Preferences of NIA Alzheimer’s Disease Research Center participants regarding remote assessment during the COVID-19 pandemic

Michael Nunnerley1,2,3,4 | Nora Mattek2,3,4 | Jeffrey Kaye2,3,4 | Zachary Beattie2,3,4

1Build EXITO Program, Portland State University, Portland, Oregon, USA
2Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
3NIA-Layton Aging & Alzheimer’s Disease Research Center, Portland, Oregon, USA
4Oregon Center for Aging & Technology (ORCATECH), Portland, Oregon, USA

Abstract

Introduction: During the COVID-19 pandemic, in-person research study visits were moved to an online format using a variety of communication platforms (e.g., Webex and Zoom). Increased technology use among older adults allowed for greater insight regarding the remote research study visit format.

Methods: A survey developed by the National Alzheimer’s Coordinating Center (NACC) was distributed among 12 Alzheimer’s Disease Research Centers (ADRCs). The COVID-19 Technology Accessibility Survey aimed to understand preferences of older adults regarding their research study visits and how they accessed the internet.

Results: Among 12 ADRCs, 2070 responses were received (mean age: 72.8 years [standard deviation (SD) = 10.4], mean education: 16.6 years [SD = 2.6], race/ethnicity: 85% White/non-Hispanic). Among respondents, those with some form of cognitive impairment were more likely to prefer remote research study visits (mild cognitive impairment [MCI] vs. normal [odds ratio (OR) = 1.40, P = 0.02] and dementia vs. normal [OR = 1.48, P < 0.01]). Respondents with cognitive impairment were also less likely to have interest in smartphone use during at-home study visits (MCI vs. normal [OR = 0.71, P = 0.02] and dementia vs. normal [OR = 0.63, P < 0.001]). Results were similar regarding tablet use (MCI vs. normal [OR = 0.73, P = 0.04] and dementia vs. normal [OR = 0.72, P = 0.01]). Geographical location was analyzed in terms of the percentage of respondents in each region who preferred remote research study visits: West, 51%; Midwest, 34%; South, 41%; and Northeast, 57% (P < 0.0001).

Discussion: Results from the study suggest that there is a growing interest in the remote research study visit format. Further studies will allow for greater understanding and development of this research format.

KEYWORDS
aging, cognitive impairment, COVID-19, remote research, technology
1 | INTRODUCTION

Alzheimer’s disease and related dementias (ADRD) research is an area of intense interest and need given the high rates of dementia and mild cognitive impairment (MCI) in older adult populations and the pressing need for developing effective treatments. This need will only grow with 55 million affected globally currently and 10 million new cases emerging each year.1 As a result, aging and dementia will increasingly become one of the largest factors for dependence among older adults globally.2 Thus, the importance of sustaining or even increasing ADRD research is crucial to address this major public health problem.

The ability to sustain ADRD research came into sharp focus in March of 2020 when much of the clinical research being conducted in North America was halted or substantially curtailed due to the COVID-19 pandemic. A major reason for this sudden change was the result of ADRD clinical research relying on in-person clinical and cognitive assessments, which became untenable for safety reasons. As a way to overcome this limitation, methods of research administration transitioned to remote digital communications formats (i.e., video conferencing or telephone assessments) that had been studied and deployed in a number of pre-pandemic research studies.3–8 While this approach may be viable for many different populations, these approaches can present barriers to research when presented to different older populations and more dramatically older adults with cognitive impairment who may be less comfortable or willing to use technology, as well as having more limited access than younger adults.9–12 These concerns around technology use may be accentuated in older adults with cognitive impairment. However, little is known about the information-communication technology (ICT) preferences or capabilities of older adults specifically willing to participate in ADRD research. Although ICTs are increasingly adopted by the aging population, there is considerable heterogeneity in this adoption and use according to age. In a 2021 national American Association of Retired Persons (AARP) survey, 88% of those 60 to 69 years old owned a smartphone while ownership dropped to 72% in those aged 70 or older.13 There is a considerable discrepancy regarding confidence in using technology, with 31% of those age 70 or above uncertain as to their abilities compared to only 14% lacking confidence among those 60 to 69 years old.12 Lack of confidence or ability to use ICT is exacerbated by cognitive impairment. For example, people with MCI decrease their use technology as MCI progresses.14–16 Thus, although the ability to facilitate research using ICT to remotely assess individuals in an ADRD study has been found to be feasible, there remain questions as to how optimize this approach based on how ICT-based study assessments are perceived among older adults who may be enrolled in these clinical studies.

To better understand the ICT preferences and the technical capabilities of older adults participating in ADRD research, we evaluated the results from a survey of older adults with a range of cognitive status from normal to MCI to dementia participating as research volunteers in the National Institute on Aging (NIA)-supported 33 Alzheimer’s Disease Research Centers (ADRC) program. The survey addressed how the internet was accessed, the type of preferred research study visits, and the interest in the use of various technologies at home for study participation. This survey was intended to provide greater insight into the remote conduct of research study visits to guide how the experience can be improved and enhanced for future purposes.

2 | METHODS

The National Alzheimer’s Coordinating Center (NACC) collects data from 37 active ADRCs across 26 states in the United States to facilitate research in ADRD across a broad range of investigations.17 These centers represent the perfect organization of sites to adequately assemble this survey. As part of this effort, each center enrolls research participants into their regional center with each consenting participant undergoing a standardized assessment including demographics, health history and medical conditions, medications, functional status, depression scale, neurologic exam, a neuropsychological test battery, and clinician cognitive diagnosis.18 The collected data are sent and overseen by NACC. Prior to the COVID-19 pandemic these assessments were largely conducted in person. With the advent of the pandemic, this was no longer tenable and the ADRCs and NACC developed versions of their standardized assessment that could be administered remotely, either by telephone or video conferencing. As part of this pivot to remote assessment, a committee representing the ADRCs...
and NACC developed a survey (the COVID-19 Technology Accessibility Survey or CTAS [available in supporting information]) to better understand the capabilities and preferences of ADRD participants for conducting remote visits. All ADRCs that submitted the CTAS obtained informed consent from their participants to collect this data. The survey was provided to all ADRCs on July 2, 2020 as a new, optional (i.e., not all ADRCs were required to query their research cohorts) NACC form. As a result, this study aimed to gather data via a convenience sample as the provided data were from an optional source and targeted the specific demographic of aging adults. Instructions included that the form should be filled out by either the participant (if their Clinical Dementia Rating [CDR] score = 0 or 0.5) or by the co-participant/caregiver on behalf of the research participant (if CDR score > 0.5). Alternatively, the survey could be administered by study personnel. Instructions given to participants were: “We are asking these questions because COVID-19 has presented new challenges in continuing your visits with us. It has led to ideas on what to do now and maybe even in the future. As a research participant, you may decline to answer any of these questions, and it is all right to do so, but please answer as many of the questions as you feel comfortable with.” This survey asked specifically about remote research study visit preference, what devices respondents used to access the internet, whether they use e-mail to send and receive documents, and whether respondents were interested in smart homes and wearable devices. Cognitive status of respondents was determined using their clinical diagnosis from their on-site ADRC study visit closest to their survey completion.

Twelve geographically diverse ADRC sites administered the CTAS to their older adult volunteers during the time period of August 1, 2020 through November 15, 2021 (three West, five Midwest, two South, and two Northeast).

3 | STATISTICAL ANALYSIS

The final dataset (survey results, demographics, and cognitive status) from NACC was received on November 15, 2021. Chi-square (χ^2) tests of independence were used to examine differences in categorical variables by cognitive status. Analysis of variance (ANOVA) was used to examine differences in continuous variables by cognitive status. Five multivariate logistic regression models were built to estimate the association between cognitive status and (1) remote visit preference, (2) interest in smartphone use, (3) interest in tablet use, (4) interest in desktop use, and (5) interest in laptop use after adjusting for covariates age, sex, race, education, and geographic region.

Statistical analysis was performed using SAS 9.4 software.

4 | RESULTS

Twelve ADRC sites collected 2070 survey responses from older adults with a range of cognitive status: normal cognition ($n = 1472, 71\%$), MCI ($n = 260, 13\%$), and dementia ($n = 338, 16\%$). Overall mean age was 72.8 years (standard deviation [SD] = 10.4), mean education was 16.6 years (SD = 2.6), 56% were female, and 15% were non-White. These results are summarized in Table 1.

Our study cohort who completed the CTAS is approximately 12% of the total active participants in the NACC database during the same time period (i.e., a convenience sample of all NACC participants). Volunteers who completed the survey had similar distributions of sex (56% vs. 59% female) and race (85% vs. 80% White) than those who did not. Mean age of those who completed the survey was similar to those who did not (73.5 years vs. 74.3 years). Those who completed the survey were more likely to be cognitively normal (71% vs. 51%) than those who did not. Overall, 35% of respondents would prefer an in-person study visit, 43% would prefer a remote study visit (telephone or video), and 22% had no preference. Cognitively normal respondents were more likely to access the internet via smartphone ($P = < 0.0001$), tablet ($P = 0.02$), laptop ($P = < 0.01$), or desktop ($P = 0.07$) than cognitively impaired respondents (see Table 1). Cognitively normal respondents were more likely to use e-mail than cognitively impaired respondents ($P = < 0.0001$) although e-mail use was high for all groups (87%). Cognitively normal respondents showed more interest in using smartphone ($P = < 0.0001$), tablet ($P = < 0.001$), laptop ($P = < 0.0001$), desktop ($P = < 0.01$), or wearables ($P = < 0.0001$) at home as part of their study visit than cognitively impaired respondents. Generally, respondents accessed the internet via smartphone and laptop, and less so via tablet and desktop. Overall, 18% of respondents were open to using a wearable device. Additionally, only 6% of respondents were willing to use smart home technology in the context of study visits.

After adjusting for covariates, respondents with cognitive impairment were more likely to prefer a remote study visit (telephone or video call vs. in person or no preference): MCI versus normal, odds ratio (OR) = 1.40, $P = 0.02$; and dementia versus normal, OR = 1.48, $P < 0.01$ (Table 2). Female respondents were more likely to prefer a remote study visit as well (OR = 1.27, $P = 0.01$). Cognitively impaired respondents were less likely to show interest in smartphone use during study visits compared to cognitively normal respondents with MCI versus normal (OR = 0.71, $P = 0.02$) and dementia versus normal (OR = 0.63, $P < 0.001$). Similar to smartphones, cognitively impaired respondents were less likely to show interest in tablet use during study visits compared to normal respondents: MCI versus normal (OR = 0.73, $P = 0.04$) and dementia versus health (OR = 0.72, $P = 0.01$). Older age was significantly associated with a lower likelihood of interest in smartphone or tablet use during a study visit. Education and race were not associated with remote visit preference or interest in smartphone or tablet use as part of the study visit. As shown in Table 2, Model 4, dementia volunteers were significantly less likely to show interest in desktop use during study visits (OR = 0.69, $P = < 0.01$). As shown in Table 2, Model 5, cognitively impaired volunteers were less likely to show interest in laptop use during study visits: MCI versus healthy (OR = 0.66, $P < 0.01$) and dementia versus healthy (OR = 0.66, $P < 0.01$). Older age was negatively correlated with interest in laptop use and higher education was positively correlated with interest in laptop use.

As a post hoc analysis, Model 1 (remote visit preference [telephone or video call] vs. other [in person or no preference]) was rerun with adjustments added for (1) smartphone and tablet current use and (2)
TABLE 1 Participant demographics and COVID-19 Technology Accessibility Survey results by cognitive status (n = 2070 from 12 ADRCs)

Variables	Total n = 2070	Normal cognition n = 1472	MCI n = 260	Dementia n = 338	P-value
Age, years	72.8 (10.4)	72.2 (10.3)	76.3 (9.0)	72.5 (11.3)	<0.0001
_sex: female, %	56%	61%	44%	43%	<0.0001
Education, years	16.6 (2.6)	16.5 (2.5)	16.1 (2.7)	15.9 (2.8)	<0.0001
Race/ethnicity					
Asian	2%	2%	1%	2%	0.02
Black	12%	13%	14%	7%	?
Hispanic	3%	3%	2%	2%	
White	82%	81%	81%	89%	
Other	2%	2%	2%	1%	
Geographic region					
Midwest	50%	52%	50%	47%	<0.0001
Northeast	20%	15%	18%	39%	
South	10%	13%	2%	3%	
West	20%	20%	29%	11%	
Study visit preference					
In person	35%	35%	38%	32%	<0.0001
Telephone	22%	21%	25%	24%	
Video	21%	19%	24%	27%	
No preference	22%	25%	13%	17%	
How do you currently access internet?*					
Smartphone	67%	70%	60%	59%	<0.0001
Tablet/iPad	42%	44%	37%	37%	0.02
Laptop	60%	62%	52%	55%	<0.01
Desktop	41%	42%	39%	35%	0.07
Use e-mail to receive and send documents?					<0.0001
Interest in using technologies for home study visit?*					
Smartphone	56%	60%	47%	47%	<0.0001
Tablet/iPad	39%	42%	32%	32%	<0.0001
Laptop	56%	59%	45%	49%	<0.0001
Desktop	36%	38%	37%	28%	<0.01
Wearable device	18%	21%	14%	8%	<0.0001
Smart home device	6%	7%	5%	6%	0.32

*Check all that apply.

Abbreviations: ADRC, Alzheimer’s Disease Research Center; MCI, mild cognitive impairment.

The percentages of respondents in each region who preferred remote (video or telephone calls) visits to in person visits were: West, 51%; Midwest, 34%; South, 41%; and Northeast, 57%; P < 0.0001. After adjusting for covariates, Midwest and South regions were significantly less likely to prefer a remote visit compared to the West (P < 0.0001 and P = 0.04, respectively). However, the Midwest was more likely to
Variables	Model 1		
	OR	95% CI	P-value
MCI vs. healthy	1.40	1.05–1.85	0.02
Dementia vs. healthy	1.48	1.15–1.91	0.003
Female vs. male	1.27	1.06–1.54	0.01
White vs. other race	0.90	0.69–1.16	0.41
Age	1.01	1.00–1.02	0.22
Education	1.00	0.98–1.01	0.67
Midwest vs. West	0.51	0.40–0.65	<0.0001
South vs. West	0.70	0.49–0.99	0.04
Northeast vs. West	1.22	0.91–1.63	0.18

Variables	Model 2		
	OR	95% CI	P-value
MCI vs. healthy	0.71	0.53–0.94	0.02
Dementia vs. healthy	0.63	0.48–0.81	<0.001
Female vs. male	0.92	0.76–1.11	0.37
White vs. other race	1.12	0.86–1.46	0.40
Age	0.96	0.95–0.96	<0.0001
Education	1.01	0.99–1.03	0.36
Midwest vs. West	1.32	1.03–1.69	0.03
South vs. West	1.34	0.94–1.90	0.10
Northeast vs. West	0.79	0.59–1.06	0.12

Variables	Model 3		
	OR	95% CI	P-value
MCI vs. healthy	0.73	0.54–0.98	0.04
Dementia vs. healthy	0.72	0.55–0.93	0.01
Female vs. male	1.18	0.98–1.42	0.09
White vs. other race	1.25	0.96–1.62	0.10
Age	0.98	0.97–0.99	<0.0001
Education	1.01	1.00–1.03	0.18
Midwest vs. West	1.18	0.92–1.51	0.19
South vs. West	1.00	0.70–1.42	0.99
Northeast vs. West	0.71	0.52–0.97	0.03

Variables	Model 4		
	OR	95% CI	P-value
MCI vs. healthy	0.89	0.67–1.19	0.44
Dementia vs. healthy	0.69	0.52–0.91	<0.01
Female vs. male	0.72	0.53–0.87	<0.001
White vs. other race	1.05	0.81–1.37	0.70
Age	1.00	0.99–1.01	0.56
Education	1.01	0.99–1.03	0.26
Midwest vs. West	0.91	0.71–1.15	0.42
South vs. West	0.67	0.47–0.95	0.03
Northeast vs. West	0.36	0.26–0.49	<0.0001

(Continues)
show interest in smartphone use as part of the study visit compared to the West (P = 0.03). Northeast was less likely to show interest in tablet use as part of the study visit compared to the West (P = 0.03; Table 2).

5 | DISCUSSION

Results from 2070 older adults who completed the CTAS demonstrated a variety of preferences for remote study visits based on cognitive status, sex, age, and potentially geographic region. Respondents with MCI and dementia were more likely to prefer remote visits compared to those with normal cognition. Females were also more likely to prefer a remote study visit. Respondents in the Midwest were less likely to prefer a remote study visit compared to West. This data reflects the potential regional or local cultural and social norms that may influence these results. To our understanding, no other journal articles reported this information on geographical location and study visit preference. In terms of the association with race (dichotomized by White vs. non-White) and remote study visits, our data were limited by sample size and a lack of diversity (15% non-White). One study noted that interest in different technologies such as wearable devices and smart home technology may be less favorable due to the context in which they can be deployed and the understanding of the capabilities of these technologies.

This study had a number of limitations. The survey being administered was optional with only 12 of 33 ADRCs contributing to the NACC survey call. Respondents are thus from a subsample of the ADRC centers. Therefore, the limited number of participating centers, coupled with the survey being distributed as optional by the participating centers, created a double layer of consideration for respondents. Additionally, the sample was limited by convenience. Data collected were aimed at targeting the specific demographic of aging adults, and data with MCI and dementia. These results regarding technology use and accessibility remain consistent with a Pew Research Center study. Another study that looked at attitudes and use toward technology in cognitively impaired older adults found that those who were impaired used technology less, even though this population can achieve some of the greatest benefit from use. Furthermore, Wild et al. found that anxiety and competency around technology decreased when used over an extended period in older adults but saw less change in those with MCI and dementia. Older age was negatively associated with interest in smartphones or tablets at home during the study visit. Considering the wide array of devices used to access the internet, availability and accessibility would need to be present across all of the used platforms regarding remote research study visits. This would also allow for a “bring your own device” philosophy, which would make accessibility broader. The majority of survey respondents regardless of cognition use e-mail (87%); this suggests that e-mail is a good approach to delivering information or queries in research. For example, Oregon Center for Aging and Technology studies have successfully been deploying a weekly health form via e-mail for >10 years to a cohort of older adults but saw less change in those with MCI and dementia. Older age was negatively associated with interest in smartphones or tablets at home during the study visit.
provided were collected from this targeted group. Although there may be a regional bias there was a fairly even geographic representation among the ADRCs across the United States. Respondents’ answers may also have been influenced by the COVID-19 pandemic. This would call for an additional study conducted in the post-pandemic world to determine this consideration. The survey data were collected between August 1, 2020 and November 15, 2021. During this time information and instructions about the COVID-19 pandemic were rapidly changing. Depending on the date and pandemic rates and guidance at the time, the survey responses could have been affected. The sample lacked diversity; the majority were White (85%) and skewed toward being well educated. We did not have information on who (study participant or their caregiver/collateral) completed each form. Centers could choose to administer the survey by mail, e-mail, in person, or collect it over the phone/video. “Fillable” PDFs were provided to the centers to make data collection for remote visits easier. The method of administration was not captured. The CTAS could be administered at regularly scheduled study visits or at any other time.

The results of this study have the potential to inform the direction of future dementia research regarding mode of assessment and methodologies most likely to be adopted and successfully used. There is much heterogeneity in preferences for types of assessment and technologies used. It is important to address that there are many valuable uses to remote data collection; however, there are limitations via video and telephone visits, including the inability to perform certain aspects of neuropsychological tests that require the assessor and participant to be in the same room together. Several neuropsychological tests of visuospatial skills, executive function, and attention are unable to be completed via remote visit as well as some of the physical tests as part of the clinical exam. Other cognitive tests such as the Montreal Cognitive Assessment and Trail Making Test need to be modified for remote visits.

Technologic innovation and change are rapid, and future research needs to address more specific use cases and the rapidly changing landscape of remote assessment technologies to advance clinical research in ADRD.

ACKNOWLEDGMENTS

The authors would like to thank the BUILD EXITO program for their support of this research. Research reported in this publication was supported in part by the National Institute of General Medical Sciences of the National Institutes of Health Grant Award Number RL5GM118963. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. This work was supported by several grants, including the National Institute on Aging: P30 AG024978, P30 AG008017, P30 AG066518. The NACC database is funded by NIA/NIH Grant U24 AG072122. NACC data are contributed by the NIA-funded ADCs: P50 AG005131 (PI James Brewer, MD, PhD), P50 AG005133 (PI Oscar Lopez, MD), P50 AG005134 (PI Bradley Hyman, MD, PhD), P50 AG005136 (PI Thomas Grabowski, MD), P50 AG005138 (PI Mary Sano, PhD), P50 AG005142 (PI Helena Chui, MD), P50 AG005146 (PI Marilyn Albert, PhD), P50 AG005681 (PI John Morris, MD), P30 AG008017 (PI Jeffrey Kaye, MD), P30 AG008051 (PI Thomas Wisniewski, MD), P50 AG008702 (PI Scott Small, MD), P30 AG010124 (PI John Trojanowski, MD, PhD), P30 AG010129 (PI Charles DeCarli, MD), P30 AG010133 (PI Andrew Saykin, PsyD), P30 AG010161 (PI David Bennett, MD), P30 AG012300 (PI Roger Rosenberg, MD), P30 AG013846 (PI Neil Kowall, MD), P30 AG013854 (PI Robert Vassar, PhD), P50 AG016573 (PI Frank LaFerla, PhD), P50 AG016574 (PI Ronald Petersen, MD, PhD), P30 AG019610 (PI Eric Reiman, MD), P50 AG023501 (PI Bruce Miller, MD), P50 AG025688 (PI Allan Levey, MD, PhD), P30 AG028383 (PI Linda Van Eldik, PhD), P50 AG033514 (PI Sanjay Asthana, MD, FRCP), P30 AG035982 (PI Russell Swedlow, MD), P50 AG047266 (PI Todd Golde, MD, PhD), P50 AG047270 (PI Stephen Strittmatter, MD, PhD), P50 AG047366 (PI Victor Henderson, MD, MS), P30 AG049638 (PI Suzanne Craft, PhD), P30 AG053760 (PI Henry Paulson, MD, PhD), P30 AG066546 (PI Sudha Seshadri, MD), P20 AG068024 (PI Erik Roberson, MD, PhD), P50 AG073666 (PI Michael Nunnerley, MD, MS), P30 AG072958 (PI Heather Whitson, MD), P30 AG072959 (PI James Leverenz, MD).

CONFLICTS OF INTEREST

Oregon Health and Science University and Z. Beattie have a financial interest in Life Analytics, Inc., a company that may have a commercial interest in the results of this research and technology. This potential conflict of interest has been reviewed and managed by OHSU. Both Michael Nunnerley and Nora Mattek have no relationships/activities/interests to disclose. Author disclosures are available in the supporting information.

REFERENCES

1. Dementia. World Health Organization. Accessed September 29, 2022. https://www.who.int/news-room/fact-sheets/detail/dementia
2. Shu S, Woo BKP. Use of technology and social media in dementia care: current and future directions. World J Psychiatry. 2021;11(4):109-123. https://doi.org/10.5498/wjp.v11.i4.109
3. Binng D, Splonskowski M, Jacova C. Distance assessment for detecting cognitive impairment in older adults: a systematic review of Psychometric Evidence. Dement Geriatr Cogn Disord. 2020;49(5):456-470. https://doi.org/10.1159/000511945
4. Brearly TW, Shura RD, Martindale SL, et al. Neuropsychological test administration by videoconference: a systematic review and meta-analysis. Neuropsychol Rev. 2017;27(2):174-186. https://doi.org/10.1007/s11065-017-9349-1
5. Elliott E, Green C, Llewellyn DJ, Quinn TJ. Accuracy of telephone-based cognitive screening tests: systematic review and meta-analysis. Curr Alzheimer Res. 2020;17(5):460-471. https://doi.org/10.2174/156720501799200626201121
6. Hunter MB, Jenkins N, Dolan C, Pullen H, Ritchie C, Muniz-Terrera G. Reliability of telephone and videoconference methods of cognitive assessment in older adults with and without dementia. J Alzheimers Dis. 2021;81(4):1625-1647. https://doi.org/10.3233/jad-210088
7. McCleery J, Laverty J, Quinn TJ. Diagnostic test accuracy of tele-health assessment for dementia and mild cognitive impairment. Cochrane Database Syst Rev. 2021(7):CD013786. 10.1002/14651858.cd013786.pub2
8. Watt JA, Lane NE, Veroniki AA, et al. Diagnostic accuracy of Virtual Cognitive Assessment and testing: systematic review and meta-
analysis. J Am Geriatr Soc. 2021;69(6):1429-1440. https://doi.org/10.1111/jgs.17190

9. Ahmad NA, Mat Ludin AF, Shahar S, Mohd Noah SA, Mohd Tohit N. Willingness, perceived barriers and motivators in adopting mobile applications for health-related interventions among older adults: a scoping review. BMJ Open. 2022;12(3):e054561. https://doi.org/10.1136/bmjopen-2021-054561

10. Gordon NP, Crouch E. Digital Information Technology use and patient preferences for internet-based health education modalities: cross-sectional survey study of middle-aged and older adults with chronic health conditions. Aging. 2019;2(1):e12243. https://doi.org/10.2196/12243

11. Fischer SH, Ray KN, Mehrotra A, Bloom EL. Uscher-Pines L. Prevalence and characteristics of telehealth utilization in the United States. JAMA Netw Open. 2020;3(10):e2022302. https://doi.org/10.1001/jamanetworkopen.2020.22302

12. Wilson J, Heinsch M, Betts D, Booth D, Kay-Lambkin F. Barriers and facilitators to the use of e-health by older adults: a scoping review. BMC Public Health. 2021;21(1):1556. https://doi.org/10.1186/s12889-021-11623-w

13. Kakulla B. Older adults are upgrading tech for a better online experience. AARP. Published September 1, 2021. Accessed September 29, 2022. https://www.aarp.org/research/topics/technology/info-2021/2021-technology-trends-older-americans.html

14. Kaye J, Mattek N, Dodge HH, et al. UNOBTURSIVE measurement of daily computer use to detect mild cognitive impairment. Alzheimers Dement. 2013;10(1):10-17. https://doi.org/10.1016/j.jalz.2013.01.011

15. Hedman A, Nygård L, Almkvist O, Kottorp A. Amount and type of everyday technology use over time in older adults with cognitive impairment. Scand J Occup Ther. 2015;22(3):196-206. https://doi.org/10.3109/11038128.2014.982172

16. Seelye A, Mattek N, Sharma N, et al. Weekly observations of online survey metadata obtained through home computer use allow for detection of changes in everyday cognition before transition to mild cognitive impairment. Alzheimers Dement. 2017;14(2):187-194. https://doi.org/10.1016/j.jalz.2017.07.756

17. Alzheimer’s disease research centers. National Institute on Aging. Accessed September 29, 2022. https://www.nia.nih.gov/research/adcd}

18. For the latest news and updates, check this page first. National Alzheimer’s Coordinating Center | National Alzheimer’s Coordinating Center. Accessed September 29, 2022. https://naccdata.org/

19. Predmore ZS, Roth E, Breslau J, Fischer SH, Uscher-Pines L. Assessment of patient preferences for telehealth in post – COVID-19 pandemic health care. JAMA Net Open. 2021;4(12):e2136405. https://doi.org/10.1001/jamanetworkopen.2021.36405

20. Anderson M, Perrin A. 1. technology use among seniors. Pew Research Center: Internet, Science & Tech. Published December 31, 2019. Accessed September 29, 2022. https://www.pewresearch.org/internet/2017/05/17/technology-use-among-seniors/

21. Guzman-Parra J, Barnestein-Fonseca P, Guerrero-Pertiñez G, et al. Attitudes and use of information and communication technologies in older adults with mild cognitive impairment or early stages of dementia and their caregivers: cross-sectional study. J Med Internet Res. 2020;22(6):e17253. https://doi.org/10.2196/17253

22. Wild KV, Mattek NC, Maxwell SA, Dodge HH, Jimison HB, Kaye JA. Computer-related self-efficacy and anxiety in older adults with and without mild cognitive impairment. Alzheimers Dement. 2012;8(6):544-552. https://doi.org/10.1016/j.jalz.2011.12.008

23. Beattie Z, Miller LM, Almirola C, et al. The collaborative aging research using technology initiative: an open, sharable, technology-agnostic platform for the research community. Digital Biomark. 2020;4(Suppl 1):100-118. https://doi.org/10.1159/000512208

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Nunnerley M, Mattek N, Kaye J, Beattie Z. Preferences of NIA Alzheimer’s Disease Research Center participants regarding remote assessment during the COVID-19 pandemic. Alzheimer’s Dement. 2022;14:e12373. https://doi.org/10.1002/dad2.12373