Koschei the immortal and anti-aging drugs

MV Blagosklonny*

In Slavic folklore, Koschei the Immortal was bony, thin and lean. Was his condition caused by severe calorie restriction (CR)? CR deactivates the target of rapamycin pathway and slows down aging. But the life-extending effect of severe CR is limited by starvation. What if Koschei's anti-aging formula included rapamycin? And was rapamycin (or another rapalog) combined with commonly available drugs such as metformin, aspirin, propranolol, angiotensin II receptor blockers and angiotensin-converting enzyme inhibitors.

Cell Death and Disease (2014) 5, e1552; doi:10.1038/cddis.2014.520; published online 4 December 2014

Facts

- Calorie restriction deactivates mTOR and increases life span
- Rapamycin prevents obesity and extends life span
- In fairy tales, long-lived heroes were lean, slim and bony

Open Questions

- Were their leanness and longevity due to genetic inhibition of mTOR?
- Can leanness plus longevity be achieved by rapamycin?
- How to combine five clinically available anti-aging drugs with calorie restriction?

Koschei the deathless (a villain in Russian, Polish and Ukrainian fairy tales) was immortal, strong, bony and lean (Figure 1). Was it his passion for the young princess Vassilisa, the Beautiful, who rendered him immortal? Did he lose his appetite because of his tragic love? Or was he secretly taking a rapalog such as rapamycin (Sirolimus), Temsirolimus, Everolimus and Deforolimus. And did Koschei benefit from benevolent glucose intolerance? Or, in contrast, was he insulin hypersensitive? Here are some answers and subsequent questions.

Rapamycin Prevents Obesity

In mice on high-fat diet, rapamycin decreases obesity and prevents weight gain.1–4 In rats, rapamycin (3 times per week) decreased age-associated weight gain.5 Also, chronic (every-day) treatment with rapamycin reduces adiposity and body weight.6,7 (In some strains, chronic daily treatment was associated with insulin resistance (IR), but more on that latter). In humans, kidney transplantation is associated with weight gain, which is preventable by rapamycin.8 So, at least at high doses, rapamycin can decrease weight gain in mice, rats and humans. Yet, Koschei was unusually skinny and there is no data that rapamycin can cause such a severe weight loss.

How Rapamycin Prevents Obesity

a. Rapamycin increases lipolysis, releasing fatty acids from the fat tissue.9–12
b. Rapamycin prevents entry of lipoproteins into the tissues.6
c. Rapamycin decreases insulin secretion, therefore, preventing insulin-induced obesity.13
d. Rapamycin prevents adipocyte differentiation.10,14–16

Rapamycin increases lipolysis and decreases, this can lead to hyperlipidemia (see for explanation schema 2 in17). Hyperlipidemia (or dyslipidemia) is a biomarker of the treatment with high doses of rapamycin and evirolimus.9 Rapalog-induced dyslipidemia is a benevolent sign of therapeutic effects. In fact, rapamycin prevents atherosclerosis.18–20

Hyperlipidemia is rapidly reversible.21 Eventually, hyperlipidemia disappears despite chronic use of rapamycin.22 Noteworthy, hyperlipidemia can be diminished by lipid-lowering drugs, as shown in renal transplant patients who were receiving rapamycin.23

Fatty acids are burned by the muscles (especially during physical exercise) and also incorporated into lipoproteins by the liver.

We can hypothesize that benevolent dyslipidemia can be diminished by the following:

a. Physical exercise (the muscle burns lipids).

b. Calorie restriction.

These two predictions need to be tested.

1Department of Cell Stress Biology, Roswell Park Cancer Institute, BLSC, L3-312, Elm and Carlton Streets, Buffalo, NY, USA
2Corresponding author: MV Blagosklonny, Department of Cell Stress Biology, Roswell Park Cancer Institute, BLSC, L3-312, Elm and Carlton Streets, Buffalo 14263, NY, USA. Tel: +1 716 8456086; Fax: +1 716 8453194; E-mail: blagosklonny@oncotarget.com
Received 16.10.14; revised 01.11.14; accepted 03.11.14. Edited by G Melino
The Misunderstood Effect: Benevolent IR

The most common argument against rapamycin is that it causes IR. Somehow, this is the only rumor that many scientists heard about rapamycin. In fact, glucose intolerance and IR was observed in a few strains of rodents treated daily with high doses of rapamycin. Yet, this was not detrimental for animal health. In contrast, IR was associated with weight loss and/or extended life span. Furthermore, unlike C57BL/6 mice, genetically heterogeneous HET3 mice with weight loss and/or extended life span. In contrast, IR was associated with high doses of rapamycin. Noteworthy, IR and metabolic syndrome are multifactorial.

Why Starvation Is Manifested by Benevolent Pseudodiabetes?

During fasting, lipolysis is increased providing the ‘fuel’ (free fatty acids and glycerol) for the peripheral tissues. The brain depends on glucose (and ketones). In the liver, amino acids are converted into glucose (gluconeogenesis) and fatty acid into ketones. To spare glucose for the brain, insulin secretion is inhibited and peripheral tissues become insulin resistant. Low insulin levels and IR are manifested as glucose intolerance: if a starved person consumes glucose, it is not metabolized by the tissues, its blood levels rose and glucose appears in the urine. This harmful IR is associated with inhibited mTOR. In contrast, in the modern time, IR (as we know it) is associated with obesity and leads to diabetes type II. This harmful IR is associated with over-activation of mTOR and aging (Figure 2).

Calorie Restriction

CR extends life span in numerous species from worm to mammals. CR prevents age-related diseases including cancer and sarcopenia. Whereas moderate CR increases insulin sensitivity, severe CR causes signs of IR. Among individuals who had been practicing severe CR, 40% of CR individuals showed ‘diabetic-like’ glucose intolerance. In theory, starvation would be beneficial for health, but cannot last long enough for obvious reason – death from starvation. But high doses of rapamycin can mimic severe CR without actual nutrient deficiency, thus lacking harmful effects of starvation.

Koschei Was not Starved

Definitely, Koschei was not starved. He was bonny and strong and this is not compatible with starvation. Fasting that is manifested by ‘diabetes’ (sugar in the urine) cannot last too long to extend life span but rapamycin can. And since rapamycin does not decrease food consumption, it may...
extend life span dramatically, while moderately preventing obesity. Importantly, rapamycin increases skeletal muscle and bone mass. Given that Koschei was deathless, healthy, strong (muscular) and bony, he perhaps used CR-mimetic such as rapamycin, rather than severe CR.

Rapamycin Plus Moderate CR

Because rapamycin inhibits mTOR but not food consumption, rapamycin is expected to disproportionally increase life span compared with its moderate effects on body weight. For example, at low doses and frequencies, which do not cause IR and other metabolic alterations, rapamycin still extends life span in mice. As we discussed, acute treatment by rapamycin increases insulin sensitivity. Pulse (intermittent) treatment with rapamycin (either once a week or every other week or intermittent short courses) extends life span, while maintaining insulin sensitivity. In high-fat diet-fed C57BL/6 mice, weekly rapamycin for 22 weeks improved metabolic and immune status. Rapamycin-treated mice were leaner and were protected against IR and mTORC2 activity.

Thus, details of rapamycin-induced IR are still unclear. What is clear is that at both high and low doses, at chronic and intermittent administrations, rapamycin extends life- and health-span in mice. Also, it was taken by millions of humans in high doses daily, even though transplant and cancer patients were in bad health to start with. The most noticeable side effects of rapalogs (rapamycin, teaclefmilimus, everolimus) are prevention of cancer and regression of heart hypertrophy in kidney transplant recipients. Rapalogs are anticancer drugs.

Rapalogs as Anti-aging Drugs

Nutrients activate mTOR pathway, which drives cellular growth and functions, and then geroconversion and hyperfunctions. On organismal level, mTOR drives growth early in life and aging later in life. Rapamycin slows aging and extends life span in mice. What is the cellular mechanism that allows rapamycin to slow organismal aging? Rapamycin slows down geroconversion: conversion from quiescence to irreversible senescence. Senescence is characterized by cellular hyperfunction (hyper secretion, hypertrophy, pro-inflammation and so on). This cellular hyperfunction also cause a feedback signal resistance (such as IR) to limit hyperfunctions. A combination of hyperfunctions and signal resistance leads to alterations in homeostasis and initiates age-related diseases such as obesity, atherosclerosis, hypertension, neurodegeneration, osteoporosis, sarcopenia. Cancer is preventable by rapamycin.

The Anti-aging Formula

Koschei was constantly fighting with enemies. So physical exercise was a part of his daily life. Mobilized by rapamycin, lipids can be burned by the muscle during physical exercise. By itself, chronic physical exercise inhibits mTOR and increases insulin sensitivity. Thus, rapamycin was combined with moderate CR (based on vegetables and fish) and physical exercise.

There are several clinically approved, widely used drugs that could be added to the rapamycin CR/exercise combination. They include metformin, aspirin, inhibitors of angiotensin II and propranolol.

It was shown almost 50 years ago that phenformin and metformin, anti-diabetic drugs that improve IR, also slow down aging and prevent cancer in rodents. Two agents may even cancel each other side effects. For example, whereas metformin can increase lactate production, rapamycin decreases it. Metformin also prevents cancer and other age-related diseases in humans.
Aspirin, an anti-inflammatory agent, decreases pro-inflammatory, a marker of senescence, as well as inhibits hyperfunctions of blood platelets and endothelial cells. There is increasing evidence that aspirin is beneficial in the prevention of multiple age-related diseases and their complications. Aspirin increases life span of genetically heterogeneous male mice and even in the worm Caenorhabditis elegans. Angiotensin II activates mTOR pathway and is involved in aging and age-related diseases in mammals. Disruption of the Ang II type 1 receptor promotes longevity in mice. At 29 months, when all wild-type animals died, 85% mice lacking the receptor were still alive. These remaining AT1−/− mice lived for an additional 7 months, with life span 26% longer than controls. Angiotensin II receptor blockers (ARB) (Valsartan, Telmisartan, Losartan) as well as angiotensin-converting enzyme inhibitors (Captopril, Lisinopril, Enalapril, Ramipril) are widely used as therapy for hypertension. Long-term treatment with ARBs or ARB doubles life span of hypertensive rats. In healthy (normal blood pressure) rats, long-term enalapril treatment decreases body weight gain and prolonged life span. Long-term use of ARBs is associated with a lower incidence of cancer occurrence, thereby suggesting that ARBs may prevent cancer development.

Propranolol, a non-selective beta-adrenergic blocker, is widely used to treat hypertension and ischemic heart disease. In addition, propranolol prevents cancer and hepatic steatosis. Also, berberine and statins can be included into the anti-aging formula, especially given that statins prevent rapamycin-induced dyslipidemia.

Conclusion: Lessons Learned from Koschei

The creators of fairy tales noticed that the extraordinary longevity is associated with thinness, whereas obese people do not live long. It is not a coincidence that another character of Slavic tales, Baba Yaga the bony leg (kostianaja noga), was extremely old and thin. She cooked potion (nach), an anti-aging mixture, for Koschei and herself. Now we can compose this mixture by using available drugs. The cornerstone of the formula is a rapalog such as rapamycin. Yet, gerontologists claim that rapamycin cannot be used in humans because of its terrible side effects. This modern tale about side effects of rapamycin might surprise physicians, who have prescribed rapamycin, everaliumis to millions of patients worldwide. But practicing doctors do not read basic science papers. Why this misinformation circulates among gerontologists and other basic scientists. May be because Koschei and Baba Yaga were evil and had long curly hair (side effects). Or there are other reasons. I will discuss this in forthcoming article ‘Does mankind deserve rapamycin’.

Conflict of Interest

The author declares no conflict of interest.

1. Chang GR, Chiu YS, Wu YY, Chen WY, Liao JW, Chao TH et al. Rapamycin protects against high fat diet-induced obesity in C57BL/6 J mice. J Pharmacol Sci 2009; 109: 496–503.
2. Chang GR, Wu YY, Chiu YS, Chen WY, Liao JW, Hsu HM et al. Long-term administration of rapamycin reduces adiposity, but impairs glucose tolerance in high-fat diet-fed KK/HJU mice. Basic Clin Pharmacol Toxicol 2009; 105: 168–198.
3. Leontieva OV, Paszkiewicz G, Demidenko ZN, Blagosklonny MV. Resveratrol potentiates rapamycin to prevent hyperinsulinemia and obesity in male mice on high fat diet. Cell Death Dis 2013; 4: e742.
4. Makki K, Tarot S, Molendi-Coste O, Bouchaert E, Neve B, Eury E et al. Beneficial metabolic effects of rapamycin are associated with enhanced regulatory cells in diet-induced obese mice. PLoS One 2014; 9: e92694.
5. Rovira J, Marcelo Areno-Ell, Burke JT, Braut Y, Moya-Rull D, Bahan-Maneu E et al. Effect of mTOR inhibition on body weight from an experimental rat model to human transplant patients. Transplant Int 2008; 21: 99–998.
6. Housh BM, Bruce S, Festuccia WT, Blanchard PG, Bellmann K, Deshaies Y et al. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes 2010; 59: 1338–1348.
7. Deboni N, Bourgain L, Veyrat-Dubreux C, Peyrou M, Vinciguerra M, Caillon A et al. Chronic mTOR inhibition by rapamycin induces muscle insulin resistance despite weight loss in rats. Br J Pharmacol 2012; 165: 2352–2340.
8. Diekmann F, Campistol JM, Rovira J, Burke JT, Neumayer HH, Oppeheimer F et al. Treatment with sirolimus is associated with less weight gain after kidney transplantation. Transplantation 2013; 96: 485–486.
9. Miller JT, Abdal-Fattah G, Horooven R, Mitchell B, Balbanyte CM, Power HL et al. Effects of sirolimus on plasma lipids, lipoprotein levels, and fatty acid metabolism in renal transplant patients. J Lipid Res 2002; 43: 1170–1180.
10. Chakraarti P, English T, Shi J, Smas CM, Kandror KV. Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage. Diabetes 2010; 59: 755–751.
11. Wu Z, Wang R, Folk W, Coles A, Salmon AB, Perez V. Rapamycin and dietary restriction induce metabolically distinctive changes in mouse liver. J Gerontol A Biol Sci Med Sci 2014; e249.e1–249.e12.
12. Blagosklonny MV. Validation of anti-aging drugs by treating age-related diseases. Aging (Albany NY) 2009; 1: 281–288.
13. Lamming DW, Sabatini DM. A Central role for mTOR in lipid homeostasis. Cell Metab 2013; 18: 469–469.
14. Blagosklonny MV. T.O.R-centric view on insulin resistance and diabetic complications: perspective for endocrinologists and gerontologists. Cell Death Dis 2013; 4: e964.
15. Yeh WC, Bierer BE, Mcgirt JF, PG, Bell A, Grunnder L, Borsley A. Rapamycin inhibits human adipocyte differentiation in primary culture. Obes Res 2000; 8: 249–254.
16. Zhang HH, Huang J, Duvel K, Boback B, Wu S, Squillace RM et al. Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway. PLoS One 2009; 4: e6189.
17. Blagosklonny MV. Validation of anti-aging drugs by treating age-related diseases. Aging (Albany NY) 2008; 1: 215S–226S.
18. Pakala R, Stable E, Lang GJ, Clavijo L, Waksman R. Rapamycin attenuates atherosclerotic plaque progression in apolipoprotein E knockout mice: effect in the monocyte chemotaxis. J Cardiovasc Pharmacol 2005; 46: 481–486.
19. Elles SM, Azrulan N, Sehgal SN, Huu PL, Pielli K, Kocac CA et al. Protective effect of the immunosuppressant sirolimus against aortic atherosclerosis in apoE deficient mice. Am J Transplant 2003; 3: 562–569.
20. Chen WQ, Zhong L, Zhang L, Ji XP, Zhang M, Zhao YX et al. Oral rapamycin attenuates inflammation and enhances stability of atherosclerotic plaques in rabbits independent of serum lipid levels. Br J Pharmacol 2009; 156: 341–351.
21. Liu Y, Diaz V, Fernandez E, Strong R, Ye L, Baur JA et al. Rapamycin-induced metabolic defects are reversible in both lean and obese mice. Aging (Albany NY) 2014; 6: 742–754.
22. Fang Y, Bartke A. Prolonged rapamycin treatment led to beneficial metabolic switch. Aging (Albany NY) 2013; 5: 328–335.
23. Legendre C, Campistol JM, Squilliet JP, Burke JJ, SERTS. Cardiovascular risk factors of sirolimus compared with cyclosporine: early experience from two randomized trials in renal transplantation. Transplant Proc 2003; 35: 1515–1535.
24. Kapahi P, Zid BM, Harper T, Kiosover D, Sapin V, Benzer S. Regulation of lifespan in Drosophila by modulation of genes in the TOR-signaling pathway. Curr Biol 2004; 14: 885–890.
25. Wulschleger S, Loewth R, Hall MN. T.O.R signaling in growth and metabolism. Cell 2006; 124: 471–484.
26. Loewth R, Hall MN. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 2011; 189: 1177–1201.
27. Howell JJ, Manning BD. mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends Endocrinol Metab 2011; 22: 94–102.
28. Kapahi P, Chen D, Rogers AN, Kates DA, Li PW, Thomas EL et al. With T.O.R, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab 2010; 11: 463–466.
29. Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 2010; 40: 310–322.
30. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12: 21–35.
31. Durn FV, Hall MN. Glutaminolysis feeds mTORC1. Cell Cycle 2012; 11: 4107–4108.
32. Khamzina L, Velleius A, Bergeron S, Marette A. Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinol 2005; 148: 1473–1481.
40. Einstein FH, Fishman S, Bauman J, Thompson RF, Huffman DM, Atzmon G.

38. Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villen J. Phosphoproteomic analysis identifies G0/G1 as an mTORC1 substrate that negatively regulates insulin sensitivity. Science 2011; 332: 1322–1326.

36. Harrington LS, Findlay GM, Lamb RF. Restraining PI3K: mTOR signalling goes back to the membrane. Trends Biochem Sci 2006; 31: 35–42.

34. Tremblay F, Marette A. Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells. J Biol Chem 2001; 276: 38052–38060.

32. Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M et al. Absence of SIX1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 2004; 431: 200–205.

30. Harrington LS, Findlay GM, Lamb RF. Restraining PI3K: mTOR signaling goes back to the membrane. Trends Biochem Sci 2006; 31: 35–42.

28. Corradetti MN, Guan KL. Upstream of the mammalian target of rapamycin: do all roads lead to Raptor? Curr Biol 2004; 14: 1659–1665.

26. Luong N, Davies CR, Wessells RJ, Graham SM, King MT, Veech R. Activated FOXO- mediated insulin resistance is blocked by reduction of TOR activity. Cell Metab 2006; 5: 133–142.

24. Krebs M, Brunmair B, Brehm A, Artwohl M, Szendroedi J, Nowotny P. Raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. J Biol Chem 2004; 279: 13294–13301.

22. Vodenik B, Rovira J, Campistol JM. Mammalian target of rapamycin and diabetes: what does the current evidence tell us? Transplant Proc 2009; 41: 531–538.

20. Vodenik B, Rovira J, Campistol JM. Mammalian target of rapamycin pathway regulates nutrient-sensitive glucose uptake in man. Diabetes 2007; 56: 1600–1607.

18. Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Derniame PA et al. The kinase LKB1 mediates glucose homostasis in liver and therapeutic effects of metformin. Science 2005; 310: 1642–1646.

16. Tzatzos A, Kandror KV. Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol Cell Biol 2008; 28: 63–76.

14. Vlodivik B, Rivira J, Campistol JM. Mammalian target of rapamycin and diabetes: what does the current evidence tell us? Transplant Proc 2009; 41: 531–538.

12. Daquing AC, Tseng C, Salemah A, Zhang Y, Amaya-Manzanera F, Dadbin A et al. Depletion of white adipocyte progenitors induces beige adipocyte differentiation and suppresses obesity development. Cell Death Differ 2014; e-pub ahead of print 24 October 2014. doi:10.1038/cdd.2014.148.

10. Molchadsky A, Ezra O, Amendola PG, Krantz D, Goksan-Sakin I, Bugayrung Y et al. p38 is required for brown adipogenic differentiation and has a protective role against diet-induced obesity. Cell Death Differ 2013; 20: 774–783.

8. Nguyen MT, Csersmely P, Soh C. Hsp90 chaperones PPARgamma and regulates differentiation and survival of 3T3-L1 adipocytes. Cell Death Differ 2013; 20: 1543–1556.

6. Nisoli E, Cardile A, Bullarelli A, Tedesco L, Bracale R, Cozzi V et al. White adipocytes are less prone to apoptotic stimuli than brown adipocytes in rodents. Cell Death Differ 2006; 13: 2154–2155.

4. Barth JM, Szabadi J, Haen E, Kohler K. Autophagy in Drosophila ovaries is induced by starvation and is required for oogenesis. Curr Biol 2011; 18: 915–924.

2. Cai D, Liu T. Inflammatory cause of metabolic syndrome via brain stress and NF-kappaB. Aging (Albany NY) 2012; 4: 98–115.

0. Fabre O, Breuker C, Amouzou C, Salehzaada T, Kitzmann M, Merjier C et al. Defects in TLR3 expression and Rnase L activation lead to decreased MnSOD expression and insulin resistance in muscle cells of obese people. Cell Death Dis 2014; 5: e1136.

- 2011; 4: 390–398.

- 2013; 5: 813–824.

- 2014; 6: 390–398.

- 2010; 5: 108–114.

- 2012; 1: e10.

- 2013; 4: e861.

- 2012; 3: 4224.

- 2014; 5: 971–977.

- 2013; 4: 915–924.

- 2010; 32: 97–108.

- 2010; 206: 203–216.

- 2008; 13: 555–559.

- 2013; 5: 133–143.

- 2006; 33: 538–550.

- 2008; 108: 1076–1088.

- 2013; 176: 817–822.

- 2014. doi:10.1002/cdd.23281.

- 2010; 13: 98–101.

- 2012; 2: 63–76.

- 2013; 3: 771–792.

- 2013; 3: 771–792.

- 2013; 3: 771–792.

- 2013; 7: 770–781.

- 2013; 3: 582–583.

- 2012; 4: 728–729.

- 2008; 10: 157–169.

- 2008; 2: 2971–2979.

- 2012; 335: 1636–1643.

- 2013; 2: 1012–1013.

- 2007; 35: 96–114.

- 2004; 101: 6659–6663.

- Caloric restriction: decelerating mTOR-driven aging from cells to organisms (including humans). Cell Cycle 2010; 9: 683–688.

- Will calorie restriction work in humans? Aging (Albany NY) 2013; 5: 597–614.

- The benefits of caloric restriction, exercise, and mimetics. Aging Res Rev 2012; 11: 390–398.

- Adipokines and insulin sensitivity. Mol Cell Biol 2006; 26: 63–76.

- Insulin resistance induced by palmitate in hepatocytes. Atherosclerosis 2004; 154: 270–274.

- Activated FOXO– mediated insulin resistance is blocked by reduction of TOR activity. Cell Metab 2006; 5: 133–142.

- Absence of S6K1 inhibits F0x3a2 in the liver leads to activation of mTOR and age-onset obesity. Aging (Albany NY) 2013; 5: 792–800.

- Lipid-induced hepatic insulin resistance. Aging (Albany NY) 2013; 5: 792–800.

- Brown-to-white transition in subcutaneous fat: linking aging and disease. Aging (Albany NY) 2012; 4: 728–729.

- Brehm A, Sabatini DM, Harrison DE. Young and old genetically heterogeneous HET3 mice on a rapamycin diet are glucose intolerant but insulin sensitive. Cell Metab 2012; 15: 712–718.

- Blagosklonny MV. Rapamycin-induced glucose intolerance: hunger or starvation diabetes. Cell Cycle 2011; 10: 4217–4224.

- Blagosklonny MV. Once again on rapamycin-induced insulin resistance and longevity: despite of or owing to. Aging (Albany NY) 2012; 4: 350–358.

- Fontana L, Meyer TE, Klein S, Holl Roxlo JO. Long-term caloric restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci USA 2004; 101: 6658–6663.
90. Popovich IG, Anisimov VN, Zabehzhinska MA, Semenchenko AV, Tyndyk ML, Yurova VN et al. Lifespan extension and cancer prevention in HER-2/neu transgenic mice treated with low intermittent doses of rapamycin. Cancer Biol Ther 2014; 15: 586–592.

91. Comas M, Turovsk I, Kuropatwinski KK, Chernova OB, Polinsky A, Blagosklonny MV et al. New normofamilial form of rapamycin target lifespan in somatogenic p53−/− mice by delaying carcinogenesis. Aging (Albany NY) 2012; 4: 715–722.

92. Kondratov RV, Kondratova AA. Rapamycin in preventive (very low) doses. Aging (Albany NY) 2014; 6: 158–159.

93. Khapre RV, Kondratov AA, Patel S, Dubrovsky Y, Wroblo M, Antoch MP et al. BMAL1-dependent regulation of the mTOR signaling pathway delays aging. Aging (Albany NY) 2014; 6: 48–67.

94. Ye L, Varamini B, Lamming DW, Sabatini DM, Baur JA. Rapamycin and insulin signaling in high-glucose medium without causing IR in normoglycemic medium. Cell Death Disc 2014; 5: e1214.

95. Law BK. Rapamycin: an anti-cancer immunosuppressant? Crit Rev Oncol Hematol 2011; 76: 47–60.

96. Campistol JM, Eris J, Oberbauer R, Friend P, Hutchison B, Morales JM et al. Clinical application of rapamycin in the clinical setting. J Am Soc Nephrol 2006; 17: 646–658.

97. Ng TL, Leprivier G, Robertson MD, Chow C, Martin MJ, Laderoute KR et al. Rapamycin in elderly patients with acute myeloid leukemia. Oncotarget 2013; 4: 8396–8406.

98. Wilkinson JE, Burmeister L, Brooks SV, Chan CC, Friedline S, Harrison DE et al. Enteric-delivered rapamycin enhances resistance of aged mice to pneumococcal pneumonia through reduced cellular senescence. Exp Gerontol 2012; 47: 958–965.

99. Polovich IG, Anisimov VN, Zabehzhinska MA, Semenchenko AV, Tyndyk ML, Yurova VN et al. Lifespan extension and cancer prevention in HER-2/neu transgenic mice treated with low intermittent doses of rapamycin. Cancer Biol Ther 2014; 15: 586–592.

100. Shi WY, Xiao D, Wang L, Dong LH, Yan ZX, Shen ZX et al. Blagosklonny MV. Revisiting the antagonistic pleiotropy theory of aging: TOR-driven metabolic homeostasis. Aging Cell 2013; 12: 649–659.

101. Harrington L, Liao J, Li S, Zhang H, Zhu Y, Guo X et al. mTORC1 activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell Death Dis 2013; 4: e827.

102. Kondratov RV, Kondratova AA. Rapamycin in preventive (very low) doses. Aging (Albany NY) 2014; 6: 158–159.

103. Luo Y, Li L, Zou P, Wang J, Shao L, Zhou D et al. Rapamycin enhances long-term hematopoietic reconstitution of ex vivo expanded mouse hematopoietic stem cells by inhibiting senescence. Transplantation 2014; 97: 20–29.

104. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 2013; 123: 966–977.

105. Tchkonia T, Zhao H, Li J, Lee YS, Hsieh TC, Wu JM et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 2011; 332: 956–960.

106. Howard MC. From growing to secreting: new roles for mTOR in aging cells. Cell Cycle 2011; 10: 2450–2453.

107. Blagosklonny MV. Senescence control by p53: is senescence a response to oxidative stress? Aging Cell 2012; 11: 952–965.

108. Conlon MA, Allen MR, Syed A, Arora A, Waxman D, Thomas GM et al. One highly effective rapamycin schedule that markedly reduces the size, multiplicity, and exhaustion of murine leukemia virus touching. Aging Cell 2012; 11: 657–660.

109. Luo Y, Li L, Zou P, Wang J, Shao L, Zhou D et al. Rapamycin enhances long-term hematopoietic reconstitution of ex vivo expanded mouse hematopoietic stem cells by inhibiting senescence. Transplantation 2014; 97: 20–29.

110. Polovich IG, Anisimov VN, Zabehzhinska MA, Semenchenko AV, Tyndyk ML, Yurova VN et al. Lifespan extension and cancer prevention in HER-2/neu transgenic mice treated with low intermittent doses of rapamycin. Cancer Biol Ther 2014; 15: 586–592.

111. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 2013; 123: 966–977.

112. Tchkonia T, Zhao H, Li J, Lee YS, Hsieh TC, Wu JM et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 2011; 332: 956–960.

113. Howard MC. From growing to secreting: new roles for mTOR in aging cells. Cell Cycle 2011; 10: 2450–2453.

114. Blagosklonny MV. Senescence control by p53: is senescence a response to oxidative stress? Aging Cell 2012; 11: 952–965.

115. Conlon MA, Allen MR, Syed A, Arora A, Waxman D, Thomas GM et al. One highly effective rapamycin schedule that markedly reduces the size, multiplicity, and exhaustion of murine leukemia virus touching. Aging Cell 2012; 11: 657–660.

116. Blagosklonny MV. Senescence control by p53: is senescence a response to oxidative stress? Aging Cell 2012; 11: 952–965.

117. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 2013; 123: 966–977.

118. Conlon MA, Allen MR, Syed A, Arora A, Waxman D, Thomas GM et al. One highly effective rapamycin schedule that markedly reduces the size, multiplicity, and exhaustion of murine leukemia virus touching. Aging Cell 2012; 11: 657–660.

119. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 2013; 123: 966–977.

120. Fok WC, Chen Y, Bokov A, Zhu G, mTOR Complex I/S6K1 signaling; at the crossroads of obesity, diabetes and cancer. Trends Mol Med 2007; 13: 252–259.

121. Halicka HD, Zhao H, Li J, Lee YS, Hsieh TC, Wu JM et al. Potential anti-aging agents suppress the level of constitutive mTOR- and DNA damage- signaling. Aging (Albany NY) 2012; 4: 952–965.

122. Nairtta M, Young AR, Arakawa S, Samarjaiwa SA, Nakashima T, Yoshida S et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 2011; 332: 956–960.

123. Pani G. From growing to secreting: new roles for mTOR in aging cells. Cell Cycle 2011; 10: 2450–2453.

124. Blagosklonny MV. Senescence control by p53: is senescence a response to oxidative stress? Aging Cell 2012; 11: 952–965.

125. Conlon MA, Allen MR, Syed A, Arora A, Waxman D, Thomas GM et al. One highly effective rapamycin schedule that markedly reduces the size, multiplicity, and exhaustion of murine leukemia virus touching. Aging Cell 2012; 11: 657–660.

126. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 2013; 123: 966–977.

127. Tchkonia T, Zhao H, Li J, Lee YS, Hsieh TC, Wu JM et al. Potential anti-aging agents suppress the level of constitutive mTOR- and DNA damage- signaling. Aging (Albany NY) 2012; 4: 952–965.

128. Nairtta M, Young AR, Arakawa S, Samarjaiwa SA, Nakashima T, Yoshida S et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 2011; 332: 956–960.

129. Pani G. From growing to secreting: new roles for mTOR in aging cells. Cell Cycle 2011; 10: 2450–2453.

130. Fok WC, Chen Y, Bokov A, Zhu G, mTOR Complex I/S6K1 signaling; at the crossroads of obesity, diabetes and cancer. Trends Mol Med 2007; 13: 252–259.

131. Comu M, Albert V, Hall MN. mTOR in aging, metabolism, and cancer. Curr Opin Genet Dev 2010; 20: 53–56.

132. Mabuchi S, Altmare DA, Connolly DC, Klein-Szanto A, Litwin S, Hoelzle MK et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 2011; 332: 956–960.

133. Pani G. From growing to secreting: new roles for mTOR in aging cells. Cell Cycle 2011; 10: 2450–2453.
147. Blagosklonny MV. Prosp ective treatment of age-related diseases by slowing down aging. Am J Pathol 2012; 181: 1142–1146.

148. Tsang CK, Qi H, Liu LF, and Zheng XFS. Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Disc Today 2007; 12: 112–124.

149. Zheng XF. Chemoprevention of age-related macular degeneration (AMD) with rapamycin. Aging (Albany NY) 2012; 4: 375–376.

150. Dazet E, Hall MN. mTOR signaling in aging. Curr Opin Cell Biol 2011; 23: 744–755.

151. Johnson SC, Rabievich P, Karabiner M, et al. mTOR is a key modulator of aging and age-related disease. Nature 2013; 493: 336–345.

152. Dilman VM, O’Driscoll-Zambartas OA, Academi EC, Pressley MP, Barrett JB, et al. Late life rapamycin treatment reverses age-related heart dysfunction. Aging Cell 2013; 12: 851–862.

153. Johnson SC, Yanos ME, Kaye ER, Quintana A, Sangesland B, Castanza C et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science 2013; 342: 1524–1528.

154. Glynn EL, Lujan HL, Kramer VJ, Drummond MJ, DiCarlo SE, Rasmussen BB. A chronic pharmacologic inhibition. Cell Cycle 2011; 5: 1203–1210.

155. Dilman VM, Bernstein LM, Zabezhinski MA, Alexandrov VA, Bobrov JF, Pliss GB. Inhibition of mTOR/mammalian target of rapamycin. J Cell Physiol 2010; 226: 196–205.

156. Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M et al. Metformin inhibits mTOR in colon cancer and promotes survival in a mouse model of colon cancer. Cell Death and Disease 2012; 3: 93–96.

157. Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M et al. Metformin inhibits mTOR in colon cancer and promotes survival in a mouse model of colon cancer. Cell Death and Disease 2012; 3: 93–96.

158. Zheng XF, Vlavianou C, Houde VP, Zbroda D, Green KA, Sakamoto K et al. Inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology 2012; 142: 1504–1515 e1503.

159. Strong R, Miller RA, Aetle CM, Floyd RA, Flurkey K, Hensley KL et al. Hydroxydiuroglycic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell 2008; 7: 641–650.

160. Renna NF, Vazquez MA, Laing MG, Gonzalez ES, Miatello RM. Effect of chronic aspirin administration on an experimental model of metabolic syndrome. Clin Exp Pharmacol Physiol 2009; 36: 162–168.

161. Moiseeva O, Deschenes-Simard X, Pollak M, Ferbeyre G. Metformin, aging and cancer. Curr Opin Pharmacol 2013; 13: 247–253.

162. Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM. New users of aspirin reduce colorectal cancer mortality: a population- based study. J Clin Invest 2009; 119: 292–300.

163. Benigni A, Corli D, Petrelli A, Ferler L, Terragno NA, Insera F. Protective effect of long-term angiotension II inhibition. Am J Cardiol 2007; 99: 744–751.

164. Renna NF, Vazquez MA, Laing MG, Gonzalez ES, Miatello RM. Effect of chronic aspirin administration on an experimental model of metabolic syndrome. Clin Exp Pharmacol Physiol 2009; 36: 162–168.

165. Leontieva OV, Blagosklonny MV. Metformin, aging and cancer. Curr Opin Pharmacol 2013; 13: 247–253.

166. Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM. New users of aspirin reduce colorectal cancer mortality: a population- based study. J Clin Invest 2009; 119: 292–300.

167. Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM. New users of aspirin reduce colorectal cancer mortality: a population- based study. J Clin Invest 2009; 119: 292–300.

168. Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM. New users of aspirin reduce colorectal cancer mortality: a population- based study. J Clin Invest 2009; 119: 292–300.

169. Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM. New users of aspirin reduce colorectal cancer mortality: a population- based study. J Clin Invest 2009; 119: 292–300.

170. Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM. New users of aspirin reduce colorectal cancer mortality: a population- based study. J Clin Invest 2009; 119: 292–300.

171. Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM. New users of aspirin reduce colorectal cancer mortality: a population- based study. J Clin Invest 2009; 119: 292–300.

172. Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM. New users of aspirin reduce colorectal cancer mortality: a population- based study. J Clin Invest 2009; 119: 292–300.

173. Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM. New users of aspirin reduce colorectal cancer mortality: a population- based study. J Clin Invest 2009; 119: 292–300.

174. Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM. New users of aspirin reduce colorectal cancer mortality: a population- based study. J Clin Invest 2009; 119: 292–300.