SMOOTH POTENTIAL CHAOS AND N-BODY SIMULATIONS

HENRY E. KANDRUP
Department of Astronomy, Department of Physics, and Institute for Fundamental Theory, University of Florida, Gainesville, FL 32611; kandrup@astro.ufl.edu

AND

IOANNIS V. SIDERIS
Department of Astronomy, University of Florida, Gainesville, FL 32611; sideris@astro.ufl.edu

Received 2002 July 19; accepted 2002 November 5

ABSTRACT

Integrations in fixed N-body realizations of smooth density distributions corresponding to a chaotic galactic potential can be used to derive reliable estimates of the largest (finite-time) Lyapunov exponent χ_N associated with an orbit in the smooth potential generated from the same initial condition, even though the N-body orbit is typically characterized by an N-body exponent $\chi_N \gg \chi_S$. This can be accomplished by either comparing initially nearby orbits in a single N-body system or tracking orbits with the same initial condition evolved in two different N-body realizations of the same smooth density.

Subject heading: methods: n-body simulations

1. INTRODUCTION AND MOTIVATION

At the present time, there are two general approaches that can be used to model the structure and evolution of systems like elliptical galaxies. On the one hand, one can perform detailed N-body simulations, solving the coupled equations of motion either exactly or in some approximation. On the other, one can try to construct equilibrium models as solutions to the collisionless Boltzmann equation, either analytically (e.g., using the approach developed by Hunter & Qian 1993) or numerically (e.g., by implementing some version of the Schwarzschild 1979 method).

Both approaches would appear to be extremely useful, but each has its limitations. Despite significant advances in hardware, direct N-body simulations still cannot be performed for particle numbers as large as $N \sim 10^{11}$, so that one cannot consider point masses in the integrations as corresponding to individual stars in real galaxies. Integrations in smooth potentials have the advantage that one can consider characteristics that, presumably, correspond to the orbits of individual stars. However, the very assumption that the system can be described by a smooth potential constitutes an idealization that, albeit generally accepted, has never been proven rigorously.

Obvious questions to be answered thus include the following: To what extent is it true that, for sufficiently large N, solutions to the full gravitational N-body problem can be mimicked by motions in a smooth potential? And, to the extent that the smooth potential approximation is not completely sufficient, to what extent can discreteness effects really be modeled by friction and noise in the context of a Fokker-Planck description (see Rosenbluth, MacDonald, & Judd 1957)? In particular, to what extent are “real” N-body orbits well mimicked by solutions to a (time-dependent) Langevin equation (see Chandrasekhar 1943) that incorporates dynamical friction and Gaussian white noise? Fokker-Planck descriptions were formulated originally to extract statistical information about long-time behavior, assuming implicitly that the bulk potential is integrable or nearly integrable. However, recent years have seen a growing recognition that galactic potentials may admit a fair amount of chaos, and analyses of the short-time behavior of individual orbits in chaotic potentials have provided compelling evidence that friction and noise can dramatically accelerate phase-space transport (Lieberman & Lichtenberg 1972; Lichtenberg & Wood 1989; Kandrup, Pogorelov, & Sideris 2000; Siopis & Kandrup 2000). Does this really mean that discreteness effects can be important already on time-scales much shorter than the relaxation time t_R?

Closely related to these issues is the nature of the continuum limit. In what sense is it true that, as $N \to \infty$, orbits in the N-body potential converge toward characteristics in some smooth potential? Superficially, at least, it might seem that such a convergence is impossible. Dating back to Miller (1964), it has been recognized that the N-body problem is chaotic in the sense that individual orbits exhibit exponential sensitivity toward small changes in initial conditions, and it seems generally accepted today that, when expressed in units of inverse dynamical times t_D^{-1}, the largest N-body Lyapunov exponent χ_N does not converge toward zero as $N \to \infty$ (see Kandrup & Smith 1991; Goodman, Heggie, & Hut 1993), even if the N-body system samples an integrable density distribution. Indeed, recent work, both numerical (Hensendorf & Merritt 2002) and analytic (Pogorelov 2001), suggests that, even for a density distribution corresponding to an integrable potential, the largest Lyapunov exponent may actually increase with increasing N. As proved in the usual way, the N-body problem may become more chaotic as N increases!

A complete resolution to this apparent conundrum will require long-time integrations of systems with very large N, which is impractical using current hardware. However, considerable insight into the continuum limit can be, and has been, obtained by studying the properties of orbits and orbit ensembles evolved in frozen-N systems, i.e., fixed (in time and space) N-body realizations of specified smooth density distributions (Kandrup & Sideris 2001; Sideris & Kandrup 2002). In particular, that work led to several significant conclusions: (1) The largest N-body Lyapunov exponent χ_N does not decrease with increasing N, even for an integrable density distribution. However, there is still a clear, quantifiable sense in which, as N increases, the
N-body orbits become progressively more similar to smooth potential characteristics. (2) As \(N \) increases, the Fourier spectra associated with \(N \)-body orbits more closely resemble the spectra associated with characteristics in the smooth potential, be these either regular or chaotic. (3) Alternatively, viewed macroscopically, \(N \)-body orbits and smooth characteristics with the same initial condition typically diverge as a power law in time on a timescale \(t_G(N) \) that increases with increasing \(N \). For the case of regular characteristics, \(t_G \propto N^{1/2}t_D \); for chaotic characteristics, \(t_G \propto (\ln N)t_D \). It follows that, for sufficiently large \(N \), \(N \)-body orbits and smooth potential characteristics remain close for comparatively long times.

This would seem a result of some significance, but it still begs an important issue. If \(N \)-body orbits converge toward smooth potential characteristics, it should be possible, at least for sufficiently large \(N \), to extract information about any chaos that may be associated with the bulk potential. In particular, it must be possible to extract estimates of finite-time (see Grasserberger, Badii, & Politi 1988) Lyapunov exponents \(\chi_S \) for motion in the smooth potential, even though the \(N \)-body orbits themselves are characterized by exponents \(\chi_N \) that, typically, are much larger than \(\chi_S \). (Chaotic orbits in generic smooth potentials typically have a largest Lyapunov exponent \(\chi_S \approx t_D^{-1} \). For both interacting [Hemsendorf & Merritt 2002] and frozen-\(N \) [Kandrup & Sideris 2001] Plummer systems, \(\chi_N \approx 20t_D^{-1} \) for \(N \approx 10^5 \).

The aim of this paper is to demonstrate that this can in fact be done. In particular, it is shown that there are at least two different ways in which estimates of \(\chi_S \) can be extracted from frozen-\(N \) systems, one involving a comparison of orbits generated from nearby initial conditions and the other involving integrations of the same initial condition in two different \(N \)-body realizations of the same smooth density distribution. Section 2 describes the algorithms and then exhibits representative results for two simple model potentials. Section 3 interprets the success of these algorithms by postulating the existence of two “types” of chaos, macroscopic chaos, or microchaos, which is generic to the \(N \)-body problem, and macroscopic chaos, or macrochaos, possibly associated with the bulk potential that, if present, will also be manifested in the \(N \)-body problem.

2. NUMERICAL ESTIMATION OF SMOOTH POTENTIAL LYAPUNOV EXPONENTS

2.1. Models Considered

The algorithms described in this section are applied to representative orbits evolved in two different density distributions:

1. A spherically symmetric Plummer sphere, for which

\[
\rho_p(r) = \frac{3M}{4\pi b^3} \left(1 + \frac{r^2}{b^2} \right)^{-5/2}.
\]

This corresponds, via Poisson’s equation, to a spherically symmetric, and hence integrable, potential,

\[
\Phi_p(r) = -\frac{GM}{\sqrt{r^2 + b^2}}.
\]

Units were so chosen that \(G = M = b = 1 \).

2. A constant-density triaxial ellipsoid, for which

\[
\rho_E(r) = \frac{3M}{4\pi abc} \times \begin{cases} m^2, & m^2 \leq 1, \\ 0, & m^2 > 1, \end{cases}
\]

where

\[
m^2 = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2},
\]

perturbed by a spherically symmetric density spike (black hole) of mass \(M_{BH} \), corresponding to a potential

\[
\Phi_E(r) = \Phi_0 + \frac{1}{2} \left(\omega_a x^2 + \omega_b y^2 + \omega_c z^2 \right) - \frac{GM_{BH}}{\sqrt{r^2 + c^2}},
\]

with \(c = 10^{-3} \). Attention was focused on the case \(M = 1.0 \) and \(M_{BH} = 10^{-1.5}M \approx 0.316228 \), and units were again chosen so that \(G = 1 \). The axis ratios were taken as \(a = 1.95, b = 1.50, \) and \(c = 1.05 \), which yield (see Bertin 2000) \(\Phi_0 \approx -0.06008, \omega_a \approx 0.4663, \omega_b \approx 0.5508, \omega_c \approx 0.6753. \) For energies sufficiently small that orbits are restricted to \(m < 1 \), the phase space is almost completely chaotic (Kandrup & Sideris 2002). This implies that one need not worry about transitions between regular and chaotic behavior that can be induced by discreteness effects in more complex potentials like the triaxial generalizations of the Dehnen (1993) potential, which admit a complex coexistence of both regular and chaotic orbits.

Frozen-\(N \) orbits in these systems were integrated with a particle-particle numerical scheme using a variable time step integrator with accuracy parameter \(10^{-8} \), which conserved energy to at least one part in \(10^5 \). The \(1/r \) kernels for the individual masses were regulated through the introduction of a softening parameter \(\epsilon = 10^{-5} \).

2.2. The Numerical Algorithms

Algorithm 1 involves a comparison of orbits generated from nearby initial conditions in the same frozen-\(N \) density distribution. The key realization here is that, even though orbits generated from nearby initial conditions diverge initially at a rate \(\Lambda \approx \chi_N \), this divergence quickly saturates once the growing separation between the orbits becomes large compared with the typical distance between neighboring point masses. If the smooth potential characteristic is regular, this initial exponential divergence is replaced immediately by a more modest power-law divergence, which proceeds on a timescale \(t_G \propto N^{1/2}t_D \). If instead the characteristic is chaotic, the initial exponential divergence at a rate \(\Lambda \approx \chi_N \) is replaced by a slower exponential divergence at a rate \(\Lambda \approx \chi_S \), which, in turn, typically proceeds until the separation becomes “macroscopic,” i.e., comparable to the size of the entire accessible phase-space region. At this point, this second exponential divergence saturates and is replaced by a power-law divergence, which proceeds on a timescale \(t_G \propto (\ln N)t_D \).

These statements can be corroborated straightforwardly by tracking the separation,

\[
\delta r(t) = |r_1 - r_5|,
\]

and plotting \(\ln \delta r(t) \) as a function of \(t \). By so doing, one discovers that, just as for the smooth potential, nearby initial conditions can exhibit significantly different values of \(\chi_S \).
(Nearby initial conditions evolved in a smooth potential can have significantly different finite-time Lyapunov exponents even if, for late times, these exponents converge toward the same asymptotic χ_∞.) If, alternatively, one wishes to estimate a "typical" χ_S for orbits in some given phase-space region, one can select an ensemble of initial conditions from that region, evolve each initial condition into the future, and then extract a mean $\langle \chi_S \rangle$ from the time-dependent mean separation,

$$\langle \delta r \rangle = \frac{1}{k} \sum_{i=1}^{k} \delta r_i .$$ (7)

Figure 1 exhibits the results of such a computation for an ensemble of 100 chaotic initial conditions evolved in a frozen-N realization of the ellipsoid plus black hole system. The different curves in the figure represent frozen-N backgrounds with N varying between $10^{4.3}$ and 10^6. Figure 2 exhibits analogous data generated for regular initial conditions in the Plummer potential. In each case, the initial conditions sampled a phase-space region of size $\Delta r \sim \Delta v \sim 10^{-3}$, with the perturbed orbits being generated from initial conditions displaced from the original initial conditions by a distance $\delta r(0) = 10^{-5}$ in a randomly chosen direction.

It is evident that, for both the ellipsoid and Plummer potentials, the mean separation $\langle \delta r \rangle$ begins by diverging at a rate that is comparable to the value of the largest N-body Lyapunov exponent, χ_N. For the case of the ellipsoid potential, this exponential divergence is (at least for sufficiently large N) eventually replaced by a slower exponential divergence at a rate $\sim \gamma_S$, which persists until δr becomes macroscopic, i.e., comparable to the size of the accessible phase-space region. At this point the exponential divergence is replaced by a slower power-law separation, which proceeds

until δr saturates. For the case of the Plummer potential, the second exponential phase is absent, the initial exponential phase being replaced immediately by a power-law growth. This is especially evident from Figure 3, which plots the same data as Figure 2 on a linear scale.

As noted already, for both regular and chaotic potentials the first exponential phase typically stops once the separation δr becomes large compared with the mean interparticle spacing $\sim n^{-1/3}$, with n a typical number density. For the constant-density ellipsoid, $n^{-1/3} \approx 0.427 N^{-1/3}$. For $N = 10^5$, this corresponds to $n^{-1/3} \approx 0.00919$ and $\ln n^{-1/3} \approx -4.69$; for $N = 10^6$, $n^{-1/3} \approx 0.00427$ and $\ln n^{-1/3} \approx -5.45$. Alternatively, the second, slower exponential phase exhibited by chaotic potentials typically ceases once the separation has become macroscopic, i.e., comparable to the size of the accessible phase-space region. This macroscopic scale appears to coincide with the scale on which two initially nearby orbits evolved in the smooth potential will cease their exponential divergence.

As discussed more carefully in §3, the comparatively sharp break between the first and second phases indicates

Fig. 1.—Mean spatial separation between orbits generated in frozen-N systems from initial conditions separated in configuration space by a distance $\delta r(0) = 10^{-5}$. Each curve was generated by averaging over 100 pairs of initial conditions evolved in N-body realizations of the chaotic triaxial ellipsoid plus black hole potential. The four curves correspond (from top to bottom) to $N = 10^{4.5}$, 10^5, 10^6, and 10^7. The solid line corresponds to a slope of 0.025, generated as a least-squares fit to the $N = 10^6$ data over the interval $32 < t < 128$. The triple-dot–dashed line has a slope of 0.022, equal to the mean value of the smooth potential Lyapunov exponent χ_S. The dashed line has a slope of 0.75, equal to the mean value of the N-body Lyapunov exponent χ_N. The dot-dashed curve overlaying the data for $N = 10^{4.5}$ represents the function $\delta r = A(t-t_0)$ for $A = 0.008$ and $t_0 = 12.0$.

Fig. 2.—Same as Fig. 1, but for orbits in frozen-N realizations of the integrable Plummer density distribution.

Fig. 3.—Same as Fig. 2, but on a linear scale.
that one can implement a de facto distinction between microscopic chaos associated primarily with close encounters and macroscopic chaos associated with the bulk potential, even though the effects of these sources of chaos are not completely decoupled.

It is evident that this prescription for estimating χ_S can only work for comparatively large values of N, for which the typical interparticle spacing is much smaller than the total size of the accessible configuration space region. If this condition is not satisfied, $\delta r(t)$ will become macroscopic almost as soon as it becomes large compared with $n^{-1/3}$, so that the intermediate second stage disappears. For the particular model exhibited in Figure 1, one requires $N > 10^5$ or so in order to obtain a reasonable estimate of χ_S. Indeed, it is evident from the dot-dashed curve in Figure 1 that, after the initial exponential divergence and before the final saturation, the data for $N = 10^4$ can be well fitted by a linear growth law $\delta r = A(t - t_0)$.

Algorithm 2 involves a comparison of orbits generated from a single initial condition evolved in two different frozen-N density distributions that sample the same smooth density. The smooth exponent χ_S also provides information about the rate of divergence associated with orbits generated in two different frozen-N simulations. Specifically, if one computes δr for a collection of orbits evolved in two different frozen-N density distributions associated with the same chaotic potential, one again finds an evolution manifesting the same three stages. This is illustrated in Figure 4, which was generated for the ellipsoid potential for the same initial conditions as Figure 1. Figure 5 exhibits analogous data generated for the Plummer potential. It is evident once again that, for the Plummer potential, the intermediate stage is absent.

Given that χ_S provides information about the rate of divergence of orbits in two different frozen-N backgrounds, each of which can be viewed intuitively as a “perturbation” of the smooth density distribution, one might also expect that χ_S provides information about the rate at which orbits in a single frozen-N simulation diverge from smooth characteristics with the same initial condition. As illustrated in Figure 6, this expectation is in fact correct. The macroscopic power-law divergence between the frozen-N orbit and the corresponding smooth potential characteristic, which parallels the behavior observed if algorithm 1 or 2 is implemented, has been discussed extensively elsewhere (see Fig. 8 in Kandrup & Sideris 2001 and Fig. 2 in Sideris & Kandrup 2002 and the accompanying discussion).

2.3. Why These Algorithms Work

Given the assumption that orbits in an N-body system “feel” two different sorts of chaos, which act on different scales, it is not surprising that one can derive estimates of both the N-body Lyapunov exponent χ_N and the smooth potential χ_S from a comparison of initially proximate orbits in a single frozen-N system. However, the fact that χ_S is also related to the rate of divergence of orbits in different frozen-N simulations is, perhaps, less obvious. The key to understanding this phenomenon is the fact that discreteness...
effects really can be mimicked by dynamical friction and Gaussian white noise in the context of a Langevin description.

Specifically (Sideris & Kandrup 2002), at the level of both individual orbits, as probed, e.g., by Fourier spectra, and orbit ensembles, as probed, e.g., by the efficiency of phase mixing for both regular and chaotic orbit ensembles, discreteness effects associated with an N-body density distribution are extremely well reproduced by Gaussian white noise with a "temperature" $\Theta \sim |E|$, where E is the orbital energy, and a coefficient of dynamical friction $\eta \propto 1/N$. This dependence on N is of course very similar to the scaling $t_R \propto \eta^{-1} \propto N/(\ln N)$ predicted in a conventional Fokker-Planck description, and indeed, given the limited range in N that can be probed numerically (the notion of a smooth potential appears to break down for $N \leq 10^3$; simulations with $N \geq 10^6$ become prohibitively expensive computationally!), the numerical simulations are completely consistent with this scaling.

But why does this explain the observed divergence of orbits in different frozen-N distributions? The crucial point here, as described, e.g., in Habib, Kandrup, & Mahon (1997) or Kandrup & Novotny (2002), is that, viewed mesoscopically, an ensemble of noisy orbits with fixed Θ and η, each generated from the same chaotic initial condition or from a set of very nearby initial conditions, will typically disperse in such a fashion that

$$\dot{r} \propto (\Theta \eta)^{1/2} \exp(\chi_S t).$$

(8)

Given the assumed scaling $\eta \propto 1/N$, it then follows that

$$\ln \dot{r} = \text{const} + \frac{1}{2} \ln \eta + \chi_S t = \text{const} - \frac{1}{2} \ln N + \chi_S t.$$

(9)

Numerical simulations demonstrate that noisy orbits diverge at the same rate χ_S observed for orbits in frozen-N simulations, and the connection between N and η implicit in a Fokker-Planck description makes a specific prediction as to the N-dependence of the exponential prefactor. If discreteness effects really can be modeled as Gaussian noise, \dot{r} should satisfy equation (9). To the extent that the "mean" trajectory associated with the noisy ensemble coincides, at least approximately, with the smooth potential characteristic, the same scaling should also be observed when comparing noisy orbits and smooth potential characteristics.

This scaling implies (1) that $\ln \dot{r}$ should grow linearly at a rate χ_S, independent of N, but (2) that, for fixed t, an increase in N or a decrease in η by an order of magnitude should decrease $\ln \dot{r}$ by $\frac{1}{2} \ln 10 \approx 1.5$. That this scaling is in fact realized for both noisy orbits and orbits in frozen-N backgrounds is evident from Figure 7. Here the solid curves exhibit the results of noisy integrations of the same initial conditions used to generate Figures 1 and 4, all computed with $\Theta = 1.0$ but allowing for values of η extending from 10^{-4} to 10^{-7}. The dotted curves accompanying the upper two curves represent results from frozen-N integrations for $N = 10^{5.5}$ and $10^{5.5}$ (the same data plotted in Fig. 4). The results from Sideris & Kandrup (2002) suggest a best-fit correspondence $\log_{10} \eta = - \log_{10} N + p$, with $p \approx 0.5$, and indeed, it is apparent visually that the noisy and frozen-N curves for, e.g., $\eta = 10^{-5}$ and $N = 10^{5.5}$ are extremely similar.

Presuming that this scaling holds for smaller η as well, the lowest curve in Figure 7 should correspond, at least approximately, to $N = 10^{7.5}$.

3. DISCUSSION

This paper has described two algorithms, which can be used to obtain estimates of the largest (finite-time) Lyapunov exponents χ_S associated with a smooth density distribution from frozen-N realizations of that density. The first involves comparing two orbits in a single frozen-N system generated from nearby initial conditions. The second involves comparing orbits with the same initial condition evolved in two different frozen-N systems, each sampling the same smooth density distribution. The success of the first algorithm emphasizes the fact that detailed information about the bulk potential really is buried in N-body simulation. The success of the latter emphasizes another important point, namely, that smooth potential Lyapunov exponents χ_S also provide information about the divergence of the same initial condition in different N-body systems, i.e., information about the extent to which, viewed mesoscopically, discreteness effects limit the intrinsic reliability of orbits in a pointwise sense. As stressed already, the success of this alternative algorithm reflects the fact that discreteness effects really can be well mimicked by Gaussian white noise in the context of a Fokker-Planck description.

The key point in all this is that, for the case of a chaotic bulk potential, two nearby initial conditions will, when evolved into the future, exhibit a three-stage evolution, reflecting the effects of both microscopic and macroscopic chaos, i.e., microchaos and macrochaos.

1. For early times and small separations, the orbits will diverge exponentially at a rate comparable to a typical N-body Lyapunov exponent χ_N.

2. However, once the separation between the orbits becomes large compared with the typical interparticle spacing, this divergence ceases and is replaced by a slower
divergence at a rate \(\sim \chi_S \), which proceeds until the separation becomes macroscopic.

3. At still later times, the orbits exhibit a more modest power-law divergence.

The computations described here only yielded estimates of finite-time Lyapunov exponents, not the true Lyapunov exponent as defined in a late-time limit, which, given a complex phase space, can be much larger or smaller. This, however, is not necessarily bad. Although old in physical time, galaxies are young objects when expressed in terms of the dynamical time \(t_D \)—typically no more than \(\sim (100–200) t_D \) in age—so that such asymptotic limits are not well motivated physically. However, one might argue that, even though an asymptotic limit is not justified for individual orbits, the true Lyapunov exponent is important in that (see Kandrup & Mahon 1994) it characterizes the average instability associated with the invariant measure, i.e., a uniform sampling of the chaotic portions of the constant energy hypersurface. The obvious point, then, is that to obtain an estimate of the true Lyapunov exponent, it suffices to repeat the calculations described here for an ensemble of initial conditions sampling the constant energy hypersurface, which, as described elsewhere (see Kandrup, Sideris, & Bohn 2002), is straightforward numerically. Alternatively, one can actually compute estimates of \(\chi_S \) in the usual way (Benettin, Galgani, & Strelcyn 1976) by tracking the evolution of a small perturbation that is periodically renormalized, provided only that one makes sure that the perturbation always remains large compared with the scale on which the microscopic chaos saturates, i.e., very large compared with a typical interparticle spacing.

As a practical matter, it would appear that the algorithm can work for any \(N \)-body system in which the typical interparticle spacing is sufficiently small compared to the size of the system. If \(N \) is not sufficiently large, the first exponential phase will not saturate until the separation of the originally proximate orbits has become macroscopic, so that the second exponential phase is lost. For the models considered here, one requires \(N > 10^5 \) or so. For systems manifesting very high density contrasts, e.g., triaxial generalizations of the cuspy Dehnen potentials, one may require much larger \(N \) to obtain an adequate sampling of the central region. In point of fact, however, the requirement of large \(N \) is more than a practical consideration: it would appear that, if \(N \) is too small, the very notion of a bulk potential becomes suspect. One finds, e.g., that, for the ellipsoid plus black hole potential, discreteness effects can be reasonably well modeled by Gaussian white noise for \(N \sim 10^4 \), but that this model fails for substantially smaller \(N \) (Sideris & Kandrup 2002).

Viewed from the standpoint of nonlinear dynamics, the \(N \)-body problem—or at least the frozen-\(N \) model considered here—constitutes an interesting example of a system in which chaos can arise for different reasons on different scales. Because gravity is strong on short scales, one finds generically that close encounters between nearby particles trigger chaos on a timescale that is typically short compared with \(t_D \). As probed by \(N \)-body Lyapunov exponents computed in the usual way, this microchaos does not decrease with increasing \(N \); if anything, \(\chi_N \) increases with increasing \(N \). However, the “range” of the chaos, expressed relative to the total size of the system, does decrease with increasing \(N \), since the typical interparticle spacing scales as \(N^{−1/3} \). Alternatively, because of the long-range character of the gravitational interaction, one also encounters the possibility of macrochaos, which will arise if the bulk density distribution corresponds to a bulk potential that admits global stochasticity. Both forms of chaos can play a nontrivial role in the \(N \)-body problem and, as has been shown here, information about \(\chi_N \) and \(\chi_S \) can both be extracted from a judicious analysis of numerical data.

In this sense, it would appear that, although, strictly speaking, the rate at which \(N \)-body orbits diverge is set by the Lyapunov exponent \(\chi_N \), it may be misleading to assert (Heggie 1991) that the approximation of a smooth potential is useful for studying orbits, but not for studying their divergence.” The smooth potential Lyapunov exponent \(\chi_S \) does indeed provide useful information regarding the divergence of orbits on mesoscopic scales large compared with the interparticle spacing but small compared with the size of the system.

Portions of this paper were written while H. E. K. was a visitor at the Aspen Center for Physics, the hospitality of which is acknowledged gratefully. This work was supported in part by the NSF through AST 00-70809.

REFERENCES

Benettin, G., Galgani, L., & Strelcyn, J.-M. 1976, Phys. Rev. A, 14, 2338
Bertin, G. 2000, Dynamics of Galaxies (Cambridge: Cambridge Univ. Press)
Chandrasekhar, S. 1943, Rev. Mod. Phys., 15, 1
Dehnen, W. 1993, MNRAS, 265, 250
Goodman, J., Heggie, D. C., & Hut, P. 1993, ApJ, 415, 715
Grassberger, P., Badii, R., & Politi, A. 1988, J. Stat. Phys., 51, 135
Habib, S., Kandrup, H. E., & Mahon, M. E. 1997, ApJ, 480, 155
Heggie, D. 1991, in Predictability, Stability, and Chaos in \(N \)-Body Dynamical Systems, ed. A. E. Roy (New York: Plenum), 47
Hensendorf, M., & Merritt, A. D. 2002, ApJ, 580, 606
Hunter, C., & Qian, E. 1993, MNRAS, 263, 401
Kandrup, H. E., & Mahon, M. E. 1994, A&A, 290, 762
Kandrup, H. E., & Novotny, S. J. 2002, preprint (astro-ph/0204019)
Kandrup, H. E., Pogorelov, I. V., & Sideris, I. V. 2000, MNRAS, 311, 719
Kandrup, H. E., & Sideris, I. V. 2001, Phys. Rev. E, 64, 056209
———. 2002, Celest. Mech. Dyn. Astron., 82, 61
Kandrup, H. E., Sideris, I. V., & Bohn, C. L. 2002, Phys. Rev. E, 65, 016214
Kandrup, H. E., & Smith, H., Jr. 1991, ApJ, 374, 255
Lichtenberg, A. J., & Wood, B. P. 1989, Phys. Rev. Lett., 62, 2213
Lieberman, M. A., & Lichtenberg, A. J. 1972, Phys. Rev. A, 5, 1852
Miller, R. H. 1964, ApJ, 140, 250
Pogorelov, I. V. 2001, Ph.D. thesis, Univ. Florida
Rosenbluth, M. N., MacDonald, W. M., & Judd, D. L. 1957, Phys. Rev., 107, 1
Schwarzschild, M. 1979, ApJ, 232, 236
Sideris, I. V., & Kandrup, H. E. 2002, Phys. Rev. E, 65, 066203
Siopis, C., & Kandrup, H. E. 2000, MNRAS, 319, 43