A retrospective study of distribution of HIV associated malignancies among inpatients from 2007 to 2020 in China

Fang Wang1, Pan Xiang2, Hongxin Zhao1, Guiju Gao1, Di Yang1, Jiang Xiao3, Ning Han1, Liang Wu1, Hongyuan Liang1, Liang Ni1, Yujiao Duan1, Qiuhua Xu1, Meiling Chen1 & Fujie Zhang1*

HIV-associated malignancies are responsible for morbidity and mortality increasingly in the era of potent antiretroviral therapy. This study aimed to investigate the distribution of HIV-associated malignancies among inpatients, the immunodeficiency and the effect of antiretroviral therapy (ART) on spectrum of HIV-associated malignancies. A total of 438 cases were enrolled from 2007 to 2020 in Beijing Ditan Hospital. Demographic, clinical and laboratory data, managements, and outcomes were collected and analyzed retrospectively. Of 438 cases, 433 were assigned to non-AIDS-defining cancers (NADCs) (n = 200, 45.7%) and AIDS-defining cancers (ADCs) (n = 233, 53.2%), 5 (1.1%) with lymphoma were not specified further. No significant change was observed in the proportion of NADCs and ADCs as time goes on. Of NADCs, lung cancer (n = 38, 19%) was the most common type, followed by thyroid cancer (n = 17, 8.5%). Patients with ADCs had lower CD4 counts (104.5/μL vs. 314/μL), less suppression of HIVRNA (OR 0.23, 95%CI 0.16–0.35) compared to those with NADCs. ART did not affect spectrum of NADCs, but affect that of ADCs (between patients with detectable and undetectable HIVRNA). ADCs remain frequent in China, and NADCs play an important role in morbidity and mortality of HIV positive population.

Abbreviations
HPV Human papillomavirus
HBV Hepatitis B virus
HCV Hepatitis C virus
MSM Men who have sex with men
IDU Intravenous drug user

Human immunodeficiency virus (HIV) infection is known as one of risk factors to develop malignancies1,2. HIV-associated malignancies refer to a wide range of cancers with increased incidence in HIV-positive population, including AIDS-defining cancers (ADCs) and non-AIDS-defining cancers (NADCs). A surge of Kaposi's sarcoma (KS) was documented in the early stage of AIDS epidemic with an unusually aggressive clinical course compared to KS among general population. Subsequently, non-Hodgkin lymphoma (NHL) and invasive cervical carcinoma (ICC) were added as ADCs3. Multiple factors contribute to development of malignancies including immunodeficiency, direct effect of HIV on various cellular process, coinfection with oncogenic organisms, risk behaviors (e.g., tobacco or alcohol use), environmental oncogenic factors and possibly antiretroviral therapy4,5.

The availability of protease inhibitors ushered in era of potent combined antiretroviral therapy (cART) since 1996. cART leads to immune restoration by suppression of HIV viral replication and normalization of CD4 lymphocyte which could decrease the incidence of opportunistic infections and risk of development of KS and some types of NHL. In the era of potent ART, the life expectancy of people living with HIV/AIDS (PLWHA) has been improved dramatically and the spectrum of malignancies among PLWHA has changed as well6,7. Of ADCs,
KS and selected types of NHL develop most often among advanced immunodeficient patients, which incidence was 30% or more in patients of acquired immunodeficiency syndrome (AIDS) before introduction of ART. As the incidence of those malignancies has decrease substantially with the wide use of CART, a relative increase of NADCs were observed in HIV positive population compared with the general population, including Hodgkin lymphoma, melanoma, liver, lung, oropharyngeal, and colorectal cancers. NADCs contribute to an increasing morbidity and mortality in HIV positive population. PLWHA were often reported to be diagnosed with advanced-stage NADCs (e.g., melanoma and cancers of the oral cavity, liver, female breast, prostate, and thyroid) and to experience higher mortality than HIV negative population. Malignancies among PLWHA often differ from those among general population, such as earlier age at onset, more aggressive clinical course, and/ or atypical pathology (higher tumor grade), thus may lead to poorer outcome, higher rate of relapse, worse treatment response, and may require additional consideration of screening and treatment. In high-income countries, malignancies have been reported to be one of the leading causes of death among HIV positive population. However, there have been limited published studies about HIV-associated malignancies available in China.

In this study, we examined distribution of malignancies among HIV positive population in China, the demographic and clinical characteristics, the status of immunodeficiency among different types of malignancies, and effect of CART on spectrum of HIV-associated malignancies.

Methods

Study population. A total of 438 patients of HIV/AIDS with malignancies within 14 years from 2007 to 2020 were observed in Beijing Ditan Hospital, a tertiary care center in Beijing, China. These patients came from all over China’s mainland except Hainan, Tibet, Ningxia, Hongkong, and Macao. Patients with a foreign nationality, less than 18 years of age, or malignancies more than 2 years prior to HIV diagnoses were excluded. The patients were assigned to two groups of NADCs and ADCs based on association of malignancies and HIV infection.

Results

Overview. Among 438 HIV/AIDS patients with malignancies, 433 patients had a confirmed diagnosis that could be assigned to either NADCs (n = 200, 45.7%) or ADCs (n = 233, 53.2%), while 5 (1.1%) patients with lymphoma were hard to be specified further. Proportions of NADCs were 28.6% to 66.7%, while those of ADCs were 0% to 71.4% according to the calendar year. There was no statistical difference in trend of proportions between NADCs and ADCs as time goes on in our study ($\chi^2 = 18.253, p = 0.148$).
Patients who achieved HIV suppression (39.7%) were not in majority of this population, and the proportion of patients with an undetectable HIV RNA was not increasing during the observation period (Fig. 1b). No statistical difference was shown in proportion of HIV RNA status (detectable/undetectable) according to the calendar year ($\chi^2 = 17.155, p = 0.192$).

Of 200 patients with NADCs, lung cancer ($n = 38, 19\%$) was the most common, followed by thyroid cancer ($n = 17, 8.5\%$), gastric cancer ($n = 16, 8\%$), hepatic carcinoma ($n = 15, 7.5\%$), leukemia ($n = 12, 6\%$), breast cancer ($n = 11, 5.5\%$), rectal cancer ($n = 10, 5\%$), and lymphoma ($n = 10, 5\%$). Uncommon NADCs including esophageus cancer ($n = 8, 4\%$), Colon cancer ($n = 8, 4\%$), brain tumor ($n = 7, 3.5\%$), Hodgkin lymphoma ($n = 5, 2.5\%$), Renal cancer ($n = 5, 2.5\%$), cholangiocarcinoma ($n = 4, 2\%$), Pancreatic cancer ($n = 3, 1.5\%$), Anal cancer ($n = 3, 1.5\%$), Ovarian cancer ($n = 3, 1.5\%$), Bone tumor ($n = 3, 1.5\%$), Laryngocarcinoma ($n = 2, 1\%$), Oral carcinoma ($n = 2, 1\%$), Prostate cancer ($n = 2, 1\%$), Skin cancer ($n = 2, 1\%$), Myeloid sarcoma ($n = 1, 0.5\%$), Nasopharynx cancer ($n = 1, 0.5\%$), Gallbladder carcinoma ($n = 1, 0.5\%$), Peritoneal carcinoma ($n = 1, 0.5\%$), Ampulla cancer ($n = 1, 0.5\%$), Endometrial cancer ($n = 1, 0.5\%$), Penis carcinoma ($n = 1, 0.5\%$), Bladder cancer ($n = 1, 0.5\%$), Testiculoma ($n = 1, 0.5\%$), Leiomyosarcoma ($n = 1, 0.5\%$), metastatic cancers of unidentified origin ($n = 4, 2\%$) were observed (Fig. 2a).

Figure 1. Trend in malignancies among HIV-infected patients and status of HIV RNA suppression (created by SPSS 20). (a) Trend in malignancies among HIV-infected patients in Beijing Ditan Hospital (according to calendar year, categorized as ADCs, NADCs, and uncertain ones). (b) Trend in status of HIV RNA suppression (detectable/undetectable) among HIV-infected patients according to calendar year.

Figure 2. Types of malignancies diagnosed in Beijing Ditan Hospital, 2007–2020. (The numbers in the figure denoted those of each type of cancer). (a) Common types of NADCs. Uncommon NADCs (less than 5%) were summed as others. (b) Types of ADCs. KS Kaposi’s sarcoma, BL Burkitt’s lymphoma, DLBCL diffuse large B cell lymphoma.
Of 233 ADCs, 151 cases of NHLs (64.8%), 57 cases of KS (24.5%), and 25 cases of invasive cervical cancer (10.7%) were described in this study. Of NHLs, there were 47 cases of BL (20.2%), 91 cases of DLBCL (39.1%), and 13 cases of other NHLs (5.6%) (Fig. 2b).

Compared two groups of NADCs and ADCs, patients with ADCs were at younger ages when malignancies onsets (39.83 ± 11.56 years vs. 48.33 ± 13.1 years), had shorter term from identification of HIV infection to diagnoses of malignancies (4 months vs. 36 months), lower CD4 counts (104.5/μL vs. 314/μL), and less suppression of HIV RNA (OR 0.23, 95%CI 0.16–0.35). The outcomes between two groups of NADCs and ADCs had no statistical difference (Table 1).

Immunodeficiency among different types of HIV-associated malignancies. The immune status of the patients with HIV-associated malignancies at the time of diagnosis were observed. The immunodeficiency differs among different types of HIV-associated malignancies (Fig. 3). The median CD4 counts was much higher in NADCs compared with those in ADCs (314/μL and 104.5/μL, respectively) (Fig. 3a). Patients with common NADCs were at relatively high CD4 level (Fig. 3b), while hepatic carcinoma was an exception (the CD4 median was 153.5/μL). Of ADCs, KS was most closely associated with immunodeficiency, which median CD4 count was 52/μL (Fig. 3c). The development of NHLs was also related to immunodeficiency, but second to KS, which median CD4 count was 117/μL (BL 241/μL, DLBCL 94/μL, other NHLs 13/μL, respectively) (Fig. 3d). Patients with ICC were less immunodeficient than those with KS or NHL, which median CD4 count was 337/μL (Fig. 3c).

Effect of ART on spectrum and characteristics of HIV-associated malignancies. To describe the effect of ART on HIV-associated malignancies, the participants were divided into two groups according to their HIV RNA status of HIVRNA (undetectable/detectable) status of HIVRNA (undetectable/detectable) 157/241 103/73 (n = 176) 53/164 (n = 217) χ² 47.203 0.000

Management	Total (n = 438)	NADCs (n = 200)	ADCs (n = 233)	Value	p
Surgery	75	56	19		
Chemotherapy	157	40	116		
Palliative	187	89	94		
Surgery + chemotherapy	19	15	4		
Outcomes					
Improved	190	89	100		
Unimproved	178	89	86		
Death	70	22	47		

χ² 1606 0.205

Table 1. Characteristics of patients with malignancies and HIV infection. Data (age and HIVRNA) followed a normal distribution shown as arithmetic mean ± standard deviation, others followed a skew distribution shown as median and interquartile range (IQR).
Figure 3. CD4 counts (median) in different types of HIV-associated malignancies.

Figure 4. Spectrum of NADCs and ADCs stratified by status of HIV RNA.
undetectable HIV VL ($\chi^2 = 8.056$, $p = 0.005$). Nevertheless, the proportions of different types of NHLs (BS, DLBCL, and other NHLs) showed no statistical difference between two groups ($\chi^2 = 0.113$, $p = 0.945$).

Patients with a detectable HIV VL had shorter course of HIV compared with those with an undetectable VL (both NADCs and ADCs), shorter course of tumor among ADCs (2 month vs. 3 month). The outcomes had no statistical difference irrespective of HIV RNA status in either NADCs or ADCs group (Table 2).

Discussion

HIV-positive population are at risk to develop malignancies, including NADCs or ADCs. More cases of ADCs were documented than NADCs from 2007 to 2020, demonstrated ADCs remained frequent in China. In this retrospective study, no significant change was seen in the proportion of ADCs and NADCs according to the calendar year (Fig. 1a). The status of HIV suppression was supposed to be associated with this trend in our institution (Fig. 1b). China National Free Antiretroviral Treatment Programme (NFATP) which was scaled up in 2003 has benefited PLWHA widely, and the study population was within the era of cART. However, there are patients that remain unaware of their HIV status currently. Patients who presented with ADCs as their initial symptoms of HIV/AIDS were often at advanced stage of HIV infection, characterized as low CD4 levels, suggesting long-term underlying HIV infection rather than recent infection. Of those cases, short term (mean of 4 months) from HIV identification to ADCs diagnosis was observed, mainly because many of the patients did not realize they were infected with HIV until malignancies onset. Therefore, the popularization of correct understanding of HIV/AIDS, especially to the population at high risk is important for early diagnosis of HIV infection and access to appropriate care, including ART.

The CD4 counts of patients with NADCs were at higher levels than those of patients with ADCs and ART did not affect spectrum of NADCs significantly. Meanwhile, the relatively long course (mean of 36 months) from HIV confirmation to malignancies diagnosis and higher proportion of patients with fully suppressed HIV RNA (Table 1) could be attributed to the effect of cART. NADCs are responsible for an increasing morbidity and mortality in the modern ART era, probably because the extension of lifespan made PLWHA at higher risk for developing a variety of malignancies. Yanik et al. reported that incidence of NADCs were not observed associated with the time of ART use. Therefore, prevention of oncogenic factors, e.g., vaccination for oncogenic virus (e.g., HBV, HCV, HPV) or behaviors modification, e.g., smoking cessation should be introduced.

Hodgkin’s lymphoma, gastrointestinal cancer, hepatic carcinoma, lung cancer, HPV-related cancers were reported commonly among HIV-positive population. There was some difference in prevalence of NADCs in this study. Lung cancer was the most frequent NADCs in our subject, followed by thyroid cancer. Data about prevalence of thyroid cancer were controversial. Screening of thyroid cancer is easy to implement by ultrasound in order to provide a rapid treatment.

KS (n = 57, 13.0%) and NHL (n = 151, 34.5%) were in the majority of ADCs. Of ADCs, KS developed with the lowest CD4 counts, NHLs come second. Both of them are related to advanced immunodeficiency. Patients with ICC often had higher CD4 counts than those with KS or NHLs, similar to NADCs. The prevalence of KS was inversely correlated with CD4 count as well known, and had a decrease dramatically as a consequence of fully suppressed HIV RNA by the widespread use of cART. By contrast, prevalence of cervical cancer had not declined significantly irrespective of cART. HPV vaccine helps to prevent development of cervical cancer, however.

Patients with ADCs were younger at onset of malignancies and had more rapid progression from HIV infection to malignancies diagnosis illustrated more aggressive clinical course compared with NADCs; lower CD4 counts and less suppression of HIV RNA that representative of advanced immunodeficiency.

Previous studies described that HIV-positive patients with malignancies had worse outcomes than those of HIV-negative. However, recent researches have illustrated that HIV infection does not affect prognoses of selected malignancies in the potent era of ART. The outcomes had no statistical difference between two groups of NADCs and ADCs and irrespective of HIV RNA status in either NADCs or ADCs group. Moreover, 89 cases of NADCs and 100 cases of ADCs improved through aggressive treatments revealed that appropriate approaches to malignancies management improved the outcome substantially. With the incremental refinements in malignancies management, the overall survival (OS) of many types of cancer were improved significantly. Clinicians should promote quality cancer treatment as well as cART. Consultation with surgeons or oncologists is necessary.

See Table 2.
for surgery or chemoradiotherapy is imperative. Of note, drug-drug interactions between many chemotherapeutic and antiretroviral agents need to be taken into consideration given the possibility of either increased drug toxicity or decreased efficacy.

We also advocate that cancer screening and prevention be counselled to each patient with HIV infection, and be conducted throughout their life. Moreover, treat strategies should be improved since better prognosis of considerable types of malignancies is conceivable.

There were limitations in our analysis. This was a single center study, and most patients came from northern China, so the spectrum and trend of malignancies could not represent those in the whole country. Biases existed in this observational study, because the study population were not a random one. Patients were admitted in different departments (infectious, oncology, surgery, etc.) where clinicians laid emphasis on different aspects, so that some clinical data were not sufficient.

Conclusion
Malignancies is a major issue that responsible for morbidity and mortality among PLWHAs, although in the modern era of ART. Both NADCs and ADCs are frequent in China currently. Consequently, earlier diagnosis and quality care of malignancies are essential as well as cART for better prognosis.

Received: 15 July 2021; Accepted: 6 December 2021
Published online: 21 December 2021

References
1. Rubinstein, P. G., Aboulafia, D. M. & Zloza, A. Malignancies in HIV/AIDS: From epidemiology to therapeutic challenges. AIDS 28(4), 453–465 (2014).
2. Carbone, A. et al. Diagnosis and management of lymphomas and other cancers in HIV-infected patients. Nat. Rev. Clin. Oncol. 11(4), 223–238 (2014).
3. 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR Recomm Rep. 1992. 41(Rr-17): p. 1–19.
4. Engels, E. A. Non-AIDS-defining malignancies in HIV-infected persons: etiologic puzzles, epidemiologic perils, prevention opportunities. AIDS 23(8), 875–885 (2009).
5. Silverberg, M. J. et al. Cumulative incidence of cancer among persons with HIV in North America: A cohort study. Ann. Intern. Med. 163(7), 507–518 (2015).
6. Park, L. S. et al. Association of viral suppression with lower AIDS-defining and non-AIDS-defining cancer incidence in HIV-infected veterans: A prospective cohort study. Ann. Intern. Med. 169(2), 87–96 (2018).
7. Fracchia, M., Ricci, E. & Bonfanti, P. The pattern of non-AIDS-defining cancers in the HIV population: Epidemiology, risk factors and prognosis. A review. Curr. HIV Res. 17(1), 1–12 (2019).
8. Yarchoan, R. & Uldrick, T. S. HIV-associated cancers and related diseases. Nat. Engl. J. Med. 378(11), 1029–1041 (2018).
9. Franceschi, S. et al. Changing patterns of cancer incidence in the early- and late-HAART periods: The Swiss HIV Cohort Study. Br. J. Cancer 103(3), 416–422 (2010).
10. Bedimo, R. J. et al. Incidence of non-AIDS-defining malignancies in HIV-infected versus noninfected patients in the HAART era: Impact of immunosuppression. J. Acquir Immune Defic. Syndr. 52(2), 203–208 (2009).
11. Patel, P. et al. Incidence of types of cancer among HIV-infected persons compared with the general population in the United States, 1992–2003. Ann. Intern. Med. 148(10), 728–736 (2008).
12. Powles, T. et al. Highly active antiretroviral therapy and the incidence of non-AIDS-defining cancers in people with HIV infection. J. Clin. Oncol. 27(6), 884–890 (2009).
13. Shields, M. S. et al. Cancer burden in the HIV-infected population in the United States. J. Natl. Cancer Inst. 103(9), 753–762 (2011).
14. Morlat, P. et al. Causes of death among HIV-infected patients in France in 2010 (national survey): Trends since 2000. AIDS 28(8), 1181–1191 (2014).
15. Bonnet, F. et al. Malignancy-related causes of death in human immunodeficiency virus-infected patients in the era of highly active antiretroviral therapy. Cancer 101(2), 317–324 (2004).
16. Coghill, A. E. et al. Advanced stage at diagnosis and elevated mortality among US patients with cancer infected with HIV in the National Cancer Data Base. Cancer 125(16), 2868–2876 (2019).
17. Bower, M. et al. British HIV Association guidelines for HIV-associated malignancies 2008. HIV Med. 9(6), 336–388 (2008).
18. Deeken, J. F. et al. The rising challenge of non-AIDS-defining cancers in HIV-infected patients. Clin. Infect. Dis. 55(9), 1228–1235 (2012).
19. Crum-Cianflone, N. et al. Trends in the incidence of cancers among HIV-infected persons and the impact of antiretroviral therapy: a 20-year cohort study. AIDS 23(1), 41–50 (2009).
20. Vogel, A., et al. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 29(Suppl 4): p. iv238–iv255 (2018).
21. WHO Guidelines Approved by the Guidelines Review Committee, in Consolidated Guidelines on HIV Testing Services: 5Cs: Consent, Confidentiality, Counselling, Correct Results and Connection 2015. 2015, World Health Organization. Copyright © World Health Organization 2015.: Geneva.
22. Schneider, E., et al. Revised surveillance case definitions for HIV infection among adults, adolescents, and children aged <18 months and for HIV infection and AIDS among children aged 18 months to <13 years—United States, 2008. MMWR Recomm Rep. 2008. 57(Rr-10): p. 1–12.
23. Polyatskin, I. L., Artemyeva, A. S. & Krivolapov, Y. A. Revised WHO classification of tumors of hematopoietic and lymphoid tissues, 2017 (4th edition)lymphoid tumors. Arkh. Patol. 81(3), 59–65 (2019).
24. Zhang, F. et al. Effect of earlier initiation of antiretroviral treatment and increased treatment coverage on HIV-related mortality in China: A national observational cohort study. Lancet Infect Dis 11(7), 516–524 (2011).
25. Yanik, E. L. et al. Incidence and timing of cancer in HIV-infected individuals following initiation of combination antiretroviral therapy. J. Clin. Oncol. 32(4), 756–764 (2013).
26. Robbins, H. A. et al. Excess cancers among HIV-infected people in the United States. J. Natl. Cancer Inst., 2015. 107(4).
27. Coghill, A. E. et al. Risk of Breast, prostate, and colorectal cancer diagnoses among HIV-infected individuals in the United States. J. Natl. Cancer Inst. 110(9), 959–966 (2018).
28. Phatak, U. A., Chitalte, P. V. & Jagdale, R. V. Thyroid cancer in a long-term nonprogressor HIV-1 infection. Indian J. Sex Transm. Dis. AIDS 36(2), 195–197 (2015).
29. Mbulaiteye, S. M. et al. Spectrum of cancers among HIV-infected persons in Africa: The Uganda AIDS-Cancer Registry Match Study. Int. J. Cancer 118(4), 985–990 (2006).
30. Biggar, R. J. et al. AIDS-related cancer and severity of immunosuppression in persons with AIDS. J. Natl. Cancer Inst. 99(12), 962–972 (2007).
31. Biggar, R. J. et al. Survival after cancer diagnosis in persons with AIDS. J. Acquir. Immune Defic. Syndr. 39(3), 293–299 (2005).
32. Brock, M. V. et al. Delayed diagnosis and elevated mortality in an urban population with HIV and lung cancer: implications for patient care. J. Acquir. Immune Defic. Syndr. 43(1), 47–55 (2006).
33. Barton, M. K. Human immunodeficiency virus status has no effect on survival in patients with non-small cell lung cancer. CA Cancer J. Clin. 63(3), 145–146 (2013).
34. Lee, J. S. et al. Cancer risk in HIV patients with incomplete viral suppression after initiation of antiretroviral therapy. PLoS ONE 2017. 13(6), e0197665.
35. Lurain, K., Yarchouan, R. & Ramaswami, R. The changing face of HIV-associated malignancies: Advances, opportunities, and future directions. Am. Soc. Clin. Oncol. Educ. Book 39, 36–40 (2019).
36. Levine, A. M. et al. Chemotherapy consisting of doxorubicin, bleomycin, vinblastine, and dacarbazine with granulocyte-colony-stimulating factor in HIV-infected patients with newly diagnosed Hodgkin’s disease: a prospective, multi-institutional AIDS clinical trials group study (ACTG 149). J. Acquir. Immune Defic. Syndr. 24(5), 444–450 (2000).
37. Hentrich, M. et al. Stage-adapted treatment of HIV-associated Hodgkin lymphoma: results of a prospective multicenter study. J. Clin. Oncol. 30(33), 4117–4123 (2012).
38. Dunleavy, K. et al. The role of tumor histogenesis, FDG-PET, and short-course EPOCH with dose-dense rituximab (SC-EPOCH-RR) in HIV-associated diffuse large B-cell lymphoma. Blood 115(15), 3017–3024 (2010).
39. Lim, S. T. et al. AIDS-related Burkitt’s lymphoma versus diffuse large-cell lymphoma in the pre-highly active antiretroviral therapy (HAART) and HAART eras: Significant differences in survival with standard chemotherapy. J. Clin. Oncol. 23(19), 4430–4438 (2005).
40. Oehler-Jänne, C. et al. HIV-specific differences in outcome of squamous cell carcinoma of the anal canal: A multicentric cohort study of HIV-positive patients receiving highly active antiretroviral therapy. J. Clin. Oncol. 26(15), 2550–2557 (2008).

Acknowledgements
We acknowledge staff for their hard work of healthcare for HIV/AIDS patients in Beijing Ditan Hospital. Support for this work was provided by: 1) Beijing Municipal Administration of Hospitals’ Ascent Plan (DFL20191802); 2) Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support (ZYLX202126).

Author contributions
Z.F.J., Z.H.X., and W.F. conceived and designed the study. W.F. performed the study, analyzed the data and wrote the manuscript. W.F., X.P., X.J., Y.D., G.G.J., W.L., L.H.Y., H.N., N.L., D.Y.J., X.Q.H., C.M.L. collected the data.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to F.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021