Carbohydrate biomarkers for future disease detection and treatment

CHENG YunFeng¹, LI MinYong²*, WANG ShaoRu¹, PENG HanJing¹, REID Suazette¹, NI NanTing¹, FANG Hao², XU WenFang² & WANG BingHe¹*

¹Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA;
²Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan 250012, China

Received September 19, 2009; accepted October 9, 2009

Carbohydrates are considered as one of the most important classes of biomarkers for cell types, disease states, protein functions, and developmental states. Carbohydrate “binders” that can specifically recognize a carbohydrate biomarker can be used for developing novel types of site specific delivery methods and imaging agents. In this review, we present selected examples of important carbohydrate biomarkers and how they can be targeted for the development of therapeutic and diagnostic agents. Examples are arranged based on disease categories including (1) infectious diseases, (2) cancer, (3) inflammation and immune responses, (4) signal transduction, (5) stem cell transformation, (6) embryo development, and (7) cardiovascular diseases, though some issues cross therapeutic boundaries.

carbohydrates, biomarkers, imaging agents, boronolectins

1 Introduction

Carbohydrates, traditionally considered as bioenergy suppliers and structural components, have been found to have a wide variety of biological and physiological functions. Therefore, together with proteins and peptides, nucleic acids and oligonucleotides, and lipids, carbohydrates are considered one of the most important classes of biomacromolecules [1–4]. In addition, the relationship among these four classes of biomolecules is often intertwined. For example, protein glycosylation is very important to its conformation, transportation, function, and fate [5–16]; glycosylated lipids (glycolipids) are essential biomolecules [3, 17–22]; and nucleic acid glycosylation, whether synthetic [23] or natural [24–31], has recently been recognized as important in affecting its distribution and function. Because of all these properties, it is not surprising that carbohydrates are biomarkers for cell types, disease states, protein functions, and developmental states [2, 32–40]. Recent years have seen a rapid increase in knowledge related to all these areas mentioned. Such advancements can largely be attributed to the development in new techniques, such as NMR and mass spectrometry, and molecular biology, and the ready availability of genomic information. As a result, recent advancements in glycobiology and glycomics have also opened new doors for the development of new therapeutics and imaging agents through carbohydrate recognition. Therefore, compounds that can specifically recognize a particular carbohydrate have very important applications [41–52]. They can be used as sensors for detection, diagnosis, and prognosis, as “blockers/inhibitors” for therapeutics development if the target carbohydrate is involved in pathogenesis, and as vectors for the targeted delivery of imaging and therapeutic agents. Critical to all these potential applications are two issues: (1) the identification of carbohydrate biomarkers and (2) the design and synthesis of “binders” that can specifically recognize the target biomarker with high affinity and specificity. In this review, we
present selected examples of important carbohydrate biomarkers and how they can be targeted for the development of therapeutic and diagnostic agents. It should be noted that there are many books on glycobiology and there are many review articles on how one can target carbohydrates for various applications [45, 51, 53–55] and it would be impossible to cover the entire topic in detail. Therefore, this article does not strive to be comprehensive. Instead, it is meant to be “tutorial,” which we hope would help to generate more interests in carbohydrate recognition as a way for the development of new therapeutics and diagnostics. Carbohydrate recognition research impacts essentially all areas in which carbohydrates play a role. Examples include (1) infectious diseases, (2) cancer, (3) inflammation and immune responses, (4) signal transduction, (5) stem cell transformation, (6) embryo development, and (7) cardiovascular diseases. In the following sections, we divide the discussions based on disease categories though some issues cross therapeutic boundaries. In the last section, we present a few simple examples of how to target carbohydrate biomarkers for diagnostic and therapeutic applications.

2 Cancer

Among all pathologically relevant glycosylation changes, cancer is probably the most extensively studied. Even in normal cells, surface carbohydrate structures are known to be characteristic markers for different types of cells [56–61]. Transformations of normal to cancerous cells are often associated with the alteration of cell surface carbohydrates and the expression or over-expression of certain carbohydrates has been closely correlated with cancer [56–61]. Therefore, many carbohydrates are considered cancer associated antigens (CAA). Among all carbohydrate-based CAA, Globo H and the Tn antigen are probably the most common. It is known that the Tn antigen is found on the cell surface of over 90% of solid tumor [62]. The formation of the Tn antigen is because of deficiency of an enzyme named β-1,3-galactosyltransferase, which results in the incomplete conversion of the Tn antigen to the T antigen. Other important cancer-related carbohydrates include the sialylated carbohydrates. For example, sialyl Lewis X (sLeα) has been shown to mediate lung colonization of B16 melanoma cells [63] and yet excessive sLeα expression is shown to lead to rejection by natural killer cells [64]; serum sLeα and cytotkeratin 19 fragment are said to be predictive factors for recurrence in patients with stage I non-small cell lung cancer [65]; and sLeα and sialyl Lewis a (sLeβ) have been shown to mediate adhesion of urothelial cancer cells to activated endothelium [66]. Changes in sLeα and sLeβ levels in cancer have been attributed to both “neosynthesis” and “incomplete synthesis” of pathways involving sulfation or sialylation [67] and variations of enzyme levels can be directly correlated with certain changes in glycosylation [68]. With all these aberrant glycan expressions, “binders” that can recognize these carbohydrates will be very useful research tools, diagnostic agents, and possibly therapeutic agents [51].

In addition to cell surface carbohydrate biomarkers, post/co-translational protein glycosylation often carries signatures of malignant transformations [69–93]. In terms of the biological significance of protein glycosylation, usually it is not a question of whether there is glycosylation; rather it is the glycosylation pattern that marks different pathological states including malignancy. For example, the glycosylation patterns of prostate specific antigen (PSA) from cancer cells in culture [94] and prostate cancer patients’ tissue and sera [69, 93, 95] are different from that of normal prostate; human pancreatic RNase 1, a glycoprotein secreted mostly by pancreatic cells, has completely different oligosaccharide chains when produced from pancreatic tumor cells [39, 71, 96, 97]; pregnancy-related human chorionic gonadotropin (hCG) can be biomarkers for cancer. Down syndrome, and pregnancy failure depending on their glycosylation patterns [98, 99]; and specific glycosylation patterns of haptoglobin (Hp) and alpha-fetoprotein (AFP) have a much higher degree of correlation with cancer than the total Hp/ AFP levels [100, 101]. In such cases, “binders” that can recognize glycosylation variations can be very useful diagnostic tools.

3 Infectious diseases

There are several ways in which carbohydrates are involved in the pathogenicity of infectious agents. In the case of viral infections, the human influenza virus is an excellent example. Flu viral infection involves sialic acid for binding to hemagglutinin and infection. After infection, the budding of mature viruses from infected cells involves the cleavage of sialic acid by neuraminidase in order for the virus to detach [102, 103]. Flu drug such as tamiflu functions by inhibiting neuraminidase and thus inhibit viral replication [104, 105].

In the case of human immunodeficiency virus (HIV), a critical protein, gp120, is glycosylated with polymannose [106, 107]. Infection of cells by HIV-1 requires the fusion of the viral membrane with cellular membrane [108]. This fusion is mediated by gp120 and gp41 along with cell surface receptors (CD4 and chemokine receptor) on the target cells [109]. Conceivably, agents that interact with gp120 may interfere with viral entry into target cells [110]. Binding to glycans on the viral envelope may also force the virus to delete a portion of its glycan shield, making the virus more susceptible to attack [111]. Along this line, several lectins have been studied for their anti-HIV activities. For example, cyanovirin-N (CV-N) is a 11kDa protein with 101 amino acids and has affinity for high-mannose glycans especially α-(1,2)-linked mannose oligomers [112, 113]. CV-N inactivates T-lymphocyte-tropic, laboratory strains of HIV type 1 and HIV type 2, as well as T-tropic, M-tropic and
dual tropic primary clinical isolates of HIV-1, presumably through inhibition of viral entry by blocking part of gp120. In CEM-SS cells, CV-N has an EC50 of 0.1 nM. As a control, treatment of uninfected CEM-SS cells in the presence of high concentrations (9000 nM) of CV-N did attenuate the lethal effect of the virus. Other lectins have also shown similar effect, presumably by binding to the polymannose portion of gp120. These include SVN (scytovirim), which has affinity for α(1,2)-α(1,6)-mannose trisaccharide units and can inhibit HIV infection in T-tropic laboratory strain HIV-1 in CEM-SS cells with an EC50 of 0.3 nM [114], and actinohivin, which has affinity for mannose-type glycans [115] and can inhibit T-cell and macrophage infection by HIV-1 in cell culture (IC50 of 60 to 700 nM). All such results indicate that the viral envelope glycans play an important role in their pathogenicity.

In bacterial pathogenicity, carbohydrates also play very important roles. One prominent example is lipopolysaccharides (LPS), also known as endotoxin, from the outer membrane of cell wall of Gram-negative bacteria. One such example is Pasteurella multocida, an encapsulated, Gram-negative coccobacillus that causes a wide range of animal diseases including avian fowl cholera [116]. When infections by Gram-negative bacteria occur, LPS stimulate the immune system in an attempt to clear the bacteria and the infection that may result. The lipid A component of LPS is primarily responsible for this inflammatory response. As the infection proceeds, the presence of a large amount of LPS can result in an overproduction of inflammatory mediators that result in damage to tissues, septic shock, organ failure, and death [117]. LPS has also been shown to play an important role in the pathogenesis of P. multocida, in which modification of LPS structure negatively affects the viability of P. multocida in vivo [118]. In addition to functioning as toxins, carbohydrates can also be the target for bacterial recognition. For example, many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAc beta 1-4Gal found in some glycolipids [119]; Pseudomonas aeruginosa and Pseudomonas cepacia isolated from cystic fibrosis patients bind specifically to gangliotetraosylceramide (asialo GM1) and gangliotriaosylceramide (asialo GM2) [120]; the pili of P. aeruginosa strains PAK and PAO bind specifically to the carbohydrate sequence beta GalNAc(1-4)beta Gal found in glycosphingolipids asialo-GM1 and asialo-GM2 [121]; adherence of P. aeruginosa and Candida albicans to glycosphingolipid (Asialo-GM1) receptors is achieved by a conserved receptor-binding domain present on their adhesions [122]; lacto- and ganglio-series glycolipids are adhesion receptors for Neisseria gonorrhoeae [123]; and there are many other examples [124]. In addition to all these, serotyping of Gram-negative bacteria is primarily based on their LPS structures [125]. Because of the many ways that carbohydrates can affect bacteria (and fungi) infections, one can envision situations where artificial “binders” of the target carbohydrates can be used for detection and treatment of bacterial and fungal infections.

4 Inflammation and immune responses

Carbohydrates are involved in mediating inflammatory processes in many ways. The most widely known example is probably sLeα-mediated white blood cell adhesion to infection/damaged sites through interactions with L-selectin. Recent studies unveiled that 6-O GlcNAc sulfate modification of the sLeα tetrasaccharide is of importance in L-selectin activity in animal and in leukocyte invasion into different human tissues [126]. Furthermore, the de novo induction of endothelial sLeα or its sulfated form through interactions with L-selectin is a common event in many organs, including thyroid gland, heart, skin and colon, thus, suggesting a crucial role for these glycans in the early-stage induction of tissue inflammation [127].

The most prominent examples of carbohydrate-mediated immune responses originate from the ABO blood group antigens, which are entirely carbohydrate-based [128]. Figure 1 shows the structures of these antigens. The difference between the A and B blood types is due to their terminal galactosamine N-acetylation on red blood cells, while type
O antigen lacks the terminal sugar. Therefore, persons of one blood type, such as A, would have natural antibodies against the other type (such as B) by targeting the difference in the terminal sugar structures. However, since O-type antigen does not have the terminal sugar and only has the common sugar structure, no antibody against the common core is produced by individuals of any blood type, which is the reason that O-type is “universal” [129].

Another type of carbohydrate-mediated immune response is the natural immunity in human against animal tissues. For example, pig cell surface has an antigen including the α-Gal-Gal moiety [130], which is absent on human cells. Therefore, humans have natural antibodies against α-Gal-Gal [131]. The acute immune response against α-Gal-Gal is a major hurdle in organ transplant using pig organs. A few years ago, genetically engineered pigs were produced [132, 133], which lack the α-Gal-Gal moiety and thus allow for organ transplant using pig organs to move one step closer to reality. In addition, targeted delivery of the α-Gal-Gal moiety has also been used to elicit immune response at a specific location or cell type [134].

5 Stem cell differentiation and embryo development

Fundamentally, stem cell differentiation and embryo development are the same. The process of transforming pluripotent stem cells into those of specialized functions is marked by different stages, which have characteristic stage-specific biomarkers. Such biomarkers are often carbohydrate-based [135–137] and can be targeted in “binder” development for various applications [138]. For example, Lewis X (Le⁺) has been identified as a stage-specific embryonic antigen, which can be used for identifying and isolating specific cell types from heterogeneous populations [139, 140]. Along this line, it was reported that sorting SVZ cells on the basis of Le⁺ was a good strategy to enrich a restricted but highly proliferative neutral stem cell population [141]. Other examples of carbohydrate changes at various developmental stages include (1) enriched fucose incorporation into macromolecules was found on cell surface at the 8- to 16-cell stage in pre-implantation mouse embryos [142]; (2) sialic acid was found on the 12th day of incubation of metanephros while before that time only N-acetyl-D-glucosamine and alpha-D-mannose were found to exist ubiquitously [143]; (3) in chick embryo development, glycopeptides were found to be mainly N-linked on the 8-day and both O- and N-linked on the 16th day with increased sialylated small glycopeptide contents [144]; and (4) glycosylation of two identical polypeptide chains was found to be organ specific by analysis of chicken serum transferrin and ovotransferrin glycans [145]. There are also many other examples of these biomarkers, such as SSEA-1, -3, and -4 and tumor rejection antigen (TRA)-1-60 and -1-81 [137, 139, 146]. All such results indicate that carbohydrate biomarkers play very important roles in the stem cell differentiation and embryo development. In stem cell research, one critical element is the ability to purify cells of the same differentiation stage and lineage. “Binders” that can recognize stage-specific biomarkers will be very useful for the purpose of separation and identifications. Along this line, aptamers can be very useful since their selection does not require prior knowledge of the nature and structure of the biomarkers in questions. There have been successful examples of selecting aptamers for cell-surface biomarkers using whole cells for the selection [138, 147–151]. For example, liver cancer-specific aptamers were developed by using whole live cells [152]. This study demonstrates that cell-based aptamer selection can specifically recognize cells from multiple cell lines, even for two cell lines with minor differences [152, 153]. In another study, a series of aptamers were selected for leukemia cells. These aptamers have dissociation constants (Kd) in the nano to pico-molar range. The selected aptamers could specifically recognize leukemia cells when mixed with normal human bone marrow aspirates. These aptamers were also used to identify cancer cells closely related to the target cell line in real clinical specimens [154]. Therefore, cell-based selection is a very promising method of developing specific molecular probes for cell-surface biomarker recognition. Similar approaches can be applied to stem cells for the selection of aptamers capable of recognizing stage-specific carbohydrate biomarkers. The recent development of boronic acid-modified DNA-based aptamers [155] allows for the selection of high affinity “binders” for glycoproteins with the ability to differentiate variations in glycosylation patterns and should tremendously enhance the chance of finding high affinity aptamers for such cell-surface carbohydrate biomarkers because of the intrinsic affinity of the boronic acid moiety for carbohydrates [51, 55]. Recently, the Schultz lab has developed a way of engineering boronic acid-modified protein [155, 156]. This will also be very useful in selecting artificial lectins for carbohydrate recognition.

6 Signal transduction

In the signal transduction area, the most prominent example is probably with glycosphingolipids (GSLs), which are involved in a whole host of activities. GSLs have the general structure of two hydrophobic tails (ceramide, consisting of SpH and fatty acid) and one carbohydrate chain, which are oriented perpendicularly. GSLs are held in the membrane by ceramide such that the carbohydrate chain is accessible to various ligands (antibodies, lectins, and complementary carbohydrates) (Figure 2) [157]. GSLs are an integral part of cellular membrane, which functions as antigens, receptors for microbial toxins, and mediators of cell adhesion and
modulators of signal transduction. Many functions were attributed to the unique property of GSLs to form clusters. Glycosynapse refers to glycosphingolipids-enriched microdomain, and glycosynaptic domains, which control GSL-dependent or -modulated cell adhesion, growth, and motility, are formed by the interaction of GSL clusters and functional membrane proteins. Modulation of glycosynapse functions can lead to new strategies in cancer therapy, and elucidation of the molecular mechanism of interaction among components in glycosynaptic domain might shed lights on new possible approaches to disrupt or promote such interactions [119, 121, 122, 157–161].

Protein glycosylation is known to be involved in regulating signal transduction as well. For example, the dynamic glycosylation of serine or threonine residues on nuclear and cytosolic proteins by O-linked β-N-acetylgalactosamine (O-GlcNAc) has been implicated in regulating protein-protein interaction(s) and/or protein function [162]; the Notch signaling pathway could be regulated by alterations of O-fucose structures [68]; O-fucose modification of Cripto is essential for Nodal-dependent signaling [68]; glycosylation of human CRLR at Asn123 is required for ligand binding and signaling [163]; elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation [164]; alternative O-glycosylation/O-phosphorylation of serine-16 regulates the activities of murine estrogen receptor beta [165]; NFκB activation is associated with its O-GlcNAcylation state under hyperglycemic conditions [166]; glucose deprivation stimulates O-GlcNAc modification of proteins through up-regulation of O-linked N-acetylgalactosaminyltransferase [167, 168]; a mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin [169]; O-glycosylation of Sp1 by insulin seems to enhance its transcriptional activity and results in activation of CaM gene transcription [170]; and glycosylation of guanylyl cyclase C affects its conformation and functional ability [134]. There are many other reports of similar nature.

In 1993, a uniquely glycosylated base, β-D-glucopyranosylxymethyluracil (also called base J), was identified in the nuclear DNA of *Trypanosoma brucei* [171]. This is a rare, if not the only, case where DNA glycosylation is known to play a very important physiological role in signal transduction and gene silencing [24, 25, 27, 172–175]. Specifically, base J is said to be the first hypermodified base found in eukaryotic DNA in the telomeric repeats and to be present in all kinetoplastid flagellates analyzed and some unicellular flagellates closely related to trypanosomatids [176]. In one study, Sabatini and coworkers proposed a model in which chromatin remodeling by J Binding Protein (JBP2) regulates the initial sites of J synthesis within bloodstream form trypanosome DNA, with further propagation and maintenance of J by JBP1. Synthesis of J within telomeric DNA of *Trypanosoma brucei* correlates with the bloodstream-form-specific epigenetic silencing of telomeric variant surface glycoprotein genes involved in antigenic variation [177, 178]. All such results suggest that binding and modulation of glycans of various proteins, lipids, and even DNA may allow for regulation of signal transductions.

7 Cardiovascular diseases

In the cardiovascular area, the case of glycosylated hemoglobin (technically it should be glycated since the attachment of a sugar moiety is through chemical reactions) is most widely recognized. Specifically, glycated hemoglobin (GlcHb) level is a strong indicator of cardiovascular disease (CVD) risk in diabetic patients [179–184], who die of CVD at rates 2–4 times higher than those without diabetes [181]. In vivo, glycation, normally defined as a nonenzymatic reaction of glucose with amino groups in protein to form the Amadori product [185] (Scheme 1), is generally considered the first step in the Maillard reaction [186, 187]. Later stages of Maillard reaction lead to the formation of sugar-derived protein adducts and advanced glycation end-products (AGEs), which play an important role in the pathogenesis of chronic diseases [182]. The term GlcHb generally refers to the full spectrum of glycated hemoglobins, including those containing glycated valine (such as HbA1c) and/or lysine residues. In a normoglycemic person, GlcHb accounts for ~24% of total hemoglobin at the end of the erythrocyte lifespan (~120 days), including 4% HbA1c [182, 188]. However, elevated glucose concentration in diabetic patients significantly increases this glycation reaction. For example, some diabetic patients have about 2–4-fold increases in HbA1c [189]. Although certain important questions regarding the prevention of CVD in diabetic patients remain unresolved, epidemiologic analyses suggested that a 1% increase in glycated hemoglobin elevates the risk for CVD by approximately 18% [181].

Another example of glycosylation’s effect on cardiovascular diseases is with fibrinogen, which circulates in the blood as the precursor of fibrin, the structural component of blood clot. It plays a key role in platelet aggregation, the final step of the coagulation cascade, and is a major deter-
minant of plasma viscosity and erythrocyte aggregation [190]. Fibrinogen is a glycoprotein with a molecular weight of 340 kDa [191] and contains approximately 3% carbohydrate consisting of NeuAc, Gal, Man, and GlcNAc [192]. From amino acid sequence studies, it has been determined that carbohydrate is linked to Asn52 on the γ chain and Asn364 on the Bβ chain [193, 194]. The carbohydrate moieties play important roles in fibrinogen functions [195, 196] and are involved in the clotting process, although some contradictory results have been reported [197–199]: deglycosylated fibrinogen could accelerate polymerization and increase lateral aggregation of fibrin fiber [200]; the desialylated oligosaccharide chains of fibrinogen could potentially mediate plasma clearance via the hepatic galactose/galactosamine binding lectin [201]; altered amounts of carbohydrate in fibrinogen are known to be directly related to certain types of dysfibrinogenemia [202]; extra negative charges (sialic acids) on fibrinogen can impair fibrin polymerization [203, 204], presumably due to the repulsive forces of the charges; and steric hindrance presented by additional glycan structures can also impair fibrin polymerization [203]. Fibrinogen-related abnormality is also implicated in other diseases such as hepatoma [202], pancreatic [33, 205] and other cancers [33, 206–213], tumor metastasis [208, 214–216], human hemopoietic cell proliferation [217], and embryogenesis and reproduction [218]. Some of these pathological changes are directly related to abnormal glycosylations [203, 204, 219–228]. In addition, there are many other situations where glycosylation affects the health of the cardiovascular system. For example, certain congenital disorder of glycosylation has been linked to intracranial hemorrhage [229].

The above examples are far from a complete list and are at best some highlights of examples where glycosylation variations play an important role in determining the biological outcome. However, even from this incomplete list, it can be seen that “binders” that can recognize a carbohydrate biomarker with high specificity and affinity would have great application potentials as sensors for concentration analysis, diagnostics, and possibly therapeutic agents. Below is a section describing the general concept of artificial “binder” design. It should be noted that there are several extensive reviews and book chapters on this subject. The following section is far from comprehensive. It can only be treated as some basic conceptual description. Readers are referred to published reviews [45, 51, 54, 55, 230, 231] and book chapters [232, 233] for more details.

8 Carbohydrate recognition

As discussed above, “binders” that can recognize certain carbohydrates with high affinity and specificity should be very useful research tools and potential diagnostic and therapeutic agents. However, achieving high affinity and high specificity carbohydrate recognition is not a trivial issue. In molecular recognition, antibody is often the gold standard. However, in the case of carbohydrates, raising antibodies is often a difficult task. More often than not, low affinity IgM antibodies are obtained. Recently, Boons [234] and colleagues have developed a remarkable synthetic approach to carbohydrate-protein conjugates, which elicits strong immune responses with very high titer. Naturally occurring protein “binders” include lectins [235, 236]. A few hundreds of lectins have been identified, about 60 of which are commercially readily available. Lectins all have certain specificity based on the overall topology and sugar compositions. For example, there are lectins that recognize polymannose structures and others that can recognize galactose connected to different structures. However, essentially all lectins have cross reactivity issues [237, 238].

Recent years have seen a great deal of interest in developing artificial lectins for various applications. These artificial lectins can generally be divided into two types: boronic acid-based and non-boronic acid based. The reason that boronic acid plays such an important role is that it can form tight complexes with diol-containing compounds. Sometimes single hydroxyl group interactions are sufficient in reinforcing highly specific macromolecular interactions. All these aspects have been discussed in detail in a recent re-
view and will not be duplicated here [51]. One thing that needs to be emphasized is the misperception that boronic acids only interact with linear diols and diols on five-membered ring. There are ample literature precedents demonstrating that boronic acid interactions with single hydroxyl groups or other nucleophiles/Lewis bases can also play a very important role in designing/selecting carbohydrate “binders” [51]. Since all boronic acid-containing carbohydrate “binders” function in a similar fashion as lectins, we have termed them as boronolectins [55]. Within the boronolectin category, there are small molecule- and macro-molecule-based boronolectins including boronic acid-based carbohydrate sensors [51, 55, 239], nucleic acid-based boronolectins (NABL) [240], peptide boronolectins (PBL) [241–244], and protein boronolectins (PrBL) [155, 156]. Each of these categories is discussed briefly below.

8.1 Non-boronic acid based lectin mimics

In this approach, the design is mostly based on hydrophobic and hydrogen bond interactions for recognition. Though early efforts were mostly on recognition in organic solvent, recently there has been remarkable progress in making non-covalent carbohydrate binders which showed reasonably high affinity in water, especially those by the Davis lab [245–249]. One example comes from the successful design of such a binder (1, Figure 3) for all-equatorial disaccharides, such as D-cellobiose, with good affinity and selectivity in aqueous solution [248]. Receptor 1 has two building blocks: (1) a-meta-terphenyl structure providing the “roof” and “floor” for hydrophobic interactions with carbohydrates and defining the length of the binding cavity; (2) isophthalamide units serving as pillars, with the potential to form hydrogen bonds, promote solubility, as well as prevent the cavity from collapsing. The binding constants between reporter 1 and selecting carbohydrates were determined to be 5–910 M⁻¹ with good selectivity.

Recently, Boons and Davis reported another analog 2 (Figure 4) using the same design concept, with a biphenyl “roof” and “floor” as well as isophthalamide “pillars” [249]. In a previous study, receptor 2 showed weak bind for the β-glucosyl unit (K_a = 9 M⁻¹ for β-glucose (α/β = 40/60) and 5 M⁻¹ for D-glucose (α/β = 72/28); K_a = 27 M⁻¹ for methyl-β-glucoside and 7 M⁻¹ for α-anomer) [247]. In an expanded study, 2 was recently reported as a strong and selective receptor for β-GlcNAc. The apparent binding constant between GlcNac β-OMe (Figure 4) and receptor 2 was determined to be 630 M⁻¹, which competes well with one lectin (WGA, K_a = 730 M⁻¹). Furthermore, receptor 2 has higher selectivity for GlcNac β-OMe than for the α-anomer and other N-acetylaminosugars.

8.2 Small molecule boronolectins (SBL)

Among all the carbohydrate sensors, boronic acid emerges as the most commonly used functional group for recognition, due to its strong interactions with diols [51–55, 231, 239, 250–263], aminoalcohols [264–266], α-aminoacids [267], α-hydroxyl acids [268–271], alcohols [55, 233, 272–287] as well as cyanide [288, 289] and fluoride [290–294]. The intrinsic ability for boronic acids to interact with nucleophiles is described in Scheme 2. The boron atom has only 6 valence electrons in its trigonal neutral form, which makes boronic acid a Lewis acid and capable of strong interactions with Lewis bases/nucleophiles. As a result, the boronic acid (3, Scheme 2) group is able to react with a protic solvent and convert to its anionic tetrahedral form (4). Both 3 and 4 are able to form tight and reversible complexes with 1,2- and 1,3-substituted Lewis base donors such as hydroxyl, amino, and carboxylate groups. Several factors such as

![Figure 3](structure_of_all-equatorial_disaccharide_receptor_1.png)

Figure 3 Structure of all-equatorial disaccharide receptor 1.

![Figure 4](structures_of_reporter_2_and_glcnaclist.pdf)

Figure 4 Structures of reporter 2 and GlcNAcβ-OMe.
O-C-C-O dihedral angle, pK_a values of the diol, buffer, ionic strength, as well as solvent all affect the complexation [55, 295, 263, 296].

Small molecule boronolectins (SBLs) have drawn a great deal of attentions in carbohydrate biomarker recognition and targeting [51]. Several recent reviews and research papers comprehensively summarize the use of boronic acids in sensor designs for carbohydrates [51, 54, 55, 231, 239] fluoride [290–294], cyanides [288, 289], as well as in-depth discussions of factors [55, 263, 296] that should be considered along the line of designing such sensors. Besides, there have also been quite a few recent reviews [51, 53] and research papers [44, 156, 297–312] on boronic acids that change fluorescent properties upon binding to a nucleophilic analyte or pH changes. Readers are referred to the above-referenced papers for details. Below, several representative examples are discussed to highlight applications.

One such example comes from the Wang lab, which developed an anthracene-based diboronic acid compound for sialyl Lewis X (sLeX). The anthracene-based boronic acid was first developed by the Shinkai group [253], whose fluorescence can be quenched by nitrogen lone pair electrons and recovered if lone pair electrons are masked through protonation after binding with carbohydrates [140]. By taking advantage of this, Wang and co-workers successfully designed and synthesized a series of anthracene-based diboronic acid compounds with different linkers, rigidity, and spatial orientation for recognition of sLex on cell surface [254, 313]. Among all the designed compounds, sensor 7 (Figure 5) stands out as an excellent receptor, which was able to label sLeX-expressing cells at low concentrations (0.5 μM) without cross-reactivity to Ley-expressing cells. This represents the first example of a small organic molecule used to fluorescently label cells based on the cell-surface carbohydrate structures. Further development along this line could lead to a number of small molecule boronolectins for labeling, drug delivery, and selective imaging applications.

In another example, the Hall lab in 2006 reported an ortho-hydroxymethyl phenylboronic acid (8, Scheme 3), which competes well with the well-established dialkylamino (Wulff-type) analogs with better binding affinity and solubility [272, 306]. The most significant finding of compound 8 was the weak but encouraging binding with model glycopyranosides. In aqueous media at physiological pH (7.4), the apparent binding constant between 8 and methyl α-D-glucopyranoside was determined to be 22 M⁻¹, which was slightly lower than that for glucose ($K_a = 36$ M⁻¹). This system has been used by the Hindsgaul lab for the detection of the terminal glycosylation of a glycoprotein with the aid of colored ortho-hydroxymethyl phenylboronic acid conjugates [314].

Another area developed recently in carbohydrate sensor design is nucleic acid-based boronolectins (NABL). The Wang lab is working on incorporating boronic acid-modified thymidine into DNA for aptamer selection work for glycoproteins. A boronic acid-labeled thymidine triphosphate (BTTP 9, Figure 6) was successfully synthesized [46]. It has been demonstrated that DNA polymerase can recognize BTTP as a substrate and the boronic acid-labeled DNA as a template, which are critical issues for aptamer selection work. One challenging task of carbohydrate recognition is the differentiation of glycosylation patterns of a glycoprotein. By taking advantage of the general aptamer selection method developed about 18 years by the labs of Szostak [315], Joyce [316], and Gold [317], as well as the intrinsic affinity of boronic acids for carbohydrates, it is reasonable to believe that incorporation of a boronic acid into the DNA aptamer would allow for the selection process to gravitate toward the glycosylation site and therefore allow for differentiation of glycosylation patterns.

Figure 5 Structures of boronic acids sensor 7.

Figure 6 Binding between ortho-hydroxymethyl phenylboronic acid 8 and glycoconjugates.
Anslyn and co-workers invented a method of using aptamers to fine-tune the selectivity of boronic acid-based synthetic small molecule receptors [240]. Specifically, organic receptor 10 (Figure 7) was immobilized on glyoxal agarose beads through reductive amination to form immobilized receptor 11, which was in complexation with tartrate as the target for the selection. Control compound 12, incapable of binding tartrate, was used for counter selection. The progress of the selection was monitored by incorporating a radiolabel into the RNA pool. By this approach, the author successfully selected an aptamer with good selectivity for the complex between bis-boronic acid receptor 11 and tartrate (>14 for tartrate, \(K_d = 2.1 \times 10^{-4} \text{M} \) and \(K_d < 3 \times 10^{-3} \text{M} \) for citrate in 20% MeOH). One explanation for the selectivity is that aptamer might form a pocket more precisely to accommodate the receptor-tartrate complex, while excluding citrate via steric interactions or charge repulsion. This work can lead to the applications for improving the specificity of synthetic receptors and the development of biosensors for small organic analytes.

8.4 PBL

In addition to nucleic acid-based boronolectins (NABL), there have been efforts in making peptide boronolectins (PBL) for the same purpose [241–244]. For examples, the Anslyn lab group developed a chemosensor array of PBL for saccharides, saccharide derivatives, and even sucralose in a real world beverage sample with good water solubility and high sensitivity at physiological pH [241]. The Duggan lab prepared solid-supported PBL derived from 4-borono-L-phenylalanine and studied their affinity for alizarin [242]. The Hall lab developed a general solid-phase approach to the synthesis and isolation of functionalized boronic acids, which should be very useful in combinatorial library synthesis of boronic acid-based carbohydrate sensors [243]. The Lavigne lab reported their PBL sensors for glycomics recognition with the potential for cancer diagnosis [244]. Along a similar line, Hall and coworkers have also established a prototypic bead-supported split-pool library of triamine-derived triboronic acid receptors [318].

8.5 PrBL

Recently, the Schultz lab successfully demonstrated the feasibility of adding the boronate functionality to the genetic code of \(E. coli \) in high yield and efficiency [155, 156]. Specifically, \(p \)-boronophenylalanine (13, Figure 8) was incorporated into proteins. The intrinsic affinity of the boronic acid group allows for the selection of high affinity PrBL. In addition, this method has the potential to be used for purification of native protein sequences in a one-step scarless affinity procedure.

8.6 Carbohydrate labeling in living systems

Recently, the Bertozzi lab has developed labeling approaches to probing the functions of glycans in living system and application of these tools to studies of glycobiology such as the identification of novel glycan-based tumor biomarkers [319–334].

The general principle relies on the availability of a toolkit of “azido sugars” for metabolically labeling different classes of glycans. These azido sugars can be recognized by their respective processing/incorporation enzymes and can be used for tagging via two bio-orthogonal reactions: Staudinger ligation (Figure 9) and [2+3] cycloaddition (click reaction) (Figure 10) [335–337]. Along this line, a
In using the Huisgen [3+2] dipolar cycloaddition with alkynes, the Bertozzi lab developed strained alkynes (14 and 15, Figure 10) for copper-free cycloaddition [320, 322, 324, 326, 328]. The Boons lab subsequently also reported their own strained alkynes for copper-free cycloaddition with azido compounds (16, Figure 10) [338]. The availability of such alkynes for copper free cycloaddition is especially important in live cell imaging because of the toxicity issues of copper in living systems. With this technique, the dynamics of glycan trafficking and a population of sialoglycoconjugates with unexpectedly rapid internalization kinetics were studied. In another example, 14 was used for the noninvasive imaging of glycans in live developing zebrafish [327]. In this experiment, zebrafish embryos were first treated with an unnatural sugar to metabolically label their cell-surface glycans with azides and then visualized by using an in vivo Cu-free click reaction with fluorophore-conjugated 14. The Bertozzi group also performed a spatiotemporal analysis of glycan expression and trafficking and identified patterns by using a multicolor detection strategy [324].

In conclusion, carbohydrates serve very important biological functions in a wide variety of processes. “Binders” that can specifically recognize a carbohydrate biomarker can be used for site specific delivery of therapeutic and imaging agents. Specific recognition of carbohydrates that mediate pathological processes has the potential to be used as a way to develop novel types of therapeutic agents. Recent years have seen a tremendous amount of work in developing carbohydrate “binders,” with boronolectins showing special promises. It is almost a certainty that new diagnostic and therapeutic agents will come out in the not too distant future that rely on carbohydrate recognition.

Financial support for the work conducted in the authors’ lab from the Georgia Cancer Coalition, Georgia Research Alliance, the National Institutes of Health (CA123329, CA113917, DK55062, CA88343, NO1-CO-27184, GM084933, GM086925, and CA122536), and the Molecular Basis of Disease Program at GSU is gratefully acknowledged.

1 Timmer MSM, Stocker BL, Seeberger PH. Probing glycomics. Curr Opin Chem Biol, 2007, 11: 59–65
2 Varki A. Glycan-based interactions involving vertebrate sialic-acid-recognition proteins. Nature, 2007, 446, 1023–1029
3 Hecht SM. Bioorganic Chemistry: Carbohydrates. New York: Oxford University Press, 1999
4 Fukuda M, Hindsgaul O. Cell Surface Carbohydrates: Cell-type Specific Expression. New York: Oxford University Press, 2000
5 Andreotti AH, Kahne D. Effects of glycosylation on peptide backbone conformation. J Am Chem Soc, 1993, 115, 3352–3353
6 Bosques CJ, Tschampel SM, Woods RJ, Imperiali B. Effects of glycosylation on peptide conformation: a synergistic experimental and computational study. J Am Chem Soc, 2004, 126: 8421–8425
7 Brissot JR, Uhrinova S, Woods RJ, van derZwan M, Jarrell HC, Paololetti L, Kasper DL, Jennings HJ. NMR and molecular dynamics studies of the conformational epitope of the type III group B streptococcus capsular polysaccharide and derivatives. Biochemistry, 1997,
36: 3278–3292
8 Collier E, Carpenter JJ, Beitz L, Caro LHP, Taylor SJ, Gorden P. Specific glycosylation site mutations of the insulin-receptor alpha-subunit impair intracellular-transport. Biochemistry, 1993, 32: 7818–7823
9 Dennis JW, Granovsky M, Warren CE. Protein glycosylation in development and disease. Bioessays, 1999, 21: 412–421
10 Lis H, Sharon N. Protein glycosylation-structural and functional aspects. Eur J Biochem, 1993, 218: 1–2
11 Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med, 1995, 1: 237–243
12 Martinez-Maza R, Poyatos I, Lopez-Corcuera B, Nunez E, Gimenez C, Zafra F, Aragon C. The role of N-glycosylation in transport to the plasma membrane and sorting of the neuronal glycine transporter GLYT2. J Biol Chem, 2001, 276: 2168–2173
13 Montreuil J, Vliegenthart JFG, Schachter H. Evidence for non-enzymatic glycosylation of Escherichia coli chromosomal DNA. J Biol Chem, 2005, 17: 441–451
14 Mironova R, Niwa T, Handzhiyski Y, Sredovska A, Ivanov I. Evidence for non-enzymatic glycosylation of escherichia coli chromosomal DNA. Mol Microbiol, 2005, 55: 1801–1811
15 Montreuil J, Vliegenthart JFG, Schachter H. Modification of DNA by reducing sugars alters collagen conformation during AGE-collagen formation. Biochemistry, 2006, 45: 2929–2939
16 Mirell J, Vliegenthart JFG, Schachter H. Regulation of trypanosome plasma membrane and sorting of the neuronal glycine transporter GLYT2. J Biol Chem, 2001, 276: 2168–2173
17 Bucala R, Model P, Cerami A. Modification of DNA by reducing sugars may contribute to DNA damage associated with aging. J Biol Chem, 1995, 99: 3832–3846
18 Vance DE, Vance J. Biochemistry of Lipids, Lipoproteins and Membranes. Amsterdam: Elsevier, 1991, Vol 20
19 Sasisekharan V. Glycosylation and structure-function relationships of proteins. Annu Rev Biochem, 1991, 60: 132–145
20 Visscher RE, Brouwerseensen JRE, Betjes MGH, Koomen GMC, Beelen RHH, Krediet RT. Cancer antigen-125: a bulk marker for the mesothelial mass in stable peritoneal-dialysis patients. Nephrology Dialysis Transplantation, 1995, 10: 64–69
21 Xu Y, Shen ZZ, Wiper DW, Wu MZ, Morton RE, Elson P, Kennedy AW, Belinson J, Markman M, Casey G. Lyso-phosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. J Am Med Assoc, 1998, 280: 719–723
22 Nimrichter L, Gargir A, Gottler M, Alstock RT, Shteiv A, Weisshauss O, Fire E, Dotan N, Schnaar RL. Intact Cell adhesion to glycan microarrays. Glycoconj J, 2004, 19: 197–203
23 Camacho JL, Tabares G, Mallorqui-Fernandez G, Barrabes S, Harvey DJ, Dwek RA, Rudd PM, de Llorens R. Glycosylation of human pancreatic ribonuclease: differences between normal and tumor states. Glycobiol, 2003, 13: 227–244
24 Tabares G, Radcliffe CM, Barrabes S, Ramirez M, Alexixandre RN, Hoesel W, Dwek RA, Rudd PM, Peracaula R, de Llorens R. Different glycan structures in prostate-specific antigen from prostate cancer sera in relation to seminal plasma PSA. Glycobiology, 2006, 16: 132–145
25 Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J, 2004, 382: 769–781
26 Gao SH, Wang W, Wang BH. Building fluorescent sensors for carbohydrates using template-directed polymerizations. Biorg Chem, 2001, 29: 308–320
27 Gao XM, Zhang YL, Wang BH. A highly fluorescent water-soluble boronic acid reporter for saccharide sensing that shows ratiometric UV changes and significant fluorescence changes. Tetrahedron, 2005, 61: 9111–9117
28 Gao XM, Zhang YL, Wang BH. Naphthylene-based water-soluble fluorescent boronic acid isomers suitable for ratiometric and off-on sensing of saccharides at physiological pH. New J Chem, 2005, 29: 579–586
29 James TD, Shinkai S. Artificial receptors as chemosensors for carbohydrates. In: Penadess, Ed. Host-Guest Chemistry. Berlin: Springer-Verlag, 2002, Vol 218. 159–200
30 Lin N, Yan J, Huang Z, Alteri C, Li MY, Carrasco N, Suyemoto M, Johnston L, Wang SM, Wang Q, Fang H, Caton-Williams J, Wang BH. Design and synthesis of boronic-acid-labeled thymidine triphosphate for incorporation into DNA. Nucleic Acids Res, 2007, 35: 1222–1229
31 Lis H, Sharon N. Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev, 1998, 98: 637–674
32 Babino A, Oppezzo P, Bianco S, Barrios E, Berois N, Navarrete H, Osinaga E. TN antigen is a pre-cancerous biomarker in breast tissue and serum in N-nitrosomethylurea-induced rat mammary carcinogenesis. Int J Cancer, 2000, 86: 753–759
33 Bloomston M, Zhou JX, Rosemurgy AS, Frankel W, Muro-Cacho CA, Yeatman TJ. Fibrinogen Gamma overexpression in pancreatic cancer identified by large-scale proteomic analysis of serum samples. Cancer Res, 2006, 66: 2929–2939
34 Kyselova Z, Mchrefel Y, Al Bataineh MM, Dobrolecki LE, Hickey J, Rixon J, Sweeney CJ, Novotny MV. Alterations in the serum glycome due to metastatic prostate cancer. J Proteome Res, 2007, 6: 1822–1832
35 Sahin A, Khorana AA, Baggs RB, Peng H, Francis CW. FGF-2 binding to fibrinogen is required for augmented angiogenesis. Blood, 2006, 107: 126–131
36 Visser C, Brouwerseensen JRE, Betjes MGH, Koomen GMC, Beelen RHH, Krediet RT. Cancer antigen-125: a bulk marker for the mesothelial mass in stable peritoneal-dialysis patients. Nephrology Dialysis Transplantation, 1995, 10: 64–69
37 Xu Y, Shen ZZ, Wiper DW, Wu MZ, Morton RE, Elson P, Kennedy AW, Belinson J, Markman M, Casey G. Lyso-phosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. J Am Med Assoc, 1998, 280: 719–723
38 Nimrichter L, Gargir A, Gottler M, Alstock RT, Shteiv A, Weisshauss O, Fire E, Dotan N, Schnaar RL. Intact Cell adhesion to glycan microarrays. Glycoconj J, 2004, 19: 197–203
39 Peracaula R, Royle L, Tabares G, Mallorqui-Fernandez G, Barrabes S, Harvey DJ, Dwek RA, Rudd PM, de Llorens R. Glycosylation of human pancreatic ribonuclease: differences between normal and tumor states. Glycobiol, 2003, 13: 227–244
40 Tabares G, Radcliffe CM, Barrabes S, Ramirez M, Alexixandre RN, Hoesel W, Dwek RA, Rudd PM, Peracaula R, de Llorens R. Different glycan structures in prostate-specific antigen from prostate cancer sera in relation to seminal plasma PSA. Glycobiology, 2006, 16: 132–145
do: 10.1002/med.20151

52 Striegler S. Selective carbohydrate recognition by synthetic receptors in aqueous solution. Curr Org Chem, 2003, 7: 81–102

53 Cao HS, Heagy MD. Fluorescent chemosensors for carbohydrates: a decade’s worth of bright spics for saccharides in review. J Fluorescence, 2004, 14: 569–584

54 Wang W, Gao X, Peng BH. Boronic acid-based sensors for carbohydrates. Curr Org Chem, 2002, 6: 1285–1317

55 Yan J, Fang H, Wang B. Boronolactins and fluorescent boronolectins: an examination of the detailed chemistry issues important for their design. Med Res Rev, 2005, 25: 490–520

56 Fukuda M. Cell surface carbohydrates in hematopoietic cell differentiation and malignancy. In: Fukuda M, Ed. Cell Surface Carbohydrates and Cell Development. Boca Raton: CRC Press, 1992. 37–161

57 Fukuda M. Cell Surface Carbohydrates and Cell Development. Boca Raton: CRC Press, 1992

58 Fukuda M. Cell surface carbohydrates: cell-type specific expression. In: Fukuda M, Hinds gaul O. Molecular Glycobiology. New York: Oxford University Press, 1994. 1–52

59 Fukuda M, Hinds gaul O. Molecular Glycobiology. New York: Oxford University Press, 1994. 1–52

60 Fukuda M. Possible roles of tumor-associated carbohydrate antigens. Cancer Res, 1996, 56, 2237–2244

61 Fukuda M, Hinds gaul O. Molecular and Cellular Glycobiology. New York: Oxford University Press, 2000

62 Springer GF, T and Th pancreatic carcinoma markers-autoantigenic adhesion molecules in pathogenesis, prebiopsy carcinoma-detection, and long-term breast-carcinoma immunotherapy. Crit Rev Oncog, 1995, 6: 57–85

63 Zhang J, Nakayama J, Ohyama C, Suzuki M, Suzuki A, Fukuda M, Fukuda MN. Sialyl Lewis X-dependent lung colonization of B16 melanoma cells through a selectin-like endothelial receptor distinct from E- or P-selectin. Cancer Res, 2002, 62: 4194–4198

64 Ohyama C, Tsouhi S, Fukuda M. Dual roles of sialyl Lewis X oligosaccharides in tumor metastasis and rejection by natural killer cells. Enemb, 1999, 18: 1516–1525

65 Mizuquchi S, Nishi yama N, Iwata T, Nishida T, Izumi N, Tsukio T, Inoue K, Sue hiro S. Serum sialyl Lewis X and cytokeratin 19 fragment as a predictive factors for recurrence in patients with stage I non-small cell lung cancer. E J Cancer Suppl, 2007, 6554

66 Fuji Y, Yoshida M, Chien LJ, Kikara H, Kageyama Y, Yasuko y, Oshima H. Significance of carbohydrate antigen sialyl Lewis X, sialyl-Lewis A, and possible unknown ligands to adhesion of human urothelial cancer cells to activated endothelium. Urol Int, 2000, 64: 129–133

67 Kannagi R. Molecular mechanism for cancer-associated induction of sialyl Lewis X and sialyl Lewis A expression—the warburg effect revisited. Glycocomnnat J, 2003, 20: 353–364

68 Halitwanger RS. Regulation of signal transduction pathways in development by glycosylation. Curr Opin Struct Biol, 2002, 12: 593–598

69 Tabares G, Radcliffe CM, Barbades S, Ramirez M, Alexiandre RN, Hoesel W, Dwek RA, Rudd PM, Pera caula R, de Llorens R. Different glyc an structures in prostate-specific antigen from prostate cancer sera in relation to seminal plasma PSA. Glycobiol, 2006, 16: 132–145

70 An HJ, Miyamoto S, Lan caster KS, Kirmiz C, Li BS, Lam KS, Leis erowitz GS, Lebrilla CB. Profiling of glycans in serum for the discovery of potential biomarkers for ovarian cancer. J Proteome Res, 2006, 5 1626–1635

71 Barbades S, Pages-Pons L, Radcliffe CM, Tabares G, Fort E, Royle L, Harvey DJ, Moenner M, Dwek RA, Rudd PM, de Llorens R, Pera caula R. Glycosylation of serum ribonuclease 1 indicates a major endthelial origin and reveals an increase in core fucosylation in pan creatic cancer. J Proteome Res, 2007, 17: 388–400

72 Beckett ML, Wright GL Jr. Characterization of a prostate carcinoma mucin-like antigen (PMA). Int J Cancer, 1995, 62: 703–710

73 Byrd JC, Bresalier RS, Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev, 2004, 23: 77–99

74 Casey RC, Oge gema TR, Skubitz KM, Pambuccian SE, Grindle SM, Skubitz APN. Cell membrane glycosylation mediates the adhesion, migration, and invasion of ovarian carcinoma cells. Clin Exp Metastasis, 2003, 20: 143–152

75 Chandrasekarar EV, Xue J, Neelamegham S, Matta KL. The pattern of glycosyl- and sulfotransferase activities in cancer cell lines: a predictor of individual cancer-associated distinct carbohydrate structures for the structural identification of signature glycans. Carbohydr Biochemistry, 2006, 341: 983–994

76 Dennis JW, Granovsky M, Warren CE. Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta Gen Sub, 1999, 1473: 21–34

77 Dimitroff CJ, Pera P, Dal’Olio F, Matta KL, Chandrasekarar EV, Lau JTY, Bernacki RJ. Cell surface N-acetylneuraminic acid alpha 2,3-galactoside-dependent intercellular adhesion of human colon cancer cells. Biocm Bioi Biphys Res Comm, 1999, 256: 631–636

78 Dwke MV, Brooks SA. Harnessing changes in cellular glycosylation in new cancer treatment strategies. Current Cancer Targets, 2004, 4: 425–442

79 Halloun F, Goupille C, Bureau V, Meflah K, Le Pendu J. Increased tumorigenicity of rat colon carcinoma cells after alpha1,2-tucosyltransferase PTA anti-sense cdna transfection. Int J Cancer, 1999, 80: 606–617

80 Hanisch FG, Hanski C, Hasegawa A. Sialyl Lewis(x) antigen as defined by monoclonal antibody AM-3. Is a marker of dysplasia in the colon adenoma-carcinoma sequence? Cancer Res, 1992, 52: 3138–3144

81 Hanisch FG, Stdre TRE, Deuttmann F, PeterKatalinic J. MUC1 glycosylforms in breast cancer—cell line T47D as a model for carcinoma-associated alterations of O-glycosylation. Eur J Biochem, 1996, 236: 318–327

82 Hernandez JD, Baum LG. Ah, sweet mystery of death! Galectins and control of cell fate. Glycobiol, 2002, 12: 1278–1368

83 Kirmiz C, Li B, An HJ, Chow ers BH, Chen HK, Lam MS, Ferrage A, Alecio R, Borowsky AD, Sulaimon S, Lebrilla CB, Miyamoto S. A serum glycomics approach to breast cancer biomarkers. Mol Cell Proteomics, 2007, 6: 43–55

84 Meichenin M, Rocher J, Galanina O, Bovin N, Nifan'tev N, Sherman A, Cassagneau E, Heymann MF, Bara J, Fraser RH, Le Pendu J. A new colon tumor-associated antigen resulting from altered O-glycosylation. Cancer Res, 2000, 60: 5499–5507

85 Miyamoto S. Clinical applications of glycomic approaches for the detection of cancer and other diseases. Curr Opin Mol Ther, 2006, 8: 507–513

86 Pouset D, Pillier V, Bureaud N, Monsigny M, Pillier F. Increased alpha 2,6 sialylation of N-glycans in a transgenic mouse model of hepatocellular carcinoma Cancer Res, 1997, 57: 4429–4426

87 Weston BW, Hiller KM, Mayben JP, Manousos GA, Bendt KM, Liu R, Cusack JC. Expression of human alpha(1,3)galactosyltransferase antiserum sequences inhibits lectin-mediated adhesion and liver metastasis of colon carcinoma cells. Cancer Res. 1999, 59: 2127–2135

88 Wong NK, Easton RL, Panico M, Sutton-Smith M, Morrison JC, Lattanzio FA, Morris HR, Clark GF, Dell A, Patankar MS. Characterization of the oligosaccharides associated with the human ovarian tumor marker CA125. J Biol Chem, 2003, 278: 28619–28634

89 Zhao J, Qiu W, Simeone DM, Lubman DM. N-linked glycosylation profiling of pancreatic cancer cells and the development of an antibody that detects a novel tumor-associated antigen. J Proteome Res, 2007, 10: doi: 10.2121/pr0604458

90 Zhao J, Simeone DM, Heidt D, Anderson MA, Lubman DM. Comparative serum glycoproteomics using lectin selected sialic acid glycoproteins with mass spectrometric analysis: application to pancreatic cancer serum. J Proteome Res, 2006, 5: 1792–1802

91 Dargan E, Thompson S, Cantwell BM, Wilson RG, Turner GA. Changes in the fucos content of haptoglobin in breast and ovarian cancer: association with disease progression. Glycoconj J, 1984, 1: 37–43

92 Ohyama C, Hosono M, Nitta K, Oh-ed M, Yoshikawa K, Habuchi T, Arai Y, Fukuda M. Carbohydrate structure and differential binding of
prostate specific antigen to maackia amurensis lectin between prostate cancer and benign prostate hypertrophy. Glycobiol, 2004, 14: 671–679

93 Kyselova Z, Mecheif Y, Al Bataineh MM, Dobrolecki L, Hickey RJ, Vinson J, Sweeney CJ, Novotny MV. Alterations in the serum glycome due to metastatic prostate cancer. J Proteome Res, 2007, 6: 1822–1832

94 Peracaula R, Tabares G, Royle L, Harvey DJ, Dwek RA, Rudd PM, de Llorens R. Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins. Glycobiol, 2003, 13: 457–470

95 Tabares G, Jung K, Reiche J, Stephan C, Lein M, Peracaula R, de Llorens R, Hoessel W. Free PSA forms in prostate tissue and sera of prostate cancer patients: analysis by 2-D and western blotting of immunopurified samples. Clin Biochem, 2007, 40: 343–350

96 Peracaula R, Tabares G, Lopez-Ferrer A, Brossmer R, de Bolos C, de Llorens R. Role of sialyltransferases involved in the biosynthesis of Lewis antigens in human pancreatic tumour cells. Glycoconjug J, 2005, 22, 135–144

97 Fernandez-Salas E, Peracaula R, Frazier ML, de Llorens R. Ribonuclease expressed by human pancreatic adenocarcinoma cell lines. Eur J Biochem, 2000, 267: 1484–1494

98 Birken S. Specific measurement of O-linked core 2 sugar-containing isoforms of hyperglycosylated human chorionic gonadotropin by antibody b152. Tumour Biol, 2005, 26: 131–141

99 Cole LA. Hyperglycosylated hCG. Placenta, 2007, 28: 977–986

100 Ang IL, Poon TC, Lai PB, Chan AT, Ngai SM, Hui AY, Johnson PJ, Sung JJ. Study of serum haptoglobin and its glycoforms in the diagnosis of hepatocellular carcinoma: a glycoproteomic approach. J Proteome Res, 2006, 5: 2691–2700

101 Johnson PJ, Poon TC, Hjelm NM, Ho CS, Blake C, Ho SK. Structures of disease-specific serum alpha-fetoprotein isoforms. Br J Cancer, 2000, 83: 1330–1337

102 Colman PM. In the influenza viruses: influenza virus neuraminidase, enzyme and antigen. In: Krug RM, Ed. The influenza viruses. New York: Plenum Press, 1993, 175–218

103 Liu C, Air GM. Selection and characterization of a neuraminidase-mutant strain of influenza virus and its rescue by cloned neuraminidase genes. Virology, 1993, 194: 403–407

104 Crusat M, de Jong MD. Neuraminidase inhibitors and their role in avian and pandemic influenza. Antivir Ther, 2007, 12: 593–602

105 Lowen AC, Palese P. Influenza virus transmission: basic science and implications for the use of antiviral drugs during a pandemic. Infect Disord Drug Targ, 2007, 7: 318–328

106 Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WS. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature, 1998, 393: 648–659

107 Wyatt R, Sodroski J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science, 1998, 280: 1884–1888

108 Chan DC, Kim PS. HIV entry and its inhibition. Proc Natl Acad Sci USA, 1988, 85: 6157–6161

109 Kryven HC, Roberts DD, Ginsburg V. Many pulmonary pathogenic bacteria specific to the carbohydrate sequence GalNAc beta 1-4Gal found in some glycolipids. Proc Natl Acad Sci USA, 1988, 85: 6157–6161

110 Harley SB, Lee KK, Won SY, Srivastava G, Hindsqiald O, Hodgus RS, Paranchych W, Irvin RT. The pili of pseudomonas aeruginosa strains PA01 and PA03 bind specifically to the carbohydrate sequence betaGalNAc(1-4)betaGal found in glycosphingolipids asialo-GM1 and gangliotriaosylceramide (asialo GM2). Arch Biochem Biophys, 1988, 260: 493–496

111 Muller WE, Rennaise K, Kreuter MH, Schroder HC, Winkler I. The D-mannose-specific lectin from gerardia savaglia blocks binding of human immunodeficiency virus type I to H9 cells and human lymphocytes in vitro. J Acquir Immune Defic Syndr, 1988, 1: 453–458

112 Tran G, Johnson PJ, Adler B. The capsule is a virulence determinant in the pathogenesis of pasteurella multocida M1-404 (B2). Infect Immun, 2000, 68: 3463–3468

113 Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem, 2002, 71: 635–700

114 Harper M, Booy JD, Wilkie JW, Adler B. Signature-tagged mutagenesis of pasteurella multocida identifies mutants displaying differential virulence characteristics in mice and chickens. Infect Immun, 2003, 71: 5440–5446

115 Knives HC, Roberts DD. The influenza viruses: influenza virus neuraminidase, enzyme and antigen. In: Krug RM, Ed. The influenza viruses. New York: Plenum Press, 1993, 175–218

116 Muller WE, Rennaise K, Kreuter MH, Schroder HC, Winkler I. The D-mannose-specific lectin from gerardia savaglia blocks binding of human immunodeficiency virus type I to H9 cells and human lymphocytes in vitro. J Acquir Immune Defic Syndr, 1988, 1: 453–458

117 Tran G, Johnson PJ, Adler B. The capsule is a virulence determinant in the pathogenesis of pasteurella multocida M1-404 (B2). Infect Immun, 2000, 68: 3463–3468

118 Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem, 2002, 71: 635–700
roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. *Exp Hematol*, 2002, 30: 973–981

136 Yu J, Vodyanik MA, He P, Slukvin II, Thomson JA. Human embryonic stem cells reprogram myeloid precursors following cell-cell fusion. *Stem Cells*, 2006, 24: 168–176

137 Muller T, Eidelsmann K, Dhir R, Schlatt S, Behr R. Glycan stem-cell markers are specifically expressed by spermatagonia in the adult non-human primate testis. *Hum Reprod*, 2008, 23: 2292–2298

138 Guo KT, Schafer R, Paul A, Ziemer G, Wendsel HP. Aptamer-based strategies for stem cell research. *Mini Rev Med Chem*, 2007, 7: 701–705

139 Lantctot PM, Gage FH, Varki AP. The glycans of stem cells. *Curr Opin Biol*, 2007, 11: 373–380

140 Muramatsu T, Muramatsu H. Carbohydrate antigens expressed on the glycosylation pattern as revealed with lectin conjugates. *J Biol Chem*, 2002, 277: 20756–20762

141 Zhang Y, Song YJ, Guo ZB, Wang J, Zhang ML, Lee HS, Choe H, Farzan M, Schultz PG. A genetically encoded boronate-containing amino acid. *Angew Chem Int Ed*, 2008, 47: 8220–8223

142 Lanctot PM, Gage FH, Varki AP. The glycans of stem cells. *Curr Opin Biol*, 2007, 11: 373–380

143 Nagano K, Yoshida Y, Isobe T. Cell surface biomarkers of embryonic stem cells. *Glycoconj J*, 2004, 21: 41–45

144 Capela A, Temple S. LaSelex is expressed by adult mouse CNS stem cells, identifying them as nonependymal. *Neuron*, 2002, 35: 865–875

145 Kimber SJ, Bagley PR. Cell-surface enrichment of fucosylated glycoconjugates in the 8- to 16-cell mouse embryo. *Dev Gene Evol*, 1987, 196: 492–498

146 Gheri G, Bryk SG, Sgambati E, Russo G. Chick Embryo membrane: the glycosylation pattern as revealed with lectin conjugates. *Acta Histochem*, 1994, 94: 113–124

147 Codogno P, Bernard B, Font J, Aubery M. Changes in protein glycosylation during chick embryo development. *Biochim Biophys Acta*, 1983, 763: 265–275

148 Jacquint P-M, Léger D, Wierszuski JM, Coddeville B, Montreuil J, Spik G. Change in glycosylation of chicken transferrin glycans biosynthesis during embryogenesis and primary culture of embryonic hepatocytes. *Glycoconj J*, 1994, 6: 617–624

149 Naganos K, Yoshida Y, Isobe T. Cell surface biomarkers of embryonic stem cells. In: *Proteomics, Germany*, 2008. Vol 8, 4025–4035

150 Ulrich H, Magdesian MH, Alves MJM, Colli W. Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. *BBA-GS*, 2008, 421–433

151 Shangguan D, Li Y, Tang ZW, Cao ZHC, Chen HW, Mallikaratchy P, Yang RF. Ulrich H, Magdesian MH, Alves MJM, Colli W. Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. *BBA-GS*, 2008, 421–433

152 Shangguan D, Li Y, Tang ZW, Cao ZHC, Chen HW, Mallikaratchy P, Yang RF. Ulrich H, Magdesian MH, Alves MJM, Colli W. Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. *BBA-GS*, 2008, 421–433

153 Kim YM, Liu C, Tan WH. Aptamers generated by cell Selex for bio-marker discovery. *Biomark Med*, 2009, 3: 193–202

154 Yang WH, Park SY, Nam HW, Kim do H, Kang JG, Kim YS, Lee HC, Kim KS, Cho JW. NFkappaB Activation is associated with its phosphorylation of nucleocytoplasmic proteins: a new paradigm for metabolic control of signal transduction and transcription. *Proc Natl Acad Sci USA*, 2002, 7: 17345–17350

155 Han JH, Kim KS, Cho JW. NFkappaB Activation is associated with its phosphorylation of nucleocytoplasmic proteins: a new paradigm for metabolic control of signal transduction and transcription. *Proc Natl Acad Sci USA*, 2002, 7: 17345–17350

156 Taylor RP, Parker GJ, Hazel MW, Sefah K, Yang CYJ, Tan WH. Aptamers evolved from live cells as markers of carbohydrate-specific aptamers using whole live cells. *Biomark Med*, 2009, 3: 193–202

157 Vosseller K, Wells L, Lane MD, Hart GW. Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in J3T3-L1 adipocytes. *Proc Natl Acad Sci USA*, 2002, 99: 5313–5318

158 Cheng XG, Hart GW. Alternative O-glycosylation/O-phosphorylation of serine-16 in murine estrogen receptor beta: post-translational regulation of turnover and transactivation Activity. *J Biol Chem*, 2001, 276: 10570–10575

159 Yang WH, Park SY, Nam HW, Kim do H, Kang JG, Kim YS, Lee HC, Kim KS, Cho JW. NFkappaB Activation is associated with its O-GlcNAcylation state under hyperglycemic conditions. *Proc Natl Acad Sci USA*, 2008, 105: 17345–17350

160 Taylor RP, Parker GJ, Hazel MW, Sefah K, Yang CYJ, Tan WH. Aptamers evolved from live cells as markers of carbohydrate-specific aptamers using whole live cells. *Biomark Med*, 2009, 3: 193–202

161 Kamitani S, Sakata T. Glycosylation of human CRLR at Asn123 is required for ligand binding and signaling. *Biochem Biophys Acta Mol Cell Res*, 2001, 1539: 131–139

162 Vosseller K, Wells L, Lane MD, Hart GW. Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in J3T3-L1 adipocytes. *Proc Natl Acad Sci USA*, 2002, 99: 5313–5318

163 Kim KS, Cho JW. NFkappaB Activation is associated with its phosphorylation of nucleocytoplasmic proteins: a new paradigm for metabolic control of signal transduction and transcription. *Proc Natl Acad Sci USA*, 2002, 7: 17345–17350

164 Taylor RP, Parker GJ, Hazel MW, Sefah K, Yang CYJ, Tan WH. Aptamers evolved from live cells as markers of carbohydrate-specific aptamers using whole live cells. *Biomark Med*, 2009, 3: 193–202

165 Cheng XG, Hart GW. Alternative O-glycosylation/O-phosphorylation of serine-16 in murine estrogen receptor beta: post-translational regulation of turnover and transactivation Activity. *J Biol Chem*, 2001, 276: 10570–10575

166 Yang WH, Park SY, Nam HW, Kim do H, Kang JG, Kim YS, Lee HC, Kim KS, Cho JW. NFkappaB Activation is associated with its O-GlcNAcylation state under hyperglycemic conditions. *Proc Natl Acad Sci USA*, 2008, 105: 17345–17350

167 Taylor RP, Parker GJ, Hazel MW, Sefah K, Yang CYJ, Tan WH. Aptamers evolved from live cells as markers of carbohydrate-specific aptamers using whole live cells. *Biomark Med*, 2009, 3: 193–202

168 Golks A, Guerini D. The glycans of stem cells. *Curr Opin Biol*, 2007, 11: 373–380

169 Schwarz M, Zhang Y, Yang WH, Park SY, Nam HW, Kim do H, Kang JG, Kim YS, Lee HC, Kim KS, Cho JW. NFkappaB Activation is associated with its O-GlcNAcylation state under hyperglycemic conditions. *Proc Natl Acad Sci USA*, 2008, 105: 17345–17350

170 Bárány G, Harmond A, Candelaria R, Martinez-Hernandez A, Raghoe R, Solomon SS. O-glycosylation of Sp1 and transcriptional regulation of the calmodulin gene by insulin and glucagon. *Am J Physiol-Endocrinol Metab*, 2003, 285: ES84–ES91

171 Reimann-AMpt J, Van Leeuwen F, de Beer A, Vliegenthart J, Dizdaroglu M, Kowalak J, Crain P, Borst P. Beta-D-glucosyl-hydroxymethyluracil: a novel modified base present in the DNA of the parasitic protozoan T. Brucel J Biol Chem, 1993, 75: 1129–1136

172 Sabatini R, Meeuwenoord N, van Boom JH, Borst P. Site-specific interactions of JBP with base and sugar moieties in duplex J-DNA. *Proc Natl Acad Sci USA*, 2002, 10: 7998–8003

173 Sabatini R, Meeuwenoord N, van Boom JH, Borst P. Site-specific interactions of JBP with base and sugar moieties in duplex J-DNA. *Proc Natl Acad Sci USA*, 2002, 10: 7998–8003

174 Borst P, van Leeuwen F. Beta-D-glucosyl-hydroxymethyluracil, a novel base in african trypanosomes and other kinetoplastida. *Mol Biochem Parasitol*, 1997, 90: 1–8
197 Raisys V, Molnar J, Winzler RJ. Study of carbohydrate release during
192 Townsend RR, Hilliker E, Li YT, Laine RA, Bell WR, Lee YC. Car-
195 Gilman PB, Keane P, Martinez J. The role of the carbohydrate moiety
190 Pulanic D, Rudan I. The past decade: fibrinogen.
194 Wolfenstein-Todel C, Mosess on MW. Carboxy-terminal amino acid
177 DiPaolo C, Kieft R, Cross M, Sabatini R. Regulation of trypanosome
175 Cross M, Kieft R, Sabatini R, Wilm M, de Kort M, van der Marel GA,
176 Borst P, Sabatini R. Base J. Discovery, biosynthesis, and possible
181 Goff DC, Gerstein HC, Ginsberg HN, Cushman WC, Margolis KL,
186 Hadden JW. Review Article The immunology and immunotherapy of
189 Bunn HF, Shapiro R, McManus M, Garrick L, McDonald MJ, Gallop
180 Dailey G. Assessing glycemic control with self-monitoring of blood
179 Khaw KT, Wareham N. Glycated hemoglobin as a marker of cardio-
187 Hodge JE. Chemistry of browning reactions in model systems.
188
186
178 DiPaolo C, Kieft R, Cross M, Sabatini R. Study of carbohydrate release during
183 Maekawa H, Yamazumi K, Muramatsu S, Kaneko M, Hirata H,
184 Wolfenstein-Todel C, Mosesson MW. Fibrinogen assembly, secretion,
182
179
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

198 Nishihi H, Takahashi N. The release of carbohydrate moieties from human fibrinogen by almond glycopeptidase without alteration in fibrinogen clotability. Biochim Biophys Acta, 1981, 661: 274–279
199 Hamulyak K, Nieuwenhuizen W, Devilee PP, Hemker HC. Reevalua-
tion of some properties of fibrinogen, purified from cord blood of normal newborns. Thromb Res, 1983, 32: 301–310
200 Langer BG, Weisel JW, Dinauer PA, Nagaswami C, Bell WR. Deglycosylation of fibrinogen accelerates polymerization and in-creases lateral aggregation of fibrin fibers. J Biol Chem, 1988, 263:
20565–20563
201 Grewal PK, Uchiyama S, Ditto D, Varik N, Le DT, Nizet V, Math JD. The asshel receptor mitigates the lethal coagulopathy of sepsis. Nat Med, 2008, 14: 648–655
202 Grafkiew HR, Givelber H, Abrams E. Dysfibrinogenemia associated with heparoma. Increased carbohydrate content of the fibrinogen molecule. N Engl J Med, 1978, 299: 221–226
203 Maekawa H, Yamazumi K, Muramatsu S, Kaneo M, Hirata H,
Takahashi N, Arocha-Pinango CL, Rodriguez S, Nagy H, Perez-
Riquejo JL. Fibrinogen lina: a homogygous fibrinogen with an alpha-arginine-141 to serine substitution associated with extra
N-glycosylation at a alpha-asparagine-139. impaired fibrin Gel forma-
tion but normal time-facilitated plasminogen activation catalyzed by tissue-type plasminogen activator. J Clin Invest, 1992, 90: 67–76
204 Ridgway HJ, Brennan SO, Loreth RM, George PM. Fibrinogen
kaiserslautern (gamma 380 Lys to Asn): a new glycosylated fibrino-
gen variant with delayed polymerization. Br J Haematol, 1997, 99:
562–569
205 Radhi MM. Pancreatic cancer and fibrinogen storage disease. J Clin Pathol, 1998, 51, 865–867
206 Yamaguchi T, Yamamoto Y, Yokota S, Nakagawa M, Ito M, Ogura T.
Involvement of interleukin-6 in the elevation of plasma fibrinogen
levels in lung cancer patients. Jpn J Clin Oncol, 1998, 28: 740–744
207 Vejda S, Posovsky C, Zelzer S, Peter B, Bayer E, Gelbmann D,
Schulte-Hermann R, Gerner C. Plasma from cancer patients featuring a characteristic protein composition mediates protection against apop-tosis. Mol Cell Proteomics, 2002, 1: 387–393
208 Gerner C, Steinkellner W, Holzmann K, Gsur A, Grimm R, Ensinger
C, Obrist P, Sauermann G. Elevated plasma levels of crosslinked fibrinogen gamma-chain dimer indicate cancer-related fibrin deposi-
tion and fibrinolysis. Thromb Haemost, 2001, 85: 494–501
209 Kuhns DB, Nelson EL, Alvdsg G, Gallin JL. Fibrinogen induces
IL-8 synthesis in human neutrophils stimulated with formyl-methionyl-
leucyl-phenylalanine or leukotriene B₄. J Immunol, 2001, 167:
2869–2878
210 Lee RH, Ryu KW, Kim S, Bae JM. Preoperative plasma fibrinogen
levels in gastric cancer patients correlate with extent of tumor. Hepa-togastroenterology, 2004, 51: 1860–1863
211 Nagy JA, Meyers MS, Masse EM, Herzberg KT, Dvorak HF. Patho-
genesis of ascites tumor growth: fibrinogen influx and fibrin accumu-
lation in tissues lining the peritoneal cavity. Cancer Res, 1995, 55,
369–375
212 Rybarczyk BJ, Simpson-Haidaris PJ. Fibrinogen assembly, secretion,
and deposition into extracellular matrix by mcf-7 human breast carci-
noma cells. Cancer Res, 2000, 60: 2033–2039
213 Simpson-Haidaris PJ, Rybarczyk B. Tumors and fibrinogen. the role of fibrinogen as an extracellular matrix protein. Ann NY Acad Sci, 2001, 936: 406–425
214 Palumbo JS, Degen JL. Fibrinogen and tumor cell metastasis. Haemo-
stasis, 2001, 31 Suppl 1: 11–15
215 Palumbo JS, Potter JM, Kaplan LS, Talmage K, Jackson DG, Degen
JL. Spontaneous hematogenous and lymphatic metastasis, but not primary tumor growth or angiogenesis, is diminished in fibrino-gen-deficient mice. Cancer Res, 2002, 62: 6966–6972
216 Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ,
Kombirck JW, Jiroukovka M, Degen JL. Platelets and fibrin(ogen)
increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood, 2005, 105: 178–185
217 Hatzfeld JA, Hatzfeld A, Maigne J. Fibrinogen and its fragment D
chemosensors. *Supramol Chem.*, 2007, 19: 221–227

259 Mader HS, Wolfbeis OS. Boronic acid based probes for microdetermination of saccharides and glycosylated biomolecules. *Microchimica Acta*, 2008, 162: 1–34

260 Pickup JC, Hussain F, Evans ND, Rolinski OJ, Birch DJS. Fluorescence-based glucose biosensors. *Bioelectrochem.*, 2005, 20: 2555–2565

261 Norrild JC, Eggert H. Evidence for mono- and bisdentate boronate complexes of glucose in the furanose form. Application of 13C coupling constants as a structural probe. *J Am Chem Soc.*, 1995, 117: 1479–1484

262 Springsteen G, Wang B, Alizarin red as a general fluorescent reporter for studying the binding of boronic acids and carbohydrates. *Chem Commun.*, 2001, 1608–1609

263 Yan J, Springsteen G, Deeter S, Wang B. The relationship among p_{K_A}, p_H, and binding constants in the interactions between boronic acids and diols is not as simple as it appears. *Tetrahedron*, 2004, 60: 11205–11209

264 Aharoni R, Bronstheyn M, Jabbour A, Zaks B, Srebnik M, Steinberg D. Oxazaborolidine derivatives inducing autoinducer-2 signal transduction in *vibrio harveyi*. *Biorg Med Chem.*, doi:10.1016/j.bmc.2006.11.032

265 Cho BT, Oxazaborolidines as asymmetrical inducers for the reduction of ketones and ketimines. In: Hall DG, Ed. *Boronic Acids*. Weinheim: Wiley-VCH, 2005, 411–439

266 Jabbour A, Steinberg D, Dembitsky VM, Moussaieff A, Zaks B, Srebnik M. Synthesis and evaluation of oxazaborolidines for antibacterial activity against streptococcus mutans. *J Med Chem.*, 2004, 47: 2409–2410

267 Mohler KL, Czarnecki AW. α-Amino acid chelative complexation by an arylboronic acid. *J Am Chem Soc.*, 1994, 116: 2233

268 Gamsey S, Miller A, Olmstead MM, Beavers CM, Hirayama LC, Pradhan S, Wessling RA, Singaram B. Boronic acid-based bipyridinium salts as high affinity of shikimic acid’s glucose receptor for tartrate. *J Org Chem.*, 2006, 71: 5426–5428

269 Wang Z, Zhang DQ, Zhu DB. A new saccharide sensor based on a tetrafluorifulvalene-anthrachene dyad with a boronic acid group. *J Org Chem*, 2005, 70, 5729–5732

270 Wiskur SL, Lavigne JL, Rolinski OJ, Birch DJS. Fluorescence-based glucose biosensors. *Bioelectrochem.*, 2005, 20: 2555–2565

271 Norrild JC, Eggert H. Evidence for mono- and bisdentate boronate complexes of glucose in the furanose form. Application of 13C coupling constants as a structural probe. *J Am Chem Soc.*, 1995, 117: 1479–1484

272 Springsteen G, Wang B, Alizarin red as a general fluorescent reporter for studying the binding of boronic acids and carbohydrates. *Chem Commun.*, 2001, 1608–1609

273 Yan J, Springsteen G, Deeter S, Wang B. The relationship among p_{K_A}, p_H, and binding constants in the interactions between boronic acids and diols is not as simple as it appears. *Tetrahedron*, 2004, 60: 11205–11209

274 Absorin R, Bronstheyn M, Jabbour A, Zaks B, Srebnik M, Steinberg D. Oxazaborolidine derivatives inducing autoinducer-2 signal transduction in *vibrio harveyi*. *Biorg Med Chem.*, doi:10.1016/j.bmc.2006.11.032

275 Cho BT, Oxazaborolidines as asymmetrical inducers for the reduction of ketones and ketimines. In: Hall DG, Ed. *Boronic Acids*. Weinheim: Wiley-VCH, 2005, 411–439

276 Jabbour A, Steinberg D, Dembitsky VM, Moussaieff A, Zaks B, Srebnik M. Synthesis and evaluation of oxazaborolidines for antibacterial activity against streptococcus mutans. *J Med Chem.*, 2004, 47: 2409–2410

277 Mohler KL, Czarnecki AW. α-Amino acid chelative complexation by an arylboronic acid. *J Am Chem Soc.*, 1994, 116: 2233

278 Absorin R, Bronstheyn M, Jabbour A, Zaks B, Srebnik M, Steinberg D. Oxazaborolidine derivatives inducing autoinducer-2 signal transduction in *vibrio harveyi*. *Biorg Med Chem.*, doi:10.1016/j.bmc.2006.11.032

279 Geese G, Garrett E, Hageman HJ. Effect of benzene boronic acids on sporulation and on production of enzymes in bacillus subtilis cells. *Spores VI. Am Soc Micro.*, 1975, 391–396

280 Farr-Jones S, Smith SO, Kettner CA, Griffin RG, Bachovchin WW. Crystal versus solution structure of enzymes: NMR spectroscopy of a peptide boronic acid-serine protease complex in the crystalline state. *Proc Natl Acad Sci USA.*, 1989, 86: 6922–6924

281 Groll M, Berkers CR, Ploegh HL, Ovaa H. Crystal structure of the boronic acid-based protease inhibitor bortezomib in complex with the yeast 20s proteasome. *Structure*, 2006, 14: 451–456

282 Matthews DA, Alden RA, Birktoft JJ, Freer ST, Kraut J. X-ray crystallographic study of a boronic acid dadduct with subtilisin BP’ (novo), a model for the catalytic transition state. *J Biol Chem*, 1975, 250: 7120–7126

283 Powers RA, Blazquez J, Weston GS, Morosini MI, Baquero F, Shoichet BK. The complexed structure and antimicrobial activity of a non-beta-lactam inhibitor of AmpC beta-lactamase. *Protein Sci.*, 1999, 8, 2330–2337

284 Powers RA, Shoichet BK. Structure-based approach for binding site identification on AmpC beta-lactamase. *J Med Chem*, 2002, 45: 3222–3234

285 Stoll VS, Eger BT, Hynes RC, Martichonok V, Jones JB, Pai EF. Differences in binding modes of enantiomers of 1-acetamido boronic acid based protease inhibitors: crystal structures of gamma-chymotrypsin and subtilisin carlsberg complexes. *Biochemistry*, 1998, 37: 451–462

286 Zhong S, Jordan F, Kettner CA, Polgar L. Observation of tightly bound boron-11 nuclear magnetic resonance signals on serine proteases. direct solution evidence for tetrahedral geometry around the boron in the putative transition-state analogs. *J Am Chem Soc*, 1991, 113: 9429–9435

287 Bone R, Frank D, Kettner CA, Agard DA. Structural analysis of specificity: α-Lytic protease complexes with analogues of reaction intermediates. *Biochemistry* 1989, 28: 7600–7609

288 Badugu R, Lakowicz JR, Geddes CD. Excitation and emission wavelength ratiometric cyanide-sensitive probes for physiological sensing. *Anal Chem*, 2004, 76: 52–59

289 Badugu R, Lakowicz JR, Geddes CD. Cyanide-sensitive fluorescent probes. *Dyes Pigments*, 2005, 64, 49–55

290 Badugu R, Lakowicz JR, Geddes CD. A wavelength-ratiometric cyanide-sensitive probe based on the quinol inium nucleus and boronic acid moiety. *Sensors Actuators B-Chem.*, 2005, 104: 103–110

291 DiCesare N, Lakowicz JR. New sensitive and selective fluorescent probes for fluoride using boronic acids. *Anal Biochem*, 2002, 301: 111–116

292 Ochlike A, Auer AA, Jahre I, Walfort B, Ruffler T, Zoufala P, Lang H, Spange S. Nitro-substituted stilbeneboronic acid pinacol esters and their fluoro-adducts. fluoride ion induced polarity enhancement of arylboronate esters. *J Org Chem*, 2007, 72: 4328–4339

293 Swamy KMK, Lee YJ, Lee HN, Chun J, Kim Y, Kim SJ, Yoon J. A new fluorescein derivative bearing a boronic acid group as a fluorescent chemosensor for fluoride ion. *J Org Chem*, 2006, 71: 8626–8628

294 Cooper CR, Spencer N, James TD. Selective fluorescence detection of fluoride using boronic acids. *Chem Commun*, 1998, 1365–1366

295 Jin S, Cheng YF, Reid S, Li M, Wang B. Carbohydrate recognition by boronolactins, small molecules, and lectins. *Med Res Rev*, 2009, doi: 10.1002/med.20155

296 Springseen G, Wang B. A detailed examination of boronic acid-diol complexation. *Tetrahedron*, 2002, 58: 5291–5300

297 Yang W, Lin L, Wang BA. Novel type of fluorescent boronic acid for carbohydrate recognition. *Tetrahedron Lett*, 2005, 46: 7981–7984

298 Zhang Y, Ballard CE, Zheng S, Gao X, Ko KC, Yang H, Brandt G, Lou X, Tai PC, Lu C-D, Wang B. Design, synthesis and evaluation of efflux substrate-metal chelator conjugates as potential anti-microbial agents. *Bioorg Med Chem Lett.*, 2007, 17: 707–711

299 Zhang Y, Li M, Chandrasekaran S, Gao X, Fang X, Lee H-W, Hardcastle K, Yang J, Wang B. A unique quinolineboronic acid-based supramolecular structure that relies on double intermolecular B-N bonds for self-assembly in solid state and in solution. *Tetrahedron*, 2007, 63: 3287–3292
300 Zheng SL, Lin N, Reid S, Wang BH. Effect of extended conjugation with a phenylethynyl group on the fluorescence properties of water-soluble arylboronic acids. Tetrahedron, 2007, 63: 5427–5436

319 Agard NJ, Baskin JM, Prescher JA, Lo A, Bertozzi CR. A comparative study of bioorthogonal reactions with azides. ACS Chem Biol, 2006, 1: 644–648

320 Agard NJ, Prescher JA, Bertozzi CR. A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc, 2005, 127: 11196–11196

321 Baskin JM, Bertozzi CR. Bioorthogonal click chemistry: covalent labeling in living systems. QSR Comb Sci, 2007, 26: 1211–1219

322 Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR. Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci USA, 2007, 104: 16793–16797

323 Chang PV, Prescher JA, Hangauer MJ, Bertozzi CR. Imaging cell surface glycans with bioorthogonal chemical reporters. J Am Chem Soc, 2007, 129: 8400

324 Codelli JA, Baskin JM, Agard NJ, Bertozi CR. Second-generation di-fluorinated cyclooctynes for copper-free click chemistry. J Am Chem Soc, 2008, 130: 11486–11493

325 Hangauer MJ, Bertozzi CR. A FRET-based fluorogenic phosphine for live-cell imaging with the staudinger ligation. Angew Chem Int Ed, 2008, 47: 2384–2397

326 Laughlin ST, Agard NJ, Baskin JM, Carrico IS, Chang PV, Ganguli AS, Hangauer MJ, Lo A, Prescher JA, Bertozzi CR. Metabolic labeling of glycans with azido sugars for visualization and glycopeptidomics. In: Glycobiology. San Diego: Elsevier Academic Press Inc, 2006, Vol 415. 230–250

327 Laughlin ST, Baskin JM, Amacher SL, Bertozzi CR. In vivo imaging of membrane-associated glycans in developing zebrafish. Science, 2008, 320: 664–667

328 Laughlin ST, Bertozzi CR. Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via staudinger ligation. Nat Protoc, 2007, 2: 2930–2944

329 Laughlin ST, Bertozzi CR. Imaging the glycome. Proc Natl Acad Sci USA, 2009, 106, 12–17

330 Prescher JA, Bertozzi CR. Chemistry in living systems. Nat Chem Biol, 2005, 1: 13–21

331 Prescher JA, Bertozzi CR. Chemical technologies for probing glycans. Cell, 2006, 126: 851–854

332 Prescher JA, Dubé D, Bertozzi CR. Chemical remodelling of cell surfaces in living animals. Nature, 2004, 430: 873–877

333 Rabuka D, Hubbard SC, Laughlin ST, Argade SP, Bertozzi CR. A chemical reporter strategy to probe glycoprotein fucosylation. J Am Chem Soc, 2006, 128: 12078–12079

334 Saxon E, Bertozzi CR. Cell surface engineering by a modified staudinger reaction. Science, 2000, 287: 2007–2010

335 Lewis WG, Green LG, Grynszpan F, Radic Z, Carlier PR, Taylor P, Finn MG, Sharpless KB. Click chemistry in situ: acetylenyl homolysis as a reaction vessel for the selective assembly of a fentomolar inhibitor from an array of building blocks. Angew Chem Int Ed, 2002, 41: 1053–1057

336 Meldal M, Tornoe CW. Cu-catalyzed azide-alkyne cycloaddition. Chem Rev, 2008, 108, 2952–3015

337 Huisgen R. 1,3-dipolar cycloadditions. Past and future. Angew Chem Int Ed, 1963, 2: 565–598

338 Ning XH, Guo J, Woltz MA, Boons GJ. Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast bioorthogonal cycloadditions. Angew Chem Int Ed, 2008, 47: 2253–2255