ADJOINTS OF IDEALS IN REGULAR LOCAL RINGS

JOSEPH LIPMAN
Purdue University

Introduction. Several existing results labeled “Briançon-Skoda theorem” concern an ideal \(I \) in a regular local ring \(R \). Of these, the weakest states that if \(I \) is generated by \(\ell \) elements, then \(\overline{I^{n+\ell-1}} \subseteq I^n \) (\(n > 0 \)), where “\(\overline{\cdot} \)” denotes “integral closure.” In this paper, we associate to \(I \) an integrally closed ideal \(\tilde{I} \supseteq \overline{I} \), the \textit{adjoint} of \(I \), and indicate how it can be used in place of \(\overline{I} \) to improve such results. At first, in Theorem (1.4.1), this just involves a recycling of methods from [LS]. (Even that is not without benefit, see Corollary (1.4)). But there’s more. It’s not hard to show that there is an \(n_0 \) such that \(\tilde{I}^{n+1} = \overline{I^n} \) for all \(n \geq n_0 \). The basic conjecture (1.6)—which, as we’ll see, quickly implies a number of recently proved Briançon-Skoda-type theorems—says that \(n_0 \) can be taken to be \(\ell(I) - 1 \), where \(\ell(I) \) is the analytic spread of \(I \). This conjecture does hold when \(R \) is essentially of finite type over a field of characteristic zero, or when \(\dim R = 2 \).

Section 2 deals with a conjecture, related to Grauert-Riemenschneider vanishing, about certain cohomology groups being zero. Suppose there exists a proper birational map \(f : Y \to \text{Spec}(R) \) such that \(IO_Y \) is invertible and \(Y \) is \textit{nonsingular}, i.e., locally regular. (The existence of such a \(Y \) in all characteristics is not yet certain, but it is needed in the vanishing conjecture.) Let \(\omega_Y \) be a dualizing sheaf for \(f \), chosen to be canonical in the sense that its restriction to the open set \(U \) where \(f \) is an isomorphism is \(\mathcal{O}_U \). While the definition (1.1) of \(\tilde{I} \) uses neither \(Y \) nor any duality theory, Proposition (1.3.1) states that

\[
\tilde{I} := H^0(Y, I \omega_Y);
\]

and the vanishing conjecture states that

\[
H^i(Y, I \omega_Y) = 0 \quad (i > 0).
\]

The point is that this vanishing conjecture implies conjecture (1.6). In fact it is thanks to Cutkosky’s transcendental proof of the vanishing conjecture [C] that we know (1.6) holds in characteristic zero.

Section 3 elaborates on the two-dimensional case (where the vanishing conjecture is known to hold, see Remark (2.2.1)(b)). A geometrically motivated treatment of the adjoint of a simple complete ideal \(I \) is given in [L4]; close connections with the multiplicity sequence and the conductor ideal of the local ring \(\mathfrak{a} \) of the “generic curve through \(I \)” are brought out. Roughly speaking, \(\mathfrak{a} \) is the local ring at the generic point of the exceptional divisor (a \(\mathbb{P}^1 \)) on the blowup \(Y_0 \) of any 2-generated reduction \(I_0 \) of \(I \). Propositions (3.1.1) and (3.1.2) below explore such connections for an arbitrary integrally closed \(I \). If \(Y \) is the normalization of \(Y_0 \), then \(I \omega_Y \) is just the conductor \(\mathcal{E} := \mathcal{O}_{Y_0} : \mathcal{O}_Y \) (so \(\mathcal{E} \) is independent of the choice of \(I_0 \)), and it is generated by its global sections \(\tilde{I} \). We also find in Proposition (3.3) that \(\tilde{I} = I_0 : I \).

1991 Mathematics Subject Classification. 13H05, 13C99, 14F17.
Partially supported by the National Security Agency.
Furthermore, in [HS] Huneke and Swanson have shown that \(\widetilde{I} \) is just the second Fitting ideal \(\mathfrak{F}_2(I) \); and more generally (since \(I = \mathfrak{F}_1(I) \)), that for all \(n > 0 \),
\[\mathfrak{F}_n(I) = \mathfrak{F}_{n+1}(I). \]

Let me mention in closing that though the material in [L4] dates back to 1966, the results in this paper all came out of an effort to analyze the Briançon-Skoda theorem (3.3) in [AH1].

1. Adjoint and Briançon-Skoda theorems. Let \(R \) be a regular noetherian domain with fraction field \(K \), let \(v \) be a valuation of \(K \) whose valuation ring \(R_v \) (with maximal ideal \(m_v \)) contains \(R \), and let \(h \) be the height of the prime ideal \(p := m_v \cap R \).
We say that \(v \) is a prime divisor of \(R \) if \(R_v / m_v \) has transcendence degree \(h - 1 \) over its subfield \(R_p / pR_p \). It is equivalent that \(R_v \) be essentially of finite type over \(R \), or that \(v \) be a Rees valuation of some \(R \)-ideal \(I \), i.e., that \(R_v \) be \(R \)-isomorphic to the local ring of a point on the normalized blowup \(\overline{Y}_I := \text{Proj}(\oplus_{n \geq 0} \overline{I}^n) \), where \(\overline{I}^n \) is the integral closure of \(I^n \). Such a \(v \) is a discrete rank-one valuation. (See [A, p. 300, Thm. 1 (4) and p. 336, Prop. 3]. Note also that \(R \), being universally catenary, satisfies the “dimension formula” [EGA III, (5.6.4) and (5.6.1) (c)]; and that \(\overline{Y}_I \) is of finite type over \(R \) [R, p. 27, Thm. 1.5].)

Definition (1.1). The adjoint of an \(R \)-ideal \(I \) is the ideal
\[\widetilde{I} := \bigcap_v \{ r \in K \mid v(r) \geq v(I) - v(J_{R_v/R}) \} \]
where the intersection is taken over all prime divisors \(v \) of \(R \), and for any essentially finite-type \(R \)-subalgebra \(S \) of \(K \), the Jacobian ideal \(J_{S/R} \) is the 0-th Fitting ideal of the \(S \)-module of Kähler differentials \(\Omega^1_{S/R} \).

Remarks (1.2). (a) \(\widetilde{I} \subset R \) because \(R \) is the intersection of its localizations at height one primes, and each such localization is the valuation ring of a \(v \) for which \(v(J_{R_v/R}) = 0 \). Hence
\[\widetilde{I} = \bigcap_v \{ r \in R \mid v(r) \geq v(I) - v(J_{R_v/R}) \} \]
where the intersection is taken over all prime divisors \(v \) such that \(v(I) > 0 \).

(b) Being an intersection of valuation ideals, \(\widetilde{I} \) is integrally closed; and if \(\bar{I} \) is the integral closure of \(I \) then
\[I \subset \bar{I} \subset \widetilde{I} = \widetilde{\bar{I}}. \]

(c) For any \(x \in R \), we have \(\widetilde{xI} = x \widetilde{I} \). In particular, \(x \widetilde{R} = xR \).
(d) For any two \(R \)-ideals \(I, J \), we have \(\widetilde{JI} : I = \widetilde{J} \). In particular,
\[\widetilde{I^{n+1}} : I = \widetilde{I^n} \quad (n \geq 0). \]

(1.3). For any finite-type birational map \(f : Y \to \text{Spec}(R) \), we may—and will—identify \(\mathcal{O}_Y \) with a subsheaf of the constant sheaf \(K \) on \(Y \), so that the

\[\text{We consider two valuations with the same valuation ring to be identical.}\]
stalks \(\mathcal{O}_{Y,y} \) \((y \in Y)\) are all \(R \)-subalgebras of \(K \). If \(g: Z \to \text{Spec}(R) \) is another such map which factors via \(f \), then \(g \) is uniquely determined by \(Z \) and \(Y \), and we say that \(Z \) dominates \(Y \). The relative Jacobian \(\mathcal{J}_f \) (or, less precisely, \(\mathcal{J}_Y \)) is the coherent \(\mathcal{O}_Y \)-module whose sections over any affine open \(\text{Spec}(A) \subset Y \) are given by

\[
H^0(\text{Spec}(A), \mathcal{J}_Y) = \mathcal{J}_{A/R}.
\]

We set

\[
\omega_Y := \mathcal{O}_Y: \mathcal{J}_Y \cong \mathcal{H}om_Y(\mathcal{J}_Y, \mathcal{O}_Y).
\]

If \(Y \) is normal, \(\omega_Y \) is a canonical relative dualizing sheaf for \(f \) [LS, p. 206, (2.3)].

For any proper birational \(f: Y \to \text{Spec}(R) \) with \(Y \) normal and \(IO_Y \) invertible, we set

\[
\widetilde{I}_Y := H^0(Y, I\omega_Y),
\]

the ideal obtained by restricting the intersection in Definition (1.1) to those \(v \) such that \(R_v \) is \(\mathcal{O}_{Y,y} \) for some \(y \in Y \). So \(\widetilde{I} \subset \widetilde{I}_Y \), and \(\widetilde{I}_Y \) is a “decreasing” function of \(Y \) in the sense that for any proper birational \(g: Z \to Y \) with \(Z \) normal, we have \(\widetilde{I}_Z \subset \widetilde{I}_Y \). For any prime divisor \(w \), \(R_{w} \) is the local ring of a point on some such \(Z \); so the intersection of all \(\widetilde{I}_Z \) is just \(\widetilde{I} \).

Proposition (1.3.1). For any \(Y \) as above and having pseudo-rational singularities (for example, \(Y \) regular), \(\widetilde{I}_Y = \widetilde{I} \). If such a \(Y \) exists then for any multiplicative system \(M \) in \(R \), \(\widetilde{I}R_M = \widetilde{I}_R \).

Proof. The pseudo-rationality assumption forces \(g_*(I\omega_Z) = I\omega_Y \) for all \(g: Z \to Y \) as above (by [LT, p. 107, Corollary], and since \(IO_Y \) is invertible), whence

\[
\widetilde{I}_Z = H^0(Z, I\omega_Z) = H^0(Y, g_*I\omega_Z) = \widetilde{I}_Y,
\]

and \(\widetilde{I}_Y = \cap Z \widetilde{I}_Z = \widetilde{I} \). The rest follows from compatibility of \(H^0(Y, I\omega_Y) \) with localization on \(R \). \(\square \)

Remarks (1.3.2). (a) That a regular \(Y \) with \(IO_Y \) invertible always exists has been announced by Spivakovsky, but details have not appeared at the time of this writing. For the equicharacteristic zero case, see [H].

(b) In dimension 2, every normal \(Y \) birationally dominating \(\text{Spec}(R) \) has pseudo-rational singularities, [L1, p. 212, §9], [LT, p. 103, Example (a)]. So in Prop. (1.3.1), we could take \(Y \) to be the normalized blowup of \(I \).

(c) Another case in which we could take \(Y \) in (1.3.1) to be the blowup of \(I \) is when \(I = (x_1, \ldots, x_r, y) \) where \((x_1, \ldots, x_r)\) is a regular sequence such that \(R/(x_1, \ldots, x_r)R \) is still regular [LS, p. 219, Proposition, (iii)]. Here \(\widetilde{I}^n_Y \) \((n \geq 0)\) is easily calculated: indeed, if \(L \) is any \(R \)-ideal generated by a regular sequence of length \(\ell \), and such that all the powers of \(L \) are integrally closed, then the blowup \(X \) of \(L \) is normal and \(\mathcal{J}_X = (L^{\ell-1} \mathcal{O}_X)^2 \) so that

\[
\widetilde{I}^n_X = R \quad \text{for} \quad (n < \ell)
\]

\[
= L^{n-\ell+1} \quad \text{for} \quad (n \geq \ell).
\]

\(^2 \)Because for a regular sequence \((a_1, \ldots, a_\ell)\), we have, e.g.,

\[
R_{\ell} := R[a_1 a_\ell, \ldots, a_{\ell-1} a_\ell] \cong R[t_1, \ldots, t_{\ell-1}]/(a_\ell t_1 - a_1, \ldots, a_\ell t_{\ell-1} - a_{\ell-1}),
\]

and so \(\mathcal{O}_{X,a} \) is generated by the differentials \(d(a_i/a_\ell) \) subject to \(d(a_\ell/a_\ell) = 0 \) \((1 \leq i < \ell-1)\).
For $L = I$, we have $\ell = r + 1$ or r.

(1.4). The following is clearly related to the Briançon-Skoda theorem in [LS, p. 204, Thm. 1”]. (Recall the above-given inclusion $\bar{I} \subset \tilde{I}$, where \bar{I} and \tilde{I} are the integral closure and adjoint, respectively, of the R-ideal I.)

We say that I is ℓ-generated ($\ell \geq 0$) if I is generated by ℓ elements.

Theorem (1.4.1). For any ℓ-generated ideal I in a regular noetherian domain R:

(i) $I^{n+\ell-1} \subset I^n$ for all $n \gg 0$.

(ii) If the graded ring $\text{gr}_I R := \oplus_{n \geq 0} I^n/I^{n+1}$ contains a homogeneous regular element of positive degree, then (i) holds for all $n \geq 1$.

(iii) $\tilde{I}^{n+\ell} \subset \tilde{I}^n$ for all $n \geq 0$.

Proof. If $Y_0 := \text{Proj}(\oplus_{n \geq 0} I^n)$ is the blowup of I, and Y is its normalization, then as in [LS, p. 200, Thm. 2 and proof of Corollary], we have $I^{\ell-1}\omega_Y \subset \mathcal{O}_{Y_0}$ (all inside the constant sheaf K on Y_0). Hence

$$\tilde{I}^{n+\ell-1} \subset H^0(Y, I^{n+\ell-1}\omega_Y) \subset H^0(Y_0, I^n\mathcal{O}_{Y_0}) = \bigcup_{j \geq 0} I^{n+j} : I^j.$$

For $n \gg 0$, $H^0(Y_0, I^n\mathcal{O}_{Y_0}) = I^n$ (by e.g., [EGA III, (2.3.1)]),3 proving (i).

If $\text{gr}_I R$ has a homogeneous regular element of positive degree, then $I^{n+j} : I^j = I^n$, proving (ii).

In (i), the restriction of n to sufficiently large values is annoying, and may well be unnecessary (see Conjecture (1.6) below). If so, then (iii)—and the following ungainly argument—would be superfluous.

The polynomial ring $R[t]$ is still regular. An immediate consequence of the following Lemma is that for any R-ideal L, $\tilde{L}R[t] \subset LR[t]$. (The adjoints are taken in R and $R[t]$ respectively.) With $I' := (I, t)R[t]$, we have that $\text{gr}_{I'} R[t] \cong (\text{gr}_I R)[t]$ has a regular element (namely t) of degree 1, and we can apply (ii) to get $I^{n+\ell} \subset I^n$ for all $n \geq 2$; and since $I^{n+1}R[t] \subset (I^{n+1}R[t])^\sim \subset I^{n+\ell}$ and $I^{n+1} \cap R = I^n$, therefore (iii) results.

Lemma (1.4.2). Let w be a prime divisor of the polynomial ring $R[t]$ and let v be the restriction of w to K, the fraction field of R. Then v is a prime divisor of R, and for any R-ideal L,

$$v(L) - v(J_{R_v/R}) \geq w(L) - w(J_{R_w/R}[t]).$$

Proof. Let (R_w, m_w) and (R_v, m_v) be the (discrete) valuation rings of w and v respectively. Set $q := m_w \cap R_v[t]$. There are two cases to consider.

(1) $q = m_v R_v[t]$. Then the localization $R_v[t]/q$ is a discrete valuation ring contained in, and hence equal to, R_v. Thus $R_w/m_w = (R_w/m_w)(t)$ has transcendence degree (t.d.) 1 over R_w/m_w.

(2) $q \supsetneq m_v R_v[t]$, whence q is maximal, of height 2, and $R_v[t]/q$ is algebraic over R_v/m_v. Since R_w is essentially of finite type over $R[t]$, hence over $R_v[t]$, therefore R_w is a prime divisor of $R_v[t]$; and so R_w/m_w has t.d. 1 over $R_v[t]/q$. Thus, again, R_w/m_w has t.d. 1 over R_v/m_v.

Now set $p' := m_w \cap R[t]$ and $p := p' \cap R = m_v \cap R$, so that R_w/m_w has t.d. height $(p') - 1$ over $R[t]/p'$, and, by the preceding remarks, the t.d. of R_v/m_v over R/p is height $(p') - 2 +$ the t.d. of $R[t]/p'$ over R/p. It follows then from [ZS, p. 323, Prop. 1A] that R_v/m_v has t.d. height $(p) - 1$ over R/p, and so v is indeed a prime divisor of R.

3For a more elementary proof, apply [ZS, pp. 154–155, Lemmas 4 and 5] to the ideal $\mathfrak{B} := (0)$ in $\text{gr}_I R$ to find an integer q such that for any n and any $x \in H^0(Y_0, I^n\mathcal{O}_{Y_0}) \setminus I^n$, $x \notin I^q$ (because the leading form of x annihilates all homogeneous elements of large degree ...). Such an x must lie in $\mathfrak{B}_{\tilde{I}}$. But there exists p such that $\mathfrak{B}_{\tilde{I}}^{n+p} \subset \tilde{I}^n$, and therefore $p \leq q$.

The last assertion follows from the relation

\[J_{R_w/R[t]} = J_{R_w/R} J_{R_w[t]/R[t]} = J_{R_w/R} J_{R_w/R}. \]

(See [LS, p. 201, (1.1)] for the first equality.) \(\square \)

Suppose now that \(R \) is local, with maximal ideal \(m \). For an \(R \)-ideal \(I \), the analytic spread \(\ell(I) \) is the dimension of the ring \(\oplus_{n \geq 0} I^n/mI^n \). When \(R/m \) is infinite, \(I \) has an \(\ell(I) \)-generated reduction \(I_0 \subset I \), i.e., \(I_0I^n = I^{n+1} \) for some \(n \geq 0 \).

Corollary (1.4.3). For \(R \) local, assertions (i) and (iii) in Theorem (1.4.1) hold with \(\ell \) the analytic spread of \(I \). And if \(I \) has an \(\ell \)-generated reduction \(I_0 \) such that \(gr_{I_0}R \) contains a homogeneous regular element of positive degree, then (i) holds for all \(n \geq 0 \).

Proof. By arguing as in the proof of (1.4.1)(iii), with \(R[t] \) replaced by its localization \(S := R[t]/mR[t] \), and \(I' := IS \), we reduce to the case where \(R/m \) is infinite. Then we can apply (1.4.1) to an \(\ell \)-generated reduction \(I_0 \), noting that for any valuation \(v \) such that \(R_v \) contains \(R \) we have \(v(I_0) = v(I) \), whence \(\widetilde{I}_p = \widetilde{I}^p \) for all \(p \geq 0 \). \(\square \)

The following statement was conjectured by Huneke.

Corollary (1.4.4). If \((R, m) \) is a \(d \)-dimensional regular local ring and \(I \) is an \(m \)-primary ideal, then for all \(n \geq 1 \),

\[\widetilde{I}^{n+d-1} : m^{d-1} \subset \widetilde{I}^n. \]

Proof. Replacing \((R, I) \) by \((S := R[t]/mR[t], IS) \) if necessary, we may assume that \(R/m \) is infinite. Then \(I \) has a \(d \)-generated reduction \(I_0 \) such that \(gr_{I_0}R \) is a polynomial ring in \(d \) variables over \(R/I_0 \); so Corollary (1.4.3) gives \(\widetilde{I}^{n+d-1} : \subset \widetilde{I}^n. \) Thus it suffices to show that \(\widetilde{I}^{n+d-1} : m^{d-1} \subset \widetilde{I}^{n+d-1} \), for which it’s clearly enough (see (1.2) (a)) that for any prime divisor \(v \) of \(R \) such that \(m_v \cap R = m \),

\[v(J_{R_v/R}) \geq v(m^{d-1}). \]

But \(R_v \) contains \(R' := R[x_2/x_1, \ldots, x_d/x_1] \) for some generating set \((x_1, x_2, \ldots, x_d) \) of \(m \), and then

\[J_{R_v/R} = J_{R_v/R'} J_{R'/R} = m^{d-1} J_{R_v/R'} \]

(see [LS, p. 201, (1.1) and top of p. 202]), which gives the desired result. \(\square \)

Lemma (1.5). Let \(R \) be a regular noetherian domain, let \(I \) be an \(R \)-ideal, and set \(G := \oplus_{n \geq 0} I^n, \widetilde{G} := \oplus_{n \geq 0} \widetilde{I}^n. \) Then \(\widetilde{G} \) is a finitely generated graded \(G \)-module, and hence there is an \(n_0 \) such that

\[\widetilde{I}^{n+1} = \widetilde{I}^n \quad \text{for all} \quad n \geq n_0. \]

Proof. \(\widetilde{G} \) is a graded \(G \)-module because, clearly, \(I^p \widetilde{I}^q \subset \widetilde{I}^{p+q} \) \((p, q \geq 0) \). Now just observe, with \(Y \) the normalized blowup of \(I \), that by (1.3), \(\widetilde{G} \) is a submodule of \(\oplus_{n \geq 0} H^0(Y, I^n \omega_Y) \), which is finitely generated over \(G \) [EGA III, (3.3.2)]. \(\square \)

As we’ll see in (2.3) below, the following refinement of Lemma (1.5) holds true when \(R \) is essentially of finite type over a characteristic-zero field, or when \(\dim R = 2 \). (The 2-dimensional case also results from Prop. (3.1.2); see also Prop. (4.2) of [HS]. For another example, see Remark (1.3.2)(a)).
Conjecture (1.6). Let R be a regular local ring, and let I be an R-ideal of analytic spread ℓ. Then

$$\widehat{I^{n+1}} = I\widehat{I^n} \quad \text{for all } n \geq \ell - 1.$$

We illustrate the usefulness of this conjecture (when it holds) by indicating how it implies some Briançon-Skoda-type theorems recently proved for equicharacteristic regular local rings by Aberbach and Huneke. These theorems are all of the form

$$I_{n+\ell-1} \subset I_n \quad (n > 0),$$

where the “coefficient ideal” A depends only on I. Under the assumption that (1.6) holds, we need only show that $\widehat{I_{\ell-1}} \subset A$ in order to get the stronger assertion

$$\widehat{I_{n+\ell-1}} = I_n \widehat{I_{\ell-1}} \subset I_n A.$$

(1.6.1). In [AH2] A is taken to be the sum of all ideals A' such that $IA' = \widehat{IA'}$. By (1.6) and (1.2)(b), $I\widehat{I_{\ell-1}} = I_{\ell} = \widehat{I_{\ell-1}}$, so that $\widehat{I_{\ell-1}} \subset A$.

(1.6.2). In [AH1, p. 350, Thm. 3.3], A is taken to be the intersection of the primary components of $I_{\ell-h}$ belonging to the minimal primes p_1, \ldots, p_e of I, where $h := \max_i h_i := \max_i \text{height}(p_i)$. (To check that $\ell \geq h$, just localize at each p_i.)

To show that $\widehat{I_{\ell-1}} \subset A$, localize at $p = p_i (1 \leq i \leq e)$, and note that

$$\widehat{I_{\ell-1}} R_p \subset I\widehat{I_{\ell-1}} R_p \subset I_{\ell-h_i} \subset I_{\ell-h},$$

where the first inclusion is elementary, and the second is given by (1.4.1)(ii).

Moreover, if (1.6) holds, then, with $I_p := IR_p$, we have

$$\widehat{I_{\ell-1}} = I_{\ell-h} \widehat{I_{p_{i=1}h_i}} = I_{\ell-h} \widehat{I_{p_{i=1}h_i-1}};$$

and hence if $\widehat{I_{\ell-1}} R_p = \widehat{I_{\ell-1}}$ for all p_i (see Prop. (1.3.1)), then $\widehat{I_{\ell-1}}$ is contained in the intersection of the primary components of $I_{\ell-h} \widehat{I_{h-1}}$ belonging to the p_i.

(1.6.3). In [AHT, Thm. 7.6], the above-mentioned Theorem 3.3 of [AH1] is strengthened. Here the inductive description of A is somewhat complicated. So suffice it to say that the inclusion $\widehat{I_{\ell-1}} \subset A$ can be established by alternately localizing at suitable associated primes of height i and applying (1.6), as i goes, one step at a time, from $\ell - 1$ down to the height of I.

2. A vanishing conjecture. Again, let I be an ideal in a regular local ring (R, m). Throughout this section we make the following assumption—which is satisfied at least over varieties in characteristic zero [H, p. 143, Cor. 1], or whenever $\dim R = 2$, as follows e.g., from the Hoskin-Deligne formula, see [L3, p. 223, (3.1.1)].

Assumption (2.1). There exists a map $f: Y \to \text{Spec}(R)$ which factors as a sequence of blowups with nonsingular centers, such that $I\mathcal{O}_Y$ is invertible.

The basic conjecture (1.6) will be deduced from the following vanishing conjecture.
Vanishing Conjecture (2.2). With I and $f: Y \to \text{Spec}(R)$ as above,

$$H^i(Y, I\omega_Y) = 0 \text{ for all } i > 0.$$

Remarks(2.2.1). (a) Cutkosky has proved the vanishing conjecture for local rings essentially of finite type over a field of characteristic zero, see [C]. He uses Kodaira vanishing, which fails, in general, in positive characteristic—but that does not preclude the conjecture holding for special maps such as f.

(b) It was noted in (1.3) that ω_Y is a dualizing sheaf for f. By duality [L2, p. 188], the conjecture is equivalent to the vanishing of $H^i_E(Y, (IO_Y)^{-1})$ for all $i < \dim R$, where $E := f^{-1}\{m\}$ is the closed fiber. For $d = 2$, this dual assertion is proved in [L2, p. 177, Thm. 2.4].

(c) For $I = R$, the conjecture is a form of Grauert-Riemenschneider vanishing, and is readily proved by induction on the number of blowups making up the map f. For arbitrary I, the conjecture is equivalent to the vanishing of $H^i(Y, Q)$ for all $i > 0$ and every invertible quotient Q of a finite direct sum of copies of ω_Y (because IO_Y is a quotient of a direct sum of copies of O_Y ...)

Moreover, if $g: Z \to \text{Spec}(R)$ is the normalized blowup of I and $h: Y \to Z$ is the domination map, then using the Leray spectral sequence for $f = gh$, and ampleness of IO_Z, one shows that the vanishing of $R^ih_*\omega_Y$ ($i > 0$) is equivalent to the vanishing of $H^i(Y, I^n\omega_Y)$ for all $n \gg 0$. In other words, Conjecture (2.1) is somewhat stronger than Grauert-Riemenschneider vanishing for “sandwiched singularities.”

(d) Theorem (4.1) of [L6, p. 153] shows that there is an R-ideal L such that Y in (2.1) is the blowup of L, i.e., the Proj of the Rees ring $R[Lt]$ (a indeterminate), and such that furthermore $R[Lt]$ is Cohen-Macaulay (CM). This leads to another conjecture which can be shown to imply the vanishing one:

CM Conjecture. Let $L = II'$, with L, I and I' integrally closed R-ideals, and assume that $R[Lt]$ is CM and normal. Then for some $e > 0$, the ideal $IR[L^{et}]$ (which is divisorial) is CM as an $R[L^{et}]$-module.

(2.3). We show next that Conjecture (1.6) follows from the vanishing conjecture.5 Thus (1.6) does hold for local rings of smooth points of algebraic varieties in characteristic zero, or when $\dim R = 2$. (See the preceding remarks (a) and (b).)

We first reduce to the case where R/m is infinite by passing, as usual, to $S := R[t]_{m,R[t]}$. We have already seen, in proving (1.4.1)(iii), that for any R-ideal L, $\widetilde{LS} \subset \widetilde{LS}$; but now we need equality, which we get by applying Prop.(1.3.1) to $Y \otimes_R S$, with Y as in (2.1). (I don’t know a more elementary way!)

Now let $I_0 = (a_1, \ldots, a_t)R$ be a reduction of I, so that $I_0O_Y = IO_Y$. Let F be the direct sum of ℓ copies of $(I_0O_Y)^{-1}$, and let $\sigma: F \to O_Y$ be the O_Y-homomorphism defined by the sequence (a_1, \ldots, a_t). Then we have a Koszul complex

$$K(F, \sigma): 0 \to \Lambda F \to \Lambda^{\ell-1}F \to \cdots \to \Lambda^1F \xrightarrow{\sigma} O_Y \to 0$$

(see [LT, p. 111]) which is locally split, so that $K(F, \sigma) \otimes I^{n+1}\omega_Y$ ($n \geq \ell - 1$) is exact. By (2.2), and with $H^i(-) := H^i(Y, -)$,

$$H^1(I^{n-1}\omega_Y) = H^2(I^{n-2}\omega_Y) = \cdots = H^{\ell-1}(I^{n+1-\ell}\omega_Y) = 0.$$
Hence, as in [LT, p. 112, Lemma (5.1)] we can conclude that

$$H^0(I^{n+1}\omega_Y) = IH^0(I^n\omega_Y),$$

i.e., by Proposition (1.3.1), $\tilde{I}^{n+1} = \tilde{I}^n$. □

3. Dimension 2. Except in Lemma (3.2.1), (R, m) will be a two-dimensional regular local ring and I will be an m-primary R-ideal. The purpose of this section is to give a number of alternative descriptions of \tilde{I}.

(3.1). It is pointed out in the footnote on p. 235 of [L4] that when I is a simple integrally closed ideal, the definition of the adjoint of I given in [L4, p. 229] and [L5, p. 299] agrees with the one in this paper (see Proposition (1.3.1)). Let us extend this result—more specifically, the not-quite-correctly stated Corollary (4.1) of [L4, p. 233]—to arbitrary I.

The point basis of I is the family of integers $\text{ord}_S(I^S)_{S \supset R}$ where S runs through all two-dimensional regular local rings between R and its fraction field, and $I^S := (\gcd(IS))^{-1}IS$, the S-transform of I. There are only finitely many S for which $\text{ord}_S(I^S) \neq 0$; these are called the base points of I [L4, p. 225]. Two m-primary ideals I and I' have the same point basis iff their integral closures coincide [L3, p. 209, (1.10)]

Consider a sequence of regular schemes

$$\text{Spec}(R) = X_{0} \leftarrow X_{1} \leftarrow \cdots \leftarrow X_{n+1} = X$$

where $f_i: X_{i+1} \to X_i$ is obtained by blowing up a point on X_i whose local ring (S_i, m_i) is a base point of I, and where $I\mathcal{O}_X$ is invertible. Denote by $m_i\mathcal{O}_X$ the invertible \mathcal{O}_X-ideal whose stalk at $x \in X$ is $m_i\mathcal{O}_{X,i}$ if $\mathcal{O}_{X,i} \supset S_i$, and $\mathcal{O}_{X,i}$ otherwise. Then

$$\omega_X^{-1} = \prod_{i=0}^{n} m_i\mathcal{O}_X,$$

see the end of the proof of Corollary (1.4.4), or the footnote in [L4, p. 235]. Let $E_i \cong \mathbb{P}^1_{S_i/m_i}$ be the curve on X corresponding to the m_i-adic valuation; and let $[S_i:R]$ be the degree of the field extension $S_i/(m_i)/(R/m)$. The intersection number $(E_i \cdot E_i)$ is $-d_i[S_i:R]$ for some positive integer d_i, and $d_i = 1$ iff I^{S_i} generates an invertible ideal on X_{i+1}, i.e., iff I^{S_i} is of the form m_i^d ($d > 0$), in which case $(I\mathcal{O}_X \cdot E_i) = d[S_i:R]$. Moreover, as in [L4, p. 235],

$$(\omega_X \cdot E_i) = -(E_i \cdot E_i) - 2[S_i:R].$$

It follows that $(I\omega_X \cdot E_i) \geq 0$ for all i, and hence, by [L1, p. 220, Thm. (12.1)(ii)], $I\omega_X$ is generated by its global sections, i.e., by \tilde{I}, see Prop. (1.3.1). Thus:

(3.1.1) $$I\omega_X = \tilde{I}\mathcal{O}_X \quad \text{i.e.,} \quad \tilde{I}\mathcal{O}_X = \tilde{I} \prod_{i=0}^{n} m_i\mathcal{O}_X.$$

For any $S \supset R$, we have then

$$\text{ord}_S(I) - \text{ord}_S(\tilde{I}) = \sum \text{ord}_S(m_i).$$
On the other hand, setting, for any two-dimensional regular local \(T \) between \(R \) and its fraction field, \(r_T := \text{ord}_T(I^T), \tilde{r}_T := \text{ord}_T(\tilde{I}^T) \), we have

\[
\text{ord}_S(I) - \text{ord}_S(\tilde{I}) = \sum_{T \subset S} \text{ord}_S(m_i)(r_T - \tilde{r}_T),
\]

see [L4, p. 301, Remark (1)]. By induction on the length of the unique sequence of quadratic transforms \(R := R_0 \subset R_1 \subset \cdots \subset S \) (see [A, p. 343, Thm. 3]), we deduce that

\[
r_S - \tilde{r}_S = 1 \quad (S = S_1, S_2, \ldots, S_n)
= 0 \quad \text{otherwise}.
\]

But since \(S_1, S_2, \ldots, S_n \) are precisely the base points of \(I \), i.e., those \(S \) such that \(r_S > 0 \), what this amounts to is that \(\tilde{r}_S = (\max(0, r_S - 1)) \). Thus:

Proposition (3.1.2). \(\tilde{I} \) is the unique integrally closed ideal whose point basis is

\[
(\max(0, \text{ord}_S(I^S) - 1))_{S \supset R}.
\]

For any two-dimensional regular local \(T \) between \(R \) and its fraction field, the point basis of the transform \(I^T \) is obtained from that of \(I \) by restriction to those \(S \) which contain \(T \). Moreover, a theorem of Zariski states that \(I^T \) is integrally closed if \(I \) is (see e.g., [L5, p. 300]). We have then the following generalization of [L4, p. 231, Thm. (3.1)]:

Corollary (3.1.3). Adjoint commutes with transform: for all \(T \), \(\tilde{I}^T = \tilde{I}^T \).

(3.2). For the next result, let \(I \) be any non-zero integrally closed ideal in a \(d \)-dimensional regular local ring \(R \), such that \(I \) has a reduction \(I_0 \) generated by a regular sequence \((a_1, a_2, \ldots, a_d) \). Let \(Y_0 \) be the blowup up of \(I_0 \), let \(\pi: Y \to Y_0 \) be the normalization map, and let \(\mathcal{C} \) be the conductor of \(Y \) in \(Y_0 \). Then \(\mathcal{C} \) is independent of \(I_0 \):

Lemma (3.2.1). With the preceding notation, we have \(\mathcal{C} = I^{d-1}\omega_Y \).

Proof. Noting that \(Y_0 \to \text{Spec}(R) \) is a local complete intersection map (see footnote under (1.3.2)(c)), and arguing as on pp. 205–207 of [LS], we find that

\[
\pi_*\omega_Y = \mathcal{H}\text{om}(\pi_*\mathcal{O}_Y, \omega_{Y_0}) = \mathcal{H}\text{om}(\pi_*\mathcal{O}_Y, (I_0\mathcal{O}_{Y_0})^{1-d}),
\]

so that

\[
\pi_*I^{d-1}\omega_Y = \pi_*I_0^{d-1}\omega_Y = I_0^{d-1}\pi_*\omega_Y = \mathcal{H}\text{om}(\pi_*\mathcal{O}_Y, \mathcal{O}_{Y_0}) = \pi_*\mathcal{C},
\]

whence the assertion. \(\square \)

More can be said in the two-dimensional case.
Proposition (3.2.2). With the preceding notation, when \(d = \dim R = 2 \), \(\mathfrak{C} \) is generated by its global sections \(H^0(Y, \mathcal{C}) = H^0(Y, I \omega_Y) = \tilde{I} \), i.e., \(\mathfrak{C} = \tilde{I} \mathcal{O}_Y \).

Proof. Choose \(X \) as in (3.1), and let \(g : X \to Y \) be the domination map (which exists because \(\tilde{I} \mathcal{O}_X \) is invertible). As in the proof of Prop. (1.3.1), \(g_*(I \omega_X) = I \omega_Y = \mathfrak{C} \), the last equality by Lemma (3.2.1). Also, by [L1, p. 209, Prop. (6.5)], the \(\mathcal{O}_Y \)-ideal \(\tilde{I} \mathcal{O}_Y \) is integrally closed. Hence, and by (3.1.1),

\[
\tilde{I} \mathcal{O}_Y = g_*(\tilde{I} \mathcal{O}_X) = g_*(I \omega_X) = I \omega_Y = \mathfrak{C},
\]

whence the assertion. □

Here is another characterization of \(\tilde{I} \).

Proposition (3.3). Let \(I \) be an \(m \)-primary integrally closed ideal in a regular local ring \(R \) of dimension 2, let \(f : Y \to \text{Spec}(R) \) be the normalized blowup of \(I \), and let \(I_0 = (a, b)R \) be a reduction of \(I \). Then with \(D \) an injective hull of \(R/m \), we have a duality isomorphism

\[
R/\tilde{I} \cong \text{Hom}_R(I/I_0, D).
\]

Hence the \(R \)-module \(I/I_0 \) depends only on \(I \), and its annihilator \(I_0 : I \) is just \(\tilde{I} \).

Proof. Recall that \(H^1(Y, \mathcal{O}_Y) = 0 \) [L1, p. 199, Prop. (1.2)]. With \(\mathcal{I} := I \mathcal{O}_Y = (a, b)\mathcal{O}_Y \), we have the exact Koszul complex

\[
0 \to \mathcal{I}^{-1} \xrightarrow{-(b:a)} \mathcal{O}_Y \oplus \mathcal{O}_Y \xrightarrow{(a,b)} \mathcal{I} \to 0,
\]

whence an exact homology sequence, with \(H^\bullet(-) := H^\bullet(Y, -) \),

\[
R \oplus R = H^0(\mathcal{O}_Y \oplus \mathcal{O}_Y) \xrightarrow{(a,b)} H^0(\mathcal{I}) = I \to H^1(\mathcal{I}^{-1}) \to H^1(\mathcal{O}_Y \oplus \mathcal{O}_Y) = 0,
\]

yielding

\[
I/I_0 \cong H^1(\mathcal{I}^{-1}).
\]

We already noted that \(H^1(\mathcal{O}_Y) = 0 \), and since \(f \) has fibers of dimension < 2 therefore \(H^2(\mathcal{O}_Y) = 0 \); so

\[
H^1(\mathcal{I}^{-1}) \cong H^1(\mathcal{I}^{-1}/\mathcal{O}_Y).
\]

Further, with \(E := Y \otimes_R (R/m) \) the closed fiber, we have that \(\mathcal{I}^{-1}/\mathcal{O}_Y \) vanishes on \(U := Y \setminus E \cong \text{Spec}(R) \setminus \{m\} \). We conclude that

\[
H^1_E(\mathcal{I}^{-1}/\mathcal{O}_Y) \cong H^1(\mathcal{I}^{-1}/\mathcal{O}_Y) \cong I/I_0.
\]

Denoting the dualizing functor \(\text{Hom}_R(-, D) \) by \(-' \), we have, by [L2, p. 188],

\[
H^2_E(\mathcal{I}^{-1}) \cong \text{Ext}^0(\mathcal{I}^{-1}, \omega_Y)' \cong H^0(\mathcal{I} \otimes \omega_Y)' = (\tilde{I})',
\]

and similarly

\[
H^2_E(\mathcal{O}_Y) \cong \text{Ext}^0(\mathcal{O}_Y, \omega_Y)' \cong H^0(\omega_Y)' = R'.
\]

Recall from (2.2.1)(b) that \(H^2_E(\mathcal{I}^{-1}) = 0 \). So there is an exact sequence

\[
0 \to H^1_E(\mathcal{I}^{-1}/\mathcal{O}_Y) \to H^2_E(\mathcal{O}_Y) \to H^2_E(\mathcal{I}^{-1}) \to 0
\]

whose dual is an exact sequence

\[
0 \to \tilde{I} \to R \to \text{Hom}_R(I/I_0, D) \to 0
\]

which gives the desired conclusion. □
ADJOINTS OF IDEALS IN REGULAR LOCAL RINGS

References

[A] S. S. Abhyankar, On the valuations centered in a local domain, Amer. J. Math. 78 (1956), 321–348.

[AH1] I. Aberbach, C. Huneke, An improved Briançon-Skoda theorem with applications to the Cohen-Macaulayness of Rees algebras, Math. Annalen 297 (1993), 343–369.

[AH2] , A theorem of Briançon-Skoda type for equicharacteristic regular local rings, in preparation.

[AHT] , N. T. Trung, Reduction numbers, Briançon-Skoda Theorems, and the depth of Rees algebras, Compositio Math. (to appear).

[C] S. D. Cutkosky, A vanishing theorem for local rings, Math. Research Letters (???) (1994).

[EGA] A. Grothendieck and J. Dieudonné, Eléments de Géométrie Algébrique, III, Publications Math. IHES, 11 (1961).

[H] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Annals of Math. 79 (1964), 109–326.

[HS] C. Huneke and I. Swanson, The core of ideals in two-dimensional regular local rings, preprint.

[L1] J. Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Publ. Math. IHES 36 (1969), 195–279.

[L2] , Desingularization of two-dimensional schemes, Annals of Math. 107 (1978), 151–207.

[L3] , On complete ideals in regular local rings, Algebraic Geometry and Commutative Algebra, vol. I, in honor of Masayoshi Nagata, Kinokuniya, Tokyo, 1988, pp. 203–231.

[L4] , Adjoints and polars of simple complete ideals in two-dimensional regular local rings, Bull. Soc. Math. Belgique 45 (1993), 224–244.

[L5] , Proximity inequalities for complete ideals in two-dimensional regular local rings, Contemporary Mathematics 159 (1994), 293–306.

[L6] , Cohen-Macaulayness in graded algebras, Math. Research Letters 1 (1994), 149–157.

[LS] and A. Sathaye, Jacobian ideals and a theorem of Briançon-Skoda, Michigan Math. J. 28 (1981), 199–222.

[LT] and B. Teissier, Pseudo-rational local rings and a theorem of Briançon-Skoda about integral closures of ideals, Michigan Math. J. 28 (1981), 97–116.

[R] D. Rees, A note on analytically unramified local rings, J. London Math. Soc. 36 (1961), 24–28.

[ZS] O. Zariski and P. Samuel, Commutative Algebra, vol. 2, van Nostrand, Princeton, 1960.