Human being is a living random number generator

Arindam Mitra

Anushakti Abasan, Uttar Phalguni -7, 1/AF, Salt Lake,
Kolkata, West Bengal, 700064, India.

Abstract: General wisdom is, mathematical operation is needed to generate number by numbers. It is pointed out that without any mathematical operation true random numbers can be generated by numbers through algorithmic process. It implies that human brain itself is a living true random number generator. Human brain can meet the enormous human demand of true random numbers.

Number as well as a string of non/pseudo-random numbers can be generated by numbers with the help of mathematical operation through algorithmic process [1,2]. Although there is no mathematical proof that random numbers cannot be generated by any classical algorithm, but it is widely believed that random numbers can be generated only by using random events. It may be recalled that von Neumann first ruled out [1] the possibility of generating random numbers by any mathematical operation. There is a caveat. von Neumann did not rule out the generation of random numbers by any algorithmic technique. In fact, it is possible to generate random numbers by using simple quantum algorithm [3] which exploits intrinsic randomness of quantum system.

From the above discussion it may be conjectured that if any classical algorithm does not require mathematical operation to generate numbers, then it can be a good candidate for the generation of both random and non-random numbers. We have found such algorithm. Let us first present the most simple one.
Algorithm- I

a). Take a string S^m of $2n$ random bits.

b). Note down the random positions of 1s in the ascending order. It gives a sequence K' of positive integers. Similarly, note down the random positions of 0s in the ascending order. It gives another sequence K^p of positive integers. The operation can be symbolically described as, $S^m \rightarrow K'$, $S^m \rightarrow K^p$.

c). Take another sequence S^f of $2n$ random bits.

d). Apply K' and K^p on S^f, and thereby extract a pair of sequences k' and k^p of random bits. It means bits of k' and k^p are extracted from some random positions in S^f determined by K' and K^p respectively. That is, bits of k' are extracted from those positions in S^f which are the positions of 1s in S^m and bits of k^p are extracted from those bit positions in S^f which are the positions of 0s in S^m. The operation can be symbolically described as $S^m \rightarrow K' : S^f :: k'$ and $S^m \rightarrow K^p : S^f :: k^p$.

In this operation, two bits bb are used to generate a single bit b where the first bit belongs to S^m and the second bit belongs to S^f. For k', $10 \equiv 0$, $11 \equiv 1$. For k^p, $01 \equiv 1$, $00 \equiv 0$.

It is trivial to see that the algorithm generates a bit 0 or 1 with probability 1/2.

Proof: Since S^m is a sequence of random bits, a priori probability of getting 0 or 1 in any position is $p^m = 1/2$. Since S^f is a sequence of random bits, a priori probability of getting 0 or 1 in any position is $p^f = 1/2$.

Since S^m and S^f are uncorrelated independent sequences p^m and p^f are independent probabilities. The probability of generating a bit 0 or 1, which will construct k', arising from two independent probabilities p^m and p^f is

$$p^f = p^m \cdot p^f = 1/4.$$
The probability of generating a bit 0 or 1, which will construct k^p, arising from two independent probabilities p^m and p^f is

$$p^p = p^m \cdot p^f = \frac{1}{4}.$$

The total probability of generating a bit 0 or 1 which will construct k^r or k^p is

$$p = p^r + p^p = \frac{1}{2}$$

The generated bits are random bits. Given $4n$ bits in the input $2n$ bits are generated in the output. Gain is insignificant. To increase the gain, if we use the generated bits as one of the input and reuse one of the given input, then the generated bits will not be random bits because two inputs $(2n+2n)$ will not be independent inputs. It does not mean that the generated bits cannot be further used to generate bits. Laws of nature tells that that if single generation is possible, then infinite generation is also possible. There is no exception to this natural law. Next we shall present a prototype of the above algorithm which can generate arbitrary numbers of random bits.

Algorithm- II

Step 0 #

a) Take a sequence S^m_0.

b) Note down the random positions of 1s and 0s in the ascending order. It gives two sequences, K^r_0, and K^p_0 of positive integers. The operation can be symbolically described as, $S^m_0 \sim K^r_0$ and $S^m_0 \sim K^p_0$.

c) Take another sequence S^c_1.

d) Construct complementary sequence S^{c}_{2} from S^{c}_{1} by interchanging the positions of 0 and 1. Note that S^{c}_{1} and S^{c}_{2} are maximally correlated random sequences. These two sequences S^{c}_{2} and S^{c}_{1} have to be used at random.

e) Take another sequence S^c of m random bits. In i-th step, S^{c}_{1} or S^{c}_{2} will be chosen by the i-th bit of S^c.
Step 1 #

a) Choose S'_1 or S'_2 by the 1st bit of S^c.

b). Apply K'_0 and K'_0 on the chosen S'_1 or S'_2, and thereby extract a pair of sequences k'_1 and k'_2 of random bits. The operation can be described as $S'_0\sim K'_0 : (S'_1/S'_2) :: k'_1$ and $S'_0\sim K'_0 : (S'_1/S'_2) :: k'_2$.

c). Attach k'_1 and k'_2, and thereby construct a new sequence S'_m of $2n$ random bits. Here attachment means k'_1 is followed by k'_2. That is, i-th bit of k'_1 is also the i-th bit of the attached string. The attachment can be symbolically described as $S'_m \equiv k'_1 .. k'_2$.

d). Note down the positions of 1s and 0s in S'_m. It gives a new pair of sequences K'_1 and K'_2 of positive integers in the ascending order. Note down the positions of 1s and 0s in the string S'_m. The operation can be symbolically described as $S'_m \sim K'_1$ and $S'_m \sim K'_2$.

Step 2 #

a) Choose S'_1 or S'_2 by the 2nd bit of S^c.

b). Apply K'_1 and K'_1 on the chosen S'_1 or S'_2, and thereby extract a new pair of sequences k'_2 and k'_2. The operation can be described as $S'_1\sim K'_1 : (S'_1/S'_2) :: k'_2$ and $S'_1\sim K'_1 : (S'_1/S'_2) :: k'_2$.

c). Attach k'_2 and k'_2, and thereby construct a new $2n$-bit string S'_m. The attachment can be symbolically described as $S'_m \equiv k'_2 .. k'_2$.

d). Note down the positions of 1s and 0s in S'_m. It gives a new pair of sequences K'_1 and K'_2 of positive integers. The operation can be symbolically described as $S'_m \sim K'_1$ and $S'_m \sim K'_2$.

..
Step i #

a) Choose S_1^f or S_2^f by the i-th bit of S^c.

b) Apply K_{i-1}^r and K_{i-1}^p (taken from previous S_{i-1}^m) on the chosen S_1^f or S_2^f, and extract a new pair of bit strings k_i^r and k_i^p. To get k_i^r, bits are extracted from those bit positions in either S_1^f or S_2^f where bits are 1s in S_{i-1}^m. To get k_i^p, bits are extracted from those bit positions in either S_1^f or S_2^f where bits are 0s in S_{i-1}^m. The operations can be symbolically described as $S_{i-1}^m \rightarrow K_{i-1}^r : (S_1^f/S_2^f) :: k_i^r$ and $S_{i-1}^m \rightarrow K_{i-1}^p : (S_1^f/S_2^f) :: k_i^p$.

c) Attach k_i^r and k_i^p, and thereby construct a new 2n-bit string S_i^m. The attachment can be symbolically described as $S_i^m \equiv k_i^r .. k_i^p$.

d) Note down the positions of 1s and 0s in S_i^m. It gives a new pair of sequences, K_i^r and K_i^p, of positive integers. The operation can be symbolically described as $S_i^m \rightarrow K_i^r$ and $S_2^m \rightarrow K_i^p$.

Suppose, in i-th step the integer sequences will be applied on S_1^f if i-th bit of S^c is 0 or on S_2^f if i-th bit of S^c is 1. Let us illustrate the algorithmic steps.

Step 0 #

a) Suppose the following S_0^m is taken.

\[
S_0^m = \begin{array}{cccccccccccc}
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0
\end{array}
\]

\[
S_0^m = \begin{array}{cccccccccccc}
p & r & r & p & r & p & r & p & p & p & r & r & p
\end{array}
\]

b).

$K_0^r = \{2, 3, 5, 6, 8, 12, 14, 15\}$

$K_0^p = \{1, 4, 6, 7, 9, 10, 11, 13, 16\}$

c) Suppose the following S_1^f is taken.

d).

\[
S_1^f = \begin{array}{cccccccccccc}
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}
\]

\[
S_2^f = \begin{array}{cccccccccccc}
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0
\end{array}
\]
e). Suppose the following S^c is taken. $S^c = \{0 \ 1 \ 1 \ 0 \ 1 \ \ldots \ldots\}.$

Step 1 #

a). Choose S'_1 as 1st bit of S^c is 0.

b). Apply K'_0 and P'_0 on S'_1.

\[
\begin{align*}
S'_0 & = p \ r \ r \ p \ r \ p \ p \ p \ r \ p \ r \ p \\
S'_1 & = 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1
\end{align*}
\]

\[
\downarrow
\]

\[
\begin{align*}
k'_1 & = 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \\
k'_1^p & = 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1
\end{align*}
\]

c). Attach k'_1 and k'_1^p. The attached sequence $S'_1^m = k'_1 \ldots k'_1^p$ is,

\[
S'_1^m = \{1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ \ldots \ \} \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1
\]

d). The extracted integer strings are

\[
\begin{align*}
K'_1 & = \{1, \ 3, \ 4, \ 5, \ 10, \ 13, \ 15, \ 16\} \\
K'_1^p & = \{2, \ 6, \ 7, \ 8, \ 9, \ 11, \ 12, \ 14\}
\end{align*}
\]

Step: 2 #

a). Choose S'_2 as 2nd bit of S^c is 1.

b). Apply K'_1 and K'_1^p on S'_2.

\[
\begin{align*}
S'_1 & = r \ p \ r \ r \ p \ r \ p \ p \ r \ p \ r \ p \\
S'_2 & = 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0
\end{align*}
\]

\[
\downarrow
\]

\[
\begin{align*}
k'_2 & = 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \\
k'_2^p & = 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 1
\end{align*}
\]

c). Attach k'_2 and k'_2^p. The attached sequence $S'_2^m = k'_2 \ldots k'_2^p$ is,

\[
S'_2^m = \{1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ \ldots \ \} \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 1
\]
d). The extracted integer strings are

\[K'_2 = \{1, 2, 7, 11, 13, 14, 15, 16\} \]
\[K^p_2 = \{3, 4, 5, 6, 8, 9, 10, 12\} \]

Let us now prove that in each step the algorithm-II generates random bits.

Proof: Since \(S'_1 \) is a sequence of random bits, \textit{a priori} probability of getting 0 or 1 in j-th position is \(p^f_1 = 1/2 \). Since \(S'_2 \) is complimentary to \(S'_1 \), \textit{a priori} probability of getting 0 or 1 in the same j-th position is \(p^f_2 = 1/2 \). Note that \(S'_1 \) and \(S^c \) are uncorrelated independent sequences. Similarly, \(S'_2 \) and \(S^c \) are uncorrelated independent sequences. In each step, \(S'_1 \) or \(S'_2 \) is chosen by a bit of \(S^c \) with probability \(p^c = 1/2 \). Therefore, total probability of getting 0 or 1 in any position is,

\[p^f = p^c \cdot p^f_1 + p^c \cdot p^f_2 = 1/2 \]

Since \(S^m_0 \) is a sequence of random bits, \textit{a priori} probability of getting 0 or 1 is \(p^m_0 = 1/2 \). Since \(S^m_0 \) and \(S^c \) are uncorrelated independent sequences \(p^m_0 \) and \(p^f \) are independent probabilities. The probability of generating a bit 0 or 1, which will construct \(k'_1 \), arising from two independent probabilities \(p^m_0 \) and \(p^f \) is

\[p^f_1 = p^m_0 \cdot p^f = 1/4 \]

The probability of generating a bit 0 or 1, which will construct \(k^p_1 \), arising from two independent probabilities \(p^m_0 \) and \(p^f \) is

\[p^f_1 = p^m_0 \cdot p^f = 1/4 \]

The total probability of generating a bit 0 or 1 which will construct \(k'_1 \) or \(k^p_1 \) is

\[p_1 = p^f_1 + p^f_1 = 1/2 \]

Since extracted pair constructs \(S^m_1 \), \(p_1 \) can be denoted as \(p^m_1 \). Since \(S^m_1 \) and \(S^c \) are uncorrelated independent sequences \(p^m_1 \) and \(p^f \) are independent probabilities. The probability of generating a bit 0 or 1, which will construct \(k'_2 \), arising from two independent probabilities \(p^m_1 \) and \(p^f \) is

\[p^f_2 = p^m_1 \cdot p^f = 1/4 \].
The probability of generating a bit 0 or 1, which will construct k_2^p, arising from two independent probabilities p_i^m and p_i^f is

$$ p_2^p = p_i^m \cdot p_i^f = \frac{1}{4} $$

The total probability of generating a bit 0 or 1 which will construct k_2' or k_2^c is,

$$ p_2 = p_2^r + p_2^p = \frac{1}{2} $$

Since extracted pair of (i-1)-th step constructs S_{i-1}^m, p_{i-1} can be denoted as p_i^m. Since S_{i-1}^m and S_c are uncorrelated independent sequences p_{i-1}^m and p_i^f are independent probabilities. The probability of generating a bit 0 or 1, which will construct k_i', involving two independent probabilities p_i^m and p_i^f is

$$ p_i^r = p_i^m \cdot p_i^f = \frac{1}{4} $$

The probability of generating a bit 0 or 1, which will construct k_i^p, involving two independent probabilities p_{i-1}^m and p_i^f is

$$ p_i^p = p_{i-1}^m \cdot p_i^f = \frac{1}{4} $$

The total probability of generating a bit 0 or 1 which will construct k_i' and k_i^p is,

$$ p_i = p_i^r + p_i^p = \frac{1}{2} $$

In each step algorithm generates random bits.

Some of the features of the algorithm are discussed below.

1. An attached string can become identical with S_1^r or S_2^r or S_0^m. If any attached string becomes identical with S_1^r or S_2^r, the algorithm will halt. If attached string becomes identical with S_0^m the algorithm will be cyclic. The probability of generating identical S_1^r or S_2^r or S_0^m is $1/2^{2n}$.

2. In R steps the total number of generated random bits is $2nR$ while the number of input random bits is $4n + R$. Gain is, $G = 2nN - (4n + R)$. Some of the generated random bits can be used to increase the length of the input strings S_1^r (S_2^r), S_0^m and S_c. The algorithm can ultimately run on two arbitrarily long strings.
3. As far as correlation is concerned there are mainly two possibilities.

a) In each step, independent inputs are given and there is no correlation between the inputs of i-th steps and j-th steps.

In this case, i-th input can be correlated with the i-th output. This is not n-bit n-bit correlation. This is n-bit 2n-bit correlation. But i-th output cannot be correlated with j-th output and i-th input cannot be correlated with j-th output. So n-bit outputs can remain uncorrelated even they are correlated with 2n-bit inputs.

b) In each step, independent inputs are given but there is a correlation between the inputs of i-th steps and j-th steps. The algorithm II is an example.

In this case, i-th input can be correlated with the i-th output and i-th input cannot be correlated with the j-th output, but i-output cannot be correlated with j-th output. But this correlation can be known if and only if the input strings are known. Therefore, so far output is concerned this is a meaningless correlation. Due to this meaningless correlation the same output can be generated by giving the same input. This is advantageous for Monte-Carlo simulation when simulation needs to be repeated under the same condition. One may tell it as meaningfully meaningless correlation.

4. In the output the probable number of different 2n-bit sequences is 2^{2n}. For all probable input pairs the probable number of different order of 2n-bit sequences of sequence is $\left(\frac{1}{2^{2n}}\right)^{2n}$. For a pair of particular inputs S_i^f and S_0^m the probable number of different order of 2n-bit sequences of sequence is 2^{-2n}. A pair of attached strings can be used as a new pair of inputs. Therefore, starting with initial pair all probable sequences of sequences can be generated.

The probability of generating any 2n-bit sequence is $1/2^{2n}$. The probability of generating the same 2n-bit sequence is also $1/2^{2n}$. The probability of generating any sequence of 2n-bit sequences is
The same output sequences can be generated if the same inputs are given. This is advantageous. Random events cannot generate the same distribution if we demand so.

5. Given the pair of output sequence it is impossible to identify the pair of input sequences. Because the same pair of output sequences can be generated by \(\binom{2n}{2} \) pairs of input sequences. But the question is, given the sequence of outputs of the algorithm is it possible to identify the algorithm? This is not possible if we can find another prototype of this algorithm. One of the prototype of the presented algorithm is discussed below.

Instead of one sequence two sequences \(S_0^m \) and \(S_0^m \) and can be simultaneously applied either on \(S_1^f \) or \(S_2^f \) at random to generate four sequences of random bits taking the bits from those positions of \(S_1^f \) or \(S_2^f \) where bits are: 1) 1s in \(S_0^m \) and 0s in \(S_0^m \) 2) 0s in \(S_0^m \) and 1s in \(S_0^m \) 3) 1s in \(S_0^m \) and 1s in \(S_0^m \) 4) 0s in \(S_0^m \) and 0s in \(S_0^m \). Total probability of generating a bit will be \(1/8 + 1/8 + 1/8 + 1/8 = 1/2 \). As if three coins jointly generate a bit with probability \(1/2 \).

We conjecture that exponentially large numbers of prototypes of this algorithm do exist and can be found by exponentially large numbers of researchers.

6. The algorithm can also be used to generate non-random numbers. If one of the three input sequences contains non-random numbers the algorithm will generate non-random numbers.

The algorithm generates sequence of two equally probable numbers \(X_i \) where \(i = 1,2 \). Following the same algorithmic technique sequence of \(N \) equally probable numbers \(X_i \) can be generated where \(i = 1,2,\ldots,N \). In each step, \(N \) sequences, each consists of \(N \) equally probable numbers \(X_i \), can be generated if previously generated \(N \) sequences are attached and then the attached sequence \(S_i^m \) of length \(Nn \) is applied on any one of the \(N! \) complimentary sequences \(S_1^f, S_2^f, S_3^f, \ldots \), each of length \(Nn \), at random.
appears that in each step, to select $N!$ sequences (at random) with equal probability $1/N!$ we need a sequence S^e of $N!$ equally probable numbers. But the problem is, we need an arbitrarily long sequence S^e of $N!$ equally probable numbers to generate arbitrarily long sequence of N equally probable numbers. This is not an insurmountable problem. We have found a solution which is discussed below.

The requirement of arbitrarily long sequence S^e of $N!$ equally probable numbers can be avoided if we first generate sequence S^{e2} of 2 equally probable numbers followed by sequence S^{e3} of 3 equally probable numbers and finally sequence $S^{e N-1}$ of $(N-1)$ equally probable numbers by this algorithmic technique. Along with this sequences another sequence S^{eN} of N equally probable numbers can be taken. Now if we take the i-th numbers of the sequences S^{e2}, S^{e3}, ..., $S^{e N-1}$, S^{eN}, then $N!$ distributions are possible. Each arrangement $(X_2)_i (X_3)_i (X_4)_i ... (X_N)_i$ can be used to choose any one of the sequences $S^f_1, S^f_2, S^f_3, ..., S^f_N$ with equal probability $1/N!$. Of course which sequence S^f_i will be chosen by which probable distribution that instruction should be given in the input. To generate a sequence of N probable numbers we have to generate sequences of first 2, then 3... and finally $N-1$ equally probable numbers. Generating 2, 3, 4.. N equally probable numbers they can be used to increase the length of the sequences S^{e2}, S^{e3}, S^{e4}, ..., S^{eN} respectively.

Generalized Algorithm

Step 0 #

a). Take a sequence S^m_0 of N equally probable numbers X_i where the length of S^m_0 is Nn.

b). Note down the random positions of X_1, X_2, X_3 ... X_i in the ascending order which gives sequences, $K^1_0, K^2_0, ..., K^i_0$ of positive integers. The operation can be described as $S^m_0 \rightarrow K^1_0 S^m_0 \rightarrow K^2_0, ..., S^m_0 \rightarrow K^i_0$.

c). Take another sequence S^f_i of N equally probable numbers X_i where the length of S^f_i is Nn.

d). From S^f_i, construct complimentary sequences $S^f_2, S^f_3, ...$ of S^f_i by interchanging the positions of X_i. Since N numbers can be arranged in $N!$ ways so positions of N numbers can be interchanged in $N!$
ways. Therefore, N! complimentary sequences S_i^f of N equally probable numbers are possible. If one of these complimentary sequences is known then the others can be constructed.

e). Take a set of sequences $S^c \in (S^C_2, S^C_3, S^C_4, ..., S^C_N)$ of 2, 3, ... (N-1), N probable numbers.

Step i #

a) Choose S_1^f or S_2^f or S_3^f or S_i^f by the arrangement $(X_2)_i (X_3)_i (X_4)_i ... (X_N)_i$ of i-th number of each of the sequences $S^C_2, S^C_3, S^C_4, ..., S^C_N$.

b). Apply K_{i-1}^1, K_{i-1}^2 K_{i-1}^i (taken from previous S_{i-1}^m) on the chosen S_1^f or S_2^f or S_3^f or S_i^f and extract the sequences k_1^i, k_2^i k_i^i. The operation can be symbolically described as

$$S_{i-1}^m \rightarrow K_{i-1}^1 : (S_1^f/S_2^f/S_3^f ... /S_i^f) :: k_1^i$$

$$S_{i-1}^m \rightarrow K_{i-1}^2 : (S_1^f/S_2^f/S_3^f ... /S_i^f) :: k_2^i$$

..

$$S_{i-1}^m \rightarrow K_{i-1}^i : (S_1^f/S_2^f/S_3^f ... /S_i^f) :: k_i^i.$$

In this operation two numbers X_X are used to generate a single number X where the first number X belongs to S_{i-1}^m and the second number X belongs to S_i^f.

The coding can be described as

For k_1^i, $X_1X_1 = X_1$, $X_1X_2 = X_2$,, $X_1X_i = X_i$

For k_2^i, $X_2X_1 = X_1$, $X_2X_2 = X_2$,, $X_2X_i = X_i$

..

For k_i^1, $X_iX_1 = X_1$, $X_iX_2 = X_2$,, $X_iX_i = X_i$

c). Attach k_1^i, k_2^i k_i^i, and thereby construct a new sequence S_i^m. The operation can be symbolically described as $S_i^m = k_1^i.k_2^i ... k_i^i$
d). Note down the positions of X_1, X_2, X_3 ... X_i in S_i^m. It gives a new sequences, K_1^i, K_2^i ... K_i^i of positive integers. The operation can be symbolically described as $S_i^m \rightarrow K_1^i, S_i^m \rightarrow K_2^i, \ldots \ldots, S_i^m \rightarrow K_i^i$

As for example, for the generation of arbitrarily long string of 3 equally probable numbers we need inputs: S_0^m, $\{S_1^f, S_2^f, S_3^f, S_4^f, S_5^f, S_6^f\}$, $\{S_2^C, S_3^C\}$. Therefore, we have to first generate arbitrarily long sequence S_2^C of 2 equally probable numbers to generate arbitrarily long sequence S_3^C of 3 equally probable numbers by this algorithm. Here, out of 3! arrangements one arrangement $(X_2)_i (X_3)_i$ of i-th numbers of S_2^C and S_3^C will determine one of the six sequences $S_1^f, S_2^f, S_3^f, S_4^f, S_5^f, S_6^f$ on which S_0^m will be applied with probability $1/6$. Note that 2 equally probable numbers are the primary seeds.

The probability of generating any sequence S_i^m of N equally probable numbers X_i is $\frac{1}{N^N}$. The probability of generating the same sequence S_i^m is also $\frac{1}{N^N}$. The probability of generating any sequence of sequences S_i^m is $\frac{1}{\binom{N}{N^N}}$. Generated strings cannot be correlated among themselves.

Given a string of random number it is not possible to tell how it was generated.

Like previous case, it is easy to see that this generalized algorithm generates a number with probability $1/N$.

Proof: The probability of selecting any one of the $N!$ sequences $S_1^f, S_2^f, S_3^f, \ldots, S_{N!}^f$ by the arrangement of i-th numbers of the sequences $S_1^C, S_2^C, S_3^C, \ldots, S_{N!}^C$ is $p^c = \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{4} \ldots \frac{1}{N} = \frac{1}{N!}$. Since S_i^f is sequence of random numbers *a priori* probability of getting a number X_1 in j-th position is $P^l = 1/N$. Since S_2^f is a complimentary sequence of S_1^f *a priori* probability of getting X_2 in the same j-th position of
the sequence \(S_f \) is \(P^2 = 1/N \). Since \(S_{N!}' \) is a complimentary sequence of \(S_f \), \(a \ priori \) probability of getting \(X_N \) in the same \(j \)-th position of the sequence \(S_{N!}' \) is \(P^N = 1/N \). Note that the set of sequences \(S_c \in (S^C_2, S^C_3, S^C_4, \ldots, S^C_N) \) is independent from the set of sequences \(S_f \in (S_f^1, S_f^2, S_f^3, \ldots, S_f^{N!}, S_f^f) \). In each step, one sequence \(S_f^i \) is chosen by the random number of \(S_c \) with probability \(p_c = 1/N \). Total probability of getting a number \(X_i \) in any position is,

\[
p^f = \sum_{i=1}^{N!} (P^1.p^c + P^2.p^c + \ldots + P^N.p^c)
\]

\[
= \sum_{i=1}^{N!} (1/N!.1/N + 1/N!.1/N + 1/N!.1/N + \ldots + 1/N!.1/N)
\]= 1/N

Since \(S_i^m \) is a sequence of random numbers \(a \ priori \) probability of getting each number \(X_i \) in \(S_i^m \) is \(p_i^m = 1/N \). Since \(S_i^m \) and \(S_c \) are uncorrelated independent sequences \(p_i^m \) and \(p^c \) are independent probabilities. The probability of generating a number, which will construct \(k_i \), arising from two independent probabilities \(p_i^m \) and \(p^f \) is

\[
p_i^N = p_i^m.p^f = 1/N^2
\]

Total probability of generating a number \(X_i \) which will construct \(k_i \) or \(k_i^2 \) or \(\ldots \) or \(k_i^N \) is,

\[
p_i = p_i^1 + p_i^2 + \ldots + p_i^N
\]

\[
= \sum_{i=1}^N (1/N^2 + 1/N^2 + \ldots + 1/N^2)
\]= 1/N

Random numbers are extensively used in Monte Carlo simulation and for cryptographic purposes [2]. The algorithm can be used for these purposes. The algorithm can be used to generate unbreakable message, PIN and password. Even common people can use the algorithm for these purposes. The cryptographic use of the algorithm has been discussed [4,5] elsewhere.

The algorithms reveals that there is a numerical origin of randomness. Needless to say, the algorithms can be implemented on classical computer. The existence of these algorithms implies that classical
computer and human brain can behave like a probabilistic machine. It may be recalled that Feynman envisioned [6] quantum computer for the simulation of quantum system. Although classical computer is not suitable for the simulation of quantum system, but intrinsic randomness of quantum system can be simulated on classical computer.

The existence of probabilistic algorithms [7,8] including Monte-Carlo based algorithms [2] gave hint that classical computer cannot be considered as a totally deterministic machine. The presented algorithm corroborates that observation.

Note added: Interested readers may see some weakly related works [9-12].

email: mitra1in@yahoo.com

References

1. J. von Neumann, 1963. Various Techniques Used in Connection With Random Digits. *John von Neumann, Collected Works*. A.H. Taub, ed., MacMillan.
2. D. E. Knuth, *The art of Computer Programming*. Vol. 2. Semi numerical Algorithms. Publisher - Addison-Wesley,1992.
3. M. A. Nielsen and I. Chuang, *Quantum Computation and Quantum Information*, 2nd edition, Cambridge university Press, pp.30.
4. A. Mitra, *An unbreakable cryptosystem*, http://xxx.lanl.gov/cs.CR/0412099.
5. A. Mitra, *An unbreakable cryptosystem for common people*, http://xxx.lanl.gov/cs.CR/0610152.
6. R. P. Feynman, Int. J. Theo. Phy. 21, 467, (1982).
7. R. Solovay and V.Strassen, SIAM J. Comput, 6, 84 ,(1976).
8. M.O.Rabin , J. Number theory, 12,128, (1980).
9. A.Mitra, *Quantum mechanics can alone provide security in communication*, http://xxx.lanl.gov/cs.IT/0501023.
10. A. Mitra, *Honesty can be the best policy within quantum mechanics*, http://xxx.lanl.gov/cs.CR/0508059.
11. A. Mitra, *Quantum theory can be collectively verified*, http://xxx.lanl.gov/cs.CR/0502026.
12. A. Mitra, *A particle can carry more than one bit of information*, http://xxx.lanl.gov/cs.IT/0511070.