Effect of deposition time on the structure, direct and indirect energy gap of nanoparticles \(\text{CdO} \) thin films deposited by chemical bath deposition technique

Salah Abdul-Jabbar Jassim\(^1\), Eman Mohammed Ali Nassar\(^2\)

\(^1\)Department of Optical Technology, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq

\(^2\)Department of Physics, College of Education and Applied Science, Hajjah University, Hajjah, Yemen

E-mail: salah.jassim@alayen.edu.iq

Abstract. In this research, cadmium oxide (CdO) nanoparticle thin films have been prepared at room temperature using a chemical bath deposition (CBD) technique, and the effect of the deposition time were studied. CdO thin films have been deposited on glass substrate from cadmium chloride (\(\text{CdCl}_2 \)) as \(\text{Cd}^{2+} \) ions source and sodium hydroxide NaOH as \(O^{-2} \) ions source. The pH value (acidity level) of the chemical bath was fixed at about 11. The CdO thin films structures were analyzed by X-ray diffraction. It shows that all the prepared thin films have a cubic polycrystalline structure with a preferential orientation along (111) plane. All structural parameters were calculated. Particle size for the preferential orientation is calculated between (19.1 - 35.5 nm). It is found that the grain size increased with increasing the deposition time. UV-Vis spectrophotometer was used to study the optical properties, and a blue shift in the absorption peaks was noticed. The energy gap values (direct transition and indirect) calculated from the absorption spectrum located between (3.026 - 3.409 eV) for direct transitions and (2.197-2.917 eV) for indirect transitions, and this indicates that all CdO thin films prepared nanoparticles. We found that the energy gap decreased with increasing the deposition time.

Keywords; CdO thin film, chemical bath deposition method, Nanostructured, energy band gap.

1. Introduction

Nanoparticles have attracted great interest in recent years due to their size dependent properties and wide range of applications [1, 2]. Transparent conducting oxides (TCOs), such as pure and doped, \(\text{ZnO}, \ \text{SnO}_2, \ \text{BaO}, \ \text{Fe}_2\text{O}_3, \ \text{BiClO}, \ \text{Cu}_2\text{O} \) and CdO have been studied because of their utilization in optoelectronic device technology. Particularly, \(\text{CdO} \) based transparent conducting oxide (TCOs) are of great interest due to their metal like good optical transparency in the visible region and charge transport behavior with an exceptionally large carrier mobility [3]. CdO compound is reddish brown in color, and is formed by burning of Cd in air. The oxide is not soluble in water, [4]. CdO is a known n-type semiconductor with the direct band gap energy of 2.2 - 2.8 eV [5], 2.5 eV [6], 2.3 eV [7], 2.25-2.9 eV [8], 2.2-2.5 eV [9],
and the indirect band gap of 1.98 eV [6], 1.36 eV [7], 1.36-1.98 eV [9]. In fact, the differences in the band gap energy are due to the lattice’s defects in the crystalline structure [9]. Due to the defect of oxygen vacancies and cadmium interstitials, CdO has special features such as low resistivity (10^{-2} to 10^{-4} \Omega \text{ cm}) [8]. Also, low band gap and high transmission make it applicable solar cells, photovoltaic cell, photodiodes, phototransistors, transparent electrodes, optical communications, smart windows, flat panel display, liquid crystal displays and IR detectors [10, 11, 12]. There are different methods to prepare CdO thin films such as chemical bath deposition [13], Spray pyrolysis [14], Sol-gel [15] vacuum evaporation [16], successive ionic layer adsorption and reaction (SILAR) method [17]. Among these techniques, CBD method is widely used because it does not require vacuum and sophisticated instrumentation, the starting chemicals are commonly available (simple) and cheap (relatively cost effective) and can be applied in a large area of deposition at low temperature [18,19]. The optical absorption of CdO thin films were accomplished using UV-Vis spectrophotometer Cary50 Cm-Exlenain scan software in the wavelength range of [190-1100 nm] at room temperature, and the back correction of the glass substrate has been taken in each measurement. The structural characterization of the CdO thin films were accomplished by analyzing the X-ray diffraction patterns obtained using a computer software (MDI/JADE 5) Pgeneral XD-2 X-ray diffractometer (\lambda= 1.5405 \text{ Å} for Cu-K\alpha, current: 20.4 mA, voltage: 36.3 kV), The range of scan in 20 of (3-75°) with scan speed 4°/min. The film thickness (t) was found by gravimetric weight difference method. This work focuses on the Synthesis of CdO nanoparticles thin film on glass substrate using (CBD) technique at room temperature and with different chemical deposition time. The structural and optical characteristics of the prepared films were investigated.

2. Preparations of CdO thin films
Microscopic glass slides of (75 × 25 × 1 mm^3) were used as substrates during the deposition process. The substrate was first cleaned with water and soap, after that immersed in chromic acid and boiling for one hour, then cleaned by De-ionized water. Finally it immersed in acetone and rinsed with De-ionized water to remove the surface contaminations and to make the surface more conductive for uniform film deposition. The deposition process was carried out at room temperature using cadmium chloride monohydrate (CdCl_2\cdot H_2O, Merck, 98% purity concentration (0.05 Mol.) as Cd^{+2} ion source and sodium hydroxide (NaOH, Scharlau, 99% purity).as O^{2-} ions as shown in Eq. (1)

\[
\text{CdCl}_2 + 2\text{NaOH} \rightarrow \text{Cd(OH)}_2 + 2\text{NaCl}
\]

(1)

For the complex formation, an excess ammonium hydroxide (NH_4OH) solution was added (28%) until the clear solution reaches a pH of 11. This clear solution was kept under stirring, and then the substrates were submerged in the solution for (12, 24, 36 and 48 hrs.). Whitish films of Cd(OH)_2 were formed on glass substrates. The (Cd(OH)_2) films were heated in air at (623 K) for (2 hrs), and the films turn to brown. During the heating process the water vapor rises as shown in Eq. (2)

\[
\text{Cd(OH}_2) \xrightarrow{\text{heat}} \text{CdO solid + H}_2\text{O gas}
\]

(2)

These slides were inclined vertically at 20° angle to the wall of the beaker, and a 3 ml of hydrazine hydrate was added to enhance the adhesion under a constant stirrer (80 rpm). It is noted that the fresh solution should be continuously stirred to obtain uniform distribution of the chemical components,

3. Theory and calculation

3.1. Structural parameters

3.1.1. Interplanar distance (d)
Bragg’s equation was used to calculate the inter-planar distance (d) [20]
\[n\lambda = 2d \sin \theta \]

where \((n)\) is an integer order of the corresponding reflection, \((\lambda)\) is the incidents wavelength, \((\theta)\) is Bragg’s angle

3.1.2. Lattice constant \((a)\)

The cubic structure lattice constant \((a)\) is calculated using the relation [20]

\[a = d (h^2 + k^2 + l^2)^{1/2} \]

where \((h k l)\) are Miller indices.

3.1.3. Crystallite size \((D)\)

Debye-Scherrer's formula was used to calculate the crystallite size \((D)\) [21]:

\[D = \frac{0.9 \lambda}{\beta \cos \theta} \]

where \((\lambda)\) is the wavelength \((0.15406 \text{ nm})\) for Cu-K\(\alpha\) source, \((\beta)\) is (FWHM) full width half maximum of the peak intensity in radians, and \((\theta)\) is experimental diffraction angle values.

3.1.4. Average strain \((\varepsilon)\)

The strain \((\varepsilon)\) is a macroscopic measure of deformation. It is calculated by [21]:

\[\varepsilon = \frac{\beta \cos \theta}{4} \]

3.1.5. Dislocation density \((\delta)\)

It is the amount of the defects in a crystal. The simple approach of Williamson and Smallman is used to evaluate it by: [22]

\[\delta = \frac{1}{D^2} \]

where \((D)\) is the average crystallize size.

3.1.6. Texture coefficient \((TC)\)

\((TC)\) of CdO thin films is calculated to quantify the preferential orientation of the films [23]

\[TC(hkl) = \frac{l(hkl)/I(hkl)}{\Sigma l(hkl)/l(hkl)} N \]

where \((l)\) is the measured intensity, \((I)\) is the (JCPDS) standard intensity, and \(N\) the reflection number.

\(TC > 1\) implies the preferentially oriented sample.

3.2. Optical study

3.2.1. Absorption coefficient \((\alpha)\)

It is calculated for thin films using Lambert law [20]

\[\alpha = 2.3026 \frac{A}{t} \]

where \((A)\) is absorbance, \((t)\) is the film thickness.

3.2.2. Energy band gap \((E_g)\)

Energy band gap \((E_g)\) of the films was calculated using Tauc equation [24]:

\[a\nu = C(\nu - E_g)^n \]

where \(\nu\) is frequency, \(E_g\) is the energy gap, \(C\) and \(n\) are constants.

\[a = 2.3026 \frac{A}{t} \]

where \((A)\) is absorbance, \((t)\) is the film thickness.
where \((hn)\) is the incident photon energy, \(C\) is a constant, \((E_g)\) is the band gap and \((n)\) is an index which can take values \(1/2, 2, 3/2,\) and \(3\) corresponding to allowed direct, allowed indirect, forbidden direct and forbidden indirect transitions respectively.

3.2.3. Particles size of nanoparticles
The particle sizes is calculated by Brus relation [25]

\[
E_g^* = E_g + \frac{\pi^2}{8R^2} \left(\frac{1}{m_e^n} + \frac{1}{m_h^n} \right) - \frac{1.8e^2}{\epsilon R}
\]

(11)

where \((E_g^*)\) is the size dependent band gap, \((E_g)\) is the energy band gap of the bulk sample, \(R\) is the particle size, \((m_e^n)\) and \((m_h^n)\) are the effective masses of electron and hole respectively \((0.21 m_e)\) for \((CdO)\), \((\epsilon)\) is the dielectric constant \((6.07)\) for \((CdO)\) [26].

4. Result and discussion

4.1. Thickness measurement
The film thickness \((t)\) of \((CdO)\) films was found by gravimetric weight difference method by [27]

\[
t = \frac{m}{\rho \times A}
\]

(12)

where \((m)\) is the mass of the deposited films in gram \((g)\), \((\rho)\) is the density of the deposited material in \((g/cm^3)\) and \(A\) is the area of the deposited film in \(cm^2\). Fig.1 shows the variation of the \((CdO)\) films thickness with deposition time. It is clear that the thickness increases with increasing the deposition time.

4.2. Structural study

![Figure 1. Variation of CdO films thickness with deposition time.](image-url)
Fig. 2 shows the XRD patterns of CdO thin films deposited at different time (12, 24, 36) h at room temperature and annealed at 623k for (2 h). Fig. 2 shows that the diffraction peaks for CdO films observed at 2θ=(32.91°, 38.313°, 55.2°, 65.858°, 69.211°) are linked to (111), (200), (220), (311), and (222) planes respectively. This indicates that CdO films are polycrystalline in nature with a cubic form as compared with the standard data of CdO (JCPDS file no.75-0592) [28] as shown in Table 1. P. Perumal et al. observed similar results [29]. XRD shows an increase in the crystallinity with increasing the deposition time. Also, as the deposition time increases, the diffraction peaks are slightly shifted in the direction of higher 2θ values and its intensity increases. The lattice constant (a) of CdO films was estimated by Eq. 4, and the observed (d) spacing was calculated from Bragg’s condition Eq. 3. We found a good agreement between the estimated values in this study and the standard data of CdO (JCPDS file no.75-0592) [28] (see Table 1). The FWHM (β) have been evaluated for all diffraction peaks. The FWHM values decreases as the deposition time increases. The Origin software was used in this study for fitting. Texture coefficient (TC) was found to be in the range of (0.591-1.328) by Eq.8, and as the deposition time increases the (TC) slightly increases. The evaluation of the TC indicates the preferred orientation of the films along (111) plane has high crystallinity. Enhancing the preferred orientation is associated with increasing the number of the grains along this plane [30]. The calculated crystallite size (D) was in the range of (19.1- 41.06 nm) by Scherer’s formula Eq.5, and as the deposition time increases, the crystallite size increases as shown in Fig. 3. The average strain (ε) was found to be in the range of (0.00148 - 0.00641) by Eq.6, and as the deposition time increases, the average strain (ε) decreases. The oxygen vacancies and the interstitial atoms incorporated in the CdO lattice may be caused the strain [31]. Dislocation density (δ) was found to be in the range of (0.00059 - 0.00274 nm$^{-2}$) by Eq.7, and as the deposition time increases, the dislocation density decreases.
Figure 2. The X-ray diffraction of CdO films.
Figure 3. Variation grain size with deposition time

Table 1. The experiment and standard values of some XRD parameters for CdO films

Dep. time (hrs)	2θ Observe (deg.)	2θ Stand (deg.)	d Observe (nm)	d Stand (nm)	a Observe (nm)	a Stand (nm)	h k l	I% Observe	I% Stand
12	32.91	33.019	0.2721	0.2710	0.4714	0.4698	111	100	100
	38.313	38.321	0.2349	0.2347	0.4698	0.4694	200	80	84
24	55.2	55.299	0.1664	0.1659	0.4706	0.4694	220	38.5	45.2
	65.858	65.935	0.1418	0.1415	0.4703	0.4694	311	28.5	
	69.211	69.271	0.1357	0.1355	0.4702	0.4694	222	8.1	12.2
	33.02	33.019	0.2713	0.2710	0.4698	0.4694	111	100	100
	38.35	38.321	0.2347	0.2347	0.4694	0.4694	200	75	84
36	55.36	55.299	0.165	0.165	0.4693	0.4694	220	35	45.2
	66.01	65.935	0.1415	0.1415	0.4693	0.4694	311	13	28.5
	69.358	69.271	0.1355	0.1355	0.4693	0.4694	222	9	12.2
	33.221	33.019	0.2697	0.2710	0.4671	0.4694	111	100	100
	38.38	38.321	0.2345	0.2347	0.4690	0.4694	200	79	84
42	55.35	55.299	0.1660	0.1659	0.4694	0.4694	220	32	45.2
	66.2	65.935	0.1411	0.1415	0.4681	0.4694	311	17.1	28.5
	69.5	69.271	0.1352	0.1355	0.4685	0.4694	222	6.3	12.2
4.3. Optical study

Fig.4 reveals that the absorbance spectra (A) of the prepared films increases gradually with increasing the deposition time which might be due to increase the grain size with increasing the deposition time that improves the crystallinity and increases the thickness of the films [29]. The optical absorbance of the films decreases with the wavelength. These spectra reveal that CdO films have less absorbance in the visible and high wavelength region and more absorbance in the UV region [32].

The absorption band of nanoparticles shows a blue shift due to the quantum confinement compared with bulk CdO particles. This optical phenomenon indicates that these nanoparticles show quantum size effect [33].

Fig.5 shows the absorption coefficient (α) as a function of the wavelength calculated from Eq.9. It reveals that in the shorter wavelengths, the absorption coefficient (α) exhibits high values which means that there is a large probability of the allowed direct transition. Then (α) decreases with increasing the wavelength. The absorption coefficient (α) values found to be of the order of 10^4 to 10^5 cm$^{-1}$. Fig.6 shows a direct band gap of CdO films estimated from extrapolation the plot of $(\alpha h\nu)^{2}$ versus ($h\nu$) Eq.10. The direct band gap energies are (3.026, 3.096, 3.117 and 3.409) eV, and it decreases with increasing the deposition time as seen in Fig.8. These energies are in good agreement with the earlier results reported in [29], and higher than the bulk (2.3 eV). The increase in the band gap of the bulk is due to increasing the free electron concentration in the films. The shift of the band gap with the change in the carrier concentration can be explained by the Burstein-Moss shift [6]. Fig.7 shows the typical Tauc $(\alpha h\nu)^{1/2}$ vs. ($h\nu$) plot for an indirect band gap energy determination. The indirect band gap energy obtained in this case were (2.197, 2.502, 2.539 and 2.917) eV, and it decreases with increasing the deposition time. This energy is higher than the bulk (1.36 eV). Fig.8 shows the variation of the particle size with deposition time. The particle size increases with increasing the deposition time. This confirms the same effect as in XRD study. The particle size of CdO nanoparticles was estimated from Eq.11 in the range of (11.419-12.895) nm for direct energy gap, and (10.374 -12.923) nm for indirect energy gap, Table 3. There is a slightly disagreement between the particle size calculated from the preferred orientation plans using Eq.5 and that calculated from Eq.11.

Deposition time (hrs)	2θ (deg.)	β (FWHM, rad.)	βTC	Grain size (nm)	ϵ (average strain)	δ (dislocation density (nm$^{-2}$))
12	32.91	0.00757	1.209	19.1	0.00641	0.00274
38.313	38.31	0.00757	1.152	19.38	0.00545	0.0066
55.2	65.858	0.00757	0.806	21.81	0.00292	0.0021
69.211	69.21	0.00757	0.803	22.25	0.00274	0.00202
33.02	33.02	0.00613	1.295	23.59	0.00517	0.0018
38.35	38.35	0.00613	1.156	23.95	0.0044	0.00174
55.361	55.361	0.00613	1.003	25.54	0.00292	0.00153
66.01	66.01	0.00613	0.591	26.97	0.00236	0.00137
69.358	69.358	0.00613	0.955	27.8	0.0022	0.00123
33.221	33.221	0.00411	1.328	35.7	0.00344	0.0008
38.38	38.38	0.00411	1.249	35.76	0.00295	0.00078
55.35	55.35	0.00411	0.940	38.13	0.00196	0.00069
66.2	66.2	0.00411	0.797	40.31	0.00158	0.00062
69.5	69.5	0.00411	0.686	41.06	0.00148	0.00059

Table 2. Experimental values of XRD parameters of CdO films
Fig. 8 shows the variation of the particle size with energy gap. The particle size decreases with increasing the energy gap.

Figure 4. UV-Vis Absorbance (A) spectra of CdO films.

Figure 5. Absorption coefficient (α) as a function of wavelength (λ) of CdO films.
Figure 6. A direct band gap of CdO films.

Figure 7. The indirect band gap of CdO films.
Figure 8. Vibration of the calculated grain size and direct energy gap of CdO films

Table 3. Experimental values of energy gap, blue shift and the calculated particles size for CdO films

Deposition time (hrs.)	Direct energy gap E_g (eV)	Blue shift E_{shift} (eV)	Particle size D (nm)	Indirect energy gap E_g (eV)	Blue shift E_{shift} (eV)	Particle size D (nm)
12	3.409	1.109	11.419	2.915	1.555	10.374
24	3.117	0.817	11.823	2.539	1.179	11.532
36	3.096	0.796	12.29	2.502	1.142	12.033
48	3.026	0.726	12.895	2.197	0.837	12.923

5. Conclusions
CdO films have been successfully prepared with high quality, homogenous and grain size in the range of nanoparticles on glass substrates by CBD under different deposition time. The XRD tests of these films revealed that the deposited CdO thin films are polycrystalline in nature with cubic structure having (111) preferred orientation. The influence of the deposition time on the structural and optical properties is studied. By increasing the deposition time (thickness increases), the width of the diffraction peaks decreases resulted in increasing the grain size. We found that the average values of the grain size were in the range of (19.1-35.2 nm) for the preferred orientation indicating that the films are nanoparticles. The optical study revealed that the absorption spectra of CBD (CdO) films increased as the deposition time was increased. A blue shift in the optical gap has been observed for the absorption spectrum of the prepared CdO films, as an indication of quantum confinement effect. The absorption edge slightly shifts towards the higher wavelength with increasing deposition time. As the deposition time increases the energy gap decreases and the particle size increases.

6. References
[1] Naveen CS, Dinesha ML and Jayanna HS 2013 Effect of Fuel to Oxidant Molar Ratio on Structural and DC Electrical Conductivity of ZnO Nanoparticles Prepared by Simple Solution Combustion Method J. Mater. Sci. Technol. 29 (10) 898-902.
[2] Kathalingam N, Ambika MR, Kim J, Elanchezhiyan Y, Chae S and Rhee JK 2010 Chemical Bath Deposition and Characterization of Nanocrystalline ZnO Thin Films Mat. Sci. Polonia, 28 (2) 513-522

[3] Ziahari F and Ghodsi E 2011 Optical and Structural Studies of Sol-Gel Deposited Nanostructured CdO Thin Films: Annealing Effect Acta Phys. Polonica A 120 (3) 536-540.

[4] Balu R, Nagarethinam VS, Suganya M, Arunkumar N and Selvan G 2012 Effect of the Solution Concentration on the Structural, Optical and Electrical Properties of SILAR Deposited CdO Thin Films, J. Elect. Dev. 12 739-749.

[5] Kumaravel R, Menakaa S, Regina S, Snegaa M, Ramamurthia K and Jeganathan K 2010 Electrical, Optical and Structural Properties of Aluminum Doped Cadmium Oxide Thin Films Prepared by Spray Pyrolysis Technique Mat. Chem. Phys. 122 444 - 448.

[6] Lanje S, Ningthoujam RS and Ramchandra SJS 2011 Luminescence and Electrical Resistivity Properties of Cadmium Oxide Nanoparticles Indian J. Pure Appl. Phys. 49 234-238.

[7] Radi PA, Brito-Madurro AG, Madurro JM and Dantas NO 2006 Characterization and Properties of CdO Nanocrystals Incorporated in Polyacrylamide Braz. J. Phys. 36 (2A) 412-414.

[8] Henriquez R, Grez P, Muñoz E, Gómez H, Badán JA, Marotti RE and Dalchiele EA 2010 Optical Properties of CdSe and CdO Thin Films Electrochemically Prepared, Thin Solid Films 518 1774-1778.

[9] Tadjarodi HK and Imani M 2012 Synthesis, Characterization and Adsorption Capability of CdO Microstructure for Congo Red from Aqueous Solution, JNS 2 9-17.

[10] Balu R, Nagarethinam VS, Suganya M, Arunkumar N and Selvan G 2012 Effect of the Solution Concentration on the Structural, Optical and Electrical Properties of SILAR Deposited CdO Thin Films J. Elect. Dev. 12 739-749.

[11] Zheng BJ, Lian JS, Zhao L and Q. Jiang 2011 Optical and electrical properties of Sn-doped CdO thin films obtained by pulse laser deposition Vacuum 85 861-865.

[12] Al-Ogili HKJ 2011 Effect of Thickness to the Structure Properties of CdO Thin Films, Eng. and Tech. Journal, 29 (8) 1536-1544.

[13] Dhawale DS, More AM, Latthe SS, Rajpure KY and Lokhinde CD 2008 Room Temperature Synthesis and Characterization of CdO Nanowires by Chemical Bath Deposition (CBD) Method Appl. Surf. Sci. 254 3269-3273.

[14] YDOĞU S, ÇABUK G and ÇOBAN GM 2019 The Effects of Different Ga Doping on Structural, Optical and Electrical Properties of CdO Films J. Nat. Appl. Sci. 23 129-136,

[15] Aydemira S, Kösea S, Kilickayaa M and Özkanb V 2014 Influence of Al-doping on microstructure and optical properties of sol–gel derived CdO thin films Superlat. Microstruct. 71 72-81.

[16] Dakhel A and Henari FZ 2003 Optical Characterization of Thermally Evaporated Thin CdO Films Cryst. Res. Technol. 38 (11) 979 - 985.

[17] Yıldırım MA and Ates A 2009 Structural, Optical and Electrical Properties of CdO/Cd(OH)2 Thin Films Grown by the SILAR Method, Sensors Actuators A, 155 272-277.

[18] Al-Jawad SMH and Alogili HKJ 2009 Growth Kinetics of Chemically Deposited CdO Thin Films, Eng. Teach. J. 27 (11) 2335-2344.

[19] Kassim S and Nagalingam TW 2010 Tee, and H. S. Min, Effects of Deposition Period on the Chemical Bath Deposited Cu4SnS4 Thin Films, Rev. Soc. Quim Perú., 76 (1) 54-60.

[20] Barman J, Sarma KC, SaramaM and Sarma K 2008 Structural and Optical Studies of Chemically Prepared CdS Nanocrystalline Indian J. Pure Appl. Phys. 46 339 -343.

[21] Gulen Y, Sahin B, Bayansal F and Cetinkara HA 2014 Solution-phase synthesis of un-doped and Pb doped CdO films Superlattices Microstruct. 68 48–55.

[22] Balu R, Nagarethinam VS, Arunkumar N and Suganya M 2012 Nanocrystalline NiO Thin Films Prepared by A Low Cost Simplified Spray Technique Using Perfume Atomizer, J. Elect. Dev. 13 920-930.
[23] Jassim, SAJ, Zumaila AARA, Al Waly GAA 2013 Influence of substrate temperature on the structural, optical and electrical properties of CdS thin films deposited by thermal evaporation Res. Phys. 3 173–178.

[24] Suhail MH, Ibrahim IM and Rao GM 2012 Characterization and Gas Sensitivity of Cadmium Oxide Thin Films Prepared by Thermal Evaporation Technique, J. Elect. Dev. 13 965-974.

[25] Al-Hussam MA and Jassim SA 2012 Synthesis, structure, and optical properties of CdS thin films nanoparticles prepared by chemical bath technique J. Assoc. Arab Univ. Basic Appl. Sci. 11 27–31.

[26] Parvathi A, Peter AJ and Yoo CK 2013 Nonlinear Optical Properties in A quantum Dot of Some Polar Semiconductors Chin. Phys. Lett., 30 (10) 107301-1-5.

[27] Beevi MM, Anusuya M and Saravanan V 2010 Characterization of CdO Thin Films Prepared by SILAR Deposition Technique, Int. J. Chem. Engin. Appl. 1 (2) 151-154.

[28] Joint Committee on Powder Diffraction Standards, (Data File 75-0592).

[29] Perumal P, Gowri Manohari A, Valanarasu S, Kathalingam A, Rhee J, Soundaram N and Chandramohan R 2012 Influence of Deposition Time on the Microstructure and Transport Properties of CdO Thin Films Prepared by Chemical Bath Deposition JSEMAT, 2 71-75.

[30] Sakthivel S and Mangalaraj D 2011 Cadmium Oxide Nanoparticles by Sol-Gel and Vapour-Liquid-Solid Methods, Nano Vision 1 (1) 47-53.

[31] Shanmugavel G, Balu AR and Nagarethinam VS 2014 Preparation Of Cadmium Oxide Thin Films by Spray Technique Using Perfume Atomizer and Effect Of Solvent Volume on Their Physical Properties Int. J. Chem. Mat. Res. 2 (9) 88-101.

[32] Lalithambika KC, Shanthakumari K and Sriram S 2014 Optical Properties of CdO Thin Films Deposited by Chemical Bath Method Int. J. Chem Tech Res. 6 (5) 3071-3077.

[33] Negahdary M, Sadeghi SA, Hamrahi-michak M, Rezaei-Zarchi S, Salahi F, Mohammadi N, Azargoone E and Sayad A 2012 Direct Electron Transfer of Cytochrome C on Cadmium Oxide Nanoparticles Modified Carbon Paste Electrode Int. J. Electrochem. Sci. 7 6059-6069.