On Coloring Properties of Graph Powers

Hossein Hajiabolhassan
*Department of Mathematical Sciences
Shahid Beheshti University, G.C.,
P.O. Box 19839-63113, Tehran, Iran
hhaji@sbu.ac.ir

Ali Taherkhani
Department of Mathematics
Institute for Advanced Studies in Basic Sciences
P.O. Box 45195-1159, Zanjan 45195, Iran
ali.taherkhani@iasbs.ac.ir

Abstract

This paper studies some coloring properties of graph powers. We show that
\(\chi_c(G^{2r+1}_{2s+1}) = (2s+1) \chi_c(G) \) provided that \(\chi_c(G^{2r+1}_{2s+1}) < 4 \). As a consequence,
one can see that if \(\frac{2r+1}{2s+1} \leq \frac{\chi_c(G)}{3(\chi_c(G)-2)} \), then \(\chi_c(G^{2r+1}_{2s+1}) = \frac{(2s+1)\chi_c(G)}{(s-r)\chi_c(G)+2r+1} \).

In particular, \(\chi_c(K_{3n+1}^{\frac{1}{3}}) = \frac{9n+3}{3n+2} \) and \(K_{3n+1}^{\frac{1}{3}} \) has no subgraph with circular chromatic number equal to \(\frac{6n+1}{2n+1} \). This provides a negative answer to a question asked in [Xuding Zhu, Circular chromatic number: a survey, Discrete Math., 229(1-3):371–410, 2001]. Also, we present an upper bound for the fractional chromatic number of subdivision graphs. Precisely, we show that \(\chi_f(G^{2r+1}_{2s+1}) \leq \frac{(2s+1)\chi_f(G)}{s\chi_f(G)+1} \). Finally, we investigate the nth multichromatic number of subdivision graphs.

Keywords: graph homomorphism, circular coloring, fractional chromatic number, multichromatic number.

Subject classification: 05C

1 Introduction

It was shown in [7] that one can compute the fractional chromatic number of \(M(G) \) in terms of that of \(G \), where \(M(G) \) stands for the Mycielskian of \(G \). There are a few interesting and similar results for the circular chromatic number. Hence, it is of interest to find a map or a functor \(F \) from the category of graphs to itself such that, for any graph \(G \), it is possible to determine the exact value of the circular chromatic number of \(F(G) \) in terms of that of \(G \). In this paper, we show that graph powers can be considered as such functors (graph powers preserve the graph homomorphism).

In Section 1, we set up notation and terminology. Section 2 establishes the tight relation between the circular chromatic number and graph powers. In fact, we show that it is possible to determine the circular chromatic number of \(G^{2r+1}_{2s+1} \) in terms of that of \(G \) provided that \(\frac{2r+1}{2s+1} \) is sufficiently small. In Section 3, we investigate the fractional chromatic number and the nth multichromatic number of subdivision graphs.

*This research was in part supported by Shahid Beheshti University.
Throughout this paper we consider finite simple graphs which have no loops and multiple edges. For a given graph G, the notation $\text{og}(G)$ stands for the odd girth of G. We denote by $[m]$ the set $\{1, 2, \ldots, m\}$. Let G and H be two graphs. A homomorphism from G to H is a mapping $f : V(G) \rightarrow V(H)$ such that $f(u)f(v) \in E(H)$ whenever $uv \in V(G)$. We write $G \rightarrow H$ if there exists a homomorphism from G to H. Two graphs G and H are homomorphically equivalent if $G \rightarrow H$ and $H \rightarrow G$ and it is indicated by the symbol $G \leftrightarrow H$.

Let d and n be positive integers, where $n \geq 2d$. The circular complete graph $K_{\frac{n}{d}}$ has the vertex set $\{0, 1, \ldots, n-1\}$ in which ij is an edge if and only if $d \leq |i-j| \leq n-d$. An (n, d)–coloring of graph G is a homomorphism from G to the circular complete graph $K_{\frac{n}{d}}$. The circular chromatic number $\chi_c(G)$ of G is defined as

$$\chi_c(G) = \inf \left\{ \frac{n}{d} \mid G \text{ admits an } (n, d) - \text{coloring} \right\}.$$

Two kinds of graph powers were introduced in [2, 3]. Especially, it was illustrated that there is a tight relationship between graph powers and the circular chromatic number. Also, the connection between graph homomorphism and graph powers has been studied in [2, 3, 12].

For a graph G, let G^k be the kth power of G, which is obtained on the vertex set $V(G)$, by connecting any two vertices u and v for which there exists a walk of length k between u and v in G. Also, assume that $G^{\frac{k}{d}}$ is the graph obtained by replacing each edge of G with the path P_{s+1}. Set $G^{\frac{k}{d}} = (G^{\frac{k}{d}})^r$. This power, called fractional power as a functor, preserves the graph homomorphism. In this terminology, we have the following lemma.

Lemma A. [3] Let r and s be positive integers and G be a graph. Then

$$G \rightarrow H \quad \Rightarrow \quad G^{\frac{k}{d}} \rightarrow H^{\frac{k}{d}}.$$

Lemma B. [3] Let r, s, p, and q be non-negative integers and G be a graph. Then

$$(G^g)^{\frac{2r+1}{2q+1}} \rightarrow G^{\frac{2r+1}{2q+1}} \rightarrow G^{\frac{2r+1}{2q+1}}.$$

For a given graph G with $v \in V(G)$, set

$$N_i(v) = \{u \mid \text{there is a walk of length } i \text{ joining } u \text{ and } v\}.$$

For two subsets A and B of the vertex set of a graph G, we write $A \triangleright B$ if every vertex of A is joined to every vertex of B. Also, for any non-negative integer s, define the graph $G^{\frac{1}{2+1}}$ as follows.

$$V(G^{\frac{1}{2+1}}) = \{ (A_1, \ldots, A_{s+1}) \mid A_i \subseteq V(G), |A_1| = 1, \emptyset \neq A_i \subseteq N_{i-1}(A_1), i \leq s+1 \}.$$

Two vertices (A_1, \ldots, A_{s+1}) and (B_1, \ldots, B_{s+1}) are adjacent in $G^{\frac{1}{2+1}}$ if for any $1 \leq i \leq s$ and $1 \leq j \leq s+1$, $A_i \subseteq B_{i+1}$, $B_i \subseteq A_{i+1}$, and $A_j \triangleright B_j$. Here is the
definition of dual power as a functor as follows. Let \(r \) and \(s \) be non-negative integers. For any graph \(G \) define the graph \(G^{\frac{2r+1}{2s+1}} \) as follows

\[
G^{\frac{2r+1}{2s+1}} = \left(G^{\frac{s+1}{r+1}} \right)^{2r+1}.
\]

These powers, in sense of graph homomorphism, inherit several properties from power in numbers.

Lemma C. \cite{3} Let \(r, p, \) and \(q \) be non-negative integers. For any graph \(G \) we have

a) \(G^{\frac{(2r+1)(2p+1)}{(2r+1)(2q+1)}} \leftrightarrow G^{\frac{2p+1}{2q+1}}. \)

b) \(G^{\frac{(2r+1)(2p+1)}{(2r+1)(2q+1)}} \leftrightarrow G^{\frac{2p+1}{2q+1}}. \)

It was proved in \cite{3} that these two powers are dual of each other as follows.

Theorem A. \cite{3} Let \(G \) and \(H \) be two graphs. Also, assume that \(\frac{2r+1}{2s+1} < \log(G) \) and \(2s+1 < \log(H^{\frac{2r+1}{2s+1}}) \). We have

\[
G^{\frac{2r+1}{2s+1}} \rightarrow H \iff G \rightarrow H^{\frac{2s+1}{2r+1}}.
\]

Now, we consider the parameter \(\theta_i(G) \) which in some sense measures the homomorphism capabilities of \(G \).

Definition 1. Assume that \(G \) is a non-bipartite graph. Also, let \(i \geq -\chi(G) + 3 \) be an integer. The \(i \)th power thickness of \(G \) is defined as follows.

\[
\theta_i(G) = \sup \left\{ \frac{2r+1}{2s+1} \mid \chi(G^{\frac{2r+1}{2s+1}}) \leq \chi(G) + i, \frac{2r+1}{2s+1} < \log(G) \right\}.
\]

For simplicity, when \(i = 0 \), the parameter is called the power thickness of \(G \) and is denoted by \(\theta(G) \). Also, when \(i = \chi(G) - 3 \), we set \(\theta_{\chi(G)-3}(G) = \mu(G) \). \♠

Lemma D. \cite{3} Let \(G \) and \(H \) be two non-bipartite graphs with \(\chi(G) = \chi(H) - j, \ j \geq 0 \). If \(G \rightarrow H \) and \(i + j \geq -\chi(G) + 3 \), then

\[
\theta_{i+j}(G) \geq \theta_i(H).
\]

It is interesting that \(\mu(G) \) is computed in terms of circular chromatic number. Hence, \(\theta_i(G) \)'s can be considered as a generalization of circular chromatic number.

Theorem B. \cite{3} Let \(G \) be a non-bipartite graph. Then

\[
\mu(G) = \frac{\chi_c(G)}{3(\chi_c(G) - 2)}.
\]
Some properties of graph powers and its close relationship to the circular chromatic number of non-bipartite graphs have been studied in [3]. In particular, an equivalent definition of the circular chromatic number in terms of graph powers was introduced as follows.

Theorem C. [3] Let G be a non-bipartite graph with chromatic number $\chi(G)$.

a) If $0 < \frac{2r+1}{2s+1} \leq \frac{\chi(G)}{3(\chi(G) - 2)}$, then $\chi(G^{2r+1}) = 3$. Furthermore, $\chi(G) \neq \chi_c(G)$ if and only if there exists a rational number $\frac{2r+1}{2s+1} > \frac{\chi(G)}{3(\chi(G) - 2)}$ for which $\chi(G^{2r+1}) = 3$.

b) $\chi_c(G) = \inf\{\frac{2n+1}{n-1} | \chi(G^{2n+1}) = 3, n > t > 0\}$.

Here, we show that if $2r + 1 < \log(K_n^d)$, then K_n^{2r+1} is isomorphic to a circular complete graph.

Lemma 1. Let n and d be positive integers, where $n > 2d$.

a) If r is a non-negative integer and $\frac{n}{d} < \frac{2r+1}{r}$, then $K_n^{2r+1} \simeq K_{\frac{n}{(2r+1)d-rn}}$.

b) If s is a nonnegative integer, then $K_n^s \leftrightarrow K_{\frac{2r+1}{sn+d}}$.

Proof. Let $t \leq r$ be a non-negative integer. If i is an arbitrary vertex of K_n^d, it is not hard to check that $N_{2r+1}(i) = \{i+(2t+1)d-tn, i+(2t+1)d-tn+1, \ldots, i-(2t+1)d+tn+1\}$, where the summation is modulo n. Therefore, K_n^{2r+1} is isomorphic to the circular complete graph $K_{\frac{n}{(2r+1)d-rn}}$. The next part is an immediate consequence of part (a).

Now, we introduce an upper bound for the circular chromatic number of graph powers.

Theorem 1. Let r and s be non-negative integers and G be a non-bipartite graph with circular chromatic number $\chi_c(G)$. If $\frac{2r+1}{2s+1} < \frac{\chi_c(G)}{\chi_c(G) - 2}$, then

$$\chi_c(G^{2r+1}) \leq \frac{(2s+1)\chi_c(G)}{(s-r)\chi_c(G) + 2r+1}.$$

Proof. Let $\chi_c(G) = \frac{n}{d}$. It is easy to see that if $\frac{2r+1}{2s+1} < \frac{n}{d-2}$, then $\frac{(2s+1)n}{sn+d} < \frac{2r+1}{r}$.

$$G \rightarrow K_n^d \implies G^{\frac{2r+1}{2s+1}} \rightarrow (K_n^d)^{\frac{2r+1}{2s+1}} \quad \text{(By Lemma A)}$$

$$\implies G^{\frac{2r+1}{2s+1}} \rightarrow (K_{\frac{2s+1}{sn+d}}^{\frac{2r+1}{2s+1}}) \quad \text{(By Lemma I b)}$$
\[G^{\frac{2r+1}{3r+1}} \longrightarrow K^{\frac{2r+1}{(2r+1)n}}_{\frac{3r+1}{3n+4}} \quad \text{(By Lemmas B and C)} \]
\[G^{\frac{2r+1}{2r+1}} \longrightarrow K^{\frac{(2r+1)n}{(2r+1)(s+r)n-(2r+1)n}}_{s+r+1} \quad \text{(By Lemma 1(a))} \]
\[\chi_c(G^{\frac{2r+1}{3r+1}}) \leq \frac{(2s+1)n}{(s-r)n+2r+1} \]
\[\chi_c(G^{\frac{2r+1}{2r+1}}) \leq \frac{(2s+1)^n \chi_c(G)}{(s-r)^n \chi_c(G)+(2r+1)} \]

\[\Box \]

Tardif [12] has shown that the cube root, in sense of dual power, of any circular complete graph with circular chromatic number less than 4, is homomorphically equivalent to a circular complete graph.

Lemma E. [12] *Let* \(n \) *and* \(d \) *be positive integers, where* \(n > 2d \). *If* \(\frac{n}{d} < 4 \), *then* \(K^{\frac{1}{3}}_{\frac{n}{n+d}} \leftarrow K^{\frac{3n}{n+d}}_n \).

Here is a generalization of Lemma E.

Lemma 2. *Let* \(n \) *and* \(d \) *be positive integers, where* \(n > 2d \). *If* \(\frac{n}{d} < 4 \), *then*

\[K^{\frac{1}{3}}_{\frac{n}{n+d}} \leftarrow K^{\frac{2r+1}{3r+1}}_{\frac{3n}{3n+4}} \]

Proof. Theorem A implies that \(K^{\frac{2r+1}{(2r+1)n}}_{\frac{3r+1}{3n+4}} \longrightarrow K^{\frac{1}{3}}_{\frac{n}{n+d}} \) if and only if \(K^{\frac{2r+1}{(2r+1)n}}_{\frac{3r+1}{3n+4}} \longrightarrow K^{\frac{n}{d}}_n \). On the other hand, Lemma 1(b) shows that the circular complete graphs \(K^{\frac{2r+1}{(2r+1)n}}_{\frac{3r+1}{3n+4}} \) and \(K^{\frac{n}{d}}_n \) are homomorphically equivalent. Conversely, it is sufficient to prove that

\[\chi_c(K^{\frac{1}{3}}_{\frac{n}{n+d}}) \leq \frac{(2r+1)n}{rn+d} \]

Take a rational number \(\frac{2k+1}{3} \) such that \(\frac{1}{2r+1} \leq \frac{2k+1}{3} < \frac{1}{2} \). It is easy to see that

\[K^{\frac{1}{3}}_{\frac{n}{n+d}} \longrightarrow (K^{\frac{1}{3}}_{\frac{1}{3}})^{\frac{2k+1}{3}} \]

If \(G \) is non-bipartite graph, Theorem A and Lemma C yield that \(G^{\frac{1}{3}}_{\frac{1}{3^{i-1}}} \longrightarrow (G^{\frac{1}{3}}_{\frac{1}{3^{i-1}}})^{\frac{2k+1}{3}} \). Since \(\frac{n}{d} < 4 \), by induction on \(i \) and Lemma E we have \(K^{\frac{1}{3}}_{\frac{n}{n+d}} \leftarrow K^{\frac{2k+1}{3}}_{\frac{3n}{3n+4}} \). Therefore, there is a homomorphism from \(K^{\frac{2k+1}{3}}_{\frac{3n}{3n+4}} \) to \(K^{\frac{2k+1}{3}}_{\frac{3n}{3n+4}} \). By
Lemma (a), two graphs $K_{\frac{3^k-1}{2}n+1}$ and $K_{\frac{3^k}{2}(\frac{3^k-1}{2}n+1)-k3^k}$ are homomorphically equivalent. Hence,

$$\chi_c(K_{\frac{3^k+1}{2}}) \leq \frac{3^i n}{(2k+1)d + (\frac{3^i-1}{2} - k)n}.$$

Since the set of parameters $\{\frac{2k+1}{d} | k \geq 1, i \geq 1\}$ is dense in the interval $(0, +\infty)$,

$$\chi_c(K_{\frac{2r+1}{2}}) \leq \inf \left\{ \frac{3^i n}{(2k+1)d + (\frac{3^i-1}{2} - k)n} \mid \frac{1}{2r+1} \leq \frac{2k+1}{3^i} < \frac{1}{2} \right\}.$$

This infimum is equal to $\frac{(2r+1)n}{r n + d}$, as desired. ■

Here, we determine the circular chromatic number of some graph powers.

Theorem 2. Let G be a non-bipartite graph with circular chromatic number $\chi_c(G)$. Also, assume that r and s are non-negative integers. Then we have $\chi_c(G^{\frac{2s+1}{2}}) = \frac{(2s+1)\chi_c(G)}{s\chi_c(G)+1}$. Moreover, If $\chi_c(G^{\frac{2s+1}{2}}) < 4$, then

$$\chi_c(G^{\frac{2s+1}{2}}) = \frac{(2s+1)\chi_c(G)}{(s-r)\chi_c(G)+2r+1}.$$

Proof. Note that, in view of Theorem (A) $G \rightarrow K_{\frac{2s+1}{s\chi_c(G)+1}}$ if and only if $G \rightarrow K_{\frac{(2s+1)\chi_c(G)}{s\chi_c(G)+1}}$. On the other hand, by using Lemma (a), two graphs $K_{\frac{2s+1}{2s+1}(\frac{2s+1}{s\chi_c(G)+1})}$ and $K_{\frac{2s+1}{2s+1}(\frac{2s+1}{s\chi_c(G)+1})}$ are homomorphically equivalent. Consequently, $\chi_c(G^{\frac{2s+1}{2}}) < \frac{2s+1}{s}$.

Let $\frac{n}{d} < \frac{2s+1}{s}$.

$$\chi_c(G^{\frac{2s+1}{2}}) \leq \frac{n}{d} \iff G^{\frac{2s+1}{2}} \rightarrow K_{\frac{n}{d}}$$

$$\iff G \rightarrow K_{\frac{2s+1}{n}}$$ (By Theorem (A))

$$\iff G \rightarrow K_{\frac{n}{(2s+1)d-an}}$$ (By Lemma (a))

$$\iff \chi_c(G) \leq \chi_c(K_{\frac{n}{(2s+1)d-an}})$$

$$\iff \frac{(2s+1)\chi_c(G)}{s\chi_c(G)+1} \leq \frac{n}{d}$$

To prove the next part, it suffices to show that for any $2 \leq \frac{n}{d} < 4$, $\chi_c(G^{\frac{2s+1}{2}}) \leq \frac{n}{d}$ is equivalent to $\frac{(2s+1)\chi_c(G)}{(s-r)\chi_c(G)+2r+1} \leq \frac{n}{d}$. Assume that $\chi_c(G^{\frac{2s+1}{2}}) \leq \frac{n}{d} < 4$.

\[\chi_c(G^{\frac{2r+1}{2s+1}}) \leq \frac{n}{d} \iff G^{\frac{2r+1}{2s+1}} \rightarrow K_{\frac{n}{d}} \]

\[\iff G^{\frac{2r+1}{2s+1}} \rightarrow K_{\frac{n}{d}}^{\frac{1}{d}} \quad \text{(By Theorem A)} \]

\[\iff G^{\frac{2r+1}{2s+1}} \rightarrow K_{\frac{(2r+1)n}{r+\frac{n}{d}}} \quad \text{(By Lemma 2)} \]

\[\iff \chi_c(G^{\frac{2r+1}{2s+1}}) \leq \frac{(2r+1)n}{r+\frac{n}{d}} \]

\[\iff \frac{(2s+1)\chi_c(G)}{s\chi_c(G)+1} \leq \frac{(2r+1)\frac{n}{d}}{r+\frac{n}{d}+1} \]

\[\iff \frac{(2s+1)\chi_c(G)}{(s-r)\chi_c(G)+2r+1} \leq \frac{n}{d}. \]

Corollary 1. Let \(r \) and \(s \) be non-negative integers and \(G \) be a non-bipartite graph. If \(\frac{2r+1}{2s+1} \leq \frac{\chi_c(G)}{3(\chi_c(G)-2)} \), then \(\chi_c(G^{\frac{2r+1}{2s+1}}) = \frac{(2s+1)\chi_c(G)}{(s-r)\chi_c(G)+2r+1} \).

Proof. Since \(\frac{2r+1}{2s+1} \leq \frac{\chi_c(G)}{3(\chi_c(G)-2)} \), Theorem 2 implies that \(\chi_c(G^{\frac{2r+1}{2s+1}}) \leq 3. \) Now, by the previous theorem, we have \(\chi_c(G^{\frac{2r+1}{2s+1}}) = \frac{(2s+1)\chi_c(G)}{(s-r)\chi_c(G)+2r+1} \).

Corollary 2. Let \(r \) and \(s \) be non-negative integers and \(G \) be a non-bipartite graph such that \(\chi_c(G^{\frac{2r+1}{2s+1}}) < 4. \) Then we have

\[\mu(G^{\frac{2r+1}{2s+1}}) = \frac{2s+1}{2r+1} \mu(G) = \frac{2s+1}{3(2r+1)} \chi_c(G). \]

Given a rational number \(\frac{n}{d} \), a rational number \(\frac{n'}{d'} \) is unavoidable by \(\frac{n}{d} \) if every graph \(G \) with \(\chi_c(G) = \frac{n}{d} \) contains a subgraph \(H \) with \(\chi_c(H) = \frac{n'}{d'} \). It is known [4] if \(m \) is an integer and \(m < \frac{n}{d} \), then \(m \) is unavoidable by \(\frac{n}{d} \).

Suppose \((n, d) = 1\), i.e., \(n \) and \(d \) are coprime. Let \(n' \) and \(d' \) be the unique integers such that \(0 < n' < n \) and \(nd' - n'd = 1 \). We call \(\frac{n'}{d'} \) the lower parent of \(\frac{n}{d} \), and denote it by \(F(\frac{n}{d}) \). The following question was posed in [13, 14].

Question A. [13, 14] Is true that for every rational \(\frac{n}{d} > 2 \), \(F(\frac{n}{d}) \) is unavoidable by \(\frac{n}{d} \)?

Here, we give a negative answer to the aforementioned question.

Corollary 3. Let \(k \) be a positive integer. Then there exists a graph \(G \) with \(\chi_c(G) = \frac{9k+3}{3k+2} \) such that \(G \) does not contain any subgraph with circular chromatic number equal to \(\frac{9k+1}{3k+2} \).

Proof. Let \(n = 9k + 3 \), \(d = 3k + 2 \), \(n' = 6k + 1 \), and \(d' = 2k + 1 \). Obviously, \(nd' - n'd = 1 \). By Theorem 2 we have \(\chi_c(K_{\frac{4}{3k+1}}) = \frac{9k+3}{3k+2} \). Suppose that \(e \in \)
$E(K^\frac{1}{2}_{3k+1})$. It is readily seen that there exists a homomorphism from $K^\frac{1}{2}_{3k+1} \setminus e$ to $K^\frac{1}{2}_{3k}$.

Hence, if H is a proper subgraph of $K^\frac{1}{2}_{3k+1}$, then $\chi_c(H) \leq \chi_c(K^\frac{1}{2}_{3k}) = \frac{9k}{3k+1} < \frac{6k+1}{2k+1}$.

Therefore, G contains no subgraph with circular chromatic number $\frac{n^2}{d}$.

It should be noted that one can introduce more rational numbers such that their lower parents are not unavoidable. For instance, we show that $\frac{15n+7}{6n+4}$ is not unavoidable by $\frac{18n+9}{6n+4}$. To see this, for $d \geq 2$ and $n \geq 3$, define the graph $H_d(K_n)$ as follows. Let G_1, \ldots, G_d be d graphs such that each of them is isomorphic to the complete graph K_n. Assume that $v_i w_i \in E(G_i)$ for any $1 \leq i \leq d$. The graph $H_d(K_n)$ obtained from the disjoint union of $G_1 \cup \cdots \cup G_d$ by identifying the vertices w_i with v_{i+1} for any $1 \leq i \leq d - 1$, deleting the edges $v_i w_i$ for any $1 \leq i \leq d$, and by adding the edge $v_1 w_d$. In fact, it is a simple matter to check that $H_d(K_n)$ follows by applying Hajós construction to the complete graphs G_1, \ldots, G_d. Hence, $\chi(H_d(K_n)) = n$ and the graph $H_d(K_n)$ is a critical graph, i.e., $\chi(H_d(K_n) \setminus e) = n - 1$ for any $e \in E(H_d(K_n))$.

Now, we show that $\chi_c(H_d(K_n)) = \frac{d(n-1)+1}{d}$. To see this, assume that $V(G_i) = \{v_1, u_2, \ldots, u_{n(n-1)+1}, w_i\}$. Define a coloring $c : V(H_d(K_n)) \rightarrow \{1, 2, \ldots, dn - d + 1\}$ as follows. For any $1 \leq i \leq d$ and $2 \leq j \leq n - 1$, set $c(u_{ij}) = (j - 1)d + i$, $c(w_i) = i$, and $c(v_1) = d(n-1)+1$. It is easy to check that c is a $(d(n-1)+1, d)$ coloring of $H_d(K_n)$.

On the other hand, it is straightforward to check that the independence number of $H_d(K_n)$ is equal to d. Consequently, $\chi_c(H_d(K_n)) = \frac{dn-d+1}{d}$.

The graph $H_2(K^\frac{1}{2}_{3n+2})$ has circular chromatic number $\frac{18n+9}{6n+5}$. It is readily seen that there is a homomorphism from $H_2(K^\frac{1}{2}_{3n+2}) \setminus e$ to $K^\frac{1}{2}_{3n+1}$. Hence, if H is a proper subgraph of $H_2(K^\frac{1}{2}_{3n+2})$, then $\chi_c(H) \leq \chi_c(K^\frac{1}{2}_{3n+1}) = \frac{9n+3}{3n+2} < \frac{15n+7}{5n+4}$. Therefore, $H_2(K^\frac{1}{2}_{3n+2})^\frac{1}{2}$ contains no subgraph with circular chromatic number $\frac{15n+7}{5n+4}$.

Let $\zeta(G)$ be the minimum number of vertices of G, necessary to be deleted, in order to reduce the chromatic number of the graph.

Question B. Let $\chi_c(G) = \frac{n}{d}$, where $(n, d) = 1$ and $n = (\chi(G) - 1)d + r$. Is it true that $\zeta(G) \geq r$?

When G is a critical graph, we have $\zeta(G) = 1$. If the aforementioned question is true, then for every critical graph G with $\chi(G) = n$, its circular chromatic number is equal to $\frac{dn-d+1}{d}$ for an appropriate d. It is worth noting that $H_d(K_n)$ is a critical graph with $\chi_c(H_d(K_n)) = \frac{dn-d+1}{d}$.

3 Fractional and Multichromatic Number

As usual, we denote by $[m]$ the set $\{1, 2, \ldots, m\}$, and denote by $\binom{[m]}{n}$ the collection of all n-subsets of $[m]$. The **Kneser graph** $KG(m, n)$ (resp. the **generalized Kneser graph** $KG(m, n, s)$) is the graph on the vertex set $\binom{[m]}{n}$, in which two distinct vertices A and B are adjacent if and only if $A \cap B = \varnothing$ (resp. $|A \cap B| \leq s$). It was conjectured by
Kneser [6] in 1955, and proved by Lovász [8] in 1978, that \(\chi(KG(m, n)) = m - 2n + 2 \). The fractional chromatic number is defined as a generalization of the chromatic number as follows

\[
\chi_f(G) = \inf\{ \frac{m}{n} | G \rightarrow KG(m, n) \}.
\]

An \(n \)-tuple coloring of graph \(G \) with \(m \) colors assigns to each vertex of \(G \), an \(n \)-subset of \([m]\) so that adjacent vertices receive disjoint sets. Equivalently, \(G \) has an \(n \)-tuple coloring with \(m \) colors if there exists a homomorphism from \(G \) to \(KG(m, n) \). The \(n \)-th multichromatic number of \(G \), denoted by \(\chi_n(G) \), is the smallest \(m \) such that \(G \) has a \(n \)-tuple coloring with \(m \) colors. These colorings were first studied in the early 1970s and the readers are referred to [5, 10, 11] for more information.

Theorem D. [9] Suppose that \(m \) and \(n \) are positive integers with \(m > 2n \). Then the following two conditions on non-negative integers \(k \) and \(l \) are equivalent.

- For any two (not necessarily distinct) vertices \(A \) and \(B \) of \(KG(m, n) \) with \(|A \cap B| = k \), there is a walk of length exactly \(l \) in \(KG(m, n) \) beginning at \(A \) and ending at \(B \).
- \(l \) is even and \(k \geq n - \frac{l}{2}(m - 2n) \), or \(l \) is odd and \(k \leq \frac{l - 1}{2}(m - 2n) \).

In view of Theorem [2], we have \(\chi_c(G^{\frac{k}{l+k}}) = \frac{(2s+1)\chi_c(G)}{s\chi_f(G) + 1} \). Here, we present a tight upper bound for the fractional chromatic number of subdivision graphs.

Theorem 3. Let \(G \) be a non-bipartite graph and \(s \) be a non-negative integer. Then

\[
\chi_f(G^{\frac{1}{s+1}}) \leq \frac{(2s + 1)\chi_f(G)}{s\chi_f(G) + 1}.
\]

Proof. Let \(f \) be a homomorphism from \(G \) to \(KG(m, n) \). We claim that there is a homomorphism from \(G \) to the generalized Kneser graph \(KG((2s+1)m, sm + n, (m - 2n)s) \). To see this, for every vertex \(v \in V(G) \), define \(g(v) \) as follows

\[
\bigcup_{i \in f(v)} \{(i-1)(2s+1)+1, \ldots, (i-1)(2s+1)+s\} \cup \bigcup_{i \notin f(v)} \{(i-1)(2s+1)+s+1, \ldots, i(2s+1)\}.
\]

It is easy to see that, for any vertex \(v \in V(G) \), \(|g(v)| = sm + n \). Also, if \(u \) and \(v \) are two adjacent vertices in \(G \), then \(|g(u) \cap g(v)| = (m - 2n)s \). Now, in view of Theorem [2], we have

\[
KG((2s+1)m, sm + n, (m - 2n)s) \leftrightarrow KG((2s+1)m, sm + n)^{2s+1}.
\]

Let \(G \rightarrow KG(m, n) \) and \(\chi_f(G) = \frac{m}{n} \). By the previous discussion, there is a homomorphism from \(G \) to \(KG((2s+1)m, sm + n, (m - 2n)s) \). Now, Theorem [1] implies that \(G^{\frac{1}{s+1}} \rightarrow KG((2s+1)m, sm + n) \). Hence, \(\chi_f(G^{\frac{1}{s+1}}) \leq \frac{(2s+1)\chi_f(G)}{s\chi_f(G) + 1} \).

Equality does not always hold in Theorem [3]. For instance, consider the graph \(R_{10}^\frac{1}{3} \). We know that the third power of the Petersen graph \(P^3 \) is isomorphic to \(K_{10} \).
Hence, in view of Lemma [B] there exists a homomorphism from $K_{10}^{\frac{1}{2}}$ to the Petersen graph. Consequently, $\chi_f(K_{10}^{\frac{1}{2}}) \leq \frac{6}{2}$ which is less than $\frac{10}{11}$.

It is simple to see that there exists a homomorphism from $G_{2n+1}^{\frac{1}{2}s+1}$ to C_{2n+1}. On the other hand, the odd cycle C_{2n+1} is an induced subgraph of the Kneser graph $KG(2n+1, n)$. Therefore, if G is a non-bipartite graph and $s \geq n$, then $\chi_n(G_{2n+1}^{\frac{1}{2}s+1}) = 2n + 1$.

Theorem 4. Let G be a non-bipartite graph. If i, n and s are positive integers such that $is = n - 1$, then

$$\chi_n(G_{2n+1}^{\frac{1}{2}s+1}) \leq 2n + i \iff \chi(G) \leq \binom{2n+i}{n}.$$

Proof.

$$\chi_n(G_{2n+1}^{\frac{1}{2}s+1}) \leq 2n + i \iff G_{2n+1}^{\frac{1}{2}s+1} \rightarrow KG(2n + i, n)$$

$$\iff G \rightarrow KG(2n + i, n)^{2s+1} \quad \text{(By Theorem [A])}$$

$$\iff G \rightarrow KG(2n + i, n, is) \quad \text{(By Theorem [D])}$$

$$\iff G \rightarrow KG(2n + i, n, n - 1)$$

$$\iff G \rightarrow K_{\binom{2n+i}{n}}$$

$$\iff \chi(G) \leq \binom{2n+i}{n}.$$

We know that $\chi_2(G_{2n+1}^{\frac{1}{2}s+1}) = 5$ whenever $s \geq 2$. The following corollary, which is an immediate consequence of the aforementioned theorem, determines the other cases.

Corollary 4. Let G be a non-bipartite graph. If $\chi(G) \leq 10$, then $\chi_2(G_{2n+1}^{\frac{1}{2}s+1}) = 5$. Otherwise, $\chi_2(G_{2n+1}^{\frac{1}{2}s+1}) = 6$.

References

[1] Amir Daneshgar and Hossein Hajiabolhassan, Circular colouring and algebraic no-homomorphism theorems, European J. Combinatorics **28**(6) (2007), 1843–1853.

[2] H. Hajiabolhassan, On colorings of graph powers, Discrete Mathematics **309**(13) (2009), 4299–4305.

[3] Hossein Hajiabolhassan and Ali Taherkhani, Graph powers and graph homomorphisms, Electron. J. Combinatorics **17**(1) (2010), R17.
[4] Hossein Hajiabolhassan and Xuding Zhu, Circular chromatic number of subgraphs, *J. Graph Theory* **44**(2) (2003), 95–105.

[5] A. Johnson, F. C. Holroyd, and S. Stahl, Multichromatic numbers, star chromatic numbers and Kneser graphs, *J. Graph Theory* **26**(3) (1997), 137–145.

[6] M. Kneser, Aufgabe 360, *Jahresbericht der Deutschen Mathematiker-Vereinigung* **58**(2) (1955), 27.

[7] M. Larsen, J. Propp, and D. Ullman, The fractional chromatic number of Mycielski’s graphs, *J. Graph Theory* **19**(3) (1995), 411–416.

[8] L. Lovász, Kneser’s conjecture, chromatic number, and homotopy, *J. Combin. Theory Ser. A* **25**(3) (1978), 319–324.

[9] Amir Pirnazar and Daniel H. Ullman, Girth and fractional chromatic number of planar graphs, *J. Graph Theory* **39**(3) (2002), 201–217.

[10] Edward R. Scheinerman and Daniel H. Ullman, *Fractional graph theory*, Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons Inc., New York, 1997. A rational approach to the theory of graphs, With a foreword by Claude Berge, A Wiley-Interscience Publication.

[11] Saul Stahl, The multichromatic numbers of some Kneser graphs, *Discrete Mathematics* **185**(1-3) (1998), 287–291.

[12] Claude Tardif, Multiplicative graphs and semi-lattice endomorphisms in the category of graphs, *J. Combin. Theory Ser. B* **95**(2) (2005), 338–345.

[13] Xuding Zhu, Circular chromatic number: a survey, *Discrete Math.* **229**(1-3) (2001), 371–410. Combinatorics, graph theory, algorithms and applications.

[14] Xuding Zhu, Recent developments in circular colouring of graphs, In *Topics in discrete mathematics*, volume **26** of *Algorithms Combin.*, Springer, Berlin (2006), pp. 497–550