ON EXACT SCALING LOG-INFINITELY DIVISIBLE CASCADES

JULIEN BARRAL AND XIONG JIN

Abstract. In this paper we extend some classical results valid for canonical multiplicative cascades to exact scaling log-infinitely divisible cascades. We complete previous results on non-degeneracy and moments of positive orders obtained by Barral and Mandelbrot, and Bacry and Muzy: we provide a necessary and sufficient condition for the non-degeneracy of the limit measures of these cascades, as well as for the finiteness of moments of positive orders of their total mass, extending Kahane’s result for canonical cascades. Our main results are analogues to the results by Kahane and Guivarc’h regarding the asymptotic behavior of the right tail of the total mass. They rely on a new observation made about the cones used to define the log-infinitely divisible cascades; this observation provides a “non-independent” random difference equation satisfied by the total mass of the measures. The non-independent structure brings new difficulties to study the random difference equation, which we overcome thanks to Goldie’s implicit renewal theory. We also discuss the finiteness of moments of negative orders, and some geometric properties of the support.

1. Introduction

This paper studies fine properties of one of the fundamental models of positive random measures illustrating multiplicative chaos theory, namely limits of log-infinitely divisible cascades.

Multiplicative chaos theory originates mainly from the intermittent turbulence modeling proposed by Mandelbrot in [23], who introduced a non completely rigorously mathematically founded construction of measure-valued log-Gaussian multiplicative processes. As its mathematical treatment was hard to achieve, the model was simplified by Mandelbrot himself, who considered the so-called limit of canonical multiplicative cascades in [24, 25, 26]. The study of these statistically self-similar measures gave rise to a number of important contributions that we will describe in a while. In the eighties, Kahane founded multiplicative chaos theory in [15, 17, 16], in particular for Gaussian multiplicative chaos (but also with applications to random coverings), providing the expected mathematical framework for Mandelbrot’s initial construction. Later, fundamental new illustrations of this theory by grid free statistically self-similar measures appeared, namely the compound Poisson cascades introduced by Barral and Mandelbrot in [4] and their generalization in the wide class of log-infinitely divisible cascades built by Bacry and Muzy in [2]; in particular, [2] found a subclass of log-infinitely divisible cascades whose limits possess a remarkable exact scaling property: let \(\mu \) be the measure on \(\mathbb{R}_+ \) obtained as the non-degenerate limit of such a cascade. There exists an integral scale \(T > 0 \) and a Lévy characteristic exponent \(\psi \) such that for all \(\lambda \in (0, 1) \), there exists an infinitely

The second author is supported by a Royal Society Newton International Fellowship.
divisible random variable Ω, such that $\mathbb{E}(e^{i\varphi\Omega}) = \lambda^{-\varphi(q)}$ for all $q \in \mathbb{R}$, and

$$
\mu([0,\lambda t])_{0 \leq t \leq T} \overset{\text{law}}{=} \lambda e^{\Omega\lambda}(\mu([0,t]))_{0 \leq t \leq T},
$$

where on the right hand side $(\mu([0,t]))_{0 \leq t \leq T}$ is independent of $e^{\Omega\lambda}$. Moreover, $(\mu([u, u + t])_{t \geq 0})_{u \geq 0}$ is stationary, and the μ-measure of any two intervals being away from each other by more than T are independent.

These measures were built on the real line, and higher dimensional versions have been built as well (see [7, 30] for generalisations to the higher dimension). In particular, in dimension 2 and in the log-Gaussian case, they are closely related to the validity of the so-called KPZ formula and its dual version in Liouville quantum gravity (see [9] and references therein, as well as [3]).

The same series of questions which have interested mathematicians for canonical cascades naturally occur for log-infinitely divisible cascades. This paper will deal with some of them, both by sharpening some known results and proving new ones, especially regarding the right tail asymptotic behavior of the law of the total mass of such a measure restricted to compact intervals. Our study will be based on, in an essential way, an alternative construction of the log-infinitely divisible cascades with exact scaling, consisting in making a new choice of “cones” used to build them. This new point of view also turns out to have the advantage to make it possible to build multifractal processes over \mathbb{R}^+ combining stationarity and long range dependence of their increments along the multiples of an integral scale T, and exact scale invariance properties at scales smaller than T over the intervals $[nT,(n+1)T]$; however we will lose the global stationarity of the increments, the stationarity being reduced to the semi-group $T \cdot \mathbb{N}$.

Let us come back to the canonical multiplicative cascades and the related fundamental questions. To build such a random measure in dimension 1, one considers for instance the dyadic tree

$$
T = \bigcup_{j \geq 1} \left\{ M_u = \left(2^{-(j+1)} + \sum_{k=1}^{j} u_k 2^{-k} ; 2^{-j} \right) \right\}_{u \in \{0,1\}^j}
$$

embedded in the upper half-plane \mathbb{H} (this extends naturally to m-adic trees). Then to each point M_u one associates a random variable W_u, so that the W_u, $u \in \bigcup_{j \geq 1} \{0,1\}^j$, are independent and identically distributed with a positive random variable W of expectation 1, and one defines a sequence of measures on $[0,1]$ as

$$
\mu_j(dt) = \prod_{k=1}^{j} W_{u_k} \cdot dt \quad \text{if } t \in \left[\sum_{k=1}^{j} u_k 2^{-k}, 2^{-j} + \sum_{k=1}^{j} u_k 2^{-k} \right),
$$

a definition which, to be interpreted in the same setting as that used to define the log-infinitely divisible cascades studied in this paper, can be reformulated in

$$
\mu_j(dt) = e^{\Lambda(C_{2^{-j}}(t))} dt,
$$

where $C_{2^{-j}}(t) = \{ z = x + iy \in \mathbb{H} : -y/2 \leq x - t < y/2, 2^{-j} \leq y \leq 1 \}$ and Λ is the random measure on $(\mathbb{H}, \mathcal{B}(\mathbb{H}))$ defined as

$$
\Lambda(A) = \sum_{u : M_u \in A} \log(W_u).
$$

Indeed, the compound Poisson cascades mentioned above correspond formally to the replacement of the tree T by the points of a Poisson point process in \mathbb{H} with
an intensity of the form \(ay^{-d}dzdy \) (\(a > 0 \)), the process being independent of the copies of \(W \) attached to its points.

The sequence \((\mu_j)_{j \geq 1}\) is a martingale which converges almost surely weakly to a measure \(\mu \) supported on \([0, 1] \). Mandelbrot was especially interested in three related questions: (1) under which necessary and sufficient conditions is \(\mu \) non-degenerate, i.e. \(\mathbb{P}(\mu \neq 0) = 1 \) (\(\{\mu \neq 0\} \) is a tail event of probability 0 or 1)? (2) When \(\mu \) is non-degenerate, under which necessary and sufficient conditions \(\mathbb{E}(\|\mu\|^q) < \infty \) when \(q > 1 \)? (3) When \(\mu \) is non-degenerate, what is the Hausdorff dimension of \(\mu \)?

He formulated and partially solved conjectures about these questions. Then, the two first questions were solved by Kahane and the third one by Peyrière in [18]: let

\[
(1.2) \quad \varphi(q) = \log_2 \mathbb{E}(W^q) - (q - 1).
\]

Then \(\mu \) is non-degenerate if and only if \(\varphi'(1^-) < 0 \); in this case the convergence of \(\|\mu_j\| \) holds in \(L^1 \) norm, and for \(q > 1 \) one has \(\mathbb{E}(\|\mu\|^q) < \infty \) if and only if \(\varphi(q) < 0 \); also, the Hausdorff dimension of \(\mu \) is \(-\varphi'(1^-)\) (Peyrière assumed \(\mathbb{E}(\|\mu\|^q) \log^+ \|\mu\|) < \infty \), a condition removed in [16].

Answers to questions (1) and (2) exploited finely the fundamental equation governing the canonical multiplicative cascade and its limit (especially its exact scaling properties along the dyadic grid), namely the almost sure relation

\[
(1.3) \quad Z = 2^{-1}(W_0Z(0) + W_1Z(1)),
\]

where \(Z = \|\mu\| \) and \(Z(0) \) and \(Z(1) \) are the independent copies of \(Z \) obtained by making the substitution \(W_a := W_{0a} \) and \(W_a := W_{1a} \) respectively in the construction. Notice that in [13] we also have \((W_0, W_1)\) being independent of \((Z(0), Z(1))\).

Mandelbrot also raised the question of the asymptotic behavior of the right tail of \(Z \). Kahane noticed that all the positive moments of \(Z \) are finite if and only if \(\mathbb{P}(W \leq 2) = 1 \) and \(\mathbb{P}(W = 2) < 1/2 \) (recall that this is also equivalent to \(\varphi(q) < 0 \) for all \(q > 1 \)), and in this case he showed in [18] that

\[
(1.4) \quad \lim_{q \to +\infty} \frac{\log \mathbb{E}(Z^q)}{q \log q} = \log_2 \text{ess sup}(W) \leq 1.
\]

When there exists a (necessarily unique since \(\varphi(1) = 0 \) and \(\varphi \) is convex) solution \(\zeta \) to the equation \(\varphi(q) = 0 \) in \((1, \infty)\), Guivarc’h, motivated by a conjecture in [25], showed in [14] that when the distribution of \(\log(W) \) is non-arithmetic, there exists a constant \(0 < d < \infty \) such that

\[
(1.5) \quad \lim_{x \to +\infty} x^d \mathbb{P}(Z > x) = d.
\]

The proof is based on the connection of (1.3) with the theory of random difference equations.

An almost necessary and sufficient condition for the finiteness of moments of negative orders of \(Z \) have been obtained in [27], [20]. To derive a NSC, rather than \(Z \) it is convenient to consider \(\bar{Z} = \tilde{W}Z \) where \(\tilde{W} \) is a copy of \(W \) independent of \(Z \). Then combining [6], if \(\mu \) is non-degenerate, for \(q > 0 \) one has \(\mathbb{E}(\bar{Z}^{-q}) < \infty \) if and only if \(\varphi(-q) < \infty \), i.e. \(\mathbb{E}(W^{-q}) < \infty \).

We will consider the previous problems for the limits of log-infinitely divisible cascades, whose formal definition will be given in Section 1.3 using a series of definitions given in Sections 1.1 and 1.2. The new point of view we adopt on the construction of such measures with exact scaling properties yields equation (1.13),
a natural and essential analogue to (1.3), to which is associated an analogue to the logarithmic generating function \(\varphi \). This equation does not emerge immediately from Bacry and Muzy’s point of view which, nevertheless, provides the scale invariance in law for the mass of intervals, a property which now follows directly from our approach. The question of non-degeneracy was almost completely solved for compound Poisson cascades in [4]; the same was done for the finiteness of moments of positive orders, a result extended to general infinitely divisible cascades in [2]. Thanks to equation (1.13), we can prove rather easily for the limit \(\mu \) of log-infinitely divisible cascades formally the same results as the sharp result of Kahane on non-degeneracy (Theorem 1.1) and the finiteness of moments of positive orders for the total mass of the limit of canonical multiplicative cascades (Theorem 1.2); then, these results also hold for the more general family of log-infinitely divisible cascades built in [2], since changing the shape of the cones used in the definition of the cascade only creates a random measure equivalent to that corresponding to the exact scaling, and the behaviors of such measures are comparable (see [2, Appendix E]).

Our main results concern the extension of Kahane’s result on the asymptotic behavior of \(E(\|\mu\|^q) \) when all the moments of positive orders are finite (Theorem 1.3), and the extension of Guivarc’h’s result on the right tail behavior of the distribution of \(\|\mu\| \) in case of moments explosion (Theorem 1.4); for these results we require the exact scaling property, so that (1.13) holds. The situation turns out to be much more involved than that in the case of canonical cascades, due to the correlations associated with (1.13), which are absent in (1.3). We first exploit the unexpected fact that in Goldie’s approach in [13] to the right tail behavior of solutions of random difference equations, it is possible to relax some independence assumptions. Then we must show that at the critical moment of explosion \(\zeta \), although \(E(\mu([0, 1/2])) = \infty \), we have \(E(\mu([0, 1/2])\mu([1/2, 1])^{\zeta - 1}) < \infty \) under suitable (weak) assumptions, which yields (in the non-arithmetic case)

\[
\lim_{x \to \infty} x^\zeta P(\mu([0, 1]) > x) = \frac{2E(\mu([0, 1])^{\zeta - 1}\mu([0, 1/2]) - \mu([0, 1/2]))^{\zeta}}{\zeta \varphi'(1) \log 2} \in (0, \infty).
\]

The finiteness of \(E(\mu([0, 1/2])\mu([1/2, 1])^{\zeta - 1}) \), which is direct in the case of canonical cascades, is rather involved here.

For reader’s convenience we will also extend to log-infinitely divisible cascades the result on finiteness of moments of negative orders mentioned in the previous paragraph (Theorem 1.5), though with some effort it may be deduced from [4] and [31]; they provide some information on the left tail behavior of the distribution of \(\|\mu\| \). Finally, thanks to (1.13) we can quickly give fine information on the geometry of the support of \(\mu \) (Theorem 1.6).

To complete these preliminary considerations, it is worth mentioning that the notes [25, 26] also questioned the existence, when the limit \(\mu \) is degenerate, of a natural normalization of \(\mu_j \) by a positive sequence \(A_j \) such that \(\mu_j / A_j \) converges, in some sense, to a non trivial limit. This problem was solved only very recently thanks to progress made in the study of freezing transition for logarithmically correlated random energy models [32] and in the study of branching random walks in which a generalized version of (1.3) appears naturally [1, 22]. Under weak assumptions, when \(\varphi'(1^-) = 0 \), \(\mu_j \) suitably normalized converges in probability to a positive random measure \(\tilde{\mu} \) whose total mass \(Z \) still satisfies (1.3), but is not integrable, while
when $\varphi'(1^-) > 0$, after normalization μ_j converges in law to the derivative of some stable Lévy subordinator composed with the indefinite integral of an independent measure of $\tilde{\mu}$ kind \[\text{[5]}\]. Previously, motivated by questions coming from interacting particle systems, Durrett and Liggett had achieved in \[\text{[10]}\] a deep study of the positive solutions of the equation \[\text{(1.3)}\] assuming that the equality holds in distribution only. Under weak assumptions, up to a positive multiplicative constant, the general solution take either the form of the total mass of a non-degenerate measure μ or of $\tilde{\mu}$, or it takes the form of the increment between 0 and 1 of some stable Lévy subordinator composed with the indefinite integral of an independent measure of μ or $\tilde{\mu}$ kind. Similar properties are conjectured to hold for log-infinitely divisible cascades, see \[\text{(3)}\] and \[\text{[8]}\].

Let us now come to the definitions (Sections 1.1 and 1.2) required to build log-infinitely divisible cascades (Section 1.3), and our main results for the limits of such cascades (Section 1.4).

1.1. Independently scattered random measures. Let ψ be a characteristic Lévy exponent given by

$$\psi : q \in \mathbb{R} \mapsto iaq - \frac{1}{2} \sigma^2 q^2 + \int_{\mathbb{R}} (e^{iqx} - 1 - iqx1_{|x| \leq 1}) \nu(dx),$$

where $a, \sigma \in \mathbb{R}$ and ν is a Lévy measure on \mathbb{R} satisfying

$\nu(\{0\}) = 0$ and $\int_{\mathbb{R}} 1 \wedge |x|^2 \nu(dx) < \infty$.

Let $\mathbb{H} = \mathbb{R} \times i\mathbb{R}_+$ be the upper half plane and let λ be a measure on \mathbb{H} defined as

$$\lambda(dx dy) = y^{-2} dx dy.$$

Let Λ be an homogenous independently scattered random measure on \mathbb{H} with ψ as Lévy exponent and λ as intensity (see \[\text{[28]}\] for details). In particular, for every Borel set $B \in \mathcal{B}_\lambda = \{ B \in \mathcal{B}(\mathbb{H}) : \lambda(B) < \infty \}$ and $q \in \mathbb{R}$ we have

$$\mathbb{E} \left(e^{iq\Lambda(B)} \right) = e^{\psi(q)\lambda(B)},$$

and for every at most countable family of disjoint Borel sets $\{ B_i \} \subset \mathcal{B}_\lambda$, the random variables $\{ \Lambda(B_i) \}$ are independent and satisfy

$$\Lambda \left(\bigcup_{i=1}^{\infty} B_i \right) = \sum_{i=1}^{\infty} \Lambda(B_i) \quad \text{almost surely.}$$

Let I_ν be the interval of those $q \in \mathbb{R}$ such that $\int_{|x| \geq 1} e^{qx} \nu(dx) < \infty$. Then the function ψ has a natural extension to $z \in \mathbb{C} : -\text{Im}(z) \in I_\nu$. In particular for any $q \in I_\nu$ and every $B \in \mathcal{B}_\lambda$ we have

$$\mathbb{E} \left(e^{q\Lambda(B)} \right) = e^{\psi(-iq)\lambda(B)}.$$

Assume that at least one of σ and ν is positive, and assume that I_ν contains the interval $[0, 1]$. We adopt the normalization

$$a = -\frac{\sigma^2}{2} - \int_{\mathbb{R}} (e^x - 1 - x1_{|x| \leq 1}) \nu(dx).$$

Then for $B \in \mathcal{B}_\lambda$ we define

$$Q(B) = e^{\Lambda(B)},$$
and by (1.8) we have
\[(1.9) \quad \mathbb{E}(Q(B)) = 1.\]
More generally for \(q \in I_\nu\) we have
\[(1.10) \quad \mathbb{E}(Q^q(B)) = e^{\psi(-iq)\lambda(B)}.\]

1.2. Cones and areas. Let \(I = \{[s, t] : s, t \in \mathbb{R}, s < t\}\) be the collection of all nontrivial compact intervals. For \(I = [s, t] \in I\) denote by \(|I|\) its length \(t - s\).

For \(t \in \mathbb{R}\) define the cone
\[V(t) = \{z = x + iy \in \mathbb{H} : -y/2 < x - t \leq y/2\} = V(0) + t.\]
For \(I \in I\) define
\[V(I) = \bigcap_{t \in I} V(t).\]
For \(I \in I\) and \(t \in I\) define
\[V^I(t) = V(t) \setminus V(I).\]
For \(I, J \in I\) with \(J \subseteq I\) define
\[V^I(J) = \bigcap_{t \in J} V^I(t) = V(J) \setminus V(I).\]

Lemma 1.1. For \(I, J \in I\) with \(J \subseteq I\) we have
\[\lambda(V^I(J)) = \log \frac{|I|}{|J|}.\]

Proof. A direct calculation. \(\square\)

1.3. Log-infinitely divisible cascades. For \(\epsilon > 0\) denote by
\[\mathbb{H}_\epsilon = \{z \in \mathbb{H} : \text{Im}(z) \geq \epsilon\}.\]
For \(I \in I, t \in I\) and \(\epsilon > 0\) define
\[V^I_\epsilon(t) = V^I(t) \cap \mathbb{H}_\epsilon.\]
Clearly we have \(V^I_\epsilon(t) \in \mathcal{B}_\lambda\). Moreover, for each \(\epsilon > 0\) there exists a càdlàg modification of \((Q(V^I_\epsilon(t)))_{t \in I}\). In fact, similar to [2, Definition 4], one can define
\[\Lambda(V^I_\epsilon(t)) = \Lambda(A^I_\epsilon(t)) - \Lambda(B^I_\epsilon(t)) + \Lambda(C^I_\epsilon), \quad t \in I,\]
where (see Figure 1)
\[
\begin{align*}
A^I_\epsilon(t) &= \{x + iy \in \mathbb{H} : y/2 \leq x \leq t + y/2\} \cap \mathbb{H}_\epsilon, \\
B^I_\epsilon(t) &= \{x + iy \in \mathbb{H} : -y/2 \leq x \leq t - y/2\} \cap \mathbb{H}_\epsilon, \\
C^I_\epsilon &= \{x + iy \in \mathbb{H} : -y/2 \leq x \leq y/2 \wedge (1 - y/2)\} \cap \mathbb{H}_\epsilon.
\end{align*}
\]

Figure 1. The gray areas for the corresponding sets.
It is easy to see that both $\Lambda(A^t_1(t))$ and $\Lambda(B^t_1(t))$ are Lévy processes and $\Lambda(C^t_1)$ does not depend on t, thus $\Lambda(V^t_1(t))$ has a càdlàg modification.

We use this to define μ^t_1, the random measure on I given by

$$\mu^t_1(dx) = \frac{1}{|I|} \cdot Q(V^t_1(x)) \, dx, \quad x \in I.$$

The following lemma is due to Kahane [17] combined with Doob’s regularisation theorem (see [29] Chapter II.2 for example).

Lemma 1.2. Given $I \in \mathcal{I}$, $\{\mu^t_{1/I}\}_{t > 0}$ is measure-valued martingale. It possesses a right-continuous modification, which converges weakly almost surely to a limit μ^t.

Throughout, we will work with this right-continuous version of $\{\mu^t_{1/I}\}_{t > 0}$, and its limit μ^t. We give the proof of this lemma with some details, since this point is not made explicit in the context of [2].

Proof. Let Φ be a dense countable subset of $C_0(I)$ (the family of nonnegative continuous functions on I). Let f_0 be the constant mapping equal to 1 over I. For $f \in \Phi \cup \{f_0\}$ and $t > 0$ define

$$\mu^t_{1/I}(f) = \int_{I} f(x) \mu^t_{1/I}(dx) = \frac{1}{|I|} \int_{I} f(x) \cdot Q(V^t_{1/I}(x)) \, dx$$

and

$$\mathcal{F}_t = \left(\sigma(\Lambda(V^t_{1/I}(x)) : x \in I; \ 0 < s \leq t) \right)_{t > 0}.$$

Let \mathcal{N} be the class of all \mathbb{P}-negligible, \mathcal{F}_∞-measurable sets. Then define $\mathcal{G}_0 = \sigma(\mathcal{N})$ and $\mathcal{G}_t = \sigma(\mathcal{F}_t \cup \mathcal{N})$ for $t > 0$. Due to the normalisation [18], the meassurability of $(\omega, t) \mapsto Q(V^t_1(t))$ and the independence properties associated with Λ, the family $\{\mu^t_{1/I}(f)\}_{t > 0}$ is a positive martingale with respect to the right-continuous complete filtration $(\mathcal{G}_t)_{t \geq 0}$, with expectation $\mathbb{E}(\mu^t_{1/I}) = |I|^{-1} \int_{I} f(x) \, dx < \infty$. Then from [29] Chapter II, Theorem 2.5 one can find a subset $\Omega_0 \subset \Omega$ with $\mathbb{P}(\Omega_0) = 1$ such that for every $\omega \in \Omega_0$, for each $f \in \Phi \cup \{f_0\}$ and $t \in [0, \infty)$, $\lim_{r \downarrow t, r \in \mathbb{Q}} \mu^t_{1/I}(f)$ exists. Define

$$\mu_{1/I}^t(\omega) = \lim_{t \downarrow \omega \in \mathbb{Q}} \mu_{1/I}^t(f) \text{ if } \omega \in \Omega_0 \text{ and } \mu_{1/I}^t(f) = 0 \text{ if } \omega \notin \Omega_0.$$

Then from [29] Chapter II, Theorem 2.9 and 2.10 we get that $\mu_{1/I}^t(\omega)$ is a càdlàg modification of $\mu_{1/I}^t(f)$ for each $f \in \Phi \cup \{f_0\}$, thus $\lim_{t \to \infty} \mu_{1/I}^t(\omega)$ exists for each $\omega \in \Omega_0$. Now write

$$\mu^t(f) = \lim_{t \to \infty} \mu_{1/I}^t(\omega) \text{ if } \omega \in \Omega_0 \text{ and } \mu^t(f) = 0 \text{ if } \omega \notin \Omega_0$$

for each $f \in \Phi$. Since Φ is a dense subset of $C_0(I)$, one can extend $\mu_{1/I}^t$ to $C_0(I)$ for each $\omega \in \Omega_0$ by letting

$$\mu_{1/I}^t(g) = \lim_{\Phi \ni f \to g} \mu_{1/I}^t(f), \quad g \in C_0(I)$$

(this limit does exist because for any $f_1, f_2 \in \Phi$ and $r \in \mathbb{Q}$ we have $|\mu_{1/I}^t(f_1) - \mu_{1/I}^t(f_2)| \leq \mu_{1/I}^t(f_0) \|f_1 - f_2\|_\infty$). This defines a right-continuous version of $(\mu_{1/I}^t)_{t > 0}$. Then, since the positive linear forms $\mu_{1/I}^t$ are bounded in norm by $\mu_{1/I}^t(f_0)$ and converge over the dense family Φ, they converge. This defines a measure μ^t as the weak limit of $\mu^t_{1/I}$ for each $\omega \in \Omega_0$, hence the conclusion. □
For the weak limit μ^I we have:

Lemma 1.3. For $I, J \in \mathcal{I}$, $\mu^I \circ f_{I,J}^{-1}$ and μ^J have the same law, where $f_{I,J} : t \in I \mapsto \inf J + (t - \inf I)|J|/|I|$.

Proof. Due to the scaling property of λ we have that

$$\left\{ Q(V^I_t(f_{I,J}^{-1})(x)), x \in J \right\} \text{ and } \left\{ Q(V^J_{t|J|/|I|}(x), x \in J \right\}$$

have the same law. This implies that

$$\left\{ \mu^I_{1/t} \circ f_{I,J}^{-1}, t > 0 \right\} \text{ and } \left\{ \mu^J_{1/(|J|t)}, t > 0 \right\}$$

have the same law, and so do $\mu^I \circ f_{I,J}^{-1}$ and μ^J.

\square

Now we come to the scaling property of μ^I. Due to (1.11), for any fixed compact subinterval $J \subset I$ and $t > 0$ we have the decomposition

$$(1.11) \quad Q(V^I_{1/t}(x)) = Q(V^I(J)) \cdot Q(V^J_{|J|/|I|}(x)), \ x \in J,$$

hence

$$(\mu^I_{1/t})_{|J|} = \frac{|J|}{|I|} Q(V^I(J)) \cdot \mu^J_{|J|/(|J|t)};$$

almost surely. Consequently this holds almost surely simultaneously for any at most countable family of such intervals J, but a priori not for all, since Λ is not almost surely a signed measure. This along with Lemma 1.2 and its proof gives simultaneously for all compact intervals J of such a family the following decomposition

$$(1.12) \quad (\mu^I)|_J = \frac{|J|}{|I|} Q(V^I(J)) \cdot \mu^J$$

almost surely, where $\mu^I \circ f_{I,J}^{-1}$ has the same law as μ^I, and it is independent of $Q(V^I(J))$ (the fact that μ^I is continuous assures that the weak limit of $\mu^I_{1/t}$ restricted to J equals μ^I restricted to J; the right-continuous modifications of $(\mu^I_{1/t})_{t>0}$ and the $(\mu^J_{1/(|J|t)})_{t>0}$ are built simultaneously, and the convergence of $\mu^I_{1/t}$ implies that of $\mu^J_{1/(|J|t)}$). However, (1.12) also holds almost surely simultaneously for all $J \in \mathcal{I}$ with $J \subset I$ when $\sigma = 0$ and the Lévy measure ν satisfies $\int 1 \wedge |u| \nu(du) < \infty$. Indeed, in this case Λ is almost surely a signed measure, which makes it possible to directly write (1.11) almost surely for all $J \in \mathcal{I}$ with $J \subset I$ and for all $t > 0$ (notice that in this case we easily have the nice property that almost surely $Q(V^I_{1/t}(x))$ is càdlàg both in x and t).

We notice that (1.12) implies (1.1) (see Section 1.5 for details), but we also have now the following new equation giving $\|\mu^I\|$ as a weighted sum of its copies: given $k \geq 2$ and $\min I = s_0 < \cdots < s_k = \max I$, for $j = 0, \cdots, k - 1$ write $I_j = [s_j, s_{j+1}]$; provided that s_1, \cdots, s_{k-1} are not atoms of μ^I, we have almost surely

$$(1.13) \quad \|\mu^I\| = \sum_{j=0}^{k-1} \frac{|I_j|}{|I|} \cdot Q(V^I(I_j)) \cdot \|\mu^I_j\|,$$

where for each j, $\|\mu^I_j\|$ is independent of $Q(V^I(I_j))$ and has the same law as $\|\mu^I\|$. This equation will be crucial to get our main results.
Another interesting equation is the following. For $I \in \mathcal{I}$ let

$$I_0 = [\min(I), \min(I) + |I|/2] \text{ and } I_1 = [\min(I) + |I|/2, \max(I)].$$

One can also define I_{00} and I_{01} in the same way for I_0. Then, provided $I_{00} \cap I_{01}$ is not an atom of μ^{I_0}, we have

$$\mu^I|_{I_0} = \frac{1}{2} \cdot Q(V^I(I_0)) \cdot ((\mu^{I_0})|_{I_{00}} + (\mu^{I_0})|_{I_{01}}),$$

where $(\mu^{I_0})|_{I_{00}} \circ f_{I_{00}}^{-1}$ and $(\mu^{I_0})|_{I_{01}} \circ f_{I_{01}}^{-1}$ have the same law as $(\mu^I)|_{I_0}$, and they are independent of $\frac{1}{2}Q(V^I(I_0))$.

It remains to prove the following lemma.

Lemma 1.4. Almost surely μ^I has no atoms.

Proof. We can assume that $I = [0, 1]$. We start with proving that 1/2 is not an atom. Let $(f_n)_{n \geq 1}$ be uniformly bounded sequence in $C_0([0,1])$ which converges pointwise to $1_{1/2}$, and such that $\text{supp}(f_n) \subset [1/2 - \eta_n, 1/2 + \eta_n]$ with $1/2 > \eta_n \downarrow 0$. Then

$$\mathbb{E}(\mu^I([1/2])) \leq \liminf_{n \to \infty} \mathbb{E}(\mu^I(f_n)) \leq \liminf_{n \to \infty} \liminf_{t \to \infty} \mathbb{E}(\mu^I I_{1/t}(f_n))$$

$$= \liminf_{n \to \infty} \int f_n(t) \, dt \leq \liminf_{n \to \infty} 2\eta_n \|f_n\|_{\infty}.$$

So $\mathbb{E}(\mu^I([1/2])) = 0$.

The fact that 1/2 is not an atom of μ^I yields the validity of (1.14). Denote by $\hat{\mu} = (\mu^I)|_{I_0}$, $\hat{\mu}_0 = (\mu^{I_0})|_{I_{00}}$, $\hat{\mu}_1 = (\mu^{I_0})|_{I_{01}}$, and $\hat{W} = \frac{1}{2}Q(V^I(I_0))$. From (1.14) we get

$$\hat{\mu} = \hat{W} \cdot (\hat{\mu}_0 + \hat{\mu}_1).$$

Due to Lemma 1.3 we know that whether μ^I or $\hat{\mu}$ having an atom is equivalent. Let M be the maximal $\hat{\mu}$-measure of an atom of $\hat{\mu}$, and let M_j be the maximal $\hat{\mu}_j$-measure of an atom of $\hat{\mu}_j$ for $j = 0, 1$. We have $M = \hat{W} \max(M_0, M_1)$, where \hat{W} is independent of (M_0, M_1), has expectation 1/2 and M, M_0, M_1 have the same law. Thus

$$\mathbb{E}(M_0 + M_1)/2 = \mathbb{E}(M) = \mathbb{E}(\hat{W} \max(M_0, M_1)) = \mathbb{E}(\max(M_0, M_1))/2.$$

This implies that, with probability 1, if $M_j > 0$ then $M_{1-j} = 0$ for $j \in \{0, 1\}$. However, $\{M_j > 0\}$ is a tail event of probability 0 or 1, thus the previous fact implies that $M_0 = M_1 = 0$ almost surely, hence $\hat{\mu}$ has no atoms (here we have adapted to our context the argument of [6] Lemma A.2) for canonical cascades. \hfill \Box

1.4. Main results

Without loss of generality we may take $I = [0, 1]$. For convenience we write $\mu = \mu^{[0,1]}$ and $Z = ||\mu||$. For $q \in I_\nu$ define

$$\varphi(q) = \psi(-iq) - (q - 1).$$

Notice that if we set

$$W = Q(V^{[0,1]}([0,1/2])),$$

then this function coincides with that of (1.2) for canonical cascades.

For the non-degeneracy we have
Theorem 1.1. The following assertions are equivalent:

(i) $E(Z) = 1$;
(ii) $E(Z) > 0$;
(iii) $\varphi'(1^-) < 0$.

Moreover, in case of non-degeneracy the convergence of $\|\mu_{1/t}\|$ to Z holds in L^1 norm.

For moments of positive orders we have

Theorem 1.2. For $q > 1$ one has $0 < E(Z^q) < \infty$ if and only if $q \in I_\nu$ and $\varphi(q) < 0$.

When Z has finite moments of every positive order we have

Theorem 1.3. (1) The following assertions are equivalent:

α) $0 < E(Z^q) < \infty$ for all $q > 1$;
β) $\sigma = 0$, and ν is carried by $(-\infty, 0]$, $\int_{-\infty}^0 1 \wedge |x| \nu(dx) < \infty$, and

$$\gamma = \int_{-\infty}^0 (1 - e^x) \nu(dx) \leq 1.$$

(2) If β holds, then

$$\lim_{q \to \infty} \frac{\log E(Z^q)}{q \log q} = \gamma.$$

Remark 1.1. Under β we have for $q \in \mathbb{R}$ and $W = Q(V^{[0,1]}([0,1/2]))$ that

$$E(W^iq) = \exp \left(\left(iq\gamma + \int_{-\infty}^0 (e^{iqx} - 1) \nu(dx) \right) \log 2 \right),$$

which means that $\log W$ is the value at 1 of a Lévy process with negative jumps, local bounded variations, and drift $\gamma \log 2$, hence $\log_2 \text{ess sup}(W) = \gamma$. This gives in case (2) that

$$\lim_{q \to \infty} \frac{\log E(Z^q)}{q \log q} = \log_2 \text{ess sup}(W) \leq 1,$$

which coincides with Kahane’s result (1.4) for canonical cascades.

In the case where $E(Z^q) = \infty$ for some $q > 1$ we have

Theorem 1.4. Suppose that there exists $\zeta \in I_\nu \cap (1, \infty)$ such that $\varphi(\zeta) = 0$; in particular one has $\varphi'(1) < 0$. Also suppose that $\varphi'(\zeta) < \infty$.

(i) If either $\sigma \neq 0$ or ν is not of the form $\sum_{n \in \mathbb{Z}} p_n \delta_{nh}$ for some $h > 0$, then

$$\lim_{x \to \infty} x^\zeta P(Z > x) = d,$$

where

$$d = \frac{2E(\mu([0,1])^{\zeta-1}\mu([0,1/2]) - \mu([0,1/2])^{\zeta}) \zeta \varphi'(\zeta) \log 2}{\zeta \varphi'(\zeta) \log 2} \in (0, \infty).$$

(ii) If $\sigma = 0$ and ν is of the form $\sum_{n \in \mathbb{Z}} p_n \delta_{nh}$ for some $h > 0$, then

$$0 < \lim_{x \to \infty} x^\zeta P(Z > x) \leq \lim_{x \to \infty} x^\zeta P(Z > x) < \infty$$

Remark 1.2. From the proof (Remark 6.1) we know that in case (i), when $\zeta = 2$,

$$d = 1/\varphi'(2),$$

which provides us with a family of random difference equations whose solution has a explicit tail probability constant. See [11] for related topics.

For moments of negative orders we have
Theorem 1.5. Suppose that \(\varphi'(1^-) < 0 \). Then for any \(q \in (-\infty, 0) \), \(\mathbb{E}(Z^q) < \infty \) if and only if \(q \in I_\nu \).

For the Hausdorff and packing measures of the support of \(\mu \) we have

Theorem 1.6. Suppose that \(\varphi'(1) < 0 \) and \(\varphi''(1) > 0 \). For \(b \in \mathbb{R} \) and \(t > 0 \) let

\[
\psi_b(t) = t^{-\varphi'(1)} e^{\lambda \sqrt{\log^+(1/t) \log^+ \log^+(1/t)}}.
\]

Denote by \(\mathcal{H}^{\psi_b} \) and \(\mathcal{P}^{\psi_b} \) the Hausdorff and packing measures with respect to the gauge function \(\psi_b \) (see [12] for the definition). Then almost surely the measure \(\mu \) is supported by a Borel set \(K \) with

\[
\mathcal{H}^{\psi_b}(K) = \begin{cases}
\infty, & \text{if } b > \sqrt{2\varphi''(1)}, \\
0, & \text{if } b < \sqrt{2\varphi''(1)},
\end{cases}
\]

and

\[
\mathcal{P}^{\psi_b}(K) = \begin{cases}
\infty, & \text{if } b > -\sqrt{2\varphi''(1)}, \\
0, & \text{if } b < -\sqrt{2\varphi''(1)}.
\end{cases}
\]

1.5. Connection with Bacry and Muzy’s construction. We may use other shapes for the cone \(V \) to define \(V(t) = V + t \), for example the one used in [2] to derive the exact scaling property described in the introduction. The advantage of the present form is that it naturally yields (1.12) and (1.13), hence the exact scaling (1.1), with \(\Omega_\lambda = \Lambda(V[0,T](0,\lambda T)) \) if \(\mu = \mu[0,T] \). Indeed, for a fixed interval \(I \), the measure \(\mu[I] \) has the same law as the restriction to \([0,T] \) of the measure defined from the cone \(V_T \) used in [2] for \(T = |I| \), which is drawn on the picture (Figure 2); this follows from an elementary geometric comparison between the two kinds of cones and the horizontal stationarity of \(\Lambda \); otherwise, one can mimic the proof of [2, Lemma 1] to get the joint distribution of the \(\Lambda \) measures of any finite family of cones \((V^{[0,T]}_e(t_1), \ldots, V^{[0,T]}_e(t_q)) \) and find it coincides with the one obtained with the cones \((V^T_e(t_1), \ldots, V^T_e(t_q)) \).

![Figure 2. The gray areas for the corresponding sets.](image)

Using the cones of Figure 2B yields a measure on \(\mathbb{R}_+ \), by considering the vague limit of \(Q(V^T_e(t)) \) \(dt \), whose indefinite integral increments are stationary. However, there is no long range dependence between the increments of the indefinite integral of this measure, since two cones have no intersection when associated to points away from each other by at least \(T \). Notice that this measure can also be viewed as the juxtaposition of the limits of \((Q(V^T_e(t)) \) \(dt \)) \in \([nT,(n+1)T] \), \(n \in \mathbb{N} \).
Similarly, consider the measure μ over \mathbb{R}_+ obtained by juxtaposing the limits of $(Q(V_{1,T}^{nT}(n+1T)) dt)|_{nT,(n+1)T}$. Then, only the process $\mu([nT,(n+1)])_{n \in \mathbb{N}}$ is stationary, but it has long range dependence: in case of non-degeneracy, if we assume that $\psi(-i2) < \infty$, a calculation shows that
\[
\text{cov}(\mu([0,T]),\mu([nT,(n+1)]) \sim_{n \to \infty} \frac{2\psi(-i2)T^2}{3n},
\]
so the series $\sum_{n \geq 0} \text{cov}(\mu([0,T]),\mu([nT,(n+1)]))$ diverges.

2. Preliminaries

Let $\Sigma = \{0,1\}^{\mathbb{N}^+}$ be the dyadic symbolic space. For $i = i_1i_2 \cdots \in \Sigma$ and $n \geq 1$ define $i|_n = i_1 \cdots i_n$. Let ρ be the standard metric on Σ, that is
\[
\rho(i,j) = 2^{-\inf(n \geq 1 : i|_n = j|_n)}, \quad i,j \in \Sigma.
\]
Then (Σ,ρ) forms a compact metric space. Denote by B its Borel σ-algebra. For $i = i_1i_2 \cdots \in \Sigma$ define
\[
\pi(i) = \sum_{j=1}^{\infty} i_j 2^{-j}.
\]
Then π is a continuous map from Σ to $[0,1]$.

For $n \geq 1$ let $\Sigma_n = \{0,1\}^n$, and use the convention that $\Sigma_0 = \{\emptyset\}$. For $n \geq 0$ and $i = i_1 \cdots i_n \in \Sigma_n$ define
\[
[i] = \{i \in \Sigma : i|_n = i\} \quad \text{and} \quad I_i = \overline{\pi([i])},
\]
with the convention that $i_1 \cdots i_0 = \emptyset$, $[\emptyset] = \Sigma$ and $I_\emptyset = [0,1]$. Denote by $\Sigma_* = \cup_{n \geq 0} \Sigma_n$. For $i \in \Sigma_*$ define
\[
W_i = Q(\Lambda(V^f(I_i))) \quad \text{and} \quad Z_i = \|\mu^{I_i}\|.
\]
Then from (1.13) we have for any $n \geq 1$,
\[
2^n Z = \sum_{i \in \Sigma_n} W_i Z_i,
\]
where $\{W_i, i \in \Sigma_n\}$ have the same law, $\{Z_i, i \in \Sigma_n\}$ have the same law as Z and for each $i \in \Sigma_n$, W_i and Z_i are independent.

3. Proof of Theorem 1.1

3.1. First we prove (i) \iff (ii) and the L^1 convergence. Clearly (i) implies (ii). We suppose that $\mathbb{E}(Z) = c > 0$. For any positive finite Borel measure m on I and $t > 0$ define
\[
m_t(f) = \frac{1}{|I|} \int_I f(x) \cdot Q(V_{1,t}^f(x)) m(dx), \quad f \in C_0(I).
\]
Following the same argument as in Lemma 1.2, m_t is a measure-valued right-continuous martingale, thus the Kahane operator EQ:
\[
EQ(m) = \mathbb{E}\left(\lim_{t \to \infty} m_t\right)
\]
is well-defined. Denote by ℓ the Lebesgue measure restricted to $[0,1]$. Then we have $EQ(\ell) = c\ell$ since $\mathbb{E}(\lim_{t \to \infty} \ell_t(J)) = c\ell(J)$ for any compact subinterval $J \subset I$. From [17] we know that EQ is a projection, so $EQ(EQ(\ell)) = EQ(\ell)$. This gives
Then it follows that \(\varphi \) with expectation 1 has expectation 1 as well, the convergence also holds in \(L^1 \) norm.

3.2. Now we prove that (ii) implies (iii). From (2.11) we have that

\[
2Z = W_0Z_0 + W_1Z_1.
\]

Assume that \(E(Z) > 0 \). For \(0 < q < 1 \) the function \(x \mapsto x^q \) is sub-additive, hence

\[
(\varphi Y)(3.3)
\]

(3.1) yields

\[
2^q E(Z^q) \leq E(W_0^q Z_0^q) + E(W_1^q Z_1^q) = 2E(W_0^q)E(Z^q).
\]

Since \(E(Z) > 0 \) implies \(E(Z^q) > 0 \), we get from (3.2), (1.10) and Lemma 1.1 that

\[
2^q \leq 2E(W_0^q) = 2e^{\psi(-iq)\log 2} = 2^{\psi(-iq)+1}.
\]

This implies \(\varphi \leq 0 \) on interval \([0,1]\), and it follows that \(\varphi'(1^-) \leq 0 \). To prove \(\varphi'(1^-) < 0 \) we need the following lemma.

Lemma 3.1. Let \(X_i = W_i Z_i \) for \(i = 0, 1 \). There exists \(\epsilon > 0 \) such that

\[
E(X_0^q 1_{\{X_0 \leq X_1\}}) \geq \epsilon E(X_0^q) \quad \text{for } 0 \leq q \leq 1.
\]

Proof. If \(E(X_0^q 1_{\{X_0 \leq X_1\}}) \) is strictly positive for all \(q \in [0,1] \), then it is easy to get the conclusion, since both expectations, as functions of \(q \), are continuous on \([0,1]\).

Suppose that there exists \(q \in (0,1) \) such that \(E(X_0^q 1_{\{X_0 \leq X_1\}}) = 0 \), then almost surely either \(X_0 > X_1 \) or \(0 = X_0 \leq X_1 \). Due to the symmetry of \(X_0 \) and \(X_1 \) this actually implies that almost surely either \(X_0 = X_1 = 0 \), or \(X_0 = 0, X_1 > 0 \), or \(X_1 = 0, X_0 > 0 \). This yields

\[
2^q E(Z^q) = E(X_0^q) + E(X_1^q) = 2E(W_0^q)E(Z^q) \quad \text{for } 0 \leq q \leq 1.
\]

So we have \(\psi(-iq) = q - 1 \) for \(q \in [0,1] \). Then from \(\frac{\partial^2}{\partial q^2} \psi(-iq) = 0 \) we get that \(\sigma^2 = 0 \) and \(\nu \equiv 0 \), which is a contradiction to our assumption. \(\Box \)

Now as shown in [13], by applying the inequality \((x+y)^q \leq x^q + qy^q \) for \(x \geq y > 0 \) and \(0 < q < 1 \) we get from (3.1) and Lemma 3.1 that

\[
2^q E(Z^q) \leq 2E(W_0^q)E(Z^q) - (1 - q)\epsilon E(W_0^q)E(Z^q).
\]

This implies

\[
\varphi(q) + \log \left(1 - \frac{(1-q)\epsilon}{2} \right) \geq 0 \quad \text{on } [0,1].
\]

Then it follows that \(\varphi'(1^-) - (\epsilon/2 \log 2) \leq 0 \), thus \(\varphi'(1^-) < 0 \).

3.3. Finally we prove that (iii) implies (ii). Assume that \(\varphi'(1^-) < 0 \). For \(i \in \Sigma_n \) and \(n \geq 1 \) define

\[Y_{n,i} = \mu^{I_{2-n}}(I_i). \]

Also denote by \(Y_n = \mu^{I_{2-n}}(I) \). Then for any \(m \geq 1 \) and \(n \geq m + 1 \) we have

\[
(3.3) \quad Y_n = \sum_{i \in \Sigma_n} Y_{n,i}.
\]

We need the following lemma from [13].
Lemma 3.2. There exists a constant $q_0 \in (0, 1)$ such that for any $q \in (q_0, 1)$ and any finite sequence $x_1, \ldots, x_k > 0$,

$$\left(\sum_{i=1}^{k} x_i \right)^q \geq \sum_{i=1}^{k} x_i^q - (1 - q) \sum_{i \neq j} (x_i x_j)^{q/2}.$$

Applying Lemma 3.2 to (3.3) we get for any $q \in (q_0, 1)$,

$$Y_n^q \geq \sum_{i \in \Sigma_m} Y_{n,i}^q - (1 - q) \sum_{i \neq j \in \Sigma_m} Y_{n,i}^q Y_{n,j}^{q/2}.$$

Taking expectation from both side we get

$$(3.4) \quad \mathbb{E}(Y_n^q) \geq \sum_{i \in \Sigma_m} \mathbb{E}(Y_{i,n}^q) - (1 - q) \sum_{i \neq j \in \Sigma_m} \mathbb{E}(Y_{i,n}^q Y_{j,n}^{q/2}).$$

Let

$$J_1 = \{(i, j) \in \Sigma_m^2 : \text{dist}(I_i, I_j) = 0\}$$

$$J_2 = \{(i, j) \in \Sigma_m^2 : \text{dist}(I_i, I_j) \geq 2^{-m}\}.$$

It is easy to check that $\#J_1 = 2(2^m - 1)$ and $\#J_2 = (2^m - 1)(2^m - 2)$. Then by using Hölder’s inequality we get

$$\sum_{i \neq j \in \Sigma_m} \mathbb{E}(Y_{i,n}^q Y_{j,n}^{q/2}) = \sum_{(i,j) \in J_1} \mathbb{E}(Y_{i,n}^q Y_{j,n}^{q/2}) + \sum_{(i,j) \in J_2} \mathbb{E}(Y_{i,n}^q Y_{j,n}^{q/2})$$

$$\leq 2(2^m - 1)\mathbb{E}(Y_{n,0}^q) + \sum_{(i,j) \in J_2} \mathbb{E}(Y_{i,n}^q Y_{j,n}^{q/2}),$$

where we denote by $0 = 0 \ldots 0 \in \Sigma_m$. We need the following lemma:

Lemma 3.3. There exists a constant C such that for any $(i, j) \in J_2$ and $q \in (0, 1)$,

$$\mathbb{E}(Y_{i,n}^q Y_{j,n}^{q/2}) \leq C \cdot 2^{(1 + \varphi(q))m} \cdot \mathbb{E}((\mu_{2^{-n}}^{I_0})^{q/2}).$$

This gives

$$\sum_{(i,j) \in J_2} \mathbb{E}(Y_{i,n}^q Y_{j,n}^{q/2}) \leq (2^m - 1)(2^m - 2) \cdot C \cdot 2^{(1 + \varphi(q))m} \cdot \mathbb{E}((\mu_{2^{-n}}^{I_0})^{q/2}).$$

First notice that $\mu_{2^{-n}}^{I_0}$ has the same law as Y_{n-m}. Then combing (3.4) and (3.5), and using the fact that $\mathbb{E}(Y_n^q) \leq \mathbb{E}(Y_{n-m}^q) \leq 1$ we get

$$\mathbb{E}(Y_n^q) \frac{1 - e^{-\varphi(q)m \log 2}}{1 - q} \leq 2 + C(2^m - 1)\mathbb{E}(Y_{n-m}^{q/2}).$$

By letting $q \to 1^-$ we obtain

$$-\varphi'(1^-)m \log 2 \leq 2 + C(2^m - 1)\mathbb{E}(Y_{n-m}^{1/2}).$$

Choose m large enough so that $\varphi'(1^-)m \log 2 + 2 < 0$, we get $\inf_{n \geq 1} \mathbb{E}(Y_n^{1/2}) > 0$. Consequently $\mathbb{E}(Z^{1/2}) > 0$, thus $\mathbb{E}(Z) > 0$. □
3.4. **Proof of Lemma 3.3** The proof can be deduced from [2] Lemma 3, p. 495-496]. For reader’s convenience we present one here. Write

\[V_{2^{-n}}^I(t) = V_{2^{-m}}^I(t) \cup V_n^m(t), \]

where \(V_n^m(t) = V_{2^{-n}}^I(t) \setminus V_{2^{-m}}^I(t) \). Define the random measure

\[\mu_n^m(t) = \frac{1}{|I|} \cdot Q(V_n^m(t)) \, dt, \quad t \in I. \]

Then for \(i \in \Sigma_m \) we have

\[\mu_{2^{-n}}^I(I_i) \leq \left(\sup_{t \in I_i} e^{\lambda(V_{2^{-m}}^I(t))} \right) \mu_n^m(I_i). \]

Notice that for \((i,j) \in J_2, \mu_n^m(I_i) \) and \(\mu_n^m(I_j) \) are independent, and they are independent of \(\sup_{t \in I_i} e^{\lambda(V_{2^{-m}}^I(t))} \) and \(\sup_{t \in I_j} e^{\lambda(V_{2^{-m}}^I(t))} \). Thus

\[
\mathbb{E}(Y_{n,i}^{q/2}Y_{n,j}^{q/2}) \leq \mathbb{E} \left(\prod_{l=i,j} \sup_{t \in I_l} e^{\lambda(V_{2^{-m}}^I(t))}/2 \cdot \mu_n^m(I_l) \right)^{q/2} \]

\[
= \prod_{l=i,j} \mathbb{E} \left(\mu_n^m(I_l)^{q/2} \cdot \mathbb{E} \left(\prod_{l=i,j} \sup_{t \in I_l} e^{\lambda(V_{2^{-m}}^I(t))}/2 \right) \right) \]

\[
\leq \prod_{l=i,j} \mathbb{E} \left(\mu_n^m(I_l)^{q/2} \cdot \prod_{l=i,j} \mathbb{E} \left(\prod_{l=i,j} \sup_{t \in I_l} e^{\lambda(V_{2^{-m}}^I(t))} \right) \right)^{1/2},
\]

where the last inequality comes from Hölder’s inequality.

Take \(J \in \{I_i, I_j\} \) with \(J = [t_0, t_1] \). For \(t \in J \) we can divide \(V_{2^{-m}}^I(t) \) into three disjoint parts:

\[V_{2^{-m}}^I(t) = V^I(J) \cup V^{J,l}(t) \cup V^{J,r}(t), \]

where

\[V^{J,l}(t) = \{ z = x + iy \in V(t) : 2^{-m} \leq y < 2(t_1 - x) \}, \]

\[V^{J,r}(t) = \{ z = x + iy \in V(t) : 2^{-m} \leq y \leq 2(x - t_0) \}. \]

We need the following lemma.

Lemma 3.4. Let \(s \in \{l, r\} \). For \(q \in I_s \) there exists constant \(C_q < \infty \) such that

\[\mathbb{E} \left(\sup_{t \in J} e^{\lambda(V^{J,s}(t))} \right) \leq C_q; \]

For \(q \in \mathbb{R} \) there exists constant \(c_q > 0 \) such that

\[\mathbb{E} \left(\inf_{t \in J} e^{\lambda(V^{J,s}(t))} \right) \geq c_q. \]

By using Lemma 3.4 we get from (3.7) that for \(q \in I_s \cap (0, \infty) \),

\[
\mathbb{E} \left(\sup_{t \in J} e^{\lambda(V_{2^{-m}}^I(t))} \right) \leq C_q^2 \cdot \mathbb{E}(e^{\lambda(V^I(J))}) = C_q^2 \cdot 2^{m\psi(-iq)}.
\]

Also notice that for \(t \in J \) we have

\[V_{2^{-m}}^I(t) \cup V^{J,l}(t) \cup V^{J,r}(t) = V_{2^{-m}}^I(t). \]
So for any \(q' \in \mathbb{R} \) we have
\[
\mu_{2-n}^J (J)^{q'} \geq \mu_{n}^m (J)^{q'} \cdot \left(\inf_{t \in J} e^{q' \Lambda(V^{J,l}(t))} \right)^{\left(\inf_{t \in J} e^{q' \Lambda(V^{J,r}(t))} \right)}.
\]

Applying Lemma 3.4 we get that
\[
E \left(\mu_{n}^m (J)^{q/2} \right) \leq C_{q}^{-2} \cdot 2^{m(1+\varphi(q))} \cdot \prod_{l=i,j} E \left(\mu_{2-n}^l (I_l)^{q/2} \right).
\]

This implies
\[
E \left(\sup_{t \in J} e^{q \Lambda(V^{J,r}(t))} \right) \leq C_{q},
\]
where the constant \(C_{q} \) only depends on \(q \).

Now let \(q \in \mathbb{R} \). Notice that
\[
[0, 1] \ni t \mapsto \Lambda(V^{J,r}(t)) / |J|
\]
is a Lévy process restricted on \([0, 1]\), thus for \(X_{q} = \inf_{t \in J} e^{q \Lambda(V^{J,r}(t))} \) we must have
\[
\mathbb{P}\{ X_{q} > \epsilon_q \} > 0
\]
for some \(1 > \epsilon_q > 0 \), otherwise this would contradict the fact that almost surely the sample path of a Lévy process is càdlàg. Then
\[
E \left(\inf_{t \in J} e^{q \Lambda(V^{J,r}(t))} \right) \geq \mathbb{P}\{ X_{q} > \epsilon_q \} \cdot \epsilon_q > 0.
\]

The argument for \(V^{J,l}(t) \) is the same.
4. Proof of Theorem 1.2

We only need to prove that for $q > 1$, $0 < \mathbb{E}(Z^q) < \infty$ implies that $q \in I_\nu$ and $\varphi(q) < 0$, the rest of the result comes from Lemma 3.

Because the function x^q is super-additive, one has

$$2^q Z^q \geq W_0^q Z_0^q + W_1^q Z_1^q,$$

and the strict inequality holds if and only if $W_0 Z_0 = W_1 Z_1$. So if $W_0 Z_0 \neq W_1 Z_1$ with positive probability, then

$$2^q \mathbb{E}(Z^q) > 2 \mathbb{E}(W_0^q) \mathbb{E}(Z^q),$$

that is $\mathbb{E}(W_0^q) < 2^{q-1}$, which implies that $q \in I_\nu$ and $\varphi(q) < 0$. Otherwise $W_0 Z_0 = W_1 Z_1$ almost surely, thus $\varphi(q) = q - 1$ for all $q \in I_\nu$. This yields that $\sigma^2 = 0$ and $\nu \equiv 0$, which is in contradiction to our assumption.

5. Proof of Theorem 1.3

5.1. Proof of (1). According to Theorem 1.2 (α) implies that $I_\nu \supset [0, \infty)$ and $\varphi(q) < 0$ for all $q > 1$. Recall that $\varphi(q) = \psi(-iq) - q + 1$ and

$$\psi(-iq) = aq + \frac{1}{2} \sigma^2 q^2 + \int_{\mathbb{R}} (e^{qx} - 1 - qx 1_{|x| \leq 1}) \nu(dx).$$

Suppose that $\nu([\varepsilon, \infty)) > 0$ for some $\varepsilon > 0$, then one can find constant $c_1, c_2 > 0$ such that

$$\psi(-iq) \geq c_1 e^{\varphi q} - c_2 q$$

as $q \to \infty$, which is in contradiction to $\varphi(q) < 0$ for all $q > 1$. It is also easy to see that $\varphi(q) < 0$ for all $q > 1$ implies $\sigma = 0$. Thus using the expression of the normalizing constant a (see (1.3)) we may write

$$\varphi(q) = 1 - q + \int_{-\infty}^{0} (e^{qx} - 1 + q(1 - e^x)) \nu(dx).$$

(5.1)

It is easy to check that the integral term in (5.1) is non-negative, and goes to ∞ faster than any multiple of q if $\int_{-\infty}^{0} 1 \wedge |x| \nu(dx) = \infty$, in which case we cannot have $\varphi(q) < 0$ for all $q > 1$. If $\int_{-\infty}^{0} 1 \wedge |x| \nu(dx) < \infty$, then

$$\varphi(q) = (\gamma - 1)q + 1 - \int_{-\infty}^{0} (1 - e^{qx}) \nu(dx),$$

(5.2)

where

$$\gamma = \int_{-\infty}^{0} (1 - e^x) \nu(dx).$$

Clearly $\varphi(q) < 0$ for all $q > 1$ implies that $\gamma - 1 \leq 0$.

Conversely, if (β) holds, then $I_\nu \supset [0, \infty)$, since ν is carried by $(-\infty, 0]$ thus $\int_{|x| > 1} e^{\varphi x} \nu(dx) < \infty$ for any $q > 0$. We may write $\varphi(q)$ as in (1.2). If $\gamma < 1$, then $\lim_{q \to \infty} \varphi(q) = -\infty$ since $\varphi(q) \sim (\gamma - 1) q$ at ∞. If $\gamma = 1$, then

$$\int_{-\infty}^{0} (1 - e^{qx}) \nu(dx) > \int_{-\infty}^{0} (1 - e^x) \nu(dx) = \gamma = 1$$

for any $q > 1$. Due to the convexity of φ, it follows that in both cases $\varphi'(1) < 0$ and $\varphi(q) < 0$ for all $q > 1$, hence we get (α) from Theorem 1.1 and Theorem 1.2.
5.2. Proof of (2). The proof is inspired by the approach used by Kahane in [18] for canonical cascades. However, here again the correlations between Z_0 and Z_1 creates complications. For the sharp upper bound of $\limsup_{n \to \infty} \frac{1}{n \log n} \log E(Z_n)$, we use a new approach consisting in writing an explicit formula for the moments of positive integer orders of Z and then estimate them from above by using Dirichlet’s multiple integral formula. For the lower bound of $\liminf_{n \to \infty} \frac{1}{n \log n} \log E(Z_n)$, we first show that under (β) the inequality $E(\mu(I_0)^k \mu(I_1)^l) \geq E(\mu(I_0)^k)E(\mu(I_1)^l)$ holds for any non negative integers k and l, and then follow [18].

From (β) we have that for $q \geq 0$,

$$\psi(-iq) = \gamma \cdot q - \int_{-\infty}^{0} (1 - e^{tx}) \nu(dx).$$

We have almost surely

$$\mu(I)^n = \lim_{\epsilon \to 0} \mu_{\epsilon}(I)^n = \lim_{\epsilon \to 0} \left(\int_{t \in I} e^{\Lambda(V_{\epsilon}(t))} dt \right)^n.$$

Thus we get from the martingale convergence theorem, Fubini’s theorem and dominated convergence theorem that

$$E(\mu(I)^n) = \int_{t_1, \ldots, t_n \in I} \lim_{\epsilon \to \infty} \mathbb{E} \left(\prod_{j=1}^{n} e^{\Lambda(V_{\epsilon}(t_j))} \right) dt_1 \cdots dt_n.$$

For integers $k \leq j$ define

$$\alpha(j, k) = \psi(-i(j - k + 1)) + \psi(-i((j - 1) - (k + 1) + 1)) - \psi(-i((j - 1) - k + 1)) - \psi(-i((j - k + 1) + 1)) = \int_{-\infty}^{0} e^{(j-k-1)x} (1 - e^{x^2})^2 \nu(dx).$$

Fix $0 < t_1 < \cdots < t_n < 1$. Then for ϵ small enough one gets from [2] Lemma 1 that

$$\log E \left(\prod_{j=1}^{n} e^{\Lambda(V_{\epsilon}(t_j))} \right) = \sum_{k=1}^{n-1} \sum_{j=k+1}^{n} \alpha(j, k) \cdot \log \frac{1}{t_j - t_k}.$$

This gives

$$E(\mu(I)^n) = n! I_n,$$

where

$$I_n = \int_{0 < t_1 < \cdots < t_n < 1} \prod_{k=1}^{n-1} \prod_{j=k+1}^{n} (t_j - t_k)^{-\alpha(j, k)} dt_1 \cdots dt_n.$$

Let us use the change of variables $x_1 = t_1$ and $x_k = t_k - t_{k-1}$ for $k = 2, \cdots, n$. Then I_n becomes

$$I_n = \int_{x_1 + \cdots + x_n \leq 1} \prod_{k=1}^{n-1} \prod_{j=k+1}^{n} \left(\sum_{l=k+1}^{j} x_l \right)^{-\alpha(j, k)} dx_1 \cdots dx_n.$$
For every integer \(l \) define
\[
\gamma_l = \int_{-\infty}^{0} e^{lx} (1 - e^x)^2 \nu(dx)
\]
so that
\[
\alpha(j, k) = \gamma_{j - k - 1}.
\]
Then we have
\[
\prod_{k=1}^{n} \prod_{j=k+1}^{n} \left(\sum_{l=k+1}^{j} x_l \right)^{-\alpha(j, k)} = \prod_{l=1}^{n-1} \left(\prod_{k=1}^{n} \left(\sum_{j=k+1}^{n} x_j \right) \right)^{-\gamma_l}.
\]
Since \(x_j \in (0, 1) \), it is easy to deduce that for \(l = 1, \ldots, n-1 \),
\[
\prod_{k=1}^{n-1} \prod_{j=k+1}^{n} x_j \geq \prod_{j=2}^{n} x_j.
\]
This implies
\[
I_n \leq \int_{x_1 + \cdots + x_n \leq 1} \left(\prod_{j=2}^{n} x_j \right)^{-\sum_{l=1}^{n-1} \gamma_l} dx_1 \cdots dx_n.
\]
Notice that
\[
\sum_{l=1}^{n-1} \gamma_l = \int_{-\infty}^{0} (1 - e^{(n-1)x})(1 - e^x) \nu(dx) := \gamma'_{n-1}.
\]
Then we get from Dirichlet’s multiple integral formula that
\[
\int_{x_1 + \cdots + x_n \leq 1} \left(\prod_{j=2}^{n} x_j \right)^{-\gamma'_{n-1}} dx_1 \cdots dx_n
\]
\[
= \int_{x_2 + \cdots + x_n \leq 1} \left(1 - \sum_{j=2}^{n} x_j \right) \left(\prod_{j=2}^{n} x_j \right)^{-\gamma'_{n-1}} dx_2 \cdots dx_n
\]
\[
= \frac{\Gamma(1 - \gamma'_{n-1})^{n-1} \Gamma(2)}{\Gamma((n-1)(1 - \gamma'_{n-1}) + 2)}.
\]
Since \(\gamma'_{n} \to \gamma \) as \(n \to \infty \), by applying Stirling’s formula we finally get
\[
\limsup_{n \to \infty} \frac{\log E(Z^n)}{n \log n} \leq 1 - (1 - \gamma) = \gamma.
\]
On the other hand, we have
\[
\mu(I)^n = (\mu(I_0) + \mu(I_1))^n = \sum_{m=0}^{n} \frac{n!}{m!(n-m)!} \mu(I_0)^m \mu(I_1)^{n-m}.
\]
For \(1 \leq m \leq n-1 \) we have
\[
E(\mu(I_0)^m \mu(I_1)^{n-m}) = m!(n-m)!
\]
\[
\int_{0<t_1<\cdots<t_m<1/2<t_{m+1}<\cdots<t_n<1} \prod_{k=1}^{n} \prod_{j=k+1}^{n} (t_j - t_k)^{-\alpha(j, k)} dt_1 \cdots dt_n.
\]
Also
\[
\prod_{k=1}^{n-1} \prod_{j=k+1}^{n} (t_j - t_k)^{-\alpha(j,k)} = \prod_{k=1}^{m-1} \prod_{j=k+1}^{m} \prod_{k=1}^{m} \prod_{j=m+1}^{n} \prod_{k=m+1}^{n} (t_j - t_k)^{-\alpha(j,k)} \\
\geq \prod_{k=1}^{m-1} \prod_{j=k+1}^{m} \prod_{k=m+1}^{n} \prod_{j=m+1}^{n} (t_j - t_k)^{-\alpha(j,k)},
\]
where the inequality uses the fact that \(t_j - t_k \leq 1\) and \(\alpha(j,k) \geq 0\). This implies that
\[
E(\mu(I_0)^m \mu(I_1)^{n-m}) \geq E(\mu(I_0)^m)E(\mu(I_1)^{n-m}).
\]
Notice that
\[
E(\mu(I_0)^m) = 2^{-m}E(W_0^m)E(Z^m) = 2^{-m}2^{(-im)}E(Z^m).
\]
Since
\[
\psi(-im) = \gamma m - \int_{-\infty}^{0} (1 - e^{mx}) \nu(dx),
\]
for any \(\epsilon > 0\) there exists \(c > 0\) such that for all \(m \geq 0\) we have
\[
\psi(-im) \geq (\gamma - \epsilon)m + \log(c),
\]
and using (5.3)
\[
E(Z^n) \geq c^22^{(\gamma-\epsilon)n} \sum_{m=0}^{n} \frac{n!}{m!(n-m)!}2^{-n}E(Z^m)E(Z^{n-m}) = c^22^{(\gamma-\epsilon)n}E(Z^{n/2})^2.
\]
Hence
\[
\log E(Z^{2n}) \geq 2 \log(c) + (\gamma - \epsilon)2n \log 2 + 2 \log E(Z^n).
\]
Consequently,
\[
\frac{\log E(Z^{2n})}{2^n} \geq \frac{2 \log(c)}{2^n} + (\gamma - \epsilon) \log 2 + \frac{\log E(Z^{2n-1})}{2^{n-1}} \geq n(\gamma - \epsilon) \log 2 + 2(1 - 2^{-n}) \log(c).
\]
This easily yields
\[
\liminf_{n \to \infty} \frac{\log E(Z^n)}{n \log n} \geq \gamma - \epsilon,
\]
for any \(\epsilon > 0\).

6. Proof of Theorem

6.1. Reduction to a key proposition. In the case of limits of canonical cascades, Guivarc’h [14] exploited (1.3) to connect our problem to a random difference equation one; then Liu [19] extended this idea for the case of supercritical Galton-Watson trees, and for this he used explicitly Peyrière’s measure. This is our starting point, the difference being that now we must exploit the more delicate equation (1.13).

Recall that \(\pi(i) = \sum_{j=1}^{\infty} i 2^{-j}\) is a continuous map from \(\Sigma\) to \([0,1)\). We shall use the same notation \(\mu\) for the pull-back measure \(\mu \circ \pi^{-1}\) on \(\Sigma\). Let \(\Omega' = \Omega \times \Sigma\)
be the product space, let $F' = F \times B$ be the product σ-algebra, and let Q be the Peyrière measure on (Ω', F'), defined as

$$Q(E) = E\left(\int_{\Omega} 1_{E}(\omega, i) \mu(di)\right), \quad E \in F'.$$

Then (Ω', F', Q) forms a probability space.

For $\omega \in \Omega$ and $i \in \Sigma$ let

$$A(\omega, i) = \sum_{i \in \{0, 1\}} 2^{-1} W_i(\omega) \cdot 1_{\{i_1 = i\}},$$

$$B(\omega, i) = \sum_{i \in \{0, 1\}} 2^{-1} W_i(\omega) Z_i(\omega) \cdot 1_{\{i_1 = 1 - i\}},$$

$$R(\omega, i) = \sum_{i \in \{0, 1\}} Z_i(\omega) \cdot 1_{\{i_1 = i\}},$$

$$\tilde{R}(\omega, i) = Z(\omega).$$

We may consider A, B, R and \tilde{R} as random variables on (Ω', F', Q), and we have the following equation

$$\tilde{R} = AR + B.$$

First we claim that R and \tilde{R} have the same law. This is due to the fact that for any non-negative Borel function f we have

$$E_Q(f(R)) = E\left(2^{-1} \sum_{i \in \{0, 1\}} f(Z_i) \cdot W_i \cdot Z_i\right) = E(f(Z)Z) = E_Q(f(\tilde{R})).$$

Then we claim that A and R are independent, since for any non-negative Borel functions f and g we have

$$E_Q(f(A)g(R)) = E\left(2^{-1} \sum_{i \in \{0, 1\}^n} f(W_i)g(Z_i) \cdot W_i \cdot Z_i\right) = E(f(W_0)W_0)E(g(Z_0)Z_0) = E_Q(f(A))E_Q(g(R)).$$

We first deal with case (i). The following result comes from the implicit renewal theory of random difference equations given by Goldie in [12] (Lemma 2.2, Theorem 2.3 and Lemma 9.4).

Theorem 6.1. Suppose there exists $\kappa > 0$ such that

$$E_Q(A^\kappa) = 1, \quad E_Q(A^\kappa \log^+ A) < \infty,$$

and suppose that the conditional law of $\log A$, given $A \neq 0$, is non-arithmetic. For

$$\tilde{R} = AR + B,$$

where \tilde{R} and R have the same law, and A and R are independent, we have that if

$$E_Q((AR + B)^\kappa - (AR)^\kappa) < \infty,$$
Then from Proposition 6.1 we get
\[\lim_{t \to \infty} t^\kappa Q(R > t) = \frac{\mathbb{E}_Q ((AR + B)^\kappa - (AR)^\kappa)}{\kappa \mathbb{E}_Q (A^\kappa \log A)} \in (0, \infty). \]

It is worth mentioning that the independence between \(B \) and \(R \) is not necessary, while in dealing with classical random difference equations it holds systematically and simplifies the verification of crucial assumptions. In our study, it is crucial that \(B \) and \(R \) do not need to be independent because the situation for log-infinitely divisible cascades presents much more correlations to control than the case of canonical cascades on homogeneous or Galton-Watson trees.

For \(q \in I_\nu \) we have
\[\mathbb{E}_Q (A^{q - 1}) = 2^{1 - q} \mathbb{E}_Q (W_0^q) = 2^{e(q)}. \]

Take \(\kappa = \zeta - 1 \) then we get \(\mathbb{E}_Q (A^\kappa) = 1 \). From \(\varphi' (\zeta) < \infty \) it is easy to deduce that \(\mathbb{E}_Q (A^\kappa \log \log A) < \infty \). In case (i) we have either \(\sigma \neq 0 \) or \(\nu \) is not of the form \(\sum_{n \in \mathbb{Z}} p_n \delta_{nh} \) for some \(h > 0 \) and \(p_n \geq 0 \), thus the conditional law of \(\log A \), given \(A \neq 0 \), is non-arithmetic. So in order to apply Theorem 6.1 it is only left to verify that \(\mathbb{E}_Q ((AR + B)^\kappa - (AR)^\kappa) < \infty \). To do so, we need the following proposition (in the framework of canonical cascades such a fact is simple to establish due to the independences associated with the branching property (see \cite{19} Lemma 4.1)).

Proposition 6.1. \(\mathbb{E} (\mu(I_0) \mu(I_1)^\kappa) < \infty. \)

We have
\[\mathbb{E}_Q ((AR + B)^\kappa - (AR)^\kappa) = 2\mathbb{E} ((\mu(I)^\kappa - \mu(I_0)^\kappa) \cdot \mu(I_0)). \]

By using the following inequality
\[(x + y)^\kappa - x^\kappa \leq \begin{cases} y^\kappa, & 0 < \kappa \leq 1, \\ \kappa 2^{\kappa - 1} y (x^{\kappa - 1} + y^{\kappa - 1}), & 1 < \kappa < \infty. \end{cases} \quad x, y > 0, \]

it is easy to find a constant \(C_\kappa \) such that
\[\mathbb{E}_Q ((AR + B)^\kappa - (AR)^\kappa) \leq C_\kappa \mathbb{E}(\mu I (I_0)^\kappa). \]

Then from Proposition 6.1 we get \(\mathbb{E}_Q ((AR + B)^\kappa - (AR)^\kappa) < \infty. \)

We have verified all the assumptions in Theorem 6.1 thus
\[\lim_{t \to \infty} t^\kappa Q(R > t) = \frac{\mathbb{E}_Q ((AR + B)^\kappa - (AR)^\kappa)}{\kappa \mathbb{E}_Q (A^\kappa \log A)} = d' \in (0, \infty). \]

Notice that \(Q(R > t) = \int_t^\infty x \mathbb{P}(Z = dx) \). From \cite{19} Lemma 4.3] we get
\[\lim_{t \to \infty} t^\kappa \mathbb{P}(Z > t) = \frac{d' (\zeta - 1)}{\zeta}. \]

It is easy to verify that
\[d' = \frac{2 \mathbb{E} (\mu(I)^\zeta - \mu(I_0)\zeta)}{\kappa \mu(I)^\zeta \log \log 2}, \]

and this gives the conclusion.

For case (ii), we may apply the key renewal theorem in the arithmetic case instead of the non-arithmetic case used in Goldie’s proof of Theorem 2.3, Case 1 (\cite{13} page 145, line 21) to get that for \(x \in \mathbb{R}, \)
\[\hat{r}(x + nh) \to d(x), \quad n \to \infty, \]
where $0 < d(x) < \infty$, $r(t) = e^{xt}Q(R > e^t)$ and
\[
\tilde{r}(x) = \int_{-\infty}^{\infty} e^{-(x-t)}r(t)\,dt.
\]
We have for $x + h > y$,
\[
\tilde{r}(x + h) - \tilde{r}(y) = \int_{0}^{e^{x+h}} e^{-(x+h)}u^y \cdot Q(R > u)\,du - \int_{0}^{e^{y}} e^{-y}u^\kappa \cdot Q(R > u)\,du
\]
\[
= \frac{e^{-(x+h)} - e^{-y}}{e^{-y}} \tilde{r}(y) + e^{-(x+h)} \int_{e^{y}}^{e^{x+h}} u^\kappa \cdot Q(R > u)\,du,
\]
thus
\[
\tilde{r}(x + h) - e^{y-x-h}\tilde{r}(y) = e^{-(x+h)} \int_{e^{y}}^{e^{x+h}} u^\kappa \cdot Q(R > u)\,du.
\]

On one hand we have
\[
e^{-(x+h)} \int_{e^{y}}^{e^{x+h}} u^\kappa \cdot Q(R > u)\,du \leq e^{-(x+h)} \cdot e^{(x+h)\kappa} \cdot Q(R > e^y) \cdot (e^{x+h} - e^y)
\]
\[
= (1 - e^{y-x-h}) \cdot e^{(x+h)\kappa} \cdot Q(R > e^y).
\]
This gives that
\[
\liminf_{n \to \infty} e^{(y+nh)\kappa} \cdot Q(R > e^{y+nh}) \geq e^{-(x+h-y)\kappa(1 - e^{y-x-h})^{-1}}[d(x) - e^{y-x-h}d(y)].
\]

On the other hand we have
\[
e^{-(x+h)} \int_{e^{y}}^{e^{x+h}} u^\kappa \cdot Q(R > u)\,du \geq e^{-(x+h)} \cdot e^{y\kappa} \cdot Q(R > e^{x+h}) \cdot (e^{x+h} - e^y)
\]
\[
= (1 - e^{y-x-h}) \cdot e^{y\kappa} \cdot Q(R > e^{x+h}).
\]
This gives
\[
\limsup_{n \to \infty} e^{(x+nh)\kappa} \cdot Q(R > e^{x+nh}) \leq e^{(x+h-y)\kappa(1 - e^{y-x-h})^{-1}}[d(x) - e^{y-x-h}d(y)].
\]

From these two estimation we can get the conclusion by using the same arguments as in Lemma 4.3(ii) and Theorem 2.2 in [19].

\[\square\]

6.2. Proof of Proposition 6.1. We have almost surely
\[
\mu(I_0)\mu(I_1)^\kappa = \lim_{\epsilon \to 0} \mu_\epsilon(I_0)\mu_\epsilon(I_1)^\kappa
\]
\[
= \lim_{\epsilon \to 0} \left(\int_{t \in I_0} e^{\Lambda(V^{i}_{j}(t))} \,dt \right) \cdot \left(\int_{t \in I_1} e^{\Lambda(V^{i}_{j}(t))} \,dt \right)^\kappa.
\]

Let $n \geq 1$ be an integer such that $n - 1 < \kappa \leq n$, so $q = \kappa - n + 1 \in (0, 1]$. Thus
\[
\left(\int_{t \in I_{n-1}} e^{\Lambda(V^{i}_{j}(t))} \,dt \right)^\kappa = \left(\int_{t \in I_{n-1}} e^{\Lambda(V^{i}_{j}(t))} \,dt \right)^{n-1} \left(\int_{t \in I_1} e^{\Lambda(V^{i}_{j}(t))} \,dt \right)^{q}
\]

Then we get from Fatou’s lemma and Fubini’s theorem that
\[
\mathbb{E}(\mu(I_0)\mu(I_1)^\kappa) \leq \liminf_{\epsilon \to \infty} \mathbb{E}_\epsilon^{n-1} \left(\prod_{k=0}^{n-1} e^{\Lambda(V^{i}_{j}(t_k))} \cdot \left[\int_{1/2}^{1} e^{\Lambda(V^{i}_{j}(t))} \,dt \right]^{q} \right) \,dt_0 \cdots \,dt_{n-1}.
\]
Denote by $s_0 = 1/2$, $s_n = 1$ and $s_1 < \cdots < s_{n-1}$ the permutation of t_1, \cdots, t_{n-1}. Then from the sub-additivity of $x \mapsto x^q$ we get

\[
\left[\int_{1/2}^{1} e^{\Lambda(V^t(s_0))} \, dt_0 \right]^q \leq \sum_{j=0}^{n-1} \left[\int_{s_j}^{s_{j+1}} e^{\Lambda(V^t(s_0))} \, dt_0 \right]^q.
\]

For each $j = 0, \cdots, n - 1$ we have

\[
\left[\int_{s_j}^{s_{j+1}} e^{\Lambda(V^t(s_0))} \, dt_0 \right]^q \leq \sup_{s_j < t < s_{j+1}} e^{\Lambda(V^t(s_0) \cap V^t(s_0))} \left[\int_{s_j}^{s_{j+1}} e^{\Lambda(V^t(s_0)) \cap V^t(s_0))} \, dt_0 \right]^q \leq \sup_{s_j < t < s_{j+1}} e^{\Lambda(V^t(s_0) \cap V^t(s_0))} \left[1 + \int_{s_j}^{s_{j+1}} e^{\Lambda(V^t(s_0)) \cap V^t(s_0))} \, dt_0 \right],
\]

where we have used the elementary inequality $x^q \leq 1 + x$ for $x > 0$ and $q \in (0, 1]$. For $t \in [0, s_{j+1} - s_j]$, define process $Y_t = e^{\Lambda(V^t(s_{j+1} - t) \cap V^t(s_0))}$ and its natural filtration $\mathcal{F}_t = \sigma(Y_s : 0 \leq s \leq t)$. Notice that the set $V^t(s_{j+1} - t) \cap V^t(s_0)$ is increasing with respect to t (see Figure 3), thus we actually have

\[
\mathcal{F}_t = \sigma(V^t(s_{j+1} - t) \cap V^t(s_0)).
\]

For $\eta \in \{0, 1\}$ define $D_\eta = e^{\Lambda(V^t(s_0))} \prod_{k=0}^{n-1} e^{\Lambda(V^t(s_0))}$. Under the probability $dP_\eta = \frac{D_\eta}{E(D_\eta)} \, dP$ we have the following two facts: (1) $t \mapsto E_{\eta}(Y_t)$ is continuous; (2) Y_t is a positive submartingale with respect to \mathcal{F}_t. The continuity and positivity are obvious, so we only need to verify the following: for $0 < s < s + \epsilon < s_{j+1}$ if we write $\Delta_{s, \epsilon} = (V^t(s_{j+1} - t - \epsilon) \cap V^t(s_{j+1} - t)) \cap V^t(s_0)$ and let m be the corresponding power of $e^{\Lambda(\Delta_{s, \epsilon})}$ appeared in D_η, then we have

\[
E_{\eta}(Y_s | \mathcal{F}_s) = e^{(\psi(-i(q+m)) - \psi(-i m))\lambda(\Delta_{s, \epsilon}) \cdot E_{\eta}(Y_s | \mathcal{F}_s) \geq E_{\eta}(Y_s | \mathcal{F}_s),
\]

where the inequality comes from the fact that $\psi(-ip)$ is an increasing function of p on the right of 1 since it is convex and $\frac{d}{dp} \psi(-ip) |_{p=1} > 0$. When t_0, s_j, s_{j+1} are fixed, we have $\sup_{0 < t < s_{j+1} - s_j} E_{\eta}(Y_t) < \infty$, thus almost every path of Y_t is càdlàg (see

![Figure 3. The gray area for $V^t(s_{j+1} - t) \cap V^t(s_0)$.](image-url)
Then define \(\eta,\eta \) and \(L \) with [29, Proposition 2.6, Theorem 2.8] for example). Then Doob’s inequality applied with \(L^\gamma \) (\(\gamma > 1 \)) yields \(c = c(\gamma) \) such that

\[
E \left(e^{\gamma \Lambda(V_i^\epsilon(t_n) \setminus V_i^\epsilon(t_0))} \left(\prod_{k=0}^{n-1} e^{\lambda(V_i^\epsilon(t_k))} \right) \sup_{s_j < t < s_{j+1}} e^{\eta \Lambda(V_i^\epsilon(t) \cap V_i^\epsilon(t_0))} \right)
\]

\[
\leq cE(D_{\eta})^{1-1/\gamma} \left[E \left(e^{\gamma \Lambda(V_i^\epsilon(t_n) \setminus V_i^\epsilon(t_0))} \left(\prod_{k=0}^{n-1} e^{\lambda(V_i^\epsilon(t_k))} \right) e^{\eta \Lambda(V_i^\epsilon(t) \cap V_i^\epsilon(t_0))} \right) \right]^{1/\gamma}.
\]

Thus

\[
E \left(\prod_{k=0}^{n-1} e^{\lambda(V_i^\epsilon(t_k))} \left(\int_{s_j}^{s_{j+1}} e^{\lambda(V_i^\epsilon(t_k))} dt_n \right)^q \right)
\]

\[
\leq cE(D_0)^{1-1/\gamma} \left[E \left(\prod_{k=0}^{n-1} e^{\lambda(V_i^\epsilon(t_k))} \cdot e^{\eta \Lambda(V_i^\epsilon(t) \cap V_i^\epsilon(t_0))} \right) \right]^{1/\gamma} + cE(D_1)^{1-1/\gamma}.
\]

\[
\int_{s_j}^{s_{j+1}} \left[E \left(e^{\lambda(V_i^\epsilon(t_n) \setminus V_i^\epsilon(t_0))} \left(\prod_{k=0}^{n-1} e^{\lambda(V_i^\epsilon(t_k))} \right) e^{\eta \Lambda(V_i^\epsilon(t) \cap V_i^\epsilon(t_0))} \right) \right]^{1/\gamma} dt_n.
\]

For \(\eta,\eta' \in \{0,1\} \) and \(t_n \in [s_j, s_{j+1}) \) define

\[
\bar{\Lambda}_{\eta,\eta'}(t_n) = \begin{cases} q \eta' \Lambda(V_i^\epsilon(t_n) \cap V_i^\epsilon(t_0)) + \eta \Lambda(V_i^\epsilon(t_n) \setminus V_i^\epsilon(t_0)) & \text{if } q < 1, \\ \Lambda(V_i^\epsilon(t_n)) & \text{if } q = 1. \end{cases}
\]

Then define

\[
\bar{D}_{\eta,\eta'}(t_0, \ldots, t_n) = E \left(\prod_{j=0}^{n-1} e^{\Lambda(V_i^\epsilon(t_j))} \cdot e^{\bar{\Lambda}_{\eta,\eta'}(t_n)} \right).
\]

It is easy to see that \(E(D_0) = \bar{D}_{0,0}(t_0, \ldots, t_n), E(D_1) = \bar{D}_{1,0}(t_0, \ldots, t_n), \)

\[
E \left(\prod_{k=0}^{n-1} e^{\lambda(V_i^\epsilon(t_k))} \cdot e^{\eta \Lambda(V_i^\epsilon(t) \cap V_i^\epsilon(t_0))} \right) = \bar{D}_{0,1}(t_0, \ldots, t_n)
\]

and

\[
E \left(e^{\lambda(V_i^\epsilon(t_n) \setminus V_i^\epsilon(t_0))} \left(\prod_{k=0}^{n-1} e^{\lambda(V_i^\epsilon(t_k))} \right) e^{\eta \Lambda(V_i^\epsilon(t) \cap V_i^\epsilon(t_0))} \right) = \bar{D}_{1,1}(t_0, \ldots, t_n).
\]

Also set \(\gamma_q = \gamma \) if \(q < 1 \) and \(\gamma_q = 1 \) if \(q = 1 \). We finally get

\[
E \left(\prod_{j=0}^{n-1} e^{\Lambda(V_i^\epsilon(t_j))} \left[\int_{1/2}^1 e^{\lambda(V_i^\epsilon(t_n))} dt_n \right]^q \right)
\]

\[
\leq 2c \cdot \sum_{\eta \in \{0,1\}} E(D_{\eta,0})(t_0, \ldots, t_n)^{1-1/\gamma_q} \int_{1/2}^1 \bar{D}_{\eta,1}(t_0, \ldots, t_n)^{1/\gamma_q} dt_n
\]

\[
\leq 4c \int_{1/2}^1 \max_{\eta,\eta' \in \{0,1\}} \bar{D}_{\eta,\eta'}(t_0, \ldots, t_n) dt_n.
\]
Now fix t_0, \cdots, t_n and redefine $s_0 = t_0$, $s_1 = 1/2$ and $s_2 < \cdots < s_{n+1}$ the permutation of t_1, \cdots, t_n. Let j_* be such that $s_{j_*} = t_n$. Define

$$
\begin{cases}
p_0 = 1; \\
p_1 = 0; \\
p_j = 1, \quad \text{for } j \neq j_*; \\
p_{j_*} = \eta, \quad \text{in case of } q < 1; \\
p_{j_*} = 1, \quad \text{in case of } q = 1.
\end{cases}
$$

For $k = 0, \cdots, n$ and $j = k, \cdots, n + 1$ define

$$
r_{k,j} = \begin{cases}
q \gamma \eta' + \sum_{l=k, \cdots, j; s_l \neq t_n} p_l, & \text{if } q < 1, k = 0 \text{ and } t_n \in \{s_j, s_{j+1}\}; \\
\sum_{l=k, \cdots, j} p_l, & \text{otherwise}.
\end{cases}
$$

and let $r_{k,j} = 0$ for $k < j$. Then by using the same argument as [2] Lemma 1 (notice that $r_{k,j}$ represents the power to $e^{V'_e(s_k) \cap V'_e(s_j) \cap V'_e(s_{j+1})}$ which appears in the product $\prod_{j=0}^{n-1} e^{A(V'_e(t_j))} \cdot e^{\tilde{\lambda}_{n,q'}(t_n)}$, and that $\lambda(V'_e(s_k) \cap V'_e(s_j) \setminus (V'_e(s_{k-1}) \cup V'_e(s_{j+1}))) = \log \frac{1}{s_j - s_k} + \log \frac{1}{s_{j+1} - s_k} - \log \frac{1}{s_{j+1} - s_{k-1}}$, see Figure 4) we can get

$$
\mathcal{D}_{n,q'}(t_0, \cdots, t_n) = \sum_{k=0}^{n} \sum_{j=k+1}^{n+1} \alpha(j, k) \cdot \log \frac{1}{s_j - s_k},
$$

where

$$
\alpha(j, k) = \psi(-i r_{k,j}) + \psi(-i r_{k+1,j-1}) - \psi(-i r_{k,j-1}) - \psi(-i r_{k+1,j}).
$$

Let $\tilde{\psi}(p) = \psi(-ip)$. By definition of κ, we have $\tilde{\psi}(p) < p - 1$ for all $p \in (1, n + q)$.

Figure 4. $r_{k,j}$ is the power corresponding to the gray area.

and $\tilde{\psi}(n + q) = n + q - 1$. Moreover, $\tilde{\psi}''(1) < 1$ since $\varphi'(1) < 0$, and $\tilde{\psi}(1) = 0$. Consequently, there exists $\delta \in (0, 1)$ such $\tilde{\psi}(p) \leq (1 - \delta)(p - 1)$ for $p \in [1, n]$; in particular by convexity of $\tilde{\psi}$ we have $1 - \delta \geq \tilde{\psi}'(1)$. Moreover, notice that $\psi(p) \leq 0$ for $p \in (0, 1)$ since $\tilde{\psi}(0) = 0 = \tilde{\psi}(1)$ and $\tilde{\psi}$ is convex, and also $\tilde{\psi}(p) \geq \tilde{\psi}'(1)(p - 1)$ for all $p \geq 0$, which yields for $p \in [0, 1]$ $\tilde{\psi}(p) \geq (1 - \delta)(p - 1)$. Finally, in case of $q < 1$, we take $\gamma > 1$ small enough such that $q \gamma < 1$ and $\tilde{\psi}(n + q \gamma) - n + 1 = q' < 1$.

(i) If $n = 1$, that is $0 < \kappa \leq 1$, $q = \kappa$ and $\tilde{\psi}(1 + q \gamma) = q' < 1$. We have $s_0 = t_0 \in [0, 1/2)$, $s_1 = 1/2$, $s_2 = t_1 \in [1/2, 1)$ and $s_3 = 1$.

If $q < 1$, we have

$$
r_{0,0} = 1, \quad r_{0,1} = 1 + q \gamma \eta', \quad r_{0,2} = 1 + q \gamma \eta', \quad r_{1,1} = 0, \quad r_{1,2} = \eta, \quad r_{2,2} = \eta.
$$
This gives
\[
\alpha(0, 1) = \tilde{\psi}(1 + q\gamma\eta') + \tilde{\psi}(0) - \tilde{\psi}(1) \leq q',
\]
\[
\alpha(0, 2) = \tilde{\psi}(1 + q\gamma\eta') + \tilde{\psi}(0) - \tilde{\psi}(1 + q\gamma\eta') - \tilde{\psi}(\eta) = 0,
\]
\[
\alpha(1, 2) = \tilde{\psi}(\eta) + \tilde{\psi}(0) - \tilde{\psi}(0) - \tilde{\psi}(\eta) = 0.
\]
Thus
\[
\mathbb{E}(\mu(I_0)^a I_1) \leq 4c \cdot \int_0^{1/2} (1/2 - s)^{-q'} ds < \infty.
\]
If \(q = 1 \), we have
\[
r_{0,0} = r_{0,1} = r_{1,1} = r_{1,2} = 1, \quad r_{0,2} = 2.
\]
This gives \(\alpha(0, 1) = \alpha(1, 2) = 0 \) and \(\alpha(0, 2) = \tilde{\psi}(2) = 1. \) Thus
\[
\mathbb{E}(\mu(I_0)^\alpha I_1) = \int_0^{1/2} \int_{1/2}^1 (t_1 - t_0)^{-1} dt_0 dt_1 = \log 2 < \infty.
\]

Remark 6.1. Here we have an equality since when \(q \) is an integer we do not need to use Doob’s inequality to estimate (6.2) and we can apply the martingale convergence theorem and dominated convergence theorem as in Section 5.2. The identity \(\mathbb{E}(\mu(I_0)^\alpha I_1) = \log 2 \) yields the precise formula in Remark 7.2.

(ii) The case \(n \geq 2 \) is more involved. For \(0 \leq k < j \leq n + 1 \), write
\[
\alpha(j, k) = \beta(j, k) - \beta(j, k + 1), \text{ where } \beta(j, k) = \tilde{\psi}(r_{k,j}) - \tilde{\psi}(r_{k,j-1}).
\]
Then
\[
\sum_{k=0}^{n} \sum_{j=k+1}^{n+1} \alpha(j, k) \cdot \log \frac{1}{s_j - s_k} = \sum_{k=0}^{n} \sum_{j=k+1}^{n+1} (\beta(j, k) - \beta(j, k + 1)) \cdot \log \frac{1}{s_j - s_k}
\]
\[
= \sum_{j=1}^{n+1} \sum_{k=0}^{j-1} (\beta(j, k) - \beta(j, k + 1)) \cdot \log \frac{1}{s_j - s_k}
\]
\[
= \tilde{A} + \tilde{B} + \tilde{C},
\]
where
\[
\tilde{A} = \sum_{j=1}^{n+1} \sum_{k=0}^{j-1} \beta(j, k) \cdot \log \frac{s_j}{s_j - s_k},
\]
\[
\tilde{B} = \sum_{j=1}^{n+1} \beta(j, 0) \cdot \log \frac{1}{s_j - s_0}, \quad \tilde{C} = -\sum_{j=1}^{n+1} \beta(j, j) \cdot \log \frac{1}{s_j - s_{j-1}}.
\]
Now, using the definition of $\beta(j, k)$ we get

$$\tilde{A} = \sum_{k=1}^{n} \sum_{j=k+1}^{n+1} \beta(j, k) \cdot \log \frac{s_j - s_{k-1}}{s_j - s_k},$$

$$= \sum_{k=1}^{n} \tilde{\psi}(r_{k,n+1}) \cdot \log \frac{s_{n+1} - s_{k-1}}{s_{n+1} - s_k}$$

$$+ \sum_{k=1}^{n} \sum_{j=k+1}^{n+1} \tilde{\psi}(r_{j,k}) \cdot \left(\log \frac{s_j - s_{k-1}}{s_j - s_k} - \log \frac{s_{j+1} - s_{k-1}}{s_{j+1} - s_k} \right)$$

$$- \sum_{k=1}^{n} \tilde{\psi}(r_{k,k}) \cdot \log \frac{s_{k+1} - s_{k-1}}{s_{k+1} - s_k},$$

$$\tilde{B} = \tilde{\psi}(r_{0,n+1}) \cdot \log \frac{1}{s_{n+1} - s_0} + \sum_{j=1}^{n} \tilde{\psi}(r_{0,j}) \cdot \log \frac{s_{j+1} - s_0}{s_j - s_0} - \tilde{\psi}(r_{0,0}) \cdot \log \frac{1}{s_1 - s_0},$$

$$\tilde{C} = - \sum_{j=1}^{n} \tilde{\psi}(r_{j,j}) \cdot \log \frac{1}{s_j - s_{j-1}}.$$

First notice that $r_{j,j} \in \{0, 1\}$ for $j = 1, \ldots, n$, thus $\tilde{C} = 0$. Let $\hat{\psi}(r) = (1 - \delta)(r - 1)$ for $r \geq 1$ and $\hat{\psi}(0) = 0$. We have $\hat{\psi}(r) \leq \tilde{\psi}(r)$ for $1 \leq r \leq \zeta - q$, and $\hat{\psi}(n + q\gamma) = n - 1 + q' = \tilde{\psi}(n + q') + \delta(n + q' - 1)$ if $q < 1$, as well as $\hat{\psi}(n + q) = n + q - 1 = \tilde{\psi}(n + q) + \delta(n + q - 1)$ if $q = 1$. Now, define formally \tilde{A} and \tilde{B} as \hat{A} and \hat{B}, by replacing $\tilde{\psi}$ by $\hat{\psi}$. Notice that all the log $rac{1}{s_j - s_k}$ and $\left(\log \frac{s_{j+1} - s_k}{s_j - s_k} \right)$ are positive. Then, remembering that $r_{0,n+1} = n + q\gamma q$ and rewriting $\tilde{\psi}(r_{0,n+1}) = \delta(r_{0,n+1} - 1) + \hat{\psi}(r_{0,n+1})$ in expression \tilde{B}, where $r'_{0,n+1} = n + q'\gamma q$ if $q < 1$ and $r''_{0,n+1} = n + q$ if $q = 1$, and remembering also that $\hat{\psi}(r_{j,j}) = \tilde{\psi}(r_{j,j})$ for $j = 0, \ldots, n$ since $r_{j,j} \in \{0, 1\}$, the previous inequalities between $\hat{\psi}$ and $\tilde{\psi}$ yield:

$$\sum_{k=0}^{n} \sum_{j=k+1}^{n+1} \alpha(j, k) \cdot \log \frac{1}{s_j - s_k} \leq \delta(r'_{0,n+1} - 1) \cdot \log \frac{1}{s_n - s_0} + \hat{A} + \hat{B}.$$

Now define $\tilde{\beta}(j, k) := \tilde{\psi}(r_{k,j}) - \tilde{\psi}(r_{k,j-1})$. It is easy to see that $\tilde{\beta}(j, k) \leq 1 - \delta$ for $0 \leq k < j \leq n + 1$ since $r_{k,j} - r_{k,j-1} \leq 1$ (when $q < 1$, we have chosen γ small enough such that $q\gamma < 1$). Thus

$$\tilde{A} = \sum_{j=0}^{n+1} \sum_{k=0}^{j-1} \tilde{\beta}(j, k) \cdot \log \frac{s_j - s_{k-1}}{s_j - s_k} \leq (1 - \delta) \sum_{j=1}^{n} \log \frac{s_j - s_0}{s_j - s_{j-1}}$$

$$\tilde{B} = \sum_{j=1}^{n+1} \tilde{\beta}(j, 0) \cdot \log \frac{1}{s_j - s_0} \leq (1 - \delta) \sum_{j=1}^{n} \log \frac{1}{s_j - s_0}.$$

This gives

$$\tilde{A} + \tilde{B} \leq (1 - \delta) \sum_{j=1}^{n} \log \frac{1}{s_j - s_{j-1}}.$$
and bounding \(r_{n,n+1} - 1 \) by \(n \) (we have chosen \(q' < 1 \)), we get
\[
\sum_{k=0}^{n} \sum_{j=k+1}^{n+1} \alpha(j,k) \cdot \log \frac{1}{s_j - s_k} \leq n\delta \cdot \log \frac{1}{s_{n+1} - s_0} + (1 - \delta) \sum_{j=1}^{n+1} \log \frac{1}{s_j - s_{j-1}}.
\]
One has
\[
\int_{0}^{1/2} \int_{1/2 < s_2 < \ldots < s_{n+1} < 1} ds_{n+1} ds_n \cdots ds_2 ds_0
\leq \frac{1}{\delta} \int_{0}^{1/2} \int_{1/2 < s_2 < \ldots < s_{n+1} < 1} \frac{1}{(s_2 - s_0)\delta^{(n-1)/\delta}} ds_2 ds_0
\leq \frac{2^{n/\delta}}{(n-1)!} \int_{0}^{1/2} \frac{ds_2 ds_0}{(s_2 - s_0)\delta^{(n-1)/\delta}}
\leq \frac{2^{(n+\ldots+2)/\delta}}{(n-1)!} \int_{0}^{1/2} \frac{ds_2 ds_0}{(s_2 - 2/s_0)(1/2 - s_0)^{1-\delta}}
\leq \frac{2^{(n+\ldots+2+1)/\delta}}{(n-1)!} \int_{0}^{1/2} \log \frac{2}{1/2 - s_0} : \frac{ds_0}{(1/2 - s_0)^{1-\delta}}
< \infty.
\]
This yields \(\mathbb{E}(\mu(I_0)\mu(I_1)^n) < \infty. \)

7. Proof of Theorem 1.5

The proof follows the same lines as that given in [4] for compound Poissson cascades, and uses computations similar to those performed in [31] to find the sufficient condition of the finiteness.

Let \(J = [t_0, t_1] \subseteq \mathcal{I} \). For \(t \in J \) and \(\epsilon < |J| \) we have
\[
V^J_\epsilon(t) = \bar{V}_\epsilon^J(t) \cup V^{J,J}_\epsilon(t) \cup V^{J,J}_\epsilon(t),
\]
where \(\bar{V}_\epsilon^J(t) = V^J_\epsilon(t) \setminus V^{J,J}_\epsilon(t) \) and recall in Section 3.3 that
\[
V^{J,J}_\epsilon(t) = \{ z = x + iy \in V(t) : |J| \leq y < 2(t_1 - x) \},
V^{J,J}_\epsilon(t) = \{ z = x + iy \in V(t) : |J| \leq y < 2(x - t_0) \}.
\]
Let \(s \in \{ l, r \} \). Recall in Lemma 3.4 that for \(q \in I_\nu \) there exists a constant \(C_q < \infty \) such that
\[
\mathbb{E} \left(\sup_{t \in J} e^{q\Lambda(V^{J,s}(t))} \right) \leq C_q,
\]
and for \(q \in \mathbb{R} \) there exists a constant \(c_q > 0 \) such that
\[
\mathbb{E} \left(\inf_{t \in J} e^{q\Lambda(V^{J,s}(t))} \right) \geq c_q.
\]
Let $\tilde{\mu}_I^J(t) = Q(\tilde{V}_I^J(t)) dt$, $\tilde{\mu}_I^J = \lim_{t \to 0} \tilde{\mu}_I^J$ and $\tilde{Z}(J) = \tilde{\mu}_I^J(J)/|J|$. Then it is easy to see that for $q \in I_\nu$,

$$\mathbb{E}(\tilde{Z}(J)^q) < \infty \Rightarrow \mathbb{E}(Z(J)^q) < \infty.$$

and for $q \in \mathbb{R}$,

$$\mathbb{E}(Z(J)^q) < \infty \Rightarrow \mathbb{E}(\tilde{Z}(J)^q) < \infty.$$

7.1. First we show that for $q \in I_\nu \cap (-\infty, 0)$ we have $\mathbb{E}(Z(J)^q) < \infty$. Let $J_0 = I_{00}$ and $J_1 = I_{11}$. It is clear that

$$\tilde{\mu}_I^J(I) \geq \tilde{\mu}_I^J(J_0) + \tilde{\mu}_I^J(J_1).$$

For $i \in \{0, 1\}$ define

$$V_i = V^I(J_i) \cap \{z \in \mathbb{H} : \text{Im}(z) \leq |I|\},$$

$$V_{i,l}(t) = V^{J_i,t}(I) \cap \{z \in \mathbb{H} : \text{Im}(z) \leq |I|\},$$

$$V_{i,r}(t) = V^{J_i,t}(I) \cap \{z \in \mathbb{H} : \text{Im}(z) \leq |I|\},$$

and

$$m_{i,l} = \inf_{t \in J_i} e^{A(V_{i,l}(t))}; m_{i,r} = \inf_{t \in J_i} e^{A(V_{i,r}(t))}.$$

For $i = 0, 1$ let $U_i = 4^{-q} \cdot m_{i,l} \cdot m_{i,r} \cdot e^{A(V_i)}$. Then we have

$$\tilde{Z}(I) \geq U_0 \tilde{Z}(J_0) + U_1 \tilde{Z}(J_1),$$

where $\tilde{Z}(I)$, $\tilde{Z}(J_0)$, $\tilde{Z}(J_1)$ have the same law; U_0, U_1 have the same law; $\tilde{Z}(J_0)$, $\tilde{Z}(J_1)$ and (U_0, U_1) are independent. So by using the approach of Molchan for Mandelbrot cascades in the general case [27, Theorem 4], we only need to show that $\mathbb{E}(U_i^q) < \infty$ to imply that $\mathbb{E}(\tilde{Z}(I)^q) < \infty$, thus $\mathbb{E}(Z(J)^q) < \infty$.

Since $q < 0$, we have

$$U_0^q = 4^{-q} \cdot \sup_{t \in J_0} e^{qA(V_{i,l}(t))} \cdot \sup_{t \in J_0} e^{qA(V_{i,r}(t))} \cdot e^{qA(V_0)}.$$

Notice that these random variables are independent, so

$$\mathbb{E}(U_0^q) = 4^{-q} \cdot \mathbb{E}\left(\sup_{t \in J_0} e^{qA(V_{i,l}(t))}\right) \cdot \mathbb{E}\left(\sup_{t \in J_0} e^{qA(V_{i,r}(t))}\right) \cdot \mathbb{E}\left(e^{qA(V_0)}\right).$$

Then from the fact that $q \in I_\nu$ and (7.1) we get the conclusion. \qed

7.2. Now we show that for $q \in (-\infty, 0)$, if $\mathbb{E}(Z(J)^q) < \infty$ then $q \in I_\nu$. Let $J_0 = \inf I + |I|\cdot[0, 2/3]$, $J_1 = \inf I + |I|\cdot[1/3, 1]$ and $J = \inf I + |I|\cdot[1/3, 2/3]$. Then we have

$$\tilde{\mu}_I^J(I) \leq \tilde{\mu}_I^J(J_0) + \tilde{\mu}_I^J(J_1).$$

For $i \in \{0, 1\}$ define

$$V_i = (V^I(J_i) \setminus V^I(J)) \cap \{z \in \mathbb{H} : \text{Im}(z) < |I|\},$$

$$V_{i,l}(t) = V^{J_i,t}(I) \cap \{z \in \mathbb{H} : \text{Im}(z) < |I|\},$$

$$V_{i,r}(t) = V^{J_i,t}(I) \cap \{z \in \mathbb{H} : \text{Im}(z) < |I|\}.$$

Also define $V = V^I(J) \cap \{z \in \mathbb{H} : \text{Im}(z) < |I|\}$. Then we get

$$\tilde{Z}(I) \leq e^{A(V)} \cdot \left(\sum_{i=0, 1} 4^{-1} \cdot \sup_{t \in J_i} e^{A(V_{i,l}(t))} \cdot \sup_{t \in J_i} e^{A(V_{i,r}(t))} \cdot e^{A(V_i)} \cdot \tilde{Z}(J_i)\right).$$
Since \(q < 0 \), this gives
\[
\tilde{Z}(I)^q \geq e^{\beta\Lambda(V)} \cdot \left(\sum_{i=0,1} 4^{-q} \cdot \inf_{t \in J_i} e^{\beta\Lambda(V, i(t))} \cdot \inf_{t \in J_i} e^{\beta\Lambda(V, j(t))} \cdot e^{\beta\Lambda(V)} \cdot \tilde{Z}(J_i)^q \right).
\]

Taking expectation from both side and using (7.2) we get
\[
E(\tilde{Z}(I)^q) \geq E(e^{\beta\Lambda(V)}) \cdot 2 \cdot 4^{-q} \cdot c_q^2 \cdot E(e^{\beta\Lambda(V_0)}) \cdot E(\tilde{Z}(I)^q).
\]

Then from \(E(\tilde{Z}(I)^q) < \infty \) we get \(E(e^{\beta\Lambda(V \cup V_0)}) \leq 2^{-1}4^{q}c_q^{-2} < \infty \). This yields \(q \in I_{\nu} \). \(\square \)

8. Proof of Theorem 1.6

The proof is similar to that of [19, Theorem 2.4].

For \(i \in \Sigma_n \) and \(j \in \{0, 1\} \) let \(W_{i}^{[i]} = W_{ij}/W_{i} \).

For \(n \geq 1, \omega \in \Omega \) and \(i \in \Sigma \) define
\[
A_n(\omega, i) = \sum_{i_1 \cdots i_n \in \Sigma_n} W_{i_{1} \cdots i_{n-1}}^{[i_{1} \cdots i_{n-1}]}(\omega) \cdot 1_{\{i_n = i\}}
\]
\[
R_n(\omega, i) = \sum_{i \in \Sigma_n} Z_i(\omega) \cdot 1_{\{i_n = i\}}.
\]

Thus for any \(i = i_1 \cdots i_n \) and \(i \in [i] \) we have
\[
\mu(I_i) = \left(\prod_{k=1}^{n} A_k(\omega, i) \right) \cdot R_n(\omega, i).
\]

We claim that for any \(n \geq 1, A_n \) has the same law as \(A \), and \(R_n \) has the same law as \(R \), where \(A \) and \(R \) are defined as in the beginning of Section 6.1 moreover, \(A_1, \cdots, A_n, R_n \) are independent. This is due to the fact that for any non-negative Borel functions \(f_1, \cdots, f_n \) and \(g \) one gets
\[
E_Q \left(g(R_n) \prod_{j=1}^{k} f_j(A_j) \right) = E \left(\sum_{i_1 \cdots i_n \in \Sigma_n} g(Z_i) Z_i \prod_{k=1}^{n} f_k(W_{i_{k} \cdots i_{k-1}}^{[i_{1} \cdots i_{k-1}]} W_{i_{k}^{[i_{1} \cdots i_{k-1}]} W_{i_{k}}}) \right)
\]
\[
= E(g(Z) \prod_{k=1}^{n} 2E(f_k(W_0)W_0))
\]
\[
= E_Q(g(R)) \prod_{k=1}^{n} E_Q(f_k(A)).
\]

Under the assumptions we have
\[
E_Q(\log A) = 2E(W_0 \log W_0) = \varphi'(1) \log 2 := \beta \in (-\infty, 0)
\]
and
\[
E_Q((\log A)^2) - E_Q(\log A)^2 = \varphi''(1) \log 2 := \gamma \in (0, \infty).
\]

Denote by \(S_n = \log A_1 + \cdots + \log A_n \). By using law of iterated logarithm we get
\[
\limsup_{n \to \infty} \frac{S_n - n\beta}{\sqrt{2\gamma n \log \log n}} = 1, \text{ Q-a.s.}
\]
It follows that for Q-almost all $(\omega, i) \in \Omega \times \Sigma$ and all $0 < \epsilon < 1$,
\begin{equation}
 e^{n\beta + (1 - \epsilon)\sqrt{2\gamma n \log \log n}} \leq e^{S_n} \leq e^{n\beta + (1 + \epsilon)\sqrt{2\gamma n \log \log n}},
\end{equation}
where the left inequality holds for infinitely many $n \in \mathbb{N}$, while the right inequality holds for all $n \in \mathbb{N}$ sufficiently large. We also have the following lemma.

Lemma 8.1. For $0 < \epsilon < 1$ one has for Q-almost all $(\omega, i) \in \Omega \times \Sigma$ and all $n \in \mathbb{N}$ sufficiently large,
\begin{equation}
 e^{-\sqrt{n\epsilon}} \leq R_n \leq e^{\sqrt{n\epsilon}}.
\end{equation}

Then the rest of the proof is exactly the same as [19, Theorem 2.4].

8.1. **Proof of Lemma 8.1.** The proof is borrowed from Lemma 12 in [21]. First we have
\begin{align*}
 Q\left(\left|\log R_n\right| \geq \sqrt{n\epsilon}\right) &= Q\left(R_n \geq e^{\sqrt{n\epsilon}}\right) + Q\left(R_n \leq e^{-\sqrt{n\epsilon}}\right) \\
 &= E\left(Z \cdot 1\{Z \geq e^{\sqrt{n\epsilon}}\}\right) + e^{-\sqrt{n\epsilon}}. \\
 &\leq E\left(Z \cdot 1\{Z \geq e^{\sqrt{n\epsilon}}\}\right) + e^{-\sqrt{n\epsilon}}.
\end{align*}

Applying the elementary inequality $\sum_{n \geq 1} 1\{X \geq \sqrt{n}\} \leq X^2$ we get
\begin{align*}
 \sum_{n \geq 1} Q\left(\left|\log R_n\right| \geq \sqrt{n\epsilon}\right) &\leq \sum_{n \geq 1} E\left(Z \cdot 1\{Z \geq e^{\sqrt{n\epsilon}}\}\right) + \sum_{n \geq 1} e^{-\sqrt{n\epsilon}} \\
 &= E\left(Z \sum_{n \geq 1} 1\{\log Z \geq \sqrt{n}\}\right) + \sum_{n \geq 1} e^{-\sqrt{n\epsilon}} \\
 &\leq e^{-2E(Z^2)} + \sum_{n \geq 1} e^{-n\epsilon}.
\end{align*}

Since $\varphi'(1) < 0$, there exists $q > 1$ such that $\varphi(q) < 0$, thus due to Theorem 1.2 we have $E(Z^2) < \infty$. This implies $E(Z^2log Z^2) < \infty$, and the conclusion comes from Borel-Cantelli lemma.

References

[1] E. Aidekon and Z. Shi. The seneta-heye scaling for the branching random walk, 2011, arXiv:1102.0217v2.
[2] E. Bacry and J. F. Muzy. Log-infinitely divisible multifractal processes. *Comm. Math. Phys.*, 236(3):449–475, 2003.
[3] J. Barral, X. Jin, R. Rhodes, and V. Vargas. Gaussian multiplicative chaos and KPZ duality, 2012, arXiv:1202.5296v2.
[4] J. Barral and B. B. Mandelbrot. Multifractal products of cylindrical pulses. *Probab. Theory Related Fields*, 124(3):409–430, 2002.
[5] J. Barral, R. Rhodes, and V. Vargas. Limiting laws of supercritical branching random walks, 2012, arXiv:1203.5445v2.
[6] I. Benjamini and O. Schramm. KPZ in one dimensional random geometry of multiplicative cascades. *Comm. Math. Phys.*, 289(3):653–662, 2009.
[7] P. Chainals. Multidimensional infinitely divisible cascades. application to the modelling of intermittency in turbulence. *Eur. Phys. J. B*, 51(2):229–243, 2006.
[8] B. Duplantier, R. Rhodes, S. Sheffield, and V. Vargas. Critical gaussian multiplicative chaos: Convergence of the derivative martingale, 2012, arXiv:1206.1671v2.
[9] B. Duplantier and S. Sheffield. Liouville quantum gravity and KPZ. *Invent. Math.*, 185(2):333–393, 2011.
[10] R. Durrett and T. M. Liggett. Fixed points of the smoothing transformation. Z. Wahrsch. Verw. Gebiete, 64(3):275–301, 1983.

[11] N. Enriquez, C. Sabot, and O. Zindy. A probabilistic representation of constants in Kesten’s renewal theorem. Probab. Theory Related Fields, 144(3-4):581–613, 2009.

[12] K. Falconer. Fractal geometry. John Wiley & Sons Inc., Hoboken, NJ, second edition, 2003. Mathematical foundations and applications.

[13] C. M. Goldie. Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab., 1(1):126–166, 1991.

[14] Y. Guivarch. Sur une extension de la notion de loi semi-stable. Ann. Inst. H. Poincaré Probab. Statist., 26(2):261–285, 1990.

[15] J.-P. Kahane. Sur le chaos multiplicatif. Ann. Sci. Math. Québec, 9(2):105–150, 1985.

[16] J.-P. Kahane. Multiplications aléatoires et dimensions de Hausdorff. Ann. Inst. H. Poincaré Probab. Statist., 23(2, suppl.):289–296, 1987.

[17] J.-P. Kahane. Positive martingales and random measures. Chinese Ann. Math. Ser. B, 8(1):1–12, 1987.

[18] J.-P. Kahane and J. Peyrière. Sur certaines martingales de Benoît Mandelbrot. Adv. Math., 22(2):131–145, 1976.

[19] Q. Liu. On generalized multiplicative cascades. Stochastic Process. Appl., 86(2):263–286, 2000.

[20] Q. Liu. Asymptotic properties and absolute continuity of laws stable by random weighted mean. Stochastic Process. Appl., 95(1):83–107, 2001.

[21] Q. Liu and A. Rouault. On two measures defined on the boundary of a branching tree. In Classical and modern branching processes (Minneapolis, MN, 1994), volume 84 of IMA Vol. Math. Appl., pages 187–201. Springer, New York, 1997.

[22] T. Madaule. Convergence in law for the branching random walk seen from its tip, 2011, arXiv:1107.2543v2.

[23] B. Mandelbrot. A possible refinement of the lognormal hypothesis concerning the distribution of energy in intermittent turbulence. In Statistical Models and Turbulence, La Jolla, CA, Lecture Notes in Phys. 12, Springer, Lecture Notes in Phys, Vol. 12, pages 333–335, La Jolla, CA, 1972. Springer.

[24] B. Mandelbrot. Intermittent turbulence in self-similar cascades: divergence of hight moments and dimension of the carrier. J. Fluid. Mechs., 62:331–358, 1974.

[25] B. Mandelbrot. Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire. C. R. Acad. Sci. Paris Sér. A, 278:289–292, 1974.

[26] B. Mandelbrot. Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire. C. R. Acad. Sci. Paris Sér. A, 278:355–358, 1974.

[27] G. M. Molchan. Scaling exponents and multifractal dimensions for independent random cascades. Comm. Math. Phys., 179(3):681–702, 1996.

[28] B. S. Rajput and J. Rosiński. Spectral representations of infinitely divisible processes. Probab. Theory Related Fields, 82(3):451–487, 1989.

[29] D. Revuz and M. Yor. Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, third edition, 1999.

[30] R. Rhodes and V. Vargas. Multidimensional multifractal random measures. Electron. J. Probab., 15:no. 9, 241–258, 2010.

[31] R. Rhodes and V. Vargas. KPZ formula for log-infinitely divisible multifractal random measures. ESAIM: Probability and Statistics, 15:358–371, 2011.

[32] C. Webb. Exact asymptotics of the freezing transition of a logarithmically correlated random energy model. J. Stat. Phys., 145(6):1595–1619, 2011.

LAGA, INSTITUT GALILÉE, UNIVERSITÉ PARIS 13, SORBONNE PARIS CITÉ, 99 AV. JEAN-BAPTISTE CLÉMENT 93430 VILLETENEUVE, FRANCE
E-mail address: barral@math.univ-paris13.fr

MATHEMATICAL INSTITUTE, UNIVERSITY OF ST ANDREWS, NORTH HAUGH, ST ANDREWS, FIFE, KY16 9SS, SCOTLAND
E-mail address: xj3@st-andrews.ac.uk