Blood management in fast-track orthopedic surgery: an evidence-based narrative review

Federico Pennestrì 1, Nicola Maffulli 2,3,4*, Paolo Sirtori 1, Paolo Perazzo 1, Francesco Negrini 1, Giuseppe Banfi 1,5 and Giuseppe M Peretti 1,6

Abstract

Background and purpose: Innovations able to maintain patient safety while reducing the amount of transfusion add value to orthopedic procedures. Opportunities for improvement arise especially in elective procedures, as long as room for planning is available. Although many strategies have been proposed, there is no consensus about the most successful combination. The purpose of this investigation is to identify information to support blood management strategies in fast-track total joint arthroplasty (TJA) pathway, to (i) support clinical decision making according to current evidence and best practices, and (ii) identify critical issues which need further research.

Methods and materials: We identified conventional blood management strategies in elective orthopedic procedures. We performed an electronic search about blood management strategies in fast-track TJA. We designed tables to match every step of the former with the latter. We submitted the findings to clinicians who operate using fast-track surgery protocols in TJA at our research hospital.

Results: Preoperative anemia detection and treatment, blood anticoagulants/aggregants consumption, transfusion trigger, anesthetic technique, local infiltration analgesia, drainage clamping and removals, and postoperative multimodal thromboprophylaxis are the factors which can add best value to a fast-track pathway, since they provide significant room for planning and prediction.

Conclusion: The difference between conventional and fast-track pathways does not lie in the contents of blood management, which are related to surgeons/surgeries, materials used and patients, but in the way these contents are integrated into each other, since elective orthopedic procedures offer significant room for planning. Further studies are needed to identify optimal regimens.

Keywords: Blood management, Fast-track surgery, Orthopedics, Joint replacement, Health care value, Ethics

Introduction

The demand for total joint arthroplasty (TJA) is going to increase between 174 and 673% by 2030 [1, 2]. In the USA, orthopedic procedures account for up to 10% of all packed-red cell transfusions in a year, 39% of which are used in TJA [3]. Blood loss can be extensive, and allogenic blood transfusion (ABT) is commonly performed. ABTs are associated with risks and complications [3–7]; to try and prevent them, it is necessary to invest in increasingly expensive safety procedures [8]. Moreover, the potential side effects of ABTs also impact social costs [9], accounting for the high economic cost of ABTs.

Innovations able to maintain patient safety while reducing the amount of ABTs therefore add value to orthopedic surgery procedures, where value is defined as outcomes achieved per money spent [10]. Opportunities for improvement arise especially in elective procedures, where room for planning is available. Indeed, experience of blood management in 2511 elective procedures reduced the amount of ABTs without increasing the number of recoveries and readmissions, generating an annual saving of $480,000 [11].
Blood management is a pillar of innovative health care models such as bundled payments [12] and fast-track pathways [13–15], as perioperative coordinated care is associated to a better and quicker recovery [15]. Accurate blood management can contribute to home discharge of 85-year-old patients 3 days after surgery [16], as well as to safely perform procedures in outpatient settings [17].

Although many strategies and algorithms have been proposed to reduce ABTs, there is no consensus about the most successful combination, given the different opinions over the same procedure, and the need to adapt the procedures to the characteristics of individual patients [18–20].

The purpose of this investigation is to identify information to support blood management strategies in fast-track TJA pathway, to (i) support clinical decision making according to current evidence and best practices, and (ii) identify critical issues which need further research.

Reviews on blood management in orthopedics surgery [3], elective orthopedic surgery [8], total hip and knee arthroplasty [18, 21], and lower limb joint arthroplasty in a bundled payment [11] have been published. However, no review, to our knowledge, focuses on blood management in fast-track orthopedic pathways, except for general European Guidelines on perioperative venous thromboembolism prophylaxis [22].

Such a review should be helpful in two ways: first, by elaborating a synthesis on what has been published on the topic; second, by pointing out which parts of the perioperative process offer room for improvement.

Materials and methods
We proceeded in four steps.

First, we identified conventional blood management strategies in elective orthopedic procedures, to achieve a general road map to support the research on fast-track innovations. Six articles addressed the perioperative approach to the topic [3, 8, 9, 18, 21, 23]. To provide a clear roadmap and adhering to previous recommendations [24–26], the strategies were divided in preoperative, intraoperative, and postoperative [27].

Second, we searched PubMed, Embase, Ebsco host, and Cochrane reviews for blood management strategies related to fast-track total joint arthroplasty, using the following keywords: fast(-)track surgery, orthopaedics, total joint arthroplasty, blood, blood management. After removing duplicates and studies not related to TJA procedures, 16 articles were eligible. These were read in full text to ensure their consistency with a fast-track TJA pathway.

Third, we designed tables to match every step of the perioperative process with information from the fast-track literature. In each table, information reported in the central column is therefore coming from conventional procedures. When it was not possible to fill the relevant column of the tables with information on fast-track joint arthroplasty arising from the second step, we performed a further search on the topic using PubMed, Embase, Ebsco host and Cochrane reviews databases, bibliographies, and articles suggested by colleagues. These results—which are useful both for clinical and further research—are highlighted in the table with a *.

Fourth, we submitted the information reported in the right column to the opinion of clinicians who operate using fast-track surgery protocols for TJA at our hospital, to (i) check whether the information was sound, (ii) offer them opportunities for improvement, and (iii) identify practices which they already used, as such practices may be not reported in the published literature.

We acknowledge that steps three and four prevent the research from being entirely reproducible, which represents the main limitation of our study, but we believe this disadvantage to be offset by the advantage of providing information which can be missed with conventional research. We therefore opted for a narrative rather than a systematic review. Accordingly, we have adopted four of the six Cochrane recommendations for a systematic review [27] (Table 1).

All searches were completed by January 21st, 2019.

Results
Preoperative blood management
Preoperatively, patients are thoroughly assessed, to decide whether to include them in an accelerated pathway, to plan clinical contingencies, and to educate the patients to take active part in the process. All are key steps in a successful fast-track design (Table 2).

Intraoperative blood management
Intraoperative management plays the most important role in safety, blood loss minimization, and early recovery (Table 3) [18].

Several studies have also investigated the role of intraoperative intermittent pneumatic compression devices (IPCDs) in preventing postoperative venous thromboembolism (VTE), but we report them in the following section because of their association with postoperative pharmacological prophylaxis.

Postoperative blood management
Fifty percent of the total blood loss in TKA occurs postoperatively [165], especially within the first 4 h (Table 4) [166].

Postoperative thromboprophylaxis is the step of perioperative management which received the greatest focus
in fast-track surgery [129]. For practical reasons, we report findings about it in separate tables.

A prospective clinical study of 632 primary TJA patients evaluated the best combination between mechanical treatment (compression) and pharmacological chemoprophylaxis (aspirin and/or low molecular weight heparin) to prevent postoperative thromboembolic events (Table 5) [193].

The evaluation was performed answering four questions.

According to these results, the authors advocate routine use of mobile mechanical compression devices, which are able to prevent those VTEs and complications associated with chemical anticoagulants. This is consistent (i) with recommendations of the American Academy of Orthopedic Surgeons and the American College of Chest Physicians [194, 195], (ii) with a retrospective study of 3379 patients which confirmed mechanical treatment with IPCD to be a fast, easy, cheap, and safe support to postoperative multimodal approach [196], and (iii) with clinical pillars for TJA in a bundled payment paradigm [12].

With regard to accelerated pathways, the European Guidelines on VTE prevention were formulated cross-referencing the risk of the patient with the risk of the procedure, adopting Caprini score as an assessment criterion [22, 197] (*) .

We summarize them in the following table (Table 6).

The benefits of early mobilization and the combination between mechanical measures and aspirin are confirmed by other studies, both in fast-track [198] (*) and in conventional pathways [199].

The first recommendation is based on a weak level of evidence (2C), but is supported by a large prospective study on 17,582 fast-track TJA procedures according to which 90-day incidence of VTE after in-hospital treatment was only 0.40% [53] (*). On the contrary, the second recommendation is based on a moderate level of evidence (2B), and supports the hypothesis of the prospective study: extended treatment for LOS more than 5 days and high-risk patients is strongly recommended.

Other studies suggest warfarin-based chemoprophylaxis for 6 weeks after THA [200], as well as fish oil as a cost-effective supplement to aspirin after TKA [201], prompting for prospective studies to confirm these suggestions.

Discussion and limitations

The purpose of this investigation was to identify information to support blood management strategies in fast-track TJA pathways. The investigation confirmed the lack of comprehensive reviews on the topic, which we divided according to recommendations in preoperative, intraoperative, and postoperative.

The need for blood transfusions remains the most significant predictor of a longer stay (more than 3 days) also within accelerated pathways, occurring between 12% and 22% of THA and TKA. However, it seems not to compromise a high patient satisfaction, a fundamental assessment of quality in fast-track procedures. Waiting for blood transfusions is indeed one of the main reasons for a delay in discharge.

Identifying the reasons behind it makes it possible to assess the best clinical and logistical solution for the patient, starting preoperatively. The need for transfusion is associated with age, comorbidities, ASA score, and anemia (with iron deficiency as the most common and reversible cause). In general, a classic transfusion trigger
Anemia and iron deficiency treatment
Since preoperative and postoperative anemia are generally related, we refer to the latter in the present section.

Blood thinners (antiplatelet, anticoagulant, antithrombotic agents)
These drugs have a key role in preventing cardiac and vascular events [47]. To normalize bleeding, they are usually stopped a few days before surgery [8]... But patients at high cardiovascular risk should not stop aspirin in the perioperative period [48].

Table 2 Preoperative blood management

Content	Conventional studies, guidelines, and recommendations	Fast-track setting
Anemia and iron deficiency treatment	Patients undergoing TKA should meet standard criteria regarding the minimum preoperative Hb [28–30]. Otherwise, surgery should be postponed [29]. Recent guidelines recommend preoperative correction of anemia and iron deficiency in all patients with a Hb < 13 g/dl, [30]. Preoperative assessment of anemic patients should be performed between 30 and 60 days before the procedure, in order to investigate the cause and plan the ideal treatment [24–26, 29, 32–34].	Pre- and postoperative Hb levels (together with the subsequent need for transfusions) play a role on fast-track TJA postoperative outcomes, Length of Stay (LOS) and patient satisfaction [15, 35]. Preoperative anemia is frequently associated with prolonged LOS, 90-day re-admission and blood transfusions, preventing fast-track TJA to express full value both in THA and TKA procedures [31, 36] (*). 549 fast-track TJA procedures on patients aged ≥ 85 years revealed blood-related issues such as postoperative anemia, blood transfusions, and mobilization to be the most relevant medical cause of more than 4 days LOS (27.3%), where preoperative anemia had no significant impact. Preoperative anemia was instead one of the main medical causes of readmissions within 90 days, together with suspected but disproved thromboembolic events. Authors concluded that fast-track TJA aiming at 3 days median LOS and discharge to home is feasible in most patients aged ≥ 85 years, provided attention to pre- and post-operative anemia [16]. With regard to THA, authors show a weak but significant correlation between post-operative Hb and early functional recovery (6-min walk test) in 65 year-old patients, while they did not find any influence between the former and other functional criteria nor quality of life [37].

Iron deficiency treatment
Iron-deficiency anemia is the main cause of low Hb [38, 39]. This is why preoperative iron supplementation is highly suggested in orthopedic procedures, alone or together with intraoperative tranexamic acid (TXA) [40, 41]. (*) Studies report intravenous (IV) iron therapy to be safe and dominate on oral, in particular with patients with malabsorption such as coeliac disease [32, 42, 43]. When using oral supplements for iron storage, a daily dose of 100 mg elemental iron is recommended for 2 to 6 weeks before surgery. When using IV iron supplementation, requirements can be estimated using the Ganzoni equation [44].

Iron deficiency is confirmed to be the most common and reversible cause [45]. Fast-track THA non-anemic patients with iron deficiency were supplemented with oral highly absorbable Sideral® Forte (at least) 4 weeks before surgery. They had a smaller decline in post-operative Hb, shorter hospital stay and reduced blood transfusions, generating a saving of 1763.25 € per patient. Therefore, preoperative sucrosomial iron® is a cost-effective solution for fast-track THA surgery [46]. (*) Preoperative use of anticoagulant agents needs important evaluations in fast-track TJA too [51, 52]. (*) A study on the incidence of stroke within 30-days after 24,682 fast-track TJA found preoperative use of anticoagulant treatment to be the most important risk factor, together with age ≥ 85. Anemia was also included, but not significant. It is therefore important to check for the use of preoperative anticoagulants, and anemia, to avoid cardiovascular perioperative events in elderly patients [53]. (*)
Table 2 Preoperative blood management (Continued)

Content	Conventional studies, guidelines, and recommendations	Fast-track setting
Transfusion protocol agreement	Reasons to variate transfusion practice in orthopedic surgery are not well understood. In case of elective surgery, the need for allogenic transfusion was said to predictable in 97.4% of the cases, according to (i) preoperative anemia, (ii) perioperative blood loss, (iii) transfusion trigger. A survey on clinicians and hospitals in the UK showed transfusion triggers after TJA to variate between 6 to 11 g/dL, calling for shared evidence-based guidelines to improve practice and avoid waste. This is consistent with results from a previous international survey, according to which transfusion triggers vary significantly among different clinicians, hospitals and countries. Systematic review on transfusion drivers in orthopedic surgery shows low Hb and old age to be the main predictors for the need of transfusion, followed by surgical complexity, low body weight, additional comorbidities (rheumatoid arthritis, history of anemia, diabetes, cardiovascular disease, renal failure, or metastasis), and female sex. Studies on restrictive triggers in major orthopedic patients show transfusion rate and deep wound infections to be respectively reduced from 34 to 17%, and from 2.6 to 1.5% [58]. This is confirmed by a prospective study on unilateral knee arthroplasty (UKA), which adopted a postoperative trigger < 8.5 g/dL (or greater in case of a symptomatic patient): transfusion rates were reduced from 31 to 11.9%, blood waste from 60 to 1%, with no adverse outcomes [59]. Current evidence confirms that a restrictive trigger (Hb < 8 g/dL) is safe and cheaper... which is supported by the National Institute for Health and Clinical Excellence even more restrictive recommendations [60].	A study on fast-track TJA predictors of LOS and patient satisfaction found: The need for blood transfusion to be the main predictor of a longer stay (> 3 days) Blood transfusion to occur in 22% and 12% of THA and TKA respectively, although it does not compromise a high satisfaction rank (9.4 and 9.3 up to 10). Transfusions were administered when postoperative hematocrit level (at the first day) was 25% less than preoperative. Transfusions were associated with age, lack of mobility during the first day after surgery, comorbidities, low Hb and increased ASA score [15]. The need for blood transfusion is a predictor that produces significant value in accelerated pathways such as fast-track surgery, since they provide caregivers with useful information to plan for treatments and beds. Waiting for blood transfusion is indeed one of the main reasons to delay discharge [61, 62]. (*)
Erythropoietin (EPO)	EPO reduces post-operative transfusions [63] both in THA and TKA [64–67], even in rheumatoid arthritis patients [67], but it is associated with adverse events such as deep venous thrombosis (DVT), pulmonary embolism (PE), fever, hypokalemia, urinary tract infection, nausea, hypoxia, and vomiting in up to 5% of the population [68–70]. Moreover, it is unclear whether benefits are not offset by costs [71]. Therefore, EPO is suggested in exceptional conditions such as patients with strong anemia who (i) cannot receive blood because of red cell antibodies, (ii) refuse donation because of religious beliefs [18, 60, 72].	The use of TXA has almost eliminated the need for other blood conservation strategies [73, 74], and is therefore a valuable innovation to be applied under a fast-track pathway [75].
Preoperative autologous blood donation (PAD)	Major concerns regarding PAD are related to handling errors, blood infection, and poor cost-effectiveness [76–79]. The overall benefits of PAD in primary joint arthroplasty can outweigh the harms in alloimmune and rare blood types patients [8, 80].	The use of TXA has almost eliminated the need for other blood conservation strategies [73, 74], included PAD, which makes it a valuable innovation under a fast-track pathway [75].
Table 3 Intraoperative blood management

Content	Conventional studies, guide lines, and recommendations	Fast-track setting
Minimally invasive surgery (with or without navigation)	MIS techniques are believed to reduce blood loss in TJA procedures, included the so-called tissue sparing surgery [81–85]. Blood loss after minimally invasive TKA was compared between using or not imageless navigation, together with intraoperative tourniquet but no postoperative drainage. Blood loss was not significantly affected by the use of imageless navigation, following which time of surgery was a bit longer but Hb reduction and amount of blood were similar [86].	Blood loss reduction is included in the benefits of MIS TJA surgery. However, a survey on fast-track TJA procedures concludes that MIS benefits on blood loss are still unclear [87], and more studies should be conducted to assess whether its use in fast-track THA affects overall patient satisfaction [88] (*).
Tourniquet	Although the majority of orthopedic surgeons still widely use it, its role remains controversial. If tourniquet reduces intraoperative blood loss, this gain can be offset by the amount of blood lost after its release [89]. A meta-analysis on 30 RCTs seems to confirm its lack of effectiveness in TKA for better clinical outcomes, less complications and better early post-operative ROM achieved without a tourniquet [90].	The benefits of tourniquet in TKA are also questioned in fast-track surgery. An RCT found knee-extension 48 h after surgery to be reduced in 90% patients regardless to its use. Moreover, tourniquet reduced bleeding during surgery, but had no benefits on postoperative Hb levels, pain, nausea, OS, or periarticular swelling. Finally, using or not a tourniquet had no difference in early postoperative outcomes after surgery [91]. A study on 151 fast-track TKA verified the effectiveness of a tourniquet on post-operative bleeding and rehabilitation together with suction drainage application. Suction drain was associated to lower Hb levels, higher transfusion rate, higher pain and slower functional recovery, while short-term tourniquet did not influence postoperative bleeding and rehabilitation program [92]. (*) However, a protocol for another RCT aims to verify the effectiveness of a tourniquet on patient’s recovery after fast-track TKA, in association to the anaesthetic regimen. Primary outcome is cumulative intravenous oxycodone consumption by patient-controlled analgesia during the first 24 postoperative hours. Secondary outcomes include postoperative nausea and vomiting, the length of hospital stay, the duration of the surgery, blood loss, demand for surgical unit resources, complications, readmissions, postoperative knee function, range of motion, health-related quality of life, prolonged pain, and mortality [93].
Anesthesia	In order to provide guidelines for fast-track TKA, it was conducted a survey on anaesthetic techniques [94]. With regard to blood management, it was found that blood loss is not affected by administering regional (RA) or general anesthesia (GA), while RA is associated with other outcomes such as reduced post-operative pain, length of stay and better rehabilitation [95]. RA is associated with lower thromboembolic complications, even if—if performing a subgroup analysis—anticoagulants were the precaution that made the difference [96]. RA is suggested for TKA patients with comorbidities [97], while there is no evidence enough about their benefits on cardiovascular morbidty, DVT, and PE in association with pharmacological thromboprophylaxis [95]. In case of THK, the same authors did not find evidence enough to compare the benefits of GA or RA on blood loss [98], while others found RA to be better after adjusting for patients’ specific comorbidities and/or when combined with accurate transfusion prevention [99, 100].	With regard to intraoperative blood loss, no difference was found in performing GA (through propofol and remifentanil) or spinal anesthesia (SA) (through intrathecal bupivacaine) However, GA is confirmed to dominate on SA on relevant outcomes for a fast-track pathway, such as early mobilization, less opioid consumption, and reduced pain scores 6h after surgery [101].
Hypotensive epidural anesthesia (HEA)	HEA was developed to combine the advantages of epidural anesthesia (airway problems, reduced rate of DVT) with the benefits of induced hypotension [102]. Although HEA’s use seems to be safe and effective, it’s	There seems to be no reason to choose or not for HEA according to the pathway. Searching the literature for #hipotensive...
Table 3 Intraoperative blood management (Continued)

Content	Conventional studies, guide lines, and recommendations	Fast-track setting
Antifibrinolytic agents	The most common antifibrinolytic agents in use are Tranexamic Acid (TXA) and ε-aminocaproic acid (EACA) [106–108]. TXA is more cost-effective than EACA on reducing perioperative bleeding and transfusions [109]. Aprotroptine is more effective at decreasing blood loss, but increase the risk of cardiovascular complications. Therefore, it has been removed from the market [110–112]. TXA seems therefore to be the best solution. Indeed, meta-analysis show the use of TXA in TKA to be and effective and safe solution in reducing blood loss [113]. A RCT proved TXA to dominate on post-operative cell salvage both in primary THA and TKA [114], which is confirmed by several studies, even if the ideal regime remains controversial, and varies according to topical (intra-articular), general (intra-venous), and amount of administration [73, 74, 115–120]. Multiple intravenous boluses injections (pre-, intra-, postoperatively) proved to dominate on a single intravenous dose [121], as well as a bolus of tranexamic acid followed by infusion was found to be more useful than a single dose in decreasing perioperative blood loss in patients undergoing hip surgeries: it reduced allogenic blood transfusions without increasing risk of thromboembolic events [122]. Intra-articular administration is a safe alternative for TKA patients at risk for intravenous administration [123]: moreover, one intra-articular administration is as effective as three doses regimen in preventing blood loss with no difference in thromboembolic complications [124, 125]. According to another study, mixing IV and IA administration is better than administering them alone [126, 127]. RCTs show the high effectiveness of TXA, both with tourniquet and without [117, 118]. Finally, there is no contraindication for its use in patients with a history of venous thromboembolism [128]. Tranexamic acid has been recognized as a valuable innovation under a bundled payment model [11] (*). Combined intra-articular (IA) and intravenous TXA reduced blood loss in 60 fast-track TKA patients [132]. Adding low-dose epinephrine to TXA on 100 fast-track THA patients did not reduce blood loss during surgery, but reduced it of 180 mL within 24 h [133]. (*). Tranexamic acid is recognized as a valuable innovation under a fast-track THA pathway [75]. Its effectiveness in conventional TKA had also been largely demonstrated [114, 134], supporting it to be a valuable innovation in fast-track TKA too.	Epidural anaeshtesia, #hea, #arthroplasty and #fast(-)track gave no results. Fast-track TJA was soon declared to produce no more complications than conventional procedures, including thromboembolic episodes [129]. TXA is shown to reduce perioperative blood loss (and the following need for allogenic blood transfusion) also in accelerated recoveries and clinical pathways, without increasing the rate of thromboembolism [14, 92, 130, 131]. (*) Combined intra-articular (IA) and intravenous TXA reduced blood loss in 60 fast-track TKA patients [132]. Adding low-dose epinephrine to TXA on 100 fast-track THA patients did not reduce blood loss during surgery, but reduced it of 180 mL within 24 h [133]. (*) Tranexamic acid has been recognized as a valuable innovation under a fast-track TJA pathway [75]. Its effectiveness in conventional TKA had also been largely demonstrated [114, 134], supporting it to be a valuable innovation in fast-track TKA too.
Topical fibrin sealants (TFS)	A meta-analysis on TKA suggests the administration of intravenous TXA to dominate on TFS [135], whose effectiveness and cost-effectiveness are debatable [136, 137].	The eventual use of TFS in revision surgery makes them irrelevant for fast-track pathways, which are dedicated to primary intervention.
(Intraoperative) cell salvage	A meta-analysis on 43 trials show perioperative (intra- and post-) cell salvage to reduce blood loss in both THA and TKA [138]. However, the study points out how more recent trials show blood salvage benefit to be overwhelmed by more effective innovations [139–141].	The use of TXA has almost eliminated the need for other blood conservation strategies [73, 74], included intraoperative blood salvage, and is therefore a valuable innovation to be applied under a fast-track pathway [75]. Intraoperative cell salvage is still useful to those patients who cannot be administered TXA.
Peri/intra-articular injections	Topical hemostatic vasoconstriction Epinephrine is the agent of choice for its topical hemostatic vasoconstriction [142]. Injections of epinephrine together with bupivacaine just before wound closure reduced 32% of drain output, but showed no significant reduction in transfusion rate [143].	A synthesis on fast-track TJA clinical and organizational aspects questioned the value of adding epinephrine during anesthesia [129]. Adding epinephrine to TXA on 100 fast-track THA patients did not reduce intraoperative blood loss, but reduced it of 180 mL within 24 h [133] (*), confirming...
had been established when postoperative hematocrit level at the first day is 25% less than preoperative, while more recent studies found preoperative iron supplement to be a cost-effective solution for non-anemic THA patients. However, fast-track procedures are becoming more and more inclusive, provided that a multidisciplinary management of risk factors is implemented. TKA patients aged ≥ 65 show a weak but significant association between postoperative Hb and 6-min walk test early after surgery, but not with other functional criteria nor quality of life. Postoperative anemia, blood transfusions, and lack of mobilization are the main causes of delayed discharge (27.3 more than 4 days) for THA patients aged ≥ 85, while preoperative anemia is the main medical cause of readmission of the same population within 90 days after the intervention, together with suspected (but disproved) thromboembolic events. Finally, stroke is a recognised event which can occur after both TKA and THA procedures: it is therefore fundamental to check for preoperative anticoagulants to avoid cardiovascular perioperative complications in elderly patients. If these precautions prove successful, fast-track pathways realize the possibility of including older patients in major joint replacement programs [202].
Table 4 Postoperative blood management

Content	Conventional studies, guide lines, and recommendations	Fast-track setting
Postoperative anemia	See Table 2	Intermittent pneumatic compression to reduce bleeding in (fast-track) high risk patients is considered later, together with thromboprophylaxis.
Compression	Inelastic compression bandage after TKA seems not to reduce blood loss, but offers a slight improvement in reducing postoperative pain and early functional outcomes [167, 168]. According to other studies, there is no difference in compression method [169–171].	Cryotherapy has been advocated as a safe and effective strategy to improve fast-track TKA postoperative results, acting on pain, edema, and blood loss.
Cryotherapy	Systematic review on 13 RCTs proved cryotherapy to be effective in reducing blood loss after TKA selected patients, while its benefits remained controversial after THA [172]. Previous systematic review and meta-analysis over 11 TKA studies show only slight short-lasting benefit of cryotherapy in routine procedures [173].	Continuous cold flow device in the acute postoperative setting did not show superiority in comparison with traditional icing regimen. Thus, due to the costs, it should be reserved to selected cases [174].
Limb position	Different knee flexion positions (e.g., hip elevation by 60° combined with 60° knee flexion) have been reported to have promising results with respect to reducing perioperative blood loss [175–177]. Postoperative knee flexion is therefore an easy, inexpensive, and effective method in blood loss reduction [18].	There seems to be no reason to opt for a limb position according to the pathway.
Postoperative cell salvage	PCS effectiveness and cost-effectiveness seem to be maximized in patients with pre-operative Hb 12–15 g/dL, while in patients with pre-operative Hb less than 12 g/dL it should be combined with other techniques [178].	The use of TXA has almost eliminated the need for other blood conservation strategies [73, 74], included postoperative blood salvage, and is therefore a valuable innovation to be applied under a fast-track pathway [73]. Postoperative cell salvage is still useful to those patients who cannot be administered TXA.
Drainage clamping and removal	The introduction of drainage clamping in bilateral total joint arthroplasty proved effective and cost-effective in pioneer studies on TKA and THA [179, 180]. More recent studies on TKA proved its effectiveness to be debatable [181–183], and when effective, proved debatable intervals of administration [184–186]. Today, 3-h interval clamping proved effective in reducing TKA postoperative Hb drop with no increase in thromboembolic episodes and wound complications [187], and proved to be even more effective in combination with TXA, even if there is still need of a major focus on duration and intervals [188, 189]. With regard to THA, 4-h drainage clamping proved potential for routine implementation, for it reduced blood loss and the following need of transfusion with no significant difference on other clinical outcomes [190]. According to a RCT on 224 THA patients, intra-articular soaking of high concentration of TXA with 2-h clamping drainage can reduce the total blood loss and transfusion rates in primary THA without significant increase in postoperative thrombotic complications [191].	A prospective cohort study evaluated the safety and feasibility of early removal of drainage tube in primary fast-track TKA. Wound drainage was removed within 6–12 h after surgery. The procedure could drain the haematoccele and reduce the risk of infection, without increasing the sense of pain, inflammatory reaction, limb swelling, and total blood loss. Removal of drainage tube was therefore safe and feasible within 6–12 h after surgery [192]. According to clinical expertise, drains can be avoided in selected cases, when local conditions free of obvious bleeding following re-established pressure ensure the absence of the risk of hematoma.

Intraoperatively, tranexamic acid is probably the simplest, safe and cost-effective innovation also in case of fast-track procedures, for it almost eliminated the need for other blood conservation strategies. Its benefits increase when combined (i) with local infiltration analgesia, both in hip and knee replacement, as it produces a significant reduction in postoperative Hb levels, pain and length of stay, together with better rehabilitation outcomes; (ii) with low-dose epinephrine in THA, producing a reduction of 180 mL blood loss within 24 h after surgery. The benefits of minimally invasive surgery on blood loss are still debated, and more studies are needed to evaluate its impact on patient satisfaction in fast-track TJA. With regard to TKA, the use of a tourniquet reduces bleeding during surgery, but produces no benefit on knee extension, postoperative Hb levels, pain, and nausea; studies are evaluating its use in combination with multimodal anaesthetic and analgesic regimens. General anesthesia is equivalent to spinal anesthesia with regard to blood loss, but the former dominates the second on several other outcomes, including early
mobilization, amount of opioid consumption, and pain scores 6 h after surgery.

Postoperative thromboprophylaxis is the step which has received greater focus. The European Guidelines on VTE prevention suggest different combinations according to patient characteristics and procedures, underlining the benefits of early mobilization together with mobile mechanical compression and pharmacological treatment. Traditional icing provides a high cost-effective benefit on several postoperative outcomes, such as pain, edema, and blood loss, reserving more complicated cryotherapy devices only to selected patients. Finally, removal of drains is safe and feasible within 6–12 h after TKA, although clinical experts question their usefulness.

Several strategies and treatments such as hypotensive epidural anesthesia, topical fibrin sealants, platelet-rich plasma, sealing femoral tunnel, and limb position shows no variation between conventional or fast-track procedures.

A methodological limitation of the study is its partial reproducibility, as the fast-track information achieved from the first electronic search is integrated with information from further searches, previous knowledge, article references, or clinical tips. This is also why the study may not be exhaustive. However, this methodological limitation likely compensates for the lack of information and systematic approach on several topics in this field.

Conclusion

Many blood management strategies have been put forward to support safe and cheaper orthopedic elective TJA procedures. This article provides a roadmap to more uniform blood management in fast-track orthopedic pathways, pointing out current evidence as well as suggestions for further research.

The difference between conventional and fast-track pathways does not lie in the issues of blood management, which are related to surgical procedures, materials and patients, but in the way in which these contents are integrated with each other, since elective orthopedic procedures offer significant room for planning.

The more fast-track clinical studies are able to add evidence, the greater the benefits for patients, providers, and funders. The next step, therefore, is to put theory into practice [203].

Acknowledgements

Not applicable.

Authors’ contributions

GB, FN, and PP contributed to the design of the work. FP contributed to the acquisition and analysis. PS contributed to the interpretation of data. NM and GP developed the idea, supervised the writing of and revision of the manuscript. All authors read and approved the final manuscript.

Funding

Not applicable.

Availability of data and materials

Not applicable.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Table 5 Mechanical and chemical thromboprophylaxis in 632 primary TJA patients

Low VTE risk procedure	High VTE risk procedure	
Low VTE risk patient	GT	GT + PT (LMWH/ AAS) and/or MT
	PT only in case they have to rest in bed for more than two days, due to particular reasons	
High VTE risk patient	GT + PT (LMWH/AAS) and/or MT	GT + PT (LMWH) + MT

General thromboprophylaxis (GT), early ambulation, optimal hydration, pharmacological thromboprophylaxis (PT), low molecular weight heparin (LMWH) and/or aspirin (AAS), mechanical thromboprophylaxis (MT), intermittent pneumatic compression for high-risk of bleeding.

Table 6 VTE prevention in fast-track and day-surgery orthopedic procedures

Low VTE risk procedure	High VTE risk procedure	
Low VTE risk patient	GT	GT + PT (LMWH/ AAS) and/or MT
	PT only in case they have to rest in bed for more than two days, due to particular reasons	
High VTE risk patient	GT + PT (LMWH/AAS) and/or MT	GT + PT (LMWH) + MT

General thromboprophylaxis (GT), early ambulation, optimal hydration, pharmacological thromboprophylaxis (PT), low molecular weight heparin (LMWH) and/or aspirin (AAS), mechanical thromboprophylaxis (MT), intermittent pneumatic compression for high-risk of bleeding.
References

1. Jasper L, Jones CA, Mollins J, Pohar SL, Beaufre LA. Risk factors for revision of total knee arthroplasty: a scoping review. BMC Musculoskeletal Disord. 2016;17:182.

2. Curtis S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg. Am. 2007;89:780–5.

3. Ponnusamy KE, Kim TJ, Khanuja HS. Perioperative blood transfusions in orthopaedic surgery. J Bone Joint Surg Am. 2014;96:1836–44.

4. Kopolovic I, Ostro J, Tsubota H, Lin Y, Cseti-Gazdewich CM, Messner HA, Keir AK, DenHollander N, Dzik WS, Callum J. A systematic review of transfusion-associated graft-versus-host disease. Blood. 2015;126:406–14.

5. Dwyre D, Fernando LP, Holland PV. Hepatitis B, hepatitis C and HIV transmission-transmitted infections in the 21st century. Vox Sang. 2011;99:100:92

6. Perkins HA, Busch MP. Transfusion-associated infections: 50 years of relentless challenges and remarkable progress. Transfusions. 2010;50:2080–92.

7. Bierbaum BE, Callaghan JJ, Galante JO, Rubash HE, Tooms RE, Welch RB. An analysis of blood management in patients having a total hip or knee arthroplasty. J Bone Joint Surg Am. 1999;81:10–20.

8. Moonen AFCM, Neal TD, Pilot P. Peri-operative blood management in elective orthopaedic surgery. J Bone Joint Surg Am. 2004;86(Suppl 5):S1–6.

9. Song JH, Park JW, Lee YK, Kim IS, Nho JH, Lee KJ, Park KK, Kim Y, Park JH, Han SB. Management of Blood Loss in Hip Arthroplasty: Korean Hip Society Current Consensus. Hip Pelvis. 2017;29:81–90.

10. Porter ME, Tseibség EO. Redefining Competition in Health Care. Harv Bus Rev. 2004;82(4):76.

11. Kanasra A, Andraszewicz J, Krushell R, Lehman A, Greenbaum J, Vistainier P, McGirr J, Mahoney J, Cloutier D, Ehresman K, Stefan MS. Diagnosis and management strategies to reduce transfusions after elective lower-extremity joint arthroplasty surgeries: one tertiary care hospital’s experience with an alternative payment model—a total joint ‘Bundle’. J Am Med Qual. 2017;32:668–74.

12. Kim K, Iorio R. The 5 Clinical Pillars of Value for Total joint arthroplasty in a bundled payment paradigm. J Arthroplasty. 2017;32:1712–6.

13. Benedetti MG, Sarti D, Bonfiglioli Stagni S, Mariani E. Setting, clinical pathways, fast-track and rehabilitation following knee arthroplasty: a literature review. Open Rehabil J. 2015;8:177–24.

14. Stowers MD, Lemanu DP, Coleman B, Hill AG, Munro JT. Review article: Perioperative care in enhanced recovery for total hip and knee arthroplasty. J Orthop Surg (Hong Kong). 2014;22:383–92.

15. Husted H, Holm G, Jacobsen S. Predictors of length of stay and patient satisfaction after hip and knee replacement surgery: fast-track experience in 712 patients. Acta Orthop. 2008;79:168–73.

16. Pitter FT, Jørgensen CC, Lindberg-Larsen M, Kehlet H. Lundbeck Foundation Center for fast-track hip and knee replacement collaborative group. Anaesth Analg. 2016;122:1807–15.

17. Lovecchio F, Avivi H, Sahota S, Beal M, Manning D. Is Outpatient arthroplasty as safe as fast-track inpatient arthroplasty? A propensity score matched analysis. J Arthroplasty. 2016;31:197–201.

18. Tzartzaris T, Vogiatzaki T, Kazakos K, Drossos IG. Perioperative blood management strategies for patients undergoing total knee replacement: Where do we stand now? World J Orthop. 2017;8:441–54.

19. Holt JB, Miller BJ, Callaghan JJ, Clark CR, Willeborg MD, Noeux ND. Minimizing blood transfusion in total hip and knee arthroplasty: a multimodal approach. J Arthroplasty. 2016;31:738–82.

20. Cheren JJJ, Kapadia BH, Issa K, Banerjee S, McIneney VY, Harwin SF, Mont MA. Preoperative blood management strategies for total hip arthroplasty. Surg Technol Int. 2013;23:261–6.

21. Zhang S, Huang Q, Xu B, Ma J, Cao G, Pei F. Effectiveness and safety of an optimized blood management program in total hip and knee arthroplasty. Medicine (Baltimore). 2018;97:e9429.

22. Venclovasius L, Jenny YJ, Kaargaard-Andersen P, Jans Ø. ESA VTE guidelines task force. Eur J Anaesthesiol. 2018;35:134–8.

23. Kamath AF, Pagnano MW. Blood management for patients undergoing total joint arthroplasty. JBI Rev. 2013.

24. Liumbruno GM, Bennadello F, Lattanzio A, Piccoli P, Rossetti G, Italian Society of Transfusion Medicine and Immunohaematology (SIMTI) Working Party. Recommendations for the transfusion management of patients in the peri-operative period. I. The pre-operative period. Blood Transfus. 2011a;9:19–40.

25. Liumbruno GM, Bennadello F, Lattanzio A, Piccoli P, Rossetti G, Italian Society of Transfusion Medicine and Immunohaematology (SIMTI) Working Party. Recommendations for the transfusion management of patients in the peri-operative period. II. The intra-operative period. Blood Transfus. 2011b;9:189–217.

26. Liumbruno GM, Bennadello F, Lattanzio A, Piccoli P, Rossetti G, Italian Society of Transfusion Medicine and Immunohaematology (SIMTI) Working Party. Recommendations for the transfusion management of patients in the peri-operative period. III. The pre-operative period. Blood Transfus. 2011c;9:320–35.

27. Centro Cochrane Italiano. (nd)Available from: https://www.cochrane.it/sites/cochrane.it/files/public/uploads/guidaasorevisioni.pdf. Accessed 10 June 2019.

28. Vaglio G, Prisco D, Biancofiori G, Rafanelli D, Antonioli P, Lisantì M, Andreani L, Basio L, Valiti C, Grazini G, Liumbruno GM. Recommendations for the implementation of a patient blood management programme. Application to elective major orthopaedic surgery in adults. Blood transfus. 2016;4:23–65.

29. Goodnough LT, Maniatis A, Earnshaw C, Benoni G, Beris P, Bisbe E, Fergusson DA, Gombotz H, Habler O, Monk TG, Ozseyer Y, Slappendel R, Szapalski M. Detection, evaluation, and management of preoperative anaemia in the elective orthopaedic surgical patient: NATA guidelines. Br J Anaesth. 2011;106:1–32.

30. McLean E, Cogswell E, Egli I, Woydyla D, de Benoist B. Worldwide prevalence of anaemia, WHO vitamin and Mineral Nutrition Information System, 1993-2005. Public Health Nutr. 2009;12:444–54.

31. Muñoz M, Gomez-Ramirez S, Kozel-Langener S, Shander A, Richards T, Pavía J, Kehlet H, Acheson AG, Evans C, Raaabakdy R, Javidroozi M, Auerbach M. "Fit to Fly:" overcoming barriers to preoperative haemoglobin optimization in surgical patients. Br J Anaesth. 2015;115:35–44.

32. Theusinger OM, Kind SL, Seifert B, Borgeat L, Gerber C, Spahn DR. Patient blood management in orthopaedic surgery: a four-year follow-up of transfusion requirements and blood loss from 2008 to 2011 at the Balgrist University Hospital in Zurich, Switzerland. Blood Transfus. 2014;12:195–203.

33. Rogers BA, Cowie A, Alcock C, Rosson JW. Identification and treatment of anaemia in patients awaiting hip replacement. Ann R Coll Surg Engl. 2008;90:504–7.

34. Rosencher N, Poisson D, Albi A, Aperce M, Barré J, Samama CM. Two injections of erythropoietin correct moderate anemia in most patients awaiting orthopedic surgery. Can J Anaesth. 2005;52:1605.

35. Husted H, Holm G. Fast track in total hip and knee arthroplasty—experiences from Hvidovre University Hospital, Denmark. Injury. 2006;37:531–5.

36. Jans Ø, Jørgensen C, Kehlet H, Johansson PI. Lundbeck Foundation Centre for Fast-track Hip and Knee Replacement Collaborative Group. Transfusion. 2014;54:717–26.

37. Jans Ø, Bandholm T, Kurbegovic S, Soligaard S, Kjaersgaard-Andersen P, Johansson PI, Kehlet H. Lundbeck Foundation Centre for Fast-Track Hip and Knee Replacement Collaborative Group. Blood Management. 2016; 56:917–25.

38. Guralnik JM, Eisenstaedt RS, Ferrucci L, Klein HG, Woodman RC. Prevalence of iron-deficiency anaemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia. Blood. 2004;104:2263–8.

39. Guyatt GH, Patterson C, Ali M, Singer J, Levine M, Turpie I, Meyer R. Diagnosis of iron-deficiency anaemia in the elderly. Am J Med. 1990;88:205–9.
83. Huang HT, Su JY, Chang JK, Chen CH, Wang GI. The early clinical outcomes of minimally invasive quadriceps-sparing total knee arthroplasty: report of a 2-year follow-up. J Arthroplasty. 2007;22:1007–12.

84. Matta JM, Shahidur C, Ferguson T. Single-incision anterior approach for total hip arthroplasty on an orthopaedic table. Clin Orthop Related Res. 2005;431:115–24.

85. Light TR, Keggi KJ. Anterior approach to hip arthroplasty. Clin Orthop Related Res. 1980;152:255–60.

86. Chang CW, Wu PT, Yang CY. Blood loss after minimally invasive total knee arthroplasty: effects of imageless navigation. Kaohsiung J Med Sci. 2010;26:237–43.

87. Lloyd JM, Wainwright T, Middleton RG. What is the role of minimally invasive surgery in a fast track hip and knee replacement? Ann R Coll Surg Engl. 2012;94:146–51.

88. Delanois RE, Gwam C, Mistry JB, Khlopas A, Chughtai M, Ramkumar P, Piuzzi NS, Djurasovic M, Parvizi J. Intra-articular versus intravenous analgesia for primary total knee arthroplasty: a meta-analysis. J Bone Joint Surg Am. 2016;98:2017–26.

89. Ejaz A, Laursen AC, Kappel A, Laursen MB, Jakobsen T, Rasmussen S, Nielsen PT. Faster recovery without the use of a tourniquet in total knee arthroplasty. Acta Orthop. 2014;85:422–6.

90. Tai W, Lin CJ, Jou IM, Chang CW, Lai KA, Yang CY. Tourniquet use in total knee arthroplasty: a meta-analysis. Knee Surg Sport Traumatol Arthrosc. 2011;19:1211–30.

91. Harsten A, Bandholm T, Kehlet H, Toksvig-Larsen S. Tourniquet versus no tourniquet on knee-extension strength early after fast-track total knee arthroplasty: a randomized controlled trial. Knee. 2015;22:126–30.

92. Concina C, Crudeli M, Fabbro S, Gherlinzoni F. Do tourniquet and drainage influence fast track in total knee arthroplasty? Our results in 151 cases. Acta Biomed. 2019;90(1):S123–9.

93. Rantasalo MT, Palanne R, Juutilainen K, Kairaluoma P, Linko R, Reponen E, Haukkasaari M, Aittomaa J, Knuuti J. Tourniquet use for primary total hip arthroplasty: a registry study. J Arthroplasty. 2013;28:366.

94. Matta JM, Shahrdar C, Ferguson T. Single-incision anterior approach for total hip arthroplasty. Clin Orthop Relat Res. 2005;436:194–9.

95. Juelsgaard P, Larsen UT, Sørensen JV, Madsen F, Søballe K. Hypotensive epidural anesthesia replaces tourniquet use in total knee arthroplasty. Arch Orthop Trauma Surg. 2019;139:123–9.

96. Lerman DM, Rapp TB. Minimizing blood loss in orthopaedic surgery the role of antifibrinolytics. Bull Hosp Jt Dis (2013) 2015;73:83–9.3.

97. Pugely AJ, Martin CT, Gao Y, Mendoza-Lattes S, Callaghan JJ. Differences in postoperative autologous blood retransfusion in primary total hip and knee arthroplasty: a randomized controlled trial. Transfusion. 2014;54:31–41.

98. Macfarlane AJR, Prasad AG, Chan VWS, Brull R. Does regional anesthesia performed under lumbar epidural anesthesia in total knee replacement without tourniquet: reduced hypotensive epidural anesthesia replaces tourniquet use in total knee arthroplasty. J Arthroplasty. 2016;31:2458–64.

99. Sun X, Dong Q, Zhang YG. Intravenous versus topical tranexamic acid in primary total hip replacement: A meta-analysis. Medicine (Baltimore). 2016;95:e5573.

100. Drosos GJ, Verveidis A, Valkarins C, Tripisani G, Stavroulakis E, Vogiatzaki T, Kazakos K. A randomized comparative study of topical versus Intravenous tranexamic acid administration in enhanced recovery after surgery (ERAS) total knee replacement. J Orthop. 2016;13:127–31.

101. Tzatzakis AK, Drosos GJ, Kotsios SE, Verveidis AN, Vogiatzaki TD, Kazakos KI. Intravenous vs topical tranexamic acid in total knee arthroplasty without tourniquet application: a randomized controlled study. J Arthroplasty. 2016;31:2458–64.

102. Sun X, Dong Q, Zhang YG. Intravenous versus topical tranexamic acid in primary total hip replacement: A systematic review and meta-analysis. Int J Surg. 2016;32:10–8.

103. Hsu CH, Lin PC, Kuo FC, Wang JW. A regime of two intravenous injections of tranexamic acid reduces blood loss in minimally invasive total hip arthroplasty: a prospective randomised double-blind study. Bone Joint J. 2015;97-B:695–10.

104. Xie J, Ma J, Yao H, Yue C, Pei F. Multiple boluses of intravenous tranexamic acid to reduce hidden blood loss after primary total knee arthroplasty without tourniquest: a randomized clinical trial. J Arthroplasty. 2016;31:2458–64.

105. Thipparampalli AK, Guralja I, Gopinath R. The effect of different dose regimens of tranexamic acid in reducing blood loss during hip surgery. Indian J Anaesth. 2017;61:235–9.

106. Chen JY, Chiia SL, Lo NN, Yeo SJ. Intra-articular versus intravenous tranexamic acid in primary total knee replacement. Ann Transl Med. 2015;3:33;
Voorn VMA, Marang-van de Mheen PJ, van der Hout A, Hofstede SN, So-Osman C, Vliet Vlieland TPMM, Nelissen RGHH, van Gemert AW, Scott NB. An enhanced recovery programme for primary total knee arthroplasty in the United Kingdom—follow up at one year. Knee. 2012;19:525–9.

Maliya A, Martin K, Harper L, Muller SD, Emmerson KP, Paragting PF, Reed MR. Enhanced recovery program for hip and knee replacement reduces death rate. Acta Orthop. 2011;82:577–81.

Nielsen CS, Jans Ò, Østnes T, Foss NR, Troelsen A, Husted H. Combined intra-articular and intravenous acid reduces blood loss in total knee arthroplasty: a randomized, double-blind, placebo-controlled trial. J Bone Joint Surg Am. 2016;98:835–41.

Jans Ò, Grevestad U, Mandæ H, Kehlet H, Johansson PI. A randomized trial of the effect of low dose epinephrine infusion in addition to tranexamic acid on bloos loss during total hip arthroplasty. Br J Anaesth. 2016;116:357–62.

Kelsey TC, Tucker KK, Adams MJ, Dalury DF. Use of tranexamic acid results in decreased blood loss and decreased transfusions in patients undergoing staged total knee arthroplasty. Transfusion. 2014;54:26–30.

Gao F, Ma J, Sun W, Guo W, Li Z, Wang W. Topical fibrin sealant versus intravenous tranexamic acid for reducing blood loss following total knee arthroplasty: a systematic review and meta-analysis. Int J Surg. 2016;32:31–7.

Choufani C, Barbier O, Bajard X, Ollat D, Versier G. Medical and economic impact of a haemostatic sealant on the rate of transfusion after total knee arthroplasty. Transfus Clin Biol. 2015;22:22–9.

Randelli F, D’Anchise R, Ragone V, Serrao L, Cabitza P, Randelli P. Is the newest fibrin sealant an effective strategy to reduce blood loss after total knee arthroplasty? A randomized controlled study. J Orthop Surg. 2014;29:1516–20.

van Bodegom-Vos L, Voon VM, So-Osman C, Vliet Vlieland TP, Dahan A, Koopman-van Gemert AW, Vehmeijer SB. Cell salvage in hip and knee arthroplasty: a meta-analysis of randomized controlled trials. PLoS One. 2013;8:e55073 Epub 2013 Jan 25.

Markar SR, Jones GG, Karthikesalingam A, Segaren N, Patel RV. Transfusion and blood transfusion for hip and knee arthroplasty. Cochrane Database Syst Rev. 2016;13(Suppl 10):CD001888 Epub 2016 Jun 14.

Giovenoldi MD, Gribnau AJ, Ubbink DT. Topical haemostatic agents for blood loss in patients undergoing total knee arthroplasty: an analysis of 1,115 patients. Knee Surg Sports Traumatol Arthrosc. 2012;20:1766–72.

Carless PA, Henry DA, Moxey AJ, O’Reilly J. Enhanced thermal sealing. Ann Thorac Surg. 2002;74:1671–6.

Saltzman BM, Oni AK. A review of bipolar sealers use in modern total hip arthroplasty. Ann Orthop Rheumatol. 2014;2:1015.

Gardner MJ, Demetraopoulos D, Kiechler PK, Moor AP. The efficacy of autologous platelet gel in pain control and blood loss in total knee arthroplasty: a randomized, double-blind, placebo-controlled trial. J Bone Joint Surg Am. 2017;99:1483–7.

Guerreiro JP, Daniell MV, Queizao DA, Defrene E, Ferreira RR. Platelet-rich plasma (PRP) applied during total knee arthroplasty. Rev Bras Ortop. 2015;50:196–94.

Tingstad EM, Pratt SN, Hildenbrand KL, O’Malley BA, Mitchell ER, Gaddis CE, Jacobson CA. Platelet-rich plasma does not decrease blood loss in total knee arthroplasty. Orthopedics. 2015;38(e434–4.

Schonauer C, Tessitore E, Barbagallo G, Albanez V, Moraci A. The use of local agents: bone wax, gelatin, collagen, oxidized cellulose, Eur Spine J. 2004;13(Suppl 1):S89–96.

Moo IH, Chen JQ, Pagkliwaga EH, Tan SW, Poon KB. Bone wax is effective in reducing blood loss after total knee arthroplasty. J Arthroplasty. 2017;32:1483–7.

Solomon LB, Guevara C, Bühringer L, Howie DW, Byard RW, Beck M. Does bone wax induce a chronic inflammatory articular reaction? Clin Orthop Relat Res. 2012;470:3207–12.

Qian T, Ping S, Gang Z, Hua-Zi X, Hai-Xiao L. Extramedullary versus intramedullary femoral alignment guides: a 15-year follow-up of survivorship. J Arthroplasty. 2011;26:591–7.

Senthil Kumar G, Von Arx OA, Pozo JL, Galley MR, Malinzak RA. Intramedullary versus extramedullary femoral alignment guides: a 15-year follow-up of survivorship. J Arthroplasty. 2011;26:591–7.

Sehat KR, Evans RL, Newman JH. Hidden blood loss following hip and knee arthroplasty: a meta-analysis of randomized controlled trials. J Orthop Surg Res. 2017;12:82.

Munk S, Jensen NJ, Andersen I, Kehlet H, Hansen TB. Effect of compression bandage improves local infiltration analgesia in total knee arthroplasty. Acta Orthop Suppl. 2014;83:168.

Gardner MJ, Demetraopoulos D, Kiechler PK, Moor AP. The efficacy of autologous platelet gel in pain control and blood loss in total knee arthroplasty: a randomized, double-blind, placebo-controlled trial. J Bone Joint Surg Am. 2017;99:1483–7.
172. Ni SH, Jiang WT, Guo L, Jin YH, Jiang TL, Zhao Y, Zhao J. Cryotherapy on postoperative rehabilitation of joint arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2015;23:3354–61.

173. Adie S, Naylor JM, Harris IA. Cryotherapy after total knee arthroplasty: a systematic review and meta-analysis of randomized controlled trials. J Arthroplasty. 2010;25:709–15.

174. Ruffelli A, Castagnini F, Traina F, Cometi I, Fenga D, Giannini S, Faldini C. Temperature-controlled continuous cold flow device after total knee arthroplasty: a randomized controlled trial study. J Knee Surg. 2017;30:675–81.

175. Wu Y, Yang T, Zeng Y, Li H, Li C, Shen B. Effect of different postoperative limb positions on blood loss and range of motion in total knee arthroplasty: an updated meta-analysis of randomized controlled trials. Int J Surg. 2017;37:15–23.

176. Faldini C, Traina F, De Fine M, Pedrini M, Sambri A. Post-operative limb position can influence blood loss and range of motion after total knee arthroplasty: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2015;23:852–9.

177. Yang Y, Yong-Ming L, Pei-jian D, Jia L, Ying-ze Z. Leg position influences early blood loss and functional recovery following total knee arthroplasty: a randomized study. Int J Surg. 2015;23(PT A):82–6.

178. Muñoz M, Ariza D, Campos A, Martin-Montañez E, Pavia J. The cost of post-operative shed blood salvage after total knee arthroplasty: an analysis of 1,093 consecutive procedures. Blood Transfus. 2013;11:260–71.

179. Kim H, Cho SH, Kim RS. Drainage versus non-drainage in simultaneous bilateral total knee arthroplasties. Clin Orthop Related Res. 1998;347:188–93.

180. Kim YH, Cho SH, Kim RS. Drainage versus non-drainage in simultaneous bilateral total hip arthroplasties. J Arthroplasty. 1998;13:156–61.

181. Tai TW, Jou IM, Chang CW, Lai KA, Yang CY. Non-drainage is better than 4-hour clamping drainage in total knee arthroplasty. Orthopedics. 2010;33(12):e2195–7.

182. Esler CN, Blakeley C, Fiddian NJ. The use of a closed-suction drain in total knee arthroplasty. A prospective, randomised study. J Bone Joint Surg Br. 2003;85:215–7.

183. Mengal B, Aebi J, Rodriguez A, Lemaire A. A prospective randomized study of wound drainage versus non-drainage in primary total hip or knee arthroplasty. Rev Chir Orthop Reparatrice Appar Mot. 2001;87:29–39.

184. Stucinskas J, Tarasevicius S, Cebatonius A, Robertsson O, Smailys A, Wingsstrand H. Conventional drainage versus four hour clamping drainage after total knee arthroplasty in severe osteoarthritis: a prospective, randomised trial. Int Orthop. 2009;33:1275–8.

185. Raleigh E, Hing CB, Hanusiewicz AS, Fletcher SA, Price R. Drain clamping in knee arthroplasty, a randomized controlled trial. ANZ J Surg. 2007;77:333–5.

186. Yamada K, Imazu I, Uemura M, Makada N, Kim Y. Comparison between 1-hour and 24-hours drain clamping using diluted epinephrine solution after total knee arthroplasty. J Arthroplasty. 2011;26:e58–62.

187. Pennestrì et al. Journal of Orthopaedic Surgery and Research (2019) 14:263

188. Wu Y, Yang T, Zeng Y, Zhou Z, Wu Z, Zhu C, Yang D, Li G. Efficacy of a four-hour drainage clamping technique in the reduction of blood loss following total hip arthroplasty: a prospective cohort study. Med Sci Monit. 2017;23:2708–14.

189. Xu X, Li X, Liu W, Wang Z. Longtime soaking of high concentration tranexamic acid in total hip arthroplasty: A prospective randomized controlled trial in 224 patients. Pak J Med Sci. 2015;31:306–11.

190. Zhang S, Xu B, Huang Q, Yao H, Xie J, Pei F. Early Removal of drainage tube after fast-track primary total knee arthroplasty. J Knee Surg. 2017;30:571–6.

191. Arsoy D, Gori NJ, Wootton ST. Mobile compression reduces bleeding-related readmissions and wound complications after THA and TKA. Clin Orthop Relat Res. 2018;476:381–7.

192. Geerts WH, Pineo GF, Heit JA, Berquist D, Lassen MR, Colwell CW, Ray JG. Prevention of venous thromboembolism: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest. 2004;126:3385–405.

193. Nicolaides AN, Breddin HK, Fareed J, Goldhaber S, Haas S, Hull R, Kalodiki E, Myers K, Samama M, Sasahara A. Cardiovascular disease educational and research trust and the international union of angiology. Prevention of venous thromboembolism. International Consensus Statement. Guidelines compiled in accordance with the scientific evidence. Int Angiol. 2001;20:1–37.

194. Tyagi V, Tomaszewski P, Lukasiewicz A, Theriault S, Pelker R. The role of intraoperative intermittent pneumatic compression devices in venous thromboembolism prophylaxis in total hip and total knee arthroplasty. Orthopedics. 2018;41:e98–e103.

195. Captini JA. Thrombosis risk assessment as a guide to quality patient care. Dis Mon. 2005;51:70–8.

196. Husted H, Otte KS, Kristensen BB, Ørnsnes T, Wong C, Kehlet H. Low risk of thromboembolic complications after fast-track hip and knee arthroplasty. Acta Orthop. 2010;81:600–5.

197. Chandra Sekaran S, Ariaratnam SK, Tsung J, Dickson D. Early mobilisation after total knee replacement reduces the incidence of deep venous thrombosis. ANZ J Surg. 2009;79:526–9.

198. Wellman SS, Murphy AC, Gulyanski D, Murphy SB. Implementation of an accelerated mobilization protocol following primary total hip arthroplasty: impact on length of stay and disposition. J Surg Res. 2011;184:90.

199. Bonutti PM, Sodhi N, Patel YH, Sultan AA, Khlopas A, Kolisek FR, Williams N, Mont MA. Novel venous thromboembolic disease (VTED) prophylaxis for total knee arthroplasty-aspirin and fish oil. Ann Transl Med. 2017;5(Suppl 3):S30.

200. Roberts M, Ahya R, Greaves M, Maffulli N. A one-centre prospective audit of peri- and postoperative blood loss and transfusion practice in patients undergoing hip or knee replacement surgery. Ann R Coll Surg Engl. 2000;82:8–4.

201. Voorn VMA, van Bodegom-Vos L, So-Osman C. Towards a systematic approach for (de)implementation of patient blood management strategies. Transfus Med. 2018;28:158–67.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.