K-Witt bordism in characteristic 2

Greg Friedman*

August 13, 2012

Abstract

This note provides a computation of the bordism groups of K-Witt spaces for fields K with characteristic 2. We provide a complete computation for the unoriented bordism groups. For the oriented bordism groups, a nearly complete computation is provided as well a discussion of the difficulty of resolving a remaining ambiguity in dimensions equivalent to 2 mod 4. This corrects an error in the $\text{char}(K) = 2$ case of the author’s prior computation of the bordism groups of K-Witt spaces for an arbitrary field K.

In [1], an n-dimensional K-Witt space, for a field K, is defined to be an oriented compact n-dimensional PL stratified pseudomanifold X satisfying the K-Witt condition that the lower-middle perversity intersection homology group $I^{m}_{k}(L; K)$ is 0 for each link L^{2k} of each stratum of X of dimension $n - 2k - 1$, $k > 0$. Following the definition of stratified pseudomanifold in [2], X does not possess codimension one strata. Orientability is determined by the orientability of the top (regular) strata. This definition generalizes Siegel’s definition in [11] of Q-Witt spaces (called there simply “Witt spaces”). The motivation for this definition is that such spaces possess intersection homology Poincaré duality $I^{m}_{k}(X; K) \cong \text{Hom}(I^{m}_{n-k}(X; K), K)$.

The author’s paper [1] concerns K-Witt spaces and, in particular, a computation of the bordism theory $\Omega^{K-\text{Witt}}$ of such spaces. However, there is an error in [1] in the computation of the coefficient groups $\Omega^{K-\text{Witt}}_{4k+2}$ when $\text{char}(K) = 2$.

It is claimed in [1] that $\Omega^{K-\text{Witt}}_{4k+2} = 0$. When $\text{char}(K) > 2$, the null-bordism of a $4k + 2$ dimensional K-Witt space X is established in [1] by following Siegel’s computation [11] for Q-Witt spaces by first performing a surgery to make the space irreducible and then performing

*This work was partially supported by a grant from the Simons Foundation (#209127 to Greg Friedman)

2000 Mathematics Subject Classification: 55N33, 57Q20, 57N80

Keywords: intersection homology, Witt bordism, Witt space

1There is a minor error in [1] in that Witt spaces are stated to be irreducible, meaning that there is only a single top dimensional stratum. In general, this should not be part of the definition of a K-Witt space; cf. [11]. However, as every K-Witt space of dimension > 0 is bordant to an irreducible K-Witt space (see [11] page 1099), this error does not affect the bordism group computations of [1]. It is not true that every 0-dimensional K-Witt space is bordant to an irreducible K-Witt space, but in this dimension the computations all reduce to the manifold theory and the computations given for this dimension in [1] are also correct if one removes irreducibility from the definition.
a sequence of singular surgeries to obtain a space \(X' \) such that \(I^m H_{2k+1}(X'; K) = 0 \). The \(K \)-Witt null-bordism of \(X \) is the union of the trace of the surgeries from \(X \) to \(X' \) with the closed cone \(cX' \). One performs the singular surgeries on elements \([z] \in I^m H_{2k+1}(X; K)\) such that \([z] \cdot [z] = 0\), where \(\cdot \) denotes the Goresky-MacPherson intersection product \([2]\). As the intersection product is skew symmetric on \(I^m H_{2k+1}(X; K)\), such a \([z]\) always exists. The error in \([1]\) stems from overlooking that this last fact is not necessarily true in characteristic 2, where skew symmetric forms and symmetric forms are the same thing and so skew-symmetry does not imply \([z] \cdot [z] = 0\).

Corrected computations. To begin to remedy the error of \([1]\), we first observe that it remains true in characteristic 2 that the map\([3]\) \(w : \Omega^Z_{2k+2} \rightarrow W(Z_2) \) is injective, where \(W(Z_2) \) is the Witt group of \(Z_2 \) and \(w \) takes the bordism class \([X] \) to the class of the intersection form on \(I^m H_{2k+1}(X; Z_2) \). For \(k > 0 \), this fact can be proven as it is proven for \(w : \Omega^K_{4j} \rightarrow W(K) \), \(j > 0 \), in \([1]\): if one assumes that the intersection form on \(X \) represents 0 in \(W(Z_2) \) then the intersection form is split, in the language of \([7]\); see \([7]\) Corollary III.1.6]. And so \(I^m H_{2k+1}(X; Z_2) \) will possess an isotropic (self-annihilating) element by \([7]\) Lemma I.6.3. The surgery argument can then proceed as \(W(Z_2) \cong Z_2 \) (see \([7]\) Lemma IV.1.5]), it follows that \(\Omega^Z_{2k+2} \) is either 0 or \(Z_2 \).

This argument does not hold for \(4k+2 = 2 \) as in this case the dimensions are not sufficient to guarantee that every middle-dimensional intersection homology class is representable by an irreducible element, which is necessary for the surgery argument; see \([1]\) Lemma 2.2]. However, all 2-dimensional Witt spaces must have at worst isolated singularities, and so in particular such a space must have the form \(X \cong (\Pi S_i) / \sim \), where the \(S_i \) are closed oriented surfaces and the relation \(\sim \) glues them together along various isolated points. But then \(X \) is bordant to \(\Pi S_i \). This can be seen via a sequence of pinch bordisms as defined by Siegel \([1]\) Section II] that pinch together the regular neighborhoods of sets of points of \(\Pi S_i \). To see that the bordism is via a Witt space, it is only necessary to observe that the link of the interior cone point in each such pinch bordism will be a wedge of \(S^2 \)s, and it is easy to compute that \(I^m H_1(\vee_i S^2; K) = 0 \) for any \(K \). But now, since all closed oriented surfaces bound, \(\Omega^Z_{2k+2} \) = 0. This special case was also over-looked in \([1]\), though this argument holds for any field \(K \) and is consistent with the claim of \([1]\) that \(\Omega^K_{2} = 0 \) for all \(K \).

Thus we have shown that \(w : \Omega^Z_{2k+2} \rightarrow W(Z_2) \cong Z_2 \) is an injection for \(k \geq 0 \), trivially

2Recall from \([1]\) Corollary 4.3] that the bordism groups depend only on the characteristic of the field, so for characteristic 2 it suffices to consider \(K = Z_2 \).

3There is one other possible complication due to characteristic 2 that must be checked but that does not provide difficulty in the end: For characteristic not equal to 2, every split form is isomorphic to an orthogonal sum of hyperbolic planes \([7]\) Lemma I.6.3], and this appears to be used in the proof of Theorem 4.4 of \([1]\], which is heavily referenced in \([1]\). For characteristic 2, one can only conclude that a split form is isomorphic to one with matrix \(\begin{pmatrix} 0 & I \\ I & A \end{pmatrix} \) for some matrix \(A \). However, a detailed reading of the proof of \([1]\) Theorem 4.4, particularly page 1097] reveals that it is sufficient to have a basis \(\{\alpha, \beta, \gamma_1, \ldots, \gamma_{2m}\} \) such that \(\alpha \cdot \alpha = \alpha \cdot \gamma_i = 0 \) for all \(i \) and \(\alpha \cdot \beta = 1 \), and this is certainly provided by a form with the given matrix.

4Recall that \(Z_2 \)-Witt spaces are assumed to be \(Z \)-oriented, though see below for more on orientation considerations.
so for $k = 0$. Unfortunately, the question of surjectivity of w in dimensions $4k + 2$ is more complicated and not yet fully resolved. We can, however, make the following observation: if X is a \mathbb{Z}_2-Witt space of dimension $4k - 2$, then $w([X \times \mathbb{C}P^2]) = w([X])$. So if there is a non-trivial element of $\Omega^\mathbb{Z}_2 - \text{Witt}_{4k-2}$, then there is a non-trivial element of $\Omega^\mathbb{Z}_2 - \text{Witt}_{4k+2}$.

Putting this together with the computations from [1] of $\Omega^K - \text{Witt}^*$ in dimension $\not\equiv 4k + 2 \mod 4$ (which remain correct), we have the following theorem:

Theorem 1. For a field K with $\text{char}(K) = 2$, $\Omega^K - \text{Witt} = \Omega^\mathbb{Z}_2 - \text{Witt}$, and for $k \geq 0$,

1. $\Omega^K_0 - \text{Witt} \cong \mathbb{Z}$,

2. for $k > 0$, $\Omega^K_{4k} - \text{Witt} \cong \mathbb{Z}_2$, generated by $[\mathbb{C}P^{2k}]$,

3. $\Omega^K_{4k+3} = \Omega^K_{4k+1} = 0$,

4. Either

 (a) $\Omega^K_{4k+2} = 0$ for all k, or

 (b) there exists some $N > 0$ such that $\Omega^K_{4k+2} = 0$ for all $k < N$ and $\Omega^K_{4k+2} \cong \mathbb{Z}_2$ for all $k \geq N$.

We will provide below some further discussion of the difficulties of deciding which case of (4) holds after discussing unoriented bordism.

Remark. Independent of the existence or value of N in condition (4) of the theorem, the computations from [1] of $\Omega^*_K - \text{Witt}$ in dimension $\not\equiv 4k + 2 \mod 4$ (which remain correct), we have the following theorem:

Theorem 1. For a field K with $\text{char}(K) = 2$, $\Omega^*_K - \text{Witt} = \Omega^*_\mathbb{Z}_2 - \text{Witt}$, and for $k \geq 0$,

1. $\Omega^*_0 - \text{Witt} \cong \mathbb{Z}$,

2. for $k > 0$, $\Omega^*_K - \text{Witt} \cong \mathbb{Z}_2$, generated by $[\mathbb{C}P^{2k}]$,

3. $\Omega^*_K_{4k+3} = \Omega^*_K_{4k+1} = 0$,

4. Either

 (a) $\Omega^*_K_{4k+2} = 0$ for all k, or

 (b) there exists some $N > 0$ such that $\Omega^*_K_{4k+2} = 0$ for all $k < N$ and $\Omega^*_K_{4k+2} \cong \mathbb{Z}_2$ for all $k \geq N$.

We will provide below some further discussion of the difficulties of deciding which case of (4) holds after discussing unoriented bordism.

Remark. Independent of the existence or value of N in condition (4) of the theorem, the computations from [1] of $\Omega^*_K - \text{Witt}$ in dimension $\not\equiv 4k + 2 \mod 4$ (which remain correct), we have the following theorem:

Theorem 1. For a field K with $\text{char}(K) = 2$, $\Omega^*_K - \text{Witt} = \Omega^*_\mathbb{Z}_2 - \text{Witt}$, and for $k \geq 0$,

1. $\Omega^*_0 - \text{Witt} \cong \mathbb{Z}$,

2. for $k > 0$, $\Omega^*_K - \text{Witt} \cong \mathbb{Z}_2$, generated by $[\mathbb{C}P^{2k}]$,

3. $\Omega^*_K_{4k+3} = \Omega^*_K_{4k+1} = 0$,

4. Either

 (a) $\Omega^*_K_{4k+2} = 0$ for all k, or

 (b) there exists some $N > 0$ such that $\Omega^*_K_{4k+2} = 0$ for all $k < N$ and $\Omega^*_K_{4k+2} \cong \mathbb{Z}_2$ for all $k \geq N$.

We will provide below some further discussion of the difficulties of deciding which case of (4) holds after discussing unoriented bordism.

Unoriented bordism. Given the motivation to recognize spaces that possess a form of Poincaré duality, it seems reasonable to consider K-Witt spaces that are K-oriented. This has no effect when $\text{char}(K) \neq 2$, in which case K-orientability is equivalent to \mathbb{Z}_2-orientability as considered in [1]. But when $\text{char}(K) = 2$, all pseudomanifolds are \mathbb{Z}_2-orientable, which is equivalent to being K orientable, and the Poincaré duality isomorphism $I^m H_k(X; K) \cong \text{Hom}(I^m H_{n-k}(X; K), K)$ holds for all such compact pseudomanifolds satisfying the K-Witt condition.

If we allow K-Witt spaces and K-Witt bordism using K-orientations, then for $\text{char}(K) = 2$ we are essentially talking about unoriented bordism, so to clarify the notation, let us denote the resulting bordism groups by $N^*_K - \text{Witt}$. These groups can be computed as follows:

5Recall that the Künneth theorem holds within a single perversity when one term is a manifold, so we can compute the intersection forms of such product spaces in the usual way; see e.g. [6].

6Since these are geometric bordism groups, they vanish in negative degree.

7One could also define unoriented bordism groups of unoriented compact PL pseudomanifolds satisfying the K-Witt condition with $\text{char}(K) \neq 2$, but it is not clear how to study such groups by the present techniques, as there is no reason to expect that $I^m H_*(X; K)$ would satisfy Poincaré duality for such a space X.

Theorem 2. For a field K with char$(K) = 2$ and for $i \geq 0$,

$$
\mathcal{N}_i^{K-Witt} \cong \begin{cases}
\mathbb{Z}_2, & i \equiv 0 \pmod{2}, \\
0, & i \equiv 1 \pmod{2}.
\end{cases}
$$

Since writing [1], the author has discovered that this theorem is also provided without detailed proof by Goresky in [4, page 498]. We provide here the details:

Proof. It continues to hold that the local Witt condition depends only on the characteristic of K for the reasons provided in [1], so we may assume $K = \mathbb{Z}_2$. To see that $\mathcal{N}_Z^{2-Witt} = 0$ for n odd, we simply note that X bounds the closed cone $\tilde{c}X$, which is a \mathbb{Z}_2-Witt space. The map $w : \mathcal{N}_Z^{2^k-Witt} \to W(\mathbb{Z}_2) \cong \mathbb{Z}_2$ is onto for each $k > 0$, as the intersection pairing on the \mathbb{Z}_2-coefficient middle-dimensional homology of the real projective space $\mathbb{R}P^{2k}$ corresponds to the generator of $W(\mathbb{Z}_2)$ represented by the matrix (1). Furthermore, w is injective for $k > 1$ as in the preceding surgery argument, which does not rely on whether or not X is oriented, only on the existence of the intersection pairing over \mathbb{Z}_2. In dimension 0, we have unoriented manifold bordism of points, so $\mathcal{N}_Z^{0-Witt} \cong \mathbb{Z}_2$. Finally, as in the argument above for $\Omega_2^{Z_2-Witt}$, the group \mathcal{N}_Z^{2-Witt} must be isomorphic to \mathbb{Z}_2 as w maps $\mathbb{R}P^2$ onto the non-trivial element of $W(\mathbb{Z}_2) \cong \mathbb{Z}_2$.

Remark. An even simpler version of the argument of [1] implies that as a generalized homology theory

$$
\mathcal{N}_n^{K-Witt}(X) \cong \bigoplus_{r+s=n} H_r(X; \mathcal{N}_s^{K-Witt})
$$

for char$(K) = 2$, as in this case one no longer needs a separate argument to handle the odd torsion that can arises in $H_n(X; \Omega_0^{K-Witt})$ as a result of $\Omega_0^{K-Witt} \cong \mathbb{Z}$ not being 2-primary.

Further discussion of oriented bordism. We next provide some results that demonstrate the difficulty of determining which case of item (4) of Theorem 1 holds.

We will first see that $w([M]) = 0$ for any \mathbb{Z}-oriented manifold: Since dimension mod 2 is the only invariant of $W(\mathbb{Z}_2)$, this is a consequence of the following lemma, recalling that for a manifold, $I^nH_*(M) = H_*(M)$.

Lemma. Let M be a closed connected \mathbb{Z}-oriented manifold of dimension $4k + 2$. Then $\dim(H_{2k+1}(M; \mathbb{Z}_2)) \equiv 0 \pmod{2}$.

Proof. By the universal coefficient theorem,

$$
H_{2k+1}(M; \mathbb{Z}_2) \cong (H_{2k+1}(M) \otimes \mathbb{Z}_2) \oplus (H_{2k}(M) * \mathbb{Z}_2),
$$

As observed in the proof of [7, Lemma III.3.3], rank mod 2 yields a homomorphism $W(F) \to \mathbb{Z}_2$ for any field F. Since we know that $W(\mathbb{Z}_2) \cong \mathbb{Z}_2$ and that (1), which has rank 1, is a generator of $W(F)$ (it is certainly non-zero, using [7, Lemma I.6.3 and Lemma III.1.6]), it follows that rank mod 2 determines the isomorphism.
where the asterisk denotes the torsion product. Let $T_*(M)$ denote the torsion subgroup of $H_*(M)$, and let $T^2_*(M)$ denote $T_*(M) \otimes \mathbb{Z}_2 \cong T_*(M) \ast \mathbb{Z}_2$; the isomorphism follows from basic homological algebra because $T_*(M)$ is a finite abelian group. $T^2_*(M)$ is a direct sum of \mathbb{Z}_2 terms. Then $H_{2k+1}(M) \otimes \mathbb{Z}_2 \cong \mathbb{Z}_2^B \oplus T^2_{2k+1}(M)$, where B is the $2k + 1$ Betti number of M, and $H_{2k}(M) \ast \mathbb{Z}_2 \cong T^2_{2k}(M)$. Thus $H_{2k+1}(M; \mathbb{Z}_2) \cong \mathbb{Z}_2^B \oplus T^2_{2k+1}(M) \oplus T^2_{2k}(M)$. Since M is a closed \mathbb{Z}-oriented manifold, there is a nondegenerate skew-symmetric intersection form on $H_{2k+1}(M; \mathbb{Q})$, and so B is even. Since M is a closed \mathbb{Z}-oriented manifold, the nonsingular linking pairing $T_{2k+1}(M) \otimes T_{2k}(M) \to \mathbb{Q}/\mathbb{Z}$ gives rise to an isomorphism $T_{2k+1}(M) \cong \text{Hom}(T_{2k}(M), \mathbb{Q}/\mathbb{Z})$, and since $\text{Hom}(\mathbb{Z}_n, \mathbb{Q}/\mathbb{Z}) \cong \mathbb{Z}_n$, it follows that $T_{2k+1}(M) \cong T_{2k}(M)$. Therefore $T^2_{2k+1}(M) \cong T^2_{2k}(M)$. Thus $H_{2k+1}(M; \mathbb{Z}/2)$ consists of an even number of \mathbb{Z}_2 terms.

\textbf{Remark.} Since the lemma utilizes only integral Poincaré duality and the universal coefficient theorem, it follows that, in fact, $w([X]) = 0$ for any IP space\footnote{Also called “intersection homology Poincaré spaces,” though this is perhaps a misnomer as “Poincaré spaces” are generally not required to be manifolds while IP spaces are still expected to be pseudomanifolds.} these are spaces that satisfy local conditions guaranteeing that intersection homology Poincaré duality holds over the integers and that a universal coefficient theorem holds (see \cite{[3][10]}).

A slightly more elaborate argument demonstrates that it is also not possible to have $w([X]) \neq 0$ if X is a \mathbb{Z}-oriented \mathbb{Z}_2-Witt space with at worst isolated singularities:

\textbf{Proposition.} Let X be a closed \mathbb{Z}-oriented $4k + 2$-dimensional \mathbb{Z}_2-Witt space with at worst isolated singularities. Then $w([X]) = 0$.

\textbf{Proof.} Since X has at worst point singularities, it follows from basic intersection homology calculations (see \cite{[2]} Section 6.1) that $H^{2n}H_{2k+1}(X; \mathbb{Z}_2) \cong \text{im}(H_{2k+1}(M; \mathbb{Z}_2) \to H_{2k+1}(M, \partial M; \mathbb{Z}_2))$, where M is the compact \mathbb{Z}-oriented PL ∂-manifold obtained by removing an open regular neighborhood of the singular set of X. We will show that if $[z] \in \text{im}(H_{2k+1}(M; \mathbb{Z}_2) \to H_{2k+1}(M, \partial M; \mathbb{Z}_2))$, then the intersection product $[z] \cdot [z] = 0$. It follows that the intersection pairing on $H^{2n}H_{2k+1}(X; \mathbb{Z}_2)$ is split by \cite{[7]} Lemma III.1.1, since then there can be no non-trivial anisotropic subspace. This implies that $w([X]) = 0$ by the definition of the Witt group.

The following argument that $[z] \cdot [z] = 0$ was suggested by “Martin O” on the web site MathOverflow \cite{[2]}. By Poincaré duality, it suffices to show that $\alpha \cup \alpha = 0$, where α is the Poincaré dual of $[z]$ in $H^{2k+1}(M, \partial M; \mathbb{Z}_2)$. But now $\alpha \cup \alpha = S_q^{2k+1} \alpha = S_q S_q^{2k} \alpha = \beta^* S_q^{2k} \alpha$, where β^* is the Bockstein associated with the sequence $0 \to \mathbb{Z}_2 \to \mathbb{Z}_4 \to \mathbb{Z}_2 \to 0$ (see \cite{[5]} Section 4.1]). In the case at hand, this is the Bockstein $\beta^* : H^{4k+1}(M, \partial M; \mathbb{Z}_2) \to H^{4k+2}(M, \partial M; \mathbb{Z}_2)$. But this map is trivial. To see this, observe that there is a commutative
diagram

\[
\begin{array}{ccc}
H^{4k+1}(M, \partial M; \mathbb{Z}_2) & \xrightarrow{\beta^*} & H^{4k+2}(M, \partial M; \mathbb{Z}_2) \\
\cong & & \cong \\
H_1(M; \mathbb{Z}_2) & \xrightarrow{\beta_*} & H_0(M; \mathbb{Z}_2),
\end{array}
\]

where \(\beta_*\) is the homology Bockstein and the vertical maps are Poincaré duality. The existence of this diagram follows as in [8, Lemma 69.2]. But now \(\beta_* : H_1(M; \mathbb{Z}_2) \to H_0(M; \mathbb{Z}_2)\) is trivial, as the standard map \(\times 2 : H_0(M; \mathbb{Z}_2) \to H_0(M; \mathbb{Z}_4)\) is injective. \(\square\)

Hence any candidate to have \(w([X]) = 1\) must have singular set of dimension \(> 0\) and must not be an IP space. Given that all \(K\)-Witt spaces for \(\text{char}(K) \neq 2\) are \(K\)-Witt bordant to spaces with at worst isolated singularities [11, 1], it is unclear how to proceed to determine whether \(\mathbb{Z}_2\)-Witt spaces with \(w([X]) = 1\) exist. One method to prove that they do not would be to try to show “by hand” that every \(\mathbb{Z}_2\)-Witt space is \(\mathbb{Z}_2\)-Witt bordant to a space with at most isolated singularities, but the only proof currently known to the author of this fact for fields of other characteristics utilizes the bordism computations of [11, 1].

References

[1] Greg Friedman, *Intersection homology with field coefficients: \(K\)-Witt spaces and \(K\)-Witt bordism*, Comm. Pure Appl. Math. 62 (2009), 1265–1292.

[2] Mark Goresky and Robert MacPherson, *Intersection homology theory*, Topology 19 (1980), 135–162.

[3] Mark Goresky and Paul Siegel, *Linking pairings on singular spaces*, Comment. Math. Helvetici 58 (1983), 96–110.

[4] R. Mark Goresky, *Intersection homology operations*, Comment. Math. Helv. 59 (1984), no. 3, 485–505.

[5] Allen Hatcher, *Algebraic topology*, Cambridge University Press, Cambridge, 2002.

[6] Henry C. King, *Topological invariance of intersection homology without sheaves*, Topology Appl. 20 (1985), 149–160.

[7] J. Milnor and D. Husemoller, *Symmetric bilinear forms*, Springer Verlag, New York, 1973.

[8] James R. Munkres, *Elements of algebraic topology*, Addison-Wesley, Reading, MA, 1984.

[9] Martin O, see http://http://mathoverflow.net/questions/53419/.
[10] William L. Pardon, *Intersection homology Poincaré spaces and the characteristic variety theorem*, Comment. Math. Helvetici **65** (1990), 198–233.

[11] P.H. Siegel, *Witt spaces: a geometric cycle theory for KO-homology at odd primes*, American J. Math. **110** (1934), 571–92.