Pharmacological treatment options for *mast cell activation disease*

Gerhard J. Molderings¹ · Britta Haenisch² · Stefan Brettner³ · Jürgen Homann⁴ · Markus Menzen⁴ · Franz Ludwig Dumoulin⁴ · Jens Panse⁵ · Joseph Butterfield⁶ · Lawrence B. Afrin⁷

Received: 24 March 2016 / Accepted: 11 April 2016 / Published online: 30 April 2016
© The Author(s) 2016. This article is published with open access at SpringerLink.com

Abstract
Mast cell activation disease (MCAD) is a term referring to a heterogeneous group of disorders characterized by aberrant release of variable subsets of mast cell (MC) mediators together with accumulation of either morphologically altered and immunohistochemically identifiable mutated MCs due to MC proliferation (systemic mastocytosis [SM] and MC leukemia [MCL]) or morphologically ordinary MCs due to decreased apoptosis (MC activation syndrome [MCAS] and well-differentiated SM). Clinical signs and symptoms in MCAD vary depending on disease subtype and result from excessive mediator release by MCs and, in aggressive forms, from organ failure related to MC infiltration. In most cases, treatment of MCAD is directed primarily at controlling the symptoms associated with MC mediator release. In advanced forms, such as aggressive SM and MCL, agents targeting MC proliferation such as kinase inhibitors may be provided. Targeted therapies aimed at blocking mutant protein variants and/or downstream signaling pathways are currently being developed. Other targets, such as specific surface antigens expressed on neoplastic MCs, might be considered for the development of future therapies. Since clinicians are often underprepared to evaluate, diagnose, and effectively treat this clinically heterogeneous disease, we seek to familiarize clinicians with MCAD and review current and future treatment approaches.

Keywords
Mast cell · Mast cell activation disease · Systemic mastocytosis · Systemic mast cell activation syndrome · Therapy

Introduction

Mast cells (MCs, Fig. 1) are immune cells of hematopoietic origin found in all human tissues, especially at the environmental interfaces. They act as both effector and regulatory cells and play a central role in adaptive and innate immunity (Anand et al. 2012; Gri et al. 2012). Their important role in immunological as well as non-immunological processes is reflected by the large number of mediators (>200) including pre-stored ones such as histamine and tryptase as well as numerous mediators synthesized de novo in response to allergic or non-immune triggers such as chemokines and cytokines, by which MCs may influence other cells (Lundequist and Pejler 2011; Ibelgaufs 2016). Their evolved arrays of sensory and response mechanisms engender diverse havoc when MC dysfunction emerges.

The umbrella term *mast cell activation disease* (MCAD; Akin et al. 2010) comprises the full spectrum of primary systemic MC disease, i.e., *systemic mastocytosis* (SM) which is
MCAD denotes a group of polygenic MC disorders (Molderings 2015, 2016) characterized by aberrant release of variable subsets of MC mediators and also an accumulation of either morphologically altered and immunohistochemically identifiable mutated MCs due to MC proliferation (SM and MCL) or morphologically ordinary MCs due to decreased apoptosis (MCAS; Kohno et al. 2005; Aichberger et al. 2009; Karlberg et al. 2010a). According to recent molecular genetic findings (Molderings 2015, 2016; Haenisch et al. 2014; Lasho et al. 2016), the subclasses and clinical subtypes of MCAD do not represent distinct disease entities but should be more accurately regarded as variable presentations of a common generic state of MC dysfunction (Molderings et al. 2007, 2010; Hermine et al. 2008; Akin et al. 2010). Due to both the widespread distribution of MCs and the great heterogeneity of aberrant mediator expression patterns, symptoms can occur in virtually all organs and tissues; hence, the clinical presentation of MCAD is very diverse, sometimes to the even-further-confounding point of presenting opposite abnormalities in different patients (or even in the same patient at different times, or in different sites in the same patient at the same time). While the prevalence of SM in Europeans ranges between 0.3 and 13 per 100,000 (Haenisch et al. 2012; Cohen et al. 2014; van Doormaal et al. 2013), the prevalence of MCAS may be as high as 17 % (in Germany; Molderings et al. 2013a, b).

This review focuses on the current state of drug therapy in SM and MCAS and describes perspectives of promising new approaches for drug treatment. Compounds in various stages of preclinical and clinical development are summarized in tables. We first describe drugs that are currently available and either are used on a regular basis in MCAD therapy or have been used successfully in single MCAD cases. In this context, it should be noted that there is no official guideline for treatment of MCAD.

Treatment options

Due to its genetic roots, MCAD generally is regarded as incurable. Recent mutational studies revealed that each patient has an individual pattern of genetic and epigenetic alterations which may affect the intracellular signal transduction pathways and receptive sites involved in sensory perception. As a consequence, mediator formation and release as well as inhibition of apoptosis and/or increase in proliferation are determined by individual genetic and epigenetic conditions (Fig. 2) and represent potential targets for therapy. Hence, there is need of highly personalized therapy for the disease. Unfortunately (with regard to easy detection), most genetic alterations (with a few exceptions such as certain mutations

Table 1 WHO 2008 diagnostic criteria for systemic mastocytosis (Valent et al. 2001)

Major criterion:
1. Multifocal, dense aggregates of MCs (15 or more) in sections of the bone marrow or other extracutaneous tissues and confirmed by tryptase immunohistochemistry or other special stains

Minor criteria:
1. Atypical or spindled appearance of at least 25 % of the MCs in the diagnostic biopsy
2. Expression of CD2 and/or CD25 by MCs in the marrow, blood, or extracutaneous organs
3. KIT codon 816 mutation in the marrow, blood, or extracutaneous organs
4. Persistent elevation of serum total tryptase >20 ng/ml

Diagnosis of SM made by either (1) the major criterion plus any one of the minor criteria or (2) any three minor criteria

Table 2 Classification of systemic mastocytosis (modified form Valent et al. 2007)

Categories of systemic mastocytosis (SM)	Subtypes
Indolent systemic mastocytosis	• Smoldering systemic mastocytosis
• Isolated bone marrow mastocytosis	• Well-differentiated systemic mastocytosis
Aggressive systemic mastocytosis (ASM)	• ASM in transformation
Systemic mastocytosis with an associated clonal hematological non-mast cell lineage disease	• SM-acute myeloid leukemia
• SM-myelodysplastic syndrome	• SM-myeloproliferative neoplasm
• SM-chronic myelomonocytic leukemia	• SM-chronic eosinophilic leukemia
• SM-non-Hodgkin lymphoma	• SM-multiple myeloma
• SM-multiple myeloma	

Fig. 1 May-Grünwald/Giemsa stain of a resting human mast cell and a mast cell following activation-induced degranulation. Note the loss of granule staining. Mast cells obtained from the human bone marrow, magnification 1000×
in tyrosine kinase KIT, e.g., KIT \(^{D816V}\) do not alter the morphology and immunohistochemistry of the surface of the affected MCs. Thus, in most cases except for patients with the reliably identifiable D816V mutation, it cannot be decided by simple tests whether MCs found in biopsies are genetically altered MCs or physiological MCs.

First-line treatment options

Step 1 in managing most situations of inappropriate MC activation is identifying the individual patient’s unique triggers (chemical, physical, or otherwise) as precisely as possible and then desensitizing when possible (in truth, rarely) and otherwise practicing avoidance. With respect to drug treatment, only a few clinical therapeutic trials have been conducted in SM (midostaurin, cladribine, masitinib; Table 4), and there have been no therapeutic trials in MCAS yet. Most information about therapeutic effectiveness in MCAD has been found in small case series (Table 4) and single case reports, perhaps unsurprising given the mutational heterogeneity of the disease and thus the heterogeneity of its patterns of clinical presentation and therapeutic responsiveness. Therefore, in the future, it may be helpful to establish an international patient registry in partnership with existing registries so that issues related to molecular and clinical MCAD phenotypes can be adequately addressed. As the primary feature of MCAD is inappropriate MC activation (Molderings et al. 2011a, b; Pardanani 2013; Cardet et al. 2013), mainstays of first-line management are identification and avoidance of triggers plus therapies to control MC mediator production (both primary as well as secondary/reactive; Table 5) as well as their action (Table 6).

Subordinate therapeutic options

Continuous diphenhydramine infusion

Occasional patients suffer nearly continuous anaphylactoid and/or dysautonomic states poorly controlled by intermittently dosed epinephrine, antihistamines, and steroids. As discussed in more detail below, some such patients are particularly triggered by a wide range of medication excipients, making it challenging for them to tolerate trials of any adulterated (non-pure) medications, and yet some modicum of stability is required to pursue medication trials in such patients.

Table 3 Current provisional criteria to define mast cell activation syndrome (MCAS; modified from Afrin and Molderings 2014)

Major criterion
Constellation of clinical complaints attributable to pathologically increased mast cell activity (mast cell mediator release syndrome)

Minor criteria
1. Focal or disseminated increased number of mast cells in marrow and/or extracutaneous organ(s) (e.g., gastrointestinal tract biopsies; CD117-, tryptase-, and CD25-stained)
2. Abnormal spindle-shaped morphology in >25% of mast cells in marrow or other extracutaneous organ(s)
3. Abnormal mast cell expression of CD2 and/or CD25 (i.e., co-expression of CD117/CD25 or CD117/CD2)
4. Detection of genetic changes in mast cells from the blood, bone marrow, or extracutaneous organs for which an impact on the state of activity of affected mast cells in terms of an increased activity has been proven
5. Evidence (typically from body fluids such as whole blood, serum, plasma, or urine) of above-normal levels of mast cell mediators including:
- Tryptase in the blood
- Histamine or its metabolites (e.g., N-methylhistamine) in the urine
- Heparin in the blood
- Chromogranin A in the blood (potential confounders of cardiac or renal failure, neuroendocrine tumors, or recent proton pump inhibitor use were excluded)
- Other relatively mast cell-specific mediators (e.g., eicosanoids including prostaglandin PGD\(_2\), its metabolite 11-\(\beta\)-PGF\(_2\alpha\), or leukotriene E\(_4\))
6. Symptomatic response to inhibitors of mast cell activation or mast cell mediator production or action (e.g., histamine H\(_1\) and/or H\(_2\) receptor antagonists, cromolyn)

Diagnosis of MCAS made by either (1) the major criterion plus any one of the minor criteria or (2) any three minor criteria.
Diphenhydramine is a well-tolerated histamine H₁ receptor blocker (that among other non-threatening adverse affects can cause dizziness and an increase in appetite) which can quickly suppress MC activation and is used to treat allergic reactions and anaphylaxis. However, its half-life is as short as 1h (www.drugbank.ca/drugs/DB01075). Intermittently dosed, though, its initial therapeutic serum level rapidly declines to subtherapeutic levels and the patient seesaws into yet another flare. The safety of continuous diphenhydramine infusion was established in trials of the BAD regimen (diphenhydramine [Benadryl], lorazepam [Ativan], and dexamethasone) in refractory chemotherapy-induced emesis in adult and pediatric patients (Dix et al. 1999; Jones et al. 2007). In a small series of ten MCAS patients suffering almost continuous anaphylactoid/dysautonomic flares, continuous diphenhydramine infusion at 10–14.5 mg/h appeared effective in most patients at dramatically reducing flare rates and appeared safely sustainable at stable dosing for at least 21 months (Afrin 2015). Stabilization has enabled successful trials of other helpful medications, but no patient has yet successfully stopped continuous diphenhydramine infusion.

Table 4 Case series and clinical therapeutic trials in systemic mastocytosis and mast cell activation syndrome

Compound	Number of patients included in the study or case series	References
H₁-antihistamines		
Rupatadine	30	Siebenhaar et al. 2013
Azelastine vs. chlorpheniramine	15	Friedman et al. 1993
Ketotifen vs. hydroxyzine	8	Kettelhut et al. 1989
Chlorpheniramine plus cimetidine	8	Frieri et al. 1985
Continuous diphenhydramine infusion	10	Afrin 2015*
Mast cell stabilizer		
Cromoglicic acid (cromolyn)	5, 11, 4, 8, 2	Soter et al. 1979, Horan et al. 1990, Mallet et al. 1989, Frieri et al. 1985, Welch et al. 1983, Zachariae et al. 1981
Tranilast	2	Katoh et al. 1996
Kinase inhibitors		
Imatinib (ST1571)	14, 20, 22, 17, 12, 5, 3	Droogendijk et al. 2006, Vega-Ruiz et al. 2009, Lim et al. 2009, Pagano et al. 2008, Pardanani et al. 2003, Heinrich et al. 2008, Hochhaus et al. 2015, Verstovsek et al. 2008, Purtill et al. 2008
Nilotinib (AMN107)	61	Hochhaus et al. 2015
Dasatinib (BMS-354825)	33	Pervertevsek et al. 2008, Purtill et al. 2008
Midostaurin (PKC412)	9, 11, 22, 22, 22, 22, 8, 8, 22, 22	Knapper et al. 2011, Chanders et al. 2014, Gotlib et al. 2014, Strati et al. 2015, Paul et al. 2010, Papayannidou et al. 2014, Knapper et al. 2011
Masitinib	25	
Cytostatic agents		
Hydroxyurea	26	Lim et al. 2009, Afrin 2013*
Cladribine (2-chlorodeoxyadenosine)	22	Lim et al. 2009, Klou-nIelermans et al. 2003
(continued)		

Table 4 (continued)

Compound	Number of patients included in the study or case series	References
Immunomodulation		
Interferon-α	20	Casassus et al. 2002
IgE antibody	4	Molderings et al. 2011b*
β-Sympathomimetics		
Isoprenaline, terbutaline	5	van Doorssma et al. 1986
Cyclooxygenase inhibitor	4	Butterfield 2008
Acetylsalicylic acid	20	Butterfield 2009

*It indicates clinical trials performed with patients with mast cell activation syndrome

Diphenhydramine is a well-tolerated histamine H₁ receptor blocker (that among other non-threatening adverse affects can cause dizziness and an increase in appetite) which can quickly suppress MC activation and is used to treat allergic reactions and anaphylaxis. However, its half-life is as short as 1h (www.drugbank.ca/drugs/DB01075). Intermittently dosed, though, its initial therapeutic serum level rapidly declines to subtherapeutic levels and the patient seesaws into yet another flare. The safety of continuous diphenhydramine infusion was established in trials of the “BAD” regimen (diphenhydramine [Benadryl], lorazepam [Ativan], and dexamethasone) in refractory chemotherapy-induced emesis in adult and pediatric patients (Dix et al. 1999; Jones et al. 2007). In a small series of ten MCAS patients suffering almost continuous anaphylactoid/dysautonomic flares, continuous diphenhydramine infusion at 10–14.5 mg/h appeared effective in most patients at dramatically reducing flare rates and appeared safely sustainable at stable dosing for at least 21 months (Afrin 2015). Stabilization has enabled successful trials of other helpful medications, but no patient has yet successfully stopped continuous diphenhydramine infusion.
Acute and chronic immunosuppressive therapies

Though typically not first-line, acute and chronic immunosuppressive therapies can be considered (Fig. 3; Table 7) and may be particularly appropriate for patients possibly manifesting an autoimmune component of the disease as might be suggested by the presence, for example, of anti-IgE or anti-IgE-receptor antibodies. Glucocorticoids may exert beneficial effects in MCAD, including a decrease in production of stem cell factor (SCF, and possibly other cytokines) and a decrease in MC activation, by various mechanisms which have been extensively reviewed by Oppong et al. 2013. Glucocorticoids at doses >20 mg prednisone equivalent per day are frequently needed to effectively control otherwise refractory acute (and chronic) symptoms. Their chronic toxicity profile is disadvantageous for long-term use, but such toxicities have to be accepted in some cases. The influence of azathioprine, methotrexate, ciclosporine, hydroxyurea, and tamoxifen on MC activity can vary from no to moderate effect depending on individual disease factors. As in therapy of rheumatoid arthritis, azathioprine and methotrexate can be used in daily doses lower than those used in cancer or immunosuppressive post-transplant therapy. Effective MCAD therapy with ciclosporine requires doses as high as those used in transplantation medicine (M. Raithel, personal communication). Methotrexate has to be administered parenterally to be effective (unpublished observation, G.J. Molderings), and in the risk-benefit analysis, a possible non-immunologic histamine release from MCs (Estévez et al. 1996) has to be considered. Hence, use of the compound should be limited to MCAD with methotrexate-sensitive comorbidities (e.g., rheumatoid arthritis and vasculitis).

Recently, the humanized anti-IgE murine monoclonal antibody omalizumab has been described in multiple case reports as safe and effective in MCAD (e.g., Molderings et al. 2011b; Kontou-Fili et al. 2010; Bell and Jackson 2012; Kibsgaard et al. 2014), though a definitive trial has yet to be conducted. Since treatment with omalizumab has an acceptable risk-benefit profile, it should be considered in cases of MCAD resistant to at least a few lines of therapy. The drug’s expense likely consigns it to third-line (or later) treatment (Table 7). If elevated prostaglandin levels induce symptoms such as

Table 5
First-line drugs which can potentially be used in the treatment of mast cell (MC) activation disease and their target location and mechanisms of action

First-line drugs	Target location/mechanisms of action	Growth inhibition	Decrease of mediator release	To relieve symptoms	References
H1-antihistamines (preferably of the second and third generations)	Block mutual activation of mast cells via H1-histamine receptors; antagonize H1-histamine receptor-mediated symptoms	X	X	Church and Gradidge 1980 Valent et al. 2007R Picard et al. 2013R Numatov et al. 2015 Siebenhaar et al. 2013 Escribano et al. 2006R	
H2-antihistamines	Block mutual activation of mast cells via H2-histamine receptors; antagonize H2-histamine receptor-mediated symptoms	X	X	Valent et al. 2007R Escribano et al. 2006R	
Cromoglicic acid (also known as cromolyn)	GPR35; modulation of chloride current	X	X	Soter et al. 1979 Valent et al. 2007R Yang et al. 2010 Edwards et al. 2011 Edwards and Hagberg 2010 Zhang et al. 2016 Escribano et al. 2006R	
Vitamin C	Increased degradation of histamine; decrease of histamine formation by inhibition of histidine decarboxylase	X	X	Hagel et al. 2013 Johnston et al. 1992 Uchida et al. 1989 Chatterjee et al. 1975	

As a rule, these drugs should be used in combination to achieve a sufficient reduction of MC activity. All drugs should be tested for tolerance in a low single dose before therapeutic use, if their tolerance in the patient is not known from an earlier application. A precondition for therapeutic success is the avoidance of identifiable triggers of MC activation; in this context, parallel to the beginning of drug therapy, gluten, cow milk protein, and baker’s yeast should be omitted from the diet for 3–4 weeks

R review article (further references therein)
persistent flushing, inhibition of cyclooxygenases by incremental doses of acetylsalicylic acid (ASA; 50–350 mg/day) may be used with extreme caution, since ASA can induce MC degranulation probably due its chemical property as an organic acid. The leukotriene antagonist montelukast (possibly more effective at twice-daily dosing; personal observation,

Table 6 Symptomatic treatment (orally as needed) in MCAD (modified from Molderings et al. 2014)

Symptom	Treatment Options
Colitis	budesonide; for some days, prednisone >20 mg/day
Diarrhea	cholestyramine; nystatin; montelukast; 5-HT3 receptor inhibitors (e.g. ondansetron); incremental doses of acetylsalicylic acid (50–350 mg/day; extreme caution because of the possibility to induce mast cell degranulation); in steps test each drug for 5 days until improvement of diarrhea
Colicky abdominal pain	metamizole; butylscopolamine
Angioedema	tranexamic acid; icatibant
Nausea	dimenhydrinate; lorazepam; 5-HT3 receptor inhibitors such as aprepitant
Respiratory symptoms	leukotriene receptor blockers such as montelukast; if in a country available, leukotriene synthesis inhibitors such as zileuton; urgent: short-acting β-sympathomimetic
Gastric complaints	proton-pump inhibitors (de-escalating dose-finding)
Osteoporosis, osteolysis	bisphosphonates (vitamin D plus calcium) second-line treatment in MCAD patients because of limited reported success and an increased risk for developing kidney and ureter stones; calcitonin; teriparatide (with caution; cases of cholestatic liver failure due to this drug have been reported); anti-RANKL drugs such as denosumab (dental clearance is required prior to treatment with bisphosphonates and anti-RANKL therapies due to risk for potentially severely morbid osteonecrosis of the jaw in patients with poor dentition or recent invasive dental work)
Non-cardiac chest pain	when needed, additional dose of a H2-histamine receptor antagonist; also, proton-pump inhibitors for proven gastroesophageal reflux
Tachycardia	AT1-receptor antagonists; ivabradine
Neuropathic pain and paresthesia	α-lipoic acid
Itches	palmitoylethanolamine-containing care products; cromolyn-containing ointment
Rheumatoid symptoms	COX2 inhibitors such as etoricoxib or celecoxib; paracetamol
Anemia	in iron-deficiency anemia, iron supplementation (whether oral or parenteral) must be given cautiously due to risk for potentially intense mast cell activation; alternatively, red blood cell transfusion should be considered
Interstitial cystitis	pentosan, amphetamines
Sleep-onset insomnia/sleep-maintenance insomnia	triazolam
Conjunctivitis	exclusion of a secondary disease; otherwise preservative-free eye drops with H1-antihistamine, cromolyn, ketotifen, or glucocorticoid for brief courses
Hypercholesterolemia	(probably due to inhibition of transport into the cells, thus independent of diet) >300 mg/dL therapeutic trial with HMG-CoA reductase inhibitor atorvastatin

Fig. 3. Suggested treatment options for mast cell activation disease. All drugs should be tested for tolerance in a low single dose before therapeutic use, if their tolerance in the patient is not known from an earlier application. For further details of indication, see text.
L.B. Afrin) and the 5-lipoxygenase inhibitor zileuton may be useful adjuvants in people with MCAD, particularly in those with refractory gastrointestinal and urinary symptoms (Tolar et al. 2004; Turner et al. 2012; Akhavine et al. 2012).

Studies of kinase inhibitors, both on-market (e.g., imatinib, nilotinib, dasatinib) and experimental (e.g., midostaurin, masitinib), have yielded variable responses in SM ranging from no response to partial or even complete responses (Fig. 3; Table 8). As with all drugs used in therapy of MCAD, their therapeutic success seems to be strongly dependent on the individual patient, again underscoring the observed mutational heterogeneity of the disease. In formal studies in SM patients, although some kinase inhibitors reduced MC burden as reflected by histological normalization in bone marrow and improved laboratory surrogate markers (e.g., tryptase level in blood), at best only partial improvement of mediator-related symptoms was achieved (Droogendijk et al. 2006; Gotlib et al. 2008; Verstovsek et al. 2008; Vega-Ruiz et al. 2009). There has been repeated suggestion that symptoms in MCAD may be due more to mediator release from normal MCs secondarily activated by pathologically overactive, mutated MCs (Galli and Costa 1995; Rosen and Goetzl 2005; Boyce 2007; Kaneko et al. 2009; Fig. 2 in Molderings et al. 2014), helping to explain why intensity and pattern of symptoms do not correlate with degree of MC proliferation and infiltration (Topar et al. 1998; Hermine et al. 2008; Bresch-Olsen et al. 2013; Erben et al. 2014; Quintás-Cardama et al. 2013). Distinction in pathways in the MC which promote MC proliferation vs. mediator production/release may explain why kinase inhibitors reduce MC burdens and MC-driven symptoms to different degrees (Droogendijk et al. 2006; Gotlib et al. 2008; Verstovsek et al. 2008; Vega-Ruiz et al. 2009; Table 8). However, in some case reports, kinase inhibitors have been significantly effective at relieving symptoms. Thus, in spite of potential serious adverse effects of these drugs, a therapeutic trial may be justified in individual cases at an early stage. Partial and complete responses have been reported with some of these agents in MCAS too (e.g., Afrin 2010, 2011, 2012, 2015; Afrin et al. 2015a). Dosing of the kinase inhibitors in the individual often is considerably lower than how such drugs are dosed for other applications (e.g., imatinib, sunitinib; Afrin et al. 2015a). Possibly due to the causative mutations in multiple genes leading to simultaneous activation of multiple intracellular pathways, multitargeted kinase inhibitors such as midostaurin and sunitinib may be more effective than

Table 7	Second- and third-line drugs which can potentially be used in the treatment of mast cell activation disease and their target location and mechanisms of action				
Target location/mechanisms of action	Growth inhibition	Decrease of mediator release	To relieve symptoms	References	
Second-line drugs					
Azathioprine	Immunosuppressive drugs	Multiple targets	X	X	Nolte and Stahl Skov 1988, Own unpublished data
Ciclosporine	Calcineurin inhibitor	Multiple targets	X	X	Kurosawa et al. 1999, Broys et al. 2005, Trojan and Khan 2012, Own unpublished data
Glucocorticoids	Multiple targets	(X)	X	X	Zen et al. 2011
Hydroxyurea	Multiple targets	X	X		Lim et al. 2009, Afrin 2013
Tamoxifen	Precise mechanism of action in MCAD unknown	X	X	In single cases	Butterfield and Chen 2016, Duffy et al. 2003;
Methotrexate	Multiple targets	?	X		Sagi et al. 2011, Vrugt et al. 2000
Third-line drugs					
Omalizumab	Anti-IgE antibody		X		Molderings et al. 2011b, Bell and Jackson 2012; Kibsgaard et al. 2014, Kontou-Fili et al. 2010
Etoricoxib	COX-inhibitors		X		Butterfield and Weiler 2008, Breslow et al. 2009, Butterfield 2009
Acetylsalicylic acid					
Montelukast	Antagonist at cys-LT1 receptors		X		Tolar et al. 2004, Cikler et al. 2009, Breslow et al. 2009, Turner et al. 2012
Zileuton	5-Lipoxygenase inhibitor		X		Rodriguez et al. 2011

R review article (further references therein)
drugs which selectively downregulate only one intracellular pathway.

In the mastocytosis patient with significant MC burden and/or an aggressive clinical course, cytoreductive drugs are prescribed (Lim et al. 2009; Valent et al. 2010). Unfortunately, effective cytoreductive therapies in SM presently are few in number and typically offer only modest response rates, qualities, and durations. Cytoreductive options include interferon-α and 2-chlorodeoxyadenosine (cladribine, 2-CdA; Fig. 3 and Table 9). Interferon-α is frequently combined with prednisone and is commonly used as cytoreductive therapy for aggressive SM. It ameliorates mastocytosis-related organopathy in a proportion of cases but can be associated with considerable adverse effects (e.g., flu-like symptoms, myelosuppression, depression, hypothyroidism), which may limit its use in MCAD (Simon et al. 2004; Butterfield 2005). PEGylated interferon-α has been shown to be as efficacious as and less toxic than the non-PEGylated form in some myeloproliferative neoplasms, but it has not been specifically studied in MCAD. 2-Chlorodeoxyadenosine is generally reserved for last-choice treatment of patients with aggressive SM who are either refractory or intolerant to interferon-α. Potential toxicities of 2-CdA include significant and potentially prolonged myelosuppression and lymphopenia with increased risk for opportunistic infections.

Last resorts

Polychemotherapy, including intensive induction regimens of the kind used in treating acute myeloid leukemia, as well as

Table 8 Kinase inhibitors which can potentially be used as fourth-line drugs in the treatment of mast cell activation disease and their target location and mechanisms of action

Target location/mechanisms of action	Growth inhibition	Decrease of mediator release	To relieve symptoms	References		
Fourth-line drugs	Inhibitors of tyrosine kinases and other kinases					
	Imatinib	KIT (excluding D816X), PDGFR, Bcr-Abl, Arg/Abl2, DDR-1	X	(X)	X	Pardanani et al. 2003; Droogendijk et al. 2006; Lim et al. 2009; Vega-Ruiz et al. 2009; Aman et al. 2012; Vaali et al. 2012; Quintás-Cardama et al. 2011R; Marton et al. 2015
	Nilotinib	KIT, PDGFR, Bcr-Abl	X	(X)		Hochhaus et al. 2006; Quintás-Cardama et al. 2011R; Hochhaus et al. 2015; El-Agamy 2012
	Dasatinib	KIT, BCR-ABL1, Lyn, Btk, Tec	X	(X)		Verstovsek et al. 2008; Hanschel et al. 2007; Gleenher et al. 2011; Quintás-Cardama et al. 2011R
	Sunitinib	VEGFR, PDGFR, KIT, FLT3, RET, CSF1R, SRC, 313 potential kinase targets	X	X	X	Afrin et al. 2015a; Yarnaki and Yoshino 2012; Papaetis and Syrigos 2009; Baitlein 2010
	Masitinib	KIT, PDGFRα, Lck, LYN, FGFR3, FAK	X	X		Marech et al. 2014; Moussy and Kinet 2014; Paul et al. 2010; Quintás-Cardama et al. 2011R
	Midostaurin	PKC, FLT3, KIT, PDGFR, VEGFR2	X	X	X	Gotlib et al. 2014; Papayannidis et al. 2014; Knapper et al. 2011; Quintás-Cardama et al. 2011R
	Ponatinib	Bcr-Abl, KIT, FLT3, FGFR1, PDGFRα, Lyn	X			Jin et al. 2014; Gleenher et al. 2013
	Bafetinib	KIT (excluding D816X), Abl, Lyn	X			Peter et al. 2010a
	Bosutinib	Lyn, Btk	X		In ASM patients ineffective	Gleenher et al. 2011; Randall et al. 2015

R review article (further references therein)
high-dose therapy with stem cell rescue, are approaches restricted to rare, selected patients. Allogeneic stem cell transplantation sometimes yields remissions in mastocytosis long thought impermanent (Spyridonidis et al. 2004; Nakamura et al. 2006; Bae et al. 2013; Gromke et al. 2013), though recent data may offer new hope (Ustun et al. 2014).

Investigational drugs

There are several drugs approved for indications other than MCAD which already have been successfully used in isolated cases with MCAD (Table 10). In cases of unsuccessful first- to fourth-line therapy, these compounds may be considered as treatment options.

A variety of drugs have been shown to inhibit MC growth, to decrease MC mediator release, and/or to relieve mediator-induced symptoms in in vitro and in vivo animal models (Table 11). Some of these drugs are approved for certain indications (such as ambroxol, statins, mefloquine, and ruxolitinib) and, thus, may be used (if accessible given financial considerations for some agents) if MCAD patients suffer from both the disorder of indication (e.g., hypercholesterolemia—statins, mucous congestion—ambroxol, polycythemia vera—ruxolitinib) and MCAD. An important question is what the role of the other compounds without approved indications should be in clinical practice. There are several challenges that may hamper the clinical introduction of novel targeted therapies in general. Some of these challenges include inherent problems in the translation of preclinical findings to the clinic, the presence of multiple coactive deregulated pathways in the disease, and questions related to the optimal design of clinical trials (e.g., eligibility criteria and endpoints). In particular, the testing of novel targeted treatment in an isolated fashion may be problematic and may in fact underestimate the effectiveness of these novel compounds. It is reasonable to assume that combination therapy will be the key to target parallel critical pathways.

General considerations on drug treatment of MCAD

Although no biomarkers of symptomaticity or therapeutic response are yet validated, the tolerability and efficacy of most therapies tried in MCAD (starting, and escalating in dosage and composition, cautiously) become clinically evident within 1–2 months. Modest experiments with alternative dosages and/or dosing frequencies are not unreasonable. Therapies clearly shown clinically helpful should be continued; therapies not meeting this high bar should be halted to avoid the troublesome polypharmacy that can easily develop in such patients. With no predictors of response yet available, a cost-based approach to sequencing therapeutic trials in a given patient seems reasonable. It is not even clear yet that medications targeted at mediators found elevated in diagnostic testing (e.g., antihistamines in patients with elevated histamine, non-steroidal anti-inflammatory drugs in patients with elevated prostaglandins, leukotriene inhibitors in patients with elevated leukotrienes) are reliably effective, again perhaps unsurprising given the multitude of MC mediators and the complexity of the signaling networks dysregulated by the multiple mutations in MC regulatory elements present in most MCAD patients. Successful regimens appear highly personalized.

Table 9 Last-choice drugs which can potentially be used in the treatment of mast cell activation disease and their target location and mechanisms of action. R-review article (further references therein)

Last-choice drugs	Target location/mechanisms of action	Growth inhibition	Decrease of mediator release	To relieve symptoms	References
Interferon-α	Multiple targets	X		(X)	Simon et al. 2004 Casassus et al. 2002 Hauswirth et al. 2004 Butterfield et al. 2005 Butterfield 2005R Yoshida et al. 2009 Lim et al. 2009 Quintás-Cardama et al. 2011R Tefferi et al. 2001 Klun-Nelemans et al. 2003 Pardanani et al. 2004 Lim et al. 2009 Böhmer et al. 2010 Radojković et al. 2011 Quintás-Cardama et al. 2011R Lock et al. 2015 Barete et al. 2015
Cladribine	Nucleoside analog	X	X	X	
Multiple simultaneous (or nearly so) changes in the medication regimen are discouraged since such can confound identification of the specific therapy responsible for a given improvement (or deterioration). Ineffective or harmful agents should be stopped promptly. Prescribers should be aware that although rapid demonstration of intolerance of a new medication (or a new formulation of a previously well-tolerated medication) often suggests excipient reactivity as further discussed below, some active drug molecules themselves (e.g., cromolyn) sometimes cause an initial symptom flare which usually soon abates. Temporary waiver of gluten-, yeast-, and cow milk protein-containing foods during the initial 3–4 weeks of drug therapy can improve the response rate (Biesiekierski et al. 2011; Rodrigo et al. 2013; own unpublished experiences). When MCAD is suspected, therapies that strongly activate the immune system (e.g., vaccinations with live vaccines or autohemotherapy) must be given with caution (especially if similar therapies were previously already poorly tolerated), as such interventions sometimes dramatically worsen MCAD acutely and/or chronically.

Any drug can induce intolerance symptoms in the individual MCAD patient. In some MCAD patients, the disease creates such remarkable states of not only constitutive MC activation but also aberrant MC reactivity that such patients unfortunately experience a great propensity to react adversely to a wide variety of medication triggers. Those MCAD patients begin demonstrating (either acutely or subacutely) odd/unusual/weird/strange/bizarre/unexpected symptoms soon after beginning new medications. It is very important to note that such patients often demonstrate even a greater propensity to react to

| Table 10 Drugs successfully (or not) used off-label to treat isolated cases of mast cell activation disease |
|---|-----------------|-----------------|-----------------|-----------------|-----------------|
| **Target location/mechanisms of action** | **Growth inhibition** | **Decrease of mediator release** | **To relieve symptoms** | **References** |
| Investigational drugs | | | | |
| Thalidomide | Precise mechanism of action unknown | | | Damaj et al. 2008 |
| Lenalidomide | | No effect | X | Kluin-Nelemans et al. 2009 |
| Flavonoids (e.g., luteolin, quercetin, genistein) | Multiple | X | (X) | (X) | Alexandrakis et al. 2003 |
| Miltefosine | Raft modulator | X | (X) | Weller et al. 2009 |
| Mepolizumab | IL-5 antibody | X | | Otani et al. 2012 |
| Rituximab | CD20 antibody | X | | Borzutzky et al. 2014 |
| Ruxolitinib | JAK | X | X | Yacoub and Prochaska 2016 |
| Cannabinoids | Agonists at the cannabinoid receptors | X | | Kvasnicka et al. 2014 |
| Methylene blue | Guanylyl cyclase inhibitor | | Anaphylaxis treatment | Rodrigues et al. 2007 |
| Pimecrolimus | Calcineurin inhibitor | X | Cutaneous symptoms; (mice) | Ma et al. 2010 |
| Everolimus | mTOR | | no effect | Correia et al. 2010 |
| Ribavirin | Possibly suppression of activated retroviral elements in the genome which may be involved in the development of the somatic mutations in KIT and other proteins | X | X | Marquardt et al. 1987 |

R review article (further references therein)
Investigational drugs	Target location/mechanisms of action	Growth inhibition	Decrease of mediator release	To relieve symptoms	Investigated in vitro	Investigated in vivo	References
ABT-737 ((R)-4-(3-dimethylamino-1-phenylsulfinylmethyl-propylamino)-N-{4-[4-(4′-chloro-biphenyl-2-ylmethyl)-piperazin-1-yl]-benzoyl}-3-nitrobenzenesulfonamide)	BH3 mimetic	X	Χ	Murine BMMC, human cord blood-derived MCs, C577 MC line, MC/9 MC line	Mice	Karlberg et al. 2010b	
17-Allylamino-17-demethoxygedamycin, Ganetespb (STA-9090)	Binding to heat shock protein 90	X		HMC-1, canine BMMC, C2 MC line, BR canine mastocytoma cell lines		Fumo et al. 2004; Lin et al. 2008	
Ambroxol	Multiple	X		Human MCs		Gibbs et al. 1999	
Amitriptyline, clomipramine, maprotiline	Yet to be defined in MCAD	X				Gurgel et al. 2013; Clemens et al. 2011	
Benzodiazepines	Yet to be defined	(X)	X				Molderings et al. 2013b; Dueñas-Laita et al. 2009; Bidri et al. 1999; Fujimoto et al. 2005; Suzuki-Nishimura et al. 1989; Hoffmann et al. 2013
BI 2536 ((R)-4-(8-cyclopentyl-7-ethyl-5-methyl-6-oxo-5,6,7,8-tetrahydropteridin-2-ylamino)-3-methoxy-N-(1-methylpiperidin-4-yl)benzamide)	Polo-like kinase-1	X		HMC-1, primary human neoplastic MCs		Peter et al. 2011	
BLU-285 (chemical structure not yet published)	KIT	X		HMC-1.2, P815 mouse mastosarcoma cells		Evans et al. 2015	
Botulinum toxin A	Cleavage of the SNARE proteins	X	X	SD rats		Park 2013	
Butaprost	EP2 receptor agonist	X		Human lung MCs		Kay et al. 2006	
Cerivastatin, fluvastatin, atorvastatin	Unknown in MCAD	X	X	Primary human MCs, HMC-1, P815		Krauth et al. 2006; Paez et al. 2015	
Chemokine receptor antagonists	Targeting activating chemokine receptors expressed on MCs	X				Koelink et al. 2012R	
Cinnamaldehyde	Signaling molecules, e.g., ERK1/2, JNK, p38, Akt	X		Human MCs, RBL-2H3 cells		Hagenlocher et al. 2015; Biib et al. 2014R	
Combined arginine and glutamine	Multiple	X		Human intestinal MCs		Lechowski et al. 2013	
Target location/mechanisms of action	Growth inhibition	Decrease of mediator release	To relieve symptoms	Investigated in vitro	Investigated in vivo	References	
--------------------------------------	------------------	-----------------------------	---------------------	----------------------	---------------------	-------------	
Coumarines (scopoletin)	Yet to be defined in MCAD	X	HMC-1			Moon et al. 2007, Finn and Walsh 2013R	
CRA1000	Non-peptidic corticotropin-releasing factor antagonist	X	Mouse dermal MCs			Shimoda et al. 2010	
CRA1000 {N-ethyl-4-[4-(3-fluorophenyl)-3,6-dihydro-2H-pyridin-1-yl]-6-methyl-N-(2-methylsulfanyl-4-propan-2-yl)pyrimidin-2-amine}						Schittenhelm et al. 2014	
Crenolanib	FLT3	X	HMC-1, p815, MCs from SM patients			Baek et al. 2003, Kinney et al. 2015	
Curcumin	Multiple	X	BALB/c mice			Krug et al. 2010, Meenan et al. 2010R	
Demethylating agents (5-azacytidine, 5-aza-2′deoxycytidine)	DNA methylation	X	HMC-1			Pan et al. 2007, Laengo et al. 2010	
EXEL-0862 (WO2004050681 A2)	KIT, STAT3	X	HMC-1			Taehoon et al. 2015	
Fedratinib (TG101348)	JAK2 inhibition	X	HMC-1			Lasho et al. 2010	
GLC756	Dopamine D1 and D2 receptor agonist	X	RBL-2H3 cells			Langlois et al. 2006	
Gly-Phe-CHN2, PZ610, PZ709, PZ889	Dipeptidylpeptidase-1 inhibitors					El-Feki et al. 2011	
Histamine H2-receptor agonist	Histamine H2-receptor	X	X	HMC-1, mouse MCs	Ex vivo guinea pigs and murine hearts	Aldi et al. 2014	
Histone deacetylase inhibitors:	Histone deacetylase	X	HMC-1, mouse MCs			Mühlenberg et al. 2009, Hadžijusufovic et al. 2010, Meenan et al. 2010R, Abdulkadir et al. 2015, Lin et al. 2010	
vertinostat, AR-42 [N-hydroxy-4-{[(2S)-3-methyl-2-phenylbutanoyl]amino}benzamide]	Inhibition of KIT and Btk	X	Human MCs	Mice		Jensen et al. 2008, Tanioka et al. 2005	
Hypothemycin	Inhibition of KIT and Btk	X	Human MCs			Tanioto et al. 2015	
IMD-0354 {N-[3,5-bis(trifluoromethyl)phenyl]-5-chloro-2-hydroxybenzamide}	NFκB inhibitor	X	Human MCs				
JTE-052	JAK1,2,3 inhibitor, Tyk2 inhibitor	X	Human MCs				
Target location/mechanisms of action	Growth inhibition	Decrease of mediator release	To relieve symptoms	Investigated in vitro	Investigated in vivo	References	
-------------------------------------	------------------	-------------------------------	---------------------	----------------------	----------------------	------------	
Mefloquine	Permeabilization of secretory granules	X	Human and murine MCs	HMC-1, human cord blood-derived MCs		Paivandy et al. 2014	
Mylotarg (gemtuzumab ozogamicin)	CD-33 targeting drug	X	HMC-1, human cord blood-derived MCs			Krauth et al. 2007	
Neramexane	Possibly NMDA antagonist	X	HMC-1 cells			Kurzen 2009	
Obatoclax	BH3 mimic	X	HMC-1, human neoplastic BMMC			Aichberger et al. 2009	
ONO-4053 (chemical structure not yet published)	Prostaglandin receptor DP1 antagonist	X	Human BMMC			Yamaguchi et al. 2016	
8-OH-DPAT (7-(Dipropylamino)-5, 6,7,8-tetrahydronaphthalen-1-ol) Palmitoylethanolamide	5-HT$_{1A}$ receptor	No effect	X	rat peritoneal MCs		Ritter et al. 2012	
PD180970 {8-(2,6-dichlorophenyl)-2-(4-fluoro-3-methylanilino)-8-methylpyrido[2,3-d]pyrimidin-7-one} Phosphodiesterase inhibitors	PPAR-α, cannabinoid receptors, potassium channels, TRPV1		X	Human lung MCs, rat MCs	Wistar rats	Facci et al. 1995; Mattace Raso et al. 2014R	
Phosphatidylethanolamine, phosphatidylserine	CD300a	X	Human cord blood-derived MCs, human lung MCs, murine BMMC			Bachelet et al. 2005; Simhadri et al. 2012	
Prostaglandin D$_2$ receptor antagonists	CRTH2	X			Mice	Harvima et al. 2014R	
Proteases inhibitors	Tryptase, chymase, cathepsins, carboxypeptidase	X	Human and murine MCs			Caughey 2016R; Harvima et al. 2014R	
Rapamycin	mTOR pathway inhibitor	X	HMC-1			Chan et al. 2013	
RNAi	RNA interference against KIT RNA	X	HMC-1			Ruano et al. 2010	
Rosiglitazone, pioglitazone	PPARγ	X	Murine BMMC			Tachibana et al. 2008	
Siramesine	Sigma-2 receptor agonist	X	Human and murine MCs			Spirkoski et al. 2012	
Sitagliptin	Dipeptidylpeptidase-4 inhibitor	X	Rat peritoneal MCs			Nader 2011 1845	
Somatostatin	Somatostatin receptors	X			Wistar rats	Tang et al. 2005	
Syk kinase inhibitors	Syk kinase	X	Human, murine, and rat MCs; RBL-2H3			Matsubara et al. 2006; Finn and Walsh 2013	
Tandutinib (MLN518)	KIT, STAT3	X	HMC-1, P815 MCs			Corbin et al. 2004	
Target location/mechanisms of action	Growth inhibition	Decrease of mediator release	To relieve symptoms	Investigated in vitro	Investigated in vivo	References	
--------------------------------------	------------------	-----------------------------	-------------------	---------------------	---------------------	-------------	
Tetracyclines	Multiple	X	X	Rat serosal MCs, HMC-1	Human	Sandler et al. 2005, Joks and Durkin 2011R	
α-Tocopherol	Multiple	X		HMC-1		Kempna et al. 2004, Ruano et al. 2010	
Tranilast	Yet to be defined	X	(X)	Rat peritoneal MC	Rats; rabbits	Adachi et al. 1999, Cooper et al. 2007, Baba et al. 2016	
Whi-P131 {4-[(6,7-dimethoxyquinazolin-4-yl)amino]phenol}	JAK3/STAT pathway inhibitor	X		HMC-1		Chan et al. 2013, Bibi et al. 2014R	

* R review article (further references therein), MC mast cell, BMMC bone marrow-derived mast cells
medication excipients (i.e., fillers, binders, dyes, preservatives) than to the active ingredients. When the patient tries one or more alternative formulations of a medication with the same active ingredient but sharing as few as possible (preferably none) of the excipients in the offending formulation, the patient may discover the medication to be at least tolerable and perhaps even quite effective. Furthermore, such a scenario obviously provides the patient (and physician and pharmacist) a great opportunity to identify one or more of the specific excipients which are triggering abnormal reactivity in the patient’s dysfunctional MCs, and it is those specific excipients—not the medication as a whole—that should be added to the patient’s allergy list and screened against all present medications being taken by the patient and against all future medications proposed for the patient. An MCAD patient’s physician would be wise to not assume, just because an excipient is very widely used in many medication products and appears innocuous and well tolerated in the vast majority of patients, that the same excipient will necessarily be tolerated well in MCAD patients (unpublished observation of the authors). Sometimes the specificity of the reaction is quite extraordinary. For example, patients who react to wood-based microcrystalline cellulose might tolerate cotton-based microcrystalline cellulose without any difficulty at all, or vice versa. In some cases, the pharmacist is unable to identify alternative commercially available formulations sharing few to none of the excipients in the offending formulation, and in those cases, a compounding pharmacist may need to be engaged to identify/develop a custom-compounded formulation the patient can tolerate. (There can be geographic and financial challenges in accessing compounding pharmacies, though.) Occasionally, MCAD patients may be so remarkably reactive to such a wide range of excipients that they can only tolerate a given medication when provided as pure drug salt, reconstituted in water (without preservatives). Intolerance symptoms can be mediated by IgE antibodies, though this scenario appears to be rare since the symptoms are usually not ameliorated by the anti-IgE monoclonal antibody omalizumab (unpublished observation, G.J. Molderings). Alternatively, they may be mediated by IgG antibodies, raising the question of whether gamma globulin (if itself tolerable) might be a helpful adjunct therapy in such patients (perhaps by directly targeting the MC surface’s IgG receptors or via

Substance group	Drugs with proven or theoretical high risk of mast cell activation	Therapeutic alternatives
Intravenous narcotics	Methohexital	Propofol
	Phenobarbital	Ketamine
	Thiopental	Etomidate
		Midazolam
Muscle relaxants	Atracurium	Cis-atracurium
	Mivacurium	Vecuronium
	Rocuronium	
Antibiotics	Cefuroxim	
	Gynase inhibitors	
	Vancomycin	R oxithromycin
Selective dopamine- and norepinephrine reuptake inhibitors	Bupropion	Amitriptyline, doxepine, clomipramine, maprotiline
Selective serotonin reuptake inhibitors		
Anticonvulsive agents	Carbamazepine, topiramate	Clonazepam
Opioid analgesics	meperidine, morphine, codeine	remifentanil, alfentanil, fentanyl, oxycodon, pirbutramid
Peripheral-acting analgesics	Acetic non-steroidal anti-inflammatory drugs such as ASS or ibuprofen	Paracetamol, metamizol
Local anesthetics	Amide-type: lidocaine articaine	prefer amide-Type, e.g., bupivacaine
	Ester-type: tetracaine, procurane	
Peptidergic drugs	Icatibant, cetrotex, sernorelin, octreotide, leuprolide	
X-ray contrast medium	Iodinated contrast medium	Non-ionic contrast media: iohexol, iomapidol, iopromida, ioxilan, ioversol, iodatran, iodixanol
Plasma substitutes	Hydroxyethyl starch	Albumin solution, 0.9 %-NaCl solution, Ringer’s solution
Cardiovascular drugs	ACE inhibitors	Sartans, calcium channel antagonists, ivabradine, and much else
	β-Adrenoceptor antagonents	

Table 12 Compilation of drugs associated with a high risk of release of mediators from mast cells and their therapeutic alternatives (compiled from Mousli et al. 1994; Sidoe et al. 2014; Afrin et al. 2015b; McNeil et al. 2015)
indirect pathways). Recently, a MC-specific receptor termed MRGPRX2 has been identified which appears to be crucially involved in pseudo-allergic drug reactions (McNeil et al. 2015; Seifert 2015).

Table 13 Schematic summary of selected potential targets of pharmacological interventions in MCAD

Targets of drugs located in the plasma membrane	
Histamine H1 receptor	H1-antihistamines
Histamine H2 receptor	H2-antihistamines
CB1/CB2 cannabinoide receptors	Cannabinoids
cysLTR1 leukotriene receptor	CysLTR1 antagonists, e.g., montelukast
β-Adrenoceptor	β-Sympathomimetics
EP2 receptor	EP2 receptor agonist, e.g., butaprost
Chemokine receptors	Chemokines
FcεRI	IgE antibody, e.g., omalizumab
FcγRIII	IgG
Siglec-8	Siglec-8 ligand
CD300a	Phosphatidylethanolamine, phosphatidylserine

Targetting released mast cell mediators	
Tryptase	Tryptase inhibitor, e.g., nafamostat
Chymase	Chymase inhibitor, e.g., BCEAB (4-[1-[bis-(4-methyl-pheny)-methyl]-3-(2-ethoxy-benzyl)-4-oxo-azetidine-2-ylloxy]-benzoic acid)
Cathepsin G	Cathepsin G inhibitor, e.g., RWJ355871 (β-ketophosphonate 1)
TNFα	Infliximab, adalimumab
IL-4	Pascolizumab
IL-5	e.g., mepolizumab
IL-6	e.g., sirukumab
IL-17	e.g., secukinumab

Intracellular inhibition of mediator formation	
Histamine	Histidine decarboxylase inhibition, e.g., by vitamin C
Leukotrienes	5-Lipoxygenase inhibitors, e.g., zileuton
Prostaglandins	Cyclooxygenase inhibitors, e.g., acetylsalicylic acid, etoricoxib

Inhibition of cytosolic pathways	
Signaling pathways containing protein kinases	Inhibitors of protein kinases (see Table 8)
mTOR pathway	e.g., rapamycin, everolimus
Apoptotic pathways	Stimulation of apoptosis by, e.g., ABT-737, obatoclax
Intranuclear targets	Histone deacetylase inhibitors, e.g., vorinostat
Histone deacetylase	Demethylating agents, e.g., 5-azacytidine, 5-aza-2’-deoxycytidine
DNA methylation	Nucleoside analog cladribine

Drugs which should not be used in MCAD

Several drugs have the ability to trigger MC mediator release. A compilation of drugs known to be associated with a high risk of release of mediators from MCs is given in Table 12. However, there often are therapeutic alternatives to these drugs (Table 12).

Conclusions and future perspectives

The therapeutic management of individuals with MCAD is complex and requires reviewing the entire spectrum of symptoms. The paucity of randomized, controlled studies makes treatment of refractory disease challenging and requires patience, persistence, and a methodical approach on the parts of both patient and managing provider(s). Delayed control of the symptoms may increase morbidity. Effective therapy often consists simply of antihistamines and MC-stabilizing compounds supplemented with medications targeted at specific symptoms and complications (Table 13). Current treatment options for refractory disease are based mainly on...
observational studies and case reports. Until larger randomized, controlled trials become available to give more guidance on therapy for refractory disease, clinicians should use the available data in conjunction with their clinical expertise and the adverse effect profile of the available drugs to make treatment decisions. More research is certainly needed to better understand MCAD pathobiology, in particular to determine which deregulated genes contribute to a specific symptom or symptom cluster. The greatest challenge in translational research for the discovery of new rational therapies requires a highly interactive interdisciplinary approach engaging basic science labs and clinicians. Understanding of the key components might hasten the progress of novel treatment for all these devastating MCAD phenotypes.

Acknowledgments The publication of this article was financially supported by the Förderclub Mastzellforschung e.V.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Abdulkadir H, Grotenjs J, Kjellander M, Hellstram Lindberg E, Nilsson G, Ungerstedt J (2015) Histone deacetylase inhibitor SAHA mediates epigenetic silencing of KIT D816V mutated systemic mastocytosis primary mast cells and selective apoptosis of mutated mast cells. Blood;126: abstract 2834

Adachi S, Maruyama T, Kondo T, Todoroki T, Fukao K (1999) The Creative Commons license, and indicate if changes were made.

Akhavein A, Patel NR, Minoyappa PK, Glover SC (2012) Allergic mastocytic gastroenteritis and colitis: an unexplained etiology in chronic abdominal pain and gastrointestinal dysmotility. Gastroenterol Res Pract 2012:950582

Akin C, Valent P, Metcalfe D (2010) Mast cell activation syndrome: proposed diagnostic criteria. J Allergy Clin Immunol 126:1099–1104

Aldi S, Takano KI, Tomita K, Koda K, Chan NY, Marino A, Salazar-Rodriguez M, Thurmond RL, Levi R (2014) Histamine H4 receptors inhibit mast cell renin release in ischemia/reperfusion via PKCζ-dependent aldehyde dehydrogenase type-2 activation. J Pharmacol Exp Ther 349:508–517

Alexandrakis MG, Kyrakiou DS, Kempuraj D, Huang M, Boucher W, Seretakis D, Theoharides TC (2003) The isoflavone genistein inhibits proliferation and increases histamine content in human leukemic mast cells. Allergy Asthma Proc 24:373–377

Amann J, van Bezu J, Damanafshan A, Huveneers S, Eringa EC, Vogel SM, Groeneveeld AB, Vonk Noordegraaff A, van Hinsbergh VW, van Nieuwen Arogom GP (2012) Effective treatment of edema and endothelial barrier dysfunction with imatinib. Circulation 126: 2728–2738

Anand P, Singh B, Jaggi AS, Singh N (2012) Mast cells: an expanding pathophysiological role from allergy to other disorders. Naunyn Schmiedeberg’s Arch Pharmacol 385:657–670

Baba A, Tachi M, Ejima Y, Endo Y, Toyama H, Matsubara M, Saito K, Yamauchi M, Miura C, Kazama I (2016) Anti-allergic drugs tranyl and ketotifen dose-dependently exert mast cell-stabilizing properties. Cell Physiol Biochem 38:15–27

Babaei S, Bayat M (2012) Effect of pentoxifylline administration on mast cell numbers and degranulation in a diabetic and normoglycemic rat model wound healing. Iran Red Crescent Med J 14:483–487

Bachelet I, Munitiz A, Moretta L, Levi-Schaffer F (2005) The inhibitory receptor IRp60 (CD300a) is expressed and functional on human mast cells. J Immunol 175:7989–7995

Baehrel L, I, Munitiz A, Moretta L, Levi-Schaffer F (2005) The inhibitory receptor IRp60 (CD300a) is expressed and functional on human mast cells. J Immunol 175:7989–7995

Bae MH, Kim HK, Park CJ, Seo EJ, Park SH, Cho YU, Jang S, Chi HS, Lee KH (2013) A case of systemic mastocytosis associated with acute myeloid leukemia terminating as aleukemic mast cell leukemia after allogeneic hematopoietic stem cell transplantation. Ann Lab Med 33:125–129

Baeck OS, Kang OH, Choi YA, Choi SC, Kim TH, Nah YH, Kwon DY, Kim YK, Kim YH, Bae KH, Lim JP, Lee YM (2003) Curcumin inhibits prostate-activated receptor-2 and –4 mediated mast cell activation. Clin Chim Acta 338:135–141

Baileman M (2010) Characterization of the small molecule kinase inhibitor SU11248 (sunitinib/SUTENT) in vitro and in vivo—towards response prediction in cancer therapy with kinase inhibitors. TU Munich, Munich, Germany, Medical thesis

Barette S, Lortholary O, Damaj G, Hirsch I, Chandesris MO, Elie C, Hamidou M, Durieu I, Suarez F, Grosbois B, Limal N, Gyan E, Seretakis D, Theoharides TC (2003) The isoflavone genistein inhibits proliferation and increases histamine content in human leukemic mast cells. Allergy Asthma Proc 24:373–377

Belk MC, Jackson DJ (2012) Prevention of anaphylaxis related to mast cell activation disease. World J Hematol 3:1

Bibi S, Arslanahan MD, Langenfeld F, Jeanningros S, Cerny-Reiterer S, Peter B, Ferencz K, Tachi M, Ejima Y, Endo Y, Toyama H, Matsubara M, Saito K, Yamauchi M, Miura C, Kazama I (2016) Anti-allergic drugs tranyl and ketotifen dose-dependently exert mast cell-stabilizing properties. Cell Physiol Biochem 38:15–27

Biddle M, Rothery K, Averlant G, Bismuth G, Guillonsson JJ, Arock M (1999) Inhibition of mouse mast cell proliferation and proinflammatory mediator release by benzodiazepines. Immunopharmacology 43:75–86
Biesickierski JR, Newnham ED, Irving PM, Barrett JS, Haines J, Doecke JD, Shepherd SJ, Muir JG, Gibson PR (2011) Gluten causes gastrointestinal symptoms in subjects without celiac disease: a double-blind randomized placebo-controlled trial. Am J Gastroenterol 106:508–514

Böhm A, Sonneck K, Gleixner KV, Schuch K, Pickl WF, Blatt K, Peter B, Herrmann H, Scherthanger GH, Pehamberger H, Rabitsch W, Sperr WR, Valant P (2010) In vitro and in vivo growth-inhibitory effects of cldaridine on neoplastic mast cells exhibiting the imatinib-resistant KIT mutation D816V. Exp Hematol 38:744–755

Borzutzky A, Morales PS, Mezzano V, Nussbaum S, Burks W (2014) Induction of remission of frequent idiopathic anaphylaxis with rituximab. AAAAAI Meeting 28:2–04.03, abstract 91

Boyce JA (2007) Mast cells and eicosanoid mediators: a system of reciprocal paracrine and autocrine regulation. Immunol Rev 217:168–185

Breslow RG, Caiado J, Castells MC (2009) Acetylsalicylic acid and aspirin reduce adhesion of human eosinophils to high endothelial venules. J Allergy Clin Immunol 123:1021–1023

Broyd H, Koffer A, Assem ESK (2005) Effect of cyclosporin-A on sepsis-induced and histamine-mediated anaphylaxis in guinea-pigs. J Physiol 251:271–279

Church MK, Gradidge CF (1980) Inhibition of histamine release from human lung in vitro by antihistamines and related drugs. Br J Pharmacol 69:663–667

Cikler E, Ersoy Y, Cetinel S, Erkan F (2009) The leukotriene d4 receptor antagonist, montelukast, inhibits mast cell degranulation in the dermis induced by water avoidance stress. Acta Histochem 111:112–118

Clemons A, Vasiadi M, Kumpuraj D, Kourelis T, Vandoros G, Theocharides TC (2011) Amitriptyline and prochlorperazine inhibit proinflammatory mediator release from human mast cells: possible relevance to chronic fatigue syndrome. J Clin Psychopharmacol 31:385–387

Cohen SS, Skovbo S, Vestergaard H, Kristensen T, Møller M, Bindeslev-Jensen C, Fryzek JP, Broeys-Olsen S (2014) Epidemiology of systemic mastocytosis in Denmark. Br J Haematol 166:521–528

Cooper K, Young J, Wadsworth S, Cui H, diZerega GS, Rodgers KE (2007) Reduction of post-surgical adhesion formation with tranilast. J Surg Res 141:153–161

Corbin AS, Griswold JJ, La Rosée P, Yee KW, Heinrich MC, Reimer CL, Drucker BJ, Deininger MW (2004) Sensitivity of oncogenic KIT mutants to the kinase inhibitors MLN518 and PD180970. Blood 104:3754–3757

Correia O, Duarte AF, Quirino P, Azevedo R, Delgado L (2010) Cutaneous mastocytosis: two pediatric cases treated with topical pimecrolimus. Dermatol Online J 16:8

Damaj G, Bernit E, Ghez D, Claisse JF, Schleinitz N, Harlé JR, Canioni D, Hermine O (2008) Thalidomide in advanced mastocytosis. Br J Haematol 141:249–253

De Filippis D, ’Amico A, Iuvone T (2008) Cannabinomimetic control of mast cell mediator release: new perspective in chronic inflammation. J Neuroendocrinol 20(Suppl 1):20–25

Dix S, Cord M, Howard S, Coon J, Belt R, Geller R (1999) Safety and efficacy of a continuous infusion, patient controlled anti-emetic pump to facilitate outpatient administration of high-dose chemotherapy. Bone Marrow Transplant 24:561–566

Droogendijk HJ, Kluij-Nelemans HJC, van Doornaal JJ, Oranje AR, van de Loosdrecht AA, van Dale PL (2006) Imatinibmesylate in the treatment of systemic mastocytosis: a phase II trial. Cancer 107:345–351

Dueñas-Laita A, Ruiz-Muñoz P, Armentia F, Pinacho F, Martin-Armentia B (2009) Successful treatment of chronic drug-resistant urticaria with alprazolam. J Allergy Clin Immunol 123:504–505

Duffy SM, Lawley WJ, Kaur D, Yang W, Bradding P (2003) Inhibition of human mast cell proliferation and survival by tamofoxen in association with ion channel modulation. J Allergy Clin Immunol 112:965–972

Edwards AM, Hagberg H (2010) Oral and inhaled sodium cromoglicate in the management of systemic mastocytosis: a case report. J Med Case Rep 4:193

Edwards AM, Stevens MT, Church MK (2011) The effects of topical sodium cromoglicate on itch and flare in human skin induced by intradermal histamine: a randomised double-blind vehicle controlled intra-subject design trial. BMC Res Notes 4:47

El-Agamy DS (2012) Anti-allergic effects of nilotinib on mast cell-mediated anaphylaxis like reactions. Eur J Pharmacol 694:667

El-Feki G, X Zhou, LC Lau, J Pedersen, AF Walls (2011) Inhibitors of dipeptidyl peptidase I (DPP1) as mast cell stabilising agents: the contribution of DPP1 in mast cell activation. J Allergy Clin Immunol 127, Suppl. – Abstracts

Erben P, Schwab J, Metzgeroth G, Horny HP, Jawhar M, Sotlar K, Fabarius A, Teichmann M, Schneider S, Ernst T, Müller MC, Giehl M, Marx A, Hartmann K, Hochhaus A, Hofmann WK, Cross NC, Reiter A (2014) The KIT D816V expressed allele burden for diagnosis and disease monitoring of systemic mastocytosis. Ann Hematol 93:81–88
Hennessy B, Giles F, Cortes J, O'Brien S, Ferrajoli A, Ossa G, Garcia-Manero G, Faderl S, Kantarjian H, Verstovsek S (2004) Management of patients with systemic mastocytosis: review of M. D. Anderson Cancer Center experience. Am J Hematol 77:209–214

Hermine O, Lortholary O, Leventhal PS, Catteau A, Soppela F, Baude C, Cohen-Akenerine A, Palmérini F, Hanssens K, Yang Y, Sobol H, Fraytag S, Ghiz D, Suarez F, Barete S, Casassus P, Sans B, Arock M, Kinet JP, Debureuil P, Moussy A (2008) Case-control cohort study of patients’ perceptions of disability in mastocytosis. PLoS One 3:e2266

Hochhaus A, Ottmann OG, Lauber S, Hughes T, Verhoef G, Schwarzer AP, Gratkwohl A, Rafterty T, Resta D, Gattermann N (2006) A phase II study of nilotinib, a novel inhibitor of c-Kit, PDGFR, and Bcr-Abl, administered to patients with systemic mastocytosis. Blood 108; Abstract 2703 [ASH Annual Meeting Abstracts].

Hochhaus A, Baccarani M, Giles FJ, le Coutre PD, Müller MC, Reiter A, Santanastasio H, Leung M, Novick S, Kantarjian HM (2015) Nilotinib in patients with systemic mastocytosis: analysis of the phase 2, open-label, single-arm nilotinib registration study. J Cancer Res Clin Oncol 141:2047–2060

Hoffmann K, Xifró RA, Hartweg JL, Spitzlei P, Meis K, Molderings GJ, von Kügelgen I. (2016.)

Horan RF, Sheffer AL, Austen KF (1990) Cromolyn sodium in the management of systemic mastocytosis. J Allergy Clin Immunol 85:852–855

Ibelgaufs H. (2016.) “Mast Cells” in COPE: cytokines and cells online pathfinder encyclopaedia, Available at http://www.cells-talk.com (accessed March 21, 2016)

Jensen BM, Beaven MA, Iwaki S, Metcalfe DD, Gilfillan A (2008) Concurrent inhibition of KIT- and FcεRI-mediated signaling: coordinated suppression of mast cell activation. J Pharmacol Exp Ther 324:128–138

Jin B, Ding K, Pan J (2014) Ponatinib induces apoptosis in imatinib-resistant human mast cells by dephosphorylating mutant D816V KIT and silencing beta-catenin signaling. Mol Cancer Ther 13:1217–1230

Johnston CS, Martin LJ, Cai X (1992) Antihistamine effect of supplemental ascorbic acid and neutrophil chemotaxis. J Am Coll Nutr 11:172–176

Joks R, Durkin HG (2011) Non-antibiotic properties of tetracyclines as anti-allergy and asthma drugs. Pharmacol Res 63:602–609

Jones E, Koyama T, Ho RH, Kuttles J, Shankar S, Whitlock JA, Cartwright J, Frangoull H (2007) Safety and efficacy of a continuous infusion, patient-controlled antemiotic pump for children receiving emetogenic chemotherapy. Pediart Blood Cancer 48:330–332

Kaneko I, Suzuki K, Matsuo K, Kumagai H, Owada Y, Noguchi N, Hishinuma T, Ono M (2009) Cysteiny1 leukotrienes enhance the degradation of bone marrow-derived mast cells through the autocrine mechanism. Tohoku J Exp Med 217:185–191

Karlberg M, Ekoff M, Labi V, Strasser A, Huang D, Nilsson G (2010a) Pro-apoptotic Bax is the major and Bak an auxiliary effector in cytokine deprivation-induced mast cell apoptosis. Cell Death Dis 1:e45

Karlberg M, Ekoff M, Huang DC, Mustonen P, Harvima IT, Nilsson G (2010b) The BH3-mimetic ABT-737 induces mast cell apoptosis in vitro and in vivo: potential for therapeutics. J Immunol 185:2555–2562

Katoh N, Hirano S, Yasuno H (1996) Solitary mastocytoma treated with tranilast. J Dermatol 23:335–339

Kay LJ, Yeo W, Peachell PT (2006) Prostaglandin E-2 activates EP2 receptors to inhibit human lung mast cell degranulation. Br J Pharmacol 147:707–713

Kempna P, Reiter E, Arocks M, Azzi A, Zingg JM (2004) Inhibition of HMC-1 mast cell proliferation by vitamin E. J Biol Chem 279:50700–50709

Kempuraj D, Castellani ML, Petrarca C, Frydas S, Conti P, Theoharides TC, Vecchiet J (2006) Inhibitory effect of quercetin on tryptase and inetrulin-6 release, and histidine decarboxylase mRNA transcription by human mast cell-1 cell line. Clin Exp Med 6:150–156

Kettelhut BV, Berkebile C, Bradley D, Metcalfe DD (1989) A double-blind, placebo-controlled, crossover trial of ketotifen versus hydroxyzine in the treatment of pediatric mastocytosis. J Allergy Clin Immunol 83:866–870

Kibsgaard L, Skjold T, Deleuran M, Vestergaard C (2014) Omalizumab induced remission of idiopathic anaphylaxis in a patient suffering from indolent systemic mastocytosis. Acta DermVenereol 94:363–364

Kinney SR, Carlson L, Ser-Dolansky J, Thompson C, Shah S, Gambrahl A, Xing W, Schneider SS, Mathias CB (2015) Curcumin ingestion inhibits mastocytosis and suppresses intestinal anaphylaxis in a murine model of food allergy. PLoS One 10:e0132467

Kluin-Nelemans HC, Oldhoff JM, Van Doormaal JJ, Van’t Wout JW, Verhoef G, Gerrits WB, van Dobbenburgh OA, Pasmans SG, Fijnheer R (2003) Cladribine therapy for systemic mastocytosis. Blood 102:4270–4276

Kluin-Nelemans HC, Feren V, van Doormaal JJ, van Iperen C, Peters WG, Akin C, Val lent P (2009) Lenalidomide therapy in systemic mastocytosis. Leuk Res 33:e19–e22

Knapper S, Cullis J, Drummond MW, Evely R, Everington T, Hoyle C, Mcintosh L, Poynton C, Radia D (2011) Midostaurin a multi-targeted oral kinase inhibitor in systemic mastocytosis: report of an open-label compassionate use program in the United Kingdom. Blood 118:5145

Koelink PJ, Overbeek SA, Braber S, de Kruijf P, Fokker G, Smit MJ, Kranerveld AD (2012) Targeting chemokine receptors in chronic inflammatory diseases: an extensive review. Pharmacol Ther 133:1–18

Kohno M, Yamasaki S, Tybołowicz VLJ, Saito T (2005) Rapid and large amount of autocrine IL-3 production is responsible for mast cell activation by IgE in the absence of antigen. Blood 105:2059–2065

Kontou-Fili K, Filis CI, Voulgari C, Panayiotidis PG (2010) Omalizumab monotherapy for bee sting and unprovoked “anaphylaxis” in a patient with systemic mastocytosis and undetectable specific IgE. Ann Allergy Asthma Immunol 104:537–539

Krauth MT, Majlesi Y, Sonneck K, Samorapoompichit P, Ghanamand N, Hauswirth AW, Baghestanian M, Schernthaner GH, Worda C, Muller MR, Sperr WR, Val lent P (2006) Effects of various statins on cytokine-dependent growth and IgE-dependent release of histamine in human mast cells. Allergy 61:281–288

Krauth MT, Böhm A, Agis H, Sonneck K, Samorapoompichit P, Florian S, Sotlar K, Val lent P (2007) Effects of the CD33-targeted drug gemtuzumab ozogamicin (Mylotarg) on growth and mediator secretion in human mast cells and blood basophils. Exp Hematol 35:108–116

Krug U, Lübbert M, Büchner T (2010) Maintenance therapy in acute myeloid leukaemia revisited: will new agents rekindle an old interest? Curr Opin Hematol 17:85–90

Kurosawa M, Amano H, Kanbe N, Igarashi Y, Nagata H, Yamashita T, Kuri moto F, Miyachi Y (1999) Receptor for cyclosporin and low-dose methylprednisolone in aggressive systemic mastocytosis. J Allergy Clin Immunol 103:S412–S420

Kurzen H. (2009) Neramekex for the treatment of mast cellmediated diseases. Patent application WO2010/069595

Kvansicka HM, Thiele J, Bueso-Ramos CE, Kamalanabahia S, Cortes JE, Kantajian H, Verstovsek S (2014) Changes in activated bone marrow macrophages and mast cells in patients with myelofibrosis following ruxolitinib therapy. ASH Meeting abstract 3184
Nader MA (2011) Inhibition of anaphylaxis like reaction and mast cell activation by sitagliptin. Int Immunopharmacol 11:1052–1056

Nakamura R, Chakrabarti A, Akin C, Robyn J, Balheeci E, Greene A, Childs R, Dunbar CE, Metcalfe DD, Barrett AJ (2006) A pilot study of nonmyeloablative allogeneic hematopoietic stem cell transplant for advanced systemic mastocytosis. Bone Marrow Transplant 37: 353–358

Nolte H, Stahl Skov P (1988) Inhibition of basophil histamine release by methotrexate. Agents Actions 23:173–176

Nurmatov UB, Rhatigan E, Simons FE, Sheikh A (2015) H1-antihistamines for primary mast cell activation syndromes: a systematic review. Allergy 70:1052–1061

Oppong E, Flink N, Cato AC (2013) Molecular mechanisms of glucocorticoid action in mast cells. Mol Cell Endocrinol 380:143–148

Otani IM, Bhatag M, Newbury RO, Dohil R, Broide DH, Aceves SS (2012) The effect of anti-IL-5 therapy on esophageal mastocytosis in pediatric eosinophilic esophagitis. J Allergy Clin Immunol 129: AB202

Pace P, Ryan J, Taruselli M, Ndwav V (2015) Fluvalastin elicits apoptosis in primary and transformed mast cells (INC6P305). J Immunol 194(Suppl.1):197.7

Pagano L, Valentini CG, Caira M, Rondoni M, Van Lint MT, Candoni A, Allione B, Cattaneo C, Marbello L, Caramatti C, Pogliani EM, Iamnetti E, Giana F, Ferrara F, Invernessi R, Fanci R, Lunghi M, Fianchi L, Sanpaolo G, Stefani PM, Pulsoni A, Martinelli G, Leone G, Musto P (2008) Advanced mast cell disease: an Italian Hematological Multicenter experience. Int J Hematol 88:483–488

Paiyandy A, Calounova G, Zarnegar B, Ohvrik H, Melo FR, Pejler G (2014) Melquine, an anti-malaria agent, causes reactive oxygen species-dependent cell death in mast cells via a secretory granule-mediated pathway. Pharmacol Res Perspect 2:e00066

Pan J, Quintas-Cardama A, Kastanov HM, Akin C, Manshouri T, Lamb P, Cortes JE, Tefleri A, Giles FJ, Verstovsek S (2007) EXEL-0862, a novel tyrosine kinase inhibitor, induces apoptosis in vitro and ex vivo in human mast cells expressing the KIT D816V mutation. Blood 109:315–322

Papaetis GS, Syrigos KN (2009) Sunitinib: a multitargeted receptor tyrosine kinase inhibitor in the era of molecular cancer therapies. BioDrugs 23:377–389

Papayannis C, Soverini S, Benedittis CD, Abbenante MC, Sartor C, Iacobucci I, Baldazzi C, Ottaviani E, Ferrari A, Guadagnolo V, Conficoni A, Paolini A, Parisi S, Frabetti F, Piccarì S, Grilli S, Lani E, Martinelli G (2014) PKC412 (midostaurin) is safe and highly effective in systemic mastocytosis patients: follow up of a single-center Italian compassionate use. Cancer Res 74:746

Pardanani A (2013) Systemic mastocytosis in adults: 2013 update on diagnosis, risk stratification, and management. Am J Hematol 88: 612–624

Pardanani A, Elliott M, Reeder T, Li CY, Baxter EJ, Cross NC, Tefleri A (2003) Imatinib for systemic mast-cell disease. Lancet 362:535–536

Pardanani A, Hoffbrand AV, Butterfield JH, Tefleri A (2004) Treatment of systemic mast cell disease with 2-chloroexdoxenosine. Leuk Res 28:127–131

Parikh SA, Kantarjian HM, Richoe MA, Cortes JE, Verstovsek S (2010) Experience with everolimus (RAD001), an oral mammalian target of rapamycin inhibitor, in patients with systemic mastocytosis. Leuk Lymphoma 51:269–274

Park TH (2013) The effects of botulinum toxin A on mast cell activity: preliminary results. Burns 39:816–817

Paul C, Sans B, Suarez F, Casassus P, Barette S, Lanteri F, Grandpeix-Guyodo C, Dubreuil P, Palmérini F, Mansfield CD, Gineste P, Moussy A, Hermine O, Lortholary O (2010) Masitinib for the treatment of systemic and cutaneous mastocytosis with handicap: a phase 2a study. Am J Hematol 85:921–925

Peter B, Hadzijusufovic E, Blatt K, Gleixner KV, Pickel WF, Thaiwong T, Yuzbasiyan-Gurkan V, Willmann M, Valant P (2010) KIT polymorphisms and mutations determine responses of neoplastic mast cells to bafetinib (INNO-406). Exp Hematol 38:782–791

Peter B, Gleixner KV, Cerny-Reiterer S, Herrmann H, Winter V, Hadzijusufovic E, Ference V, Schuch K, Mirkina I, Horny HP, Pickel WF, Mullauer L, Willmann M, Valant P (2011) Polo-like kinase-1 as novel target in neoplastic mast cells: demonstration of growth-inhibitory effects of siRNA and the Polo-like kinase-1 targeting drug BI 2536. Haematologica 96(5):672–680

Picard M, Giavina-Bianchi P, Mezzano V, Castells M (2013) Expanding spectrum of mast cell activation disorders: monoclonal and idiopathic mast cell activation syndromes. Clin Ther 35:548–562

Purtill D, Cooney J, Sinnamon R, Carmley B, Cull G, Augustson B, Cannell P (2008) Dasatinib therapy for systemic mastocytosis: four cases. Eur J Haematol 80:456–458

Quintás-Cardama A, Jain N, Verstovsek S (2011) Advances and controversy in the diagnosis, pathogenesis, and treatment of systemic mastocytosis. Cancer 117:5439–5449

Quintás-Cardama A, Sever M, Cortes J, Kantarjian H, Verstovsek S (2013) Bone marrow mast cell burden and serum tryptase level as markers of response in patients with systemic mastocytosis. Leuk Lymphoma 54:1959–1964

Radojković M, Ristić S, Colović N, Teržić T, Colović M (2011) Response to cladribine in patient with systemic mastocytosis. Vojnosan Pregl 68:444–446

Randall N, Courville EL, Baughn L, Afini L, Ustun C (2015) Bosutinib, a lyn/btk inhibiting tyrosine kinase inhibitor, is ineffective in advanced systemic mastocytosis. Am J Hematol 90:E74

Ritter M, El-Nour H, Hedblad MA, Butterfield JH, Beck O, Stephanson N, Holst M, Giscombe R, Azmitia EC, Nordlind K (2012) Serotonin and its 5-HT1 receptor in human mastocytosis. Immunopharmacol Immunotoxicol 34:679–685

Rodrigo L, Perez-Martinez I, Lucendo AJ (2013) Urticaria pigmentosa in a female patient with celiac disease: response to a gluten-free diet. Allergol Immunopathol (Madrid) 41:128–130

Rodrigues JM, Pazin Filho A, Rodrigues AJ, Vicente WV, Evora PR (2007) Methylene blue for chemotherapeutic anaphylaxis treatment: a case report. Sao Paulo Med J 125:60–62

Rodriguez T, Pleiffer M, Levy BD, Castells M (2011) Lipid mediators in cutaneous and systemic mastocytosis and the impact of 5-LO inhibition. J Allergy Clin Immunol 127(Suppl):AB132

Rosen H, Goetzl EJ (2005) Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol 5:560–570

Ruano I, Gargari R, Izquierdo M (2010) Combination of KIT gene silencing and tocopherol succinate may offer improved therapeutic approaches for human mastocytosis. Br J Haematol 148:59–68

Sagi L, Solomon M, Baum S, Lyakhovitsky A, Trau H, Barzilai A (2011) Evidence for methotrexate as a useful treatment for steroid-dependent chronic urticaria. Acta Derm Venereol 91:303–306

Sandler C, Nurni K, Lindstedt KA, Sorsa T, Golub LM, Kovanen PT, Eklund KK (2005) Chemically modified tetracyclines induce apoptosis in cultured mast cells. Int Immunohistopharmacol 5:1611–1621

Schittenhelm MM, Akmut F, Iilling B, Frey J, Schuster K, Ramachandran A, Kanz L, Kampa-Schittenhelm KM (2014) Gain-of-function KIT mutations sensitize the mutant isoform to the type I tyrosine kinase inhibitor crenolanib: a rationale for the therapeutic use in systemic mastocytosis (SM) and core binding factor leukemias (CBFL). ASH-Meeting abstract 2230

Seifert R (2015) How do basic secretagogues activate mast cells? Naunyn-Schmiedeberg’s Arch Pharmacol 389:671–694

Sido B, Dumoulin FL, Homann J, Hertfelder HJ, Bollmann M, Moldering GJ (2014) Surgical interventions in patients with mast...
cell activation disease. Aspects relevant for surgery using the example of a cholecystectomy. Chirurg 85:327–333

Siebenhäar F, Förtsch A, Krause K, Weller K, Metz M, Magerl M, Martus P, Church MK, Maurer M (2013) Rupatadine improves quality of life in mastocytosis: a randomized, double-blind, placebo-controlled trial. Allergy 68:949–952

Simhadri VR, Andersen JF, Calvo E, Choi SC, Coligan JE, Borrego F (2012) Human CD300a binds to phosphatidyethanolamine and phosphatidylserine, and modulates the phagocytosis of dead cells. Blood 119:2799–2809

Simon J, Lortholary O, Caillat-Vigneron N, Raphael M, Martin A, Briere J, Barete S, Hermine O, Casussus P (2004) Interest of interferon alpha in systemic mastocytosis. The french experience and review of the literature. Pathol Biol 52:294–299

Soter NA, Austen KF, Wasserman SI, Soter NA, Austen KF, Wasserman SI (1979) Oral disodium cromoglycate in the treatment of systemic mastocytosis. N Engl J Med 301:465–469

Spirkoski J, Mele FR, Grujic M, Calounova G, Lundequist A, Spyridonidis A, Thomas AK, Bertz H, Zeiser R, Schmitt-Graff A, Tang C, Lan C, Wang C, Liu R (2005) Amelioration of the disease. Aspects relevant for surgery using the examination of the literature. Pathol Biol 52:294–299

Strati P, Kantarjian H, Ravandi F, Nazha A, Borthakur G, Daver N, Kadia T, Estrov Z, Garcia-Manero G, Konopleva M, Rajkhowa T, Durand M, Andreeff M, Levis M, Cortes J (2015) Phase I/II trial of the combination of midostaurin (PKC412) and 5-azacytidine for patients with acute myeloid leukemia and myelodysplastic syndrome. Am J Hematol 90:276–281

Suzuki-Nishimura T, Sano T, Uchida MK (1989) Effects of benzodiazepines on serotonin release from rat mast cells. Eur J Pharmacol 167:1617–1680

Spyridonidis A, Thomas AK, Bartz H, Zeiser R, Schmitt-Graff A, Lindemann A, Waller CF, Finke J (2004) Evidence for a graft-versus-mast-cell effect after allogeneic bone marrow transplantation. Bone Marrow Transplantation 34:515–519

Tachibana M, Wada K, Katayama K, Kamisaki Y, Maezuka K, Kadowaki T, Blumberg RS, Nakajima A (2008) Activation of peroxisome proliferator-activated receptor gamma suppresses mast cell maturation involved in allergic diseases. Allergy 63:1136–1147

Tanaka A, Konno M, Muto S, Kambe N, Morii E, Nakahata T, Itai A, Matsuda H (2005) A novel NF-kappa B inhibitor, IMD-0354, suppresses neoplastic proliferation of human mast cells with constitutively activated c-Kit receptors. Blood 105:2324–2331

Tang C, Lan C, Wang C, Liu R (2005) Amelioration of the development of multiple organ dysfunction syndrome by somatostatin via suppression of intestinal mucosal mast cells. Shock 23:470–475

Tanimoto A, Ogawa Y, Oki C, Kimoto Y, Nozawa K, Amano W, Noji S, Shiozaki M, Matsuo A, Shiozaki Y, Matsushita M (2015) Pharmacological properties of JTE-052: a novel potent JAK inhibitor that suppresses various inflammatory responses in vitro and in vivo. Inflamm Res 64:41–51

Tefferi A, Li CY, Butterfield JH, Hoagland HC (2001) Treatment of systemic mast-cell disease with cladribine. N Engl J Med 344:307–309

Tolar J, Topo WD, Neglia JP (2004) Leukotriene-receptor inhibitor for the treatment of systemic mastocytosis. N Engl J Med 350:735–736

Topo G, Staudacher C, Geisen F, Gabi C, Fend F, Herold M, Greil R, Fritsch P, Sepp N (1998) Urticaria pigmentosa: a clinical, hematopathologic, and serologic study of 30 adults. Am J Clin Pathol 109:279–285

Trojan TD, Khan DA (2012) Calcineurin inhibitors in chronic urticaria. Curr Opin Allergy Clin Immunol 12:412–420

Turner PJ, Kemp AS, Rogers M, Mehr S (2012) Refractory symptoms successfully treated with leukotriene inhibition in a child with systemic mastocytosis. Pediatr Dermatol 29:222–223

Uchida K, Mitsu M, Kawakishi S (1989) Monoxygenation of N-acetylhistamine mediated by L-ascorbate. Biochim Biophys Acta 991:377–379

Usun C, Reiter A, Scott BL, Nakamura R, Danaj G, Kreil S, Shanley R, Hogan WJ, Perales MA, Shore T, Baumann H, Stuart R, Gruhn B, Doubek M, Hsu JW, Tholoului E, Gromke T, Godley LA, Pagano L, Gilman A, Wagner EM, Shiwaday T, Bomhuisser M, Papadopoulos EB, Böhm A, Vercellotti G, Van Lint MP, Schmid C, Rabitsch W, Pullarket V, Legrand F, Yakou-Agha I, Saber W, Barrett J, Hermine O, Hagglund H, Sperr WR, Popat U, Alyea EP, Devine S, Deeg HJ, Weisdorf D, Akin C, Valant P (2014) Hematopoietic stem-cell transplantation for advanced systemic mastocytosis. J Clin Oncol 32:3264–3274

Vaáli L, Lappalainen J, Lin AH, Mäyrännpää MI, Kovanen PT, Berstad A, Eklund KK (2012) Imatinib mesylate alleviates diarrhea in a mouse model of intestinal allergy. Neurogastroenterol Motil 24:e325–e335

Valent P, Horner HP, Escribano L, Longley BJ, Li CY, Schwartz LB, Marone G, Nuñez R, Akin C, Sotlar K, Sperr WR, Wolff K, Brunning RD, Parwaresch RM, Austen KF, Lennert K, Metcalfe DD, Vardiman JW, Bennett JM (2001) Diagnostic criteria and classification of mastocytosis: a consensus proposal. Leuk Res 25:603–625

Valent P, Akin C, Escribano L, Födinger M, Hartmann K, Brockow K, Castells M, Sperr WR, Klünin-Nelemans HC, Hamdy NA, Lortholary O, Robyn J, van Doormaal J, Sotlar K, Hauswright AH, Arock M, Hermine O, Hellmann A, Triggiani M, Niedoszytko M, Schwartz LB, Orfao A, Horney HP, Metcalfe DD (2007) Standards and standardization in mastocytosis: consensus statements on diagnostics, treatment recommendations and response criteria. Eur J Clin Investig 37:435–453

Valent P, Sperr WR, Akin C (2010) How I treat patients with advanced systemic mastocytosis. Blood 116:5812–5817

Valent P, Akin C, Arock M, Brockow K, Butterfield JH, Carter MC, Castells M, Escribano L, Hartmann K, Lieberman P, Niedoszytko B, Orfao A, Schwartz LB, Sotlar K, Sperr WR, Triggiani M, Valenta R, Horney HP, Metcalfe DD (2012) Definitions, criteria and global classification of mast cell disorders with special reference to mast cell activation syndromes: a consensus proposal. Int Arch Allergy Immunol 157:215–225

van Doormaal JJ, Idema IG, de Monchy JG, Breukelman H, Keyzer JJ, Doorenbos H (1986) Effects of isoprenaline and terbutaline on urinary excretion of histamine and its two main metabolites in systemic mastocytosis. Agents Actions 18:269–272

van Doormaal JJ, Arends S, Bruneckreft KL, et al. (2013) Prevalence of indolent systemic mastocytosis in a Dutch region. J Allergy Clin Immunol 131:1429–1431

Vega-Ruiz A, Cortes JE, Sever M, Manshouri T, Quintás-Cardama A, Luthra R, Kantarjian HM, Verstovsek S (2009) Phase II study of imatinibmesylate as therapy for patients with systemic mastocytosis. Leuk Res 33:1481–1484

Verstovsek S, Tefferi A, Cortes J, O’Brien S, Garcia-Manero G, Pardanani A, Akin C, Faderl S, Manshouri T, Thomas D, Kantarjian H (2008) Phase II study of dasatinib in Philadelphia chromosome-negative acute and chronic myeloid diseases, including systemic mastocytosis. J Clin Oncol 33:2809–2816

Vogt B, Wilson S, Bron A, Shute J, Holgate ST, Djukanovic R, Aalbers R (2000) Low-dose methotrexate treatment in severe glucocorticoid-dependent asthma: effect on mucosal inflammation and in vitro sensitivity to glucocorticoids of mitogen-induced T-cell proliferation. Eur Respir J 15:478–485

Welch EA, Alper JC, Bogaars H, Farrell DS (1983) Treatment of bullous pemphigoid with cladribine. N Engl J Med 344:1481–1484

Weller K, Artuc M, Jennings G, Friedrichson T, Guhl S, Dos Santos RV, Sündel C, Zuberbier T, Maurer M (2009) Miltefosine inhibits...
human mast cell activation and mediator release both in vitro and in vivo. J Invest Dermatol 129:496–498
Weng Z, Zhang B, Asadi S, Sismanopoulos N, Butcher A, Fu X, Katsarou-Katsari A, Antoniou C, Theoharides TC (2012) Quercetin is more effective than cromolyn in blocking human mast cell cytokine release and inhibits contact dermatitis and photosensitivity in humans. PLoS One 7:e33805
Weng Z, Patel AB, Panagiotidou S, Theoharides TC (2015) The novel flavone tetramethoxyxyluteolin is a potent inhibitor of human mast cells. J Allergy Clin Immunol 135:1044–1052
Worobec AS, Kirshenbaum AS, Schwartz LB, Metcalfe DD (1996) Treatment of three patients with systemic mastocytosis with interferon alpha-2b. Leuk Lymphoma 22:501–508
Yacoub A, Prochaska L (2016) Ruxolitinib improves symptoms and quality of life in a patient with systemic mastocytosis. Biomark Res 4:2
Yamaguchi S, Okada Y, Matsunaga Y, Nambu F (2016) Effect of ONO-4053 on FcεRI stimulated mast cell activation. J Allergy Clin Immunol 137:AB77
Yamaki K, Yoshino S (2012) Tyrosine kinase inhibitor sunitinib relieves systemic and oral antigen-induced anaphylaxes in mice. Allergy 67:114–122
Yang Y, Lu JY, Wu X, Summer S, Whoriskey J, Saris C, Reagan JD (2010) G-protein-coupled receptor 35 is a target of the asthma drugs cromolyn disodium and nedocromil sodium. Pharmacology 86:1–5
Yoshida C, Takeuchi M, Tsujiyama J, Sadahira Y (2009) Successful treatment of KIT D816V-positive, imatinib-resistant systemic mastocytosis with interferon-alpha. Intern Med 48:1973–1978
Zachariae H, Herlin T, Larsen PO (1981) Oral disodium cromoglycate in mastocytosis. Acta Derm Venereol 61:272–273
Zan M, Canova M, Campana C, Bettio S, Nalotto L, Ramppuda M, Ramonda R, Iaccarino L, Doria A (2011) The kaleidoscope of glucorticoid effects on immune system. Autoimmun Rev 10:305–310
Zhang T, Finn DF, Barlow JW, Walsh JJ (2016) Mast cell stabilisers. Eur J Pharmacol 778:158–168