STRONGLY SUMMABLE ULTRAFILTERS, UNION ULTRAFILTERS, AND THE TRIVIAL SUMS PROPERTY

DAVID J. FERNÁNDEZ BRETÓN

Abstract. We answer two questions of Hindman, Steprāns and Strauss, namely we prove that every strongly summable ultrafilter on an abelian group is sparse and has the trivial sums property. Moreover we show that in most cases the sparseness of the given ultrafilter is a consequence of its being isomorphic to a union ultrafilter. However, this does not happen in all cases: we also construct (assuming \(\text{cov}(\mathcal{M}) = \mathfrak{c} \)), on the Boolean group, a strongly summable ultrafilter that is not additively isomorphic to any union ultrafilter.

1. Introduction

The concept of a Strongly Summable Ultrafilter was born with Neil Hindman’s efforts for proving the theorem that now bears his name (which at the time was known as Graham-Rothschild’s conjecture), though later on it was realized that such ultrafilters have a rich algebraic structure in terms of the algebra in the Čech-Stone compactification, which in turn sheds light on the aforementioned theorem by providing an elegant proof of it. We conceive the Stone-Čech compactification of an abelian group \(G \) (which we equip with the discrete topology) as the set \(\beta G \) of all ultrafilters on \(G \), where the basic open sets are those of the form \(\bar{A} = \{ p \in \beta G | A \in p \} \), for \(A \subseteq G \). As it turns out, these sets are actually clopen. If we identify each point \(x \in G \) with the principal ultrafilter \(\{ A \subseteq G | x \in A \} \), then \(G \) is a dense subset of \(\beta G \), and what we denoted by \(\bar{A} \) is really the closure in \(\beta G \) of the set \(A \). The group operation \(+ \) from \(G \) is also extended by means of the formula

\[
p + q = \{ A \subseteq G | \{ x \in G | A - x \in q \} \in p \}
\]

which turns \(\beta G \) into a right topological semigroup. This means that for each \(p \in \beta G \), the mapping \((\cdot) + p : \beta G \to \beta G \) is continuous, although the extended operation \(+ \) need not be commutative, and \(\beta G \) is not a group. Of special importance is the closed subsemigroup \(G^* = \beta G \setminus G \) consisting of all nonprincipal ultrafilters. The book [7] is the standard reference on this topic.

We reserve the lowercase roman letters \(p, q, r, u, v \) for ultrafilters, and the uppercase roman letters \(A, B, C, D, W, X, Y, Z \), with or without subscripts, will always denote subsets of the abelian group at hand. Lowercase letters \(w, x, y, z \) will typically denote elements of the abelian group that is being dealt with, and the “vector” notation will be used for sequences of elements of the group, e.g. \(\vec{x} = \langle x_n | n < \omega \rangle \). When the sequences are finite, we use the symbol \(\sim \) to denote their concatenation, as in \(\vec{x} \sim \vec{y} \). If \(G \) is an abelian group and \(x \in G \), the symbol \(o(x) \) will denote the order of \(x \), i.e. the least natural number \(n \) such that \(nx = 0 \). We make liberal use of the von Neumann ordinals, usually denoted by greek letters \(\alpha, \beta, \gamma, \zeta, \eta, \xi \), and this means that for two ordinals \(\alpha, \beta \), the expression \(\alpha < \beta \) means exactly the same as \(\alpha \in \beta \). In particular, natural numbers \(n \) are conceived as the set \(\{ 0, 1, \ldots, n - 1 \} \) of
their predecessors, with 0 being equal to the empty set \emptyset, and ω denotes the set of finite ordinals, i.e. the set $\mathbb{N} \cup \{0\}$. The lowercase roman letters i, j, k, l, m, n, \ldots with or without subscript, will be reserved to denote elements of ω. The letters M and N, with or without subscripts, will in general be reserved for denoting (finite or infinite) subsets of ω. Given a subset $M \subseteq \omega$, $[M]^n$ will denote the set of subsets of M with n elements, $[M]^\omega$ will denote the set of finite subsets of M, and $[M]^\omega$ denotes the set of infinite subsets of M. The lowercase roman letters a, b, c, d, with or without subscript, will stand for elements of $[\omega]^\omega$, i.e. for finite subsets of ω.

Whenever we have a mapping $f : G \rightarrow H$, there is a standard way to lift or extend it to another mapping $\beta f : \beta G \rightarrow \beta H$ which is continuous and, if f is a semigroup homomorphism, then so is βf. This extension is given by

$$(\beta f)(p) = \{ A \subseteq H \mid f^{-1}[A] \in p \} = \langle \{ f[A] \mid A \subseteq G \} \rangle,$$

where the rightmost expression means that we take the filter generated by the family $\{ f[A] \mid A \subseteq G \}$, which has the finite intersection property. It is customary to write just $f(p)$ instead of $(\beta f)(p)$, and we will do so throughout this paper. The ultrafilter $f(p)$ is called the Rudin-Keisler image of p.

One of the most important groups dealt with in this paper is the circle group $\mathbb{T} = \mathbb{R}/\mathbb{Z}$. When talking about this group, we will freely identify real numbers with their corresponding cosets modulo \mathbb{Z}, and conversely we will identify elements of \mathbb{T} (cosets modulo \mathbb{Z}) with any of the elements of \mathbb{R} representing them. Therefore, when we refer to an element of \mathbb{T} as a real number t, we really mean the coset of that number modulo \mathbb{Z}, thus e.g. we may write $t = 0$ and really mean that $t \in \mathbb{Z}$. This should not cause confusion as the context will always clearly indicate whether we are viewing a real number t as a real number or as an element of \mathbb{T}. If there is the need to specify a single representative for an element of \mathbb{T}, we will pick the unique representative t satisfying $-\frac{1}{2} < t \leq \frac{1}{2}$.

Definition 1.1. If G is an abelian group, we say that an ultrafilter $p \in \beta G$ is strongly summable if it has a base of FS-sets, i.e. if for every $A \in p$ there exists a sequence $\vec{x} = \langle x_n \mid n < \omega \rangle$ such that $p \ni \text{FS}(\vec{x}) \subseteq A$, where

$$\text{FS}(\vec{x}) = \left\{ \sum_{n \in a} x_n \bigg| a \in [\omega]^\omega \setminus \{ \emptyset \} \right\}$$

denotes the set of finite sums of the sequence \vec{x}.

Note that if a strongly summable ultrafilter is principal, then it must actually be 0. Strongly summable ultrafilters on $(\mathbb{N}, +)$ were first constructed, under CH, by Neil Hindman in [4, Th. 3.3], although at that time the terminology was still not in use. Their importance at first came from the fact that they are examples of idempotents in $\beta \mathbb{N}$, but among idempotents they are special in that the largest subgroup of \mathbb{N}^* containing one of them as the identity is just a copy of \mathbb{Z}. More concretely, [7 Th. 12.42] establishes that if $p \in \mathbb{N}^*$ is a strongly summable ultrafilter, and $q, r \in \beta \mathbb{N}$ are such that $q + r = r + q = p$, then $q, r \in \mathbb{Z} + p$. In [6], the authors generalize some results previously only known to hold for ultrafilters on $\beta \mathbb{N}$ or $\beta \mathbb{Z}$. In particular, they proved there ([6 Th. 2.3]) that every strongly summable ultrafilter p on any abelian group G is an idempotent ultrafilter. And [5 Th. 4.6] states that if G can be embedded in \mathbb{T}, then whenever $q, r \in G^* = \beta G \setminus G$ are such that $q + r = r + q = p$, it must be the case that $q, r \in G + p$. The following definition captures an even stronger property than the one just mentioned.

Definition 1.2. If $p \in \beta G$ is an idempotent element, we say that p has the trivial sums property if whenever $q, r \in \beta G$ are such that $q + r = p$, then it must be the case that $q, r \in G + p$.

Note that 0 always have the trivial sums property, because G^* is a subsemigroup of βG. Idempotents satisfying the trivial sums property would be examples of so-called maximal idempotents, i.e., maximal elements with respect to the two partial orders \leq_R, \leq_L defined among idempotents by $q \leq_R r$ iff
It is possible to improve the result just mentioned for strongly summable ultrafilters if one strengthens the definition of strongly summable.

Definition 1.3. An ultrafilter \(p \in \beta G \) is **sparse** if for every \(A \in p \) there exist two sequences \(\bar{x} = \langle x_n | n < \omega \rangle \), \(\bar{y} = \langle y_n | n < \omega \rangle \), where \(\bar{y} \) is a subsequence of \(\bar{x} \) such that \(\{ x_n | n < \omega \} \setminus \{ y_n | n < \omega \} \) is infinite, \(\text{FS}(\bar{x}) \subseteq A \), and \(\text{FS}(\bar{y}) \in p \).

Then obviously every sparse ultrafilter will be nonprincipal and strongly summable. And by [5, Th. 4.5], if \(G \) can be embedded in \(T \) and \(p \in G^* \) is sparse, then \(p \) has the trivial sums property.

It follows from results of Krautzberger ([8, Props. 4 and 5, and Th. 4]) that every nonprincipal strongly summable ultrafilter \(p \in \mathcal{B}^* \) must actually be sparse. Thus the previous theorem holds for nonprincipal strongly summable ultrafilters on \(\mathcal{B} \). In [5], the authors followed this idea and started investigating the different kinds of abelian semigroups on which every nonprincipal strongly summable ultrafilter must be sparse. In particular, [6, Th. 4.2] establishes that if \(S \) is a countable subsemigroup of \(T \), then every nonprincipal strongly summable ultrafilter on \(S \) is sparse, so this generalizes the previous observation about strongly summable ultrafilters on \(\mathcal{B} \). The authors built on this result to get a more general result ([6, Th. 4.5 and Cor. 4.6]) outlining a large class of abelian groups, whose nonprincipal strongly summable ultrafilters must all be sparse. More or less concurrently, this author showed ([3, Th. 2.1]) that every nonprincipal strongly summable ultrafilter on the Boolean group is also sparse. Thus Hindman, Steprāns and Strauss asked ([6, Question 4.12]) whether every strongly summable ultrafilter on a countable abelian group is sparse.

Although it is not immediately clear that, for groups that are not embeddable in \(T \), sparseness implies the trivial sums property, Hindman, Steprāns and Strauss were able to get a result, analogous to the ones mentioned in the previous paragraph, concerning the latter property, namely they proved ([6, Th. 4.8 and Cor. 4.9]) that for the same class of abelian groups, all nonprincipal strongly summable ultrafilters must have the trivial sums property. This time, the case of the Boolean group had already been handled, long time ago, by Protasov ([10, Cor. 4.4]). Thus Hindman, Steprāns and Strauss also asked ([6, Question 4.11]) whether every strongly summable ultrafilter on a countable abelian group \(G \) has the property that it can only be expressed trivially as a product (i.e. a sum) in \(G^* \).

Section 2 develops some preliminary results that deal with union ultrafilters, additive isomorphisms and what we call here the 2-uniqueness of finite sums. Section 3 contains the answer to the two questions from [6] mentioned in the previous paragraphs. From the proof of this result, it will turn out that, unless \(p \) is a strongly summable ultrafilter on the Boolean group, it will be additively isomorphic to a union ultrafilter. Thus Section 4 deals with the Boolean group, the main result being that there exists (under reasonable set-theoretic assumptions) a strongly summable ultrafilter on the Boolean group that is not additively isomorphic to any union ultrafilter.

2. Union ultrafilters and 2-uniqueness of finite sums

Historically, the notions of union ultrafilter and of strongly summable ultrafilter have been inextricably related. The results of this paper are no exception, and the notion of union ultrafilter is essential to them. We thus introduce such notion. For a pairwise disjoint family \(X \subseteq [\omega]^\omega \), we denote the set of its **finite unions** by

\[
\text{FU}(X) = \left\{ \bigcup_{x \in a} x : a \in [X]^\omega \setminus \{ \emptyset \} \right\}.
\]

Definition 2.1. A **union ultrafilter** is an ultrafilter \(p \) on \([\omega]^\omega \) such that for every \(A \in p \) it is possible to find a pairwise disjoint \(X \subseteq [\omega]^\omega \) such that \(p \ni \text{FU}(X) \subseteq A \).
The reason why union ultrafilters are so important when studying strongly summable ultrafilters, is that sometimes strongly summable ultrafilters can be used to construct union ultrafilters, which in turn are sometimes easier to handle. We will state a definition that captures the precise sense in which strongly summable ultrafilters give rise to union ultrafilters. In order to do this, we need to introduce a further notion. When dealing with sets of the form $FS(\vec{x})$, the case when each finite sum can be expressed uniquely as such makes things much easier to handle. In order to simplify notation, we make the convention that for any sequence \vec{x} of elements of some abelian group G, the empty sum equals zero:

$$\sum_{n \in \emptyset} x_n = 0.$$

Definition 2.2. A sequence \vec{x} on an abelian group G is said to satisfy uniqueness of finite sums if whenever $a, b \in [\omega]^{<\omega}$ are such that

$$\sum_{n \in a} x_n = \sum_{n \in b} x_n,$$

it must be the case that $a = b$.

In particular, if \vec{x} satisfies uniqueness of finite sums then $0 \notin FS(\vec{x})$. Now we are ready to introduce the notion that will provide the connection between strongly summable ultrafilters and union ultrafilters.

Definition 2.3. Let p be an ultrafilter on an abelian group G, and let q be a union ultrafilter. We say that p and q are additively isomorphic if there is a sequence \vec{x} of elements of G satisfying uniqueness of finite sums, such that $FS(\vec{x}) \in p$, and there is a pairwise disjoint family $Y = \{y_n \mid n < \omega\}$ of elements of $[\omega]^{<\omega}$, in such a way that the mapping $\varphi : FS(\vec{x}) \mapsto FU(Y)$ given by $\varphi(\sum_{n \in a} x_n) = \bigcup_{n \in a} y_n$ maps p to q.

The following proposition shows that, if we are only interested in a strongly summable ultrafilter p being additively isomorphic to some union ultrafilter, without worrying about who this ultrafilter is exactly, then we can assume that the isomorphism is fairly simple.

Proposition 2.4. If p is additively isomorphic to a union ultrafilter, and this is witnessed by the mapping $\sum_{n \in a} x_n \mapsto \bigcup_{n \in a} y_n$ from $FS(\vec{x})$ to $FU(Y)$, then the mapping $\psi : FS(\vec{x}) \mapsto [\omega]^{<\omega}$ given by $\psi(\sum_{n \in a} x_n) = a$ also maps p to a union ultrafilter.

Proof. We only need to show that for any union ultrafilter q and any pairwise disjoint $Y = \{y_n \mid n < \omega\}$ such that $FU(Y) \in q$, the mapping φ given by $\bigcup_{n \in a} y_n \mapsto a$ maps q to another union ultrafilter. If we get this, then given the hypothesis of the theorem we can just compose the mapping φ with the original isomorphism, to get what we need. So let r be the image of q under such mapping, and let $A \in r$. Then since $B = \varphi^{-1}[A] \in q$, there is a pairwise disjoint X such that $q \ni FU(X) \subseteq B \cap FU(Y)$. Since X is pairwise disjoint and contained in $FU(Y)$, and Y is also pairwise disjoint, it is readily checked that for distinct $x, w \in X$, if $x = \bigcup_{n \in a} y_n$ and $w = \bigcup_{n \in b} y_n$ then $a \cap b = \emptyset$. This implies that $x \cup w = \bigcup_{n \in a \cup b} y_n$, i.e. $\varphi(x \cup w) = \varphi(x) \cup \varphi(w)$; and it is thus possible to prove by induction that all finite unions are preserved in the sense that $\varphi[FU(X)] = FU(Z)$ where $Z = \{a \in [\omega]^{<\omega} \mid \bigcup_{n \in a} y_n \in X\}$ has been argued to be a pairwise disjoint family, thus $r \ni FU(Z) \subseteq A$ and we are done.

We will develop a useful criterion for knowing when a strongly summable ultrafilter is additively isomorphic to some union ultrafilter. For that, it will be useful to think of the uniqueness of finite
sums as a \textit{1-uniqueness of finite sums}, in the sense that the expressions under consideration have only coefficients equal to 1. Having this in mind, it is natural to try and define a corresponding 2-uniqueness where we allow coefficients 1 and 2. More formally,

\textbf{Definition 2.5.} A sequence \vec{x} on an abelian group G is said to satisfy \textbf{2-uniqueness of finite sums} if whenever $a, b \in [\omega]^{<\omega}$ and $\varepsilon : a \rightarrow \{1, 2\}, \delta : b \rightarrow \{1, 2\}$ are such that

$$\sum_{n \in a} \varepsilon(n)x_n = \sum_{n \in b} \delta(n)x_n,$$

it must be the case that $a = b$ and $\varepsilon = \delta$.

In particular, if \vec{x} satisfies 2-uniqueness of finite sums, then no element of $\text{FS}(\vec{x})$ can have order 2. Thus Boolean groups do not contain sequences satisfying 2-uniqueness of finite sums. It is of course possible to analogously define n-uniqueness of finite sums, for every n, but for the results of this paper we only need to consider the case $n = 2$.

\textbf{Proposition 2.6.} For a sequence \vec{x} on an abelian group G, the following are equivalent.

1. \vec{x} satisfies the 2-uniqueness of finite sums.
2. Whenever $a, b, c, d \in [\omega]^{<\omega}$ are such that $a \cap b = \emptyset = c \cap d$, if

$$2\sum_{n \in a} x_n + \sum_{n \in b} x_n = 2\sum_{n \in c} x_n + \sum_{n \in d} x_n,$$

then $a = c$ and $b = d$.
3. Whenever $a, b, c, d \in [\omega]^{<\omega}$ are such that

$$\sum_{n \in a} x_n + \sum_{n \in b} x_n = \sum_{n \in c} x_n + \sum_{n \in d} x_n,$$

it must be the case that $a \triangle b = c \triangle d$ and $a \cap b = c \cap d$.

\textit{Proof.} Straightforward. \hfill \square

The following two theorems do not contain any new ideas but rather they are just a useful reformulation of \cite[Th. 3.2]{1} (although that theorem uses a condition that is slightly weaker than the 2-uniqueness of finite sums, namely what the authors call the “strong uniqueness of finite sums”; however the version that we present here will be enough for our purposes) that cuts it into two pieces, each of which will be of some use in the future. Besides, we think that the distinction made here is more illuminating.

\textbf{Theorem 2.7.} Let p be an ultrafilter such that for some \vec{x} satisfying 2-uniqueness of finite sums, $\text{FS}(\vec{x}) \in p$. Then p is additively isomorphic to a union ultrafilter.

\textit{Proof.} By Proposition \ref{2.4} we just need to check that the mapping φ given by $\varphi(\sum_{n \in a} x_n) = a$ sends p to a union ultrafilter. So let $A \in q = \varphi(p)$. Pick a sequence \vec{y} such that $p \ni \text{FS}(\vec{y}) \subseteq \varphi^{-1}[A]$. Then $\varphi[\text{FS}(\vec{y})] \subseteq A$. Now $\varphi^{-1}[A] \subseteq \text{FS}(\vec{x})$, thus for each $n < \omega$ we can define $c_n \in [\omega]^{<\omega}$ by $c_n = \varphi(y_n)$ or, equivalently, by $y_n = \sum_{i \in c_n} x_i$. We claim that the family $C = \{c_n | n < \omega\}$ is pairwise disjoint. This is because if $n \neq m$, since $y_n + y_m \in \text{FS}(\vec{y}) \subseteq \text{FS}(\vec{x})$, then there must be a $c \in [\omega]^{<\omega}$ such that

$$\sum_{i \in c} x_i = y_n + y_m = \sum_{i \in c_n} x_i + \sum_{i \in c_m} x_i.$$

Since \vec{x} satisfies 2-uniqueness of finite sums, it must be the case that $c = c_n \cup c_m$ and $c_n \cap c_m = \emptyset$. This argument shows at once that C is a pairwise disjoint family, and that $\varphi(y_n + y_m) = c_n \cup c_m = \varphi(y_n) \cup \varphi(y_m)$. It is thus easy to conclude by induction that $\varphi[\text{FS}(\vec{y})] = \text{FU}(C)$, therefore $q \ni \text{FU}(C) \subseteq A$ and we are done. \hfill \square
Theorem 2.8. Let p be an ultrafilter that is additively isomorphic to a union ultrafilter. Then p is sparse.

Proof. If p is additively isomorphic to some union ultrafilter, by Proposition 2.4 we can pick a sequence \vec{x} satisfying uniqueness of finite sums such that $FS(\vec{x}) \in p$, and such that the mapping φ given by $\varphi(\sum_{n \in G} x_n) = a$ maps p to a union ultrafilter q. Let $A \in p$, and let X be pairwise disjoint such that $q \triangleright FU(X) \subseteq \varphi[A]$. Now let $M = \bigcup X$. By [8, Th. 4] (cf. also [6, Th. 2.6]), since q is a union ultrafilter, then there is $B \in q$ such that $M \setminus B$ is infinite. Without loss of generality we can assume $B \subseteq FU(X)$, so that $\bigcup B$ is a cofinite subset of M. Grab a pairwise disjoint family Y such that $q \triangleright FU(Y) \subseteq Y$, then $\bigcup Y$ is a cofinite subset of $M = \bigcup X$ and thus there are infinitely many $x \in X$ that do not intersect $\bigcup Y$ (because $Y \subseteq FU(X)$ and X is a pairwise disjoint family, so if $x \in X$ intersects $\bigcup Y$ then $x \subseteq \bigcup Y$). Thus if we let $Z = \{ x \in X \mid x \cap \bigcup Y = \emptyset \} \cup Y$ then Z is a pairwise disjoint family and $FU(Z) \subseteq FU(X) \subseteq \varphi[A]$. Enumerate $Z = \{ z_n \mid n < \omega \}$ in such a way that $Y = \{ z_{2n} \mid n < \omega \}$ and $\{ x \in X \mid x \cap \bigcup Y = \emptyset \} = \{ z_{2n+1} \mid n < \omega \}$. Then let \vec{w} be given by $w_n = \sum_{i \in z_n} x_i$. We get that $FS(\vec{w}) = \varphi^{-1}[FU(Z)] \subseteq A$, and if \vec{y} is the subsequence of even elements of \vec{w}, then it will be such that $\{|\{ w_n \mid n < \omega \} \setminus \{ y_n \mid n < \omega \}|$ is infinite, and such that $FS(\vec{y}) = \varphi^{-1}[FU(Y)] \in p$.

Corollary 2.9 ([8, Th. 3.2.]). Let p be a strongly summable ultrafilter on some abelian group G such that there exists a sequence \vec{x} satisfying the 2-uniqueness of finite sums with $FS(\vec{x}) \in p$. Then p is sparse.

To finish this section, we would like to quote another result from [6] that will be relevant in the subsequent section, and that illustrates another application of the concept of 2-uniqueness of finite sums.

Theorem 2.10 ([6, Th. 4.8]). Let G be an abelian group, and $p \in G^*$ be a strongly summable ultrafilter such that there exists a sequence \vec{x} satisfying the 2-uniqueness of finite sums, with $FS(\vec{x}) \in p$. Then p has the trivial sums property.

3. STRONGLY SUMMABLE ULTRAFILTERS ARE SPARSE AND HAVE THE TRIVIAL SUMS PROPERTY

The main result of this section tells us that almost all strongly summable ultrafilters on abelian groups have FS-sets generated from sequences that satisfy 2-uniqueness of finite sums. As a consequence of that, because of Theorem 2.7 almost all strongly summable ultrafilters on abelian groups are essentially union ultrafilters, and this helps solve [6, Questions 4.11 and 4.12]. More precisely, we have the following theorem and corollary.

Theorem 3.1. Let G be an abelian group, and let $p \in G^*$ be a strongly summable ultrafilter such that

$$\{ x \in G \mid o(x) = 2 \} \not\in p.$$

Then there exists a sequence \vec{x} of elements of G satisfying the 2-uniqueness of finite sums, such that $FS(\vec{x}) \in p$.

Corollary 3.2. Let G be an abelian group, and let $p \in G^*$ be a strongly summable ultrafilter such that

$$\{ x \in G \mid o(x) = 2 \} \not\in p.$$

Then p is additively isomorphic to some union ultrafilter.

In order to prove this result, we will need to break the proof down into several subcases.
Lemma 3.3. Let G be an abelian group, and let $X = \{x \in G | o(x) = 4\}$. If \vec{x} is a sequence of elements of G such that $\text{FS}(\vec{x}) \subseteq X$, then \vec{x} must satisfy 2-uniqueness of finite sums.

Proof. Assume that \vec{x} is such that $\text{FS}(\vec{x}) \subseteq X$. By Proposition 2.6 in order to prove that \vec{x} satisfies 2-uniqueness of finite sums, it suffices to show that whenever a, b, c, d are such that $a \cap b = \emptyset = c \cap d$ and

$$2 \sum_{n \in a} x_n + \sum_{n \in b} x_n = 2 \sum_{n \in c} x_n + \sum_{n \in d} x_n,$$

then $a = c$ and $b = d$. Now for each $n \in b \cap d$ we can cancel the term x_n from both sides of the previous equation; and similarly for each $n \in a \cap c$ we can cancel the term $2x_n$ from both sides of the equation, which thus becomes

$$(1) \quad 2 \sum_{n \in a'} x_n + \sum_{n \in b'} x_n = 2 \sum_{n \in c'} x_n + \sum_{n \in d'} x_n,$$

where $a' = a \setminus (a \cap c)$, $b' = b \setminus (b \cap d)$, $c' = c \setminus (a \cap c)$ and $d' = d \setminus (b \cap d)$. Since b' is disjoint from d', from (1) we can get

$$\sum_{n \in b' \cup d'} x_n = \sum_{n \in b'} x_n + \sum_{n \in d'} x_n = -2 \sum_{n \in a'} x_n + 2 \sum_{n \in c'} x_n + 2 \sum_{n \in d'} x_n,$$

where each of the terms from the right-hand side is either the identity (if the corresponding sum happens to be an empty sum) or has order 2 (because if the corresponding sum is nonempty then it has order 4), so the right-hand side of the previous equation is either the identity or has order 2. If $b' \cup d'$ was nonempty, the left-hand side of this equation would be a legitimate element of $\text{FS}(\vec{x})$, thus of order 4, and this is impossible. Hence we must have that $b' = d' = \emptyset$, which means that $b = b \cap d = d$. Therefore (1) becomes

$$2 \sum_{n \in a'} x_n = 2 \sum_{n \in c'} x_n,$$

which in turn implies that

$$2 \left(\sum_{n \in a'} x_n - \sum_{n \in c'} x_n \right) = 0,$$

and this means that the element $x = \sum_{n \in a'} x_n - \sum_{n \in c'} x_n$ is either the identity, or of order 2. Now since a' is disjoint from c', we get

$$\sum_{n \in a' \cup c'} x_n = \sum_{n \in a'} x_n + \sum_{n \in c'} x_n = x + 2 \sum_{n \in c'} x_n.$$

Again, each term on the right-hand side is either the identity or has order 2, so the whole right-hand side is either the identity or of order 2. If $a' \cup c' \neq \emptyset$, then the left-hand side would be an element of $\text{FS}(\vec{x})$, hence of order 4, a contradiction. Thus $a' = c' = \emptyset$, which means that $a = a \cap c = d$, and so \vec{x} satisfies 2-uniqueness of finite sums. \qed

If G is any abelian group, and $p \in G^*$ is strongly summable, then there must be a countable subgroup H such that $H \in p$ (e.g. take any FS set in p because of strong summability, and then let H be the subgroup generated by such FS set), and certainly the restricted ultrafilter $p \upharpoonright H = p \cap \mathcal{P}(H)$ will also be strongly summable. If we prove that $p \upharpoonright H$ contains a set of the form $\text{FS}(\vec{x})$ for a sequence \vec{x} satisfying 2-uniqueness of finite sums, then certainly so does p itself, because p is just the ultrafilter generated in G by $p \upharpoonright H$ and in particular $p \upharpoonright H \subseteq p$. Hence in order to prove Theorem 3.1 it suffices to consider only countable abelian groups G, and we will do so in the remainder of this section.

Now, it is a well-known result (this mentioned in \cite{3} p. 123, Sect. 1], and thoroughly discussed at the beginning of \cite{3} Section 3] that every countable abelian group G can be embedded in a countable direct sum of circle groups $\bigoplus_{n<\omega} \mathbb{T}$. Thus from now on we will use this fact liberally, in particular all elements x of the abelian group under consideration will be thought of as ω-sequences, each of whose
terms is an element of \(\mathbb{T} \). We will denote by \(\pi_n \) the projection map onto the \(n \)-th coordinate, i.e. \(\pi_n(x) \) is the \(n \)-th term of the sequence that \(x \) represents.

Notation. When dealing with an arbitrary (countable) abelian group \(G \), we will denote by \(Q(G) = \{ x \in G | \rho(x) > 4 \} \). Since elements of \(G \) are elements of \(\bigoplus_{n < \omega} \mathbb{T} \), if \(x \in Q(G) \) then there is an \(n < \omega \) such that \(\pi_n(x) \notin \{ 0, \frac{1}{4}, -\frac{1}{4}, \frac{3}{4} \} \). We will denote the least such \(n \) by \(\rho(x) \).

At this point it is worth recalling the following theorem of Hindman, Stepräns and Strauss.

Theorem 3.4 ([6], Th. 4.5). Let \(S \) be a countable subsemigroup of \(\bigoplus_{n < \omega} \mathbb{T} \), and let \(p \) be a nonprincipal strongly summable ultrafilter on \(S \). If

\[
\left\{ x \in S | \pi_{\min(x)}(x) \neq \frac{1}{2} \right\} \in p,
\]

where \(\min(x) \) denotes the least \(n \) such that \(\pi_n(x) \neq 0 \), then there exists a set \(X \in p \) such that for every sequence \(\bar{x} \) of elements of \(\bigoplus_{n < \omega} \mathbb{T} \), if \(\text{FS}(\bar{x}) \subseteq X \) then \(\bar{x} \) must satisfy 2-uniqueness of finite sums.

This theorem is the tool which will allow us to prove the following lemma.

Lemma 3.5. Let \(G \) be an abelian group, and let \(p \in G^* \) be a strongly summable ultrafilter. If

\[
\left\{ x \in Q(G) | \pi_{\rho(x)}(x) \notin \left\{ \frac{1}{8}, -\frac{3}{8}, \frac{3}{8} \right\} \right\} \in p,
\]

then there exists a set \(X \in p \) such that for every sequence \(\bar{x} \) of elements of \(\bigoplus_{n < \omega} \mathbb{T} \), if \(\text{FS}(\bar{x}) \subseteq X \) then \(\bar{x} \) must satisfy 2-uniqueness of finite sums.

Proof. Consider the morphism \(\varphi : G \to G \subseteq \bigoplus_{n < \omega} \mathbb{T} \) given by \(\varphi(x) = 4x \), whose kernel is exactly \(G \setminus Q(G) \). Since the latter is not an element of \(p \), then \(\varphi(p) \) is a nonprincipal ultrafilter. Moreover, since \(p \) is strongly summable, so is \(\varphi(p) \) by [6] Lemma 4.4. Now notice that for \(x \in G \setminus \ker(\varphi) = Q(G) \), we have \(\rho(x) = \min(\varphi(x)) \). Thus \(\varphi(p) \) contains the set \(\left\{ x \in G \setminus \{ 0 \} | \pi_{\min(x)}(x) \neq 1/2 \right\} \), since its preimage under \(\varphi \) is exactly \(\left\{ x \in Q(G) | \pi_{\rho(x)}(x) \notin \left\{ \frac{1}{8}, -\frac{3}{8}, \frac{3}{8} \right\} \right\} \). Therefore by Theorem 3.4 there is a set \(Y \in \varphi(p) \) such that whenever \(\text{FS}(\bar{y}) \subseteq Y \), \(\bar{y} \) must satisfy 2-uniqueness of finite sums. If we let \(X = \varphi^{-1}[Y] \), we claim that \(X \in p \) is the set that we need. So let \(\bar{x} \) be a sequence such that \(\text{FS}(\bar{x}) \subseteq X \). Then letting \(\bar{y} \) be the sequence given by \(y_n = \varphi(x_n) \), since \(\varphi \) is a group homomorphism we get that \(\text{FS}(\bar{y}) = \varphi[\text{FS}(\bar{x})] \subseteq \varphi[X] = X \), thus \(\bar{y} \) must satisfy 2-uniqueness of finite sums. Again since \(\varphi \) is a group homomorphism, it is not hard to see that this implies that \(\bar{x} \) satisfies 2-uniqueness of finite sums as well, and we are done. \(\square \)

The following theorem is the last piece needed for proving Theorem 3.1.

Theorem 3.6. Let \(G \) be an abelian group, and let \(p \in G^* \) be a strongly summable ultrafilter. If

\[
\left\{ x \in Q(G) | \pi_{\rho(x)}(x) \in \left\{ \frac{1}{8}, -\frac{3}{8}, \frac{3}{8} \right\} \right\} \in p,
\]

then there exists a set \(X \in p \) such that for every sequence \(\bar{x} \) of elements of \(\bigoplus_{n < \omega} \mathbb{T} \), if \(\text{FS}(\bar{x}) \subseteq X \) then \(\bar{x} \) must satisfy 2-uniqueness of finite sums.

Proof. If \(p \in G^* \) is as described in the hypothesis, then there is an \(i \in \{ 1, -1, 3, -3 \} \) such that

\[
Q_i = \left\{ x \in Q(G) | \pi_{\rho(x)}(x) = \frac{i}{8} \right\} \in p.
\]

Let \(\bar{x} \) be such that \(p \ni \text{FS}(\bar{x}) \subseteq Q_i \). For \(j < \omega \) let \(M_j = \{ n < \omega | \rho(x_n) = j \} \).
Claim 3.7. For each $j < \omega$, $|M_j| \leq 2$.

Proof of Claim. Assume, by way of contradiction, that there are three distinct $n, m, k \in M_j$, and let $x = x_n + x_m + x_k$. For $l < j$, $\pi_l(x)$ must be an element of $\{0, \frac{1}{2}, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{3}, \frac{2}{3}, -\frac{2}{3}\}$, because so are $\pi_l(x_n), \pi_l(x_m)$ and $\pi_l(x_k)$. On the other hand, $\pi_j(x_n) = \pi_j(x_m) = \pi_j(x_k) = \frac{1}{3}$, so $\rho(x) = j$ but $\pi_j(x) = \frac{2}{3} \neq \frac{1}{3}$. □

Thus we can rearrange the sequence \vec{x} in such a way that $n < m$ implies $\rho(x_n) \leq \rho(x_m)$, where the inequality is strict if $m > n + 1$. Let $M = \{\rho(x_n)|n < \omega\}$.

Claim 3.8. Let $n < m < \omega$ and assume that $j = \rho(x_n) < \rho(x_m)$ (which may or may not hold if $m = n + 1$, but must hold if $m > n + 1$). Then $\pi_j(x_m) = 0$.

Proof of Claim. Let $x = x_n + x_m$. Arguing as in the proof of Claim 3.7 we get that $\rho(x) = j$ and thus since $x \in Q_1$, $\pi_j(x_n) + \pi_j(x_m) = \pi_j(x) = \frac{1}{3}$. Now on the one hand we know that $\pi_j(x_n) = \frac{1}{3}$, while on the other hand $\pi_j(x_m) = \frac{2}{3}$. Thus the only possibility that does not lead to contradiction is that $\pi_j(x_m) = 0$. □

Claim 3.9. For every $x \in \text{FS}(\vec{x})$ there is a $j \in M$ such that $\pi_j(x) \neq 0$. Moreover for the least such j we actually have that $\pi_j(x) \in \{\frac{1}{3}, \frac{2}{3}\}$.

Proof of Claim. For $x = \sum_{n \in a} x_n$ and if $m = \min(a)$, then we can let $j = \rho(x_m) \in M$, so that for every $n \in a$ we have $\rho(x_n) \geq j$, with a strict inequality if $n > m + 1$. We will thus have that

$$\pi_j(x) = \sum_{n \in a} \pi_j(x),$$

where, by Claim 3.8, each of the terms on the right-hand side of this expression are zero, except for $\pi_j(x_m) = \frac{1}{3}$ and possibly $\pi_j(x_{m+1})$ (which will appear on the summation only if $m + 1 \in a$, and if so it will equal $\frac{1}{3}$ if $\rho(x_{m+1}) = \rho(x_m)$, and zero otherwise). Thus $\pi_j(x) \in \{\frac{1}{3}, \frac{2}{3}\}$. In particular $\pi_j(x) \neq 0$.

Now in order to prove the “moreover” part, we will argue that for all $l < j$ such that $l \in M$, $\pi_l(x) = 0$. This is because if $l \in M$, then there is $k < \omega$ such that $\rho(x_k) = l$, and if $l < j$ then we must necessarily have $k < m$ because of the way we arranged our sequence \vec{x}. Thus, again by Claim 3.8 and since $m = \min(a)$, it will be the case that $\pi_l(x_n) = 0$ for all $n \in a$, and hence

$$\pi_l(x) = \sum_{n \in a} \pi_l(x_n) = 0,$$

therefore j is actually the least $l \in M$ such that $\pi_l(x) \neq 0$ and we are done. □

The previous claim allows us to define $\tau : \text{FS}(\vec{x}) \rightarrow M$ by $\tau(x) = \min\{j \in M|\pi_j(x) \neq 0\}$, and ensures that $\pi_{\tau(x)}(x) \in \{\frac{1}{3}, \frac{2}{3}\}$. We can thus let

$$C_k = \left\{ x \in \text{FS}(\vec{x}) | \pi_{\tau(x)}(x) = \frac{ki}{8} \right\}$$

for $k \in \{1, 2\}$, and choose from among those the k such that $C_k \in p$. We let $X = C_k$ and claim that X is as in the conclusion of the theorem. In order to see this, let \vec{y} be such that $\text{FS}(\vec{y}) \subseteq C_k$.

Notice first that for distinct $n, m < \omega$ we must have $\tau(y_n) \neq \tau(y_m)$, for otherwise we would get, arguing in a similar way as in the proofs of Claims 3.7 and 3.8 that $\tau(y_n + y_m) = \tau(y_n) = \tau(y_m)$ and $\pi_{\tau(y_n + y_m)}(y_n + y_m) = \frac{2ki}{8} \neq \frac{ki}{8}$, a contradiction. Thus by rearranging \vec{y} if necessary, we can assume that $n < m$ implies $\tau(y_n) < \tau(y_m)$.

Now an observation is in order. Consider \(a \in [\omega]^\omega \setminus \emptyset \) and \(\varepsilon : a \to \{1, 2\} \). Let \(m = \min(a) \) and \(j = \tau(y_m) \). Since \(\tau \) is increasing on \(\bar{y} \), \(\pi_j(y_m) = 0 \) for all \(n \in a \setminus \{m\} \), while \(\pi_j(y_m) = \frac{ki}{8} \). Thus

\[
\pi_j \left(\sum_{n \in a} \varepsilon(n)y_n \right) = \varepsilon(m)\frac{ki}{8} \neq 0.
\]

From this we can conclude that \(\bar{y} \) satisfies 2-uniqueness of finite sums. Assume that \(a, b \in [\omega]^\omega \) and \(\varepsilon : a \to \{1, 2\}, \delta : b \to \{1, 2\} \) are such that

\[
\sum_{n \in a} \varepsilon(n)x_n = \sum_{n \in b} \delta(n)x_n.
\]

We will proceed by induction on \(\min(\{|a|, |b|\}) \). If \(a = b = \emptyset \) we are done. Otherwise let \(m = \min(a \cup b) \). Assume without loss of generality that \(m \in a \), so that \(m = \min(a) \). Let \(j = \tau(y_m) \). Then by the previous observation, the value of each side of (2) under \(\pi_j \) is nonzero, while \(\pi_j(y_n) = 0 \) for all \(n > m \), thus by looking at the right-hand side of (2) we conclude that we must have \(m \in b \) as well. Then it is also the case that \(\min(b) = m \). Now again, by the observation from last paragraph we get that the value of each side of (2) under the function \(\pi_j \) must equal, at the same time, \(\varepsilon(m)\frac{ki}{8} \) and \(\delta(m)\frac{ki}{8} \). This can only happen if \(\varepsilon(m) = \delta(m) \), therefore we can cancel the term \(\varepsilon(m)y_m \) from both sides of (2) and get

\[
\sum_{n \in a \setminus \{m\}} \varepsilon(n)x_n = \sum_{n \in b \setminus \{m\}} \delta(n)x_n,
\]

now we can apply the inductive hypothesis and conclude that \(a \setminus \{m\} = b \setminus \{m\} \) and \(\varepsilon \upharpoonright (a \setminus \{m\}) = \delta \upharpoonright (b \setminus \{m\}) \). Since \(m \) is an element of both \(a \) and \(b \), with \(\varepsilon(m) = \delta(m) \), we have proved that \(a = b \) and \(\varepsilon = \delta \), and we are done.

\[\square\]

Proof of Theorem 3.7. Let \(G \) be an abelian group, and \(p \in G^* \) be a strongly summable ultrafilter such that \(\{x \in G | o(x) = 2\} \notin p \). Since \(p \) is nonprincipal and the only \(x \in G \) with \(o(x) = 1 \) is 0, we have that \(B = \{x \in G | o(x) > 2\} \in p \). If \(C = \{x \in G | o(x) = 3\} \in p \), then notice that \(C \subseteq \{x \in G | \exists \pi_{\min(x)}(x) \notin \frac{1}{8}\} \) because \(C = \{x \in G | (\forall n < \omega) (\pi_n(x) \in \{0, \frac{1}{8}, -\frac{1}{8}\})\} \), so we can apply Theorem 3.4 and get an \(X \in p \) such that, if \(\bar{x} \) is such that \(FS(\bar{x}) \subseteq X \) (and there is such an \(\bar{x} \) with \(FS(\bar{x}) \in p \) because of strong summability), then \(\bar{x} \) must satisfy 2-uniqueness of finite sums. If \(D = \{x \in G | o(x) = 4\} \subseteq p \), then we can pick a sequence \(\bar{x} \) such that \(p \ni FS(\bar{x}) \subseteq D \), so by Lemma 3.3 this sequence must satisfy 2-uniqueness of finite sums and we are done. Otherwise, if \(C \notin p \) and \(D \notin p \), then

\[
Q(G) = \{x \in G | o(x) > 4\} = (G \setminus D) \cap (G \setminus C) \cap (G \setminus B) \in p.
\]

Now \(Q(G) = Q_0 \cup Q_1 \), where

\[
Q_0 = \left\{x \in Q(G) \left| \pi_{\rho(x)}(x) \notin \left\{\frac{1}{8}, \frac{3}{8}, \frac{-1}{8}, \frac{-3}{8}\right\}\right.\right\},
\]

and

\[
Q_1 = \left\{x \in Q(G) \left| \pi_{\rho(x)}(x) \in \left\{\frac{1}{8}, \frac{3}{8}, \frac{-1}{8}, \frac{-3}{8}\right\}\right.\right\},
\]

so pick \(i \in 2 \) such that \(Q_i \in p \). If \(i = 0 \) apply Lemma 3.3 and if \(i = 1 \) apply Theorem 3.6 in either case, there is an \(X \in p \) such that whenever \(\bar{x} \) is such that \(FS(\bar{x}) \subseteq X \), then \(\bar{x} \) must satisfy 2-uniqueness of finite sums. By strong summability of \(p \) there is such a sequence \(\bar{x} \) which additionally satisfies \(FS(\bar{x}) \in p \), and thus we are done.

\[\square\]
Corollary 3.10 ([6], Question 4.12). Let \(p \) be a nonprincipal strongly summable ultrafilter on some abelian group \(G \). Then \(p \) is sparse.

Proof. Let \(G \) be any abelian group, and let \(p \in G^\ast \) be a strongly summable ultrafilter. Let \(B = \{ x \in G \mid o(x) \leq 2 \} \).

Then \(B \) is a subgroup of \(G \). If \(B \nsubseteq p \) then since \(p \) is nonprincipal, \(B \) must be infinite; and since \(G \) is countable, \(B \) must be the (unique up to isomorphism) countably infinite Boolean group. Consider the restricted ultrafilter \(q = p \upharpoonright B = p \cap \mathcal{B}(B) \). Then \(q \) is also strongly summable, so \(q \) is a nonprincipal strongly summable ultrafilter on the Boolean group and therefore by [3] Th. 2.1 it is sparse. It is easy to see that this implies that \(p \) is sparse as well. Thus the only case that remains to be proved is when \(B \nsubseteq p \), but this is handled by Theorem [3.10] together with Corollary [2.9], and we are done. \(\square \)

Corollary 3.11 ([6], Question 4.11). Let \(p \) be a nonprincipal strongly summable ultrafilter on some abelian group \(G \). Then \(p \) has the trivial sums property.

Proof. Let \(G \) be any abelian group, and let \(p \in G^\ast \) be a strongly summable ultrafilter. Let \(B = \{ x \in G \mid o(x) \leq 2 \} \).

Then \(B \) is a subgroup of \(G \). If \(B \nsubseteq p \) then we just need to apply Theorems [3.1.1] and [2.10]. So assume that \(B \subseteq p \) and let \(q,r \in \beta G \) be such that \(q + r = p \). Then we have that

\[
\{ x \in G \mid B - x \in r \} \in q,
\]

in particular this set is nonempty and so we can pick an \(x \in G \) such that \(B - x \in r \), or equivalently \(B \subseteq r + x \). Notice that, since \(x \in G \), the equation \((q - x) + (r + x) = p \) holds, thus

\[
A = \{ y \in G \mid B - y \in r + x \} \in q - x.
\]

Notice that \(A \subseteq B \), because if \(y \in G \) is such that \(B - y \in r + x \) then \(B \cap (B - y) \in r + x \), in particular the latter set is nonempty and so there are \(z,w \in B \) such that \(z = w - y \) which means that \(y = w - z \in B \).

Therefore \(B \subseteq q - x \), so if we define \(u = (q - x) \upharpoonright B \) and \(v = (r + x) \upharpoonright B \), we get that \(u,v \in \beta B \) and \(p \upharpoonright B \in B^\ast \) is a strongly summable ultrafilter such that \(u + v = p \upharpoonright B \), thus by [10] Cor. 4.4 it must be the case that \(u,v \in B + p \upharpoonright B \). This is easily seen to imply that \(q - x,r + x \in B + p \), and therefore, since \(x \in G \), we get \(q,r \in G + p \) and we are done. \(\square \)

4. The Boolean group is a pathological case

We think of the Boolean group as the set \(\mathbb{B} = [\omega]^{<\omega} \) equipped with the symmetric difference \(\triangle \) as the group operation. It happens to be the unique (up to isomorphism) countably infinite group all of whose nonidentity elements have order 2. For a subset \(X \subseteq \mathbb{B} \), we define its set of finite symmetric differences by

\[
F\Delta(X) = \left\{ \bigtriangleup_{x \in A} x \mid Z \in [X]^{<\omega} \setminus \{ \emptyset \} \right\}.
\]

Since \(\mathbb{B} \) is abelian, and each of its elements has order 2, it is easy to see that for any sequence \(\bar{x} \) of elements of \(\mathbb{B} \), if \(X = \{ x_n \mid n < \omega \} \) is its range, then \(FS(\bar{x}) = F\Delta(X) \). Thus, it is also easy to see that for \(p \in \mathbb{B}^\ast \), \(p \) is strongly summable if and only if for every \(A \in p \) there is an infinite set \(X \subseteq \mathbb{B} \) such that \(p \nsubseteq F\Delta(X) \subseteq A \).

We will use the fact that \(\mathbb{B} \) is a vector space over the field \(\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z} \) (scalar multiplication being the obvious one). Note that for \(X \subseteq \mathbb{B} \), the subspace spanned by \(X \) is exactly \(F\Delta(X) \cup \{ \emptyset \} \), because nontrivial linear combinations (i.e. linear combinations with not all scalars being equal to zero) of elements of \(X \) are exactly finite sums (or symmetric differences) of elements of \(X \). We can use this to figure out which subsets \(X \) of \(G \) satisfy uniqueness of finite sums.
Proposition 4.1. For $X \subseteq G$, the following are equivalent:

1. X satisfies uniqueness of finite sums.
2. $\emptyset \notin F\triangle(X)$.
3. X is linearly independent.

Proof. Given the observation from the previous paragraph relating finite sums and nontrivial linear combinations, it is straightforward to see that (2) is equivalent to (3). That either of these is equivalent to (1) is as follows. If X does not satisfy uniqueness of finite sums, then there are two distinct nonempty $A, B \in [X]^{<\omega}$ such that $\bigtriangleup_{x \in A} x = \bigtriangleup_{x \in B} x$, adding $\bigtriangleup_{x \in B} x$ to both sides of this equation yields $\bigtriangleup_{x \in A \Delta B} x = \emptyset$, and since $A \neq B$ this sum is nonempty, i.e. $A \Delta B \neq \emptyset$, so that $\emptyset \in F\triangle(X)$. Conversely, if $\emptyset \in F\triangle(X)$, i.e. if there is a nonempty A such that $\bigtriangleup_{x \in A} x = \emptyset$, then by picking nonempty B disjoint from A we get that $B \neq B \cup A$ but nevertheless

$$\bigtriangleup_{x \in B \cup A} x = \left(\bigtriangleup_{x \in B} x\right) \bigtriangleup \left(\bigtriangleup_{x \in A} x\right) = \bigtriangleup_{x \in B} x.$$

Thus when we have a set $F\triangle(Y)$ such that Y is not linearly independent, we can always choose a basis X for the subspace $F\triangle(Y)$ spanned by Y, and we will have that $F\triangle(X) = F\triangle(Y) \setminus \{\emptyset\}$. This means that, when considering sets of the form $F\triangle(X)$, we can basically assume without loss of generality that X is linearly independent. Another way to see this is the following: let $p \in B^*$ be a strongly summable ultrafilter, and let $A \in p$. Since p is nonprincipal, $\{\emptyset\} \notin p$ thus $A \setminus \{\emptyset\} \in p$. Hence we can choose an X such that $p \ni F\triangle(X) \subseteq A \setminus \{0\}$, and this means that $F\triangle(X) \subseteq A$ and X must be linearly independent.

Definition 4.2. For a linearly independent set $X \subseteq \mathbb{B}$, we define for an element $y \in F\triangle(X)$ the X-support of y, denoted by $X - \text{supp}(y)$, as the (unique, by linear independence of X) finite set of elements of X whose sum equals y. This is,

$$y = \bigtriangleup_{x \in X - \text{supp}(y)} x.$$

If $Y \subseteq F\triangle(X)$ then, we also define the X-support of Y as

$$X - \text{supp}(Y) = \bigcup_{y \in Y} X - \text{supp}(y).$$

Similarly, we define the X-support of a sequence of elements of $F\triangle(X)$ as the X-support of its range.

One of the most important properties of the X-support is that it preserves the group operation \bigtriangleup, in the sense that $X - \text{supp}(x \bigtriangleup y) = X - \text{supp}(x) \bigtriangleup X - \text{supp}(y)$ for all $x, y \in F\triangle(X)$. This easy to prove fact, as well as the more general $X - \text{supp} \left(\bigtriangleup_{x \in A} x\right) = \bigtriangleup_{x \in A} X - \text{supp}(x)$ for $A \in [F\triangle(X)]^{<\omega}$, will be used ubiquitously.

As an application of this, we will provide another proof of the fact that every strongly summable ultrafilter on \mathbb{B} is sparse, much simpler than the original one from [3 Th. 2.1]. So let $p \in B^*$ be a strongly summable ultrafilter, and let $A \in p$. Because of strong summability, there is a linearly independent independent Z such that $p \ni F\triangle(Z) \subseteq A$.
Claim 4.3. There is \(B \in p \) such that for some infinite \(W \subseteq Z \), \(F\Delta(W) \cap B = \emptyset \).

The result follows easily from the claim: just pick a linearly independent \(Y \) such that \(p \ni F\Delta(Y) \subseteq B \cap F\Delta(Z) \), and let \(X = Y \cup W \). Then it is straightforward to prove that \(X \) is linearly independent, since so are \(Y \) and \(W \), and \(F\Delta(W) \) is disjoint from \(F\Delta(Y) \). It also follows that \(|X \setminus Y| = \omega \), and since \(Y, W \subseteq F\Delta(Z) \), we will have that \(F\Delta(X) \subseteq F\Delta(Z) \subseteq A \) and we are done.

Proof of Claim \(4.3 \). Let \(Z' \) be an infinite, coinfinite subset of \(Z \). Let

\[
B_0 = \{ w \in F\Delta(Z) \mid Z - \text{supp}(w) \cap Z' \neq \emptyset \}, \quad B_1 = F\Delta(Z) \setminus B_0 = \{ w \in F\Delta(Z) \mid Z - \text{supp}(w) \cap Z' = \emptyset \}.
\]

There is \(i \in 2 \) such that \(B_i \in p \). If \(B_0 \in p \) then we let \(W = Z \setminus Z' \); otherwise if \(B_1 \in p \) we let \(W = Z' \).

In any case it is easy to see that \(F\Delta(W) \cap B = \emptyset \).

The rest of this section is devoted to the construction of a nonprincipal strongly summable ultrafilter on \(B \) that is not additively isomorphic to a union ultrafilter. This construction borrows lots of ideas from the constructions of unordered union ultrafilters [2, Th. 4] and [9, Cor. 5.2]. We first show an effective way to look at additive isomorphisms to union ultrafilters.

Lemma 4.4. Let \(p \in B^* \) be a strongly summable ultrafilter that is additively isomorphic to some union ultrafilter. Then there exists a linearly independent \(X \) such that \(F\Delta(X) \in p \) and satisfying that whenever \(A \subseteq F\Delta(X) \) is such that \(A \in p \), there exists a set \(Z \), whose elements have pairwise disjoint \(X \)-supports, with \(p \ni F\Delta(Z) \subseteq A \).

Proof. If the strongly summable ultrafilter \(p \in B^* \) is additively isomorphic to a union ultrafilter, by Propositions 2.3 and 4.1 we have that for some linearly independent \(X \) such that \(F\Delta(X) \in p \) and for some ordering of \(X \) as \(X = \{ x_n \mid n < \omega \} \), the mapping \(\varphi : F\Delta(X) \rightarrow [\omega]^{<\omega} \) given by \(\Delta n : a \rightarrow a \) sends \(p \) to a union ultrafilter. Note that the mapping \(\varphi \) is a vector space isomorphism from the subspace spanned by \(X \), to all of \(B \) (in fact it is the linear extension of the mapping \(x_n \rightarrow \{ n \} \)). The fact that \(\varphi(p) \) is a union ultrafilter means that, for every \(A \subseteq F\Delta(X) \) such that \(A \in p \), there is a pairwise disjoint family \(Y \) such that \(\varphi(p) \ni \text{FU}(Y) \subseteq \varphi[A] \). Since \(Y \) is pairwise disjoint, we get that \(\text{FU}(Y) = F\Delta(Y) \) and since \(\varphi \) is an isomorphism, \(\varphi^{-1}[F\Delta(Y)] = F\Delta(Z) \) where \(Z = \varphi^{-1}[Y] \). Now the fact that \(Y \) is pairwise disjoint means that the \(X \)-supports of the elements of \(Z \) are pairwise disjoint, and we have that \(p \ni F\Delta(Z) \subseteq A \).

Thus our goal is to construct, by a transfinite recursion, a strongly summable ultrafilter and somehow, at the same time, for each linearly independent \(X \) such that \(F\Delta(X) \) will end up in the ultrafilter, at some stage we need to start making sure that, for every new set of the form \(F\Delta(Z) \) that we are adding to the ultrafilter, the generators \(Z \) do not have pairwise disjoint \(X \)-support. The notions of suitable and adequate families for \(X \) will precisely code the way in which we are going to ensure that.

Definition 4.5. For a linearly independent subset \(X \subseteq G \), we will say at a subset \(Y \subseteq F\Delta(X) \) is suitable for \(X \) if:

1. For each \(m < \omega \) there exists an \(m \)-sequence \(\langle y_i \mid i < m \rangle \) of elements of \(Y \) such that whenever \(i < j < m \), the set \(X - \text{supp}(y_i) \cap X - \text{supp}(y_j) \) is nonempty. This sequence will be called an \(m \)-witness for suitability.

2. Whenever \(y, y' \in Y \) are such that \(X - \text{supp}(y) \cap X - \text{supp}(y') \) is nonempty, then the set \(\{ X - \text{supp}(y) \cap X - \text{supp}(y') \} \setminus X - \text{supp}(Y \setminus \{ y, y' \}) \) is also nonempty. (We do not require here that \(y \neq y' \); in particular, for each \(y \in Y \), \(X - \text{supp}(y) \setminus X - \text{supp}(Y \setminus \{ y \}) \) is nonempty, and this implies that \(Y \) must be linearly independent).
Thus a suitable set Y for X contains, in a carefully controlled way, arbitrarily large bunches of elements whose X-supports always intersect. Given a linearly independent set X, it is easy to inductively build a set Y that is suitable for X. And once we have such a suitable set, we can look at subsets of $F\triangle(Y)$ which, in some sense, borrow from Y the non-disjointness of their X-supports. This is captured in a precise sense by the following definition, which also captures the fact that we will want to handle, at the same time, the nondisjointness of several different X-supports for several distinct linearly independent sets X.

Definition 4.6. Let $A \subseteq B$ and let $\mathcal{Y} = \{(X_i, Y_i) | i < n\}$ be a finite family such that for each $i < n$, X_i is a linearly independent subset of G and Y_i is suitable for X_i. Also, let $m < \omega$. Then we will say that A is (\mathcal{Y}, m)-adequate if it is (\mathcal{Y}, m)-witness for adequacy, such that for each $i < n$,

1. $F\triangle(\emptyset) \subseteq A \cap F\triangle(Y_i)$ (which is in turn a subset of $F\triangle(X_i)$),
2. There exists an m-witness for the suitability of Y_i, $(y_j | j < m)$, such that for each two distinct $j, k < m, y_j \in Y_i - \text{supp}(a_j)$ and $y_j \notin Y_i - \text{supp}(a_k)$.

If we are given a family of ordered pairs \mathcal{X} all of whose first entries are linearly independent subsets of B, while every second entry is suitable for the corresponding first entry, then we will say that A is \mathcal{X}-adequate if it is (\mathcal{Y}, m)-adequate for all finite $\mathcal{Y} \subseteq \mathcal{X}$ and for all $m < \omega$. When \mathcal{Y} is a singleton $\{(X, Y)\}$, we will just say that A is (X, Y)-adequate.

Requirement (2) of Definition 4.6 in particular implies that, for $j < k < m$, the set $X_i - \text{supp}(a_j) \cap X_i - \text{supp}(a_k)$ is nonempty. Thus the X_i-supports of the terms of a witness for adequacy are not pairwise disjoint, and moreover their nondisjointness does not happen randomly, but is rather induced by some non-disjointness going on at the level of Y_i. Also, note that if Y is suitable for X then $F\triangle(Y)$ is (X, Y)-adequate, with the witnesses for suitability witnessing adequacy at the same time. The following lemma, along with the observation that an \mathcal{X}-adequate set is also (X, Y)-adequate for each $(X, Y) \in \mathcal{X}$, tells us that the notion of adequacy is certainly adequate (pun intended) for our purpose of banishing sets of the form $F\triangle(Z)$ for which the elements of Z have pairwise disjoint X-supports.

Lemma 4.7. Let X and Z be both linearly independent and let Y be suitable for X. Assume that $Z \subseteq F\triangle(Y)$. If the elements of Z have pairwise disjoint X-supports then $F\triangle(Z)$ is not (X, Y)-adequate.

Proof. Clause (2) from Definition 4.5 implies that, for two distinct $z, z' \in Z$, if $y \in Y - \text{supp}(z)$ and $y' \in Y - \text{supp}(z')$ then $X \cap X - \text{supp}(y') \neq \emptyset$, for otherwise $X - \text{supp}(z)$ would not be disjoint from $X - \text{supp}(z')$. Thus (z, z') cannot be an $((X, Y), 2)$-witness. More generally, for any two $w, w' \in F\triangle(Z)$, the only way that there could exist two distinct $y \in Y - \text{supp}(w)$ and $y' \in Y - \text{supp}(w')$ such that $X \cap X - \text{supp}(y') \neq \emptyset$ would be if $y, y' \in Y - \text{supp}(z)$ for some $z \in Z$ such that $z \in Z - \text{supp}(w) \cap Z - \text{supp}(w')$. But then $y \in Y - \text{supp}(w')$ and $y' \in Y - \text{supp}(w)$, hence (w, w') cannot be a $((X, Y), 2)$-witness and we are done. \qed

Thus the idea for the recursive construction of an ultrafilter would be as follows: at each stage we choose some set $F\triangle(X)$ that has already been added to the ultrafilter, and then we choose a suitable Y. At every stage we make sure that the subsets of B that we are adding to the ultrafilter are \mathcal{X}-adequate, where \mathcal{X} is the collection of all pairs (X, Y) that have been chosen so far. If we want to have a hope of succeeding in such a construction, we better make sure that the notion of being \mathcal{X}-adequate behaves well with respect to partitions. For this we will need the following lemma.
Lemma 4.8. Let $\mathcal{Y} = \{(X_i,Y_i)| i < n\}$ where each X_i is linearly independent and each Y_i is suitable for X_i. Let $\bar{a} = \langle a_j|j < M\rangle$ be a (\mathcal{Y}, M)-witness for adequacy, and let $\langle b_i|i < m\rangle$ be an m-sequence of pairwise disjoint subsets of M. If we define $\bar{c} = \langle c_j|j < m\rangle$ by $c_j = \bigtriangleup_{k \in b_j} a_k$, then \bar{c} will be a (\mathcal{Y}, m)-witness for adequacy.

Proof. Let us check that \bar{c} satisfies both requirements of Definition 4.3 for a (\mathcal{Y}, m)-witness. Fix $i < n$. Since the b_j are pairwise disjoint, we have that $F\triangle(\bar{c}) \subseteq F\triangle(\bar{a}) \subseteq A \cap F\triangle(Y_i)$, thus requirement 1 is satisfied. In order to see that requirement 2 holds, grab the corresponding m-witness for suitability, $\langle y_j|j < M\rangle$, as in part 2 of Definition 4.4 for \bar{a}. Now for $j < m$, pick a $k_j \in b_j$ and let $w_j = y_{k_j}$. Since the w_j were chosen from among the y_k, the sequence $\bar{w} = \langle w_j|j < m\rangle$ is an m-witness for suitability. Now for $j < m$, since $w_j \in Y_i - \text{supp}(a_{k_j})$ and $w_j \notin Y_i - \text{supp}(a_l)$ for $l \neq k_j$, it follows that $w_j \in Y_i - \text{supp}(c_j)$ and $w_j \notin Y_i - \text{supp}(c_{j'})$ for $j' \neq j$, and we are done. \qed

An easy particular case of the previous lemma is the observation that any (\mathcal{Y}, M)-adequate set is also (\mathcal{Y}, m)-adequate for any $m \leq M$. Lemma 4.8 will allow us to prove the following lemma, which is crucial.

Lemma 4.9. For each $m < \omega$ there is an $M < \omega$ such that whenever \mathcal{Y} is a family of ordered pairs of the form (X,Y), with X a linearly independent set and Y suitable for X, and whenever a (\mathcal{Y}, M)-adequate set is partitioned into two cells, one of the cells must be (\mathcal{Y}, m)-adequate.

Proof. For this, we will use a theorem of Graham and Rothschild which is the finitary version of Hindman’s theorem, namely: for every $m < \omega$ there is an $M < \omega$ such that whenever we partition $\Psi(M) \setminus \{\emptyset\}$ into two cells, then one of them contains $FU(\bar{b})$ for some pairwise disjoint m-sequence $\bar{b} = \langle b_i|i < m\rangle$ of nonempty subsets of M. An elegant proof of this theorem from the infinitary version can be gotten by following the proof of [7, Th. 5.29] as a template, applied to the semigroup $[\omega]^{<\omega}$ with the union \bigcup as semigroup operation.

Thus for $m < \omega$, let M be given by this finitary theorem, and let A be a (\mathcal{Y}, M)-adequate set. Let $\bar{a} = \langle a_j|j < M\rangle$ be a (\mathcal{Y}, M)-witness for the adequacy of A. If A is partitioned into the two cells A_0, A_1, then since $F\triangle(a) \subseteq A$, we can induce a partition of $\Psi(M) \setminus \{\emptyset\}$ into the two cells B_0, B_1 by declaring a subset $s \subseteq M$ to be an element of B_l iff $\bigtriangleup_{j \in s} a_j \in A_l$ for $l \in 2$. Then the theorem of Graham and Rothschild gives us a pairwise disjoint family $\bar{b} = \langle b_j|j < m\rangle$ and an $l \in 2$ such that $FU(\bar{b}) \subseteq B_l$. Letting $\bar{c} = \langle c_j|j < m\rangle$ be given by $c_j = \bigtriangleup_{k \in b_j} a_k$, we get that $F\triangle(\bar{c}) \subseteq A_l$ and Lemma 4.8 ensures that \bar{c} is a (\mathcal{Y}, m)-witness for adequacy. Therefore A_l is (\mathcal{Y}, m)-adequate and we are done. \qed

Corollary 4.10. For any family \mathcal{X} consisting of ordered pairs of the form (X,Y), with X a linearly independent set and Y suitable for X, if we partition an \mathcal{X}-adequate set into two cells, then one of them must be \mathcal{X}-adequate.

Proof. If $A = A_0 \cup A_1$ is a partition of the adequate set, and neither A_0 nor A_1 is adequate, then it is because there are finite $\mathcal{Y}_0, \mathcal{Y}_1 \subseteq \mathcal{X}$ and $m_0, m_1 < \omega$ such that A_0 is not (\mathcal{Y}_0, m_0)-adequate and A_1 is not (\mathcal{Y}_1, m_1)-adequate. Pick the M that works for $\max\{m_0, m_1\}$ in Lemma 4.9. Then for some $i \in 2$, A_i is $(\mathcal{Y}_0 \cup \mathcal{Y}_1, \max\{m_0, m_1\})$-adequate (because A is $(\mathcal{Y}_0 \cup \mathcal{Y}_1, M)$-adequate), in particular A_i is (\mathcal{Y}_i, m_i)-adequate, a contradiction. \qed

Recall that, in an abstract setting, if we have a set X and a family $\mathcal{A} \subseteq \Psi(X)$ then we say that \mathcal{A} is partition regular if \mathcal{A} is closed under supersets and, whenever an element of \mathcal{A} is partitioned into two
cells, then \mathcal{A} necessarily contains at least one of the cells. Thus the previous corollary establishes that, for any family \mathcal{F}, the collection of \mathcal{F}-adequate subsets of \mathbb{B} is partition regular. This is important because of the well-known fact that whenever \mathcal{F} is a filter on X, all of whose elements belong to the partition regular family \mathcal{A}, then it is possible to extend \mathcal{F} to an ultrafilter p, all of whose elements belong to \mathcal{A}.

The following is the last important observation that we want to make before proceeding to construct our ultrafilter.

Lemma 4.11. Let \mathcal{F} be a family consisting of ordered pairs of the form (X, Y) where X is linearly independent and Y is suitable for X. Let Z be a linearly independent set such that $F(\alpha, Z)$ is \mathcal{F}-adequate. Then for any finite $W \subseteq Z$, the set $F(\alpha, Z \setminus W)$ is \mathcal{F}-adequate as well.

Proof. We proceed by induction on $|W|$, the case $|W| = 0$ being trivial. For $|W| = 1$, say that $W = \{w\}$. Given a finite $\mathcal{F} \subseteq \mathcal{F}$ and an $m < \omega$, grab a $(\mathcal{F}, 3m-1)$-witness $\vec{a} = (a_j | j < 3m-1)$ for adequacy in $F(\alpha, W)$. If there exist m distinct numbers $j_0, \ldots, j_{m-1} < 3m - 1$ such that $w \notin Z - \text{supp}(a_{j_k})$ for all $k < m$, then $(a_{j_k} | k < m)$ is a (\mathcal{F}, m)-witness for adequacy in $F(\alpha, m)$. Otherwise, there are $2m$ distinct numbers $j_0, \ldots, j_{2m-1} < 3m - 1$ such that for all $k < 2m$, $w \in Z - \text{supp}(a_{j_k})$. So if we let $b_k = a_{j_k} \triangle a_{j_{2m-k}}$ for $k < m$, then by Lemma 1.8 the m-sequence $\vec{b} = (b_k | k < m)$ will be a (\mathcal{F}, m)-witness for adequacy, and for each $k < m$ we have that $w \notin Z - \text{supp}(b_k)$ and thus $F(\alpha, W \setminus \{z\})$ is \mathcal{F}-adequate. Now in general, given finite nonempty W, pick $w \in W$, use the induction hypothesis to conclude that $F(\alpha, Z \setminus \{w\})$ is \mathcal{F}-adequate and now apply the case $|W| = 1$ (i.e. $W = \{w\}$) to get that $F(\alpha, Z \setminus W)$ is \mathcal{F}-adequate as well. \qed

With all of these preliminary results, we are finally ready to prove the main theorem of this section.

Theorem 4.12. If $\text{cov}(\mathcal{M}) = \mathfrak{c}$, then there exists a strongly summable ultrafilter on \mathbb{B} that is not additively isomorphic to any union ultrafilter.

Proof. Let $\{A_\alpha | \alpha < \mathfrak{c}\}$ be an enumeration of all subsets of \mathbb{B}, and let $\{X_\alpha | \alpha < \mathfrak{c}\}$ be an enumeration of all linearly independent subsets of \mathbb{B} in such a way that each given linearly independent set appears cofinally often in the enumeration. Now recursively define linearly independent sets $\{Y_\alpha | \alpha < \mathfrak{c}\}$ and a strictly increasing sequence of ordinals $\langle \gamma_\alpha | \alpha < \mathfrak{c} \rangle$ satisfying the following conditions for each $\alpha < \mathfrak{c}$:

1. γ_α is the least $\eta \geq \sup_{\xi < \alpha} (\gamma_\xi + 1)$ such that $F(\gamma_\xi) \subseteq F(X_\eta)$ for some $\xi < \alpha$.
2. Y_α is suitable for X_{γ_α}.
3. $F(\gamma_\alpha)$ is either contained in or disjoint from A_α.
4. The family $\mathcal{F}_\alpha = \{F(\gamma_\xi) \setminus Z | \xi \leq \alpha \land Z \in [Y_\xi]^{<\omega}\}$ is centred.
5. The filter generated by \mathcal{F}_α consists of \mathcal{F}_α-adequate sets, where $\mathcal{F}_\alpha = \{\langle X_\gamma, Y_\xi \rangle | \xi \leq \alpha\}$.

Thus at each stage α, we first use clause (1) to determine what γ_α will be, and then we work to find a Y_α satisfying (2)–(5).

First let us look at what we have at the end of this construction. Clause (4) tells us that the family $\{F(\gamma_\alpha) | \alpha < \mathfrak{c}\}$ generates a filter p, which will be an ultrafilter because of (3), and it will obviously be nonprincipal and strongly summable. Now notice that (5) implies that, if $\mathcal{F}_\beta = \{\langle X_\gamma, Y_\xi \rangle | \alpha < \mathfrak{c}\}$, then each $A \in p$ will be \mathcal{F}_β-adequate, because if $\mathcal{F}_\beta = \{\langle X_{\gamma_n}, Y_i \rangle | i < n\}$ is a finite subfamily of \mathcal{F}_β, $m < \omega$, and $A \in p$, then we can grab an $\alpha < \mathfrak{c}$ larger than all γ_α, and also larger than the β witnessing $F(\gamma_\beta) \subseteq A$. By (5), $F(\gamma_\alpha) \cap F(\gamma_\beta)$ is \mathcal{F}_α-adequate, in particular it is (\mathcal{F}, m)-adequate and thus so is A.

The last observation is crucial for the argument that p cannot be isomorphic to any union ultrafilter. If it was, by Proposition 4.14 there would be a linearly independent X such that $F(\alpha, X) \in p$ and such
that for each $A \in p$ satisfying $A \subseteq F\triangle(X)$, we would be able to find a family Z whose elements have pairwise disjoint X-supports and such that $p \not\subseteq F\triangle(Z) \subseteq A$. Now since $F\triangle(X) \not\subseteq p$, there is an $\alpha < \gamma$ such that $F\triangle(Y_\alpha) \subseteq F\triangle(X)$, let η be the least ordinal $\geq \sup_{\xi \leq \alpha}(\gamma_\xi + 1)$ such that $X = X_\eta$. By (1) we will have that $\gamma_{\alpha + 1} \leq \eta$ and, in fact, whenever $\xi > \alpha$ is such that no γ_β equals η for any $\alpha < \beta < \xi$, then $\gamma_\xi \leq \eta$. Thus there will eventually be some $\zeta > \alpha$ such that $\gamma_\zeta = \eta$, and by (2) this means that Y_ζ is suitable for X. Since every element of p is \mathcal{X}_ζ-adequate, in particular (X,Y_ζ)-adequate, then by Lemma 4.7 we get that for no set Z with pairwise disjoint X-supports we can have that $p \not\subseteq F\triangle(Z) \subseteq F\triangle(Y_\zeta)$. This shows that p cannot be additively isomorphic to any union ultrafilter, and we are done.

We now proceed to show how is it possible to carry out such a construction. So let $\alpha < \gamma$ and assume that for all $\xi < \alpha$, conditions (1)–(5) are satisfied. As mentioned before, condition (1) uniquely determines γ_α, so we only need to focus on constructing Y_α satisfying conditions (2)–(5). Let $\mathcal{F} = \{F\triangle(Y_\xi) \setminus Z) \subseteq \{Y_\xi\}_{\xi < \alpha}\}$, and $\mathcal{X} = \{(X,Y_\xi) \mid \xi < \alpha\}$. Condition (4) implies that the filter generated by \mathcal{F} consists of \mathcal{X}-adequate sets, if α is limit, by the same argument as in the proof that p consists of \mathcal{X}_ζ-adequate sets, and if $\alpha = \xi + 1$ just because $\mathcal{F} = \mathcal{F}_\xi$ and $\mathcal{X} = \mathcal{X}_\zeta$. Thus if we define

$$H = \left\{ q \in \beta\mathbb{B} \mid \left(q \supseteq \mathcal{F} \right) \land \left(\forall A \in q \right) (A \text{ is } \mathcal{X} \text{-adequate}) \right\},$$

then H will be a nonempty subset of $\beta\mathbb{B}$ by Corollary 4.10 (cf. the discussion following that Corollary). In what follows, in order to avoid confusion, we will use the symbol Δ to denote translates of sets, $x \Delta A = \{x \triangle y \mid y \in A\}$. Thus, with this notation,

$$p \Delta q = \{ A \subseteq \mathbb{E} \mid \{ x \in \mathbb{E} \mid x \Delta A \in q \} \in p \}.$$

Claim 4.13. H is a closed subsemigroup of \mathbb{B}.

Proof of Claim. The fact that H is closed is fairly straightforward and is left to the reader. To prove that H is a subsemigroup, let $p,q \in H$. A standard argument (cf. [7] Th. 4.20)) shows that $\mathcal{F} \subseteq p \Delta q$. Hence we only need to show that, if $A \in p \Delta q$, then A is \mathcal{X}-adequate. So fix a finite $\mathcal{Y} = \{ (X_i,Y_i) \mid i < n \} \subseteq \mathcal{X}$ and an $m < \omega$. We will see that there is a (\mathcal{Y},m)-witness for the adequacy of A. Let $B = \{ x \in \mathbb{B} \mid x \Delta A \in q \}$. $B \in p$ because $A \in p \Delta q$, so B is \mathcal{X}-adequate and thus we can grab a (\mathcal{Y},m)-witness $(a_j \mid j < m)$ for the adequacy of B. For each $i < n$, $F\triangle(a_i) \subseteq F\triangle(Y_i)$ so we can define $Z_i \subseteq Y_i - \text{supp}(a_i)$. Consider the set

$$C = \bigcap_{a \in F\triangle(a)} a \Delta A,$$

which is an element of q because $F\triangle(a) \subseteq B$ and hence it is \mathcal{X}-adequate. Therefore we can grab an $(\mathcal{Y},2\sum_{i < n} |Z_i| + 2m - 1)$-witness for the adequacy of C, $(b_j \mid j < 2\sum_{i < n} |Z_i| + 2m - 1)$. Associate to any element $x \in \bigcap_{i < n} F\triangle(Y_i)$ the vector $(Z_i \cap Y_i - \text{supp}(x)) \subseteq \mathbb{E}$, and notice that there are exactly

$$\sum_{i < n} |Z_i|$$

many possible distinct such vectors. Thus there exist $2m$ distinct numbers $k_0,\ldots,k_{2m-1} < 2\sum_{i < n} |Z_i| + 2m - 1$ such that for each $j < m$, the vector associated to $b_{k_{2j}}$ is exactly the same as the one associated to $b_{k_{2j+1}}$, and so if we let $c_j = b_{k_{2j}} \Delta b_{k_{2j+1}}$, then for each $i < n$, $c_j \in F\triangle(Y_i) \setminus Z_i)$. By Lemma 4.8 the m-sequence $\vec{c} = \langle c_j \mid j < m \rangle$ will be and m-witness for the adequacy of C. Now let $\vec{d} = \langle d_j \mid j < m \rangle$ be given by $d_j = a_j \Delta c_j$. We claim that \vec{d} is a (\mathcal{Y},m)-witness for the adequacy of A, so let us fix $i < n$ and let us verify that \vec{d} satisfies conditions (1) and (2) from Definition 4.6. If it is certainly the case that $F\triangle(\vec{c}) \subseteq A \cap F\triangle(Y_i)$, because if $\vec{d} \in F\triangle(\vec{d})$ then there are $a \in F\triangle(a)$ and $c \in F\triangle(\vec{c})$ such that $d = a \Delta c$, and since $c \in C \subseteq a \Delta A$, we get that $d \in A$. Thus requirement (1) is satisfied. Now for requirement (2), just grab the m-witness for the suitability of Y_i that works for \vec{d}, $\langle y_j \mid j < m \rangle$. We constructed the c_j in such a way that $Y_i - \text{supp}(c_j) \cap Z_i = \emptyset$, while $Y_i - \text{supp}(a_j) \subseteq Z_i$.\]
in particular for all \(j < m \), \(y_j \in Z_i \). Hence for each \(j < m \), \(Y_i - \text{supp}(d_j) \cap Z_i = Y_i - \text{supp}(a_j) \) and so whenever \(j < m \), \(y_j \in Y_i - \text{supp}(d_j) \), and \(y_j \notin Y_i - \text{supp}(d_k) \) for \(k \neq j \).

Since \(H \) is a closed subset of the compact space \(\beta \mathcal{B} \), then \(H \) is compact as well, and since it is a semigroup in its own right, we can apply the so-called Ellis-Numakura lemma which asserts that any (nonempty) compact right-topological semigroup contains idempotent elements. Hence we can pick an idempotent \(q \triangleq q \in H \). Let \(A \in \{ A_\alpha, B \setminus A_\alpha \} \) be such that \(A \in q \). We will use \(q \) to carefully construct \(Y_\alpha \). Let \(X = X_{Y_\alpha} \).

Claim 4.14. There is a \(Y \), suitable for \(X \), such that:

- \(F \triangle(Y) \subseteq A \), and
- For any finite subfamily \(\mathcal{Y} = \{ (X_i, Y_i) | i < n \} \subseteq \mathcal{X} \), for any \(m < \omega \) and for any finitely many \(\xi_0, \ldots, \xi_k < \alpha \), and any choice of finite subsets \(Z_l \subseteq Y_{\xi_l} \), there is a sequence \(\langle a_j | j < m \rangle \) that is simultaneously an \(m \)-witness for the suitability of \(Y \) and a \((\mathcal{Y}, m) \)-witness for the adequacy of \(\bigcap_{l \leq k} F \triangle(Y_{\xi_l} \setminus Z_l) \).

Proof. This is the only place where we will actually use the hypothesis that \(\text{cov}(\mathcal{M}) = \omega \). Since \(q \) is an idempotent and \(A \in q \), the set \(A^* = \{ x \in A | x \triangle A^* \in q \} \in q \) and by [7] Lemma 4.14, for every \(x \in A^* \), \(x \triangle A^* \in q \). Let \(\mathcal{P} \) be the partial order consisting of those finite subsets \(W \subseteq F \triangle(X) \) such that \(F \triangle(W) \subseteq A^* \) and satisfying condition (2) from the Definition 4.15 of suitability for \(X \), ordered by reverse inclusion (thus \(Z \leq W \) means that \(Z \supseteq W \)). This is a countable forcing notion, hence forcing equivalent to Cohen’s forcing. For any \(\mathcal{Y}, m < \omega, \xi_0, \ldots, \xi_k < \alpha \), and \(Z_0, \ldots, Z_k \) as in the second bullet point of this claim, let \(D(\mathcal{Y}, m, \xi_0, \ldots, \xi_k, Z_0, \ldots, Z_k) \) be the dense set consisting of all conditions \(Z \in \mathcal{P} \) such that there is an \(m \)-sequence \(\tilde{a} \) of elements of \(Z \) which simultaneously witnesses the suitability of \(Z \) and the adequacy of \(\bigcap_{l \leq k} F \triangle(Y_{\xi_l} \setminus Z_l) \). The heart of this proof will be the argument that the sets \(D(\mathcal{Y}, m, \xi_0, \ldots, \xi_k, Z_0, \ldots, Z_k) \) are dense in \(\mathcal{P} \). Once we have that, we just need to notice that there are \(|\alpha| < \omega = \text{cov}(\mathcal{M}) \) many such dense sets, so we can pick a filter \(G \) intersecting them all, and we will clearly be done by defining \(Y = \bigcup G \).

So let us prove that \(D(\mathcal{Y}, m, \xi_0, \ldots, \xi_k, Z_0, \ldots, Z_k) \) is dense in \(\mathcal{P} \). The idea is that we are given a condition \(Z \in \mathcal{P} \), and we would like to pick a \((\mathcal{Y}, m) \)-witness \(\tilde{a} \) for the adequacy of \(\bigcap_{l \leq k} F \triangle(Y_{\xi_l} \setminus Z_l) \), and extend \(Z \) to a stronger condition \(W \) by adding the range of \(\tilde{a} \) to it. The main difficulty is that we want \(\tilde{a} \) to be at the same time an \(m \)-witness for suitability such that the resulting condition \(W = Z \cup \{ a_j | j < m \} \) still satisfies condition (2) of Definition 4.15.

Let us start with a condition \(Z \in \mathcal{P} \), and let \(X' = X \setminus \text{supp}(Z) \). Let

\[
B = \left(\bigcap_{l \leq k} F \triangle(Y_{\xi_l} \setminus Z_l) \right) \cap F \triangle(X') \cap \left(\bigcap_{z \in F \triangle(Z)} z \triangle A^* \right).
\]

Then \(B^* \in q \), thus \(B^* \) is \(\mathcal{X} \)-adequate, so there is a \((\mathcal{Y}, m) \)-witness \(\tilde{a} = \langle a_j | j < m \rangle \) for the adequacy of \(B^* \). We will now recursively construct an \(m + \binom{m}{2} \)-sequence of elements \(\tilde{x} = \langle x_k | k < m + \binom{m}{2} \rangle \) such that \(F \triangle(\tilde{x}) \subseteq \bigcap_{a \in F \triangle(\tilde{a})} a \triangle B^* \) and such that the \(X \)-supports of its elements are pairwise disjoint and also disjoint from \(X - \text{supp}(\tilde{a}) \), and whose \(Y_i \)-supports are disjoint from \(Y_i - \text{supp}(\tilde{a}) \) for each \(i < n \).

If we succeed in this construction, by picking a bijection \(f : [m] \to (m + \binom{m}{2}) \setminus m \) we can define the sequence \(\tilde{b} = \langle b_j | j < m \rangle \) by:

\[
b_j = a_j \triangle x_j \triangle \left(\bigtriangleup_{k \leq m, k \neq j} x_{f((j,k))} \right).
\]
Since the Y_i-supports of all the x_k are disjoint from $Y_i - \supp(\vec{a})$, then arguing as in the proof of Claim 4.13 we conclude that \vec{b} is a (\mathcal{Y}, m)-witness for the adequacy of B^*, hence also for the adequacy of $\bigcap F \triangle (Y_{\xi_l} \setminus Z_l)$. And the careful choice of the X-supports of the x_k ensures that \vec{b} is an m-witness for suitability, and that letting $W = Z \cup \{b_j | j < m\}$ yields a condition in P (i.e. W satisfies condition (2) of Definition 4.5).

So the only remaining issue is that of picking the x_k. Assume that we have picked x_l for $l < k$, and we will show how to pick x_k. Since q is an idempotent and

$$C = \bigcap_{a \in F \triangle (\vec{a} \sim (x_l | l < k))} a \uparrow B^* \in q,$$

then there is a set of the form $F \triangle (V) \subseteq C$ (this follows from [7 Th. 5.8]). As in the argument for the proof of Claim 4.13 associate to each element $x \in C$ the vector

$$\langle Y_i - \supp(\vec{a}) \cap Y_i - \supp(x) | i < n \rangle \sim (X - \supp(\{a_j | j < m\} \cup \{x_l | l < k\}) \cap X - \supp(x)),$$

and notice that, since there are only finitely many possible distinct such vectors, the infinite set V must contain at least one pair of distinct elements v, w that have the same associated vector. Hence by letting $x_k = v \triangle w$, we get that $Y_i - \supp(x_k) \cap Y_i - \supp(\vec{a}) = \emptyset$ and $X - \supp(x_k) \cap X - \supp(\{a_j | j < m\} \cup \{x_l | l < k\}) = \emptyset$, so the construction can go on and we are done.

Let $Y_\alpha = Y$. Obviously requirement (2) is satisfied, and since $F \triangle (Y_\alpha) \subseteq A \in \{A_\alpha, \mathcal{B} \setminus A_\alpha\}$, requirement (3) is satisfied as well. It is easy to see that the condition in the second bullet point of the claim ensures at once that requirements (1) and (5) are fulfilled, and we are done. □

References

[1] Blass, A., Ultrafilters Related to Hindman’s Finite Unions Theorem and its Extensions, in Simpson, S. (ed.), Logic and Combinatorics; Contemporary Math. 65 (1987), 89-124.
[2] Blass, A. and Hindman, N., On Strongly Summable Ultrafilters and Union Ultrafilters, Trans. Amer. Math. Soc. 304 No. 1 (1987), 83-99.
[3] Fernández Bretón, D., Every Strongly Summable Ultrafilter on $\mathbb{Z}_2 \times \mathbb{Z}_2$ is Sparse, New York J. Math. 19 (2013), 117-129.
[4] N. Hindman, The existence of certain ultrafilters on \mathbb{N} and a conjecture of Graham and Rothschild, Proc. Amer. Math. Soc. 36 (1972), 341-346.
[5] Hindman, N., Protasov, I. and Strauss, D., Strongly Summable Ultrafilters on Abelian Groups, Matem. Studii 10 (1998), 121-132.
[6] Hindman, N., Steprāns, J. and Strauss, D., Semigroups in which all Strongly Summable Ultrafilters are Sparse, New York J. Math. 18 (2012), 835-848.
[7] Hindman, N. and Strauss, D. Algebra in the Stone–Čech Compactification, de Gruyter Expositions in Mathematics 27, Walter de Gruyter, Berlin-New York, 1998.
[8] Krautzberger, P., On strongly summable ultrafilters, New York J. Math. 16 (2010), 629-649.
[9] Krautzberger, P., On Union Ultrafilters, Order 29 (2012), 317-343.
[10] Protasov, I. Finite groups in BG, Matematychni Studii 10, (1998), 17-22.

Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, Ontario, Canada, M3J 1P3.

E-mail address: davidfb@mathstat.yorku.ca

URL: http://math.yorku.ca/~davidfb/