Representations of $N = 2$ superconformal vertex algebra

Dražen Adamović

Introduction

In the last few years $N = 2$ superconformal algebra has attracted very much interests. The most important step in the representation theory of $N = 2$ superconformal algebra was made in the series of papers [FST], [ST], [FSS1]. It was proved that certain categories of modules of $N = 2$ superconformal algebra and affine Lie algebra $A^{(1)}_1$ are equivalent [FST]. The structure of the singular vectors in highest weight representations and embedding diagrams for Verma modules is also very much understood (cf. [D], [ST]).

In this paper we will investigate the representation theory of $N = 2$ superconformal algebra from the vertex algebra point of view. On the irreducible highest weight module L_c exists a natural structure of vertex operator superalgebra (SVOA) (cf. Section 1). We will classify all irreducible L_c–modules. The problem of the classification of irreducible L_c–modules was initiated by Eholzer and Gaberdiel in [EG]. They proved that if L_c is rational SVOA, then L_c has to be unitary representations, i.e. $c = \frac{3m}{m+2}$ for $m \in \mathbb{N}$. They used the theory of Zhu’s algebra $A(L_c)$, and calculated it in some special cases. Unfortunately, the complicated structure of singular vectors makes the explicit determination of Zhu’s algebra $A(L_c)$ extremely difficult, and they didn’t get the complete classification result.

Instead of explicit calculation of Zhu’s algebra, for problem of the classification of irreducible L_c–modules we use the equivalence of categories from [FST]. We interpret the Kazama–Suzuki and anti Kazama–Suzuki mapping from [FST] in the language of vertex algebras and get embedding results between certain simple vertex operator (super)algebras (cf. Sections 4, 5). In this way we can use the representation theory of VOA $L(m, 0)$ associated to
admissible $A_1^{(1)}$–representation from [AM]. As a result we get the complete classification of irreducible L_c–modules.

Let us explain the classification result in more details. For $m = \frac{t}{u}$ admissible set $c_m = \frac{3m}{m+2}$, $N = 2u + t - 2$ and

$$S^m = \{n - k(m + 2) \mid k, n \in \mathbb{Z_+}, n \leq N, k \leq u - 1\}.$$

Let

$$W^c_m = \left\{ \left(\frac{jk - \frac{1}{2}}{m + 2}, \frac{j - k}{m + 2} \right) \mid j, k \in \mathbb{N}_{\frac{1}{2}}, 0 < j, k, j + k \leq N + 1 \right\},$$

and if $m \notin \mathbb{N}$ let

$$D^c_m = \{(h, q) \in \mathbb{C}^2 \mid q^2 + \frac{4h}{m+2} = \frac{r(r+2)}{(m+2)^2}, r \in S^m \setminus \mathbb{Z}\}.$$

Note that the set W^c_m is finite and the set D^c_m is union of finitely many rational curves.

Let $L_{h,q,c}$ denotes the irreducible highest weight $N = 2$–module with the highest weight (h, q, c) (see Section 1.).

Theorem 0.1 Let $m \in \mathbb{N}$. Then the set

$$\{L_{h,q,c_m} \mid (h, q) \in W^c_m\}$$

provides all irreducible L_{c_m}–modules.

If $m \in \mathbb{N}$ then $L_{h,q,c_m}, (h, q) \in W^c_m$ are all unitary representations with the central charge c_m. So, in that case the irreducible L_{c_m} modules coincide with the unitary representations for $N = 2$ superconformal algebra.

Theorem 0.2 Let $m \in \mathbb{Q}$ is admissible and $m \notin \mathbb{N}$. Then the set

$$\{L_{h,q,c_m} \mid (h, q) \in W^c_m \cup D^c_m\}$$

provides all irreducible L_{c_m}–modules.

SVOA $L_{c_m}, m \notin \mathbb{N}$, has uncountably many non-isomorphic irreducible representations which have a nice description as a union of finite set W^c_m and the infinite set D^c_m which is described with finitely many rational curves.
1 \(N = 2 \) superconformal vertex algebra

In this section we will show that on the vacuum representations of \(N = 2 \) superconformal algebra exists a natural structure of vertex operator super-algebra. This result follows from the results on local generating fields of SVOAs (cf. [K], [L], [P]). This structure was already studied in [EG].

\(N = 2 \) superconformal algebra \(A \) is the infinite-dimensional Lie superalgebra with basis \(L_n, T_n, G^\pm_r, C, n \in \mathbb{Z}, \ r \in \frac{1}{2} + \mathbb{Z} \) and (anti)commutation relations given by

\[
\begin{align*}
[L_m, L_n] &= (m - n)L_{m+n} + \frac{C}{12}(m^3 - m)\delta_{m+n,0} \\
[L_m, G^\pm_r] &= \left(\frac{1}{2}m - r \right)G^\pm_{m+r} \\
[L_m, T_n] &= -nT_{n+m} \\
[T_m, T_n] &= \frac{C}{3}m\delta_{m+n,0} \\
[T_m, G^\pm_r] &= \pm G^\pm_{m+r} \\
\{G^+_r, G^-_s\} &= 2L_{r+s} + (r - s)T_{r+s} + \frac{C}{3}(r^2 - \frac{1}{4})\delta_{r+s,0} \\
[L_m, C] &= [T_n, C] = [G^\pm_r, C] = 0 \\
\{G^+_r, G^+_s\} = \{G^-_r, G^-_s\} &= 0
\end{align*}
\]

for all \(m, n \in \mathbb{Z}, \ r, s \in \frac{1}{2} + \mathbb{Z} \).

We denote the Verma module generated from a highest weight vector \(|h, q, c\rangle \) with \(L_0 \) eigenvalue \(h \), \(T_0 \) eigenvalue \(q \) and central charge \(c \) by \(M_{h,q,c} \). An element \(v \in M_{h,q,c} \) is called singular vector if

\[
L_n v = T_n v = G^\pm_r v = 0, \quad n, r + \frac{1}{2} \in \mathbb{N},
\]

and \(v \) is an eigenvector of \(L_0 \) and \(T_0 \). Let \(J_{h,q,c} \) be the maximal \(U(A) \)-submodule in \(M_{h,q,c} \). Then

\[
L_{h,q,c} = \frac{M_{h,q,c}}{J_{h,q,c}}
\]

is the irreducible highest weight module.

Now we will consider the Verma module \(M_{0,0,c} \). One easily sees that for every \(c \in \mathbb{C} \)

\[
G^\pm_{\frac{1}{2}} |0, 0, c\rangle
\]
are the singular vectors in $M_{0,0,c}$. Set

$$V_c = \frac{M_{0,0,c}}{U(A)G_{-\frac{1}{2}}^+|0,0,c\rangle + U(A)G_{-\frac{1}{2}}^-|0,0,c\rangle}.$$

Then V_c is a highest weight \mathcal{A}–module. Let 1 denote the highest weight vector. Let $L_c = L_{0,0,c}$ be the corresponding simple module. Define the following four vectors in V_c:

$$\tau^\pm = G_{\pm\frac{1}{2}}^\pm 1, \quad j = T_{-1}1, \quad \nu = L_{-2}1,$$

and set

$$G^+(z) = Y(\tau^+, z) = \sum_{n\in\mathbb{Z}} G_{n+\frac{1}{2}}^+ z^{-n-2},$$

$$G^-(z) = Y(\tau^-, z) = \sum_{n\in\mathbb{Z}} G_{n+\frac{1}{2}}^- z^{-n-2},$$

$$L(z) = Y(\nu, z) = \sum_{n\in\mathbb{Z}} L_n z^{-n-2},$$

$$T(z) = Y(j, z) = \sum_{n\in\mathbb{Z}} T_n z^{-n-1}. \quad (1.1)$$

It is easy to see that the fields $G^+(z), G^-(z), L(z), T(z)$ are mutually local and the theory of local fields (cf. [K], [Li], [P]) implies the following result.

Proposition 1.1 There is a unique extension of the fields (1.1) such that V_c becomes vertex operator superalgebra (SVOA). Moreover, L_c is a simple SVOA.

Definition 1.1 Let V be SVOA. We will say that V is $N = 2$ SVOA if there exist vectors $\tau^\pm, \nu, j \in V$ such that components of the fields $Y(\tau^\pm, z), Y(\nu, z), Y(j, z)$ span $N = 2$ superconformal algebra.

Previous definition has the following obvious but important consequence.

Corrolary 1.1 Assume that V is $N = 2$ SVOA. Then we have the following:
(1) V is a $U(A)$–module.

(2) V is a module for the SVOA V_c.

(3) $U(A).1$ is a subalgebra of V, isomorphic to V_c or to certain quotient of V_c.

In what follows will present one construction of $N = 2$ SVOA.

Remark 1.1 In [Z], Zhu constructed an associative algebra $A(V)$ for an arbitrary VOA V and established a one to one correspondence between irreducible representations of V and irreducible representation of $A(V)$. V. Kac and W. Wang extended in [KWn] the definition of Zhu’s algebra to the case of SVOAs. In our case, one can show that the Zhu’s algebra $A(V_c)$ is isomorphic to the polynomial algebra $\mathbb{C}[x,y]$, and Zhu’s algebra $A(L_c)$ is a certain quotient of $\mathbb{C}[x,y]$. This will imply that every irreducible L_c–module has to be the irreducible highest weight $U(A)$–module. Eholzer and Gaberdiel in [EG] starting from physical motivated definition of Zhu’s algebra showed that for non-generic c $A(L_c) = \mathbb{C}[x,y]/I$, where I is an ideal in $\mathbb{C}[x,y]$ generated by two polinomials $p_1(x,y)$, $p_2(x,y)$. They also calculated p_1, p_2 for some special cases (see Table 3.1 in [EG]).

2 Vertex operator algebras associated to affine Lie algebra \hat{sl}_2

In this section we recall the classification of the irreducible modules for VOAs associated to affine Lie algebra $A^{(1)}_1$ obtained by the author and A. Milas in [AM].

Let \mathfrak{g} be a finite-dimensional simple Lie algebra over \mathbb{C}. The affine Lie algebra $\hat{\mathfrak{g}}$ associated with \mathfrak{g} is defined as

$$\mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}c$$
with the usual commutation relations. Let \(g = \mathfrak{n}_- + \mathfrak{h} + \mathfrak{n}_+ \) and \(\hat{g} = \hat{\mathfrak{n}}_- + \hat{\mathfrak{h}} + \hat{\mathfrak{n}}_+ \) be the usual triangular decompositions for \(g \) and \(\hat{g} \). Let
\[P = \mathbb{C}[t] \otimes g \oplus \mathbb{C}c \]
be upper parabolic subalgebra. Let \(U \) be any \(g \)–module. Considering \(U \) as a \(P \)–module, we defined the induced module (so called generalized Verma module) \(M(m, U) = U(\hat{g}) \otimes U(P) U \), where the central element \(c \) acts as multiplication with \(m \in \mathbb{C} \). Clearly \(\hat{g} \)–module \(M(m, U) \) contains a maximal submodule which intersect \(U \) trivially. Let \(L(m, U) \) be the corresponding quotient. If \(U \) is an irreducible \(g \)–module, then \(L(m, U) \) is an irreducible \(\hat{g} \)–module at the level \(m \). For \(\lambda \in \mathfrak{h}^* \) with \(V(\lambda) \) we denote the irreducible highest weight \(g \)–module. Set \(M(m, \lambda) = M(m, V(\lambda)) \). Let \(L(m, \lambda) \) denotes its irreducible quotient.

Theorem 2.1 ([FZ]) Every \(M(m, 0) \) \(m \neq -g \) (where \(g \) denotes dual Coxeter number) has the structure of VOA. Let \(U \) be any \(g \)–module. Then every \(M(m, U) \) is a module for \(M(m, 0) \). In particular \(M(m, \lambda) \) is \(M(m, 0) \)–module. On the irreducible highest weight \(\hat{g} \)–module \(L(m, 0) \) exists the structure of simple VOA.

Let now \(g = sl_2 \), with generators \(e, f, h \) and relations \([e, f] = 2h, [h, e] = 2e, [h, f] = -2f\). Let \(\Lambda_0, \Lambda_1 \) denote the fundamental weights for \(g \), and let \(\omega_1 \) the fundamental weight for \(g \). Let \(r \in \mathbb{C} \). Then \(L(m, V(r\omega_1)) = L(m, V(\lambda)) \) is the irreducible highest weight \(\hat{g} \)–module with the highest weight \((m - r)\Lambda_0 + r\Lambda_1 \).

Definition 2.1 A rational number \(m = t/u \) is called admissible if \(u \in \mathbb{N}, t \in \mathbb{Z}, (t, u) = 1 \) and \(2u + t - 2 \geq 0 \).

Let \(m = t/u \in \mathbb{Q} \) be admissible. We define the following set of weights at the level \(m \):

\[
P^m = \{ \lambda_{m,k,n} = (m - n + k(m + 2))\Lambda_0 + (n - k(m + 2))\Lambda_1, \]
\[
k, n \in \mathbb{Z}_+, n \leq 2u + t - 2, k \leq u - 1 \}.
\]

Set
\[
S^m = \{ n - k(m + 2)|k, n \in \mathbb{Z}_+, n \leq 2u + t - 2, k \leq u - 1 \}.
\]

Remark 2.1 The weights \(\lambda \in P^m \) was introduced in [KZ]. The corresponding modules are called admissible.
The classification of irreducible $L(m,0)$–modules was given in [AM]. Recall the following result.

Theorem 2.2 [AM, Theorem 3.5.3] The set

$$\{L(m,r\omega_1) \mid r \in S^m\}$$

provides all irreducible $L(m,0)$–modules from the category O.

Remark 2.2 Previous theorem was also proved in [DLM2].

Theorem 2.2 shows that admissible representations of level m for \hat{g} can be identified with the irreducible $L(m,0)$–modules in the category O. In the case when $m \in \mathbb{N}$ representations defined with (2.1) are all irreducible modules for VOA $L(m,0)$. In the case $m \notin \mathbb{N}$ and m admissible, VOA $L(m,0)$ has uncountably many irreducible representations outside the category O. The classification of irreducible $L(m,0)$–modules in the category of weight modules was given in [AM]. We will now recall the classification result.

For every $r, s \in \mathbb{C}$ define $E_{r,s} = t^s C[t,t^{-1}]$. Set $E_i = t^{s+i}$. We define $U(\hat{g})$ action on $E_{r,s}$:

$$e.E_i = -(s+i)E_{i-1}, \quad h.E_i = (-2s-2i+r)E_i, \quad f.E_i = (s+i-r)E_{i+1}. \quad (2.2)$$

Set

$$T^m = \{ (r, s) : r \in S^m \setminus \mathbb{Z}, \ s \notin \mathbb{Z}, \ r - s \notin \mathbb{Z} \}.$$

Then $E_{r,s}$ is an irreducible $U(\hat{g})$–module if $(r, s) \in T^m$.

Define $\Omega = ef + fe + \frac{1}{2}h^2$ the Casimir element element of $U(\hat{g})$. The proof of the following lemma is standard.

Lemma 2.1 Let $w \in E_{r,s}$, $w \in V(r\omega_1)$ or $w \in V(r\omega_1)^*$. Then $\Omega w = \frac{r(r+2)}{2}w$.

We recall the following results from [AM, Section 4].

Theorem 2.3 [AM] Assume that m is admissible, $m \notin \mathbb{N}$. Let $r \in S^m \setminus \mathbb{Z}$.

Then \hat{g}–module $L(m, E_{r,s})$ is an module for the VOA $L(m,0)$. Moreover, $L(m, E_{r,s})$ is an irreducible $L(m,0)$–module if and only if $(r, s) \in T^m$.

We need the following consequence of the Theorem 2.3.
Corollary 2.1 Assume that m is admissible, $m \notin \mathbb{N}$. Let $r \in S^m \setminus \mathbb{Z}$. Then for every $\beta \in \mathbb{C}$, there exists an $L(m,0)$-module M and the weight vector $w \in M_0$ such that

$$\Omega|_{M_0} = \frac{r(r+2)}{2} \text{Id}, \quad h(0)w = \beta w.$$

Proof. Let $s = \frac{r-\beta}{2}$ and $M = L(m,E_{r,s})$. Then $M_0 \cong E_{r,s}$. Set $w = E_0$. Then Lemma 2.1 and relation (2.2) imply that

$$\Omega|_{M_0} = \frac{r(r+2)}{2} \text{Id}, \quad h(0)w = \beta w. \quad \square$$

Theorem 2.4 [AM] Let $M = \bigoplus_{n=0}^{\infty} M_n$ be an irreducible $L(m,0)$-module such that M_0 is a weight $U(\mathfrak{g})$-module. The M is one of the following modules:

- $L(m,V(r\omega_1))$, $r \in S^m$,
- $L(m,V(r\omega_1)^*)$, $r \in S^m$,
- $L(m,E_{r,s})$, $(r,s) \in T^m$.

Remark 2.3 Modules $L(m,E_{r,s})$ are not in the category \mathcal{O}. In particular, these modules are not irreducible quotient of any Verma modules over \mathfrak{g}.

In [FST] B. L. Feigin, A. M. Semikhatov, and I. Yu. Tipunin introduced the notion of relaxed Verma module. Our modules $L(m,E_{r,s})$ are irreducible quotients of relaxed Verma modules.

3 Fermionic and lattice construction of vertex superalgebras

In this section we will consider vertex superalgebra F constructed from two charged fermions and vertex superalgebra F^{-1} constructed from rank one
lattice $L = Z\alpha$ such that $\langle \alpha, \alpha \rangle = -1$. In the following sections we will use vertex superalgebras F and F_{-1} for finding the connections between the representation theory of VOA $L(m,0)$ and SVOA L_c.

3.1 Fermionic SVOA F

Recall the construction of fermionic SVOA F. The charged ree fermionic fields are

$$\Psi^\pm(z) = \sum_{i \in \frac{1}{2} + Z} \psi^\pm_i z^{-i - \frac{1}{2}},$$

with the following commutation relations

$$\{\psi^+_i, \psi^-_j\} = \delta_{i,j}, \quad \{\psi^+_i, \psi^+_j\} = 0$$

Let F be the Fock space defined by $\psi^+_i > 0 \psi^-_i = 0$. Then F is a SVOA with the central charge $c = 1$ (see [KWn] and [K] for details).

3.2 Lattice construction of vertex superalgebras

Let L be a lattice. Set $h = C \otimes Z L$ and extend the Z-form $\langle \cdot, \cdot \rangle$ on L to h. Let $\hat{h} = C[t, t^{-1}] \otimes h \oplus C c$ be the affinization of h (see Section 2). We also use the notation $h(n) = t^n \otimes h$ for $h \in h, n \in Z$.

Set

$$\hat{h}^+ = C[t] \otimes h; \quad \hat{h}^- = t^{-1} C[t^{-1}] \otimes h.$$

Then \hat{h}^+ and \hat{h}^- are abelian subalgebras of \hat{h}. Let $U(\hat{h}^-) = S(\hat{h}^-)$ be the universal enveloping algebra of \hat{h}^-. Consider the induced \hat{h}-module

$$M(1) = U(\hat{h}) \otimes_{U(C[t] \otimes h \oplus C c)} C \simeq S(\hat{h}^-) \ (\text{linearly}),$$

where $C[t] \otimes h$ acts trivially on C and c acts on C as multiplication by 1.

Let \hat{L} be the canonical central extension of L by the cyclic group $\langle \pm 1 \rangle$. Form the induced \hat{L}-module

$$C\{L\} = C[\hat{L}] \otimes_{\langle \pm 1 \rangle} C \simeq C[L] \ (\text{linearly}),$$

with the following commutation relations

$$\{\psi^+_i, \psi^-_j\} = \delta_{i,j}, \quad \{\psi^+_i, \psi^+_j\} = 0$$

Let F be the Fock space defined by $\psi^+_i > 0 \psi^-_i = 0$. Then F is a SVOA with the central charge $c = 1$ (see [KWn] and [K] for details).
where $C[\cdot]$ denotes the group algebra and -1 acts on C as multiplication by -1. For $a \in \hat{L}$, write $\iota(a)$ for $a \otimes 1$ in $C\{L\}$. Then the action of \hat{L} on $C\{L\}$ is given by: $a \cdot \iota(b) = \iota(ab)$ and $(-1) \cdot \iota(b) = -\iota(b)$ for $a, b \in \hat{L}$.

Furthermore we define an action of h on $C\{L\}$ by: $h \cdot \iota(a) = \langle h, \bar{a} \rangle \iota(a)$ for $h \in h, a \in \hat{L}$. Define $z^h \cdot \iota(a) = z^{(h, \bar{a})} \iota(a)$.

The untwisted space associated with L is defined to be

$$V_L = C\{L\} \otimes_C M(1) \cong C\{L\} \otimes S(h^-) \text{ (linearly)}.$$

Then $\hat{L}, h, z^h (h \in h)$ act naturally on V_L by acting on either $C\{L\}$ or $M(1)$ as indicated above.

For $h \in h$ set $h(z) = \sum_{n \in Z} h(n) z^{-n-1}$. We use a normal ordering procedure, indicated by open colons, which signify that in the enclosed expression, all creation operators $h(n)$ ($n < 0), a \in \hat{L}$ are to be placed to the left of all annihilation operators $h(n), z^h (h \in h, n \geq 0)$. For $a \in \hat{L}$, set

$$Y(\iota(a), z) = \circ e^f(a(z)-\bar{a}(0)z^{-1}) a z^a \circ.$$

Let $a \in \hat{L}; h_1, \cdots, h_k \in h; n_1, \cdots, n_k \in Z (n_i > 0)$. Set

$$v = \iota(a) \otimes h_1(-n_1) \cdots h_k(-n_k) \in V_L.$$

Define vertex operator

$$Y(v, z) = \circ \left(\frac{1}{(n_1-1)!} \left(\frac{d}{dz} \right)^{n_1-1} h_1(z) \right) \cdots \left(\frac{1}{(n_k-1)!} \left(\frac{d}{dz} \right)^{n_k-1} h_k(z) \right) Y(\iota(a), z) \circ.$$

This gives us a well-defined linear map

$$Y(\cdot, z) : V_L \to (\text{End}V_L)[[z, z^{-1}]]$$

$$v \mapsto Y(v, z) = \sum_{n \in Z} v_n z^{-n-1}, \ (v_n \in \text{End}V_L).$$

Let $\{ \alpha_i | i = 1, \cdots, d \}$ be an orthonormal basis of h and set

$$\omega = \frac{1}{2} \sum_{i=1}^d \alpha_i(-1) \alpha_i(-1) \in V_L.$$

Then $Y(\omega, z) = \sum_{n \in Z} L_n z^{-n-2}$ gives rise to a representation of the Virasoro algebra on V_L and

$$L_0 (\iota(a) \otimes h_1(-n_1) \cdots h_n(-n_k))$$

$$= \left(\frac{1}{2} (\bar{a}, \bar{a}) + n_1 + \cdots + n_k \right) (\iota(a) \otimes h_1(-n_1) \cdots h_k(-n_k)). \ (3.1)$$
Now we will assume that $L = \mathbb{Z}\alpha$ is a rank one lattice. The following theorem is a special case of the results of Kac [K, Proposition 5.5], and Dong and Lepowsky [DL, Remark 6.17, Remark 9.21].

Theorem 3.1 Assume that $L = \mathbb{Z}\alpha$ is a rank one lattice, $\langle \alpha, \alpha \rangle = n$ and n is an integer. Then V_L is vertex superalgebra. Moreover, if L is a positive definite (i.e. $n > 0$) then V_L is vertex operator superalgebra.

Remark 3.1 If $n < 0$, then relation (3.1) gives that V_L is a $1/2\mathbb{Z}$-graded with the respect to L_0 and the weight subspaces are not bounded below. This implies that V_L is vertex superalgebra which is not vertex operator superalgebra (we follow the definitions from [DL] and [Li]).

Remark 3.2 If $\langle \alpha, \alpha \rangle = 1$, then V_L is SVOA which is isomorphic to the SVOA F constructed from two charged fermions. This fact is in conformal field theory known as boson-fermion correspondence. If $\langle \alpha, \alpha \rangle = 3$, then V_L is isomorphic to $N = 2$ SVOA L_2 with $c = 1$ (cf. [K]).

The following discussion is similar as in [DLM]. In [DLM] the authors considered the case of positive definite even lattice L when V_L is VOA. We are interested in the case when L is negative definite lattice of rank one.

Define the Schur polynomials $p_r(x_1, x_2, \cdots) (r \in \mathbb{Z}_+)$ in variables x_1, x_2, \cdots by the following equation:

$$\exp\left(\sum_{n=1}^{\infty} \frac{x_n y^n}{n}\right) = \sum_{r=0}^{\infty} p_r(x_1, x_2, \cdots)y^r. \quad (3.2)$$

For any monomial $x_1^{n_1}x_2^{n_2}\cdots x_r^{n_r}$ we have an element $h(-1)^{n_1}h(-2)^{n_2}\cdots h(-r)^{n_r} \mathbf{1}$ in V_L for $h \in \mathbf{h}$. Then for any polynomial $f(x_1, x_2, \cdots), f(h(-1), h(-2), \cdots) \mathbf{1}$ is a well-defined element in V_L. In particular, $p_r(h(-1), h(-2), \cdots) \mathbf{1}$ for $r \in \mathbb{Z}_+$ are elements of V_L.

Suppose $a, b \in \hat{L}$ such that $\bar{a} = \alpha, \bar{b} = \beta$. Then

$$Y(\iota(a), z)\iota(b) = z^{(\alpha, \beta)} \exp\left(\sum_{n=1}^{\infty} \frac{\alpha(-n) z^n}{n}\right) \iota(ab)$$

$$= \sum_{r=0}^{\infty} p_r(\alpha(-1), \alpha(-2), \cdots) \iota(ab) z^{r+(\alpha, \beta)}. \quad (3.3)$$
Thus
\[\iota(a)_i \iota(b) = 0 \quad \text{for } i \geq -\langle \alpha, \beta \rangle. \quad (3.4) \]

Especially, if \(\langle \alpha, \beta \rangle \geq 0 \), we have \(\iota(a)_i \iota(b) = 0 \) for all \(i \in \mathbb{Z}_+ \), and if \(\langle \alpha, \beta \rangle = -n < 0 \), we get
\[\iota(a)_{i-1} \iota(b) = p_{n-i}(\alpha(-1), \alpha(-2), \cdots) \iota(ab) \quad \text{for } i \in \mathbb{Z}_+. \quad (3.5) \]

From now on we will assume that \(L = \mathbb{Z} \alpha \) and \(\langle \alpha, \alpha \rangle = -1 \).

Set \(F_{-1} = V_L \). Let \(a \in \hat{L} \) such that \(\bar{a} = \alpha \). Set \(e = \iota(a), f = \iota(a^{-1}), k = \alpha(-1)1 \). Set \(e^n = \iota(a^n), f^n = \iota(a^{-n}) \).

The relations \((3.4)\) and \((3.5)\) in the case of vertex superalgebra \(F_{-1} \) give the following proposition.

Proposition 3.1 The following relations are hold in the vertex superalgebra \(F_{-1} \).

\begin{enumerate}
 \item[(a)] \(e_i f = 0 \) for \(i \geq -1 \), \(e_{-2}f = 1 \), \(e_{-3}f = k \);
 \item[(b)] \(f_i e = 0 \) for \(i \geq -1 \), \(f_{-2}e = 1 \), \(f_{-3}e = -k \);
 \item[(c)] \(e_i e = 0 \) for \(i \geq 1 \), \(e_0 e = e^2 \);
 \item[(d)] \(f_i f = 0 \) for \(i \geq 1 \), \(f_0 f = f^2 \);
 \item[(e)] \(k_i e = 0 \) for \(i \geq 1 \), \(k_0 e = -e \);
 \item[(f)] \(k_i f = 0 \) for \(i \geq 1 \), \(k_0 f = f \).
\end{enumerate}

4 Embedding of \(N = 2 \) SVOA \(L_c \) into SVOA \(F \otimes L(m, 0) \)

The tensor product of the SVOA \(F \) and the VOA \(L(m,0) \) is SVOA \(F \otimes L(m,0) \). We will show that the SVOA \(L_{c_m} \) can be realized as a subalgebra of the SVOA \(F \otimes L(m,0) \), where \(c_m = \frac{3m}{m+2} \).
Define the following vectors in $F \otimes L(m, 0)$:

\[
\tau^+ = \psi^{-\frac{1}{2}} \mathbf{1} \otimes e(-1) \mathbf{1}, \\
\tau^- = \frac{2}{m + 2} \psi^{-\frac{1}{2}} \mathbf{1} \otimes f(-1) \mathbf{1}, \\
j = \frac{m}{m + 2} \psi^+ \psi^{-\frac{1}{2}} \mathbf{1} \otimes \mathbf{1} - \frac{1}{m + 2} \mathbf{1} \otimes h(-1) \mathbf{1}, \\
\nu = \frac{1}{m + 2} \mathbf{1} \otimes e(-1) f(-1) \mathbf{1} - \frac{m}{m + 2} \psi^+ \psi^{-\frac{1}{2}} \mathbf{1} \otimes \mathbf{1} \\
- \frac{1}{m + 2} \psi^+ \psi^{-\frac{1}{2}} \mathbf{1} \otimes h(-1) \mathbf{1}.
\]

Remark 4.1 Our relations (4.1)-(4.4) are similar to relations (3.1)-(3.3) from [FST].

The following lemma can be proved by direct calculations.

Lemma 4.1 $F \otimes L(m, 0)$ is $N = 2$ SVOA, i.e. the component of the fields $Y(\tau^+, z)$, $Y(\tau^-, z)$, $Y(j, z)$ and $Y(\omega, z)$ span $N = 2$ superconformal algebra with the central charge $c = c_m$.

Now, Corollary 1.1 and Lemma 4.1 imply that $F \otimes L(m, 0)$ is an $U(\mathcal{A})$–module and $U(\mathcal{A}).(\mathbf{1} \otimes \mathbf{1})$ is an subalgebra of the SVOA $F \otimes L(m, 0)$ isomorphic to certain quotient of the SVOA V_{c_m}.

The mapping $U(\mathcal{A}) \rightarrow F \otimes L(m, 0)$ is a special case of Kazama-Suzuki mapping considered by Feigin, Semikhatov and Tipunin in [FST]. They constructed functor between certain categories of \mathfrak{sl}_2–modules and $N = 2$–modules. They showed that this functor is an equivalence of categories.

Applying this functor in our case we see that $U(\mathcal{A}).(\mathbf{1} \otimes \mathbf{1})$ is an irreducible $U(\mathcal{A})$–module, and it is isomorphic to L_{c_m}. We get the following theorem.

Theorem 4.1 Let $m \neq -2$.

1. SVOA $L_{c_m} \cong U(\mathcal{A}).(\mathbf{1} \otimes \mathbf{1})$ is a subalgebra of SVOA $F \otimes L(m, 0)$.

2. Assume that M is $L(m, 0)$–module. Then $F \otimes M$ is a module for the SVOA L_{c_m}.
Remark 4.2 The irreducibility of the submodule $U(A)(1 \otimes 1)$ was also proved in [EG, Appendix A] using the calculations of vacuum characters (see also [FSST]).

5 Embedding of \hat{sl}_2 VOA $L(m,0)$ into vertex superalgebra $L_c \otimes F_{-1}$.

In this section we will consider tensor product $N = 2$ SVOA L_c with the lattice vertex superalgebra F_{-1}. We will show that the simple VOA $L(m,0)$ is a subalgebra of $L_c \otimes F_{-1}$. Our costruction is the vertex operator algebra interpretation of the ‘anti’-Kazama-Suzuki mapping which are considered in [FST].

Let $m \in \mathbb{C}, m \neq -2$. Recall the definition of $e, f \in F_{-1}$ from Section 3.

Set

$x = G^+_{-\frac{1}{2}}1 \otimes f,$ \hspace{1cm} (5.1)

$y = \frac{m + 2}{2}G^-_{-\frac{1}{2}}1 \otimes e,$ \hspace{1cm} (5.2)

$h = -m1 \otimes \alpha(-1)1 + (m + 2)T_{-1}1 \otimes 1.$ \hspace{1cm} (5.3)

Remark 5.1 The relations (5.1)-(5.3) are similar to relation (3.13) from [FST].

Set $Y(x, z) = \sum_{n \in \mathbb{Z}} x(n) z^{-n-1}, Y(y, z) = \sum_{n \in \mathbb{Z}} y(n) z^{-n-1}, Y(h, z) = \sum_{n \in \mathbb{Z}} h(n) z^{-n-1}$.

Then

$x(n) = \sum_{i \in \mathbb{Z}} G^+_{i + \frac{1}{2}} \otimes f_{n-i-2},$ \hspace{1cm} (5.4)

$y(n) = \frac{m + 2}{2} \sum_{i \in \mathbb{Z}} G^-_{i + \frac{1}{2}} \otimes e_{n-i-2},$ \hspace{1cm} (5.5)

$h(n) = -m \text{Id} \otimes \alpha(n) + (m + 2)T_n \otimes \text{Id}.$ \hspace{1cm} (5.6)

Relations (5.4)-(5.6) and Proposition 3.1 imply the following lemma.
Lemma 5.1

(a) \(x(n)x = 0, \forall n \in \mathbb{Z}_+ \) \(y(n)y = 0 \) \(\forall n \in \mathbb{Z}_+ \),

(b) \(x(n)y = 0 \) for \(n \geq 2 \), \(x(1)y = m1 \), \(x(0)y = h \),

(c) \(h(n)x = 0 \) for \(n \geq 1 \), \(h(0)x = 2x \),

(d) \(h(n)y = 0 \) for \(n \geq 1 \), \(h(0)y = -2y \),

(e) \(h(n)h = 0 \) for \(n \geq 2 \), \(h(1)h = 2m1 \), \(h(0)y = 0 \).

Lemma 5.1 implies that \(L_{cm} \otimes F_{-1} \) is a module for affine Lie algebra \(\hat{\mathfrak{sl}}_2 \) at the level \(m \). The mapping \(U(\hat{\mathfrak{sl}}_2) \rightarrow L_{cm} \otimes F_{-1} \) is a special case of 'anti'-Kazama-Suzuki mapping considered in [FST]. This mapping gives a functor from the category of \(N = 2 \)-modules to the category of \(\hat{\mathfrak{sl}}_2 \)-modules. By using properties of this functor we get that \(U(\hat{\mathfrak{sl}}_2)(1 \otimes 1) \) is an irreducible \(U(\hat{\mathfrak{sl}}_2) \)-module isomorphic to \(L(m,0) \).

We have obtained the following theorem.

Theorem 5.1 Let \(m \in \mathbb{C} \), \(m \neq -2 \), and \(c = cm \).

(1) VOA \(L(m,0) \cong U(\hat{\mathfrak{sl}}_2)(1 \otimes 1) \) is a subalgebra of vertex superalgebra \(L_c \otimes F_{-1} \).

(2) Assume that \(M \) is a module for SVOA \(L_{cm} \). Then \(M \otimes F_{-1} \) is a module for VOA \(L(m,0) \).

6 Modules for SVOA \(L_c \)

The representation theory of the SVOA \(L_c \) with the central charge \(c = cm \) is interesting only in the case when \(m \) is an admissible rational number. Otherwise, \(L_c = V_c \) and every highest weight \(A \)-module is an \(L_c \)-module. In this section we will present a construction of certain set of modules for the SVOA \(L_c \) with the central charge \(c = cm \). This construction is based on the realization of the SVOA \(L_c \) as a subalgebra of the tensor product SVOA \(F \otimes L(m,0) \) and the representation theory of the simple VOA \(L(m,0) \). When \(m \in \mathbb{N} \) then VOA \(L(m,0) \) has finitely many irreducible representations, and we will obtain only finitely many irreducible representations for the SVOA \(L_{cm} \). When \(m \) is admissible rational number and \(m \notin \mathbb{Q} \) then VOA \(L(m,0) \)
has uncountably many irreducible representations (see Section 2), and we will get uncountably many irreducible L_c-representations.

For an irreducible $L(m,0)$–module M, the top level M_0 is an irreducible $U(sl_2)$–module.

Now the relations (4.1)-(4.4) imply the following lemma (see also [EG, Section 4]).

Lemma 6.1 Let M be any $L(m,0)$–module and $w \in M_0$ such that $h(0)w = \beta w$, and $\Omega w = \gamma w$, for every $w \in M_0$. Then $U(A)(1 \otimes w)$ is a highest weight $U(A)$–module with the highest weight h, q, c_m, where

$$h = \frac{\gamma}{2(m+2)} - \frac{\beta^2}{4(m+2)}, \quad q = -\frac{\beta}{m+2}. \quad (6.1)$$

Moreover, L_{h,q,c_m} is an irreducible L_{c_m}–module.

For every $r \in \mathbb{Z}_+$, $m = \frac{t}{u}$ admissible and $i \in \{0,1,\ldots,r\}$ we define

$$h_{i,r} = \frac{r(r+2)}{4(m+2)} - \frac{(r-2i)^2}{4(m+2)},$$

$$q_{i,r} = -\frac{(r-2i)}{m+2}.$$

Set $N = 2u + t - 2$. Note that if $m \in \mathbb{N}$, then $N = m$. Define the following finite set

$$W_{c_m} = \{(h_{i,r}, q_{i,r}) \mid 0 \leq r \leq N, \ 0 \leq i \leq r\}.$$

Assume now that M is an irreducible $L(m,0)$–module such that M_0 is finite-dimensional. Then $M_0 \cong V(r\omega_1)$ for certain $r \in \{0, \ldots, N\}$. Then for every weight vector $w \in M_0$ such that $h(0)w = \beta w$ we have that $\beta = r - 2i$ for certain $i \in \{0, \ldots, r\}$. Now Lemma 6.1 implies the following theorem.

Theorem 6.1 Assume that $m \in \mathbb{Q}$ is admissible. Then for every $(h, q) \in W_{c_m}$, the A–module L_{h,q,c_m} is the irreducible L_{c_m}–module.

Remark 6.1 Theorem 6.1 shows that starting from $L(m,0)$–modules M such that M_0 is finite-dimensional we can construct only finitely many irreducible modules for SVOA L_{c_m}.
We shall now give another parametrisation of the set W^c_m.
Let $N_{\frac{1}{2}} = \{\frac{1}{2}, \frac{3}{2}, \ldots\}$. Set
\[
j = i + \frac{1}{2} \quad k = r + \frac{1}{2} - i.
\]
Then we have that
\[
j, k \in N_{\frac{1}{2}}, \quad 0 < j, k, j + k \leq N + 1,
\]
and obtain
\[
h_{i,r} = \frac{jk - \frac{1}{4}}{m + 2}, \quad q_{i,r} = \frac{j - k}{m + 2}.
\]
We get
\[
W^c_m = \left\{ \left(\frac{jk - \frac{1}{4}}{m + 2}, \frac{j - k}{m + 2} \right) \mid j, k \in N_{\frac{1}{2}}, 0 < j, k, j + k \leq N + 1 \right\},
\]
In the case $m \in \mathbb{N}$ this is exactly the parametrisation of the unitary discrete series of $N = 2$ minimal models (see [4]). So, Theorem 6.1 shows that every unitary minimal model is a module for SVOA L^c_m.

Now we assume that $m = \frac{t}{u}$ is admissible and $m \notin \mathbb{N}$. Then the irreducible $L(m,0)$–modules are given in Theorem 2.4. Starting from $L(m,0)$–modules M such that M_0 is finite-dimensional we constructed finitely many irreducible L^c_m–modules L_{h,q,c_m}^c, $(h, q) \in W^c_m$. Now we consider the case when M_0 is infinite-dimensional.

Proposition 6.1 Assume that $r \in S^m \setminus \mathbb{Z}$, and that (h, q) satisfies the equation
\[
q^2 + \frac{4h}{m + 2} = \frac{r(r + 2)}{(m + 2)^2}.
\]
Then L_{h,q,c_m}^c is an irreducible L^c_m–module.

Proof. Assume that (h, q) satisfies the equation (6.2). Set $\beta = -q(m + 2)$. By using Corollary 2.1 we get that there is a $L(m,0)$–module M and the weight vector $w \in M_0$ such that
\[
\Omega | M_0 = \frac{r(r + 2)}{2} \text{Id}, \quad h(0)w = \beta w.
\]
Since \((h, q)\) satisfies \((6.2)\), we get

\[
q = -\frac{\beta}{m + 2}, \quad h = \frac{r(r+2)}{2(m+2)} - \frac{\beta^2}{4(m+2)}.
\]

Now Lemma \(6.1\) implies that \(L_{h,q,c,m}\) is a \(L_{c,m}\)-module. Irreducibility is clear. \(\square\)

Define the following set

\[
D^{c_m} = \{ (h, q) \in C^2 \mid q^2 + \frac{4h}{m+2} = \frac{r(r+2)}{(m+2)^2}, \quad r \in S^m \setminus Z \}.
\]

Theorem \(6.1\) and Proposition \(6.1\) give the following theorem.

Theorem 6.2 Assume that \(m \in Q\) is admissible and \((h, q) \in W^{c_m} \cup D^{c_m}\). Then \(L_{h,q,c,m}\) is an irreducible \(L_{c,m}\)-module.

Remark 6.2 Theorem \(6.2\) implies that for every admissible nonintegral \(m\), the SVOA \(L_{c,m}\) has uncountably many non-isomorphic irreducible modules. These modules can be parametrized as the union of finitely many rational curves in \(C^2\). So, we have constructed uncountably many irreducible modules over \(N = 2\) superconformal algebra which are annihilated with the fields \(Y(v, z)\), where \(v\) is a vector from the maximal submodule of \(V_{c,m}\). This gives an difference with the case of Virasoro (cf. \([W]\)) and Neveu-Schwarz algebra (cf. \([A]\)) where there exists only finitely many such irreducible modules.

7 Classification of irreducible \(L_{c,m}\)-modules

In this section we will give the complete classification of the irreducible \(L_{c,m}\)-modules. We will prove that \(L_{c,m}\)-modules constructed in Section 6 gives all irreducible modules for SVOA \(L_{c,m}\). The proof of the classification result will use the fact that VOA \(L(m,0)\) is a subalgebra of SVOA \(L_{c,m} \otimes F_{-1}\)-modules and the classification of all irreducible \(L(m,0)\)-modules obtained in \([AM]\).

Let \(g = sl_2\) and \(\hat{g} = \hat{sl}_2\) as before.
Lemma 7.1 Let $c = c_m$ for m admissible. Assume that L_{h, q, c_m} is a L_{c_m}-module. Then we have that
\[
\frac{4h}{m+2} + q^2 = \frac{r(r+2)}{(m+2)^2}
\]
for certain $r \in S^m$.

Proof. Assume that $L_{h, q, c}$ is L_c-module. Let $v_{h, q, c}$ be the highest weight vector in $L_{h, q, c}$. Since $L(m, 0)$ is a subalgebra of $L_c \otimes F_1$ (Theorem 5.1), we have that $L_{h, q, c} \otimes F_1$ is a module for VOA $L(m, 0)$-module. In particular $M = U(\hat{\mathfrak{g}})(v_{h, q, c} \otimes 1)$ is an $L(m, 0)$-module. Set $M_0 = U(\mathfrak{g})(v_{h, q, c} \otimes 1)$. Since
\[(g \otimes t^m)M_0 = 0 \quad \text{for} \quad n \geq 1,
\]
we conclude that the top level of $L(m, 0)$-module M is $M_0 = U(\mathfrak{g})(v_{h, q, c} \otimes 1)$. Then the representation theory of VOA $L(m, 0)$ (see Theorem 2.4) easily implies that M_0 is an irreducible $U(\mathfrak{g})$-module which is isomorphic to one of the following modules:

$V(r\omega_1), V(r\omega_1^*), E_{r,s}$ for $r \in S^m$, $(r, s) \in T^m$.

Let $\Omega = x(0)y(0) + y(0)x(0) + \frac{1}{2}h(0)^2$ be the Casimir. Then Lemma 2.4 imply that
\[
\Omega|_{M_0} = \frac{r(r+2)}{2} \text{Id} \quad \text{for certain} \quad r \in S^m. \quad (7.1)
\]

Let $w \in M_0$. Then there is $f \in U(\mathfrak{g})$ such that $w = f(v_{h, q, c} \otimes 1)$. Since the action of Ω commutes with $U(\mathfrak{g})$, then from relations (5.4)-(5.6) we get
\[
\Omega w = f(\Omega(v_{h, q, c} \otimes 1))
\]
\[
= f(x(0)y(0) + y(0)x(0) + \frac{1}{2}h(0)^2)(v_{h, q, c} \otimes 1)
\]
\[
= (2(m+2)h + \frac{1}{2}(m+2)^2q^2)w. \quad (7.2)
\]

So, we have proved
\[
\Omega|_{M_0} = (2(m+2)h + \frac{1}{2}(m+2)^2q^2) \text{Id}. \quad (7.3)
\]

Now from (7.1) and (7.3) follow that
\[
\frac{4h}{m+2} + q^2 = \frac{r(r+2)}{(m+2)^2}
\]
for certain $r \in S^m$. □
Lemma 7.2 Assume that L_{h,q,c_m} is L_{cm}–module and
\[\frac{4h}{m+2} + q^2 = \frac{r(r+2)}{(m+2)^2} \tag{7.4} \]
for $r \in S^m \cap \mathbb{Z}_+$. Then $(h, q) \in W_{cm}$.

Proof. Let $M = U(\hat{g})(v_{h,q,c} \otimes 1)$ be a $L(m,0)$–module as in the proof of Lemma 7.1. Since in the relation (7.4) we have $r \in \mathbb{Z}_+$, we conclude that M_0 is an irreducible finite-dimensional $U(\mathfrak{g})$–module isomorphic to $V(r\omega_1)$. This implies that the vector $v_{h,q,c} \otimes 1$ is a weight vector of $V(r\omega_1)$, i.e.
\[h(0)(v_{h,q,c} \otimes 1) = (r - 2i)(v_{h,q,c} \otimes 1) \]
for certain $i \in \{0, \ldots, r\}$. Applying the formulae (5.6) for the action of $h(0)$ on $L_{h,q,c} \otimes F_{-1}$ we get $q = \frac{r - 2i}{m+2}$. Now the relation (7.4) implies that $h = \frac{r(r+2)}{4(m+2)} - \frac{(r-2i)^2}{4(m+2)}$, and we conclude that $(h, q) \in W_{cm}$. \[\square \]

Theorem 7.1 Assume that $m \in \mathbb{N}$ and $c = c_m$. Then the set
\[\{L_{h,q,c} \mid (h, q) \in W_{cm}\} \]
provides all L_c irreducible modules for the SVOA L_c. So, irreducible L_c–modules are exactly all unitary modules for $N = 2$ superconformal algebra with the central charge c.

Proof. We proved in Theorem 6.1 that for every $(h, q) \in W_{cm}$, $L_{h,q,c}$ is a L_c–module. It remains to prove that if $L_{h,q,c}$ is a L_c–module, then $(h, q) \in W_{cm}$.

Assume now that $L_{h,q,c}$ is a L_c–module. Then Lemma 7.1 implies that
\[\frac{4h}{m+2} + q^2 = \frac{r(r+2)}{(m+2)^2} \]
for certain $r \in S^m$. Since $S^m \subset \mathbb{Z}_+$ for $m \in \mathbb{N}$, we have that $r \in \mathbb{Z}_+$. Now Lemma 7.2 implies that $(h, q) \in W_{cm}$. \[\square \]

Remark 7.1 Theorem 7.1 shows that SVOA L_{cm} for $m \in \mathbb{N}$ has exactly $\frac{(m+2)(m+1)}{2}$ non-isomorphic irreducible modules.
Theorem 7.2 Assume that $m \in \mathbb{Q}$ is admissible such that $m \notin \mathbb{N}$. Let $c = c_m$. Then the set
\[
\{ L_{h,q,c} \mid (h,q) \in W^c_m \cup D^c_m \}
\]
provides all L_c irreducible modules for the SVOA L_c.

Proof. Theorem 6.2 gives that $L_{h,q,c}$ is a L_c–module for every $(h,q) \in W^c_m \cup D^c_m$. In order to prove theorem we have to prove that if $L_{h,q,c}$ is a L_c–module, then $(h,q) \in W^c_m \cup D^c_m$.

Assume now that $L_{h,q,c}$ is a L_c–module. Then Lemma 7.1 implies that
\[
\frac{4h}{m+2} + q^2 = \frac{r(r+2)}{(m+2)^2}
\]
for certain $r \in S^m$. If $r \in S^m \setminus \mathbb{Z}$, then $(h,q) \in D^c_m$. If $r \in \mathbb{Z}_+$, then from Lemma 7.2 follows that $(h,q) \in W^c_m$. So, we get $(h,q) \in W^c_m \cup D^c_m$. \qed

References

[A] D. Adamović, Rationality of Neveu-Schwarz vertex operator superalgebras, International Mathematics Research Notices, No. 17 (1997), 865-874

[AM] D. Adamović, A. Milas, Vertex operator algebras associated to the modular invariant representations for $A_1^{(1)}$, Mathematical Research Letters 2(1995), 563-575,

[D] M. Dorrzäpf, The embedding structure of unitary $N = 2$ modules, hep-th/9712163

[DL] C. Y. Dong, J. Lepowsky, Generalized vertex algebras and relative vertex operators, Birkhäuser, Boston, 1993

[DLM] C. Y. Dong, H. Li, G. Mason, Certain associative algebras similar to $U(sl_2)$ and Zhu’s algebra $A(V_L)$, J. Algebra 196 (1997) 532-551

[DLM2] C. Y. Dong, H. Li, G. Mason, Vertex operator algebras associated to admissible representations of sl_2, Comm. Math. Phys 184, No. 1, (1997), 65-93
[EG] W. Eholzer and M. R. Gaberdiel, Unitarity of rational $N = 2$ superconformal theories, Commun. Math. Phys. 186 (1997) 61-85

[FST] B. L. Feigin, A. M. Semikhatov, I. Yu. Tipunin, Equivalence between chain categories of representations of affine $sl(2)$ and $N = 2$ superconformal algebras, hep-th/9701043

[FSST] B. L. Feigin, A. M. Semikhatov, V. A. Sirota, I. Yu. Tipunin, Resolutions and characters of irreducible representations of the $N = 2$ superconformal algebra, hep-th/9805179

[K] V. G. Kac, Vertex Algebras for Beginners, University Lecture Series, AMS, vol. 10 (1997)

[KW] V. G. Kac, M. Wakimoto, Modular invariant representations of infinite dimensional Lie algebras and superalgebras, Proc.Natl.Acad.Sci.USA 85, 1988, 4956-4960

[KWn] V. G. Kac, W. Q. Wang, Vertex operator superalgebras and their representations, Contemporary Math , Vol. 175 (1994), 161-191.

[Li] H. Li, Local systems of vertex operators, vertex superalgebras and modules, J. Pure and Appl. Alg. 109 (1996), 143–195.

[P] M. Primc, Vertex algebras generated by Lie algebras, to appear in J. Pure and Appl. Alg.

[ST] A. M. Semikhatov, I. Yu. Tipunin, All singular vectors of $N = 2$ superconformal algebra via the algebraic continuation approach, hep-th/9604176

[W] W. Q. Wang, Rationality of Virasoro Vertex operator algebra, Duke Math. J. IMRN, Vol 71, No.1 (1993), 197-211

[Z] Y. C. Zhu, Vertex operator algebras, modular forms and elliptic curves, PhD Thesis, Yale University, 1990

Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia
E-mail address: adamovic@cromath.math.hr