Weak and Strong Forms of ω-Perfect Mappings

G. S. Ashaea*, Y. Y. Yousif
Department of Mathematics, College of Education for Pure Sciences (Ibn-Al-Haitham), University of Baghdad, Baghdad, Iraq

Received: 14/11/2019 Accepted: 15/3/2020

Abstract:
In this paper, we introduce weak and strong forms of ω-perfect mappings, namely the θ-ω-perfect, weakly θ-ω-perfect and strongly θ-ω-perfect mappings. Also, we investigate the fundamental properties of these mappings. Finally, we focused on studying the relationship between weakly θ-ω-perfect and strongly θ-ω-perfect mappings.

Keywords: weakly θ-ω-perfect mappings and strongly θ-ω-perfect mappings.

1. Introduction
In 1943, Formin [1] introduced the concepts of θ-continuous mappings. In 1966, Bourbaki [2] defined perfect mappings. In 1968, Velicko[3] introduced the concepts of θ-open and θ-closed subsets, while in 1968 Singal [4] introduced the notion of almost continuous mappings. In 1981, Long and Herrington [5] introduced the notion of strongly continuous mappings, in 1989, Hdeib [6] introduced the concepts of ω-continuous mappings. In 1991, Chew and Tong [7] introduced the notion of weakly continuous mappings. In this work, (G, τ) and (H, σ) stand for topological spaces. For a subset K of G, the closure of K and the interior of K will be denoted by $\text{cl}(K)$ and $\text{int}(K)$, respectively. Let (G, τ) be a space and K be a subset of G, then a point $g \in G$ is called a condensation point of K if, for each $S \in \tau$ and $g \in S$, the set $S \cap K$ is uncountable. K is called to be ω-closed [6] if it contains all its condensation points. The complement of ω-closed set is called to be ω-open. It is well known that a subset W of a space (G, τ) is ω-open if and only if, for each $g \in W$, there exists $S \in \tau$, such that $g \in S$ and $S-W$ is countable. The family of all ω-open sets of a space (G, τ), denoted by $\omega(G)$, forms a topology on G finer than τ. The ω-closure and ω-interior, that can be known in the same way as $\text{cl}(K)$ and $\text{int}(K)$, respectively, will be denoted by $\omega\text{cl}(K)$ and $\omega\text{int}(K)$, respectively. Several characterizations of ω-closed sets were provided in previous articles [8-16]. A point g of G is called θ-cluster point of K if $\text{cl}(S) \cap K \neq \emptyset$, for all open sets S of G containing g. The set of all θ-cluster points

*Email: ghidaasadoon@gmail.com
of K is called θ-closure of K and is denoted by $\text{cl}_\theta(K)$. A subset K is called θ-closed if $K = \text{cl}_\theta(K)$ [3]. The complement of θ-closed set is called θ-open. A point g of G is called an ω-θ-cluster point of K if $\omega\text{cl}(S) \cap K \neq \emptyset$ for every ω-open set S of G containing g. The set of all ω-θ-cluster points of K is called ω-θ-closure of K and is denoted by $\omega\text{cl}_\theta(K)$. A subset K is called ω-θ-closed if $K = \omega\text{cl}_\theta(K)$. The complement of ω-θ-closed set is called ω-θ-open. The ω-θ-interior of K is defined by the union of each ω-θ-open sets contained in K and is denoted by $\omega\text{int}_\theta(K)$. A mapping $\lambda : (G, \tau) \rightarrow (H, \sigma)$ is called ω-continuous (see[16]) (resp., almost weakly ω-continuous[see[11]]) if for each $g \in G$ and each open set T of H containing $\lambda(g)$, there exists an open subset S in G, such that $\lambda(S) \subseteq T$ (resp., $\lambda(S) \subseteq \text{cl}(T)$). A mapping $\lambda : (G, \tau) \rightarrow (H, \sigma)$ is called almost ω-continuous[12] (resp., θ-ω-continuous (see[13])), strongly ω-θ-continuous (see[7])) if, for each $g \in G$ and for each regular open set T (resp., open) of H containing $\lambda(g)$, there exists an open subset S in G, such that $\lambda(S) \subseteq T$ (resp., $\lambda(\omega\text{cl}(S)) \subseteq \text{cl}(T)$, $\lambda(\omega\text{cl}(S)) \subseteq T$). A mapping $\lambda : (G, \tau) \rightarrow (H, \sigma)$ is called θ-continuous (resp., continuous[16]), if for all an open set T in H, $\lambda^{-1}(T)$ is an θ-open (resp., open) set in G. A mapping $\lambda : (G, \tau) \rightarrow (H, \sigma)$ is called weakly (resp., strongly) continuous[3] if, for each $g \in G$ and all open set T of H containing $\lambda(g)$, there is an open set S of G, such that $\lambda(S) \subseteq \text{cl}(T)$ (resp., $\lambda(\text{cl}(S)) \subseteq T$). A mapping $\lambda : (G, \tau) \rightarrow (H, \sigma)$ is called almost continuous[7] if $\lambda^{-1}(T)$ is open in G for all regular open set T of H. A mapping $\lambda : (G, \tau) \rightarrow (H, \sigma)$ is called weakly (resp., strongly) θ-continuous if, for each $g \in G$ and all open set T of H containing $\lambda(g)$, there is an open set S in G, such that $\lambda(S) \subseteq \text{cl}(T)$ (resp., $\lambda(\text{cl}(S)) \subseteq T$). A topological space G is called a regular[14] if, for all closed set F and for each point $g \in G$, there exist disjoint open sets S and T such that $g \in S$ and $F \subseteq T$. A topological space G is called a semi-regular[15] if, for all point $g \in G$ and all open set S containing g, there is an open set T such that $g \in S \subseteq \text{int}(\text{cl}(T)) \subseteq S$. A topological space G is called ω-regular (resp., ω-regular[12]) if, for all closed (resp., closed) set F and for each point $g \in G$, there are disjoint ω-open sets S and T such that $g \in S$ and $F \subseteq T$. Also we introduce several results and examples concerning deferent forms of ω-perfect mappings.

2. Weakly θ-ω-Perfect Mappings

In this section, we study the weakly θ-ω-perfect mappings and several related theorems.

Definition 2.1. A mapping $\lambda : (G, \tau) \rightarrow (H, \sigma)$ is said to be weakly θ-ω-continuous at $g \in G$ if, for every open subset T of H containing $\lambda(g)$, there exists an ω-θ-open subset S in G containing g, such that $\lambda(S) \subseteq \text{cl}(T)$. If λ is weakly ω-θ-continuous at every $g \in G$, it is said to be weakly θ-ω-continuous.

Definition 2.2. A mapping $\lambda : (G, \tau) \rightarrow (H, \sigma)$ is said to be perfect mapping (resp., ω-perfect mapping, θ-ω-perfect mapping, almost ω-perfect mapping, weakly θ-ω-perfect mapping, almost weakly ω-perfect mapping, θ-perfect mapping) if it is continuous (resp., ω-continuous, θ-ω-continuous, almost ω-continuous, weakly θ-ω-continuous, almost weakly ω-continuous, θ-continuous), closed, and, for every $h \in H$, $\lambda^{-1}(h)$, compact. The relationships among the weakly ω-perfect mappings are given by the following figure:

- ω-perfect mapping
- almost weakly ω-perfect mapping
- weakly θ-ω-perfect mapping
- almost ω-perfect mapping
- θ-ω-perfect mapping

In the figure above, the converses are not true, as demonstrated by the following examples.

Example 2.3. Let $\lambda : (G, \tau) \rightarrow (G, \tau)$ be a mapping such that $G = \{K, L, M\}$, and $\tau = \{\emptyset, G, \{K\}, \{L\}, \{K, L\}\}$ such that $\lambda(K) = \lambda(L) = \lambda(M) = M$. Then λ is θ-ω-perfect mapping but it is not almost ω-perfect mapping.
Example 2.4. Let $\lambda : (\mathbb{R}, \tau) \to (H, \sigma)$ be a mapping such that \mathbb{R} be a real line with topology $\tau = \{ \varnothing, \mathbb{R}, (0, 1) \}$. Let $H = \{ u, v, w \}$ and $\sigma = \{ H, \varnothing, \{ v \}, \{ w \}, \{ v, w \} \}$.
\[
\lambda (g) = \begin{cases}
 u, & \text{if } g \in [0, 2] \\
 v, & \text{if } g \notin [0, 2]
\end{cases}
\]
Then, λ is weakly θ-perfect but it is not θ-perfect.

Example 2.5. As in example 2.4, λ is weakly θ-perfect mapping, but it is not ω-perfect mapping. Also, λ is weakly θ-perfect mapping, but not almost ω-perfect mapping, and λ is almost weakly ω-perfect mapping, but it is not θ-perfect mapping.

Example 2.6. Let $\lambda : (G, \tau) \to (G, \sigma)$ be a mapping such that $G = \{ u, v, w \}$, and $\tau = \{ G, \varnothing, \{ u, v \} \}$ and $\sigma = \{ G, \varnothing, \{ v, w \} \}$, such that $\lambda (u) = \lambda (v) = \lambda (w) = u$. Then λ is almost ω-perfect mapping but it is not ω-perfect mapping.

Example 2.7. Let A be the upper half of a plane and B be the X-axis. Let $X = A \cup B$. If τ_{disc} be the half disc topology on X and τ, be the relative topology that X inherits by virtue of being a subspace of \mathbb{R}^2. Then, the identity of the mapping $\lambda : (X, \tau) \to (X, \tau_{\text{disc}})$ is that it is an almost weakly ω-perfect mapping but it is not ω-perfect mapping.

Example 2.8. Let $\lambda : (G, \tau) \to (G, \sigma)$ be a mapping such that $G = \{ K, L, M \}$ and $\tau = \{ G, \varnothing, \{ K, \} \}$. Let $\sigma = \{ G, \varnothing, \{ K, L \} \}$, such that $\lambda (K) = \lambda (L) = \lambda (M) = M$. Then λ is almost weakly ω-perfect mapping but it is not ω-perfect mapping.

Lemma 2.9. [13] A topological space G is ω-regular (resp., ω^\ast-regular) if and only if, for all $S \in o\omega(G)$ (resp., $S \in O(G)$) and all point $g \in S$, there is $T \in o\omega(G, g) ; g \in T \subseteq ocl(T) \subseteq S$.

Theorem 2.10. Let $\lambda : (G, \tau) \to (H, \sigma)$ be a mapping such that G be an ω-regular space. If λ is almost weakly ω-perfect mapping then it is θ-perfect mapping.

Proof: Assume that λ is almost weakly ω-perfect mapping. It suffices to be demonstrated that λ is θ-continuous, let $g \in G$ and T be an open set containment $\lambda (g)$ in H. Because λ is almost weakly ω-continuous, there is an ω-open set S containment g, such that $\lambda (S) \subseteq cl(T)$. Since G is an ω-regular space, by Lemma 2.9, there is $W \in o\omega(G, g)$ such that $g \in W \subseteq ocl(W) \subseteq S$. Therefore, $\lambda(o\omega(W)) \subseteq cl(T)$. Then λ is θ-continuous, so λ is θ-perfect mapping.

Corollary 2.11. Let (G, τ) be ω-regular spaces. The mapping $\lambda : (G, \tau) \to (H, \sigma)$ is almost weakly ω-perfect if and only if it is θ-perfect.

Theorem 2.12. Let $\lambda : (G, \tau) \to (H, \sigma)$ be an ω-perfect mapping, and let $\mu : (H, \sigma) \to (I, \psi)$ be almost weakly ω-perfect. Then $\mu \circ \lambda : (G, \tau) \to (I, \psi)$ is almost weakly ω-perfect.

Proof: Assume that $g \in G$ and W is an open set containment $(\mu \circ \lambda) (g)$ in I. Since μ is almost weakly ω-continuous, there is an open set T containment $\lambda (g)$ in H such that $\mu (T) \subseteq cl(W)$. Since λ is ω-continuous, then for each $g \in G$ and each open set T of $\lambda (g) = h$, there is an open S of g in G such that $\lambda (S) \subseteq T$, so $\mu (\lambda (S)) \subseteq \mu (T)$ also $(\mu \circ \lambda) (g) \subseteq \mu (T)$, then $(\mu \circ \lambda) (g) \subseteq cl(W)$. Also $\mu \circ \lambda$ is almost weakly ω-continuous. Hence, $\mu \circ \lambda$ is almost weakly ω-perfect mapping.

Theorem 2.13. Let $\lambda : (G, \tau) \to (H, \sigma)$ be a mapping, such that G be an ω-regular space. If λ is weakly θ-perfect mapping then it is ω-perfect mapping.

Proof: Let λ be a weakly θ-perfect mapping. It suffices to be demonstrated that λ is ω-continuous, let $g \in G$ and T be an open set containment $\lambda (g)$ in H. Since H is an ω-regular space, $\lambda (g) \in TJ$ and $cl(T) \subseteq T$. Since λ is weakly θ-continuous, there is an open S of g with $\lambda (S) \subseteq cl(T)$. It follows that $\lambda (S) \subseteq T$, therefore λ is ω-continuous. Hence λ is ω-perfect mapping.

Corollary 2.14. Let (G, τ) be ω-regular spaces. The mapping $\lambda : (G, \tau) \to (H, \sigma)$ is weakly θ-perfect if and only if it is ω-perfect.

Theorem 2.15. Let $\lambda : (G, \tau) \to (H, \sigma)$ be a mapping, such that G be an ω-regular space. If λ is θ-perfect mapping then it is almost ω-perfect mapping.

Proof: Let λ be a θ-perfect mapping. It suffices to be demonstrated that λ is almost ω-continuous, let $g \in G$ and T be an open set containing $\lambda (g)$ in H. Because λ is θ-continuous, ynd λ is an ω-open set S containing g, such that $\lambda (ocl(S)) \subseteq cl(T)$. Because $\lambda (ocl(S)) \subseteq int(cl(T)) \subseteq cl(T)$, then $\lambda (ocl(S)) \subseteq int(cl(T)) \subseteq cl(T)$, then $\lambda (ocl(S)) \subseteq cl(T)$. Also G is ω-regular space, and there is an ω-open set SI in
Almost such that \(g \in S I \) and \(\text{cl}(SI) \subseteq S \), so \(\lambda(\text{ocl}(SI)) \subseteq \lambda(S) \) and \(\text{int}(\text{cl}(T)) \subseteq \text{cl}(T) \). It follows that \(\lambda(S) \subseteq \text{int}(\text{cl}(T)) \). So \(\lambda \) is almost \(\omega \)-continuous. Hence, consider that \(\lambda \) is almost \(\omega \)-perfect mapping.

Corollary 2.16. Let \((G , \tau)\) be a \(\omega \)-regular spaces. The mapping \(\lambda : (G , \tau) \to (H , \sigma) \) is \(\theta\omega \)-perfect if and only if it is almost \(\omega \)-perfect.

Theorem 2.17. Let \(\lambda : (G , \tau) \to (H , \sigma) \) be a mapping such that \(H \) be an \(\omega \)-regular space. If \(\lambda \) is almost weakly \(\omega \)-perfect mapping on \(G \), then it is \(\omega \)-perfect mapping on \(G \).

Proof: Let \(\lambda \) be almost weakly \(\omega \)-perfect mapping. It suffices to be demonstrated that \(\lambda \) is \(\omega \)-continuous, let \(g \in G \) and \(T \) be an open set containing \(\lambda(g) \) in \(H \). Since \(H \) is an \(\omega \)-regular space, there is an open set \(TI \) in \(H \) such that \(\lambda(g) \in TI \) and \(\text{cl}(TI) \subseteq T \). Since \(\lambda \) is almost weakly \(\omega \)-continuous, there is an open-open set \(S \) containment \(g \), such that \(\lambda(S) \subseteq \text{cl}(T) \). It follows that \(\lambda(\text{ocl}(S)) \subseteq \text{cl}(T) \), therefore \(\lambda \) is \(\omega \)-continuous. Hence, \(\lambda \) is \(\omega \)-perfect mapping.

Corollary 2.18. Let \((H , \tau)\) be \(\omega \)-regular spaces. The mapping \(\lambda : (G , \tau) \to (H , \sigma) \) is almost weakly \(\omega \)-perfect if and only if it is \(\omega \)-perfect.

Theorem 2.19. Let \(\lambda : (G , \tau) \to (H , \sigma) \) be a mapping, such that \(G \) be an \(\omega \)-regular space. If \(\lambda \) is weakly \(\theta\omega \)-perfect mapping then it is \(\theta\omega \)-perfect mapping.

Proof: Let \(\lambda \) be weakly \(\theta\omega \)-perfect mapping. It suffices to be demonstrated that \(\lambda \) is \(\theta\omega \)-continuous, let \(g \in G \) and \(T \) be an open set containment \(\lambda(g) \) in \(H \). Since \(G \) is an \(\omega \)-regular space, there is an open set \(TI \) in \(H \) such that \(\lambda(g) \in TI \) and \(\text{cl}(SI) \subseteq S \). Since \(\lambda \) is weakly \(\theta\omega \)-continuous, there is an open-open set \(S \) containment \(g \), such that \(\lambda(S) \subseteq \text{cl}(T) \). Then \(\lambda(S) \subseteq \text{cl}(T) \), \(H \) is \(\omega \)-regular space, and there is an open-open set \(SI \) in \(G \), such that \(g \in SI \) and \(\text{cl}(TI) \subseteq T \), so \(\lambda(S) \subseteq \text{cl}(TI) \subseteq T \). It follows that \(\lambda(S) \subseteq T \). So \(\lambda \) is \(\omega \)-continuous. Hence, consider that \(\lambda \) is \(\omega \)-perfect mapping.

Corollary 2.20. Let \((G , \tau)\) be \(\omega \)-regular spaces. The mapping \(\lambda : (G , \tau) \to (H , \sigma) \) is \(\omega \)-perfect if and only if it is \(\theta\omega \)-perfect.

Theorem 2.21. Let \(\lambda : (G , \tau) \to (H , \sigma) \) be a mapping, such that \(H \) be an \(\omega \)-regular space. If \(\lambda \) is almost \(\omega \)-perfect mapping then it is \(\omega \)-perfect mapping.

Proof: Let \(\lambda \) be an almost \(\omega \)-perfect mapping. It suffices to be demonstrated that \(\lambda \) is \(\omega \)-continuous, let \(g \in G \) and \(T \) be an open set containment \(\lambda(g) \) in \(H \). Because \(\lambda \) is almost \(\omega \)-continuous, there is an open-open set \(S \) containment \(g \), such that \(\lambda(S) \subseteq \text{int}(\text{cl}(T)) \). Because \(\text{int}(\text{cl}(T)) \subseteq \text{cl}(T) \), then \(\lambda(S) \subseteq \text{int}(\text{cl}(T)) \subseteq \text{cl}(T) \). Then \(\lambda(S) \subseteq \text{cl}(T) \), \(H \) is \(\omega \)-regular space, and there is an open-open set \(SI \) in \(G \), such that \(g \in SI \) and \(\text{cl}(TI) \subseteq T \), so \(\lambda(S) \subseteq \text{cl}(TI) \subseteq T \). It follows that \(\lambda(S) \subseteq T \). So \(\lambda \) is \(\omega \)-continuous.

Corollary 2.22. Let \((G , \tau)\) be \(\omega \)-regular spaces. The mapping \(\lambda : (G , \tau) \to (H , \sigma) \) is \(\omega \)-perfect if and only if it is \(\theta\omega \)-perfect.

Theorem 2.23. Let \(\lambda : (G , \tau) \to (H , \sigma) \) be a mapping such that \(H \) be an \(\omega \)-regular space. If \(\lambda \) is weakly \(\theta\omega \)-perfect mapping then it is \(\omega \)-perfect mapping.

Proof: Let \(\lambda \) be weakly \(\theta\omega \)-perfect mapping. It suffices to be demonstrated that \(\lambda \) is almost \(\omega \)-continuous, let \(g \in G \) and \(T \) be an open set containment \(\lambda(g) \) in \(H \). Since \(H \) is an \(\omega \)-regular space then it is an open-open set \(TI \) in \(H \) such that \(\lambda(g) \in TI \) and \(\text{cl}(TI) \subseteq T \). Since \(\lambda \) is weakly \(\theta\omega \)-continuous, there is an open-open set \(S \) containment \(g \), such that \(\lambda(S) \subseteq \text{cl}(T) \). Also, \(\text{int}(\text{cl}(T)) \subseteq \text{cl}(T) \). It follows that \(\lambda(S) \subseteq \text{int}(\text{cl}(T)) \subseteq \text{cl}(T) \), therefore \(\lambda(S) \subseteq \text{int}(\text{cl}(T)) \). So \(\lambda \) is almost \(\omega \)-continuous on \(G \). Hence \(\lambda \) is almost \(\omega \)-perfect mapping.

Corollary 2.24. Let \((H , \tau)\) be \(\omega \)-regular spaces. The mapping \(\lambda : (G , \tau) \to (H , \sigma) \) is weakly \(\theta\omega \)-perfect if and only if it is \(\theta\omega \)-perfect.

Theorem 2.25. Let \(\lambda : (G , \tau) \to (H , \sigma) \) be a mapping and \(\mu : G \to G \times H \) be the graph mapping of \(\lambda \) defined by \(\mu(g) = (g , \lambda(g)) \) for every \(g \in G \). Then \(\mu \) is \(\theta\omega \)-perfect if and only if \(\lambda \) is \(\theta\omega \)-perfect.

Proof: Necessity. Assume that \(\mu \) is \(\theta\omega \)-perfect mapping. It suffices to be demonstrated that \(\lambda \) is \(\theta\omega \)-continuous, let \(g \in G \) and \(T \) be an open set containment \(\lambda(g) \). Then \(G \times T \) is an open set of \(G \times H \) containment \(\mu(g) \). Because \(\mu \) is \(\theta\omega \)-continuous, there is \(S \in \omega O(G , g) \) such that \(\mu(\text{ocl}(S)) \subseteq \text{cl}(G \times T) = G \times \text{cl}(T) \). Therefore, \(\lambda(\text{ocl}(S)) \subseteq \text{cl}(T) \), therefore \(\lambda \) is \(\theta\omega \)-continuous. So \(\lambda \) is \(\theta\omega \)-perfect mapping.
Sufficiency. Assume that λ is θ-ω-perfect mapping. It suffices to be demonstrated that λ is θ-ω-continuous, let $g \in G$ and W be an open set of $G \times H$ containment $\mu(g)$. There are the open sets $SI \subseteq G$ and $T \subseteq H$ such that $\mu(g) = (g, \lambda(g)) \in SI \times T \subseteq W$. Because λ is θ-ω-continuous, there is $S2 \in \omega O(G, g)$ such that $\lambda (\text{occl}(S2)) \subseteq \text{cl}(T)$. Assume that $S = SI \cap S2$, then $S \in \omega O(G, g)$. Therefore, $\mu (\text{occl}(S)) \subseteq \text{cl}(SI) \times \lambda (\text{occl}(S2)) \subseteq \text{cl}(SI) \times \text{cl}(T) \subseteq \text{cl}(W)$. Then μ is θ-ω-continuous. So μ is θ-ω-perfect mapping.

Theorem 2.26. For a mapping $\lambda : G \rightarrow H$ and H is regular, the following properties are equivalent.

(a) λ is weakly θ-ω-perfect.

(b) λ is ω-perfect.

(c) λ is almost ω-perfect.

(d) λ is θ-ω-perfect.

(e) λ is almost ω-perfect.

3. **Strongly θ-ω-Perfect Mappings**

In this section we study the strongly θ-ω-perfect mappings and some of their theorems.

Definition 3.1. A mapping $\lambda : (G, \tau) \rightarrow (H, \sigma)$ is said to be almost strongly ω-continuous if, for each $g \in G$ and each regular open set T of H containing $\lambda(g)$, there exists an ω-open subset S in G, such that $\lambda(S) \subseteq T$.

Definition 3.2. A mapping $\lambda : (G, \tau) \rightarrow (H, \sigma)$ is said to be strongly θ-ω-perfect mapping (resp., almost strongly ω-perfect mapping) if it is strongly θ-ω-continuous (resp., almost strongly ω-continuous), closed, and, for every $h \in H$, $\lambda^{-1}(h)$,compact.

The relationships among the strongly ω-perfect mappings are given by the following figure:

\[\text{\textbf{ω-perfect mapping}} \rightarrow \text{\textbf{almost strongly ω-perfect mapping}} \rightarrow \text{\textbf{strongly θ-ω- perfect mapping}} \rightarrow \text{\textbf{θ-ω-perfect mapping}} \rightarrow \text{\textbf{ω-perfect mapping}}\]

In the figure above, the converses are not to be right, as demonstrated by the following examples:

Example 3.3. Let $\lambda : (G, \tau) \rightarrow (G, \tau)$ be a mapping such that $G = \{K, L, M\}$, and $\tau = \{\emptyset, G, \{K\}, \{L\}, \{K, L\}\}$ such that $\lambda(K) = \lambda(L) = K$, $\lambda(M) = M$. Then λ is ω-perfect mapping but is not strongly θ-ω-perfect mapping.

Theorem 3.4. Let $\lambda : (G, \tau) \rightarrow (H, \sigma)$ be a mapping such that H be an regular space. If λ is ω-perfect mapping then it is strongly θ-ω-perfect mapping.

Proof: Let λ be an ω-perfect mapping. It suffices to demonstrate that λ is strongly θ-ω-continuous. Let $g \in G$ and T be an open set containment $\lambda(g)$ in H. Because of H is an regular space, there is an open set W such that $\lambda(g) \in W \subseteq \text{cl}(W) \subseteq T$. Since λ is ω-continuous, then $\lambda^{-1}(W)$ is an ω-open set and $\lambda^{-1}(\text{cl}(W))$ is an ω-closed. Assume that $S = \lambda^{-1}(W)$, then $g \in \lambda^{-1}(W) \subseteq \lambda^{-1}(\text{cl}(W))$, $S \in \omega O(G, g)$ and $\text{occl}(S) \subseteq \lambda^{-1}(\text{cl}(W))$. We have $\lambda(\text{occl}(S)) \subseteq \text{cl}(W) \subseteq T$, therefore λ is strongly θ-ω-continuous. Hence λ is strongly θ-ω-perfect mapping.

Corollary 3.5. Let (H, τ) be regular spaces. The mapping $\lambda : (G, \tau) \rightarrow (H, \sigma)$ is ω-perfect if and only if it is strongly θ-ω-perfect.

Example 3.6. Let $\lambda : (\mathcal{R}, \tau) \rightarrow (\mathcal{R}, \tau)$ be a mapping where $\lambda(g) = g$, and let (\mathcal{R}, τ) where τ is the topology with a basis whose members are of the form (a, b) and $(a, b) \cdot N$ such that $N = \{1/n ; n \in \mathbb{Z}^+\}$. Then (\mathcal{R}, τ) is a Hausdorff but not ω-regular. Then λ is ω-perfect but not almost strongly ω-perfect mapping.

Theorem 3.7. Let $\lambda : (G, \tau) \rightarrow (H, \sigma)$ be a mapping such that G be an ω-regular space. If λ is ω-perfect mapping then it is almost strongly ω-perfect mapping.
Proof: Let λ be an ω-perfect mapping. It suffices to demonstrate that λ is almost strongly ω-continuous. Let $g \in G$ and T be an open set containment $\lambda (g)$ in H. Since λ is ω-continuous, there is an ω-open set S containment g in G such that $\lambda (S) \subseteq T \subseteq \text{cl}(T)$. Since G is ω-regular, there is an ω-open set S_1 in G such that $g \in S_1$ and $\text{cl}(S_1) \subseteq S_1$, so $\lambda (\text{cl}(S_1)) \subseteq \lambda (S)$, $\lambda (S) \subseteq \text{cl}(T)$ and $\text{int}(\text{cl}(T)) \subseteq \text{cl}(T)$. It follows that $\lambda (\text{cl}(S_1)) \subseteq \text{int}(\text{cl}(T))$, therefore λ is almost strongly ω-continuous. Hence λ is almost strongly ω-perfect mapping.

Corollary 3.8. Let (G , τ) be ω-regular spaces. The mapping $\lambda : (G , \tau) \rightarrow (H , \sigma)$ is ω-perfect if and only if it is almost strongly ω-perfect.

Example 3.9. Let $G = \{ u , v , w \}$ and $\lambda : (G , \tau) \rightarrow (G , \sigma)$, such that $\tau = \{ G , \varphi , \{ u , v \} , \sigma =\{ G , \varphi , \{ v , w \} \}$, and $\lambda (u) = \lambda (w) = w$, $\lambda (v) = v$. Then λ is θ-ω-perfect mapping but not strongly θ-ω-perfect mapping.

Theorem 3.10. Let $\lambda : (G , \tau) \rightarrow (H , \sigma)$ be a mapping such that H be an regular space. If λ is θ-ω-perfect mapping then it is strongly θ-ω-perfect mapping.

Proof: Let λ be an θ-ω-perfect mapping. It suffices to demonstrate that λ is a strongly θ-ω-continuous, let $g \in G$ also T be an open set containment $\lambda (g)$ in H. Since λ is θ-ω-continuous, there is an ω-open set S containment g in G such that $\lambda (\text{cl}(S)) \subseteq \text{cl}(T)$. Since H is regular, there is an open set W such that $\lambda (g) \in W \subseteq \text{cl}(W) \subseteq T$, then $\lambda (\text{oclc}(S)) \subseteq \text{cl}(W) \subseteq T$, therefore $\lambda (\text{cl}(S)) \subseteq T$. So λ is strongly ω-continuous. Hence λ is strongly θ-ω-perfect mapping.

Corollary 3.11. Let (H , τ) be regular spaces. The mapping $\lambda : (G , \tau) \rightarrow (H , \sigma)$ is θ-ω-perfect if and only if it is strongly θ-ω-perfect.

Theorem 3.12. A space G is ω^*-regular if and only if, for any space H, any perfect mapping $\lambda : (G , \tau) \rightarrow (H , \sigma)$ is strongly θ-ω-perfect mapping.

Proof: Sufficiency. Let $\lambda : G \rightarrow G$ be the identity mapping. Then λ is continuous and strongly θ-ω-continuous by our hypothesis. For any open set S of G and for any point g of S, we have $\lambda (g) = g \in S$. Also, there is $T \subseteq \omega O(G , g)$ such that $\lambda (\text{oclc}(T)) \subseteq S$, therefore $g \in T \subseteq \omega O(T) \subseteq S$. It follows from Lemma 2.9 that G is ω^*-regular.

Necessity. Assume that $\lambda : G \rightarrow H$ is continuous and G is ω^*-regular. For any $g \in G$ and any open neighborhood T of $\lambda (g)$, $\lambda^{-1}(T)$ is an open set of G containing g. Since G is ω^*-regular, there is $S \subseteq \omega O(G)$ such that $g \in S \subseteq \text{oclc}(S) \subseteq \lambda^{-1}(T)$ by Lemma 2.9. Therefore, $\lambda (\text{oclc}(S)) \subseteq T$. Hence λ is strongly θ-ω-perfect.

Example 3.13. Let $\lambda : (G , \tau) \rightarrow (G , \tau)$ be a mapping such that $G = \{ K , L , M \}$ and $\tau = \{ \varphi , G , \{ K \}, \{ L \}, \{ K , L \} \}$, such that $\lambda (K) = \lambda (L) = \lambda (M) = M$. Then λ is θ-ω-perfect mapping, but not almost strongly ω-perfect mapping.

Theorem 3.14. Let $\lambda : (G , \tau) \rightarrow (H , \sigma)$ be a mapping such that H be an ω-regular space. If λ is θ-ω-perfect mapping then it is almost strongly ω-perfect mapping.

Proof: Let λ be an θ-ω-perfect mapping. It suffices to demonstrate that λ is almost strongly ω-continuous, let $g \in G$ and T be an open set containment $\lambda (g)$ in H. Since λ is θ-ω-continuous, there is an ω-open set S containment g in G such that $\lambda (\text{cl}(S)) \subseteq \text{cl}(T)$. Since H is an ω-regular, there is an ω-open set T_1 in H such that $\lambda (g) \in T_1$, also $\text{cl}(T_1) \subseteq T$ and $\text{int}(\text{cl}(T_1)) \subseteq \text{cl}(T_1)$. It follows that $\lambda (\text{cl}(S)) \subseteq \text{int}(\text{cl}(T)), therefore \lambda$ is almost strongly ω-continuous. So λ is almost strongly ω-perfect mapping.

Corollary 3.15. Let (G , τ) be ω-regular spaces. The mapping $\lambda : (G , \tau) \rightarrow (H , \sigma)$ is ω-perfect if and only if it is almost strongly ω-perfect mapping.

Example 3.16. Let $\lambda : (G , \tau) \rightarrow (H , \sigma)$ such that $G = \{ u , v , w \}$, $H = \{ a , b , c \}$, $\tau = \{ G , \varphi , \{ u \}, \{ v \}, \{ u , v \} \}$ and $\sigma =\{ H , \varphi , \{ a \}, \{ b \}, \{ c \}, \{ a , b \}, \{ a , c \}, \{ b , c \} \}$, such that $\lambda (u) = b$, $\lambda (v) = w$ and $\lambda (w) = a$. Then λ is almost ω-perfect mapping, but not almost strongly ω-perfect mapping.

Theorem 3.17. Let $\lambda : (G , \tau) \rightarrow (H , \sigma)$ be a mapping such that G be an ω-regular space. If λ is almost ω-perfect mapping then it is almost strongly ω-perfect mapping.

Proof: Let λ be almost ω-perfect mapping. It suffices to demonstrate that λ is almost strongly ω-continuous, let $g \in G$ and T be an open set containment $\lambda (g)$ in H. Since λ is almost ω-continuous, there is an ω-open set S containment g in G such that $\lambda (S) \subseteq \text{int}(\text{cl}(T))$. Since G is ω-regular, there is an ω-open set S_1 in G such that $g \in S_1$, also $\text{cl}(S_1) \subseteq S$, so $\lambda (\text{cl}(S_1)) \subseteq \lambda (S)$, then $\lambda (\text{cl}(S_1)) \subseteq \lambda (S) \subseteq \text{cl}(T)$.
int(cl(T)). It follows that \(\lambda(cl(SI)) \subseteq int(cl(T)) \), therefore \(\lambda \) is almost strongly \(\omega \)-continuous. So \(\lambda \) is almost strongly \(\omega \)-perfect mapping.

Corollary 3.18. Let \((G, \tau) \) be \(\omega \)-regular spaces. The mapping \(\lambda : (G, \tau) \to (H, \sigma) \) is almost \(\omega \)-perfect if and only if it is almost strongly \(\omega \)-perfect.

Lemma 3.19. Let a mapping \(\lambda : G \to H \) be strongly \(\theta \)-\(\omega \)-perfect and \(\mu : H \to L \) be perfect. Then \(\mu \circ \lambda \) is strongly \(\theta \)-\(\omega \)-perfect.

Theorem 3.20. Let \(\lambda : (G, \tau) \to (H, \sigma) \) be a mapping and \(\mu : G \to G \times H \) the graph mapping of \(\lambda \) defined by \(\mu(g) = (g, \lambda(g)) \) for each \(g \in G \). Then \(\mu : G \to G \times H \) is strongly \(\theta \)-\(\omega \)-perfect if and only if \(\lambda : (G, \tau) \to (H, \sigma) \) is strongly \(\theta \)-\(\omega \)-perfect and \(G \) is an \(\omega \)-regular.

Proof: By Lemma 3.19, \(\lambda \) is strongly \(\theta \)-\(\omega \)-perfect if the graph mapping \(\mu \) is strongly \(\theta \)-\(\omega \)-perfect. Also it follows that \(G \) is regular. To prove the converse, assume that \(\lambda \) is strongly \(\theta \)-\(\omega \)-perfect. Let \(g \in G \) and \(W \) be an open set of \(G \times H \) containment \(\mu(g) \). There are the open sets \(S1 \subseteq G \) and \(T \subseteq H \) such that \(\mu(g) = (g, \lambda(g)) \in S1 \times T \subseteq W \). Since \(\lambda \) is strongly \(\theta \)-\(\omega \)-continuous, there is \(S2 \in \omega O(G, g) \) such that \(\lambda(ocl(S2)) \subseteq T \). Because \(G \) is an \(\omega \)-regular and \(S1 \cap S2 \in \omega O(G, g) \), there is \(S \in \omega O(G, g) \) such that \(g \in S \subseteq ocl(S) \subseteq S1 \cap S2 \) (by Lemma 2.9). Therefore, \(\mu(ocl(S)) \subseteq S1 \times \lambda(ocl(S2)) \subseteq S1 \times T \subseteq W \). Then \(\mu \) is strongly \(\theta \)-\(\omega \)-continuous. So \(\mu \) is strongly \(\theta \)-\(\omega \)-perfect mapping.

Example 3.21. Let \(\lambda : (G, \tau) \to (H, \sigma) \), such that \(G = H = \{ u, v, w \} \) and \(\tau = \{ \emptyset, G, \{ u \}, \{ v \}, \{ u, v \} \} \), \(\sigma = \{ \emptyset, H, \{ w \} \} \), defined by \(\lambda(u) = \lambda(v) = \lambda(w) = w \). Then \(\lambda \) is strongly \(\theta \)-\(\omega \)-perfect doesn't the mappings \(\mu \) of the \(\lambda \). Then \(\mu(g) = (g, \lambda(g)) \), then it is not strongly \(\theta \)-\(\omega \)-perfect mapping at \(u \) and \(v \).

Example 3.22. From in Example 3.9, \(\lambda \) is almost \(\omega \)-perfect mapping, but not strongly \(\theta \)-\(\omega \)-perfect mapping.

Theorem 3.23. Let \(\lambda : (G, \tau) \to (H, \sigma) \) be a mapping, such that \(H \) be an \(\omega \)-regular space. If \(\lambda \) is almost \(\omega \)-perfect mapping then it is strongly \(\theta \)-\(\omega \)-perfect mapping.

Proof: Let \(\lambda \) be almost \(\omega \)-perfect mapping. It suffices to demonstrate that \(\lambda \) is strongly \(\theta \)-\(\omega \)-continuous, let \(g \in G \) and \(T \) be an open set containment \(\lambda(g) \) in \(H \). Since \(\lambda \) is almost \(\omega \)-continuous, there is an \(\omega \)-open set \(S \) containment \(g \) in \(G \) such that \(\lambda(S) \subseteq int(cl(T)) \). Since \(G \) is \(\omega \)-regular, there is an \(\omega \)-open set \(S1 \) in \(G \) such that \(g \in S1 \) and \(cl(S1) \subseteq S \). So \(\lambda(cl(S1)) \subseteq \lambda(S) \), also int(cl(T)) \(\subseteq cl(T) \). It follows that \(\lambda(cl(S1)) \subseteq T \), therefore \(\lambda \) is strongly \(\theta \)-\(\omega \)-continuous. So \(\lambda \) is strongly \(\theta \)-\(\omega \)-perfect mapping.

Corollary 3.24. Let \((G, \tau) \) be a \(\omega \)-regular spaces. The mapping \(\lambda : (G, \tau) \to (H, \sigma) \) is almost \(\omega \)-perfect if and only if it is strongly \(\theta \)-\(\omega \)-perfect.

Theorem 3.25. For a mapping \(\lambda : (G, \tau) \to (H, \sigma) \) and \(H \) is regular space, the following properties are equivalent :

(a) \(\lambda \) is almost strongly \(\theta \)-\(\omega \)-perfect.

(b) \(\lambda \) is \(\omega \)-perfect.

(c) \(\lambda \) is almost \(\omega \)-perfect.

(d) \(\lambda \) is \(\theta \)-\(\omega \)-perfect.

4. Relationship between Weak and Strong Forms of \(\omega \)-Perfect Mappings

In this section, we study the relationship between weakly \(\theta \)-\(\omega \)-perfect mappings and strongly \(\theta \)-\(\omega \)-perfect mappings and some theorems concerning them.

Definition 4.1. A mapping \(\lambda : (G, \tau) \to (H, \sigma) \) is said to be super (resp., weakly, strongly) \(\omega \)-continuous if for each \(g \in G \) and each open neighborhood (resp., open set) \(T \) of \(H \) containing \(\lambda(g) \), there exists an \(\omega \)-open neighborhood (resp., \(\omega \)-open set) \(S \) of \(G \), such that \(\lambda(int(cl(S))) \subseteq T \) (resp., \(\lambda(S) \subseteq T \)).

Definition 4.2. A mapping \(\lambda : (G, \tau) \to (H, \sigma) \) is said to be almost weakly (resp., almost strongly) continuous if for each \(g \in G \) and each open (resp., regular open) set \(T \) of \(H \) containing \(\lambda(g) \), there exists an open set \(S \) in \(G \), such that \(\lambda(S) \subseteq cl(T) \).

Definition 4.3. A mapping \(\lambda : (G, \tau) \to (H, \sigma) \) is said to be weakly \(\theta \)-continuous if for each \(g \in G \) and each open set \(T \) of \(H \) containing \(\lambda(g) \), there exists an open set \(S \) in \(G \), such that \(\lambda(S) \subseteq cl(T) \).

Definition 4.4. A mapping \(\lambda : (G, \tau) \to (H, \sigma) \) is called to be super \(\omega \)-perfect mapping (resp., weakly \(\omega \)-perfect mapping, strongly \(\omega \)-perfect mapping, almost weakly perfect mapping, almost strongly perfect mapping, weakly \(\theta \)-perfect mapping) if it is super \(\omega \)-continuous (resp., weakly \(\omega \)-continuous mapping, strongly \(\omega \)-perfect mapping, almost weakly perfect mapping, almost strongly perfect mapping, weakly \(\theta \)-perfect mapping).
strongly \(\omega\)-continuous, almost weakly continuous, almost strongly continuous, weakly \(\theta\)-continuous), closed, and, for every \(h \in H, \lambda^{-1}(h)\), compact.

The relationships weakly and strongly \(\omega\)-perfect mappings are given by the following figure:

\[
\begin{array}{c|c|c|c|}
\text{strongly } & \text{weakly } & \text{weakly } & \text{weakly } \\
\theta\omega\text{-perfect } & \omega\text{-perfect } & \theta\omega\text{-perfect } & \theta\omega\text{-perfect } \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\text{super }\omega\text{-perfect } & \text{almost }\omega\text{-perfect } & \text{almost }\omega\text{-perfect } & \text{almost }\omega\text{-perfect } \\
\downarrow & \uparrow & \downarrow & \uparrow \\
\omega\text{-perfect } & \text{perfect } & \text{perfect } & \text{perfect } \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\theta\omega\text{-perfect } & \text{perfect } & \text{perfect } & \text{perfect } \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\text{weakly }\theta\text{-perfect } & \text{weakly }\omega\text{-perfect } & \text{weakly }\omega\text{-perfect } & \text{weakly }\omega\text{-perfect } \\
\downarrow & \uparrow & \downarrow & \uparrow \\
\omega\text{-perfect } & \text{weakly }\omega\text{-perfect } & \text{weakly }\omega\text{-perfect } & \text{weakly }\omega\text{-perfect } \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\end{array}
\]

In the figure above, the converses are not to be right as demonstrated by the following examples:

Example 4.5. Let \(\lambda : (G, \tau) \rightarrow (G, \tau)\), such that \(G = \{u, v, w\}\) and \(\tau = \{\emptyset, G, \{u\}, \{v\}, \{u, v\}\}\) defined by \(\lambda(u) = u, \lambda(v) = v, \lambda(w) = w\). Then \(\lambda\) is super \(\omega\)-perfect mapping but it is not strongly \(\theta\omega\)-perfect mapping.

Theorem 4.6. Let \(\lambda : (G, \tau) \rightarrow (H, \sigma)\) be a mapping, such that \(G\) be a regular space. If \(\lambda\) is super \(\omega\)-perfect mapping then it is strongly \(\theta\omega\)-perfect mapping.

Proof: Let \(\lambda\) be a super \(\omega\)-perfect mapping. It suffices to demonstrate that \(\lambda\) is strongly \(\theta\omega\)-continuous, let \(g \in G\) and \(T\) be an open set containment \(\lambda (g)\) in \(H\). Because of \(\lambda\) is a super \(\omega\)-continuous, there is a regular open set \(S\) containment \(g\), such that \(\lambda (S) \subseteq T\). Because \(\text{int(cl}(T)) \subseteq \text{cl}(T)\), then \(\lambda (S) \subseteq \text{int(cl}(T)) \subseteq \text{cl}(T)\), then \(\lambda (S) \subseteq \text{cl}(T)\). Also \(G\) is a regular space, there is an open set \(W\) such that \(g \in W \subseteq \text{cl}(W) \subseteq S\), so \(\lambda(\text{cl}(W)) \subseteq T\). Therefore \(\lambda\) is strongly \(\theta\omega\)-continuous. Hence consider that \(\lambda\) is strongly \(\theta\omega\)-perfect mapping.

Corollary 4.7. Let \((G, \tau)\) be regular spaces. The mapping \(\lambda : (G, \tau) \rightarrow (H, \sigma)\) is super \(\omega\)-perfect if and only if it is strongly \(\theta\omega\)-perfect.

Example 4.8. Let \(\lambda : (G, \tau) \rightarrow (H, \sigma)\) be a mapping, such that \(G = \{u, v, w\}\), \(H = \{a, b\}\), and \(\tau = \{\emptyset, G, \{u\}, \{v\}, \{u, v\}\}, \sigma = \{H, \emptyset, \{a\}\}\) defined by \(\lambda(u) = \lambda(w) = b, \lambda(v) = a\). Then, \(\lambda\) is \(\omega\)-perfect but it is not super \(\omega\)-perfect.
Theorem 4.9. Let $\lambda : (G, \tau) \rightarrow (H, \sigma)$ be a mapping, such that G be a regular space. If λ is ω-perfect mapping then it is super ω-perfect mapping.

Proof: Let λ be ω-perfect mapping. It suffices to demonstrate that λ is super ω-continuous, let $g \in G$ and T be an open set containment $\lambda(g)$ in H. Because of λ is ω-continuous, there is $S \in oO(G, g)$, such that $\lambda(S) \subseteq T$. Also, $\text{int}(\text{cl}(S)) \subseteq \text{cl}(S)$, then $\lambda(\text{int}(\text{cl}(S))) \subseteq \lambda(\text{cl}(S))$. Also G is a regular space, there is an open set S_1 such that $g \in S_1 \subseteq \text{cl}(S_1) \subseteq S$, so $\lambda(\text{int}(\text{cl}(S_1))) \subseteq \lambda(S_1)$ also $\lambda(S) \subseteq T$. So $\lambda(\text{int}(\text{cl}(S))) \subseteq T$, then λ is super ω-continuous. Hence consider that λ is super ω-perfect mapping.

Corollary 4.10. Let (G, τ) be regular spaces. The mapping $\lambda : (G, \tau) \rightarrow (H, \sigma)$ is ω-perfect if and only if it is super ω-perfect.

Example 4.11. Let $\lambda : (\mathcal{Y}, \tau) \rightarrow (\mathcal{Y}, \tau)$ be a mapping, such that $\lambda(g) = g$, and let (\mathcal{Y}, τ) where τ is the topology with a basis whose members are of the form (a, b) and $(a, b) - N$, such that $N = \{1\in n ; n \in Z^+ \}$. Then (\mathcal{Y}, τ) is a Hausdorff but not ω-regular. Then λ is perfect but it is not strongly perfect mapping.

Theorem 4.12. Let $\lambda : (G, \tau) \rightarrow (H, \sigma)$ be a mapping such that G be an regular space. If λ is perfect mapping then it is strongly perfect mapping.

Proof: Let λ be perfect mapping. It suffices to demonstrate that λ is strongly continuous, let $g \in G$ and T be an open set containment $\lambda(g)$ in H. Since λ is continuous, there is an open set S containing g in G such that $\lambda(S) \subseteq T$. Since G is regular space, there is an open set S_1 in G such that $g \in S_1$ and $\text{cl}(S_1) \subseteq S$, so $\lambda(\text{int}(\text{cl}(S_1))) \subseteq \lambda(S)$. Then $\lambda(\text{cl}(S)) \subseteq T$, therefore λ is strongly continuous. So λ is strongly perfect mapping.

Corollary 4.13. Let (G, τ) be regular spaces. The mapping $\lambda : (G, \tau) \rightarrow (H, \sigma)$ is perfect if and only if it is strongly perfect.

Theorem 4.14. Let $\lambda : (G, \tau) \rightarrow (H, \sigma)$ be a mapping such that H be a regular space. If λ is weakly perfect mapping then it is perfect mapping.

Proof: Let λ be weakly perfect mapping. It suffices to demonstrate that λ is continuous, let $g \in G$ and T be an open set containment $\lambda(g)$ in H. Since λ is weakly continuous, there is an open set S containing g in G such that $\lambda(S) \subseteq T$. Since G is regular space, there is an open set S_1 in G such that $g \in S_1$ and $\text{cl}(S_1) \subseteq S$, so $\lambda(\text{int}(\text{cl}(S_1))) \subseteq \lambda(S)$. Then $\lambda(\text{int}(\text{cl}(S))) \subseteq T$, therefore λ is continuous. So λ is perfect mapping.

Corollary 4.15. Let (G, τ) be regular spaces. The mapping $\lambda : (G, \tau) \rightarrow (H, \sigma)$ is weakly perfect if and only if it is perfect.

Example 4.16. A mapping $\lambda : (G, \tau) \rightarrow (H, \sigma)$ such that $G = \{a, b, v, w\}$, $H = \{a, b\}$, $\tau = \{G, \varphi, \{a, u\}, \{v\}, \{u, v\}, \{v, w\}\}$, $\sigma = \{H, \varphi, \{a\}\}$, defined by $\lambda(u) = \lambda(v) = \lambda(w) = b$. The mapping λ is almost ω-perfect mapping but it is not super ω-perfect mapping.

Theorem 4.17. Let $\lambda : (G, \tau) \rightarrow (H, \sigma)$ be a mapping, such that G and H are semi-regular spaces. If λ is almost ω-perfect mapping then it is super ω-perfect mapping.

Proof: Let λ be an almost ω-perfect mapping. It suffices to demonstrate that λ is super ω-continuous, let $g \in G$ and let T be an open set containment $\lambda(g)$ in H. Because of λ is almost ω-continuous, there is an ω-open set S containing g, for each regular open set T of H containment $\lambda(g)$ such that $\lambda(S) \subseteq T$. So $\lambda(S) \subseteq \text{int}(T)$. Because the space G is semi-regular space, there is an open set S_1 in G such that $g \in S_1$ and $T \subseteq \text{int}(T)$, so $\lambda(S) \subseteq \lambda(\text{int}(T)) \subseteq \lambda(S)$. Also $\lambda(S) \subseteq \text{int}(T)$. Then $\lambda(\text{int}(T)) \subseteq \lambda(S) \subseteq \text{int}(T)$. Also the space H is semi-regular space, there is an open set T_1 in H such that $\lambda(g) \in T_1$, and $S \subseteq \text{int}(S)$, so $\lambda(S) \subseteq \lambda(\text{int}(S))$. It follows that $\lambda(\text{int}(S)) \subseteq T$. Then λ is super ω-continuous. Hence λ is super ω-perfect mapping.

Corollary 4.18. Let (G, τ) and (H, σ) be semi-regular spaces. The mapping $\lambda : (G, \tau) \rightarrow (H, \sigma)$ is almost ω-perfect if and only if it is super ω-perfect mapping.

Example 4.19. A mapping $\lambda : (G, \tau) \rightarrow (G, \tau)$ such that $G = \{u, v, w\}$, $\tau = \{G, \varphi, \{u\}, \{v\}, \{u, v\}\}$, $\lambda(u) = \lambda(v) = u$, and $\lambda(w) = w$, then λ is almost weakly perfect mapping but it is not almost strongly perfect mapping.

Theorem 4.20. Let $\lambda : (G, \tau) \rightarrow (H, \sigma)$ be a mapping, such that G is a regular space. If λ is almost weakly perfect mapping then it is almost strongly perfect mapping.

Proof: Let λ be almost weakly perfect mapping. It suffices to demonstrate that λ is almost strongly continuous, let $g \in G$ and let T be an open set containment $\lambda(g)$ in H. Because of λ is almost weakly
continuous and \(g \in G \) for each open set \(T \) of \(H \) containment \(\lambda(g) \), there is an open set \(S \) containment \(g \), such that \(\lambda(S) \subseteq \text{cl}(T) \). Because the space \(G \) is a regular space, there is an open set \(S_1 \) in \(G \) such that \(g \in S_1 \) also \(\text{cl}(S_1) \subseteq S \), so \(\lambda(\text{cl}(S_1)) \subseteq \lambda(S) \). Also \(\lambda(S) \subseteq \text{cl}(T) \). Then \(\lambda(\text{cl}(S_1)) \subseteq \text{cl}(T) \) and \(\text{int}(\text{cl}(T_1)) \subseteq \text{cl}(T_1) \). Then \(\lambda(\text{cl}(S_1)) \subseteq \text{int}(\text{cl}(T_1)) \). It follows that \(\lambda \) is almost strongly continuous. Hence \(\lambda \) is almost strongly perfect mapping.

Corollary 4.21. Let \((G , \tau) \) and \((H , \sigma) \) are regular spaces. The mapping \(\lambda : (G , \tau) \rightarrow (H , \sigma) \) is almost weakly perfect if and only if it is almost strongly perfect.

Theorem 4.22. Let \(\lambda : (G , \tau) \rightarrow (H , \sigma) \) and \((H , \sigma) \) be regular spaces, then the following properties are equivalent:

(a) \(\lambda \) is strongly perfect.

(b) \(\lambda \) is perfect.

(c) \(\lambda \) is weakly perfect.

Theorem 4.23. Let \(\lambda : (G , \tau) \rightarrow (H , \sigma) \) be a mapping with a regular space and \(\mu : G \rightarrow G \times H \). where the \(\lambda \) defined by \(\mu(g) = (g , \lambda(g)) \) for each \(g \in G \). If \(\lambda : (G , \tau) \rightarrow (H , \sigma) \) is strongly perfect , then \(\mu : G \rightarrow G \times H \) is strongly perfect.

Proof: Assume that \(\lambda \) is strongly perfect, let \(g \in G \) and \(W \) be an open set of \(G \times H \) containment \(\mu(g) \).

Yood represents open sets \(S_1 \subseteq G \) and \(T \subseteq H \) such that \(\mu(g) = (g , \lambda(g)) \in S_1 \times T \subseteq W \). Since \(\lambda \) is strongly continuous and \(G \) is a regular space, an open set \(S \) containing \(g \) in \(G \) such that \(\text{cl}(S) \subseteq S_1 \) and \(\lambda(\text{cl}(S)) \subseteq T \). Therefore \(\mu(\text{cl}(S)) \subseteq S_1 \times T \subseteq W \), then \(\mu \) is strongly continuous. So the mapping \(\mu = \text{id}_{\Delta} \lambda : G \rightarrow G \times H \) maps \(G \) homeomorphically onto the graph \(\mu(g) \) which is a closed subset of \(G \times H \). So \(\mu \) is perfect, and because \(G \) is regular, then \(G \times H \) is regular by theorem 4.22. Hence \(\mu : G \rightarrow G \times H \) is strongly perfect.

Theorem 4.24. For a mapping \(\lambda : (G , \tau) \rightarrow (H , \sigma) \) and since \(H \) is a regular space, the following properties are equivalent:

(a) \(\lambda \) is almost strongly \(\theta\omega \)-perfect.

(b) \(\lambda \) is \(\omega \)-perfect.

(c) \(\lambda \) is almost \(\omega \)-perfect.

(d) \(\lambda \) is \(\theta\omega \)-perfect.

(e) \(\lambda \) is almost weakly \(\omega \)-perfect.

References

1. Formin, S. 1943. "Extension of topological spaces," *Annals of Mathematics*. Second Series, 44: 471-480, 1943.

2. Bourbaki, N. 1966. *General Topology*, Part I, Addison-Wesley, Reding, Mass.

3. Velicko, N.V. 1968. H-closed topological spaces, *Amer. Math. Soc. Transl.,* 78: 103-118. Current address: Selcuk University Faculty of Science and Arts Department of Mathematics.

4. Singal, M.K. and Singal, A.R. 1968. Almost-continuous mappings, *Yokohama Math. J.*, 16: 63-73.

5. Long, P.E. and Herrington, L.L. 1981. Strongly \(\theta \)-continuous functions, *J.of the Korean Math. Soc.*, 18(1): 21-28.

6. Hdeib, H.Z. 1989. "\(\omega \)-continuous functions" *Dirasat*, 16(2): 136-142.

7. Chew, J. and Tong, J. 1991. Some Remarks on Weak continuity, *American Mathematical Monthly*, 98: 931-934.

8. Noiri, T., Al-Omari, A. and Noorani, M.S.M. 2009. "Weak forms of \(\omega \)-open sets and decomposition of continuity ", *E.J.P.A.M.* 2(1): 73-84.

9. Noiri, T. 1980. On \(\delta \)-continuous functions. *J. Korean Math. Soc.*, 16: 161-166.

10. Noiri, T. 1989. " On almost continuous function," *Indian Journal of pure and Applied Mathematics*, 20(6): 571-576.

11. Al-Omari, A. and Noorani, M.S.M. 2007. " Contra-\(\omega \)-continuous and almost contra-\(\omega \)-continuous," *International Journal of Mathematics and Mathematical Sciences*, Vol. 2007, Article ID 40469 , 13 pages.
12. Al-Omari, A. and Noorani, M.S.M. 2007. "Regular generalized ω-closed sets," *International Journal of Mathematics and Mathematical Sciences*, Vol. Article ID 16292, 2007, 11 pages.

13. Al-Omari, A. and Noorani, M.S.M. 2009. "Weak and Strong form of ω-continuous" *International Journal of Mathematics and Mathematical Sciences*, Vol. Article ID 174042, 12 pages.

14. Bourbaki, N. 1989. "Regular Space. " in *Elements of Mathematics: General Topology*. Berlin: Springer-Verlag, pp. 80-81.

15. Stone, M.H. 1937. Applications of the theory boolean rings to General Topology. *Trans. Am. Math. Soc.*, 41: 375-481.

16. Devi, R., Balachan dran, K. and Maki, H. 1995. on Generalized α-continuous maps, *Far.East J. Math.*, 16: 35-48.