Naturally Occurring Follicle-Stimulating Hormone Glycosylation Variants

John S Davis¹, T Rajendra Kumar², Jeffrey V May³, and George R Bousfield³
¹VA Nebraska-Western Iowa Health Care System and Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
²Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
³Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA

Follicle-stimulating hormone (FSH) is a member of the glycoprotein hormone family, which is a subfamily of the cystine knot growth factor superfamily [1,2]. The glycoprotein hormones are composed of heterodimeric glycoprotein subunits, a common α-subunit, and a hormone-specific β-subunit. While the α-subunit primary structure is identical for all glycoprotein hormones within the same species, the oligosaccharide populations differ in a hormone-specific manner [3–6]. Characterizing the oligosaccharides released from an α-subunit preparation can identify the hormone from which the subunit was derived [7]. There are 3 to 4 β-subunits in vertebrates, which combine with α-subunit to create either FSH, luteinizing hormone (LH), thyroid-stimulating hormone (TSH), or in primates and equids, chorionic gonadotropin (CG) [8]. As both glycoprotein hormone subunits are cystine knot proteins [9–11] the protein backbone is folded into a series of three loops, two relatively rigid hairpin loops on one side of the knot, designated L1 and L3, and a single, flexible loop on the other side [12], designated L2. Oligosaccharides are attached to all 3 loops in a subunit-specific pattern (Figure 1). FSH subunits possess two potential N-glycosylation sites on each subunit and all four are of the Asn-Xaa-Thr type, which exhibit very efficient carbohydrate attachment [13]. Indeed, the α-subunit is always glycosylated at both sites in all known glycoprotein hormones. Because FSH α and β subunits co-migrate during electrophoresis, it is difficult to detect missing N-glycans in this hormone. FSHβ-specific Western blots have revealed partial glycosylation in equine FSHβ, human FSHβ (hFSH β), rhesus FSH β, and Japanese macaque FSHβ [14–16]. During the past few years, we have studied partially glycosylated hFSH isolated from pituitary extracts, postmenopausal urine, and conditioned tissue culture medium containing recombinant hFSH. Each glycosylation site in hFSH is decorated with a population of N-glycans. When total glycans are removed from reduced, carboxy-methylated FSH subunits, 39–130 glycans are found in mass spectra. We have data from only one glycosylation site, αAsn⁵², which possessed 29 neutral core...
ions, and when decorated with various patterns of sialic acid grew to 109 unique glycan structures. Micro heterogeneity can affect electrophoretic mobility, for example, placental hCGα with hybrid and biantennary glycans migrated faster than pituitary hFSHα, with triantennary, biantennary and tetrantennary glycans, which complicated sorting out the hFSH variants that resulted from loss of one or more N-glycans [17].

We have identified four hFSH variants, based on loss of one or more FSHβ N-glycans (Figure 2). We first encountered these on the basis of FSHβ-specific Western blot analysis. Recall that the α-subunit always possesses both N-glycans. FSHβ possessing both N-glycans migrates as a 24 KDa band, therefore, we designated this intact heterodimer as hFSH24. Two single-glycan variants provide 18 and 21 KDa bands, which represents the loss of Asn7 and Asn24 glycans, respectively. Peptide-N-glycanase F-de-glycosylated hFSH β migrates as a 15 KDa band and the corresponding heterodimer is designated as hFSH15. Expression of a recombinant hFSHβ subunit mutant that prevents glycosylation at both Asn7 and Asn24 glycans in transformed GH3 cells or in pituitaries of transgenic mice also produces a 15 KDa FSHβ band. Three of these variants, hFSH18, hFSH21, and hFSH24 are secreted. Most pituitary, urinary, and recombinant hFSH preparations that we have examined consist of two glycoforms, hFSH24 and hFSH21 in an 80:20 ratio [15,16].

Evaluation of hFSH in the pituitaries of adult women (ages 21 to 81) revealed a progressive loss of hFSH21 between ages 24 and 55, suggesting that the ratio of FSH21 to FSH24 deceases as a function of aging. In late reproductive age, there is a rise in circulating hFSH that begins about 6 years before the final menstrual period. This has been attributed to the reduced ability to stimulate steroidogenesis in the ovary, leading to a compensatory increase in FSH output by the pituitary that keeps circulating estrogen levels within the normal range until about 2 years before the final menstrual period [18]. Disrupted hormonal feedback from the ovary results in an increased molecular size of pituitary FSH in ovariectomized rhesus and rat females, as indicated by gel filtration chromatography, which is reversed by estrogen replacement therapy [19,20]. FSH is also regulated by the inhibins and it has been suggested that the increases in FSH during the peri-menopausal period are likely due to a reduction in ovarian follicle production of inhibin-B, because estradiol levels remained unchanged during this period. The role of inhibin in regulating FSH glycosylation has not been extensively investigated. Activin-A treatment of dispersed rat pituitary cells resulted in secretion of more acidic forms of FSH [21]. In the same report, estrogen treatment of these cells also resulted in the secretion of more acidic forms of FSH. However, subsequent studies in rats indicated that estrogen inhibited pituitary expression of α 2-3-sialyltransferase [22,23], suggesting that α2-6-sialyltransferase activity increased to compensate for the loss of one isoform. GnRH was reported to increase galactose content of LH glycans [24], indicating increased branching. GnRH stimulation of human subjects resulted in release of less acidic forms of hFSH into the serum [25,26] and secretion of less acidic FSH forms from dispersed rat pituitary cells, even in the presence of estrogen [21]. The mechanisms responsible for the increased formation of the fully glycosylated FSH24 that occurs during reproductive aging are not yet clear.

Isoform studies, which focus on the theoretical number of negatively charged sialic acid residues attached to FSH, generally report that less acidic FSH isoforms are more active in
receptor-binding and in vitro steroidogenesis assays [27–31]. In contrast, acidic forms of FSH are more active in vivo, presumably because of longer survival in the circulation [27,32]. How do glycoforms lacking one or two β-subunit N-glycans fit into the isoform picture? Not well. Chromatofocusing of purified pituitary hFSH produced less acidic fractions consisting of hFSH21, followed by mixtures of hFSH24 and hFSH21, and all subsequent increasingly acidic fractions also consisted of both glycoforms instead of becoming largely, if not exclusively hFSH24 [15]. Analysis of a second set of hFSH isoforms separated by chromatofocusing revealed all but one fraction possessed both glycoforms [33]. Glycopeptide mass spectrometry of purified hFSH isoforms, comprised of mixtures of hFSH21 and hFSH24 derived from the second study, showed the glycan populations at αAsn52 and βAsn24 were virtually identical in all isoform fractions. Thus, it is quite difficult to reconcile FSH glycosylation macro-heterogeneity representing the four hFSH24, hFSH21, hFSH18, and hFSH15 glycoforms with micro-heterogeneity resulting from the 30 to over 100 glycans attached to as many as 4 Asn residues on the α and βFSH subunits. Modern methods of mass spectrometry have made it possible to compare two FSH glycan populations using as little as 10 μg samples of each preparation (the larger amounts of glycoprotein are dictated by the 80–139 glycans, not 4, that can be identified in these small samples) [34].

In order to establish the existence of FSH glycoforms, it is necessary to biochemically separate them so that they can be studied separately and the results compared. The residual FSH activity in LH preparations was captured by immuneaffinity chromatography and lacked hFSH24, but consisted of both hFSH21 and hFSH18 (we refer to such mixtures as hFSH21/18, the first superscript indicating the more abundant form). What captured our attention was the fact that this preparation was about 10-fold more active than highly purified hFSH24/21 and a hFSH24 hybrid prepared from FSHβ24 combined with hCGα [17]. Moreover, hFSH21/18 associated more rapidly with FSH receptors (FSHR) and occupied 2- to 3-fold more receptor sites than hFSH24.

Recent developments in the understanding of FSHR structure and function suggest that a reevaluation of the modulatory effects of FSH glycosylation on FSHR binding, receptor activation, and signaling. The FSHR, once considered a monomeric unit [35] with a mature receptor molecular weight of 74 kDa [36], is now recognized as at least a dimeric form [37–39] and there is biochemical evidence for higher order combinations of FSHRs [38,39]. In fact, ligand-binding studies suggested that the only functional FSHR form following SDS-PAGE and electro blotting to PVDF was a 200–240 kDa form [40,41]. The crystal structure of the complete FSHR extracellular domain (FSHRecd) showed a trimeric structure with endoglycosidase F-deglycosylated FSH bound to each FSHRecd [42]. However, the location of the surviving α-subunit Asn52 GlcNAc residue suggested typical oligosaccharides attached to this position could make it impossible for more than one FSH to associate with this trimeric structure at the same time. While a certain amount of caution is in order because a FSHR high affinity site (FSHRhas) dimeric model showed receptor dimerization via the extracellular domain in the crystal structure and provided evidence that such dimers could exist in solution [43]. However, this model was not supported a subsequent study aimed at testing the dimerization mechanism [39]. Nevertheless, studies with intact FSH receptor showed that elimination of αAsn52 glycans in hFSH resulted in a 3-fold increase in
receptor occupancy as compared to fully glycosylated recombinant hFSH [44]. Our studies indicate that hFSH$^{21/18}$, which lacks one of the two FSHβ subunit N-glycans, also exhibits 2- to 3-fold higher saturation binding to the same FSHR preparation. This is intriguing since these glycans would not be expected to affect binding to the trimeric FSHR model, as they are oriented away from the center of the cluster. The hCGα: hFSH24 hybrid FSHR binding data support the αAsn52 model, as it exhibited reduced affinity and binding at saturation [17]. The three major glycans present at this site are hybrid type, possessing the complex lactosamine-type branch on the 3-position of the penta-saccharide core, and differ by the presence and linkage of a single mannose residue on the 6-position. These oligosaccharides, consisting of 8–9 monosaccharide residues, reduce the number of FSHR sites that can be occupied simultaneously. In contrast, a single GlcNAc residue on each permits three FSH molecules to simultaneously bind to the proposed FSHR timer. Therefore, small oligosaccharides at this position should also permit higher receptor occupancy. The problem is that hFSH oligosaccharides are dominated by bi-, tri-, and tetra-antennary glycans [45–47]. However, mass spectrometry of FSHα Asn56 glycans, selectively released by peptide-N-glycanase F digestion, revealed several small, oligomannose glycans that may be compatible with simultaneous binding of more than one FSH to trimeric FSHR. This approach also revealed that 60% of total hFSH$^{21/18}$ glycans were oligomannose-type, although their location is not yet known and likely to critical. The good news is that αAsn52 glycans are the most accessible glycans in FSH. Dissociating FSH subunits followed by peptide-N-glycanase F digestion selectively removes this glycan, leaving all other glycans attached to partially deglycosylated FSH subunits [7,48,49]. The bad news is that the 10 µg sample size has to be increased to ~40 µg to provide enough glycan for nano-electrospray mass spectrometry analysis from a single site as compared with a total glycan population from an average of 3.8 sites (accommodating the presence of both hFSH24 and hFSH21). The reason is that hFSH glycoform preparations are difficult to prepare and existing techniques are quite inefficient. Nevertheless, the sacrifice of significant amounts of scarce hormone is certainly worthwhile to address an important question like do hFSH21 or hFSH18 preparations possess largely small αAsn52 glycans, enabling them to occupy more FSHR binding sites?

In the G protein coupled receptor (GPCR) field, including FSHR, biased signaling is coming under increasing scrutiny [50–52]. The realization that one GPCR can activate several signaling molecules to activate different pathways calls for the reinvestigation of previously confusing data. For example, both FSHR and LH/CGR primarily signal via Gαs leading to the activation of the cAMP/protein kinase A (PKA) pathway and subsequently leading to steroidgenesis [53–55]. Alternative pathways, such as phospholipase C/inositol triphosphate metabolism were first recognized over 25 years ago [56,57], however, most studies examining the actions of gonadotropin glycosylation variants remain fixed on the primary pathway. The concept of biased signaling predicts that the specificity of signal transduction depends on, at least in part, the structure of the ligand [reviewed in [50,51]]. In support of this idea, a partially deglycosylated LH variant [58] (eLHdg) was found to exhibit biased signaling through the FSHR [59]. While incapable of activating the cAMP/PKA pathway and eliciting steroidogenesis in granulosa cells, binding of eLHdg to FSHR recruited β-arrestins and activated ERK MAPK signaling via a cAMP-independent pathway. Another
recent study showed that the oligosaccharide complexity of recombinant hFSH preparations differentially affected gene expression and steroiogenesis in human granulosa cells [60]. Our own studies with hFSH glycoforms have found evidence for biased signaling, albeit in different cell types.

The hFSH^{21/18} glycoforms were more active than hFSH^{24} in activating the cAMP/PKA pathway via Go{s} in gonadal cells, while hFSH^{24} was more active in activating osteoclast differentiation via NFκB and MAPK signaling independent of Go{s}-mediated cAMP/PKA signaling [61]. The obvious next step is to determine if this biased signaling by hFSH^{24} occurs in gonadal cells as well. Our group is actively pursuing this issue using both in vitro and in vivo genetic approaches.

The recently emerging concepts of FSHR working as dimers, trimers, or some other oligomer and biased signaling in response to altered FSH glycosylation open up new avenues for solving the more than 30 year old mystery of how full activation of FSHR and LHR require glycosylated FSH and LH preparations, despite the fact that receptor binding is exclusively a protein-protein interaction and the glycans appear to merely get in the way.

These are exciting times for those studying gonadotropin glycosylation.

References

1. Hearn MT, Gomme PT. Molecular architecture and biorecognition processes of the cystine knot protein superfamily: part I. The glycoprotein hormones. J Mol Recognit. 2000; 13:223–278. [PubMed: 10992290]

2. Vitt UA, Hsu SY, Hsueh AJ. Evolution and classification of cystine knot-containing hormones and related extracellular signaling molecules. Mol Endocrinol. 2001; 15:681–694. [PubMed: 11328851]

3. Weisshaar G, Hiyama J, Renwick AG. Site-specific N-glycosylation of human chorionic gonadotrophin--structural analysis of glycopeptides by one-and two-dimensional 1H NMR spectroscopy. Glycobiology. 1991; 1:393–404. [PubMed: 1820200]

4. Weisshaar G, Hiyama J, Renwick AG, Nimtz M. NMR investigations of the N-linked oligosaccharides at individual glycosylation sites of human lutropin. Eur J Biochem. 1991; 195:257–268. [PubMed: 1991473]

5. Hiyama J, Weisshaar G, Renwick AG. The asparagine-linked oligosaccharides at individual glycosylation sites in human thyrotropin. Eur J Biochem. 1992; 2:401–409. [PubMed: 1457969]

6. Dalpathado DS, Iruungu J, Go EP, Butnev VY, Norton K, et al. Comparative glycomics of the glycoprotein follicle stimulating hormone: glycopeptide analysis of isolates from two mammalian species. Biochemistry. 2006; 45:8665–8673. [PubMed: 16834341]

7. Gotschall RR, Bousfield GR. Oligosaccharide mapping reveals hormone-specific glycosylation patterns on equine gonadotropin alpha-subunit Asn56. Endocrinology. 1996; 137:2543–2557. [PubMed: 8641208]

8. Bousfield, GR.; Jia, L.; Ward, DN. Gonadotropins: chemistry and biosynthesis. In: Neill, JD., editor. Knobil and Neill: Physiology of Reproduction. 3. San Diego: Elsevier; 2006. p. 1581-634.

9. Lapthorn AJ, Harris DC, Littlejohn A, Lustbader JW, Canfield RE, et al. Crystal structure of human chorionic gonadotropin. Nature. 1994; 369:455–461. [PubMed: 8202136]

10. Lustbader JW, Wu H, Birken S, Pollak S, GawinowiczKolks MA, et al. The expression, characterization, and crystallization of wild-type and selenomethionyl human chorionic gonadotropin. Endocrinology. 1995; 136:640–650. [PubMed: 7835298]

11. Fox KM, Dias JA, Van Roey P. Three-dimensional structure of human follicle-stimulating hormone. Mol Endocrinol. 2001; 15:378–389. [PubMed: 11222739]
12. Erbel PJ, Karimi-Nejad Y, De Beer T, Boelens R, Kamerling JP, et al. Solution structure of the alpha-subunit of human chorionic gonadotropin. Eur J Biochem. 1999; 260:490–498. [PubMed: 10095786]

13. Imperiali B, Shannon KL. Differences between Asn-Xaa-Thr-containing peptides: a comparison of solution conformation and substrate behavior with oligosaccharyltransferase. Biochemistry. 1991; 30:4374–4380. [PubMed: 2021629]

14. Bousfield GR, Butnev VY, Gotschall RR, Baker VL, Moore WT. Structural features of mammalian gonadotropins. Mol Cell Endocrinol. 1996; 125:3–19. [PubMed: 9027339]

15. Walton WJ, Nguyen VT, Butnev VY, Singh V, Moore WT, et al. Characterization of human follicle-stimulating hormone isoforms reveals a non-glycosylated β-subunit in addition to the conventional glycosylated β-subunit. J Clin Endocrinol Metab. 2001; 86:3675–3685. [PubMed: 11502795]

16. Bousfield GR, Butnev VY, Walton WJ, Nguyen VT, Huneidi J, et al. All-or-none N-glycosylation in primate follicle-stimulating hormone beta-subunits. Mol Cell Endocrinol. 2007; 260–262:40–8.

17. Bousfield GR, Butnev VY, Butnev VY, Hiromasa Y, Harvey DJ, et al. Hypo-glycosylated human follicle-stimulating hormone (hFSH(21/18)) is much more active in vitro than fully-glycosylated hFSH (hFSH(24)). Mol Cell Endocrinol. 2014; 382:989–997. [PubMed: 24291635]

18. Randolph JF Jr, Zheng H, Sowers MR, Crandall C, Crawford S, et al. Change in follicle-stimulating hormone and estradiol across the menopausal transition: effect of age at the final menstrual period. J Clin Endocrinol Metab. 2011; 96:746–754. [PubMed: 21159842]

19. Bogdanove EM, Campbell GT, Peckham WD. FSH pleomorphism in the rat—regulation by gonadal steroids. Endocr Res Commun. 1974; 1:87–99. [PubMed: 4461262]

20. Peckham WD, Knobil E. The effects of ovariectomy, estrogen replacement, and neuraminidase treatment on the properties of the adenosynaptic glycoprotein hormones of the Rhesus monkey. Endocrinology. 1976; 98:1054–1060. [PubMed: 819246]

21. Ulloa-Aquirre A, Schwall R, Cravioto A, Zambrano E, Damian-Matsumura P. Effects of gonadotrophin-releasing hormone, recombinant activin-A and sex steroids upon the follicle-stimulating isohormones secreted by rat anterior pituitary cells in culture. J Endocrinol. 1991; 134:97–106.

22. Damian-Matsumura, P.; Zaga, V.; Sanchez-Hernandez, C.; Maldonado, A.; Timossi, C., et al. The changes in α-2,3 sialyltransferase mRNA levels during the rat estrous cycle and after castration correlate with variations in the charge distribution of intrapituitary follicle-stimulating hormone (FSH). 80th Annual Meeting of the Endocrine Society; New Orleans. 1998. p. Abstract OR28–6

23. Damian-Matsumura P, Zaga V, Maldonado A, Sanchez-Hernandez C, Timossi C, et al. Oestrogens regulate pituitary alpha2,3-sialyltransferase messenger ribonucleic acid levels in the female rat. J Mol Endocrinol. 1999; 23:153–165. [PubMed: 10514553]

24. Perez GT, Apfelbaum ME. GnRH-stimulated glycosylation (proximal and distal) of luteinizing hormone by cultured rat pituitary cells. Neuroendocrinology. 1996; 64:456–461. [PubMed: 8990079]

25. Phillips DJ, Wide L. Serum gonadotropin isoforms become more basic after an exogenous challenge of gonadotropin-releasing hormone in children undergoing pubertal development. J Clin Endocrinol Metab. 1994; 79:814–819. [PubMed: 8077366]

26. Wide L, Albertsson-Wikland K, Phillips DJ. More basic isoforms of serum gonadotropins during gonadotropin-releasing hormone agonist therapy in pubertal children. J Clin Endocrinol Metab. 1996; 81:216–221. [PubMed: 8550754]

27. Wide L, Hobson B. Influence of the assay method used on the selection of the most active forms of FSH from the human pituitary. Acta Endocrinol (Copenh). 1986; 113:17–22. [PubMed: 3094307]

28. Ulloa-Aguirre A, Chappel SC. Multiple species of follicle-stimulating hormone exist within the anterior pituitary gland of male golden hamsters. J Endocrinol. 1982; 95:257–266. [PubMed: 6816885]

29. Bishop LA, Robertson DM, Cahir N, Schofield PR. Specific roles for the asparagine–linked carbohydrate residues of recombinant human follicle stimulating hormone in receptor binding and signal transduction. Mol Endocrinol. 1994; 8:722–731. [PubMed: 7935488]

J Glycomics Lipidomics. Author manuscript; available in PMC 2015 April 16.
30. Valove FM, Finch C, Anasti JN, Froehlich J, Flack MR. Receptor binding and signal transduction are dissociable functions requiring different sites on follicle-stimulating hormone. Endocrinology. 1994; 135:2657–2661. [PubMed: 7988456]

31. Bishop LA, Nguyen TV, Schofield PR. Both of the beta-subunit carbohydrate residues of follicle-stimulating hormone determine the metabolic clearance rate and in vivo potency. Endocrinology. 1995; 136:2635–2640. [PubMed: 7750487]

32. Wide L. The regulation of metabolic clearance rate of human FSH in mice by variation of the molecular structure of the hormone. Acta Endocrinol (Copenh). 1986; 112:336–344. [PubMed: 3092526]

33. Bousfield GR, Butnev VY, Bidart JM, Dalpathado D, Irungu J, et al. Chromatofocusing fails to separate hFSH isoforms on the basis of glycan structure. Biochemistry. 2008; 47:1708–1720. [PubMed: 18197704]

34. Harvey DJ, Royle L, Radcliffe CM, Rudd PM, Dwek RA. Structural and quantitative analysis of N-linked glycans by matrix-assisted laser desorption ionization and negative ion nanospray mass spectrometry. Anal Biochem. 2008; 376:44–60. [PubMed: 18294950]

35. Sprengel R, Braun T, Nikolics K, Segaloff DL, Seeburg PH. The testicular receptor for follicle stimulating hormone: structure and functional expression of cloned cDNA. Mol Endocrinol. 1990; 4:525–530. [PubMed: 2126341]

36. Quintana J, Hipkin RW, Ascoli M. A polyclonal antibody to a synthetic peptide derived from the rat follicle-stimulating hormone receptor reveals the recombinant receptor as a 74-kilodalton protein. Endocrinology. 1993; 133:2098–2104. [PubMed: 8404659]

37. Urizar E, Montanelli L, Loy T, Bonomi M, Swillens S, et al. Glycoprotein hormone receptors: link between receptor homodimerization and negative cooperativity. EMBO J. 2005; 24:1954–1964. [PubMed: 15889138]

38. Thomas RM, Nechamen CA, Mazurkiewicz JE, Muda M, Palmer S, et al. Follice-stimulating hormone receptor forms oligomers and shows evidence of carboxyl-terminal proteolytic processing. Endocrinology. 2007; 148:1987–1995. [PubMed: 17272391]

39. Guan R, Wu X, Feng X, Zhang M, Hebert TW, et al. Structural determinants underlying constitutive dimerization of unoccupied human follitropin receptors. Cell Signal. 2010; 22:247–256. [PubMed: 19800402]

40. Dattatreyamurty B, Reichert LE Jr. Carbohydrate moiety of follitropin receptor is not required for high affinity hormone-binding or for functional coupling between receptor and guanine nucleotide-binding protein in bovine calf testis membranes. Endocrinology. 1992; 131:2437–2445. [PubMed: 1425441]

41. Dattatreyamurty B, Smith RA, Zhang SB, Santa-Coloma TA, Reichert LE Jr. The size of the mature membrane receptor for follicle-stimulating hormone is larger than that predicted from its cDNA. J Mol Endocrinol. 1992; 9:115–121. [PubMed: 1418382]

42. Jiang X, Liu H, Chen X, Chen PH, Fischer D, et al. Structure of follicle-stimulating hormone in complex with the entire ectodomain of its receptor. Proc Natl Acad Sci U S A. 2012; 109:12491–12496. [PubMed: 22802634]

43. Fan QR, Hendrickson WA. Structure of human follicle-stimulating hormone in complex with its receptor. Nature. 2005; 433:269–277. [PubMed: 15662415]

44. Jiang X, Dias JA, He X. Structural biology of glycoprotein hormones and their receptors: insights to signaling. Mol Cell Endocrinol. 2014; 382:424–451. [PubMed: 24001578]

45. Renwick AG, Mizuochi T, Kochibe N, Kobata A. The asparagine-linked sugar chains of human follicle-stimulating hormone. J Biochem. 1987; 101:1209–1221. [PubMed: 3115970]

46. Green ED, Baenziger JU. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin. I. Structural elucidation of the sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones. J Biol Chem. 1988; 263:25–35. [PubMed: 3121609]

47. Green ED, Baenziger JU. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin. II. Distributions of sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones. J Biol Chem. 1988; 263:36–44. [PubMed: 3121612]
48. Van Zuylen CW, De Beer T, Rademaker GJ, Haverkamp J, Thomas-Oates JE, et al. Site-specific and complete enzymic deglycosylation of the native human chorionic gonadotropin alpha-subunit. Eur J Biochem. 1995; 231:754–760. [PubMed: 7544284]

49. Bousfield GR, Baker VL, Gotschall RR, Butnev VY. Carbohydrate analysis of glycoprotein hormones. Methods. 2000; 21:15–39. [PubMed: 10764604]

50. Landomiel F, Gallay N, Jegot G, Tranchant T, Durand G, et al. Biased signalling in follicle stimulating hormone action. Mol Cell Endocrinol. 2014; 382:452–459. [PubMed: 24121199]

51. Luttrell LM. Mini review: More than just a hammer: Ligand ‘bias’ and pharmaceutical discovery. Mol Endocrinol. 2014

52. Shukla AK. Biasing GPCR Signaling from Inside. Sci Signal. 2014; 7:pe3. [PubMed: 24473194]

53. Marsh JM. The role of cyclic AMP in gonadal steroidogenesis. Biol Reprod. 1976; 14:30–53.

54. Means AR, MacDougall E, Soderling TR, Corbin JD. Testicular adenosine 3′,5′-monophosphate-dependent protein kinase. Regulation by follicle-stimulating hormone. J Biol Chem. 1974; 249:1231–1238. [PubMed: 4360684]

55. Dattatreyamurthy B, Figgs LW, Reichert LE. Physical and functional association of follitropin receptors with cholera toxin-sensitive guanine nucleotide-binding protein. J Biol Chem. 1987; 262:11737–11745.

56. Davis JS, Weakland LL, West LA, Farese RV. Luteinizing hormone stimulates the formation of inositol trisphosphate and cyclic AMP in rat granulosa cells. Evidence for phospholipase C generated second messengers in the action of luteinizing hormone. Biochem J. 1986; 238:597–604. [PubMed: 3026357]

57. Davis JS, Weakland LL, Farese RV, West LA. Luteinizing hormone increases inositol trisphosphate and cytosolic free Ca2+ in isolated bovine luteal cells. J Biol Chem. 1987; 262:8515–8521. [PubMed: 3496333]

58. Butnev VY, Singh V, Nguyen VT, Bousfield GR. Truncated equine LH beta and asparagine(56)-deglycosylated equine LH alpha combine to produce a potent FSH antagonist. J Endocrinol. 2002; 172:545–555. [PubMed: 11874703]

59. Wehbi V, Tranchant T, Durand G, Musnier A, Decourt ye J, et al. Partially deglycosylated equine LH preferentially activates beta-arrestin-dependent signaling at the follicle-stimulating hormone receptor. Mol Endocrinol. 2010; 24:561–573. [PubMed: 20107152]

60. Loreti N, Fresno C, Barrera D, Andreone L, Albarran SL, et al. The glycan structure in recombinant human FSH affects endocrine activity and global gene expression in human granulosa cells. Mol Cell Endocrinol. 2013; 366:68–80. [PubMed: 23261981]

61. Jiang, C.; Hou, XY.; Roy, SK.; May, JV.; Bousfield, GR.; Davis, JS. Role of glycosylation in FSH signaling in granulosa cells and osteoclasts. Biol Reprod; Supplement to Biol Reprod for the 46th Annual Meeting of the Society for the Study of Reproduction; July 22–26, 2013; Montréal, Québec. 2013; 2013. p. Abstract 654
Figure 1.
Cystine knot organization and glycosylation of human FSH α- and β-subunits. The cystine (Cys) knot disulfide bonds are indicated as lines. The loops are designated αL1, αL2, αL3, βL1, βL2, and βL3, as indicated. The FSHα seatbelt loop that embraces αL2 of FSHα in the heterodimer is indicated. The locations of the asparagine (Asn) N-glycosylation sites on loops αL2, αL2, and βL1 show diagrammatic representations of a glycan found at each site by glycopeptide mass spectrometry.
Figure 2.
Human FSH glycoform models. The FSHα (green) and FSHβ (blue) subunits are shown as backbone cartoons. The N-glycans are shown as spheres and represent the most abundant glycans observed in glycopeptide mass spectra [6]. Panel A. hFSH24, which possesses all 4 N-glycans. Panel B. hFSH21, which lacks βAsn24 glycan. Panel C. hFSH18, which lacks βAsn7 glycan. Panel D. hFSH15, which lacks both FSHβ N-glycans. The hFSH24 model was created using Tripos Sybyl and subjected to molecular dynamics. The image in panel A was rendered with PyMol and the FSHβ glycans hidden in subsequent panels.