Complexity, Development, and Evolution in Morphogenetic Collective Systems

Hiroki Sayama

Center for Collective Dynamics of Complex Systems
Department of Systems Science and Industrial Engineering
Binghamton University, State University of New York
sayama@binghamton.edu

Abstract. Many living and non-living complex systems can be modeled and understood as collective systems made of heterogeneous components that self-organize and generate nontrivial morphological structures and behaviors. This chapter presents a brief overview of our recent effort that investigated various aspects of such morphogenetic collective systems. We first propose a theoretical classification scheme that distinguishes four complexity levels of morphogenetic collective systems based on the nature of their components and interactions. We conducted a series of computational experiments using a self-propelled particle swarm model to investigate the effects of (1) heterogeneity of components, (2) differentiation/re-differentiation of components, and (3) local information sharing among components, on the self-organization of a collective system. Results showed that (a) heterogeneity of components had a strong impact on the system’s structure and behavior, (b) dynamic differentiation/re-differentiation of components and local information sharing helped the system maintain spatially adjacent, coherent organization, (c) dynamic differentiation/re-differentiation contributed to the development of more diverse structures and behaviors, and (d) stochastic re-differentiation of components naturally realized a self-repair capability of self-organizing morphologies. We also explored evolutionary methods to design novel self-organizing patterns, using interactive evolutionary computation and spontaneous evolution within an artificial ecosystem. These self-organizing patterns were found to be remarkably robust against dimensional changes from 2D to 3D, although evolution worked efficiently only in 2D settings.

1 Introduction

Various living and non-living systems are collective systems in the sense that they consist of a large number of smaller components. Those microscopic components interact with each other to show a wide variety of self-organizing macroscopic structures and behaviors, which have been subject to many scientific inquiries [1]-[16].

Typical assumptions often made in earlier mathematical/computational models of self-organizing collectives include the homogeneity of individual compo-
ponents’ properties and behavioral rules within a collective. Such homogeneity assumptions have merit in simplifying models and allowing for analytical prediction of the models’ macroscopic behaviors. However, such homogeneity assumptions would not be adequate to capture more complex nature observed in real-world complex systems, such as multi-cellular organisms’ morphogenesis and physiology [4, 9], termite colony building and maintenance [10, 11], and growth and self-organization of human social systems [5, 9]. Those real-world complex collectives consist of heterogeneous components whose behavioral types can change dynamically via active information exchange among locally connected neighbors. These properties of components facilitate self-organization of highly nontrivial morphological structures and behaviors [17].

In this chapter, we present a brief summary of our recent effort in investigating several aspects of complex morphogenetic collective systems that involve (1) heterogeneous components, (2) dynamic differentiation/re-differentiation of the components, and (3) local information sharing among the components. Our objective was to understand the implications of each of those properties for developmental processes of the collectives, and to develop effective methodologies to design novel artificial morphogenetic collective systems.

The rest of this chapter is structured roughly following the topics of this proceedings volume—evolution, development, and complexity—though we will discuss them in a reversed order. We will first propose a classification scheme of several distinct complexity levels of morphogenetic collective systems based on their components’ functionalities. Then we will computationally investigate how the developmental processes, i.e., self-organization of morphological patterns created by interacting components, will be affected by the difference in the complexity levels of those systems. Finally, we will discuss evolutionary methods to design nontrivial self-organization of morphogenetic collective systems, with a brief additional remark on their robustness/sensitivity to spatial dimensional changes.

2 Functional Complexity Levels of Morphogenetic Collective Systems

Our first task is to identify what kind of properties are typically seen in real-world complex collective systems but often omitted for simplicity in the literature on mathematical/computational models of those systems. In [17], we selected the following three as the key properties essential for self-organization of morphogenetic collective systems yet often ignored in the literature:

1. Heterogeneity of components
2. Differentiation/re-differentiation of components
3. Local information sharing among components

Heterogeneity of components means that there are multiple, distinct types of components whose behaviors are different from each other. Note that these types are not necessarily a simple rewording of dynamical states. Instead, each
type may have multiple dynamical states within itself, while its behavioral rules as a whole (e.g., state-transition rules) should be different from those of other types. Examples include different cell types within an organism, individuals with different phenotypical traits in a colony of social insects, and different professions of individuals in human society. Differentiation/re-differentiation means that each individual component will assume one of those types (differentiation), and potentially switch from one type to another under certain conditions (re-differentiation). Finally, local information sharing means that the individual components are actively sending/receiving encoded signals among them for coordination of their collective behaviors, such as cell-cell communication with molecular signals, pheromone-based communication among social insects, and human communication in languages.

Mathematically speaking, distinguishing presence/absence of each of these three properties would define a total of \(2^3 = 8\) possible classes of collective systems. However, we claim that there are some hierarchical relationships among those three properties. Specifically, differentiation/re-differentiation of components require, almost tautologically, the multiple possibilities of component types. Furthermore, we assumed that local information sharing would make sense only if the components had an ability to change their types dynamically based on the received information\(^1\). Taking these requirement relationships into account, we proposed the following four hierarchical classes of complexity levels of morphogenetic collective systems [17] (Fig. 1):

Class A Homogeneous collective
Class B Heterogeneous collective
Class C Heterogeneous collective with dynamic (re-)differentiation
Class D Heterogeneous collective with dynamic (re-)differentiation and local information sharing

The dynamics of components in each of these four classes can be represented mathematically as follows [17]:

Class A \(a_{i}^{t+1} = F(o_{i}^{t})\)

Class B \(a_{i}^{t+1} = F(s_{i}^{t}, o_{i}^{t})\)

Class C \(a_{i}^{t+1} = F(s_{i}^{t}, o_{i}^{t}), s_{i}^{t+1} = G(s_{i}^{t}, o_{i}^{t})\)

Class D \(a_{i}^{t+1} = F(S_{i}^{t}, O_{i}^{t}), s_{i}^{t+1} = G(S_{i}^{t}, O_{i}^{t}), S_{i} = \{s_{m}^{t} | m \in N_{i}^{t}\}, O_{i} = \{o_{m}^{t} | m \in N_{i}^{t}\}\)

Here \(a_{i}^{t}, o_{i}^{t}, s_{i}^{t}\) are individual component \(i\)’s behavior, observation, and type at time \(t\), respectively (\(s_{i}\) is a time-invariant type of component \(i\)); \(F\) and \(G\) are model functions; and \(N_{i}^{t}\) is the set of component \(i\)’s neighbors at time \(t\). These

\(^1\) We note that this assumption is much less obvious than the first one, and if we did not adopt it, we would obtain \(3 \times 2 = 6\) different classes. In this chapter, we limit our focus on the four-level classification presented above.
mathematical formulations help clarify the hierarchical relationships among the four complexity levels. Following these formulations, we will construct a specific computational model of morphogenetic collective systems to facilitate systematic investigation of the proposed four complexity levels and their characteristics.

3 Developmental Models: Morphogenetic Swarm Chemistry

We utilized our earlier “Swarm Chemistry” model \[18,19\] to construct a new computational model of morphogenetic collective systems. Swarm Chemistry is a revised version of Reynolds’ well-known self-propelled particle swarm model known as “Boids” \[20\]. In Swarm Chemistry, multiple types of components with different kinetic behavioral parameters are mixed together. Their behavioral parameters are represented in a “recipe” as shown in Fig. 2. Therefore, the Swarm Chemistry model is already capable of representing both Class A (homogeneous) and Class B (heterogeneous) collective systems. In Swarm Chemistry, components with different types spontaneously segregate from each other even without any sophisticated sensing or control mechanisms, often forming very intricate self-organizing dynamic patterns \[18,19\].
To make individual components capable of dynamic differentiation/re-differentiation and local information sharing, we made several extensions to Swarm Chemistry \[17\]. First, we made each individual component able to obtain information about its own dynamical type and its local environment in the form of observation vector o (Fig. 3), and then utilize this vector to decide which dynamical type it should assume. This allows for dynamic (re-)differentiation required for Class C/D collective systems. This decision making process was implemented via multiplication of preference weight matrix U to the observation vector o, so that letting $U = 0$ represents Class A/B systems as well. The second model extension was to introduce local information sharing coefficient w, with which the actual input vector multiplied by U was calculated as the weighted average between the component’s own observation vector and the local average of all the observation vectors of neighbor components. Changing the value of w represents switching between Class C and Class D collective systems. With these, the four complexity levels discussed in the previous section were fully parameterized as shown in Table \[\text{Table 1}\]. This expanded model is called “Morphogenetic Swarm Chemistry” hereafter. More details can be found in \[17\].
Fig. 3. Observation vector o of each particle used in Morphogenetic Swarm Chemistry. The first several values of o encode the current type of the particle, while the rest captures the measurements of its local environment. A constant unity is also included at the end of the vector.

4 Differences of Developmental Processes Across Complexity Levels

We conducted a series of computational experiments using the Morphogenetic Swarm Chemistry model to investigate the differences of their developmental processes across the four complexity levels. This was conducted by detecting statistical differences in topologies and behaviors of self-organizing patterns that were collected via Monte Carlo simulations using randomly sampled parameter values. Topological and behavioral features of self-organizing patterns were measured using several kinetic metrics (average speed, average absolute speed, average angular velocity, average distance from center of mass, average pairwise distance) as well as newly developed network analysis-based metrics [16, 21, 22] (number of connected components, average size of connected components, homogeneity of sizes of connected components, size of largest connected component, average size of non-largest connected components, average clustering coefficient, link density) that were measured on a network reconstructed from the individual components’ positions in space [17]. These new metrics allowed us to capture topological properties of the collectives that would not have been captured by using simple kinetic metrics only.

Results showed significant differences in most of the metrics between the four different classes of morphogenetic collective systems [17]. Specifically, het-
Table 1. Parameterization of four complexity levels of Morphogenetic Swarm Chemistry models.

Class	Recipe	U	w
A	Single-type	0	0
B	Multiple-type	0	0
C	Multiple-type	\neq 0	0
D	Multiple-type	\neq 0	\neq 0

Fig. 4. Examples of experimental results showing clear differences of morphological properties among the four classes. Left: Distributions of the average size of connected components in generated morphologies. Right: Distributions of the size of the largest connected component in generated morphologies. In both plots, Classes C and D show intermediate distributions between those of Class A and Class B.

erogeneity of components had a strong impact on the system’s structure and behavior, and dynamic differentiation/re-differentiation of components and local information sharing helped the system maintain spatially adjacent, coherent organization. Statistical differences were particularly significant for topological features, demonstrating the effectiveness of our newly developed network analysis-based metrics. It was also observed that the properties of Class C/D collective systems tended to fall in between Class A and Class B in many metrics (Fig. 4). Moreover, it was noted that, as a byproduct, stochastic re-differentiation of components naturally realized a self-repair capability of self-organizing morphologies [19][20].

As described above, straightforward statistical analysis placed the properties of Class C/D systems somewhere in between Class A and Class B, while it did not clarify whether Class C/D systems had any truly unique properties different from Classes A or B. Therefore, we conducted more in-depth, meta-level comparative analysis of behavioral diversities between those four classes of morphogenetic
Fig. 5. Behavioral diversities of morphogenetic collective systems measured using three metrics: (a) approximated volume of behavioral coverage, (b) average pairwise distance of behaviors, and (c) differential entropy of behaviors. In all of the three plots, Classes C and D showed greater behavioral diversity than Classes A and B.

collective systems [24]. Behavioral diversities were measured for each class by computing the approximated volume of behavior space coverage, the average pairwise distance of two randomly selected behaviors in the behavioral space, and the differential entropy [25] of the smoothed behavior distribution. More details can be found in [24]. Results indicated that the dynamic (re-)differentiation of individual components, which was unique to Class C/D systems, played a crucial role in increasing the diversity in possible behaviors of collective systems (Fig. 5). This new finding revealed that our previous interpretation that Class C/D systems would behave more similarly to Class A than to Class B was not quite accurate. Rather, the difference between Classes A/B and Classes C/D helped make more diverse collective structures and behaviors accessible, providing for a larger “design space” for morphogenetic collective systems to explore.

5 Evolutionary Design of Morphogenetic Collective Systems

The remaining question we want to address is how to design novel self-organizing patterns of morphogenetic collective systems. Unlike conventional engineered
systems for which clear design principles and methodologies exist, complex systems show nontrivial emergent macroscopic behaviors that are hard to predict and design from microscopic rules bottom-up [26]. To design such systems, the evolutionary approach has been demonstrated to be one of the most effective means [27,28]. Here we adopt two different evolutionary approaches: one is interactive evolutionary computation (IEC) [29,32] and the other is spontaneous evolution within a simulated artificial ecosystem [33,35].

In the IEC approach, we developed a novel IEC framework called “Hyper-Interactive Evolutionary Computation (HIEC)” [31,32], in which human users act not only as a fitness evaluator but also as an active initiator of evolutionary changes. HIEC was found to be highly effective in exploring the extremely high dimensional design space of Swarm Chemistry, discovering a number of nontrivial, life-like morphological patterns and dynamic behaviors (Fig. 6). We also found that these designed self-organizing patterns were remarkably robust against dimensional changes from 2D to 3D [36] (Fig. 7), which is highly unique given that behaviors of complex systems generally depend heavily on spatial dimensions in which they develop.

Finally, in the spontaneous evolution approach, we replaced the human users in IEC with microscopic “physics laws” that would govern transmission of recipe information among individual components (as evolutionary operators acting at local scales) and macroscopic measurements of “interestingness” (as assessments of evolutionary processes at global scales) [34,35]. Specifically, recipe information was assumed to be transmitted between two colliding particles (with stochastic

Fig. 6. Several examples of self-organizing life-like patterns in Swarm Chemistry evolved using the interactive evolutionary computation approach.

For more evolved patterns, see the Swarm Chemistry website: http://bingweb.binghamton.edu/~sayama/SwarmChemistry/
mutations possible at a small probability). The direction of transmission was determined by specific microscopic laws. These laws were perturbed globally at certain intervals to introduce variations and thus keep the evolutionary processes active and ongoing. The interestingness of evolution was measured by spatial structuredness (i.e., deviation from random homogeneous patterns) and temporal novelty production rates. More details can be found in \[34,35\]. This spontaneous evolution approach was shown to be very powerful in continuously producing nontrivial morphologies. An example is given in Fig. 8 and other illustrative evolutionary processes can be found online\[^3\].

In the meantime, it was also noticed that evolutionary exploration was much less active in three-dimensional space than in two-dimensional one \[37\], despite the robustness of self-organization against the same dimensional changes. This sensitivity was considered to be due to the fact that spontaneous evolution heavily relies on collisions between particles, which would become fundamentally less frequent in 3D space \[38,39\].

6 Conclusions

In this chapter, we gave a condensed summary of our recent project that explored the complexity, development, and evolution of morphogenetic collective systems. The classification scheme of morphogenetic collective systems we proposed was among the first that focuses on functional and interactive capabilities of microscopic individual components. By orthogonalizing microscopic components’ capabilities with macroscopic system behaviors, one can define a design

\[^3\] https://www.youtube.com/user/ComplexSystem/videos
space for various forms of morphogenetic collective systems, which will be useful for both classification of biological collectives and design of self-organizing artificial collectives.

The numerical simulation results obtained by using Morphogenetic Swarm Chemistry demonstrated that each of the characteristic properties of collective systems has unique, distinct effects on the resulting morphogenetic processes. Heterogeneity of components has quite significant effects on various properties of the collective systems, while the ability for individuals to dynamically switch their types contributes to the spatial coherence, the ability to self-repair, and the increase of behavioral diversity of those collective systems. Such behavioral richness would be the necessary ingredient for collective systems to evolve sophisticated structures and/or functions, which was partly demonstrated in the evolutionary approaches also discussed in this chapter.

This short chapter is obviously not sufficient to cover the whole scope of the project, which also produced several more application-oriented contributions that were not discussed here. Interested readers are encouraged to visit our project website.

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. 1319152. The author thanks Benjamin James Bush, Shelley Dionne, Craig Laramee, David Sloan Wilson, and Chun Wong for their contributions to this project.

References

1. Bar-Yam, Y.: Dynamics of Complex Systems. Addison-Wesley (1997)

http://bingweb.binghamton.edu/~sayama/NSF-RI-MCS/
2. Ben-Jacob, E., Cohen, I., Gutnick, D.L.: Cooperative organization of bacterial colonies: from genotype to morphotype. Annual Reviews in Microbiology 52(1), 779–806 (1998)
3. Parrish, J.K., Edelstein-Keshet, L.: Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284(5411), 99–101 (1999)
4. Solé, R., Goodwin, B.: Signs of Life: How Complexity Pervades Biology. Basic Books (2000)
5. Macy, M.W., Willer, R.: From factors to factors: computational sociology and agent-based modeling. Annual Review of Sociology 28(1), 143–66 (2002)
6. Camazine, S., et al.: Self-Organization in Biological Systems. Princeton University Press (2003)
7. Couzin, I.D., Krause, J.: Self-organization and collective behavior in vertebrates. Advances in the Study of Behavior 32, 1–75 (2003)
8. Gershenson, C.: Design and control of self-organizing systems.CopIt ArXives (2007)
9. Lämmer, S., Helbing, D.: Self-control of traffic lights and vehicle flows in urban road networks. Journal of Statistical Mechanics: Theory and Experiment 2008(04), P04019 (2008)
10. Turner, J.S., Soar, R.C.: Beyond biomimicry: What termites can tell us about realizing the living building. First International Conference on Industrialized, Intelligent Construction, Loughborough University (2008)
11. Turner, J.S.: Termites as models of swarm cognition. Swarm Intelligence 5(1), 19–43 (2011)
12. Vicsek, T., Zafeiris, A.: Collective motion. Physics Reports 517(3), 71–140 (2012)
13. Portugali, J.: Self-Organization and the City. Springer (2012)
14. Doursat, R., Sayama, H., Michel, O.: Morphogenetic engineering: Reconciling self-organization and architecture. Morphogenetic Engineering, Springer, pp. 1–24 (2012)
15. Fernández, N., Maldonado, C., Gershenson, C.: Information measures of complexity, emergence, self-organization, homeostasis, and autopoiesis. Guided Self-Organization: Inception, Springer, pp.19–51 (2014)
16. Sayama, H.: Introduction to the Modeling and Analysis of Complex Systems. Open SUNY Textbooks (2015)
17. Sayama, H.: Four classes of morphogenetic collective systems. Artificial Life 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems, MIT Press, pp. 320–327 (2014)
18. Sayama, H.: Swarm chemistry. Artificial Life 15, 105–114 (2009)
19. Sayama, H.: Swarm-based morphogenetic artificial life. Morphogenetic Engineering: Toward Programmable Complex Systems, Springer, pp.191–208 (2012)
20. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH Computer Graphics 21(4), 25–34 (1987)
21. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press (1994)
22. Barabási, A.-L.: Network Science. Cambridge University Press (2016)
23. Sayama, H.: Robust morphogenesis of robotic swarms. IEEE Computational Intelligence Magazine 5(3), 43–49 (2010)
24. Sayama, H.: Behavioral diversities of morphogenetic collective systems. Proceedings of the Thirteenth European Conference on Artificial Life (ECAL 2015), MIT Press, p. 41 (2015)
25. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons (2012)
26. Braha, D., Minai, A.A., Bar-Yam Y.: Complex Engineered Systems. Springer (2006)
27. Bar-Yam, Y.: When systems engineering fails—toward complex systems engineering. IEEE International Conference on Systems, Man and Cybernetics 2003, IEEE, pp. 2021–2028 (2003)
28. Sayama, H.: Guiding designs of self-organizing swarms: Interactive and automated approaches. Guided Self-Organization: Inception, Springer, pp. 365–387 (2014)
29. Takagi, H.: Interactive evolutionary computation: Fusion of the capabilities of EC optimization and human evaluation. Proceedings of the IEEE 89(9), 1275–1296 (2001)
30. Sayama, H., Dionne, S., Laramee, C., Wilson, D. S.: Enhancing the architecture of interactive evolutionary design for exploring heterogeneous particle swarm dynamics: An in-class experiment. Proceedings of the Second IEEE Symposium on Artificial Life (IEEE ALIFE 2009), IEEE, pp. 85–91 (2009)
31. Bush, B. J., Sayama, H.: Hyperinteractive evolutionary computation. IEEE Transactions on Evolutionary Computation, 15, 424–433 (2011)
32. Sayama, H., Dionne, S. D.: Studying collective human decision making and creativity with evolutionary computation. Artificial Life, 21, 379–393 (2015)
33. Conrad, M., Pattee, H.H.: Evolution experiments with an artificial ecosystem. Journal of Theoretical Biology 28(3), 393–409 (1970)
34. Sayama, H.: Seeking open-ended evolution in Swarm Chemistry. Proceedings of the Third IEEE Symposium on Artificial Life (IEEE ALIFE 2011), IEEE, pp. 186–193 (2011)
35. Sayama, H., Wong, C.: Quantifying evolutionary dynamics of Swarm Chemistry. Advances in Artificial Life, ECAL 2011: Proceedings of the Eleventh European Conference on Artificial Life, MIT Press, pp. 729–730 (2011)
36. Sayama, H.: Morphologies of self-organizing swarms in 3D Swarm Chemistry. Proceedings of the 2012 Genetic and Evolutionary Computation Conference (GECCO 2012), pp. 577–584 (2012)
37. Sayama, H.: Evolutionary Swarm Chemistry in three-dimensions. Artificial Life 13: Proceedings of the Thirteenth International Conference on the Simulation and Synthesis of Living Systems, MIT Press, pp. 576–577 (2012)
38. Pólya, G.: Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßenetz. Mathematische Annalen 84, 149–60 (1921)
39. Domb, C.: On multiple returns in the random-walk problem. Mathematical Proceedings of the Cambridge Philosophical Society 50, 586–591 (1954)