Chapter 10

Relation between regional and global systolic function in patients with ischemic cardiomyopathy after β-blocker therapy or revascularization
10 Relation between regional and global systolic function in patients with ischemic cardiomyopathy after β-blocker therapy or revascularization

TA Kaandorp, JJ Bax, J Doornbos, SE Bleeker, EP Viergever, D Poldermans, EE van der Wall, A de Roos, HJ Lamb
Submitted

Abstract

Background: To assess the relationship between improved regional and global myocardial function in patients with ischemic cardiomyopathy in response to β-blocker therapy or revascularization. Material and methods: Cardiac magnetic resonance imaging (MRI) was performed in 32 patients with ischemic cardiomyopathy before and 8 ± 2 months after therapy. Patients were assigned clinically to β-blocker therapy (n=20) or revascularization (n=12). MRI at baseline was performed to assess regional and global left ventricular (LV) function at rest and under low-dose dobutamine. Wall thickening was analyzed in dysfunctional, adjacent, and remote segments. Follow up MRI included evaluation of function at rest. Results: Augmentation of wall thickening during dobutamine infusion at baseline was similar in dysfunctional, adjacent, and remote segments. Therefore, baseline characteristics were similar for both patient groups. In both patient groups left ventricular ejection fraction (LVEF) at rest and end-systolic volume improved significantly (p<0.05) at follow up. Stepwise multivariate analysis revealed that improvement in global LVEF in the β-blocker treated patients was significantly related to improved function of remote myocardium (p<0.05), whereas in the revascularized patients improved function in dysfunctional and adjacent segments was more pronounced (p<0.05). Conclusion: In patients with chronic ischemic LV dysfunction, β-blocker therapy or revascularization resulted in a similar improvement of global systolic LV function. However, after β-blocker therapy, improved global systolic function was mainly related to improved contraction of remote myocardium, whereas after revascularization the dysfunctional
and adjacent regions contributed predominantly to the improved global systolic function.

Introduction

Recent estimations reveal that 4.9 million patients suffer from chronic heart failure in the United States, indicating the magnitude of this major health care problem. Ischemic cardiomyopathy is a frequent cause of chronic heart failure. Different treatment options are available for the treatment of ischemic cardiomyopathy, including medical therapy and revascularization.

ß-Blocking agents have shown substantial benefit in patients with various degrees of heart failure. The mechanisms by which β-blockers reduce mortality among heart failure patients remain unclear. Heart failure is a complex disease that is characterized by chronic excessive sympathetic nervous system stimulation causing myocardial toxicity and further depression of left ventricular (LV) function. It is suggested that LV function improves after β-blocker therapy as a result of reversal of catecholamine-mediated myocardial toxicity in the partially viable or non-infarcted regions of the LV and possibly by improving function in regions of hibernating myocardium. It has been suggested that dobutamine induced improvement in segmental contraction of dysfunctional myocardium before treatment is related to improved global LV function after medical therapy. However, remote myocardium may potentially also contribute to the improvement of LV function after therapy, but this contribution has not yet been evaluated.

The beneficial effect of revascularization of dysfunctional myocardium in patients with ischemic cardiomyopathy has traditionally been measured by its effect on improvement of regional and global LV function at rest. Revascularization is expected to improve regional function when viable, but jeopardized myocardium is present in an area of dysfunctional myocardium. Furthermore, it has been recognized that LV end-systolic volume predicts long-term outcome to best advantage after revascularization.

Magnetic resonance imaging (MRI) is a validated and reliable method to assess global and regional myocardial function in normal and diseased hearts. Functional MRI is well suited to assess wall motion at rest as well as the response to
dobutamine for predicting viability of dysfunctional myocardial segments.18

We sought to define the contribution of regional myocardial segments to the improvement of global systolic LV function in patients after medical therapy or revascularization. We hypothesized that a differential effect on regional myocardial segments occurs depending on the type of therapy. Systemic medical therapy is expected to have a more global effect on both ischemic, dysfunctional myocardial segments and on non-ischemic, remote myocardium, whereas revascularization will have a more local effect on the ischemic, dysfunctional myocardium depending on the territory of the revascularized vessels.

Therefore, the purpose of the present study was to assess the relationship between improved regional and global myocardial function in patients with ischemic cardiomyopathy in response to β-blocker therapy or revascularization.

Material and methods

Patient population

Thirty-two patients with chronic ischemic cardiomyopathy and left ventricular ejection fraction (LVEF) <40% on gated Tc-99m-SPECT at rest, were included. All patients were in sinus rhythm. Patients with a recent infarction (<3 months), unstable angina, valvular disease pacemakers and/or intracranial clips were excluded.

Patients were included consecutively. Patients that did not qualify for revascularization were assigned to the β-blocker therapy group. Patients did not qualify for revascularization because: 1. Patients had poor target vessels (small vessels, not amendable for revascularization); 2. Patients had prior existing co-morbidity (e.g. renal failure); and 3. Patients refused to undergo revascularization. β-Blocker therapy was started at an initial dose of 3.125 mg carvedilol twice daily. Subsequently, carvedilol was titrated at one-week intervals as tolerated, up to target dose of 25 mg twice daily.19

β-Blocker treated patients were compared to patients who underwent revascularization. In the revascularization patients, coronary artery bypass surgery was performed in 75% and percutaneous coronary intervention in 25%. Each patient gave informed consent to the study protocol that was approved by the local ethics committee.
MR Image acquisition

Patients were studied by MRI before therapy and at 8 ± 2 months after therapy. At baseline, the MRI protocol consisted of a cine MRI at rest, delayed contrast-enhanced MRI and low-dose dobutamine (10 µg/kg/min) cine MRI. Follow up MRI included evaluation of function at rest only. The congestive heart failure classification by the New York Heart Association (NYHA) was determined at baseline and follow up by the patient's cardiologist, who was blinded to the MRI data.

A 1.5-Tesla Gyroscan ACS-NT MRI scanner (Philips Medical Systems, The Netherlands) and 5-element cardiac synergy coil were used. Patients were studied in supine position. All images were acquired during breath-holds of approximately 15 seconds and were gated to the vector electrocardiogram; blood pressure was monitored continuously during the examination (Millennia, Invivo Research, Orlando Florida, USA). The heart was imaged from apex to base with 10 to 12 imaging levels (dependent on heart size) in short-axis view using a steady-state free-precession sequence. Typical acquisition parameters were: field of view 400 x 400 mm, matrix size 256 x 256, slice thickness 10.00 mm, flip angle 50°, time to echo 1.82 ms and time to repeat 3.65 ms. Temporal resolution was 25 to 39 ms, depending on heart rate. Geometry settings of cine MRI scans at rest were stored and repeated for delayed contrast-enhanced MRI and low-dose dobutamine stress MRI.

Delayed contrast-enhanced images were acquired approximately 15 minutes after bolus injection of gadolinium DTPA (Magnevist, Schering/Berlin, Germany, 0.15 mmol/kg) with an inversion-recovery gradient echo sequence; inversion time was determined using real time planscan. Typical parameters were the following: field of view 400 x 400 mm, matrix size 256 x 256, slice thickness 5.00 mm, flip angle 15°, time to echo 1.36 ms and time to repeat 4.53 ms.

For evaluation of myocardial function under pharmacological stress, intravenous dobutamine infusion was started at a rate of 5 µg/kg/min and increased after 5 minutes to 10 µg/kg/min. Then, after 5 minutes (at steady state), low-dose dobutamine images were acquired in 2- and 4-chamber and short-axis views. The same parameters were applied as described for imaging at rest.

MR image analysis

Data were analyzed on a remote workstation using MASS software (MASS, Medis, The Netherlands). The endo- and epicardial borders of the end-diastolic and end-
systolic frames were manually traced with exclusion of papillary muscles, trabeculae, and epicardial fat. LV end-diastolic and end-systolic volumes were calculated and LVEF was derived.

The amount of infarcted tissue was determined by drawing regions of interest around the scar tissue. In addition, the percentage of myocardium was calculated that was affected by infarction, relative to the total LV mass.

To determine regional wall motion at rest, cine MRI images were visually interpreted by two experienced observers (blinded to other MRI and clinical data) using a 17-segment model. Each segment was assigned a wall motion score using a 5-point scale with 0: normal wall motion, 1: mild hypokinesia, 2: severe hypokinesia, 3: akinesia, and 4: dyskinesia. In the dysfunctional segments at rest (score 1 to 4), the presence or absence of contractile reserve was based on visual analysis of the difference in myocardial wall motion between MRI acquisitions at rest and during infusion of low-dose dobutamine. An improvement in segmental wall motion score by one grade or more was considered indicative of contractile reserve.

Myocardial segments with a visual wall motion score at rest from 1 to 4 were considered as dysfunctional segments. The myocardial segments next to these dysfunctional segments in 3-dimensions, were considered as adjacent segments. The remaining myocardial segments were considered as remote tissue (Figure 1). Wall thickness was then quantified in the above-defined three regions: (1) dysfunctional, (2) adjacent, and (3) remote segments, using the centerline method as described before. Wall thickening was calculated based on the difference in wall thickness between end-diastole and end-systole. The change in wall thickening was calculated between baseline and dobutamine stress acquisitions, or between baseline and follow up acquisitions.

Statistical analysis

Continuous data were expressed as mean ± standard deviation and compared using the Student’s t test for (un-) paired data when appropriate. Stepwise multivariate analysis was performed to determine the relation between regional improvement in myocardial function and improvement in global LVEF at follow up. All tests were two-tailed and a p-value <0.05 was considered statistically significant.
Figure 1. Diagram in 3D showing the relative position in a virtual left ventricle of the three regions that were quantified using the centerline method. Definition of segments was based on a visual wall motion score using a 17-segment model and a 5-point scoring system with 0: normal wall motion; 1: mild hypokinesia; 2: severe hypokinesia; 3: akinesia; and 4: dyskinesia. Myocardial segments with a visual wall motion score from 1 to 4 were considered as dysfunctional segments (grey). The myocardial segments next to these dysfunctional segments in 3-dimensions, were considered as adjacent segments (dashed). The remaining myocardial segments were considered as remote tissue (white).
Results

Baseline

All patients underwent complete revascularization. The NYHA classification at baseline was 2.3 ± 0.5 in the ß-blocker treated patients, and 2.2 ± 0.5 in the revascularization patient group (p>0.05). Other baseline characteristics are summarized in Table 1. The variables listed in Table 1 were not statistically significantly different between patients in the ß-blocker and revascularization groups.

Table 1. Clinical characteristics of the study population.

	ß-Blocker therapy (n=20)	Revascularization (n=12)
Age (years)	67 ± 8	68 ± 6
Men/ women	20/0	11/1
Time to follow up (months)	8 ± 3	9 ± 4
Number of stenosed coronary arteries	2.7 ± 0.5	2.5 ± 0.5
Scar tissue on delayed contrast-enhanced MRI (g)	31.9 ± 18	29.5 ± 15.0
Scar tissue on delayed contrast-enhanced MRI (%)	19.6 ± 10.9	17.1 ± 7.5
Number of segments with contractile reserve	5.5 ± 3.2	3.7 ± 1.7

All comparisons between both groups were statistically non-significant. MRI, magnetic resonance imaging.

Table 2. Effect of therapy on left ventricular dimensions and global systolic function.

	ß-Blocker therapy Follow up	Revascularization Follow up		
LVEDV (ml)	271 ± 63	254 ± 55	238 ± 48	250 ± 59
LVESV (ml)	190 ± 63	163 ± 54*	152 ± 35	140 ± 41*
LVEF (%)	31 ± 7	37 ± 9*	36 ± 6	44 ± 6*

*p <0.05 for baseline versus follow up values. Other comparisons were non-significant. LVEDV: left ventricular end-diastolic volume; LVEF: left ventricular ejection fraction; LVESV: left ventricular end-diastolic volume.
There was no significant difference in the percentage scar tissue or the number of segments with contractile reserve between both patient groups (Table 1). Table 2 summarizes LV dimensions and global systolic function. At baseline, there were no statistically significant differences between both patient groups. The response to low-dose dobutamine at baseline in the dysfunctional, adjacent, and remote myocardial segments is summarized in Figures 2A and 2B. There were no statistically significant differences in wall thickening in any myocardial segment, when comparing the β-blocker and revascularization groups at baseline (Figure 2).

Comparison of myocardial wall thickening between follow up and baseline, revealed that in the β-blocker group the remote segments showed the largest improvement (Figure 2C). Stepwise multivariate analysis in β-blocker patients revealed that improvement in LVEF after therapy was mainly related to improvement in function of the remote region \(y = 2 \times Rmt + 1.8 \); \(Rmt \): difference in wall thickening at rest in remote tissue between follow up and baseline; \(p = 0.002 \). In the revascularization patient group, most improvement in myocardial wall thickening between follow up and baseline was achieved in the dysfunctional segments (Figure 2D). Stepwise multivariate analysis in revascularization patients revealed that improvement in LVEF was mainly related to improvement in function of the dysfunctional and adjacent segments \(y = 2.6 \times Dsf + 1.8 \times Adj + 0.6 \); \(Dsf \): difference in wall thickening at rest in dysfunctional segments between follow up and baseline; \(Adj \): difference in wall thickening at rest in adjacent segments between follow up and baseline; \(p = 0.001 \).

Direct comparison between the β-blocker and revascularization groups concerning the myocardial segments shows a statistically significant difference \(p < 0.05 \) in wall thickening between the dysfunctional and remote segments (Figures 2C and 2D). As a consequence, a reversed pattern is observed in the contribution of the dysfunctional and remote myocardial segments to improvement in wall thickening after β-blocker or revascularization therapy. This differential pattern is also illustrated in Figure 3, showing the relative contributions of the myocardial segments to improvement in LVEF after β-blocker or revascularization therapy. In the β-blocker treated patients (Figure 3A), the remote tissue contributes for 60% to the improvement in LVEF, whereas in the revascularized patients (Figure 3B), the dysfunctional segments contributed for 56% to the improvement in LVEF after therapy.
Figure 2. Change in wall thickening from baseline to low-dose dobutamine in (A) patients with β-blocker treatment and (B) patients after revascularization; Change in wall thickening from baseline to follow up in (C) patients with β-blocker treatment and (D) patients after revascularization. Note the similarity in regional distribution when comparing dobutamine-baseline measurements of both patient groups. In addition, note that the regional distribution is similar in response to dobutamine and β-blocker treatment. Moreover, in patients with β-blocker treatment, the remote tissue contributed predominantly to overall wall thickening, whereas after revascularization the dysfunctional segments contributed most to the observed changes in systolic wall thickening. *P<0.05 for β-blocker treatment and revascularization.
Discussion
The present study demonstrates the relation between regional and global myocardial function in patients with ischemic cardiomyopathy after β-blocker or revascularization therapy. Following β-blocker therapy, improved global systolic function is mainly related to improved contraction of remote myocardium, whereas after revascularization the dysfunctional and adjacent regions contributed most to the improvement in global systolic function.

Baseline
At baseline, NYHA classification was similar for β-blocker treated and revascularization patients. In addition, global systolic function, the percentage scar tissue or the number of segments with contractile reserve were similar in both patient groups at baseline. Furthermore, both patient groups showed the same response to low-dose dobutamine at baseline in the dysfunctional, adjacent, and remote myocardial segments. Accordingly, the clinically defined patient groups were comparable at baseline concerning myocardial function.

Follow up after β-blocker or revascularization therapy
Following β-blocker or revascularization therapy, LV systolic function improved significantly, and to a similar extent. Accordingly, the global functional response to therapy was comparable between both patient groups. This finding is consistent with results from previous studies. Furthermore, improvement in LVEF was accompanied by an improvement in NYHA classification from baseline to follow up, to a similar extent in both patient groups.

Stepwise multivariate analysis in β-blocker patients revealed that improvement in LVEF after therapy was mainly related to improvement in function of the remote myocardium. The present results concerning β-blocker therapy effect on remote tissue are in agreement with previous studies by Reiken et al. Both in a canine model and in a patient study (performed in explanted hearts), the authors showed that β-blockers normalized Ca++-channel function in failing myocardium. Remote myocardium in the current study may be regarded as myocardium with relatively preserved myocyte function as compared to adjacent and dysfunctional regions.
Figure 3. Relative contributions of dysfunctional, adjacent and remote tissue to overall systolic wall thickening changes after treatment. Note the inverse regional contributions: remote tissue contributed most to the effect of β-blocker treatment (A), whereas dysfunctional segments contributed mainly to the effect of revascularization (B).

(A) Beta-blocker treatment

(B) Revascularization
However, in remote tissue, myocardial hypertrophy may develop when excessive pressure or volume overload is imposed to sustain the burden of a dysfunctional segment 27. The remote hypertrophied tissue may appear to contract normally, but could in fact represent ‘pseudonormalized’ myocardium. Therefore, the relatively mildly failing remote myocardium can still show a positive response to restoration of the Ca$^{++}$-channel function by administration of β-blockers, whereas the adjacent and dysfunctional tissue cannot. Furthermore, recent data demonstrated that the effect of β-blocker therapy could be predicted by the increase in LVEF during low-dose dobutamine infusion 28. Since dobutamine is a β-receptor agonist, it may be able to temporarily mimic sympathetic nervous system stimulation, and predict the effect of β-blockers on LVEF. Interestingly, the regional response pattern after β-blocker therapy in the current study (Figure 2C) is similar to the regional response to dobutamine in β-blocker treated patients (left upper panel). The latter observation supports the hypothesis that low-dose dobutamine infusion in patients with chronic ischemic LV dysfunction may predict clinical outcome after β-blocker therapy 28.

Stepwise multivariate analysis in revascularization patients revealed that improvement in LVEF was mainly related to improvement in function of the dysfunctional and adjacent myocardial segments. This observation is in agreement with data obtained in previous studies 29,30. Recovery of hibernating myocardium occurs after successful revascularization 11,31,32. In the present study, no improvement in wall thickening was noted in the remote region in the revascularization patients. The latter finding may be explained by the fact that only blood flow to dysfunctional and surrounding adjacent tissue is restored. As a result, no short-term improvement in function can be expected in the remote area. An interesting finding in the present study was that adjacent myocardium also contributed significantly to the improvement of global systolic function after revascularization therapy.

Conclusion

In patients with chronic ischemic LV dysfunction, β-blocker therapy or revascularization resulted in a similar improvement of global systolic LV function. However, after β-blocker therapy, improved global systolic function was mainly related to improved contraction of remote myocardium, whereas after revascularization the dysfunctional and adjacent regions contributed predominantly to the improved global systolic function.
References
1. American Heart Association. Heart Disease and Stroke Statistics, 2005 Update. American Heart Association. 2005.
2. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 1999;353:2001-07.
3. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 1999;353:9-13.
4. Packer M, Coats AJ, Fowler MB, Katus HA, Krum H, Mohacsi P et al. Effect of carvedilol on survival in severe chronic heart failure. N. Engl. J. Med. 2001;344:1651-58.
5. O’Keefe JH, Jr., Magalski A, Stevens TL, Bresnahan DR, Jr., Alaswad K, Krueger SK et al. Predictors of improvement in left ventricular ejection fraction with carvedilol for congestive heart failure. J. Nucl. Cardiol. 2000;7:3-7.
6. Bello D, Shah DJ, Farah GM, Di Luzio S, Parker M, Johnson MR et al. Gadolinium cardiovascular magnetic resonance predicts reversible myocardial dysfunction and remodeling in patients with heart failure undergoing β-blocker therapy. Circulation 2003;108:1945-53.
7. Eichhorn EJ, Grayburn PA, Mayer SA, St John SM, Appleton C, Plehn J et al. Myocardial contractile reserve by dobutamine stress echocardiography predicts improvement in ejection fraction with β-blockade in patients with heart failure: the β-blocker Evaluation of Survival Trial (BEST). Circulation 2003;108:2336-41.
8. Seghatol FF, Shah DJ, Diluzio S, Bello D, Johnson MR, Cotts WG et al. Relation between contractile reserve and improvement in left ventricular function with β-blocker therapy in patients with heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am. J. Cardiol. 2004;93:854-59.
9. Bax JJ, Poldermans D, Elhendy A, Cornel JH, Boersma E, Rambaldi R et al. Improvement of left ventricular ejection fraction, heart failure symptoms and prognosis after revascularization in patients with chronic coronary artery disease and viable myocardium detected by dobutamine stress echocardiography. J. Am. Coll. Cardiol. 1999;34:163-69.
10. Nagueh SF, Vaduganathan P, Ali N, Blaustein A, Verani MS, Winters WL Jr. et al. Identification of hibernating myocardium: comparative accuracy of myocardial contrast echocardiography, rest-redistribution thallium-201 tomography and dobutamine echocardiography. J. Am. Coll. Cardiol. 1997;29:985-93.
11. Rahimtoola SH. From coronary artery disease to heart failure: role of the hibernating myocardium. Am. J. Cardiol. 1995;75:16E-22E.
12. Senior R, Lahiri A, Kaul S. Effect of revascularization on left ventricular remodeling in patients with heart failure from severe chronic ischemic left ventricular dysfunction. Am. J. Cardiol. 2001;88:624-29.
13. Nagel E, Lehmkuhl HB, Bocksch W, Klein C, Vogel U, Frantz E et al. Non-invasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 1999;99:763-70.

14. Bogaert JG, Bosmans HT, Rademakers FE, Bellon EP, Herregods MC, Verschakelen JA et al. Left ventricular quantification with breath-hold MR imaging: comparison with echocardiography. MAGMA. 1995;3:5-12.

15. Katz J, Milliken MC, Stray-Gundersen J, Buja LM, Parkey RW, Mitchell JH et al. Estimation of human myocardial mass with MR imaging. Radiology 1988;169:495-98.

16. Pattynama PM, Lamb HJ, van der Velde EA, Van Der Wall EE, de Roos A. Left ventricular measurements with cine and spin-echo MR imaging: a study of reproducibility with variance component analysis. Radiology 1993;187:261-68.

17. Yang PC, Kerr AB, Liu AC, Liang DH, Hardy C, Meyer CH et al. New real-time interactive cardiac magnetic resonance imaging system complements echocardiography. J.Am.Coll.Cardiol. 1998;32:2049-56.

18. Wellnhofer E, Olariu A, Klein C, Grafe M, Wahl A, Fleck E et al. Magnetic resonance low-dose dobutamine test is superior to SCAR quantification for the prediction of functional recovery. Circulation 2004;109:2172-74.

19. Poole-Wilson PA, Swedberg K, Cleland JG, Di Lenarda A, Hanrath P, Komajda M et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet 2003;362:7-13.

20. Lamb HJ, Doornbos J, van der Velde EA, Knuit MC, Reiber JH, de Roos A. Echo planar MRI of the heart on a standard system: validation of measurements of left ventricular function and mass. J.Comput.Assist.Tomogr. 1996;20:942-49.

21. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539-42.

22. Holman ER, Buller VG, de Roos A, van der Geest R, Baur LH, van der LA et al. Detection and quantification of dysfunctional myocardium by magnetic resonance imaging. A new three-dimensional method for quantitative wall-thickening analysis. Circulation 1997;95:924-31.

23. Oshinski JN, Han HC, Ku DN, Pettigrew RI. Quantitative prediction of improvement in cardiac function after revascularization with MR imaging and modeling: initial results. Radiology 2001;221:515-22.
24. Baer FM, Theissen P, Schneider CA, Voth E, Sechtem U, Schicha H et al. Dobutamine magnetic resonance imaging predicts contractile recovery of chronically dysfunctional myocardium after successful revascularization. J.Am.Coll.Cardiol. 1998;31:1040-48.

25. Reiken S, Gaburjakova M, Gaburjakova J, He Kl KL, Prieto A, Becker E et al. β-adrenergic receptor blockers restore cardiac calcium release channel (ryanodine receptor) structure and function in heart failure. Circulation 2001;104:2843-48.

26. Reiken S, Wehrens XH, Vest JA, Barbone A, Klotz S, Mancini D et al. β-blockers restore calcium release channel function and improve cardiac muscle performance in human heart failure. Circulation 2003;107:2459-66.

27. Krayenbuehl HP, Hess OM, Schneider J, Turina M. Physiologic or pathologic hypertrophy. Eur.Heart J. 1983;4 Suppl A:29-34.

28. Kaandorp TA, Lamb HJ, Bax JJ, Boersma E, Viergever EP, Van Der Wall EE et al. Prediction of beneficial effect of β blocker treatment in severe ischaemic cardiomyopathy: assessment of global left ventricular ejection fraction using dobutamine stress cardiovascular magnetic resonance. Heart 2005;91:1471-72.

29. Baer FM, Voth E, Schneider CA, Theissen P, Schicha H, Sechtem U. Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and positron emission tomography with [18F]fluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability. Circulation 1995;91:1006-15.

30. Bax JJ, Cornel JH, Visser FC, Fioretti PM, van Lingen A, Huitink JM et al. Prediction of improvement of contractile function in patients with ischemic ventricular dysfunction after revascularization by fluorine-18 fluorodeoxyglucose single-photon emission computed tomography. J.Am.Coll.Cardiol. 1997;30:377-83.

31. Rahimtoola SH. The hibernating myocardium. Am.Heart J. 1989;117:211-21.

32. Gunning MG, Anagnostopoulos C, Knight CJ, Pepper J, Burman ED, Davies G et al. Comparison of 201TI, 99mTc-tetrofosmin, and dobutamine magnetic resonance imaging for identifying hibernating myocardium. Circulation 1998;98:1869-74.
