Supplemental material for this article can be found at:
http://physiolgenomics.physiology.org/cgi/content/full/00011.2005/DC1

This article cites 37 articles, 23 of which you can access free at:
http://physiolgenomics.physiology.org/cgi/content/full/23/1/28#BIBL

This article has been cited by 2 other HighWire hosted articles:

A rationale for using steroids in the treatment of severe cases of H5N1 avian influenza
M. J. Carter
J. Med. Microbiol., July 1, 2007; 56 (7): 875-883.
[Abstract] [Full Text] [PDF]

Physiological genomics in PG and beyond: July to September 2005
M. Liang and B. Ventura
Physiol Genomics, October 17, 2005; 23 (2): 119-124.
[Full Text] [PDF]

Updated information and services including high-resolution figures, can be found at:
http://physiolgenomics.physiology.org/cgi/content/full/23/1/28

Additional material and information about Physiological Genomics can be found at:
http://www.the-aps.org/publications/pg

This information is current as of April 16, 2008.
Influence of IFN-γ on gene expression in normal human bronchial epithelial cells: modulation of IFN-γ effects by dexamethasone

Rafal Pawliczak,1,2 Carolea Logun,3 Patricia Madara,1 Jennifer Barb,4 Anthony F. Suffredini,1 Peter J. Munson,3 Robert L. Danner,1 and James H. Shelhamer1
1Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland; 2Department of Allergy and Clinical Immunology, Medical University of Lodz, Lodz, Poland; and 3Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, Maryland

Submitted 13 January 2005; accepted in final form 28 June 2005

Pawliczak, Rafal, Carolea Logun, Patricia Madara, Jennifer Barb, Anthony F. Suffredini, Peter J. Munson, Robert L. Danner, and James H. Shelhamer. Influence of IFN-γ on gene expression in normal human bronchial epithelial cells: modulation of IFN-γ effects by dexamethasone. Physiol Genomics 23: 28–45, 2005. First published June 28, 2005; 10.1152/physiolgenomics.00011.2005.—Interferon gamma (IFN-γ) plays a role in a variety of lung inflammatory responses, and corticosteroids are frequently employed as a treatment in these conditions. Therefore, the effect of IFN-γ, of the corticosteroid dexamethasone (Dex), or of both on gene expression was studied in normal human bronchial epithelial (NHBE) cells. NHBE cells were exposed to medium alone, IFN-γ (300 U/ml), Dex (10−7 M), or both IFN-γ and Dex for 8 or 24 h. Gene expression was examined using oligonucleotide microarrays. A principal components analysis demonstrated that the IFN-γ treatment effect was the primary source of differences in the data. With a 5% false discovery rate, of the 66 genes upregulated by IFN-γ by twofold or greater at 8 h and 287 genes upregulated at 24 h, coinubcation with Dex inhibited the expression of 2 genes at 8 h and 45 genes at 24 h. Prominent among these were cytokines and secreted proteins. Dex cotreatment increased expression of 65 of the 376 genes that were inhibited by IFN-γ by 50% at 24 h. The majority of these genes encode cell cycle or nuclear proteins. Dex alone increased the expression of only 22 genes and inhibited the expression of 7 genes compared with controls at 24 h. The effect of Dex on IFN-γ-induced changes suggests a specific, targeted effect on IFN-γ responses that is substantially greater than the effect of Dex alone. Dex had little effect on the immediate early response to IFN-γ but a significant effect on the late responses.

interferon; inflammation, cytokines, lung cells, corticosteroids, transcriptional regulation

INTERFERON GAMMA (IFN-γ) is a pleuripotent cytokine produced by T lymphocytes and natural killer cells. It has been well documented that IFN-γ plays a role in lung inflammation, including antiviral, antitumor, and other immune responses (7, 21). It stimulates antigen presenting cells and major histocompatibility complex (MHC) class II molecule expression, driving specific immune responses through antigen recognition and antibody production. In the lung, IFN-γ signaling has been implicated in viral infections, sarcoidosis, mycobacterial infections, cystic fibrosis, and hypersensitivity pneumonia (8, 23–25, 39). IFN-γ may play a role as a modifier of cytokine/chemokine production and may influence cellular recruitment into inflammatory lesions. The binding of IFN-γ to its surface receptor activates the receptor-associated tyrosine kinases JAK1 and JAK2. JAKs tyrosine phosphorylate and activate the latent cytosolic transcription factor STAT1, which then dimerizes, translocates to the nucleus, and binds to the γ-activated sequence (GAS) elements of IFN-γ-responsive genes, resulting in gene activation (3, 13, 18). Although IFN-γ has been reported to increase cyclooxygenase-2 (2) and ICAM-1 (10) expression in epithelial cells, its effect on global pattern of gene expression has not been well studied.

Dexamethasone (Dex), like many glucocorticosteroids, exerts its anti-inflammatory action through binding to a cytoplasmic glucocorticoid receptor that, after transport to the nucleus, interacts with glucocorticoid receptor response elements (GRE), influencing transcriptional activity of a variety of genes. It might also result in MAPK inhibition and repression of binding of nuclear factors such as NF-κB and activator protein-1 to their respective response elements or inhibition of transcription in response to DNA binding by these factors (4, 27). Glucocorticoids are effective in the treatment of immune and inflammatory disorders affecting the lung and other organs.

Therefore, it was of interest to study the effect of IFN-γ on gene expression in normal human bronchial epithelial (NHBE) cells and, further, to investigate the role of glucocorticosteroids in modulating IFN-γ-induced effects.

EXPERIMENTAL PROCEDURES

Materials. NHBE cells were obtained from Cambrex BioSciences (Walkersville, MD) and were cultured according to the company’s protocol. Cell passage 3 was used in all experiments. Cells were grown in uncoated T-75 flasks (Becton Dickinson, Bedford, MA) in BEGM medium (Cambrex BioSciences) with growth factors. Medium was changed 48 h before starting an experiment to medium without hydrocortisone. All experiments were conducted in medium without hydrocortisone. IFN-γ was obtained from Roche Molecular Biochemicals (Indianapolis, IN), and Dex was from Calbiochem (San Diego, CA).

Experimental design. Four treatments were applied [control, IFN-γ (300 U/ml), Dex (10−7 M), and a combination of IFN-γ and Dex (IFN-Dex) for 8 h (n = 4) or for 24 h (n = 5)]. For each time point, the complete treatment design was applied to separate sets of flasks of cells. The design was carefully balanced to avoid any potential batch or replicate effects.

RNA isolation, reverse transcription, and in vitro transcription. After incubation with the indicated treatments, medium was removed and cells were washed three times with ice-cold 1× HBSS without Ca2+ and Mg2+ (BioSource International, Rockville, MD). Total RNA was isolated from the cells using RNeasy Mini Kit and Qiasheader column, both from Qiagen (Valencia, CA). The quality of total RNA was assessed by visualization of intact 18S and 28S
ribosomal RNA bands using a 1.2% formaldehyde agarose gel (Ambion, Austin, TX) stained with Syber Green II (Molecular Probes, Eugene, OR). Ten micrograms of total RNA were reverse transcribed using the SuperScript II Custom Kit (Invitrogen, Carlsbad, CA), employing Th(dT)1-primer: 5’-GGC CAG TGA ATT GTA ATA CGA-3’ (Genset, La Jolla, CA). First-strand synthesis occurred at 42°C followed by second-strand synthesis at 16°C. The cDNA was treated with phenol-chloroform-isoamyl alcohol (25:24:1; Sigma-Aldrich, St. Louis, MO) followed by ethanol precipitation. The equivalent of 1 µg of cDNA was used as a template for the in vitro transcription and biotin labeling reaction, which was performed using a BioArray High Yield RNA Transcription Labeling Kit (Enzo Life Sciences, Farmingdale, NY). The RNasy Mini Kit (Qiagen) was used to clean up the labeled cRNA. Twenty micrograms of adjusted, labeled cRNA were fragmented by heating at 95°C for 35 min in 1X fragmentation buffer (40 mM Tris-acetate, pH 8.1, 100 mM magnesium acetate, and 100 mM potassium acetate). cRNA and fragmented cRNA were visualized using a 1.2% formaldehyde agarose gel (Ambion) stained with Syber Green II (Molecular Probes). The Spectromax Plus spectrophotometer (Molecular Devices, Sunnyvale, CA), using the SoftMax Plus software, was used to quantify total RNA and cRNA. Fifteen micrograms of fragmented biotinylated cRNA were used to make the hybridization cocktail, which also contained herring sperm DNA (0.1 mg/ml; Promega), BSA (0.5 mg/ml; Invitrogen), 50 µM control oligonucleotide B2, and eukaryotic hybridization controls (bioB, bioC, bioD, and Cre at 1, 5, 25, and 100 µM, respectively) (Affymetrix). The hybridization cocktail was heated at 99°C for 5 min followed by 45°C for 5 min. Two hundred microliters of hybridization cocktail, containing 10 µg of fragmented biotinylated cRNA, were hybridized to an Affymetrix Human Genome HG-U95Av2 microarray for 16 h at 45°C. The microarrays were washed and stained by the Affymetrix Fluidics Station using the standard format as describe by Affymetrix. The probe array was stained with streptavidin-phycocerythrin (Molecular Probes) solution and enhanced by use of an antibody solution containing 0.5 mg/ml biotinylated anti-streptavidin (Vector Laboratories, Burlingame, CA). An Affymetrix Scanner was used to scan the probe arrays. Each array was scanned twice. Gene expression was quantitated using Microarray Suite Version 4.0 (MAS4.0; Affymetrix).

Data analysis. Results from the MAS4.0 analysis were transferred to a laboratory information management system (LIMS; Affymetrix). These files were utilized to analyze and transform the data.

Data normalization and transformation. Average difference values from the MAS4.0 software were further normalized and transformed with symmetric adaptive transform (26). This approach incorporates a quantile normalization with a variance-stabilizing transform. The result is a data set in which the underlying variance is stable regardless of the average expression level.

Quality control. The RNA extraction, preparation, hybridization, and scanning were performed in a core laboratory by a single biologist. The quality of the results was assessed by comparison of parameters such as percent present calls and scaling factors to historical values for this laboratory. Furthermore, to detect possible outliers or other artifacts among the 20 samples, a principal components analysis (PCA) was performed on the transformed 24-h results. PCA is a statistical technique for representing high-dimensional data in a few dimensions. The principal components represent the samples as orthogonal linear combinations of the 12,625 probe set values, chosen so that the first component explains the largest fraction of the total variance, the second, the next largest, and so on. After inspection of the first five principal components, no apparent outliers among the samples were observed. The batch effect could be seen in the second principal component. However, because of the balanced experimental design, comparisons between treatment groups are not confounded by batch.

Selection of differentially expressed genes. Multiple criteria were used to conservatively select differentially expressed genes. Two statistical tests were utilized: the consistency test (26) and the paired t-test. The consistency test measures whether a gene is behaving consistently across replicates. The paired t-test compares the average difference between treatments to its standard error. The P values for
each test were converted to the corresponding false discovery rate (FDR) (6). Three comparisons were made to measure the interferon effect (IFN-γ vs. control), the Dex effect (Dex vs. control), and the Dex reversal of IFN-γ effect (IFN-Dex vs. IFN-γ).

Fold change for each comparison was computed after increasing negative average difference values to zero and adding 10 to all values to dampen the large variance resulting from denominator values near zero. Furthermore, to avoid selection of genes at or near the detection

Table 2. IFN-upregulated genes at 8 h

GenBank Unigene	Name	Symbol	Fold Change
Cytokines and secreted proteins (11)			
X72755*	chemokine (C-X-C motif) ligand 9	CXCL9	184.26
X02530	chemokine (C-X-C motif) ligand 10	CXCL10	165.47
AF030514	chemokine (C-X-C motif) ligand 11	CXCL11	161.35
M26683*	chemokine (C-C motif) ligand 2, MCP1	CCL2	18.58
X54486	serine (or cysteine) proteinase inhibitor, clade G, member 1	SERPING1	10.18
AF031167*	interleukin 15	IL15	8.16
M13755	interferon, alpha-inducible protein (clone IFN-15K)	GIP2	7.52
J04080	complement component 1, s subcomponent	C1S	4.31
Cell surface and membrane proteins (11)			
U77643	secreted and transmembrane 1	SECTM1	48.74
M24283*	intercellular adhesion molecule 1 (CD54)	ICAM1	48.31
X57522	transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)	TAP1	12.69
D11151	endothelin receptor type A	EDNRA	7.65
AF035279*	interleukin 15 receptor, alpha	IL15RA	6.95
M13560*	CD74 antigen	CD74	6.22
D28137*	bone marrow stromal cell antigen 2	BST2	5.79
Signal transduction (7)			
L78833*	interferon-induced protein 35	IFI35	25.70
M14660*	interferon-induced protein with tetratricopeptide repeats 2	IFIT2	23.46
M33882*	myxovirus (influenza virus) resistance 1	MX1	23.32
M55543*	guanylate binding protein 1, interferon-inducible, 67kDa	GBP1	20.54
AB000373*	suppressor of cytokine signaling 1	SOCS1	17.56
M55543*	guanylate binding protein 2, interferon-inducible	GBP2	10.30
L08488	inositol polyphosphate-1-phosphatase	INPP1	7.90
Transcriptional regulation (10)			
L05072*	interferon regulatory factor 1	IRF1	35.30
M97935*	signal transducer and activator of transcription 1, 91kDa	STAT1	11.69
M060228*	retinoic acid receptor responder (tazarotene induced) 3	RARRES3	6.50
X2200	tripartite motif-containing 22	TRIM22	6.42
U53831*	interferon regulatory factor 7	IRF7	5.73
U32849*	N-myc (and STAT) interactor	NMI	5.01
M87503*	interferon-stimulated transcription factor 3, gamma 48kDa	ISGF3G	4.64
Metabolism (15)			
M34455*	indoleamine-pyrrole 2,3 dioxygenase	IDO	23.57
X59892*	tryptophanyl-tRNA synthetase	WARS	16.67
AA808961*	proteasome (prosome, macropain) subunit, beta type, 9	PSMB9	9.88
U08021	nicotinamide N-methyltransferase	NNMT	9.72
M11810	retinoic acid receptor responder (tazarotene induced) 3	RARRES3	6.50
AB006746*	phospholipid scramblase 1	PLSCR1	6.51
AA883502	ubiquitin-conjugating enzyme E2L 6	UBE2L6	6.23
AB003151	carbonyl reductase 3	CBRR3	5.65
M87434*	2’-5’-oligoadenylate synthetase 2, 69/71kDa	OAS2	5.14
AJ225089	2’-5’-oligoadenylate synthetase-like	OASL	4.95
J04164*	6-pyruvoyltetrahydropterin synthase	PTS	4.31
Cell cycle (3)			
AFO26939*	interferon-induced protein with tetratricopeptide repeats 4	IFIT4	94.15
Nuclear proteins (4)			
L22342*	interferon-stimulated transcription factor 3, gamma 48kDa	ISGF3G	4.64
M62800*	interferon-stimulated transcription factor 3, gamma 48kDa	ISGF3G	4.64
U88964*	interferon-stimulated transcription factor 3, gamma 48kDa	ISGF3G	4.64
Other (5)			
AB000115	Chromosome 1 orf 29	C1orf29	4.87
D28915	Interferon-induced protein 44	IFI44	4.03

Total = 66. *Listed in the database of interferon (IFN)-responsive genes cited in Ref. 14. No. in parentheses is total no. in that category. Complete list of genes is presented in Supplemental Table S2.
A. Dex-upregulated genes at 8 h

GenBank	Unigene	Name	Fold Change
J03764	Hs.82085	plasminogen activator inhibitor type 1	4.82
U76702	Hs.433827	follistatin-like 3 (secreted glycoprotein)	2.86
AF056087	Hs.7306	secreted frizzled-related protein 1	2.42
U64197	Hs.75498	chemokine (C-C motif) ligand 20	2.28
J05070	Hs.151738	matrix metalloproteinase 9	1.64
J02973	Hs.2030	Thrombomodulin	1.61

Cytokines and secreted proteins (6)

Cell surface and membrane proteins (3)

Signal transduction (3)

Transcriptional regulation (7)

Cell cycle (1)

B. Dex-downregulated genes at 8 h

GenBank	Unigene	Name	Fold Change
M17017	Hs.624	interleukin 8	0.36
AB000220	Hs.171921	semaphorin	0.48
X02419	Hs.77274	plasminogen activator, urokinase	0.52

Cytokines and secreted proteins (3)

Cell surface and membrane proteins (2)

Signal transduction (2)

Transcriptional regulation (2)

Cell cycle and nuclear proteins (3)

Metabolism (5)

Other (3)

A: dexamethasone (Dex)-upregulated genes. Total = 24. **B:** Dex-downregulated genes. Total = 18.
limit of the assay, the mean average difference (AD) value was required to be >10 and the transformed AD value >0.5, and at least 60% of the replicates must be called “present” in at least one treatment group. The subset of genes in which Dex appeared to reverse the IFN-γ effect was further filtered by analysis of a second experiment in which the effect of IFN-Dex was compared with the effect of IFN-γ plus the vehicle for Dex, DMSO (IFNDMSO; 1:250,000 dilution) \(n = 3 \). The filter for genes upregulated by IFN-γ (2-fold or greater) and reversed by cotreatment with Dex was IFNDMSO/IFNDex >1.5. The filter for genes downregulated by IFN-γ (50% or greater) and reversed by cotreatment with Dex was IFNDMSO/IFNDex <0.75.

Cluster analysis. Those genes that changed in response to IFN-γ or Dex treatment were subjected to hierarchical cluster analysis. The clustering was performed in JMP 5.1 software (SAS, Cary, NC) using the Ward method. Characterization of several observed gene clusters was performed using GO-SCAN, a software tool that selects Gene Ontology (GO) terms (GO consortium) that are significantly enriched in the cluster compared with the entire chip (developed by and available on request from J. Barb and P. J. Munson). GO-SCAN computes the Fisher exact test for each GO category and selects those which are overrepresented in each gene list.

Gene expression measurements using real-time PCR. Real-time PCR mRNA quantification using a TaqMan system [Applied Biosystems (ABI), Rockville, MD] was employed to confirm data obtained from microarray experiments. cDNA obtained from extracted mRNA using random hexamers was used to perform, in triplicate, real-time PCR. Probe and primers sets were obtained from ABI or designed with the use of the software Primer Express (ABI). The sequences of the primers and probes are presented in Table 1. Real-time PCR was conducted using a high-capacity cDNA archival kit (ABI) and run on a 7900HT Sequence Detection System (ABI) according to the manufacturer’s directions. RNase P1 gene was used as a standard. Cells incubated without IFN-γ and Dex were used as a control. Relative gene expression is presented as a fold induction compared with control ± SE. Correlation of logarithm of fold change of microarray data with real-time PCR data was calculated using JMP 5.1.

Secreted protein detection. Monocyte chemoattractant protein-1 (MCP-1), RANTES (regulated on activation, normal T expressed and secreted), and interleukin-8 (IL-8) were detected in cell culture supernatants obtained from cells exposed to IFN-γ, Dex, or both using ELISA methods (R&D Systems, Minneapolis, MN), performed according to the manufacturer’s instructions. Data are expressed in picograms per milliliter ± SE. Statistical comparisons were by Student’s t-test.

RESULTS

NHBE cells were studied after exposure to IFN-γ, 300 U/ml, for 8 or 24 h. Exposure of NHBE cells to IFN-γ resulted in substantial changes in gene expression at 8 h and with more remarkable changes at 24 h. A PCA of changes in gene expression at 24 h (Fig. 1) demonstrates that the principal

Fig. 2. A cluster diagram of 684 genes altered by IFN-γ or by Dex at 24 h. For columns comparing IFN or Dex with control cells, red signifies increased expression and green signifies decreased expression relative to control cells. For the column IFNDex-IFN, in which cells treated with IFN and Dex were compared with cells treated with IFN alone, red indicates increased expression of cells treated with IFN and Dex compared with cells treated with IFN alone and green indicates decreased expression. IFN-C indicates comparison of array results from cells treated with IFN-γ vs. control cells; IFN-Dex-IFN indicates comparison of array results from cells treated with Dex and IFN-γ vs. IFN-γ alone. Dex-C indicates comparison of array results of cells treated with Dex vs. control cells. \(n = 5 \) for each group. See RESULTS for details.
Table 4. IFN-upregulated genes at 24 h: cytokines and secreted proteins and cell surface and membrane-bound proteins

GenBank Unigene Name	Fold Change
Chemokine (C-X-C motif) ligand 9	437.84
Chemokine (C-X-C motif) ligand 10	352.07
Chemokine (C-X-C motif) ligand 11	271.67
Endothelial cell growth factor 1	91.62
Clade C G1 inhibitor member 1	44.98
Secreted and transmembrane protein 1	39.93
Endothelial cell growth factor 1 platelet-derived	31.64
Complement component 1 r subcomponent	27.04
Small inducible cytokine A5 RANTES/chemokine (C-C motif) ligand 5	26.54
Small inducible cytokine A2, MCP1/chemokine (C-C motif) ligand 2	26.50
Complement component 1 s subcomponent	23.53
Interferon-stimulated protein 15 kDa	20.38
Interleukin 8	12.88
Matrix metalloproteinase 10 stromelysin 2	11.80
Clusterin complement lysis inhibitor SP-40	11.68
Plasminogen activator inhibitor 2, clade B, member 2	8.41
GR02 oncogene/chemokine (C-X-C motif) ligand 2	7.70
Serine or cysteine proteinase inhibitor clade B member 1	7.42
Serum amyloid A1	6.25
Complement component 1 s subcomponent	5.83
Interleukin 15	5.37
Vascular endothelial growth factor C	5.23
Bone morphogenetic protein 2	5.05
Cathepsin C	4.56
Matrix metalloproteinase 1	4.33
Inhibin beta A	4.12

*Listed in the database of IFN-responsive genes cited in Ref. 14. Complete list of genes is presented in Supplemental Table S4.
determinant of differences in the data is IFN-γ treatment effect. Whereas treatment with IFN-γ resulted in a substantial change in global gene expression (principal component 1), treatment of cells with Dex alone had only a minor effect (principal component 3). Dex treatment had a more pronounced effect on cells concomitantly exposed to IFN-γ.

IFN-γ- and Dex-induced changes in gene expression at 8 h. With an FDR of 5% and a threshold of twofold or greater change, IFN-γ treatment of NHBE cells for 8 h increased expression of 66 genes, 61 of which have a known function or cellular localization and thus could be annotated. These genes are listed in Table 2 and include cytokines, cell surface and adhesion molecules, transcription factors, genes involved in cellular metabolism, and cell cycle and nuclear proteins. Thirty-four of these 66 genes were previously listed as interferon-responsive genes from studies of leukocytes (Ref. 14) and are marked with an asterisk (*) next to the GenBank number in this and other tables. With the same 5% FDR and a threshold of 50% reduction in expression, no genes were identified for which IFN-γ at 8 h reduced expression. Dex treatment for 8 h increased expression of only 24 genes even with a relaxed fold-change threshold of 1.6 (Table 3A). Dex treatment for 8 h decreased expression of 18 genes even with a relaxed fold-change threshold of 40% reduction in expression compared with control (Table 3B). Dex cotreatment with IFN-γ for 8 h resulted in the inhibition of only two genes upregulated by IFN-γ alone. These genes are TNFSF10 (Hs.387871), reduced 31% from IFN-γ stimulation alone, and indoleamine-pyrrolo dioxygenase (Hs.840), reduced 38% from IFN-γ stimulation alone. Therefore, Dex-induced changes in gene expression at 8 h were relatively minor, and Dex inhibition of IFN-γ-induced changes in gene expression at 8 h were minimal.

IFN-γ-induced changes in gene expression at 24 h. Using an FDR of 5% and a change threshold of twofold or greater, IFN-γ treatment of NHBE cells for 24 h increased gene expression of 287 genes, 252 of which could be annotated. IFN-γ treatment for 24 h also decreased (FDR 5%, 50% or greater change) expression of 376 genes, of which 312 could be annotated. Dex treatment alone increased expression of 22 genes (FDR 5%, 1.6-fold) and inhibited expression of 7 genes (FDR 5%, 40% or greater change). In experiments in which Dex was used in coinubcation with IFN-γ, Dex inhibited expression of 45 (of 287) genes induced by IFN-γ. We observed also that Dex increased expression of 65 of a total of 376 genes inhibited by IFN-γ alone. A cluster diagram of these genes is presented in Fig. 2. Genes prominently induced by IFN-γ treatment for 24 h are represented in red in the column IFN-C. These include a cluster designated A. GO-SCAN anal-

Table 5. IFN-upregulated genes at 24 h: signal transduction and transcriptional regulation

GenBank	UniGene	Name	Fold Change
AA203213	Hs.432233	interferon-stimulated protein 15 kDa	125.30
M33882*	Hs.76391	myxovirus influenza resistance protein 1	63.99
L78833*	Hs.50842	interferon-induced protein 35	49.35
AF026939*	Hs.181874	interferon-induced protein with tetratricopeptide repeats 4	44.93
M55542*	Hs.62661	guanylate binding protein 1 interferon-inducible 67kDa	35.53
X67325*	Hs.278613	interferon alpha-inducible protein 27	28.35
M55543*	Hs.171862	guanylate binding protein 2 interferon-inducible	19.18
AB005043	Hs.50640	JAK binding protein	14.84
U29970*	Hs.265827	interferon alpha-inducible protein clone IFI-6-16	14.46
L22342*	Hs.241510	interferon-induced protein 41 30kDa	14.39
Y11999	Hs.21453	inositol triphosphate 3-kinase C	13.24
U72882*	Hs.50842	interferon-induced protein 35	11.17
U19261	Hs.2134	TNF receptor-associated factor 1	9.20
J03909*	Hs.14623	interferon gamma-inducible protein 30	8.65
L24564	Hs.1027	Ras-related associated with diabetes	7.85
M92357	Hs.101382	tumor necrosis factor alpha-induced protein 2	7.59
M59465	Hs.211600	tumor necrosis factor alpha-induced protein 3	7.51
U04636*	Hs.196384	cyclooxygenase 2	7.03
X68277	Hs.171695	dual specificity phosphatase 1	5.69
U19523	Hs.86724	GTP cyclohydrolase 1 dopa-responsive dystonia	5.58
L08488	Hs.32309	inositol polyphosphate-1-phosphatase	5.01
AF039555	Hs.2288	visinin-like 1	4.25
L05072*	Hs.80645	interferon regulatory factor 1	28.62
AF060228	Hs.17466	retinoic acid receptor responder tazarotene induced 3	18.17
M97936*	Hs.21486	signal transducer and activator of transcription 1 91kDa	15.73
U88964*	Hs.183487	interferon stimulated gene 20kDa	12.87
X82200	Hs.318501	stimulated trans-acting factor 50 kDa	7.00
L19871	Hs.460	activating transcription factor 3	5.73
M29893	Hs.6906	v-ral oncogene homolog	5.61
S76638	Hs.73090	NFKB2	5.25
U18671	Hs.72988	signal transducer and activator of transcription 2 113kDa	4.98
U32849*	Hs.54483	N-myc and STAT interactor	4.92
U53831*	Hs.166120	Interferon regulatory factor 7	4.90
M60618	Hs.77617	nuclear antigen Sp100	4.13

*Listed in the database of IFN-responsive genes cited in Ref. 14. Complete list of genes is presented in Supplemental Table S5.

Physiol Genomics • VOL 23 • www.physiolgenomics.org

Downloaded from physiolgenomics.physiology.org on April 16, 2008
ysis of group A reveals that this group is significantly enriched in genes coding for signal transduction proteins, MHC class II proteins, G protein-coupled receptors, chemokine receptors, chemokines, and cytokines. The complete GO-SCAN analysis of this cluster is presented in Table A of the Supplemental Materials (available at the Physiological Genomics web site).\(^1\) A subset of group A that is prominently reversed by the cotreatment of Dex with IFN-\(\gamma\) is identified as group D. Analysis of this cluster reveals significant enrichment of G protein receptor-binding proteins, chemokine receptors, chemokines, and cytokines (Table D of Supplemental Materials). Two other clusters of IFN-\(\gamma\)-upregulated genes are designated B and C. GO-SCAN analysis of cluster B is enriched in genes coding for proteins involved in cysteine peptidase activity, caspase activity, antiviral responses, and proteosome activity (Table B of Supplemental Materials). As may be seen in the second column, this cluster is little altered by cotreatment with Dex. A fourth cluster, C, includes genes induced by IFN-\(\gamma\) and altered by Dex cotreatment. GO-SCAN analysis of this group reveals enrichment with genes associated with G protein-coupled receptors, chemokine receptors, chemokines, cytokines, and antiviral response genes. Finally, genes downregulated by IFN-\(\gamma\) treatment are presented in green in the column IFN-C. A cluster of these genes for which the IFN-\(\gamma\)-effect is altered by Dex cotreatment is presented as cluster E. GO-SCAN analysis of this cluster reveals that it is enriched in genes involved in nucleotide binding, DNA and RNA metabolism, chromatin, and cell proliferation (Table E of Supplemental Materials). The principal GO terms overrepresented in each of the clusters are presented in the Supplemental Materials ("GO Summary Table").

*Listed in the database of IFN-responsive genes cited in Ref. 14. Complete list of genes is presented in Supplemental Table S6.
regulation. IFN-γ influenced expression of 39 genes playing roles in cellular metabolism. These include genes involved in the ubiquitin-proteasome pathways and 2',5'-oligoadenylate synthase genes. Twenty-two genes involved in cell cycle and differentiation were induced by exposure to IFN-γ, including neuregulin-1 and caspases-1, -4, and -10. A list of 40 genes of unclassified function, primarily expressed sequence tags (ESTs) and KIAA gene products, is included in Supplemental Materials (Supplemental Table S11).

Genes downregulated by IFN-γ at 24 h in NHBE cells. Expression of 16 genes encoding secreted proteins was decreased by IFN-γ by 50–90% compared with control cells. This group included plasminogen activator inhibitor type-1, metallothionein-1L, activated platelet protein-1, cathepsin L2, and others (Table 7 and Supplemental Materials). Forty-three genes encoding cell surface and membrane-associated proteins were downregulated by IFN-γ. IFN-γ downregulated expression of adenosine-A2β receptor, integrin-ß6, and transforming growth factor (TGF)-ß receptor type-2. Exposure to IFN-γ inhibited expression of 29 genes involved in signal transduction including RAB4, TYRO3, protein tyrosine kinase, regulator of G protein signaling-3 (RGS3), and protein tyrosine kinase-7 (PTK7). A full list of signal transduction genes inhibited by IFN-γ is presented in Table 8 (and Supplemental Materials). IFN-γ also inhibited expression of 37 genes involved in transcriptional regulation. This group includes hepatocyte nuclear factor-3ß, transcription factor nuclear receptor subfamily 2, group F (NR2F2), and the TGF-ß-stimulated protein TSC-22. Six genes involved in translation regulation were inhibited by exposure to IFN-γ. Table 9 (and Supplemental Materials) presents 85 genes involved in cellular metabolism that were inhibited by IFN-γ. Eight genes encoding cytoskeleton proteins were inhibited by IFN-γ. IFN-γ is known to have an inhibitory effect on cell proliferation. Consistent with that effect, the expression of 42 cell cycle proteins was inhibited by exposure to IFN-γ (Table 10 and Supplemental Materials). These include cyclins A2, B1, B2, and F as well as cyclin-dependent kinase-4. Expression of 47 genes encoding nuclear proteins was also inhibited by IFN-γ, including proliferating cell nuclear antigen and histone family members. Sixty-seven other genes inhibited by IFN-γ, including genes not annotated, are listed in the Supplemental Materials (Supplemental Table S12).

Influence of Dex on gene expression in NHBE cells. The effect of Dex on gene expression in NHBE cells was studied. Even with the alteration of the filter criteria to include genes upregulated by 60% or more, only 22 genes were significantly induced by Dex compared with control cells (Table 11). The gene most dramatically induced was serum amyloid A1. Similarly, the effect of Dex alone in downregulation of genes in NHBE cells was modest. Even with the filter criteria relaxed to include genes altered by >40%, the list only included seven genes (Table 11).

Influence of Dex on IFN-γ-induced gene expression. The effect of Dex on IFN-γ-induced changes in gene expression was also studied. Using the list of IFN-γ-upregulated genes, we
IFN-\(\gamma\), DEX, AND GENE EXPRESSION IN HUMAN LUNG CELLS

Table 8. IFN-downregulated genes at 24 h: signal transduction, transcriptional regulation, and translation regulation

GenBank	Unigene	Name	Fold Change
AF035959	Hs.24879	phosphatidic acid phosphatase type 2C	0.11
AB016811	Hs.111554	ADP-ribosylation factor-like 7	0.13
M28211	Hs.119007	RAB4 member RAS oncogene family	0.17
S62539	Hs.96063	insulin receptor substrate 1	0.27
U27655	Hs.82294	regulator of G-protein signalling 3	0.32
D17517	Hs.301	TYRO3 protein tyrosine kinase	0.33
D31762	Hs.153954	TRAM-like protein	0.34
Y11312	Hs.132463	phosphoinositide-3-kinase class 2 beta polypeptide	0.34
M68941	Hs.73826	protein tyrosine phosphatase non-receptor type 4	0.37
Y12735	Hs.127355	dual-specificity tyrosine- \(\gamma\) phosphorylation regulated kinase	0.38
X16302	Hs.99816	beta-catenin-interacting protein ICAT	0.39
U33635	Hs.90572	PTK7 protein tyrosine kinase 7	0.40

Signal transduction (29)

- **Transcriptional regulation (37)**
- **Translation regulation (6)**

Complete list of genes is presented in Supplemental Table S8.

evaluated genes for which Dex reduced the IFN-\(\gamma\) effect by 30% or more. In contrast to the effect of Dex alone on NHBE cells, the effect of Dex on IFN-\(\gamma\)-stimulated cells was more pronounced. Of the 287 genes upregulated by IFN-\(\gamma\), 45 were inhibited by Dex treatment with IFN-\(\gamma\) (Table 12). A substantial portion of the Dex effect was on genes coding for cytokines and secreted proteins and cell surface and membrane proteins. While 40 of the 66 genes induced by IFN-\(\gamma\) at the 8-h time point were also induced at the 24-h time point, only 1 of the 45 genes induced by IFN-\(\gamma\) and inhibited by Dex at 24 h was induced at the earlier 8-h time point, MCP-1. Forty-four of the 45 genes induced by IFN-\(\gamma\) and inhibited by Dex at 24 h were only induced at the latter (24 h) time point and were not genes that were early responders to IFN-\(\gamma\) treatment. Similarly, we studied the effect of Dex coinubation on genes downregulated by IFN-\(\gamma\). Of the list of 376 genes downregulated by IFN-\(\gamma\), Dex cotreatment increased expression of 65 genes by at least twofold compared with IFN-\(\gamma\) treatment alone (Table 13). These genes downregulated by IFN-\(\gamma\) and reversed by Dex were predominantly cell cycle and nuclear proteins. Therefore, the genes upregulated by IFN-\(\gamma\) and reversed by Dex are functionally distinct from those downregulated by IFN-\(\gamma\) and reversed by Dex.

Confirmatory experiments. To verify and validate data obtained from microarray studies, two additional techniques were employed: real-time PCR mRNA quantification and ELISA quantitation of secreted proteins. Real-time PCR mRNA quantification was performed for eight genes found to be upregulated, downregulated, or unchanged in expression in response to one or more of the treatments. The following gene products were selected: Cox-2, IL-7 receptor, MAPK kinase kinase (MAPKKK), matrix metalloproteinase-10 (MMP-10), plasminogen activator inhibitor-2 (PAI-2), serum amyloid A, superoxide dismutase (SOD), and vascular endothelial growth factor (VEGF) (see Table 1). Comparison between data obtained from microarrays and real-time PCR expression estimation for all eight genes selected is presented in Table 14. The comparison of the logarithm of fold change for all treatments resulted in a correlation coefficient of 0.97 (\(P < 0.0001\)). The logarithm of fold change in real-time PCR data was linearly proportional to the microarray data, with a proportionality
constant slightly >1. Of interest, serum amyloid A1 mRNA was induced by treatment with IFN-γ and by treatment with Dex (Tables 4 and 11). Treatment of cells with both IFN-γ and Dex resulted in a dramatically increased gene expression for serum amyloid A. To obtain further confirmation that changes in mRNA levels correspond with enhanced protein production, three secreted proteins were detected using ELISA, RANTES, IL-8, and MCP-1 (Fig. 3). RANTES and MCP-1 were not detectable in control supernatants. Exposure to IFN-γ increased RANTES levels to 630 ± 63 pg/ml and MCP-1 to 2,274 ± 82 pg/ml at 24 h. Similar exposure increased IL-8 production from 822 ± 45 pg/ml (control cell supernatants) to 1,696 ± 71 pg/ml. The effect of IFN-γ on secretion of these three cytokines was substantially inhibited by Dex. Therefore, changes in mRNA expression by real-time PCR and changes in protein production appear to be consistent with the detected changes in mRNA expression by microarray.

DISCUSSION

IFN-γ is a pleiotropic Th1-type cytokine generated by activated T lymphocytes and natural killer cells. IFN-γ has antiproliferative, antiviral, and immune-modulating properties. IFN-γ might modulate protein expression at the transcriptional, posttranscriptional, and posttranslational levels. IFN-γ binds to its cellular membrane receptors and induces STAT1 recruitment and phosphorylation, leading to activation transcription of several genes. STAT1 activation involves at least JAK1 and

Table 9. IFN-downregulated genes at 24 h: metabolism and cytoskeleton proteins

GenBank	Unigene	Name	Fold Change
M74542	Hs.575	aldehyde dehydrogenase 3	0.08
M57951	Hs.278892	UDP glycosyltransferase 1 family polypeptide A4	0.10
U035861	Hs.431175	aldo-keto reductase family 1 member C1	0.13
U46689	Hs.159608	aldehyde dehydrogenase 10 fatty aldehyde dehydrogenase	0.17
M90656	Hs.151393	glutamate-cysteine ligase catalytic subunit	0.20
AF02887	Hs.169907	glutathione S-transferase A4	0.20
U37100	Hs.116724	aldo-keto reductase family 1 member B1	0.20
AF029893	Hs.8526	beta-1 3-N-acetylcysteaminyltransferase	0.22
D17793	Hs.78183	aldo-keto reductase family 1 member C3	0.24
M81600	Hs.406515	NADPH quinone oxidoreductase	0.24
AB02967	Hs.323462	DEAD/H box 30, DDX30	0.25
AF030249	Hs.196176	dienoyl-CoA isomerase	0.25
AT797997	Hs.155020	methyltransferase of Williams Beuren syndrome	0.26
AF009767	Hs.132898	fatty acid desaturase 1	0.27
AF037335	Hs.5338	carbonic anhydrase XII	0.27
AL035079	Hs.76359	catalase	0.28
X83467	Hs.76781	ATP-binding cassette sub-family D ALD member 3	0.28
AF014398	Hs.5753	inositol myo 1 or 4 monophosphatase 2	0.28
U97105	Hs.173381	dihydropyrimidinase-like 2	0.29
X53463	Hs.2704	glutathione peroxidase 2 gastrointestinal	0.29
M95263	Hs.82609	hydroxymethylbilane synthase	0.32
U00238	Hs.311	Phosphoribosyl pyrophosphate amidotransferase	0.32
X15334	Hs.173724	creatine kinase brain	0.33
Y17448	Hs.46634	kynurenine aminotransferase	0.33
X78669	Hs.79088	reticulocalbin 2 EF-hand calcium binding domain	0.34
X92106	Hs.78943	blemogenic hydrolase	0.34
U24183	Hs.75160	phosphofructokinase muscle	0.34
D00723	Hs.77631	glycine cleavage system protein H aminomethyl carrier	0.35
X96752	Hs.8110	L-3-hydroxyacyl-Coenzyme A dehydrogenase short chain	0.36
W26480	Hs.132898	fatty acid desaturase 1	0.36
X16832	Hs.288181	cathepsin H	0.36
L38298	Hs.118131	5-10-methenyltetrahydrofolate synthetase	0.37
Y09008	Hs.78853	uracil-DNA glycosylase	0.37
AB020316	Hs.134015	uronyl 2-sulfotransferase	0.38
AL049699	Hs.42336	malic enzyme 1 NADP dependent cytosolic	0.38
U57650	Hs.155939	inositol polyphosphatase-5-phosphatase 145kDa	0.38
U28042	Hs.41706	DEAD/Asp-Glu-Ala-Ala/His box polypeptide 10 RNA helicase	0.38
AB000359	Hs.306173	phosphatidlyinositol glycan class C pseudogene 1	0.39
U34804	Hs.272462	sulfotransferase family cytosolic 1A phenol-prefering member 2	0.39
AB003151	Hs.88778	carbonyl reductase 1	0.40
U76421	Hs.85302	adenosine deaminase RNA-specific B1 homolog of rat RED1	0.40
D00860	Hs.56	phosphoribosyl pyrophosphate synthetase 1	0.40
L12711	Hs.89643	transketolase Wernicke-Korsakoff syndrome	0.40
X71129	Hs.74047	electron-transfer-flavoprotein beta polypeptide	0.40

| Cytoskeleton proteins (8) |

GenBank	Unigene	Name	
M19267	Hs.77899	tropomyosin 1 alpha	0.38
AL008583	Hs.107374	chromobox homolog 6	0.38

Complete list of genes is presented in Supplemental Table S9.
JAK2 proteins. IFN-γ may activate additional signal transduction pathways such as Pyk2 and ERK1/2 (35), the Src-family kinase Fyn (36), and the adaptor proteins c-Cbl, CrkL, and CrkII pathway (17, 28). It is also involved in signaling through G protein-linked signaling molecules such as Rap-1 (1). IFN-γ signaling might also utilize the protein tyrosine phosphatases SHP-1 and SHP-2. Finally, a secondary link to NF-κB activation is possible by the induction of NOD1 and NOD2 gene and protein expression by IFN-γ (19, 30, 32) or by induction of TNF-α expression. IFN-γ-signaling pathways were reviewed in detail by Ramana et al. (29). It is possible that both STAT-dependent and -independent pathways might be overlapping.

Complete list of genes is presented in Supplemental Table S10.

Table 10. IFN-downregulated genes at 24 h: cell cycle, nuclear proteins, and other

GenBank	Unigene	Name	Fold Change
U63743	Hs.69360	kinesin-like 6 mitotic centromere-associated kinesin	0.13
AL080146	Hs.194698	cyclin B2	0.22
Z29066	Hs.155704	NIMA never in mitosis gene a related kinase 2	0.29
S78187	Hs.155752	cell division cycle 25B	0.29
AF017790	Hs.58169	highly expressed in cancer rich in leucine heptad repeats	0.29
X62048	Hs.75188	wee 1 S. pombe homolog	0.30
U37426	Hs.8878	kinesin family member 11	0.30
U01038	Hs.77597	polo Drosophila like kinase	0.30
U37022	Hs.95577	cyclin-dependent kinase 4	0.31
L25876	Hs.8443	cyclin-dependent kinase inhibitor 3 CDK2-associated phosphatase	0.34
M37712	Hs.183418	cell division cycle 2-like 1 PITSRE proteins	0.34
U21090	Hs.74598	polymerase DNA directed delta 2 regulatory subunit 50kDa	0.35
A3175913	Hs.156346	topoisomerase DNA II alpha 170kDa	0.35
Z24459	Hs.3548	mature T-cell proliferation 1	0.35
U03911	Hs.78934	mus81 E. coli homolog 2 colon cancer nonpolyposis type 1	0.35
AF086868	Hs.159651	death receptor 6	0.36
U05540	Hs.82906	CDC20 cell division cycle 20	0.37
X67155	Hs.270845	kinesin-like 5 mitotic kinase-like protein 1	0.39
M87339	Hs.35120	replication factor C activator 1 4 37kDa	0.39
M65488	Hs.84318	replication protein A1 70kDa	0.39
AL096744	Hs.115521	REV3 yeast homolog like catalytic subunit of DNA polymerase zeta	0.39
D88357	Hs.184572	cell division cycle 2 G1 to S and G2 to M	0.40

Cell cycle (42)

GenBank	Unigene	Name	Fold Change
AF016371	Hs.9880	peptidyl prolyl isomerase H. cyclophilin H	0.12
X2209	Hs.268515	meningioma disrupted in balanced translocation 1	0.12
X74794	Hs.154443	Minichromosome maintenance 4	0.14
AF052432	Hs.275675	katanin p80 WD40-containing subunit B 1	0.20
M97287	Hs.74592	special AT-rich sequence binding protein 1 binds to nuclear matrix	0.21
M15796	Hs.78996	proliferating cell nuclear antigen	0.22
D8587	Hs.155462	minichromosome maintenance 6	0.22
AA255502	Hs.46423	H4 histone family member G	0.22
D38073	Hs.179565	minichromosome maintenance 3	0.22
Y12478	Hs.198308	tryptophan rich basic protein	0.22
AB017019	Hs.170311	heterogeneous nuclear ribonucleoprotein D-like	0.23
D21063	Hs.57101	minichromosome maintenance 2, mitotin	0.27
U66618	Hs.250581	SWI/SNF actin dependent regulator of chromatin subfamily d member 2	0.27
U23803	Hs.77492	heterogenous nuclear ribonucleoprotein A0	0.27
X72889	Hs.198296	SWI/SNF actin dependent regulator of chromatin subfamily a member 2	0.28
U28946	Hs.3248	mus81 E. coli homolog 6	0.29
D63880	Hs.5719	chromosome condensation-related SMC-associated protein 1	0.30
U30872	Hs.77204	centromere protein F 350/400kD mitosin	0.31
X62534	Hs.80684	high-mobility group nonhistone chromosomal protein 2	0.32
M97856	Hs.243886	autosomal histone-binding nuclear protein	0.32
D55167	Hs.77152	minichromosome maintenance 7	0.33
U18300	Hs.77602	damage-specific DNA binding protein 2 48kDa	0.33
X14850	Hs.147097	H2A histone family member X	0.33
Z83738	Hs.182432	H2B histone family member E	0.34
D21089	Hs.320	xeroderma pigmentosum complementation group C	0.35
AC004770	Hs.4756	flap structure-specific endonuclease 1	0.33
L37747	Hs.89497	Lamin B1	0.35
HG4074-HT4344	Hs.50758	SMC4 structural maintenance of chromosomes 4 yeast like 1	0.38
AB019987	Hs.108112	histone fold protein CHRAC17 DNA polymerase epsilon p17 subunit	0.39
AF070640	Hs.184572	heterogenous nuclear ribonucleoprotein H3 2H9	0.39
U35451	Hs.77254	chromobox homolog 1 Drosophila HP1 beta	0.40

Nuclear proteins (47)

GenBank	Unigene	Name	Fold Change
Complete list of genes is presented in Supplemental Table S10.			

Physiol Genomics • VOL 23 • www.physiolgenomics.org
human peripheral blood leukocytes (14). We identified a similar number of genes activated by IFN-γ in human bronchial epithelial cells. In this paper, we have concentrated on chemokines and secreted proteins, membrane proteins, cell cycle proteins, signal transduction proteins, and others. In NHBE cells, IFN-γ increased expression of a number of C-X-C and C-C chemokines. We observed a multifold increase in RANTES, MCP-1, and IL-8 expression. Similar data were obtained by others (15, 34). In contrast, Casola et al. (9) reported a lack of IFN-γ effect on RANTES transcription in A549 cells. Expression of all three chemokines not only was induced by IFN-γ, but this effect was also inhibited by Dex (33, 37). Other secreted proteins were induced, including several genes potentially important in airway remodeling: MMP-1 and -10, cathepsin C, a disintegrin and metalloproteinase-8, and TGF-β.

Exposure to interferons induces expression of several transcription factors known as interferon-induced proteins (11, 31). Similarly, in our experiments, IFN-γ induces expression of

GenBank	Unigene	Name	Fold Change
A.		**Secreted proteins (3)**	
	AA829286	serum amyloid A1	5.05
	AF056087	secreted frizzled-related protein 1	3.21
	J03764	plasminogen activator inhibitor type 1	1.71
	Cell surface proteins (1)		
	X76180	amiloride sensitive sodium channel, SCNN1A	2.32
	Signal transduction (3)		
	L13463	regulator of G-protein signalling 2, 24kDa	4.76
	X68277	dual specificity phosphatase 1	2.81
	X89416	protein phosphatase 5 catalytic subunit	2.49
	Transcriptional regulation (1)		
	D50920	Thyroid hormone receptor associated protein 100	1.97
	Cell cycle (2)		
	M93311	metallothionein 3 growth inhibitory factor	1.62
	D38073	minichromosome maintenance 3	1.61
	Translation regulation (1)		
	H68340	RNA helicase-related protein	1.71
	Metabolism (9)		
	U42031	FK506-binding protein 5	3.96
	X59834	glutamate-ammonia ligase (glutamine synthase)	2.72
	AF017060	aldehyde oxidase 1	1.94
	AA587372	ubiquitin-conjugating enzyme E2M	1.86
	R92331	metallothionein 1E	1.66
	AA420624	monoamine oxidase A	1.63
	R93527	metallothionein 1H	1.61
	M13485	metallothionein 1B	1.60
	M10943	metallothionein 1F	1.60
	Other (2)		
	W29045	retinal cDNA	2.41
B.	AA522537	putative prostate cancer susceptibility protein	1.68
		Secreted proteins (1)	
	X07820	matrix metalloproteinase 10 stromelysin 2	0.22
	Cell membrane protein (1)		
	N74607	aquaporin 3	0.50
	Signal transduction (1)		
	U04636	prostaglandin-endoperoxide synthase 2 (COX-2)	0.55
	Transcriptional regulation (3)		
	L05072	interferon regulatory factor 1	0.28
	U53476	MMTV integration site family member 7A	0.53
	M11433	retinol-binding protein 1 cellular	0.54
	Metabolism (1)		
	AF038451	anterior gradient 2 Xenopus laevis homolog	0.51

A: Dex-upregulated genes. B: Dex-downregulated genes.
several IFN-induced proteins (protein 15 kDa and 35 kDa and interferon-induced protein with tetratricopeptide repeats). Other signal transduction/transcription pathway genes were also induced by IFN-γ treatment. These include Toll-like receptor-2 and MYD88, eight TNF-related signaling genes, and genes in the NF-κB pathway. In this study, we have evaluated the effect of Dex on gene expression in resting NHBE cells and the effect of Dex as an inhibitor of interferon-induced changes in gene expression. Functional genomic studies of the effect of Dex on myeloma cell gene expression and

GenBank	Unigene	Name	IFNC	IFN/Dex/IFN	IFN/Dex/C	Dex/C
M21121	Hs.241392	chemokine (C-C motif) ligand 5, RANTES	26.54	0.23	6.11	1.00
M26683*	Hs.303649	chemokine (C-C motif) ligand 2, MCP1	26.50	0.35	9.28	1.14
M28130*	Hs.624	interleukin 8	12.88	0.35	4.45	0.50
X07820	Hs.2258	matrix metalloproteinase 10 (stromelysin 2)	11.80	0.04	0.52	0.22
M22489	Hs.73853	bone morphogenetic protein 2	5.05	0.52	2.62	1.06
M13509	Hs.83169	matrix metalloproteinase 1	4.33	0.20	0.87	0.42
J03634*	Hs.727	inhibin, beta A	4.12	0.44	1.81	1.10
X04430*	Hs.93913	interleukin 6 (interferon, beta 2)	3.36	0.45	1.50	1.07
X70340	Hs.170009	transforming growth factor, alpha	3.18	0.48	1.53	0.94

Cell surface and membrane proteins (10/67)

GenBank	Unigene	Name	IFNC	IFN/Dex/IFN	IFN/Dex/C	Dex/C
U91512	Hs.11342	ninjurin 1	24.60	0.64	15.83	1.47
X59770	Hs.25333	interleukin 1 receptor, type II	18.30	0.20	3.67	0.82
D10923	Hs.137555	chemokine receptor; GTP-binding protein	9.30	0.40	3.70	0.78
X74039	Hs.179657	plasminogen activator, urokinase receptor	7.99	0.64	5.11	0.78
S71326	Hs.50964	CEA-related cell adhesion molecule 1	7.30	0.55	4.03	0.88
M29696	Hs.362807	interleukin 7 receptor	5.14	0.48	2.48	1.09
U25997	Hs.25590	stanniocalcin 1	3.02	0.41	1.24	0.87
M21419	Hs.24147	tumor necrosis factor-alpha	2.80	0.41	1.14	0.77
U04636*	Hs.19638	cyclooxygenase 2	7.03	0.52	3.68	0.55
U19523	Hs.86724	GTP cyclohydrolase 1	5.58	0.67	3.75	0.70
M57730	Hs.399713	ephrin-A1	2.35	0.44	1.02	0.59

Signal transduction (6/44)

GenBank	Unigene	Name	IFNC	IFN/Dex/IFN	IFN/Dex/C	Dex/C
U19261	Hs.2134	TNF receptor-associated factor 1	9.20	0.29	2.68	0.95
M92357	Hs.1011382	tumor necrosis factor alpha-induced protein 2	7.59	0.43	3.29	0.86
U04636*	Hs.196384	cyclooxygenase 2	7.03	0.52	3.68	0.55
U19523	Hs.86724	GTP cyclohydrolase 1	5.58	0.67	3.75	0.70
U91616	Hs.182885	NFκB inhibitor, epsilon	2.53	0.68	1.71	0.81

Transcriptional regulation (3/34)

GenBank	Unigene	Name	IFNC	IFN/Dex/IFN	IFN/Dex/C	Dex/C
S76638	Hs.73090	NFκB 2 (p49/p100)	5.25	0.54	2.85	0.78
M16038	Hs.80887	v-yes-1 oncogene homolog	3.34	0.56	1.87	0.89
U57094	Hs.50477	RAB27A	3.28	0.40	1.31	0.92

Metabolism (6/39)

GenBank	Unigene	Name	IFNC	IFN/Dex/IFN	IFN/Dex/C	Dex/C
AL031983	Hs.44532	ubiquitin D	295.17	0.49	145.63	1.00
AF026941	Hs.17518	vepirin	39.43	0.43	16.83	1.00
L13972	Hs.301698	sialyltransferase 4A	10.41	0.24	2.54	0.92
M76665	Hs.275215	hydroxysteroid (11-beta) dehydrogenase 1	7.93	0.45	3.55	0.96
AB005038	Hs.199270	cytochrome P450, subfamily XXVIIIB	3.57	0.62	2.21	1.15
U92315	Hs.94581	sulfotransferase family 2B, member 1	3.34	0.43	1.42	0.94

Cell cycle (2/23)

GenBank	Unigene	Name	IFNC	IFN/Dex/IFN	IFN/Dex/C	Dex/C
U27467	Hs.227817	BCL2-related protein A1	3.75	0.62	2.31	1.19
AF035444	Hs.154036	tumor suppressing candidate 3	2.47	0.48	1.18	0.71

Other (3/36)

GenBank	Unigene	Name	IFNC	IFN/Dex/IFN	IFN/Dex/C	Dex/C
AF016045	Hs.97905	ovo-like 1 (Drosophila)	5.42	0.51	2.77	1.25
AB023155	Hs.174188	neuron navigator 3	4.53	0.43	1.95	1.36
M21302	Hs.355542	small proline-rich protein 2A	2.35	0.47	1.11	0.86

Total = 45. Nos. in parentheses indicate IFN-stimulated genes altered by Dex over IFN-stimulated genes nnotated in Tables 4 – 6. *Listed in the database of IFN-responsive genes cited in Ref. 14. †M26683 is the only gene listed that was upregulated by IFN-γ at 8 and 24 h.
Table 13. Dex reversal of IFN-downregulated genes at 24 h

GenBank	Unigene	Name	Fold Change
		Cytokines and secreted proteins (2/16)	
AA224832	Hs.380778	metallothionein 1L	0.22 2.39 0.52 1.52
M14083	Hs.82085	plasminogen activator inhibitor type 1	0.39 2.47 0.97 1.44
		Cell surface proteins (2/43)	
X68487	Hs.45743	adenosine A2b receptor	0.21 2.76 0.59 1.14
AF032862	Hs.72550	hyaluronan-mediated motility receptor RHAMM	0.44 2.28 1.00 1.11
		Signal transduction (3/31)	
U73960	Hs.10706	ADP-ribosylation factor-like 4	0.41 3.56 1.47 1.30
AF011468	Hs.250822	serine/threonine kinase 6	0.42 3.24 1.37 1.14
M86699	Hs.169840	TTK protein kinase	0.44 2.05 0.91 0.99
		Transcriptional regulation (2/38)	
U94319	Hs.82110	PC4 and SFRS1 interacting protein 2	0.19 2.58 0.49 1.05
AL096880	Hs.27801	zinc finger protein 278	0.38 2.84 1.08 1.37
		Metabolism (11/84)	
A1797997	Hs.155020	putative methyltransferase	0.26 4.29 1.11 1.43
U00238	Hs.311	phosphoribosyl pyrophosphate amidotransferase	0.32 2.50 0.81 1.34
M95623	Hs.82609	hydroxymethylbilane synthase	0.32 3.33 1.06 1.15
U24183	Hs.75160	phosphoribosyl pyrophosphate synthetase 1	0.34 2.08 0.83 1.33
AF038195	Hs.150922	BCS1 yeast homolog	0.42 2.39 1.07 1.21
U28042	Hs.41706	DEAD/H box polypeptide 10	0.45 2.48 1.13 1.24
		Cell cycle (17/43)	
U63743	Hs.69360	kinesin-like 6 centromere-associated kinesin	0.13 5.99 0.77 1.11
AL080146	Hs.194968	cyclin B2	0.22 3.06 0.66 1.02
AF017790	Hs.58169	expressed in cancer/rich in leucine repeats	0.29 3.57 1.05 1.41
U37426	Hs.8878	kinesin family member 11	0.30 2.18 0.65 1.36
U01038	Hs.77597	polo Drosophila like kinase	0.30 3.97 1.19 1.45
U37022	Hs.95577	cyclin-dependent kinase 4	0.34 2.39 0.75 1.15
L25876	Hs.84113	cyclin-dependent kinase inhibitor 3	0.35 2.30 0.78 0.92
AI375913	Hs.156346	DNA topoisomerase II alpha 170kDa	0.35 2.39 0.84 1.14
U05340	Hs.82096	CDC20 cell division cycle 20 homolog	0.37 2.84 1.06 1.27
U67155	Hs.270845	kinesin-like 5 mitotic kinesin-like protein 1	0.39 2.70 1.05 0.98
D88357	Hs.184572	cell division cycle 2 G1 to S and G2 to M	0.40 3.22 1.30 1.17
U65410	Hs.79078	MAD2 mitotic arrest deficient yeast homolog 1	0.41 2.24 0.92 1.18
D26361	Hs.3104	Kinesin Family Member 14	0.42 2.03 0.86 1.01
X51688	Hs.85137	cyclin A2	0.42 2.72 1.14 1.38
U30872	Hs.77024	protein arginine N-methyltransferase 3	0.45 2.48 1.13 1.24
J04031	Hs.172665	methylenetetrahydrofolate dehydrogenase	0.46 2.19 1.01 1.26
U73379	Hs.93002	ubiquitin carrier protein E2-C	0.50 2.15 1.07 1.08
		Nuclear proteins (21/47)	
AF016371	Hs.9880	peptidyl prolyl isomerase H (cyclophilin H)	0.12 4.93 0.61 1.05
X74794	Hs.154443	minichromosome maintenance 4	0.20 3.53 0.70 1.45
AA255502	Hs.54623	histone family member G	0.22 3.54 0.78 1.24
D84557	Hs.155462	minichromosome maintenance 6	0.22 2.63 0.57 1.44
M15796	Hs.78996	proliferating cell nuclear antigen	0.22 2.44 0.54 1.32
D21063	Hs.57101	minichromosome maintenance 2, mitotin	0.27 2.54 0.68 1.58
U66618	Hs.250581	SWI/SNF related regulator of chromatin	0.27 2.44 0.67 1.24
D63880	Hs.5719	chromosome condensation-related protein 1	0.30 2.16 0.64 1.03
U30872	Hs.77024	centromere protein F 350/400kDa mitosin	0.31 2.12 0.66 1.05
X62534	Hs.80964	high-mobility group nonhistone protein 2	0.32 2.94 0.96 1.19
M97856	Hs.243886	autoantigenic histone-binding protein	0.32 2.39 0.76 1.26
AC004770	Hs.4756	flap structure-specific endonuclease 1	0.33 2.53 0.84 1.55
D55716	Hs.77152	minichromosome maintenance 7	0.33 2.70 0.99 1.33
X14850	Hs.147097	H2A histone family member X	0.34 2.43 0.83 1.53
L37747	Hs.89097	Lamin B1	0.36 2.27 0.81 1.34
AB019987	Hs.50758	SMC4 structural maintenance of chromosomes 4	0.38 2.02 0.76 0.97
AF070640	Hs.108112	histone fold protein CHRAC17	0.39 2.17 0.85 1.2
AJ131180	Hs.173980	nuclear matrix protein NMP200	0.43 2.48 1.08 1.45
on ocular cell gene expression have been reported (12, 20, 22). The effect of Dex on resting cells in our study was relatively minor at 8 or 24 h. While the effect of Dex on IFN-γ treated cells after coinoculation for 8 h was minimal, the effect on IFN-γ-treated cells at 24 h was more remarkable. Furthermore, the effect of Dex on IFN-γ-induced changes in gene expression appeared to be selective. To some extent, our hypothesis that glucocorticosteroids can at least in part reverse the proinflammatory action of IFN-γ has been confirmed. For example, IFN-γ exposure increases cyclooxygenase-2 expression up to sevenfold, and this effect was partially inhibited by Dex. The effects of Dex and IFN-γ on cyclooxygenase-2 expression have been reported earlier (5, 16). In our experimental model, IFN-γ induced TNF-α and TGF-β expression. In both cases, the IFN-γ effect was reversed by Dex. In addition, IL-8, RANTES, and MCP-1 expression was increased by IFN-γ treatment and reversed by Dex coinoculation. Similar data regarding IL-6 expression were also reported by others (38).

Of the 45 genes induced by IFN-γ at 24 h and modulated by coinoculation with Dex, only 1 gene was induced by IFN-γ at 8 h, MCP-1. The remaining 44 genes were only induced at 24 h. It seems possible that these genes are a part of a secondary amplification dependent on earlier IFN-γ-induced changes in gene expression. If this is the case, then the Dex inhibition at 24 h might be related to an inhibition of factors in this secondary round of gene expression. For example, at least 12 genes in the TNF-α and NF-κB-signaling pathways were induced by IFN-γ at 24 h. These include TNF-α, TNF receptor-associated factor, TNF-α-induced proteins-2, -3, and -6, TNFRSF1A-associated death domain, TNF ligand superfamily member 10 (TRAIL), receptor TNFRSF-interacting serine-threonine kinase, and TNF-induced protein GG2-1. In addition, four genes in the NF-κB pathway were induced. These include NF-κB inhibitor, epsilon, NF-κBIA, NF-κB2, and Rel(p65). Dex coinoculation with IFN inhibited the induction of four of the genes listed above: TNF receptor-associated factor-1, RNFA-induced protein-2, NF-κB inhibitor, epsilon, and NF-κB2 (p49/100) (Table 12). It further raises the possibility that some of the Dex inhibition of IFN-γ-induced changes at 24 h may be inhibition of secondary changes in gene expression resulting from Dex inhibition of activation of transcription factors such as NF-κB (4, 27).

In this paper, the role of IFN-γ in modulation of gene expression was not only measured at the mRNA level, but data obtained from microarray experiments were subsequently confirmed in two ways. First, changes in mRNA expression of 8 genes studied using a microarray approach were confirmed utilizing a real-time PCR expression detection system (as shown in Table 14). Second, we measured expression of selected proteins as well. IL-8, RANTES, and MCP-1 production was increased with IFN-γ treatment, suggesting that for these genes, mRNA levels and protein production are closely related.

To summarize, we present information regarding groups of genes regulated by IFN-γ in NHBE cells. These data include a number of genes that are up- and downregulated by this proinflammatory cytokine. We suggest that several groups of genes might be upregulated by IFN-γ, and this effect might be at least in part altered by glucocorticosteroids. Further studies involving detailed analysis of pro-

Table 14. Comparison of RT-PCR and microarray results

Gene	GenBank No.	RT-PCR Fold Change	Array	IFN/C Fold Change	Dex/C Fold Change	IFN + Dex/C Fold Change
COX2	U04636	18.8 ± 0.5	7.0	0.6 ± 0.06	0.6	6.7 ± 0.9
IL7-R	M28064	24.9 ± 1.6	5.1	0.7 ± 0.09	1.1	9.6 ± 0.6
MAPKK	AP002715	0.7 ± 0.05	0.5	1.1 ± 0.06	0.9	0.7 ± 0.2
MMP10	X07830	16.1 ± 1.4	11.8	0.1 ± 0.01	0.2	11.0 ± 0.06
PAI2	Y00630	19.6 ± 0.9	8.4	1.1 ± 0.05	0.9	11.0 ± 0.06
SAA	AA829286	12.4 ± 1.8	6.3	13.9 ± 1.1	6.4	117.4 ± 12.3
SOD	X07834	36.5 ± 1.9	23.1	1.1 ± 0.02	0.8	19.3 ± 0.7
VEGF	U43142	8.6 ± 0.5	5.2	1.1 ± 0.06	0.8	6.1 ± 0.4

*n = 3.
RESULTS for details. Cells were treated with or without IFN-γ into medium from normal human bronchial epithelial (NHBE) cells. Culture medium was harvested and assayed for MCP-1, RANTES, or IL-8.

Fig. 3. Release of monocyte chemoattractant protein (MCP)-1, RANTES (regulated on activation, normal T expressed and secreted), and interleukin (IL)-8 into medium from normal human bronchial epithelial (NHBE) cells. Cells were treated with or without IFN-γ, Dex, or IFN-γ and Dex for 24 h. Culture medium was harvested and assayed for MCP-1, RANTES, or IL-8. Results are expressed as pg/ml culture medium. For each point, n = 5. *P < 0.001, IFN-γ vs. control. **P < 0.001, IFN-γ vs. IFN/Dex treatments. See Results for details.

mot regions of IFN-γ-regulated genes may help to determine signal transduction pathways involved in these processes.

REFERENCES

1. Alsayed Y, Uddin S, Ahmad S, Majehrzak B, Druker BJ, Fish EN, and Platanias L.C. IFN-γamma activates the CSG/Rap1 signaling pathway. J Immunol 164: 1800–1806, 2000.

2. Asano K, Nakamura H, Lilly CM, Klagsbrun M, and Drazen JM. Interferon gamma induces prostaglandin G/H synthase-2 through an autocrine loop via the epidermal growth factor receptor in human bronchial epithelial cells. J Clin Invest 99: 1057–1063, 1997.

3. Bach E, Tanner J, Marsters S, Ashkenazi A, Aguet M, Shaw A, and Schreiber R. Ligand-induced assembly and activation of the gamma interferon receptor in intact cells. Mol Cell Biol 16: 3214–3221, 1996.

4. Beato M, Truss M, and Chavez S. Control of transcription by steroid hormones. Ann NY Acad Sci 784: 93–123, 1996.

5. Belvisi MG, Saunders MA, Haddad el-B, Hirst SJ, Vayou MH, Barnes PJ, and Mitchell JA. Induction of cyclo-oxygenase-2 by cytokines in human cultured airway smooth muscle cells: novel inflammatory role of this cell type. Br J Pharmacol 120: 910–916, 1997.

6. Benjamini Y and Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 57: 289–300, 1995.

7. Billian A and Vandenbroeck K. IFNγ. In: Cytokine Reference: A Compendium of Cytokines and Other Mediators of Host Defense, edited by Oppenheim JJ and Feldman M. San Diego, CA: Academic, 2001, p. 641–688.

8. Brown V, Warke TJ, Shields MD, and Ennis M. T cell cytokine profiles in childhood asthma. Thorax 58: 311–316, 2003.

9. Casola A, Henderson A, Liu T, Garofalo RP, and Brasier AR. Regulation of RANTES promoter activation in alveolar epithelial cells after cytokine stimulation. Am J Physiol Lung Cell Mol Physiol 283: L1280–L1290, 2002.

10. Chang Y, Holtzman M, and Chen C. Interferon-gamma-induced epithelial ICAM-1 expression and monocyte adhesion. Involvement of protein kinase C-dependent c-Src tyrosine kinase activation pathway. J Biol Chem 277: 7118–7126, 2002.

11. Chang YE and Laimins LA. Microarray analysis identifies interferon-inducible genes and Stat-1 as major transcriptional targets of human papillomavirus type 31. J Virol 74: 4174–4182, 2000.

12. Chauhan D, Auclair D, Robinson EK, Hideshima T, Li G, Podar K, Gupta D, Richardson P, Schlossman RL, Krett N, Chen LB, Munshi NC, and Anderson KC. Identification of genes regulated by dexamethasone in multiple myeloma cells using oligonucleotide arrays. Oncogene 21: 1346–1358, 2002.

13. Darnell JE Jr, Kerr IM, and Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264: 1415–1421, 1994.

14. de Veer MJ, Holko M, Frevel M, Walker E, Der S, Paranjape JM, Silverman RH, and Williams BR. Functional classification of interferon-stimulated genes identified using microarrays. J Leukoc Biol 69: 912–920, 2001.

15. Dixon AE, Mandac JB, Madtes DK, Martin PJ, and Clark JG. Chemokine expression in Th1 cell-induced lung injury: prominence of IFN-gamma-inducible chemokines. Am J Physiol Lung Cell Mol Physiol 279: L592–L599, 2000.

16. Dworski R, Fitzgerald GA, Oates JA, and Sheller JR. Bacterial LPS and IFN-gamma trigger the tyrosine phosphorylation of vav in macrophages: evidence for involvement of the hck tyrosine kinase. J Immunol 164: 1800–1806, 2000.

17. Heim MH, Kerr IM, Stark GR, and Darnell JE Jr. Contribution of STAT SH2 groups to specific interferon signaling by the Jak-STAT pathway. Science 267: 1347–1349, 1995.

18. Hisamatsu T, Suzuki M, and Podolsky DK. Interferon-gamma augments CARD4/NOD1 gene and protein expression through interferon regulatory factor-1 in intestinal epithelial cells. J Biol Chem 278: 32962–32968, 2003.

19. Ishibashi T, Takagi Y, Mori K, Naruse S, Nishino H, Yue B, and Kinoshita S. cDNA microarray analysis of gene expression changes induced by dexamethasone in cultured human trabecular neshwork cells. Invest Ophthalmol Vis Sci 43: 3691–3697, 2002.

20. Kalvakolanu DV and Borden EC. An overview of the interferon system: signal transduction and mechanisms of action. Cancer Invest 14: 25–53, 1996.

21. Lo W, Rowlette L, Caballero M, Yang P, Hernandez M, and Borras T. Tissue differential microarray analysis of dexamethasone induction reveals potential mechanisms of steroid glaucoma. Invest Ophthalmol Vis Sci 44: 473–485, 2003.

22. Lopez-Maderuelo D, Arnalich F, Serantes R, Gonzalez A, Cococeo R, Madero R, Vazquez JJ, and Montiel C. Interferon-gamma and interleukin-10 gene polymorphisms in pulmonary tuberculosis. Thorax 64: 229–237, 1999.

23. Lopez-Maderuelo D, Arnalich F, Serantes R, Gonzalez A, Cococeo R, Madero R, Vazquez JJ, and Montiel C. Interferon-gamma and interleukin-10 gene polymorphisms in pulmonary tuberculosis. Am J Respir Crit Care Med 167: 970–975, 2003.

24. Majeski E, Harley RA, Bellum SC, London SD, and London L. Differential role for T cells in the development of fibrotic lesions associated with reovirus 1/L-induced bronchiolitis obliterans organizing pneumonia versus acute respiratory distress syndrome. Am J Respir Cell Mol Biol 28: 208–217, 2003.
25. Mollers M, Aries SP, Dromann D, Mascher B, Braun J, and Dalhoff K. Intracellular cytokine repertoire in different T cell subsets from patients with sarcoidosis. *Thorax* 56: 487–493, 2001.

26. Munson PJ. A “consistency” test for determining the significance of gene expression changes on replicate samples and two convenient variance-stabilizing transformations. In: *Proceedings of Genelogic Workshop on Low Level. Analysis of Affymetrix Genechip(r) Data* (2001). http://stat-www.berkeley.edu/users/terry/zarray/Affy/GL_Workshop/genelogic2001.html.

27. Nissen RM and Yamamoto KR. The glucocorticoid receptor inhibits NfsB by interfering with serine-2 phosphorylation of the RNA polymerase II carboxyterminal domain. *Genes Dev* 14: 2314–2329, 2000.

28. Platanias LC, Uddin S, Bruno E, Korkmaz M, Ahmad S, Alsayed Y, Van Den Berg D, Druker BJ, Wickrema A, and Hoffman R. CrkL and CrkII participate in the generation of the growth inhibitory effects of interferons on primary hematopoietic progenitors. *Exp Hematol* 27: 1315–1321, 1999.

29. Ramana CV, Gil MP, Schreiber RD, and Stark GR. Stat1-dependent and -independent pathways in IFN-gamma-dependent signaling. *Trends Immunol* 23: 96–101, 2002.

30. Rosenstiel P, Fantini M, Brautigam K, Kuhbacher T, Waetzig G, Seegert D, and Schreiber S. TNF-alpha and IFN-gamma regulate the expression of the NOD2(CARD15) gene in human intestinal epithelial cells. *Gastroenterology* 124: 1001–1009, 2003.

31. Saiura A, Kohro T, Yamamoto T, Izumi A, Wada Y, Aburatani H, Sugawara Y, Hamakubo T, Taniguchi T, Naito M, Kodama T, and Makuuchi M. Detection of an up-regulation of a group of chemokine genes in murine cardiac allograft in the absence of interferon-gamma by means of DNA microarray. *Transplantation* 73: 1480–1486, 2002.

32. Stehlik C, Hayashi H, Pio F, Godzik A, and Reed JC. CARD6 is a modulator of NF-kappa B activation by Nod1- and Cardiak-mediated pathways. *J Biol Chem* 278: 31941–31949, 2003.

33. Stellato C, Matsukura S, Fal A, White J, Beck LA, Proud D, and Schleimer RP. Differential regulation of epithelial-derived C-C chemokine expression by IL-4 and the glucocorticoid budesonide. *J Immunol* 163: 5624–5632, 1999.

34. Striz I, Mio T, Adachi Y, Carnevali S, Romberger DJ, and Rennard SI. Effects of interferons alpha and gamma on cytokine production and phenotypic pattern of human bronchial epithelial cells. *Int J Immunopharmacol* 22: 573–585, 2000.

35. Takaoka A, Tanaka N, Mitani Y, Miyazaki T, Fujii H, Sato M, Kovarik P, Decker T, Schlessinger J, and Taniguchi T. Protein tyrosine kinase Pyk2 mediates the Jak-dependent activation of MAPK and Stat1 in IFN-gamma, but not INF-alpha, signaling. *EMBO J* 18: 2480–2488, 1999.

36. Uddin S, Sher DA, Alsayed Y, Pons S, Colamonici OR, Fish EN, White MF, and Platanias LC. Interaction of p59fyn with interferon-activated Jak kinases. *Biochem Biophys Res Commun* 235: 83–88, 1997.

37. van der Velden VH, Verheggen MM, Bernasconi S, Sozzani S, Naber BA, van der Linden-van Beurden CA, Hoogsteden HC, Mantovani A, and Versnel M. Interleukin-1alpha and interferon-gamma differentially regulate release of monocye chemotactic protein-1 and interleukin-8 by human bronchial epithelial cells. *Eur Cytokine Netw* 9: 269–277, 1998.

38. van Wissen M, Snoek M, Smids B, Jansen HM, and Lutter R. IFN-gamma amplifies IL-6 and IL-8 responses by airway epithelial-like cells via indoleamine 2,3-dioxygenase. *J Immunol* 169: 7039–7044, 2002.

39. Yamasaki H, Ando M, Brazer W, Center DM, and Cruikshank W. Polarized type 1 cytokine profile in bronchoalveolar lavage T cells of patients with hypersensitivity pneumonitis. *J Immunol* 163: 3516–3523, 1999.