Coherent collapses of dipolar Bose–Einstein condensates for different trap geometries

J Metz1, T Lahaye1, B Fröhlich1, A Griesmaier1, T Pfau1,5, H Saito2, Y Kawaguchi3 and M Ueda3,4

1Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
2Department of Applied Physics and Chemistry, The University of Electro-communications, Tokyo 182-8585, Japan
3Department of Physics, University of Tokyo, Tokyo 113-033, Japan
4ERATO Macroscopic Quantum Project, JST, Tokyo 113-8656, Japan

E-mail: t.pfau@physik.uni-stuttgart.de

New Journal of Physics 11 (2009) 055032 (11pp)
Received 19 December 2008
Published 14 May 2009
Online at http://www.njp.org/
doi:10.1088/1367-2630/11/5/055032

Abstract. We experimentally investigate the collapse dynamics of dipolar Bose–Einstein condensates of chromium atoms in different harmonic trap geometries, from prolate to oblate. The evolutions of the condensates in the unstable regime are compared with three-dimensional simulations of the Gross–Pitaevskii equation including three-body losses. In order to probe the phase coherence of collapsed condensates, we induce the collapse in several condensates simultaneously and let them interfere.

Contents

1. Introduction 2
2. Experimental sequence for producing collapsing dipolar condensates 3
3. Collapse dynamics for different trap geometries 4
 3.1. Prolate traps 5
 3.2. Oblate trap 6
4. Testing the coherence of the collapsed cloud 8
5. Conclusions 9
Acknowledgments 10
References 10

5Author to whom any correspondence should be addressed.
1. Introduction

A collapse is a fast, collective phenomenon consisting of the destruction of a multi-particle system happening abruptly on the timescale that governs the ‘usual dynamics’. One example is the collapse of the gravitational core, initiating a supernova. Happening within milliseconds, the duration of the collapse is negligible compared to any of the timescales related to the preceding fusion stages [1].

In contrast to a supernova, where the experimenter is only an observer, Bose–Einstein condensates (BECs) are excellent adjustable systems. Tailoring both the external confining potential and the interaction between the atoms allows us to control the properties of the condensate. It is an ideal system to study not only problems of condensed matter physics [2]–[9] but also the dynamics of a collapse as well.

Collapsing condensates were first observed in 7Li [10] and 85Rb [11]. Both systems are characterized by the contact interaction, which is described by a single parameter, the s-wave scattering length a. From a simple model [12] minimizing the Gross–Pitaevskii energy functional using a Gaussian ansatz for the wave function, one can understand the instability threshold. The energy functional consists of three terms: (i) the kinetic energy, which, in the sub-micro-kelvin range of almost pure condensates, is equal to the quantum pressure (arising from the Heisenberg uncertainty principle in the trap potential), (ii) the harmonic trapping potential and (iii) the interaction energy. For repulsive contact interaction ($a > 0$) a global minimum exists, and the condensate is stable. For small enough attractive interactions ($a < 0$), only a local minimum exists at finite size; the condensate is metastable. Finally, for sufficiently attractive interaction the local minimum vanishes. The potential energy of the BEC can be lowered without limit by contraction. Thus, the condensate is unstable.

As the density increases, this model is too simple for describing the physics of the unstable cloud—atom losses due to three-body collisions have to be included. Being negligible at low densities, the three-body collision rate rapidly increases as the cloud shrinks. A three-body collision allows for the production of a dimer, where the third contributing atom is needed to fulfill energy and momentum conservation. The binding energy that is absorbed by the atom and molecule in the form of kinetic energy is sufficient for both to escape from the trap. Hence, instead of reaching a fully contracted ‘point-like’ state, more and more atoms are lost, so that eventually the quantum pressure dominates over the remaining interaction energy. The dynamics inverts and the atoms accelerate outwards to the new equilibrium state. Because the three-body losses have changed the total energy, this new equilibrium state differs from the initial one.

Inducing the collapse in a condensate with non-negligible dipolar interactions changes the dynamics completely. Whereas the contact interaction is short range and spherically symmetric, the dipolar interaction is long range and cylindrically symmetric (partially attractive and partially repulsive). Therefore, dipolar condensates exhibit many novel phenomena even in non-collapsing systems [13]–[25].

The anisotropy of the dipolar interaction can also be used to change the mechanism for the collapse—either driving or stabilizing the collapse: in a cigar-shaped trap with the dipoles oriented along the long axis, the atoms experience predominantly the attractive part of the dipolar mean-field potential [26]. Hence, the collapse is driven by the dipolar interaction, whereas the contact interaction stabilizes the condensate. The instability occurs at positive scattering length. This situation is reversed if the dipoles are confined in a pancake-shaped trap. Now their dipolar interaction is essentially repulsive. The dipolar interaction stabilizes...
the condensate and the condensate is able to withstand negative scattering lengths for which a purely contact interacting BEC would have already become unstable [26]. The instability occurs at negative scattering length. This simple consideration strongly suggests that different trap geometries result in different collapse dynamics.

In this paper, we study the collapse of a chromium condensate under the influence of magnetic dipole interaction [26]–[28]. After describing our experimental procedure for inducing the collapse, we compare the experimental data for different trapping potentials with three-dimensional (3D) simulations of the Gross–Pitaevskii equation (GPE) including three-body losses. We show that this model provides a good description of the experimental data. This is not clear a priori as one might expect that the collapse dynamics induces many-body quantum correlations, while the GPE is a mean-field description, not taking correlations into account. Finally, we prove that the collapsed atomic cloud contains a remnant condensate by probing its phase coherence. Although simulations for purely contact interacting BECs have shown [29] that the observed bursts and jets of a collapsing condensate should be coherent, this had not been tested experimentally to date.

2. Experimental sequence for producing collapsing dipolar condensates

In order to create a condensate dominated by the dipolar interaction, we exploit the broadest of the observed Feshbach resonances in 52Cr [30]. In the vicinity of this Feshbach resonance, the scattering length varies with the applied magnetic field B as [31]

$$a(B) = a_{bg} \left(1 - \frac{\Delta B}{B - B_0}\right),$$

where $B_0 \approx 589.1$ G is the position of the Feshbach resonance, $\Delta B = (1.4 \pm 0.1)$ G is its width and $a_{bg} \approx 100 \ a_{\text{Bohr}}$ is the background scattering length with a_{Bohr} being the Bohr radius. The magnetic field is directed along the z-direction and determines the orientation of the dipoles. Using the experimental procedure described in [26], a condensate of approximately 50 000 atoms is formed in a crossed far-detuned optical dipole trap at $a_{\text{evap}} \approx 85 \ a_{\text{Bohr}}$ above the Feshbach resonance. We then shape the external confining potentials to obtain the desired ratio of the trapping frequencies $\lambda := \omega_z/\omega_y$ by adjusting the power in the crossed dipole trap and superimposing (only for pancake-shaped traps $\lambda > 1$) an additional 1D optical lattice along the z-direction. The superimposed lattice is formed by two far-detuned beams (wavelength $\lambda_{\text{laser}} = 1064$ nm) crossing under a small angle ($\vartheta \approx 8^\circ$), as shown in figure 1. This results in a relatively large spacing of $d_{\text{lat}} = \lambda_{\text{laser}}/[2 \sin(\vartheta/2)] = (7.4 \pm 0.2) \ \mu\text{m}$ between neighboring lattice sites.

We first adiabatically ramp the current in the offset coils linearly in 8 ms to a scattering length a_i close to the point where the collapse occurs, and wait for 1 ms for the eddy currents (mainly due to copper gaskets in our experimental chamber) to fade out. Thus, the magnetic field $B(t)$ at the position of the atoms does not follow the ramp instantaneously, but must be calculated according to the equation

$$B(t) = \tilde{B}(t) - \tau_B \dot{B}(t),$$

where $\tilde{B}(t)$ is the magnetic field produced by the offset coils (changed linearly during ramps) and $\tau_B = (0.57 \pm 0.05)$ ms is the 1/e lifetime of the eddy currents, measured by Zeeman spectroscopy [32]. After 1 ms of waiting time at a_i, we start a second ramp from a_i to $a_f < a_{\text{crit}}(\lambda)$, where $a_{\text{crit}}(\lambda)$ is the critical scattering length for the given trapping potential [26].
so that the collapse occurs. We hold the atoms in the trap for an additional time t_{hold} at a_f before releasing them and taking a time-of-flight image. In order to get the maximal absorption cross section, we split the time-of-flight into two parts: a first one, lasting for 4 ms, at the magnetic field corresponding to a_f (in order not to disturb the dynamics), and a second part, lasting again for 4 ms, where the large magnetic field along z is replaced by a field of 11 G along the x-direction. We checked that this procedure does not disturb the image.

The observed integrated density distribution is bimodal and consists of a broad isotropic thermal cloud and an anisotropic remnant BEC (see e.g. figure 1(b) of [32]). Because the size of the thermal cloud as well as its atom number does not depend on t_{hold}, it is unlikely to contribute to the collapse dynamics. In the following, we have subtracted it from the images to increase the contrast.

3. Collapse dynamics for different trap geometries

The anisotropic character of the dipolar interaction (dipoles that are side-by-side repel each other, whereas dipoles in a head-to-tail configuration attract each other) has a strong effect on the stability of a dipolar condensate: varying the geometry of the confining harmonic trap from prolate to oblate (the symmetry axis being the one along which the dipoles are aligned) stabilizes the condensate, as was demonstrated experimentally in [26]. Our previous experimental study of the collapse dynamics of a dipolar condensate [32] was restricted to an almost spherical trap; in the following, we study the influence of the trap geometry on the collapse dynamics.
Figure 2. Comparison of the experimental absorption images (a) with the simulations (b) for a cigar-shaped trap with trapping frequencies \((f_x, f_y, f_z) \approx (1312, 1311, 161)\) Hz and trap ratio \(\lambda \approx 0.12\). Each image shows the averaged column density of five pictures after 8 ms of time-of-flight. The field of view is 250 \(\times\) 250 \(\mu\)m\(^2\). The final value of \(a_f\) was \((8 \pm 3) a_{\text{Bohr}}\) (also in the simulation). (c) Simulated in-trap absorption images. The field of view is \((y, z) = (4.8, 25)\) \(\mu\)m. (d) The remnant condensate atom number \(N_{\text{BEC}}\) for different holding times \(t_{\text{hold}}\) in units of the radial trap period \(\tau = 1/f_{\text{radial}} \approx 0.76\) ms. The solid line is the result of the numerical simulation (see text), without any adjustable parameter.

3.1. Prolate traps

For purely contact interacting condensates, the timescale that governs the ‘usual dynamics’ is set by the largest trap frequency. In contrast, for dipolar condensates this timescale is given by the largest radial trap frequency \(\tau := 1/f_{\text{radial}}\), because the collapse is induced in this direction \([32]\).

Figure 2 presents the collapse of a dipolar condensate in a highly elongated prolate trap \((\lambda \approx 0.12)\). Here we ramp from an initial scattering length \(a_i = (35 \pm 2) a_{\text{Bohr}}\) to \(a_f = (8 \pm 3) a_{\text{Bohr}}\), which lies below the critical scattering length \(a_{\text{crit}} \approx 12a_{\text{Bohr}}\). On the timescale of
the radial trap period $\tau \approx 0.76$ ms, the condensate only starts to split. This is explicitly shown in figure 2(d): the atom number does not drop ‘abruptly’ to its final value, but instead changes linearly on the timescale τ. Therefore, in the case of figure 2 we observe only a ‘moderate’ collapse.

Each panel of figures 2(a) and (b) presents the integrated column density $\int d x |\psi(\vec r, t)|^2$ of an absorption image after 8 ms of free expansion. While the upper row shows the experimental data, the lower row is obtained from a numerical simulation of the 3D Gross–Pitaevskii equation

$$i\hbar \frac{\partial}{\partial t} \psi(\vec r, t) = \left\{ -\frac{\hbar^2}{2m} \nabla^2 + V_{\text{trap}} + \int U(\vec r - \vec r', t)|\psi(\vec r', t)|^2 d^3 r' - \frac{i\hbar L_3}{2} |\psi(\vec r', t)|^4 \right\} \psi(\vec r, t)$$

with the contact and dipolar interactions

$$U(\vec r, t) = \frac{4\pi \hbar^2 a(t)}{m} \delta(\vec r) + \frac{\mu_0 \mu^2}{4\pi} \frac{1 - 3 \cos^2 \theta}{|\vec r|^3},$$

where m is the atomic mass, μ_0 the magnetic permeability of vacuum, $\mu = 6\mu_{\text{Bohr}}$ the magnetic moment of chromium and θ the angle between $\vec r$ and the magnetic field $\vec B \parallel \hat{e}_z$. The imaginary term describes the atom losses. The simulations contain no free parameter, as the three-body coefficient $L_3 = 2 \times 10^{-40}$ m6 s$^{-1}$ was estimated from measurements. Details of the simulations are given in [32].

Figure 3 shows the collapse in a cigar-shaped trap with trapping frequencies $(f_x, f_y, f_z) \approx (650, 520, 400)$ Hz, corresponding to $\lambda \approx 0.7$, and radial trapping period $\tau \approx 1.7$ ms. We start with $N_{\text{BEC}} = 13 500 \pm 1500$ atoms before ramping the scattering length from $a_i = (35 \pm 2) a_{\text{Bohr}}$ to $a_f = (8 \pm 3) a_{\text{Bohr}}$, which lies $4a_{\text{Bohr}}$ below the critical scattering length. The absorption images indicate three different stages: firstly, for $\tau_{\text{hold}} = 0$ ms, the condensate is strongly elongated along the magnetic field direction, demonstrating strong dipolar interactions [28]. Secondly, we observe a change in ellipticity after 0.4 ms $\approx 0.3 \tau$. This is a consequence of the radial implosion and subsequent explosion (a stable, cigar-shaped dipolar condensate does not invert its ellipticity during the free expansion [28]). Thirdly, we observe a splitting of the condensate in the axial direction as in figure 2, but now after 0.8 ms $\approx 0.5 \tau$. For longer holding times the splitting becomes more prominent, but the dynamics is already complete after half a trapping period. This is shown in figure 3(d). The remnant atom number $N_{\text{BEC}}(t)$ drops from 12 000 to 4000 within this timescale. Note that, for this figure (and only this one), the simulation results are in better agreement with the data when performed with $a_f = 2a_{\text{Bohr}}$ (the results shown in figure 3 are for this value of a_i). This slight discrepancy is most probably due to a slow drift of the magnetic field that occurred between the data acquisition and the calibration of the scattering length (the calibration procedure, described in detail in [28], requires the accumulation of a large quantity of data).

3.2. Oblate trap

As was discussed, different trap geometries are expected to result in different collapse dynamics. So figures 2 and 3 have to be compared with the time evolution of an almost spherical and a pancake-shaped trap. While the collapse in an almost spherical trap has been published in [32], we present the pancake-shaped trap in figure 4.

The pancake-shaped trap is formed by superimposing two additional lattice beams onto a condensate, which was produced in the crossed dipole trap, see figure 1. Depending on the non-stabilized relative phase of the two lattice beams, it is in principle possible that the condensate...
Figure 3. (a, b) Collapse dynamics for different holding times t_{hold} in a weakly cigar-shaped trap with trap frequencies $(f_x, f_y, f_z) \approx (650, 520, 400)$ Hz, trap ratio $\lambda \approx 0.7$ and radial trap period $\tau \approx 1.7$ ms. Each picture is a single absorption image after 8 ms of time-of-flight and has its own optical density scale. The field of view is $250 \times 250 \mu m^2$. (c) Simulated in-trap absorption images. The field of view is $6.9 \times 6.9 \mu m^2$. (d) N_{BEC} versus t_{hold}. The solid line is the simulation result.

splits into two. Practically, we have never observed interference fringes, even at expansion times long enough, so that the fringe spacing $ht_{\text{tof}}/(md_{\text{lat}})$ was larger than our $6 \mu m$ resolution limit. Switching off the trapping potential immediately after finishing the magnetic field ramp results in a highly elongated condensate, in agreement with the simulations (figure 4).

The cylindrical symmetry of the pancake-shaped trap allows us to recover the 3D density distribution $n(\rho, z)$ from the 2D absorption image $n_{\text{abs}}(y, z)$. Figures 4(d) and (e) show isodensity surfaces for two different densities obtained from the inverse Abel transformation [33]

$$n(\rho, z) = \frac{1}{2\pi} \int_0^\infty dk k J_0(k \cdot \rho) \int_{-\infty}^{\infty} dy n_{\text{abs}}(y, z) \exp(-iky)$$

(3)
for $t_{\text{hold}} = 0.4$ ms, where J_0 is the Bessel function of the first kind. As in the almost spherical trap [32], the collapsed cloud exhibits a d-wave symmetry. While the isodensity surface for ‘high’ densities contains a central disc and two separated ‘blobs’ along the symmetry axis, the three parts merge for ‘low’ densities. Because the Abel transformation is very sensitive to noise, we cannot extract in a reliable way from our images the kinetic energy released during the collapse.

4. Testing the coherence of the collapsed cloud

By analyzing the collapse of condensates confined in different trap geometries, we showed that the survival density pattern exhibits two parts: one part which is well described by a thermal cloud, and a second part, which, due to its high optical density, we interpreted as a remnant condensate [32]. In order to confirm this interpretation, we checked the coherence of interfering condensates in the case of pancake-shaped traps.

For that purpose, we produce several condensates by superimposing the two beams for the optical lattice before finishing the evaporation to reach quantum degeneracy. Here the extension of the cloud is still large enough, so that the atoms occupy three to five adjacent lattice sites. The exact number of occupied sites changes from shot to shot, depending on the relative phase of the two lattice beams, which are not actively stabilized. After condensing, the BECs on different
lattice sites have random phases with respect to each another. The single-particle tunneling rate is vanishingly small ($< 10^{-30}$ s$^{-1}$), so that no phase coherence between adjacent sites is built up on the timescale of the experiment.

It is known \[34\] that the interference fringes are not washed out if a few independent condensates interfere instead of only two. Taking the same trap geometry as in figure 4, but extending the time-of-flight to 18 ms, we obtain the interference patterns shown in figure 5. As expected, the absolute position of the interference fringes changes from shot to shot, but can be clearly seen on each image.

While for holding times shorter than 0.2 ms or longer than 0.5 ms, interference fringes with a high contrast are visible, we observe no interference fringes at the center of the two clouds for $0.2 \text{ ms} \leq t_{\text{hold}} \leq 0.5 \text{ ms}$. A possible interpretation is as follows: for $t_{\text{hold}} = 0 \text{ ms}$, no collapse occurs and the observed fringes are similar to those of two-point sources. For $t_{\text{hold}} = 0.2$ and 0.4 ms the condensates do collapse, but this happens during the time-of-flight and after the clouds overlapped; for example, for $t_{\text{hold}} = 0.4 \text{ ms}$ the condensates start to overlap for $t_{\text{tof}} = 0.4 \text{ ms}$, but the collapse happens at $t_{\text{tof}} = 0.8 \text{ ms}$. Probably this induces a complicated phase distribution in each of the condensates and integration over the line of sight washes out the interference fringes. On the other hand, if the collapse happens in-trap (e.g. for $t_{\text{hold}} = 0.8 \text{ ms}$), the fringes are formed by the remnant condensates. Again we recover the fringes as if the atoms belonged to two coherent point sources.

5. Conclusions

We have investigated theoretically and experimentally the collapse dynamics of dipolar condensates in prolate and oblate harmonic trapping potentials. As expected, the collapse dynamics depends on the trap geometry, although the qualitative behavior is similar for different traps. The simulations containing no adjustable parameter reproduce the experimental results well. By simultaneously inducing a collapse in several condensates and allowing them to interfere, we showed that the collapsed cloud contains a coherent remnant condensate.

A clear direction of further studies is to use the interferometric technique of section 4 to obtain experimental evidence for the vortex rings predicted in \[32\]. The contrast of the interference fringes is not high enough to support their evidence yet. Another interesting extension is the study of 2D solitons \[35, 36\], which are expected to appear just above the instability threshold.
Acknowledgments

We acknowledge support from the German Research Foundation (SFB/TRR 21), the Landesstiftung Baden-Württemberg and the EU (Marie-Curie grant number MEIF-CT-2006-038959 to TL). HS, YK and MU acknowledge support from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grants-in-Aid for Scientific Research numbers 17071005 and 20540388 and the Global COE Program ‘the Physical Sciences Frontier’) and by the Matsuo Foundation.

References

[1] Woosley S E, Heger A and Weaver T A 2002 Rev. Mod. Phys. 74 1015–71
[2] Fattori M, Roati G, Deissler B, D’Errico C, Zaccanti M, Jona-Lasinio M, Santos L, Inguscio M and Modugno G 2008 Phys. Rev. Lett. 101 190405
[3] Levy S, Lahoud E, Shomroni I and Steinhauer J 2007 Nature 449 579–83
[4] Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Nature 415 39–44
[5] Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B, Lügan P, Clément D S, Sanchez-Palencia L, Bouyer P and Aspect A 2008 Nature 453 891–4
[6] Paredes B, Widera A, Murg V, Mandel O, Fölling S, Cirac I, Shlyapnikov G V, Hänsch T W and Bloch I 2004 Nature 29 277–81
[7] Kinoshita T, Wenger T and Weiss D S 2004 Science 305 1125–8
[8] Hadzibabic Z, Krüger P, Cheneau M, Battelier B and Dalibard J 2006 Nature 441 1118–21
[9] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885–964
[10] Gerton J M, Strekalov D, Prodan I and Hulet R G 2000 Nature 408 692–5
[11] Donley E A, Claussen N R, Cornish S L, Roberts J L, Cornell E A and Wieman C E 2001 Nature 412 295–9
[12] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463–512
[13] Baranov M, Dobrek L, Góral K, Santos L and Lewenstein M 2002 Phys. Scr. T102 74–81
[14] Góral K, Santos L and Lewenstein M 2002 Phys. Rev. Lett. 88 170406
[15] Baranov M 2008 Phys. Rep. 464 71–111
[16] Santos L, Shlyapnikov G V and Lewenstein M 2003 Phys. Rev. Lett. 90 250403
[17] O’Dell D H J, Giovanazzi S and Eberlein C 2004 Phys. Rev. Lett. 92 250401
[18] Ronen S, Bortolotti D C E and Bohn J L 2007 Phys. Rev. Lett. 98 030406
[19] Dutta O and Meystre P 2007 Phys. Rev. A 75 053604
[20] Yi S and Pu H 2006 Phys. Rev. A 73 061602
[21] Cooper N R, Rezayi E H and Simon S H 2005 Phys. Rev. Lett. 95 200402
[22] Zhang J and Zhai H 2005 Phys. Rev. Lett. 95 200403
[23] Kawaguchi Y, Saito H and Ueda M 2006 Phys. Rev. Lett. 96 080405
[24] Santos L and Pfau T 2006 Phys. Rev. Lett. 96 190404
[25] Yi S and Pu H 2006 Phys. Rev. Lett. 97 020401
[26] Koch T, Lahaye T, Metz J, Fröhlich B, Griesmaier A and Pfau T 2008 Nat. Phys. 4 218–22
[27] Stuhler J, Griesmaier A, Koch T, Fattori M, Pfau T, Giovanazzi S, Pedri P and Santos L 2005 Phys. Rev. Lett. 95 150406
[28] Lahaye T, Koch T, Fröhlich B, Fattori M, Metz J, Griesmaier A, Giovanazzi S and Pfau T 2007 Nature 448 672–5
[29] Saito H and Ueda M 2002 Phys. Rev. A 65 033624
[30] Werner J, Griesmaier A, Hensler S, Stuhler J, Pfau T, Simoni A and Tiesinga E 2005 Phys. Rev. Lett. 94 183201
[31] Köhler T, Góral K and Julienne P S 2006 Rev. Mod. Phys. 78 1311–61
[32] Lahaye T, Metz J, Fröhlich B, Koch T, Meister M, Griesmaier A, Pfau T, Saito H, Kawaguchi Y and Ueda M 2008 Phys. Rev. Lett. 101 080401
[33] Bracewell R N 2000 The Fourier Transform and its Applications (New York: McGraw-Hill)
[34] Hadzibabic Z, Stock S, Battelier B, Bretin V and Dalibard J 2004 Phys. Rev. Lett. 93 180403
[35] Pedri P and Santos L 2005 Phys. Rev. Lett. 95 200404
[36] Tikhonenkov I, Malomed B A and Vardi A 2008 Phys. Rev. Lett. 100 090406