Clinical neurorestorative cell therapies: Developmental process, current state and future prospective

Hongyun Huang
Institute of Neurorestoratology, The Third Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
Beijing Hongtianji Neuroscience Academy, Beijing 100144, China

Lin Chen
Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine Beijing 100007, China

Gengsheng Mao
Institute of Neurorestoratology, The Third Medical Centre, Chinese PLA General Hospital, Beijing 100853, China

Hari Shanker Sharma
Int. Exp. CNS Injury & Repair, Neurobiology (MRC) & Neuroanatomy (UU), Uppsala University, University Hospital, Anesthesiology & Intensive Care Medicine, Dept. Surgical Sciences, Uppsala, Sweden

Follow this and additional works at: https://tsinghuauniversitypress.researchcommons.org/journal-of-neurorestoratology

Part of the Biomedical Engineering and Bioengineering Commons, Nervous System Diseases Commons, Neurology Commons, Neurosciences Commons, and the Neurosurgery Commons

Recommended Citation
Hongyun Huang, Lin Chen, Gengsheng Mao et al. Clinical neurorestorative cell therapies: Developmental process, current state and future prospective. Journal of Neurorestoratology 2020, 8(2): 61-82.

This Research Article is brought to you for free and open access by Tsinghua University Press: Journals Publishing. It has been accepted for inclusion in Journal of Neurorestoratology by an authorized editor of Tsinghua University Press: Journals Publishing.
Clinical neurorestorative cell therapies: Developmental process, current state and future prospective

Hongyun Huang1,2*, Lin Chen3, Gengsheng Mao3, Hari Shanker Sharma4

1 Institute of Neurorestoratology, The Third Medical Centre, Chinese PLA General Hospital, Beijing 100033, China
2 Beijing Hongtianji Neuroscience Academy, Beijing 100144, China
3 Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine Beijing 100007, China
4 Int. Exp. CNS Injury & Repair, Neurobiology (MRC) & Neuroanatomy (UU), Uppsala University, University Hospital, Anesthesiology & Intensive Care Medicine, Dept. Surgical Sciences, Uppsala, Sweden

ARTICLE INFO
Received: 10 May 2020
Accepted: 28 May 2020
© The authors 2020. This article is published with open access at http://jnr.tsinghuaospitals.com

KEYWORDS
- cell therapy
- mature/functional cell
- neurorestoration
- olfactory ensheathing cell
- stem cell-derived cell
- therapy product

ABSTRACT
Clinical cell therapies (CTs) for neurological diseases and cellular damage have been explored for more than 2 decades. According to the United States Food and Drug Administration, there are 2 types of cell categories for therapy, namely stem cell-derived CT products and mature/functionally differentiated cell-derived CT products. However, regardless of the type of CT used, the majority of reports of clinical CTs from either small sample sizes based on single-center phase 1 or 2 unblinded trials or retrospective clinical studies showed effects on neurological improvement and the ability to either partially or temporarily thwart the deteriorating cellular processes of the neurodegenerative diseases. There have been only a few prospective, multicenter, randomized, double-blind placebo-control clinical trials of CTs so far in this developing novel area that have shown negative results, and more clinical trials are needed. This will expand our knowledge in exploring the type of cells that yield promising results and restore damaged neurological structure and functions of the central nervous system based on higher level evidence-based medical data. In this review, we briefly introduce the developmental process, current state, and future prospective for clinical neurorestorative CT.

1 Introduction
Clinical cell therapies (CTs) have been explored for neurological diseases for more than 20 years. Preliminary results showed that most CTs restore neurological structure and functions to some degree for a period of time. These results were promising and evoked hope in patients, health care providers, and the clinical scientific community. However, compared with the initial clinical results, follow-up studies of CTs exhibited more or less similar results without any breakthroughs. According to the United States Food and Drug Administration (USFDA)...
for cell categories (Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy Products; http://www.fda.gov/BiologiesBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/default.htm), CTs are divided into either stem cell-derived CT products and mature/functionally differentiated cell-derived CT products. In this review, we briefly emphasize the main clinical neurorestorative CTs with developmental processes, current state of the art, and future perspectives.

2 Developmental process and current state of mature/functional cells

Mature/functional cells used in the nervous system include neuronal cells, olfactory ensheathing cells (OECs), mononuclear cells (MNCs), mesenchymal stromal cells (MSCs), Schwann cells (SCs), fetal brain or spinal cord cells, and similar cell types.

2.1 Neuronal cells

In 2000, a study was reported indicating that transplanting neurons originating from teratocarcinoma showed functional improvements in patients with chronic stroke [1]. However, in a later randomized, observer-blinded trial, these cells did not show any effect [2]. Interestingly, when fetal porcine cells were transplanted into patients with basal ganglia infarcts, the patients exhibited significant neurological improvements [3].

2.2 Olfactory ensheathing cells

Human olfactory tissue has the ability to regenerate and restore itself throughout one's whole life [4]. Olfactory neurons show the characteristic of photoreceptor cells in vitro in special medium [5]. OECs share characteristic of SCs and oligodendrocytes and have a strong ability to secrete neurotrophic factors. These properties alleviate the lesioned area and improve the microenvironment to trigger or restore the damaged neurons through the neurorestorative mechanisms [6, 7]. Olfactory neurons and OECs are novel and the most potent cells for restoring the damaged neurological structure and functions in the central nervous system (CNS). Transplantation of OECs from aborted fetal olfactory bulbs were shown to improve neurological function in patients with chronic complete spinal cord injury (SCI) [8, 9]. This was further confirmed by Rabinovich et al., who found similar results for OEC transplantation in patients with SCI [10]. A majority of researchers observed similar positive results after OEC transplantation in SCI patients across the world [11–28]. However, only a few studies observed negative results [28, 29] which probably due to the damage caused by the procedure itself [30]. Using transplantation of olfactory mucosal autografts in SCI patients, Lima et al. showed some functional improvements [31, 32]. There have also been some negative reports using Lima's technique [33, 34]. On the other hand, Dlouhy et al. reported the formation of a mass after olfactory mucosal tissue transplantation [35]. Apart from SCI, other diseases or damage of the CNS, such as stroke, cerebral palsy (CP), amyotrophic lateral sclerosis (ALS), and brain injury, also exhibited neurorestorative effects after OEC therapy [36–50].

2.3 Mononuclear cells

Unmanipulated MNCs are generally derived from the bone marrow, cord blood, and the peripheral blood. Syková et al. transplanted autologous bone marrow MNCs (BMMNCs) and described neurological improvements in patients with subacute and chronic SCI [31]. Autologous undifferentiated peripheral blood MNCs also showed recovery of the somatosensory evoked potential responses [52]. Later several studies demonstrated similar results using
autologous BMMNC therapy [53–58]. In one study, autologous umbilical cord blood trans-
fusions were used for CP and showed signifi-
cant improvements in gross motor function
classification system [59]. Intrathecal infusion of
autologous BMMNCs in CP also improved
patients’ motor, sensory, cognitive, and speech
functions [60]. These observations have been
further confirmed by several reports of autolo-
gous BMMNCs in CP showing similar clinical
functional improvements [61–74]. However,
compared with placebo, Rah et al. reported that
intravenous infusion of peripheral blood MNCs
in a randomized, double-blind, crossover study
failed to show any significant effect on upper
extremity function in children with CP [75].

Autologous BMMNC therapy was also used
in children with brain injury and was found to
improve neurological function in most patients
[76]. Recently, BMMNC therapies have exhibited
similar positive effects for brain injury patients
[77–79].

Mendonça et al. found that intra-arterial
autologous BMMNC transplantation was safe in
acute ischemic stroke patients [80]. Autologous
BMMNC therapies for stroke exhibited similar
results in several later studies [81–99]. However,
in a multicenter, randomized trial with blinded
outcome assessment, Prasad et al. found that
autologous BMMNC therapy did not show
beneficial effects in subacute ischemic stroke
patients [100]. Similarly, a recent multicenter,
randomized, blinded assessment, sham-con-
trolled trial demonstrated that autologous bone
marrow-derived ALD-401 cells given through
the internal carotid artery in patients recovering
from ischemic stroke did not result in any
differences between the groups [101].

A series of reports showed that autologous
BMMNC therapy could improve quality of life
in muscular dystrophy patients [102–105], and
that it showed good benefit in autism [106], ALS
[107], and brachial plexus injury [108]. Hogen-
doorn et al. reported that local injection of
autologous BMMNCs in patients with traumatic
brachial plexus injury enhances muscle reinnerv-
ation and induce regeneration [109].

2.4 Mesenchymal stromal cells

Before 2005, the plastic-adherent cells isolated
from bone marrow and other sources were
widely named as either mesenchymal stem cells
or MSCs. However, the International Society for
Cellular Therapy stated that “the recognized
biologic properties of the unfractionated popul-
ation of cells do not seem to meet generally
accepted criteria for stem cell activity, rendering
the name scientifically inaccurate and potentially
misleading to the lay public” [110]. Thus, the
cells should be named MSCs, and their criteria
should be established [111, 112]. In this article,
we use MSCs to replace mesenchymal stem cells,
except when identified by special stem cell
markers or differentiated into target or effector
cells. MSCs have been used to treat patients
with varying diseases through intravascular,
subarachnoid, or direct injection into the lesion
area.

Data revealed that autologous MSCs were
safe and well-tolerated in patients with ALS [113,
114]. This treatment significantly slowed down
the linear decline of the forced vital capacity
[115]. Later, most clinical studies using MSCs
reported neurological stabilization or functional
improvements in ALS [116–124]. On the other
hand, in a few studies, using MSCs did not interferethe course of the disease [125].

Intravenous infusion of autologous MSCs
appeared to be a feasible and safe treatment to
improve functional recovery in stroke patients
[126], followed by a series similar results
[127–132]. A randomized, double-blind, placebo-
controlled, phase 2 trial of multipotent adult
progenitor cells derived from bone marrow for
patients with acute ischemic stroke did not show any difference in neurological recovery between CT and placebo groups at 90 days [133]. Using MultiStem from Athersys, Inc. and a protocol similar that reported by Hess et al. [134], Osanai et al. conducted another clinical trial [135].

A study using umbilical cord MSC transplantation reported improvement in sensory perception and mobility of a patient with SCI [136]. This finding was corroborated in later studies of MSC therapy resulting in similar results [137–148]. Interestingly, using the same setup, Chotivichit et al. reported a negative result [149]. Likewise, in a phase 3 study, Oh et al. also reported no improvement in neurological function in the majority of the patients in their study [150].

Autologous bone marrow MSC transplantation was applied in patients with paraplegia and was found to result in improved neurological function and enhanced quality of life [151–153], diffused axonal injury [154], neuropathic pain [155], post-traumatic syringomyelia [156], and Alzheimer's dementia [157].

In addition, there have been several explorations of MSCs in clinics that have shown remarkable neurorestorative effects with improved quality of life in patients with multiple system atrophy- and spinocerebellar ataxia [158, 159], MS [160, 161], brain injury [162, 163], CP [164–168], and autonomic nervous system dysfunctions [169].

In a randomized, placebo-controlled, multiple-dose study of human placenta-derived cells (PDA-001) in patients with multiple sclerosis (MS), Lublin et al. found that, although it was safe and well-tolerated, its efficacy was uncertain [170].

2.5 Fetal brain and spinal cord cells

Clinical studies have shown that intraspinal transplantation of fetal spinal cord cells for patients with ALS is safe [171–174] and capable of improving their functions [175]. However, it did not show differences in the mean rates of progression compared with historical control groups [176]. Transplantation of neural cell-derived fetal brain in a patient with primary torsion dystonia showed some functional improvement [177]. Liu et al. transplanted human fetal-derived retinal progenitor cells in patients with retinitis pigmentosa and reported significant improvement in the visual acuity [178].

2.6 Schwann cells

One study of autologous SC transplantation in patients with chronic thoracic SCI was completed. It was observed that, although it was safe, the procedure did not show any beneficial effects [179, 180]. On the other hand, transplantation of SCs could improve some functions in patients with SCI [181] and even in Parkinson's disease [182].

2.7 Combination cell therapies

Cells from immature nervous and hemopoietic tissues were subarachnoidally transplanted in patients with subsequent consequences of brain stroke and improved their neurological function [36]. They also found similar functional neurological improvements using this method in patients with CP and brain injury, including patients in a comatose state [37–40].

Patients with progressive muscular dystrophy improved their functions after bone marrow and umbilical cord blood MSC transplantations [183]. Intravenous transplantation or the intrathecal injection of human cord blood MNCs with umbilical cord-derived MSCs induced a marked benefit in autism patients [184]. Yazdani et al. found that autologous SC and bone marrow MSC cotransplantation was safe in patients with chronic SCI [185]. In a long-term follow-up study, the patients showed improvement in some sensation with bladder compliance, but no further motor function improvement [186].

Chen et al. described the amelioration of
neurological functions after multiple cell transplantation, including OEC, neural progenitor cells, umbilical cord MSCs, and SCs, in patients with chronic stroke [46]. Multiple cell therapy, including umbilical cord MSCs, SCs, neural progenitor cells, and OECs, was also able to improve or stabilize the neurological status of patients with multiple system atrophy [47]. A combination of OECs and SCs also showed some functional improvement in patients with chronic complete SCI [187].

Scaffold implantation after scar resection with autologous BMMNCs in patients with complete chronic SCI exhibited some functional improvements [188–190]. It should be strongly cautioned that the procedure of total scar resection deprives the ability of nerves in autorestoring possibilities. Currently, CT with intensive neuro-rehabilitation could partially restore standing and walking abilities in patients with complete chronic SCI with improved qualities of daily life [15].

Bone marrow MSC and BMMNC transplantation for spastic CP showed neurorestorative effects [191]. Local transplantation of autologous type 1 macrophages, autologous tissue-specific T helper 1 cell, and autologous muscular progenitor cells in patients with atrophied muscles exhibited progressive muscle volume increase with gradual replacement of hyperechogenic muscle tissues [192].

3 Developmental process and current state of stem cell-derived cell therapy products

Stem cell-derived CT products in the nervous system include hematopoietic stem cells (HSC), cells differentiated from embryonic stem cells (ESCs), induced pluripotent stem cells, mesenchymal stem cells, and neural stem cells (NSCs).

3.1 Hematopoietic stem Cells

Several research teams have started to use blood HSCs for MS since the last decade of the 20th century. Fassas et al. reported a distinct clinical benefit of peripheral blood HSC transplantation in patients with progressive MS [193] that was much better than any other treatments [194]. However, multicenter data has suggested significant mortality risks associated with HSC therapy [195].

Later, the teams of Burt et al. [196–201], Nash et al. [202–206], and others described similar results [207–240]. General autologous HSC transplantation may not be a curative treatment for MS, but it could prolong stabilization or changes in the aggressive course of the disease [241].

Because most of the studies have been conducted in small, single-center, phase 1 and 2 non-double-blind trials, it is important for a prospective, randomized, double-blind, controlled multicenter trial to assess the clinical efficacy of HSC transplantation for the treatment of highly active MS [242]. Unfortunately, there have been no such trials reported so far in this field.

HSCs could also improve the function and quality of life of patients with other nervous system diseases or damage. Umbilical cord blood HSC transplantation may restore dystrophy in muscles and improve the locomotor functions in patients with Duchenne muscular dystrophy [243, 244]. A direct injection of autologous bone marrow HSCs may improve movements and sensations in patients with chronic SCI and could effectively treat ALS patients [245, 246]. However, unmodified HSCs did not benefit patients with sporadic ALS [247]. Purified autologous leukapheresis derived CD34+ and CD133+ stem cells improved segmental sensory functions in patients with chronic SCI during long-term evaluation and follow-up [248]. After
mobilizing bone marrow CD34+ stem cells by granulocyte-colony stimulating factor, it may offer some benefit to stroke patients as well [249–253].

3.2 Cell differentiated from embryonic stem cells

In the first clinical trial from Geron regarding human ESCs, enrolled patients did not show any benefits [254]. Transplantation of human ESC-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy showed improvements in visual acuity [255]. Transplantation of an embryonic stem cell-derived retinal pigment epithelium patch in 2 patients with age-related macular degeneration resulted in a significant gain in visual acuity [256].

3.3 Cell differentiated from induced pluripotent stem cells

Autologous induced stem-cell-derived retinal cells for macular degeneration did not show any improvement in visual acuity [257].

3.4 Cell differentiated from mesenchymal stem cells

Neural stem cell-like cells derived from autologous HSCs have been used in patients with CP and have shown improvements in motor deficit [258]. Intraspinal delivery of bone marrow stromal cell-derived NSCs in patients with ALS resulted in a temporary stabilization for the first few months after injection, then gradually deteriorated [259]. Transplantation of cell-derived MSCs in patients with chronic stroke improves clinical outcome [260, 261]. Patients with severe traumatic brain injury showed improved neurological functions in different degrees after autologous MSC-derived NSC-like cell transplantation [262].

3.5 Cell differentiated from neural stem cells

After USFDA approval [263], Selden et al. applied HuCNS-SC transplantation in children with neuronal ceroid lipofuscinosis [264]. Levi et al. reported intramedullary transplantation HuCNS-SC in patients with SCI [265]. Later, in a similar single-blind, randomized proof-of-concept study the following year, cell transplantation was found below the required clinical efficacy threshold [266]. Some reports of neural stem and progenitor cell therapy showed their safety with or without neurological improvement in children with CP [267], SCI [268, 269] or stroke [270, 271].

3.6 Others

Autologous transplantation of CD133+ stem cells for patients with ALS was found to be safe [272, 273]. CD133-positive enriched bone marrow progenitor CT in children with CP showed possible short-term neurological improvements [274].

3.7 Combination cell therapy

Combined protocol of CT (autoimmune T and NSCs transdifferentiated from bone marrow MSCs) have been used in 2 patients with SCI and resulted in motor and sensory improvements [275]. In a follow-up study by the same team, it was observed that BMMNC in combination with T cell autologous NSCs therapy dramatically improves neurological function in patients with chronic complete SCI [276]. In addition, the autologous NSC treatment combined with T cells also showed some benefits in ALS patients [277]. Cotransplantation of neural stem and progenitor cells and MSCs resulted in improvements of some functions in patients with stroke [278]. Co-infusion of autologous adipose tissue-derived neuronal differentiated MSCs and bone marrow-derived
HSCs in a patient with post-traumatic brachial plexus injury showed sustainable recovery [279, 280]. Motor and objective sensory improvements have been noted using biological scaffold with autologous HSCs and platelet-rich protein in patients with SCI [281].

4 Reasons of limited effects

Compared with the clinical neurorestorative effects of OEC transplantation in early 2001, the overall effects of these CTs are now at the plateau or in the period of bottleneck without any breakthrough. So far, CT explorations have expanded horizontally, showing certain neurorestorative effects on a larger scale, e.g., different cell types, various implantation cell ways or methods, different implant sites, and implanting cell numbers together with different lesions or disease stages.

The following could be reasons for these limited effects: (1) unable to know which type of CTs are more potent candidates, or which method of transplantation or dosage is more suitable with the appropriate CT window for different diseases or damage, as well as whether repeated CTs have better effects; and (2) CT products with different quality control and standards have different effects [282].

5 Summary and future prospective

Varying CTs have been explored for use in CNS diseases over the past two decades. The majority of CTs have shown positive results, but most of them were small, single-center, phase 1 and 2 non-double-blind trials or retrospective clinical studies in CNS. At present, a few prospective, multicenter, randomized, double-blind placebo-control clinical trials of CTs have been conducted but did not show positive results. These CTs have been shown to restore damaged neurological function and/or structure in lower level evidence-based medical practice. Thus, more clinical trials of CTs in the CNS should be conducted in the future to explore the types of cells that have affirmative effects with a high level of evidence-based medical practice. Also, greater professional standards of CT products and quality control are needed in such clinical trials.

Conflict of interests

The authors declare they have no competing interests.

References

[1] Kondziolka D, Wechsler L, Goldstein S, et al. Transplantation of cultured human neuronal cells for patients with stroke. Neurology. 2000, 55(4): 565–569.
[2] Kondziolka D, Steinberg GK, Wechsler L, et al. Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J Neurosurg. 2005, 103(1): 38–45.
[3] Savitz SI, Dinsmore J, Wu JL, et al. Neurotransplantation of fetal porcine cells in patients with basal Ganglia infarcts: a preliminary safety and feasibility study. Cerebrovasc Dis. 2005, 20(2): 101–107.
[4] Holbrook EH, Wu EM, Curry WT, et al. Immunohistochemical characterization of human olfactory tissue. Laryngoscope. 2011, 121(8): 1687–1701.
[5] Lu W, Duang D, Ackbarkhan Z, et al. Differentiation of human olfactory mucosa mesenchymal stem cells into photoreceptor cells in vitro. Int J Ophthalmol. 2017, 10(10): 1504–1509.
[6] Huang HY, Wang HM, Chen L, et al. Influence factors for functional improvement after olfactory ensheathing cell transplantation for chronic spinal cord injury. Chin J Reparative Reconstr Surg. 2006, 20(4): 434–438.
[7] Huang HY, Raisman G, Sanberg PR, et al. Neurorestoratology. New York: Nova Biomedical, 2015.
[8] Huang HY, Wang HM, Xiu B, et al. Preliminary report of clinical trial for olfactory ensheathing cell
transplantation treating the spinal cord injury. J Navy General Hospital of PLA. 2002, 15(1): 18-21.

[9] Huang HY, Chen L, Wang HM, et al. Influence of patients’ age on functional recovery after transplantation of olfactory ensheathing cells into injured spinal cord injury. Chin Med J. 2003, 116(10): 1488–1491.

[10] Rabinovich SS, Seledtsov VI, Poveschenko OV, et al. Transplantation treatment of spinal cord injury patients. Biomedicine Pharmacother. 2003, 57(9): 428–433.

[11] Guest J, Herrera LP, Qian T. Rapid recovery of segmental neurological function in a tetraplegic patient following transplantation of fetal olfactory bulb-derived cells. Spinal Cord. 2006, 44(3): 135–142.

[12] Zhang ZC, Sun TS, Ye CQ, et al. Treatment of thoracic spine and spinal cord injury (in Chinese). Chin J Rehabilit Theo Prac. 2006, 12(4): 336–338.

[13] Zheng ZC, Liu C, Zhang L, et al. Olfactory ensheathing cell transplantation in 106 patients with old spinal cord injury: Differences in ages, sexes, disease courses, injured types and sites. Neural Regen Res. 2007, 2(6): 380–384.

[14] Huang HY, Chen L, Wang HM, et al. Safety of fetal olfactory ensheathing cell transplantation in patients with chronic spinal cord injury. A 38-month follow-up with MRI. Chin J Reparative Reconstr Surg. 2006, 20(4): 439–443.

[15] Huang HY, Xi HT, Chen L, et al. Long-term outcome of olfactory ensheathing cell therapy for patients with complete chronic spinal cord injury. Cell Transplant. 2012, 21(Suppl 1): S23–S31.

[16] Bao GF, Cui ZM, Li WD, et al. Olfactory ensheathing cell transplantation in the treatment of spinal cord injury in 5 cases. J Clin Rehabilit Tissue Eng Res. 2007, 11(3): 512–514.

[17] Zhang ZC, Liu C, Zhang L, et al. Olfactory ensheathing cell transplantation in 106 patients with old spinal cord injury: Differences in ages, sexes, disease courses, injured types and sites. Neural Regen Res. 2007, 2(6): 380–384.

[18] Liu C, Zheng ZC, Gao R, et al. Neurofunctional evaluation in spinal cord injury patients after olfactory ensheathing cell transplantation. J Clin Rehabilit Tissue Eng Res. 2008, 12(16): 3037–3040.

[19] Zheng ZC, Liu C, Gao R, et al. Influence of transplanting time on olfactory ensheathing cell transplantation for spinal cord injury. J Clin Rehabilit Tissue Eng Res. 2008, 12(3): 583–586.

[20] Seledtsova GV, Rabinovich SS, Belogorodtsev SN, et al. Delayed results of transplantation of fetal neurogenic tissue in patients with consequences of spinal cord trauma. Bull Exp Biol Med. 2010, 149(4): 530–533.

[21] Wu J, Sun TS, Ye CQ, et al. Clinical observation of fetal olfactory ensheathing glia transplantation (OEGT) in patients with complete chronic spinal cord injury. Cell Transplant. 2012, 21(Suppl 1): S33–S37.

[22] Wang D, He X, Li H, et al. Five years follow-up observation on patients with spinal cord injury treated with olfactory ensheathing cell transplantation. J Invest Med. 2013, 61(4): S5–S6.

[23] Rao YJ, Zhu WX, Guo YX, et al. Long-term outcome of olfactory ensheathing cell transplantation in six patients with chronic complete spinal cord injury. Cell Transplant. 2013, 22(Suppl 1): S21–S25.

[24] Rao YJ, Zhu WX, Liu HJ, et al. Clinical application of olfactory ensheathing cells in the treatment of spinal cord injury. J Int Med Res. 2013, 41(2): 473–481.

[25] Tabakow P, Jarmundowicz W, Czapiga B, et al. Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant. 2013, 22(9): 1591–1612.

[26] Tabakow P, Raisman G, Fortuna W, et al. Functional regeneration of supraspinal connections in a patient with transected spinal cord following transplantation of bulbar olfactory ensheathing cells with peripheral nerve bridging. Cell Transplant. 2014, 23(12): 1631–1655.

[27] Zheng ZC, Liu GF, Chen YX, et al. Olfactory ensheathing cell transplantation improves sympathetic skin responses in chronic spinal cord injury. Neural Regen Res. 2013, 8(30): 2849–2855.

[28] Féron F, Perry C, Cochrane J, et al. Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain. 2005, 128(Pt 12): 2951–2960.

[29] Mackay-Sim A, Féron F, Cochrane J, et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain. 2008, 131(Pt
9): 2376–2386.

[30] Chen L, Zhang YQ, He XI, et al. Comparison of intramedullary transplantation of olfactory ensheathing cell for patients with chronic complete spinal cord injury worldwide. J Neurorestoratology. 2018, 6(1): 146–151.

[31] Lima C, Pratas-Vital J, Escada P, et al. Olfactory mucosal autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med. 2006, 29(3): 191–203; discussion 204–6.

[32] Lima C, Escada P, Pratas-Vital J, et al. Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury. Neurorehabil Neural Repair. 2010, 24(1): 10–22.

[33] Chhabra HS, Lima C, Sachdeva S, et al. Autologous olfactory mucosal transplant in chronic spinal cord injury: an Indian pilot study. Spinal Cord. 2009, 47(12): 887–895.

[34] Wang S, Lu JK, Li Y, et al. Autologous olfactory lamina propria transplantation for chronic spinal cord injury: three-year follow-up outcomes from a prospective double-blinded clinical trial. Cell Transplant. 2016, 25(1): 141–157.

[35] Dlusty BJ, Awe O, Rao RC, et al. Autograft-derived spinal cord mass following olfactory mucosal cell transplantation in a spinal cord injury patient: Case report. J Neurosurg Spine. 2014, 21(4): 618–622.

[36] Rabinovich SS, Seledtsov VI, Bansal NV, et al. Cell therapy of brain stroke. Bull Exp Biol Med. 2005, 139(1): 126–128.

[37] Seledtsov VI, Kafanova MY, Rabinovich SS, et al. Cell therapy of cerebrospinal fluid peritoneal shunt infection in patients with chronic spinal cord injury. Bull Exp Biol Med. 2005, 139(4): 499–503.

[38] Seledtsov VI, Rabinovich SS, Parlyuk OV, et al. Cell transplantation therapy in re-animating severely head-injured patients. Biomedicine Pharmacother. 2005, 59(7): 415–420.

[39] Seledtsov VI, Rabinovich SS, Kashchenko EA, et al. Immunological and clinical aspects of cell therapy in the treatment of aftereffects of craniocerebral injury. Bull Exp Biol Med. 2006, 141(1): 121–123.

[40] Seledtsov VI, Rabinovich SS, Parlyuk OV, et al. Cell therapy of comatose states. Bull Exp Biol Med. 2006, 142(1): 129–132.

[41] Huang HY, Chen L, Xi HT, et al. Olfactory ensheath-
ing cells transplantation for central nervous system diseases in 1, 255 patients (in Chinese). Chin J Reparative Reconstr Surg. 2009, 23(1): 14–20.

[42] Chen L, Huang HY, Xi HT, et al. Intracranial transplant of olfactory ensheathing cells in children and adolescents with cerebral palsy: a randomized controlled clinical trial. Cell Transplant. 2010, 19(2): 185–191.

[43] Chen L, Huang HY, Zhang J, et al. Short-term outcome of olfactory ensheathing cells transplantation for treatment of amyotrophic lateral sclerosis. Chin J Reparative Reconstr Surg. 2007, 21(9): 961–966.

[44] Huang HY, Chen L, Xi HT, et al. Fetal olfactory ensheathing cells transplantation in amyotrophic lateral sclerosis patients: a controlled pilot study. Clin Transplant. 2008, 22(6): 710–718.

[45] Chen L, Chen D, Xi HT, et al. Olfactory ensheathing cell neurorestorotherapy for amyotrophic lateral sclerosis patients: benefits from multiple transplantations. Cell Transplant. 2012, 21(Suppl 1): S65–S77.

[46] Chen L, Xi HT, Huang HY, et al. Multiple cell transplantation based on an intraparenchymal approach for patients with chronic phase stroke. Cell Transplant. 2013, 22(Suppl 1): S83–S91.

[47] Xi HT, Chen L, Huang HY, et al. Preliminary report of multiple cell therapy for patients with multiple system atrophy. Cell Transplant. 2013, 22(Suppl 1): S93–S99.

[48] Xi HT, Chen D. Cell-based neurorestorative therapy for postpoliomyelitis syndrome: a case report. J Neurorestoratology. 2016, 4: 45–50.

[49] Zhang F, Meng XZ, Lu F, et al. Olfactory ensheathing cell transplantation for a patient with chronic sciatic nerve injury. J Neurorestoratology. 2017, 5: 1–4.

[50] Guo XL, Wang X, Li Y, et al. Olfactory ensheathing cell transplantation improving cerebral infarction sequela: a case report and literature review. J Neurorestoratology. 2019, 7(2): 82–88.

[51] Syková E, Homola A, Mazanec R, et al. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant. 2006, 15(8/9): 675–687.

[52] Chernykh ER, Snepak VV, Muradov GM, et al. Application of autologous bone marrow stem cells in the therapy of spinal cord injury patients. Bull Exp
Biol Med. 2007, 143(4): 543–547.

[53] Cristante AF, Barros-Filho TE, Tatsui N, et al. Stem cells in the treatment of chronic spinal cord injury: evaluation of somatosensitve evoked potentials in 39 patients. Spinal Cord. 2009, 47(10): 733–738.

[54] Kumar AA, Kumar SR, Narayanan R, et al. Autologous bone marrow derived mononuclear cell therapy for spinal cord injury: a phase I/II clinical safety and primary efficacy data. Exp Clin Transplant. 2009, 7(4): 241–248.

[55] Sharma A, Sane H, Khopkar D, et al. Functional recovery in chronic stage of spinal cord injury by neurorestorative approach: a case report. Case Rep Surg. 2014, 2014: 404207.

[56] Zhu H, Poon W, Liu YS, et al. Phase I-II clinical trial assessing safety and efficacy of umbilical cord blood mononuclear cell transplant therapy of chronic complete spinal cord injury. Cell Transplant. 2016, 25(11): 1925–1943.

[57] Kakabadze Z, Kipshidze N, Mardaleishvili K, et al. Phase 1 trial of autologous bone marrow stem cell transplantation in patients with spinal cord injury. Stem Cells Int. 2016, 2016: 6768274.

[58] Liem NT, Chinh VD, Thinh NT, et al. Improved bowel function in patients with spina bifida after bone marrow-derived mononuclear cell transplantation: a report of 2 cases. Am J Case Rep. 2018, 19: 1010–1018.

[59] Papadopoulos KI, Low SS, Aw TC, et al. Safety and feasibility of autologous umbilical cord blood transfusion in 2 toddlers with cerebral palsy and the role of low dose granulocyte-colony stimulating factor injections. Restor Neurol Neurosci. 2011, 29(1): 17–22.

[60] Parandare C, Shitole DG, Belle V, et al. Therapeutic potential of autologous stem cell transplantation for cerebral palsy. Case Rep Transplant. 2012, 2012: 825829.

[61] Sharma A, Gokulchandran N, Chopra G, et al. Administration of autologous bone marrow-derived mononuclear cells in children with incurable neurological disorders and injury is safe and improves their quality of life. Cell Transplant. 2012, 21(Suppl 1): S79–S90.

[62] Sharma A, Sane H, Paranjape A, et al. Positron emission tomography-computer tomography scan used as a monitoring tool following cellular therapy in cerebral palsy and mental retardation-a case report. Case Rep Neurol Med. 2013, 2013: 141983.

[63] Sharma A, Sane H, Gokulchandran N, et al. A clinical study of autologous bone marrow mononuclear cells for cerebral palsy patients: a new frontier. Stem Cells Int. 2015, 2015: 905874.

[64] Sharma A, Sane H, Gokulchandran N, et al. An open-label proof-of-concept study of intrathecal autologous bone marrow mononuclear cell transplantation in intellectual disability. Stem Cell Res Ther. 2018, 9(1): 19.

[65] Jensen A, Hamelmam E. First autologous cell therapy of cerebral palsy caused by hypoxic-ischemic brain damage in a child after cardiac arrest-individual treatment with cord blood. Case Rep Transplant. 2013, 2013: 951827.

[66] Mancías-Guerra C, Marroquín-Escamilla AR, González-Llano O, et al. Safety and tolerability of intrathecal delivery of autologous bone marrow nucleated cells in children with cerebral palsy: an open-label phase I trial. Cytotherapy. 2014, 16(6): 810–820.

[67] El-Kheir WA, Gahr H, Awad MR, et al. Autologous bone marrow-derived cell therapy combined with physical therapy induces functional improvement in chronic spinal cord injury patients. Cell Transplant. 2014, 23(6): 729–745.

[68] Englander ZA, Sun J, Case L, et al. Brain structural connectivity increases concurrent with functional improvement: Evidence from diffusion tensor MRI in children with cerebral palsy during therapy. Neuroimage: Clin. 2015, 7: 315–324.

[69] Bansal H, Singh L, Verma P, et al. Administration of autologous bone marrow-derived stem cells for treatment of cerebral palsy patients: a proof of concept. J Stem Cells. 2016, 11(1): 37–49.

[70] Park KI, Lee YH, Rah WJ, et al. Effect of intravenous infusion of G-CSF-mobilized peripheral blood mononuclear cells on upper extremity function in cerebral palsy children. Ann Rehabil Med. 2017, 41(1): 113–120.

[71] Sun JM, Song AW, Case LE, et al. Effect of autologous cord blood infusion on motor function and brain connectivity in young children with
cerebral palsy: a randomized, placebo-controlled trial.
Stem Cells Transl Med. 2017, 6(12): 2071-2078.

[72] Nguyen LT, Nguyen AT, Vu CD, et al. Outcomes of autologous bone marrow mononuclear cells for cerebral palsy: an open label uncontrolled clinical trial.
BMC Pediatr. 2017, 17(1): 104.

[73] Nguyen TL, Nguyen HP, Nguyen TK. The effects of bone marrow mononuclear cell transplantation on the quality of life of children with cerebral palsy.
Health Qual Life Outcomes. 2018, 16(1): 164.

[74] Chernykh E, Sheveda E, Kafanova M, et al. Monocyte-derived macrophages for treatment of cerebral palsy: a study of 57 cases.
J Neurorestoratology. 2018, 6: 41-47.

[75] Rah WJ, Lee YH, Moon JH, et al. Neuroregenerative potential of intravenous G-CSF and autologous peripheral blood stem cells in children with cerebral palsy: a randomized, double-blind, cross-over study.
J Transl Med. 2017, 15(1): 16.

[76] Cox CS Jr, Baumgartner JE, Harting MT, et al. Autologous bone marrow mononuclear cell therapy for severe traumatic brain injury in children.
Neurosurgery. 2011, 68(3): 588-600.

[77] Liao GP, Harting MT, Hetz RA, et al. Autologous bone marrow mononuclear cells reduce therapeutic intensity for severe traumatic brain injury in children.
Pediatr Crit Care Med. 2015, 16(3): 245-255.

[78] Cox CS Jr, Hetz RA, Liao GP, et al. Treatment of severe adult traumatic brain injury using bone marrow mononuclear cells.
Stem Cells. 2017, 35(4): 1065-1079.

[79] Sharma A, Sane H, Kulkarni P, et al. Cell therapy attempted as a novel approach for chronic traumatic brain injury - a pilot study.
Springerplus. 2015, 4: 26.

[80] Mendonça ML, Freitas GR, Silva SA, et al. Safety of intra-arterial autologous bone marrow mononuclear cell transplantation for acute ischemic stroke.
Arq Bras Cardiol. 2006, 86(1): 52-55.

[81] Battistella V, de Freitas GR, da Fonseca LM, et al. Safety of autologous bone marrow mononuclear cell transplantation in patients with nonacute ischemic stroke.
Regen Med. 2011, 6(1): 45-52.

[82] Savitz SI, Misra V, Kasam M, et al. Intravenous autologous bone marrow mononuclear cells for ischemic stroke.
Ann Neurol. 2011, 70(1): 59-69.

[83] Hague ME, Gabr RE, George SD, et al. Serial cerebral metabolic changes in patients with ischemic stroke treated with autologous bone marrow derived mononuclear cells.
Front Neurol. 2019, 10: 141.

[84] Prasad K, Mohanty S, Bhatia R, et al. Autologous intravenous bone marrow mononuclear cell therapy for patients with subacute ischemic stroke: a pilot study.
Indian J Med Res. 2012, 136(2): 221-228.

[85] Bhasin A, Srivastava MV, Kumaran SS, et al. Autologous mesenchymal stem cells in chronic stroke.
Cerebrovasc Dis Extra. 2011, 1(1): 93-104.

[86] Bhasin A, Srivastava M, Bhatia R, et al. Autologous intravenous mononuclear stem cell therapy in chronic ischemic stroke.
J Stem Cells Regen Med. 2012, 8(3): 181-189.

[87] Bhasin A, Srivastava MV, Mohanty S, et al. Stem cell therapy: a clinical trial of stroke.
Clin Neurol Neurosurg. 2013, 115(7): 1003-1008.

[88] Bhasin A, Kumaran SS, Bhatia R, et al. Safety and feasibility of autologous mesenchymal stem cell transplantation in chronic stroke in Indian patients. A four-year follow up.
J Stem Cells Regen Med. 2017, 13(1): 14-19.

[89] Friedrich MA, Martins MP, Araújo MD, et al. Intra-arterial infusion of autologous bone marrow mononuclear cells in patients with moderate to severe middle cerebral artery acute ischemic stroke.
Cell Transplant. 2012, 21(Suppl 1): S13-S21.

[90] Vasconcelos-dos-Santos A, Rosado-de-Castro PH, Lopes de Souza SA, et al. Intravenous and intra-arterial administration of bone marrow mononuclear cells after focal cerebral ischemia: Is there a difference in biodistribution and efficacy?
Stem Cell Res. 2012, 9(1): 1-8.

[91] Moniche F, Gonzalez A, Gonzalez-Marcos JR, et al. Intra-arterial bone marrow mononuclear cells in ischemic stroke: a pilot clinical trial.
Stroke. 2012, 43(8): 2242-2244.

[92] Moniche F, Rosado-de-Castro PH, Escudero I, et al. Increasing dose of autologous bone marrow mononuclear cells transplantation is related to stroke outcome: results from a pooled analysis of two clinical trials.
Stem Cells Int. 2016, 2016: 8657173.

[93] Moniche F, Escudero I, Zapata-Arriaza E, et al. Intra-arterial bone marrow mononuclear cells
Prasad K, Sharma A, Garg A, et al. Intravenous transplantation in acute ischemic stroke (IBIS trial): protocol of a phase II, randomized, dose-finding, controlled multicenter trial. *Int J Stroke*. 2015, 10(7): 1149–1152.

[94] Sharma A, Sane H, Nagrajan A, et al. Autologous bone marrow mononuclear cells in ischemic cerebrovascular accident paves way for neurorestoration: a case report. *Case Rep Med*. 2014, 2014: 530239.

[95] Sharma A, Sane H, Gokulchandran N, et al. Autologous bone marrow mononuclear cells intrathecal transplantation in chronic stroke. *Stroke Res Treat*. 2014, 2014: 234095.

[96] Taguchi A, Sakai C, Soma T, et al. Intravenous autologous bone marrow mononuclear cell transplantation for stroke: Phase1/2a clinical trial in a homogenous group of stroke patients. *Stem Cells Dev*. 2015, 24(19): 2207–2218.

[97] Chernykh ER, Shevela EY, Starostina NM, et al. Safety and therapeutic potential of M2 macrophages in stroke treatment. *Cell Transplant*. 2016, 25(8): 1461–1471.

[98] Laskowitz DT, Bennett ER, Durham RJ, et al. Allogeneic umbilical cord blood infusion for adults with ischemic stroke: clinical outcomes from a phase 1 safety study. *Stem Cells Transl Med*. 2018, 7(7): 521–529.

[99] Hammadi AMA, Alhimmayi F. Intra-arterial injection of autologous bone marrow-derived mononuclear cells in ischemic stroke patients. *Exp Clin Transplant*. 2019, 17(Suppl 1): 239–241.

[100] Prasad K, Sharma A, Garg A, et al. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. *Stroke*. 2014, 45(12): 3618–3624.

[101] Savitz SI, Yavagal D, Rappard G, et al. A phase 2 randomized, sham-controlled trial of internal carotid artery infusion of autologous bone marrow-derived ALD-401 cells in patients with recent stable ischemic stroke (RECOVER-stroke). *Circulation*. 2019, 139(2): 192–205.

[102] Sharma A, Sane H, Badhe P, et al. A clinical study shows safety and efficacy of autologous bone marrow mononuclear cell therapy to improve quality of life in muscular dystrophy patients. *Cell Transplant*. 2013, 22(Suppl 1): SI27–S138.

[103] Sharma A, Paranjape A, Sane H, et al. Cellular transplantation alters the disease progression in becker's muscular dystrophy. *Case Rep Transplant*. 2013, 2013: 909328.

[104] Sharma A, Sane H, Paranjape A, et al. Autologous bone marrow mononuclear cell transplantation in Duchenne muscular dystrophy - a case report. *Am J Case Rep*. 2014, 15: 128–134.

[105] Sharma A, Sane H, Gokulchandra N, et al. Effect of cellular therapy in progression of becker's muscular dystrophy: a case study. *Eur J Transl Myol*. 2016, 26(1): 5522.

[106] Sharma A, Gokulchandran N, Sane H, et al. Autologous bone marrow mononuclear cell therapy for autism: an open label proof of concept study. *Stem Cells Int*. 2013, 2013: 623875.

[107] Sharma AK, Sane HM, Paranjape AA, et al. The effect of autologous bone marrow mononuclear cell transplantation on the survival duration in Amyotrophic Lateral Sclerosis—a retrospective controlled study. *Am J Stem Cells*. 2015, 4(1): 50–65.

[108] Sharma A, Sane H, Gokulchandran N, et al. Cellular therapy for chronic traumatic brachial plexus injury. *Adv Biomed Res*. 2018, 7: 51.

[109] Hogendoorn S, Duijnjveld BJ, van Duinen SG, et al. Local injection of autologous bone marrow cells to regenerate muscle in patients with traumatic brachial plexus injury: a pilot study. *Bone Joint Res*. 2014, 3(2): 38–47.

[110] Horwitz EM, Le Blanc K, Dominici M, et al. Clarification of the nomenclature for MSC: the international society for cellular therapy position statement. *Cytotherapy*. 2005, 7(5): 393–395.

[111] Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. *Cytotherapy*. 2006, 8(4): 315–317.

[112] Galipeau J, Krampertz M, Barrett J, et al. International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. *Cytotherapy*. 2016, 18(2): 151–159.

[113] Mazzini L, Fagioli F, Boccaletti R, et al. Stem cell therapy in amyotrophic lateral sclerosis: a
methodological approach in humans. Amyotroph Lateral Scler Other Motor Neuron Disord. 2003, 4(3): 158–161.

[114] Mazzini L, Ferrero I, Luparello V, et al. Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a Phase I clinical trial. Exp Neurol. 2010, 223(1): 229–237.

[115] Mazzini L, Mareschi K, Ferrero I, et al. Autologous mesenchymal stem cells: clinical applications in amyotrophic lateral sclerosis. Neurol Res. 2006, 28(5): 523–526.

[116] Karussis D, Karamagiou C, Vaknin-Dembinsky A, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol. 2010, 67(10): 1187–1194.

[117] Blanquer M, Pérez Espejo MA, Iniesta F, et al. Bone marrow stem cell transplantation in amyotrophic lateral sclerosis: technical aspects and preliminary results from a clinical trial. Methods Find Exp Clin Pharmacol. 2010, 32(Suppl A): 31–37.

[118] Blanquer M, Moraleda JM, Iniesta F, et al. Neurotrophic bone marrow cellular nests prevent spinal motoneuron degeneration in amyotrophic lateral sclerosis patients: a pilot safety study. Stem Cells. 2012, 30(6): 1277–1285.

[119] Prabhakar S, Rajan R, Sharma R, et al. Autologous bone marrow-derived stem cells in amyotrophic lateral sclerosis: a pilot study. Neurol India. 2012, 60(5): 465.

[120] Baek W, Kim YS, Koh SH, et al. Stem cell transplantation into the intraventricular space via an Ommaya reservoir in a patient with amyotrophic lateral sclerosis. J Neurosurg Sci. 2012, 56(3): 261–263.

[121] Oh KW, Moon C, Kim HY, et al. Phase I trial of repeated intrathecal autologous bone marrow-derived mesenchymal stromal cells in amyotrophic lateral sclerosis. Stem Cells Transl Med. 2015, 4(6): 590–597.

[122] Canesi M, Giordano R, Lazzari L, et al. Finding a new therapeutic approach for no-option Parkinsonism: mesenchymal stromal cells for progressive supranuclear palsy. J Transl Med. 2016, 14(1): 127.

[123] Petrou P, Gothelf Y, Argov Z, et al. Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of phase 1/2 and 2a clinical trials. JAMA Neurol. 2016, 73(3): 337–344.

[124] Sykova E, Rychmach P, Drahoradova I, et al. Transplantation of mesenchymal stromal cells in patients with amyotrophic lateral sclerosis: results of phase I/IIa clinical trial. Cell Transplant. 2017, 26(4): 647–658.

[125] Gamez J, Carmona F, Raguer N, et al. Cellular transplants in amyotrophic lateral sclerosis patients: an observational study. Cytoterapy. 2010, 12(5): 669–677.

[126] Bang OY, Lee JS, Lee PH, et al. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol. 2005, 57(6): 874–882.

[127] Suárez-Monteagudo C, Hernández-Ramírez P, Alvarez-González L, et al. Autologous bone marrow stem cell neurotransplantation in stroke patients. An open study. Restor Neurol Neurosci. 2009, 27(3): 151–161.

[128] Lee JS, Hong JM, Moon GJ, et al. A long-term follow-up study of intrathecal autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 2010, 28(6): 1099–1106.

[129] Hominou O, Houskin K, Matsunaga T, et al. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain. 2011, 134(Pt 6): 1790–1807.

[130] Jiang YJ, Zhu WS, Zhu JH, et al. Feasibility of delivering mesenchymal stem cells via catheter to the proximal end of the lesion artery in patients with stroke in the territory of the middle cerebral artery. Cell Transplant. 2013, 22(12): 2291–2298.

[131] Tsang KS, Ng CPS, Zhu XL, et al. Phase I/II randomized controlled trial of autologous bone marrow-derived mesenchymal stem cell therapy for chronic stroke. World J Stem Cells. 2017, 9(8): 133–143.

[132] Levy ML, Crawford JR, Dib N, et al. Phase I/II study of safety and preliminary efficacy of intravenous allogeneic mesenchymal stem cells in chronic stroke. Stroke. 2019, 50(10): 2835–2841.

[133] Hess DC, Wechsler LR, Clark WM, et al. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised,
double-blind, placebo-controlled, phase 2 trial. *Lancet Neurol.* 2017, **16**(5): 360–368.

[134] Hess DC, Sila CA, Furlan AJ, et al. A double-blind placebo-controlled clinical evaluation of MultiStem for the treatment of ischemic stroke. *Int J Stroke.* 2014, **9**(3): 381–386.

[135] Osnai T, Houkin K, Uchiyama S, et al. Treatment evaluation of acute stroke for using in regenerative cell elements (TREASURE) trial: Rationale and design. *Int J Stroke.* 2018, **13**(4): 444–448.

[136] Kang KS, Kim SW, Oh YH, et al. A 37-year-old spinal cord-injured female patient, transplanted of multipotent stem cells from human UC blood, with improved sensory perception and mobility, both functionally and morphologically: a case study. *Cytotherapy.* 2005, **7**(4): 368–373.

[137] Geffner LF, Santacruz P, Izurieta M, et al. Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies. *Cell Transplant.* 2008, **17**(12): 1277–1293.

[138] Park JH, Kim DY, Sung IV, et al. Long-term results of spinal cord injury therapy using mesenchymal stem cells derived from bone marrow in humans. *Neurosurgery.* 2012, **70**(5): 1238–1247.

[139] Pal R, Venkataramana NK, Bansal A, et al. *Ex vivo*-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. *Cytotherapy.* 2009, **11**(7): 897–911.

[140] Kishk NA, Gabr H, Hamdy S, et al. Case control series of intrathecal autologous bone marrow mesenchymal stem cell therapy for chronic spinal cord injury. *Neurorehabil Neural Repair.* 2010, **24**(8): 702–708.

[141] Liu J, Han DM, Wang ZD, et al. Clinical analysis of the treatment of spinal cord injury with umbilical cord mesenchymal stem cells. *Cytotherapy.* 2013, **15**(2): 185–191.

[142] Dai GH, Liu XB, Zhang Z, et al. Transplantation of autologous bone marrow mesenchymal stem cells in the treatment of complete and chronic cervical spinal cord injury. *Brain Res.* 2013, **1533**: 73–79.

[143] Mendonça MV, Larocca TF, de Freitas Souza BS, et al. Safety and neurological assessments after autologous transplantation of bone marrow mesenchymal stem cells in subjects with chronic spinal cord injury. *Stem Cell Res Ther.* 2014, **5**(6): 126.

[144] Satti HS, Waheed A, Ahmed P, et al. Autologous mesenchymal stromal cell transplantation for spinal cord injury: a phase I pilot study. *Cytotherapy.* 2016, **18**(4): 518–522.

[145] Hur JW, Cho TH, Park DH, et al. Intrathecal transplantation of autologous adipose-derived mesenchymal stem cells for treating spinal cord injury: a human trial. *J Spinal Cord Med.* 2016, **39**(6): 655–664.

[146] Larocca TF, Macêdo CT, Souza BSF, et al. Image-guided percutaneous intrathecal administration of mesenchymal stromal cells in subjects with chronic complete spinal cord injury: a pilot study. *Cytotherapy.* 2017, **19**(10): 1189–1196.

[147] Guadalajara Labajo H, León Arellano M, Vaquero Crespo J, et al. Objective demonstration of improvement of neurogenic bowel dysfunction in a case of spinal cord injury following stem cell therapy. *J Surg Case Rep.* 2018, **2018**(11): 55:300.

[148] Santamaría AJ, Benavides FD, DiFede DL, et al. Clinical and neurophysiological changes after targeted intrathecal injections of bone marrow stem cells in a C3 tetraplegic subject. *J Neurotrauma.* 2019, **36**(3): 500–516.

[149] Chotivichit A, Ruangchainikom M, Chiewvit P, et al. Chronic spinal cord injury treated with transplanted autologous bone marrow-derived mesenchymal stem cells tracked by magnetic resonance imaging: a case report. *J Med Case Rep.* 2015, **9**: 79.

[150] Oh SK, Choi KH, Yoo JY, et al. A phase III clinical trial showing limited efficacy of autologous mesenchymal stem cell therapy for spinal cord injury. *Neurosurgery.* 2016, **78**(3): 436–447.

[151] Vaquero J, Zurita M, Rico MA, et al. An approach to personalized cell therapy in chronic complete paraplegia: The Puerta de Hierro phase III clinical trial. *Cytotherapy.* 2016, **18**(8): 1025–1036.

[152] Vaquero J, Zurita M, Bonilla C, et al. Progressive increase in brain glucose metabolism after intrathecal administration of autologous mesenchymal stromal cells in patients with diffuse axonal injury. *Cytotherapy.*
[153] Vaquero J, Zurita M, Rico MA, et al. Repeated subarachnoid administrations of autologous mesenchymal stromal cells supported in autologous plasma improve quality of life in patients suffering incomplete spinal cord injury. Cytotherapy. 2017, 19(3): 349–359.

[154] Vaquero J, Zurita M, Rico MA, et al. Intrathecal administration of autologous mesenchymal stromal cells for spinal cord injury: Safety and efficacy of the 1003 guideline. Cytotherapy. 2018, 20(6): 806–819.

[155] Vaquero J, Zurita M, Rico MA, et al. Intrathecal administration of autologous bone marrow stromal cells improves neuropathic pain in patients with spinal cord injury. Neurosci Lett. 2018, 670: 14–18.

[156] Vaquero J, Zurita M, Rico MA, et al. Cell therapy with autologous mesenchymal stromal cells in post-traumatic syringomyelia. Cytotherapy. 2018, 20(6): 796–805.

[157] Vaquero J, Zurita M, Mucientes J, et al. Intrathecal cell therapy with autologous stromal cells increases cerebral glucose metabolism and can offer a new approach to the treatment of Alzheimer's type dementia. Cytotherapy. 2019, 21(4): 428–432.

[158] Han DM, Liu J, Xue M, et al. Clinical analysis of the treatment of spinocerebellar ataxia and multiple system atrophy-cerebellar type with umbilical cord mesenchymal stromal cells. Cytotherapy. 2011, 13(8): 913–917.

[159] Jin JL, Liu Z, Lu ZJ, et al. Safety and efficacy of umbilical cord mesenchymal stem cell therapy in hereditary spinocerebellar ataxia. Curr Neurovasc Res. 2013, 10(1): 11–20.

[160] Comnick P, Kolappan M, Crawley C, et al. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol. 2012, 11(2): 150–156.

[161] Hou ZL, Liu Y, Mao XH, et al. Transplantation of umbilical cord and bone marrow-derived mesenchymal stem cells in a patient with relapsing-remitting multiple sclerosis. Cell Adh Migr. 2013, 7(5): 404–407.

[162] Wang S, Cheng HB, Dai GH, et al. Umbilical cord mesenchymal stem cell transplantation significantly improves neurological function in patients with sequelae of traumatic brain injury. Brain Res. 2013, 1532: 76–84.

[163] Tian CL, Wang XW, Wang XD, et al. Autologous bone marrow mesenchymal stem cell therapy in the subacute stage of traumatic brain injury by lumbar puncture. Exp Clin Transplant. 2013, 11(2): 176–181.

[164] Wang LM, Li HJ, Zhou JJ, et al. Therapeutic potential of umbilical cord mesenchymal stem cells transplantation for cerebral palsy: a case report. Case Rep Transplant. 2013, 2013: 146347.

[165] Wang XD, Cheng HB, Hua RR, et al. Effects of bone marrow mesenchymal stem cells on gross motor function measure scores of children with cerebral palsy: a preliminary clinical study. Cytotherapy. 2013, 15(12): 1549–1562.

[166] Wang XD, Hu HZ, Hua RR, et al. Effect of umbilical cord mesenchymal stem cells on motor functions of identical twins with cerebral palsy: pilot study on the correlation of efficacy and hereditary factors. Cytotherapy. 2015, 17(2): 224–231.

[167] Bansal H, Singh L, Verma P, et al. Administration of autologous bone marrow-derived stem cells for treatment of cerebral palsy patients: a proof of concept. J Stem Cells. 2016, 1(1): 37–49.

[168] Huang L, Zhang C, Gu JW, et al. A randomized, placebo-controlled trial of human umbilical cord blood mesenchymal stem cell infusion for children with cerebral palsy. Cell Transplant. 2018, 27(2): 325–334.

[169] Numan MT, Kandar A, Young J, et al. Autologous adipose stem cell therapy for autonomic nervous system dysfunction in two young patients. Stem Cells Dev. 2017, 26(6): 391–393.

[170] Lublin FD, Bowen JD, Huddleston J, et al. Human placenta-derived cells (PDA-001) for the treatment of adults with multiple sclerosis: a randomized, placebo-controlled, multiple-dose study. Mult Scler Relat Disord. 2014, 3(6): 696–704.

[171] Riley J, Federici T, Polak M, et al. Intraspinal stem cell transplantation in amyotrophic lateral sclerosis: a phase I safety trial, technical note, and lumbar safety outcomes. Neurosurgery. 2012, 71(2): 405–416.

[172] Glass JD, Boulis NM, Johe K, et al. Lumbar intraspinal injection of neural stem cells in patients...
with amyotrophic lateral sclerosis: results of a phase 1 trial in 12 patients. Stem Cells. 2012, 30(6): 1144–1151.

[173] Riley J, Glass J, Feldman EL, et al. Intraspinal stem cell transplantation in amyotrophic lateral sclerosis: a phase I trial, cervical microinjection, and final surgical safety outcomes. Neurosurgery. 2014, 74(1): 77–87.

[174] Feldman EL, Boulis NM, Hur J, et al. Intraspinal neural stem cell transplantation in amyotrophic lateral sclerosis: phase II trial outcomes. Ann Neurol. 2014, 75(3): 363–373.

[175] Goutman SA, Brown MB, Glass JD, et al. Long-term phase 1/2 intraspinal stem cell transplantation outcomes in ALS. Ann Clin Transl Neurol. 2018, 5(6): 730–740.

[176] Glass JD, Hertzberg VS, Boulis NM, et al. Transplantation of spinal cord-derived neural stem cells for ALS: Analysis of phase 1 and 2 trials. Neurology. 2016, 87(4): 392–400.

[177] Ren WQ, Yin F, Zhang JN, et al. Neural stem cell transplantation for the treatment of primary torsion dystonia: a case report. Exp Ther Med. 2016, 12(2): 661–666.

[178] Liu Y, Chen SJ, Li SY, et al. Long-term safety of human retinal progenitor cell transplantation in retinitis pigmentosa patients. Stem Cell Res Ther. 2017, 8(1): 209.

[179] Saberi H, Moshayedi P, Aghayan HR, et al. Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: an interim report on safety considerations and possible outcomes. Neurosci Lett. 2008, 443(1): 46–50.

[180] Saberi H, Firoozi M, Habibi Z, et al. Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases. J Neurosurg Spine. 2011, 15(5): 515–525.

[181] Zhou XH, Ning GZ, Feng SQ, et al. Transplantation of autologous activated Schwann cells in the treatment of spinal cord injury: six cases, more than five years of follow-up. Cell Transplant. 2012, 21(Suppl 1): S39–S47.

[182] van Horne CG, Quintero JE, Slevin JT, et al. Peripheral nerve grafts implanted into the substantia nigra in patients with Parkinson's disease during deep brain stimulation surgery: 1-year follow-up study of safety, feasibility, and clinical outcome. J Neurosurg. 2018, 129(6): 1550–1561.

[183] Yang XF, Xu YF, Zhang YB, et al. Functional improvement of patients with progressive muscular dystrophy by bone marrow and umbilical cord blood mesenchymal stem cells transplantation (in Chinese). Zhonghua Yi Xue Za Zhi. 2009, 89(36): 2552–2556.

[184] Lv YT, Zhang Y, Liu M, et al. Transplantation of human cord blood mononuclear cells and umbilical cord-derived mesenchymal stem cells in autism. J Transl Med. 2013, 11: 196.

[185] Yazdani SO, Hafizi M, Zali AR, et al. Safety and possible outcome assessment of autologous Schwann cell and bone marrow mesenchymal stromal cell co-transplantation for treatment of patients with chronic spinal cord injury. Cytotherapy. 2013, 15(7): 782–791.

[186] Oraee-Yazdani S, Hafizi M, Atashi A, et al. Co-transplantation of autologous bone marrow mesenchymal stem cells and Schwann cells through cerebral spinal fluid for the treatment of patients with chronic spinal cord injury: safety and possible outcome. Spinal Cord. 2016, 54(2): 102–109.

[187] Chen L, Huang HY, Xi HT, et al. A prospective randomized double-blind clinical trial using a combination of olfactory ensheathing cells and Schwann cells for the treatment of chronic complete spinal cord injuries. Cell Transplant. 2014, 23(Suppl 1): S35–S44.

[188] Xiao ZF, Tang FW, Tang JQ, et al. One-year clinical study of NeuroRegen scaffold implantation following scar resection in complete chronic spinal cord injury patients. Sci China Life Sci. 2016, 59(7): 647–655.

[189] Zhao YN, Tang FW, Xiao ZF, et al. Clinical study of NeuroRegen scaffold combined with human mesenchymal stem cells for the repair of chronic complete spinal cord injury. Cell Transplant. 2017, 26(5): 891–900.

[190] Xiao ZF, Tang FW, Zhao YN, et al. Significant improvement of acute complete spinal cord injury patients diagnosed by a combined criteria implanted with NeuroRegen scaffolds and mesenchymal stem cells. Cell Transplant. 2018, 27(6): 907–915.

[191] Liu XB, Fu XJ, Dai GH, et al. Comparative analysis of curative effect of bone marrow mesenchymal

Journal of Neurorestoratology
stem cell and bone marrow mononuclear cell transplantation for spastic cerebral palsy. *J Transl Med.* 2017, 15(1): 48.

[192] Moviglia GA, Moviglia Brandolino MT, Couto D, et al. Local immunomodulation and muscle progenitor cells induce recovery in atrophied muscles in spinal cord injury patients. *J Neurorestoratology.* 2018, 6(1): 136–145.

[193] Fassas A, Anagnostopoulos A, Kazis A, et al. Peripheral blood stem cell transplantation in the treatment of progressive multiple sclerosis: first results of a pilot study. *Bone Marrow Transplant.* 1997, 20(8): 631–638.

[194] Fassas A, Anagnostopoulos A, Kazis A, et al. Autologous stem cell transplantation in progressive multiple sclerosis—an interim analysis of efficacy. *J Clin Immunol.* 2000, 20(1): 24–30.

[195] Fassas A, Passweg JR, Anagnostopoulos A, et al. Hematopoietic stem cell transplantation for multiple sclerosis. A retrospective multicenter study. *J Neurol.* 2002, 249(8): 1088–1097.

[196] Burt RK, Traynor AE, Pope R, et al. Treatment of autoimmune disease by intense immunosuppressive conditioning and autologous hematopoietic stem cell transplantation. *Blood.* 1998, 92(10): 3505–3514.

[197] Burt RK, Traynor AE, Cohen B, et al. T cell-depleted autologous hematopoietic stem cell transplantation for multiple sclerosis: report on the first three patients. *Bone Marrow Transplant.* 1998, 21(6): 537–541.

[198] Burt RK, Cohen BA, Russell E, et al. Hematopoietic stem cell transplantation for progressive multiple sclerosis: failure of a total body irradiation-based conditioning regimen to prevent disease progression in patients with high disability scores. *Blood.* 2003, 102(7): 2373–2378.

[199] Burt RK, Loh Y, Cohen B, et al. Autologous non-myeloablative haematopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: a phase I/II study. *Lancet Neurol.* 2009, 8(3): 244–253.

[200] Burt RK, Balabanov R, Han XQ, et al. Association of nonmyeloablative hematopoietic stem cell transplantation with neurological disability in patients with relapsing-remitting multiple sclerosis. *JAMA.* 2015, 313(3): 275–284.

[201] Burt RK, Balabanov R, Burman J, et al. Effect of nonmyeloablative hematopoietic stem cell transplantation vs continued disease-modifying therapy on disease progression in patients with relapsing-remitting multiple sclerosis: a randomized clinical trial. *JAMA.* 2019, 321(2): 165–174.

[202] Nash RA, Bowen JD, McSweeney PA, et al. High-dose immunosuppressive therapy and autologous peripheral blood stem cell transplantation for severe multiple sclerosis. *Blood.* 2003, 102(7): 2364–2372.

[203] Nash RA, McSweeney PA, Crofford LJ, et al. High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for severe systemic sclerosis: long-term follow-up of the US multicenter pilot study. *Blood.* 2007, 110(4): 1388–1396.

[204] Nash RA, Kraft GH, Wundes A, et al. Autologous hematopoietic cell transplantation following high-dose immunosuppressive therapy for advanced multiple sclerosis: long-term results. *Bone Marrow Transplant.* 2012, 47(7): 946–951.

[205] Nash RA, Hutton GJ, Racke MK, et al. High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for relapsing-remitting multiple sclerosis (HALT-MS): a 3-year interim report. *JAMA Neurol.* 2015, 72(2): 159–169.

[206] Nash RA, Hutton GJ, Racke MK, et al. High-dose immunosuppressive therapy and autologous HCT for relapsing-remitting MS. *Neurology.* 2017, 88(9): 842–852.

[207] Farge D, Labopin M, Tyndall A, et al. Autologous hematopoietic stem cell transplantation for autoimmune diseases: an observational study on 12 years’ experience from the European Group for Blood and Marrow Transplantation Working Party on Autoimmune Diseases. *Haematologica.* 2010, 95(2): 284–292.

[208] Fassas A, Kimiskidis VK, Sakellari I, et al. Long-term results of stem cell transplantation for MS: a single-center experience. *Neurology.* 2011, 76(12): 1066–1070.

[209] Muraro PA, Pasquini M, Atkins HL, et al. Long-term outcomes after autologous hematopoietic stem cell transplantation for multiple sclerosis. *JAMA Neurol.* 2017, 74(4): 459–469.

[210] Rabusin M, Andolina M, Maximova N, et al.
Immunomobilization followed by autologous hematopoietic stem cell infusion for the treatment of severe autoimmune disease. *Haematologica*. 2000, 85(1 Suppl): 81–85.

[211] Openshaw H, Lund BT, Kashyap A, et al. Peripheral blood stem cell transplantation in multiple sclerosis with busulfan and cyclophosphamide conditioning: report of toxicity and immunological monitoring. *Biol Blood Marrow Transplant*. 2000, 6(5A): 563–575.

[212] Carreras E, Saiz A, Marin P, et al. CD34+ selected autologous peripheral blood stem cell transplantation for multiple sclerosis: report of toxicity and treatment results at one year of follow-up in 15 patients. *Haematologica*. 2003, 88(3): 306–314.

[213] Saiz A, Blanco Y, Carreras E, et al. Clinical and MRI outcome after autologous hematopoietic stem cell transplantation in MS. *Neurology*. 2004, 62(2): 282–284.

[214] Saccardi R, Mancardi GL, Solari A, et al. Autologous HSCT for severe progressive multiple sclerosis in a multicenter trial: impact on disease activity and quality of life. *Blood*. 2005, 105(6): 2601–2607.

[215] Saccardi R, Kozák T, Bocelli-Tyndall C, et al. Autologous stem cell transplantation for progressive multiple sclerosis: update of the European Group for Blood and Marrow Transplantation autoimmune diseases working party database. *Mult Scler*. 2006, 12(6): 814–823.

[216] Portaccio E, Amato MP, Siracusa G, et al. Autologous hematopoietic stem cell transplantation for very active relapsing-remitting multiple sclerosis: report of two cases. *Mult Scler*. 2007, 13(5): 676–678.

[217] Xu J, Ji BX, Su L, et al. Clinical outcomes after autologous haematopoietic stem cell transplantation in patients with progressive multiple sclerosis. *Chin Med J*. 2006, 119(22): 1851–1855.

[218] Su L, Xu J, Ji BX, et al. Autologous peripheral blood stem cell transplantation for severe multiple sclerosis. *Int J Hematol*. 2006, 84(3): 276–281.

[219] Xu J, Ji BX, Su L, et al. Clinical outcome of autologous peripheral blood stem cell transplantation in opticospinal and conventional forms of secondary progressive multiple sclerosis in a Chinese population. *Ann Hematol*. 2011, 90(3): 343–348.

[220] Ergene U, Çağırıcı S, Pehlivan M, et al. WITHDRAWN: Factors influencing engraftment in autologous peripheral hematopoietic stem cell transplantation (PBSCT). *Transfus Apher Sci*. 2006, 36(1): 23–29.

[221] Roccatagliata L, Rocca M, Valsasina P, et al. The long-term effect of AH SCT on MRI measures of MS evolution: a five-year follow up study. *Mult Scler*. 2007, 13(3): 1068–1070.

[222] Metz I, Lucchini CF, Openshaw H, et al. Autologous haematopoietic stem cell transplantation fails to stop demyelination and neurodegeneration in multiple sclerosis. *Brain*. 2007, 130(Pt 5): 1254–1262.

[223] Fagius J, Lundgren J, Öberg G. Early highly aggressive MS successfully treated by hematopoietic stem cell transplantation. *Mult Scler*. 2009, 15(2): 229–237.

[224] Lu QJ, Joseph JT, Nash RA, et al. Neuroinflammation and demyelination in multiple sclerosis after allogeneic hematopoietic stem cell transplantation. *Arch Neurol*. 2010, 67(6): 716–722.

[225] Krasulová E, Trnensky M, Kozák T, et al. High-dose immunomobilisation with autologous haematopoietic stem cell transplantation in aggressive multiple sclerosis: a single centre 10-year experience. *Mult Scler*. 2010, 16(6): 685–693.

[226] Chen B, Zhou M, Ouyang J, et al. Long-term efficacy of autologous haematopoietic stem cell transplantation in multiple sclerosis at a single institution in China. *Neural Sci*. 2012, 33(4): 881–886.

[227] Mancardi GL, Sormani MP, Di Gioia M, et al. Autologous hematopoietic stem cell transplantation with an intermediate intensity conditioning regimen in multiple sclerosis: the Italian multi-centre experience. *Mult Scler*. 2012, 18(6): 835–842.

[228] Bowen JD, Kraft GH, Wundes A, et al. Autologous hematopoietic cell transplantation following high-dose immunosuppressive therapy for advanced multiple sclerosis: long-term results. *Bone Marrow Transplant*. 2012, 47(7): 946–951.

[229] Shevchenko YL, Novik AA, Kuznetsov AN, et al. High-dose immunosuppressive therapy with autologous hematopoietic stem cell transplantation as a treatment option in multiple sclerosis. *Exp Hematol*. 2008, 36(8): 922–928.

[230] Shevchenko JL, Kuznetsov AN, Ionova TI, et al. *Journal of Neurorestoratology*
Autologous hematopoietic stem cell transplantation with reduced-intensity conditioning in multiple sclerosis. *Exp Hematol*. 2012, 40(11): 892–898.

[231] Shevchenko JL, Kuznetsov AN, Ionova TI, et al. Long-term outcomes of autologous hematopoietic stem cell transplantation with reduced-intensity conditioning in multiple sclerosis: physician's and patient's perspectives. *Ann Hematol*. 2015, 94(7): 1149–1157.

[232] Burman J, Iacobaeus E, Svenningsson A, et al. Autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: the Swedish experience. *J Neurol Neurosurg Psychiatry*. 2014, 85(10): 1116–1121.

[233] Greco R, Bondanza A, Oliveira MC, et al. Autologous hematopoietic stem cell transplantation in neromyelitis optica: a registry study of the EBMT Autoimmune Diseases Working Party. *Mult Scler*. 2015, 21(2): 189–197.

[234] Curro’ D, Vuolo L, Gualandi F, et al. Low intensity lympho-ablative regimen followed by autologous hematopoietic stem cell transplantation in severe forms of multiple sclerosis: a MRI-based clinical study. *Mult Scler*. 2015, 21(11): 1423–1430.

[235] Atkins HL, Bowman M, Allan D, et al. Immunoblation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis a multicentre single-group phase 2 trial. *Lancet*. 2016, 388(10044): 576–585.

[236] Obradović D, Tukić L, Radovinović-Tasić S, et al. Autologous hematopoietic stem cell transplantation in combination with immunoblaative protocol in secondary progressive multiple sclerosis—A 10-year follow-up of the first transplanted patient. *Vijenologija*. 2016, 72(5): 504–508.

[237] Casanova B, Jarque I, Gascón F, et al. Autologous hematopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: comparison with secondary progressive multiple sclerosis. *Neuro Sci*. 2017, 38(7): 1213–1221.

[238] Frau J, Carai M, Coghe G, et al. Long-term follow-up more than 10 years after HSCT: a monocentric experience. *J Neurol*. 2018, 265(2): 410–416.

[239] Moore JJ, Massey JC, Ford CD, et al. Prospective phase II clinical trial of autologous haematopoietic stem cell transplant for treatment refractory multiple sclerosis. *J Neurol Neurosurg Psychiatry*. 2019, 90(5): 514–521.

[240] Mariottini A, Innocenti C, Forci B, et al. Safety and efficacy of autologous hematopoietic stem-cell transplantation following natalizumab discontinuation in aggressive multiple sclerosis. *Eur J Neurol*. 2019, 26(4): 624–630.

[241] Saiz A, Blanco Y, Berenguer J, et al. Clinical outcome 6 years after autologous hematopoietic stem cell transplantation in multiple sclerosis. *Neurologia*. 2008, 23(7): 405–407.

[242] Saccardi R, Freedman MS, Sormani MP, et al. A prospective, randomized, controlled trial of autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: a position paper. *Mult Scler*. 2012, 18(6): 825–834.

[243] Zhang C, Feng HY, Huang SL, et al. Therapy of Duchenne muscular dystrophy with umbilical cord blood stem cell transplantation (in Chinese). *Chin J Med Genet*. 2005, 22(4): 399–405.

[244] Zhang C, Chen W, Xiao LL, et al. Allogeneic umbilical cord blood stem cell transplantation in Duchenne muscular dystrophy (in Chinese). *Zhonghua Yi Xue Za Zhi*. 2005, 85(8): 522–525.

[245] Deda H, Inci MC, Kurekci AE, et al. Treatment of chronic spinal cord injured patients with autologous bone marrow-derived hematopoietic stem cell transplantation: 1-year follow-up. *Cytotherapy*. 2008, 10(6): 565–574.

[246] Deda H, Inci MC, Kurekci AE, et al. Treatment of amyotrophic lateral sclerosis patients by autologous bone marrow-derived hematopoietic stem cell transplantation: a 1-year follow-up. *Cytotherapy*. 2009, 11(1): 18–25.

[247] Appel SH, Engelhardt JJ, Henkel JS, et al. Hematopoietic stem cell transplantation in patients with sporadic amyotrophic lateral sclerosis. *Neurology*. 2008, 71(17): 1326–1334.

[248] Al-Zoubi A, Jafar E, Jamous M, et al. Transplantation of purified autologous leukapheresis-derived CD34+ and CD133+ stem cells for patients with chronic spinal cord injuries: long-term evaluation of safety and efficacy. *Cell Transplant*. 2014, 23(Suppl 1): S25–S34.
Sprigg N, Bath PM, Zhao L, et al. Granulocyte-colony-stimulating factor mobilizes bone marrow stem cells in patients with subacute ischemic stroke: the Stem cell Trial of recovery EnhanceMent after Stroke (STEMS) pilot randomized, controlled trial (ISRCTN 16784092). Stroke. 2006, 37(12): 2979–2983.

Boy S, Sauerbruch S, Kraemer M, et al. Mobilisation of hematopoietic CD34+ precursor cells in patients with acute stroke is safe—results of an open-labeled non randomized phase I/II trial. PLoS One. 2011, 6(8): e23099.

Wang LM, Ji HJ, Li M, et al. Intrathecal administration of autologous CD34 positive cells in patients with past cerebral infarction: a safety study. JSRN Neurol. 2013, 2013: 128591.

Chen DC, Lin SZ, Fan JR, et al. Intracerebral implantation of autologous peripheral blood stem cells in stroke patients: a randomized phase II study. Cell Transplant. 2014, 23(12): 1599–1612.

Sung PH, Lin HS, Lin WC, et al. Intra-carotid arterial transfusion of autologous circulatory derived CD34+cells for old ischemic stroke patients—a phase I clinical trial to evaluate safety and tolerability. Am J Transl Res. 2018, 10(9): 2975–2989.

Scott CT, Magnus D. Wrongful termination: lessons from the Geron clinical trial. Stem Cells Transl Med. 2014, 3(12): 1398–1401.

Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015, 385(9967): 599–516.

da Cruz L, Fynes K, Georgiadis O, et al. Phase I clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol. 2018, 36(4): 328–337.

Mandai M, Watanabe A, Kurimoto Y, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017, 376(11): 1038–1046.

Chen GJ, Wang YL, Xu ZY, et al. Neural stem cell-like cells derived from autologous bone mesenchymal stem cells for the treatment of patients with cerebral palsy. J Transl Med. 2013, 11: 21.

Nafissi S, Kazemi H, Taziahi T, et al. Intraspinal delivery of bone marrow stromal cell-derived neural stem cells in patients with amyotrophic lateral sclerosis: a safety and feasibility study. J Neurol Sci. 2016, 362: 174–181.

Steinberg GK, Kondziolka D, Wechsler LR, et al. Clinical outcomes of transplanted modified bone marrow-derived mesenchymal stem cells in stroke: a phase 1/2a study. Stroke. 2016, 47(7): 1817–1824.

Steinberg GK, Kondziolka D, Wechsler LR, et al. Two-year safety and clinical outcomes in chronic ischemic stroke patients after implantation of modified bone marrow-derived mesenchymal stem cells (SB623): a phase 1/2a study. J Neurosurg. 2018: 1–11.

Wang ZG, Luo Y, Chen L, et al. Safety of neural stem cell transplantation in patients with severe traumatic brain injury. Exp Ther Med. 2017, 13(6): 3613–3618.

Taupin P. HuCNS-SC (StemCells). Curr Opin Mol Ther. 2006, 8(2): 156–163.

Selden NR, Al-Uzri A, Huhn SL, et al. Central nervous system stem cell transplantation for children with neuronal ceroid lipofuscinosis. J Neurosurg Pediatr. 2013, 11(6): 643–652.

Levi AD, Okonkwo DO, Park P, et al. Emerging safety of intramedullary transplantation of human neural stem cells in chronic cervical and thoracic spinal cord injury. Neurosurgery. 2018, 82(4): 562–575.

Levi AD, Anderson KD, Okonkwo DO, et al. Clinical outcomes from a multi-center study of human neural stem cell transplantation in chronic cervical spinal cord injury. J Neurotrauma. 2019, 36(6): 891–902.

Luan Z, Liu WP, Qiu SQ, et al. Effects of neural progenitor cell transplantation in children with severe cerebral palsy. Cell Transplant. 2012, 21(Suppl 1): S91–S98.

Shin JC, Kim KN, Yoo J, et al. Clinical trial of human fetal brain-derived neural stem/progenitor cell transplantation in patients with traumatic cervical spinal cord injury. Neurol Plast. 2015, 2015: 630932.
phase I study of neural stem cell transplantation for chronic spinal cord injury. Cell Stem Cell. 2018, 22(6): 941–950.e6.

[270] Kalladka D, Sinden J, Pollock K, et al. Human neural stem cells in patients with chronic ischaemic stroke (PISCES): a phase 1, first-in-man study. Lancet. 2016, 388(10046): 787–796.

[271] Zhang GZ, Li Y, Reuss JL, et al. Stable intracerebral transplantation of neural stem cells for the treatment of paralysis due to ischemic stroke. Stem Cells Transl Med. 2019, 8(10): 999–1007.

[272] Martinez HR, Gonzalez-Garza MT, Moreno-Cuevas JE, et al. Stem-cell transplantation into the frontal motor cortex in amyotrophic lateral sclerosis patients. Cytotherapy. 2009, 11(1): 26–34.

[273] Martinez HR, Molina-Lopez JF, Gonzalez-Garza MT, et al. Stem cell transplantation in amyotrophic lateral sclerosis patients: methodological approach, safety, and feasibility. Cell Transplant. 2012, 21(9): 1899–1907.

[274] Zali A, Arab L, Ashrafi F, et al. Intrathecal injection of CD133-positive enriched bone marrow progenitor cells in children with cerebral palsy: feasibility and safety. Cytotherapy. 2015, 17(2): 232–241.

[275] Moviglia GA, Fernandez-Villà R, Brizuela JA, et al. Combined protocol of cell therapy for chronic spinal cord injury. Report on the electrical and functional recovery of two patients. Cytotherapy. 2006, 8(3): 202–209.

[276] Moviglia GA, Varella G, Brizuela JA, et al. Case report on the clinical results of a combined cellular therapy for chronic spinal cord injured patients.

Spinal Cord. 2009, 47(6): 499–503.

[277] Moviglia GA, Moviglia-Brandolino MT, Varella GS, et al. Feasibility, safety, and preliminary proof of principles of autologous neural stem cell treatment combined with T-cell vaccination for ALS patients. Cell Transplant. 2012, 21(Suppl 1): S57–S63.

[278] Qiao IY, Huang FJ, Zhao MS, et al. A two-year follow-up study of cotransplantation with neural stem/progenitor cells and mesenchymal stromal cells in ischemic stroke patients. Cell Transplant. 2014, 23(1_suppl): 65–72.

[279] Thakkar UG, Vanikar AV, Trivedi HL. Co-infusion of autologous adipose tissue derived neuronal differentiatated mesenchymal stem cells and bone marrow derived hematopoietic stem cells, a viable therapy for post-traumatic brachial plexus injury: a case report. Biomed J. 2014, 37(4): 237–240.

[280] Thakkar UG, Vanikar AV, Trivedi HL, et al. Infusion of autologous adipose tissue derived neuronal differentiated mesenchymal stem cells and hematopoietic stem cells in post-traumatic paraplegia offers a viable therapeutic approach. Adv Biomed Res. 2016, 5: 51.

[281] Ammar AS, Osman Y, Hendam AT, et al. A method for reconstruction of severely damaged spinal cord using autologous hematopoietic stem cells and platelet-rich protein as a biological scaffold. Asian J Neurosurg. 2017, 12(4): 681–690.

[282] Huang HY, Sharma HS, Chen L, et al. 2018 yearbook of neurorestoratology. J Neurorestoratology. 2019, 4(1): 11–20.

Hongyun Huang, honorary director and chief expert of Institute of Neurorestoratology, The Third Medical Centre, Chinese PLA General Hospital, China; president of the Beijing Hongtianji Neuroscience Academy, China; founder of the discipline of Neurorestoratology and founding president of the International Association of Neurorestoratology (IANR). He focuses on clinical functional neurorestoration for patients with central nervous diseases and damage through cell based comprehensive neurorestorative therapies; and focuses on the development of Neurorestoratology. E-mail: hongyunh@gmail.com
Hari Shanker Sharma, director of Int. Exp. CNS Injury & Repair (IECNSIR), professor of Neurobiology (MRC), docent in Neuroanatomy (UU), Anesthesiology & Intensive Care Medicine, the Department of Surgical Sciences, University Hospital, Uppsala University, Sweden; past president of IANR. He focuses on neuroprotection and neuroregeneration in relation to the BBB in stress, trauma, and drugs of abuse in health and diseases using nanotechnology. E-mail: sharma@surgsci.uu.se

Lin Chen, director of the Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine China. He focuses on neurorestoration of spinal cord injury, stroke, facial paralysis etc. by cell therapy, neuromodulation and pharmacy; and trigeminal neuralgia and hemifacial spasm by restorative microvascular decompression surgery. E-mail: chenlin_china@163.com

Gengsheng Mao, professor and director of Institute of Neurorestoratology, the Third Medical Centre, Chinese PLA General Hospital, China. He focuses on functional neurorestoration of stroke and Parkinson's disease through conventional treatment and cell therapy. E-mail: mclxmsgs@126.com