A student who repeatedly gives up e-clinical reasoning exercises at the first mistake, or tries to skip post-patient encounter discussions, certainly needs a closer look...

We thought that the review by Richmond et al offered good insights into teaching of clinical reasoning. As Richmond et al acknowledge, however, they were forced to build their conclusions combining incomplete empirical evidence, theories of learning and inferences from the reviewed studies because students’ characteristics varied amongst experiments and consistent outcomes were not always explicitly measured. We look forward to seeing further assessment of some of their reasonable assumptions in future experimental and/or observational studies.

ORCID
Ligia Maria Cayres Ribeiro https://orcid.org/0000-0002-4277-3066
Alexandre Sampaio Moura https://orcid.org/0000-0002-4818-5425

A plea for contrastive instructions

Wolf E. Hautz | Juliane E. Kämmer

Department of Emergency Medicine, Inselspital, University Hospital Bern, Bern, Switzerland

Correspondence: Wolf E. Hautz, Department of Emergency Medicine, Inselspital, University Hospital Bern, Freiburgstrasse 16c, Bern 3010, Switzerland. Email: wolf.hautz@insel.ch

Hatala and colleagues claimed: ‘to many, the design of medical curricula appears the reverse of common sense,’ with reference to an education that starts with the basic sciences and only at the very end presents students with signs and symptoms of actual patients. Indeed, students may well discover that their knowledge is organised inadequately if they are confronted with a patient with ventricular tachycardia only late in their education and then have to use knowledge acquired long ago in such distant disciplines as physiology, clinical chemistry, pharmacology and internal medicine. Instead, the reverse order - starting from real patient problems and working out the necessary basics from there, so-called problem-based learning - would seem to better result in a medical curriculum informed by common sense.

We have learned time and time again in education, however, that common sense is insufficient. In the interest of reducing cognitive...
In the interest of reducing cognitive load, it would seem advisable to learn about heart conditions by fully immersing oneself in the systematic study of characteristic features... of a particular disease, and mastering it, before moving onto the next one.

We would suggest that, with the exception of table-based instruction, all other formats actually focus learners on the discriminating features of dysrhythmias; they just do so to varying degrees. Although the table used exhaustively characterises all taught dysrhythmias along nine different variables, both the expert-generated schemas and the (expert-derived) salient features reduce this complexity substantially (down to five variables in the schema and only three salient features). The three salient features, however, constitute the majority of information in the schema and are the exact same as the features used to distinguish between dysrhythmias in the worked examples based on discriminating features. The additional information in the latter condition is that different diagnoses are contrasted directly, a task left to the student in the other formats. Apparently, the features experts deem salient for a given diagnosis are those that help them most to distinguish the diagnosis from possible differential diagnoses. Admittedly, this conclusion relies on the examples given in a pair of publications, but we expect this phenomenon to occur quite regularly in training materials and think it plausibly explains why so little difference was seen between training materials built on salient and those built on discriminating features in the study by Thach and colleagues.

The critical question, then, becomes why are so many teaching units and textbooks organised by disease rather than offering a juxtaposition of different causes of similar presentations? One potential cause may be that teachers mistake performance during training...
for actual learning, although many studies find a disconnect or even reverse relationship between the two. Indeed, the study contrasting table-organised disease presentation versus schema-based ECG training (discussed earlier) found no differences in performance during learning, but a substantial difference in subsequent testing. If the structure of our teaching is informed predominantly by the performance gains we concurrently observe, we are likely to choose methods with short-term effects at the expense of actual learning - yet another example where ‘common sense’ can fool us.

... why are so many teaching units and textbooks organised by disease rather than offering a juxtaposition of different causes of similar presentations?

In summary, although common sense may be a reliable advisor on some educational issues, it misleads us on others. This is the very justification for the field of medical education research, and the study by Thach et al is a prime example of the value of empirical research that helps to overcome our mislaid intuitions with imminent implications for educational practice. Let’s move from disease-oriented training towards contrasting diseases with similar presenting complaints.

ORCID
Wolf E. Hautz https://orcid.org/0000-0002-2445-984X
Juliane E. Kämmer https://orcid.org/0000-0001-6042-8453

REFERENCES
1. Hatala RM, Brooks LR, Norman GR. Practice makes perfect: the critical role of mixed practice in the acquisition of ECG interpretation skills. *Adv Health Sci Educ Theory Pract*. 2003;8(1):17-26.
2. Thach TH, Blissett S, Sibbald M. Worked examples for teaching electrocardiogram interpretation: salient or discriminatory features? *Med Educ*. 2020;54(8):720-726.
3. Blissett S, Cavalcanti R, Sibbald M. ECG rhythm analysis with expert and learner-generated schemas in novice learners. *Adv Health Sci Educ Theory Pract*. 2015;20(4):915-933.
4. Mamede S, van Gog T, van den Berge K, et al. Effect of availability bias and reflective reasoning on diagnostic accuracy among internal medicine residents. *JAMA*. 2010;304(11):1198-1203.
5. Schmidt HG, Mamede S, van den Berge K, van Gog T, van Saase JLCM, Rikers RMJP. Exposure to media information about a disease can cause doctors to misdiagnose similar-looking clinical cases. *Acad Med*. 2014;89(2):285-291.
6. Mamede S, de Carvalho-Filho MA, de Faria RMD, et al. ‘Immunising’ physicians against availability bias in diagnostic reasoning: a randomised controlled experiment. *BMJ Qual Saf*. 2020;0:1-10.
7. Soderstrom NC, Bjork RA. Learning versus performance: an integrative review. *Pers Psychol Sci*. 2015;10(2):176-199.

DOI: 10.1111/medu.14183