Simple Construction of Elliptic Boundary K-matrix

Kazuhiro HIKAMI

Department of Physics, Graduate School of Science,
University of Tokyo,
Hongo 7-3-1, Bunkyo, Tokyo 113, Japan.

(Received: June 6, 1995)

ABSTRACT

We give the infinite-dimensional representation for the elliptic K-operator satisfying the boundary Yang-Baxter equation. By restricting the functional space to finite-dimensional space, we construct the elliptic K-matrix associated to Belavin’s completely Z-symmetric R-matrix.

PACS:

† archive/9507123
‡ hikami@monet.phys.s.u-tokyo.ac.jp
The quantum R-matrix as solutions of the Yang-Baxter equation (YBE) has received much attention in mathematical physics. The algebraic structure reveals as quantum group. Recently the R-matrix has been treated as operator acting on functional space. In one sense this gives the infinite-dimensional representation for solutions of YBE. By use of operator description for R-matrix, the construction of R-matrix, especially for elliptic case, becomes much simpler. Based on the elliptic R-operator defined by Shibukawa and Ueno [1], Felder and Pasquier constructed Belavin’s elliptic R-matrix [2].

The R-matrix has been used to study spin chains with periodic boundary condition in terms of the quantum inverse scattering method. Besides the R-matrix, the other matrix called K-matrix is used to solve the spin chain with open boundary [3, 4]. In this letter we propose a method to construct the boundary K-matrix associated with Belavin’s R-matrix.

Throughout this paper we use the doubly periodic function $\sigma_\mu(z) \equiv \sigma_\mu(z, \tau)$,

\[
\begin{align*}
\sigma_\mu(z + 1) &= \sigma_\mu(z), \\
\sigma_\mu(z + \tau) &= e^{2\pi i \mu} \sigma_\mu(z),
\end{align*}
\]

where τ is an arbitrary complex number, satisfying $\text{Im} \tau > 0$. The function $\sigma_\mu(z)$ only has simple poles on the lattice $\mathbb{Z} + \tau \mathbb{Z}$, and the residue at origin equals to one. Note that the function $\sigma_\mu(z)$ can be explicitly written as

\[
\sigma_\mu(z) = \frac{\vartheta_1(z - \mu, \tau) \vartheta'_1(0, \tau)}{\vartheta_1(z, \tau) \vartheta_1(-\mu, \tau)},
\]

where $\vartheta_1(z, \tau)$ is the Jacobi’s theta function,

\[
\vartheta_1(z, \tau) = \sum_{n \in \mathbb{Z} + \frac{1}{2}} \exp \left(i \pi n^2 \tau + 2\pi i n \left(z + \frac{1}{2} \right) \right).
\]

For the elliptic function $\sigma_\mu(z)$, we have following lemma;

Lemma 1. The elliptic function $\sigma_\mu(z)$ defined in [1] satisfies the following identities;

(a) $\sigma_\mu(z) = -\sigma_z(\mu)$,

(b) $\sigma_\mu(z) = -\sigma_{-\mu}(-z)$,
\(\sigma_{\mu}(z)\sigma_{-\mu}(z) = \wp(z) - \wp(\mu),\)

\(\sigma_{\lambda}(z)\sigma_{\mu}(w) - \sigma_{\lambda+\mu}(w)\sigma_{\lambda}(z-w) - \sigma_{\mu}(w-z)\sigma_{\lambda+\mu}(z) = 0,\)

\(\sigma_{\lambda}(z)\sigma_{\mu}(z) = \sigma_{\lambda+\mu}(z) \cdot \left(\zeta(z) - \zeta(\lambda) - \zeta(\mu) - \zeta(z-\lambda-\mu) \right).\)

The proof can be seen in, for example, Ref. [3]. Another property for the function \(\sigma_{\mu}(z)\) is as follows;

Lemma 2 ([2]).

\[\sigma_{\mu}(z, \tau) = \frac{1}{k} \sum_{a=0}^{k-1} \sigma_{\mu+a}(z, \tau/k),\]
\[(3)\]

This identity is easy to be proved when one compares periodicity and residues of both hand sides; one can check that the both hand sides have simple poles on \(\mathbb{Z} + \tau \mathbb{Z}\). This lemma becomes useful when we construct Belavin’s completely \(\mathbb{Z}\)-symmetric \(R\)-matrix [6].

In terms of the elliptic function \(\sigma_{\mu}(z)\), Shibukawa and Ueno introduced the “infinite-dimensional” representation for \(R\)-operator as a solution of YBE.

Theorem 3 ([1]). Let \(R\)-operator acts on the space of functions of two variables,

\[R(\xi) f(z_1, z_2) = \sigma_{\mu}(z_{12}) f(z_1, z_2) - \sigma_{\xi}(z_{12}) f(z_2, z_1).\]
\[(4)\]

This \(R\)-operator satisfies YBE,

\[R_{12}(\xi_{12})R_{13}(\xi_{13})R_{23}(\xi_{23}) = R_{23}(\xi_{23})R_{13}(\xi_{13})R_{12}(\xi_{12}).\]
\[(5)\]

Here and hereafter we use notations, \(z_{12} \equiv z_1 - z_2\), etc. The proof follows by using Lemma [2]. Remark that we can define rational and trigonometric \(R\)-operators as degenerate cases of elliptic operator [4];

\[\sigma_{\mu}(z) \rightarrow \begin{cases} \cot z - \cot \mu, & \text{trigonometric}, \\ \frac{1}{z} - \frac{1}{\mu}, & \text{rational}. \end{cases}\]
\[(6)\]
These degenerate types of infinite-dimensional representations for R-operator were also studied in Ref. [7].

To introduce the generalized Shibukawa-Ueno’s R-operator, Felder and Pasquier introduced the gauge-transformation. They defined the translation operator in functional space as

$$T_k(\xi)f(z) = f(z - \frac{\xi}{k}).$$ \hfill (7)

For the translation operator $T_k(\xi)$, we have following identities;

Lemma 4. \hfill (a) $T_k(\xi + \eta) = T_k(\xi)T_k(\eta),$

\hfill (b) $[R(\xi), T_k(\eta) \otimes T_k(\eta)] = 0.$

The first identity is trivial. The second one is due to the fact that R-operator depends only on the difference of two spectral parameters.

By use of the translation operator T_k, we can introduce the ‘modified’ R-operator as a solution of YBE.

Theorem 5 ([2]). Let the modified R-operator be

$$R_k(\xi_{12}) = \left(T_k(\xi_1 - \mu)^{-1} \otimes T_k(\xi_2)^{-1} \right) \cdot R(\xi_{12}) \cdot \left(T_k(\xi_1) \otimes T_k(\xi_2 - \mu) \right).$$ \hfill (8)

The operator $R_k(\xi)$ also satisfies YBE.

Remark that the action of the modified R-operator $R_k(\xi)$ on functional space is explicitly written as

$$R_k(\xi)f(z_1, z_2) = \sigma_{\mu}(z_{12} + \frac{\mu + \xi}{k})f(z_1 + \frac{\mu}{k}, z_2 - \frac{\mu}{k})$$

$$- \sigma_{\xi}(z_{12} + \frac{\mu + \xi}{k})f(z_2 - \frac{\xi}{k}, z_1 + \frac{\xi}{k}).$$ \hfill (9)

This modified R-operator $R_k(\xi)$ plays a crucial role in defining Belavin’s completely \mathbb{Z}-symmetric R-matrix.
On the other hand, we shall introduce the elliptic boundary K-operator. The K-matrix was originally introduced to solve the spin system with open boundary based on the quantum inverse scattering method; algebraically K-matrix satisfies the so-called boundary YBE (reflection equation) \cite{3,4}. Here we regard the K-matrix as an operator acting on the functional space.

Theorem 6. Let boundary K-operator act on the space of functions of single variable,

\begin{align}
K^I(\xi) f(z) &= \sigma_{2\xi}(z) f(z) - \sigma_{2\nu}(z) f(-z), \quad (10a) \\
K^{II}(\xi) f(z) &= \sigma_{\xi}(2z) f(z) - \sigma_{\nu}(2z) f(-z). \quad (10b)
\end{align}

These K-operators satisfy the boundary YBE,

\begin{equation}
R_{21}(\xi_1 - \xi_2) \left(K(\xi_1) \otimes 1 \right) R_{12}(\xi_1 + \xi_2) \left(1 \otimes K(\xi_2) \right) = \left(1 \otimes K(\xi_2) \right) R_{21}(\xi_1 + \xi_2) \left(K(\xi_1) \otimes 1 \right) R_{12}(\xi_1 - \xi_2), \quad (11)
\end{equation}

where R-operator is defined in Theorem 3.

This theorem can be proved as follows. We suppose the action of the K-operator as

\[K(\xi) f(z) = G(\xi, z) f(z) - H(z) f(-z). \]

Substituting the definition of R- and K-operators into the boundary YBE (11), we obtain three functional equations [3];

\begin{align}
G(\xi_2, z_2) \sigma_{\xi_1+\xi_2}(z_1 - z_2) \sigma_{\xi_1-\xi_2}(z_1 + z_2) + G(\xi_1, z_1) \sigma_\mu(z_1 + z_2) \sigma_\mu(-z_1 - z_2) \\
+ G(\xi_1, -z_2) \sigma_{\xi_1+\xi_2}(z_1 + z_2) \sigma_{\xi_1-\xi_2}(z_1 + z_2) \\
= G(\xi_1, z_1) \sigma_\mu(z_1 - z_2) \sigma_\mu(z_2 - z_1) + G(\xi_1, z_2) \sigma_{\xi_1-\xi_2}(z_1 - z_2) \sigma_{\xi_1+\xi_2}(z_1 + z_2) \\
+ G(\xi_2, -z_2) \sigma_{\xi_1-\xi_2}(z_1 - z_2) \sigma_{\xi_1+\xi_2}(z_1 + z_2), \quad (12a)
\end{align}

\begin{align}
G(\xi_1, z_1) G(\xi_2, z_2) \sigma_{\xi_1-\xi_2}(z_2 - z_1) + G(\xi_1, z_2) G(\xi_2, z_2) \sigma_{\xi_1+\xi_2}(z_1 - z_2) \\
+ H(-z_2) H(z_2) \sigma_{\xi_1+\xi_2}(z_1 + z_2) \\
= G(\xi_1, z_1) G(\xi_2, z_1) \sigma_{\xi_1+\xi_2}(z_2 - z_1) + G(\xi_1, z_2) G(\xi_2, z_1) \sigma_{\xi_1-\xi_2}(z_1 - z_2) \\
+ H(z_1) H(-z_1) \sigma_{\xi_1+\xi_2}(z_1 + z_2), \quad (12b)
\end{align}
\begin{align}
G(\xi_1, z_1) \sigma_{\xi_1 + \xi_2}(z_2 - z_1) &+ G(\xi_1, z_2) \sigma_{\xi_1 - \xi_2}(z_1 - z_2) + G(\xi_2, -z_1) \sigma_{\xi_1 + \xi_2}(z_1 + z_2) \\
= G(\xi_2, z_2) \sigma_{\xi_1 - \xi_2}(z_1 + z_2). \tag{12c}
\end{align}

One can conclude by comparing the periodicity and residues of the both hand sides that functions

I. \(G(\xi, z) = \sigma_{2\xi}(z), \quad H(z) = \sigma_{2\nu}(z), \)

II. \(G(\xi, z) = \sigma_{\xi}(2z), \quad H(z) = \sigma_{\nu}(2z), \)

solve these functional equations. In this calculation, we have used Lemma 1.

We also introduce the modified \(K \)-operator associated with modified \(R \)-operator as a solution of the boundary YBE (11).

\textbf{Theorem 7.} Let the modified \(K \)-operators be

\[K^{I,H}_k(\xi) = T_k(\xi + \nu) K^{I,H}(\xi) T_k(\xi - \nu). \] \((13) \)

The modified operators \(K^{I,H}_k(\xi) \) and \(R_k(\xi) \) also satisfy the boundary YBE (11).

This Theorem follows with help of Lemma 4. Note that explicit forms of action of the modified \(K \)-operator can be written as

\[K^{I}_k(\xi) f(z) = \sigma_{2\xi}(z + \frac{\xi + \nu}{k}) f(z + \frac{2\xi}{k}) - \sigma_{2\nu}(z + \frac{\xi + \nu}{k}) f(-z - \frac{2\nu}{k}), \] \((14a) \)

\[K^{II}_k(\xi) f(z) = \sigma_{\xi}(2z + \frac{2\xi + 2\nu}{k}) f(z + \frac{2\xi}{k}) - \sigma_{\nu}(2z + \frac{2\xi + 2\nu}{k}) f(-z - \frac{2\nu}{k}). \] \((14b) \)

Now by use of the modified operators, \(R_k(\xi) \) and \(K^{I,H}_k(\xi) \), we shall construct Belavin’s completely \(\mathbb{Z} \)-symmetric \(R \)-matrix [6, 9, 10, 11, 12] and its \(K \)-matrix [13, 14, 15]. This can be done by restricting functional space into finite-dimensional space [2]; define \(V_k \) as the space of entire functions such that

\[f(z + 1) = f(z), \]
\[f(z + \tau) = e^{-2\pi ikz - \pi ik\tau} f(z). \]

The space \(V_k \) has dimension \(k \). As bases of \(k \)-dimensional functional space \(V_k \), we use the \(\theta \)-function for \(a \in \mathbb{Z}_k \equiv \mathbb{Z}/k\mathbb{Z} \) defined by

\[\theta_a(z) = \sum_{n \in \mathbb{Z}} \exp\left(\pi in^2 \frac{\tau}{k} + 2\pi in\left(z - \frac{a}{k} \right) \right). \] \((15) \)
We note that the functions $\theta_a(z)$ have properties,

$$\hat{S} \theta_a(z) = \theta_{a-1}(z), \quad \hat{T} \theta_a(z) = e^{2\pi i a/k} \theta_a(z),$$

where operators \hat{S} and \hat{T} act on the functional space as follows;

$$\hat{S} f(z) = f(z + \frac{1}{k}), \quad \hat{T} f(z) = e^{2\pi i z + \pi i \tau/k} f(z + \frac{\tau}{k}).$$

When one checks periodicity of the modified $R_k(\xi)$ and $K_k(\xi)$ operators in (9) and (14) respectively, we shall have the following proposition:

Proposition 8.

(a) Modified operator $R_k(\xi)$ preserves $V_k \otimes V_k$.

(b) Modified operator $K_k^{I,H}(\xi)$ preserves V_k.

This proposition is easy to be proved by direct calculations.

Based on above proposition, we can restrict the functional space, on which modified R- and K-operators act, to V_k. In this finite-dimensional functional space, we can recover Belavin’s \mathbb{Z}-symmetric solution from the modified R_k-operator.

Theorem 9 (2). Define matrix elements of modified R-operator $R_k(\xi)$ by

$$R_k(\xi) \theta_a \otimes \theta_b = \sum_{c,d \in \mathbb{Z}_k} R_k(\xi)_{ac, bd} \theta_c \otimes \theta_d.$$ \hspace{1cm} (16)

Then we get,

$$R_k(\xi)_{ac, bd} = \delta_{a+b,c+d} \frac{\vartheta_1\left(\frac{\mu - \xi - a + b}{k}, \frac{\tau}{k}\right) \vartheta_1\left(0, \frac{\tau}{k}\right)}{k \vartheta_1\left(\frac{-a + c}{k}, \frac{\tau}{k}\right) \vartheta_1\left(\frac{\xi - b + c}{k}, \frac{\tau}{k}\right)}.$$ \hspace{1cm} (17)

The proof should be done by use of Lemma 2. The key is to rewrite $R_k(\xi) \theta_a(z_1) \otimes \theta_b(z_2)$ as

$$\frac{1}{k} \sum_{c \in \mathbb{Z}_k} \left\{ \sigma_{\frac{\mu + \xi - a}{k}}(z_{12} + \frac{\mu}{k}, \frac{\tau}{k}) \theta_a(z_1 + \frac{\mu}{k}) \theta_b(z_2 - \frac{\mu}{k}) - \sigma_{\frac{\xi - b + c}{k}}(z_{12} + \frac{\mu + \xi}{k}) \theta_a(z_2 - \frac{\xi}{k}) \theta_b(z_1 + \frac{\xi}{k}) \right\}.$$
Each summand is an eigenstate of $\hat{T} \otimes 1$ with eigenvalue $e^{2n\pi i c/k}$, which proves that the summand is proportional to $\theta_c \otimes \theta_d$ with $d = a + b - c$. By setting $z_{12} = (-\xi + c - a)/k$ and using the fact, $\theta_a(z_2 - \frac{\xi}{k}) \theta_b(z_1 + \frac{\xi}{k}) = \theta_c(z_1) \theta_d(z_2)$, we can obtain above expression. For $k = 2$ it reduces to R-matrix of the Baxter’s eight vertex model (XYZ spin chain).

In the same manner, the restriction of modified operator $K_k(\xi)$ into V_k gives the boundary K-matrix associated with Belavin’s R-matrix (17).

Theorem 10. Define matrix elements of the modified K^I-operator by

$$K_k^I(\xi) \theta_a(z) = \sum_{c \in \mathbb{Z}_k} K_k^I(\xi)_{a,c} \theta_c(z).$$

Then we get,

$$K_k^I(\xi)_{a,c} = \frac{\vartheta_1(\frac{2\nu + 2a - 2\xi}{k}, \frac{\tau}{k}) \vartheta_1'(0, \frac{\tau}{k})}{k \vartheta_1(\frac{2\nu + c + a}{k}, \frac{\tau}{k}) \vartheta_1(-\frac{2\xi + c + a}{k}, \frac{\tau}{k})} \frac{\theta_c(-\nu - \xi)}{\theta_a(-\nu - \xi)}.$$

(19)

Outline of proof is essentially same with the case of R-matrix. Based on Lemma 2, we can rewrite $K_k^I(\xi) \theta_a(z)$ as

$$\frac{1}{k} \sum_{c \in \mathbb{Z}_k} \left\{ \sigma_{2\nu+c+a}(z + \frac{\xi}{k}, \frac{\tau}{k}) \theta_a(z + \frac{2\xi}{k}) - \sigma_{2\nu+c+a}(z + \frac{\xi}{k}, \frac{\tau}{k}) \theta_a(-z - \frac{2\nu}{k}) \right\}.$$

Each summand is an eigenstate of \hat{T} with eigenvalue $e^{2n\pi i c/k}$, which shows that summand is proportional to $\theta_c(z)$ for arbitrary z. The prefactor can be calculated by setting $z = (-\xi + \nu + c + a)/k$.

The elliptic matrix $K_k^I(\xi)$ coincides with result of Ref. [15] (for trigonometric case, Ref. [16]). For $k = 2$ case, it gives one of the boundary K-matrix for the Baxter’s eight vertex model studied in Ref. [13].

For the second-type $K_k^{II}(\xi)$ operator, the matrix elements can be calculated for odd-k case.

Theorem 11. Define matrix elements of the modified K^{II}-operator $K_k^{II}(\xi)$ by

$$K_k^{II}(\xi) \theta_{2a}(z) = \sum_{c \in \mathbb{Z}_k} K_k^{II}(\xi)_{2a,2c} \theta_{2c}(z).$$

(20)
To choose θ_{2a} as bases of V_k, we must assume that dimension k is odd. In this case, we obtain that the matrix elements have the form,

$$K_{k}^{II}(\xi)_{2a,2c} = \frac{\theta_1\left(\frac{\nu-\xi+2a}{k}, \frac{\tau}{k}\right)}{k \theta_1\left(\frac{\nu+c+a}{2k}, \frac{\tau}{k}\right) \theta_1\left(-\frac{\xi-c+a}{k}, \frac{\tau}{k}\right)} \cdot \frac{\theta_2\left(\frac{2\xi-\nu+c+a}{2k}\right)}{\theta_2\left(-\frac{2\xi-\nu+c+a}{2k}\right)}.$$ (21)

The key of proof is to rewrite $K_{k}^{II}(\xi)\theta_{2a}(z)$ as

$$\frac{1}{k} \sum_{c \in \mathbb{Z}_k} \left\{ \sigma_{\xi+c-a} \left(2z + \frac{2\xi + 2\nu}{k}\right) \theta_{2a}(z + \frac{2\xi}{k}) - \sigma_{\xi+c+a} \left(2z + \frac{2\xi + 2\nu}{k}\right) \theta_{2a}(-z - \frac{2\nu}{k}) \right\}.$$

In this case, the each summand becomes an eigenstate of \hat{T} with eigenvalue $e^{2\pi i 2c/k}$. By substituting $z = (-2\xi - \nu + c + a)/2k$, one obtains matrix elements. Remark that the difficulty for even-k is due to Lemma 3.

Acknowledgement

The author would like to thank Miki Wadati for his kind interests in this work. Thanks are also to E. K. Sklyanin and J. Suzuki for stimulating and useful discussions. This work is supported in part by Grand-in-Aid for Encouragement of Young Scientists and for Scientific Research on Priority Areas from the Ministry of Education, Science and Culture.
References

[1] Y. Shibukawa and K. Ueno, Lett. Math. Phys. 25, 239 (1992).

[2] G. Felder and V. Pasquier, Lett. Math. Phys. 32, 167 (1994).

[3] I. Cherednik, Theor. Math. Phys. 61, 35 (1984).

[4] E. K. Sklyanin, J. Phys. A: Math. Gen. 21, 2375 (1988).

[5] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, Cambridge, 1927.

[6] A. A. Belavin, Nucl. Phys. B180, 189 (1981).

[7] M. Gaudin, J. Phys. France 49, 1857 (1988).

[8] K. Hikami, J. Phys. Soc. Jpn. 64 (1995), in press.

[9] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982.

[10] I. Cherednik, Sov. J. Nucl. Phys. 36, 320 (1982).

[11] A. Bovier, J. Math. Phys. 24, 631 (1983).

[12] C. A. Tracy, Physica 16D, 203 (1985).

[13] T. Inami and H. Konno, J. Phys. A: Math. Gen. 27, L913 (1994).

[14] H. J. de Vega and A. González-Ruiz, J. Phys. A: Math. Gen. 27, 6129 (1994).

[15] H. Fan, B.-Y. Hou, K.-J. Shi, and Z.-X. Yang, Phys. Lett. A200, 109 (1995).

[16] P. P. Kulish and E. K. Sklyanin, J. Phys. A: Math. Gen. 24, L435 (1991).