An approach for evaluation of observables in analytic versions of QCD

Gorazd Cvetič and Cristián Valenzuela
Dept. of Physics, Universidad Técnica Federico Santa María, Valparaíso, Chile
(Dated: March 26, 2022)

We present two variants of an approach for evaluation of observables in analytic QCD models. The approach is motivated by the skeleton expansion in a certain class of schemes. We then evaluate the Adler function at low energies in one variant of this approach, in various analytic QCD models for the coupling parameter, and compare with perturbative QCD predictions and the experimental results. We introduce two analytic QCD models for the coupling parameter which reproduce the measured value of the semihadronic τ decay ratio. Further, we evaluate the Bjorken polarized sum rule at low energies in both variants of the evaluation approach, using for the coupling parameter the analytic QCD model of Shirkov and Solovtsov, and compare with values obtained by the evaluation approach of Milton et al. and Shirkov.

PACS numbers: 12.38.Cy, 12.38.Aw, 12.40.Vv

Consider an observable $O(Q^2)$ depending on a single space-like scale $Q^2(\equiv -q^2) > 0$ and assume that the skeleton expansion for this observable exists:

$$O_{\text{ske}}(Q^2) = \int_0^\infty \frac{dt}{t} F_\alpha^A(t) a_{pt}(te^C Q^2) + \sum_{n=2}^\infty s_n^O \left[\prod_{j=1}^{n} \int_0^\infty \frac{dt_j}{t_j} a_{pt}(t_j e^C Q^2) \right] F_\alpha^A(t_1, \ldots, t_n).$$ (1)

The observable is normalized such that $O(Q^2) = a_{pt}$ at first order in perturbation theory. The characteristic functions F_α^A are symmetric functions and have the following normalization:

$$\int_0^\infty \frac{dt}{t} F_\alpha^A(t) = 1, \int \frac{dt_1}{t_1} \frac{dt_2}{t_2} F_\alpha^A(t_1, t_2) = 1, \ldots, $$ (2)

and s_n^O are the skeleton coefficients. The perturbative running coupling $a_{pt}(Q^2) \equiv \alpha(Q^2)/\pi$ obeys the renormalization group (RG) equation:

$$\frac{\partial a_{pt}(Q^2)}{\partial \log Q^2} = -[\beta_0 a_{pt}(Q^2) + \beta_1 a_{pt}^3(Q^2) + \ldots].$$ (3)

In QCD, the first two coefficients $\beta_0 = (1/4)(11 - 2n_f/3)$ and $\beta_1 = (1/16)(102 - 38n_f/3)$ are scheme-independent in mass-independent schemes; n_f is the number of active quarks flavors. The value of C depends on the value of the scale Λ in $a_{pt}(\Lambda^2_i C) = \Lambda^2_0 C^C)$. In $\overline{\text{MS}}$ scheme $C = \overline{C} \equiv -5/3$. The skeleton integrands and integrals are independent of C. Expansion (1) exists in QED if one excludes light-by-light subdiagrams [2, 2]. In the QCD case, the leading skeleton part was investigated in Refs. [1, 4]. We will assume that expansion (1) exists in a certain class of schemes.

On the other hand, the RG-improved perturbation expansion for the observable $O(Q^2)$ is given by

$$O_{\text{pt}}(Q^2) = a_{pt}(Q^2) + \sum_{n=2}^\infty c_{n-1} a_{pt}^n(Q^2).$$ (4)

Expanding $a_{pt}(te^C Q^2)$ around $t = e^{-C}$ inside the integrals in Eq. (1) must give Eq. (4).

The skeleton expansion is a reorganization of the perturbation series such that each term in (1) corresponds to the sum of an infinite number of Feynman diagrams. These sums, however, do not converge. Although it is possible to assign a value to these sums, this value is not unique, a renormalon ambiguity is present. In formulation (1) the ambiguities arise from the (nonphysical) Landau singularities of $a_{pt}(te^C Q^2)$ in the non-perturbative space-like region.
\(0 < Q^2 \leq \Lambda^2\). The difference between possible integration paths (prescriptions) is a measure of the size of the renormalon ambiguity.

The perturbative coupling is a solution of the \(n\)-loop RG equation \(3\). It can be found iteratively for \(Q^2 \gg \Lambda^2\)

\[
a_{\text{pt}}(Q^2) = \sum_{i=1}^{n} \sum_{j=0}^{i-1} k_{ij} \frac{(\log L)^j}{L^i},
\]

where \(L = \log(Q^2/\Lambda^2)\) and \(k_{ij}\) are constants depending on the \(\beta\)-function coefficients. At energies \(Q < 1 \text{ GeV}\) the perturbative result \(4\), \(6\) is not reliable. At these energies \(a_{\text{pt}}\) starts being dominated by the Landau singularities at \(0 < Q^2 \leq \Lambda^2\). These singularities are a consequence of the perturbative RG Eq. \(3\) and are located in the region where this equation is not valid. Furthermore, from general arguments (causality) \(2\) one concludes that the coupling parameter must be analytic in the whole \(Q^2\)-plane excluding the time-like (Minkowskian) semiaxis. On this semiaxis, singularities associated with asymptotic states appear.

With this motivation it seems reasonable to replace the perturbative coupling by a new coupling \(A_1(Q^2)\) differing from \(a_{\text{pt}}(Q^2)\) significantly only in the non-perturbative region and having the required analyticity properties. This replacement is not unique and should be considered as a phenomenological model. Using a dispersion relation, Shirkov and Solovtsov \(7\) proposed the following replacement:

\[
a_{\text{pt}}(Q^2) \leftrightarrow A_{1}(Q^2) = \frac{1}{\pi} \int_{-\Lambda^2}^{\infty} \frac{d\sigma}{\sigma + Q^2} \rho_1(\sigma),
\]

where \(\rho_1 = \text{Im}[a_{\text{pt}}(-\sigma - i\epsilon)]\), and \(a_{\text{pt}}\) is, e.g., given by Eq. \(6\).\(^1\) We will refer to this as the minimal analytic (MA) procedure. In MA the discontinuity of the analytic coupling along the Minkowskian semiaxis is by construction the same as the one of \(a_{\text{pt}}\).\(^2\) Below we shall consider generalizations of this analytization procedure.

Once one analytizes \(a_{\text{pt}}(Q^2)\) using Eq. \(6\) or other procedure, the question arises how to treat a known truncated perturbation series (TPS). For perturbation series \(4\) there is no unique way to analyze higher powers of \(a_{\text{pt}}\). One possibility is to apply the MA procedure to each power of \(a_{\text{pt}}\):\(^\text{10}\)

\[
a_{\text{pt}}^k(Q^2) \leftrightarrow A_{1}^k(Q^2) = \frac{1}{\pi} \int_{0}^{\infty} \frac{d\sigma}{\sigma + Q^2} \rho_k(\sigma) \quad (k = 1, 2, \ldots),
\]

where \(\rho_k = \text{Im}[a_{\text{pt}}^k(-\sigma - i\epsilon)]\) and \(a_{\text{pt}}^k\), e.g., is given by Eq. \(9\).\(^3\) Other choices could be, e.g., \(a_{\text{pt}}^1 \mapsto A_1^1, A_1^{k-2} A_2, \text{etc.}\) In this paper we propose a method to analytize a TPS based on the skeleton expansion \(\text{11}\), in any chosen version of QCD with analytic \(A_1(Q^2)\). In Eq. \(10\) the replacement \(a_{\text{pt}} \mapsto A_1\) is made, making the skeleton expansion terms well-defined integrals. Next, we Taylor-expand each \(A_1(t_\epsilon e^C Q^2)\) there around a specific \(\ln Q^2_0 = \ln(t_\epsilon e^C Q^2)\). In these expansions, we denote

\[
\tilde{A}_n(Q^2) = \frac{(-1)^{n-1}}{\beta_0^{n-1} (n-1)!} \frac{\partial^{n-1} A_1(Q^2)}{\partial (\ln Q^2)^{n-1}}, \quad (n = 2, 3, \ldots)
\]

If we know in expansion \(4\) TPS with \(n_{\text{max}} = 3\) (i.e., \(c_1\) and \(c_2\)), it is convenient to introduce the analytic couplings \(A_2\) and \(A_3\) according to

\[
\tilde{A}_2(Q^2) = A_2(Q^2) + \frac{\beta_1}{\beta_0} A_3(Q^2),
\]

\[
\tilde{A}_3(Q^2) = A_3(Q^2).
\]

When replacing here \(A_k \mapsto A_k^*\), we obtain the corresponding truncated RG equations of perturbative QCD (pQCD). Thus, once one chooses a particular analytic coupling \(A_1\), the functions \(A_k\) with \(k \geq 2\) are defined by Eqs. \(\text{8}\), or by a higher-\(n_{\text{max}}\) version thereof. In MA model \(\text{11}\), the results \(\text{11}\) and \(\text{11}\) merge when \(n_{\text{max}}\) increases \(\text{12}\) (cf. also \(\text{7}\)). In our approach, the basic set of functions is: \(A_1\) and its derivatives \(\tilde{A}_2, \tilde{A}_3, \ldots\). The set \((A_1, A_2, A_3, \ldots)\) was introduced for the convenience of comparison with pQCD.

\(^{1}\) An efficient method for evaluation of \(A_1^{(\text{MA})}\) was developed in Ref. \(\text{3}\). A different evaluation of \(a_{\text{pt}}\) and \(\rho_1\) was presented in Ref. \(\text{5}\).

\(^{2}\) Other analytization procedures of \(a_{\text{pt}}\) focus on the analyticity properties of the beta function \(\text{8, 9}\).

\(^{3}\) An extension of Eq. \(\text{7}\) to noninteger powers was developed in Refs. \(\text{11}\).
The afore-mentioned Taylor-expansion around $\ln Q_s^2 = \ln (t_s e^C Q^2)$ for the order $n_{\max} = 3$ gives

$$A_1 (te^C Q^2) \approx A_1 (Q_s^2) - \beta_0 \ln(t/t_s) A_2 (Q_s^2) + \beta_0^2 \ln^2(t/t_s) A_3 (Q_s^2)$$

$$= A_1 (Q_s^2) - \beta_0 \ln(t/t_s) A_2 (Q_s^2) + [\beta_0^2 \ln^2(t/t_s) - \beta_1 \ln(t/t_s)] A_3 (Q_s^2).$$

(10)

(11)

Keeping terms corresponding to the third-order approximation we obtain a truncated analytic version of $O(Q^2)$:

$$O_{tr}^{(an)} (Q^2) = A_1 (Q_s^2) + [\beta_0 f_1^O (t_s) A_2 (Q_s^2) + s_1^O A_1^2 (Q_s^2)]$$

$$+ [\beta_0^2 f_2^O (t_s) + \beta_1 f_1^O (t_s)] A_3 (Q_s^2) + 2 s_1^O \beta_0 f_1^O (t_s) A_1 (Q_s^2) A_2 (Q_s^2) + s_2^O A_1^3 (Q_s^2),$$

(12)

where $Q_s^2 \equiv t_s e^C Q^2$ and the momenta are

$$f_1^O (t_s) = \int_0^\infty dt \frac{d}{t} F_1^O (t) (- \log t/t_s)^i,$$

$$f_2^O (t_s) = \int \frac{dt_1}{t_1} \frac{dt_2}{t_2} F_2^O (t_1, t_2) (- \log t_1/t_s)^i (- \log t_2/t_s)^j.$$

(13)

Equation (12) is the result of the proposed analyticization procedure for the series (11) truncated at $\sim a_{pt}^3$. In the perturbative region one has $A_k \approx a_{pt}^k$ and Eqs. (12) and (11) merge. If $A_1 (Q^2)$ is well behaved at the origin then all $A_k (Q^2)$ ($k \geq 2$) vanish at this point. This follows from the (truncated) RG-like Eqs. (9). Comparison between Eqs. (12) and (11) gives

$$c_1 = \beta_0 f_1^O (e^{-C}) + s_1^O,$$

$$c_2 = \beta_0^2 f_2^O (e^{-C}) + \beta_1 f_1^O (e^{-C}) + 2 \beta_0 s_1^O f_1^O (e^{-C}) + s_2^O.$$

(14)

We assume that the skeleton expansion coefficients s_1^O and characteristic functions $F_1^O (t_1, \ldots, t_j)$ are n_f-independent when C is n_f-independent. Consequently, in the class of schemes where the coefficients c_j of expansion (11) are polynomials in n_f ($\leftrightarrow \beta_0$) of order j, relations (14) give us coefficients s_1^O and s_2^O and momenta f_1^O, f_2^O, and $f_1^O (0)$. We shall consider observables for which c_1 and c_2 are known. This approach can be continued to higher orders. The afore-mentioned class of schemes is parametrized by the RG β_j coefficients ($j \geq 2$) which are polynomials in n_f ($\leftrightarrow \beta_0$) of order j such that $\beta_j = b_{j_0} + b_{j_1} \beta_0 + \cdots b_{j_k} \beta_0^k$, where $b_{j_0} = b_{j_0}$ of the MS scheme and b_{j_k} ($k \geq 1$) are the free scheme parameters.

However, the knowledge of the perturbation coefficients c_j by itself is not enough to obtain the higher-order coefficients which are not included in Eq. (12). At fourth-order, the coefficients at A_2^3 and $A_1 A_3$ cannot be obtained without certain assumptions for the characteristic function $F_1^O (t_1, t_2)$ [12].

The leading characteristic function $F_1^O (t)$ is known for many observables on the basis of their all-order large-n_f (\leftrightarrow large-β_0) perturbation expansion [11, 13]. Therefore, we propose to keep the leading skeleton term unexpanded, but to expand the other terms as in Eq. (12).

$$O_{shel}^{(an)} (Q^2) = \int_0^\infty dt \frac{d}{t} F_1^O (t) A_1 (te^C Q^2) + s_1^O A_1^2 (Q_s^2) + [s_2^O A_1^2 (Q_s^2) + 2 s_1^O \beta_0 f_1^O (e^{-C}) + s_2^O],$$

(15)

where we used two different expansion scales for the NL and NNL skeleton terms: $Q_s^2 \equiv t^{(2)} e^C Q^2$ and $Q_s^2 \equiv t^{(3)} e^C Q^2$, respectively. Since $f_1^O (t_1, t_2)$ = $f_1^O (e^{-C}) + \ln t_2 (e^{-C})$ and $f_1^O (e^{-C})$ is known, it is convenient to use a scale of the BLM type [12]: $\tau_2 = t^{(2)} \equiv \exp(-C - f_1^O (e^{-C}))$ such that $f_1^O (t^{(2)}) = 0$. Consequently, the $A_1 A_2$ term in Eq. (15) disappears. Further, the scheme dependence at this level shows up as the dependence of s_2^O and $t^{(2)}$ on b_{21} and b_{22}, respectively [12]. This allows us to fix the last two coefficients, for each specific observable, in such a way that $s_2^O = 0$ and, e.g., $t^{(2)} = 1$. For example, if the starting scheme is MS (b_{21}, b_{22}, and $\bar{C} \equiv -5/3$), the new scheme coefficients b_{2j} are

$$b_{21} = \tau_{21} + \tau_{20} + \frac{107}{16} \tau_{11},$$

$$b_{22} = \tau_{22} + \tau_{21} - \frac{19}{4} \tau_{11} + 2 \bar{C} \tau_{10},$$

(16)

where τ_{jk} are expansion coefficients of the perturbation coefficient c_j, Eq. (14), in powers of β_0, in MS scheme: $\tau_j = \sum_j \tau_{jk} \beta_0^k$. In the scheme (15), the skeleton-based expansion (12) reduces to

$$O_{v1}^{(an)} (Q^2) = \int_0^\infty dt \frac{d}{t} F_1^O (t) A_1 (te^C Q^2) + s_1^O A_1^2 (e^C Q^2) + O_n,$$

(17)
where $O_n = O_4$ are now formally terms of fourth order ($\sim A_1^4, A_2^2 A_2, \ldots$). We will call formula (17) the first variant (“v1”) of our skeleton-motivated evaluation approach. Adopting the scheme (14), or higher order generalizations of it, higher order contributions are absorbed in the two terms of Eq. (14). This scheme-fixing method is particularly useful at low energies where scheme dependence is important.

The skeleton QCD expansion, if it exists, is probably valid only in a specific (yet unknown) “skeleton” scheme. A possible difference between the latter and the schemes used here will result in a difference in the evaluation of the observable $O(Q^2)$. This difference, when re-expanded in a_{pt}, is at most a_{pt}^4 subleading-β_0 (i.e., $\sim \beta_0^2 a_{\text{pt}}^4$).

The derivation up until now allows us to present yet another variant (“v2”) of the evaluation approach, by keeping the scheme (16) and simply replacing $A_1(e^C Q^2)$ by $A_2(e^C Q^2)$ in Eq. (17)

$$O_{v2}^{(3n)}(Q^2) = \int_0^\infty \frac{dt}{t} F_0^a(t) A_1(te^C Q^2) + s O A_2(e^C Q^2) + O_n ,$$

This formula can be obtained by repeating the previous derivation, but starting with the skeleton expansion (1) without the analytization replacements $a_{\text{pt}} \mapsto A_1$ there. All the expansions are then obtained as previously, but with a_{pt}^n instead of $A_n, A_{n-1} A_1$, etc. In this variant, the analytization is performed at the end, by replacing $a_{\text{pt}} \mapsto A_1$ in the leading-skeleton integral, and replacing $a_{\text{pt}}^n \mapsto A_2$ in the term proportional to $s O$, leading to Eq. (18).

We wish to stress that neither variant of the evaluation approach relies on the existence of the skeleton expansion.

Our derivation can be interpreted in the following alternative way: The formal skeleton expansion (1) provides us with the tools to separate the perturbation series of the observable into several perturbation subseries. The first subseries (from the leading term) includes all the leading-β_0 terms, the second subseries (from the subleading skeleton term) includes all the leading-β_0 terms of the rest, etc. Each of these perturbation subseries is renormalization scale invariant. A specific renormalization scheme (β_2, β_3, \ldots) is then found such that all the perturbation subseries vanish, except the first two. In the end, the analytization of the two surviving subseries is performed.

If the perturbation coefficient c_3 is known, then the entire described procedure can be carried out to one higher order, i.e., the β_3-coefficients b_{3j} ($j = 1, 2, 3$) can be determined so that in Eqs. (17)–(18), $O_n = O_3 = (\sim A_1^3, A_2^2 A_2, \ldots)$, under certain assumptions for the function $F_0^a(t_1, t_2)$ (12). For example, for the massless Adler function, the τ_3 coefficient has been estimated as a polynomial in r_f to a high degree of accuracy (15), and the scheme can be found such that in Eqs. (17)–(18) $O_n = O_5$. Of course, the higher order analytic couplings $A_n (n \geq 2)$ are defined in this case by the $n_{\text{max}} = 4$ extension of Eqs. (3)

$$\tilde{A}_2(Q^2) = A_2(Q^2) + \frac{\beta_1}{\beta_0} A_3(Q^2) + \frac{\beta_2}{\beta_0} A_4(Q^2) ,$$

$$\tilde{A}_3(Q^2) = A_3(Q^2) + \frac{5 \beta_1}{2 \beta_0} A_4(Q^2) ,$$

$$\tilde{A}_4(Q^2) = A_4(Q^2) ,$$

and expansion of $A_1(te^C Q^2)$ is now performed up to and including $\tilde{A}_4(Q^2)$, in contrast to Eq. (10).

In practical evaluations, the form of the analytic coupling parameter $A_1(Q^2)$ has to be specified. The most straightforward is the minimal analytic (MA) coupling (14). The latter model gives the value $X = A_{1(C=-5/3)} \approx 0.4$ GeV (in $\overline{\text{MS}}$ and with $n_f = 3$) from fitting high energy QCD observables (16). However, in order to reproduce the measured value of the semihadronic tau decay ratio r_τ, it requires introduction of heavy first generation quark masses $m_u \approx m_d \approx 0.25$ GeV (10). Another possibility would be to modify the MA-coupling at low energies, e.g., in the following manner

$$A_1^{(M1)}(Q^2) = c_f M_0^2 \frac{Q^2}{(Q^2 + M_0^2)^2} + k_0 \frac{M_0^2}{(Q^2 + M_0^2)} + \frac{M_0^2}{(Q^2 + M_0^2)} \frac{1}{\pi} \int_{\sigma=M_0^2}^{\infty} \frac{d\sigma}{\sigma} \frac{\rho_1(\sigma) (\rho_2(\sigma) - M_0^2)}{\rho_2(\sigma + Q^2) - \rho_2(\sigma)} .$$

In this “M1” model, $k_0, c_f, c_0 = M_0^2 / \Lambda^2$, and $c_r = M_r^2 / \Lambda^2$ are four dimensionless and C-independent parameters which determine the low energy modification of the coupling (a special case, $k_0 = -1$, of M1 was presented in Ref. (17)).

In general, at high energies, this coupling differs from the MA-coupling by $\sim X^2 / Q^2$. However, requiring that the difference be only $\sim X^2 / Q^4$ fixes parameter k_0 in terms of the other three. Consequently, $X \approx 0.4$ GeV from fitting to high energy QCD observables, as in the MA case. The remaining three parameters can be fixed by requiring that the experimental value of r_τ and some other low energy observable, e.g., Bjorken polarized sum rule $d_b(Q^2)$, be reproduced by the aforementioned procedure. The experimental values of these two observables are $r_\tau = 0.196 \pm 0.010$ (18) and $d_b(Q^2) = 0.16 \pm 0.11$ at $Q^2 = 2$ GeV2 (19), where the normalization was chosen such that $r_\tau = a_{\text{pt}} + O(a_{\text{pt}}^2)$ and similarly for d_b. The quark mass effects are subtracted (not contained) here.
The use of the MA-coupling, in our approach [15-17] and with massless first three quarks and $\bar{\Lambda} = 0.4$ GeV, gives $d_b(Q^2 = 2) \approx 0.13$ in v_1 (0.14 in v_2) which is acceptable, and $r_\tau = 0.140$ in v_1 (0.139 in v_2) which is not acceptable.4

If we require, in model M1, the reproduction of $r_\tau \approx 0.196$ and $d_b(Q^2 = 2) \approx 0.13 - 0.14$, in the evaluation approach v_1, with massless quarks, and $\bar{\Lambda} = 0.4$ GeV, we obtain for the choice $c_0 = 2$ the values of $c_r \approx 0.5$ and $c_f \approx 1.7$.

Changing c_0 while keeping it ~ 1 gives us by the same procedure different values of c_r and c_f to reproduce the afore-mentioned values of r_τ and d_b. In such cases, yet another low energy observable, the (massless) Adler function, remains quite stable under the variation of c_0. In M1 we will take $c_0 = 2$, $c_r = 0.5$, $c_f = 1.7$ (and $\bar{\Lambda} = 0.4$ GeV).

With these parameter values: v_1 approach [17] gives $r_\tau = 0.197$ (0.202 when $O_n = O_4$) for $d(m^2_{eW})$ in Eq. (17) and $d_b(Q^2 = 2) \approx 0.14$; v_2 approach [15] gives $r_\tau = 0.210$ (0.201 when $O_n = O_4$) and $d_b(Q^2 = 2) \approx 0.14$.

Yet another, simpler, modification of the MA-model is

$$A_1^{(M2)}(Q^2) = A_1^{(MA)}(Q^2) + \tilde{c}_r \frac{M_0^2}{Q^2 + M_0^2}. \quad (21)$$

In this “M2” model,5 we will take the parameter values $\tilde{c}_r = 0.2$, $\tilde{c}_0 = \frac{M_0^2}{\Lambda^2} \approx 0.56$ and $\bar{\Lambda} = 0.4$ GeV. With these values, v_1 approach [17] gives $r_\tau = 0.188$ (0.194 when $O_n = O_4$) and $d_b(Q^2 = 2) \approx 0.18$; v_2 approach [15] gives $r_\tau = 0.188$ (0.193 when $O_n = O_4$) and $d_b(Q^2 = 2) \approx 0.19$.

Having fixed the parameters in the afore-mentioned models M1 and M2, we present in Fig. 1 low energy results of the Adler function $d(Q^2)$ associated with the hadronic part of the electromagnetic current, in the models MA, M1 and M2 (for a different evaluation of $d(Q^2)$, cf. [23]). The normalization was taken again such that in the massless quark limit for $n_f = 3$: $d(Q^2) = a_{pt} + O(a_{pt}^2)$. The lower curves in Fig. 1 represent the results of the v_1-evaluation [17] with three massless quarks, in the scheme where $O_n = O_5$. The higher curves represent the full quantity, i.e., the effects of the massive c and b quarks are added, with the coefficients as given in Ref. [24] ($d(Q^2) = (1/2)D(Q^2) - 1$, where D is defined in [24]). In the contributions of c and b, we simply replaced $a_{pt}(Q^2)$ and $a_{bt}(Q^2)$ by $A_1(Q^2)$ and $A_2(Q^2)$, and used $\Lambda = \bar{\Lambda}$ ($C = -5/3$). $A_2(Q^2)$ was constructed by the fourth-order relations [15]. The indicated \pm uncertainties in these curves are those charm contributions which are $\propto A_2(Q^2)$. In contrast to the massless contributions, we do not have yet a systematic way to analyze the massive quark contributions. The experimental results [24] and the truncated pQCD series were included for comparison. Figure 1 shows that analytic versions of QCD (MA, M1, M2) in conjunction with the skeleton-motivated approach [17] give results that at low energies $Q \sim 1$ GeV behave much better than pQCD.

Applying of variant 2 of our approach, Eq. (16), gives for the Adler function results which are very close to those of variant 1, Eq. (17), because the coefficient s_{10}^β is small; $s_{10}^\beta = 1/12$. For the Bjorken polarized sum rule $d_b(Q^2)$, this is not so, because $s_{10}^\beta = -11/12$ is appreciable. Therefore, we will take the Bjorken sum rule as a case to look at numerical differences between evaluations in our approaches v_1 and v_2, Eqs. (17)-(18). In addition, we will compare with the approach of Milton et al. and Shirkov [10, 16] (MSSSh)

$$O_{\text{MSSSh}}(Q^2) = A_1(Q^2) + c_1 A_2(Q^2) + c_2 A_3(Q^2). \quad (22)$$

In principle, the comparison between the approaches can be carried out in any analytic QCD model for the coupling parameter. However, the MSSSh approach has been applied in the literature in the MA model. Therefore, we carry out the comparison in this model. In Fig. 2 we present the MA-model predictions for $d_b(Q^2)$, with various evaluations, at third order ($O_n = O_4$ in Eqs. (17)-(18)). The results of the MSSSh approach are presented in two schemes: MS (“bMS”); and in the “b2Sk” scheme where β_2 is determined by Eqs. (16) for d_b. The MSSSh approach uses the three-loop MA-expressions $A_2(Q^2)$ and $A_3(Q^2)$ of Eq. (7) (Refs. [11, 16]), and variant 2 of our approach, Eq. (18), uses $A_2(Q^2)$ from Eqs. (10). Figure 2 shows that the evaluation of $d_b(Q^2)$ with variant 1 of our approach Eq. (17) (“Sk v1 b2Sk”) gives, at low energies, results which differ significantly from the MSSSh approach. On the other hand, variant 2 of our approach (“Sk v2 b2Sk”), i.e., Eq. (18), gives results which are, apparently accidentally, very close to those of the MSSSh approach in the MS scheme.

In summary, we presented two variants of skeleton-expansion-motivated evaluation of observables in analytic versions of QCD, Eqs. (17)-(18). The first variant follows more closely the skeleton expansion, in the sense that the analytization

4 For the corresponding massless Adler function $d(Q^2)$ we use the scheme where in Eqs. (14) $O_n = O_5$. If taking a scheme with by one order lower precision ($O_n = O_4$, $\beta_3 \rightarrow 0$), the value changes to $r_\tau = 0.146$ in v_1 (0.145 in v_2). Observable r_τ is evaluated by first evaluating the Adler function $d(Q^2)$ for complex values $Q^2 = m^2_{eW}$ and then applying the standard contour integration in the Q^2-plane. The function $F_2^D(t)$ for $d(Q^2)$ was obtained in Ref. [1]. $F_2^D(t)$ for $d_b(Q^2)$ can be obtained from the known large-n_f expansion of $d_b(Q^2)$ [20], using the technique of Ref. [1], and the full perturbation coefficients c_1 and c_2 from [21].

5 In Ref. [24], power correction terms $1/(Q^2)^n$ were added to $A_1^{(MA)}(Q^2)$, but with a somewhat different motivation.
is performed at the beginning, in the skeleton expansion \((a_p \rightarrow A_1)\). In the second variant, the analytization is performed at the end, in the form \(a_k \rightarrow A_k\). The second variant can be regarded as a generalization of the evaluation approach of Milton et al. and Shirkov (MSSSh), now including the leading-\(\beta_0\) terms to all orders in the coupling parameter. Both variants use the formal structure of the skeleton expansion in order to divide the original perturbation expansion into a sum of subseries (skeleton terms), each of them renormalization scale invariant, and then using a scheme where only the first two subseries survive. Further, we introduced two alternative models (M1, M2) of analytic QCD for the coupling parameter which, for certain values of the model parameters, reproduce the measured values of the semihadronic \(\tau\) decay ratio.

Acknowledgments
The authors acknowledge helpful communication with F. Jegerlehner. This work was supported by Fondecyt grant 1050512 (G.C.), Mecesup grant USA0108 and Conicyt Fellowship 3060106 (C.V.).

[1] M. Neubert, Phys. Rev. D 51, 5924 (1995); hep-ph/9502264.
[2] J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields, McGraw-Hill, New York, 1965.
[3] S. J. Brodsky, E. Gardi, G. Grunberg and J. Rathsman, Phys. Rev. D 63, 094017 (2001).
[4] E. Gardi and G. Grunberg, JHEP 9911, 016 (1999).
[5] D. V. Shirkov and I. L. Solovtsov, hep-ph/9604363; Phys. Rev. Lett. 79, 1209 (1997).
[6] A. I. Alekseev, Few Body Syst. 32, 199 (2003); J. Phys. G 27, L117 (2001).
[7] D. S. Kurashev and B. A. Magradze, Theor. Math. Phys. 135, 531 (2003) [Teor. Mat. Fiz. 135, 95 (2003)]; hep-ph/0104142.
[8] A. V. Nesterenko, Phys. Rev. D 62, 094028 (2000); Phys. Rev. D 64, 116009 (2001); Int. J. Mod. Phys. A 18, 5475 (2003); A. V. Nesterenko and J. Papavassiliou, Phys. Rev. D 71, 016009 (2005); A. C. Aguilar, A. V. Nesterenko and J. Papavassiliou, J. Phys. G 31, 997 (2005).
[9] P. A. Ráczka, hep-ph/0512339; presented at QCD05, Montpellier, France, July 2005.
[10] K. A. Milton, I. L. Solovtsov and O. P. Solovtsova, Phys. Lett. B 415, 104 (1997); Phys. Rev. D 64, 016005 (2001); hep-ph/0512209.
[11] A. P. Bakulev, S. V. Mikhailov and N. G. Stefanis, Phys. Rev. D 72, 074014 (2005) [Erratum-ibid. D 72, 119908 (2005)]; A. P. Bakulev, A. I. Karanikas and N. G. Stefanis, Phys. Rev. D 72, 074015 (2005).
[12] G. Cvetič and C. Valenzuela, in preparation.
[13] M. Beneke, Nucl. Phys. B 405, 424 (1993).
[14] S. J. Brodsky, G. P. Lepage and P. B. Mackenzie, Phys. Rev. D 28, 228 (1983).
[15] P. A. Baikov, K. G. Chetyrkin and J. H. Kühn, Phys. Rev. D 67, 074026 (2003).
[16] D. V. Shirkov, Theor. Math. Phys. 127, 409 (2001); Eur. Phys. J. C 22, 331 (2001).
[17] G. Cvetić, C. Valenzuela and I. Schmidt, hep-ph/0508101; presented at QCD05, Montpellier, France, July 2005.
[18] R. Barate et al. [ALEPH Collaboration], Eur. Phys. J. C 4, 409 (1998); K. Ackerstaff et al. [OPAL Collaboration], Eur. Phys. J. C 7, 571 (1999).
[19] A. Deur et al., Phys. Rev. Lett. 93, 212001 (2004); F. Campanario and A. Pineda, Phys. Rev. D 72, 056008 (2005).
[20] D. J. Broadhurst and A. L. Kataev, Phys. Lett. B 315, 179 (1993).
[21] S. G. Gorishny and S. A. Larin, Phys. Lett. B 172, 109 (1986); E. B. Zijlstra and W. Van Neerven, Phys. Lett. B 297, 377 (1992); S. A. Larin and J. A. M. Vermaseren, Phys. Lett. B 259, 345 (1991).
[22] A. I. Alekseev, hep-ph/0503242.
[23] A. V. Nesterenko and J. Papavassiliou, hep-ph/0511215.
[24] S. Eidelman, F. Jegerlehner, A. L. Kataev and O. Veretin, Phys. Lett. B 454, 369 (1999).
FIG. 1: Adler function as predicted by pQCD, and by our approach in several analytic QCD models (see the text).
FIG. 2: Bjorken polarized sum rule in MA as predicted by two variants of the approach [10, 16] (MSSSh), and by our approach.