Research Article

IF-MABAC Method for Evaluating the Intelligent Transportation System with Intuitionistic Fuzzy Information

Yanping Li

Information Engineering School, Zheng Zhou Sheng Da University, Zheng Zhou, He Nan 451191, China

Correspondence should be addressed to Yanping Li; 101735@shengda.edu.cn

Received 13 January 2021; Revised 10 March 2021; Accepted 20 March 2021; Published 27 March 2021

Academic Editor: Kifayat Ullah

Copyright © 2021 Yanping Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Intelligent transportation system (ITS) is the development direction of the future traffic system. ITS can effectively employ the existing traffic facilities and ensure the safety of traffic, urban traffic, and public security management for effective control in order to satisfy people’s travel demand. Therefore, the results of the system in-depth understanding and objective evaluation are very necessary. And it is frequently regarded as a multiattribute group decision-making (MAGDM) issue. Thus, a novel MAGDM method is required to tackle it. Depending on the conventional multiattributive border approximation area comparison (MABAC) method and intuitionistic fuzzy sets (IFSs), this article designs a novel intuitive distance-based IF-MABAC method to assess the performance of financial management. First of all, a related literature review is conducted. Furthermore, some necessary theories related to IFSs are briefly reviewed. In addition, since subjective randomness frequently exists in determining criteria weights, the weights of criteria are decided objectively by utilizing the maximizing deviation method. Afterwards, relying on novel distance measures between intuitionistic fuzzy numbers (IFNs), the conventional MABAC method is extended to the IFSs to calculate the final value of each enterprise. Therefore, all enterprises can be ranked, and the one with the best environmental behaviors and awareness can be identified. Eventually, an application for evaluating the intelligent transportation system and some comparative analyses have been given. The results illustrate that the designed algorithm is useful for assessing the performance of financial management.

1. Introduction

With our rapid economic development, accelerating urbanization, and the rapid rise of motor vehicle ownership, existing roads’ hardware facilities have failed to meet the demand of swelling traffic. Traffic congestion, frequent accidents, and serious environmental pollution have become increasingly serious problems. It is not a good and effective way to solve them by limiting demand, increasing supply, and expanding the scale of the road. The best strategy to ensure the sustainable development of the urban traffic is adopting modern technology to transform the existing transportation system and grasp the real-time traffic conditions. It can be called ITTs (intelligent transportation systems). The key of intelligent transportation systems is to obtain comprehensive, real-time, accurate, and dynamic traffic information.

Like most other phenomena in organizational research, the intelligent transportation system cannot be observed directly. Thus, for enterprises, evaluating the intelligent transportation system can be regarded as a significant strategic issue and great challenge. To overcome it, a novel intuitionistic fuzzy MAGDM method on the basis of the improved MABAC method is designed to tackle this issue. Our work’s contributions can be listed as follows:

(1) Although Liang, He, Wang, Chen, and Li [1] extended the MABAC to the intuitionistic fuzzy environment on the basis of novel generalized measures, these measures may generate situations which do not consider wavering in IFSs. Opposite, depending on the distance measures introduced in this paper, our method can reflect intuitionistic fuzzy information more comprehensively. Besides, the calculation process of our method is simpler.

(2) There are various criteria in the intelligent transportation system evaluation which frequently have
different weights. Since the DMs are restrained through their limited knowledge, it not easy to assign the criteria weights correctly. In this paper, an objectively weight-determining method is built to calculate the values of weight.

The remainder of this paper proceeds as follows. A literature review is given in Section 2. The knowledge of IFSs is concisely listed in Section 3. The improved MABAC method with IFSs is defined for MAGDM in Section 4. An empirical application for evaluating the intelligent transportation system is given and some comparative analyses are also offered in Section 5. At last, the conclusion of this work is given in Section 6.

2. Literature Review

Since the process of evaluating the intelligent transportation system is filled with uncertainty and ambiguity [2, 3], thus, in order to improve the accuracy of MAGDM, Zadeh [4] built the fuzzy sets (FSs). Atanassov [5] built the intuitionistic fuzzy sets (IFSs). Garg [6] presented the intuitionistic fuzzy multiplicative preference relations and defined some geometric operators. Gou, Xu, and Lei [7] built the exponential operational law of IFNs. Bao, Xie, Long, and Wei [8] defined the prospect theory and the evidential reasoning decision-making for IFNs. Garg [9] defined the geometric operators. Gou, Xu, and Lei [10] built the exponential operational law of IFNs. Garg [11] built the intuitionistic fuzzy method through the decision field. Garg [12] built the intuitionistic fuzzy averaging fused operators with hesitation degrees. He, He, and Huang [9] integrated the power operators with IFSs. Liu, Liu, and Chu [10] built the BM operator and Dombi operations under IFSs. Gupta, Arora, and Tiwari [11] built the fuzzy entropy through IFSs and parameter alpha. Li and Wu [12] presented the intuitionistic fuzzy cross-entropy distance and grey correlation analysis method. Khan and Lohani [13] defined the similarity measure of IFNs through the distance measure of bounded variation. Li, Liu, Liu, Su, and Wu [14] built the grey target decision-making for IFNs. Bao, Xie, Long, and Wei [15] defined the prospect theory and the evidential reasoning method under IFSs. Chen, Cheng, and Lan [16] built the TOPSIS method for MCDM through similarity measures under IFSs. Gan and Luo [17] used a hybrid method with the decision-making trial and evaluation laboratory (DEMATEL) and IFSs. Gupta, Mehlawat, Grover, and Chen [18] defined the superiority and inferiority ranking (SIR) method under IFSs. Hao, Xu, Zhao, and Zhang [19] defined the intuitionistic fuzzy method through the decision field. Krishankumar, Arvinda, Amrutha, Premaladha, and Ravichandran [20] integrated AHP with IFSs to design a GDM method for effective cloud vendor selection. Krishankumar, Ravichandran, and Saeid [21] built the IF-PROMETHEE method. Luo and Wang [22] built the VIKOR method with distance measure for IFSs. Rouwendel [23] integrated the ELECTRE method under IFSs to tackle some MCDM issues. Cali and Balaman [24] extended ELECTRE I with the VIKOR method in the context of intuitionistic fuzzy to reflect the decision makers’ preferences. Phochanikorn and Tan [25] incorporated DEMATEL with ANP to determine uncertainties and interdependencies among criteria and modified VIKOR to evaluate the sustainable supplier performance’s desired level under the intuitionistic fuzzy context. Liu [26] researched on the teaching quality evaluation of physical education with the intuitionistic fuzzy TOPSIS method.

MABAC method was initially developed through Pamucar and Cirovic [27] to solve MAGDM. Compared with other MAGDM models, MABAC method is used to obtain the alternatives’ order by calculating the potential values of gains and losses. This method has been extended to various fuzzy environments. For example, Sahin and Altun [28] integrated MABAC with the probabilistic neutrosophic hesitant fuzzy environment. Wei, He, Lei, Wu, and Wei [29] defined the probabilistic uncertain linguistic MABAC. Wei et al. [30] defined the uncertain probabilistic linguistic MABAC method. Xu, Shi, Zhang, and Liu [31] designed the MABAC with heterogeneous criteria information. Liang, He, Wang, Chen, and Li [1] put forward some novel distance measures of IFNs and combined them with the MABAC method to tackle MCGDM issues. Jia, Liu, and Wang [32] designed two models which were an IF-MABAC and an IFRN-MABAC model, respectively. Liang, Zhao, Wu, and Dai [33] defined the MABAC method related to TFNs.

3. Preliminaries

3.1. IFSs

Definition 1 (see [5]). An IFS on the universe X is defined:

$$I = \{(x, \mu_1(x), \nu_1(x)) | x \in X\},$$ (1)

where \(\mu_1(x) \in [0, 1]\) is called the “membership degree of I” and \(\nu_1(x) \in [0, 1]\) is called the “nonmembership degree of I,” and \(\mu_1(x), \nu_1(x)\) meet the mathematical condition: \(0 \leq \mu_1(x) + \nu_1(x) \leq 1, \forall x \in X\).

Definition 2 (see [34]). Let \(I_1 = (\mu_1, \nu_1)\) and \(I_2 = (\mu_2, \nu_2)\) be two IFSs; the operation of them is defined:

$$I_1 \oplus I_2 = (\mu_1 + \mu_2 - \mu_1 \mu_2, \nu_1 + \nu_2),$$ (2)

$$I_1 \odot I_2 = (\mu_1 \mu_2, \nu_1 + \nu_2 - \nu_1 \nu_2),$$ (3)

$$\lambda I_1 = (1 - (1 - \mu_1)^\lambda, \nu_1^\lambda), \quad \lambda > 0,$$ (4)

$$I_1^\lambda = (\mu_1^\lambda, 1 - (1 - \nu_1)^\lambda), \quad \lambda > 0.$$ (5)

Definition 3 (see [35]). Let \(I_1 = (\mu_1, \nu_1)\) and \(I_2 = (\mu_2, \nu_2)\) be IFSs; the score and accuracy functions of \(I_1\) and \(I_2\) can be expressed:

$$S(I_1) = \mu_1 + \mu_1 (1 - \mu_1 - \nu_1),$$

$$S(I_2) = \mu_2 + \mu_2 (1 - \mu_2 - \nu_2),$$

$$H(I_1) = \mu_1 + \nu_1, H(I_2) = \mu_2 + \nu_2.$$ (6) (7)

For two IFSs \(I_1\) and \(I_2\), according to Definition 3,

(i) If \(S(I_1) < S(I_2)\), then \(I_1 < I_2\)
(ii) If \(s(I_1) > s(I_2) \), then \(I_1 > I_2 \)

(iii) If \(s(I_1) = s(I_2) \) and \(h(I_1) < h(I_2) \), then \(I_1 < I_2 \)

(iv) If \(s(I_1) = s(I_2) \) and \(h(I_1) > h(I_2) \), then \(I_1 > I_2 \)

(v) If \(s(I_1) = s(I_2) \) and \(h(I_1) = h(I_2) \), then \(I_1 = I_2 \)

Definition 4 (see [22]). Let \(I_1 = (\mu_1, \nu_1) \) and \(I_2 = (\mu_2, \nu_2) \) be IFNs; the Hamming distance between two IFNs is defined:

\[
\text{IFHD}(I_1, I_2) = \frac{1}{6} (\ell_1 + \ell_2 + \ell_3),
\]

where

\[
\ell_1 = \frac{\mu_1 - \mu_2}{2} + |\nu_1 - \nu_2| + (\mu_1 + 1 - \nu_1) - (\mu_2 + 1 - \nu_2),
\]

\[
\ell_2 = \frac{\pi_1 + \pi_2}{2},
\]

\[
\ell_3 = \max \left(|\mu_1 - \mu_2|, |\nu_1 - \nu_2|, \frac{\pi_1 - \pi_2}{2} \right).
\]

3.2. Intuitionistic Fuzzy Aggregation Operators. Under the context of the IFSs, some operators are introduced, including intuitionistic fuzzy weighted averaging (IFWA) and intuitionistic fuzzy weighted geometric (IFWG) operator.

Definition 5 (see [34]). Let \(I_j = (\mu_j, \nu_j) \) \((j = 1, 2, \ldots, n)\) be a set of IFNs; the intuitionistic fuzzy weighted averaging (IFWA) operator is defined:

\[
\text{IFWA}_\omega(I_1, I_2, \ldots, I_n) = \frac{n}{\sum_{j=1}^n (\omega_{ij})},
\]

where \(\omega = (\omega_1, \omega_2, \ldots, \omega_n)^T \) is the weight of \(I_j \) \((j = 1, 2, \ldots, n)\) and \(\omega_j > 0, \sum_{j=1}^n \omega_j = 1 \).

From Definition 5, the following theorem can be obtained.

Theorem 1. The fused value by the IFWA operator is also a IFN, where

\[
\text{IFWA}_\omega(I_1, I_2, \ldots, I_n) = \left(1 - \prod_{j=1}^n (1 - \mu_j) \prod_{j=1}^n (\nu_j) \right)^{\frac{1}{n}}
\]

where \(\omega = (\omega_1, \omega_2, \ldots, \omega_n)^T \) is the weight of \(I_j \) \((j = 1, 2, \ldots, n)\) and \(\omega_j > 0, \sum_{j=1}^n \omega_j = 1 \).

Definition 6 (see [34]). Let \(I_j \) \((j = 1, 2, \ldots, n)\) be a set of IFNs; the IFWG operator is defined:

\[
\text{IFWG}_\omega(I_1, I_2, \ldots, I_n) = \left(\prod_{j=1}^n (\mu_j) \prod_{j=1}^n (\nu_j) \right)^{\frac{1}{n}},
\]

where \(\omega = (\omega_1, \omega_2, \ldots, \omega_n)^T \) is the weight of \(I_j \) \((j = 1, 2, \ldots, n)\) and \(\omega_j > 0, \sum_{j=1}^n \omega_j = 1 \).

From Definition 6, the following theorem can be obtained.

Theorem 2. The fused value by the IFWG operator is also an IFN, where

\[
\text{IFWG}_\omega(I_1, I_2, \ldots, I_n) = \frac{n}{\sum_{j=1}^n (\omega_{ij})^2}
\]

\[
= \left(\prod_{j=1}^n (\mu_j)^{\omega_j}, \prod_{j=1}^n (1 - \nu_j)^{\omega_j} \right)^{\frac{1}{n}},
\]

where \(\omega = (\omega_1, \omega_2, \ldots, \omega_n)^T \) is the weight of \(I_j \) \((j = 1, 2, \ldots, n)\) and \(\omega_j > 0, \sum_{j=1}^n \omega_j = 1 \).

4. MABAC Method for MAGDM with Intuitionistic Fuzzy Information

Integrating the MABAC method with IFSs, the IF-MABAC method is given by IFNs. The calculating procedures of the designed method can be listed subsequently. Let \(Z = \{Z_1, Z_2, \ldots, Z_n\} \) be a set of attributes and \(z = \{z_1, z_2, \ldots, z_n\} \) be the weight vector of attributes \(Z \), where \(r_j \in [0, 1], j = 1, 2, \ldots, n, \sum_{j=1}^n r_j = 1 \). Assume \(H = \{H_1, H_2, \ldots, H_l\} \) is a set of DMs that have a significant degree of \(h = \{h_1, h_2, \ldots, h_l\} \), where \(h_k \in [0, 1], k = 1, 2, \ldots, l, \sum_{k=1}^l h_k = 1 \). Let \(P = \{P_1, P_2, \ldots, P_m\} \) be a set of alternatives. And \(Q = (q_{ij})_{m \times n} \) is the overall decision matrix, and \(q_{ij} \) means the value of alternative \(F_i \) regarding the attribute \(R_j \) with IFSNs. Subsequently, the corresponding calculating steps will be depicted:

Step 1: build the decision maker’s decision matrix \(Q^{(k)} = (q_{ij}^{(k)})_{m \times n} \) and calculate the overall decision matrix \(Q = (q_{ij})_{m \times n} \):

\[
Q^{(k)} = \left[q_{ij}^{(k)} \right]_{m \times n} = \left[\begin{array}{cccc} q_{11}^{(k)} & q_{12}^{(k)} & \cdots & q_{1n}^{(k)} \\ q_{21}^{(k)} & q_{22}^{(k)} & \cdots & q_{2n}^{(k)} \\ \vdots & \vdots & \ddots & \vdots \\ q_{m1}^{(k)} & q_{m2}^{(k)} & \cdots & q_{mn}^{(k)} \end{array} \right],
\]

\[
Q = \left[q_{ij} \right]_{m \times n} = \left[\begin{array}{cccc} q_{11} & q_{12} & \cdots & q_{1n} \\ q_{21} & q_{22} & \cdots & q_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ q_{m1} & q_{m2} & \cdots & q_{mn} \end{array} \right],
\]

\[
q_{ij} = \left(1 - \prod_{k=1}^l \left(1 - \mu_{ij}^{(k)} \right)^{h_k} \prod_{k=1}^l \left(\nu_{ij}^{(k)} \right)^{h_k} \right),
\]

where \(q_{ij} \) is the assessment value of the alternative \(F_i \) \((i = 1, 2, \ldots, m)\) for attribute \(Z_j \) \((j = 1, 2, \ldots, n)\) and DM \(H_k \) \((k = 1, 2, \ldots, l)\).

Step 2: normalize the overall intuitionistic fuzzy matrix \(Q = (q_{ij})_{m \times n} \) to \(Q^N = [q_{ij}^{(N)}]_{m \times n} \).
\(q^N_{ij} = \begin{cases} (\mu_{ij}, \upsilon_{ij}), & Z_j \text{ is a benefit criterion,} \\ (\upsilon_{ij}, \mu_{ij}), & Z_j \text{ is a cost criterion.} \end{cases} \quad (17) \)

Step 3: utilize the maximizing deviation method to determine the weighting matrix of attributes.

The maximizing deviation method will be integrated with IFSs in this part to determine each attribute’s weight with completely unknown information. This method was initially put forward by Wang [36] which took the differences among all alternatives’ performance values into consideration. Subsequently, the calculating procedures of this method are presented:

(1) Depending on the normalized overall decision matrix \(Q^N = (q^N_{ij})_{mn} \), the deviation of \(P_i \) to all the other alternatives could be calculated.

\[
\text{IFD}_i = \sum_{t=1}^{m} z_j \cdot d(q^N_{ij}, q^N_{it}), \quad (18)
\]

where

\[
d(q^N_{ij}, q^N_{it}) = \frac{1}{6} \left(\frac{|\mu_{ij} - \mu_{it}| + |\upsilon_{ij} - \upsilon_{it}| + (\mu_{ij} + 1 - \upsilon_{ij}) - (\mu_{it} + 1 - \upsilon_{it}) |}{2} + \pi_{ij} + \pi_{it} \right) + \max \left(|\mu_{ij} - \mu_{it}|, |\upsilon_{ij} - \upsilon_{it}|, |\pi_{ij} - \pi_{it}| \right). \quad (19)
\]

(2) Calculate the total weighted deviation values of all alternatives:

\[
\text{IFD}_j(z) = \sum_{i=1}^{m} \text{IFD}_{ij}(z) = \sum_{i=1}^{m} \sum_{j=1}^{m} z_j (\frac{1}{6} \left(\frac{|\mu_{ij} - \mu_{it}| + |\upsilon_{ij} - \upsilon_{it}| + (\mu_{ij} + 1 - \upsilon_{ij}) - (\mu_{it} + 1 - \upsilon_{it}) |}{2} + \pi_{ij} + \pi_{it} \right) + \max \left(|\mu_{ij} - \mu_{it}|, |\upsilon_{ij} - \upsilon_{it}|, |\pi_{ij} - \pi_{it}| \right)). \quad (20)
\]

(3) Construct a nonlinear programming model with IFNs.

\[
\begin{align*}
\max D(z) &= \sum_{j=1}^{n} \sum_{i=1}^{m} \sum_{t=1}^{m} z_j (\frac{1}{6} \left(\frac{|\mu_{ij} - \mu_{it}| + |\upsilon_{ij} - \upsilon_{it}| + (\mu_{ij} + 1 - \upsilon_{ij}) - (\mu_{it} + 1 - \upsilon_{it}) |}{2} + \pi_{ij} + \pi_{it} \right) + \max \left(|\mu_{ij} - \mu_{it}|, |\upsilon_{ij} - \upsilon_{it}|, |\pi_{ij} - \pi_{it}| \right)), \\
\text{s.t.} & \quad z_j \geq 0, j = 1, 2, \ldots, n, \sum_{j=1}^{n} z_j^2 = 1.
\end{align*} \quad (21)
\]

To solve this model, the Lagrange function can be utilized:

\[
L(z, \xi) = \sum_{j=1}^{n} \sum_{i=1}^{m} \sum_{t=1}^{m} z_j (\frac{1}{6} \left(\frac{|\mu_{ij} - \mu_{it}| + |\upsilon_{ij} - \upsilon_{it}| + (\mu_{ij} + 1 - \upsilon_{ij}) - (\mu_{it} + 1 - \upsilon_{it}) |}{2} + \pi_{ij} + \pi_{it} \right) + \max \left(|\mu_{ij} - \mu_{it}|, |\upsilon_{ij} - \upsilon_{it}|, |\pi_{ij} - \pi_{it}| \right)) + \frac{\xi}{2} \left(\sum_{j=1}^{n} z_j^2 - 1 \right). \quad (22)
\]
where ξ is the Lagrange multiplier. Then, the partial derivatives of L can be calculated:

\[
\begin{align*}
\frac{\partial L}{\partial \pi} &= \sum_{i=1}^{m} \left(\frac{1}{6} \left([\mu_{ij} - \mu_{ij}] + [\nu_{ij} - \nu_{ij}] + \left(\frac{\mu_{ij} + 1 - \nu_{ij}}{2} - \left(\mu_{ij} + 1 - \nu_{ij} \right) \right) \right) + \pi_{ij} + \pi_{ij} \\
+ \max \left([\mu_{ij} - \mu_{ij}] + [\nu_{ij} - \nu_{ij}] + \left(\frac{\pi_{ij} - \pi_{ij}}{2} \right) \right) \right) \right) + \xi z_j = 0, \\
\frac{\partial L}{\partial \xi} &= \frac{1}{2} \left(\sum_{j=1}^{n} z_j^2 - 1 \right) = 0.
\end{align*}
\]

And then, a simple formula for determining the weight can be obtained by solving the above equations:

\[
\begin{align*}
z_j^* &= \sqrt{\frac{\sum_{i=1}^{m} \sum_{j=1}^{n} \left(1/6 \left([\mu_{ij} - \mu_{ij}] + [\nu_{ij} - \nu_{ij}] + \left(\frac{\mu_{ij} + 1 - \nu_{ij}}{2} - \left(\mu_{ij} + 1 - \nu_{ij} \right) \right) \right) + \pi_{ij} + \pi_{ij} \right) + \max \left([\mu_{ij} - \mu_{ij}] + [\nu_{ij} - \nu_{ij}] + \left(\frac{\pi_{ij} - \pi_{ij}}{2} \right) \right) \right) \right) \\
+ \xi z_j = 0, \\
\frac{\partial L}{\partial \xi} &= \frac{1}{2} \left(\sum_{j=1}^{n} z_j^2 - 1 \right) = 0.
\end{align*}
\]

Finally, the normalized weights can be determined:

\[
\begin{align*}
z_j &= \sum_{i=1}^{m} \sum_{j=1}^{n} \left(1/6 \left([\mu_{ij} - \mu_{ij}] + [\nu_{ij} - \nu_{ij}] + \left(\frac{\mu_{ij} + 1 - \nu_{ij}}{2} - \left(\mu_{ij} + 1 - \nu_{ij} \right) \right) \right) + \pi_{ij} + \pi_{ij} \right) + \max \left([\mu_{ij} - \mu_{ij}] + [\nu_{ij} - \nu_{ij}] + \left(\frac{\pi_{ij} - \pi_{ij}}{2} \right) \right) \right) \\
+ \xi z_j = 0, \\
\frac{\partial L}{\partial \xi} &= \frac{1}{2} \left(\sum_{j=1}^{n} z_j^2 - 1 \right) = 0.
\end{align*}
\]

Step 4: calculate the weighted matrix $O = (o_{ij})_{mn}$ by equation (12):

\[
o_{ij} = z_j \cdot d_{ij}^N = \left(1 - (1 - \mu_{ij})^{z_j}, \nu_{ij}, \mu_{ij} \right) \text{ (26)}
\]

Step 5: compute the border approximation area matrix $G = (g_j)_{mn}$. The border approximation area (BAA) for every attribute is obtained from the following equation:

\[
g_j = \left(\frac{m}{(o_{ij})^{1/m}} \right)^{1/m} = \left(\prod_{i=1}^{m} (\mu_{ij} \nu_{ij})^{1/m}, 1 - \prod_{i=1}^{m} (1 - \nu_{ij})^{1/m} \right)
\]

Step 6: calculate the distance matrix $D = (d_{ij})_{mn}$. The alternatives’ distances from the BAA are derived with the following equation:

\[
d_{ij} = \left\{ \begin{array}{ll}
(d(o_{ij}, g_j))^\theta, & \text{if } S(o_{ij}) \geq S(g_j), \\
-\rho(d(o_{ij}, g_j))^\gamma, & \text{if } S(o_{ij}) < S(g_j),
\end{array} \right\}
\]

where the distance measure is defined as equation (8). θ and γ are the parameters of DMs’ risk attitudes, and ρ is the loss aversion’s parameter. In this article, $\theta = 0.88, \gamma = 0.88$, and $\rho = 2.25$. The values come from Tversky and Kahneman [37] who conducted an experiment to determine the most acceptable values from numerous researchers.

Now, if $d_{ij} = 0$, the alternative P_i will belong to the border approximation area (G). If $d_{ij} > 0$, P_i belongs to the upper approximation area (G^+). And if $d_{ij} < 0$, P_i belongs to the lower approximation area (G^-). G^+ is the area involving the positive alternative (P^+), whereas G^- is the area involving the negative alternative (P^-).

Step 7: calculate the final value of criterion functions F_i.
\[F_i = \sum_{j=1}^{n} d_{ij}, \quad i = 1, 2, \ldots, m, j = 1, 2, \ldots, n. \]

(29)

Step 8: depending on the calculating results of \(F_i \), all the alternatives could be ranked. The larger the value of \(F_i \) is, the optimal the alternative will be.

5. Numerical Example and Comparative Analysis

5.1. Numerical Example. Intelligent transportation system is the development direction of the future traffic system. It is the advanced information technology, data communication transmission technology, electronic sensor technology, control technology, and computer technology to effectively integrate with the whole ground traffic management system and establish a large-range, all-round function, real-time, accurate, and efficient integrated transportation management system. Not only that, the high-tech project is a process full of unknown by its size, complexity of technology, economic investment, the degree of market demand, and other aspects of influence and restriction. Therefore, the project evaluation plays an important role during the process of investment to project the overall technology evaluation, market evaluation, and economic evaluation; risk forecast has a great impact on the project decision makers for the project development scheme and is also the key to the success of a project. Intelligent transportation system evaluation could be regarded as the MADM or MAGDM issues [38–45]. In this section, an empirical application of evaluating the intelligent transportation system is provided with the IF-MABAC method. There are five potential cities \(P_i (i = 1, 2, 3, 4, 5) \) preparing to evaluate their intelligent transportation system. In order to assess these cities fairly, five experts \(H = \{ H_1, H_2, H_3, H_4, H_5 \} \) (expert’s weight \(h = (0.20, 0.20, 0.20, 0.20, 0.20) \) are invited. All experts could give their assessment information through four subsequent attributes: (1) \(Z_1 \) is the intelligent transportation environment; (2) \(Z_2 \) is the intelligent transportation cost; (3) \(Z_3 \) is the intelligent transportation safety; and (4) \(Z_4 \) is the intelligent transportation equipment investment. Evidently, \(Z_2 \) is the cost attribute, while \(Z_1, Z_3, \) and \(Z_4 \) are the benefit attributes.

Step 1: build each DM’s matrix \(Q^{(k)} = (q_{ij}^{(k)})_{m \times n} \) as in Tables 1–5. Derived from the tables and equations (14)–(16), the overall decision matrix could be calculated. The results are recorded in Table 6.

Step 2: normalize the matrix \(Q = (q_{ij})_{m \times n} \) to \(Q^N = (q_{ij}^N)_{m \times n} \) (see Table 7).

Step 3: decide the attribute weights \(z_j (j = 1, 2, \ldots, n) \) through the maximizing deviation method (see Table 8).

Step 4: calculate the weighted matrix \(O = (o_{ij})_{m \times n} \) by utilizing equation (26) (Table 9).

Step 5: determine the BAA matrix \(G = (g_{ij})_{1 \times n} \) (Table 10).

| Table 1: Intuitionistic fuzzy matrix by \(H_1 \). |
|-----------------|-----------------|-----------------|-----------------|
| | \(Z_1 \) | \(Z_2 \) | \(Z_3 \) | \(Z_4 \) |
| \(P_1 \) | (0.63, 0.15) | (0.45, 0.50) | (0.57, 0.31) | (0.26, 0.63) |
| \(P_2 \) | (0.70, 0.30) | (0.21, 0.69) | (0.72, 0.28) | (0.64, 0.22) |
| \(P_3 \) | (0.39, 0.51) | (0.38, 0.48) | (0.50, 0.40) | (0.61, 0.30) |
| \(P_4 \) | (0.53, 0.37) | (0.42, 0.51) | (0.35, 0.56) | (0.55, 0.34) |
| \(P_5 \) | (0.26, 0.69) | (0.58, 0.35) | (0.55, 0.35) | (0.69, 0.13) |

| Table 2: Intuitionistic fuzzy matrix by \(H_2 \). |
|-----------------|-----------------|-----------------|-----------------|
| | \(Z_1 \) | \(Z_2 \) | \(Z_3 \) | \(Z_4 \) |
| \(P_1 \) | (0.37, 0.51) | (0.42, 0.51) | (0.57, 0.31) | (0.26, 0.63) |
| \(P_2 \) | (0.53, 0.37) | (0.42, 0.51) | (0.35, 0.56) | (0.55, 0.34) |
| \(P_3 \) | (0.26, 0.69) | (0.58, 0.35) | (0.55, 0.35) | (0.69, 0.13) |

| Table 3: Intuitionistic fuzzy matrix by \(H_3 \). |
|-----------------|-----------------|-----------------|-----------------|
| | \(Z_1 \) | \(Z_2 \) | \(Z_3 \) | \(Z_4 \) |
| \(P_1 \) | (0.37, 0.51) | (0.42, 0.51) | (0.57, 0.31) | (0.26, 0.63) |
| \(P_2 \) | (0.53, 0.37) | (0.42, 0.51) | (0.35, 0.56) | (0.55, 0.34) |
| \(P_3 \) | (0.26, 0.69) | (0.58, 0.35) | (0.55, 0.35) | (0.69, 0.13) |

| Table 4: Intuitionistic fuzzy matrix by \(H_4 \). |
|-----------------|-----------------|-----------------|-----------------|
| | \(Z_1 \) | \(Z_2 \) | \(Z_3 \) | \(Z_4 \) |
| \(P_1 \) | (0.37, 0.51) | (0.42, 0.51) | (0.57, 0.31) | (0.26, 0.63) |
| \(P_2 \) | (0.53, 0.37) | (0.42, 0.51) | (0.35, 0.56) | (0.55, 0.34) |
| \(P_3 \) | (0.26, 0.69) | (0.58, 0.35) | (0.55, 0.35) | (0.69, 0.13) |

| Table 5: Intuitionistic fuzzy matrix by \(H_5 \). |
|-----------------|-----------------|-----------------|-----------------|
| | \(Z_1 \) | \(Z_2 \) | \(Z_3 \) | \(Z_4 \) |
| \(P_1 \) | (0.37, 0.51) | (0.42, 0.51) | (0.57, 0.31) | (0.26, 0.63) |
| \(P_2 \) | (0.53, 0.37) | (0.42, 0.51) | (0.35, 0.56) | (0.55, 0.34) |
| \(P_3 \) | (0.26, 0.69) | (0.58, 0.35) | (0.55, 0.35) | (0.69, 0.13) |

| Table 6: Overall intuitionistic fuzzy matrix. |
|-----------------|-----------------|-----------------|-----------------|
| | \(Z_1 \) | \(Z_2 \) | \(Z_3 \) | \(Z_4 \) |
| \(P_1 \) | (0.4874, 0.3382) | (0.3130, 0.5747) | (0.5342, 0.3512) | (0.5187, 0.3641) |
| \(P_2 \) | (0.7184, 0.2087) | (0.2840, 0.6350) | (0.6906, 0.2309) | (0.6696, 0.2628) |
| \(P_3 \) | (0.5039, 0.4103) | (0.2863, 0.5766) | (0.4662, 0.4452) | (0.5123, 0.3796) |
| \(P_4 \) | (0.5575, 0.3284) | (0.3331, 0.5524) | (0.5265, 0.3718) | (0.5219, 0.3727) |
| \(P_5 \) | (0.4975, 0.4319) | (0.3695, 0.5372) | (0.4479, 0.4860) | (0.6371, 0.1889) |
Table 7: The normalized intuitionistic fuzzy matrix.

	Z₁	Z₂	Z₃	Z₄
P₁	(0.4874, 0.3382)	(0.5747, 0.3130)	(0.5342, 0.3512)	(0.5187, 0.3641)
P₂	(0.7184, 0.2087)	(0.6350, 0.2840)	(0.6906, 0.2309)	(0.6696, 0.2628)
P₃	(0.5039, 0.4103)	(0.5766, 0.2863)	(0.4662, 0.4452)	(0.5123, 0.3796)
P₄	(0.5575, 0.3284)	(0.5524, 0.3331)	(0.5265, 0.3718)	(0.5219, 0.3727)
P₅	(0.4975, 0.4319)	(0.5372, 0.3695)	(0.4479, 0.4860)	(0.6371, 0.1889)

Table 8: The attribute weights rₖ.

	Z₁	Z₂	Z₃	Z₄
1	0.2793	0.1699	0.2845	0.2663

Table 9: Intuitionistic fuzzy weighted normalized performance values of alternatives.

	Z₁	Z₂	Z₃	Z₄
P₁	(0.1703, 0.7387)	(0.1352, 0.8209)	(0.1954, 0.7425)	(0.1769, 0.7641)
P₂	(0.2981, 0.6456)	(0.1574, 0.8074)	(0.2838, 0.6590)	(0.2554, 0.7005)
P₃	(0.1778, 0.7797)	(0.1359, 0.8085)	(0.1635, 0.7944)	(0.1740, 0.7727)
P₄	(0.2036, 0.7327)	(0.1277, 0.8296)	(0.1916, 0.7547)	(0.1784, 0.7689)
P₅	(0.1749, 0.7910)	(0.1227, 0.8444)	(0.1555, 0.8144)	(0.2366, 0.6416)

Step 6: calculate the distance matrix D = (d_ij)mon (see Table 11).

Step 7: sum up each row’s elements, and each alternative’s final value F_i can be determined as in Table 12.

Step 8: relying on F_i, all the alternatives could be ranked; the larger the value of F_i is, the optimal the alternative will be. Evidently, the rank of all alternatives is P₂ > P₁ > P₄ > P₃ > P₅, and P₂ is the optimal city.

5.2. Comparative Analysis. First of all, the designed method is compared with IFWA and IFWG operators [34]. For the IFWA operator, the calculating result is S(P₁) = 0.5936, S(P₂) = 0.7358, S(P₃) = 0.5620, S(P₄) = 0.5971, and S(P₅) = 0.5961. Thus, the ranking order is P₂ > P₄ > P₃ > P₁ > P₅. For the IFWG operator, the calculating result is S(P₁) = 0.5922, S(P₂) = 0.7336, S(P₃) = 0.5573, S(P₄) = 0.5963, and S(P₅) = 0.5724. So, the ranking order is P₂ > P₄ > P₃ > P₁ > P₅.

Furthermore, the designed method is compared with the modified IF-VIKOR method [46]. Then, we can obtain the calculating result. Then, each alternatives’ relative closeness is calculated as DRC₁ = 0.8683, DRC₂ = 0.0000, DRC₃ = 1.0000, DRC₄ = 0.8878, and DRC₅ = 0.9366. Hence, the order is P₂ > P₄ > P₃ > P₅ > P₁.

Besides, the designed method is compared with the IFGRA method [47]. Then, we can obtain the calculating result. The grey relational grades of every alternative are γ₁ = 0.8065, γ₂ = 0.9800, γ₃ = 0.7847, γ₄ = 0.8274, and γ₅ = 0.8342. Therefore, the order is P₂ > P₄ > P₃ > P₁ > P₅.

In the end, the designed method is also compared with the IF-MABAC method [1]. Then, we can obtain the calculating result. The overall value of every alternative is I₁ = 2.9135, I₂ = 3.3834, I₃ = 1.3719, I₄ = 2.8685, and I₅ = 1.0845. Therefore, the order is P₂ > P₁ > P₃ > P₄ > P₅.

Eventually, the results of these methods are depicted in Table 13.

From Table 13, it is evident that the optimal enterprise is P₂, while the worst is P₁ in most cases. In other words, these methods’ order is slightly different. These methods can effectively solve MAGDM from different angles.
6. Conclusion

ITS is the trend of future traffic development. The problem of traffic jam exists in all the big cities around the world. Intelligent transportation project has made the world attach great importance in the development of the intelligent transportation system, which domestic and foreign scholars in succession of the intelligent transportation management project and related research work on performance appraisal.

The performance appraisal of our national public program currently has not formed a set of appraising systems of standard and systemization and has problems of insufficient technology system, appraising subjective color, and public participation intensity. With respect to the intelligent transportation project, carrying on the project expenditure performance appraisal of the intellectual traffic has the vital significance. This paper designs an effective method for this issue since it designs a novel intuitive distance-based IF-MABAC method for evaluating the intelligent transportation system. And then, a numerical example for evaluating the intelligent transportation system has been given to confirm that this novel method is reasonable. Furthermore, to show the validity and feasibility of the developed method, some comparative analyses are also conducted. However, the main drawback of this paper is that the number of DMs and attributes is small, and interdependency of criteria is not taken into consideration, which may limit the application scope of the developed method to some extent.

Furthermore, the developed method can be utilized to tackle many other MAGDM issues such as risk evaluation, project selection, and site selection [48–59].

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The author declares that there are no conflicts of interest.

References

[1] R. X. Liang, S. S. He, J. Q. Wang, K. Chen, and L. Li, “An extended MABAC method for multi-criteria group decision-making problems based on correlative inputs of intuitionistic fuzzy information,” Computational & Applied Mathematics, vol. 38, p. 28, 2019.

[2] T. He, G. Wei, J. Lu, J. Wu, C. Wei, and Y. Guo, “A novel EDAS based method for multiple attribute group decision making with pythagorean 2-tuple linguistic information,” Technological and Economic Development of Economy, vol. 26, no. 6, pp. 1125–1138, 2020.

[3] D.-F. Li, “Multiattribute decision making method based on generalized OWA operators with intuitionistic fuzzy sets,” Expert Systems with Applications, vol. 37, no. 12, pp. 8673–8678, 2010.

[4] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965.

[5] K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 20, no. 1, pp. 87–96, 1986.

[6] H. Garg, “Generalized intuitionistic fuzzy multiplicative interactive geometric operators and their application to multiple criteria decision making,” International Journal of Machine Learning and Cybernetics, vol. 7, no. 6, pp. 1075–1092, 2016.

[7] X. J. Gou, Z. S. Xu, and Q. Lei, “New operational laws and aggregation method of intuitionistic fuzzy information,” Journal of Intelligent & Fuzzy Systems, vol. 30, pp. 129–141, 2016.

[8] H. Garg, “Novel intuitionistic fuzzy decision making method based on an improved operation laws and its application,” Engineering Applications of Artificial Intelligence, vol. 60, pp. 164–174, 2017.

[9] Y. He, Z. He, and H. Huang, “Decision making with the generalized intuitionistic fuzzy power interaction averaging operators,” Soft Computing, vol. 21, no. 5, pp. 1129–1144, 2017.

[10] P. Liu, J. Liu, and S.-M. Chen, “Some intuitionistic fuzzy Dombi Bonferroni mean operators and their application to multi-attribute group decision making,” Journal of the Operational Research Society, vol. 69, no. 1, pp. 1–24, 2018.

[11] P. Gupta, H. D. Arora, and P. Tiwari, “Generalized entropy for intuitionistic fuzzy sets,” Malysian Journal of Mathematical Sciences, vol. 10, pp. 209–220, 2016.

[12] M. Li and C. Wu, “A distance model of intuitionistic fuzzy cross entropy to solve preference problem on alternatives,” Mathematical Problems in Engineering, vol. 2016, Article ID 8324124, 2016.

[13] M. S. Khan and Q. M. D. Lohani, “A similarity measure for Atanassov intuitionistic fuzzy sets and its application to clustering,” in Proceedings of the 2016 International Workshop on Computational Intelligence (IWCI), Dhaka, Bangladesh, December 2016.

[14] P. Li, J. Liu, S. F. Liu, X. Su, and J. Wu, “Grey target method for intuitionistic fuzzy decision making based on grey incidence analysis,” Journal of Grey System, vol. 28, pp. 96–109, 2016.

[15] T. Bao, X. Xie, P. Long, and Z. Wei, “MADM method based on prospect theory and evidential reasoning approach with unknown attribute weights under intuitionistic fuzzy environment,” Expert Systems with Applications, vol. 88, pp. 305–317, 2017.

[16] S.-M. Chen, S.-H. Cheng, and T.-C. Lan, “Multicriteria decision making based on the TOPSIS method and similarity measures between intuitionistic fuzzy values,” Information Sciences, vol. 367–368, pp. 279–295, 2016.

[17] J. W. Gan and L. Luo, “Using DEMATEL and intuitionistic fuzzy sets to identify critical factors influencing the recycling rate of end-of-life vehicles in China,” Sustainability, vol. 9, 2017.

[18] P. Gupta, M. K. Mehlawat, N. Grover, and W. Chen, “Modified intuitionistic fuzzy SIR approach with an application to supplier selection,” Journal of Intelligent & Fuzzy Systems, vol. 32, no. 6, pp. 4431–4441, 2017.

[19] Z. Hao, Z. Xu, H. Zhao, and R. Zhang, “Novel intuitionistic fuzzy decision making models in the framework of decision field theory,” Information Fusion, vol. 33, pp. 57–70, 2017.

[20] R. Krishankumar, S. R. Arvinda, A. Amrutha, J. Premalatha, and K. S. Ravichandran, “A decision making framework under intuitionistic fuzzy environment for solving cloud vendor selection problem,” in Proceedings of the 2017 International Conference on Networks & Advances in Computational Technologies (NetACT), Thiruvananthapuram, India, July 2017.

[21] K. R. R. Ks and A. B. Sayed, “A new extension to PROMETHEE under intuitionistic fuzzy environment for solving
supplier problem selection with linguistic preferences," Applied Soft Computing, vol. 60, pp. 564–576, 2017.

[22] X. Luo and X. Z. Wang, "Extended VIKOR method for intuitionistic fuzzy multiattribute decision-making based on a new distance measure," Mathematical Problems in Engineering, vol. 2017, Article ID 4072486, 2017.

[23] B. D. Rouyendegh, "The intuitionistic fuzzy ELECTRE model," International Journal of Management Science and Engineering Management, vol. 13, no. 2, pp. 139–145, 2018.

[24] S. Cali and S. Y. Balaman, "A novel outranking based multi criteria group decision making methodology integrating ELECTRE and VIKOR under intuitionistic fuzzy environment," Expert Systems with Applications, vol. 119, pp. 36–50, 2019.

[25] P. Phochanikorn and C. Q. Tan, "A new extension to a multi-criteria decision-making model for sustainable supplier selection under an intuitionistic fuzzy environment," Sustainability, vol. 11, p. 24, 2019.

[26] S. Liu, "Research on the teaching quality evaluation of physical education with intuitionistic fuzzy TOPSIS method," Journal of Intelligent & Fuzzy Systems, 2021, In press.

[27] D. Pamucar and G. Cirovic, "The selection of transport and handling resources in logistics centers using multi-attributive border approximation area comparison (MABAC)," Expert Systems with Applications, vol. 42, pp. 3016–3028, 2015.

[28] R. Sahin and F. Altun, "Decision making with MABAC method under probabilistic single-valued neutrosophic hesitant fuzzy environment," Journal of Ambient Intelligence and Humanized Computing, vol. 11, no. 5, 2020.

[29] G. Wei, Y. He, F. Lei, J. Wu, and C. Wei, "MABAC method for multiple attribute group decision making with probabilistic uncertain linguistic information," Journal of Intelligent & Fuzzy Systems, vol. 39, no. 3, pp. 3315–3327, 2020.

[30] G. W. Wei, Y. He, F. Lei, J. Wu, C. Wei, and Y. F. Guo, "Green supplier selection in steel industry with intuitionistic fuzzy Taxonomy method," Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7247–7258, 2020.

[31] X. G. Xu, H. Shi, L. J. Zhang, and H. C. Liu, "Green supplier evaluation and selection with an extended MABAC method under the heterogeneous information environment," Sustainability, vol. 11, p. 16, 2019.

[32] F. Jia, Y. Liu, and X. Wang, "An extended MABAC method for multi-criteria group decision making based on intuitionistic fuzzy rough numbers," Expert Systems with Applications, vol. 127, pp. 241–255, 2019.

[33] W. Liang, G. Zhao, H. Wu, and B. Dai, "Risk assessment of rockburst via an extended MABAC method under fuzzy environment," Tunneling and Underground Space Technology, vol. 83, pp. 533–544, 2019.

[34] Z. Xu and R. R. Yager, "Some geometric aggregation operators based on intuitionistic fuzzy sets," International Journal of General Systems, vol. 35, no. 4, pp. 417–433, 2006.

[35] H.-W. Liu and G.-J. Wang, "Multi-criteria decision-making methods based on intuitionistic fuzzy sets," European Journal of Operational Research, vol. 179, no. 1, pp. 220–233, 2007.

[36] Y. Wang, "Using the method of maximizing deviation to make decision for multiindices," Journal of Systems Engineering & Electronics, vol. 8, pp. 21–26, 1997.

[37] A. Tversky and D. Kahneman, "Advances in prospect theory: cumulative representation of uncertainty," Journal of Risk and Uncertainty, vol. 5, no. 4, pp. 297–323, 1992.

[38] E. K. Zavadskas, J. Antucheviciene, and P. Chatterjee, Multiple-Criteria Decision-Making (MCDM) Techniques for Business Processes Information Management, CRC Press, Boca Raton, FL, USA, 2019.

[39] T. He, G. Wei, J. Wu, and C. Wei, "QUALIFLEX method for evaluating human factors in construction project management with Pythagorean 2-tuple linguistic information," Journal of Intelligent & Fuzzy Systems, vol. 40, no. 3, pp. 4039–4050, 2021.

[40] E. K. Zavadskas, A. Ceresa, J. Matijosius, A. Rimkus, and R. Bausys, "Internal combustion engine analysis of energy ecological parameters by neutrosophic MULTIMOORA and SWARA methods," Energies, vol. 12, 2019.

[41] J. Li, L. Wen, G. Wei, J. Wu, and C. Wei, "New similarity and distance measures of Pythagorean fuzzy sets and its application to selection of advertising platforms," Journal of Intelligent & Fuzzy Systems, vol. 40, no. 3, pp. 5403–5419, 2021.

[42] E. K. Zavadskas, Z. Turskis, and J. Antucheviciene, "Solution models based on symmetric and asymmetric information," Symmetry-Basel, vol. 11, 2019.

[43] M. Zhao, G. Wei, C. Wei, J. Wu, and Y. Wei, "Extended CPT-TODIM method for interval-valued intuitionistic fuzzy MAGDM and its application to urban ecological risk assessment," Journal of Intelligent & Fuzzy Systems, vol. 40, no. 3, pp. 4091–4106, 2021.

[44] F. Lei, G. Wei, J. Wu, C. Wei, and Y. Guo, "QUALIFLEX method for MAGDM with probabilistic uncertain linguistic information and its application to green supplier selection," Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 6819–6831, 2020.

[45] Y. Zhang, G. Wei, Y. Guo, and C. Wei, "TODIM method based on cumulative prospect theory for multiple attribute group decision-making under 2-tuple linguistic Pythagorean fuzzy environment," International Journal of Intelligent Systems, 2021, In press.

[46] S. Zeng, S.-M. Chen, and L.-W. Kuo, "Multi-attribute decision making based on novel score function of intuitionistic fuzzy values and modified VIKOR method," Information Sciences, vol. 488, pp. 76–92, 2019.

[47] S.-F. Zhang and S.-Y. Liu, "A GRA-based intuitionistic fuzzy multi-criteria group decision making method for personnel selection," Expert Systems with Applications, vol. 38, no. 9, pp. 11401–11405, 2011.

[48] P. Liu and H. Xu, "Group decision making method based on hybrid aggregation operator for intuitionistic uncertain linguistic variables," Journal of Intelligent & Fuzzy Systems, vol. 36, no. 2, pp. 1879–1898, 2019.

[49] M. Zhao, G. Wei, J. Wu, Y. Guo, and C. Wei, "TODIM method for multiple attribute group decision making based on cumulative prospect theory with 2-tuple linguistic neutrosophic sets," International Journal of Intelligent Systems, vol. 36, no. 3, pp. 1199–1222, 2021.

[50] P. Liu and X. You, "Bidirectional projection measure of linguistic neutrosophic numbers and their application to multi-criteria group decision making," Computers & Industrial Engineering, vol. 128, pp. 447–457, 2019.

[51] C. Wei, J. Wu, Y. Guo, and G. Wei, "Green supplier selection based on CODAS method in probabilistic uncertain linguistic environment," Technological and Economic Development of Economy, 2021, In press.

[52] P. Liu and X. You, "Improved TODIM method based on linguistic neutrosophic numbers for multicriteria group decision-making," International Journal of Computational Intelligence Systems, vol. 12, no. 2, pp. 544–556, 2019.

[53] G. Wei, J. Wu, Y. Guo, J. Wang, and C. Wei, "An extended COPRAS model for multiple attribute group decision making"
based on single-valued neutrosophic 2-tuple linguistic environment,” Technological and Economic Development of Economy, 2021, In press.

[54] G.-F. Yu, D.-F. Li, J.-M. Qiu, and X.-X. Zheng, “Some operators of intuitionistic uncertain 2-tuple linguistic variables and application to multi-attribute group decision making with heterogeneous relationship among attributes,” Journal of Intelligent & Fuzzy Systems, vol. 34, no. 1, pp. 599–611, 2018.

[55] M. Zhao, G. Wei, C. Wei, and Y. Guo, “CPT-TODIM method for bipolar fuzzy multi-attribute group decision making and its application to network security service provider selection,” International Journal of Intelligent Systems, 2021, In press.

[56] G.-F. Yu, D.-F. Li, and W. Fei, “A novel method for heterogeneous multi-attribute group decision making with preference deviation,” Computers & Industrial Engineering, vol. 124, pp. 58–64, 2018.

[57] S. Wang, G. Wei, J. Wu, C. Wei, and Y. Guo, “Model for selection of hospital constructions with probabilistic linguistic GRP method,” Journal of Intelligent & Fuzzy Systems, vol. 40, no. 1, pp. 1245–1259, 2021.

[58] M. Munir, H. Kalsoom, K. Ullah, T. Mahmood, and Y.-M. Chu, “T-spherical fuzzy einstein hybrid aggregation operators and their applications in multi-attribute decision making problems,” Symmetry, vol. 12, no. 3, p. 365, 2020.

[59] T. Mahmood, K. Ullah, Q. Khan, and N. Jan, “An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets,” Neural Computing and Applications, vol. 31, no. 11, pp. 7041–7053, 2019.