The Potential of Exposure Biomarkers in Epidemiologic Studies of Reproductive Health

by Carol J. Rowland Hogue* and Marge A. Brewster†

Introduction

The research of Hatch (1) has greatly increased our understanding of the use and potential limitations of biological markers for adverse reproductive effects. Likewise, there are great potentials and pitfalls in the emerging field of exposure biomarkers for reproductive health. This area of research has lagged considerably behind the field of developing new effect markers, such as semen analysis and early pregnancy loss. However, its importance in quantitative risk assessment cannot be overemphasized. As Hulka has so clearly stated, "the most important current limitation in many epidemiological studies is the relative inaccuracy of methods for measuring the exposure variable" (2).

Exposure to a potential fetal health hazard can be estimated through ecological assessment (e.g., testing the community water supply), questionnaires (e.g., classifying residents according to whether they drink bottled or tap water), or biological markers (e.g., testing for exposures to chemicals or solvents found in tap water). In a community with an environmental factor suspected of adversely affecting reproductive outcome, measuring environmental contaminants provides a gross, ecological estimate of the exposure incurred by pregnant women and their fetuses. However, ecological estimates can lead to significant misclassification of individual exposure (3). Such misclassification, if nondifferential, will underestimate the true effect of the exposure. If misclassification is differential, misleading results in either direction can occur.

Using questionnaires to assess the extent of an individual's potential for exposure may help to reduce misclassification bias. Yet reports of individual exposures can be erroneous in either direction (4). In addition, people are often unaware of their potential for exposure, and researchers may not know or be able to account for all the pathways of exposure. For example, certain mothers in a Yugoslav community with a lead smelter had elevated blood-lead levels. Questionnaire data determined which of these women were wives of men employed in the lead industry. However, these data could not distinguish between women with low blood-lead levels and women with elevated levels (4). In this example, a biological exposure marker (blood lead-level) was available for classifying mothers according to their exposure to lead. To date, such biological markers have not been widely available nor have they been widely used when they are available.

Several years ago, the Environmental Protection Agency cosponsored a National Research Council study on The Role of Biomarkers in Reproductive and Developmental Toxicology (5).
After reviewing the situation, Longo described a “paradox” (6). Although several techniques for identifying individual exposures have been developed and tested, and although more and more xenobiotics have been recognized to have teratogenic and mutagenic potential, “essentially no specific biomarkers are currently available to indicate that exposure to a given xenobiotic is directly associated with a cellular, subcellular, or pharmacodynamic event” (6). The paradox continues, despite continuing advancements in laboratory science and the growing recognition of the need for biological markers to improve exposure measurement in the field of environmental epidemiology (3,4,7-9). To further the development and application of exposure markers in studying the environmental hazards to reproductive health, we have attempted to synthesize recent examinations of the issues surrounding exposure measurements in reproductive epidemiology. The specific goals of this paper are to explore the potential uses of biomarkers as measures of exposure, particularly as they may be used in an environmental setting as screening tools.

**Biomarkers As Measures of Exposure**

Hulka defines biological markers in environmental epidemiology as “cellular, biochemical or molecular alterations which are measurable in biological media such as human tissues, cells or fluids and are indicative of exposure to environmental chemicals” (2). Biomarkers are not environmental measures in air, soil, water, or food; nor reports from research subjects; nor results of physical, anthropometric, or mental examinations. Rather, they are material measures obtained from physical samples (4).

Biomarkers used to estimate environmental exposures must be distinguished from those used to estimate the effects of those exposures. Biological markers of effects can be subclassified into biologically effective doses (such as DNA adducts) and biological responses (2). Examples of the biological response include sensitive tests of early pregnancy loss and serum alphafetoprotein to detect fetal neural tube defects. The National Research Council study primarily dealt with effect markers (5). Although both exposure and outcome measures are necessary for an epidemiologic investigation, we will focus on measuring exposures. In Hulka’s classification, these are “internal dose markers” (2).

Internal dose-exposure markers may be useful to improve the quality of exposure measurement in an epidemiologic investigation of a known environmental hazard; to serve as the “gold standard” for other information sources; to provide a screening tool for environmental exposures to a target tissue (in this case, the fetus); and to provide quantification of the biological load from a known exposure (4). To be useful in epidemiologic investigations of reproductive health an exposure marker should be better than the woman’s ability to recall an exposure; allow for differentiation between exposure levels, at least qualitatively; allow the use of noninvasive procedures that are applicable on a large scale; and provide interpretable data for short-term or cumulative exposure regarding time, dose, and duration (4).

For the environmental Sherlock Holmes, internal dose markers offer strong circumstantial evidence that the perpetrator xenobiotic has invaded the human victim. This evidence is very specific if the chemical is retrieved unaltered. However, substantial circumstantial evidence can be gleaned from metabolically altered chemicals. The metabolic outcome can be very specific (e.g., urinary cotinine for nicotine in cigarette smoke) or nonspecific (e.g., thioethers for cigarette smoking). Nonspecific markers measure a biochemical pathway affected by a variety of xenobiotic agents.

**Exposure Markers As Screening Tools**

In addition to possessing the characteristics of all useful exposure markers, biomarkers used as exposure screens should be able to detect subtoxic exposures and be nonspecific (8). Nonspecificity of the marker is important because the environment commonly includes complex and unknown chemical mixtures, such as those found in drinking water, that could be misclassified by selecting a few specific markers for a screening battery.

For epidemiologic research, nonspecific markers tend to be held in lower esteem than specific markers, since it is impossible, without further evidence, to identify which chemical has triggered the metabolic response being measured. However, as screening tools, nonspecific markers hold some promise. A biomarker that can be used to detect that one or more of a class of xenobiotic agents to which the pregnant woman has been exposed and may have exposed her fetus could be useful for targeting a subset of women for further investigation and follow-up. First, however, the fact that the metabolic pathway has been altered must be correlated with adverse human reproductive outcomes so that such alteration can be shown to reflect fetotoxicity.

We have previously proposed three nonspecific urinary biomarkers as potential screening tools for reproductive epidemiology (8): glucaric acid, thioethers, and porphyrin patterns. Vainio et al. (10) proposed mutagenic activity in bacteria as another nonspecific urinary screening tool, and Brewster (9) has added that biomarker to her proposed battery for pregnant women. Let us briefly review the usefulness of these biomarkers.

**Bacterial Urinary Assay for Mutagenic Activity**

Vainio et al. (10) critically reviewed the bacterial bioassay procedure as a test of mutagenic activity in urine. Like the other tests proposed, it has the advantage of demonstrating biological activity rather than the mere presence of xenobiotic substances. However, this procedure poses problems that lead the reviewers to recommend that it be used in conjunction with other screening measures. We agree. For example, a bacterial bioassay cannot detect cumulative exposures and may react to substances normally present in urine (such as amino acids). Table 1 gives examples of the numerous studies of reported alterations in mutagenicity by external agents (11-59). Occupational exposures have been associated with alterations in mutagenicity; however, not all studies are positive. For example, oncology nurses handling cytotoxic drugs have been studied by several investigators. Two studies were positive for altered mutagenicity (13,17), but two later reports were negative (23,42). This difference may reflect changes in routines for handling these drugs.
Table 1. Reported alterations in mutagenicity by xenobiotics.

| Urine* | Human studies | References |
|--------|---------------|------------|
| +      | Anesthesiologists (halogenated anesthetic gases) | McCoy et al. (11) |
| +      | Epichlorhydrin-exposed workers | Kilian et al. (12) |
| +      | Oncology nurses (cytotoxic drugs) | Falck et al. (13) |
| +      | Foundry workers (PAHs) | Schimberg et al. (14) |
| +      | Refinery workers (coal tar and pitch) | Inamasu et al. (15) |
| +      | Chemical workers (various) | Dolera et al. (16) |
| +      | Oncology nurses (cytotoxic drugs) | Bos et al. (17) |
| +      | Pharmacists (cytotoxic drugs) | Anderson (18) |
| +      | Pharmacists (cytotoxic drugs) | Nguyen et al. (19) |
| +      | Carbon electrode industry workers | Pasquinini et al. (21) |
| +      | Chemical and coke oven workers | Kriebel et al. (22) |
| +      | Cold-rolling steel plant workers (mineral oils); synergistic with smoking | Pasquinini et al. (23) |
| +      | Vegan diet | Sasson et al. (24) |
| +      | Cancer patients on chemotherapy | Benhamou et al. (25) |
| +      | Workers at a coal tar distillation plant | Jongeneelen et al. (26) |
| +      | Workers at sewage treatment plants | Scarlett-Krans et al. (27) |
| +      | Tool and die workers (N-nitrosodiethanolamine, diethylnitrosamine) | Garry et al. (28) |
| +      | Cancer patients receiving cyclophosphamide (or doxorubicin) | Tuffnall et al. (29) |
| +      | Fried salmon diet to nonsmokers (reversed by co-intake of parsley) | Ohyama et al. (30) |
| ?      | Tannery workers | Gostantini et al. (31) |
| +      | Steel mill workers, coal processing | DeMeo et al. (32) |
| +      | Explosives manufacturing workers (trinitrotoluene) | Ahlborg et al. (33) |
| +      | Smoking, passive | Mohitashampipur et al. (34) |
| +      | Smoking >25 years | Kriebel et al. (35) |
| +      | Smoking | Curvall et al. (36) |
| -      | Smuff users | Curvall et al. (36) |
| ±      | Pharmacists handling cytostatic drugs | Kolmodin-Hedman et al. (37) |
| -      | Coke oven emissions exposure | Moller and Dybing (38) |
| -      | Tire plant workers | Falck et al. (39, 40) |
| -      | Tire plant workers (possible smoking synergism); tetramethyl (thiuram disulfide, poly-p-dinitrosobenzene, diaryl-p-phenylenediamines) | Grebelli et al. (41) |
| -      | Oncology nurses handling cytotoxic drugs | Barale et al. (42) |
| -      | Anode plant workers exposed to coal tar and pitch | Venier et al. (43) |
| -      | Oncology nurses handling cytostatic drugs | Benhamou et al. (25) |
| -      | Autopsy service workers (formaldehyde) | Connor et al. (44) |
| -      | Nonsmokers on low PAH diet exposed passively to tobacco smoke | Scherer et al. (45) |
| -      | Hospital employees handling cancer chemotherapy agents | Eusner et al. (46) |
| -      | Nonsmokers | Staiano et al. (47) |
| -      | Macrobiotic versus typical western diet | Sasson et al. (24) |
| -      | Workers exposed to 2,4,7-trinitro-9-fluorenone (low dose) | Grebelli et al. (48) |
| -      | Operating room personnel | Baden et al. (49) |

Animal studies

| +      | Acrylonitrile | Mori et al. (50) |
| +      | Food mutagens (quercetin and rutin) | Grebelli et al. (51) |
| +      | Coal tar, dermal | Jongeneelen et al. (26) |
| +      | Hazardous industrial waste samples | DeMarini et al. (52) |
| +      | 2,4,7-Trinitro-9-fluorenone | Grebelli et al. (48) |
| +      | Benzo(a)pyrene | Jongeneelen et al. (53) |
| +      | Cyclophosphamide | Duvenger-van Bogaert et al. (54) |
| +      | Azo dye tartrazine | Henschler and Wild (55) |

Amniotic fluid

| +      | Smoking (heavy) versus nonsmoking, at term | Rivrud et al. (56) |
| -      | Smoking versus nonsmoking, 2nd trimester | Eusner et al. (58) |

Direct chemical mutagenicity

| +      | Compilation of results of >5000 chemicals | EMIC Index (58) |

*+* Indicates a slight increase of questionable significance.
Table 2. Reported alteration in α-glucaric acid excretion by xenobiotics.

| Excretion | Study | Reference |
|-----------|-------|-----------|
| ‡         | Pesticide production workers (aldrin, dieldrin, endrin, DDT) | Hunter et al. (65) |
| †         | Endrin manufacturing plant workers | Notten and Henderson (60) |
| †         | Metal and chemical factory employees | Notten and Henderson (60) |
| †         | Pesticide packaging workers | Seutter-Berlage et al. (65) |
| †         | Electrical workers exposed to PCBs | Seutter-Berlage et al. (65) |
| †         | Workers in polyester industry (styrene) | Hotz et al. (70) |
| →         | Resident of Times Beach, Missouri, in high-exposure risk group for dioxin | Steinberg et al. (71) |
| →         | Steel plant employees (low-risk exposure to mineral oils) | Pasquini et al. (23) |
| †         | Diuroin, hexachlorobenzene, heptaclo, dieldrin, aldrin, rothane, disulfiram, 2-phenylphenol in guinea pigs | Notten and Henderson (60) |
| ± †       | Toluene, tetraethyl lead, Acroclor 1260, ethanol, n-hexane, dodin, atrazine in guinea pigs | Notten and Henderson (61) |
| ±         | Captan, dimethoate, nitrobenzene, aniline, naphthalacetic acid, benzene, rotenone, binapacryl in guinea pigs | Notten and Henderson (61) |

(†) Unchanged; (±) slight elevation of questionable significance.

Glucaric Acid

Notten and Henderson (60) first proposed using urinary glucaric acid to screen for xenobiotic exposures. Glucuronidation is a major transformation route for a number of xenobiotics, including azides, nitrites, alkylamines, and alkyl and aryl alcohols (60). Stimulation of the glucuronidation pathway results in increased excretion of glucaric acid, primarily through reduced production of glycogen and possibly through direct induction of pathway enzymes (9,62).

Although pregnancy (63) and estrogen therapy (64) produce a nonsignificant increase in glucaric acid excretion, the number of xenobiotics that have produced significant changes in glucaric acid excretion (Table 2) (65–71). Intraindividual variation, which can be as high as 50%, may reflect daily variations in environmental exposures (72). Such variations would suggest that daily measures during vulnerable points would be required to assure accurate classification of exposure through the pathways that increase glucaric acid excretion. Laboratory methods for measuring urinary glucaric acid have been developed and standardized (9). However, standards for pregnant women do not yet exist.

Thioethers

Alkylating agents can be detoxified by reaction with glutathione or other sulfhydryl compounds. These conjugates frequently appear in urine as mercapturic acids or other thioether (R-S-R) products. Xenobiotics known to be detoxified through this sequence include aromatic hydrocarbons, arylamines, and many other chemical agents (9). Seutter-Berlage et al. (73) first proposed using urine thioethers as a screening tool for xenobiotic exposures. Since then, numerous studies have documented elevations in urinary excretions related to occupational, environmental, and behavioral (i.e., smoking) exposures (Table 3) (73–104).

Henderson et al. (105) and Van Doorn et al. (76) have critically reviewed the literature on the urinary thioether assay as an exposure screening tool. They note that positive results reflect true exposures, but negative results may not reflect lack of exposure. This false negativity occurs because thioethers measure short-term exposure and thus may miss past exposures that could have a future biological effect. This limitation, although perhaps not as great for exposures in pregnancy (because short-term exposures may be the most valid for measuring fetal exposure), suggests prospective urine collection at several points during pregnancy.

Porphyrins

Urinary porphyrin patterns are assessable through automated laboratory methods using high-pressure liquid chromatography (106). Brewster (9) has reviewed the usefulness of measuring total urine porphyrins to detect xenobiotic exposures to heavy metals, hormones, drugs, and halogenated aromatic hydrocarbons. These chemicals induce chronic disturbances in hepatic synthesis of porphyrins (Table 4) and thus lead to excess porphyrin excretion and skin symptoms in the final stage (107–124). Presumably, all xenobiotics that produce chronic changes would also show the urinary pattern at early stages prior to overt toxicity, but this assumption has not been tested in all circumstances.

Strengths and Limitations of Proposed Screening Battery

These four tests discussed previously generally meet the criteria for useful exposure screens. For certain xenobiotic agents, they accurately differentiate exposure levels, as demonstrated in occupational and environmental epidemiologic studies. As urinary screens, they are noninvasive and applicable on a large scale with current laboratory techniques. For short-term exposure, glucaric acid, thioethers, and mutagenicity tests are useful. Porphyrin patterns may measure cumulative effects as well as current exposure levels.

The potential for this battery to identify groups of pregnant women at risk of environmental insults to their fetuses can be illustrated by cigarette smoking. Glucaric acid may (23) or may not (25) be elevated by cigarette smoke. However, thioethers are elevated by cigarette smoke (73,80,90,91). Also, mutagenicity tests are very sensitive to cigarette smoking (10). Although cotinine is a specific marker for cigarette smoking (and thus would be the biomarker of choice if cigarette smoking is the specific exposure of interest), the fact that this battery is responsive to a known fetotoxic agent lends credence to its potential value for detecting other, as yet unknown, fetotoxins. However, as we have previously commented (8), to be effective screening
### Table 3. Reported alterations in urinary excretion of thioethers by xenobiotics.

| Effect                        | Study                                                                 | Reference         |
|-------------------------------|-----------------------------------------------------------------------|-------------------|
| ↑ Group mean                  | Chemical workers (possible exposure: acrylonitrile and bifhenyl)       | Seutter-Berlage et al. (73) |
| ↑ Group mean                  | Rubber and tire workers                                               | Salvolainen and Vainio (74) |
| ↑ Group mean                  | Pesticide packaging workers                                           | Seutter-Berlage et al. (75) |
| ↑ Across shift                | Operators of chemical waste incinerators                              | Van Doorn et al. (76) |
| ↑ Across shift                | Spinners in viscose-rayon                                             | Van Doorn et al. (77) |
| ↑ From pre-employment         | Rubber industry (carbon disulfide) women                              | Kilpikari and Salvoainen (78) |
| ↑ Group mean                  | Nurses handling cytotoxic drugs (cyclophosphamide, vincristin, cytoxan)| Jagun et al. (79) |
| ↑ Group mean                  | Explosives manufacturers (trinitrotoluene)                            | Ahlberg et al. (80) |
| ↑ Group mean                  | Oncology nurses (cyclophosphamide, adriamycin)                        | Que Hee et al. (81) |
| ↑ Group mean and across shift | Petroleum retailers and garage mechanics                              | Stock et al. (82) |
| ↑ Across shift                | Dry cleaning workers                                                  | Lafuente and Mallol (83) |
| ↑ Group mean                  | Urban school children in smoke-polluted areas (polycyclic aromatic hydrocarbons) | Lafuente and Mallol (84) |
| ↑ Across shift                | Oncology nurses handling cytotoxic drugs                              | Bayhan et al. (85) |
| ↑ Across work week            | Road and asphalt plant workers (asphalt)                              | Lafuente and Mallol (86) |
| ↑ Across work shift           | Chemical plant workers (3,3'-dichlorobenzidine)                       | Triebig et al. (87) |
| ↑ Across work shift           | Hospital employees handling cytotoxic drugs                           | Triebig et al. (87) |
| ↑ Post therapy                | Cancer patients receiving cytotoxic drugs                             | Triebig et al. (87) |
| ↑ Across work shift           | Chemical plant workers (ethylene oxide, epichlorohydrine, formaldehyde, organic solvents including toluene) | Hagmar et al. (88) |
| ↑ Group mean                  | Workers producing polyurethane foams (isocyanates and tertiary amines)| Holmen et al. (89) |
| ↑ Group mean                  | Cigarette smokers                                                     | Seutter-Berlage et al. (75) |
| → Group mean                  | Chemical manufacturing workers (methylchloride)                       | Ahlberg et al. (80) |
| → Group mean                  | Pharmaceutical manufacturing workers                                  | Van Doorn et al. (90) |
| → Group mean                  | Workers at waste water treatment plant (chlorinated cyclodiene pesticides and flame retardants) | Buffoni et al. (91) |
| → Group mean                  | Crews of roll-on, roll-off ships and car ferries; bus garage staff (particulates, benzene, formaldehyde, NO2, benzo(apyrene) | Heinonen et al. (92) |
| → Group mean                  | Road asphalt plant workers (asphalt)                                  | Lafuente and Mallol (93) |
| → Across shift                | Roadmen (PAHs)                                                        | Van Doorn et al. (94) |
| → Across shift                | Asphalt production workers (PAHs)                                     | Ahlberg et al. (80) |
| → Across shift                | Petrochemical plant workers (benzene)                                 | Que Hee et al. (95) |
| → Across shift                | Coke plant workers (PAHs)                                             | Ulfvarson et al. (96) |
| ↑ Toluene and xylene in rats  | Toluene and xylene in rats                                             | Burgaz et al. (97) |
| ↑ 1,3-Dibromopropane in rats  | 1,3-Dibromopropane in rats                                            | Triebig et al. (87) |
| ↑ 2-cl-and 3-cl-benzylidene malonitrile and benzaldehyde metabolites (chboro BMNs) in rats | 2-cl-and 3-cl-benzylidene malonitrile and benzaldehyde metabolites (chboro BMNs) in rats | Reitveld et al. (100) |
| ↑ Ethylene dichloride (1,2-dichloroethane) in rats | Ethylene dichloride (1,2-dichloroethane) in rats | Igwe et al. (101) |
| ↑ trans- and cis-epoxy cinnamates in rats | trans- and cis-epoxy cinnamates in rats | Rietveld et al. (102) |
| → Trichloroethylene in rats   | Trichloroethylene in rats                                              | Boyland (104) |
| ↑ Benzene, naphthalene, anthracene, phenanthrene, benzenanthracene, styrene, aniline, 2-naphthalamine, acetonaphetidine, halobenzens, 1-chloronaphthalene, halonitrobenzenes, benzyl chloride, phenethyl bromide, 1-mepnaphthyl chloride, benzyl acetate, 1-mepnaphthyl acetate, 3,5-di-tert-buty-4-hydroxytoluene, iodomethane, bromoethane, allyl chloride, 1-nitropropane, cyclopentene, bromocyclohexane, maleic acid, isovaleric acid, ethyl methanesulfonate, urethane, benzothiazole-2-sulfonamide, bis-β-chloroethyl sulfide, ethacrynic acid arcoline, allyl acetate in various animals | *(→) Unchanged.
tools for adverse reproductive health exposures, several steps
have yet to be taken.

First, tests must be standardized for pregnant women.
Although there is little evidence to suggest that pregnancy itself
can alter these test outcomes, it is important to establish standard
levels for pregnant women with normal pregnancy outcomes.
Second, tests should be administered to women with known
exposures, such as maternal smoking, so that patterns of alterations
can be correlated with reported exposures. Third, the tests must
be associated with adverse pregnancy outcomes, such as reduced
birthweight or gestational length. This last element in the valida-
tion research is particularly important since maternal exposure
rather than fetal exposure is being measured. The extent to which
xenobiotic chemicals cross the placental barrier may vary greatly,
depending on the type of exposures, timing in pregnancy, and
maternal detoxification capability. If the battery of screening tests
proves useful, further field investigations would be warranted to
determine the tests’ ability to measure environmental exposures
that adversely affect fetal development.

In reproductive epidemiology, we may be at a unique point for
implementing this validation process. Because a number of
studies of early pregnancy loss are collecting serial urines during
pregnancy, the moment may be opportune to begin examining
these urines for metabolic alterations, as tests of the poten-
tial usefulness of these nonspecific biomarkers to predict adverse
pregnancy outcomes. Progress is being made in learning about
these tests’ response to specific environmental chemicals, but
more research needs to focus on the quantitative relationship of
these agents to body burdens. It would be helpful if this battery
of tests were routinely applied to pregnant women in known ex-
posure situations. Also, if pregnant women with abnormal tests
(with and without adverse outcomes) were investigated further,
much could be learned about the metabolic functions that are af-
fected and the specific chemicals that are creating the effect.

Conclusion

Without better exposure measures, epidemiologic studies of
reproduction will probably fail to identify xenobiotic fetotoxic
agents in the environment. However, with an adequate battery of
nonspecific exposure biomarkers, prospective studies of en-
vironmental effects on pregnancy outcomes might be possible.
A proposed battery of nonspecific biomarkers should be tested
to determine their usefulness for predicting adverse pregnancy
outcomes.

We acknowledge the extensive and excellent editorial work and typing of
Patricia Huckaby.

REFERENCES

1. Hatch, M., and Friedman-Jiminez, G. Using reproductive effect markers to
observe subclinical events, reduce misclassification, and explore mechanism.
Environ. Health Perspect. 90: 255–259 (1991).
2. Hultka, B. S. Biological markers in epidemiologic research. Arch. Environ. Health 42(2): 83–89 (1988).
3. Bruneckef, B., Noy, D., and Clauisng, P. Variability of exposure measurements in environmental epidemiology. Am. J. Epidemiol. 125: 892–898 (1987).
4. Stein, Z., and Hatch, M. Biological markers in reproductive epidemiology: prospects and precautions. Environ. Health Perspect. 74: 67–75 (1987).
5. National Research Council, U.S. Board on Environmental Studies and Toxicology. Biologic Markers in Reproductive Toxicology. National Academy Press, Washington, DC, 1989.
6. Loong, L. D. Physiologic assessment of fetal compromise: biomarkers of toxic exposure. Environ. Health Perspect. 74: 93–101 (1987).
7. Hultka, B. S., and Wilcosky, T. Biological markers in epidemiological research. Arch. Environ. Health 43: 83–89 (1988).
8. Hogue, C. J. R., and Brewster, M. A. Developmental risks: epidemiologic advances in health assessment. In: Epidemiology and Health Risk Assessment (L. Gorits, Ed.), Oxford University Press, New York, 1988, pp. 61–81.
9. Brewster, M. A. Biomarkers of xenobiotic exposures. Ann. Clin. Lab. Sci. 18: 300–317 (1988).
10. Vainio, H., Sorsa, M., and Falck, K. Bacterial urinary assay in monitoring exposure to mutagens and carcinogens. IARC Sci. Publ. 59: 247–285 (1984).
11. McCoy, E. C., Henkel, R., Rosenkranz, H. S., Guifrida, J. O., and Bizzari, D. Detection of mutagenic activity in the urine of anesthesiologists: a preliminary report. Environ. Health Perspect. 21: 221–223 (1977).
12. Kiliin, D. J., Pullin, T. G., Connor, T. H., Lagator, M. S., and Edwards, H. N. Mutagenicity of echlorohydrin in the bacterial assay system: evaluation by direct in vitro activity of urine from exposed humans and mice. Mutat. Res. 53: 72 (1978).
13. Falck, K., Grohn, P., Sorsa, M., Vainio, H., Heinonen, E., and Holsti, L. R. Mutagenicity of urine of nurses handling cytostatic drugs. Lancet ii: 1250–1251 (1979).
14. Schirmberg, R. W., Skytta, E., and Falck, K. Eisenzeitserreibernut den durch metagene polycyclische aromatische koelahnwasser offe. Staub-Reinh 44: 421–424 (1981).
15. Inamasu, T., Kitamori, S., Ishizawa, M., Hisasana, N., and Ishinchi, N. A mutagenicity assay of urine of workers in a refinery. Sangyozakuza 23: 640–641 (1981).
16. Dolera, P., Mazzoli, S., Risi, D., Buatti, E., Baccetti, S., Turchi, A., and Vannucci, V. Exposure to carcinogenic chemicals and smoking increased urinary excretion of mutagens in humans. J. Toxicol. Environ. Health 8: 95–103 (1981).
17. Bos, R. P., Leenaars, A. O., Theuws, J. L. G., and Henderson, P. T. Mutagenicity from nurses handling cytostatic drugs, influence of smoking. Int. Arch. Occup. Environ. Health 50: 359–369 (1982).
18. Anderson, R. W., Ruckett, W. H., Dana, W. J., Nguyen, T. V., Theiss, J. C., and Matney, T. S. Risk of handling injectable antineoplastic agents. Am. J. Hosp. Pharmaco. 39: 1881–1887 (1982).
19. Nguyen, T. V., Theiss, J. C., and Matney, T. S. Exposure of pharmacy personnel to mutagenic antineoplastic drugs. Cancer Res. 42: 4792–4796 (1982).
20. Theiss, J. Hospital personnel who handle anticancer drugs may face risks. J. Am. Med. Assoc. 247: 11–12 (1982).
21. Pasquinii, R., Monarca, S., Sforzolini, G. S., Conti, R., and Fagioli, F. Mutagens in urine of carbon electrode workers. Int. Arch. Occup. Environ. Health 50: 387–395 (1982).
22. Kriel, B., Commoner, B., Bollinger, D., Bronsdon, A., Gold, J., and Henry, J. Detection of occupational exposure to genotoxic agents with a urinary mutagen assay. Mutat. Res. 108: 67–79 (1983).
23. Pasquinii, R., Monarca, S., Sforzolini, G. S., Savino, A., and Angeli, G. Mutagenicity studies and D-glucaric acid determination in urine of workers exposed to mineral oil. Int. Arch. Occup. Environ. Health 56: 275–284 (1985).
24. Sasson, I. M., Coleman, D. T., Lavois, E. J., Hoffmann, D., and Wynder, E. L. Mutagens in human urine; effects of cigarette smoking and diet. Mutat. Res. 158: 149–157 (1985).
25. Benhamou, S., Callais, F., Sancho-Garnier, H., Min, S., Courtotis, V. A., and Peaty, B. Mutagenicity in urine form nurses handling cytostatic agents. Int. Arch. Occup. Environ. Health 22: 1489–1493 (1986).
26. Jongeneelen, F. J., Bos, R. P., Anzio, R. B., Theuws, J. L., and Henderson, P. T. Biological monitoring of polycyclic aromatic hydrocarbons. Metabolism in urine. Scand. J. Work Environ. Health 12: 137–143 (1986).
27. Scarlett-Krans, J. M., Gabish, J. G., Strickland, D., Goodrich, R. M., and List, D. J. Urinary mutagens in municipal sewage workers and water treatment workers. Am. J. Epidemiol. 124: 884–893 (1986).
EXPOSURE BIOMARKERS IN PREGNANCY

94. Van Doorn, R., Borm, P. J. A., Leijdekkers, C. M., Henderson, P. T., Reuvens, J., and van Bergen, T. Detection and identification of S-methylcysteine in urine of workers exposed to methyl chloride. Int. Arch. Occup. Environ. Health 46: 99–109 (1980).

95. Que Hee, S. S., Igwe, O. J., and Clark, C. S. Thioether excretion of workers in a wastewater facility receiving pesticide wastes. In: Biological Monitoring of Exposure to Chemicals (M. H. Ho and H. K. Dillon, Eds.), John Wiley and Sons, New York, 1986.

96. Ulfvarson, U., Alexandersson, R., Aringer, L., Svensson, E., Hedenstierna, B., and Högstedt, C. Effects of exposure to vehicle exhaust on health. Scand. J. Work Environ. Health 13: 505–512 (1987).

97. Burzg, S., Bayhan, A., and Kankaya, A. E. Thioether excretion of workers exposed to bitumen fumes. Int. Arch. Occup. Health 60: 347–349 (1988).

98. Van Doorn, R., Bos, R. P., Brouns, R. M. E., Leijdekkers, C. M., and Henderson, P. T. Effect of toluene and xylenes on liver glutathione and their urinary excretion as mercapturic acids in the rat. Arch. Toxicol. 43: 293–304 (1980).

99. Onkenhout, W., Van Bergen, E. J., van der Waai, J. H., Vos, G. P., Buija, W., and Vermeulen, N. P. Identification and quantitative determination of four different mercapturic acids formed from 1,3-dibromopropane and its 1,1,3,3-tetradeutero analogue by the rat. Xenobiotica 16: 21–33 (1986).

100. Rietveld, E. C., Hendriks, M. M., and Seutter-Berlage, F. Gluthathione conjugation of chlorobenzylidenemalononitriles in vitro and the biotransformation to mercapturic acids in rats. Arch. Toxicol. 59: 228–234 (1986).

101. Igwe, O. J., Que Hee, S. S., and Wagner, W. O. Urinary thioether biological monitoring in the interaction between 1,2-dichloroethane and disulfiram in Sprague-Dawley rats. Am. Ind. Hyg. Assoc. J. 49: 10–16 (1988).

102. Rietveld, E. L., Van Gastel, F. J., Seutter-Berlage, F., and Zwanenburg, B. Gluthathione conjugation and bacterial mutaenuctic of racemic and enantionomerically pure cis- and trans-methyl apecyoxinamates. Arch. Toxicol. 61: 366–372 (1988).

103. Roussei, L., and Chakrabarti, S. K. Dose-dependent metabolism of trichloroethylene and its relevance to hepatotoxicity in rats. Environ. Res. 40: 450–458 (1986).

104. Boyland, E. Mercapturic acid conjugation. In: Handbook of Experimental Pharmacology, Vol. 28, Part 2 (B. B. Brodie and J. R. Gillette, Eds.), Springer-Verlag, Berlin, 1971, pp. 584–608.

105. Henderson, P. T., Van Doorn, R., Leijdekkers, C. M., and Bos, R. P. Excretion of thioethers in urine after exposure to electrophilic chemicals. IARC Sci. Publ. 59: 173–187 (1984).

106. Ford, R. E., Qu, C., and Ellefson, R. D. Liquid chromatographic analysis for urinary porphyrins. Clin. Chem. 24: 397–401 (1981).

107. Centen, A. H. J. F., Strik, J. J. T. W. A., and Colombi, A. Coproporphyrinuria and chronic hepatic porphyria type A found in people from Seveso (Italy) exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In: Chemical Porphyrin in Man (J. J. T. W. A. Strik and J. H. Koeman, Eds.), Elsevier, New York, 1979, pp. 75–82.

108. Lange, C. E., Block, H., Veltman, G., and Doss, M. Urinary porphyrins among PVC workers. In: Porphyrins in Human Diseases (M. Doss, Ed.), Karger, Basel, 1976, p. 352.

109. Strik, J. J. T. W. A., Doss, M., Schraa, B., Robertson, L. W., Von Tiegemann, R., and Hermson, E. G. M. Coproporphyrinuria and chronic hepatic porphyria Type A found in farm families form Michigan exposed to polybrominated biphenyls (PBB). In: Chemical Porphyrin in Man (J. J. T. W. A. Strik and J. H. Koeman, Eds.), Elsevier, New York, 1979, pp. 29–54.

110. Strik, J. J. T. W. A. The occurrence of chronic hepatic porphyria in man caused by halogenated hydrocarbons. In: Chemical Porphyrin in Man (J. J. T. W. A. Strik and J. H. Koeman, Eds.), Elsevier, New York, 1979, pp. 3–9.

111. Colombi, A., Maroni, M., Feriolo, A., Castoldi, M., Jun, L. K., Vaira, C., and Fo, V. Increase in urinary porphyrin excretion in workers exposed to polychlorinated biphenyls. J. Appl. Toxicol. 2: 117–121 (1982).

112. Cripps, D. J., Peters, H. A., Gecmen, A., and Dogramaci, I. Porphyruria turcica due to hexachlorobenzene: 20 to 30 year follow-up study on 204 patients. Br. J. Dermatol. III: 413–422 (1984).

113. Hoffman, R. E., Stehr-Green, P. A., Webb, K. B., Evans, R. G., Knutsen, A. P., and Schramm, W. R. Health effects of long-term exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J. Am. Med. Assoc. 255: 2031–2039 (1988).

114. Osterloh, J., Cone, J., Harrison, R., Wade, R., and Becker, C. Pilot survey of urine porphyrins from persons transiently exposed to a PCB transformer fire. J. Toxicol. Clin. Toxicol. 24: 533–544 (1986).

115. Tobita, M., and Tomokuni, K. Urinary excretion of 5-hydroxyindoloacetic acid, delta-aminolevulinic acid and coproporphyrin isolomers in rats and man exposed to lead. Toxicol. Lett. 38: 91–95 (1987).

116. Doss, M. O. Porphyrinuria and occupational disease. Ann. N.Y. Acad. Sci. 514: 204–218 (1987).

117. Gladen, B. C., Ragan, W. J., Ragan, N. B., and Spierto, F. W. Urinary porphyrins in children exposed transplacentally to polyhalogenated aromatics in Taiwan. Arch. Environ. Health 43: 54–58 (1988).

118. Strik, J. J. T. W. A., Kip, H., Yoshimura, T., Masuda, Y., and Hermson, E. G. M. Porphyrins in urine of Yusho patients. In: Chemical Porphyrin in Man (J. J. T. W. A. Strik and J. H. Koeman, Eds.), Elsevier, New York, 1979, pp. 63–67.

119. Nagelsmit, A., van Vliet, P. W., van der Wiel-Wetzels, W. A. M., Weillard, M. J., and Strik, J. J. T. W. A. Porphyrins as possible parameters for exposure to hexachlorocyclopendiadiene, allylchloride, epichlorhydrin and endrin. In: Chemical Porphyrin in Man (J. J. T. W. A. Strik and J. H. Koeman, Eds.), Elsevier, New York, 1979, pp. 55–62.

120. Kondo, M., and Shimizu, Y. The effects of ethanol, estrogen, and hexachlorobenzene on the activities of hepatic delta-aminolevulinate synthetase, delta-aminolevulinate dehydratase and uroporphyrinogen decarboxylase in male rats. Arch. Toxicol. 59: 141–145 (1986).

121. Sassa, S., Sugita, O., Ohnura, N., Inago, S., Okumura, T., Noguchi, T., and Kappas, A. Studies of the influence of chloro-substituent sites and conformational energy in polychlorinated biphenyls on uroporphyrin formation in chick embryo liver cell cultures. Biochem. J. 235: 291–296 (1986).

122. Sinclair, P. R., Bement, W. J., Bonkowsky, H. L., Lambrecht, R. W., Fezza, J. E., Sinclair, J. F. Uroporphyrin accumulation produced by halogenated biphenyls in chick embryo hepatocytes. Reversal of the accumulation by piperonyl butoxide. Biochem. J. 237: 63–71 (1971).

123. Sinclair, P. R., Sinclair, J. R., Bement, W. J., Lambrecht, R. W., and Bonkowsky, H. L. Induction of porphyrin in cultured chick-embryo hepatocytes by halogenated aromatic compounds. IARC Sci. Publ. 77: 535–542.

124. Fierolli, A., Harvey, C., and DeMatteis, F. Drug-induced uroporphyrin in chicken hepatocyte cultures. IARC Sci. Publ. 77: 465–466 (1986).

125. Fiedler, K., Schreder, E., and Cramer, H. Glutaric acid excretion. Analysis of the enzymatic assay and findings in smokers and non-smokers. Eur. J. Clin. Pharmacol. 18: 429–432 (1980).