Phytochemistry of *Ziziphus Mauritiana*; its Nutritional and Pharmaceutical Potential

Shumaila Zulfiqar Butt¹, Shabbir Hussain¹*, Khurram Shahzad Munawar²,³, Affifa Tajammal¹, Muazzam Ali Muazzam¹

1Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
2Department of Chemistry, University of Sargodha, Sargodha, Pakistan
3Department of Chemistry, University of Mianwali 42200, Mianwali, Pakistan

*dr.shabbirhussain@lgu.edu.pk; shabchem786@gmail.com; Mob # +92-3214140130

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: https://doi.org/10.32350/sir.52.01

Copyright © 2021 The Authors. Production and hosting by School of Science, University of Management and Technology is licensed under a Creative Commons Attribution 4.0 International License

Abstract

Current studies were performed to overview the phytochemistry, nutritional and medicinal value of *Ziziphus mauritiana* (commonly known as Ber in Pakistan). The leaves of *Z. mauritiana* are comprised of proteins, amino acids, alkaloids, terpenoids, fibers, flavonoids, tannins, glycosides, and phenolic compounds. The leave majorly demonstrate the presence of α-linolenic acid, plamitic acid and methyl stearate in *n*-hexane, chloroform and methanol extracts. The seed contains the highest content of carbohydrate (63.24%) and calorific value (411.61 kJ) while its fruit shows the highest quantity of moisture. Its fruit is slightly acidic (pH around 4.77) and rich in nutrients including proteins, carbohydrates vitamin C and minerals (Fe, Zn, Cu, Na, K, Ca, P).
The fruit provides energy of 1516-1575 kJ per its 100 g. *Z. mauritiana* displays antibacterial, antioxidant and anti-inflammatory activities. Its leaves are used for treating tuberculosis, smallpox, burning sensations, dysentary asthma, fever, liver issues, infections and blood relating diseases. Root bark of this plant shows good effectiveness as analgesic, anti-inflammatory and anti-allergic agent. The plant displays strong antioxidant potential and excellent H2O2 scavenging activities.

**Key words:** Ziziphus Mauritiana; Ber; Phytochemicals; Nutritional; Pharmaceutical

1. Introduction

Plants have been widely investigated due to their nutritional [1, 2] and pharmaceutical value [3, 4]. The presence of carbohydrates, protein and fat in medicinal plants enables them to fulfill the human body’s requirements; these components also play an important role in numerous morphological, physiological and metabolic activities [5]. It has been reported that consumption of 100 g plant can provide over 10-12% of the daily allowance recommended [6]. Plants are also very important sources of medicines. Many new beneficial medicinal components and their phytochemical constituents (e.g., hypolipidemic, hypoglycemic and antioxidants, constituents) can be isolated from plants. A large number of plant-derived (directly or indirectly) medicines are currently in use [7]. There had been a common interest in the treatment of diseases by plant based medicines from the primitive ages [8]. The use of medicinal plants against diseases by physicians and pharmacologists has been increasing day by day due to increase of the awareness and evolving ideas [7]. Many medicinal plants are being widely used as fruits and vegetables in Pakistan. Such medicinal plants are rich in carbohydrate contents but they are low in fats and proteins [6]. *Ziziphus mauritiana* (commonly known as Ber plant in Pakistan) is a fruit tree that
has been commonly known due to its medicinal and nutritional benefits [9]. It has 40 species that are distributed in warm temperate and subtropical regions [10]. The flesh of the fruit is white to yellow white, which changes in color with the ripening stages and turns red with skin shrinkage in latest stages (Figure 1) [11]. The fruit of *Z. mauritiana* is varied in shape such as round, oblate to oval and weight of fruit varies from 3.8 g to 39.5 g whereas length of fruit ranges from 1.1 cm to 4.7 cm [12].

Owing to the nutritional and pharmaceutical value of plants [13-15], current studies were made to overview the phytochemistry, antioxidant, nutritional, chemical composition and antimicrobial potential of *Z. mauritiana*.

![Fruits and Leaves of Ziziphus Mauritiana](image)

**Figure 1: Fruits and Leaves of Ziziphus Mauritiana** [11]

### 2. Chemical composition

The leaves (Figure 1) of *Z. mauritiana* are chemically comprised of proteins, amino acids, alkaloids, terpenoids, fibers, flavonoids, tannins, glycosides, and phenolic compounds [16]. The GCMS analysis of *n*-hexane, chloroform and methanol extracts of *Z. mauritiana* leaves were investigated. Methanolic extract of leaves have shown the presence of diglycerol (0.30%), 2,3-dihydrobenzofuran (0.60%), 1,2-diacetate glycerol (1.44%), methyl palmitate (7.81%), palmitic acid (13.57%), linoleic acid methyl ester (5.98%), phytol (9.78%), methyl stearate (15.59%),
linoeic acid (4.75%), α-linolenic acid (14.21%), stearic acid (1.94%), archidic acid methyl ester (1.60%), carbromal (0.76%), 3-methyl piperidine (0.48%), cyclobarbital (0.61%), squalene (12.09%), vitamin E (2.35%) and thymol TMS (1.26%). The chloroform extract contained uneicosane (4.79%), lauric acid (1.66%), myristic acid (2.80%), E-15-Heptadecenal (12.31%), methyl palmitate (2.83%), palmitic acid (38.55%), hentriaconate (3.25%), methyl stearate (2.31%), stearic acid (5.82%), α-nonadecylene (3.77%), bacchotricuneatin C (3.48%), α-tocopherol (10.01%) and vitamin E (5.41%). The n-hexane extract of Z. mauritiana leaves have displayed the presence of myristic acid (0.73%), phytol acetate (1.02%), methyl palmitate (1.01%), palmitic acid (16.26%), linoleic acid, methyl ester (0.45%), phytol (2.52%), methyl stearate (0.53%), linoleic acid (1.37%), α-linolenic acid (26.45%), o-methyl delta-tocopherol (0.47%), octacosane (2.04%), squalene (12.83%), trans-geranylgeraniol (2.34%), 2,4-dimethyl Benzoquinoline (2.28%), α-tocopherol (3.92%), 4-chloro-2-trifluormethylbenzoquinoline (1.74%), γ-sitosterol (2.72%) and 17-Hydroprogesterone (3.42%). Thus α-linolenic acid (26.45%), plamitic acid (38.55%) and methyl stearate (15.59%), were observed as major components in n-hexane, chloroform and methanol extracts, respectively. The chloroform extract possessed the highest amount of phenolics while the flavanoids were present as chief constituents in methanol extract [9]. According to literature, twelve compounds including betulinic aldehyde, palmitoleic acid, ceanothic acid, daucosterol-6'-octadecanoate, spinosin, betasitosterol, daucosterol-6'-octadecanoate, frangufoline, stearic acid, docosanoic acid, sucrose, betulinic acid have been identified from seeds of Z. mauritiana. Silica column chromatography was used for the isolation of these constituents whereas spectroscopic analysis and physico-chemical properties were used for structure elucidation [17]. In addition to above mentioned substances, fruits of Z. mauritiana contain several bioactive phytochemicals such as phenolic
acid ascorbic acid [18]. The presence of saponin, terpenoids, flavanoid, tannins and cyanogenic glycosides has been reported in pulp of *Z. mauritiana* [19, 20].

The highest contents of calorific value (411.61 kJ), carbohydrate (63.24%), fat (1.89%) and crude fiber (48.12%) have been reported in the seed while the moisture content (88.32%) was found to the highest in fruit of *Z. mauritiana*. The pH of the fruit and leaves was found to be 4.77 and 5.47, respectively. The *Z. mauritiana* plant serves an excellent source of fiber, proteins and carbohydrates. It was suggested that its fruit, leaves and seed may find potential applications as nutraceutical ingredients in pharmaceutical and food products [21].

### 3. Nutritional value

The fruit of *Z. mauritiana* is enriched with nutrients. It is suggested that its fruits contain iron more than an apple and it is a well-known fact that iron is so much necessary for the transportation of oxygen in body [22]. Researchers have shown that edible parts of this fruit contain higher amount of nutrients and minerals such as iron, zinc, calcium, sodium magnesium and vitamin C etc. [23, 24]. It is suggested that 100 g of pulp contain 70-165 mg of ascorbic acid (vitamin C) [25]. Its fruits are enriched with vitamin A and B complex [26]. Besides the nutrients, fruits of *Z. mauritiana* provide 20.9 kcal per 100 g pulp [22]. The fruit is an excellent source of proteins, carbohydrates, and micronutrients, such as vitamin C, zinc (Zn), iron (Fe), copper (Cu), phosphorus (P), sodium (Na), potassium (K) and calcium (Ca). In Zimbabwe, the fruits of *Z. mauritiana* contribute significantly to people’s diet when they are in season. The edible portion of ber may be sour and sweet. In 100 grams of ber (sour and sweet), the weight of the dry contents of the edible portion ranges from 21.1 g to 24.1 g. Dry weight of 100 g of edible portion contains crude fiber (4.9 g to 7.3 g), crude proteins (7.9 g to 8.7 g), fat contents (0.8 g to 1.5 g) and carbohydrate content (79.5 g to 83.2). The fruits of *Z. mauritiana* are rich in vitamin C
(15 mg to 43.8 mg per 100 g) and have energy value of 1516-1575 kJ per 100 g. Table 1 shows the concentrations of different nutrients [16, 24].

Table 1: Concentration of different nutrients in 100 grams of fruit of Z. mauritiana [16, 24]

| Nutrients       | Conc. in mg /100 g of fruit | Nutrients       | Conc. in mg /100 g of fruit |
|-----------------|-----------------------------|-----------------|-----------------------------|
| Calcium (Ca)    | 160-254                     | Iron (Fe)       | 2.1-4.3                     |
| Potassium (K)   | 1865-2441                   | Zinc (Zn)       | 0.6-0.9                     |
| Magnesium (Mg)  | 83-150                      | Copper (Cu)     | 0.7                         |
| Sodium (Na)     | 185-223                     | Manganese (Mn)  | 1.6                         |
| Phosphorus (P)  | 87-148                      |                 |                             |

4. Pharmaceutical Importance

Plants are sources of many natural drugs and useful for the treatment of chronic diseases [14]. It is estimated that herbal medicines and their formulated drugs contribute more than 60 % of clinical drugs in the world [27]. It was reported by WHO that 80 percent of world population is dependent on the drugs derived from plants [28]. Z. mauritiana has gained much importance for the treatment of many diseases for example; its leaves are used for treating tuberculosis and blood relating diseases. For small pox therapy, juice of leaf along with buffalo’s milk is considered effective. The paste of leaves is used on wounds to get rid of burning sensations. Conventionally, for urinary tract infection treatments, dose of fresh leaves of Z. mauritiana and cumin is given to the patient. To cure dysentery, roots of the plant are used with cow’s milk. Patients are advised by conventional therapists to keep fresh root of Z. mauritiana in their mouth to get rid of hoarseness of throat [29-31]. Almost all parts of plants show potential for treatment of numerous diseases for example roots and stem are traditionally used for the treatment of...
dysentery and diarrhea. Root bark of this plant shows good effectiveness as analgesic, anti-inflammatory and anti-allergic agent [32].

*Z. mauritiana* is also very useful in treatment of pregnancy related problems such as nausea, vomiting and abdominal pains. Diseases like asthma, fever and liver issues can also be treated with *Z. mauritiana* leaves [33]. It is experimentally proved that extracts of different parts of *Z. mauritiana* possess high potential against cancer, inflammation and diabetes [34-37].

It can be summarized that *Z. mauritiana* was traditionally used for culinary uses, medicinal purposes, and maintenance of health and for improvement of digestion [38-42]. Antibacterial, antioxidant and anti-inflammatory activities are some medicinal properties of this plant [29, 30].

**4.1. Antimicrobial activity**

It is reported that different antimicrobial activities against different microorganisms are displayed by extracts of *Z. mauritiana* leaves. For the therapy of microbial infections, many antimicrobial components are present in *Z. mauritiana* plant [11, 20, 43-45]. It’s also reported that methanolic extract of *Z. mauritiana* leaves shows the antimicrobial activities against different bacteria and thus shows great antibacterial potential [20].

A wide range of phytochemicals are present in the pulp of *Z. mauritiana*; due to which it (crude and fractionated extracts) also shows antimicrobial potential. Some studies on *Z. mauritiana* reveal the occurrence of secondary metabolites like tannins and terpenoids and flavonoids having antibacterial potential [11, 44, 45]. Various researchers reported that *Z. mauritiana* is used as anti-diabetic neuroprotective and hepatoprotective agent [46, 47].

**4.2. Antioxidant Potential**

One of the many causes of increasing mortality rate in the world is cancer. Cancer is an important cause of mortality throughout the world. Many therapeutic methods are invented
for the treatment of cancer; these methods also include chemotherapy which shows many adverse effects on healthy tissues. Therefore it becomes the need of current era to develop alternate strategies for the treatment of diseases. Plants extracts show many interesting results in this regards [48]. Oxidative stress is the condition in which oxidants are increased in number and disturb the natural cellular reactions of body. If this condition is prolonged then it may result in different diseases (like cancer) [49, 50]. This condition is reversed by antioxidants. Antioxidants are those agents that have the ability to inhibit, delay or interfere in the aerobic reactions by neutralizing free radicals (by donating electron or atom, quenching oxygen in triplet and singlet form and chelating metals). Thus, they also plays an important role in increasing the food shelf life period and in reduction of ailments like cancer, aging and inflammation [51]. There are naturally occurring compounds (phytochemicals) present in plants that possess potential to inhibit numerous diseases due to their antioxidant effects [52].

There are several investigations which report the antioxidant potential of Z. mauritiana [53]. The good antioxidant and H₂O₂ scavenging activities can be owed to the presence of high amount of total proteins, reducing sugars, flavonoids, ascorbic acid contents, β-carotene, polyphenols, tannins and DPPH free radicals [54, 55]. It was reported by different researchers that there are about eight different flavonoids in fruits, leaves and seed of Z. mauritiana [56]. It has also been reported that phenolic acids are present in this plant in free/conjugated from, along with carbohydrates and other biomolecules [57].

The crude methanolic extract of Z. mauritiana leaves is rich in phytochemical constituents which have significant antioxidant and antimicrobial activities. The isolation and purification of these bioactive phytochemical constituents may further produce more potent antioxidants [55]. It is
reported that methanolic seed extracts of this plants are markedly effective against the cancerous cells. Also ethanolic extracts of seed have shown ability of inhibiting the proliferation of HL60 cells [58].

5. Conclusions

Z. mauritiana is a very important medicinal plant whose different plant parts can be utilized for curing numerous diseases including tuberculosis, small pox, burning sensations, dysentary asthma, fever, liver issues, infections and blood relating diseases. Root bark of this plant shows good effectiveness as analgesic, anti-inflammatory and anti-allergic agent. The plant displays strong antioxidant potential and excellent H$_2$O$_2$ scavenging activities. The fruit of Z. mauritiana is slightly acidic (pH around 4.77) and rich in nutrients including proteins, carbohydrates vitamin C and minerals (Fe, Zn, Cu, Na, K, Ca, P). The fruit provides energy of 1516-1575 kJ per its 100 g. Phytochemical studies have shown the presence of proteins, amino acids, alkaloids, terpenoids, fibers, flavonoids, tannins, glycosides, and phenolic compounds in leaves of Z. mauritiana. The seed contains the highest content of carbohydrate (63.24%) and calorific value (411.61 kJ) while its fruit shows the highest quantity of moisture.

Conflict of Interest

Authors declare no conflict of interest.

References

[1]. Naseer S, Hussain S, Zahid Z. Nutritional and antioxidant potential of common vegetables in Pakistan. RADS J. Biol. Res. Appl. Sci. 2019;10(1):36-40.
[2]. Kamran M, Hussain S, Abid MA, Syed SK, Suleman M, Riaz M, et al. Phytochemical composition of moringa oleifera its nutritional and pharmacological importance. Postepy Biol. Komorki. 2020;47(3):321-34.

[3]. Rehman A, Hussain S, Javed M, Ali Z, Rehman H, Shahzady TG, et al. Chemical composition and remedial perspectives of Hippophae rhamnoides linn. Postepy Biol. Komorki. 2018;45(3):199-209.

[4]. Farhat N, Hussain S, Syed SK, Amjad M, Javed M, Iqbal M, et al. Dietary phenolic compounds in plants: Their antioxidant and pharmacological potential. Postepy Biol. Komorki. 2020;47(3):307-20.

[5]. Kumar M, Puri S, Pundir A, Bangar SP, Changan S, Choudhary P, et al. Evaluation of Nutritional, Phytochemical, and Mineral Composition of Selected Medicinal Plants for Therapeutic Uses from Cold Desert of Western Himalaya. Plants. 2021;10(7):1429.

[6]. Rehman A, Adnan M. Nutritional potential of Pakistani medicinal plants and their contribution to human health in times of climate change and food insecurity. Pak. J. Bot. 2018;50(1):287-300.

[7]. Petrovska BB. Historical review of medicinal plants’ usage. Pharmacogn. Rev. 2012;6(11):1.

[8]. Najafi S, Sanadgol N, Nejad BS, Beiragi MA, Sanadgol E. Phytochemical screening and antibacterial activity of Citrullus colocynthis (Linn.) Schrad against Staphylococcus aureus. J. Med. Plant Res. 2010;4(22):2321-5.

[9]. Ashraf A, Sarfraz RA, Anwar F, Shahid SA, Alkharfy KM. Chemical composition and biological activities of leaves of Ziziphus mauritiana L. native to Pakistan. Pak. J. Bot. 2015;47(1):367-76.
[10]. Goyal M, Nagori BP, Sasmal D. Review on ethnomedicinal uses, pharmacological activity and phytochemical constituents of Ziziphus mauritiana (Z. jujuba Lam., non Mill). Spatula DD. 2012;2(2):107-16.

[11]. Dahiru D, Sini J, John-Africa L. Antidiarrhoeal activity of Ziziphus mauritiana root extract in rodents. Afr. J. Biotechnol. 2006;5(10).

[12]. Pareek O. Fruits for the future 2: Ber. International Centre for Underutilized Crops, University of Southampton, Southampton, UK. 2001:290.

[13]. Naseer S, Afzal M, Nisa A, Hussain S, Ahmad M, Parveen S, et al. Extraction of brown dye from Eucalyptus bark and its applications in food storage. Qual Assur. Saf. Crops Foods. 2019;11(8):769-80.

[14]. Naseer S, Hussain S, Naeem N, Pervaiz M, Rahman M. The phytochemistry and medicinal value of Psidium guajava (guava). Clin. Phytoscience. 2018;4(1):1-8.

[15]. Riaz S, Hussain S, Syed SK, Anwar R. Chemical Characteristics and Therapeutic Potentials of Aloe vera. RADS J. Biol. Res. Appl. Sci. 2021;12(1).

[16]. Gupta M, Bhandari A, Singh RK. Pharmacognostical evaluations of the leaves of Ziziphus mauritiana. Int. J. Pharm. Sci. Res. 2012; 3: 818. 2012;821.

[17]. Guo S, Duan J, Zhao J, Qian D, Zhang W. Chemical constituents from seeds of Ziziphus mauritiana. Zhong yao cai. 2014;37(3):432-5.

[18]. Maruza I, Musemwa L, Mapurazi S, Matsika P, Munyati V, Ndhleve S. Future prospects of Ziziphus mauritiana in alleviating household food insecurity and illnesses in arid and semi-arid areas: a review. World Dev. Perspect. 2017;5:1-6.
[19]. Mbahi M, Mbahi A, Umar I, Ameh D, Joseph I. Phytochemical Screening and Antimicrobial Activity of the Pulp Extract and Fractions of Ziziphus mauritiana. *Biochem. Anal. Biochem.* 2018;7: 1000352.

[20]. Najafi S. Phytochemical screening and antibacterial activity of leaf extract of *Ziziphus mauritiana* Lam. *Int. Res. J. Basic Appl. Sci.* 2013;4(10):3274-6.

[21]. Mohd Jailani FNA, Zaidan UH, Hanizam Abdul Rahim MB, Abd Gani SS, Halmi MIE. Evaluation of constituents and physicochemical properties of Malaysian underutilized *Ziziphus mauritiana* (Bidara) for nutraceutical potential. *Int. J. Fruit Sci.* 2020;20(3):394-402.

[22]. Bakhshi J, Singh P. Ber: a good choice for semi-arid and marginal soils. *Indian J. Hortic.* 1974: 27-30.

[23]. Yerima B, Adamu H. Proximate chemical analysis of nutritive contents of jujube (Ziziphus mauritiana) seeds. *Phys Sci. Int. J.* 2011;6(36):8079-82.

[24]. Nyanga LK, Gadaga TH, Nout MJ, Smid EJ, Boekhout T, Zwietering MH. Nutritive value of masau (Ziziphus mauritiana) fruits from Zambezi Valley in Zimbabwe. *Food Chem.* 2013;138(1):168-72.

[25]. Bal J, JS B, SS M. Ascorbic acid content of ber during growth and maturity. 1978.

[26]. Tiwari R, Banafar R. Studies on the nutritive constituents yield and yield attributing characters in some ber (Zizyphus jujuba) genotypes. *Indian J. Plant Physiol.* 1995;38:88-9.

[27]. Al-Saeedi AH, Al-Ghafri MTH, Hossain MA. Brine shrimp toxicity of various polarities leaves and fruits crude fractions of *Ziziphus jujuba* native to Oman and their antimicrobial potency. *Sustain. Chem. Pharm.* 2017;5:122-6.
[28]. Agarwal SK, Singh SS, Verma S, Kumar S. Two new aliphatic compounds from the leaves of Ziziphus mauritiana. *Ind. J. Chem. Sec. B: Org. Chem. Incl. Med. Chem.* 2000;39:872-4.

[29]. Peng W-H, Hsieh M-T, Lee Y-S, Lin Y-C, Liao J. Anxiolytic effect of seed of Ziziphus jujuba in mouse models of anxiety. *J. Ethnopharmacol.* 2000;72(3):435-41.

[30]. Oudhia P. Research Note on Medicinal herb of Chhattigarl, India having less known traditional uses. IX; 2003.

[31]. Adzu B, Amos S, Wambebe C, Gamaniel K. Antinociceptive activity of Zizyphus spinachristi root bark extract. *Fitoterapia.* 2001;72(4):344-50.

[32]. Dutta RP, Patil MB. Therapeutic potential of root and stem bark of wild medicinal plant Ziziphus mauritiana (Lamk.) against silica induced toxicity in Wistar albino rats. *J Ethnopharmacol.* 2018;224:111-8.

[33]. Michel A. Tree, shrub and liana of West African zone. Margraf Publishers GMBH, Paris; 2002.

[34]. Deshpande MS, Tondare PR, Paygude SV, Apte KG, Parab PB. Evaluation of antioxidant, anti-inflammatory and adipocyte differentiation inhibitory potential of Ziziphus mauritiana bark extract. *J. Pharmacognosy.* 2013;5(5):205-10.

[35]. Nakayama T, Suzuki S, Kudo H, Sassa S, Nomura M, Sakamoto S. Effects of three Chinese herbal medicines on plasma and liver lipids in mice fed a high-fat diet. *J. Ethnopharmacol.* 2007;109(2):236-40.

[36]. Pisha E, Chai H, Lee I-S, Chagwedera TE, Farnsworth NR, Cordell GA, et al. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. *Nat. Med.* 1995;1(10):1046-51.
[37]. Kumar S, Ganachari M, Nagoor V. Anti-inflammatory activity of Ziziphus jujuba Lam leaves extract in rats. *J. Nat. Remedies*. 2004;4(2):183-5.

[38]. Wang B-N, Liu HF, Zheng JB, Fan MT, Cao W. Distribution of phenolic acids in different tissues of jujube and their antioxidant activity. *J. Agric. Food Chem*. 2011;59(4):1288-92.

[39]. Li J-w, Ding S-d, Ding X-l. Comparison of antioxidant capacities of extracts from five cultivars of Chinese jujube. *Process Biochem*. 2005;40(11):3607-13.

[40]. Li J-W, Fan L-P, Ding S-D, Ding X-L. Nutritional composition of five cultivars of Chinese jujube. *Food Chem*. 2007;103(2):454-60.

[41]. Gao Q-H, Wu P-T, Liu J-R, Wu C-S, Parry JW, Wang M. Physico-chemical properties and antioxidant capacity of different jujube (Ziziphus jujuba Mill.) cultivars grown in loess plateau of China. *Sci. Hortic*. 2011;130(1):67-72.

[42]. Patel PR, Rao TVR. Physiological changes in relation to growth and ripening of khirni [Manilkara hexandra (Roxb.) Dubard] fruit. *Fruits*. 2009;64(3):139-46.

[43]. Sivasankari M, Sankaravadivoo A. STUDIES ON ANTIMICROBIAL ACTIVITY OF ZIZIPHUS MAURITIANA LAM. *Int. J. Ayurveda Pharma Res*. 2015;3(7).

[44]. Dahiru D, Obidoa O. Evaluation of the antioxidant effects of Ziziphus mauritiana lam. leaf extracts against chronic ethanol-induced hepatotoxicity in rat liver. *Afr. J. Tradit. Complement. Altern. Med*. 2008;5(1):39-45.

[45]. Tringali C. Identification of bioactive metabolites from the bark of Pericopsis (Afromosia) laxiflora. Phytochem. *Anal*. 1995;6(6):289-91.

[46]. Bhatia A, Mishra T. Hypoglycemic activity of Ziziphus mauritiana aqueous ethanol seed extract in alloxan-induced diabetic mice. *Pharm Biol*. 2010;48(6):604-10.
[47]. Dahiru D, William E, Nadro M. Protective effect of Ziziphus mauritiana leaf extract on carbon tetrachloride-induced liver injury. *Afr. J. Biotechnol.* 2005;4(10).

[48]. Yu F, De Luca V. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus. *Proc. Natl. Acad. Sci.* 2013;110(39):15830-5.

[49]. Gupta VK, Sharma SK. Plants as natural antioxidants. 2006.

[50]. Maxwell SR. Prospects for the use of antioxidant therapies. *Drugs.* 1995;49(3):345-61.

[51]. Dalleau S, Baradat M, Gueraud F, Huc L. Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance. *Cell death and differentiation.* 2013;20(12):1615.

[52]. Mahmoudian M, Jalipour H, Salehian Dardashti P. Toxicity of Peganum harmala: review and a case report. *Iran. J. Pharmacol.* 2002;1(1):1-0.

[53]. Olajuyigbe OO, Afolayan AJ. Phenolic content and antioxidant property of the bark extracts of Ziziphus mucronata Willd. subsp. mucronata Willd. *BMC Complement Altern. Med.* 2011;11(1):130.

[54]. Afroz R, Tanvir E, Islam MA, Alam F, Gan SH, Khalil MI. Potential Antioxidant and Antibacterial Properties of a Popular Jujube Fruit: Apple Kul (Zizyphus mauritiana). *J. Food Biochem.* 2014;38(6):592-601.

[55]. Al Ghasham A, Al Muzaini M, Qureshi KA, Elhassan GO, Khan RA, Farhana SA, et al. Phytochemical Screening, Antioxidant and Antimicrobial Activities of Methanolic Extract of Ziziphus mauritiana Lam. Leaves Collected from Unaizah, Saudi Arabia *Int. J. Pharm. Res. Allied Sci.* 2017;6(3).
[56]. Memon AA, Memon N, Bhanger MI, Luthria DL. Assay of phenolic compounds from four species of ber (Ziziphus mauritiana L.) fruits: comparison of three base hydrolysis procedure for quantification of total phenolic acids. *Food Chem.* 2013;139(1-4):496-502.

[57]. Shahidi F, Naczk M. An overview of the phenolics of canola and rapeseed: chemical, sensory and nutritional significance. *J. Am. Oil Chem. Soc.* 1992;69(9):917-24.

[58]. Mishra T, Khullar M, Bhatia A. Anticancer potential of aqueous ethanol seed extract of Ziziphus mauritiana against cancer cell lines and Ehrlich ascites carcinoma. *Evid.-Based Complementary Altern. Med.* 2011;2011.