A review on hydroxy anthraquinones from bacteria: crosstalk’s of structures and biological activities

Chandrasekhar Cheemalamarni, Uma Rajeswari Batchu, Nagendra Prasad Thallamapuram, Suresh Babu Katragadda and Prakasham Reddy Shetty

ABSTRACT
Anthraquinones (AQ), unveiling large structural diversity, among polyketides demonstrate a wide range of applications. The hydroxy anthraquinones (HAQ), a group of anthraquinone derivatives, are secondary metabolites produced by bacteria and eukaryotes. Plant-based HAQ are well-studied unlike bacterial HAQ and applied as herbal medicine for centuries. Bacteria are known to synthesize a wide variety of structurally diversified HAQ through polyketide pathways using polyketide synthases (I, II & III) principally through polyketide synthase-II. The actinobacteria especially the genus Streptomyces and Micromonospora represent a rich source of HAQ, however novel HAQ are reported from the rare actinobacteria genera (Salinospora, Actinoplanes, Amycolaptosis, Verrucosispora, Xenorhabdus, and Photorhabdus). Though several reviews are available on AQ produced by plants and fungi, however none on bacterial AQ. The current review focused on sources of bacterial HAQ and their structural diversity and biological activities along with toxicity and side effects.

CONTACT Prakasham Reddy Shetty prakasam.iict@gov.in; prakashamr@gmail.com
These authors contributed equally.

ARTICLE HISTORY
Received 30 September 2021
Accepted 5 February 2022

KEYWORDS
Hydroxy anthraquinones (HAQ); actinobacteria; Streptomyces; Micromonospora; Entomopathogenic bacteria; structure–activity relationship

CONTACT Prakasham Reddy Shetty prakasam.iict@gov.in; prakashamr@gmail.com
These authors contributed equally.

Supplemental data for this article can be accessed online at https://doi.org/10.1080/14786419.2022.2039920.
This article has been corrected with minor changes. These changes do not impact the academic content of the article.

© 2022 Informa UK Limited, trading as Taylor & Francis Group
1. Introduction

Anthraquinones (AQ), an incredible group of natural compounds, are the largest group of natural pigments exhibiting remarkable applications in the fields of medicine, food, and dye industries since the ancient era. Anthraquinones have been distributed widely in plants, microorganisms, insects, and animals in either free or glycosidic form (Hegnauer 1959), however, the majority of them are isolated from plants followed by lichens and fungi (Duval et al. 2016). AQ from rhubarb and Aloe have been extensively used in folk medicine as Traditional Chinese Medicine (TCM) and Traditional Korean Medicine (TKM) since the ancient era (Li et al. 2019). Predominantly, the AQ are produced as secondary metabolites with a basic structure of 9,10-anthracenedione, a tricyclic aromatic organic compound (Bajaj 1999). In particular, hydroxy anthraquinones (HAQ) are described as derivatives of the 9,10-anthracenedione ring and renamed as mono-, di-, tri, up to octet based on the number of substitutions on the ring (Liu et al. 2008). Most of these HAQ are produced by plants belonging to the families of Rubiaceae, Rhamnaceae, Fabaceae, Polygonaceae, Bignoniaceae, Verbenaceae, Scrophulariaceae, and Liliaceae (Thomson 1987). Some of the HAQ especially rhein, emodin, aloe-emodin, physcion, and chrysophanol reveal significant pharmacological properties and have been used as laxatives and also as anti-cancer, anti-inflammatory, anti-arthritic, anti-fungal, anti-bacterial, anti-viral, anti-malarial, anti-oxidant, anti-diabetic, and hepatoprotective agents (Diaz et al. 2018). In addition, HAQ mainly unsubstituted 9, 10 anthracenedione derivatives show application potential as a dying agent due to the absorbance of visible light that imparts color to the compounds. Hence renowned interest has been created worldwide in HAQ as dyeing agents, food colorants, and pharmaceuticals.

Microbial HAQ, impart a bright color to bacteria and fungi (Gill 2001). As easily up-scalable organisms, the microorganisms draw the attention of researchers as a source of the HAQ. The compounds physcion, emodin, and chrysophanol, and subsequently catenarin, erythroglaucin, macrosporin, and questins have been frequently isolated
from fungi. These compounds mimic the close similarity with the plant-derived ones owing to endophytic interactions and genetic similarity of fungi with plants and animals (eukaryotes) in the assembly of many natural products (Strobel and Daisy 2003). Among the microbial world, actinobacteria are the renowned source of unique HAQ which are not reported earlier in plants. The present review emphasizes the HAQ derived from diversified bacterial sources especially actinobacteria along with an insight into their chemistry, structure–activity relationship (SAR) as well as biological properties.

2. Biosynthesis of HAQ

Polyketide synthases (PKS) are the multi-domain enzymes (PKS-I, II, and III) responsible for the synthesis of polyketides. PKS-III in plants (Crawford and Townsend 2010) and PKS-I in fungi (Flores-Sanchez and Verpoorte 2009) are responsible for HAQ production while PKS-II type is accountable for the synthesis of bacterial HAQ (Risdian et al. 2019). The plant-produced HAQ are either alizarin or emodin type. Structurally, the alizarin type is distinguished with one unsubstituted ring and produced by the shikimic acid pathway (chorismate/δ-succinylbenzoic acid) and creates great interest in the field of dyeing (carminic acid and Arpink redTM) (Dufossé 2014). Whereas, emodin types are characterized by OH-substitution on both rings and are formed by the polyketide pathway (Monks et al. 1992). However, microbes produce only emodin type of HAQ by using PKS-I (fungi) and PKS-II (bacteria) (Figure 1). Exceptionally, actinobacteria produce mainly emodin type and less extent alizarin type of HAQ, however, the biosynthetic pathway responsible for their synthesis is still unexplored (Balachandran et al. 2016). Furthermore, the HAQ isolated from actinobacteria were unique in structure, unlike plants and fungi owing to their altered mode of biosynthesis (Thomas 2001). It was noticed that, though the initial octaketide chain synthesis mechanism is identical in all organisms, further cyclization into HAQ is organism-specific. In fungi and other eukaryotes, octaketide cyclization is associated by two C2 units (acetyl CoA) (hence named as F-mode – ‘F’ represents fungi) while in bacteria is formed by three C2 units which are first exemplified in Streptomyces hence represented as S-mode which is

![Figure 1. Schematic representation of HAQ biosynthetic pathways among natural sources](image-url)
evidenced from the walkthrough of chrysophanol biosynthesis in *Streptomyces* (Bringmann et al. 2006) and *Penicillium islandicum* (Franck and Stange 1981) (Figure 1). Later on, the isomeric HAQ aloesaponarin-II has also been assumed to be synthesized by altered mode in plants and bacteria.

3. Microbial sources of HAQ

Fungi occupied a significant position as a source of HAQ among microbes owing to their rich biodiversity. Several other polyketides including naphthalenes, naphthoquinones, flavonoids, macrolides, polyeses, tetracyclines and tropolonones with remarkable bioactive profiles also reported from fungi apart from HAQ. Microbial strains with the potential to produce AQ have been an ingredient of the majority of traditional indigenous fermented foods and used as a health drink in China (Fuzhuan brick tea, Katsuobushi) (Fouillaud et al. 2018). Apart from fungi, actinobacteria have also been reported as a prolific producer of natural HAQ, followed by entomopathogenic bacteria (*Xenorhabdus* and *Photorhabdus* genus) (Bode 2009).

4. Actinobacteria as a source of HAQ

The phylum actinobacteria was reported as one of the largest phyla within the bacterial domain. The members of this phylum have been recognized as producers of novel bioactive secondary metabolites such as aminoglycosides, anthracyclines, glycopeptidases, beta-lactams, macrolides, nucleosides, peptides, polyeses, polyether, tetracyclines and polyketides (Berdy 2005). These compounds can be used as therapeutic enzymes, antibiotics, immunosuppressants, anti-tumor agents and vitamins (Wavve et al. 2001) to treat various ailments. Among them, antibiotics occupy a prominent position, in the medical, industrial and agricultural sectors (Barka et al. 2016). As the progenitors of diversified chemical molecules, actinobacteria from different natural habitats (terrestrial, marine and extreme environments) (Barka et al. 2016) have helped develop effective therapeutic compounds in an economically feasible way for the pharmaceutical industry (Williams et al. 1983). So far terrestrial actinobacteria are majorly exploited for bioactive principles. However, since past few years, the search is shifted to unique habitats such as a deep-sea ocean, (Fenical and Jensen 2006) symbiotic organisms associated with plants (Trujillo et al. 2015) or insects (Oh et al) for potent novel bioactive with unique structures resulting isolation of the novel HAQ, possessing significant biological activities. The mining of several research reports explored that the genus *Streptomyces* has been considered as one of the richest sources of novel HAQ (chromenequinones, enedymes, spartanamicins, and anthracyclines) among the actinobacterial group followed by *Micromonospora* (Hifnawy et al. 2020). Apart from AQ, HAQ are also isolated from terrestrial and marine actinobacteria as well as actinobacteria living as an endosymbiont of plants, insects, and sea animals belonging to genera *Salinospora, Amycoloptosis, Actinoplanes* and *Verrucosispora*, and so on.
4.1. Structures of HAQ from actinobacteria

Actinobacteria have been reported to produce different classes of AQ (anthracyclines and HAQ) with varying structures and functions. Structurally anthracyclines, anthraquinone-based fused tetracyclic ring structures (Malik and Müller 2016), consist of a linear tetracyclic ring with quinone-hydroquinone groups in rings B and C (Ex: daunorubicin produced by Streptomyces peucetius) (Pokhrel et al. 2016) unlike HAQ which consists of 9, 10-anthracenedione ring. Rarely, HAQ with a complex structure like anthraquinone-γ-pyrones, ericamycin, and enediyynes were also reported (Murphy et al. 2010; Rhea et al. 2012; Liang 2010). The aloesaponarin-II (1,8-dihydroxy anthraquinone) is the first HAQ isolated from mutant strains of Streptomyces coelicolor B22 and B159, (Rudd and Hopwood 1979) Streptomyces sp. GW32/698 & GW24/1694 and marine Streptomyces sp. M097 (Fotso et al; Cui et al. 2006). An elaborate table has been provided detailing the novel HAQ structures and their microbial source (Table 1).

4.2. Fused structures of HAQ from actinobacteria

Recently, Salinospora has been described as a fruitful genus of actinobacteria that can produce novel natural products including fused HAQ. Jensen et al. (2015) reported arenicolides, saliniketals, rifamycin, arenimycin, cyclomarins from the strains of marine S. arenicola (Jensen et al. 2015). Salinoquinones A-F, a class of anthraquinone-γ-pyrones, have been isolated from the marine S. arenicola strains indicating metabolic diversity among strains (Murphy et al. 2010). A new anthraquinone, 5-hydroxy ericamycin with potent antimicrobial activity, was extracted from the fermentation broth of the Actinoplanes sp. strain 4731 (Rhea et al. 2012).

Some of the enediyynes are considered as a class of fused anthraquinones of a 10 member group with sub-nanomolar inhibitory concentrations against a broad group of cancer cell lines. Genome mining study indicated that enediyynes are widely distributed in the genus Streptomyces (Liang 2010) and Micromonospora (Rudolf et al. 2016). The first compound dynemicin (DYN) was isolated from the culture broth of Micromonospora chersina sp. nov. No. M956-1 (Konishi et al. 1989) followed by uncialamycin (UCM) from Streptomyces uncialisin (Davies et al. 2005). Owing to the profound impact of these compounds on modern chemistry, biology, and medicine (Galm et al. 2005) new innovative methods have been introduced like high-throughput real-time PCR method to prioritize strains for natural-product discovery. This method can be used to identify strains that are highly likely to encode enediyne biosynthesis by genome sequencing, bioinformatics analysis, genetic manipulation followed by fermentation optimization to produce a higher titer of compounds than original strains. Until now, a total of 3400 strains from the actinomycetes strain collection at The Scripps research institute (TSRI) have been surveyed, out of which 81 potential enediyne producers were identified and discovered. Later on, the survey of 11,500 actinobacterial genomes in the NCBI and JGI genome database facilitated the characterization of Micromonospora yangpuensis DSM 45577 as a producer of a new anthraquinone-fused enediyne, yangpumicin A (YPM A) (Yan et al. 2017). Tiancimycin A (TNM A) is the one among them, isolated from Streptomyces sp. CB03234 (Yan et al. 2018).
S. no	Source	IUPAC NAME	Common name	Structure	Biological activity	References
1	*Streptomyces coelicolor* B22, B159, *Streptomyces sp.* GW32/698, *Streptomyces sp.* GW24/1694, *Streptomyces sp.* M097	3,8-Dihydroxy-1-methyl anthraquinone	Aloesaponarin-II	Anti-bacterial and anti-protozoal	Cui et al. (2006); Fotso et al.; Rudd and Hopwood (1979); Abdissa et al. (2017)	
2	*Streptomyces sp.* M097, *Streptomyces lividans* K4-114	1,6-dihydroxy-8-hydroxy methyl anthraquinone	9-hydroxyl Aloesaponarin-II	NS	Cui et al. (2006); Kalaitzis and Moore (2004)	
3	*Streptomyces sp.* GW 24/1694	1-hydroxy-6-methoxy-8-methylanthraquinone	Methyl ether of Aloesaponarin-II	NS	Fotso et al.	
4	*Streptomyces sp.* GW 32/698	1,8-dihydroxy-3-methylanthraquinone	Chrysophanol	Anti-oxidant, Xanthine oxidase inhibition	Fotso et al.; Shi et al. (2014)	
5	*Amycolatopsis thermoflava* SFMA 103	1-methoxy-3-methyl-8-hydroxyanthraquinone	1-O-methyl chrysophanol	Cytotoxic, anti-diabetic, anti-oxidant, anti-microbial	Kumar et al. (2017); Chandrasekhar et al. (2021).	
6	*Streptomyces sp.* GW 32/698	3,8-dihydroxy-1-methyl anthraquinone-2-carboxylic acid	–	NS	Fotso et al.	
7	*Streptomyces griseonubiginosus*, *Streptomyces sp.* B 8000, FX-58, *Micromonospora rhodorangea*	3,8-dihydroxy-1-propylanthraquinone-2-carboxylic acid	DHPAC	NS	Naruse et al. (1998); Poumale et al. (2006); Haung et al. (2006); Xue et al. (2009).	

(continued)
S. no	Source	IUPAC NAME	Common name	Structure	Biological activity	References
8	*Streptomyces* sp isolate B8000 *Micromonospora rhodorangea*	3,8-dihydroxy-1-propylanthraquinone	DHPA	Anti-microbial	Poumale et al. (2006); Xue et al. (2009).	
						
9	*Streptomyces* sp B 8000	8-hydroxy-3-methoxy-1-propylanthraquinone	–	Anti-microbial	Poumale et al. (2006)	
						
10	*Streptomyces* sp FX-S8	1,8-dihydroxy-2-ethyl-3-methylanthaquinone	–	Cytotoxic	Haung et al. (2006)	
						
11	*Streptomyces* sp FX-S8	1,6-dihydroxy-8-propylanthraquinone	–	NS	Haung et al. (2006)	
						
12	*Micromonospora rhodorangea*	2-ethyl-1,8-dihydroxy-3-methylanthraquinone	–	NS	Xue et al. (2009)	
						
13	*Micromonospora rhodorangea*	2-ethyl-1-hydroxy-8-methoxy-3-methyl-9,10-anthraquinone	–	NS	Xue et al. (2009)	
						
14	*Streptomyces spinoverrucosus*	5,8-dihydroxy-2,2,4-trimethyl-6-(3-methylbutyl)anthra[9,1-de]-[1,3]oxazin-7(2H)-one	Isolation artifact	NS	Hu et al. (2012)	
						

(continued)
S. no	Source	IUPAC NAME	Common name	Structure	Biological activity	References
15	*Xenorhabdus luminescens*	1,6-dihydroxy-4-methoxy-9,10-anthraquinone	–	pH-sensitive indicator dye	Richardson et al. 1988	
16	*Photorhabdus luminescens*	3,8-dimethoxy-1-hydroxy-9,10-anthraquinone	–	pH-sensitive indicator dye	Li et al. (1995)	
17	*Photorhabdus luminescens*	1,3-dimethoxy-8-hydroxy-9,10-anthraquinone	–	pH-sensitive indicator dye	Li et al. (1995)	
18	*Photorhabdus temperate*	1,8-dihydroxy-3-methoxyanthracene-9,10-dione	3-methoxy chrysazone	Mosquitocidal activity	Ahn et al. (2013)	
19	*Photorhabdus temperate*	1,3-dimethoxy-8-hydroxy-9,10-anthraquinone	–	NS	Ahn et al. (2013)	

Alizarin type (Substitution on single ring)

S. no	Source	IUPAC NAME	Common name	Structure	Biological activity	References
20	*Streptomyces sp RAUACT-1*	1,4-dihydroxy-2-(3-hydroxy butyl)-9,10-anthrac	9,10-anthrac	Anti-microbial	Ravikumar et al. (2012)	
21	*Streptomyces galbus ERINLG-127*	2,3-dihydroxy-9,10-anthraquinone	–	Anti-microbial	Balachandran et al. (2014)	
22	*Streptomyces olivochromogenes ERINLG-261*	2-hydroxy-9,10-anthraquinone	–	Anti-microbial	Balachandran et al. (2016)	

(continued)
S. no	Source	IUPAC NAME	Common name	Structure	Biological activity	References
1,5-dihydroxy anthraquinones	23	*Streptomyces* sp ERI-26	1,5,7-trihydroxy-3-hydroxy methyl anthraquinone		Anti-microbial	Duraipandiyan et al. (2014)
24	*Streptomyces* sp ERI-26	6,6’-bis (1,5,7-trihydroxy-3-hydroxymethylanthraquinone)		Anti-microbial	Duraipandiyan et al. (2016)	
1,3,5-trihydroxy anthraquinones	25	*Micromonospora lupine lupac* 08, *Streptomyces spinoverrucosus* Verrucospora SN26-14.1.	1,3,5-trihydroxy-4-isopentyl-2-methylanthracene-9,10-dione	Lupinacidin A	Cytotoxic, Anti-invasive	Igarashi et al. (2011); Sottorff et al. (2019); Hu et al. (2012)
26	*Micromonospora lupine lupac* 08	1,3,5-trihydroxy-4-isopentyl-2-methylanthracene-9,10-dione	Lupinacidin B	Cytotoxic, Anti-invasive	Igarashi et al. (2011)	
27	*Micromonospora lupine lupac* 08	(S)-1,3,5-trihydroxy-2-methyl-4-(3-methylpentyl)anthracene-9,10-dione	Lupinacidin C	Cytotoxic, Anti-invasive	Igarashi et al. (2011)	
28	*Streptomyces spinoverrucosus*	1,4,5-trihydroxy-2-methylanthracene-9,10-dione	Islandicin	Cytotoxic	Hu et al. (2012)	
Galvaquinones	29	*Streptomyces spinoverrucosus*	1,8-dihydroxy-3-methyl-2-(4-methylpentanoyl)anthracene-9,10-dione	Galvaquinone A	NS	Hu et al. (2012)

(continued)
Table 1. Continued.

S. no	Source	IUPAC NAME	Common name	Structure	Biological activity	References
30	Streptomyces spinoverrucosus	1,4,5-trihydroxy-2-methyl-3-(4-methylpentanoyl)anthracene-9,10-dione	Galvaquinone B	![Structure](image)	Cytotoxic, Epigenetics-modulatory activity	Sottorff et al. (2019)
31	Streptomyces spinoverrucosus	1,3,5-trihydroxy-2-methyl-4-(3-methylbutanoyl)anthracene-9,10-dione	Galvaquinone C	![Structure](image)	NS	Hu et al. (2012)

Salinoquinones

S. no	Source	IUPAC NAME	Common name	Structure	Biological activity	References
32	Salinispora arenicola	2-((2R,3R)-2-methyl-3-vinyloxiran-2-yl)-4H-naphtho[2,3-h]chromene-4,7,12-trione	Salinoquinone A	![Structure](image)	Cytotoxic	Murphy et al. (2010)
33	————do———	2-((2R,3R)-3-ethyl-2-methyloxiran-2-yl)-4H-naphtho[2,3-h]chromene-4,7,12-trione	Salinoquinone B	![Structure](image)	NA	Murphy et al. (2010)
34	————do———	2-((2S)-3-chloro-2-hydroxypent-4-en-2-yl)-4H-naphtho[2,3-h]chromene-4,7,12-trione	Salinoquinone C	![Structure](image)	NA	Murphy et al. (2010)
35	————do———	(Z)-2-(pent-2-en-2-yl)-4H-naphtho[2,3-h]chromene-4,7,12-trione	Salinoquinone D	![Structure](image)	NA	Murphy et al. (2010)
36	————do———	2-((2R)-3-hydroxypent-4-en-2-yl)-4H-naphtho[2,3-h]chromene-4,7,12-trione	Salinoquinone E	![Structure](image)	NA	Murphy et al. (2010)
S. no	Source	IUPAC NAME	Common name	Structure	Biological activity	References
-------	--------	------------	-------------	-----------	---------------------	------------
37	do	\((S)-2-(2-hydroxypent-4-en-2-yl)4H-naphtho[2,3-h]chromene-4,7,12-trione\)	Salinoquinone F	NA		Murphy et al. (2010)
38	Actinoplanes sp 4731	(6S,7S)-5,6,10,15,16-pentahydroxy-7-methoxy-3,11-dimethyl-6,7-dihydrotetraceno[2,1-g]isoquinoline-1,9,14(2H)-trione	5-hydroxy ericamycin	Anti-microbial		Rhea et al. (2012)
39	Streptomyces sps CB03234	Tiancymycin A	Cytotoxic			Yan et al. (2018)
40	Micromonospora yangpurensis DSM45577	Yangpumicin A	Cytotoxic			Nicolaou et al. (2020)
41	Micromonospora chersina sp Nov.No.M956-1	Dynemicin A	Cytotoxic, anti-microbial			Konishi et al. (1989)
42	Streptomyces uncialis	Uncialamycin	Cytotoxic, anti-microbial			Davis et al. (2005)

Abbreviations: NA, No activity; NS, Not studied; DHPA, Dihydroxy propyl anthraquinone; DHPAC, Dihydroxy propyl anthraquinone carboxylate.
4.3. HAQ from entomopathogenic bacteria

Surprisingly, entomopathogenic bacteria, a diverse group of gram negative microbes associated with animals and insects, also produce a certain class of HAQ as secondary metabolites along with isopropyl stilbenes and ethyl stilbenes (Hu et al. 2006) using PKS-II pathway (Brachmann et al. 2007). These compounds also flourished as one of the substrates of pharmaceutical interesting natural product. One of the entomopathogenic bacteria, *Photorhabdus luminescens* sp. laumonidii strain TT01 was the first completely sequenced for genomic DNA (Duchaud et al. 2003). Analysis of this genome sequence revealed the close similarity with *Streptomyces* (Sieber and Marahiel 2005) indicating the capacity of these bacteria to produce several structurally diverse secondary metabolites including peptides, polyketides, and hybrids of both. Some of the reported structures of various HAQ isolated from the entomopathogenic bacteria were included in Table 1.

5. Biological activities

For several decades, AQ have been recognized as natural coloring agents as well as therapeutic compounds. In the recent past, the application of anthraquinone derivatives are continuously growing very broad especially in the pharmaceutical sector as anti-laxative, anti-cancer, anti-inflammatory, anti-arthritic, anti-fungal, anti-bacterial, anti-viral, anti-platelet, anti-diabetic, hepatoprotective, immuno-enhancing, xanthine oxidase inhibitory, neuro-protective and anti-tributary activities as well as for the treatment of malaria and multiple sclerosis (Malik and Müller 2016). However, their laxative property has been exploited in the treatment of acute pathological conditions including cerebral ischemia-reperfusion injury, and glutamate-induced neuronal damage. Unlike the HAQ derived from plants and fungal origin, most of the bacterially derived compounds were studied only for antimicrobial and cytotoxic activities and few of them are yet to be studied.

5.1. Antimicrobial activity

HAQ isolated from different species of actinobacteria has been studied for the *in vitro* antimicrobial potential of pure compounds. 5-Hydroxy ericamycin isolated from *Actinoplanes* sp. strain 4731 has shown potent antimicrobial activity, with the MIC value as low as 0.06 μg/ml, against several bacterial pathogens including many resistant strains (Rhea et al. 2012). However, 8-hydroxy-3-methoxy-1-propylanthraquinone and 3,8-dihydroxy-1-propyl anthraquinone from marine *Streptomyces* sp. B8000 showed moderate activity against *Staphylococcus aureus* and *Streptomyces viridochromogenes* at 40 μg/disk (Poumale et al. 2006). Similarly compounds, 1,5,7-trihydroxy-3-hydroxymethyl anthraquinone and 6,61-bis (1,5,7-trihydroxy-3-hydroxymethylanthraquinone), isolated from terrestrial *Streptomyces* sp. (ERI-26) revealed higher antimicrobial activity (Duraipandiyan et al. 2014).

The alizarin types of HAQ from plants have been effectively used in the dyeing industry for a long time. Interestingly, the bacterial alizarins exhibited strong antimicrobial activity against superbugs. For example, 2,3-dihydroxy-9,10-anthraquinone
from *Streptomyces galbus* ERINLG-127 showed good antimicrobial activity with significant MIC values of 12.5 μg/ml against *Pseudomonas aeruginosa*, *Salmonella typhimurium*, *Klebsiella pneumonia* (ESBL-3894), *K. pneumoniae* (ESBL-3971), and *Staphylococcus aureus* (MRSA) (Balachandran et al. 2014). Similarly, 2-hydroxy-9,10-anthraquinone isolated from *Streptomyces olivochromogenes* (ERINLG-261) was studied against MRSA strains of clinical isolates isolated from a patients urine sample and has shown potent antimicrobial activity (Balachandran et al. 2016). Furthermore, inhibitory effects by the novel compound 1,4-dihydroxy-2-(3-hydroxybutyl)-9,10- anthraquinone 9,10–anthrac extracted from the *Streptomyces sp*. RAUACT-1 was reported against antibiotic-resistant and fish bacterial pathogens (Ravikumar et al. 2012).

Surprisingly, besides the anti-tumor potential, the anti-bacterial potential of anthraquinone fused enediynes have been explored earlier. Uncialamycin exhibits potent *in vitro* antibacterial activity against gram-positive and gram-negative human pathogens, including *Burkholderia cepacia* (Davies et al. 2005) whereas dynemicin and its triacetate showed extremely strong activity against gram-positive bacteria (Konishi et al. 1989). In comparison to dynemicin and its triacetate, triacetate has exhibited good antimicrobial activity.

5.2. Cytotoxicity activity

The daunorubicin is the first antibiotic that belongs to a class of anthracyclines, has been used as an anticancer drug in clinical practice since its discovery in the 1960s from *Streptomyces perucetius* (Di Marco et al. 1963). So far six members of this class (daunorubicin, doxorubicin, epirubicin, idarubicin and valubicin) are approved by the Food and Drug Administration FDA, USA, for clinical use (Minotti et al. 2004). Similarly, 2,3-dihydroxy-9,10-anthraquinone from *Streptomyces galbus* ERINLG-127 depicted as a potential anti-cancer compound *in vitro* with 75.1% cytotoxicity against A549 cell line of lung adenocarcinoma at 100 μg/mL with an IC₅₀ value of 60 μg/mL (Balachandran et al., 2014). Whereas, Galvaquinone B has shown moderate cytotoxicity in Calu-3, H2887 cell lines of non-small-cell lung cancer (NSCLC) with an epigenetic modulatory activity at the concentration of 1.0 μM.

Lupinacidins, another group of HAQ, showed potent cytotoxic and anti-invasive effects on the proliferation of murine colon cancer cells, 26-L5. Among the group, lupinacidin C was found to be the most potent anti-invasive agent with an IC₅₀ value of 0.019 μg/mL (0.054 μM) in addition to cytotoxic property (Igarashi et al. 2011). However, lupinacidin A & B compounds revealed a dose-dependent inhibition of *in vitro* invasion of colon 26-L5 cells at IC₅₀ values of 0.07 μ g/ml and 0.3 μg/mL, respectively. Among different saliniquinones, saliniquinone A observed to be the potent inhibitor of the human colon adenocarcinoma cell line (HCT-116) with an IC₅₀ of 9.9 x 10⁻⁹ M (Murphy et al. 2010). Cell lines HL-60, BCTC-823, and MDA-MB-435 were inhibited by 1,8-dihydroxy-2-ethyl-3-methyl anthraquinone isolated from *Streptomyces sp.* FX-58 with the IC₅₀ ranging from 6.83 to 82.2, 56.59 μg/mL. Nicolaou et al. 2020 reported that tiancimycin A and its congeners, uncialamycin, yangpumicin A, and dynemicin are potent antitumor agents (Nicolaou et al. 2020) while Kumar et al. 2017 showed that 1-O-methyl chrysophanol (OMC) isolated from the *Amycoloptosis thermoflava* SFMA-103 is effective against lung cancer and lymphoblastic
leukemia cells with the IC₅₀ values of 10.3 and 16.98 μM, respectively. In silico binding analysis of 1-O-methyl chrysophanol (OMC) towards alpha-amylase as well as alpha-glucosidase revealed predicted binding energy of 188.81 and 70.53 KJ/mol, while in-vitro analysis demonstrated the IC₅₀ values of 3.4 mg/mL and 38.49 μg/mL, respectively suggesting the OMC could be the probable anti-diabetic agent (Chandrasekhar et al. 2021). Kumar et al. 2017 reported in vitro antioxidant potency for OMC against DPPH radicals with an EC₅₀ of 18.2 μg/ml indicating promising superoxide, nitric oxide radical scavenging activity as well as inhibition of lipid peroxidation. Ahn et al. 2013 surprisingly noticed larvicidal activity against Culex pipiens pallens for 3-methoxy chrysazin (isolated from symbiotic bacteria Photorhabdus temperate).

6. Structure–activity-relationship (SAR) studies

The therapeutic efficacy and biological activity of any chemical entity depend on its structure and arrangement of functional groups, so as HAQ whose therapeutic properties depends upon multiple groups present on its ring (Mondal et al. 2015), transduction of the spatial orientation (Shrestha et al. 2014) and formation of intermolecular hydrogen bonds along with the configuration, size, and type of the substitute. Teng et al. (2007) reported that chrysophanol accumulation was much greater in intestinal Caco-2 cells than that of emodin which was attributed to the higher hydroxyl group’s presence in chrysophanol. Similarly, the presence of the carboxyl, hydroxyl, and hydroxyl methyl polar groups at C3, C6 and C3 respectively, have been attributed to higher antibacterial potential to emodin, rhein, and aloe-emodin to that of physcion and chrysophanol. However, physcion and chrysophanol weak antibacterial activity attributed to polar methyl and weakly polar methoxyl groups despite hydroxyl groups at C1 and C8, in chrysophanol and physcion, respectively (Lu et al. 2011; Xiang et al. 2008). Similarly, the antimicrobial activity of 1,8-dihydroxy-2-methyl-3,7-dimethoxy anthraquinone, lucidin 3-O-β-primeveroside, 1,3-dihydroxy-2-methyl anthraquinone, lucidin-3-ethyl ether, lucidin-3-butyl ether, and damnacanthal extracted from Morinda angustifolia root extract was evaluated and explained in terms of SAR. This group suggested that the presence of carbonyl and two β-hydroxyls at a linear position in 1,8-dihydroxy-2-methyl-3,7-dimethoxy might be an important pharmacophore for the strong antimicrobial activity. In contrast, the presence of an aromatic group attached directly to the cationic anthraquinone scaffold of 4,9-dioxo-4,9-dihydro-1H-naphthol triazole-3-im salts (analogs of cationic AQ) exerted relatively weak antibacterial properties but showed stronger anticancer activities, especially against melanoma, colon cancer, non-small cell lung cancer, and central nervous system cancer (Shrestha et al. 2014).

Baqi et al. (2009) reported that concentration-dependent inhibition of E-NTPD ases by 1-amino-2-sulfo-4-aryl(alk)ylamino is attributed due to the presence of the 2-sulfonate groups whereas 2-methyl-substituted derivatives were inactive (Baqi et al. 2009). Johnson et al. (1997) reported that compounds with an anthraquinone skeleton and propyl amino side chains containing epoxides or halohydrins as the alkylating species have greater activity than similar compounds with naphthoquinone or quinone skeletons (Johnson et al. 1997). The authors suggest that hydroxy substitution on the planar skeleton in conjunction with alkylating side chains has the most potent cytotoxic
activity. A similar conclusion was arrived at by Igarashi et al. (2011) based on cytotoxic and anti-invasive activities of Lupinacidine A over Lupinacidine B against murine colon 26-L5 carcinoma cells.

7. Toxicity studies

Abnormal bilirubin metabolism and hyperbilirubinemia were noticed in rats upon oral administration of 70% ethanol extract of *Polygonum multiflorum*, leading to hepatotoxicity and carcinogenicity which is attributed to quinine assisted UGT1A1 inhibition of liver microsomes (RLM) system (Wang et al. 2015; 2016). SAR analysis indicated that spatial orientation of the cis-emodin dianthrones, trans-emodin dianthrones, and emodin-8-O-glc are involved in inhibitors of UGT1A1 (Wang et al. 2017). *P. multiflorum* Radix, especially emodin, chrysophanol, and physcion are hepatotoxic and causes disposition of endogenous bile acids (BAs) while exogenous deuterium-labeled taurocholate (d5-TCA), glycochenodeoxycholic acid (d4- GCDCA), and 5 (and 6)-carboxy-2,7’-dichlorofluorescein (CDF) result in direct inhibition of BA transporters or regulate expression of BA transporter enzymes in sandwich-cultured rat hepatocytes (SCRHs) (Kang et al. 2017). Ma et al., reported that the inhibition of anion transporter 1 (hOAT1) and hOAT3 by AQ lead to transporter-mediated drug-drug interactions in rats (Ma et al. 2015). Xie et al., demonstrated that HAQ are associated with primary rat hepatocytes and HepG2 cell cytotoxicity however intensity differs with the type of HAQ (chrysophanol was the lowest among rhein, emodin, aloe-emodin, and physcion) especially number of hydroxyl groups (Xie et al. 2019; Westendorf et al. 1990). In addition these, HAQ also cause genotoxic effects such as tumor induction (Mori et al. 1996) mutagenic activity, DNA double-strand breaks (Müller et al. 1996), inhibition of topoisomerase activity, non-covalent DNA intercalation, and nuclear localization (Li et al. 2010) through the generation of reactive oxygen species (ROSs) that leads to DNA damage (Zou and Elledge 2003) which is attributed to the number of hydroxyl groups present in HAQ moiety (Westendorf et al. 1990). In contrast, to plant-derived HAQ, the research on toxicity studies of bacterial-derived compounds was limited except on chrysophanol. Chandrasekhar et al., working with another HAQ, that is, OMC, reported hypoglycemia with no genotoxic effects when administered a fivefold increased therapeutic dose (1000 mg/kg) in rats.

8. Side effects

The long-term use of AQ/HAQ may lead to drug dependence associated with notable side effects such as hypokalemia, dehydration, kidney damage, miscarriage, melanosis coli in addition to its extensive pharmacological potential. There are also reports of abdominal cramps, gastrointestinal discomforts, vomiting, dermatitis, nausea, bloody diarrhea and dizziness in drug overdose (Hallmann 2000; Widjanarko et al. 2013).

9. Conclusion

Actinobacteria are the emerging source of AQ/HAQ. The HAQ isolated from actinobacteria is unique with novel substitutions to that of plant-derived compounds. The genus
Streptomyces has been considered as a rich source of HAQ among the group of actinobacteria. However, studies on the biological activities of the bacterial derived HAQ are in the infancy stage but a few compounds have been studied for antimicrobial, cytotoxic, antidiabetic, and epigenetic modulatory properties. Further detailed clinical evaluation could be justified for these compounds to be used as novel therapeutic compounds in the future.

Acknowledgements

The authors are thankful to the Director, CSIR-IICT Hyderabad, and gratefully acknowledge Dr. Nagaprasad for proofreading the article. The manuscript communication number through CSIR-IICT is IICT/pubs./2021/159.

Disclosure statement

The authors declared that there are no conflicts of interest.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

ORCID

Prakasham Reddy Shetty http://orcid.org/0000-0002-8015-1751

References

Abdissa D, Geleta G, Bacha K, Abdissa N. 2017. Phytochemical investigation of Aloe pulcherrima roots and evaluation for its antibacterial and antiplasmodial activities. PloS One. 12(3): e0173882.

Ahn JY, Lee JY, Yang EJ, Lee YJ, Koo KB, Song KS, Lee KY. 2013. The mosquitocidal activity of Anthraquinones isolated from symbiotic bacteria *Photorhabdus* of entomopathogenic nematode. J Asia Pacific Entomol. 16(3):317–320.

Bajaj YPS, 1999. Biotechnology in agriculture and forestry. Berlin: Springer-Verlag.

Balachandran C, Arun Y, Duraipandiyan V, Ignacimuthu S, Balakrishna K, Al-Dhabi NA. 2014. Antimicrobial and cytotoxicity properties of 2,3-dihydroxy-9,10-anthraquinone Isolated from *Streptomyces galbus* (ERINLG-127). Appl Biochem Biotechnol. 172:3513–3528.

Balachandran C, Duraipandiyan V, Arun Y, Sangeetha B, Emi N, Al-Dhabi NA, Ignacimuthu S, Inaguma Y, Okamoto A, Perumal PT. 2016. Isolation and characterization of 2-hydroxy-9,10-anthraquinone from *Streptomyces olivochromogenes* (ERINLG-261) with antimicrobial and anti-proliferative properties. Rev Brasileria Farmacog. 26(3):285–295.

Baqi Y, Weyler S, Iqbal J, Zimmermann H, Müller CE. 2009. Structure-activity relationships of anthraquinone derivatives derived from bromaminic acid as inhibitors of ectonucleoside triphosphate diphosphohydrolases (E-NTPDases)). Purinergic Signal. 5(1):91–106.

Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk H-P, Clément C, Ouhdouch Y, van Wezel GP. 2016. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev. 80(1):1–43.

Berdy J. 2005. Bioactive microbial metabolites. J Antibiotics. 58:1–26.

Bode HB. 2009. Entomopathogenic bacteria as a source of secondary metabolites. Curr Opin Chem Biol. 13(2):224–230.
Brachmann AO, Joyce SA, Jenke-Kodama H, Schwar G, Clarke DJ, Bode HB. 2007. A Type II polyketide synthase is responsible for anthraquinone biosynthesis in *Photorhabdus luminescens*. ChemBioChem. 8(14):1721–1728.

Bringmann G, Noll TF, Gulder TAM, Grün M, Dreyer W, Wilde C, Panekwitz F, Hilker M, Payne GD, Jones AL, et al. 2006. Different polyketide folding modes converge to an identical molecular architecture. Nat Chem Biol. 2(8):429–433.

Chandrasekhar C, Rajpuorthit H, Javaji K, Kuncha M, Setti A, Ali AZ, Tiwari AK, Misra S, Kumar CG. 2021. Anti-hyperglycemic and genotoxic studies of 1-O-methyl chrysophanol, a new Anthraquinone isolated from *Amycolatopsis thermoflava* strain SFMA-103. Drug Chem Toxicol. 44(2):148–160.

Crawford JM, Townsend CA. 2010. New insights into the formation of fungal aromatic polyketides. Nat Rev Microbiol. 8(12):879–889.

Cui HX, Shaaban KA, Qin S. 2006. Two anthraquinone compounds from a marine actinomycete isolate M097 isolated from Jiaozhou Bay. World J Microbiol Biotechnol. 22(12):1377–1379.

Davies J, Wang H, Taylor T, Warabi K, Huang XH, Andersen RJ. 2005. Uncialamycin, a new enediyne antibiotic. Org Lett. 7(23):5233–5236. https://doi.org/10.1021/ol052081f

Di Marco A, Gaetani M, Dorigotti L, Soldati M, Bellini O. 1963. Daunomycin: a new antibiotic with antitumor activity. Tumori. 49(3):203–217.

Diaz G, Sartori SK, Miranda I, Rezende DC, Nogueira MA. 2018. Anthraquinones: an overview. Studies Nat Prod Chem. 58:1–26.

Duchaud E, Rusnio KC, Frangeul L, Buchrieser C, Givaudan A, Taourit S, et al. 2003. The genome sequence of the entomopathogenic bacterium *Photorhabdus luminescens*. Nat Biotech. 21(11):1307–1313. https://doi.org/10.1038/nbt886.

Dufossé L. 2014. AQs, the Dr. Jekyll and Mr. Hyde of the food pigment family. Food Res Int. 65(Part B):132–136.

Duraipandiyan V, Al-Dhabi NA, Balachandran C, Raj MK, Arasu MV, Ignacimuthu S. 2014. Novel 1,5,7-trihydroxy-3-hydroxy methyl anthraquinone isolated from terrestrial *Streptomyces* sp. (ERI-26) with antimicrobial and molecular docking studies. Appl Biochem Biotechnol. 174(5):1784–1794.

Duraipandiyan V, Al-Dhabi NA, Ignacimuthu S. 2016. New antimicrobial anthraquinone 6,61-bis (1,5,7-trihydroxy-3-hydroxymethylanthraquinone) isolated from *Streptomyces* sp. isolate ERI-26. Saudi J Biol Sci. 23(6):731–735.

Duval J, Pecher V, Poujol M, Lesellier E. 2016. Research advances for the extraction, analysis, and uses of AQs: A review. Ind Crops Prod. 94:812–833.

Fenical W, Jensen PR. 2006. Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol. 2(12):666–673.

Fotso S, Maskey RP, Grün-Wollny IRIS, Schulz K-P, Munk M, Laatsch H. 2003. Bhimamycin AE and bhimanone: isolation, structure elucidation and biological activity of novel quinone antibiotics from a terrestrial. J Antibiot. 56(11):931–941.

Fouillaud M, Caro Y, Venkatachalam M, Grondin I, Dufossé L. 2018. Anthraquinones. In: Nollet LML, Gutiérrez-Uribe JA, editors. Phenolic Compounds in Food Characterization and Analysis. United States: CRC Press; p. 130–170.

Franck B, Stange A. 1981. Pilzinhaltstoffe, 32. Nachweis einer bicyclischen Zwischenstufe der Anthrachinon-biosynthese. Liebig’s Ann Chem. 12:2106–2116.

Galm U, Hager MH, Van Lanen SG, Ju J, Thorson JS, Shen B. 2005. Antitumor antibiotics: bleomycin, enediyynes, and mitomycin. Chem Rev. 105(2):739–758.

Gil M. 2001. The biosynthesis of pigments in Basidiomycetes. Aust J Chem. 54(12):721–734.

Hallmann F. 2000. Toxicity of commonly used laxatives. Med Sci Monit. 6(3):618–628.

Hegnauer R. 1959. Chemotaxonomische Betrachtungen. Planta Med. 7(04):344–366.

Hifnawy MS, Fouda MM, Sayed AM, Mohammed R, Hassan HM, AbouZid SF, Rateb ME, Keller A, Adamek M, Ziemert N, et al. 2020. The genus Micromonospora is a model microorganism for bioactive natural product discovery. RSC Adv. 10(35):20939–20959.
Hu K, Li J, Li B, Webster JM, Chen G. 2006. A novel antimicrobial epoxide isolated from larval Galleria mellonella infected by the nematode symbiont, Photorhabdus luminescens (Enterobacteriaceae). Bioorg Med Chem. 14(13):4677–4681.

Hu Y, Martinez ED, MacMillan JB. 2012. Anthraquinones from a marine-derived Streptomyces spinovertuicosus. J Nat Prod. 75(10):1759–1764.

Huang YF, Tian L, Fu HW, Hua HM, Pei YH. 2006. One new anthraquinone from marine Streptomyces sp. FX-58. Nat Prod Res. 20(13):1207–1210.

Igarashi Y, Yanase S, Sugimoto K, Enomoto M, Miyanaga S, Trujillo ME, Saiki I, Kuwahara S. 2011. Lupinacind C, an inhibitor of tumor cell invasion from Micromonospora lupini. J Nat Prod. 74(4):862–865.

Jensen PR, Moore BS, Fenical W. 2015. The marine actinomycete genus Salinispora: a model organism for secondary metabolite discovery. Nat Prod Rep. 32(5):738–751. DOI: 10.1039/C4NP00167B.

Johnson MG, Kiyokawa H, Tani S, Koyama J, Morris-Natschke SL, Mauger A, Bowers-Daines MM, Lange BC, Lee KH. 1997. Antitumor agents-CLXVII. Synthesis and structure-activity correlations of the cytotoxic anthraquinone 1,4-bis-(2,3-epoxypropylamino)-9,10-anthracenedione, and of related compounds. Bioorg Med Chem. 5(8):1469–1479.

Kalaitzis JA, Moore BS. 2004. Heterologous biosynthesis of truncated hexaketides derived from the actinorhodin polyketide synthase. J Nat Prod. 67(8):1419–1422.

Kang L, Si L, Rao J, Li D, Wu Y, Wu S, Wu M, He S, ZHU W, Wu Y, et al. 2017. Polygani Multiflori Radix derived AQ’s alter bile acid disposition in sandwich-cultured rat hepatocytes. Toxicol Vitro. 40:313–323.

Konishi M, Ohkuma H, Matsumoto K, Tsuno T, Kamei H, Miyaki T, Oki T, Kawaguchi H, Vanduyne GD, Clardy JON. 1989. Dynemicin A, a novel antibiotic with the anthraquinone and 1,5-diyn-3ene subunit. J Antibiot. 42(9):1449–1452.

Kumar CG, Mongolla P, Chandrasekhar C, Poornachandra Y, Siva B, Babu KS, Ramakrishna KVS. 2017. Anti-proliferative and antioxidant activities of 1- methoxy-3-methyl-8-hydroxy-anthraquinone, a hydroxyanthraquinoid extrolite produced by Amycolatopsis thermoflava strain SFMA-103. Microbiol Biotechnol Lett. 45(3):200–208.

Li J, Chen G, Wu H, Webster JM. 1995. Identification of two pigments and a hydroxystilbene antibiotic from Photorhabdus luminescens. Appl Environ Microbiol. 61(12):4329–4333.

Li PR, Wei JC, Chiu YF, Su HL, Peng FC, Lin JJ. 2010. Evaluation of cytotoxicity and genotoxicity of the exfoliated silicate nano clay. ACS Appl Mater Interfaces. 2(6):1608–1613.

Liang ZX. 2010. Complexity and simplicity in the biosynthesis of enediyne natural products. Nat Prod Rep. 27(4):499–528.

Li R-R, Liu X-F, FENG S-X, Shu S-N, Wang P-Y, Zhang N, Li J-S, Qu L-B. 2019. Pharmacodynamics of five AOs (aloemodin, emodin, rhein, chrysophanol, and physcion) and reciprocal pharmacokinetic interaction in rats with cerebral ischemia. Molecules. 24(10):1898.

Liu R, Lu Y, Wu T, Pan Y. 2008. Simultaneous isolation and purification of mollugin and two anthraquinones from Rubia cordifolia by HSCCC. Chroma. 68(1-2):95–99.

Lu C, Wang H, Lv W, Xu P, Zhu J, Xie J, Liu B, Lou Z. 2011. Antibacterial properties of Anthraquinones extracted from rhubarb against Aeromonas hydrophila. Fish Sci. 77(3):375–384.

Ma L, Qin Y, Shen Z, Hu H, Zhou H, Yu L, Jiang H, Zeng S. 2015. Time-dependent inhibition of hOAT1 and hOAT3 by Anthraquinones. Biol Pharm Bull. 38(7):992–995.

Malik EM, Müller CE. 2016. Anthraquinones as pharmacological tools and drugs. Med Res Rev. 36(4):705–748.

Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. 2004. Anthracyclines: molecular advances and pharmacological developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 56(2):185–229.

Mondal P, Roy S, Loganathan G, Mandal B, Dharamadurai D, Akbarsha MA, Guin PS. 2015. 1-Amino-4-hydroxy-9, 10-anthraquinone–An analog of anthracycline anticancer drugs, interacts with DNA and induces apoptosis in human MDA-MB-231breast adenocarcinoma cells:
evaluation of structure-activity relationship using computational, spectroscopic and biochemical studies. Biochem Biophys Rep. 4:312–323.

Monks TJ, Hanzlik RP, Cohen GM, Ross D, Graham DG. 1992. Quinone chemistry and toxicity. Toxicol Appl Pharmacol. 112(1):2–16.

Mori M, Totsuka Y, Fukutome K, Yoshida T, Sugimura T, Wakabayashi K. 1996. Formation of DNA adducts by the co-mutagen norharman in hamster cells. Carcinogenesis. 17(7):1499–1503.

Müller SO, Eckert I, Lutz WK, Stöpper H. 1996. Genotoxicity of the laxative drug components emodin, aloe-emodin, and danthron in mammalian cells: topoisomerase II-mediated? Mutation Res/Gen Toxicol. 371(3-4):165–173.

Murphy BT, Narendar T, Kauffman CA, Woolery M, Jensen PR, Fenical W. 2010. Saliniquinones A–F, new members of the highly cytotoxic anthraquinone-γ-pyrone family from the marine actinomycete Salinispora arenicola. Aust J Chem. 63(6):929–934.

Naruse N, Goto M, Watanabe Y, Terasawa T, Kobashi K. 1998. K1115 A, a new anthraquinone that inhibits the binding of activator protein-1 (AP-1) to its recognition sites. II. Taxonomy, fermentation, isolation, physico-chemical properties and structure determination. J Antibiot (Tokyo). 51(6):545–552.

Nicolau KC, Das D, Lu Y, Rout S, Pitsinos EN, Lyssikatos J, Schammel A, Sandoval J, Hammond M, Aujay M, et al. 2020. Total synthesis and biological evaluation of tiancimycins A and B, yangpumicin A, and related anthraquinone-fused enediyne antitumor antibiotics. J Am Chem Soc. 142(5):2549–2561.

Oh DC, Poulsen M, Currie CR, Clardy J. 2011. Sceliphrolactam, a polyene macrocyclic lactam from a wasp-associated Streptomyces sp. Org Lett. 13(4):752–755.

Pokhrel AR, Chaudhary AK, Nguyen HT, Dhakal D, Le TT, Shrestha A, Liou K, Sohn JK. 2016. Overexpression of a pathway specific negative regulator enhances production of daunorubicin in BldA deficient Streptomyces peucetius ATCC 27952. Microbiol Res. 192:96–102.

Poumale HM, Ngadjui BT, Helmke E, Laatscha H. 2006. New Anthraquinones from a marine streptomyces.-isolation, structure determination and biological activities. Zeit Naturfor B. 61(11):1450–1454.

Ravikumar S, Gnanadesigan M, Saravanan A, Monisha N, Brindha V, Muthumari S. 2012. Antagonistic properties of seagrass associated Streptomyces sp. RAUART-1: a source for the anthraquinone-rich compound. Asian Pac J Trop Med. 5(11):887–890.

Rhea J, Craig Hopp D, Rabenstein J, Smith C, Lucas S, Romari K, Clarke M, Francis L, Irigoyen M, Luche M, et al. 2012. 5-Hydroxy ericamycin, a new anthraquinone with potent antimicrobial activity. J Antibiot (Tokyo). 65(12):623–625.

Richardson WH, Schmidt TM, Nealson KH. 1988. Identification of an anthraquinone pigment and a hydroxystilbene antibiotic from Xenorhabdus luminescens. Appl Environ Microbiol. 54(6):1602–1605.

Risdian C, Mozef T, Wink J. 2019. Biosynthesis of polyketides in Streptomyces. Microorganisms. 7(5):124.

Rudd BA, Hopwood DA. 1979. Genetics of actinorhodin biosynthesis by Streptomyces coelicolor A3(2). J Gen Microbiol. 114(3):35–43.

Rudolf JD, Yan X, Shen B. 2016. Genome neighborhood network reveals insights into enediyne biosynthesis and facilitates prediction and prioritization for discovery. J Ind Microbiol Biotechnol. 43(2-3):261–276.

Shi DH, Huang W, Li C, Liu YW, Wang SF. 2014. Design, synthesis and molecular modeling of aloe-emodin derivatives as potent xanthine oxidase inhibitors. Eur J Med Chem. 75:289–296.

Shrestha JP, Fosso MY, Bearss J, Chang CWT. 2014. Synthesis and anticancer structure activity relationship investigation of cationic anthraquinone analogs. Eur J Med Chem. 77:96–102.

Sieber SA, Marahiel MA. 2005. Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev. 105(2):715–738.

Sottorff I, Künzel S, Wiese J, Lipfert M, Preußke N, Sönntichsen FD, Imhoff JF. 2019. Antitumor Anthraquinonon from an Easter Island Sea Anemone: animal or bacterial origin? Mar Drugs. 17(3):154.
Strobel G, Daisy B. 2003. Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev. 67(4):491–502.

Teng Z-h, Zhou S-y, Ran Y-h, Liu X-y, Yang R-t, Yang X, Yuan C-j, Mei Q-b. 2007. Cellular absorption of anthraquinones emodin and chrysophanol in human intestinal Caco-2 cells. Biosci Biotechnol Biochem. 71(7):1636–1643.

Thomas R. 2001. A biosynthetic classification of fungal and Streptomyces fused-ring aromatic polyketides. Chembiochem. 2(9):612–627.

Thomson RH. 1987. Naturally occurring quinones III:383. Recent advances. New York, London: Chapman and Hall.

Trujillo ME, Riesco R, Benito P, Carro L. 2015. Endophytic actinobacteria and the interaction of Micromonospora and nitrogen fixing plants. Front Microbiol. 6:1341.

Wang Q, Dai Z, Wen B, Ma S, Zhang Y. 2015. Estimating the differences of UGT1A1 activity in recombinant UGT1A1 enzyme, human liver microsomes, and rat liver microsome incubation systems in vitro. Biol Pharmaceut Bull. 38(12):1910–1917.

Wang Q, Dai Z, Zhang Y, Shuangcheng M. 2016. The research of the hepatotoxicity of Polygonum multiflorum on the basis of the inhibition of the UGT1A1 enzyme in vivo and in vitro. Chin Pharm J. 51:1929–1933.

Wang Q, Wang Y, Li Y, Wen B, Dai Z, Ma S, Zhang Y. 2017. Identification and characterization of the structure-activity relationships involved in UGT1A1 inhibition by anthraquinone and dianthrone constituents of Polygonum multiflorum. Sci Rep. 7(1):1–9.

Watve MG, Tickoo R, Jog MM, Bhole BD. 2001. How many antibiotics are produced by the genus Streptomyces? Arch Microbiol. 176(5):386–390.

Westendorf J, Marquardt H, Poginsky B, Dominiak M, Schmidt J, Marquardt H. 1990. Genotoxicity of naturally occurring hydroxyl anthraquinones. Mutation Res/Gen Toxicol. 240(1):1–12.

Widjanarko SM, Wijayanti N, Sutrisno A. 2013. The laxative potential of the konjac flour (Amorphophallus muelleri Blume) in treatment of loperamide-induced constipation on Sprague Dawley rats. Int J Med Health Sci. 7:729–733.

Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ. 1983. Numerical classification of Streptomyces and related genera. J Gen Microbiol. 129(6):1743–1713.

Xiang W, Song QS, Zhang HJ, Guo SP. 2008. Antimicrobial Anthraquinones from Morinda angustifolia. Fitoterapia. 79(7-8):501–504.

Xie L, Tang H, Song J, Long J, Zhang L, Li X. 2019. Chrysophanol: a review of its pharmacology, toxicity and pharmacokinetics. J Pharm Pharmacol. 71(10):1475–1487.

Xue CM, Tian L, Lin WH, Deng ZW. 2009. Anthraquinone derivatives from Micromonospora rodorangea. Nat Prod Res. 23(6):533–538.

Yan X, Chen JJ, Adhikari A, Teijaro CN, Ge H, Crnovcic I, Chang CY, Annaval T, Yang D, Rader C, et al. 2018. Comparative studies of the biosynthetic gene clusters for anthraquinone-fused enediyne shedding light into the tailoring steps of tiancimycin biosynthesis. Org Lett. 20(18):5918–5921.

Yan X, Chen JJ, Adhikari A, Yang D, Crnovcic I, Wang N, Chang CY, Rader C, Shen B. 2017. Genome mining of Micromonospora yangpuensis DSM 45577 as a producer of an anthraquinone-fused enediyne. Org Lett. 19(22):6192–6195.

Zou L, Elleledge SJ. 2003. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science. 300(5625):1542–1548.