Optical properties of Dy:YCa\textsubscript{4}O(BO\textsubscript{3})\textsubscript{3} crystal grown by the Czochralski technique

Zhangli Shi1*, Qingsong Song1, Jian Liu1, Huili Tang1, Qingguo Wang1, Yanyan Xue1,2+ , Xiaodong Xu1,2+ and Jun Xu

1 School of Physics Science and Engineering, Tongji University, Shanghai 200092, People’s Republic of China
2 Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, People’s Republic of China

* Authors to whom any correspondence should be addressed.

E-mail: xueyanyanf@163.com and xdxu79@mail.sic.ac.cn

Keywords: Dy: YCa\textsubscript{4}O(BO\textsubscript{3})\textsubscript{3}, czochralski technique, spectroscopic property

Abstract

Dy3+-doped YCa\textsubscript{4}O(BO\textsubscript{3})\textsubscript{3} (Dy:YCOB) crystal was successfully grown by the Czochralski technique. The absorption cross section at 453 nm was 0.28 × 10−21 cm2, that is related to the \(^6\text{H}_{15/2} \rightarrow ^4\text{I}_{15/2} \) transition. The Judd-Ofelt parameters \(\Omega_t (t = 2, 4, 6) \) were 1.62 × 10−20, 0.10 × 10−20, 0.41 × 10−20 cm2, respectively. The emission cross section assigned to the transition \(^4\text{F}_{9/2} \rightarrow ^4\text{H}_{13/2} \) was 1.02 × 10−21 cm2. The \(^4\text{F}_{9/2} \) energy level’s fluorescence lifetime was 900 µs.

1. Introduction

The trivalent rare earth (RE) ion Dy3+ doped solid material has attracted great attention on account of considerable yellow emission in correspondence with the transition \(^4\text{F}_{9/2} \rightarrow ^6\text{H}_{13/2} \) located around 580 nm, which has been widely utilized in many fields, for instance, telecommunication, information storage as well as medical treatment [1]. Besides, the absorption transition \(^6\text{H}_{15/2} \rightarrow ^4\text{I}_{15/2} \) of Dy3+ ions is in agreement with InGaN semiconductor’s emission band, extremely advantageous to laser operation. Recent research has concentrated on Dy3+ doped different solid materials, including YAG [2], YAP [3], LuLiF\textsubscript{4} [4], LaF\textsubscript{3} [5], ZnWO\textsubscript{4} [6], GdVO\textsubscript{4} [7], KGd(WO\textsubscript{4})\textsubscript{2} [8], YAl\textsubscript{2}(BO\textsubscript{3})\textsubscript{3} [9], etc. So far, visible laser performances have been accomplished in few Dy3+ doped laser materials, including Dy:YAG [10], Dy:ZnWO\textsubscript{4} [11], Dy:LLF [12] and Dy:ZBLAN [13].

YCa\textsubscript{4}O(BO\textsubscript{3})\textsubscript{3} (YCOB) crystal has good physical and chemical properties. It is classified into the monoclinic crystal with the Cm space group. The lattice parameters are \(a = 8.046 \) Å, \(b = 15.959 \) Å, \(c = 3.517 \) Å and \(\beta = 101.19^\circ \) with the density of 3.252 g cm−3 [14]. To date, there are some analyses on YCOB crystals doped with Tm3+ [15], Yb3+ [16] and Nd3+ [17, 18]. As far as we know, Dy:YCOB’s spectral performance has never been reported.

In this work, we succeeded in synthesizing Dy:YCOB crystal via Czochralski technique. To discuss the spectral properties, the absorbance spectrum, emission spectrum and fluorescence decay curve were detected.

2. Experiments

2.1. Crystal synthesis

We synthesized Dy:YCOB crystal via Czochralski technique. The starting materials were composed of Dy\textsubscript{2}O\textsubscript{3} (99.999%), CaCO\textsubscript{3} (99.999%), Y\textsubscript{2}O\textsubscript{3} (99.999%) and H\textsubscript{3}BO\textsubscript{3} (99.999%) powders. The weighing process was based on stoichiometric ratio and to compensate the loss during the synthesis process, we added 1 wt% additional H\textsubscript{3}BO\textsubscript{3}. The powders were first mixed (3 h) and sintered (900 °C, 7 h, air). Then they were sufficiently ground, mixed, compressed into pellets and sintered (1100 °C, 10 h, air). The weighing and sintering processes followed the chemical equation: \(x\text{Dy}_{2}O_{3} + (1-x)\text{Y}_{2}O_{3} + 8\text{CaCO}_{3} + 6\text{H}_{3}BO_{3} \rightarrow 2\text{Dy}_{x}\text{Y}_{1-x}\text{Ca}_{4}\text{O}(\text{BO}_{3})_{3} + 8\text{CO}_{2} ↑ + 9\text{H}_{2}O \) (\(x = 0.02 \)). The synthesis parameters were shown as follows: growth direction, growth atmosphere, pulling speed, rotation rate, cooling rate, the grown crystal length and diameter. The related parameter values are
crystalline b-axis, nitrogen, 0.5 ~ 1 mm h⁻¹, 10 ~ 20 rpm, 10 ~ 30 °C h⁻¹, 50 mm and 15 mm. Figure 1 demonstrates the polished Dy:YCOB sample. The crystal was cut along the plane (−2 0 1) with the size of 10 mm × 5 mm × 2 mm.

2.2. Structure and spectral examinations
We utilized the x-ray powder diffractometer to obtain the phase calibration of Dy:YCOB crystal. The element content of Dy³⁺ ions was detected by ICP-AES. The absorbance spectra were obtained by a Spectrophotometer (Lambda 900, Perkin-Elmer UV–vis-NIR). The fluorescence spectrum and fluorescence decay curve were measured with a Fluorescence Spectrometer (FLS-980).

Figure 2 demonstrates the XRD pattern of Dy:YCOB powders and pure YCOB. The diffraction peaks coincide with the JCPDS card #50-0403 with no additional ones. The cell parameters of Dy:YCOB were \(a = 8.078 \text{ Å}, b = 16.022 \text{ Å}, c = 3.534 \text{ Å}, \beta = 101.19° \), that are a bit larger than undoped YCOB [14] crystal. The element content and segregation coefficient of Dy³⁺ ions were 1.74 at% and 1.71, respectively.
3. Results and discussion

3.1. Absorbance spectra

Figure 3 presents the absorbance spectra of Dy:YCOB. Within the scope of 200–2000 nm, there are 9 absorption bands centered at 386, 425, 450, 472, 789, 886, 1064, 1254 and 1641 nm. The corresponding transitions were labeled in figure 3. We mainly concentrate on the transition $^6\text{H}_{15/2} \rightarrow ^4\text{I}_{15/2}$ around 450 nm, that is appropriate to be pumped by blue-emitting LDs. At 453 nm, the absorption cross section σ_{abs} was 0.28×10^{-21} cm2. What’s more, the full width at half maximum (FWHM) was 2.4 nm.

3.2. J–O theory calculations

The Judd-Ofelt theory is generally utilized for analyzing the spectral performance in RE ions doped crystals as well as glasses [19–21].

The experimental line strength $S_{\text{exp}}(J, J')$, calculated line strength $S_{\text{cal}}(J, J')$ as well as the mean wavelength $\bar{\lambda}$ were gathered in table 1, that were calculated from the absorbance spectra. The Root-Mean-Square (RMS) deviation in $S_{\text{exp}}(J, J')$ and $S_{\text{cal}}(J, J')$ is 0.050×10^{-20} cm2, manifesting a good consistence between them.

The J–O intensity parameters Ω_t ($t = 2, 4, 6$) can reflect information about structure and coordination symmetry. The parameter Ω_2 is applied for estimating the covalency and symmetry of crystal field near Dy$^{3+}$ ions [22]. In Dy:YCOB, the value of Ω_2 ($t = 2, 4, 6$) were 1.62×10^{-20}, 0.10×10^{-20}, 0.41×10^{-20} cm2, respectively and are listed in table 2. In contrast to Dy doped CaGdAlO$_4$ [23], GdScO$_3$ [24], the value of Ω_2 in Dy:YCOB is smaller but larger than that of the relatively symmetrical Dy doped YAG ceramic [25], YSGG [26], CeF$_3$ [27], which implies that the covalency in Dy:YCOB is smaller than CaGdAlO$_4$, GdScO$_3$, but larger than YAG ceramic, YSGG, CeF$_3$.
tunable laser generation. The corresponding to the yellow emission and the FWHM was 15.14 nm, that is benefit of energy storage capacity. The transition $4\text{F}_{9/2} \rightarrow 6\text{H}_{13/2}$ around 581 nm owns the largest $A(J, J')$ and β, indicating Dy:YCOB has the higher possibility to realize yellow laser operation.

3.3. Fluorescence spectrum

Under 450 nm excitation, the fluorescence spectrum of Dy:YCOB ranging from 400 to 800 nm is shown in figure 4. Four emission bands initiate from $4\text{F}_{9/2}$ level to $4\text{H}_{15/2}$, $4\text{H}_{15/2}$, $4\text{H}_{11/2}$, $4\text{H}_{9/2}$ and $4\text{F}_{11/2}$, whose center wavelengths are 485, 581, 671 and 761 nm, respectively. Notably, the yellow emission $4\text{F}_{9/2} \rightarrow 6\text{H}_{13/2}$ is the most intensive, supporting the results described in table 3.

The emission cross section σ_{em} is worked out by:

$$\sigma_{em}(\lambda) = \frac{\lambda A(J, J') I(\lambda)}{8\pi c n^2 \int_{\lambda_{band}} I(\lambda) d\lambda}$$ \hspace{1cm} (1)$$

where $I(\lambda)$ is the measured fluorescence intensity. In Dy:YCOB, σ_{em} at around 585 nm was 1.02×10^{-21} cm2 corresponding to the yellow emission and the FWHM was 15.14 nm, that is beneficial to mode-locked and tunable laser generation.

Figure 5 presents $4\text{F}_{9/2}$ level’s fluorescence lifetime curve. Using the single exponential fitting, the fluorescent lifetime τ was 900 μs. The lifetime is higher than most of the oxide host materials, for example, Dy:YAG (400 μs) [2], Dy:NaGd(WO$_4$)$_2$ (177 μs) [31], Dy:YAP (185 μs) [3], suggesting a higher probability of energy storage

Table 1. The experimental and calculated line strengths of Dy:YCOB.

Transitions (from $4\text{H}_{13/2}$)	λ(nm)	$S_{em}(10^{-20}$ cm2)	$S_{rad}(10^{-20}$ cm2)
$4\text{F}_{7/2} + 4\text{I}_{13/2} + 4\text{M}_{21/2} + 6\text{K}_{27/2}$	386	0.156	0.127
$4\text{G}_{11/2}$	425	0.026	0.009
$4\text{I}_{15/2}$	450	0.064	0.039
$4\text{F}_{9/2}$	472	0.010	0.013
$4\text{F}_{7/2} + 4\text{G}_{3/2}$	789	0.150	0.166
$4\text{H}_{5/2} + 4\text{F}_{7/2}$	886	0.408	0.307
$4\text{H}_{9/2} + 4\text{F}_{9/2}$	1064	0.354	0.370
$4\text{H}_{9/2} + 4\text{F}_{11/2}$	1234	1.792	1.775
$6\text{H}_{13/2}$	1641	0.369	0.415

Table 2. The J-O intensity parameters $\Omega_i (i = 2, 4, 6)$ ($\times 10^{-20}$ cm2) of dysprosium ions in different materials.

Materials	Ω_2	Ω_4	Ω_6	References
YCOB	1.62	0.10	0.41	This work
YSGG	0.13	0.73	1.06	[26]
YAG ceramic	0.20	1.11	1.46	[25]
CeF$_3$	1.01	0.69	0.91	[27]
CaGdAlO$_4$	1.80	1.00	0.50	[23]
GdScO$_3$	2.74	2.52	0.94	[24]
PbWO$_4$	7.32	1.10	1.14	[28]

Table 3. The spontaneous emission possibility $A(J, J')$, fluorescence branching ratio β in Dy:YCOB.

Transitions (from $4\text{F}_{9/2}$)	λ(nm)	A(s$^{-1}$)	β(%)
$4\text{H}_{15/2}$	485	51.9	11.68
$4\text{H}_{13/2}$	581	250.9	56.40
$6\text{H}_{11/2}$	671	43.0	9.66
$6\text{H}_{9/2} + 4\text{F}_{11/2}$	761	99.0	22.26
Radiative lifetime τ_{rad}(ms)			2.2
capability. The fluorescence quantum efficiency \(\eta (\eta = \tau_f/\tau_{rad}) \) was 40.0%, which attributes to the cross relaxation caused by high doping concentration. The above-mentioned data denotes that Dy:YCOB is encouraging for realizing yellow laser performance.

4. Conclusion

In this article, we succeeded in synthesizing Dy:YCOB by Czochralski technique. At 453 nm the absorption cross section was \(0.28 \times 10^{-21} \text{ cm}^2 \), corresponding to \(^{4}\text{H}_{15/2} \rightarrow ^{4}\text{I}_{15/2} \), implying the suitability of pumping by InGaN LDs. The J–O parameters value \(\Omega_i (i = 2, 4, 6) \) were \(1.62 \times 10^{-20}, 0.10 \times 10^{-20}, 0.41 \times 10^{-20} \text{ cm}^2 \), respectively. The fluorescence spectrum is dominated by the 581 nm yellow emission and the fluorescence branching ratio \(\beta \) was 56.40%. The corresponding emission cross section \(\sigma_{em} \) was \(1.02 \times 10^{-21} \text{ cm}^2 \) and the FWHM was 15.14 nm. The \(^{4}\text{F}_{9/2} \) level’s fluorescence lifetime \(\tau_f \) was 900 \(\mu \text{s} \). To sum up, these findings indicate that Dy:YCOB may be applied to succeed in achieving yellow laser oscillation.

Acknowledgments

This work is partially supported by National Natural Science Foundation of China (No. 61805177, No. 61621001 and No. 62075166).
Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

ORCID iDs
Zhangli Shi https://orcid.org/0000-0001-6602-373X

References

[1] Kränkel C, Marzahl D-T, Moglia E, Huber G and Meta P W 2016 Out of the blue: semiconductor laser pumped visible rare-earth doped lasers Laser Photonics Rev. 10 548–68
[2] Pan Y et al 2018 Growth and optical properties of Dy3+ :Al2O3 crystal Physica B 530 317–21
[3] Liu B et al 2017 Crystal growth and yellow emission of Dy:YAlO3 Opt. Mater. 72 208–13
[4] Bigotta S, Tonelli M, Cavalli E and Belletti A 2010 Optical spectra of Dy3+ in KY3F14 and LiLuF4 crystalline fibers J. Lumin. 130 13–7
[5] Li S et al 2017 Spectroscopic characterization of Dy3+ :LiF crystal Infrared Phys. Technol. 87 65–71
[6] Yang F et al 2007 Growth and spectroscopy of Dy3+ doped in ZnWO4 crystal Opt. Mater. 29 1861–5
[7] Ning K et al 2014 Spectroscopic characteristics of GdVO4:Dy3+ crystal Opt. Mater. 37 745–9
[8] Samuel P, Thangaraju D and Babu S M 2011 Effect of dysprosium active ions on spectral properties of KGW single crystals J. Alloys Compd. 509 177–80
[9] Ryba-Romanowski W, Dominiaik-Dzik G, Solarz P and Lisiecki R 2009 Transition intensities and excited state relaxation dynamics of Dy3+ in crystals and glasses: a comparative study Opt. Mater. 31 1547–54
[10] Bowman S R 2012 Diode pumped yellow dysprosium lasers Opt. Express 12 12996–11
[11] Xia Z, Yang F, Qiao L and Yan F 2017 End pumped yellow laser performance of Dy3+:ZnWO4 Opt. Commun. 387 357–60
[12] Giacom B 2014 Yellow laser performance of Dy3+ in co-doped Dy3,Tb:LiLuF4 Opt. Lett. 23 6628–31
[13] Fujimoto Y, Ishii O and Yamazaki M 2010 Yellow laser oscillation in Dy3+–doped waterproof fluoro-aluminate glass fibre pumped by 398.8 nm GaN laser diodes Electron. Lett 46 586
[14] Tu Y, Zheng Y, Tu X, Xiong K and Shi E 2013 Growth and characterization of Sm3+,C49(BO3)2 single crystals for nonlinear optical applications CrystEngComm. 15 6244
[15] Liu Y et al 2017 Angular non-critical phase-matching second-harmonic-generation characteristics of RECOB (RE = Tm, Y, Gd, Sm, Nd and La) crystals Opt. Express 25 11867–93
[16] Ma Y et al 2018 Passive Q-switching induced by few-layer MoTe2 in an Yb:YCOB microchip laser Opt. Express 26 25147–55
[17] Sun Y et al 2019 Passively Q-switched self-frequency doubling Nd3+:Ca4O(BO3)2(RE = Y, Gd) lasers with tin diselenide as a saturable absorber Chinese Optics Letters. 17 061402
[18] Li R et al 2016 Guided-wave second harmonics in Nd:YCOB ridge waveguides produced by combination of carbon ion irradiation and precise diamond blade dicing Opt. Mater. 57 153–7
[19] Ofei G S 1962 Intensities of crystal spectra of rare-earth ions J. Chem. Phys. 37 511–20
[20] Judd B R 1962 Optical absorption intensities of rare-earth ions Phys. Rev. 75 655–68
[21] Curnall W T, Fields P R and Rajnak K 1968 Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+ J. Lumin. 13 704–13
[22] Malta O L 1997 Spectroscopic properties of a new light-converting device Eu3+,Tb3+ :ZnS single crystal J. Lumin. 72 190–7
[23] Liu B et al 2018 Spectroscopic characteristics of Tb3+:ZnS single crystal J. Lumin. 195 157–61
[24] Sun Y et al 2019 Optical spectroscopy of Dy3+–doped CaGdAlO4 single crystal for potential use in solid-state yellow lasers Opt. Mater. 66 469–73
[25] Peng F et al 2018 Growth, structure, and spectroscopic characteristics of a promising yellow laser crystal Dy3+:Y3Al5O12 J. Lumin. 201 176–81
[26] Lupei A, Lupei V, Gheorghe C, Ilescu A and Enculescu M 2011 Spectroscopic characteristics of Dy3+:Al2O32 transparent ceramics J. Appl. Phys. 110 083120
[27] Sardar D K, Bradley W M, Yow R M, Gruber J B and Zandi B 2004 Optical transitions and absorption intensities of Dy3+ (4f9) in YSGG laser host J. Lumin. 106 195–203
[28] Yen Y et al 2019 Crystal growth and 570 nm emission of Dy3+ doped CeF3 single crystal J. Lumin. 215 116707
[29] Shi Z et al 2021 Spectroscopic characterizations of Dy3+:PbWO4 crystal J. Lumin. 236 118130
[30] Brik M G, Ishii T, Tkachuk A M, Ivanova S E and Razumova I K 2004 Calculations of the transitions intensities in the optical spectra of Dy3+:Y2O3 J. Alloys Compd. 374 63–8
[31] Dominiaik-Dzik G, Ryba-Romanowski W, Palatinikov M N, Sidorov N V and Kalininikov V T 2004 Dysprosium-doped LiNbO3 crystal. Optical properties and effect of temperature on fluorescence dynamics J. Mol. Struct. 704 139–44
[32] Wang H et al 2007 Optical properties of Dy3+ ions in sodium gadolinium tungstates crystal J. Lumin. 126 452–8