.

73. Goswami, J.A.; Shah, N.J. Stability indicating RP-HPLC method for combination of ambroxol hydrochloride and levofloxacin hemihydrate in pharmaceutical formulation. *Int J Pharma Sci Res* **2019**, 10, 356-362, https://doi.org/10.13040/IJPSR.0975-8232.10(1).356-62.

74. Chepurwar, S.B.; Shirkhedkar, A.A.; Bari, S.B.; Fursule, R.A.; Surana, S.J. Validated HPTLC method for simultaneous estimation of levofloxacin hemihydrate and ornidazole in pharmaceutical dosage form. *J Chromatogr Sci* **2007**, 45, 531-536, https://doi.org/10.1093/j chromatsci/45.8.531.

75. Yildirim, S.; Karakoc, H.H.; Yasar, A.; Koksal, I. Determination of levofloxacin, ciprofloxacin, moxifloxacin and gemifloxacin in urine and plasma by HPLC–FLD–DAD using pentafluorophenyl core–shell column: Application to drug monitoring. *Biomed Chromatogr* **2020**, 34, e4925, https://doi.org/10.1002/bmc.4925.

76. Czyski, A.; Anusiak, K.; Tezyk, A. The degradation of levofloxacin in infusions exposed to daylight with an identification of a degradation product with HPLC-MS. *Sci Rep* **2019**, 9, 3621, https://doi.org/10.1038/s41598-019-40201-9.

77. Belal, F.F.; Sharaf El-Din, M.K.; El-Enany, N.M.; Saad, S. Micellar liquid chromatographic method for the simultaneous determination of Levofloxacin and Ambroxol in combined tablets: Application to biological fluids. *Chem Cent J* **2013**, 7, 1-14, https://doi.org/10.1186/1752-153X-7-162.

78. Collado-Sanchez, M.A.; Rambla-Alegre, A.; Carda-Broch, S.; Esteve-Romero, J. Simultaneous separation and determination of quinolones in pharmaceuticals by micellar liquid chromatography. *J Liq Chrom* **2010**, 33, 513-525, https://doi.org/10.1080/10826070903574519.

79. Ulu, S.T. Rapid and sensitive spectrophotofluorimetric determination of enrofloxacin, levofloxacin and ofloxacin with 2,3,5,6-tetrachloro-p-benzoquinone. *Spectrochim Acta A* **2009**, 72, 1038-1042, https://doi.org/10.1016/j.saa.2008.12.046.

80. El-Hamshary, M.S.; Fouad, M.A.; Hanafi, R.S.; Al-Easa, H.S.; El-Moghazy, S.M. Screening and optimization of samarium-assisted complexation for the determination of norfloxacin, levofloxacin and lomefloxacin in their corresponding dosage forms employing spectrophotofluorimetry. *Spectrochim Acta A* **2019**, 206, 578-587, https://doi.org/10.1016/j.saa.2018.08.053.

81. Dabbi, B.; Parmar, B.; Patel, N.; Jadeja, Y.; Patel, M.; Jebaliya, H.; Karia, D.; Shah, A.K. A stability indicating UPLC method for the determination of levofloxacin hemihydrate in pharmaceutical dosage form: application to pharmaceutical analysis. *Chromatogr Res Int* **2013**, 3, 1-5, https://doi.org/10.1155/2013/432753.

https://biointerfaceresearch.com/
82. Lopis, B.L.; Funck-Brentano, C.; Tissot, N.; Bleibtreu, A.; Jaureguiberri, S.; Fourniols, E.; Aubry, A.; Zahr, N. Development and validation of a UPLC-MS/MS method for simultaneous quantification of levofloxacin, ciprofloxacin, moxifloxacin and rifampicin in human plasma: Application to the therapeutic drug monitoring in osteoarticular infections. *J Pharma Biomed Anal* 2020, 183, 113137, https://doi.org/10.1016/j.jpba.2020.113137.

83. Baietto, L.; D’Avolio, A.; Rosa, F.G.; Garazzino, S.; Patanella, S.; Siccardi, M.; Sciandra, M.; Perri, G.D. Simultaneous quantification of linezolid, rifampicin, levofloxacin and moxifloxacin in human plasma using high – performance liquid chromatography with UV. *Ther Drug Monit* 2009, 31, 104-109, https://doi.org/10.1097/FTD.0b013e31819476fa.

84. Kumar, M.T.; Gurrala, S.; Rao, J.V.; Rao, C.S. Development and validation of HPLC-UV method for the estimation of levofloxacin in human plasma. *Int J Pharm Pharm Sci* 2011, 3, 247-250, https://www.researchgate.net/publication/235708440.

85. Wang, Y.; Yu, K.; Wang, S. Vibrational spectra study on quinolones antibiotics. *Spectrochim Acta A* 2006, 65, 159-163, https://doi.org/10.1016/j.saa.2005.09.043.

86. Rambla-Algre, M.; Esteve-Romero, J.; Carda-Broch, S. Validation of a MLC method with fluorescence detection for the determination of quinolones in urine samples by direct injection. *J Chromatogr B* 2009, 877, 3975-3981, https://doi.org/10.1016/j.jchromb.2009.10.007.

87. Salem, H. Spectrofluorimetric, atomic absorption spectrometric and spectrophotometric determination of some fluoroquinolones. *Am J Appl Sci* 2005, 2, 719-729, https://doi.org/10.3844/ajassp.2005.719.729.

88. Ghimire, S.; Jongedijk, E.M.; Elsen, S.H.J.; Wessels, M.A.; Touw, D.J.; Alffenaar, J.W.C. Cross-validation of liquid chromatography-tandem mass spectrometry method for quantification of levofloxacin in saliva. *J Appl Bioanal* 2020, 6, 68-70, https://doi.org/10.17145/jab.20.008.

89. Pooja, M.; Sowmya, H.G.; Jose, G.C. RP-UFLC method development and validation for simultaneous estimation of levofloxacin in bulk and tablet. *Int J Pharm Biomed Eng* 2019, 6, 46-53, https://doi.org/10.14445/23942576/ijpbe-v6i1p107.

90. Liu, Y.M.; Cao, J.T.; Tian, W.; Zheng, Y.L. Determination of levofloxacin and norfloxacin by capillary electrophoresis with electrochemiluminescence detection and applications in human urine. *Electrophoresis* 2008, 29, 3207-3212, https://doi.org/10.1002/elps.200800048.

91. Ghanbari, M.H.; Shahdost-fard, F.; Khoshroo, A.; Nasrabad, M.R.; Ganjali, M.R.; Wysokowski, M.; Rebis, T.; Aksamitowska, S.Z.; Jesionowski, T.; Rahimi, P.; Joseph, Y.; Ehrlich, H.A. Nanocomposite consisting of reduced graphene oxide and electropolymerized β-cyclodextrin for voltammetric sensing of levofloxacin. *Microchim Acta* 2019, 186, 438, https://doi.org/10.1007/s00604-019-3530-6.

92. Ahmed, S.; Ning, J.; Peng, D.; Chen, T.; Ahmad, I.; Ali, A.; Lei, Z.; Shabbir, M.A.; Cheng, G.; Yuan, Z. Current advances in immunoassays for the detection of antibiotics residues: a review. *Food Agric Immunol* 2020, 31, 268-290, https://doi.org/10.1080/09540105.2019.1707171.

93. Mathew, C.; Suman, B.; Ajitha, M.; Puvvadi, S. A green analytical method for the simultaneous estimation of Levofloxacin hemihydrate and ambroxol hydrochloride using hydrotropy and first derivative UV spectroscopy. *Orient J Chem* 2014, 30, 1385-1389, https://doi.org/10.13005/ojc/300359.

94. Ibrahim, F.; El-Adl, S.M.; Baraka, M.M.; Ibrahim, S.M.; Sebaiy, M.M. Analytical methods for the determination of certain antibiotics used in critically ill patients. *J Pharma Biopharm Res* 2020, 2, 99-117, https://doi.org/10.25082/JPBRR.2020.01.002.

95. Altiocka, G.; Atkosar, Z.; Can, N.O. The determination of levofloxacin by flow injection anlysis using UV detection, potentiometry and conductivity in pharmaceutical preparations. *J Pharm Biomed Anal* 2002, 30, 881-885, https://doi.org/10.1016/S0731-7085(02)00354-0.

96. British Pharmacopoeia 98/34/EEC. HMSO Publication, The Department of Health, Social Services and Public Safety, The Stationary Office Ltd., London, Published online 2005.

97. National Center for Biotechnology Information. PubChem Compound Summary for CID 54705995, Doxycycline hyclate. https://pubchem.ncbi.nlm.nih.gov/compound/ Doxycycline-hyclate (accessed on 05th June 2021).

98. National Center for Biotechnology Information. PubChem Compound Summary for CID 3033924, Levofloxacin Hemihydrate. https://pubchem.ncbi.nlm.nih.gov/compound/ Levofloxacin-Hemihydrate (accessed on 06th June 2021).

99. The Indian Pharmacopoeial Commission, Indian Pharmacopoeia, Government of India, Ministry of Health and Family Welfare, 6th ed; The controller of publication, Ghaziabad, 2010, I, 542.
100. Dodda, S.; Bakshi, V.; Rupa, Y.; Haque, M.A.; Harshini, S. Method development and validation for the simultaneous estimation of doxycycline and ornidazole in bulk and pharmaceutical dosage form by using RP-HPLC method. *Int J Med Nanotech* **2014**, *1*, 179-185.

101. The International Conference on Harmonization, Q2 (R1). Validation of Analytical Procedure Text and Methodology 2019. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/q2-r1-validation-analytical-procedures-text-and-methodology (accessed on 10th June 2021).

102. Lanese J. Establishing acceptance criteria for method validation. *The Lanese Group, Inc.* https://studylib.net/doc/18107661/establishing-acceptance-criteria-for-method-validation (accessed on 20th May 2021).

103. ICH Q2B, Validation of Analytical Procedures: Methodology. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/q2b-validation-analytical-procedures-methodology (accessed on 05th May 2021).

104. Shabir, G.A. Validation of high-performance liquid chromatography methods for pharmaceutical analysis. *J Chromatogr A* **2003**, *987*, 57-66, https://doi.org/10.1016/s0021-9673(02)01536-4.

105. Ramesh, P.J.; Basavaiah, K.; Divya, M.R.; Rajendra Prasad, N.; Vinay, K.B.; Revanasiddappa, H.D. Simple UV and visible spectrophotometric methods for the determination of doxycycline hyclate in pharmaceuticals. *J Anal Chem* **2011**, *66*, 482-489, https://doi.org/10.1134/S1061934811050157.

106. European Pharmacopoeia 7.0. Strasbourg: European Directorate for the Quality of Medicines & HealthCare, Council of Europe **2010**, 614

107. O'Neil, M.J. The Merck Index: An Encyclopedia of Chemicals, Drugs and Biologicals. 13th ed. Merck Research Laboratories, Division of Merck and Co., Inc. Whitehouse station: Doxycycline **2005**, 964.