Correction: Retinol Improves *In Vitro* Differentiation of Pre-Pubertal Mouse Spermatogonial Stem Cells into Sperm during the First Wave of Spermatogenesis

The *PLOS ONE* Staff

There are errors in Table 1 and Table 2 of the published article. Please view the correct Table 1 and Table 2 here.
Table 1. Assessment of germ cell differentiation using Tra-98 immunostaining of seminiferous tubules obtained after in vitro culture of 2.5 dpp testes for 38 and 60 days compared with age-matched in vivo tissues. The values (%) are expressed as the mean proportions ± s.e.m. of the different cell types present in the seminiferous tubules under the different culture conditions, with n = 4. Asterisk indicates a statistically significant difference between BM and RE or between BM and FSH/LH or between BM and in vivo condition concerning the percentage of round and elongated spermatids (p < 0.05).

Intra-tubular cells (%)	D38 of culture	D60 of culture	In vivo 40.5 dpp	In vivo 62.5 dpp																	
	BM	FSH/LH	RE	BM	FSH/LH	RE	BM	FSH/LH	RE	BM	FSH/LH	RE	BM	FSH/LH	RE	BM	FSH/LH	RE	BM	FSH/LH	RE
Sertoli cells	29.93±2.12	25.00±1.45	41.18±1.81	7.48±0.24	45.83±1.24	27.65±1.24	28.40±2.64	5.73±0.58													
Spermatogonia	27.30±1.51	17.88±3.08	13.73±0.52	8.28±0.48	19.68±0.74	16.80±2.24	25.18±1.46	8.58±0.52													
L/Z Spermatocytes	13.50±0.65	10.50±1.71	18.58±1.26	7.80±0.49	14.00±1.96	18.60±5.81	14.53±2.08	4.75±0.85													
P Spermatocytes I	24.85±2.75	33.93±0.42	20.80±0.95	22.63±1.79	17.40±2.04	32.38±1.63	26.63±2.73	23.25±1.75													
Round spermatids	4.08±1.18	11.98±2.77(¹);	4.45±1.01(NS);	27.13±1.24(⋆);	2.45±0.77	3.88±0.72(NS);	4.13±0.92(NS);	29.60±2.07(¹);													
	p = 0.02	p = 0.44	p = 0.01	p = 0.01	p = 0.17	p = 0.1	p = 0.01	p = 0.01													
	0.35±0.16	0.73±0.13(NS);	1.28±0.31(⋆);	26.73±0.36(⋆);	0.65±0.46	0.70±0.20(NS);	1.15±0.27(NS);	28.10±0.65(¹);													
	p = 0.057	p = 0.02	p = 0.01	p = 0.01	p = 0.34	p = 0.17	p = 0.01	p = 0.01													

Footnotes:
BM: Basal Medium
dpp: day post-partum
LH: Luteinizing Hormone
n: Number of mice testes used in each condition
P: Pachytene
D: Day
FSH: Follicle Stimulating Hormone
L/Z: Leptotene/Zygotene
NS: Not significant
s.e.m.: Standard Error of the Mean

doi:10.1371/journal.pone.0123846.001
Table 2. Assessment of germ cell differentiation using Tra98 immunostaining of seminiferous tubules obtained after in vitro culture of 6.5 dpp testes for 30 and 36 days compared with age-matched in vivo tissues. The values (%) are expressed as the mean proportions ± s.e.m. of the different cell types present in the seminiferous tubules under the different culture conditions, with n = 4. Asterisk indicates a statistically significant difference between BM and RE or between BM and FSH/LH or between BM and in vivo condition concerning the percentage of round and elongated spermatids (p<0.05).

Intra-tubular cells (%)	D30 of culture	D36 of culture						
	BM	FSH/LH	RE	FSH/LH + RE	BM	FSH/LH	RE	In vivo 42.5 dpp
Sertoli cells	35.5±1.58	19.2±3.59	29.5±2.62	27.7±1.13	8.58±0.44	28.9±3.64	19.3±2.83	30.8±1.74
Spermatogonia	22.93±0.83	25.76±5.05	21.7±1.33	24.03±0.88	9.68±0.55	25.86±1.74	24.21±2.48	20.23±1.69
L/Z Spermatocytes	24.98±3.50	19.33±5.36	18.10±1.62	15.08±0.67	9.28±0.60	12.93±1.10	14.73±2.91	8.35±2.10
	BM	FSH/LH	RE	FSH/LH + RE	BM	FSH/LH	RE	In vivo 42.5 dpp
P Spermatocytes	15.53±2.75	26.33±4.05	19.50±1.42	29.90±0.08	21.78±0.48	26.75±1.65	26.43±0.75	28.13±2.03

Footnotes:
BM: Basal Medium
dpp: day post-partum
LH: Luteinizing Hormone
FSH: Follicle Stimulating Hormone
L/Z: Leptotene/Zygotene
NS: Not significant
s.e.m.: Standard Error of the Mean

Reference
1. Arkoun B, Dumont L, Milazzo J-P, Way A, Bironneau A, Wils J, et al. (2015) Retinol Improves In Vitro Differentiation of Pre-Pubertal Mouse Spermatogonial Stem Cells into Sperm during the First Wave of Spermatogenesis. PLoS ONE 10(2): e0116660. doi: 10.1371/journal.pone.0116660 PMID: 25714609