Supplementary Materials for

Emergent properties of species-habitat networks in an insular forest landscape

Ana Filipa Palmeirim et al.

Corresponding author: Ana Filipa Palmeirim, anafilipapalmeirim@gmail.com

Sci. Adv. 8, eabm0397 (2022)
DOI: 10.1126/sciadv.eabm0397

This PDF file includes:

Figs. S1 to S5
Tables S1 to S6
References
Fig. S1. Normalised degree at the site-level for each taxon. Taxa included: (A) medium-large mammals, (B) small non-volant mammals, (C) lizards, (D) understorey birds, (E) frogs, (F) dung beetles, (G) orchid bees, (H) trees and (I) all groups combined. Bars are colour-coded according to forest patch area ($\log_{10} x$; ha).
Fig. S2.

Nestedness contribution at the site-level for each taxon. Taxa included: (A) medium-large mammals, (B) small non-volant mammals, (C) lizards, (D) understorey birds, (E) frogs, (F) dung beetles, (G) orchid bees, (H) trees, and (I) all groups combined. Bars are colour-coded according to forest area (\log_{10} ha).
Fig. S3.

Normalized degree at the species-level for each taxon. Taxa included: (A) medium-large mammals, (B) small non-volant mammals, (C) lizards, (D) understorey birds, (E) frogs, (F) dung beetles, (G) orchid bees, and (H) trees. Bars are colour-coded according to each species size. Species body size is defined as adult body mass for medium-large mammals, small mammals and birds; body length for lizards, dung beetles and orchid bees; body height for frogs; and seed mass for trees (Table S3).
Fig. S4.

Relationship between network properties at the species-level with the relativized species body size for each taxon. Network properties included (A) species normalised degree and (B) species nestedness contribution. Species body size is defined as body mass for medium-large mammals, small non-volant mammals and understorey birds, to body length for lizards, dung beetles and orchid bees, to body height for frogs, and to seed mass for trees (see Table S3 for a description of each species trait). Lines represent the adjusted models. Each taxonomic group is represented by the same icon, and corresponding boxplot are coloured as in Fig. 1.
Fig. S5.

Nestedness contribution at the species-level for each taxon. Taxa included: (A) medium-large mammals, (B) small non-volant mammals, (C) lizards, (D) understorey birds, (E) frogs, (F) dung beetles, (G) orchid bees, and (H) trees. Bars are colour-coded according to each species size. Species body size is defined as body mass for medium-large mammals, small mammals and birds, to body length for lizards, dung beetles and orchid bees, to body height for frogs and to seed mass for trees (Table S3).
Table S1.

Sampling units allocated per survey site per taxon. For medium-large mammals (LM), sampling units correspond to the number of camera-traps deployed per sampling site (each camera operated twice for 30 consecutive days), for small non-volant mammals (SM) is the number of both live and pitfall-traps (each trap operated twice for 16 consecutive nights), for lizards (Liz) is the number of pitfall-traps (each trap operated twice for 16 consecutive days), for understorey birds is the number of mist-nets (each net operated twice for 2 consecutive days), for frogs is the number of acoustic recorder devices (each recorded operated once for 48 hours), for orchid bees (OB) is the number of scent trap-arrays (each trap operated twice for 3 consecutive days), and for trees (T) is the number of 0.25-ha vegetation plots surveyed.

Site code	Geographic coordinates	Area (ha)	Sampling units per site							
	Latitude	Longitude	LM	SM	Liz	Birds	Frogs	DB	OB	T
Is1	01° 50' 00.2'' S	59° 25' 14.2'' W	1.5	2	9	1	16	10	1	1
Is2	01° 35' 05.2'' S	59° 52' 18.6'' W	2.2	2	18	2	16	10	1	1
Is3	01° 46' 26.2'' S	59° 41' 32.2'' W	3.3	2	18	2	16	10	1	1
Is4	01° 49' 48.0'' S	59° 37' 57.3'' W	3.5	2	18	2	16	10	1	1
Is5	01° 45' 58.3'' S	59° 21' 49.2'' W	5.9	2	18	2	16	10	1	1
Is6	01° 35' 16.7'' S	59° 50' 09.4'' W	9.2	2	18	2	16	10	1	1
Is7	01° 45' 41.8'' S	59° 40' 42.3'' W	12.4	2	27	3	16	10	1	2
Is8	01° 29' 15.9'' S	59° 47' 13.9'' W	17.5	2	27	3	16	10	1	2
Is9	01° 47' 29.3'' S	59° 26' 51.2'' W	21.2	2	27	3	16	10	1	2
Is10	01° 50' 30.5'' S	59° 21' 06.0'' W	32.8	2	27	3	16	10	1	2
Is11	01° 29' 58.0'' S	59° 49' 24.6'' W	53.2	2	54	6	16	2	10	1
Is12	01° 40' 55.9'' S	59° 39' 12.1'' W	70.8	4	54	6	16	2	10	1
Is13	01° 41' 47.0'' S	59° 37' 09.2'' W	77.9	4	54	6	16	2	10	1
Is14	01° 33' 28.1'' S	59° 53' 50.0'' W	97.4	4	54	6	16	3	10	1
Is15	01° 49' 52.2'' S	59° 41' 23.5'' W	110.0	6	54	6	16	3	10	1
Is16	01° 44' 20.3'' S	59° 26' 28.1'' W	193.0	8	81	9	16	3	10	1
Is17	01° 42' 06.4'' S	59° 47' 26.0'' W	218.7	6	81	9	16	3	10	1
Is18	01° 45' 09.1'' S	59° 44' 58.7'' W	484.0	10	81	9	16	4	10	1
Is19	01° 43' 47.6'' S	59° 41' 28.7'' W	627.5	10	108	12	16	5	10	2
Is20	01° 39' 27.6'' S	59° 50' 12.7'' W	669.9	10	108	12	16	7	10	2
Is21	01° 30' 45.3'' S	59° 52' 08.8'' W	744.8	10	108	12	16	4	10	2
Is22	01° 47' 30.9'' S	59° 30' 45.8'' W	1459.7	10	108	12	16	4	10	2
CF1	01° 50' 20.7'' S	59° 42' 23.1'' W	∞	15	162	18	16	5	10	3
CF2	01° 47' 38.8'' S	59° 14' 51.8'' W	∞	15	270	12	32	10	10	3
CF3	01° 25' 46.9'' S	59° 54' 59.4'' W	∞	15	162	18	16	4	10	3
Table S2.
Landscape, patch and local habitat quality variables describing 22 forest islands within the Balbina Hydroelectric Reservoir archipelagic landscape and three continuous forest sites in mainland areas within the reservoir vicinities. The overall range, mean and standard deviation (SD) are provided for each variable. Because patch and landscape variables could not always be obtained for continuous forest sites (CFs), we assigned values to closely approximate each real value, as indicated below. As such, range values do not include the three CFs.

Name (code name)	Variable description	Range (mean ± SD)
Landscape scale		
Proportion of water (%Water)	Percentage of open-water within a 500 m-buffer surrounding each focal island (CF = 0%)	43.4 – 100% (67.5 ± 14.2)
Patch scale		
Forest area (Area)	Forest area of each focal island (excluding bare ground) \((\log_{10}x; CF = 14,596 \text{ ha})\).	1.5 – 1,460 ha (224 ± 356)
Island shape (Shape)	Total perimeter length of each focal island divided by the total island area (CF = 0.592).	0.000 – 0.040 (0.013 ± 0.009)
Distance (Dist)	Euclidean distance from the closest edge of each island to the nearest neighbouring mainland forest site (CF = 0 m).	44 – 11,872 m (4,173 ± 3,375)
Habitat scale		
Burn severity (Burn)	Burn severity was estimated from floristic surveys based on 0.25 ha plots established and inventoried at all surveyed sites. For this, the field team defined four different categories of burn severity, varying from 0 (no evidence of burn within the plot) to 3 (≥60% of the plot affected by burn, based on the number of charred trees and char height marks on the trees). The categories 1 and 2 refer to 1 to up to 30% and 30-60% of the burned area, respectively (38).	0 – 3 (1.68 ± 0.85)
Proportion of closed-canopy forest (%Closed-canopy)	Percentage of closed-canopy forest within each forest site.	30.1 – 99.4% (77.87 ± 16.48)
Table S3.

Description of species traits for each taxon used to predict network properties at the species-level.

Taxonomic group	Species trait	Description	Source
Medium-large mammals	Body mass	Adult body mass (kg)	(69)
	Group size	Number of individuals foraging within a social group	
	Home range size	Area required (ha) for an animal to forage and travel on a regular basis	(46)
	Trophic level	Dietary energy levels within trophic modes for each species, ranging from 0 (folivore) to 6 (carnivore).	(46)
Small non-volant mammals	Body mass	Average body mass obtained from individuals recorded in the field (g).	Field
	Trophic level	Sum of the proportional food consumption in each diet category weighted by an energetic score: (1) foliage and other plant material, (2) fruit and nectar, (3) seed, (4) invertebrate, (5) vertebrate, including carrion. For example, a species relying entirely on invertebrates is assigned a value 4, and a species relying on 50% fruits and 50% invertebrates is assigned a value 3.	(69)
	Locomotion habit	Preferred vertical forest strata used: terrestrial, scansorial and arboreal.	(69)
	Non-forest matrix tolerance	Ratio between the capture rate in the open-habitat matrix (pasture and secondary forest) and in continuous primary forest, using data extracted from (70) at a landscape ~100 km from Balbina [for details see (50)]. This trait was considered here as previously observed to be an important predictor of small mammal responses to habitat loss and insular fragmentation (50).	(70)
Lizards	Thermoregulation mode	Species strategy to regulate body temperature: heliophile (higher body temperature and regulated by direct exposure to sun light) and heliophobe (lower body temperature regulated by avoiding direct sun light).	Compiled in (51)
	Habitat type used	Preferred habitat used: clearings and forest edges; terra firme forest (i.e. typical Amazonian closed-canopy forest that is never seasonally inundated); and, creeks and swamps.	Compiled in (51)
	Body length	Expressed as the maximum snout-vent length (SVL) corresponding to the tip of snout to the cloaca (cm)	Compiled in (51)
	Range of prey size	Spectrum of consumed arthropod prey size considering the following size classes: 0mm – <20mm, 20mm – <60mm, 60mm – <140mm and >140mm	Compiled in (51)
Understorey birds	Degree of forest dependency	Does not normally occurs in forests (0) and low (1), medium (2) and high forest dependency (3).	(71)
	Body mass	Species mean body mass (g)	(69)
	Trophic level	Sum of the proportional food consumption in each diet category weighted by an energetic score: (1) foliage and other plant material, (2) fruit and nectar, (3) seed, (4) invertebrate, (5) vertebrate, including carrion. For example, a species relying	(69)
entirely on invertebrates is assigned a value 4, and a species relying on 50% fruits and 50% invertebrates is assigned a value 3.

Frogs

Attribute	Description	Reference
Reproductive mode	Defined by a combination of attributes including oviposition site and egg and spawning features. We used the 28 known modes identified for frog species throughout Brazil.	(72)
Diversity of habitats	Number of habitats used.	(73)
Body height	Species body height (mm).	(73)

Dung beetles

Attribute	Description	Reference
Body size	Small (< 10 mm long) or large (> 10 mm long).	
Dung relocation behaviour	Resource relocation behaviour (dwellers, rollers, tunnellers)	(74, 75, 76)
Diet	Three dietary modes: Coprophage, necrophage or generalist.	

Orchid bees

Attribute	Description	Reference
Body length	Average body length (mm) obtained from individuals recorded in the field.	Vouchers in this study
Body width	Average body width (mm) obtained from individuals recorded in the field.	Vouchers in this study
Wing length	Average wing length (mm) obtained from individuals recorded in the field.	Vouchers in this study

Trees

Attribute	Description	Reference
Wood density	Species-specific wood density (g/cm³) measurements obtained for 67.3% of the 368 tree species and 100% of the 189 genera included in the analysis. For those species for which species level data were lacking, we used the mean genus-level WD value from Guianan Shield sites or, if those were unavailable, from any lowland Amazonian site.	Vouchers in this study and data compiled in (38)
Seed mass	Dry seed mass (eight classes on a log scale: [1] 105 – 104 g, [2] 104 – 103 g … [8] ≥ 100 g).	Compiled in (38)
Vertical stratum	Sub-canopy, canopy, and emergent species.	Compiled in (38)
Seed dispersal mode	Vertebrate-dispersed or abiotically dispersed.	Compiled in (38)
Seedling regeneration mode	Short-lived pioneer, long-lived pioneer and old-growth species.	Compiled in (38)
Table S4.
Network properties obtained at the landscape-level – connectance, modularity, nestedness and robustness – for each of the eight taxonomic group (medium-large mammals, small mammals, lizards, birds, frogs, dung beetles, orchid bees and trees) and all groups combined. For each property of each species-habitat network, we indicate the observed and corresponding z-values obtained from null models. Statistical significance is given by $-2 > z$-value > 2, highlighted in bold (see the main text for a description of the null models applied for each network property).

Taxa	C	M	Nestedness	R \text{largest to smallest}	R \text{smallest to largest}	R \text{random}						
	Obs.	z										
ML	0.474	0.340	0.168	5.995	87.511	8.163	0.609	5.845	0.970	-0.604	0.934	-1.771
SM	0.358	-0.544	0.232	2.618	65.075	3.064	0.638	-3.957	0.956	0.768	0.895	-0.544
Liz	0.426	-0.680	0.205	1.813	78.437	4.656	0.697	-1.800	0.909	-0.277	0.921	0.350
Bird	0.170	-4.227	0.286	5.830	39.496	-0.285	0.466	-2.565	0.817	0.400	0.723	-0.181
Frog	0.266	-1.708	0.218	-0.498	55.132	2.249	0.600	-2.269	0.863	1.342	0.807	0.409
DB	0.177	-1.846	0.390	3.338	38.990	-0.037	0.489	-0.326	0.835	0.940	0.728	0.888
OB	0.332	-0.946	0.273	6.780	62.154	4.771	0.757	-0.576	0.843	-0.208	0.857	0.400
Tree	0.285	-4.433	0.151	1.435	49.148	2.477	0.647	-2.696	0.864	2.249	0.823	1.743
All	0.270	-7.194	0.161	4.795	48.344	2.498	0.599	-6.586	0.863	3.077	0.810	1.172
Table S5.
Average model results explaining normalised degree at the site-level according to landscape, patch and habitat quality related variables – forest area (Area), distance to continuous forest (Dist), proportion of closed-canopy forest (%Closed-canopy) and burn severity (Burn) for each taxonomic group and all groups combined. Model averaging was performed considering all possible combinations of the four explanatory variables in addition to the interaction terms between Area and Dist and Area and Burn, either of which was retained only when significantly predicting normalised degree. Linear models were applied to medium-large mammals, small mammals, lizards, frogs, trees and all groups combined. Generalized linear models were fitted with a Gaussian distribution with a ‘log’ link function were applied to birds. To account for spatial autocorrelation, the orchid bee data were fitted with a Generalized Least Squares with a spatial Gaussian correlation structure including the geographic coordinates of each site (latitude and longitude). Statistically significant P-values are highlighted in bold.

Taxonomic group	Model Parameters	Estimate	Std. Error	Adjust. SE	z-value	P-value	2.5% CI	97.5% CI
Medium-large mammals	Intercept	0.502	0.016	0.017	29.672	<0.001	0.469	0.535
	Burn	0.022	0.022	0.023	0.970	0.332	0.535	0.067
	Area	0.330	0.018	0.019	17.386	<0.001	0.293	0.367
	Area * Burn	0.046	0.014	0.015	3.170	0.002	0.018	0.074
	Dist	-0.015	0.016	0.017	0.909	0.363	0.446	-0.048
	%Closed-canopy	-0.015	0.018	0.019	0.763	0.466	0.015	0.023
Small mammals	Intercept	0.349	0.029	0.030	11.700	<0.001	0.291	0.408
	Burn	0.071	0.039	0.040	1.749	0.080	0.020	0.150
	Area	0.188	0.034	0.035	5.346	0.000	0.119	0.257
	Dist	-0.027	0.036	0.038	0.714	0.475	0.705	0.047
	Area * Dist	-0.067	0.032	0.034	1.795	0.048	0.013	0.001
	%Closed-canopy	0.022	0.033	0.034	0.634	0.526	0.045	0.089
Lizards	Intercept	0.466	0.033	0.034	13.619	<0.0001	0.399	0.533
	%Closed-canopy	0.071	0.028	0.029	2.412	0.016	0.013	0.128
	Dist	0.054	0.032	0.034	1.595	0.111	0.115	0.121
	Area	0.184	0.036	0.038	4.821	<0.0001	0.109	0.258
	Area * Dist	0.098	0.030	0.032	3.050	0.002	0.035	0.162
	Burn	0.002	0.051	0.053	0.037	0.971	0.102	0.106
Birds	Intercept	-2.002	0.122	0.128	15.617	<0.001	-2.253	-1.751
	%Closed-canopy	0.252	0.103	0.109	2.305	0.021	0.038	0.466
	Burn	0.287	0.113	0.119	2.420	0.016	0.055	0.520
	Area	0.717	0.154	0.160	4.475	<0.001	0.403	1.031
	Dist	-0.168	0.118	0.125	1.342	0.180	-0.413	0.077
Frogs	Intercept	0.266	0.021	0.023	11.774	<0.001	0.222	0.311
	Area	0.105	0.027	0.029	3.656	<0.001	0.049	0.162
	Burn	0.035	0.030	0.032	1.076	0.282	-0.028	0.098
	Dist	0.028	0.025	0.027	1.023	0.306	-0.025	0.080
	%Closed-canopy	0.008	0.027	0.029	0.281	0.779	-0.048	0.064
Dung beetles	Intercept	-2.598	0.185	0.196	13.221	<0.001	-2.983	-2.213
	%Closed-canopy	0.891	0.160	0.170	5.230	<0.001	0.557	1.225
	Burn	0.276	0.166	0.176	1.570	0.116	-0.069	0.621
	Area	1.174	0.216	0.228	5.156	<0.001	0.728	1.620
	Intercept	Area	Burn	Dist	%Closed-canopy			
--------------------------	-----------	------	------	------	----------------			
Orchid bees	0.318	0.079	0.042	-0.001	0.014			
	0.031	0.028	0.032	0.170	0.028			
	0.032	0.030	0.033	0.180	0.029			
	9.792	2.681	1.253	0.004	0.465			
	<0.001	0.007	0.210	0.997	0.642			
	0.254	0.021	−0.022	−0.354	−0.044			
	0.382	0.137	0.067	0.353	0.071			
Trees	0.301	−0.008	0.115	0.010	0.008			
	0.009	0.012	0.010	0.010	0.010			
	0.010	0.013	0.011	0.011	0.011			
	0.100	0.590	0.555	0.004	0.732			
	30.291	10.505	5.595	1.212	0.464			
	<0.001	<0.001	0.094	0.269	0.464			
	0.282	0.137	0.043	0.071	0.030			
All groups	0.279	0.008	0.126	0.002	0.018			
	0.009	0.013	0.009	0.008	0.011			
COMPANIES	0.009	0.014	0.007	0.008	0.011			
	31.192	2.610	1.661	0.269	0.788			
	<0.001	0.097	0.097	0.788	0.144			
	0.261	0.034	0.144	−0.014	0.019			
	0.296	0.035	0.144	0.019				
Table S6.

Average model results explaining nestedness contribution at the site-level according to landscape, patch and habitat quality related variables – forest area (Area), distance to continuous forest (Dist), proportion of closed-canopy forest (%Closed-canopy) and burn severity (Burn) for each taxonomic group and all groups combined. Model averaging was performed considering all possible combinations of the five explanatory variables in addition to the interaction terms between Area and Dist and Area and Burn, either of which was retained only when significantly predicting nestedness contribution. Linear models were applied to medium-large mammals, small mammals, lizards, frogs, dung beetles, orchid bees and trees. Generalised linear models were fitted with a Gaussian distribution with a ‘log’ link function were applied to all groups combined. To account for spatial autocorrelation, the nestedness contribution of birds (log₁₀ x) was fitted with a Generalized Least Squares with a spatial Gaussian correlation structure including each site geographic coordinates (latitude and longitude). Statistically significant P-values are highlighted in bold.

Taxa	Model Parameters	Estimate	Std. Error	Adjust. SE	z-value	p-value	2.5%	97.5%			
Medium-large mammals	Intercept	2.251	0.093	0.099	22.803	<0.001	2.058	2.445			
	Area	-0.270	0.114	0.120	2.261	0.024	-0.505	-0.036			
	Burn	-0.110	0.145	0.151	0.724	0.469	-0.406	0.187			
	Dist	-0.068	0.118	0.124	0.551	0.582	-0.312	0.175			
	%Closed-canopy	-0.057	0.116	0.123	0.467	0.641	-0.297	0.183			
Small non-volant mammals	Intercept	1.290	0.120	0.127	10.144	<0.001	1.041	1.539			
	Area	0.458	0.147	0.155	2.960	0.003	0.155	0.761			
	Burn	0.167	0.177	0.186	0.899	0.369	-0.198	0.532			
	Dist	0.066	0.149	0.158	0.422	0.673	-0.243	0.376			
	%Closed-canopy	0.056	0.151	0.159	0.352	0.725	-0.256	0.368			
Lizards	Intercept	1.038	0.118	0.125	8.332	<0.001	0.794	1.283			
	Burn	0.250	0.141	0.149	1.678	0.093	-0.042	0.542			
	Area	-0.159	0.153	0.160	0.990	0.322	-0.472	0.155			
	Dist	-0.071	0.145	0.152	0.469	0.639	-0.369	0.227			
	%Closed-canopy	0.026	0.163	0.170	0.152	0.879	-0.307	0.359			
Understorey birds	Intercept	0.294	0.055	0.058	5.063	<0.001	0.180	0.408			
	Area	0.183	0.054	0.057	3.209	0.001	0.071	0.295			
	Burn	0.087	0.063	0.066	1.306	0.191	-0.043	0.217			
	Dist	0.024	0.057	0.060	0.391	0.696	-0.095	0.142			
	%Closed-canopy	0.069	0.054	0.056	1.231	0.218	-0.041	0.179			
Frogs	Intercept	1.672	0.143	0.151	11.064	<0.001	1.376	1.968			
	Area	0.410	0.173	0.181	2.259	0.024	0.054	0.766			
	Dist	0.213	0.175	0.184	1.156	0.248	-0.148	0.573			
	%Closed-canopy	-0.108	0.170	0.180	0.599	0.549	-0.460	0.245			
	Burn	-0.040	0.225	0.235	0.169	0.866	-0.501	0.421			
Dung beetles	Intercept	0.619	0.177	0.187	3.305	0.001	0.252	0.986			
	Dist	-0.368	0.214	0.225	1.633	0.102	-0.810	0.074			
	Area	0.739	0.232	0.243	3.039	0.002	0.262	1.216			
	%Closed-canopy	0.322	0.203	0.215	1.498	0.134	-0.099	0.742			
	Burn	-0.015	0.302	0.316	0.047	0.963	-0.634	0.605			
Orchid bees	Intercept	1.402	0.124	0.131	10.725	<0.001	1.145	1.658			
	Area	0.098	0.147	0.155	0.637	0.524	-0.204	0.401			
	Intercept	Area	Burn	Area * Burn	%Closed-canopy	Burn	Dist	%Closed-canopy	Area	Burn	Dist
---------------------	-----------	------	------	-------------	----------------	------	------	----------------	------	------	------
Trees	4.816	1.030	-0.060	0.309	0.213	0.180	-0.004	0.037	0.091	0.020	-0.004
	0.178	0.189	0.266	0.151	0.181	0.176	-0.004	0.016	0.016	0.020	0.017
	0.186	0.199	0.278	0.160	0.191	0.187	-0.004	0.017	0.017	0.021	0.018
	25.911	5.174	0.217	1.932	1.112	0.965	-0.004	2.181	5.339	0.956	0.211
	<0.001	<0.001	0.829	0.053	0.266	0.335	-0.004	0.029	<0.001	0.339	0.833
	4.452	0.640	-0.605	-0.004	-0.162	-0.186	-0.004	-0.232	0.058	0.039	-0.038
	5.180	1.420	0.484	0.622	0.588	0.546	-0.004	-0.259	0.125	0.062	0.031
All taxa											
Intercept	-0.232	0.037	0.091	0.020	-0.004	0.004	0.037	0.013	0.016	0.020	0.017
Area								16.875			2.181
Burn								0.014			0.017
Area * Burn								5.339			5.339
%Closed-canopy								<0.001			<0.001
Burn								0.004			0.029
Dist								-0.259			-0.038
								-0.205			0.031
								0.379			0.062
REFERENCES AND NOTES

1. O. E. Sala, F. S. Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, Global biodiversity scenarios for the year 2100. *Science* **287**, 1770–1774 (2000).

2. N. M. Haddad, L. A. Brudvig, J. Clobert, K. F. Davies, A. Gonzalez, R. D. Holt, T. E. Lovejoy, J. O. Sexton, M. P. Austin, C. D. Collins, Habitat fragmentation and its lasting impact on Earth’s ecosystems. *Sci. Adv.* **1**, e1500052 (2015).

3. T. Caro, Z. Rowe, J. Berger, P. Wholey, A. Dobson, An inconvenient misconception: Climate change is not the principal driver of biodiversity loss. *Conserv. Lett.* **15**, e12868 (2022).

4. J. Fischer, D. B. Lindenmayer, Beyond fragmentation: The continuum model for fauna research and conservation in human-modified landscapes. *Oikos* **112**, 473–480 (2006).

5. L. Marini, I. Bartomeus, R. Rader, F. Lami, Species–habitat networks: A tool to improve landscape management for conservation. *J. Appl. Ecol.* **56**, 923–928 (2019).

6. D. Nardi, F. Lami, P. Pantini, L. Marini, Using species-habitat networks to inform agricultural landscape management for spiders. *Biol. Conserv.* **239**, 108275 (2019).

7. F. Lami, I. Bartomeus, D. Nardi, T. Beduschi, F. Boscutti, P. Pantini, G. Santoiemma, C. Scherber, T. Tscharntke, L. Marini, Species–habitat networks elucidate landscape effects on habitat specialisation of natural enemies and pollinators. *Ecol. Lett.* **24**, 288–297 (2021).

8. P. X. Astudillo, I. Grass, D. C. Siddons, D. G. Schabo, N. Farwig, Centrality in species-habitat networks reveals the importance of habitat quality for high-Andean birds in Polylepis woodlands. *Ardeola* **67**, 307–324 (2020).

9. P. R. Guimarães Jr., The structure of ecological networks across levels of organization. *Annu. Rev. Ecol. Evol. Syst.* **51**, 433–460 (2020).
10. C. Emer, M. Galetti, M. A. Pizo, P. R. Guimaraes Jr., S. Moraes, A. Piratelli, P. Jordano, Seed-dispersal interactions in fragmented landscapes—A metanetwork approach. *Ecol. Lett.* **21**, 484–493 (2018).

11. N. Galiana, M. Lurgi, V. A. G. Bastazini, J. Bosch, L. Cagnolo, K. Cazelles, B. Claramunt-López, C. Emer, M.-J. Fortin, I. Grass, C. Hernández-Castellano, F. Jauker, S. J. Leroux, K. McCann, A. M. McLeod, D. Montoya, C. Mulder, S. Osorio-Canadas, S. Reverté, A. Rodrigo, I. Steffan-Dewenter, A. Traveset, S. Valverde, D. P. Vázquez, S. A. Wood, D. Gravel, T. Roslin, W. Thuiller, J. M. Montoya, Ecological network complexity scales with area. *Nat. Ecol. Evol.* **6**, 1–8 (2022).

12. E. O. Wilson, R. H. MacArthur, *The Theory of Island Biogeography* (Princeton Univ. Press, 1967).

13. L. Fahrig, Rethinking patch size and isolation effects: The habitat amount hypothesis. *J. Biogeogr.* **40**, 1649–1663 (2013).

14. I. L. Jones, N. Bunnefeld, A. S. Jump, C. A. Peres, D. H. Dent, Extinction debt on reservoir land-bridge islands. *Biol. Conserv.* **199**, 75–83 (2016).

15. V. Devictor, R. Julliard, F. Jiguet, Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. *Oikos* **117**, 507–514 (2008).

16. M. Marvier, P. Kareiva, M. G. Neubert, Habitat destruction, fragmentation, and disturbance promote invasion by habitat generalists in a multispecies metapopulation. *Risk Anal. Int. J.* **24**, 869–878 (2004).

17. J. M. Montoya, S. L. Pimm, R. V. Solé, Ecological networks and their fragility. *Nature* **442**, 259–264 (2006).

18. D. Montoya, M. L. Yallop, J. Memmott, Functional group diversity increases with modularity in complex food webs. *Nat. Commun.* **6**, 1–9 (2015).
19. J. Clavel, R. Julliard, V. Devictor, Worldwide decline of specialist species: Toward a global functional homogenization? *Front. Ecol. Environ.* **9**, 222–228 (2011).

20. F. Librán-Embid, I. Grass, C. Emer, C. Ganuza, T. Tscharntke, A plant–pollinator metanetwork along a habitat fragmentation gradient. *Ecol. Lett.* **24**, 2700–2712 (2021).

21. L. N. Joppa, J. M. Montoya, J. Sanderson, S. L. Pimm, On nestedness in ecological networks. *Evol. Ecol. Res.* **12**, 35–46 (2010).

22. J. Memmott, N. M. Waser, M. V. Price, Tolerance of pollination networks to species extinctions. *Proc. R. Soc. Lond. B Biol. Sci.* **271**, 2605–2611 (2004).

23. M. J. Pocock, D. M. Evans, J. Memmott, The robustness and restoration of a network of ecological networks. *Science* **335**, 973–977 (2012).

24. M. C. Hansen, L. Wang, X.-P. Song, A. Tyukavina, S. Turubanova, P. V. Potapov, S. V. Stehman, The fate of tropical forest fragments. *Sci. Adv.* **6**, eaax8574 (2020).

25. F. Riva, L. Fahrig, The disproportionately high value of small patches for biodiversity conservation. *Conserv. Lett.* **15**, e12881 (2022).

26. F. Jordan, Keystone species and food webs. *Philos. Trans. R. Soc. B Biol. Sci.* **364**, 1733–1741 (2009).

27. A. M. M. González, B. Dalsgaard, J. M. Olesen, Centrality measures and the importance of generalist species in pollination networks. *Ecol. Complex.* **7**, 36–43 (2010).

28. S. Saavedra, D. B. Stouffer, B. Uzzi, J. Bascompte, Strong contributors to network persistence are the most vulnerable to extinction. *Nature* **478**, 233–235 (2011).

29. R. Dirzo, H. S. Young, M. Galetti, G. Ceballos, N. J. Isaac, B. Collen, Defaunation in the anthropocene. *Science* **345**, 401–406 (2014).

30. I. L. Jones, A. Saldanha Bueno, M. Benchimol, A. F. Palmeirim, D. Storck-Tonon, C. A. Peres, Using relict species-area relationships to estimate the conservation value of reservoir
islands to improve environmental impact assessments of dams, in *The Species-Area Relationship: Theory and Application*. *Ecology, Biodiversity and Conservation*, T. J. Matthews, K. A. Triantis, R. J. Whittaker, Eds. (Cambridge Univ. Press, 2021), pp. 417–437.

31. J. Oksanen, F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. O’hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, H. Wagner, Package ‘vegan.’ *Community Ecol. Package Version*. 2, 1–295 (2013).

32. T. Newbold, L. N. Hudson, H. R. Phillips, S. L. Hill, S. Contu, I. Lysenko, A. Blandon, S. H. Butchart, H. L. Booth, J. Day, A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. *Proc. R. Soc. B Biol. Sci.* 281, 20141371 (2014).

33. J. M. Chase, S. A. Blowes, T. M. Knight, K. Gerstner, F. May, Ecosystem decay exacerbates biodiversity loss with habitat loss. *Nature* 584, 238–243 (2020).

34. T. J. Matthews, F. Guilhaumon, K. A. Triantis, M. K. Borregaard, R. J. Whittaker, On the form of species–area relationships in habitat islands and true islands. *Glob. Ecol. Biogeogr.* 25, 847–858 (2016).

35. A. Kosydar, L. Conquest, J. Tewksbury, Can life histories predict the effects of habitat fragmentation? A meta-analysis with terrestrial mammals. *Appl Ecol Env. Res.* 12, 505–521 (2014).

36. T. Pokorny, D. Loose, G. Dyker, J. J. G. Quezada-Euán, T. Eltz, Dispersal ability of male orchid bees and direct evidence for long-range flights. *Apidologie* 46, 224–237 (2015).

37. D. Storck-Tonon, C. A. Peres, Forest patch isolation drives local extinctions of Amazonian orchid bees in a 26 years old archipelago. *Biol. Conserv.* 214, 270–277 (2017).

38. M. Benchimol, C. A. Peres, Edge-mediated compositional and functional decay of tree assemblages in Amazonian forest islands after 26 years of isolation. *J. Ecol.* 103, 408–420 (2015).
39. D. H. Wright, B. D. Patterson, G. M. Mikkelson, A. Cutler, W. Atmar, A comparative analysis of nested subset patterns of species composition. *Oecologia* **113**, 1–20 (1997).

40. C. Carbone, J. L. Gittleman, A common rule for the scaling of carnivore density. *Science* **295**, 2273–2276 (2002).

41. M. Benchimol, C. A. Peres, Determinants of population persistence and abundance of terrestrial and arboreal vertebrates stranded in tropical forest land-bridge islands. *Conserv. Biol.* **35**, 870–883 (2021).

42. N. J. Cordeiro, H. F. Howe, Low recruitment of trees dispersed by animals in African forest fragments. *Conserv. Biol.* **15**, 1733–1741 (2001).

43. E. Thébault, C. Fontaine, Stability of ecological communities and the architecture of mutualistic and trophic networks. *Science* **329**, 853–856 (2010).

44. L. Gibson, T. M. Lee, L. P. Koh, B. W. Brook, T. A. Gardner, J. Barlow, C. A. Peres, C. J. Bradshaw, W. F. Laurance, T. E. Lovejoy, Primary forests are irreplaceable for sustaining tropical biodiversity. *Nature* **478**, 378–381 (2011).

45. J. M. Chase, A. Jeliazkov, E. Ladouceur, D. S. Viana, Biodiversity conservation through the lens of metacommunity ecology. *Ann. N. Y. Acad. Sci.* **1469**, 86–104 (2020).

46. M. Benchimol, C. A. Peres, Widespread forest vertebrate extinctions induced by a mega hydroelectric dam in lowland Amazonia. *PLOS ONE* **10**, e0129818 (2015).

47. E. Paradis, S. R. Baillie, W. J. Sutherland, R. D. Gregory, Patterns of natal and breeding dispersal in birds. *J. Anim. Ecol.* **67**, 518–536 (1998).

48. L. Fahrig, Effects of habitat fragmentation on biodiversity. *Annu. Rev. Ecol. Evol. Syst.* **34**, 487–515 (2003).

49. IBAMA [Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis], Plano de Manejo Fase 1: Reserva Biológica do Uatumã. (1997).
50. A. F. Palmeirim, M. Benchimol, M. V. Vieira, C. A. Peres, Small mammal responses to Amazonian forest islands are modulated by their forest dependence. *Oecologia* 187, 191–204 (2018).

51. A. F. Palmeirim, M. V. Vieira, C. A. Peres, Non-random lizard extinctions in land-bridge Amazonian forest islands after 28 years of isolation. *Biol. Conserv.* 214, 55–65 (2017).

52. A. S. Bueno, C. A. Peres, The role of baseline suitability in assessing the impacts of land-use change on biodiversity. *Biol. Conserv.* 243, 108396 (2020).

53. A. S. Bueno, G. S. Masseli, I. L. Kaefer, C. A. Peres, Sampling design may obscure species–area relationships in landscape-scale field studies. *Ecography* 43, 107–118 (2020).

54. D. Storck-Tonon, R. J. da Silva, L. Sawaris, F. Z. Vaz-de-Mello, D. J. da Silva, C. A. Peres, Habitat patch size and isolation drive the near-complete collapse of Amazonian dung beetle assemblages in a 30-year-old forest archipelago. *Biodivers. Conserv.* 29, 2419–2438 (2020).

55. E. A. Desktop, Release 10. *Redlands CA Environ. Syst. Res. Inst.* 437, 438 (2011).

56. G. Csardi, T. Nepusz, The igraph software package for complex network research. *Int. J. Complex Syst.*, 1695 (2006).

57. J. A. Dunne, R. J. Williams, N. D. Martinez, Network structure and biodiversity loss in food webs: Robustness increases with connectance. *Ecol. Lett.* 5, 558–567 (2002).

58. M. Girvan, M. E. Newman, Community structure in social and biological networks. *Proc. Natl. Acad. Sci. U.S.A.* 99, 7821–7826 (2002).

59. S. J. Beckett, Improved community detection in weighted bipartite networks. *R. Soc. Open Sci.* 3, 140536 (2016).

60. M. Almeida-Neto, P. Guimaraes, P. R. Guimaraes Jr., R. D. Loyola, W. Ulrich, A consistent metric for nestedness analysis in ecological systems: Reconciling concept and measurement. *Oikos* 117, 1227–1239 (2008).
61. E. Burgos, H. Ceva, R. P. Perazzo, M. Devoto, D. Medan, M. Zimmermann, A. M. Delbue,
Why nestedness in mutualistic networks? J. Theor. Biol. 249, 307–313 (2007).

62. J. Bascompte, P. Jordano, C. J. Melián, J. M. Olesen, The nested assembly of plant–animal
mutualistic networks. Proc. Natl. Acad. Sci. U.S.A. 100, 9383–9387 (2003).

63. C. F. Dormann, J. Frueund, N. Bluethgen, B. Gruber, Indices, graphs and null models:
Analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).

64. J. Pinheiro, D. Bates, S. DebRoy, D. Sarkar, S. Heisterkamp, B. Van Willigen, R. Maintainer,
NLME: Linear and nonlinear mixed effects models. R Package (2006).

65. A. Zuur, E. N. Ieno, N. Walker, A. A. Saveliev, G. M. Smith, Mixed Effects Models and
Extensions in Ecology with R (Springer Science & Business Media, 2009).

66. K. Barton, Multi-model inference. R package version 1.15.6 (2016).

67. R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for
Statistical Computing, 2020); www.R-project.org/.

68. H. Wickham, W. Chang, M. H. Wickham, Package ‘ggplot2.’ Create Elegant Data
Visualisations Using the Grammar of Graphics, version 2 (2016), pp. 1–189.

69. H. Wilman, J. Belmaker, J. Simpson, C. de la Rosa, M. M. Rivadeneira, W. Jetz, EltonTraits
1.0: Species-level foraging attributes of the world's birds and mammals: Ecological Archives
E095-178. Ecology 95, 2027–2027 (2014).

70. J. R. Malcolm, The small mammals of Amazonian forest fragments: Pattern and process,
Thesis, University of Florida (1991).

71. BirdLife International, IUCN Red List for birds (2018); www.birdlife.org [accessed 24 June
2021].

72. C. F. Haddad, C. P. Prado, Reproductive modes in frogs and their unexpected diversity in the
Atlantic Forest of Brazil. Bioscience 55, 207–217 (2005).
73. B. F. Oliveira, V. A. São-Pedro, G. Santos-Barrera, C. Penone, G. C. Costa, AmphiBIO, a global database for amphibian ecological traits. *Sci. Data* **4**, 1–7 (2017).

74. G. Halffter, W. D. Edmonds, *The Nesting Behavior of Dung Beetles (Scarabaeinae). An Ecological and Evolutive Approach* (Instituto de Ecologia, 1982).

75. Andresen, E. Dung beetles in a Central Amazonian rainforest and their ecological role as secondary seed dispersers. *Ecol. Entomol.* **27**, 257–270 (2002).

76. L. A. Urrea-Galeano, E. Andresen, R. Coates, F. M. Ardila, A. D. Rojas, G. Ramos-Fernández, Horizontal seed dispersal by dung beetles reduced seed and seedling clumping, but did not increase short-term seedling establishment. *PLOS ONE* **14**, e0224366 (2019).