Slowing down light in a qubit metamaterial

Cite as: Appl. Phys. Lett. 121, 204001 (2022); https://doi.org/10.1063/5.0122003
Submitted: 21 August 2022 • Accepted: 18 October 2022 • Published Online: 16 November 2022

Jan David Brehm, Richard Gebauer, Alexander Stehli, et al.

COLLECTIONS

This paper was selected as Featured
This paper was selected as Scilight

ARTICLES YOU MAY BE INTERESTED IN

Polarization-insensitive amplitude and phase control based on interference metasurface
Applied Physics Letters 121, 201707 (2022); https://doi.org/10.1063/5.0114017

Fast electron and slow hole spin relaxation in CsPbI3 nanocrystals
Applied Physics Letters 121, 201106 (2022); https://doi.org/10.1063/5.0103102

A promising outlook on the development of lead halide perovskites as spin-orbitronic materials
Applied Physics Letters 121, 200501 (2022); https://doi.org/10.1063/5.0107903
Slowing down light in a qubit metamaterial

Cite as: Appl. Phys. Lett. 121, 204001 (2022); doi: 10.1063/5.0122003
Submitted: 21 August 2022 · Accepted: 18 October 2022 · Published Online: 16 November 2022

Jan David Brehm, Richard Gebauer, Alexander Stehli, Alexander N. Poddubny, Oliver Sander, Hannes Rotzinger, and Alexey V. Ustinov

AFFILIATIONS
1 Physikalisches Institut, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
2 Institute for Data Processing and Electronics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
3 Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany

Author to whom correspondence should be addressed: alexey.ustinov@kit.edu

ABSTRACT

The rapid progress in quantum information processing leads to a rising demand for devices to control the propagation of electromagnetic wave pulses and to ultimately realize universal and efficient quantum memory. While in recent years, significant progress has been made to realize slow light and quantum memories with atoms at optical frequencies, superconducting circuits in the microwave domain still lack such devices. Here, we demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide, forming a waveguide quantum electrodynamics system. We analyze two complementary approaches, one relying on dressed states of the Autler–Townes splitting and the other based on a tailored dispersion profile using the qubits tunability. Our time-resolved experiments show reduced group velocities of down to a factor of about 1500 smaller than in vacuum. Depending on the method used, the speed of light can be controlled with an additional microwave tone or an effective qubit detuning. Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures and open the door to microwave dispersion engineering in the quantum regime.

V C 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0122003

In the light of quantum information processing achieving control over the speed of light in artificially structured media, slowing it down and eventually stopping the light, has recently regained attention. This functionality is of vital importance for the realization of long-living quantum memories and for controlling and synchronizing the flow of information. One of the most prominent techniques to realize slow light is based on electromagnetically induced transparency (EIT)—a quantum interference effect between different excitation pathways, rendering an otherwise opaque medium transparent and creating a steep dispersion profile. Early demonstrations of slow light in EIT media involved vapors of sodium and rubidium atoms, followed by further experiments with cold atoms coupled to nanofibers, and eventually by the demonstration of a highly efficient quantum memory. A promising candidate beyond atoms to observe these effects is superconducting qubits in the context of cavity-free waveguide quantum electrodynamics (wQED). The observation of resonance fluorescence revealed that even single qubits can have strong coupling to propagate electromagnetic waves and show extinction coefficients close to unity. First demonstrations of the single-qubit Autler–Townes splitting (ATS) with ladder-type three-level systems showcased their potential suitability for the EIT-related applications. However, it was subsequently argued that in these experiments, the EIT regime was not unambiguously reached.

More recently, focus shifted toward multi-qubit systems with infinite range interactions, super- and subradiant polaritonic excitations, collective ATS, topological edge states, creation of non-classical light, proposals for superconducting quantum memories, and quantum metamaterials. Even though superconducting wQED systems can match the requirements of large optical depth and high coherence, slow light has been so far realized only in the context of classical waveguides. These devices are passive without the possibility to in situ control the speed of light and to ultimately realize a quantum memory protocol.

Here, we experimentally demonstrate a first realization of slow light in a superconducting wQED system consisting of eight locally tunable transmon qubits coupled to a one-dimensional waveguide. We engineer the required flatband structure by using qubits directly as controllable dispersive elements. First, we consider the standard case of dressed state based slow light and demonstrate that even in the case of imperfect EIT, where the physics is merely governed by the ATS,
moderate retardation of the group velocities by a factor down to 1500 compared to vacuum can be achieved. Second, we engineer a similar band structure based on detuned collective resonances of the participating qubits. This allows for three times larger efficiencies of the slow-light medium. The demonstrated slow light effect can be used for a fixed-delay quantum memory in superconducting wQED and paves way to more general applications such as on demand storage-and-retrieval memory for quantum information processing.

The qubit metamaterial presented in this work consists of eight superconducting transmon qubits,7 capacitively coupled to the mode continuum of a coplanar waveguide, see Fig. 1(a). Each qubit has an integrated SQUID loop and is thereby individually tunable between 3 and 8 GHz by applying local magnetic flux via a flux bias line. We fulfill the metamaterial limit of sub-wavelength dimensions by choosing a dense qubit spacing of $d = 400\ \mu m$, which corresponds to a fraction of the light wavelength λ with the phase delay of $\phi = \frac{2\pi d}{\lambda} = 0.05 - 0.16$. As shown in former works, in such a setting the qubits obtain an infinite-range photon-mediated effective interaction, which is almost exclusively of collective dissipative nature.12,13 For a detailed study of the mode structure of this metamaterial, its super- and subradiant polaronic excitations, we guide the reader to Ref. 14. Figure 1(b) shows the first three ladder-type energy levels of the transmon qubits. If the $2 \rightarrow 1$ transition is driven with a microwave control tone with the amplitude (Rabi-strength) Ω_c, these levels hybridize and split into two dressed states separated by Ω_c, forming the ATS.28 For our experiments, we use the ATS of the individual qubits to calibrate the absolute value of the control power $P_c = \frac{\Omega_c^2}{\gamma_0 \hbar} h \omega_c$ (see the supplementary material). With reference to a weak probe tone and assuming a $\alpha \exp(-i \omega t)$ time dependence, the reflection coefficient of a single qubit is given by 10

$$ r = \frac{\Gamma_1}{2 |\gamma_1 - i (\omega - \omega_{10})| + \frac{\Omega_c^2}{2 |\gamma_{20} - 2i (\omega - \omega_{10} + \omega_c - \omega_{21})|}}. \ (1) $$

The corresponding transmission coefficient is given by $t = 1 + r$, referenced in this article as element of the scattering matrix $S_{21}(\omega)$. Here, the qubits are strongly coupled to the waveguide, ensuring a multimode Purcell limited average relaxation rate of $\Gamma_{10}/2\pi = 12\ MHz$. The average decoherence rate of the $1 \rightarrow 0$ transition is $\gamma_{10}/2\pi = (\Gamma_1/2 + \Gamma_{id})/2\pi = 6.9\ MHz$ with Γ_{id} accounting for pure dephasing and radiative losses to unguided modes. The corresponding average decoherence rate of the $2 \rightarrow 0$ transition is $\gamma_{20}/2\pi = 6.9\ MHz$, which is here by coincidence the same value. We note that this rate is in agreement with other experiments with superconducting qubits,10,28 significantly higher than that of cold atoms.3 The increased rate is due to the ladder-type level structure of the transmon, where it can be shown that $\gamma_{20} > \Gamma_{21}/2$ always holds.29 This necessarily leads to imperfect EIT since the associated dark state obtains a finite lifetime.4 The corresponding implications for the creation of slow light are discussed in the following paragraph. The expected band structure for the metamaterial in the lossless case ($\Gamma_{10} = 0$, $\gamma_{20} = 0$) based on Eq. (1) for different values of Ω_c is shown in Fig. 1(c). The expected group velocity of light $v_g = \frac{\gamma_{20}}{\Omega_c}$ in the center band strongly depends on the control tone strength Ω_c. In the regime of small Ω_c, the slope of the band is almost flat, giving rise to slowing down the electromagnetic waves in the waveguide.

In order to create a slow-light medium, the qubits are consecutively tuned to a common resonance frequency $\omega_{10}/2\pi = 7.812\ GHz$ in the vicinity of the qubits’ upper sweet spot. A continuous microwave control tone is applied, driving resonantly the $2 \rightarrow 1$ transition at the frequency $\omega_c/2\pi = 7.533\ GHz$ and Rabi-strength Ω_c. Figure 2 shows the collective ATS, for $N = 7$ resonant qubits. For low control

![FIG. 1. (a) Microscopic image of the eight qubit metamaterial with local flux bias lines. Both signal and control tone propagate along the central waveguide. (b) Ladder-type level structure of the employed transmon qubits and the relevant radiative relaxation (Γ_1, Γ_{21}) and decoherence rates (γ_{20}, γ_{10}). If the control tone is resonant with the $2 \rightarrow 1$ transition, the first transmon level hybridizes, creating the Autler–Townes splitting. (c) Calculated band structure of the metamaterial in the lossless limit for different control Rabi-strengths Ω_c. Light blue shaded areas indicate bandgaps. The effective group velocity v_g in the center band strongly depends on Ω_c.](image)

![FIG. 2. (a) Collective ATS of seven resonant qubits in dependence on control tone power P_c. For $P_c > -125\ dBm$, a transparency window with finite transmission emerges around the resonance frequency ω_{10} (black dashed line). The red dashed line is a fit to the expected splitting of $\omega_{10}/2\pi$. Purple dotted lines mark a minimal bandwidth of $1/\alpha = 20 MHz$ of the transparency window for time-domain experiments with $\alpha = 50\ ns$ pulses. (b) Absolute value and phase of the complex transmission coefficient S_{21} for $P_c = -122 dBm$. Black dotted lines are fits to a transfer-matrix model. The effective expected group velocity v_g is anti-proportional to the slope of $\text{Arg}(S_{21})$ at ω_{10}.](image)
powers $P_c \rightarrow 0$, only a single bandgap of strongly suppressed transmission above ω_{10} is present, which gradually splits for higher Ω_c into two separate bandgaps, with a transparency window of finite transmission opening up in between [compare band structure calculation in Fig. 1(c)]. It is noted that due to the aforementioned large 2^{-10} transparency window can be calculated from the phase gradient 20, 30 with a numerical transfer-matrix calculation, 14, 30 which takes into account a cable resonance caused by impedance mismatches in the cryostat wiring. Due to the aforementioned large $2 \rightarrow 0$ dephasing rate $\gamma_{20} \approx \gamma_{10}$, the expected sharp EIT feature at ω_{10} with near unity transmission for small Ω_c is smeared out, and transmission is reduced. The expected effective group velocity v_g of a signal sent through the transparency window can be calculated from the phase gradient 15, 20

$$v_g = \left[\frac{1}{(N-1)d} \frac{d \text{Arg}(S_{21}(\omega))}{d \omega} \right]^{-1} \bigg|_{\omega_{10}=\omega_{10}}. \quad (2)$$

The traversal time $\tau = (N-1)d/v_g$ of a pulse through the medium with $N=7$ qubits inferred from the spectroscopic data of Fig. 2(a) at $\omega = \omega_{10}$ is shown in Fig. 3(b). In good agreement with the numerical transfer-matrix model, the expected traversal time, or conversely, the effective group index n_g, can be tuned over a large range with the applied control power P_c. In contrast to the textbook case of EIT in the limit of $\gamma_{20} \approx 0$, where τ / Ω_c diverges for small Ω_c, $^{\text{we observe}}$ τ approaching a maximum of 15 ns ($n_g \approx 1900$) at $P_c \approx -124$ dBm before it decreases again for even lower control tone strengths. A similar behavior was observed in room temperature vapor of 4He. 21 An analytical expression for the expected delay $\tau(\omega_{10})$ in the case of a resonant control tone can be found from the effective dispersion relation $(kk')^2 \approx \omega^2 - 2\chi \varphi$ with $\chi = \frac{\Delta}{\gamma_{20}}$ and $\varphi = \frac{\Omega_c}{\chi}$.

$$\tau(\omega_{10}, \Omega_c) \approx \left\{ \begin{aligned}
(N-1)\Gamma_{10}(2\Omega_c^2 - 8\gamma_{20}^2) & , \quad \varphi \gg \chi., \\
((4\gamma_{10} - 2\Gamma_{10})\gamma_{20} + \Omega_c^2)^{\frac{1}{2}} & , \quad \varphi \ll \chi.
\end{aligned} \right. \quad (3)$$

Figure 3(b) shows both asymptotes of Eq. (3), corresponding to the strong and weak Rabi-strength Ω_c regimes ($\varphi \gg \chi$, $\varphi \ll \chi$). In the limit of $\gamma_{20} \rightarrow 0$, the condition $\varphi \gg \chi$ is always fulfilled, and the corresponding $\tau(\omega_{10}, \Omega_c)$ is reduced to the formulas of textbook EIT. $^{\text{In this case, we find good agreement between the measured delays and Eq. (3). In the opposite limit $\varphi \ll \chi$, only qualitative agreement is observed. The systematic offset to the measured data is rooted in the band structure calculation of Eq. (3), which assumes an infinite metamaterial deviates, in particular, for small Ω_c. More details on the derivation of $\tau(\omega_{10}, \Omega_c)$ are provided in the supplementary material. Formally, EIT and ATS should be treated as two distinct, but closely related phenomena: EIT is a destructive Fano-type interference effect between two excitation pathways, which can only occur if $\Omega_c > \frac{\gamma_{10}}{\eta_{10}}$, smoothly transitioning to the ATS-regime for $\Omega_c > \frac{\gamma_{10}}{\eta_{20}}$ with two independent resonances of the dressed state doublet. 11 The coefficient $\beta = (N^2 - 1)\sigma/3$ is the approximate width of the bandgap for a finite system with $N < \pi/\varphi \approx 20$ qubits in units of γ_{10}. In this work, due to large γ_{20} the accessible control strengths are in the transient regime $\Omega_c \approx \frac{\gamma_{10}}{\eta_{10}}$. Here, a quantitative method to distinguish between ATS and EIT based on Akaike’s information criterion of Ref. 11 cannot directly be applied to the measured data, since it features an asymmetric line shape due to the microwave background. Using the method for the calculated single-qubit splitting based on Eq. (1) in conjunction with the experimentally extracted qubit decoherence rates yields that the observed line shape is by almost 100% certainty described by the ATS (not shown).

We have verified the spectroscopically inferred time delays τ in pulsed time-domain measurements by using an FPGA-based heterodyne microwave setup (see the supplementary material). Here, we generated Gaussian pulses of width $\sigma = 50$ ns at resonant center-frequency ω_{10} with a continuously applied control tone at frequency ω_{21} and strength Ω_c. The pulse amplitude is kept at the single photon level ($P_p < h\omega_{10}/\Gamma_{10}$) in order to prevent saturation of the qubits. The digitized transmitted pulses for different control tone strengths are shown in Fig. 3(a). By fitting Gaussians to the measured data, we extracted the temporal position of each pulse center. The extracted pulse arrival times were compared to a reference pulse, measured in the case of far detuned qubits, thus giving access to the pulse delay τ. The delays measured in this way are presented in Fig. 3(b) showing good agreement with the spectroscopically inferred data and numeric.
Due to the finite spectral width $1/\sigma = 20 \text{ MHz}$ of the Gaussian pulses [indicated by dashed purple lines in Fig. 2(a)] and that of the transparency window, the maximal accessible delay here is limited to $\tau \approx 12 \text{ ns}$ ($n_g \approx 1500$). In qualitative agreement with the transmission measurement data of Fig. 2(a), the amplitude of the measured pulses becomes smaller when reducing the control tone amplitude. This effect is most prominent in the sector of large delays; however, exactly here a high transmission is desired to realize an efficient quantum memory protocol. At maximal delay, the efficiency, i.e., the energy ratio of the transmitted and reference pulse, is about 16%. Due to small average delay-bandwidth products of 0.2, the device under investigation appears suitable for a fixed-delay quantum memory, rather than a general purpose on-demand storage procedure, where the pulse has to fit spatially completely into the metamaterial for high storage efficiency. Reducing the decoherence rate γ_{20} would allow for significantly larger group indices and improve the bandwidth-delay product toward values larger than unity. Experimentally, this can be achieved by employing Λ-type three-level systems such as flux- or fluxonium qubits.

For this approach, which we call dispersion engineering, neither a third qubit level nor an additional microwave control tone is required. Here, we use the individual qubit frequency control to tune every second qubit to a frequency f_1 and every other qubit to f_2, creating two collective four-qubit resonances. The frequency $f_2 = 7.882 \text{ GHz}$ is kept constant throughout the experiment, while the frequency f_1 of the other four qubits is varied. The transmission S_{21} [Figs. 4(a) and 4(b)] resembles that of the dressed state ATS in Fig. 2; the main ATS feature, being a transparency window with a steep phase roll-off between two bandgaps, is intact. Since the large γ_{20} has no influence on the first two transition levels, the brightest of the collective four qubit subradiant states are visible as pronounced peaks several MHz below f_1 and f_2 [compare Fig. 4(b)]. The observed line shape is in good agreement with a numerical transfer matrix calculation. The pulse delays τ and effective group indices n_g calculated from $\text{Arg} \left(S_{21}(\omega)\right)$ with Eq. (2) with respect to the frequency f_1 are shown in Fig. 4(c). Since the phase in the transparency window shows a varying slope, an average of the slope in a bandwidth of 10 MHz around the center is used to estimate τ. Analogously to the previous paragraph, we use Gaussian pulses with $\sigma = 50 \text{ ns}$ to directly measure and validate the expected pulse delay τ. The center frequency is adjusted close to $(f_1 + f_2)/2$ for each trace. Figure 4(c) compares the delay τ of pulsed and spectroscopic measurements with numerical results from a transfer-matrix model. Here, we find delays up to $\tau = 17 \text{ ns}$, corresponding to group indices of $n_g = 1850$, which is comparable to the group indices found in the dressed-state ATS case for a similar splitting between the dressed states. In contrast to the ATS measurement, we achieve an efficiency of $\approx 45\%$–50%, as the transmittance of the transparency window is solely limited by the non-radiative decoherence T_{nr} and not influenced by γ_{20}. This also implies potentially possible much higher delays for narrower transparency windows. Even though the dispersion-engineered approach lacks the possibility of fast and simple control via an additional microwave tone in contrast to the ATS, it can be used as a fixed delay quantum memory and showcases the ability to tailor the band structure on demand in superconducting wQED. For further studies, one can think of more complex band structures going beyond the capabilities of the ATS, e.g., engineering several spectral regions of different group indices, referred to as multi-color slow light.

In this work, we demonstrated slow light in a superconducting waveguide QED system. A metamaterial consisting of eight densely spaced transmon qubits was used to engineer a band structure with a flat dispersion profile to obtain reduced group velocities of electromagnetic waves. Using the well-known dressed-state ATS, we observed group velocities reduced by a factor of down to 1500, both in spectroscopic and direct time-resolved pulsed measurements. The maximum achievable delay and efficiency is limited by the strong dephasing of the $2 \rightarrow 0$ transition, which is inherent to ladder-type three-level systems. Moreover, we demonstrated slow light with a tailored band structure based on distinct detuned collective resonances of the qubits. At comparable retardation, we observed three times larger efficiencies, not limited by large γ_{20}. The demonstrated slow-light metamaterial can be employed as a fixed-delay quantum memory or a tunable pulse retarder to synchronize pulses in quantum information processors. Based on our proof-of-principle experiment, further improvements which significantly ameliorate the device performance can be made. A similar metamaterial based on flux or fluxonium qubits, which feature a Λ-type level structure, is expected to reach the EIT regime and may ultimately realize a general purpose and on-demand superconducting quantum memory.
See the supplementary material for additional information on qubit characterization, the experimental setup, power calibration, and band structure calculations.

This work has received funding from the Deutsche Forschungsgemeinschaft (DFG) by Grant No. U.S. 18/15-1, the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 863313 (SUPERGALAX), BMBF Grant “PtQUBE” via No. 13N15016, and by the Initiative and Networking Fund of the Helmholtz Association, within the Helmholtz Future Project “Scalable solid state quantum computing.” J.D.B. acknowledges financial support from Studienstiftung des Deutschen Volkes, A.S. was supported by Landesgraduiertenförderung-Karlsruhe, and A.N.P. gratefully acknowledges support from Russian Science Foundation via Grant No. 20-12-00194.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Jan David Brehm: Conceptualization (equal); Data curation (lead); Formal analysis (lead); Investigation (lead); Methodology (equal); Software (equal); Visualization (lead); Writing – original draft (lead); Writing – review & editing (lead). Richard Gebauer: Data curation (equal); Methodology (supporting); Software (lead); Validation (supporting); Writing – original draft (supporting); Writing – review & editing (equal). Alexander Stehli: Conceptualization (supporting); Data curation (supporting); Formal analysis (supporting); Investigation (supporting); Validation (supporting); Writing – review & editing (supporting). Alexander Poddubny: Formal analysis (equal); Investigation (equal); Methodology (equal); Oliver Sander: Data curation (supporting); Project administration (supporting); Resources (supporting); Software (supporting); Supervision (supporting); Writing – review & editing (supporting). Hannes Rotzinger: Funding acquisition (supporting); Methodology (supporting); Project administration (equal); Resources (equal); Software (equal); Supervision (supporting); Writing – review & editing (supporting). Alexey V. Ustinov: Conceptualization (equal); Formal analysis (supporting); Funding acquisition (lead); Investigation (supporting); Methodology (equal); Project administration (lead); Resources (lead); Supervision (lead); Validation (supporting); Writing – original draft (supporting); Writing – review & editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

1. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706 (2009).
2. T. Kroh, J. Wolters, A. Ahlrichs, A. W. Schell, A. Thoma, S. Reitzenstein, J. S. Wildmann, E. Zallo, R. Trota, A. Rastelli, O. G. Schmidt, and O. Benson, “Slow and fast single photons from a quantum dot interacting with the excited state hyperfine structure of the Cesium D2-line,” Sci. Rep. 9(1), 13728 (2019).
3. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
4. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594 (1999).
5. M. M. Kash, V. A. Sautenko, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultrafast group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229 (1999).
6. B. Gouraud, D. Maxein, A. Nicolas, O. Morio, and J. Laurat, “Demonstration of a memory for tightly guided light in an optical nanotube,” Phys. Rev. Lett. 114, 180503 (2015).
7. Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett. 120, 183602 (2018).
8. O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840 (2010).
9. J.-C. Hoi, C. M. Wilson, G. Johansson, J. Lindkvist, B. Peropadre, T. Palomaki, and P. Delsing, “Microwave quantum optics with an atomic atom in one-dimensional open space,” New J. Phys. 15, 025011 (2013).
10. A. A. Abdumalikov, O. Astafiev, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Electromagnetically induced transparency on a single artificial atom,” Phys. Rev. Lett. 104, 193601 (2010).
11. P. M. Anisimov, J. P. Dowling, and B. C. Sanders, “Objectively discerning Autler-Townes splitting from electromagnetically induced transparency,” Phys. Rev. Lett. 107, 163604 (2011).
12. K. Lalumière, B. C. Sanders, A. F. van Loo, A. Fedorov, A. Wallraff, and A. Blais, “Input-output theory for waveguide QED with an ensemble of inhomogeneous atoms,” Phys. Rev. A 88, 043806 (2013).
13. A. F. v Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494 (2013).
14. J. D. Brehm, A. N. Poddubny, A. Stehli, T. Wolz, H. Rotzinger, and A. V. Ustinov, “Waveguide bandgap engineering with an array of superconducting qubits,” npj Quantum Mater. 6, 10 (2021).
15. Y.-X. Zhang and K. Mølmer, “Theory of subradiant states of a one-dimensional two-level atom chain,” arXiv:1812.09784 (2018).
16. J. Zhong, N. A. Olekhno, Y. Ke, A. V. Poshakinskii, C. Lee, Y. S. Kivshar, and A. N. Poddubny, “Photon-mediated localization in two-level qubit arrays,” Phys. Rev. Lett. 124, 093604 (2020).
17. Y. Ke, J. Zhong, A. V. Poshakinskii, Y. S. Kivshar, A. N. Poddubny, and C. Lee, “Radiative topological biphonon states in modulated qubit arrays,” arXiv:2002.10674 (2020).
18. A. V. Poshakinskii, J. Zhong, Y. Ke, N. A. Olekhno, C. Lee, Y. S. Kivshar, and A. N. Poddubny, “Quantum Hall phase emerging in an array of atoms interacting with photons,” arXiv:2003.08257 (2020).
19. Y.-L. L. Fang, H. Zheng, and H. U. Baranger, “One-dimensional waveguide coupled to multiple qubits: photon-photon correlations,” EPJ Quantum Technol. 1, 3 (2014).
20. P. Meung and B. C. Sanders, “Coherent control of microwave pulse storage in superconducting circuits,” Phys. Rev. Lett. 109, 253603 (2012).
21. P. Macha, G. Oehsner, J.-M. Reiner, M. Marthaler, S. André, G. Schon, H.-G. Meyer, E. Eichel, and A. V. Ustinov, “Implementation of a quantum metamaterial using superconducting qubits,” Nat. Commun. 5, 5146 (2014).
22. A. L. Rakhmanov, A. M. Zagoskin, S. Savel’ev, and F. Nori, “Quantum metamaterials: Electromagnetic waves in a Josephson qubit line,” Phys. Rev. B 77, 144507 (2008).
23. J. L. Everett, D. B. Higginbottom, G. T. Campbell, P. K. Lam, and B. C. Buchler, “Stationary light in atomic media,” Adv. Quantum Technol. 2, 1800100 (2019).
24. M. Mikhailovski, E. Kim, V. S. Ferreira, M. Kalase, A. Sipahigil, A. J. Keller, and O. Painter, “Superconducting metamaterials for waveguide quantum electrodynamics,” Nat. Commun. 9, 3706 (2018).
25. J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Charge-insensitive qubit design derived from the Cooper pair box,” Phys. Rev. A 76, 042319 (2007).
26. S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703 (1955).
27. T. Höingl-Decrinis, R. Shaikhdarov, S. de Graaf, V. Antonov, and O. Astafiev, “Two-level system as a quantum sensor for absolute calibration of power,” Phys. Rev. Appl. 13, 024066 (2020).
28. I.-C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P. Delsing, “Demonstration of a single-photon router in the microwave regime,” Phys. Rev. Lett. 107, 073601 (2011).
29. M. Yan, E. G. Rickey, and Y. Zhu, “Electromagnetically induced transparency in cold rubidium atoms,” J. Opt. Soc. Am. B 18, 1057 (2001).
30. A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht, H. Kimble, and D. Chang, “Exponential improvement in photon storage fidelities using subradiance and ‘selective radiance’ in atomic arrays,” Phys. Rev. X 7, 031024 (2017).
31. F. Goldfarb, T. Lauprete, J. Ruggiero, F. Bretenaker, J. Ghosh, and R. Ghosh, “Electromagnetically-induced transparency, slow light, and negative group velocities in a room temperature vapor of 4He,” C. R. Phys. 10, 919 (2009).
32. M. R. Vladimirova, E. L. Ivchenko, and A. V. Kavokin, “Exciton polaritons in long-period quantum-well structures,” Semiconductors 32, 90 (1998).
33. I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6, 333 (2012).
34. A. Rastogi, E. Saglamyurek, T. Hrushevskyi, S. Hubele, and L. J. LeBlanc, “Discerning quantum memories based on electromagnetically-induced-transparency and Autler-Townes-splitting protocols,” Phys. Rev. A 100, 012314 (2019).
35. J.-T. Shen, M. L. Povinelli, S. Sandhu, and S. Fan, “Stopping single photons in one-dimensional circuit quantum electrodynamics systems,” Phys. Rev. B 75, 035320 (2007).
36. H. Wang, X. Gu, Y.-x. Liu, A. Miranowicz, and F. Nori, “Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system,” Phys. Rev. A 90, 023817 (2014).