β-Cell Replacement Strategies: The Increasing Need for a "β-Cell Dogma"

Andhira Vieira, Noémie Druelle, Fabio Avolio, Tiziana Napolitano, Sergi Navarro-Sanz, Serena Silvano and Patrick Collombat*

Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, iBV, Université Côte d’Azur, Nice, France

Type 1 diabetes is an auto-immune disease resulting in the loss of pancreatic β-cells and, consequently, in chronic hyperglycemia. Insulin supplementation allows diabetic patients to control their glycaemia quite efficiently, but treated patients still display an overall shortened life expectancy and an altered quality of life as compared to their healthy counterparts. In this context and due to the ever increasing number of diabetics, establishing alternative therapies has become a crucial research goal. Most current efforts therefore aim at generating fully functional insulin-secreting β-like cells using multiple approaches. In this review, we screened the literature published since 2011 and inventoried the selected markers used to characterize insulin-secreting cells generated by in vitro differentiation of stem/precursor cells or by means of in vivo transdifferentiation. By listing these features, we noted important discrepancies when comparing the different approaches for the initial characterization of insulin-producing cells as true β-cells. Considering the recent advances achieved in this field of research, the necessity to establish strict guidelines has become a subject of crucial importance, especially should one contemplate the next step, which is the transplantation of in vitro or ex vivo generated insulin-secreting cells in type 1 diabetic patients.

Keywords: β-cells, differentiation, stem cells, type 1 diabetes, β-cell markers

INTRODUCTION

Type 1 diabetes affects 422 million people worldwide and its increasing prevalence is predicted to reach 552 million patients by 2030 (Whiting et al., 2011; Zhou et al., 2016). The most common feature associated with diabetes is also its principal diagnosis: chronic hyperglycemia. Type 2 diabetes results from a combination of insulin resistance in target organs and defective β-cells (Bergman et al., 2002), while type 1 diabetes is due to the autoimmune-mediated loss of the pancreatic insulin-secreting β-cells, leading to insufficient glucose disposal (WHO, 1999). For both pathologies, the loss of insulin activity causes an imbalance in glucose homeostasis, eventually resulting in multiple cardiovascular complications (Hanefeld et al., 1996; Alwan, 2010; Pascolini and Mariotti, 2012). In the case of type 1 diabetes, the hyperglycemia can be efficiently managed by means of insulin supplementation, but patients still display an overall shorter life expectancy and a relatively altered quality of life (Lind et al., 2014; Morgan et al., 2015). In this context, finding an alternative to daily injections of exogenous insulin has become a crucial research goal. Toward this goal, many current efforts focus on β-cell replacement therapies using different strategies, alongside the development of efficient ways to protect such newly generated cells from the autoimmunology inherent to type 1 diabetes (detailed by Desai and Shea, 2016).
During the last decade, impressive progresses have been made toward the generation of functional insulin-secreting β-like cells (Vieira et al., 2016). Most of the strategies employed initially relied on deciphering the molecular mechanisms underlying β-cell (neo) genesis and applying this knowledge to in vitro or in vivo (trans) differentiation: the purpose being to drive progenitor cells (either stem cells or multipotent cells) or differentiated cells toward a β-cell phenotype. To validate the identity of the resulting “β-like” cells, a number of tests have been employed, ranging from marker gene analyses to functional challenges. However, while browsing the recent literature, we noticed important differences between the features examined by various authors. Importantly, our survey indicates that the number of key features assessed to establish whether neo-generated insulin-producing cells are indeed “true” β-cells has not progressed in the last years. These observations clearly establish the need of an “initial β-cell profiling.”

DATA ANALYSIS

Methodology

Our analyses were focused on the following β-cell features:

- Glucose Stimulated Insulin Secretion (GSIS) was confirmed when the authors reported at least one insulin and/or C-peptide ELISA measurement increasing upon glucose stimulation, or when an improved response for mice subjected to an intraperitoneal or oral glucose tolerance test was observed. Of note, the sole presence of C-Peptide as a sign of GSIS was not considered.
- Gene expression of bone fide β-cell markers was validated when RT-PCR, transcriptomics analyses or immunolabeling was used.
- Mice reverting from an established diabetic state (NOD/Akita background, streptozotocin or alloxan treatment) to stable euglycemia due to the presence of neogenerated insulin-producing cells validated the feature “Hyperglycemia Recovery.” This could be achieved either by in vivo transdifferentiation or allogenic transplantation of in vitro differentiated cells.

Fifty-nine original publications were manually selected following multiple Pubmed searches (https://www.ncbi.nlm.nih.gov/pubmed/) using the keywords “β-cells,” “pancreas,” “stem-cells and markers” in various combinations, limiting the searched period from January 2011 to March 2017 (list in Table 1).

Validation of β-Cell Features

Aiming to summarize the β-like cell features assessed, a survey of the recent literature reporting β-like cell neogenesis was conducted by analyzing all the data provided by the authors in order to deliver an accurate compilation. In the resulting 59 original publications, all the properties used to characterize neogenerated β-like cells were inventoried, ranking them by year of publication and the frequency of their use as a validation tool (Table 2).

| References | Cell type |
|------------|-----------|
| In Vivo Differentiation of Stem Cells |
| Iskovich et al., 2011 | BM-SC |
| Thataeva et al., 2011 | iPSC |
| Talavera-Adame et al., 2011 | mESC |
| Chen et al., 2011 | mESC |
| Criscimanna et al., 2012 | f-LSC |
| Santamaria et al., 2011 | hESC |
| Jeon et al., 2012 | iPSC |
| Lima et al., 2012 | mESC |
| Bose et al., 2012 | hESC |
| Liu et al., 2012 | hESC |
| Wei et al., 2013a | hESC |
| Wei et al., 2013b | hESC |
| Tsai et al., 2013 | BM-SC |
| Nair et al., 2014 | mESC |
| Lahmy et al., 2014 | iPSC |
| Ebrahimie et al., 2014 | mESC |
| Niknamasi et al., 2014 | iPSC |
| Shahjalal et al., 2014 | iPSC |
| Hua et al., 2014 | hESC |
| Shaer et al., 2014 | M-SC |
| Van Pham et al., 2014 | hPSC |
| Rezania et al., 2014 | hESC |
| Pagluca et al., 2014 | hPSC |
| Khorsandi et al., 2015 | BM-SC |
| Jian et al., 2015 | M-SC |
| Pezzolla et al., 2015 | hESC |
| Russ et al., 2015 | hESC |
| Cardina et al., 2015 | iPSC |
| Agulnick et al., 2015 | hESC |
| Bruin et al., 2015 | hESC |
| Abouzaaripour et al., 2016 | f-LSC |
| Salguero-Aranda et al., 2016 | mESC |
| Rajaei et al., 2016 | hESC |
| Manzar et al., in press | iPSC |
| In Vivo Conversion of Mature Cells |
| Talchai et al., 2012 | Intestinal cells |
| Banga et al., 2012 | Sox9+ cells |
| Al-Hasani et al., 2013 | Pancreatic alpha-cells |
| Courtney et al., 2013 | Pancreatic alpha-cells |
| Chera et al., 2014 | Pancreatic delta-cells |
| Smid et al., 2015 | Pancreatic cells |
| Duan et al., 2015 | Intestinal cells |
| Miyazaki et al., 2016 | Pancreatic acinar cells |
| Yang et al., 2017 | Liver cells |
| Ben-Othman et al., 2017 | Pancreatic alpha-cells |
| Li et al., 2017 | Pancreatic alpha-cells |
| In Vitro Differentiation of Non-Stem Cells |
| Shyu et al., 2011 | Pancreatic cells |
| Zou et al., 2011 | Amniotic fluid cells |

(Continued)
Insulin and β-Cell Function

Expectedly, insulin expression was the only feature commonly displayed by all reported neo-generated β-like cells. Interestingly, the responsiveness of such β-like cells to glucose stimulation was assessed in 88% of the publications analyzed, indicating a satisfying physiological response for most of these newly generated cells. However, the recovery upon induced hyperglycemia was validated in only 46% of the publications listed. In the case of insulin-secreting cells generated in vitro and challenged in vivo, this can most likely be attributed to transplantation-related issues and the need to host immune-deficient mice, in vitro differentiated allogeneic or xenogeneic cells being rejected upon graft in wild-type animals. In the case of in vivo transdifferentiation, on the contrary, the immunological rejection is bypassed by the creation of autologous β-like cells, and consequently the hyperglycemic recovery was assessed in all publications except one.

Transcription Factors

The Pdx1 gene appeared second in ranking, while being a disputed proof of completed β-cell differentiation (Table 2). Indeed, during the course of pancreas morphogenesis, Pdx1 is first detected in all pancreatic progenitor cells, its expression being subsequently detected in mature β-cells (Ahlgren et al., 1996, 1998). Pdx1 should therefore not be considered as a mature β-cell marker in approaches aiming at recapitulating pancreas development, as one cannot exclude that an undifferentiated proportion of the cells still expresses this transcription factor. We consequently suggest that its presence should solely be assessed in insulin-secreting cells using double labeling.

During pancreas development, an initial expression in pancreatic/endocrine precursors and a subsequent expression in mature β-cells is in fact a feature displayed by numerous transcription factors considered as bona fide β-cell markers. Indeed, HlxB9, Nkx6.1, Pax4, MafA, Nkx2.2,Isl1, NeuroD1, Pax6, Foxa2 are all involved in pancreas organogenesis, their expression being maintained at adult age in β-cells (for the first four) and additional cell subtypes (for the remaining-Ahlgren et al., 1997; Naya et al., 1997; Sander et al., 1997, 2000; Sosa-Pineda et al., 1997; Sussel et al., 1998; Li et al., 1999; Edlund, 2002; Henseleit et al., 2005; Zhao et al., 2005). It is thus necessary to validate their expression in insulin-secreting cells either using qRT-PCR after FACS sorting or immunohistochemical analyses coupled to insulin detection.

Enzymes and Hormones

In the pancreas, glucokinase is expressed in mature α- and β-cells, such enzyme being involved in glucose-sensing (Pierrehumbert et al., 2006). PC1/3 and PC2 correspond to enzymes essential for proinsulin processing and are thus necessary for the normal function of mature β-cells (Marzban et al., 2004; Ugleholdt et al., 2006). IAPP is co-released with insulin by β-cells and acts as a satiation signal (Ahlgren et al., 2003), while urocortin3 is a hormone secreted by β-cells, acting to induce somatostatin secretion by δ-cells (van der Meulen et al., 2015). Altogether, these proteins are involved in the β-cell metabolism and function, and therefore should mostly be expressed only in mature insulin-secreting cells. Accordingly, they represent markers of the maturation state of differentiated insulin-secreting cells and they should therefore be tested in a more systematic way to ascertain a terminally-differentiated β-like cell phenotype.

Channels

Even though they are not markers of differentiation or maturation per se, potassium channels Kir6.1 and Kir6.2 and ATP-binding cassette channel SUR1 are required for proper insulin secretion (Proks et al., 2002; Kefaloyianni et al., 2013). Coupled to GSIS assessment, the presence of these proteins should be used in order to establish optimal β-like cells response to glucose.

DISCUSSION

Following the outstanding progresses made in the fields of stem-cell differentiation and in vivo trans-differentiation, human applications appear increasingly conceivable. However, one could only contemplate such an exciting clinical outcome after ensuring that the neo-generated insulin-secreting cells are genuine and could therefore fully replace endogenous β-cells. The features displayed in Table 2 rank the common features classically assessed in neo-generated insulin-secreting cells which, taken together, could theoretically constitute an “initial profiling” for β-like cells. Obviously, numerous additional aspects of the β-cell phenotype should be considered when aiming at establishing a standard validation protocol for β-like cells.

Regarding the prerequisites listed in Table 2, as previously discussed, appropriate levels and correct localization of the β-cell-specific marker genes undoubtedly should be confirmed by immunohistochemistry using double labeling, especially in the case of developmental transcription factors. Concerning insulin itself, since its release in response to a stimulus is the main
A detailed analysis of these cell genes, including the disallowed genes known to interfere with appropriate features, it would ensure the correct repression of non-phenotyping would not only assess the activation of necessary their state of differentiation. Importantly, this transcriptomic providing the complete expression profile of these cells and thus β-cells functionality. In addition, the analysis of single insulin-producing cells could provide cues on their ability to behave as endogenous β-cells.

While global proteomic and transcriptomic analysis of neo-generated cells would give detailed information about their state of differentiation, one of the main issues is the heterogeneity of β-cells both in human and rodents (Rutter et al., 2015; Dorrell et al., 2016; Roscioni et al., 2016). A detailed analysis of these aspects, as well as a list of putative routine experiences, are described by James D. Johnson in his elegant review detailing the remaining steps prior to reaching clinical applications (Johnson, 2016). This report provides a thorough analysis of the current state-of-the-art from the point of view of a β-cell biologist, also highlighting the need for standardized protocols validating β-like cells functionality.

In addition to the initial profiling of neo-generated β-like cells, systematic single-cell next generation transcript sequencing (RNA-seq) would be the most decisive validation for β-like cells, providing the complete expression profile of these cells and thus their state of differentiation. Importantly, this transcriptomic phenotyping would not only assess the activation of necessary features, it would ensure the correct repression of non-β-cell genes, including the disallowed genes known to interfere with appropriate β-cell functionality (Pullen and Rutter, 2013; Lemaire et al., 2016; Pullen et al., 2017).

A chronological display of the average number of features assessed in neo-generated β-like cells is provided in Figure 1. Importantly, this ranking clearly shows a scattering in the number of validated features, the average values not increasing in time (which would be indicative of an enhanced scrutiny cells over time). These discrepancies clearly reflect the lack of a canonical list of features to be validated. We thus propose to systematically assess most (if not all) of the features displayed in Table 2 as an initial roadmap toward the establishment of the β-cell identity.

### TABLE 2 | Summary of the features assessed in neo-generated β-like cells ranked both chronologically and by frequency.

| Year | Insulin (%) | Pax4 (%) | GSIS (%) | Nkx6.1/6.2 (%) | Glut2 (%) | Nkx2.2 (%) | Pax6 (%) | Foxa2 (%) | MafA (%) | Insulin (%) | Pax6 (%) | Glucokinase (%) | Foxa2 (%) | Pax6 (%) | Iapp (%) | Urocortin3 (%) |
|------|-------------|---------|----------|--------------|----------|-----------|---------|----------|---------|-------------|---------|----------------|---------|---------|---------|---------------|
| 2011 | 100         | 100     | 75       | 50           | 75       | 63        | 38      | 13       | 50      | 63          | 38      | 25             | 25      | 13      | 13      | 13            |
| 2012 | 100         | 90      | 80       | 60           | 70       | 70        | 80      | 50       | 40      | 60          | 30      | 30             | 30      | 30      | 20      | 20            |
| 2013 | 100         | 100     | 88       | 50           | 75       | 63        | 75      | 63       | 63      | 13          | 13      | 38             | 38      | 13      | 13      | 0             |
| 2014 | 100         | 100     | 92       | 85           | 38       | 38        | 46      | 38       | 31      | 31          | 15      | 46             | 31      | 23      | 23      | 23            |
| 2015 | 100         | 83      | 92       | 42           | 42       | 33        | 50      | 50       | 42      | 17          | 42      | 25             | 17      | 33      | 33      | 25            |
| 2016 | 100         | 100     | 100      | 50           | 25       | 25        | 0       | 25       | 0       | 25          | 75      | 0              | 0       | 50      | 25      | 0             |
| 2017 | 100         | 75      | 100      | 75           | 25       | 50        | 25      | 50       | 75      | 25          | 0       | 25             | 25      | 25      | 25      | 0             |
| Total| 100         | 93      | 88       | 59           | 53       | 49        | 49      | 46       | 46      | 36          | 32      | 29             | 29      | 27      | 24      | 22            |

For each year, the percentage of publications having validated a particular feature is displayed. GSIS, Glucose Stimulated Insulin Secretion; HG recovery, HyperGlycemia recovery; see Methodology for a description of the validation criteria.

Color gradient reflecting the percentage of validated features.

**FIGURE 1** | Graphical representation of the number of β-like features validated, per year of publication. The data displayed represent the average number of validated markers ± range, for each year of publication (from the list displayed in Table 2).

**AUTHOR CONTRIBUTIONS**

AV conceptualized the study, chose the methodology and wrote the original draft. ND, FA, TN, SN, and SS contributed to the formal analysis and investigation. PC validated the results, supervised the study, edited the draft and reviewed the final version prior to submission.
ACKNOWLEDGMENTS

This work was supported by the Juvenile Diabetes Research foundation (#3-SRA-2014-282-Q-R, #3-SRA-2017-415-S-B, #3-SRA-2017-416-S-B, #26-2008-639, #17-2013-426), the INSERM AVENIR program, the INSERM, the European Research Council (#StG-2011-281265), the FRM (#DRC20091217179), the ANR/BMBF (#2009 GENO 105 01/01KU0906), the “Investments for the Future” LABEX SIGNALIFE (#ANR-17-ERC2-0004-01, ANR-16-CE18-0005-02), Club Isatis, Mr. and Mrs. Dorato, Mr. and Mrs. Peter de Marffy-Mantuano, the Dujean family, the Fondation Générale de Santé and the Foundation Schlumberger pour l’éducation et la Recherche.

REFERENCES

Abouzaripour, M., Pasbakhsh, P., Atlassi, N., Shahverdi, A. H., Mahmoudi, R., Kashani, I. R., et al. (2016). In vitro differentiation of insulin secreting cells from mouse bone marrow derived stage-specific embryonic antigen 1 positive stem cells. Cell J. 17, 701–710. doi: 10.22074/cellj.2016.3842
Aguilnick, A., Ambruzs, D., Moorman, M., Bhounik, A., Cesario, R., Payne, J., et al. (2015). Insulin-producing endocrine cells differentiated In vitro from human embryonic stem cells function in macroencapsulation devices In vivo. Stem Cells Transl. Med. 4, 1214–1222. doi: 10.5966/sctm.2015-0079
Ahlgren, U., Jonsson, J., and Edlund, H. (1996). The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in Ptf1/Pdx1-deficient mice. Development 122, 1409–1416.
Ahlgren, U., Jonsson, J., and Jonsson, L. (1998). β-cell-specific inactivation of the mouse Ptf1/Pdx1 gene results in loss of the β-cell phenotype and maturity onset diabetes syndrome. Apoptosis 3, 237–247. doi: 10.1007/bf02111678
Alessandrini, J., Pfeffer, A., Courtine, M., Ben-Othman, N., Gjernes, E., Vieira, A., et al. (2013). Adult duct-lining cells can reprogram into β-like cells able to counter repeated cycles of toxin-induced diabetes. Dev. Cell 26, 86–100. doi: 10.1016/j.devcel.2013.05.018
Alwan, A. (2010). Global Status Report on Noncommunicable Diseases. Geneva: World Health.
Ben-Othman, N., Vieira, A., Courtine, M., Record, F., Gjernes, E., Avolio, F., et al. (2013). Adult duct-lining cells can reprogram into β-like cells able to counter repeated cycles of toxin-induced diabetes. Dev. Cell 26, 86–100. doi: 10.1016/j.devcel.2013.05.018
Alwan, A. (2010). Global Status Report on Noncommunicable Diseases. Geneva: World Health.
Ben-Othman, N., Vieira, A., Courtine, M., Record, F., Gjernes, E., Avolio, F., et al. (2013). Adult duct-lining cells can reprogram into β-like cells able to counter repeated cycles of toxin-induced diabetes. Dev. Cell 26, 86–100. doi: 10.1016/j.devcel.2013.05.018
Alwan, A. (2010). Global Status Report on Noncommunicable Diseases. Geneva: World Health.

cells and use in the treatment of murine diabetes. *Mol. Ther.* 19, 2065–2071. doi: 10.1038/mt.2011.173

Shaker, A., Azarpipir, N., Vahdati, A., Karimi, M. H., and Shariati, M. (2014). miR-375 induces human decidua basal-like derived stromal cells to become insulin-producing cells. *Cell. Mol. Biol. Lett.* 19, 483–499. doi: 10.2478/s11658-014-0207-3

Shahjalal, H., Shiraki, N., Sakano, D., Kikawa, K., Ogaki, S., Baba, H., et al. (2014). Generation of insulin-producing β-like cells from human iPSCs in a defined and completely xeno-free culture system. *J. Mol. Cell Biol.* 6, 394–408. doi: 10.1093/jmcb/mju029

Shyu, J. F., Wang, H. S., Shyu, Y. M., Wang, S. E., Chen, C. H., Tan, J. S., et al. (2011). Alleviation of hyperglycemia in diabetic rats by intraperitoneal injection of insulin-producing cells generated from surgically resected human pancreatic tissue. *J. Endocrinol.* 208, 233–244. doi: 10.1677/JOE-10-0352

Smid, J. K., Faulkse, S., and Rudnicki, M. A. (2015). Periostin induces pancreatic regeneration. *Endocrinology* 156, 824–836. doi: 10.1210/en.2014-1637

Sosa-Pineda, B., Chowdhury, K., Torres, M., Oliver, G., and Gruss, P. (1997). The Pax4 gene is essential for differentiation of insulin prod β cells in the mammalian pancreas.pdf. *Nature* 386, 399–402. doi: 10.1038/386399a0

Sussel, L., Kalamaras, J., Hartigan-O'Connor, D. J., Meneses, J. J., Pedersen, R. A., Rubenstein, J. L., et al. (1998). Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. *Development* 125, 2213–2221.

Talavera-Adame, D., Wu, G., He, Y., Ng, T. T., Gupta, A., Kurtovic, S., et al. (2011). Endothelial cells in co-culture enhance embryonic stem cell differentiation to pancreatic progenitors and insulin-producing cells through BMP signaling. *Stem Cell Res. Rep.* 7, 532–543. doi: 10.1007/s12105-011-9232-z

Talchai, C., Xuan, S., Kitamura, T., Depinho, R. A., and Accili, D. (2012). Generation of functional insulin-producing cells in the gut by Foxo1 ablation. *Nat. Genet.* 44, 406–412. doi: 10.1038/ng.2215

Teichenne, J., Morró, M., Casellas, A., Jimenez, V., Tellez, N., Leger, A., et al. (2015). Identification of miRNAs involved in reprogramming acinar cells into insulin producing cells. *PLoS ONE* 10:e0145116. doi: 10.1371/journal.pone.0145116

Thatava, T., Nelson, T. J., Edakulla, R., Sakuma, T., Ohmune, S., Tonne, J. M., et al. (2011). Indolactam V/GLP-1-mediated differentiation of human iPSCs into glucose-responsive insulin-secreting progeny tayaramma. *Gene Ther.* 18, 283–293. doi: 10.1038/gt.2010.145

Tsai, P. J., Wang, H. S., Lin, C. H., Weng, Z. C., Chen, T. H., and Shyu, J. F. (2013). Intraperitoneal injection of insulin-producing cells generated from human bone marrow mesenchymal stem cells decreases blood glucose level in diabetic rats. *Endocr. Res.* 39, 26–33. doi: 10.3109/07343800.2013.797432

Ugrheloldt, R., Pouslen, M.-L. H., Holst, P. J., Irminger, J.-C., Orskov, C., Pedersen, J., et al. (2006). Prohormone convertase 3/3 is essential for processing of the glucose-dependent insulinotropic polypeptide precursor. *J. Biol. Chem.* 281, 11050–11057. doi: 10.1074/jbc.M601203200

van der Meulen, T., Donaldson, C. J., Cáceres, E., Hunter, A. E., Cowing-Zitron, C., Pound, L. D., et al. (2015). Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion. *Nat. Med.* 21, 769–776. doi: 10.1038/nm.3872

Van Pham, P., Thi-My Nguyen, P., Thai-Quynh Nguyen, A., Minh Pham, V., Nguyen-Tu Bui, A., Thi-Tung Dang, L., et al. (2014). Improved differentiation of umbilical cord blood-derived mesenchymal stem cells into insulin-producing cells by PDX-1 mRNA transfection. *Differentiation* 87, 200–208. doi: 10.1016/j.diff.2014.08.001

Vieira, A., Courtney, M., Drueille, N., Avolio, F., Napolitano, T., Hadzic, B., et al. (2016). β-cell replacement as a treatment for type 1 diabetes: an overview of possible cell sources and current axes of research. *Diabetes Obes. Metab.* 18, 137–143. doi: 10.1111/dom.12721

Wei, R., Yang, J., Hou, W., Liu, G., Gao, M., Zhang, L., et al. (2013a). Insulin-producing cells derived from human embryonic stem cells: comparison of definitive endoderm- and nestin-positive progenitor-based differentiation strategies. *PLoS ONE* 8:e72513. doi: 10.1371/journal.pone.0072513

Wei, R., Yang, J., Liu, G.-Q., Gao, M., Hou, W.-F., Zhang, L., et al. (2013b). Dynamic expression of microRNAs during the differentiation of human embryonic stem cells into insulin-producing cells. *Gene* 518, 246–255. doi: 10.1016/j.gene.2013.01.038

Whiting, D. R., Guariguata, L., Weil, C., and Shaw, J. (2011). IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. *Diabetes Res. Clin. Pract.* 94, 311–321. doi: 10.1016/j.diabres.2011.10.029

WHO (1999). *Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications.* Geneva: WHO.

Wilcox, C. L., Terry, N. A., Walp, E. R., Lee, R. A., and May, C. L. (2013). Pancreatic alpha-cell specific deletion of mouse arx leads to α-cell identity loss. *PLoS ONE* 8:e66214. doi: 10.1371/journal.pone.0066214

Yamada, T., Cavelti-Weder, C., Caballero, F., Lysy, P. A., Guo, L., Sharma, A., et al. (2015). Reprogramming mouse cells with a pancreatic duct phenotype to insulin-producing β-like cells. *Endocrinology* 156, 2029–2038. doi: 10.1210/en.2014-1987

Yang, X.-F., Ren, L.-W., Yang, L., Deng, C.-Y., and Li, F.-R. (2017). In vivo direct reprogramming of liver cells to insulin producing cells by virus-free overexpression of defined factors. *Endocr. J.* 64, 291–302. doi: 10.1507/endocrj.EJ16-0463

Zhou, B., Lu, Y., Hajifathalian, K., Bentham, J., Di Cesare, M., Danaei, G., et al. (2016). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. *Lancet* 387, 1513–1530. doi: 10.1016/S0140-6736(16)00618-8

Zou, G., Liu, T., Zhang, L., Liu, Y., Li, M., Du, X., et al. (2011). Induction of pancreatic β-cell-like cells from CD44+/CD105+ human amniotic fluids via epigenetic regulation of the pancreatic and duodenal homeobox factor 1 promoter. *DNA Cell Biol.* 30, 739–748. doi: 10.1089/dna.2010.1144

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Vieira, Drueille, Avolio, Napolitano, Navarro-Sanz, Silvano and Collombat. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.