Finite-temperature phase transition in a homogeneous one-dimensional gas of attractive bosons

Christoph Weiss

Joint Quantum Centre (JQC) Durham–Newcastle, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom

(Dated: Submitted: August 16, 2013; current version October 29, 2016)

In typical one-dimensional models the Mermin-Wagner theorem forbids long range order, thus preventing finite-temperature phase transitions. We find a finite-temperature phase transition for a homogeneous system of attractive bosons in one dimension. The low-temperature phase is characterized by a quantum bright soliton without long range order; the high-temperature phase is a free gas. Numerical calculations for finite particle numbers show a specific heat scaling as N^2, consistent with a vanishing transition region in the thermodynamic limit.

PACS numbers: 05.70.Fh, 03.75.Lm, 05.30.Jp, 03.75.Hh

Keywords: phase transition, one dimension, finite temperatures, bright solitons, Bethe ansatz, Lieb-Liniger model, attractive interactions, Mermin-Wagner theorem, Bose-Einstein condensation

Bright solitons generated from attractively interacting Bose-Einstein condensates in quasi-one-dimensional wave guides are investigated experimentally in an increasing number of experiments[1–10]. As experiments do not truly take place in one dimension but rather in quasi-one-dimensional wave guides, providing a thermalization mechanism [11, 12], this leads to the question whether or not these bright solitons can be stable in the presence of thermal fluctuations.

The Mermin-Wagner theorem [13] proves that in many models long-range order in one or two dimensions cannot exist at finite temperatures [13, 14]; this excludes the existence of many phase transitions. Finite-temperature transitions are fundamentally different from quantum phase transitions (cf. [15, 16]); one-dimensional quantum phase transitions can be found, e.g., in Refs. [17–19]). While there are some finite temperature phase transitions in low-dimensional systems like the Berezinsky-Kosterlitz-Thouless transition in two dimensions [20] or the phase transition in the two-dimensional Ising model [21], the generic case is that low-dimensional models to not undergo finite-temperature phase transitions [22]. Indeed, a book on “thermodynamics of one-dimensional solvable models” does not include the word “phase transition” in its index [23]. For a disordered system displaying Anderson-localization [24], a finite-temperature phase transition for weakly interacting bosons in one dimension has been found in Ref. [25].

A quasi one-dimensional system of attractively interacting bosons can be modeled [26–29] by the solvable Lieb-Liniger model [30–32]. One of the challenges for bright-soliton experiments [1–7, 33] is to realize true quantum behavior predicted, so far, with zero-temperature calculations [34–40]. For the Lieb-Liniger model, investigations of thermal effects on the many-body level for bosons in one dimension have so far focused on the more extensively studied case of repulsive interactions (Ref. [23] and references therein); for finite systems classical field methods have been applied [41]. In other soliton models, thermodynamics with interacting solitons has been investigated [42, 43].

In this Letter we show that attractive bosons in the Lieb-Liniger model undergo a finite-temperature phase transition; a bright soliton – no-soliton transition. As bright solitons do not display long-range order, this does not violate the Mermin-Wagner theorem. Although bright solitons do not display long-range order, quantum bright solitons are fundamentally different from localized states cf. [25]: For the Lieb-Liniger model, the energy eigenfunction describing a soliton of N-particles has to obey the symmetry of the Hamiltonian and is thus translationally invariant.

For N identical bosons on a one-dimensional line of length L, corresponding to the experimentally realizable [44] box potential, the Lieb-Liniger Hamiltonian reads [30–32]

$$\hat{H} = -\sum_{j=1}^{N} \frac{\hbar^2}{2m} \frac{\partial^2}{\partial x_j^2} + \sum_{j=1}^{N-1} \sum_{n=j+1}^{N} g_{1D} \delta(x_j - x_n),$$

where $g_{1D} < 0$ quantifies the contact interactions between two particles, m is the mass, and x_j the position of the jth particle. Contrary to the phenomenological model used in [45] for a harmonically trapped one-dimensional gas of attractive bosons, we use the complete set of energy-eigenvalues which are known analytically for large L [27, 46],

$$E_{LL}\left(\{n_r,k_r\}_{r=1,R}\right) = \sum_{r=1}^{R} \left(E_0(n_r) + \frac{\hbar^2 K_r^2}{2n_r m} \right), \quad \sum_{r=1}^{R} n_r = N, \quad (1)$$

where the R natural numbers n_r correspond to either free particles, if $n_r = 1$, or matter-wave bright solitons, if $n_r > 1$ (cf. the energy-eigenfunctions discussed in Ref. [27]); for experiments with more than two solitons see Refs. [2, 3], cf. [34, 38]). Each soliton has kinetic energy (proportional to the square of the single-particle momentum $\hbar k_r$, shared by all particles belonging to this soliton) and ground-state energy [27, 31]

$$E_0(n_r) = -\frac{1}{24} \frac{m g_{1D}^2}{\hbar^2} n_r (n_r^2 - 1). \quad (2)$$

1 The precise limit, which was not discussed in Refs. [30, 31], will be defined in Eq. (4) after the necessary physical requirements on this limit are stated.
We choose periodic boundary conditions (cf. [46]) which lead to KL having to be an integer multiple of 2π, thus

$$K_r = \frac{2\pi}{L} v_r, \quad v_r = \ldots, -2, -1, 0, 1, 2, \ldots$$

As we are dealing with indistinguishable particles, many-particle wave functions [27] are unambiguously defined by only considering configurations with

$$n_1 \geq n_2 \geq n_3 \ldots \geq n_R.$$

Because of Eq. (1), the total number of possibilities to distribute N particles among up to N parts is thus given by the number partitioning problem [47]

$$p(N) \sim \frac{1}{4N \sqrt{\pi}} \exp\left(\frac{\pi \sqrt{\frac{3}{2}}}{\sqrt{N}}\right), \quad N \gg 1. \quad (3)$$

The N^3-dependence of the ground-state energy (2) is a problem for the treatment of the thermodynamic limit ($N \to \infty, L \to \infty$ such that $N/L = \text{const.}$) [23]: the Lieb-Liniger model with repulsive interaction is thus normally used to do thermodynamics [23]. However, for attractive interactions treating the limit $N \to \infty$ at fixed interaction would lead to infinite densities, cf. [27]. We thus combine the thermodynamic limit with vanishing interaction – as used in the mean-field (Gross-Pitaevskii) theory of bright solitons [48].

$$N \to \infty, \quad L \to \infty, \quad g_{1D} \to 0, \quad \varrho = \text{const.}, \quad \mathcal{G} = \text{const.},$$

where $\varrho \equiv N/L$ and $\mathcal{G} \equiv N g_{1D}$. When approaching the limit (4), the energy-gap $E_{\text{gap}} \equiv E_0(N-1) - E_0(N)$ is an N-independent energy scale which will turn out to be the relevant energy scale for thermodynamics; we can express characteristic temperatures as

$$k_B T_0 = AE_{\text{gap}},$$

and subsequently investigate if the prefactor A remains non-zero in the limit (4). The ground state energy (2) now reads

$$E_0(n_r) = -\frac{E_{\text{gap}}}{3N(N-1)} n_r(n_r^2 - 1);$$

in the limit (4) the energy gap is given by

$$E_{\text{gap}} = \frac{1}{8} \frac{mg^2}{\hbar^2} = \text{const.} > 0.$$

Before we choose the canonical ensemble (characterized by temperature T and particle number N [49]) to do thermodynamics, we should quantify the requirement that L has to be large in order for the energy-eigenvalues (1) to be correct within the limit (4). The ground-state wave function for N bosons is given by

$$\psi_0 \propto \exp\left[-\frac{mg_{1D}}{2\hbar^2} \sum_{1 \leq j, k \leq N} |x_j - x_k|\right];$$

the size of an N-particle soliton $\sigma \approx 1/(|g_{1D}|N)$ [27] and thus remains a non-zero constant in the limit (4), leading to a single particle density $\propto \cosh(\chi/\sigma)^{-2}$ and thus also to a vanishing off-diagonal long-range order.\footnote{The many-particle ground state can be viewed as consisting of a relative wave-function given by a Hartree product state with N particles occupying the GPE-soliton mode $\cosh((x - x_0)/\sigma)^{-1}$ and a center-of-mass wave function for the variable x_0 (cf. [27, 50]). The one-body density matrix [48] then is $\propto \cosh((x - x_0)/\sigma)^{-1} \cosh((x' - x_0)/\sigma)^{1}$ which vanishes in the limit $|x - x'| \to \infty$ after integrating over x_0. Thus, there is no off-diagonal long range order in our system.}

In order for the energy eigenvalues given by Eq. (1) to be valid, the system has to be larger than the size of a $N = 2$ soliton (the more particles are in a soliton, the smaller it gets [27]). To be on the safe side we ask the wave function to be below e^{-100} for particle separation greater than L, that is

$$\frac{m|g_{1D}|}{2\hbar^2} L \gtrsim 100.$$

For the two relevant energy scales of Eq. (1) this gives an energy ratio

$$\mathcal{E}(N) \equiv \frac{E_{\text{gap}}}{E_{\text{lim}}(v_r = 1)} = BN^2,$$

$$B \equiv \left(\frac{mg_{1D}}{2\hbar^2}\right)^2 \frac{1}{(2\pi)^2};$$

(6)

the eigenvalues (1) are therefore a very good approximation to the true eigenvalues of the Lieb-Liniger model (for all temperatures) if

$$B \gtrsim B_0 = \frac{100^2}{(2\pi)^2} \approx 253.$$

(7)

For any choice of $\{n_r\}_{r=1,R}$, the canonical partition function will depend on how often solitons of exactly size n_r occur. We thus rewrite these configurations, now listing them using distinct integers n'_r with $n'_r > n'_{r+1}$ and the multiplicity $\#(n'_r)$ with which the value n_r had occurred:

$$\{n_r\}_{r=1,R} \longrightarrow \{(n'_r, \#(n'_r))\}_{r=1,R'}, \quad \sum_{r=1}^{R'} n'_r \#(n'_r) = N.$$

Note that replacing $\{n_r\}_{r=1,R}$ by $\{(n'_r, \#(n'_r))\}_{r=1,R'}$ is bijective, that is, to each set of n_r there is exactly one set of $\{(n'_r, \#(n'_r))\}$ (and vice versa); in the following we can thus always use the notation which is more convenient. The total canonical partition function is the sum

$$Z_{N,\text{total}}(\beta) \equiv \sum_{\{n_r\}_{r=1,R}} Z_{N'}(\{(n'_r, \#(n'_r))\}_{r=1,R'}) (\beta)$$

(8)

over the partition functions for fixed $\{n_r\}_{r=1,R}$

$$Z_{N'}(\{(n'_r, \#(n'_r))\}_{r=1,R'}) (\beta) = \prod_{r=1}^{R'} e^{-\#(n'_r)B E_0(n'_r) \#(n'_r) k_B T},$$

(9)
The soliton partition function is given by
\[Z_{n_1, \theta(n_1), \text{kin}}(\beta) = \frac{1}{\#(n_1)} \sum_{l=1}^{\#(n_1)} Z_{n_1, \text{kin}}(l\beta) Z_{n_1, \theta(n_1)-l, \text{kin}}(\beta), \] (10)

with \(Z_{n_0, \text{kin}}(\beta) = 1 \) and the kinetic energy part of the single-soliton partition function is given by
\[Z_{n_1, \text{kin}}(\beta) = \sum_{\nu=\infty}^{\infty} \exp\left(-\beta \frac{E_{\text{gap}}}{n_1 B N^2} \nu^2 \right) \]
\[\simeq \int_{-\infty}^{\infty} \nu \exp(-\beta \frac{E_{\text{gap}}}{n_1 B N^2} \nu^2) = \left(\frac{\pi n_1 B N^2}{\beta E_{\text{gap}}} \right)^{\frac{1}{2}}. \] (11)

Rather than having to explicitly do sums over a large number of configurations, for larger particle numbers it is preferable to calculate the partition function again via a recurrence relation, starting with \(R = 1 \) and \(Z_{M_0, \theta(n_0)}(\beta) \), \(M = 1, 2, \ldots N \) given by Eq. (9). The step \(R \to R + 1 \) then yields the case \(n_{R+1} = n_R \) with
\[Z_{M+\#(n_1), \theta(n_1)+1, \text{kin}}(\beta) = \frac{e^{-\beta E(n_1)+1}}{Z_{M, \theta(n_1), \text{kin}}(\beta)} \]
\[\times Z_{R}^{\text{(1)}}(M_{\theta(n_1), \theta(n_1)+1}, \beta) \] (12)

as well as
\[Z_{M+\#(n_1), \theta(n_1)+1}^{\text{(1)}}(\beta) = e^{-\beta E(n_1)} Z_{n_1, \text{kin}}(\beta) \]
\[\times \sum_{n_{R+1} = \#(n_1)+1}^{M} \sum_{\#(n_R) = 1} Z_{M_{\theta(n_1), \theta(n_1)+1}}(\beta), \] (13)

where \([x] \) denotes the largest integer \(\leq x \).

From the total canonical partition function (8) we obtain the specific heat (at fixed particle number \(N \) and system size \(L \), which is proportional to the variance of the energy) as
\[C_{N,L}(T) = \frac{\partial}{\partial T} \langle E \rangle = -\frac{\partial}{\partial T} \frac{\partial}{\partial \beta} \ln[Z_{N,\text{total}}(\beta)] \]
\[= \frac{1}{k_B T^2} \frac{\partial^2}{\partial \beta^2} \ln[Z_{N,\text{total}}(\beta)] = \frac{1}{k_B T^2} \left(\langle E^2 \rangle - \langle E \rangle^2 \right); \] (14)

the number of atoms in the largest soliton is given by
\[\langle n_1 \rangle(T) = \frac{1}{Z_{N,\text{total}}(\beta)} \sum_{n_1=1}^{N} n_1 Z_{N,\{n_1, \theta(n_1)\}}(\beta). \] (15)

For analytic calculations Eq. (11) leads to
\[\frac{1}{\#(n_1)} \left(\frac{n_1 B N^2}{\beta E_{\text{gap}}} \right)^{n_1+1} \leq Z_{n_1, \theta(n_1), \text{kin}}(\beta) \]
\[\leq e^{\theta(n_1)+1} \left(\frac{n_1 B N^2}{\beta E_{\text{gap}}} \right)^{n_1}, \]
\[c_1 \equiv \ln(2), \] (16)

the lower bound being (for temperatures large compared to the center-of-mass first excited state) the largest term involved in the sum (10); to obtain the upper bound we choose the value for \(c_1 \) such that all \(2^{\theta(n_1)+1} < e^{\theta(n_1)+1} \) addends in the sum (10) (treated separately) are of the same order as the highest term.

In order to define a characteristic temperature (5), we now use the temperature below which finding a single soliton with \(N \) particles is more probable than finding \(N \) single particles. Both partition functions, evaluated at \(T = T_0 \), are thus the same,
\[Z_{N,\text{kin}}(\beta_0) e^{-\beta_0 E(N)} = Z_{N,\theta(n), \text{kin}}(\beta_0), \]
\[\beta_0 \equiv \frac{1}{k_B T_0}. \] (17)

While the left-hand side is known exactly \([Z_{N,\text{kin}}(\beta)] \) is given by Eq. (11), the right-hand side of Eq. (17) lies between the bounds given by Eq. (16). Taking the \(N \)th root of Eq. (17) for each of these bounds leads [55], in the thermodynamic limit (4), to two characteristic, \(N \)-independent temperatures
\[T_1^{(\infty)} = \frac{2 E_{\text{gap}}}{3 k_B} W \left(\frac{5 \pi B \exp(2)}{2} \right), \] (18)
\[T_2^{(\infty)} = \frac{2 E_{\text{gap}}}{3 k_B} W \left(\frac{5 \pi B \exp(2)}{2} \right), \] (19)

where \(W(x) \) is the Lambert W function which solves \(W(x) \exp[W(x)] = x \) [55]. In the thermodynamic limit (4), the temperature for which it is equally probable to find \(N \) single particles and one bright soliton is lies in the range
\[0 < T_1^{(\infty)} \leq T_0^{(\infty)} \leq T_2^{(\infty)} < \infty \]

For numerical finite-size investigations we focus on particle numbers \(N \approx 100 \) relevant for generation of Schrödinger-cat states on timescales shorter than characteristic decoherence times [35]; \(T_2^{(\infty)} \) turns out to be a characteristic temperature scale already for these particle numbers (see Fig. 1).

Figure 1 shows that the numerical data obtained via exact recurrence relations for the canonical partition function [Eqs. (9)-(13)] at the transition many solitons are involved (Fig. 1 d). Near \(T_2^{(\infty)} \), the numerical data is consistent with both the specific heat and the temperature-derivative of \(\langle n_1 \rangle \) scaling \(\propto N^2 \) for \(N \approx 100 \).

To demonstrate that we indeed have a phase transition let us start by focusing on cases where we have \(N-n \) particles in one soliton and \(n \) free particles; \(n = O(N) \) and \(N \gg 1 \). Using Eq. (17) to express the partition function for \(n \) free particles corresponds to a system with fewer atoms \(\hat{n} \) but the same \(\beta \) thereby rescaling \(E_{\text{gap}} \) and therefore also \(T_1^{(\infty)} \) by a factor

1 When approximating the sum \(\sum_{\nu=\infty}^{\infty} \exp(-\nu^2) \) by the integral \(\int_{-\infty}^{\infty} \nu \exp(-\nu^2) \), the error lies below \(10^{-40} \) for \(0 < x < 0.1 \) [55]. When approaching the limit (4), \(x \rightarrow 0 \) and Eq. (11) thus becomes exact.
we thus have

Thus, using the canonical ensemble [49] we have shown the existence of a phase transition in the thermodynamic limit (4) [cf. Fig. 2].

The N-dependence of the specific heat shows that both in the high-temperature phase [Fig. 1 (b),(c)] and in the low-temperature phase [Fig. 1 (b)] predictions of the canonical and the microcanonical ensemble [49] agree [49]. As the mean energy is a monotonously increasing function of temperature [Eq. (14)] and as furthermore, the choice of the thermodynamic limit (4) leads to a mean energy $\propto N$ and an N-independent temperature scale, the $\propto N^2$ behavior displayed by the specific heat in Fig. 1 (d) can only occur in a small ($\propto 1/N$) temperature range in which both ensembles no longer are equivalent.

To conclude, we find the existence of a finite-temperature many-particle phase transition in a one-dimensional quantum many-particle model, the homogeneous Lieb-Liniger gas with attractive interactions [Eqs. (21) and (22); Fig. 2]. The low temperature phase consists of a macroscopic number of atoms being one large quantum matter-wave bright soliton with delocalized center-of-mass wave function (which does not display long-range order thus not violating the Mermin-Wagner theorem [13, 14]; the Landau criterion [56] which argues against the co-existence of two distinct phases is also not violated); the high temperature phase is a free gas. As a harmonic trap would facilitate soliton formation [58], we conjecture that the existence of a finite-temperature phase transition remains true for weak harmonic traps. In experiments, even the integrable Lieb-Liniger gas can thermalize as the wave guides are quasi-one-dimensional (cf. [11, 12]).

Via exact canonical recurrence relations we also numerically investigate the experimentally relevant case of some 100 atoms (cf. [5, 35, 36]) with the (experimentally realizable [44]) box potential. The spike-like specific heat provides further insight: the specific heat ($\propto N^2$) is the derivative (14) of an energy scaling not faster than $\propto N$ (4). At low temperatures all atoms form one soliton; the size of the soliton thus is an ideal experimental signature (cf. [1–10]).
I thank T. P. Billam, Y. Castin, S. A. Gardiner, D. I. H. Holdaway, N. Proukakis and T. P. Wiles for discussions and the UK EPSRC for funding (Grant No. EP/L010844/1 and EP/G056781/1). The data presented in this paper will be available online [59].

Note added: Recently, a related work appeared [60].

* christoph.weiss@durham.ac.uk

[1] L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L. D. Carr, Y. Castin, and C. Salomon, Science 296, 1290 (2002).
[2] K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet, Nature (London) 417, 150 (2002).
[3] S. L. Cornish, S. T. Thompson, and C. E. Wieman, Phys. Rev. Lett. 96, 170401 (2006).
[4] A. L. Marchant, T. P. Billam, T. P. Wiles, M. M. H. Yu, S. A. Gardiner, and S. L. Cornish, Nat. Commun. 4, 1865 (2013).
[5] P. Medley, M. A. Minar, N. C. Cizek, D. Berryrieser, and M. A. Kasevich, Phys. Rev. Lett. 112, 060401 (2014).
[6] G. D. McDonald, C. C. N. Kuhn, K. S. Hardman, S. Bennetts, F. J. Everitt, P. A. Altin, J. E. Debs, J. D. Close, and N. P. Robins, Phys. Rev. Lett. 113, 013002 (2014).
[7] J. H. V. Nguyen, P. Dyke, D. Luo, B. A. Malomed, and R. G. Hulet, Nat. Phys. 10, 918 (2014).
[8] A. L. Marchant, T. P. Billam, M. M. H. Yu, A. Rakonjac, J. L. Helm, J. Polo, C. Weiss, S. A. Gardiner, and S. L. Cornish, Phys. Rev. A 93, 021604(R) (2016).
[9] P. J. Everitt, M. A. Sooriyabandara, G. D. McDonald, K. S. Hardman, C. Quilivian, M. Perumbl, P. Wigley, J. E. Debs, J. D. Close, C. C. N. Kuhn, and N. P. Robins, ArXiv e-prints (2015), arXiv:1509.06844 [cond-mat.quant-gas].
[10] S. Lepoutre, L. Fouché, A. Boissé, G. Berthet, G. Salomon, A. Aspect, and T. Bourdel, ArXiv e-prints (2016), arXiv:1609.01560 [physics.atom-ph],
[11] I. E. Mazets and J. Schmiedmayer, New J. Phys. 12, 055023 (2010).
[12] S. P. Cockburn, A. Negretti, N. P. Proukakis, and C. Henkel, Phys. Rev. A 83, 043619 (2011).
[13] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
[14] P. C. Hohenberg, Phys. Rev. 158, 383 (1967).
[15] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Phys. Rev. Lett. 81, 3108 (1998).
[16] M. Greiner, O. Mandel, T. Esslinger, T. Hänsch, and I. Bloch, Nature (London) 415, 8687 (2002).
[17] W. Zwerger, J. Opt. B 5, 59 (2003).
[18] L. Cincio, J. Dziarmaga, M. M. Rams, and W. H. Zurek, Phys. Rev. A 75, 052321 (2007).
[19] R. Kanamoto, L. D. Carr, and M. Ueda, Phys. Rev. A 81, 023625 (2010).
[20] Z. Hadzibabic, P. Kruger, M. Cheneau, B. Battelier, and J. Dalibard, Nature (London) 441, 1118 (2006).
[21] L. Onsager, Phys. Rev. 65, 117 (1944).
[22] A. Gelfert and W. Nolting, J. Phys.: Condens. Matter 13, R505 (2001).
[23] M. Takahashi, Thermodynamics of one-dimensional solvable models (Cambridge Univ. Press, Cambridge, 2005).
[24] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[25] I. L. Aleiner, B. L. Altshuler, and G. V. Shlyapnikov, Nat. Phys. 6, 900 (2010).
[26] Y. Lai and H. A. Haus, Phys. Rev. A 40, 854 (1989).
[27] Y. Castin and C. Herzog, C. R. Acad. Sci. Paris, Ser. IV 2, 419 (2001), arXiv:cond-mat/0012040.
[28] P. Calabrese and J.-S. Caux, J. Stat. Mech. 2007, P08032 (2007).
[29] D. Muth and M. Fleischhauer, Phys. Rev. Lett. 105, 150403 (2010).
[30] E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).
[31] J. B. McGuire, J. Math. Phys. 5, 622 (1964).
[32] R. Seiringer and J. Yin, Commun. Math. Phys. 284, 459 (2008).
[33] S. E. Pollack, D. Dries, E. J. Olson, and R. G. Hulet, 2010 DAMOP: Conference abstract, http://meetings.aps.org/link/BAPS.2010.DAMOP.R4-1.
[34] L. D. Carr and J. Brand, Phys. Rev. Lett. 92, 040401 (2004).
[35] C. Weiss and Y. Castin, Phys. Rev. Lett. 102, 010403 (2009).
[36] A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Phys. Rev. A 80, 043616 (2009).
[37] K. Sacha, C. A. Müller, D. Delande, and J. Zakrzewski, Phys. Rev. Lett. 103, 210402 (2009).
[38] A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Phys. Rev. Lett. 106, 240401 (2011).
[39] B. Gertjerenken, T. P. Billam, C. L. Blackley, C. R. Le Sueur, L. Khaykovich, S. L. Cornish, and C. Weiss, Phys. Rev. Lett. 111, 100406 (2013).
[40] L. Barbiero and L. Salasnich, Phys. Rev. A 89, 063605 (2014).
[41] P. Biemias, K. Pawlowski, M. Gajda, and K. Rzazewski, EPL (Europhys. Lett.) 96, 10011 (2011).
[42] N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett. 15, 240 (1965).
[43] J. F. Currie, J. A. Krumhansl, A. R. Bishop, and S. E. Turling, Phys. Rev. B 22, 477 (1980).
[44] T. F. Schmidtutz, I. Gotlibovych, A. L. Gaunt, R. P. Smith, N. Navon, and Z. Hadzibabic, Phys. Rev. Lett. 112, 040403 (2014).
[45] V. Dunjko, C. P. Herzog, Y. Castin, and M. Olshanii, eprint arXiv:cond-mat/0306514 (2003), arXiv:cond-mat/0306514, 2010 DAMOP:
[46] A. G. Sykes, P. D. Drummond, and M. J. Davis, Phys. Rev. A 76, 063620 (2007).
[47] M. Abramowizt and I. A. Stegum, Pocketbook of Mathematical Functions (Verlag Harri Deutsch, Thun, 1995).
[48] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Clarendon Press, Oxford, 2003).
[49] R. K. Pathria and P. D. Beale, Statistical Mechanics (Butterworth-Heinemann, Oxford, 2011).
[50] F. Calogero and A. Degasperis, Phys. Rev. A 27, 123 (1980).
[51] E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics (Clarendon Press, Oxford, 1980).
[52] R. G. Hulet, 2010 DAMOP: Conference abstract, http://meetings.aps.org/link/BAPS.2010.DAMOP.R4-1.
[53] See Supplemental Material at http://link.aps.org/for an explanation why the Landau criterion (discussed in [60]) does not apply to the Lieb-Linger model with attractive interactions (see also [60]).
[54] T. P. Billam, S. A. Wrathmall, and S. A. Gardiner, Phys. Rev. A 85, 013627 (2012).
[55] C. Weiss, http://collections.durham.ac.uk/files/r1f7623c56z, http://dx.doi.org/10.15128/r1f7623c56z (2016), “Finite-
temperature phase transition in a homogeneous one-dimensional gas of attractive bosons: Supporting data”.

[60] C. Herzog, M. Olshanii, and Y. Castin, Comptes Rendus Physique 15, 285 (2014), arXiv:1311.3857.