On Learning Sets of Symmetric Elements

Haggai Maron, Or Litany, Gal Chechik, Ethan Fetaya

[1] Nvidia Research [2] Stanford University [3] Bar-Ilan University
Motivation and Overview
Set Symmetry

Previous work (DeepSets, PointNet) targeted training a deep network over sets

\[
\left\{ \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}, \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}, \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}, \ldots \right\}
\rightarrow
\text{Deep Net}
\]

Input set
Main challenge: What architecture is optimal when elements of the set have their own symmetries?
Deep Symmetric sets

Input image set

Output
Set symmetry:
Order invariance/equivariance
Set symmetry:
Order invariance/equivariance

\{ \}

\{ \} \rightarrow \{ \}
Set symmetry:
Order invariance/equivariance
Element symmetry:
Translation invariance/equivariance
Element symmetry:
Translation invariance/equivariance
Element symmetry:
Translation invariance/equivariance
Applications

1D signals 2D images 3D pointclouds Graph

Modalities

Classification task Deblurring task Selection task Selection task
This paper

A principled approach for learning sets of complex elements (graphs, point clouds, images)

Characterize maximally expressive linear layers that respect the symmetries (**DSS layers**)

Prove universality results

Experimentally demonstrate that **DSS networks** outperform baselines
Previous work
Deep sets [Zaheer et al. 2017]
Deep sets [Zaheer et al. 2017]
Deep sets [Zaheer et al. 2017]

Siamese

CNN

CNN

CNN

Features
Deep sets [Zaheer et al.]
Previous work: information sharing

Aittala and Durand, ECCV 2018
Sridhar et al., NeurIPS 2019
Liu et al., ICCV 2019
Our approach
Invariance

Many Learning tasks are invariant to natural transformations (symmetries)

More formally. Let $H \leq S_n$ be a subgroup:

$f : \mathbb{R}^n \rightarrow \mathbb{R}$ is invariant if $f(\tau \cdot x) = f(x)$, for all $\tau \in H$

e.g. image classification
Equivariance

Let $H \leq S_n$ be a subgroup:

Equivariant if $f(\tau \cdot x) = \tau \cdot f(x)$,

e.g. edge detection
Invariant neural networks

- Invariant by construction

Equivariant Invariant FC
Deep Symmetric Sets

$x_1, \ldots, x_n \in \mathbb{R}^d$ with symmetry group $G \leq S_d$

Want to be invariant/equivariant to both G and the ordering

Formally the symmetry group is $H = S_n \times G \leq S_{nd}$
Main challenges

• What is the space of linear equivariant layers for specific $H = S_N \times G$?
Main challenges

- What is the space of linear equivariant layers for a given $H = S_N \times G$?
- Can we compute these operators efficiently?
Main challenges

• What is the space of linear equivariant layers for a given $H = S_N \times G$?

• Can we compute these operators efficiently?

• Do we lose expressive power?
Main challenges

- What is the space of linear equivariant layers for a given $H = S_N \times G$?
- Can we compute these operators efficiently?
- Do we lose expressive power?
Theorem: Any linear $S_N \times G$–equivariant layer $L : \mathbb{R}^{n \times d} \rightarrow \mathbb{R}^{n \times d}$ is of the form

$$L(X)_i = L_1^G(x_i) + \sum_{j \neq i} L_2^G(x_j)$$

where L_1^G, L_2^G are linear G-equivariant functions.

We call these layers *Deep Sets for Symmetric elements layers* (DSS).
DSS for images

x_1, \ldots, x_n are images

G is the group of $2D$ circular translations

G-equivariant layers are convolutions
DSS for images

x_1, \ldots, x_n are images

G is the group of $2D$ circular translations

G-equivariant layers are convolutions
DSS for images

\[x_1, \ldots, x_n \text{ are images} \]

\(G \) is the group of 2D circular translations

\(G \)-equivariant layers are convolutions
DSS for images

x_1, \ldots, x_n are images

G is the group of $2D$ circular translations

G-equivariant layers are convolutions
DSS for images

Siamese part

Information sharing part
Expressive power

Theorem

If G-equivariant networks are universal approximators for G-equivariant functions, then so are DSS networks for $S_N \times G$-equivariant functions.
Expressive power

Theorem

If G-equivariant networks are universal approximators for G-equivariant functions, then so are DSS networks for $S_N \times G$-equivariant functions.

• Main tool:

 • Noether’s Theorem (Invariant theory)

 • For any finite group H, the ring of invariant polynomials $\mathbb{R}[x_1, \ldots, x_n]^H$ is finitely generated.

 • Generators can be used to create continuous unique encodings for elements in $\mathbb{R}^{n \times d}/H$
Results
Signal classification

![Test Accuracy vs. training set size](image)
Image selection

Noise type and strength	Late Aggregation Siamese+DS	Early Aggregation DSS (sum)	DSS (max)	DSS (Sridhar)	DSS (Aittala)
Gaussian $\sigma = 10$	$77.2\% \pm 0.37$	$78.48\% \pm 0.48$	$77.99\% \pm 1.1$	$76.8\% \pm 0.25$	$78.34\% \pm 0.49$
Gaussian $\sigma = 30$	$65.89\% \pm 0.66$	$68.35\% \pm 0.55$	$67.85\% \pm 0.40$	$61.52\% \pm 0.54$	$66.89\% \pm 0.58$
Gaussian $\sigma = 50$	$59.24\% \pm 0.51$	$62.6\% \pm 0.45$	$61.59\% \pm 1.00$	$55.25\% \pm 0.40$	$62.02\% \pm 1.03$
Occlusion 10%	$82.15\% \pm 0.45$	$83.13\% \pm 1.00$	$83.27\% \pm 0.51$	$83.21\% \pm 0.338$	$83.19\% \pm 0.67$
Occlusion 30%	$77.47\% \pm 0.37$	$78\% \pm 0.89$	$78.69\% \pm 0.32$	$78.71\% \pm 0.26$	$78.27\% \pm 0.67$
Occlusion 50%	$76.2\% \pm 0.82$	$77.29\% \pm 0.40$	$76.64\% \pm 0.45$	$77.04\% \pm 0.75$	$77.03\% \pm 0.58$
Shape selection

Dataset	Data type	Late Aggregation Siamese+DS	DSS (sum)	Early Aggregation DSS (max)	DSS (Sridhar)	DSS (Aittala)
UCF101	Images	36.41% ± 1.43	76.6% ± 1.51	76.39% ± 1.01	60.15% ± 0.76	77.96% ± 1.69
Dynamic Faust	Point-clouds	22.26% ± 0.64	42.45% ± 1.32	28.71% ± 0.64	54.26% ± 1.66	26.43% ± 3.92
Dynamic Faust	Graphs	26.53% ± 1.99	44.24% ± 1.28	30.54% ± 1.27	53.16% ± 1.47	26.66% ± 4.25

Point clouds

Graphs
Conclusions

A general framework for learning sets of complex elements

Generalizes many previous works

Expressivity results

Works well in many tasks and data types