Gait and balance performance of stroke survivors in South-Western Nigeria - A cross-sectional study

Adebimpe Olayinka Obembe1-3, Matthew Olatokunbo Olaogun1-2, Rufus Adedayin1-2

1Department of Medical Rehabilitation, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria; 2Department of Physiotherapy, Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Osun State, Nigeria

Corresponding author: Dr. Adebimpe Obembe, Department of Medical Rehabilitation, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria

Introduction: Stroke survivors are often left with neurological and functional deficits, which impair their ability to walk and affect their balance. This study assessed gait parameters and balance performance among stroke survivors and examined the relationship between these two factors.

Methods: Seventy stroke survivors (65.7% males) who were 6 months or more post stroke participated in this study. Using Observational Gait Analysis, the gait of participants was assessed by gait speed and cadence. Balance performance was assessed using the Activities-specific Balance Confidence scale for balance self-efficacy and Functional Reach Test for standing balance.

Results: Participants had a mean age of 53.5±10.4 years. Forty five (64.3%) stroke survivors had haemorrhagic stroke while 25 (35.7%) had ischaemic stroke. The mean gait speed and cadence were 0.6±0.3m/s and 69.1±38.1 steps/min, respectively. The mean balance self-efficacy score was 66.5±17.7 and mean functional reach distance was 18.7±2.6cm. There were significant relationships between gait speed and balance self-efficacy (r =0.461, p =0.001) and between cadence and functional reach distance (r =0.247, p =0.020).

Conclusion: This study concluded that stroke survivors with higher cadences had higher functional reach distances, and those with higher gait speeds had better balance self-efficacy. Gait speed and cadence are factors related to balance performance. These factors should be considered during gait and balance retraining and should go pari passu in the rehabilitation of stroke survivors.
greater postural sway than age-matched volunteers who are healthy [9-11]. They also have altered weight distribution patterns, so that less weight is taken through the weak leg, and they have smaller excursions when moving their weight around the base of support, especially in the direction of the weaker leg [12]. This pattern is seen in all aspects of balance—static, dynamic, or responses to external perturbations—and even in people with stroke with high levels of function, such as those who are ambulatory in the community.

Postural balance is closely related to gait ability [13]. A strong relationship has been reported between gait velocity and dynamic balance in the acute rehabilitation period among patients with first time ever stroke [14]. In a study of balance rehabilitation programs in which outcome measures consisted of gait velocity, timed stair climbing, self-assessment of ease of gait and balance under six sensory conditions, improvements in gait measures were correlated with improved balance [15]. Balance and gait impairments increase the risk of falls in older people [16]. During gait and balance retraining of stroke survivors, treatment goals are usually determined by analysing patients' gait parameters and assessing the balance performance.

The incidence and prevalence of stroke have not been established in Nigeria. However, the frequency of stroke in hospital populations has varied from 0.9% to 4.0%, whereas among neurological admissions, stroke accounted for 0.5% to 45% of admissions [17]. There has been an increase in the incidence of stroke in Nigeria [18] and due to improved medical care many stroke victims now survive. Many patients will therefore need long term rehabilitation. Thus, assessing gait and balance is critical to stroke rehabilitation. Previous studies have separately reported gait [19-21] and balance performance [22, 23] in Nigerian stroke survivors, but the relationship between these attributes has rarely been studied. This study therefore assessed gait parameters and balance performance of stroke survivors to investigate the relationship between them.

Methods

Study setting

This was a cross sectional study of stroke survivors with hemiparesis attending outpatient physiotherapy clinics in the two teaching hospitals in Osun State, Nigeria. Using the sample size computation used by Eng [24] for descriptive clinical studies, we calculated a minimum sample size of 61 patients. Seventy stroke survivors were recruited from Obafemi Awolowo University Teaching Hospitals Complex (OAUTC), Ile-Ife and Ilesa units; and Ladoke Akintola University of Technology Teaching Hospital (LAUTHH), Osogbo. Obafemi Awolowo University Teaching Hospitals Complex is one of the first generation teaching hospitals established by the federal government, while LAUTHH is jointly owned by the state governments of Osun and Oyo. These two tertiary hospitals are urban health centres that provide medical services and training for medical and other health students. By virtue of their locations and the scarcity of health care facilities in neighbouring areas, patients that are seen in these hospitals come from all areas of Osun State and south-western states in Nigeria -Oyo, Ondo, Ekiti, Kwara, Kogi, Lagos and Edo States.

Participants

Fifty-two (74.3%) stroke survivors were recruited from OAUTHC and 18 (25.7%) from LAUTHH. The participants met the following criteria for inclusion in the study: a diagnosis of first episode of unilateral stroke by a neurologist; experienced stroke more than six months prior to the study; ability to understand and follow simple verbal instructions; ambulant before stroke; and ability to walk 10 metres in 1 minute or less without the physical assistance of a therapist or carer. This criterion corresponds to Functional Ambulation Categories (FAC) level 3 [25]. A patient was excluded if he or she had a history of other neurological pathology, conditions affecting balance (dementia, impaired conscious levels) and musculoskeletal conditions affecting the lower limbs. Stroke survivors who scored 0 to 2 on the FAC classification or who were dependent on a walker were also excluded from the study.

Twenty four (34.3%) women and 46 (65.7%) men participated in this study. Their ages ranged from 31-83 years with a mean of 53.5±10.4 years. Based on the heterogeneous nature of the study sample considering their ages and because most stroke survivors in Nigeria are between 50-70 years [17,26], participants were classified into three age categories; less than 50 years, 50 to 70 years and more than 70 years. Twenty three (32.9%) participants had FAC of 3 (they could walk independently with supervision), while 43 (61.4%) had FAC of 4 (they could walk independently on level ground) and only 4 (5.7%) had FAC of 5 (they could walk independently).

Ethical considerations

The protocol was approved by the Ethics and Research Committee of the Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife. All the participants received an explanation of the procedure of the study and gave informed consent prior to enrolment for assessment and data collection.

Procedures

Demographic and clinical information were obtained directly from the participants and from their case records. From neurologists’ diagnosis which included radiological investigations, and our clinical findings, patients’ strokes were classified as haemorrhagic or ischaemic. Physical measurements were conducted in the gymnasium and walkways of the physiotherapy clinics of the selected hospitals on 15-metre walkways created on smooth floors for the purpose of the study. The Functional Ambulation Categories test was used to assess walking ability by providing information on the level of physical support needed by patients to ambulate. Standing height and body weight of all the participants were measured using standardized protocols. Gait of participants were assessed with their gait speed and cadence by observational gait analysis (OGA). Balance performance was assessed using the Activities-specific Balance Confidence (ABC) scale and Functional Reach Test (FRT).

The gait parameters measured were gait speed and cadence. Measurements were taken by OGA. The measurement of gait speed was taken with the participant walking 10m without physical assistance while under the supervision of a physiotherapist. Distances of 2.5m were allowed before and after the 10m mark to allow for acceleration and deceleration respectively. Walking devices were allowed during the measurements. Five of the stroke survivors used quadripods during assessment.

Gait speed was assessed at comfortable self-paced walking speeds using a standard approach of observational gait analysis [27]. During each session, the participant walked 10m at a comfortable and at a self-paced walking speed. Timing with a digital stopwatch that registers time in seconds was manually initiated after the “go” instruction when the participant crossed the beginning of the 10m mark and stopped when the participant crossed the end of the 10m mark. Each participant rested for about one minute between each test [28]. Normal comfortable gait speed ranges from 1.3 to 2.5m/s [27]. Speed was calculated in metres per second by dividing the distance walked by the time required. This was recorded as the actual gait speed. Higher scores indicated faster gait speeds. To reduce measurement error of timed walking test, the mean of three repeated measurements was used.

Step length relates to body height and body height relates to gait speed in normal persons. Considering this relationship between height and gait speed and the established usefulness of height for reducing inter-individual variability in gait speed [29], gait speed was normalized by dividing speed by height. Height normalized speed (HNS) was determined by the formula;

\[
\text{Height-normalized speed} = \frac{\text{Actual speed (m/s)}}{\text{Height (m)}}
\]

Cadence was recorded as the number of steps taken per minute. Higher scores indicated better cadence. Normal walking cadence is 90 - 120 steps/minute [30]. No encouragement to facilitate performance during walking session was permitted.

The Functional Reach Test (FRT) [31] was used to measure the maximum distance that the stroke survivors could reach forward horizontally beyond arm’s length while maintaining a fixed base of support in standing with comfortable stance width [32]. Using a yardstick calibrated in centimetres (cm), mounted on the wall at shoulder height, each participant was asked to position the body close to, but not touching the wall with
Perceived balance self-efficacy was assessed using the Activities-specific Balance Confidence (ABC) scale [34]. The Activities-specific Balance Scale which has been shown to be valid and reliable for people with stroke, is a self-efficacy scale that evaluates confidence in 16 functional activities, 9 of them outside the home [35]. Theratningar are based on an 11-point scale ranging from 0% (“no confidence at all”) to 100% (“completely confident”). Participants were asked to rate their confidence that they will lose their balance or become unsteady in the course of completing 16 activities of daily living. The mean of the total score was recorded. A total score out of 100 was computed by taking the average of the item scores. The higher the ABC score, the higher the level of balance confidence. It took 10 - 20 minutes to administer the scale for each participant. Lajoie and Gallagher [36] reported that with an ABC Scale cut-off score of 67%, one can accurately classify people who fall 84% of the time. Patients in this study were classified as fallers (ABC score < 67%) and non-fallers (ABC score ≥ 67%) using their ABC scale scores.

Data Analysis
Data were analysed using both descriptive and inferential statistics. Descriptive statistics of mean, standard deviation, percentage, frequency, minimum and maximum values were determined for characteristics of the participants. Pearson product-moment correlation coefficient was used to determine the relationship between the gait parameters and balance performance. Independent samples t-test was used to determine the difference between fallers and non-fallers (risk of falls) and one way analysis of variance (ANOVA) was used to determine the difference among the age categories. Significance was set at 0.05 α-level. All statistical analyses were carried out using Statistical Package for Social Sciences (SPSS) 16.0 (SPSS Inc. Chicago, USA).

Results
Table 1 shows the frequency values and percentages of the demographic (gender and age) and stroke (side of paresis, type of stroke and balance performance) characteristics of the stroke survivors. Twenty three (32.9%) stroke survivors had left-side paresis while 47 (67.1%) had right side paresis. Of the 70 stroke survivors, 45 (64.3%) had haemorrhagic type of stroke while 25 (35.7%) had ischaemic type.

The range, mean and standard deviation of the physical (weight and height) and stroke (stroke duration, gait and balance performance) characteristics of the participants are presented in Table 2. The stroke durations ranged from six months to twenty four months (mean = 18.3±8.8 months); Activities-specific Balance Confidence scale scores ranged from 21.4% to 97.9% (mean = 66.5±17.7%); functional reach test distances ranged from 7.6 cm (mean = 18.7±4.6cm); gait speeds ranged from 0.11 m/s to 1.12 m/s (mean = 0.640.3m/s); and cadence ranged from 13.4 to 136.8 steps/minute (mean = 69.1±38.1 steps/minute).

The result of the Pearson product-moment correlation analysis showed a weak positive correlation between cadence and FRT distance (r = 0.247, p = 0.020); and a moderate positive correlation between gait speed and balance self-efficacy (r = 0.461, p = 0.001). But there was no significant relationship (p>0.05) between FRT distance and balance self-efficacy (Table 3).

Variable	Frequency	Percentage (%)
Demographics		
Age categories (years)		
less than 50	24	34.3
50 - 70	44	62.9
Above 70	2	2.9
Gender		
Female	24	34.3
Male	46	65.7
Stroke characteristics		
Side of paresis		
Left	23	32.9
Right	47	67.1
Type of stroke		
Haemorrhagic	45	64.3
Ischaemic	25	35.7
FAC Score		
3	23	32.9
4	43	61.4
5	4	5.7
ABC score category		
Fallers (≤ 67)	31	44.3
Non fallers (> 67)	39	55.7
FRT distance category		
Fallers (≤ 16 cm)	27	38.6
Non fallers (> 16 cm)	43	61.4

Table 2: Physical and stroke characteristics of participants

Variable (N=70)	Minimum-maximum	Mean±SD
Age (Years)	31.0 - 83.0	53.5±10.4
Height (m)	1.7 - 1.9	1.7±0.8
Weight (Kg)	44.0 - 94.0	67.4±9.2
Stroke duration (Months)	6.0 - 24.0	18.3±8.8
Body mass index (Kg/m²)	16.8 - 33.7	24.3±2.8
FAC score	3.0 - 5.0	3.7±0.6
ABC scale score (%)	21.4 - 97.9	66.5±17.7
FRT distance (cm)	7.6 - 39.4	18.7±4.6
Gait speed (m/s)	0.1 - 1.1	0.6±0.3
Height normalized speed	0.1 - 0.7	0.3±0.2
Cadence (steps/min)	13.4 - 136.8	69.1±38.1

Table 3: Relationships between gait parameters and balance performance

Variable	ABC Scale score (r)	FRT distance (r)
Gait speed (m/s)	0.461**	0.115
Height normalized speed	0.069	0.107
Cadence (steps/min)	0.116	0.247*

*Correlation is significant at p<0.05, **Correlation is significant at p<0.01, ABC- Activities-specific Balance Confidence, FRT- Functional Reach Test.
The moderate positive correlation between balance confidence and gait speed is similar to the findings in the study by Botner et al [43]. Guimaraes, and Issacs [44] also reported that gait speed is related to fall risk. This implies that stroke survivors with slower gait speeds have poorer balance confidence and vice versa. Findings from experimental studies have indicated that gait training enhances balance self-efficacy and that depression, age, sex, comorbidity, time post stroke, and functional mobility predict improvement in self-efficacy [42]. The findings in our study therefore suggest that slow gait speed is a potential risk factor for falls in chronic stroke survivors. Reports of previous studies have suggested that walking ability is a factor in falls because many reported cases of falls occurred during walking [45, 46]. Gait retraining will improve gait ability and balance self-efficacy and reduce the risk of falls in stroke survivors.

The mean FRT distance for the stroke survivors in this study is lower than that observed by Wolf et al [47] and Takatori et al [48]. Many participants in the Wolf study used assistive devices (cane and ankle-foot orthoses), while none of the participants in our study used any assistive device to carry out this test. This implies that assistive devices can improve balance performance in stroke survivors by improving mobility and allowing for independence in the performance of mobility-related tasks. In the Takatori et al [48] study patients were receiving intensive rehabilitation. The stroke survivors in our study were community-dwelling chronic stroke survivors who were not receiving intensive rehabilitation. Intensity of rehabilitation may enhance standing balance, thereby reducing the risk of falls in all categories of ambulatory stroke survivors. The evidence of the relationship between gait speed and balance performance has some implications for the rehabilitation of chronic stroke survivors. Reduced gait can negatively affect their balance ability and reduced balance may contribute to higher risk of falls. Ambulatory activities and balance retraining should be promoted during the rehabilitation of chronic stroke survivors.

Apart from a weak positive correlation with cadence, functional reach distance had no significant correlation with gait speed in our study similar to findings by Wolf et al [47], who found no significant relationship between gait speeds of stroke survivors assessed with a timed 10-metre walk test and functional reach distance. Winstein et al [49] also found no association between gait function and standing balance. In evaluating the physical impairment and functional limitations of patients, it is clinically useful to assess walking capacity and monitor the recovery of gait performance. The findings of our study support the suggestions by van de Port et al [50] who argue that the ability to walk in the community requires more than gait speed alone. They showed in their study that improvement in balance control was the most important driver for improvement in hemiplegic gait. Balance control is therefore an important independent compensatory factor enabling patients to walk in the community despite lower gait speeds, suggesting that patients with a slow walking speed seem to be able to compensate by an appropriate use of walking aids and sufficient control of balance walker.

There are several study limitations that warrant acknowledgment. First, because the stroke survivors in our study could ambulate independently, the findings of this study may not be generalized to stroke survivors who cannot do so. Second, we used convenience sampling and therefore findings may not be generalizable. Further research with a more representative sample is therefore necessary to explore other factors that may affect gait and balance in Nigerian stroke survivors with varying degrees of recovery.

Conclusion

Stroke survivors with higher cadences had higher functional reach distances, and those with higher gait speeds had better balance self-efficacy. This implies that gait speed and cadence are factors related to balance performance and should be considered during balance and gait retraining and should go pari passu in the rehabilitation of stroke survivors. Rehabilitation should focus not only on improving gait speed and balance performance, but also on other factors that are Conditional for becoming an independent community.
References

1. Herbert R, Moore S, Moseley A, Schurr K, Wales A. Making inferences about muscle forces from clinical observations. Australian Journal of Physiotherapy. 1993; 39(3):195-202.

2. Hendricks HT, van Limbeek J, Geurts AC, Zwarts MJ. Motor recovery after stroke: a systematic review of the literature. Arch Phys Med Rehabil. 2002; 83(11):1629-37.

3. Rosamond W, Flegal K, Furio K, et al. Heart Disease and Stroke Statistics-2007 update: A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2007; 115(5):e69-e171.

4. Bohannon RW, Horton MG, Wilkholm JB. Importance of four variables of walking to patients with stroke. Int J Rehabil Res. 1991; 14(3):246-50.

5. Wade DT, Hewer RL. Functional abilities after stroke: Measurement natural history and prognosis. J NeurolNeurosurg Psychiatry. 1987; 50(2):177-182.

6. Mauucci R, Eckhouse R. A real-time auditory feedback system for retraining gait. ConfProc IEEE Eng Med Biol Soc. 2011. USA: Scituate MA 02066. MOCO Inc.

7. Hamzat TK, Fashoyin OF. Balance retraining in post stroke patients using a simple, effective and affordable technique. Afr. J. Neurol. Sci. 2007; 26(2):39-47.

8. Lamb SE, Ferrucci L, Volapo S, Fried LP, Guralnik JM. Risk Factors for Falling in Home-Dwelling Older Women with Stroke. The Women's Health and Aging Study. Stroke. 2003; 34(2):494-501.

9. Lamontagne A, Paquet N, Fung J. Postural adjustments to voluntary head motions during standing are modified following stroke. ClinBiomech. 2003; 18(9):832-842.

10. Corriher H, Hébert R, Relache M, Prince F. Evaluation of postural stability in the elderly with stroke. Arch Phys Med Rehabil. 2004; 85(7):1095-1101.

11. deHaart M, Geurts AC, Huidekoper SC, Fasotti L, van Limbeek J. Recovery of standing balance in post-acute stroke patients: a rehabilitation cohort study. Arch Phys Med Rehabil. 2004; 85:886-895.

12. Tyson SF, Hanley M, Chilalal J, Selley A, Tallis RC. Balance disability after stroke. PhysTher. 2006; 86(3):30-38.

13. Nichols DS, Miller L, Colby LA, Pease WS. Sitting balance: its relation to function in individuals with hemiparesis. Arch Phys Med Rehabil. 1996; 77(99):865-869.

14. Langhammer B, Lindmark B, Stanghellie JK. The relation between gait velocity, static and dynamic balance in the early rehabilitation of patients with acute stroke. Advances in Physiotherapy, 2006; 2:60-65.

15. Bonan IV, Yelnik AP, Colle FM, et al. Reliance on visual information after stroke. Part II: Effectiveness of a balance rehabilitation program with visual cue deprivation after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2004; 85(2):274-8.

16. Metzer I, Benjuya N, Kaplanski J. Postural stability in the elderly: a comparison between fallers and non-fallers. Age Ageing. 2004; 33(6):602-607.

17. Ogun SA, Ojini FI, Oungbogbo KS, Kolapo KO, Danesi MA. Stroke in South West Nigeria: A 10-Year Review. Stroke. 2005; 36(6):1120-1122.

18. Olanik O, Oparah SK, Ogunginiyi A. Prognosis and outcome of acute stroke in the University College Hospital Ibadan, Nigeria. Niger J ClinPract. 2011; 14(3):359-62.

19. Olawale OA, Akinfelleye EM. Effects of strengthening of lower limb muscle groups on some gait parameters in adult patients with Stroke. Journal of Nigeria Society of Physiotherapy. 2002; 14(2):70-74.

20. Obembe AO, Olaogun MO, Adeodoyin RA. Gait Characteristics of Hemiparetic Stroke Survivors in Osun, Nigeria. African Journal for Physical, Health Education, Recreation and Dance. 2010; 16(4):545-559.

21. Onigbinde AT, Mustapha MK. Effect of six weeks cycle ergometry on selected gait parameters of Stroke Survivors. The Internet Journal of Allied Health Sciences and Practice. 2010. http://ijahs.nova.edu/articles/Vol8Num3/onigbinde.htm. Accessed 3rd December 2013.

22. Obembe AO, Olaogun MO, Adeodoyin RA, Lamidi RE. Determinants of Balance Performance in Hemiparetic Stroke Survivors. Turkish Journal of Physical Medicine and Rehabilitation. 2011; 57(4):201-5.

23. Olaogun MOB, Lamidi RE, Obembe AO. Balance Confidence and Standing Balance Performance among Stroke Survivors with Hemiparesis. J. Med. Med. Sci. 2011; 2(3): 750-757.

24. Eng J. Sample Size Estimation: How Many Individuals Should Be Studied? Radiology. 2003; 227(2):309-313.

25. Holden MK, Gill KM, Magliozzi MR, Nathan J, Pielh-Baker L. Clinical gait assessment in the neuromotorically impaired. Reliability and Meaningfulness. PhysTher. 1984; 64(1):35-40.

26. Owolabi MO, Ogunginiyi A. Profile of health-related quality of life in Nigerian stroke survivors. European Journal of Neurology. 2009; 16(1):54-62.

27. Bohannon RW. Comfortable and maximum walking speed of adults aged 20-79 years: reference values and determinants. Age Ageing. 1997; 26(1):15-19.

28. Kollen B, Kwakkel G, Lindeman E. Time dependency of walking classification in stroke. PhysTher 2006; 86(5):618-625.

29. Al-Obaidi S, Wall JC, Al-Yaqoub A, Al-Ghanim M. Basic gait parameters: A comparison of reference data for normal subjects 20 to 29 years of age from Kuwait and Scandinavia. JRRD. 2003; 40(4):361-366.

30. Murray MP, D’Aubry AB, Kory W. Walking patterns in normal men. The Journal of Bone and Joint Surgery; 1964; 46:335-360.

31. Duncan PW, Weiner DK, Chandler J, Studenski S. Functional reach: a new clinical measure of balance. J Gerontol. 1990; 45(6):M192-M197.

32. Jonsson E, Henriksson M, Hirschfeld H. Does the Functional Reach Test Reflect Stability Limits In Elderly People? J Rehabil Med. 2002; 35: 26-30.

33. Jonsson PW, Studenski S, Chandler J, Prescott B. Functional reach: predictive validity in a sample of elderly male veterans. J Gerontol. 1992; 47(3):93-98.

34. Powell LE, Myers AM. The Activities-Specific Balance Confidence (ABC) Scale. J Gerontol A BiolSci Med Sci. 1995; 50(1):M28-M34.

35. Lord SE, Rochester L. Measurement of Community Ambulation after Stroke: Current status and future developments. Stroke. 2005; 36(7):1457-1461.

36. Lajoie Y, Gallagher SP. Predicting falls within the elderly community: comparison of postural sway, reaction time, the Berg balance scale and the Activities-specific Balance Confidence (ABC) scale for comparing fallers and non-fallers. Arch of Gerontol and Geriatr. 2004; 38(1):11-26.

37. Oltwy SJ, Richards C. Hemiparetic gait following stroke. Part I: Characteristics. Gait Posture. 1996; 4(2):149-162.

38. Miller W, Yiu J. Balance Confidence Predicts Physical Function, Participation, and Stroke Recovery after Inpatient Rehabilitation. Abstracts from the 15th World Congress of the World Federation of Occupational Therapists. 2010. https://www.wfot.org/wfot2010/program/pdf/1838.pdf. Accessed 3rd December 2013.

39. Bandura A. Self-efficacy mechanism in human agency. Am Psychol. 1982; 37(2):122-147.

40. Hatch J, Gill-Body KM, Portney LG. Determinants of balance confidence in community-dwelling elderly people. PhysTher. 2003; 83(12):1072-1079.

41. Pang MY, Eng JJ, Miller WC. Determinants of Satisfaction with...
42. Salbach NM, Mayo NE, Robichaud-Ekstrand S, Hanley JA, Richards CL, Wood-Dauphinee S. Balance self-efficacy and its relevance to physical function and perceived health status after stroke. Arch Phys Med Rehabil. 2006; 87(3):364-370.

43. Botner EM, Miller WC, Eng JJ. Measurement properties of the Activities-specific Balance Confidence Scale among individuals with stroke. Disabil Rehabil. 2005; 27(4):56-163.

44. Guimaraes RM, Isaacs B. Characteristics of the gait in old people who fall. Int Rehabil Med. 1980; 2(4):177-180.

45. Hyndman D, Ashburn A, Stack E. Fall events among people with stroke living in the community: circumstances of falls and characteristics of fallers. Arch Phys Med Rehabil. 2002; 83(2):165-170.

46. Hyndman D, Ashburn A. People with stroke living in the community: attention deficits, balance, ADL ability, and falls. Disabil Rehabil. 2003; 25(15):817-822.

47. Wolf SL, Catlin PA, Gage K, Gurucharri K, Robertson R, Stephen K. Establishing the reliability and validity of measurements of walking time using the Emory Functional Ambulation Profile. Phys Ther. 1999; 79(12):1122-1133.

48. Takatori K, Okada Y, Shomoto K, Shimada T. Does assessing error in perceiving postural limits by testing functional reach predict likelihood of falls in hospitalized stroke patients? Clin Rehabil. 2009; 23(6):568-575.

49. Winstein CJ, Gardner ER, McNeal DR, Barto PS, Nicholson DE. Standing balance training: effect on balance and locomotion in hemiparetic adults. Arch. Phys. Med. and Rehab. 1989; 70(10):755-762.

50. van de Port IG, Kwakkel G, Lindeman E. Ambulation in Patients with Chronic Stroke: How is it related to gait speed? J Rehabil Med. 2008; 40(1):23-27.