Metastasis is a pivotal event that accelerates the prognosis of cancer patients towards mortality. Therapies that aim to induce cell death in metastatic cells require a more detailed understanding of the metastasis for better mitigation. Towards this goal, we discuss the details of two distinct but overlapping pathways of metastasis: a classical reversible epithelial-to-mesenchymal transition (hybrid-EMT)-driven transport pathway and an alternative cell death process-driven blebbishield metastatic-witch (BMW) transport pathway involving reversible cell death process. The knowledge about the EMT and BMW pathways is important for the therapy of metastatic cancers as these pathways confer drug resistance coupled to immune evasion/suppression. We initially discuss the EMT pathway and compare it with the BMW pathway in the contexts of coordinated oncogenic, metabolic, immunologic, and cell biological events that drive metastasis. In particular, we discuss how the cell death environment involving apoptosis, ferroptosis, necroptosis, and NETosis in BMW or EMT pathways recruits immune cells, fuses with it, migrates, permeabilizes vasculature, and settles at distant sites to establish metastasis. Finally, we discuss the therapeutic targets that are common to both EMT and BMW pathways.

INTRODUCTION TO METASTASIS: THE DEVIL IN ITS ESSENTIAL DETAILS

Primary benign solid tumors in various tissue types remain to grow in the same location where the neoplastic cells were initially formed. Some of the benign primary tumors may remain in a dormant state without considerable growth for a long time but are being constantly exposed to microenvironmental and immune selection pressures. During this period, the tumor cells learn to divide at a higher frequency and manage to survive immune, therapeutic (if subjected to), and microenvironmental insults. The most pivotal event that accelerates the prognosis of cancer patients towards mortality is metastasis, where the cancer cells learn to migrate, invade and settle down at preferred sites outside primary tumors and continue to grow. The metastatic migration can be of long distance through blood circulation (hematogenous metastasis), through lymphatics (generally through local draining lymph nodes), or of short distance (next to the primary tumor as field-effect). Epithelial-to-mesenchymal transition (EMT) of tumor cells has been implicated in the process of metastatic migration for decades. Metastatic spread has a predominant preference to lymph nodes, liver, lungs, skin, brain or bone with an exhibition of acquired therapy resistance. Chemo/radiotherapies (in patients) and preclinical therapeutics (in vitro/animal models) educate the cancer stem cells (CSCs) to withstand therapy (despite various forms of the cell death process is initiated). This process is coupled to cellular transformation, which selects the CSCs that exhibit enhanced glycolysis, a consistent characteristic feature of metastatic cancer cells. These facts indicate the point that, an apoptosis/cell death process-dependent cellular transformation is also involved in metastasis in addition to the well-worked-out classical epithelial-to-mesenchymal transition (EMT) mode of metastasis.

In this review, we classify the sequence of events leading to metastasis into two main pathways, viz, classical reversible EMT (Fig. 1) and alternative cell death process-driven blebbishield metastatic-witch (BMW) (Fig. 2) transport pathways. A huge body of transcription-based evidences point to the fact that, genetic regulation (coding and non-coding RNAs and epigenetic mechanisms) of metastasis is primarily executed through EMT and evasion of cell death (comprehensively reviewed in ref.), supporting the need for EMT versus BMW classification to better understand and treat the sub-types of metastasis. We introduce the core aspects of the classical EMT pathway of metastasis first, and then describe the emerging alternate BMW metastasis pathway in detail. We add special notes on how the process of cell death initiates cellular transformation, attracts immune cells, tackles immune cells, migrates, extravasates, and establishes distant metastasis. In addition, we point out the similarities and key discriminatory characteristics of EMT and BMW pathways. Finally, we focus on therapeutic targeting of metastasis by giving an outline of targets that are shared by both EMT and BMW pathways.

REVERSIBLE HYBRID-EMT, THE SLOW-AND-STEADY PATHWAY FOR METASTASIS

TGF-β signaling acts as a prominent regulator of the EMT process in which, the rigid epithelial cells (interlocked with neighboring cells) acquire a flexible morphological phenotype. TGF-β signaling
The metastatic events start with the primary tumor producing exosome-mediated or alternative preconditioning of the metastatic path and niche (indicated by red/orange smoky trail). The metastatic environment is indicated by inset boxes. Altered glycolysis in primary tumor cells or other ECM remodeling triggers TGF-β activation by processing the latency-associate peptide (LAP) to regulate transcription by activation of receptor-regulated Smads-2/3 (R-Smads) through Smad anchor for receptor activation (SARA). Resultant EMT-inducing transcription factors induce a mesenchymal transition from epithelial phenotype while suppressing apoptosis through dysregulated polycomb repressor complex-2 (PRC2). Mesenchymal phenotype is associated with adherens junction (AJ) and tight junction (TJ) disassembly to promote migration (through FAK turnover, lamellipodia, and podofilia) and invasion (through invadopodia and podosomes to cross basement membranes) to reach the circulation or through promoting local angiogenesis by VEGF. Inside the blood vessel, neutrophils are attracted by chemotaxis (blue smoky trail), which promotes neutrophil extracellular trap (NET) and necroptosis to facilitate vascular exit. This exposes the circulating tumor cells (CTCs) to a new microenvironment which may or may not promote the reversal of EMT (MET) through the promotion of the epithelial differentiation module (EDM). The extravasated cells use different adhesion cues (claws) to settle and adapt to the new metastatic niche. The reversibility of EMT may support another cycle of EMT and MET can be activated by a plethora of signals, including but not limited to TGF-β isoforms-1–3, acidic microenvironment (through proton pumps or through metabolic lactate accumulation outside the cells through monocarboxylate transporters: MCTs), 26 urokinase, 27 shear stress, 26 thrombospondin-1 (TSP1/THBS1), 26 high glucose, 29 multiple viruses, 30, and integrin-cadherin enriched adherens junction (AJ) remodeling (Figs. 1, 3). Most of these activators result in the processing of the latent-TGF-β binding peptide in the TGF-β ligand, 31 which stimulates its maturation and binding to its receptors in a paracrine, autocrine, or endocrine fashion. TGF-β receptor activation results in the phosphorylation of R-Smad-2, 3 through Smad anchor and receptor activation (SARA). 35 Phosphorylated R-Smads then interact with Smad4 to transduce signals to the nucleus for transcriptional regulation. 35,42 Smads promote EMT-transcription factors (TFs: Snail, Twist1, Zeb1, and others) to orchestrate the EMT process through transcription. 8 TGF-β signaling is very essential for normal biological processes such as wound healing 8 and apoptosis, 33,34 however, TGF-β-driven transcription is largely remodeled by dysregulated PRC2 complex-mediated epigenetics 35 in the metastatic context. 36,37 TGF-β can also signal through TAK1 38 Ras/Raf/MAPK/ERKs, 39 p38-MAPK, 40,41 JNK/AP-1, 42 TAZ, 43 which could complement the EMT-driven metastasis process by suppressing apoptosis (Fig. 2). 32,33

The classic understanding that epithelial-to-mesenchymal transition is essential for metastasis, 3 remained a prominent mode of metastatic migration for a long time. 24,45,46 However, the requirement of EMT for metastasis is refuted. 44 Recent understanding of EMT in the context of metastasis has revealed that a reversible hybrid-EMT phenotype (EMT followed by mesenchymal-to-epithelial transition) by cells that co-express keratin-14 (KRT14) and vimentin (VIM) contributes to metastasis 15,45–51 (Fig. 1), whereas pure EMT (non-reversible) contributes to drug resistance, 38,44,52 and not metastasis. 44,53 Notably, there are reports of mesenchymal metastatic tumors 54,55 indicating the fact that the reversal of EMT may not be a strict requirement. Epithelial cells usually form rigid zipper-like cell-to-cell adhesion (adherens junction: AJ) with adjacent cells through molecules such as E-cadherin, p120 catenin, integrins, and other cell surface molecules. 56,57 Cell-to-cell contacts are further reinforced with tight junctions (TJ) and desmosomes while permitting cell-to-cell communication through gap junctions. 56 This cell adhesion property does not support migration in vivo despite epithelial cells can migrate in vitro after trypsinization. Transforming growth factor-β (TGF-β), activation (Figs. 1, 3), and or viral particles stimulate remodeling of the cell surface adherens junction (AJ) and tight junction (TJ) molecules through p120 catenin. 58,59 AJ loss and TJ loss activate a CAMK2–CD44–SRC axis that promotes YAP1 nuclear translocation and ZEB1 expression that stimulates the mesenchymal state through transcription. 45 Interestingly, AJ and TJ disassembly, CAMK2–CD44–SRC axis, and ZEB1 activation cascade is triggered by the loss of function of the FAT1 gene. 45 Despite these events are downstream of FAT1 gene, the loss of contacts with adjacent cells is classically marked by RhoA GTPase activation. 50

The mesenchymal state aids migration and invasion through multiple mechanisms (including epithelial cell migratory mechanisms), including but not limited to the formation of lamellipodia, 51,52 filopodia, 6 pseudopodia, 6 and focal adhesion kinase-mediated focal adhesion turnover 66–68 (Fig. 1). This step is largely controlled by small GTPase activations as Rac1 regulates lamellipodia, 69 cdc42 regulates

Fig. 1 Classical EMT pathway for metastasis. The metastatic events start with the primary tumor producing exosome-mediated or alternative preconditioning of the metastatic path and niche (indicated by red/orange smoky trail). The metastatic environment is indicated by inset boxes. Altered glycolysis in primary tumor cells or other ECM remodeling triggers TGF-β activation by processing the latency-associate peptide (LAP) to regulate transcription by activation of receptor-regulated Smads-2/3 (R-Smads) through Smad anchor for receptor activation (SARA). Resultant EMT-inducing transcription factors induce a mesenchymal transition from epithelial phenotype while suppressing apoptosis through dysregulated polycomb repressor complex-2 (PRC2). Mesenchymal phenotype is associated with adherens junction (AJ) and tight junction (TJ) disassembly to promote migration (through FAK turnover, lamellipodia, and podofilia) and invasion (through invadopodia and podosomes to cross basement membranes) to reach the circulation or through promoting local angiogenesis by VEGF. Inside the blood vessel, neutrophils are attracted by chemotaxis (blue smoky trail), which promotes neutrophil extracellular trap (NET) and necroptosis to facilitate vascular exit. This exposes the circulating tumor cells (CTCs) to a new microenvironment which may or may not promote the reversal of EMT (MET) through the promotion of the epithelial differentiation module (EDM). The extravasated cells use different adhesion cues (claws) to settle and adapt to the new metastatic niche. The reversibility of EMT may support another cycle of EMT and MET can be activated by a plethora of signals, including but not limited to TGF-β isoforms-1–3, acidic microenvironment (through proton pumps or through metabolic lactate accumulation outside the cells through monocarboxylate transporters: MCTs), 26 urokinase, 27 shear stress, 26 thrombospondin-1 (TSP1/THBS1), 26 high glucose, 29 multiple viruses, 30, and integrin-cadherin enriched adherens junction (AJ) remodeling (Figs. 1, 3). Most of these activators result in the processing of the latent-TGF-β binding peptide in the TGF-β ligand, 31 which stimulates its maturation and binding to its receptors in a paracrine, autocrine, or endocrine fashion. TGF-β receptor activation results in the phosphorylation of R-Smad-2, 3 through Smad anchor and receptor activation (SARA). 35 Phosphorylated R-Smads then interact with Smad4 to transduce signals to the nucleus for transcriptional regulation. 35,42 Smads promote EMT-transcription factors (TFs: Snail, Twist1, Zeb1, and others) to orchestrate the EMT process through transcription. 8 TGF-β signaling is very essential for normal biological processes such as wound healing 8 and apoptosis, 33,34 however, TGF-β-driven transcription is largely remodeled by dysregulated PRC2 complex-mediated epigenetics 35 in the metastatic context. 36,37 TGF-β can also signal through TAK1 38 Ras/Raf/MAPK/ERKs, 39 p38-MAPK, 40,41 JNK/AP-1, 42 TAZ, 43 which could complement the EMT-driven metastasis process by suppressing apoptosis (Fig. 2). 32,33

The classic understanding that epithelial-to-mesenchymal transition is essential for metastasis, 3 remained a prominent mode of metastatic migration for a long time. 24,45,46 However, the requirement of EMT for metastasis is refuted. 44 Recent understanding of EMT in the context of metastasis has revealed that a reversible hybrid-EMT phenotype (EMT followed by mesenchymal-to-epithelial transition) by cells that co-express keratin-14 (KRT14) and vimentin (VIM) contributes to metastasis 15,45–51 (Fig. 1), whereas pure EMT (non-reversible) contributes to drug resistance, 38,44,52 and not metastasis. 44,53 Notably, there are reports of mesenchymal metastatic tumors 54,55 indicating the fact that the reversal of EMT may not be a strict requirement. Epithelial cells usually form rigid zipper-like cell-to-cell adhesion (adherens junction: AJ) with adjacent cells through molecules such as E-cadherin, p120 catenin, integrins, and other cell surface molecules. 56,57 Cell-to-cell contacts are further reinforced with tight junctions (TJ) and desmosomes while permitting cell-to-cell communication through gap junctions. 56 This cell adhesion property does not support migration in vivo despite epithelial cells can migrate in vitro after trypsinization. Transforming growth factor-β (TGF-β), activation (Figs. 1, 3), and or viral particles stimulate remodeling of the cell surface adherens junction (AJ) and tight junction (TJ) molecules through p120 catenin. 58,59 AJ loss and TJ loss activate a CAMK2–CD44–SRC axis that promotes YAP1 nuclear translocation and ZEB1 expression that stimulates the mesenchymal state through transcription. 45 Interestingly, AJ and TJ disassembly, CAMK2–CD44–SRC axis, and ZEB1 activation cascade is triggered by the loss of function of the FAT1 gene. 45 Despite these events are downstream of FAT1 gene, the loss of contacts with adjacent cells is classically marked by RhoA GTPase activation. 50

The mesenchymal state aids migration and invasion through multiple mechanisms (including epithelial cell migratory mechanisms), including but not limited to the formation of lamellipodia, 51,52 filopodia, 6 pseudopodia, 6 and focal adhesion kinase-mediated focal adhesion turnover 66–68 (Fig. 1). This step is largely controlled by small GTPase activations as Rac1 regulates lamellipodia, 69 cdc42 regulates
filopodia and RhoA regulates AJ disassembly. Activation of these three small GTPases is tightly associated with focal adhesion turnover by focal adhesion kinase (FAK) to execute footsteps of migration (Fig. 1). TGF-β super-regulates FAK, RhoA, Rac, and cdc42 signaling to remodel the actin polymerization pattern to promote migratory features. Despite the flexible mesenchymal state allows migration, the cells need invasive potential to cross basement membranes, a major barrier to metastasis (Fig. 1). The invasion process is largely controlled by extracellular matrix (ECM) by matrix-metalloproteinases (MMPs) and cytoskeleton remodeling by TSKy (Tyrosine kinase substratewith four SH3 domains) which are enriched or hyperactivated in the cellular structures such as podosomes and invadopodia. Podosomes and invadopodia digest the local basement membranes through MMP action (Fig. 1).

AJ disassembly is tightly associated with β-catenin activation as β-catenin is anchored at the interior side of the plasma membrane by E-cadherin and 4.1 R, an AJ-to-cytoskeleton linking component. The transcriptional activity of β-catenin promotes VEGF signaling, which in concert with already active TGF-β signaling to promote permeability and entry through local blood vessels or promote neovascularization through angiogenesis/neovascularization and then enter the circulation (Fig. 1). Once in the circulation, the bloodstream can passively carry the mesenchymal tumor cells (as circulating tumor cells: CTCs) to various organs, where the microenvironmental and CTC cellular cues determine where the mesenchymal cells should extravasate.

One such major cue is neutrophil interaction and neutrophil extracellular trap (NET) formation by a peculiar cell death process, NETosis (Fig. 1). Presumably, NETosis primarily helps to sequester the mesenchymal cancer cells at the extravasation site, but tumor cell-induced TGF-β-activated kinase-1 (TAK1)-driven necroptosis of endothelial cells (another form of cell death) which helps the cancer cells to extravasate in a violent mode compared to diapedesis mode of extravasation (Fig. 1).

Upon reaching the metastatic target site, the cells reverse EMT (undergo MET) to acquire an epithelial phenotype to colonize as metastatic foci, in general, have enhanced glycolytic capacity. This reflects the underlying cellular signaling context of metastatic cells. For example, high AJ turnover results in the activation of a c-Src oncogene, which ignites glycolysis by
phosphorylating hexokinases HK1 and HK2, the glycolysis rate-limiting enzymes. High glycolysis results in elevated production of lactate and protons, leading to the acidification of the local primary tumor microenvironment that can result in further activation of transforming growth factor-β (TGF-β) to repeat the EMT-MET cycle (Fig. 1).

How metastatic foci learn to thrive in a new environment? One possibility is that, before migration, the primary tumor cells precondition the systemic circulation and metastatic niche through exosomes and cytokines to manage immune cell encounters (Discussed methods of preconditioning in detail below) (Fig. 1). Despite preconditioning, the EMT pathway has numerous obstacles in every step of metastasis such as vascular entry and exit. Some of these hurdles in the EMT pathway are being explained by an emerging alternate BMW transport pathway. The remainder of the review will be focusing mainly on the BMW pathway of metastasis while comparing the EMT pathway at critical discussion points below.

BLEBBISHIELD METASTATIC-WITCH (BMW) PATHWAY FOR METASTASIS

The reversible EMT pathway to metastasis is well-worked out in the context of TGF-β signaling as described above. However, the signaling intermediates such as the TAK1 exon-12 variant (not wild-type), epigenetic remodeling by altered PRC2 complex function, compromise the cell death-inducing ability of TGF-β signaling. However, recent studies on metastasis in the context of transcriptome clearly indicates the existence of a cell death process-dependent pathway for metastasis. Multiple forms of cell death processes have roles in metastasis, such as reversible apoptosis through blebbishield emergency program, necroptosis, ferroptosis, pyroptosis, and NETosis (DNA extruded neutrophil extracellular trap forming cell death type). Many of these cell death processes have one property in common: reversibility of cell death.

Among all the reversible cell death processes that have been documented, blebbishield emergency program stands out, as it has very characteristic apoptotic morphology by forming apoptotic blebbing and apoptotic body formation, followed by reconstruction of the blebbishields from apoptotic bodies. The reconstruction of apoptotic cells into blebbishields and subsequent spheroid state is driven by membrane fusion between blebbishields-to-blebbishields or blebbishields-to-mitotic cells to gather multiple copies of the genome under one membrane. This fusion behavior generates a poorly or less differentiated/polarized transformed state marked by spheroid formation. In addition, the genetic signature of a transformed state of blebbishield emergency program shares signatures with EMT pathway, ferroptosis reversal, necroptosis inhibition and anastasis (Discussed below). Therefore, blebbishield emergency program can be considered as a prototype for cell death-driven metastasis by the BMW pathway.

MALIGNANT TRANSFORMATION OF THE WITCH THAT PREPARES TO MOVE

Cellular transformation (acquiring spheroid structure with EMT-like poorly or less differentiated/polarized state) and accumulation of genomic instability (numeric and structural) are required for...
tumorigenesis and metastasis of cancer cells, and K-Ras/MAPK signaling emerges as a central driver of these pivotal events\(^{93,104}\) (where the contribution of other oncogenes such as Src, Myc, H-Ras, N-Ras, and others also play a role depending on cellular/tissue type context-dependent manner). When a cell undergoes cellular transformation for the first time, the level of genomic instability will be lower and can be classified as neoplastic transformation.\(^{21}\) Metastasis is fueled by genomic instability\(^{7}\) and malignant transformation where pre-transformed cancer cells (that transiently lost the EMT-like poorly differentiated state) undergo further rounds of cellular transformation to accumulate severe genomic instability.\(^{7}\) Endoreplication,\(^{107}\) virus\(^{108}\) or BUB1 and or MAD2 mutations (Fig. 2), cell death process\(^{93}\) driven cell fusion during transformation can augment genomic instability.

Studying malignant transformation (soft-agar clonogenic assays) is a long process. This hampered the discovery of short-term events that lead to cellular transformation. A recent discovery of blebbishield emergency program uncovered the requirement of an apoptotic process for cellular transformation by reversal of morphological and biochemical apoptosis.\(^{7,108}\)\(^{109}\)\(^{110}\)\(^{111}\)\(^{112}\)\(^{113}\)\(^{114}\)\(^{115}\)\(^{116}\)\(^{117}\)\(^{118}\)\(^{119}\)\(^{120}\)\(^{121}\)\(^{122}\)\(^{123}\)\(^{124}\)\(^{125}\)\(^{126}\)\(^{127}\) While in this section we provided details on the key framework of blebbishield-mediated cellular transformation, the other essential aspects of blebbishield emergency program are described below in appropriate sections.

BLEBBISHIELDS VS. OTHER FORMS OF REVERSIBLE CELL DEATH: PREPARING THE TROJAN HORSE

Apoptosis

Why cancer stem cells need the process of apoptosis but not full-blown apoptosis for cellular transformation? It’s a very important question in the context of stemness and metastasis. Apoptosis initiates the loss of attachment with neighboring cells by pyknosis\(^{118}\) irrespective of their epithelial or mesenchymal state. Pyknosis is associated with AJ disassembly,\(^{120}\) loss of interactions between various integrins, E-cadherin, cleavage of β-catenin by caspase to a 72-kDa fragment\(^{100}\) which detaches active β-catenin from E-cadherin on plasma membrane interior to undergo nuclear translocation and initiate transcription. This helps to ignite VEGF transcription, a driver of blebbishield emergency program\(^{124}\) and vascular permeability.\(^{125}\) This explains why apoptosis is specifically required for metastasis because mitotic cells can also lose attachment with neighboring cells but have a lesser degree of caspase activation. The apoptotic cells have more advantage than mitotic cells towards metastasis because apoptosis unleashes the IRES emergency translation during the reversal of apoptosis (Fig. 2)\(^{104,109}\)\(^{110}\), which can be utilized by the apoptotic cells to translate VEGF (to drive blebbishield emergency program), c-Myc/N-Myc (to drive glycolysis and metastasis), and c-IAPs such as c-IAP-1/2, XIAP (to block death signaling and caspase-3).\(^{100}\) The apoptotic event prepares the cancer cells for drug resistance, stemness, and metastasis. Apoptotic cell’s fusion behavior\(^{125}\) is required for cellular transformation and is implicated in metastasis.\(^{93,122}\) Despite blebbishield emergency program conserves the mitochondria from depolarization,\(^{125}\) cells with intact mitochondria (TAK1) and depolarized mitochondria were shown to undergo transformation.\(^{117}\) This suggests that mitochondria depolarization is not a limiting factor of cellular transformation. Apoptosis is known to activate TGF-β through LAP-processing of the ligand.\(^{123}\) In addition, activation of MMP-2 and 9 during apoptosis\(^{124}\) and cleavages of vitronectin and fibronectin are pre-requisites for metastasis.\(^{125}\) Both activation of TGF-β and MMPs can be attributed to the extensive remodeling of the extracellular matrix during apoptosis.

Necrosis

Necrosis is a hybrid form of cell death that has overlapping signatures of both apoptosis and necrosis. Necrosis can kick in when the caspase-8 function is impaired during apoptosis\(^{126}\) and explains why these two cell death modalities overlap to a significant extent. Similar to blebbishield-mediated reversal of apoptotic cancer cells, necrosis is also recently found to defy cell death by using ESCRT-III components such as charged multivesicular body protein 4B (CHMP4B) and CHMP2A.\(^{127}\) Necrosis of endothelial cells by amyloid precursor protein (APP) from tumor cells facilitate extravasation of circulating tumor cells (CTCs) to promote metastasis.\(^{93}\) Furthermore, TGF-β signaling component TAK1 deficiency is required for endothelial cell necrosis.\(^{93}\) However, necrosis is not demonstrated to
contribute to spheroid formation, but the spheroid cell may die through necroptosis in response to therapeutics. Therefore, necroptosis could be more related to the EMT pathway of metastasis at the extravasation stage. Importantly, endothelial cell necroptosis subverts the diapedesis mode of extravasation.

Ferroptosis
Ferroptosis is a non-apoptotic, iron-dependent form of cell death where iron, ROS, and lipid peroxidation play a major role. Intracellular iron accumulation is primarily done through uptake of Fe$^3+$ through transferrin-transferrin receptor (TFR1) endocytosis. This intracellular iron pool is stored in ferritin heavy and light chains. Furthermore, the cystine transport-GSH-GPX4 axis inhibits lipid peroxidation and is linked to ferroptosis regulation. Therefore, iron chelating agents, lipid peroxidation inhibitors, and anti-oxidants were able to reverse ferroptosis. This form of cell death gains more importance in iron-loaded tissues such as liver or lymph nodes. Increased ferroptosis is known to release prostaglandin-E$_2$ (PGE$_2$), an immunosuppressive agent therefore, a high ferroptosis environment may trigger immune cell anergy through PGE$_2$.

NETosis
Neutrophil extracellular trap (NET) formation is a morphologically unique form of cell death where the hyper-citrullinated decondensed chromatin is extruded outside the cell to form net-like structures. NET is initially shown in neutrophils in the context of interferon and pathogen encounter and later in the context of Raf/MEK/ERK pathway and in other cell types. Intriguingly, this form of cell death is silenced by IL-6. NETosis is specifically linked to metastasis at the extravasation stage of circulating tumor cells.

Anastasis
Anastasis, a reversible form of apoptosis, has an enrichment of genes related to the EMT pathway and is driven by TGF-β and Snail. This raises the possibility that the EMT pathway could use a cell death-driven mechanism for metastasis but yet to be worked out. Furthermore, anastasis generates individual survived cells rather than a spheroid after the commencement of apoptosis. Much has to be worked out in the context of anastasis involvement in metastasis to relate this reversible cell death to EMT and or BMW pathway of metastasis.

What drives reversible cell death?
While the reversal of ferroptosis, apoptosis, and necroptosis is well-documented, it is not yet known whether necroptosis, ferroptosis, and blebbishield formation (from apoptotic cells) utilize the same overlapping mechanism to defy cell death or not, but these cell death reversals were linked to tumorigenesis and metastasis. Blebbishield formation is linked to dynamin-dependent endocytosis and inhibiting dynamin-dependent endocytosis during blebbishield formation enhances death through proper complete apoptosis. Similarly, ESCRT-III is linked to endosomes [to form multivesicular bodies (MVB)], and necroptotic bubble formation (analogous but different structures to the apoptotic blebbing that exposes phosphatidyl serine). Inhibiting ESCRT-III component CHMP4B enhances full-blown necroptosis. Strikingly, ferroptosis is also dependent on endocytosis where transferrin receptor TFR1 takes iron inside the cells with transferrin and suppression of transferrin receptor by HUWE1 E3 ubiquitin ligase inhibits ferroptosis. Finally, the molecular signature of anastasis also reveals the alterations in endocytosis. Therefore, an endocytosis process potentially drives reversibility of these cell death processes albeit using different types.

Interestingly, inhibition of hyaluronan endocytosis by using monoclonal antibodies inhibited prostate cancer cell metastasis, in particular to the lymph nodes. This study suggests that the reversible cell death-driven BMW pathway prefers the lymphatic route of metastasis (see below). Notably, the metastasis suppressors such as NME, KAI, MTSS1, and KISS1 have also been shown to operate on endocytosis regulatory mechanisms. For example, NME1 and NME2 regulate dynamin-dependent endocytosis in the context of metastasis. These facts indicate the pivotal role of endocytosis in the context of the BMW pathway of metastasis.

DAMPs: FIND-ME AND EAT-ME SIGNALS AS THE DEVIL’S BARBEQUE FRAGRANCE BAIT
The therapy-induced or natural cell death milieu within the tumor microenvironment is not usually uniform as it includes apoptotic cells with secondary necrosis, necroptotic cells, necrotic cells, and live non-apoptotic cells. The necrotic (as well as secondary necrotic) cells release an array of damage-associated molecular patterns (DAMPs), which help to attract immune cells to the local environment (find-me signals) and clear the apoptotic site by phagocytosis of apoptotic bodies (through eat-me signals such as phosphatidyl serine) (Fig. 2). The DAMP signals include but not limited to HMGB1, S100 proteins, hyaluronan, heat-shock proteins (HSPs), ATP, calreticulin, uric acid, and IL-1α. Of these DAMPs, IL-α is known to promote malignant transformation, angiogenesis, and metastasis via its interaction with platelets. Furthermore, S100 family proteins released by necrotic cells are also linked to cell migration and metastasis. Hence DAMP-mediated attraction of immune cells such as cytotoxic T-cells, phagocytes, and APCs are clearly not helping to clear the cell death scene, rather it makes the scenario worse and promotes static. Cytosolic genomic DNA was found to trigger immune evasion and inflammation-dependent cancer in STING deficient mice with Ras oncogene. However, recurrent chromosome segregation errors promote metastasis through STING-pathway (Fig. 2). Such chromosomally unstable cells disable the immune system and promote metastasis through extracellular hydrolysis of cGAMP through the ectonucleotidase ENPP1. Macrophages that were exposed to phosphatidyl serine (from apoptotic cells) secrete TNF-α, CCL4, CCL5, and IL-6 to drive dead/dying cell-induced tumor growth enhancement by inflammation, and neutralizing antibodies against these factors abrogated the dying cell-induced tumor growth enhancement.

Serpentine filipodia of the blebbshield arms: let the blebbshield arms do the talking
Recruitment of immune cells to the tumor microenvironment with active cell death is an ideal condition for phagocytic clearance of apoptotic bodies by phagocytes. However, the dying tumor cells must overcome eat-me signal-activated phagocytes to undergo metastasis or to survive. This can be achieved by the “fuse-to-me” signals exposed to dying tumor cells. In blebbshield emergency program, the fuse-to-me signals identified were cholesterol and endocytosis-driven serpentine filopodia (long and stout vili-like cellular projections with a bulb that tie the apoptotic bodies together to drive membrane/cell fusion), implicating active cdc42 in the fuse-to-me process (Fig. 2). Adhesion-zippers (different from adherens junctions) are anti-parallel filopodia structures from adjacent cells with β-catenin-α-catenin linkers between surface E-cadherin and the internal actin cytoskeleton facilitates cell fusion. Therefore, activation of cdc42 plays a central role in the fuse-to-me event. XIAP downregulation during apoptosis of CSCs can elevate cdc42 expression to regulate filopodia formation. PTEN- and S100B suppresses metastasis by regulation of filopodia formation to highlight the role of filopodia in the signal transduction and targeted therapy.
metastatic process. Re-expression of XIAP through IRES translation can reduce cdc42 activity/expression to serve as a negative feedback loop because XIAP degrades cdc42 through the ubiquitin-proteasome system. In this context, serpentine filopodia is known to get shortened to microvilli once apoptotic cells completed major membrane fusion events and blebbishields are formed. Interestingly, fusion-capable blebbishields exhibit selective suppression of p53 with a consequent promotion of Galectin-3. Galectin-3 is capable of inducing an apoptotic state in immune cells and at the same time capable of promoting K-Ras signaling within cancer cells through β3 integrin binding. Such human apoptotic cells capable of suppressing p53 are demonstrated to fuse with human immune cells, express increased K-Ras activation, generate increased metastasis in the mouse model, and form hepatosplenomegaly with low p53. Thus, the fuse-to-me signals on blebbishields override the phagocytosis checkpoints to achieve metastasis. In this context, expressing mouse CD47 (another fuse-to-me signal) in human cancer cells elevated the metastatic potential in the mouse model and notably increased the lymph node size. This suggests the lymphatic route of metastasis when CSCs fuse to immune cells (Fig. 2). If p53 expression is not compromised, p53 mutations were found to get enriched in metastatic cells, especially after cytotoxic therapy. Therefore, disabling wild-type p53 transcriptional program could be the key to facilitate dying cell to immune cell fusion through various fuse-to-me signals.

MIGRATION: THE BLEBBISHIELD METASTATIC-WITCH (BMW) TRANSPORT VS. CLASSICAL EMT CRAWLING

In general, reversible/hybrid-EMT is considered the major mechanism for metastatic migration. However, VEGF/VEGF-R-driven blebbishield emergency program offers a simple solution to metastasis by blebbishield-immune cell fusion, where the migratory capacity and the homing signals of immune cells can be used by blebbishield-immune cell hybrids to reach target organs (Fig. 2). For example, blebbishield-immune cell fusion results in the increase in IGFBP5 and intense migration compared to the parental cancer cells in vitro and localization to liver and spleen in vivo in bladder cancer. Furthermore, cancer cell-macrophage fusion promotes metastasis or, inhibition of VEGFR-1 using neutralizing antibody impedes treatment-induced metastasis. Notably, neutralizing antibodies to VEGF/VEGFR2 block blebbishield emergency program. Furthermore, the BMW model offers an ideal explanation that the fusion with immune cells or apoptotic CSCs generates a wide range of chromosomal instability that can potentially result in polyclonality/heterogeneity at the metastatic site upon exhibiting the exit phase of blebbishield emergency program where multiple individual cells emerge from a single spheroid with genome variations.

In the context of metastasis, there exists two models of migration, such as the sequential progression model where the cancer cells invade the basement membrane (Fig. 1) and/or local lymph nodes (Fig. 2) before reaching the actual target organ for metastasis, or a clone within primary tumor directly enters the local angiogenic bloodstream to reach the target organ. The cells that take the sequential progression model of metastasis through the lymphatic route or directly move to secondary lymphoid organs are probable cancer cell-immune cell hybrids that reversed the cell death process utilizing the BMW transport route of metastasis. For example, macrophages have homing signals for lungs and other tissues and hybrids of tumor cells-macrophage fusion preferentially metastasize to lungs or fusion of tumor cells with bone marrow-derived cells during bone metastasis. One of the main reasons for the lymphatic route preference of the BMW pathway is the fact that lymph provides a cell death resistance mechanism through high GSH, GPX4, and oleic acid-directed ferroptosis resistance, with reduced oxidative stress and lesser free iron compared to the hematogenous route of metastasis. In BMW transport, the apoptotic CSCs can be considered as the passenger and the immune cells that fuse to apoptotic cancer cells can be considered as the transport vehicles (broomstick of the witch). Inhibition of macrophage M2 polarization by all-trans retinoic acid (ATRA) prevents lung metastasis and suggests that M2 macrophages are the BMW transport vehicles in osteosarcoma metastasis. Blebbishield emergency program results in transient loss of E-cadherin to β-catenin interaction suggesting the existence of an EMT-like program in BMW transport. Although EMT is tightly linked to E-cadherin loss, the lymphatic route taken by the metastatic cells strongly suggests that these cells utilize BMW transport for metastasis. To add more support to the BMW transport, multiple chemotherapeutics cause a sharp increase in the intravasation of tumor cells following chemotherapy. Notably, tumor-derived VEGF-C promotes lymphangiogenesis towards cancer cells to promote the lymphatic route of metastasis and promotes immune tolerance by disabling/eliminating CD8+ T-cells. In colon cancer and melanoma, the cancer-macrophage fusion hybrids exhibited increased motility and invasion before metastasis. In breast cancer, the apoptotic cells fuse spontaneously with multipotent stromal cells to acquire increased migration and achieve metastasis. Androgen receptor could favor the EMT crawling mode of metastasis over BMW transport as it augments hematogenous metastasis and reduces lymphatic metastasis in renal cell carcinomas. In all, the BMW transport mechanism potentially offers a quick, efficient, and immune cell fusion-dependent method for metastasis compared to the classical EMT-driven crawling model of metastasis.

PRECONDITIONING THE METASTATIC NICHE VS. PRECONDITIONING THE PASSENGER

Frequently, the locations where the cancer cells are attracted to colonize as metastatic foci are depots of killer immune cells. Examples include regional draining lymph nodes, liver, and spleen, which are storehouses of cell-mediated and or humoral immune cells. The cancer cells must adapt to evade the cytotoxic and humoral immune cells to establish metastasis in such organs or remotely precondition the metastatic site so as to disable the immune attack (or enable immune checkpoints). In the case of reversible EMT-mediated metastasis, prior to metastasis to the liver, the liver accumulates myeloid cells, undergoes fibrosis, and the hepatocytes reprogram the niche by activating IL-6/STAT-3 to produce SAA. Alternatively, tumor cells release exosomes that educate the immune system (systemic or local; depending on the surface molecule expression such as ANXA6 on exosomes or the proteome and DNA/RNAs/miRNAs that are stored within exosomes). Furthermore, bone marrow-derived cells precondition the metastatic site before the metastatic cancer cells arrive. This is achieved by the polarization of immune cells towards tumor-associated immune phenotypes (M2 macrophages, N2 neutrophils, MDSCs, and so on). Very often, this polarization is associated with defective antigen presentation by tumor-associated macrophages (TAMs), and enabling its antigen presentation with Toll-like receptor agonists reignited the anti-tumor immunity. Furthermore, in a lung cancer model, miR-21 suppresses the anti-tumor action of tumor-associated macrophages. In the context of tumor-associate macrophages in the lungs, M2 macrophages precondition the lung niche for metastasis. TGF-β a M2 macrophage polarization promoting factor protects mammary adenocarcinoma cells at the lung metastasis site. Smad4 degradation blocks TGF-β signaling to inhibit lung metastasis, to envisage the importance of TGF-β-mediated preconditioning for lung metastasis. Neutrophils on the other hand, facilitate lung metastasis by preconditioning the lungs through IL-5, GM-CSF, lipocalin-2 (LCN2), and notch

Signal Transduction and Targeted Therapy (2022) 7:296

Classical epithelial-mesenchymal transition (EMT) and alternative cell…

Jinesh and Brohl
Fig. 4 Preconditioning of the metastatic niche. The epithelial and mesenchymal cells precondition the metastatic niche (marked by inset boxes) by cytokine or chemokine secretion or primarily through exosomes (red and orange smoky trails, respectively). The liver, lymph node, and lung metastatic niche were shown as examples (inset boxes). Microbial preconditioning of the liver niche is shown as an example (pathogenic vir-F containing E. coli), and exosomal and immunological preconditioning is also shown in the liver niche. In the lymph node niche, tumor-educated immune cells (B-cells exposed to HSPA4 from tumors) or VEGF-C induced exhaust of cytotoxic T-cells (CTLs) in the cell death context, DAMPs or iDAMPs induce cytotoxic immune cell exhaustion by AICD or immunosuppression, respectively (magenta and green smoke trails, respectively). AICD activation-induced cell death, EC necroptosis endothelial cell necroptosis, MDSCs myeloid-derived suppressor cells, APCs antigen-presenting cells, PGE2 prostaglandin-E2, TSP1 thrombospondin-1, TLR2 Toll-like receptor-2, IAPs inhibitor of apoptotic proteins, NET neutrophil extracellular trap

Interestingly, tumor-resident E. coli with virulent factor VirF can do the preconditioning work in the liver when it breaches the gut vascular barrier (Fig. 4). In addition, Mycobacterium tuberculosis can suppress Th1 immunity and promote lung metastasis. These facts open up the possibility that other microbes could determine preconditioning of metastatic niche. This possibility is further reinforced by the finding that multiple human tumor types such as breast, bone, pancreas, glioblastoma multiforme, ovary, lung, and melanoma harbor 16 S RNA signatures of an array of intracellular Gram-negative and Gram-positive bacteria matching metabolic and tumor sub-types. In addition to preconditioning, microbes also contribute drug resistance. For example, Mycoplasma hyorhinis can metabolize and inactivate the chemotherapeutic agent gemcitabine by its cytidine deaminase (CDD) enzyme. On the other hand, Fusobacterium nucleatum utilizes the TLR4-autophagy axis to suppress apoptosis.

In BMW transport, apoptotic CSCs fuse with immune cells to generate hybrid cells so as to acquire protection from immune surveillance and phagocytosis because the immune cell component of the hybrid already exhibits immune tolerance (by displaying self-antigens), and the cancer cell component of the hybrid offers escape mechanism from activation-induced cell death (AICD) and clonal deletion using blebsibield emergency program. This phenomenon can either induce metastasis by transporting cancer cells to a metastatic niche like liver and/or spleen or can induce myeloid or lymphoid leukemias depending on the immune cell fusion partner. Dying tumor cells induce T-cell exhaustion, which can further contribute to systemic energy towards cancer cells. The immune cell exhaustion can potentially be induced by the dying cell components (DAMPS: such as ATP, HMGB1) acting as immunogenic determinants to promote activation-induced cell death (AICD) of immune cells (Fig. 4).
The next major mechanism of preconditioning the metastatic niche in the context of the BMW pathway (by different cell death modalities) is by inducing immune suppression. This is largely achieved by the release or activation of inhibitory damage-associated molecular patterns (DAMPs) such as PGE\(_2\), IL-10, thrombospondin-1 (TSP1/THBS1), CD36, CD277, TCTP-TRL2, CXCL1/2-CXCXR2 (Fig. 4). These iDAMPs promote immunosuppression and induction of pro-tumor immune cell polarization that can support preconditioning of metastatic niche. Interestingly, iDAMPs dominate DAMPs to suppress immunogenic cell death. For example, when DAMPs such as calreticulin, HSP70, and HMGB1 were in action from dying cells, the iDAMP PGE\(_2\) suppresses the immunogenicity of the cell death.125

Preconditioning by cell fusion in the BMW pathway enables stealth dissemination of pancreatic ductal adenocarcinoma cells to the liver, spleen, and lungs after fusion with patient macrophages.168 Interestingly, the macrophage-tumor cell fusions exhibited ploidy-level genomic instability,219 similar to blebbishield-immune cell fusion,99 and contributed to poor prognosis.168 Therefore, in BMW transport, the passenger (cancer cells) is preconditioned by fusion with immune cells to overcome the hurdles posed by the metastatic niche and by the lymphatic/metastatic route.

The preconditioning not onlycombats the immune system at the metastatic niche, but also suppresses anti-tumor immunity systemically in most cases, at least during the metastatic duration. This stage is presumably enriched with circulating tumor cells in blood or in lymphatics, as mesenchymal cells in the case of EMT pathway or as a cancer cell-immune cell hybrid in the case of BMW pathway. Additional reversible cell death modes may add more complex phenotypes in the circulation.

ESTABLISHING METASTASIS AT DISTANT SITES: LET MY CLAWS CLING ON

While reversible/hybrid-EMT and BMW transport pathways are able to take the cancer cells to the premetastatic niche, settlement of tumor cells at metastatic sites requires additional factors for colonization. In the case of reversible/hybrid-EMT, MET conversion mediates the settlement. This is demonstrated by the fact that, migrating cancer cells (in ascites) that exhibit epithelial features are able to rapidly establish tumors at sites other than the primary tumor.220,221 However, there are metastatic cancers with a mesenchymal phenotype.222 This is in part mediated by alternative cell adhesion factors. Cell adhesion molecules like vitronectin, CD44-hyaluronan, fibronectin, complement component-C3, etc., mediate target site selection for metastatic colonization.3,125 (Fig. 1). Furthermore, activation of αvβ3 integrins promotes the migration of premetastatic cells toward vitronectin and fibronectin for metastatic colonization in lungs.222 Interestingly, plakoglobin-directed CTC aggregation offers resistance to apoptosis and rapid establishment of metastatic colonies223 suggesting the importance of cell death resistance over EMT in establishing metastatic colonies. The most notable aspect of target site selection is often determined by the point of vascular exit. Lung being the most vascularized tissue, the exit of CTCs from alveolar vasculature is a key step that is driven by neutrophil NET formation by CTC secreted cathepsin-C through IL-1β.224 Sox-2 downregulation or promotion45 could be a key to initiate MET, which is known to promote MET and predict liver and lymph node metastases.224 Surface E-cadherin, in addition to VEGFR2 and PD-L1, marks cells capable of establishing tumors away from the primary tumor in the case of bladder cancer.220 Thus, MET would be required in the case of EMT-mediated metastatic migration to expose E-cadherin on the surface. In cells that undergo MET during metastatic colonization, a transcriptional program of c-Myc is pivotal as it promotes E-cadherin expression.44 Often, a mere expression of E-cadherin in the cell may not be sufficient because the asclite-derived bladder cancer cells have distinct population of cells with internal E-cadherin expression but have impaired surface E-cadherin expression behave inferior in tumor aggressiveness.720

In the case of BMW transport, the metastatic colonization might be achieved through polarization of cancer cells through the exit phase of blebbishield emergency program,193,100 where calcium signaling and VEGF mediates polarization possibly through re-expression of c-Myc.18 In the case of BMW transport, the metastatic target selection molecules are mostly homing signals of the immune cell fusion partner. In macrophage-mediated BMW transport, the hybrid cells express a set of acquired adhesive molecules such as vitronectin and collagen XXIII, which are offered by macrophages.171,225

Platelet-derived autotaxin interaction with αvβ3 integrins on cancer cells directs bone metastasis.226 More interestingly, osteogenic cells supply calcium to cancer cells through gap junctions and promote bone micrometastasis.227 In brain metastasis of breast cancer cells, a combination of high cholesterol and low triacylglycerols (TAGs) were found. In this context, fatty acid synthase is required for breast cancer metastasis to the brain.228 Lipid rafts drive metastasis in the contexts of EMT229 and blebbishield emergency program,18,93,100 Cancer cells upregulate Amigo2, which facilitates liver endothelial cell attachment and liver metastasis.230 Filopodia formation results in increased lung colonization of cancer cells.169 ATF-4 and Nrf-2 dependent HO-1 expression is required for lung metastasis as ATF-4 deficiency impaired lung metastasis.231 Notably, blebbishield emergency program promotes HO-1 at the protein level in metastatic colonization sites (liver and spleen) and at the transcription level during a transformed state.169 HO-1 in tumor-associated macrophages promotes metastases by extreme heme catabolism, immunosuppression, angiogenesis, EMT, and prometastatic niche conditioning.232 Therefore, different signals govern different target site selection for metastatic colonization irrespective of the EMT or BMW pathways.

EMT AND BMW PATHWAY METASTATIC ENGINES: IDENTICAL OR DIFFERENT?

An important question in the context of metastasis is, how similar the reversible/hybrid-EMT and BMW pathways are? As both the pathways do one common task, metastasis, it is conceivable that these pathways must have some overlapping parts in their metastatic engine. We list out six major overlaps which is non-exhaustive (could have more):

1. Calcium calmodulin signaling
2. Transcription
3. Membrane lipids
4. Metabolism
5. IRES translation
6. Status of p53 function

Calcium/calmodulin (CAMK2) signaling acts in reversible hybrid-EMT pathway,44,45 and fits in the BMW pathway by regulating apoptosis through death-activated protein kinase (DAPK)23. While calcium/calmodulin signals through protein kinase-C (PKC), PKC-ζ is a common player in reversible EMT234 and BMW pathways.18,93,100 In the context of transcription, the transformed state of BMW pathway193 and the mesenchymal state195,196 of EMT pathway share transcription of TGF-β target, thrombospondin-1/TSP1/THBS1 (Fig. 5). Furthermore, global transcription change is directed by alterations in PRC2 components and Twist1 in this context.237,240 Membrane lipids such as cholesterol show commonalities between EMT and BMW pathways where cholesterol is required for blebbishield membrane fusion18 and required to protect EGFR from degradation241 and cell fusion242 in the context of EMT. Notably, lipid-stained fusogenic membrane externalization and internalization mark the transformed state versus exit phase (recovered cells) respectively in blebbishield emergency program100 (Fig. 5). Importantly, genes such as aldo-ketoreductases (AKR1B1, AKR1C3, AKR1C4) with EMT-inducing ability243-246 were specifically
transcribed during a transformed state of blebbishield emergency program93 (Fig. 5). On the other hand, EMT inhibiting or epithelial cell expressed metabolic genes such as \textit{ALDH3A1}247 and \textit{ALDH3A2}248 were also specifically expressed in a transformed state of cancer cells in BMW pathway93 (Fig. 5). Most importantly, p53 status and the complexing pattern is also shared by both EMT and BMW pathways, where a p53 complex with arginine methyltransferase PRMT1 regulates EMT250 and suppress apoptosis. In the BMW pathway, p53 is selectively suppressed.93 In the reversibility of EMT, p53 complexes with Pirh2 to degrade Twist1 to inhibit EMT251 (Fig. 5). These studies highlight the fact that both reversible/hybrid-EMT and BMW pathways indeed have similarities to do the common task of metastasis.

The next important question is how different the reversible/hybrid-EMT and BMW pathways are? A marked difference between the reversible/hybrid-EMT pathway and BMW pathway is the involvement of morphological and reversible cell death processes such as apoptosis, necroptosis, and ferroptosis and potentially other forms of cell death such as anastasis (Fig. 6). Just like co-expression of \textit{KRT14}, \textit{VIM} marks the reversible hybrid-EMT with the expression of additional epithelial genes such as \textit{p63}, \textit{SOX2}, \textit{PRRC2}, \textit{TSP1} thrombospondin-1, c-IAPs cellular inhibitors of apoptotic proteins, AKRs aldo-ketoreductases, VEGF-A vascular endothelial growth factor-A, PRMT1 protein arginine methyl transferase-I, ALDH aldehyde dehydrogenases, PRC2 polycomb-repressive complex suggests the DAMP-mediated immune cell recruitment to the tumor microenvironment (Fig. 6) is a discriminating factor. Of note, the hybrid-EMT pathway is well capable of altering immune cell recruitment through other mechanisms such as cytokines, chemokines, and prostaglandins. Finally, in the spheroid state, genome mixing from multiple blebbishields followed by exit phase to release cells with varying genomic instability are unique to the BMW pathway compared to EMT pathway, despite cells with EMT may undergo spheroid-like aggregation in soft-agar assays. On the other hand, the BMW pathway can use EMT mechanisms to drive metastasis. For example, the death receptor CD95/Fas is known to promote EMT and metastasis.254,255 Among the prominent death ligands (FasL, TNF-\(\alpha\), and TRAIL), FasL stands out to support blebbishield emergency program in combination with Smac mimetic.19 Thus, the reversible cell death process is a major discriminating factor that distinguishes the BMW pathway from the EMT pathway. However, the possibility of a cooperation between BMW and the EMT pathway to establish metastasis is not ruled out yet.

EMT AND BMW PATHWAY VULNERABILITIES AS THERAPEUTIC TARGETS

The main goal of classifying the metastatic events into EMT and BMW pathways is to understand therapeutic vulnerabilities for better mitigation of metastatic cancer. The induction of cell death has been the prime target for metastatic cancers for decades. This includes chemo-, immuno-, and radiotherapies. These therapies are, of course, efficient in inducing cell death in multiple cancer types in the metastatic cancer context however, the survival after the commencement of the cell death process has to be taken into account.
CONCLUSION AND FUTURE PERSPECTIVES

In conclusion, metastasis can occur through two overlapping yet distinct routes: the reversible EMT pathway and the BMW pathway. The reversible EMT pathway mainly deals with the change in the cell surface proteome remodeling-coupled to EMT transcription and intermediate filament architecture to adapt to the migratory and invasive phase of metastasis when exhibiting mesenchymal phenotype and switches back towards epithelial phenotype during colonization at preconditioned distant metastatic sites. These plasticity events are driven by metabolic switching plus TGF-β-directed transcription but with suppression of TGF-β’s ability to induce apoptosis. BMW pathway, on the other hand, executes metastasis through the reversible cell death-coupled transformed spheroid state (exhibits resistance to apoptosis, necroptosis, ferroptosis, and possibly other cell death types), cancer cell-to-immune cell fusion, and iDAMP release to acquire immune privilege, migratory capacity from immune cell fusion partner, and colonization through microenvironmental cues that trigger a stop/homing signal for immune cell migration. However, much has to be understood about the BMW pathway of metastasis about the immune cell fusion partners and associated target organ settlement. The major advantage of BMW pathway recognition is that it better explains therapy resistance as the blebshield emergency program can contribute to rounds and rounds of apoptosis-survival cycles (at least two consecutive cycles were tested and then confirmed its ability form tumors, metastasis, and homing at immune cell-rich organs such as liver and spleen: RT4P-BSE-2 cells18,93) resulting in the selection of cells with enhanced drug resistance, boosted glycolysis and augmented chromosomal instability19,93 Furthermore, the knowledge of the BMW pathway gives suggestions on the timing of treatment:
for example, when to use or when not to use BMW pathway inhibitors. It is ideal to use a BMW pathway inhibitor when the cell death process and cell death timing is expected (such as therapeutic intervention). More understanding of both EMT and BMW pathways of metastasis will therefore pave the way for better design of therapeutics (chemo and immuno-arms) or educated combination therapeutics to mitigate metastatic cancers in the future.

ACKNOWLEDGEMENTS
The authors sincerely thank H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA, for literature access. Publication fees were provided by Moffitt Cancer Center institutional support (ASB).

AUTHOR CONTRIBUTIONS
G.G.J. drafted and revised the manuscript and created the figures. G.G.J. and A.S.B. edited the manuscript. All authors have read and approved the article. The figure elements were generated using the softwares Lightwave 3D version 11 (https://www.lightwave3d.com/) and Adobe Photoshop version CS5 (https://www.adobe.com/). The final composites and image format conversions were done using Adobe Photoshop CS5.

ADDITIONAL INFORMATION
Competing interests: The authors declare no competing interests.

REFERENCES
1. Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging biological principles of metastasis. Cell 168, 670–691 (2017).

2. Schwartz, R. S. & Erban, J. K. Timing of metastasis in breast cancer. N. Engl. J. Med. 376, 2486–2488 (2017).

3. Mehlen, P. & Puisieux, A. Metastasis: a question of life or death. Nat. Rev. Cancer 6, 449–458 (2006).

4. Steeg, P. S. Targeting metastasis. Nat. Rev. Cancer 16, 201–218 (2016).

5. Labelle, M. & Hynes, R. O. The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Disco. 2, 1091–1099 (2012).

6. Mazzone, M. & Bergers, G. Regulation of blood and lymphatic vessels by immune cells in tumors and metastasis. Annu. Rev. Physiol. 81, 535–560 (2019).

7. Goodwin Jinesh, G., Willis, D. L. & Kamat, A. M. Bladder cancer stem cells: biological and therapeutic perspectives. Curr. Stem Cell Res. Ther. 9, 89–101 (2014).

8. Dongre, A. & Weinberg, R. A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 20, 69–84 (2019).

9. Weinstein, R. S. et al. Relationship of the expression of the multidrug resistance gene product (P-glycoprotein) in human colon carcinoma to local tumor aggressiveness and lymph node metastasis. Cancer Res. 51, 2720–2726 (1991).

10. Ma, B., Wells, A., Wei, L. & Zheng, J. Prostate cancer liver metastasis: dormancy and resistance to therapy. Semin. Cancer Biol. 71, 2–9 (2021).

11. Nimmakayala, R. K. et al. Metabolic programming of distinct cancer stem cells promotes metastasis of pancreatic ductal adenocarcinoma. Oncogene 40, 215–231 (2021).

12. Kaur, A. et al. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature 532, 250–254 (2016).

13. Klemm, F. et al. Compensatory CSF2-driven macrophage activation promotes adaptive resistance to CSF1R inhibition in breast-to-brain metastasis. Nat. Cancer 2, 1086–1101 (2021).

14. Singh, A. et al. Angiocrine signals regulate quiescence and therapy resistance in bone metastasis. JCI Insight 4, e125679 (2019).

15. Weiss, F., Lauffenburger, D. & Friedl, P. Towards targeting of shared mechanisms of cancer metastasis and therapy resistance. Nat. Rev. Cancer 22, 157–173 (2022).
16. Tang, H. M. & Tang, H. L. Cell recovery by reversal of ferroptosis. Biol. Open https://doi.org/10.1242/bio.043182 (2019).
17. Sun, G. et al. A molecular signature for anastasis, recovery from the brink of apoptotic cell death. J. Cell Biol. 216, 3355–3368 (2017).
18. Jinesh, G. G. et al. Blebbishields, the emergency program for cancer stem cells: sphere formation and tumorigenesis after apoptosis. Cell Death Differ. 20, 382–395 (2013).
19. Jinesh, G. G. et al. Mitochondrial oligomers boost glycolysis in cancer stem cells to facilitate blebbiheld-mediated transformation after apoptosis. Cell Death Disc. 2, 16003 (2016).
20. Glinsky, G. V. & Glinsky, V. V. Apoptosis amid metastasis: a superior resistance of metastatic cancer cells to programmed cell death. Cancer Lett. 101, 43–51 (1995).
21. Godwin, L. et al. Targeting K-Ras and apoptosis-driven cellular transformation in cancer. Cell Death Disc. 7, 80 (2021).
22. Koppenol, W. H., Bounds, P. L. & Dang, C. V. Otto Warburg current concepts of cancer metabolism. Nat. Rev. Cancer 11, 325–337 (2011).
23. Lukacs, R. U., Memarzadeh, S., Wu, H. & Witte, O. N. Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. Cell Stem Cell 7, 682–693 (2010).
24. Jinesh, G. G. & Brohl, A. S. The genetic script of metastasis. Biol. Rev. Camb. Philos. Soc. 95, 244–266 (2021).
25. Pastushenko, I. & Blanpain, C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29, 212–226 (2019).
26. Seliger, C. et al. Lactate-modulated induction of THBS-1 activates transforming growth factor (TGF)-beta2 and migration of glioma cells in vitro. PLoS ONE 8, e78935 (2013).
27. Kojima, S. et al. Transcriptional activation of urokinase by the Kruppel-like factor ZF9/COPEB activates latent TGF-beta1 in vascular endothelial cells. Blood 95, 1309–1316 (2000).
28. Miyazono, K. Shear activates platelet-derived latent TGF-beta. Blood 112, 3533–3534 (2008).
29. Xia, L. et al. High glucose activates PKC-zeta and NADPH oxidase through autocrine TGF-beta1 signaling in mesangial cells. Am. J. Physiol. Ren. Physiol. 295, F1705–F1714 (2008).
30. Rodriguez-Urbié, G. et al. HPV16-E6 oncoprotein activates TGF-beta and Wnt/beta-catenin pathways in the epithelium-mesenchymal transition of carcinomas in a transgenic mouse model. Biomed. Res. Int. 2018, 2847873 (2018).
31. McMahon, G. A., Dignam, J. D. & Gentry, L. E. Structural characterization of the latent complex between transforming growth factor beta 1 and beta 1-latency-associated protein. Biochem. J. 313, 343–351 (1996).
32. Massague, J. TGF-beta signalling in context. Nat. Rev. Mol. Cell Biol. 13, 616–630 (2012).
33. Tripathy, V., Shin, J. H., Stuelten, C. H. & Zhang, Y. T. TGF-beta-activated intermediate splicing of TAK1 promotes EMT and drug resistance. Oncogene 38, 3185–3200 (2019).
34. Perfman, R. et al. TGF-beta-induced apoptosis is mediated by the adenylate protein Daxx that facilitates JNK activation. Nat. Cell Biol. 3, 708–714 (2001).
35. Vinchuré, O. S. et al. Polycomb complex mediated epigenetic reprogramming alters TGF-beta signaling via a novel E2H2/miR-490/TGF beta2 axis thereby inducing migration and EMT potential in glioblastomas. Int. J. Cancer 145, 1254–1269 (2019).
36. Zhang, Y. et al. Genome-wide CRISPR screen identifies PRC2 and KMT2D-COMPASS as regulators of distinct EMT trajectories that contribute differentially to metastasis. Nat. Cell Biol. 24, 554–564 (2022).
37. Andrews, D. et al. Unravelling the transcriptional responses of TGF-beta: Smad3 and Ezh2 constitute a regulatory switch that controls neuroepithelial cell fate specification. FASEB J. 33, 6667–6681 (2019).
38. Jang, C. W. et al. TGF-beta induces apoptosis through Smad-mediated expression of DAP-kinase. Nat. Cell Biol. 4, 51–58 (2002).
39. Ishiyama, N. et al. Dynamic and static interactions between p120 catenin and E-cadherin: regulation of the tumour transition states occurring during metastasis. Cancer Lett. 39, 1150–1162 e1159 (2015).
40. Pastushenko, I. et al. Fat1 deletion promotes hybrid EMT state, tumour stemness and metastasis. Nature 589, 448–455 (2021).
41. Sahoo, S. et al. Interconnected high-dimensional landscapes of epithelial-mesenchymal plasticity and stemness in cancer. Clin. Exp. Metastasis 39, 279–290 (2022).
42. Simeonov, K. P. et al. Single-cell lineage tracing of metastatic cancer reveals selection of hybrid EMT states. Cancer Cell 39, 1150–1162 e1159 (2015).
43. Norgard, R. J. et al. Calcium signaling induces a partial EMT. EMBO Rep. 22, e51872 (2021).
44. Antoon, J. W. et al. Altered death receptor signaling promotes epithelial-to-mesenchymal transition and acquired chemoresistance. Sci. Rep. 2, 539 (2012).
45. Pastushenko, I. et al. Fat1 depletion promotes hybrid EMT state, tumour stemness and metastasis. Nature 589, 448–455 (2021).
46. Shear activates platelet-derived latent TGF-beta. Blood 112, 3533–3534 (2008).
47. Chatterpantelis, P. et al. Clinopathological features of two rare cases of mesenchymal metastatic tumours in the pancreas: review of the literature. Pancreas 33, 301–303 (2006).
48. Pinheiro, D. & Belliaiche, Y. Mechanical force-driven adherens junction remodeling and epithelial dynamics. Dev. Cell 47, 3–18 (2019).
49. Venhuizen, J. H., Jacobs, F. C. J., Span, P. N. & Zegers, M. M. P120 and E-cadherin: double-edged swords in tumor metastasis. Semin. Cancer Biol. 60, 107–120 (2020).
50. Wu, Q. et al. Monoubiquitination of p120-catenin is essential for TGFbeta-induced epithelial-mesenchymal transition and tumor metastasis. Sci. Adv. 6, eaay9819 (2020).
51. Innocenti, M. New insights into the formation and the function of lamellipodia and ruffles in mesenchymal cell migration. Cell Adh Migr. 12, 401–416 (2018).
52. Machesy, L. M. & Li, A. Fascin: invasive filopodia promoting metastasis. Commun. Integr. Biol. 3, 263–270 (2010).
53. Shankar, J. et al. Pseudopodial actin dynamics control epithelial-mesenchymal transition in metastatic cancer cells. Cancer Res. 70, 3780–3790 (2010).
54. Cicchini, C. et al. TGFbeta-induced EMT requires focal adhesion kinase (FAK) signaling. Exp. Cell Res. 314, 143–152 (2008).
55. Shah, P. P., Fong, M. Y. & Kakar, S. P. TPTT induces EMT through integrin alphavbeta3-focal adhesion kinase signaling in lung cancer cells. Oncogene 31, 3124–3135 (2012).
56. Oliferenko, S., Kaverina, I., Small, J. V. & Huber, L. A. Hyaluronic acid (HA) binding to CD44 activates Rac1 and induces lamellipodia outgrowth. J. Cell Biol. 148, 1159–1164 (2000).
57. Abraham, S. et al. A Rac/Cdc42 exchange factor complex promotes formation of lateral filopodia and blood vessel lumen morphogenesis. Nat. Commun. 6, 7286 (2015).
58. Marivin, A. et al. clAP1 regulates TNF-mediated Cdc42 activation and filopodia formation. Oncogene 33, 5334–5345 (2014).
59. Leve, F. et al. Lysophosphatidic acid induces a migratory phenotype through a crosstalk between RhoA-Rock and Src-FAK signaling in colon cancer cells. Eur. J. Pharmacol. 671, 7–17 (2011).
60. Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).
61. Edlund, S., Landstrom, M., Heldin, C. H. & Aspnomst, P. Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol. Biol. Cell 13, 902–914 (2002).
62. Schober, M. & Fuchs, E. Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-beta and integrin/focal adhesion kinase (FAK) signaling. Proc. Natl Acad. Sci. USA 108, 10544–10549 (2011).
63. Tang, H. et al. MicroRNA-200b/c-3p regulate epithelial plasticity and inhibit cutaneous wound healing by modulating TGF-beta-mediated RAC1 signaling. Cell Death Disc. 11, 931 (2020).
75. Xu, J., Lamouille, S. & Derynck, R. TGF-beta-induced epithelial to mesenchymal
transition. Cell Res. 19, 156–172 (2009).
76. Welch, D. R., Fabra, A. & Nakajima, M. Transforming growth factor beta stimu-
lates mammary adenocarcinoma cell invasion and metastatic potential. Proc.
Natl Acad. Sci. USA 87, 7678–7682 (1990).
77. Murphy, D. A. & Courtright, S. A. The ‘ins’ and ‘outs’ of podosomes and
invadopodia: characteristics, formation and function. Nat. Rev. Mol. Cell Biol. 12,
413–426 (2011).
78. Seano, G. & Primo, L. Podosomes and invadopodia: tools to breach vascular
basement membrane. Cell Cycle 14, 1370–1374 (2015).
79. Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J.
Clin. Invest. 119, 1420–1428 (2009).
80. Blanke, D. J. 2nd et al. Linked positive and negative feedback network motifs
regulate beta-catenin activity in the adherens junction pathway. Mol. Biol. Cell 21,
4135–4148 (2010).
81. Yang, S. et al. Protein 4.1R links E-cadherin/beta-catenin complex to the
cytoskeleton through its direct interaction with beta-catenin and modulates
adherens junction integrity. Biochim. Biophys. Acta 1788, 1458–1465 (2009).
82. Li, J. et al. Oncogenic Kras stimulates Wnt signaling in colon cancer through
inhibition of GSK-3beta. Gastroenterology 138, 1907–1918 (2005).
83. Inoue, M. et al. Plasma redox imbalance caused by albumin oxidation promotes
metastasis through up-regulating EGFR and RAC1. Cell Death Differ. 53, 215–218 (2016).
84. Beeling, E. et al. Plasticity between epithelial and mesenchymal states unlinks
EMT from metastasis-enhancing stem cell capacity. Cell Rep. 14, 2281–2288
(2016).
85. A. X. et al. T-box transcription factor 19 promotes hepatocellular carcinoma
metastasis through upregulating EGF and Rac1. Oncogene 41, 2225–2238
(2022).
86. DeOre, B. J., Partyka, P. P., Fan, F. & Galie, P. A. CD44 mediates shear stress
mechanotransduction in an in vitro blood-brain barrier model through small
GTPases RhoA and Rac1. FASEB J. 36, e22278 (2022).
87. Zhang, J. et al. c-Src phosphorylation and activation of he kinase promotes
metastogenesis and metastasis. Nat. Commun. 9, 5116 (2018).
88. Yang, L. et al. TAK1 regulates endothelial cell necroptosis and tumor metastasis.
Cell Death Differ. 26, 1987–1997 (2019).
89. Strlic, B. et al. Tumor-cell-induced endothelial cell necroptosis via death
receptor 6 promotes metastasis. Nature 536, 215–218 (2016).
90. Nocera, M. & Chu, T. M. Characterization of latent transforming growth factor-

c beta from human seminal plasma. Am. J. Reprod. Immunol. 33, 282–291
(1995).
91. Yang, X. R. et al. Correlation of exonosomal microRNA clusters with bone metas-

tasis in non-small cell lung cancer. Clin. Exp. Metastasis 38, 109–117 (2021).
92. Muri, F. et al. EZH2 promotes progression of small cell lung cancer by sup-

pressing the TGF-beta-Smad-ASCL1 pathway. Cell Dis. 1, 15026 (2015).
93. Jinesh, G. G. & Kamat, A. M. The blebbishield emergency program overrides

cromosomal instability and phagocytosis checkpoints in cancer stem cells.
Cancer Res. 77, 6144–6156 (2017).
94. Chen, X. et al. Heparanase induces necroptosis of microvascular endothelial cells
to promote the metastasis of hepatocellular carcinoma. Cell Death Disc. 7, 33
(2021).
95. Liu, Y. et al. Non-coding RNAs in necroptosis, pyroptosis and ferroptosis in
cancer metastasis. Cell Death Disc. 7, 210 (2021).
96. Yang, L. et al. DNA of neutrophil extracellular traps promotes cancer metastasis
via CDCC25. Nature 583, 133–138 (2020).
97. Cools-Lartigue, J. et al. Neutrophil extracellular traps sequester circulating tumor
cells and promote metastasis. J. Clin. Invest. https://doi.org/10.1172/JCI97484
(2013).
98. Xiao, Y. et al. Cathepsin C promotes breast cancer lung metastasis by modu-

lating neutrophil infiltration and neutrophil extracellular trap formation. Cancer
Cell 39, 423–437 e427 (2021).
99. Cederwall, J., Zhang, Y. & Olsson, A. K. Tumor-induced NETosis as a risk factor
for metastasis and organ failure. Cancer Res. 76, 4311–4315 (2016).
100. Jinesh, G. G. & Kamat, A. M. Endocytosis and serpentine filopodia drive
blebbishield-mediated resurrection of apoptotic cancer stem cells. Cell Death Dis.
20, 15069 (2016).
101. Russo, H. M. et al. Active caspase-1 induces plasma membrane pores that
precepytocyte lysis and are blocked by lathianides. J. Immunol. 197,
1353–1367 (2016).
102. Karfowitz, R. & van Wijk, S. J. L. Surviving death: emerging concepts of RIPK3
and MLKL ubiquitination in the regulation of necroptosis. FEBS J. https://doi.org/
10.1111/febs.16255 (2021).
103. Jinesh, G. G. & Kamat, A. M. Blebbishield emergency program: an apoptotic
route to cellular transformation. Cell Death Differ. 23, 757–758 (2016).
135. Thiam, H. R., Wong, S. L., Wagner, D. D. & Waterman, C. M. Cellular Mechanisms of NETosis. *Annu. Rev. Cell Dev. Biol.* 36, 191–218 (2020).

136. Joshi, M. B. et al. High glucose modulates IL-6 mediated immune homeostasis through impeding neutrophil extracellular trap formation. *FEBS Lett.* 587, 2241–2246 (2013).

137. Yao, F. et al. A targetable LIFR-NF-κB-LCN2 axis controls liver tumorigenesis and vulnerability to ferroptosis. *Nat. Commun.* 12, 7333 (2021).

138. Yan, J., Wan, P., Choksi, S. & Liu, Z. G. Necroptosis and tumor progression. *Trends Cancer* 8, 21–27 (2022).

139. Ubelacker, J. M. et al. Lymph protects metastasizing melanoma cells from ferroptosis. *Nature* 585, 113–118 (2020).

140. Teis, D., Saksena, S. & Emr, S. D. Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. *Dev. Cell* 15, 578–589 (2008).

141. Gong, Y. N. et al. ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. *Cell* 169, 286–300.e216 (2017).

142. Gao, M. et al. Glutaminolysis and ferritin regulate ferroptosis. *Mol. Cell* 59, 298–308 (2015).

143. Yu, Y. et al. Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis. *Blood* 136, 726–739 (2020).

144. Wu, Y. et al. Ubiquitin ligase E3 HUWE1/MULE targets transferrin receptor for degradation and suppresses ferroptosis in acute liver injury. *Cell Death Differ.* (2022).

145. Simpson, M. A., Weigel, J. A. & Weigel, P. H. Systemic blockade of the hyaluronan receptor for endocytosis prevents lymph node metastasis of prostate cancer. *Int. J. Cancer* 131, E836–E840 (2012).

146. Khan, I. & Steeg, P. S. Endocytosis: a pivotal pathway for regulating metastasis. *Nat. Rev. Immunol.* 12, 191–199 (2012).

147. He, Y. et al. Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. *Cancer Res.* 65, 4739–4746 (2005).

148. Hoshida, T. et al. Imaging steps of lymphatic metastasis reveals that vascular endothelial growth factor-C increases metastasis by increasing delivery of cancer cells to lymph nodes: therapeutic implications. *Cancer Res.* 66, 8065–8070 (2006).

149. Karaman, S. & Detmar, M. Mechanisms of lymphatic metastasis. *J. Clin. Invest.* 124, 922–928 (2014).

150. Lund, A. W. et al. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigens by lymph node lymphatics. *Cell Rep.* 1, 1278–1286 (2012).

151. Zhang, Q. et al. PTENε suppresses tumor metastasis through regulation of inflammatory resolution and fusion machinery *Cancer Cell* 36, 51–67.e57 (2019).

152. Jinesh, G. G., Flores, R. E. & Brohl, A. S. Chromosome 19 miRNA cluster and CEBPB expression specifically mark and potentially drive triple negative breast cancers. *PLoS ONE* 13, e0206008 (2018).
195. Jiniesz, G. G. et al. Regulation of MYO1B8 mRNA by a network of C19MC miRNA-520g, IFN-gamma, CEBPB, p53 and bFGF in hepatocellular carcinoma. Sci. Rep. 10, 12371 (2020).

196. Setty, B. A. et al. The genomic landscape of undifferentiated embryonal sarcoma of the liver is typified by C19MC structural rearrangement and overexpression combined with TP53 mutation or loss. PloS Genet. 16, e1008642 (2020).

197. Bortcicci, L. & Flor, I. Exosome-delivered microRNAs of "chromosomal 19 microRNA cluster" as immunomodulators in pregnancy and tumorigenesis. Mol. Cyto. Genet. 5, 27 (2012).

198. Donker, R. B. et al. The expression profile of C19MC microRNAs in primary human trophoblast cells and exosomes. Mol. Hum. Reprod. 18, 417–424 (2012).

199. Xie, Z. et al. Exosome-delivered CD44v6/C1QBP complex drives pancreatic cancer liver metastasis by promoting fibrotic liver microenvironment. Gut 71, 568–579 (2021).

200. Zhang, H. et al. Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis. Nat. Commun. 8, 15016 (2017).

201. Tian, F. et al. Exosome-delivered miR-221/222 exacerbates liver metastasis by targeting SPINT1 in colorectal cancer. Cancer Sci. 112, 3744–3755 (2021).

202. Sun, J. et al. Exosome-derived ADAM17 promotes liver metastasis in colorectal cancer. Front. Pharmacol. 12, 734351 (2021).

203. Tokuda, A. et al. Cancer-derived exosomes activate immune surveillance and suppress peritoneal metastasis of murine colon cancer. Anticancer Res. 41, 1327–1339 (2021).

204. Rodrigues, G. et al. Tumor exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat. Cell Biol. 21, 1403–1412 (2019).

205. Bertocchi, A. et al. Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver. Cancer Cell 39, 708–724 e711 (2021).

206. Cao, S. et al. Mycobacterium tuberculosis antigens repress Th1 immune response suppression and promotes lung cancer metastasis through PD-1/PD-L1 signaling pathway. Cell Death Dis. 10, 44 (2019).

207. Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 366, 973–980 (2020).

208. Geller, L. T. et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357, 1156–1160 (2017).

209. Yu, T. et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170, 548–563 e516 (2017).

210. McNerney, M. E., Godley, L. A. & Le Beau, M. M. Therapy-related myeloid neoplasia: from functional gene cloning to establishment of its role in apoptosis and cancer. Cell Death Differ. 8, 6–15 (2001).

211. Watanabe, S. et al. TGFbeta2-induced formation of lipid droplets supports acidosis-driven metastasis and the metastatic spreading of cancer cells. Nat. Commun. 11, 454 (2020).

212. Belotti, D. et al. Thrombospondin-1 promotes mesenchymal stromal cell functions during tumor via TGFbeta and in cooperation with PDGF. Matrix Biol. 55, 106–116 (2016).

213. Ferraro, G. B. et al. Fatty acid synthesis is required for breast cancer brain colonization in brain metastasis. Cell Death Dis. 10, 1403 (2019).

214. Corbet, C. et al. TGFbeta2-induced formation of lipid droplets supports acidosis-driven metastasis and the metastatic spreading of cancer cells. Nat. Commun. 11, 454 (2020).

215. Gardner, E. E. et al. Chemosensitive relapse in small cell lung cancer proceeds through an EZH2-SLFN11 axis. Cancer Res. 80, 15016 (2020).

216. Watanabe, S. et al. Epigenetic silencing of tumor suppressor Par-4 promotes chemoresistance in recurrent breast cancer. J. Clin. Invest. 128, 4413–4428 (2018).

217. Andre, S. et al. Prolactin induces epithelial-to-mesenchymal transition of prostate cancer cells by suppressing degradation of EGFR through APMAP. Cancer Res. 79, 3063–3075 (2019).

218. Martinez, L. et al. Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ. 21, 79–91 (2014).

219. Yamaaki, T. et al. Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ. 21, 69–78 (2014).

220. Hayashi, K. et al. Tipping the immunostimulatory and inhibitory DAMP balance to harness immunogenic cell death. Nat. Commun. 11, 6299 (2020).

221. Kromer, G., Galassi, C., Zitvogel, L. & Galuzzi, L. Immunogenic cell stress and death. Nat. Immunol. 23, 487–500 (2022).

222. Voigt, R. E. et al. Immunosuppressive effects of apoptotic cells. Nature 390, 350–351 (1997).

223. Ma, Y. Tpi1 the balance toward immunosuppression upon cell death. Nat. Immunol. 22, 940–942 (2021).

224. Clavson, G. A. et al. Macrophage-tumor cell fusions from peripheral blood of melanoma patients. PloS ONE 10, e0134320 (2015).

225. Jiniesz, G. G. et al. Surface PD-L1, E-cadherin, CD24, and VEGFR2 as markers of epithelial ovarian cancer stem cells associated with rapid tumorigenesis. Sci. Rep. 7, 9602 (2017).

226. Bapat, S. A., Mal, A. M., Kopparik, C. B. & Kurrey, N. K. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res. 65, 3025–3029 (2005).

227. Felding-Habermann, B. et al. Initiator activation controls metastasis in human breast cancer. Proc. Natl Acad. Sci. USA 98, 1853–1858 (2001).

228. Aceto, N. et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158, 1110–1122 (2014).

229. Han, X. et al. Silencing SOX2 induced mesenchymal-epithelial transition and its expression predicts liver and lymph node metastasis of CRC patients. PloS ONE 7, e41335 (2012).

230. Qu, Y. et al. ALDH3A1 acts as a prognostic biomarker and inhibits the epithelial mesenchymal transition of oral squamous cell carcinoma through IL-6/STAT3 signaling pathway. J. Cancer 11, 2621–2631 (2020).

231. Siavoshi, A., Taghizadeh, M., Dookhe, E. & Piran, M. Gene expression profiles and pathway enrichment analysis to identification of differentially expressed gene and signaling pathways in epithelial ovarian cancer based on high-throughput RNA-seq data. Genomics 114, 161–170 (2022).

232. Morin, C. et al. Heterogeneity and dynamic of EMT through the plasticity of ribosome and mRNA translation. Biochim. Biophys. Acta Rev. Cancer 1877, 188718 (2022).

233. Jackson-Weaver, O. et al. PRMT1-p53 pathway controls epidermal and invasion. Cell Rep. 31, 107739 (2020).

234. Yang-Hartwich, T. et al. p53-Pirh2 complex promotes Twist1 degradation and inhibits EMT. Mol. Cancer Res. 17, 153–164 (2019).

235. Hoogwater, F. J. et al. Oncogenic K-Ras turns death receptors into metastasis-promoting receptors in human and mouse colorectal cancers. Gastroenterology 138, 2357–2367 (2010).
Classical epithelial-mesenchymal transition (EMT) and alternative cell…
Jinesh and Brohl

253. Yi, X. P. et al. Simultaneous silencing of XIAP and survivin causes partial mesenchymal-epithelial transition of human pancreatic cancer cells via the PTEN/Pi3K/Akt pathway. Mol. Med. Rep. 12, 601–608 (2015).

254. Teodorczyk, M. et al. CD95 promotes metastatic spread via Sck in pancreatic ductal adenocarcinoma. Cell Death Differ. 22, 1192–1202 (2015).

255. Drachsler, M. et al. CD95 maintains stem cell-like and non-classical EMT programs in primary human glioblastoma cells. Cell Death Dis. 7, e2209 (2016).

256. Fingas, C. D. et al. A smac mimetic reduces TNF related apoptosis inducing ligand (TRAIL)-induced invasion and metastasis of cholangiocarcinoma cells. Hepatology 52, 550–561 (2010).

257. Krepler, C. et al. The novel SMAC mimetic birinapant exhibits potent activity by BCG and Smac mimetic combination. J. Leukoc. Biol. 100, 550–561 (2016).

258. Lee, E. K. et al. A Smac mimetic augments the response of urothelial cancer cells and FasL.

259. Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

260. Ramesh, V., Brabletz, T. & Ceppi, P. Targeting EMT in cancer with repurposed metabolic inhibitors. Trends Cancer 6, 942–950 (2020).

261. Jinesh, G. G. & Kamat, A. M. Redirecting neutrophils against bladder cancer cells by BCG and Smac mimetic combination. Oncoimmunology 1, 1161–1162 (2012).

262. Ding, Y. et al. Identification of a small molecule as inducer of ferroptosis and apoptosis through ubiquitination of GPX4 in triple negative breast cancer cells. J. Hematol. Oncol. 14, 19 (2021).

263. Tan, Y. et al. HucMSC-derived exosomes delivered BECN1 induces ferroptosis of hepatic stellate cells via regulating the vct/GPX4 axis. Cell Death Dis. 13, 319 (2022).

264. Canli, O. et al. Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors. Blood 127, 139–148 (2016).

265. Ingold, I. et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172, 409–422 e421 (2018).

266. Viswanathan, V. S. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453–457 (2017).

267. Hangauer, M. J. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247–250 (2017).

268. Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

269. Ramesh, V., Brabletz, T. & Ceppi, P. Targeting EMT in cancer with repurposed metabolic inhibitors. Trends Cancer 6, 942–950 (2020).

270. Shankaranarayanan, P. et al. Growth factor-antagonized rexinoid apoptosis involves permissive PPARgamma/RXR heterodimers to activate the intrinsic death pathway by NO. Cancer Cell 16, 220–231 (2009).

271. Sen, N. et al. Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat. Cell Biol. 10, 866–873 (2008).

272. Tsunoda, T. et al. Inhibition of phosphodiesterase-4 (PDE4) activity triggers luminal apoptosis and AKT dephosphorylation in a 3-D colonic-crypt model. Mol. Cancer 11, 46 (2012).

273. Schwab, A. et al. Polyol pathway links glucose metabolism to the aggressiveness of cancer cells. Cancer Res. 78, 1604–1618 (2018).

274. Zhang, K. R. et al. Targeting AKR1B1 inhibits glutathione de novo synthesis to overcome acquired resistance to EGFR-targeted therapy in lung cancer. Sci. Transl. Med. 13, eabg6428 (2021).

275. Wu, Z. et al. Metformin induces myeloma cells necrosis and apoptosis and it is considered for therapeutic use. J. Chemother. https://doi.org/10.1080/1120099X.2022.2062895 (2022).

276. Leon-Anniciarico, C. L. et al. ATF4 mediates necrosis induced by glucose deprivation and apoptosis induced by 2-deoxyglucose in the same cells. FEBs J. 282, 3647–3658 (2015).

277. Babcock, M. A. et al. Combination simvastatin and metformin induces G1-phase cell cycle arrest and Ripk1- and Ripk3-dependent necrosis in C4-2B osseous metastatic castration-resistant prostate cancer cells. Cell Death Dis. 5, e1536 (2014).