Type 2 diabetes remission after Roux-en-Y gastric bypass (RYGB), sleeve gastrectomy (SG), and one anastomosis gastric bypass (OAGB): results of the longitudinal assessment of bariatric surgery study

Marziyeh Moradi1, Ali Kabir2*, Davood Khalili3, Maziar Moradi Lakeh4, Masoud Solaymani Dodaran1, Abdolreza Pazouki5, Mohammad Kermansaravi5, Peyman Alibeigi6, Hashem Moazenzadeh7, Mohammad Reza Abdolhosseini5, Foolad Eghbali5 and Hamid Reza Baradaran1,8,9*

Abstract

Background Several studies on various bariatric surgeries involving patients with type 2 diabetes mellitus (T2DM) showed an overall rate of remission of hyperglycemia. However, there is little known about predictive factors on remission after different types of surgeries. The aim of this study was to identify the T2DM remission rate and to determine the effects of preoperative factors characteristics of remission of type 2 diabetes in Iran.

Methods We conducted a retrospective analysis of 1351 patients with T2DM operated by three different types of surgeries (Roux-en-Y gastric bypass (RYGB), sleeve gastrectomy (SG), and One Anastomosis Gastric Bypass (OAGB)). Diabetes remission was defined according to the American Diabetes Association (ADA) criteria. Binary logistic regression analyses were employed.

Results A total of 1351 patients, 675 patients (50.0%) undergoing OAGB, 475 (35.2%) RYGB, and 201 (14.9%) SG. 80.6%, 84.2% of OAGB, 81.7%, 82.6% of RYGB, and 77.1%, 81.5% of SG participants were in T2DM remission after 1 and 3 years, respectively. 1- and 3-year remission were associated with preoperative age, duration of T2DM, FBS and HbA1c, BMI, insulin therapy, and a family history of obesity (p < 0.05).

Conclusion The remission of T2DM after RYGB, SG, and OAGB surgery is dependent on various preoperative factors. Patients with younger age, shorter duration of T2DM, lower preoperative HbA1c and FBS, higher BMI, who were not on insulin therapy, and not having a family history of obesity were the best candidates to achieve a prolonged diabetes remission.
Background

Obesity is one of the most common public health concerns with more than 650 million adults being obese. The worldwide prevalence of type 2 diabetes mellitus (T2DM) nearly tripled between 1975 and 2016 and also rose alongside obesity with more than 422 million people suffering from T2DM and 1.5 million deaths directly attributed to diabetes each year. This has been commonly referred to as ‘diabesity’. Hence the prevention and treatment of diabesity is an important public health priority [1]. Patients with T2DM in Iran suffer from relatively poor health-related quality of life and more than 8.7% of total health expenditure in the Iran healthcare system consume by T2DM [2, 3].

American Diabetes Association and the recent International Federation for the Surgery of Obesity and Metabolic Disorders- Asia Pacific Chapter (IFSO-APC) statement have approved bariatric surgery as the most effective treatment for T2DM or metabolic syndrome for patients who are inadequately controlled by lifestyle alternations and medical treatment for acceptable Asian candidates with BMI ≥30 [4, 5]. Several high-quality evidence from randomized controlled trials has demonstrated superior benefits of bariatric surgery to conventional medical therapy in diabetes remission [6–8].

Bariatric surgery can also treat most obesity-related co-morbidities, such as cardiovascular disease, obstructive sleep apnea, hypertension, dyslipidemia, and asthma [9].

Although there is a substantial improvement in glycemic control of diabetic patients who underwent bariatric surgery, not all patients with T2DM achieve remission after bariatric surgery [10]. Many preoperative patient factors, such as age, the use of insulin, body mass index (BMI), glycosylated hemoglobin (HbA1C), diabetes duration, fasting c-peptide level, and medication usage were associated with T2DM remission [11–17].

Methods

We performed a retrospective analysis of a bariatric surgery cohort of patients with T2DM with BMI ≥30 kg/m² operated by three different types of surgery (RYGB, SG, and OAGB) from August 2009 to February 2021. All patients were operated on by six surgeons. The diagnosis and classification of T2DM was determined using the criteria established by the American Diabetes Association (ADA) [19]. Relevant demographic and metabolic data were retrieved from a prospectively national obesity surgery database [20]. The study was approved by the institutional review board and ethics committee. Each patient signed an informed consent form at the first preoperative visit for using their data in such studies.

The primary outcome of this study was the rate of diabetes remission based on the following definitions. Diabetes remission was assessed at 1 year and 3 years postoperatively. The secondary outcome was to identify predictors of T2DM remission after bariatric surgery.

Definition of T2DM remission

This study used the definition and interpretation of remission in T2DM after bariatric surgery according to the American Society for Metabolic and Bariatric Surgery (ASMBS) criteria [21]. Complete remission was defined as HbA1c <6% and FBG <100 mg/dl in the absence of antidiabetic medications. Partial remission was defined as HbA1c 6–6.4% and FBG 100–125 mg/dl in the absence of antidiabetic medications. Improvement was defined as a statistically significant reduction in HbA1c (by >1%) and FBG (by >25 mg/dl) not meeting the criteria for remission or if there was a significant reduction in antidiabetic medications or dose (by discontinuing insulin or one oral agent or 1/2 reduction in dose). Patients were considered unchanged if there was no remission or improvement criteria as described earlier. Recurrence was defined as FBG or HbA1c in the diabetic range (≥126 mg/dl and ≥6.5%, respectively) or the need for antidiabetic medications after any period of complete or partial remission.

Statistical analyses

Continuous variables were presented as mean±SD (standard deviation) or median (interquartile range, IQR). Categorical variables were expressed as frequencies and percentages. Normality was assessed by Shapiro-Wilk’s test. Paired t-test and one-way analysis of variance (ANOVA) with post hoc Bonferroni test was used for parametric data, and Kruskal-Wallis test for nonparametric data. Pearson’s chi-squared test was used for categorical variables.
We defined a composite binary outcome of diabetes remission (complete and partial remission were considered diabetes remission and others were considered non-remission). The association between T2DM remission at 1-year and 3 years after bariatric surgery and various preoperative characteristics were analyzed using binary logistic regression analysis (odds ratio with 95% confidence interval). The enter method was used for variable selection. A P-value < 0.05 was considered statistically significant. Missing data at independent variables were estimated using the Multiple Imputation with Chained Equations (MICE) method. This is commonly used to impute missing covariate (predictor) data [22, 23]. All statistical analyses were performed using Stata software version 12.0.

Results
A total of 14,391 members of the national obesity surgery database underwent bariatric surgery during the study period. Of them, 1351 patients (9.4%) were with T2DM. The surgeries performed were 675 (50.0%) OAGB, 475 (35.2%) RYGB, and 201 (14.9%) SG. Table 1 presents

Table 1: Preoperative characteristics of patients according to type of bariatric surgery

Characteristic	RYGB	OAGB	SG	p-value
	(n = 475)	(n = 675)	(n = 201)	
Gender				
Female, n (%)	372 (78.3)	522 (77.3)	161 (80.1)	0.700a
Male, n (%)	103 (21.7)	153 (22.7)	40 (19.9)	
Age on day of surgery (years)	47.2 ± 9.6	47.3 ± 10.2	47.5 ± 10.9	0.905b
Diabetes duration (years)	5 (2–9)	5 (2–9)	5 (3–10)	0.332c
BMI (kg/m²)	43.7 ± 6.7	44.6 ± 7.0	43.8 ± 6.9	0.071b
Body Weight (Kg)	115.5 ± 21.7	117.3 ± 22.7	114.9 ± 21.4	0.227b
Insulin use, n (%)	134 (28.2)	186 (27.6)	65 (32.3)	0.413a
Number of oral antidiabetic medications before surgery, n (%)				
0	88 (18.5)	143 (21.2)	40 (19.9)	0.712a
1	283 (59.6)	398 (59.0)	112 (55.7)	
2	86 (18.1)	112 (16.6)	43 (21.4)	
≤3	18 (3.8)	22 (3.2)	6 (3.0)	
Fasting blood sugar (mg/dl)	168±66.1	166.4±59.9	173.1±67.9	0.422b
HbA1c (%)	7.7±1.8	7.8±1.8	7.8±1.8	0.939b
Total cholesterol (mg/dl)	189±53.7	187.1±43.1	192.3±105.9	0.237b
Triglyceride (mg/dl)	202±119.2	192±105.1	192.3±105.9	0.259b
HDL-cholesterol (mg/dl)	44.7±11.3	44.7±10.2	43.7±6.9	0.422b
LDL-cholesterol (mg/dl)	108±41.2	106.4±36.0	103.0±37.9	0.303b
AST (IU/L)	23 (16–32)	21 (16–30)	23 (17–34)	0.151c
ALT (IU/L)	29 (19–46)	26 (18–38)	27 (17–43)	0.028b
Systolic blood pressure, mm Hg	128±17.0	128.3±15.5	128.5±16.8	0.782b
Diastolic blood pressure, mm Hg	82.3±10.9	82.3±9.8	81.7±9.9	0.746b
Hypertension, n (%)	207 (43.6)	278 (41.2)	84 (41.8)	0.717a
Cardiovascular Disease, n (%)	98 (20.6)	204 (30.2)	73 (36.3)	<0.001a
Dyslipidemia, n (%)	212 (44.6)	333 (49.3)	80 (39.8)	0.040c
Hypothyroidism, n (%)	128 (26.9)	202 (29.9)	58 (28.9)	0.546d
Sleep Apnea, n (%)	166 (34.9)	200 (29.6)	69 (34.3)	0.129b
Asthma, n (%)	44 (9.3)	60 (8.9)	23 (11.4)	0.548e
Fatty Liver, n (%)	388 (81.7)	593 (87.8)	165 (82.1)	0.008f
Family History of, n (%)				
Obesity	152 (32.0)	243 (36.0)	69 (34.3)	0.372a
Hypertension	25 (5.3)	53 (7.8)	18 (8.9)	0.132a
T2DM	341 (71.8)	481 (71.3)	128 (63.7)	0.081a
Dyslipidemia	6 (1.3)	9 (1.3)	3 (1.5)	0.972a
Fatty Liver	42 (8.8)	53 (7.8)	16 (7.9)	0.826a

Data are shown as mean±standard deviation for variables with normal distribution and as median (IQR) for variables with skewed distribution and number (%) for categorical variables

aThe result is based on the chi-square test
bThe result is based on the ANOVA test
cThe result is based on the Kruskal-Wallis test
the demographic and preoperative characteristics of the patients according to type of surgery, 1351 and 853 patients completed 1- and 3-year follow-up, respectively. During the first-year follow-up, 5 patients died, and during the third-year follow-up, 4 patients died. The median preoperative alanine aminotransferase (ALT) in patients who underwent RYGB was higher than OAGB and SG (p=0.028). There was a significant difference in the prevalence of cardiovascular disease (p<0.001), dyslipidemia (p=0.040) and fatty liver (p=0.008) between patients in three type of bariatric surgery.

Clinical outcomes

A significant difference was noticed between the preoperative and postoperative values of mean weight, BMI, FBS, HbA1c, total cholesterol, triglyceride, HDL, LDL at 1-year and 3 years after surgery. Reduction in the number of patients who were on insulin therapy before surgery from 385(28.5%) to 72(5.4%) at 1 year and 40(4.7%) at 3 years after surgery, and cessation of oral antidiabetic medications in most patients 1 year and 3 years after surgery was found to be statistically significant (Table 2).

Weight reduction

Mean BMI±SD at baseline, 1 year, and 3 years postoperatively were 44.6±7.0, 30.0±5.0 (32.7% weight loss [WL] from baseline weight), and 30.6±4.6 (31.4% WL from baseline weight) for OAGB; 43.7±6.7, 30.2±5.1 (30.9% WL), and 31.3±4.9 (28.4% WL) for RYGB; and 43.8±6.9, 31.9±6.8 (27.2% WL), and 30.8±4.7 (29.7% WL) for SG (Table 3). During the first year of follow-up, mean BMI decreased by 14.6, 13.5, and 11.9 units, for OAGB, RYGB, and SG, respectively. At 3 years of follow-up, reduction in the mean BMI, from baseline, were approximately same among the surgeries: 14.0, 12.4, and 13.0, respectively (Table 3).

Glucose control

For the three surgeries, a mean reduction of HbA1c of 2.0% or more was maintained at all two-time points. Mean HbA1c decreased by 2.1% in the first year following RYGB and SG, and by 2% following OAGB. The mean HbA1c decreased slightly more following three types of surgeries during the third year postoperatively (Fig. 1).

Diabetes remission

Complete remission of T2DM was achieved in a total of 1010 (74.8%) patients at 1-year, and 3 years of prolonged remission was achieved in 677 (79.4%) patients as shown in Table 4. At 1-year follow-up, complete remission rate was approximately the same for patients who underwent RYGB and OAGB, and was higher than compared to SG, but not statistically significant. During 3 years, rates of complete remission increased for patients who underwent RYGB, OAGB and SG.

Table 2 Postoperative changes after 1 and 3 years

Characteristic	Preoperative (n = 1351)	Postoperative 1 year (n = 1351)	P-valueb	Postoperative 3 years (n = 853)	P-valueb
BMI (kg/m²)	44.1±6.9	30.2±5.3	<0.001	30.9±4.7	<0.001
Body Weight (Kg)	116.3±22.2	79.3±15.8	<0.001	81.2±15.8	<0.001
Fasting blood sugar (mg/dl)	168.1±63.4	93.7±20.7	<0.001	98.4±22.4	<0.001
HbA1c (%)	7.8±1.8	5.7±1.1	<0.001	5.8±1.2	<0.001
Total cholesterol (mg/dl)	187.1±47.7	171.9±47.3	0.002	177.1±40.2	0.002
Triglyceride (mg/dl)	196.3±111.2	117.6±62.9	<0.001	107.6±43.0	<0.001
HDL-cholesterol (mg/dl)	44.6±10.6	53.7±20.6	<0.001	52.3±11.0	<0.001
LDL- cholesterol (mg/dl)	106.5±38.2	96.0±38.1	0.041	103.6±35.8	0.041
Insulin use, n (%)	385 (28.5)	72 (5.4)	<0.001	40 (4.7)	<0.001
Number of oral antidiabetic medications before surgery, n (%)	0 271 (20.1)	1161 (85.9)	<0.001	749 (87.8)	<0.001
1 793 (58.7)	161 (11.9)	79 (9.3)			
2 241 (17.8)	25 (1.9)	22 (2.6)			
≤3 46 (3.4)	4 (0.3)	3 (0.3)			

Data are shown as mean±standard deviation for continuous variables and number (%) for categorical variables

* Preoperative versus 1 year

b Preoperative versus 3 years

Table 3 Trends in BMI over time, according to type of surgery

Characteristic	Preoperative*	Postoperative 1 year*	Postoperative 3 year*
OAGB	44.6±7.0	30.0±5.0	30.6±4.6
RYGB	43.7±6.7	30.2±5.1	31.3±4.9
SG	43.8±6.9	31.9±6.8	30.8±4.7

At 1 year and 3 years follow-up, for all surgeries, postoperative BMI versus preoperative are different at the level of p<0.05

*mean±SD
Predictors of T2DM remission
Univariable and multivariable associations with the probability of remission at 1-year and 3 years after surgery are shown in Tables 5 and 6. In univariable analysis, age, preoperative BMI, duration of T2DM, no insulin use, FBS, HbA1c, and no family history of obesity were the best preoperative predictors of diabetes remission 1-year and 3 years after surgery.

However, when all these variables were fitted into a multivariable logistic regression model, younger age, higher perioperative BMI, shorter duration of T2DM, no insulin therapy, lower preoperative FBS and HbA1c, and not having a family history of obesity were significantly associated with increased the probability of diabetes remission at 1-year and 3 years after surgery (p < 0.05). At 1 and 3 years after surgery, the type of surgery was not a predictive factor for postoperative diabetes remission after adjustment for potential confounders.

Discussion
The field of metabolic and bariatric surgery has advanced rapidly over the last decade and this is due in large part to the effect of these operations on T2DM. To our knowledge, this study represents the largest cohort in our country focusing on T2DM remission after three types of bariatric surgery (RYGB, SG, OAGB). We showed that bariatric surgery is a surgical procedure to reach the remission of T2DM. In our cohort, 74.8% and 79.4% of patients experienced complete T2DM remission at 1 year and 3 years after bariatric surgery, respectively. Consistently, a retrospective analysis of 114 individuals who underwent RYGB revealed that 47.4% achieved complete T2DM remission during a mean follow-up of 12 months [24]. 1-year after surgery, we observed 74.8% complete remission and 5.7% partial remission rates. Complete remission level was more than those reported by other authors (42.2% [25], 68.91% [26], 74% [10]). On the other hand, the T2DM remission rate 3 years after bariatric surgery reported in this study is higher than rates reported in prospective and retrospective other cohort studies (79.4% at 3 years vs. 62-77%) [27, 28]. Such variations in T2DM remission rates are probably because of the heterogeneity of definitions of T2DM remission employed by different studies. For example, others observed a decrease in complete remission from 92.7 to 43.6% when using a more precise definition [29]. Hence, we used standardized outcome reporting for T2DM remission to enable more precise comparisons throughout the medical literature. In our study, there was no statistically significant difference in the remission of type 2 diabetes 1 year and 3 years after surgery according to three types of bariatric surgeries.

Given the invasive nature of bariatric surgery, it is critical to identify patients who can best benefit from surgery. Because by using the most metabolically effective procedure, some diabetic patients still did not reach diabetes remission after surgery [30]. The present study found that, younger patients, with a shorter duration of diabetes, and lower preoperative FBS and HbA1c, with higher preoperative BMI, that were less likely to, took insulin therapy and were less likely to have had a family history of obesity were more likely to have achieved T2DM remission 1-year and 3 years after surgery according to three types of bariatric surgeries.

In terms of patient characteristics, patients who achieved T2DM remission 1-year and 3 years after surgery were likely to be younger, consistent with others [9, 31, 32], and with research where patients who achieved T2DM remission were approximately 6.48 years younger compared with those who did not [33].

Table 4: T2DM remission 1 and 3 years after RYGB, OAGB, and SG surgery

Diabetic status, n (%)	Postoperative 1-year (n = 1351)	Postoperative 3 years (n = 853)								
	ALL	RYGB	OAGB	SG	P-value	ALL	RYGB	OAGB	SG	P-value
Complete remission	1010 (74.8)	359 (75.6)	509 (75.4)	142 (70.6)	0.590	677 (79.4)	247 (79.4)	336 (80.4)	94 (75.8)	0.695
Partial remission	77 (5.7)	29 (6.1)	35 (5.2)	13 (6.5)		33 (3.9)	10 (3.2)	16 (3.8)	7 (5.7)	
Improvement	196 (14.5)	63 (13.3)	97 (14.4)	36 (17.9)		72 (8.4)	29 (9.3)	30 (7.2)	13 (10.5)	
Unchanged	65 (4.8)	24 (5.1)	31 (4.6)	10 (5.0)		54 (6.3)	21 (6.8)	27 (6.5)	6 (4.8)	
Recurrence	3 (0.2)	0	3 (0.4)	0		17 (2.0)	4 (1.3)	9 (2.1)	4 (3.2)	

p-values represent association among all three groups
Table 5: Logistic regression analysis of preoperative factors in patients with and without diabetes remission 1-year after surgery

Characteristic	Unadjusted OR (95% CI)	p-value	Adjusted OR (95% CI)	p-value
Female (male = ref)	0.79 (0.57–1.12)	0.194	0.68 (0.45–1.02)	0.064
Age on day of surgery (for each year)	0.95 (0.94–0.96)	< 0.001	0.97 (0.95–0.98)	< 0.001
BMI (kg/m2) (for each 1 unit)	1.05 (1.03–1.08)	< 0.001	1.04 (1.01–1.07)	0.003
Diabetes duration (for each year)	0.86 (0.84–0.88)	< 0.001	0.92 (0.89–0.94)	< 0.001
Insulin use	0.16 (0.12–0.22)	< 0.001	0.28 (0.19–0.42)	< 0.001
Number of oral antidiabetic medications before surgery				
0	1	0.739	1	0.857
1	1.11 (0.59–2.09)	0.923	1.06 (0.58–1.94)	0.924
2	1.04 (0.47–2.29)	0.141	0.96 (0.45–2.07)	0.418
≥3	0.45 (0.15–1.31)	0.58	0.15 (0.1–2.17)	
Type of surgeries				
RYGB	1	0.642	1	0.354
OAGB	0.93 (0.68–1.26)	0.173	0.84 (0.58–1.22)	0.357
SG	0.76 (0.51–1.13)	0.79	0.79 (0.48–1.30)	
Fasting blood sugar (mg/dl) (for each 1 mg/dl)	0.99 (0.98–0.99)	< 0.001	0.995 (0.991–0.998)	0.001
HbA1c (for each 1%)	0.64 (0.59–0.69)	< 0.001	0.78 (0.69–0.87)	< 0.001
Total cholesterol (mg/dl)	1.00 (0.995–1.01)	0.835	1.003 (0.995–1.012)	0.445
Triglyceride (mg/dl)	1.00 (0.999–1.001)	0.763	0.998 (0.997–1.000)	0.084
HDL-cholesterol (mg/dl)	1.001 (0.989–1.014)	0.852	1.00 (0.998–1.002)	0.997
LDL- cholesterol (mg/dl)	0.999 (0.995–1.002)	0.410	0.995 (0.986–1.004)	0.282
AST (IU/L)	0.997 (0.99–1.004)	0.391	1.00 (0.986–1.013)	0.943
ALT (IU/L)	0.998 (0.99–1.01)	0.265	0.998 (0.988–1.008)	0.674
Systolic blood pressure, mm Hg	0.999 (0.991–1.007)	0.843	1.006 (0.992–1.019)	0.423
Diastolic blood pressure, mm Hg	1.003 (0.989–1.016)	0.707	0.996 (0.974–1.018)	0.725
Obesity-related disease (no = ref)				
Dyslipidemia	1.06 (0.81–1.39)	0.667	1.13 (0.79–1.60)	0.504
Hypertension	1.02 (0.78–1.34)	0.869	1.04 (0.73–1.47)	0.834
Cardiovascular Disease	1.11 (0.82–1.50)	0.512	1.15 (0.76–1.72)	0.508
Hypothyroidism	0.83 (0.62–1.11)	0.215	0.69 (0.48–1.02)	0.168
Sleep Apnea	0.83 (0.62–1.09)	0.187	0.84 (0.58–1.21)	0.339
Asthma	1.42 (0.86–2.36)	0.173	1.76 (0.94–3.32)	0.079
Fatty Liver	0.96 (0.67–1.40)	0.839	1.21 (0.76–1.93)	0.417
Family History of, (no = ref)				
Obesity	0.42 (0.26–0.68)	< 0.001	0.33 (0.19–0.56)	< 0.001
Hypertension	1.34 (0.76–2.36)	0.317	1.72 (0.82–3.64)	0.154
Diabetes	0.75 (0.55–1.02)	0.064	0.95 (0.65–1.39)	0.813
Dyslipidemia	0.90 (0.52–1.66)	0.919	0.60 (0.12–3.01)	0.537
Fatty Liver	1.14 (0.45–2.88)	0.790	1.03 (0.44–1.78)	0.731

*p Multivariable logistic regression including all factors listed in the table

is associated with greater deterioration of pancreatic reserve and disease progression resulting in lower remission rates [16]. As for the duration of diabetes, a shorter T2D duration was associated with remission, consistent with research where patients in remission had a shorter mean T2DM duration compared with those with no remission [32]. Longer T2DM duration reflects disease severity because of reduced beta-cell function and secretory capacity, which significantly reduces the chances of remission [31, 34, 35]. Our study showed that patients with higher BMI had higher remission rates. Bhasker et al’s study and Dixon et al’s study introduced BMI greater than 35 kg/m2 as a predictive variable for type 2 diabetes improvement after surgery[36, 37]. While the study by Mingrone et al., Panunzi et al., and Lee et al. showed that preoperative BMI was not associated to postoperative type 2 diabetes remission [38–40]. Higher BMI is usually associated with greater weight loss and hence, the higher remission rates. We also showed that lower preoperative HbA1c and FBS levels to be positive predictors of diabetic remission after bariatric surgeries. Like in our study, Jindal et al. also revealed lower HbA1c and FBS before surgery to be associated with higher remission rate [41]. In addition, our results showed that the remission rate was greater for patients who were not taking insulin preoperatively. This supports research where patients not requiring insulin exhibited a higher remission rate than those on insulin [32, 42]. Insulin therapy reflects significantly reduced beta-cell function that may
not fully respond to the weight loss and increase in incretin after bariatric surgery [31, 32].

Of great interest, we showed that a family history of obesity can play an important role in predicting T2DM remission. To our knowledge, no study attributed this role to the family history of obesity. However, because family history reflects genetic susceptibility in addition to another factor, and because most Iranian families are very large extended families, it may be a useful predictor for T2DM remission.

Although 50% of patients underwent OAGB, 35.2% RYGB, and 14% SG, there was no statistically significant difference between the three types of surgery in terms of remission of T2DM after adjusted for potential founders. Of course, it should be kept in mind that the patients in the three type of surgeries had significant differences in ALT, the prevalence of cardiovascular diseases, dyslipidemia, and fatty liver.

In our study, 0.22% and 1.99% of patients who achieved complete or partial remission experienced a subsequent relapse of T2DM at 1 year and 3 years after surgery, which is lower than the range of relapse prevalence (17–40%) reported in the few prior studies that evaluated long terms outcomes of T2DM after surgery [43–45].

This study has some limitations. First, though patient data were gathered prospectively, analysis is retrospective with some missing data, especially in laboratory values. We excluded some patients with missing follow-up outcomes from the analysis that would affect outcome assessment and remission rates undoubtedly. Another

Characteristic	Unadjusted OR (95% CI)	p-value	Adjusted OR (95% CI)	p-value
Female (male = ref)	0.91 (0.58–1.40)	0.657	0.71 (0.42–1.21)	0.206
Age on day of surgery (years)	0.96 (0.94–0.98)	< 0.001	0.96 (0.94–0.99)	0.003
BMI (kg/m²)	1.07 (1.04–1.11)	< 0.001	1.07 (1.03–1.11)	< 0.001
Diabetes duration (years)	0.88 (0.85–0.91)	< 0.001	0.896 (0.87–0.93)	< 0.001
Insulin use	0.17 (0.11–0.24)	< 0.001	4.679 (2.82–7.76)	< 0.001
Number of oral antidiabetic medications before surgery				
0	1	0.782	1	0.747
1	0.94 (0.58–1.49)	0.081	0.906 (0.49–1.65)	0.272
2	0.61 (0.35–1.06)	0.134	0.67 (0.33–1.37)	0.295
≥3	0.49 (0.16–1.27)	0.49 (0.13–1.84)		
Type of surgeries				
RYGB	1	0.571	1	0.974
OAGB	1.12 (0.76–1.66)	0.770	1.01 (0.62–1.64)	0.910
SG	0.92 (0.54–1.58)	0.96 (0.49–1.88)		
Fasting blood sugar (mg/dl)	0.989 (0.986–0.991)	< 0.001	0.992 (0.988–0.995)	< 0.001
HbA1c (%)	0.64 (0.58–0.71)	< 0.001	0.82 (0.71–0.96)	0.010
Total cholesterol (mg/dl)	0.999 (0.996–1.002)	0.593	1.01 (0.99–1.02)	0.695
Triglycerides (mg/dl)	0.998 (0.997–1.00)	0.202	0.999 (0.996–1.001)	0.326
HDL cholesterol (mg/dl)	1.01 (0.991–1.03)	0.328	1.01 (0.98–1.03)	0.617
LDL cholesterol (mg/dl)	0.998 (0.994–1.003)	0.479	0.997 (0.984–1.01)	0.720
AST (IU/L)	0.997 (0.989–1.004)	0.393	0.992 (0.978–1.005)	0.221
ALT (IU/L)	0.996 (0.99–1.002)	0.192	1.005 (0.988–1.022)	0.582
Systolic blood pressure, mm Hg	1.00 (0.98–1.02)	0.906	1.002 (0.983–1.022)	0.807
Diastolic blood pressure, mm Hg	1.01 (0.95–1.03)	0.158	1.021 (0.990–1.05)	0.187
Obesity-related disease (no = ref)				
Dyslipidemia	0.79 (0.55–1.13)	0.190	0.66 (0.42–1.06)	0.085
Hypertension	0.94 (0.65–1.36)	0.761	0.85 (0.53–1.34)	0.483
Cardiovascular Disease	1.33 (0.88–2.01)	0.175	1.39 (0.81–2.43)	0.232
Hypothyroidism	0.86 (0.58–1.27)	0.443	0.70 (0.42–1.16)	0.168
Sleep Apnea	0.89 (0.61–1.31)	0.564	1.001 (0.61–1.65)	0.996
Asthma	1.27 (0.64–2.55)	0.496	1.49 (0.59–3.75)	0.401
Fatty Liver	0.77 (0.45–1.31)	0.334	1.38 (0.71–2.67)	0.342
Family History of, (no = ref)				
Obesity	0.42 (0.26–0.68)	< 0.001	0.46 (0.28–0.76)	0.003
Hypertension	1.06 (0.58–1.93)	0.859	1.43 (0.63–3.27)	0.396
Diabetes	0.96 (0.67–1.04)	0.829	1.45 (0.89–2.34)	0.130
Dyslipidemia	3.06 (0.40–23.39)	0.280	1.16 (0.14–9.82)	0.895
Fatty Liver	1.10 (0.64–1.92)	0.727	1.38 (0.66–2.92)	0.393

* Multivariable logistic regression including all factors listed in the table.
The present study demonstrated weight loss and improvement in glucose control and diabetes remission following three types of bariatric surgery. The higher rates of diabetes remission are seen in younger patients with higher preoperative BMI, lower HbA1c and FBS, with shorter duration of T2DM who were not insulin therapy, and not having a family history of obesity at 1-year and 3 years after bariatric surgery.

In summary, the present study demonstrated weight loss and improvement in glucose control and diabetes remission following three types of bariatric surgery. The higher rates of diabetes remission are seen in younger patients with higher preoperative BMI, lower HbA1c and FBS, with shorter duration of T2DM who were not insulin therapy, and not having a family history of obesity at 1-year and 3 years after bariatric surgery.
7. Nguyen NT, Kim S, Xu S, Phelan M. Ten-year outcomes of a Prospective Randomized Trial of Laparoscopic Gastric Bypass Versus Laparoscopic Gastric Banding. Ann Surg. 2018;268(1):106–13.

8. Techagumpuch A, Thanavachirsin K, Udomsawasung P. A prospective random-controlled clinical trial: Two years outcome in diabetes control after bariatric surgery: comparison between laparoscopic sleeve gastrectomy and laparoscopic roux-en-y gastric bypass. J Med Assoc Thai. 2019;102(2):309–312.

9. Lee W-J, Chong K, Chen J-C, Ser-KH, Lee Y-C, Tsoi J-L et al. Predictors of diabetes remission after bariatric surgery in Asia. Asian J Surg. 2012;35(2):67–73.

10. Pessoa BM, Browning MG, Mazzini GS, Wolfe L, Kaplan A, Khoraki J, et al. Factors mediating type 2 diabetes remission and relapse after gastric bypass surgery. J Am Coll Surg. 2020;230(1):7–16.

11. Lanzarin E, Molina J, Lara J, Cuevas P, Musile M, Papapetrou K, et al. Predicting Factors of Remission in Patients with Type 2 Diabetes and Body Mass Index Between 25 and 35 Kg/m2. After Gastric Bypass. Obes Surg. 2013;23(8):1019-24.

12. Lee W-J, Hur KY, Lakadawala M, Kasama K, Wong SK, Chen S-C, et al. Predicting success of metabolic surgery: age, body mass index, C-peptide, and duration score. Surg Obes Relat Dis. 2013;9(3):379–84.

13. Scopinaro N, Adami GF, Bruzzi P, Cordera R. Prediction of Diabetes Remission at Long Term Following Bilipancreatic Diversion. Obes Surg. 2017;27(7):1583-7.

14. Liang H, Cao Q, Liu H, Guan W, Wong C, Tong D. The predictive factors for diabetic remission in patients with BMI > 30 kg/m2 and BMI < 30 kg/m2 are different. Obesity surgery. 2018;28(7):1943–9.

15. Wang G-F, Yan Y-X, Xu N, Yin D, Hu Y, Zhang J-P, et al. Predictive factors of type 2 diabetes mellitus remission following bariatric surgery: a meta-analysis. Obes Surg. 2015;25(2):199–208.

16. Fang YL, Lee WJ. Predictors for type 2 diabetes mellitus remission after metabolic/bariatric surgery. Annals of Laparoscopic and Endoscopic Surgery. 2017:2.

17. Gonzalo R, Sanz L, Turienzo E, Gomez M, Cagigas JC, Bolado M, et al. Predictors of long-term diabetes remission after ROUX-EN-Y gastric bypass type 2 diabetes and metabolic surgery. Obes Surg. 2017;27:1119-24.

18. Ahniz F, Figura A, Hofmann T, Stengel A, Elbelt U, Klapp BF. Surgically and medically treated obese patients differ in psychological factors, regardless of being more obese or obesity-related comorbidities. A comparison between groups and an analysis of predictors. PloS one. 2015;10(2).

19. Chamberlain JJ, Rhinehart AS, Shafer CF Jr, Neuman A. Diagnosis and management of diabetes: synopsis of the 2016 American Diabetes Association Standards of Medical Care in Diabetes. Ann Intern Med. 2016;164(8):542–52.

20. Kabir A, Paizouk A, Hajiyan M. Iran Obesity and Metabolic Surgery (IOMS) Cohort Study: Rationale and Design. Indian Journal of Surgery. 2021:1–9.

21. Riddle MC, Cefalu WT, Evans PH, Gerstein HC, Nauck MA, Oh WK, et al. Consensus report: definition and interpretation of remission in type 2 diabetes. J Endocrinol Metabolism. 2012;107(1):1–9.

22. Plutzer K, Meja GC, Spencer AJ, Keirse MJ. Dealing with missing outcomes: lessons from a randomized trial of a prenatal intervention to prevent early type 2 diabetes improvement after gastric bypass and sleeve gastrectomy. J Med Assoc Thai. 2019;102(3):298–303.

23. Hauser DL, Titchner RL, Wilson MA, Eid GM. Long-Term outcomes of laparoscopic roux-en-y gastric bypass in US veterans. Obes Surg. 2010;20(3):283–9.

24. Mas-Lorenzo A, Benajides D, Flores-Le Roux J, Pedro-Botet J, Ramon J, Pari I, et al. Impact of different criteria on type 2 diabetes remission rate after bariatric surgery. Obes Surg. 2014;24(11):1881–7.

25. Chua HH, Zhou HJ, Khoo CM, Shabbir A, Lomanto D, So JB. Attitudes and concerns of diabetic patients towards bariatric surgery as treatment of diabetes. Annals of the Academy of Medicine Singapore. 2016;45(11):495–506.

26. Jans A, Näslund I, Oottsson J, Szabo E, Näslund E, Stenberg E. Duration of type 2 diabetes and remission rates after bariatric surgery in Sweden 2007–2015: A registry-based cohort study. PLoS Med. 2019;16(11):e1002985.

27. Ramos-Levi A, Sanchez-Pernaueta A, Mata P, Cabreroz L, Barabash A, Hernandez C, et al. Diagnosis of diabetes remission after bariatric surgery may be jeopardized by remission criteria and previous hypoglycemic treatment. Obes Surg. 2013;23(10):1520–6.

28. Soutereau B, Belo S, Neves JS, Magalhães D, Silva RB, Oliveira SC, et al. Preoperative beta cell function is predictive of diabetes remission after bariatric surgery. Obes Surg. 2017;27(2):288–94.

29. Kang JJ, Sheppard C, Kim D, Switzer N, Shi X, Tian C, et al. Predictive factors for diabetes remission after bariatric surgery. Can J Surg. 2019;62(5):315.

30. Lee WJ, Chong K, Ser KH, Chen JC, Ye LC, Chen SC, et al. C-peptide predicts the remission of type 2 diabetes after bariatric surgery. Obes Surg. 2012;22(2):293–8.

31. Bhasker AG, Remiddi C, Batra P, Sood A, Shahik S, Lakdawala M. Predictors of Remission of T2DM and Metabolic Effects after Laparoscopic Roux-en-Y Gastric Bypass in Obese Indian Diabetics—a 5-Year Study. Obes Surg. 2015;25(7):1191–7.

32. Dixon JB, Chuang L-M, Chong K, Chen S-C, Lambert GW, Stzainzky NE, et al. Predicting the glycemic response to gastric bypass surgery in patients with type 2 diabetes. Diabetes Care. 2013;36(2):20–6.

33. Lee WJ, Chong K, Chen SC, Zachariah J, Ser KH, Lee YC, et al. Preoperative Prediction of Type 2 Diabetes Remission After Gastric Bypass Surgery: a Comparison of DiReM Scores and ABCD Scores. Obes Surg. 2016;26(10):2418–24.

34. Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Nannì G, et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 Year follow-up of an open-label, single-centre, randomised controlled trial. The Lancet. 2015;386(9997):964–73.

35. Panunzi S, De Gaetano A, Cingolani A, Mingrone G. Predictors of remission of diabetes mellitus in severely obese individuals undergoing bariatric surgery: Do BMI or procedure choice matter? A meta-analysis. Ann Surg. 2015;261(3):459–67.

36. Jindal R, Gupta M, Ahuja A, Nain PS, Sharma P, Aggarwal A. Factors determining diabetic remission after sleeve gastrectomy: A prospective study. Nigerian J Surg. 2020;26(1):66–71.

37. Jiménez A, Casamitjana R, Flores L, Viaplana J, Corcelles R, Lacy A, et al. Long-term effects of sleeve gastrectomy and Roux-en-y gastric bypass surgery on type 2 diabetes mellitus in morbidly obese subjects. Ann Surg. 2012;256(6):1023–9.

38. de Oliveira VP, Martins GP, Mottin CC, Rizzoli J, Friedman R. Predictors of long-term remission and relapse of type 2 diabetes mellitus following gastric bypass in severely obese patients. Obes Surg. 2013;23(1):193–102.

39. Heshmati K, Harris DA, Alakbaran H, Tavakkoli A, Sheu EG. Comparison of early type 2 diabetes improvement after gastric bypass and sleeve gastrectomy: medication cessation at discharge predicts 1-year outcomes. Surg Obes Relat Dis. 2019;15(1):2025–32.

40. Raj PP, Bhattacharya S, Kumar SS, Sabnis SC, Parthasarathi R, Swamy PDK, et al. Do Bariatric Surgery-Related Type 2 Diabetes Remission Predictors Add Clinical Value? A Study on Asian Indian Obese Diabetics. Obes Surg. 2017;27(8):2113–9.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.