HOMOCLINIC ORBITS AND ENTROPY FOR THREE-DIMENSIONAL FLOWS

A.M. LOPEZ, R.J. METZGER, C.A. MORALES

Abstract. We prove that every C^1 three-dimensional flow with positive topological entropy can be C^1 approximated by flows with homoclinic orbits. This extends a previous result for C^1 surface diffeomorphisms [7].

1. Introduction

In his classical paper [6] Katok proved that every $C^{1+\alpha}$ surface diffeomorphism with positive topological entropy has a homoclinic orbit. In [7] Gan asked if this result is true for C^1 surface diffeomorphisms too. He didn’t answer this question but managed to prove that every C^1 surface diffeomorphism with positive entropy can be C^1 approximated by diffeomorphisms with homoclinic orbits. More recently, the authors [4] proved that every three-dimensional flow can be C^1 approximated by Morse-Smale flows or by flows with a homoclinic orbit (this entails the weak Palis conjecture for three-dimensional flows). From this they deduced that there is an open and dense subset of three-dimensional flows where the property of having zero topological entropy is invariant under topological equivalence. Moreover, the C^1 approximation by three-dimensional flows with robustly zero topological entropy is equivalent to the C^1 approximation by Morse-Smale ones.

In this paper we will extend [7] from surface diffeomorphisms to three-dimensional flows. In other words, we will prove that every C^1 three-dimensional flow with positive topological entropy can be C^1 approximated by flows with homoclinic orbits. Let us state our result in a precise way.

The term flow will be referred to C^1 vector fields X defined on a compact connected boundaryless Riemannian manifold M. To emphasize its differentiability we say that X is a C^r flow, $r \in \mathbb{N}^+$. When $\dim(M) = 3$ we say that X is a three-dimensional flow. The flow of X will be denoted by ϕ_t (or ϕ_t^X to emphasize X), $t \in \mathbb{R}$. We denote by $\Phi_t = \Phi_t^X$ the derivative of ϕ_t. The space of C^r flows \mathcal{X}^r is endowed with the standard C^r topology. We say that $x \in M$ is a periodic point of a flow X if there is a minimal positive number $\pi(x)$ (called period) such that $\phi_{\pi(x)}(x) = x$. Notice that 1 is always an eigenvalue of the derivative $DX(\pi(x))$ with eigenvector $X(x)$. The remainder eigenvalues will be referred to as the eigenvalues of x. We say that the orbit $O(x) = \{X_t(x) : t \in \mathbb{R}\}$ of a periodic point x (or the periodic point x) is hyperbolic if it has no eigenvalue of modulus 1. In case there are eigenvalues of modulus less and bigger than 1 we say that the hyperbolic periodic point is a saddle.

2010 Mathematics Subject Classification. Primary 37D25; Secondary 37C40.
Key words and phrases. Hyperbolic ergodic measure, Lyapunov exponents, Flow.
Partially supported by MATHAMSUB 15 MATH05-ERGOPTIM, Ergodic Optimization of Lyapunov Exponents.
The Invariant Manifold Theory [5] asserts that through any periodic saddle \(x \) it passes that through any periodic saddle \(x \) it
passes through invariant manifolds, the so-called strong stable and unstable manifolds \(W^{ss}(x) \) and \(W^{uu}(x) \), tangent at \(x \) to the eigenspaces corresponding to the eigenvalue of modulus less and bigger than 1 respectively. Saturating them with the flow we obtain the stable and unstable manifolds \(W^s(x) \) and \(W^u(x) \) respectively. We say that \(O \) is a homoclinic orbit (associated to a periodic saddle \(x \)) if \(O \in W^s(x) \cap W^u(x) \setminus O(x) \).

If, additionally, \(\dim(T_q W^s(x) \cap T_q W^u(x)) \neq 1 \) then we say that \(O \) is a homoclinic tangency.

We say that \(E \subset X \) is \((T, \epsilon)-\text{separated}\) for some \(T, \epsilon > 0 \) if for any distinct point \(x, y \in E \) there exists \(0 \leq t \leq T \) such that \(d(X_t(x), X_t(y)) > \epsilon \). The number

\[
 h(X) = \lim_{\epsilon \to 0} \lim_{T \to \infty} \frac{1}{T} \log \sup \{ \text{Car}(E) : E \text{ is } (T, \epsilon)\text{-separated} \}
\]

is the so-called topological entropy of \(X \). With these definitions we can state our result.

Theorem 1. Every \(C^1 \) three-dimensional flow with positive topological entropy can be \(C^1 \) approximated by flows with homoclinic orbits.

The proof follows Gan’s arguments [7] using the variational principle (e.g. [2]) and Ruelle’s inequality. But we simplify such arguments by using recent tools as a flow-version of a result by Crovisier [3] and Gan-Yang [4].

Denote by \(\text{Cl}(\cdot) \) and \(\text{int}(\cdot) \) the closure and interior operations. As in [7] we get from Theorem 1 the following corollary.

Corollary 2. If \(H_+ = \{ X \in X^1 : h(X) > 0 \} \), then \(\text{Cl}(\text{int}(H_+)) = H_+ \) and so \(H_+ \) has no isolated points.

2. Proof of Theorem 1

Denote by \(\text{Sing}(X) \) the set of singularities of a flow \(X \). Given \(\Lambda \subset M \), we denote by \(\Lambda^* = \Lambda \setminus \text{Sing}(X) \) the set of regular points of a flow \(X \) in \(\Lambda \). Define by \(E^X \) the map assigning to \(p \in M \) the subspace of \(T_p M \) generated by \(X(p) \). It turns out to be a one-dimensional subbundle of \(TM \) when restricted to \(M^* \). Define also the normal subbundle \(N \) over \(M^* \) whose fiber \(N_p \) at \(p \in M^* \) is the orthogonal complement of \(E^X_p \) in \(T_p M \). Denoting by \(\pi = \pi_p : T_p M \to N_p \) the orthogonal projection we obtain the linear Poincaré flow \(\psi_t : N \to N \) defined by \(\psi_t(p) = \pi_{\phi_t(p)} \circ \Phi_t(p) \). When necessary we will use the notation \(N^X \) and \(\psi_t^X \) to indicate the dependence on \(X \).

For a (nonnecessarily compact) invariant set \(\Omega \subset M^* \), one says that \(\Omega \) has a dominated splitting with respect to the Poincaré flow if there are a continuous splitting \(N_\Omega = N^- \oplus N^+ \) into \(\psi_t \)-invariant subbundles \(N^- \), \(N^+ \) and positive numbers \(K, \lambda \) such that

\[
 \| \psi_t \|_{N^-} \cdot \| \psi_t \|_{N^+} \leq K e^{-\lambda t}, \quad \forall x \in \Omega, t \geq 0.
\]

Let \(\mu \) be a Borel probability measure of \(M \). We say that \(\mu \) is nonatomic if it has no points with positive mass. We say that \(\mu \) is supported on \(H \subset M \) if \(\text{supp}(\mu) \subset H \), where \(\text{supp}(\mu) \) denotes the support of \(\mu \). We say that \(\mu \) is invariant if \(\mu(X_t(A)) = \mu(A) \) for every borelian \(A \) and every \(t \in \mathbb{R} \). Moreover, \(\mu \) is ergodic if it is invariant and every measurable invariant set has measure 0 or 1.

Oseledets’s Theorem [10] ensures that every ergodic measure \(\mu \) is equipped with an invariant set of full measure \(R \), a positive integer \(k \), real numbers \(\chi_1 < \chi_2 < \cdots < \chi_k \)
Proposition 4. For every flow, every hyperbolic ergodic measure whose Oseledets decomposition is dominated with respect to the Poincaré flow is supported on a homoclinic class.

Proof. Let μ be a hyperbolic ergodic measure of a flow X. Suppose that the Oseledets decomposition of μ is dominated with respect to the linear Poincaré flow. By Lemma 3, there are $\eta, T > 0$ such that μ is ergodic for ϕ_T^X,
\[
\int \log \|\psi_T|_{N^s}\| d\mu \leq -\eta \quad \text{and} \quad \int \log \|\psi_{-T}|_{N^u}\| d\mu \leq -\eta.
\]

We shall use the following lemma.

Lemma 3. Let μ be a hyperbolic ergodic measure of a flow X whose Oseledets decomposition is dominated with respect to the Poincaré flow. Then, there are $\eta, T > 0$ such that μ is ergodic for ϕ_T^X,
\[
\int \log \|\psi_T|_{N^s}\| d\mu \leq -\eta \quad \text{and} \quad \int \log \|\psi_{-T}|_{N^s}\| d\mu \leq -\eta.
\]

Proof. It follows from the hypothesis that $\mu(\text{Sing}(X)) = 0$. On the other hand, μ is ergodic for X so there is $T_1 > 0$ such that μ is totally ergodic for ϕ_{T_1} (c.f. [9]). Since μ is hyperbolic, there is $\eta_0 > 0$ such that any Lyapunov exponent off the flow direction belongs to $\mathbb{R} \setminus [-\eta_0, \eta_0]$. From this and the Furstenberg-Kesten Theorem (see also p. 150 in [12]) we obtain
\[
\lim_{n \to \infty} \frac{1}{n} \int \log \|\psi_{nT_1}|_{N^s}\| d\mu \leq -\eta_0 \quad \text{and} \quad \lim_{n \to \infty} \frac{1}{n} \int \log \|\psi_{-nT_1}|_{N^s}\| d\mu \leq -\eta_0,
\]

for μ-a.e. $x \in M$. Hence
\[
\lim_{n \to \infty} \frac{1}{n} \int \log \|\psi_{nT_1}|_{N^s}\| d\mu \leq -\eta_0 \quad \text{and} \quad \lim_{n \to \infty} \frac{1}{n} \int \log \|\psi_{-nT_1}|_{N^s}\| d\mu \leq -\eta_0
\]

by the Dominated Convergence Theorem. Now take $T = nT_1$ and $\eta = n \frac{\eta_0}{2}$ with n large.

Denote by $\text{Cl}(\cdot)$ the closure operation. We say that $H \subset M$ is a homoclinic class of X if there is a periodic saddle x such that
\[
H = \text{Cl}(\{q \in W^s(x) \cap W^u(x) : \dim(T_qW^s(x) \cap T_qW^u(x)) = 1\}).
\]

A homoclinic class is nontrivial if it does not reduce to a single periodic orbit.

The following is the flow-version of Proposition 1.4 in [3].

Proposition 4. For every flow, every hyperbolic ergodic measure whose Oseledets decomposition is dominated with respect to the Poincaré flow is supported on a homoclinic class.

Proof. Let μ be a hyperbolic ergodic measure of a flow X. Suppose that the Oseledets decomposition of μ is dominated with respect to the linear Poincaré flow. By Lemma 3 there are $\eta, T > 0$ such that μ is ergodic for ϕ_T^X,
\[
\int \log \|\psi_T|_{N^s}\| d\mu \leq -\eta \quad \text{and} \quad \int \log \|\psi_{-T}|_{N^u}\| d\mu \leq -\eta.
\]
It follows from the hypothesis that \(\mu(\text{Sing}(X)) = 0 \). Since \(\mu \) is ergodic, we obtain
\[
\int \log \| \Phi_T \|_{E^X} \, d\mu = 0.
\]
Replacing in the two previous inequalities we obtain
\[
\int \log \| \psi^s_T \|_{N^s} \, d\mu \leq -\eta \quad \text{and} \quad \int \log \| \psi^u_T \|_{N^u} \, d\mu \leq -\eta,
\]
where
\[
\psi^s_t = \frac{\psi_t}{\| \Phi_t(x) \|_{E^X}}, \quad x \in M^s, t \in \mathbb{R}
\]
is the scaled linear Poincaré flow (c.f. [11]).

On the other hand, standard arguments (c.f. [5]) imply that the decomposition \(N_R = N^s \oplus N^u \) (which is dominated for the Poincaré flow by hypothesis) extends continuously to a dominated splitting \(N_{\text{supp}(\mu)} = N^s \oplus N^u \) with respect to the linear Poincaré flow. By Lemma 2.29 in [11] there are a neighborhood \(U \) of \(\text{supp}(\mu) \) and a splitting \(N\Lambda = N^s \oplus N^u \) extending \(N_{\text{supp}(\mu)} = N^s \oplus N^u \) where \(\Lambda = \bigcap_{t \in \mathbb{R}} X_t(U) \).

From this point forward we can reproduce the arguments on p. 214 of [11] to conclude the proof.

Proof of Theorem 4. Let \(X \) be a three-dimensional flow with positive topological entropy. By the variational principle (e.g. [2]) there is an invariant measure \(\mu \) of \(X \) such that \(h_\mu(X_1) > 0 \), where \(h_\mu \) is the metric entropy operation. By the ergodic decomposition theorem we can assume that \(\mu \) is ergodic.

By Ruelle’s inequality (e.g. Theorem 5.1 in [2]) we get that \(\mu \) has at least one positive Lyapunov exponent. By applying this inequality to the reversed flow we obtain that \(\mu \) has also a negative exponent. Since \(\dim(M) = 3 \), we conclude that \(\mu \) is hyperbolic of saddle-type (i.e. with positive and negative exponents).

By the Ergodic Closing Lemma for flows (c.f. Theorem 5.5 in [11]) there are a sequence of flows \(X^n \) and a sequence of hyperbolic periodic orbits \(\gamma_n \) of \(X_n \) such that \(X_n \to X \) and \(\gamma_n \to \text{supp}(\mu) \) as \(n \to \infty \) where the latter convergence is with respect to the Hausdorff topology of compact subsets of \(M \). By passing to a subsequence if necessary we can assume that the index (stable manifold dimension) of these periodic orbits is constant (i.e. say).

Now we assume by contradiction that \(X \) cannot be approximated by flows with homoclinic orbits. Hence \(X \) cannot be approximated by flows with homoclinic tangencies either.

Since \(\dim(M) = 3 \), \(i \) can take the values 0, 1, 2 only. If \(i = 2 \) then each \(\gamma_n \) is an attracting periodic orbit of \(X^n \). Since \(X \) cannot be approximated by flows with homoclinic tangencies, Lemma 2.9 in [11] implies that there is \(T > 0 \) such that
\[
\| \psi_T \|_{N X^n} \leq \frac{1}{2}
\]
for all \(n \in \mathbb{N} \) and all \(x \in \gamma_n \). Letting \(n \to \infty \) we get
\[
\| \psi_T \|_{N x} \leq \frac{1}{2}
\]
for all \(x \in \text{supp}(\mu) \). This would imply that the Lyapunov exponents of \(\mu \) off the flow direction are all negative. Since \(\mu \) is saddle-type, we obtain a contradiction proving \(i \neq 2 \). Similarly, \(i \neq 0 \) and so \(i = 1 \). This allows us to apply Corollary 2.10 in [11] to obtain a dominated splitting \(N_{\text{supp}(\mu)} = N^- \oplus N^+ \) of index 1 (i.e. \(\dim(N^-) = 1 \)) with respect to the Poincaré flow.

Next we observe that both the Oseledets splitting \(N^s \oplus N^u \) for the linear Poincaré flow and the splitting \(N^- \oplus N^+ \) obtained above are pre-dominated of index 1 in the sense of Definition 2.1 in [5]. Since pre-dominated splittings of prescribed index are unique (c.f. Lemma 2.3 in [5]), we get \(N^s \oplus N^u = N^- \oplus N^+ \).
Since $N^- \oplus N^+$ is dominated with respect to the Poincaré flow, the Oseledets decomposition $N^s \oplus N^u$ of μ is dominated with respect to the linear Poincaré flow either. We conclude that μ is supported on a homoclinic class by Proposition 4.

Since μ has positive metric entropy, such a homoclinic class is nontrivial and so X has a homoclinic orbit against the assumption. This contradiction completes the proof of the theorem. □

References

[1] Araújo, V., Pacífico, M.J., Three-dimensional flows. With a foreword by Marcelo Viana. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 53. Springer, Heidelberg, 2010.

[2] Bowen, R., Ruelle, D., The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), no. 3, 181–202.

[3] Crovisier, S., Partial hyperbolicity far from homoclinic bifurcations, Adv. Math. 226 (2011), no. 1, 673–726.

[4] Gan, S., Yang, D., Morse-Smale systems and horseshoes for three dimensional singular flows, Preprint arXiv:1302.0946v1 [math.DS] 5 Feb 2013.

[5] Hirsch, M.W., Pugh, C.C., Shub, M., Invariant manifolds, Lecture Notes in Mathematics, Vol. 583. Springer-Verlag, Berlin-New York, 1977.

[6] Katok, A., Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. No. 51 (1980), 137–173.

[7] Gan, S., Horseshoe and entropy for C^1 surface diffeomorphisms, Nonlinearity 15 (2002), no. 3, 841–848.

[8] Li, M., Gan, S., Wen, L., Robustly transitive singular sets via approach of an extended linear Poincaré flow, Discrete Contin. Dyn. Syst. 13 (2005), no. 2, 239–269.

[9] Pugh, C., Shub, M., Ergodic elements of ergodic actions, Compositio Math. 23 (1971), 115–122.

[10] Simić, S.N., Oseledets regularity functions for Anosov flows, Comm. Math. Phys. 305 (2011), no. 1, 1–21.

[11] Shi, Y., Gan, S., Wen, L., On the singular-hyperbolicity of star flows, J. Mod. Dyn. 8 (2014), no. 2, 191–219.

[12] Wójcikowski, M., Invariant families of cones and Lyapunov exponents, Ergodic Theory Dynam. Systems 5 (1985), no. 1, 145–161.

Institute of Exact Sciences (ICE), Universidade Federal Rural do Rio de Janeiro, 23890-000 Seropédica, Brazil.

E-mail address: barragan@im.ufrj.br.

Instituto de Matemática y Ciencias Afines (IMCA), Universidad Nacional de Ingeniería, Calle Los Biólogos 245, Urb. San César La Molina Lima 12, Lima, Peru.

E-mail address: metzger@imca.edu.pe.

Instituto de Matemática, Universidade Federal do Rio de Janeiro, P. O. Box 68530, 21945-970 Rio de Janeiro, Brazil.

E-mail address: morales@impa.br.