Search for $B \to \chi_c K^{(*)}$ Decays

The BABAR Collaboration

March 25, 2022

Abstract

We report on the search for the factorization suppressed decays $B \to \chi_{c0} K^{(*)}$ and $B \to \chi_{c2} K^{(*)}$, with χ_{c0} and χ_{c2} decaying into $J/\psi \gamma$. We use a sample of 124 million BB events collected with the BABAR detector at the PEP-II storage ring at the Stanford Linear Accelerator Center. No significant signal is found and upper bounds for the branching fractions are obtained. All results are preliminary.

Submitted to the 32nd International Conference on High-Energy Physics, ICHEP 04, 16 August—22 August 2004, Beijing, China

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Work supported in part by Department of Energy contract DE-AC03-76SF00515.
The BABAR Collaboration,

B. Aubert, R. Barate, D. Boutigny, F. Couderc, J.-M. Gaillard, A. Hicheur, Y. Karyotakis, J. P. Lees, V. Tisserand, A. Zghiche

Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France

A. Palano, A. Pompili

Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy

J. C. Chen, N. D. Qi, G. Rong, P. Wang, Y. S. Zhu

Institute of High Energy Physics, Beijing 100039, China

G. Eigen, I. Ofte, B. Stugu

University of Bergen, Inst. of Physics, N-5007 Bergen, Norway

G. S. Abrams, A. W. Borgland, A. B. Breon, D. N. Brown, J. Button-Shafer, R. N. Cahn, E. Charles, C. T. Day, M. S. Gill, A. V. Gritsan, Y. Groysman, R. G. Jacobsen, R. W. Kadel, J. Kadyk, L. T. Kerth, Yu. G. Kolomensky, G. Kukartsev, G. Lynch, L. M. Mir, P. J. Oddone, T. J. Orimoto, M. Pripstein, N. A. Roe, M. T. Ronan, V. G. Shelkov, W. A. Wenzel

Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA

M. Barrett, K. E. Ford, T. J. Harrison, A. J. Hart, C. M. Hawkes, S. E. Morgan, A. T. Watson

University of Birmingham, Birmingham, B15 2TT, United Kingdom

M. Fritsch, K. Goetzen, T. Held, H. Koch, B. Lewandowski, M. Pelizaues, M. Steinke

Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany

J. T. Boyd, N. Chevalier, W. N. Cottingham, M. P. Kelly, T. E. Latham, F. F. Wilson

University of Bristol, Bristol BS8 1TL, United Kingdom

T. Cuhadar-Donszelmann, C. Hearty, N. S. Knecht, T. S. Mattison, J. A. McKenna, D. Thiessen

University of British Columbia, Vancouver, BC, Canada V6T 1Z1

A. Khan, P. Kyberd, L. Teodorescu

Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom

A. E. Blinov, V. E. Blinov, V. P. Druzhinin, V. B. Golubev, V. N. Ivanchenko, E. A. Kravchenko, A. P. Onuchin, S. I. Serednyakov, Yu. I. Skovpen, E. P. Solodov, A. N. Yushkov

Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia

D. Best, M. Bruinsma, M. Chao, I. Eschrich, D. Kirkby, A. J. Lankford, M. Mandelkern, R. K. Mommsen, W. Roethel, D. P. Stoker

University of California at Irvine, Irvine, CA 92697, USA

S. D. Foulkes, J. W. Gary, B. C. Shen, K. Wang

University of California at Los Angeles, Los Angeles, CA 90024, USA

C. Buchanan, B. L. Hartfiel

University of California at Los Angeles, Los Angeles, CA 90024, USA

D. Best, M. Bruinsma, M. Chao, I. Eschrich, D. Kirkby, A. J. Lankford, M. Mandelkern, R. K. Mommsen, W. Roethel, D. P. Stoker

University of California at Irvine, Irvine, CA 92697, USA

A. Khan, P. Kyberd, L. Teodorescu

Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom

D. Best, M. Bruinsma, M. Chao, I. Eschrich, D. Kirkby, A. J. Lankford, M. Mandelkern, R. K. Mommsen, W. Roethel, D. P. Stoker

University of California at Irvine, Irvine, CA 92697, USA

University of California at Los Angeles, Los Angeles, CA 90024, USA

University of California at Riverside, Riverside, CA 92521, USA

2
D. del Re, H. K. Hadavand, E. J. Hill, D. B. MacFarlane, H. P. Paar, Sh. Rahatlou, V. Sharma

University of California at San Diego, La Jolla, CA 92093, USA

J. W. Berryhill, C. Campagnari, B. Dahmes, O. Long, A. Lu, M. A. Mazur, J. D. Richman, W. Verkerke

University of California at Santa Barbara, Santa Barbara, CA 93106, USA

T. W. Beck, A. M. Eisner, C. A. Heusch, J. Kroseberg, W. S. Lockman, G. Nesom, T. Schalk, B. A. Schumm, A. Seiden, P. Spradlin, D. C. Williams, M. G. Wilson

University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, CA 95064, USA

J. Albert, E. Chen, G. P. Dubois-Felsmann, A. Dvoretskii, D. G. Hitlin, I. Narisky, T. Piatenko, F. C. Porter, A. Ryd, A. Samuel, S. Yang

California Institute of Technology, Pasadena, CA 91125, USA

S. Jayatilleke, G. Mancinelli, B. T. Meadows, M. D. Sokoloff

University of Cincinnati, Cincinnati, OH 45221, USA

T. Abe, F. Blanc, P. Bloom, S. Chen, W. T. Ford, U. Nauenberg, A. Olivas, P. Rankin, J. G. Smith, J. Zhang, L. Zhang

University of Colorado, Boulder, CO 80309, USA

A. Chen, J. L. Harton, A. Soffer, W. H. Toki, R. J. Wilson, Q. Zeng

Colorado State University, Fort Collins, CO 80523, USA

D. Altenburg, T. Brandt, J. Brose, M. Dickopp, E. Feltresi, A. Hauke, H. M. Lackner, R. Müller-Pfefferkorn, R. Nogowski, S. Otto, A. Petzold, J. Schubert, K. R. Schubert, R. Schwierz, B. Spaan, J. E. Sundermann

Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany

D. Bernard, G. R. Bonneaud, F. Brochard, P. Grenier, S. Schrenk, Ch. Thiebaux, G. Vasileiadis, M. Verderi

Ecole Polytechnique, LLR, F-91128 Palaiseau, France

D. J. Bard, P. J. Clark, D. Lavin, F. Muheim, S. Playfer, Y. Xie

University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

M. Andreotti, V. Azzolini, D. Bettoni, C. Bozzi, R. Calabrese, G. Cibinetto, E. Luppi, M. Negrini, L. Piemontese, A. Sarti

Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy

E. Treadwell

Florida A&M University, Tallahassee, FL 32307, USA

F. Anulli, R. Baldini-Ferroli, A. Calcaterra, R. de Sangro, G. Finocchiaro, P. Patteri, I. M. Peruzzi, M. Piccolo, A. Zallo

Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy

A. Buzzo, R. Capra, R. Contri, G. Crosetti, M. Lo Vetere, M. Macri, M. R. Monge, S. Passaggio, C. Patrignani, E. Robutti, A. Santroni, S. Tosi

Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy

S. Bailey, G. Brandenburg, K. S. Chaisanguanthum, M. Morii, E. Won

Harvard University, Cambridge, MA 02138, USA
R. S. Dubitzky, U. Langenegger
Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany

W. Bhimji, D. A. Bowerman, P. D. Dauncey, U. Egede, J. R. Gaillard, G. W. Morton, J. A. Nash, M. B. Nikolich, G. P. Taylor
Imperial College London, London, SW7 2AZ, United Kingdom

M. J. Charles, G. J. Grenier, U. Mallik
University of Iowa, Iowa City, IA 52242, USA

J. Cochran, H. B. Crawley, J. Lamsa, W. T. Meyer, S. Prell, E. I. Rosenberg, A. E. Rubin, J. Yi
Iowa State University, Ames, IA 50011-3160, USA

M. Biasini, R. Covarelli, M. Pioppi
Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy

M. Davier, X. Giroux, G. Grosdidier, A. Höcker, S. Laplace, F. Le Diberder, V. Lepeltier, A. M. Lutz, T. C. Petersen, S. Plaszczyński, M. H. Schune, L. Tantot, G. Wormser
Laboratoire de l’Accélérateur Linéaire, F-91898 Orsay, France

C. H. Cheng, D. J. Lange, M. C. Simani, D. M. Wright
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

A. J. Bevan, C. A. Chavez, J. P. Coleman, I. J. Forster, J. R. Fry, E. Gabathuler, R. Gamet, D. E. Hutchcroft, R. J. Parry, D. J. Payne, R. J. Sloane, C. Touramanis
University of Liverpool, Liverpool L69 72E, United Kingdom

J. J. Back,¹ C. M. Cormack, P. F. Harrison,¹ F. Di Lodovico, G. B. Mohanty¹
Queen Mary, University of London, E1 4NS, United Kingdom

C. L. Brown, G. Cowan, R. L. Flack, H. U. Flaecher, M. G. Green, P. S. Jackson, T. R. McMahon, S. Ricciardi, F. Salvatore, M. A. Winter
University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom

D. Brown, C. L. Davis
University of Louisville, Louisville, KY 40292, USA

J. Allison, N. R. Barlow, R. J. Barlow, P. A. Hart, M. C. Hodgkinson, G. D. Lafferty, A. J. Lyon, J. C. Williams
University of Manchester, Manchester M13 9PL, United Kingdom

A. Farbin, W. D. Hulsbergen, A. Jawahery, D. Kovalskyi, C. K. Lae, V. Lillard, D. A. Roberts
University of Maryland, College Park, MD 20742, USA

G. Blaylock, C. Dallapiccola, K. T. Flood, S. S. Hertzbach, R. Kofler, V. B. Koptchev, T. B. Moore, S. Saremi, H. Staengle, S. Willocq
University of Massachusetts, Amherst, MA 01003, USA

¹Now at Department of Physics, University of Warwick, Coventry, United Kingdom

4
W. Bugg, M. Krishnamurthy, S. M. Spanier
University of Tennessee, Knoxville, TN 37996, USA

R. Eckmann, H. Kim, J. L. Ritchie, A. Satpathy, R. F. Schwitters
University of Texas at Austin, Austin, TX 78712, USA

J. M. Izen, I. Kitayama, X. C. Lou, S. Ye
University of Texas at Dallas, Richardson, TX 75083, USA

F. Bianchi, M. Bona, F. Gallo, D. Gamba
Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy

L. Bosisio, C. Cartaro, F. Cossutti, G. Della Ricca, S. Dittongo, S. Grancagnolo, L. Lanceri, P. Poropat,
L. Vitale, G. Vuagnin
Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy

R. S. Panvini
Vanderbilt University, Nashville, TN 37235, USA

Sw. Banerjee, C. M. Brown, D. Fortin, P. D. Jackson, R. Kowalewski, J. M. Roney, R. J. Sobie
University of Victoria, Victoria, BC, Canada V8W 3P6

H. R. Band, B. Cheng, S. Dasu, M. Datta, A. M. Eichenbaum, M. Graham, J. J. Hollar, J. R. Johnson,
P. E. Kutter, H. Li, R. Liu, A. Mihalyi, A. K. Mohapatra, Y. Pan, R. Prepost, P. Tan, J. H. von
Wimmersperg-Toeller, J. Wu, S. L. Wu, Z. Yu
University of Wisconsin, Madison, WI 53706, USA

M. G. Greene, H. Neal
Yale University, New Haven, CT 06511, USA

5 Deceased
1 INTRODUCTION

Hadronic decays of heavy mesons are not precisely described, despite the electroweak nature of the quark decay, because the initial and final states consist of mesons, not of quarks. The factorization scheme allows one to make some predictions though. Factorization assumes that a weak decay matrix element can be described as the product of two independent hadronic currents. Under the factorization hypothesis, $B \to c K^{(*)}$ decays are allowed when $c = J/\psi$, $\psi(2S)$ or χ_{c1}, but suppressed when $c = \chi_{c0}$ or χ_{c2} [4]. In lowest order heavy quark effective theory, there is no $J \geq 2$ operator to create the tensor χ_{c2} from the vacuum. The decay rate to χ_{c0} is zero due to charge conjugation invariance [2].

Belle has recently [3] observed $B \to \chi_{c0} K^+$ decays, with $\chi_{c0} \to \pi^+\pi^−$ or $K^+ K^−$, with a branching fraction surprisingly large based on the expectation from factorization and measurements of the χ_{c1} branching fraction. BaBar has confirmed the observation [4] with a branching fraction somewhat lower than, but compatible with, that measured by Belle.

In this document we attempt the detection of $B \to \chi_{c,i} K^{(*)}$, $i = 0, 2$, using the radiative $\chi_c \to J/\psi \gamma$ decays.

2 THE BaBar DETECTOR AND DATASET

The data used in this analysis were collected with the BaBar detector at the PEP-II storage ring. They represent an integrated luminosity of 112.4 fb$^{-1}$ of data taken at the $\Upsilon(4S)$ resonance.

The BaBar detector is described elsewhere [5]. Charged particles are detected with a five-layer, double-sided silicon vertex tracker (SVT) and a 40-layer drift chamber (DCH) with a helium-based gas mixture, placed in a 1.5-T solenoidal field produced by a superconducting magnet. The charged-particle momentum resolution is approximately $(\delta p_T/p_T)^2 = (0.0013 p_T)^2 + (0.0045)^2$, where p_T is the transverse momentum in GeV/c. The SVT, with a typical single-hit resolution of 10 μm, measures the impact parameters of charged-particle tracks in both the plane transverse to the beam direction and along the beam. Charged-particle types are identified from the ionization energy loss (dE/dx) measured in the DCH and SVT, and from the Cherenkov radiation detected in a ring-imaging Cherenkov device (DIRC). Photons are identified by a CsI(Tl) electromagnetic calorimeter (EMC) with an energy resolution $\sigma(E)/E = 0.023 \cdot (E/\text{GeV})^{-1/4} \pm 0.019$. Muons are identified in the instrumented flux return (IFR), composed of resistive plate chambers and layers of iron, which return the magnetic flux of the solenoid.

3 ANALYSIS METHOD

The channels considered here are $B \to \chi_c K^{(*)}$ with $\chi_c \to J/\psi \gamma$, $J/\psi \to e^+e^−$ or $\mu^+\mu^−$; K is K^+ or $K^0_S (\pi^+\pi^−)$; $K^{\ast 0} \to K^+\pi^−$ or $K^0_S \pi^0$; $K^{\ast +} \to K^+\pi^0$ or $K^0_S \pi^+$; and $\pi^0 \to \gamma \gamma$.

Multihadron events are selected by demanding a minimum of three reconstructed charged tracks in the polar-angle range $0.41 < \theta_{lab} < 2.54$ rad. Charged tracks have to be reconstructed in the DCH and are required to originate at the beamspot: within 1.5 cm in the plane transverse to the beam and 10 cm along the beam. Events are required to have a primary vertex within 0.5 cm of the average position of the interaction point in the plane transverse to the beamline and within 6 cm longitudinally. Electromagnetic depositions in the calorimeter in the polar-angle range $0.410 < \theta_{lab} < 2.409$ rad that are not associated with charged tracks, have an energy larger than 30 MeV, and a shower shape consistent with a photon are taken as photon candidates. A total
energy larger than 4.5 GeV in the fiducial regions for charged tracks plus neutrals is required. To reduce continuum background, we require the normalized second Fox-Wolfram moment \(R_2 \) of the event, calculated with both charged tracks and neutral clusters, to be less than 0.5. Charged tracks are required to be in polar-angle regions for which the PID efficiency is well-measured. For electrons, muons, and kaons the acceptable ranges are 0.40 to 2.40, 0.30 to 2.70 and 0.45 to 2.50 rad, respectively.

Event selection was optimized by maximizing \(\epsilon/\sqrt{B} \), where \(\epsilon \) is the signal efficiency, and \(B \) the number of events, after selection was applied. Candidates for \(J/\psi \) mesons are reconstructed in the \(e^+e^- \) and \(\mu^+\mu^- \) decay modes, from a pair of identified leptons that form a good vertex. Muon candidates are identified using a neural network selector and are required to pass a loose selection for the first muon candidate and a very loose selection for the second muon candidate. Electron candidates are selected using a likelihood selector and are required to pass a loose selection. For \(J/\psi \rightarrow e^+e^- \) decays, electron candidates are combined with photon candidates in order to recover some of the energy lost through bremsstrahlung. Photons are required to be within 35 mrad in polar angle from the electron track, and to have an azimuthal angle intermediate between the initial track direction (estimated by subtracting 50 mrad opposite to the bend direction of the reconstructed track) and the centroid of the EMC cluster arising from the track.

The lepton-pair invariant mass has to be between 2.95 and 3.18 GeV/c\(^2\) for both lepton flavors. The remaining background is mainly due to genuine \(J/\psi \)'s. Candidates for \(K^0_S \) consist of oppositely-charged tracks with invariant mass between 487 and 510 MeV/c\(^2\) and are required to satisfy vertexing conditions. The \(K^0_S \) flight length has to be greater than 1 mm, and its direction must form an angle with the \(K^0_s \) momentum vector in the plane perpendicular to the beam line that is less than 0.2 rad. Charged kaon candidates are identified using a likelihood selector and are required to pass a tight selection. Photon candidates as defined above are used also for the reconstruction of \(\pi^0 \rightarrow \gamma\gamma \) decays. A \(\pi^0 \) candidate consists of a pair of photon candidates with invariant mass in the interval 117 – 152 MeV/c\(^2\) and momentum larger than 350 MeV/c. \(K^* \) candidates must have a \(K\pi \) invariant mass in the range 0.85 – 0.94 GeV/c\(^2\) around the nominal \(K^*(892) \) mass \[7\]. The \(J/\psi, K^0_s, \) and \(\pi^0 \) candidates are constrained to their corresponding nominal masses \[7\].

The \(\chi_c \) candidates are formed from \(J/\psi \) and photon candidates. The photon is required to fulfill the same shower shape requirement mentioned above, have an energy larger than 0.15 GeV, and not be part of \(\pi^0 \) candidates in the mass range 0.125 – 0.140 GeV/c\(^2\).

The \(\chi_c \) and \(K^{(*)} \) candidates are combined to form \(B \) candidates. Two kinematic variables are used to further remove incorrect \(B \) candidates. The first is the difference \(\Delta E \equiv E_B^* - E_{\text{beam}}^* \) between the \(B \)-candidate energy and the beam energy in the \(\Upsilon(4S) \) rest frame. In the absence of experimental effects, reconstructed signal candidates have \(\Delta E = 0 \). The second is the beam-energy-substituted mass \(m_{\text{ES}} \equiv (E_{\text{beam}}^* - p_B^*)^{1/2} \). The energy substituted mass \(m_{\text{ES}} \) should peak at the \(B \) meson mass 5.279 GeV/c\(^2\).

For the signal region, \(\Delta E \) is required to be between \(-35 \) MeV and \(+20 \) MeV for channels involving a \(\pi^0 \), and to be between \(-20 \) MeV and \(+20 \) MeV otherwise. If several \(B \) candidates are found in an event, the one having the smallest \(|\Delta E| \) is retained. \(m_{\text{ES}} \) is required to be in the 5.274 – 5.284 GeV/c\(^2\) range.

Studies using simulated samples show that most of the background events in the \(\chi_c, K^* \) channels are due to non-resonant (NR) \(B \rightarrow \chi_c (J/\psi \gamma) K \pi \) decays. Also the observation of the suppressed \(\chi_c \) could be complicated by the presence of the prominent \(\chi_{c1} \) peak. Therefore the search is performed by the observation of the spectrum of the mass difference \(m_{\ell^+\ell^-\gamma} - m_{\ell^+\ell^-} \). It was found from Monte Carlo simulation that after the non-resonant events were removed from the sample,
the expected number of genuine $\chi_c \to J/\psi \gamma$ decays was extremely small, 0.2 ± 0.2 for the $\chi_{c2} K^{*0} (K^+ \pi^-)$ and $\chi_{c2} K^{*+} (K^+ \pi^0)$ modes, and 0.0 ± 0.2 for all the other χ_{c2} modes and all the χ_{c0} modes.

The efficiencies obtained from fits to the mass difference distribution for exclusive samples, where one B decays to the final state under consideration and the other inclusively, are given in Table I. Note that χ_{c1} exclusive simulated samples are used in the place of χ_{c2}, that were not available.

The χ_{c2} has a negligible natural width and is therefore fitted with a Gaussian. The χ_{c0} has a natural width $\Gamma = 10.1\,\text{MeV}$ comparable with the measurement resolution $\sigma \approx 10\,\text{MeV}/c^2$, and therefore the χ_{c0} peak is fitted with a Voigtian, the convolution of a Breit-Wigner and a Gaussian distribution.

Table 1: Efficiencies from fits of the distribution of $m_{\ell^+\ell^-} - m_{\ell^+\ell^-}$ for exclusive samples.

	χ_{c1}	χ_{c0}
$K^{*0} (K^+ \pi^-)$	0.071 ± 0.001	0.066 ± 0.001
$K^{*0} (K^0 S \pi^0)$	0.031 ± 0.001	0.010 ± 0.000
$K^{*+} (K^+ \pi^0)$	0.036 ± 0.001	0.031 ± 0.001
$K^{*+} (K^0 S \pi^+)$	0.065 ± 0.001	0.062 ± 0.001
K^+	0.144 ± 0.001	0.117 ± 0.002
$K^0 S^-$	0.158 ± 0.001	0.126 ± 0.001

We corrected for the presence of non-resonant decays under the K^* peak in the following way: the $m_{\ell^+\ell^-} - m_{\ell^+\ell^-}$ distribution for the events on the plateau; i.e. $1.1 < m_{K\pi} < 1.3\,\text{GeV}/c^2$, is subtracted from the $m_{\ell^+\ell^-} - m_{\ell^+\ell^-}$ distribution for the events in the signal region $0.85 < m_{K\pi} < 0.94\,\text{GeV}/c^2$, after rescaling by a factor $r = 0.26 \pm 0.04$, where r is the ratio obtained from Monte Carlo simulation of non-resonant events under the peak compared to the plateau. The branching fractions were then computed from:

$$BF = \frac{N}{N_B \times \epsilon \times f}$$

where N is the number of events obtained from fitting the $m_{\ell^+\ell^-} - m_{\ell^+\ell^-}$ distribution, N_B is the number of $B\overline{B}$ events, ϵ is the selection efficiency and f is the secondary branching fraction of the B daughters. Examples of fits to the “generic” $B\overline{B}$ Monte Carlo (MC) sample, that contains a simulation of inclusive $\Upsilon(4S) \to B\overline{B}$ decays, can be seen in Fig. II.

The free parameters in the fits are: a linear background, the overall mass difference scale, the resolutions of the gaussian taken to be the same for the 3 χ’s and the amplitudes of the peaks. The fixed parameters are the natural width of the χ_{c0} and 2 mass differences, all taken from PDG.

With such fits, it was checked that the non-resonant events were subtracted correctly, and that the proximity of the χ_{c1} was not inducing any visible bias on the measurement of the nearby χ_{c2}.

4 SYSTEMATIC STUDIES

This measurement is affected by the following set of systematic uncertainties:
Figure 1: Distribution of $m_{\ell^+\ell^-\gamma} - m_{\ell^+\ell^-}$ (GeV/c^2) for generic MC samples.

- Overall uncertainty on the number of B events, 1.1%.

- Uncertainty on the secondary branching fractions: from PDG [7] (dominated by the relative uncertainty of the branching fraction of the radiative decay of the χ, 11.9 and 8.5% for the χ_{c0} and χ_{c2}, respectively).

- Tracking: 1.3% per track.

- K_S^0: a 2.5% uncertainty.

- Neutrals: 2.5% per "χ" photon, 5.0% per π^0.

- An overall 3% uncertainty on particle identification correction.

- Selection cuts: For each mass peak and for ΔE, the uncertainty of the MC-to-data shift in central value and in width are measured on the well populated χ_{c1} channels and are used to vary the selection cuts, by 1 σ. The corresponding efficiency variation, estimated on the exclusive sample, is the induced contribution to the systematics. The central value and width induced systematics are estimated independently, and are added quadratically below.

The results for χ_{c1} MC sample and χ_{c0} MC sample are quite close to each other; an average value is used for both.

- The ratio of B^0 to B^+ production in $\Upsilon(4S)$ decays is assumed to be unity. The related uncertainty is small [9] and is neglected here.
• The NR component is probably in an S-wave $K\pi$ state, as was observed in the J/ψ K^* system $[8]$, with an unknown relative phase ϕ wrt the main K^* (892) P-wave peak. It is possible that no signal is found in the channels under consideration in this section. Therefore the systematics due to the unknown relative phase is here estimated with a MC-based method.

The $K\pi$ invariant mass is fitted with an amplitude that is the sum of a non-relativistic Breit-Wigner and a real amplitude that corresponds to a polynomial (parabolic) distribution for the NR (Fig. 2).

$$p(m_{K\pi}) = \left| \frac{a}{m_{pdg} - m_{K\pi} - i\Gamma/2} + b(m_{K\pi})e^{i\phi} \right|^2$$

(2)

where a and b are real quantities. The slow variation of the phase of the S wave with $m_{K\pi}$ is neglected here.

![Figure 2: The distribution of $m_{K\pi}$ for the generic MC sample. A fit with a coherent sum of a polynomial NR and a non-relativistic Breit-Wigner is overlaid.](image)

The free parameters in the fit are the 3 degrees of freedom of the NR parabola, the magnitude of the signal, and the relative phase ϕ. As the high mass plateau is dominated by the NR contribution, no attempt is made to subtract the few combinatorial events. The fact that ϕ is unknown is dealt with by randomly generating samples of events distributed as above for each value of ϕ, and applying the NR subtraction as described above. The number of events N thus measured is normalized to that generated with the value ϕ_0 of ϕ obtained in the fit, and the ratio $R = N(\phi)/N(\phi_0)$ is plotted as a function of ϕ in Fig. 3. The medium value is 1.44 with maximal relative extension \pm 35%, giving an RMS relative uncertainty of \pm 20%.

• In the case of χ_{c2}, the efficiency depends on the intensity fractions to various polarization states, due to the variation of the detection efficiency with the angles describing the decay.
Figure 3: Number of events measured, after NR subtraction, in Toy MC samples, as a function of ϕ, normalized to the number obtained with the phase fitted on the generic sample (shown by the vertical line).

Figure 4: Signal efficiency as a function of the helicity angles for $K^+ \pi^-$ channel. χ is the angle between the decay planes of the χ_c and of the K^*.
The efficiency is mainly sensitive to the K^* decay helicity angle, (Fig. 4) due to soft pions for small values of θ_{K^*}.

The selection efficiency therefore depends, to 1st order, on the polarization of the K^* population, through the angular distribution:

$$\frac{1}{\Gamma} \frac{d\Gamma}{d \cos \theta_{K^*}} = \frac{3}{4} \left[(1 - \cos^2 \theta_{K^*}) + |A_0|^2 (3 \cos^2 \theta_{K^*} - 1) \right],$$

where $|A_0|^2$ describes the fraction of longitudinal K^* polarization. The efficiency is:

$$\langle \varepsilon \rangle = \int \frac{1}{\Gamma} \frac{d\Gamma}{d \cos \theta_{K^*}} \varepsilon(\theta_{K^*}) d \cos \theta_{K^*} = a + |A_0|^2 b,$$

where

$$a = \frac{3}{4} \int (1 - \cos^2 \theta_{K^*}) \varepsilon(\theta_{K^*}) \sin \theta_{K^*} d\theta_{K^*},$$

$$b = \frac{3}{4} \int (3 \cos^2 \theta_{K^*} - 1) \varepsilon(\theta_{K^*}) \sin \theta_{K^*} d\theta_{K^*}.$$

The values of a and b are obtained from the two above equations and from the parametrisation $\varepsilon(\theta_{K^*})$ extracted from Figure 4 and are shown in Table 2. In the case no signal is observed, the polarization is unknown, and we estimate the efficiency as $(a + 0.5b) \pm (|b|/\sqrt{12})$.

Table 2: Coefficients for the calculation of amplitude dependent average efficiency for the χ_{c2} K^* channels (%).

Channel	a	b	Efficiency	Fract. uncert.
$K^{*0}(K^+\pi^-)$	8.68	-1.40	7.98± 0.40	5.1
$K^{*0}(K^0\pi^0)$	4.25	-1.66	3.43± 0.48	14.0
$K^{*+}(K^+\pi^0)$	5.05	-1.79	4.16± 0.52	12.4
$K^{*+}(K^0\pi^+)$	7.83	-1.84	6.92± 0.53	7.7

As usual the effect is stronger on channels having a π^0 in the final state, as the larger background results in harsher cuts during the optimization process.

A summary of the multiplicative contributions to the systematics can be found in Table 3. In addition to these multiplicative contributions comes a contribution from NR background subtraction. The contribution of the uncertainty of r is given in Table 4.

5 PHYSICS RESULTS

Fits on the data clearly show the presence of the factorization allowed χ_{c1}, but no signal, within uncertainty, for the factorization suppressed χ_{c0} and χ_{c2} (Table 5, Fig. 5).

Non-resonant events subtraction has been applied. The phase-related systematics estimated on the MC sample are used for the data.
Table 3: Systematics: summary of the multiplicative contributions: relative uncertainties (%).

	K^0	$(K^0 \pi^0)$	$(K^0 \pi^0)$	$(K^0 \pi^0)$	K^+	K^0
B counting	1.1	1.1	1.1	1.1	1.1	1.1
Tracking	5.2	2.6	3.9	3.9	2.6	
K_S^0	–	2.5	–	2.5	–	2.5
Neutrals	2.5	7.5	7.5	2.5	2.5	2.5
Particle identification	3.0	3.0	3.0	3.0	3.0	
Cut variation (p)	1.0	1.5	1.3	0.8	0.6	0.5
Cut variation width	7.6	13.7	11.5	8.2	6.5	6.3
MC stat	1.4	2.9	1.7	1.8	1.3	1.3
phase	20.0	20.0	20.0	20.0	–	–
χ^c_0 Sec. BF	11.9	11.9	11.9	11.9	11.9	
Total for χ^c_0	25.4	28.3	27.6	25.5	14.8	14.6
χ^c_2 Sec. BF	8.5	8.5	8.5	8.5	8.5	
Polar	5.1	14.0	12.4	7.7	–	–
Total for χ^c_2	24.5	30.5	29.1	25.3	12.2	12.0

Table 4: Systematics on the measured BF’s on the generic samples due to NR subtraction. (in units of 10^{-4}).

	χ^c_2	χ^c_0
$(K^+ \pi^-)$	0.0	0.5
$(K_S^0 \pi^0)$	0.2	1.3
$(K^0 \pi^0)$	0.1	1.4
$(K^0 \pi^+)$	0.1	1.7

Table 5: Number of events from fits of the distribution of $m_{\ell^+\ell^-\gamma} - m_{\ell^+\ell^-}$ for the data. (NR subtracted).

	X_2	χ^c_0
K^0 $(K^+ \pi^-)$	0.3 ± 1.1	2.1 ± 2.5
K^0 $(K_S^0 \pi^0)$	-1.7 ± 2.0	1.0 ± 0.9
K^+ $(K^+ \pi^0)$	-1.8 ± 0.6	0.1 ± 2.9
K^+ $(K_S^0 \pi^+)$	-0.2 ± 1.2	12.3 ± 3.7
K^+ K_S^0	6.4 ± 4.8	15.1 ± 7.6
K_S^0	2.8 ± 2.6	4.5 ± 4.0
Figure 5: Distribution of $m_{\ell^+\ell^-\gamma} - m_{\ell^+\ell^-}$ for data. Top: raw data; Bottom: NR subtracted.
Combining the measurements of the K^* sub-modes, and under the reasonable approximation that the multiplicative efficiencies between each K^* sub-mode are fully correlated, we obtain the branching fractions for the suppressed modes listed in Table 6.

The results for the allowed χ_{c1} are found to be compatible with those of [10], an analysis optimized to the relevant BF, in contrast with this one.

Table 6: Measured Branching fractions (in units of 10^{-4}).

	χ_{c2}	χ_{c0}
K^*0	0.02 ± 0.07 ± 0.10	3.09 ± 3.35 ± 1.27
K^{*+}	-0.37 ± 0.15 ± 0.20	27.0 ± 11.2 ± 9.0
K^+	0.15 ± 0.11 ± 0.12	7.49 ± 3.76 ± 1.09
K^0	0.18 ± 0.16 ± 0.12	5.96 ± 5.39 ± 0.88

Upper bounds on the BF's, at 90% confidence level (CL) are obtained using a simulation, assuming gaussian statistics for the statistical uncertainties and taking into account the systematic uncertainties (Table 7). It has been assumed that the BF can only be positive.

Table 7: Branching fractions: upper bounds at 90% CL. (in units of 10^{-4}).

	χ_{c2}	χ_{c0}
K^*0	0.22	8.
K^{*+}	0.14	45.
K^+	0.36	12.
K^0	0.44	13.

6 SUMMARY

The upper limits obtained for decays to χ_{c2} are more than one order of magnitude lower than the branching fractions of the factorization allowed decays and of the already observed $B \to \chi_{c0} K^+$ decays. All results are preliminary.

7 ACKNOWLEDGMENTS

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), Institute of High Energy Physics (China), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für
Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Science and Technology of the Russian Federation, and the Particle Physics and Astronomy Research Council (United Kingdom). Individuals have received support from CONACyT (Mexico), the A. P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation.

References

[1] M. Suzuki, “Search of (1)P(1) Charmonium in B decay,” Phys. Rev. D 66, 037503 (2002).

[2] M. Diehl and G. Hiller, “New ways to explore factorization in b decays,” JHEP 0106, 067 (2001).

[3] K. Abe et al. [Belle Collaboration], “Observation of $B^+ \rightarrow \chi_{c0} K^+$,” Phys. Rev. Lett. 88, 031802 (2002).

[4] B. Aubert et al. [BABAR Collaboration], “Measurement of the branching fraction for $B^+ \rightarrow \chi_{c0} K^+$,” Phys. Rev. D 69, 071103 (2004).

[5] The BABAR Collaboration, B. Aubert et al., Nucl. Instrum. Methods A479, 1 (2002).

[6] G. C. Fox and S. Wolfram, “Observables For The Analysis Of Event Shapes In e^+e^- Annihilation And Other Processes,” Phys. Rev. Lett. 41, 1581 (1978).

[7] Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1 (2004).

[8] B. Aubert et al. [BABAR Collaboration], “Measurement of the $B \rightarrow J/\psi K^*$ (892) decay amplitudes,” Phys. Rev. Lett. 87, 241801 (2002).

[9] B. Aubert et al. [BABAR Collaboration], “Measurement of the B^+/B^0 production ratio from the Upsilon(4S) meson using $B^+ \rightarrow J/\psi K^+$ and $B^0 \rightarrow J/\psi K^0_S$ decays,” Phys. Rev. D 69, 071101 (2004).

[10] B. Aubert et al. [BABAR Collaboration], “Measurement of $B \rightarrow$ Charmonium $K^*(\ast)$ branching fractions”, CONF-04/024, to be presented at ICHEP 2004.