Reactive force field development for magnesium chloride hydrates and its application for seasonal heat storage

Citation for published version (APA):
Pathak, A. D., Gaastra-Nedea, S. V., Duin, van, A. C. T., Zondag, H. A., Rindt, C. C. M., & Smeulders, D. M. J. (2016). Reactive force field development for magnesium chloride hydrates and its application for seasonal heat storage. Physical Chemistry Chemical Physics, 18(23), 15838 - 15847. https://doi.org/10.1039/C6CP02762H

DOI:
10.1039/C6CP02762H

Document status and date:
Published: 23/05/2016

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
PCCP

PAPER

Reactive force field development for magnesium chloride hydrates and its application for seasonal heat storage†

Amar Deep Pathak,*a Silvia Nedea,a Adri C. T. van Duin,b Herbert Zondag,b Camilo Rindt*b and David Smeuldersa

MgCl₂ hydrates are considered as high-potential candidates for seasonal heat storage materials. These materials have high storage capacity and fast dehydration kinetics. However, as a side reaction to dehydration, hydrolysis may occur. Hydrolysis is an irreversible reaction, which produces HCl gas thus affecting the durability of heat storage systems. In this study, we present the parameterization of a reactive force field (ReaxFF) for MgCl₂ hydrates to study the dehydration and hydrolysis kinetics of MgCl₂·H₂O and MgCl₂·2H₂O. The ReaxFF parameters have been derived by training against quantum mechanics data obtained from Density Functional Theory (DFT) calculations consisting of bond dissociation curves, angle bending curves, reaction enthalpies, and equation of state. A single-parameter search algorithm in combination with a Metropolis Monte Carlo algorithm is successfully used for this ReaxFF parameterization. The newly developed force field is validated by examining the elastic properties of MgCl₂ hydrates and the proton transfer reaction barrier, which is important for the hydrolysis reaction. The bulk moduli of MgCl₂·H₂O and MgCl₂·2H₂O obtained from ReaxFF are in close agreement with the bulk moduli obtained from DFT. A barrier of 20.24 kcal mol⁻¹ for the proton transfer in MgCl₂·2H₂O is obtained, which is in good agreement with the barrier (19.55 kcal mol⁻¹) obtained from DFT. Molecular dynamics simulations using the newly developed ReaxFF on 2D-periodic slabs of MgCl₂·H₂O and MgCl₂·2H₂O show that the dehydration rate increases more rapidly with temperature in MgCl₂·H₂O than in MgCl₂·2H₂O, in the temperature range 300–500 K. The onset temperature of HCl formation, a crucial design parameter in seasonal heat storage systems, is observed at 340 K for MgCl₂·H₂O, which is in agreement with experiments. The HCl formation is not observed for MgCl₂·2H₂O. The diffusion coefficient increases with temperature and follows the Arrhenius law both for MgCl₂·H₂O and MgCl₂·2H₂O. The results indicate the validity of the ReaxFF approach for studying MgCl₂ hydrates and provide important atomistic-scale insight of reaction kinetics and H₂O transport in these materials.

1 Introduction

Thermal energy storage is necessary for the successful implementation of solar thermal energy.¹ Solar thermal energy can be stored in three forms: sensible, latent, and thermochemical.² Thermal storage is a proven concept but it is volume restricted. The energy storage density is higher in thermochemical form than in sensible or latent form. Therefore thermochemical materials (TCMs) may offer a compact seasonal heat storage solution.³

Salt hydrates are one class of TCMs.¹ These materials convert thermal energy (physical form of energy) into chemical form by decomposing into lower hydrate form or anhydrous form (charging cycle). Anhydrous and lower hydrates recombine with water vapor (present in moisture) to form hydrates again, thereby releasing energy (discharging cycle). The operating principle of TCM can be expressed with the following reaction:

\[
\text{Salt } m\text{H}_2\text{O} + \text{Heat} \leftrightarrow \text{Salt}(m - n)\text{H}_2\text{O} + n\text{H}_2\text{O}.
\]

In addition to higher energy storage capacity, TCMs can store thermal energy with almost no heat loss, even for longer periods, making TCM a unique seasonal heat storage material.¹,⁴ Selection of an appropriate salt hydrate is the key aspect in designing a thermochemical heat storage system.⁵ Halide based salt hydrates (CaX₂·6H₂O, MgX₂·6H₂O, and SrX₂·6H₂O,

¹ Energy Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. E-mail: a.d.pathak@tue.nl
² Department of Mechanical and Nuclear Engineering, Pennsylvania State University, 240 Research East Building, University Park, PA 16802, USA
³ Electronic supplementary information (ESI) available. See DOI: 10.1039/c6cp02762h
X = Cl/Br), sulphate based salt hydrates (LiSO₄·H₂O, MgSO₄·7H₂O), and nitrate based salt hydrates (LiNO₃·3H₂O, Zn(NO₃)₂·3H₂O) are the major class of promising reversible TCMs. These hydrates have theoretical crystal storage capacities between 2–3 GJ m⁻³.¹⁶

Magnesium chloride hydrates (MgCl₂·nH₂O, n = 0, 1, 2, 4, and 6) have been investigated extensively as an appropriate candidates for solar thermal storage.⁷–¹³ MgCl₂·6H₂O (Bischofite) has been successfully tested for 1000 cycles for application in solar based cooking.¹¹ Thermal dehydration of Bischofite is an important process in production of pure Mg, Mg alloys, MgO, and in heat storage applications.¹⁴–¹⁷ The dehydration kinetics for MgCl₂ hydrates is faster than for other materials like MgSO₄ hydrates,⁸,¹⁸ but a problem with this material is the presence of the hydrolysis along with the dehydration. Hydrolysis is an irreversible side reaction in the dehydration process, which produces HCl gas and affects the durability of the heat storage system. It was experimentally observed that the hydrolysis reaction could be avoided by use of external HCl pressure¹⁹ or by adding other halides.²⁰ However, there is no fundamental understanding of the conditions for the hydrolysis.

Next to the dehydration, the HCl production is also a key aspect in designing the MgCl₂ based heat storage system. Experimentally, thermal dehydration and hydrolysis of MgCl₂ hydrates have been studied by thermogravimetric analysis (TGA),¹⁷ derivative thermogravimetry (DTG),¹⁰ TGA/Differential scanning calorimetry (DSC)¹⁰ and thermochemical analysis.¹⁴ Galwey et al.²¹ has experimentally observed the hydrolysis reaction in MgCl₂·2H₂O in the temperature range of 623–703 K.²¹ Kirsh et al.²⁰ has not observed hydrolysis below 473 K for MgCl₂ hydrates, but found 43.8% of chlorine released as HCl at 673 K. However, Huang et al.¹⁷ has reported the onset temperature of HCl formation at 440 K in MgCl₂·2H₂O. Kipouros et al.¹⁴ has reported hydrolysis at 417 K for MgCl₂·2H₂O and at 413 K for MgCl₂·2H₂O for an equilibrium HCl pressure of 5 × 10⁻³ atm. The onset temperature of HCl formation is thus ambiguous from the hydrolysis along with the dehydration. Hydrolysis is an irreversible side reaction in the dehydration process, which produces HCl gas and affects the durability of the heat storage system. It was experimentally observed that the hydrolysis reaction could be avoided by use of external HCl pressure or by adding other halides. However, there is no fundamental understanding of the conditions for the hydrolysis.

Atomic and molecular level simulations turned to be useful tools to gain insight in the hydrolysis coupled dehydration reactions. Weck et al.¹² has computed thermal properties from thermodynamical calculations of MgCl₂·nH₂O using Density Function Theory (DFT) under harmonic assumption. Wang et al.¹⁶ has considered MgCl₂·H₂O to be the potential candidate for hydrolysis and proposed a reaction path for thermolysis of MgCl₂·H₂O from DFT calculations. Smets et al.⁸ has obtained the safety limit of hydrolysis reactions for all hydrates of MgCl₂ from DFT calculations using equilibrium thermodynamic principles under the ideal poly-atomic gas assumption. The atomic scale calculations can simulate systems upto a system size of 100–1000 atoms and a time scale upto 200 picosecond over a week of high performance computing.²² To the best of our knowledge, no kinetic study was done on molecular level to investigate the hydrolysis and dehydration reactions of MgCl₂·H₂O and MgCl₂·2H₂O from first principle atomic level calculations, integrating the quantum level results to molecular level modeling under reactive force field (ReaxFF) formalism.

For an efficient TCM storage cycle, heat and mass transfer in the storage volume are essential.²³ Experimentally it has been observed that water transport through the solid MgCl₂ hydrate affects the dehydration rate and may become the rate limiting step under specific reaction conditions. To understand the complex reaction (dehydration and hydrolysis) coupled with water transport, it is desirable to investigate the diffusive transport of water molecules, which are formed by the dehydration reaction. These water molecules have to diffuse to the surface of the solid salt hydrate. The diffusion path may vary from several atomic layers up to a few micrometer.²⁴ The water transport through the solid salt hydrate, the temperature, the diffusion path length, the external H₂O pressure and the crystal defects influence considerably the dehydration rate.²⁵ To study the effect of these aspects on the complex dehydration reaction on molecular level, a force field is required that is able to capture both the chemical reactivity and the mass transport of H₂O in MgCl₂·H₂O and MgCl₂·2H₂O crystals.

Chemical reactivity has been incorporated using bond order dependent ReaxFF.²⁶,²⁷ According to previous studies,²⁸,²⁹ a training set needs to be developed from quantum level DFT calculations consisting of the bond dissociation energy curves of Mg–Cl and Mg–O bonds, the angle bending energy curves of Cl–Mg–Cl, O–Mg–O, and O–Mg–Cl angles in gaseous hydrates, the reaction enthalpies of dehydration and hydrolysis reaction, and the condensed phase equation of state (EOS) of MgCl₂, MgCl₂·H₂O and MgCl₂·2H₂O.²⁷,³⁰,³¹ To our knowledge, no DFT studies exist presenting this information of the MgCl₂ hydrates. For this purpose, in this paper we obtained various molecular structures of MgCl₂ hydrates, reaction enthalpies, bond dissociation energies, angle bending energies, and EOS from DFT. With this extended information, we parameterize a new force field for MgCl₂ hydrates. Both a single-parameter search algorithm and a Metropolis Monte Carlo (MMC) algorithm are used to optimize the newly developed ReaxFF for investigated MgCl₂ hydrates.

In the present study, we parameterize the ReaxFF to model the dehydration kinetics of MgCl₂·H₂O and MgCl₂·2H₂O, as these hydrates are prone to hydrolysis reactions. Proton transfer is an important step in the hydrolysis reaction. The energy barrier for proton transfer in MgCl₂·2H₂O is obtained from the ReaxFF simulations and validated against results from DFT. The extent of the reaction depends on the temperature of the solid and the vapor transport inside the solid. The new ReaxFF is used to study the effect of temperature on the dehydration in the temperature range of 300–500 K. This temperature range is the typical operating range of TCM based heat storage systems. The onset temperature of HCl formation is investigated in the same temperature range. The dependence of the diffusion coefficient (DC) on temperature is analyzed using the Green–Kubo (GK) method.

2 Computational methods
2.1 Quantum mechanics calculations
To accurately predict the dehydration and hydrolysis reaction in the condensed phase of MgCl₂ hydrates, quantum mechanics (QM) calculations are performed in both periodic and non-periodic
systems in order to generate a training set necessary to parameterize the new force field. DFT under the generalized gradient approximation (GGA) is used for the QM calculations. All the non-periodic MgCl₂ hydrate clusters are relaxed in the framework of DFT implemented in Amsterdam Density Functional (ADF) program. The Perdew–Wang exchange and correlation functional (PW91) is used with a double polarized triple-ζ basis set. A similar GGA-DFT framework has been used to study the CaCl₂, MgCl₂, and MgSO₄ hydrates. The bond dissociation energy coming from over coordination and under coordination, of GGA-DFT using the VASP package. The projector augmented wave (PAW) method along with the Perdew Burke Ernzerhof (PBE) exchange–correlation functional is used under the GGA approximation. The Monkhorst–Pack k-point mesh is used to integrate the Brillouin zone of MgCl₂ for MgCl₂-H₂O and MgCl₂-2H₂O as they are responsible for the hydrolysis and the dehydration reactions. Similarly, the angle bending energy curves in MgCl₂ hydrates like O–Mg–O, Cl–Mg–O, H–O–Mg are also obtained from GGA-DFT.

To simulate a reaction in solid phase of hydrates, the crystal structure of MgCl₂, MgCl₂-H₂O, and MgCl₂-2H₂O are compressed or stretched uniformly up to 20–30% of their relaxed volume to obtain the EOS. The periodic systems are relaxed in the framework of GGA-DFT using the VASP package. The projector augmented wave (PAW) method along with the Perdew Burke Ernzerhof (PBE) exchange–correlation functional is used under the GGA approximation. The Monkhorst–Pack k-point mesh is used to integrate the Brillouin zone of MgCl₂ for MgCl₂-H₂O and MgCl₂-2H₂O (3 × 5 × 3), and MgCl₂-2H₂O (4 × 4 × 8). The unit cell of crystals are fully relaxed with break condition for ionic relaxation of energy for Mg–O and Mg–Cl bonds are obtained from GGA-DFT.

The bond dissociation energy for Mg–O and Mg–Cl bonds are obtained from GGA-DFT. The electrostatic contribution, and E_Coulomb is the bond energy. E_vdW is the van der Waals energy. The bond order is obtained from the interatomic distance and energy contribution updated in the reactive force field formalism, the total energy of the system can be partitioned into the following terms:

$$E_\text{total} = E_\text{bond} + E_\text{Coulomb} + E_\text{vdW} + E_\text{other} + E_\text{electrostatic part}.$$

E_total is the overall interaction energy of the system, E_Coulomb is the electrostatic contribution, and E_bond is the bond energy. E_vdW is the van der Waals energy. E_other is the energy contributions from lone-pair electrons, and the penalty energy coming from over coordination and under coordination, $E_\text{electrostatic part}$ represents the conjugation energy term, E_vdW represents the weak hydrogen bond and E_other is introduced for other correcting types of species. E_Coulomb and E_vdW are the non-bonded interactions between all pairs irrespective of the connectivity in the system. The Coulomb charge is calculated dynamically from the electro-negativity equalization method.

The ReaxFF parameters required to define the potential energy surface are optimized against the training set obtained from QM data. The initial O/H parameters are taken from the iron–oxyhydroxide force field. The O/H parameters are kept fixed while bond parameters of Mg–O, Mg–Cl and angle parameters associated with these Mg and Cl are optimized. The optimization is done in such a way that optimized parameters are able to reproduce the energy and structural data present in the training set. The data in the training set used for comparison include bond dissociation energy, angle bending curve, reaction enthalpy and EOS for MgCl₂, MgCl₂-H₂O, and MgCl₂-2H₂O. In an optimization process, ReaxFF parameters are varied such that the cumulative error (Ξ) between the DFT data in the training set and their corresponding values obtained from ReaxFF is minimized. The cumulative error is defined as

$$\Xi = \sum_{i=1}^{n} \left(\frac{|X_{\text{DFT}} - X_{\text{ReaxFF}}|}{\sigma_i} \right)^2.$$

In this equation, X_{DFT} is the DFT value in the training set for data point i, and X_{ReaxFF} is the corresponding value obtained by ReaxFF. σ_i is a weight assigned to the ith data point to set its relative importance compared to other data points. In a single-parameter search algorithm, a parabolic extrapolation method is used for parameterization. Further, we have used an MMC algorithm to attain global minima of the cumulative error as ReaxFF parameters are correlated. In the MMC algorithm multiple parameters are changed with a random movement at every iteration and the proposed configuration is accepted with a probability given by

$$P = \min \left(1, \exp \left(\frac{E_\text{new} - E_\text{old}}{k_B T} \right) \right).$$

E_new is the error from the new set of parameter proposition and E_old from the old set. T is an artificial temperature which gradually decreases after each iteration (simulated annealing) and k_B is the Boltzmann constant. The MMC algorithm has shown a good agreement between QM and ReaxFF data for MgSO₄ hydrates systems.

2.2 Reactive force field and parameterization

ReaxFF is a general bond-order-dependent many body empirical potential with a polarizable charge model that dynamically predicts a bond formation and dissociation during a reaction without connecting step function potentials. ReaxFF formalism represents a continuous landscape of energy which is dependent on the bond order and the non-bonded distance. The bond order is obtained from the interatomic distance and energy contribution updated with time. In the ReaxFF formalism, the total energy of the system can be partitioned into the following terms:

$$E_\text{total} = E_\text{bond} + E_\text{Coulomb} + E_\text{vdW} + E_\text{ electrostatic part}.$$

E_total is the overall interaction energy of the system, E_Coulomb is the electrostatic contribution, and E_bond is the bond energy. E_vdW and $E_\text{ electrostatic part}$ are the three-body valence angle terms and the four-body torsion terms respectively. E_bond and E_vdW are the energy contributions from lone-pair electrons, and the penalty energy coming from over coordination and under coordination, $E_\text{electrostatic part}$ represents the conjugation energy term, E_vdW represents the weak hydrogen bond and $E_\text{ electrostatic part}$ is introduced for other correcting types of species. E_Coulomb and E_vdW are the non-bonded interactions between all pairs irrespective of the connectivity in the system. The Coulomb charge is calculated dynamically from the electro-negativity equalization method.

Excessive electrostatic repulsions at very short interatomic distance are avoided by shielding parameters.

The DC of H₂O molecules through the MgCl₂ hydrate crystal is obtained from the GK formulation described as

$$D = \frac{1}{2} \int_0^\infty \langle v(t) \cdot v(0) \rangle dt.$$

D is the diffusion coefficient of water molecules. The expression $\langle v(t) \cdot v(0) \rangle$ is known as the velocity autocorrelation function (VAF). The DC of H₂O molecules through the MgCl₂ hydrate crystals is obtained in a spherical control volume of radius R such that the crystal slab resides completely in the sphere and the center of mass of this slab is chosen as the center of the sphere as shown in Fig. 9. The motion of the relatively heavy O atom in a water molecule determines the trajectory of the H₂O molecule as the center of mass of the H₂O molecule coincides with that of the O atom.
3 Results and discussion

3.1 Force field parameterization results

The initial force field parameters are optimized against hydrated Cl⁻ ion and MgCl₂ condensed phase data. The bond dissociation energies for Mg–Cl and Mg–O bonds present in MgCl₂, MgCl₂·2H₂O, and MgCl₂·2H₂O gas molecules are obtained from restrained GGA-DFT calculations. Bond dissociation energy is the relative energy of the constrained molecule (specific bond constrain) with respect to its relaxed geometry. Similarly, angle bending curves for Cl–Mg–Cl, O–Mg–O, O–Mg–Cl, and H–O–Mg are obtained from GGA-DFT. The single-parameter search algorithm³² approaches a global minimum when the initial ReaxFF parameters are chosen close to that minimum while the multi-parameter MMC algorithm³³ approaches the global minimum irrespective of the initial guess. The bond and angle parameters are optimized with the single-parameter search³² followed by the multi-parameter MMC algorithm³³ such that the trained parameters can reproduce the training set data accurately and the cumulative error attains a global minimum.

The optimized ReaxFF parameters are able to reproduce the bond dissociation curve of Mg–O and Mg–Cl bond present in MgCl₂·H₂O and MgCl₂·2H₂O as shown in Fig. 1 and 2 remarkably well, particularly near the minimum. The shape of the Mg–O dissociation curve obtained from ReaxFF slightly differs from the DFT one. This discrepancy can be explained from the fact that there are many conformers of similar energy existing at the same Mg–O distance due to the weak bonded interaction of H₂O with MgCl₂ and to the relatively strong non-bonded interaction in MgCl₂·H₂O and MgCl₂·2H₂O. The optimized ReaxFF is also able to capture the angle bending energy curves for MgCl₂·H₂O and MgCl₂·2H₂O (see ESIF†). The enthalpy change in the dehydration and in the hydrolysis reactions (gas phase) for MgCl₂·H₂O and MgCl₂·2H₂O are obtained from DFT. ReaxFF is also able to capture the angle bending energy curves for MgCl₂·H₂O and MgCl₂·2H₂O (see ESIF†).

To predict the kinetics of solid MgCl₂·H₂O and MgCl₂·2H₂O, the EOS is essential. The optimized force field, which is able to describe the gas phase reactions accurately, is further optimized with a condensed phase EOS of MgCl₂ hydrates obtained from DFT in VASP.³⁶ The parameterized force field is also able to predict the experimentally observed crystal structures of MgCl₂,²² MgCl₂·H₂O,⁴¹ and MgCl₂·2H₂O⁴⁴ as shown in Table 1. In Table 1 (rows 1–6), it can be observed that ReaxFF reproduces the lattice parameters of the unit cell of MgCl₂, MgCl₂·H₂O and MgCl₂·2H₂O with great accuracy. ReaxFF is also able to reproduce the EOS for MgCl₂, MgCl₂·H₂O and MgCl₂·2H₂O as shown in Fig. 4–6.

The bulk modulus is obtained from fitting the Birch–Murnaghan equation of state with the EOS obtained from DFT and ReaxFF. The bulk modulus (B₀) and its first order derivative with respect to pressure (Bₙ₀) (rows 7 and 8 of Table 1) is obtained from ReaxFF and found to be in good agreement with DFT results for MgCl₂, MgCl₂·H₂O and MgCl₂·2H₂O.

3.2 Proton transfer reaction

Hydrolysis is an irreversible reaction which is usually observed in MgCl₂·H₂O and MgCl₂·2H₂O. Wang and Chen¹⁶ have studied the thermolysis mechanism of MgCl₂·H₂O using a semi-empirical PM3 method. They observed that proton transfer is an important step in the hydrolysis reaction. To understand the reaction path for the proton transfer in MgCl₂·2H₂O, the relative energy of a condensed phase EOS of MgCl₂ hydrates obtained from DFT in VASP.³⁶ The parameterized force field is also able to predict the experimentally observed crystal structures of MgCl₂,²² MgCl₂·H₂O,⁴¹ and MgCl₂·2H₂O⁴⁴ as shown in Table 1. In Table 1 (rows 1–6), it can be observed that ReaxFF reproduces the lattice parameters of the unit cell of MgCl₂, MgCl₂·H₂O and MgCl₂·2H₂O with great accuracy. ReaxFF is also able to reproduce the EOS for MgCl₂, MgCl₂·H₂O and MgCl₂·2H₂O as shown in Fig. 4–6.

The bulk modulus is obtained from fitting the Birch–Murnaghan equation of state with the EOS obtained from DFT and ReaxFF. The bulk modulus (B₀) and its first order derivative with respect to pressure (Bₙ₀) (rows 7 and 8 of Table 1) is obtained from ReaxFF and found to be in good agreement with DFT results for MgCl₂, MgCl₂·H₂O and MgCl₂·2H₂O.

3.2 Proton transfer reaction

Hydrolysis is an irreversible reaction which is usually observed in MgCl₂·H₂O and MgCl₂·2H₂O. Wang and Chen¹⁶ have studied the thermolysis mechanism of MgCl₂·H₂O using a semi-empirical PM3 method. They observed that proton transfer is an important step in the hydrolysis reaction. To understand the reaction path for the proton transfer in MgCl₂·2H₂O, the relative energy of a condensed phase EOS of MgCl₂ hydrates obtained from DFT in VASP.³⁶ The parameterized force field is also able to predict the experimentally observed crystal structures of MgCl₂,²² MgCl₂·H₂O,⁴¹ and MgCl₂·2H₂O⁴⁴ as shown in Table 1. In Table 1 (rows 1–6), it can be observed that ReaxFF reproduces the lattice parameters of the unit cell of MgCl₂, MgCl₂·H₂O and MgCl₂·2H₂O with great accuracy. ReaxFF is also able to reproduce the EOS for MgCl₂, MgCl₂·H₂O and MgCl₂·2H₂O as shown in Fig. 4–6.

The bulk modulus is obtained from fitting the Birch–Murnaghan equation of state with the EOS obtained from DFT and ReaxFF. The bulk modulus (B₀) and its first order derivative with respect to pressure (Bₙ₀) (rows 7 and 8 of Table 1) is obtained from ReaxFF and found to be in good agreement with DFT results for MgCl₂, MgCl₂·H₂O and MgCl₂·2H₂O.
The MgCl₂·2H₂O molecule is obtained from GGA-DFT calculations by constraining the O–H bond lengths, which is shown in Fig. 7(a). We obtained a barrier of 19.55 kcal mol⁻¹ for proton transfer in gaseous MgCl₂·2H₂O and a barrier of 8.31 kcal mol⁻¹ for chloride ion (Cl⁻) formation, which indicates that proton transfer is a rate determining step in the hydrolysis reaction. To validate the applicability of the ReaxFF, we obtained the reaction path for proton transfer in gaseous MgCl₂·2H₂O from ReaxFF and compared it with DFT. From Fig. 8, it can be observed that ReaxFF is able to predict the barrier for proton transfer (20.24 kcal mol⁻¹) and the reaction coordinate for proton transfer in MgCl₂·2H₂O.

To understand the effect of a neighboring H₂O molecule in proton transfer of MgCl₂·2H₂O, a H₂O molecule is placed nearby as shown in Fig. 7(b). A barrier of 29.61 kcal mol⁻¹ is obtained from DFT for proton transfer in gaseous MgCl₂·2H₂O surrounded by one H₂O molecule. This explains the lower hydrolysis in the higher hydrates (tetra and hexa) of MgCl₂, as the neighboring H₂O molecule increases the barrier for proton transfer and inhibits the hydrolysis. A barrier of 26.54 kcal mol⁻¹ for proton transfer is obtained from ReaxFF, which is in agreement with the DFT result (29.61 kcal mol⁻¹). The position of the transition state predicted from ReaxFF differs by 0.5 Å because surrounding H₂O molecule may form many structures of similar energy (see ESI†).

3.3 ReaxFF-MD simulations of MgCl₂ hydrates

In the present study, we have investigated the kinetics of dehydration and hydrolysis reactions of solid MgCl₂·H₂O and MgCl₂·2H₂O.

MgCl₂·H₂O	MgCl₂·2H₂O					
ReaxFF	DFT	ReaxFF	DFT			
a (Å)	3.665	3.666	[3.596]³²	8.936	8.936	[8.917]³³
b (Å)	3.665	3.666	[3.596]³²	3.691	3.692	[3.634]³³
c (Å)	19.860	19.840	[17.589]³²	11.592	11.593	[11.477]³³
α (°)	90	90	[90]³²	90	90	[90]³³
β (°)	90	90	[90]³²	90	90	[90]³³
γ (°)	120	120	[90]³²	20.51	21.02	
B₀ (GPa)	19.28	17.54	6.84	6.31		
B₀'	3.65	4.03	24.65	23.66		

Fig. 4 Comparison of the EOS for MgCl₂ obtained from DFT and ReaxFF.

Fig. 5 Comparison of the EOS for MgCl₂·H₂O obtained from DFT and ReaxFF.

Fig. 6 Comparison of the EOS for MgCl₂·2H₂O obtained from DFT and ReaxFF.

Fig. 7 The initial optimized structure of MgCl₂·2H₂O molecules used to obtain the reaction path of proton transfer from DFT and ReaxFF. MgCl₂·2H₂O is represented using the ball-and-stick model. Color scheme: Mg = grey, O = red, H = white, and Cl = green.
We created the $3 \times 6 \times 6$ super-cell of MgCl$_2$/C$_1$H$_2$O crystal and $6 \times 6 \times 6$ super-cell of MgCl$_2$/C$_2$H$_2$O from their experimental crystallographic information file (CIF). 2D-periodic slabs of $26.8 \times 21.8 \times 1000$ Å for MgCl$_2$/C$_1$H$_2$O (as shown in Fig. 13a) and $44.3 \times 1000 \times 21.9$ Å for MgCl$_2$/C$_2$H$_2$O (as shown in Fig. 9a) are prepared from the super-cell by eliminating periodicity in the Z and Y direction respectively. The removal of periodicity is chosen in a direction parallel to the Mg–O bond as the Mg–O bond is weaker than the Mg–Cl bond. We carried out NVT-MD simulations at various temperatures using the Berendsen thermostat with a temperature damping constant of 100 femtosecond. The MD time step of 0.25 femtosecond is used for MgCl$_2$/C$_1$H$_2$O and MgCl$_2$/C$_2$H$_2$O.

All simulations are performed up to 1 nanosecond and average number of molecules are recorded from last 500 picosecond.

3.3.1 Force field validation

To validate ReaxFF, the radial distribution function (RDF) calculated from the MD simulations (upto 250 picosecond) for O–H, Mg–O, and Mg–Cl in 2D periodic slabs of MgCl$_2$/C$_1$H$_2$O, MgCl$_2$/C$_1$2H$_2$O are calculated and shown in Fig. 10. The peak location for O–H pair is observed at 1.02 Å which is close to the O–H bond length (0.98 Å) reported earlier in the experimental unit cell of MgCl$_2$/C$_1$H$_2$O. A similar peak location was reported from the ReaxFF parameters of Lindqvist Polyoxoanion in Bulk Water.

The first peak location for the Mg–O pair is observed at 2.0 Å, which represents the Mg–O atomic bond as shown in Fig. 10. The corresponding distance in the experimental unit cell of MgCl$_2$/2H$_2$O is 2.0 Å. The second peak location for Mg–O pair is observed at 4.4 Å, which represents the non-bonded Mg attractions with the H$_2$O molecule of the adjacent MgCl$_2$ hydrate as shown in Fig. 10. The corresponding distance in the experimental unit cell of MgCl$_2$/2H$_2$O is 4.0 Å in this case.

The first peak location for Mg–Cl pair is observed at 2.3 Å which represents the Mg–Cl bond. The corresponding distances in the experimental unit cell of MgCl$_2$/2H$_2$O and MgCl$_2$/2H$_2$O are 2.56 Å. The second peak is observed at 4.3 Å and 4.7 Å for MgCl$_2$/H$_2$O and MgCl$_2$/2H$_2$O which represents the Mg attraction with Cl of the adjacent MgCl$_2$ hydrate molecule as shown in Fig. 10. The corresponding distances in the experimental unit cell of MgCl$_2$/H$_2$O and MgCl$_2$/2H$_2$O are 4.5 Å and 4.8 Å respectively. We conclude that ReaxFF parameters obtained from the present study are consistent with DFT results and experimental results in representing the bonded and non-bonded interactions.

3.3.2 Dehydration reaction

The dehydration kinetics of MgCl$_2$/C$_1$H$_2$O and MgCl$_2$/C$_1$2H$_2$O are investigated at various temperature (300, 350, 400, 450, and 500 K). This temperature range falls in the operating range of the TMC based seasonal heat storage systems. The average number of H$_2$O molecules leaving from the solid slab of MgCl$_2$/C$_1$H$_2$O ($26.8 \times 21.8 \times 1000$ Å) into the vacuum region (Z direction) is 21.38 ± 4.45 after 1000 picosecond at 300 K. The average number of H$_2$O molecules escaping from MgCl$_2$/C$_1$H$_2$O increases from 21.28 ± 4.45 to 75.43 ± 9.08 in the temperature range of 300 to 500 K as shown in Fig. 11. A molecular dehydration rate could be estimated from...
the gradient of a linear fit. The dehydration rate keeps on increasing with temperature in the range of 300 to 500 K as shown in Fig. 11. The dehydration rate at 500 K is 3.1 times faster when compared to the rate at 300 K.

The average number of H$_2$O molecules leaving the solid slab of MgCl$_2$·2H$_2$O (44.3 × 1000 × 21.9 Å) into the vacuum region (Y direction) is 51.17 ± 7.63 after 750 picosecond. The system is further equilibrated up to 1000 picosecond and H$_2$O average increased by 4.61. The average density distribution of H$_2$O molecules are obtained by diving the simulation box into the bins of 10 Å along the Y axis as shown in Fig. 9b. Blue lines represent the initial boundaries. The water molecules which escape from the solid slab accumulate on the surface at 300 K. There is a concentration gradient of H$_2$O molecules present on the surface along the Y axis. Thereby, confirms the influence of water diffusion on the dehydration process. The average number of H$_2$O molecules escaping from MgCl$_2$·2H$_2$O increases from 54.93 ± 6.76 to 71.66 ± 7.27 in the temperature range of 300 to 450 K as shown in Fig. 12. Further, increment in temperature leads to reduction in the number of H$_2$O molecules escaping from MgCl$_2$·2H$_2$O to 50.73 ± 5.85 at 500 K as shown in Fig. 12. This reduction in number of water molecules escaping from solid slab of MgCl$_2$·2H$_2$O could be explained from the fact that existing water molecules present in the vacuum region are pushing them back into the crystal. The effect of temperature on the dehydration of MgCl$_2$·H$_2$O and MgCl$_2$·2H$_2$O is similar to experiments.

3.3.3 HCl formation. The HCl formation is investigated at various temperatures (300, 350, 400, 450, and 500 K). The first HCl molecule is observed from the 2D periodic slab of MgCl$_2$·H$_2$O at 350 K after 136.25 picosecond. To narrow down the onset temperature of HCl formation, MD simulations are carried out at the interval of 10 K between 300–350 K. The onset of HCl formation is observed at 340 K after 318.75 picosecond in MgCl$_2$·H$_2$O as shown in Fig. 13b. After dehydration/hydrolysis, the crystal slab elongates along the vacuum direction as some of MgCl$_2$ and H$_2$O came out on the surface. The onset of HCl formation is experimentally observed in the temperature range of 343–353 K, which is in good agreement with the present ReaxFF study. The hydrolysis

![Fig. 10](image_url) Radial distribution functions of O–H, Mg–O, and Mg–Cl bond in MgCl$_2$·H$_2$O and MgCl$_2$·2H$_2$O obtained with newly developed ReaxFF parameters of MgCl$_2$ hydrates at 300 K. The represents the corresponding distance in the experimental unit cell. 43,44

![Fig. 11](image_url) Dehydration kinetics of MgCl$_2$·H$_2$O in a 2D-periodic slab of 26.8 × 21.8 × 1000 Å upto 1 nanosecond using ReaxFF-MD simulations. The solid lines represent the kinetics from ReaxFF-MD simulations while the dashed lines of the same color represent a linear fit to estimate the dehydration rate. N_T is average number of H$_2$O molecules escaping from the slab at temperature T.

![Fig. 12](image_url) Dehydration kinetics of MgCl$_2$·2H$_2$O in a 2D-periodic slab of 44.3 × 1000 × 21.9 Å upto 1 nanosecond using ReaxFF-MD simulations. N_T is average number of H$_2$O molecules escaping from the slab at temperature T.
kinetics of the MgCl₂·H₂O is shown in Fig. 13c at different temperatures (350–500 K) up to 1000 picosecond. The number of HCl molecules keeps on increasing with temperature. The hydrolysis rate estimated from the linear fits keeps on increasing with temperature as shown in Fig. 13c. The hydrolysis rate at 500 K is 2.8 times faster when compared to the rate at 350 K. Hydrolysis is not observed in MgCl₂.

To investigate the effect of the temperature, the DC of H₂O through 2D-periodic slabs of MgCl₂·H₂O and MgCl₂·2H₂O are obtained at various temperatures (300, 350, 400, 450, and 500 K). The DC of H₂O in MgCl₂·H₂O is 7.18 × 10⁻¹¹ m² s⁻¹ at 300 K. The reported DCs in the present study are well converged with VAF interval. The average diffusivity of H₂O through MgCl₂·H₂O and MgCl₂·2H₂O are 0.03 and 0.04 times the DC of bulk water. In the lack of experimental study for the diffusion of H₂O through MgCl₂ hydrates, we compared with the H₂O diffusivity through other TCM epsomite (MgSO₄·7H₂O). Zhang et al.⁴⁹ has reported the same order of magnitude for the diffusivity of H₂O in the center of the MgSO₄·7H₂O. Donkers et al.⁵⁰ has measured the DC of water in epsomite using NMR. They reported the DC in range of 10⁻¹⁰ to 10⁻⁹ m² s⁻¹ in the temperature range of 293 to 413 K.

3.3.4 Effect of the temperature on the H₂O transport.

The diffusion of H₂O through a crystalline structure of the solid salt hydrate is a complex phenomena as the H₂O molecules resulting from dehydration reaction have to diffuse to the surface in order to dehydrate. The diffusivity of H₂O is computed from ReaxFF-MD simulations with the same parameters given in Table 3. The activation energy and pre-exponential factor are 5.7 ± 0.77 × 10⁻¹¹ m² s⁻¹ and 1.14 ± 0.15 × 10⁻¹⁰ m² s⁻¹ for MgCl₂·2H₂O. The DCs in MgCl₂·H₂O and MgCl₂·2H₂O are 0.03 and 0.04 times the DC of bulk water. In the lack of experimental study for the diffusion of H₂O through MgCl₂ hydrates, we compared with the H₂O diffusivity through other TCM epsomite (MgSO₄·7H₂O). Zhang et al.⁴⁹ has reported the same order of magnitude for the diffusivity of H₂O in the center of the MgSO₄·7H₂O.

Table 2

Temperature, T, K	Diffusivity in MgCl₂·H₂O, m² s⁻¹	Diffusivity in MgCl₂·2H₂O, m² s⁻¹
300	6.99 × 10⁻¹³	1.16 × 10⁻¹⁰
350	7.02 × 10⁻¹¹	3.18 × 10⁻¹⁰
400	9.13 × 10⁻¹⁰	9.54 × 10⁻¹⁰
450	6.95 × 10⁻¹⁰	2.78 × 10⁻⁹
500	4.47 × 10⁻⁹	6.66 × 10⁻⁹

Table 3

Material	Pre exponential factor, D₀ m² s⁻¹	Activation energy, χ kj mol⁻¹
MgCl₂·H₂O	7.72 × 10⁻²	69.28
MgCl₂·2H₂O	1.55 × 10⁻⁵	32.22
bond in epsomite lies between the strength of Mg–O bond present in MgCl$_2$·H$_2$O and MgCl$_2$·2H$_2$O.

4 Conclusions

To gain more insight into the reaction kinetics of MgCl$_2$ hydrates on molecular level, the development of a new reactive force field (ReaxFF) is desirable. This force field is trained against an extensive set of quantum mechanics data. ReaxFF is optimized against a training set consisting of bond dissociation curves, angle bending curve, enthalpy change in hydrolysis and dehydration reactions and equation of state (EOS). A single-parameter search algorithm in combination with a Metropolis Monte Carlo algorithm is used. The optimized force field is able to reproduce the energy terms along with the computationally challenging EOS of solid crystals. Bulk moduli of MgCl$_2$·H$_2$O and MgCl$_2$·2H$_2$O obtained from DFT and ReaxFF simulations are in close agreement (~4% deviation). ReaxFF parameters from the present study represent various chemical bonds like Mg–O, Mg–Cl, and O–H which are in agreement with the DFT and experimental structures.

Barriers of 19.55 kcal mol$^{-1}$ and 29.61 kcal mol$^{-1}$ for proton transfer in MgCl$_2$·2H$_2$O and MgCl$_2$·2H$_2$O surrounded by a neighbor H$_2$O molecule are obtained from DFT calculations. The ReaxFF parameters are able to reproduce the barrier obtained from DFT calculations for the proton transfer in MgCl$_2$·2H$_2$O (20.27 kcal mol$^{-1}$) and MgCl$_2$·2H$_2$O surrounded by a neighbor H$_2$O molecule (26.54 kcal mol$^{-1}$). ReaxFF is also able to reproduce the reaction path for the proton transfer. This explains the lower hydrolysis in the higher hydrates (tetra and hexa) of MgCl$_2$ as the neighboring H$_2$O molecule in higher hydrates increases the barrier for proton transfer and inhibits the hydrolysis. The radial distribution functions for Mg–O, O–H, and Mg–Cl pairs confirm that the optimized force field is able to capture the bonded and non-bonded interactions in the MgCl$_2$ hydrates.

ReaxFF-MD simulations have been carried out on 2D periodic slabs of MgCl$_2$·H$_2$O and MgCl$_2$·2H$_2$O to investigate the dehydration and hydrolysis kinetics at various temperatures (300–500 K). The average number of H$_2$O molecules escaping from the MgCl$_2$·H$_2$O slab (after 1 nanosecond) increased from 21.38 ± 4.45 to 75.43 ± 9.08 in the temperature range of 300 to 500 K. The dehydration rate increased 3.1 times in the same temperature range for MgCl$_2$·H$_2$O. The onset temperature of HCl formation in MgCl$_2$·H$_2$O is observed to be 340 K, which is in agreement with experiments. Increasing the temperature from 350 to 500 K, we observed that the average number of HCl molecules escaping from the MgCl$_2$·H$_2$O slab (after 1 nanosecond) increased from 12.29 ± 4.51 to 33.99 ± 4.85. The hydrolysis rate increased 2.8 times in the same temperature range for MgCl$_2$·H$_2$O. Increasing the temperatures from 300 to 450 K, the average number of H$_2$O molecules escaping from the MgCl$_2$·2H$_2$O slab (after 1 nanosecond) increased from 54.93 ± 6.76 to 71.66 ± 7.27. Hydrolysis is not observed from the MgCl$_2$·2H$_2$O slab in the temperature range of 300–500 K.

The H$_2$O transport through MgCl$_2$·H$_2$O and MgCl$_2$·2H$_2$O is investigated using ReaxFF-MD simulations. The diffusion coefficient (DC) of H$_2$O through MgCl$_2$ hydrates are reported from Green–Kubo method at various temperature ranging from 300–500 K. The DC of H$_2$O in the present study is of the same order of magnitude as the DC of H$_2$O in MgSO$_4$·7H$_2$O obtained both from MD simulations and experiments. The DC increases with temperature and follows the Arrhenius law for MgCl$_2$·H$_2$O and MgCl$_2$·2H$_2$O. The diffusivity of H$_2$O through MgCl$_2$·H$_2$O at 500 K increases 64 times compared with diffusivity at 300 K. Similarly, the diffusivity of H$_2$O through MgCl$_2$·2H$_2$O at 500 K increased 57 times compared to the 300 K. The diffusivity trend suggests that by increasing the temperature up to 500 K, the H$_2$O transport (mass diffusion) can be improved. These results demonstrate the ability of ReaxFF to explore the molecular reaction rate for dehydration/hydrolysis of MgCl$_2$ hydrates along with the water transport in the operational range of seasonal heat storage systems.

Acknowledgements

This work is part of the Industrial Partnership Programme (IPP) ‘Computational sciences for energy research’ of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO). This research programme is co-financed by Shell Global Solutions International B. V.

References

1 K. E. N’Tsoukpoe, H. Liu, N. Le Pierrès and L. Luo, Renewable Sustainable Energy Rev., 2009, 13, 2385–2396.
2 A. H. Abedin and M. A. Rosen, Open Renewable Energy J., 2011, 4, 42–46.
3 J. Xu, R. Wang and Y. Li, Sol. Energy, 2014, 103, 610–638.
4 D. Aydin, S. P. Casey and S. Riffat, Renewable Sustainable Energy Rev., 2015, 41, 356–367.
5 A. J. Carrillo, D. Sastre, D. P. Serrano, P. Pizarro and J. M. Coronado, Phys. Chem. Chem. Phys., 2016, 18, 8039–8048.
6 K. E. N’Tsoukpoe, T. Schmidt, H. U. Rammelberg, B. A. Watts and W. K. Ruck, Appl. Energy, 2014, 124, 1–16.
7 H. Zondag, V. Van Essen, L. Bleijendaal, B. Kikkert and M. Bakker, Proceedings IRES 2010 conference, Berlin, 2010.
8 B. Sneets, E. Iype, S. Nedea, H. Zondag and C. Rindt, J. Chem. Phys., 2013, 139, 124312.
9 A. El-Sebaii, S. Al-Amir, F. Al-Marzouki, A. S. Faidah, A. Al-Ghamdi and S. Al-Heniti, Energy Convers. Manage., 2009, 50, 3104–3111.
10 H. U. Rammelberg, T. Schmidt and W. Ruck, Energy Procedia, 2012, 30, 362–369.
11 A. El-Sebaii, S. Al-Heniti, F. Al-Agel, A. Al-Ghamdi and F. Al-Marzouki, Energy Convers. Manage., 2011, 52, 1771–1777.
12 P. F. Weck and E. Kim, J. Phys. Chem. C, 2014, 118, 4618–4625.
13 R. Pilar, L. Svoboda, P. Honcova and L. Oravova, Thermochim. Acta, 2012, 546, 81–86.
14 G. J. Kipouros and D. R. Sadoway, *J. Light Metals*, 2001, 1, 111–117.
15 L. Guangming, M. Peihua, W. Zhiming, L. Mingzhen and C. Minxong, *Thermochim. Acta*, 2004, 412, 149–153.
16 W. Wang and S. Chen, *Journal of Computational Science & Engineering*, 2011, 2, 79–84.
17 Q. Huang, G. Lu, J. Wang and J. Yu, *J. Anal. Appl. Pyrolysis*, 2011, 91, 159–164.
18 E. Iype, S. V. Nedea, C. C. M. Rindt, A. A. van Steenhoven, H. A. Zondag and A. P. J. Jansen, *J. Phys. Chem. C*, 2012, 116, 18584–18590.
19 S. Shoval, S. Yariv, Y. Kirsh and H. Peled, *Thermochim. Acta*, 1986, 109, 207–226.
20 Y. Kirsh, S. Yariv and S. Shoval, *J. Therm. Anal.*, 1987, 32, 393–408.
21 A. K. Galwey and G. M. Laverty, *Thermochim. Acta*, 1989, 138, 115–127.
22 M. Dittner, J. Müller, H. M. Aktulga and B. Hartke, *J. Comput. Chem.*, 2015, 36, 1550–1561.
23 C. Ferchaud, R. Scherpenborg, L. Scapino, J. Veldhuis, H. Zondag and R. D. Boer, Proceedings of the Advances in Thermal Energy Storage, Lleida, Spain, 2014.
24 S. Lan, H. Zondag, A. van Steenhouwen and C. Rindt, *J. Therm. Anal. Calorim.*, 2016, 1–10.
25 A. Pathak, S. Nedea, C. Rindt, D. Smelders and H. Zondag, Proceedings NEGF 2015 conference, Eindhoven, 2015.
26 A. C. Van Duin, S. Dasgupta, F. Lorant and W. A. Goddard, *J. Phys. Chem. A*, 2001, 105, 9396–9409.
27 K. Chenoweth, A. C. van Duin, P. Persson, M.-J. Cheng, J. Oxgaard and W. A. Goddard, III, *J. Phys. Chem. C*, 2008, 112, 14645–14654.
28 J. Ojwang, R. Van Santen, G. J. Kramer, A. C. van Duin and W. A. Goddard III, *J. Chem. Phys.*, 2008, 128, 164714.
29 D. Raymand, A. C. van Duin, M. Baudin and K. Hermansson, *Surf. Sci.*, 2008, 602, 1020–1031.
30 J. Ojwang, R. A. van Santen, G. J. Kramer, A. C. van Duin and W. A. Goddard III, *J. Chem. Phys.*, 2009, 131, 044501.
31 K. Chenoweth, A. C. van Duin and W. A. Goddard, *J. Phys. Chem. A*, 2008, 112, 1040–1053.
32 A. C. van Duin, J. M. Baas and B. van de Graaf, *J. Chem. Soc., Faraday Trans.*, 1994, 90, 2881–2895.
33 E. Iype, M. Hütter, A. Jansen, S. V. Nedea and C. Rindt, *J. Comput. Chem.*, 2013, 34, 1143–1154.
34 G. Te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. van Gisbergen, J. G. Snijders and T. Ziegler, *J. Comput. Chem.*, 2001, 22, 931–967.
35 A. D. Pathak, S. Nedea, H. Zondag, C. Rindt and D. Smelders, *Phys. Chem. Chem. Phys.*, 2016, 10059–10069.
36 G. Kresse and J. Furthmüller, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1996, 54, 11169.
37 P. E. Blöchl, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1994, 50, 17953.
38 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865.
39 T. Liang, Y. K. Shin, Y.-T. Cheng, D. E. Yilmaz, K. G. Vishnu, O. Verners, C. Zou, S. R. Phillipot, S. B. Sinnott and A. C. van Duin, *Annu. Rev. Mater. Res.*, 2013, 43, 109–129.
40 J. E. Mueller, A. C. T. van Duin and I. William A. Goddard, *J. Phys. Chem. C*, 2010, 114, 4939–4949.
41 G. Mazenko, J. Banavar and R. Gomer, *Surf. Sci.*, 1981, 107, 459–468.
42 R. Wyckoff, *Cryst. Struct.*, 1963, 1, 239–444.
43 K. Sugimoto, R. E. Dinebier and J. C. Hanson, *Acta Crystallogr., Sect. B: Struct. Sci.*, 2007, 63, 235–242.
44 J. A. Kaduk, *Acta Crystallogr., Sect. B: Struct. Sci.*, 2002, 58, 370–379.
45 http://www.crystallography.net/.
46 A. L. Kaledin, A. C. van Duin, C. L. Hill and D. G. Musaev, *J. Phys. Chem. A*, 2013, 117, 6967–6974.
47 C. Ferchaud, PhD thesis, Eindhoven University of Technology, 2016.
48 E. Chiavazzo, M. Fasano, P. Asinari and P. Decuzzi, *Nat. Commun.*, 2014, 5.
49 H. Zhang, E. Iype, S. V. Nedea and C. C. Rindt, *Mol. Simul.*, 2014, 40, 1157–1166.
50 P. A. J. Donkers, S. Beckert, L. Pel, F. Stallmach, M. Steiger and O. C. G. Adan, *J. Phys. Chem. C*, 2015, 119, 28711–28720.