Drug-Related Adverse Events Necessitating Treatment Discontinuation in Pediatric Inflammatory Bowel Disease Patients

Medea Salzmann, MD, Thea von Graffenried, MD, Franziska Righini-Grinder, MD, Christian Braegger, MD, Johannes Spalinger, MD, Susanne Schibli, MD, Alain Schoepfer, MD, Andreas Nydegger, MD, Valerie Pittet, PhD, and Christiane Sokollik, MD, and the Swiss IBD Cohort Study Group

ABSTRACT

Objectives: Inflammatory bowel disease (IBD) requires long-term drug therapy in most patients, posing a risk for adverse drug events with the need for discontinuation. In this study, we investigated adverse events (AE) necessitating drug discontinuation in pediatric and adolescent IBD patients.

Methods: We used data prospectively collected from IBD patients below the age of 18 enrolled in the Swiss Inflammatory Bowel Disease Cohort Study (SIBDCS), namely demographic variables, medical characteristics, drug treatments, and related AE. We analyzed the frequency, type, and risk factors for AE necessitating drug discontinuation.

Results: A total of 509 pediatric IBD patients fulfilled the inclusion criteria of which 262 (51.5%) were diagnosed with Crohn disease (CD), 206 (40.5%) with ulcerative colitis (UC), and 41 (8%) with IBD-unclassified (IBD-U). In total, 112 (25.9%) presented with at least 1 drug-related AE that required drug cessation. Immunomodulators [methotrexate 29/120 (24.2%), azathioprine 57/372 (15.3%)] followed by tumor necrosis factor (TNF)-alpha antagonists [adalimumab 8/72 (11.1%), infliximab 22/227 (9.7%)] accounted for the highest proportions of AE necessitating treatment discontinuation. Treatment schemes with at least 3 concomitant drugs significantly amplified the risk for development of drug-related AE [odds ratio = 2.50, 95% confidence interval (1.50–4.17)] in all pediatric IBD patients.

Conclusions: Drug-related AE necessitating discontinuation are common in pediatric and adolescent IBD patients. Caution needs to be taken in the case of concomitant drug use.

An infographic is available for this article at: http://links.lww.com/MPG/C986.

Key Words: children, Crohn disease, medication, side-effect, ulcerative colitis

(JPGN 2022;75: 731–736)

Received April 2, 2022; accepted August 10, 2022.

From the *Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland, the †Division of Pediatric Gastroenterology, Centre Hospitalier Universitaire Vaudois [CHUV] and University of Lausanne, Lausanne, Switzerland, the ‡Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children’s Hospital LUKS, Lucerne, Switzerland, the ¶Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University Children’s Hospital Zurich, Zurich, Switzerland, the §Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois [CHUV] and University of Lausanne, Lausanne, Switzerland, and the †Division of Epidemiology and Health Systems, Center for Primary Care and Public Health University of Lausanne, Lausanne, Switzerland.

Address correspondence and reprint requests to Christiane Sokollik, MD, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland (e-mail: christiane.sokollik@insel.ch).

M.S. and T.v.G. contributed equally to the article. V.P. and C.S. shared last authorship.

The authors report no conflicts of interest.

Supplemental digital content is available for this article. Direct URL citations appear in the printed text, and links to the digital files are provided in the HTML text of this article on the journal’s Web site (www.jpgn.org). Copyright © 2022 The Author(s). Published by Wolters Kluwer on behalf of European Society for Pediatric Gastroenterology, Hepatology, and Nutrition and North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBYNC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

DOI: 10.1097/MPG.0000000000003630

Inflammatory bowel disease (IBD) is a chronic disease of the intestine with recurrent acute inflammatory episodes leading to progressive injury of the bowel. Long-term drug therapy is required for disease control in most patients (1). Well-established options include corticosteroids, aminosalicylates, and the immunomodulators azathioprine and methotrexate. In addition, over the last decade, biologicals have been used earlier in the disease course and with a lower threshold in the pediatric age group (2). However, despite their control of inflammation, drug therapy conveys the risk of adverse events (AE), ranging from mild symptoms to potentially life-threatening complications, requiring adjustment or discontinuation of therapy (3,4). Using data from the Swiss IBD Cohort, Godat et al. found that 67.8% of 3138 adult patients presented with at least 1 drug-related AE during follow-up (5).

What Is Known

• Drug therapy conveys the risk of adverse events (AE) necessitating treatment.
• Reasons for discontinuation and rates are described for single drugs.

What Is New

• Overall, 25.9% of pediatric patients present with an AE requiring drug discontinuation.
• The use of 3 or more drugs concomitantly is the strongest risk factor for AE necessitating drug discontinuation.
Most frequently, treatment with azathioprine and methotrexate was discontinued in adults due to AE (5.6). In the pediatric population, discontinuation of therapy with azathioprine due to AE is also well known and reported to range from 10% to 22% (7–9). In contrast to adult data, in pediatric IBD patients there seems not to be an increased risk of serious infection with infliximab, a tumor necrosis factor (TNF)-alpha antagonist (10,11). Despite a similar armamentarium in children with IBD compared to adults, safety data in the pediatric population are scarce. Especially, there are no comprehensive data on the general risk of developing AE during their disease course for children and adolescents with IBD. This calls for pediatric-specific assessment of AE necessitating treatment discontinuation to improve patient care and adjust treatment strategies and monitoring.

We investigated frequency and type of AE necessitating drug discontinuation in a prospectively followed national pediatric and adolescent IBD cohort. We also evaluated risk factors associated with AE necessitating drug cessation.

MATERIALS AND METHODS

Study Design

The Swiss Inflammatory Bowel Disease Cohort Study (SIBDCS) is a national prospective cohort study with yearly follow-ups. Pediatric IBD patients from all regions of Switzerland are included since 2008. Details of the SIBDCS including a list of data collected has been described in the cohort profiles manuscripts published by Pittet et al (12,13). Diagnosis needs to be confirmed by radiological, endoscopic and histological findings, or surgery. Additionally, the patients recruited had a permanent resident status in Switzerland or a disease treated on a regular basis in Switzerland.

We retrospectively analyzed IBD patients diagnosed before the age of 18 and enrolled in the SIBDCS between 2008 and 2021. We followed them until the age of 18 years or until their last pediatric follow-up to detect AE during childhood.

The study was approved by the ethics committee of the cantons or regions in which patients were included. Written informed consent of patients or caregivers was obtained.

Cohort Data

We used data collected at enrolment and during the annual follow-ups including demographic variables (gender, age at diagnosis) as well as medical characteristics [initial disease location, extraintestinal manifestations (EIM), IBD-related surgery such as bowel resection and surgery for fistula or abscess]. We used all data collected on IBD treatments including name of drug, start date, stop date, and reason for discontinuation. In the case of discontinuation due to AE we retrieved the type of AE when documented. In our analysis we did not distinguish between “combination” (usually referred to the combination of an immunomodulator and a biologic) and “concomitant” therapy, therefore we employ the term “concomitant” anytime more than 1 drug was used at the same time.

The following drugs were analyzed: aminosalicylates [5-aminosalicylic acid (5-ASA)], antibiotics (metronidazole, ciprofloxacin, clarithromycin, and others), steroids (budesonide, prednisone/prednisolone), azathioprine, methotrexate, and TNF-alpha antagonists (infliximab, adalimumab). Due to the low numbers of use, we did not further analyze the specific AE requiring drug cessation, gas trointestinal intolerance was the documented reason in 24 of 29 (82.8%) patients treated with methotrexate and in 14 of 57 (24.6%) patients treated with azathioprine (Table 3, Supplemental Digital Content, http://links.lww.com/MPG/C951). For azathioprine also pancreatitis and leucopenia were recognized in 12 of 57 (21.1%) and 7 of 57 (12.3%) patients, respectively. Oral 5-ASA was discontinued because of pancreatitis in 4 of 28 (14.3%) patients and gastrointestinal intolerance in 11 of 28 (39.3%) patients. Use of infliximab was associated with an anaphylactic reaction in 2 of 22 (9.1%) patients. Hypersensitivity reactions were documented in 5 of 22 (22.7%) patients. There were no opportunistic infections under TNF-alpha antagonists in CD; however, the use of TNF-alpha antagonists was also higher in CD compared with UC and IBD-U.

Analyzing the specific AE requiring drug cessation, gastrointestinal intolerance was the documented reason in 24 of 29 (82.8%) patients treated with methotrexate and in 14 of 57 (24.6%) patients treated with azathioprine (Table 3, Supplemental Digital Content, http://links.lww.com/MPG/C951). For azathioprine also pancreatitis and leucopenia were recognized in 12 of 57 (21.1%) and 7 of 57 (12.3%) patients, respectively. Oral 5-ASA was discontinued because of pancreatitis in 4 of 28 (14.3%) patients and gastrointestinal intolerance in 11 of 28 (39.3%) patients. Use of infliximab was associated with an anaphylactic reaction in 2 of 22 (9.1%) patients. Hypersensitivity reactions were documented in 5 of 22 (22.7%) patients. There were no opportunistic infections under TNF-alpha antagonists necessitating cessation.

One hundred and eighty-five of 509 (36.3%) patients never received concomitant therapy, 132 (26.5%) received 2 drugs, and 174 of 509 (34.2%) were exposed to at least 3 concomitant drugs. Ninety-one of 132 (68.9%) patients had 1, 27 of 132 (20.4%) had 2, and 14 of 132 (10.6%) had more than 2 drug-related AE. With the
increase in number of concomitantly used IBD drugs, the proportion of drug-related AE increased significantly for all patients and for subtypes (Table 3). Among the 62 patients experiencing drug cessation exposed to at least 3 concomitant drugs, azathioprine was part of the concomitant drugs in 45 of 97 (46.4%) situations of concomitant use (ie, patients may have been exposed to concomitant use more than once), followed by 5-ASA in 39 of 97 (40.2%).

Risk Factors for AE Necessitating Treatment Discontinuation

To assess risk factors associated with the need to discontinue therapy we performed multivariable analysis (Table 4). Concomitant therapy with 3 or more drugs [odds ratio 2.50, 95% confidence interval (1.50–4.17)] was associated with an increased risk of drug discontinuation due to AE in pediatric IBD patients. This was also true when separating the cohort by subtypes CD and UC/IBD-U.

DISCUSSION

In our study, we evaluated drug-related AE requiring treatment discontinuation in a national pediatric and adolescent cohort of patients with IBD. The overall prevalence of drug cessation during follow-up because of AE was 25.9%. The most frequently used drugs were steroids, aminosalicylates, azathioprine, and infliximab. The highest proportion of AE necessitating treatment discontinuation was observed for the immunomodulators methotrexate and

TABLE 1. Characteristics of inflammatory bowel disease patients grouped by occurrence of drug-related adverse events (AE) versus no drug AE

With drug AE	Without drug AE	Total	P value	
n (%)	n (%)	n (%)		
Total number of patients: n = 509	132 (25.9)	377 (74.1)	509 (100)	1.00
Gender				
Male	69 (52.3)	197 (52.2)	266 (52.3)	
Female	63 (47.7)	180 (47.8)	243 (47.7)	
Diagnosis			0.14	
CD	77 (58.3)	185 (49.1)	262 (51.5)	
UC	44 (33.3)	162 (43.0)	206 (40.5)	
IBD-U	11 (8.3)	30 (8.0)	41 (8.0)	
Age at diagnosis (median, interquartile range, range), y			0.15	
No	11, 5, 1–16	12, 4, 1–17	23 (25.0)	
Yes	4, 4, 0–15	3, 3, 0–14	6 (21.4)	
Disease duration at last FU (median, IQR, range), y			<0.001	
No	116 (87.9)	326 (86.5)	442 (86.8)	
Yes	16 (12.1)	51 (13.5)	67 (13.2)	
IBD family history			0.68	
Yes	86 (65.1)	273 (72.4)	359 (70.5)	
EIM	46 (34.9)	104 (27.6)	150 (29.5)	
IBD-related surgery			0.03	
No	106 (80.3)	332 (88.1)	438 (86.1)	
Yes	26 (19.7)	45 (11.9)	71 (13.9)	

TABLE 2. Number and proportion of patients who experienced adverse events necessitating drug discontinuation among the total number of patients exposed to that drug, by diagnosis

Drug	CD n (%)	UC n (%)	IBD-U n (%)	Total n (%)	P value*
Aminosalicylates†	11/126 (8.7)	18/294 (6.1)	4/40 (10.0)	33/460 (7.2)	0.43
Antibiotics‡	10/117 (8.5)	4/71 (5.6)	0/15 (0.0)	14/203 (6.9)	0.29
Budesonide	2/45 (4.4)	0/23 (0.0)	0/2 (0.0)	2/70 (2.9)	0.18
Systemic steroids§	6/202 (3.0)	3/174 (1.7)	1/32 (3.1)	10/408 (2.4)	0.54
Azathioprine	32/224 (14.3)	19/123 (15.4)	6/25 (24.0)	57/372 (15.3)	0.96
Methotrexate	20/79 (25.3)	8/32 (25.0)	1/9 (11.1)	29/120 (24.2)	0.68
Infliximab	19/153 (12.4)	2/63 (3.2)	1/11 (9.1)	22/227 (9.7)	0.06
Adalimumab	8/52 (15.4)	0/16 (0.0)	0/4 (0.0)	8/72 (11.1)	0.06

CD = Crohn disease; IBD = inflammatory bowel disease; IBD-U = inflammatory bowel disease unclassified; UC = ulcerative colitis. *P value for comparison of proportions between CD and UC/IBD-U. †Oral 5-ASA, topical 5-aminosalicylic acid (ASA), sulfasalazine. ‡Ciprofloxacin, metronidazole, other antibiotics. §Prednisone.
TABLE 3. Proportion of patients experiencing drug-related adverse events according to the number of concomitantly used drugs

	With drug AE n (%)	Without drug AE n (%)	P value
IBD			
Exposition to concomitant drugs			<0.001
Never	32 (24.2)	153 (40.6)	
2 drugs	38 (28.8)	112 (29.7)	
≥3 drugs	62 (47.0)	112 (29.7)	
Total	132	377	
CD			0.05
Exposition to concomitant drugs			
Never	22 (28.6)	78 (42.2)	
2 drugs	21 (27.3)	52 (28.1)	
≥3 drugs	34 (44.1)	55 (29.7)	
Total	77	185	
UC/IBD-U			<0.01
Exposition to concomitant drugs			
Never	10 (18.2)	75 (39.1)	
2 drugs	17 (30.9)	60 (31.2)	
≥3 drugs	28 (50.9)	57 (29.7)	
Total	55	192	

AE = adverse events; CD = Crohn disease; IBD = inflammatory bowel disease; IBD-U = inflammatory bowel disease unclassified; UC = ulcerative colitis.

TABLE 4. Risk factors associated with adverse events requiring treatment discontinuation

	Odds ratio [95% confidence interval]	P value
UC/IBD-U versus CD	0.71 [0.46–1.10]	0.13
Female gender	1.05 [0.69–1.59]	0.81
Age at diagnosis, y	1.02 [0.94–1.12]	0.52
Disease duration, y	1.10 [0.99–1.22]	0.06
IBD family history	0.91 [0.49–1.70]	0.78
Positive EIM history	1.05 [0.67–1.65]	0.82
IBD-related surgery	1.60 [0.91–2.81]	0.10
Exposure to 2 concomitant drugs	1.60 [0.93–2.75]	0.09
Exposure to ≥3 concomitant drugs	2.50 [1.50–4.17]	<0.001

CD = Crohn disease; CI = confidence interval; EIM = extraintestinal manifestation; IBD = inflammatory bowel disease; IBD-U = inflammatory bowel disease unclassified; OR = odds ratio; UC = ulcerative colitis.

azathioprine followed by TNF-alpha antagonists adalimumab and infliximab.

The use of methotrexate is currently in revival as an alternative treatment option to azathioprine, following an increased number of reports of hepatosplenic-lymphoma in young male CD patients receiving azathioprine or concomitant therapy with azathioprine and TNF-alpha antagonist (14,15). However, its use comes with the cost of gastrointestinal intolerance in many patients. Self-reported nausea develops in 55% of pediatric IBD patients (16).

Also in our cohort, gastrointestinal intolerance was the main reason for discontinuation with an overall discontinuation rate of 24.2%.

In our cohort, 57 of 372 (15.3%) patients had to stop azathioprine mainly due to leucopenia, pancreatitis, or gastrointestinal intolerance. This number is in agreement with other pediatric studies, where 10.3%–22% pediatric IBD patients had to discontinue azathioprine due to AE (7–9). Thiopurine methyltransferase and thiopurine metabolites testing can identify patients at risk for AE, especially bone marrow suppression. However, these tests do not predict all cases of leucopenia and azathioprine-specific hypersensitivity reactions such as pancreatitis cannot be anticipated (17). Therefore, regular clinical and laboratory follow-ups are still mandatory. Interestingly, in the adult population the frequency of azathioprine cessation seems to be higher at 25.1% (5).

The longer treatment duration may be an explanation for the higher discontinuation rate as also the pediatric study with the longest follow-up reported the highest discontinuation rate (9). Pancreatitis on the other hand, which mainly develops during the first 3 months of treatment, accounted for 1.5% of adult cases (5), and a similar proportion was observed in our pediatric cohort (3%) and in a Swedish-Danish nationwide cohort study (11).

In general, 5-ASA is well tolerated and considered safe with withdrawal rates of 5%–8% in adults (5,18). In our cohort, 7.2% of patients discontinued 5-ASA due to AE, mainly gastrointestinal intolerance and pancreatitis. No nephritis was reported in our cohort, but there are reports of drug-induced nephrotoxicity (19).

The TNF-alpha antagonists infliximab and adalimumab were reasonably well tolerated in our cohort. The rates of AE requiring treatment discontinuation were 9.7% and 11.1%, respectively. Moreover, there were no opportunistic or severe infections reported as reasons for drug discontinuation. In line with these findings, Wintzell et al found no increased risk of severe infections from TNF-alpha antagonists in pediatric IBD patients in contrast to adult studies (11).

Similar to the adult Swiss IBD cohort the number of reported AE from steroid therapy is negligible (5). Possible explanations are the use of systemic steroids mainly for induction and less for maintenance therapy and the desirable safety profile of budesonide with a high first pass effect.

When evaluating associated factors, there was no difference in AE requiring treatment discontinuation with regards to gender, IBD subtype, age at diagnosis, disease location at diagnosis, IBD family history, or EIM. In CD patients, a longer disease duration was associated with a higher proportion of AE. Multiple factors may play a role for this observation including that AE can develop after longer exposure to a drug; for example, in a pediatric cohort treated with azathioprine, the majority of AE needing discontinuation occurred after 6 months of therapy (9). Longer disease duration could also mean exposure to more drugs, with every treatment change risking an AE.

However, among all analyzed risk factors there was a strong association with AE necessitating drug cessation for the concomitant use of at least 3 IBD drugs. This finding was independent of the IBD subtype. In an adult cohort, Godat et al made the same observation, namely that an increase in number of concomitantly used drugs was associated with an increased risk of AE requiring drug cessation (5).

When evaluating the concomitant drugs used at the time of an AE, azathioprine was among the most commonest in our cohort. This finding is interesting in relation to the observation that the use of azathioprine in combination with infliximab has shown benefit in pediatric and adult CD patients with an enhanced duration of response (20,21). In a model analysis of the SONIC trial, Siegel et al concluded that the benefit of combination therapy outweighed the risk of rare serious AE (22). However, there are no data available.
analyzing whether this holds true when using more than 2 drugs concomitantly. In the SONIC trial, half of the patients under combination therapy continued their 5-ASA therapy and 11.2% received budesonide (21). We did not find any other study that analyzed the occurrence of AE necessitating treatment discontinuation in relation to the number of total drugs received.

5-ASA was the second most used drug in our cohort in patients with concomitant drug use of 3 or more drugs. Previously published data showed that in CD the use of 5-ASA is more common in pediatrics and in adults than scientific evidence would support (23,24). Additionally, new studies on the concomitant use of 5-ASA and biological therapy in adult UC patients could not show a clear clinical benefit in continuing 5-ASA when escalating therapy with regards to clinical outcomes (25,26). On the other hand, adult data provide robust evidence of a protective effect of 5-ASA on the risk of IBD-associated colorectal cancer (27,28).

The concomitant use of 3 or more drugs should therefore be practiced with caution and the risk of AE weighed against treatment benefit. Discontinuation of drugs should be part of all treatment discussions.

New biologics (e.g., interleukin (IL)-23 inhibitors) and small molecules [e.g, JAK (Janus kinase)/STAT (signal transducers and activators of transcription) inhibitors] will most likely be added to the pediatric armamentarium in the very near future and influence the nature of AE. In addition, the current interest in dual biologic therapies will have further repercussion on AE resulting from the combination of treatments belonging to different classes. New drugs and new combinations may raise the risk of AE even further.

The strength of our study is the analysis of a national pediatric cohort. We were able not only to analyze the AE of a single drug but also to mirror the real world use of drugs in pediatric IBD. However, data capture once a year may predispose to under-reporting of events. Unfortunately, the yearly follow-up of the SIBDCS does not record detailed information about dosing during the year and the rational for a particular dose. Drug levels are not captured which may have influenced the dose. We therefore were not able to filter, for example, for dose-dependent AE. The yearly follow-up also does not ask specifically for all types of AE nor does it grade AE. Our study design, with analysis of cohort data, allowed us to establish an association of concomitant use of 3 or more drugs and an increased risk of AE. However, we cannot conclude whether there is an unintentional interaction of drugs when concomitantly used or whether a cumulative risk of single drug is responsible for an increased risk of AE when 3 or more drugs are used concomitantly.

CONCLUSIONS

In conclusion, adverse drug events leading to discontinuation are common in pediatric IBD patients. The strongest risk factor for drug discontinuation is the use of 3 or more drugs concomitantly. Physicians should consider these aspects in their treatment strategies.

Acknowledgments: The authors thank all members of the SIBDCS who were involved in the acquisition of data and especially the investigators of the pediatric centers (bold): Claudia Anderegg; Peter Bauerfeind; Christoph Beglinger; Stefan Begré; Dominique Belli; José Bengoa; Luc Biedermann; Janeck Binek; Mirjam Blattmann; Nadia Bickenstorfer; Stephan Boehm; Jan Borovicka; Christian Braegger; Patrick Bühr; Emmanuell Burri; Sophie Buyse; Matthias Cremer; Dominique Criblez; Philippe de Saussure; Lukas Deegen; Joakim Delarive; Christoph Dörig; Barbara Dora; Tobias Ehmann; Ali El Wafa; Matthias Engelmann; Christian Felley; Markus Fliegner; Alain Frei; Pascal Frei; Remus Frei; Michael Fried; Florian Froehlich; Raoul Furlano; Suzanne Gallot-Lavallée; Martin Geyer; Marc Girardin; Delphine Golay; Tanja Grandinetti; Beat Gysi; Horst Haack; Johannes Haarer; Beat Helbling; Peter Hengstler; Denise Herzog; Cyril Hess; Klaas Heyland; Thomas Hinterleitner; Philippe Hiroz; Claudia Hirshcl; Petr Hruz; Pascal Juillerat; Rosmarie Junker; Christina Knellwolf; Christoph Knoblauch; Henrik Köhler; Rebekka Koller; Claudia Krieger; Gerd A. Kullak-Ublick; Markus Landolt; Frank Lehmann; Valérie McLain; Philippe Maerten; Michel Maillard; Christine Maner; Urs Marbet; Michael Manz; George Marx; Rémy Meier; Christa Meyenberger; Jonathan Meyer; Pierre Michetti; Benjamin Misselwitz; Patrick Mosler; Christian Mottet; Christoph Müller; Pascal Müller; Beat Müllhaupt; Claudia Münger; Leilla Musso; Andreas Nagy; Cristina Nichita; Natacha Noël; Andreas Nydegger; Nicole Obialo; Carl Oneta; Cassandra Oropesa; Laetitia-Marie Petit; Franziska Piccoli; Julia Pilz; Valérie Pitte; Bruno Raffa; Ronald Rentsch; Sophie Restellini; Jean-Pierre Richterich; Silvia Rhis; Jocelyn Roduit; Daniela Rogler; Gerhard Rogler; Markus Sagmeister; Gaby Saner; Bernhard Sauter; Mikaël Sawatzki; Michael Schaar; Sylvie Scharl; Nora Schaub; Martin Schelling; Susanne Schibli; Hugo Schlauri; Daniela Schmid; Sybille Schmid; Jean-François Schnegg; Alain Schoepfer; Chris- tiane Sokollik; Frank Seibold; Gian-Marco Semadei; Mariam Seirafi; David Semela; Arne Senning; Marc Sidler; Johannes Spalinger; Holger Spangenberger; Philippe Stadler; Volker Stenz; Michael Steuerwald; Alex Straumann; Michael Sulz; Alexandra Suter; Michela Tempia-Caliera; Joël Thorens; Sarah Tiedemann; Stephan Vavricka; Francesco Viani; Roland Von Kanel; Alain Vonlaufen; Dominique Vouillamoz; Rachel Vulliamy; Helene Werner; Paul Wiesel; Reiner Wiest; Jonas Zeitz; Dorothee Zimmermann.

REFERENCES

1. Guarisco G, Gasparretto M. Treating children with inflammatory bowel disease: current and new perspectives. World J Gastroenterol 2017;23:5469–85.
2. Walters TD, Kim M-O, Denson LA, et al. Increased effectiveness of early therapy with anti-tumor necrosis factor-alpha vs an immunomodulator in children with Crohn’s disease. Gastroenterology 2014;146:383–91.
3. Rogler G. Gastrointestinal and liver adverse effects of drugs used for treating IBD. Best Pract Res Clin Gastroenterol 2010;24:157–65.
4. Quezada SM, McLean LP, Cross RK. Adverse events in IBD therapy: the 2018 update. Expert Rev Gastroenterol Hepatol 2018;12:1183–91.
5. Godat S, Fournier N, Safroneeva E, et al. Frequency and type of drug-related side effects necessitating treatment discontinuation in the Swiss Inflammatory Bowel Disease Cohort. Eur J Gastroenterol Hepatol 2018;30:612–20.
6. Chaparro M, Ordas I, Cabre’ E, et al. Safety of thiopurine therapy in inflammatory bowel disease: long-term follow-up study of 3931 patients. Inflamm Bowel Dis 2013;19:1404–10.
7. Chun JY, Kang B, Lee YM, Lee SY, Kim MJ, Choe YH. Adverse events associated with azathioprine treatment in Korean pediatric inflammatory bowel disease patients. Pediatr Gastroenterol Hepatol Nutr 2013;16:171–7.
8. Gazouli M, Pachoula I, Panayotou I, et al. Thiopurine S-methyltransferase genotype and the use of thiopurines in paediatric inflammatory bowel disease Greek patients. J Clin Pharm Ther 2010;35:93–7.
9. Spencer E, Norris E, Williams C, Dubinsky MC. The impact of thiopurine metabolite monitoring on the durability of thiopurine monotherapy in pediatric IBD. Inflamm Bowel Dis 2019;25:142–9.
10. Lichtenstein GR, Feagan BG, Cohen RD, et al. Serious infection and mortality in patients with Crohn’s disease: more than 5 years of follow-up in the TREAT registry. Am J Gastroenterol 2012;107:1409–22.
11. Wintzell V, Svanström H, Olén O, Melbye M, Ludvigsson JF, Pasternak B. Association between use of azathioprine and risk of acute pancreatitis in children with inflammatory bowel disease: a Swedish-Danish nationwide cohort study. Lancet Child Adolesc Health 2019;3:158–65.
12. Pittet V, Michetti P, Mueller C, et al. Cohort profile update: the Swiss Inflammatory Bowel Disease Cohort Study (SIBDCS). Int J Epidemiol 2019;48:385–6f.
13. Pittet V, Juillerat P, Mottet C, et al. Cohort profile: the Swiss Inflammatory Bowel Disease Cohort Study (SIBDCS). *Int J Epidemiol* 2009;38:922–31.

14. Kotlyar DS, Osterman MT, Diamond RH, et al. A systematic review of factors that contribute to hepatosplenic T-cell lymphoma in patients with inflammatory bowel disease. *Clin Gastroenterol Hepatol* 2011;9:36–41.e1.

15. Thaya M, Markowitz JE, Mamula P, Russo PA, Muinos WI, Baldassano RN. Hepatosplenic T-cell lymphoma in an adolescent patient after immunomodulator and biologic therapy for Crohn disease. *J Pediatr Gastroenterol Nutr* 2005;40:220–2.

16. Dupont-Lucas C, Grandjean-Blanchet C, Leduc B, et al. Prevalence and risk factors for symptoms of methotrexate intolerance in pediatric inflammatory bowel disease. *Inflamm Bowel Dis* 2017;23:298–303.

17. Benkov K, Lu Y, Patel A, et al. Role of thiopurine metabolite testing and thiopurine methyltransferase determination in pediatric IBD (vol 56, pg 333, 2013). *J Pediatr Gastroenterol Nutr* 2013;56:582.

18. Murray A, Nguyen TM, Parker CE, Feagan BG, MacDonald JK. Oral 5-aminosalicylic acid for maintenance of remission in ulcerative colitis. *Cochrane Database Syst Rev* 2020;8:CD000544.

19. Corica D, Romano C. Renal involvement in inflammatory bowel diseases. *J Crohns Colitis* 2016;10:226–35.

20. Grossi V, Lerer T, Griffiths A, et al. Concomitant use of immunomodulators affects the durability of infliximab therapy in children with Crohn’s disease. *Clin Gastroenterol Hepatol* 2015;13:1748–56.

21. Colombel JF, Sandborn WJ, Reinisch W, et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease. *N Engl J Med* 2010;362:1383–95.

22. Siegel C, Finlayson SR, Sands BE, et al. Adverse events do not outweigh benefits of combination therapy for Crohn’s disease in a decision analytic model. *Clin Gastroenterol Hepatol* 2012;10:46–51.

23. Schoepfer AM, Bortolotti M, Pittet V, et al. The gap between scientific evidence and clinical practice: 5-aminosaliclyates are frequently used for the treatment of Crohn’s disease. *Aliment Pharmacol Ther* 2014;40:930–7.

24. Sokollik C, Fournier N, Rizzuti D, et al. The use of 5-aminosalicylic acid in children and adolescents with inflammatory bowel disease. *J Clin Gastroenterol* 2018;52:e87–91.

25. Ungaro RC, Limketkai BN, Jensen CB, et al. Stopping 5-aminosalicylates in patients with ulcerative colitis starting biologic therapy does not increase the risk of adverse clinical outcomes: analysis of two nationwide population-based cohorts. *Gut* 2019;68:977–84.

26. Shaffer SR, Huang E, Patel S, Rubin DT. Cost-effectiveness of 5-aminosalicylate therapy in combination with biologics or tofacitinib in the treatment of ulcerative colitis. *Am J Gastroenterol* 2021;116:125–33.

27. Scharl S, Barthel C, Rossel JB, et al. Malignancies in inflammatory bowel disease: frequency, incidence and risk factors-results from the Swiss IBD cohort study. *Am J Gastroenterol* 2019;114:116–26.

28. Wijnands AM, de Jong ME, Lutgens MWMD, et al. Prognostic factors for advanced colorectal neoplasia in inflammatory bowel disease: systematic review and meta-analysis. *Gastroenterology* 2021;160:1584–98.