ON PROPERTIES OF SOLUTIONS OF THE p-HARMONIC EQUATION

SH. CHEN, S. PONNU SAMY, AND X. WANG *

Abstract. A $2p$-times continuously differentiable complex-valued function $f = u + iv$ in a simply connected domain $\Omega \subseteq \mathbb{C}$ is p-harmonic if f satisfies the p-harmonic equation $\Delta^p f = 0$. In this paper, we investigate the properties of p-harmonic mappings in the unit disk $|z| < 1$. First, we discuss the convexity, the starlikeness and the region of variability of some classes of p-harmonic mappings. Then we prove the existence of Landau constant for the class of functions of the form $Df = zf_z - \overline{f}_z$, where f is p-harmonic in $|z| < 1$. Also, we discuss the region of variability for certain p-harmonic mappings. At the end, as a consequence of the earlier results of the authors, we present explicit upper estimates for Bloch norm for bi- and tri-harmonic mappings.

1. Introduction and Preliminaries

A complex-valued function $f = u + iv$ in a simply connected domain $\Omega \subseteq \mathbb{C}$ is called p-harmonic if u and v are p-harmonic in Ω, i.e. f satisfies the p-harmonic equation $\Delta^p f = 0$, where

$$\Delta^p f = \Delta \cdots \Delta f,$$

where p is a positive integer and Δ represents the Laplacian operator

$$\Delta := 4 \frac{\partial^2}{\partial z \partial \overline{z}} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.$$

Throughout this paper we consider p-harmonic mappings of the unit disk $D = \{z \in \mathbb{C} : |z| < 1\}$. Obviously, when $p = 1$ (resp. $p = 2$), f is harmonic (resp. biharmonic). The properties of harmonic [11, 15] and biharmonic [1, 2, 3, 18, 19] mappings have been investigated by many authors. Concerning p-harmonic mappings, we easily have the following characterization.

Proposition 1. A mapping f is p-harmonic in D if and only if f has the following representation:

$$f(z) = \sum_{k=1}^{p} |z|^{2(k-1)} G_{p-k+1}(z),$$

where G_{p-k+1} is harmonic for each $k \in \{1, \ldots, p\}$.

2000 Mathematics Subject Classification. Primary: 30C65, 30C45; Secondary: 30C20.

Key words and phrases. p-harmonic mapping, starlikeness, convexity, region of variability, Landau’s theorem

* Corresponding author.

The research was partly supported by NSFs of China (No. 11071063).
Proof. We only need to prove the necessity since the proof for the sufficiency part is obvious. Again, as the cases \(p = 1, 2 \) are well-known, it suffices to prove the result for \(p \geq 3 \). We shall prove the proposition by the method of induction. So, we assume that the proposition is true for \(p = n (\geq 3) \).

Let \(F \) be an \((n + 1)\)-harmonic mapping in \(\mathbb{D} \). By assumption, \(\Delta F \) is \(n \)-harmonic and so can be represented as

\[
\Delta F(z) = \sum_{k=1}^{n} |z|^{2(k-1)} G_{n-k+1}(z),
\]

where \(G_{n-k+1} \) \((1 \leq k \leq n)\) are harmonic functions with

\[
G_{n-k+1}(z) = a_{0,n-k+1} + \sum_{j=1}^{\infty} a_{j,n-k+1} z^j + \sum_{j=1}^{\infty} b_{j,n-k+1} \overline{z}^j \quad \text{for} \quad k \in \{1, \ldots, n\}.
\]

Then

\[
\int_{0}^{z} \int_{0}^{\overline{z}} \Delta F \, d\overline{z} \, dz = \sum_{k=1}^{n} |z|^{2k} T_{p-k+1}(z) + g(z),
\]

where

\[
T_{p-k+1}(z) = \sum_{k=1}^{n} \left(\frac{a_{0,n-k+1}}{k^2} + \frac{\sum_{j=1}^{\infty} a_{j,n-k+1} z^j}{k(k+j)} + \frac{\sum_{j=1}^{\infty} b_{j,n-k+1} \overline{z}^j}{k(k+j)} \right)
\]

and \(g \) is a harmonic function in \(\mathbb{D} \). A rearrangement of the series in the sum shows that (1.1) holds for \(p = n + 1 \). \(\square \)

We remark that the representation (1.1) continues to hold even if \(f \) is \(p \)-harmonic in a simply connected domain \(\Omega \).

For a sense-preserving \(C^1 \)-mapping (i.e. continuously differentiable), we let

\[
\lambda_f = |f_z| - |f_{\overline{z}}| \quad \text{and} \quad \Lambda_f = |f_z| + |f_{\overline{z}}|
\]

so that the Jacobian \(J_f \) of \(f \) takes the form

\[
J_f = \lambda_f \Lambda_f = |f_z|^2 - |f_{\overline{z}}|^2 > 0.
\]

In [4], the authors obtained sufficient conditions for the univalence of \(C^1 \)-functions. Now we introduce the concepts of starlikeness and convexity of \(C^1 \)-functions.

Definition 1. A \(C^1 \)-mapping \(f \) with \(f(0) = 0 \) is called starlike if \(f \) maps \(\mathbb{D} \) univalently onto a domain \(\Omega \) that is starlike with respect to the origin, i.e. for every \(w \in \Omega \) the line segment \([0, w]\) joining 0 and \(w \) is contained in \(\Omega \). It is known that \(f \) is starlike if it is sense-preserving, \(f(0) = 0 \), \(f(z) \neq 0 \) for all \(z \in \mathbb{D} \setminus \{0\} \) and

\[
\frac{\partial}{\partial t} (\arg f(re^{it})) := \text{Re} \left(\frac{D f(z)}{f(z)} \right) > 0 \quad \text{for all} \quad z = re^{it} \in \mathbb{D} \setminus \{0\},
\]

where \(Df = zf_z - \overline{z} f_{\overline{z}} \) (cf. [23, Theorem 1]).
Definition 2. Let f and Df belong to $C^1(D)$. Then we say that f is convex in D if it is sense-preserving, $f(0) = 0$, $f(z) \cdot Df(z) \neq 0$ for all $z \in D \setminus \{0\}$ and

$$\text{Re} \left(\frac{D^2 f(z)}{Df(z)} \right) > 0 \quad \text{for all } z \in D \setminus \{0\}.$$

As $\text{arg } Df(re^{it})$ represents the argument of the outer normal to the curve $C_r = \{ f(re^{i\theta}) : 0 \leq \theta < 2\pi \}$ at the point $f(re^{it})$, the last condition gives that

$$\frac{\partial}{\partial t} \left(\text{arg } Df(re^{it}) \right) = \text{Re} \left(\frac{D^2 f(z)}{Df(z)} \right) > 0 \quad \text{for all } z = re^{it} \in D \setminus \{0\},$$

showing that the curve C_r is convex for each $r \in (0, 1)$ (see [23, Theorem 2]). Non-analytic starlike and convex functions were studied by Mocanu in [23]. Harmonic starlike and harmonic convex functions were systematically studied by Clunie and Sheil-Small [11], and these two classes of functions have been studied extensively by many authors. See for instance, the book by Duren [15] and the references therein.

The complex differential operator

$$D = z \frac{\partial}{\partial z} - \overline{z} \frac{\partial}{\partial \overline{z}}$$

defined by Mocanu [23] on the class of complex-valued C^1-functions satisfies the usual product rule:

$$D(af + bg) = aD(f) + bD(g) \quad \text{and} \quad D(fg) = fD(g) + gD(f),$$

where a, b are complex constants, f and g are C^1-functions. The operator D possesses a number of interesting properties. For instance, the operator D preserves both harmonicity and biharmonicity (see also [3]). In the case of p-harmonic mappings, we also have the following property of the operator D.

Proposition 2. D preserves p-harmonicity.

Proof. Let f be a p-harmonic mapping with the form

$$f(z) = \sum_{k=1}^{p} |z|^{2(k-1)} G_{p-k+1}(z),$$

where each $G_{p-k+1}(z)$ is harmonic in D for $k \in \{1, \ldots, p\}$. As $D(|z|^2) = 0$, the product rule shows that $D(|z|^{2(k-1)}) = 0$ for each $k \in \{1, \ldots, p\}$. In view of this and the fact that D preserves harmonicity gives that

$$D(f(z)) = \sum_{k=1}^{p} \left[|z|^{2(k-1)} D(G_{p-k+1}(z)) + D(|z|^{2(k-1)}) G_{p-k+1}(z) \right]$$

$$= \sum_{k=1}^{p} |z|^{2(k-1)} D(G_{p-k+1}(z)).$$

\square
One of the aims of this paper is to generalize the main results of Abdulhadi, et. al. \cite{3} to the case of p-harmonic mappings. The corresponding generalizations are Theorems 1 and 2.

The classical theorem of Landau for bounded analytic functions states that if f is analytic in D with $f(0) = f'(0) - 1 = 0$, and $|f(z)| < M$ for $z \in D$, then f is univalent in the disk $D_{\rho} := \{z \in \mathbb{C} : |z| < \rho\}$ and in addition, the range $f(D_{\rho})$ contains a disk of radius $M\rho^2$ (cf. \cite{20}), where

$$\rho = \frac{1}{M + \sqrt{M^2 - 1}}.$$

Recently, many authors considered Landau’s theorem for planar harmonic mappings (see for example, \cite{6, 8, 9, 13, 16, 22, 28}) and biharmonic mappings (see \cite{1, 7, 8, 21}). In Section 4, we consider Landau’s theorem for p-harmonic mappings with the form $D(f)$ when f belongs to certain classes of p-harmonic mappings. Our results are Theorems 3 and 4.

In a series of papers the second author with Yanagihara and Vasudevarao (see \cite{24, 25, 29, 30}) have discussed the regions of variability for certain classes of univalent analytic functions in D. In Section 5 (see Theorem 5), we solve a related problem for certain p-harmonic mappings. Finally, in Section 6, we present explicit upper estimates for Bloch norm for bi- and tri-harmonic mappings (see Corollaries 3 and 4).

2. **Lemmas**

For the proofs of our main results we require a number of lemmas. We begin to recall the following version of Schwarz lemma due to Heinz (\cite[Lemma]{17}) and Colonna \cite[Theorem 3]{12}, see also \cite{6, 8, 9}.

Lemma A. Let f be a harmonic mapping of D such that $f(0) = 0$ and $f(D) \subset D$. Then

$$|f(z)| \leq \frac{4}{\pi} \arctan |z| \leq \frac{4}{\pi} |z| \text{ for } z \in D$$

and

$$\Lambda_f(z) \leq \frac{4}{\pi} \frac{1}{(1 - |z|^2)} \text{ for } z \in D.$$

Lemma B. (\cite[Lemma 2.1]{22}) Suppose that $f(z) = h(z) + \bar{g}(z)$ is a harmonic mapping of D with $h(z) = \sum_{n=1}^{\infty} a_n z^n$ and $g(z) = \sum_{n=1}^{\infty} b_n z^n$ for $z \in D$. If $J_f(0) = 1$ and $|f(z)| < M$, then

$$|a_n|, |b_n| \leq \sqrt{M^2 - 1}, \ n = 2, 3, \ldots,$$

$$|a_n| + |b_n| \leq \sqrt{2M^2 - 2}, \ n = 2, 3, \ldots$$
and

\begin{equation}
\lambda_f(0) \geq \lambda_0(M) := \begin{cases}
\sqrt{2} & \text{if } 1 \leq M \leq M_0, \\
\sqrt{M^2 - 1 + \sqrt{M^2 + 1}} & \text{if } M > M_0,
\end{cases}
\end{equation}

where \(M_0 = \frac{\pi}{2 \sqrt{2 \pi^2 - 16}} \approx 1.1296 \).

The following lemma concerning coefficient estimates for harmonic mappings is crucial in the proofs of Theorems 1 and 2. This lemma has been proved by the authors in [10] with an additional assumption that \(f(0) = 0 \). However, for the sake of clarity, we present a slightly different proof than that in [10].

Lemma C. Let \(f = h + \overline{g} \) be a harmonic mapping of \(\mathbb{D} \) such that \(|f(z)| < M \) with \(h(z) = \sum_{n=0}^{\infty} a_n z^n \) and \(g(z) = \sum_{n=1}^{\infty} b_n z^n \). Then \(|a_0| \leq M \) and for any \(n \geq 1 \)

\begin{equation}
|a_n| + |b_n| \leq \frac{4M}{\pi}.
\end{equation}

The estimate (2.2) is sharp. The extremal functions are \(f(z) \equiv M \) or \(f_n(z) = 2M\alpha \pi \arg \left(\frac{1 + \beta z^n}{1 - \beta z^n} \right) \), where \(|\alpha| = |\beta| = 1 \).

Proof. Without loss of generality, we assume that \(|f(z)| < 1 \). For \(\theta \in [0, 2\pi) \), let \(v_\theta(z) = \text{Im} \left(e^{i\theta} f(z) \right) \) and observe that

\[v_\theta(z) = \text{Im} \left(e^{i\theta} h(z) + e^{-i\theta} g(z) \right) = \text{Im} \left(e^{i\theta} h(z) - e^{-i\theta} g(z) \right). \]

Because \(|v_\theta(z)| < 1 \), it follows that

\[e^{i\theta} h(z) - e^{-i\theta} g(z) \prec K(z) = \lambda + \frac{2}{\pi} \log \left(\frac{1 + z\xi}{1 - z} \right), \]

where \(\xi = e^{-i\pi \text{Im}(\lambda)} \) and \(\lambda = e^{i\theta} h(0) - e^{-i\theta} g(0) \). The superordinate function \(K(z) \) maps \(\mathbb{D} \) onto a convex domain with \(K'(0) = \lambda \) and \(K'(0) = \frac{2}{\pi} (1 + \xi) \), and therefore, by a theorem of Rogosinski [26, Theorem 2.3] (see also [14, Theorem 6.4]), it follows that

\[|a_n - e^{-2i\theta} b_n| \leq \frac{2}{\pi} |1 + \xi| \leq \frac{4}{\pi} \quad \text{for } n = 1, 2, \ldots \]

and the desired inequality (2.2), with \(M = 1 \), is a consequence of the arbitrariness of \(\theta \) in \([0, 2\pi) \).

For the proof of sharpness part, consider the functions

\[f_n(z) = \frac{2M\alpha}{\pi} \text{Im} \left(\log \frac{1 + \beta z^n}{1 - \beta z^n} \right), \quad |\alpha| = |\beta| = 1, \]
whose values are confined to a diametral segment of the disk \mathbb{D}_M. Also,
$$f_n(z) = \frac{2M\alpha}{i\pi} \left(\sum_{k=1}^{\infty} \frac{1}{2k-1} (\beta z^n)^{2k-1} - \sum_{k=1}^{\infty} \frac{1}{2k-1} (\bar{\beta} z^n)^{2k-1} \right),$$
which gives
$$|a_n| + |b_n| = \frac{4M}{\pi}.$$

The proof of the lemma is complete. \(\Box\)

As an immediate consequence of Lemmas B and C, we have

Corollary 1. Let $f = h + g$ be a harmonic mapping of \mathbb{D} with $h(z) = \sum_{n=1}^{\infty} a_n z^n$, $g(z) = \sum_{n=1}^{\infty} b_n z^n$ and $|f(z)| \leq M$. If $J_f(0) = 1$ and $M \geq \frac{\pi}{\sqrt{\pi^2 - 8}}$, then for any $n \geq 2,$
$$|a_n| + |b_n| \leq \frac{4M}{\pi} \leq \sqrt{2M^2 - 2}.$$

3. The convexity and the starlikeness

The following simple result can be used to generate (harmonic) starlike and convex functions.

Theorem 1. Let f be a univalent p-harmonic mapping with the form

$$f(z) = G(z) \sum_{k=1}^{p} \lambda_k |z|^{2(k-1)},$$

where G is a locally univalent harmonic mapping and λ_k ($k = 1, \ldots, p$) are complex constants. Then we have the following:

(a) $\frac{D(f)}{f} = \frac{D(G)}{G}$ and $\frac{D^2(f)}{G} = \frac{D^2(G)}{G}$.

(b) f is convex (resp. starlike) if and only if G is convex (resp. starlike).

Proof. (a) The two equalities are immediate consequences of the formula

$$D \left(G(z) \sum_{k=1}^{p} \lambda_k |z|^{2(k-1)} \right) = D(G(z)) \sum_{k=1}^{p} \lambda_k |z|^{2(k-1)}.$$

So, we omit the details.

(b) It suffices to prove the case of convexity since the proof for the starlikeness is similar.

Let $z = re^{it}$, where $0 < r < 1$ and $0 \leq t < 2\pi$. Then

$$f(z) = G(z) \sum_{k=1}^{p} \lambda_k |z|^{2(k-1)} = G(re^{i\theta}) \sum_{k=1}^{p} \lambda_k r^{2(k-1)},$$

so that

$$\frac{\partial f(re^{it})}{\partial t} = \frac{\partial G(re^{i\theta})}{\partial t} \sum_{k=1}^{p} \lambda_k r^{2(k-1)}.$$
On properties of solutions of the p-harmonic equation

and

\[\frac{\partial^2 f(re^{it})}{\partial t^2} = \frac{\partial^2 G(re^{it})}{\partial t^2} \sum_{k=1}^{p} \lambda_k r^{2(k-1)}. \]

Therefore Part (a) yields

\[\frac{\partial}{\partial t} \left(\arg \frac{\partial f(re^{it})}{\partial t} \right) = \text{Re} \left(\frac{D^2(f)}{D(f)} \right) = \text{Re} \left(\frac{D^2(G)}{D(G)} \right) = \frac{\partial}{\partial t} \left(\arg \frac{\partial G(re^{it})}{\partial t} \right), \]

from which the proof of Part (b) of this theorem follows.

As an immediate consequence of Theorem 1(a), we easily have the following.

Corollary 2. Let \(f \) be a univalent p-harmonic mapping defined as in Theorem 1. If \(f \) is convex and \(D(f) \) is univalent, then \(D(f) \) is starlike.

Abdulhadi, et. al. [3, Theorem 1] discussed the univalence and the starlikeness of biharmonic mappings in \(\mathbb{D} \). A natural question is whether [3, Theorem 1] holds for p-harmonic mappings. The following result gives a partial answer to this problem.

Theorem 1. Let \(f \) be a p-harmonic mapping of \(\mathbb{D} \) satisfying

\[f(z) = |z|^{2(p-1)}G(z), \]

where \(G \) is harmonic, orientation preserving and starlike. Then \(f \) is starlike univalent.

Proof. We see that the Jacobian \(J_f \) of \(f \) is

\[J_f = |f_z|^2 - |f_{\overline{z}}|^2 \]

\[= |z|^{4(p-1)}(|G_z|^2 - |G_{\overline{z}}|^2) + 2(p-1)|z|^{4p-6}|G|^2 \text{Re} \left(\frac{D(G)}{G} \right) \]

\[\geq |z|^{4(p-1)}(|G_z|^2 - |G_{\overline{z}}|^2). \]

Hence \(J_f(z) > 0 \) when \(0 < |z| < 1 \) and obviously, \(J_f(0) = 0 \). The univalence of \(f \) follows from a standard argument as in the proof of [3, Theorem 1]. Finally, Theorem 1 implies that \(f \) is starlike.

4. THE LANDAU THEOREM

We now discuss the existence of the Landau constant for two classes of p-harmonic mappings.

Theorem 3. Let \(f(z) = \sum_{k=1}^{p} |z|^{2(k-1)}G_{p-k+1}(z) \) be a p-harmonic mapping of \(\mathbb{D} \) satisfying \(\Delta G_{p-k+1}(z) = f(0) = G_p(0) = J_f(0) - 1 = 0 \) and for any \(z \in \mathbb{D} \), \(|G_{p-k+1}(z)| \leq M, \) where \(M \geq 1 \). Then there is a constant \(\rho (0 < \rho < 1) \) such that \(D(f) \) is univalent in \(\mathbb{D}_\rho \), where \(\rho \) satisfies the following equation:

\[\lambda_0(M) - \frac{T(M)}{(1-\rho)^2} \sum_{k=2}^{p} (2k-1)\rho^{2(k-1)} - \sum_{k=1}^{p} \frac{2T(M)\rho^{2k-1}}{(1-\rho)^3} - \frac{16M}{\pi^2} s_0 \arctan \rho = 0 \]
with
\[s_0 = \left(\frac{\sqrt{17} - 1}{\sqrt{17} - 3}\right) \sqrt{\frac{2}{5 - \sqrt{17}}} \approx 4.1996, \]

\[T(M) = \begin{cases}
\sqrt{2M^2 - 2} & \text{if } 1 \leq M \leq M_1 := \frac{\pi}{\sqrt{\pi^2 - 8}} \approx 2.2976 \\
\frac{4M}{\pi} & \text{if } M > M_1
\end{cases} \tag{4.1} \]

and \(\lambda_0(M) \) is given by (2.1). Moreover, the range \(D(f)\(\mathbb{D}_\rho) \) contains a univalent disk \(\mathbb{D}_R \), where

\[R = \rho \left[\lambda_0(M) - \sum_{k=2}^{p} \frac{T(M)\rho^{2(k-1)}}{(1 - \rho)^2} - \frac{16M}{\pi^2} s_0 \arctan \rho \right]. \]

Proof. For each \(k \in \{1, 2, \ldots, p\} \), let

\[G_{p-k+1}(z) = a_{0,p-k+1} + \sum_{j=1}^{\infty} a_{j,p-k+1} z^j + \sum_{j=1}^{\infty} b_{j,p-k+1} \bar{z}^j, \]

where \(a_{0,p} = 0 \). We define the function \(H \) as

\[H = D \left(\sum_{k=1}^{p} |z|^{2(k-1)} G_{p-k+1} \right) = \sum_{k=1}^{p} |z|^{2(k-1)} D(G_{p-k+1}). \]

Using Lemmas B, C and Corollary 1, we have

\[|a_{n,p}| + |b_{n,p}| \leq T(M), \]

where \(T(M) \) is given by (4.1), and

\[|a_{j,p-k+1}| + |b_{j,p-k+1}| \leq \frac{4M}{\pi} \]

for \(j \geq 1, n \geq 2 \) and \(2 \leq k \leq p \).

We observe that

\[J_f(0) = |(G_p)_z(0)|^2 - |(G_p)_\bar{z}(0)|^2 = J_{G_p}(0) = 1 \]

and hence by Lemmas A and B, we have

\[\lambda_f(0) \geq \lambda_0(M), \]

where \(\lambda_0(M) \) is given by (2.1). Now, we define

\[q(x) = \frac{2 - x^2}{(1 - x^2)x} \quad (0 < x < 1). \]

Then there is an \(r_0 = \sqrt{\frac{5 - \sqrt{17}}{2}} \approx 0.66 \) such that

\[q(r_0) = \min_{0<x<1} q(x) = \left(\frac{\sqrt{17} - 1}{\sqrt{17} - 3}\right) \sqrt{\frac{2}{5 - \sqrt{17}}} = s_0. \]
For each $\theta \in [0, 2\pi)$, the function

$$G_\theta(z) = (G_p)_z(z) - (G_p)_z(0) + ((G_p)_\bar{z}(z) - (G_p)_\bar{z}(0))e^{i(\pi - 2\theta)}$$

is clearly a harmonic mapping of \mathbb{D} and satisfies $G_\theta(0) = 0$. Moreover, it follows from Lemma A that

$$\Lambda G_p(z) \leq \frac{4M}{\pi} \frac{1}{1 - |z|^2} \quad \text{for} \quad z \in \mathbb{D}.$$

In particular, this observation yields that

$$|G_\theta(z)| \leq \Lambda G_p(z) + \Lambda G_p(0) \leq \frac{4M}{\pi} \left(1 + \frac{1}{1 - |z|^2}\right) = \frac{4M}{\pi} |z| q(|z|)$$

for all $z \in \mathbb{D}$.

Since $xq(x) - 1 = \frac{1}{1 - x^2}$ is an increasing function in the interval $(0, 1)$, the inequality (4.2) shows that for any $z \in \mathbb{D}_{r_0}$,

$$|G_\theta(z)| \leq \frac{4M}{\pi} m_0,$$

where $m_0 = (2 - r_0^2)/(1 - r_0^2)$. Next, we consider the mapping F defined on \mathbb{D} by

$$F(z) = \frac{\pi}{4Mm_0} G_\theta(r_0 z).$$

Applying Lemma A to the function $F(z)$ yields that for $z \in \mathbb{D}_{r_0}$,

$$|G_\theta(z)| \leq \frac{16M}{\pi^2} m_0 \arctan \left(\frac{|z|}{r_0}\right) \leq \frac{16M}{\pi^2} s_0 \arctan |z|,$$

where $s_0 = m_0/r_0$.

Now, we fix ρ with $\rho \in (0, 1)$. To prove the univalency of H, we choose two distinct points z_1, z_2 in \mathbb{D}_ρ. Let $\gamma = \{(z_2 - z_1)t + z_1 : 0 \leq t \leq 1\}$ and $z_2 - z_1 = |z_1 - z_2|e^{i\theta}$. We find that
\[|H(z_1) - H(z_2)| \]
\[= \left| \int_{\gamma} H_z(z) \, dz + H_\overline{\gamma}(z) \, d\overline{z} \right| \]
\[\geq \left| \int_{\gamma} (G_p)_z(0) \, dz - (G_p)_\overline{\gamma}(0) \, d\overline{z} \right| \]
\[- \left| \int_{\gamma} \sum_{k=2}^{p} k |z|^{2(k-1)} (G_p)_{z^{2k}(z)} \, dz - (G_p)_{\overline{\gamma}^{2k}(z)} \, d\overline{z} \right| \]
\[- \left| \int_{\gamma} \sum_{k=2}^{p} k |z|^{2(k-2)} (G_p)_{z^{2k}(z)} \, dz - (G_p)_{\overline{\gamma}^{2k}(z)} \, d\overline{z} \right| \]
\[- \left| \int_{\gamma} (\rho z) (z) - (G_p)_z(0) \, dz - [(G_p)_\overline{\gamma}(z) - (G_p)_\overline{\gamma}(0)] \, d\overline{z} \right| \]
\[\geq |z_1 - z_2| \left\{ \lambda_0(0) - |G_\varphi(\rho)| \right\} \]
\[- \sum_{k=1}^{p} \rho^{2(k-1)} \sum_{n=2}^{\infty} n(n - 1)(|a_{n,p-k+1}| + |b_{n,p-k+1}|) \rho^{n-1} \]
\[- \sum_{k=2}^{p} (2k - 1) \rho^{2(k-2)} \sum_{n=2}^{\infty} n(|a_{n,p-k+1}| + |b_{n,p-k+1}|) \rho^{n+1} \}
\[> |z_1 - z_2| \left[\lambda_0(M) - \frac{T(M)}{(1 - \rho)^2} \sum_{k=2}^{p} (2k - 1) \rho^{2(k-1)} \right. \]
\[- \left. \sum_{k=1}^{p} \frac{2T(M) \rho^{2k-1}}{(1 - \rho)^3} - \frac{16M}{\pi^2} s_0 \arctan \rho \right]. \]

Let
\[P(\rho) = \lambda_0(M) - \frac{T(M)}{(1 - \rho)^2} \sum_{k=2}^{p} (2k - 1) \rho^{2(k-1)} - \sum_{k=1}^{p} \frac{2T(M) \rho^{2k-1}}{(1 - \rho)^3} - \frac{16M}{\pi^2} s_0 \arctan \rho. \]

Then it is easy to verify that \(P(\rho) \) is a decreasing function on the interval \((0, 1)\),
\[\lim_{\rho \to 0^+} P(\rho) = \lambda_0(M) \quad \text{and} \quad \lim_{\rho \to 1^-} P(\rho) = -\infty. \]

Hence there exists a unique \(\rho_0 \) in \((0, 1)\) satisfying \(P(\rho_0) = 0 \). This observation shows that \(|H(z_1) - H(z_2)| > 0 \) for arbitrary two distinct points \(z_1, z_2 \) in \(|z| < \rho_0\) which proves the univalency of \(D(F) \) in \(\mathbb{D}_{\rho_0} \).
On properties of solutions of the p-harmonic equation

For any z with $|z| = \rho_0$, we have

$$|H(z)| = \left| \sum_{k=1}^{p} |z|^{2(k-1)} \left(z(G_{p-k+1})z(z) - \bar{z}(G_{p-k+1})\bar{z}(z) \right) \right|$$

$$\geq \left| z(G_p)z(0) - \bar{z}(G_p)\bar{z}(0) \right|$$

$$- \left| z[(G_p)z(z) - (G_p)z(0)] - \bar{z}[(G_p)\bar{z}(z) - (G_p)\bar{z}(0)] \right|$$

$$- \sum_{k=2}^{p} |z|^{2(k-1)} \left(z(G_{p-k+1})z(z) - \bar{z}(G_{p-k+1})\bar{z}(z) \right)$$

$$\geq \rho_0 \left[\lambda_0(M) - \sum_{k=2}^{p} \frac{T(M)\rho_0^{2(k-1)}}{(1 - \rho_0)^2} \right] - \frac{16M}{\pi^2} s_0 \arctan \rho_0$$

$$= R$$

and the proof of the theorem is complete.

From Table 1, we see that Theorem 3 improves Theorem 1.1 of [7] for the case $p = 2$, and the results for the rest of the values of p are new. In Table 1, third and fourth columns refer to values obtained from Theorem 3 for cases $p = 2, 3, 4$ for certain choices of M, while the right two columns correspond to the values obtained from [7, Theorem 1.1] for the case $p = 2$.

Theorem 4. Let $f(z) = |z|^{2(p-1)}G(z)$ be a p-harmonic mapping of \mathbb{D} satisfying $G(0) = J_G(0) - 1 = 0$ and $|G(z)| \leq M$, where $M \geq 1$ and G is harmonic. Then there is a constant ρ ($0 < \rho < 1$) such that $D(f)$ is univalent in \mathbb{D}_ρ, where ρ satisfies

\begin{table}
\begin{tabular}{|c|c|c|c|c|}
\hline
M & p & $\rho = \rho(M, p)$ & $R = R(M, \rho(M, p))$ & ρ' & R' \\
\hline
1.1296 & 2 & 0.0714741 & 0.0101601 & 0.0420157 & 0.00945379 \\
2 & 2 & 0.0206783 & 0.00227639 & 0.0139439 & 0.00164502 \\
2.2976 & 2 & 0.0155966 & 0.00151523 & 0.00108021 \\
3 & 2 & 0.00922255 & 0.00067425 & 0.000482413 \\
1.1296 & 3 & 0.071463 & 0.0101647 & - & - \\
2 & 3 & 0.0206782 & 0.00227641 & - & - \\
2.2976 & 3 & 0.0155966 & 0.00151523 & - & - \\
3 & 3 & 0.00922254 & 0.00067425 & - & - \\
1.1296 & 4 & 0.0714629 & 0.0101647 & - & - \\
2 & 4 & 0.0206782 & 0.00227641 & - & - \\
2.2976 & 4 & 0.0155966 & 0.00151523 & - & - \\
3 & 4 & 0.00922254 & 0.00067425 & - & - \\
\hline
\end{tabular}
\caption{Values of ρ and R for Theorem 3 for $p = 2$, and the corresponding values of ρ' and R' of [7, Theorem 1.1] (for $p = 2$)}
\end{table}
the following equation:

\[\lambda_0(M) - \frac{48M}{\pi^2} s_0 \arctan \rho - \frac{2T(M)\rho}{(1 - \rho)^2} = 0, \]

where the constants \(s_0, \lambda_0(M) \) and \(T(M) \) are the same as in Theorem 3. Moreover, the range \(D(f)(D_\rho) \) contains a univalent disk \(D_R \), where

\[R = \rho^{2p-1} \left[\frac{16M}{\pi^2} s_0 \arctan \rho \right]. \]

Especially, if \(M = 1 \), then \(G(z) = z \), i.e. \(f(z) = |z|^{2(p-1)}z \) which is univalent in \(\mathbb{D} \).

Proof. Let \(G(z) = \sum_{n=1}^{\infty} a_n z^n + \sum_{n=1}^{\infty} b_n \overline{z}_n \). Using Lemmas B, C and Corollary 1, we have

\[|a_n| + |b_n| \leq T(M) \quad \text{for} \ n \geq 2. \]

Note that

\[J_G(0) = |a_1|^2 - |b_1|^2 = 1 \]

and hence, by Lemmas A and B, we have

\[\lambda_G(0) \geq \lambda_0(M). \]

Next, we set \(H = D(f) = |z|^{2(p-1)}D(G) \) and fix \(\rho \) with \(\rho \in (0,1) \). To prove the univalency of \(f \), we choose two distinct points \(z_1, z_2 \) in \(D_\rho \). Let \(\gamma = \{(z_2 - z_1)t + z_1 :}
0 ≤ t ≤ 1} and \(z_2 - z_1 = |z_1 - z_2| e^{i\theta} \). Then
\[
|H(z_1) - H(z_2)| = \left| \int_{[z_1, z_2]} \left[H(z) dz + H_\omega(z) d\omega \right] \right|
\]
\[
= \left| \int_{[z_1, z_2]} \rho |z|^{2(p-1)} (G_z(z) dz - G_\omega(z) d\omega) + |z|^{2(p-1)} (zG_z^2(z) dz - \bar{z}G_\omega(z) d\omega) + (p-1) |z|^{2(p-2)} (z^2G_z(z) dz - \bar{z}^2G_\omega(z) d\omega) \right|
\]
\[
\geq |z_1 - z_2| \left(\int_0^1 |z|^{2(p-1)} dt \right) \left\{ \lambda_0(M) - \frac{48M}{\pi^2} s_0 \arctan \rho - \sum_{n=2}^{\infty} n(n-1)(|a_n| + |b_n|) \rho^{n-1} \right\}
\]
\[
> |z_1 - z_2| \left(\int_0^1 |z|^{2(p-1)} dt \right) \left[\lambda_0(M) - \frac{48M}{\pi^2} s_0 \arctan \rho - \frac{2T(M)\rho}{(1 - \rho)^3} \right].
\]
Since there exists a unique \(\rho \) in \((0, 1) \) which satisfies the following equation:
\[
\lambda_0(M) - \frac{48M}{\pi^2} s_0 \arctan \rho - \frac{2T(M)\rho}{(1 - \rho)^3} = 0,
\]
we see that \(H(z_1) \neq H(z_2) \) and so, \(H(z) \) is univalent for \(|z| < \rho_0 \).

Furthermore, we observe that for any \(z \) with \(|z| = \rho_0 \),
\[
|H(z)| = \rho_0^{2(p-1)} |zG_z(0) - \bar{z}G_\omega(0) + z(G_z(z) - G_\omega(0)) - \bar{z}(G_\omega(z) - G_\omega(0))|
\]
\[
\geq \rho_0^{2p-1} \left[\lambda_0(M) - \frac{16M}{\pi^2} s_0 \arctan \rho_0 \right]
\]
\[
= R.
\]
The proof of the theorem is complete.
\[M \quad p \quad \rho = \rho(M, p) \quad R = R(M, \rho(M, p)) \quad \rho' \quad R' \]

M	p	$\rho = \rho(M, p)$	$R = R(M, \rho(M, p))$	ρ'	R'
1.1296	2	0.0281673	0.0000106985	0.0194864	3.54498 $\times 10^{-6}$
2	2	0.00856025	1.73218 $\times 10^{-7}$	0.00623202	6.5415 $\times 10^{-8}$
2.2976	2	0.00646284	6.4986 $\times 10^{-8}$	0.0047235	2.47902 $\times 10^{-8}$
3	2	0.0037942	1.2693 $\times 10^{-11}$	–	–
1.1296	3	0.0281673	8.48819 $\times 10^{-9}$	–	–
2	3	0.00856025	1.00669 $\times 10^{-13}$	–	–
2.2976	3	0.00646284	2.71435 $\times 10^{-12}$	–	–
3	3	0.0037942	2.47902 $\times 10^{-8}$	–	–

Table 2. Values of ρ and R for Theorem 4 for $p = 2, 3$, and the corresponding values of ρ' and R' of [7, Theorem 1.2] (for $p = 2$)

We remark that Theorem 4 is an improved version of [7, Theorem 1.2] when $p = 2$. In order to be more explicit, we refer to Table 2 in which the third and fourth columns refer to values obtained from Theorem 4 for cases $p = 2, 3$ for certain choices of M, while the right two columns correspond to the values obtained from [7, Theorem 1.2] for the case $p = 2$.

5. The Region of Variability

Definition 3. Let \mathcal{H}_p denote the set of all p-harmonic mappings of the unit disk \mathbb{D} with the normalization $f_{z^{p-1}}(0) = (p - 1)!$ and $|f(z)| \leq 1$ for $|z| < 1$. Here we prescribe that $\mathcal{H}_0 = \emptyset$.

For a fixed point $z_0 \in \mathbb{D}$, let

\[V_p(z_0) = \{ f(z_0) : f \in \mathcal{H}_p \setminus \mathcal{H}_{p-1} \}. \]

Now, we have

Theorem 5. (a) If $p = 1$, then $V_1(z_0) = \{1\}$;

(b) If $p \geq 2$, $V_p(z_0) = \mathbb{D}$.

Proof. We first prove (a). Let $f \in \mathcal{H}_1$ and $f(z) = \sum_{n=0}^{\infty} a_n z^n + \sum_{n=1}^{\infty} b_n z^n$. By Parseval’s identity and the hypotheses $|f(z)| \leq 1$ and $f(0) = 1$, we have

\[
\lim_{r \to 1^-} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 \, d\theta = \lim_{r \to 1^-} \frac{1}{2\pi} \int_0^{2\pi} (|h(re^{i\theta})|^2 + |g(re^{i\theta})|^2) \, d\theta
\]

\[= |a_0|^2 + \sum_{n=1}^{\infty} (|a_n|^2 + |b_n|^2) \leq 1. \]

This inequality implies that for any $n \geq 1$, $a_n = b_n = 0$ which gives that $f(z) \equiv 1$ for $z \in \mathbb{D}$. Thus, we have $V_1(z_0) = \{1\}$.

In order to prove (b), we consider the function

\[\phi(z) = \frac{2^{p-1} - w}{1 - wz^{p-1}} = |z|^{2(p-1)} \sum_{n=1}^{\infty} w^{n(z^{n-1})^{(p-1)}} \left(z^{p-1} - w - \sum_{n=1}^{\infty} w^{n+1}(z^{(p-1)n}) \right). \]
where \(w \in \overline{D} \) and \(p \geq 2 \).

Then \(\phi_{p-1}(0) = (p-1)! \), \(\Delta^p \phi = 0 \) and therefore, \(\phi \in \mathcal{H}_p \setminus \mathcal{H}_{p-1} \). For each fixed \(a \in \overline{D} \), \(z \mapsto f_{a}(z) = (z^{p-1} - a)/(1 - a z^{p-1}) \) is a \(p \)-harmonic mapping and \(f_{a}(\overline{D}) \subset \overline{D} \).

Obviously, \(a \mapsto f_{a}(z_0) = \frac{z_0^{p-1} - a}{1 - a z_0} \) is a conformal automorphism of \(D \) and the image of \(\overline{D} \) under \(f_{a}(z_0) \) is \(D \) itself. By hypotheses, we obtain that for any \(g \in \mathcal{H}_p \setminus \mathcal{H}_{p-1} \), \(g(z_0) \in \overline{D} \). Hence \(V_0(z_0) \) coincides with \(\overline{D} \). The proof of this theorem is complete. \(\square \)

By the method of proof used in Theorem 5(a), we obtain the following generalization of Cartan’s uniqueness theorem (see [5] or [27, p. 23]) for harmonic mappings.

Theorem 6. Let \(f \) be a harmonic mapping in \(D \) with \(f(D) \subset D \) and \(f(0) = 1 \). Then \(f(z) = z \) in \(D \).

6. **Estimates for Bloch norm for bi- and tri-harmonic mappings**

In the case of \(p \)-harmonic Bloch mappings, the authors in [10] obtained the following result.

Theorem 7. Let \(f \) be a \(p \)-harmonic mapping in \(D \) of the form (1.1) satisfying \(B_f < \infty \), where

\[
B_f := \sup_{z,w \in D, \, z \neq w} \left| \frac{f(z) - f(w)}{\rho(z, w)} \right| < \infty \quad \text{with} \quad \rho(z, w) = \frac{1}{2} \log \left(1 + \frac{|z - w|}{1 - |z - w|} \right).
\]

Then

\[
B_f := \sup_{z \in D} (1 - |z|^2) \left\{ \sum_{k=1}^{p} |z|^{2(k-1)} (G_{p-k+1})_z(z) + \sum_{k=1}^{p} (k - 1)|z|^{2(k-2)} G_{p-k+1}(z) \right\}
\]

\[
\geq \sup_{z \in D} (1 - |z|^2) \left| \sum_{k=1}^{p} |z|^{2(k-1)} (G_{p-k+1})_z(z) - \sum_{k=1}^{p} |z|^{2(k-1)} (G_{p-k+1})_\bar{z}(z) \right|
\]

(6.1)

and (6.1) is sharp. The equality sign in (6.1) occurs when \(f \) is analytic or anti-analytic.

Furthermore, if for each \(k \in \{1, 2, \ldots, p\} \), the harmonic functions \(G_{p-k+1} \) in (1.1) are such that \(|G_{p-k+1}(z)| \leq M \), then

\[
(6.2) \quad B_f \leq 2M \phi_p(y_0).
\]

Here \(y_0 \) is the unique root in \((0, 1)\) of the equation \(\phi'_p(y) = 0 \), where

\[
(6.3) \quad \phi_p(y) = \frac{2}{p} \sum_{k=1}^{p} y^{2(k-1)} + y(1 - y^2) \sum_{k=2}^{p} (k - 1)y^{2(k-2)}.
\]
The bound in (6.2) is sharp when \(p = 1 \), where \(M \) is a positive constant. The extremal functions are

\[
f(z) = \frac{2M\alpha}{\pi} \Im \left(\log \frac{1 + S(z)}{1 - S(z)} \right),
\]

where \(|\alpha| = 1 \) and \(S(z) \) is a conformal automorphism of \(\mathbb{D} \).

In order to emphasize the importance of this result, we recall that, when \(p = 1 \), (6.1) (resp. (6.2)) is a generalization of [12, Theorem 1] (resp. [12, Theorem 3]). In the case of \(p = 2 \) of Theorem 7, after some computation, one has the following simple formulation for biharmonic mappings.

Corollary 3. Let \(f = H + |z|^2G \) be a biharmonic mapping of \(\mathbb{D} \) such that \(B_f < \infty \). Then, we have

\[
B_f \geq \sup_{z \in \mathbb{D}} (1 - |z|^2) \left| |H_z + |z|^2G_z| - |H_\bar{z} + |z|^2G_{\bar{z}}| \right|
\]

and

\[
B_f \leq \frac{4M}{27\pi^3} \left(8 + 36\pi^2 + (4 + 3\pi^2)^{3/2} \right) \approx 30.7682 M.
\]

Proof. According to our notation, (6.1) is equivalent to (6.4). In order to prove (6.5), we first observe that (6.2) is equivalent to

\[
B_f \leq 2M \sup_{0 < y < 1} \phi_2(y),
\]

where

\[
\phi_2(y) = \frac{2}{\pi} \left(1 + y^2 \right) + y(1 - y^2).
\]

Now, to find \(\sup_{0 < y < 1} \phi_2(y) \), we compute the derivative

\[
\phi_2'(y) = 1 + \frac{4}{\pi} y - 3y^2 = -3(y - y_0) \left(y - \frac{2 - \sqrt{4 + 3\pi^2}}{3\pi} \right)
\]

so that \(\phi_2'(y) \geq 0 \) for \(0 \leq y \leq y_0 \) and \(\phi_2'(y) \leq 0 \) for \(y_0 \leq y < 1 \). Hence

\[
y_0 = \frac{2 + \sqrt{4 + 3\pi^2}}{3\pi} \approx 0.82732
\]

is the critical point of \(\phi_2(y) \). Consequently, \(\phi_2(y) \leq \phi_2(y_0) \). A simple calculation shows that

\[
\phi_2(y_0) = \frac{2}{\pi} \left(1 + y_0^2 \right) + y_0(1 - y_0^2)
\]

\[
= \frac{2}{\pi} \left(\frac{8 + 12\pi^2 + 4\sqrt{4 + 3\pi^2}}{9\pi^2} \right) + \left(\frac{2}{3\pi} + \frac{\sqrt{4 + 3\pi^2}}{3\pi} \right) \left(\frac{6\pi^2 - 8 - 4\sqrt{4 + 3\pi^2}}{9\pi^2} \right)
\]

\[
= \frac{2}{27\pi^3} \left(16 + 42\pi^2 + 8\sqrt{4 + 3\pi^2} + \sqrt{4 + 3\pi^2} \left(3\pi^2 - 4 - 2\sqrt{3\pi^2 + 4} \right) \right)
\]

\[
= \frac{2}{27\pi^3} \left(8 + 36\pi^2 + (4 + 3\pi^2)^{3/2} \right) \approx 15.3841
\]
On properties of solutions of the p-harmonic equation

and therefore, $B_f \leq 2M\phi_2(y_0)$ which is the desired inequality (6.5). The result follows. □

In the case of $p = 3$ of Theorem 7, we have

Corollary 4. Let $f = H + |z|^2G + |z|^4K$ be a triharmonic (i.e. 3-harmonic) mapping of the unit disk \mathbb{D} such that $B_f<\infty$, where H, G and K are harmonic in \mathbb{D}. Then we have

$$B_f \geq \sup_{z\in\mathbb{D}}(1 - |z|^2) \left| |H_z + |z|^2G_z + |z|^4K_z| - |H_{z\tau} + |z|^2G_{z\tau} + |z|^4K_{z\tau}| \right|$$

and

$$B_f \leq 2M\phi_3(y_1) \approx 4.037006M,$$

where $\phi_3(y_1) = \sup_{0<y<1}\phi_3(y)$ and

$$\phi_3(y) = \frac{2}{\pi}(1 + y^2 + y^4) + y(1 + y^2 - 2y^4).$$

Proof. Set $p = 3$ in Theorem 7. Then, (6.6) is equivalent to (6.1) and therefore, it suffices to prove (6.7). The choice $p = 3$ in (6.2) shows that

$$B_f \leq 2M \sup_{0<y<1}\phi_3(y),$$

where $\phi_3(y)$ is obtained from (6.3).

We see that $\phi_3(y)$ has a unique positive root in $(0, 1)$. Also,

$$\phi'_3(y) = \frac{4}{\pi}(y + 2y^3) + 1 + 3y^2 - 10y^4.$$

Computations show that $\phi'_3(y) \geq 0$ for $0 \leq y \leq y_1$ and $\phi'_3(y) \leq 0$ for $y_1 \leq y < 1$. Hence

$$y_1 \approx 0.891951$$

is the only critical point of $\phi_3(y)$ in the interval $(0, 1)$. It follows that

$$\phi_3(y) \leq \phi_3(y_1) \approx 2.018503.$$

Thus, $B_f \leq 2M\phi_3(y_1)$ which is the desired inequality (6.7). □

References

1. Z. Abdulhadi and Y. Abu Muhanna, Landau’s theorem for biharmonic mappings, *J. Math. Anal. Appl.* 338(2008), 705–709.
2. Z. Abdulhadi, Y. Abu Muhanna and S. Khoury, On univalent solutions of the biharmonic equations, *J. Inequal. Appl.* 5(2005), 469–478.
3. Z. Abdulhadi, Y. Abu Muhanna and S. Khoury, On some properties of solutions of the biharmonic equation, *Appl. Math. Comput.* 177(2006), 346–351.
4. H. Al-Amiri and P. T. Mocanu, Certain sufficient conditions for univalency of the class C^1, *J. Math. Anal. Appl.* 80(1981), 387–392.
5. H. Cartan, Les fonctions de deux variables complexes et le problème de la représentation analytique, *J. de Math. Pures et Appl.* 96(1931), 1–114.
6. H. Chen, P. M. Gauthier and W. Hengartner, Bloch constants for planar harmonic mappings, *Proc. Amer. Math. Soc.* **128**(2000), 3231–3240.
7. SH. Chen, S. Ponnusamy and X. Wang, Landau’s theorem for certain biharmonic mappings, *Appl. Math. Comput.* **208**(2009), 427–433.
8. SH. Chen, S. Ponnusamy and X. Wang, Properties of some classes of planar harmonic and planar biharmonic mappings, *Complex Anal. Oper. Theory.*, **5**(2011), 901–916.
9. SH. Chen, S. Ponnusamy and X. Wang, Coefficient estimates and Landau-Bloch’s constant for planar harmonic mappings, *Bull. Malaysian Math. Sci. Soc.*, **34**(2011), 255–265.
10. SH. Chen, S. Ponnusamy and X. Wang, Bloch constant and Landau’s theorems for planar p-harmonic mappings, *J. Math. Anal. Appl.*, **373**(2011), 102–110.
11. J. G. Clunie and T. Sheil-Small, Harmonic univalent functions, *Ann. Acad. Sci. Fenn. Ser. A.I.* **9**(1984), 3–25.
12. F. Colonna, The Bloch constant of bounded harmonic mappings, *Indiana Univ. Math. J.* **38**(1989), 829–840.
13. M. Dorff and M. Nowark, Landau’s theorem for planar harmonic mappings, *Comput. Methods Funct. Theory* **4**(2004), 151–158.
14. P. Duren, Univalent function (Grundlehren der mathematischen Wissenschaften 259, New York, Berlin, Heidelberg, Tokyo), Spring-Verlag 1983.
15. P. Duren, Harmonic mappings in the plane, Cambridge Univ. Press, 2004.
16. A. Grigoryan, Landau and Bloch theorems for planar harmonic mappings, *Complex Var. Elliptic Equ.* **51**(2006), 81–87.
17. E. Heinz, On one-to-one harmonic mappings, *Pacific J. Math.* **9**(1959), 101–105.
18. S. Khoury, Biharmonic series solution of Stokes flow problems in sectorial regions, *SIAM J. Appl. Math.* **56**(1996), 19–39.
19. W. E. Langlois, Slow Viscous Flow, Macmillan Company, 1964.
20. E. Landau, Über die Bloch’sche konstante und zwei verwandte weltkonstanten, *Math. Z.* **30**(1929), 608–634.
21. M. Liu, Landau theorems for biharmonic mappings, *Complex Var. Elliptic Equ.* **53**(2008), 843–855.
22. M. Liu, Landau’s theorem for planar harmonic mappings, *Comput. Math. Appl.* **57**(2009), 1142–1146.
23. P. T. Mocanu, Starlikeness and convexity for nonanalytic functions in the unit disc, *Mathematica (Cluj)* **22**(1980), no. 1, 77–83.
24. S. Ponnusamy and A. Vasudevarao, Region of variability of two subclasses of univalent functions, *J. Math. Anal. Appl.* **332**(2007), 1322–1333.
25. S. Ponnusamy, A. Vasudevarao and H. Yanagihara, Region of variability of univalent functions f(z) for which zf'(z) is spirallike, *Houston J. Math.* **34**(2008), 1037–1048.
26. W. Rogosinski, On the coefficients of subordinate functions, *Proc. London Math. Soc.* **48**(1943), 48–82.
27. W. Rudin, Function theory in the unit ball of \mathbb{C}^n, Spring-Verlag, New York, Heidelberg, Berlin, 1980.
28. H. Xinzhong, Estimates on Bloch constants for planar harmonic mappings, *J. Math. Anal. Appl.* **337**(2008), 880–887.
29. H. Yanagihara, Regions of variability for functions of bounded derivatives, *Kodai Math. J.* **28**(2005), 452–462.
30. H. Yanagihara, Regions of variability for convex functions, *Math. Nachr.* **279**(2006), 1723–1730.
SH. Chen, Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, People’s Republic of China.
E-mail address: shlchen1982@yahoo.com.cn

S. Ponnusamy, Department of Mathematics, Indian Institute of Technology Madras, Chennai-600 036, India.
E-mail address: samy@iitm.ac.in

X. Wang, Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, People’s Republic of China.
E-mail address: xtwang@hunnu.edu.cn