Remarks on the existence of bilaterally symmetric extremal Kähler metrics on $\mathbb{CP}^2\#2\overline{\mathbb{CP}^2}$

He, Weiyong
May 28th, 2007

The study of extremal Kähler metric is initiated by the seminal works of Calabi [4], [5]. Let $(M, [\omega])$ be a compact Kähler manifold with fixed Kähler class $[\omega]$. For any Kähler metrics g in the fixed Kähler class $[\omega]$, the Calabi energy $C(g)$ is defined as

$$C(g) = \int_M s^2 d\mu,$$

where s is the scalar curvature of g. The extremal Kähler metric is the critical point of the Calabi energy. The Euler-Lagrange equation is

$$\bar{\partial} \nabla_1^0 s = 0.$$

In other words, $\Xi = \nabla_1^0 s$ is a holomorphic vector field (we call it extremal vector field from now on). From PDE point of view, the existence of the extremal metric is to solve a 6th order nonlinear elliptic equation. According to Chen [6] (c.f. Donaldson [9] for algebraic case), there is a priori greatest lower bound for the Calabi energy in any fixed Kähler class. This a priori lower bound can be computed explicitly as

$$A([\omega]) = \left(c_1 \cdot [\omega] \right)^2 \frac{1}{[\omega]^2} - \frac{1}{32\pi^2} \mathcal{F}(\Xi, [\omega]),$$

where $\mathcal{F}(\Xi, [\omega])$ is the Futaki invariant of class $[\omega]$. Note that the extremal vector field Ξ is determined [10] up to conjugation without the assumption of the existence of an extremal metric.

By E. Calabi [5], extremal Kähler metrics minimizes the Calabi energy locally. By X.X. Chen [6] and S.K. Donaldson [9], we know

$$A([\omega]) \leq \frac{1}{32\pi^2} \min_{g \in [\omega]} C(g),$$

where the equality holds when there is an extremal Kähler metric in $[\omega]$.

In an amazingly beautiful work, Chen-LeBrun-Weber [8] proved the existence of bilaterally symmetric extremal Kähler metrics on $\mathbb{CP}^2\#2\overline{\mathbb{CP}^2}$ by global
deformation method. More strikingly, it contains an extremal class where the extremal metric is conformal to an Einstein metric with positive scalar curvature. \(\mathbb{CP}^2 \# 2 \mathbb{CP}^2 \) can be also described as \(\mathbb{CP}^1 \times \mathbb{CP}^1 \) blowing up at one point. We use \(F_1, F_2 \) to denote the Poincaré dual of two factors \(\mathbb{CP}^1 \times \mathbb{CP}^1 \), and \(E \) denotes the exceptional divisor. The term "bilaterally symmetric" is introduced in [8] to describe the Kähler class which are invariant under the interchange \(F_1 \leftrightarrow F_2 \). The "bilaterally symmetric" class can be described by \(\omega_x = (1 + x)(F_1 + F_2) - xE \) for \(0 < x < \infty \). Let \(f(x) = \mathcal{A}(\omega_x) \), and it is shown that \(f(x) < 9 \) (c.f. [8]). Set \(L \) to be the smallest number of \(f^{-1}(8) \), Chen-LeBrun-Weber [8] proved the following theorem regarding the existence of extremal Kähler metrics

Theorem A [8] For any \(x \in (0, L) \), let \(\omega_x = (1 + x)(F_1 + F_2) - xE \) denote the Kähler class of on \(M = \mathbb{CP}^2 \# 2 \mathbb{CP}^2 \), then there is an extremal metric in \(\omega_x \) for any \(x \in (0, L) \).

Their method is through large scale deformation. The existence of extremal Kähler metrics is promised by the results of Arezzo-Pacard-Singer [2] when \(x \) is small enough (also for \(x \) big enough). According to LeBrun-Simanca [11], the set which admits extremal Kähler metric is open. Following the work of Chen-Weber [7] on moduli space of extremal Kähler metrics in complex surface, a sequence of bilaterally symmetric extremal metrics will converge to an extremal metric with finite orbifold points. However the orbifold singularities can only arise as a very specific mechanism of curvature concentration for critical metrics [1], [12], [7]. The key idea of Chen-LeBrun-Weber [8] is thorough careful analysis of the bubble formation and they conclude that, for bubble to arise, the original Kähler class must admit some Lagrange cycle with negative self-intersection number. And they show that when \(f(x) < 8 \), there is no such Lagrange cycle. It follows that the orbifold singularities will never occur.

Inspired by the idea of [8], we extend their result to show that the existence of bilaterally symmetric extremal Kähler metrics on \(\mathbb{CP}^2 \# 2 \mathbb{CP}^2 \) for any \(x \in (0, \infty) \) in this short note. The readers are enthusiastically referred to [8] for the historic background of this problem as well as an excellent list of references. Following the scheme in ([8]), we show that

Theorem 0.1. For any \(x \in (0, \infty) \), let \(\omega_x = (1 + x)(F_1 + F_2) - xE \) denote the Kähler class of on \(M = \mathbb{CP}^2 \# 2 \mathbb{CP}^2 \), then there is an extremal metric in \(\omega_x \) for any \(x \in (0, \infty) \).

We keep the notations of [8]. Our observation is that, without assuming \(\mathcal{A}(\omega_x) < 8 \), the proposition ([8], Proposition 26) still holds.

Proposition 0.2. Let \(g_i \) be a sequence of unit-volume bilaterally symmetric extremal Kähler metrics on \((M, J) = \mathbb{CP}^2 \# 2 \mathbb{CP}^2 \) such that the corresponding Kähler class

\[
[\omega_i] = \frac{(1 + x_i)(F_1 + F_2) - x_i E}{\sqrt{1 + 2x_i + x_i^2/2}}
\]
satisfy $A \leq x_i \leq B$, where $A < B$ are any two fixed positive number. Then there is a subsequence g_i of metrics and a sequence of diffeomorphisms $\Psi_j : M \to M$ such that $\Psi_j^* g_i$ converges in the smooth topology to an extremal Kähler metric on the smooth 4-manifold M compatible with some complex structure $\tilde{J} = \lim_{j \to \infty} \Psi_j^* J$.

Recall for a compact smooth 4-manifold (M, g) the Gauss-Bonnet formula says
\[
\frac{1}{8\pi^2} \int_M \left(|W_+|^2 + |W_-|^2 + \frac{s^2}{24} - \frac{|\text{Ric}_0|^2}{2} \right) d\mu = \chi(M)
\]
and the signature formula reads
\[
\frac{1}{12\pi^2} \int_M (|W_+|^2 - |W_-|^2) d\mu = \tau(M).
\]
If (X, g_{∞}) is any ALE 4-manifold with finite group $\Gamma \subset SO(4)$ at infinity, then the Gauss-Bonnet formula becomes
\[
\frac{1}{8\pi^2} \int_X \left(|W_+|^2 + |W_-|^2 + \frac{s^2}{24} - \frac{|\text{Ric}_0|^2}{2} \right) d\mu_{g_{\infty}} = \chi(X) - \frac{1}{|\Gamma|}
\]
and the signature formula becomes
\[
\frac{1}{12\pi^2} \int_X (|W_+|^2 - |W_-|^2) d\mu_{g_{\infty}} = \tau(X) + \eta(S^3/\Gamma),
\]
where $\chi(X)$ is the Euler characteristic of non-compact manifold X and $\eta(S^3/\Gamma)$ is called η invariant. When (X, g_{∞}) is scalar flat Kähler, the formulas simplify to
\[
\frac{1}{8\pi^2} \int_X \left(|W_-|^2 - \frac{|\text{Ric}_0|^2}{2} \right) d\mu_{g_{\infty}} = \chi(X) - \frac{1}{|\Gamma|}
\]
and
\[
-\frac{1}{12\pi^2} \int_X |W_-|^2 d\mu_{g_{\infty}} = \tau(X) + \eta(S^3/\Gamma).
\]

Our first observation is that the lemmas ([8], Lemma 21 and Lemma 22) hold without the assumption on $\mathcal{A}(\omega)$.

Lemma 0.3. (X, g_{∞}) is the deepest bubble. Then X is diffeomorphic to a region of M which is invariant under $F_1 \leftrightarrow F_2$, and this \mathbb{Z}_2 action induces a holomorphic isometric involution of (X, g_{∞}).

Proof. By the signature formula, we have that
\[
\int_M |W_-|^2 d\mu = -12\tau(M) + \int_M |W_+|^2 d\mu = 12\pi^2 + \int_M \frac{s^2}{24} d\mu
\]
for any Kähler metrics on $M = \mathbb{CP}^2\#2\overline{\mathbb{CP}^2}$. For any bilaterally symmetric Kähler class $[\omega]$ on $\mathbb{CP}^2\#2\overline{\mathbb{CP}^2}$, $A([\omega]) < 9$. Thus any bilaterally symmetric extremal Kähler metrics satisfy
\[\int_M |W_-|^2 d\mu < 12\pi^2 + \frac{9}{24}32\pi^2 = 24\pi^2. \]

When $|\Gamma| \geq 2$, since $b_1(X) = b_3(X) = 0$ and $b_2(X) > 0$. Hence $\chi(X) \geq 2$, and the Gauss-Bonnet formula gives that
\[\int_X |W_-|^2 d\mu_{g_\infty} \geq 8\pi^2(2 - 1/2) \geq 12\pi^2. \]

When $|\Gamma| = 1$, the signature formula gives that
\[\int_X |W_-|^2 d\mu = 12\pi^2. \]

And then the same argument of ([8] Lemma 21) applies.

Lemma 0.4. Let (X, g_∞) be the deepest bubble. If $b_2(X) = 1$, then X must be diffeomorphic to the line bundle of degree $-k$ over \mathbb{CP}^3 for $1 \leq k \leq 5$.

Proof. The proof follows ([8], Lemma 23). Since X is diffeomorphic to the line bundle of degree $-k$ over \mathbb{CP}^3 for some $k > 0$. If C denotes the homology class of the zero section, the Poincaré dual of c_1 is the rational homology class $\frac{k-2}{k}C$ and it follows that
\[\int_X |\text{Ric}_0|^2 d\mu_{g_\infty} = -8\pi^2c_1^2 = 8\pi^2\left(\frac{k-2}{k}\right)^2. \]

Any bilaterally symmetric extremal Kähler metrics satisfy
\[\int_M |\text{Ric}_0|^2 d\mu = \frac{1}{4} \int_M s^2 d\mu - 8\pi^2c_1^2(M) < 16\pi^2. \]

It follows that $k \leq 5$.

([8] Lemma 22) holds also.

Lemma 0.5. Let (X, g_∞) be the deepest bubble. If $b_2(X) = 2$, then $\Gamma \cong \mathbb{Z}_3$, and X has intersection form
\[\begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}. \]

Proof. Since $b_2(M_\infty) = 2$, the Gauss-Bonnet and signature formula give that
\[\frac{1}{12\pi^2} \int_X |W_-|^2 d\mu_{g_\infty} = 2 - \eta(S^2/\Gamma) \]

4
and
\[\frac{1}{8\pi^2} \int_X \left(|W_\mu|^2 - \frac{|Ric_0|^2}{2} \right) d\mu_{g_{\infty}} = 3 - \frac{1}{|\Gamma|}. \]

It follows that
\[\frac{3}{2} \eta(S^3/\Gamma) + \frac{1}{16\pi^2} \int_X |Ric_0|^2 d\mu_{g_{\infty}} = \frac{1}{|\Gamma|}, \quad (0.1) \]

And we know that
\[\int_M |W_\mu|^2 d\mu = \frac{12\pi^2}{24} + \int_M \frac{s^2}{24} d\mu < 24\pi^2, \]

it follows that
\[\frac{1}{16\pi^2} \int_X \frac{|Ric_0|^2}{2} < \frac{1}{|\Gamma|} \]

and
\[\eta(S^3/\Gamma) > 0. \]

Since Lemma 0.3 shows that we still have a \mathbb{Z}_2 action which interchanges the two totally geodesic $\mathbb{C}P^1$s which generate $H^2(X, \mathbb{Z})$. The argument in (8) Lemma 22 applies and so the intersection form of X must be given by
\[\left(\begin{array}{cc} -k & 1 \\ 1 & -k \end{array} \right) \]

for some $k \geq 2$ and $\Gamma \cong \mathbb{Z}_{k^2-1}$. And at infinity the 3-manifold is a Lens space $L(k^2 - 1, k)$. In particular $\Gamma \neq \{1\}$. Since $|\Gamma| \neq 1$, by (0.1) we get that
\[\eta(S^3/\Gamma) \leq \frac{1}{3}. \]

It means that
\[0 < \eta(S^3/\Gamma) \leq \frac{1}{3}. \]

For the Lens space $L(k^2 - 1, k) = S^3/\Gamma$, the η-invariant is given by [3],
\[\eta(S^3/\Gamma) = \frac{1}{|\Gamma|} \sum_{i=1}^{k^2-2} \cot \frac{i\pi}{k^2 - 1} \cot \frac{ki\pi}{k^2 - 1} \]
\[= \frac{1}{k^2 - 1} \left(\frac{2}{3} k^3 - 2k^2 + 2 \right). \quad (0.2) \]

It follows that $k = 2$ and $\Gamma \cong \mathbb{Z}_3$.

Remark 0.6. In this case, one can calculate the first Chern class in stead of the η-invariant as in Lemma 0.4. And the Poincaré dual of the first Chern class is the rational homology class
\[\frac{k - 2}{k - 1} (E_1 + E_2), \]
where E_1, E_2 are two totally geodesic \mathbb{CP}^1 and they have intersection form

$$\begin{pmatrix} -k & 1 \\ 1 & -k \end{pmatrix}.$$

But the calculation of the eta-invariant will have independent interest for lens spaces. The formula is given by [3]. We carry out the example for lens spaces $L(k^2 - 1, k)$.

Lemma 0.7. Under the assumption of Proposition 0.2, for any A, B fixed, X cannot be as in Lemma 0.4 and Lemma 0.5.

Proof. The proof follows exactly ([8] Lemma 25). Since the limit metric g_∞ on X is by construction a pointed limit of larger and larger rescalings of the metrics g_i, the generators of $H_2(X, \mathbb{Z})$ must arise from smooth 2-sphere $S_i \subset M$ whose areas with respect to g_i tend to zero as $i \to \infty$. When $b_2(X) = 1$, let S_i be the smooth 2-sphere corresponding to the zero section \mathbb{CP}^1; when $b_2(X) = 2$, let S_i be a 2-sphere corresponding to one of the two \mathbb{CP}^1 generators, and \tilde{S}_i is the reflection under $F_1 \leftrightarrow F_2$. Take $\Sigma = [S_i] \in H^2(M, \mathbb{Z})$ when $b_2(X) = 1$, and $\Sigma = [S_i] + [\tilde{S}_i]$ when $b_2(X) = 2$. Since the homology class is \mathbb{Z}_2 invariant, we have

$$[S] = m(F_1 + F_2) + nE$$

for some integers m and n and the self-intersection condition gave that

$$2m^2 - n^2 = -k$$

for $k \leq 5$. Now any of unit-volume bilaterally symmetric Kähler classes $[\omega_i]$ is of the form

$$[\omega_i] = \frac{(1 + x_i)(F_1 + F_2) - x_i E}{\sqrt{1 + 2x_i + x_i^2/2}},$$

where $A \leq x_i \leq B$.

Also we know that the area of S_i measured by g_i goes to zero when $i \to \infty$. By Wirtinger’s inequality we can get

$$|[\omega_i]| \leq 2 \text{ area}(S_i) \to 0.$$

It follows that

$$\frac{2m(1 + x_i) + nx_i}{\sqrt{1 + 2x_i + x_i^2/2}} \to 0.$$

Denote

$$\frac{2m(1 + x_i) + nx_i}{\sqrt{1 + 2x_i + x_i^2/2}} = \varepsilon_i,$$

we can get that

$$n = -2m \frac{1 + x_i}{x_i} + \varepsilon_i \frac{\sqrt{1 + 2x_i + x_i^2/2}}{x_i}.$$
Since \(\sqrt{1 + 2x_i + x_i^2/2} \) is uniformly bounded for \(x_i \in [A, B] \) and \(\epsilon_i \to 0 \) when \(i \to 0 \), then

\[
4m^2 \left(\frac{(1 + x_i)^2}{x_i^2} - \epsilon_i C(\epsilon, A, B) \right) \leq n^2 \leq 4m^2 \left(\frac{(1 + x_i)^2}{x_i^2} + \epsilon \right) + \epsilon_i C(\epsilon, A, B)
\]

where \(\epsilon \) is arbitrary small positive number and \(C(\epsilon) \) is independent of \(i \). We can take \(\epsilon = \frac{1}{100} \) and when \(i \) big enough, \(C(1/100, A, B)\epsilon_i < 1/100 \), then it gives that

\[
4m^2 \left(\frac{1 + x}{x^2} \right) - 2m^2 - \frac{m^2}{100} \leq k + 1/100.
\]

It follows that \((2 - 1/100)m^2 < k + 1/100 \).

Since \(k \leq 5 \), it gives that \(m = 0, \pm 1 \). But \(m = 0 \) gives that \(n = 0 \), contradiction. If \(m = 1 \), then \(k = 2, n = -2 \). And \(m = -1 \), then \(k = 2, n = 2 \). For any cases,

\[
|\epsilon_i| = \left| \frac{2m(1 + x_i) + nx_i}{\sqrt{1 + 2x_i + x_i^2/2}} \right| = \frac{2}{\sqrt{1 + 2x_i + x_i^2/2}}
\]

is uniformly bounded for \(x_i \in [A, B] \). Contradiction. \(\square \)

Deepest bubbles can therefore never arise, Proposition 0.2 follows. By using the result ([8], Theorem 27), Proposition 0.3 implies that the existence of bilaterally symmetric extremal Kähler metrics in the bilaterally symmetric Kähler class for any \(x \in [A, B] \).

1 Appendix

Here we prove the identity in (0.2.)

\[
\sum_{i=1}^{k^2-2} \cot \frac{i\pi}{k^2-1} \cot \frac{ki\pi}{k^2-1} = \frac{2}{3}k^3 - 2k^2 + 2. \tag{1.1}
\]

and it follows that the eta-invariant for lens space \(L(k^2 - 1, k) \) is

\[
-\frac{1}{k^2-1} \left(\frac{2}{3}k^3 - 2k^2 + 2 \right).
\]

Lemma 1.1. \(k \in \mathbb{N} \),

\[
\sin (k+1)x = 2^k \prod_{i=0}^{k} \sin \left(x + \frac{i\pi}{k+1} \right). \tag{1.2}
\]
Proof.

\[2 \sin x = i(e^{-ix} - e^{ix}) = 1e^{-ix}(1 - e^{2ix}). \]

It follows that

\[\prod_{i=0}^{k} 2^{k+1} \sin \left(x + \frac{i\pi}{k+1} \right) = \prod_{i=0}^{k} \left\{ ie^{-i(x + \frac{i\pi}{k+1})}(1 - e^{2i(x + \frac{i\pi}{k+1})}) \right\} \]

\[= (i)^{k+1} e^{-(k+1)x - \frac{k\pi}{2} + 2i(k+1)x} \prod_{i=0}^{k} (e^{-2ix} - e^{ik\pi}) \]

\[= 1(e^{-(k+1)x} - e^{(k+1)x}) \]

\[= 2 \sin(k+1)x. \]

Lemma 1.2.

\[(k+1) \cot(k+1)x = \sum_{i=0}^{k} \cot \left(x + \frac{i\pi}{k+1} \right).\]

Proof. Taking derivative on both sides of (1.2), it gives that

\[(k+1) \cos(k+1)x = 2^k \cos \left(x + \frac{j\pi}{k+1} \right) \prod_{i\neq j} \sin \left(x + \frac{i\pi}{k+1} \right).\]

Then divided by (1.1), we get

\[(k+1) \cot(k+1)x = \sum_{i=0}^{k} \cot \left(x + \frac{i\pi}{k+1} \right).\]

Lemma 1.3.

\[(k+1)^2 \cot^2(k+1)x + (k+1)k = \sum_{i=0}^{k} \cot^2 \left(x + \frac{i\pi}{k+1} \right).\]

Proof. In Lemma 1.2, taking derivative on both sides.

Lemma 1.4.

\[\sum_{i=1}^{k} \cot^2 \frac{i\pi}{k+1} = \frac{k(k-1)}{3}. \]

Proof. In Lemma 1.3, by taking limit for \(x \to 0. \)

Now we can prove (1.1).
Proof. When i is not the multiple of $k - 1$, then
\[
\cot \frac{i\pi}{k^2 - 1} \cot \frac{ki\pi}{k^2 - 1} = 1 + \cot \left(\frac{i\pi}{k^2 - 1} + \frac{ki\pi}{k^2 - 1} \right) \left(\cot \frac{i\pi}{k^2 - 1} + \cot \frac{ki\pi}{k^2 - 1} \right)
\]
\[
= 1 + \cot \frac{i\pi}{k-1} \left(\cot \frac{i\pi}{k^2 - 1} + \cot \frac{ki\pi}{k^2 - 1} \right).
\]
For each $j \in \{1, 2, \cdots, k-2\}$, we regroup the summation by if $i = j + (k-1)m$, where $0 \leq m \leq k$, it gives that
\[
\sum_{m=0}^{k} \cot \frac{i\pi}{k-1} \cot \frac{ki\pi}{k^2 - 1} = \cot \frac{j\pi}{k-1} \left(\sum_{m=0}^{k} \cot \frac{(j+(k-1)m)\pi}{k^2 - 1} \right)
\]
\[
= \cot \frac{j\pi}{k-1} \left(\sum_{m=0}^{k} \cot \left(\frac{j\pi}{k^2 - 1} + \frac{m\pi}{k+1} \right) \right)
\]
\[
= (k + 1) \cot^2 \frac{j\pi}{k-1},
\]
where we use Lemma 1.2. by taking $x = \frac{j\pi}{k^2 - 1}$. And similarly
\[
\sum_{m=0}^{k} \cot \frac{i\pi}{k-1} \cot \frac{ki\pi}{k^2 - 1} = \cot \frac{j\pi}{k-1} \left(- \sum_{m=0}^{k} \cot \left(- \frac{j\pi}{k^2 - 1} + \frac{m\pi}{k+1} \right) \right)
\]
\[
= (k + 1) \cot^2 \frac{j\pi}{k-1}.
\]
When $i = (k-1)j$, where $1 \leq j \leq k$, it gives that
\[
\sum_{j=1}^{k} \cot \frac{(k-1)j\pi}{k^2 - 1} \cot \frac{k(k-1)j\pi}{k^2 - 1} = - \sum_{j=1}^{k} \cot^2 \frac{j\pi}{k+1}.
\]
Sum all terms up, it gives that
\[
\sum_{i=1}^{k^2-2} \cot \frac{i\pi}{k^2 - 1} \cot \frac{ki\pi}{k^2 - 1} = \left(k^2 - 2 - k \right) + 2(k+1) \sum_{j=1}^{k^2-2} \frac{j\pi}{k-1} - \sum_{j=1}^{k^2-2} \frac{j\pi}{k+1}
\]
\[
= \left(k^2 - 2 - k \right) + 2(k+1) \frac{(k-2)(k-3)}{3} - \frac{k(k-1)}{3}
\]
\[
= \frac{2}{3} k^3 - 2k^2 + 2.
\]

Acknowledgments: The author wish to thank his advisor Chen Xiuxiong to introduce him into the program of the existence of extremal metrics on Kähler surface. The author is also grateful to Hua Zheng, Jeff Viaclovsky, C. LeBrun and Brian Weber for some helpful discussions.
References

[1] M. Anderson, *Ricci Curvature bounds and Einstein metrics on Compact manifolds*, Journal of the AMS, Vol. 2, No. 3 (1989), 455-490.

[2] C. Arezzo, F. Pacard, and M. Singer, *Extremal metrics on blow ups*. arXiv.org: math.DG/0701028

[3] M. Atiyah, V. Patodi, I. Singer, *Spectral asymmetry and Riemannian geometry. II*, Math. Proc. Comb. Phil. Soc. (1975), 78

[4] E. Calabi, *Extremal Kähler metric*, in *Seminar of Differential Geometry*, ed. S. T. Yau, Annals of Mathematics Studies 102, Princeton University Press (1982), 259-290.

[5] E. Calabi, *Extremal Kähler metric, II*, in *Differential Geometry and Complex Analysis*, eds. I. Chavel and H. M. Farkas, Spring Verlag (1985), 95-114.

[6] X. X. Chen, *Space of Kähler metrics III–On the lower bound of the Calabi energy and geodesic distance*, arXiv:math/0606228.

[7] X. X. Chen, B. Weber, *Moduli Spaces of critical Riemannian Metrics with L^p norm curvature bounds*. Preprint, 2006.

[8] X. X. Chen, C. LeBrun, and B. Weber, *On Einstein Conformally Kähler Metrics*. arXiv.0715.0710.

[9] S. K. Donaldson, *Lower bounds on the Calabi functional*, arXiv:math/0506501

[10] A. Futaki, T. Mabuchi, *Uniqueness and periodicity of external Kähler vector fields*, in Proceedings of GARC workshop on Geometry and Topology ’93 (Seoul 1993), vol. 18 of Lecture Notes Ser., Seoul 1993, Seoul Nat. Univ. 217-239.

[11] C. LeBrun, S. Simanca, *Extremal Kähler metrics and Complex Deformation Theory*, Geom. and Fun. Analysis, Vol. 4, No. 3 (1994), 298-336.

[12] G. Tian, J. Viaclovsky, *Moduli spaces of critical metrics in dimension four, Adv. Math.*, 196 (2005), 346-372.

whe@math.wisc.edu

Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA

10