Transcriptional Oncogenomic Hot Spots in Barrett's Adenocarcinomas: Serial Analysis of Gene Expression

Mohammad H. Razvi,1 Dunfa Peng,1 Altaf A. Dar,1 Steven M. Powell,2 Henry F. Frierson Jr.,3 Christopher A. Moskaluk,3 Kay Washington,4 and Wael El-Rifai1,5*

1Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
2Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN
3Department of Pathology, University of Virginia, Charlottesville, VA
4Department of Pathology, Vanderbilt University Medical Center, Nashville, TN
5Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN

Serial analysis of gene expression (SAGE) provides quantitative and comprehensive expression profiling in a given cell population. In our efforts to define gene expression alterations in Barrett’s-related adenocarcinomas (BA), we produced eight SAGE libraries and obtained a total of 457,894 expressed tags with 32,035 (6.9%) accounting for singleton tags. The tumor samples produced an average of 71,804 tags per library, whereas normal samples produced an average of 42,669 tags per library. Our libraries contained 67,200 unique tags representing 16,040 known gene symbols. Five hundred and sixty-eight unique tags were differentially expressed between BAs and normal tissue samples (at least twofold; $P < 0.05$), 395 of these matched to known genes. Interestingly, the distribution of altered genes was not uniform across the human genome. Overexpressed genes tended to cluster in well-defined hot spots located in certain chromosomes. For example, chromosome 19 had 26 overexpressed genes, of which 18 mapped to 19q13. Using the gene ontology approach for functional classification of genes, we identified several groups that are relevant to carcinogenesis. We validated the SAGE results of five representative genes (ANPEP, ECGF1, PP1201, EIF5A1, and GKN1) using quantitative real-time reverse-transcription PCR on 31 BA samples and 26 normal samples. In addition, we performed an immunohistochemistry analysis for ANPEP, which demonstrated overexpression of ANPEP in 67/86 (78%) Barrett’s dysplasias and 35/65 (54%) BAs. ANPEP is a secreted protein that may have diagnostic and/or prognostic significance for Barrett’s progression. The use of genomic approaches in this study provided useful information about the molecular pathobiology of BAs.

INTRODUCTION

Gastroesophageal reflux disease (GERD) is a major health problem in the United States with a prevalence of 5–7% in the general population and an increasing incidence rate (Serag, 2006). Approximately 10% of patients with chronic GERD develop a metaplastic condition known as Barrett’s esophagus (BE) in which the normal squamous epithelium of the esophagus is replaced by a columnar epithelium with goblet cells. BE is a serious premalignant lesion that can ultimately progress from metaplasia to dysplasia and subsequently to Barrett’s adenocarcinoma (BA) (Ferraris et al., 1997; O’Connor et al., 1999; Rana and Johnston, 2000). The incidence of BA has rapidly increased in the Western world over the past three decades (Hamilton et al., 1988; Phillips et al., 1991; Blot et al., 1993), and is comprised of aneuploid tumors characterized by complex molecular alterations (El-Rifai et al., 2001; El-Rifai and Powell, 2002). Several genetic abnormalities have been associated with Barrett’s tumorigenesis, including microsatellite instability (Meltzer et al., 1994), loss of heterozygosity (Dolan et al., 1999), gene-promoter hypermethylation (Sato and Meltzer, 2006), as well as up- and down-regulation of various genes (Wu et al., 1993; Swami et al., 1995; Regalado et al., 1998; Brabender et al., 2002). Comprehensive molecular analyses of DNA amplifications and gene expression have revealed complex genetic alterations in gastroesophageal and lower esophageal adenocarcinomas (El-Rifai et al., 1998; Varis et al., 2002; van Dekken et al., 2004; Kuwano et al., 2005).

The contents of this work are solely the responsibility of the authors and do not necessarily represent the official views of the National Cancer Institute, University of Virginia, or Vanderbilt University.

Supported by: National Cancer Institute; Grant numbers: R01CA106176 (WER), GI SPORE CA 95103.

*Correspondence to: Wael El-Rifai, MD, PhD, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 1255 Light Hall, 2215 Garland Avenue, Nashville, TN 37232, USA. E-mail: wael.el-rifai@vanderbilt.edu

Received 10 April 2007; Accepted 27 June 2007
DOI 10.1002/gcc.20479
Published online 17 July 2007 in Wiley InterScience (www.interscience.wiley.com).
Analyses of the human transcriptome map of normal tissues have shown clustering of highly expressed genes in chromosomal domains (Caron et al., 2001). Chromosomal arms and bands are known to occupy specific locations within the nucleus known as chromosome territories (CTs). The positioning of a gene(s) can influence its access to the machinery responsible for specific nuclear functions such as transcription and splicing (Cremer and Cremer, 2001). Recently, a few reports have suggested the presence of transcriptional hot spots in the cancer genome, (Wu et al., 2006) where overexpressed genes tend to cluster in defined chromosomal domains; however, similar information remains lacking for most cancer types. Serial analysis of gene expression (SAGE) provides unlimited, comprehensive, genome-wide analysis of gene expression in a given cell population (Velculescu et al., 1995, 2000). The major advantage in using SAGE is the quantitative ability to accurately evaluate transcript numbers without prior sequencing information. This method has proven invaluable in studies of several tumor types, including adenocarcinomas of the colon (Parle-McDermott et al., 2000; St Croix et al., 2000), prostate (Culp et al., 2001), pancreas (Argani et al., 2001), ovary (Hough et al., 2000), and breast (Seth et al., 2002). In this study, we explored the BA transcriptome using SAGE and mapped gene-expression changes to chromosomal positions, thereby generating a map of transcriptional oncogenic hot spots of this deadly cancer.

MATERIALS AND METHODS

Serial Analyses of Gene Expression

High-quality total RNA (500 μg) was extracted from four intestinal-type, moderately to poorly differentiated, BA cases (three gastroesophageal junctional [GEJ] and one lower esophageal) using an RNeasy kit (QIAGEN, Hilden, Germany). In addition, four normal gastric mucosa pools were used as reference samples. Each of these pools consisted of four normal gastric mucosal biopsy samples from four different individuals. The tumors selected for SAGE analysis were estimated to consist of more than 70% tumor cells. All normal samples had histologically normal mucosa confirmed on review of hematoxylin- and eosin-stained sections. Importantly, histopathological examination confirmed that none of the normal samples had any areas of inflammation or necrosis. All samples were collected with consent in accordance with approved Institutional Review Board protocols. SAGE libraries were constructed using NlaIII as the anchoring enzyme and BsmFI as the tagging enzyme as described in SAGE protocol version 1.0e, June 23, 2000, which includes a few modifications of the standard protocol (Velculescu et al., 1995). A detailed protocol and schematic of the method is available at (http://www.sagenet.org/protocol/index.htm). We sequenced 20,000 clones with an average of 2,500 clones per library, using the Cancer Genome Anatomy Project (CGAP). eSAGE 1.2a software was used to extract SAGE tags, remove duplicate ditags, tabulate tag contents, and link SAGE tags in the database to UniGene clusters using the recently reported ehm-Tag-Mapping method (Margulies and Innis, 2000; Margulies et al., 2001). The resulting libraries’ tags were compared with UniGene clusters and the SAGE tag “reliable” mapping database (http://www.sagenet.org/resources/genemaps.htm).Statistical analyses of these tags were then performed using eSAGE software.

Quantitative Real-Time Reverse-Transcription PCR

Quantitative real-time reverse-transcription PCR (qRT-PCR) was performed on 31 adenocarcinomas of Barrett’s-related origin, 26 normal gastric epithelial tissues, and 6 Barrett’s metaplasia tissue samples. All tissues were dissected to obtain ≥70% cell purity. All of the adenocarcinoma samples were collected from the GEJ or lower esophagus and ranged from well differentiated (WD) to poorly differentiated (PD), Stages I–IV, with a mix of intestinal- and diffuse-type tumors. RNA was purified from all samples using an RNeasy Kit. Single-stranded cDNA was generated using an Advantage™ RT-for-PCR Kit (Clontech, Palo Alto, CA). qRT-PCR was performed using an iCycler (BioRad, Hercules, CA) with SYBR Green technology, and the threshold cycle numbers were calculated using iCycler software v3.0. Reactions were performed in triplicate and threshold cycle numbers were averaged. For validation of SAGE results, we designed gene-specific primers for human ANPEP, ECGF1, PP1201, EIF5A1, GKN1, and HPR1. These primers were obtained from Integrated DNA Technologies (IDT, Coralville, IA) and their sequences are available upon request. A single-melt curve peak was observed for each product, thus confirming the purity of all amplified cDNA products. The qRT-PCR results were normalized to HPR1, which had minimal variation in all normal and neoplastic samples tested. Fold overexpression was calculated according to the formula, \(2^{(R_t - E_t)}/2^{(R_i - E_i)}\), as described earlier (Buck-
TABLE 1. The Top 93 Deregulated Genes in Barrett’s Adenocarcinomas

Tag sequence	UniGene cluster ID	Gene symbol	Title	Location	T4 tag count	N4 tag count	Ratio, T4/N4	P value
T4 tag count	N4 tag count							
T4 tag count	N4 tag count							

Upregulated genes

Tag sequence	UniGene cluster ID	Gene symbol	Title	Location	T4 tag count	N4 tag count	Ratio, T4/N4	P value
GTGGCCACGG	Hs.112405	S100A9	S100 calcium binding protein A9	1q21	355	0	418	<0.001
GAGCAGGGCC	Hs.112408	S100A7	S100 calcium binding protein A7	1q21	95	0	112	<0.001
AAGATGGGTG	Hs.114286	CD9	CD9 antigen (p24)	12p13.3	112	7	10	<0.001
GCACCTGTCG	Hs.11239	ANPEP	Aminopeptidase	15q25-q26	76	0	89	<0.001
GTGACAGAGA	Hs.1125673	EIF4A1	EIF4A translation initiation factor 4A, isoform 1	17p13	92	4	14	<0.001
TTTCTCTGTG	Hs.1139222	SPPR3	Small proline-rich protein 3	1q21-q22	308	0	362	<0.001
GTTCAAGTGA	Hs.1186810	REPS2	RALBP1 associated eps domain containing 2	Xp22.2	107	2	32	<0.001
ACTGTATTTT	Hs.1194691	G protein	G protein-coupled receptor, family C, group 5, member A	12p13-p12.3	103	6	10	<0.001
TGGATCCTGA	Hs.302145	HBG2	Hemoglobin, gamma G	11p15.5	75	0	88	<0.001
CAGGGAGAAG	Hs.308709	GRP58	Protein disulfide isomerase family A, member 3	15q15	79	2	32	<0.001
CTAGCTTTTT	Hs.335175	AGPAT4	I-acetylglucosamine 3-phosphate O-acetyltransferase 4	1q21-q22	308	0	362	<0.001
TCACCCAGGGG	Hs.391464	ABCC1	ATP-binding cassette, subfamily C member 1	16p13.1	52	0	61	<0.001
CCTCGGCTCA	Hs.414510	KRT7	Keratin 7	12q12-q13	179	1	106	<0.001
TTCTTCTTAA	Hs.419125	TMEM38B	Transmembrane protein 38B	9q31.2	58	1	34	<0.001
TACCTGCAGA	Hs.416073	S100A8	S100 calcium binding protein A8	1q21	343	1	204	<0.001
CAGCAGAGAC	Hs.412416	SERF2	Small EDRK-rich factor 2	15q15	79	4	12	<0.001
GGCAGGCGATG	Hs.445351	LGALS1	Lectin, galactoside-binding, soluble, 1	22q11.3	89	0	105	<0.001
GACATGCTGA	Hs.447579	LOC339290	Hypothetical protein LOC339290	18p11.2	95	0	112	<0.001
GTTGGGATTG	Hs.459927	PTMA	Prothymosin, alpha (gene sequence 28)	2q35-q36	162	9	11	<0.001
TCACCCACAC	Hs.462859	SCFD2	Short-chain dehydrogenase/reductase	17q12	337	31	6	<0.001
CCCCCCGGGA	Hs.466507	LISCH7	Liver-specific bHLH-Zip transcription factor	19q13.3	48	0	56	<0.001
CCGGACAC	Hs.473583	NSEPI	Y box binding protein 1	1p34	76	2	33	<0.001
CCGCGGTTG	Hs.501293	BSG	Basigin (OK blood group)	19q13.3	77	4	11	<0.001
GATACCTGGA	Hs.505911	GALNTL4	Casein kinase 2, alpha 1 polypeptide	11p15.3	94	0	111	<0.001
ACAGGCTACG	Hs.503998	TAGLN	Transgelin	11q23.2	71	3	14	<0.001
GTGGCTACA	Hs.504820	MGC14817	Hypothetical protein MGC14817	12q14.3	242	16	9	<0.001
TAATTTTGCA	Hs.508113	OLPH4	Olfactomedin 4	13q14.3	228	1	136	<0.001
GTGACAGGATG	Hs.509736	HSPCB	Heat shock 90 kDa protein 1, beta	6p12	149	13	7	<0.001
TGTCACTCTG	Hs.512350	LOC440676	Heat shock 90 kDa protein 1, beta	1q21.1	108	1	64	<0.001
AGTGGTGGAGC	Hs.512488	HSPB1	Heat shock 27 kDa protein 1	12q12	98	1	58	<0.001
GCGGACGTCA	Hs.513490	ALDOA	Aldolase A, fructose-bisphosphate	16q22-q24	206	4	31	<0.001
ACCGCGTTG	Hs.513803	CYBA	Cytochrome b-245, alpha polypeptide	16q24	77	0	91	<0.001
AGCAGGACCA	Hs.515714	S100A16	S100 calcium binding protein A16	1q21	61	0	72	<0.001
GATCTGTTTTG	Hs.516488	S100A2	S100 calcium binding protein A2	1q21	61	0	72	<0.001
ATCGTGGGCG	Hs.520942	CLDN4	Claudin 4	7q11.23	62	0	73	<0.001
CCACAGGCTAG	Hs.520973	HSPB1	Heat shock 27 kDa protein 1	7q11.23	175	7	15	<0.001
AACCGTGCCA	Hs.523302	PRDX3	Peroxiredoxin 3	10q25-q26	46	0	54	<0.001
CTACTCATCT	Hs.531719	ADCYAP1	Adenylate cyclase activating polypeptide 1	18p11	85	1	51	<0.001
AACCTAGGGG	Hs.5333	KIAA0711	Kelch repeat and BTB (PO2) domain containing 11	8p23.3	94	0	111	<0.001

(Continued)
Tag sequence	UniGene cluster ID	Gene symbol	Title	Location	T4 tag count	N4 tag count	Ratio, T4/N4	P value
GACTTTCCAG	Hs.534293	SERPINA3	Serpin peptidase inhibitor, clade A member 3	1q32.1	125	1	74	<0.001
CATTCCAGT	Hs.54483	NMI	N-myc (and STAT) interacting	2p24.3-q21.3	285	0	335	<0.001
GACCGGCCAG	Hs.546251	ECGF1	Endothelial cell growth factor 1	22q13	46	0	54	<0.001
TAGCTTAA	Hs.554202	SVIL	Supervillin	1p11.2	210	0	247	<0.001
TGCCATCTG	Hs.555971	PPI 20I	Transmembrane BAX inhibitor motif containing 1	2p24.3-p24.1	90	1	54	<0.001
CTATCTCTC	Hs.75227	NDUPA9	NADH dehydrogenase (ubiquinone) I alpha subcomplex, 9, 39 kDa	1p23.3	51	0	60	<0.001
ACTGCCTG	Hs.81071	ECM1	Extracellular matrix protein I	1q21	77	1	46	<0.001
TACTTTTTG	Hs.110401	GIF	Gastric intrinsic factor (vitamin B synthesis)	1p13.1-p21.3	7	185	0.020	<0.001
ACAGAGCAAG	Hs.131603	EMI domain containing 2	2p24.3-p24.1	90	1	54	<0.001	
ACCCTCCCCCA	Hs.132087	FLJ6299	Kelch domain containing 6	3q21.3	36	595	0.026	<0.001
AACCTCCCCA	Hs.133539	MAST4	Microtubule associated serine/threonine kinase family member 4	5q12.3	1	51	0.010	<0.001
AACCTCCCCC	Hs.134074	ARL2BP	Solute carrier family 35, member E1	19p13.11	1	42	0.010	<0.001
CTGCCAGCTC	Hs.162071	TFF1	Trefoil factor 1	2q21.3	95	174	0.3	<0.001
TTGAGATAGA	Hs.16757	GDDDR	Down-regulated in gastric cancer GDDR	2p13.3	5	474	0.010	<0.001
CACCTCTGAT	Hs.17324	CKB	Creatine kinase, brain	1q32.2	9	74	0.070	<0.001
GACCTCCCCA	Hs.178728	MB3D4	Methyl-CpG binding domain protein 3	1q33.3	6	64	0.020	<0.001
AGTGGCTCTC	Hs.1867	PGC2	Progastricin (pepsinogen C)	6p21.3-p21.1	36	595	0.040	<0.001
CGCTCCTGAA	Hs.209217	ASTN2	Astrotactin 2	9q11	0	24	0.035	<0.001
CAGGTCTTC	Hs.220864	CHD2	Chromodomain helicase DNA binding protein 2	15q21	1	42	0.010	<0.001
CGGGGAGGGA	Hs.2681	GAS	Gastrin	1q21	0	100	0.009	<0.001
CACCTCCCCA	Hs.283739	BEB1	Ubiquitin 4	1q21	4	76	0.030	<0.001
AGGCTTCTGA	Hs.2859	OPRL1	Opiate receptor-like 1	2q21.3	62	1086	0.030	<0.001
AACATCTGGG	Hs.2979	TFF2	Trefoil factor 2 (spasmytic protein 1)	1q21.2	5	76	0.030	<0.001
GCAGGCTCCA	Hs.30131	GHR1	Ghrelin precursor	3p26-2p25	5	50	0.060	<0.001
TGCAATTTA	Hs.307835	PGMS	Phosphoglucomutase 5	9p12-q12	6	40	0.090	<0.001
CCCTGGAAGC	Hs.309228	CUGBP2	CUG triplet repeat, RNA binding protein 2	1p13	1	33	0.020	<0.001
CTGAGTCTGC	Hs.36992	ATP4A	ATPase, H+/K+ exchanging, alpha polypeptide	1q21.2	10	384	0.020	<0.001
GATCTGCTGC	Hs.370480	ABCB7	ATP-binding cassette, sub-family B (MDR/TAP), member 7	Xq12-q13	1	26	0.020	<0.001
AACCTCTCCA	Hs.38698	C10orf27	Chromosome 10 open reading frame 27	1q22.1	0	29	0.029	<0.001
TATCTAGTG	Hs.393854	ATP6V1G1	ATPase, H+ transporting, lysosomal 13 kDa, V1 subunit G isoform 1	9q32	3	48	0.040	<0.001
AACCTCTCCA	Hs.432854	PGAS4	Porin, putative	1q21.3	365	6637	0.030	<0.001
GGAAGCGAAG	Hs.434202	ATP4B	ATPase, H+/K+ exchanging, beta polypeptide	1q21.2	4	138	0.020	<0.001
TCTATCACTC	Hs.438454	FBXO25	F-box protein 25	8p23.3	12	376	0.020	<0.001
TCCCTTTAAG	Hs.438824	CK1P-1	CK2 interacting protein 1	1q21.2	3	49	0.040	<0.001
TTTTTAAGA	Hs.445586	UNQ473	DMIC	1q12	2	35	0.030	<0.001
CAGTCTCTG	Hs.445680	H.445680	Similar to anaphase promoting complex subunit 1	2q12.3	1	42	0.010	<0.001
ACTGATCTG	Hs.447547	VPS35	Hypothetical protein MGC34800	16q12	5	34	0.090	<0.001

(Continued)
RT is the threshold cycle number for the reference gene observed in the tumor, ET is the threshold cycle number for the experimental gene observed in the tumor, RN is the threshold cycle number for the reference gene observed in the normal sample, and EN is the threshold cycle number for the experimental gene observed in the normal sample. RN and EN values were averages of the corresponding normal analyzed samples. The ratio was calculated after normalization to total tag numbers.

Immunohistochemistry

Immunohistochemical (IHC) analysis of ANPEP protein expression was performed on a tumor tissue microarray (TMA) that contained 65 adenocarcinomas. Samples from adjacent normal and dysplastic tissues were included when available. All tissue samples were histologically verified, and representative regions were selected for inclusion in the TMA. All of the adenocarcinoma samples were collected from either the GEJ or lower esophagus and ranged from WD to PD, Stages I–IV, with a mix of intestinal- and diffuse-type tumors. Tissue cores with a diameter of 0.5 mm were retrieved from the TMA and mounted on a microscope slide. The slides were counterstained with hematoxylin.

TABLE 1. The Top 93 Deregulated Genes in Barrett's Adenocarcinomas (Continued)

Tag sequence	UniGene cluster ID	Gene symbol	Title	Location	T4 tag count	N4 tag count	Ratio, T4/N4	P value
TCATTTGAA	Hs.464472	MRLC3	Myosin regulatory light chain MRLC2	18p11.2	0	27	0.031	<0.001
CAATGCCCTTCT	Hs.474571	MYH9	Myosin, heavy polypeptide 9, nonmuscle	22q13.1	2	70	0.020	<0.001
TGCGAGACCA	Hs.490038	CPA2	Carboxypeptidase A2 (pancreatic)	7q32	0	24	0.035	<0.001
CATGTTCTCC	Hs.516297	TCF7L1	Transcription factor 7-like 1 (T-cell specific, HMG-box)	2p11.2	0	82	0.010	<0.001
CAGTTCTTTT	Hs.518611	TBC1D14	TBC1 domain family, member 14	4p16.1	2	29	0.040	<0.001
AAGTACCAAA	Hs.523130	LIPF	Lipase, gastric	10q23.31	1	51	0.010	<0.001
CAGTGCTCC	Hs.527922	DLEU1	Deleted in lymphocytic leukemia, 1	13q14.3	349	8046	0.020	<0.001
ACCTCACCAC	Hs.529117	CYP2B7P1	Cytochrome P450, family 2, subfamily B, polypeptide 7 pseudogene 1	19q13.2	1	41	0.010	<0.001
CAGTGCTTCTT	Hs.551178	Hs.551178	CDNA EF5627 fs, clone TRACHD010272	1	60	60	0.001	<0.001
GAGATTAGTG	Hs.551521	KCNE2	Potassium voltage-gated channel, iso-related family, member 2	21q22.12	5	55	0.050	<0.001
TGACCTCAG	Hs.558365	ORM2	Orosomucoid 2	9q32	1	25	0.020	<0.001
TCATTCTGAA	Hs.69319	GKN1	Gastrokine I	2p13.3	51	3592	0.010	<0.001
AAGTGCCCATA	Hs.76253	ATXN2	Ataxin 2	12q24.1	2	37	0.030	<0.001
TTAACCCCTCTC	Hs.78224	RNASEI	Ribonuclease, RNase A family, 1 (pancreatic)	14q11.2	26	219	0.070	<0.001

T4, tag number in all tumor samples tested; N4, tag number in all normal samples. The expression of all genes was significantly altered in at least three tumor samples (P < 0.05), as compared to all normal samples. At least two tumors showed more than fivefold change (P ≤ 0.01). Tags with "0" value were replaced with arbitrary 0.5 values for relative calculation of fold expression. The ratio was calculated after normalization to total tag numbers.

Chromosomal localization of deregulated genes. Chromosomal regions that contain up-regulated genes are shown in red, whereas those that contain down-regulated genes are shown in green. Regions which contain both up- and down-regulated genes are colored in yellow. The distribution of these genes did not follow a random distribution pattern and several genomic regions contain clusters of deregulated genes. Some of the more significant "hot spots" can be seen here on chromosomes 1 (P < 0.01), 3 (P < 0.02), 12 (P < 0.01), 15 (P < 0.01), and 19 (P < 0.01).
from the selected regions of the donor blocks and punched to the recipient block using a manual tissue array instrument (Beecher Instruments, Silver Spring, MD). Each tissue sample was represented by four tissue cores on the TMA. Sections (5 μm) were transferred to polylysine-coated slides (SuperFrostPlus, Menzel-Gläser, Braunschweig, Germany) and incubated at 37°C for 2 hr. The resulting TMA was used for IHC analysis utilizing a 1:50 dilution of ANPEP antibody (CD13/aminopeptidase-M, clone 1A5, Serotec, England).

TABLE 2. Chromosomal Minimal Common Overlapping Regions of Transcription Hot Spots

Overexpressed genes	Number of genes	Gene symbols
1q21	13	S100A16, S100A2, S100A7, S100A9, S100A8, ECM1, S100A10, S100A6, LMNA, SPRR3, HDGF, HIST2H2BE, TAGLN2
6p21	6	HSPA1A, HLA-A, HSPA1B, HLA-C, RPL10A, CLIC1
8q24-qter	4	AW103531L, LY6D, LY6E, FLJ32440
11q13	4	FTH1, CCND1, DKFZP61E198, TNCRNA
12p13	9	GAPD, C1R, C15, PHB2, MLF2, PTMS, FLJ22662, NDUFA9, CD9
14q32.3	4	CRIP2, C14orf173, CRIP1, IGHG1
17q21	4	KRT17, PPP1R1B, GRN, COL1A1
17q25	4	LGALS3BP, MRPL12, ACTG1, NT5C
19q13.4	5	RPS9, RPS5, LENGB, CDC42EP5, Hs.534672
20q13	5	P13, PGBP, TMEPA1, C20orf149, GATA5
22q13	7	RPL3, Hs.102336, CDC42EP1, LGALS1, ATXN10, PLXNB2, ECGF1

Downregulated genes	Number of genes	Gene symbols
4q21	4	IGj, CCNI, SEC31L1, CDS1
19q13.1	4	UNQ473, CYP2B7P1, FCGBP, ATP4A
21q22	4	KCN2E, CLIC6, TFF1, TFF2

TABLE 3. Chromosomal Location of Frequent Gene Alterations in Barrett’s Adenocarcinomas

Chromosome	Upregulated transcripts = 242	Downregulated transcripts = 153	Grand total				
p arm	q arm	Total	p arm	q arm	Total		
1	15	20	35 (0.01)	10	11	21 (0.35)	56
2	7	10	17 (0.2)	4	8	12 (0.39)	29
3	3	4	7 (0.13)	1	2	3 (0.06)	10
4	1	4	5 (0.11)	3	8	11 (0.02)	16
5	0	8	8 (0.26)	2	4	6 (0.4)	14
6	8	2	10 (0.38)	3	1	4 (0.2)	14
7	3	3	6 (0.08)	3	5	8 (0.12)	14
8	2	6	8 (0.27)	2	3	5 (0.37)	13
9	1	7	8 (0.46)	0	8	8 (0.29)	16
10	5	7	12 (0.27)	3	6	9 (0.28)	21
11	5	9	14 (0.3)	1	5	6 (0.11)	20
12	10	11	21 (0.01)	1	8	9 (0.04)	30
13	NA	3	3 (0.36)	NA	2	2 (0.24)	5
14	NA	10	10 (0.27)	NA	4	4 (0.17)	14
15	NA	8	8 (0.01)	NA	5	5 (0.19)	13
16	3	3	6 (0.11)	2	4	6 (0.07)	12
17	4	8	12 (0.3)	1	5	6 (0.22)	18
18	4	0	4 (0.3)	1	0	1 (0.44)	5
19	8	18	26 (0.01)	3	4	7 (0.37)	33
20	1	8	9 (0.26)	2	3	5 (0.41)	14
21	NA	2	2 (0.23)	NA	4	4 (0.05)	6
22	NA	8	8 (0.45)	NA	2	2 (0.02)	10
X	2	1	3 (0.07)	4	5	9 (0.08)	12
Y	0	0	NA	NA	0	NA	0

A total of 568 transcripts were up- or down-regulated with statistical significance in which 395 known gene symbols were identified. In order to investigate and find statistically significant hot spots, the location of altered genes was compared with the list of all genes that are transcribed in both tumor and normal samples. The analysis was performed using Onto-Express online software (http://vortex.cs.wayne.edu/index.htm).

*Values in parentheses are P values.
dase-N Ab-3 mouse monoclonal antibody; Lab Vision Corporation, Fremont, CA). Sections were deparaffinized and rehydrated. TMA slides were treated in a microwave with citrate buffer for 20 min and incubated with the antibody at room temperature. Detection was performed using an avidin–biotin immunoperoxidase assay. Cores with no evidence of staining, or only rare scattered positive cells less than 3%, were recorded as negative. The overall intensity of staining was recorded as that for the core with the strongest intensity. IHC results were evaluated for intensity and frequency of staining. The intensity of staining was graded as 0 (negative), 1 (weak), 2 (moderate), and 3 (strong). The frequency was graded from 0 to 4 by percentage of positive cells as follows: Grade 0, <3%; Grade 1, 3–25%; Grade 2, 25–50%; Grade 3, 50–75%; Grade 4, >75%. The index score was the product of multiplication of the intensity and frequency grades, which was then classified into a 4-point scale: index score 0 = product of 0, index score 1 = products 1 and 2, index score 2 = products 3 and 4, index score 3 = products 6 through 12.

RESULTS

Sequence Analyses of SAGE Libraries

Sequence analyses of 20,000 clones from eight SAGE libraries produced 457,894 expressed tags, with 32,035 tags (6.9%) accounting for singleton tags. The four tumor SAGE libraries (GSM758, GSM757, HG7, and HS29) produced 287,219 tags with an average of 71,804 tags per library. The normal samples (GSM14780, GSM784, 13S, and 14S) produced 170,675 tags with an average of 42,669 tags per library. The comparison of expressed tags to the UniGene cluster release of May 2005 identified 67,200 unique SAGE tags. These tags represented 16,040 known gene symbols according to UniGene information. Of these, 568 unique tags were differentially expressed between BAs and normal tissue samples (at least twofolds and \(P \leq 0.05 \)). These unique tags matched 395 known genes (242 upregulated and 153 downregulated) that regulate diverse cellular functions and signaling pathways, which may prove to be quite significant in the detection and prevention of cancer. Ninety-three genes were significantly altered, showing a greater than fivefold expression change in at least two tumor libraries as compared to all four normal libraries (\(P \leq 0.01 \)) (Table 1). Forty-eight genes showed up-regulation, whereas 45 were down-regulated. The group of over-expressed genes contained several with known cancer-related functions, including members of S100A calcium-binding proteins, heat-shock protein 27 kDa (HSPB1), heat-shock 90 kDa protein beta (HSPCB), prothymosin (PTMA), transmembrane bax inhibitor motif containing-1 (PP1201), peroxiredoxin-3 (PRDX3), and endothelial growth factor-1 (ECGF1). Down-regulated transcripts included genes such as gastronine (GKN1), down-regulated in gastric cancer (GDDR), gastrin intrinsic factor (GIF), methyl-CpG binding domain protein 3 (MBD3), and trefoil factor 2 (TFF2). CGAP maintains the public SAGE database for gene expression in human cancer (Lal et al., 1999), and sequence data are publicly available at http://www.ncbi.nih.gov/geo and http://cgap.nci.nih.gov/SAGE/.

Transcriptional Oncogenomic Hot Spots and Functional Classification of Genes

Onto-Express online software (http://vortex.cs.wayne.edu/index.htm) (Khatri et al., 2002; Draghici et al., 2003) was used to identify potential transcriptional oncogenomic hot spots in the genome and obtain the functional classification of the deregulated genes. We mapped all SAGE unique transcripts (16,040 gene symbols) to their corresponding cytogenetic locations. The altered transcripts (395 known gene symbols) were analyzed against all transcripts to generate an expression ideogram and identify transcription hotspots (Fig. 1). Interestingly, the distribution of altered genes was not uniform along the human chromosomes. Overexpressed genes tended to cluster in well-defined hot spots across the human genome (Table 2). For example, 26 overexpressed genes mapped to chromosome 19, of which 18 mapped to the single chromosome band 19q13. Similarly, 35 genes mapped to chromosome 1, of which 13 mapped to the chromosome band 1q21. Table 3 and Figure 1 summarize these data and map the genes to their corresponding cytogenetic locations.

Gene ontology (GO) terms are organized in three general categories: biological process, cellular role, and molecular function; terms within each GO category are linked in defined parent–child relationships that reflect current biological knowledge (Ashburner et al., 2000). Among the 395 differentially expressed genes, the number corresponding to each category was tallied and compared with the number expected for each GO category based on its representation in the reference gene list, which contained all of the unique 16,040 known gene symbols detected by analysis of the eight SAGE libraries. Significant differences
TABLE 4. Functional Classification of Deregulated Genes in Barrett’s Related Adenocarcinomas Using Gene Ontology (GO)

Gene symbol	Ratio						
ALS2CR19	0.13	DUSP6	27.38	IGFBP7	3.14	PTMA	10.71
AURKAIP1	27.38	EMP1	10.27	ILK	27.38	PTMS	6.19
CRIP1	4.17	GKN1	0.01	LGALS1	105.95	S100A6	3.83
BTG1	0.31	GRN	4.63	MACF1	6.07	SFN	42.86
CCND1	32.14	HDGF	33.33	MDK	10.12	TIMP1	9.97
CDKN2A	27.38	HIF3A	5.21	MTSS1	0.17	TM4SF4	11.31
CHEK1	4.03	IFITM1	23.21	PPP2R1B	23.21	TSPAN1	0.01
DNA binding and replication							
ABCB7	0.02	CTGF	22.62	HIST2HBE	28.57	PTMS	6.19
ABCC1	61.9	CUGBP2	0.02	HSPA1B	11.61	RAB40C	71.43
ACTA1	20.24	DUT	0.04	ILK	27.38	RBM17	0.09
ACTB	4.5	EGFR	54.76	MAST4	0.01	RHOD	26.19
ACTG1	3.06	EEF2K	0.03	MBD3	0.02	ROD1	28.57
ARF1	28.57	EIF5A	8.52	MYH9	0.02	SERPINA3	74.4
ATP1A1	14.05	ELF3	38.1	NCL	25	SET	0.29
ATRIA4	0.02	ENO1	9.23	NTSC	2.52	VNK1	0.02
PTBP1	0.23	EPHA4	0.03	OBFC2A	0.23	YBX1	22.62
CDKN2A	27.38	GNA12	15.18	PKF1	8.23	ZFHXB1	0.26
CHD2	0.07	GNAS	0.02	PPP2R1B	23.21	ZNF480	30.95
CHEK1	4.03	HDLBP	28.57				
RNA binding							
CUGBP2	0.02	NCL	25	RNASE1	0.07	RPS5	3.07
EIF1AX	0.16	PTBP1	0.23	ROD1	28.57	SERBP1	4.32
HDLBP	28.57	RBM17	0.09	RPL18	5.7	SNRPB	9.33
MRPL12	15.48	RBM19	0.03	RPL3	21.73	YBX1	22.62
Transcription							
ZFHXB1	0.26	FOXA2	0.11	NTSC	2.52	RPLP0	19.05
ZF36L1	41.67	FOXD4L1	32.14	CDKN2A	27.38	EIFS1	28.57
ELF3	38.1	LASS6	0.16	NMI	339.29	HSPB1	14.88
EEF1B2	0.37	RA17	25	PTBP1	0.23	BTG1	0.31
AES	3.79	TC7L1	0	ROD1	28.57	PPP2R1B	23.21
ENO1	9.23	TIMELESS	0.36	SNRPB	9.33	ESRG	0.05
HIF3A	5.21	YBX1	22.62	HSPA1B	11.61	PCBD2	0.36
MBD3	0.02	ZNF480	30.95	EIFIAX	0.16	GATAs	48.81
PHB2	9.33	CHD2	0.07	EIF5A	8.52		
PTMA	10.71	JUND	12.2	EEF2K	0.03		
Receptor related							
ANPEP	90.48	F3	19.05	INTS6	13.67	PHB2	9.33
ANXA1	4.6	GNB2L1	34.52	ITGB1	4.84	PLXNB2	8.81
ARF1	28.57	GPR68	0.16	LGALS3BP	47.62	SLAMF7	46.43
OPRL1	0.02	HSPIA1A	55.95	LRGP1	38.1		
DRD5	0.02	IFITM1	23.21	MTSS1	0.17		
EPHA4	0.03	IL6ST	4.06				
Calcium ion binding							
ACTN4	10	EEF2K	0.03	MRLC2	3.71	S100A7	113.1
ANXA1	4.6	EFHD2	11.31	PADI1	42.86	S100A8	204.17
ANXAI0	0.24	ITGB1	4.84	PRKCSH	29.76	S100A9	422.62
ANXAI1	16.67	ITPR3	0.22	REP52	3.18	SPARC	4.31
C1R	24.4	LRPB1	38.1	S100A10	4.16	SVIL	250
C1S	19.05	MACF1	6.07	S100A16	72.62	TKT	35.71
CLTB	10.32	MMP11	14.58	S100A2	72.62	VMD2L3	27.38
CSP2G2	27.38	MRCL3	4.76	S100A6	3.83		
Zinc ion binding							
ALPPL2	34.52	CRIP2	25	MMP11	14.58	S100A7	113.1
ANPEP	90.48	ESRG	0.05	MT1F	0.17	TRM2	0.18
RA117	25	GATA5	48.81	PARK2	0.02	ZFHXB1	0.26
CA2	0.26	GIT2	27.38	PDLIM1	15.48	ZF36L1	41.67
CPA2	0.01	HERC2	36.9	PDLIM7	46.43	ZNF480	30.95
CRIP1	4.17	HINT1	24.4				

(Continued)
from the expected were calculated with a two-sided binomial distribution. False discovery rates (Benjamini et al., 2001) and Bonferroni adjustments were also calculated. The biological meaning of the \(P \) values obtained depends upon the list of genes that are submitted; as our gene list is from a comparison of BA samples, it can be inferred that this cancer stimulates the processes involved within the functional groups that were most highly represented in the results of the GO classification.

In our set of differentially expressed genes, the functional groups demonstrating the most significant representation appear under the biological-process ontology and map to the cell-cycle regulation, DNA binding and regulation, cell–environment interaction, and cell-signaling categories.

Table 4 summarizes several important GO functional classes.

Validation of Transcriptional Targets

To evaluate further the SAGE data, we selected five novel genes (ANPEP, ECGF1, PP1201, EIF5A1, and GKN1, all of which have important cellular or biological features) for validation with qRT-PCR. We confirmed over-expression of ANPEP, ECGF1, PP1201, and EIF5A1 and down-regulation of GKN1 in primary GEJ and lower esophageal adenocarcinoma samples (Table 5, Fig. 2). Interestingly, GKN1 was not expressed in normal esophageal mucosa samples but showed a transient expression in BE samples where 4/6 of these samples demonstrated expression levels com-

Gene symbol	Ratio						
ADCYAPI	50.6	EPFA4	0.03	IL6ST	4.06	PDLIM1	15.48
ANXA1	4.6	FKBP8	41.67	ILK	27.38	PRMT1	30.95
ARFI	28.57	FMOD	0.17	ITGB1	4.84	PRKCSH	29.76
WNT4	0.03	GAST	0	ITPR3	0.22	PRMT1	30.95
BSG	11.46	GHRH	0.06	LGALS3BP	47.62	PDCR	47.62
BTRC	7.54	GNAS	0.02	LY6E	7.29	RAB40C	71.43
C15	19.05	GN2B2LI	34.52	MDK	10.12	REP52	31.85
C9orf86	25	GPR68	0.164	MKLN1	6.45	RHOD	26.19
CDS1	0.01	GRN	4.63	MTSS1	0.17	SFN	42.86
CEACAM6	8.57	HDGF	33.33	MYH9	0.02	SNX6	34.52
DRD5	0.02	HINT1	24.4	NMI	339.29	SPARC	4.31
ECGF1	54.76	IFIT1	23.21	OPRL1	0.02		
Inflammation							
ANXA1	4.6	LGALS3BP	47.62	PDLIM1	15.48	SERPINA3	74.4
CYBB	0.018	LY6E	7.29	PRMT1	30.95	TFF1	0.32
GPR68	0.164	ML2F	6.94	PTMS	6.19	TFF2	0.03
GPX1	9.92	NMI	339.29	S100A8	204.17		
ILIRN	7.94	ORM2	0.024	S100A9	422.62		
Cell environment interaction							
ACTN4	10	ECGF1	54.76	LY6D	45.83	S100A6	3.83
ADCYAPI	50.6	EMLIN1	26.19	MDK	10.12	S100A9	422.62
ANPEP	90.48	ENAH	0.01	MKLN1	6.45	SLAMF7	46.43
ANXA1	4.6	FCGGBP	0.18	MTSS1	0.17	SPON2	6.67
BTG1	0.31	GRN	4.63	PGMS	0.09	TSPAN1	0.01
CD9	9.52	IL32	17.86	PPIB2	0.05	WNT4	0.03
CEACAM6	8.57	KLK6	35.71	PPP2R1B	23.21		
CTGF	22.62	LGALS3BP	47.62	PDCR	47.62		

The average ratio is shown. This ratio was calculated by comparing the total number of tags in tumor samples and normal samples.

*Examples: GO: 0007049 cell cycle, GO: 0008283 cell proliferation, and GO: 0006915 apoptosis.
*Examples: GO: 0000166 nucleotide binding, GO: 0003677 DNA binding, and GO: 0006260 DNA replication.
*Examples: GO: 0003723 RNA binding and GO: 0003730 mRNA 3′-UTR binding.
*Examples: GO: 0003700 transcription factor activity, GO: 0006350 transcription, and GO: 0006355 DNA dependent regulation of transcription.
*Examples: GO: 0004872 receptor activity, GO: 0005102 receptor binding, and GO: 0005057 receptor signaling protein activity.
*Examples: GO: 0005509 calcium ion binding.
*Examples: GO: 0002702 zinc ion binding.
*Examples: GO: 0007165 signal transduction, GO: 0007166 cell surface receptor linked signal transduction, and GO: 0007186 G-protein coupled receptor protein signaling pathway.
*Examples: GO: 0006952 defense response and GO: 0006954 inflammatory response.
*Examples: GO: 0006928 cell motility, GO: 0007155 cell adhesion, and GO: 0007267 cell–cell signaling.

Table 4. Functional Classification of Deregulated Genes in Barrett’s Related Adenocarcinomas Using Gene Ontology (GO) (Continued)
parable to those observed in normal gastric mucosa. We did not have samples with Barrett’s dysplasia for qRT-PCR. The GKN1 expression was lost in almost all adenocarcinoma samples (Fig. 2). The qRT-PCR products were run on 1.2% agarose gels for visual confirmation of these results (Fig. 3). RT-PCR results for all five genes were also compared in each individual primary tissue sample to determine any correlations in combined gene expression levels; however, we were unable to find any correlations of statistical significance.

Expression of ANPEP in Tumor TMA

The IHC analysis demonstrated a lack of immunostaining for ANPEP in normal esophageal and gastric epithelial tissues. On the other hand, BAs showed overexpression of ANPEP (Score +1 to +3) in 35/65 (54%) tumors. A weak to moderate expression of ANPEP (Score +1 to +2) was observed in 6/7 (86%) high-grade Barrett’s dysplasia samples. The immunostaining pattern of ANPEP was cytoplasmic with strong extracellular and luminal expression (Fig. 4). The immunostaining for ANPEP was observed in tumors with intestinal and diffuse histological subtypes and in all stages (Table 6). However, the relatively small sample size did not provide a sufficient statistical power to detect significant correlations between the IHC staining patterns and clinicopathological factors such as tumor histology, grade, or stage.

DISCUSSION

In this study, we performed a comprehensive analysis of the transcriptome of BAs using SAGE. The major advantage to using SAGE is the quantitative ability to evaluate accurately transcript numbers without prior sequence information. The SAGE analysis produced a great deal of information about transcripts and candidate cancer genes, and we have interpreted these data in terms of possible genomic and functional organization of candidate cancer genes. SAGE analysis requires laborious and extensive sequencing that often limits the number of samples that are subjected to analysis. We obtained a total of 457,894 expressed tags from eight SAGE libraries with minimal singleton tags (32,035; 6.9%). The qRT-PCR analysis on a larger sample size confirmed the SAGE results and validated the overexpression of ANPEP, ECGF1, PP1201, and EIF51 and downregulation of GKN1. ECGF1 (thymidine phosphorylase) expression has been shown to correlate with the angiogenic activity of some tumors (Mazurek et al., 2006). ECGF1 expression may be a sign of tumor-stromal interac-

TABLE 5. Summary of qRT-PCR Results

Overexpressed genes	Downregulated gene				
EIF51	ECGF1	ANPEP	PP1201	GKN1	
All cases	9/31 (29)*	15/31 (48)	14/31 (45)	15/31 (48)	30/31 (97)
Gender					
Male	4/19 (21)	8/19 (42)	10/19 (53)	14/19 (74)	19/19 (100)
Female	2/4 (50)	3/4 (75)	1/4 (25)	1/4 (25)	0/4 (0)
Site					
GEJ	4/10 (40)	7/10 (70)	7/10 (70)	9/10 (90)	16/10 (160)
ESO	3/10 (30)	4/10 (40)	4/10 (40)	5/10 (50)	10/10 (100)
NA	2/5 (40)	4/5 (80)	3/5 (60)	0/5 (0)	4/5 (80)
Stage					
T1–T2	2/8 (25)	3/8 (37)	5/8 (62)	6/8 (75)	8/8 (100)
T3–T4	5/14 (36)	7/14 (50)	5/14 (36)	8/14 (56)	14/14 (100)
NA	3/9 (33)	5/9 (55)	4/9 (44)	1/9 (11)	8/9 (88)
Grade					
WD-MD	3/10 (30)	5/10 (50)	5/10 (50)	8/10 (80)	10/10 (100)
PD	2/9 (22)	4/9 (44)	5/9 (56)	6/9 (67)	9/9 (100)
NA	4/12 (33)	6/12 (50)	4/12 (33)	1/12 (8)	11/12 (92)
Node					
N0	2/8 (25)	2/8 (25)	5/8 (63)	6/8 (75)	8/8 (100)
N1–N2	4/13 (31)	7/13 (54)	4/13 (31)	7/13 (54)	13/13 (100)
N3–N4	0/0 (0)	0/0 (0)	0/0 (0)	0/0 (0)	0/0 (0)
NA	3/10 (30)	6/10 (60)	5/10 (50)	2/10 (20)	9/10 (90)

*Values in parentheses are percentages.

NA, information not available; GEJ, gastroesophageal junction; ESO, esophageal; WD, well-differentiated; MD, moderately-differentiated; PD, poorly differentiated. We did not observe statistical significance with any of the correlates due to small sample size.
Figure 2. Quantitative real-time reverse-transcription PCR showing fold expression changes at the mRNA level of five representative genes. qRT-PCR analysis was performed using iCycler on 31 lower esophageal and GEJ adenocarcinoma samples (Tu) and 6 Barrett’s esophagus (BE) samples in comparison with 26 normal glandular mucosa samples (N). The horizontal axis shows sample numbers, whereas the fold expression in tumor samples compared with that in normal samples is shown on the vertical axis. The fold expression was calculated according to the formula: $2^{\Delta C_T} = 2^{(C_T^{normal} - C_T^{tumor})}$ as detailed in the “Materials and Methods” section. Each bar represents one sample. The displayed mean fold expression for each sample is calculated in comparison with the expression average of the 26 normal samples. The expression of each gene was normalized to the expression of HPRT1, which showed minimal variation in all normal and neoplastic samples tested. GKN1 shows downregulation (<0.4-fold expression) whereas ANPEP, PP1201, EIF5A1, and ECGF1 demonstrate overexpression (>2.5 fold expression) in primary tumors as compared to normal tissue samples.
tion promoting greater vascularization around the cancer lesion and has also been found to protect cells from DNA-damaging agents and related apoptosis (Jeung et al., 2006). EIF5A1 (eukaryotic translation factor 1) has been shown to be involved in cell proliferation through the action of polyamines (Nishimura et al., 2002, 2005), and plays a role in the regulation of TP53-related apoptosis (Li et al., 2004). PP1201, also known as transmembrane Bax inhibitor motif-containing 1 (TMBIM1), is a novel gene of cancer cells. Although very little is known regarding GKN1, it has been previously reported as highly expressed in normal gastric epithelium (Martin et al., 2003) and down-regulated in gastric carcinomas (Oien et al., 2004). We have detected strong expression of GKN1 in BE that was followed with loss of its expression in adenocarcinomas. This transient expression of GKN1 may be a protective response to acid-induced reflux-disease injury that is the lost with cellular progression to cancer. ANPEP, also known as CD13, is of a particular clinical interest since it is a secreted protein that may be used as a potential biomarker. Using IHC, analysis of ANPEP expression demonstrated protein expression at the outer cell membrane layers with significant secretion into the lumen of 6/7 Barrett’s high-grade dysplasia samples and generally greater expression in 35/65 adenocarcinomas, suggesting that ANPEP overexpression may be an early event in carcinogenesis. ANPEP expression plays a role in angiogenesis where a reduction in expression has been shown to cause reduced capillary formation (Fukasawa et al., 2006), cell motility (Chang et al., 2005), and adhesion (Fukasawa et al., 2006). Inhibition of ANPEP decreases the invasive potential of metastatic tumor cells in vitro (Saiki et al., 1993). Interestingly, ANPEP is also a cell-surface metalloproteinase that acts as a receptor for human coronavirus (Yeager et al., 1992) and is considered to be a marker for epithelial–mesenchymal interaction (Sorrell et al., 2003).

The combination of transcriptional analysis together with cytogenetic information provided a powerful tool to align altered transcripts across the human genome. Interestingly, the distribution of deregulated genes did not follow a uniform pattern across the genome. Instead, we found a remarkable pattern of distribution with the presence of transcriptional hot spots along chromosomal domains. From this pattern, we were able to identify novel, transcriptionally active, and oncogenic hot spots. One of our surprising findings was the clustering of 26 overexpressed genes in one of the smallest human chromosomes, 19. We also identified a number of other hot spots, such as 1q21 (13 genes), 12p13 (9 genes), and 6p21.2 (6 genes) (Table 2) in a recent analysis of amplification-based clustering demonstrated that cancers with similar etiology, cell-of-origin, or topographical location have a tendency to obtain convergent amplification profiles (Myllykangas et al., 2006). In line with this observation, Vogel et al. (2005) reported that genes expressed in concert are organized in a linear arrangement for coordinated regulation. The present evidence suggests organization of a large proportion of the human transcriptome into gene clusters throughout the genome, which are partly regulated by the same transcription factors, share biological functions, and are characterized by non-housekeeping genes (Vogel et al., 2005). Taken together, our results further highlight the complex organization of the cancer genome and suggest that integrated analysis of the transcriptome may reveal similar findings in other tumors as well.

Each cancer candidate gene was assigned to a functional group based on GO information (Table 4).
Using this approach, several groups that are highly interesting and relevant to carcinogenesis were identified including transcriptional regulators (38 genes) and zinc finger transcription factors (23 genes). Similarly, several candidate genes were found to be involved in the notable functional groups of cell-environment interaction and signal transduction. Subsets of these groups were of interest and included metalloproteinases and G proteins and their regulators. Among the interesting groups, we also observed deregulation of 31 genes that regulate cell calcium homeostasis. The role of calcium-binding proteins in carcinogenesis has drawn a complex picture showing downregulation or overexpression depending upon the tumor type and location (Kao et al., 1990; Mueller et al., 1999).

Figure 4. Immunohistochemical staining for ANPEP. (A, B) Normal gastric tissue glands (A) and normal esophageal squamous tissues (B) are negative for ANPEP immunostaining (Score 0). (C) Barrett’s dysplastic tissue demonstrates immunostaining for ANPEP that is secreted in the lumen (Score +2). (D) Barrett’s metaplasia tissue shows glandular staining (Score +2). (E) Diffuse-type esophageal adenocarcinoma tissue shows staining for ANPEP in the cell cytoplasm with significant localization along the cell membranes (Score +3). (F) Intestinal-type esophageal adenocarcinoma tissue showing high levels of ANPEP along the cell membranes as well as luminal secretion (Score +3). All photos (insets at upper-right quadrant) are taken at 200× and 400× magnification.
TABLE 6. Summary of Immunohistochemistry Analysis of ANPEP on Tissue Microarrays

	IHC score				
	0	1	2	3	Total
All cases	30 (46)	21 (32)	6 (9)	8 (12)	65 (100)
Gender					
Male	22 (73)	16 (76)	6 (100)	7 (88)	51 (78)
Female	2 (7)	2 (10)	0 (0)	1 (13)	5 (8)
NA	5 (17)	3 (14)	0 (0)	0 (0)	8 (13)
Site					
GEJ	11 (37)	8 (38)	3 (50)	6 (75)	28 (43)
ESO	15 (50)	11 (52)	3 (50)	2 (25)	31 (48)
NA	3 (10)	2 (10)	0 (0)	0 (0)	5 (8)
Histology					
Diffuse	10 (33)	7 (33)	0 (0)	2 (25)	19 (29)
Intestinal	19 (63)	14 (67)	6 (100)	6 (75)	45 (69)
Stage					
T1–T2	6 (20)	10 (48)	2 (33)	1 (13)	19 (29)
T3–T4	15 (50)	6 (29)	3 (50)	4 (50)	28 (43)
NA	8 (27)	5 (24)	1 (17)	3 (38)	17 (26)
Grade					
WD	3 (10)	3 (14)	1 (17)	0 (0)	7 (11)
MD	4 (13)	5 (24)	2 (33)	2 (25)	13 (20)
PD	19 (63)	13 (62)	3 (50)	6 (75)	41 (63)
Node					
N0	18 (60)	10 (48)	4 (67)	2 (25)	34 (52)
N1–N2	3 (10)	8 (38)	1 (17)	4 (50)	16 (25)
N3–N4	1 (3)	0 (0)	0 (0)	0 (0)	1 (2)
NA	7 (23)	3 (14)	1 (17)	2 (25)	13 (20)

NA, information not available; GEJ, gastrointestinal; ESO, esophageal; WD, well-differentiated; MD, moderately-differentiated; PD, poorly-differentiated.

*Values in parentheses are percentages.

We thank Mr. Frank Revetta for his technical assistance and Mrs. Sheryl Mroz for editing this manuscript.

REFERENCES

Argani P, Rotty C, Reitter RE, Wilentz RE, Murugesan SR, Leach SD, Ryu B, Skinner HG, Goggins M, Jaffe EM, Yeo CJ, Cameron JL, Kern SE, Hruban RH. 2001. Discovery of new markers of cancer through serial analysis of gene expression: Prostate stem cell antigen is overexpressed in pancreatic adenocarcinoma. Cancer Res 61:4320–4324.

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richards JE, Ringwald M, Rubin GM, Sherlock G. 2000. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29.

Bakkenist CJ, Kastan MB. 2004. Phosphatases join kinases in DNA-damage response pathways. Trends Cell Biol 14:339–341.

Belkhiri A, Zaika A, Pulkovka N, Knuttula S, Moskaluk C, El-Rifai W. 2005. Darpp-32: An novel antipapoptotic gene in upper gastrointestinal carcinomas. Cancer Res 65:6583–6592.

Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. 2001. Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125:279–284.

Blot WJ, Devesa SS, Fraumeni JF, Jr. 1993. Continuing climb in rates of esophageal adenocarcinoma: An update. JAMA 270:1320.

Brabender J, Lord RV, Wickrasmasinghe K, Metzger R, Schneider PM, Park JM, Holscher AH, DeMeester TR, Danenberg KD, Danenberg PV. 2002. Glutathione S-transferase-pi expression is downregulated in patients with Barrett’s esophagus and esophageal adenocarcinoma. J Gastrointest Surg 6:359–367.

Buckhaults R, Pago C, St Croix B, Romans KE, Saha S, Zhang L, Vogelstein B, Kinzler KW. 2001. Secrecy and cell surface gene expression in benign and malignant colorectal tumors. Cancer Res 61:6996–7001.

Caron H, van Schaik B, van der Mee M, Baas F, Riggins G, van Sluis PV, Hermus MC, van Asperen R, Boon K, Voute PA, Heisterkamp S, van Kampen A, Versteeg R. 2001. The human transcriptome map: Clustering of highly expressed genes in chromosomal domains. Science 291:1299–1292.

Chang YW, Chen SC, Cheng EC, Ko YP, Lin YC, Kao YR, Tsay YG, Yang PC, Wu CW, Roffler SR. 2005. CD13 (aminopeptidase N) domains. Science 291:1289–1292.

Chang Y, Chen SC, Cheng EC, Ko YP, Lin YC, Kao YR, Tsay YG, Yang PC, Wu CW, Roffler SR. 2005. CD13 (aminopeptidase N) can associate with tumor-associated antigen L6 and enhance the motility of human lung cancer cells. Int J Cancer 116:243–252.

Cremer T, Cremer C. 2001. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301.

Culp LA, Holleran JL, Miller CJ. 2001. Tracking prostate carcinoma micrometastasis to multiple organs using histochemical marker genes and novel cell systems. Histol Histopathol 16:945–953.

Danenberg PV. 2002. Glutathione S-transferase-pi expression is downregulated in patients with Barrett’s esophagus and esophageal adenocarcinoma. J Gastrointest Surg 6:359–367.

Dolan K, Garde J, Walker SJ, Sutton R, Gosney J, Field JK. 1999. Tracking prostate carcinoma micrometastasis to multiple organs using histochemical marker genes and novel cell systems. Histol Histopathol 16:945–953.

Dolan K, Garde J, Walker SJ, Sutton R, Gosney J, Field JK. 1999. LOH at the sites of the DCC, APC, and TP53 tumor suppressor genes occurs in Barrett’s metaplasia and dysplasia adjacent to adenocarcinoma of the esophagus. Hum Pathol 30:1508–1514.

Draghici S, Khatri P, Martins RP, Ostermeier GC, Krawetz SA. 2003. Global functional profiling of gene expression. Genomics 81:98–104.

El-Rifai W, Powell S. 2002. Molecular and biologic basis of upper gastrointestinal malignancy gastric carcinoma. Surg Oncol Clin North Am 11:273–291.

El-Rifai W, Harper JC, Cummings OW, Hyytinen E, Frierson HF, Jr., Knuttila S, Powell SM. 1998. Consistent genetic alterations in xenografts of proximal stomach and gastro-esophageal junction adenocarcinomas. Cancer Res 58:34–37.

El-Rifai W, Frierson HF, Jr., Moskaluk CA, Harper JC, Metzger R, Schneider PM, Danenberg PV. 2002. Glutathione S-transferase-pi expression is downregulated in patients with Barrett’s esophagus and esophageal adenocarcinoma. J Gastrointest Surg 6:359–367.

El-Rifai W, Smith MF, Jr., Li G, Beckler A, Carl VS, Montgomery E, Knuttila S, Moskaluk CA, Frierson HF, Jr., Powell SM. 2002. Gastric Cancers Overexpress DARPP-32 and a Novel Isoform, t-DARPP. Cancer Res 62:4061–4064.
tion: An endoscopic surveillance programme. Gruppo Operativo per lo Studio delle Precancerose Esofagee (GOSPE). Eur J Gastroenterol Hepatol 9:881–885.

Fukasawa K, Fujita H, Saitoh Y, Koizumi K, Aozuka Y, Sekine K, Yamada M, Saiki I, Nishikawa K. 2006. Aminopeptidase N (APN/CD13) is selectively expressed in vascular endothelial cells and plays a regulatory role in angiogenesis. Cancer Lett 235:135–143.

Harold SM, Smith RR, Cameron JL. 1988. Prevalence and characteristics of Barrett esophagus in patients with adenocarcinoma of the esophagus or esophageal-gastric junction. Hum Pathol 19:942–948.

Heizmann CW, Fritz G, Schafer BW. 2002. S100 proteins: Structure, functions and pathology. Front Biosci 7:d1356–d1368.

Hough CD, Sherman-Baust CA, Prizer ES, Montz FJ, Im DD, Rose- nein NB, Cho KR, Riggins GJ, Mott JP. 2000. Large-scale se- rial analysis of gene expression reveals genes differentially expressed in ovarian cancer. Cancer Res 60:6281–6287.

Imazawa M, Hibi K, Fujitake S, Kodera Y, Ito K, Akiyama S, Nakao K, Ohki Y, Fukuchi-Shimogori T, Sakata K, Saiga K, Kawauchi Y, Higashiyama Y, Watanabe H, Kato H, Miyazaki T, Fukuchi M, Yoneda J, Ohki Y, Hara T, Maruyama T, Nishiyama K, Nakajima M, Fukai Y, Saida M, Kimura M, Funahashi T. 2004. Genetic altera- tions in esophageal cancer. Surg Today 35:7–18.

Lal A, Lash AE, Alschul SF, Velculescu V, Zhang L, McLendon RE, Marra MA, Prange C, Mott JP, Polvak K, Papadopulos N, Vogelstein B, Kinzler KW, Strausberg RL, Riggins GJ. 1999. A public database for gene expression in human cancers. Cancer Res 59:5403–5407.

Li AL, Li HY, Jin BF, Ye QN, Zhou T, Yu XD, Pan X, Man JH, He K, Yu M, Hu MR, Wang J, Yang SC, Shen BF, Zhang XM. 2004. A novel eIF5A complex functions as a regulator of p53 and p53-dependent apoptosis. J Biol Chem 279:49251–49258.

Margulies EH, Innis JW. 2000. eSAGE: Managing and analysing data generated with serial analysis of gene expression (SAGE). Bioinformatics 16:650–651.

Margulies EH, Kardia SL, Innis JW. 2001. A comparative molecular analysis of developing mouse forelimbs and hindlimbs using serial analysis of gene expression (SAGE). Bioinformatics 17:1311–1319.

Muller A, Bucht T, Hochi M, Schafer BW, Heizmann CW. 1999. Subcellular distribution of ST0 proteins in tumor cells and their relocation in response to calcium activation. Histochem Cell Biol 111:453–459.

Myllykangas S, Himberg J, Bohling T, Nagy B, Hollmen J, Knuutila S, Hampton GM, El-Rifai W, Theodorescu D. 2006. A chromosome clustering of a human transcriptome reveals regulatory background. BMC Bioinformatics 7:230.

Nishimura K, Ohki Y, Fukuchi-Shimogori T, Sakata K, Saga K, Beppu T, Shirahata A, Kashigawa K, Igarashi K. 2002. Inhibition of cell growth through inactivation of the eukaryotic translation initiation factor 5A (eIF5A) by deoxyspergualin. Biochem J 363:761–768.

Nishimura K, Nishimura K, Shirahata A, Park MH, Kashigawa K, Igarashi K. 2005. Independent roles of eIF5A and polynucleotides in cell proliferation. J Biol Chem 280:779–785.

O’Connor JB, Falk GW, Richter JE. 1999. The incidence of adenocarci- nose, Chromosoma & Cancer DOI 10.1002/gcc

Cleveland Clinic Barrett’s Esophagus Registry. Am J Gastroenterol 94:2037–2042.

Oden KA, McGreegor F, Butler S, Ferrier RK, Downie I, Bryce S, Burns S, Keith WN. 2004. Barrett’s oesophagus is abundantly and galli- cally expressed in superficial gastric epithelium, down-regulated in gastric carcinoma, and shows high evolutionary conservation. J Pathol 203:797–803.

Parle-McDermott A, McWilliam P, Tighe O, Dunican D, Croke DT. 2000. Serial analysis of gene expression identifies putative metas- tasis-associated transcripts in colon tumour cell lines. Br J Cancer 83:725–730.

Parsons R. 1998. Phosphatases and tumorigenesis.Curr Opin Oncol 10:88–91.

Phillips GL, Reece DE, Shepherd JD, Barrett MJ, Brown RA, Frei L, Klingen GM, Bolwijn BJ, Spinelli JJ, Herzig RH, Herzig GP. 1991. High-dose cytaraibrate and daunorubicin induc- tion and postremission chemotherapy for the treatment of acute myelogenous leukemia in adults. Blood 77:1429–1435.

Rana PS, Johnston DA. 2000. Incidence of adenocarcinoma and mortality in patients with Barrett’s oesophagus diagnosed between 1976 and 1986: Implications for endoscopic surveillance. Dis Esophagus 13:28–31.

Regadalo SP, Nambo Y, Iannettoni MD, Orringer MB, Beer DG. 1998. Abundant expression of the intestinal protein villin in Bar-rett’s metaplasia and esophageal adenocarcinoma. Mol Carcinog 22:182–189.

Saiki I, Fujii H, Yoneda J, Abe F, Nakajima M, Tsuruo T, Azuma I. 1993. Role of aminopeptidase N (CD13) in tumor-cell invasion and extracellular matrix degradation. Int J Cancer 54:137–143.

Sato F, Meltzer SJ. 2006. CpG island hypermethylisation in progres- sion of esophageal and gastric cancer. Cancer 106:483–493.

Serag HB. 2006. Time trends of gastrointestinal reflux disease: A systematic review. Clin Gastroenterol Hepatol 5:17–26.

Seth P, Kroop I, Porter D, Polvak K. 2002. Novel estrogen and tamox-ifen induced genes identified by SAGE (Serial Analysis of Gene Expression). Oncogene 21:836–843.

Sorrell JM, Baber MA, Brinon L, Carrano DA, Seavolt M, Asselineau D, Capitol AP. 2003. Production of a monoclonal antibody, DF-5, that identifies cells at the epithelial-mesenchymal interface in normal human skin. APN/CD13 is an epithelial-mesenchymal marker in skin. Exp Dermatol 12:315–323.

St Clair B, Rago C, Velculescu V, Traverso G, Romans KE, Mont- gomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW. 2000. Genes expressed in human tumor endothelium. Sci- ence 289:1197–1202.

Swami S, Kumble S, Triadafilopoulos G. 1995. E-cadherin expres- sion in gastrointestinal reflux disease, Barrett’s esophagus, and esophageal adenocarcinoma: An immunohistochemical and immu- nohistoblot study. Am J Gastroenterol 90:1808–1813.

van Derkken H, Paris PL, Albertson DG, Alers JC, Andaya A, Kow- sel D, van der Kwaak T, Piorko D, Schroeder FH, Visser KJ, Wildhagen MF, Collins C. 2004. Evaluation of genetic patterns in different tumor areas of intermediate-grade prostatic adenocarci- nomas by high-resolution genomic array analysis. Genes Chromo- somes Cancer 39:249–256.

Varek A, Wolf M, Monre O, Vakkari ML, Kokkola A, Moskaluk C, Fricson H, Jr., Powell SM, Knutiu S, Kallioniemi A, El-Rafi W. 2002. Targets of gene amplification and overexpression at 17q in gastric cancer. Cancer Res 62:2625–2629.

Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. 1995. Serial analysis of gene expression. Science 270:848–847.

Velculescu VE, Vogelstein B, Kinzler KW. 2000. Analysing uncharted transcriptomes with SAGE. Trends Genet 16:423–425.

Ventura JJ, Nebreda AR. 2006. Protein kinases and phosphatases as therapeutic targets in cancer. Clin Transl Oncol 8:153–160.

Vogel JH, von Heidebreck A, Purmann A, Sperling S. 2005. Chromo- somal clustering of a human transcriptome reveals regulatory background. BMC Bioinformatics 6:230.

Wu GD, Beer DG, Moore JH, Orringer MB, Appelman HD, Traber PG. 1993. Sustance-isomaltase gene expression in Barrett’s esophagus and adenocarcinoma. Gastroenterology 105:837–844.

Wu Z, Siadaty MS, Riddick G, Frierson HF, Jr., Lee JK, Golden W, Knutiu S, Hampton GM, El-Rafi W, Theodorescu D. 2006. A novel method for gene expression mapping of metastatic compet- ence in human bladder cancer. Neoplasms 8:205–211.

Yeager CL, Ashmun RA, Williams RK, Cardellio CB, Shapiro LH, Look AT, Holmes KV. 1992. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357:420–422.