Caspases in retinal ganglion cell death and axon regeneration

Chloe N Thomas1, Martin Berry1, Ann Logan1, Richard J Blanch1,2,3 and Zubair Ahmed1,3

Retinal ganglion cells (RGCs) are terminally differentiated CNS neurons that possess limited endogenous regenerative capacity after injury and thus RGC death causes permanent visual loss. RGC die by caspase-dependent mechanisms, including apoptosis, during development, after ocular injury and in progressive degenerative diseases of the eye and optic nerve, such as glaucoma, anterior ischemic optic neuropathy, diabetic retinopathy and multiple sclerosis. Inhibition of caspses through genetic or pharmacological approaches can arrest the apoptotic cascade and protect a proportion of RGC. Novel findings have also highlighted a pyroptotic role of inflammatory caspses in RGC death. In this review, we discuss the molecular signalling mechanisms of apoptotic and inflammatory caspses responses in RGC specifically, their involvement in RGC degeneration and explore their potential as therapeutic targets.

Cell Death Discovery (2017) 3, 17032; doi:10.1038/cddiscovery.2017.32; published online 3 July 2017

BULLET POINTS

- Caspase-mediated cell death can occur in normal physiology and pathology.
- Retinal ganglion cells undergo caspase-mediated apoptosis.
- Pyroptosis, a specialised form of inflammatory programmed cell death, mediated by inflammatory caspses, can occur in retinal ganglion cells.
- Inhibition of caspses with pharmacological or genetic inhibitors promotes retinal ganglion cell survival.

INTRODUCTION

Retinal ganglion cells (RGCs) in the ganglion cell layer (GCL) of the inner retina form axons of the optic nerve (ON), which partially decussate at the optic chiasm, project in the optic tract and synapse in the lateral geniculate nucleus (LGN) as well as the superior colliculus, pretectal nucleus and hypothalamus. Optic radiations relay visual information from the LGN to the visual cortex.1 The neural retina is an outgrowth of the central nervous system (CNS); consequently after injury, there is limited endogenous axon regeneration and lost RGCs are not replaced, leading to irreversible visual loss.

Caspases, a family of cysteine aspartate proteases, have roles in neuronal pruning during development, inducing RGC death (through apoptosis and pyroptosis) after trauma and disease and promoting RGC axon regeneration. Such processes are attenuated by endogenous and pharmacological inhibitors as well as gene knockdown using short interfering RNA (siRNA) to both understand signalling mechanisms and develop therapeutics to prevent RGC death and promote axon regeneration.

Here we review caspses in apoptotic and pyroptotic RGC death, the novel role of caspses in RGC axon regeneration and the neuroprotective success of caspase-targeting interventions.

CAPSASES

Caspases are cysteine aspartate proteases that can be divided into two major phylogenic subfamilies, either interleukin (IL)-1β-converting enzyme (inflammatory) or mammalian counterparts of CED-3 (apoptotic) caspses.2,3 Caspases are the main components of the apoptotic signalling cascade, although they do also have other non-apoptotic roles, including inflammation.4,5 Caspases are activated by proximity-induced dimerisation, within protein complexes, feedback loops and pro-enzyme cleavage.6,7

Apoptotic caspases

Caspases induce apoptosis through initiator and executioner family members: initiator caspases (casps-2, -8, -9 and -10) activate executioner caspases (casps-3, -6 and -7) through catalytic cleavage of their activation domain.8,9 Activated executioner caspses then hydrolyse or cleave proteins leading to cellular apoptosis.5

Caspases can be activated through the canonical intrinsic or extrinsic apoptotic pathways (Figure 1). The extrinsic pathway is activated through ligand-activation of tumour necrosis factor (TNF) receptor members10 including Fas/CD95 receptor, successive recruitment of adaptor proteins, such as Fas-associated protein with death domain (FADD).11,12 and subsequently pro-caspase-8.11 Interactions between Fas/CD95, FADD and caspase-8 form the death-induced signalling complex (DISC)9,12 and initiate caspase-8 activation,11,12 which sequentially cleaves and activates executioner caspase-3, -6 and -7.7 Additionally, caspase-8 can cleave the B-cell lymphoma (Bcl)-2 protein family member BH3 interacting domain death agonist (Bid) into truncated Bid (tBid), which stimulates mitochondrial outer membrane permeabilisation (MOMP), releasing apoptogenic factors,13 including Cytochrome C, apoptotic protease activating factor 1 (Apaf-1), second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pi (Smac/DIABLO), high-temperature requirement (Htr) A2 (also known as Omi), endonuclease-G and apoptosis-inducing factor.14,15

The intrinsic pathway is mitochondria-dependent and activated by intracellular insults, including DNA damage and loss of extracellular membrane integrity, causing MOMP.13 Mitochondria-derived Cytochrome C complexes with Apaf-1, recruits and activates pro-caspase-9 in a protein complex termed the apoptosome,16 allowing successive activation of

1Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK and 2Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
Correspondence: Z Ahmed (z.ahmed.1@bham.ac.uk)
1These two authors are joint senior authors.
Received 23 February 2017; revised 31 March 2017; accepted 23 April 2017; Edited by R Killick
downstream executioner caspases.16 TNF cell surface death receptors and different intracellular complexes also mediate cell death (Figure 1). After TNF-R stimulation, receptor interacting protein kinase (RIPK) 1, TNF-R1-associated death domain protein (TRADD), TNF-R associated factor (TRAF 2/5) and cellular inhibitor of apoptosis (cIAP 1/2) are recruited and form membrane-associated complex I.16 TNF-R primarily drives inflammatory gene transcription through the nuclear factor kappa-light-chain-enhancer of B cells (NF-\textit{kB}) pathway. Reduced pro-survival signals at the TNF-R (for example, loss of IAPs), dissociates complex I causing RIPK1, TRADD, FADD and caspase-8 to form complex Ila, which initiates apoptosis by caspase-8 auto-activation.19 Caspase-8 also represses necroptosis (regulated necrosis; mediated by RIPK1 and RIPK3), thus, if caspase-8 is compromised or inhibited, for example, through mammalian inhibitors (CrmA and cFLIP),23,24 pharmacological inhibition (e.g., z-VAD-fmk or z-IETD-fmk) or gene loss, then necroptosis ensues.20 Necroptosis activation requires RIPK1, RIPK3 and mixed lineage kinase domain-like protein (MLKL), which form complex llb.21 X-linked IAP (XIAP) directly inhibits caspase-3, -7 and -922 and inhibition of ciAPs and XIAP causes complex II (the 'riposomes'; (RIPK1-RIPK3-FADD-caspase-8-cFLIP))23,24, which drives caspase-8-mediated apoptosis or caspase-independent necroptosis without the need for receptor ligation.

Caspase-8 also acts as a non-enzymatic scaffold in the assembly of a pro-inflammatory 'FADDosome' (caspase-8:FADD-RIPK1) complex, inducing NF-\textit{kB}-dependent inflammation.25

Uniquely, caspase-2 can act as both an initiator and an executioner caspase, depending on the apoptotic stimuli and does not fit into either the classically described intrinsic or extrinsic apoptotic pathways (Figure 2)26,27; its structure resembles that of an initiator caspase due to its caspase recruitment domain -- but can act as an executioner caspase in response to multiple triggers, including DNA damage, heat shock, endoplasmic reticulum and oxidative stress.28-32 DNA damage induces PIDDo-some formation: a protein complex that consists of adapter protein RIP-associated ICH-1 homologous protein with a death domain (RAIDD)33 and p53-induced protein with a death domain (PIDD)34,35, which recruit and activate pro-caspase-2. Caspase-2 can also be activated at the DISC. Caspase-2 can also mediate apoptosis directly from the mitochondrial compartment.36

Figure 1. Apoptotic caspases in the canonical intrinsic and extrinsic pathways. Death receptor activation mediates the extrinsic pathway, Fas-R and TRAIL-R recruit FADD9,10 and pro-caspase-8,11 forming the DISC9,12 leading to proximity-induced caspase-8 activation11,12 and downstream activation of executioner caspase-3, -6 and -7.5 Caspase-8 can also activate the intrinsic pathway through truncating BH3-interacting domain death agonist (Bid) into tBid, which then promotes Bak and Bax mitochondrial membrane insertion, increasing MOMP and releasing apoptogenic factors.13 Including Apaf-1, Cytochrome C and second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pi (Smac/DIABLO).14,15 Cytochrome C, Apaf-1 and pro-caspase-9 form the septameric apoptosome complex16,17 which activates caspase-9 and successively downstream executioner caspases. Smac/DIABLO indirectly promotes apoptosis by opposing XIAP inhibition of caspase-3, -7 and -9.22 Caspase-8 can also form complex I at the TNF receptor, which upregulates the NF-\textit{kB} survival inflammatory pathway; however, if survival signals are compromised (for example, IAPs) then complex I dissociates from the receptor forming complex Ila, which initiates caspase-8-dependent apoptosis.19 Caspase-8 inhibits complex llb formation and necroptosis and caspase-8 inhibition (for example, through z-IETD-fmk) induces complex llb formation, causing necroptosis.20 The 'riposomes' complex forms after cellular IAPs (ciAPs) or XIAP inhibition, causing caspase-8-dependent apoptosis and necroptosis.23,24
Inflammatory caspases
Inflammatory caspases (-1 or -11 in mice and -1, -4 and -5 in humans) can be activated in the inflammasomes protein signalling complex (Figure 3).4,37,38 Inflammasomes are large multimeric protein complexes that sense pathogen- and host-derived danger signals and typically comprise of a Nod-like receptor (NLR), adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1.37 Caspase-2 is also activated by endoplasmic reticulum (ER) stress and at the Fas-R within the DISC, alongside Fas-associated protein with death domain (FADD) and caspase-8.28,42 Active caspase-2 cleaves and activates caspase-3, cleaves BH3 interacting domain death agonist (Bid; which initiates MOMP and the intrinsic apoptotic pathway) or initiates apoptosis directly.

Figure 2. Activation mechanisms of caspase-2. Caspase-2 is activated through DNA damage, upregulation of p53 and formation of the PIDDosome protein complex, which includes p53-induced protein with death domain (PIDD), RIP-associated ICH-1 homologous protein with death domain (RAIDD) and pro-caspase-2.30,33,35 Caspase-2 is also activated by endoplasmic reticulum (ER) stress and at the Fas-R within the DISC, alongside Fas-associated protein with death domain (FADD) and caspase-8.28,42 Active caspase-2 cleaves and activates caspase-3, cleaves BH3 interacting domain death agonist (Bid; which initiates MOMP and the intrinsic apoptotic pathway) or initiates apoptosis directly.

ANTICASPASE TREATMENTS: PHARMACOLOGICAL, GENE KNOCKDOWN AND SIRNA TECHNIQUES
A number of specific and broad-spectrum caspase inhibitors are based upon the amino-acid sequence of caspase substrate cleavage sites, acting as pseudoenzymes for active caspases and therefore competitive inhibitors. Broad-spectrum inhibitors include Boc-D-fmk, Q-VD-Oph (inhibits caspase-1, -2, -3, -6, -8 and -9), z-VAD-fmk (inhibits all caspases but caspase-2 very weakly).51–54 Specific caspase substrate cleavage sites include WEHD (caspase-1), YVAD (caspase-1), VDVA (caspase-2), DEVD (caspase-3), LEVD (caspase-4), VEDD (caspase-6), LETD (caspase-6), IETD (caspase-8 and -10) and LEHD (caspase-9).55,56,57 Caspase peptide inhibitors are linked to chemical groups that improve permeability, efficacy and stability of the compound. Peptides linked to aldehydes (or nitriles or ketones) are reversible inhibitors (e.g., Ac-DEVD-CHO) and bind to the catalytic site but do not irreversibly chemically alter the enzyme, whereas peptides linked to halomethylketones (chloro or fluoro) (e.g., z-VAD-fmk) bind irreversibly. The chemical group -fkm is non-specific.56,57

Cross-reactivity with ‘off-target’ caspases limits interpretation of many studies using these inhibitors. The sequence DEVD (caspase-3) also binds to caspase-6, -7, -8 -9 and -10, similarly...
VDVAD (caspase-2) binds caspase-3 and -7 and LETD (caspase-6) binds caspase-3, -8 and -9. VEID has a stronger efficacy for caspase-3 than its target caspase-6, IETD has a stronger efficacy for caspase-3 and -6 than its target caspases -8 and -10 and LEHD has a stronger efficacy for caspase-3 than its target caspase-6, IETD has a stronger efficacy for caspase-3 and -6 than its target caspases -8 and -10 and LEHD has a stronger efficacy for caspase-3 and -10 than their intended target effects, thus appropriate controls are still critical.

CASPASES AND RGC DEATH

Caspase-dependent RGC death occurs after eye and brain injuries, in retinal and optic nerve degenerative disorders and during development. Common mechanisms of degeneration between different conditions could lead to broadly translatable therapeutics. Caspase involvement in RGC death in animal models, primary cell culture and human postmortem specimens are highlighted in this section. Relative efficacy of neuroprotection is shown for direct caspase inhibitors in Table 1 and upstream indirect inhibitors in Table 2.

Endogenous caspase activity and inhibition in RGCs. Caspase-dependent apoptosis is important in pruning neuronal, including RGC, numbers after normal developmental overproduction, causing an ~50% reduction in RGC numbers shortly after cell birth, which can be prevented by broad-spectrum caspase inhibitor, Boc-D-fmk. Caspase-3 is pivotal in neuronal developmental apoptosis, with active caspase-3 localising to terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL)-positive RGC in 2–6-day chick embryos and caspase-3 inhibition, using z-DEVD-fmk, reducing TUNEL-positive cells by ~50% and increasing RGC numbers, axons and GCL thickness. Moreover, BARH2, a member of the Barh gene family, which suppresses caspase-3 activation, is essential for developmental preservation of normal complement of RGC subtypes.

Supporting this, caspase-3 knockout mice express a brain-specific phenotype with excessive neuronal numbers and cellular disorganisation, dying at 1–3 weeks of age. Similarly, caspase-9 knockout results in a selective CNS phenotype, characterised by severe brain malformations and high perinatal lethality without gross abnormality of other body parts. Caspase-2 (NEDD2) gene expression is elevated during neurogenesis and down-regulated in the mature brain and retina. However, caspase-2 knockout mice develop normally and lack overt phenotypic abnormalities, with minimal CNS or retinal defects. The role of caspase-2 in RGC neurogenesis is therefore unclear. In more mature mouse retinas, there are no alterations in caspase-3, -6, -7, -8 or -9 expression between 6 and 24 weeks. However, there was a reduction in cIAP-1 suggesting a possible role for caspases at this stage.

Induced caspase activity and anti-caspase treatment in RGCs. Multiple sclerosis (MS) is an autoimmune, demyelinating CNS disease and a major cause of non-traumatic disability in young adults. Optic neuritis involves ON inflammation and...
demyelination and is a common presenting feature of MS, associated with visual loss. The extent of visual recovery after acute optic neuritis is influenced by demyelination, axonal loss and RGC death. The experimental autoimmune encephalomyelitis (EAE) model is the most common MS animal model induced by myelin oligodendrocyte glycoprotein (MOG) peptide administration causing autoimmunity, inflammation and neurodegeneration. In the EAE rat model cleaved caspase-3 immunolocalised to Fluoro-Gold-labelled RGC suggesting that RGC die by apoptosis, though in the EAE mouse model only full-length caspase-3 is present in the GCL. RGC and some microglia, regeneration is an indirect effect of demyelination, axonal loss and RGC death. After direct TON, RGC begin to degenerate 5 days after axotomy, and active caspase-3 levels, supporting a critical role for caspase-3.

Various regulators upstream of caspase-3 are also neuroprotective (Table 2).

Caspase	Model	Inhibitor	Time at the end of the study (days)	Percentage surviving RGC (% untreated)	Percentage surviving RGC (% treated)	References
Broad spectrum	ONT	z-VAD	14	16.8a	34.5a	61
Caspase-1	ONC NMDA-RGC explants	NLRP3 –/-	3–28	78–13	89–25	108
Caspase-2	ONC	YYAD-fmk	2	18	12	135
Caspase-3	Optic neuritis	siCAS2	21–84	10–7	95–96	91,116
Caspase-4	Optic neuritis	z-DEVD-cmk	7–28	10–34.3	24.3–47.4	135
Caspase-6	NMDA-RGC explants DEVD-fmk	2	18	26	135	
Caspase-7	NMDA-RGC explants	VEID-fmk	14	33.9	46.2	161
Caspase-8	NMDA-RGC explants	siCASP6	14	30a	48a	161
Caspase-9	NMDA-RGC explants	IETD-fmk	2	18	27	135
Caspase-10	NMDA-RGC explants	IETD-fmk	2	18	27	135
Caspase-11	NMDA-RGC explants	YVAD-fmk	14	30	48	161
Caspase-12	NMDA-RGC explants	DEVD-fmk	2	18	27	135
Caspase-13	NMDA-RGC explants	VEID-fmk	14	30	48	161
Caspase-14	NMDA-RGC explants	IETD-fmk	2	18	27	135
Caspase-15	NMDA-RGC explants	YVAD-fmk	14	30	48	161
Caspase-16	NMDA-RGC explants	DEVD-fmk	2	18	27	135

Specific pharmacological inhibitors, gene knockdown (i.e., siRNA) or gene knockout (either direct or following induction with Bordetella pertussis toxin), RGC express active caspase-2 and intravitreal injection of a modified siRNA against caspase-2 (siCAS2) protects ~80% of RGC against apoptosis and axonal degeneration, suggesting a critical role for caspase-2 in RGC apoptosis after optic neuritis.

Traumatic optic neuropathy. Traumatic optic neuropathy (TON) is a major cause of visual loss after brain and eye injury. TON can be either direct – when the ON is crushed or severed – or more commonly indirect, when brain or ocular injury causes secondary RGC death or ON injury. Spontaneous recovery occurs in a minority of patients. However, the most common outcome is permanent blindness, and at present, there is no treatment that improves outcome. Direct TON can be caused by penetrating injury, such as craniofacial fractures, or direct compression from orbital haemorrhage. ON transection (ONT) and ON crush (ONC) in animal models can be used to study degenerative mechanisms and evaluate neuroprotective and regenerative therapies.

RGC death after ON injury is progressive and the severity is dependent upon type of lesion and distance from the eye. After direct TON, RGC begin to degenerate 5 days after axotomy, and 90% die between 7 and 14 days, through caspase-dependent apoptosis. Cleaved caspase-2 is induced following induction with Bordetella pertussis toxin, RGC express active caspase-2 and intravitreal injection of a modified siRNA against caspase-2 (siCAS2) protects ~80% of RGC against apoptosis and axonal degeneration, suggesting a critical role for caspase-2 in RGC apoptosis after optic neuritis.

Table 1. Treatments directly targeting caspases in RGC degenerative disease
Disease	Injury	Treatment	Effect on caspase by treatment	End of the study (days)	Effect on RGC	References
Direct ON injury	ONC	ROCK inhibition	Reduced cleaved caspase-3 immunostaining in GCL and primary RGC culture lysate	14	ROCK shRNA increases RGC survival to 143% of EGFP shRNA control	111,112
	ONC	Calcineurin inhibition	Reduced cleaved caspase-9 protein immunostaining	—	ND	98
	ONC	Deletion of CHOP	Reduced full-length caspase-3 immunostaining	14	CHOP KO mice had 52% surviving RGC compared with 24% in sham	198
	ONT	Kv1.3 siRNA	Reduced caspase-3 and -9 mRNA expression	14	KV 1.3-1169 siRNA increases RGC survival 3.5-fold compared with control	199
	ONC	Valproic acid (VPA)	Reduced cleaved caspase-3 RGC immunostaining	14	VPA treatment has 44% surviving RGC compared with 27% in vehicle	113,114
Glaucoma	Hypertonic saline injections into limbal vein	Morphine	Reduced cleaved caspase-3 and -8 protein	56	Morphine treatment has 65.9% surviving RGC compared with 17.3% in control	166
	Laser photocoagulation	Cobra venom factor (CVF; complement depletion)	Reduced cleaved caspase-8 and -9 protein	42	CVF treatment has 41.5% surviving RGC compared with 28.4% in control	165
	Suture pulley compression	C-Jun N-terminal kinase (C-JNK) inhibitor	Reduced cleaved caspase-3 immunostaining	0.5	C-JNK inhibition has 23.6% of RGC as TUNEL positive compared with 52.4% in vehicle control and 1.49% in uninjured	167
Saline injection into anterior chamber	Cyclosporine A (CSA; inhibits cyclophilin D and MPTP)	Minocycline, tetracycline antibiotic	Reduced cleaved caspase-3 protein, immunolocalised to RGC	14	CSA treatment has 93% surviving RGC compared with 77% in ischaemic ND	200
Translimbal photocoagulation laser model	Minocycline, tetracycline antibiotic	Reduced caspase-1 and -4 but not caspase-8 and -12 gene expression	8	ND	170,201	
Glutamate excitotoxicity	Glutamate – primary rat RGC culture	Pilocarpine (M1 muscarinic receptor agonist)	Reduced caspase-3 gene expression and full-length protein	1	Cell viability is 42% after 1 mM of glutamate, increases by 32% with pilocarpine treatment	153,202
	NMDA administration	Thioredoxin (TRX)	Reduced cleaved caspase-3 and -9 protein	7	TRX treatment has 56.6% surviving RGC compared with 13.4% in control	203
Ischaemic injury	Ischaemic reperfusion injury	Brain-derived neurotrophic factor (BDNF)	Reduced full-length caspase-2 GCL immunostaining	7	BDNF treatment has 69.6% surviving RGC compared with 44.1% in sham	153,154
	Ischaemic reperfusion injury	VPA	Reduced cleaved caspase-12 protein	7	VPA treatment has 83.5% surviving GCL cells compared with 57.5% in sham	157
Branch retinal vein occlusion (BRVO)	Laser photocoagulation	Minocycline, tetracycline antibiotic	Reduced cleaved caspase-3 immunostaining in GCL	7	In vivo OCT imaging shows increased RNFL +GCL thickness 3 days after minocycline. Minocycline has 55.2% RGC compared with 46.8% in saline control	204
Diabetic retinopathy	STZ	Somatostatin (SST)	Reduced cleaved caspase-8 and -3 protein	14	Reduced TUNEL cells in GCL, 36.8% in STZ compared with 13.7% in treated	195
	STZ	Edaravone (free radical scavenger)	Reduced cleaved caspase-3 protein	28	Reduced TUNEL cells in GCL, 42% in vehicle compared with 9.5% in treated	205
High glucose primary RGC culture	Erythropoietin (EPO; antioxidant)	Reduced full-length caspase-3 and -9 protein	7	Reduced apoptotic Hoechst 33358-stained cells, 49.1% in high glucose compared with 25.7% in EPO treated	206	
High glucose primary RGC culture	L-Carnitine (endogenous mitochondrial membrane compound)	Reduced full-length caspase-3 and -9 protein	7	Reduced apoptotic Hoechst 33358 stained cells, 49.1% in high glucose with 15.7% in L-Carnitine treated	207	
Optic neuritis	EAE model	EPO	Reduced cleaved caspase-3 immunostaining	8	EPO treatment has 55% RGC surviving compared with 30% in vehicle control	80
PBI Blast wave	Compound 49b (beta-adrenergic receptor agonist)	Reduced cleaved caspase-3	3	ND	125	

Abbreviations: CHOP, CCAAT/enhancer binding homologous protein; EAE, experimental autoimmune encephalomyelitis; MPTP, mitochondrial permeability transition pore; NMDA, N-methyl-d-aspartate; PBI, primary blast injury; ROCK, Rho-associated protein kinase; STZ, streptozotocin; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labelling.
In addition, combined caspase-8 and -9 inhibition provides additive survival benefits compared with single inhibition, which may suggest either that both intrinsically and extrinsically apoptotic pathways are activated following direct optic nerve injury or that there are increased off-target effects. Inhibition of caspase-8 can also promote caspase-independent RGC death, such as necroptosis. Recent studies have indicated a pivotal role of caspase-2 in apoptotic RGC injury. After ON axotomy and crush, active caspase-2 is exclusively localised to RGC, and its inhibition using siRNA provides significant neuroprotection. For example, intravitreal administration of either siCASP2 or the pharmacological inhibitor z-VDVAD-fmk protects 98% and 60% of RGC, respectively, for up to 30 days and >95% of RGC are protected from death for 12 weeks if siCASP2 is injected every 8 days. Pharmacological inhibition with z-VDVAD-fmk also inhibits caspase-3 and -7, though activation of these caspases was not affected. The siCASP2 is being developed by Quark Pharmaceuticals Inc. and is currently in Phase III clinical trials for ischaemic optic neuropathy and glaucoma.

NLRP3-induced neuroinflammation promotes RGC death after partial ON. NLRP3 expression is upregulated in retinal microglia and NLRP3 inflammasome activation upregulates retinal cleaved caspase-1 and IL-1β, which is prevented in NLRP3 knockout mice, in which RGC are protected against axotomy-induced RGC death. The P2X7 ionotropic ATP-gated receptors are implicated in RGC degeneration; P2X7-mediated potassium efflux induces NLRP3 inflammasome formation and caspase-1 activation. P2X7 receptor-deficient mice displayed delayed RGC loss and reduced phagocytic microglia at early time points after RGC axotomy. Intravitreal administration of a selective P2X7 receptor antagonist A438079 delayed RGC death, suggesting P2X7 receptor antagonism as a potential therapeutic strategy. Caspase-11 expression is also upregulated in RGC after ONC and ONT.

Primary ocular blast injury. Although direct ON injury results in rapid RGC degeneration, indirect blast-injured ON is delayed and progressive. After explosive blast, the sonic blast-wave causes primary blast injury (PBI), which can cause indirect Ton. Secondary blast injury causes direct and indirect Ton, when explosively propelled fragments impact the eye, head and ON. Blast injury represents a significant threat to military personnel in modern warfare causing visual loss. Multiple studies have demonstrated increased cleaved caspase-3 in the GCL and ON between 3 and 72 h after whole animal and direct local ocular blast exposures. Moreover, caspase-3 activation displays a cumulative effect after multiple exposures, which is comparable to repeated exposure in combat, potentially leading to worse structural and functional visual outcomes. Additionally, an alternative model using trinitrotoluene (TNT) explosives detected active caspase-3 exclusively in photoreceptors and not RGC. Other apoptotic markers, such as Bax, Bcl-xL and Cytochrome C are also elevated in the retina up to 24 h after blast injury. DBA/2 mice lack ocular regulatory mechanism of immune privilege in the anterior chamber, and are thus used as a closed globe injury model to approximate features of open globe injury, without complications of infection. In this model, full-length inflammatory caspase-1 is immunolocalised to the inner nuclear layer (INL) and GCL in control retinas, but immunostaining declines after blast injury, suggesting caspase-1 cleavage. However, necroptotic markers RIPK1 and RIPK3 have increased retinal expression, with RIPK1 localised to outer nuclear layer (ONL), INL and Müller glia and RIPK3 in the ONL, INL and GCL 3 and 28 days post-ocular PBI. These findings suggest potential activation of necroptotic or pyroptotic death pathways.

Although caspase activation immediately follows blast injury, RGC death does not occur until later time points, with retinal nerve fibre layer (RNFL) thickness unchanged for 3 months postblast. Axonal degeneration at 28 days after ON demyelination suggests that, as in direct Ton, ON degeneration may precede RGC death. Research into blast-induced RGC degeneration is in its infancy. However, roles for apoptotic and potentially inflammatory caspases in RGC death are apparent.

Excitotoxicity-induced RGC death. Excitatory neurotransmitter glutamate is linked to retinal degeneration, for example, in glaucoma, through overactivation of N-methyl-D-aspartate (NMDA) receptors, calcium overload and subsequent mitochondrial dysfunction. Excitotoxicity-induced RGC death is caspase dependent; broad-spectrum caspase inhibition preserves GCL cells. Intravitreal caspase-3, -6, -8 and -9 inhibitors, DEVD-fmk, VEID-fmk, IETD-fmk and LEHD-fmk respectively, significantly protect RGC, but caspase-1 and -4 inhibition, using YMAD-fmk, does not, suggesting that excitotoxicity-induced RGC death is apoptotic but not pyroptotic. The greatest RGC neuroprotection is provided by DEVD-fmk, which inhibits caspase-3 and also -2, -4, -5, -7, -8, -9 and -10. The latter, LEHD-fmk (intended for caspase-9), is most specific for caspase-3 and -8 and also inhibits -6 and -10. The IQACRG amino-acid sequence is conserved in the active site of caspase-1, -2, -3, -6 and -7 and the synthetic peptide, with amino-acid sequence IQACRG, acts as an enzymatically inactive caspase mimic, thus binds to caspase substrates as a pseudo-enzyme and protects them from proteolysis by caspases. Treatment with IQACRG caspase mimic protects RGC from excitotoxicity-induced death both in vivo and in primary culture.

Light-induced retinopathy. Light exposure can cause light-induced retinal damage (LIRD) and blindness, and the light-toxicity animal model induces photoreceptor and caspase-dependent RGC apoptosis. Cleaved caspase-3 is elevated in RGC 6 h after toxic light exposure and reaches a peak after 3 days, co-localising with increased staining for Ras homologue enriched in the brain (RHEB), cyclic AMP response element modulator-1 (CREM), transcription inhibitor IIB (TFFB), pyruvate kinase isozyme type M2 (PKM2), SYF2 pre-mRNA splicing factor (SYF2) and RNA-binding motif protein, X-linked (RBMX), which are all involved in cell death pathways. Nuclear factor of activated T cells, cytoplasmic 4 (NFATc4) (a component of T-cell activation and a regulator of the immune response) are also co-localised with cleaved caspase-3, caspase-8 and Fas-L in RGC, suggesting that NFATc4 may upregulate Fas-L and participate in RGC apoptosis. Intravitreal mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK) inhibitor reduces PKM2 and active caspase-3 protein expression, suggesting that light-induced RGC apoptosis is in part dependent on MAPK/ERK pathway. Together, these studies show that RGC apoptosis is correlated with caspase-3 cleavage but not that RGC death in LIRD is caspase-3 dependent.

Ischaemic RGC death. Retinal ischaemia is a common cause of visual impairment and sight loss and can be experimentally induced by clamping or ligation of the ophthalmic artery, raising intraocular pressure (IOP) or bilateral common carotid artery occlusion. The degree of RGC loss after ischaemic injury is dependent upon the length of ischaemic interval and is progressive. For example, after 45 min of ligation, ischaemia induces ~50% of RGC to degenerate over a 2-week period, whereas 120 min induces death of 99% over 3 months. Ischaemic RGC degeneration is caspase dependent, evidenced by neuroprotection with broad-spectrum caspase inhibitors (QD-OPH and Boc-aspartyl-fmk). In Thy1-positive RGC, full-length caspase-2 expression is increased 1.5, 6, 153, 154 and 24, 152, 154 and 72 h after ischaemia and antisense oligonucleotide inhibitor of caspase-2 (antisense Nedd-2 oligonucleotide 5'-GGCTCG GCGGCAGCATTTTCCAGL-3') protected inner retinal thickness at 7
Brain-derived neurotrophic factor (BDNF) is also RGC neuroprotective and reduced caspase-2 expression.153 Full-length caspase-3 immunolocalised to the GCL 4 h after injury155 and preinjury intravitreal siRNA caspase-3 injection was RGC neuroprotective,156 though other studies have found full-length caspase-3 to be exclusively in the INL and ONL.152 Valproic acid, a broad-spectrum histone deacetylase inhibitor, protects RGC after ischaemic reperfusion (I/R) injury caused by raised IOP113,114,157 and reducing cleaved caspase-3 and -12 expression.114,157

Pannexin-1 is a mammalian cell membrane channel-forming protein that acts as a diffusional pathway for ions and small molecules. Pannexin-1 facilitates neurotoxicity in the ischaemic brain and retinal pannexin-1 gene knockouts suppress inflammasome-mediated caspase-1 activation and IL-1β production 3 h after ischaemic injury and reduces RGC degeneration at 14 days.158 Administration of YVAD-fmk (caspase-1, -4 and -5) protects inner retinal morphology in some, but not all, studies,152,154,155 leaving the role of caspase-1 in question. P2X receptor stimulation induces ATP influx, potassium ion efflux and downstream NLPR3 inflammasome and caspase-1 activation.37,38 During stimulated ischaemia (oxygen/glucose deprivation) of human organotypic retinal cultures, P2X receptor stimulation causes RGC death, suggesting possible involvement of NLPR3 inflammasome and caspase-1.159

RGC axon degeneration after central retinal artery occlusion is mediated by the mitochondrial intrinsic apoptotic pathway160 – cytosolic Bax, a pro-apoptotic Bcl-2 family member, levels are decreased at 3 and 6 h post injury, whereas mitochondrial Bax levels are elevated at 3, 6 and 24 h, suggesting that BAX translocates to the mitochondria.160 In addition, cytosolic Cytochrome C levels are elevated at 3 h post injury but not at 6 and 24 h, and cleaved caspase-9 levels are elevated at 3 h.160

RGC are protected by intravitreal caspase-6 and -8 inhibitors (z-VEID-fmk and z-IETD-fmk) and siRNA against caspase-6 and -8 (siCASP6 and siCASP8) after I/R injury.161 Two different siRNA were used for each caspase making off-target effects unlikely. Caspase-6 inhibition may act indirectly by increasing retinal glial CNF production.39,90 Two weeks after ischaemia, z-VEID-fmk (caspase-6, but also -3 and -7) and z-IETD-fmk (caspase-8 but also -3, -6, and -10) protect only a small proportion of RGC, whereas both siCASP8 and siCASP6 administration elevate RGC survival by ~60%.161 This suggests that small peptide inhibitors are less effective, as they act as a competitive inhibitor for the caspase substrates, whereas siRNA gene knockdown reduces caspase gene expression and could affect non-apoptotic caspase roles, such as caspase-8 in complex Iff, ‘FADDosome’, ‘riposptosome’ and inflammasome formation.20

Glaucoma. Glaucoma is a complex, multifactorial disease affecting > 60 million people worldwide162 and is associated with raised IOP causing RGC death. Genetic background163 and age164 are also associated with disease development. Glaucoma is currently treated by IOP control; however, there is an unmet clinical need for a neuroprotective treatment.

Acute severe IOP elevation induces I/R injury, but models use less severe IOP elevation to simulate glaucoma, include the photocoagulation laser model,165 injection of hypertonic saline166 injection of paramagnetic microspheres into the anterior chamber, suture-pulley compression,167 intracameral transforming growth factor beta (TGF-β) injection168 and AAV-TGF-β transfection to induce trabecular meshwork fibrosis.169

Apoptotic caspases -3, -8 and -9 are cleaved in RGC after a period of elevated IOP166,167,170–176 and inflammatory caspases -1, -4 and -12 are also upregulated.170

In response to acute elevated IOP, NLPR3 inflammasome and IL-1β production are induced,177,178 mediated through high-mobility group box-1 (HMGB1) via the NF-κB pathway.178 HMGB1 promotes NLPR3 and ASC elevation leading to caspase-1 maturation. Caspase-8 acts upstream of the NF-κB HMGB1-caspase-8 pathway and induces the activation of NLPR3 and IL-1β production.178 Toll-like receptor 4 (TLR4) activation increases macrophage caspase-8 expression upregulating IL-1β through the NF-κB pathway178 and causes RGC death through the extrinsic pathway. Caspase-8 inhibition, using intravitreal z-IETD-fmk, reduces RGC death through NLPR1 and NLPR3 downregulation, though inhibition of a direct effect of caspase-8 (or other caspases) inhibition on the extrinsic apoptotic pathway is not excluded. Caspase-8 inhibition completely suppresses retinal IL-1β expression, but caspase-1 inhibition, using z-YVAD-fmk, does not, suggesting that caspase-8 regulates IL-1β expression through caspase-1-dependent and -independent pathways.177

Primary open-angle and normal-tension glaucoma patients display serum autoantibodies against retinal and ON antigens.179–182 A ‘glaucoma-like’ syndrome, without direct damage to the retina or ON, has been induced using immunisation of ON homogenate causing RGC degeneration,179,183 with increased GCL full-length caspase-3 expression at 14 and 22 days after immunisation.179 However, RGC numbers did not decline until 22 days after immunisation.179

Diabetic retinopathy. RGC degenerate early in the disease process in the human diabetic retinopathy (DR) retinae demonstrated by scanning laser polimetry showing reduced RNFL thickness in DR patients compared with healthy controls.184–186 TUNEL-positive RGC are increased in diabetic rats and in human posterior retinata187 and cleaved caspase-3, caspase-9, Fas and Bax localise to RGC.188,189

Diabetes mellitus develops in the Akita, insulin gene mutation (Ins2) mouse, after streptozotocin (STZ; toxic to β cells) administration, and in the Otsuka Long-Evans Tokushima fatty rats (OLETF; develop insulin resistance).190–193 In STZ diabetic mice, retinal caspase activity (assessed with a variety of non-specific substrates) is increased 8 weeks after induction and GCL counts are reduced by 20–25% 14 weeks after induction, with TUNEL positivity and cleaved caspase-3 in the GCL, suggesting RGC apoptosis.192,194 Caspase-2, -8 and -9 activity (using substrate sequences VDVAD, IETD and LEHD) transiently increases initially. By 4 months, caspase-3 activity increases and caspase-1, -3, -4 and -5 activities remain elevated,194 corroborated by elevated cleaved caspase-8 and -3 levels in whole retinal lysates195 and caspase-3 GCL immunolocalisation.196 In primary retinal explants exposed to high glucose media, there are more cleaved caspase-3- and -9-positive RGC compared with explants in normal glucose media.197

CASPASES AND RGC AXON REGENERATION

In addition to promoting RGC survival, caspases promote RGC axon regeneration after ON injury. Pharmacological inhibition of caspase-6 and -8, using z-VEID-fmk and z-IETD-fmk, provide RGC neuroprotection and promote limited RGC axon regeneration,61 with few axons extending > 1000 μm beyond the lesion site. Similarly, few RGC axons regenerated through the lesion site with inhibition of caspase-6 by a dominant negative (CASP6 DN)96; however, combined suppression of caspase-2 and -6 using siCASP2 and CASP6 DN promoted significant regeneration, with an average of 195 ± 9 axons growing beyond 1000 μm.96 Although caspase-6 is localised to RGC and some microglia, the neuroprotective and pro-regenerative effects of caspase-6 inhibition are mediated indirectly by CNF upregulation in retinal glia and are blocked by suppression of gp130 and the JAK/STAT pathway.96 These studies reveal a novel non-apoptotic role for caspases and warrants further investigation.
CONCLUSION

Postmitotic CNS neurons, including RGCs, do not regenerate their axons after trauma or injury; hence RGC trauma or disease can lead to permanent visual loss. Understanding the signalling pathways in RGC injury is vital for the development of therapeutic interventions, such as pharmacological inhibitors, RNA interference technology or gene therapies. Caspases, a family of cysteine aspartate proteases, mediate RGC death in physiology, such as during development, as well as trauma and disease, and their inhibition can prevent RGC death. Caspase-3 is implicated during RGC developmental pruning, whereas most apoptotic and inflammatory caspases are implicated in trauma and disease, with siRNA knockdown of caspase-2 providing the greatest neuroprotection after axotomy. Non-apoptotic roles of caspases, such as inflammatory pyroptotic death or facilitating formation of necroptotic complexes are also critical in RGC death. Caspases also have a novel role in RGC axon regeneration; in particular, caspase-6 inhibition mediates regeneration indirectly through CNTF upregulation in retinal glia. Understanding the key pathways for caspase-dependant RGC death is fundamental to the development and effective translation of neuroprotective treatments from preclinical studies to clinical practice.

ACKNOWLEDGEMENTS

This work was funded by a Fight for Sight PhD studentship ref.: 1560/1561.

COMPETING INTERESTS

The authors declare no conflict of interest.

REFERENCES

1. Berry M, Ahmed Z, Lorber B, Douglas M, Logan A. Regeneration of axons in the visual system. Restor Neurol Neurosci 2008;26:147–174.
2. Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 1999;6:1028–1042.
3. Nicholson DW, Thornberry NA. Caspases: killer proteases. Trends Biochem Sci 1997;22:299–306.
4. Jimenez Fernandez D, Lamkanfi M. Inflammatory caspases: key regulators of inflammation and cell death. Biol Chem 2013;396:193–203.
5. Fan T-J, Han L-H, Cong R-S, Liang J. Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (Shanghai) 2005;37:719–727.
6. Cullen SP, Martin SJ. Caspase activation pathways: some recent progress. Cell Death Differ 2009;16:935–938.
7. Kuwana T, Smith JJ, Muzio M, Dixit V, Newmeyer DD, Kornbluth S. Apoptosis activation pathways, some recent advances and novel insights. Trends Cell Biol 2015;25:308–315.
8. Lopez-Cruzan M, Sharma R, Tiwari M, Karbach S, Holstein D, Martin CR et al. NLRP3 inflammasome activation: recent advances and novel insights. Trends Cell Biol 2015;25:1289–1298.
9. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 2016;16:407–420.
10. Brachaniyam AM, O’Rourke K, Tewari M, Dixit VM. FADD, a novel death-domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995;81:505–512.
11. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997;91:479–489.

Official Journal of the Cell Death Differentiation Association

Role of caspases in RGCs
CN Thomas et al

17 Adams JM, Cory S. Apoptosomes: engines for caspase activation. Curr Opin Cell Biol 2002;14:715–720.
18 Vanden Berge T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenberghe P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 2014;15:135–147.
19 Micieau O, Tschopp J. Induction of TNF receptor 1-mediated apoptosis via two sequential signaling complexes. Cell 2003;114:181–190.
20 Feltham R, Vince JE, Lawlor KE. Caspase-8: not so silently deadly. Clin Transl Immunology 2017;6:e124.
21 Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A, Bruggeman I et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep 2014;7:971–981.
22 Scott FL, Denaud JB, Riedl SJ, Shin H, Renatus M, Salvesen GS. XIAP inhibits caspase-3 and -7 using two binding sites: evolutionarily conserved mechanism of IAPs. EMBO J 2005;24:645–655.
23 Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F et al. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 2011;43:432–448.
24 Feoktistova M, Geserick P, Parayatov-Dimitrova D, Leverkus M. Pick your poison: the Ripoptosome, a cell death platform regulating apoptosis and necroptosis. Cell Cycle 2012;11:460–467.
25 Henry CM, Martin SJ. Caspase-8 acts in a non-enzymatic role as a scaffold for assembly of a pro-inflammatory "FADDosome" complex upon TRAIL stimulation. Mol Cell 2017;65:715–29 e5.
26 Guo Y, Sinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES. Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem 2002;277:13430–13437.
27 Cassul P, Opitz-Araya X, Lazebnik Y. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 2002;297:1352–1354.
28 Li P, Liu L, Zhang H, Aguado E, Hoffmans R. Bcl-2 and caspase-3. Cell 2008;133:864–877.
29 Duan H, Dixit VM. RAIDD is a new ‘death’ adaptor molecule. Nature 1997;385:86–89.
30 Liu Y, Ma W, Benchimol S, Fidd, a new death-domain-containing protein, is induced by p53 and promotes apoptosis. Nat Genet 2000;26:122–127.
31 Boucher-Hayes L, Green DR. Caspase-2: the orphan caspase. Cell Death Differ 2012;19:51–57.
32 Lopez-Cruzam M, Sharma R, Tiwari M, Karbach S, Holstein D, Martin CR et al. Caspase-2 resides in the mitochondria and mediates apoptosis directly from the mitochondrial compartment. Cell Death Discov 2016;2:16005.
33 Vanaja SK, Rathinam VA, Fitzgerald KA. Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol 2015;25:308–315.
34 Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 2010;10:241–247.
35 Miyagaki N, Stove IB, Lee BL, O’Rourke K, Anderson K, Warming S et al. Inflammasome activation: the good, the bad and the ugly. Clin Exp Immunol 2011;166:1–15.
36 Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith BL, Rajendran TM, Nunez G. NLRP3 inflammasome activation: bacterial toxins and particulate matter. Immunity 2013;38:1142–1153.
37 Gaidt MM, Ebert TS, Chauhan D, Schmidt T, Schmid-Burgk JL, Rapino F et al. Human monocytes engage an alternative inflammatory pathway. Immunity 2016;44:833–846.
Role of caspases in RGCs

CN Thomas et al

46 Wolf AJ, Reyes CN, Liang W, Becker C, Shimada K, Wheeler ML et al. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. Cell 2016; 166: 624–636.

47 Day D, He Y, Munoz-Planillo R, Liu Q, Nunez G. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity 2015; 43: 923–932.

48 Lawlor KE, Khan N, Mildenhall A, Gerlic M, Croker BA, DCruz AA et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat Commun 2015; 6: 6282.

49 Allam R, Lawlor KE, Yu ECW, Mildenhall AL, Moujalled DM, Lewis RS et al. Mitochondrial apoptosis is dispensable for NLRP3 inflammasome activation but non-apoptotic caspase-8 is required for inflammasome priming. EMBO Rep 2014; 15: 982–990.

50 Gutierrez KD, Mattox DA, Daniels BP, Olsen T, Rain-Jain P, Tait SW et al. MLKL activation triggers NLRP3-mediated processing and release of IL-1beta independently of gasdermin-D. J Immunol 2017; 198: 2156–2164.

51 Rozman-Pungercar J, Kopitar-Jeralna N, Bogyo M, Turk D, Vasiljeva O, Stefe I et al. Inhibition of papaun-like cysteine proteases and legumain by caspase-specific inhibitors: when reaction mechanism is more important than specificity. Cell Death Differ 2010; 17: 881–888.

52 Caserta TM, Smith AN, Gultice AD, Reedy MA, Brown TL. Q-V-D-PH, a broad spectrum caspase inhibitor with potent antiapoptotic properties. Apoptosis 2003; 8: 345–352.

53 Callus BA, Vaux DL. Caspase inhibitors: viral, cellular and chemical. Cell Death Differ 2007; 14: 73–78.

54 Eckert PG, Silke J, Vaux DL. Caspase inhibitors. Cell Death Differ 1999; 6: 1501–1508.

55 McStay GP, Salvesen GS, Green DR. Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death Differ 2008; 15: 322–331.

56 Chauvier D, Anki S, Charriaut-Marlangue C, Casimir R, Jacotot E. Broad-spectrum caspase inhibitors: from myth to reality? Cell Death Differ 2007; 14: 387–391.

57 Schotte P, Declercq W, Van Hulff S, Vandenabeele P, Beyaert R. Non-specific effects of methyl ketone peptide inhibitors of caspases. FEBS Lett 1999; 442: 117–121.

58 Berger AB, Sexton KB, Bogyo M. Commonly used caspase inhibitors designed based on substrate specificity profiles lack selectivity. Cell Res 2006; 16: 961–963.

59 Pereira NA, Song Z. Some commonly used caspase substrates and inhibitors lack the specificity required to monitor individual caspase activity. Biochem Biophys Res Commun 2008; 377: 873–877.

60 Jackson AL, Linsley PS. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 2010; 9: 57–67.

61 Montirossi PP, D’Onofrio PM, Magharious M, Hollander AC, Tassew N, Szydlowska K et al. Involvement of caspase-6 and caspase-8 in neuronal apoptosis and the differential requirement for caspase 9 in apoptotic pathways. J Neurosci 2014; 34: 121–124.

62 Patil K, Sharma SC. Broad spectrum caspase inhibitor rescues retinal ganglion cells after ischemia. Neuronarepo 2004; 15: 981–984.

63 Bahr M. Live or let die - retinal ganglion cell death and survival during development and in the lesioned adult CNS. Trends Neurosci 2000; 23: 483–490.

64 Cellerino A, Bahr M, Isemann S. Apoptosis in the developing visual system. Cell Tissue Res 2000; 301: 53–69.

65 Perry VH, Henderson Z, Linden R. Postnatal changes in retinal ganglion cell and optic axon populations in the pigmented rat. J Comp Neurol 1983; 219: 356–368.

66 Chavarría T, Baleraisa J, Mayordomo R, de Pablo F, de la Rosa EJ. Early neural cell death is an extensive, dynamic process in the embryonic chick and mouse retina. ScientificWorldJournal 2013; 2013: 627240.

67 Mayordomo R, Valenciano Al, de la Rosa EJ, Hallbook F. Generation of retinal ganglion cells is modulated by caspase-dependent programmed cell death. Eur J Neurosci 2003; 18: 1746–1750.

68 Ding Q, Chen H, Xie X, Libby RT, Tian N, Gan L. BARHL2 differentially regulates the development of retinal amacrine and ganglion neurons. J Neurosci 2009; 29: 3992–4003.

69 Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 1996; 384: 368–372.

70 Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 1998; 94: 339–352.

71 Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 1998; 94: 325–337.

72 Kumar S, Tomooka Y, Noda M. Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem Biophys Res Commun 1992; 185: 1155–1161.

73 Kojima M, Asahi M, Kikuchi H, Hashimoto N, Noda M, Hoshimaru M. Expression of Nedd2/J切尔(1–caspase-2) in the developing rat retina. Neurosci Res 1998; 31: 211–217.

74 Talla V, Koikkola R, Porciatti V, Chiiodo V, Boye SL, Hauswirth WW et al. Complex I subtunit gene therapy with NDUFA6 ameliorates neurodegeneration in EAE. Invest Ophthalmol Vis Sci 2015; 56: 1129–1140.

75 Sattler MB, Merkler D, Maier K, Stedelmann C, Ehrenreich H, Bahr M et al. Neuroprotective effects and intracellular signaling pathways of erythropoietin in a rat model of multiple sclerosis. Cell Death Differ 2004; 11(Suppl 2): S181–S192.

76 Liddle C, Jackson SJ, Ahmed Z, Munro P, Coffey P, Giovanni G et al. Neuroprotection in a novel mouse model of multiple sclerosis. PLoS ONE 2013; 8: e79188.

77 Wu N, Yin ZQ, Wang Y. Traumatic optic neuropathy therapy: an update of clinical and experimental studies. J Int Med Res 2008; 36: 883–889.

78 Wormald R, Dickerson K, Cochrane E, Vision G. Evidence-based ophthalmology. Ophthalmology 2013; 120: 2361–1 e1.

79 Levin LA, Beck RW, Joseph MP, Seifl S, Kraker R. The treatment of traumatic optic neuropathy: the International Optic Nerve Trauma Study. Ophthalmology 1999; 106: 1268–1277.

80 Sarkies N. Traumatic optic neuropathy. Eye (Lond) 2004; 18: 1122–1125.

81 Berry M, Carlile J, Hunter A. Peripheral nerve explants grafted into the vitreous cavity promotes cell death and NLRP3 in the optic nerve. J Neurocytol 1996; 25: 147–170.

82 Berry M, Carlile J, Hunter A, Tsang W, Rosenstiel P, Rosustrel P et al. Optic nerve regeneration after intravitreal peripheral nerve implants: trajectories of axons regrowing through the optic chiasm into the optic tracts. J Neurocytol 1999; 28: 721–741.

83 Gillegas-Perez MP, Vidal-Sanz M, Rasminsky M, Bray GM, Aguayo AJ. Rapid and protracted phases of retinal ganglion cell loss follow axotomy in the optic nerve of adult rats. J Neurobiol 1993; 24: 36–33.

84 Garcia-Valenzuela E, Gorczyca W, Darzynkiewicz Z, Sharma SC. Apoptosis in adult neuronal amasomes of the retina of an experimental autoimmune encephalomyelitis model. J Neuroimmunol 2013; 10: 120.

85 Vigneswara V, Akpan N, Berry M, Logan A, Troy CM, Ahmed Z. Combined sup-}
Kermer P, Ankerhold R, Klocker N, Krajewski S, Reed JC, Bahr M. Caspase-9 involvement in secondary death of axotomized retinal ganglion cells in vivo. Brain Res Mol Brain Res 2000; 85: 144–150.

Kermer P, Klocker N, Bahr M. Long-term effect of inhibition of caspase-3 like caspasases on the survival of axotomized retinal ganglion cells in vivo. Exp Neurol 1999; 158: 202–205.

Sanchez-Migallon MC, Valiente-Soriano FJ, Nadal-Nicolas FM, Vidal-Sanz M, Agudo-Barrio M. Apoptotic retinal ganglion cell death after optic nerve transection or crush in mice: delayed RGC loss with BDNF or a caspase 3 inhibitor. Invest Ophthalmol Vis Sci 2016; 57: 81–93.

Chaudhary P, Ahmed F, Quebada P, Sharma SC. Caspase inhibitors block the activation of caspase-3 in axotomized retinal ganglion cells in vivo. FEBS Lett 1999; 453: 361–364.

He MH, Cheung ZH, Yu EH, Tay DK, Ko SF. Cytocrome c release and caspase-3 activation in retinal ganglion cells following different distance of axotomy of the optic nerve in adult hamsters. Neurochem Res 2004; 29: 2153–2161.

Levkovitch-Verbin H, Dardik R, Vander S, Melamed S. Mechanism of retinal ganglion cell death in secondary degeneration of the optic nerve. Exp Eye Res 2010; 91: 127–134.

Choudhury S, Liu Y, Clark AF, Pang IH. Caspase-7: a critical mediator of delayed RGC loss with BDNF or a caspase 3 inhibitor. Invest Ophthalmol Vis Sci 2009; 50: 424–431.

Liu Y, Peng L, Chen H, Liang P, Troy JB, Liu X. Retinal ganglion cell loss is delayed following optic nerve crush in NLRP3 knockout mice. Sci Rep 2016; 6: 20998.

Korner P, Klocker N, Bahr M. Long-term effect of inhibition of CED-3 like caspsases on the survival of axotomized retinal ganglion cells in vivo. Exp Neurol 1999; 158: 202–205.

Liu Y, Yan H, Chen S, Sabel BA. Caspase-3 inhibitor Z-DEVD-FMK enhances retinal ganglion cell survival and vision restoration after rabbit traumatic optic nerve injury. Restor Neurol Neurosci 2015; 33: 205–220.

Tura A, Schuettauf F, Monnier PP, Bartz-Schmidt KU, Henke-Fahle S. Effect of caspase inhibitors on the survival of axotomized retinal ganglion cells. Exp Neurol 2015; 278: 36–47.

Kermer P, Klocker N, Labes M, Thomsen S, Sinivasan A, Bahr M. Activation of caspase-3 in axotomized retinal ganglion cells in vivo. FEBS Lett 1999; 453: 361–364.
152 Singh M, Savitz SI, Hoque R, Gupta G, Roth S, Rosenbaum PS et al. Cell-specific caspase expression by different neuronal phenotypes in transient retinal ischemia. J Neurochem 2001; 77: 466–475.

153 Kurokawa T, Katai N, Shibuki H, Kuroiwa Y, Nakayama C et al. BDNF diminishes caspase-2 but not c-Jun immunoreactivity of neurons in retinal ganglion cell layer after transient ischemia. Invest Ophthalmol Vis Sci 1999; 40: 3006–3011.

154 Kurokawa T, Katai N, Kuroiwa S, Shibuki H, Kuroiwa Y, Yoshimura N. BDNF suppresses expression of caspase-2 but not of c-Jun in retinal ganglion cells after ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 1999; 40: 5481.

155 Lamm TT, Abler AS, Tso MO. Apoptosis and caspases after ischemia-reperfusion injury in rat retina. Invest Ophthalmol Vis Sci 2005; 46: 817–823.

156 Ishikawa S, Hirata A, Nakabayashi J, Iwakiri R, Okinami S. Neuroprotective effect of small interfering RNA targeted to caspase-3 on retinal ganglion cell loss induced by ischemia and reperfusion injury.Curr Eye Res 2012; 37: 907–913.

157 Zhang Z, Tong N, Gong Y, Qiu Y, Qin Y, Liu X et al. Valproate protects the retina from endoplasmic reticulum stress-induced apoptosis after ischemia-reperfusion injury. Neurosci Lett 2011; 494: 88–92.

158 Dvoriantchikova G, Ivanov D, Barakat D, Grinberg A, Wen R, Splaak VZ et al. Genetic ablation of Pannexin1 protects retinal neurons from ischemic injury. PLoS ONE 2012; 7: e31991.

159 Niyiyurupola N, Sidaway P, Ma N, Rhodes JD, Broadway DC, Sanderson J. P2X7 receptor activation mediates retinal ganglion cell death in a human retina model of ischemic neurodegeneration. Invest Ophthalmol Vis Sci 2013; 54: 2163–2170.

160 Zhang Y, Cho CH, Atchaneeyasakul L, McFarland T, Appukuttan B, Stout JT. Activation of the mitochondrial apoptotic pathway in a rat model of central retinal artery occlusion. Invest Ophthalmol Vis Sci 2005; 46: 2133–2139.

161 Shabanzadeh AP, D’Onofrio PM, Monnier PP, Koeberle PD. Targeting caspase-6 reduces caspase expression by different neuronal phenotypes in transient retinal ischemia-reperfusion injury. J Neurochem 2010; 114: 2204.

162 Huang W, Dobberfuhl A, Filippopoulos T, Ingelsson M, Fileta JB, Poulin NR. Filamin D by cyclosporin A promotes retinal ganglion cell survival by preventing mitochondrial alteration in ischemic injury. Cell Death Dis 2014; 5: e1105.

163 Ozdek S, Lonneville YH, Onol M, Yetkin I, Hasanreisoglu BB. Assessment of nerve fiber layer in diabetic patients with scanning laser polarimetry. Eye (Lond) 2002; 16: 761–765.

164 Takahashi H, Goto T, Shoji T, Tanito M, Park M, Chihara E. Diabetes-associated retinal nerve fiber layer thickness evaluated with scanning laser polarimetry. Am J Ophthalmol 2006; 142: 88–92.

165 Ji JZ, Chang P, Pennesi ME, Yang Z, Zhang J, Li DJ et al. Effects of elevated intraocular pressure on mouse retinal ganglion cells. Vis Res 2005; 45: 169–179.

166 Hanninen VA, Pantcheva MB, Freeman EE, Poulin NR, Grosskreutz CL. Activation of caspase 9 in a rat model of experimental glaucoma. Curr Eye Res 2002; 25: 389–395.

167 Chi W, Li F, Chen H, Wang Y, Zhu Y, Yang X et al. Caspase-9 promotes NLRP1/ NLRP3 inflammasome activation and IL-1beta production in acute glaucoma. Proc Natl Acad Sci USA 2014; 111: 11181–11186.

168 Chi W, Chen H, Li F, Zhu Y, Yin W, Zhuo Y. HMGB1 promotes the activation of NLRP3 and caspase-8 inflammasomes via NF-kappaB pathway in acute glaucoma. J Neuroinflammation 2015; 12: 137.

169 Joachim SC, Monden S, Pham H, Grosskreutz CL, Grus FH, Dick HB. Apoptotic retinal ganglion cell death in an autoimmune glaucoma model is accompanied by antibody depositions. J Mol Neurosci 2014; 52: 216–224.

170 Grus FH, Joachim SC, Hoffmann EM, Pfeiffer N. Complex autoimmune reper- toires in patients with glaucoma. Mol Vis 2004; 10: 132–137.

171 Joachim SC, Pfeiffer N, Grus FH. Autoantibodies in patients with glaucoma: a comparison of IgG serum antibodies against retinal, optic nerve, and optic nerve head antigens. Graefes Arch Clin Exp Ophthalmol 2005; 243: 817–823.

172 Reichelt J, Joachim SC, Pfeiffer N, Grus FH. Analysis of autoantibodies against human retinal antigens in sera of patients with glaucoma and ocular hypertension. Curr Eye Res 2008; 33: 253–261.

173 Joachim SC, Gramlich OW, Laspas P, Schindl H, Beck S, von Pein HD et al. Retinal ganglion cell loss is accompanied by antibody depositions and increased levels of microglia after immunization with retinal antigens. PLoS ONE 2012; 7: e40616.

174 Ozdek S, Lonneville YH, Onol M, Yetkin I, Hasanreisoglu BB. Assessment of nerve fiber layer in diabetic patients with scanning laser polarimetry. Eye (Lond) 2002; 16: 761–765.

175 Ji JZ, Chang P, Pennesi ME, Yang Z, Zhang J, Li DJ et al. Effects of elevated intraocular pressure on mouse retinal ganglion cells. Vis Res 2005; 45: 169–179.
202 Zhou W, Zhu X, Zhu L, Cui YY, Wang H, Qi H et al. Neuroprotection of muscarinic receptor agonist pilocarpine against glutamate-induced apoptosis in retinal neurons. Cell Mol Neurobiol 2008; 28: 263–275.

203 Inomata Y, Nakamura H, Tanito M, Teratani A, Kawaji T, Kondo N et al. Thioredoxin inhibits NMDA-induced neurotoxicity in the rat retina. J Neurochem 2006; 98: 372–385.

204 Sun C, Li XX, He XJ, Zhang Q, Tao Y. Neuroprotective effect of minocycline in a rat model of branch retinal vein occlusion. Exp Eye Res 2013; 113: 105–116.

205 Yuan D, Xu Y, Hang H, Liu X, Chen X, Xie P et al. Edaravone protect against retinal damage in streptozotocin-induced diabetic mice. PLoS ONE 2014; 9: e99219.

206 Wang Y, Zhang H, Liu Y, Li P, Cao Z, Cao Y. Erythropoietin (EPO) protects against high glucose-induced apoptosis in retinal ganglional cells. Cell Biochem Biophys 2015; 71: 749–755.