Landslide Monitoring and Tracking Using IoT Sensors

K Elavarasi1 and S Nandhini2

1Senior Assistant Professor, Department of Information Technology, IFET College of Engineering, Villupuram.
2Student, Department of Information Technology, IFET College of Engineering, Villupuram.

E-mail: elavarasi07@gmail.com, nanthipriya24@gmail.com

Abstract. A slide is printed as a result of the movement of rock, debris, or earth down a slope. Landslides are a form of "mass wasting," that denotes any earth down a slope movement of soil and rock beneath the direct influence of gravity. The causes of landslide ar property hurt, injury, and death and adversely have a sway on a spread of resources. once the landslide happens it'll have a sway on the water availability, quantity, and quality. Thus, landslide observance is of sizeable importance in reducing the ruinous effects of landslides. The projected system of our project is to watch and track the landslide mistreatment Arduino UNO. It performs the amount analysis of the mountainous region, supported the IoT sensors that observe the landslide and apprise the pare during this region through alert message by mistreatment GPS and GSM and alert them through buzzer simply just in case of network coverage is lost.

1. Introduction
Landslides occur in an extremely kind of environments and it's characterized by delicate slope gradients. Gravity may be a deed to occur a landslide in unsmooth areas. Developing AN early warning system for the observation and pursuit of landslides desires its domain expertise, not merely to make the instruments but to use them properly and interpret their output for rational purpose.

IoT(Internet of Things) refers to act and borne in upon network of wireless sensing networks that seem to combine seamlessly inside the atmosphere around USA. Sharing of this data across varied platforms develops a regular operational Picture(COP). The variety of the latest technologies, IoT is one of the revolutionary technology.

2. Related Works
In existing system of the landslide monitoring is vulnerable to humans because the bluetooth technology is not efficient to monitor the landslide. It create lot of problems to the people due to weak signal in the system. Snjezana Mihalic Arbanas(2015) check the possibilities of landslide is one of the major issue. It is used to prevent the landslide. Patil Akshay(2019) check the readings from Rpi are also uploaded on cloud to analyze them and alert the rescue team in case of MIDDLE and DANGER zones. The system takes 10 ms time to collect data from sensor and transmit it to Rpi over MQTT. Also, additional 20 ms time is required to upload data from raspberry pi to ThingSpeak cloud. Juhi Naushin Shaikh(2017) State-of-the-craftsmanship remote avalanche observing frameworks gather ecological information from the incline and move it to associated PC frameworks for diligent capacity. It screens and identifies the avalanche and ready individuals from avalanche risks through android application. Andrea Giorgetti (2016) with insignificant human intercession during the pilot try, the WSN uncovered a significant mark of energy, makes it as a reasonable for screen avalanches at some basic situations. Zhang wenlong(2015) this plan can gathers the profundity of water in the mountain and the slant point of the slope, and furnishes the observing focus with notice data in time, so related divisions can take compelling measures quickly to ensure individuals' lives and properties.
3. Framework methodology
Our projected project can produce awareness among the individuals concerning the landslide. It makes use of net of things, that could be a speedily growing technology. The varied Sensors square measure accustomed discover the landslide and with facilitate GSM and GPS. This method helps out individuals to succeed in to the closest safe place before disaster. The message is send a map link to user to point out the safe place in disaster. It will facilitate to avoid wasting the lifetime of human in addition on avoid the massive disaster. We've the longer term attempt to develop this landslide observance by victimisation the machine learning thought.

4. Performance Metrics

4.1 Arduino Uno
Arduino Uno is a microcontroller board supported by ATmega328P. It has fourteen digital input/output pins, six analog inputs, (CSTCE16M0V53-R0), an USB association, an influence jack, Associate in Nursing ICSP header and a button. It contains everything required to support the microcontroller it is merely connect it to a laptop with a USB cable or power it with a AC-to-DC adapter or battery to induce started.
4.2 Vibration Sensor
Vibration detector could be a detector that operates supported totally different optical otherwise mechanical principles for police investigation ascertained system vibrations. The sensitivity of those sensors unremarkably ranges from ten mV/g to a hundred mV/g, and there square measure lower and better sensitivities are accessible. The sensitivity of the detector will be chosen supported the appliance. thus it's essential to understand the amount of vibration amplitude vary to that the detector are exposed throughout measurements. during a customary application.

![Vibration Sensor Image](image1)

Fig. 3 Vibration Sensor

4.3 Soil Moisture Sensor
The Soil wet level sensing element uses the capacity to monitor the insulator the permittivity level of a encircling medium. In soil, insulator level could be a perform of the water content. The sensing element creates a voltage proportional to the insulator permittivity, and so the water content of the soil. The sensed element averages the moisture content over the complete length of the sensing element. there's a two cm zone of influence with relevancy the smooth surface of the sensing element, however it's very small at the intense edges. The Soil wet level sensing element is used to monitor the wet level of the soil and to monitor the wet level of the soil.

![Soil Moisture Sensor Image](image2)

Fig. 4 Soil Moisture Sensor

4.4 Accelerometer Sensor
An measuring device coul d be a device that measures correct acceleration. An measuring device is like a drop mass on a spring. once acceleration is intimate by this device, the mass gets displaced until the spring will simply move the mass, with an equivalent rate capable the acceleration it detected. Then this displacement worth is employed to live the offer the acceleration. Accelerometers square measure

![Accelerometer Image](image3)
offered as digital devices and analog devices. By mensuration the quantity of acceleration thanks to gravity, AN measuring device will discover the angle it's tipped at with relevancy the world. By sensing the quantity of dynamic acceleration, the measuring device will ascertain how briskly and in what direction the device is moving.

4.5 Temperature Sensor
Temperature sensors is used to measure the value and employed in many applications particularly HV system and AC system environmental controls. The most frequent style of temperature detector could be a measuring instrument, accustomed confirm the temperature of solids, liquids, and gases. It's conjointly principally used for non-scientific functions because it isn't thus correct.

4.6 Global System for Monitoring
GSM module is used for sending and receiving message and calls over a network source. It is used to connect GSM to AVR as well as link the sim card to the server’s. The module uses the SIM Comm process. AT commands is used to communicate with the module. GSM contains several methods for communication. This GSM modem can work with any GSM network operator SIM card like a mobile phone with its IMEI number.
4.7 Global Positioning System
GPS is a satellite navigation system for positioning the particular system. It uses a digital signal at above the rate of 1.5 GHz from the satellite to send data to the user. The system reduce the exact value of the satellite, also because the geographic position of the system. The Global Positioning is one of the situation on the planet directly below the satellite. So as for the system to work, there must be a minimum of 4 satellites seen to the user within the least times.

4.8 Buzzer
Buzzer is also called as Beeper. It is a sound signalling mechanical device. Typical uses of buzzers are used in various places.
4.9 Result and discussion

The varied Sensors square measure accustomed discover the landslide and with facilitate GSM and GPS. This method helps out individuals to succeed in to the closest safe place before disaster. The message is send a map link to user to point out the safe place in disaster. It will facilitate to avoid wasting the lifetime of human in addition on avoid the massive disaster. The alert message and the map will be displayed.

Fig. 10 Message
5. Conclusion

Our projected project can produce awareness among the individuals concerning the landslide. It makes use of net of things, that could be a speedily growing technology. The varied Sensors square measure accustomed discover the landslide and with facilitate GSM and GPS. This method helps out individuals to succeed in to the closest safe place before disaster. The message is send a map link to user to point out the safe place in disaster. It will facilitate to avoid wasting the lifetime of human in addition on avoid the massive disaster. We've the longer term attempt to develop this landslide observance by victimisation the machine learning thought.

References

[1] Ashish rauniyar,”crowdsourcing-Based Disaster Management Using fog computing in Internet of Things Paradigm” Published By 2016 IEEE 2nd International Conference.

[2] Arjun D. S ,” Integrating cloud-WSN to research weather data and notify SaaS user alerts during weather disasters” Published By 2015 IEEE International.

[3] C. M. Angelopoulos, O. Evangelatos, S. Nikoletseas, T. P. Raptis, J. D. Rolim, and K. Veroutis, “A user-enabled testbed architecture with mobile crowdsensing support for smart, green buildings,” in Communications (ICC), 2015 IEEE International Conference on. IEEE, 2015, pp. 573–578.

[4] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. MeliaSegui, and T. Watteyne, “Understanding the limits of lorawan,” IEEE Communications magazine, vol. 55, no. 9, pp. 34–40, 2017.

[5] Chavan, Satishkumar, Shobha Pangotra, Sneha Nair, Vinayak More, and Vineeth Nair. "Effective and efficient landslide detection system to watch Konkan railway tracks." In 2015 International Conference on Technologies for Sustainable Development (ICTSD), pp. 1-6. IEEE, 2015.

[6] Casoni . M, C. A. Grazia, M. Klapetz, N. Patriciello, A. Amditis, E. Sdongos, "Integration of satellite and LTE for disaster recovery", IEEE Commun. Mag., vol. 53, no. 3, pp. 47-53, Mar. 2015.

[7] Giorgetti Andrea, Matteo Lucchi, Emanuele Tavelli, Marco Barla, Giovanni Gigli, Nicola Casagli, Marco Chiani, and Davide Dardari. "A robust wireless sensor network for landslide risk analysis: system design, deployment, and field testing." IEEE Sensors Journal 16, no. 16 (2016): 6374-6386.

[8] A. Herutomo, M. Abdurohman, N. A. Suwastika, S. Prabowo, and C. W. Wijijutomo, “Forest fire detection system reliability test using wireless sensor network and openmtc communication platform,” in Information and Communication Technology (IColICT), 2015 3rd International Conference on. IEEE, 2015, pp. 87–91.

[9] Lee, H.C., Ke, K.H., Fang, Y.M., Lee, B.J. and Chan, T.C., 2017. Open-source wireless sensor system for long-term monitoring of slope movement. IEEE Transactions on Instrumentation and Measurement, 66(4), pp.767-776.

[10] Romdhane, Rihab Fekih, Y. Lami, D. Genon-Catalot, N. Fourty, A. Lagréze, D. Jongmans, and L. Baillot. "Wireless sensors network for landslides prevention." In 2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), pp. 222-227. IEEE, 2017

[11] T. Raptis, A. Passarella, and M. Conti, “Performance analysis of latency aware data management in industrial iot networks,” Sensors, vol. 18, no. 8, p. 2611, 2018. [10] T. P. Raptis, A. Passarella, and M. Conti, “Maximizing industrial iot network lifetime under latency constraints through edge data distribution,” in 2018 IEEE Industrial Cyber-Physical Systems (ICPS). IEEE, 2018, pp. 708–713.

[12] Wang, Honghui, Xianguo Tuo, Dashun Xi, Leilei Fan, Zhaoyi Zhang, Guiyu Zhang, and Shuli Hao. "Research on one zigm2410-based wireless sensor network for landslide monitoring." In 2011 7th International Conference on Wireless Communications, Networking and Mobile Computing, pp. 1-4. IEEE, 2011.
[13] Wu, Jianchao, Qingzhao Kong, Weijie Li, and Gangbing Song. "Interlayer slide detection using piezoceramic smart aggregates supported active sensing approach." IEEE Sensors Journal 17, no. 19 (2017): 6160-6166.

[14] S. Yinbiao, K. Lee, P. Lanctot, F. Jianbin, H. Hao, B. Chow, and J.-P. Desbenoit, “Internet of things: wireless sensor networks,” White Paper, International Electrotechnical Commission, http://www.iec.ch, p. 11, 2014.

[15] J. C. Zuniga and B. Ponsard, “Sigfox system description,” LPWAN@ IETF97, Nov. 14th, 2016.