Methylenetetrahydrofolate Reductase C677T Polymorphism and Type 2 Diabetes Mellitus in Chinese Population: A Meta-Analysis of 29 Case-Control Studies

Bo Zhu1,3, Xiaomei Wu2, Xueyuan Zhi1, Lei Liu4, Quanmei Zheng1, Guifan Sun1*

1 Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, People’s Republic of China, 2 Department of Clinical Epidemiology and Evidence Medicine, The First Hospital of China Medical University, Shenyang, People’s Republic of China, 3 Liaoning Academy of Safety Science, Shenyang, People’s Republic of China, 4 Key Laboratory of Endocrine diseases in Liaoning Province, The First Hospital of China Medical University, Shenyang, People’s Republic of China

Abstract

Background: Methylenetetrahydrofolate reductase (MTHFR), a key enzyme in folate metabolism, had significant effects on the homocysteine levels. The common functional MTHFR C677T polymorphism had been extensively researched. Several studies had evaluated the relationship between MTHFR C677T polymorphism and type 2 diabetes mellitus (T2DM), but the results were still controversial in the Chinese Han population. This meta-analysis was conducted to evaluate the relationship between MTHFR C677T polymorphism and T2DM in the Chinese Han population.

Methods: We searched the relevant studies in multiple electronic databases, which published up to December 2013. We reviewed and extracted data from all the included studies on the relationship between MTHFR C677T polymorphism and T2DM in the Chinese Han population. The odds ratios (ORs) and their 95% confidence intervals (95%CIs) were used to evaluate the relationship. Fixed-effects and random-effects meta-analysis were used to pool ORs by the heterogeneity. Publication bias and sensitivity analysis were also examined.

Results: 29 studies were finally included in our meta-analysis, which contained 4656 individuals with T2DM and 2127 healthy controls. There was a significant relationship between MTHFR C677T polymorphism and T2DM under dominant (OR: 1.70, 95% CI: 1.42–2.02), recessive (OR: 1.48, 95% CI: 1.21–1.80), homozygous (OR: 1.89, 95% CI: 1.47–2.42), heterozygous (OR: 1.58, 95% CI: 1.33–1.87), and additive (OR: 1.46, 95% CI: 1.28–1.68) genetic model in a random-effects model. Subgroup analysis also reached similar results. Sensitivity analysis indicated that the overall result were dependable.

Conclusions: There was a significant relationship between MTHFR C677T polymorphism and T2DM in the Chinese Han population. The results of our meta-analysis suggested that MTHFR 677T allele might be a risk genetic factor of T2DM in the Chinese Han population.

Introduction

Type 2 diabetes mellitus (T2DM) is one of public health problems, seriously affects individual life quality, and increases individual economic burden. WHO estimates the number of people with diabetes will increase by 114% between 2000 and 2030, and China will become the major site of diabetes epidemic. In a systematic review of 22 studies on diabetes prevalence in China from 2000 to 2010, it increased from 2.6% to 9.7% during this decade [1]. It is estimated that China will have 380 million people with diabetes by 2025 [2]. However, the pathogenesis of T2DM remains unclear [3]. Currently, the research on genetic polymorphisms is one of the most attention areas in the pathogenesis of T2DM, and some studies indicate that genetic polymorphisms have critical roles in the etiology of T2DM [4,5]. Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme involved in folate metabolism, which converts 5, 10-methylene tetrahydrofolate to 5-methyl tetrahydrofolate. Mice deficient in MTHFR have reduced S-adenosylmethionine and increased S-adenosylhomocysteine, show hyperhomocysteinemia and global DNA hypomethylation [6]. The MTHFR C677T polymorphism is the most important genetic variation, which causes hyperhomocysteinemia [7]. The C677T polymorphism is a C to T transition at base pair 677, which will lead to the amino acid transition from Ala to Val and is associated with reduction of MTHFR activity. The variation of MTHFR C677T polymorphism may decrease enzyme activity by 65% and increase plasma total homocysteine levels particularly in the conditions of low dietary folate [8]. Some studies suggested that elevated plasma total homocysteine was associated with insulin resistance, which...
was the major cause of T2DM [3,9,10]. Homocysteine exposure can decline the viability of insulin-secreting cells, reduce glucokinase phosphorolyzing ability, and diminish insulin secretory responsiveness, lead to cell death [11]. Therefore, the MTHFR C677T polymorphism has been widely considered a genetic candidate for T2DM [12].

In recent years, numerous studies had demonstrated an association between MTHFR C677T polymorphism and T2DM. However, the results were not consistent [13–19]. A systematic review on Arab ethnicity found that MTHFR C677T polymorphism was significantly associated with T2DM [14], but another systematic review found that there was no association between MTHFR C677T polymorphism and T2DM around the world, similar results were repeated for ethnic group (Asian, Caucasian, African) [13]. Furthermore, previous studies also showed that the prevalence of MTHFR C677T polymorphism varies in different geographical regions and ethnic groups [20], and people from different ethnic groups had different genetic susceptibility with T2DM[21]. These findings suggested the study on the association between MTHFR C677T polymorphism and T2DM should be based on one single ethnical population to provide a precise estimation. Therefore, we conducted a meta-analysis to evaluate the association between MTHFR C677T polymorphism and T2DM specifically in Chinese Han population.

Materials and Methods

Search Strategy and Identification of Relevant Studies

A search strategy was carried out in multiple electronic databases (Cochrane, EMBASE, PubMed, CQVIP, CNKI (China National Knowledge Infrastructure), CBM (China Biological Medicine Database), and Wanfang databases) before December 2013. The following subject terms were used for searching by ‘methyltetrahydrofolate reductase or MTHFR’, ‘gene or polymorphism or genetic polymorphism’, ‘Chinese or China’, and ‘diabetes or mellitus or diabetes mellitus or T2DM’. The papers were limited on humans and published in English or Chinese. In order to further identify any additional relevant data, we carefully searched the references in the selected studies.

Data Extraction

The data from all included studies were independently extracted by two authors (BZ and XW) according to a standard protocol. If the third author (LL) resolved the disagreement between two authors. We excluded the studies that did not follow the inclusion criteria, that lacked of sufficient data, or that considered duplicated articles. If we found the same data in different studies, we used the data only one time. The following items were extracted from all included studies: the first author’s name, year of publication, region (province), total number of study, gender, genotypic distribution, allele frequencies.

Inclusion Criteria

We set the inclusion criteria according to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement[22]. a) Give information on the criteria and methods for selection. b) Describe laboratory methods, including source and storage of DNA, genotyping methods and platforms. c) Clearly define genetic variants using a widely used nomenclature system. d) State whether Hardy-Weinberg equilibrium was considered and, if so, how. e) Report numbers in each genotype category.

Statistical Analysis

STATA 11.0 software (StatCorp, College Station, TX, USA) was used to perform the meta-analysis. We used five genetic models, which included dominant (TT+CT vs. CC), recessive (TT vs. CC+CT), homozygous (TT vs. CC), heterozygous (CT vs. CC), and additive (T vs. C) models. The odds ratios (ORs) and their 95% confidence intervals (95%CIs) were used to evaluate the association between MTHFR C677T polymorphism and T2DM. We used Chi-square-based Q-tests to assess the heterogeneity between the individual studies [23]. If there was a significant heterogeneity among the individual studies, the random-effect model (DerSimonian and Laird method) was carried out to assess the pooled OR. Otherwise, the fixed-effect model (the Mantel–Haenszel method) was carried out.

We also conducted meta-regression and subgroup analysis to explore the sources of heterogeneity. To assess the reliability of the outcomes in the meta-analysis, a sensitivity analysis was performed by excluding one study at a time. Publication bias was assessed using the Egger’s test [24]. We also conducted the Duval and Tweedie nonparametric “trim and fill” procedure to further assess the effect of publication bias in each genetic model [25]. Hardy-Weinbery equilibrium (HWE) in controls was assessed by the goodness-of-fit x² test in each included study. The significance set at the P<0.05 in all analyses.

Results

Characteristics of Including Studies

Figure 1 showed the procedure by which article was selected. A comprehensive search yielded 103 articles. After the removal of duplicated literatures and articles containing unspecific data that did not meet our criteria, a total of 29 studies was finally identified in our meta-analysis. Table 1 illustrated the characteristics of all the included studies in this meta-analysis. The data contained 4656 T2DM cases and 2127 healthy controls [15–17,26–51]. The provinces of 29 studies included Heilongjiang, Beijing, Gansu, Shanxi, Zhejiang, Shanghai, Neimenggu, Guizhou, Tianjin, Guangdong, Hubei, Shandong, Jiangsu, Hebei, and Jilin. Except for 7 studies, the distribution of genotypes in the controls was consistent with HWE.

Results of the Overall Meta-Analysis

Table 2 showed the ORs with their 95% CIs for the association between MTHFR C677T polymorphism and T2DM in the recessive, dominant, homozygous, heterozygous, and additive genetic model. There was a significant association between MTHFR C677T polymorphism and T2DM under dominant model (OR: 1.93, 95% CI: 1.74–2.14), recessive (OR: 1.48, 95% CI: 1.21–1.80), homozygous (OR: 1.89, 95% CI: 1.47–2.42), heterozygous (OR: 1.58, 95% CI: 1.33–1.87), and additive (OR: 1.46, 95% CI: 1.28–1.68) genetic model in a random-effects model.

Meta-Regression and Stratified Analysis

There was a significant heterogeneity in each genetic model (Table 2), we used meta-regression to explore the sources of heterogeneity in each genetic model separately. Similarly, heterogeneity can be explained by the number of the control group in each genetic model (Table 3). In the subgroup analysis based on region, we divided the included studies into two major group, the northern and the southern [20]. The northern group included Beijing, Gansu, Heilongjiang, Hebei, Tianjin, Jilin, Neimenggu, Shandong, Shanxi, and the southern group included Hubei, Jiangsu, Shanghai, Guizhou, Zhejiang, and Guangdong. There was a
significant association between MTHFR C677T polymorphism and T2DM under each genetic model in both groups. Likewise, we performed subgroup analysis on studies in which the MTHFR alleles in the control group were in HWE and on studies in which they were not in HWE, there was a significant association between MTHFR C677T polymorphism and T2DM under each genetic model in both groups (Table 2).

Sensitivity Analysis
Table 4 showed the pooled ORs and their 95% CIs of sensitivity analysis by excluding one study at a time in each genetic model, the results in the five genetic models indicated that the overall result was dependable.

Assessment of Publication Bias
As shown in table 2, Egger’s test suggested no publication bias in dominant and heterozygous, but not in recessive, homozygous and
Number	Author	Year	Region	Total number of study	Male (%)	Genotypic distribution	Allele frequencies	HWE					
						CC case	CT case	TT case	C case	C control	T case	T control	
1	Sun, Liang	2013	Beijing	549	51.37	180 30	243 42	48 6	603 102	339 54	Yes		
2	Mei, Qingbu	2012	Heilongjiang	215	No	17 17	51 70	23 37	85 104	97 144	Yes		
3	Dai, Hongshuang	2012	Heilongjiang	180	55.00	51 31	54 27	15 2	156 89	84 31	Yes		
4	Chen, Arong	2010	Gansu	219	59.62	57 34	74 17	33 4	188 85	128 25	Yes		
5	Zhang, Qiaohui	2009	Shanxi	278	60.79	66 26	94 17	66 9	226 69	226 35	Yes		
6	Qiu, Yi	2009	Zhejiang	299	54.85	83 53	68 29	48 18	234 135	164 65	No		
7	Hu, Ling	2009	Shanxi	211	62.56	47 26	63 17	49 9	157 69	163 35	Yes		
8	Wen, Jie	2008	Shanghai	211	52.13	43 27	82 25	29 5	168 79	140 35	Yes		
9	Luo, Dan	2008	Beijing	226	47.79	59 43	63 31	19 11	181 117	101 53	Yes		
10	Chen, Ping	2008	Heilongjiang	240	No	19 14	70 73	27 37	108 101	124 147	No		
11	Zhang, Chunyu	2007	Neimenggu	141	51.77	28 34	29 19	19 12	85 87	67 43	No		
12	Luo, Dan	2007	Beijing	274	52.64	55 42	102 35	26 14	222 119	154 63	Yes		
13	Yue, Hong	2006	Shanxi	282	53.09	66 17	131 11	55 2	263 45	241 15	Yes		
14	Xiao, Yan	2006	Guizhou	146	No	16 47	53 25	4 1	85 119	61 27	Yes		
15	Sun, Ying	2005	Tianjin	355	50.00	113 47	85 25	68 17	311 119	221 49	No		
16	Shi, Chengjun	2006	Guangdong	295	No	108 68	60 34	18 7	276 170	96 48	Yes		
17	Liang, Wenchang	2005	Zhejiang	122	No	33 17	34 18	15 5	100 52	64 28	Yes		
18	Guo, Lixin	2005	Beijing	288	57.29	60 58	51 34	50 35	171 150	151 104	No		
19	Sun, Jiazhong, X	2005	Hubei	342	67.25	101 63	78 31	49 20	280 57	176 71	No		
20	Zhou, Jun	2004	Heilongjiang	208	No	16 8	78 31	45 30	110 47	168 91	Yes		
21	Sun, Le	2004	Shandong	155	47.44	27 29	52 18	27 2	106 75	106 24	Yes		
22	Mao, L	2004	Jiangsu	122	46.92	35 18	37 18	11 3	107 70	59 24	Yes		
23	Chen, Arong	2004	Gansu	126	64.29	24 21	45 9	22 5	93 51	89 19	No		
24	Xu, Jinheng	2003	Hebei	175	45.14	30 7	54 25	39 20	114 39	132 65	Yes		
25	Zhang, Guodong	2002	Shanghai	298	No	56 40	108 49	34 11	220 129	176 71	Yes		
26	Shi, Jieping	2002	Jilin	106	No	12 22	31 29	7 5	55 55	45 45	Yes		
27	Yang, Guoqing	2001	Beijing	288	53.61	57 26	113 28	56 8	227 80	225 44	Yes		
28	Wang, Longqing	2001	Guangdong	264	52.27	65 37	75 38	39 10	205 112	153 58	Yes		
29	Hu, Sheng	2001	Hubei	168	55.36	49 30	48 24	16 1	146 84	80 26	Yes		

HWE: Hardy-Weinbery equilibrium; a: The distribution of gender between case and control group is in balance; b: The distribution of age between case and control group is in balance; c: The distribution of BMI between case and control group is in balance.

doi:10.1371/journal.pone.0102443.t001
additive genetic model. Because of this, we used the trim and fill method, the pooled analysis incorporating the hypothetical studies continued to show a statistically significant association between MTHFR C677T polymorphism and T2DM under recessive (OR: 1.26, 95% CI: 1.02–1.54), homozygous (OR: 1.60, 95% CI: 1.23–2.08) and additive (OR: 1.29, 95% CI: 1.12–1.49) genetic model.

Discussion

This current study, to our knowledge, was the first to use a meta-analysis to evaluate the association between MTHFR C677T polymorphism and T2DM specifically in China. There was a significant relationship between MTHFR C677T polymorphism and T2DM in each genetic model. The prevalence of MTHFR C677T polymorphism varies in the different regions in China [20], so we separated northern group from southern group, and still got similar results, which compared to the overall results. According to whether HWE in control, we also found that there was a significant association between MTHFR C677T polymorphism and T2DM in each genetic model. Sensitivity analysis indicated there was no significant change on the overall results by removing one study in each turn. Egger's test suggested publication bias in recessive, homozygous and additive genetic model. The trim and fill analysis did not change the general results in the three genetic models (although the strength of the association was slightly attenuated), suggesting that the results of our analysis were credible. Based on the results of our meta-

Genetic Model	Subgroup	Model for meta-analysis	OR(95% CI)	P for heterogeneity	I² (%)	P for Egger’s test
Dominant	overall	R	1.70(1.42–2.02)	0.00	56.9	0.45
	Region					
	Southern China	R	1.71(1.32,2.21)	0.04	49.6	
	Northern China	R	1.68(1.32,2.14)	0.00	61.9	
	HWE					
	Yes	R	1.73(1.39,2.15)	0.00	60.5	
	No	F	1.57(1.28,1.93)	0.07	47.8	
Recessive	overall	R	1.48(1.21–1.80)	0.02	37.7	0.00
	Region					
	Southern China	F	1.70(1.29–2.23)	0.81	0.00	
	Northern China	R	1.39(1.07–1.81)	0.01	50.4	
	HWE					
	Yes	R	1.61(1.23–2.09)	0.01	44.3	
	No	F	1.28(1.00–1.63)	0.34	11.6	
Homozygous	overall	R	1.89(1.47–2.42)	0.00	50.0	0.01
	Region					
	Southern China	F	2.07(1.56,2.76)	0.60	0.00	
	Northern China	R	1.81(1.28,2.56)	0.00	62.1	
	HWE					
	Yes	R	2.13(1.53,2.95)	0.00	53.2	
	No	F	1.51(1.16,1.96)	0.18	32.6	
Heterozygous	overall	R	1.58(1.33–1.87)	0.00	46.4	0.33
	Region					
	Southern China	R	1.57(1.18,2.08)	0.03	52.3	
	Northern China	R	1.58(1.28,1.97)	0.02	46.0	
	HWE					
	Yes	R	1.59(1.30,1.95)	0.00	51.1	
	No	F	1.52(1.20,1.92)	0.16	35.1	
Additive	overall	R	1.46(1.28–1.68)	0.00	64.5	0.01
	Region					
	Southern China	R	1.53(1.34,1.75)	0.29	16.6	
	Northern China	R	1.42(1.17,1.72)	0.00	72.7	
	HWE					
	Yes	R	1.48(1.26,1.75)	0.00	66.9	
	No	R	1.41(1.11,1.78)	0.02	64.5	

OR: odds ratio; R: random-effects model; F: fix-effects model. HWE: Hardy-Weinbery equilibrium. doi:10.1371/journal.pone.0102443.t002
As an essential intermediate, homocysteine plays an important role between folate and activated methyl cycle, which is involved in the transfer of activated methyl groups from tetrahydrofolate to S-adenosylmethionine [52]. The methyl cycle has effects on global and gene promoter-specific DNA methylation in regulating gene expression [53,54]. Some studies suggested that homocysteine exposure had adverse effects on beta cell glucose metabolism and cell viability, and impaired insulin secretory function [55]. There was a significant association between homocysteine level and insulin resistance [9,56]. Due to its biological relevance and its association with metabolic disorders, homocysteine metabolism is an important candidate pathway for T2DM. The C677T variant of MTHFR plays an important role on homocysteine metabolism [57]. The homozygous 677TT and heterozygous 677CT genotypes have decreased 70% and 35% in the enzyme activity of MTHFR respectively, compared to the 677CC genotype [58]. Individuals with the homozygous 677TT genotype have higher plasma homocysteine and lower plasma folate levels than those with 677CC genotype [59]. MTHFR C677T polymorphism has also been reported to be associated with type 2 diabetes, and its complications [17,30,31,37,60].

In 2013, Khalid et al. found that there was a significant association between MTHFR C677T polymorphism and T2DM in Arab population [14], and Zhong et al. also conducted a meta-analysis of the relationship between MTHFR C677T polymorphism and T2DM, and concluded that there was no association between MTHFR C677T polymorphism and T2DM, regardless of the ethnicity of the patient or the presence of serious DM-related complications [13]. Our meta-analysis showed a significant relationship between MTHFR C677T polymorphism and T2DM under five genetic models in Chinese Han population. The results in our meta-analysis were similar to Khalid’s study, and different from Zhong’s study. There are several reasons for this difference. First, Zhong et al. conducted the meta-analysis all over the world, only loosely classified the study population as African, Asian, or Caucasian. Because MTHFR C677T polymorphism distribution varies among different ethnic groups, the relationship between

Table 3. The results of meta-regression in the five genetic models.

Genetic Model	Variables	P for meta-regression
Dominant	year	0.521
	total number of study	0.175
	number of control	0.008
	number of case	0.504
	male (%)	0.152
Recessive	year	0.534
	total number of study	0.738
	number of control	0.013
	number of case	0.530
	male (%)	0.396
Homozygous	year	0.479
	total number of study	0.373
	number of control	0.003
	number of case	0.995
	male (%)	0.347
Heterozygous	year	0.580
	total number of study	0.150
	number of control	0.028
	number of case	0.367
	male (%)	0.152
Additive	year	0.683
	total number of study	0.419
	number of control	0.008
	number of case	0.952
	male (%)	0.116

doi:10.1371/journal.pone.0102443.t003

analysis, we can speculate that MTHFR 677T allele might increase the risk of T2DM in the Chinese Han population.

As an essential intermediate, homocysteine plays an important role between folate and activated methyl cycle, which is involved in the transfer of activated methyl groups from tetrahydrofolate to S-adenosylmethionine [52]. The methyl cycle has effects on global and gene promoter-specific DNA methylation in regulating gene expression [53,54]. Some studies suggested that homocysteine exposure had adverse effects on beta cell glucose metabolism and cell viability, and impaired insulin secretory function [55]. There was a significant association between homocysteine level and insulin resistance [9,56]. Due to its biological relevance and its association with metabolic disorders, homocysteine metabolism is an important candidate pathway for T2DM. The C677T variant of MTHFR plays an important role on homocysteine metabolism [57]. The homozygous 677TT and heterozygous 677CT genotypes have decreased 70% and 35% in the enzyme activity of MTHFR respectively, compared to the 677CC genotype [58]. Individuals with the homozygous 677TT genotype have higher plasma homocysteine and lower plasma folate levels than those with 677CC genotype [59]. MTHFR C677T polymorphism has also been reported to be associated with type 2 diabetes, and its complications [17,30,31,37,60].
MTHFR C677T polymorphism and T2DM should be studied on a single ethnic group. Therefore, our study focused on the Chinese Han population to derive an accurate evaluation. Second, more than a third of included studies focused on the Chinese Han population in Zhong’s study, but he just conducted subgroup analysis in Asian population, did not further analyze the association in Chinese Han population. Third, Zhong’s study only included 16 studies on the Chinese Han population, while our study included 29 studies. We think the number of included studies for Zhong’s meta-analysis was inadequate, for example Sun et al., Qiu et al., they had suggested that ACE insertion/deletion (I/D) polymorphism may act synergistically with MTHFR C677T polymorphism to increase the risk of T2DM. Because of the limitations in our study, more large-scale studies were needed to assess the association between MTHFR C677T polymorphism and T2DM. And due to lack of necessary personal information in the included studies, we were unable to further perform subgroup analysis for the relevant influential factors (gender, age, BMI and so on). Second, all included studies were cross-sectional design and all the subjects came from hospitals, their results were not adjusted by the relevant influential factors. They could not infer cause-effect relationship.

In conclusion, our meta-analysis suggested there was a significant association between MTHFR C677T polymorphism and T2DM in the Chinese Han population, and indicated that MTHFR 677T allele might be a risk genetic factor in developing T2DM [62].

Supporting Information

Checklist S1 PRISMA Checklist of this systematic review. (DOC)
Checklist S2 Meta-analysis on Genetic Association Studies Checklist.
(DOCX)

References

1. Li H, Oldenburg B, Chamberlain C, O’Neill A, Xue B, et al. (2012) Diabetes prevalence and determinants in adults in China mainland from 2000 to 2010: A systematic review. Diabetes Research and Clinical Practice 98: 226–235.

2. Beureus JW, Grobold DE, Neeb B (2016) The global burden of diabetes and its complications: an emerging epidemic. European Journal of Cardiovascular Prevention & Rehabilitation 17: s3–s8.

3. Gou S (2014) Insulin signaling, resistance, and the metabolic syndrome: insights from disease models in zebrafish. Adv Drug Deliv Rev 66: 27–35.

4. Flore-Martinez S, Islas-Andrade S, Machorro-Lazo M, Revilla M, Izquierdo R, et al. (2004) DNA polymerase analysis of candidate genes for type 2 diabetes mellitus in a Mexican ethnic group. Elsevier. pp. 339–348.

5. Radha V, Mohan V (2007) Genetic predisposition to type 2 diabetes among Asian Indians. Indian Journal of Medical Research 125: 259–274.

6. Chen Z, Karaplis AC, Ackerman SL, Pogribny IP, Melnyk S, et al. (2001) Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet 10: 433–443.

7. Sibani S, Christensen B, O’Ferrall E, Saadi I, Hiou-Tim F, et al. (2000) Characterization of six novel mutations in the methylenetetrahydrofolate reductase (MTHFR) gene in patients with homocystinuria. Hum Mutat 15: 280–287.

8. Rozen R (1997) Genetic predisposition to hyperhomocysteinemia: deficiency of methylenetetrahydrofolate reductase (MTHFR). Thromb Haemost 78: 523–526.

9. Hemiati T, Moghadam-Tabrizi N, Davari-Tanha F, Salimanian B, Javidan P (2011) High plasma homocysteine and insulin resistance in patients with polycystic ovarian syndrome. Iranian Journal of Reproductive Medicine 9: 223–226.

10. Schuchter M, Raizel A, Friedler S, Strassburger D, Bern O, et al. (2003) Insulin resistance in patients with polycystic ovary syndrome is associated with elevated plasma homocysteine. Human Reproduction 18: 721–727.

11. Scullion SM, Gurgul-Convey E, Elsner M, Lenzen S, Flatt PR, et al. (2012) Enhanced neurodegeneration in mice harboring a hypomorph of BRIN-BD11 cells in combination with alloxan. J Endocrinol 214: 233–238.

12. Tavakkoly Bazzaz J, Shojapoor M, Nazem H, Amiri P, Fakhrzadeh H, et al. (2013) ACE I/D and MTHFR C677T polymorphisms are significantly associated with type 2 diabetes mellitus. J Endocrinol Metab 9: 276–280.

13. Tavakkoly Bazzaz J, Shojapoor M, Nazem H, Amiri P, Fakhrzadeh H, et al. (2013) ACE I/D and MTHFR C677T polymorphisms are significantly associated with type 2 diabetes mellitus. J Endocrinol Metab 9: 276–280.

14. Al-Rubeaan K, Siddiqui K, Saeb AT, Nazir N, Al-Naqeb D, et al. (2013) ACE I/D and MTHFR C677T polymorphisms are significantly associated with type 2 diabetes mellitus. J Endocrinol Metab 9: 276–280.

15. Schuchter M, Raizel A, Friedler S, Strassburger D, Bern O, et al. (2003) Insulin resistance in patients with polycystic ovary syndrome is associated with elevated plasma homocysteine. Human Reproduction 18: 721–727.

16. Sun J, Xu Y, Xue J, Zhu Y, Lu H (2005) Methylenetetrahydrofolate reductase gene polymorphism and risk of type 2 diabetes mellitus. PLoS One 10: e2788.

17. Sun L, Chen L, Ren J, Wang D, Zheng X, et al. (2004) Relationship of plasma homocysteine levels to C677T polymorphism in type 2 diabetes. Shanghai Medical Journal 31: 47–51.

18. Sun J, Xu Y, Xue J, Zhu Y, Lu H (2005) Methylenetetrahydrofolate reductase gene C677T polymorphism and coronary heart disease in type 2 diabetes mellitus. Journal of Chinese Journal of Laboratory Science 25: 114–116.

19. Yue H, Liu J, Kang W, Hu L, Qin J, et al. (2006) Relationship between plasma level of homocysteine and urine microalbumin in incipient type 2 diabetic kidney disease. Journal of General Practice (China) 31: 317–319.

20. Sun Y, Liu D, Fan X (2006) The Study on detection of homocysteine in Diabetes Mellitus and its vascular complication The Third Laboratory Medicine Conference in three provinces and two cities of Northern in China. Chengdu. pp. 126–131.

21. Shi C, He Y, Cheng G, Wang W, Liu J, et al. (2006) Detection of the 677 C-T variant of MTHFR gene in Chinese type 2 diabetic patients with fluorescence labeled MGB probe real-time PCR Chinese Journal of Diabetes 14: 258–260.

22. Sun J, Xu Y, Xue J, Zhu Y, Lu H (2005) Methylenetetrahydrofolate reductase gene polymorphism associated with susceptibility to coronary heart disease in Chinese type 2 diabetic patients. J Endocrinol 229: 95–103.

23. Liang W (2005) The study on MTHFR gene polymorphism, insulin resistance and high sensitivity C-reactive protein level in patients with type 2 diabetes [Master: Zhejiang University.

24. Guo L, Pan Q, Zhu M, Guo F, Sun M, et al. (2005) Relationship between genetic polymorphisms of methylenetetrahydrofolate reductase and macrovascular diseases in type 2 diabetes. Journal of Clinical Internal Medicine 22: 468–470.

25. Zhou J, Li X, Zhang J (2004) Relationship between the C677T polymorphism in the methylenetetrahydrofolate reductase gene and cerebral infarction complicated type 2 diabetes. Journal of Apoplexy and Nervous Diseases 21: 136–138.

26. Sun L, Chen L, Ren J, Wang D, Zhang X, et al. (2004) Relationship of plasma homocysteine and gene polymorphism of homocysteine metabolism related enzyme with diabetic peripheral neuropathy Chinese Journal of Endocrinology and Metabolism 20: 536–537.

27. Mao L, Gao Y, Qin W, Shi H (2004) The Association of Methylene tetrahydrofolate Reductase Gene Polymorphism With Cerebral Infarction in Type 2 Diabetes Mellitus. Academiae Medicinae Nantong 24: 146–147,150.

28. Chen A, Ning Y, Zhu X, Li L, Shi H (2004) Study on the Relationship between Genetic Polymorphisms of N5,10-methylenetetrahydrofolate Reductase and N-Acetylation in two Diabetes Mellitus in Guansu Han Chinese of China. Chinese Journal of Prevention and Control of Chronic Non-communication Diseases 12: 195–197.

29. Xu J, Zhang J, Shan B, Ma H (2003) Relationship between methylenetetrahydrofolate reductase gene polymorphism and diabetic nephropathy in type 2 diabetes mellitus in the Hans of Hebei Province. Clinical Focus 18: 787–789.

30. Zhang G, Xiang K, Weng Q, Li J (2002) Association between 677C/T polymorphism of methylenetetrahydrofolate reductase gene and type 2 diabetes.

Author Contributions
Conceived and designed the experiments: BZ GS. Performed the experiments: BZ XW NZ. Analyzed the data: BZ XW. Contributed reagents/materials/analysis tools: LL QZ. Wrote the paper: BZ GS.
with macrovascular complications in Shanghai. Chinese Journal of Endocrinology and Metabolism 18: 362–365.

48. Shi J, Li B, Yu Y, Chen Y, Tao R, et al. (2002) The relationship between the polymorphism of MTHFR gene and type 2 diabetes mellitus. Journal of Jilin University (Medical Edition) 28: 371–374.

49. Yang G, Lu J, Pan C (2001) Study on the relation between N5,10-methylene tetrahydrofolate reductase gene polymorphism and the susceptibility to microangiopathy in type 2 diabetes mellitus. Chinese Journal of Endocrinology and Metabolism 17: 224–227.

50. Wang L, Wang J, Xue Y, Cheng Y, Zhou H, et al. (2001) Relation between methylenetetrahydrofolate reductase gene polymorphism and diabetic retinopathy. Chinese Journal of Ocular Fundus Diseases 17: 190–200.

51. Hu S, Gan P, Li J, Bi H (2001) The relation between the mutation of methylenetetrahydrofolate reductase gene 677C-T and the diabetic microangiopathy. Chinese Journal of Medical Genetics 18: 118–121.

52. Medina MA, Urdiales JL, Amores-Sánchez MI (2001) Roles of homocysteine in cell metabolism. European Journal of Biochemistry 268: 3871–3882.

53. Thaler R, Agsten M, Spitzer S, Paschalis EP, Karlie H, et al. (2011) Homocysteine suppresses the expression of the collagen cross-linker lysyl oxidase involving IL-6, Flk1, and epigenetic DNA methylation. J Biol Chem 286: 5578–5588.

54. Bleich S, Lenz B, Ziegenbein M, Beutler S, Frieling H, et al. (2006) Epigenetic DNA hypermethylation of the HERP gene promoter induces down-regulation of its mRNA expression in patients with alcohol dependence. Alcohol Clin Exp Res 30: 587–591.

55. Patterson S, Flatt PR, Brennan L, Nesvoldhe P, McClennagh NH (2006) Detrimental actions of metabolic syndrome risk factor, homocysteine, on pancreatic beta-cell glucose metabolism and insulin secretion. J Endocrinol 189: 301–310.

56. Nafisy Y, Sevast K, Muammer D, Enare O, Senol K, et al. (2010) The effect of serum and intrafolicular insulin resistance parameters and homocysteine levels of nonobese, nonhyperandrogenemic polycystic ovary syndrome patients on in vitro fertilization outcome. Fertil Steril 93: 1864–1869.

57. Pare G, Chasman DI, Parker AN, Zee RR, Malarsig A, et al. (2009) Novel associations of CPS1, MUT, NOX4, and DPEP1 with plasma homocysteine in a healthy population: a genome-wide evaluation of 13,974 participants in the Women’s Genome Health Study. Circ Cardiovasc Genet 2: 142–150.

58. Frost P, Blom HJ, Milos R, Goyette P, Sheppard CA, et al. (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10: 111–113.

59. Wang W, Wang Y, Gong F, Zhu W, Fu S (2013) MTHFR C677T polymorphism and risk of congenital heart defects: evidence from 29 case-control and TDT studies. PLoS One 8: e58041.

60. Qin X, Li J, Zhang Y, Ma W, Fan F, et al. (2012) Prevalence and associated factors of diabetes and impaired fasting glucose in Chinese hypertensive adults aged 45 to 75 years. PLoS One 7: e42538.

61. Friedman G, Goldschmidt N, Friedlander Y, Ben-Yehuda A, Selhub J, et al. (1999) A common mutation A1298C in human methylenetetrahydrofolate reductase gene: association with plasma total homocysteine and folate concentrations. J Nutr 129: 1656–1661.

62. Mehri S, Koushaa N, Nahimi S, Chahla R, et al. (2010) Relationship between genetic polymorphisms of angiotensin-converting enzyme and methylenetetrahydrofolate reductase as risk factors for type 2 diabetes in Tunisian patients. Clin Biochem 43: 259–266.