THE SYNCHROTRON MOTION SIMULATOR FOR ADIABATIC CAPTURE STUDY IN THE TLS BOOSTER

Cheng-Chin Chiang*, Taipei, Taiwan

Abstract

The synchrotron motion simulator is invented to simulate the longitudinal motion for particles under RF (Radio Frequency) voltage field in a ring accelerator. It is especially used to study the efficiency of adiabatic capture for a booster ring. The purpose of adiabatic capture is to optimize RF voltage settings during the ramping of beam energy and obtain the greatest efficiency of particle capture. In this paper we study the longitudinal (synchrotron) motion for particles in the TLS (Taiwan Light Source) booster [1][2]. We compare the properties of TLS booster as a proton or electron accelerator, using the same ramping scenario of beam energy, and optimize the RF voltage settings to have the best capture efficiency.

INTRODUCTION

The TLS booster is a combined function FODO lattice with twelve periods, the circumference is 72 m. Its original designed is to boost electrons energy from 50 (MeV) to 1.5 (GeV). It has been operated for almost twenty years. The new accelerator TPS (Taiwan Photon Source) is planned to replace the TLS. If the TLS storage ring is decided to decommission in future, the TLS booster can be considered to transfer to a proton accelerator for nuclear or medical researches.

The capture efficiency for a proton booster is required to be high enough to minimize the proton losses. Since the loss of protons would cause radiation contaminations and endanger the human body or environment. Given the ranges of RF operation and ramping scenario of the beam energy, we can search for the best settings for adiabatic capture by synchrotron motion simulator. In the case of TLS booster, we plan to accelerate protons with the kinetic energy from 7 (MeV) to 300 (MeV) in the time period 50 (ms). The operation range of RF voltage is from 0 to 15 (kV), and the harmonic number is 2.

EVOLUTION OF SYNCHROTRON PHASE-SPACE ELLIPSE

The RF cavity is operated in a resonance condition to provide accelerating voltage, i.e. longitudinal electric field, to particles. For simplicity, we do not consider the effects of synchro-betatron coupling. The synchrotron equations of motion can be derived from Hamiltonian. For the beam acceleration, it is suitable to choose the phase-space mapping equation in the coordinates \((\phi, \Delta E)\), where \(\phi\) is the phase of RF voltage and \(\Delta E\) is the change of a particle energy per revolution. Let \(n\) be the turn number for a particle in a ring accelerator. The evolution equations of synchrotron motion in phase-space \((\phi, \Delta E)\) are derived from [3]:

\[
\Delta E_{n+1} = \Delta E_n + eV \sin(\phi_n - \phi_s) - C_\gamma \frac{E^4}{\rho},
\]

\[
\phi_{n+1} = \phi_n + \frac{2\pi h n}{\beta^2 E} \Delta E_{n+1},
\]

\[
\begin{align*}
\Delta E_n &= E(t_{n+1}) - E(t_n), \\
\gamma &= \frac{E}{m_0 c^2}, \\
\beta &= \sqrt{1 - \frac{1}{\gamma^2}}, \\
\nu &= \beta c, \\
\eta &= \alpha c - \frac{\Delta E}{\nu}, \\
\Delta E &= \frac{\Delta E}{\nu}.
\end{align*}
\]

\(e\) is particle charge, \(V\) is RF voltage, \(E\) is the total energy of a particle, \(\rho\) is the local radius of curvature for a bending magnet, \(h\) is the harmonic number for RF, \(\phi_s\) is the phase factor for RF, \(m_0\) is the stationary mass of a particle, \(c\) is the light speed, \(\nu\) is particle velocity, \(\alpha\) is the momentum compaction factor for a ring accelerator and \(P\) is the momentum of a particle. The radiation power coefficient \(C_\gamma\) is deduced from Larmor’s theorem, which depends on different kind of particles:

\[
C_\gamma = \frac{4\pi}{3} \frac{r_0}{(m_0 c^2)^3}
\]

\[
= \begin{cases} 8.846 \times 10^{-5} \text{ m/(GeV)}^3 & \text{for electrons,} \\ 7.783 \times 10^{-18} \text{ m/(GeV)}^3 & \text{for protons,} \end{cases}
\]

where \(r_0 = e^2/4\pi\varepsilon_0 m_0 c^2\) is the classical radius for a particle.

Note that \(V\) and \(E\) can be as functions of time during the ramping of beam energy. The RF voltage \(V\) as a function of time in a ramping cycle is modeled according to [4]:

\[
V(t) = \begin{cases} 3 \left(\frac{t}{T_\nu}\right)^2 - 2 \left(\frac{t}{T_\nu}\right)^3 \left(V_f - V_i\right) + V_i & \text{for } 0 \leq t \leq T_\nu, \\ V_f & \text{for } t > T_\nu, \end{cases}
\]

where \(T_\nu\) the adiabatic capture time, \(V_i\) and \(V_f\) are initial and final RF voltages, respectively. The setting of \(T_\nu\) would affect the efficiency for adiabatic capture. The particle en-
ergy E as a function of time in a ramping cycle is:

$$E(t) = m_0c^2 + K(t),$$

$$K(t) = \left(\frac{K_f - K_i}{2}\right) \left[\left(\frac{K_f + K_i}{K_f - K_i}\right) - \cos(2\pi ft)\right], \quad (4)$$

where $K(t)$ is the kinetic energy obtained from RF voltage, K_i and K_f are initial and final kinetic energies for a particle in a ramping cycle, f is the booster ramping frequency. The bending magnetic field for a booster ring as a function of time, $B(t)$, should be cooperated with $K(t)$ in order to keep particles in the same orbit:

$$E(t)^2 = m_0^2c^4 + P(t)^2c^2,$$

$$B(t) = \frac{P(t)}{e\rho} = \frac{1}{e\rho} \sqrt{\frac{E(t)^2 - m_0^2c^4}{c^2}}. \quad (5)$$

For the particle with a small stationary mass or very high kinetic energy compared to m_0c^2, the $B(t)$ is approximately proportional to $K(t)$. From Eq. 4, the change of total energy for a particle per revolution is equal to the change of kinetic energy:

$$eV \sin \phi_s = E(t_{n+1}) - E(t_n) = K(t_{n+1}) - K(t_n), \quad (6)$$

where $t_{n+1} - t_n$ is the revolution period for a particle between n and $n + 1$ turns:

$$t_{n+1} - t_n = \frac{L}{v(E(t_n))}. \quad (7)$$

L is the circumference for a ring accelerator, and the particle velocity v is a function of particle energy at the time t_n, as shown in Eq. 1. The RF phase factor ϕ_s is thus calculated by

$$\phi_s = \sin^{-1} \left[\frac{K(t_{n+1}) - K(t_n)}{eV} \right]. \quad (8)$$

Note that this equation also sets the maximum rate for the ramping of kinetic energy with $0 \leq [K(t_{n+1}) - K(t_n)] < eV$. For a heavy particle ramping, if it is started at low kinetic energy, the particle velocity is not close to the speed of light. So the revolution period would be changed obviously at the early stage of ramping. Since ϕ_s is dependent on the change of kinetic energy per revolution period, it is also changed obviously, as shown in the top left and right of Fig. 2.

The synchrotron tune Q_s is calculated by

$$Q_s = \nu_s \sqrt{\cos \phi_s}, \quad \text{where} \quad \nu_s = \frac{\hbar|\eta|eV}{2\pi^2E}. \quad (9)$$

if $\eta \neq 0$. The adiabatic coefficient α_{ad} is then defined as

$$\alpha_{ad} = \frac{1}{2\pi} \left| \frac{dT_s}{dt} \right|, \quad \text{where} \quad T_s = T_0/Q_s. \quad (10)$$

T_0 is the revolution period. The condition for adiabatic synchrotron motion is $\alpha_{ad} \ll 1$. The phase-space area enclosed by the separatrix is called bucket area \tilde{A}_B, which is approximated as

$$\tilde{A}_B \approx \frac{16Q_s}{\hbar|\eta|\sqrt{|\cos \phi_s|} \left(\frac{1 - \sin \phi_s}{1 + \sin \phi_s} \right)} \quad (11)$$

Since bucket area is the maximum size of a beam we can make, we should avoid the zero bucket area with $\phi_s = 90^\circ$ from Eq. 8.

OPTIMIZE THE TLS BOOSTER AS A PROTON OR ELECTRON MACHINE

For the TLS booster, the fixed parameters are $L = 72$ (m), $\rho = 5$ (m), $\alpha_c = 0.1346$, $K_i = 7$ (MeV), $K_f = 300$ (MeV) and $f = 10$ (Hz). For RF cavity, the fixed parameters are $h = 2$ and $V_f = 15$ (kV). The kinetic energy as a function of time for particles in a ramping cycle is shown in Fig. 1 which is based on Eq. 4. The RF voltage variables T_ν and V_i are crucial parameters to be optimized for the best efficiency of adiabatic capture. We assume the initial conditions for a bunch of the beam is flatly distributed in the phase $\phi = [-\pi, \pi]$ or $\phi = [0, 2\pi]$ (rad), and the distribution of $\Delta P/P$ ($\Delta E/E$) for protons (electrons) is a Gaussian with zero mean and $\sigma = \pm 0.05\%$ or $\sigma = \pm 0.5\%$, i.e., the width of $\Delta P/P$ ($\Delta E/E$) is 0.1% or 1% for protons (electrons). Two thousand particles are generated to represent a bunch of the beam ($N = 2000$). We track these particles by the synchrotron motion simulator and obtain the capture efficiency for particles in a ramping cycle.

![Figure 1: The particle kinetic energy as a function of time in a ramping cycle, where $K_i = 7$ (MeV), $K_f = 300$ (MeV) and $f = 10$ (Hz).](image-url)
Fig. 5 (Fig. 7) shows the heat map of adiabatic capture efficiencies for protons (electrons) with respect to T_ν and V_i settings. Table 1 lists the RF voltage settings with T_ν and V_i for the best efficiencies of TLS booster as a proton or electron accelerator, and with different initial beam distributions $\Delta P/P$ or $\Delta E/E$.

Table 1: The best capture efficiency with RF voltage settings T_ν and V_i for TLS booster.

Beam type (initial Gaussian width)	T_ν (ms)	V_i (kV)	Efficiency (%)
protons ($\Delta P/P = 0.1\%$)	0.5	7.5	99 ± 2.2*
protons ($\Delta P/P = 1\%$)	0.1	7	85.7 ± 2.2*
electrons ($\Delta E/E = 0.1\%$)	0.1	12.5	99.9 ± 2.2*
electrons ($\Delta E/E = 1\%$)	0.1	12	98 ± 2.2*

* The standard error $= \sqrt{N/N_0}$, where $N = 2000$ is the total number of particles in simulation.

Figure 2: The proton velocity in the unit of light speed c (top left), RF phase factor ϕ_ν (top right), RF voltage V (middle left), adiabatic coefficient α_{ad} (middle right), synchrotron tune Q_s (bottom left) and bucket area \tilde{A}_B (bottom right) vs. time in a ramping cycle. Here we set $T_\nu = 0.5$ (ms) and $V_i = 7.5$ (kV).

Figure 3: The electron velocity in the unit of light speed c (top left), RF phase factor ϕ_ν (top right), RF voltage V (middle left), adiabatic coefficient α_{ad} (middle right), synchrotron tune Q_s (bottom left) and bucket area \tilde{A}_B (bottom right) vs. time in a ramping cycle. Here we set $T_\nu = 0.1$ (ms) and $V_i = 12.5$ (kV).

SUMMARY

We have taken the TLS booster as an example to study the adiabatic capture efficiency for beam energy ramping. For protons acceleration, it is better to have the initial beam condition with a small $\Delta P/P$ distribution and a small adiabatic capture time T_ν for RF voltage setting, in order to have the best efficiency. For electrons acceleration, the requirements for good capture efficiency is roughly same with protons. However the electrons acceleration usually has a better efficiency compared to protons or other heavy particles, as shown in Table 1.

The synchrotron motion simulator is written in Python language which is easy to understand and execute on many OS platforms. It can be freely download from [5]. This program could be further developed for other kinds of particle accelerators, like carbon or heavy ion accelerators, for their design and optimization.

REFERENCES

[1] K.K. Lin, K.T. Hsu, T.S. Ueng, J.P. Chiou, J.I. Hwang, Y.C. Liu and J. Modeer, *Performance of SRRC 1.3 GeV Electron...*
Figure 4: The evolution of phase-space ($\phi, \Delta P/P$) for protons in a ramping cycle. We set $T_\nu = 0.5$ (ms), $V_i = 7.5$ (kV) and assume the initial conditions for a bunch of the beam is flatly distributed in the phase $\phi = [-\pi, \pi]$ (rad), and the $\Delta P/P$ is a Gaussian distribution with zero mean and $\sigma = \pm0.05\%$, i.e., the width of $\Delta P/P$ is 0.1%. Bottom plot is the capture rate vs. time for protons in a ramping cycle.

Figure 5: The evolution of phase-space ($\phi, \Delta E/E$) for electrons in a ramping cycle. We set $T_\nu = 0.1$ (ms), $V_i = 12.5$ (kV) and assume the initial conditions for a bunch of the beam is flatly distributed in the phase $\phi = [0, \pi]$ (rad), and the $\Delta E/E$ is a Gaussian distribution with zero mean and $\sigma = \pm0.05\%$, i.e., the width of $\Delta E/E$ is 0.1%. Bottom plot is the capture rate vs. time for electrons in a ramping cycle.

Booster Synchrotron, Nuclear Instruments and Methods in Physics Research Section A, Volume 361, Issues 12, 1 July 1995, p. 112.

[1] C.S. Chen, C.J. Wang, J. Chen, K.H. Hu, S.H. Lee, T.S. Ueng, K.T. Hsu and K.K. Lin, *Performance of the New White Circuit in Upgraded 1.5 GeV Booster Synchrotron*, EPAC2000, p. 1829-1831.

[2] C.S. Chen, C.J. Wang, J. Chen, K.H. Hu, S.H. Lee, T.S. Ueng, K.T. Hsu and K.K. Lin, *Performance of the New White Circuit in Upgraded 1.5 GeV Booster Synchrotron*, EPAC2000, p. 1829-1831.

[3] S.Y. Lee, *Accelerator Physics*, 2nd ed., World Scientific Publishing, 2004, Ch. 3.

[4] Xiaojian Kang, *The Cooler Injector Synchrotron at IUCF*, PhD thesis, 1998, pp. 103.

[5] Cheng-Chin Chiang, *Synchrotron Motion Simulator*, https://sourceforge.net/projects/synchrotronmotionsimulator/
Figure 6: The adiabatic capture efficiencies with respect to RF voltage settings T_ν and V_i for proton beam with Gaussian widths $\Delta P/P = 0.1\%$ (upper) or $\Delta P/P = 1\%$ (lower). The cross marker indicates the position of greatest efficiency in the heat map.

Figure 7: The adiabatic capture efficiencies with respect to RF voltage settings T_ν and V_i for electron beam with Gaussian widths $\Delta E/E = 0.1\%$ (upper) or $\Delta E/E = 1\%$ (lower). The cross marker indicates the position of greatest efficiency in the heat map.