Decompression with Fusion is not in Superiority to Decompression Alone in Lumbar Spondylosis Based on Randomized Controlled Trials: A Meta-analysis and Systematic Review

Shuai Xu, Yan Liang, Zhenqi Zhu, Kaifeng Wang, Yalong Qian, Haiying Liu*

Department of Spinal Surgery, Peking University People’s Hospital, Peking University, Beijing, P.R. China

*Corresponding author: Haiying Liu, Department of Spinal Surgery, Peking University People’s Hospital, Peking University, Beijing, P.R. China. Tel: +861088324110; +861088324112; Email: liuhaiying1131@sina.com

Citation: Xu S, Liang Y, Zhu Z, Wang K, Qian Y, et al. (2018) Decompression with Fusion is not in Superiority to Decompression Alone in Lumbar Spondylosis Based on Randomized Controlled Trials: A Meta-analysis and Systematic Review. J Surg: JSUR-1158. DOI: 10.29011/2575-9760.001158

Received Date: 26 July, 2018; Accepted Date: 03 September, 2018; Published Date: 07 September, 2018

Abstract

Objective: To compare the efficacy on Decompression (D) and decompression with Fusion (F) for patients with Herniated Disc (HD) and Lumbar Spinal Stenosis (LSS) regardless of Degenerative Spondylolisthesis (DS) based on RCTs.

Summary of Background Data: Whether F is superior to D on LSS and HD still remains controversial. Recently several RCTs have been published.

Methods: The databases include PUBMED/MEDLINE, EMBASE, Cochrane Library and Web of Science from January 1970 to March 2018. Two reviewers assessed eligible trials and extracted information. The information included basic characteristics, primary and secondary measures, then meta-analysis was progressed as well as subgroup analysis by DS and follow-up time (36 months). The strength of evidence and recommendation was evaluated by GRADE system.

Result: A total of 9 RCTs met inclusion criteria with 857 patients and the average age, sex ratio and preoperative VAS were of no significance. In primary measures, there were no difference in VAS changes on back and leg pain between D and F group (MD = -0.03, P = 0.94; MD = 0.11, P = 0.86, respectively); Patients’ satisfaction (P = 0.48), the change of ODI (P = 0.29) were of no difference. Secondary measures showed no difference in complication rate (P = 0.50) and reoperation (P = 0.11) while a significance of longer operation duration (P < 0.0001), more blood loss (P = 0.004), longer hospital stays (P < 0.0001) in F group. The subgroup analysis with DS showed all measures were basically in consistency with meta-analysis. The follow-up showed a higher reoperation rate in middle-to-long term (>36months) in D group. According to the GRADE system, the grade of meta-analysis is of “High” quality.

Conclusion: F group has no better clinical results than D alone in LS, regardless of DS and follow-up time. According to the GRADE, the grade strength of recommendation was “Strong”.

Keywords: Degenerative spondylosis; Decompression alone; Decompression with fusion; Meta-analysis; Systematic Review

Introduction

Lumbar Spinal Stenosis (LSS) and Herniated Disc (HD) are the most common diseases in vertebrae or disc Lumbar Spondylosis (LS), LSS is characterized by narrowing of the central vertebral canal, lateral recesses and HD is of protrusion intervertebral disc [1,2]. Degenerative Spondylolisthesis (DS), approximately 4.1% in general population [3] and usually accompanied with LSS, due to degenerative changes resulting in slip of one vertebral body over another, causing a series of symptoms of intermittent neurogenic claudication, radicular back and leg pain. The therapy strategy has been identified that surgical intervention was superior to conservative care for symptomatic lumbar spondylosis by The Spine Patient Outcomes Research Trial (SPORT) [4]. Decompression (D) is a recommended surgical approach of LS and D with Fusion (F) is even regarded as the gold standard surgery on DS for the stability.
support [5]. However, the issue on whether fusion is absolute need remains still controversial [6-8]. Over the last 2 decades, several reviews on comparison of surgical outcomes between D alone and D plus Fusion (F) for LS have been published and some of them are in favor that F had better clinical outcomes [3,9,10]. However, with the publish of qualified Randomized Controlled Trials (RCTs) about D and F of LS drawing somewhat different conclusion, the opinion on this focus progressed more controversial. Therefore, a meta-analysis is still of vital important to be performed since the lack of qualified study consist of nonrandomized Controlled Trials (nRCTs), the neglect of data published by Forsth, et al. [11], the paucity of evidence on all outcomes but the primary ones, the lack of grades of recommendation on the whole meta-analysis. Therefore, we conducted a meta-analysis and systematic reviews to compare the entire efficacy on D with F for patients with LSS (with or without DS) and HD based on published RCTs.

Methods

Search strategies

The databases used to search include PUBMED/MEDLINE, EMBASE, Cochrane Library and Web of Science for English-language articles, from January 1970 to March 2018. The following search strategy were used: (laminotomy OR laminectomy OR fenestration OR hemilaminectomy OR decompression) AND (lumbar spondylolisthesis OR lumbar spinal stenosis OR lumbar canal stenosis OR degenerative lumbar spondylolisthesis OR slipped disk OR protrusion OR herniated disc) AND (fusion OR arthrodiesis). Two reviewers independently screened all studies for eligibility.

Inclusion and Exclusion Criteria

Included studies fulfilled the following criteria: (1) they were RCTs written in English; (2) the studies focused the comparison between D versus F for LSS and HD, the LSS was with or without DS; (3) the comparative data of clinical outcomes, major complications, reoperations, and other perioperative desirable outcomes could be acquired and (4) the sample size was bigger than 5 per group and a minimum follow up time of 1 year. Exclusion criteria were: (1) non-English-language articles; (2) nRCTs, case reports, duplicate papers, or review reports; (3) without a controlled group or with a small sample size (<5 patients per group); (4) participants mixed tumors, fractures, osteoporosis, or other irrelevant diseases; (5) studies mainly concerning a surgical approach, or surgical techniques or instruments; (6) studies with incomplete or undesirable outcome.

Data Extraction

Both reviewers assessed potentially eligible trials and extracted information independently from each potential study. Any discrepancies were resolved through a third reviewer to reach consensus. The following data were extracted: basic characteristics of demographic information, primary and secondary measures. Primary measures included the change of visual analog scales (VASs, ranging from 0 to 10, with higher scores indicating more severe pain) on back and leg pain, the Oswestry Disability Index (ODI, ranging from 0 to 100, with higher scores indicating more disability related to pain), European Quality of Life-5 Dimensions (EQ-5D, range ranging from 0 to 1, with higher score indicating better quality of life), Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36) , patients’ satisfaction, walking ability. Secondary measures included that included incidence of complications and reoperations, operation time, blood loss, length of hospitalization and Adjacent Segment Degenerative/Disease (ASD).

Risk of Bias and Quality Assessment

Two investigators independently graded each eligible study. We used the Cochrane Handbook for Systematic Reviews of Interventions, version 5.0 [12] for RCTs. The following domains were assessed: randomization, blinding (of patients, surgeons and assessors), allocation concealment, adequacy of outcome data, selective reporting, and other biases. Each domain of quality assessment was classified as adequate (A), uncertain (B) or inadequate (C). If all domains were A, the study was A-level; if at least one domain was B, the study was B-level; if at least one domain was C, the study was C-level.

Data Synthesis and Analysis

Review Manager Software (Rev Man Version 5.3 [The Cochrane Collaboration, Oxford, United Kingdom]) was used to conduct the statistical analysis. Continuous variables were reported as Weighted Mean Difference (WMD) and 95% confidence interval (95% CI), and dichotomous variables were reported as Odds Ratios (ORs) and 95% CI. Results were regarded as statistically significant if Two-sided P<0.05. P was used to estimate the size of the heterogeneity. I²>50% indicated low heterogeneity and the results of comparable groups could be pooled using a fixed-effects model. Subgroup analysis that could reduce statistical heterogeneity to facilitate factor definition was worthwhile. If the overall heterogeneity was I²<50%, we could still divide studies into subgroups depending on professional principles and clinical meaning. We constructed a funnel plot for overall outcomes to assess publication bias.

GRADE Approach

The GRADE (The grades of recommendation, assessment, development and evaluation) approach was used to evaluate the strength of evidence [13]. Based on parameters, the quality assessment was classified as very low, low, moderate or high according to the GRADE handbook (version 3.2), with the GRADE profiler software (version 3.6). A Summary of Findings Table (SoF
Table) was used to explain the final results.

Result

Search Result

The process of identifying relevant studies is summarized in (Figure 1).

![Figure 1: Flow diagram on selection for included RCTs.](image)

2768 references were obtained from the databases mentioned and a total of 9 RCTs [14-22] eventually met inclusion criteria with a total of 857 patients: 367 were in D group and 490 were in F group. As some studies were continuations of previous articles, we used the latest publication to avoid duplication and the 9 included studies were published between 1987 and 2016. 2 RCTs published in 2017 completed by Försth et al. and Karlsson, et al. [11,23] contained the same data as the study published in 2016, we finally could not regard the 2 RCTs as included studies but only adopt partial refreshed information as supplement for its undesirable and inadequate outcomes although published later.

Risk of Bias and Quality Assessment

According to the quality assessment criteria recommended by the Cochrane Handbook for Systematic Reviews of Interventions [12], 6 out of 9 were of high quality and a low risk of bias. One study was A-level quality [16], 5 articles were B-level [14,17,18,20,23] and 3 articles were C-level with a moderate risk of bias [15,19,21] (Figure 2).

![Figure 2: Risk of bias summary.](image)

Results of Meta-Analysis

Basic characteristics

The characteristics on basic information of the 9 included RCTs were recorded in (Table 1).
The participants were diagnosed with LSS combined with DS in 6 studies, LSS in 2 studies and HD in 1 study. The average age in D group and F group was of no difference (P=0.99), so was the sex ratio (F/M) (P=0.47). Surgery approaches in D group referred to decompression alone, laminectomy and facetectomy, while in F group contained PLIF, PLF and facet arthrodesis with or without instruments. There were of no significance on preoperative VAS on back and leg pain between the two groups supported by 5 articles [14,16-18,21].

Primary Measures

VAS Change on Back Pain

6 studies [14,16-19,21] reported VAS change of back pain between the two groups but 1 study failed to give specific value. A random effects model was applied for meta-analysis (I² = 68%) and there was no statistical difference in VAS changes between pre- and post-operative back pain between the two groups (MD = -0.03, 95% CI [-0.38, 0.76], z = 0.08, P = 0.94) (Figure 3(A)).
Figure 3(A): The meta-analysis on the change of VAS on back pain between D and F group.

Grob, et al. [19] reported there was no difference between D group and F group but both amelioration contrasted with that of reoperation though a lack of precise data. The number of improvement on back pain mentioned in 3 articles [14,18-19] showed no difference between the 2 groups (OR = 0.75, z = 1.27, P = 0.21).

VAS change on leg pain

4 studies [14,18-19,21] reported VAS change of leg pain and one study still miss specific data. A random effects model was applied (P = 84%) with no difference in VAS changes between pre- and post-operative leg pain between the two groups (MD = 0.11, 95% CI [-1.08, 1.30], z = 0.18, P = 0.86) (Figure 3(B)).

Figure 3(B): The meta-analysis on the change of VAS on leg pain between D and F group.

Grob, et al. [19] also reported there was no difference between D group and F group, but both improved postoperatively. The number of improvement on leg pain mentioned in 2 articles [14,19] showed no difference between the 2 groups (OR =1.79, z =0.50, P = 0.62) and 1 article [18] reported no significance without specific data.

The change of ODI, EQ-5D and SF-36

3 studies [14-16] and 2 studies [14,15] referred to the change of ODI and EQ-5D respectively. There was no statistical difference in ODI change post-operatively between the two groups (MD = 6.58, 95% CI [-5.66, 18.82], z = 1.05, P = 0.29) with random effects model (P = 94%) (Figure 4(A)) and no difference in EQ-5D change (MD =0.03, 95% CI [-0.04, 0.10], z = 0.82, P = 0.41) with fixed effects model (P = 0%). 1 study referred to the change of SF-36 physical-component by Ghogawala, et al. [15] which was in favor of F group originally (P=0.046).

Figure 4(A): The meta-analysis on the change of ODI between D and F group.
Patients’ satisfaction and walking ability

7 studies [14,16,18-22] reported patients’ satisfaction in contrast with that of pre-operation. A random effects model was applied ($I^2 = 72\%$) with no difference in patients’ satisfaction between the two groups (OR = 0.74, 95% CI [0.32, 1.69], z = 0.71, P = 0.48) (Figure 4(B)).

Study or Subgroup	D	Events	Total	F	Events	Total	Weight	M.H. Random, 95% CI	Odds Ratio
Aleksandra, 2014	45	49	44	47	81	81	8.3%	0.307 [0.15, 0.62]	
Arthur, 1987	15	22	20	21	22	22	17.3%	0.250 [0.08, 0.77]	
Ehrlich, 1993	3	3	3	3	3	3	12.7%	0.242 [0.05, 1.14]	
Forth, 2016	72	117	66	111	237	237	21.2%	1.096 [0.64, 1.89]	
Gehr, 1996	13	16	15	20	35	35	11.8%	2.260 [0.43, 19.67]	
Heine, 2012	11	25	24	25	49	49	8.0%	0.003 [0.00, 0.28]	
Total (95% CI)	289	442	442	0.74 [0.32, 1.69]					

The increased number of in walking distance were reported of the 2 studies [14,19], a meta-analysis about it showed no statistical significance (OR = 1.07, z = 0.09, P = 0.93) and Aihara, et al. [17] indicated the walking ability score (4.81 vs. 4.24) of no difference between D and F group.

Secondary Measures

Complications and ASD

8 studies [14-20,22] reported intra- and post-operative complications (1 article reported with no complication) and 3 [14-16] of them mentioned ASD, which was an important outcome in follow-up postoperatively. The overall incidence of complication was 14.71% in D group and 14.49 % in F group (with a range of 0 to 42%). Eventually, there was no statistical difference on complications between D group and F group (OR = 0.75, z = 0.67, P=0.50) (Figure 5(A)).

Study or Subgroup	D	Events	Total	F	Events	Total	Weight	M.H. Random, 95% CI	Odds Ratio
Aihara, 2012	7	33	17	17	34	17	13.9%	0.06 [0.01, 0.26]	
Aleksandra, 2014	10	46	14	14	60	14	17.4%	1.66 [0.54, 5.12]	
Arthur, 1987	0	31	0	31	31	0	0%	Not estimable	
Ehrlich, 1993	0	9	1	1	10	0	5.9%	0.23 [0.01, 4.49]	
Forth, 2016	26	117	23	23	140	23	22.2%	1.09 [0.58, 2.06]	
Ghogawala, 2016	2	35	1	1	36	1	7.6%	1.62 [0.15, 21.09]	
Grob, 1995	3	15	7	7	22	7	13.7%	0.62 [0.18, 3.76]	
Heine, 2012	7	56	14	14	70	14	19.0%	1.48 [0.58, 3.82]	
Total (95% CI)	342	465	465	0.75 [0.33, 1.72]					

ASD was not distinguished meticulously in this study though the different conception between Adjacent Segment Degeneration (ASDeg) and Adjacent Segment Disease (ASDis) [24]. A meta-analysis showed a difference between D group and F group (OR = 2.35, z = 2.40, P=0.02) (Figure 5(B)).
Reoperation

6 studies [14-17,19,20] reported reoperation and the range of reoperation rate was from 2.33% to 24.24%. ASD was the majority of reoperation in D group (72.5%), and then followed infection (15%) and recurrence of symptoms (12.5%), while the most common reason for secondary surgery in F group was also ASD (46.43%), and then were restenosis (17.86%), implantation loosening or instability (17.86%), infection (10.71%) and persistent pain (7.14%). Finally, a meta-analysis showed no difference between D group and F group (OR = 1.93, z = 1.59, P=0.11) (Figure 6(A)).

Operation duration, blood loss and hospital stay

The duration of operation, blood loss and length of hospital stays were simultaneously included by these 5 articles [14-17,19] but one [19] out of 5 miss the standard derivation, so 4 studies could be performed meta-analysis. There was a statistical difference in operation time and blood loss between the D group and F group (MD = -80.02, z = 4.53, P<0.0001; MD = -339.05, z = 2.86, P=0.004, respectively) with random effects model (I² = 97%; I² = 100%, respectively). Grob, et al. [19] reported a significance on duration of operation (104min vs. 147min) and blood loss (300ml vs. 762ml) between the two groups in original article. As to the length of hospitalization, a statistical significance was also showed between the two groups (MD = -2.66, z = 4.43, P< 0.0001, P = 78%).

Postoperative DS progression

Accompanied with LSS, DS was often seen in LS and 6 [14,15,17-19,20,21] out of 9 included studies referred to DS with a proportion of 64.76% among selected participants. A meta-analysis on 2 studies about the number of postoperative DS progression showed no difference (OR = 8.59, z = 1.11, P=0.27) (Figure 6(B)). Then we performed a subgroup analysis on stratification of DS.
Subgroup Meta-analysis

LD Combined with DS

The RCT published in 2016 [14] reported a comparison of D group (66 patients) and F group (67 patients) with DS and other patients included 5 RCTs were all diagnosed LSS combined with DS. Bridwell, et al. [20] showed a proportion of 26.47% occurred in L3/4 and 73.5% in L4/5 with single segment slip. Overall, the operation duration and blood loss in secondary measures were of statistical difference between the 2 groups (P = 0.004 and P < 0.0001, respectively), all of the comparisons were in consistency with the whole meta-analysis (Table 2).

Study or Subgroup	D	F	Odds Ratio	Odds Ratio		
	Total Events	Total	Total	Weight	M.H. Random, 95% CI	M.H. Random, 95% CI
Erkowitz, 1993	3	9	9	34	52.0%	1.39 [0.29, 6.75]
Hart, et al., 1991	24	25	7	25	48.0%	61.71 [6.96, 547.36]
Total (95% CI)	34	59	100.0%	8.59 [0.19, 381.68]		

Figure 6(B): The meta-analysis on postoperative DS progression between D and F group.

Table 2: Outcomes between D and F group of subgroup analysis on DS.

Follow up Time

Long-term follow-up suggested that fusion surgery may accelerate degeneration of the adjacent segment but no influence on clinical result [25]. Consequently a subgroup analysis base on follow-up time of short term (<36 months) and middle-to-long term (<36months) was then underwent in comparison of primary and secondary measures except operation duration, blood loss and hospital stay for their senseless. (Table 3) showed that there was a statistical difference (<36 months) in VAS change on leg pain (P=0.04) standing D group side, suggesting as least no better outcome with fusion in short term follow-up. As to the middle-to-long term follow-up, the change of ODI and reoperation rate were of significance in favor of D group and F group respectively, which indicated decompression alone may induce a higher reoperation rate with the longer follow-up. The other measures were in line with the overall meta-analysis and ASD was the most seasons of reoperation yet no matter the follow-up time.
Publication bias

Publication bias was just assessed for VAS change on back pain, reoperation rate, and complications as at least five studies are required to detect asymmetry. Funnel plot showed no apparent asymmetry (not shown), suggesting that publication bias may not be a limitation.

GRADE approach

The SoF Table (Figure 7) presents the grade of the ultimate outcome under the intervention of D and F group with a result of no statistical significance and the “High” quality grade of this meta-analysis. According to the academic and clinical experiences, the grade of ultimate outcome and the overall grade quality of this meta-analysis, the grade strength of recommendation was “strong”.

Table 3: Outcomes between D and F group of subgroup analysis on follow-up time.

Measures	Middle-to-long term (>36m)	Short term (<36m)	
	MD(OR) P Value	MD(OR) P Value	
Primary measures			
VAS change on back	-0.46 0.68	0.24 0.40	
VAS change on leg	NA NA	0.63 0.04*	
ODI change	11.52 0.03*	NA NA	
EQ-5D / SF-36	NA NA	0.72 0.40	
Patients’ satisfaction	0.64 0.75	0.24 0.40	
Walking ability	NA NA	0.72 0.75	
Secondary measures			
Complications	1.69 0.31	0.54 0.27	
ASD	2.47 0.05*	NA NA	
Reoperation	2.65 0.03*	1.06 0.87	
Post-op DS progression	NA NA	NA NA	
The most seasons of reoperation	ASD	The most seasons of reoperation	ASD

Note foot: m: months; MD: mean difference; OR: odd ratio; ASD: adjacent segment degeneration/disease; DS: degenerative spondylolisthesis

NA: not available *P<0.05(two sides) indicates a statistical significance.

Figure 7: Preview So F table of the GRADE for this meta-analysis.
Discussion

The debate on efficacy of decompression versus decompression plus fusion in lumbar spondylosis has never stopped and more intensified over several decades. Relevant publications insisted decompression alone to be significantly less invasive than that combined with fusion [26,27] demonstrated that posterior spinal fusion following decompression led to longer operative time, more blood loss, while instability of the spine is a potential consequence that needs to be considered [28,29], especially combined with DS. The recent publications included 3 RCTs [14-16] focusing the issue, with more qualified and quantitate evidence, made it facilitate to perform a further study. 9 RCTs included in our meta-analysis showed there was no difference in the primary clinical outcomes as well as secondary ones of complications rate, reoperation rate ASD between D versus F while patients with fusion suffered more blood loss, prolonged operation time, and hospital stays. It was the first time to study based on all RCTs including newest publications, to perform a subgroup analysis and to show a evidence and recommendation grade.

Stability is an inevitable topic as a potential factor indicating the approach selection. Decompression alone was recommended for typical LSS with no lumber operation history, no spinal instability [30] and decompression without fusion cannot guarantee consolidation as to the satisfactory outcomes [31]. A survey [5] reported that the presence of motion on dynamic radiographs and back pain might raise enough reason to choose fusion surgery. Herkowitz, et al. [21] reported a difference on spondylolisthesis postoperatively between D and F group on flexion and extension position (5.8mm vs. 0.1mm) and neutral position (7.9mm vs. 5.3mm) (both P < 0.05 respectively) without significance preoperatively, while the DS progression postoperatively seemed not in line with the olisthesis degree in our analysis. Brown, et al. [32] affirmed intraoperative spinal stiffens measurements did not predict clinical results after lumbar spine surgery. Försth, et al. [14] also found no significant difference between the D and F groups in amelioration of back pain, regardless of DS, and previous studies have shown that spondylolisthesis was not associated with an increased level of back pain [33].

In the last 3 years, more studies have approved that D alone was as effective as DF for LS [34]. In our meta-analysis, the primary outcomes deciding the majority efficacy such as the imprinted of VAS, ODI and walking ability were of no difference, which was in array with some recent publications. Brodke, et al. [35] reported fusion added to decompression had no superior survival curve, improved clinical outcomes over decompression alone. Although three different fusion with or with instruments as F group approaches included in our study, it concluded no significant differences were found in SF-36 and ODI score among 3 different fusion techniques for patients with DS and LSS [36]. Therefore, an explanation for the result drawn by Ghogawala, et al. [15] that F group was with slightly greater improvement in SF-36 than D alone statistically may be a factual clinical outcome, but the overall main measures of no difference should pay more attention. Spinal fusion surgery theoretically requires more intervention produces and often involves spinal implants or intervertebral cages [37], the secondary measures of operation duration, blood loss and hospital stays were unquestionably less in D group though a various value in different studies, in agreement with most articles. As a consequence, we believed that D alone could achieve paralleled clinical efficacy compared with F approach [10]. However, a reasonable selection should be required individually, when LS mixed with other degenerative changes, such as osteophyte or calcified ligaments, the more consolidation would make it possible to reduce a fusion. Matsudaira suggested a better clinical results outcome with DS by preserving the posterior elements [38]. Similary, Tuli et al. thought the best alternative of adequate laminectomy with preservation of the posterior ligament complex integrity [39].

The presence of degenerative spondylolisthesis has often been considered an instability, although there is no consensus on the definition [14] and surgical strategies for DS was still a matter of debate. 6 out of 9 RCTs referred to DS and there was a similar outcome as the whole meta-analysis when stratified for further subgroup analysis. McCullen proposed patients with DS may require changes in decompression without fusion modality to improve outcomes [40]. Several studies suggested that decompression alone may exacerbate instability and increase the degree of DS [7,41,42]. While Försth, et al. proved that F did not result in clinical outcomes that were superior to D with DS and our meta-analysis based on 2 studies about the number of postoperative DS progression showed no difference. Except the probability of major proportion, the participants with DS took, the better explanation was there, factually, was of no significance between D and F group.

Long-term follow-up between the two approaches suggested no influence on clinical outcome [26]. Follow-up time was always distinguished by 2 years and 5 years to conform short-, middle-and long-term, while short term (<36 months) and middle-to-long term (>36months) in this subgroup analysis performed as a reasonable combination of proportional distribution statistically and clinical sense. The change of ODI in middle-to-long term was of statistical difference but probably a bias as the little sample and significant heterogeneity (I²>50%), while that the reoperation rate in D group was higher (>36months) may be make sense with the reason of ASD, which, however, was against the opinion of Inui, et al. [20] that there was a significantly higher reoperation rate in fusion compared with decompression alone. In addition, Försth, et al. [11] and Karlsson, et al. [23] progressed the follow-up time of 5 years and refreshed information about some measures published in 2017, which, regretly, just contain a partial desirable result and
because of the additional operating time, extended hospitalization, surgery) were $6,800 higher in the F group than in the D group. Direct costs of each procedure (mainly hospital costs, including described, which, emphasized by Försth, et al. [14], showed the mean inclusion for the restriction of RCTs that just one out of 9 studies same result in this analysis. A cost-effective analysis was not reoperation was due to symptomatic adjacent segment pathology [6,21] Brodke et al. reported the common reason for in the D group were the same segmental herniation and restenosis, while in the F group were caused by implant-related problems and produced back pain and leg pain [44,45]. While on the contrary, there was a higher ASD incidence in D group and the favor of F group indicated ASD may not be associated with fusion but a natural progression in LS, a consistent point drawn by Pesce, et al. [46] that ASD is a part of the natural history of cervical spondylolisthesis a complication based on a RCTs of 10 years follow-up. It seemed that surgeons might improperly attribute ASD as the common reason for poor outcomes after fusion surgery [14].

Inui, et al. [20] shown that there was a significantly higher reoperation rate in fusion compared with decompression alone. Dailey, et al. [47] thought reoperation rate at the surgical level or adjacent levels was not associated with D or F and reported a 13% reoperation rate, a proximity of 10.90% in D group and 5.71% in F group in our study and of no difference between the two groups. There were publications reported the common causes of reoperations in the D group were the same segmental herniation and restenosis, while in the F group were caused by implant-related problems and ASD [6,21] Brodke et al. reported the common reason for reoperation was due to symptomatic adjacent segment pathology whatever the approaches (D or F) [38], which was an approval by the same result in this analysis. A cost-effective analysis was not included for the restriction of RCTs that just one out of 9 studies described, which, emphasized by Försth, et al. [14], showed the mean direct costs of each procedure (mainly hospital costs, including surgery) were $6,800 higher in the F group than in the D group because of the additional operating time, extended hospitalization, and cost of the implant. Hallett et al. revealed a cost difference of approximately USD $6290 per patient for an additional fusion implant [48]. Given the higher cost of adding fusion, D alone was believed to be more cost effective than instrumented fusion for selected patients.

There are several limitations restrict the overall efficacy: 9 RCTs included in this study with a less participants contrast with some relevant publications, confined by the number of RCTs although the supported a quality guarantee and evidence strength. In addition, a somewhat unsatisfied result of quality assessment with some high-risk factors probably down-regulate the grade of recommendation, since 3 RCTs are still of moderate risk of bias and most of them could not exert inadequate blinding so as to produce 15% overestimation of treatment effect. Besides, there is insufficient data of primary outcomes in walking ability, SF-36 and further information on DS. Finally, the lack of results on radiographic findings may make an effect on an objective evaluation.

Conclusions

Decompression plus fusion has no better clinical results than decompression alone in lumber vertebral and disc spondylolisthesis, regardless of the combination with spondylolisthesis, which is yet no significant change with short-term or middle-to-long term follow-up. Decompression plus fusion has a longer duration of operation, more hospital stays and more blood loss, even perhaps a larger cost. According to the GRADE, the grade of this meta-analysis is of “High” quality, the grade strength of recommendation was “strong”.

References

1. Wiltsie LL, Kirkaldy-Willis WH, McIvor GW (1976) The treatment of spinal spondylolisthesis. Clin Orthop Relat Res 1976: 83-91.
2. Grabias S (1980) Current concepts review. The treatment of spinal stenosis. J Bone Joint Surg Am 62: 308-313.
3. Steiger F, Becker HJ, Standaert CJ, Balague F, Vader JP, Porchet F, et al. (2014) Surgery in lumbar degenerative spondylolisthesis: indications, outcomes and complications. A systematic review. Eur Spine J 23: 945-973.
4. Weinstein JN, Lurie JD, Tosteson TD, Zhao W, Blood EA, et al. (2009) Surgical compared with nonoperative treatment for lumbar degenera-tive spondylolisthesis. four-year results in the Spine Patient Outcomes Research Study (SPORT) randomized and observational cohorts. J Bone Joint Surg Am 91: 1295-304.
5. Schroeder GD, Kepler CK, Kurd MF, Vaccaro AR, Hsu WK, et al. (2015) Rationale for the Surgical Treatment of Lumbar Degenerative Spondylolisthesis. Spine 40: E1161-1166.
6. Nasca RJ (1989) Rationale for spinal fusion in lumbar spinal stenosis. Spine 14: 451-454.
7. Johnsson KE, Redlund-Johnell I, Uden A, Willner S (1989) Preoperative and postoperative instability in lumbar spinal stenosis. Spine 14: 591-593.
8. Grobler LJ, Robertson PA, Novotny JE, Ahern JW (1993) Decompression for degenerative spondylolisthesis and spinal stenosis at L4-5. The effects on facet joint morphology. Spine 18: 1475-1482.
9. Matz PG, Meagher RJ, Lamer T, Tontz WJ, Annaswamy TM, et al. (2016) Guideline summary review: An evidence-based clinical guideline for the diagnosis and treatment of degenerative lumbar spondylolisthesis. Spine J 16: 439-448.
10. Schulte TL, Ringel F, Quante M, Eicker SO, Muche-Borowski C, et al. (2016) Surgery for adult spondylolisthesis: a systematic review of the evidence. Eur Spine J 25: 2359-2367.
11. Försth P, Carlsson T, Sandén B, Michaelsson K (2017) No long-time benefit from fusion in decompressive surgery for lumbar spinal stenosis: 5 year-results from the Swedish spinal stenosis study, a multicenter rct of 233 patients. European Spine Journal 26: S287.
12. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, et al. (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011: 343.
13. Atkins D, Briss PA, Eccles M, Flottorp S, Guyatt GH, et al. (2005) Systems for grading the quality of evidence and the strength of recommendations II: pilot study of a new system. BMC Health Serv Res 5: 25.
14. Försth P, Olafsson G, Carlsson T, Frost A, Borgstrom F, et al. (2016) A Randomized, Controlled Trial of Fusion Surgery for Lumbar Spinal Stenosis. N Engl J Med 374: 1413-1423.
15. Ghogawala Z, Dziura J, Butler WE, Dai F, Terrin N, et al. (2016) Laminectomy plus Fusion versus Laminectomy Alone for Lumbar Spondylolisthesis. N Eng J Med 374: 1424-1434.
16. Truszczynska A, Rapala K, Lukawski S, Trzaskoma Z, Tarnowski A, et al. (2014) Evaluation of functional outcomes in individuals 10 years after posterior lumbar interbody fusion with corundum implants and decompression: a comparison of 2 surgical techniques. Med Sci Monit 20: 1400-1406.
17. Aihara T, Toyone T, Aoki Y, Ozawa T, Inoue G, et al. (2012) Surgical Management of Degenerative Lumbar Spondylolisthesis: A Comparative Study of Outcomes Following Decompression with Fusion and Microendoscopic Decompression. Journal of Musculoskeletal Research 15: 1250020.
18. Kleinsteuck FS, Fekete TF, Mannion AF, Grob D, Porchet F, et al. (2012) To fuse or not to fuse in lumbar degenerative spondylolisthesis: do baseline symptoms help provide the answer? Eur Spine J 21: 268-275.
19. Grob D, Humke T, Dvorak J (1995) Degenerative lumbar spinal stenosis. Decompression with and without arthrodesis. J Bone Joint Surg Am 77: 1036-1041.
20. Bridwell KH, Sedgwick TA, O’Brien MF, Lenke LG, Baldus C (1993) The role of fusion and instrumentation in the treatment of degenerative spondylolisthesis with spinal stenosis. J Spinal Disord 6: 461-472.
21. Herkowitz HN, Kurz LT (1991) Degenerative lumbar spondylolisthesis with spinal stenosis. A prospective study comparing decompression with decompression and intervertebral process arthrodesis. J Bone Joint Surg Am 73: 802-808.
22. White AH, von Rogov P, Zucherman J, Heiden D (1987) Lumbar laminectomy for herniated disc: a prospective controlled comparison with internal fixation fusion. Spine 12: 305-307.
23. Karlsson T, Försth P, Sandén B (2017) Adjacent level stenosis or recurrent stenosis more common after decompression with fusion for lumbar spinal stenosis than after decompression alone. European Spine Journal 26: S311.
24. Hilibrand AS, Robbins M (2004) Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? Spine J 4: 190S-194S.
25. Mannion AF, Leivseth G, Brox JI, Fritzell P, Hagg O, et al. (2014) ISSLS Prize winner: Long-term follow-up suggests spinal fusion is associated with increased adjacent segment disc degeneration but without influence on clinical outcome: results of a combined follow-up from 4 randomized controlled trials. Spine 39: 1373-1383.
26. Transfeldt EE, Topp R, Mehbood AA, Winter RB (2010) Surgical outcomes of decompression, decompression with limited fusion, and decompression with full curve fusion for degenerative scoliosis with radiculopathy. Spine 35: 1872-1875.
27. Cassinelli EH, Eubanks J, Vogt M, Furey C, Yoo J, et al. (2007) Risk factors for the development of perioperative complications in elderly patients undergoing lumbar decompression and arthrodesis for spinal stenosis: an analysis of 166 patients. Spine 32: 230-235.
28. Amundsen T, Weber H, Nordal HJ, Magnaes B, Abdelnoor M, et al. (2000) Lumbar spinal stenosis: conservative or surgical management?: A prospective 10-year study. Spine 25: 1424-1435.
29. Burgstaller JM, Porchet F, Steurer J, Werti MM (2015) Arguments for the choice of surgical treatments in patients with lumbar spinal stenosis - a systematic appraisal of randomized controlled trials. BMC Musculoskeletal Disord 16: 96.
30. Hansraj KK, O’Leary PF, Cammisa FF, Hall JC, Fras CI, et al. (2001) Decompression, fusion, and instrumentation surgery for complex lumbar spinal stenosis. Clin Orthop Relat Res 2001: 18-25.
31. Yone K, Sakou T, Kawauchi Y, Yamaguchi M, Yanase M (1996) Indication of fusion for lumbar spinal stenosis in elderly patients and its significance. Spine 21: 242-248.
32. Brown MD, Wehman HF, Heiner AD (2002) The clinical usefulness of intraoperative spinal stiffness measurements. Spine 27: 959-961.
33. Pearson A, Blood E, Lurie J, Tostecon T, Abdu WA, et al. (2010) Degenerative spondylolisthesis versus spinal stenosis: does a slip matter? Comparison of baseline characteristics and outcomes (SPORT). Spine 35: 298-305.
34. Park JH, Hyun SJ, Roh SW, Rhim SC (2012) A comparison of unilateral laminectomy with bilateral decompression and fusion surgery in the treatment of grade I lumbar degenerative spondylolisthesis. Acta Neurochir 154: 1205-1212.
35. Brodke DS, Annis P, Lawrence BD, Woodbury AM, Daubs MD (2013) Reoperation and revision rates of 3 surgical treatment methods for lumbar stenosis associated with degenerative scoliosis and spondylolisthesis. Spine 38: 2287-2294.
36. Abdu WA, Lurie JD, Spratt BF, Tostecon AN, Zhao W, et al. (2009) Degenerative spondylolisthesis: does fusion method influence outcome? Four-year results of the spine patient outcomes research trial. Spine 34: 2351-2360.
37. Deyo RA, Mirza SK, Martin BL, Kreuter W, Goodman DC, et al. (2010) Trends, major medical complications, and charges associated with surgery for lumbar spinal stenosis in older adults. JAMA 303: 1259-1265.
38. Matsudaira K, Yamazaki T, Seichi A, Takeshita K, Hoshi K, et al. (2005) Spinal stenosis in grade I degenerative lumbar spondylolisthesis: a comparative study of outcomes following laminoplasty and laminectomy with instrumented spinal fusion. J Orthop Sci 10: 270-276.

39. Tuli SM, Kapoor V, Jain AK, Jain S (2011) Spinaplasty following lumbar laminectomy for multilevel lumbar spinal stenosis to prevent iatrogenic instability. Indian J Orthop 45: 396-403.

40. McCullen GM, Bemini PM, Bernstein SH, Tosteson TD (1994) Clinical and roentgenographic results of decompression for lumbar spinal stenosis. J Spinal Disord 7: 380-387.

41. Fox MW, Onofrio BM, Onofrio BM, Hanssen AD (1996) Clinical outcomes and radiological instability following decompressive lumbar laminectomy for degenerative spinal stenosis: a comparison of patients undergoing concomitant arthrodesis versus decompression alone. J Neurosurg 85: 793-802.

42. Resnick DK, Watters WR, Sharan A, Mummaneni PV, Dailey AT, et al. (2014) Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 9: lumbar fusion for stenosis with spondylolisthesis. J Neurosurg Spine 21: 54-61.

43. Sansur CA, Reames DL, Smith JS, Hamilton DK, Berven SH, et al. (2010) Morbidity and mortality in the surgical treatment of 10,242 adults with spondylolisthesis. J Neurosurg Spine 13: 589-593.

44. Suk SI, Lee CK, Kim WJ, Lee JH, Cho KJ, et al. (1997) Adding posterior lumbar interbody fusion to pedicle screw fixation and posterolateral fusion after decompression in spondyloytic spondylolisthesis. Spine 22: 210-219.

45. Lawhorne TR, Girardi FP, Mina CA, Pappou I, Cammisa FJ (2009) Treatment of degenerative spondylolisthesis: potential impact of dynamic stabilization based on imaging analysis. Eur Spine J 18: 815-822.

46. Pesce A, Wierzbicki V, Piccione E, Frati A, Raco A, et al. (2017) Adjacent segment pathology: natural history or effect of anterior cervical discectomy and fusion? A 10-year follow-up radiological multicenter study using an evaluation scale of the ageing spine. Eur J Orthop Surg Traumatol 27: 503-511.

47. Dailey A, Harrop JS, France JC (2010) High-energy contact sports and cervical spine neuropraxia injuries: what are the criteria for return to participation? Spine 35: S193-201.

48. Hallett A, Huntley JS, Gibson JN (2007) Foraminal stenosis and single-level degenerative disc disease: a randomized controlled trial comparing decompression with decompression and instrumented fusion. Spine 32: 1375-1380.