Today, the nature of microbial colonization of the human intestine, including that of the newborns, has changed significantly. The reasons are the growing number of complicated pregnancies, stressful situations, poor environmental conditions and uncontrolled intake of antibiotics.

An in-depth study of the gut microbiota that implies application of the methods offered by culturoomics, high-tech isolated microorganisms identification (MALDI-TOF MS, 16S rRNA gene sequencing) and metagenomic analysis can yield an expanded outlook of its species diversity.
Against this background, the currently adopted gut microbiota standards (composition and volume) [1–3] require revision. To date, there are no clearly defined criteria for the newborns’ gut microbiota assessment, the criteria that would allow timely interventions addressing the problems detected and early measures arresting pathological processes, such as necrotizing enterocolitis in premature babies. Very few researchers undertook statistical processing of the data describing composition and volume of the newborns’ gut microbiota [4, 5].

This study aimed to apply the methods of culturomics, proteomics, and molecular genetic technologies to investigate the development of gut microbiota in healthy newborns delivered in the city of Moscow both vaginally and by a cesarean section.

METHODS

A cohort of healthy full-term newborns was selected for this prospective study. The cohort was randomized by blocks, which yielded two groups of children:

1) group I — 33 children delivered vaginally;
2) group II — 33 children born by caesarean section.

The inclusion criteria were as follows: gestational age 38–40 weeks; Apgar score of 8–9 points (first and fifth minutes of life); body weight over 2800 g. Blood and urine of the newborns were tested for infectious pathologies or other factors that could affect development of the gut microbiota. All children were breastfed; feeding formulas were used in isolated cases only. No mother had a prolonged latency period; 3 women took antibiotics during pregnancy; 4 women had cervical incompetence (6%). In the surgical delivery cases the women received amoxicillin/clavulanic acid for prevention purposes before and during surgery.

The feces were collected from the newborns three times: on the 1st day, at the end of the 1st week and at the end of the 1st month of life. The samples of meconium obtained during the first bowel movement or feces collected from a sterile diaper and put into a sterile plastic container were delivered to the laboratory within 2 hours; plating was performed immediately upon delivery.

We studied the gut microbiota using an extended range of selective and non-selective culture media. The incubation was done in aerobic, microaerophilic and anaerobic conditions.

Following the generally adopted methods [3, 6], we plated meconium and feces on the following culture media. Isolation of the facultative anaerobic and aerobic microorganisms: Colombian blood agar, Brilliance chromogenic medium, Salmonella Shigella Agar, Sabouraud Dextrose Agar (Oxoid; Great Britain), mannitol salt agar (Himedia; India), Streptococcus agalactiae detection and differentiation medium (CHROMagar; France), Enterococcus Agar, Endo Agar (CITSPM I; Russia). Lactobacilli culturing: Lactobacillus Agar (CITSPM I; B; Russia). Lactobacilli and bifidobacteria: Lactobacillus Agar (CITSPM I; B; Russia). Obligate anaerobes isolation: Bifidobacterium Agar (Himedia; India), pre-reduced Schaedler Agar with necessary additives, Anaerobic Agar, Perfingress Agar, Iron Sulphate Agar, Clostridium difficile selective Agar (Oxoid; UK). To culture microaerophiles, we used a CO2 incubator (Jouan; France) with the CO2 concentration of 5%. To culture obligate anaerobes, we used an anaerobic box (Jouan; France) filled with a three-component gas mixture (N2 — 80%; CO2 — 10%; H2 — 10%). Thioglycol broth (Oxoid; Great Britain) enabled sterility control.

The microorganisms were identified with the help of a MALDI-TOF AutoFlex III time-of-flight mass spectrometer powered by the MALDI BioTyper v3.0 software (Bruker Daltoniks; Germany). At SCORE > 2.0, the culture was marked as identified on the species level (high probability of identification). At SCORE 1.7 to 2.0, the culture was considered identified at the genus level.

When the SCORE was below 2.0, i.e. the strain was hard to identify, we did the 16S rRNA gene sequencing. The Proba-CTo (DNA-Technology; Russia) reagent set enabled extraction of the DNA. We used two DNA fragments for sequencing: an amplicon of ~440 bp (positions 339–785 of the 16S rRNA gene) and an amplicon of ~1540 bp (positions 42–1580 of the 16S rRNA gene). These were amplified using the DTPrime detecting amplifier (DNA-Technology; Russia). For sequencing, we employed a 3130 Genetic Analyzer (Applied Biosystems; USA) and used the BigDye™ Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) following the protocol provided by the manufacturer. For species identification, the BLAST software package (National Center for Biotechnology Information; USA), freely available on the Internet, was used.

To determine differences in the frequency of occurrence of microorganisms depending on the mode of delivery, we applied the Fisher’s exact test during statistical processing of the data. Median and interquartile range were used as descriptive statistics to characterize the degree of microbial contamination.

RESULTS

At the 1st time point we examined 66 children, 33 in each group. The meconium of every 5th child was sterile; in group II such a situation was observed twice as often as in group I (9 and 4 cases, respectively; p > 0.05). The non-sterile meconia featured diverse microflora (63 species; the average species diversity index was 3.8 species per child). The bacteria isolated most often (in 60% of the vaginally delivered babies, titer of 107–108 CFU/g, and in 70% of the cesarean section babies, titer of 105–107 CFU/g) were the most often provident by anaerobic microorganisms of 10 genera: Staphylococcus, Streptococcus, Enterococcus, Micrococcus, Gemella, Gloeobacterium, Granulicatella, Rothia, Corynebacterium, Bacillus. It is noteworthy that in 12.2% of the group II children and in 6.1% of the group I children we detected Staphylococcus aureus (S. aureus). Escherichia coli, which normally makes up a significant part of the normal intestinal flora, was isolated thrice as often in the vaginally born babies (24.2% and 9.1%; p > 0.05). Same is true about other enterobacteria (27% and 15%, respectively; p > 0.05). Only one baby had Pseudomonas aeruginosa (group II).

Lactobacilli and bifidobacteria play the most important role in the development of the newborn’s gut microbiota. These microorganisms were found as early as in the first day of life. The size of the lactobacilli colonies was significantly greater in group I (18% and 3%, respectively; p > 0.05); the lactobacilli forming those colonies were Lactobacillus crispatus and Lactobacillus jenseni, which are among the dominant species in the vaginal microbiota of healthy women. Bifidobacteria were also isolated more often in the sampled taken from the group II babies (9% and 3%, respectively; p > 0.05); the bacteria were Bifidobacterium bifidum, B. longum, B. adolescentis. Only 1 baby (group I) had bacteroides detected in the first day of life. Other anaerobes (veillonella, prevotella and campylobacter) were isolated almost exclusively in group II.

Through the first week of the study, some parents refused to continue participation and some children contracted an infectious disease. Therefore, at the 2nd time point we examined 52 babies, 25 from group I and 27 from group II.

Compared to the 1st time point, the average species diversity index increased almost 3-fold and reached 9.4 species per child. As in the first day of life, both groups
had facultative anaerobic microorganisms (9 genera) detected most often. Their titer increased considerably: in the vaginal delivery group it was 10^7–10^{11} CFU/g, in the cesarean section group — 10^6–10^9 CFU/g; the frequency of occurrence was 100% in both groups. S. aureus became a more common bacterium; we isolated it in 44% of the group I babies and in 55.6% of the group II babies. The diversity of enterococci expanded from two to six species: Enterococcus faecalis, E. durans, E. faecium, E. gallinarum, E. avium. Same as in the first day of life, E. faecalis dominated gut microbiota of the majority of participants, colonizing the intestines of 80% of the group I children and 88.9% of the group II children.

The range of facultatively anaerobic bacteria present extended from 6 to 15 species (Enterobacteriaceae). E. coli was still detected more often in the vaginally born babies (64% in group I and 44.4% in group II; $p > 0.05$). The frequency of isolation of other enterobacteria was approximately the same in both groups.

The composition of lactobacilli species extended with L. paracasei, L. curvatus, L. gasseri, L. fermentum, L. rhamnosus. It should be noted that the species of lactobacilli dominating vaginal microbiota of healthy women (L. crispatus, L. jensenii in L. gasseri) were only found in the group I children.

We registered statistically significant differences in the representative of bifidobacteria. In group I such were detected in 84% of samples with the titer of 10^7–10^{10} CFU/g, and in group II the figure was only 33%, with the titer of 10^6–10^7 CFU/g ($p < 0.05$). The number of bifidobacteria species grew from 3 to 7: B. adolescentis, B. breve, B. dentium, B. catenulatum, B. bifidum, B. longum, B. animals. Some were detected only on one of the groups: B. adolescentis and B. catenulatum (group I exclusively) and B. dentium and B. animals (group II exclusively).

At the 3rd time point we examined 50 children, 24 from group I and 26 from group II. The average species diversity from two to six species: Eubacterium, Actinomyces, Collinsella, Prevotella, Campylobacter, Pseudomonas, Stenotrophomonas, Candida, Lactobacillus, Bifidobacterium, Bacteroides, Propionibacterium, Veillonella, Clostridium, Ruminococcus, Eggertella, Fusobacterium, Enterococcus, Rotteha, Bacillus, Neisseria, Haemophilus, Gemella, Gloeobacter, Granulicatella, Escherichia, Klebsiella, Raoultella, Klyuyvera, Enterobacter, Citrobacter, Proteus, Morganella, Pantoce, Pseudomonas, Stenotrophomonas, Candida, Lactobacillus, Bifidobacterium, Bacteroides, Propionibacterium, Veillonella, Clostridium, Ruminococcus, Eggertella, Fusobacterium, Enterococcus, Actinomyces, Collinsella, Prevotella, Campylobacter, Peptoniphilus, Sutterella.

The hemolytic strains of Enterococcus sp. and E. coli occurred with the same frequency in both groups: Enterococcus sp. — 8.3% in each group, and E. coli — 9.5 and 9.7%, respectively. Lactose-negative strains of E. coli were isolated in the group II children 8 times more often than in group I, which is a significant difference (19.4 and 2.4%, respectively; $p < 0.05$).

Overall, we isolated and identified 136 species of microorganisms of 40 genera: Staphylococcus, Streptococcus, Corynebacterium, Micrococcus, Enterococcus, Rothis, Bacillus, Neisseria, Haemophilus, Gemella, Gloeobacter, Granulicatella, Escherichia, Klebsiella, Raoultella, Klyuyvera, Enterobacter, Citrobacter, Proteus, Morganella, Pantoce, Pseudomonas, Stenotrophomonas, Candida, Lactobacillus, Bifidobacterium, Bacteroides, Propionibacterium, Veillonella, Clostridium, Ruminococcus, Eggertella, Fusobacterium, Enterococcus, Actinomyces, Collinsella, Prevotella, Campylobacter, Peptoniphilus, Sutterella.

Identification of genera of 36 isolated bacteria (SCORE < 2.0) required 16S rRNA sequencing. In most cases, sequencing results confirmed findings of the MALDI-TOF MS study. Only for 5 isolates 16S rRNA gene sequencing was the only method allowing reliable identification. In some cases with closely related microorganisms it was not possible to identify the species neither with sequencing nor with MALDI-TOF MS. These species were: Bifidobacterium kashiwanoense/ Bifidobacterium pseudocatenulatum/Bifidobacterium catenulatum, Lactobacillus casei/Lactobacillus paracasei, Actinomyces naeslundii/Actinomyces viscosus, Actinomyces radingae/ Actinomyces thurnii. Eleven isolates produced discrepancies in identification: for 7 of them, it was impossible to find out the genera correctly with the help of MALDI-TOF MS, and 4 presented problems with the species identification.
The table presents generalized data on the frequency of occurrence and degree of microbial contamination of the newborns' intestines depending on the method of delivery; the data allows preliminary characterization of the indicators peculiar to microflora of healthy children.

DISCUSSION

Until recently, it was believed that the gastrointestinal tract of a newborn remains sterile for the first 10–20 h (aseptic phase) [7], and the bacteria first to colonize the intestines of a vaginally delivered child are the lactobacilli from the mother's vaginal microflora [8–11]. However, some experimental research efforts gave rise to another point of view [12]. According to the recently published data, a fetus receives foundation of the gut microflora through bacterial translocation from his mother during the second half of pregnancy; some researchers argue sterility around the fetus [13–15]. In our study, we found that the meconium collected during first defecation in the first hours of life was unsterile in 53 of 66 newborns (80%), which does not exclude intrauterine colonization.

The published works state that the first hours and the first day of life are the time of active colonization, when the colonies of Escherichia coli, enterococci develop rapidly; the period is known as the growing colonization stage and its course is independent from the degree of maturity, perinatal fetus development conditions and the type of feeding [16–19]. The enterobacteria titer during that period reaches 10^6 CFU/g of feces [20], and the anaerobes — bifidobacteria, lactobacilli, bacteroids — are usually absent [21]. According to the data we obtained, the first hours of life were the time when the intestines were mainly colonized by the gram-positive cocci (Staphylococcus spp. Streptococcus spp.), and the cesarean section babies had larger colonies than the vaginally delivered children (frequency of occurrence 70 and 60.6%, titers up to 10^9 and 10^8 CFU/g, respectively). During this period, enterobacteria and obligate anaerobic microorganisms were discovered rarely and with low titers. At the same time, already in the first hours of life microbiota of the vaginally born children featured more bifidobacteria and lactobacilli than that of babies delivered by a Caesarean section: 9 and 3%, respectively, and 18 and 3%, respectively. Bacteroids were detected only in 3% of children born vaginally. A possible reason for the discrepancy between our data and the results demonstrated by other authors is the fact that we aimed to obtain the sample biomaterial directly during the first act of defecation of the newborn.

Table. Frequency of occurrence, median and interquartile range of the degree of contamination of feces with microorganisms

Characteristic	1st day of life (n = 66)	7th day of life (n = 52)	1st month of life (n = 50)			
	Vaginal delivery	Cesarean section	Vaginal delivery	Cesarean section	Vaginal delivery	Cesarean section
E. coli						
Frequency of occurrence	24%	9%	64%	44.40%	70.80%	61.50%
Median (CFU/g)	10^2	10^2	10^3	10^3	10^3	10^3
Interquartile range (CFU/g)	10^2–10^4	10^3–10^4	10^3–10^4	10^3–10^4	10^3–10^4	10^3–10^4

Other enterobacteria						
Frequency of occurrence	27%	15%	68%	66.70%	66.70%	73%
Median (CFU/g)	10^2	10^2	10^3	10^3	10^3	10^3
Interquartile range (CFU/g)	10^2–10^3	10^3–10^4	10^3–10^4	10^3–10^4	10^3–10^4	10^3–10^4

Gram-positive facultative anaerobic and aerobic bacteria						
Frequency of occurrence	60.60%	70%	100%	100%	100%	100%
Median (CFU/g)	10^2	10^2	10^3	10^3	10^3	10^3
Interquartile range (CFU/g)	10^2–10^3	10^3–10^4	10^3–10^4	10^3–10^4	10^3–10^4	10^3–10^4

Bifidobacteria						
Frequency of occurrence	9%	3%	84%	33%	83.30%	53.80%
Median (CFU/g)	10^2	10^2	10^3	10^3	10^3	10^3
Interquartile range (CFU/g)	10^2–10^3	10^3–10^4	10^3–10^4	10^3–10^4	10^3–10^4	10^3–10^4

Lactobacilli						
Frequency of occurrence	18%	3%	28%	37%	58.30%	69%
Median (CFU/g)	10^2	10^2	10^3	10^3	10^3	10^3
Interquartile range (CFU/g)	10^2–10^3	10^3–10^4	10^3–10^4	10^3–10^4	10^3–10^4	10^3–10^4

Bacteroids						
Frequency of occurrence	3%	0	32%	0	25%	3.80%
Median (CFU/g)	10^2	10^2	10^3	10^3	10^3	10^3
Interquartile range (CFU/g)	10^2–10^3	10^3–10^4	10^3–10^4	10^3–10^4	10^3–10^4	10^3–10^4

Clostridia						
Frequency of occurrence	0	0	32%	40.70%	33.30%	65.40%
Median (CFU/g)	10^2	10^2	10^3	10^3	10^3	10^3
Interquartile range (CFU/g)	10^2–10^3	10^3–10^4	10^3–10^4	10^3–10^4	10^3–10^4	10^3–10^4
Further on, healthy babies have anaerobic and facultative anaerobic components of their microbiota grow actively, the volumes reaching $10^5–10^7$ CFU/g [15]. By the 6th day, aerobic and anaerobic parts of the microbiota become balanced, and bifidobacteria and lactobacilli begin to develop rapidly and by the 2nd month of life they reach $10^9–10^{10}$ CFU/g. According to other researchers, days 3–5 mark the beginning of the microbiota transformation stage, which results in bifidobacterial flora replacing other microorganisms. This is when bifidobacteria become the core (resident) microbiota of the intestines [22–24]. The bifidoflora grows dominant by the 5–20th day of life [25]. Our discoveries are different: the total number of microorganisms increases, reaching $10^{15–16}$ CFU/g.

This suggests that the facultative aerobic and obligate anaerobic components of the microbiota also achieve balance by the first week of life, but there are various microorganisms colonizing the intestines. Another fact deserving a special note is that in the group II babies bifidobacteria did not colonize the gut actively while obligate anaerobes prevailed there (mainly veillonella, clostridia).

By the end of 1st month of life, both groups had the anaerobic part of microbiota taking leading positions; the dominant species were those of bifidoflora. Nevertheless, we detected bifidobacteria only in half of the babies delivered by cesarean section, while in the vaginally born babies this indicator reached 83%.

The $B. longum$ subsp. $infantis$, $B. animalis$ subsp. $lactis$, $B. breve$, $B. bifidum$ bacteria peculiar to the first year of life produce anti-inflammatory effect and contribute to the development of the Th1 immune response. In adults, the predominant strains are $B. longum$ subsp. $longum$, $B. adolescentis$, $B. pseudocatenulatum$; they promote the Th2 immune response and prevail in the gut microbiota in case of obesity [24]. Besides, the genome of $B. longum$ subsp. $infantis$ has a cluster that encodes the synthesis of enzymes (sialidase, fucosidase, N-acetyl-β-hexosaminidase and β-galactosidase) capable of breaking down oligosaccharides to monosaccharides. [25]. Throughout life, bifidoflora remains prevailing and sterile, while other representatives of the obligate microbiota can trigger a disease under certain conditions [13].

Our study revealed that it is not the most useful bifidobacteria that dominate the microbiota of the C-section newborns; in particular, they are not able to break down lactose ($B. animalis$, $B. dentium$, $B. ruminantium$).

CONCLUSIONS

Our results confirm that surgical delivery inhibits the normal process of gut microbiota development to a certain extent. In the future, we plan to continue accumulating information about the state of microbiota in this category of children and expand the scope of our research to include premature babies in order to determine the criteria reflecting normal gut microbiota of healthy full-term newborns. This study allowed establishing, and in the future — replenishing the collection of lactobacilli and bifidobacteria isolated from healthy full-term newborns with the aim to identify bacteria candidates for probiotic strains. Timely adequate assessment of the newborn’s microbiota composition against the key biomarkers will allow targeted prevention of the immediate and long-term consequences of perinatal pathology in full-term and premature infants by prescribing an adequate composition of probiotics.

References

1. OST 91500.11.0004-2003. Protokol vedeniya bol’nykh. Disbakteriioz kishechnika. Uvt. Prikazom MZ RF № 231 or 09.06.2003. Moscow, 2003, 173 p.
2. Metodicheskiye rekomendatsii “Bakteriologicheskaya diagnostika disbakteriioz kishechnika” Minzdrav RSFSR, 1977.
3. Metodicheskiye rekomendatsii “Mikrobiologicheskaya diagnostika disbakteriioz kishechnika”. Moskva, 2007.
4. Grundl MM, Arviliamn H, Kero P, Lehtonen OP, Isolauri E. Importance of intestinal colonization in the maturation of humoral immunity in early infancy: a prospective follow up study of healthy infants aged 0–6 months. Arch Dis Child Fetal Neonatal. 2000; 83 (3): 186–92.
5. Levanova LA. Mikroekologiya kishechnika zhitelj Zapadnoj Sibiri, korekciya disbakteriehskix sostoyanj [dissertation], M., 2003.
6. Shcherbakov PK, Nizheva AA, Chuleva TV, Shcherbakova MV, Kudravtseva LV, Mitrokhin SD, et al. Mikroekologiya kishechnika u detey i yeje narusheniy. Farmateka. 2007; (14): 28–34.
7. Akovey YuS. Funkcional’nye osobennosti nedoroshennych detey v rannom ontogeneze [dissertation]. M., 1999.
8. Kopanay YuA, Sokolov AL. Disbakteriioz kishechnika: mikrobiologicheskaya, immunologicheskaya i klinicheskaya aspekty mikrobiologicheskih narusheniy u detey. M., 2002.
9. Stepurina OV. Pervichnoje infitsirovaniye rebekna. Infektionnye zabolevanija detej i ekologiya cheloveka. Stavropol’, 1999: 92–7.
10. Frolova NA. osobennosti formirovaniya mikrobiotsenoza u detey rannego vozrasta v zavisimosti ot mikroboznogo peyzazha kishechnika materi [dissertation]. Smolensk, 2001.
11. Nikitenko VI, Tkachenko EI, Stadnikov AA. Transtokatsiya bakteriij iz zheludochno-kishechnogo trakta — yestestvennyy zashchitnyy mehanizm. Ekspir i klin gastroentorolog. 2004; (1): 48.
12. Funkhouiser LJ, Bordenstein SR. Mom knows best: the universality of maternal microbial transmission. PLoS Biol. 2013; (11): e1001631. 13. Muguia LJ, Katz M. The enigma of spontaneous preterm birth. N Engl J Med. 2010; 362: 529–35.
14. Onderdonk AB, Hecht JL, McElrath TF, Delaney ML, Alten ED, Leviton A. Colonization of second-trimester placenta parenchyma. Am J Obstet Gynecol. 2008; 199: 51–2.
15. Solovyeva NY, Belova IV, Tchilina AG, Efimov EI, Pozhidaeva AS. Formirovanye mikroflory tolstoy kishki u detey. MikrobioLOGicheskij i epidemiologicheskij vestnik Nizhnegorodskogo universiteta imeni N. I. Lobachevskogo. 2012; (2–3): 93–9.
16. Fanaro S, Chierni R, Guerrini P, Vigi V. Intestinal microflora in early infancy: composition and development. Acta pediatr. 2003; 91 (441): 46–55.
17. Ormhat K, Nord CE. Factors controlling the bacterial colonization of the intestine in breastfed infants. Pediatr Res. 1998; 43 (17): 47–57.
18. Edwards CA, Parret AM. Intestinal flora during the first months of life: new perspectives. Br J Nutr. 2002; 88 (11): 11–8.
19. Goldman AS. Modulation of the gastrointestinal tract of infants by human milk. Interfaces and interactions. An evolutionary perspective. J Nutr. 2000; 130 (2): 426–31.
20. Netrebenko OK. Pitaniye grudnogo rebekna i kishechnaya mikroflora. Pediatriniya, 2005; (3): 53–57.
21. Tkachenko EI, Suvorova AN, editors. Disbioz kishechnika. Rukovodstvo po diagnostike i lecheniyu. SPb. InformMed, 2009; 276 p.
22. Shabalov NP. Neonatologiya. Moscow: Medpress-inform, 2004; p. 128–9.
23. Netrebenko OK. Pitaniye i razvitie immuniteta u detey na raznykh vidakh vksamplivaniya. Pediatriniya. Zhurnal imeni G. N. Sperranskogo, 2005; (6): 50–6.
24. Pechkurov DV, Turti TV, Belyaeva IA, Tazheva AA. Intestinal
Литература

1. ОСТ 91500.11.0004-2003. Протокол ведения больных.
Дисбактериоз кишечника. Утв. Приказом МЗ РФ № 231 от
09.06.2003. Москва, 2003; 173 с.
2. Методические рекомендации «Бактериологическая диагностика
дисбактериоза кишечника». Минздрав РФ. 1977.
3. Методические рекомендации «Микробиологическая
диагностика дисбактериоза кишечника». Москва, 2007.
4. Gronlund MM, Arvilommi H, Kero P, Lehtonen OP, Isolauri E.
Importance of intestinal colonization in the maturation of humoral
immunity in early infancy: a prospective follow up study of healthy
infants aged 0–6 months. Arch Dis Child Fetal Neonatal. 2000; 83
(3): 186–92.
5. Леванова Л.А. Микроэкология кишечника жителей
Западной Сибири, коррекция дисбиотических состояний
[диссертация]. М., 2003.
6. Щербаков П. Л., Нижевич А. А., Логиновская В. В.,
Щербаков М. Ю., Кудрявцева Л. В., Митрохин С. Д. и
др. Микроэкология кишечника у детей и ее нарушения.
Фарматека. 2007; (14): 28–34.
7. Акоею Ю. С. Функциональные особенности недоношенных
детей в раннем онтогенезе [диссертация]. М., 1999.
8. Колачев Ю. А., Соколов А. Л. Дисбактериоз кишечника:
микробиологические, иммунологические и клинические
аспекты микрозаколониального состояния у детей.
М., 2002.
9. Степурина О. В. Первичное инфицирование ребенка.
Инфекционные заболевания детей и экология человека.
Ставрополь, 1999; 92–7.
10. Фролова Н. А. Особенности формирования микрофлоры
у детей раннего возраста в зависимости от микробного
пейзажа кишечника матери [диссертация]. Смоленск, 2001.
11. Никитенко В. И., Ткаченко Е. И., Суворова А. Н. Транслокация
бактерий из желудочно-кишечного тракта — естественный
защитный механизм. Эксперимент. и клин. гастроэнтерол.
2004; (1): 48.
12. Funkhouser LJ, Bordenstein SR. Mom knows best: the universality
of maternal microbial transmission. PLoS Biol. 2013; (11): e1001631.
13. Muglia LJ, Katz M. The enigma of spontaneous preterm birth. N
Engl J Med. 2010; 362: 529–35.
14. Onderdonk AB, Hecht JL, McElrath TF, Delaney ML, Allred EN,
Levton A. Colonization of second-trimester placenta parenchyma.
Am J Obstet Gynecol. 2008; 199: 51–2.
15. Соловьева И. Б., Билова И. В., Точилина А. Г., Ефимов Е. И.,
Пожидаева А. С. Формирование микрофлоры толстой кишки
у детей, Микробиологический и эпидемиологический вестник.
Нижегородского университета им. Н. И. Лобачевского. 2012;
(2–3): 93–9.
16. Fanaro S, Chierici R, Guerini P, Vigi V. Intestinal microflora in early
infancy: composition and development. Acta pediat. 2003; 91
(441): 48–55.
17. Orrhagt K, Nord CE. Factors controlling the bacterial colonization
of the intestine in breastfed infants. Acta Pediatr. 1999; 88
(3): 47–57.
18. Edwards CA, Parret AM. Intestinal flora during the first months of
life: new perspectives. Br J Nutr. 2002; 88 (11): 11–8.
19. Goldman AS. Modulation of the gastrointestinal tract of infants
by human milk. Interfaces and interactions. An evolutionary
perspective. J Nutr. 2000; 130 (2): 428–31.
20. Нетребенко О. К. Питание грудного ребенка и кишечная
микрофлора. Педиатрия. 2005; (3): 53–7.
21. Ткаченко Е. И., Суворова А. Н., редакторы. Дисбиоз кишечника.
Руководство по диагностике и лечению. СПб. ИнформМед,
2009; 276 с.
22. Шабалов Н. П. Неонатология. М.: Медпресс-информ, 2004;
с.128–29.
23. Нетребенко О. К. Питание и развитие иммунитета у детей
на разных видах вскармливания. Педиатрия. Журнал им.
Г. Н. Сперанского. 2005; (6): 50–6.
24. Печкуров Д. В., Турти Т. В., Беляева И.А., Тяжева А. А.
Микробиота кишечника у детей: от профилактики нарушений
становления к предупреждению неинфекционных заболеваний.
Педиатрическая фармакология. 2016; 13 (4): 377–83.
25. Суворов А. Н. Микробиота детей. Природа. 2011; (8): 14–21.