Deformed multiplication in the semigroup \mathcal{PT}_n

Galyna Tsyaputa

Abstract

Pairwise non isomorphic semigroups obtained from the semigroup \mathcal{PT}_n of all partial transformations by the deformed multiplication proposed by Ljapin are classified.

1 Introduction

Let X and Y be two nonempty sets, S be the set of maps from X to Y. Fix some $\alpha : Y \to X$ and define the multiplication of elements in S in the following way: $\phi \circ \psi = \phi \alpha \psi$ (the composition of the maps is from left to right). The action defined by this rule is associative. In his famous monograph [1, p.353] Ljapin set the problem of investigation of the properties of this semigroup depending on the restrictions on set S and map α.

Magill [2] studies this problem in the case when X and Y are topological spaces and the maps are continuous. In particular under the assumption that α be onto he describes the automorphisms of such semigroups and determines the isomorphism criterion.

A bit later Sullivan [3] proves that if $|Y| \leq |X|$ then Ljapin’s semigroup is embedding into transformation semigroup on the set $X \cup \{a\}$, $a \notin X$.

For us the important case is if $X = Y$, T_X is a transformation semigroup on the set X, $\alpha \in T_X$. Symons [4] establishes the isomorphism criterion for such semigroups and investigates the properties of their automorphisms.

The latter problem may be generalized to arbitrary semigroup S : for a fixed $a \in S$ define the operation $*_a$ via $x *_a y = xay$. The obtained semigroup is denoted by $(S,*_a)$ and operation $*_a$ is called the multiplication deformed by element a (or just the deformed multiplication).

In the paper we classify with respect to isomorphism all semigroups which are obtained from the semigroup of all partial transformations of an n—element set by the deformed multiplication.

2 \mathcal{PT}_n with the deformed multiplication

Let \mathcal{PT}_n be the semigroup of all partial transformations of the set $N = \{1,2,\ldots,n\}$. For arbitrary partial transformation $a \in \mathcal{PT}_n$ denote by $\text{dom}(a)$ the domain of a, and by $\text{ran}(a)$ its image. The value $|\text{ran}(a)|$ is called the rank of a and is denoted by $\text{rank}(a)$. Denote
Z(a) = N \setminus \text{dom}(a) \text{ the set of those elements on which transformation } a \text{ is not defined, and denote } z_a \text{ the cardinality of this set. The type of } a \in \mathcal{PT}_n \text{ we call the set } (\alpha_1, \alpha_2, \ldots, \alpha_n), \text{ where } \alpha_k \text{ is the number of those elements } y \in N \text{, the full inverse image } a^{-1}(y) \text{ of which contains exactly } k \text{ elements. It is obvious that } 1 \cdot \alpha_1 + 2 \cdot \alpha_2 + \cdots + n \cdot \alpha_n = |\text{dom}(a)|, \text{ and the sum } \alpha_1 + \alpha_2 + \cdots + \alpha_n \text{ is equal to the rank of } a.

Definition 1. Element } x \in S \text{ is called left (right) annihilator of semigroup } S^n \text{ provided that } xs = 0 (sx = 0), s \in S.

Element which is both the left and the right annihilator is called the annihilator of semigroup } S.

Proposition 1. Transformations } x \in \mathcal{PT}_n \text{ such that } \text{ran}(x) \subset Z(a) \text{ are left annihilators of semigroup } (\mathcal{PT}_n, *_a). \text{ The number of left annihilators equals } (z_a + 1)^n.

Transformations } y \in \mathcal{PT}_n \text{ such that } Z(y) \supset \text{ran}(a) \text{ are right annihilators of semigroup } (\mathcal{PT}_n, *_a). \text{ The number of right annihilators equals } (n + 1)^{n - \text{rank}(a)}.

Transformations } c \in \mathcal{PT}_n \text{ such that } \text{ran}(c) \subset Z(a) \text{ and } Z(c) \supset \text{ran}(a) \text{ are annihilators of } (\mathcal{PT}_n, *_a), \text{ moreover, the number of annihilators equals } (z_a + 1)^{n - \text{rank}(a)}.

Proof. Let } x \in \mathcal{PT}_n \text{ be left annihilator of } (\mathcal{PT}_n, *_a). \text{ This means that for arbitrary } u \text{ from } \mathcal{PT}_n \text{, } x *_a u = 0 \text{ or, what is the same, } xa \cdot u = 0. \text{ Therefore } xa \text{ is left zero of semigroup } \mathcal{PT}_n, \text{ that is, a nowhere defined map. The latter is possible if and only if } \text{ran}(x) \subset Z(a). \text{ Evidently, the condition } \text{ran}(x) \subset Z(a) \text{ is sufficient for partial transformation } x \text{ be the left annihilator of } (\mathcal{PT}_n, *_a). \text{ Now it is clear, that the number of such transformations is equal to } (z_a + 1)^n.

Let } y \in \mathcal{PT}_n \text{ be the right annihilator of semigroup } (\mathcal{PT}_n, *_a). \text{ Then for any } v \text{ from } \mathcal{PT}_n \text{, } v \cdot ay = 0 \text{ and } ay \text{ is right zero of semigroup } \mathcal{PT}_n, \text{ that is, nowhere defined map. This is equivalent to } Z(y) \supset \text{ran}(a). \text{ Therefore right annihilators of semigroup } (\mathcal{PT}_n, *_a) \text{ are those partial transformations } \mathcal{PT}_n \text{ which are defined only in elements } N \setminus \text{ran}(a). \text{ It is clear that the number of such transformations equals } (n + 1)^{n - \text{rank}(a)}.

Now the statement about annihilators follows from the definition and the above arguments. \hfill \square

On semigroup } (\mathcal{PT}_n, *_a) \text{ define the equivalence relation } \sim_a \text{ by the rule: } x \sim_a y \text{ if and only if } x *_a u = y *_a u \text{ for all } u \in \mathcal{PT}_n. \text{ Analogously on } (\mathcal{PT}_n, *_b) \text{ define the relation } \sim_b.

Lemma 1. For an arbitrary isomorphism } \varphi: (\mathcal{PT}_n, *_a) \to (\mathcal{PT}_n, *_b) \text{ } \varphi(x) \sim_b \varphi(y) \text{ if and only if } x \sim_a y.

Proof. In fact, let } \varphi: (\mathcal{PT}_n, *_a) \to (\mathcal{PT}_n, *_b) \text{ be isomorphism and } x \sim_a y. \text{ Then for all } u \in \mathcal{PT}_n; x *_a u = y *_a u, \text{ therefore } \varphi(x) *_b \varphi(u) = \varphi(y) *_b \varphi(u). \text{ However } \varphi(u) \text{ runs over the whole set } \mathcal{PT}_n, \text{ hence } \varphi(x) \sim_b \varphi(y). \text{ Since the inverse map } \varphi^{-1}: (\mathcal{PT}_n, *_b) \to (\mathcal{PT}_n, *_a) \text{ is also isomorphism, } \varphi(x) \sim_b \varphi(y) \text{ implies } x \sim_a y. \text{ Therefore, } x \sim_a y \text{ if and only if } \varphi(x) \sim_b \varphi(y). \hfill \square

Lemma 2. } x \sim_a y \text{ if and only if } xa = ya.
Proof. Obviously, the equality \(xa = ya \) implies \(x \sim_a y \). Now let \(xa \neq ya \). Then there exists \(k \) in \(N \), such that \((xa)(k) \neq (ya)(k) \). Chose element \(u \) in \(PT_n \) which has different images in the points \((xa)(k) \) and \((ya)(k) \). Then \(x \ast_a u = xau \) and \(y \ast_u u = yau \) have different images in \(k \). Hence \(x \ast_a u \neq y \ast_u u \) and \(x \sim_a y \). \(\square \)

Theorem 1. Semigroups \((PT_n, \ast_a) \) and \((PT_n, \ast_b) \) are isomorphic if and only if partial transformations \(a \) and \(b \) have the same type.

Proof. Necessity. Let \((PT_n, \ast_a) \) and \((PT_n, \ast_b) \) be isomorphic. By lemma 1 arbitrary isomorphism between \((PT_n, \ast_a) \) and \((PT_n, \ast_b) \) maps equivalence classes of the relation \(\sim_a \) into equivalence classes of the relation \(\sim_b \). Therefore for equivalence relations \(\sim_a \) and \(\sim_b \) cardinalities and the number of equivalence classes must be equal. We show that by the cardinalities of the classes of the relation \(\sim_a \), the type \((\alpha_1, \alpha_2, \ldots, \alpha_n)\) of transformation \(a \) can be found uniquely.

Denote \(\rho \) the partition of set \(\{1, 2, \ldots, n\} \) induced by \(a \in PT_n \) (that is, \(l \) and \(m \) belong to the same block of the partition \(\rho \) provided that \(a(l) = a(m) \); \(Z(a) \) forms a separate block). We count the cardinality of equivalence class \(\overline{x} = \{ x | xa = x_0a \} \) of the relation \(\sim_a \) for the fixed transformation \(x_0 \in PT_n \). Consider element

\[
y := x_0a = \begin{pmatrix} i_1 & i_2 & \cdots & i_p & i_{p+1} & \cdots & i_n \\ y_1 & y_2 & \cdots & y_p & \emptyset & \cdots & \emptyset \end{pmatrix}.
\]

Obviously \(y_i \) belongs to the image of \(a, i = 1, \ldots, p \). Denote \(N_a(a_i) \) the block of the partition \(\rho \) which is defined by \(a_i \) in the image of \(a \). Denote \(n_a(a_i) \) the cardinality of this block. The equality \(xa = y \) is equivalent to that for every \(i \) \((xa)(i) = y_i \), or, what is the same, \(x(i) \in N_a(y_i) \). Hence \(x(i) \) can be chosen in \(n_a(y_i) \) ways, \(i = 1, \ldots, p \). For \(i = p + 1, \ldots, n \) the meaning of \(x(i) \) can be chosen in \(z_a + 1 \) ways. Since the images of \(x \) in different points are chosen independently, partial transformation \(x \) can be defined in

\[
n_a(y_1)n_a(y_2)\cdots n_a(y_p)(z_a + 1)^{n-p}
\]

ways, and this gives the cardinality of class \(\overline{x_0} \).

It is clear that \(\overline{x} \) is the set of all left annihilators of the semigroup \((PT_n, \ast_a) \). By proposition 1 the cardinality of class \(\overline{x} \) equals \((z_a + 1)^n \). Hence the value \(z_a \) is defined by abstract property the semigroup \((PT_n, \ast_a) \). Denote \(m \) the smallest cardinality of the blocks of the partition \(\rho \). Then the cardinality of the equivalence class of the relation \(\sim_a \) is the least if in (1) all multipliers are equal to \(\min(m, z_a + 1) \). Consider the corresponding cases.

Let \(m > z_a + 1 \). Then class \(\overline{x} \) is the only equivalence class of the least possible cardinality. The next larger class contains \(m(z_a + 1)^{n-1} \) transformations. Now count the number of different equivalence classes of the relation \(\sim_a \) which have the cardinality \(m(z_a + 1)^{n-1} \). Since \(m > z_a + 1 \) and this is the least of the cardinalities of the blocks of the partition \(\rho \), to make the product in (1) be equal to \(m(z_a + 1)^{n-1} \) there should be \(p = 1 \) and \(n_a(y_1) = m \). Element \(i_1 \) can be chosen in \(n \) ways. We know that \(|\{t : n_a(t) = m\}| = \alpha_m \), so \(y_1 \) can have \(\alpha_m \) different meanings. Therefore, there are \(n \cdot \alpha_m \) different transformations
\[y = x_0a, \text{ such that the corresponding class } \bar{x}_0 \text{ contains } m(z_a + 1)^{n-1} \text{ elements. Therefore by the relation } \sim_a \text{ we may define the number } m \text{ and the meaning } \alpha_m \text{ of the first nonzero component of the type } (\alpha_1, \alpha_2, \ldots, \alpha_n) \text{ of element } a. \text{ Components } \alpha_l \text{ for } l > m \text{ can be defined recursively. Assume that } \alpha_1, \alpha_2, \ldots, \alpha_l \text{ are found. For the relation } \sim_a \text{ denote } C \text{ the number of equivalence classes of the relation } l \cdot (z_a + 1)^{n-1}. \text{ Then } C \text{ is equal to the number of sets } (p; i_1, i_2, \ldots, i_p), \text{ where some of } i_1, i_2, \ldots, i_p \text{ may coincide in general, such that }\]

\[n_a(y_{i_1})n_a(y_{i_2})\ldots n_a(y_{i_p})(z_a + 1)^{n-p} = l \cdot (z_a + 1)^{n-1}. \tag{2} \]

Since \(\alpha_1, \alpha_2, \ldots, \alpha_{l-1} \) are known, we may find the number \(A \) of sets \((p; i_1, i_2, \ldots, i_p)\) such that all multipliers in the left hand side of (2) are less than \(l \). This value equals

\[\sum_{k=1}^{n} \sum_{(m_1, \ldots, m_k)} \binom{n}{k} \prod_{j=1}^{k} \alpha_{m_j}, \quad m \leq m_1, \ldots, m_k \leq l, \quad m_1 \cdot m_2 \ldots m_k = l \cdot (z_a + 1)^{n-1}. \]

The number of sets \((p; i_1, i_2, \ldots, i_n)\) such that one of the multipliers in the left hand side of (2) equals \(l \), is equal to \(n \cdot \alpha_l \). Then \(\alpha_l \) can be found from the equality \(A + n \cdot \alpha_l = C \).

Now let \(m \leq z_a + 1 \). Then the cardinality of the equivalence class of the relation \(\sim_a \) is the least if in (1) all multipliers are equal to \(m \), that is, this cardinality equals \(m^n \). Count the number of different equivalence classes \(\bar{x}_0 \) of the relation \(\sim_a \) of the cardinality \(m^n \). To make all multipliers in (1) equal to \(m \), there should be \(n_a(y_i) = m \) for all \(i \). However \(|\{t : n_a(t) = m\}| = \alpha_m \). So every \(y_i \) can be chosen in \(\alpha_m \) ways. Since the meanings of \(y_i \) for different \(i \) are chosen independently, there are \(\alpha_m^n \) different \(y = x_0a, \) such that the corresponding class \(\bar{x}_0 \) contains \(m^n \) elements. Hence by the relation \(\sim_a \) we may define the number \(m \) and the meaning \(\alpha_m \) of the first non zero component of the type \((\alpha_1, \alpha_2, \ldots, \alpha_n)\) of \(a \).

Components \(\alpha_l \) for \(l > m \) can be found recursively applying the same arguments as above. Some changes include the following: in (2) the right hand side must be substituted with \(l \cdot m^{n-1} \), and the number of sets \((p; i_1, i_2, \ldots, i_n)\), such that one of the multipliers in the left hand side of (2) equals \(l \), and other \(n-1 \) multipliers equal \(m \) is equal to \(n \cdot \alpha_l \cdot \alpha_m^{n-1} \) (if \(z_a + 1 \neq l \) then \(p = n \)). Therefore \(\alpha_l \) can be found from the equality \(A + n \cdot \alpha_l \cdot \alpha_m^{n-1} = C \).

Analogously we may find the type \((\beta_1, \beta_2, \ldots, \beta_n)\) of \(b \) via the cardinalities of the equivalence classes of the relation \(\sim_b \). Since for isomorphic semigroups \((\mathcal{PT}_n, *_a)\) and \((\mathcal{PT}_n, *_b)\) the number of the equivalence classes of the same cardinality coincide, and the values \(\alpha_k \) and \(\beta_k \), \(k = 1, \ldots, n \) are defined uniquely by the number of equivalence classes, for all \(k \) we have \(\alpha_k = \beta_k \), that is, elements \(a \) and \(b \) have the same types.

Sufficiency. Let elements \(a \) and \(b \) have the type \((\alpha_1, \alpha_2, \ldots, \alpha_n)\). Then there exist permutations \(\pi \) and \(\tau \) in \(S_n \) such that \(b = \tau_\alpha \pi \). The map \(f : (\mathcal{PT}_n, *_a) \to (\mathcal{PT}_n, *_b) \) such that \(f(x) = \pi^{-1}x\tau^{-1} \) defines isomorphism between \((\mathcal{PT}_n, *_a)\) and \((\mathcal{PT}_n, *_b)\). In fact \(f \) is...
bijection and

\[f(x *_a y) = \pi^{-1} x *_a y \tau^{-1} = \pi^{-1} x \tau^{-1} \pi \pi^{-1} y \tau^{-1} = \]

\[= \pi^{-1} x \tau^{-1} b \pi^{-1} y \tau^{-1} = f(x) *_b f(y). \]

\[\square \]

Corollary 1. Let \(p(k) \) denote the number of ways in which one can split positive integer \(k \) into non-ordered sum of the natural integers. Then there are \(\sum_{k=0}^{n} p(k) \) pairwise non-isomorphic semigroups obtained from \(\mathcal{PT}_n \) by the deformed multiplication.

References

[1] Ljapin Y.S., Semigroups, Moscow, Fizmatgiz, 1960 (Russian).

[2] Magill Kenneth D., Semigroup structures for families of functions. II. Continuous functions. // J. Austral. Math. Soc. 7 (1967), 95-107.

[3] Sullivan R.P., Generalized partial transformation semigroups. // J. Austral. Math. Soc. 19 (1975), part 4, 470-473

[4] Symons J.S.V., On a generalization of the transformation semigroup. // J. Austral. Math. Soc. 19 (1975), 47-61

[5] Artamonov V.A, Salij V.N., Skornyakov L.A. and others, General Algebra, Moscow, Nauka, 1991, vol. 1 (Russian).

Department of Mechanics and Mathematics,
Kiev Taras Shevchenko University,
64, Volodymyrska st., 01033, Kiev, Ukraine,
e-mail: gtsyaputa@univ.kiev.ua

Given to the editorial board 30.09.2003