MODULAR TRANSFORMATIONS AND THE ELLIPTIC FUNCTIONS OF SHEN

P.L. ROBINSON

Abstract. We employ Weierstrassian modular transformations to compute fundamental periods for the elliptic functions dn_2 and dn_3 of Shen.

An Introduction

Ramanujan’s theories of elliptic functions to alternative bases were provided with specific elliptic functions by Li-Chien Shen: an elliptic function dn_3 [2004] in signature three and an elliptic function dn_2 [2014] in signature four. The definition of each of these functions involves inverting an incomplete hypergeometric integral on the real line; in each case, the resulting function is seen to satisfy a differential equation whose solutions are known to be elliptic.

When an elliptic function arises as a solution to a differential equation, its periods are often expressed as integrals. Archetypically, when a Weierstrass \wp function appears as a solution to

$$(f')^2 = 4f^3 - g_2 f - g_3$$

with g_2 and g_3 real, its real fundamental half-period has the form

$$\int_{e_1}^{\infty} (4t^3 - g_2 t - g_3)^{-\frac{1}{2}} dt$$

where e_1 is the largest zero of the cubic $4t^3 - g_2 t - g_3$; its imaginary fundamental half-period has a similar integral expression.

Because dn_3 and dn_2 are recognized as solutions to differential equations, their fundamental half-periods may be expressed in the way just described; recasting them hypergeometrically often calls for tricky and seemingly ad hoc manipulations. Our purpose here is to show that the half-periods of dn_3 and dn_2 may be expressed in explicit hypergeometric terms quite simply and indeed naturally.

On the one hand, the hypergeometric origins of dn_3 and dn_2 give immediate explicit form to their real fundamental half-periods, on account of the standard integral identity

$$\int_0^{\frac{1}{2}\pi} F(a, b; \frac{1}{2}; \kappa^2 \sin^2 t) \, dt = \frac{1}{2} \pi F(a, b; 1; \kappa^2).$$

On the other hand, their imaginary fundamental half-periods may also be given explicit hypergeometric form without the need for further integration: we show that they may be derived from the real fundamental half-periods by the use of Weierstrassian modular transformations that are associated to trimidiation and dimidiation.

Two Modular Transformations

We prepare our analysis of the elliptic functions dn_2 and dn_3 by assembling certain facts regarding modular transformations as they pertain to Weierstrass \wp functions. Thus, let \wp be a Weierstrass \wp function: specifically, let it be the Weierstrass function with invariants g_2
and \(g_3 \); as an alternative description, let it be the Weierstrass function having \((2\omega;2\omega')\) as a fundamental pair of periods. We may name \(p \) by its invariants or by its half-periods, writing

\[p = \wp(\bullet; g_2, g_3) = \wp(\bullet; \omega, \omega'). \]

The Weierstrass function

\[q = \wp(\bullet; \omega, \frac{1}{4}\omega') = \wp(\bullet; h_2, h_3) \]

obtained from \(p \) upon division of a period by the positive integer \(n \) is said to arise from \(p \) via a modular transformation. We are especially interested in the effect of such a modular transformation on the invariants of a Weierstrass function: that is, we wish to determine the invariants \(h_2 \) and \(h_3 \) of \(q \) in terms of the invariants \(g_2 \) and \(g_3 \) of \(p \); in fact, we shall only require this information in the cases \(n = 2 \) and \(n = 3 \). In each case we merely state the results, referring to [1973] and [1989] for proofs.

The effect of a quadratic transformation is as follows. Here,

\[q = \wp(\bullet; \omega, \frac{1}{3}\omega'). \]

Theorem 1. If \(n = 2 \) and \(b = p(\omega') \) then

\[h_2 = 60b^2 - 4g_2 \]

and

\[h_3 = 56b^3 + 8g_3. \]

Proof. This proceeds from an inspection of the identity

\[q(z) = p(z) + p(z + \omega') - p(\omega'). \]

Details of the derivation may be found in [1973] Section 65 and in [1989] Section 9.8. □

The effect of a cubic transformation is as follows. Here,

\[q = \wp(\bullet; \omega, \frac{1}{3}\omega'). \]

Theorem 2. If \(n = 3 \) and \(b = p(\frac{2}{3}\omega') \) then

\[h_2 = 120b^2 - 9g_2 \]

and

\[h_3 = 280b^3 - 42bg_2 - 27g_3. \]

Proof. This proceeds from an inspection of the identity

\[q(z) = p(z) + p(z + \frac{2}{3}\omega') + p(z - \frac{2}{3}\omega') - 2p(\frac{2}{3}\omega'). \]

Details of the derivation may be found in Section 68 of [1973]; see also Exercises 8 and 9 of [1989] Chapter 9. □

Signature three

We begin by briefly reviewing the origin of the elliptic function \(\mathrm{dn}_3 \). For further details, we refer the reader to [2004].

Fix \(\kappa \in (0, 1) \) as modulus and \(\lambda = \sqrt{1 - \kappa^2} \) as complementary modulus. Write \(\phi : \mathbb{R} \to \mathbb{R} \) for the inverse to the strictly increasing surjective function

\[\mathbb{R} \to \mathbb{R} : T \mapsto \int_0^T \frac{1}{2} F\left(\frac{1}{3}, \frac{2}{3}; \frac{1}{2}; \kappa^2 \sin^2 t \right) \, dt \]

and write

\[K = \int_0^{\frac{\pi}{2}} F\left(\frac{1}{3}, \frac{2}{3}; \frac{1}{2}; \kappa^2 \sin^2 t \right) \, dt = \frac{1}{2}\pi F\left(\frac{1}{3}, \frac{2}{3}; 1; \kappa^2 \right). \]

Elementary calculations show that \(\phi \) satisfies

\[\phi(u + 2K) = \phi(u) + \pi \]

whence its derivative \(\phi' : \mathbb{R} \to \mathbb{R} \) has (least positive) period \(2K \). We shall write \(\delta = \phi' \) for this derivative, writing \(\delta_\kappa \) when we wish to draw attention to the modulus \(\kappa \).
The function δ satisfies the initial condition $\delta(0) = 1$ because the function inverse to ϕ plainly has derivative 1 at the origin; with rather more work, it may be shown that δ satisfies the differential equation

$$9(\delta')^2 = 4(1 - \delta)(\delta^3 + 3\delta^2 - 4\lambda^2).$$

As the right-hand side of this complex differential equation is a quartic with simple zeros, its solutions are elliptic functions; the specific solution with $\delta(0) = 1$ is singled out as follows.

Theorem 3. The function $\delta_\kappa = \phi'$ satisfies

$$(1 - \delta_\kappa)(\frac{1}{3} + p_\kappa) = \frac{4}{9}\kappa^2$$

where $p_\kappa = \wp(\kappa; g_2, g_3)$ is the Weierstrass function with invariants

$$g_2 = \frac{4}{27}(9 - 8\kappa^2) = \frac{4}{27}(8\lambda^2 + 1)$$

and

$$g_3 = \frac{8}{729}(27 - 36\kappa^2 + 8\kappa^4) = \frac{8}{729}(8\lambda^4 + 20\lambda^2 - 1).$$

Proof. See [2004]; the proof is effected by reference to Section 20.6 of the classic [1927].

Thus, δ is the restriction to \mathbb{R} of an elliptic function; this elliptic extension of δ is the function d_3 of Shen.

The elliptic function $d_3 = \delta_\kappa$ and the Weierstrass function p_κ are plainly coperiodic. We shall denote by $(2\omega_\kappa, 2\omega'_\kappa)$ their fundamental pair of periods for which ω_κ and $-i\omega'_\kappa$ are strictly positive; we may then also write $p_\kappa = \wp(\kappa; \omega_\kappa, \omega'_\kappa)$. We have already identified the real half-period ω_κ: it is precisely K as displayed above; that is,

$$\omega_\kappa = \frac{1}{4}\pi F\left(\frac{1}{3}, \frac{2}{3}; 1; \kappa^2\right).$$

We now proceed to evaluate the imaginary half-period ω'_κ. A customary method for performing such an evaluation involves the calculation of an integral. We propose to depart from this custom: instead, we shall make use of a modular transformation of the sort that is appropriate to Weierstrass functions.

Explicitly, alongside the Weierstrass function $p_\kappa = \wp(\kappa; \omega_\kappa, \omega'_\kappa)$ we introduce the Weierstrass function

$$q_\kappa = \wp(\kappa; \omega_\kappa, \frac{1}{3}\omega'_\kappa)$$

that results upon division of its imaginary period by three.

Theorem 4. The Weierstrass functions p and q are related by

$$q_\kappa(z) = -3p_\lambda(\sqrt{3}iz).$$

Proof. Note the passage to the complementary modulus. First, apply Theorem 2 and take into account the fact that

$$b = p_\kappa\left(\frac{1}{3}\omega'_\kappa\right) = -\frac{4}{3};$$

this nontrivial fact is proved in Section 5 of [2004]. From the κ-dependent formulae for g_2 and g_3 in Theorem 3 it follows by substitution that the invariants h_2 and h_3 of q_κ are given by

$$h_2 = 120b^2 - 9g_2 = \frac{4}{3}(1 + 8\kappa^2)$$

and

$$h_3 = 280b^3 - 42bg_2 - 27g_3 = \frac{8}{27}(1 - 20\kappa^2 - 8\kappa^4).$$

It is now convenient to write $g_2(f)$ and $g_3(f)$ for the quadrinvariant and cubinvariant of any Weierstrass function f. With this understanding, we have just established that

$$g_2(q_\kappa) = 9g_2(p_\lambda) = (\sqrt{3}i)^4g_2(p_\lambda)$$

and

$$g_3(q_\kappa) = -27g_3(p_\lambda) = (\sqrt{3}i)^6g_3(p_\lambda).$$
by reference to Theorem 3 for the complementary modulus. The homogeneity relation for Weierstrass functions carries us to the announced conclusion

\[q_\kappa(z) = (\sqrt{3}i)^2 p_\lambda(\sqrt{3}i z). \]

This relationship between Weierstrass functions entails a relationship between their half-periods. Explicitly, \(q_\kappa \) has fundamental half-periods \(\omega_\kappa \) and \(\frac{1}{3} \omega'_\kappa \) while \(p_\lambda \) has fundamental half-periods \(\omega_\lambda \) and \(\omega'_\lambda \). Accordingly, we deduce the relationship

\[\omega'_\kappa = \sqrt{3}i \omega_\lambda. \]

Theorem 5. The fundamental half-periods of \(\text{dn}_3 = \delta_\kappa \) and \(p_\kappa \) are given by

\[\omega_\kappa = \frac{1}{2} \pi F\left(\frac{1}{3}, \frac{2}{3}; 1; \kappa^2\right) \]

and

\[\omega'_\kappa = i\sqrt{3} \pi F\left(\frac{1}{3}, \frac{2}{3}; 1; 1 - \kappa^2\right). \]

Proof. The real half-period has already been identified; the imaginary half-period follows at once from the relationship displayed immediately prior to the present Theorem, on account of the fact that \(\lambda^2 = 1 - \kappa^2 \). \(\square \)

Thus the shape of the period lattice is given by the period ratio

\[\frac{\omega'_\kappa}{\omega_\kappa} = i\sqrt{3} F\left(\frac{1}{3}, \frac{2}{3}; 1; 1 - \kappa^2\right) \]

Signature four

We begin by briefly reviewing the origin of the elliptic function \(\text{dn}_2 \). For further details, we refer the reader to [2014].

Fix \(\kappa \in (0, 1) \) as modulus and \(\lambda = \sqrt{1 - \kappa^2} \) as complementary modulus. Write \(\phi : \mathbb{R} \to \mathbb{R} \) for the inverse to the strictly increasing surjective function

\[\mathbb{R} \to \mathbb{R} : T \mapsto \int_0^T F\left(\frac{1}{4}, \frac{3}{4}; \frac{1}{2}; \kappa^2 \sin^2 t\right) \; dt \]

and write

\[K = \int_0^{\pi/2} F\left(\frac{1}{4}, \frac{3}{4}; \frac{1}{2}; \kappa^2 \sin^2 t\right) \; dt = \frac{1}{2} \pi F\left(\frac{1}{4}, \frac{3}{4}; 1; \kappa^2\right). \]

Elementary calculations show that \(\phi \) satisfies

\[\phi(u + 2K) = \phi(u) + \pi \]

whence if

\[\psi = \arcsin(\kappa \sin \phi) \]

then the function \(d = \cos \psi \) has (least positive) period \(2K \). When we wish to place the modulus \(\kappa \) in evidence, it shall appear as a subscript.

The function \(d \) satisfies the initial condition \(d(0) = 1 \) quite plainly; less plainly, it also satisfies the differential equation

\[(d')^2 = 2(1 - d)(d^2 - \lambda^2). \]

The solution to this initial value problem extends to an elliptic function that may be expressed in terms of its coperiodic Weierstrass \(p \) function, as follows.
Theorem 6. The function \(d_\kappa = \cos \psi \) satisfies
\[
(1 - d_\kappa)(\frac{1}{3} + p_\kappa) = \frac{1}{2} \kappa^2
\]
where \(p_\kappa = \wp(\bullet; g_2, g_3) \) is the Weierstrass function with invariants
\[
g_2 = \frac{4}{3} - \kappa^2 = \lambda^2 + \frac{1}{3}
\]
and
\[
g_3 = \frac{8}{27} - \frac{1}{3} \kappa^2 = \frac{1}{3} \lambda^2 - \frac{1}{27}.
\]

Proof. See [2014]; again, the proof refers to Section 20.6 of [1927].

The function \(d_{n_2} \) of Shen is the elliptic extension of \(d \) guaranteed by this Theorem.

We write \((2\omega_\kappa, 2\omega'_\kappa) \) for the fundamental pair of periods for \(d_{n_2} = d_\kappa \) and \(p_\kappa \) such that \(\omega_\kappa \) and \(-i\omega'_\kappa\) are strictly positive. The real half-period \(\omega_\kappa \) has already been identified in hypergeometric terms; the imaginary half-period \(\omega'_\kappa \) will now be similarly identified by means of an appropriate modular transformation.

Thus, as a companion to \(p_\kappa = \wp(\bullet; \omega_\kappa, \omega'_\kappa) \) we introduce the Weierstrass function
\[
q_\kappa = \wp(\bullet; \omega_\kappa, \frac{1}{2}\omega'_\kappa)
\]
that results upon halving its imaginary period.

Theorem 7. The Weierstrass functions \(p \) and \(q \) are related by
\[
q_\kappa(z) = -2p_\lambda(\sqrt{2i}z).
\]

Proof. Again, note the involvement of the complementary modulus. The proof follows the line of argument for Theorem 4. It is shown in Section 4 of [2014] that
\[
p_\kappa(\omega'_\kappa) = -\frac{1}{3}.
\]

Accordingly, by application of Theorem 1 along with reference to the \(\kappa \)-dependent formulae for \(g_2 \) and \(g_3 \) in Theorem 6 the invariants \(h_2 \) and \(h_3 \) of \(q_\kappa \) are found to be
\[
h_2 = 4(\frac{1}{3} + \kappa^2)
\]
(which is \(4 = (\sqrt{2i})^4 \) times the quadrinvariant of \(p_\lambda \)) and
\[
h_3 = 8(\frac{1}{27} - \frac{1}{3} \kappa^2)
\]
(which is \(-8 = (\sqrt{2i})^6 \) times the cubinvariant of \(p_\lambda \)). Finally, the Weierstrassian homogeneity relation serves to conclude the proof.

As was the case in signature three, a relation between real and imaginary half-periods for complementary moduli follows here: thus
\[
\omega'_\kappa = \sqrt{2i} \omega_\lambda.
\]

Theorem 8. The fundamental half-periods of \(d_{n_2} = d_\kappa \) and \(p_\kappa \) are given by
\[
\omega_\kappa = \frac{1}{2\pi} F(\frac{1}{4}, \frac{3}{4}; 1; \kappa^2)
\]
and
\[
\omega'_\kappa = i\sqrt{2} \pi F(\frac{1}{4}, \frac{3}{4}; 1; 1 - \kappa^2).
\]

Proof. As for signature three, the relationship between \(\omega'_\kappa \) and \(\omega_\lambda \) allows us to derive the imaginary half-period at once from the previously identified real half-period.

The shape of the period lattice is thus given by the period ratio
\[
\frac{\omega'_\kappa}{\omega_\kappa} = i\sqrt{2} \frac{F(\frac{1}{4}, \frac{3}{4}; 1; 1 - \kappa^2)}{F(\frac{1}{4}, \frac{3}{4}; 1; \kappa^2)}.
\]
REFERENCES

[1927] E.T. Whittaker and G.N. Watson, *A Course of Modern Analysis*, Fourth Edition, Cambridge University Press.

[1973] P. Du Val, *Elliptic Functions and Elliptic Curves*, L.M.S. Lecture Note Series 9, Cambridge University Press.

[1989] D.F. Lawden, *Elliptic Functions and Applications*, Applied Mathematical Sciences 80, Springer-Verlag.

[2004] Li-Chien Shen, *On the theory of elliptic functions based on* $\genfrac{[}{]}{0pt}{}{2}{1}\genfrac{.}{.}{0pt}{}{\frac{1}{3}, \frac{2}{3}, \frac{1}{2}}{z}$, Transactions of the American Mathematical Society 357 2043-2058.

[2014] Li-Chien Shen, *On a theory of elliptic functions based on the incomplete integral of the hypergeometric function* $\genfrac{[}{]}{0pt}{}{2}{1}\genfrac{.}{.}{0pt}{}{\frac{1}{4}, \frac{3}{4}}{\frac{1}{2}; z}$, Ramanujan Journal 34 209-225.

Department of Mathematics, University of Florida, Gainesville FL 32611 USA
Email address: paulr@ufl.edu