TRAIN TRACK COMPLEX OF ONCE-PUNCTURED TORUS AND 4-PUNCTURED SPHERE

KEITA IBARAKI

ABSTRACT. Consider a compact oriented surface S of genus $g \geq 0$ and $m \geq 0$ punctured. The train track complex of S which is defined by Hamenstädt is a 1-complex whose vertices are isotopy classes of complete train tracks on S. Hamenstädt shows that if $3g - 3 + m \geq 2$, the mapping class group acts properly discontinuously and cocompactly on the train track complex. We will prove corresponding results for the excluded case, namely when S is a once-punctured torus or a 4-punctured sphere. To work this out, we redefine two complexes for these surfaces.

CONTENTS

1. Introduction 1
2. Quasi-Isometry 3
3. Train track complex 5
4. Farey graph 7
5. Train tracks on the once-punctured torus 8
6. Train tracks on the 4-punctured sphere 11
7. Action of the mapping class group 17
References 17

1. INTRODUCTION

Consider a compact oriented surface S of genus $g \geq 0$ from which $m \geq 0$ points, so-called punctures, have been deleted. The mapping class group $\mathcal{M}(S)$ of S is, by definition, the space of isotopy classes of orientation preserving homeomorphisms of S.

There are natural metric graphs on which the mapping class group $\mathcal{M}(S)$ acts by isometries. Among them, we will concern with the curve complex $\mathcal{C}(S)$ (or, rather, its one-skeleton) and train track complex $TT(S)$.

In [Har81], Harvey defined the curve complex $\mathcal{C}(S)$ for S. The vertex of this complex is a free homotopy class of an essential simple closed

Date: January 7, 2009.
2000 Mathematics Subject Classification. 57M60.
Key words and phrases. Mapping class group, Train track, Curve complex.
curve on S, i.e. a simple closed curve which is neither contractible nor homotopic into a puncture. A k-simplex of $\mathcal{C}(S)$ is spun by a collection of $k + 1$ vertices which are realized by mutually disjoint simple closed curves.

The train track which is an embedded 1-complex was invented by Thurston [Thu78] and provides a powerful tool for the investigation of surfaces and hyperbolic 3-manifolds. A detailed account on train tracks can be found in the book [Pen92] of Penner with Harer.

Hamenstädt defined in [Ham05a] that a train track is called complete if it is a birecurrent and each of complementary regions is either a trigon or a once-punctured monogon. Hamenstädt defined the train track complex $TT(S)$ for S. Vertices of the train track complex are isotopy classes of complete train tracks on S.

Suppose $3g - 3 + m \geq 2$, i.e. S is a hyperbolic surfaces but neither a once-punctured torus nor 4-punctured sphere. Both the curve complex and the train track complex can be endowed with a path-metric by declaring all edge lengths to be equal to 1. In these cases, there are a map $\Phi : TT(S) \to \mathcal{C}(S)$ and a number $C > 0$ such that $d(\Phi(\tau), \Phi(\tau')) \leq Cd(\tau, \tau')$ for all complete train track τ, τ' on S.

If S is a once-punctured torus or a 4-punctured sphere, then any essential simple closed curve must intersect, so that $\mathcal{C}(S)$ has no edge by definition. However, Minsky [Min96] adopt a small adjustment in the definition for curve complex in these two particular case so that it becomes a sensible and familiar 1-complex: two vertices are connected by an edge when the curves they represent have minimal intersection (1 in the case of a once-punctured torus, and 2 in the case of a 4-punctured sphere). It turns out that in both cases, the complex is the Farey graph \mathcal{F}.

In addition, if S is a once-punctured torus, there is no complete train track under Hamenstädt’s definition and $TT(S)$ is homeomorphic to empty set. We thus adopt here Penner’s definition [Pen92], i.e. the train track τ is complete iff τ is birecurrent and is not a proper subtrack of any birecurrent train track. These two definitions are equivalent except for the once-punctured torus.

Our main theorem is:

Theorem 1.1. Suppose S is a once-punctured torus or a 4-punctured sphere. Then the train track complex $TT(S)$ of S is quasi-isometric to the dual graph of the Farey graph \mathcal{F} (see Figure 1).

More precisely, if S is a once-punctured torus, we show:

Theorem 1.2. The train track complex of a once-punctured torus is isomorphic to the Caley graph of $PSL(2, \mathbb{Z}) = \langle r, l \mid (lr^{-1})^2 = 1, (lr^{-1})^3 = 1 \rangle$.

In [Ham05a], Hamenstädt also shows that if $3g - 3 + m \geq 2$ the mapping class group $\mathcal{M}(S)$ acts p.d.c., i.e. properly discontinuously...
and cocompactly, on the train track complex $TT(S)$ and $\mathcal{M}(S)$ is quasi-isometric to $TT(S)$. We can prove that the same is true for the once-punctured torus and 4-punctured sphere.

Corollary 1.3. Suppose S is the once-punctured torus or 4-punctured sphere. Then $\mathcal{M}(S)$ acts p.d.c. on $TT(S)$.

Corollary 1.4. Suppose S is the once-punctured torus or 4-punctured sphere. Then $\mathcal{M}(S)$ is quasi-isometric to $TT(S)$.

In Section 2, we give a brief review of quasi-isometries. In Section 3, we describe train tracks and define the train track complex. In Section 4, we describe how to build a Farey graph which is used for curve complex of a once-punctured torus or a 4-punctured sphere. In Section 5 and 6, we prove the Theorem 1.1. Finally, we describe the action of mapping class groups on train track complexes in Section 7.

2. QUASI-ISOMETRY

A quasi-isometry is one of the fundamental notion in geometric group theory. For details, see [Bow06].

Let (X,d) be a proper geodesic space, i.e. a complete and locally compact geodesic space. Given $x \in X$ and $r \geq 0$, write $N(x,r) = \{ y \in X \mid d(x,y) \leq r \}$ for the closed r-neighborhood of x in X. If $A \subseteq X$, write $N(A,r) = \bigcup_{x \in A} N(x,r)$. We say that A is cobounded if $X = N(A,r)$ for some $r \geq 0$.

Suppose that a group Γ acts on X by isometry. Given $x \in X$, we write $\Gamma x = \{ gx \mid g \in \Gamma \}$ for the orbit of x under Γ, and $\text{stab}(x) = \{ g \in \Gamma \mid gx = x \}$ for its stabilizer.
We say that the action of Γ on X is \textit{properly discontinuous} if for all $r \geq 0$ and all $x \in X$, the set $\{g \in \Gamma \mid d(x, gx) \leq r\}$ is finite. A properly discontinuous action is called \textit{cocompact} if X/Γ is compact. We will frequently abbreviate “properly discontinuous and cocompact” by p.d.c.

\textbf{Proposition 2.1} \textit{([Bow06])}. The followings are equivalent:

(i) The action is cocompact,
(ii) Some orbit is cobounded, and
(iii) Every orbit is cobounded.

\textbf{Proof.} Write $N'(\Gamma x, r)$ for a closed r-neighborhood of Γx in X/Γ. Let $\pi: X \to X/\Gamma$ be a quotient map. Then for any $x \in X$ and any $r > 0$ $\pi(N(x, r)) = N'(\Gamma x, r)$ and $\pi^{-1}(N'(\Gamma x, r)) = N(\Gamma x, r)$.

- (iii) \Rightarrow (ii) is clear.
- Suppose that some orbit is cobounded. So, $X = N(\Gamma x, r)$ for some $x \in X$ and some $r > 0$. Thus, $X/\Gamma = \pi(X) = \pi(N(\Gamma x, r)) = N'(\Gamma x, r) = \pi(N(x, r))$. By Proposition 3.1 of [Bow06], $N(x, r)$ is compact and hence $X/\Gamma = \pi(N(x, r))$ is also compact. Now we proved (ii) \Rightarrow (i).
- Suppose the action is cocompact. So, X/Γ is compact and hence X/Γ is bounded. Thus, for any $x \in X$ there is some $r > 0$, such that $X/\Gamma = N'(\Gamma x, r)$. Since $X = \pi^{-1}(X/\Gamma) = \pi^{-1}(N'(\Gamma x, r)) = N(\Gamma x, r)$, Γx is cobounded and (i) \Rightarrow (iii) is shown.

\textbf{Definition 2.2} (quasi-isometry). Let (X, d) and (Y, d') be metric spaces. A map $\varphi: X \to Y$ is called a \textit{quasi-isometry} if there are constants $k_1 > 0, k_2, k_3, k_4 \geq 0$ such that for all $x_1, x_2 \in X$,

$$k_1 d(x_1, x_2) - k_2 \leq d'(\varphi(x_1), \varphi(x_2)) \leq k_3 d(x_1, x_2) + k_4,$$

and the image $\varphi(x)$ is cobounded in Y.

Thus, a quasi-isometry is bi-Lipshitz with bounded error and its image is cobounded. We note that the quasi-isometry introduces an equivalence relation on the set of metric spaces.

Two metric spaces, X and Y, are said to be \textit{quasi-isometric} if there is a quasi-isometry between them.

Let X be a geodesic space and A a finite generating set for a group Γ. Suppose $\Delta(\Gamma, A)$ is the Cayley graph of Γ with respect to A. If B is another generating set for Γ, then $\Delta(\Gamma, A)$ is quasi-isometric to $\Delta(\Gamma, B)$. Thus, we simply denote the Cayley graph of Γ by $\Delta(\Gamma)$ without specifying a generating set. A group Γ acts p.d.c. on its Cayley graph $\Delta(\Gamma)$.

We define that Γ is quasi-isometric to X if $\Delta(\Gamma)$ is quasi-isometric to X. Also, two groups Γ, Γ' are quasi-isometric if $\Delta(\Gamma)$ is quasi-isometric to $\Delta(\Gamma')$.
The proof of the following claims can be found for example in [Bow06]:

Theorem 2.3 ([Bow06]). If Γ acts p.d.c. on a proper geodesic space X, then Γ is quasi-isometric to X.

Proposition 2.4. Let Γ be a finitely generated group. Suppose that G is a subgroup of Γ of finite index. Then G is finitely generated and quasi-isometric to Γ.

3. **Train track complex**

A *train track* on S (see [Pen92]) is an embedded 1-complex $\tau \subset S$ whose vertices are called *switches* and edges are called *branches*. τ is C^1 away from its switches. At any switch v the incident edges are mutually tangent and there is an embedding $f : (0,1) \to \tau$ with $f(1/2) = v$ which is a C^1 map into S. The valence of each switch is at least 3, except possibly for one bivalent switch in a closed curve component.

Finally, we require that every component D of $S - \tau$ has negative generalized Euler characteristic in the following sense: define $\chi'(D)$ to be the Euler characteristic $\chi(D)$ minus $1/2$ for every outward-pointing cusp (internal angle 0). For the train track complementary regions all cusps are outward, so that the condition $\chi'(D) < 0$ excludes annuli, once-punctured disks with smooth boundary, or non-punctured disks with 0, 1 or 2 cusps at the boundary. We will usually consider isotopic train-tracks to be the same.

A train track is called *generic* if all switches are at most trivalent. A *train route* is a non-degenerate smooth path in τ; in particular it traverses a switch only by passing from incoming to outgoing edge or vice versa. The train track τ is called *recurrent* if every branch is contained in a closed train route. The train track τ is called *transversely recurrent* if every branch intersects transversely with a simple closed curve c so that $S - \tau - c$ does not contain an embedded bigon, i.e. a disc with two corners. A train track which is both recurrent and transversely recurrent is called *birecurrent*.

A curve c is *carried* by a transversely recurrent train track τ if there is a *carrying map* $F : S \to S$ of class C^1 which is homotopic to the identity and maps c to τ in such a way that the restriction of its differential dF to every tangent line of c is non-singular. A train track τ' is *carried* by τ if there is a carrying map F and every train route on τ' is carried by τ with F.

A generic birecurrent train track is called *complete* if it is not a proper subtrack of any birecurrent train track.

Theorem 3.1 ([Pen92]).

(i) If $g > 1$ or $m > 1$, then any birecurrent train track on S is a subtrack of a complete train track, each of whose complementary region is either a trigon or a once-punctured monogon.
(ii) Any birecurrent train track on a once-punctured torus is a sub-track of a complete train track whose unique complementary region is a once-punctured bigon.

It follows:

Corollary 3.2. Suppose τ is a complete train track on S of genus g with m punctures. Then the number of switches of τ depends only on the topological type of S.

Proof. If S is the once-punctured torus, then τ have 2 vertices.

In the other case, let n_t be the number of triangle component of $S-\tau$, n_s be the number of switches of τ and n_b be the number of branches of τ. Since τ is generic, $2n_b = 3n_s$. By Theorem 3.1 $n_s = 3n_t + m$. By Euler characteristic, $n_t - n_b + n_s = 2 - 2g - m$. Now we get $n_s = 4(3g - 3 + m)$. □

A half-branch \tilde{b} in a generic train track τ incident on a switch v is called large if the switch v is trivalent and if every arc $\rho: (\varepsilon, \varepsilon) \rightarrow \tau$ of class C^1 which passes through v meets the interior of \tilde{b}. A branch b in τ is called large if each of its two half-branches is large; in this case b is necessarily incident to two distinct switches.

There is a simple way to modify a complete train track τ to another complete train track. Namely, if e is a large branch of τ then we can perform a right or left split of τ at e as shown in Figure 2. A complete train track τ can always be at least one of the left or right split at any large branch e to a complete train track τ' (see [Ham05b]). We note that τ' is carried by τ.

![Figure 2. a split](image-url)

Definition 3.3 (train track complex). A train track complex $TT(S)$ is defined as follow: The set of vertices of $TT(S)$ consists of all isotopy classes of complete train tracks on S. Two Complete train tracks τ, τ' is connected with an edge if τ' can be obtained from τ by a single split.

For each switch v of τ, fix a direction of the tangent line to τ at v. The branch b which is incident to v is called incoming if the direction at v coincides with the direction from b to v, and outgoing if not.
transverse measure on τ is a non-negative function μ on the set of branches satisfying the switch condition: For any switch of τ the sums of μ over incoming and outgoing branches are equal. A train track τ is recurrent if and only if it supports a transverse measure which is positive on every branch (see [Pen92]).

For a recurrent train track τ the set $P(\tau)$ of all transverse measures on τ is a convex cone in a linear space. A vertex cycle (see [MM99]) on τ is a transverse measure μ which spans an extremal ray in $P(\tau)$. Up to scaling, a vertex cycle μ is a counting measure of a simple closed curve c which is carried by τ. This means that for a carrying map $F : c \rightarrow \tau$ and every open branch b of τ the μ-weight of τ equals the number of connected components of $F^{-1}(b)$. We also use the notion, a vertex cycle, for the simple closed curve c.

Proposition 3.4 ([Ham05b]). Let τ be a complete train track. Suppose c is a vertex cycle on τ with a carrying map F. Then, $F(c)$ passes through every branch of τ at most twice, and with different orientation if any.

Proposition 3.4 and Corollary 3.2 imply that the number of vertex cycles on a complete train track on S is bounded by a universal constant (see [MM99]). Moreover, there is a number $D > 0$ with the property that for every complete train track τ on S the distance in $C(S)$ between any two vertex cycles on τ is at most D (see [Ham05b], [MM04]).

4. **Farey graph**

Let S be the once-punctured torus or the 4-punctured sphere. The essential simple closed curves on S are well known to be in one-to-one correspondence with rational numbers p/q with $1/0 = \infty$. Thus the 0-skeleton of $C(S)$ is identified with $\hat{\mathbb{Q}} := \mathbb{Q} \cup \{\infty\}$ in the circle $S^1 = \mathbb{R} \cup \infty$.

There are numerous ways to build a Farey graph \mathcal{F}, any of them produces an isomorphic graph. One can start with the rational projective line $\hat{\mathbb{Q}}$, identifying 0 with 0/1 and ∞ with 1/0, and take this to be the vertex set of \mathcal{F}. Then, two projective rational numbers $p/q, r/s \in \hat{\mathbb{Q}}$, where p and q are coprime and r and s are coprime, are deemed to span an edge, or 1-simplex, if and only if $|ps - rq| = 1$. The result is a connected graph in which every edge separates. The graph \mathcal{F} can be represented on a disc; see Figure 3. We shall say a graph is a Farey graph if it is isomorphic to \mathcal{F}.

Note that the curve complexes of a once-punctured torus and 4-punctured sphere are Farey graphs (see [Min96], [APS06]).

Remark. The Farey graph \mathcal{F} is quasi-isometric to the dual graph.
5. **Train tracks on the once-punctured torus**

Let $S_{1,1}$ be the once-punctured torus and τ a complete train track on $S_{1,1}$. By Theorem 3.1 and Corollary 3.2, τ has the unique complementary region that is a once-punctured bigon and the number of switches of τ equals 2. It follows that every complete train track on $S_{1,1}$ is orientation preserving C^1-diffeomorphic to the one illustrated in Figure 4.

![Figure 4. complete train track on Once-punctured torus](image)

τ has exactly two vertex cycles c_1, c_2 whose intersection number $i(c_1, c_2)$ equals 1. Thus, c_1 and c_2 is connected by an edge in Farey graph. Conversely, if we fix simple closed curve c_1, c_2 on $S_{1,1}$ whose intersection number $i(c_1, c_2)$ equals 1, then there is only two complete train tracks whose vertex cycles are c_1 and c_2.

Write $V(G)$ for the vertex set of a graph G and $E(G)$ for the set of all edges in G. We define a map $\varphi : V(TT(S_{1,1})) \to E(\mathcal{F})$ as follow:
Let $\tau \in S_{1,1}$. Suppose c_1, c_2 are vertex cycles on τ. We define $\varphi(\tau)$ as the edge of \mathcal{F} which connects c_1 and c_2.

We construct the graph G_1 of φ as follows: Let $V(G_1) = E(\mathcal{F})$. We connect vertices $e_1, e_2 \in E(\mathcal{F})$ if some $\tau_1 \in \varphi^{-1}(e_1)$ and some $\tau_2 \in \varphi^{-1}(e_2)$ are connected by an edge in $TT(S_{1,1})$. φ can be naturally extended to $\varphi : TT(S_{1,1}) \to G_1$.

Lemma 5.1. G_1 is quasi-isometric to the dual graph of the Farey graph.

Proof. Suppose τ_1 and τ_2 are different complete train tracks on $S_{1,1}$ which have common vertex cycles c_1, c_2. τ_1 have a unique large edge b and there are two complete train tracks τ_1', τ_1'' which are obtained by a left or right split of τ_1 at b (see Figure 5). We can see that one vertex cycle on τ_1' is the same as c_1 on τ_1, and the other vertex cycle c_3 on τ_1' intersects c_2 on τ_1 at one point. Thus $\varphi(\tau_1')$ and $\varphi(\tau_1)$ are adjacent edges in \mathcal{F}. In this case, vertex cycles on τ_1'' are c_2 and c_3. Hence $\varphi(\tau_1)$, $\varphi(\tau_1')$ and $\varphi(\tau_1'')$ span a triangle on \mathcal{F}. Similarly, we can get complete train tracks τ_2', τ_2'' by a split of τ_2, and $\varphi(\tau_2)$, $\varphi(\tau_2')$ and $\varphi(\tau_2'')$ span another triangle on \mathcal{F}. (see Figure 6)

The mapping class group $\mathcal{M}(S_{1,1})$ acts isometrically on $TT(S_{1,1})$ and \mathcal{F} and acts transitively on $V(G_1) = E(\mathcal{F})$. It follows that every edge in G_1 connects an adjacent edge of \mathcal{F} and every adjacent edge of \mathcal{F} is connected with a direct edge in G_1. Thus G_1 is the line graph of the dual of \mathcal{F}, i.e. vertices of G_1 represent edges of the dual of \mathcal{F} and two vertices are adjacent iff their corresponding edges share a common endpoint (see Figure 7). It’s now obvious that G_1 is quasi-isometric to the dual of the Farey graph. \qed

Lemma 5.2. $TT(S_{1,1})$ is connected.
Proof. Let $e \in E(F)$ and $\varphi^{-1}(e) := \{\tau, \tau'\}$. All we need is to show that τ and τ' are connected in $TT(S_{1,1})$, since G_1 is connected. τ can be a right(left) split to a complete train track τ_1. Then, there is a complete train track τ_2 which can be a right(left) split to τ' and can be a left(right) split to τ_1 (see Figure 8). Thus τ and τ' are connected and $d(\tau, \tau') = 3$. □

Lemma 5.3. φ is a quasi-isometry.

Proof. Let $\tau, \tau' \in V(TT(S_{1,1}))$. Suppose α is geodesic on G_1 from $\varphi(\tau)$ to $\varphi(\tau')$. $\tau, \tau' \in \varphi^{-1}(\alpha)$ and $\text{diam}(\varphi^{-1}(\alpha)) \leq 4d(\varphi(\tau), \varphi(\tau')) + 3$ since
$diam(\varphi^{-1}(e)) = 3$ for any $e \in E(F)$. Thus $d(\tau, \tau') \leq 4d(\varphi(\tau), \varphi(\tau')) + 3$.

It follows that φ is a quasi-isometry. \square

Proof of Theorem 1.1 (a once-puncture torus case). By Lemma 5.1 and 5.3, $TT(S_{1,1})$ is quasi-isometric to the dual graph of the Farey graph. \square

$TT(S_{1,1})$ is obtained by extending one vertex of G_1 to two vertices. When we think the action of the mapping class group, we see that $TT(S_{1,1})$ is isomorphic to the graph as in Figure 9. We can notice that this graph is isomorphic to the Cayley graph of $PSL(2,\mathbb{Z}) = \langle r, l \mid (lr^{-1}l)^2 = 1, (lr^{-1})^3 = 1 \rangle$, and thus Theorem 1.2 is proved.

![Figure 9.](image)

6. **Train tracks on the 4-punctured sphere**

Let $S_{0,4}$ be the 4-punctured sphere. A train track complex of $S_{0,4}$ is similar to that of the once-punctured torus but more complicated.

Orientation preserving C^1–diffeomorphism classes of a complete train tracks τ depends on combination of switches and branches. By Proposition 3.2, number of switches and branches of τ are constants. Thus, number of orientation preserving C^1–diffeomorphism classes of the complete train tracks is finite. In fact, complete train tracks on $S_{0,4}$ are classified into 13 classes, illustrated in (1) to (8) of Figure 10 and their mirror images, though (1), (4) and (8) can move these mirrors by orientation preserving C^1–diffeomorphism.

We can see that all of those train tracks have exactly two vertex cycles c,c' whose intersection number $i(c,c')$ equals 2 or 4.
Figure 10.
First, we confirm connectivity of $\mathcal{T}\mathcal{T}(S_{0,4})$:

Proposition 6.1. $\mathcal{T}\mathcal{T}(S_{0,4})$ is connected.

First we look at a C^1–diffeomorphism class which has two large edges and whose two vertex cycles intersect at two points (1 of Figure 10). We write A_1 for the collection of these train tracks.

Let $\tau \in A_1$. τ can split at two large edges b_1, b_2. We can get another complete train track τ_1 by a right split τ at b_1 (τ_1 is C^1–diffeomorphic to (2) of Figure 10). τ_1 can be right split at b_2 to a complete train track τ', and we can find that $\tau' \in A_1$. Incidentally, if we left split τ_1 at b_2, we cannot get a complete train track (see Figure 11). In the same way, we can get $\tau'' \in A_1$ by being left splits τ at both b_1 and b_2. That is to say, we can get two complete train tracks $\tau', \tau'' \in A_1$ by splits at both b_1 and b_2 of τ.

![Figure 11.](image)

We construct graph T_1 as follow: $V(T_1)$ is A_1. We connect $\tau, \tau' \in A$ by an edge if τ' can be obtained by splits at two large edges of τ. Clearly, T_1 is homeomorphic to subgraph of $\mathcal{T}\mathcal{T}(S_{0,4})$.

Lemma 6.2. T_1 is connected and is quasi-isometric to the dual of \mathcal{F}.
Proof. Let $\tau \in V(T_1)$. τ has two vertex cycles connected by an edge in \mathcal{F}. Thus, we can think it just the same as $TT(S_{1,1})$. As a result, we can get this Lemma. \hfill \Box

Lemma 6.3. Let τ be any complete train track of $S_{0,4}$. Then there is $\tau' \in V(T_1)$ obtained from τ by at most 5 splits.

Proof. We can easily see that each C^1–diffeomorphism class of $V(TT(S_{0,4}))$ has a train track τ which implements $d(\tau, V(T_1)) \leq 5$ (see Figure 12). Meanwhile, $d(\tau, V(T_1))$ depends only on a C^1–diffeomorphism class of τ, because the mapping class group $\mathcal{M}(S_{0,4})$ acts isometrically on $TT(S_{1,1})$. Now this Lemma is proved. \hfill \Box

Proof of Proposition 6.1. We obtained this theorem by Lemma 6.2 and 6.3. \hfill \Box

Similar to the construction of φ in Section 5, we construct the map $\psi : V(TT(S_{0,4})) \to E(\mathcal{F})$ as follow : Let $\tau \in V(TT(S_{1,1}))$. Suppose c_1, c_2 are vertex cycles on τ. If $i(c_1, c_2) = 2$, there is an edge e which connects c_1 and c_2 in \mathcal{F}. We define $\psi(\tau)$ as e. If $i(c_1, c_2) = 4$, there are two simple closed curves c_3, c_4 that implement $i(c_3, c_4) = 2$ ($j = 1, 2, k = 3, 4$, $i(c_3, c_4) = 2$. We define $\psi(\tau)$ as the edge which connects c_3 and c_4. We construct graph G_2 as the same as G_1 of Section 5 and extends to $\psi : TT(S_{0,4}) \to G_2$.

Lemma 6.4. G_2 is quasi-isometric to the dual of the Farey graph.

Proof. It is possible to think this just as G_1.

Let $\tau \in V(TT(S_{0,4}))$ and τ' obtained by a single split of τ. The relation between vertex cycles on τ and τ' can fall into the following 3 types (see also Table I):

(i) τ and τ' have the same vertex cycles. Thus $\phi(\tau)$ and $\phi(\tau')$ are the same edge in \mathcal{F}.

(ii) One vertex cycle c_1 on τ and c'_1 on τ' are the same. Another vertex cycles c_2 on τ and c'_2 on τ' intersect at 2 points. Thus $\phi(\tau)$ and $\phi(\tau')$ are an adjacent edge in \mathcal{F}.

(iii) One vertex cycle c_1 on τ and c'_1 on τ' are the same. Another vertex cycles c_2 on τ and c'_2 on τ' intersect at 4 points. Thus $\phi(\tau)$ and $\phi(\tau')$ are the next but one edge in \mathcal{F}.

So, the edges of G_2 connect adjacent or next but one edges in \mathcal{F}. Thus, G_2 is quasi-isometric to G_1 and the dual of \mathcal{F}. \hfill \Box

We note that G_2 is isomorphic to Figure 13.

Lemma 6.5. $\psi : TT(S_{0,4}) \to G_2$ is a quasi-isometry.

Proof. It can be proved in the same way as in Lemma 5.3.
Figure 12.
Let $\tau, \tau' \in V(\mathcal{T}\mathcal{T}(S_{0,4}))$. There are only finitely many complete train tracks if vertex cycles are fixed. Thus, $\psi^{-1}(e)$ is finite. Since $\mathcal{M}(S_{0,4})$ acts isometrically on $\mathcal{T}\mathcal{T}(S_{1,1})$ and acts transitively on $V(G_2)$, $a := \text{diam}(\psi^{-1}(e))$ is constant for all e. It follows that $d(\psi(\tau), \psi(\tau')) \leq d(\tau, \tau') \leq (a + 1)d(\psi(\tau), \psi(\tau')) + a$ and ψ is a quasi-isometry.

Proof of Theorem 1.1 (4-punctured sphere case). By Lemma 6.4 and 6.5, $\mathcal{T}\mathcal{T}(S_{0,1})$ is quasi-isometric to the dual of the Farey graph.
7. Action of the mapping class group

It is well known that $\mathcal{M}(S_{1,1})$ is isomorphic to $SL(2,\mathbb{Z})$ (see for instance [Tak01]). Also $\mathcal{M}(S_{0,4})$ has a subgroup of finite index which is isomorphic $PSL(2,\mathbb{Z})$.

First, we prove Corollary 1.3 and 1.4.

Proof of Corollary 1.3. Let τ be a complete train track on the once-punctured torus $S_{1,1}$. The train track complex is locally finite. The stabilizer $\text{stab}(\tau)$ under the action of $\mathcal{M}(S_{1,1})$ is finite. Thus, $\{\sigma \in \mathcal{M}(S_{1,1}) \mid d(\tau, \sigma \tau) \leq r\}$ is finite for all $r \geq 0$. It follows that the action of $\mathcal{M}(S_{1,1})$ on $\mathcal{T}(S_{1,1})$ is properly discontinuous.

$\mathcal{M}(S_{1,1})$ acts transitively on $V(\mathcal{T}(S_{1,1}))$, since all complete train tracks on $S_{1,1}$ are C^1–diffeomorphism. It follows that the orbit $\mathcal{M}(S_{1,1})\tau = V(\mathcal{T}(S_{1,1}))$ and thus $N(\mathcal{M}(S_{1,1})\tau, 1) = \mathcal{T}(S_{1,1})$. That is to say, any orbit $\mathcal{M}(S_{1,1})\tau$ is cobounded. By Proposition 2.1, the action of $\mathcal{M}(S_{1,1})$ on $\mathcal{T}(S_{1,1})$ is cocompact.

Let τ be a complete train track on the 4-punctured sphere $S_{0,4}$. Just as in the case of $\mathcal{M}(S_{1,1})$, the action of $\mathcal{M}(S_{0,4})$ on $\mathcal{T}(S_{0,4})$ is properly discontinuous.

$\mathcal{M}(S_{0,4})$ acts transitively on $V(T_1)$. Thus the orbit $\mathcal{M}(S_{0,4})\tau$ of $\tau \in V(T_1)$ is $V(T_1)$. By Lemma 6.3, $N(\mathcal{M}(V(T_1), 6) = \mathcal{T}(S_{0,4})$. So, some orbit is cobounded. By Proposition 2.1, the action of $\mathcal{M}(S_{0,4})$ on $\mathcal{T}(S_{0,4})$ is cocompact.

Proof of Corollary 1.4. The train track complex $\mathcal{T}(S)$ is a locally finite graph. Thus $\mathcal{T}(S)$ is a proper space. Since the mapping class group $\mathcal{M}(S)$ is finitely generated, by Theorem 2.3 and Corollary 1.3 $\mathcal{T}(S_{1,1})$ is quasi-isometric to $\mathcal{M}(S)$.

As already stated in Section 5, $\mathcal{T}(S_{1,1})$ is isomorphic to the Cayley graph of $PSL(2,\mathbb{Z})$. Similarly, we can notice that T_1 in Section 6 is isomorphic to $\mathcal{T}(S_{1,1})$ and hence the Cayley graph of $PSL(2,\mathbb{Z})$. Thus, $PSL(2,\mathbb{Z})$ acts freely and p.d.c. on T_1 and on $V(T_1)$ transitively. Meanwhile, we can easily show that $\mathcal{M}(S_{0,4})$ acts p.d.c. on T_1 and the stabilizer $\text{stab}(\tau)$ for $\tau \in T_1$ is isomorphic to dihedral group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Hence index of $PSL(2,\mathbb{Z})$ on $\mathcal{M}(S_{0,4})$ equals 4.

References

[APS06] Javier Aramayona, Hugo Parlier, and Kenneth J. Shackleton, Totally geodesic subgraphs of the pants complex, preprint, arXiv:math.GT/0608752v1.

[Bow06] Brian H. Bowditch, A course on geometric group theory, MSJ Memoirs 16, 2006.

[Ham05a] Ursula Hamenstädt, Geometry of the mapping class groups I: Boundary amenability, preprint, arXiv:math.GR/0510116v4.

[Ham05b] Ursula Hamenstädt, Train tracks and the Gromov boundary of the complex of curves, Spaces of Kleinian groups, London Math. Soc. Lec. Note Ser. 329, 2005, 187–207: arXiv:math.GT/0409611v2.
[Ham06] Ursula Hamenstädt, *Geometric properties of the mapping class group*, Proc. Sympos. Pure Math. 74, Amer. Math. Soc., 2006, 215–232.

[Har81] W.J Harvey, *Boundary structure of the modular group*, Proceedings of the 1978 Stony Brook Conference, Ann. of Math. Stud. 97, 1981, 245–251.

[Min96] Yair N. Minsky *A geometric approach to the complex of curves on a surface*, Topology and Teichmüller Spaces: Katinkulta, World sci. Publ., 1996, 149–158.

[MM99] Howard A. Masur and Yair N. Minsky, *Geometry of the Complex of Curves I: Hyperbolicity*, Invent. Math 138 (1999), 103–149;
[arXiv:math.GT/9804098v2].

[MM04] Howard A. Masur and Yair N. Minsky, *Quasiconvexity in the curve complex*, In the tradition of Ahlfors and Bers, III, Contemp. Math. 335 (2004), 309–320, [arXiv:math.GT/0307083v1].

[Pen92] R. C. Penner with J. L. Harer, *Combinatorics of Train Tracks*, Ann. of Math. Stud. 125, 1992.

[Tak01] M. Takasawa, *Enumeration of Mapping Classes for the Torus*, Geom. Dedicata 85 (2001), 11–19.

[Thu78] William P. Thurston, *The Geometry and Topology of Three-Manifolds*, Princeton Lecture Notes,
[http://www.msri.org/publications/books/gt3m/]

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo 152-8552, Japan

E-mail address: ibaraki4@is.titech.ac.jp