Detecting and correcting the loss of independence in nonlinear conjugate gradient

Sahar Karimi† Stephen Vavasis‡

July 29, 2013

Abstract

It is well known that search directions in nonlinear conjugate gradient (CG) can sometimes become nearly dependent, causing a dramatic slow-down in the convergence rate. We provide a theoretical analysis of this loss of independence. The analysis applies to the case of a strictly convex objective function and is motivated by older work of Nemirovsky and Yudin. Loss of independence can affect several of the well-known variants of nonlinear CG including Fletcher-Reeves, Polak-Ribière (nonnegative variant), and Hager-Zhang.

Based on our analysis, we propose a relatively inexpensive computational test for detecting loss of independence. We also propose a method for correcting it when it is detected, which we call “subspace optimization.” Although the correction method is somewhat expensive, our experiments show that in some cases, usually the most ill-conditioned ones, it yields a method much faster than any of these three variants. Even though our theory covers only strongly convex objective functions, we provide computational results to indicate that the detection and correction mechanisms may also hold promise for nonconvex optimization.

1 Conjugate gradient

The method of conjugate gradients (CG) was introduced by Hestenes and Stiefel for minimizing convex quadratic functions. We refer to this algorithm as “linear conjugate gradient.” It was soon generalized by Fletcher and Reeves and Polak and Ribière, to the general problem of unconstrained minimization, i.e.,

$$\min_{x \in \mathbb{R}^n} f(x).$$

*Supported in part by a grant from the U. S. Air Force Office of Scientific Research and in part by a Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada.
†Department of Combinatorics & Optimization, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada, s2karimi@uwaterloo.ca.
‡Department of Combinatorics & Optimization, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada, vavasis@uwaterloo.ca.
However, the theoretical basis for nonlinear CG is considerably weaker than that of the linear case. In the linear case, the successive gradients are mutually orthogonal and the search directions are mutually conjugate; these facts allow several strong convergence proofs including finite termination, convergence bounded in terms of problem condition number, and superlinear convergence \[5\]. Indeed, the only thing that can go awry is loss of orthogonality due to roundoff error. Roundoff error can indeed be a significant problem in practice but is not the main topic of our current study (although see Section 5).

In the case of nonlinear conjugate gradient, there is no orthogonality of the search directions, and in fact, the directions can become nearly dependent. It is generally accepted in the optimization community (and confirmed by our own experiments described in Section 6) that the Polak-Ribière variant is more robust against dependent search directions than the Fletcher-Reeves variant; see Nocedal and Wright \[13\] for a discussion of this issue.

The standard technique to combat loss of independence is restarting the method, i.e., occasionally taking a step of pure steepest descent. However, there is little rigorous theory that explains when to restart the method. The best known rigorous result in this direction is a proof that when an iterate is sufficiently close to the root, if one restarts every \(n\) iterations, one is guaranteed \(n\)-step quadratic convergence to the optimizer. Here, \(n\) denotes the number of variables. This result is unsatisfying for at least two reasons. First, there is no apparent method to detect when an iterate is sufficiently close to the root in order to apply this theorem. Second, restarting every \(n\) iterations does not seem to be practically motivated. The reason is that the convergence of conjugate gradient, both linear and nonlinear, is much more closely tied to the conditioning of the problem than to \(n\), the number of variables. Thus, one would apparently prefer a rigorously supported restart strategy that is condition-dependent rather than problem size-dependent.

In this paper we turn in Section 2 to a decades-old analysis of a variant of conjugate gradient by Nemirovsky and Yudin \[9\] that is intended for the case of a strongly convex objective function. We will argue in Section 3 that the analysis of their algorithm suggests a rigorous way, at least for this class of objective functions, to detect loss of independence in the search directions. Armed with this knowledge, we are then able to propose a method for correcting loss of independence, which is described in Section 4.

The detection procedure is relatively cheap; the correction procedure, however, is quite expensive. Nonetheless, nonlinear conjugate gradient (any variant) augmented by our correction procedure in practice is sometimes the fastest method for solving the problem, according to our experiments detailed in Section 6. Furthermore, if the correction procedure is used, then one obtains a theoretical bound on the number of iterations that is the same as Nemirovsky and Yudin’s and is the best possible convergence bound known to date (although we do not achieve their bound on function/gradient evaluations; see further remarks below). In contrast, there is no comparable convergence bound known for any of the standard CG methods. Indeed, Nemirovsky and Yudin argue that their worst-case complexity for strongly convex functions is quite poor. A strength of our proposed correction method is that it requires no prior knowledge of parameters of the underlying function, unlike most methods that achieve the theoretical convergence bound.

Methods reviewed in this paper are among techniques that are generally referred to
as “first-order algorithms” because they use only the first derivative information of the function in each iteration. Due to the successful theory developed first by Nemirovsky and Yudin and extended by Nesterov, first-order algorithms have attracted many researchers during the last decade and have been extended to solving different classes of problems. Nesterov in [12] proposed a variation of his earlier algorithms for minimizing a nonsmooth function. In addition to nonsmooth optimization, Nesterov’s algorithm has been adapted for constrained problems with simple enough feasible regions so that a projection on these sets can be easily computed. One may refer to [17] and references therein for a more in-depth discussion of different adaptations of Nesterov’s algorithm. The focus of this paper, however, is more on the CG algorithm and not on first-order techniques in general.

Hestenes and Stiefel’s original linear CG has the following form:

\[x^{j+1} = x^j - \frac{(r^j)^t d^j}{(d^j)^t A d^j} d^j, \]
\[d^{j+1} = -r^{j+1} + \frac{(r^{j+1})^t A d^{j+1}}{(d^j)^t A d^j} d^j. \]

In the above equations \(r^j \) is \(\nabla f(x) = Ax - b \) and \(d^0 = -r^0 \). It is possible to show that the number of iterations in linear CG is bounded by the dimension of the problem, \(n \). For more details on linear CG, one may refer to [5] or [13].

Nonlinear CG was proposed by Fletcher and Reeves [3] as an adaptation of the above algorithm for minimizing a general nonlinear function. The general form of this algorithm is as follows:

\[x^{j+1} = x^j + \alpha_j d^j, \]
\[d^{j+1} = -g^{j+1} + \beta_j d^j. \]

Here, \(d^j \) is the search direction at each iteration, \(g^{j+1} \) is the gradient of the function at \((j+1) \)th iterate, i.e., \(\nabla f(x^{j+1}) \); and \(\alpha_j \) is the step size, usually determined by a line search. Different updating rules for \(\beta_j \) give us different variants of nonlinear CG. The most common formulas for computing \(\beta_j \) are:

Fletcher-Reeves (1964): \(\beta_{FR} = \frac{\|g^{j+1}\|}{\|g^j\|} \)

Polak-Ribiére (1969): \(\beta_{PR} = \frac{(g^{j+1})^t (g^{j+1} - r^j)}{\|g^j\|^2} \).

Hager and Zhang [7] present a complete list of all updating rules in their survey on nonlinear CG. The convergence of nonlinear CG is highly dependent on the line search; for some, the exact line search is crucial. There are numerous papers devoted to the study of global convergence of nonlinear CG algorithms, most of which discuss variants of nonlinear CG that do not rely on exact line search to be globally convergent. Al-Baali [1] shows the convergence of Fletcher-Reeves algorithm with inexact line search. Gilbert and Nocedal [4] establish the convergence of a variant of the Polak-Ribiére nonlinear CG algorithm with no restart and no exact line search. Dai and Yuan [2] present a nonlinear CG for which the standard Wolfe condition suffices. A recent variant of CG has
been proposed by Hager and Zhang [6] that relies on a line search satisfying the Wolfe Conditions. Furthermore this algorithm has the advantage that every search direction is a descent direction, which is not necessarily the case in nonlinear CG.

From Yuan and Stoer’s perspective [19], CG is a technique in which the search direction \(d_{j+1} \) lies in the subspace spanned by \(S_p\{g_{j+1}, d_j\} \). In the algorithm they propose they compute the new search direction by minimizing a quadratic approximation of the objective function over the mentioned subspace. A more generalized form of CG called Heavy Ball Method, was introduced by Polyak [15], in which \(x_{j+1} = x_j + \alpha(-g_j) + \beta(x_j - x_{j-1}) \). He proved a geometric progression rate for this algorithm when \(\alpha \) and \(\beta \) belong to a specific range.

2 An analysis of the loss of independence

The analysis in this section focuses on strongly convex objective functions. We say that \(f \) is strongly convex with parameters \((L, l) \) if for any \(x, y \) lying in the level set of \(x^0 \),

\[
\|\nabla f(x) - \nabla f(y)\| \leq L\|x - y\|,
\]

\[
f(y) - f(x) \geq \langle \nabla f(x), y - x \rangle + \frac{l}{2}\|y - x\|^2.
\]

For example, in the case of a convex quadratic function \(f(x) = x^tAx/2 - b^tx \) where \(A \in \mathbb{R}^{n \times n} \) is symmetric positive definite, \(L/l \) is the condition number of \(A \). From inequality (4), it follows that

\[
f(y) - f(x) \leq \langle \nabla f(x), y - x \rangle + \frac{L}{2}\|y - x\|^2,
\]

which will be useful in our analysis. We follow the standard notation throughout this paper: \(\langle \cdot, \cdot \rangle \) represents the inner product of two vectors in proper dimension, and \(\| \cdot \| \) stands for the 2-norm of a vector unless otherwise is stated. Bold lower case characters and upper case characters are used for vectors and matrices respectively; and their superscript states the iteration count.

In [9], Nemirovsky and Yudin propose an algorithm for minimizing a strongly convex \(f \) that achieves a worst-case complexity bound of \(O(\ln(1/\epsilon)\sqrt{L/l}) \). Here \(\epsilon \) is the desired relative accuracy, that is, \(\epsilon = (f(x^n) - f(x^*))/(f(x^0) - f(x^*)) \), where \(x^0 \) is the starting point, \(x^* \) is the optimizer, and \(x^n \) is the final iterate. This bound is still the best known for this particular class of methods and functions. Their algorithm can be regarded as a variant of conjugate gradient.

The NY algorithm has never been widely used in practice for several reasons. First, when applied to convex quadratic functions, it does not reduce to linear conjugate gradient and in fact can be much slower. (In contrast, the FR and PR variants of nonlinear CG reduce to linear CG in the case of a convex quadratic and if an exact line search is used. Many would argue that this is a defining property of nonlinear conjugate gradient.) Second, the method requires an expensive subspace optimization step on every iteration. Our correction procedure involves a related subspace optimization; we comment on its
cost in Section 4. A later paper by Nesterov \cite{11} remedied this drawback by achieving the same complexity without the need for subspace optimization. Third, the Nemirovsky-Yudin algorithm requires prior knowledge of L/l, which may not be available in practice. Furthermore, for some classes of problems, e.g., log-barrier functions, the upper bound on L/l varies wildly depending on the choice of starting point. Therefore, we would much prefer methods that do not require prior knowledge of such parameters.

For convenience, let us represent the gradient at x^j, that is, $g(x^j)$, by g_j, and let $v_f(x)$ denote the residual of the function, i.e. $f(x) - f(x^*)$. Our main lemma requires the following three properties:

(a) $f(x^{j+1}) \leq f(x^j) - \frac{1}{2L} \|g^j\|^2$

(b) $\langle g^j, x^* - x^j \rangle \leq f(x^*) - f(x^j)$

(c) $v_f(x^0) = f(x^0) - f^* \geq \frac{L}{2} \|x^* - x^0\|^2$

Property (a) assumes that the step computed by the algorithm is at least as good as steepest descent with fixed step length of $1/L$. Property (b) is true by convexity of the function, and property (c) is a direct derivation from inequality (5). We are now ready to present the main lemma that yields a complexity bound for conjugate gradient.

Lemma 1 Consider applying nonlinear conjugate gradient (any variant) to strongly convex function $f(x)$. Assume that the step at each iteration satisfies (a). Furthermore, suppose $m \geq \left\lceil \frac{8}{\rho \sqrt{\frac{L}{l}}} \right\rceil$ and

$$\frac{(f(x^{m-1}) - f(x^0))}{4} \left(\sum_{j=0}^{m-1} \lambda^j \right) + \sum_{j=0}^{m-1} \lambda^j \langle g^j, x^j - x^0 \rangle < 0, \quad (7)$$

and

$$\left\| \sum_{j=0}^{m-1} \lambda^j g^j \right\| \leq \rho \left(\sum_{j=0}^{m-1} (\lambda^j)^2 \|g^j\|^2 \right)^{1/2}, \quad (8)$$

are satisfied, where ρ is a constant ≥ 1, and

$$\lambda^j = \sqrt{\frac{f(x^j) - f(x^{j+1})}{\|g^j\|^2}}.$$

Then the residual of the function is divided in half after m iterations; i.e. $v_f(x^m) \leq \frac{1}{2} v_f(x^0)$.

\footnote{Subsequent to the release of an earlier draft of the present manuscript, Nesterov \cite{10} also considered the issue of optimal methods that do not require prior knowledge of parameters.}
Remark. For the remainder of this paper, we regard conditions (7) and (8) stated in
the above lemma as quantification of the independence of successive search directions.
In other words, we define the phrase “loss of independence” to mean failure of these
inequalities. For example, in the case of linear conjugate gradient, (7) is automatically
satisfied because \(\langle g^j, x^j - x^0 \rangle = 0 \) by orthogonality of gradients. In addition, (8) is
satisfied as an equality with \(\rho = 1 \) by linear conjugate gradient because in this case
it reduces to Pythagoras’s equation. Thus, loss of independence never occurs in linear
conjugate (in exact arithmetic).

Proof. Our proof is an extension of the proof in section 7.3 in [9]. Suppose by
contradiction that \(m \geq \left\lceil 8\rho \sqrt{\frac{L}{l}} \right\rceil \), (7) and (8) are satisfied; but
\(v_f(x^m) > v_f(x^0) \).

By definition of \(\lambda^j \),
\[
f(x^{j+1}) = f(x^j) - (\lambda^j)^2 \| g^j \|^2,
\]

hence
\[
v_f(x^{j+1}) = v_f(x^j) - (\lambda^j)^2 \| g^j \|^2.
\]

Summing these inequalities over \(j = 0, \ldots, m - 1 \), we get:
\[
0 \leq v_f(x^m) = v_f(x^0) - \sum_{j=0}^{m-1} (\lambda^j)^2 \| g^j \|^2,
\]
or equivalently,
\[
\sum_{j=0}^{m-1} (\lambda^j)^2 \| g^j \|^2 \leq v_f(x^0). \tag{9}
\]

By convexity of the function we have,
\[
\langle g^j, x^* - x^j \rangle \leq f(x^*) - f(x^j) = -v_f(x^j),
\]

and so
\[
\langle g^j, x^* - x^0 \rangle - \langle g^j, x^j - x^0 \rangle \leq -v_f(x^j) \leq -v_f(x^m) < \frac{-v_f(x^0)}{2}.
\]

Let’s consider the weighted sum of all the above inequalities for \(j = 0, \ldots, m - 1 \) with
weights \(\lambda^j \)'s to get:
\[
\left\langle \sum_{j=0}^{m-1} \lambda^j g^j, x^* - x^0 \right\rangle - \sum_{j=0}^{m-1} \lambda^j \langle g^j, x^j - x^0 \rangle < \frac{-v_f(x^0)}{2} \left(\sum_{j=0}^{m-1} \lambda^j \right),
\]

which can be rearranged to the following form,
\[
\left\langle \sum_{j=0}^{m-1} \lambda^j g^j, x^* - x^0 \right\rangle < -\frac{v_f(x^0)}{2} \left(\sum_{j=0}^{m-1} \lambda^j \right) + \sum_{j=0}^{m-1} \lambda^j \langle g^j, x^j - x_0 \rangle.
\]
Equivalently we can rewrite the above inequality as:

\[
\left\langle \sum_{j=0}^{m-1} \lambda^j g^j, x^* - x^0 \right\rangle < -\frac{v_f(x^0)}{4} \left(\sum_{j=0}^{m-1} \lambda^j \right) + \left(\frac{f(x^*) - f(x^0)}{4} \left(\sum_{j=0}^{m-1} \lambda^j \right) + \sum_{j=0}^{m-1} \lambda^j \langle g^j, x^j - x^0 \rangle \right).
\]

Using inequality (7) along with the facts that \(f(x^*) \leq f(x^j) \) and \(\lambda^j \geq 0 \) for all \(j \), we get:

\[
\left\langle \sum_{j=0}^{m-1} \lambda^j g^j, x^* - x^0 \right\rangle < -\frac{v_f(x^0)}{4} \left(\sum_{j=0}^{m-1} \lambda^j \right).
\]

(10)

By the Cauchy-Schwarz inequality we have

\[
- \left\| \sum_{j=0}^{m-1} \lambda^j g^j \right\| \left\| x^* - x^0 \right\| \leq \left\langle \sum_{j=0}^{m-1} \lambda^j g^j, x^* - x^0 \right\rangle < -\frac{v_f(x^0)}{4} \left(\sum_{j=0}^{m-1} \lambda^j \right),
\]

hence

\[
\left\| \sum_{j=0}^{m-1} \lambda^j g^j \right\| \left\| x^* - x^0 \right\| > \frac{v_f(x^0)}{4} \left(\sum_{j=0}^{m-1} \lambda^j \right).
\]

(11)

By property (c) we have

\[
\left\| x^* - x^0 \right\| \leq \sqrt{\frac{2v_f(x^0)}{l}}.
\]

(12)

Furthermore, by inequalities (8) and (9) we get:

\[
\left\| \sum_{j=0}^{m-1} \lambda^j g^j \right\| \leq \rho \sqrt{\sum_{j=0}^{m-1} (\lambda^j)^2 \|g^j\|^2} \leq \rho \sqrt{v_f(x^0)}.
\]

(13)

Replacing inequalities (12) and (13) in inequality (11), we get

\[
\rho \sqrt{v_f(x^0)} \sqrt{\frac{2v_f(x^0)}{l}} > \frac{v_f(x^0)}{4} \left(\sum_{j=0}^{m-1} \lambda^j \right).
\]

(14)

Notice that by definition of \(\lambda \) and property (a), \(\lambda^j \geq \sqrt{\frac{1}{2L}} \) for all \(j \), so

\[
\sum_{j=0}^{m-1} \lambda^j \geq \sqrt{\frac{1}{2L}} m.
\]
Using this fact in inequality (14), we get
\[
\rho \sqrt{v_f(x^0)} \sqrt{\frac{2v_f(x^0)}{l}} > v_f(x^0) \left(\sqrt{\frac{1}{2L \ m}} \right),
\]
therefore
\[
m < 8\rho \sqrt{\frac{L}{l}},
\]
which contradicts our assumption on the value of \(m\). □

Lemma 1 shows that under conditions (7) and (8), the residual of the function is divided in half every \(m = O(\sqrt{\frac{L}{l}})\) iterations. For the next sequence of \(m\) iterations, a further reduction of \(\frac{1}{2}\) is achieved provided (7) and (8) hold, with \(x^m\) substituted in place of \(x^0\). Hence by letting \(x^m\) be the new \(x^0\) and repeating the same algorithm, we can find the \(\epsilon\)-optimal solution in \(\lceil \log_2 \frac{1}{\epsilon} \rceil \lceil 8\rho \sqrt{\frac{L}{l}} \rceil\) iterations. Nemirovsky and Yudin’s algorithm follows this outline: it is designed to ensure that (7) and (8) hold on every iteration, and it restarts every \(m\) iterations. For ordinary nonlinear CG, however, there is no assurance that these inequalities will hold, and, furthermore, \(m\) is not known. These issues motivate our detection and correction steps.

3 Detecting loss of independence

As mentioned in the previous section, we take “loss of independence” to mean failure of (7) or (8). In this section we describe a method to detect the failure of these inequalities.

Before turning to (7) and (8), we note that the lemma can also fail if condition (a), namely, the requirement that \(f(x^{i+1}) \leq f(x^i) - \frac{1}{2L} \|g^j\|^2\), fails to hold. If we had prior knowledge of \(L\), then this condition would be trivial to check since nonlinear CG already computes \(g^j\) on every iteration. Without prior knowledge of \(L\), we can still in principle check this condition by carrying out a Wolfe line-search \[13\] in the direction \(-g^j\) on every iteration. It is known that, up to a constant factor depending on the parameters \(\beta, \sigma\) used in the line-search, the reduction guaranteed is at least as good as \(\|g^j\|/(2L)\). However, it is quite expensive to carry out a line search in the steepest descent direction on every iteration in addition to the line search already required for the CG direction. Our computational experiments (not reported here) indicate that it is not necessary because there is little improvement in the behavior of the method. Therefore, for the rest of this paper, we will simply assume that (a) holds.

We next turn to (7) and (8). It is apparent from their form that they can be checked efficiently by keeping running totals of all the summations appearing in them. This is how we have implemented them. The extra cost for tracking these summations is very low compared to the existing cost of evaluating \(f\) and \(\nabla f\) in an ordinary CG iteration. As mentioned at the end of the previous section, every \(m\) iterations, we need to replace \(x^0\) by \(x^m\) for integer values of \(i\) in (7) and (8) in order to obtain the theoretical convergence result.
This replacement of x^0 by x^{im} is a sticking point because m is not known in advance: the algorithm does not have prior knowledge of L or l. Furthermore, for some classes of strongly convex functions such as log-barrier functions, the effective value of L/l may decrease as the optimizer is approached. We address this difficulty as follows. Although L/l is not known, we can be certain that there is some nonnegative integer p such that $L/l \in [2^p, 2^{p+1}]$. Therefore, we maintain p_{max} separate sets of running totals, where $p_{\text{max}} = \lceil \log_2 j \rceil$, where j is the current iteration counter. In other words, for each $p \in \{0, \ldots, p_{\text{max}}\}$, we maintain a current value of the summation $\sum_{j'=m(j,p)} \lambda^{j'}$ and so on for all the summations appearing in (7) and (8). Here $m(j,p)$ denotes the largest multiple of 2^p less than or equal to the current iteration counter j. Once j reaches the next multiple of 2^p, we can check the inequalities for this particular value of p. This additional work for updating the p_{max} running totals and checking the inequalities is still insignificant compared to the work of evaluating the gradient and carrying out a line-search; it adds an additional $O(\log j)$ arithmetic operations to the jth iterate.

In fact, there is little harm in omitting the check on the conditions for very small values of p since the lemma will still guarantee convergence, albeit slightly more slowly, if we catch those corrections for larger values. For this reason, the conditions are actually tested only for $p \geq p_l$ in our implementation, where we have taken $p_l = 4$.

This concludes our description of the detection procedure. If the failure of these inequalities is repeatedly detected, this is an indicator that loss of independence has occurred.

4 Correcting the loss of independence

It is already useful to be able to detect loss of independence, since this is a sign that conjugate gradient may not be working. One possibility when loss of independence is detected is to simply restart. As mentioned in the introduction, restarting is the conventional solution to loss of independence in CG.

We have instead adopted a more comprehensive solution, namely, we propose a correction procedure to ensure that (7) and (8) are guaranteed to hold. The correction procedure is similar to the subspace optimization proposed by Nemirovsky and Yudin. A consequence of our correction procedure is that we are assured that their theoretical complexity bound of $O(|\ln \epsilon| \sqrt{L/l})$ iterations holds for nonlinear CG if our correction procedure is instituted. Furthermore, we have an advantage over the Nemirovsky-Yudin algorithm that prior knowledge of L/l is not required. On the other hand, we have a disadvantage that the dimension of the subspace could be larger than 2 (their dimension), and hence our iterations can be more expensive.

Let us refer to the sequence of iterates between two consecutive multiples of 2^p as a “block” of iterates; in other words, for any p, the sequence of iterates $x^0, x^1, \ldots, x^{2^p-1}$ is the first block of size 2^p, $x^{2^p}, x^{2^p+1}, \ldots, x^{2(2^p)-1}$ is the second block of size 2^p, and so on. At the end of each block we check inequalities (7) and (8). If they are satisfied and $2^p \geq 8\rho \sqrt{\frac{1}{\epsilon}}$, then by Lemma 1 we know that the residual of the function is divided in
half; however if any of these inequalities fails, then we need to take a “correction step” for the next block of iterates. The correction step involves computing the next block of iterates in a way that satisfaction of inequalities (7) and (8) is guaranteed at the end of this block. Then the correction step is omitted in the subsequent blocks until the inequalities are violated again.

Suppose at least one of the inequalities (7) and (8) is violated for kth block of p; i.e. for the block of iterates $x^{r_p}, \ldots, x^{r_p+2^p-1}$ where $r_p = (k-1)2^p$. Then for the next block we search for the new iterate x^{j+1} on the space of $x^j + S_p \{g^j, d^j, q^j_p, x^j - x^{r_p}\}$ where $q^j_p = \sum_{i=r_p}^j \lambda^j g^i$. Notice that this space includes the conjugate gradient search direction (all variants) because it is a linear combination of g^j and d^j.

Finding the new iterate x^{j+1} through a search on the space that in addition to g^j and d^j includes q^j_p and $x^j - x^{r_p}$ is what we referred to as “correction step”. Notice that for each p with the violated constraints we increase the dimension of the search space by 2. However, the dimension of the search space never exceeds $2 + 2 \lceil \log_2 j \rceil$, which happens to be the case when the inequalities are violated for all possible values of p. (Recall that we check the inequalities for $p = p_1, p_{l+1}, \ldots, p_{\max}$, on iteration j, where $p_l = 4$ in our implementation and where $p_{\max} = \lceil \log_2 j \rceil$.)

It is quite easy to see that inequalities (7) and (8) are satisfied for the $(k+1)$st block of p when we take the correction step throughout it. By KKT condition, we have $\langle g^j, x^j - x^{r_p} \rangle = 0$ for all j in this block. Using this, along with the fact that $f(x^j) < f(x^{r_p})$ and non-negativity of λ^j for all j, we derive (7). Similarly one can argue that by KKT $\langle g^j, q^j_{p-1} \rangle = 0$ for all j, hence

$$\left \| \sum_{i=r_p}^{r_p+2^p-1} \lambda^j g^i \right \| = \sqrt{\sum_{i=r_p}^{r_p+2^p-1} (\lambda^j)^2 \| g^i \|^2},$$

which means inequality (8) is satisfied. (Notice that this equation holds provided g^j is orthogonal to the previous running total of weighted gradients; it is not necessary for g^j to be orthogonal to each previous gradient.)

After finding the iterates of one block through a correction step, the algorithm switches back to taking a regular step until the next failure of the inequalities.

We have implemented two procedures for subspace optimization: Newton’s method and the ellipsoid method. We used Newton’s method unless it fails to rapidly converge to the optimum. Note that the assumption of strong convexity is not a sufficient condition for convergence of Newton’s method, but it succeeds in many cases nonetheless. In the case of failure of Newton’s algorithm, the ellipsoid method carries out the task of solving the optimization problem. In other words, we impose an upper bound to the number of iterations that Newton’s method may take, and if it fails to converge within the given number of iterations, the algorithm switches to the ellipsoid method for solving the subspace problem.

Recall that at $(j+1)$st iterate, we search for x^{j+1} in the space of vectors $x = x^j + \alpha g^j + \beta d^j + Qa + Rb$, where $Q \in \mathbb{R}^{n \times |S|}$ is the matrix formed by columns q^j_p for all $p \in S$; R is the matrix of the same dimension with columns $x^j - x^{r_p}$ for all $p \in S$; $\alpha, \beta \in \mathbb{R}$, and
\(a, b \in \mathbb{R}^{|S|} \) are coefficients that we want to find. Here, \(S \subset \{p_l, \ldots, p_{\text{max}}\} \) denotes the set of indices for which correction is required.

Let \(y \) denote the variable of the subspace optimization problem, i.e., \(y = [\alpha, \beta, a^t, b^t] \); in addition let \(B = [g^t, d^t, Q, R] \) and \(K = 2 + 2|S| \). We can now state the formal presentation of the subspace optimization problem,

\[
\min_{y \in \mathbb{R}^K} f(x^i + By) \tag{16}
\]

As mentioned above, we first attempt to solve problem (16) with Newton’s method. Letting \(\tilde{f}(y) = f(x^i + By) \) and using chain rule we get the following formulas for the gradient and Hessian of each Newton’s iteration,

\[
\nabla \tilde{f}(y) = B^t \nabla f(x) \tag{17}
\]

\[
\nabla^2 \tilde{f}(y) = B^t \nabla^2 f(x)B \tag{18}
\]

Notice that some second order information of the function comes into play in equation (18). We compute \(\nabla f(x) \) and \(\nabla^2 f(x) \) directly when \(f(x) \) is simple enough. For more complicated functions we use automatic differentiation (AD) in backward mode to compute \(\nabla f(x) \) and \(\nabla^2 f(x)B \). Let \(B^{(k)} \) denote \(k \)th column of matrix \(B \). Backward AD enables us to keep the computational cost of \(\nabla f(x) \) within a constant factor of the objective function evaluation cost, and the cost of computing \(\nabla^2 f(x)B^{(k)} \) within a constant factor of the computational cost of gradient evaluation multiplied by the number of columns of \(B \). The storage space required in backward AD, however, is more than the required storage in forward AD; and in worst case it can be proportional to the number of operations required for computing \(f(x) \). We did not use an AD tool but rather derived second derivative routines by hand. Details on our test problems are presented in Section 6. For more information on AD, one may refer to [13].

In addition to the storage required by AD, we need to store \(x^i \), and matrix \(B \); we also need to update and store \(x^{rp} \), \(\sum_{i=rp}^{j} \lambda_i \), \(\sum_{i=rp}^{j} \lambda_i \langle g^i, x^i - x^{rp} \rangle \), \(\sum_{i=rp}^{j} \lambda^i g^i \), \(\sum_{i=rp}^{j} (\lambda^i)^2 \|g^i\|^2 \) for all \(p \in \{p_l, \ldots, p_{\text{max}}\} \). The required storage space for the above elements is in \(O(n \lceil \log_2 j \rceil) \).

The subspace optimization with either Newton’s method or the ellipsoid method needs a termination test. For this purpose, we again rely on [7] and [8]. Although the lemma requires these inequalities to be checked only at an iteration at the end of a block, it is also possible to check them on intervening iterations. We use these inequalities to terminate the search for a subspace solution. Note that at an exact solution to the subspace problem, the inequalities are sure to hold because of the KKT conditions of the subspace problem, as already mentioned.

We can now present the algorithm in its entirety. We call it CGSO for “conjugate gradient with subspace optimization.” In this procedure, \(S \) is a subset of \(\{p_l, \ldots, p_{\text{max}}\} \) and denotes the set of values of \(p \) for which correcting is currently active. To save space, we use the Python tabbing convention that the end of a code-block is denoted by a retraction of the indent-level.
Algorithm 1

SUBROUTINE: verify_step(x^j, s^j)

for each p ∈ S

if (7) or (8) fail with x^{m(j,p)} substituted for x^0 and x^j + s^j substituted for x^{m-1}

return False;

return True;

MAIN PROCEDURE: CGSO(x^0)

S = ∅

for j = 1, 2, ...

d^j = -g^j + β^j d^{j-1};

Remark: this is the ordinary nonlinear CG direction.

Remark: take β^j = 0 if either j = 1 or d^{j-1} was discarded.

α^j = Wolfe_line_search(f, x^j, d^j);
stepfound = False;
if verify_step(x^j, α^j d^j)

stepfound = True;
s^j = α^j d^j;
else
discard d^j;
if not stepfound

Apply Newton’s method to solve (16).
Terminate if either verify_step(x^j, B y^j) or iteration-max is attained.

if verify_step(x^j, B y^j)

stepfound = True;
s^j = B y^j;
if not stepfound

Apply the ellipsoid method to solve (16).
Terminate when verify_step(x^j, B y^j).
stepfound = True;
s^j = B y^j;
x^{j+1} = x^j + s^j;
for p = p_1, ..., \lfloor \log_2 j \rfloor

if j + 1 = k_p 2^p for some integer k_p

if p ∈ S

S = S \ {p}
elseif not verify_step(x^{j-1}, s^{j-1});

S = S \cup \{p\}

As mentioned earlier, because the above algorithm enforces (7) and (8) for every value of p and for at least every other block, we get the optimal convergence bound.

Theorem 1 Suppose m ≥ \left\lceil 8ρ \sqrt{\frac{L}{L}} \right\rceil, and x^j is a sequence generated by Algorithm 1 for solving problem (1). Then for any integer n ≥ 0, v_f(x^{(n+4)m}) ≤ \frac{1}{2} v_f(x^{nm}).
Proof. Let \(\bar{p} \) be the integer for which \(2^{\bar{p}-1} \leq m \leq 2^{\bar{p}} \); and let \(s_{\bar{p}} \) stand for \(2^{\bar{p}} \). Using algorithm 1, we are guaranteed that for at least one of any two consecutive blocks of size \(s_{\bar{p}} \) inequalities (7) and (8) are satisfied. The size of this block is

\[
 s_{\bar{p}} \geq m \geq \lceil 8\rho \sqrt{L} \rceil
\]

and hence by Lemma 1 we have

\[
v_f(x^{nm+2s_{\bar{p}}}) \leq \frac{1}{2} v_f(x^{nm}). \tag{19}\]

Since \(2s_{\bar{p}} \leq 4m \), so \(f(x^{nm+4m}) \leq f(x^{nm+2s_{\bar{p}}}) \); hence

\[
v_f(x^{nm+4m}) \leq v_f(x^{nm+2s_{\bar{p}}}). \tag{20}\]

Equations (19) and (20) gives us the result we wanted to show. \(\square \)

5 Remarks on computational divided differences

In a line-search for conjugate gradient, it is necessary to accurately evaluate quantities of the form \(f(x + \alpha d) - f(x) \). A similar quantity arises in the ratio test for the trust-region method [13]. It is well known to implementors of such methods that these divided differences are problematic near the root because of cancellation error between the two terms. A brief discussion of this issue appears in Hager and Zhang [6]. Failure to compute these quantities accurately can lead either to premature termination of an algorithm or to infinite loops.

A solution to this problem, perhaps not as widely known in the optimization literature as it should be, is “computational divided differences” by Rall and Reps [16]. The idea is to transform a source-code program for computing \(f \) into another source-code program for accurately computing divided differences of \(f \). The technique is somewhat reminiscent of automatic differentiation.

To give a concrete example, consider the log-barrier function that will be used in Section 6 as a test case, which is written as \(f(x) = \sum_{i=1}^{m} \log(a_i^T x - b_i) \), where each \(a_i \) is given vector in \(\mathbb{R}^n \) and each \(b_i \) is a given scalar. This function is defined on the open polyhedron given by \(A x > b \) and strongly convex on this polyhedron provided that the polyhedron is bounded. Suppose \(x \) is our current iterate and \(\delta \) is a small step. We have the following derivation:

\[
f(x + \delta) - f(x) = \sum_{i=1}^{m} \log(a_i^T(x + \delta) - b_i) - \sum_{i=1}^{m} \log(a_i^T x - b_i)
= \sum_{i=1}^{m} \log \left(1 + \frac{a_i^T \delta}{a_i^T x - b_i} \right).
\]

Thus, to evaluate this divided difference accurately, one needs a function to compute \(\log(1 + a) \) accurately when \(|a| \) is small. One can develop a method for this computation using calculus. That effort is, however, unnecessary since Matlab and C++ both contain the built-in library function `log1p` for exactly this purpose.
We have used computational divided differences for all of our testing. (We hand-coded the accurate divided differences rather than using a source-to-source translation tool; we are not sure if such a tool exists.) In addition to the line-search, our method uses computational divided differences for the evaluation of the left-hand side of \((7)\). Without them, all the methods would be less reliable and the test results harder to interpret. Indeed, we believe that computational divided differences deserve to be used much more widely in general nonlinear optimization than they are currently. See also the unpublished note by the second author \([18]\) for some comments on their use in optimization.

Because of our reliance on this technique, however, it is not possible to directly compare our results in the next section to well known packages like CG-DESCENT, which do not use computational divided differences. For this reason, we compare only our own implementations against each other.

6 Computational experiments

We have tested the correction method on four classes of problems, three convex and the fourth nonconvex. Our setup was as follows. We tried three different variants of conjugate gradient, namely FR, PR+, and HZ. Here, PR+ denotes the Polak-Ribiére method in which the parameter \(\beta\) is replaced by 0 in the case that it becomes negative (thus forcing a restart), which is a recommended modification (see \([13]\)). HZ refers to the CG-descent direction of Hager and Zhang \([6]\).

Most of our test cases are small. This allowed us to perform more experiments in a reasonable amount of time. As mentioned earlier, the behavior of conjugate gradient is governed much more by conditioning of the problem than problem size. However, to illustrate that the method is also suitable for large problems, we have included two somewhat larger test cases.

The results of our experiments can be summarized as follows. For uncorrected methods, the HZ direction is usually the best while the FR method is usually the worst, and sometimes FR is much worse. For corrected methods, all three directions perform about equally. The corrected methods are typically slower than the uncorrected HZ method for well-conditioned problems. For ill-conditioned problems, however, the corrected method is sometimes much better than HZ (as well as the other two methods). Note that no forced restarts have been implemented. However, there are still restarts in some cases. As noted above, in our correction procedure, when a conjugate gradient search direction is discarded, the following step is, at least initially, the steepest descent direction. Also as noted above, the PR+ method will sometimes restart automatically if it computes a negative \(\beta\).

Before presenting the results, we need to comment on how the running time was measured. We measure time in “units”, where we count as one unit an evaluation of a function or gradient or function/gradient pair (at the same point). In the line-search procedure, gradients are evaluated several times, so each outer iteration costs several units. (Our line search is based on simple bisection and the Wolfe conditions.) We count the evaluation of \(\nabla^2 f(x)y\), needed for Newton’s method, as two units. Here, \(x\) and
Table 1: Number of units of computation for convex quadratic functions; the first two lines are smaller problems \((n = 1000)\); the last line is a larger finite-element problem, \(n = 197,136\). An asterisk indicates a computation terminated due to an iteration limit.

	Uncorrected	Corrected				
	HZ	FR	PR+	HZ	FR	PR+
\(\text{cond}(A) = 10^9\)	38,483	98,442	73,756	87,894	85,930	88,280
\(\text{cond}(A) = 10^8\)	*5,552,754	8,557,387	*27,669,107	2,407,560	2,181,492	2,517,924
cond unknown	149,543	66,373	400,112	115,698	110,230	86,200

\(y\) are arbitrary vectors. In fact, this is a simplification since the cost varies for different functions. For example, in the case of a quadratic function, the cost of \(\nabla^2 f(x)y\) is actually the same as the cost of \(\nabla f(x)\) (one matrix-vector multiplication). The main theorem of backward-mode automatic differentiation states that the evaluation of \(\nabla^2 f(x)y\) should never cost more than 5 units. (None of our examples reach this upper bound of 5.) Finally, one iteration of the ellipsoid method also counts as one unit since it involves one gradient evaluation.

We now present the results in more detail. The first test function is a simple quadratic, \(f(x) = x^T A x + b^T x\) for a positive definite matrix \(A\). Note that none of the methods reduce to linear CG in this case because we did not implement an exact line search. Therefore, there is no prior guarantee that independence of search directions is maintained. On the other hand, because the problem is quadratic, the Newton method on the subspace converges in a single iteration and the ellipsoid method is never used. In two cases we formed \(A\) by choosing 1000 geometrically spaced eigenvalues in a predetermined interval and then multiplying on the left and right by a random 1000 \(\times\) 1000 orthogonal matrix. In this way, the condition number of \(A\) is determined exactly. In the third case we formed \(A\) as the assembled stiffness matrix of a finite-element discretization of Poisson’s equation on the unit disk with a relatively uniform and well-behaved mesh. This problem has moderate ill-conditioning, but the matrix was too large to exactly measure its condition. The results of these experiment are shown in Table 1.

The next class of experiments is with log-barrier functions, that is, functions of the form \(f(x) = \mu \sum_{i=1}^{\text{m}} \log(a_i^T x - b_i) + c^T x\). In these experiments we generated \(A\) randomly with known condition number for two smaller cases, and we took \(A\) to be the node-arc incidence matrix of an undirected graph (hence two copies of each edge, one for each direction) for a larger test case. This matrix \(A\) is relatively well conditioned. However, we can make the problem more ill-conditioned by decreasing \(\mu\) (thus pushing the solution closer to the boundary of the feasible region). The graph in question came from a DIMACS challenge problem. The results are in Table 2.

The third test case consists of smoothed versions of the LASSO problem. The un-smoothed version of this problem has an objective function of the form \(\|A x - b\|^2 + \lambda \|x\|_1\), where \(A\) has fewer rows than columns. In the smoothed version we approximate the function \(|x|\) by \((x^2 + \delta)^{1/2}\) which is convex (strongly convex on bounded intervals) and smooth.
Table 2: Number of units of computation for log-barrier functions. The first three lines are smaller problems \((A \in \mathbb{R}^{400 \times 100})\); the last line is a larger DIMACS graph problem \((A \in \mathbb{R}^{91,756 \times 15,605})\). In the third line, the condition number of \(A\) was slightly worse. An asterisk indicates a computation terminated due to an iteration limit.

Uncorrected	Corrected					
HZ	FR	PR+	HZ	FR	PR+	
\(\mu = .4\)	292,012	1,496,650	963,968	461,036	394,382	420,808
\(\mu = .1\)	593,190	3,034,394	2,059,235	1,568,258	1,477,938	1,463,452
*55,190,257	58,728,472	*55,665,606	13,349,163	15,235,567	14,813,917	
\(\mu = 100\)	1,298,292	*6,633,403	2,297,573	762,649	654,900	668,127

Table 3: Number of units of computation for regularized LASSO functions. For each case, \(A \in \mathbb{R}^{100 \times 400}\). For both rows, the regularization parameter \(\delta\) is \(5 \cdot 10^{-4}\).

Uncorrected	Corrected					
HZ	FR	PR+	HZ	FR	PR+	
\(\lambda = 10^{-3}, \text{cond}(A) = 10^5\)	51,514	263,202	116,740	97,781	99,072	91,763
\(\lambda = 10^{-4}, \text{cond}(A) = 10^6\)	986,314	5,049,449	3,397,063	810,887	926,389	879,384
\(\lambda = 10^{-4}, \text{cond}(A) = 10^6\)	46,206,176	56,618,846	55,827,526	15,523,751	19,667,056	14,350,066

We did not try a large instance of this problem because typically \(A\) is taken to be a dense matrix, so a large problem would require too much computation time. The results are in Table 3.

The final test case is the nonconvex distance geometry problem. In this problem, there is a sequence of \(n\) points \((x_1, \ldots, x_n)\) each in \(\mathbb{R}^d\) whose coordinates are mostly unknown. However, many pairs of interpoint distances are given. The problem is to find the positions of the points. This can be posed as a nonlinear least squares problem of minimizing \(\sum_{(i,j) \in E} (d_{ij}^2 - \|x_i - x_j\|^2)^2\) where \(E\) is a list of the pairs \((i, j)\) whose distances are known, \(d_{ij}\) is the known distance, and the \(x_i\)'s are unknown (except for a few, called ‘anchors’, which make the problem well posed).

Because of the nonconvexity, it is possible for different algorithms to converge to different local optimizers; such a result would naturally make the running time estimates difficult to interpret. In order to prevent this inconsistency, the data was constructed so that there is an exact solution (i.e., the nonlinear least squares instance has a solution with zero residual), and then all the methods were initialized at a point close to that solution. With this device, we were able to ensure convergence to the same solution. The coordinates of the known solution were taken as random points in the plane, and a random subset of possible edges was used in the objective function.

A second issue with nonconvexity is that the ellipsoid method is no longer valid for solv-
Table 4: Number of units of computation for distance geometry functions. In each case the number of unknowns was 400 while the number of distances was 600.

	Uncorrected	Corrected
HZ		
stretch=1	29,829	38,501
	61,148	43,123
stretch=5	328,436	87,416
	672,881	93,771

...ing the subspace problem. Therefore, our two methods for solving the subspace problem in this case were Newton, and, if it fails, a trust-region method [13]. However, it turned out that the trust-region method was never invoked, most likely because we started sufficiently close to the root. We can control the conditioning of the problem by stretching the random data points along one axis (x or y). The results of a well-conditioned and ill-conditioned problem are in Table 4.

7 Conclusion

We have presented an analysis of loss of independence in conjugate gradient search directions. The analysis is derived for strongly convex functions and is based on work by Nemirovsky and Yudin. The analysis suggests a correction method involving subspace optimization on many iterations. The dimension of the subspace is at least 4 and is bounded above in terms of the log of the current iteration counter.

The correction method, though expensive, appears to lead to the fastest solution in the case of ill-conditioned instances. When the correction method is used, there is seemingly little difference between the three variants of conjugate gradient, FR, PR+ and HZ that we tested. Although the method was based on theory developed for the strongly convex case, convexity is not inherent in the formulas themselves and so it straightforward to extend the correction to the nonconvex case. Finally, this work advocated for greater use of computational divided differences in the optimization community.

This work raises several questions. On the theoretical side, it would be interesting to have a method that can be classified as nonlinear conjugate gradient (i.e., reduces to linear CG when applied to a quadratic function) but achieves the optimal complexity bound of $O(\sqrt{\ln(\varepsilon)} \sqrt{L/l})$ function/gradient evaluations in the general case of strongly convex functions. Although our CGSO method achieves this iteration bound, it does not achieve the same bound for function/gradient evaluations because we do not have a constant upper bound on the number of inner iterations needed for subspace optimization. It would also be interesting to have some kind of analysis, even a weak result, of the correction method for nonconvex problems.

On the practical side, it would be interesting to understand why the three nonlinear CG methods, which often exhibit widely varying behavior, seem to become nearly indistinguishable once our correction method is applied.
References

[1] M. Al-Baali. Descent property and global convergence of the Fletcher-Reeves method with inexact line search. *IMA Journal of Numerical Analysis*, 5:121–124, 1985.

[2] Y. H. Dai and Y. Yuan. A nonlinear conjugate gradient method with a strong global convergence property. *SIAM Journal on Optimization*, 10(1):177–182, 1999.

[3] R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients. *Computer Journal*, 7:149–154, 1964.

[4] J. C. Gilbert and J. Nocedal. Global convergence properties of conjugate gradient methods for optimization. *SIAM Journal on Optimization*, 2(1):21–42, 1992.

[5] G. H. Golub and C. F. Van Loan. *Matrix Computations, 3rd Edition*. Johns Hopkins University Press, 1996.

[6] W. W. Hager and H. Zhang. A new conjugate gradient method with guaranteed descent and an efficient line search. *SIAM Journal on Optimization*, 16(1):170–192, 2005.

[7] W. W. Hager and H. Zhang. A survey of nonlinear conjugate gradient methods. Available online at http://www.math.ufl.edu/~hager/papers/CG/cg_survey.pdf, 2005.

[8] M. R. Hestenes and E. Stiefel. Methods of conjugate gradient for solving linear systems. *Journal of Research of the National Bureau of Standards*, 49:409–436, 1952.

[9] A. S. Nemirovsky and D. B. Yudin. *Problem Complexity and Method Efficiency in Optimization*. John Wiley & Sons, 1983.

[10] Y. Nesterov. Universal gradient methods for convex optimization. Available on-line at http://www.optimization-online.org/DB_HTML/2013/04/3833.html, 2013.

[11] Y. E. Nesterov. A method of solving a convex programming problem with convergence rate $O(1/k^2)$. *Soviet mathematics, Doklady*, 27(2):372–376, 1983.

[12] Y. E. Nesterov. Smooth minimization of nonsmooth functions. *Math. Programming*, 103:127–152, 2005.

[13] J. Nocedal and S. J. Wright. *Numerical Optimization*. Springer Science, 2006.

[14] E. Polak and G. Ribiére. Note sur la convergence de méthodes de directions conjuguées. *Revue Francaise d’informatique et de Recherche Operationnelle*, 16:35–43, 1969.

[15] Boris T. Polyak. *Introduction to Optimization*. Optimization Software Inc., 1987.
[16] T. W. Reps and L. B. Rall. Computational divided differencing and divided-difference arithmetics. *Higher-order and symbolic computation*, 16:93–149, 2003.

[17] P. Tseng. On accelerated proximal gradient methods for convex-concave optimization. Available on-line at http://pages.cs.wisc.edu/~brecht/cs726docs/Tseng.APG.pdf, 2008.

[18] S. Vavasis. Some notes on applying computational divided differencing in optimization. Available on-line at http://www.optimization-online.org/DB_HTML/2013/07/3957.html, 2013.

[19] Y. Yuan and J. Stoer. A subspace study on conjugate gradient algorithms. *ZAMM (Zeitschrift für angewandte Mathematik und Mechanik)*, 11:69–77, 1995.