First Principles Phase Diagram Calculations for the Octahedral-Interstitial System ZrO\(_X\), \(0 \leq X \leq 1/2\)

Benjamin Paul Burton

Materials Measurement Laboratory, Metallurgy Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA

Axel van de Walle and Axel van de Walle

Engineering and Applied Science Division, California Institute of Technology, 1200 E. California Blvd. MC 309-81 Pasadena, CA 91125; avdw@alum.mit.edu

Harold T. Stokes

Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA; stokesh@byu.edu

(Dated: June 18, 2021)

Abstract

First principles based phase diagram calculations were performed for the octahedral-interstitial solid solution system \(\alpha\text{Zr}\text{O}_X\) (\(\alpha\text{Zr}[^{\text{Vacancy}}]_{1-X}\text{O}_X\); \([\text{Vacancy}]\)\(=\)Vacancy; \(0 \leq X \leq 1/2\)). The cluster expansion method was used to do a ground state analysis, and to calculate the phase diagram. The predicted diagram has four ordered ground-states in the range \(0 \leq X \leq 1/2\), but one of these, at \(X=5/12\), is predicted to disproportionate at \(T \approx 20\text{K}\), well below the experimentally investigated range \(T \approx 420\text{K}\). Thus, at \(T \gtrsim 420\text{K}\), the first-principles based calculation predicts three ordered phases rather than the four that have been reported by experimentalists.
Key words: ZrO$_X$; Zr suboxides; Zircalloy; First Principles; Phase diagram calculation; vacancy-interstitial ordering; order-disorder; alloy theory.

I. INTRODUCTION

Zircalloy is used as nuclear fuel-rod cladding in light water reactors, but it is metastable with respect to oxidation by the UO$_2$ fuel.1,4

Oxidation of zircalloy transforms it from the high-temperature (high-T), oxygen-poor, bcc solution (βZr$_X$) into the low-T, oxygen-rich, hcp-based solution (αZrO$_X$). At temperatures between about 1173K and 573K various ordered phases have been reported.$^{5-13}$

Octahedral interstitial ordering of oxygen (O), and vacancies ([] in αZrO$_X$ (αZr[$\big]{1-X}O_X$, $0 \leq X \leq 1/2$) increases microhardness14 and brittleness11, and therefore, promotes stress corrosion cracking. Order-disorder transitions were studied via heat capacity measurements: Arai and Hirabayashi12 studied alloys with O/Zr ratios of 0.16 and 0.24 at 473K-973K; Tsuji and Amaya15 made similar measurements on alloys with O/Zr ratios of 0.0, 0.10, 0.13, and 0.24, at 325K-905K.

Arai and Hirabayashi12 achieved a high degree of long-range ordering in samples that were cooled from 623K to 523K, during a period of about one month, which indicates a high mobility of oxygen in αZr[$\big]{1-X}O_X$, even at such modest temperatures; hence a system that is highly reactive even at such moderate temperatures.

A recent computational study16 reported ground-state structures and order-disorder transition temperatures for Zr$_6$O and Zr$_3$O, but did not present a calculated phase diagram, or report if the calculated order-disorder transitions in Zr$_6$O and Zr$_3$O are first-order, as experiment indicates, or continuous.

The results presented below are mostly consistent with experimental studies with respect to the comparison between computationally predicted ground-state (GS) structures and reported (experimental) low-temperature ($T \lesssim 500K$) ordered phases. With the exception that in the range $0.25 \lesssim X \lesssim 0.5$ the calculations predict only two ordered phases at $T150K$,
rather than the three called α''_2, α''_3 and α''_4 in Arai and Hirabayashi (1976).\cite{12}

Experimental values for the maximum solubility of O in Zr, X_{max}, range from: $X_{max} \approx 29$ at. \%\cite{17} to $X_{max} \approx 35$ at. \%\cite{18} and $X_{max} \approx 40$ at. \%\cite{10,12,13}. The first-principles results presented here support a higher value; i.e. $X_{max} \geq 1/2$. This may reflect an insufficiently negative calculated value for the formation energy of monoclinic ZrO$_2$.

II. METHODOLOGY

A. Total Energy Calculations

Formation energies, ΔE_f (Fig. 1) were calculated for fully relaxed hcp αZr, hcp αZrO (hcp αZr with all octahedral interstices occupied by O), and 96 αZr[$\text{ }]_{1-n}O_n$ supercells of intermediate composition. All calculations were performed with the density functional theory (DFT) based Vienna \textit{ab initio} simulation program (VASP, version 445\cite{19,20}) using projector-augmented plane-wave pseudopotentials, and the generalized gradient approximation for exchange and correlation energies. Electronic degrees of freedom were optimized with a conjugate gradient algorithm, and both cell constant and ionic positions were fully relaxed. Pseudopotential valence electron configurations were: Zr$_{sv}$: 4s4p5s4d; O$_s$: 3s23p4.

Total energy calculations were converged with respect to k-point meshes by increasing the density of k-points for each structure until convergence. A 500 eV energy cutoff was used, in the ”high precision” option which guarantees that \textit{absolute} energies are converged to within a few meV/site (a few tenths of a kJ/site of exchangeable species; O, []). Residual forces were typically 0.02 eV or less.

Calculated formation energies, ΔE_f, relative to a mechanical mixture of αZr + αZrO, for the 96 αZr[$\text{ }]_{1-n}O_n$ supercells are plotted as solid circles in Fig. 1. Values of ΔE_f are,

$$\Delta E_f = (E_{Str} - E_{\alpha Zr} - E_{\alpha ZrO})/2$$ (1)

where: E_{Str} is the total energy of the αZr[$\text{ }]_{1-n}O_n$ supercell; $E_{\alpha Zr}$ is the energy/atom of αZr; $E_{\alpha ZrO}$ is the energy/atom of αZrO.
FIG. 1: Comparison of VASP (solid circles) and CE (larger open squares, red online) formation energies, ΔE_f, and a ground-state analysis on structures with 18 or fewer octahedral-interstitial sites (smaller open squares, blue online). Extension of the convex hull towards the formation energy of monoclinic zirconia, ZrO₂, indicates that the four ordered GS at X=1/6, 1/3, 5/12 and 1/2 are also predicted to be GS of the Zr-O binary.

B. The Cluster Expansion Hamiltonian

The cluster expansion, CE_{\text{31}}^{\text{P6}}_{\text{32}}, is a compact representation of the configurational total energy. In the αZr[]_{1−X}O system, the solid solution configuration is described by pseudospin occupation variables σ_i, which take values σ_i = −1 when site-i is occupied by [] and σ_i = +1 when site-i is occupied by O.

The CE parameterizes the configurational energy, per exchangeable cation, as a polynomial in pseudospin occupation variables:
\[
E(\sigma) = \sum_{\ell} m_\ell J_\ell \left\langle \prod_{i \in \ell'} \sigma_i \right\rangle
\]

(2)

Cluster \(\ell\) is defined as a set of lattice sites. The sum is taken over all clusters \(\ell\) that are not symmetrically equivalent in the high-T structure space group, and the average is taken over all clusters \(\ell'\) that are symmetrically equivalent to \(\ell\). Coefficients \(J_\ell\) are called effective cluster interactions, ECI, and the multiplicity of a cluster, \(m_\ell\), is the number of symmetrically equivalent clusters, divided by the number of cation sites. The ECI are obtained by fitting a set of VASP FP calculated structure energies, \(\{E_{\text{Str}}\}\). The resulting CE can be improved as necessary by increasing the number of clusters \(\ell\) and/or the number of \(E_{\text{Str}}\) used in the fit.

Fitting was performed with the Alloy Theoretic Automated Toolkit (ATAT)19,22–24 which automates most of the tasks associated with the construction of a CE Hamiltonian. A complete description of the algorithms underlying the code can be found in23. The zero- and point-cluster values were -0.421118 eV and 0.006221 eV, respectively. The six pair and six 3-body ECI that comprise the complete CE Hamiltonian are plotted in Figs. 2a and 2b, respectively. ECI for the isostructural TiO\(_X\) (open symbols, blue online) and HfO\(_X\) (open symbols, red online) systems are also plotted for comparison. As expected, nearest neighbor (nn) O-O pairs are highly energetic, and therefore strongly avoided; hence nn-pair ECI are strongly attractive (ECI >0, for O-[] nn pairs); but beyond nn-pairs, the O-[] pairwise ECI are close to zero. The ratio of magnitudes for nn-pair ECIs that are parallel- \((J_\parallel)\) and perpendicular \((J_\perp)\) to \(c_{\text{Hex}}\), respectively, is \(J_\parallel/J_\perp \approx 2.5\). Note that the 4’th nn-pair ECI is the second-NN parallel to \(c_{\text{Hex}}\), \((J'_\parallel)\) and \(J'_\parallel/J_\parallel \approx 0.09\).

These results are similar to those presented in Ruban et al16 although their effective pair interactions and ours are not identically defined.

Long-period superstructure (LPSS) phases were reported17,18 in samples with with bulk compositions close to Zr\(_3\)O (essentially the \(\alpha'\) field in Arai and Hirabayashi12, their Fig. 9). Hence, it is reasonable to speculate that the CE-Hamiltonian might be like that in an axial next nearest neighbor Ising model (ANNNI-model),25 in which one expects \(J_\parallel\) and \(J'_\parallel\) to be opposite in sign, and of comparable magnitudes \((0.3 \lesssim -J'_\parallel/J_\parallel \lesssim 0.725)\); however, \(J'_\parallel/J_\parallel \approx 0.09\) (Figs. 2).
FIG. 2: Effective Cluster Interactions (ECI) for pair and 3-body interactions. Solid black symbols indicate the ZrO₅ₓ-fit which was used in the phase diagram calculation reported here. Open squares and down-pointing triangles (blue online) indicate the results of a fit for the TiO₅ₓ system. Open circles and open up-pointing triangles (red online) are from a fit for the HfO₅ₓ system. (a) The first two pair-ECI are for nearest-neighbor O-[] pairs that are parallel- (J∥) and perpendicular (J⊥), respectively, to cHex, and the 4’th nn pair-ECI is the second-nn parallel to cHex (J′∥). Pairwise-ECI are plotted as functions of inter-site separation. (b) 3-body interactions are plotted as functions of the index nᵢ₋j₋k which increases, nonlinearly, as the area of triangle i-j-k increases. Positive pairwise ECI imply a strong nn-pairwise O-[] attraction, i.e. a strong nn-pairwise O-O repulsion.

III. RESULTS

A. Ground-States

The CE was used for a ground-state (GS) analysis that included all configurations of [] and O in systems of 18 or fewer Zr-atoms (octahedral interstitial sites); a total of 2¹⁸ = 262,144 structures (reduced by symmetry). Five GS were identified in the range, 0 ≤ X ≤ 1/2, i.e. at X = 0, 1/6, 1/3, 5/12 and 1/2; solid circles (black online) on the
The convex hull (solid line) in Fig. 1. The extension of the convex hull towards monoclinic zirconia (ZrO$_2$) is also plotted in Fig. 1. The CE-results suggest that all four VASP-GS in the αZr[$1-X$]O$_X$ subsystem are also GS of the Zr-O binary, and that the maximum solubility of O in αZr$_{hcp}$ is $X_{max} \approx 1/2$ (higher than the experimental value, $X \approx 0.4$). Note that, the predicted CE-GS at Zr$_3$O$_2$ is not a GS for the VASP calculations (not a VASP-GS); hence the VASP-predicted maximum solubility of O in Zr is $X_{max} \approx 0.5$.

The larger open squares (red online) in Figure 1 are CE-calculated values for the ΔE_f that correspond to the VASP calculations, and the smaller open squares (blue online) are ΔE_f for the remaining 262,144-96=262048 structures in the GS analysis. The open diamond symbol (green online) indicates the calculated formation energy for the P6$_3$22 structure for Zr$_3$O that was originally proposed by Holmberg and Dagerhamn5; this structure is also described in Table I. All space group determinations were performed with the FINDSYM program.19,26
TABLE I: Crystal structure parameters for predicted ground-state phases in the $\alpha Zr^{[1-X]}O_X$ system. Cell constants are given in Å.

System	X atomic fraction O	Space Group	Calculated cell constants (Å)	Idealized Atomic Coordinates
Zr$_6$O	1/6	R$\bar{3}$	$a \approx \sqrt{3}a_0$ 5.5333	O: 1/6, 1/6, 1/6 Zr: 3/4, 1/12, 5/12
	1/7	hP7	$c \approx 3c_0 = 15.33$	Zr: 11/12, 7/12, 1/4 Zr: 1/12, 5/12, 3/4 Zr: 7/12, 1/4, 11/12
Zr$_3$O	1/3	R$\bar{3}$c	$a \approx \sqrt{3}a_0$ 5.5671	O: 1/6, 1/6, 1/6 Zr: 3/4, 1/12, 5/12
	1/4	hP8	$c \approx 3c_0 = 15.381$	Zr: 11/12, 7/12, 1/4 Zr: 1/12, 5/12, 3/4 Zr: 7/12, 1/4, 11/12
Zr$_3$O	1/3	P6$_3$22	$a \approx \sqrt{3}a_0$ 5.5585	O: 1/3, 2/3, 0 Zr: 1/3, 0, 0
	1/4	hP8	$c \approx c_0 = 5.1327$	Zr: 0, 1/3, 0 Zr: 2/3, 2/3, 0 Zr: 0, 2/3, 1/2

8
	5/12	R₃	\(a \approx \sqrt{3}a_0 \)	O: 1/12, 1/12, 1/12
	5/17	hP17	\(c \approx 3c_0 = 30.861 \)	O: 1/2, 1/2, 1/2

| Zr₁₂O₅ | 5/12 | R₃ | \(a \approx \sqrt{3}a_0 \) | O: 1/4, 1/4, 1/4 |
| | 148 | | \(c \approx 3c_0 = 30.861 \) | O: 2/3, 2/3, 2/3 |

| Zr₂O | 1/2 | P₃1m | \(a \approx \sqrt{3}a_0 \) | O: 1/3, 2/3, 1/2 |
| | 162 | | \(c \approx c_0 = 5.1572 \) | O: 2/3, 1/3, 1/2 |

| | 1/3 | hP9 | \(c \approx c_0 = 5.1572 \) | Zr: 0, 1/3, 3/4 |

				Zr: 1/3, 1/3, 1/4
				Zr: 1/3, 0, 3/4
				Zr: 2/3, 0, 1/4
				Zr: 2/3, 2/3, 3/4
				Zr: 0, 2/3, 1/4
FIG. 3: Idealized crystal structures of the four cluster-expansion-predicted suboxide ground-states: (a) Zr$_6$O; (b) Zr$_3$O; (c) Zr$_{12}$O$_5$; (d) Zr$_2$O. Spheres connected by bond-sticks (yellowish-green online) represent Zr. Isolated spheres with bond-sticks (blue online) represent oxygen. Isolated spheres (red online) represent vacant octahedral sites.
Crystal structures of the VASP- and CE-GS in Zr-ZrO are described in Table I and their idealized structures are drawn in Figures 3 a-d: Zr is represented by spheres connected with bond-sticks (yellowish-green online); O is represented by isolated spheres with bond-sticks (blue online); and [] are represented by isolated spheres (red online).

Various low-T ordered structures have been reported with the most recent review by Sugizaki et al., who used neutron diffraction to study short-range order in ZrO$_{0.3}$ solid solutions. Their Figs. 1a-c presented representations of three ordering schemes that were observed within different homogeneity ranges: (a) ZrO$_x$ at $X \approx 1/3$ (P321); (b) ZrO$_y$ at $1/3 \approx X \approx 0.4$ (P6$_3$22); (c) ZrO$_z$ near the solubility limit $X \approx 0.4$ (P31m). Space groups for these idealized structures were not reported by Sugizaki et al.; they were determined in this work with the FINDSYM program. Comparing structures (a)-(c) above to the results of this work: (a) VASP calculations indicate that this structure is clearly not a GS; (b) is the P6$_3$22 structure shown as an open diamond (green online) in Fig. 1, its formation energy is very close, but higher than, the VASP-GS at $X=1/3$; (c) is the same P31m structure as the VASP-GS at $X=1/2$.

1. Zr$_6$O, $X=1/6$, α''_1

The structure of Zr$_6$O is thought to be isomorphic to that of Hf$_6$O and Ti$_6$O: $a \approx \sqrt{3}a_0$; $c \approx c_0$; $Z=3$ (a_0 and c_0 are the cell constants of the disordered P6$_3$mmc alloy). This is also the VASP-GS at $X=1/6$, Fig. 3(a) and Table 1.

2. Zr$_3$O, $X=1/3$, α''_2...

Based on X-ray diffraction studies, Holmberg and Dagerhamn proposed a P6$_3$22 structure (open diamond, green online, in Fig. 1) with $a \approx \sqrt{3}a_0$ and $c \approx c_0$ for a sample with $X \geq 0.26$. Based on single crystal neutron diffraction studies Yamaguchi reported X-ray, electron and neutron diffraction data on samples in the range ZrO$_{0.18}$-ZrO$_{0.30}$ ($1/5 \leq X \leq 3/7$) and listed atomic coordinates for a ”P3c1” structure with $a \approx \sqrt{3}a_0$, $c \approx 3c_0$. Yamaguchi also reported confirmation of the P6$_3$22 structure in the composition range $0.33 < X < 0.4$ ($1/2 < X < 2/3$). The FP results presented here suggest that the VASP-GS at $X=1/3$ is the R3c structure depicted in Figure 3(b). The calculated energy-difference
between these two structures is only 0.006 eV, and this difference is probably within DFT error, but the precision of these calculations is sufficient to recognize the R3c structure as the VASP-GS.

3. \(\text{Zr}_1\text{O}_5, X=5/17 \)

This structure does not correspond to any reported phase, and because it is predicted to disproportionate at \(T \geq 20\text{K} \). It is not expected to be observed experimentally.

4. \(\text{Zr}_2\text{O}, X=1/2, \alpha''_4 \)

The only \(\text{Zr}_2\text{O} \) structure listed in Pearson27 is cubic, and the apparent solubility limit of \(X \approx 0.4 \), rather than \(X=1/2 \), which suggests that the VASP calculations may underestimate the stability of monoclinic \(\text{ZrO}_2 \), and therefore finds the GS tieline between the \(\text{P}\text{\bar{3}}1\text{m} \) GS at \(X=1/2 \) and monoclinic \(\text{ZrO}_2 \), rather than between the R3c GS at \(X=1/3 \) and monoclinic \(\text{ZrO}_2 \). Another possibility is that the experimentally measured low-temperature equilibrium between Zr-suboxides and monoclinic \(\text{ZrO}_2 \) was measured at too low a fugacity of oxygen to stabilize the \(\text{P}\text{\bar{3}}1\text{m} \) phase at \(X=1/2 \). As one expects from the ECI (Fig. 2), there are no O-O nn pairs in the VASP-GS \(\text{P}\text{\bar{3}}1\text{m} \) structure, or in any of the four structures with formation energies within 0.01 eV (right panel Fig. 1).

B. The Phase Diagram

A first principles phase diagram (FPPD) calculation was performed with grand canonical Monte Carlo (MC) simulations using the emc2 code which is part of the ATAT package22,23. Input parameters for emc2 were: a simulation box with at least 1568 octahedral sites (15x15x6 supercell); 2000 equilibration passes; 2000 Monte Carlo passes. The predicted phase diagram is shown in Figure 4. Most phase boundaries were determined by following order-parameters of the various ordered phases as functions of \(X \) and \(T \); here order parameters are defined such that they are unity in a specified GS-phase, zero in the disordered phase, and typically some non-zero value in ordered phases other than their specified GS. Dotted boundaries are used to acknowledge uncertainties in phase boundary determinations.
FIG. 4: Comparison of experimental and calculated phase diagrams for the system \(\alpha Zr \)[1\(-X \)O\(X \)]:
(a) a combination of the "transformational diagram" (symbols) and the "tentative diagram" (solid lines) in Arai and Hirabayashi\(^\text{12}\) (their Figs. 1 and 9, respectively); (b) the diagram calculated from this work (dotted phase boundaries are less precisely determined than solid boundaries). Note the different results for 0.25 \(\lesssim X \lesssim 0.42 \) and 420\(K \lesssim T \lesssim 725K \).

C. The Intermeadiate Temperature \(\alpha' \)-Phase

As observed experimentally in samples with \(X = 0.41 \)\(^\text{11}\) (up-pointing triangles, green online, Fig. 4) a two-step order-disorder process is predicted for 0.25 \(\lesssim X \lesssim 0.5 \) Figures 5. The data reported in Hirabayashi et al.\(^\text{13}\) appear to indicate that both order-disorder transitions are second-order (continuous) in character, at least at \(X = 0.41 \), but the calculations reported here suggest that the lower-T transition is strongly first-order (at least at \(X = 1/2 \)) while the higher-T transition is continuous.
\(\alpha' \)-phase

FIG. 5: Calculated order-parameter vs temperature curves for: a) \(X=0.41 \); b) \(X=1/2 \). Heating simulations are indicated by right-pointing triangles (red online) and cooling simulations are represented by left-pointing triangles (blue online). As observed experimentally, there is a two-step disordering process on heating.

The simulated intermediate-temperature \(\alpha' \)-phase crystal structure was determined by symmetry analysis, using the ISODISTORT program19,28. There are two plausible transition paths from the \(P6_3/mmc \) high-T disordered phase to the \(P\overline{3}1m \) GS:

- (1) \(P6_3/mmc \to P6_3/mcm \to P\overline{3}1m \), \(K_1 \) irreducible representation, \((-1,-2,0),(2,1,0),(0,0,1)\) basis;
- (2) \(P6_3/mmc \to P\overline{3}m1 \to P\overline{3}1m \), \(\Gamma^+_3 \) irreducible representation, \((0,-1,0),(1,1,0),(0,0,1)\) basis.

Path (1) can be ruled out because it requires a first-order \(P6_3/mmc \to P6_3/mcm \) transition, with unit-cell expansion along both \(a_{Hex} \) axes, which neither experiment nor computation supports.

Path (2) permits a continuous \(P6_3/mmc \to P\overline{3}m1 \) transition, as observed experimentally.
TABLE II: Atomic positions in P\(\text{\textbar}3\text{m}1\) (IT 164) \(\alpha'\) crystal structure: \(a \approx a_0 \approx 3.32\text{\AA}; c \approx c_0 \approx 5.14000\text{\AA}; * X=O/Zr.

Atom	Wyckoff site	\(x\)	\(y\)	\(z\)	occupancy
Zr	2d	1/3	2/3	\(\approx 1/4\)	1
O\(_1\)	1a	0	0	0	\(x_{O1}<1/2\)
O\(_2\)	1b	0	0	1/2	2\(X^* - x_{O1}\)

and supported computationally. The average \(\alpha'\), P\(\text{\textbar}3\text{m}1\) structure is described in Table II and depicted in Fig. 6, where partially occupied O:\([\])\)-sites are represented by relatively smaller and larger spheres (blue online). The precise occupations of sites O\(_1\) and O\(_2\) can be written as \(\chi\) and 2\(X - \chi\), respectively; where \(\chi < 1/2\) is the O-occupancy of site O\(_1\), and X=O/Zr; i.e. at X=0.41 and \(\chi = 0.22\) then 2\(X - \chi = 0.60\). With respect to space-group determination, the only requirement is that the occupancy of O\(_1\) must be different from that of O\(_2\). The P\(\text{\textbar}3\text{m}1\) structure is clearly consistent with the computational results shown in Figures 7a and 7b. The O:\([\])\]-distributions (online O=red, [\])=gray) in these figures were simulated on reduced (6x6x3) supercells by cooling from 1000K to 900K. For clarity Zr-atoms are omitted to highlight the strong preference for O:\([\])\]-ordering along \(c_{\text{Hex}}\); i.e. strong O-O nn avoidance along \(c_{\text{Hex}}\). In the average P\(\text{\textbar}3\text{m}1\) structure this leads to alternating nn-layers, \(\perp c_{\text{Hex}}\) that are relatively O-rich and O-poor ([\]-rich). Visually, this statistical difference is obscured in the simulation snapshots (Figures 7a and 7b) because one has: discrete O and [\]; O:\([\])\]-disorder; and antiphase boundaries.

IV. DISCUSSION

A. Comparison of Calculated and Experimental Phase Diagrams

The main differences between the FPPD presented here and the "tentative phase diagram" in Arai and Hirabayashi\(^{12}\) (Fig. 4b; their Fig. 9) are with respect to their representations of broad homogeneity ranges for three ordered phases in the range 0.25 \(\lesssim X \lesssim 0.42\) and 420\(K \lesssim T \lesssim 725\(K\). In this range, Arai and Hirabayashi report three low-T ordered phases, \(\alpha''\), \(\alpha'\), and \(\alpha''\); whereas the FPPD has only two; note that the predicted GS at X=5/12 disproportionates at T\(\approx 20\(K\). Also, the FPPD-predicted \(\alpha'\)-phase field is signifi-
FIG. 6: Average $P\bar{3}m1$ structure of the α'-phase. Small and intermediate sized spheres (blue online) represent less- and more oxygen-rich oxygen:vacancy-sites (O: []-sites), respectively. Larger spheres (red online) represent Zr atoms. More- and less O-rich O:[]-sites segregate into alternating layers perpendicular to c_{Hex}; reflecting nearest neighbor O-O avoidance.

Significantly larger than the corresponding field in Fig. 4a, and at X=0.41 the $\alpha'-\alpha Zr_{hcp}$ transition is predicted to occur $\approx 500K$ higher than experiment suggests, Fig. 5a. Typically, FPPD calculations overestimate order-disorder transition temperatures especially when, as here, the excess vibrational contribution to the free energy is ignored; so it is not surprising that agreement between experiment and theory is not close for the $\alpha' \rightleftharpoons \alpha Zr_{hcp}$ order-disorder transition. Note however, that the maximum temperatures for stabilities of phases other than α' are roughly equal to those shown in Fig. 4a.

B. Long-Period Superstructures at X$\approx1/3$

Based on X-ray, neutron, and electron scattering data, Fehlmann et al. and Yamaguchi and Hirabayashi reported a variety of long-period superstructures (LPSS) in samples with bulk compositions X$\approx1/3$ (the α'' field, Fig. 4a) that were subjected to various heat treatments. The FPPD calculation presented here does not predict LPSS fields, but a similar calculation for HfO$_x$ appears to predict Devil’s Staircases of ordered phases at Hf$_3$O and Hf$_2$O. In an ANNI-model like Hamiltonian, one expects, $0.3 \lesssim -\frac{J'_\parallel}{J_\parallel} \lesssim 0.7$, however, the 12-pair fit which includes J'_\parallel yields \parallel and J'_\parallel with the same sign and $J'_\parallel \approx J_\parallel/10$. Physically,
FIG. 7: Simulated O:[]-sites (red:gray online, respectively) distributions at: (a) X=0.41, T=900K; and (b) X=1/2, T=900K. For clarity, Zr-atoms are omitted and a reduced (6x6x3) supercell were used. At X=0.41 no O-O nn pairs are evident parallel to \(c_{Hex} \). At X=1/2, almost all nn pairs parallel to \(c_{Hex} \) are O-[], although two columns (first row, columns 4 and 5) have some O-O nn pairs), while perpendicular to \(c_{Hex} \) there are many more O-O and []-[] nn pairs.

the fitted values for \(J_\parallel \) and \(J_\perp \) are easy to rationalize in terms of O-O nn-repulsion, and this argues against stable LPSS phases, unless they are stabilized by competition between higher-order interactions; e.g. 3’rd and further nn-pair-ECI or multiplet interactions. In fact, FPPD calculations for the HfO\(_X\) system, which has a CE Hamiltonian very similar to that for ZrO\(_X\), indicate a Devis’s Staircase of LPSS phases at Hf\(_3\)O\(_{30}\).

V. CONCLUSIONS

Ground-State ordered phases are predicted at X=0, 1/6, 1/3, 5/12 and 1/2, but the one at X=5/12 is predicted to disproportionate at T\(\approx\) 20K, hence it is not expected to be observed experimentally. In the range 0.25 \(\lesssim\) X \(\lesssim\) 0.5, in which Arai and Hirabayashi\(^{12}\) report three phases (\(\alpha''_2\), \(\alpha''_3\) and \(\alpha''_4\)) only two are predicted; i.e. the phase fields that Arai
and Hirabayashi12 draw for α''_2 and α''_3 are predicted to be a single-phase solid solution. Figure 1a clearly indicates that a zeroth order model for octahedral interstitial O:]-ordering is one in which first- and second-nn pairwise interactions (J_\parallel and J_\perp, respectively) strongly favor O-[nn-pairs; i.e. O-O nn-pairs are highly unfavorable, and $J_\parallel/J_\perp \approx 2.5$. Including J'_\parallel in the ECI fit does not yield an ANNNI-like29 CE-Hamiltonian; however, recent FPPD calculations for the HfO\textsubscript{X} system30 (the HfO\textsubscript{X}-CE is very similar to the ZrO\textsubscript{X}-CE) predict Devis’s Staircases of LPSS phases at Hf\textsubscript{3}O and Hf\textsubscript{2}O.

The most probable transition path (on cooling) for O-rich solutions, $X \gtrsim 0.4$ is P6\textsubscript{3}/mmc \rightarrow P\textsubscript{3}m1 \rightarrow P\textsubscript{3}1m; hence the average α'-structure has P\textsubscript{3}m1 symmetry with alternating O-rich and [-]-rich layers $\perp c_{Hex}$.

\begin{footnotesize}
\begin{itemize}
\item[*] Electronic address: benjamin.burton@nist.gov
\item[†] Phone: 301-975-6053, FAX: 301-975-5334.
\item[1] A. W. Cronenberg, M. S. El-Genk J Nuc. Materials 78, 390 (1978).
\item[2] P. Hoffman and D. Kerwin-Peck J. Nuc. Materials 124, 80 (1984).
\item[3] P. Hoffman, D. Kerwin-Peck and P. Nikolopoulos J. Nuc. Materials 124, 114 (1984).
\item[4] P. Hoffman and J. Spino J. Nuc. Materials 127, 127 (1985).
\item[5] B. Holmberg and T. Dagerhamn Acta Chem. Scand 15 919 (1961).
\item[6] S. Yamiguchi J. Phys. Soc. Japan 24[4], 855 (1968).
\item[7] M. Fehlmann, A. Jostsons and J. G. Napier Z. Kristallogr. 129 318 (1969).
\item[8] S. Yamiguchi and M. Hirabayashi J. Appl. Cryst. 3, 319 (1970).
\item[9] M. S. Hirabayashi, S. Yamaguchi, T. Arai, J. Phys. Soc. Japan 35[2], 473 (1972).
\item[10] M. S. Hirabayashi, T. Yamaguchi, T. Arai, H. Asano and S. Hashimoto Phys. Stat. Sol. (a) 23, 331 (1974).
\item[11] S. Hashimoto, H. Iwasaki, S. Ogawa, S. Yamaguchi and M. Hirabayashi J. Appl. Cryst. 7, 67 (1974).
\item[12] T. Arai and M. Hirabayashi J. ess common Met. 44, 291 (1976).
\item[13] Y. Sugizaki, S. Yamiguchi, S. Hashimoto, M. Hyrabashi and Y. Ishikawa J. Phys. Soc. Japan 54(7), 2543 (1985).
\item[14] A. Dubertret and P. Lehr Compt. Rendus Acad. Sc. Paris, t. 262 1147 (1966).
\end{itemize}
\end{footnotesize}
T. Tsuji and M. Amaya J. Nucl. Matter. 33, 223 (1995).

A. V. Ruban, V. I. Baykov, B. Johansson,i V. V. Dmitriev and M. S. Blanter B 82, 134110 (2010).

R. F. Domagala and D. J. McPherson J. Metals 200 238 (1954).

Bull. Alloy Phase Diagrams 7[2], 116 (1986).

Disclaimer: the use of a specific software package should not be misinterpreted as implying a NIST endorsement of that package.

Kresse, G. and Hafner, J., Phys. Rev. B47: 558-561 (1993); Kresse, G. Thesis, Technische Universität Wien (1993); Phys. Rev. B49: 14 251 (1994). Kresse, G. and Furthmüller, J. (1996) Comput. Mat. Sci. 6: 15-50; Phys. Rev. B54: 11169 (1996); cf. http://tph.tuwien.ac.at/~vasp/guide/vasp.html.

Sanchez, J.M., Ducastelle, F. and Gratias, D., Physica 128A, 334 (1984).

van de Walle, A., Asta, M. and Ceder, G. The alloy theoretic automated toolkit: A user guide. CALPHAD Journal 26 p. 539 (2002).

van de Walle A. and Ceder, G., Journal of Phase Equilibria, 23 p. 348 (2002).

A. van de Walle and M. Asta, Modelling Simul. Mater. Sci. Eng. 10, 521 (2002).

P. Bak and J. von Boehm, Phys. Rev. B 21, 5297 (1980).

H. T. Stokes and D. M. Hatch, J. Appl. Cryst. 38, 237-238 (2005). http://stokes.byu.edu/findsym.html

P. Villars and L. D. Calvert, "Pearson’s Handbook of Crystallographic Data for Intermetallic Phases" Vol. 1, American Society for Metals, Metals Park, OH 44073 (1985).

B. J. Campbell, H. T. Stokes, D. E. +Tanner, and D. M. Hatch, J. Appl. Cryst. 39, 607-614 (2006) [http://stokes.byu.edu/isodistort.html.

A. van de Walle and G. Ceder Rev. Mod. Phys. 74, 11 (2002a); Journal of Phase Equilibria, 23, 348 (2002b). A. van de Walle, M. Asta, and G. Ceder. CALPHAD Journal, 26, 539 (2002c). A. van de Walle and M. Asta, Modelling Simul. Mater. Sci. Eng., 10, 521 (2002d).

B. P. Burton and A. van de Walle unpublished.

A. Submitted as a ”Full Paper” J. Phys. Soc. Japan Wed, 27 Apr 2011