Creator-annihilator domains
and the number operator

P. L. Robinson

Abstract

We show that for the bosonic Fock representation in infinite dimensions, the maximal common domain of all creators and annihilators properly contains the domain of the square-root of the number operator.

Introduction

A standard construction of the bosonic Fock representation of a complex Hilbert space V is in terms of creators and annihilators on the symmetric algebra SV in which the number operator N scales elements by homogeneous degree; the symmetric algebra is completed relative to a canonical inner product and these various operators are extended to maximal domains in the resulting Fock space $S[V]$.

It is well-known that all creators and annihilators are defined on the domain of the square-root $N^{\frac{1}{2}}$. A natural question (raised on page 16 of [2] by Berezin, among others; compare page 65 of [4]) is whether the domain of $N^{\frac{1}{2}}$ coincides with the maximal common domain of all creators and annihilators. Here, we demonstrate that the answer to this question is affirmative when V is finite-dimensional but negative when V is infinite-dimensional.

As noted above, the specific question that is answered in this paper appears in [2]. Among many standard references concerning the bosonic Fock representation, we cite [1] and [3]. The particular approach taken here (involving the full antidual of the symmetric algebra) was introduced in [6] as a means to establishing a generalized version of the classic Shale theorem.
on the implementation of symplectic automorphisms, independently of the generalization previously presented in [5].

Fock-lore

We begin by recalling certain familiar elements of Fock-lore, pertaining to the construction of bosonic Fock space and the various operators defined therein. For traditional accounts, see a standard text such as [1] or [3]; for an account in line with the present paper, see [6].

To be explicit, let V be a complex Hilbert space. Extend its inner product $\langle \cdot | \cdot \rangle$ to the symmetric algebra $SV = \bigoplus_{n \geq 0} S^n V$ by declaring that the homogeneous summands $(S^n V : n \geq 0)$ be perpendicular and that if $n \geq 0$ and $x_1, \ldots, x_n, y_1, \ldots, y_n \in V$ then

$$\langle x_1 \cdots x_n | y_1 \cdots y_n \rangle = \sum_p \prod_{j=1}^n \langle x_j | y_{p(j)} \rangle$$

where p runs over all permutations of $\{1, \ldots, n\}$; the resulting complex Hilbert space completion is (by definition) the bosonic Fock space $S[V] = \bigoplus_{n \geq 0} S^n [V]$.

For our purposes, it is convenient to introduce also the full antidual SV' comprising all antilinear functionals $SV \rightarrow \mathbb{C}$. This full antidual SV' is naturally a commutative, associative algebra under the product defined by

$$\Phi, \Psi \in SV' \implies [\Phi \Psi](\theta) = (\Phi \otimes \Psi)(\Delta \theta)$$

where the coproduct $\Delta : SV \rightarrow SV \otimes SV$ arises when the canonical isomorphism $S(V \oplus V) \cong SV \otimes SV$ follows the homomorphism $SV \rightarrow S(V \oplus V)$ induced by the diagonal map $V \rightarrow V \oplus V$. The inner product on SV engenders an algebra embedding

$$SV \rightarrow SV' : \phi \mapsto \langle \cdot | \phi \rangle$$

and $S[V]$ is identified with the subspace of SV' comprising all bounded antilinear functionals.

Let $v \in V$. The creator $c(v)$ is defined initially on SV as the operator of multiplication by v:

$$\phi \in SV \implies c(v)\phi = v\phi.$$
The annihilator $a(v)$ is defined initially on SV as the linear derivation that kills the vacuum $1 \in C = S^0V$ and sends $w \in V = S^1V$ to $\langle v|w \rangle$: thus, if $v_1, \ldots, v_n \in V$ then
\[
a(v)(v_1 \cdots v_n) = \sum_{j=1}^{n} \langle v|v_j \rangle v_1 \cdots \widehat{v_j} \cdots v_n
\]
where the circumflex $\widehat{}$ signifies omission. As may be verified by direct calculation, $c(v)$ and $a(v)$ are mutually adjoint:
\[
\phi, \psi \in SV \implies \langle \psi|c(v)\phi \rangle = \langle a(v)\psi|\phi \rangle.
\]
Accordingly, the creator $c(v)$ and annihilator $a(v)$ extend to SV' by antiduality: if $\Phi \in SV'$ and $\psi \in SV$ then
\[
[c(v)\Phi](\psi) = \Phi[a(v)\psi]
\]
and
\[
[a(v)\Phi](\psi) = \Phi[c(v)\psi].
\]
Finally, the corresponding (mutually adjoint) operators in Fock space $S[V] \subset SV'$ are defined by restriction to the (coincident) natural domains
\[
\mathcal{D}[c(v)] = \{ \Phi \in S[V] : c(v)\Phi \in S[V] \}
\]
and
\[
\mathcal{D}[a(v)] = \{ \Phi \in S[V] : a(v)\Phi \in S[V] \}.
\]
The number operator N is defined initially on SV by the rule
\[
n \geq 0 \implies N|S^nV = nI
\]
and extends to SV' by antiduality:
\[
\Phi \in SV', \psi \in SV \implies [N\Phi](\psi) = \Phi[N\psi].
\]
The number operator in $S[V] \subset SV'$ is defined by restriction to the natural domain
\[
\mathcal{D}[N] = \{ \Phi \in S[V] : N\Phi \in S[V] \}
\]
which may be identified in terms of the decomposition $S[V] = \bigoplus_{n \geq 0} S^n[V]$ as
\[
\mathcal{D}[N] = \{ \sum_{n \geq 0} \Phi_n \in S[V] : \sum_{n \geq 0} \|n\Phi_n\|^2 < \infty \}.
\]
We remark that the number operator \(N \) in \(S[V] \) is selfadjoint (indeed, positive): \(\bigoplus_{n \geq 0} S^n[V] \) is its spectral decomposition, whence powers of \(N \) are readily described in concrete terms; in particular,
\[
\mathcal{D}[N^{\frac{1}{2}}] = \{ \Phi \in S[V] : \sum_{n \geq 0} n \|\Phi_n\|^2 < \infty \}.
\]

Theorems

Having established sufficient background, we now proceed to our primary task: that of relating \(\mathcal{D}[N^{\frac{1}{2}}] \) to the maximal common domain of all creators and annihilators in Fock space.

Let \(u \in V \) be (for convenience) a unit vector: the unitary decomposition \(V = C u \bigoplus u^\perp \) induces (for each \(n \geq 0 \)) a unitary decomposition
\[
S^n V = \bigoplus_{p+q=n} \{ S^p(C u) \otimes S^q(u^\perp) \}.
\]
Decomposing \(\phi \in S^n V \) as
\[
\phi = \sum_{p+q=n} u^p \otimes \psi_q
\]
we note (by perpendicularly) that
\[
\|\phi\|^2 = \sum_{p+q=n} \|u^p\|^2 \|\psi_q\|^2 = \sum_{p+q=n} p! \|\psi_q\|^2
\]
and that
\[
\|c(u)\phi\|^2 = \sum_{p+q=n} \|u^{p+1}\|^2 \|\psi_q\|^2 = \sum_{p+q=n} (p+1)! \|\psi_q\|^2
\]
whence it follows that
\[
\|c(u)\phi\|^2 \leq (n+1)\|\phi\|^2.
\]
This inequality continues to apply when \(\phi \) lies in the closure \(S^n[V] \); in particular, \(S^n[V] \subset \mathcal{D}[c(u)] \). Now, if \(\Phi \in \mathcal{D}[N^{\frac{1}{2}}] \) then
\[
\|c(u)\Phi\|^2 = \sum_{n \geq 0} \|c(u)\Phi_n\|^2 \leq \sum_{n \geq 0} (n+1)\|\Phi_n\|^2 = \|N^{\frac{1}{2}}\Phi\|^2 + \|\Phi\|^2
\]
whence \(\Phi \in \mathcal{D}[c(u)] = \mathcal{D}[a(u)] \). Lifting the convenient hypothesis that \(u \in V \) be a unit vector, we have justified the following result.
Theorem 1 If \(u \in V \) then \(D[N^\frac{1}{2}] \) is contained in \(D[c(u)] = D[a(u)] \).

Thus, \(D[N^\frac{1}{2}] \) is contained in the maximal common domain of all creators and annihilators in Fock space.

We now consider the reverse containment in case \(V \) is finite-dimensional, with \((u_1, \ldots, u_m) \) a unitary basis. If the integers \(n_1, \ldots, n_m \geq 0 \) have sum \(n \) then for each \(j \in \{n_1, \ldots, n_m\} \)
\[
c(u_j)a(u_j)(u_1^{n_1} \cdots u_m^{n_m}) = n_j(u_1^{n_1} \cdots u_m^{n_m})
\]
so
\[
\sum_{j=1}^{m} c(u_j)a(u_j)(u_1^{n_1} \cdots u_m^{n_m}) = n(u_1^{n_1} \cdots u_m^{n_m}).
\]
By linearity, it follows that
\[
\sum_{j=1}^{m} c(u_j)a(u_j) \phi = n \phi
\]
whenever \(\phi \in S^n V \) and indeed whenever \(\phi \in S^n [V] \) by the boundedness of creators and annihilators on homogeneous elements of Fock space. Now, if \(\Phi \in D[a(u_1)] \cap \cdots \cap D[a(u_m)] \) then
\[
\infty > \sum_{j=1}^{m} \|a(u_j)\Phi\|^2 = \sum_{j=1}^{m} \sum_{n \geq 0} \|a(u_j)\Phi_n\|^2
\]
whence (valid) passage of annihilators across the inner product as creators yields
\[
\infty > \sum_{n \geq 0} \langle \Phi_n | \sum_{j=1}^{m} c(u_j)a(u_j)\Phi_n \rangle = \sum_{n \geq 0} n \|\Phi_n\|^2
\]
which places \(\Phi \) in \(D[N^\frac{1}{2}] \). This justifies the following result.

Theorem 2 If \((u_1, \ldots, u_m) \) is a unitary basis for the finite-dimensional \(V \) then
\[
D[N^\frac{1}{2}] = D[a(u_1)] \cap \cdots \cap D[a(u_m)]
\]
and if \(\Phi \) lies in this domain then
\[
\|N^\frac{1}{2} \Phi\|^2 = \sum_{j=1}^{m} \|a(u_j)\Phi\|^2.
\]

In particular, if \(V \) is finite-dimensional then \(D[N^\frac{1}{2}] \) coincides with the maximal common domain of all creators and annihilators in Fock space.
The case in which V is infinite-dimensional is different. To see this, let
\[\Phi = \sum_{n>0} \Phi_n \in SV' \]
be defined by
\[n > 0 \implies \Phi_n = \lambda_n (u_n)^n / n! \]
where $(\lambda_n : n > 0)$ is a complex sequence and where the unit vectors $(u_n : n > 0)$ in V are perpendicular. From
\[n > 0 \implies \|\Phi_n\|^2 = |\lambda_n|^2 \|u_n\|^2 / (n!)^2 = |\lambda_n|^2 / n! \]
it follows that
\[\Phi \in S[V] \iff \sum_{n>0} \frac{|\lambda_n|^2}{n!} < \infty \]
and that
\[\Phi \in D[N^{\frac{1}{2}}] \iff \sum_{n>0} \frac{|\lambda_n|^2}{(n-1)!} < \infty. \]
Further, let $v \in V$: if $n > 0$ then
\[a(v)\Phi_n = \langle v|u_n \rangle \lambda_n (u_n)^{n-1} / (n-1)! \]
whence
\[\|a(v)\Phi\|^2 = \sum_{n>0} |\langle v|u_n \rangle|^2 \frac{|\lambda_n|^2}{(n-1)!}. \]
Now, if $(\lambda_n : n > 0)$ is chosen so that
\[\sum_{n>0} \frac{|\lambda_n|^2}{n!} < \infty = \sum_{n>0} \frac{|\lambda_n|^2}{(n-1)!} \]
then $\Phi \in S[V] \setminus D[N^{\frac{1}{2}}]$ while if also $(|\lambda_n|^2 / (n-1)! : n > 0)$ is bounded above by $K > 0$ then
\[\|a(v)\Phi\|^2 \leq \sum_{n>0} |\langle v|u_n \rangle|^2 K \leq K \|v\|^2 \]
which places Φ in $D[a(v)] = D[c(v)]$. Of course, these conditions are easily satisfied: for example, when $n > 0$ simply take $|\lambda_n|^2 / (n-1)! = 1/n$. As the vector $v \in V$ is arbitrary, the following result is justified.

Theorem 3 If V is infinite-dimensional then $D[N^{\frac{1}{2}}]$ is properly contained in the maximal common domain of all creators and annihilators.

Without proof, we remark that similar results hold for higher powers of the number operator: thus, if $k > 0$ then $D[N^{\frac{k}{2}}]$ is contained in the maximal common domain of all degree k polynomials in creators and annihilators, containment being strict precisely when V is infinite-dimensional.
References

[1] J. C. Baez, I. E. Segal and Z. Zhou, Introduction to Algebraic and Constructive Quantum Field Theory. Princeton University Press (1992).

[2] F. A. Berezin, The Method of Second Quantization. Academic Press (1966).

[3] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics II. Springer-Verlag (1981).

[4] J. T. Ottesen, Infinite Dimensional Groups and Algebras in Quantum Physics. Springer-Verlag (1995).

[5] S. M. Paneitz, J. Pedersen, I. E. Segal and Z. Zhou, Singular Operators on Boson Fields as Forms on Spaces of Entire Functions on Hilbert Space. J. Functional Analysis 100 (1991) 36-58.

[6] P. L. Robinson, The bosonic Fock representation and a generalized Shale theorem. University of Florida preprint (1998); arXiv:1203.5841v1.

Department of Mathematics
University of Florida
Gainesville, FL 32611

e-mail: paulr@ufl.edu