Utility of malignancy markers in fine-needle aspiration cytology of thyroid nodules: comparison of Hector Battifora mesothelial antigen-1, thyroid peroxidase and dipeptidyl aminopeptidase IV

The purpose of this study was to compare the diagnostic interest of Hector Battifora mesothelial antigen-1 (HBME-1), thyroid peroxidase (TPO), and dipeptidyl aminopeptidase IV (DPP4) in thyroid fine-needle aspirates obtained from 200 resected thyroid lesions (55 colloid nodules, 54 follicular adenomas, 59 papillary cancers, and 32 follicular carcinomas). Hector Battifora mesothelial antigen-1 or TPO expression (% positive cells) and DPP4 staining score (12-point scale) were evaluated. Receiver operating characteristic (ROC) curves were plotted and optimal cutoff values for diagnosing malignancy were determined. The TPO ROC curve was consistently higher than the HBME-1 ROC curve. The TPO curve was also higher than the DPP4 curve with regard to sensitivity, but dipped below the DPP4 curve with regard to specificity. Using a cutoff value of <80% positive cells for TPO, >10% positive cells for HBME-1, and staining score ≥1 for DPP4, sensitivity to specificity ratios were 98–83% for TPO, 90–60% for HBME-1, and 88–80% for DPP4. Two particularly interesting findings of this study were the low negative likelihood ratio of TPO (0.02) allowing highly reliable exclusion of malignancy and the 100% specificity of DPP4 staining scores = 12. Due to poor performance on follicular lesions, HBME-1 showed no advantage over TPO or DPP4.

Keywords: Hector Battifora mesothelial antigen-1; thyroid peroxidase; dipeptidyl aminopeptidase IV; fine-needle aspiration cytology; thyroid nodule
(De Micco et al, 2000; Di Cristofaro et al, 2006). According to gene expression profiling analysis in thyroid cancer vs non-cancer tissue, TPO was one of the top 12 candidate markers in terms of diagnostic utility (Griffith et al, 2006). The TPO immunoreactivity is reduced in malignant cells especially in response to antibodies reacting with the native form such as the monoclonal antibody 47 (MoAb 47) (De Micco et al, 1991). Previous studies (De Micco et al, 1994a; Faroux et al, 1997; De Micco et al, 1998; Christensen et al, 2000) have confirmed the value of TPO ICC using MoAb 47 on smears.

Dipeptidyl aminopeptidase IV is an exopeptidase identical to cluster antigen CD26. Encouraging results have been obtained on smears.

et al

and DPP4 for diagnosing thyroid malignancy on FNA smears.

The purpose of this report is to compare the utility of HBME-1, TPO, and DPP4 in thyroid FNA.

Hector Battifora mesothelial antigen-1 is a monoclonal antibody raised against cultured mesothelial cells. It reacts with an unknown antigen on the surface of mesothelial cells and in various adenocarcinomas and sarcomas (Miettinen and Karkkainen, 1996). Hector Battifora mesothelial antigen-1 immunohistochemistry is usually negative in benign thyroid lesions and positive on carcinomas. Most studies using HBME-1 for diagnosis of thyroid tumours have been performed on tissue samples (Mai et al, 2002; Ito et al, 2005; Papotti et al, 2005; Prasad et al, 2005). A few studies using FNA products have been carried out on cell blocks or thin layers (Sack et al, 1997; van Hoven et al, 1998; Rossi et al, 2005; Saggiorato et al, 2005). We have developed an HBME-1 staining technique for air-dried thyroid FNA smears. The purpose of this report is to compare the utility of HBME-1, TPO, and DPP4 for diagnosing thyroid malignancy on FNA smears.

MATERIALS AND METHODS

FNA smears

Smears were made using FNA samples obtained from 200 thyroid lesions investigated and removed in the Department of Endocrine Surgery from 1993 to 2006 (Timone University Hospital, Marseilles, France). There were 55 benign colloid nodules (CNs), 54 follicular adenomas (FAs) including 19 follicular variants (PCFVs), and 32 follicular carcinomas (FCs) including nine Hurthle cell carcinomas. These tumours were hyperfunctioning. Consecutive cases were selected from hospital files according to the WHO’s classification-based registered histological diagnosis and to the availability of FNA material.

Pre-operative work-up included FNA in all patients. Thyroid peroxidase and DPP4 analysis were routinely performed on three blocks or thin layers (Sack et al, 1997; van Hoven et al, 1998; Rossi et al, 2005; Saggiorato et al, 2005). We have developed an HBME-1 staining technique for air-dried thyroid FNA smears. The purpose of this report is to compare the utility of HBME-1, TPO, and DPP4 for diagnosing thyroid malignancy on FNA smears.

TPO and HBME-1 immunocytochemistry

After neutralisation of endogenous peroxidase in a phosphate-buffered saline (PBS) solution containing 0.1% hydrogen peroxide (H₂O₂) for 5 min, slides were incubated overnight at +4°C with anti-TPO monoclonal antibody (MoAb 47 clone; Dako, Glostrup, Denmark) diluted to 1:100 (2 μg ml⁻¹). Revelation was performed using a streptavidin–biotin–peroxidase kit with 3,3'-diaminobenzidine (LSAB; DAKO, Glostrup, Denmark). The percentage of positive cells was evaluated. Cells exhibiting an abnormal staining pattern, that is, low intensity with coarse granules at the periphery of the cytoplasm with no perinuclear ring, were not considered as positive. Positive controls were performed on smears from operated benign nodules. Negative controls were performed by omitting the primary antibody.

Primary anti-HBME antibody was used at a dilution of 1:100 (1 μg ml⁻¹) and the reaction was performed using an automated immunoperoxidase procedure in the Ventana Benchmark device (Ventana kit; Ventana, Tucson, AZ, USA). Results were evaluated without knowledge of the final histological diagnosis and that of the results of TPO and DPP4 reactions. Two independent observers (CDM and VK) evaluated the percentage of positive cells, and the final results corresponded to the mean of the assessments. Smears using the same techniques on PCs were performed as positive controls.

DPP4 cytoenzymology

Detection of DPP4 activity was performed as follows:

- fixation for 1 min in a mixture of formalin, cold acetone, and PBS (0.15 mol l⁻¹, PH 7.4) at a ratio of 1:40–10; respectively;
- rinsing with water;
- immersion for 30 min at room temperature in a solution containing 3 mg glycyl proline 4-b naphthylamide, 0.25 ml N,N-dimethylformamide, and 5 mg fast blue B salt in 4.6 ml sodium phosphate buffer (0.1 mol l⁻¹, PH 7.2);
- rinsing with water;
- counterstaining with haematoxylin for 10s and mounting with water.

Positive reactions are characterized by contrasted red staining of the cytoplasm and plasma membrane. Staining was scored using a discontinuous 0–12-point scale as described previously (Aratake et al, 1992). Positive controls were performed on smears from operated malignant nodules.

Statistical analysis

SPSS software (version 13.0, 2004 SPSS Inc., Chicago, IL, USA) was used for statistical analysis. A P < 0.05 was considered statistically significant. Receiver operating characteristic (ROC) curves were constructed to compare the diagnostic performance of the three markers and the area under the ROC curve (AUC) was computed (Hanley and McNeil, 1982). Cutoff values resulting in optimal sensitivity (Se) to specificity (Sp) ratios were determined based on the ROC curves. In addition to Se and Sp, positive and negative likelihood ratios (LR+) and (LR-) were calculated.

RESULTS

Thyroid peroxidase ICC and DPP4 staining performed on control smears obtained from nodules after surgical resection showed no significant differences as compared with pre-surgically obtained FNA samples. Indeed, the higher proportion of epithelial to red blood cells observed in post-surgical FNAs did not modify the pattern of staining of the markers or the ratio of positive to negative epithelial cells. Reactions for TPO, DPP4, and HBME1 performed on control slides stored at +4 °C for 20°C for up to 10 years were also indistinguishable.

Results obtained with TPO, HBME-1, and DPP4, based on definitive histological diagnosis, are shown in Tables 1 and 2.
HBME-1, TPO and DPP4 in thyroid FNA
C de Micco et al

Table 1 Thyroid peroxidase and HBME immunocytochemistry on FNA smears from 200 thyroid tumours

Histology	Ab	0	10	20	30	40	50	60	70	80	90	100
CN (n = 55)	TPO	1	0	1	0	0	2	0	0	5	3	43
	HBME	32	5	8	0	3	1	1	0	4	0	1
FA (n = 54)	TPO	1	0	0	1	3	4	5	1	13	3	23
	HBME	19	9	5	0	4	4	2	2	4	1	4
PC (n = 59)	TPO	28	13	4	0	2	6	2	2	0	0	2
	HBME	3	2	2	1	2	1	2	2	13	2	29
FC (n = 32)	TPO	4	7	7	4	4	0	0	0	4	0	0
	HBME	4	0	0	0	1	1	1	1	5	1	18

CN = colloid nodule, FA = follicular adenoma, PC = follicular carcinoma, FNA = fine-needle aspiration, HBME = Hector Battifora mesothelial antigen, PC = papillary carcinoma. The table presents the number of cases.

Table 2 Scores of DPP4 activity according to histological diagnoses

Histology	Staining scores							
Ab	0	1	2	3	4	6	9	12
CN (n = 55)	43	2	8	2	0	0	0	0
FA (n = 54)	41	1	2	2	6	1	0	0
PC (n = 59)	4	0	1	2	1	7	7	37
FC (n = 32)	6	6	3	5	1	5	3	5

CN = colloid nodule, DPP4 = dipeptidyl aminopeptidase IV, FA = follicular adenoma, FC = follicular carcinoma, PC = papillary carcinoma. The table presents the number of cases.

Overall, clearly positive or negative reactions were obtained in 146–163 of the cases depending on the marker used. However, intermediate reactions with overlapping of benign and malignant tumours were observed in other cases.

Immunostaining of TPO was highly positive (≥80% positive cells) in 90 (51 CNs and 39 FAs) out of the 109 benign nodules. The reaction was characterised by dark-brown granular staining of the cytoplasm with halo around nuclei (Figure 1A). Two nodules (one CN and one FA) were negative and 17 (three CNs and 14 FAs) exhibited varying percentages of positive cells. Three positive FAs contained LNFPTCs and four contained Hürthle cells. The TPO reaction was positive for TPO (≥10%) in 52 out of the 91 carcinomas (41 PCs and 11 FAs) and clearly positive (≥4) in seven FAs. Intermediate scores were obtained in the remaining 15 cases. Three positive benign nodules contained LNFPTCs and three were made of Hürthle cells. In the 91 carcinomas, scores ≥6 were obtained in 62 cases (Figure 1C). However, 11 carcinomas (four PCs and seven FAs) had scores ≤1. Three PCs were PCFVs, three FAs contained Hürthle cells, two were minimally invasive, and one was a poorly differentiated insular tumour.

To determine the best cutoff values for diagnosis of malignancy, ROC curves were constructed and analysed (Figure 2). The AUC was 0.95 (IC 95%: 0.92–0.98) for TPO, 0.90 (IC 95%: 0.86–0.95) for DPP4, and 0.86 (IC 95%: 0.81–0.92) for HBME. These differences were not significant. However, the TPO ROC curve was always entirely above the HBME-1 ROC curve and above the DPP4 ROC curve in the segment corresponding to high sensitivity. It crossed the DPP4 ROC curve to get under it in the segment corresponding to high specificity.

Staining scores of DPP4 were negative or light (≤1) in 87 out of the 109 benign nodules, including 45 CNs and 42 FAs, and clearly positive (≥4) in seven FAs. Intermediate scores were obtained in the remaining 15 cases. Three positive benign nodules contained LNFPTCs and three were made of Hürthle cells. In the 91 carcinomas, scores ≥6 were obtained in 62 cases (Figure 1C). However, 11 carcinomas (four PCs and seven FAs) had scores ≤1. Three PCs were PCFVs, three FAs contained Hürthle cells, two were minimally invasive, and one was a poorly differentiated insular tumour.

Staining scores of DPP4 were negative or light (≤1) in 87 out of the 109 benign nodules, including 45 CNs and 42 FAs, and clearly positive (≥4) in seven FAs. Intermediate scores were obtained in the remaining 15 cases. Three positive benign nodules contained LNFPTCs and three were made of Hürthle cells. In the 91 carcinomas, scores ≥6 were obtained in 62 cases (Figure 1C). However, 11 carcinomas (four PCs and seven FAs) had scores ≤1. Three PCs were PCFVs, three FAs contained Hürthle cells, two were minimally invasive, and one was a poorly differentiated insular tumour.

Overall, clearly positive or negative reactions were obtained in 146–163 of the cases depending on the marker used. However, intermediate reactions with overlapping of benign and malignant tumours were observed in other cases.

Immunostaining of TPO was highly positive (≥80% positive cells) in 90 (51 CNs and 39 FAs) out of the 109 benign nodules. The reaction was characterised by dark-brown granular staining of the cytoplasm with halo around nuclei (Figure 1A). Two nodules (one CN and one FA) were negative and 17 (three CNs and 14 FAs) exhibited varying percentages of positive cells. Three positive FAs contained LNFPTCs and four contained Hürthle cells. The TPO reaction was positive for TPO (≥10%) in 52 out of the 91 carcinomas (41 PCs and 11 FAs) and clearly positive (≥4) in seven FAs. Intermediate scores were obtained in the remaining 15 cases. Three positive benign nodules exhibited LNFPTCs and six were made of Hürthle cells. Strong membrane staining sometimes associated with a diffuse cytoplasmic reaction involving more than 70% of cells was observed in 71 out of the 91 carcinomas (Figure 1B). Weaker intermediate staining (20–70% positive cells) was observed in 10 PCs and four FAs. Five PCs and four FAs showed low-grade staining (≤10%). Four out of these five PCs were PCFVs and one contained multiple foci of microcarcinomas within a CN. Out of the four negative FAs, one was made of Hürthle cells, two were minimally invasive, and one was highly invasive and poorly differentiated.

DISCUSSION

Thyroid peroxidase ICC using MoAb 47 and DPP4-activation detection were the first malignancy markers reported to have a diagnostic significance on thyroid FNA smears (Aratake et al., 1992; De Micco et al., 1994a). In large series, TPO has been shown to have Se of 98% and Sp of 80% (Faroux et al., 1997; De Micco et al., 1998; Christensen et al., 2000). Dipeptidyl aminopeptidase IV
is less sensitive, especially for FC, but more specific. As the staining method is simple to perform on air-dried smears and is inexpensive, we routinely carry out DPP4 analysis in conjunction with TPO ICC at our institution to assist thyroid FNA.

A number of other molecules have been described later on as malignancy markers for thyroid carcinoma. Three of them, that is, HBME-1, galectine-3 (GAL3), and cytokeratine-19 (CK19), have been tried on cytological material and are considered useful [van Hoeven et al, 1998; Saggiorato et al, 2005; Rossi et al, 2006]. However, almost all these studies were performed on cell blocks or thin-prep samples because of poor results on conventional smears. At our institution, unsuitability for use on FNA smears has been a major drawback for the routine use of HBME-1, GAL3, and CK19 when compared with TPO and DPP4. Indeed, the need to perform cell blocks or thin-prep preparations in addition to smears introduced an excessive increase in both procedure cost and time, when two methods efficient on smears were already available. Recently, we successfully developed an HBME-1 staining technique on FNA smears using an automated immunoperoxidase procedure in the Ventana Benchmark device. Then, comparison with other markers performed on FNA smears became possible.

In the present series, we compared the performance of TPO, DPP4, and HBME-1 on FNA smears obtained from 200 thyroid nodules before or after surgical resection. We performed ROC analysis to compare the results and determine optimal cutoff values for diagnosis of malignancy (Hanley and McNeil, 1982). Positive and negative LR were calculated for a better estimation of the diagnostic value independent of the proportion of histological types of tumours in the series (Jaeschke et al, 1994).

Fine-needle aspiration biopsy performed on resected thyroid nodules represents a useful tool for the analysis of molecular markers. Except for varying amount of blood, the properties of smears taken before and after surgical resection are basically identical. In our experience, thyroid FNA stored at −20°C for more than 10 years retained their morphology and immunostaining properties for all the investigated antigens (thyroglobulin, thyrocalcitonin, thyroid transcription factor 1, TPO, and HBME-1), provided that they were performed and frozen immediately after resection. As our results of HBME ICC on FNAC obtained on resected nodule are very similar to those previously reported on FNAC obtained percutaneously (Sack et al, 1997; Rossi et al, 2005), it is reasonable to assume that these differences in FNA sampling methods had no significant influence on ICC.

Results with TPO were similar to those in previous studies (De Micco et al, 1994a, b, 1999; Faroux et al, 1997; Christensen et al, 2000). Optimal performances for diagnosing malignancy, with Se and Sp...
of 98% and Sp of 83%, were obtained using a cutoff value of < 80% positive cells. All FCs and 72% of FAs were correctly diagnosed. Almost half of the false-positive results concerned follicular tumours with either LNFPCT or Hürtle features. This finding corroborates molecular studies showing that these borderline tumours may represent an intermediate form between benign and malignant tumours (Vasko et al, 2004). Two false negatives were heterogeneous FVPTCs occurring in benign CNs. The errors were probably due to inadequate sampling, resulting in discrepancies from slide to slide.

As previously reported (Zoro et al, 1996), DPP4 was reliable for diagnosis of classical PCs, but the cutoff for diagnosing malignancy (≥ 1) was lower. The high proportion of malignant tumours in this series may account for this difference. Sensitivity of DPP4 for malignant follicular tumours including the FVPTC was low with a misdiagnosis rate of 20 – 30%, especially with tumours presenting Hürtle or tall-cell features. This high false-negative rate reduces the utility of DPP4 for diagnosis of follicular tumours. Despite this limitation, we still consider DPP4 useful because positive results are highly specific.

To our knowledge, all but two previous studies of HBME on thyroid FNA (Sack et al, 1997; Rossi et al, 2005) were carried out on cell blocks (van Hoeven et al, 1998; Saggiorato et al, 2005). However, overall results obtained on fresh tissue, including our study, and cell blocks are rather concordant. The sensitivity of HBME-1 staining was excellent (≥90%) for classical PC (van Hoeven et al, 1998; Ito et al, 2005; Rossi et al, 2005), disappointing for PCFV, and poor (<65%) for follicular and undifferentiated cancers (Cheung et al, 2001; Mai et al, 2005; Ito et al, 2005; Prasad et al, 2005). The reported specificity of HBME-1 staining ranged from 70% to more than 90% (Cheung et al, 2001; Prasad et al, 2005; Saggiorato et al, 2005).

Thyotoxic hyperplasia was consistently negative (Rossi et al, 2006) whereas nodular goitres were positive in up to 17% of cases (Ito et al, 2005). Significant reactions were also reported in 25% of thyroiditis (Prasad et al, 2005), 5 – 10% of benign follicular tumours devoid of atypical features, and up to 65% with LNFPCT or Hürtle cell features (Mai et al, 2002; Papotti et al, 2005; Prasad et al, 2005; Scognamiglio et al, 2006). The fact that specificity in our study was in the lower range may be due to a high proportion of atypical or Hürtle cell tumours and absence of hyper-functional nodules.

Receiver operating characteristic analysis showed that all three markers improved the performance of thyroid FNA, with AUCs above 0.8 in comparison with values between 0.58 and 0.74 obtained in a recent analysis in which performance of 11 cytopathologists was measured using AUC (Raab et al, 2006). Comparison of the three ROC curves indicated that the sensitivity of TPO was superior to that of HBME-1 and DPP4 and its specificity was also superior to that of HBME-1. This difference was mainly due to the greater ability of TPO to differentiate benign from malignant follicular proliferations, including PCFV and Hürtle cell tumours. As a result, LR was significantly lower for TPO ICC (0.02) than either DPP4 (0.12) or HBME-1 (0.17). According to Jaeschke et al (1994), LR of values of less than 0.1 are highly significant, whereas values of 0.1 – 0.2 are only moderately conclusive.

It should be noted that a previous study comparing the diagnostic value of HBME1 and TPO on cell blocks yielded different results, that is, lower Se (80%) and higher Sp (96 and 86%, respectively) for both markers (Saggiorato et al, 2005). Several possible explanations can be proposed for this difference. The cell-block methodology may not have been sensitive enough for precise determination of the percentage of positive cells. Evaluation of immunostaining was semiquantitative and ROC analysis was not used to compare marker performance. Cutoff values for the diagnosis of malignancy were determined empirically. The cutoff value retained to separate benign from malignant tumours based on TPO ICC in the study by Saggiorato et al was 50% of positive cells, whereas the cutoff value determined to provide the best results in previous ROC analysis as in the present study was 80% of positive cells (Faroux et al, 1997).

This study comparing malignancy marker staining on smears from thyroid FNA confirms our previous findings that TPO ICC is the most sensitive method for diagnosis of malignancy and enhances the specificity of standard cytology. Hector Battifora mesothelial antigen-1 ICC provides no advantage over TPO and assessment of the staining pattern is more difficult. Although its sensitivity is low, detection of DPP4 activity presents several advantages including 100% specificity for staining scores of 12.

REFERENCES

Aratake Y, Kotani T, Tamura K, Araki Y, Kuribayashi T, Konoe K, Ohtaki S (1992) Dipeptidylaminopeptidase IV staining of cytologic preparations to distinguish benign from malignant thyroid diseases. Am J Clin Pathol 96: 306 – 310

Baloch ZW, Fleisher S, LiVolsi VA, Gupta PK (2002) Diagnosis of ‘follicular neoplasm: a gray zone in thyroid fine-needle aspiration cytology. Diagn Cytopathol 26: 41 – 44

Cheung CC, Ezzat S, Freeman JL, Rosen IB, Asa SL (2001) Immunohistochemical diagnosis of papillary thyroid carcinoma. Mod Pathol 14: 338 – 342

Christensen L, Blichter-Toft M, Brandt M, Lange M, Sneppen SB, Ravnbaek J, Mollerup CL, Strange L, Jensen F, Kirkegaard J, Hansen HS, Sorensen SS, Feldt-Rasmussen U (2000) Thymoperoxidase (TPO) immunostaining of the solitary cold thyroid nodule. Clin Endocrinol 53: 161 – 169

Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, Mazzaferri EL, McFarlane CB, Sherman SI, Tuttle RM, The American Thyroid Association Guidelines Taskforce (2006) Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 16: 109 – 142

De Micco C, Carayon P, Conte Devolx B, Denizot A, Henry J (1998) Thyroid peroxidase (TPO) immunocytochemistry as a screening test for malignancy in thyroid cytology: a prospective evaluation in 1620 resected thyroid nodules. J Endocrinol Invest 21 (Suppl 4): 5

De Micco C, Kopf F, Vassko V, Grino M (2000) In situ hybridization and immunohistochemistry study of thyroid peroxidase expression in thyroid tumors. Thyroid 10: 109 – 115

De Micco C, Ruf J, Christian M, Gros N, Henry JF, Carayon P (1991) Immunohistochemical study of thyroid peroxidase in normal, hyperplastic and neoplastic human thyroid tissue. Cancer 67: 3036 – 3041

De Micco C, Vassko V, Garcia S, Zoro P, Denizot A, Henry J (1994b) Fine-needle aspiration of thyroid follicular neoplasms: diagnostic use of thyroid peroxidase immunocytochemistry with monoclonal antibody 47. Surgery 116: 1031 – 1035

De Micco C, Vassko V, Henry JF (1999) The value of thyroid peroxidase immunohistochemistry for preoperative fine-needle aspiration diagnosis of the follicular variant of papillary thyroid cancer. Surgery 126: 1200 – 1204

De Micco C, Zoro P, Garcia S, Skoog L, Tani E, Carayon P, Henry JF (1994a) Thyroid peroxidase immunodetection as a tool to assist diagnosis of thyroid nodules on fine needle biopsy. Eur J Endocrinol 131: 474 – 479

Di Cristofaro J, Silvy M, Lanteaume A, Marcy M, Carayon P, De Micco C (2006) Expression of TPO mRNA in thyroid tumors: quantitative PCR analysis and correlation with alterations of ret, Braf, ras and pax8 genes. Endocr Relat Cancer 13: 485 – 495

Ezlinger M, Wientch M, Jarzab B, Krohn K, Beck M, Lauter J, Gubala E, Fujarewicz K, Swierniak A, Paschke R (2006) Meta- and reanalysis of gene expression profiles of hot and cold thyroid nodules and papillary
thyroid carcinoma for gene groups. J Clin Endocrinol Metab 91(5): 1934 – 1942

Faroux MJ, Theobald S, Pluot M, Patey M, Menzies D (1997) Evaluation of the monoclonal antibody anti-thyroperoxidase MoAb47 in the diagnostic decision of cold thyroid nodules by fine-needle aspiration. Pathol Res Pract 193(1): 705 – 712

Finn SP, Smyth P, Cahill S, Streck C, O’Regan EM, Flavin R, Sherlock J, Howells D, Henfrey R, Cullen M, Toner M, Timon C, O’Leary JJ, Sheils OM (2007) Expression microarray analysis of papillary thyroid carcinoma and benign thyroid tissue: emphasis on the follicular variant and potential markers of malignancy. Virchows Arch 450: 249 – 260

Griffith OL, Melck A, Jones SJ, Wiseman SM (2006) Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol 24: 5043 – 5051

Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Diagn Radiol 143: 29 – 36

Ito Y, Yoshida H, Tomoda C, Miya A, Kobayashi K, Matsuzuka F, Kakudo K, Kuma K, Miyauchi A (2005) HBME-1 expression in follicular tumor of thyroid: an investigation of whether it can be used as a marker to diagnose follicular carcinoma. Anticancer Res 25: 179 – 182

Jaeschke R, Guyatt GH, Sackett D (1994) User’s guides to the medical literature. III. How to use an article about a diagnostic test. B What are the results and will they help me in caring for my patients? JAMA 271: 703 – 707

Lubitz CC, Ugras SK, Kazam JJ, Zhu B, Scognamiglio T, Chen YT, Fahey III TJ (2006) Microarray analysis of thyroid nodule fine-needle aspirates accurately classifies benign and malignant lesions. J Mol Diagn 8: 490 – 498; quiz 528

Mai KT, Bokhary R, Yazdi HM, Thomas J, Commons AS (2002) Reduced HBME-1 immunoreactivity of papillary thyroid carcinoma and papillary thyroid carcinoma-related neoplastic lesions with Hurthle cell and/or apocrine-like changes. Histopathology 40: 133 – 142

Miettinen M, Karkkainen P (1996) Differential reactivity of HBME-1 and CD15 antibodies in benign and malignant thyroid tumours. Preferential reactivity with malignant tumours. Virchows Arch 429: 213 – 219

Papotti M, Rodriguez J, De Pompa R, Bartolazzi A, Rosai J (2005) Galectin-3 and HBME-1 expression in well-differentiated thyroid tumors with follicular architecture of uncertain malignant potential. Mod Pathol 18: 541 – 546

Prasad ML, Pellegrata NS, Huang Y, Nagaraja HN, de la Chapelle A, Kloos RT (2005) Galectin-3, fibropectin-1, CITED-1, HBME1 and cytokeratin-19 immunohistochemistry is useful for the differential diagnosis of thyroid tumors. Mod Pathol 18: 48 – 57

Raab SS, Vrbin CM, Grzybicki DM, Sudilovsky D, Balassanian R, Zarbo RJ, Meier FA (2006) Errors in thyroid gland fine-needle aspiration. Am J Clin Pathol 125: 873 – 882

Rossi ED, Raffaelli M, Minimo C, Mule A, Lombardi CP, Vecchio FM, Fadda G (2005) Immunocytochemical evaluation of thyroid neoplasms on thin-layer smears from fine-needle aspiration biopsies. Cancer 105: 87 – 95

Rossi ED, Raffaelli M, Mule A, Miraglia A, Lombardi CP, Vecchio FM, Fadda G (2006) Simultaneous immunohistochemical expression of HBME-1 and galectin-3 differentiates papillary carcinomas from hyperfunctioning lesions of the thyroid. Histopathology 48: 795 – 800

Sack MJ, Astengo-Osuna C, Lin BT, Battifora H, LiVolsi VA (1997) HBME-1 immunostaining in thyroid fine-needle aspirations: a useful marker in the diagnosis of carcinoma. Mod Pathol 10: 668 – 674

Saggiorato E, De Pompa R, Volante M, Cappia S, Arecchi F, Dei Tos AP, Orlandi F, Papotti M (2005) Characterization of thyroid ‘follicular neoplasms’ in fine-needle aspiration cytological specimens using a panel of immunohistochemical markers: a proposal for clinical application. Endocr Relat Cancer 12: 305 – 317

Scognamiglio T, Hyjek E, Kao J, Chen YT (2006) Diagnostic usefulness of HBME1, galectin-3, CK19, and CITED1 and evaluation of their expression in encapsulated lesions with questionable features of papillary thyroid carcinoma. Am J Clin Pathol 126: 700 – 708

Tetzlaff MT, LiVolsi V, Baloch ZW (2006) Assessing the utility of a mutational assay for B-RAF as an adjacent to conventional fine needle aspiration of the thyroid gland. Adv Anat Pathol 13: 228 – 237

van Hoven KH, Kovatich AJ, Miettinnen M (1998) Immunocytochemical evaluation of HBME-1, CA 19-9, and CD-15 (Leu-M1) in fine-needle aspirates of thyroid nodules. Diagn Cytopathol 18: 93 – 97

Vasko VV, Gaudart J, Allasia C, Savchenko V, Di Cristofaro J, Saji M, Ringel MD, De Micco C (2004) Thyroid follicular adenomas may display features of follicular carcinoma and follicular variant of papillary carcinoma. Eur J Endocrinol 151: 779 – 786

Zoro P, Vaassko V, Garcia S, Pazart L, Aho S, De Micco C (1996) Marqueurs de malignité dans le cytodiagnostic des nodules thyroïdiens. Révélation de l’activité dipeptidyl aminopeptidase IV(DAP IV). Ann Pathol 16: 261 – 265