Title
Cooperativity between Al Sites Promotes Hydrogen Transfer and Carbon-Carbon Bond Formation upon Dimethyl Ether Activation on Alumina.

Permalink
https://escholarship.org/uc/item/9vk2k44y

Journal
ACS central science, 1(6)

ISSN
2374-7943

Authors
Comas-Vives, Aleix
Valla, Maxence
Copéret, Christophe
et al.

Publication Date
2015-09-01

DOI
10.1021/acscentsci.5b00226

Peer reviewed
Cooperativity between Al Sites Promotes Hydrogen Transfer and Carbon–Carbon Bond Formation upon Dimethyl Ether Activation on Alumina

Alex Comas-Vives,†,# Maxence Valla,†,# Christophe Copéret,*‡ and Philippe Sautet*‡

1Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
2CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, Université de Lyon, 46 allée d’Italie, F-69364 Lyon Cedex 07, France

Supporting Information

ABSTRACT: The methanol-to-olefin (MTO) process allows the conversion of methanol/dimethyl ether into olefins on acidic zeolites via the so-called hydrocarbon pool mechanism. However, the site and mechanism of formation of the first carbon–carbon bond are still a matter of debate. Here, we show that the Lewis acidic Al sites on the 110 facet of γ-Al2O3 can readily activate dimethyl ether to yield CH2 alkenes, and surface formate species according to spectroscopic studies combined with a computational approach. The carbon–carbon forming step as well as the formation of methane and surface formate involves a transient oxonium ion intermediate, generated by a hydrogen transfer between surface methoxy species and coordinated methanol on adjacent Al sites. These results indicate that extra framework Al centers in acidic zeolites, which are associated with alumina, can play a key role in the formation of the first carbon–carbon bond, the initiation step of the industrial MTO process.

Forming carbon–carbon bonds from C1 species is a long-standing scientific and industrial challenge. An industrial breakthrough stemmed from the discovery of the methanol to olefin (MTO) process in the 1970s, which allowed the catalytic conversion of methanol to ethylene and propylene by zeolites (Scheme 1). This process constitutes an alternative route to light alkenes not relying on crude oil. Several industrial plants are being opened, in particular in Asia, in view of the increasing demand for alkene feedstocks.16,17 The mechanism of this process is a matter of intense debate and investigation both in industry and academia.18−31 Initially, direct pathways from methanol to olefin were suggested (Scheme 2a), but in the 1990s Dahl and Kolboe proposed an indirect pathway that proceeds via a hydrocarbon pool as shown in Scheme 2a.32−34 A dual operating cycle,35 one for alkenes (Scheme 2a, left) and another one for aromatics (Scheme 2a, right), forms the currently accepted mechanism operating under industrial MTO conditions. Carbenium species have been proposed as the active species of the hydrocarbon pool cycle,18 and a complete catalytic cycle combining theory and experiment was proposed for the HZSM-5 zeolite.25,35

Nevertheless, the question related to the site and mechanism of formation of the first olefins and aromatics, requiring carbon–carbon bond forming processes from methanol/dimethyl ether, has remained a matter of debate. More than 20 mechanisms have been proposed for this step, involving intermediates such as methane−formaldehyde,36 oxonium ylide,27 and carbend or alkoxyl species (Scheme 2b−e), and some proposals also include the presence of adventitious organic compounds such as aromatics. Extensive attention was devoted to the oxonium ylide mechanism (Scheme 2c), which by an intramolecular Steven’s rearrangement would produce methylethyl ether, which could then form ethene by β-hydride elimination. This mechanism and parent ones were discarded because of the need for formation of highly unstable oxonium ylide species.23,36 Other direct C–C bond formation routes, via methaneformaldehyde (Scheme 2b) or carbend (Scheme 2d), were found unfavorable on the basis of an extensive ab initio study.25 It is worth noting that all the zeolites active in the MTO process contain Al sites. This element provides acidic sites that play a significant role in the zeolite catalytic activity, and they could participate in the initial carbon–carbon bond formation step. Moreover, there is always a debate whether or not extraframework aluminum, which is in the form of alumina, could be responsible for side-reactions in zeolite catalysis.37−39 Hence,

Scheme 1. Methanol to Olefin Process Catalyzed by Zeolites
one important aspect that has not been considered is the participation of multiple Al centers, possibly belonging to alumina, in the promotion of carbon–carbon bonds in the MTO process. Though the formation of hydrocarbons by reaction of methanol on alumina or silica−alumina was reported,40 most studies have concentrated on the hydrolysis of dimethyl ether (DME) into methanol and the reverse reaction and also on the alcohol dehydration to the corresponding ether and olefins.41−54 Recent works have shown that γ-Al2O3 and δ-Al2O3 contain on their 110 facet55 highly reactive tricoordinated AlIII and four-coordinated AlIVb sites, which are able to activate the C−H bond of methane at low temperatures (<150 °C)56,57 and to convert CH3F into branched olefinic products isobutene and 2-methylbutene at relatively mild temperatures (200 °C) showing that the key carbon−carbon formation step occurs on alumina surfaces via the growth of surface alkoxy chains.58 In such processes, adsorbed water plays a key role to facilitate the activation of hydrocarbons, through the formation of basic O sites and the stabilization of the otherwise unstable 110 facet.57,59

Here, we show that alumina converts DME at 300 °C into methane along with smaller amounts of higher olefin products, such as ethene, propene, butenes, and pentenes, analogously to the MTO process. In addition, combined IR and solid-state NMR show that this process is accompanied by the formation of methoxy and formate surface species besides methane and other hydrocarbons detected in the gas phase. Ab initio simulations suggest a step involving a hydride transfer from a methoxy aluminum surface species and an activated DME, adsorbed on adjacent Al sites. This process involves a transition state structure with an oxonium (AlO═CH3+)−methane adduct, which evolves either to the formation of methane and adsorbed formate species or olefins through a carbon−carbon bond forming process, consistent with experimental observation. This indicates that two Al sites can play in concert to generate AlO═CH3+ species as key transient species, able to activate C−H bonds and to promote a C−C bond formation step.

First, the reaction of DME (0.05 mmol) with alumina (Evonik aluC, 130 m2·g−1 or SBA, 200 m2·g−1) partially dehydroxylated at 700 °C was monitored by gas chromatography as a function of temperature (Table 1a and Table S1). Methane evolved at 300 °C,60 0.029 mmol as a sole gaseous product, which corresponds

Table 1. (a) Composition of the Gas Phase during the Reaction of Dimethyl Ether with Pyrogenic Evonik−Degussa AluC Dehydroxylated at 700 °C and (b) Desorption of the Surface

Al2O3 with dimethyl ether	composition of the gas phase	
temperature	CH3OCH3	CH4
room temperature	100%	0%
100 °C	100%	0%
200 °C	100%	0%
300 °C	42%	58%

(b) Desorption of the Surface (molecules/nm2)

hydrocarbon removed from the surface	molecules per nm2
ethylene	3.1 × 10−2
propylene	1.6 × 10−2
Z-2-butene	0.3 × 10−2
E-2-butene	0.7 × 10−2
isobutene	0.2 × 10−2
pentene	1.0 × 10−2

Similar data are found for a boehmite-derived pure γ-Al2O3 provided by Sasol (SBA-200, see Table S1).
Addition of DME to Al₂O₃ at room temperature (40 mbar, 4.6 molecules of DME carried out. Figure 1a). It also showed the presence of CH₃ and CH₂ groups, a C=O bond as well as a few Csp²-H species (tentatively attributed to the formate species). Adsorbing methyl formate on Al₂O₃ led to the appearance of the same bands, but also an additional band at 3840 and 3600 cm⁻¹ (Figure S3). Similar bands were also obtained upon adsorption of formic acid on alumina.

To further understand the reaction, an in situ IR study was carried out. Figure 1a–d shows a series of IR spectra taken at different stages of the reaction (full IR spectrum are available in Figures S1 and S2, Supporting Information). Addition of DME to Al₂O₃ at room temperature (40 mbar, 4.6 molecules of DME per nm²) led to the decrease of the intensity of the alumina OH bands at 3840 and 3600 cm⁻¹ (Figure 1a,b).

It also showed the presence of CH₃ and CH₂ groups, a C=O bond as well as a few Csp²-H species (tentatively attributed to the presence of a peak at 3040 cm⁻¹). At 200 °C two new peaks in the region of hydroxyl appeared (3570 and 3675 cm⁻¹), and the C=O band (1157 cm⁻¹) disappeared, consistent with the cleavage of that bond (Figure 1c). At 300 °C, the intensity of the ν(C=H) vibration decreased while the intensity of the OH band increased (Figure 1d). This was accompanied by the formation of methane in the gas phase and the appearance of two new peaks of strong intensity at 1578 and 1321 cm⁻¹, which can be assigned to the vibration of the C=O double bond and C-O bond of surface formate species. Adsorbing methyl formate on Al₂O₃ led to the appearance of the same bands, but also an additional band at 1683 associated with the carbonyl of physisorbed methyl formate (Figure S3). Similar bands were also obtained upon adsorption of formic acid on alumina. Overall, these IR data suggest that carbon–carbon forming and carbon–oxygen cleavage reactions took place on the Al₂O₃ surfaces upon reaction with DME, while methane and formate species are formed.

The reaction was also monitored by solid-state NMR using ¹³C dilabeled DME (Figure 1e–g). The insets e–g of Figure 1 show the ¹³C cross polarization magic angle spinning NMR (CPMAS) spectra obtained on Al₂O₃ after reaction with DME at three different temperatures: 25, 200, and 300 °C. At low temperature, only one peak was observed at 62 ppm (Figure 1e), which is assigned to adsorbed DME. The intensity of the peak at 62 ppm decreased at higher temperatures, while a new peak progressively appeared at 49 ppm, reaching a maximum of intensity at 200 °C (Figure 1f). This peak is assigned to surface methoxy species.

In addition, a shoulder appeared at a higher field for the peak at 64 ppm that we assigned to the adsorption of DME molecule on different Al sites. Three peaks are observed in ¹³C NMR after treatment at 300 °C (Figure 1g): Two at 49, 62–64 ppm assigned to methoxy and DME respectively, and a third one at 169 ppm assigned to formate. The observation of formate by carbon-13 NMR is also confirmed by 2D NMR: the carbon at 169 ppm, which is typical of an ester carbonyl, correlates with a proton at 9.2 ppm in the 2D NMR, which clearly identifies its attribution to a formate species (Figures S4–S6). In addition, adsorption of methyl formate on γ-Al₂O₃ leads to the same NMR signal consistent with its attribution to formate surface species (Figure S6) as previously discussed from the IR data. The correlation with the OCH₃ group suggests that the formate species are in close proximity to the methoxy species. No direct detection of hydrocarbons could be observed, suggesting that they are present in small amounts or remain adsorbed as minor alkoxy surface species.

The formation of methane, higher hydrocarbons, methoxy, and formate species was investigated by means of DFT periodic calculations. We used the 110 termination of γ-Al₂O₃ because it is the most abundant one for γ-Al₂O₃ (75%) and δ-Al₂O₃ (one of the component of our sample AluC) particles. In addition, this
The adsorption (coordination) of CH$_3$OCH$_3$ on the most acidic Al$_{III}$ site of the fully dehydrated alumina surface (s0 surface, see Supporting Information) forms the species 0-III in an exothermic step by 131 kJ mol$^{-1}$. This adsorbed species can further react through either the C=H or the C–O bonds of CH$_3$OCH$_3$. The C–O activation route with the transfer of the methoxy on the bare alumina surface is associated with a high-energy barrier equal to 179 kJ mol$^{-1}$ and is endothermic by 16 kJ mol$^{-1}$.60 On the more realistic monohydrated surfaces, the initial C–O activation step is lowered by more than 50 kJ mol$^{-1}$ (vide infra). The alternative C–H bond activation pathway presents overall higher energy barriers and would also lead to the formation of unlikely Al-alkyl intermediates in the presence of proton sources (see Figure S8). In a previous study, we did an extensive analysis of the possible adsorption sites of water on the 110 termination of the γ-Al$_2$O$_3$ surface. 11 Depending on the initial adsorption site of water in the unit cell, corresponding to an OH coverage equal to 3.0 OH/nm2, analogous energy profiles can be obtained for the ethylene formation route (see Supporting Information, Figure S9). Here, we will discuss ethylene formation from the most stable and probable s1a surface, in which one OH group coordinates to Al$_{III}$ and one proton is bonded to the O$_{2a}$ center, since the minima and transition-states of the corresponding energy profile present the lowest energies of all the different surfaces evaluated with water initially adsorbed. From the s1a surface, the coordination of DME to the Al$_{IVb}$ center yields a binding energy equal to 118 kJ mol$^{-1}$ (s1a-IVb species in Figure 2a). In this case, the coordinated OH eases the CH$_3$ migration of the DME to produce the CO-1 intermediate, via a barrier of 127 kJ mol$^{-1}$ (hence significantly lower than for the nonwater assisted process) and a reaction step endothermic by 31 kJ mol$^{-1}$. These results show that water assists the DME/methanol conversion as already proposed for acidic zeolites. 60,69 Hence, it is essential to generate Lewis acid sites adjacent to Lewis basic sites, so-called Frustrated Lewis acid base pairs, which display unexpected reactivities as more recently illustrated in molecular chemistry. 70 Overall, the participation of (frustrated) Lewis acid–base pairs, acidic Al$_{III}$ and Al$_{IVb}$ centers, and the basic oxygen atoms of both dimethylether molecule and the OH group coordinated to such centers acts in a synergistic way providing a low energy pathway for the activation of DME.

After this step, the participation of two Al acid sites allows the previously transferred methyl group to abstract a hydride from the remaining methoxy group coordinated to Al$_{IVb}$ generating methane and a Al–O==CH$_3$ species with the O bound to AlIVb (CO-2a species in Figure 2b). In CO2a the –O==CH$_3$ species is not interacting with the OH group of AlIII while it is in CO2b. In the corresponding transition-state (Figure 2d), a Al–O==CH$_2$ oxonium group is being formed along with methane. The oxonium species is characterized by a C==O distance equal to 1.328 Å at the transition-state, while the newly formed C–H bond has a distance equal to 1.452 Å and the one being broken equal to 1.240 Å (see Figure 2d). The formation of the oxonium has an energy barrier of 134 kJ mol$^{-1}$ in a process endothermic by 26 kJ mol$^{-1}$ when reaching CO2a. CH$_4$ can be released or subsequently undergo a C–H bond activation by the Al–O==CH$_2$ oxonium group leading to the formation of ethanol coordinated to Al$_{IVb}$ (CO-3 in Figure 2b). 71 This carbon–carbon...
bond forming step is exoenergetic by 146 kJ mol\(^{-1}\) and has an energy barrier of 86 kJ mol\(^{-1}\). The corresponding transition-state for the carbon−carbon bond formation step is shown as an inset in Figure 2e, in which the incoming carbon−carbon bond has a distance at the transition-state equal to 2.016 \(\AA\). Because of the structural similarity between TS-CO-12 and TS-CO-23 structures (corresponding to Figure 2d,e, respectively), there is also the possibility that from the TS-CO-12 structure a slight rotation of the methane molecule could lead directly to the TS-CO-23 structure. Finally, the formation of ethene (from the dehydrogenation of the ethanol group in CO-3 giving the hydrated termination s2a of the alumina surface in Figure 2b) has an energy barrier equal to 159 kJ mol\(^{-1}\) in a process endothermic by 40 kJ mol\(^{-1}\). The formed water remains adsorbed on the AlIVb center. Alcohol dehydration on \(\gamma\)-Al_{2}O_{3} has been addressed previously\(^{34-37}\) and using DFT calculations on both 110 and 100 terminations.\(^{44,48-52}\) While the 100 facet is more active than the 110 one toward alcohol dehydrogenation,\(^{39,40}\) both facets can accept this reaction, and the 110 facet exposes unsaturated AlII and AlIVb sites, which are significantly more reactive toward C−H activation and able to allow for the carbon−carbon bond formation from CH\(_{2}\)F to yield isobutene formation,\(^{58}\) in contrast to the Al sites present in the 100 surface.\(^{39}\) From the CO-2 intermediate, in the event where the formed methane departs, an alternative route can lead to the formation of the formate species. The OH group present in AlII can interact with the Al−O=CH\(_{2}\) group in the AlIVb via an interaction favorable by 57 kJ mol\(^{-1}\) (CO-2b). Subsequently, the OH group can decarboxylate from the AlII site, and a new DME molecule can coordinate to this Al center in a practically isoenergetic reaction (CO-4 from Figure 2c). In a subsequent step a hydrogen is transferred from the CH\(_{3}\) group of the AlIVb−OCH\(_{3}\) species to the DME molecule coordinated to AlIII in a process similar to that from CO-1 to CO-2a. This step gives methane as product, while a O=CH\(_{2}\) group remains bonded to AlIVb and an OCH\(_{3}\) group to AlIII (CO-5 species in Figure 2c). This step is exoenergetic (−95 kJ mol\(^{-1}\)) and associated with an energy barrier equal to 115 kJ mol\(^{-1}\). Finally, the proton of the OH group can be transferred from the AlIVb-OCHOH species to the AlIII-OCH\(_{3}\) species via a very low energy barrier equal to 4 kJ mol\(^{-1}\) in a process exoergic by 76 kJ mol\(^{-1}\).

The formation of formate and methanol adsorbed on the surface (CO-6 species in Figure 2c) and two methane molecules is globally exoenergetic by 281 kJ mol\(^{-1}\) with respect to initial reactants (AlII and DME molecules), in agreement with the experimental observations. This route competes with ethylene formation in view of its similar energy barrier and more favorable thermodynamics. The whole energy profile for the formation of the ethylene from one DME molecule is shown in Figure 2f. In this energy profile, the energy barriers present values equal to 127−143 kJ mol\(^{-1}\), except the elimination step which produces ethylene, which is slightly higher: 159 kJ mol\(^{-1}\). All these barriers are accessible at 300 °C. From the partially hydrated alumina surface s1a and DME, the formation of ethylene and of the more hydrated alumina s2a surface is exothermic by 162 kJ mol\(^{-1}\). From this s2a surface, the water adsorbed on the AlIVb site can be exchanged by an incoming DME molecule regenerating the s1a − IVb species in an step endothermic by 44 kJ mol\(^{-1}\). The formate route is very favored thermodynamically, being exothermic by more than 281 kJ mol\(^{-1}\) with respect to initial reactants, in agreement with the experimental observation of formate on the \(\gamma\)-Al\(_{2}\)O\(_{3}\) surface. The formate route is kinetically favored without considering entropic contributions, since at the branching point in the energy profile the barrier is lower by 28 kJ mol\(^{-1}\).

Overall, the formation of ethylene and water from DME is endoenergetic by 20 kJ mol\(^{-1}\), while when including entropic contributions the reaction is exothermic by 85 kJ mol\(^{-1}\) (eq 1). By comparison, the formation of formate and methanol from DME and water is exothermic by 210 kJ mol\(^{-1}\) (eq 2).

\[
\text{CH}_{3}OCH_{3} \rightarrow \text{C}_2\text{H}_4 + \text{H}_2\text{O} \quad \Delta G = -85 \text{ kJ mol}^{-1}
\]

\[
2\text{CH}_3\text{OCH}_3 + \text{H}_2\text{O} \rightarrow 2\text{CH}_4 + \text{HCO}_2\text{H} + \text{CH}_3\text{OH} \\
\Delta G = -210 \text{ kJ mol}^{-1}
\]

In Gibbs free energy (see Supporting Information, Figure S10), the formate route is slightly more demanding than the ethylene route by 16 kJ mol\(^{-1}\). The energy barriers for both ethylene and formate routes are higher due to the stabilization of the gas phase species. By including the entropic terms, the formation of ethylene and the s2a surface is exothermic by 146 kJ mol\(^{-1}\), while the formate route leading to CO-6 and two CH\(_{4}\) molecules is exothermic by 209 kJ mol\(^{-1}\) (104 kJ mol\(^{-1}\) per DME molecule).

In conclusion, the reaction of DME on transition Al\(_{2}\)O\(_{3}\) at 300 °C yields methane and higher olefins, which is reminiscent of the MTO process occurring on acidic zeolites. This reaction also generates methoxy and formate surface species according to IR and NMR data. These experiments and computational studies show that oxonium ions are key reaction intermediates. They form upon reaction of methoxy surface species with coordinated methanol on adjacent Al centers. The process involves C−H bond activation processes via a hydride abstraction from a surface methoxy species leading to a transition-state with methoxy, an oxonium group coordinated to AlII and methane. The transient oxonium group can further react with methane yielding the first carbon−carbon bond or react with one additional DME molecule to form through a subsequent hydrogen transfer step a formate species, which was observed experimentally. These results show that the cooperation between adjacent aluminum sites of Al\(_{2}\)O\(_{3}\) can readily participate in hydrogen transfer and C−C bond forming reaction processes. It also suggests that the “carbon pool” in the MTO process, which essentially takes place on the zeolite cavities of acidic zeolites via carbenium ions, can solely originate from methanol/DME and not from adventitious organic compounds. Higher hydrocarbons can be formed through the reaction of methanol/DME on highly acidic Al surface sites, which are also present in zeolites as part of the extraframework aluminum.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscentsci.5b00226.

Details concerning preparation of the \(\gamma\)-Al\(_{2}\)O\(_{3}\) additional NMR and IR spectra, and computational parameters (PDF)

AUTHOR INFORMATION

Corresponding Authors

*(C.C.) E-mail: ccopere@ethz.ch.

*(P.S.) E-mail: Philippe.Sautet@ens-lyon.fr.

Author Contributions

*A.C.-V. and M.V. contributed equally.
Funding
Swiss National Foundation.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
A.C.-V. and M.V. acknowledge support from the Swiss National Foundation (Grant numbers PZ00P2_148059 and 200021_143600, respectively). We thank Evonik and SASSO for providing Alu C and Sba 200 alumina samples, respectively. Dr. D. Estes is acknowledged for helping with the edition of the manuscript.

REFERENCES
(1) Lunsford, J. H. Die Katalytische Oxidative Kupplung von Methan. Angew. Chem. 1995, 107, 1059–1070.
(2) Lunsford, J. H. The Catalytic Oxidative Coupling of Methane. Angew. Chem., Int. Ed. Engl. 1995, 34, 970–980.
(3) Crabtree, R. H. Aspects of Methane Chemistry. Chem. Rev. 1995, 95, 987–1007.
(4) Lunsford, J. H. Catalytic Conversion of Methane to More Useful Chemicals and Fuels: a Challenge for the 21st Century. Catal. Today 2000, 63, 165–174.
(5) Labinger, J. A.; Bercaw, J. E. Understanding and Exploiting C-H Bond Activation. Nature 2002, 417, 507–514.
(6) Woertink, J. S.; Smeets, P. J.; Groothaert, M. H.; Vance, M. A.; Sels, B. F.; Schoonheydt, R. A.; Solomon, E. L. A. [Cu2O]2+ Core in Cu-ZSM-5, the Active Site in the Oxidization of Methane to Methanol. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 18908–18913.
(7) Crabtree, R. H. Introduction to Selective Functionalization of C-H Bonds. Chem. Rev. 2010, 110, 575–575.
(8) Copéret, C. C-H Bond Activation and Organometallic Intermediates on Isolated Metal Centers on Oxide Surfaces. Chem. Rev. 2010, 110, 656–680.
(9) Schwarz, H. Chemie mit Methan: Studieren geht über Probieren! Angew. Chem. 2011, 123, 10276–10297.
(10) Schwarz, H. Chemistry with Methane: Concepts Rather than Recipes. Angew. Chem., Int. Ed. 2011, 50, 10096–10115.
(11) Hazari, N.; Iglesia, E.; Labinger, J. A.; Simonetti, D. A. Selective Homogeneous and Heterogeneous Catalytic Conversion of Methanol/Dimethyl Ether to Triptane. Acc. Chem. Res. 2012, 45, 653–662.
(12) Schwarz, H. How and Why Do Cluster Size, Charge State, and Ligands Affect the Course of Metal-Mediated Gas-Phase Activation of Methane? Inr. J. Chem. 2014, 54, 1413–1431.
(13) Kwapien, K.; Paier, J.; Sauer, J.; Geske, M.; Zavyalova, U.; Horn, R.; Schwach, P.; Trunschke, A.; Schrögl, R. Zentren der Methanaktivierung auf Oberflächen von Lithium-dotiertem MgO. Angew. Chem. 2014, 126, 8919–8932.
(14) Kwapien, K.; Paier, J.; Sauer, J.; Geske, M.; Zavyalova, U.; Horn, R.; Schwach, P.; Trunschke, A.; Schrögl, R. Sites for Methane Activation on Lithium-Doped Magnesium Oxide Surfaces. Angew. Chem., Int. Ed. 2014, 53, 8774–8778.
(15) Tsai, M.-I.; Hadr, R. G.; Vanelderen, P.; Sels, B. F.; Schoonheydt, R. A.; Solomon, E. I. [Cu2O]+ Active Site Formation in Cu-ZSM-5: Geometric and Electronic Structure Requirements for N2O Activation. J. Am. Chem. Soc. 2014, 136, 3522–3529.
(16) Tian, P.; Wei, Y.; Ye, M.; Liu, Z. Methanol to Olefins (MTO): From Fundamentals to Commercialization. ACS Catal. 2015, 5, 1922–1938.
(17) Stöcker, M. Methanol to Olefins (MTO) and Methanol to Gasoline (MTG). In Zeolites and Catalysts; Cejka, J., Corma, A., Zones, S., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2010; pp 687–711.
(18) Haw, J. F.; Song, W.; Marcus, D. M.; Nicholas, J. B. The Mechanism of Methanol to Hydrocarbon Catalysis. Acc. Chem. Res. 2003, 36, 317–326.
(56) Wischert, R.; Copéret, C.; Delbecq, F.; Sautet, P. Optimal Water Coverage on Alumina: A Key to Generate Lewis Acid–Base Pairs that are Reactive Towards the C–H Bond Activation of Methane. Angew. Chem., Int. Ed. 2011, 50, 3202–3205.
(57) Wischert, R.; Copéret, C.; Delbecq, F.; Sautet, P. Optimal Water Coverage on Alumina: A Key to Generate Lewis Acid–Base Pairs that are Reactive Towards the C–H Bond Activation of Methane. Angew. Chem., Int. Ed. 2011, 50, 3202–3205.
(58) Comas-Vives, A.; Schwarzwälder, M.; Copéret, C.; Sautet, P. Carbon–Carbon Bond Formation by Activation of CH₃F on Alumina. J. Phys. Chem. C 2015, 119, 7156–7163.

(44) Roy, S.; Mpourmpakis, G.; Hong, D.-Y.; Vlachos, D. G.; Bhattacharyya, A. Kinetics and Mechanism of Ethanol Dehydration on γ-Al₂O₃: The Critical Role of Dimer Inhibition. ACS Catal. 2013, 3, 798–807.
(45) Kang, M.; DeWilde, J. F.; Chiang, H.; Hickman, D. A.; Ho, C. R.; Bhan, A. Kinetics and Mechanism of Ethanol Dehydration on γ-Al₂O₃: The Critical Role of Dimer Inhibition. ACS Catal. 2013, 3, 798–807.
(46) DeWilde, J. F.; Chiang, H.; Hickman, D. A.; Ho, C. R.; Bhan, A. Kinetics and Mechanism of Ethanol Dehydration on γ-Al₂O₃: The Critical Role of Dimer Inhibition. ACS Catal. 2013, 3, 798–807.
(47) Phung, T. K.; Lagazzo, A.; Rivero Crespo, M. A.; Sánchez Escribano, V.; Busca, G. A study of commercial transition aluminas and of their catalytic activity in the dehydration of ethanol. J. Catal. 2014, 311, 102–113.
(48) Christiansen, M. A.; Mpourmpakis, G.; Vlachos, D. G. Density Functional Theory-Computed Mechanisms of Ethylene and Diethyll Ether Formation from Ethanol on γ-Al₂O₃(100). ACS Catal. 2013, 3, 1965–1975.
(49) Jenness, G. R.; Christiansen, M. A.; Caratzoulas, S.; Vlachos, D. G.; Gorte, R. J. Site-Dependent Lewis Acidity of γ-Al₂O₃ and Its Impact on Ethanol Dehydration and Etherification. J. Phys. Chem. C 2014, 118, 12899–12907.
(50) Kwak, J. H.; Rousseau, R.; Mei, D.; Peden, C. H. F.; Szanyi, J. The Origin of Regioselectivity in 2-Butanol Dehydration on Solid Acid Catalysts. ChemCatChem 2011, 3, 1557–1561.
(51) Christiansen, M. A.; Mpourmpakis, G.; Vlachos, D. G. DFT-driven multi-site microkinetic modeling of ethanol conversion to ethylene and diethyl ether on γ-Al₂O₃ (111). J. Catal. 2015, 323, 121–131.
(52) Larmier, K.; Chizallet, C.; Cadran, N.; Maury, S.; Abboud, J.; Lamie-Humblot, A.-F.; Marceau, E.; Laurent, C.; Sautet, P. The Mechanistic investigation of isopropanol conversion on alumina catalysts: location of active sites for alkene/ether production. ACS Catal. 2015, 5, 4423–4437.
(53) Chen, J. G.; Basu, P.; Ballinger, T. H.; Yates, J. T. A transmission infrared spectroscopic investigation of the reaction of dimethyl ether with alumina surfaces. Langmuir 1989, 5, 352–356.
(54) Kipnis, M. A.; Samokhin, P. V.; Volchina, E. A.; Lin, G. I. Surface reactions of dimethyl ether on γ-Al₂O₃: I. Adsorption and thermal effects. Kinet. Catal. 2014, 55, 456–462.
(55) Wischert, R.; Copéret, C.; Delbecq, F.; Sautet, P. Dinitrogen: a selective probe for tri-coordinate Al ‘defect’ sites on alumina. Chem. Commun. 2011, 47, 4890–4892.
(56) Wischert, R.; Copéret, C.; Delbecq, F.; Sautet, P. Optimal Water Coverage on Alumina: A Key to Generate Lewis Acid–Base Pairs that are Reactive Towards the C–H Bond Activation of Methane. Angew. Chem. 2011, 123, 3260–3263.
(57) Wischert, R.; Copéret, C.; Delbecq, F.; Sautet, P. Optimal Water Coverage on Alumina: A Key to Generate Lewis Acid–Base Pairs that are Reactive Towards the C–H Bond Activation of Methane. Angew. Chem., Int. Ed. 2011, 50, 3202–3205.
(58) Comas-Vives, A.; Schwarzwälder, M.; Copéret, C.; Sautet, P. Carbon–Carbon Bond Formation by Activation of CH₃F on Alumina. J. Phys. Chem. C 2015, 119, 7156–7163.