Evaluation of Brain Lesions Using Magnetic Resonance Spectroscopy

Mohammed Salih1, Mohammed Yousef2, Ahmed Abukonna2*, Abdurrahman Elnour1 and Asmaa Elamin2

1Faculty of Radiologic Science and Nuclear Medicine, Ribat National University, Khartoum, Sudan.
2Sudan University of Science and Technology, College of Medical Radiologic Science, Khartoum, Sudan.

Authors’ contributions

This work was carried out in collaboration between all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/BJMMR/2016/28984

ABSTRACT

Aims: This study designed to describe the spectrum of Magnetic Resonance in brain lesions and to show its diagnostic importance in differentiating neoplastic, non-neoplastic and other lesions. Also to show the importance of MRS in differentiating of other brain lesions and correlate MRS findings with histopathological findings.

Study Design: This is a prospective study included 30 patients with intracranial tumors underwent MR imaging, proton MR spectroscopy, and stereotactic biopsy.

Place and Duration: The study was carried out in the Department of Diagnostic Radiology, Royal Care International Hospital, Sudan. June 2015 to June 2016.

Methodology: MRS studies were performed with 1.5 Tesla Toshiba whole body MR systems using standard imaging head coil. All spectroscopy images were performed through single voxel technique. MR spectroscopic findings were evaluated for the distribution pattern of pathologic spectra (N-acetylaspartate (NAA)/ choline [1] ratio > 1) across the lesion and neighboring tissue.

Results: The result of this study revealed that the characteristic features in malignancy were increased Cho/creatinine (Cr) peaks with NAA remains unchanged, the increased Cho/Cr and
Cho/NAA ratio also noted with glioma. Furthermore grading of glioma as high or low can be obtained on the basis of Cho/Cr and the presence of lipid/lactate peak. In this study, there was total agreement between MRS, and histopathologically results. In addition, the study showed that the specific MR spectroscopic findings for meningioma were the absence or very small peak of neuronal markers NAA and Cr, and markedly elevated Cho.

Conclusion: Diagnosis of primary and secondary brain tumors and differentiating them from other focal intra-cranial lesions based on imaging procedures alone is still a challenging problem, combination of proton MRS and conventional MRI protocol can provide additive valuable information helping in tissue characterization of intra-cranial tumors leading to improved diagnosis and thus reducing biopsies.

Keywords: Brain tumors; MRS; Cho/Cr; NAA.

1. **INTRODUCTION**

Proton MR Spectroscopy (MRS) is a noninvasive imaging technique that may contribute in the preoperative diagnosis of patients with MR ring enhancing lesion [1]. MRS depends on a change in the resonance frequency of the nuclei within the molecules, regarding their chemical bonds, which is based on the chemical shift theory [2]. The resonance frequency difference (chemical shift) is expressed as parts per million or ppm, a value that is independent of the amplitude of the external magnetic field. The value of the chemical shift provides information about the molecular group carrying the hydrogen nuclei, and thus it provides differentiation among several metabolites [3].

Diagnosis of primary and secondary brain tumors and other focal intracranial lesions based on imaging procedures alone is still a challenging problem in Sudan. Magnetic resonant spectroscopy may give completely different information related to brain lesions and save time risk and cost.

Accurate diagnosis is essential for optimum clinical management in patients with intracranial tumors [4]. When accessible, most tumors are surgically resected, however there is a balance between removing as much tumor tissue as possible while maintaining vital brain functions, and radiotherapy is often used to treat any remaining cancerous tissue [5]. Currently there is widespread use of MRI to determine tumor extent for surgical and radiotherapy planning, as well as for post-therapy monitoring of tumor recurrence or progression to higher grade.

The advantage of MRS has added to the diagnostic capabilities enabling tissue characterization based on their molecular composition. It provides information about cell proliferation, degradation, neuronal vitality and energy metabolism.

The information content of a proton brain spectrum depends on quite a few factors, such as the field strength used, echo time, and type of pulse sequence. Signals from choline [1], creatine (Cr) and N-acetylaspartate (NAA) are observed in normal brain, while compounds such as lactate, alanine or others may be detectable if their concentration is elevated above normal levels due to pathological processes [6].

MR spectroscopy could differentiate benign from malignant tumors but was not useful in tumor grading. In the differentiation of malignant from benign tumors, NAA / choline, NAA/ Cho + creatine (Cr), lactate/Cr, and Alanine/Cr ratios were statistically more significant than NAA/Cr and lactate/lipid ratios. Grading of the tumors could be obtained from diffusion weighted imaging and apparent diffusion coefficients (ADC) [7]. Increase in lipid and Alanine could distinguish metastases and meningiomas from other tumors. Increase in the lactate level correlated with the degree of malignancy [8]. Lactate also can be measured as a marker of mitochondrial dysfunction in children with Autism Spectrum Disorders [9].

This study designed to describe the spectrum of Magnetic Resonance Spectroscopy in brain lesions and to show its diagnostic importance in differentiating neoplastic and non-neoplastic lesions, also to show diagnostic importance of MRS in differentiating of other brain lesions and correlate MRS findings with histopathological findings.

2. **MATERIALS AND METHODS**

2.1 **Subjects**

The study was carried out in the Department of Diagnostic Radiology, Royal Care International
Hospital, Sudan. It was a cross sectional comparative study. 30 patients with intracranial tumors confirmed with MR imaging were enrolled in the study, proton MR spectroscopy was performed, and then stereotactic biopsy was taken. MR spectroscopic findings were evaluated for the distribution pattern of pathologic spectra (NAA/Cho ratio > 1) across the lesion and neighboring tissue, for signal ratios in different tumor types, and for their potential to improve preoperative diagnostic accuracy.

2.2 Technique Used

MRS studies were performed on 1.5 Tesla Toshiba whole body MR systems using standard imaging head coil. All spectroscopy images were performed through single voxel technique. Initially, post contrast imaging was done to localize the lesion and then voxel was placed on volume of interest. After water suppression, appoint-resolved spectroscopy (RESS) technique was used for localization and the studies were obtained with parameters including echo time (TE) and repetition time (TR).

3. RESULTS AND DISCUSSION

Conventional magnetic resonance imaging (cMRI) is the gold standard in the initial evaluation of brain tumors. However, in some cases, cMRI is not effective for the differentiation of the tumor type or detection of the tumor grade. MRS limits the use of established invasive diagnostic approaches such as brain biopsy, which is the gold standard for evaluating brain tumor, as brain biopsy is a heavily invasive technique [7].

The aim of this study was to assess brain lesion using MR Spectroscopy in order to characterize the metabolic nature of these lesions. 30 patients were enrolled in the study with known brain masses diagnosed by conventional MRI. The most common site of these lesions was parietal lobe as shown in (Table 3).

Cases of various types of brain tumor were included in this study and most of them were malignant which showed increased Cho/Cr peaks with NAA remains unchanged, the increased Cho/Cr and Cho/NAA ratio also noted with glioma. This result was in line with previous studies [10].

Cases of glioma were included in the study, grading of glioma can be obtained on the basis of CHO/Cr and the presence of lipid/lactate peak; both grades of glioma showed High Cho/Cr ratio, but in high grade glioma the presence of lactate peak was noted. Chen et al. found that the increase in CHO/Cr ratios in high grade glioma that were higher than those found in low grade glioma was significantly correlated with the expression of proliferating cell nuclear antigen that was determined immune histologically, which reflect the proliferative potential of gliomas and hence their prognosis [11].

In this study, there was total agreement between MRS and histopathologically results; 86% of cases were agreed. The study showed that the specific MR spectroscopic finding for meningioma reported was the absence or very small peak of neuronal markers NAA and Cr, and markedly elevated CHO. These results were similar to many previous studies [10].

In this study a single voxel technique was used alone, further studies should be conducted with both single voxel and multi-voxel techniques using short repetition time (TE) and field strength of 3 Tesla for the evaluation of various types of brain lesions.

Table 1. Descriptive statistics
N

Age

Table 2. Gender distribution
Percent
Male
Female
Total

Table 3. Regions of brain lesion
Percent
Parietal
Brain stem
Temporal
Temporal-parietal
Frontal-parietal
Occipital
Frontal
Front-temporal
Total
Table 4. Spectral analysis * MRS findings crosstabulation

Spectral analysis	Astrocytoma	Malignancy	High grade glioma	Unremarkable	Meningioma	Glioma	Abscess	Total
High Cho/Cr, High Cho/NAA	1	4	0	0	0	3	0	8
Increase Cho/Cr peaks with NAA	0	12	0	0	0	0	0	12
Increase Cho with reduction of NAA and Cr with increase Lactate	0	0	1	0	0	0	0	1
Normal Curves	0	0	0	4	0	0	0	4
Raised Cho, Low Cr and NAA	0	0	0	0	2	0	0	2
Significant elevation of both Lipid and Lactate peaks, moderately reduced NAA peak	0	1	0	1	0	0	0	2
No evidence of neoplastic process	0	0	0	0	0	1	1	1
Total	1	17	1	4	3	3	1	30
4. CONCLUSION

Diagnosis of primary and secondary brain tumors and differentiating them from other focal intracranial lesions based on imaging procedures alone is still a challenging problem, it was found that combination of proton MRS as a non-invasive procedures and conventional MRI protocol can provide additive valuable information helping in tissue characterization of intra-cranial tumors leading to improved diagnosis and thus reducing biopsies.

ACKNOWLEDGEMENTS

The authors would like to thank all the staff of the Department of Diagnostic Radiology, Royal Care International Hospital, Sudan - Khartoum, for their support and assistance during data collection for this study.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Morillo A, et al. A six-month Serratia marcescens outbreak in a Neonatal Intensive Care Unit. Enferm Infecc Microbiol Clin; 2016.
2. Xue P, et al. Role of diffusion weighted magnetic resonance imaging and spectroscopy in the diagnosis and follow-up of hepatolenticular degeneration. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2012;34(5):497-502.
3. Agarwal N, Renshaw PF. Proton MR spectroscopy- detectable major neurotransmitters of the brain: Biology and
possible clinical applications. AJNR Am J Neuroradiol. 2012;33(4):595-602.
4. Howe FA, Opstad KS. 1H MR spectroscopy of brain tumours and masses. NMR Biomed. 2003;16(3):123-31.
5. Stadlbauer A, et al. Preoperative grading of gliomas by using metabolite quantification with high-spatial-resolution proton MR spectroscopic imaging. Radiology. 2006;238(3):958-69.
6. Majos C, et al. Proton magnetic resonance spectroscopy ((1)H MRS) of human brain tumours: Assessment of differences between tumour types and its applicability in brain tumour categorization. Eur Radiol. 2003;13(3):582-91.
7. Bulakbasi N, et al. Combination of single-voxel proton MR spectroscopy and apparent diffusion coefficient calculation in the evaluation of common brain tumors. AJNR Am J Neuroradiol. 2003;24(2):225-33.
8. Majos C, et al. Brain tumor classification by proton MR spectroscopy: Comparison of diagnostic accuracy at short and long TE. AJNR Am J Neuroradiol. 2004;25(10):1696-704.
9. Goh S, et al. Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: Evidence from brain imaging. JAMA Psychiatry. 2014;71(6):665-71.
10. Darweesh AMN, et al. Magnetic resonance spectroscopy and diffusion imaging in the evaluation of neoplastic brain lesions. The Egyptian Journal of Radiology and Nuclear Medicine. 2014;45(2):485-493.
11. Chen J, et al. In vivo research in astrocytoma cell proliferation with 1H-magnetic resonance spectroscopy: correlation with histopathology and immunohistochemistry. Neuroradiology. 2006;48(5):312-8.

© 2016 Salih et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://sciencedomain.org/review-history/16393