Title
WHI-2 Regulates Intercellular Communication via a MAP Kinase Signaling Complex.

Permalink
https://escholarship.org/uc/item/10b4w8xh

Journal
Frontiers in microbiology, 10

ISSN
1664-302X

Authors
Gonçalves, A Pedro
Chow, Karen M
Cea-Sánchez, Sara
et al.

Publication Date
2019

DOI
10.3389/fmicb.2019.03162

Peer reviewed
WHI-2 Regulates Intercellular Communication via a MAP Kinase Signaling Complex

A. Pedro Gonçalves, Karen M. Chow, Sara Cea-Sánchez and N. Louise Glass

The formation of the fungal mycelial network is facilitated by somatic cell fusion of germinating asexual spores (or germlings). Neurospora crassa germlings in close proximity display chemotropic growth that is dependent upon an intracellular network of mitogen-activated protein kinase (MAPK) signaling cascades. Approximately 80 genes involved in intercellular communication and fusion have been identified, including three mutants with similar morphological phenotypes: \(\Delta \text{whi-2} \), \(\Delta \text{csp-6} \), and \(\Delta \text{amph-1} \). Here we show that WHI-2 localizes to the cell periphery and regulates endocytosis, mitochondrial organization, sporulation, and cell fusion. WHI-2 was required to transduce signals through a conserved MAPK pathway (NRC-1/MEK-2/MAK-2) and target transcription factors (PP-1/ADV-1). The amph-1 locus encodes a Bin/Amphiphysin/Rvs domain-containing protein and mis-expression of whi-2 compensated for the cell fusion and endocytosis deficiencies of a \(\Delta \text{amph-1} \) mutant. The csp-6 locus encodes a haloacid dehalogenase phosphatase whose activity was essential for cell fusion. Although fusion-deficient with themselves, cells that lacked whi-2, csp-6, or amph-1 showed a low frequency of chemotropic interactions with wild type cells. We hypothesize that WHI-2 could be important for signal perception during chemotropic interactions via a role in endocytosis.

Keywords: cell fusion, WHI-2, CSP-6, AMPH-1, endocytosis, MAPK

INTRODUCTION

Fungi can sense their surroundings, receive environmental cues, interpret them, and respond accordingly. During asexual growth, germinated asexual spores (germlings) and hyphae of the ascomycete fungus Neurospora crassa display social behaviors that trigger the process of cell-cell communication and somatic cell fusion. Cell fusion creates a mycelial network that allows the circulation of nutrients, water and cellular elements including genetic material throughout an interconnected colony (Leeder et al., 2011; Fischer and Glass, 2019). Somatic cell fusion in N. crassa operates in an analogous way to somatic cell fusion events in mammalian systems, including during muscle, placenta, and bone tissue development (Hernández and Podbilewicz, 2017).

In N. crassa, somatic cell fusion of germlings is initiated when two cells (which can be genetically identical) undergo chemotropic interactions via the exchange of yet-to-be discovered signals by forming polarized cellular protrusions called conidial anastomosis tubes (CATs) (Gabriela Roca et al., 2005). After CATs from germlings come into contact, a switch from cell growth to cell
wall dissolution is initiated (Gonçalves et al., 2019), followed by plasma membrane merger and cytoplasmic continuity; nuclear fusion is not a consequence of somatic cell fusion (Leeder et al., 2011). The combination of polar growth, hyphal branching, and cell fusion events is vital for the formation of the interconnected multicellular hyphal network that is the hallmark growth habit of filamentous fungi (Glass et al., 2004).

The availability of a well-annotated genome (Galagan et al., 2003; Borkovich et al., 2004) and a near full genome deletion strain collection (Colot et al., 2006) have enabled screening of deletion mutants for cell fusion phenotypes in N. crassa (Fu et al., 2011). Deletion strains affected in cell communication and fusion often show a reduction in aerial hyphae extension and flat-like growth and approximately 80 genes have been found to play a role in these processes in N. crassa. The functions of these genes have been partially characterized and range from intracellular signaling, calcium modulation, membrane merger, production of reactive oxygen species, actin regulation, vesicle trafficking and transcriptional control (Glass et al., 2004; Leeder et al., 2011; Fischer and Glass, 2019). Two conserved mitogen-activated protein kinase (MAPK) modules form the core of the intracellular signal transduction network that is activated during cell fusion: the SOFT (SO)/MIK-1/MEK-1/MAK-1 cascade—that is part of the cell wall integrity pathway—and the STE-50/STE-20/HAM-5/NRC-1/MEK-2/MAK-2 module (Fischer and Glass, 2019). During chemotrophic growth that precedes cell fusion, components of both of these pathways are recruited to the tip of germling CATs and to the tips of fusion hyphae (Fleissner et al., 2009b; Dettmann et al., 2012, 2014; Jonkers et al., 2014). The tip recruitment and displacement of the MAK-2 signaling module to a single fusion tip occurs every ~8–10 min and alternates at CAT and fusion tips of chemotropic partners in a perfectly out of phase manner with localization of SO, resembling a ping-pong mechanism of signal sending and receiving (Fleissner et al., 2009b; Leeder et al., 2011; Serrano et al., 2018). These two pathways are required for the activation of the transcription factors PP-1 and ADV-1 that function as master regulators of cell fusion genes (Fischer et al., 2018).

Despite recent advances, the function of many cell fusion genes remains unclear. In particular, whi-2, the N. crassa ortholog of the Saccharomyces cerevisiae gene WHISKEY2 (WHI2), has been shown to be required for cell fusion (Fu et al., 2014). The S. cerevisiae Whi2 was initially identified as a central player in the coordination between cell proliferation and nutrient availability. Loss-of-function mutations in WHI2 result in cells that cannot properly sense the extracellular nutritional status and fail to shift from exponential to stationary growth (Saul and Sudbery, 1985), leading to cells that are smaller than normal due to cell division without sustained cell growth. Yeast whi2 mutants also show actin cytoskeleton disorganization, increased cell death, aberrant mitochondrial morphology and defects in executing endocytosis (Binley et al., 1999; Care et al., 2004; Leadsham et al., 2009). Additionally, whi2 mutants show an increase in the activity of the Ras/CAMP/PKA pathway, permitting the downstream general stress response transcription factor Msn2/4 to remain phosphorylated and outside of the nucleus, where it is unable to activate the expression of cell cycle arrest genes (Radcliffe et al., 1997a; Leadsham et al., 2009; Sadeh et al., 2011). Overexpression of WHI2 results in filamentous growth that is dependent on Ste11 and partially dependent on Ste7, Ste20 and Ste12 (Radcliffe et al., 1997b). These proteins are orthologs of N. crassa NRC-1 (Ste11), MEK-2 (Ste7), STE-20 (Ste20), and PP-1 (Ste12), components of a MAPK signaling complex and its target transcription factor that are required for somatic cell fusion in a number of filamentous fungi (Fischer and Glass, 2019). The S. cerevisiae WHI2 gene also seems to be a hot spot for adaptive mutations, indicating a central role for the respective protein in fungal development and environmental responses (Cheng et al., 2008; Gresham et al., 2008; Kvitek and Sherlock, 2013; Lang et al., 2013; Teng et al., 2013; Szamecz et al., 2014; Treusch et al., 2015; Payen et al., 2016; Comyn et al., 2017).

In this study, we examined the role of the N. crassa WHI-2 during fungal development. Our findings indicate that WHI-2 localized to the cell periphery, affected endocytosis and mitochondrial morphology, and functioned upstream of the NRC-1/MEK-2/MAK-2/PP-1/ADV-1 signaling pathway to activate cell-cell communication. Additionally, we discuss two other cell fusion proteins, CSP-6 and AMPH-1, whose functions are related to WHI-2. CSP-6 showed a localization pattern similar to WHI-2 and its deletion phenocopied the morphological and cell fusion defects of a Δwhi-2 strain. AMPH-1 is an endocytosis regulator whose absence was compensated for by the mis-expression of WHI-2. This work provides new details on genes/proteins that function upstream of a key MAPK signaling module.

MATERIALS AND METHODS

Strains and Culture Media

Standard procedures for the handling of N. crassa cells were employed. Cells were grown in Vogel’s minimal medium (VMM) plus 2% (w/v) sucrose and 1.5% (w/v) agar (Vogel, 1956). Crosses were performed on synthetic cross medium (Wegertsgard and Mitchell, 1947). Wild type and deletion strains are available from the Fungal Genetics Stock Center (FGSC) (McCluskey et al., 2010) and were constructed as part of the Neurospora Genome Project (Colot et al., 2006). Strains used in this study are listed in Table S1. For all the experiments, the indicated strains were grown for ~7 days in VMM-containing slant tubes and a conidial suspension was obtained by adding sterile 44 H2O into tubes, vortexing and passing the mixture through cheesecloth to remove hyphal fragments. Hygromycin B (Thermo Fisher Scientific, Waltham, MA, USA) was used at a final concentration of 200 µg/ml.

Strain Construction

The whi-2, csp-6, and amph-1 genes were amplified from genomic DNA of the FGSC2489 wild type strain using primers ACCTTCTAGACTGGCTGGCCCGGGAGAG and CAGTTAATTAAACGCAGTCCCAATCACACTCATCTCC for whi-2 (creating XbaI/PacI restriction sites), primers TTTTACTAGTTAGAACACTCGAACCCT and TTTTTATTTAACAGAAGGTAGCACGTCAGAACCGCAG for csp-6 (creating SpeI/PacI restriction sites) and primers TTTTTATAATTAAAGAGTGTA
CGTCCAGAACCAG and CGGTTAATTAAACAGTTCC
GCTGACTCTC for amph-1 (creating XbaI/PacI restriction sites). The resulting PCR products were cloned into pCR-Blunt II-TOPO, excised using the respective combination of restriction enzymes and inserted into pMF272 (GenBank accession number: AY598428.1) (Freitag et al., 2004). In pMF272, whi-2, csp-6 and amph-1 were placed downstream of a cg-1 promoter and upstream of sgfp and a ccg-1 terminator. For construction of the CSP-6Δ234A strain, site-directed mutagenesis using primers ccttgtaacctGCTttgatgaa and tttcatccaaAGCtagaacaagg were used. These primers were used in a Pfu-based PCR using the pMF272 vector carrying the wild type csp-6 (described above) as the DNA template that was followed by treatment with the DpnI restriction enzyme. The resulting vectors were transformed into Δwhi-2; his-3, Δcsp-6; his-3 and Δamph-1; his-3 conidia, respectively, using a Gene Pulser electroporator (Bio-Rad, Hercules, CA, USA) at 1.5 kV, 25 μF, 600 Ω. Homokaryotic strains expressing the indicated gfp-tagged genes were obtained by backcrosses. Sanger sequencing to confirm that there were no irregularities in the constructs was performed at the UC Berkeley DNA Sequencing Facility.

Microscopy
Conidia were diluted to a concentration of 1.5 × 10^7 cells/ml. For the evaluation of conidial morphology, 10 μl were pipetted onto a glass slide and covered with a coverslip. To examine communication frequency, 80 μl of conidial suspension was spread onto 5 cm VMM agar plates. In co-culture experiments two strains were mixed in a 1:1 proportion before plating. Staining with FM4-64 (N-(3-triethylammoniumpropyl)-4-(4-diethylanilinophenylhexatrienyl) pyridinium dibromide; Thermofisher Scientific, Waltham, MA, USA) was carried out by incubating 2 μM FM4-64 in a 1.5 × 10^7 cells/ml conidial suspension in a total volume of 500 μl for 15 min in the dark; the cells were then washed twice with ddH2O and resuspended in 500 μl to reestablish the initial spore concentration. The plates were briefly dried in a fume hood and incubated at 30°C, in the dark for 3.5–4 h or 16–20 h to analyze cells at the germling or hyphal stage, respectively. Squares of ∼1 cm were excised and observed. For the analysis of the accumulation of endocytic intermediates, 15 μl of 4 μM FM4-64 was added to the agar slice immediately before imaging. Conidial morphology and cell communication were assessed using a Zeiss Axioskop at 1.5 kV, 25 μF, 600 Ω. Homokaryotic strains expressing the indicated gfp-tagged genes were obtained by backcrosses. Sanger sequencing to confirm that there were no irregularities in the constructs was performed at the UC Berkeley DNA Sequencing Facility.

Flow Cytometry
In order to examine if plasma membrane material was being appropriately guided to the vacuoles by endocytosis, we adapted a previously published method (Zheng et al., 1998). Conidia at a concentration of 10^7/ml were inoculated into glass tubes containing 1.5 ml VMM without agar and grown at 30°C, 200 rpm, for a total duration of 4 hrs; 2 μM FM4-64 and 10 μM 7-amino-4-chloromethylcoumarin (CMAC Blue; Thermo Fisher Scientific, Waltham, MA, USA) were added to the cultures for the last 45 and 15 min, respectively. The conidia were harvested by centrifugation (5,000 rpm, 5 min, 4°C) and washed twice with cold 1x PBS before being resuspended in cold 1x PBS and at least 10,000 events acquired on a BD LSRFortessa X-20 flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA). The fluorescence of FM4-64 was recorded using a 488 nm laser and 685LP (710/50 nm) filter; the fluorescence of CMAC Blue was recorded using a 355 nm laser and (515/30 nm) filter. FlowJo (FlowJo, LLC, Ashland, OR, USA) was used for analyses.

Bioinformatics and Statistical Analysis
The presence of conserved domains was assessed using InterProScan 5 (Jones et al., 2014). The WHI-2/Whi2p amino acid alignment was edited using BoxShade (https://embnet.vital-it.ch/software/BOX_form.html). The percentage of identity and similarity was calculated using the Sequence Manipulation Suite (http://www.bioinformatics.org/sms2/ident_ sim.html). Statistical significance was tested by ANOVA followed by a Tukey post-hoc test using Prism (GraphPad Software, San Diego, CA, USA). At least three independent experiments were performed for all data shown in this paper. The schematic model of the function of WHI-2, CSP-6, and AMPH-1 was built using BioRender (app.biorender.com).

RESULTS

WHI-2 Is Epistatic to the NRC-1/MEK-2/MAK-2 Signaling Pathway
The *N. crassa* WHI-2 (NCU10518) is a 297 amino acid protein that harbors two BTB (Broad-complex, Tramtrack, and Bric-à-brac/POZ) (POX virus and Zinc finger) conserved domains (Figure S1). These domains have been shown to be involved in protein-protein interactions during multiple cellular processes ranging from ion channel assembly and gating, actin dynamics, transcriptional regulation to chromatin remodeling (Perez-Torrado et al., 2006). A recent report suggested that *whi-2* homologs might be distant relatives of members of the human disease-related potassium channel tetramerization domain (KCTD) protein family (Teng et al., 2018). *N. crassa* WHI-2 shows 24% identity and 33.5% similarity to *S. cerevisiae* Whi2p, but is substantially shorter (297 aa compared to 486 aa) (Figure S1). Previous deletion strain screenings in *N. crassa* identified multiple genes, including *whi-2*, as being required for germling fusion (Chinnici et al., 2014; Fu et al., 2014). In addition to the germling fusion defect (Figures 1A,B), the Δwhi-2 deletion strain displayed additional morphological defects (Fu et al., 2014), such as an impairment in the formation of aerial hyphae (Figure S2), production of unseparated proconidial
Fertility was restored in \(\Delta \text{whi-2} \) mutant complemented the germling and hyphal fusion (Figures 1A,B,D), conidial separation (Figure 1C) and aerial hyphae (Figure S2) developmental defects. The \(\Delta \text{whi-2} \) mutant grew slower than the wild type strain (Figure 1E) and produced profuse spores across a Petri plate, as compared to the wild type strain that sporulated mainly around the perimeter of the plate (Figure 1F). The \(\Delta \text{whi-2} \) strain also did not produce protoperithecia when grown on synthetic cross medium, as shown in a previous deletion collection screening (Fu et al., 2014). Fertility was restored in \(\Delta \text{whi-2}; \text{whi-2-gfp} \) cells and this strain was used as a female in crosses in subsequent experiments (Table S1).

Existing data suggests that \(\Delta \text{whi-2} \) cells can communicate with wild type partner cells at a low frequency (Fu et al., 2014), a phenotype that we confirmed in \(\Delta \text{whi-2} \)/wild type germing pairs (Figure 2A). When MAK-2-GFP or SO-GFP were expressed in the \(\Delta \text{whi-2} \) mutant, recruitment of both proteins to the CATs of \(\Delta \text{whi-2} \) cells undergoing chemotropic interactions with the wild type cells was observed (Figure 2B). Thus, the absence of WHI-2 did not directly affect the ability to form CATs nor the recruitment of MAK-2 and SO to communicating cell tips in wild type + \(\Delta \text{whi-2} \) pairings.

Phosphorylation of the MAP kinases MAK-1 and MAK-2 is reduced in \(\Delta \text{whi-2} \) germlings (Fu et al., 2014). To further explore the relationship between the MAK-2 pathway and WHI-2, we utilized a gain-of-function mutation \(nrc-1 \) allele (proline to serine mutation at position 451 of NRC-1). Strains containing this allele show a ~12-fold increase in MAK-2 phosphorylation (Dettmann et al., 2012). When the \(nrc-1^{P451S} \) allele was introduced into the \(\Delta \text{whi-2} \) mutant, the formation of proconidial chains was suppressed and cell fusion-associated chemotropism was restored to levels similar to an \(nrc-1^{P451S} \) strain (Figures 1A–C). At the macroscopic level, aerial hyphae development was also partially restored in the \(\Delta \text{whi-2} \) mutant expressing \(nrc-1^{P451S} \) (Figure S2). These data place WHI-2 upstream of the STE-50/STE-20/HAM-5/NRC-1/MEK-2/MAK-2/PP-1/ADV-1 signal transduction pathway.

Deletion of whi-2 Results in Cells That Accumulate Endocytic Intermediates and Possess a Defective Mitochondrial Network

In *S. cerevisiae*, the deletion of WHI2 causes a defect in endocytosis (Care et al., 2004). Here we employed the lipophilic styryl dye FM4-64 to track the accumulation of endocytic intermediates in *N. crassa* germlings. FM4-64 is unable to freely cross membranes; instead it is anchored on the outer leaflet of the plasma membrane bilayer. When endocytic membranous structures are formed, the dye becomes incorporated intracellularly into the endosomes and Golgi, and subsequently into the vacuoles (Fischer-Parton et al., 2000); it has been shown that endocytosis mutants show delayed or fragmented staining of intracellular vesicles (Gachet and Hyams, 2005; Martin et al., 2005). *N. crassa* wild type germlings readily

FIGURE 1 | Cell fusion and conidiogenesis defects observed in a \(\Delta \text{whi-2} \) mutant can be partially rescued by the introduction of a constitutively active allele of \(nrc-1 \). (A,B) Cell-cell communication was analyzed by observing brightfield microscopy (A) of closely positioned germlings 4 h post-inoculation. Red and blue arrows indicate conidial anastomosis tubes (CATs) and cell communication/fusion events, respectively. The relative frequency of cell-cell communication is shown in (B). Error bars represent the standard deviation. *p*-value < 0.0001 vs. wild type; #p*-value < 0.001 vs. \(\Delta \text{whi-2} \). (C) Conidial morphology was assessed in WT and \(\Delta \text{whi-2} \) strains using brightfield microscopy. Note the presence of proconidial chains in the \(\Delta \text{whi-2} \) strain. (D) Hyphal fusion was evaluated 16 h post-inoculation. Blue arrows point to hyphal fusion events. (E,F) Radial growth (E) and sporulation (F) were analyzed in wild type and \(\Delta \text{whi-2} \) colonies 24 h or 7 days after inoculation on Petri dishes, respectively.
showed plasma membrane and intracellular staining and round membranous structures were observed in the cytoplasm as early as at ~9.5 min after the addition of FM4-64 (Video 1 and Figure 3A). After 30 min of incubation with FM4-64, wild type cells displayed large FM4-64-positive membranous structures (Figure 3B). In contrast, the intracellular accumulation of FM4-64 in Δwhi-2 cells was delayed and appeared as small elements, typical of fungal mutants with endocytosis defects (Gachet and Hyams, 2005; Martin et al., 2005) (Video 1 and Figures 3A,B).

S. cerevisiae whi2 mutants show highly fragmented mitochondria or agglomeration of mitochondria in ball-like structures, depending on the growth phase (Leadsham et al., 2009; Mendl et al., 2011). We used a strain harboring a gfp-tagged arg-4 (encoding the mitochondrial acetylornithine-glutamate acetyltransferase) (Bowman et al., 2009) to image the mitochondrial network in *N. crassa* germlings. In wild type germlings, mitochondria were abundant and formed a tubular-shaped network (Figure 3C). During cell communication and germling fusion, the shape of the mitochondrial network remained unchanged, although organelles were excluded from the tip of CATs until fusion and cytoplasmic continuity were attained (Figure 3D and Video 2). In contrast to the mitochondrial organization in wild type cells, Δwhi-2 germlings displayed aberrant mitochondria that appeared to be fragmented and clustered into “masses” (Figure 3C). These observations indicated that WHI-2 was required for normal endocytosis and mitochondrial morphology in *N. crassa*.

CSP-6 and AMPH-1 Are Two Fusion Proteins Whose Function Is Related to WHI-2

In a previous deletion strain screening, *csp-6* and *amph-1* were also found to be required for cell fusion in *N. crassa* (Fu et al., 2011, 2014; Chinnici et al., 2014). In addition, Δcsp-6 and Δamph-1 cells also have a defect in conidial separation (Figure 4A and Figure S2), phenotypically similar to proconidial chains in Δwhi-2 mutants (Figure 1C) (Fu et al., 2014; Ghosh et al., 2014). CSP-6 (NCU08380) is a Halocacid Dehalogenase (HAD) family Ser/Thr phosphatase and the ortholog of Psr1/2 from *S. cerevisiae*. In yeast and in *N. crassa*, WHI-2 and CSP-6 have been shown to directly interact (Kaida et al., 2002; Zhou et al., 2018). AMPH-1 (NCU01069) harbors an Arfaptin Homology/Bin-Amphiphysin-Rvs (AH/BAR) domain; AMPH-1 homologs in *S. cerevisiae* (Rvs161p and Rvs167p) regulate the actin cytoskeleton, endocytosis and mating, while in neurons AMPH-1 plays a role in clathrin-mediated endocytosis (Tákei et al., 1999; Friesen et al., 2006). Although phenotypically similar, the growth of the Δamph-1 mutant was more affected than growth of the Δwhi-2 or Δcsp-6 mutants (Figure S2).

We confirmed that cell communication in populations of Δcsp-6 germlings was absent, while a low frequency of CAT formation was observed in self-pairings of Δamph-1 germlings (Figures 4B,C). The introduction of a gfp-tagged *csp-6* or *amph-1* allele partially compensated for the developmental defects observed in Δcsp-6 and Δamph-1 mutants, respectively (Figures 4A–C and Figure S2). Since the complementation of *amph-1* with the gfp-tagged *amph-1* allele was modest (Figure 4C), we conducted a co-segregation analysis by crossing the wild type and Δamph-1 deletion strains and analyzing the resistance of the progeny to hygromycin B; all strains that displayed wild type-like growth were sensitive to hygromycin B whereas all strains with flat-like growth were resistant to it (Figure S3). The Δcsp-6 and Δamph-1 mutants communicated with wild type germlings, although at low frequency (Figure 4D); this observation had been previously suggested for Δamph-1 (Fu et al., 2014).
To explore how the predicted phosphatase activity of CSP-6 plays a role during cell fusion and asexual development in *N. crassa*, we constructed a mutated allele of CSP-6 predicted to abolish activity. In *S. cerevisiae*, a point mutation in the predicted catalytic aspartic acid residue of the hhhDxDx(T/V) motif—where "h" is a hydrophobic residue and "x" is any residue—abolished phosphatase activity (Rebay, 2015). This aspartic acid residue belongs to the HAD domain and is conserved in *N. crassa*. A Δcsp-6 mutant that carried a phosphatase-dead, Pccg-1-driven csp-6D284A allele showed the same defects as the Δcsp-6 deletion strain, namely the lack of aerial hyphae (Figure S2) and inability to form CATs and undergo cell fusion (Figures 4B,C).

To assess the relationship between *whi-2*, *amph-1*, and *csp-6*, we placed an extra copy of *whi-2* under the control of a constitutive promoter (Pccg-1) in the Δamph-1 and Δcsp-6 strains. The Δamph-1;Pccg-1-Δwhi-2 strain showed suppression of the conidial separation defect of the Δamph-1 mutant (Figure 4A), restoration of CAT formation and chemotropic interactions (Figures 4B,C), and normal aerial hyphae development (Figure 4E). In contrast, over-expression of *whi-2* did not complement the morphological (Figure S2) or communication defects of the Δcsp-6 mutant (Figures 4A–C). These data showed that the deletion of *whi-2*, *csp-6*, and *amph-1* leads to similar cellular phenotypes and that the mis-expression of *whi-2* compensated for the absence of *amph-1*, indicating that AMPH-1 functions upstream of WHI-2.

In order to examine if the deletion of *amph-1* results in an endocytic defect, as predicted from *S. cerevisiae* literature (Munn et al., 1995; Kaksonen et al., 2005), and whether the mis-expression of *whi-2* also compensated for an endocytosis defect, we employed a flow cytometry-based methodology. The combined labeling of endocytic intermediates and vacuolar lumens (with FM4-64 and carboxydichlorofluorescein diacetate (CDCFDA), respectively) has been previously used to isolate *S. cerevisiae* mutants unable to properly execute endocytosis and transport plasma membrane material to the vacuole (Zheng et al., 1998). Such mutants display a shift in FM4-64/CDCFDA fluorescence as compared to wild type cells. We adopted a similar strategy, but utilized CMAC Blue to stain the lumen of the vacuoles instead of CDCFDA. The deletion of *whi-2* or *amph-1* resulted in a shift in FM4-64/CMAC Blue fluorescence profile as compared to wild type cells (Figure 5). However, the Δwhi-2 and Δamph-1 strains carrying Pccg-1-Δwhi-2-gfp showed a profile more similar to wild type cells (Figure 5). These data suggest that endocytosis defect was at least partially compensated for by the mis-expression of *whi-2-gfp* in Δamph-1 cells. Additionally, the FM4-64/CMAC Blue fluorescence shift in Δwhi-2 cells was also partially recovered by the mis-expression of nrc-1P4515 (Figure 5), consistent with suppression of cell fusion defects in Δwhi-2 cells (Figure 1).
WHI-2 and CSP-6 Localize Mainly to the Cell Periphery While AMPH-1 Is Present in Cortical Patches and Puncta

Previous reports showed that WHI-2 localized by immunofluorescence to the cytoplasm, small vesicles or vacuoles and by subcellular fractionation to the cytoplasmic and nuclear fractions; AMPH-1 immunolocalization studies showed a punctate pattern suggestive of small vesicles and by subcellular fractionation CSP-6 was present in the cytoplasmic and nuclear fractions (Fu et al., 2014; Zhou et al., 2018). However, the AMPH-1-RFP construct only marginally complemented the fusion defect of Δamph-1 (Fu et al., 2014), the immunofluorescence for WHI-2 was not very resolved (Fu et al., 2014) and the subcellular fractionation for WHI-2 and CSP-6 showed that both proteins were in all fractions tested (Zhou et al., 2018). Therefore, we sought to determine the localization of these proteins using confocal microscopy by tagging them with GFP, under the control of the constitutive Pccg-1 promoter, and introducing them into their respective deletion strains (Figures 1, 4). In dormant conidia, WHI-2-GFP was distributed across the cytoplasm while CSP-6-GFP was predominantly present in the cytoplasmic and nuclear fractions. AMPH-1 was mainly localized in cortical patches although some cytoplasmic staining was observed. In germlings, WHI-2 and CSP-6 were present mainly in the cell periphery and occasionally in intracellular puncta. In mature hyphae, the localization of WHI-2 and CSP-6 was mainly at the cell periphery and at septa. For WHI-2, we also observed cytoplasmic localization and in the membrane of round intracellular vesicles. In hyphae, AMPH-1 was present in puncta or small.
intracellular vesicles that tended to accumulate at the hyphal tip (Figure 6C).

A Δamp-1;whi-2-gfp strain was able to communicate and fuse (Figures 4B,C), but a Δcsp-6;whi-2-gfp strain displayed the same morphological defects as its parental deletion mutant (Figures 4B,C). We therefore assessed whether localization of WHI-2-GFP was affected in the Δamp-1 mutant relative to the Δcsp-6 mutant and wild type cells. In the Δamp-1 mutant, WHI-2 displayed a cell periphery localization, consistent with what was observed in a Δwhi-2;whi-2-gfp strain (Figure 6A). However, in the Δcsp-6 mutant, WHI-2-GFP was no longer present in the cell periphery, but accumulated in cytoplasmic patches and puncta (Figure 6B). These data suggest that CSP-6 is required for localization of WHI-2, consistent with reports of physical interaction of these two proteins in N. crassa and S. cerevisiae (Kaida et al., 2002; Zhou et al., 2018).

DISCUSSION

Germinated asexual spores of N. crassa cooperate during the formation of the somatic mycelial network by undergoing regulated cell fusion. Our study highlights the importance of WHI-2, an ortholog of the S. cerevisiae Whi2p, which binds to Psr1p (HAD family of protein phosphatases; CSP-6 ortholog) and regulates the response to nutritional stress by affecting both TORC1 and the Ras-cAMP-PKA pathway (Sudbery et al., 1980; Kaida et al., 2002; Müller and Reichert, 2011; Chen et al., 2018). The deletion of whi-2 in N. crassa resulted in a panoply of morphological phenotypes, including defects in conidial separation, an inability to undergo chemotropic interactions and cell fusion, aerial hyphae formation, growth rate and female fertility. Our data showed that the lack of whi-2 also caused an accumulation of FM4-64-positive membranous structures that likely correspond to endocytic intermediates and the destabilization of the mitochondrial organization. Using a constitutive nrc-1 allele, we showed that WHI-2 plays an active role during cell-cell communication in N. crassa by transducing signals to the NRC-1/MEK-2/MAK-2 pathway. In support of this conclusion, the deletion of whi-2, csp-6 or amph-1 abolishes activation of prm-1 (Fischer et al., 2019), which encodes a protein involved in plasma membrane merger during cell fusion (Fleissner et al., 2009a). The prm-1 gene is directly regulated by the transcription factors PP-1 and ADV-1, which sit downstream
of the NRC-1/MEK-2/MAK-2 pathway (Fischer et al., 2018). These data suggest that WHI-2 functions upstream in the sequence of signal transduction events that lead to chemotropism and cell fusion (Figure 6C). In yeast, Whi2p is a nutrient sensor (Müller and Reichert, 2011; Chen et al., 2018), and in mammalian models a specific form of endocytosis is regulated by nutrient availability (Pang et al., 2014). In N. crassa, the Δwhi-2 mutant was phenotypically similar when grown under various carbon and nitrogen sources, indicating further biochemical and genetic analyses are required to assess whether WHI-2 affects nutrient sensing. It will be also interesting to examine the range of phenotypes controlled by the WHI-2/MAPK axis by taking the advantage of the Δwhi-2; nrc-1Δ451S strain.

Although endocytosis is required for proper morphogenesis and apical growth in filamentous fungi (Riquelme et al., 2018), it has been suggested that these organisms might not undergo clathrin-dependent endocytosis (Schulthaus et al., 2017). An alternative form of endocytosis termed fluid-phase endocytosis or pinocytosis, cells internalize small molecules present in the extracellular fluid through invaginations of the plasma membrane, forming intracellular vesicles (Epp et al., 2013) and a role for Whi2p during pinocytosis has been suggested as a way to sense cell density in yeast (Care et al., 2004). Additionally, this form of endocytosis has been proposed to mediate cell-cell communication between animal alveolar macrophages (Schneider et al., 2017). Pinocytosis could function as a mechanism to survey the extracellular space for gradients of certain peptides or metabolites and whenever the concentration is above a defined threshold, as when cells that produce a communication signal are in close proximity, the activation of the cell-cell fusion machinery would ensue.

Evidence from various organisms support the hypothesis that endocytosis could play a role in cell-cell communication in N. crassa (Figure 6C). In animals, fusogens are internalized via RAB-5 and DYNAMIN-1 GTPases-dependent clathrin-mediated endocytosis (Shin et al., 2014; Smurova and Podbilewicz, 2016). In the filamentous fungus Ustilago maydis, the pheromone receptor Pra1 cycles between the early endosomes and the plasma membrane in endocytic vesicles, triggering cell communication-associated MAPK signaling pathways when the mating pheromone is perceived. Mutations that impair endocytosis cause Pra1 to be depleted from the plasma...
membrane and abolish cell fusion (Fuchs et al., 2006). During mating in *S. cerevisiae*, the pheromone receptors and pheromone transporter are subject to regulation by endocytosis (Davis et al., 1993; Berkower et al., 1994).

Our observations that AMPH-1 is epistatic to WHI-2 adds strength to the hypothesis that endocytosis could be important for cell-cell communication in *N. crassa*. The yeast ortholog of AMPH-1, Rvs161p (previously termed Fus7p and End6p) is involved in endocytosis (Munn et al., 1995; Kaksonen et al., 2005) and forms a heterodimer with another BAR domain-containing protein, Rvs167p, to bind to phospholipid membranes (Friesen et al., 2006). BAR domains modulate membrane curvature by promoting vesicle scission at the neck of plasma membrane invaginations during endocytosis (Takei et al., 1999; McMahon and Gallop, 2005). Rvs161p also plays a role in yeast mating cell fusion by binding and shuttling Fus2p from the nucleus to the shmoo tip and by recruiting Cdc42p to the cell-cell contact spot (Smith et al., 2017); orthologs of Fus2p are absent in *N. crassa*. Despite the role of Rvs161p during mating cell fusion, some mutations in *RVS161* cause a defect in endocytosis but not in mating (Brizzi et al., 1998). Further investigations are required to ascertain if the situation in *N. crassa* is analogous. In addition to AMPH-1, mutations in other components of the endocytosis machinery in *N. crassa*, namely MYO-5 (Dettmann et al., 2014; Ramirez-Del Villar et al., 2019) and the ARP-2/ARP-3 complex proteins (Roca et al., 2010), also result in cell-cell communication defects (Figure 6C).

A strain containing a deletion of *csp-6* phenocopied a Δwhi-2 mutant. WHI-2 physically interacts with CSP-6 to dephosphorylate the circadian clock regulator WC-1, which in turn results in loss of activation of ADV-1 (Zhou et al., 2018); ADV-1 directly regulates cell communication and fusion genes in *N. crassa* (Fischer et al., 2018). Our localization studies showed that WHI-2 and CSP-6 share the same subcellular distribution at the cell periphery. This observation supports our results that put WHI-2 and CSP-6 upstream of the NRC-1/MEK-2/MAK-2 signal transduction pathway (Fischer et al., 2019). Recent evidence suggests that HAM-11 also functions upstream of the NRC-1/MEK-2/MAK-2 signal transduction pathway and is predicted to encode a hypothetical plasma membrane protein enriched in plasma membrane fractions. These data and data presented here suggest the AMPH-1, CSP-6-WHI-2, and HAM-11 function upstream of the MAK-2 signaling complex and play a role in sensitizing cells for signal reception during chemotropic interactions.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the article/Supplementary Material.

AUTHOR CONTRIBUTIONS

AG and NG designed the study and wrote the article. AG performed all experiments. KC contributed to the flow cytometry assay and mutant segregation analysis.

FUNDING

This work was supported in part by a National Science Foundation Grant (MCB1412411) and a Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231 to NLG.

ACKNOWLEDGMENTS

We thank Wilfried Jonkers for early comments and suggestions on this study, Jens Heller for critical reading of this manuscript, Anne Dettmann and Stephan Seiler for kindly providing the NRC-1∗Δ1 strain and Barry Bowman for kindly providing the ARG-4-GFP strain.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2019.03162/full#supplementary-material
REFERENCES

Berkower, C., Loayza, D., and Michaelis, S. (1994). Metabolic instability and constitutive endocytosis of STE6, the a-factor transporter of Saccharomyces cerevisiae. Mol. Biol. Cell 5, 1185–1198. doi: 10.1091/mbc.5.11.1185

Binley, K. M., Radcliffe, P. A., Turetckich, J., Duffy, K. A., and Sudbery, P. E. (1999). The yeast PRS3 gene is required for cell integrity, cell cycle arrest upon nutrient deprivation, ion homeostasis and the proper organization of the actin cytoskeleton. Yeast 15, 1459–1469.

Borkovich, K. A., Alex, L. A., Yarden, O., Freitag, M., Turner, G. E., Binley, K. M., Radcliffe, P. A., Trevethick, J., Duffy, K. A., and Sudbery, P. E. (2000). Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J. Microsc. 198, 246–259. doi: 10.1046/j.1365-2818.2000.00708.x

Fischer, A., Diamond, S., and Glass, N. L. (2009a). The Saccharomyces cerevisiae PRM1 homolog in Neurospora crassa is involved in vegetative and sexual cell fusion events but also has postfermentation functions. Genetics 181, 497–510. doi: 10.1534/genetics.108.098149

Fischer, A., Leeder, A. C., Roca, M. G., Read, N. D., and Glass, N. L. (2009b). Oscillatory recruitment of signalizing proteins to cell tips promotes coordinated behavior during cell fusion. Proc. Natl. Acad. Sci. U.S.A. 106, 19387–19392. doi: 10.1073/pnas.090739106

Davis, N. G., Horecka, J. L., and Sprague, G. F. Jr. (1993). Cis- and trans-acting functions required for endocytosis of the yeast pheromone receptors. J. Cell Biol. 122, 53–65. doi: 10.1083/jcb.122.1.53

Epp, E., Nazarova, E., Regan, H., Douglas, L. M., Konopka, J. B., Vogel, J., et al. (2013). Cln/thr- and Arp2/3-independent endocytosis in the fungal pathogen Candida albicans. MBio 4:e000476–13. doi: 10.1128/mBio.00476-13

Fischer, M. S., and Glass, N. L. (2019). Communicate and fuse: how filamentous fungi establish and maintain an interconnected mycelial network. Front. Microbiol. 10:619. doi: 10.3389/fmicb.2019.00619

Fischer, M. S., Jonkers, W., and Glass, N. L. (2019). Integration of self and non-self recognition modules axially cell-to-cell communication in Neurospora crassa. Genetics 211, 1255–1267. doi: 10.1534/genetics.118.301780

Fischer, M. S., Wu, V. W., Lee, J. E., O’Malley, R. C., and Glass, N. L. (2018). Regulation of cell-to-cell communication and cell wall integrity by a network of map kinase pathways and transcription factors in Neurospora crassa. Genetics 209, 489–506. doi: 10.1534/genetics.118.300904

Friesen, H., Humphries, C., Ho, Y., Schub, O., Colwill, K., and Andrews, B. (2006). Characterization of the yeast aph1 genes Rvs161p and Rvs167p reveals roles for the Rvs heterodimer in vivo. Mol. Biol. Cell 17, 3506–3518. doi: 10.1091/mbc.e05-06-0476

Fu, C., Ao, J., Dettmann, A., Seiler, S., and Free, S. J. (2014). Characterization of the Neurospora crassa cell fusion proteins, HAM-6, HAM-7, HAM-8, HAM-9, HAM-10, AMPH-1 and WHI-2. PLoS ONE 9:e107773. doi: 10.1371/journal.pone.0107773

Fu, C., Iyer, P., Herkal, A., Abdullah, J., Stout, A., and Free, S. J. (2011). Identification and characterization of genes required for cell-to-cell fusion in Neurospora crassa. Eukaryotic Cell 10, 1100–1109. doi: 10.1126/EC.005003-11

Gonzalez, A. P., Heller, J., Span, E. A., Rosenfeld, G., Do, H. P., Palma-Guerrero, J., et al. (2019). Allorrecognition upon fungal cell-cell contact determines social cooperation and impacts the acquisition of multicellularity. Curr. Biol. 29, 3006–3017. doi: 10.1016/j.cub.2019.07.060

Hernández, J. M., and Podbielwicz, B. (2017). The hallmarks of cell-cell fusion. Development 144, 4481–4495. doi: 10.1242/dev.155523

Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S., et al. (2003). Global analysis of protein localization in budding yeast. Nature 422, 859–868. doi: 10.1038/nature01554

Jones, P., Binns, D., Chang, H. Y., Fraser, M., Li, W., McAnulla, C., et al. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240. doi: 10.1093/bioinformatics/btu301
Jonkers, W., Leeder, A. C., Ansong, C., Wang, Y., Yang, F., Starr, T. L., et al. (2014). HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa. PLoS Genet. 10:e1004783. doi: 10.1371/journal.pgen.1004783

Kaida, D., Yashiroda, H., Toh-e, A., and Kikuchi, Y. (2002). Yeast Whi2 and Pst1-phosphatase form a complex and regulate STRE-mediated gene expression. Genes Cells 7, 543–552. doi: 10.1046/j.1365-2443.2002.00538.x

Kaksonen, M., Toret, C. P., and Drubin, D. G. (2005). A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123, 305–320. doi: 10.1016/j.cell.2005.09.024

Kvittek, D. J., and Sherlock, G. (2013). Whole genome, whole population sequencing reveals that loss of signaling networks is the major adaptive strategy in a constant environment. PLoS Genet. 9:e1003972. doi: 10.1371/journal.pgen.1003972

Lang, G. I., Rice, D. P., Hickman, M. J., Sodergren, E., Weinstock, G. M., Botstein, D., et al. (2013). Pervasive genetic hitchhiking and clonal interference in formerly evolving yeast populations. Nature 500, 571–574. doi: 10.1038/nature12344

Leadsham, J. E., Miller, K., Ayscough, K. R., Colombo, S., Martegani, E., Sudbery, P., et al. (2009). Whi2p links nutritional sensing to actin-dependent Rac-CAMP-PKA regulation and apoptosis in yeast. J. Cell Sci. 122(Pt 5), 706–715. doi: 10.1242/jcs.042424

Leedle, A. C., Jonkers, W., Li, J., and Glass, N. L. (2013). Early colony establishment in Neurospora crassa requires a MAP kinase regulatory network. Genetics 195, 883–898. doi: 10.1534/genetics.113.156984

Leedle, A. C., Palma-Guerrero, J., and Glass, N. L. (2011). The social network deciphering fungal language. Nat. Rev. Microbiol. 9, 440–451. doi: 10.1038/nrmicro2580

Martin, R., Walther, A., and Wendland, J. (2005). Ras1-induced hyphal development in Candida albicans requires the formin Bni1. Eukaryotic Cell 4, 1712–1724. doi: 10.1128/EC.1712-1724.2005

McCluskey, K., Wiest, A., and Plamann, M. (2010). The fungal genetics stock evolving yeast populations. Fungal Genet. Biol. 50, 119–126. doi: 10.1016/j.fgb.2010.011-0014-6

McMahon, H. T., and Gallop, J. L. (2005). Membrane curvature and the BTB protein-protein interaction domain. Bioessays 28, 1194–1202. doi: 10.1002/bies.20500

Mendil, N., Occhipinti, A., Muller, W., Wild, P., Dikic, I., and Reichert, A. S. (2011). Mitophagy in yeast requires a MAP kinase regulatory network. Mol. Biol. Cell 22, 3127–3138. doi: 10.1091/mbc.e10-12-1007

Maul, C., Sunshine, A. B., Ong, G. T., Pogachar, J. L., Zhao, W., and Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. doi: 10.1038/nmeth.2089

McMaster, D., Ury, S. E., Riquelme, M., Aguirre, J., Bartnicki-Garcia, S., Braus, G. H., Fleig, A., et al. (2013). Fine-tuning of the end5/4-mediated yeast stress responses as revealed by systematic deletion of end5/4 partners. Mol. Biol. Cell 22, 3127–3138. doi: 10.1091/mbc.e10-12-1007

Moriño-Pérez, R., Yamada, D., and Defossez, P. A. (2006). Born to bind: neuropilin-1 and regulated by nutrient availability. Biochem. Soc. Trans. 34, 20897–20910. doi: 10.1042/bst041137

Moura, C. M., Takei, K., Slepnev, V. I., Haucke, V., and De Camilli, P. (1999). Nuclear dynamics, mitosis, and the cytoskeleton during the early stages of colony initiation in Neurospora crassa. Eukaryotic Cell 9, 1171–1183. doi: 10.1016/EC.00329-09

Murai, T., Ohtsuki, S., and Hara, N. (2009). Genetic mapping of MAPK-mediated complex traits across a model of alveolar cell communication. J. Biol. Chem. 292, 20897–20910. doi: 10.1074/jbc.M109.01721

Mun, A. L., Stevenson, R. J., Geli, M. I., and Riezman, H. (1995). end5, end6, and end7: mutations that cause actin delocalization and block the internalization step of endocytosis in Saccharomyces cerevisiae. Mol. Biol. Cell 6, 1721–1724. doi: 10.1091/mbc.6.12.1721

Pang, H. B., Braun, G. B., Friman, T., Aza-Blanc, P., Ruisliz, M. E., Sugahara, K. N., et al. (2014). An endocytosis pathway initiated through neuropilin-1 and regulated by nutrient availability. Nat. Commun. 5:9404. doi: 10.1038/ncomms9504

Penkman, K., Crompton, J., Diny, N. L., et al. (2013). Genome-wide consequences of deleting any single gene. Nat. Cell Biol. 15, 1517–1527. doi: 10.1038/ncel.2016.01.027

Penke, L. R., Wettlaufer, S. H., Swanson, J. A., and Weinstock, G. M., Botstein, D., et al. (2005). Filamentous growth of the budding yeast Saccharomyces cerevisiae. J. Cell Sci. 118, 707–715. doi: 10.1242/jcs.076406

Peng, C., Sun, Y., Zhang, J., Liu, X., Sun, W., et al. (2016). Dynamic and endocytosis are required for the fusion of osteoclasts and myoblasts. J. Cell Biol. 207, 73–89. doi: 10.1083/jcb.201214137

Peters-Golden, M. (2017). Mechanisms and modulation of microvesicle uptake in a model of alveolar cell communication. J. Biol. Chem. 292, 20897–20910. doi: 10.1074/jbc.M117.792416

Pinkert, C., Takei, K., Slepnev, V. I., and De Camilli, P. (1999). Nuclear dynamics, mitosis, and the cytoskeleton during the early stages of colony initiation in Neurospora crassa. Eukaryotic Cell 9, 1171–1183. doi: 10.1016/EC.00329-09

Pinto, J., Rasband, W. S., and Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. doi: 10.1038/nmeth.2089

Powers, C. H., and Hardwick, J. M. (2018). Whi2 signals low leucine availability to halt yeast growth and cell death. FEMS Yeast Res. 18:foy095. doi: 10.1093/femsre/foy095

Prensa, G., Kruglyak, L., and Treusch, S., Albert, F. W., Bloom, J. S., Kotenko, I. E., and Kruglyak, L. (2016). Genomic inference of complex traits across experimentally evolved yeast populations. Fungal Genet. Biol. 50, 119–126. doi: 10.1016/j.fgb.2017.0316

Rebey, I. (2015). Multiple functions of the eukaryotic phosphatidylinositol 4-phosphate 5-kinase. Bioessays 37, 668–677. doi: 10.1002/bies.20500

Riquelme, M.,dsd.png
Westergaard, M., and Mitchell, H. K. (1947). *Neurospora-V* - a synthetic medium favoring sexual reproduction. *Am. J. Bot.* 34, 573–577. doi: 10.1002/j.1537-2197.1947.tb13032.x

Zheng, B., Wu, J. N., Schober, W., Lewis, D. E., and Vida, T. (1998). Isolation of yeast mutants defective for localization of vacuolar vital dyes. *Proc. Natl. Acad. Sci. U.S.A.* 95, 11721–11726. doi: 10.1073/pnas.95.20.11721

Zhou, X., Wang, B., Emerson, J. M., Ringelberg, C. S., Gerber, S. A., Loros, J. J., et al. (2018). A HAD family phosphatase CSP-6 regulates the circadian output pathway in *Neurospora crassa*. *PLoS Genet.* 14:e1007192. doi: 10.1371/journal.pgen.1007192

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Gonçalves, Chow, Cea-Sánchez and Glass. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.