Reverse shoulder arthroplasty used for revision of reverse shoulder arthroplasty: a systematic review

John J. Heifner, MD, MS, Anjali D. Kumar, MPH, Eric R. Wagner, MD, MS

*St George's School of Medicine, Great River, NY, USA
Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Division of Upper Extremity Surgery, Department of Orthopaedic Surgery, Director of Upper Extremity Surgery Research, Atlanta, GA, USA

Article Info

Keywords: Failed reverse shoulder, Glenoid bone loss, Reverse shoulder replacement, Revision reverse shoulder, Revision shoulder arthroplasty

Level of evidence: Level IV; Systematic Review

Background: As reverse shoulder arthroplasty (RSA) cases increase, so too will the need to revise subsequent failures. Many of the complications associated with revising anatomic total shoulder and hemiarthroplasty have been adequately addressed by RSA including glenoid bone deficiency, instability, and functional outcomes. However, the risk for complication when revising a failed reverse prosthesis may be more pronounced with increased bone and soft tissue deficiency. The ability for the reversed prosthesis to accommodate these insufficiencies following a prior reversed prosthesis is unclear.

Methods: PubMed, Embase, and Google Scholar were queried for articles which fit the inclusion criteria of a reversed prosthesis used to revise a failed primary reverse prosthesis with a minimum follow-up of 12 months and clinical outcome reporting.

Results: After exclusions, 9 studies reporting on 242 reverse shoulders with a mean follow-up of 40.29 months were analyzed. The differences between preoperative and postoperative weighted means were not significant for Constant (P = .26), American Shoulder and Elbow Surgeons Shoulder score (P = .61), SSV (P = .57), and visual analog scale for pain (P = .48). Functional improvements in elevation (74° ± 102°) and external rotation (18° ± 21°) were consistent with those reported for primary reverse procedures, although differences in preoperative and postoperative measures were not statistically significant. Patient satisfaction was 89% with a major complication rate of 25%.

Discussion: The reverse shoulder prosthesis has proven satisfactory in revising hemiarthroplasty and anatomic total shoulder arthroplasty. The current results indicate RSA is also a satisfactory treatment option when revising a prior reverse prosthesis. Inherent to revision shoulder surgery is the obstacle of humeral and glenoid bone loss, an attenuated soft-tissue envelope, and instability. The reverse prosthesis may adequately address these commonly confronted difficulties with its inherent design characteristics. RSA provides a secure glenoid fixation for bone grafting, the ability to increase construct stability with component sizing, and a reliance on the deltoid for function. As our learning about revision of RSA improves, so will our ability to preemptively address potential issues which may lead to decreased complications in these cases. Despite the 25% rate of major complication, patients reported satisfaction of 89% which demonstrates the improvements in function and pain relief that are provided by the reverse prosthesis.

© 2021 The Author(s). Published by Elsevier Inc. on behalf of American Shoulder & Elbow Surgeons. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Potential salvage options after a failed reverse prosthesis include resection arthroplasty or hemiarthroplasty which have been historically associated with poor outcomes due in part to the lack of soft-tissue and bony constraints. With the improved technology and surgical techniques of RSA, revision of hemiarthroplasty and anatomic shoulder replacement have improved short-term outcomes in recent years. However, even with these improved outcomes, revision shoulder arthroplasty is still associated with a high rate of complications. The risk for complications can be especially problematic when revising a failed RSA as these cases can have even more pronounced bony and soft-tissue deficiencies, often requiring grafting or other salvage procedures.

In recent years, studies have examined the outcomes of RSA being revised to RSA. Therefore, the purpose of this systematic review was to analyze pooled clinical outcomes of RSA being used to revise a failed RSA. Furthermore, we sought to determine whether the preoperative indication for revision held prognostic value for further complication. We hypothesize that these procedures can yield reasonable functional outcomes albeit with high rates of complication.

Materials and methods

A broad search of the literature was performed for all peer-reviewed studies published before July 2019. The databases PubMed, Embase, and Google Scholar were queried using the keywords “revision OR revised reverse shoulder arthroplasty OR prosthesis” and “failure of reverse shoulder arthroplasty OR prosthesis”.

Study selection

The search returned a total of 1199 studies with 217 being screened via abstract and title. In addition, references of included studies and recent reviews were screened for potentially relevant studies. Inclusion required (1) full-text peer-reviewed publication, (2) patients with a failed primary reverse prosthesis which was revised to a reverse prosthesis, (3) reporting of clinical outcomes, and (4) a minimum of 12-month follow-up. Exclusion criteria included (1) primary reverse shoulder arthroplasty, (2) revision surgery using means other than RSA, and (3) outcome measures outside our purview. Figure 1 outlines the database search result and study selection process.

Data collection

Research characteristics included type of study, year of publication, number of patients, and follow-up duration. Patient demographics included age and gender. Surgical data included indication for revision, glenoid bone grafting, humeral stem cementation, repair of the subscapularis, and prosthesis manufacturer. Outcome measures included patient-reported scores and satisfaction, range of motion, rates of complication, and subsequent revision of the prosthesis.
Methodological quality

We assessed quality of evidence with the 100-point Modified Coleman Methodology Score (MCMS) which contains 17 variables across 2 sections. The Coleman score addresses the inherent study design as well as the quality of outcome reporting thus producing a comprehensive measure for critiquing research. Section A analyzes the elemental structure of the study via sample size, follow-up interval and treatment description. Section B analyzes the strength of the conclusion via the presence of patient-reported outcomes and the retention of subjects.

Outcome measures

Patient-reported outcome measures included Constant, American Shoulder and Elbow Surgeons Shoulder score, visual analog scale for pain, Simple Shoulder Test, subjective shoulder value, and patient satisfaction. Forward elevation, abduction, and external rotation comprised the functional data. Major complications, minor complications, and rates of revision were recorded. We classified major complications as any component-related mechanism, instability, periprosthetic fracture, and deep infection. Minor complications included all nonmajor and medical complications.

Statistical analysis

Statistical analysis was conducted using demographic information, pain outcomes, functional scores, device implant information, and complication data from 9 studies. Pooled means of the data (age, follow-up, visual analog scale, American Shoulder and Elbow Surgeons Shoulder, Constant, subjective shoulder value, elevation, abduction, and external rotation) were used and frequency-weighted to represent the number of patients that participated in each study. All other data (gender, device information, and complications) were summed as pooled frequency counts. The differences in preoperative and postoperative frequency-weighted outcome means were compared using two-sample, two-tailed t-tests with unequal variances with an alpha significance level of $P < .05$.

Results

The 9 included studies reported a total of 242 reverse shoulder arthroplasty compared with primary shoulder arthroplasty.23,41,45,50 Authors postulate that in many cases, the indication for the initial reverse surgery is a failed prior arthroplasty thus achievement of satisfactory outcomes supports patient satisfaction of 89% which demonstrates the improvements in function that are provided by RSA. A similar observation and reasoning were noted higher rates of complication for revision shoulder arthroplasty.23,41,45,50 However, with the increased volume of primary RSA, evidence is needed to determine acceptable treatments for failed reverse implants.

We calculated a 25% major complication rate across the 5 studies which detailed complications. This complication rate for revising a reverse is higher than reported rates of complication when revising a hemiarthroplasty or anatomic shoulder arthroplasty to a reverse prosthesis.22,44,46,48,50,51

Table I

Patient and research characteristics for all included studies.

Average age at surgery, yr (range)	69 (62-73)
Percent female, n (%)	46 (48%)
Average follow-up, mo (range)	40.29 (24-59)
Total reverse shoulder arthroplasty	242

Table II

Indications for revision of reverse shoulder arthroplasty.

Indication	n (%)
Glenoid component failure	60, (38%)
Infection	42, (26%)
Instability	23, (14%)
Dislocation	18, (11%)
Humeral component failure	15, (9%)

Table III

Preoperative and postoperative values for clinical results.

Outcome	Shoulders, n (%)	Preoperative*	Postoperative*	P value
Functional Outcomes				
Elevation, VAS	159 (66%)	74.1	102.3	.59
Abduction, SSV	99 (41%)	60.0	101.1	.57
External Rotation, ASES	158 (65%)	17.8	20.7	.84
Patient-reported outcomes				
VAS for pain	102 (42%)	5.55	2.92	.48
ASES	143 (59%)	41.37	59.96	.60
Constant	127 (52%)	25.97	48.38	.26
SSV	76 (31%)	36.72	54.85	.67

ASES, American Shoulder and Elbow Surgeons score; SSV, subjective shoulder value; VAS, visual analog scale.

*Data presented as frequency weighted mean.

Complications

Of the 9 studies analyzed, 5 studies reported complication details at a mean follow-up of 41 months. (Table V) These 5 studies represented 39% (n = 95) of the total number of cases (n = 242) analyzed in this review. Major complications reported across these studies included dislocation (7), glenoid loosening (5), periprosthetic fracture (4), instability (3), deep infection (2), polyethylene fracture (1), and component dissociation (1) equating to a major complication rate of 24.6%. Subsequent revision rate of 22.1% (N = 15) was reported by 4 studies. Minor complications were reported in 3 studies (33%) – hematoma (2) and superficial infection (1).

Discussion

Adequate data exist for outcomes of RSA used in revision of failed anatomic prostheses and for failed hemiarthroplasty.22,34,35,46,48,50,51 However, with the increased volume of primary RSA, evidence is needed to determine acceptable treatments for failed reverse implants.

We calculated a 25% major complication rate across the 5 studies which detailed complications. This complication rate for revising a reverse is higher than reported rates of complication when revising hemiarthroplasty or anatomic shoulder arthroplasty to a reverse prosthesis.22,44,46,48,50,51 Authors postulate that in many cases, the indication for the initial reverse surgery is a failed prior arthroplasty thus the increased risk of complication in subsequent interventions.22,44,46,48 Notwithstanding the 25% rate of complication, patients reported satisfaction of 89% which demonstrates the improvements in function that are provided by RSA. A similar observation and reasoning were described in 2 of the included studies.34,35 Despite additional procedures which may follow revision RSA, the relief of pain and functional improvement afforded by RSA provides benefit and value to patients.

The current results are consistent with prior reports which detail higher rates of complication for revision shoulder arthroplasty compared with primary shoulder arthroplasty. Wall et al51 prospectively analyzed primary and revision reverse with
complications rates being 13% and 37%, respectively. Patients undergoing revision did have a gain in function which was comparable to the gain in function in primary patients. Saltzman et al.\(^{40}\) did a retrospective comparison of outcomes in primary reverse and revision reverse surgery. Revision patients required tefusions at a much higher rate than in primary cases which speaks to the complexities and time requirement of revision surgery. The authors reported a 15% major complication rate among patients undergoing the revision procedure and 9% rate of major complication for those undergoing primary arthroplasty, with no significant difference between these groups. Groh and Groh\(^{44}\) reported significant differences in complication rates when comparing primary (4%) and revision (19%).

Across the studies which reported the indication for revision surgery, infection represented 43% of revisions.\(^{2,3,5,16,49}\) In revision cases for infection, Beekman et al.\(^{2}\) and Cuff et al.\(^{15}\) advocate for a very thorough debridement of infected tissue to reduce the chances of recurrent infection. This extensive debridement can compromise rotator cuff function which would prove problematic for a non-constrained prosthesis. Given RSA’s reliance on the deltoid for function, the authors were careful to preserve the deltoid while adopting a more aggressive resection of other tissues. With this thorough approach, Beekman et al.\(^{16}\) reported 10 of 11 patients being infection-free at 24 months.

Instability is one of the most common indications for revision of a primary reverse prosthesis.\(^{1}\) In addition, revision shoulder surgery has the intrinsic risk of instability due to altered tissue tension from prior surgical disturbance. RSA offers the unique ability to increase stability via increased component sizing which can mitigate further complications due to instability.\(^{4,5,7,9,22}\) Authors have used larger glenosphere sizing during revision RSA given the characteristic tissue laxity in these procedures. The larger sphere can further stabilize the construct and increase deltoid tension for functional gain.\(^{4,20,44}\) Furthermore, stability can also be gained by biologic lateralization and by humeral component design.\(^{50}\) Biomechanical analysis and simulated modeling have suggested that a lateralized center of rotation increases compressive forces which contribute to improvement in stability.\(^{4,31}\)

Cheung et al.\(^{12}\) reviewed RSA patients for instability in the early postoperative period with results suggesting that subscapularis repair improves stability and lowers rates of dislocation. Several authors admit the potential for nonviable subscapularis tissue in revision cases but if tissue quality permits, they recommend a repair be attempted.\(^{12,20}\)

When revising glenoid components, surgeons are faced with the common complication of bony defects. Prior research has demonstrated an association between glenoid defects and poor outcomes in revision shoulder arthroplasty.\(^{18}\) Addressing these defects with bone graft may mitigate these complications and yield promising outcomes.\(^{1,2,7,8,20,32,34,35,47,50}\) Reports on glenoid bone grafting when
revising prior arthroplasty to RSA have shown graft incorporation greater than 90%, though others have attained more inferior results. Elements of the reversed design which are advantageous for glenoid bone graft incorporation include its multiple points of fixation for adequately securing the graft as well as options to lengthen the center post and peripheral screws. Compression created by the construct has been correlated with improved graft incorporation. Wagner et al concluded glenoid bone graft incorporation may be enhanced by medialized center of rotation reverse constructs given the increased shear force across the graft-implant interface with more lateralized designs.

Biomechanical analysis of lateralized RSA constructs confirmed an increased shear force, but this increase in shear was less than the increase in compression across the joint which may prove advantageous for graft incorporation. Wagner et al concluded glenoid bone grafting in revision RSA was associated with greater rates of glenoid loosening and subsequent failure when compared with cases of revision RSA without glenoid bone graft. Their overall revision rate due to glenoid loosening was 10%. The authors postulated that glenoid bone graft was required in those shoulder with considerably greater glenoid pathologies which predisposes them to complications.

Our findings are limited by the clarity of reporting by others as well as the design of the studies which were analyzed. Some of the identified studies were performed at the same institution which may represent intersection of pooled data. Patient demographics, surgical technique, and gathering of outcome measures are some of the variables that may bias conclusions from a single institution. Variance in outcome measure reporting is another potential limitation. American Shoulder and Elbow Surgeons Shoulder scores and Constant scores were reported by only 5 of 9 studies. Elevation and external rotation were also reported by only 5 studies with abduction being reported in 3 studies. As previously discussed, complications were detailed in 5 of the 9 studies. We hope future reports offer consistent outcome measure reporting and thus, a more cohesive and robust conclusion can be applied. Finally, further evaluation is needed at longer-term follow-ups to fully attest the viability of reverse surgery in this subset of patients.

Conclusion

With the available short-term data, we can conclude that revising a failed reverse to another reverse is a reasonable treatment option which can yield favorable function, though rates of complication are concerning. More consistent reporting will help future reviews provide more generalizable conclusions. Characteristics of the reverse prosthesis which provide value when revising a reverse prosthesis include its strength of glenoid fixation for bone grafting, the ability to increase construct stability and its reliance on the deltoid for function. As our learning about revision of RSA improves, so will our ability to preemptively address potential issues which may lead to decreased complications in these cases.

Disclaimers

Funding: No funding was disclosed by the author(s).

Conflicts of interest: Dr. Wagner receives consulting fees from Stryker, Wright Medical, Biomet, Acumed, and Osteoemmedies, and research support from Arthrex, Konica Minolta, Arthrex, and DJO. None are relevant to this manuscript.

The other authors, their immediate family, and any research foundation with which they are affiliated have not received any financial payments or other benefits from any commercial entity related to the subject of this article.

References

1. Bateman E, Donald SM. Reconstruction of massive uncontained glenoid defects using a combined autograft-allograft construct with reverse shoulder arthroplasty: preliminary results. J Shoulder Elbow Surg 2012;21:925-34. https://doi.org/10.1016/j.jse.2012.07.007.
2. Beekman PDA, Katzucis DB, Berghs BM, Karelse A, De Wilde L. One-stage revision for patients with a chronically infected reverse total shoulder replacement. J Bone Joint Surg Br 2010;92:B:817-22. https://doi.org/10.1302/0301-620x.92b6.23045.
3. Black EM, Roberts SM, Siegel E, Vannopoulos P, Higgins LD, Warner JJP. Reverse shoulder arthroplasty as salvage for failed prior arthroplasty in patients 65 years of age or younger. J Shoulder Elbow Surg 2014;23:1036-42. https://doi.org/10.1016/j.jse.2014.02.019.
4. Boyle P. Complications and revision of reverse total shoulder arthroplasty. Orthop Traumatol Surg Res 2016;102:533-43. https://doi.org/10.1016/j.otsr.2015.06.031.
5. Boyle P, Melis B, Duperron D, Moineau G, Rumian AP, Han Y. Revision surgery of reverse shoulder arthroplasty. J Shoulder Elbow Surg 2013;22:1359-70. https://doi.org/10.1016/j.jse.2013.02.004.
6. Boyle P, Morin-Salvo N, Gauci MO, Seeto BL, Chalmers PN, Holzer N, et al. Angled BIO-RSA (bony-increased offset reverse shoulder arthroplasty): a solution for the management of glenoid bone loss and erosion. J Shoulder Elbow Surg 2017;26:2133-42. https://doi.org/10.1016/j.jse.2017.05.024.
7. Boyle P, Watkinson DJ, Hatzidakis AM, Balg F. Grammont reverse prosthesis: design, rationale, and biomechanics. J Shoulder Elbow Surg 2005;14:1475-1485. https://doi.org/10.1016/j.jse.2004.05.006.
8. Boyle MJ, Youn SM, Frampont CMA, Ball CM. Functional outcomes of reverse shoulder arthroplasty compared with hemiarthroplasty for acute proximal humeral fractures. J Shoulder Elbow Surg 2013;22:32-37. https://doi.org/10.1016/j.jse.2012.03.006.
9. Budge MD, Moravek JE, Zimel MN, Nolan EM, Water JM. Reverse total shoulder arthroplasty for the management of failed shoulder arthroplasty with proximal humeral bone loss: is allograft augmentation necessary? J Shoulder Elbow Surg 2011;20:779-84. https://doi.org/10.1016/j.jse.2010.08.008.
10. Cazeneuve JF, Cristofari DJ. Grammont reversed prosthesis for acute complex fracture of the proximal humerus in an elderly population with 5 to 12 years follow-up. Orthop Traumatol Surg Res 2014;100:93-7. https://doi.org/10.1016/j.otsr.2013.12.005.
11. Chalmers PN, Slkker W, Mall NA, Gupta AK, Rahman Z, Enriquez D, et al. Reverse total shoulder arthroplasty for acute proximal humeral fracture: comparison to open reduction-internal fixation and hemiarthroplasty. J Shoulder Elbow Surg 2014;23:197-204. https://doi.org/10.1016/j.jse.2013.07.044.
12. Cheung EV, Sarkissian EJ, Sox-Harris A, Comer GC, Saleh JR, Diaz R, et al. Instability after reverse total shoulder arthroplasty. J Shoulder Elbow Surg 2018;27:1946-52. https://doi.org/10.1016/j.jse.2018.04.015.
13. CIA, Veilette Q, Sanchez-Sotelo J, Spreling JW, Schleck C, Cofield RH. Revision of the humeral component for aseptic loosening in arthroplasty of the shoulder. J Bone Joint Surg Br 2009;91-B:75-81. https://doi.org/10.1302/0301-620x.20119408.
14. Costantini O, Choi DS, Kontaxis A, Galouta LV. The effects of progressive lateralization of the joint center of rotation of reverse total shoulder implants. J Shoulder Elbow Surg 2015;24:1120-8. https://doi.org/10.1016/j.jse.2014.11.040.
15. Cuff DJ, Virani NA, Levy J, Franklin MA, Derarasi A, Hines B, et al. The treatment of deep shoulder infection and glenohumeral instability with debridement, reverse shoulder arthroplasty and postoperative antibiotics. J Bone Joint Surg Br 2008;90:B:336-42. https://doi.org/10.1302/0301-620x.90b3.19408.
16. Day JS, Lau E, Ong KL, Williams GR, Ramsey ML, Kurtz SM. Prevalence and projections of total shoulder arthroplasty and elbow arthroplasty in the United States to 2015. J Shoulder Elbow Surg 2010;19:1115-20. https://doi.org/10.1016/j.jse.2010.02.009.
17. Dillon MT, Chan PH, Inacio MCS, Singh A, Yuan EH, Navarro BA. Yearly trends in elective shoulder arthroplasty, 2005–2013. Arthritis Care Res 2017;69:1574-81. https://doi.org/10.1002/acr.23167.
18. Eliasson B, Ozbaydar M, Higgins LD, Warner JJP. Glenoid reconstruction in revision shoulder arthroplasty. Clin Orthop Relat Res 2008;466:595-607. https://doi.org/10.1002/cor.1800.
19. Flury MP, Frey P, Goldhahn J, Schwyzer HK, Simmen BR. Reverse shoulder arthroplasty as a salvage procedure for failed conventional shoulder replacement due to cuff failure–midterm results. Int Orthop 2011;35:53-60. https://doi.org/10.1007/s00264-010-1060-z.
20. Frankie M, Siegal S, Pupello D, Saleem A, Migliel M, Vasey M. The reverse shoulder prosthesis for glenohumeral arthritis associated with severe rotator cuff deficiency - A minimum two-year follow-up study of sixty patients. J Bone Joint Surg Am 2005;87-A:1697-705. https://doi.org/10.2106/JBJS.D.02813.
21. Gauci MO, Cavalier M, Gonzalez JF, Holzer N, Baring T, Walch G, et al. Revision of failed shoulder arthroplasty: epidemiology, etiology, and surgical options. J Shoulder Elbow Surg 2020;29:541-9. https://doi.org/10.1016/j.jse.2019.07.034.
22. Glemnanz MC, Kolling C, Schwyzer HK, Audige L. Conversion to hemiarthroplasty as a salvage procedure for failed reverse shoulder arthroplasty. J Shoulder Elbow Surg 2016;25:1795-802. https://doi.org/10.1016/j.jse.2016.03.011.
23. Gohlke F, Rolf O. [Revision of failed fracture hemiarthroplasties to reverse total shoulder prosthesis through the transthumeral approach : method incorporating a pectoralis-major-pedicled bone window]. Oper Orthop Traumatol 2007;19:185-208. https://doi.org/10.1007/s00064-007-1202-x.
24. Groh GI, Groh GM. Complications rates, reoperation rates, and the learning curve in reverse shoulder arthroplasty. J Shoulder Elbow Surg 2014;23:388-94. https://doi.org/10.1016/j.jse.2013.06.002.

25. Grubhofer F, Wieser K, Meyer DC, Catanzaro S, Beeler S, Riede U, et al. Reverse total shoulder arthroplasty for acute head-splitting, 3- and 4-part fractures of the proximal humerus in the elderly. J Shoulder Elbow Surg 2016;25:1690-8. https://doi.org/10.1016/j.jse.2016.02.024.

26. Holcomb JO, Cuff D, Petersen SA, Pupello DR, Rankle MA. Revision reverse shoulder arthroplasty for glenoid baseplate failure after primary reverse shoulder arthroplasty. J Shoulder Elbow Surg 2009;18:717-23. https://doi.org/10.1016/j.jse.2008.11.017.

27. Jones RB, Wright TW, Zuckerman JD. Reverse total shoulder arthroplasty with structural bone grafting of large glenoid defects. J Shoulder Elbow Surg 2016;25:1425-32. https://doi.org/10.1016/j.jse.2016.01.016.

28. Kelly JT, Zhao JX, Hobgood ER, Norris TR. Clinical results of revision shoulder arthroplasty using the reverse prosthesis. J Shoulder Elbow Surg 2012;21:1516-25. https://doi.org/10.1016/j.jse.2011.11.021.

29. Kim SH, Wise BL, Zhang YQ, Szabo RM. Increasing Incidence of Shoulder Arthroplasty in the United States. J Bone Joint Surg Am 2011;93a:2249-54. https://doi.org/10.2106/Jbjs.j.01994.

30. Ladermann A, Schwartzgebel AJ, Edwards TB, Godeneche A, Favard L, Walch G, et al. Glenoid loosening and migration in reverse shoulder arthroplasty. Bone J Joint 2015;101:461-9. https://doi.org/10.3201/2010.1401.

31. Liou W, Yang Y, Petersen-Fitts GR, Lombardo DJ, Stine S, Sabesan VJ. Effect of lateralized design on muscle and joint reaction forces for reverse shoulder arthroplasty. J Shoulder Elbow Surg 2017;26:564-72. https://doi.org/10.1016/j.jse.2016.09.045.

32. Lopez Y, Garcia-Fernandez C, Arriaza A, Rizo B, Marcelo H, Marco F. Midterm outcomes of bone grafting in glenoid defects treated with reverse shoulder arthroplasty. J Shoulder Elbow Surg 2017;26:1581-8. https://doi.org/10.1016/j.jse.2017.01.017.

33. Lorenzetti M, Mozzati M, Campanino PP, Valente G. Bone augmentation of the inferior floor of the maxillary sinus with autogenous bone or composite bone grafts: A histologic-histomorphometric preliminary report. Int J Oral Maxillofac Implants 1998;13:69-76.

34. Mahlyis JM, Puzzirolle RN, Ho JC, Amini MH, Iannotti JP, Ricchetti ET. Comparison of radiographic and clinical outcomes of revision reverse total shoulder arthroplasty with structural versus nonstructural bone graft. J Shoulder Elbow Surg 2019;28:e1-9. https://doi.org/10.1016/j.jse.2018.06.026.

35. Melis B, Bonnevialle N, Neyton L, Levigne C, Favard L, Walch G, et al. Glenoid loosening and failure in anatomical total shoulder arthroplasty: is revision with a reverse shoulder arthroplasty a reliable option? J Shoulder Elbow Surg 2012;21:342-9. https://doi.org/10.1016/j.jse.2011.05.021.

36. Middernacht B, Van Tongel A, De Wilde L. Reversed revised: What to do when revision for a failed reverse: a 12-year review of a lateralized implant. J Shoulder Elbow Surg 2016;25:E115-24. https://doi.org/10.1016/j.jse.2015.01.005.

37. Stephens BC, Simon P, Clark RE, Christmas KN, Stone GP, Lorenzetti AJ, et al. Revision for a failed reverse: a 12-year review of a lateralized implant. J Shoulder Elbow Surg 2016;25:E115-24. https://doi.org/10.1016/j.jse.2015.01.005.

38. Stephens SP, Paisley KC, Goveas MK, Wirth MA. The effect of proximal humeral bone loss on revision reverse total shoulder arthroplasty. J Shoulder Elbow Surg 2015;24:1519-26. https://doi.org/10.1016/j.jse.2015.02.020.

39. Valenti P, Kilian AS, Sassiezies P, Karz D. Results of 30 shoulder reverse prostheses for revision of failed hemi- or total shoulder arthroplasty. Eur J Orthop Surg Traumatol 2014;24:1375-82. https://doi.org/10.1007/s00590-013-1332-9.

40. Wagner E, Houdek MT, Griffith T, Elhassan BT, Sanchez-Sotelo J, Sperling JW, et al. Glenoid bone-grafting in revision to a reverse total shoulder arthroplasty. J Bone Joint Surg Am 2015;97:1653-60. https://doi.org/10.2106/Jbjs.d.02342.

41. Wagner ER, Chang MJ, Welp KM, Solberg MJ, Hunt TJ, Woodmass JM, et al. The impact of the reverse prosthesis on revision shoulder arthroplasty: analysis of a high-volume shoulder practice. J Shoulder Elbow Surg 2019;28:e49-56. https://doi.org/10.1016/j.jse.2018.08.002.

42. Wagner ER, Hevesi M, Houdek MT, Cofield RH, Sperling JW, Sanchez-Sotelo J. Can a reverse shoulder arthroplasty be used to revise a failed primary reverse shoulder arthroplasty?: Revision reverse shoulder arthroplasty for failed reverse prosthesis. Bone Joint J 2018;100-B:1493-8. https://doi.org/10.3101/0301-620X.100B11.BJj-2018-0226.R2.

43. Walker M, Willis MP, Brooks JP, Pupello D, Mulieri PJ, Frankie MA. The use of the reverse shoulder arthroplasty for treatment of failed total shoulder arthroplasty. J Shoulder Elbow Surg 2012;21:514-22. https://doi.org/10.1016/j.jse.2011.03.006.

44. Wall B, Nove-Josserand L, O'Connor DP, Edwards TB, Walch G. Reverse total shoulder arthroplasty: a review of results according to etiology. J Bone Joint Surg Am 2007;89:1476-85. https://doi.org/10.2106/Jbjs.f.00666.

45. Werner CML, Steinmann PA, Gilbert M, Gerber C. Treatment of painful pseudoparesis due to irreparable rotator cuff dysfunction with the delta III reverse-ball-and-socket total shoulder prosthesis. J Bone Joint Surg Am 2005;87a:1476-86. https://doi.org/10.2106/Jbjs.d.02342.

46. Wiater BP, Baker EA, Salisbury MR, Koueiter DM, Baker KC, Nolan BM, et al. Elucidating trends in revision reverse total shoulder arthroplasty procedures: a retrieval study evaluating clinical, radiographic, and functional outcomes data. J Shoulder Elbow Surg 2015;24:1519-25. https://doi.org/10.1016/j.jse.2015.06.094.

47. Wiater BP, Baker EA, Salisbury MR, Koueiter DM, Baker KC, Nolan BM, et al. Trends and variability in the use of total shoulder arthroplasty for Medicare patients. J Am Acad Orthop Surg 2018;26:133-41. https://doi.org/10.5435/Jaao-D-16-00720.