Sustainability Science (2023) 18:389–406
https://doi.org/10.1007/s11625-022-01213-z

SPECIAL FEATURE: CASE REPORT

Globally-Consistent National Pathways towards Sustainable Food and Land-use Systems

Pathways to sustainable land use and food systems in Canada

Hisham Zerriffi1 · Rene Reyes1,2 · Avery Maloney1

Received: 25 January 2022 / Accepted: 14 July 2022 / Published online: 17 October 2022
© The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2022

Abstract
Meeting global sustainability targets under the United Nations Sustainable Development Goals and the Paris Agreement requires paying attention to major land-use sectors such as forestry and agriculture. These sectors play a large role in national emissions, biodiversity conservation, and human well-being. There are numerous possible pathways to sustainability in these sectors and potential synergies and trade-offs along those pathways. This paper reports on the use of a model for Canada’s land use to 2050 to assess three different pathways (one based on current trends and two with differing levels of ambition for meeting sustainability targets). This was done as part of a large international consortium, Food, Agriculture, Biodiversity, Land and Energy (FABLE), which allows for incorporating international trade in meeting both national and global sustainability targets. The results show not only the importance of increasingly stringent policies in meeting the targets, but also the role that population and consumption (e.g., diets) play in meeting the targets. Both the medium and high ambition sustainability pathways can drastically reduce greenhouse gas emissions while protecting forestland.

Keywords Sustainable development goals · Scenario assessment · Land-use changes · GHG emissions · Food systems · Canada

Introduction

In 2015, the world’s governments, through the United Nations, committed to a broad set of goals to ensure that basic human needs are met while also protecting the various natural systems that we depend upon (Hák et al. 2016). These 17 Sustainable Development Goals (SDGs) include alleviating poverty and sustainable economic growth (SDG 1, 8, 9), ending hunger (SDG 2), protecting life on land (SDG 15) and in water (SDG 14), and mitigating climate change (SDG 13). The latter goal goes hand-in-hand with the other major environmental commitment that governments made in 2015, to hold climate change to 2 °C (and aim for 1.5) as enshrined in the Paris Agreement. Meeting human needs in a sustainable fashion requires, in part, careful attention to how land is managed and used across multiple sectors. The main land-use sectors of agriculture and forestry are, however, facing major challenges globally. Unsustainable land-use practices and climate change have direct negative impacts on both human and natural systems but also threaten long-term productivity and the ability to meet human demand for food and products. Recent reports, for example, show a major biodiversity crisis with extinction threats rising due to factors such as habitat loss (IPBES 2019).

There is a great deal of debate about how exactly land-use sectors both contribute to sustainability problems and to the solutions to sustainability problems (Steffen et al. 2015; Haberl et al. 2007; Pradhan et al. 2017; Scherer et al. 2018; Fader et al. 2018; Roe et al. 2019; Bastin et al. 2019; IPCC 2019). Managing the land for meeting multiple Sustainable Development Goals (e.g., through improved food production, protection of biodiversity, contributing to economic well-being, carbon sequestration) implies a number of potential trade-offs and synergies between different goals (e.g., land for conservation vs. agricultural production). Different
strategies and policies can result in very different outcomes in terms of those trade-offs (Bowen et al. 2017).

For Canada, the implications for land-use sectors of these goals is particularly important socially, environmentally and economically. Canada’s land cover in 2010 was 5.8% cropland, 1.6% grassland, 38.1% forest, 0.1% urban and 54.3% other natural land (ESA 2010). Most of the agricultural area is located in the provinces of Alberta and Saskatchewan (with additional significant areas in Manitoba, Ontario, and pockets of agricultural production in other provinces) (Statistics Canada 2021a), while forests and other natural lands can be mostly found in British Columbia, Ontario, Manitoba, Quebec, and three northern Territories (Map 1). The main challenges for biodiversity conservation are related to energy production and mining (tar sands production in Alberta), forestry operations and an increase in fire frequency and intensity (wildfires in the west coast), and diseases that increase natural mortality and produce ecological imbalances (Axelson et al. 2009, Potapov et al. 2017).

Economically, the Canadian forest industry contributes over $20 billion to Canada’s GDP, employs over 200,000 workers and harvests roughly 150 million cubic meters of roundwood per year (Natural Resources Canada and Canadian Forest Service 2019). Agricultural production in Canada encompasses 55.2 million hectares (Mha), is worth $111 billion (6.7% of GDP), and is expected to expand to help Canada meet domestic and global demand for agricultural commodities (Bonti-Ankomah et al. 2017; Sarkar et al. 2018). These sectors face a number of climate change stressors: range shifts for various tree species, changes in precipitation and temperature affecting crop yields (Li et al. 2018), and increased risks of pests and forest fires, among others, which impact on people’s health and wellbeing (Yusa et al. 2015).

Canada, being one of the largest exporters of agricultural products in the world, has projected to double its current agricultural productivity and incomes for small-scale producers by 2030 (Statistics Canada 2021b) in its quest to achieve the Zero hunger SDG mandate. This is expected to have an impact on Land Use, Land-Use Change and Forestry (LULUCF), given agriculture is one of the leading drivers of this change in Canada (Environment and Climate Change Canada 2021a, b). On the one hand, it is projected that afforestation and deforestation rates would continue to remain low, reducing the possible impact from land use changes (National Resources Canada 2020), which would translate to a net sink (overall emission reduction compared to what is released) for its land sector. However, in a recent inventory report by Environment and Climate Change Canada (2021a, b), this sector was revaluated and flagged as a net source of emission since 2015, with a difference of about 20 MtCO₂e in recent years. This difference has been attributed to updates in modeling parameters and methods used, revisions of forest harvest activity and changes in how insect disturbances are captured (Climate Action Tracker 2021).

According to the Long-Term Low Emissions and Development Strategy (LT-LEDS), Canada has committed to reducing its GHG emissions by 80% by 2050 compared to 2005 (Environment and Climate Change Canada 2016). This includes emission reduction efforts from agriculture, forestry, and other land use (AFOLU). Envisaged mitigation measures from agriculture and land-use change include protecting and enhancing carbon sinks including forests, wetlands and agricultural lands; large-scale afforestation; increased use of long-lived harvested wood products; and increased utilization of waste wood biomass. Under its current commitments to the UNFCCC, Canada does not mention biodiversity conservation (Environment and Climate Change Canada 2016).

Table 1 summarizes Canada’s Nationally Determined Contributions (NDCs) and LT-LEDS, and Table SI-1 in the Supplemental Information provides an overview of the biodiversity targets included in the National Biodiversity Strategies and Action Plan (NBSAP), as listed on the website of the Convention on Biological Diversity (CBD 2020). Moreover, Canada’s NBSAP combines its 2020 Biodiversity Goals and Targets and the 2006 Biodiversity Outcomes Framework. However, NBSAPs’ targets are seen as vague, unambitious, and ineffective (Hagerman and Pelai 2016; Lemieux et al. 2019).

As these goals and strategies are translated into concrete policies and actions at a domestic level there needs to be a mechanism for understanding the complex inter-linkages between the SDGs, climate action and different land-use options and decisions (Sachs et al. 2019). Integrated policies and strategies are lacking and no country has fully mapped out and integrated the pathways for meeting these goals over the long-term into policy. Approaches that capture the complex inter-linkages between the SDGs, climate action and different land-use decisions across multiple land-use sectors are needed (Steffen et al. 2015; Haberl et al. 2007; Pradhan et al. 2017; Scherer et al. 2018; Fader et al. 2018; Bastin et al. 2019; IPCC 2019).

In that context, the Food, Agriculture, Biodiversity, Land and Energy (FABLE) initiative aims to understand how countries can collectively transit towards more sustainable land-use and food systems, meeting at the same time the Sustainable Development Goals (SDGs) and the Paris Agreement. FABLE teams work through an iterative
process based on partial equilibrium models that take into account key determinants of global land-use projections: population, wealth, consumption preferences, agricultural productivity, land-use regulation, and trade, and their interactions (Stehfest et al. 2019). Twenty country-teams that concentrate most on agricultural production, consumption and trade, and five “rest of continent” teams adjust different scenarios to ensure balanced trade flows and progressively align national pathways with these global targets, which account for food security, greenhouse gas emissions, and biodiversity (Mosnier 2020).

Along this process, teams engage national stakeholders and experts to review assumptions, seek technical advice, and build a shared vision of how to transform land use and food systems. FABLE teams work locally and have relationships with different stakeholders: industry, government, NGOs, farmers organizations, and researchers, who provide relevant data and feedback to define scenarios based on a bottom-up approach, which allows for better accounting for cross-scale interactions (Nilsson et al. 2017). This is the main value and difference of the FABLE initiative with other efforts that try to address similar challenges.

To assess how Canada could transition towards more sustainable land use and food systems, and simultaneously meet some key Sustainable Development Goals and the Paris Agreement, this paper reports on three scenarios that were built and projected to 2050 as part of the FABLE initiative. Each scenario has national level assumptions related to population, economic growth, agricultural production, and other relevant aspects. The next section describes the methods and the scenarios that were created to project possible futures for Canada by 2050. The subsequent section shows the main results of these projections, followed by which our main findings in light of the current literature are discussed. Finally, we propose some conclusions.

Materials and methods

The FABLE initiative is composed of a Secretariat plus 20 country-teams, which concentrate most on global agricultural production, consumption and trade, and five “rest of continent” teams (America, Asia, Africa, Oceania, and Europe) that process data for countries that are not directly involved in this partnership. The country teams are composed of people from different organizations, skills and
professions, allowing researchers from different backgrounds, hardware/software availability, resources, and skills to collaborate as a network, and assess common futures, which is a key characteristic of the FABLE initiative (FABLE 2020). At the same time, there is variability between the teams in terms of both data access and modeling tools used (GLOBIOM, MAGPIE, and the FABLE Calculator). This creates some methodological challenges for the FABLE Secretariat who integrate all modeling outputs.

The Canada team uses the FABLE Calculator developed by the International Institute for Applied Systems Analysis (IIASA) and the Sustainable Development Solutions Network (SDSN) to perform all calculations. The FABLE Calculator is an appropriate tool for this study compared to other modeling approaches, especially at an initial stage of work, because it does not require previous knowledge on specific software and licenses, as is the case of GLOBIOM, MAGPIE and other tools, and users can easily replace Tier 1 data with national or subnational statistics (Valin et al. 2013; Mosnier 2020). From this perspective, the FABLE Calculator is easier and cheaper to use than other platforms, and very flexible and transparent.

The FABLE Calculator

The FABLE Calculator is an Excel-based tool to model and project food and land-use systems by 2050 at different levels (regional, national and subnational). This tool addresses the main aspects of these systems: food security and trade, land cover changes, biodiversity impacts, and GHG emissions from agriculture and land-use changes (Mosnier 2020). Databases for agricultural inputs and outputs, land-use, and other aspects are included in the Excel file, as well as the assumptions and formulas used for modeling, creating alternative scenarios, and visualizing the main results. From that perspective, the calculator is transparent in terms of the way it relates different kinds of data, as well as its limitations. The databases are pre-populated with data from FAOSTAT and the European Space Agency (ESA) but have been updated and modified with data from Canadian statistical sources as appropriate. The calculator is complemented by the Quality Assurance Tool, which was developed to check consistency of outputs and main results along its different formulas and tables. The calculator’s open framework allows for frequent improvements suggested by the community of users (country team members, scholars, and experts). These improvements are assessed by IIASA and SDSN, and they are shared with the community through update packages, which are published regularly.

The calculator projects figures about land use and land-use changes, GHG emissions, biodiversity conservation, and other relevant indicators related to different SDGs by 2050, at 5-year periods, based on scenarios that combine shared socioeconomic pathways (population, economic growth and diets), international trade fluxes (imports and exports), agricultural productivity and efficiencies (crops and livestock, and losses along the food-supply chain), climate change scenarios, and public policies about forests and biodiversity protection. The calculator’s users can combine different scenarios, and even create their own, based on a particular country’s commitments, policies and potential futures in order to assess how these scenarios influence social and environmental goals. Calculations use historical data for the 2000–2015 period, and projections require several assumptions which are developed by each country team. Once scenarios are selected, all tables and formulas process the information to produce final outputs, which are later combined by the FABLE Secretariat and IIASA with the ones from the other country and “rest of continent” teams to balance the international trade fluxes by using partial equilibrium models. Once this is completed, adjusted values for different crops and agricultural products are given back to every country team to run the calculator again.

Metrics

This analysis considers three out of 17 SDGs related to food security, greenhouse gas emissions, and biodiversity protection. Table 2 shows the specific targets within those SDGs, and the metrics of these objectives.

In addition to the main SDG-based metrics discussed above, we also measure two other metrics of interest for understanding the implications of the pathways. The first is a self-sufficiency ratio that measures exports vs. imports of various food products to understand the dependence on global trade for both meeting internal dietary needs and for supplying food to other markets. The second is a diversity index to look at concentration in land-use for producing different crops and the concentration in exports and imports within certain commodities. For this, we use the Herfindahl–Hirschman Index (HHI), which is typically used to measure the degree of market competition using the number of firms and the market shares of each firm in a given market (Rhoades 1993). We apply this index to measure the diversity/concentration of:

Cultivated area: where concentration refers to cultivated area that is dominated by a few crops covering large shares of the total cultivated area, and diversity refers to cultivated area that is characterized by many crops with equivalent shares of the total cultivated area.

Exports and imports: where concentration refers to a situation in which a few commodities represent a large share
Table 2 Metrics used to include global targets into the calculator

SDGs	Targets	Metric
Food security	Average daily energy intake per capita is higher than the minimum requirement in all countries by 2030	Average kilocalories per capita per day
	Diet composition to achieve premature diet-related mortality below 5%	Average consumption of proteins and fats per capita per day by food group
GHG emissions¹	GHG emissions from crops and livestock allow keeping the rise in average global temperatures to below 1.5 °C by 2050	Average CO₂e emissions per ton of crop and livestock produced and consumed (including exports, and wasted food)
	GHG emissions and removals from LULUCF are compatible with keeping the rise in average global temperatures to below 1.5 °C	Average CO₂e emissions per hectare of productive land expanded into forests or other lands, and removals per hectare of new forests
	Negative global GHG emissions from LULUCF by 2050	Average CO₂e balance between GHG emissions and removals related to LULUCF
Biodiversity protection²	No net loss of lands where natural processes predominate by 2030, and an increase of at least 20%,	Total area (hectares) of intact ecosystems outside protected areas by land use and ecoregion
	At least 30% of global terrestrial area is inside protected areas by 2030	Total area (hectares) inside protected areas
	Zero net deforestation by 2030	Total area (hectares) of forests cleared, and non-forested

¹GHG emissions that result from permafrost conversion to bog, fen lands and other land cover types, as also impacts on peatlands, have not been included in the FABLE Calculator yet. This process is relevant in Canada, especially because of climate change, and it can be producing significant amounts of methane and other gases (Chasmer et al. 2012)

²Agricultural expansion also affects wetlands, which are being drained in the Canadian prairies with severe ecological impacts (biodiversity, water quality and quantity, etc.) (Baulch et al. 2021). Wetlands are very critical ecosystems, but they were not included in this study because of the lack of adequate representation in the calculator and the difficulty of getting good statistics

Map 1 Land cover by aggregated land cover types in 2010 and ecoregions. Sources. Countries—GADM v3.6 (GADM 2020); ecoregions—Dinerstein et al. (2017); land cover—ESA CCI land cover 2015 (ESA 2017)
of total exported and imported quantities, and diversity refers to a situation in which many commodities account for significant shares of the total exported and imported quantities.

We use the same thresholds as defined by the U.S. Department of Justice and Federal Trade Commission (2010, Sect. 5.3): diverse under 1500, moderate concentration between 1500 and 2500, and high concentration above 2500.

National pathways

Our Current Trends pathway corresponds to the lower boundary of feasible action. It is characterized by medium-speed population growth (from 38 million in 2020 to 49 million in 2050), no constraints in agricultural expansion, no afforestation target, no change in the extent of protected areas, low productivity increases in the agricultural sector, an evolution towards higher fat diets, and high speed of economic growth. This corresponds to a future based on current policy (as of 2010) and historical trends that would also see considerable growth in GDP and exports in the coming decades according to OECD (2020) and FAO (2020) database projections. We embed this Current Trends pathway in a global GHG concentration trajectory that would lead to a radiative forcing level of 6 W/m² (RCP 6), or a global mean warming increase likely between 2 and 3 °C above pre-industrial temperatures by 2100 (HadGEM2-ES climate model, and the GEPIC crop model without fertilization effect). Table SI-2 in the Supplemental Information summarizes the main assumption for all pathways, and provides references.

Our Sustainable Medium Ambition pathway represents a future in which significant efforts are made to adopt sustainable policies and practices, and corresponds to an intermediate boundary of feasible action. Compared to the Current Trends pathway, we assume that this future would lead to a higher afforestation rate, expansion of protected areas, improved crop and livestock productivities, expanded imports and exports, and greater biofuel consumption (Advanced Biofuels Canada 2019). It is also characterized by lower population and GDP growth rates, a lower deforestation rate, reduced calorie consumption, and a declining share of wasted food. This corresponds to a future based on the adoption and implementation of new ambitious policies about trade, immigration, and climate change that would also see considerable progress concerning biodiversity protection, first-generation biofuel consumption, sustainable forest management and agricultural performance (Bohnert et al. 2015; Mukhopadhyay et al. 2020; Prestele et al. 2016; Wulder et al. 2018). We embed this pathway in a global GHG concentration trajectory that would lead to a lower radiative forcing level of 2.6 W/m² by 2100 (RCP 2.6), in line with limiting warming to 2 °C. At this level of warming, this scenario assumes a positive impact of climate change on crop and pastures productivities given resulting increases in growing season and suitable agricultural area (Assefa et al. 2018; Jing et al. 2017; Li et al. 2013; Lychuk et al. 2017; Qian et al. 2016; Ray et al. 2013; Thorpe et al. 2008; Thomas and Graf 2014), though we recognize that this may be overly optimistic and does not offset other damaging climate impacts (including to agriculture) even under an RCP 2.6 scenario.

Our Sustainable High Ambition pathway represents a future in which even more significant efforts are made to adopt sustainable policies and practices, and corresponds to the highest boundary of feasible action. Compared to the Sustainable Medium Ambition pathway, we assume that this future would lead to even higher afforestation rates, expansion of protected areas, improvement of main crops’ yields, and increased exports. This is coupled with lower GDP growth, reduced imports, and declining use of first-generation biofuel consumption. This corresponds to a future based on the adoption and implementation of very ambitious policies about biodiversity protection (Andrew et al. 2012; Schulte 2017) and climate change mitigation programs like the zero-emission vehicle (ZEV) target that includes subsidies and other support programs to increase the use of electric vehicles (Natural Resources Canada 2020a, b). As in the Sustainable Medium Ambition pathway, we embed this Sustainable High Ambition pathway in a global GHG concentration trajectory that would lead to a lower radiative forcing level of 2.6 W/m² by 2100 (RCP 2.6).

Results

Current land use and emissions

In Canada, lands where natural processes predominate accounted for 80% of terrestrial land area in 2010, although only 17% of them are inside protected areas (UNEP-WCMC and IUCN 2020). This is mostly concentrated in a few ecoregions in the northern parts of the country (Map 2). Broadly, about 107 million hectares are under formal protection, which represents 11% of Canada’s lands. This figure falls short of the post-2020 30% targeted by the Convention on Biological Diversity (CBD 2020).

2 We follow Jacobson, Riggio, Tait, and Baillie (2019) definition: “Landscapes that currently have low human density and impacts and are not primarily managed for human needs. These are areas where natural processes predominate, but are not necessarily places with intact natural vegetation, ecosystem processes or faunal assemblages”.
Most croplands do not maintain natural vegetation. In 2010, only 21% of these productive landscapes kept at least 10% of natural vegetation. These croplands (Smith et al. 2013a, b; Sloan et al. 2014) are mainly located in areas with lower agricultural production intensities, as is the case of the Canadian Aspen forests and parklands ecoregion (386 in Map 2), the Northern Shortgrass prairie ecoregion (396) and the Mid-Canada Boreal Plains forests ecoregion (376).
GHG emissions from Agriculture, Forestry, and Other Land Use (AFOLU) represented 23% of all Canada emissions in 2010 (Fig. 1). Harvested timber is the principal component of these emissions, which shows the relevance of the forest industry in Canada, followed by enteric fermentation, and agriculture soil management. Most of the enteric fermentation results from livestock, with over 10 million head of cattle for beef production and dairy (Environment and Climate Change Canada 2021b).

Pathways about land use and biodiversity

In the current trend scenario, projected land uses were based on shared socioeconomic pathways about population, GDP, diets, and other aspects. We assumed a medium-speed population growth, from 38 million in 2020 to 49 million in 2050, high speed of economic growth, a preference for higher fat diets, no-limits for land use changes, no significant afforestation programs, marginal augmentation to agricultural productivity, formally protected areas remaining on about 11% of total Canadian territory, and global warming between 2 and 3 °C higher than pre-industrial levels by 2100. Concerning land use, this scenario projects an increase in croplands, and a reduction in forest area by 2030 and continuing to 2050. The expansion of the planted area for rapeseed, wheat and barley explains 72% of total cropland expansion between 2010 and 2030. For rapeseed, 57% of the expansion is explained by an increase of exports, mainly to China, and 43% is due to an increase of domestic consumption (processed food). For wheat, 36% of expansion is due to an increase of exports and 64% an increase of domestic consumption (feeding animals, food, and biofuels). Finally, for barley, 98% results from an increase of domestic consumption for feeding animals.

Pasture expansion is mainly driven by the increase in internal food consumption of beef, milk, and derivatives, while livestock productivity per head increases and ruminant density per hectare of pasture remains constant over the period 2020–2030. Between 2030 and 2050, deforestation is explained by cropland and pasture expansion. This results in a reduction of land where natural processes predominate by 5% by 2030 and by 9% by 2050 compared to 2010, respectively.

In the Sustainable Medium Ambition and Sustainable High Ambition pathways, assumptions reflect a higher interest in biodiversity conservation and climate change mitigation (Prestele et al. 2016; Wulder et al. 2018). For the Sustainable Medium pathway, main assumptions include lower population and GDP growth rates, healthier diets (following the recommendations of the EAT-Lancet Commission), the prevention of deforestation by 2030, 1 million hectare afforested by 2050, protected areas increase from 11% of total land in 2010 to 17% in 2030, improved crop and livestock productivities, greater biofuel consumption, and a declining share of wasted food, in a context of 2 °C above pre-industrial temperatures by 2100. While for the Sustainable High pathway, afforested area increases by 2 million hectares and protected areas to 28%.

Compared to the Current Trends pathway, we observe the following changes regarding the evolution of land cover in Canada in the Sustainable Medium Ambition and
Sustainable High Ambition pathways: (i) a lower deforestation rate, (ii) a small increase in natural land, (iii) the stabilization or even a smaller area of agricultural land, and (iv) a higher afforested land. These differences are not only the natural result of changes in assumptions regarding land-use planning. They also arise from changes in internal demand for food due to changing diets, a reduction of population between the Current Trends and the sustainable pathways, and higher crop productivities (increased productivity leads to reduced land requirements to produce the same volume). This leads to an increase in the area where natural processes predominate: the area stops declining by 2025 and remains nearly constant (1% increase) between 2025 and 2050.

GHG emission pathways

Under the Current Trends pathway, annual GHG emissions from AFOLU increase to 235 Mt CO$_2$e/year in 2030, before reaching 219 Mt CO$_2$e/year in 2050 (Fig. 2). In 2050, methane produced by livestock is the largest source of emissions (35 Mt CO$_2$e/year) while forest regeneration acts as a sink (−1 Mt CO$_2$e/year). Over the period 2020–2050, the strongest relative increase in GHG emissions is computed for livestock (47%) while a reduction is computed for deforestation (25%).

In comparison, the Sustainable Medium Ambition pathway leads to a reduction of AFOLU GHG emissions by 69% and the Sustainable High Ambition pathway to a reduction by 88% by 2050 compared to Current Trends (Fig. 2). The potential emissions reductions under the Sustainable Medium Ambition pathway is dominated by a reduction in GHG emissions from deforestation and livestock production. Agricultural expansion would not affect forests beyond 2030, and a lower population growth rate by 2050 and a healthier diet are the most important drivers of this reduction. Under the Sustainable High Ambition pathway, GHG emissions from agriculture (crops), and land-use change are further reduced thanks to a higher afforestation rate and a lower consumption of first-generation biofuels.

Food security pathways

Under the Current Trends pathway, compared to the average Minimum Dietary Energy Requirement (MDER) at the national level, our computed average calorie intake is 43% higher in 2030 and 57% higher in 2050 (Table 3). The current average intake is mostly satisfied by red meat, poultry, milk, eggs, roots and sugar, and animal products represent 21% of the total calorie intake. We estimate that the consumption of animal products and in particular milk will increase by 57% between 2020 and 2050. The consumption of red meat, poultry, and cereals will also increase while pulses, roots, and nuts consumption will decrease. As a result, 2050 consumption of red meat, poultry, eggs, sugar, roots, and milk is higher and consumption of pulses and nuts is lower than the EAT-Lancet recommendations (Willett et al. 2019) (Fig. 3). Moreover, fat intake per capita exceeds the dietary reference intake (DRI) in 2030 and 2050, while protein intake remains in the recommended range. This can be explained by high consumption of red meat, milk, pork, and poultry (Table 3).

Under the Sustainable Medium Ambition pathway, we assume that diets will transition towards higher consumption of pulses and vegetables in general. Similar assumptions are made under the Sustainable High Ambition pathway. The ratio of the computed average intake over the MDER is 1.3.
decreases to 86% in 2030 and 70% in 2050 under the Sustainable pathways. Compared to the EAT-Lancet recommendations, only the consumption of animal fat remains outside of the recommended range with the consumption of pulses and nuts being now within the recommended range (Fig. 3). Moreover, the fat intake per capita will still exceed the dietary reference intake (DRI) in 2030, showing some improvement compared to the Current Trends pathway.

Self-sufficiency and commodity diversity

Under the Current Trends pathway, we project that Canada would be self-sufficient in cereals, oilseeds and vegetable oils, poultry meat, pulses, read meat (beef, goat and lamb), and roots and tubers in 2050, with self-sufficiency by product group increasing for the majority of products from 2010 to 2050 (Fig. 4). The product groups where the country depends the most on imports to satisfy internal consumption are beverages, spices and tobacco, fruits, and vegetables and this dependency will remain stable until 2050 given the lack of suitable growing conditions for many of these products within Canada. Under the Sustainable Medium Ambition and the Sustainable High Ambition pathways, Canada remains self-sufficient in the same eight product groups, but with higher self-sufficiency levels by 2050. This is explained by changes in volume of imports and exports, productivity, and change in diets.

Wheat and rapeseed were, by far, the main crops sown in 2010, followed by barley, soybeans, lentils, corn (for feed) and oats. Among these, rapeseed, wheat, barley, and soybeans are the main crops exported by Canada. According to the HHI Index, the planted crop area is moderately concentrated in 2010 as are exports.

Under the Current Trends pathway, we project medium concentration of crop exports and planted area, and low concentration of imports in 2050, trends which stabilize over the period 2010–2050. This indicates moderate levels of diversity across the national production system.

Fig. 3 Comparison of the computed daily average kilocalories intake per capita per food category across pathways in 2050 with the EAT-Lancet recommendations. Notes. These figures are computed using the relative distances to the minimum and maximum recommended levels (i.e., the rings); therefore, the different kilocalorie consumption levels correspond to each circle depending on the food group. The EAT-Lancet Commission does not provide minimum and maximum recommended values for cereals: when the kcal intake is smaller than the average recommendation it is displayed on the minimum ring and if it is higher, it is displayed on the maximum ring. The discontinuous lines that appear at the outer edge of sugar and red meat indicate that the average kilocalorie consumption of these food categories is significantly higher than the maximum recommended.
and exports. Under the Sustainable Medium Ambition pathway, we project a similar scenario, although a higher concentration of the planted area is possible, which is explained by a higher international demand of some specific crops from China and other important markets. Finally, under the Sustainable High Ambition pathway, we find medium and low concentration in exports and imports in 2050, respectively, indicating similar levels of diversity across the national production system as in the Current Trends pathway.

Discussion

The results above present three different land-use pathways out to 2030 (the timeline for the SDGs) and then beyond to 2050 for Canada. These result from country-level modeling coupled with results from global projections performed by 20 countries and “rest of continent” teams in the context of the FABLE initiative. These results come from the last joint-scenarios exercise, performed in 2020, and show possible futures based on what every country is projecting to produce, consume and trade (imports and exports) in the coming decades, adjusted by using partial equilibrium models, and their consequences on land use, as a result of different combinations of policies, demographic changes, social processes (diets, lifestyles, etc.), and climate change (FABLE 2020).

These pathways are driven by a set of assumptions around factors such as GDP and population growth, as well as scenario choices related to both dietary choices and land-use decisions (e.g., protected areas), and they are not intended to be precise nor comprehensive, as many aspects were not considered in our projections (pests, impacts on permafrost and wetlands, etc.). The main value of this global exercise is showing how different pathways of land use and food systems, built collectively by groups of experts worldwide, can impact on Canada’s SDGs and climatic goals, and how

Fig. 4 Self-sufficiency per product group in 2010 and 2050. Notes. In this figure, self-sufficiency is expressed as the ratio of total internal demand over total internal production. A country is self-sufficient in a product when the ratio is equal to 1, a net exporter when higher than 1, and a net importer when lower than 1. The discontinuous lines on the right side of this figure, as appear for cereals and oilseeds and vegetable oils, pulses, roots and tubers, indicate a high level of self-sufficiency in these categories.
some measures can help (or not) to achieve more sustainable results.

Each of the pathways for Canada was assessed against metrics derived from three SDGs for health and nutrition, greenhouse gas emissions and biodiversity protection. In addition, the results show impacts on the resilience of Canada’s agricultural system as measured by both self-sufficiency and diversity of crop production and markets.

Our results are consistent with prior work about the relevance of diets on achieving a more sustainable society (Macdiarmid et al. 2012; Eker et al. 2019). Diets are a key driver of land-use in the agricultural sector with spillover effects into other land uses and outcomes. A significant change in consumption is possible to achieve healthier diets and more sustainable land and food systems (Willet et al. 2019). Our findings are similar to Mora et al. (2020), who estimated a lower average calorie intake for the US–Canadian population when a healthy diet is projected, which would imply a higher demand for fruits, vegetables, and cereals (the first two food groups are mostly imported by Canada).

However, this is not only about energy content; it is also about food quality and environmental impacts. For Canada, a diet based on nuts, pulses, a higher consumption of fruits and vegetables, and a lower consumption of ultra-processed food and meat would reduce GHG emissions, and other negative impacts. Yet, it is important to clarify that there is not a single diet to recommend worldwide, as there is not enough agricultural land on the planet to supply these products to 8 billion people. Cultural and economic variations, and different local food sources should be taken into account to define country-specific (or even lower spatial scale) diets that can compatibilize people’s health (healthier meals) and lower social and environmental impacts in the context of climate change (Rizvi et al. 2018).

Moreover, the population scenarios vary by about 10 million people by 2050 (50 million under the Current Trends vs. 40 million for the sustainable scenarios). This population is highly concentrated along the US border, which means significant areas of the country have not been extensively industrialized or urbanized. The lack of access to large territories has already created de facto protected areas, especially in the boreal forest (between 50 and 80% of the total area) (Andrew et al. 2012). This could allow Canada to reach the 30% goal suggested by the UN Convention on Biological Diversity, which is being suggested by the House of Commons, who recommended “more ambitious targets for protected areas than those established in the Aichi Target 11” (Schulte 2017).

However, new policies around protected areas and further analysis within the context of FABLE need to account for Indigenous land rights over much of the territory that would be considered for protection. Whether formal protected areas administered outside Indigenous governance regimes are either feasible or even desirable requires careful consideration, as Canada engages in processes of reconciliation and decolonization, including implementing the United Nations Declaration on the Rights of Indigenous Peoples (UNDRIP) (Wong et al. 2020). In this context, reaching conservation goals should be part of a wider conversation inside Canadian society that also includes reconciliation and recognition of land rights (Zurba et al. 2019).

Population growth along with levels of types of consumption (e.g., diets) are key factors because they determine the size of the economy, and the resulting pressure on food and land systems, energy consumption, and natural resources depletion. Diet and lifestyles (sedentarism and other unhealthy behaviors) determine land-use outcomes as it can be clearly seen in modeling results. A high consumption of red meat, pork, and ultra-processed food significantly increases Canada’s GHG emissions and is related to a higher share of wasted food (throughout the distribution supply chain), which has been also highlighted by other authors (Government of Canada, Environment and Climate Change Canada, Waste Reduction and Management Division 2019; Fardet and Rock 2020; Auclair and Burgos 2021).

According to Molotoks et al. (2021), Canada’s low to moderate population growth and higher crop yields due to climate change would imply undernourishment will not be an issue in the future, unlike most of the countries worldwide where food systems will be highly stressed because of overpopulation and the negative consequences of environmental degradation. In this context, Canada’s relevance as a global food supplier could significantly increase, which would have geopolitical consequences for the country in the future (larger immigration pressure, higher political influence, among others).

In provinces where agriculture is concentrated—Alberta, Saskatchewan, Manitoba, and Ontario—and continuously expanding, agricultural productivity could temporarily improve under climate change through a longer growing season due to better environmental conditions (Qian et al. 2010, 2016), but gains could be offset by climate related stresses (e.g., wildfire risk, droughts) that were not modeled as of yet (Asong et al. 2018). Increasing crop productivity is also important to reduce the impacts of agriculture. Harvesting more tons per hectare has a key role in reducing GHG emissions and agricultural expansion. Here is where improved crop genetics and better management practices can significantly contribute to increase agriculture’s performance and reduce uncertainty (Abberton et al. 2016; Bailey-Serres et al. 2019; Bevan et al. 2017; Carpenter 2010; Rivers et al. 2015).

Our results also show that forests have a key role in reducing greenhouse gas emissions, protecting biodiversity, and preserving fresh water supply. From this perspective, preventing agricultural expansion into forest areas through deforestation bans beyond 2030 could have a significant
impact on Canada’s contribution to climate change mitigation (Prestele et al. 2016).

Also, developing a national afforestation program, as the Bonn Challenge has recommended, would be a good complement for a higher protection of Canadian ecoregions. Some initiatives, like the Caribou Habitat Restoration Project, Afforestation Ontario, and the National Greening Program, are already promoting afforestation on private and public lands as a way to recover ecosystem services (Government of Ontario 2017; Habitat Conservation Trust Foundation 2020; MacDonald et al. 2020; Mansuy et al. 2020).

Canada’s varied ecological zones suitable for different resources and small population imply high levels of per-capita natural resources availability (fisheries, agricultural lands, forests, etc.). Canada can be self-sufficient in a number of commodities, such as cereals, fish, red meat, many vegetables, and other food groups, at least in terms of availability (as affordability, and other aspects were not considered in this assessment), as well as in timber, energy, water and other goods and services. However, the high import dependency of Canada on fresh fruits and vegetables, mainly from the US, can become a barrier to sustain healthier diets, especially in the context of global crises like COVID-19 (Richards and Rickard 2020). At the same time, it should be noted that while production of several commodities can exceed their internal demand, for many of them there is a two-way trade such that Canada both exports and imports within the same category of goods. This is, in part to deal with seasonal production, which also has to be taken into account as part of Canadian vulnerability. Additionally, the fact that most of the harvesting depends on temporary-foreign workers increases the exposure of Canada’s land and food systems to external/global crises (Weiler et al. 2017).

The COVID-19 crisis exposed the fragility of food and land-use systems by bringing to the fore vulnerabilities in international supply chains and national production systems (Rivera-Ferre et al. 2021). We examined two indicators to gauge Canada’s resilience to agricultural-trade and supply disruptions across pathways: the rate of self-sufficiency and diversity of production and trade. Together they highlight the gaps between national production and demand and the degree to which we rely on a narrow range of goods for our crop production system and trade. Canadian agricultural production is moderately concentrated in a group of crops: rapeseed, wheat, barley, soybeans, and lentils. This concentration implies some risks for Canada, as any disease infestation, abiotic stress, and negative environmental event affecting these five crops could produce significant impacts on the SDGs and beyond (Ijaz et al. 2019).

Moreover, international trade is another key driver related to the use of ecosystems. The Canadian internal market for agricultural products is small compared to the country’s productive capacity and much of Canada’s production is oriented towards the international market, especially the U.S. and China. This implies a high level of economic dependency and vulnerability, which has been evident in the past cases of political tension between Canada and its trade partners (Bratt 2021; Georges 2017). Diversifying agricultural production and the number of trade partners would allow for potentially greater resilience and independence in Canada’s policy development around climate change, land use and environmental and social sustainability.

Conclusions

By comparing three different pathways (Current Trends, Sustainable Medium Ambition, and Sustainable High Ambition scenarios), we assessed the effect that changes on population, GDP, agricultural production, international trade, and diet would have on Canada’s greenhouse gas emissions, biodiversity, and resilience of the food and land systems. This paper demonstrates the potential impact that different policies could have for increasing Canada’s contribution to climate change mitigation, biodiversity conservation and solving other global challenges as laid out in the Sustainable Development Goals and other international initiatives.

There are some areas of limitation that are the basis of future work on the model. First, Canada has a supply management system in place for some agricultural products. This still needs to be incorporated into the model as a constraint on production. Second, the model does not represent wetlands as well as it should and improvements need to be made to better account for the impact of wetlands and wetlands area changes on outcomes. Third, the FABLE Calculator was developed in such a way that the initial focus was on agricultural production. Forests are primarily impacted by changes in agricultural land, decisions around protected areas, and decisions around afforestation/deforestation. Forest products and forest production are not as well represented. The Canada team has been developing a Forest Products Module for the calculator and, when completed, it will be available to all of the country teams.

Despite these limitations, the analysis demonstrates how policies could contribute to improved sustainability in Canada’s land-use sectors, by reducing GHG emissions, biodiversity loss, and other negative environmental impacts by: banning deforestation beyond 2030; promoting afforestation for carbon sequestration and biodiversity conservation in the context of initiatives like the Bonn Challenge (IUCN 2015); increasing protected areas (Aichi Biodiversity Targets and beyond), especially in less protected ecoregions, and considering a broader range of conservation tools, including other effective area-based conservation measures (OEABCMs) (MacKinnon et al. 2015); sowing higher productivity crops.
and improving livestock genetics and pastures productivity; improving Canadians’ diet according to the EAT-Lancet Commission (Willett et al. 2019); and increasing the use of zero-emission vehicles instead of crop-based biofuels. These measures could be particularly important when considering options for NDC enhancement.

However, it is not clear that even by implementing these measures, Canada will be able to fulfill its long-term goals (LT-LEDS) and other international commitments (Environment and Climate Change Canada 2016). Our projections show similar results as other works (Mora et al. 2020), in terms of how important people’s diets and lifestyles can become to reduce negative environmental impacts (land use and GHG emissions). From this perspective, even if the Canadian government does its job by promoting these policies, the effect will only be seen if the population actually responds by reducing consumption of animal protein and ultra-processed foods, and engaging in other critical behaviors. At the same time, it is necessary to recognize, as with the larger question of pro-environmental behavior, that individual choices are constrained by larger systems that impact factors such as what foods are available and at what price. These in turn are not only impacted by the Government’s policies (as noted above) but also by corporate actors that make investment and purchasing decisions as well as investments in influencing policy. This represents a huge challenge for the Canadian society as a whole.

Finally, we recognize that this analysis was conducted within the context of a dominant economic paradigm that assumes continued economic growth and then views sustainability from the lens of how to reduce future demand and meet that demand with the least impact. Therefore, our sustainability scenarios are largely based on some changes in demand (e.g., diets) and more intensive production (e.g., crop yields) with a continued reliance on global markets for both imports and exports. However, there may be other approaches to sustainability worth analyzing, which could arise from a deeper knowledge about what sustainability means for Canadians.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11625-022-01213-z.

Acknowledgements We acknowledge the support of the FABLE Secretariat in developing and maintaining the FABLE Calculator and providing technical assistance in the modeling. MAVI/SYSTEMIQ (via the FABLE Secretariat) and the Donner Foundation for funding. Abdulateef Gafar for research assistance and the anonymous reviewers for their helpful suggestions. René Reyes acknowledges the financial support from FONDECYT Iniciación Project No. 11200737 (ANID Chile).

References

Abberton M, Batley J, Bentley A, Bryant J, Cai H, Cockram J, Costa de Oliveira A, Cseke LJ, Dempewolf H, De Pace C, Edwards D, Gepts P, Greenland A, Hall AE, Henry R, Hori K, Howe GT, Hughes S, Humphreys M et al (2016) Global agricultural intensification during climate change: a role for genomics. Plant Biotechnol J 14(4):1095–1098. https://doi.org/10.1111/pbi.12467

Advanced Biofuels Canada (2019) Clean Fuels Investment Canada: Advanced Biofuels & Synthetic Liquid Fuels—Roadmap to 2030 (p. 47) [Sector Report]. Advanced Biofuels Canada. https://advancedbiofuels.ca/wp-content/uploads/Clean-Fuels-Investment-in-Canada-Roadmap-to-2030-ABFC-Nov21-2019.pdf

Andrew ME, Wulder MA, Coops NC (2012) Identification of de facto protected areas in boreal Canada. Biol Cons 146(1):97–107. https://doi.org/10.1016/j.bioccon.2011.11.029

Asong ZE, Wheater HS, Bonsal B, Razavi S, Kurkute S (2018) Historical drought patterns over Canada and their teleconnections with large-scale climate signals. Hydrot Earth Syst Sci 22:3105–3124. https://doi.org/10.5194/hess-22-3105-2018

Assefa Y, Prasad PVV, Foster C, Wright Y, Young S, Bradley P, Stamm M, Ciampitti IA (2018) Major management factors determining spring and winter canola yield in North America. Crop Sci 58(1):1–16. https://doi.org/10.2135/cropsci2017.02.0079

Auclair O, Burgos SA (2021) Carbon footprint of Canadian self-selected diets: comparing intake of foods, nutrients, and diet quality between low- and high-greenhouse gas emission diets. J Clean Prod 316:128245. https://doi.org/10.1016/j.jclepro.2021.128245

Axelson J, Alfaro R, Hawkes B (2009) Influence of fire and mountain pine beetle on the dynamics of Lodgepole pine stands in British Columbia, Canada. For Ecol Manag 257(9):1874–1882. https://doi.org/10.1016/j.foreco.2009.01.047

Bailey-Serres J, Parker JE, Ainsworth EA et al (2019) Genetic strategies for improving crop yields. Nature 575:109–118. https://doi.org/10.1038/s41586-019-1679-0

Bastin J-FY, Finegold C, Garcia D, Mollicone M, Rezende D, Routh CM, Zohner T, Crowther W (2019) The global tree restoration potential. Science 365(6448):76–79. https://doi.org/10.1126/science.aax0848

Baulch H, Whittfield C, Wolfe J, Basu N, Bedard-Haughn A, Belcher K, Clark R, Ferguson G, Hayashi M, Ireson A, Lloyd-Smith P, Loring P, Pomeroy JW, Shook K, Spence C (2021) Synthesis of science: findings on Canadian Prairie wetland drainage. Can Water Resour J 46(4):229–241. https://doi.org/10.1080/07017842021.1973911

Beckman J, Nigatu G (2017) Global Ethanol Mandates: opportunities for U.S. Exports of Ethanol and DDGS. 32

Benvan MW, Uauy C, Wulf BBH, Zhou J, Krasileva K, Clark MD (2017) Genomic innovation for crop improvement. Nature 543(7645):346–354. https://doi.org/10.1038/nature22011

BirdLife International (2019) Digital boundaries of Important Bird and Biodiversity Areas from the World Database of Key Biodiversity Areas, from BirdLife International website: http://datazone.birdlife.org/site/requestgis. Accessed 8 Feb 2019

Bohnert N, Chagnon J, Dion P (2015) Statistics Canada. Population projections for Canada (2013 to 2063), provinces and territories (2013 to 2038). Statistics Canada. http://epe.lac-bac.gc.ca/100/201/301/weekly_acquisition_lists/2015/w15-37-F-E.html/collections/collection_2015/statcan/91-520-x2014001-eng.pdf

Bonti-Ankomah S, Stamplecoskie A, Carrier-Leclerc O (2017) An overview of the Canadian agriculture and agri-food system. https://publications.gc.ca/collections/collection_2018/aac-aaff/A38-1-1-2017-eng.pdf

Bowen KJ, Craddock-Henry NA, Koch F, Patterson J, Huybê T, Vogt J, Barbì F (2017) Implementing the “Sustainable Development Goals”: towards addressing three key governance challenges—collective action, trade-offs, and accountability. Curr Opin Environ Sustain 26–27:90–96. https://doi.org/10.1016/j.cosust.2017.05.002
Bratt D (2021) Stuck in the middle with you: Canada-China relations in the Era of US–China clashes. In: Carment D, Nimijean R (eds) Political turmoil in a tumultuous world. Canada and International Affairs. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-70686-9_13

Cadena M, Supples C, Ervin J, Marigo M, Monakhova M, Raine P, Vírnig A (2019) Nature is counting on us: mapping progress to achieve the Aichi Biodiversity Targets. United Nations Development Programme, New York

Carpenter JE (2010) Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat Biotechnol 28(4):319–321. https://doi.org/10.1038/nbt0410-319

CBD (2020) Canada—National Targets, from Convention on Biological Diversity website: https://www.cbd.int/countries/targets/?country=ca. Accessed 8 May 2020

Chasmer L, Kenward A, Quinton W, Petrone R (2012) CO2 exchanges within zones of rapid conversion from permafrost plateau to bog and fen land cover types. Arct Antarct Alp Res 44(4):399–411. https://doi.org/10.1657/1938-1934-44.4.399

Climate Action Tracker Canada (2021) Retrieved from Climate Action Tracker website: https://climateactiontracker.org/countries/canada/

Cooper M, Greene-Finestone L, Lowell H, Levesque J, Robinson S (2012) Iron sufficiency of Canadians. Health Rep 23(82):10. https://doi.org/10.1038/s41893-019-0331-1

Dinerstein E, Olson D, Joshi A, Vynne C, Burgess ND, Wikramanayake E et al (2017) An ecoregion-based approach to protecting the terrestrial realm. Bioscience 67(6):534–543. https://doi.org/10.1093/biosci/bix014

Dos Santos MA, Filho JBdSF, Filho JERV, Ywata AXdC (2018) Potential impacts of changes in the Brazil’s New Forest Code on Agriculture, 2010 to 2030: An integrated analysis based on the GLOBIOM-Brazil and TERM-Br. https://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=5585

Dover J, Reece G, Obersteiner M (2019) Modelling the drivers of a widespread shift to sustainable diets. Nat Sustain 2:725–735. https://doi.org/10.1038/s41893-019-0331-1

Environment and Climate Change Canada (2016) Canada’s mid-century long-term low-greenhouse gas development strategy. United Nations national climate change. Available at: https://unfccc.int/process/the-paris-agreement/long-term-strategies

Environment and Climate Change Canada (2020) National Inventory Report 1990–2018: Greenhouse Gas Sources and Sinks In Canada (Canada’s Submission To The United Nation’s Framework Convention On Climate Change, p. 220 (Part 1)). Environment and Climate Change Canada, Government of Canada. https://unfccc.int/documents/224829

Environment and Climate Change Canada (2021a) Canadian environmental sustainability indicators: land-use change. https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/land-use-change.html

Environment and Climate Change Canada (2021b) National Inventory Report 1990–2019: Greenhouse Gas Sources and Sinks in Canada. https://unfccc.int/documents/271493

ESA (2010) Land cover maps. [Map]

ESA (2017) Land Cover CCI Product User Guide Version 2. Tech. Rep. Retrieved from maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Phz-PUGv2_2.0.pdf

European Space Agency (2010) Land Cover Maps [Map]

FABLE (2020) Pathways to Sustainable Land-Use and Food Systems. 2020 Report of the FABLE Consortium. Luxenburg and Paris: International Institute for Applied Systems Analysis (IIASA) and Sustainable Development Solutions Network (SDSN). https://doi.org/10.22022/ESM.12-2020.16896

Fader M, Cranmer C, Lawford R, Engel-Cox J (2018) Toward an understanding of synergies and trade-offs between water energy and food SDG targets. Front Enviro Sci. https://doi.org/10.3389/fenvs.2018.00112

FAO (2020) FAO Data Tables. http://www.fao.org/faostat/es/#data. Accessed 18 Mar 2020

Fardet A, Rock E (2020) Ultra-processed foods and food system sustainability: what are the links? Sustainability 12(15):6280. https://doi.org/10.3390/su12156280

GADM (2020) Global Administrative Areas. Version 3.6. https://gadm.org/data.html

Georges P (2017) Canada’s Trade Policy Options under Donald Trump: NAFTA’s rules of origin, Canada-U.S. security perimeter, and Canada’s geographical trade diversification opportunities. Working Papers 1707E, University of Ottawa, Department of Economics

Government of Ontario (2017) Afforestation—Ontario. https://www.ontario.ca/page/afforestation

Government of Canada, Environment and Climate Change Canada, Waste Reduction and Management Division (2019) Taking stock: Reducing food loss and waste in Canada. http://epe.lac-bac.gc.ca/100/2013/01/weekly_acquisitions_list-e/2019/19-26/publicatio ns.gc.ca/collections/collection_2019/cccc/En4-364-2019-eng.pdf

Haberl H, Heinz Erb K, Kraussmann F, Gaube V, Alberte B, Christoph P, Gingrich S, Lucht W, Fischer-Kowalski M (2007) Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc Nat Acad Sci 104(31):12942–12947. https://doi.org/10.1073/pnas.0704234304

Habitat Conservation Trust Foundation (2020) Caribou Habitat Restoration Grants. Caribou Habitat Restoration Grants. https://hctf.ca/grants/caribou-habitat-restoration-grants-

Hagerman SM, Pelai R (2016) “As far as possible and as appropriate”: implementing the Aichi biodiversity targets. Conserv Let 9:469–478. https://doi.org/10.1111/conl.12290

Hát K, Janoušková S, Moldan B (2016) Sustainable Development Goals: a need for relevant indicators. Ecol Ind 60:565–573. https://doi.org/10.1016/j.ecolind.2015.08.003

Hansen MC, Krylov A, Tyukavina A, Potapov PV, Turubanova S, Zutta B, Ifo S, Margono B, Stolle F, Moore R (2016) Humid tropical forest disturbance alerts using Landsat data. Environ Res Lett 11(3):034008. https://doi.org/10.1088/1748-9326/11/3/034008

Health Canada (2012) Do Canadian Adults Meet Their Nutrient Requirements Through Food Intake Alone? (No. 164–112). Health Canada. https://www.canada.ca/en/health-canada/services/food-nutrition/food-nutrition-surveillance/health-nutrition-surveys/canadian-community-health-survey-cchs/canadian-adults-meet-their-nutrient-requirements-through-food-intake-alone-health-canada-2012.html

Ijaz M, Nawaz A, Ul-Allah M, Ullah A, Hussain M, Sher A, Ahmad S (2019) Crop diversification and food security. In: Hasanuzzaman M (ed) Agronomic crops. Springer, Singapore. https://doi.org/10.1007/978-981-32-9151-5_26

Institute for Global Environmental Strategies (IGES), Nationally Determined Contributions (NDC) Database, version 7.6 (2021). Source: https://pub.iges.or.jp/pub/iges-ndc-database. Accessed 20 Sept 2022

IPCC (2019) Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. In: Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner H-O, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Liu S, Neogi S, Pathak M, Petzold J, Portugal Pereira J, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J (eds) In press

IUCN (International Union for the Conservation of Nature) (2015) Forest landscape restoration. https://www.iucn.org/program/forests/our-work/forest-landscape-restoration/bonn-challenge
Jacobson AP, Riggio J, Tait AM, Baillie EMJ (2019) Global areas of low human impact (‘Low Impact Areas’) and fragmentation of the natural world. Sci Rep 9(1):14179. https://doi.org/10.1038/s41598-019-50558-6

Jing Q, Huffman T, Shang J, Liu J, Pattey E, Morrison MJ, Jégo G, Qian B (2017) Modelling soybean yield responses to seeding date under projected climate change scenarios. Can J Plant Sci. https://doi.org/10.1139/CIPJS-2017-0065

Kaczorowski J, Campbell N, Duhaney T, Mang E, Gelfer M (2016) Reducing deaths by diet: call to action for a public policy agenda for chronic disease prevention. Coll Family Physicians Can 62(6):469–470

Langhammer PF (2007) Identification and gap analysis of key biodiversity areas: targets for comprehensive protected area systems. IUCN. https://doi.org/10.2305/IUCN.CH.2006.PAG.15.en

Lemieux CJ, Gray PA, Devillers R, Wright PA, Dearden P, Halpenny CJ, Le Doux C, Latreille P, Donnelly J, Langlois J, Ambrose M, Anderson K, Qian B (2018) Indices of Canada’s future climate for general and agricultural adaptation applications. Clim Change 148(1–2):249–263. https://doi.org/10.1007/s10584-018-2199-8

Lychuk TE, Moulin AP, Izaurrealde C, Lemke RL, Johnson E, Olfort O, Brandt S (2017) Climate change, agricultural inputs, cropping diversity, and environmental covariates in multivariate analysis of future wheat, barley, and canola yield in Canadian prairies, a case study. Can J Soil Sci. https://doi.org/10.1139/CJSS-2016-0075

Macdiarmid JI, Kyle J, Horgan GW, Loe J, Johnstone A, Elliott J, Haas C, Langlois J, Lazaruk H, Beechey T, Gray P (2012) Sustainable diets for the future: can we contribute to reducing greenhouse gas emissions by eating a healthy diet? Am J Clin Nutr 96(3):632–639. https://doi.org/10.3945/ajcn.112.038729

MacDonald H, McKenney D, McLaven K, Perry S (2020) Realizing expectations from planting trees on private land in Ontario. Can. Landscapes. https://doi.org/10.3097/L0.202078

MacKinnon D, Lemieux CJ, Beazley K, Woodley S, Helie R, Perron J, Elliott J, Haas C, Langlois J, Lazaruk H, Beechey T, Gray P (2015) Canada and Aichi Biodiversity Target 11: understanding ‘other effective area-based conservation measures’ in the context of the broader target. Biodivers Conserv 24(14):3559–3581. https://doi.org/10.1007/s10531-015-1018-1

Mansuy N, Burton PJ, Stanturf J, Beatty C, Moorey S, Besseau P, Degenhardt D, MacAfee K, Lapointe R (2020) Scaling up forest landscape restoration in Canada in an era of cumulative effects and climate change. Forest Policy Econ 116:102177. https://doi.org/10.1016/j.forpol.2020.102177

Martini S, Rizzello A, Corsini I, Romain B, Fiorentino M, Grandi S, Bergamaschi R (2018) Vitamin A deficiency due to selective eating as a cause of blindness in a high-income setting. Pediatrics 141(Supplement 5):S439–S444. https://doi.org/10.1542/peds.2016-2628

Mekonnen MM, Hoekstra AY (2010a) The green, blue and grey water footprint of crops and derived crop products. Value of Water Research Report Series No. 47, UNESCO-IHE, Delft, the Netherlands. http://www.waterfootprint.org/Reports/Report47-WaterFootprintCrops-Vol1.pdf

Mekonnen MM, Hoekstra AY (2010b) The green, blue and grey water footprint of farm animals and animal products, Value of Water Research Report Series No. 48, UNESCO-IHE, Delft, the Netherlands

Mekonnen MM, Hoekstra AY (2011) National water footprint accounts: the green, blue and grey water footprint of production and consumption, Value of Water Research Report Series No. 50, UNESCO-IHE, Delft, the Netherlands

Molotoks A, Smith P, Dawson TP (2021) Impacts of land use, population, and climate change on global food security. Food Energy Secur 10:e261. https://doi.org/10.1002/fer.261

Mora O, Le Mouël C, de Latre-Gasquet M, Donnars C, Dumas P, Réchauchère O et al (2020) Exploring the future of land use and food security: a new set of global scenarios. PLoS ONE 15(7):e0235597. https://doi.org/10.1371/journal.pone.0235597

Mosnier A, Penescu L, Perez-Guzman K, Steinhauser J, Thomson M, Douzel C, Poncet J (2020) Documentation of the FABLE Calculator. 2020 update. FABLE Calculator 2020 update. International Institute for Applied Systems Analysis (IIASA) and Sustainable Development Solutions Network (SDSN), Luxemburg, Austria. https://doi.org/10.22022/ESM/12-2020.16934

Moubarac J-C, Batal M, Louzada ML, Martinez Steele E, Monteiro CA (2017) Consumption of ultra-processed foods predicts diet quality in Canada. Appetite 108:512–520. https://doi.org/10.1016/j.appet.2016.11.006

Mukhopadhyay CS, Kumar A, Deb R (2020) Cattle genomics: genome projects, current status, and future applications. Genomics and biotechnological advances in veterinary, poultry, and fisheries. Elsevier, New York. pp 3–28. https://doi.org/10.1016/B978-0-12-816352-8.00001-1

Natural Resources Canada (2018) The state of Canada’s forests—2018 Report, Government of Canada

Natural Resources Canada (2020a) The State of Canada’s Forests: Annual Report 2020a. https://d1ied5gl1xfgpx8.cloudfront.net/pdfs/40219.pdf

Natural Resources Canada (2020b) Zero Emission Vehicle Infrastructure Program. Zero Emission Vehicle Infrastructure Program. https://www.nrcan.gc.ca/energy-efficiency/energy-efficiency-transportation/zero-emission-vehicle-infrastructure-program/21876

Natural Resources Canada and Canadian Forest Service (2019) The state of Canada’s forests, annual report 2018 [Annual], Government of Canada. https://www.carbon.cfs.nrcan.gc.ca/publication/39336

Nilsson AE, Bay-Larsen I, Carlsen H, van Oort B, Bjørkan M, Jylhä K, Klyuchnikova E, Masloboev V, van der Watt L (2017) Towards extended shared socioeconomic pathways: a combined participatory bottom-up and top-down methodology with results from the Barents region. Glob Environ Chang 45:124–132. https://doi.org/10.1016/j.gloenvcha.2017.06.001

OECD (2020) Real GDP long-term forecast. OECD Data. https://data.oecd.org/gdp/real-gdp-long-term-forecast.htm

Potapov P, Hansen MC, Laestadius L, Turubanova S, Yaroshenko A, Thieß C et al (2017) The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Science Adv. 3(12):e1700632

Pradhan PL, Costa D, Rybski W, Jürgen L, Kropp P (2017) A systematic study of sustainable development goal (SDG) interactions. Earth’s Future 5(11):1169–1179. https://doi.org/10.1002/2017EF000632

Prestele R, Alexander P, Rousevill MDA, Arnth A, Calvin K, Doejian E, Eitellberg DA, Enström K, Fujimori S, Hasegawa T, Havičk P, Humpenöder F, Jain AK, Krisztin T, Kyle P, Meiypa N, Popp A, Sands RD, Schaldach R et al (2016) Hotspots of uncertainty in land-use and land-cover change projections: a global-scale model comparison. Glob Change Biol 22(12):3967–3983. https://doi.org/10.1111/gcb.13337
Public Health Canada (2017) Heart Disease in Canada—Highlights From the Canadian Chronic Disease Surveillance System [Summary Report]. Public Health Agency of Canada

Qian B, Zhang X, Chen K, Feng Y, O’Brien T (2010) Observed long-term trends for agroclimatic conditions in Canada. J Appl Meteorol Climatol 49(4):604–661. https://doi.org/10.1175/2009JAMC2275.1

Qian B, De Jong R, Huffman T, Wang H, Yang J (2016) Projecting yield changes of spring wheat under future climate scenarios on the Canadian Prairies. Theoret Appl Climatol 123(3–4):651–669. https://doi.org/10.1007/s00704-015-1378-1

Rao DP, Kropac E, Do MT, Roberts KC, Jayarman GC (2016) Childhood overweight and obesity trends in Canada. Health Promotion Chronic Dis Prevent. https://doi.org/10.24095/hpcdp.36.9.03

Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8(6):e66428. https://doi.org/10.1371/journal.pone.0066428

Rhoades SA (1993) The Herfindahl-Hirschman Index. Fed Res Bull 79:188

Richards TJ, Rickard B (2020) COVID-19 impact on fruit and vegetable markets. Can J Agric Econ 68:189–194. https://doi.org/10.1111/cjag.12231

Rivera-Ferre MG, López-i-Gelats F, Raveria F, Oteros-Rozas E, di Masso M, Binimelis R, El Bilahi H (2021) The two-way relationship between food systems and the COVID19 pandemic: causes and consequences. Agric Syst 191:103134. https://doi.org/10.1016/j.agsy.2021.103134

Rivers J, Warthmann N, Pogson B, Gorevito JO (2015) Genomic breeding for food, environment and livelihoods. Food Security 7(2):375–382. https://doi.org/10.1007/s12571-015-0431-3

Rizvi S, Pagnutti C, Fraser E, Bauch CT, Anand M (2018) Global land and climate change on grazing capacity of native grasslands in the Canadian prairies. Can J Soil Sci 108:287–301. https://doi.org/10.4141/cjss2017094

Rizvi S, Pagnutti C, Fraser E, Bauch CT, Anand M (2018) Global land use implications of dietary trends. PLoS ONE 13(8):e0200781. https://doi.org/10.1371/journal.pone.0200781

Roe S, Streek C, Obersteiner M, Frank S, Griscom B, Drouet L et al (2019) Contribution of the land sector to a 1.5 °C world. Nat Clim Change 9(11):817–828. https://doi.org/10.1038/s41558-019-0591-9

Sachs JD, Schmidt-Traub G, Mazzuccato M et al (2019) Six Transformations to achieve the Sustainable Development Goals. Nat Sustain 2:805–814. https://doi.org/10.1038/s41893-019-0352-9

Sarkar SF, Jacquelyne SP, Etienne L, Lori B, Benoit G (2018) Enabling breeding for food, environment and livelihoods. Food Security 10(2):375–382. https://doi.org/10.1007/s12571-018-0352-9

Scherer LP, Behrens A, de Koning R, Heijungs B, Tukker SA (2018) The two-way relationship between food systems and the COVID19 pandemic: causes and consequences. Agric Syst 191:103134. https://doi.org/10.1016/j.agsy.2021.103134

Schulte D (2017) Taking action today: establishing protected areas for Canada’s future. House Commons Canada 42(1):120

Sloan S, Jenkins C, Joppa L, Gaveau D, Laurance W (2014) Remaining natural vegetation in the global biodiversity hotspots. Biol Cons 177:12–24. https://doi.org/10.1016/j.biocon.2014.05.027

Smith WN, Grant BB, Desjardins RL, Kroebel R, Li C, Qian B, Worth DE, McConkey BG, Drury CF (2013a) Assessing the effects of climate change on crop production and GHG emissions in Canada. Agric Ecosyst Environ 179:139–150. https://doi.org/10.1016/j.agee.2013.08.015

Smith FP, Prober SM, House A, McIntyre S (2013b) Maximizing retention of native biodiversity in Australian agricultural landscapes—the 10:20:40:30 guidelines. Agric Ecosyst Environ 166(15):35–45. https://doi.org/10.1016/j.agee.2012.01.014

Statistics Canada (2012) Iodine status of Canadians, 2009 to 2011. Statistics Canada. https://www150.statcan.gc.ca/n1/pub/82-625-x/2012001/article/11733-eng.htm

Statistics Canada (2017) Overweight and obesity based on measured body mass index, by age group and sex. Table: 13-10-0373-01—Overweight and Obesity Based on Measured Body Mass Index, by Age Group and Sex. https://www150.statcan.gc.ca/t1bl1/en/cv.action?pid=1310037301

Statistics Canada (2018) Health Fact Sheets—Diabetes, 2017. Health Fact Sheet—Diabetes, 2017. https://www150.statcan.gc.ca/n1/pub/82-625-x/2018001/article/54982-eng.htm

Statistics Canada (2021a) Census of agriculture, Agricultural lands by province. Retrieved from Government of Canada website: https://www.statcan.gc.ca/census-agriculture

Statistics Canada (2021b) Goal 2 - Zero hunger. Retrieved from Government of Canada website: https://www144.statcan.gc.ca/sdg-odd/goal-objectif02-eng.htm

Steffen WK, Richardson J, Rockström SE, Cornell I, Fetzer EM, Bennett R, Biggs SR, Carpenter W, de Vries CA, de Wit C, Folke D, Gerten J, Heinke GM, Mace LM, Persson V, Ramarathan B, Sörlin RS (2015) Planetary boundaries: guiding human development on a changing planet. Science 342(6223):1259855. https://doi.org/10.1126/science.1259855

Stehfest E, van Zeist WJ, Valin H et al (2019) Key determinants of global land-use projections. Nat Commun 10:2166. https://doi.org/10.1038/s41467-019-09945-w

Taylor R (2017a) Outlook of the U.S. and World Sugar Markets, 2016–2026 (No. 767; Agribusiness & Applied Economics Report). Centre for Agricultural Policy and Trade Studies. https://www.semanticscholar.org/paper/2017a-Outlook-of-the-U.-S.-and-World-Sugar-Markets%2CTaylor/cd4de908f85d77af4ee932d3cb7aaf8b2e9b

Taylor R (2017b) 2017b Outlook of the U.S. and World Corn and Soybean Industries, 2017b–2026 (No. 773; Agribusiness & Applied Economics Report). Centre for Agricultural Policy and Trade Studies. https://ageconsearch.umn.edu/record/261209

Thomas JB, Graf RJ (2014) Rates of yield gain of hard red spring wheat in western Canada. Can J Plant Sci 94(1):1–13. https://doi.org/10.4141/cjps2013-160

Thorpe J, Wolfe SA, Houston B (2008) Potential impacts of climate change on grazing capacity of native grasslands in the Canadian prairies. Can J Soil Sci 88(4):595–609. https://doi.org/10.4141/CJS07044

Tree Canada (2020) National Greening Program. https://treecanada.ca/reforestation-carbon-offsetting/national-greening-program/

U. S. Department of Justice and Federal Trade Commission (2010) Horizontal Merger Guidelines. https://www.justice.gov/atr/horizon-tal-merger-guidelines-08192010#5c

U.S. Department of Health and Human Services and U.S. Department of Agriculture (2015) 2015–2020 Dietary Guidelines for Americans, 8th Edition (p. 144). Retrieved from U.S. Department of Health and Human Services website: http://www.health.gov/dietaryguidelines/2015/guidelines/

UN DESA (2017) World Population Prospects: The 2017 Revision, Key Findings and Advance Tables [Working Paper]. Retrieved from United Nations website: https://esa.un.org/unpd/wpp/Publicati ons/Files/WPP2017_KeyFindings.pdf

UN DESA (2019) World Population Prospects 2019: Volume 1: Comprehensive Tables and Volume 2: Demographic Profiles (World Population Prospects). United Nations. https://population.un.org/wpp/Publications/Files/WPP2019_Volume-1_Comprehensive-Tables.pdf

UNEP-WCMC and IUCN (2020) Protected Planet: The World Database on Protected Areas (WDPA). Retrieved from UNEP-WCMC and IUCN website: www.protectedplanet.net
UNFCCC (2020) Greenhouse Gas Inventory Data—Flexible Queries Annex I Parties [Database]. https://di.unfccc.int/flex_annex1

Valin H, Havlík P, Forsell N, Frank S, Mosnier A, Peters D, Hamelinck C, Spöttle M, van den Berg M (2013) Description of the GLOBIOM (IIASA) model and comparison with the MIRAGE-BioF (IFPRI) model. http://previous.iiasa.ac.at/web/home/research/modelsData/GLOBIOM/Describing_GLOBIOM_and_comparison_with_MIRAGE-BioF_October_2.pdf

Wanner N, Cafiero C, Troubat N, Conforti P (2014) Refinements to the FAO Methodology for estimating the Prevalence of Undernourishment Indicator. ESS Working Paper No. 14–05. http://www.fao.org/3/a-i4046e.pdf

Weiler AM, McLaughlin J, Cole DC (2017) Food security at whose expense? A critique of the Canadian temporary farm labour migration regime and proposals for change. Int Migr 55:48–63. https://doi.org/10.1111/imig.12342

Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, Garnett T, Tilman D, DeClerck F, Wood A, Jonell M, Clark M, Gordon LJ, Fanzo J, Hawkes C, Zurayk R, Rivera JA, Vries WD, Sibanda LM et al (2019) Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393(10170):447–492. https://doi.org/10.1016/S0140-6736(18)31788-4

Wong C, Ballegooyen K, Ignace L, Johnson MJ, Swanson H (2020) Towards reconciliation: 10 Calls to Action to natural scientists working in Canada. FACETS 5(1):769–783. https://doi.org/10.1139/facets-2020-0005

Wulder M, Cardille J, White J, Rayfield B (2018) Context and opportunities for expanding protected areas in Canada. Land 7(4):137. https://doi.org/10.3390/land7040137

Yusa A, Berry PJ, Cheng J, Ogden N, Bonsal B, Stewart R, Waldick R (2015) Climate change, drought and human health in Canada. Int J Environ Res Public Health 12(7):8359–8412. https://doi.org/10.3390/ijerph120708359

Zurba M, Beazley KE, English E, Buchmann-Duck J (2019) Indigenous protected and conserved areas (IPCAs), Aichi Target 11 and Canada’s Pathway to Target 1: focusing conservation on reconciliation. Land 8:10. https://doi.org/10.3390/land8010010

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.