Mitogenomic Evidence for an Indo-West Pacific Origin of the Clupeoidei (Teleostei: Clupeiformes)

Sébastien Lavoué1,2*, Masaki Miya3, Prachya Musikasinthorn4, Wei-Jen Chen1, Mutsumi Nishida2

1 Institute of Oceanography, National Taiwan University, Taipei, Taiwan, 2 Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan, 3 Natural History Museum and Institute, Chiba, Japan, 4 Faculty of Fisheries, Kasetsart University, Bangkok, Thailand

Abstract

The clupeoid fishes are distributed worldwide, with marine, freshwater and euryhaline species living in either tropical or temperate environments. Regional endemism is important at the species and genus levels, and the highest species diversity is found in the tropical marine Indo-West Pacific region. The clupeoid distribution follows two general pattern of species richness, the longitudinal and latitudinal gradients. To test historical hypotheses explaining the formation of these two gradients, we have examined the early biogeography of the Clupeoidei in reconstructing the evolution of their habitat preferences along with their ancestral range distributions on a time-calibrated mitogenomic phylogeny. The phylogenetic results support the distinction of nine main lineages within the Clupeoidei, five of them new. We infer several independent transitions from a marine to freshwater environment and from a tropical to temperate environment that occurred after the initial diversification period of the Clupeoidei. These results combined with our ancestral range reconstruction hypothesis suggest that the probable region of origin and diversification of the Clupeoidei during the Cretaceous period was the tropical marine precursor to the present Indo-West Pacific region. Thus, our study favors the hypotheses of “Region of origin” and “Tropical conservatism” to explain the origins of the longitudinal and latitudinal gradients of clupeoid species richness, respectively. Additional geological and paleontological evidence further define the tropical marine paleo-region of origin as the eastern Tethys Sea region. The Cretaceous fossil record of the Clupeoidei is partially incongruent with the results here as it contains taxa found outside this region. We discuss three possible causes of conflict between our biogeographical hypothesis and the distributions of the Cretaceous clupeoid fossils: regional extinction, incomplete taxonomic sampling and incorrect timescale estimation.

Citation: Lavoué S, Miya M, Musikasinthorn P, Chen W-J, Nishida M (2013) Mitogenomic Evidence for an Indo-West Pacific Origin of the Clupeoidei (Teleostei: Clupeiformes). PLoS ONE 8(2): e56485. doi:10.1371/journal.pone.0056485

Editor: Fausto Tinti, University of Bologna, Italy

Received August 9, 2012; Accepted January 10, 2013; Published February 19, 2013

Copyright: © 2013 Lavoué et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was funded by Research Grants Nos 16570082, 15380131, 19207007 and 23370041 from the Japan Society for the Promotion of Science. SL was supported by postdoctoral fellowships of The University of Tokyo and the National Science Council of Taiwan (NSC100-2811-M-002-069 and NSC101-2811-M-002-069-071). Fieldwork in Thailand in 2011 was supported by a Systematics Research Fund grant awarded to SL. PM acknowledges Nagao Natural Environment Foundation (NEF) that permitted his fieldwork. WJC research is supported by a Research Grant (NSC 99-2611-M-002-001-MY2) from the National Science Council of Taiwan. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: microceb@hotmail.com

Introduction

Species richness of worldwide-distributed groups of marine organisms is not uniform across regions and general gradients of diversity are apparent. Typically, tropical regions contain more species than temperate regions, a distribution pattern known as the latitudinal gradient in species richness [1–3]. Unbalanced species richness amongst the tropical marine regions is also a common pattern of longitudinal gradients of organism diversity [1] with the Indo-West Pacific (IWP) region comprising more species than any other tropical region [4,5]. These longitudinal and latitudinal gradients increased dramatically in strength through the Cenozoic era to reach their present maximum [1]. Two prevalent hypotheses have been proposed to explain the formation of heterogeneous diversity patterns along the longitudinal gradient [6–8]. The “Region of origin” hypothesis postulates that a widely distributed group of organisms originated and diversified within the region that harbors the maximum species diversity [7]. Then, other regions were colonized through subsequent outward dispersal events. The “Region of accumulation” hypothesis assumes that the region exhibiting the maximum species diversity accumulated species through multiple independent inward dispersal events from peripheral regions [9]. One recent hypothesis has been proposed to explain the formation of heterogeneous diversity patterns along the latitudinal gradient [10,11]. The “Tropical conservatism” hypothesis holds that a latitudinally widely distributed group of organisms originated and diversified within tropical regions and have spread to temperate regions only more recently [11].

Sardines, herrings, anchovies and their relatives (Clupeoidei) include 397 extant species classified into five families: the Clupeidae (55 genera, 205 species), Engraulidae (17 genera, 145 species), Pristigasteridae (9 genera, 38 species), Sundasalangidae (one genus, 7 species) and Chirocentridae (one genus, 2 species) [12–15]. They exhibit a complex pattern of worldwide distribution (Fig. 1A), with marine, euryhaline and freshwater representatives as well as tropical, temperate and sub-Arctic representatives [16,17]. Clupeoid species richness amongst regions follows the two general longitudinal and latitudinal gradients of diversity. The majority—about 250 species—of the marine (and euryhaline) species of Clupeoidei lives in near-shore, tropical environments. These
marine tropical species reach their highest diversity in the IWP region with more than 180 species (Fig. 1A and 1B). About 60 species of Clupeidae and Engraulidae live in temperate marine waters of both hemispheres (between the isotherms 10°C and 25°C). Finally, about 90 species of Clupeidae, Engraulidae, Pristigasteridae and Sundasalangidae are predominantly freshwater and are found in all continents except Antarctica.

Most of the species and a large majority of genera of the Clupeoidei have a restricted geographical distribution, confined to only one of the 12 defined regions shown in Fig. 1B, suggesting that these fishes have low dispersal capacities. This pattern of endemism is accentuated in tropical regions versus temperate regions. Besides limits imposed by land, two other important factors seem to strongly constrain the inter-regional distribution of clupeoid species: vast expanses of open ocean and water temperature. The historical role of a potential third barrier, salinity, is apparently more complex as within many independent lineages and at various taxonomic levels (from family to species/population), marine, euryhaline and freshwater taxa coexist [16,17].

Despite its broad and complex pattern of distribution and the supposed low dispersal capacities of its members, there is still no

Figure 1. Geographical pattern of distribution of the Clupeoidei. A) Distribution and species diversity of Clupeoidei. Number of species per grid cell (4 by 4 degree latitude-longitude resolution) is represented by cool (low diversity) to warm (high diversity) colors. Individual species distribution compiled from Whitehead [16] and Whitehead et al. [17], Wongratana [125], Gourène and Teugels [126], Peng and Zhao [127], Castro-Aguirre and Viveira [128], Randall [129], Nelson and McCarthy [130], Siebert [34], Britz and Kottelat [131], Menezes and De Pinna [132], Stiassny [97], Castro-Aguirre et al. [133], Roberts [134], Borsa et al. [135], Kimura et al. [136], Loeb [13], DiBattista et al. [14] and Randall and DiBattista [137]. B) The 12 biogeographical units used in the ancestral ranges reconstruction analysis; each unit was delimited by landmasses, vast expanses of open ocean and water temperature. Within each region, total number of clupeoid species (in regular) and number of endemics (in bold) are indicated in parentheses.

doi:10.1371/journal.pone.0056485.g001
general biogeographical hypothesis to explain the distribution of this group. This is mainly because of the difficulty in determining the phylogenetic intra-relationships of the Clupeoidei and, in particular, of the speciose family Clupeidae [16,18,19]. Indeed, only the biogeography of some closely related species groups of Clupeoidei have been examined [20–23].

Herein, we offer the first biogeographic hypothesis for the main lineages of Clupeoidei based on a large mitogenomic dataset. We use a Bayesian method to simultaneously reconstruct the phylogenetic relationships and divergence times, and likelihood methods to reconstruct ancestral habitat preferences and ancestral area distributions. Specifically, we want to test if the “Tropical conservatism” hypothesis explains the latitudinal gradient of clupeoid species richness and if the tropical Indo-West Pacific region is a region of origin or of accumulation for clupeoids.

Results

Time-Calibrated Phylogenetic Results

Maximum-likelihood and Bayesian analyses recovered nine well-supported monophyletic higher-level groups within the Clupeoidei (Fig. 2, 3 and S1) in agreement with previous molecular studies [24–28]. The origin of each of these lineages either pre-dates or is contemporaneous to the Cretaceous/Paleogene boundary (hereafter designated as the K-Pg boundary) marked by the fifth and last mass extinction. Only three of these nine lineages correspond to currently recognized family groups [18]: the Engraulidae, Pristigasteridae and Chirocentridae. Five other lineages are of mixed content (informally identified as Lineages 1 to 5 in Fig. 2, 3 and S1). The last lineage corresponds to the genus Etrumeus. The family Clupeidae and none of its five subfamilies are monophyletic. The paedomorphic genus Sundasalanx (Sundasalangidae) is deeply nested within Lineage 3, as the sister group of the Southeast Asian freshwater genera Clupeoides and Clupeichthys. Together, Lineages 1, 2 and 3 form a well-supported monophyletic group. The relationships among the other lineages are only moderately supported.

Habitat Preference Evolution

The character evolution reconstructions of the salinity and temperature preferences indicate that the most recent common ancestor of the Clupeoidei was very likely marine and tropical (Fig. 4A and 4B). We inferred a minimum of 11 transitions from marine to euryhaline or freshwater environments within six of our nine main lineages; most of these transitions occurred after the K-Pg boundary (Fig. 4A). We inferred a minimum of five transitions from a tropical to temperate environment within four of our nine lineages. Only one of these transitions predated the end of the Cretaceous period and three others may have predated it but their precise dating is difficult to determine because of the internal long branches supporting these temperate taxa (Fig. 4B).

Ancestral Area Reconstruction

The ancestral area reconstruction analysis using the DEC (Dispersal-Extinction-Cladogenesis) model on our simplified time-calibrated phylogeny produced a most likely hypothesis for the distribution of the most recent common ancestor and the region of early diversification of the Clupeoidei (Fig. 5). The most significant results can be summarized as follows: 1- The most recent common ancestor of the Clupeoidei lived in the proto-IWP region at about 119 Mya (million years ago; Lower Cretaceous); 2- during the rest of the Cretaceous, the diversification of Clupeoidei predominantly necessitated within-IWP events of speciation; 3- six of the nine main lineages originated within the IWP region; 4- at the end of the Cretaceous, two, likely three, dispersal events occurred. The first event of dispersion from the IWP was northward, to the Northeastern Atlantic (leading to the most recent common ancestor of Lineages 1 and 2); the second event of dispersion from the IWP was southward, to south Australia (leading to the most recent common ancestor of Lineage 4); the likely third event of dispersion from the IWP was towards the East Atlantic (leading to the most recent common ancestor of the Pristigasteridae). The first two events may have been of similar ages and they were associated with tropical-to-temperate habitat transitions. The timing of the third event is difficult to estimate because of our incomplete taxonomic sampling within the Pristigasteridae and the long internal branch supporting our crown group Pristigasteridae. Each expansion event was followed by a diversification event between the IWP and the newly colonized region.

Discussion

Phylogenetic Relationships

Our taxonomic sampling was designed to investigate the higher-level relationships and early biogeography of the Clupeoidei, and significantly improved upon earlier molecular studies with the addition of 32 new taxa. The phylogenetic results are consistent with previous molecular studies in recovering the same major lineages [24–29]. Three of these lineages are the families Pristigasteridae, Chirocentridae and Engraulidae; each of these families is well defined by several morphological synapomorphies. A fourth lineage is made up by the genus Etrumeus (Dussumieriini). Five lineages are each composed of species previously classified in different clupeid subfamilies (informally identified as Lineages 1 to 5 in Fig. 2 and 3), making all traditional clupeid subfamilies non-monophyletic. None of these five lineages were previously formally recognized using morphological characters.

Lineage 1 is a large circumtropical clade that contains the dorosomats Dorosoma, Notenotus, Clupanodon, Konosirus and Anodontostoma [30] along with several taxa previously classified within the Clupeidae (e.g. Harengula and Escul visus), Alosinae (e.g. Tenualosa and Gadusus) and Pellonulinae (African freshwater tribe Pellonulini). Nelson [19,31] observed that the gill-rakers of several of these taxa do not overlap; therefore this character may represent a synapomorphy of this group.

Lineage 2 is restricted to four predominantly temperate genera, Alosa, Brevoortia, Sardinops and Sardinia. Nelson [19,31] noted the close relationship between Sardinops and Sardinia, and the possible relationship of these two genera with Alosa. Neither Nelson [19,31] nor Grande [32] considered Brevoortia as closely related to Alosa, Sardinia and Sardinops.

Roberts [33] described the family Sundasalangidae to classify a new diminutive genus, Sundasalanx, that he considered closely related to the family Salangidae (Osmeriformes). Siebert [34] proposed that Sundasalanx is indeed a clupeid possibly related to the genus Jenkisia, Ishiguro et al. [35] confirmed the placement of Sundasalanx within the Clupeiformes, but as a distinct family (Sundasalangidae) of uncertain affinities. Subsequent molecular studies did not provide better evidence to resolve the phylogenetic position of Sundasalanx within the Clupeiformes because of incomplete taxonomic sampling [24,26,27,36]. In the present study, Sundasalanx is deeply nested within Lineage 3, and its phylogenetic position is resolved as the sister group of the clade (Clupeichthys, Clupeoides).

Lineage 4 includes the economically important temperate genera Clupea and Sprattus, along with Ethmidae (previously classified within the Alosinae), and Potamalosa and Hyperioplus (previously classified within the Pellonulinae). Ethmidae, Potamalosa
and Hyperlophus are so-called “doubled-armored herrings” in having a complete series of ventral and dorsal scutes, a rare character within the living Clupeoidei; incomplete series of dorsal scutes occurs in Clupanodon [37], Pristigaster and some other clupeid and engraulid taxa [38,39]. The “doubled-armored herring” genera were not considered closely related to each other. Our finding shows that Ethmidium, Potamalosa and Hyperlophus belong to the same lineage, even if they do not form a monophyletic group. Ethmidium is more closely related to the clade (Clupea, Sprattus) than to either Potamalosa or Hyperlophus. This suggests the possible single evolutionary origin of their complete series of dorsal scutes, secondarily lost in the clade (Clupea, Sprattus). This result may have implications for reconsidering the phylogenetic position of “doubled-armored herring” fossils such as Knightia [40].

While recent studies recognize the same major lineages within the Clupeoidei, the relationships among them are still unsatisfactory resolved. Currently, molecular data support the monophyly of Lineages 1, 2 and 3 together with substantial statistical support (Fig. 2 and 3) [24,26–28,36]. Lineage 5, along with Chirocentrus and Etrumeus, do not form a monophyletic group, contrary to what Lavoué et al. [24] inferred. This incongruence likely is the consequence of the weak phylogenetic signal in this part of the tree. The clarification of the relative positions of these three groups requires additional studies. The mitochondrial genes alone moderately support the hypothesis that Engraulidae is the sister group of the rest of the Clupeoidei [28] (this study) while, so far, the few nuclear genes examined tend to support an alternative hypothesis in which the Pristigasteridae is the sister group of the rest of the Clupeoidei [27,36]. Miyashita [41] identified a unique derived character shared by the Clupeidae, Pristigasteridae and Chirocentridae, therefore supporting the sister-group relationship between these three families and the Engraulidae (Sundasalanx was not examined by Miyashita [41]). Di Dario [42,43] published morphological evidence that contrast with this hypothesis.

Region of Origin and Early Diversification of the Clupeoidei

As defined herein, the IWP region stretches longitudinally from the southeasternmost tropical coast of Africa across the southern continental margin of the India-Eurasia landmass into the West Pacific Plate, further east to the tropical South China Sea (Taiwan), the Hawaiian Islands, Micronesia, Polynesia and Northeastern Australia (Fig. 1B) [5,44]. At the global scale, the IWP forms the largest tropical region and it is celebrated for its exceptional biodiversity including more than 4,000 species of fishes, most of them endemic [5,45,46]. This is by far more species than in any other marine (tropical and non-tropical) region of the World.

The regional species richness pattern of the Clupeoidei (Fig. 1A and 1B) parallels those of several tropical coral reef fish groups or other organism groups in reaching its maximum within the central part of the IWP region [5]. This region contains almost half of all known clupeoids (187 species), with more than 95% of the clupeoid species living in the IWP region being endemic (180 species). Our ancestral habitat preference and ancestral area distribution reconstruction suggest that the tropical marine IWP region is not only the region of highest diversity of the Clupeoidei but also their region of origin and early diversification (Fig. 5). Therefore, the “Region of origin” hypothesis along with the “Tropical conservatism” hypothesis may account for the observed longitudinal and latitudinal gradients of Clupeoidei, respectively.

Based on fossil distributions, phylogenetic inferences and biogeographical reconstructions, it has been proposed that the precursor of the IWP region during the Cretaceous/Paleogene period was the eastern Tethys Sea region in which several tropical marine IWP taxa originated [4,47–50]. In this regard, two fossil localities in Italy are of particular interest to document the early evolution of tropical fish community of the eastern Tethys Sea region during the Upper Cretaceous and the early Cenozoic [4,51–54]. From the first locality, the Upper Cretaceous (Campano-Maastrichtian limit, 74.0 Mya) marine sediments of Nardo, six clupeid species assigned to four different subfamilies have been recently described [51–54]. Of the 250 fossil fish species that have been described from the second locality, the Eocene marine sediments of Monte Bolca, there are no less than 12 clupeid-like species [4,18]. Although the phylogenetic positions of most of these fossils need to be clarified [18], the large number of clupeid-like species at these two localities tends to indicate that the tropical marine clupeoids had already significantly diversified in the eastern Tethys Sea region in the Upper Cretaceous/Early Eocene. This is consistent with our molecule-based hypothesis that the eastern Tethys Sea was the IWP precursor region where the early diversification of the Clupeoidei occurred.

Evolutionary Habitat Transitions

Evolutionary transitions between marine and freshwater environments and between tropical and temperate environments are perceived as rare events on a macroevolutionary scale [55,56]. The observation of the environmental preferences of some taxa within several lineages of Clupeoidei suggests these fishes possess inherited physiological capacities to adapt to a large range of salinity conditions [57–59]. Thus, the salinity barrier is not perceived as a strong barrier of dispersion and colonization in these fishes. On a macroevolutionary scale, we infer multiple and independent transitions from marine to freshwater environments. All these transitions occurred late in the evolution of Clupeoidei and the early clupeoids were confined to marine habitat, at least, until the end of the Cretaceous Period. Our sampling is incomplete within most of the main lineages and we anticipate that the total number of transitions will be higher than the 11 transitions inferred when additional freshwater taxa are examined (e.g., Rhinosardinia, Pristigaster, Georginolus, etc.; we also predict, however, that none of the potential additional transitions would occur earlier than the Cenozoic because our taxonomic sampling likely includes representatives of all major clupeoid lineages.

Water temperature preference is different given that it appears to represent a stronger dispersal barrier for the clupeoids. We detected only 5 transitions from tropical to temperate habitats and it is likely that we have already identified all tropical-to-temperate transitions because our taxonomic sampling covers the higher-level diversity of the temperate clupeoids. Interestingly, one, maybe four, of these transitions occurred at the end of the Cretaceous Period or early in the Cenozoic Era, at a time of significant (although erratic) global cooling. Most of the Cretaceous Period was characterized by a warm climate [60] with surface temperatures and sea surface temperatures at low and high latitudes higher than those of today [61–65], owing to a lack of permanent ice sheets [65,66]. At that time, the latitudinal...
Biogeography of Clupeoid Fishes
environmental gradient was at its minimum with rather uniform environmental conditions from equatorial regions to pole regions [64] and the latitudinal taxonomic gradient was correspondingly reduced [1]. Indeed, the cooling of the average global temperature at the end of the Cretaceous Period [67] may have resulted in new opportunities for temperature-mediated allopatric speciation at higher latitudes for the Clupeoidei.

Tree Topology Uncertainties and Taxonomic Sampling Quality

Potential issues may lead to incorrect estimations of ancestral habitats and ancestral area distributions [68,69]. Two important issues in this study could affect the reliability of the biogeographical hypothesis: the topological uncertainties of the phylogenetic tree [69] and the quality of the taxonomic sampling [70,71].

The higher-level phylogeny of the Clupeoidei is difficult to accurately reconstruct because of an overall lack of signal among the main lineages (Fig. 2 and 3) and several alternative branching orders cannot be rejected [18,24,27,43]. Nylander et al. [69] recommended that biogeographical reconstruction methods should take into account such phylogenetic uncertainties because different tree topologies may lead to different biogeographical conclusions. However, we consider that alternative branching orders among the nine main lineages of Clupeoidei will still establish the IWP as the unique region of origin of this group. This is because six of the nine clupeoid lineages originated within the (tropical marine) IWP region and the last three lineages originated in marine areas formed by two sub-regions, one of which is the IWP (Fig. 5). This yields well-supported ancestral area reconstruction results.

An incomplete, geographically biased taxonomic sampling could also lead to incorrect biogeographical inference [70,71]. In our study, the quality of the taxonomic sampling within the family Clupeidae is the most critical because: 1- this family is not monophyletic whereas each of the other four families is monophyletic (e.g., Pristigasteridae, Sundasalangidae, Chirocentridae and Engraulidae), and 2- the clupeid taxa contribute to no less than six of the nine major lineages. Therefore, missing clupeid taxa that do not occur within the IWP region may potentially represent additional lineages that could modify the biogeographical scenario. Despite our efforts to broadly cover the taxonomy diversity and distribution of the Clupeidae, 13 genera occurring outside the IWP region are missing.

We argue that the addition of these genera to our dataset will have modest consequences on our main biogeographical conclusions for the following reason: previous morphological and molecular work, along with our phylogenetic framework, allow us to predict the phylogenetic positions of at least 10 of these 13 genera within one of the identified major lineages with high confidence. Six missing West Central African freshwater genera, Sierrathrisa, Nannothrissa, Laesiotesella, Thraithodion, Lannothrissa, and Stolothrissa, are considered to be members of the tribe Pellanulini that is deeply nested within Lineage 1 [16,28,72] (Fig. 2 and 3). The phylogenetic position of the seventh missing Central African freshwater genus Congothrissa is still controversial as it is either placed in its own family of uncertain affinities [72,73] or it is classified within the tribe Pellanulini [16,74]. The two tropical South American genera, Opisthonemus and Rhinosardina, belong to Lineage 1 [18,19,27,28,75] and the two temperate South American genera, Rannugaster and Strangomera, are very likely nested within Lineage 4 [16,76,77]. Finally, the phylogenetic positions of only two South American clupeid genera, Lile and, in particular, Plataniichthys are uncertain because there is little comparative evidence relative to these two genera. Whitehead [78] who erected the genus Plataniichthys, stated that this genus “which combines features of both the Clupeinae and the Pellanulinae, raises many problems which cannot be solved without a complete review of the Clupeidae”.

Paleodistribution of Cretaceous Clupeoids

The fossil record is the only direct evidence of the past and provides important information on ages, palaeodistributions and paleoenvironments of the organisms. Occasionally the biogeographical hypotheses inferred from the distribution of extant taxa are incongruent with palaeodistributions because of a number of natural and artificial causes [79,80]. Our ancestral area reconstruction using the distribution of the extant Clupeoidei is unequivocal in identifying the IWP as the region of origin and early diversification of the Clupeoidei during the Cretaceous Period. However, there is palaeontological counter-evidence that the precursor of the IWP region (i.e., the eastern Tethys Sea region) was the unique region of origin and early diversification of the Clupeoidei, during the Cretaceous Period. Several Cretaceous clupeoid fossils have been described [18,51–54,81–85] and their distributions challenge our biogeographical hypothesis as they have been found not only in the eastern Tethys Sea region [83] but also in different marine tropical regions, including the emerging West and East tropical Atlantic regions, soon after the early separation of Africa and South America [81,82,84] (Fig. 1B and 5). It should be noted, however, that the Tethys Sea was widely connected to several marine regions. For example, the Tethys Sea and the South Atlantic Ocean were intermittently connected through North-South Trans-Saharan seaways [86–87]. This may explain the distributions of the fossils (of Cretaceous age) found in West Africa and Northeast Brazil (Fig. 5).

The reason for such incongruence is difficult to establish because the precise phylogenetic positions of these Cretaceous clupeoids relative to the extant clupeid taxa are mostly unresolved. The Cretaceous clupeid taxonomy and systematics lack a comprehensive revision. The Santonian (83.5–85.8 MyA) brackish †Gasteroclupea brasiians of Bolivia is currently identified as a stem pristigasterid, but additional investigation of this fossil is desirable [18]. Forey et al. [83] left incertae sedis within the Clupeoidei the position of the Cenomanian genus †Sombroclupea whereas Gierch et al. [88] considered †Sombroclupea occidentalis as a clupeid. De Figueiredo [81] admitted that there is little morphological evidence to place the most ancient (of Albian age, 99.6–112 Mya) crown group clupeoid fossil †Nolfia rachuelensis and the Cenomanian †Nolfia kwaengomisi [85] within the Clupeidae (placed ad interim). The Santonian †Audenardia casieri (West Central Africa) may represent an early clupeid (incertae sedis) [89] that could...
be classified either in the subfamily Clupeinae or Alosinae [84], two non-monophyletic groups in our study.

Taking into account the uncertainties in the phylogenetic positions of these fossils, we identify and discuss three possible causes that could explain the difference between our biogeographic reconstruction and the paleodistributions of the Cretaceous fossils: 1- regional extinction, 2- incomplete taxonomic sampling and 3- inaccurate molecular timescale.

Supposing that the Cretaceous fossils represent early lineages within the crown group Clupeoidei, these lineages may have gone extinct through regional selective extinction events. Different rates of extinction among regions can strongly obscure the biogeographical pattern and process of extant organisms [79,80,90]. The effects of extinction are more pronounced for older taxa that may have faced more extinction events. For example, the early Cretaceous clupeoids faced the K-Pg mass extinction episode. On the other hand, the living sister group(s) of these Cretaceous fossils may have not yet be identified because of the incompleteness of our taxonomic sampling. As discussed in the previous section 4, the missing South American Platanichthys and Lile or the African Congerhussa could hypothetically represent distinct and old lineages within the Clupeoidei, sister group to Cretaceous clupeoids.

Supposing that the Cretaceous fossils belong to the crown group Clupeoidei and they are nested within some of our inferred main lineages of Cenozoic age, it will demonstrate that the inferred time divergences of these lineages are underestimated. In molecular dating reconstruction, selected fossils used to calibrate the clock provide minimum ages of the clades in which they belong to (i.e., a clade can’t be younger that its older member). The use of fossil-based maximum age (soft or hard) constraints, as we did (see material and methods section), is more contentious as it relies on the perception of the quality of the fossil record: the oldest fossil of a group having a rich fossil record provides a minimum age for the origin of this group but also an estimation of its maximum age. Several recent molecular studies provided timescale estimations for the diversification of the Teleostei using either minimum and maximum age constraints [28,84,92] or only minimum age constraints [93–96]. These latter studies estimated the age of the crown group Clupeoidei (i.e., the time divergence Engraulidae/Clupeidae) to about 150 MYA. This is more than 30 MY older than the mean age (119 MYA) of the most recent common ancestor of the Clupeoidei we inferred and more than 40 MY older than the age of the first clupeoid fossil [81]. At present, we have no means of deciding which of these divergence time reconstructions provide the best estimate for the absolute age of the Clupeoidei but we acknowledge the possibility that the Clupeoidei diversification may be older than the timescale we have inferred here.

Additional Biogeographical Patterns

Although our taxonomic sampling was not designed to further investigate the biogeography within each of the nine inferred lineages, we observe that the distribution patterns of some lineages deserve further attention. For example, Lineages 2 and 4 contain only temperate taxa that were previously considered unrelated whereas Lineage 1 includes only tropical taxa. Lineage 4 exhibits a bipolar distribution, with the northern clade (Sprattus sprattus, Clupea spp.) nested within the southern one (including Sprattus muelleri, Sprattus antipodum, Ethmoidium, Potanalis and Hyperlophus). Within Lineage 3, the Ponto-Caspian Clupeoidea cultriceps is not closely related to the Atlantic taxa, but instead, it is the sister group of a clade of freshwater and euryhaline species endemic to the IWP region. Examination of Sprattellophes and Sauvagella will be critical to reconstruct the biogeography of this lineage [97].

Materials and Methods

Ethics Statement

The research was performed at the University of Tokyo in accordance with the University of Tokyo’s guidelines regarding animal research. No ethics statement was required for this project as no experiment involved live fishes. Most of the specimens examined in this study were purchased from local fish markets or directly from professional fishermen. The taxonomic sampling was completed through legal tissue donations from International Research Institutes (see “acknowledgements” section).

Taxonomic Sampling

We examined 73 clupeoid taxa sampled from all five families, paying special attention to the most speciose but poorly defined family Clupeidae with 49 taxa from 33 genera [16]. As a reference, we used the classification of Clupeoidei of Whitehead [16] and Whitehead et al. [17] with the addition of the family Sundasalangidae as proposed by Siebert [34] and corroborated by Ishiguro et al. [35]. The outgroup selection includes Denticeps clupeoides (the sister group of Clupeoidei), two alepocephaliforms, four ostariophysines and two eut克斯oles. The Japanese population of Etrumeus tresis from which we have previously determined the complete mitogenome (mt) of a specimen (DDBJ/EMBL/GenBank accession number: AP009139) [26] is now considered to be Etrumeus microps [14]. Accordingly, we have revised the species name of this mt sequence as Etrumeus microps.

Mitogenomic DNA Sequencing

Total genomic DNA was extracted from muscle or fin tissue. Whole mitogenomes were first amplified using a long PCR technique and a set of fish-versatile primers [98]. The long PCR products were then use as templates for nested PCR to amplify short and overlapping segments of the entire mitogenomes. Double-stranded DNA products were used as templates for direct cycle sequencing reactions with dye-labeled terminators and labeled fragments were read on a Model 3130 xl DNA automated sequencer (Applied Biosystems). The 30 complete or nearly complete mt sequences plus the partial mt sequences of Anodontostoma chaus (13,848 bp) and Hilsa kelee (14,050 bp) were deposited in the DDBJ/EMBL/GenBank database; their accession numbers are given in the Table S1.

Phylogenetic Analysis and Divergence Time Estimation

Mitogenomic sequence editing and individual gene alignment were performed as previously described [98]. Our data matrix includes 82 taxa and 10,753 positions after excluding the
Figure 5. Most likely ancestral ranges reconstruction of the Clupeoidei during the Cretaceous and early Cenozoic period using the dispersal–extinction–cladogenesis (DEC) model [116,117] onto a simplified Bayesian phylogenetic chronogram. Outgroups (i.e., non-clupeoids) were deleted and biogeographically redundant clupeoid taxa were merged with their respective sister group (see material and methods for details). Ancestral ranges at nodes within each major lineage not reconstructed. Horizontal timescale in million of years ago (Mya) (Paleogene epoch abbreviations: Paleo, Paleocene; Eo, Eocene; and Oligo, Oligocene). Most likely ancestral ranges reconstruction at nodes indicated by code-color boxes (see Fig. 1B for correspondence between regions and two or three-letter codes and colors). Black arrows indicate the three dispersal events predating or likely predating the K-Pg boundary and black arrowheads indicate subsequent allopatric cladogenesis. Temperate lineage branches are underlined in blue and white arrowheads indicate marine to freshwater transitions. "*" after a species name indicates that closely related species to this species have been pruned (see material and methods for details); "**" after a species name indicates that this species is a representative of a supra-specific group having a larger geographical distribution. "NC" at nodes indicate that the ancestral ranges were not estimated at these nodes. On the left side, the spatio-temporal context is illustrated with four schematic paleoreconstructions (at 90, 65 and 50 Mya) on which are indicated the temporally corresponding clupeoid fossil localities by white (marine/brackish) and grey (freshwater) stars. Emerged lands are displayed in black and marine environments in blue with the shallow parts in lighter blue. One additional reconstruction (D) shows the current geographical context with the biogeographical units. The clupeoid fossil localities are: 1- the Cenomanian locality "Loma la Mula" in Coahuila, northeastern Mexico (taxon: {Scombroclupea occidentalis currently considered as a clupeoid incertae sedis} [88]; 2- the marine shale yielded in the Taquari Member (Albian) of Riachuelo Formation (state of Sergipe, Northeastern Brazil) (taxon: {Nolfia riachuelensis currently considered as a clupeoid ad interim}) [87]; 3- the marine deposit from the Cenomanian of Kipala, Democratic Republic of Congo (taxon: {Nolfia riachuelensis currently considered as a clupeoid incertae sedis}); 4- the Cenomanian (Upper Cretaceous) Komen (Slovenia) fossil lagerstätte (taxon: {Scombroclupea macrophthalmalma currently considered as a clupeoid incertae sedis}); 5- the marine Santonian of Vonso, Democratic Republic of Congo (taxon: {Nolfia riachuelensis currently considered as a clupeoid incertae sedis}); 6- the marine deposit from the Cenomanian of Kipala, Democratic Republic of Congo (taxon: {Nolfia riachuelensis currently considered as a clupeoid incertae sedis}); 7- the marine deposit from the Cenomanian of Kipala, Democratic Republic of Congo (taxon: {Nolfia riachuelensis currently considered as a clupeoid incertae sedis}); 8- The Middle
Paleocene Tongue River Formation (lacustrine limestone), near Bay Horse, Montana, USA (taxon: Knightia vetusta currently considered as a clupeoid incertae sedis) [40]; 9- the Middle Eocene Laney Member of the Green River Formation, southwestern Wyoming, USA (lacustrine deposits)(taxon: Gosilichthys parvus currently considered as a clupeoid incertae sedis) and the Lower Eocene lacustrine sediments of Wyoming, Colorado and Utah (taxa: Knightia alta and Knightia eocaena currently considered as clupeoids incertae sedis) [40]; 10- the Lower Eocene (52.0 Mya) marine sediments of Monte Bolca, Italy (taxa: several species of Clupeidae including at least one species of Dussumierinae sensu Grande [18]; 11- the Upper Paleocene freshwater lacustrine deposits of Bamanbor and Ninania of Saurashtra, India (taxon: Horacupea intertrappea currently considered as a clupeoid incertae sedis) and the Eocene Saline Series of the Salt range of Pakistan (taxon: the clupeid Horacupea geel [18]; 12- the Late Paleocene fish fauna of the Danata Formation in Turkmenistan (taxon: Primisardinella genetrix currently considered as a clupeoid incertae sedis) [18] and 13- the Eocene (probably freshwater) deposits of Hupei, China (taxon: Knightia yujiangensis currently considered as a clupeoid incertae sedis) [18].

http://www.stratigraphy.org/ provides revised ages of the units of time. Our method of calibration is conservative because we assume that the fossil records of some teleost groups are coherent, providing overall good estimates of the diversification through time of these groups. Therefore, selected fossils from these groups provide estimates of minimum and maximum ages for their origins [104].

Clupeiform and clupeoid fossils are abundant [18,81,82,84,85], However, Grande [18] who reviewed and commented on the identities of most of these fossils (N >150), concluded that the phylogenetic positions of most of them of Cretaceous or early Cenozoic age are equivocal in the absence of a comprehensive synapomorphy-based phylogenetic tree of the extant Clupeoidei. Grande [18] concluded that these fossils should be considered as incertae sedis within either Clupeoidei, Clupeiformes or Clupeomorpha. As a consequence we have decided not to consider any clupeiform fossils to time-calibrate our phylogenetic tree, except one clupeoid recently described by Taverne [54]. This fossil, Leccocupea chiwanoensis, is demonstrably classifiable within the tribe Eiravini sensu Grande [18,97]. Leccocupea chiwanoensis is remarkable as it represents the oldest eiravini fossil known (74.0 Mya) and it significantly extends the temporal occurrence of this group. Therefore, the age of the clade containing Gilchristella and Clupeichthys is set to a minimum of 74.0 which corresponds to the age of this fossil [exponential distribution offset = 74.0; mean = 5].

We selected six additional fossils from related fish groups having rich fossil records and commonly used as calibration points in molecular time divergence analyses [91,70,72,104–106]. They are listed hereafter with their ages and the mean values of exponential distributions indicated in brackets: 1- The age of the Otocephala (the crown group including Clupeiformes, Alepocephaliformes and Ostariophysi) is set to 152.1 Mya (Kimmeridgian Stage, 152.1–157.3 Mya) [exponential distribution offset = 152.1; mean = 1.6] which corresponds to the age of the oldest ostariophysian fossil known, Tischlingichthys vohli [104,107,108]. The gonorychiform fossil record extends back to the Early Cretaceous [109] and provides two calibration points: 2- the oldest gonorychiform fossil is Rubiesichthys gegalis [109] from the Berriasian Stage (139.8–145.0 Mya, Lower Cretaceous). This fossil was used to calibrate the age of the crown group Ostariophysi [exponential distribution offset = 139.8; mean = 1.7]; 3- the oldest fossils assigned to the crown group of the Gonorychiformes are the chanid Santanichthys diasii [111], the oldest known characiform fossil, to calibrate the minimum age of the clade (Pseudobagrus tokensis, Carassius auratus) to 100.5 Mya [exponential distribution offset = 100.5; mean = 5]; 4- we used Santanichthys diasii [111], the oldest known characiform fossil, to calibrate the minimum age of the clade (Pseudobagrus tokensis, Carassius auratus) to 100.5 Mya [exponential distribution offset = 100.5; mean = 5]; 5- the oldest alepocephaliform fossil is the alepocephalid Caprathichthys polionus of Miocene age [112], which provided us with a minimum age of 23.0 Mya for the clade Alepocephali, Plistyctodes [exponential distribution offset = 23.0; mean = 5]; 6- Eutichesox foxi [113] from...
the Early Campanian stage provided a minimum age of the clade (Esox, Coregonus) [exponential distribution offset = 83.6; mean = 5].

Character Evolution Reconstruction

The ancestral habitat preference relative to water temperature and salinity was reconstructed on the maximum clade credibility tree using the “MK1” evolutionary model as implemented in Mesquite v2.72 [114]. Three character states were assigned for salinity preference: freshwater, euryhaline, and marine. Two character states were assigned for water temperature preference: warm water [i.e. tropical, >25°C] and temperate water [i.e. <25°C]. The few warm-temperate taxa, such as Etrumeus spp., were considered as tropical. Temperature and salinity preference estimations for each species were mainly collected from the two volumes FAO species catalogue of “Clupeoid fishes of the World” [16,17] with additional information from Milton [115].

Ancestral Area Reconstruction

To reconstruct the ancestral areas of the Clupeoidi, we used the DEC (Dispersal-Extinction-Cladogenesis) model-based likelihood method using the software Lagrange (likelihood analysis of geographic range evolution) version 20100721 [116,117]. The DEC model relies on a continuous-time model for geographic range evolution in which dispersal and extinction along branches cause range expansions and reductions, respectively. At cladogenetic events, the DEC model allows diversification either within a single ancestral range or within one area of a larger ancestral range or between a single area and the remainder of the ancestral range [116,117]. The DEC model is similar to the DIVA (Dispersal-Vicariance) model [118,119] and it can be perceived as a parametric, extended version of DIVA [120].

We considered the water isotherm of 25°C and vast intercontinental open ocean regions as frontiers to delimit regions needed for the ancestral area reconstruction analysis. The 12 geographical regions are (Fig. 1B): East Pacific (EP), West Atlantic (WA), East Atlantic (EA), Indo-West Pacific (IWP), Ponto-Caspian system (PC), Northwest Atlantic (NA), Northeast Atlantic (NE), North Pacific (NP), south South America (SS), South Africa (SA), South Australia (AU) and New Zealand (NZ). The degree of endemism in each of these 12 regions is elevated with few species or genera distributions overlapping more than one of these regions; except within some junction zones between two regions.

To significantly reduce the computation time in Lagrange, we have pruned several biogeographically non-informative clupeoid taxa from the maximum clade credibility tree (Fig. 3). We therefore kept only one species of the following genera, each endemic to the IWP region: Temnolaosa, Clupeichthys, Clupeoides, Sundasalmo, Caesia, and Stolephorus. We also reduced the number of species of the well-defined clade of Central African freshwater tribe Pellenulini to two (Pellenulina vorax and Potamophisca acrostritos), and of the two New Zealand endemic Sproattia to one (S. antipodium). We finally deleted the species Etrumeus enscarchicus due to its very high genetic proximity to Etrumeus japonicus. Consequently, the number of terminal twigs is reduced to 54 and most of the terminal twigs were assigned to one of the pre-defined 12 regions based on the species distributions established in Whitehead [16] and Whitehead et al. [17]. Multi-region coding was used for few terminal taxa representing species-groups having distributions spanning two or more pre-selected regions: Alosa ahos belongs to a clade that includes species from Northeast Atlantic, Northwest Pacific and Ponto-Caspian regions [121,122] (coding: NA→NE+PC); the genus Brevortia (including B. tyrannus) is distributed in Northwest, West and South Atlantic regions [123,124] (coding: WA+NA+SS). Dorosoma cepedianum is a member of the subgenus Dorosoma that includes both East Pacific and West Atlantic species [16] (coding: EP+WA). Sardinella madens and Sardinella albeola belong to the subgenus Clupeoma which has a broad tropical distribution, including the Indo-West Pacific region, and the East and West Atlantic regions [16] (coding: IWP+WA). The pristigasterid Pellona occurs in the Indo-West Pacific and West Atlantic regions along with Ilisha (excluding Ilisha Africana); Ilisha’s distribution furthermore extends to the East Pacific region (coding: IWP+WA and IWP+WA+EP, respectively). The warm-tropical genus Etrumeus is atypical within the Clupeoidi because it includes several allopatric species worldwide distributed [14] (coding: IWP+WA+EP+NP+NA+SA+AU). New World anchovies (Ancho- vella and Lycengraulis) are distributed in West Atlantic and East Pacific regions (coding: WA+EP). Finally, the genus Sardina and the “group 1” of the genus Engraulis—as defined by Whitehead et al. [17]—are distributed in no less than five and six temperate regions, respectively (coding: NP+NA+SA+SS+AU and NP+NA+NE+SA+SS+AU, respectively). Because the maximal range size is limited to three units (see below) in our analysis, we randomly chose three regions among all possible regions for Etrumeus, Sardinae and Engraulis.

We set up a restriction on the maximal ancestral range sizes, thus they can’t span more than three possible units because the distributions of most of the species and genera of extant Clupeoidi do not span more than three regions (and often they are restricted to only one region). Default options of other parameters were selected.

Supporting Information

Figure S1 Bayesian (50% majority rule consensus) tree of the Clupeoidi from the analysis of the partitioned mitogenomic dataset (using the software MrBayes [101,102]). Branch lengths are proportional to the number of substitutions per nucleotide position (scale bar = 0.05 substitutions). Numbers at nodes are posterior Bayesian probabilities if >1. The tree is rooted with Coregonus lavaretus and Esox lucius. Abbreviation: C., Coregonus. (TIF)

Table S1 List of the 82 species included in this study. (DOCX)

Acknowledgments

We warmly thank Chenhong Li (University of Nebraska), Victor Mamoneke (Université Marien Ngouabi, République du Congo), Melanie Stiassny (American Museum of Natural History), Tetsuya Sadah (Natural History Museum and Institute of Chiba), Jerraleigh Kruger (South African Institute for Aquatic Biodiversity), Diane J. Bray (Museum Victoria), Mark McGrathuer (Australian Museum), Yasuyuki Hashiguchi (The University of Tokyo), Peter J. Smith (Fisheries Research Division, New Zealand), Marc Jérôme (IFREMER, France), Jean Dominique Durand (IRD, France) and Chaiwut Krudpan (Ubon Rajathane University) for sharing tissue samples and/or donation of specimens. Louis Taverne (Université Libre de Bruxelles) and Melanie Stiassny helped us to interpret the clupeoid fossil record. We are very grateful to Joseph DiBattista (Hawai‘i Institute of Marine Biology), Matthew “Mac” Campbell (University of Alaska Fairbanks) and two anonymous reviewers for commenting early drafts of this manuscript.

Author Contributions

Conceived and designed the experiments: SL MM MN. Performed the experiments: SL. Analyzed the data: SL. Contributed reagents/materials/analysis tools: MN MM PM WJC. Wrote the paper: SL MM PM WJC.
References

1. Crane JA (2001) Taxonomic diversity gradients through geological time. Diversity and Distributions 7: 173–189.

2. Hillenbrand H (2004) Strength, slope and variability of marine latitudinal gradients. Mar Ecol Prog Ser 273: 251–267.

3. Macpherson E (2002) Large-scale species-richness gradients in the Atlantic Ocean. Proc R Soc Lond B 269: 1713–1720.

4. Bellwood DR, Wainwright PC (2002) The history and biogeography of fishes on coral reefs. In: Sale PF, editor. Coral Reef Fishes. Dynamics and diversity in a complex ecosystem. London: Academic Press. 5–32.

5. Briggs JC (1999) Coincident biogeographic patterns: Indo-West Pacific Ocean. Evolution 53: 26–33.

6. Rosen BR (1988) Progress, problems and patterns in the biogeography of reef corals and other tropical marine organisms. Helged Meereusen 42: 269–301.

7. Briggs JC (2007) Marine longitudinal biodiversity: causes and conservation. Diversity and Distributions 13: 544–555.

8. Rocha LA, Rocha CR, Robertson DR, Bowen BW (2008) Comparative phylogeography of Atlantic reef fishes indicates both origin and accumulation of diversity in the Caribbean. BMC Evol Biol 8: e157.

9. Jokiel P, Martinelli FJ (1992) The vortex model of coral-reef biogeography. J Biogeogr 19: 449–458.

10. Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, et al. (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett 10: 315–331.

11. Wiens JJ, Donoghue MJ (2004) Historical biogeography, ecology and species richness. Trends Ecol Evol 19: 639–644.

12. Eschmeyer WN, Fong J (2011) Pisces. In: Zhang Z-Q, editor. Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa, Magnolia Press. 26–38.

13. Loeb MV (2012) A new species of Anchiclinea Fowler, 1911 (Clupeiformes: Engraulidae) from the Amazon basin, Brazil. Neotrop Ichthyol 10: 15–18.

14. DiBattista JD, Randall JE, Bowen BW (2012) Review of the round herrings of the genus Etrumeus (Clupeiformes: Dussumieriinae) of Africa, with descriptions of two new species. Cybium 36: 447–460.

15. Eschmeyer WN, editor (2012) Catalog of Fishes electronic version (7 June 2012). Available: http://research.calacademy.org/ichthyology/catalog/orissa/fishcatmain.asp. Accessed 2012 June.

16. Whitehead PJP (1982) A revision of the fossil genus Engraulis (Teleostei, Clupeidae). FAO Fisheries Synopsis 125: 305–579.

17. Whitehead PJP, Olson JW (1994) Comparative diversity, enstrophy, and the comparative distribution of marine Biodiversity. Evolution 56: 961–973.

18. Grande L (1985) Recent and Fossil Clupeomorph fishes with materials for the interrelationships of clupeomorph fishes. Am Mus Novit 2728: 1–34.

19. Grande L (1982) A revision of the fossil genus Diplopholis, with comments on the interrelationships of clupeomorph fishes. Am Mus Novit 2728: 1–34.

20. Grande L (1982) A revision of the fossil genus Megalechis, with a description of a new genus from the Green River Formation (Teleostei, Clupeidae). Am Mus Novit 2731: 1–22.

21. C. L. Miya Jr. Dongmouj J (2004) Historical biogeography, ecology and species richness. Trends Ecol Evol 19: 639–644.

22. Grant WS, Lecomte F, Bowen BW (2010) Biogeographical contingency and the phylogenetic position of an undescribed paedomorphic clupeiform taxon: Hopping hotspots: Global shifts in marine Biodiversity. Science 321: 654–657.

23. Grant WS, Leslie RW, Bowen BW (2005) Molecular genetic assessment of a new species of Cetengraulis (Teleostei, Clupeidae): evidence from suspensorium, branchial arches, and infraorbital bones (Clupeomorpha, Teleostei). Zool J Linn Soc 156: 363–383.

24. Briggs JC, Bowen BW (2012) A realignment of marine biogeographic provinces with particular reference to the Indo-Pacific region. J Biogeogr 39: 12–30.

25. Carpenter KE, Barber PH, Crandall ED, Ablan-Lagman CA, Ambariyanto, et al. (2011) Comparative phylogeography of the Coral Triangle and implications for marine management. J Mar Biol 2011: e1–e14.

26. Robertson WC, Belwood DW, Braga JL, Hall R, et al. (2008) Hopping hotspots: Global shifts in marine Biodiversity. Science 321: 654–657.

27. Frey MA, Vermeij GJ (2008) Molecular phylogenies and historical biogeography of a circumtropical group of gastropods (Genus: Nerita): Implications for regional diversity patterns in the marine tropics. Mol Phylogenet Evol 48: 1067–1086.

28. Strelman JT, Alfaro M, Westneat MW, Belwood DW, Karl SA (2002) Evolutionary history of the parrotfishes: Biogeography, ecomorphology, and the coevolution of coral reefs. Evolution 56: 961–973.

29. Wallace CC, Rosen BR (2006) Diverse staghorn corals (Acropora) in high-latitude Eocene assemblages: implications for the evolution of modern diversity patterns of reef corals. Proc R Soc Lond B 273: 973–982.

30. Westneat MW, Alfaro ME (2003) Phylogenetic relationships and evolutionary history of the reef fish family Labridae. Mol Phylogenet Evol 36: 370–390.

31. Amaral CS, Belwood DW, Braga JL, Hall R, et al. (2008) Hopping hotspots: Global shifts in marine Biodiversity. Science 321: 654–657.

32. Taverne L (2011) Les poissons crétacés de Nardò. 18: Pagellus belone nov. gen. et sp. nov. (Teleostei, Clupeiformes, Clupeidae). Boll Mus Civ St Nat Verona 38: 27–29.

33. Taverne L (2007) Les poissons crétacés de Nardò. 25: Boscichthys nilotis gen. et sp. nov. (Teleostei, Clupeiformes, Clupeidae). Boll Mus Civ St Nat Verona, sez di Geologia, Paleontologia e Preistoria 51: 21–35.

34. Taverne L (2007) Les poissons crétacés de Nardò. 26: Un second Dussmiriinii: Portoselvaggiclupea whiteheadi gen. et sp. nov. et complément à l’étude de Pagellus belone (Teleostei, Clupeidae, Clupeiformes). Boll Mus Civ St Nat Verona, sez di Geologia, Paleontologia e Preistoria 51: 37–42.

35. Taverne L (2011) Les poissons crétacés de Nardò. 33: Lecosiotherium russiae gen. et sp. nov. (Teleostei, Clupeidae). Boll Mus Civ St Nat Verona, sez di Geologia, Paleontologia e Preistoria 51: 37–42.

36. Taverne L (2011) Les poissons crétacés de Nardò. 34: Lecosiotherium chironomus gen. et sp. nov. (Teleostei, Clupeidae). Boll Mus Civ St Nat Verona, sez di Geologia, Paleontologia e Preistoria 51: 37–42.

37. Taverne L (2011) Les poissons crétacés de Nardò. 35: Lecosiotherium niloticus gen. et sp. nov. (Teleostei, Clupeidae, Clupeiformes). Boll Mus Civ St Nat Verona, sez di Geologia, Paleontologia e Preistoria 51: 37–42.

38. Vermeij GJ, Dudley R (2000) Why are there so few evolutionary transitions between aquatic and terrestrial ecologies? Biol J Linn Soc 71: 541–554.

39. Jolly MT, Aprihamian MW, Hawkins SJ, Henderson PA, Hilman R, et al. (2012) Population genetic structure of protected allis shad (Alosa alaska) and white shad (Alosa fallax). Mar Biol 159: 675–687.

40. Boyer EP, Dins KE, Ridgway DM, Cusson A (2008) Independent evolutionary origins of landlocked alewife populations and rapid parallel evolution of phenotypic traits. Mol Ecol 17: 582–597.

41. Samonte JE, Papalayan RC, Mayer WE (2000) Molecular phylogeny of Philippine freshwater sardines based on mitochondrial DNA analysis. J Hered 91: 247–253.

42. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and alternations in global climate 65 Ma to present. Science 292: 686–693.

Biogeography of Clupeoid Fishes
90. Crisp MD, Trewick SA, Cook LG (2011) Hypothesis testing in biogeography. J Biogeogr 38: 755–762.
91. De Figueiredo FJ (2009) A New Clupeiform Fish from the Lower Cretaceous of the Southwestern Atlantic Ocean. Int J Fish Aqua 2: 41–52.
92. Dodson PI (1972) Size at maturity in the evolution of vertebrate reproduction. Tetrapod Zoology 3: 97–136.
93. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetic analyses. J Syst Evol 46: 239–257.
94. Drach S (1974) Les Bonefishes des Mascareignes (Pisces, Teleostei) avec une nouvelle espèce de Mullidae. Cetacea 3: 73–81.
95. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.
96. Silvestro D, Michalak I (2012) raxMLGUI: a graphical front-end for RAXML. Org Divers Evol 12: 335–337.
97. Hubelsen JP, Ronquist F (2003) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 19: 755–755.
98. Ronquist F, Huelsenbeck JP (2003) MrBayes: Bayesian inference under mixed models. Bioinformatics 19: 1572–1574.
99. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29: 1969–1973.
100. Bentin MJ, Donoghue PCJ, Asher RJ (2009) Calibrating and constraining molecular clocks. In: Hedges SB, Kumar S, editors. The TimeTree of Life. Oxford: Oxford University Press. 35–86.
101. Altario ME, Santini F, Broch C, Alamillo H, Dornburg A, et al. (2009) Exceptional radiation plus high turnover explain species diversity in jawed vertebrates. Proc Nat Acad Sci USA 106: 13410–13414.
102. Nakatani M, Miyazaki T, Inoue JG, Sado T, Miya M (2008) Evidence for extreme climatic warmth from Late Cretaceous Arctic vertebrates. Science 282: 2241–2244.
103. Benton MJ, Donoghue PCJ, Asher RJ (2009) Calibrating and constraining molecular clocks. In: Hedges SB, Kumar S, editors. The TimeTree of Life. Oxford: Oxford University Press. 35–86.
104. Benton MJ, Donoghue PCJ, Asher RJ (2009) Calibrating and constraining molecular clocks. In: Hedges SB, Kumar S, editors. The TimeTree of Life. Oxford: Oxford University Press. 35–86.
105. Altario ME, Santini F, Broch C, Alamillo H, Dornburg A, et al. (2009) Exceptional radiation plus high turnover explain species diversity in jawed vertebrates. Proc Nat Acad Sci USA 106: 13410–13414.
106. Nakatani M, Miyazaki T, Inoue JG, Sado T, Miya M (2008) Evidence for extreme climatic warmth from Late Cretaceous Arctic vertebrates. Science 282: 2241–2244.
107. Arratia G (1997) Basal Teleosts and teleostean phylogeny. Palaeo Ichthyologica 49: 70–97.
108. Arratia G (1997) Basal Teleosts and teleostean phylogeny. Palaeo Ichthyologica 49: 70–97.
109. Arratia G (1997) Basal Teleosts and teleostean phylogeny. Palaeo Ichthyologica 49: 70–97.
110. Amaral CRL, Brito PM (2012) A new Chanidae (Ostariophysii: Gonorynchiformes) from the Upper Cretaceous of Namourea, Lebanon. J Syst Palaeontol 1: 227–230.
111. Filleul A, Maisey JG (2004) Redescription of Santanichthys diasii (Osteichthyes, Otophysi) Zool J Linn Soc 161: 633–662.
112. Jerzmanska A (1979) Oligocene alepocephaloid fishes from the Polish Baltic Basin. Acta Palaeontol Polonica 24: 479–500.
113. Wilson MVH, Brinkman DB, Neuman AG (1992) Cretaceous Esocoidei (Teleostei): early radiation of the pikes in North American fresh waters. J Vert Paleontol 12: 41–50.
114. Maddison WP, Maddison DR (2009) Mesquite: a modular system for evolutionary analysis. 2.72 ed. Available: http://mesquiteproject.org. Accessed: January 2010.
115. Milton DA (2010) Living in two worlds: Diadromous fishes, and factors affecting population connectivity between coastal and estuarine habitats. In: Nagelkerken I, editor. Ecological Connectivity among Tropical Coastal Ecosystems. Dordrecht, Heidelberg, London, New York: Springer. 325–355.
116. Ree RH, Moore BR, Webb CO, Donoghue MJ (2005) A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59: 2299–2311.
117. Ree RH, Smith SA (2008) Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst Biol 57: 4–14.
118. Ronquist F (1997) Dispersal-vicariance analysis. A new approach to the quantification of historical range changes. Syst Biol 46: 193–203.
119. Ronquist F, Samuniar I (2011) Phylogenetic methods in biogeography. Annu Rev Ecol Evol Syst 42: 411–461.
120. Ree RH, Samuniar I (2009) Prospects and challenges for parametric models in historical biogeography. J Biogeogr 36: 1211–1220.
121. Bowen BR, Kreiser BR, Mickle PF, Adams SB, Boughner JF, et al. (2010) A new genus for the South American clupeid fish, Lepomis gulosus, from the Late Cretaceous of southern Germany and their phylogenetic relationships. Fossil Record 3: 137–179.
122. Fritsch R, Geraads D, Pilleri A, Ceulemans B, Stiassny MLJ (2012) Cytb mitogenome sequences: Implications for higher-level relationships within the Otophysi. Mol Phylogenet Evol 51: 486–499.
123. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. J Mol Evol 26: 406–425.
124. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. J Mol Evol 26: 406–425.
125. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. J Mol Evol 26: 406–425.
126. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. J Mol Evol 26: 406–425.
122. Faria R, Weiss S, Alexandrino P (2006) A molecular phylogenetic perspective on the evolutionary history of Alosa spp. (Clupeidae). Mol Phylogenet Evol 40: 298–304.
123. Anderson JD (2007) Systematics of the North American menhaden: molecular evolutionary reconstructions in the genus Brevoortia (Clupeiformes: Clupeidae). Fish Bull 105: 368–378.
124. Garcia G, Vergara J, Gutierrez V (2008) Phylogeography of the Southwestern Atlantic menhaden genus Brevoortia (Clupeidae, Alosinae). Mar Biol 155: 325–336.
125. Wongratana T (1987) Four new species of clupeoid fishes (Clupeidae and Engraulidae) from Australian waters. Proc Biol Soc Wash 100: 104–111.
126. Gouraine G, Teugels GG (1988) A new species of herring-like fish Microthrissa (Pisces, Clupeidae, Pellonulinae) from the Zaire basin, Central Africa. Cybium 12: 357–363.
127. Peng YB, Zhao ZR (1988) A new genus and a new species of Chinese anchovies. J Fish China 12: 355–358.
128. Castro-Aguirre JL, Vivero JM (1990) Existencia de una nueva especie del género Lile Jordan y Evermann (Ostheichthyes: Clupeidae) en la costa occidental del Pacífico Mexicano. An Esc Nac Cienc Biol 33: 135–146.
129. Randall JE (1994) Richia compressa, a new species of clupeid fish from the Persian Gulf. Raffles Bull Zool 42: 893–899.
130. Nelson G, McCarthy L (1995) Two new species of gizzard shads of the genus Nematalosa (Teleostei, Clupeidae, Dorosomatinae) from the Persian/Arabian Gulf. Jpn J Ichthyol 41: 379–383.
131. Britz R, Kostelat M (1999) Sundasalanx mekongensis, a new species of clupeiform fish from the Mekong basin (Teleostei: Sundasalangidae). Ichthyol Explor Freshwat 10: 337–344.
132. Menezes NA, de Pinna MCC (2000) A new species of Pristigaster, with comments on the genus and redescription of P. ocella (Teleostei: Clupeomorphpha: Pristigasteridae). Proc Biol Soc Wash 113: 238–246.
133. Castro-Aguirre JL, Ruiz-Campos G, Balart EF (2002) A new species of the genus Lile (Clupeiformes: Clupeidae) of the eastern tropical Pacific. Bull South Calif Acad Sci 101: 1–12.
134. Roberts TR (2008) Alnichthys dentibranchialus, a new genus and species of river herring from the lower Mekong basin of Cambodia (Teleostei: Clupeidae: Pseudonadidae). Raffles Bull Zool 56: 125–127.
135. Borsa P, Collet A, Durand JD (2004) Nuclear-DNA markers confirm the presence of two anchovy species in the Mediterranean. C R Biol 327: 1113–1123.
136. Kimura S, Hori K, Shibukawa K (2009) A new anchovy, Stolephorus ingui (Clupeiformes: Engraulidae), from North Sulawesi, Indonesia. Ichthyol Res 56: 292–295.
137. Randall JE, DiBattista JD (2012) Etrumeus manbulans, a new species of round herring (Clupeidae: Dussumierinae) from the Hawaiian Islands. Pacif Sci 66: 97–110.
138. Jurkosek B, Kolar-Jurkosek T (2007) Fossil assemblages from the Upper Cretaceous Komen and Tomaj Limestones of Kras (Slovenia). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 245: 83–92.