SheddomeDB: the ectodomain shedding database for membrane-bound shed markers

Wei-Sheng Tien¹², Jun-Hong Chen³ and Kun-Pin Wu¹*

From The Fifteenth Asia Pacific Bioinformatics Conference
Shenzhen, China. 16-18 January 2017

Abstract

Background: A number of membrane-anchored proteins are known to be released from cell surface via ectodomain shedding. The cleavage and release of membrane proteins has been shown to modulate various cellular processes and disease pathologies. Numerous studies revealed that cell membrane molecules of diverse functional groups are subjected to proteolytic cleavage, and the released soluble form of proteins may modulate various signaling processes. Therefore, in addition to the secreted protein markers that undergo secretion through the secretory pathway, the shed membrane proteins may comprise an additional resource of noninvasive and accessible biomarkers. In this context, identifying the membrane-bound proteins that will be shed has become important in the discovery of clinically noninvasive biomarkers. Nevertheless, a data repository for biological and clinical researchers to review the shedding information, which is experimentally validated, for membrane-bound protein shed markers is still lacking.

Results: In this study, the database SheddomeDB was developed to integrate publicly available data of the shed membrane proteins. A comprehensive literature survey was performed to collect the membrane proteins that were verified to be cleaved or released in the supernatant by immunological-based validation experiments. From 436 studies on shedding, 401 validated shed membrane proteins were included, among which 199 shed membrane proteins have not been annotated or validated yet by existing cleavage databases. SheddomeDB attempted to provide a comprehensive shedding report, including the regulation of shedding machinery and the related function or diseases involved in the shedding events. In addition, our published tool ShedP was embedded into SheddomeDB to support researchers for predicting the shedding event on unknown or unrecorded membrane proteins.

Conclusions: To the best of our knowledge, SheddomeDB is the first database for the identification of experimentally validated shed membrane proteins and currently may provide the most number of membrane proteins for reviewing the shedding information. The database included membrane-bound shed markers associated with numerous cellular processes and diseases, and some of these markers are potential novel markers because they are not annotated or validated yet in other databases. SheddomeDB may provide a useful resource for discovering membrane-bound shed markers. The interactive web of SheddomeDB is publicly available at http://bal.ym.edu.tw/SheddomeDB/.

Keywords: Ectodomain shedding, Biomarker discovery, Shed membrane proteins, Sheddome

* Correspondence: kpwu@ym.edu.tw
¹Institute of Biomedical Informatics, National Yang Ming University, Taipei
112, Taiwan
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background
A large class of proteins is known to be secreted from the cell to the extracellular space. The secreted proteins such as hormones, enzymes, and antibodies play vital regulatory roles in biological signaling and may serve as clinically noninvasive biomarkers and potential therapeutic targets [1, 2]. In addition to the proteins that undergo protein secretion via secretory pathways, membrane proteins are known to be released into the extracellular milieu via ectodomain shedding. Certain membrane-bound proteins, including cell adhesion molecules, growth factors, cytokines, and cell receptors, can be proteolytically cleaved by sheddase that results in the release of soluble forms of fragments. The process of ectodomain shedding has been shown to regulate various pathologies and diseases such as degeneration, inflammation, and cancer and physiolog-ical processes such as proliferation, differentiation, and migration [3, 4]. In this context, the cleaved and released membrane proteins resulting from shedding events may comprise additional resources of valuable secreted and soluble biomarkers for pathological states or physiological conditions.

Previous studies on membrane proteins revealed that only about 2 or 4% of cell surface molecules undergo the shedding process [5, 6]; hence, it is apparent that not every membrane protein will be released through proteolytic shedding. Therefore, to assess whether a membrane-bound protein will be released from cells and to identify membrane-bound shed markers that are of clinical potential, a data repository dedicated to provide shedding information that is experimentally validated for membrane proteins seems indispensable. Although cleavage databases such as MEROPS [7], PMAP-SubstrateDB [8], and HPRD [9] have been developed as information resources for proteases, substrates, and cleavage events, a portion of cleavage records collected by the databases may be based on library-based approaches for identification of protease cleavage sites [10, 11], and the putative substrates identified in the original literature may not be validated or physiologically relevant. In addition, currently, some shed membrane proteins that were identified by shedding studies may not have yet been recorded and annotated in these cleavage databases.

In this context, the database SheddomeDB was designed for the identification of shed membrane proteins that are released through proteolytic cleavage. The membrane proteins that were verified to be cleaved or released in the supernatant by immunological-based validation experiments were included in our database. Based on a comprehensive literature survey on shedding event studies, a total of 401 validated shed membrane proteins were identified, among which 199 shed membrane proteins have not been annotated or validated yet by current cleavage databases. SheddomeDB also provides a user-friendly web interface for researchers to search or browse proteins of interest. For each experimentally validated shed membrane protein, SheddomeDB attempted to provide a comprehensive shedding report based on literature references, including the regulation of shedding machinery and the related function or diseases involved in the shedding events. The cross-references to other resources, such as the released evidence in secretome data and the existing records of protease cleavage sites, were provided in SheddomeDB as well. In addition, the previously published prediction tool ShedP [12] was embedded into SheddomeDB. ShedP is a computational method developed to predict the shedding event on membrane proteins based on the protein sequence. By incorporating a prediction web interface for ShedP, SheddomeDB also supports the researchers for the assessment of shedding events on the unknown or unrecorded membrane proteins.

Thus, by collecting experimentally validated shed membrane proteins from literature references, SheddomeDB may provide a useful resource of membrane-bound shed markers associated with numerous cellular processes and diseases, including some potential novel markers that are not annotated or validated yet in other databases. SheddomeDB may be a useful bioinformatics design in shedding marker discovery and to help investigate the regulatory role of membrane proteins in physiological and pathological processes. SheddomeDB is publicly available at http://bal.ym.edu.tw/SheddomeDB/.

Methods
Database implementation and interface design
The MYSQL relational database version 5.0.45 (http://www.mysql.com) was used in the current study to design and construct the SheddomeDB database and the interactive web interface. A JAVA-based model-view-controller (MVC) framework was utilized for the web interface to separate the logic, application, and the presentation into three distinct layers. All the interactions between the web client requests and the server side were handled by Apache web server. The dynamic web pages were designed using JavaServer Pages (JSP) and Cascading Style Sheets (CSS), and the user-interactive pages were supported by JavaScript and its library jQuery for client-side scripting.

Data source
A comprehensive literature survey was conducted to identify the membrane proteins that were experimentally validated to be cleaved or released into the supernatant. By searching the PubMed database using the following keywords: “shedding”, “proteolytic”, “cleavage”, “protease”, “soluble form” and “released” the relevant studies on membrane protein shedding or protease cleavage were first acquired. We further manually reviewed the published studies and screened for the validated shed
membrane proteins based on the following selection criteria: (1) The membrane proteins were verified to be cleaved by protease or protease inhibitors or the release of the soluble forms of proteins was detected in the culture supernatant. (2) The shedding events of membrane proteins were validated by antibody-based probes against the endogenous protein or against stably expressed genes encoding the protein. The curated publications that met the screening criteria were further selected as the data source to collect all the relevant data on membrane protein shedding. We mapped the membrane proteins in each curated publication to the UniProtKB/Swiss-Prot database [13] to uniform the protein ID based on the protein name and the organism source of the protein. In addition, because the functional consequences of membrane protein shedding can be diverse and depend on the protein function or the shed form of fragments, we grouped each shed membrane protein into functional categories based on the regulated functions or diseases suggested in the shedding literature. If the functional consequences of protein shedding were not clarified in the original studies, the shed membrane protein was then categorized based on the function description or annotation in the UniProtKB/Swiss-Prot database.

Incorporated shedding predictor ShedP
The in-house prediction tool ShedP previously developed to predict shedding events of membrane proteins was incorporated into the SheddomeDB database. ShedP is a support vector machine (SVM)-based model [14] built by supervised machine learning that discriminates between shed membrane proteins and nonshed membrane proteins. The SVM model based on PseAAC [15] feature representation was constructed as our ShedP tool after a 5-fold cross-validation training procedure. At present, ShedP is the computational method published to predict shedding events of membrane proteins. To support the researchers for assessing the likelihood of an unknown or unrecorded membrane protein to be cleaved and released from the cell, we have also integrated a web interface to the prediction by ShedP into the SheddomeDB database, enabling valuable hints to be gained by in silico prediction.

Results and Discussion
Database content
In the present study, 436 curated studies were selected based on our literature survey process [3, 16–450], and a total of 401 validated shed membrane proteins were collected. Among the shed membrane proteins included in SheddomeDB, 22 proteins have not yet been annotated by existing cleavage databases MEROPS, PMAP-SubstrateDB, and HPRD. In addition, among those identified membrane proteins that have already been recorded in cleavage databases, 28 membrane proteins were only shown to undergo cleavage by signal peptidase [451–462] and 149 membrane proteins were only referenced by one substrate specificity study using a computational prediction model [463]. The cleavage records of membrane proteins in these studies may be neither relevant to membrane protein shedding nor experimentally validated. Therefore, our results revealed that a total of 199 shed membrane proteins in SheddomeDB were not annotated or validated yet by other cleavage databases. The details of the identified shed membrane proteins and the reference studies are summarized in (Additional file 1; Table S1).

Because the process of proteolytic shedding has been shown to be involved in various physiological processes and diseases, it is of importance to know which biological function categories or diseases may be regulated or related to the shedding of membrane proteins. Thus, we further grouped the validated shed membrane proteins into function categories manually based on the functional consequences referenced by shedding studies or functional description in the UniProtKB/Swiss-Prot database. First, the shed membrane proteins were grouped into the category “disease” if the proteins were shown to be involved in the disease progression or suggested as disease marker candidates. For instance, the shedding events of the proteins CDH1, EFNA1, and SDC1 were suggested to be involved in cancer invasion and immune escape [16–20]; the shedding events of SNCA and APP were shown to be involved in neurodegenerative disorders such as Parkinson’s disease and Alzheimer’s disease [21–23]; the shedding event of NRP2 was involved in immune disorders such as rheumatoid arthritis [24]; that of SDC4 was suggested to be involved in cardiovascular diseases such as atrial fibrillation [25]; HAVCR2 shedding event being implicated in HIV infection [26]; and the shedding event of CADM1 was shown to be involved in diabetes [27, 28]. In addition, several shed or soluble membrane proteins were suggested to be marker candidates for cancers (e.g., PVRL4 [29], CD200 [30, 31], CDH17 [32]), atherosclerosis (e.g., SORL1 [33–36]), diabetes mellitus (e.g., CLEC1B [37]), neurodegenerative disorders (e.g., PDGFRB [38, 39]), and hepatocyte damage (e.g., PTPRG [40]).

Then, a large portion of the shed membrane proteins were found to be related to immune response or neural signaling and were categorized into “immune and inflammatory” or “central nervous system,” respectively. For instance, the shedding of numerous cytokines, cell receptors, and cell adhesion molecules was shown to be involved in leukocyte recruitment (e.g., CXCL16 [23, 41, 42], CDH5 [23, 41], TNFRSF8 [41, 43]), T-cell proliferation (e.g., Lug3 [41, 44]), and other immunological modulations (e.g., CR2 [45]). In contrast, the shedding of cell adhesion molecules, ligands, and cell receptors was involved in axon
guidance (e.g., EphA [46], Neo1 [47]) and neurite outgrowth (e.g., NCAM1 [48–50]). In addition, another group of shed membrane proteins were found to be specifically related to the cardiovascular system and were further categorized into “angiogenesis” or “blood and homeostasis.” For instance, the shedding of the proteins JAM3 and CLEC14A was suggested to be involved in the regulation of angiogenesis [51, 52], and the shedding of the proteins GP1BA and GP5 was suggested to be involved in the regulation of platelet hemostasis [23, 53].

For the remaining shed membrane proteins, most of the growth factors (e.g., BTC [23, 54, 55]), growth factor receptors (e.g., NGFR [56, 57]), morphogens (e.g., SHH [58]), and cell adhesion molecules (e.g., EPCAM [59, 60]) were shown to be involved in cell proliferation, migration, and morphogenesis and were categorized into “cell growth and development.” In addition, some shed proteins were found to be related to metabolism and were grouped into “lipid” (e.g., DLK1 [61, 62]), “melanogenesis” (e.g., PMEL [63]), “insulin” (e.g., TMEM27 [64, 65]), and “renal” (e.g., UMOD [66]). In addition, others were found to be related to protein function and were grouped into “enzyme” (e.g., ACE [67]), “transporter” (e.g., FOLR1 [68]), and “cell surface structure” (e.g., DSG2 [69]). Finally, we found some proteins that were specifically related to “aging” (e.g., KL [70, 71]). Thus, as depicted in Fig. 1, the 401 identified shed membrane proteins were grouped into 14 categories; the details of the protein members in each function category are summarized in (Additional file 1: Table S2) and can be reviewed in our browsed pages.

User querying and web interface

SheddomeDB provided a user-friendly web interface for researchers to search or browse proteins of interest. To query the database, the researchers can begin the search task from the “Search” page in which two query options were provided (Fig. 2). First, the database can be queried by directly specifying the protein UniProt ID. In contrast, the researchers can make a text similarity query by inputting the protein name or gene symbol and specify the desired one from all possible protein candidates in the interactive page. In addition, the researchers can choose the “Browse” page to browse the membrane proteins based on function categories (the disease or function categories involved in or related to shedding process) (Fig. 2).

Fig. 1 Function categorization of the identified 401 shed membrane proteins. The function category for membrane proteins was determined based on the functional consequences referenced by shedding studies or functional description in UniProtKB/Swiss-Prot. The protein numbers in each function category were revealed as well.
In the results pages for each experimentally validated shed membrane protein, a comprehensive shedding report was provided by SheddomeDB in four sections (Fig. 3), as follows: (i) In section A, the basic information such as protein name, gene symbol, organism, and extracellular region were referenced from the UniProtKB/Swiss-Prot database. In addition, the membrane protein type annotated from UniProtKB/Swiss-Prot was also provided to show whether the membrane protein is (1.) lipid or GPI-anchored, (2.) topological (with extracellular and transmembrane domain, (3.) cell membrane annotated (annotated localized in cell membranes), and (4) other membrane proteins (proteins annotated at other subcellular localizations). (ii) The cross-references to the secretome released information were revealed in section B. If the query proteins were annotated to be released by secretome studies [72–74, 464–466] or by the secreted protein datasets in the databases the secretome databases HCSD [467] and Sys-BodyFluid [468], the secreted protein database SPD [469], and the subcellular localization database LOCATE [470], the secretome information such as the secretome database, secreted cell type, the reference PubMed ID, and the protein ID used in the reference literature will be summarized and provided. (iii) In section C, the regulation of the shedding machinery, the related function or disease, the protease name, and the PubMed ID of the shedding reference were summarized. (iv) In section D, the cross-references to existing cleavage sites records from current cleavage databases MEROPS, PMAP-SubstrateDB, and HPRD were provided. The cleavage information such as the cleavage database, protease name, reference PubMed ID, the cut location, and the cut sequence motif were provided. In addition, the protein sequence structure was represented in which the extracellular domain region and the protease cleavage site can be visualized.

ShedP prediction interface

SheddomeDB incorporated a web interface to prediction by ShedP so as to gain valuable hints by *in silico* prediction. By inserting the protein sequence of a queried protein, the users can assess the likelihood of an unknown or unrecorded membrane protein to be cleaved and released from the cell. Based on the prediction model, a query protein whose predicted probability was greater than or equal to 0.5 was regarded as positive and predicted to be shed, otherwise it was predicted as negative and nonshed (Fig. 4).

Conclusions

As more and more studies have revealed the regulatory role of ectodomain shedding in various cellular processes and pathologies, the identification of shed and released membrane proteins is becoming important in the field of biomarker discovery and sheddome proteomics. To determine and assess the possible membrane protein candidates undergoing shedding and released from the cells, the database SheddomeDB is the first sheddome-based database developed to store and query publicly available data on shed membrane proteins. For each queried membrane protein, SheddomeDB provides the researchers comprehensive cross-references including the released evidence in the secretome, protease cleavage record, and biologically validated shedding report. Thus, the bioinformatics-based database SheddomeDB may serve as a useful resource for membrane-bound secreted markers.
Fig. 3 Example of ShedomeDB result pages. For each query membrane protein, the information was provided in four sections in the result pages. Section A revealed the basic protein information from UniProtKB/Swiss-Prot. Section B provided secretome released information. Section C summarized the biological information from the biologically validated literature on the shedding process. Section D provided existing cleavage site information. The protein sequence structure was depicted as well, in which the extracellular domain regions are marked with blue color and each protease cleavage site is labeled with an asterisk.

Fig. 4 Web interface for ShedP prediction. To predict the shedding events, the users can insert the protein sequence (FASTA format) of a queried protein in “Prediction” pages. In the prediction result pages, the ShedP prediction results will be revealed. The protein will be regarded as positive and predicted to be shed if the ShedP prediction value is greater than or equal to 0.5, otherwise predicted as negative and nonshed.
Additional file

Additional file 1: Table S1. The details of the identified 401 shed membrane proteins including the protein UniProt ID and the PubMed ID for literature references. Table S2. The details of the shed membrane protein members in each group of function category. (PDF 303 kb)

Acknowledgements

We thank Dr. Hsuan-Cheng Huang at the Institute of Biomedical Informatics, National Yang Ming University, for support and inspiring discussions.

Declarations

This article has been published as part of BMC Bioinformatics Volume 18 Supplement 3, 2017. Selected articles from the 15th Asia Pacific Bioinformatics Conference (APBC 2017): bioinformatics. The full contents of the supplement are available online https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-supplement-3.

Funding

This work and the publication cost of this manuscript was financially supported by the Ministry of Science and Technology, Taiwan under the contract number of MOST104-2221-E-010-009-MY2.

Availability of data and materials

The database is available at http://balyym.edu.tw/SheddomeDB/.

Authors' contributions

WST conceived the study, wrote the software, and wrote the paper. JHC wrote the software. KPW conceived the study and wrote the paper. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Author details

1Institute of Biomedical Informatics, National Yang Ming University, Taipei 112, Taiwan. 2Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan. 3Department of Computer Science, National Taipei University of Education, Taipei 106, Taiwan.

Published: 14 March 2017

References

1. Makridakis M, Vlahou A. Secretome proteomics for discovery of cancer biomarkers. J Proteome. 2010;73(12):2291–305.
2. Darnas JK, Gullestad L, Aukrust P. Cytolines as new treatment targets in chronic heart failure. Curr Control Trials Cardiovasc Med. 2001;2(6):271–7.
3. Arribas J, Borroto A. Protein ectodomain shedding. Chem Rev. 2002;102(12):4627–38.
4. de Oca BP M. Ectodomain shedding and regulated intracellular proteolysis in the central nervous system. Curr Nerv Syst Agents Med Chem. 2010;10(4):337–59.
5. Hayashida K, Bartlett AH, Chen Y, Park PW. Molecular and cellular mechanisms of ectodomain shedding. Anat Rec (Hoboken). 2010;293(6):925–37.
6. Arribas J, Massague J. Transforming growth factor-alpha and beta-amyloid precursor protein share a secretory mechanism. J Cell Biol. 1995;128(3):433–41.
7. Rawlings ND, Barrett AJ, Finn R. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2016;44(D1):D343–350.
8. Igarashi Y, Heureux E, Doctor KS, Taiwpr P, Gramatikova S, Gramatikoff K, Zhang Y, Blinov M, Ibragimova SS, Boyd S, et al. PMAP: databases for analyzing proteolytic events and pathways. Nucleic Acids Res. 2009;37(Database issue):D611–618.
9. Prasad TS, Kandasamy K, Pandey A. Human protein reference database and human proteinpedia as discovery tools for systems biology. Methods Mol Biol. 2009;577:67–79.
10. Becker-Pauly C, Barre D, Schilling Q, Auf dem Keller U, Ohler A, Broder C, Schutte A, Kappelhoff R, Stocker W. Overall CM. Proteomic analyses reveal an acidic prime side specificity for the trypsin metalloproteinase family reflected by physiological substrates. Mol Cell Proteomics. 2011;10(9):M111 009233.
11. Schilling O, Overall CM. Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites. Nat Biotechnol. 2008;26(6):835–9.
12. Tien WS, Chen YT, Wu KP. SecretoPipe: a screening pipeline for secreted proteins with competence to identify potential membrane-bound shed markers. J Proteome Res. 2013;12(3):1295–44.
13. UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43(Database issue):D204–12.
14. Cortes C, Vajnik V. Support vector network. Mach Learn. 1995;20:273–97.
15. Chou KC. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins. 2001;43(3):246–55.
16. Pan-Sturgees CA, Tinker CL, Hart CA, Brown MD, Clarke NW, Parkin ET. Copper modulates zinc metalloproteinase-dependent ectodomain shedding of key signaling and adhesion proteins and promotes the invasion of prostate cancer epithelial cells. Mol Cancer Res. 2012;10(10):1282–93.
17. Taur I, Thurn K, Juenegg E, Gust KM, Borgmann H, Mager R, Bartsch G, Oppermann E, Ackermann H, Nelson K, et al. E-cadherin serves as a diagnostic and predictive parameter in prostate cancer patients. J Exp Clin Cancer Res. 2015;34:43.
18. Tsallikidis C, Papachristou F, Pitiakoudos M, Asimakopoulos B, Tryptisanis G, Bolanaki E, Syringos KN, Simopoulos C. Soluble E-cadherin as a diagnostic and prognostic marker in gastric carcinoma. Folia Med. 2013;55(3–4):26–32.
19. Ieguchi K, Tomita T, Omori T, Komatsu A, Deguchi A, Masuda J, Duffy SL, Coultagh MG, Boyd A, Maru Y. ADAM12-cleaved ephrin-A1 contributes to lung metastasis. Oncogene. 2014;33(17):2179–90.
20. Wang X, Zuo D, Chen Y, Li W, Liu R, He Y, Ren L, Zhou L, Deng T, Ying G, et al. Shed Syndecan-1 is involved in chemotherapy resistance via the EGFR pathway in colorectal cancer. Br J Cancer. 2014;111(10):1965–76.
21. Sun M, Park SM, Lee CH, Um JW, Lee HJ, Kim J, Oh YJ, Lee ST, Pak SR, Chung KC. Proteolytic cleavage of extracellular secreted (alpha)-synuclein via matrix metalloproteinases. J Biol Chem. 2005;280(26):25216–24.
22. Haas C, Kaether C, Thinakaran G, Siodka S. T restrictive and proteolytic processing of APP. Cold Spring Harb Perspect Med. 2012;2(5):a00270.
23. Pruismeyer J, Ludwig A. The good, the bad and the ugly substrates for ADAM10 and ADAM17 in brain pathology, inflammation and cancer. Semin Cell Dev Biol. 2009;20(2):164–74.
24. Fassold A, Falk W, Anders S, Hirth C, T. Minsky VM, Straub RA. Soluble neuropilin-2, a nerve repellent receptor, is increased in rheumatoid arthritis synovium and aggravates sympathetic fiber repulsion and arthritis. Arthritis Rheum. 2009;60(10):2892–901.
25. Wu H, Zhou Q, Xie J, Li GN, Chen QH, Kang LN, Xu B. Syndecan-4 shedding is involved in the oxidative stress and inflammatory responses in left atrial tissue with valvular atrial fibrillation. Int J Clin Exp Pathol. 2015;8(6):6387–96.
26. Clayton KL, Douglas-Vail MB, Nur-ur Rahman AK, Medcalf KE, Xie IY, Chew GM, Tandon R, Lanteri MC, Norris PJ, Deeks SG, et al. Soluble T cell immunoglobulin mucin domain 3 is shed from CD8+ T cells by the sheddase ADAM10, is increased in plasma during untreated HIV infection, and correlates with HIV disease progression. J Virol. 2015;89(7):3723–36.
27. Yoneshige A, Hagiyma M, Inoue T, Minma T, Kato T, Okada M, Enoki E, Ito A. Increased ectodomain shedding of cell adhesion molecule 1 as a cause of type II alveolar epithelial cell apoptosis in patients with idiopathic pulmonary fibrosis. Respir Res. 2015;16:90.
28. Inoue T, Hagiyma M, Yoneshige A, Kato T, Enoki E, Maenishi O, Chikugo T, Kimura M, Satou T, Ito A. Increased ectodomain shedding of cell adhesion molecule 1 from pancreatic islets in type 2 diabetic pancreata: correlation with hemoglobin A1c levels. PLoS One. 2014;9(6):e100988.
29. Fabre-Lafay S, Garrido-Urbani S, Reymond N, Goncalves A, Dubreuill P, Lopez M. Nectin-4, a new serological breast cancer marker, is a substrate for tumor necrosis factor-alpha-converting enzyme (TACE)/ADAM-17. J Biol Chem. 2005;280(20):19543–50.
cleaving enzyme 2 and 1 (BACE2 and BACE1) substrates in pancreatic beta-cells. J Biol Chem. 2013;288(15):10356–47.

73. Fong KP, Barry C, Tran AN, Traxler EA, Wannemacher KM, Tang HY, Speicher RD, Blair IA, Speicher DW, Grosser T, et al. Deciphering the human platelet sheddome. Blood. 2011;117(1):15–26.

74. Kuhn PH, Koromak K, Hogl S, Colombo A, Zeitscuhl U, Willem M, Volbracht C, Schepers U, Imhof A, Hoffmeister A, et al. Secretome protein enrichment identifies physiological BACE1 protease substrates in neurons. EMBO J. 2012;31(14):3157–68.

75. Clark EB, Jovov B, Rooj AK, Fuller CM, Benos DJ. Proteolytic cleavage of human acid-sensing ion channel 1 by the serine protease matrilysin. J Biol Chem. 2010;285(35):27130–43.

76. Hakalahti AE, Khan H, Vierimaa MM, Pekkala EH, Lackman JJ, Ulvila J, Kerkela R, Petaja-Repo UE. beta-Adrenergic agonists mediate enhancement of betal-adrenergic receptor N-terminal cleavage and stabilization in vivo and in vitro. Mol Pharmacol. 2013;83(1):29–41.

77. Lammers G, Jamieson JC. Studies on the effect of lysisomotropic agents on the release of Gal beta 1-4GlcNAc alpha-2,6-sialyltransferase from rat liver slices during the acute-phase response. Biochem J. 1989;261(2):389–93.

78. Willemse LE, Hoetjes JP, van Deventer SJ, van Tol EA. Abrogation of IFN-gamma mediated epithelial barrier disruption by serine protease inhibition. Clin Exp Immunol. 2005;142(2):275–84.

79. Cui D, Arima M, Takubo K, Kimura T, Horichi K, Minagawa T, Matsuda S, Ikeda E. ADAM12 and ADAM17 are essential molecules for hypoxia-induced impairment of neural vascular barrier function. Sci Rep. 2015;5:12796.

80. Velt G, Zimina EP, Franzke CW, Kutsch S, Siebolds U, Gordon MK, Bruenner-Tuderman L, Koch M. Shedding of collagen XXIII is mediated by furin and depends on the plasma membrane microenvironment. J Biol Chem. 2007;282(37):27424–35.

81. Banyard J, Bao L, Zetter BR. Type XXIII collagen, a new transmembrane collagen identified in metastatic tumor cells. J Biol Chem. 2003;278(23):20989–94.

82. Kuruppu S, Reeve S, Ian Smith A. Characterisation of endothelin converting enzyme-1 shedding from endothelial cells. FEBS Lett. 2007;581(23):4501–6.

83. Bruney L, Conley KC, Moss NM, Liu Y, Stack MS. Membrane-type 1 matrix metalloproteinase-dependent ectodomain shedding of mucin16/CA-125 on ovarian cancer cells modulates adhesion and invasion of peritoneal mesothelium. Biol Chem. 2014;395(10):1221–31.

84. Sanz R, Ferraro GB, Fournier AE. IgLON cell adhesion molecules are shed from the cell surface of cortical neurons to promote neuronal growth. J Biol Chem. 2015;290(7):4330–40.

85. Veit G, Zimina EP, Franzke CW, Kutsch S, Siebolds U, Gordon MK, Bruenner-Tuderman L, Koch M. Shedding of collagen XXIII is mediated by furin and depends on the plasma membrane microenvironment. J Biol Chem. 2007;282(37):27424–35.

86. Lee HS, Park BM, Cho Y, Kim S, Kim C, Kim MG, Park D. Shedding of collagen XXIII is mediated by furin and depends on the plasma membrane microenvironment. J Biol Chem. 2007;282(37):27424–35.

87. Sonoda K, Kato K. A disintegrin and metalloproteinase 9 is involved in the release of Gal beta 1-4GlcNAc alpha-2,6-sialyltransferase from rat liver slices during the acute-phase response. Biochem J. 1989;261(2):389–93.

88. Qin X, Arai K, Wang Y, Wang F, Hoshino Y, Yuan LS, Kojima M, Nakamura K, Sato Y, et al. ADAM12 and ADAM17 are essential molecules for hypoxia-induced impairment of neural vascular barrier function. Sci Rep. 2015;5:12796.

89. Kim SB, Lee D, Jeong JW, Kim C, Park D, Kim MG. Soluble epithin/PRSS14 is released following agonist stimulation of neutrophils. J Immunol. 2015;194(2):542–50.

90. Salih HR, Schmetzer HM, Burke C, Starling GC, Dunn R, Pelka-Fleischer R, Petaja-Repo UE. beta-Adrenergic agonists mediate enhancement of betal-adrenergic receptor N-terminal cleavage and stabilization in vivo and in vitro. Mol Pharmacol. 2013;83(1):29–41.

91. Salih HR, Schmetzer HM, Burke C, Starling GC, Dunn R, Pelka-Fleischer R, Petaja-Repo UE. beta-Adrenergic agonists mediate enhancement of betal-adrenergic receptor N-terminal cleavage and stabilization in vivo and in vitro. Mol Pharmacol. 2013;83(1):29–41.

92. van Hensbergen Y, Broxterman HJ, Hanemaaijer R, Jorna AS, van Lent NA, Verheul HM, Pinedo HM, Hoekman K. Soluble amiprostilase N/CDD1 in malignant and nonmalignant effusions and intratumoral fluid. Clin Cancer Res. 2002;8(12):3747–54.

93. Klenk C, Waheed A, Braulke T, Junghans U, Malp P, Himbel R, von Figura K. Mannose 6-phosphate/insulin-like growth factor II-binding proteins in human serum and urine. Their relation to the mannose 6-phosphate/insulin-like growth factor II receptor. Biochem J. 1989;252(3):795–9.

94. Klenk C, Schulz S, Calebiro D, Lohse MJ. Agonist-regulated cleavage of the receptor for advanced glycation endproducts from the cell surface of cortical neurons to promote neuronal growth. J Biol Chem. 2015;290(7):4330–40.

95. Klenk C, Schulz S, Calebiro D, Lohse MJ. Agonist-regulated cleavage of the receptor for advanced glycation endproducts from the cell surface of cortical neurons to promote neuronal growth. J Biol Chem. 2015;290(7):4330–40.
dependent downregulation of the adhesion-G protein-coupled CD97 on circulating leukocytes upon contact with its ligand CD55. J Immunol. 2013;190(7):3740–8.

116. Bardin N, Blot-Chabaud M, Despoix N, Kebl L, Harhouri K, Arsanto JP, et al. The Author(s)

117. Davis S, Aldrich TH, Ip NY, Stahl N, Scherer S, Farruggella T, DiStefano PS, et al. J Biol Chem. 2006;281(45):34357–64.

118. Bohlson SS, Silva R, Fonseca MI, Tenner AJ. CD93 is rapidly shed from the surface of human myeloid cells and the soluble form is detected in human plasma. J Immunol. 2005;175(2):1239–47.

119. Danielsson C, Pascual M, French L, Steiger G, Schifferi J, JA. Soluble complement receptor type 1 (CD35) is released from leukocytes by surface cleavage. Eur J Immunol. 1994;24(11):2725–31.

120. Yamaguchi N, Plant C, Biancone L, Bachovchin W, McClurkey R, Andres G. In vivo modulation of CD62 (p-selectin ligand IV) in the mouse: effects of polyreactive and monoreactive antibodies. Transplantation. 1996;62(7):1377–85.

121. Rohnbørd N, Eckel J, Sell H. Shedding of p-selectin-like protein 2 is mediated by metalloproteinases and up-regulated by hypoxia in human adipsocytes and smooth muscle cells. FEBS Lett. 2014;588(21):3870–7.

122. Schramm RD, Li S, Harris BS, Rounds RP, Burgess RW, Fuerst TP, et al. Proteolytic cleavage of the EGF-receptor ligand mediated axon repellent. Science. 2000;289(5483):1360–3.

123. Velayos-Baeza A, Levecque C, Kobayashi K, Holloway ZG, Monaco AP. The glycosylation of ADAM10 and ADAM17. FEBS Lett. 2007;581(1):41–7.

124. Hattori M, Osterfield M, Flanagan JG. Regulated cleavage of a contactin-like processing and regulated release from primary cilia. Hum Mol Genet. 2011;20(20):3861–70.

125. Narazaki M, Yasukawa K, Saito T, Ohsugi Y, Fukui H, Koishihara Y, et al. Endogenous metalloproteinase solubilizes IL-13 receptor alpha2 in airway epithelial cells. Biochim Biophys Acta. 2007;1763(2):464–7.

126. Sahin U, Blobel CP. Ectodomain shedding of the EGF-receptor ligand, Herceptin, and its epidermal growth factor receptor 3. J Biol Chem. 2002;277(20):17767–75.

127. Theobald M, Galle PR, Strand D. Cleavage of CD95 by matrix metalloproteinase-7 induces apoptosis resistance in tumour cells. Int Arch Allergy Immunol. 1999;119(1):23–8.

128. Degnin CR, Laederich MB, Horton WA. Ligand activation leads to regulated intramembrane proteolysis of fibroblast growth factor receptor 3. J Mol Cell Biol. 2011;13(2):2031–6.

129. Hiesberger T, Gourley E, Erickson A, Koulen P, Ward CJ, Masyuk TV, Larusso NF, et al. Generation of human soluble leptin receptor by proteolytic cleavage. Mol Biol Cell. 2009;17(5):2512–23.

130. Derre L, Corvaisier M, Charreau B, Moreau A, Godefroy E, Moreau-Aubry A, et al. Proteolytic cleavage governs interleukin-11 trans-signaling. Cell Rep. 2016;14(7):1761–73.

131. Strand S, Vollmer P, van den Abeelen L, Gottfried D, Alla V, Heid H, Kuball J, et al. Proteolytic cleavage of interleukin-11 receptor type B in circulating T cells. Int Immunol. 2008;20(12):865–72.

132. Jung T, Schrader N, Hellwig M, Enssle KH, Neumann C. Soluble human CD8+ T cells. Int Immunol. 2007;19(12):1329–34.

133. Liu LY, Sedgwick JB, Bates ME, Whitt BF. Generation of human IL-5 receptor alpha from human eosinophils: II. IL-5 down-modulates its receptor via a proteinase-mediated process. J Immunol. 2002;169(2):469–76.

134. Franke M, Schroder J, Monhasery N, Aparicio-Siegmund S, Blennow E, Becker-Pyaul C, Ploss LM, Scheller J. Human and murine interleukin-23 receptor are novel substrates for a disintegrin and metalloproteases ADAM10 and ADAM17. J Biol Chem. 2016;291(20):10551–62.

135. Matsuura M, Inoue H, Matsumoto T, Nakano T, Fukuyama S, Matsumoto K, et al. Altered expression of glycoproteins on the cell surface of Jurkat cells during etoposide-induced apoptosis: shedding and intracellular translocation of glycoproteins. Biochim Biophys Acta. 2009;1790(10):1198–205.

136. Liu J, Nitz R, Argye M, Monhasery N, Aparicio-Siegmund S, Schumacher N, Wolf J, Moller-Hackethal K, Waetzig GH, Grozinger J, et al. Metalloproteinases regulate monocyte transendothelial migration. Arterioscler Thromb Vasc Biol. 2007;27(12):2619–26.

137. Lanzani P, Malarde V, Dautry-Varsat A, Gesbert F. Ectodomain shedding of CD50 (intercellular adhesion molecule-3) produced upon human lymphocyte activation. Present in normal human serum and levels are increased in the serum of systemic lupus erythematosus patients. J Immunol. 1995;154(6):3015–24.

138. Findlay CM, Cudmore MJ, Ahmed A, Kantsos CD. VEGF induces Tie2 shedding via a phosphoinositide 3-kinase/Akt dependent pathway to modulate Tie2 signaling. Arterioscler Thromb Vasc Biol. 2007;27(12):2619–26.

139. Vannier E, Kaser A, Atkins MB, Fantuzzi G, Dinarello CA, Mier JW, Tilg H. Elevated circulating levels of soluble interleukin-1 receptor type II during interleukin-1 immunotherapy. Eur J Immunol. 1999;29(10):37–42.

140. Peng M, Guo S, Yin N, Xue J, Shen L, Zhao Q, Zhang W. Ectodomain shedding of Fc alpha receptor is mediated by ADAM10 and ADAM17. Immunology. 2010;130(1):83–91.

141. Derre L, Corvaisier M, Charreau B, Moreau A, Godefroy E, Moreau-Aubry A, et al. Ectodomain shedding of CD95 by matrix metalloproteinase. J Biochem. 2012;152(5):424–32.

142. Findley CM, Cudmore MJ, Ahmed A, Kontos CD. VEGF induces Tie2 shedding via a phosphoinositide 3-kinase/Akt dependent pathway to modulate Tie2 signaling. Arterioscler Thromb Vasc Biol. 2007;27(12):2619–26.

143. Findley CM, Cudmore MJ, Ahmed A, Kontos CD. VEGF induces Tie2 shedding via a phosphoinositide 3-kinase/Akt dependent pathway to modulate Tie2 signaling. Arterioscler Thromb Vasc Biol. 2007;27(12):2619–26.

144. Vannier E, Kaser A, Atkins MB, Fantuzzi G, Dinarello CA, Mier JW, Tilg H. Elevated circulating levels of soluble interleukin-1 receptor type II during interleukin-1 immunotherapy. Eur J Immunol. 1999;29(10):37–42.
act as repulsive guidance cues for Unc5-positive neurons. EMBO J. 2011;30(14):2920–33.

157. Lee H, Lee EJ, Song YS, Kim E. Long-term depression-induced stimuli promote cleavage of the synaptic adhesion molecule NGL-3 through NMDA receptors, matrix metalloproteinases and presenilin/gamma-secretase. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369(1633):20130158.

158. Yi W, Holm Lund S, Nilsson J, Insil S, Lei T, Itami S, Henriksson R, Hedman M. Paracrine regulation of growth factor shedding by signaling leucine-rich repeats and immunoglobulin-like domains. 1 Exp Cell Res. 2011;317(4):504–12.

159. Xiao Q, Tan Y, Guo Y, Yang H, Mao F, Xie R, Wang B, Lei T, Guo D. Soluble LRIG2 ectodomain is released from glioblastoma cells and promotes the proliferation and inhibits the apoptosis of glioblastoma cells in vitro and in vivo in a similar manner to the full-length LRIG2. PLoS One. 2014;9(10):e111419.

160. Astier A, de la Salle H, de la Salle C, Bieber T, Esposito-Farese ME, Freund M, Cazenave JP, Fridman WH, Tellia JD, Hanau D. Human epidermal Langerhans cells secrete a soluble receptor for IgG (Fc gamma RII/CD32) that inhibits the binding of immune complexes to Fc gamma R+ cells. J Immunol. 1994;152(1):201–12.

161. Rome R, Foley B, Lervik T, Wang Y, Zhang B, Ankarlo D, Luo X, Cooley S, Wang Y, Wu J, Newton R, Bahaie NS, Long C, Walcheck B. ADAM17 is regulated by a disintegrin and metalloprotease-17 (ADAM17). Blood. 2013;121(18):3599–608.

162. Wang Y, Wu J, Newton R, Bahaie NS, Long C, Walcheck B. ADAM17 cleaves CD16b (Fc gamma RIIb) in human neutrophils. Biochim Biophys Acta. 2013;1833(5):880–5.

163. Liu CX, Ranganathan S, Robinson S, Strickland DK, Rome R, Foley B, Lervik T, Wang Y, Zhang B, Ankarlo D, Luo X, Cooley S, Wang Y, Wu J, Newton R, Bahaie NS, Long C, Walcheck B. ADAM17 cleaves CD16b (Fc gamma RIIb) in human neutrophils. Biochim Biophys Acta. 2013;1833(5):880–5.

164. Larios JA, Jausoro I, Benitez ML, Bronfman FC, Marzolo MP. Neurotrophins regulate ApoER2 proteolysis through activation of the Trk signaling pathway. BMC Neurosci. 2014;15:108.

165. Hoe HS, Rebeck GW. Regulation of ApoE receptor proteolysis by ligand binding. Brain Res Mol Brain Res. 2005;137(1–2):213–9.

166. Nishida-Fukuda H, Araki R, Shudou M, Okazaki H, Tomono Y, Nakayama KI, Sato S, Itakura R, Funato Y, Takeda T, Gotoh J, Hirokawa N. The glycosylphosphatidylinositol-anchored form and the transmembrane form of CD58 are released from the cell surface upon antibody binding. Cell Immunol. 1998;187(2):151–7.

167. Izhaky D, Raz N, Honderland N. The glycosylphosphatidylinositol-anchored form and the transmembrane form of CD58 are released from the cell surface upon antibody binding. Cell Immunol. 1998;187(2):151–7.

168. Rovida E, Paccagnini A, Del Rosso M, Peschon J, Dello Sbarba P. TNF-alpha-converting enzyme cleaves the macrophage colony-stimulating factor receptor in macrophages undergoing activation. J Immunol. 2001;166(3):1583–9.

169. Jordens R, Thompson A, Amors R, Koning F. Human dendritic cells shed a functional, soluble form of the mannose receptor. Int Immunol. 1999;11(1):1775–80.

170. Martinez-Pomares L, Mahoney JA, Kapoor S, Linehan SA, Stahl PD, Gordon S. A functional soluble form of the murine mannose receptor is produced by macrophages in vitro and is present in mouse serum. J Biol Chem. 1998;273(7):23376–7.

171. Cruz AC, Frank BT, Edwards ST, Dazin PF, Peschon JJ, Fang KC. Tumor necrosis factor-alpha-converting enzyme controls surface expression of c-KIT and survival of embryonic stem cell-derived mast cells. J Biol Chem. 2004;279(7):5612–20.

172. Turner AM, Bennett LG, Lin NL, Wyzych J, Bartley TD, Hunt RW, Atkinson HL, Langley KE, Parker V, Martin F, et al. Identification and characterization of a soluble c-KIT receptor produced by human hematopoietic cell lines. Blood. 1995;85(8):2052–8.

173. Murata M, Noda K, Fukuhara J, Kanda A, Kase S, Saito W, Ozawa Y, Mochizuki S, Kimura S, Mashima Y, et al. Soluble vascular adhesion protein-1 is induced by Vascular Endothelial Growth Factor a (VEGF-a). J Biol Chem. 2004;279(7):5608–16.

174. Hoffmann P, Brien S, Bruey J, Giles F, Albitar M. Circulating CD33 and its clinical value in acute leukemia. Exp Hematol. 2010;38(8):462–71.

175. Biedermann S, Gil D, Bowen DT, Crocker PR. Analysis of the CD33-related siglec family reveals that Siglec-9 is an endothelial receptor expressed on subsets of acute myeloid leukemia cells and absent from normal hematopoietic progenitors. Leuk Res. 2007;31(2):211–20.

176. Collino F, Bussolati B, Gerbaudo E, Marzolo L, Pelissetto S, Benedetto C, Camussi G. Preeclampsia: a new paradigm for endocytic pathways. J Physiol. 2008;584(11):F1185–1194.

177. Maier O, van der Heide T, Johnson J, de Vries H, Baron W, Hoeckstra D. The function of neurofascin185 in oligodendrocytes is regulated by metalloproteinase-mediated cleavage and ectodomain shedding. Exp Cell Res. 2006;312(4):500–11.

178. Suzuki K, Hayashi T, Nakahara S, Kumazaki H, Prox J, Horluchi K, Zeng M, Tanimura S, Nishiya H, Osawa S, et al. Activity-dependent proteolytic cleavage of neurophin-1. Neuron. 2012;72(2):410–22.

179. Maier O, van der Heide T, Johnson J, de Vries H, Baron W, Hoeckstra D. The function of neurofascin185 in oligodendrocytes is regulated by metalloproteinase-mediated cleavage and ectodomain shedding. Exp Cell Res. 2006;312(4):500–11.

180. Suzuki K, Hayashi T, Nakahara S, Kumazaki H, Prox J, Horluchi K, Zeng M, Tanimura S, Nishiya H, Osawa S, et al. Activity-dependent proteolytic cleavage of neurophin-1. Neuron. 2012;72(2):410–22.

181. Conacci-Sorrell M, Kaplan A, Raveh S, Gavert N, Sakurai T, Ben-Ze’ev A. The shed ectodomain of Ni-CAM stimulates cell proliferation and motility, and confers tumor cell transformation. Cancer Res. 2005;65(4):11605–11610.

182. Swendeman S, Mendelson K, Weskamp G, Horluchi K, Deutsch U, Scherer P, Hooper A, Rafis S, Bobel CP. VEGF-A stimulates ADAM17-dependent shedding of VEGFR2 and crosstalk between VEGFR2 and ERK signaling. Circ Res. 2008;102(9):916–8.

183. Waldhauer I, Steinel A. Proteolytic release of soluble UL16-binding protein 2 from tumor cells. Cancer Res. 2006;66(5):2520–6.

184. Mateos S, Calothy G, Lamballe F. The noncatalytic TaKnC2 receptor is cleaved by metalloproteinases upon neurotrophin-3 stimulation. Oncogene. 2003;22(5):740–5.

185. Biswas S, Adrian M, Weber J, Ekdövivik K, Winkler M, Gau C. Posttranslational proteolytic processing of Ledia-1/Plaip involves cleavage by MMPs, ADAM10/17 and gamma-secretase. Biochem Biophys Res Commun. 2016;477(4):661–6.

186. Biswas S, Adrian M, Ekdövivik K, Schlledzewski K, Weber J, Winkler M, Goerdt S, Gau C. Counter-regulation of the ligand-receptor pair Ledia-1/ Plaip and Plaipalpha during the LFS-mediated immune response of murine macrophages. Biochem Biophys Res Commun. 2015;456(4):1076–83.

187. Katapov M, Tagilabue E, Castronovo V, Magnifico A, Arndi E, Morelli D, Belotti D, Colnaghi MI, Menard S. Shedding of the 67-kD laminin receptor from human cancer cells. J Cell Biochem. 1996;60(1):226–34.

188. Antigiani S, Barberis D, Fazzari P, Longati P, Angelini P, van de Loo JW, Comoglio PM, Tamagnone L. Functional regulation of semaphorin receptors by propionate convertases. J Biol Chem. 2003;278(12):10091–101.

189. Vullhorst D, Mitchell RM, Keating C, Roychowdhury S, Karavanova I, Tao-Cheng JH, Bueno A. A negative feedback loop controls CD33 and its clinical value in acute leukemia. Exp Hematol. 2010;38(8):462–71.

190. Mattila SO, Tuusa JT, Petaja-Repo UE. The Parkinson disease gene LRRK2 is regulated by a disintegrin and metalloprotease-mediated cleavage. PLoS One. 2014;9(3):e90461.
infected mice receives cellular response to transition metal starvation. J Mol Biol. 2012;424(4):656–74.

237. Kambie T, Andrews GK. Novel proteolytic processing of the ectodomain of the zinc transporter ZIP4 (SLC39A4) during zinc deficiency is inhibited by acrodynatitis enteropathica mutations. Mol Cell Biol. 2009;29(1):129–39.

238. Tang J, Bond JS. Maturation of secreted meprin alpha during biosynthesis: role of the furin site and identification of the COOH-terminal amino acids of the mouse kidney metallocproteinase subunit. Arch Biochem Biophys. 1998; 349(1):192–200.

239. Xu Z, Zhang T, Zhuang R, Zhang Y, Jia W, Song C, Yang K, Yang A, Jin B. Increased levels of soluble CD262 in sera accompanied by decreased membrane CD262 expression on peripheral blood mononuclear cells from cancer patients. BMC Immunol. 2009;10:34.

240. Zhang G, Hou J, B, Zhi X, Zhang X. Soluble CD276 (B7-H3) is released from monocytes, dendritic cells and activated T cells and is detectable in normal human serum. Immunology. 2008;123(4):538–46.

241. Baleeiro RB, Barbato JA. Local secretion/shedding of tumor-derived CD83 molecules as a novel tumor escape mechanism. Mol Immunol. 2008;45(12):555–62.

242. Shuto T, Aono S, Nakanishi K, Tokita Y, Kuroda Y, Iida M, Matsui F, Maruyama H, Kaji T, Oohira A. Ectodomain shedding of neuroglycan C, a brain-specific chondroitin sulfate proteoglycan, by TIMP-2 and TIMP-3-sensitive proteolysis. J Neurochem. 2007;102(5):1561–8.

243. Hawinkels LS, Kuiper P, Wiercinska E, Verspaget HW, Liu Z, Pardali E, Sier CF, ten Dijke P. Matrix metalloproteinase-14 (MT1-MMP)-mediated endocytosis of tumor necrosis factor-related apoptosis-inducing ligand inhibits tumor angiogenesis. Cancer Res. 2010;70(10):4141–50.

244. Kaitu, K, Khandelwal S, Kojima A, Ueda M, Tanaka H, Ohtsu H, Dempsey PJ, Eguchi S. ADAMs as mediators of EGF receptor transactivation by G protein-coupled receptors. Am J Physiol Cell Physiol. 2006;292(1):C1–10.

245. Schaefer B, Marg B, Gschwind A, Ulrich A. Distinct ADAM metalloproteinases regulate G protein-coupled receptor-induced cell proliferation and survival. J Biol Chem. 2004;279(46):47299–38.

246. Kaitu, K, Khandelwal S, Kojima A, Ueda M, Tanaka H, Ohtsu H, Dempsey PJ, Eguchi S. ADAMs as mediators of EGF receptor transactivation by G protein-coupled receptors. Am J Physiol Cell Physiol. 2006;292(1):C1–10.

247. Chang GW, Stacey M, Kwakkenbos MJ, Hamann J, Gordon S, Lin HH. Proteolytic cleavage of the EMR2 receptor requires both the extracellular stalk and the GPs motif. FEBS Lett. 2003;547(1):3–145–50.

248. Hughery RP, Bruns JB, Kinlough CL, Harkerlo KL, Tong Q, Garantito MD, Johnson JP, Stockand JD, Kleyman TR. Epithelial sodium channels are activated by furin-dependent proteolysis. J Biol Chem. 2004;279(18):18111–4.

249. Garantito MD, Hughery RP, Kleyman TR. Proteolytic processing of the epithelial sodium channel gamma subunit has a dominant role in channel activation. J Biol Chem. 2008;283(37):25290–5.

250. Sollid LM, Kvale D, Brandtzaeg P, Markussen G, Thorsby E. Interferon-gamma regulates the expression of the FGFRL1 receptor. J Biol Chem. 2007;285(3):2193–9.

251. Menschikowski M, Hagelgans A, Eisenhofer G, Tiebel O, Siegert G. Reducing propeptide of progelatinase A and initiates autoproteolytic activation. J Biol Chem. 1998;273(38):25674–81.

252. Marron MB, Singh H, Tahir TA, Kavumkal J, Kim HZ, Koh GY, Brindle NP. Regulated proteolytic processing of Tie1 modulates ligand responsiveness of the receptor-tyrosine kinase Tie2. J Biol Chem. 2007;282(42):30509–17.

253. Airas L, Niemela J, Salmi M, Puurunen T, Smith DJ, Jalkanen S. Differential processing of protein-tyrosine pseudokinase 7 (PTK7). J Biol Chem. 2012;287(26):21399–408.

254. Shirakabe K, Hattori S, Seiki M, Koyasu S, Okada Y. VIP36 protein is a target of furin cleavage and is shed from the renal epithelium. J Biol Chem. 2012;287(34):28902–11.

255. Cardiac Valves. Cardiovasc Res. 2005;67(1):39–48.

256. Kikkawa Y, Miwa T, Tanimizu N, Kadoya Y, Ogawa T, Katagiri F, Hozumi K, Nomizu M, Mizuguchi T, Hirata K, et al. Soluble Lutheran/basal cell adhesion molecule-1 (VCAM-1) ectodomain release is regulated by TIMP-3. J Biol Chem. 1999;274(4):1959–65.

257. Will H, Atkinson SJ, Butler GS, Smith B, Murphy G. The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoprolytic activation. Regulation by TIMP-2 and TIMP-3. J Biol Chem. 1996;271(29):17119–23.
Reiss K, Maretzky T, Ludwig A, Strooper B, Hartmann D, Safpig P. ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and beta-catenin signaling. EMBO J. 2005;24(4):742–52.

Derycke L, De Wever O, Vanhocke B, Delanghe J, Depypere H, Bracke M. Soluble N-cadherin in human biological fluids. Int J Cancer. 2006;119(12):2965–900.

Ribeiro AS, Albergaria A, Sousa B, Correia AL, Bracke M, Seruca R, Schmitt FC, Ribeiro AS, Albergaria A, Sousa B, Correia AL, Bracke M, Seruca R, Schmitt FC, Bothe MK, Mundhenk L, Beck CL, Kaup M, Gruber AD. Impaired processing that does not involve receptor endocytosis. Eur J Cell Biol. 2001;77(12):151–66.

Hockla A, Radisky DC, Radisky ES. Mesotyposin promotes malignant growth of breast cancer cells through shedding of CD109. Breast Cancer Res Treat. 2010;124(1):47–55.

Rosso O, Piazza T, Bongarzone I, Rosso A, Mezzaranzana D, Canavelli S, Orenzo AM, Puppo A, Fanti S, Fabbri M. The ALCAM shedding by the mature intramembrane protease action of the metalloprotease ADAM17/TACE is involved in motility of ovarian carcinoma cells. Mol Cancer Res. 2007;5(12):2464–5.

Loener WA, De Vries E, Gravestein LA, Hintzen RQ, Van Lier RA, Bronst J. The CD27 membrane receptor, a lymphocyte-specific member of the nerve growth factor receptor family, gives rise to a soluble form by protein processing that does not involve receptor endocytosis. Eur J Immunol. 1992;22(2):447–55.

Nagano O, Murakami D, Hartmann D, Strooper B, Safpig P, Ivatsubo T, Nakajima M, Shionohara M, Saya H. Cell-matrix interaction via CD44 is independently regulated by different metalloproteinases activated in response to extracellular Ca(2+) influx and PKC activation. J Cell Biol. 2004;165(6):893–902.

Hakulinen J, Meri S. Shedding and enrichment of the glycolipid-anchored amyloid plaque component derived from a transmembrane precursor, the shed ectodomain of type XIII collagen, affects cell behaviour in a matrix-dependent manner. Biochem J. 2002;364(Pt 1):211–8.

Park SW, Yoon HJ, Lee HB, Hooper NM, Park HS. Nitric oxide inhibits the shedding of the glycosylphosphatidylinositol-anchored disintegrin from porcine renal proximal tubules. Biochem J. 2002;364(Pt 1):211–8.

Kang T, Park H, Suh Y, Zhao YG, Tschiesche H, Sang OX. Autotytic processing at Glu586-Ser587 within the cyto-centric region of human amyloid α19/integrin-metalloproteinase 19 is necessary for its proteolytic activity. J Biol Chem. 2002;277(50):48514–22.

Mochizuki S, Shimoda M, Shomi T, Fujiy O, Okada Y. ADAM28 is activated by MMP-7 (matrixin-1) and cleaves insulin-like growth factor binding protein-3. Biochem Biophys Res Commun. 2004;315(1):79–84.

Goth CK, Halim A, Khetarpal SA, Rader DJ, Claussen H, Schijldijker KT. A systematic study of modulation of ADAM-mediated ectodomain shedding by site-specific O-glycosylation. Proc Natl Acad Sci U S A. 2015;112(14):47623–8.

Scholermann U, Wildeboer D, Webster A, Antropova O, Zeunerchner D, Knight CG, Docherty AJ, Lambert M, Skelton L, Jockusch H, et al. The metalloprotease disintegrin ADAM18. Processing by autocalysis is required for proteolytic activity and cell adhesion. J Biol Chem. 2002;277(50):48210–9.

Bozzi M, Inzitari R, Stradell D, Monaco S, Pavoni E, Gioia M, Marini S, Bruno J, Heguy A, Olshen AB, et al. The Eph-receptor A7 is a soluble tumor suppressor cell adhesion molecule. EMBO J. 2002;21(7):1524–34.

Lin KT, Sloniowski S, Ethell DW, Ethell IM. Ephrin-B2-induced cleavage of EPH receptor B2 is mediated by matrix metalloproteinase-9. J Biol Chem. 2003;278(36):34181–8.

Kweeberg M, Albrechtsen R, Couchman JR, Wexler UM. Cellular roles of ADAM12 in health and disease. Int J Biochem Cell Biol. 2008;40(9):1685–702.

Weiske J, Schoneberg T, Schroder W, Hatfeld M, Tauber R, Huber O. The fate of desmosomal proteins in apoptotic cells. J Biol Chem. 2001;276(44):41175–81.

Derycke L, De Wever O, Stove V, Vanhocke B, Delanghe J, Depypere H, Bracke M, Seruca R, Schmitt FC, Derycke L, De Wever O, Stove V, Vanhocke B, Delanghe J, Depypere H, Bracke M, Seruca R, Schmitt FC, Bothe MK, Mundhenk L, Beck CL, Kaup M, Gruber AD. Impaired processing that does not involve receptor endocytosis. Eur J Cell Biol. 2001;77(12):151–66.

Hockla A, Radisky DC, Radisky ES. Mesotyposin promotes malignant growth of breast cancer cells through shedding of CD109. Breast Cancer Res Treat. 2010;124(1):47–55.

Rosso O, Piazza T, Bongarzone I, Rosso A, Mezzaranzana D, Canavelli S, Orenzo AM, Puppo A, Fanti S, Fabbri M. The ALCAM shedding by the mature intramembrane protease action of the metalloprotease ADAM17/TACE is involved in motility of ovarian carcinoma cells. Mol Cancer Res. 2007;5(12):2464–5.

Loener WA, De Vries E, Gravestein LA, Hintzen RQ, Van Vier RA, Bronst J. The CD27 membrane receptor, a lymphocyte-specific member of the nerve growth factor receptor family, gives rise to a soluble form by protein processing that does not involve receptor endocytosis. Eur J Immunol. 1992;22(2):447–55.

Nagano O, Murakami D, Hartmann D, Strooper B, Safpig P, Ivatsubo T, Nakajima M, Shionohara M, Saya H. Cell-matrix interaction via CD44 is independently regulated by different metalloproteinases activated in response to extracellular Ca(2+) influx and PKC activation. J Cell Biol. 2004;165(6):893–902.

Hakulinen J, Meri S. Shedding and enrichment of the glycolipid-anchored amyloid plaque component derived from a transmembrane precursor, the shed ectodomain of type XIII collagen, affects cell behaviour in a matrix-dependent manner. Biochem J. 2004;380(Pt 3):3685–93.

Zimina EP, Fritsch A, Schermer B, Bakulina A, Bashkurov M, Benzing T, Vaisanen MR, Vaisanen T, Pihlajaniemi T. The shed ectodomain of type XIII collagen affects cell behaviour in a matrix-dependent manner. Biochem J. 2004;380(Pt 3):3685–93.

Zimina EP, Fritsch A, Schermer B, Bakulina A, Bashkurov M, Benzing T, Vaisanen MR, Vaisanen T, Pihlajaniemi T. The shed ectodomain of type XIII collagen affects cell behaviour in a matrix-dependent manner. Biochem J. 2004;380(Pt 3):3685–93.
360. M K Johnson GV. Regulated proteolytic processing of LRP6 results in release of its intracellular domain. J Neurochem. 2007;101(2):517–29.

361. Peschon JJ, Slack JL, Reddy P, Stocking KL, Sunnarborg SW, Lee DC, Russell WE, Castner BJ, Johnson RS, Fitzner JN, et al. An essential role for ectodomain shedding in mammalian development. Science; 1998; 282(5392):1281–4.

362. Esselens CW, Malapeira J, Colome N, Moss M, Canals F, Arribas J. Metastasis-associated C44A, a GPI-anchored protein cleaved by ADAM10 and ADAM17. Biol Chem. 2008;389(8):1075–84.

363. Horiiuchi K, Miyamoto T, Takahashi H, Hozaki O, Kosaki N, Miyauchi Y, Furukawa K, Takito J, Kaneko H, Matsuoka K, et al. Cell surface colony-stimulating factor 1 can be cleaved by TNF-alpha converting enzyme or endocontype in a clathrin-dependent manner. J Immunol. 2007;179(10):6715–24.

364. Vincent B, Pailet E, Safig T, Frobert Y, Hartmann D, De Strooper B, Gras J, Lopez-Perez E, Checker F. The disintegrins ADAM10 and TACE contribute to the constitutive and phorbol ester-regulated normal cleavage of the cellular prion protein. J Cell Physiol. 2001;274(4):13775–6.

365. Osenkowski P, Toth M, Fridman R. Processing, shedding, and endocytosis of membrane type 1-matrix metalloproteinase (MT1-MMP). J Cell Physiol. 2004;20(1):2–10.

366. Scholler N, Fu N, Yang Y, Ye Z, Goodman GE, Hellstrom KE, Hellstrom I. Essential role of ADAM10 and ADAM17 in the release of membrane-bound glycoprotein (Pmel17/gp100) is released by ectodomain shedding in mouse and human keratinocytes. J Biol Chem. 2004;279(30):31955–60.

367. Hoashi T, Tamaki K, Hearing VJ. The secreted form of a melanocyte surface membrane-targeting disintegrin, ADAM17. Biol Chem. 2008;389(8):1075–84.

368. Hakulinen J, Junnikkala S, Sorsa T, Meri S. Complement inhibitor membrane type 1-matrix metalloproteinase (MT1-MMP). J Cell Physiol. 2004;200(1):2

369. Hakulinen J, Keski-Oja J. ADAM10-mediated release of complement membrane cofactor protein during apoptosis of epithelial cells. J Biol Chem. 2006;281(30):21369–76.

370. Hahn D, Pischitzis A, Roesmann S, Hansen MK, Leuenberger B, Luginbuehl S, Thathiah A, Carson DD. MT1-MMP mediates MUC1 shedding independent of TACE/ADAM17. Biochem J. 2004;382(Pt 1):363–8.

371. M. Regulated proteolysis of NOTCH2 and NOTCH3 receptors by ADAM10 and presenilins. Mol Cell Biol. 2014;34(15):2822–32.

372. Groth AJ, Habets R, Yahayanejad S, Hodin CM, Reiss K, Saftig P, Theys J, Vooijs PM. Estrogen regulated proteolysis of NOTCH2 and NOTCH1 receptors by ADAM10 and ADAM17. Biochem J. 2004;379(Pt 1):223–31.

373. Thathiah A, Carson DD, MT1-MMP mediates MUC1 shedding independent of TACE/ADAM17. Biochem J. 2004;382(Pt 1):363–8.

374. Szklarczyk A, Nguyen T, Melili G, Nayak M, Deshpande D, Fitzsimmons C, Hoke A, Kerr D, et al. Cleavage of myelin associated glycoprotein by matrix metalloproteinases. J Neuroimmunol. 2008;193(1–2):140–8.

375. Tham SC, Chang A, Giuliano RE, Fedoroff HJ. Ectodomain shedding of necrit-1 regulates the maintenance of dendritic spine density. J Neurochem. 2012;120(5):741–51.

376. Kim J, Lilliehook C, Dudaik A, Prox J, Safig T, Fedoroff HJ, Lim ST. Activity-dependent alpha-cleavage of nectin-1 is mediated by a disintegrin and metalloproteinase 10 (ADAM10). J Biol Chem. 2010;285(30):22919–26.

377. Schlecker E, Fieger N, Arnold A, Atevogt P, Rose-John S, Moldenhauer G, Sucker A, Paxten A, von Strandmann EP, Tevot S, et al. Matrixmetalloproteinase-mediated tumor cell shedding of E2F6, the ligand of the natural killer cell-activating receptor NKG3. Cancer Res. 2014;74(13):3429–40.

378. van Erp S, van den Heuvel DM, Fujita Y, Robinson RA, Hellemans AD, Adolfis Y, Van Battum EY, Blokhuis AM, Kuipers M, Demmers JA, et al. Lig2 Negatively Regulates Ectodomain Sheddng of Axon Guidance Receptors by ADAM Proteases. Dev Cell. 2015;33(5):537–52.

379. Kuruppu S, Rajapakse NW, Minond D, Smith AI. Production of soluble Neprilysin by endothelial cells. Biochem Biophys Res Commun. 2014;446(2):423–7.

380. Gallo MJ, Tessler-Lavinie M. Function of an axonal chemoattractant molecule is mediated by metalloproteinase activity. Science; 2000;289(5483):1365–7.

381. Mechtersheimer S, Gutwein P, Agmon-Levin N, Stoeck A, Oleszewski M, Riedle S, Postina R, Fahrerholz F, Fogel M, Lemmon V, et al. Ectodomain shedding of Wnt-induced cell migration in osteoclasts as a regulated process. J Cell Biol. 2005;170(1):61–73.

382. Naus S, Richter M, Wildeboer D, Moss M, Schachner M, Bartsch JW. Notch2 ectodomain shedding of the neuronal recognition molecule CHIL1 by the metalloproteinase-disintegrin ADAM8 promotes neurite outgrowth and suppresses neuronal cell death. J Biol Chem. 2004;279(16):16083–90.

383. Brou C, Logeat F, Gupta N, Bessa C, Lebail D, Doedens JR, Cumanio A, Roux P, Black RA, Israel A. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell. 2000;5(2):207–16.

384. Shimizu K, Chiba S, Hosoya N, Kuman K, Saito T, Kurokawa M, Kanda Y, Hamada Y, Hira H. Binding of Delta1, Jagged1, and Jagged2 to Notch2 rapidly induces cleavage, nuclear translocation, and hyperphosphorylation of Notch2. Mol Cell Biol. 2002;20(18):6913–22.

385. Groot AJ, Habets R, Yahayanejad S, Hodin CM, Reiss K, Saftig P, Theys J, Vooijs PM. Regulation of proteolysis of NOTCH2 and NOTCH1 receptors by ADAM10 and presenilins. Mol Cell Biol. 2014;34(15):2822–32.

386. Cho RW, Park JM, Wolff SB, Xu D, Hofg C, Kim JA, Reddy RC, Petralia RS, Perin MS, Linden DJ, et al. mGluR5-dependent long-term depression requires the regulated ectodomain cleavage of neuronal pentraxin NPR by TACE. Neuron. 2008;57(6):859–71.

387. Gorodeski GI. Estrogen decrease in tight junctional resistance involves matrix-metalloproteinase-7-mediated remodeling of occludin. Endocrinology. 2007;148(7):2181–9.

388. Zeng R, Li X, Gorodeski G. Estrogen abrogates transcellular tight junctional resistance by acceleration of occludin degradation. J Clin Endocrinol Metab. 2004;89(10):5145–53.

389. Hayashida K, Kume N, Murase T, Minami M, Nakagawa D, Inada T, Tanaka M, Li X, Gorodeski GI. Estrogen decrease in tight junctional resistance involves matrix-metalloproteinase-7-mediated remodeling of occludin. Endocrinology. 2007;148(7):2181–9.

390. Cheng H, Yan R, Li S, Yuen Y, Liu J, Ruan C, Dai K, Shear-induced interaction of platelets with von Willebrand factor results in glycoprotein Ibalpha shedding. Am J Physiol Heart Circ Physiol. 2009;297(6):H2128–2135.

391. Gardiner EE, Andrews RK. Platelet receptor expression and shedding: glycoprotein Ib-IX-V and glycoprotein VI. Transfus Med Rev. 2014;28(2):56–60.

392. Gardiner EE, Karunakaran D, Chen Y, Arthur JF, Andrews RK, Benndt MC. Controlled shedding of platelet glycoprotein (GPIIb-IX-V and GPIIb-IIIa) by ADAM family metalloproteinases. J Thromb Haemost. 2007;5(5):1530–7.

393. Saki MA, Takino T, Domoto T, Nakano H, Wong RW, Sasaki M, Nakamura Y, Sato H. GII4 enhances tumor invasiveness by regulating cell surface membrane-type 1 matrix metalloproteinase. Cancer Sci. 2010;101(11):2368–74.

394. Wei W, Hackmann K, Xu H, Germino G, Qian F. Characterization of cis-autoproteolysis of polycystin-1, the product of human polycystic kidney disease 1 gene. J Biol Chem. 2007;282(30):21729–37.

395. Tokumaru S, Higashiyama S, Endo T, Nakagawa T, Miyagawa JI, Yamamori K, Hanakawa Y, Ohmoto H, Yoshino K, Shitakata Y, et al. Ectodomain shedding
of epidermal growth factor receptor ligands is required for keratinocyte migration in cutaneous wound healing. J Cell Biol. 2000;151(2):209–20.

403. Xu KP, Ding Y, Ling J, Dong Z, Yu FS. Wound-induced HB-EGF ectodomain shedding and EFRG activation in corneal epithelial cells. Invest Ophthalmol Vis Sci. 2004;45(3):813–20.

404. Asakura M, Kitakaze M, Takashima S, Liao Y, Ishikura F, Yoshinaka T, Ohmoto H, Node K, Yoshino K, Ishiguro H, et al. Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat Med. 2002;8(1):35–40.

405. Yu WH, Woessner Jr JF, McNeish JD, Stamenkovic I. CD44 anchors the receptor in malignant cells. Oncogene. 2000;19(15):1901–8

406. Liu PC, Liu X, Li Y, Covington M, Wynn R, Huber R, Hillman M, Yang G, Ellis JH. Identification of target proteins of N-acetylglucosaminyl transferase V in human colon cancer and implications of protein tyrosine phosphatase mu regulates glioblastoma cell migration. Cancer Res. 2009;69(22):8413–22.

407. Kalinowski A, Plowes NJ, Huang Q, Berdejo-Izquierdo C, Russell RR, Russell KS. Metalloproteinase-dependent cleavage of neuregulin and autocrine stimulation of vascular endothelial cells. FASEB J. 2010;24(7):2367–75.

408. Choi DH, Hwang O, Lee KH, Lee J, Beal MF, Kim YS. Dl-1 cleavage by matrix metalloproteinase 3 mediates oxidative stress-induced dopaminergic cell death. Antioxid Redox Signal. 2011;14(1):1217–30.

409. Ludeman MJ, Zheng YW, Ichii K, Coughlin SR. Regulated shedding of PAR1 N-terminal exodomain from endothelial cells. J Biol Chem. 2004;279(18):18592–9.

410. Dulan S, Candie C, Burnett NW, Hollenberg MD, Chignard M, Pidard D. Proteinase-activated receptor-2 and human lung epithelial cells: disarming by neutrophil serine proteinases. Am J Respir Cell Mol Biol. 2003;28(3):339–46.

411. Yang H, Jiang D, Li W, Liang J, Gentry LE, Brattain MG. Defective cleavage of proTGF-alpha. Biochemistry. 2003;42(7):2127–34.

412. Slomiany BL, Slomiany A. Helicobacter pylori-induced gastric mucosal TGF-beta 1 receptor antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors regulates pro-MMP-2 and TIMP-3 regulates pro-MMP-2 activation. J Biol Chem. 2004;279(10):8592–601.

413. Benaud C, Dickson RB, Lin CY. Regulation of the activity of matriptase on epithelial cell surfaces by a blood-derived factor. Eur J Biochem. 2001;285(4):1349–57.

414. Endo K, Takino T, Miyamori H, Kinsen H, Yoshizaki T, Furukawa M, Sato H. Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. J Biol Chem. 2003;278(42):40764–70.

415. Asundi VK, Erdman R, Stahl RC, Carey DJ. Matrix metalloproteinase-dependent shedding of syndecan-3, a transmembrane heparan sulfate proteoglycan, in Schwann cells. J Neurosci Res. 2003;73(5):593–602.

416. Schulz JG, Anwaer V, Vandekerckhove J, Zimmermann P, De Strooper B, Seed B. The cell adhesion protein P-selectin glycoprotein nonmetastatic melanoma protein b, a melanocytic cell marker, releases a soluble form of the GPNMB/Osteoactivin extracellular domain: biology and clinical utility in breast cancer. Cancer Treat Rev. 2012;38(2):133–44.

417. Hikita A, Yana I, Wakeyama H, Nakamura M, Kadono Y, Oshima Y, Nakamura H. Inhibitor of metalloproteinase (TIMP)-2 and TIMP-3 regulates pro-MMP-2 activation. J Biol Chem. 2004;279(10):8592–601.

418. Baliova M, Betz H, Jursky F. Calpain-mediated proteolytic cleavage of the neuronal glycine transporter, GlyT2. J Neurochem. 2004;88(1):227–32.
