Optimal factors in Vladimir Markov’s inequality in L2 Norm

Miroslaw Baran¹*, Agnieszka Kowalska², Pawel Ozorka³

¹ State Higher Vocational School in Tarnów, Mickiewicza 8, 33-100 Tarnów, Poland
² Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland

Article history:
Received 21 April 2018
Received in revised form 2 May 2018
Accepted 4 May 2018
Available online 27 June 2018

Abstract
In this paper we discuss a problem of computation of constants in Vladimir Markov’s type inequality in L^2 norm on the interval $[-1; 1]$.

Key words:
V. Markov’s inequality, L2 norms

1. Vladimir Markov’s inequality.

The famous V. Markov’s inequality is the following bound for a polynomial P in one variable with real coefficients of degree at most n

$$\sup_{x \in [-1, 1]} |P^{(k)}(x)| \leq \frac{n^2(n^2 - 1) \cdots (n^2 - (k-1)^2)}{1 \cdot 3 \cdots (2k-1)} \sup_{x \in [-1, 1]} |P(x)|$$

$$= T_n^{(k)}(1) \sup_{x \in [-1, 1]} |P(x)|,$$

where T_n denotes the n-th Chebyshev polynomial of the first kind, which is given by the formula $\cos(nx) = T_n(\cos x)$. The case $k = 1$ was firstly considered by Dmitrij Mendeleev (yes, the famous Russian chemist!) and Andrey Markov, and for this reason the above inequality is known as Markov’s inequality.

In the sequel, we shall write $\sup_{x \in [-1, 1]} |P(x)| =: ||P||_\infty$ and for $1 \leq p < \infty$

$$||P||_p = \left(\frac{1}{2} \int_{-1}^{1} |P(x)|^p dx \right)^{1/p}.$$

We can rewrite V. Markov’s inequality in the forms

$$||P^{(k)}||_\infty \leq ||T_n^{(k)}||_\infty ||P||_\infty$$

or

$$||P^{(k)}||_\infty \leq V(n, k)n^{2k}||P||_\infty,$$

where $V(n, k) = \frac{1}{(2k-1)!!} \left(1 - \frac{1}{n^2}\right) \cdots \left(1 - \frac{(k-1)^2}{n^2}\right)$.

The above inequalities imply the following facts

- $V(n + 1, k) \leq V(n, k), \quad n \geq k$.
- $\lim_{n \to \infty} V(n, k + 1)/V(n, k) = \frac{1}{2k-1}$.

2010 Mathematics Subject Classification. Primary 31C10 Secondary 32U35, 41A17.

Key words and phrases. V. Markov’s inequality, L2 norms.

*Corresponding author: miroslaw.baran.tarnow@gmail.com
There exists a positive constant C such that for any polynomial P of degree at most n,
\[
||P^{(k)}||_\infty \leq C \frac{1}{k!} n^{2k} ||P||_\infty.
\]

There exists a family of monic polynomials (\hat{P}_n) such that $\hat{P}_n(-x) = (-1)^n \hat{P}_n(x)$ and
\[
||\hat{P}_n||_\infty = \inf\{||Q||_\infty : Q \text{ is a monic polynomial of degree } n\}
\]
\[
||\hat{P}_n^{(k)}||_\infty / ||\hat{P}_n||_\infty = \sup\{||Q^{(k)}||_\infty / ||Q||_\infty : \deg Q \leq n\}.
\]

In particular,
\[
\left|\frac{d^k}{dx^k} \hat{P}_n\right|_\infty / ||\hat{P}_n||_\infty = \sup\left\{\left|\frac{d^k}{dx^k} \hat{P}^{(a,a)}_n\right|_\infty / ||\hat{P}^{(a,a)}_n||_\infty : a > -1\right\}.
\]

Here $(\hat{P}^{(a,a)}_n)$ is the family of monic ultraspherical polynomials belonging to the larger family of monic Jacobi polynomials $\hat{P}^{(\alpha,\beta)}_n$.

2. Markov’s inequality for the first and the second derivative in L_p norms.

For the first derivative of polynomials, and $p \geq 1$ there exists a positive constant C_p such that
\[
||P'||_p \leq C_p \cdot (\deg P)^{2} ||P||_p.
\]

This inequality was firstly proved in [18], motivated by Zygmund’s inequality in [36]. In the special case $p = 2$ it was proved by E. Schmidt ([26],[27]) that $C_2 = \sqrt{3}$. He also obtained a remarkable result: in the inequality $||P'||_2 \leq A(\deg P)||P||_2$ we have
\[
\lim_{n \to \infty} A(n)/n^2 = \frac{1}{\pi}.
\]

After Hille, Schegö, Tamarkin and Schmidt, Markov’s inequality in L_p norms (and its generalizations with various weights) was investigated by a number of specialist, especially at the end of twentieth century, when the case $p = 2$ was thoroughly studied, cf. [2], [3],[5], [7],[9], [10], [11], [12], [13], [14], [15], [16], [17], [19], [20], [21], [22], [23], [28], [29], [31], [32], [33], [35]. Sixty years after [18] it was proved in [5] that $\lim_{p \to \infty} C_p = 1$. Thus the classical A. Markov’s inequality is the limit case from [18]. It was conjectured by P. Goetgheluck in [16] that $C_p = (p + 1)^{1/p}$, which agrees with known values for $p = 2, \infty$. Many authors are searching for the best estimates of the type $||P^{(k)}||_p \leq C_p(n, k)||P||_p$, $\deg P \leq n$ or try to describe the asymptotic behavior of $C_p(n, k)$. It was completely solved in the case $p = 2$:
\[\lim_{n \to \infty} \frac{C_2(n, 1)}{n^2} = \frac{1}{\pi}, \quad \text{E. Schmidt ([26],[27])}; \]
\[\lim_{n \to \infty} \frac{C_2(n, 2)}{n^4} = \frac{1}{4k_0} = 0.0711, \quad \text{where } k_0 = \inf \{k > 0 : 1 + \cos k \cosh k = 0\}, \quad \text{L. Shampine ([28],[29])}; \]
\[\lim_{n \to \infty} \frac{C_2(n, k)}{n^{2k}} = ||L_k^*||_{L^2(0,1)}, \quad \text{where } L_k^*f(x) = \frac{1}{2^k(k-1)!} \int_0^x (x-y)^{k-1}f(y)dy, \quad \text{A. Böttcher, P. Dörfler ([9])}. \]

Theorem 3.1. Let us observe that \(\lim_{n \to \infty} V(n, k)/n^{2k} = 1/(2k-1)! \) and
\[\lim_{k \to \infty} (2^k k!/(2k-1)!!)^{1/k} = 1. \]
This suggests a connection between limits \(\lim_{n \to \infty} C_p(n, k) \) and the \(L_p \) norms of Volterra’s operators
\[L_k^*f(x) = \frac{1}{2^k(k-1)!} \int_0^x (x-y)^{k-1}f(y)dy. \]

By applying Schwarz inequality, it is easy to get the following upper bound
\[||L_k^*||_{L^2(0,1)} \leq \frac{1}{2^k(k-1)!} \frac{1}{\sqrt{(2k-1)2k}}. \]
It gives for \(k = 2 \) the upper bound \(\frac{1}{8\sqrt{3}} = 0.0721... \) while the exact value is 0.0711....

Moreover, the lower bound may be found in [9]
\[||L_k^*||_{L^2(0,1)} \geq \frac{1}{2^k(k-1)!} \frac{1}{\sqrt{(2k-1)(2k+1)}}. \]
In particular, for \(k = 3 \), we get
\[0.010564... \leq ||L_3^*||_{L^2(0,1)} \leq 0.011410... \]

3. **Markov’s inequality for third derivative in \(L_2 \) norm.**

Refining a method from [5], G. Sroka [32] obtained the following non-trivial result.

Theorem 3.1. If \(p \geq 1 \), then for an arbitrary polynomial \(P \) of degree \(k \leq \deg P \leq n \) we have inequality
\[||P^{(k)}||_p \leq (C(p + 1)k^2)^{1/p}||T_n^{(k)}||_\infty ||P||_p, \]
with \(C = 6\sqrt[4]{e} \) for \(k \geq 3 \).

Later M. Baran and P. Ozorka (see P.Ozorka’s PhD thesis) proved, applying quite different technique, the following theorem.
Theorem 3.2. If $1 \leq p \leq 2$, then for an arbitrary polynomial P of degree $k \leq \deg P \leq n$ we have inequality

$$\|P^{(k)}\|_p \leq B_p \max_{k \leq n} \|T_n^{(k)}\|_p n^{\frac{2}{p}} \|P\|_p = B_p \|T_n^{(k)}\|_p n^{\frac{2}{p}} \|P\|_p,$$

with $B_p = (3e/\pi)^{1/p}(p+1)^{1/p}$.

Corollary 3.3. If $1 \leq p \leq 2$ is fixed then there exists a constant C_p independent of n and k such that for all $k \geq 3$ the following Vladimir Markov type inequality holds

$$\|P^{(k)}\|_p \leq C_p \frac{1}{k!} n^{2k} \|P\|_p.$$

Remark 3.4. Applying Nikolski inequality (cf. [32] Lemma 3 where a little strong result is given) $\|P\|_\infty \leq (2p + 2)^{1/p}(\deg P)^{2/p} \|P\|_p$, we derive from Theorem 3.1 the following

$$\|P^{(k)}\| \leq (C(p + 1) k^2)^{1/p}(2p + 2)^{1/p} n^{2/p} \|T_n^{(k)}\|_p \|P\|_p, \text{ deg } P \leq n,$$

which is considerably worse than Theorem 3.2.

Now we shall discuss the case $p = 2$ to compare Theorems 3.1 and 3.2 with earlier known results.

Denote

$$B(n, k) = (3e/\pi)^{1/2}\sqrt{3n} \cdot \|T_n^{(k)}\|_2,$$

$$A(n, k) = (6\sqrt[3]{4e^2})^{1/2}\sqrt{3k} \cdot \|T_n^{(k)}\|_\infty$$

and

$$R(n, k) = \frac{A(n, k)}{B(n, k)}.$$

We have

$$R(n, k) = (2e^{3\sqrt{4\pi}})^{1/2}(k/n)\|T_n^{(k)}\|_\infty/\|T_n^{(k)}\|_2 \approx 5.20692 \cdot \rho_n^{(k)},$$

where

$$\rho_n^{(k)} = (k/n) \cdot \|T_n^{(k)}\|_\infty/\|T_n^{(k)}\|_2.$$
Analyzing the above numerical results we see that the bounds in Theorem 3.2 are much better than the bounds in Theorem 3.1. We can also suppose that the factor k^2/p in Theorem 3.1 can be replaced by $k^{1/p}$. Moreover, we can conjecture that

- $(k/n) \cdot ||T_n^{(k)}||_\infty / ||T_n^{(k)}||_2 \leq \sqrt{k}$,
- $(k/n) \cdot ||T_n^{(k)}||_\infty / ||T_n^{(k)}||_2 \to \sqrt{k}$ as $n \to \infty$.

| n | $||T_n^{(3)}||_2$ | $n \cdot ||T_n^{(3)}||_2$ | $||T_n^{(3)}||_\infty$ | $3 \cdot ||T_n^{(3)}||_\infty$ | $\rho_n^{(3)}$ |
|-----|-----------------|-----------------|-----------------|-----------------|-------|
| 3 | 24 | 72 | 24 | 72 | 1 |
| 4 | 110.851 | 443.405 | 192 | 576 | 1.299 |
| 5 | 349.17 | 1745.85 | 840 | 2520 | 1.443 |
| 6 | 882.842 | 5297.05 | 2688 | 8064 | 1.522 |
| 7 | 1926.46 | 13585.2 | 7056 | 21168 | 1.570 |
| 8 | 3779.46 | 30235.7 | 16128 | 48344 | 1.599 |
| 9 | 6840.29 | 61562.6 | 33264 | 99792 | 1.621 |
| 10 | 11620.5 | 116205 | 63360 | 190080 | 1.636 |
| 11 | 18759.1 | 206350 | 113256 | 339768 | 1.647 |
| 12 | 29036.1 | 348434 | 192192 | 576576 | 1.655 |
| 13 | 43387.6 | 564039 | 312312 | 936936 | 1.661 |
| 14 | 62919.1 | 880867 | 489216 | 1467648 | 1.666 |
| 15 | 88919.9 | 1333800 | 742560 | 2227680 | 1.670 |
| 16 | 121878 | 1966040 | 1096704 | 3290112 | 1.673 |
| 17 | 166491 | 2830360 | 1581408 | 4744224 | 1.676 |
| 18 | 221687 | 3990370 | 2232576 | 6697728 | 1.678 |
| 19 | 290632 | 5522000 | 3093048 | 9279144 | 1.680 |
| 20 | 375745 | 7514910 | 4213440 | 12640320 | 1.682 |
| 30 | 2859070 | 85772200 | 48330240 | 1449900800 | 1.690 |
| 40 | 12056700 | 4822680000 | 272213760 | 8166412800 | 1.693 |
| 50 | 36806500 | 18403250000 | 1039584000 | 31187520000 | 1.695 |
| 100 | 117833300000 | 6663333600000 | 48330240000 | 1449900800000 | 1.697 |

$\rho_n^{(3)} = (3/n) \cdot ||T_n^{(3)}||_\infty / ||T_n^{(3)}||_2$

| n | $||T_n^{(4)}||_2$ | $n \cdot ||T_n^{(4)}||_2$ | $||T_n^{(4)}||_\infty$ | $4 \cdot ||T_n^{(4)}||_\infty$ | $\rho_n^{(4)}$ |
|-----|-----------------|-----------------|-----------------|-----------------|-------|
| 10 | 178306 | 1783060 | 823680 | 3294270 | 1.848 |
| 20 | 241168.10^4 | 483362.10^4 | 235350720 | 941402880 | 1.948 |
| 30 | 417336.10^4 | 1252008.10^4 | 6151749120 | 2460697965 | 1.965 |
| 40 | 313811.10^4 | 1.25524.10^{11} | 6187029880 | 2.47481.10^{11} | 1.972 |
| 50 | 1.49894.10^{10} | 7.47795.10^{11} | 3699943392.10^{13} | 1.479773560.10^{12} | 1.979 |

$\rho_n^{(4)} = (4/n) \cdot ||T_n^{(4)}||_\infty / ||T_n^{(4)}||_2$.
FURTHER CALCULATIONS.

\[C(n, 1) = \sup_{\deg P = n} \frac{1}{n^2} \|P'\|_2/\|P\|_2 \]

\[A(n, 1) = V(n, 1) = \frac{1}{n^2} \sup \left\{ \left\| \frac{dP^{(a,a)}_n}{dx} \right\|_2 : a \geq 0 \right\} = \frac{1}{n^2} \left\| \frac{dP_n^{(\alpha_n, \alpha_n)}}{dx} \right\|_2/\|P_n^{(\alpha_n, \alpha_n)}\|_2. \]

\(n \)	\(\alpha_n \)	\(A(n, 1) \)	\(C(n, 1) \)
1	0	1.732050	1.732050
2	0	0.968246	0.968246
3	0.133222	0.724622	0.724622
4	0.242328	0.60736	0.609363
5	0.325474	0.53958	0.543656
6	0.388334	0.49587	0.501657
7	0.436555	0.465519	0.472648
8	0.474328	0.443287	0.451468
9	0.504555	0.426332	0.435350
10	0.529225	0.41299	0.422655
11	0.549714	0.402224	0.412476
12	0.566993	0.393358	0.404076
13	0.581761	0.385931	0.397045
14	0.594533	0.37962	0.391075
15	0.605691	0.374191	0.385944
16	0.615528	0.369473	0.381486
17	0.62427	0.365333	0.377578
18	0.632094	0.361671	0.374124
19	0.639143	0.358417	0.371050
20	0.645528	0.355441	0.368296
21	0.651342	0.353229	0.365814
22	0.656662	0.350198	0.363567
23	0.66155	0.348284	0.361523
24	0.666058	0.346296	0.359655
25	0.670232	0.344458	0.357942
26	0.674108	0.342822	0.356365
27	0.677718	0.341360	0.354908
28	0.68109	0.335661	0.353559
29	0.684249	0.339102	0.352305
30	0.68724	0.339052	0.351138

It seems that the sequence \(A(n, 1) \) is decreasing. If it is true, the sequence \(A(n, 1) \) is convergent, but it is not clear that the limit is \(1/\pi = 0.31830... \).
\[V(n, k) = \frac{1}{n^{2k}} \sup \left\{ \left\| \frac{d^k P_n^{(a,a)}}{dx^k} \right\|_2 : a \geq 0 \right\} \]

\[= \frac{1}{n^{2k}} \left\| \frac{d^k P_n^{(\alpha_n^{(k)}, \alpha_n^{(k)})}}{dx^k} \right\|_2 / \left\| P_n^{(\alpha_n^{(k)}, \alpha_n^{(k)})} \right\|_2, \]

\[\| U_{n-1}^{(k)} \|_2^* = \| U_{n-1}^{(k)} \|_2 / n^{2k}. \]

n	\(a_n^{(2)}\)	\(V(n, 2)\)	\(a_n^{(3)}\)	\(V(n, 3)\)	\(\| U_{n-1}^{(k)} \|_2^*\)	\(\| U_{n-1}^{(k)} \|_2^*\)
1	0	0	0			
2	0	0				
3	0.0626545	0.21803	0	0.044401	0.5123	0.108253
4	0.126775	0.181934	0.0354246	0.0373206	0.510283	0.111735
5	0.182076	0.159283	0.075835	0.0325326	0.508472	0.113534
6	0.227988	0.143887	0.113921	0.0290943	0.507044	0.114622
7	0.266016	0.132788	0.148038	0.0266326	0.505933	0.11534
8	0.297795	0.124424	0.17816	0.0246069	0.506062	0.115841
9	0.32467	0.117902	0.204704	0.0230634	0.504371	0.11205
10	0.347674	0.112677	0.228163	0.0218158	0.503813	0.116479
11	0.36759	0.108422	0.248998	0.0207856	0.503358	0.11669
12	0.385008	0.104829	0.267603	0.0199217	0.502982	0.116856
13	0.400382	0.101808	0.28431	0.0191873	0.502668	0.116988
14	0.414062	0.0992172	0.299393	0.0185554	0.502402	0.117096
15	0.426323	0.0969702	0.31308	0.0180062	0.502175	0.117185
16	0.437383	0.0950031	0.325558	0.0175245	0.501979	0.117259
17	0.447419	0.0932664	0.336984	0.0170678	0.50181	0.117322
18	0.456573	0.0917213	0.34749	0.0167193	0.501663	0.117375
19	0.464961	0.0903384	0.357186	0.016380	0.501533	0.11742
20	0.47268	0.0890925	0.366166	0.0160731	0.501418	0.11746
21	0.479812	0.0879644	0.374509	0.0157956	0.501316	0.117494
22	0.486425	0.0869379	0.382284	0.0155430	0.501226	0.117524
23	0.492576	0.085999	0.38955	0.0153065	0.501144	0.11755
24	0.498316	0.0851355	0.396358	0.0151038	0.501071	0.117583
25	0.503685	0.0843456	0.402751	0.0148929	0.501005	0.117594
26	0.508722	0.0835003	0.408769	0.0147388	0.500945	0.117612
27	0.513457	0.0825563	0.414445	0.0144975	0.500896	0.117629
28	0.51792	0.0826320	0.41981	0.0144838	0.50084	0.117644
29	0.522134	0.0806537	0.424889	0.0142467	0.500795	0.117657

From the above numerical data one can conjecture that

\[\lim_{n \to \infty} V(n, k) = \lim_{n \to \infty} C_2(n, k). \]
Acknowledgment. The authors wish to thank the referee for very helpful comments and corrections. M. Baran and A. Kowalska were partially supported by the NCN grant OPUS 6 No. 2013/11/B/ST1/03693.

References

[1] R.P. Agarwal, G.V. Milovanović, Extremal problems, inequalities and classical orthogonal polynomials, Appl. Math. Comput., 128 (2002), 151–166.

[2] D. Aleksov, G. Nikolov, A. Shadrin, On the Markov inequality in the L_2-norm with the Gegenbauer weight, J. Approx. Theory 208 (2016), 9–20.

[3] D. Aleksov, G. Nikolov, Markov L_2 inequality with the Gegenbauer weight, J. Approx. Theory 225 (2018), 224–241.

[4] G.E. Andrews, R. Askey, R. Roy, Special Functions, Encyclopaedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, Cambridge (1999).

[5] M. Baran, New approach to Markov inequality in L^p norms, Approximation Theory: in Memory of A. K. Varma (N. K. Govil and alt., ed.), Marcel Dekker, New York (1998), 75-85.

[6] M. Baran, L. Bialas-Cież, B. Milówka, On the best exponent in Markov inequality, Potential Analysis, 38 (2) (2013), 635–651.

[7] B. Bojanov, An extension of the Markov inequality, J. Approx. Theory 35 (2) (1982), 181-190.

[8] P. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities, Springer, Berlin, 1995, Graduate Texts in Mathematics 161.

[9] A. Böttcher, P. Dörfler, Weighted Markov-type inequalities, norms of Volterra operators and zeros of Bessel functions, Math. Nachr. 283 (2010), 40–57.

[10] A. Böttcher, P. Dörfler, On the best constants in Markov-type inequalities involving Laguerre norms with different weights, Monatshefte f. Math. 161 (2010) 357–367.

[11] A. Böttcher, P. Dörfler, On the best constants in Markov-type inequalities involving Gegenbauer norms with different weights, Operators and Matrices 5 (2011), 261–272.

[12] Z. Ciesielski, On the A. A. Markov inequality for polynomials in the L^p case, in: ”Approximation theory”, Ed.: G. Anastassiou, pp., 257-262, Marcel Dekker, inc., New York, 1992.

[13] I. K. Daugavet, S. Z. Rafal’son, Certain inequalities of Markov-Nikolski type for algebraic polynomials, Vestnik Leningrad. Univ. 1 (1972), 15–25 (Russian).
[14] D. K. Dimitrov, *Markov Inequalities for Weight Functions of Chebyshev Type*, J. Approx. Theory 83 (2) (1995), 175-181.

[15] P. Dörfler, *New inequalities of Markov type*, SIAM J. Math. Anal. (18), (1987), 490-494.

[16] P. Goetgheluck, *On the Markov Inequality in L^p-Spaces*, J. Approx. Theory 62 (2) (1990), 197-205.

[17] P. Yu. Glazyrina, *The Sharp Markov-Nikol’skii Inequality for Algebraic Polynomials in The Spaces L_q and L_0 on a Closed Interval*, Mathematical Notes, 84 (1) (2007), 3-22.

[18] E. Hille, G. Szegö, J. Tamarkin, *On some generalisation of a theorem of A. Markoff*, Duke Math. J. 3 (1937), 729–739.

[19] A. Jonsson, *Markov’s inequality and Zeros of Orthogonal Polynomials on Fractal Sets*, J. Approx. Theory 78 (1994), 87–97.

[20] S. V. Konyagin, *Estimates of derivatives of polynomials*, Dokl. Acad. Nauk SSSR 243 (1978), 1116-1118 (Russian).

[21] G. K. Kristiansen, *Some inequalities for algebraic and trigonometric polynomials*, J. London Math. Soc. 20 (2) (1979), 300–314.

[22] A. Kroó, *On the exact constant in the L_2 Markov inequality*, J. Approx. Theory 151 (2008), 208–211.

[23] G. Labelle, *Concerning polynomials on the unit interval*, Proc. Amer. Math. Soc. 20 (1969), 321-326.

[24] G. V. Milovanović, D.S. Mitrinović, T. M. Rassias, *Topics in Polynomials, Extremal Problems, Inequalities, Zeros*, World Scientific , Singapore (1994).

[25] Q. I. Rahman, G. Schmeisser, *Analytic Theory of Polynomials*, Clarendon Press, Oxford (2002).

[26] E. Schmidt, *Die asymptotische Bestimmung des Maximums des Integrals über das Quadrat der Ableitung eines normierten Polynoms*, Sitzungsberichte der Preussischen Akademie, (1932), 287.

[27] E. Schmidt, *Über die nebst ihren Ableitungen orthogonalen Polynomialsysteme und das zugehörige Extremum*, Math. Ann. 119 (1944), 165–204.

[28] L. F. Shampine, *Some L_2 Markoff inequalities*, J. Res. Nat. Bur. Standards 69B (1965), 155–158.

[29] L. F. Shampine, *An inequality of E. Schmidt*, Duke Math. J. 33 (1966), 145–150.

[30] J. Shen, T. Tang, L. Wang, *Spectral Methods: Algorithms, Analysis and Applications*, Springer Verlag (2011).
[31] I. E. Simonov, *Sharp Markov Brothers Type inequality in the Spaces L_p and L_1 on a Closed Interval*, Proceedings of the Steklov Institute of Mathematics, 277, Suppl. 1 (2012), S161-S170.

[32] G. Sroka, *Constants in V.A. Markov’s inequality in L^p norms*, J. Approx. Theory 194 (2015), 27–34.

[33] E. M. Stein, *Interpolation in polynomial classes and Markoff’s inequality*, Duke Math. J. 24 (1957), 467–476.

[34] G. Szegö, *Orthogonal polynomials*, American Mathematical Society Colloquium Publications 23, American Mathematical Society, Providence, RI, (2003).

[35] A. K. Varma, *On Some Extremal Properties of Algebraic Polynomials*, J. Approx. Theory 69 (1) (1992), 48–54.

[36] A. Zygmund, *A remark on conjugate functions*, Proceedings of the London Math. Soc. 34 (1932), 392-400.