Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Viral respiratory diseases in children:
Classification, etiology, epidemiology,
and risk factors

Val G. Hemming, MD
From the Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland

The epidemiology, molecular structure, cell tropism, and pathophysiology of many human disease-causing viruses have been painstakingly and elegantly characterized during the past 50 years. Vaccines and antiviral drugs of varying efficacy were developed and tested. Despite the relegation of smallpox to a freezer chest and the progress in the control of measles and hepatitis B, the viruses that cause respiratory tract infections remain significant causes of illness and death in pediatric populations worldwide. This discussion surveys the virus groups that contain nearly 200 distinct viruses that cause sporadic and epidemic respiratory infections in children. The epidemiology of infection with the influenza A and B, parainfluenza, and respiratory syncytial viruses and adenoviruses and their impact on infants and children and the groups at highest risk for morbid outcomes are discussed. (J Pediatr 1994;124:S13-S6)

Until the 1950s, little was known about the causes of acute upper respiratory tract infection or lower respiratory tract infection. It was evident that the bacterial causes of pneumonia, such as Streptococcus pneumoniae, Haemophilus influenzae, and the filterable agents responsible for swine and human influenza and measles, could not account for the majority of acute URTIs and LRTIs in children and adults. A real boom in respiratory virology came in the late 1950s and early 1960s, when markedly improved isolation and culture techniques and better serologic and biochemical methods were applied to the isolation and characterization of the viruses responsible for respiratory infections. Rhinoviruses, echoviruses, coxsackieviruses, adenoviruses, parainfluenza viruses, coronaviruses, and respiratory syncytial virus were added to influenza and measles viruses as causes of respiratory infections. Nearly 200 antigenically distinct viral agents were documented as causes of sporadic or epidemic URTI or LRTI in infants, children, and adults.

VIRUSES AND RESPIRATORY SYNDROMES

In 1963, Dr. Maxwell Finland chaired a symposium entitled "Problems in Definition of Respiratory Diseases and Respiratory Disease Agents." Papers presented by Dowling and Lefkowitz and by Parrott et al. defined the major clinical respiratory syndromes of adults and children and identified the major viruses responsible for these syndromes. Several respiratory syndromes were described in adults. The etiologic agents associated with these syndromes included coryza caused by rhinovirus, echovirus 28, and coxsackievirus A21; pharyngeal conjunctival syndrome caused by adenovirus; and pneumonia caused by influenza virus, parainfluenza virus, adenovirus, and coxsackievirus.

Table:

LRTI	Lower respiratory tract infection
RSV	Respiratory syncytial virus
URTI	Upper respiratory tract infection

The clinical syndromes in infants and children described by Parrott et al. were derived from a cross-sectional analysis and the results of respiratory cultures collected between 1957 and 1961 from approximately 8000 children with respiratory infections. Croup syndromes were associated with parainfluenza viruses, RSV, adenoviruses, and influenza vi-
ruses. Bronchopneumonia was most likely caused by RSV, but it may also have been caused by parainfluenza viruses (particularly parainfluenza type 3), adenoviruses, influenza viruses, or Mycoplasma pneumoniae. A syndrome that the investigators called "bronchiolitic bronchopneumonia" was predominantly associated with RSV or parainfluenza type 3 infection. Severe bronchitis and pharyngitis were associated with RSV, adenoviruses, the parainfluenza viruses, and influenza viruses. Outpatient rhinitis, pharyngitis, and bronchitis were associated with the same agents that caused bronchiolitic bronchopneumonia.

Table I summarizes current data on the common infectious pediatric respiratory syndromes and their usual causative agents. Little has changed in the three decades since the 1963 symposium. Indeed, although much more is known about etiology, pathogenesis, viral biochemistry, and genetics, the viruses described by the early 1960s continue to the 1963 symposium. Indeed, although much more is known about etiology, pathogenesis, viral biochemistry, and genetics, the viruses described by the early 1960s continue to be responsible for present-day sporadic or epidemic respiratory infections in adults and children. It is not surprising that there is substantial clinical overlap. Respiratory tract infections may be caused by a variety of different viruses, and individual viruses can cause variable clinical syndromes.

A prospective long-term study to examine patterns of respiratory illnesses in an American community was initiated in Tecumseh, Mich., in 1965 by Monto et al. This study surveyed representative segments of the Tecumseh population for respiratory infections from 1965 through 1971 and again from 1976 through 1981. The recovered viruses and the observed respiratory syndromes in nonhospitalized children and adults in Tecumseh mirrored the viruses and respiratory syndromes described by Parrott et al. Ultimately, more than 80 serotypes of rhinovirus were recovered from uncomplicated URTIs. In addition, RSV, parainfluenza viruses, influenza A and B, adenoviruses, and enteroviruses also were recovered from patients with URTI. The enteroviruses, however, were more likely to cause LRTI, to induce more severe illness, and to prompt reduc-
children of Central America, followed by those in Africa, South America, and Asia.

A number of observations can be added to the 1978 National Institutes of Health workshop data describing etiologic agents, clinical syndromes, infection rates, and outcome of viral respiratory diseases throughout the world. Acute respiratory infections are common causes of death in young children worldwide. Viruses cause more than half of these acute infections. The morbidity and mortality rates from viral respiratory infections are much higher in developing countries. The viruses documented as being responsible for respiratory infections in developed countries (RSV, parainfluenza and influenza viruses, adenoviruses, enteroviruses, and rhinoviruses) also are responsible for infections in developing countries.

EPIDEMIOLOGY

Epidemiologic studies have attempted to determine the modes of transmission for respiratory viruses. It has long been presumed that infectious viruses are carried on particles or droplets that are expelled from the respiratory tracts of infected persons. This mode of transmission was considered responsible for virus spread among human beings; however, experimental data show this mode to be only marginally important. Rather, the most successful route of viral spread is by the transmission of infectious mucosal secretions to the fingers and hands, and subsequently to the nose or eyes of a susceptible recipient. The simple act of timely hand washing may be the most effective method of breaking the chain of transmission and thereby interrupting virus spread.

Healthy infants, toddlers, and children are at high risk for encounter and infection with respiratory viruses. However, most will have a limited illness that will provoke the development of some immunity from subsequent infections with the same or similar agents. For most of the respiratory viruses, reexposure and reinfection are the rule. Usually, reinfections cause less severe disease and are less likely to induce LRTIs that result in bronchiolitis or pneumonia. Several risk factors (Table III) increase the rates of infection and the resulting severity of disease. These factors include young age, low birth weight, prematurity, chronic cardiopulmonary disease, some congenital or acquired immunodeficiency disorders, malnutrition (especially with vitamin A deficiency), crowding, the number of children residing in the household, the presence of large numbers of susceptible people in the community, lack of breast-feeding, and exposure of the susceptible child to other infected persons. There is substantial evidence of increased susceptibility to and complications of infection in children exposed to polluted air, which includes secondhand smoke in the infant's residence.

Table III. Risk factors influencing the incidence and severity of viral respiratory tract infection in infants and children

Risk Factor
Age, immunologic experience
Prematurity, low birth weight
Chronic cardiopulmonary diseases
Immunodeficiency syndromes
Malnutrition
Exposure
Other children in family
Crowding
Care setting, family versus day care
Environmental pollution, parental smoking
Lack of breast-feeding

Although vaccines for influenza A and B, RSV, parainfluenza virus type 3, and some adenoviral subtypes have been developed and tested only the vaccines for influenza A and B currently are available and recommended for use in children. The primary reasons for the desultory progress in vaccine development are the large number of agents responsible for disease, the poor or unpredictable immunologic response to vaccination of susceptible infants and children, and the high development costs of potential limited-use vaccines.

SUMMARY

In summary, 80 years ago the treatment of choice for bronchiolitis and bronchopneumonia was 15-minute hot baths, as hot as the child could tolerate twice a day, or mustard packs, or both. Since then, viral respiratory diseases and their etiology, epidemiology, pathophysiology, and natural histories are understood much more extensively. However, specific prevention and effective treatments remain elusive. Still, many treatments of viral respiratory diseases are homeopathic or supportive. The authors of the following articles expand on these observations. They offer new information on improved methods that provide for the prevention and treatment of these exceedingly prevalent pediatric respiratory disorders.

REFERENCES

1. Dowling HF, Lefkowitz I.B. Clinical syndromes caused by respiratory viruses. Am Rev Respir Dis 1963;88:61-72.
2. Parrott RH, Vargosko AJ, Kim HW, Chanock RM. Clinical syndromes among children. Am Rev Respir Dis 1963;88:73-6.
3. Mosto AS, Napier JA, Metzner HL. The Tecumseh study of respiratory illness. I. Plan of study and observations on syndromes of acute respiratory disease. Am J Epidemiol 1971;94:269-79.
4. Mosto AS, Cavallaro JJ. The Tecumseh study of respiratory illness. II. Patterns of occurrence of infection with respiratory pathogens, 1965-1969. Am J Epidemiol 1971;94:280-9.
5. Monto AS, Lim SK. The Tecumseh study. III. Incidence and periodicity of respiratory syncytial virus and Mycoplasma pneumoniae infections. Am J Epidemiol 1971;94:290-301.
6. Monto AS, Cavallaro JJ. The Tecumseh study. IV. Prevalence of rhinovirus serotypes, 1966–1969. Am J Epidemiol 1972;96:352-60.
7. Monto AS, Bryan ER, Rhodes LM. The Tecumseh study of respiratory illness: further observations on the occurrence of respiratory syncytial virus and Mycoplasma pneumoniae. Am J Epidemiol 1975;100:458-68.
8. Monto AS, Kleinmehr F. The Tecumseh study of respiratory illness. IX. Occurrence of influenza in the community, 1966–1971. Am J Epidemiol 1975;102:553-63.
9. Monto AS, Koopman JS, Longini IM Jr. Tecumseh study of illness. XIII. Influenza infection and disease. 1976–1981. Am J Epidemiol 1985;121:811-22.
10. Monto AS, Bryan ER, Ohmit S. Rhinovirus infections in Tecumseh, Michigan: frequency of illness and number of serotypes. J Infect Dis 1987;156:9-8.
11. Loda FA, Glezen WP, Clyde WA Jr. Respiratory disease in group day care. Pediatrics 1972;49:428-37.
12. Tyeryar FJ Jr, Richardson LS, Belshe RB. Report of a workshop on respiratory syncytial virus and parainfluenza viruses [National Institutes of Health]. J Infect Dis 1978;137:35-46.
13. Bulla A, Hitze KL. Acute respiratory infections: a review. Bull World Health Organ 1978;56:481-96.
14. Sutmoller F, Nascimento JP, Chaves JRS, Ferreira V, Perira MS. Viral etiology of acute respiratory diseases in Rio de Janeiro: first two years of a longitudinal study. Bull World Health Organ 1983;61:845-52.
15. Sung RYT, Murray HGS, Chan RCK, Davies DP, French GL. Seasonal pattern of respiratory syncytial virus infection in Hong Kong: a preliminary report. J Infect Dis 1987;156:527-8.
16. Hazlett DTG, Bell TM, Yuki FM, et al. Viral etiology and epidemiology of acute respiratory infections in children in Nairobi, Kenya. Am J Trop Med Hyg 1988;39:632-40.
17. Avila MM, Carballal G, Rovaletti H, Ebekian B, Cusiminsky M, Weissenbacher M. Viral etiology in acute lower respiratory infection in children from a closed community. Am Rev Respir Dis 1989;140:634-7.
18. Cherian T, Simoes EAF, Steinhoff MC, Chitra K, Raghupathy JM. Bronchiolitis in tropical south India. Am J Dis Child 1990;144:1026-30.
19. Borrero IH, Fajardo LP, Bedoya AM, Zaa A, Carmona F, de Borrero MF. Acute respiratory tract infections among a birth cohort of children from Cali, Colombia, who were studied through 17 months of age. Rev Infect Dis 1990;12(suppl 8):S950-6.
20. Berman S. Epidemiology of acute respiratory infections in children of developing countries. Rev Infect Dis 1991;13(suppl 6):S454-62.
21. Hendley JO, Wenzel RP, Gwaltney JM Jr. Transmission of rhinovirus colds by self-inoculation. N Engl J Med 1973;288:1361-4.
22. Gwaltney JM, Hendley JO. Rhinovirus transmission: one if by air, two if by hand. Am J Epidemiol 1978;107:357-61.
23. Isaacs D, Kickson H, O'Callaghan C, Sheaves R, Wither A, Moxon ER. Hand washing and cohorting in prevention of hospital acquired infections with respiratory syncytial virus. Arch Dis Child 1991;66:227-31.
24. Frank AL, Taber LH, Glezen WP, Paredes A, Couch RB. Reinfection in influenza A (H3N2) virus in young children and their families. J Infect Dis 1979;140:829-36.
25. Glezen WP, Taber LH, Frank AL, Kasel LA. Risk of primary infection and reinfection with respiratory syncytial virus. Am J Dis Child 1986;140:543-6.
26. Hall CB, Walsh EE, Long CE, Schnabel KC. Immunity to and frequency of reinfection with respiratory syncytial virus. J Infect Dis 1991;163:693-8.
27. Fergusson DM, Horwood LJ, Shannon FT. Parental smoking and respiratory illness in infancy. Arch Dis Child 1980;55:358-61.
28. Jaakkola JJK, Punnio M, Virtanen M, Heinonen OP. Low-level air pollution and upper respiratory infections in children. Am J Public Health 1991;81:1060-3.
29. Wright AL, Holberg C, Martinez FD, Tausig LM, Group Health Associates. Relationship of parental smoking to wheezing and nonwheezing lower respiratory tract illness in infancy. J Pediatr 1991;118:207-14.
30. Steinhoff MC. Viral vaccines for the prevention of childhood pneumonia in developing nations: priorities and prospects. Rev Infect Dis 1991;13(suppl 6):S662-70.
31. Karzon DT. Control of acute lower respiratory illness in the developing world: an assessment of vaccine intervention. Rev Infect Dis 1991;13(suppl 6):S571-7.
32. American Academy of Pediatrics. Report of the Committee on Infectious Diseases: recommendations for influenza immunization. 22nd ed. Elk Grove Village, Illinois: American Academy of Pediatrics, 1991.
33. Feer E. Diseases of the nose, trachea, bronchi lungs and pleura. In: Pfaundler M, Schlossmann A, eds. The diseases of children; vol 3. Philadelphia: JB Lippincott, 1908:359-60.