SGLT2 inhibitors and cardiac remodelling: a systematic review and meta-analysis of randomized cardiac magnetic resonance imaging trials

Nitish K. Dhingra†, Nikhil Mistry‡, Pankaj Puar†, Raj Verma¶, Stefan Anker§, C. David Mazer¶,† and Subodh Verma†,¶,*

1Division of Cardiac Surgery, St. Michael’s Hospital, University of Toronto, 30 Bond Street, Toronto, Ontario, Canada; 2Department of Anesthesia, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada; 3Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; 4North York Diagnostic and Cardiac Centre, Toronto, Ontario, Canada; 5Department of Cardiology & Berlin Institute of Health Center for Regenerative Therapies, German Center for Cardiovascular Research, Partner Site Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany; 6Department of Physiology, University of Toronto, Toronto, Ontario, Canada; 7Keenan Research Center in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada; and 8Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada

Abstract

Aims Recent large randomized controlled trials (RCTs) have demonstrated efficacy of sodium-glucose cotransporter-2 inhibitors (SGLT2i) in both preventing and treating heart failure (HF). SGLT2i-induced reversal of left ventricular remodelling has been proposed as a mechanism contributing to this effect.

Methods and results We performed a systematic review and meta-analysis of RCTs to compare SGLT2i versus placebo (treatment duration > 3 months) on cardiac remodelling parameters as measured by cardiac magnetic resonance imaging (cMRI) in patients with HF and/or diabetes. The PubMed and ClinicalTrials.gov databases were searched until 15 June 2021. Our primary outcome was change in absolute left ventricular mass (LVM) from baseline to study endpoint. Secondary outcomes included changes in LVM indexed to body surface area, left ventricular end-systolic volume (LVESV), left ventricular end-diastolic volume (LVEDV), and left ventricular ejection fraction (LVEF) from baseline to study endpoint. The Cochrane Collaboration’s tool was used to assess risk of bias. Five studies representing 408 patients were included. SGLT2i was associated with greater LVM regression compared to placebo (MD, −5.76 g; 95% CI, −10.87 g to −0.64 g, I² = 73%; overall effect, P < 0.03; four RCTs). Statistical subgroup differences were not observed in our sensitivity analysis focusing on HF with reduced ejection fraction (P = 0.37) and were observed in our sensitivity analysis focusing on diabetes (P < 0.001). SGLT2i was not associated with statistical changes in LV mass indexed to body surface area (I² = 75%; P = 0.16; five RCTs), LVESV (I² = 87%; P = 0.07; five RCTs), LVEDV (I² = 81%; P = 0.20; five RCTs), nor LVEF (I² = 85%; P = 0.19; five RCTs) versus placebo. Sixty per cent of RCTs had low risk of bias.

Conclusions Sodium-glucose cotransporter-2 inhibitors treatment was associated with a reduction in left ventricular mass as assessed by cMRI.

Keywords SGLT2i; Cardiac magnetic resonance imaging; Cardiac remodelling; Diabetes; HFrEF

Received: 23 June 2021; Revised: 4 September 2021; Accepted: 19 September 2021

*Correspondence to: Subodh Verma, Division of Cardiac Surgery, St. Michael’s Hospital, University of Toronto, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada. Tel: 416 864 5997; Fax: 416 864 5881. Email: subodh.verma@unityhealth.to
†Co-first authors (equal contribution).

Background

Sodium-glucose cotransporter-2 inhibitors (SGLT2i) have been shown to prevent incident heart failure in patients with type 2 diabetes and treat heart failure with a reduced ejection fraction (HFrEF) in patients with and without diabetes.1–6 While several mechanisms have been suggested to mediate these benefits,7–9 there has been increasing interest in the effects of these therapies on ventricular reverse remodelling.
Aims

We performed a meta-analysis of randomized controlled trials (RCTs) comparing SGLT2i versus placebo that evaluated changes in left ventricular mass, volumes, and ejection fraction as assessed by cardiac magnetic resonance imaging (cMRI).

Methods

Search strategy and selection criteria

We searched the PubMed and ClinicalTrials.gov databases from inception to 15 June 2021 using groups of keywords for SGLT2i, diabetes mellitus, heart failure, and cardiac
Baseline characteristics	Brown 2020	Lee 2021	Santos-Gallego 2021	Singh 2020	Verma 2019
Age (years)	64.25 ± 7.01	66.74 ± 6.62	68.2 ± 11.7	64.2 ± 10.9	66.9 ± 7.0
SGLT2i	67.4 ± 6.8	66.2 ± 10.6	59.9 ± 13.1	67.4 ± 6.8	64 (57, 69)b
Placebo	66.9 ± 13.1	69.2 ± 10.6	59.9 ± 13.1	67.4 ± 6.8	64 (56, 72)b
Male sex	20 (62.5)	18 (52.9)	34 (65.4)	27 (64)	18 (64.3)
SGLT2i	27 (64)	27 (64)	43 (81.1)	27 (64)	19 (67.9)
Placebo	18 (64)	18 (64)	63 (10.6)	19 (67.9)	44 (90)
BMI (kg/m²)	32.30 ± 4.66	32.59 ± 4.22	30.9 ± 5.9	30.4 ± 5.1	33.0 ± 5.5
SGLT2i	30.9 ± 5.9	30.4 ± 5.1	30.9 ± 5.9	30.4 ± 5.1	32 ± 5.2
Placebo	30 ± 6	30 ± 6	33.0 ± 5.5	32 ± 5.2	27.7 ± 4.7
HbA1c (mmol/mol)	7.5 ± 1.6%	7.0 ± 1.4%	5.8 ± 0.3%	5.8 ± 0.5%	7.9 ± 0.8%
SGLT2i	7.5 ± 1.6%	7.0 ± 1.4%	5.8 ± 0.3%	5.8 ± 0.5%	8.0 ± 0.9%
Placebo	7.5 ± 1.6%	7.0 ± 1.4%	5.8 ± 0.3%	5.8 ± 0.5%	8.0 ± 0.9%
SBP (mmHg)	130.41 ± 9.62	127.67 ± 10.65	125.8 ± 18.2	130.3 ± 21.6	NR
SGLT2i	127.67 ± 10.65	125.8 ± 18.2	130.3 ± 21.6	NR	135 ± 15.4
Placebo	NR	NR	NR	135 ± 15.4	132.8 ± 18.8
NYHA class of HF	NR	NR	NR	139 ± 15	138 ± 15
Class I	NR	NR	0 (0.0)	0 (0.0)	NR
SGLT2i	NR	NR	12 (42.9)	13 (46.4)	NR
Placebo	NR	NR	13 (46.4)	11 (39.3)	NR
Class II	NR	NR	37 (71.2)	44 (83.0)	NR
SGLT2i	NR	NR	13 (46.4)	11 (39.3)	NR
Placebo	NR	NR	3 (10.7)	4 (14.3)	NR
Class III	NR	NR	15 (28.8)	9 (17.0)	NR
SGLT2i	NR	NR	3 (10.7)	4 (14.3)	NR
Placebo	NR	NR	0 (0.0)	0 (0.0)	NR
Class IV	NR	NR	0 (0.0)	0 (0.0)	NR
Baseline LVM (g)	126.47 ± 20.54	121.61 ± 24.20	121.2 ± 36.5	131.9 ± 44.9	NR
SGLT2i	121.61 ± 24.20	121.2 ± 36.5	131.9 ± 44.9	NR	NR
Placebo	135.2 ± 45.2	131.8 ± 54.4	135.2 ± 45.2	131.8 ± 54.4	NR
Baseline LVMi (g/m²)	60.92 ± 7.76	59.04 ± 8.73	61.2 ± 16.1	65.4 ± 19.6	NR
SGLT2i	59.04 ± 8.73	61.2 ± 16.1	65.4 ± 19.6	NR	NR
Placebo	67.9 ± 17.8	65.9 ± 19.8	67.9 ± 17.8	65.9 ± 19.8	NR
Baseline LVEDV (mL)	37.17 ± 9.92	33.63 ± 11.13	157.5 ± 68.1	152.9 ± 58.4	NR
SGLT2i	33.63 ± 11.13	157.5 ± 68.1	152.9 ± 58.4	NR	NR
Placebo	143.6 ± 66.3	135.1 ± 54.8	143.6 ± 66.3	135.1 ± 54.8	NR
Baseline LVEF (%)	127.63 ± 22.54	120.66 ± 25.29	224.8 ± 72.2	222.7 ± 60.1	NR
SGLT2i	120.66 ± 25.29	224.8 ± 72.2	222.7 ± 60.1	NR	NR
Placebo	219.8 ± 75.8	210.4 ± 68.9	219.8 ± 75.8	210.4 ± 68.9	NR
Baseline LVEF (%)	71.31 ± 5.42	72.54 ± 6.27	31.7 ± 9.5	33.0 ± 9.5	NR
SGLT2i	72.54 ± 6.27	31.7 ± 9.5	33.0 ± 9.5	NR	NR
Placebo	36.2 ± 8.2	36.5 ± 8.2	44.5 ± 12.4	46.5 ± 11.7	NR

Data are mean ± SD, n (%) except where otherwise specified.

BM, body mass index; cMRI, cardiac magnetic resonance imaging; HbA1c, haemoglobin A1c; HF, heart failure; LVEDV, left ventricular end diastolic volume; LVEF, left ventricular ejection fraction; LVM, left ventricular mass; LVMi, indexed left ventricular mass; LVESV, left ventricular end systolic volume; NYHA, New York Heart Association; SBP, systolic blood pressure; SGLT2i, sodium-glucose cotransporter-2 inhibitors.

Indexed to body surface area.

Age provided as median (IQR) for this study.

ESC Heart Failure 2021; 8: 4693–4700
DOI: 10.1002/ehf2.13645
morphology and function. The search strategies are provided in Supporting Information, Appendix S1. A manual search of the reference lists of all included studies and relevant reviews was also conducted. Our search was limited to publications in the English language. The inclusion criteria were: 1) study design, randomized controlled trial; 2) population, patients with diabetes or heart failure; 3) intervention, SGLT2i therapy vs. placebo; 4) outcomes, reporting any of our primary or secondary outcomes; 5) length of treatment, intervention duration of at least 3 months. A flowchart outlining the study selection process is provided in Supporting Information, Figure S1.

Outcomes

The primary outcome was change in left ventricular mass (LVM) from baseline to study endpoint as measured by cMRI. Secondary outcomes included changes in LVM indexed to body surface area (LVMi), left ventricular end systolic volume

Figure 1 Cardiac magnetic resonance imaging-assessed changes in left ventricular mass (A) and left ventricular mass indexed to body surface area (B) from baseline to study endpoint in randomized controlled trials of patients treated with sodium glucose transporter-2 inhibitor therapy versus placebo.

A Left Ventricular Mass

Study or Subgroup	SGLT2I	Placebo	Mean Difference
Patients with HF/EF			
Lee 2021	-5.1	12.7	14.8
Santos-Galego 2021	-17.8	31.9	41.8
Subtotal (95% CI)	80	88	-11.65 [-30.52, 7.23]

Heterogeneity: Tau² = 165.38; Chi² = 9.38; df = 1 (P = 0.002); I² = 89%
Test for overall effect: Z = 1.21 (P = 0.23)

Study or Subgroup	SGLT2I	Placebo	Mean Difference
Patients without HF/EF			
Brown 2020	-3.95	4.95	8.9
Verma 2019	-4.7	15.4	20.1
Subtotal (95% CI)	76	80	-3.04 [-5.14, -0.94]

Heterogeneity: Tau² = 0.00; Chi² = 0.24; df = 1 (P = 0.62); I² = 0%
Test for overall effect: Z = 2.83 (P = 0.005)

Total (95% CI) 196 196 100.0% -5.76 [-10.87, -0.64]

B Left Ventricular Mass Indexed to Body Surface Area

Study or Subgroup	SGLT2I	Placebo	Mean Difference
Patients with HF/EF			
Lee 2021	-2.7	5.1	7.8
Santos-Galego 2021	-8.5	15.9	24.3
Singh 2020	4	11.1	15.1
Subtotal (95% CI)	198	116	8.23 [9.20, 3.86]

Heterogeneity: Tau² = 26.97; Chi² = 11.71; df = 2 (P = 0.003); I² = 85%
Test for overall effect: Z = 2.21 (P = 0.03)

Study or Subgroup	SGLT2I	Placebo	Mean Difference
Patients without HF/EF			
Brown 2020	-0.58	2.29	2.87
Verma 2019	-2.6	7.8	10.4
Subtotal (95% CI)	76	80	2.02 [-0.23, 2.12]

Heterogeneity: Tau² = 1.68; Chi² = 3.43; df = 1 (P = 0.11); I² = 59%
Test for overall effect: Z = 0.99 (P = 0.32)

Total (95% CI) 198 196 100.0% -1.89 [-4.52, 0.74]
Figure 2 Cardiac magnetic resonance imaging-assessed changes in left ventricular end systolic volume (A), left ventricular end diastolic volume (B), and left ventricular ejection fraction (C) from baseline to study endpoint in randomized controlled trials of patients treated with sodium glucose transporter-2 inhibitor therapy versus placebo.

A Left Ventricular End Systolic Volume

Subgroup	SGLT2	Placebo	Mean Difference	Mean Difference					
Study or Subgroup	Mean [mL]	SD [mL]	Total	Mean [mL]	SD [mL]	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Patients with HFpEF									
Lew 2021	-15.1	24.2	42	-2.8	23.7	50	19.6%	-12.30 [-22.09, -2.51]	
Santos-Gallego 2021	-26.6	20.5	38	-0.5	21.9	38	19.8%	-26.10 [-35.56, -16.56]	
Singh 2020	-8.9	32.7	28	-18.8	51	28	8.8%	9.90 [-12.54, 32.34]	
Subtotal (95% CI)	106	116	48.2%	-12.30 [-28.41, 3.82]					
Heterogeneity: Tau² = 153.13; Chi² = 9.90; df = 2 (p = 0.007); I² = 80%									
Test for overall effect: Z = 3.50 (p < 0.001)									

Subgroup	SGLT2	Placebo	Mean Difference	Mean Difference					
Study or Subgroup	Mean [mL]	SD [mL]	Total	Mean [mL]	SD [mL]	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Patients without HFpEF									
Brown 2020	-1.86	4.3	32	-0.74	4.61	34	26.8%	-1.12 [-3.45, 1.21]	
Verma 2019	-1.9	10	44	0.3	13	45	20.0%	-2.20 [-6.98, 2.58]	
Subtotal (95% CI)	76	80	51.8%	-1.33 [-4.42, 1.77]					
Heterogeneity: Tau² = 0.00; Chi² = 0.16; df = 1 (p = 0.69); I² = 0%									
Test for overall effect: Z = 1.24 (p = 0.21)									

Study or Subgroup	SGLT2	Placebo	Mean Difference	Mean Difference					
	Mean [mL]	SD [mL]	Total	Mean [mL]	SD [mL]	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Total (95% CI)	184	196	100.0%	-7.56 [-15.66, 0.54]					
Heterogeneity: Tau² = 0.30; Chi² = 0.49; df = 2 (p = 0.81); I² = 87%									
Test for overall effect: Z = 1.83 (p = 0.07)									

Study or Subgroup	SGLT2	Placebo	Mean Difference	Mean Difference					
Subgroup	Mean [%]	SD [%]	Total	Mean [%]	SD [%]	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Patients with HFpEF									
Lew 2021	1.8	5.7	42	1.2	3.8	50	21.4%	0.60 [-1.42, 2.62]	
Santos-Gallego 2021	6.4	4.3	38	-0.1	3.9	36	21.0%	6.16 [-2.20, 7.51]	
Singh 2020	2.6	6.7	28	1.4	6.6	28	14.7%	1.20 [-1.14, 5.54]	
Subtotal (95% CI)	108	116	58.0%	2.78 [-1.35, 6.90]					
Heterogeneity: Tau² = 11.23; Chi² = 16.80; df = 2 (p = 0.002); I² = 68%									
Test for overall effect: Z = 1.32 (p = 0.19)									

Subgroup	SGLT2	Placebo	Mean Difference	Mean Difference					
Study or Subgroup	Mean [%]	SD [%]	Total	Mean [%]	SD [%]	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Patients without HFpEF									
Brown 2020	1.45	4.08	32	0.66	3.76	34	21.7%	0.79 [-1.11, 2.60]	
Verma 2019	0.72	5.1	44	1	6.5	46	20.3%	-0.28 [-2.69, 2.13]	
Subtotal (95% CI)	76	80	42.0%	0.38 [-1.91, 1.87]					
Heterogeneity: Tau² = 0.00; Chi² = 0.47; df = 1 (p = 0.49); I² = 0%									
Test for overall effect: Z = 0.50 (p = 0.62)									

Study or Subgroup	SGLT2	Placebo	Mean Difference	Mean Difference					
	Mean [%]	SD [%]	Total	Mean [%]	SD [%]	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Total (95% CI)	194	196	100.0%	1.76 [-0.88, 4.37]					
Heterogeneity: Tau² = 7.27; Chi² = 26.38; df = 4 (p < 0.001); I² = 85%									
Test for overall effect: Z = 1.32 (p = 0.19)									

Study or Subgroup	SGLT2	Placebo	Mean Difference	Mean Difference					
Subgroup	Mean [%]	SD [%]	Total	Mean [%]	SD [%]	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Total (95% CI)	194	196	100.0%	1.76 [-0.88, 4.37]					
Heterogeneity: Tau² = 7.27; Chi² = 26.38; df = 4 (p < 0.001); I² = 85%									
Test for overall effect: Z = 1.32 (p = 0.19)									

B Left Ventricular End Diastolic Volume

C Left Ventricular Ejection Fraction

ESC Heart Failure 2021; B: 4693–4700
DOI: 10.1002/ehf2.13645
(LVESV), left ventricular end diastolic volume (LVEDV), and left ventricular ejection fraction (LVEF) from baseline to study endpoint as measured by cMRI.

Data extraction and quality assessment

Citations were independently screened by two reviewers (N. K. D. and N. M.) to select studies that met eligibility criteria and abstract data using a structured form which included study design, population characteristics, duration and dose of treatment, and outcomes. Discrepancies were resolved by a third author (C. D. M.). Two reviewers (N. M. and R. V.) assessed quality and risk of bias across the domains of sequence generation, allocation concealment, blinding, incomplete outcome data, and selective reporting as per the methods outlined in the Cochrane Handbook for Systematic Reviews of Interventions. Risk of bias was graded as either being low, high, or unclear for each respective domain within each study.

Data synthesis

Data from all studies were combined to estimate the mean difference (MD) and 95% confidence interval (CI) for each outcome using an inverse variance approach and DerSimonian and Laird’s random effects-model. Missing data were not imputed. Statistical heterogeneity was tested using an inverse weighted χ^2 test and was quantified by I^2, with values $>50\%$ being considered substantial heterogeneity. $P < 0.05$ was considered statistically significant. Publication bias was intended to be assessed by inspection of the funnel plot of the primary outcome; however, this was unable to be done due to too few studies meeting eligibility criteria. We planned a priori sensitivity analyses to evaluate potential differences in treatment effect amongst trials exclusively recruiting patients with HFrEF and trials exclusively recruiting patients with diabetes or prediabetes. All analyses were performed with Review Manager software (version 5.3). The protocol for this systematic review was not registered. This systematic review and meta-analysis adheres to PRISMA guidelines.

Results

Study characteristics and study population

A total of five studies, representing 408 patients, met the eligibility criteria and were included in the meta-analysis (Supporting Information, Figure S1). Table 1 summarizes the characteristics of included studies. The included studies assessed a dose of 10 mg of dapagliflozin or empagliflozin daily, and treatment durations ranged from 36 weeks to 1 year. Three RCTs exclusively enrolled patients with HFrEF, and four RCTs exclusively enrolled patients with diabetes or prediabetes. Sixty per cent of the studies had a low risk of bias in at least five out of the six domains (Supporting Information, Figure S2; justifications are summarized in Supporting Information, Table S2). An overview of relevant baseline patient characteristics and cMRI parameters according to treatment group is provided for each included study in Table 2.

Primary outcome

SGLT2i was associated with a greater regression in LVM relative to placebo (MD, -5.76 g; 95% CI, -10.87 g to -0.64 g, $I^2 = 73\%$; overall effect, $P < 0.03$; four trials; Figure 1A). The test for subgroup differences in our sensitivity analysis focusing on HFrEF did not reveal any differences ($P = 0.37$). We observed subgroup differences in our sensitivity analysis focusing on diabetes, where LVM regression by SGLT2i was larger in magnitude amongst patients without diabetes ($P < 0.001$; Supporting Information, Figure S3A).

Secondary outcomes

There were no significant differences between groups for all secondary outcomes of LVMi (MD, -1.89 g/m2; 95% CI, -4.52 to 0.74 g/m2, $I^2 = 75\%$; overall effect, $P = 0.16$; five trials; Figure 1B), LVESV (MD, -7.56 mL; 95% CI, -15.66 to 0.54 mL, $I^2 = 87\%$; overall effect, $P = 0.07$; five trials; Figure 1B), LVEDV (MD, -6.66 mL; 95% CI, -16.82 to 3.49 mL, $I^2 = 81\%$; overall effect, $P = 0.20$; five trials; Figure 1B), or LVEF (MD, 1.76%; 95% CI, -0.86% to 4.37%; $I^2 = 85\%$; overall effect, $P = 0.19$; five trials; Figure 1C). We observed no subgroup differences for each respective secondary outcome in our sensitivity analyses focusing on HFrEF. The results of our sensitivity analysis focusing on diabetes are presented in Supporting Information, Figures S3 and S4.

Conclusions

In this meta-analysis of double-blind placebo controlled RCTs evaluating left ventricular remodelling by cMRI, we observed that SGLT2i were associated with a significant reduction in left ventricular mass with a consistent benefit observed in people with and without diabetes or HFrEF. Other indices of left ventricular remodelling were not statistically significant, but there was a trend towards reduction in LVESV. The analyses are to be interpreted in the context of limitations including (i) substantial heterogeneity between studies, (ii) relatively small sample sizes amongst included studies, (iii) differing treatment durations across studies, and (iv) inconsistencies in the exact calculations for LVM indexed to body weight.

DOI: 10.1002/ehf2.13645
Conflict of interest

Nitish K. Dhingra: none declared. Nikhil Mistry: none declared. Pankaj Puar: none declared. Raj Verma: none declared. Stefan Anker: Dr Anker reports grants and personal fees from Vifor International and Abbott Vascular and personal fees from AstraZeneca, Bayer, Brahms, Boehringer Ingelheim, Cardiac Dimensions, Novartis, Occlutech, Servier, and Vifor International. C. David Mazer: Advisory board honoraria from Amgen, AstraZeneca, and Boehringer Ingelheim. Subodh Verma: S.V. holds a Tier 1 Canada Research Chair in Cardiovascular Surgery. S.V. has also received grants and personal fees for speaker honoraria and advisory board participation from AstraZeneca, Bayer, Boehringer Ingelheim, Janssen, Amgen, HLS, Merck, Novartis, Sun Pharmaceuticals, Toronto Knowledge Translation Working Group, Phase Bio. He also serves as President of the Canadian Medical and Surgical Knowledge Translation Research Group.

Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1. Justification for Risk of Bias Assessment.
Figure S1. Study Selection.
Figure S2. Risk of Bias Assessment.
Figure S3. Changes in Left Ventricular Mass (Panel A) and Left Ventricular Mass indexed to Body Surface Area (Panel B) from Baseline to Study Endpoint in Randomized Controlled Trials of Patients Treated with Sodium Glucose Transporter-2 Inhibitor Therapy versus Placebo – Sensitivity Analysis Focusing on Diabetes.
Figure S4. Changes in Left Ventricular End Systolic Volume (Panel A), Left Ventricular End Diastolic Volume (Panel B), and Left Ventricular Ejection Fraction (Panel C) from Baseline to Study Endpoint in Randomized Controlled Trials of Patients Treated with Sodium Glucose Transporter-2 Inhibitor Therapy versus Placebo – Sensitivity Analysis Focusing on Diabetes.

References

1. McMurray J, Solomon S, Inzucchi S, Kober I, Kosiborod M, Martinez F, Ponikowski P, Sabatine M, Anand I, Bélohlávěk J, Böhm M, Chiang C, Chopra V, de Boer R, Desai A, Diez M, Drozdz J, Dukát A, Ge J, Howlett J, Katova T, Kitakaze M, Ljungman C, Merkely B, Nicolau J, O’Meara E, Petrie M, Vinh P, Schou M, Tereshchenko S, Verma S, Held C, Demets D, Doeherty K, Jhund P, Bengtsson O, Sjöstrand M, Langkilde A. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019; 381: 1995–2008.
2. Petrie M, Verma S, Doeherty K, Inzucchi S, Anand I, Belohlávěk J, Böhm M, Chiang C, Chopra V, de Boer R, Desai A, Diez M, Drozdz J, Dukát A, Ge J, Howlett J, Katova T, Kitakaze M, Ljungman C, Merkely B, Nicolau J, O’Meara E, Vinh P, Schou M, Tereshchenko S, Kober I, Kosiborod M, Langkilde A, Martinez F, Ponikowski P, Sabatine M, Sjöstrand M, Solomon S, Johanson P, Greasley P, Boulton D, Bengtsson O, Jhund P, McMurray J. Effect of dapagliflozin on worsening heart failure and cardiovascular death in patients with heart failure with and without diabetes. JAMA 2020; 323: 1353–1368.
3. Packer M, Anker S, Butler J, Filippatos G, Pocock S, Carson P, Januzzi J, Verma S, Tsutsui H, Brueckmann M, Jamal W, Kimura K, Schnee J, Zeller C, Cotton D, Bocchi E, Böhm M, Choi D, Chopra V, Chuiquire E, Giannetti N, Jhund P, Zhang J, Gonzalez J, Januzzi J, Kaul S, Brunner-La Rocca H, Nicholls S, Perrone S, Pina I, Ponikowski P, Sattar N, Seronde M, Spinar J, Squire I, Taddei S, Wanner C, Zannad F. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 2020; 383: 1413–1424.
4. Anker S, Butler J, Filippatos G, Khan M, Marx N, Lam C, Schnaidt S, O’Farrell A, Brueckmann M, Jamal W, Bocchi E, Ponikowski P, Perrone S, Januzzi J, Verma S, Böhm M, Ferreira J, Pocock S, Zannad F, Packer M. Effect of empagliflozin on cardiovascular and renal outcomes in patients with heart failure by baseline diabetes status. Circulation 2021; 143: 337–349.
5. Zannad F, Ferreira J, Pocock S, Anker S, Butler J, Filippatos G, Brueckmann M, O’Farrell A, Pfarr E, Jamal W, Packer M. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-reduced and DAPA-HF trials. Lancet 2020; 396: 819–829.
6. McGuire D, Shih W, Cosentino F, Charbonnel B, Cherney D, Dagojo-Jack S, Pratley R, Greenberg M, Wang S, Huyck S, Ganz I, Terra S, Masukiewicz U, Cannon C. Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes. JAMA Cardiol 2021; 6: 148–158.
7. Verma S, McMurray J. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia 2018; 61: 2108–2117.
8. Lopaschuk G, Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors. JACC Basic Transl Sci 2020; 5: 652–644.
9. Vallon V, Verma S. Effects of SGLT2 inhibitors on kidney and cardiovascular function. *Annu Rev Physiol* 2021; 83: 503–528.

10. Brown AJ, Gandy S, McCrimmon R, Houston JG, Struthers AD, Lang CC. A randomized controlled trial of dapagliflozin on left ventricular hypertrophy in people with type two diabetes: the DAPA-LVH trial. *Eur J Heart Fail* 2020; 41: 3421–3432.

11. Lee M, Brooksbank K, Wetherall K, Mangion K, Roditi G, Campbell R, Berry C, Chong V, Coyle L, Docherty K, Dreisbach J, Labinjoh C, Lang N, Lennie V, McConnnachie A, Murphy C, Petrie C, Petrie J, Speirits I, Sourbron S, Welsh P, Woodward R, Radjenovic A, Mark P, McMurray J, Hare G, Connelly P, Gilbert R, Shehata N, Teoh H, Leiter L, Jüni P, Zuo F, Mistry N, Thorpe K, Goldenberg R, Yan A, Connelly K, Verma S. Effect of empagliflozin on erythropoietin levels, iron stores, and red blood cell morphology in patients with type 2 diabetes mellitus and coronary artery disease. *Circulation* 2020; 141: 704–707.

12. Santos-Gallego C, Vargas-Delgado A, Requena-Ibanez J, Garcia-Ropero A, Mancini D, Pinney S, Macaluso F, Sartori S, Roque M, Sabatel-Perez F, Rodriguez-Cordero A, Zafar M, Fergus I, Atallah-Lajam F, Contreras J, Varley C, Moreno P, Abascal V, Lala A, Tamler R, Sanz J, Fuster V, Badimon J. Randomized trial of empagliflozin in non-diabetic patients with heart failure and reduced ejection fraction. *J Am Coll Cardiol* 2021; 77: 243–255.

13. Singh J, Mordi I, Vickneson K, Fathi A, Donnan P, Mohan M, Choy A, Gandy S, George J, Khan F, Pearson E, Houston J, Struthers A, Lang C. Dapagliflozin versus placebo on left ventricular remodeling in patients with diabetes and heart failure: the REFORM trial. *Diabetes Care* 2020; 43: 1356–1359.

14. Verma S, Mazer C, Yan A, Mason T, Garg V, Teoh H, Zuo F, Quan A, Farkouh M, Fitchett D, Goodman S, Zinman B, Connelly K, Verma S. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease. *Circulation* 2019; 140: 1693–1702.

15. Mazer C, Hare G, Connelly P, Gilbert R, Shehata N, Quan A, Teoh H, Leiter L, Zinman B, Jüni P, Zuo F, Mistry N, Thorpe K, Goldenberg R, Yan A, Connelly K, Verma S. Effect of empagliflozin on erythropoietin levels, iron stores, and red blood cell morphology in patients with type 2 diabetes mellitus and coronary artery disease. *Circulation* 2020; 141: 704–707.