An Assessment of the Diversity of Indigenous Forage Plant Species of the Dry Season in Dry Lands of North Western Ethiopia: Implication for Their Conservation and Sustainable Use

Dereje Mosissa1* Melak Agajie2 Dejene Reda1
1.Ethiopian Biodiversity Institute Assosa Biodiversity Center Forest and Rangeland Biodiversity Case Team
2.Ethiopian Biodiversity Institute Assosa Biodiversity Center Director and Researcher in Crop and Horticulture Biodiversity Case Team

Abstract
This study was done to assess the diversity of indigenous forage plants of the dry season in Combretum-Terminalia woodlands of Guba District, North West of Ethiopia. A total of 69 species of plants were identified and of which all are consumed as a feed resource by the local animal breeds during dry season. The diversity (H) values of the forage plant species ranged between 0.65 to 1.67 across the plots sampled. The similarities (J) between the plots in terms of species composition of all forage species were 0.56 and 0.94. The evenness (E) values of all forage species were in between 0.78 and 0.86 across the sampled plots. The densities of all forage species, including seedlings, were 1216 stems ha⁻¹. In the study area Combretum colinum, Lonchocarpus laxiflorus, Terminalia laxiflora, Acacia polycantha and Ziziphus mucronata were the five relatively abundant forage species. The Importance Value Index (IVI) values of all the forage species ranged between 0.31 (Strychnos innocua) and 81.67 (Combretum colinum). Particularly local goat breeds of the study area were known to feed on various plant resources than other breeds. Moreover, Bigariya local cattle breeds were also known to feed on various similar plant resources hence adapted to harsh environmental condition known in western Ethiopia. Pounded barks of Cordia Africana and roots of Securidaca longipedankulata is used in treatment of diarrhoea and common cold cases of goats. Moreover the sheath of Hyphenea thebiaca is used to treat the eye disease of Goats, sheep and cattle.

Keywords: Bigariya cattle, density, diversity, evenness, frequency, Importance Value Index
DOI: 10.7176/JRDM/72-04
Publication date: January 31st 2021

1. Introduction
Rangelands are defined as those areas of the world, which by reasons of physical limitation, low and erratic precipitation, rough topography, poor drainage, or cold temperatures are unsuited for cultivation and which are a source of forage for free ranging native and domestic animals, as well as a source of wood products, water and wildlife (Herlocker 1999). Of these, extensive livestock production is the major land use on rangelands with large areas of land required per head of livestock (Zhou et al, 1998). Accordingly, the condition of the rangelands which Trollope et al. (1990) defined; the state of health of the rangeland in terms of its ecological status, resistance to soil erosion and potential for producing forage for sustained optimum livestock production must be investigated. Furthermore, rangeland condition is a function of all plant forms (trees, grasses and shrubs) that occur in it (Friedel 1991). Rangeland condition cannot, therefore, be simply indexed according to its usefulness for a single priority land use. As with grassland, the composition and structure of each of the other components vary, which adds an extra and complicating dimension to rangeland assessment. In addition, the rangeland is frequently used by pastoralists who own different animal types (browsers and grazers). Assessment techniques need to consider the different vegetation components for the proper utilization of the available rangeland resources. Until recent times, research on rangeland dynamics has historically focused on the effects of various management practices on forage production and animal response, with little attention given to the impact of grazing on the condition of the soil. Since animal production is directly related to rangeland condition, rangeland degradation will result in a lower income (Danckwerts and Tainton 1996).

In Western Ethiopia, semi-pastoralists of different ethnic groups are found predominately in BenishangulGumuz Regional State (BGRS) which are primarily dependent on natural range based livestock production. Even though the study areas have a vast area of rangeland, there was no research study undertaken to assess the condition of the rangelands and take appropriate management interventions in relation to livestock production. Accordingly, the objective of this study was to assess the forage resource diversity and condition of the grazing by livestock in the mentioned study district.

2. Materials and methods
2.1. Description of the study area
The study was conducted in one district (Guba) which was purposely selected from Benishangul-Gumuz Regional
State western Ethiopia. Benishangul-Gumuz Regional State. **Guba Woreda** is one of the 20 woredas in the Benishangul-Gumuz Region of Ethiopia. It is located 894km northwest of Addis Ababa and about 220km northeast of Assosa, the capital city of Benishangul-Gumuz Regional State. The district is geographically located at 11° 16' 0" N latitude and 35° 17' 0" E longitude. It is a part of the Metekel Zone, Guba is bordered by the Abay River on the south which separates it from the Kamashi Zone, Sudan on the west, Amhara Region on the north, Dangur on the east, and on the southeast by the Beles River, which separates it from Wenbera (CSA, 2012).

Figure 1. Map of the study area

2.2. Study Methodology

Formal surveys were conducted in Guba district in 2020 dry seasons, as part of the diagnostic first phase. "The potential of crop residues and natural vegetation as ruminant feeds during the dry season in Guba district of Benishangul Gumuz Regional State". The district is in the semi-humid zone. A total of 100 (20 m £ 20 m) sample plots were laid along the transect lines, following the procedures described by Kent and Coker (1992). In each plot, the identity, number of individuals, diameter at breast height (DBH) and height of all woody species having a height above 1.5 m were recorded.

A total of 30 structured questionnaires were developed and used. Only the crop/livestock farmers from the selected kebeles were interviewed. The respondent was the household head. Information from the questionnaire, related to utilization of trees and shrubs and other natural vegetation, were coded and summarized using a SPSS calculator. Before social survey field assessment was done to identify the overall vegetation type and feed materials by the live stocks on field. A total of 12 sample plots were taken to visualize and represent the vegetation of the area.

2.2.1. Forage Preference by Livestock

Direct observation of animals using feeding minutes (Bjugstad et al., 1970) was adopted to assess forage preference by timing the animal as they feed. Moreover, cattle owners were interviewed to rank the mostly preferred species by their livestock’s.

2.3. Statistical analyses

Diversity of all woody species was determined using the Shannon – Wiener Diversity Index (H) and evenness (E) (Kent & Coker 1992). Jaccard’s Similarity Coefficient (Sj) was used to compute similarity in woody species composition of the area. The indices were computed using the following formulas:

\[
H = -\sum_{i=1}^{s} P_i \ln P_i
\]

where \(H \) = Shannon – Wiener diversity index and \(P_i \) = the proportion of individuals found in the \(i^{th} \) species;

\[
E = \frac{H}{H_{max}} = \frac{H}{\ln s}
\]

where E = evenness, H_{max} is the maximum level of diversity possible within a given population, which equals \ln (number of species); and

$$J = \frac{C}{A + B + C}$$

where J = Jaccard’s similarity coefficient, $C =$ the number of species common to both sites, $A =$ the number of species present in one of the sites to be compared and B is the number of species present in the other site.

Density was calculated by converting the total number of individuals of each species to equivalent numbers per hectare (absolute density), and as the percentage of the absolute density of each species divided by the total stem number of all species ha$^{-1}$ (relative density). Frequency distribution of each species was determined from the number of plots in which the species was recorded (absolute frequency) (Kent & Coker 1992), and as a percentage (relative frequency) by dividing the absolute frequency of the species by the sum of the absolute frequencies of all the species. The absolute dominance of woody species with DBH 2.5 cm was determined from summing the basal area (BA) of all individuals of a species. Relative dominance was calculated as the percentage of the BA of a species divided by the total BA of all species.

The relative ecological importance of each woody species, commonly referred to as Important Value Index (IVI), was determined by summing its relative frequency, relative density and relative dominance (Kent and Coker 1992).

The population structures woody vegetation and that of forage woody species was assessed from the frequency distribution of diameters based on histograms constructed by grouping all individuals of each woody species into the following successive diameter classes: $1 = 0 – 10$, $2 = 10– 20$, $3 = 20– 30$, $4 = 30– 40$ and $5 > 40$ cm (Peters 1996; Teketay 1997; Ogbazghi et al. 2006; Sop et al. 2011). The data were analyzed using Biodiversity Professional Software version 8.2.

Plant identification was carried out mostly in the field, and for those species, which could not be identified in the field, herbarium voucher specimens were prepared, transported to and identified in the Ethiopian Biodiversity Institute Herbarium. Plant nomenclature in this article follows the published volumes of Flora of Ethiopia, and Flora of Ethiopia and Eritrea (Hedberg & Edwards 1989, 1995; Edwards et al. 1997; Edwards et al. 2000).

3. Results and Discussion

3.1. Species Richness

As it was observed on field survey that the woodland vegetation of Guba district is characterized by small to moderately sized trees, herbs, grasses and sedges. The ground cover is dominated by herbaceous geophytes at the beginning of rainy season (May and June). Towards the end of rainy season (September to November) tall strata perennial grasses become dominant. A total of 69 plant species were recorded in the study area of which all are consumed as a feed resource by the local breeds during dry season (Table 1).

Table 1: List of some common plant species encountered in Guba district

No	Local Name (Gumuzigna)	Botanical Name	Family
1	Achiqwuwa	Leonotis nepetifolia	Lamiaceae
2	Amberta	Andropogon schirensis	Poaceae
3	Adegila	Streospermum kunthianum	Bignoniaceae
4	Anderkukuwa	Strynchnos spinosa	Loganiaceae
5	Hanguga/Hangua	Ziziphus abyssinica	Rhamnaceae
6	Siya/Gaba	Ziziphus mucronata	Rhamnaceae
7	Antsiqina Guanja	Cissus cornifolia	Vitaceae
8	Antutiya	Solanum alatum	Solanaceae
9	Babegoha/Bogoha	Terminalia macropera	Combretaceae
10	Babenga	Hyphaene thebiaca	Areaceae
11	Bambeluwa	Entada africana	Fabaceae
12	Bambuta	Annona senegalensis	Annonaceae
13	Banja	Cordia africana	Boraginaceae
14	Banshzegona	Wissadula rostrata	Malvaceae
15	Bebdaja	Tragia doryodes	Euphorbiaceae
16	Bewa	Lonchocarpus laxiflorus	Fabaceae
17	Begiya	Strynchnos immoca	Loganiaceae
18	Bora	Terminalia laxiflora	Combretaceae
19	Bembeda	Maytenus senegalensis	Celastraceae
20	Bidiguwa	Hyparrhena antistirioides	Poaceae
21	Bilga	Lannea welweschii	Anacardiaceae
22	Yempite	Lannea fruticosus	Anacardiaceae
23	Mamusa	Cymbopopogon caesuis	Poacea
3.2. Diversity of forage plant species of the drier season in the study area

The diversity (H) values of the forage plant species ranged between 0.65 to 1.67 across the plots sampled. The similarities (J) between the plots in terms of species composition of all forage species were 0.56 and 0.94. The evenness (E) values of all forage species were in between 0.78 and 0.86 across the sampled plots (Table 2). The numbers of forage plant species recorded at the study sites are comparable to those reported from Gambella, southwestern Ethiopia (Eshete et al. 2011) and Yabello, southern Ethiopia (Worku et al. 2012).
Table 2. List of forage plant species encountered in the study area with their IVI values.

Botanical Name	Family	DE	RDE	DO	RDO	FR	RFR	IVI
Acacia polycantha	Fabaceae	45	13.21	7.24	39.02	59	10.01	62.24
Acacia seyal	Fabaceae	78	20.85	1.02	15.79	80	17.2	53.84
Streospermum kunthianum	Bignoniaceae	7	1.65	1.05	5.96	83	13.7	21.31
Strychnos spinosa	Loganiaceae	62	13.04	2.4	13.6	78	12.9	39.54
Ziziphus abyssinica	Rhamnaceae	70	14.21	2.13	12.11	66	10.89	37.2
Ziziphus mucronata	Rhamnaceae	76	6.65	1.44	8.15	49	8.09	22.89
Cissus cornifolia	Vitaceae	23	7.6	0.31	1.77	51	8.42	17.79
Acacia hecatophylla	Fabaceae	61	14.34	1.69	13.94	37	13.11	41.39
Terminalia macroptera	Combretaceae	50	15.5	0.21	13.19	34	25.61	54.3
Hyphaene thebiaca	Arecaceae	48	22.82	6.3	25.52	26	14.29	62.63
Entada africana	Fabaceae	17	11.65	0.08	0.48	14	2.31	14.44
Annona senegalensis	Anonaceae	26	10.05	0.18	1.01	12	1.98	13.04
Cordia africana	Boraginaceae	1	0.11	0.49	2.78	2	0.33	3.22
Wissadula rostrata	Malvaceae	4	0.75	0.01	0.08	10	1.65	2.48
Tragia doryodes	Euphorbiaceae	1	0.11	0.18	1.01	2	0.33	1.45
Lonchocarpus laxiflorus	Fabaceae	89	16.05	0.03	15.62	1	16.47	48.14
Strychnos innocua	Loganiaceae	1	0.11	0.03	1	1	0.17	0.31
Terminalia laxiflora	Combretaceae	76	19.65	0	32.26	1	25.26	77.17
Maytenus senegalensis	Celastraceae	12	8.02	1.8	10.04	14	11.1	29.16
Accacia senegal	Fabaceae	13	4.9	3.04	34.91	20	10.99	50.8
Lannea welweschi	Anacardiaceae	62	24.21	0.64	7.37	33	18.13	49.71
Lannea fruticosa	Anacardiaceae	50	19.69	1.07	12.23	19	10.44	42.36
Dicrostachus cinerea	Fabaceae	37	13.75	1.09	12.49	18	9.89	46.13
Pterocarpus lucens	Fabaceae	54	17.14	0.25	22.74	15	14.54	54.03
Anogeissus leiocarpa	Combretaceae	30	11.67	0.2	2.34	6	3.3	17.31
Syzygium guineense	Myrtaceae	6	2.37	0.62	7.11	11	6.04	15.52
Tamarindus indica	Fabaceae	9	3.46	0.37	4.25	9	4.95	12.66
Piliostigma thonningii	Fabaceae	5	2	0.29	3.37	6	3.3	8.67
Ficus sycomorus	Moraceae	4	1.64	0.34	3.92	5	2.72	8.28
Flueggea virosa	Euphorbiaceae	6	2.55	0.12	1.37	7	3.85	7.77
Ficus lutea	Moraceae	6	2.19	0.08	0.88	5	2.75	5.82
Asparagus flagellaris	Asparagaceae	2	0.91	0.22	2.58	4	2.2	5.69
Combretum collinum	Combretaceae	92	21.1	0.1	38.35	4	22.22	81.67
Oxytenanthera abyssinica	Poaceae	4	1.45	0.1	1.15	3	1.65	4.25
Sterculia africana	Sterculiaceae	3	1.28	0.02	0.19	4	2.2	3.67
Pennisetum thumbergi	Poaceae	2	0.91	0.03	0.36	4	2.2	3.47
Gueria velutina	Tiliaceae	1	0.36	0.03	0.3	2	1.1	1.76
Phoenix reinicata	Aracaceae	1	0.36	0.02	0.26	2	1.1	1.72
Boswellia papyrifera	Burseraceae	1	0.36	0.02	0.19	2	1.1	1.65
Hyparrhenia filipendula	Poaceae	1	0.18	0.04	0.52	1	0.55	1.25
Ximenia americana	Olacaceae	1	0.18	0.01	0.1	1	0.55	0.83
Clerodendrum alatum	Verbanaceae	1	0.18	0.01	0.1	1	0.55	0.75
Combretum hartmanianum	Combretaceae	76	28.35	3.8	33.25	69	15	76.6

Note: DE ¼ absolute density (ha⁻¹), RDE ¼ relative density (%), FR ¼ absolute frequency (%), RFR ¼ relative frequency (%), DO ¼ absolute dominance (m²), RDO ¼ relative dominance (%) and IVI ¼ Importance Value Index.

3.3. Density, frequency and dominance

The densities of all forage species, including seedlings, were 1216 stems ha⁻¹ (Tables 2). Few of the species dominated the woody vegetation and exhibited higher frequency values. In the study area Combretum colinum, Lonchocarpus laxiflorus, Terminalia laxiflora, Acacia polycantha and Ziziphus mucronata were the five relatively abundant forage species (Table 2). However, Phoenix reinicata, Clerodendrum alatum, imenia americana and Grewia velutina, were represented with few individuals. At Guba, the majority of the forage species exhibited high density values (Table 2). However, the species richness values at the current study sites are far lower than those reported from Combretum-Terminalia forests of Anbessa forest of Assosa district (Tamene Yohannes, 2016) and of Wisin woodland of Bullen districts (Dereje Mosissa and Birhanu Abraha, 2012).
3.4. Importance Value Index
The Importance Value Index (IVI) values of all the forage species ranged between 0.31 (Strychnos innocua) and 81.67 (Combretum colinum). The most dominant woody species were Acacia polycanta, Hyphaene thebiaca, Lonchocarpus laxiflorus, Lanea. fruticosa, Pilostigma thunningii and Acacia senegal. Species with the least values of IVI were Clerodendrum alatum and Ximenia Americana (Tables 2). The forage plant species reported from Guba are among the woody species with relatively high ecological importance, which is clearly reflected in their contribution to the overall IVI of the study sites. Similar results were also reported from Metema districts in Amhara Regional State where woody species contributed 65% and 75% of the total IVI, respectively (Worku et al. 2012).

3.5. Utilization of plants for livestock feeding
The interviewed farmers (agro-pastoralists) were able to identify which plant species and which vegetative part was favoured by which class of livestock (Table 2). The farmers, however, named these trees and shrubs in their vernacular language (Table 1).

Acacia hecatophylla, Pilostigma thonnongii, Dicrostachys cinerea was the most known tree species as indicated by 100 percent of respondents (n = 30). Some farmers collect pods of this tree species and keep them at their homes for the purpose of feeding calves and sick animals which cannot walk long distances in search of feed and water during the dry season. Unfortunately, no grinding or any other physical treatment was reported to be practised for the purpose of improving the nutritive value of the pods. Reasons given to the question as to why they do not grind the pods varied. Some indicated that the work is laborious especially for those with large herds of cattle. However, the majority did not know if this could be of value in feeding practices. During dry season when all the grasses burnt out the fallen dry leaves and pods of the family Fabaceae were known to be consumed whit no choices by the local breeds of the area to transit the harsh environment of Guba area (Figure 2). The study indicated that all the local breeds would like to be collectors of the fallen leaves of the drier area which opposes the natural habit of the animals. However, study by Marissa Ames, 2020 indicated that If forage is limited or unavailable due to seasonal conditions, bad weather, or limited pasture space, goats should be fed good hay (free-choice) from a manger or feeder. Hay for goats can be either legume hay (alfalfa or clover) or carbonaceous hay (timothy, brome, orchard grass, mixtures). Legume hay is priorer but has higher nutrition. It’s an excellent feed for pregnant or lactating does, and kids. Grass hay is less nutritious and also less expensive, so homesteaders often feed a 50-50 grass-legume mix. All hay should be fine-stemmed, leafy, and green in color. Choose hay meant for horses rather than cows.

Apart from Acacia hecatophylla and Dichrostachys cinerea Anogeissus leiocarpa was reported to be known and used by all of respondents (n = 30). Its dry leaves were reported to be favoured particularly by small ruminants such as goats.

Other high ranking species were Lonchocarpus laxiflorus, Acacia species, Hyphenea thebiaca and Ziziphus mucronata were also mentioned and utilized for livestock feeding.
Table 3: Knowledge on utilization of some plant species for livestock feeding in Guba district

Local Name (Gumuzigna)	Plant species	Animal species	Favoured plant parts
Amberta	Andropogon schirensis	Cattle, Goats, sheep and Donkeys	Leaves
Adegia	Streospermum kunthianum	Cattle, Goats, Donkeys	Leaves, Bark
Anderkukuwa	Strychnos spinosa	Donkey, Goats	Fruits
Hanguga/Hangua	Ziziphus abyssinica	Cattle, Goats	Leaves, Fruits
Siya/Gaba	Ziziphus mucronata	Cattle, Goats	Leaves, Fruits
Antuinya	Solanum alatum	Goats	Leaves
Babegoha/Bogoha	Terminalia macropera	Cattle, Goats	Leaves
Babenga	Hyphaene thebiana	Cattle, Donkeys	Leaves, Fruits
Bambeluwa	Entada africana	Goats	Leaves
Bambuta	Anmona senegalensis	Cattle, Goats	Leaves, Fruits
Banja	Cordia africana	Cattle, Goats, Sheep	Leaves, Fruits
Bewa	Lonchocarpus laxiflorus	Cattle, Goats	Leaves
Begiya	Strychnos innocua	Donkey, Goats	Fruits
Bora	Terminalia laxiflora	Cattle, Goats	Leaves
Bembeda	Maytenus senegalensis	Cattle, Goats	Leaves
Bidiguwa	Hyparrhenia anthistirioidea	Cattle, Goats, Sheep, Donkeys	Leaves, sheath
Bilga	Lannea welweschi	Cattle, Goats	Leaves
Mamusa	Cymbopogon caesius	Cattle, Goats, Sheep, Donkeys	Leaves
Chaya	Pterocarpus lucens	Goats	Leaves
Dhoga	Tamarindus indica	Cattle, Goats, Donkeys	Leaves, Pods
Mecha	Pilostigma thonningii	Cattle, Goats, Sheep	Leaves, Pods
Fuqa	Ficus sycomorus	Cattle, Goats, Sheep, Donkeys	Leaves, Fruits
Asiya	Ficus lutea	Cattle, Goats, Sheep, Donkeys	Leaves, Fruits
Bambichowa	Asparagus flagellaris	Cattle	Leaves, Stem, Tuber
Engifia	Combretum collinum	Cattle, Goats, Sheep	Leaves
Elta/Enta	Oxytenanthera abysinica	Cattle, Goats, Sheep, Donkeys	Leaves, Shoots, Seeds
Etissayaquwa	Pennisetum thumbergii	Cattle, Goats, Sheep, Donkeys	Leaves, Sheath
Gideya	Grewia velutina	Cattle, Goats, Sheep	Leaves, Pods
Hesiniya	Hyparrhenia filipendula	Cattle, Goats, Sheep, Donkeys	Leaves, Sheath
Heya	Ximenia americana	Cattle, Goats	Newly emerging leaves
Jipiwa/Chamda	Combretum hartmanianum	Cattle, Goats	Leaves
Meela	Acacia seyal	Cattle, Goats, Sheep, Donkeys	Leaves, Pods, Flower
Qota	Balanites aegyptiaca	Cattle, Goats, Sheep	Leaves, Fruits
Quatsiriq	Acacia hectophylla	Cattle, Goats, Sheep, Donkeys	Leaves, Pods, Flower
Sasiqida	Cynodon nilmfuensis	Cattle, Goats, Sheep, Donkeys	Leaves
Sipe	Acasia polyacantha	Cattle, Goats, Sheep	Leaves, Pods
Siqida/Si-Eda	Securidaca longependulata	Cattle, Goats	Newly emerging leaves
Songah	Ziziphus mauritian	Cattle, Goats, Sheep	Leaves, Seeds
Dimquri	Ipomoea ecricarpa	Cattle	Whole part
Tara/Geret	Acacia senegal	Cattle, Goats, Sheep	Leaves, Pods
Mureb	Pennisetum unisetum	Cattle, Goats, Sheep, Donkeys	Whole part
Kota	Gardenia ternifolia	Cattle, Goats	Leaves, Fruit
Weela	Dichrostachus cinerea	Cattle, Goats	Leaves, Pods
Weela	Flueggea virosa	Goats	Leaves
Sigah	Anogeissus leiocarpa	Goats	Leaves
Insia	Ficus vasta	Cattle, Goats, Sheep, Donkeys	Fruits
Saspania spp	Cattle, Goats, Sheep	Leaves, Pods	
Buja	Unidentified grass	Cattle	Whole part
Moringa	MoringaOlifera	Cattle, Goats, Sheep, Donkeys	Leaves, Flower, Barks

The response given by the interviewed farmers on their experiences on utilization of various plants were comparable to observations made by Backlund and Bellskong (1991) who closely followed the herds of livestock grazing in selected farms in Metema district, Amhara region.
Figure 3: Dendrogram showing the classification of forage plant species based on the preferences by local animal breeds. The horizontal axis represents the distance or dissimilarity between clusters and the vertical axis represents the local animal breeds and clusters.

Particularly local goats’ breeds of the study area were known to feed on various feed resources than other breeds. Moreover, Bigariya cattle breeds were also known to feed on various similar plant resources hence adapted to harsh environmental condition known in western Ethiopia (Figure 3). Similarly the study of Jackson, 2008 stated that “Goats have a huge diversity of other plants to choose from than ones we would normally consider traditional forages like fescue, orchard grass, white and red clover, etc.” To the contrary mixed grazing particularly goats with cattle is no common in other areas of the world this is because “When goats graze first and then the cattle come in, they are doing what we call ‘clean up grazing’ in the pasture. At the end of the first grazing season, it was found that cattle that followed goats weighed on average 30 pounds less than cattle that were grazing with goats all the time (Jackson Ky, 2008).”

Table 4. ANOVA Results

Source	SS	df	MS	F	Prob > F
Between groups	194.417687	11	17.6743352	2.93	0.0070
Within groups	223.133333	37	6.03063063		
Total	417.55102	48	8.69897959		

As illustrated in table 4 above, the significance value in testing the reliability of the model for the relationship between the local animal breeds with their sources of feed materials (plant species) was obtained as 0.007 which is less than 0.05 the critical value at 95% significance level. That means most of the local breeds feed differently on different parts of plant materials that are available during dry season in the study area. This statement is similar with the study of Jackson Ky, 2008 stating that “Goats have a huge diversity of other plants to choose from than ones we would normally consider traditional forages like fescue, orchard grass, white and red clover, etc.”
3.6. Veterinary Use of plant species

Some trees and shrubs are utilized by agro-pastoralists in treatment of animal diseases and disorders. For example, the stem of a mistilto plant "Ewa" is pounded and mixed with water. The material is squeezed out into the reproductive tract of a cow leaving the mother liquor to induce the expulsion of the retained placenta. On the other hand, pounded barks of Cordia Africana and roots of Securidaca longepedankulata is used in treatment of diarrhoea and common cold cases of goats. Moreover the sheath of Hyphenea thebiaca is used to treat the eye disease of Goats, sheep and cattle

Table 5. Veterinary use of some trees and shrubs

Plant species	Animals	Comments
Cordia africana	Goats	Bark powdered and mixed with water to treat diarrheal diseases
Securidaca longepedanculata	Goats	Chopped and squeezed roots extracts were used to treat respiratory diseases (e.g. common cold)
Hyphenea thebiaca	Cattle	Chopped sheath of Hyphaene is used to treat eye diseases
Euphorbia sp	Cattle	Stem pound and mother liquor used (Mistilto) to expel retained placenta

3.7. Treatment of Livestock Products

Some farmers use trees and shrubs to enhance livestock products such as milk. Leaves and Wood from some of the plant species (Table 4) is used to feed the animals specially caws to increase the milk content and even its smoke is believed to increase the shelf life of milk and to impart desirable flavours to the "clotted" and concentrated product. Studies conducted at Sokoine University of Agriculture (SUA) on traditional smoking of milk practised by different tribes in Tanzania show that smoke treatment inhibits growth and activity of mesophyllic and thermophilic lactic acid bacteria, although the treated product might not be favoured by everybody tasting the milk (Chenyambuga et al. 1993).

Table 6. Plant species used as milk enhancer in Guba district

| I. pomoea eriocarpa | Asparagus flagellaris | Buja gruss | Hyparrhenia anhistirioides |

3.8. The impact of Seasonal Dynamics and management on the availability of Forage Plant Species

The owners and herders of the study area identified a total of 49 dominant forage species distributed over the seasonal grazing areas (Table 2) and were also able to rank their abundance in the vegetation across seasons. A significant proportion of pastoralists/owners stated that there is a shortage of forage plant species in March, April and May because of late burning which massively distracts the whole part of the plants. Moreover, a decline in wet weight forage quantity is not a problem to Bigariya cattle breed because mostly these breeds are not like other breeds in that they adopted to browse on thorny and longer dominant Acacia species of the area.

Since animals feed resource is not a problem the pastoralists keep their herd of cattle in communal grazing, and herd splitting based on the number of cattle’s owned. To the contrary Pastoralist households across East Africa face major livestock losses during dry periods that can cause persistent poverty (Anton Vrielinga et al., 2016).

Acknowledgements

We are grateful to the woreda experts, the local administration and people who supported and facilitated the field data collection. We would like to thank the Assosa Biodiversity Center for the financial and facility support. We also acknowledge gratefully the anonymous reviewer for the valuable comments on an earlier version of this article.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Anton Vrieling, Michele Meroni, Andrew G.Mude, Sommarat Chantarar, Caroline C. Ummenhofer Kees (C.A.J.M.de Bie (2016). Early assessment of seasonal forage availability for mitigating the impact of drought on East African pastoralists. Journal of Remote Sensing of Environment. Science Direct, Vol- 174, pp1-352. Bjugstad, A.J., Crowford, H.S. and Neal, D.L. (1970). Determining forage consumption by direct observation of domestic animals. In: Range and wildlife habitat evaluation: A research symposium. Misc.publication No. 1147. USDA.

Central Statistics Authority (CSA) (2012) Population and Housing Census: Administrative Report. Addis Ababa.
Chenyambuga S W, Goromela E H, Ryoba R and Kurwijila R L 1993 A study on the effect of traditional African smoke treatment of milk on the organoleptic and keeping quality of sour milk. Paper presented at the first Biennial workshop of Cattle Research Network, ILCA, Addis Ababa, Ethiopia, 17-21 May 1993.

D M Komwihangilo, E H Goromela and J M N Bwire (1995). Indigenous Knowledge in Utilization of Local Trees and Shrubs for Sustainable Livestock Production in Central Tanzania.

Dereje Mosissa and Birhanu Abraha (2012). The diversity and conservation of edible wild-food plants in Wisin Woodland (WW) in Bullen District, North West of Ethiopia. MSc thesis Bahirdar University Bahir Dar Ethiopia.

Edward S, Demisew S, Hedberg I, editors. 1997. Flora of Ethiopia and Eritrea. Hydrocharitaceae to Arecaceae. Vol. 6. Addis Ababa: The National Herbarium, Addis Ababa University and Uppsala: Department of Systematic Botany, Uppsala University.

Eshete A, Sterck F, Bongers F. (2011). Diversity and production of Ethiopian dry woodlands explained by climate- and soil-stress gradients. Forest Ecol Manage. 261:1499 – 1509. doi:10. 1016/j.foreco.2011.01.021.

Friedel, M.H., Laycock, W.A. and Bastin, G.N. (2000). Assessing rangeland condition and trend. In: Field and laboratory methods for grassland and animal production research. (Eds. Mannetje, L., t. and Jones, R.M.) CAB International, UK. pp. 227-261.

Herlocker, D. (1999). Rangeland resources in Eastern Africa: Their ecology and development. GTZ German technical co-operation, Nairobi, Kenya.

JACKSON Ky (2008). Can goats and cattle graze same fields?. University of Kentucky College of Agriculture. Pp-324.

Kent, M. and Coker, P. (1992) Vegetation Description and Analysis: A Practical Approach. CRC Press, Boca Raton, 363 p.

Tamene Yohannes (2016). Plant Diversity and Carbon Stock Analysis along Environmental Gradients: the case of Gergeda and Anbessa Forests in Western Ethiopia. PhD dissertation Addis Ababa University Addis Ababa, Ethiopia.

Worku A, Teketay D, Lemenih M, Fetene M. (2012). Diversity, regeneration status, and population structures of gum- and resin-producing woody species in Borana, Southern Ethiopia. J Forests Trees Livelihoods iFirst article:1 – 12. doi:10.1080/14728028.2012.716993