On convex hull and winding number of self similar processes

Yu. Davydov

Abstract:
It is well known that for a standard Brownian motion (BM) \(\{B(t), t \geq 0\} \) with values in \(\mathbb{R}^d \), its convex hull \(V(t) = \text{conv}\{B(s), s \leq t\} \) with probability 1 for each \(t > 0 \) contains 0 as an interior point (see Evans (1985)). We also know that the winding number of a typical path of a 2-dimensional BM is equal to \(+\infty \).

The aim of this article is to show that these properties aren’t specifically "Brownian", but hold for a much larger class of \(d \)-dimensional self similar processes. This class contains in particular \(d \)-dimensional fractional Brownian motions and (concerning convex hulls) strictly stable Levy processes.

Key-words: Brownian motion, multi-dimensional fractional Brownian motion, stable Levy processes, convex hull, winding number.

AMS classification: 60G15, 60G18, 60G22

1 Introduction

Let \((\Omega, \mathcal{F}, \mathbb{P})\) be a basic probability space. Consider a \(d \)-dimensional process \(X = \{X(t), t \geq 0\} \) defined on \(\Omega \) which is self-similar of index \(H > 0 \). It means that for each constant \(c > 0 \) the process \(\{X(ct), t \geq 0\} \) has the same distribution as \(\{c^H X(t), t \geq 0\} \).

Let \(L = \{L(u), u \in \mathbb{R}^1\} \) be the strictly stationary process obtained from \(X \) by Lamperti transformation:

\[
L(u) = e^{-Hu}X(e^u), \quad u \in \mathbb{R}^1.
\]

Equivalently,

\[
X(t) = t^H L(\log t), \quad t \in \mathbb{R}^+.
\]

Let \(\Theta = \{0, 1\}^d \) be the set of all dyadic sequences of length \(d \). Denote by \(D_\theta \).

\[\text{University Lille 1, Laboratory P. Painlevé, France}\]
\(\theta \in \Theta \), the quadrant
\[
D_{\theta} = \prod_{i=1}^{d} \mathbb{R}_{\theta_i},
\]
where \(\mathbb{R}_{\theta_i} = [0, \infty) \) if \(\theta_i = 1 \), and \(\mathbb{R}_{\theta_i} = (-\infty, 0] \) if \(\theta_i = 0 \).

The positive quadrant \(D_{(1,1,...,1)} \) for simplicity is denoted by \(D \).

We say that the process \(X \) is non degenerate if for all \(\theta \in \Theta \)
\[
\mathbb{P}\{X(1) \in D_{\theta}\} > 0.
\]

Two important examples of self similar processes are fractional Brownian motion and stable Levy process.

Definition 1 We call a self-similar (of index \(H > 0 \)) process \(B^H \) fractional Brownian motion (FBM) if for each \(e \in \mathbb{R}^d \) the scalar process \(t \rightarrow \langle B^H(t), e \rangle \) is a standard one-dimensional FBM of index \(H \) up to a constant \(c(e) \).

It is easy to see that in this case \(c^2(e) = \langle Qe, e \rangle \), where \(Q \) is the covariance matrix of \(B^H(1) \), and hence
\[
\mathbb{E}\langle B^H(t), e \rangle \langle B^H(s), e \rangle = \langle Qe, e \rangle \frac{1}{2} (t^{2H} + s^{2H} - |t - s|^{2H}), \quad t, s \geq 0; \quad e \in \mathbb{R}^d.
\]

The process \(B^H \) is non degenerate iff the rank of the matrix \(Q \) is equal to \(d \). If \(H = \frac{1}{2}, Q = I_d \), then \(B^H \) is a standard Brownian motion.

(See A. Xiao (2013), Račkhauskas and Ch. Suquet (2011), F. Lavancier et al. (2009) and references therein for more general definitions of operator self-similar FBM).

Definition 2 We call \(S(t), t \in \mathbb{R}_+ \) \(\alpha \)-strictly stable Levy process (StS) if
1) \(S(1) \) has a \(\alpha \)-strictly stable distribution in \(\mathbb{R}^d \);
2) it has independent and stationary increments;
3) it is continuous in probability.

Then for each \(t \in \mathbb{R}_+ \) the random variable \(S(t) \) has the same distribution as \(t^\frac{1}{\alpha} S(1) \).
The cadlag version of S on $[0, 1]$ can be obtained with the help of LePage series representation (see [7] for more details). If $\alpha \in (0, 1)$ or if $\alpha \in (1, 2)$ and $EX(1) = 0$, then we have:

$$
\{S(t), t \in [0, 1]\} \overset{\mathcal{D}}{=} \{c \sum_{k=1}^{\infty} \Delta_{k}^{-1/\alpha} \varepsilon_{k} 1_{[0, t]}(\eta_{k}), \; t \in [0, 1]\},
$$

where c is a constant, $\Delta_{k} = \sum_{j=1}^{k} \gamma_{j}$, $\{\gamma_{j}\}$ is a sequence of i.i.d. random variables with common standard exponential distribution, $\{\varepsilon_{k}\}$ is a sequence of i.i.d. random variables with common distribution σ concentrated on unit sphere S^{d-1}, $\{\eta_{k}\}$ is a sequence of $[0, 1]$-uniformly distributed i.i.d. random variables, and the three sequences $\{\gamma_{j}\}$, $\{\varepsilon_{k}\}$, $\{\eta_{k}\}$ are supposed to be independent.

The measure σ is called spectral measure of S. It is easy to see that if \[\overset{\mathcal{D}}{=}\] takes place, the process X is non degenerate iff $\text{vect}\{\text{supp} \sigma\} = \mathbb{R}^{1}$.

In Section 2 the object of our interest is the convex hull process $V = \{V(t)\}$ associated with X. We show that under very sharp conditions with probability 1 for all $t > 0$ the convex set $V(t)$ contains 0 as its interior point. From this result some interesting corollaries are deduced.

Section 3 is devoted to studying the winding numbers of two-dimensional self similar processes. As a corollary of our main result we show that for the typical path of a standard two-dimensional FBM the number of its clockwise and anti-clockwise winds around 0 in the neighborhood of zero or at infinity is equal to $+\infty$.

2 Convex hulls

For a Borel set $A \subset \mathbb{R}^{d}$ we denote by $\text{conv}(A)$ the closed convex hull of A and define the convex hull process related to X:

$$
V(t) = \text{conv}\{X(s), \; s \leq t\}.
$$

Theorem 1 Let X be a non degenerate self similar process such that the strictly stationary process L generating X is ergodic. Then with probability 1 for all $t > 0$ the point 0 is an interior point of $V(t)$.

Application to FBM. Let B^{H} be a FBM with index H. The next properties follow from the definition without difficulties.

1) **Continuity.** The process X has a continuous version.

Below we always suppose B^{H} to be continuous.
2) **Reversibility.** If the process Y is defined by

$$Y(t) = B^H(1) - B^H(1-t), \quad t \in [0,1],$$

then \(\{Y(t), \ t \in [0,1]\} \overset{L}{=} \{B^H(t), \ t \in [0,1]\}\), where \(\overset{L}{=}\) means equality in law.

3) **Ergodicity.** Let \(L = \{L(u), \ u \in \mathbb{R}^1\}\) be the strictly stationary Gaussian process obtained from \(B^H\) by Lamperti transformation \(\Box\).

Then \(L\) is ergodic (see Cornfeld et al. (1982), Ch. 14, §2, Th.1, Th.2).

It is supposed below that the process \(B^H\) is non degenerate.

Corollary 1 Let \(V\) be the convex hull process related to \(B^H\). Then with probability 1 for all \(t > 0\) the point 0 is an interior point of \(V(t)\).

This follows immediately from Th.1.

Corollary 2 Let \(V\) be the convex hull process related to \(B^H\). Then for each \(t > 0\) with probability 1 the point \(B^H(t)\) is an interior point of \(V(t)\).

Proof of Corollary 2. Denote by \(A^\circ\) the interior of \(A\). By self-similarity of the process \(B^H\) it is sufficient to state this property for \(t = 1\). Then, due to the reversibility of \(B^H\) by Th. 1., a.s.

$$0 \in \text{conv}\{ B^H(1) - B^H(1-t), \ t \in [0,1]\}^\circ.$$ \hspace{1cm} (3)

As

\[
\text{conv}\{ B^H(1) - B^H(1-t), \ t \in [0,1]\} = B^H(1) - \text{conv}\{ B^H(1-s), \ s \in [0,1]\},
\]

the relation (3) is equivalent to

$$B^H(1) \in \text{conv}\{ B^H(s), \ s \in [0,1]\}^\circ,$$

which concludes the proof. \(\Box\)

Let \(\mathcal{K}_d\) be the family of all compact convex subsets of \(\mathbb{R}^d\). It is well known that \(\mathcal{K}_d\) equipped with Hausdorff metric is a Polish space.

We say that a function \(f : [0,1] \to \mathcal{K}_d\) is increasing, if \(f(t) \subset f(s)\) for \(0 \leq t < s \leq 1\).
We say that a function \(f : [0, 1] \to K_d \) is almost everywhere constant, if \(f \) is such that for almost every \(t \in [0, 1] \) there exists an interval \((t - \varepsilon, t + \varepsilon)\) where \(f \) is constant.

We say that a function \(f : [0, 1] \to K_d \) is a Cantor - staircase (C-S), if \(f \) is continuous, increasing and almost everywhere constant.

The next statement follows easily from Corollary 2.

Corollary 3 Let \(V \) be the convex hull process related to \(B^H \). Then with probability 1 the paths of the process \(t \to V(t) \) are C-S functions.

Remark 1 Let \(h : K \to \mathbb{R}^1 \) be an increasing continuous function. Then almost all paths of the process \(t \to h(V(t)) \) are C-S real functions. This obvious fact may be applied to all reasonable geometrical characteristics of \(V(t) \), such as volume, surface area, diameter, ...

Application to StS. Let now \(S \) be a StS process with exponent \(\alpha < 2 \). The following properties are more or less known.

1) **Right continuity.** The process \(S \) has a cadlag version (see remark above just after the definition).

2) **Reversibility.** Let \[Y(t) = S(1) - S(1 - t), \quad t \in [0, 1]. \]

Then \(\{Y(t), \; t \in [0, 1]\} \overset{\mathcal{L}}{=} \{S(t), \; t \in [0, 1]\} \).

3) **Self-similarity.** The process \(S \) is self-similar of index \(H = \frac{1}{\alpha} \).

4) **Ergodicity.** Let \(L = \{L(u), \; u \in \mathbb{R}^1\} \) be the strictly stationary process obtained from \(S \) by Lamperti transformation \[1\]. Then \(L \) is ergodic.

We suppose that the law of \(S(1) \) is non degenerate.

Corollary 4 Let \(V \) be the convex hull process related to \(S \). Then with probability 1 for all \(t > 0 \) the point 0 is an interior point of \(V(t) \).

Corollary 5 Let \(V \) be the convex hull process related to \(S \). Then for each \(t > 0 \) with probability 1 the point \(X(t) \) is an interior point of \(V(t) \).
Corollary 6 Let V be the convex hull process related to S. Then with probability 1 the paths of the process $t \to V(t)$ are right continuous almost everywhere constant functions.

We omit proofs of these statements as they are similar to proofs of Corollaries 1 - 3.

Proof of Theorem 1. We first show that

$$p \overset{\text{def}}{=} \mathbb{P}\{ \exists t \in (0,1] | X(t) \in D^\circ \} = 1. \quad (4)$$

Remark that p is strictly positive:

$$p \geq \mathbb{P}\{X(1) \in D^\circ \} > 0 \quad (5)$$
due to the hypothesis that the law of $X(1)$ is non degenerate.

By self similarity

$$\mathbb{P}\{D^\circ \cap \{X(t), t \in [0,T]\} = \emptyset\} = 1 - p$$

for every $T > 0$. The sequence of events $(A_n)_{n \in \mathbb{N}}$,

$$A_n = \{D^\circ \cap \{X(t), t \in [0,n]\} = \emptyset\},$$

being decreasing, it follows that

$$1 - p = \lim \mathbb{P}(A_n) = \mathbb{P}(\cap_n A_n) = \mathbb{P}\{X(t) \notin D^\circ, \forall t \geq 0\}.$$

In terms of the stationary process L from Lamperti representation it means that

$$\mathbb{P}\{L(s) \notin D^\circ, \forall s \in \mathbb{R}^1\} = 1 - p.$$

As this event is invariant, by ergodicity of L and due to (5) we see that the value $p = 1$ is the only one possible.

Applying the similar arguments to another quadrants $D_{\theta}, \theta \in \Theta$, we get that with probability 1 there exists points $t_\theta \in [0,1]$, such that $X(t_\theta) \in D_{\theta}^\circ$, $\theta \in \Theta$. Now, to end the proof it is sufficient to remark that

$$V(1) = \text{conv}\{X(t), t \in [0,1]\}^\circ \supset \text{conv}\{X(t_\theta), \theta \in \Theta\}^\circ$$

and that the last set evidently contains 0.
3 Winding numbers

Now we consider a 2-dimensional self similar process \(X = \{X(t), \ t \geq 0\} \). It is supposed that the following properties are fulfilled:

1) Process \(X \) is continuous.
2) Process \(X \) is non-degenerate.
3) Process \(X \) is symmetric: \(X \) and \(-X \) have the same law.
4) The stationary process \(L \) associated with \(X \) is ergodic.
5) Starting from \(0 \) the process \(X \) with probability 1 never come back:
 \[
 \mathbb{P}\{X(t) \neq 0, \ \forall \ t > 0\} = 1.
 \] (6)

Due to the last hypothesis, considering \(\mathbb{R}^2 \) as complex plane, we can define the winding numbers (around \(0 \)) \(\nu[\ s, \ t\] , \(0 < s < t \), by the usual way (see [5], Ch.5):

\[
\nu[\ s, \ t\] = \arg (X(t)) - \arg (X(s)).
\]

We set

\[
\nu_+(0, t] = \limsup_{s \downarrow 0} \nu[\ s, \ t\] , \ \nu_-(0, t] = \liminf_{s \downarrow 0} \nu[\ s, \ t\]
\]

\[
\nu_+[s, \infty) = \limsup_{t \to \infty} \nu[s, t], \ \nu_-[s, \infty) = \liminf_{t \to \infty} \nu[s, t].
\]

The values \(\nu_+(0, t], \ \nu_-(0, t] \) represent respectively the number of clockwise and anti-clockwise winds around \(0 \) in the neighborhood of the starting point, while \(\nu_+[s, \infty), \ \nu_-[s, \infty) \) are the similar winding numbers at infinity.

Theorem 2 Let \(X \) be a 2-dimensional self similar process with the properties 1)–5) mentioned above. Then with probability one for all \(t > 0 \)

\[
\nu_+(0, t] = \nu_+[t, \infty) = -\nu_-(0, t] = -\nu_-[t, \infty) = +\infty.
\] (7)

Corollary 7 Let \(B^H \) be a 2-dimensional standard FBM and assume that \(H \in [1/2, 1) \). Then with probability one for all \(t > 0 \) the equalities (7) take place.

Proof. Case \(H = 1/2 \) is well known, see [5], Ch. 5, which contains exhaustive information on Brownian winding numbers.

If \(H \in (1/2, 1) \), we apply Theorem 2 as all hypothesis 1)–5) are fulfilled: indeed, the properties 1)–3) are obvious; the ergodicity of \(L \), \(L(t) = (L_1(t), L_2(t)) \), follows from the fact that \(EL_1(t)L_1(0) \to 0 \) when \(t \to \infty \) (see, [11], Ch. 14, Sec. 2, Th.2); The property 5) can be deduced from Th. 11 of [8] (see also Th. 4.2 of [9] and Th. 2.6 of [10]).
Remark 2 If $H \in (0, \frac{1}{2})$, the process $t \to \arg B^H(t) - \arg B^H(0)$ is not continuous with positive probability as the set $\{ t \in (0,1) \mid B^H(t) = 0 \}$ is not empty (see [8], Th. 11). It means that in this case the winding numbers could be defined only for the excursions of B^H, and we need for its study more sophisticated methods.

Proof of Theorem 2. By 5) we have
\[\mathbb{P}\{L(t) \neq 0, \; \forall \; t \in \mathbb{R}^1\} = 1. \]
Hence as above we can define for L the winding numbers $\nu^L_+(-\infty, t], \nu^L_+t, \infty)$, and besides we have
\[\nu^L_+(-\infty, t] = \nu^L_+(0, e^t], \quad \nu^L_+[t, \infty) = \nu^L_+[e^t, \infty). \]
Therefore from now on we can work with the process L and will omit the index L in the notation of winding numbers.

Let us show that
\[\mathbb{P}\{|\nu^L_+[t, \infty)| = \infty, \; \forall \; t \in \mathbb{R}^1\} = 1. \] (8)

By symmetry (property 3)) it is sufficient to state that
\[\mathbb{P}\{\nu^L_+[t, \infty) = \infty, \; \forall \; t \in \mathbb{R}^1\} = 1. \] (9)

Using the arguments from the proof of Th. 1 we remark that the process L visits infinitely often each of four basic quadrants. It follows by continuity that at least one of two events A, B,
\[A = \{ \exists t > 0, \; \text{such that} \; \arg X(t) - \arg X(0) > \frac{\pi}{2} \}, \]
\[B = \{ \exists t > 0, \; \text{such that} \; \arg X(t) - \arg X(0) < \frac{\pi}{2} \}, \]
has probability 1. By symmetry (property 3)) $\mathbb{P}(A) = \mathbb{P}(B)$. Thus,
\[\mathbb{P}\{\exists t > 0, \; \text{such that} \; \arg X(t) - \arg X(0) > \frac{\pi}{2} \} = 1. \]

From this follows by stationarity that for all $s \in \mathbb{R}^1$,
\[\mathbb{P}\{\exists t > s, \; \text{such that} \; \arg X(t) - \arg X(s) > \frac{\pi}{2} \} = 1. \]
The set
\[E = \{ (s, \omega) \in \mathbb{R}^1 \times \Omega \mid \exists t > s, \ \text{such that} \ \arg X(t) - \arg X(s) > \frac{\pi}{2} \} \]
is measurable as the process \(s \to \sup_{t > s} (\arg X(t) - \arg X(s)) \) is continuous.

Based on the aforementioned and due to Fubini theorem, the set \(E \) is such that \(\lambda \times \mathbb{P}(E^c) = 0 \), \(\lambda \) being the Lebesgue measure. Therefore there exists \(\Omega' \subset \Omega, \ \mathbb{P}(\Omega') = 1 \) such that for each \(\omega \in \Omega' \), for almost all \(s \in \mathbb{R}^1 \), there exists \(t > s \) for which \(\arg X(t) - \arg X(s) > \frac{\pi}{2} \). Take \(\omega \in \Omega' \). Let us denote \(E_\omega \) the corresponding \(\omega \)-section of \(E \). Without loss of generality, we can suppose that for each \(\omega \in \Omega' \), the point 0 belongs to \(E_\omega \). As \(\lambda \times \mathbb{P}(E_\omega^c) = 0 \), \(E_\omega \) is dense in \(\mathbb{R}^1 \).

Let \(u > 0 \) be such that \(\arg X(u) - \arg X(0) > \frac{\pi}{2} \). By continuity, \(\arg X(t) - \arg X(0) > \frac{\pi}{2} \) for all \(t \) in a sufficiently small neighborhood of \(u \) and therefore, there exists \(t_1 \in E_\omega \) for which \(\arg X(t_1) - \arg X(0) > \frac{\pi}{2} \).

Repeating this reasoning, we can build an increasing sequence \((t_n) \) such that \(t_1 = 0 \) and \(t_n \in E_\omega \). Since for each \(n \), \(\arg X(t_n) - \arg X(t_{n-1}) > \frac{\pi}{2} \), we get \(\sup_{t > 0} (\arg X(t) - \arg X(0)) = +\infty \).

Thus, it is proved that for each \(t \)
\[\mathbb{P}\{\nu_+[t, \infty) = +\infty\} = 1. \tag{10} \]

Now to show that
\[\mathbb{P}\{\nu_+[t, \infty) = +\infty, \ \forall t \in \mathbb{R}^1\} = 1 \]
it is sufficient to remark that for each \(\omega \) from \(\Omega' \) the \(\omega \)-section \(E_\omega = \mathbb{R}^1 \).
Indeed, supposing that there exists \(u \in E_\omega^c \) we should have
\[\arg X(s) - \arg X(u) \leq \frac{\pi}{2} \]
for each \(s > t \), but that is in contradiction with the existence of \(t \in E_\omega, \ t > u \), for which (10) holds. Thus (9) is proved. Applying the previous reasonings to the process \(\{L(-t), \ t \in \mathbb{R}^1\} \), we prove the remaining equalities of (7).

References

[1] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer-Verlag Berlin and Heidelberg, 1982.
[2] Davydov Yu., On convex hull of d-dimensional fractional Brownian motion.
Statistics and Probability Letters, 2012, 82, No. 1, pp. 37-39.

[3] S. N. Evans, On the Hausdorff dimension of Brownian cone points.
Math. Proc. Cambridge Philos. Soc., 1985, 98, 343-353.

[4] F. Lavancier, A. Philippe and D. Surgailis, Covariance function of vector
self-similar process,
arXiv:0906.4541v2 [math.PR] 25 Aug 2009.

[5] R. Mansuy and M. Yor, Aspects of Brownian Motion.
Springer-Verlag, Berlin Heidelberg, 2008

[6] A. Račkauskas and Ch. Suquet, Operator Fractional Brownian Motion
as Limit of Polygonal Lines Processes in Hilbert Space,
Stochastics 1 and Dynamics, 2011, Vol. 11, No. 1, pp. 1–22.

[7] G. Samorodnitsky and M. S. Taqqu, Stable non-Gaussian Random Pro-
cesses.
Chapman and Hall, New York, 1994.

[8] Y. Xiao, Recent developments on fractal properties of Gaussian random
fields.
In: Further Developments in Fractals and Related Fields. (Julien Barral
and Stephane Seuret, editors) pp. 255–288, Springer, New York, 2013.

[9] Y. Xiao, Hölder conditions for the local times and the Hausdorff measure
of the level sets of Gaussian random fields.
Probab. Theory Relat. Fields, 1997, Vol 109, pp. 129–157.

[10] R. C. Dalang, C. Mueller and Y. Xiao, Polarity of points for Gaussian
random fields.
arXiv:1505.05417v1 [math.PR] (2015).