High-Normal HbA$_{1c}$ Is a Strong Predictor of Type 2 Diabetes in the General Population

ENZO BONORA, MD1,2
STEFAN KIECHL, MD3
AGNES MAYR, MD4
GIACOMO ZOPPINI, MD1,2

CONCLUSIONS

Glycosylated hemoglobin (HbA$_{1c}$) recently has been recommended for the diagnosis of diabetes by the American Diabetes Association, but its value in the prediction of type 2 diabetes is poorly understood. In this study we evaluated how high-normal HbA$_{1c}$ levels predict type 2 diabetes.

RESEARCH DESIGN AND METHODS

We measured HbA$_{1c}$ in 919 Caucasian subjects, aged 40–79 years, and recorded new cases of type 2 diabetes in the following 15 years. Diabetes was diagnosed with HbA$_{1c}$.

RESULTS

Subjects were stratified according to baseline HbA$_{1c}$ (<5.0, 5.00–5.49 [reference], 5.50–5.99, and 6.00–6.49%). Sex- and age-adjusted hazard ratios (95% CI) for type 2 diabetes were 1.11 (0.30–4.41), 1.00, 3.79 (1.79–8.06), and 12.50 (5.51–28.34), respectively. Results did not change after adjusting for several putative confounding factors and were confirmed when models with updated variables were used.

CONCLUSIONS

HbA$_{1c}$ is an independent risk factor for type 2 diabetes. Subjects with high-normal levels of HbA$_{1c}$ deserve particular attention because they have a strong risk of developing diabetes.

Diabetes Care 34:1038–1040, 2011

Clinical and biochemical measurements

Information about medical history, drug use, and lifestyle was collected by a questionnaire. Weight, height, waist and hip circumferences, and blood pressure were measured with standard techniques. At the baseline and follow-up examinations, venous blood was sampled in the morning after an overnight fast for laboratory measurements, including fasting plasma glucose (FPG) and HbA$_{1c}$. Diabetes Control and Complications Trial–aligned assay; equipment and reagents from Bio-Rad, Milan, Italy, at both baseline and follow-up examinations). At both baseline and follow-up, diabetes was diagnosed when HbA$_{1c}$ was ≥6.5% or diabetes treatment was ongoing. In a parallel analysis, diabetes was diagnosed when FPG was ≥7.0 mmol/L or diabetes treatment was ongoing. Details on parameters examined and analytical procedures were previously reported (5,6).

Statistical analysis

Subjects were stratified into four HbA$_{1c}$ categories (<5.0, 5.00–5.49 [reference], 5.50–5.99, and 6.00–6.49%). The HbA$_{1c}$ category 5.00–5.49% had the largest number of participants (n = 345) and was used as the reference. Hazard ratios (HRs) for type 2 diabetes in the HbA$_{1c}$ categories were estimated with Cox proportional hazards models. Model 0 was unadjusted. Model 1 included age and sex. Model 2 also included LDL and HDL cholesterol, log-transformed triglycerides, BMI, waist-to-hip ratio, hypertension, family history of diabetes, education, alcohol, physical activity, and smoking. Model 3 included the variables in model 2 plus variables that are abnormal in conditions potentially affecting HbA$_{1c}$ (white blood cell count, hemoglobin, ferritin, and creatinine). Additional models were run with updated variables.
(HbA1c and other variables were assessed every 5 years during follow-up). In these models, baseline HbA1c predicted diabetes in the first 5-year follow-up period. HbA1c, at the 5-year follow-up predicted diabetes in the following 5-year follow-up, and so forth in multivariable equations overcoming the limitations of single measures. In parallel analyses, the same models were used with impaired fasting glucose (IFG) as a risk variable, and diabetes was diagnosed with FPG at baseline and follow-up. All reported P values are two-sided.

RESULTS—The table shows that incident cases of type 2 diabetes increased across categories of HbA1c: approximately one of four subjects from the 6.00–6.49% category (high normal) developed diabetes over 15 years. In this category, type 2 diabetes risk was 13- to 16-fold increased (models 0 and 1). The risk was only slightly reduced after adjusting for several putative confounding factors (models 2 and 3) and was definitely greater when updated variables were included into the models (Table 1). Analyses including interaction terms between HbA1c categories and factors that might affect interpretation of HbA1c (i.e., white blood cell count, hemoglobin, ferritin, and creatinine) did not yield evidence of differential associations according to HbA1c level, supporting the lack of effect modification.

In parallel analyses in which diabetes was diagnosed at both baseline and follow-up with FPG, and in which subjects at risk were those in the IFG category, we found that the latter conferred an increased diabetes risk (HRs [95% CIs] in subjects with IFG vs. normal FPG [<5.55 mmol/L]: 8.20 [4.66–14.40], 7.72 [4.36–13.66], 5.83 [3.23–10.54], and 5.92 [3.24–10.80] in the four models, respectively). These models included the same variables as those focusing on HbA1c. However, diabetes risk in subjects with IFG was substantially lower than in subjects with high-normal HbA1c.

CONCLUSIONS—It is well known that HbA1c captures chronic hyperglycemia in the prior 2–3 months, is well correlated to chronic diabetes complications, and has less preanalytical problems and biological variability than plasma glucose, with a non-inferior standardization (7). For such reasons, HbA1c was recommended for diabetes diagnosis and risk stratification (1,2).

The findings of the current study confirm a progressively increased risk of type 2 diabetes across categories of HbA1c and clearly document that subjects with high-normal HbA1c have a strong risk of developing type 2 diabetes, even after adjusting for several putative risk factors (e.g., BMI) and potentially confounding variables (e.g., anemia). Remarkably, diabetes risk in subjects with high-normal HbA1c is higher than in subjects with IFG.

Noteworthy, our study population was entirely Caucasian, and subjects were aged >40 years. Therefore, our findings cannot be necessarily extrapolated to other ethnicities and/or to younger subjects.

To the best of our knowledge, this study is the first to examine how baseline HbA1c predicts HbA1c-diagnosed diabetes. Our findings, which are consistent with those of studies based on self-reported diagnosis of diabetes (3,4), more strongly support the ADA recommendations of using HbA1c for diabetes risk stratification.

Table 1—HRs for 15-year incidence of type 2 diabetes according to HbA1c

HbA1c category	<5.00%	5.00–5.49%	5.50–5.99%	6.00–6.49%
n	112	345	315	70
Cases of incident diabetes	3	9	31	20
Cases per 1,000 person-years	1.9	1.9	7.8	25.8

HRs (95% CIs) in models with baseline variables*

HbA1c category	Model 0	Model 1	Model 2	Model 3
<5.00%	1.00	1.11	1.18	1.27
5.00–5.49% (reference)	1.00	1.00	1.00	1.00
5.50–5.99%	4.30 (2.05–9.03)	3.79 (1.79–8.06)	3.24 (1.50–6.98)	3.21 (1.49–6.92)
6.00–6.49%	15.67 (7.13–34.47)	12.50 (5.51–28.34)	9.74 (4.21–22.56)	9.26 (4.01–21.40)
P value for trend	<0.001	<0.001	<0.001	<0.001
HbA1c (per 1% increase)	11.00 (5.66–21.39)	8.54 (4.21–17.31)	6.08 (2.96–12.47)	6.05 (2.90–12.60)

HRs (95% CIs) in models with updated variables†

HbA1c category	Model 0	Model 1	Model 2	Model 3
<5.00%	2.31 (0.39–13.92)	2.55 (0.42–15.39)	2.55 (0.42–15.58)	2.43 (0.40–14.97)
5.00–5.49% (reference)	1.00	1.00	1.00	1.00
5.50–5.99%	12.58 (3.83–41.30)	11.62 (3.52–38.36)	10.97 (3.30–36.47)	11.43 (3.43–38.07)
6.00–6.49%	61.05 (18.23–204.4)	52.82 (15.57–179.3)	45.52 (13.1–158.0)	46.72 (13.4–163.3)
P value for trend	<0.001	<0.001	<0.001	<0.001
HbA1c (per 1% increase)	41.37 (18.79–91.07)	36.82 (16.30–83.21)	31.10 (13.31–72.79)	32.24 (13.60–76.41)

Model 0 was unadjusted. Model 1 included age and sex. Model 2 included the variables in model 1 plus LDL and HDL cholesterol levels, log-transformed triglyceride levels, BMI, waist-to-hip ratio, hypertension, family history of diabetes, education, alcohol use, physical activity score, and smoking status. Model 3 included all variables in model 2 plus white blood cell count, hemoglobin, ferritin, and creatinine. *Cox models in which HbA1c and other variables at baseline were used to predict diabetes in the 15-year follow-up. †Cox models in which updated HbA1c and other variables were used to predict diabetes in subsequent 5-year follow-up periods (see text for details).
and including subjects with high-normal levels in an effective prevention strategy. These subjects, indeed, have a high rate of progression to diabetes and deserve particular attention in order to prevent or delay the disease. Specific intervention trials, however, are needed to confirm such a conclusion because those conducted so far, based on lifestyle changes and/or drug use, recruited subjects at risk according to their plasma glucose levels and not HbA1c.

Acknowledgments—This research was supported by grants from the University of Verona and the Italian Ministry of Education, University, and Research. No potential conflicts of interest relevant to this article were reported.

E.B. established the project, planned the experimental design, researched and interpreted data, and wrote the manuscript. S.K. established the project, planned the experimental design, researched and interpreted data, contributed to discussion, and reviewed the manuscript. A.M. researched data, contributed to discussion, and reviewed the manuscript. G.Z., G.T., and R.C.B. contributed to discussion and reviewed the manuscript. J.W. established the project, planned the experimental design, researched and interpreted data, contributed to discussion, and reviewed the manuscript.

References
1. International Expert Committee. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 2009;32:1327–1334
2. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010;33(Suppl. 1):S62–S69
3. Pradhan AD, Rifai N, Buring JE, Ridker PM. Hemoglobin A1c predicts diabetes but not cardiovascular disease in nondiabetic women. J Am Med Assoc 2007;300:720–727
4. Selvin E, Steffes MW, Zhu H, et al. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N Engl J Med 2010;362:800–811
5. Bonora E, Kiechl S, Willeit J, et al.; Bruneck Study. Population-based incidence rates and risk factors for type 2 diabetes in white individuals: the Bruneck study. Diabetes 2004;53:1782–1789
6. Bonora E, Kiechl S, Willeit J, et al. Prevalence of insulin resistance in metabolic disorders: the Bruneck Study. Diabetes 1998;47:1643–1649
7. Selvin E, Crainiceanu CM, Brancati FL, Coresh J. Short-term variability in measures of glycemia and implications for the classification of diabetes. Arch Intern Med 2007;167:1543–1551