Total Current Fluctuations in ASEP

Craig A. Tracy
Department of Mathematics
University of California
Davis, CA 95616, USA
email: tracy@math.ucdavis.edu

Harold Widom
Department of Mathematics
University of California
Santa Cruz, CA 95064, USA
email: widom@ucsc.edu

Abstract
A limit theorem for the total current in the asymmetric simple exclusion process (ASEP) with step initial condition is proved. This extends the result of Johansson on TASEP to ASEP.

1 Introduction

The asymmetric simple exclusion process (ASEP) is a continuous time Markov process of interacting particles on the integer lattice \mathbb{Z} subject to two rules: (1) A particle at x waits an exponential time with parameter one (independently of all other particles) and then it chooses y with probability $p(x, y)$; (2) If y is vacant at that time it moves to y, while if y is occupied it remains at x and restarts its clock. The adjective “simple” refers to the fact that the allowed jumps are one step to the right, $p(x, x+1) = p$, or one step to the left $p(x, x-1) = 1 - p = q$. The asymmetric condition is $p \neq q$ so there is a net drift of particles. The special cases $p = 1$ (particles hop only to the right) or $q = 1$ (particles hop only to the left) are called the T(totally)ASEP. The dynamics are uniquely determined once we specify the initial state, which may be either deterministic or random. A rigorous construction of this infinite particle process can be found in Liggett [7].

Since its introduction by Spitzer [12], the ASEP has remained a popular model among probabilists and physicists because it is one of the simplest nontrivial processes modeling nonequilibrium phenomena. (For recent reviews see [4, 8, 10, 13].) If initially the particles are located at $\mathbb{Z}^+ = \{1, 2, \ldots\}$, called the step initial condition, and if $p < q$, then there will be on average a net flow of particles, or current, to the left. More precisely, we introduce the total current I at position $x \leq 0$ at time t:

$$I(x, t) := \# \text{ of particles } \leq x \text{ at time } t.$$
With step initial condition, it has been known for some time (see, e.g., Theorem 5.12 in [7]) that if we set \(\gamma := q - p > 0 \) and \(0 \leq c \leq \gamma \), then the current \(I \) satisfies the strong law
\[
\lim_{t \to \infty} \frac{I([-ct], t)}{t} = \frac{1}{4\gamma} (\gamma - c)^2 \quad \text{a.s.}
\]

The natural next step is to examine the current fluctuations
\[I(x, t) - \frac{1}{4\gamma} (\gamma - c)^2 t \quad \text{(1)} \]
for large \(x \) and \(t \). Physicists conjectured [6], and Johansson proved for TASEP [5], that to obtain a nontrivial limiting distribution the correct normalization of (1) is cube root in \(t \). For TASEP Johansson not only proved that the fluctuations are of order \(t^{1/3} \) but found the limiting distribution function. Precisely, for \(0 \leq \nu < 1 \) we have
\[
\lim_{t \to \infty} \mathbb{P} \left(\frac{I([-\nu t], t) - a_1 t}{a_2 t^{1/3}} \leq s \right) = 1 - F_2(-s), \quad \text{(2)}
\]
where
\[
a_1 = \frac{1}{4} (1 - \nu)^2, \quad a_2 = 2^{-4/3} (1 - \nu^2)^{2/3}, \quad \text{(3)}
\]
and \(F_2 \) is the limiting distribution of the largest eigenvalue in the Gaussian Unitary Ensemble [14].

The proof of this relied on the fact that TASEP is a determinantal process [5, 11, 13]. However, universality arguments suggest that (2) should extend to ASEP with step initial condition even though ASEP is not a determinantal process. When the initial state is the Bernoulli product measure, it has been recently proved, using general probabilistic arguments, that the correct normalization remains \(t^{1/3} \) for a large class of stochastic models including ASEP [1, 2, 3, 9].

In this paper we show that (2) does extend to ASEP.

Theorem. For ASEP with step initial condition we have, for \(0 \leq \nu < 1 \),
\[
\lim_{t \to \infty} \mathbb{P} \left(\frac{I([-\nu t], t/\gamma) - a_1 t}{a_2 t^{1/3}} \leq s \right) = 1 - F_2(-s),
\]
where \(\gamma = q - p \) and \(a_1 \) and \(a_2 \) are given by (3).

This theorem is a corollary, as we show below, of earlier work by the authors [15].

1. The value of \(a_2 \) given in (3) corrects a misprint in Corollary 1.7 of [5].
2. With step initial condition and \(x > 0 \) the total current equals the number of particles to the left of \(x \) at time \(t \) minus \(x \). In what follows we shall require only that \(|\nu| < 1 \). Therefore the statement of the Theorem holds for all such \(\nu \) if when \(\nu < 0 \) the value of \(a_1 \) is decreased by \(|\nu| \).
2 Proof of the Theorem

We denote by \(x_m(t) \) the position of the \(m \)-th left-most particle (thus \(x_m(0) = m \in \mathbb{Z}^+ \)). We are interested in the probability of the event

\[
\{ I(x, t) = m \} = \{ x_m(t) \leq x, x_{m+1}(t) > x \}. \tag{4}
\]

The sample space consists of the four disjoint events \(\{ x_m(t) \leq x, x_{m+1}(t) \leq x \} \), \(\{ x_m(t) > x, x_{m+1}(t) > x \} \), \(\{ x_m(t) \leq x, x_{m+1}(t) \leq x \} \) and because of the exclusion property we have

\[
\{ x_m(t) \leq x, x_{m+1}(t) \leq x \} = \{ x_{m+1}(t) \leq x \},
\]

\[
\{ x_m(t) > x, x_{m+1}(t) > x \} = \{ x_m(t) > x \},
\]

\[
\{ x_m(t) > x, x_{m+1}(t) \leq x \} = \emptyset.
\]

These observations and (4) give (the intuitively obvious)

\[
\mathbb{P}(I(x, t) = m) = \mathbb{P}(x_m(t) \leq x) - \mathbb{P}(x_{m+1}(t) \leq x).
\]

Since \(\mathbb{P}(I(x, t) = 0) = \mathbb{P}(x_1(t) > x) \), we have

\[
\mathbb{P}(I(x, t) \leq m) = 1 - \mathbb{P}(x_{m+1}(t) \leq x).
\]

Thus, since \(x \) and \(x_{m+1}(t) \) are integers, the statement of the Theorem is equivalent to the statement that

\[
\lim_{t \to \infty} \mathbb{P}(x_{m+1}(t/\gamma) \leq -vt) = F_2(s),
\]

when \(m = [a_1 t - a_2 s t^{1/3}] \). In fact, we shall show that

\[
\lim_{t \to \infty} \mathbb{P}(x_m(t/\gamma) \leq -vt) = F_2(s), \tag{5}
\]

when

\[
m = a_1 t - a_2 s t^{1/3} + o(t^{1/3}). \tag{6}
\]

Let

\[
\sigma = \frac{m}{t}, \quad c_1 = -1 + 2\sqrt{\sigma}, \quad c_2 = \sigma^{-1/6}(1 - \sqrt{\sigma})^{2/3}.
\]

It was proved in [15] that when \(0 \leq p < q \),

\[
\lim_{t \to \infty} \mathbb{P}(x_m(t/\gamma) \leq c_1 t + s c_2 t^{1/3}) = F_2(s) \tag{7}
\]

uniformly for \(\sigma \) in a compact subset of \((0, 1) \).

To obtain (5) from this we determine \(\sigma \) so that

\[
-vt = c_1 t + s c_2 t^{1/3}.
\]
Thus,
\[v = 1 - 2\sqrt{\sigma} - s \sigma^{-1/6} (1 - \sqrt{\sigma})^{2/3} t^{-2/3}. \]

Solving, we get
\[
\left(\frac{1 - v}{2} \right)^2 = \sigma + s \sigma^{1/3} (1 - \sqrt{\sigma})^{2/3} t^{-2/3} + O \left(t^{-4/3} \right),
\]
from which we deduce
\[
\sigma = \left(\frac{1 - v}{2} \right)^2 - s \left(\frac{1 - v}{2} \right)^{2/3} \left(\frac{1 + v}{2} \right)^{2/3} t^{-2/3} + O \left(t^{-4/3} \right)
\]
\[
= \left(\frac{1 - v}{2} \right)^2 - s 2^{-4/3} (1 - v^2)^{2/3} t^{-2/3} + O \left(t^{-4/3} \right). \]

By the uniformity of (\ref{eq:uniformity}) in \(\sigma \) we get the same asymptotics if we replace the \(\sigma \) we just computed by any \(\sigma \) satisfying
\[
\sigma = \left(\frac{1 - v}{2} \right)^2 - s 2^{-4/3} (1 - v^2)^{2/3} t^{-2/3} + o(t^{-2/3}).
\]

Since this is exactly the statement that \(m = \sigma t \) satisfies \cite{3}, we see that the Theorem is established.

Acknowledgements. This work was supported by the National Science Foundation under grants DMS–0553379 (first author) and DMS–0552388 (second author).

References

[1] M. Balázs, J. Komjáthy and T. Seppäläinen, Microscopic concavity and fluctuation bounds in a class of deposition processes, arXiv:0808.1177.

[2] M. Balázs and T. Seppäläinen, Order of current variance and diffusivity in the asymmetric simple exclusion process, arXiv:0806.0829, to appear in Annals of Math.

[3] M. Balázs and T. Seppäläinen, Fluctuation bounds for the asymmetric simple exclusion process, arXiv:0806.0829.

[4] O. Golinelli and K. Mallick, The asymmetric simple exclusion process: an integrable model for non-equilibrium statistical mechanics, J. Phys. A: Math. Gen. **39** (2006), 12679–12705.

\footnote{ Since the condition on \(\sigma \) is \(0 < \sigma < 1 \), the corresponding condition on \(v \) is \(|v| < 1 \), as was stated in footnote 2.}
[5] K. Johansson, Shape fluctuations and random matrices, Commun. Math. Phys. 209 (2000), 437–476.

[6] M. Kardar, G. Parisi and Y-C Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56 (1986), 889–892.

[7] T. M. Liggett, Interacting Particle Systems. Springer, Berlin (2005). (Reprint of the 1985 original.)

[8] T. M. Liggett, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin (1999).

[9] J. Quastel and B. Valkó, $t^{1/3}$ superdiffusivity of finite-range asymmetric exclusion processes on \mathbb{Z}, Commun. Math. Phys. 273 (2007), 379–394.

[10] T. Seppäläinen, Directed random growth models on the plane, arXiv:0708.2721.

[11] A. Soshnikov, Determinantal random fields, Russ. Math. Surv. 55 (2000), 923–975.

[12] F. Spitzer, Interaction of Markov processes, Adv. Math. 5 (1970), 246–290.

[13] H. Spohn, Exact solutions for KPZ-type growth processes, random matrices, and equilibrium shapes of crystals, Phys. A 369 (2006), 71–99.

[14] C. A. Tracy and H. Widom, Level-spacing distributions and the Airy kernel, Commun. Math. Phys. 159 (1994), 151–174.

[15] C. A. Tracy and H. Widom, Asymptotics in ASEP with step initial condition, arXiv:0807.1713

5