VIRTUAL BETTI NUMBERS OF COMPACT LOCALLY
SYMMETRIC SPACES

T. N. VENKATARAMANA

Abstract. We show that the virtual Betti number of a compact
locally symmetric space with arithmetic fundamental group is ei-
ther 0 or else is infinite.

1. Introduction

Let G be a connected non-compact linear Lie group with finite cen-
tre, such that G is simple modulo its centre. Let Γ be a torsion free
cocompact arithmetic (not necessarily congruence) subgroup in G and
let $i \geq 0$ be an integer. Consider the direct limit cohomology group
$$H^i = \lim H^i(\Delta, \mathbb{C})$$
where the direct limit is over all finite index subgroups Δ in Γ; we
emphasize that Γ is only assumed to be an arithmetic subgroup of G
and is not assumed to be a congruence subgroup of G. The dimension
of the direct limit \mathcal{H}^i as a \mathbb{C}-vector space is called the virtual i-th
Betti number of Γ.

Theorem 1. If the direct limit \mathcal{H}^i is finite dimensional, then
$\mathcal{H}^i = H^i(G_u/K, \mathbb{C})$ where G_u/K is the compact dual of the symmetric space
G/K of G.

As a special case we recover the following result of Cooper, Long and
Reid (see [CLR]).

Corollary 1. If M is a compact arithmetic hyperbolic 3-manifold with
non-vanishing first Betti number, then M has infinite virtual first Betti
number.

Proof. Take $G = SL_2(\mathbb{C})$ in Theorem 1, and observe that the compact
dual $G_u/K = S^3$ has vanishing first cohomology. □
The present note was motivated by the recent preprint [CLR] of Cooper, Long and Reid, where they prove Corollary 1, by using crucially, the fact that M is a hyperbolic 3-manifold. We show that this is true in greater generality. The point of Theorem 1 is that the group Γ is not assumed to be a congruence subgroup; if Γ is a congruence subgroup, this is a result of A. Borel (see [B]).

2. Proof of Theorem 1

Let $K \subset G$ be a maximal compact subgroup; write \mathfrak{k} and \mathfrak{g} for the complexified Lie algebras of K and G. We have the Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$. Note that Γ (and hence the finite index subgroup Δ) is torsion-free and cocompact in G. We then get by the Matsushima-Kuga formula (see [BoW]),

\[H^i(\Delta, \mathbb{C}) = \text{Hom}_K(\wedge^i \mathfrak{p}, C^\infty(\Delta \setminus G)(0)). \]

In this formula, $C^\infty(\Delta \setminus G)(0)$ denotes the space of complex valued smooth functions on the manifold $\Delta \setminus G$ which are annihilated by the Casimir of \mathfrak{g} (the latter space in the Matsushima-Kuga formula may be identified with the space of harmonic differential forms of degree i on $\Delta \setminus G/K$ with respect to the G-invariant metric on the symmetric space G/K).

Taking direct limits in the Matsushima-Kuga formula yields the equality

\[H^i = \lim H^i(\Delta, \mathbb{C}) = \text{Hom}_K(\wedge^i \mathfrak{p}, \bigcup_{\Delta \subset \Gamma} C^\infty(\Delta \setminus G)(0)). \]

Here, Δ runs through finite index subgroups of Γ. Consider the space

\[\mathcal{F} = \bigcup_{\Delta \subset \Gamma} C^\infty(\Delta \setminus G)(0). \]

On the space \mathcal{F}, G acts on the right (since the Casimir commutes with the G-action).

Now, Γ is an arithmetic subgroup of G. That is, there is a semi-simple (simply connected) algebraic group G defined over \mathbb{Q} and a smooth surjective homomorphism $\pi : G(\mathbb{R}) \to G$ with compact kernel such that $\pi(G(\mathbb{Z}))$ is commensurable to Γ. We define $G(\mathbb{Q})$ simply to mean the image group $\pi(G(\mathbb{Q}))$. It follows from weak approximation ([PR]) that $G(\mathbb{Q})$ is dense in G.
Now, there is an action on \mathcal{F} by $G(\mathbb{Q})$ on the left (which therefore commutes with the right G action), as follows. Given a function $\phi \in \mathcal{F}$ and given an element $g \in G(\mathbb{Q})$, the function ϕ is left Δ-invariant for some finite index subgroup Δ in Γ. Consider the function $g(\phi) = x \mapsto \phi(g^{-1}x)$. This function is left-invariant under $g\Delta g^{-1}$ and hence under $\Gamma \cap g\Delta g^{-1}$; since $g \in G(\mathbb{Q})$, it follows that g commensurates Γ and hence that the subgroup $\Gamma \cap g\Delta g^{-1}$ is of finite index in Γ. Therefore, $g(\phi)$ lies in \mathcal{F}. This defines an action of $G(\mathbb{Q})$ on the direct limit \mathcal{H}^i. Note that under this action, the action of Δ on the cohomology group $H^i(\Delta, \mathbb{C})$ is trivial.

Suppose that \mathcal{H}^i is finite dimensional. Since \mathcal{H}^i is a direct limit of finite dimensional vector spaces, it follows that it coincides with one of them. Therefore there exists a finite index subgroup Δ of Γ such that

$$\mathcal{H}^i = H^i(\Delta, \mathbb{C}).$$

The last sentence of the foregoing paragraph says that while $G(\mathbb{Q})$ acts on $H^i(\Delta, \mathbb{C})$, the action by Δ is trivial. Hence the action by the normal subgroup N generated by Δ in $G(\mathbb{Q})$ is also trivial. The density of $G(\mathbb{Q})$ in G is easily seen to imply the density of the normal subgroup N in G. Thus the image of $\wedge^4 p$ under any element of \mathcal{H}^i (viewed via the Matsushima-Kuga formula as a (K-equivariant) homomorphism of $\wedge^4 p$ into \mathcal{F}), goes into G invariant functions in $C^\infty(\Delta \backslash G)$, i.e., the constant functions. But $Hom_K(\wedge^4 p, \mathbb{C})$ is the space of harmonic differential forms on the compact dual G_u/K, and is therefore isomorphic to $H^4(G_u/K, \mathbb{C})$.

This proves Theorem 1.

Remark. If Γ and all the subgroups Δ are congruence subgroups, then one sees at once from strong approximation, that the above $G(\mathbb{Q})$ action on the direct limit translates into the action of the “Hecke Operators” $G(A_f)$ (A_f are the ring of finite adeles) and amounts to the proof of Borel in [13]. In this sense, the proof of Theorem 1 is an extension of Borel’s proof to the non-congruence case.

Acknowledgement: The author gratefully acknowledges the hospitality of the Forschungsinstitut für Mathematik, ETH, Zurich in November 2006, where this note was written.

References

[CLR] D.Cooper, D.D. Long and A.W.Reid, On the virtual Betti numbers of arithmetic hyperbolic 3-manifolds, preprint October 2, 2006.
[B] A. Borel, Cohomologie de sous-groupes discrets et representations de groupes semi-simples, Asterisque, **32-33** (1976), 73-112.

[BoW] A. Borel and N. R. Wallach, Continuous cohomology, discrete subgroups and representations of reductive groups, Annals of Math. Studies, **94**, Princeton Univ. Press, Princeton, 1980.

[PR] V.P. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, 1990.

SCHOOL OF MATHEMATICS, TATA INSTITUTE OF FUNDAMENTAL RESEARCH, HOMI BHABHA ROAD, BOMBAY - 400 005, INDIA.

E-mail address: venky@math.tifr.res.in