Supplementary Information: Ion and Site Correlations of Charge Regulating Surfaces: A Simple and Accurate Theory

Martin Trulsson*

Computational Chemistry, Lund University, SE-221 00 Lund, Sweden

E-mail: martin.trulsson@compchem.lu.se

Fig. S1 shows the effect of using $\zeta = 1$, including ion-ion correlation and ion-site correlations, on the titration behaviour as a function of pH at various concentrations of (a) 1:1 salts and (b) 2:1 salts. There is a slight increase in surface charge density at the same conditions (i.e., salt concentration and pH), leading to a slightly worse agreement with the Monte Carlo results. However, the error is less than $\sim 5\%$, found at the highest pH values, and given the approximative theory, this is still a tolerable error.

Fig. S2 shows the effect of having $\zeta = 1$ and $\xi^2 = 3$ for a couple of salts. While the 1000 mM 2:1 salt gives a good agreement with MC simulations (and experimental data), the agreement is only fair for 67 mM 2:1 salt and becomes worse for a 200 mM 1:1 salt.

Fig. S3 shows the effect of neglecting the ϕ^{ex} term, using $\zeta = 1$. All the curves show a weaker ionisation for the same salt, concentration, and pH. Lowering ζ or increasing ξ^2 will further decrease the ionisation, i.e., is not a viable approach.

Figure S1: (a) Same as Figure 2(d) but with $\zeta = 1$. (b) Same as Figure 3(d) but with $\zeta = 1$.

Figure S2: (a) Same as Fig. S1(a) but with $\xi^2 = 3$, (b) same as Fig. S1(b) but with $\xi^2 = 3$.

Figure S3: (a) Same as Fig. S1(a) but without ϕ^{ex}, (b) same as Fig. S1(b) but without ϕ^{ex}.