AN IMPROVED BOUND ON THE LEAST COMMON MULTIPLE OF
POLYNOMIAL SEQUENCES

ASHWIN SAH

Abstract. Cilleruelo conjectured that if \(f \in \mathbb{Z}[x] \) of degree \(d \geq 2 \) is irreducible over the rationals, then \(\log \text{lcm}(f(1), \ldots, f(N)) \sim (d - 1)N \log N \) as \(N \to \infty \). He proved it for the case \(d = 2 \). Very recently, Maynard and Rudnick proved there exists \(c_d > 0 \) with \(\log \text{lcm}(f(1), \ldots, f(N)) \gtrsim c_d N \log N \), and showed one can take \(c_d = \frac{d - 1}{d^2} \). We give an alternative proof of this result with the improved constant \(c_d = 1 \). We additionally prove the bound \(\log \text{rad lcm}(f(1), \ldots, f(N)) \gtrsim 2dN \log N \) and make the stronger conjecture that \(\log \text{rad lcm}(f(1), \ldots, f(N)) \sim (d - 1)N \log N \) as \(N \to \infty \).

1. Introduction

If \(f \in \mathbb{Z}[x] \), let \(L_f(N) = \text{lcm}\{f(n) : 1 \leq n \leq N\} \), where say we ignore values of 0 in the LCM and set the LCM of an empty set to be 1. It is a well-known consequence of the Prime Number Theorem that

\[
\log \text{lcm}(1, \ldots, N) \sim N
\]
as \(N \to \infty \). Therefore, a similar linear behavior should occur if \(f \) is a product of linear polynomials. See the work of Hong, Qian, and Tan [4] for a more precise analysis of this case. On the other hand, if \(f \) is irreducible over \(\mathbb{Q} \) and has degree \(d \geq 2 \), \(\log L_f(N) \) ought to grow as \(N \log N \) rather than linearly. In particular, Cilleruelo [2] conjectured the following growth rate.

Conjecture 1.1 ([2]). If \(f \in \mathbb{Z}[x] \) is irreducible over \(\mathbb{Q} \) and has degree \(d \geq 2 \), then

\[
\log L_f(N) \sim (d - 1)N \log N
\]
as \(N \to \infty \).

He proved this for \(d = 2 \). As noted in [5], his argument demonstrates

\[
\log L_f(N) \lesssim (d - 1)N \log N. \tag{1.1}
\]

Hong, Luo, Qian, and Wang [3] showed that \(\log L_f(N) \gg N \), which was for some time the best known lower bound. Then, very recently, Maynard and Rudnick [5] provided a lower bound of the correct magnitude.

Theorem 1.2 ([5, Theorem 1.2]). Let \(f \in \mathbb{Z}[x] \) be irreducible over \(\mathbb{Q} \) with degree \(d \geq 2 \). Then there is \(c = c_f > 0 \) such that

\[
\log L_f(N) \gtrsim cN \log N.
\]

The proof given produces \(c_f = \frac{d - 1}{d^2} \), although a minor modification produces \(c_d = \frac{1}{d} \). We prove the following improved bound, which in particular recovers Conjecture 1.1 when \(d = 2 \). It also does not decrease with \(d \), unlike the previous bound.

Theorem 1.3. Let \(f \in \mathbb{Z}[x] \) be irreducible over \(\mathbb{Q} \) with degree \(d \geq 2 \). Then

\[
\log L_f(N) \gtrsim N \log N.
\]
It is also interesting to consider the problem of estimating \(\ell_f(N) = \text{rad} \text{lcm}(f(1), \ldots, f(n)) \).
(Recall that \(\text{rad}(n) \) is the product of distinct primes dividing \(n \).) It is easy to see that the proof of Theorem 1.2 that was given in [5] implies
\[
\log \ell_f(N) \gtrsim c_d N \log N
\]
for the same constant \(c_d = \frac{d-1}{d} \) (or \(c_d = \frac{1}{d} \) after slight modifications). We demonstrate an improved bound.

Theorem 1.4. Let \(f \in \mathbb{Z}[x] \) be irreducible over \(\mathbb{Q} \) with degree \(d \geq 2 \). Then
\[
\log \ell_f(N) \gtrsim \frac{2}{d} N \log N.
\]

We conjecture that the radical of the LCM should be the same order of magnitude as the LCM.

Conjecture 1.5. If \(f \in \mathbb{Z}[x] \) is irreducible over \(\mathbb{Q} \) with degree \(d \geq 2 \), then
\[
\log \ell_f(N) \sim (d - 1)N \log N
\]
as \(N \to \infty \).

Finally, we note that Theorem 1.4 proves Conjecture 1.5 for \(d = 2 \).

In a couple of different directions, Rudnick and Zehavi [7] have studied the growth of \(L_f \) along a shifted family of polynomials \(f_a(x) = f_0(x) - a \), and Cilleruelo has asked for similar bounds in cases when \(f \) is not irreducible as detailed by Candela, Rué, and Serra [1, Problem 4], which may also be tractable directions to pursue.

1.1. **Commentary and setup.** Interestingly, we avoid analysis of “Chebyshev’s problem” regarding the greatest prime factor \(P^+(f(n)) \) of \(f(n) \), which is an essential element of the argument in [5]. Our approach is to study the product
\[
Q(N) = \prod_{n=1}^{N} |f(n)|.
\]
We first analyze the contribution of small primes and linear-sized primes, which we show we can remove and retain a large product. Then we show that each large prime appears in the product a fixed number of times, hence providing a lower bound for the LCM and radical of the LCM. For convenience of our later analysis we write
\[
Q(N) = \prod_{p} p^{\alpha_p(N)}.
\]
Note that \(\log Q(N) = dN \log N + O(N) \) by Stirling’s approximation, if \(d \) is the degree of \(f \). Finally, let \(\rho_f(m) \) denote the number of roots of \(f \) modulo \(m \).

Remark on notation. Throughout, we use \(g(n) \ll h(n) \) to mean \(|g(n)| \leq ch(n) \) for some constant \(c \), \(g(n) \lesssim h(n) \) to mean for every \(\epsilon > 0 \) we have \(|g(n)| \leq (1 + \epsilon)h(n) \) for sufficiently large \(n \), and \(g(n) \sim h(n) \) to mean \(\lim_{n \to \infty} \frac{g(n)}{h(n)} = 1 \). Additionally, throughout, we will fix a single \(f \in \mathbb{Z}[x] \) that is irreducible over \(\mathbb{Q} \) and has degree \(d \geq 2 \). We will often suppress the dependence of constants on \(f \). We will also write
\[
f(x) = \sum_{i=0}^{d} f_i x^i.
\]

1.2. **Acknowledgements.** I thank Ze’ev Rudnick, Juanjo Rué, and Mark Shusterman for helpful comments, suggestions, and references.
2. Bounding small primes

The analysis in this section is very similar to that of [5, Section 3], except that we do not use
the resulting bounds to study the Chebyshev problem. We define
\[Q_S(N) = \prod_{p \leq N} p^{\alpha_p(N)}, \]
the part of \(Q(N) = \prod_{n=1}^{N} |f(n)| \) containing small prime factors. The main result of this section is
the following asymptotic.

Proposition 2.1. We have
\[\log Q_S(N) \sim N \log N. \]

Remark. This asymptotic directly implies the earlier stated Equation (1.1).

The argument is a simple analysis involving Hensel’s Lemma and the Chebotarev density theorem.
The Hensel-related work has already been done in [5].

Lemma 2.2 ([5, Lemma 3.1]). Fix \(f \in \mathbb{Z}[x] \) and assume that it has no rational zeros. Let \(\rho_f(m) \) denote the number of roots of \(f \) modulo \(m \). Then if \(p \nmid \text{disc}(f) \) we have
\[\alpha_p(N) = N \frac{\rho_f(p)}{p-1} + O \left(\frac{\log N}{\log p} \right) \]
and if \(p \mid \text{disc}(f) \) we have
\[\alpha_p(N) \ll \frac{N}{p}, \]
where the implicit constant depends only on \(f \).

Proof of Proposition 2.1. We use Lemma 2.2. Noting that the deviation of the finitely many ramified
primes from the typical formula is linear-sized, we will be able to ignore them with an error of \(O(N) \).
We thus have
\[\log Q_S(N) = \sum_{p \leq N} \alpha_p(N) \log p = \sum_{p \leq N} N \frac{\log p}{p-1} \rho_f(p) + O \left(\sum_{p \leq N} \log N \right) + O(N) \]
\[= N \sum_{p \leq N} \frac{\log p}{p-1} \rho_f(p) + O(N) = N \log N + O(N), \]
using the Chebotarev density theorem alongside the fact that \(f \) is irreducible over \(\mathbb{Q} \) in the last
equation (see e.g. [6, Equation (4)]).

3. Removing linear-sized primes

We define
\[Q_{LI}(N) = \prod_{N < p \leq DN} p^{\alpha_p(N)}, \]
for appropriately chosen constant \(D = D_f \). We will end up choosing \(D = 1 + d|f_d| \) or so, although
any greater constant will also work for the final argument. The result main result of this section is
the following.

Proposition 3.1. We have \(\log Q_{LI}(N) = O(N) \).

In order to prove this, we show that all large primes appear in the product \(Q(N) \) a limited number
of times.

Lemma 3.2. Let \(N \) be sufficiently large depending on \(f \), and let \(p > N \) be prime. Then
\[\alpha_p(N) \leq d^2. \]
Proof. Note that $f \equiv 0 \pmod{p}$ has at most d solutions, hence at most d values of $n \in [1, N]$ satisfy $p|f(n)$ since $p > N$. For those values, we see $p^{d+1} > N^{d+1} \geq |f(n)|$ for all $n \in [1, N]$ if N is sufficiently large, and f is irreducible hence has no roots. Thus p^{d+1} does not divide any $f(n)$ when $n \in [1, N]$.

Therefore $\alpha_p(N)$ is the sum of at most d terms coming from the values $f(n)$ that are divisible by p. Each term, by the above analysis, has multiplicity at most d. This immediately gives the desired bound.

Proof of Proposition 3.1. Using Lemma 3.2 we find

$$\log Q_{LI}(N) \leq d^2 \sum_{N < p \leq DN} \log p = O(N)$$

by the Prime Number Theorem.

4. Multiplicity of Large Primes

Note that Lemma 3.2 is already enough to recreate Theorem 1.2. Indeed, we see that

$$\log Q(N) = (d - 1)N \log N + O(N)$$

from $Q(N) = dN \log N + O(N)$ and Proposition 2.1. Furthermore, by definition and by Lemma 3.2,

$$\frac{Q(N)}{Q_S(N)} = \prod_{p > N} p^{\alpha_p(N)} \leq \prod_{p > N, p|Q(N)} p^{\frac{d^2}{2}} \leq \ell_f(N)^d \leq L_f(N)^d.$$

This immediately gives the desired result (and recreates the constant $\frac{d - 1}{d^2}$ appearing in the proof given in [5]).

In order to improve this bound, we will provide a more refined analysis of the multiplicity of large primes. More specifically, we will show that we have a multiplicity of $\frac{d(d - 1)}{2}$ for primes $p > DN$, with D chosen as in Section 3.

Lemma 4.1. Let N be sufficiently large depending on f, and let $p > DN$ be prime, where $D = 1 + d|f_d|$. Then

$$\alpha_p(N) \leq \frac{d(d - 1)}{2}.$$

Proof. Fix prime $p > DN$. As in the proof of Lemma 3.2, when N is large enough in terms of f, we have that p^{d+1} never divides any $f(n)$ for $n \in [1, N]$. Thus for $1 \leq i \leq d + 1$ let $b_i = \#\{n \in [1, N] : p^i|f(n)\}$, where we see $b_{d+1} = 0$. Note that

$$\alpha_p(N) = \sum_{i=1}^{d} i(b_i - b_{i+1}) = \sum_{i=1}^{d} b_i.$$

We claim that $b_i \leq d - i$ for all $1 \leq i \leq d$, which immediately implies the desired result.

Suppose for the sake of contradiction that $b_i \geq d - i + 1$ for some $1 \leq i \leq d$. Then let m_1, \ldots, m_{d-i+1} be distinct values of $m \in [1, N]$ such that $p^i|f(m)$. Consider the value

$$A = \sum_{j=1}^{d-i+1} \frac{f(m_j)}{\prod_{k \neq j}(m_j - m_k)}.$$
We have from the standard theory of polynomial identities that

\[A = \sum_{\ell=0}^{d} f_{\ell} \sum_{j=1}^{d-i+1} \prod_{k \neq j} (m_j - m_k) \]

\[= \sum_{\ell=d-i}^{d} f_{\ell} \sum_{a_1 + \cdots + a_{d-i+1} = \ell - (d-i)} m_j^{a_j}, \]

where the inner sum is over all tuples \((a_1, \ldots, a_{d-i+1})\) of nonnegative integers that sum to \(\ell - (d-i)\). Therefore \(A \in \mathbb{Z}\). Furthermore, since \(p^i | f(m_j)\) for all \(1 \leq j \leq d-i+1\), we have from the definition of \(A\) that

\[p^i | A \prod_{1 \leq j < k \leq d-i+1} (m_j - m_k). \]

Note that each \(m_j - m_k\) is nonzero and bounded in magnitude by \(N < p\), hence we deduce \(p^i | A\).

But from the above formula and the triangle inequality we have

\[|A| = \left| \sum_{\ell=d-i}^{d} f_{\ell} \sum_{a_1 + \cdots + a_{d-i+1} = \ell - (d-i)} m_j^{a_j} \right| \]

\[\leq \sum_{\ell=d-i}^{d} |f_{\ell}| \left(\frac{\ell}{d-i} \right) N^{\ell-(d-i)} \]

\[\leq (1 + |f_d|d^i)N^i \]

for sufficiently large \(N\) in terms of \(f\), using the fact that there are \(\binom{\ell}{d-i}\) tuples of nonnegative integers \((a_1, \ldots, a_{d-i+1})\) with sum \(\ell - (d-i)\) and that \(|m_j| \leq N\) for all \(1 \leq j \leq d-i+1\).

Thus, as \(p > DN \geq (1 + |f_d|d)N\), we have

\[|A| \leq (1 + |f_d|d^i)N^i \leq (1 + |f_d|d^i)N^i < p^i. \]

Combining this with \(p^i | A\), we deduce \(A = 0\).

However, we will see that this leads to a contradiction as the “top-degree” term of \(A\) is too large in magnitude for this to occur. First, we claim that if \(1 \leq i \leq d\) and \(d-i \leq \ell \leq d\), then

\[\sum_{a_1 + \cdots + a_{d-i+1} = \ell - (d-i)} \prod_{j=1}^{d-i+1} m_j^{a_j} \]

\[\sum_{j=1}^{d-i+1} m_j^{\ell - (d-i)} \in [1, 2^d]. \quad (4.1) \]

Indeed, note that each \(m_j > 0\) and the denominator occurs as a subset of the terms in the numerator, hence the desired fraction is always at least 1. For an upper bound, simply use the well-known AM-GM inequality. As it turns out, a sharp upper bound for the above is \(\frac{1}{d-i+1} \binom{\ell}{d-i}\), which does not exceed \(2^d\) for the given range of \(i\) and \(\ell\).
Next, we see that, using Equation (4.1) and the triangle inequality,

\[|A| = \left| \sum_{\ell = d-i}^d f_{\ell} \prod_{a_1+\cdots+a_{d-i+1}=\ell-(d-i)} m_j^{a_j} \right| \]

\[\geq |f_d| \sum_{a_1+\cdots+a_{d-i+1}=d-i+1} \prod_{\ell=d-i}^{d-i+1} m_j^{a_j} - \sum_{\ell=d-i}^{d-1} |f_{\ell}| \sum_{a_1+\cdots+a_{d-i+1}=\ell-(d-i)} \prod_{j=1}^{d-i+1} m_j^{a_j} \]

\[\geq |f_d| \sum_{j=1}^{d-i+1} m_j^i - 2^d \sum_{\ell=d-i}^{d-1} |f_{\ell}| \sum_{j=1}^{d-i+1} m_j^{\ell-(d-i)} \]

\[= \sum_{j=1}^{d-i+1} f^*(m_j), \]

where we define \(f^*(x) = |f_d|x^i - 2^d \sum_{\ell=d-i}^{d-1} |f_{\ell}|x^{\ell-(d-i)} \). But since \(A = 0 \) and \(f^* \) clearly has a global minimum over the positive integers, we immediately deduce that \(|m_j| \) for all \(1 \leq j \leq d-i+1 \) is bounded in terms of some constant depending only on \(f \) and \(d = \deg f \).

But then, in particular, we also have \(|f(m_1)| < C_f \) for some constant \(C_f \) depending only on \(f \), yet it is divisible by \(p > DN \). For \(N \) sufficiently large in terms of \(f \), this can only happen if \(f(m_1) = 0 \), but since \(f \) is irreducible over \(\mathbb{Q} \) and \(\deg f = d \geq 2 \) this is a contradiction! Therefore we conclude that in fact \(b_i \leq d-i \) for all \(1 \leq i \leq d \), which as remarked above finishes the proof. \(\square \)

We have actually proven something stronger, namely that for this range of \(p \) we have at most \(d-i \) values \(n \in [1, N] \) with \(p^i | f(n) \). In particular, this implies that for \(p > DN \) we have

\[\# \{ n \in [1, N] : p | f(n) \} \leq d-1. \tag{4.2} \]

5. Finishing the Argument

Proof of Theorem 1.3. The argument is similar to the one at the beginning of Section 4, but refined. We have

\[\log \frac{Q(N)}{Q_S(N)Q_{LI}(N)} = (d-1)N \log N + O(N) \]

by \(Q(N) = dN \log N + O(N) \) and Propositions 2.1 and 3.1. Furthermore, by definition and by Equation (4.2),

\[\frac{Q(N)}{Q_S(N)Q_{LI}(N)} = \prod_{p > DN} p^{\alpha_p(N)} \leq L_f(N)^{d-1}. \]

The inequality comes from the fact that for \(p > DN > N \), there are at most \(d-1 \) values of \(n \in [1, N] \) with \(p | f(n) \) from Equation (4.2), and the LCM takes the largest power of \(p \) from those involved hence has a power of at least \(\frac{\alpha_p(N)}{d-1} \) on \(p \). Taking logarithms, we deduce

\[(d-1) \log L_f(N) \geq (d-1)N \log N + O(N), \]

which immediately implies the result since \(d \geq 2 \). \(\square \)

Proof of Theorem 1.4. The argument is essentially identical to the one at the beginning of Section 4, but with a better multiplicity bound from 4.1. We have

\[\log \frac{Q(N)}{Q_S(N)Q_{LI}(N)} = (d-1)N \log N + O(N) \]
by $Q(N) = dN \log N + O(N)$ and Propositions 2.1 and 3.1. Furthermore, by definition and by Lemma 4.1,

$$\frac{Q(N)}{Q_S(N)Q_{LI}(N)} = \prod_{p > DN} p^{\alpha_p(N)} \leq \prod_{p > DN, p|Q(N)} p^{\frac{d(d-1)}{2}} \leq \ell_f(N)^{\frac{d(d-1)}{2}}.$$

Taking logarithms, we deduce

$$\frac{d(d-1)}{2} \log \ell_f(N) \geq (d-1)N \log N + O(N),$$

which immediately implies the result since $d \geq 2$. □

6. Discussion

We see from our approach that the major obstruction to proving Conjecture 1.1 is the potential for large prime factors $p > N$ to appear multiple times in the product $Q(N)$. In particular, it is possible to show that Conjecture 1.5 is equivalent to the assertion that

$$\lim_{N \to \infty} \frac{\# \{ p \text{ prime} : p^2|Q(N) \}}{\# \{ p \text{ prime} : p|Q(N) \}} = 0.$$

Indeed, the bounds we have given are sufficient to show that there are $\Theta(N)$ prime factors of $Q(N)$, of which only $O\left(\frac{N}{\log N}\right)$ are less than DN. Therefore the asymptotic size of the LCM is purely controlled by whether multiplicities for large primes in $\left[2, \frac{d(d-1)}{2}\right]$ appear a constant fraction of the time or not (noting that $\log p = \Theta(\log N)$ for these large primes, so that the sizes of their contributions are the same up to constant factors).

Similarly, Conjecture 1.1 is equivalent to the assertion that

$$\lim_{N \to \infty} \frac{\# \{ p \text{ prime} : \exists 1 \leq m < n \leq N: p|f(m), p|f(n) \}}{\# \{ p \text{ prime} : p|Q(N) \}} = 0.$$

Our bound for Conjecture 1.5 corresponds to using the fact that we can upper bound the multiplicities for all primes $p > DN$ by $\frac{d(d-1)}{2}$. In general, smaller multiplicities other than 1 could be possible but infrequent, which may be a direction to further approach Conjecture 1.1 and Conjecture 1.5.

References

[1] Pablo Candela, Juanjo Rué, and Oriol Serra. Memorial to Javier Cilleruelo: a problem list. *Integers*, 18:Paper No. A28, 9, 2018.

[2] J. Cilleruelo. The least common multiple of a quadratic sequence. *Compos. Math.*, 147(4):1129–1150, 2011.

[3] S. Hong, Y. Luo, G. Qian, and C. Wang. Uniform lower bound for the least common multiple of a polynomial sequence. *C. R. Math. Acad. Sci. Paris*, 351(21-22):781–785, 2013.

[4] S. Hong, G. Qian, and Q. Tan. The least common multiple of a sequence of products of linear polynomials. *Acta Math. Hungar.*, 135(1-2):160–167, 2012.

[5] J. Maynard and Z. Rudnick. A lower bound on the least common multiple of polynomial sequences. *Preprint*, arXiv:1910.13218.

[6] T. Nagel. Généralisation d’un théorème de Tehebycheff. *Journ. de Math.*, 8(4):343–356, 1921.

[7] Z. Rudnick and S. Zehavi. On Cilleruelo’s conjecture for the least common multiple of polynomial sequences. *Preprint*, arXiv:1902.01102.

Massachusetts Institute of Technology, Cambridge, MA 02139, USA

E-mail address: asah@mit.edu