SCF$^{TIR1/AFB}$ auxin signaling for bending termination during shoot gravitropism

Correspondence: Jiří Friml, jiri.friml@ist.ac.at
Huibin Han, Hana Rakusová, Inge Verstraeten, Yuzhou Zhang, Jiří Friml
Institute of Science and Technology (IST), 3400 Klosterneuburg, Austria

Author contributions: HH and JF designed the research; HH performed the experiments; HR helped to generate genetic materials; IV and YZ helped to revise the manuscript; HH and JF wrote the manuscript with all input from other authors.

One-sentence summary: TIR1/AFB signaling is required and sufficient for auxin-mediated PIN3 re-polarization and shoot gravitropic bending termination.

Dear Editor,

Gravitropism is a plant adaptive response that involves asymmetric auxin distribution (Friml et al., 2002; Rakusová et al., 2015; Su et al., 2017). The auxin asymmetry leading to the shoot and root bending is initiated by the gravity-induced subcellular relocalization of PIN auxin transporters (Friml et al., 2002; Kleine-Vehn et al., 2010; Rakusová et al., 2011). Bending termination is much less well characterized, although it depends on the re-establishment of the symmetrical auxin distribution due to auxin-mediated re-establishment of the symmetric PIN localization (Supplemental Fig. S1A; Rakusová et al., 2016, 2019). Which auxin signaling pathway mediates this auxin feedback on PIN repolarization and bending termination remains unknown.

To evaluate which auxin signaling machinery mediates auxin feedback on PIN3 repolarization for bending termination, we examined two best characterized auxin perception pathways: (i) the nuclear auxin receptors TIR1/AFB, which mediate both transcriptional and non-transcriptional responses (Salehin et al., 2015; Fendrych et al., 2016, 2018); and (ii) the AUXIN BINDING PROTEIN1 (ABP1) pathway with an unclear function (Gao et al., 2015; Grones et al., 2015). While $abp1$ mutant showed a normal hypocotyl gravitropic response (Supplemental Fig. 1B), the $tir1$ $afb2$ $afb3$ triple hypocotyls were hyperbending (Fig. 1A), suggesting a defect in the
termination response. Application of PEO-IAA, which specifically interferes with auxin binding to TIR1 and inactivates TIR1 pathway (Hayashi et al., 2008), also triggered hypocotyl hyperbending (Fig. 1B). The HS::axr3-1 mutant carries a mutation in the DII domain of the IAA17/AXR3 protein, a TIR1 co-receptor (Villalobos et al., 2012), and is conditionally expressed under a heat shock-inducible promoter (Knox et al., 2003). Whereas the HS::axr3-1 hypocotyls without heat shock induction displayed a normal gravitropic response (Supplemental Fig. 1C), HS::axr3-1 hypocotyls were hyperbending after heat shock induction (Fig. 1C). These data collectively suggest that TIR1/AFB pathway is required for hypocotyl bending termination.

Hypocotyl gravitropic bending is initiated by the sedimentation of amyloplasts in hypocotyl endodermal cells followed by the gravity-induced PIN3 polarization to the lower side of the cell (Fukaki et al., 1998; Rakusová et al., 2011). Bending termination involves the re-establishment of auxin-induced symmetrical PIN3 subcellular distribution at later stages (Supplemental Fig. S1A; Rakusová et al., 2016, 2019). Therefore, we investigated these processes under conditions of compromised TIR1/AFB auxin signaling. Disruption of the TIR1/AFB pathway did not have any obvious effect on amyloplasts sedimentation in hypocotyl endodermal cells (Supplemental Fig. 2). Next, we analyzed PIN3 polarization. Without gravity stimulation, PIN3-GFP is distributed symmetrically at both inner and outer sides of hypocotyl endodermal cells in the wild-type (Rakusová et al 2011), or in HS::axr3-1 hypocotyls with or without heat shock induction (Supplemental Fig. 3A, B). After 2 hours or 6 hours gravistimulation, PIN3-GFP was polarized, as manifested by a stronger PIN3-GFP signal at lower sides of endodermal cells in wild-type and HS::axr3-1 hypocotyls with or without heat shock induction (Supplemental Fig. 3C-H). Similarly, inhibition of TIR1/AFB auxin perception by PEO-IAA significantly affected the transcriptional auxin signaling in hypocotyls (Supplemental Fig. 4A-B), but did not affect gravity-induced PIN3 polarization (Supplemental Fig. 4C-H). Thus, steady-state PIN3 localization and gravity-induced PIN3 polarization does not strongly depend on the TIR1/AFB signaling pathway.

We then investigated the involvement of TIR1/AFB pathway in the PIN3 repolarization at later stages of gravitropic response (Rakusová et al., 2016). After 24 hours of gravity stimulation, PIN3-GFP repolarized to inner side of endodermal cells at the bottom side of the wild-type hypocotyl (Figure 1D, G; Rakusová et al., 2016, 2019). By contrast, when the
TIR1/AFB pathway was inactivated by PEO-IAA or in the heat shock-induced HS::axr3-1 hypocotyls, we observed persistence of PIN3-GFP asymmetry, with strong signal at the lower side of hypocotyl endodermal cells (Fig. 1E - H). As expected, we observed a normal PIN3-GFP polarization in the non-induced HS::axr3-1 hypocotyls (Supplemental Fig. 5A, B). These observations revealed an involvement of TIR1/AFB auxin signaling in the re-establishment of symmetric PIN3 distribution during hypocotyl bending termination.

Exogenous auxin application also induces PIN3 inner-lateralization, similarly as observed at later stages of gravitropic response. As shown previously (Rakusová et al., 2016, 2019), PIN3-GFP relocated to inner side of endodermal cells after 4 hours of auxin (NAA) treatment (Fig. 2A, B, H). When TIR1/AFB pathway was inactivated by applying PEO-IAA, this relocation did not happen, as evidenced by a strong PIN3-GFP signal at the outer side of endodermal cells (Fig. 2C, H). Inactivation of TIR1/AFB pathway in the HS::axr3-1 hypocotyls yielded the same result: in the heat shock-induced hypocotyls, we observed a persisting PIN3-GFP signal at the outer side of endodermal cells after 4 hours of NAA incubation (Supplemental Fig. 6A, B, E); whereas it disappeared in HS::axr3-1 hypocotyls without heat shock induction (Supplemental Fig. 6C, D, F). This shows a requirement for the TIR1/AFB pathway in auxin-induced PIN3 relocation.

To test whether activation of TIR1/AFB is sufficient to mediate PIN3 relocation, we used an engineered convex-IAA/concave-TIR1 perception system (Uchida et al., 2018). For the concave TIR1 (ccvTIR1) and control TIR1 (cTIR1) auxin perception system, ccvTIR1 is less sensitive to natural IAA, but binds to the synthetic cvxIAA, thus activating the auxin response. Whereas cTIR1 is unable to bind to cvxIAA, and thus does not activate the auxin response, it responds normally to natural IAA. The ccvTIR1 and cTIR1 hypocotyls showed a normal gravity response and gravity-induced PIN3 polarization (Supplemental Fig. 7A-H), and the PIN3-GFP localization in ccvTIR1 hypocotyls was normal (Fig. 2D, I). IAA treatment induced PIN3-GFP repolarization to the inner side of endodermal cells in wild-type hypocotyls (Fig. 2I; Rakusová et al., 2016) as well as in cTIR1 hypocotyls (Supplemental Fig. 8A, B, D); however, in the ccvTIR1 hypocotyls, the effect was less pronounced (Fig. 2E, I). By contrast, cvxIAA did not induce PIN3-GFP repolarization to inner side of endodermal cells in the wild type (Fig. 2F, J) or cTIR1 hypocotyls (Supplemental Fig. 8C, D), although it did induce strong PIN3-GFP repolarization to the inner side of endodermal cells in ccvTIR hypocotyls (Fig. 2G, J). These results show that a
specific activation of the TIR1/AFB pathway is sufficient to repolarize PIN3 in hypocotyl endodermis (Fig. 2K).

In conclusion, we demonstrated that genetic or chemical interference with TIR1/AFB signaling interferes with auxin-mediated re-establishment of symmetric PIN3 polarization during gravitropic response, leading to shoot overbending. Similarly, TIR1/AFB signaling is required for auxin-mediated PIN3 re-polarization. Furthermore, activation of TIR1 pathway using synthetic cvxIAA-ccvTIR1 pair is sufficient to induce PIN3 re-polarization. Collectively, these observations reveal the essential role of SCF$^{\text{TIR1/AFB}}$ auxin signaling pathway in mediating auxin feedback on auxin transport directionality for bending termination during plant adaptive development.

Funding

This work was supported by the European Research Council under the European Union’s Horizon 2020 research and innovation Programme (ERC grant agreement number 742985), and the Austrian Science Fund (FWF, grant number I 3630-B25) to JF. HH is supported by the China Scholarship Council (CSC scholarship).

Acknowledgements

We thank Keiko U Torii (University of Washington/Nagoya University), Mark Estelle (University of California San Diego), Ottoline Leyser (Sainsbury Laboratory, University of Cambridge) and Yunde Zhao (University of California San Diego) for sharing published genetic lines. We also thank Dr. Maciek Adamowski for critical reading the manuscript.

Supplemental Data

Supplemental Methods

Supplemental Figure S1. ABP1 is not involved in hypocotyl gravitropic bending termination.

Supplemental Figure S2. Modification of the TIR1/AFB pathway does not affect amyloplast sedimentation in Arabidopsis hypocotyl endodermal cells.

Supplemental Figure S3. Auxin-induced AUX/IAA protein degradation is not required for gravity-induced PIN3 polarization.
Supplemental Figure S4. Compromised TIR1/AFB signaling does not affect gravity-induced PIN3 polarization.

Supplemental Figure S5. Normal PIN3-GFP repolarization in non-induced HS::axr3-1 hypocotyls after 24 hours gravity stimulation.

Supplemental Figure S6. Auxin-induced AUX/IAA protein degradation is required for auxin-mediated PIN3 repolarization.

Supplemental Figure S7. Normal gravity response and gravity-induced PIN3 polarization in ccvTIR1 and cTIR1 hypocotyls.

Supplemental Figure S8. Normal auxin-induced PIN3 repolarization in the cTIR1 mutant.

FIGURE LEGENDS

Figure 1. Hypocotyl gravitropic bending termination depends on TIR1/AFB signaling.

(A) Bending kinetics of wild type and tir1 afb2 afb3 hypocotyls.

(B) Bending angle of DMSO or 10 µM PEO-IAA treated wild type hypocotyls after 24 hours gravistimulation.

(C) Bending angle of heat shock induced HS::axr3-1 hypocotyls after 24 hours gravistimulation.

(D - F) PIN3-GFP localization after 24 hours gravistimulation. Wild type hypocotyls upon DMSO treatment (D) and 10 µM PEO-IAA treatment (E), heat shock induced HS::axr3-1 hypocotyls (F).

(G - H) Quantification of PIN3-GFP intensity. PEO-IAA treated wild type hypocotyls after 24 hours gravistimulation (G); heat shock induced HS::axr3-1 hypocotyls after 24 hours gravistimulation (H). The ratio was calculated by dividing the PIN3-GFP intensity at outer side of endodermal cells between lower and upper side of hypocotyls. Data and error bars represent the mean ± SD. n = 30 - 40 for bending assay, n = 15 for PIN3-GFP intensity quantification. ** P < 0.05 determined by Student’s t-test. Arrowheads depict PIN3-GFP at outer side of endodermal cells, arrow indicates the gravity direction and hence determines lower and upper side of hypocotyl. Scale bar = 20 µm.

Figure 2. TIR1/AFB signaling mediates auxin feedback on PIN3 repolarization.
(A - G) PIN3-GFP localization in DMSO treated wild type hypocotyls (A), 10 µM NAA treated wild type hypocotyls (B), 10 µM PEO-IAA and 10 µM NAA co-treated wild type hypocotyls (C), DMSO treated cvvTIR1 hypocotyls (D), 10 µM IAA treated cvvTIR1 hypocotyls (E), 10 µM cvxIAA treated wild type hypocotyls (F), 10 µM cvxIAA treated cvvTIR1 hypocotyls (G).

(H - J) Quantification of PIN3-GFP intensity. Wild type hypocotyls treated with PEO-IAA (H); IAA treated cvvTIR1 hypocotyls (I); cvxIAA treated cvvTIR1 hypocotyls (J). The ratio was calculated by dividing the PIN3-GFP intensity at inner and outer side of hypocotyl endodermal cells. Data and error bars represent the mean ± SD. N = 15, ** P < 0.05 determined by Student’s test. Arrowheads depict PIN3-GFP at outer side of endodermal cells. Scale bar = 20 µm.

(K) Schematic diagram of auxin receptor TIR1/AFB mediated PIN3 repolarization for hypocotyl bending termination. At later stage of shoot gravitropism (24 hours), TIR1/AFB mediates auxin perception facilitates the repolarization of PIN3 to inner side of endodermal cells at the lower hypocotyl side, to equalize auxin distribution and thus terminate the hypocotyl bending. EN: endodermal cells; blue lines indicate PIN3 distribution at endodermal cells; blue arrow indicates auxin-TIR1/AFB mediated PIN3 repolarization from the outer side (blue dashed line) to inner side (blue solid line) at lower side hypocotyl endodermal cells; black arrow indicates gravity direction.

LITERATURE CITED

Fukaki H, Wysocka-Diller J, Kato T, Fujisawa H, Benfey PN, Tasaka M (1998) Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J 14: 425-430

Friml J, Wiśniewska J, Benková E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415: 806

Fendrych M, Leung J, Friml J (2016) TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. elife 5: e19048
Fendrych M, Akhmanova M, Merrin J, Glanc M, Hagihara S, Takahashi K, Uchida N, Torii KU, Friml, J (2018) Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat Plants 4: 453

Gao Y, Zhang Y, Zhang D, Dai X, Estelle M, Zhao Y (2015) Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Acad Sci USA 112: 2275-2280

Grones P, Chen X, Simon S, Kaufmann WA, De Rycke R, Nodzyński T, et al (2015) Auxin-binding pocket of ABP1 is crucial for its gain-of-function cellular and developmental roles. J Exp Bot 66: 5055-5065.

Hayashi KI, Tan X, Zheng N, Hatate T, Kimura Y, Kepinski S, Nozaki H (2008) Small-molecule agonists and antagonists of F-box protein–substrate interactions in auxin perception and signaling. Proc Natl Acad Sci USA 105: 5632-5637

Knox K, Grierson CS, Leyser O (2003) AXR3 and SHY2 interact to regulate root hair development. Development 130: 5769-5777

Kleine-Vehn J, Ding Z, Jones AR, Tasaka M, Morita MT, Friml J (2010) Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proc Natl Acad Sci USA 107: 22344-22349

Rakusová H, Gallego-Bartolomé J, Vanstraelen M, Robert HS, Alabadí D, Blázquez MA, Benková E, Friml J (2011) Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. Plant J 67: 817-826

Rakusová H, Fendrych M, Friml J (2015) Intracellular trafficking and PIN-mediated cell polarity during tropic responses in plants. Curr Opin Plant Biol 23: 116-123

Rakusová H, Abbas M, Han H, Song S, Robert HS, Friml J (2016) Termination of shoot gravitropic responses by auxin feedback on PIN3 polarity. Curr Biol 26: 3026-3032

Rakusová H, Han H, Valošek P, Friml J (2019) Genetic screen for factors mediating PIN polarization in gravistimulated Arabidopsis thaliana hypocotyls. Plant J 98:1048-1059
Salehin M, Bagchi R, Estelle M (2015) SCF$^{\text{TIR1/AFB}}$-based auxin perception: mechanism and role in plant growth and development. *Plant Cell* 27: 9-19

Su SH, Gibbs NM, Jancewicz AL, Masson PH (2017) Molecular mechanisms of root gravitropism. *Curr Biol* 27: R964-R972

Uchida N, Takahashi K, Iwasaki R, Yamada R, Yoshimura M, Endo T A, et al (2018) Chemical hijacking of auxin signaling with an engineered auxin–TIR1 pair. Nat Chem Biol 14: 299

Villalobos LIAC, Lee S, De Oliveira C, Ivetac A, Brandt W, Armitage L, et al (2012) A combinatorial TIR1/AFB–Aux/IAA co-receptor system for differential sensing of auxin. *Nature Chem Biol* 8: 477
Figure 1. Hypocotyl gravitropic bending termination depends on TIR1/AFB signaling.

(A) Bending kinetics of wild type and \textit{tir1 afb2 afb3} hypocotyls.

(B) Bending angle of DMSO or 10 µM PEO-IAA treated wild type hypocotyls after 24 hours gravistimulation.

(C) Bending angle of heat shock induced \textit{HS::axr3-1} hypocotyls after 24 hours gravistimulation.

(D - F) PIN3-GFP localization after 24 hours gravistimulation. Wild type hypocotyls upon DMSO treatment (D) and 10 µM PEO-IAA treatment (E), heat shock induced \textit{HS::axr3-1} hypocotyls (F).

(G - H) Quantification of PIN3-GFP intensity. PEO-IAA treated wild type hypocotyls after 24 hours gravistimulation (G); heat shock induced \textit{HS::axr3-1} hypocotyls after 24 hours gravistimulation (H). The ratio was calculated by dividing the PIN3-GFP intensity at outer side of endodermal cells between lower and upper side of hypocotyls. Data and error bars represent the mean ± SD. n = 30 - 40 for bending assay, n = 15 for PIN3-GFP intensity quantification. ** \(P < 0.05 \) determined by Student’s t-test. Arrowheads depict PIN3-GFP at outer side of...
endodermal cells, arrow indicates the gravity direction and hence determines lower and upper side of hypocotyl. Scale bar = 20 μm.
Fukaki H, Wysocka-Diller J, Kato T, Fujisawa H, Benfey PN, Tasaka M (1998) Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J 14: 425-430

Friml J, Wiśniewska J, Benková E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415: 806

Fendrych M, Leung J, Friml J (2016) TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. eLife 5: e19048

Fendrych M, Akmanova M, Merrin J, Glanc M, Hagihara S, Takahashi K, Uchida N, Torii KU, Friml, J (2018) Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat Plants 4: 453

Gao Y, Zhang Y, Zhang D, Dai X, Estelle M, Zhao Y (2015) Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Acad Sci USA 112: 2275-2280

Grones P, Chen X, Simon S, Kaufmann WA, De Rycke R, Nodzyński T, et al (2015) Auxin-binding pocket of ABP1 is crucial for its gain-of-function cellular and developmental roles. J Exp Bot 66: 5055-5065.

Hayashi KI, Tan X, Zheng N, Hatate T, Kimura Y, Kepinski Y, Nozaki H (2008) Small-molecule agonists and antagonists of F-box protein–substrate interactions in auxin perception and signaling. Proc Natl Acad Sci USA 105: 5632-5637

Knox K, Grierson CS, Leyser O (2003) AXR3 and SHY2 interact to regulate root hair development. Development 130: 5769-5777

Kleine-Vehn J, Ding Z, Jones AR, Tasaka M, Morita MT, Friml J (2010) Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proc Natl Acad Sci USA 107: 22344-22349

Rakusová H, Gallego-Bartolomé J, Vanstraelen M, Robert HS, Alabadi D, Blázquez MA, Benková E, Friml J (2011) Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. Plant J 67: 817-826

Rakusová H, Fendrych M, Friml J (2015) Intracellular trafficking and PIN-mediated cell polarity during tropic responses in plants. Curr Opin Plant Biol 23: 116-123

Rakusová H, Abbas M, Han H, Song S, Robert HS, Friml J (2016) Termination of shoot gravitropic responses by auxin feedback on PIN3 polarity. Curr Biol 26: 3026-3032

Rakusová H, Han H, Válšek P, Friml J (2019) Genetic screen for factors mediating PIN polarization in gravistimulated Arabidopsis thaliana hypocotyls. Plant J 98:1048-1059

Salehin M, Bagchi R, Estelle M (2015) SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development. Plant Cell 27: 9-19

Su SH, Gibbs NM, Jancewicz AL, Masson PH (2017) Molecular mechanisms of root gravitropism. Curr Biol 27: R964-R972
Uchida N, Takahashi K, Iwasaki R, Yamada R, Yoshimura M, Endo T A, et al (2018) Chemical hijacking of auxin signaling with an engineered auxin–TIR1 pair. Nat Chem Biol 14: 299
 PubMed: Author and Title
 Google Scholar: Author Only, Title Only, Author and Title

Villalobos LIA C, Lee S, De Oliveira C, Ivetac A, Brandt W, Armitage L, et al (2012) A combinatorial TIR1/AFB–Aux/IAA co-receptor system for differential sensing of auxin. Nature Chem Biol 8: 477
 PubMed: Author and Title
 Google Scholar: Author Only, Title Only, Author and Title