Representations of the vertex operator algebra $V_{A_4}^{L_2}$

Chongying Dong
Department of Mathematics, University of California, Santa Cruz, CA 95064

Cuipo Jiang
Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240 China

Abstract
The rationality and C_2-cofiniteness of the orbifold vertex operator algebra $V_{A_4}^{L_2}$ are established and all the irreducible modules are constructed and classified. This is part of classification of rational vertex operator algebras with $c = 1$.

2000MSC: 17B69

1 Introduction
Motivated by the classification of rational vertex operator algebras with $c = 1$, we investigate the vertex operator algebra $V_{A_4}^{L_2}$ where L_2 is the root lattice of type A_1 and A_4 is the alternating group which is a subgroup of the automorphism group of lattice vertex operator algebra V_{L_2}. The C_2-cofiniteness and rationality of $V_{A_4}^{L_2}$ are obtained, and the irreducible modules are constructed and classified.

Classification of rational vertex operator algebras with $c = 1$ goes back to [G] and [K] in the literature of physics at character level under the assumption that each irreducible character is a modular function over a congruence subgroup and the sum of the square norm of irreducible characters is invariant under the modular group. According to [K], the character of a rational vertex operator algebra with $c = 1$ must be the character of one of the following vertex operator algebras: (a) lattice vertex operator algebras V_{L} associated with positive definite even lattices L of rank one, (b) orbifold vertex operator algebras V_{L}^+ under the automorphism of V_{L} induced from the -1 isometry of L, (c) $V_{Z_2}^G$ where $(\alpha, \alpha) = 2$ and G is a finite subgroup of $SO(3)$ isomorphic to one of $\{A_4, S_4, A_5\}$. As it is pointed out in [DJ1] that this list is not correct if the effective central charge \tilde{c} [DM2] is not equal to c. The vertex operator algebra V_{L} for any positive definite even lattice L has been characterized by using c, the effective central charge \tilde{c} and the rank of the weigh one subspace as a Lie algebra [DM2]. The orbifold vertex operator algebras V_{L}^+ for rank one lattices L have also been characterized in [DJ1]-[DJ3] and [ZD]. But the vertex operator algebra $V_{Z_2}^G$ has not been understood well as G is not a cyclic group. Although $V_{Z_2}^G$ is in the above list of rational vertex operator algebras, the rationality of $V_{Z_2}^G$ was unknown. The present paper deals with the case $G = A_4$.

1Supported by NSF grants and a Faculty research grant from the University of California at Santa Cruz.

2Supported by China NSF grants 10931006, the RFDP of China(20100073110052), and the Innovation Program of Shanghai Municipal Education Commission (11ZZ18).
The main idea is to realize $V_{Z,\alpha}^G$ as $(V_{Z,\beta})^{(\sigma)}$ where $(\beta, \beta) = 8$ and σ is an automorphism of $sl(2, \mathbb{C})$ of order 3. The vertex operator algebra $V_{Z,\beta}^+$ is well understood (see [DN1]-[DN3], [A1]-[A2]). Also it is easier to deal with the cyclic group $\langle \sigma \rangle$ than nonabelian group A_4. One key step is to give an explicit expression of the generator $u^{(9)}$ of weight 9. Another key step is to prove the C_2-cofiniteness of $V_{A_4}^L$. We achieve this by using the fusion rules of the Virasoro vertex operator algebra $L(1, 0)$ and technical calculations. The rationality follows from the C_2-cofiniteness [M2]. For the classification of irreducible modules, we follow the standard procedure. We first construct the irreducible σ^2-twisted $V_{Z,\beta}^+$-modules, and then give the irreducible $(V_{Z,\beta}^+)^{(\sigma)}$-submodules. According to [M1], these irreducible modules should give a complete list of irreducible $(V_{Z,\beta}^+)^{(\sigma)}$-modules.

It is expected that the ideas and techniques developed in this paper will work for $V_{S_4}^L$ as well. The case $G = A_5$ might be more complicated. Once the rationality of $V_{L_2}^G$ is established for all G, the classification of rational vertex operator algebras with $c = 1$ is equivalent to the following conjecture: If V is a simple, rational vertex operator algebra of CFT type such that $\dim V < 3$ then V is isomorphic to $V_{L_2}^G$ for $G = A_4, S_4, A_5$.

The paper is organized as follows. We recall various notions of twisted modules from [DLM1] in Section 2. We also briefly discuss lattice vertex operator algebras V_L [FLM] and $V_{L_2}^+$ including the classification of irreducible modules and rationality [DN1]-[DN3], [A2], [AD], [DJL]. In Section 3, we identify the vertex operator algebra $V_{L_2}^{A_4}$ with $(V_{Z,\beta}^+)^{(\sigma)}$ and discuss several special vectors (which play important roles in later sections) in both $V_{Z,\beta}^+$ and $(V_{Z,\beta}^+)^{(\sigma)}$. The rationality and C_2-cofiniteness of $(V_{Z,\beta}^+)^{(\sigma)}$ are established in Section 4. The classification of the irreducible $(V_{Z,\beta}^+)^{(\sigma)}$-modules is achieved in Section 5.

2 Preliminaries

We first recall weak twisted-modules and twisted-modules for vertex operator algebras from [DLM2]. Let $(V, Y, \mathbf{1}, \omega)$ be a vertex operator algebra [B], [FLM] and g an automorphism of V of finite order T. Denote the decomposition of V into eigenspaces with respect to the action of g as

$$V = \bigoplus_{r \in \mathbb{Z}/T \mathbb{Z}} V^r$$

where $V^r = \{ v \in V | gv = e^{-2\pi iv/T} v \}$.

Definition 2.1. A weak g-twisted V-module M is a vector space equipped with a linear map

$$V \to (\text{End } M) \{ z \}$$

$$v \mapsto Y_M(v, z) = \sum_{n \in \mathbb{Q}} v_n z^{-n-1} \quad (v_n \in \text{End } M)$$
which satisfies the following for all $0 \leq r \leq T - 1$, $u \in V^r$, $v \in V$, $w \in M$,
\[
Y_M(u, z) = \sum_{n \in \mathbb{Z}_+} u_n z^{-n-1} \quad (2.2)
\]
\[
u_l w = 0 \quad \text{for} \quad l \gg 0 \quad (2.3)
\]
\[
Y_M(1, z) = 1 \quad (2.4)
\]
\[
z_0^{-1} \delta \left(\frac{z_1 - z_2}{z_0} \right) Y_M(u, z_1) Y_M(v, z_2) = z_0^{-1} \delta \left(\frac{z_2 - z_1}{-z_0} \right) Y_M(v, z_2) Y_M(u, z_1)
\]
\[
= z_1^{-1} \left(\frac{z_2 + z_0}{z_1} \right)^{r/T} \delta \left(\frac{z_2 + z_0}{z_1} \right) Y_M(Y(u, z_0)v, z_2). \quad (2.5)
\]

It is known that (see [DLM2], etc) the twisted-Jacobi identity is equivalent to the following two identities.

\[
[u_{m+i}^{\tau}, v_{n+i}^{\tau}] = \sum_{i=0}^{\infty} \binom{m+r}{i} (u_i v)_{m+n+i}^{\tau},
\]
\[
\sum_{i \geq 0} \binom{s}{i} (u_{m+i}^{\tau})_{n+i}^{\tau} = \sum_{i \geq 0} (-1)^i \binom{m}{i} (u_{m+i}^{\tau})_{n+i}^{\tau} - (-1)^{m} v_{m+n+i}^{\tau},
\]

where $p, n \in \mathbb{Z}$, $u \in V^s$, $v \in V^t$.

Definition 2.2. An admissible g-twisted V-module $M = \bigoplus_{n \in \mathbb{Z}_+} M(n)$ is a $1/T\mathbb{Z}_+$-graded weak g-twisted module such that $u_m M(n) \subset M(w \mu - m - 1 + n)$ for $u \in V$ and $m, n \in 1/T\mathbb{Z}$.

Definition 2.3. A g-twisted V-module $M = \bigoplus_{\lambda \in \mathbb{C}} M_\lambda$ is a \mathbb{C}-graded weak g-twisted V-module with $M_\lambda = \{ u \in M | L(0) u = \lambda u \}$ such that M_λ is finite dimensional and for fixed $\lambda \in \mathbb{C}$, $M_{\lambda + n/T} = 0$ for sufficiently small integer n.

We now review the vertex operator algebras $M(1)^+, V_L^+$ and related results from [A1], [A2], [AD], [ADL], [DN1], [DN2], [DN3], [DJL], [FLM].

Let $L = \mathbb{Z}\alpha$ be a positive definite even lattice of rank one. That is, $(\alpha, \alpha) = 2k$ for some positive integer k. Set $\mathfrak{h} = \mathbb{C} \otimes \mathbb{C} L$ and extend (\cdot, \cdot) to a \mathbb{C}-bilinear form on \mathfrak{h}. Let $\hat{\mathfrak{h}} = \mathbb{C}[t, t^{-1}] \otimes \mathfrak{h} \oplus \mathbb{C} K$ be the affine Lie algebra associated to the abelian Lie algebra \mathfrak{h} so that

\[
[\alpha(m), \alpha(n)] = 2km\delta_{m+n,0}K \quad \text{and} \quad [K, \hat{\mathfrak{h}}] = 0
\]

for any $m, n \in \mathbb{Z}$, where $\alpha(m) = \alpha \otimes t^m$. Then $\hat{\mathfrak{h}}^{\geq 0} = \mathbb{C}[t] \otimes \mathfrak{h} \oplus \mathbb{C} K$ is a commutative subalgebra. For any $\lambda \in \mathfrak{h}$, we define a one-dimensional $\hat{\mathfrak{h}}^{\geq 0}$-module $\mathbb{C} e^\lambda$ such that $\alpha(m) \cdot e^\lambda = (\lambda, \alpha) \delta_{m,0} e^\lambda$ and $K \cdot e^\lambda = e^\lambda$ for $m \geq 0$. We denote by

\[
M(1, \lambda) = U(\hat{\mathfrak{h}}) \otimes_{U(\hat{\mathfrak{h}}^{\geq 0})} \mathbb{C} e^\lambda \cong S(t^{-1}\mathbb{C}[t^{-1}]) \quad \text{(linearly)}
\]
the \(\mathfrak{h} \)-module induced from \(\mathfrak{h} \geq 0 \)-module \(\mathbb{C} e^\lambda \). Set

\[M(1) = M(1, 0). \]

Then there exists a linear map \(Y : M(1) \rightarrow \text{End} M(1)[[z, z^{-1}]] \) such that \((M(1), Y, 1, \omega) \) carries a simple vertex operator algebra structure and \(M(1, \lambda) \) becomes an irreducible \(M(1) \)-module for any \(\lambda \in \mathfrak{h} \) (see [FLM]). The vacuum vector and the Virasoro element are given by \(1 = e^0 \) and \(\omega = \frac{1}{2\pi} \alpha(-1)^2\mathbf{1} \), respectively.

Let \(\mathbb{C}[L] \) be the group algebra of \(L \) with a basis \(e^\beta \) for \(\beta \in L \). The lattice vertex operator algebra associated to \(L \) is given by

\[V_L = M(1) \otimes \mathbb{C}[L]. \]

The dual lattice \(L^o \) of \(L \) is

\[L^o = \{ \lambda \in \mathfrak{h} \mid (\alpha, \lambda) \in \mathbb{Z} \} = \frac{1}{2k} L. \]

Then \(L^o = \bigcup_{i=-k+1}^k (L + \lambda_i) \) is the coset decomposition with \(\lambda_i = \frac{i}{2k} \alpha. \) In particular, \(\lambda_0 = 0. \) Set \(\mathbb{C}[L + \lambda_i] = \bigoplus_{\beta \in L} \mathbb{C} e^{\beta + \lambda_i}. \) Then each \(\mathbb{C}[L + \lambda_i] \) is an \(L \)-submodule in an obvious way. Set \(V_{L+\lambda_i} = M(1) \otimes \mathbb{C}[L + \lambda_i]. \) Then \(V_L \) is a rational vertex operator algebra and \(V_{L+\lambda_i} \) for \(i = -k+1, \ldots, k \) are the irreducible modules for \(V_L \) (see [B], [FLM], [D2]).

Define a linear isomorphism \(\theta : V_{L+\lambda_i} \rightarrow V_{L-\lambda_i} \) for \(i \in \{-k+1, \ldots, k\} \) by

\[\theta(\alpha(-n_1)\alpha(-n_2) \cdots \alpha(-n_s) \otimes e^{\beta+\lambda_i}) = (-1)^{k} \alpha(-n_1)\alpha(-n_2) \cdots \alpha(-n_s) \otimes e^{-\beta-\lambda_i} \]

where \(n_j > 0 \) and \(\beta \in L. \) Then \(\theta \) defines a linear isomorphism from \(V_{L^o} = M(1) \otimes \mathbb{C}[L^o] \) to itself such that

\[\theta(Y(u, z)v) = Y(\theta u, z)\theta v \]

for \(u \in V_L \) and \(v \in V_{L^o}. \) In particular, \(\theta \) is an automorphism of \(V_L \) which induces an automorphism of \(M(1). \)

For any \(\theta \)-stable subspace \(U \) of \(V_{L^o} \), let \(U^\pm \) be the \(\pm 1 \)-eigenspace of \(U \) for \(\theta. \) Then \(V_L^+ \) is a simple vertex operator algebra.

Also recall the \(\theta \)-twisted Heisenberg algebra \(\mathfrak{h}[-1] \) and its irreducible module \(M(1)(\theta) \) from [FLM]. Let \(\chi_s \) be a character of \(L/2L \) such that \(\chi_s(\alpha) = (-1)^s \) for \(s = 0, 1 \) and \(T_{\chi_s} = \mathbb{C} \) the irreducible \(L/2L \)-module with character \(\chi_s. \) It is well known that \(V_L^{T_{\chi_s}} = M(1)(\theta) \otimes T_{\chi_s} \) is an irreducible \(\theta \)-twisted \(V_L \)-module (see [FLM], [D2]). We define actions of \(\theta \) on \(M(1)(\theta) \) and \(V_L^{T_{\chi_s}} \) by

\[\theta(\alpha(-n_1)\alpha(-n_2) \cdots \alpha(-n_p)) = (-1)^p \alpha(-n_1)\alpha(-n_2) \cdots \alpha(-n_p) \]

\[\theta(\alpha(-n_1)\alpha(-n_2) \cdots \alpha(-n_p) \otimes t) = (-1)^p \alpha(-n_1)\alpha(-n_2) \cdots \alpha(-n_p) \otimes t \]

for \(n_j \in \frac{1}{2} + \mathbb{Z}_+ \) and \(t \in T_{\chi_s}. \) We denote the \(\pm 1 \)-eigenspaces of \(M(1)(\theta) \) and \(V_L^{T_{\chi_s}} \) under \(\theta \) by \(M(1)(\theta)^\pm \) and \((V_L^{T_{\chi_s}})^\pm \) respectively. We have the following results:
Theorem 2.4. Any irreducible module for the vertex operator algebra \(M(1)^+ \) is isomorphic to one of the following modules:

\[M(1)^+, M(1)^-, M(1, \lambda) \cong M(1, -\lambda) \quad (0 \neq \lambda \in \mathfrak{h}), M(1)(\theta)^+, M(1)(\theta)^-. \]

Theorem 2.5. Any irreducible \(V_L^+ \)-module is isomorphic to one of the following modules:

\[V_L^\pm, V_{\lambda + L}^\pm(i \neq k), V_{\lambda_k + L}^\pm, (V_L^{TX})^\pm. \]

Theorem 2.6. \(V_L^+ \) is rational.

We remark that the classification of irreducible modules for arbitrary \(M(1)^+ \) and \(V_L^+ \) are obtained in [DN1]-[DN3] and [AD]. The rationality of \(V_L^+ \) is established in [A2] for rank one lattice and [DJL] in general.

We next turn our attention to the fusion rules of vertex operator algebras. Let \(V \) be a vertex operator algebra, and \(W^i \ (i = 1, 2, 3) \) be ordinary \(V \)-modules. We denote by \(I_V \left(\begin{array}{c} W^3 \\ W^1 W^2 \end{array} \right) \) the vector space of all intertwining operators of type \(\left(\begin{array}{c} W^3 \\ W^1 W^2 \end{array} \right) \). For a \(V \)-module \(W \), let \(W' \) denote the graded dual of \(W \). Then \(W' \) is also a \(V \)-module [FHL]. It is well known that fusion rules have the following symmetry (see [FHL]).

Proposition 2.7. Let \(W^i \ (i = 1, 2, 3) \) be \(V \)-modules. Then

\[\dim I_V \left(\begin{array}{c} W^3 \\ W^1 W^2 \end{array} \right) = \dim I_V \left(\begin{array}{c} W^3 \\ W^2 W^1 \end{array} \right), \quad \dim I_V \left(\begin{array}{c} W^3 \\ W^1 W^2 \end{array} \right) = \dim I_V \left(\begin{array}{c} (W^2)' \\ W^1 (W^3)' \end{array} \right). \]

Recall that \(L(c, h) \) is the irreducible highest weight module for the Virasoro algebra with central charge \(c \) and highest weight \(h \) for \(c, h \in \mathbb{C} \). It is well known that \(L(c, 0) \) is a vertex operator algebra. The following two results were obtained in [M] and [DJ1].

Theorem 2.8. (1) We have

\[\dim I_{L(1,0)} \left(\begin{array}{c} L(1, k^2) \\ L(1, m^2) L(1, n^2) \end{array} \right) = 1, \quad k \in \mathbb{Z}_+, \ |n - m| \leq k \leq n + m, \]

\[\dim I_{L(1,0)} \left(\begin{array}{c} L(1, k^2) \\ L(1, m^2) L(1, n^2) \end{array} \right) = 0, \quad k \in \mathbb{Z}_+, \ k < |n - m| \text{ or } k > n + m, \]

where \(n, m \in \mathbb{Z}_+ \).

(2) For \(n \in \mathbb{Z}_+ \) such that \(n \neq p^2 \), for all \(p \in \mathbb{Z}_+ \), we have

\[\dim I_{L(1,0)} \left(\begin{array}{c} L(1, n) \\ L(1, m^2) L(1, n) \end{array} \right) = 1, \]

\[\dim I_{L(1,0)} \left(\begin{array}{c} L(1, k) \\ L(1, m^2) L(1, n) \end{array} \right) = 0, \]

for \(k \in \mathbb{Z}_+ \) such that \(k \neq n \).
3 The vertex operator subalgebra $V_{L_2}^{A_4}$

Let $L_2 = \mathbb{Z}\alpha$ be the rank one positive-definite even lattice such that $(\alpha, \alpha) = 2$ and V_{L_2} the associated simple rational vertex operator algebra. Then $(V_{L_2})_1 \cong sl(2, \mathbb{C})$ and $(V_{L_2})_1$ has an orthonormal basis:

$$x^1 = \frac{1}{\sqrt{2}}\alpha(-1)1, \quad x^2 = \frac{1}{\sqrt{2}}(e^\alpha + e^{-\alpha}), \quad x^3 = \frac{i}{\sqrt{2}}(e^\alpha - e^{-\alpha}).$$

Let $\tau_i \in Aut(V_{L_2})$, $i = 1, 2, 3$ be such that

$$\tau_1(x^1, x^2, x^3) = (x^1, x^2, x^3) \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix},$$

$$\tau_2(x^1, x^2, x^3) = (x^1, x^2, x^3) \begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

$$\tau_3(x^1, x^2, x^3) = (x^1, x^2, x^3) \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$}

Let $\sigma \in Aut(V_{L_2})$ be such that

$$\sigma(x^1, x^2, x^3) = (x^1, x^2, x^3) \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ -1 & 0 & 1 \end{bmatrix}.$$}

Then σ and τ_i, $i = 1, 2, 3$ generate a finite subgroup of $Aut(V_{L_2})$ isomorphic to the alternating group A_4. We simply denote this subgroup by A_4. It is easy to check that the subgroup K generated by τ_i, $i = 1, 2, 3$ is a normal subgroup of A_4 of order 4. Let

$$J = h(-1)^41 - 2h(-3)h(-1)1 + \frac{3}{2}h(-2)^21, \quad E = e^\beta + e^{-\beta}$$

where $h = \frac{1}{\sqrt{2}}\alpha$, $\beta = 2\alpha$. The following lemma comes from [DG].

Lemma 3.1. $V_{L_2}^K \cong V_{Z\beta}^+$, and $V_{Z\beta}^+$ is generated by J and E. Moreover, $(V_{L_2}^K)_4$ is four dimensional with a basis $L(-2)^21, L(-4)1, J, E$.

By Lemma 3.1 we have $V_{L_2}^{A_4} = (V_{Z\beta}^+)^{\langle \sigma \rangle}$. A direct calculation yields that

Lemma 3.2. We have

$$\sigma(J) = -\frac{1}{2}J + \frac{9}{2}E, \quad \sigma(E) = -\frac{1}{6}J - \frac{1}{2}E.$$
Let
\[X^1 = J - \sqrt{2}iE, \quad X^2 = J + \sqrt{2}iE. \]
(3.1)
Then it is easy to check that
\[\sigma(X^1) = -1 + \frac{\sqrt{3}i}{2}X^1, \quad \sigma(X^2) = -1 - \frac{\sqrt{3}i}{2}X^2. \]
(3.2)
It follows that \((V_{\mathbb{Z},\beta}^+)\) of \((V_{\mathbb{Z},\beta}^+)\) is an irreducible \((V_{\mathbb{Z},\beta}^+)\)-module generated by \(X_i\) with lowest weight 4, \(i = 1, 2\).

For convenience, we call highest weight vectors for the Virasoro algebra primary vectors. Note from [DG] that \((V_{\mathbb{Z},\beta}^+)\) contains two linearly independent primary vectors \(J\) and \(E\) of weight 4 and one linearly independent primary vector of weight 9. It is straightforward to compute that
\[J_3J = -72L(-4)1 + 336L(-2)21 - 60J, \quad E_3E = -\frac{8}{3}L(-4)1 + \frac{112}{9}L(-2)21 + \frac{20}{9}J \]
(cf. [DJ3]). By Theorem 2.8 and Lemma 3.1, we have for any \(n \in \mathbb{Z}\),
\[X^1_nX^2 \in (V_{\mathbb{Z},\beta}^+) \]

The following lemma follows from Theorem 3 in [DM1] and (3.2).

Lemma 3.3. We have decomposition
\[V_{\mathbb{Z},\beta}^+ = (V_{\mathbb{Z},\beta}^+)^0 \oplus (V_{\mathbb{Z},\beta}^+)^1 \oplus (V_{\mathbb{Z},\beta}^+)^2, \]
where \((V_{\mathbb{Z},\beta}^+)^0 = (V_{\mathbb{Z},\beta}^+)^0\) is a simple vertex operator algebra and \((V_{\mathbb{Z},\beta}^+)^i\) is the irreducible \((V_{\mathbb{Z},\beta}^+)^0\)-module generated by \(X^i\) with lowest weight 4, \(i = 1, 2\).

Set
\[u^0 = -\frac{8}{3}L(-4)1 + \frac{112}{9}L(-2)21 \]
(3.3)
\[u^1 = -\frac{16}{9}L(-5)1 + \frac{112}{9}L(-3)L(-2)1 \]
(3.4)
\[u^2 = (\frac{-1856}{135}L(-6) - \frac{2384}{135}L(-4)L(-2) + \frac{1316}{135}L(-3)^2 + \frac{1088}{135}L(-2)^2)1 \]
(3.5)
\[u^3 = (\frac{-464}{45}L(-7) - \frac{928}{45}L(-5)L(-2) + \frac{40}{9}L(-4)L(-3) + \frac{544}{45}L(-3)L(-2)^2)1 \]
(3.6)
\[v^2 = \left(\frac{28}{75} L(-2) + \frac{23}{300} L(-1)^2 \right) J, \quad (3.7) \]
\[v^3 = \left(\frac{14}{75} L(-3) + \frac{14}{75} L(-2)L(-1) - \frac{1}{300} L(-1)^3 \right) J. \quad (3.8) \]
\[v^4 = \left(\frac{28}{75} L(-2) + \frac{23}{300} L(-1)^2 \right) E, \quad (3.9) \]
\[v^5 = \left(\frac{14}{75} L(-3) + \frac{14}{75} L(-2)L(-1) - \frac{1}{300} L(-1)^3 \right) E. \quad (3.10) \]

By Lemma 2.5 of [DJ3], we have the following lemma.

Lemma 3.4. Let \(E \) and \(J \) be as before. Then
\[E_3E = u_0^0 + \frac{20}{9} J, \quad J_3J = 27u_0^0 - 60J, \quad J_3E = 60E, \]
\[E_2E = u_1^1 + \frac{10}{9} L(-1)J, \quad J_2J = 27u_1^1 - 30L(-1)J, \quad J_2E = 30L(-1)E, \]
\[E_1E = u_2^2 + \frac{20}{9} v^2, \quad J_1J = 27u_2^2 - 60v^2, \quad J_1E = 60v^4, \]
\[E_0E = u_3^3 + \frac{20}{9} v^3, \quad J_0J = 27u_3^3 - 60v^3, \quad J_0E = 60v^5. \]

Using Lemma 3.4, one can check directly that
\[(J_{-2}E - E_{-2}J)_{8}J = -10800E, \quad (J_{-2}E - E_{-2}J)_{8}E = 400J. \quad (3.11) \]

As a result, we have
\[(J_{-2}E - E_{-2}J)_{8}X_{1} = -400\sqrt{27i}X_{1}, \quad (J_{-2}E - E_{-2}J)_{8}X_{2} = 400\sqrt{27i}X_{2}. \quad (3.12) \]

By (3.12), we immediately know that \(J_{-2}E - E_{-2}J \) is a non-zero primary vector of weight 9. Recall from [DG] that \(V_{_{2\beta}}^+ \) has one primary vector of weight 9 up to a constant. A direct calculation yields that

Lemma 3.5. The vector
\[u^{(9)} = -\frac{1}{\sqrt{2}}(15h(-4)h(-1) + 10h(-3)h(-2) + 10h(-2)h(-1)^3) \otimes (e^{\beta} + e^{-\beta}) \]
\[+ (6h(-5) + 10h(-3)h(-1)^2 + \frac{15}{2}h(-2)^2h(-1) + h(-1)^5) \otimes (e^{\beta} - e^{-\beta}) \]

is a non-zero primary vector of weight 9 and \(u^{(9)} \in C(J_{-2}E - E_{-2}J). \)

Note from [L1] that there is a non-degenerate symmetric invariant bilinear form \((\cdot, \cdot)\) on \(V_{_{2\beta}}^+ \). The next lemma gives a relation between \(u^{(9)} \) and \(J_{-2}E - E_{-2}J \).
Lemma 3.6. We have
\[J_{-2}E - E_{-2}J = -2\sqrt{2}u^{(9)}, \]
\[(u^{(9)}, u^{(9)}) = 5400. \]

Proof: By Lemma 3.5 and (3.11), we have
\[(V_{\beta}^+)_4 = Ch(-3)h(-1)1 \oplus Ch(-2)^21 \oplus Ch(-1)^41 \oplus CE. \]

Let \(W_4 \) be the subspace of \((V_{\beta}^+)_4\) linearly spanned by \(E, h(-3)h(-1)1 \) and \(h(-2)^21 \). Then
\[h(-1)^41 \equiv J (\text{mod } W_4). \]
Furthermore, we have
\[(h(-4)h(-1)E)_8E \equiv \sum_{i=0}^{\infty}(-1)^{i+1} \left(\begin{array}{c} 4 \\ i \end{array} \right) (h(-1)E)_4^{-i}h(i)E (\text{mod } W_4) \]
\[\equiv -\sqrt{8}(h(-1)E)_4F (\text{mod } W_4) \]
\[\equiv -\sqrt{8} \sum_{i=0}^{\infty}(-1)^i \left(\begin{array}{c} 1 \\ i \end{array} \right) (h(-1-i)E_{4+i} + E_{3-i}h(i))F (\text{mod } W_4) \]
\[\equiv -\sqrt{8}h(-1)E_4F - 8E_3E (\text{mod } W_4). \]

Similarly,
\[(h(-3)h(-2)E)_8E \equiv -8E_3E (\text{mod } W_4), \]
\[(h(-2)h(-1)^3E)_8E \equiv -\sqrt{8}h(-1)^3E_3F - 24h(-1)^2E_5E - 24\sqrt{8}h(-1)E_4F - 64E_3E (\text{mod } W_4), \]
\[(h(-5)F)_8E \equiv \sqrt{8}F_3F (\text{mod } W_4), \]
\[(h(-3)h(-1)^2F)_8E \equiv \sqrt{8}h(-1)^2F_5F + 16h(-1)F_4E + 8\sqrt{8}F_3F (\text{mod } W_4). \]
\[(h(-2)^2h(-1)F)_8E \equiv 8h(-1)F_4E + 8\sqrt{8}F_3F (\text{mod } W_4), \]
\[(h(-1)^5F)_8E \equiv 5\sqrt{8}h(-1)^4F_7F + 80h(-1)^3F_6E + 80\sqrt{8}h(-1)^2F_5F + 320h(-1)F_4E + 64\sqrt{8}F_3F (\text{mod } W_4). \]

It is then easy to check that
\[u_8^{(9)}E = -100\sqrt{2}h(-1)^41 (\text{mod } W_4). \]

This implies that
\[u_8^{(9)}E = -100\sqrt{2}J. \]

Then by (3.11),
\[J_{-2}E - E_{-2}J = -2\sqrt{2}u^{(9)}. \]
Note that
\[(J_{-2}E - E_{-2}J, J_{-2}E) = (J_8(J_{-2}E - E_{-2}J), E) = -((J_{-2}E - E_{-2}J)_8J, E) \]
and
\[(J_{-2}E - E_{-2}J, E_{-2}J) = (E_8(J_{-2}E - E_{-2}J), J) = -(J_{-2}E - E_{-2}J)_8E, J). \]
Since
\[(E, E) = 2, \ (J, J) = 54, \]
(see [DJ2]) it follows from (3.11) that
\[(J_{-2}E - E_{-2}J, J_{-2}E - E_{-2}J) = 43200 \] (3.13)
and
\[(u^{(9)}, u^{(9)}) = 5400. \]
The proof is complete. \(\square\)

4 \textbf{C}_2\text{-cofiniteness and rationality of} \ V_{L_2}^{A_4}

The \textit{C}_2\text{-cofiniteness and rationality of} \ V_{L_2}^{A_4} \text{ is established in this section. The proof involves some very hard computations.}

By Lemma 3.2 we have
\[J_{-9}J + 27E_{-9}E \in (V_{Z,\beta}^+)^{(\sigma)}. \]
Then it is clear that
\[J_{-9}J + 27E_{-9}E = x^0 + X^{(16)} + 27(e^{2\beta} + e^{-2\beta}), \] (4.1)
where \(x^0 \in L(1,0),\) and \(X^{(16)}\) is a non-zero primary element of weight 16 in \(M(1)^+.\)
Denote
\[u^{(16)} = X^{(16)} + 27(e^{2\beta} + e^{-2\beta}). \] (4.2)
Then \(u^{(16)} \in (V_{Z,\beta}^+)^{(\sigma)}\) is a non-zero primary vector of weight 16.

\textbf{Lemma 4.1.} We have the following:
\[u_1^{(9)}u^{(9)} - 58800u^{(16)} \in L(1,0). \]

\textbf{Proof:} Denote \(E^2 = e^{2\beta} + e^{-2\beta}.\) By Theorem 2.8 and the skew-symmetry, we may assume that
\[u_1^{(9)}u^{(9)} = v + cu^{(16)}, \]
for some \(v \in L(1,0) \) and \(c \in \mathbb{C} \). To determine \(c \) we just need to consider \((u_1^{(9)} u^{(9)}, E^2)\) by (4.2). Recall that

\[
u^{(9)} = -\frac{1}{\sqrt{2}}(15h(-4)h(-1) + 10h(-3)h(-2) + 10h(-2)h(-1)^3) \otimes E
\]

\[
+ (6h(-5) + 10h(-3)h(-1)^2 + \frac{15}{2} h(-2)^2 h(-1) + h(-1)^5) \otimes F,
\]

where \(F = e^\beta - e^{-\beta} \). To calculate \(((h(-4)h(-1) \otimes E)_1 (h(-4)h(-1) \otimes E), E^2)\), we only need to consider the coefficient of the monomial \(E^2\) in \((h(-4)h(-1) \otimes E)_1 (h(-4)h(-1) \otimes E)\). Then direct calculation yields that

\[
((h(-4)h(-1) \otimes E)_1 (h(-4)h(-1) \otimes E), E^2) = (972 E^2, E^2).
\]

Calculations for other monomials are similar. For example,

\[
((h(-3)h(-2) \otimes E)_1 (h(-2)h(-1)^3 \otimes E), E^2) = (304 E^2, E^2).
\]

Then one can check that

\[
(u_1^{(9)} u^{(9)}, E^2) = (1587600 E^2, E^2).
\]

It follows that \(c = 58800 \).

Lemma 4.2. The following hold: (1) \((V_{z,\beta}^+)^{(\sigma)}\) is generated by \(u^{(9)}\).

(2) \((V_{z,\beta}^+)^{<\sigma>}\) is linearly spanned by

\[
L(-m_s) \cdots L(-m_1) v_n^{(9)} u^{(9)}, \quad L(-m_s) \cdots L(-m_1) w_{-k}^{p} \cdots w_{-k_1}^{p} w,
\]

where \(w, w^1, \ldots, w^p \in \{u^{(9)}, u^{(16)}\}, \quad k_p \geq \cdots \geq k_1 \geq 2, \quad n \in \mathbb{Z}, \quad m_s \geq \cdots \geq m_1 \geq 1, \quad s, p \geq 0.\)

Proof: By Lemma 3.6 \(\omega \) can be generated by \(u^{(9)}\). It follows from [DGR] that \((V_{z,\beta}^+)^{(\sigma)}\) is generated by \(u^{(9)}\) and \(u^{(16)}\). Then (1) follows from Lemma 4.1.

By (3.2) in [A1] and (3.3) in [A3], we have

\[
M(1, 2\sqrt{2}m) = \bigoplus_{p=0}^{\infty} L(1, (2m + p)^2), \quad (4.3)
\]

\[
V_{z,\beta}^+ = M(1)^+ \bigoplus_{m=1}^{\infty} M(1, 2\sqrt{2}m)) = M(1)^+ \bigoplus_{m=1}^{\infty} \bigoplus_{p=0}^{\infty} L(1, (2m + p)^2). \quad (4.4)
\]

By (4.4) the subspace \(U^1\) linearly spanned by primary elements of weight 16 in \(V_{z,\beta}^+\) is three dimensional. Obviously \(U^1\) is invariant under \(\sigma\). Note that \(e^{2\beta} + e^{-2\beta} \in U^1\). Consider the \(M(1)^+\)-submodule \(W\) of \(V_{z,\beta}^+\) generated by \(e^{2\beta} + e^{-2\beta}\). If \(e^{2\beta} + e^{-2\beta} \in (V_{z,\beta}^+)^{<\sigma>}\), then by the fusion rule of \(M(1)^+\) (also see [DN2]), \(J \in W \cdot W = \langle u_n v | u, v \in W, n \in \mathbb{Z} \rangle\). So
Consider the M-W for some is a non-zero primary element w of $(\mathbf{1})$. A proof similar to that of Lemma 4.3 in \cite{DN2} gives (2) with the help of (1), (4.5) and elements in U of $(\mathbf{9})$, elements in V of $(\mathbf{9})$. Let U and U be the $L(1,0)$-submodules of $(V^+_\mathbb{Z})_{\sigma}$ generated by u and u, respectively. Then by Part (1) and the skew-symmetry, any element of weight 25 in $(V^+_\mathbb{Z})_{\sigma}$ is a linear combination of elements in $L(1,0) \oplus U \oplus U$ and $U \cdot U = \langle u, v | u \in U, v \in U \rangle$. By Lemma 3.5 and (4.2), elements in U and U of $(\mathbf{9})$ have the forms: $u \otimes (e^\beta + e^{-\beta}) + v \otimes (e^\beta - e^{-\beta})$, where $u \in M(1)^+$ and $v \in M(1)^-$. So we know that $w \notin (V^+_\mathbb{Z})_{\sigma}$. This proves that $\sigma|_{U^2}$ has eigenvalues not equal to 1. Since $\sigma = 1$ and dim$_\mathbb{C} U^2 = 2$, it follows that $\sigma|_{U^2}$ has two eigenvalues $\frac{-1+i\sqrt{3}}{2}$ and $\frac{-1-i\sqrt{3}}{2}$. So we immediately have

$$(V^+_\mathbb{Z})_{\sigma} = L(1,0) \oplus L(1,9) \oplus L(1,16) \oplus (\sum_{n \geq 5} a_n L(1,n^2)).$$

A proof similar to that of Lemma 4.3 in \cite{DN2} gives (2) with the help of (1), (4.5) and Theorem 2.8.

Lemma 4.3. We have

$$u_{-3} u = s^1 + \frac{162770}{99} L(-4) u + \frac{5204015}{1584} L(-3) L(-1) u + \frac{1154225}{792} L(-2) L(-1)^2 u + \frac{354895}{3168} L(-1)^4 u,$$

$$u_{-4} u = s^2 - \frac{653871670}{6306 \cdot 27} L(-6) u + \frac{3303230375}{2018016 \cdot 27} L(-5) L(-1) u + \frac{489993820}{346772585} L(-4) L(-2) u + \frac{69658220}{9009 \cdot 27} L(-3)^2 u + \frac{42042 \cdot 27}{16816 \cdot 27} L(-4) L(-1)^2 u + \frac{3338006885}{1055175305} L(-3) L(-2) L(-1) u + \frac{19408720}{7007 \cdot 27} L(-2)^3 u + \frac{14067649205}{4036032 \cdot 27} L(-3) L(-1)^3 u + \frac{1055175305}{252252 \cdot 27} L(-2)^2 L(-1)^2 u + \frac{1185150565}{8072064 \cdot 27} L(-2) L(-1)^4 u + \frac{119070745}{119070745} L(-1)^6 u,$$

where $s^1, s^2 \in L(1,0)$.
Proof: By Theorem 2.8 and the skew-symmetry, we may assume that

\[u^{(9)}u^{(9)} = s^1 + y^1, \quad u^{(9)}u^{(9)} = s^2 + y^2, \]

where \(s^1, s^2 \in L(1,0), \ y^1, y^2 \in U^{(16)} \cong L(1,16) \) which is an \(L(1,0) \)-submodule of \((V_{Z^3}^+)^{(\sigma)} \) generated by \(u^{(16)} \). Then we may assume that

\[
y^1 = a_1 L(-4)u^{(16)} + a_2 L(-3)L(-1)u^{(16)} + a_3 L(-2)^2u^{(16)}
+ a_4 L(-2)L(-1)^2u^{(16)} + a_5 L(-1)^4u^{(16)}
= \sum_{i=1}^{5} a_i w^i.
\]

To determine \(a_i, 1 \leq i \leq 5 \), we consider \((u^{(9)}u^{(9)}, w^i), (w^i, w^j), i, j = 1, 2, \ldots, 5 \). Then by Lemma 4.1 and direct calculation, we have

\[
\begin{bmatrix}
133 & 224 & 387 & 576 & 1920 \\
224 & 3328 & 480 & 10560 & 49920 \\
387 & 480 & 17673/2 & 13152 & 57600 \\
576 & 10560 & 13152 & 162336 & 1267200 \\
1920 & 49920 & 57600 & 1267200 & 30159360
\end{bmatrix}
\begin{bmatrix}
a_1 \\
a_2 \\
a_3 \\
a_4 \\
a_5
\end{bmatrix}
= 58800
\begin{bmatrix}
43 \\
560 \\
675 \\
7344 \\
93024
\end{bmatrix}.
\]

We get that

\[
a_1 = \frac{162770}{99}, \quad a_2 = \frac{5204015}{1584},
\]

\[
a_3 = \frac{14760}{11}, \quad a_4 = \frac{1154225}{792}, \quad a_5 = \frac{354895}{3168}.
\]

The first formula follows. The proof for the second one is similar. We omit it. \(\square \)

Let \(v \) be any element in \(V_{Z^3}^+ \) of weight \(m \leq 22 \). Then \(v \) is a linear combination of an element in \(V^{(4)} \oplus V^{(16)} \) and elements in \(M(1)^+ \) having the form \(h(-n_t) \cdots h(-n_1)1 \) such that \(n_t \geq \cdots \geq n_1 \geq 1 \) and \(\sum_{t=1}^{l} n_i = m \), where \(V^{(4)} \) and \(V^{(16)} \) are \(M(1)^+ \)-submodules of \(V_{Z^3}^+ \) generated by \(E \) and \(E^2 \) respectively. We denote by \(c(v) \) the coefficient of the monomial \(h(-1)^m1 \) in the linear combination. Then we have the following lemma.

Lemma 4.4.

\[
c(u^{(9)}u^{(9)}) = -\frac{447232}{19 \cdot 17 \cdot 11 \cdot 7^2 \cdot 5^2 \cdot 3},
\]

\[
c(u^{(9)}u^{(9)}) = -\frac{328099328}{19 \cdot 17 \cdot 13 \cdot 11^2 \cdot 7^3 \cdot 5^2 \cdot 3^6}.
\]
Further, by Lemma 4.5 and Lemma 4.3, we have

\[c(u_{-k}^{(9)}u^{(9)}) = -2700c(E_{-k-10}E) - 13500c(h(-1)^2E_{-k-8}E') - 18000\sqrt{2}c(h(-1)^3E_{-k-7}E) - 31500c(h(-1)^4E_{-k-6}E) - 15300\sqrt{2}c(h(-1)^5E_{-k-5}E) - 9060c(h(-1)^6E_{-k-4}E) - 1620\sqrt{2}c(h(-1)^7E_{-k-3}E) - 345c(h(-1)^8E_{-k-2}E) - 20\sqrt{2}c(h(-1)^9E_{-k-1}E) - c(h(-1)^{10}E_{-k}E) \]

Note that for \(m, n \in 2\mathbb{Z}, m, n \leq 7 \),

\[c(E_mE) = \frac{2 \cdot (\sqrt{8})^{-m}}{(7 - m)!}, \quad c(E_nF) = \frac{2 \cdot (\sqrt{8})^{-n}}{(7 - n)!}. \]

Let \(k = -3, k = -5 \) respectively, we then get the lemma.

As defined in [Z], a vertex operator algebra \(V \) is called \(C_2 \)-cofinite, if \(V/C_2(V) \) is finite-dimensional, where \(C_2(V) = \text{span}_C\{u_{-2}v|u, v \in V\} \). The following lemma comes from [Z].

Lemma 4.5. (1) \(L(-1)u \in C_2(V) \) for \(u \in V \);

(2) \(u_{-k}v \in C_2(V) \), for \(u, v \in V \) and \(k \geq 2 \);

(3) \(u_{-1}v \in C_2(V) \), for \(u \in V, v \in C_2(V) \).

We are now in a position to state the main result of this section.

Theorem 4.6. \((V_{Z,\delta}^+(\sigma)) \) is \(C_2 \)-cofinite and rational.

Proof: Let \(s^1, s^2 \in L(1, 0) \) be the same as in Lemma 4.3. Then \(s^1 \) and \(s^2 \) are linear combinations of linearly independent elements having the forms \(L(-m_1) \cdots L(-m_s) \) and \(L(-n_1) \cdots L(-n_t) \) respectively such that \(m_1 \geq \cdots \geq m_s \geq 2, n_1 \geq \cdots \geq n_t \geq 2 \) and \(\sum_{i=1}^{s} m_i = 20, \sum_{i=1}^{t} n_i = 22 \). Assume the coefficients of \(L(-2)^{10}1 \) and \(L(-2)^{11}1 \) in the two linear combinations are \(a_1 \) and \(a_2 \) respectively. Then by Lemma 4.5,

\[s^1 - a_1L(-2)^{10}1, \quad s^2 - a_2L(-2)^{11}1 \in C_2((V_{Z,\delta}^+(\sigma)). \]

Further, by Lemma 4.3 and Lemma 4.3, we have

\[s^1 + \frac{14760}{11}L(-2)^2u^{(16)}, \quad s^2 + \frac{19408720}{7007 \cdot 27}L(-2)^3u^{(16)} \in C_2((V_{Z,\delta}^+(\sigma)). \]

So

\[a_1L(-2)^{10}1 + \frac{14760}{11}L(-2)^2u^{(16)}, \quad a_2L(-2)^{11}1 + \frac{19408720}{7007 \cdot 27}L(-2)^3u^{(16)} \in C_2((V_{Z,\delta}^+(\sigma)). \]

Thus by Lemma 4.5

\[a_1L(-2)^{11}1 + \frac{14760}{11}L(-2)^3u^{(16)}, \quad a_2L(-2)^{11}1 + \frac{19408720}{7007 \cdot 27}L(-2)^3u^{(16)} \in C_2((V_{Z,\delta}^+(\sigma)). \]

(4.6)
On the other hand, note from the definition of $L(-2)^1$ that $c(L(-2)^k 1) = 2^k$. This implies that

\[
c(u_{-3}^{(9)}u^{(9)}) = \frac{1}{2^{10}}a_1 + \frac{1}{4} \cdot \frac{14760}{11} c(X^{(16)}),
\]

\[
c(u_{-5}^{(9)}u^{(9)}) = \frac{1}{2^{11}}a_2 + \frac{1}{8} \cdot \frac{19408720}{7007 \cdot 27} c(X^{(16)}).
\]

So by Lemma 4.4,

\[
\frac{1}{2^{10}}a_1 + \frac{1}{4} \cdot \frac{114760}{11} c(X^{(16)}) = -\frac{447232}{19 \cdot 17 \cdot 11 \cdot 7^2 \cdot 5^2 \cdot 3},
\]

\[
\frac{1}{2^{11}}a_2 + \frac{1}{8} \cdot \frac{19408720}{7007 \cdot 27} c(X^{(16)}) = -\frac{32809328}{19 \cdot 17 \cdot 13 \cdot 11^2 \cdot 7^3 \cdot 5^2 \cdot 3^6}.
\]

(4.7)

(4.8)

If

\[
a_1/a_2 = \frac{14760}{11} / \frac{19408720}{7007 \cdot 27},
\]

then by (4.7) and (4.8), we have

\[
-\frac{447232}{2 \cdot 19 \cdot 17 \cdot 11 \cdot 7^2 \cdot 5^2 \cdot 3} - \frac{32809328}{19 \cdot 17 \cdot 13 \cdot 11^2 \cdot 7^3 \cdot 5^2 \cdot 3^6} = \frac{14760}{19 \cdot 17 \cdot 11 \cdot 7^2 \cdot 5^2 \cdot 3}.
\]

But

\[
-\frac{447232}{32809328} - \frac{32809328}{19 \cdot 17 \cdot 13 \cdot 11^2 \cdot 7^3 \cdot 5^2 \cdot 3^6} = \frac{32688117}{2563276} \neq \frac{6346431}{485218} = \frac{14760}{19408720}.
\]

This means that

\[
a_1/a_2 \neq \frac{14760}{11} / \frac{19408720}{7007 \cdot 27}.
\]

By (4.6), we have

\[
L(-2)^{11} 1, L(-2)^3 u^{(16)} \in C_2((V_{2\beta}^+)^{(\sigma)}).
\]

Then it follows from Lemma 4.2 that $(V_{2\beta}^+)^{(\sigma)}$ is C_2-cofinite. Since $V_{2\beta}^+$ is rational and $(V_{2\beta}^+)^{(\sigma)}$ is self-dual, it follows that $(V_{2\beta}^+)^{(\sigma)}$ satisfies the Hypothesis I in [M2]. Then by Corollary 7 in [M2], $(V_{2\beta}^+)^{(\sigma)}$ is rational.

\[
\square
\]

5 Classification and construction of irreducible modules of $(V_{2\beta}^+)^{(\sigma)}$

We will first construct all the irreducible σ^i-twisted modules of $V_{2\beta}^+$, $i = 1, 2$. We have the following lemma.

Lemma 5.1. There are at most two inequivalent irreducible σ-twisted modules of $V_{2\beta}^+$.
Proof: Let (W, Y) be an irreducible $V_{z, \beta}^+$-module. Define a linear map

$$Y^\sigma : V_{z, \beta}^+ \to (\text{End} W)[[z, z^{-1}]]$$

by

$$Y^\sigma(u, z)w = Y(\sigma^{-1}(u), z)w$$

where $u \in V_{z, \beta}^+$, $w \in W$. Recall from [DLM1] that (W, Y^σ) is still an irreducible module of $V_{z, \beta}^+$, which we denote by W^σ. As in [DLM1], if $W \cong W^\sigma$, we say W is stable under σ. Recall from [DN2] that all the irreducible modules of $V_{z, \beta}^+$ are

$$V_{z, \beta}^\pm, V_{z, \beta + \frac{\alpha}{2}}^\pm (1 \leq r \leq 3), V_{z, \beta}^{T_1, \pm}, V_{z, \beta}^{T_2, \pm}$$

with the following tables

$V_{z, \beta}^+$	$V_{z, \beta}^-$	$V_{z, \beta + \frac{1}{2}}^+$	$V_{z, \beta + \frac{3}{2}}$	$V_{z, \beta + \frac{1}{2}}^-$	$V_{z, \beta + \frac{3}{2}}^-$
ω	0	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{1}{16}$	1
E	0	0	0	0	1
J	0	$-\frac{3}{64}$	0	$\frac{1}{64}$	3

$V_{z, \beta}^{T_1, +}$	$V_{z, \beta}^{T_1, -}$	$V_{z, \beta}^{T_2, +}$	$V_{z, \beta}^{T_2, -}$
ω	$1/16$	$9/16$	$1/16$
E	$1/128$	$-15/128$	$-1/128$
J	$3/128$	$-45/128$	$3/128$

It is easy to check that

$$V_{z, \beta}^+ \cong (V_{z, \beta})^\sigma, (V_{z, \beta + \frac{\alpha}{4}})^\sigma \cong V_{z, \beta + \frac{\alpha}{4}}^+,$$

$$(V_{z, \beta}^-)^\sigma \cong V_{z, \beta + \frac{\alpha}{4}}^-, (V_{z, \beta + \frac{\alpha}{4}}^-)^\sigma \cong V_{z, \beta + \frac{\alpha}{4}}^+,$$

$$(V_{z, \beta + \frac{\alpha}{4}})^\sigma \cong V_{z, \beta + \frac{\alpha}{4}}^+, (V_{z, \beta + \frac{\alpha}{4}}^+)^\sigma \cong V_{z, \beta + \frac{\alpha}{4}}^-,$$

Then the lemma follows from [A2], [Y] and Theorem 10.2 in [DLM1].

Next we will prove that there are exactly two inequivalent irreducible σ-twisted $V_{z, \beta}^-$ modules. We first construct irreducible σ-twisted V_{L_2}-modules. Let $x^i, i = 1, 2, 3$ be defined as in Section 3. Set

$$h' = \frac{1}{3\sqrt{6}}(x^1 + x^2 - x^3),$$

16
$$y^1 = \frac{1}{\sqrt{3}}(x^1 + \frac{-1 + \sqrt{3}i}{2}x^2 + \frac{1 + \sqrt{3}i}{2}x^3),$$
$$y^2 = \frac{1}{\sqrt{3}}(x^1 + \frac{-1 - \sqrt{3}i}{2}x^2 + \frac{1 - \sqrt{3}i}{2}x^3).$$

Then

$$L(n)h' = \delta_n, h'(n)h' = \frac{1}{18} \delta_{n,1} 1, \quad n \in \mathbb{Z},$$

$$h'(0)y^1 = \frac{1}{3}y^1, \quad h'(0)y^2 = -\frac{1}{3}y^2, \quad y^1(0)y^2 = 6h'.$$

It follows that $h'(0)$ acts semisimply on V_{L_2} with rational eigenvalues. So $e^{2\pi ih'(0)}$ is an automorphism of V_{L_2} (see [L2], [DG], etc.). Since

$$e^{2\pi ih'(0)}h' = h', \quad e^{2\pi ih'(0)}y^1 = \frac{-1 + \sqrt{3}i}{2}y^1, \quad e^{2\pi ih'(0)}y^2 = \frac{-1 - \sqrt{3}i}{2}y^2,$$

it is easy to see that

$$e^{2\pi ih'(0)} = \sigma.$$

Let

$$\Delta(h', z) = z^{h'(0)} \exp\left(\sum_{k=1}^{\infty} \frac{h'(k)}{-k} (-z)^{-k}\right),$$

and

$$W^1 = V_{L_2}, \quad W^2 = V_{L_2 + \frac{\alpha}{2}}.$$

Then W^1 and W^2 are all the irreducible V_{L_2}-modules and

$$W^1(0) = \mathbb{C}1, \quad W^2(0) = \mathbb{C}e^{\frac{\alpha}{2}} \bigoplus \mathbb{C}e^{-\frac{\alpha}{2}}.$$

Let

$$w^1 = e^{\frac{\alpha}{2}} + \frac{(\sqrt{3} - 1)(1 + i)}{2} e^{-\frac{\alpha}{2}},$$

$$w^2 = \frac{1}{\sqrt{2}} [(\sqrt{3} - 1)e^{\frac{\alpha}{2}} - (1 + i)e^{-\frac{\alpha}{2}}].$$

Then $W^2 = \mathbb{C}w^1 \bigoplus \mathbb{C}w^2$ and

$$h'(0)w^1 = \frac{1}{6} w^1, \quad h'(0)w^2 = -\frac{1}{6} w^2,$$

$$y^1(0)w^1 = 0, \quad y^1(0)w^2 = w^1, \quad y^2(0)w^1 = w^2.$$

From [L2], we have the following lemma.

Lemma 5.2. $(W^{i,T}, Y_\sigma(\cdot, z)) = (W^i, Y(\Delta(h', z)\cdot, z))$ are irreducible σ-twisted modules of $V_{L_2}, i = 1, 2.$
Direct calculation yields that
\[
\Delta(h', z)L(-2)1 = L(-2)1 + z^{-1}h'(-1)1 + \frac{1}{36}z^{-2}1,
\]
(5.1)
\[
Y_\sigma(h', z) = Y(h' + \frac{1}{18}z^{-1}, z),
\]
(5.2)
\[
Y_\sigma(y^1, z) = z^{\frac{1}{3}}Y(y^1, z),
\]
(5.3)
\[
Y_\sigma(y^2, z) = z^{-\frac{1}{3}}Y(y^2, z).
\]
(5.4)
To distinguish the components of \(Y(u, z)\) from those of \(Y_\sigma(u, z)\) we consider the following expansions
\[
Y_\sigma(u, z) = \sum_{n \in \mathbb{Z}^+} u_n z^{-n-1}, \quad Y(u, z) = \sum_{n \in \mathbb{Z}} u(n) z^{-n-1},
\]
where \(u \in V_{L_2}\) such that \(\sigma(u) = e^{-\frac{2\pi i}{3} u}\). By (5.2)-(5.4) and direct calculation, we have the following lemma.

Lemma 5.3. Write \(W_{i,T_1} = \bigoplus_{n \in \frac{1}{3} \mathbb{Z}^+} W_{i,T_1}(n)\) as admissible \(\sigma\)-twisted module. Then
\[
W_{1,T_1}(0) = \mathbb{C}1, \quad W_{1,T_1}\left(\frac{1}{3}\right) = \mathbb{C}y_1^{\frac{1}{3}}1 = 0,
\]
\[
W_{1,T_1}\left(\frac{2}{3}\right) = \mathbb{C}y_2^{\frac{2}{3}}1 = \mathbb{C}y_2, \quad W_{1,T_1}\left(\frac{4}{3}\right) = \mathbb{C}y_2^{\frac{4}{3}}1 = \mathbb{C}y_2^1,
\]
\[
W_{2,T_1}(0) = \mathbb{C}w^2, \quad W_{2,T_1}\left(\frac{1}{3}\right) = \mathbb{C}y_2^{\frac{1}{3}}w^2 = \mathbb{C}w^1,
\]
\[
W_{2,T_1}\left(\frac{2}{3}\right) = \mathbb{C}y_2^{\frac{2}{3}}w^2 = 0, \quad W_{2,T_1}\left(\frac{5}{3}\right) = \mathbb{C}y_2^{\frac{5}{3}}w^2 = \mathbb{C}y_2^2(-2)w^2,
\]
\[
L(0)|_{W_{1,T_1}(0)} = \frac{1}{36}id, \quad L(0)|_{W_{2,T_1}(0)} = \frac{1}{9}id.
\]
We have the following result.

Theorem 5.4. \(W_{1,T_1}\) and \(W_{2,T_1}\) are the only two irreducible \(\sigma\)-twisted modules of \(V_{Z,\beta}^+\).

Proof: By Lemma 5.3 \(W_{1,T_1}\) and \(W_{2,T_1}\) are inequivalent \(\sigma\)-twisted modules of \(V_{Z,\beta}^+\). Note that \(W_{1,T_1}\) and \(W_{2,T_1}\) have irreducible quotients which are \(\sigma\)-twisted modules of \(V_{Z,\beta}^+\) with lowest weights \(\frac{1}{36}\) and \(\frac{1}{9}\), respectively. If \(W_{i,T_1}\) is not irreducible for some \(i\), then the lowest weight \(\lambda\) of the maximal proper submodule is different from \(\frac{1}{36}\) and \(\frac{1}{9}\). By [Y], \(V_{Z,\beta}^+\) is \(C_2\)-cofinite. It follows from [DLM1] that \(V_{Z,\beta}^+\) has an irreducible \(\sigma\)-twisted module with lowest weight \(\lambda\). This means that there are at least three inequivalent irreducible \(\sigma\)-twisted modules of \(V_{Z,\beta}^+\), which contradicts Lemma 5.1. So \(W_{1,T_1}\) and \(W_{2,T_1}\) are irreducible inequivalent \(\sigma\)-twisted \(V_{Z,\beta}^+\)-modules. Then the theorem follows from Lemma 5.1. \(\Box\)
Note that
\[\sigma^2 = \sigma^{-1} = e^{2\pi i (-h'(0))}, \]
and
\[e^{2\pi i (-h'(0))}(-h') = -h', \quad e^{2\pi i (-h'(0))} y^1 = \frac{-1 - \sqrt{3}i}{2} y^1, \quad e^{2\pi i (-h'(0))} y^2 = \frac{-1 + \sqrt{3}i}{2} y^2. \]
So we similarly have

Lemma 5.5. \((W_{i,T_2}, Y_{\sigma^{-1}}(\cdot, z)) = (W_i, Y(\Delta(-h', z), z))\) are irreducible \(\sigma^{-1}\)-twisted modules of \(V_{L_2}, i = 1, 2\).

It is easy to see that \(\Delta(-h', z)L(-2)1 = L(-2)1 - z^{-1}h'(-1)1 + \frac{1}{36} z^{-2}1, \)
\[\tag{5.5} \]
\(Y_{\sigma^{-1}}(-h', z) = Y(-h' + \frac{1}{18} z^{-1}, z), \)
\[\tag{5.6} \]
\(Y_{\sigma^{-1}}(y^1, z) = z^{-\frac{4}{3}} Y(y^1, z), \)
\[\tag{5.7} \]
\(Y_{\sigma^{-1}}(y^2, z) = z^{\frac{4}{3}} Y(y^2, z). \)
\[\tag{5.8} \]

By (5.5)-(5.8), we have
\[W^{1,T_2}(0) = \mathbb{C}1, \quad W^{1,T_2}(\frac{1}{3}) = \mathbb{C}y_{\frac{2}{3}} 1 = 0, \]
\[W^{1,T_2}(\frac{2}{3}) = \mathbb{C}y_{\frac{2}{3}} 1 = \mathbb{C}y^1, \quad W^{1,T_2}(\frac{4}{3}) = \mathbb{C}y_{\frac{2}{3}} 1 = \mathbb{C}y^2, \]
\[W^{2,T_2}(0) = \mathbb{C}w^1, \quad W^{2,T_2}(\frac{1}{3}) = \mathbb{C}y_{\frac{2}{3}} w^1 = \mathbb{C}w^2, \]
\[W^{2,T_2}(\frac{2}{3}) = \mathbb{C}y_{\frac{2}{3}} w^1 = 0, \quad W^{2,T_2}(\frac{5}{3}) = \mathbb{C}y_{\frac{2}{3}} w^1 = \mathbb{C}y^1(-2) w^1, \]
\[L(0)|_{W^{1,x_2(0)} = \frac{1}{36} id, \quad L(0)|_{W^{2,x_2(0)} = \frac{1}{9} id.} \]

Similar to Theorem 5.4, we have

Theorem 5.6. \(W^{1,T_2}\) and \(W^{2,T_2}\) are the only two irreducible \(\sigma^2\)-twisted modules of \(V_{Z,5}^+.\)

We finally classify all the irreducible modules of \(V_{L_2}^{A_4}\). Recall that \((V_{Z,5}^+)^{(\sigma)} = V_{L_2}^{A_4}\). We prove, in particular, that any irreducible \((V_{Z,5}^+)^{(\sigma)}\)-module is contained in some irreducible \(\sigma^i\)-twisted \(V_{Z,5}^+\)-module, \(i = 0, 1, 2\).

Let \(X^1\) and \(X^2\) be defined as in (3.1). By Lemma 3.3, \(X^i\) generates an irreducible \((V_{Z,5}^+)^{(\sigma)}\)-module with lowest weight 4, denoted by \((V_{Z,5}^+)^{i}, i = 1, 2\).
Note that W^{i,T_1}, W^{i,T_2}, $i = 1, 2$ can also be regarded as $(V^+_{Z\beta})^{(\sigma)}$-modules. Set

$$
\begin{align*}
& w^{1,T_1,1} = 1 \in W^{1,T_1}(0), \quad w^{1,T_1,2} = y^2 \in W^{1,T_1}(2/3), \quad w^{1,T_1,3} = y^1 \in W^{1,T_1}(4/3), \\
& w^{2,T_1,1} = w^2 \in W^{2,T_1}(0), \quad w^{2,T_1,2} = w^1 \in W^{2,T_1}(1/3), \quad w^{2,T_1,3} = y^2(-2)w^2 \in W^{2,T_1}(5/3), \\
& w^{1,T_2,1} = 1 \in W^{1,T_2}(0), \quad w^{1,T_2,2} = y^1 \in W^{1,T_2}(2/3), \quad w^{1,T_2,3} = y^2 \in W^{1,T_2}(4/3), \\
& w^{2,T_2,1} = w^1 \in W^{2,T_2}(0), \quad w^{2,T_2,2} = w^2 \in W^{2,T_2}(1/3), \quad w^{2,T_2,3} = y^1(-2)w^1 \in W^{2,T_2}(5/3).
\end{align*}
$$

Then we have the following lemma.

Lemma 5.7. Let $W^{i,T,j}$ be the $(V^+_{Z\beta})^{(\sigma)}$-module generated by $w^{i,T,j}$, where $i, j = 1, 2$, $k = 1, 2, 3$. Then $W^{i,T,j}$, $i, j = 1, 2, k = 1, 2, 3$ are irreducible $(V^+_{Z\beta})^{(\sigma)}$-modules such that

$$
\begin{align*}
& L(0)w^{1,T_1,1} = \frac{1}{36} w^{1,T_1,1}, \quad L(0)w^{1,T_2,1} = \frac{1}{36} w^{1,T_2,1}, \\
& L(0)w^{1,T_1,2} = \frac{25}{36} w^{1,T_1,2}, \quad L(0)w^{1,T_2,2} = \frac{25}{36} w^{1,T_2,2}, \\
& L(0)w^{1,T_1,3} = \frac{49}{36} w^{1,T_1,3}, \quad L(0)w^{1,T_2,3} = \frac{49}{36} w^{1,T_2,3}, \\
& L(0)w^{2,T_1,1} = \frac{1}{9} w^{2,T_1,1}, \quad L(0)w^{2,T_2,1} = \frac{1}{9} w^{2,T_2,1}, \\
& L(0)w^{2,T_1,2} = \frac{4}{9} w^{2,T_1,2}, \quad L(0)w^{2,T_2,2} = \frac{4}{9} w^{2,T_2,2}, \\
& L(0)w^{2,T_1,3} = \frac{16}{9} w^{2,T_1,3}, \quad L(0)w^{2,T_2,3} = \frac{16}{9} w^{2,T_2,3}.
\end{align*}
$$

Proof: The lemma follows from a general result: Let U be a vertex operator algebra with an automorphism g of order T. Let $M = \sum_{n \in Z_+} M(n)$ be an irreducible g-twisted admissible U-module. Then $M^i = \bigoplus_{n \in Z_+} M(n)$ is an irreducible V^g-module for $i = 0, ..., T-1$ (cf. [DMI]).

We have the following lemma from [DMI].

Lemma 5.8. As an $(V^+_{Z\beta})^{(\sigma)}$-module,

$$
V_{Z+4\beta} = (V^+_{Z\beta})^0 \oplus (V^+_{Z\beta})^{1} \oplus (V^+_{Z\beta})^{2}
$$

such that $(V^+_{Z\beta})^0$, $(V^+_{Z\beta})^{1}$ and $(V^+_{Z\beta})^{2}$ are irreducible $(V^+_{Z\beta})^{(\sigma)}$-modules generated by $e^{eta/4} + e^{-\beta/4}$, $h(-2) \otimes (e^{eta/4} + e^{-\beta/4}) - \sqrt{2} h(-1)^2 \otimes (e^{eta/4} + e^{-\beta/4}) + a(e^{eta/4} + e^{-\beta/4})$ and $h(-2) \otimes (e^{eta/4} + e^{-\beta/4}) - \sqrt{2} h(-1)^2 \otimes (e^{eta/4} + e^{-\beta/4}) - a(e^{eta/4} + e^{-\beta/4})$ for some $0 \neq a \in \mathbb{C}$ with weights $\frac{1}{4}$, $\frac{9}{4}$ and $\frac{9}{4}$ respectively.
We are now in a position to state the main result of this section. Recall that \((V^+_{\mathbb{Z}_\beta})^0 = (V^+_{\mathbb{Z}_\beta})^{(\sigma)}\).

Theorem 5.9. There are exactly 21 irreducible modules of \((V^+_{\mathbb{Z}_\beta})^{(\sigma)}\). We give them by the following tables 1-4.

\(\omega\)	\((V^+_{\mathbb{Z}_\beta})^0\)	\((V^+_{\mathbb{Z}_\beta})^1\)	\((V^+_{\mathbb{Z}_\beta})^2\)	\(V^+_{\mathbb{Z}_\beta+\frac{1}{2}\beta}\)	\(V^+_{\mathbb{Z}_\beta+\frac{3}{2}\beta}\)
\(\frac{1}{3}\)	\(\frac{1}{4}\)	\(\frac{1}{4}\)	\(\frac{1}{4}\)	\(\frac{1}{4}\)	

\(\omega\)	\(W_{1,1}\)	\(W_{1,2}\)	\(W_{1,3}\)	\(W_{2,1}\)	\(W_{2,2}\)	\(W_{2,3}\)
\(\frac{1}{3}\)	\(\frac{1}{3}\)	\(\frac{1}{3}\)	\(\frac{1}{3}\)	\(\frac{1}{3}\)	\(\frac{1}{3}\)	

\(\omega\)	\((V^+_{\mathbb{Z}_\beta+\frac{1}{2}\beta})^0\)	\((V^+_{\mathbb{Z}_\beta+\frac{3}{2}\beta})^1\)	\((V^+_{\mathbb{Z}_\beta+\frac{3}{2}\beta})^2\)
\(\frac{1}{3}\)	\(\frac{1}{3}\)	\(\frac{1}{3}\)	

Proof: It follows from the proof of Lemma \[5.1\] and Theorem 6.1 in [DM1] that \(V^-_{\mathbb{Z}_\beta}\), \(V^+_{\mathbb{Z}_\beta+\frac{1}{2}\beta}\) and \(V^+_{\mathbb{Z}_\beta+\frac{3}{2}\beta}\) are irreducible \((V^+_{\mathbb{Z}_\beta})^{(\sigma)}\)-modules and as \((V^+_{\mathbb{Z}_\beta})^{(\sigma)}\)-modules,

\[
V^-_{\mathbb{Z}_\beta} \cong V^-_{\mathbb{Z}_\beta+\frac{1}{2}\beta} \cong V^+_{\mathbb{Z}_\beta+\frac{1}{2}\beta} \cong V^+_{\mathbb{Z}_\beta+\frac{3}{2}\beta} \cong V^+_{\mathbb{Z}_\beta+\frac{3}{2}\beta} \cong V^+_{\mathbb{Z}_\beta}. \
\]

Then the theorem follows from Lemma \[3.3\], Lemma \[5.8\], Theorems \[5.4\] and \[5.6\], Theorem \[4.6\] and Theorem A in [M1].

References

[A1] T. Abe, Fusion Rules for the Free Bosonic Orbifold Vertex Operator Algebra, *J. Alg.* **229** (2000), 333-374.

[A2] T. Abe, Rationality of the vertex operator algebra \(V^+_{\mathbb{L}}\) for a positive definite even lattice \(\mathbb{L}\), *Math. Z.* **249** (2005), 455-484.

[A3] T. Abe, Fusion rules for the charge conjugation orbifold, *J. Alg.* **242** (2001), 624-655.

[AD] T. Abe and C. Dong, Classification of irreducible modules for the vertex operator algebra \(V^+_{\mathbb{L}}\): general case, *J. Alg.* **273** (2004), 657-685.

[ADL] T. Abe, C. Dong and H. Li, Fusion rules for the vertex operator \(M(1)^+\) and \(V^+_{\mathbb{L}}\), *Comm. Math. Phys.* **253** (2005), 171-219.
[AP] D. Adamovic and Z. Perše, On coset vertex algebras with central charge 1, *Math. Comm.* **15** (2010), 143-157.

[B] R. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, *Proc. Natl. Acad. Sci. USA* **83** (1986), 3068-3071.

[D1] C. Dong, Vertex algebras associated with even lattices, *J. Alg.* **160** (1993), 245-265.

[D2] C. Dong, Twisted modules for vertex algebras associated with even lattices, *J. Alg.* **165** (1994), 91-112.

[DG] C. Dong and R. Griess, Rank one lattice type vertex operator algebras and their automorphism groups, *J. Alg.* **208** (1998), 262-275.

[DGR] C. Dong, R. L. Griess Jr. and A. Ryba, Rank one lattice type vertex operator algebras and their automorphism groups. II. E-series. *J. Alg.* **217** (1999), 701-710.

[DJ1] C. Dong and C. Jiang, A Characterization of Vertex Operator Algebra $L(\frac{1}{2},0) \otimes L(\frac{1}{2},0)$, *Comm. Math. Phys.* **296** (2010), 69-88.

[DJ2] C. Dong and C. Jiang, A characterization of vertex operator algebra $V_{\mathbb{Z}_0}^+$: I, arXiv:1110.1882.

[DJ3] C. Dong and C. Jiang, A characterization of vertex operator algebra $V_{\mathbb{Z}_0}^+$: II, arXiv:1112.1912.

[DJL] C. Dong, C. Jiang and X. Lin, Rationality of vertex operator algebra V_L^+: higher rank, *Proc. Lond. Math. Soc.* **104** (2012), 799-826.

[DL] C. Dong and J. Lepowsky, Generalized Vertex Algebras and Relative Vertex Operators, *Progress in Math.* Vol. 112, Birkhäuser, Boston 1993.

[DLM1] C. Dong, H. Li and G. Mason, Twisted representations of vertex operator algebras, *Math. Ann.* **310** (1998), 571-600.

[DLM2] C. Dong, H. Li and G. Mason, Modular invariance of trace functions in orbifold theory and generalized moonshine. *Comm. Math. Phys.* **214** (2000), 1-56.

[DM1] C. Dong and G. Mason, On quantum Galois theory, *Duke Math. J.* **86** (1997), 305–321.

[DM2] C. Dong and G. Mason, Rational vertex operator algebras and the effective central charge, *International Math. Research Notices* **56** (2004), 2989-3008.

[DN1] C. Dong and K. Nagatomo, Classification of irreducible modules for the vertex operator algebra $M(1)^+$, *J. Alg.* **216** (1999), 384-404.
[DN2] C. Dong and K. Nagatomo, Representations of vertex operator algebra V_L^+ for rank one lattice L, *Comm. Math. Phys.* **202** (1999), 169-195.

[DN3] C. Dong and K. Nagatomo, Classification of irreducible modules for the vertex operator algebra $M(1)^+$: Higher rank, *J. Alg.* **240** (2001), 289-325.

[FHL] I. B. Frenkel, Y. Huang and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, *Memoirs American Math. Soc.* **104**, 1993.

[FLM] I. B. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the Monster, *Pure and Applied Math.* Vol. **134**, Academic Press, 1988.

[FZ] I. Frenkel and Y. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, *Duke Math. J.* **66** (1992), 123-168.

[G] P. Ginsparg, Curiosities at $c = 1$, *Nucl. Phys.* **295** (1988), 153-170.

[KR] V. G. Kac and A. Raina, Highest Weight Representations of Infinite Dimensional Lie Algebras, World Scientific, Adv. Ser. In Math. Phys., Singapore, 1987.

[K] E. Kiritsis, Proof of the completeness of the classification of rational conformal field theories with $c = 1$, *Phys. Lett.* **B217** (1989), 427-430.

[L1] H. Li, Symmetric invariant bilinear forms on vertex operator algebras, *J. Pure Appl. Algebra* **96** (1994), 279-297.

[L2] H. Li, The theory of physical superselection sectors in terms of vertex operator algebra language, arXiv: q-alg/9504026.

[M] A. Milas, Fusion rings for degenerate minimal models, *J. Alg.* **254** (2002), 300-335.

[M1] M. Miyamoto, A Z_3-orbifold theory of lattice vertex operator algebras and Z_3-orbifold constructions, arXiv: 1003. 1237.

[M2] M. Miyamoto, Flatness of tensor product and semi-rigidity of C_2-cofinite vertex operator algebras II, arXiv: 0909. 3665.

[RT] K. Rehern and H. Tuneke, Fusion rules for the continuum sectors of the Virasoro algebra of $c = 1$, *Lett. Math. Phys.* **53** (2000), 305-312.

[X] F. Xu, Strong additivity and conformal nets, *Pacific J. Math.* **221** (2005), 167-199.

[Y] G. Yamskulna, C_2 cofiniteness of vertex operator algebra V_L^+ when L is a rank one lattice, *Comm. Alg.* **32** (2004), 927-954.

[ZD] W. Zhang and C. Dong, W-algebra $W(2,2)$ and the vertex operator algebra $L(1/2,0) \otimes L(1/2,0)$, *Comm. Math. Phys.* **285** (2009), 991-1004.
[Z] Y. Zhu, Modular invariance of characters of vertex operator algebras, \textit{J. Amer. Math. Soc.} \textbf{9} (1996), 237-302.