Quantum confinement induced magnetism in LaNiO$_3$-LaMnO$_3$ superlattices
Shuai Dong and Elbio Dagotto
Phys. Rev. B 87, 195116 — Published 13 May 2013
DOI: 10.1103/PhysRevB.87.195116
Quantum-Confinement-Induced Magnetism in LaNiO$_3$-LaMnO$_3$ Superlattices

Shuai Dong1,2,3 and Elbio Dagotto1,2

1Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
2Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
3Department of Physics, Southeast University, Nanjing 211189, China

(Dated: March 22, 2013)

The emergence of magnetic reconstructions at the interfaces of oxide heterostructures are often explained via subtle modifications in the electronic densities, exchange couplings, or strain. Here an additional possible route for induced magnetism is studied in the context of the (LaNiO$_3$)$_n$/LaMnO$_3$ superlattices using a hybrid tight-binding model. In the LaNiO$_3$ region, the induced magnetizations decouple from the intensity of charge leakage from Mn to Ni, but originate from the spin-filtered quantum confinement present in these nanostructures. In general, the induced magnetization is the largest for the (111)-stacking and the weakest for the (001)-stacking superlattices, results compatible with the exchange bias effects reported by Gibert et al. Nat. Mater. 11, 195 (2012).

PACS numbers: 75.70.Cn, 73.21.-b

I. INTRODUCTION

The area of research that focuses on oxide heterostructures is attracting considerable attention because of its importance in the development of quantum devices based on correlated electronic systems. Novel physical properties are expected to emerge from the electronic reconstruction near the interfaces. In particular, the interfacial magnetism can have properties different from those of bulk materials and in recent years several investigations revealed various magnetic reconstructions. Their origin can be mainly classified via mechanisms involving modifications in the (1) electronic densities, (2) exchange couplings, and/or (3) strain. For example, mainly due to strain and charge transfer, pure manganite LaMnO$_3$/SrMnO$_3$ (LMO/SMO) superlattices (SLs) display a variety of magnetic orders, while due to modifications in the exchange coupling, distinct magnetic states emerge in the (001)- (011)- and (111)-stacking of LaFeO$_3$/LaCrO$_3$ SLs. Furthermore, the interfacial magnetic orders of La$_{1-x}$Sr$_x$MnO$_3$ (LSMO) can be tuned by attaching ferroelectric layers (e.g. LSMO/BiFeO$_3$, LSMO/BaTiO$_3$, and LSMO/PZT), that induce modifications in the interfacial electronic density.

Recently, an exchange bias effect was reported experimentally in (LaNiO$_3$)$_n$/LaMnO$_3$ (LNO/LMO) SLs grown along the (111) axis of a pseudocubic structure. In contrast, no exchange bias was observed in the conventional (001)-stacking of LNO/LMO SLs, suggesting a qualitative difference between the (001)- and (111)-stacking directions despite having the same compositions and periodicity (as sketched in Fig. 1). This exchange bias in the (111)-stacking is nontrivial since it is well known that LNO is a paramagnetic (PM) metal in its bulk form. Therefore, interesting physical questions arise: what is the origin of the induced magnetic moments in the LNO layers of these SLs? Are they in proportion to the charge transferred across the interfaces, considering that electrons in the LMO layers are spin polarized? Why are the (001)- and (111)-SLs qualitatively different with regards to their magnetic properties? And what are the expected results for other stacking orientations not yet explored, such as the (011)-direction?

In this manuscript, LNO/LMO SLs will be studied theoretically from the perspective of microscopic models. Our main result is that the experimentally observed magnetism in the LNO layers appears to be mainly caused by quantum-confinement effects. This induced magnetism is weakly coupled with the actual value of the charge that is transferred from Mn to Ni, and depends strongly and nonlinearly on the stacking orientations and the SL periodicity. The underlying physical mechanism discussed here can partially explain the nontrivial exchange bias observed in (LNO)$_n$/LMO$_n$ SLs.

II. MODEL & METHOD

A hybrid two-orbital tight-binding model is here constructed, containing the Hubbard interaction for both the manganite and nickelate components and the double-exchange (DE) term for the manganite sector only. In past decades, extensive investigations have shown that the two-orbital DE model is a successful model to describe manganites, while the two-orbital Hubbard model has also been often employed for the...
Recent theoretical studies also used these two models for manganite heterostructures and for LNO bilayers.12,30–33 For these reasons, our model provides a reasonable starting point to address the LNO/LMO SLs. More explicitly, the model Hamiltonian used here can be written as:

\[
H = \sum_{\langle i,j \rangle, \sigma} t^{ij}_{\alpha} (c^\dagger_{i\alpha\sigma} c_{j\beta\bar{\sigma}} + H.c.) - \frac{J_H}{2} \sum_{i \in \text{Mn}} n_i \mathbf{\sigma}_i \cdot \mathbf{S}_i \\
+ \sum_{i \in \text{Ni}} V_{\text{Ni}} n_i + H_{\text{Hubbard}}(U, J),
\]

where the first term is the standard nearest-neighbor hopping (i.e., the kinetic energy) between orbital \(\alpha \) of site \(i \) and orbital \(\beta \) of site \(j \). Here the \(c_{\alpha \sigma} \) orbitals \(d_{x^2-y^2} (=1) \) and \(d_{3z^2-r^2} (=2) \) are employed since in both LaMnO\(_3\) and LaNiO\(_3\) the transition metals are in the \(e^2_g \) configuration. The (standard) hopping amplitudes are orbital and direction dependent: \(t^{11}_{x} = t^{22}_{y} = 3 t^{12}_{z} = 3 t^{21}_{y} = -3 t_{0}/4; \)
\(t^{12}_{z} = t^{21}_{y} = -t^{12}_{x} = -t^{11}_{y} = \sqrt{3} t_{0}/4; \)
\(t^{21}_{z} = t^{12}_{y} = 0; \)
\(t^{22}_{y} = -t_{0}. \) In the present work, the hopping unit \(t_0 \) is assumed to be the same for the bonds Mn-O-Mn, Ni-O-Ni, as well as Mn-O-Ni. This approximation is reasonable since density functional theory (DFT) studies of LaNiO\(_3\) led to \(t_0 \sim 0.6 \) eV while a very close result \(t_0 \sim 0.5 \sim 0.6 \) eV was found for LaMnO\(_3\). Moreover, \(t_0 \) will be taken as the energy unit in this work.

The Hund’s coupling second term affects only the Mn ions that are in a high-spin \(t^{4s}_{2g} \) configuration. Then the spin-up and -down levels are split by \(J_H \) in LaMnO\(_3\). Here, \(J_H \) is set to be \(4 t_0 (\sim 2 - 2.4 \) eV26 which is large enough to induce half-metal behavior in manganites. In contrast, the Ni ions are in the \(t^{4s}_{2g} \) configuration. Then the spin-up and -down levels are degenerate in LaNiO\(_3\), suggesting a non-magnetic background.

The third term is the on-site \(e_g \) potential difference between Ni and Mn. Considering the potential of the Mn’s spin-up level as the zero of reference, the potential of the Mn’s spin-down level becomes \(J_H \) due to the Hund coupling, while the potential \(V_{\text{Ni}} \) for the Ni levels will be varied as a parameter in our investigations.

The last term is the standard Hubbard interaction for multi-orbital models acting in the whole lattice, with the parameters \(U \) (intra-orbital Coulomb repulsion) and \(J \) (inter-orbital Hund exchange).28,29,31–33 This term is here treated using the Hartree mean-field approximation, which is a quite reasonable starting point to handle Hubbard interactions in these systems according to previous literature.31–33 The widely used ratio \(J = U/4 \) is used, and \(U \) is tuned as a parameter for both the manganite and nickelate layers. In reality, the value of \(U \) may be different between Mn and Ni. However, the physical consequences of \(U \) are not important for the \(e_g \) sector of manganites: at least in the Hartree mean-field approximation it has been shown that a large \(J_H \) coupling already plays a similar role.35 Then, to avoid a large number of tunable parameters, here the same \(U \) is applied to both the manganite and nickelate layers. LaNiO\(_3\) is a PM metal, implying a weak \(U \) (otherwise it would become magnetically ordered).24 Then, in the present work \(U \) will be tuned between 0 and 2\(t_0 \). Note that larger values of \(U \), such as 3\(t_0 \), have also been tested and the results do not alter our physical conclusions qualitatively.

Partially due to strain, the ground state of LMO ultrathin films with nearly cubic structure grown on SrTiO\(_3\) are ferromagnetic (FM)9,12,24 In addition, \(e_g \) electrons leak from Mn to Ni, altering the Mn valence to \(+(3+\delta) \), further driving the LMO layers to a FM state according to the phase diagram of manganites.26 Thus, the \(t_{2g} \) spin background of the Mn layers is set here as FM unless explicitly noted. For this first study, lattice distortions are neglected, assumption also used in other previous theoretical studies of LaNiO\(_3\)-based heterostructures.31–33

Then, Eq. 1 is solved self-consistently at zero temperature on \(4 \times 4 \times 4 \) lattices with twisted boundary conditions,14,23 where \(L \) is determined by the period of each SL.

III. RESULTS & DISCUSSION

A. Non-correlated limit

First, the simplest case \((U = 0, V_{\text{Ni}} = 0)\) is studied. This non-correlated limit \((U = 0)\) is useful to clarify the underlying physics, and \(V_{\text{Ni}} = 0 \) means that there is no confinement for the spin-up channel although the spin-down channel is still confined due to the large Hund \(J_H \) barrier, as sketched in Fig. 2(a). To start the discussion, let us focus first on short periodic \((n \leq 2)\) SLs because it will be shown below that the induced magnetism is uniform in this case.

Previous DFT calculations24 indicated that at the interface the \(e_g \) electrons transfer from Mn\(^{3+}\) to Ni\(^{3+}\). As shown in Fig. 2(b) and (d), our calculations are in agreement since even at \(V_{\text{Ni}} = 0 \), \(e_g \) electrons do leak from Mn\(^{3+}\) to Ni\(^{3+}\). This is because the \(e_g \) levels in Mn’s sites are spin polarized, pushing the Fermi level of LMO to higher energies since only spin-up bands can be occupied while spin-down bands are almost empty. By contrast, in LNO both the spin-up and -down bands can be filled, accommodating more electrons with a lower Fermi level.

The charge transfer from LMO to LNO depends on both the period \(n \) as well as the stacking orientations. For the \(n = 1 \) case (Fig. 1), the (001)/(011)/(111)-stacking SLs have two/four/six Ni-Mn but four/two/zero Mn-Mn or Ni-Ni nearest-neighbors per site. For other cases \((n \geq 2)\), each interfacial Mn (Ni) ion has one/two/three Ni (Mn) nearest-neighbors but five/four/three Mn (Ni) nearest-neighbors in the (001)/(011)/(111)-stacking SLs. Therefore, naively, the charge transfer from Mn to Ni may be the strongest (weakest) in the SLs with (111)-stacking [(001)-stacking] since they have the most (least) Mn-Ni bonds.

However, this naive scenario is too simplistic. For example, for \(n = 2 \) the charge transferred to LNO is
spin-down levels, which are degenerate for Ni but split by J_{HH} for Mn. $V_{NN} < 0$ implies lower Ni levels. Pink and green curves are the sketch of spin-up and spin-down ϵ_g electron densities. (b-e) The ϵ_g-density profiles (left) and ϵ_g magnetization (right) of SLs at $V_{NN} = U = 0$. Black: (001)-; Red: (011)-; Green: (111)-stacking SLs. Gray: LMO; White: LNO.

nonzero, and almost identical, for the three orientations. But at the same time the associated LNO magnetization is nearly vanishing. Moreover, in the $n = 1$ case the charge transferred to the Ni-layers is the highest for the (001)-stacking, yet the magnetization is the smallest for the same stacking. Therefore, the intensity of charge leakage is not in linear proportion to the induced magnetization.

According to Fig. 2, there are several interesting features in the induced magnetism of LNO in these short-period SLs. In the $n = 1$ SLs, the (111)-stacking shows the most prominent induced magnetization, while the (001)-stacking is nearly non-magnetic and the (011)-stacking interpolates between (001) and (111). In the $n = 2$ cases, the induced magnetism of Ni is almost zero irrespective of the stacking orientations.

These features also imply that the induced magnetism is indeed not simply directly correlated with the leakage of spin-polarized charge. For a better understanding of our results consider instead the band structures of our SLs. As shown in Fig. 3, the spin-resolved density of states (DOS) at the Ni layers shows that the spin-up and -down channels are notoriously different. Due to the high spin polarization of manganites, the spin-up ϵ_g electrons spread much farther in the SLs than the spin-down ϵ_g electrons, which are mostly confined to the LNO layers. From this perspective, the LMO layers act as atomic-scale spin filters, causing the local band structures of the LNO layers to be quite different between the spin-up and -down channels. Furthermore, this quantum confinement severely depends on the stacking orientations and periodicity. The confinement is the most effective (i.e. with the narrowest spin-down bands) in the (111)-stacking SLs due to their minimum number of Ni-Ni bonds. By contrast, the spin-down bands in the (001)-stacking are broader and close to the spin-up channel.

In the $n = 1$ case, the narrowing of the spin-down bands due to quantum confinement gives rise to the observed induced magnetism, and the effect is clearly the most notorious for the (111)-stacking, as discussed before. However, since quantum confinement also exists for the $n = 2$ cases, then why is their induced magnetism so weak even for the (111)-stacking? Is this nearly-vanishing moment a parametric “accident” for the (111) $n = 2$ SL considering its spin-polarized DOS (Fig. 3(f))? Our analysis suggests that this nontrivial behavior is caused by the particular quantum properties of this confined system. The (111)-stacking perovskite bilayer forms a honeycomb lattice that has a peculiar band structure. In particular, for an isolated LNO bilayer there is a flat bottom band. In the current study, although the LNO bilayer is not isolated in the crystal, its spin-down channel is effectively quantum confined. Then, the spin-down channel has a nearly flat bottom band (broaden since the barrier J_{HH} is not infinitely high), that induces a large DOS peak at the band bottom [at -0.6 in Fig. 3(f)]. This occupied localized states can accumulate $0.5 \epsilon_g$ spin-down electron per Ni which significantly reduces the net induced magnetism. This tendency is clearly different
from the $n = 1$ (111)-stacking case, where the large DOS peak [at 0.8 in Fig. 3(c)] due to the confinement is actually unoccupied.

It is also interesting to observe that this “accident” is fairly robust when modifying the parameters in reasonable ranges, as discussed in the following subsection. The underlying reason is that here the e_g electron density of Ni is higher than 1, while the nearly flat bottom band is always far below the Fermi level. In fact, in the vicinity of the Fermi level, there is no substantial difference between the spin-up and spin-down DOS. In summary, the weak induced magnetism for the $n = 2$ (111)-stacking is also due to the quantum confinement.

All the results above were obtained for short periodic SLs, in which all Ni cations are interfacial. In thicker cases ($n \geq 3$), there are inner Ni layers that do not connect directly to Mn’s. Then their induced magnetism, if any, can be considered as a second order effect of the quantum confinement. As shown in Fig. 4, the induced magnetism in these cases displays an interesting modulation as a function of the distance from the interfaces.37 As expressed before, the induced magnetization in the (001)-stacking SLs is always weak, irrespective of the period n. Therefore, the (001)-stacking LNO/LMO should not present a robust exchange bias, in agreement with experiments.24 By contrast, the (111)-stacking SLs display the largest induced magnetization, with the caveat that it nearly vanishes at $n = 2$ for the reasons already explained. When $n \geq 3$, the (111) magnetization of the first layer fluctuates around $0.1 \sim 0.2 \mu_B$ per Ni, while the second Ni layers shows negative magnetization $\sim -0.1 \mu_B$ per Ni. For deeper Ni-layers (3rd, 4th, 5th, and more) the magnetic moments become weaker and weaker, finally fluctuate around zero and approaching the PM state of pure LNO. This qualitatively explains the decreasing exchange bias with increasing period n when $n \geq 5$ (corresponding to the appearance of the 3rd layers) observed in experiments.24

Despite the previously described agreement of the interfacial induced magnetism between our model and the DFT studies,24 these two techniques have a sign difference regarding the induced moments in middle layers of long periodic SLs ($n > 5$). This discrepancy needs further studies involving both experimental and theoretical components.

B. Correlated effect & other V_{Ni}’s

Our results above were obtained with $V_{Ni} = U = 0$. It is necessary to confirm the robustness of those results with other parameters since real SLs may correspond to another set of values for V_{Ni} and U. For example, previous DFT studies reported induced moments larger than those found in our study described above,24 and this may be caused by the influence of correlation effects.

By varying V_{Ni} parametric with $U = 2$, the e_g density and e_g magnetization of short periodic SLs are shown in Fig. 5. Clearly, in all cases, the more negative V_{Ni} becomes, the more e_g electrons accumulate on the Ni layers. Regarding the induced magnetism, varying V_{Ni} the induced magnetization remains qualitatively robust. In the $n = 1$ cases, the induced moment of Ni is quite weak in the (001) stacking but prominent in the (111) stacking, as in the $U = 0$ case. With this Hubbard-type correlation effects, the induced moments in the (111)

FIG. 4. (Color online) Magnetization profiles vs. distances from the interfaces (e.g. the “1st” curves denote the first interfacial layers). A higher index denotes deeper LNO layers. $V_{Ni} = U = 0$ are used. The stackings are (001) in (a), (011) in (b), and (111) in (c).

FIG. 5. (Color online) The Ni e_g electron densities (squares) and magnetization (circles) versus V_{Ni} for $U = 0$ (red) and $U = 2$ (blue). Top: $n = 1$; bottom: $n = 2$. Left/middle/right: (001)/(011)/(111)-stacking.
\[M_{\text{Ni}}(n) = \begin{cases} \mu_{\text{B}} & \text{if } n \equiv 1 \mod 2 \\ 0 & \text{otherwise} \end{cases} \]

\[M_{\text{Mn}}(n) = \begin{cases} \mu_{\text{B}} & \text{if } n \equiv 0 \mod 2 \\ 0 & \text{otherwise} \end{cases} \]

\[V_{\text{Ni}}(n) = \begin{cases} \text{positive} & \text{if } n \equiv 1 \mod 2 \\ \text{negative} & \text{if } n \equiv 0 \mod 2 \end{cases} \]

\[U = \begin{cases} 0 & \text{if } n \equiv 1 \mod 2 \\ 2 & \text{if } n \equiv 0 \mod 2 \end{cases} \]

FIG. 6. (Color online) Magnetization profiles vs. distances from the interfaces. \(V_{\text{Ni}} = -1, U = 2 \) are used. All notations are the same as in Fig. 4.

Another effect of the Hubbard interaction is the suppression of the charge leakage from Mn to Ni. For example, in the \(n = 1 \) case, when \(U = 2 \) and \(V_{\text{Ni}} = 0 \), the \(e_{\text{g}} \) density of Ni is close to the original value 1, implying a very weak charge transfer. However, the induced magnetization remains quite prominent, further confirming that the charge leakage from Mn to Ni is not the key origin of the induced magnetization in the Ni layers. In the \(n = 2 \) case, all induced magnetic moments are very weak, although not exactly zero, even with the Hubbard interaction. All these results imply that quantum confinement effects are qualitatively robust within a reasonable parameter region.

The results for thicker SLs (\(n \geq 3 \)) show similar behaviors, with positive induced magnetic moments for the first interfacial layers followed by weaker negative ones for the second layers. The thickness-dependent modulation, which is also similar to the non-correlated limit, is also calculated in the case of thicker SLs with correlation couplings (\(U = 2 \) and \(V_{\text{Ni}} = -1 \)), as shown in Fig. 6. Comparing with Fig. 4 in the non-correlated limit, no qualitative differences are observed, although the values of the induced magnetic moments are enhanced due to the correlation effects. Thus, the oscillatory characteristics of the induced magnetism with an increasing distance from the interfaces is a robust feature of our results.

FIG. 7. (Color online) The profiles of \(e_{\text{g}} \) density (left) and \(e_{\text{g}} \) magnetization (right) for the \(n = 2 \) (111)-stacking superlattices with antiferromagnetically coupled LaMnO\(_3\) layers. Black: Mn\(\uparrow\)-Mn\(\downarrow\)-Ni-Ni-Mn\(\uparrow\)-Mn\(\downarrow\) configuration; Red: Mn\(\downarrow\)-Mn\(\uparrow\)-Ni-Ni-Mn\(\uparrow\)-Mn\(\uparrow\) configuration. Gray region: LMO; White region: LNO. (a-b) \(V_{\text{Ni}} = 0 \) and \(U = 0 \); (c-d) \(V_{\text{Ni}} = -1 \) and \(U = 2 \).

C. RKKY-like exchange

In Fig. 4 and Fig. 6, two features of the induced magnetization are worth highlighting: (1) the sign oscillations with increasing distance from the interfaces and (2) the fluctuations of the values of the first/second layers with increasing period \(n \), both suggestive of a Ruderman-Kittel-Kasuya-Yosida (RKKY)-like exchange coupling between the LNO and LMO layers. In this sense, the almost vanishing magnetism of the LNO bilayer \(n = 2 \) can also be qualitatively understood: the first Ni layer of the left interface is also the second layer counting from the right interface, leading to a partial cancellation of the net magnetization. This RKKY-based description, which qualitatively agrees with the previously described explanation based on band structures, provides a more intuitive understanding than the rather complex calculations and results presented thus far.

To confirm this idea, the induced magnetization was recalculated by flipping the magnetic background of some Mn layers in the (111)-stacking \(n = 2 \) case. Two situations were tested: (1) flipping one layer in each bilayer (Mn\(\uparrow\)-Mn\(\downarrow\)-Ni-Ni-Mn\(\uparrow\)-Mn\(\downarrow\)) (2) flipping one bilayer entirely (Mn\(\downarrow\)-Mn\(\uparrow\)-Ni-Ni-Mn\(\uparrow\)-Mn\(\downarrow\)). Both these cases now give very prominent induced local magnetization in the LNO \(n = 2 \) bilayers, which couples antiferromagnetically between these two neighboring layers (Ni\(\downarrow\)-Ni\(\uparrow\)), as shown in Fig. 7. While this result is different from the ferromagnetically ordered case (Mn\(\uparrow\)-Mn\(\downarrow\)-Ni-Ni-Mn\(\uparrow\)-Mn\(\downarrow\)) case, it also supports the scenario of a RKKY coupling between the Mn’s local moments and the Ni’s induced moments. If the magnetic coupling between LMO and LNO layers is indeed RKKY-like, then an interesting question
arises: how far can the coupling penetrate in these superlattices? To address this issue, the energy difference between FM and antiferromagnetic (AFM) LaMnO$_3$ layers was calculated varying the period n. Here, the AFM coupled LMO layers denote the case Mn\uparrow-\ldots-Mn\downarrow-\ldots-Ni-\downarrow-\ldots-Ni-\uparrow-\ldots-Mn\uparrow, as shown in Fig. 8, the absolute energy difference is large in short-period SLs, but it drops to nearly zero when $n \geq 5$. This tendency agrees with the results shown in Fig. 4(c) and Fig. 6(c), where the induced magnetization becomes weak beyond the 3rd layers (corresponding to the $n \geq 5$ cases). This result can qualitatively explain the experimentally observed decrease in the exchange bias with increasing period n for the case $n \geq 5$.24

D. Additional discussion

In the computational studies described above, the LMO layers were mainly set to have a fixed FM spin order, although a few simple AFM cases were also tested. This is reasonable considering the experimental evidence that clear FM hysteresis loops do appear in these SLs.24 However, it is well known that there are various types of AFM phases in doped manganites, such as A-AFM, CE-AFM, G-AFM, and others, depending on the doping concentrations and bandwidths.38–42 In the LMO-LNO SLs, if the charge leakage is very strong for some particular layers, it is possible to have any of these types of AFM orders, and considering all these possibilities is beyond the scope of the present effort.

It is interesting to compare the induced magnetism of the LMO/LNO SLs against the magnetic reconstruction observed in the LMO/SMO SLs that has been intensively investigated.9–14 The induced magnetism in pure manganites SLs is associated with the magnetic phase transitions driven by the modification in the e_g density and strain.12,14,43 Although not precisely in a one-to-one correspondence, in pure manganite SLs the induced magnetism can be traced back to the phase diagram of bulk manganites. By contrast, in the LMO/LNO SLs, although experiments also find a charge transfer from Mn to Ni,24,44,45 the induced magnetization is nearly decoupled from this e_g electron transfer qualitatively different from the physics scenario in pure manganite SLs. Instead, here the physics for induced magnetization is more analogous to the dimensionality control of electronic phase transitions in LNO-LaAlO$_3$ heterostructures.46,47

It is also necessary to mention additional experimental observations. Despite the experiments of Gibert et al., recent related experiments observed an exchange bias in the (001)-stacking of La$_{0.72}$Sr$_{0.28}$MnO$_3$/LNO SLs,44 as well as induced magnetism in (001)-stacked (LMO)$_2$/LNO SLs,45 which at least naively seem to disagree with Gibert et al.’s experiments and the present simulation. A probable reason for this discrepancy may reside in the interfacial intermixing and disorder, which is unavoidable even in the best state-of-the-art experiments in the oxide interfaces context. According to our quantum confinement mechanism, at least naively the disorder may enhance the induced magnetism since more Ni cations are at interfacial positions in situations of confinement. Of course, additional experimental and theoretical efforts are necessary in the future to clarify the role of disorder in this complex system. Certainly incorporating disorder effects is important but not an easy task in the computational studies due to the need to repeat the finite cluster calculations dozens of times for different disorder realizations and average the results to reach physically relevant results.

IV. CONCLUSION

The induced magnetization found in LNO in the LNO/LMO SLs was studied here via a hybrid microscopic model. The results of our model agree with previous DFT investigations24 but provide additional details and a deeper physical insight. Summarizing our conclusions: (1) in the $n = 2$ SLs with FM LMO, the LNO layers are nearly non-magnetic independently of the stacking directions. (2) The induced magnetization of LNO in the (111)-stacking SLs is always the most prominent. By contrast, the LNO layers in the (001)-stacking SLs are always nearly non-magnetic, compatible with the exchange bias investigations. The results for the (011)-stacking are in between those of the (111)- and (001)-stackings which can be verified in future experiments. (3) The induced magnetic moments of the first Ni layers are parallel to the moments of their nearest-neighbor Mn layers, but the second Ni layers usually display negative moments if not zero. The induced local magnetism decreases to
zero in an oscillatory manner by increasing the thickness of the LNO layers. The underlying physical mechanism for the induced magnetization is associated with the spin-filtered quantum confinement supplemented by a RKKY-like exchange coupling, qualitatively different from the magnetization reconstruction in most previously studied oxide heterostructures. The present work reported here has emphasized more the approximately parameter-independent physical results, which may have a broader range of applications to related situations than the specific study of LMO/LNO may imply.

ACKNOWLEDGMENTS

We thank J.-M. Triscone, P. Zubko, M. Gibert, and A. Rüegg for helpful discussions. S.D. was supported by the 973 Projects of China (2011CB922101), NSFC (11004027, 11274060), NCET, and RFDP. E.D. was supported by the U.S. DOE, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.

1. J. Mannhart and D. G. Schlom, Science 327, 1607 (2010).
2. H. Takagi and H. Y. Hwang, Science 327, 1601 (2010).
3. G. Hammerl and N. Spaldin, Science 332, 922 (2011).
4. E. Dagotto, Science 318, 1076 (2007).
5. M. Bibes, J. E. Villegas, and A. Barthélémy, Adv. Phys. 60, 5 (2011).
6. L. W. Martin, Y.-H. Chu, and R. Ramesh, Mater. Sci. Eng. R 68, 89 (2010).
7. P. Zubko, S. Gariglio, M. Gabay, P. Glöseck, and J.-M. Triscone, Annu. Rev. Condens. Matter Phys. 110, 053916 (2011).
8. H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagosa, and Y. Tokura, Nat. Mater. 11, 103 (2012).
9. A. Bhattacharya, S. J. May, S. G. E. te Velthuis, M. Warusawithana, X. Zhai, B. Jiang, J.-M. Zuo, M. R. Fitzsimmons, S. D. Bader, and J. N. Eckstein, Phys. Rev. Lett. 100, 257203 (2008).
10. S. J. May, P. J. Ryan, J. L. Robertson, J.-W. Kim, T. S. Santos, E. Karapetrova, J. L. Zarestky, X. Zhai, S. G. E. te Velthuis, J. N. Eckstein, S. D. Bader, and A. Bhattacharya, Nat. Mater. 8, 892 (2009).
11. S. J. May, A. B. Shah, S. G. E. te Velthuis, M. R. Fitzsimmons, J. M. Zuo, X. Zhai, J. N. Eckstein, S. D. Bader, and A. Bhattacharya, Phys. Rev. B 77, 174409 (2008).
12. S. Dong, R. Yu, S. Yunoki, G. Alvarez, J.-M. Liu, and E. Dagotto, Phys. Rev. B 78, 201102(R) (2008).
13. Q. F. Zhang, S. Dong, B. L. Wang, and S. Yunoki, Phys. Rev. B 86, 094403 (2012).
14. S. Dong, Q. F. Zhang, S. Yunoki, J.-M. Liu, and E. Dagotto, Phys. Rev. B 86, 205121 (2012).
15. K. Ueda, H. Tabata, and T. Kawai, Science 280, 1064 (1998).
16. K. Ueda, H. Tabata, and T. Kawai, J. Appl. Phys. 89, 2847 (2001).
17. Y. Zhu, S. Dong, Q. Zhang, S. Yunoki, Y. Wang, and J.-M. Liu, J. Appl. Phys. 110, 141 (2011).
18. P. Yu, J.-S. Lee, S. Okamoto, M. D. Rossell, M. Huijben, C.-H. Yang, Q. He, J. X. Zhang, S. Y. Yang, M. J. Lee, Q. M. Ramasse, R. Erni, Y.-H. Chu, D. A. Arena, C.-C. Kuo, L. W. Martin, and R. Ramesh, Phys. Rev. Lett. 105, 027201 (2010).
19. C. A. F. Vaz, J. Hoffman, Y. Segal, J. W. Reimer, R. D. Grober, Z. Zhang, C. H. Ahn, and F. J. Walker, Phys. Rev. Lett. 104, 127202 (2010).
20. J. D. Burton and E. Y. Tsymbal, Phys. Rev. B 80, 174406 (2009).
21. J. D. Burton and E. Y. Tsymbal, Phys. Rev. Lett. 106, 157203 (2011).
22. M. J. Calderón, S. Liang, R. Yu, J. Salafranca, S. Dong, S. Yunoki, L. Brey, A. Moreo, and E. Dagotto, Phys. Rev. B 84, 024422 (2011).
23. S. Dong, X. T. Zhang, R. Yu, J.-M. Liu, and E. Dagotto, Phys. Rev. B 84, 155117 (2011).
24. M. Gibert, P. Zubko, R. Scherwitzl, J. Íñiguez, and J.-M. Triscone, Nat. Mater. 11, 195 (2012).
25. G. Catalan, Phase. Trans. 81, 729 (2008).
26. E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).
27. E. Dagotto, New J. Phys. 7, 65 (2005).
28. T. Hotta and E. Dagotto, Phys. Rev. Lett. 92, 227201 (2004).
29. S. B. Lee, R. Chen, and L. Balents, Phys. Rev. B 84, 165119 (2011).
30. R. Yu, S. Yunoki, S. Dong, and E. Dagotto, Phys. Rev. B 80, 125115 (2009).
31. K.-Y. Yang, W. Zhu, D. Xiao, S. Okamoto, Z. Wang, and Y. Ran, Phys. Rev. B 84, 201104(R) (2011).
32. A. Rüegg and G. A. Fiete, Phys. Rev. B 84, 201103(R) (2011).
33. A. Rüegg, C. Mitra, A. A. Demkov, and G. A. Fiete, Phys. Rev. B 85, 245131 (2012).
34. C. Franchini, R. Kovácik, M. Marsman, S. S. Murthy, J. He, C. Ederer, and G. Kresse, J. Phys.: Condens. Matter 24, 235602 (2012).
35. E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance (Berlin: Springer, 2002).
36. D. Xiao, W. Zhu, Y. Ran, N. Nagosa, and S. Okamoto, Nat. Commun. 2, 596 (2011).
37. For simplify, the long-range Coulombic interaction due to charge transfer is neglected, which is acceptable if the period is not too large and the dielectric constant is large.
38. T. Hotta, S. Yunoki, M. Mayr, and E. Dagotto, Phys. Rev. B 60, R15009 (1999).
39. T. Hotta, M. Moraghebi, A. Feiguin, A. Moreo, S. Yunoki, and E. Dagotto, Phys. Rev. Lett. 90, 247203 (2003).
40. T. Hotta, Y. Takada, H. Koizumi, and E. Dagotto, Phys. Rev. Lett. 84, 2477 (2000).
41. S. Dong, R. Yu, S. Yunoki, J.-M. Liu, and E. Dagotto, Phys. Rev. B 78, 064414 (2008).
42. S. Dong, R. Yu, S. Yunoki, J.-M. Liu, and E. Dagotto, Phys. Rev. B 78, 155121 (2008).
43. R. Yu, S. Dong, C. Şen, G. Alvarez, and E. Dagotto, Phys. Rev. B 77, 214434 (2008).
44 J. C. Rojas Sánchez, B. Nelson-Cheeseman, M. Granada, E. Arenholz, and L. B. Steren, Phys. Rev. B 85, 094427 (2012).

45 J. Hoffman, I. C. Tung, B. Nelson-Cheeseman, M. Liu, J. Freeland, and A. Bhattacharya, arXiv: 1301.7295 (2013).

46 A. V. Boris, Y. Matiks, E. Benckiser, A. Frano, P. Popovich, V. Hinkov, P. Wochner, M. Castro-Colin, E. Detemple, V. K. Malik, C. Bernhard, T. Prokscha, A. Suter, Z. Salman, E. Morenzoni, G. Cristiani, H.-U. Habermeier, and B. Keimer, Science 332, 937 (2011).

47 J. Liu, S. Okamoto, M. van Veenendaal, M. Kareev, B. Gray, P. Ryan, J. W. Freeland, and J. Chakhalian, Phys. Rev. B 83, 161102(R) (2011).