Growth of *manglid* (*Manglietia glauca* Bl.) from three provenances until age 4.5 years at Candiroto Temanggung
Central Java

S Pudjiono, Mashudi, M Susanto, L Baskorowati, D Setiadi, M Sulaeman, R A Hartati, and A Wibowo

1 Centre for Forest Biotechnology and Tree Improvement, Jl. Palagan Tentara Pelajar Km 15 Purwobinangun, Yogyakarta, Indonesia
2 Serayu Opak Progo Watershed and Protected Forest Management Office, Jl. Gedong Kuning No. 172, Yogyakarta, Indonesia
3 Center for Research and Development Perum Perhutani, Wonosari Tromol Street 6 Cepu. Batokan Village, Kasiman District, Bojonegoro Regency, Indonesia

E-mail: sgpudjiono@gmail.com

Abstract. This study was carried to examine the best provenance of seed source of *Manglietia glauca* at 4.5 years old. The study was conducted in Candiroto, Temanggung, Central Java. A Randomized Complete Block Design with three provenances consisting of 15 parent trees from Tasikmalaya, ten parent trees from Sumedang, and 75 parent trees from Sukabumi, West Java, were divided into ten replications. Each replication has 100 plots, and each plot consists of four plants with a planting distance is 4 m x 3m. The plant characteristics, including height and stem diameter, were measured at the age of 0.5, 1.5, 2.5, 3.5 and 4.5 years. Variant analysis and Duncan Multiple Range Test in each measurement stage were performed. The significant differences of plant height among provenances were found from 0.5 to 3.5 years old and were not significantly different afterward. The stem diameter differs significantly among the provenances at 1.5 years old only; afterward, they were not significantly different. The average plant height and stem diameter at 4.5 years old were between 864-917 cm and 12.34-12.48 cm, and they were not significantly different. Therefore, it is possible to choose any seed sources of the three provenances of manglid to be used for plantation.

1. Introduction

Manglid (*Manglietia glauca Bl.*) is one of the indigenous species from Indonesia. The natural distribution of Manglid is in Sumatra, Java, Bali, Lombok, and Sulawesi Islands. Nowadays, Manglid is quite difficult to find in its natural habitat, which mainly exists at the altitude of 900 m to 1700 m above sea level in a humid and fertile mixed forest. The Manglid tree has a straight stem, yellow flower, and rcalcitrant seed [1]. In Situ Gunung Sukabumi, which was one of the natural habitats of Manglid, the abundance of this species was 1.2, which means it was classified as rare[2]. Therefore, this species needs to be preserved for its existence since it has an economic value. In addition, Manglid is classified as fast-growing tree species with a cycle of less than ten years [3].
Manglid wood can be used as a raw material for making bridges, household appliances, tables, chairs, cabinets, house buildings, doors, wooden boards, and plywood. Manglid wood is classified in the 3rd strength class and the 2nd durable class with the properties: glossy, smooth, lightweight, solid structure, and easy to work with [4]. The local community is interested in planting manglid because of the plant and the wood properties. In most cases, the local community plants manglid in the scheme of community forest [5].

In order to get valid information on the plant growth of manglid seed source, it is necessary to perform a planting trial of manglid which the seeds derived from some provenances. Therefore, the purpose of this study

2. Materials and Methods

2.1. Time and place of the research
Manglid seed source plantation was established at Candiroto, Temanggung, Central Java, in April 2016. The seeds are derived from several provenances, including Tasikmalaya, Sumedang, and Sukabumi, West Java Province [6]. The measurement of plant growth was done five times, namely at the age of 0.5, 1.5, 2.5, 3.5, and 4.5 years. The manglid seed source plantation site was at an altitude of 457-464 m above sea level with soil type of latosol [7].

2.2. Materials and tools
The tools consist of a pole stick, digital caliper to measure the diameter at breast height (DBH), tally sheet, design map of seedlings seed orchard, fieldnotes, and stationeries. The research materials including manglid seedling seed orchard for progeny test.

2.2.1. Research design. The research design in the field used Randomized Complete Block Design (RCBD) with 100 parent trees of manglid derived from Tasikmalaya provenances (15 parent trees), Sumedang provenances (10), and Sukabumi provenances (75). The provenances were divided into ten replications, each replication had 100 plots and each plot consisted of 4 plants; the planting distance was 4 m x 3 m. The measured plant growth characteristics were total height and stem diameter. The measurement of trees' total height was carried out from the ground level to the end of the growing point of the main axis. The stem diameter was measured at breast height which was approximately about 130 cm above the ground level.

2.2.2. Data analysis. The measurement data of plant height and stem diameter were analyzed using variance analysis to determine the effect of several provenances on the plant growth characteristics. If there is a significant difference, it will be continued to Duncan's Multiple Range Test (DMRT).

3. Results and Discussion

3.1. Result
The results of variance analysis of plant height and stem diameter can be seen in Table 1. DMRT test was performed because there is a significantly different from the results of variant analysis for plant height and stem diameter, as shown in Table 2. The graph of plant height and stem diameter can be seen in Figure 1 and Figure 2.
Table 1. Variance analysis of plant height and stem diameter of manglid trees from three provenances.

Age	Sources of variations	df	Height Mean Square	df	Diameter Mean Square
0.5 years old	Provenance	2	38887.7175**	-	-
	Error	1685	17299.67		
	Corrected total	2784	38887.7175**	-	-
1.5 years old	Provenance	2	60820.969**	2	9.8504440**
	Error	2366	4393.81	2240	1.467457
	Corrected total	2465	38887.7175**	2240	1.467457
2.5 years old	Provenance	2	129954.198**	2	10.784324
	Error	2365	10604.42	2337	4.48279
	Corrected total	2464	38887.7175**	2337	4.48279
3.5 years old	Provenance	2	133507.604**	2	19.357953
	Error	1958	21126.19	1956	12.72046
	Corrected total	2057	38887.7175**	1956	12.72046
4.5 years old	Provenance	2	251720.89	2	4.01844
	Error	1622	101894.0	1623	98.6995
	Corrected total	1685	38887.7175**	1623	98.6995

**Significantly different at 0.01

Table 2. Effect of the provenances on the average height and stem diameter growth of Manglietia glauca at the age of 0.5 to 4.5 years.

Variable	Provenance	0.5	1.5	2.5	3.5	4.5
Height (cm)	Tasikmalaya	85.10b	254.36a	401.19b	578.74b	888.8a
	Sumedang	90.51a	259.28a	418.39a	609.98a	916.8a
	Sukabumi	76.03c	241.15b	389.94b	571.84b	864.3a
	Average	79.12	245.43	395.0	576.72	873.3
Diameter (cm)	Tasikmalaya	2.78b	5.91a	9.10a	12.34a	12.34a
	Sumedang	3.01a	6.15a	9.66a	12.39a	12.39a
	Sukabumi	2.72b	5.95a	9.37a	12.48a	12.48a
	Average	2.76	5.96	9.36	12.44	12.44

Remark: Numbers followed by the same letters in the same column are not significantly different at 0.01 according to Duncan's Multiple Range Test.
The results of variant analysis of plant height from the age of 0.5 years to the age of 3.5 years showed a significant difference. However, at the age of 4.5 years, there was no significant difference at 0.01. Therefore, according to the data, the best provenance for plant height characteristics is Sumedang, followed by Tasikmalaya, then Sukabumi provenance.

The result of variant analysis of stem diameter characteristics is significantly different at the age of 1.5 years, with a value ranging from 2.72 to 3.01 cm and an average of 2.76 cm. After that, the results showed that there is no significant difference.

3.2. Discussion

3.2.1. Height of plants. The height of plants at the age of 0.5 years to 3.5 years from different provenances showed significant differences, where Sumedang's provenance revealed the highest
height growth. At the age of 4.5 years, there is no significant difference in the height of the plants. However, the Sumedang provenance was the best provenance for height growth until 4.5 years old. The plant provenances affect height growth from the beginning of its augmentation. The tropical plant species generally have a widespread with different genetic characteristics among the provenances where each individual tends to do the differentiation [8]. The research on Merbau plants showed the same thing: the differentiation of provenance causes differences in plant height growth [9]. The diversity among provenances is caused by the geographical conditions in the site characteristics such as soil type, rainfall, altitude, and the association with other plants in the different populations [10, 6]. Figure 1 shows that the highest increase in height growth occurred from year 3.5 to year 4.5 where it is shown by the rather more vertical graph line. The growth of the height is affected by various aspects such as altitude. In Vietnam, the most suitable site altitude for manglid is 550 m above sea level. Then, nitrogen and phosphorus nutrient content affects the height growth of the plants [11]. In addition, the height growth of manglid was influenced by the planting distance [12].

3.2.2. Stem diameter. The variant analysis of stem diameter of the manglid stand showed a significant difference at the age of 1.5 years only, where the diameter growth of Sumedang provenance was significantly larger than the other provenances. This means that the Sumedang seed source is more suitable for the experimental site. The large diameter indicates the big root system and stem volume [13]. The larger the stem diameter, the more nutrients and water are transported by the xylem [14]. Research by [15] on the growth of manglid at four months old in Trenggalek, East Java, indicated that the Sumedang provenance has the biggest stem diameter growth, which affects height growth. After that, at the age of 2.5 years up to 4.5 years, stem diameter growth did not show a significant difference among provenances. According to [10], a similar condition happened on the growth of Merbau plants because the genetic distance among provenances is relatively small since they came from the same population in West Java. It means that there is a close kinship among provenances so that the growth of the manglid stem diameter was not significantly different in one population or among the provenances.

4. Conclusion
There was no significant difference in plant height among provenances of Manglietia glauca at the end of the study, i.e., at 4.5 years old. The significant difference occurred from the beginning of the plant growth until the plants were 3.5 years old, where the Sumedang provenance has the highest height growth. Similar to the stem diameter growth, there was no gap among the provenances at the end of the study. While at the beginning growth of the plant, namely at 1.5 years old, a significant difference of stem diameter occurred, where Sumedang provenance also has the largest stem diameter. Although there was no significant difference among the provenances on the growth of height and stem diameter at the end of the study, in general, the Sumedang provenance performed better since it showed the best growth from the beginning. It happened because the seed that came from West Java provenances has a high kinship. Therefore, it is possible to choose any seed sources of three provenances of manglid to be used for plantation.

References
[1] Rimpala 2001 Penyebaran pohon Manglid (Manglietia glauca Bl.) di kawasan hutan lindung Gunung Salak Laporan Ekspedisi Manglietia glauca Bl Bogor
[2] Kalima T and Wardani M 2013 Potensi Jenis Dipterocarpus retusus Blume di kawasan Hutan Situ Gunung Sukabumi Bull. Plasma Nutfah 3 102-12
[3] Sudomo A 2010 Mutu bibit Manglid (Manglietia glauca Bl.) pada tujuh jenis media sapih J. Peneliti. Hutan Tanaman 7(5)
[4] Djam’an D F 2006 Mengenal Manglid Baros (Manglietia glauca Bl.) manfaat dan permasalahan Maj. Kehutanan. Indonesia. Ed. VI
[5] Rohandi A, Swestiana D, Gunawan, Nadiharto Y and Rahmawan B S I 2010 Identifikasi
sebaran populasi dan potensi lahan jenis manglid untuk mendukung pengembangan sumber benih dan hutan rakyat di wilayah Priangan Timur Laporan Hasil Penelitian Balai Penelitian Kehutanan Ciamis

[6] Pudjiono S 2016 Eksplorasi dan penanganan benih Manglid (Manglietia glauca Bl.) sebagai materi genetik untuk membangun sumber benih Inf. Tek. 14 21-8
[7] RKPD 2015 Kabupaten Temanggung Gambaran umum dan Potensi Daerah (Temanggung)
[8] Hartati G, Rimbawanto A, Taryono, Sulistyaningsih E and Widyatmoko A 2007 Pendugaan keragaman genetik di dalam dan antar provenan pulai (Alstonia scholaris (L) R.Br.) menggunakan penanda RAPD J. Pemuliaan Tanam. Hutan 1 89-98
[9] Pudjiono S 2017 Variasi Pertumbuhan Tanaman Merbau (Intsia bijuga O. Ktze) hasil stek pucuk dari beberapa populasi pada daerah kering Proc. Biology Education Conf. 14 195-99
[10] Yudohartono T P and Ismail B 2012 Variasi genetic uji provenan merbau sampai umur 3 tahun di Bondowoso Jawa Timur J. Pemuliaan Tanam. Hutan 6 27-36
[11] Li-Hua L Nong R H and Li Z G 2014 Responses of Manglietia glauca growth to soil nutrients and climatic factors Ying yong Shengtai Xuebao 25 961-6
[12] Sudomo A and Mindawati N 2011 Pertumbuhan Manglietia glauca pada tiga jarak tanam dan tiga jenis pupuk di Tasikmalaya, Jawa Barat. The Growth of Manglieta glauca Bl on three spacing and three kinds of fertillizer at Kawal Kuala Tasikmalaya, West Java Tekno Hutan Tanaman 4 111-8
[13] Putri K P, Widyani N dan Bramasto Y 2010 Pertumbuhan 9 (sembil) jenis tanaman endemik Indonesia di hutan penelitian Rumpin Proc. Sem. Peningkatan Produktivitas hutan rakyat untuk kesejahteraan masyarakat Balai Penelitian Teknologi Perbenihan Bogor dan Balai Penelitian Kehutanan Ciamis 328-332
[14] Winarni I, Sumadiwangsa E S and Setiawan D 2004 Pengaruh tempat tumbuh, species dan diameter batang terhadap produktivitas pohon penghasil biji tengkawang J. Penelitian Hasil Hutan 22 23-33
[15] Pudjiono S 2018 Pertumbuhan Tanaman Manglid (Magnolia champaca (L) Baill Ex Pierre) Umur Empat Bulan Dari Beberapa Pohon Induk di Trenggalek Jawa Timur Seminar Nasional Pendidikan Biologi dan Saintek III 19-26

Acknowledgments
The authors would like to thank the Head of Center for Forest Biotechnology and Tree Improvement, Serayu Opak Progo Watershed and Protected Forest Management Office, and Center for Research and Development of Perum Perhutani has permitted the planting site of the Manglid research plot and the grants.

Author’s contribution
All authors contributed equally to this work as the main contributor.