BMJ Open Early perceptions and behavioural responses during the COVID-19 pandemic: a cross-sectional survey of UK adults

Christina Atchison, Leigh Robert Bowman, Charlotte Vrinten, Rozlyn Redd, Philippa Pristerà, Jeffrey Eaton, Helen Ward

ABSTRACT
Objective To examine risk perceptions and behavioural responses of the UK adult population during the early phase of the COVID-19 epidemic in the UK.

Setting A cross-sectional survey.

Participants 2108 adults living in the UK aged 18 years and over. Response rate was 84.3% (2108/2500). Data collected between 17 March and 18 March 2020.

Main outcome measures Descriptive statistics for all survey questions, including number of respondents and weighted percentages. Robust Poisson regression used to identify sociodemographic variation in: (1) adoption of social distancing measures, (2) ability to work from home, and (3) ability and (4) willingness to self-isolate.

Results Overall, 1992 (94.2%) respondents reported at least one preventive measure: 85.8% washed their hands with soap more frequently; 55.5% avoided crowded areas and 54.5% avoided social events. Adoption of social distancing measures was higher in those aged over 70 years compared with younger adults aged 18–34 years (adjusted relative risk/aRR: 1.2; 95% CI: 1.1 to 1.5). Those with lowest household income were three times less likely to be able to work from home (aRR: 0.33; 95% CI: 0.24 to 0.45) and less likely to be able to self-isolate (aRR: 0.92; 95% CI: 0.88 to 0.96). Ability to self-isolate was also lower in black and minority ethnic groups (aRR: 0.89; 95% CI: 0.79 to 1.0). Willingness to self-isolate was high across all respondents.

Conclusions Ability to adopt and comply with certain non-pharmaceutical interventions (NPIs) is lower in the most economically disadvantaged in society. Governments must implement appropriate social and economic policies to mitigate this. By incorporating these differences in NPIs among socioeconomic subpopulations into mathematical models of COVID-19 transmission dynamics, our modelling of epidemic outcomes and response to COVID-19 can be improved.

INTRODUCTION
On 31 December 2019, Chinese authorities notified the WHO of an outbreak of pneumonia in Wuhan City, which was later classified as a new disease: COVID-19. Following identification of cases outside China, on 30 January 2020, the WHO declared the outbreak of COVID-19 a ‘Public Health Emergency of International Concern’. In the UK, the first cases of COVID-19 were diagnosed at the end of January 2020, and community transmission was reported a few weeks later. Government measures to control the epidemic were first announced on 22 January 2020 and included travel advice, information for those returning from affected countries, testing of suspected cases, isolation and contact tracing. This was followed in early February by a public health information campaign advising people to adopt hygiene measures to protect themselves and others, including more frequent handwashing with soap and water, using hand sanitiser if soap and water are not available, and covering mouth and nose with a tissue or sleeve when coughing or sneezing. Then, on 3 March 2020, the UK Government published its action plan setting out the UK-wide response to the novel coronavirus. The UK Government’s response outlined measures in four key areas: containing the outbreak,
delays its spread, mitigating the impact, and research to improve diagnostics and treatment.

On 16 March 2020, 5 days after the WHO declared the outbreak of COVID-19 a pandemic, the UK Prime Minister announced a shift to the delay phase of the UK response with measures aimed at suppressing the spread of the infection in the population through non-pharmaceutical interventions (NPIs), including social distancing of the whole population, isolation of cases for 7 days and quarantine of their household members for 14 days. The public was advised to stop non-essential contact with others and all unnecessary travel: including working from home where possible and avoiding pubs, theatres, restaurants and other social venues. This shift in response was prompted by a mathematical modeling study which showed that a combination of social distancing of the entire population, home isolation of cases and household quarantine of their family members (and possible school and university closure) was required to suppress transmission to a level that would enable the National Health Service to cope with the surge in cases requiring hospital admission and ventilation.

The effect of NPIs to reduce transmission rates is dependent on compliance with public health advice on social distancing. In the initial stages of the UK epidemic, this advice was voluntary, and not enforced by the government. This was criticised due to concern that measures may not have the desired impact if a significant proportion of the population were unable or unwilling to comply.

Protective behaviours are not uniformly adopted throughout a population during an epidemic. Evidence from influenza outbreaks suggests that women are more likely to adopt NPIs than men. In the UK, during the H1N1 pandemic, non-white ethnic groups were more likely to adopt hygiene and social distancing behaviours compared with white. Employment status has also been associated with NPI adoption. Evidence from Australia during the H1N1 pandemic found those who were self-employed and who were unable to work from home were most likely to report intentions to not comply with preventative measures, suggesting that without support, it may be challenging for individuals who are unable to work from home to comply with certain public health recommendations. During the current COVID-19 pandemic, public risk perceptions and knowledge have been explored in various countries. However, only a few have identified the factors associated with greater adoption of preventative measures, or how these associations vary by context. In Hong Kong, both greater understanding of COVID-19 and increased anxiety were associated with greater adoption of social distancing behaviours.

As such, this study aimed to assess reported behaviour and intention to comply with the NPIs, as recommended by the UK Government at the time of the survey. Preliminary findings were shared with the Scientific Advisory Group for Emergencies, which advises the UK Government’s response to COVID-19.

METHODS

Study design and sample

A cross-sectional survey of a nationally representative sample of the UK adult (aged 18 years and over) population was conducted between 17 March and 18 March 2020, which followed the UK Government’s 16 March announcement to increase social distancing measures by advising the public to stop non-essential contact with others and all unnecessary travel.

The online survey was administered by YouGov, a market research company, to members of its UK panel of 800,000+ individuals. This panel includes individuals who have specifically opted in to participate in online research activities. YouGov actively recruits hard-to-reach individuals to this panel (such as younger people and those from ethnic minorities) via a network of partners with specific experience in recruiting these audiences for online activities or with access to a wide range of online sources that cater to these groups.

A sample of 2108 adults was achieved through non-probabilistic quota sampling. Emails were sent to 2500 panelists from the base sample, randomly selecting panelists with particular age, sex, ethnicity and UK geographical region of residence characteristics to achieve quotas that matched the proportions of people with those characteristics in the UK 2011 census data. The response rate was 84.3% (2108/2500). No incentive was given to participate in the survey.

Survey instrument

The questionnaire was adapted from a survey used in a similar study conducted in Hong Kong. The questionnaire had four components: (1) sociodemographic characteristics, (2) risk perceptions towards COVID-19, (3) preventive behaviours, and (4) ability and willingness to self-isolate.

Sociodemographic characteristics

Sociodemographic characteristics consisted of sex, age, ethnicity, marital status, caring responsibilities, UK area of residence and socioeconomic status (SES). SES was assessed using five indicators: education level, employment status, household income, savings and household tenure.

Risk perceptions towards COVID-19

Risk perceptions towards COVID-19 were measured by perceived susceptibility and perceived severity. Susceptibility was measured by asking respondents about perceived likelihood of being infected with COVID-19 under the UK Government’s current preventative measures. Severity was measured by asking respondents about perceived seriousness of symptoms if they were infected with COVID-19.

Preventive behaviours

Preventive behaviours included information on perceived effectiveness and actual adoption of preventive behaviours (to protect oneself and others), to prevent both contracting COVID-19 and onward transmission,
and were collected under three categories: (1) hygiene practices (wearing a face mask, washing hands more frequently with soap and water, using hand sanitiser more regularly, disinfecting the home, covering nose and mouth when sneezing or coughing); (2) travel avoidance (travel to affected countries and travel to areas inside and outside the UK, regardless of whether they were affected); (3) social distancing (avoiding public transport, social events, going out in general, going to hospital or other healthcare settings, crowded places, and contact with people who have a fever or respiratory symptoms).

Willingness to self-isolate
Willingness to self-isolate was measured by asking respondents whether, if advised by a healthcare professional, they would be willing to self-isolate. Similarly, ability to self-isolate was measured by asking respondents whether, if advised by a healthcare professional, they would be able to self-isolate.

At the time the survey was conducted, Public Health England’s operational definition of ‘self-isolation’ was ‘if you have symptoms of coronavirus infection (COVID-19), however mild, do not leave your home (even to buy food or essentials) or have any visitors for 7 days from when your symptoms started. This includes not going to work, school or other public places, when your symptoms started. This includes not going to work, school or other public places, and avoiding public transport or taxis. Self-isolation is the same as voluntary quarantine.’

We worked with YouGov to optimise question clarity and ease of understanding for the UK population.

The survey instrument is freely available to download from the School of Public Health, Imperial College London COVID-19 resources webpage: http://www.imperial.ac.uk/medicine/departments/school-public-health/infectious-disease-epidemiology/mrc-global-infectious-disease-analysis/COVID-19/covid-19-scientific-resources/.

Data collection
Data were collected between 16:30 GMT on 17 March 2020 and 10:30 GMT on 18 March 2020. Participants identified for the sample were sent an email with a survey link. YouGov returned the anonymised data set to the Imperial College London research team for analysis.

Data analysis
Analyses were conducted in Stata V.15 and SPSS V.25.

Descriptive statistics for all variables present the number of respondents and the weighted percentages. Percentages were weighted for age, sex, region and ethnicity to account for variation in response rates, so as to be representative of the population (18+ years) of the UK. Details of the weighting approach used and the sample population profile are in the online supplemental file S1.

For analysis, age, collected as discrete count in years, was collapsed into four age bands routinely used in the UK to report COVID-19-related data. Ethnicity data were collected using the 18 response categories used in the UK 2011 census but were collapsed into two categories (white/Black, Asian and minority ethnic (BAME)) because of small numbers of respondents in BAME groups.

Robust Poisson regression, by estimating relative risk (RR), was used to identify sociodemographic variation in: (1) adoption of social distancing measures, (2) ability to work from home, and (3) ability and (4) willingness to self-isolate. Adoption of social distancing measures was proxied by respondents reporting to have avoided crowded places and social events to protect themselves or others from COVID-19. For our outcomes of interest, an RR >1 indicated that the group was more likely to (1) adopt social distancing measures, (2) be able to work from home, and (3) be able and (4) willing to self-isolate relative to the reference group for that independent variable.

Age and sex were retained in all the regression models as they are considered important confounders. Including as many explanatory variables as possible can dilute true associations and lead to large SEs with wide and imprecise CIs, or, conversely, identify spurious associations. The conventional technique is to first run the univariate analyses and then use only those variables which meet a preset cut-off for significance to run a multivariable model. This cut-off is often more liberal than the conventional cut-off for significance (eg, p<0.20, instead of the usual p<0.05) since its purpose is to identify potential predictor variables rather than to test a hypothesis.

Therefore, only variables that appeared to be associated (p<0.20) in the unadjusted analyses were considered in the adjusted analyses. Adjusted RR (aRR) and 95% CIs were estimated. Associations with a p value of <0.05 in the adjusted analyses were considered to be statistically significant. We did not adjust our p values for multiple comparisons to reduce type I errors for null associations because this increases type II errors for those associations that are not null. Not adjusting for multiple comparisons in the context of this study is preferable because it will result in less errors of interpretation as the data under examination are not random numbers but actual observations on people. Furthermore, in the context of a global pandemic caused by an emerging infectious disease, it may be better to explore leads that may turn out to be wrong than risk missing possibly important findings that could provide insights for control of the virus.

We tested for collinearity between education level, employment status, household income, savings and household tenure. For these categorical variables, collinearity was measured by examining bivariate relationships using Pearson’s X² tests. Where collinearity was detected, we ran separate adjusted regression analyses for those variables, using only other explanatory variables in those models that were not strongly correlated.

Patient and public involvement
Prior to conducting the study, we distributed an online feedback form to communities across the UK using local networks of public partners and contacts, Twitter and via

Atchison C, et al. BMJ Open 2021;11:e043577. doi:10.1136/bmjopen-2020-043577
VOICE-global.org, an online platform for public involvement in research established by Newcastle University. We received 420 responses, including 328 from members of the public. The experiences and feedback shared guided our study design and scope, including the phrasing of the survey tool’s closed-ended questions and the refinement of pre-populated answer choices.

Study results will be shared with the public both by posting on the VOICE-global.org news page, on the research team’s website, and through direct mail with those who consented to be contacted about our research and involvement activity.

RESULTS
The overall sample is described in table 1. There was lower response among people from minority ethnic groups and older age groups compared with the UK population profile (online supplemental file S1 for full details of the sample profile compared with UK population profile). In summary, of the 2108 respondents, 11.1% were 18–24 years old, and 13.5% were 70 years or older. The majority of respondents were white (93.9%). In total, 43.4% were in full-time work and 14.1% were in part-time work.

Overall, 77.4% (1640/2108) of respondents reported being worried about the COVID-19 outbreak in the UK. None of the 2108 respondents had previously tested positive for COVID-19, and 47.5% (979/2108) believed that it was likely they would be infected at some point in the future under the UK Government’s preventive measures. If infected, just over half (56.9%) of respondents would expect to be moderately severely affected (eg, may need self-care and rest in bed) (table 1).

Accordingly, 94.2% of adults reported taking at least one preventive measure (to protect oneself and others) against COVID-19 infection: 85.8% washed their hands with soap more frequently; 56.5% avoided crowded areas; 54.5% avoided social events and 39.2% avoided public transport (figure 1). Most reported that their behavioural change was in response to government guidance (71.3%). Preventive measures perceived to be most effective were washing hands more frequently with soap and water (92.5%), avoiding contact with people who have a fever or respiratory symptoms (91.4%), and covering nose and mouth when sneezing or coughing (90.0%) (figure 1). Perceived effectiveness of preventive measures was higher than actual adoption for all measures. This was particularly marked for social distancing measures (figure 1).

Adoption of social distancing measures
Overall, 45.2% of respondents reported adopting social distancing measures (avoiding crowded places and avoiding social events) to protect themselves or others from COVID-19.

Table 2 shows the regression analysis results for adoption of social distancing measures. Being 70 years or older (64.2% vs 38.4%; aRR: 1.2; 95% CI: 1.1 to 1.5) was positively associated with greater adoption compared

Table 1 Demographics, socioeconomic characteristics and COVID-19 risk perceptions, N=2108

Characteristic	No	Weighted %
Demographic and socioeconomic		
Age (years)		
18–24	218	11.1
25–34	294	14.4
35–44	396	19.3
45–54	355	17.5
55–69	519	24.2
70 or above	326	15.5
Sex		
Male	987	48.0
Female	1094	50.7
Prefer not to say	27	1.3
Ethnicity		
White group	1985	93.9
Asian/Asian British	48	2.4
Black/African/Caribbean/Black British	20	1.0
Other ethnic group, including mixed/multiple ethnic groups	39	1.9
Prefer not to say	16	0.77
Marital status		
Married, civil partnership or living as married	1283	60.3
Separated, divorced or widowed	270	12.2
Never married	545	27.1
Prefer not to say	10	0.45
Area of residence		
London	239	13.1
North	522	23.3
Midlands	531	25.2
South	485	22.5
Northern Ireland, Scotland, Wales	331	15.9
Education		
No formal qualification	121	5.5
Secondary-level qualification	859	41.2
Post-secondary level, below bachelor	148	6.9
Bachelor level or above	664	30.8
Other technical, professional or higher qualification	245	11.2
Don’t know	32	1.6
Prefer not to say	39	2.0
Employment status		
Working full time	889	43.4
Working part time	292	14.1

Continued
with younger adults aged 18–34 years. Compared with those who were married, in a civil partnership or living as married (48.4%), respondents who were separated, divorced or widowed (44.1%; aRR: 0.75; 95% CI: 0.64 to 0.87) or never married (38.4%; aRR: 0.74; 95% CI: 0.63 to 0.88) were less likely to have adopted social distancing measures to prevent transmission of COVID-19. Respondents with £100 savings or less were one-fifth less likely to have adopted social distancing measures compared with those with £25000 or more in savings (43.5% vs 48.4%; aRR: 0.83; 95% CI: 0.73 to 0.95) (table 2).

Ability to work from home

Overall, 44.3% of respondents reported being able to work from home (ie, permitted by their employer and have the necessary equipment to do their job from home). Respondents who held post-secondary but below degree-level (47.7%; aRR: 0.68; 95% CI: 0.59 to 0.79) and secondary or below level (29.4%; aRR: 0.45; 95% CI: 0.39 to 0.53) education qualifications were less likely to be able to work from home compared with those educated to degree level (62.6%) (table 2). As with educational level, there was a household income and savings gradient with ability to work from home. Those with the lowest household income (<£20000) were three times less likely to be able to work from home compared with those with £50000 and over (67.3% vs 22.7%; aRR: 0.35; 95% CI: 0.24 to 0.45). Respondents with £100 savings or less were half as likely to be able to work from home compared with those with £25000 or more in savings (33.1% vs 59.9%; aRR: 0.51; 95% CI: 0.39 to 0.67) (table 2). Compared with those who owned their home outright, those renting accommodation from a local authority or housing association were less likely to be able to work from home (18.2% vs 41.0%; aRR: 0.45; 95% CI: 0.28 to 0.73).

Willingness and ability to self-isolate

Overall, perceived ability (87.0%) and willingness (87.6%) to self-isolate for 7 days if asked by a healthcare professional were high.

In terms of sociodemographic associations, there was no effect of sex on perceived ability to self-isolate.
DISCUSSION

This study reports on the perceptions and behaviour of the UK adult population in the 2 days following the UK Government’s introduction of recommendations on social distancing on 16 March 2020. We found high levels of self-reported behavioural change. Notably, the most adopted measures, washing hands more frequently with soap and water, using hand sanitiser, and covering nose and mouth when sneezing or coughing, prominently featured in national public health campaigns from relatively early on in the epidemic, and mirror results seen in previous pandemics. However, there were marked differences between the perceived effectiveness and adoption of NPIs. This suggests that lack of knowledge on what measures are effective against COVID-19 is not a key driver of compliance in the UK population. In contrast, a similar study conducted in Hong Kong showed comparatively high-perceived effectiveness and adoption of preventive measures.

Our results highlighted significant differences across demographic and socioeconomic strata for social distancing behaviour, ability to work from home, and the ability and willingness of people to self-isolate. There was a strong association between socioeconomic deprivation and ability to adopt NPIs. Although willingness to self-isolate was high overall, those from more disadvantaged backgrounds were less likely to be able to work from home or self-isolate if needed, suggesting the existence of structural barriers to adopting preventive behaviours in these groups. Specifically, our study found that those with less savings were the group least likely to adopt NPIs overall. As such, the barriers for this group appear the
Table 2 Social distancing behaviour and ability to work from home by a range of sociodemographic factors, N=2108

Social distancing measures being taken yes versus no*	Able to work from home yes versus no (N=1149)†						
N	Weighted %	Unadjusted RR (95% CI)	Adjusted RR (95% CI)	N	Weighted %	Unadjusted RR (95% CI)	Adjusted RR (95% CI)
--	---						
Social distancing							
Yes	969 45.2		540 44.3				
No	1139 54.8		609 53.0				
Ability to work from home							
Yes							
No							
Don’t know	32 2.7						
Age (years)							
18–34	202 38.4	Ref	154 48.0	Ref			
35–49	229 40.8	1.1 (0.91 to 1.2)	220 48.0	1.0 (0.86 to 1.2)			
50–69	329 46.4	1.2 (1.1 to 1.4)**	151 39.9	0.83 (0.70 to 0.99)*			
70 or older	209 64.2	1.7 (1.5 to 1.9)**	15 53.9	1.1 (0.78 to 1.6)	1.1 (0.96 to 1.7)		
Sex							
Male	436 42.9	Ref	280 46.1	Ref			
Female	519 47.4	1.1 (1.0 to 1.2)*	254 44.8	0.97 (0.85 to 1.1)	0.98 (0.86 to 1.2)		
Ethnicity							
White group	919 45.5	Ref	506 45.1	Ref			
Black, Asian and minority ethnic	45 42.1	0.92 (0.73 to 1.2)	31 54.2	1.2 (0.94 to 1.5)	1.0 (0.98 to 1.1)		
Marital status							
Married, civil partnership or living as married	628 48.4	Ref	366 47.2	Ref			
Separated, divorced or widowed	121 44.1	0.91 (0.79 to 1.1)	43 39.5	0.84 (0.65 to 1.1)			
Never married	214 38.4	0.79 (0.70 to 0.90)**	128 43.5	0.92 (0.79 to 1.1)			
Area of residence							
London	111 45.2	Ref	76 54.0	Ref			
North of England	220 41.6	0.92 (0.77 to 1.1)	129 44.7	0.83 (0.67 to 1.0)	1.0 (0.76 to 1.2)		
Midlands and East of England	249 46.0	1.0 (0.86 to 1.2)	123 44.4	0.82 (0.67 to 1.0)	1.0 (0.75 to 1.1)		
South of England	221 45.0	0.99 (0.84 to 1.2)	151 49.0	0.91 (0.75 to 1.1)	1.0 (0.88 to 1.4)		
Northern Ireland, Scotland, Wales	168 49.9	1.1 (0.92 to 1.3)	61 35.2	0.65 (0.50 to 0.84)**	0.76 (0.59 to 1.0)		
Education							
Degree or above	321 48.0	Ref	289 62.6	Ref			
Post-secondary	186 46.7	0.97 (0.85 to 1.1)	105 47.7	0.76 (0.65 to 0.89)**	0.68 (0.59 to 0.79)**		
Secondary or below	436 43.7	0.91 (0.82 to 1.0)	137 29.4	0.47 (0.40 to 0.55)**	0.45 (0.39 to 0.53)**		
Employment status							
Working full time	344 38.6	Ref	439 48.9	Ref			
Social distancing measures being taken yes versus no*	Able to work from home yes versus no (N=1149)†						
--	--						
N Weighted %	Unadjusted RR (95% CI)	Adjusted RR (95% CI)	N Weighted %	Unadjusted RR (95% CI)	Adjusted RR (95% CI)		
-------------	------------------------	----------------------	-------------	------------------------	----------------------		
Working part time	136 46.8	1.2 (1.0 to 1.4)**	1.0 (0.86 to 1.2)	101 35.0	0.71 (0.60 to 0.85)**	0.93 (0.84 to 1.2)	
Full-time student	43 36.3	0.94 (0.73 to 1.2)	1.0 (0.71 to 1.5)	N/A	N/A	N/A	
Retired	331 59.7	1.5 (1.4 to 1.7)**	1.1 (0.90 to 1.3)	N/A	N/A	N/A	
Unemployed/not working	95 45.4	1.2 (0.99 to 1.4)	1.1 (0.90 to 1.4)	N/A	N/A	N/A	
Household income							
£50000 and over	178 41.0	Ref Ref**	241 67.3	Ref Ref††			
£30000–£49999	211 43.8	1.1 (0.92 to 1.2)	1.0 (0.87 to 1.2)	131 42.6	0.63 (0.54 to 0.74)**	0.55 (0.47 to 0.63)**	
£20000–£29999	173 48.5	1.2 (1.0 to 1.4)**	1.1 (0.89 to 1.3)	64 30.7	0.46 (0.37 to 0.57)**	0.41 (0.33 to 0.52)**	
<£20000	218 49.0	1.2 (1.0 to 1.4)**	1.0 (0.87 to 1.2)	31 22.7	0.34 (0.24 to 0.47)**	0.33 (0.24 to 0.49)**	
Savings							
£25000 or more	177 48.4	Ref Ref**	100 59.9	Ref Ref††			
£15000–£24999	177 48.7	1.0 (0.86 to 1.2)	1.1 (0.93 to 1.3)	131 57.6	0.96 (0.81 to 1.1)	0.90 (0.76 to 1.1)	
£10000–£1999	126 40.7	0.84 (0.71 to 1.0)	0.76 (0.67 to 0.87)**	89 43.7	0.73 (0.59 to 0.90)**	0.67 (0.54 to 0.83)**	
£100–£999	91 37.4	0.77 (0.63 to 0.94)*	0.73 (0.61 to 0.87)**	67 40.1	0.67 (0.53 to 0.84)**	0.64 (0.50 to 0.81)**	
Less than £100	122 43.5	0.90 (0.76 to 1.1)	0.83 (0.73 to 0.95)**	54 33.1	0.55 (0.43 to 0.71)**	0.51 (0.39 to 0.67)**	
Housing tenure							
Own outright	377 55.0	Ref Ref**	93 41.0	Ref Ref††			
Own with mortgage/shared ownership	261 40.8	0.74 (0.66 to 0.83)**	0.95 (0.82 to 1.1)	293 55.0	1.3 (1.1 to 1.6)**	1.0 (0.73 to 1.5)	
Rented from private landlord	145 45.0	0.82 (0.71 to 0.94)**	1.1 (0.90 to 1.3)	85 39.8	0.97 (0.77 to 1.2)	0.92 (0.83 to 1.1)	
Rented from local authority/housing association	94 42.2	0.77 (0.65 to 0.91)**	0.90 (0.75 to 1.1)	16 18.2	0.44 (0.27 to 0.72)**	0.45 (0.28 to 0.73)**	
Live with parents, family or friends	78 35.4	0.64 (0.53 to 0.78)**	0.93 (0.70 to 1.2)	46 43.6	1.1 (0.81 to 1.4)	0.79 (0.65 to 1.0)	

*P<0.05, **P<0.01, ***P<0.001.
*Those that report avoiding crowded areas and social events.
†Excluding those who responded ‘Don’t know’.
‡Mutually adjusted for age, sex, marital status, employment status, household income, savings and housing tenure.
§Mutually adjusted for age, sex, ethnicity, UK area of residence, education, employment status, household income, savings and housing tenure.
¶Adjusted for age, sex, ethnicity and UK area of residence.
**Adjusted for age, sex, marital status and employment status.
††Adjusted for age, sex, ethnicity and UK area of residence.
N/A, not available; RR, relative risk.
Table 3 Ability and willingness to self-isolate by sociodemographic factors

	Able to self-isolate yes versus no (N=2002)*	Willing to self-isolate yes versus no (N=1978)*						
	N	Weighted %	Unadjusted RR (95% CI)	Adjusted RR (95% CI)	N	Weighted %	Unadjusted RR (95% CI)	Adjusted RR (95% CI)
Self-isolation ability/willingness								
Yes, I would	1834	87.0	Ref	Ref†	1847	87.6	Ref	Ref†
No, I wouldn’t	168	8.0			131	6.2		
Don’t know	106	5.0			130	6.2		
Age (years)								
18–34	466	90.8	Ref	Ref†	457	91.6	Ref	Ref†
35–49	494	90.0	0.99 (0.95 to 1.1)	1.0 (0.96 to 1.1)	508	94.2	1.0 (0.99 to 1.1)	1.0 (0.98 to 1.1)
50–69	614	92.2	1.0 (0.98 to 1.1)	1.0 (0.97 to 1.1)	627	93.6	1.0 (0.99 to 1.1)	1.0 (0.96 to 1.1)
70 or older	262	94.9	1.1 (1.0 to 1.2)*	1.0 (0.96 to 1.1)	255	94.4	1.0 (0.99 to 1.1)	1.0 (0.96 to 1.1)
Sex								
Male	878	90.7	Ref	Ref†	878	91.8	Ref	Ref†
Female	957	92.5	1.0 (0.99 to 1.1)	1.0 (0.98 to 1.1)	969	94.9	1.1 (1.0 to 1.2)**	1.1 (1.0 to 1.2)**
Ethnicity								
White group	1737	92.1	Ref	Ref†	1751	93.7	Ref	Ref†
Black, Asian and minority ethnic	89	84.8	0.92 (0.84 to 0.99)*	0.89 (0.79 to 1.0)*	86	87.8	0.94 (0.87 to 1.0)	0.96 (0.87 to 1.1)
Marital status								
Married, civil partnership or living as married	1128	92.3	Ref	–	1143	94.5	Ref	–
Separated, divorced or widowed	215	90.7	0.98 (0.94 to 1.2)		219	92.8	0.98 (0.95 to 1.1)	0.98 (0.93 to 1.1)
Never married	482	90.3	0.97 (0.95 to 1.1)		477	91.0	0.96 (0.93 to 0.99)*	0.99 (0.95 to 1.1)
Area of residence								
London	241	91.6	Ref	–	243	92.7	Ref	–
North of England	427	91.2	0.99 (0.95 to 1.1)		430	93.7	1.0 (0.97 to 1.1)	
Midlands and East of England	465	93.0	1.0 (0.97 to 1.2)		465	93.9	1.0 (0.97 to 1.1)	
South of England	408	89.5	0.98 (0.93 to 1.1)		411	92.2	0.99 (0.95 to 1.0)	
Northern Ireland, Scotland, Wales	294	92.7	1.0 (0.96 to 1.2)		297	94.3	1.0 (0.97 to 1.1)	
Education								
Degree or above	584	93.1	Ref	–	591	94.9	Ref	–
Post-secondary	332	90.2	0.97 (0.93 to 1.1)		329	90.9	0.96 (0.92 to 0.99)*	0.95 (0.92 to 0.99)*
Secondary or below	863	91.3	0.98 (0.95 to 1.1)		873	93.6	0.98 (0.96 to 1.0)	1.0 (0.97 to 1.0)
Employment status								
Working full time	799	91.4	Ref	–	804	93.6	Ref	–
Working part time	255	90.4	0.99 (0.95 to 1.0)	0.98 (0.93 to 1.0)	263	92.9	0.99 (0.96 to 1.0)	
Full-time student	105	93.8	1.0 (0.97 to 1.1)	1.0 (0.94 to 1.1)	97	89.0	0.95 (0.88 to 1.0)	
Retired	450	95.1	1.1 (1.0 to 1.2)**	1.0 (0.96 to 1.1)	444	94.7	1.0 (0.98 to 1.1)	

Continued
Table 3 Continued

	Able to self-isolate yes versus no (N=2002)*	Willing to self-isolate yes versus no (N=1978)*						
	N	Weighted %	Unadjusted RR (95% CI)	Adjusted RR (95% CI)	N	Weighted %	Unadjusted RR (95% CI)	Adjusted RR (95% CI)
Unemployed or not working	185	89.8	0.98 (0.93 to 1.0)	1.0 (0.93 to 1.1)	191	94.1	1.0 (0.96 to 1.1)	
Household income								
£50,000 and over	405	95.5	Ref	Ref	393	94.7	Ref	Ref
£30,000–£49,999	417	90.7	0.95 (0.92 to 0.98)**	0.95 (0.92 to 0.98)**	424	93.6	0.99 (0.95 to 1.2)	
£20,000–£29,999	311	92.6	0.97 (0.94 to 1.1)	0.96 (0.93 to 1.0)	308	91.9	0.97 (0.93 to 1.1)	
<£20,000	363	88.3	0.93 (0.89 to 0.96)**	0.92 (0.88 to 0.96)**	383	93.0	0.98 (0.95 to 1.1)	
Savings								
£25,000 or more	329	95.6	Ref	Ref	318	94.1	Ref	Ref**
£5,000–£24,999	319	95.2	1.0 (0.96 to 1.1)	1.0 (0.97 to 1.1)	317	95.8	1.0 (0.98 to 1.1)	
£1,000–£4,999	274	92.3	0.96 (0.93 to 1.1)	0.99 (0.95 to 1.0)	272	92.8	0.98 (0.94 to 1.1)	
£100–£999	217	90.0	0.94 (0.90 to 0.98)**	0.97 (0.92 to 1.1)	221	94.8	1.0 (0.97 to 1.1)	
Less than £100	232	84.4	0.88 (0.83 to 0.93)**	0.90 (0.85 to 0.96)**	250	90.9	0.96 (0.92 to 1.0)	
Housing tenure								
Own outright	576	93.8	Ref	Ref	575	95.0	Ref	Ref†
Own with mortgage/shared ownership	571	92.1	0.98 (0.95 to 1.0)	1.0 (0.96 to 1.1)	584	95.0	1.0 (0.97 to 1.0)	
Rented from private landlord	277	89.1	0.95 (0.91 to 0.99)*	0.97 (0.92 to 1.0)	297	94.3	0.99 (0.96 to 1.0)	
Rented from local authority/housing association	188	87.9	0.94 (0.89 to 0.99)*	0.97 (0.91 to 1.0)	188	90.0	0.94 (0.90 to 0.99)	0.94 (0.89 to 0.99)**
Live with parents, family or friends	197	92.9	0.99 (0.95 to 1.1)	1.0 (0.97 to 1.1)	178	88.1	0.92 (0.88 to 0.98)*	0.95 (0.89 to 1.0)

*P<0.05, **p<0.01, ***p<0.001.
*Excluding those who responded ‘Don’t know’.
†Mutually adjusted for age, gender, ethnicity, employment status, household income, savings and housing tenure.
‡Mutually adjusted for age, gender, ethnicity, marital status, education, savings and housing tenure.
§Adjusted for age, gender, ethnicity, marital status and housing tenure.
*Adjusted for age, gender, ethnicity and employment status.
**Adjustment for age, gender, ethnicity and marital status.
††Adjusted for age, gender, ethnicity and marital status.
RR, relative risk.
The strength of this study is in the representative sample of the UK adult population, the ability to achieve our sample size quickly and the timeliness in relation to changing government recommendations. However, social distancing measures were only brought in 2 days before the survey. Therefore, there may have not been enough time for people to fully implement these measures prior to their participation in the study. But many employers had already begun allowing staff to work from home in the week prior to the UK Government’s announcement, and ability and willingness to self-isolate do not measure behavioural change directly but intent. So, we believe our study does indeed measure attitudes and behaviours based on the most recent advice at the time of the survey. Social desirability bias is also possible given that participants were asked whether they were complying with government restrictions. However, this is less of an issue with online surveys where respondents are assured anonymity and answer questions in the privacy of their own home without any live human interaction. In addition, our sampling approach is prone to selection bias, for example by excluding participants without internet access and non-English speakers, and sampling from a panel of individuals who have specifically opted in to participate in online research activities. As in almost all population surveys, our study had unequal participation, with lower response among people from minority ethnic groups and older age groups. We reweighted the sample to account for such differential response, although this may not have overcome unknown participation biases. Furthermore, surveys collecting self-report data are generally subject to limitations including honesty, introspective ability and interpretation of the questions. The survey tool consisted of predominantly closed-ended questions. Thus, we were unable to explore responses in more depth.

Our findings highlight the stark choices faced by those in lower socioeconomic groups and suggest that unless the government intervenes to support these individuals, the impact of this epidemic will likely be felt unequally in our society. Not only this, but if a large proportion of the population continues to work while unwell, low compliance will render the various forms of social distancing less effective, as low-income workers are forced to choose between financial and physical health. Indeed, this behaviour has already been observed in the workplace in previous pandemics: workers without access to paid sick leave were more likely to work while unwell than those with paid sick leave. A study in China after the H7N9 epidemic found that only 7% of people reported willingness to self-quarantine. Also, during the Middle East respiratory syndrome outbreak in South Korea in 2015, there was heterogeneous uptake of preventive interventions.

In the absence of a vaccine and treatments over the short term, high compliance with social distancing, self-isolation and household quarantine is paramount to reduce transmission and the impact of COVID-19. NPI compliance, risk perception and behaviour are not consistent across cultures, social status or time. Indeed, previous studies have shown that perceptions and behaviours often change over time. Therefore, current modelling projections of the impact of NPIs on morbidity and mortality are always provisional. Future COVID-19 models should explore the variation captured in this and previous studies to better estimate the impact of differential uptake of NPIs in the UK and beyond. It is also important to monitor behaviour throughout the epidemic to know when to implement further public health messaging, and when further or alternative government actions might be required, to mitigate falling compliance.

Conclusions and policy implications
Our findings highlight that those most economically disadvantaged in society are less able to comply with certain NPIs, likely in part due to their financial situation. While one approach may be to better tailor public health messaging to this subpopulation, this must be done alongside considered fiscal and monetary policy to mitigate the financial costs of following government public health advice. Therefore, it is imperative that the UK Government, and governments around the world, quickly develop and implement policies to support the most vulnerable, in a bid to minimise the long-term social and economic harm caused by COVID-19. Government policy should recognise the disparity in impact across socioeconomic groups, particularly across the labour market, and should aim to support workers equitably across the income spectrum. This would likely help increase compliance across the population to the levels required to suppress transmission and thereby reduce the strain on national health services, both in the UK and abroad. Although the UK Government has since announced a range of measures to support public services, individuals and businesses, in part to facilitate compliance with current lockdown measures, it is uncertain how long these protections will be in place for and whether they will continue once lockdown restrictions are lifted.
REFERENCES

1 World Health Organisation. Rolling updates on coronavirus disease (COVID-19). 2020. Available: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen

2 ECDC. Coronavirus disease 2019 (COVID-19) pandemic: increased transmission in the EU/EEA and the UK – seventh update Stockholm, 2020.

3 Public Health England. Weekly coronavirus disease 2019 (COVID-19) surveillance report: summary of COVID-19 surveillance systems, 2020. Available: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/888254/COVID19_Epidemiological_Summary_w22_Final.pdf

4 Russell P. New coronavirus: UK public health campaign launched Medscape, 2020.

5 Department of Health and Social Care. Coronavirus (COVID-19) action plan, 2020. Available: https://www.gov.uk/government/publications/coronavirus-action-plan

6 UK Government. PM statement on coronavirus, 2020. Available: https://www.gov.uk/government/speeches/pm-statement-on-coronavirus-16-march-2020 [Accessed 16 Mar 2020].

7 Ferguson NM, Laydon D, Nedjati-Gilani G. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand, 2020.

8 Cowling BJ, Ng DMW, Ip DKM, et al. Community psychological and behavioral responses through the first wave of the 2009 influenza A(H1N1) pandemic in Hong Kong, J Infect Dis 2010;202:867–76.

9 Agüero F, Adell MN, Pérez Giménez A, et al. Adoption of preventive measures during and after the 2009 influenza A (H1N1) virus pandemic peak in Spain. Prev Med 2011;53:203–6.

10 Rubin GJ, Amlôt R, Page L, et al. Public perceptions, anxiety, and behaviour change in relation to the swine flu outbreak: cross sectional telephone survey. BMJ 2009;339:b2651.

11 Rubin GJ, Potts HWW, Michie S. The impact of communications about swine flu (influenza A H1N1v) on public responses to the outbreak: results from 36 national telephone surveys in the UK. Health Technol Assess 2010;14:180–266.

12 Lau JTF, Griffiths S, Choi KC, et al. Avoidance behaviors and negative psychological responses in the general population in the initial stage of the H1N1 pandemic in Hong Kong, BMC Infect Dis 2010;10:139.

13 Eastwood K, Durheim D, Francis JL., et al. Knowledge about pandemic influenza and compliance with containment measures among Australians. Bull World Health Organ 2009;87:588–94.

14 Lohiniva A-L, Sane J, Silbenberg K, et al. Understanding coronavirus disease (COVID-19) risk perceptions among the public to enhance risk communication efforts: a practical approach for outbreaks, Finland, February 2020, Euro Surveil 2020:25.

15 Gesser-Edelburg A, Cohen R, Hijazi R, et al. Analysis of public perception of the Israeli government’s early emergency instructions regarding COVID-19: online survey study, J Med Internet Res 2020;22:e19370.

16 Olapego PA, Ayandele O. Survey data of COVID-19-related knowledge, risk perceptions and precautionary behavior among Nigerians. Data Brief 2020;8:105685.

17 Motta Zarin G, Gentille E, Parisi A, et al. A preliminary evaluation of the public risk perception related to the COVID-19 health emergency in Italy, Int J Environ Res Public Health 2020;17:10.3390/ijerph17090304.

18 Kwok KO, Li KK, Chan HHH, et al. Community responses during early phase of COVID-19 epidemic, Hong Kong. Emerg Infect Dis 2020;26:1575–58.

19 McFadden SM, Malik AA, Aoglu OG, et al. Perceptions of the adult US population regarding the novel coronavirus outbreak. PLoS One 2020;15:e0231808.

20 Husnaayn A, Shim E, Fuad A, et al. Understanding the community risk perceptions of the COVID-19 outbreak in South Korea: Infodemiology study. J Med Internet Res 2020;22:e19788.

21 Atchison CJ, Bowman L, Eaton JW. Report 10: public response to UK government recommendations on COVID-19: population survey, 17–18 March 2020, 2020.

22 YouGov. ESMAR28: 28 questions to help online research buyers. Available: http://doc.ukdataservice.ac.uk/doc/7647/mrd/pdf/7647_methodology_esmar28.pdf [Accessed 14 Mar 2020].

23 Office for National Statistics. UK 2011 census data. Available: https://www.ons.gov.uk/census/2011census

24 Kwok KO, KK-L, Chan HHH. Community responses during the early phase of the COVID-19 epidemic in Hong Kong: risk perception information exposure and preventive measures. medRxiv 2020.

25 Fenton K, Pawson E, de Souza-Thomas L. Beyond the data: understanding the impact of COVID-19 on Barrie communities. PHE, online report, 2020. Available: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/892376/COVID_stakeholder_engagement_synthesis_beyond_the_data.pdf

26 Ranganathan P, Pramesh CS, Aggarwal R. Community pitfalls in statistical analysis: logistic regression. Perspect Clin Res 2017;8:148–51.

27 Rothman KJ. No adjustments are needed for multiple comparisons. Epidemiology 1990;1:43–6.

28 Feise RJ. Do multiple outcome measures require p-value adjustment? BMC Med Res Methodol 2002;2:8.

29 Bults M, Beaujean DJMA, Richardsus JH, et al. Perceptions and behavioral responses of the general public during the 2009 influenza A (H1N1) pandemic: a systematic review. Disaster Med Public Health Prep 2015;9:207–19.

30 Ahmed F, Zvidarte N, Uzcinan A. Effectiveness of workplace social distancing measures in reducing influenza transmission: a systematic review. BMC Public Health 2018;18:518.

31 Goodwin R, Sun S. Public perceptions and reactions to H7N9 in Mainland China. J Infect 2013;67:458–62.

32 Jang WM, Cho S, Jang DH, et al. Preventive behavioral responses to the 2015 middle East respiratory syndrome coronavirus outbreak in Korea. Int J Environ Res Public Health 2019;16:16112261.

33 UK, Government. Support for those affected by Covid-19, 2020. Available: https://www.gov.uk/government/publications/support-for-those-affected-by-covid-19
Sample – Weighting Strategy

The weighting approach used rim weighting to adjust to population estimates of: age by sex; UK geographical region counts; ethnic group.

The age by sex and region counts were extracted from the ONS mid-year population estimates (1), and the ethnic group counts from the Labour Force Survey (Annual Population Survey) (2). To allow for the different sources of population estimates, the rim weighting was carried out on the proportions rather than population totals.

Age was grouped into seven categories: 18 to 24; 25 to 34; 35 to 44; 45 to 54; 55 to 64; 65 to 74; 75 or older. So the age and sex groups had 14 categories.

The reported ethnicity was grouped into nine categories: white; mixed / multiple ethnic groups; Indian; Pakistani; Bangladeshi; Chinese; any other Asian background; black African / Caribbean / other; and any other ethnic group or missing.

The rim weighting was carried out in two stages. At the first stage, the sample was weighted to region counts and age by sex groups only. This put the sample back into the correct proportion for UK geographical regions which corrects for the differential non-response. In the same stage, the age and sex groups were also adjusted to make sure that the final weighted profile was as close to the population as possible.

The second stage of rim weighting adjusted to all four measures, using the first stage weights as the starting weights. The adjustment factor between the first and second stage weights were trimmed at the 1st and 99th percentiles to dampen the extreme weights which improves efficiency. The final weights were calculated as the first stage weights multiplied by the trimmed adjustment factor for the second stage.
Sample profile

	Population of United Kingdom Profile	COMPLETED SURVEY - UNWEIGHTED (%)	COMPLETED SURVEY - WEIGHTED (%)
GENDER			
Male		47.4%	48.6%
Female		52.6%	51.4%
AGE			
18 to 24		10.9%	10.3%
25 to 34		17.3%	14.0%
35 to 44		16.1%	18.8%
45 to 54		17.5%	16.8%
55 to 64		15.0%	13.7%
65 to 74		12.6%	20.5%
75+		10.5%	6.0%
REGION			
North East		4.0%	4.7%
North West		11.0%	11.7%
Yorkshire & Humber		8.2%	8.4%
East Midlands		7.2%	7.5%
West Midlands		8.9%	8.3%
East of England		9.3%	9.4%
London		13.4%	11.3%
South East		13.7%	13.1%
South West		8.4%	9.9%
N. Ireland, Scotland, Wales		15.7%	15.7%

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).
ETHNICITY	2019 (%)	2020 (%)	2021 (%)
White	86.3%	94.2%	93.9%
Mixed/Multiple ethnic groups	1.1%	1.6%	1.7%
Indian	2.9%	1.0%	1.1%
Pakistani	1.9%	0.52%	0.54%
Bangladeshi	0.8%	0.14%	0.15%
Chinese	0.5%	0.43%	0.46%
Any other Asian background	1.2%	0.14%	0.16%
Black/African/Caribbean/Black British	3.3%	0.95%	1.0%
Other ethnic group / DK	1.9%	1.0%	1.0%

REFERENCES

1. Office for National Statistics. Population estimates for the UK, England and Wales, Scotland and Northern Ireland: mid-2019 2020 [Available from: www.ons.gov.uk/releases/populationestimatesfortheukenglandandwalesscotlandandnorthernirelandmid2019.]
2. Office for National Statistics. Annual Population Survey/Labour Force Survey 2020 [Available from: https://www.nomisweb.co.uk/sources/aps.