Low regularity solutions to a gently stochastic nonlinear wave equation in nonequilibrium statistical mechanics

Luc Rey-Bellet
Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003, Email: lr7@math.umass.edu

Lawrence E. Thomas
Department of Mathematics, University of Virginia, Charlottesville, VA 22903, Email: let@virginia.edu

Abstract
We consider a system of stochastic partial differential equations modeling heat conduction in a non-linear medium. We show global existence of solutions for the system in Sobolev spaces of low regularity, including spaces with norm beneath the energy norm. For the special case of thermal equilibrium, we also show the existence of an invariant measure (Gibbs state).

1 Introduction

In this article we consider the following system of partial differential equations

\[
\begin{align*}
\partial_t \phi(x, t) &= \pi(x, t) \\
\partial_t \pi(x, t) &= (\partial_x^2 - 1)\phi(x, t) - \mu \phi^3(x, t) - r(t)\alpha(x) \\
\partial_t r(t) &= (r(t) - \langle \alpha, \pi(t) \rangle) dt + \sqrt{2T} d\omega(t).
\end{align*}
\]

(1)

In Eqs. (1) \((\phi, \pi)\) is a pair of scalar fields satisfying periodic boundary conditions with \(x \in [0, 2\pi]\). The vector-valued functions \(\alpha = (\alpha_1, \cdots, \alpha_K)\) are given with \(\alpha_j \in H^\gamma\), for some \(\gamma > 0\), for all \(j\). The vector \(r = (r_1, \cdots, r_K)\) is in \(\mathbb{R}^K\), and \(\omega = (\omega_1, \cdots, \omega_K)\) is a \(K\)-dimensional Brownian motion. The matrix \(T\) is given by \(T = \text{diag}(T_1, \cdots, T_K)\), and \(T_j\) will be interpreted as a temperature. The parameter \(\mu\) is a coupling constant; we will be primarily interested in the cases \(\mu = 0\) (linear Klein-Gordon equation) and \(\mu > 0\) (nonlinear defocusing linear wave equation).

The system of equations (1) arises from a model for heat conduction in a nonlinear medium. It can be derived from first principles from a Hamiltonian
system which consists of K linear wave equations in \mathbf{R} coupled to a nonlinear wave equation in $[0, 2\pi]$. The total Hamiltonian is given by

$$H = \sum_{j=1}^{K} \int_{\mathbf{R}} \frac{1}{2} \left(|\partial_x u_j(x)|^2 + |v_j(x)|^2 \right) dx + \int_{[0,2\pi]} \frac{1}{2} \left(|\partial_x \phi(x)|^2 + |\phi(x)|^2 + |\pi(x)|^2 + \frac{\mu}{4} |\phi(x)|^4 \right) dx + \sum_{j=1}^{K} \left(\int_{\mathbf{R}} \partial_x u_j(x) \rho_j(x) \right) \left(\int_{[0,2\pi]} \partial_x \phi(x) \alpha_j(x) dx \right)$$

One assumes further that the initial conditions of the $(u_j, v_j), j = 1, \cdots, K$ ("the reservoirs") are distributed according to Gibbs measures at temperatures T_j. These measures are (formally) expressed as

$$Z^{-1} \exp \left(-\frac{1}{2T_i} \int_{\mathbf{R}} \left(|\partial_x u_j(x)|^2 + |v_j(x)|^2 \right) dx \right) \prod_{x \in \mathbf{R}} du_j(x) dv_j(x),$$

and they are simply the product of a Wiener measure (for the fields u_j) with a white noise measure (for the momenta v_j).

We refer to \[11\] or \[20, 18\] for details on the derivation of equations (1) from the Hamiltonian system (2) with initial conditions (3), at least in the case where the nonlinear wave equation is replaced by a chain of nonlinear oscillators (formally a discrete wave equation). In that case one obtains a set of stochastic ordinary differential equations. The derivation is essentially the same as for the model considered here and will not be repeated. We simply remark that the derivation of Markovian equations is possible due a particular choice of the coupling functions ρ_j.

In a series of papers \[11, 12, 13, 20, 21, 8, 9, 18\] about the chain of nonlinear oscillators, the existence, uniqueness, and strong ergodic properties of invariant measures have been established. Moreover, a number of properties of these invariant measures have been elucidated, such as existence of heat flow, positivity of entropy production, and symmetry properties of entropy production fluctuations. These invariant measures represent stationary states which generalize Gibbs distributions to non-equilibrium situations where there is heat flow. Ultimately our goal is to establish similar properties for the systems of equations (1). But we study here the more immediate problems of existence of global solutions– a prerequisite for studying the existence of stationary states– and existence and invariance of an equilibrium (Gibbs) measure.
In the case of equilibrium, that is, when all temperatures are equal, \(T_j = T \) for all \(j = 1, \ldots, K \), we will prove below that there is an invariant state given formally by the (non-Gaussian) Gibbs measure

\[
d\nu = Z^{-1} \exp \left(-\frac{1}{2T} \int_{[0,2\pi]} \left(|\partial_x \phi(x)|^2 + |\phi(x)|^2 + \frac{\mu}{2} |\phi(x)|^4 + |\pi(x)|^2 \right) dx \right)
\times \exp \left(-\frac{1}{2T} \int \prod_{x \in [0,2\pi]} d\phi(x) d\pi(x) \right).
\]

To make sense of this measure, one considers first the Gaussian measure \(\nu^0 \) for the case \(\mu = 0 \). Its support is contained in \(H^s \times H^{s-1} \times \mathbb{R}^K \) for any \(s < \frac{1}{2} \) and, with probability 1, \(\phi \) is also a continuous function. Hence we can think of the measure \(\nu \) as the measure which is absolutely continuous with respect to \(\nu^0 \) with a Radon-Nikodym derivative proportional to \(\exp(-\mu \int |\phi(x)|^4 dx/4T) \). We expect, but have by no means proved, that the invariant measure for different temperatures, if one exists, has similar support properties. But with this intuition, it is appropriate to seek solutions of (1) in spaces of rough data \(H^s \times H^{s-1} \times \mathbb{R}^K \) with \(s < \frac{1}{2} \). Indeed we show the global existence of strong solutions, for \(1/3 \leq s < 1 \) (see Corollary 3.4 and the remark following it). We believe that these spaces, with at least \(1/3 \leq s < 1/2 \), are natural to the invariant measure problem.

Clearly, in these spaces no energy conservation (or bounds on the energy growth/dissipation) is available. In recent years, however, Bourgain [1], Keel and Tao [13] and many others have developed techniques to show global existence for wave equations and other Hamiltonian PDE’s in Sobolev spaces below the energy norm. A review of recent results with an extensive bibliography can be found in [6]. Here, we use and extend these methods to establish global existence of solutions for wave equations coupled to heat reservoirs, i.e. with noise and dissipation.

In the last section, we show that solutions to an ultra-violet cut-off version of our system of equations, Eq.(1), converge as the cut-off is removed. This result is then applied to show that the equilibrium Gibbs state \(\nu \) described above, Eq.(4), is indeed an invariant measure in the case of equilibrium. Note that Gibbs measures for nonlinear wave equations (and nonlinear Schrödinger equations) have been constructed and studied by several authors, (Lebowitz, Rose and Speer [15], Zhidkov [22], McKean and Vaninsky [14], Bourgain [2, 3], Brydges and Slade [5]) but for isolated systems only. Note that in these works Gibbs measures for any temperature are invariant while in our case the temperature is selected by the coupling to the reservoir. Our work is also related in spirit to various recent works
on the ergodic properties of randomly forced dissipative equations, see e.g. \cite{4, 7, 10, 14, 17} and others. The main and very important differences are that our equation is Hamiltonian rather than parabolic so that there is no intrinsic smoothing in the equations, and that the dissipation is very weak.

1.1 Notation

It is convenient to write our system as Bourgain does \cite{1}. Set

\[u = \phi + \frac{i}{B} \pi \]

(5)

where \(B \) is the operator defined \(B = \sqrt{-\partial_x^2 + 1} \). Note that \(\phi = \Re u \) and \(\frac{1}{B} \pi = \Im u \) are respectively the real and imaginary parts of \(u \). Thus our differential equations can be written,

\[i \partial_t u = Bu + \frac{1}{B}(\mu \phi^3 + r \alpha) \]

\[dr(t) = -(r(t) - \langle \alpha, \pi(t) \rangle) dt + \sqrt{2T} d\omega(t). \]

(6)

Let

\[u(\omega, t) = (u, r) = (\phi + \frac{i}{B} \pi, r), \]

(7)

and let \(u_o(\omega, t) = (u_o, r_o)(\omega, t) \) be the corresponding solution to the differential equations but with the non-linearity turned off, \(\mu = 0 \).

For a vector quantity \(u = (u, r) \), we introduce the norms

\[\| u \|_{H^s} = (r^2 + ||u||_{H^s}^2)^{1/2}. \]

(8)

The energy of a vector \(u \) is defined by

\[E(u) = \frac{1}{2} ||u||_{H^1}^2 + \frac{1}{2} r^2 + \frac{\mu}{4} \int (\Re u)^4 dx. \]

(9)

2 Estimates for the Linear Wave Equation

In this section we collect basic estimates for the linear system, \(\mu = 0 \). These estimates actually establish global existence for this system.

The first step is to consider the linear (dissipative) system without the random driving terms,

\[\frac{du_o}{dt} = -iBu_o - \frac{1}{B} \alpha r_o \]

\[\frac{dr_o}{dt} = \langle B \alpha, \Im u_o \rangle - r_o \]

(10)
where $\Im u_o$ is the imaginary part of u_o. Set $L_o = B_o + P$ with

$$B_o = \begin{pmatrix} -iB & 0 \\ 0 & -1 \end{pmatrix},$$

$$P = \begin{pmatrix} 0 & -i \frac{1}{2}|\alpha\rangle \\ \langle B\alpha|\Im \langle B\alpha \rangle \end{pmatrix}$$

Symbolically, the solution of this system Eqs. (10) is given by $e^{t L_o} u_o(0)$ with $L_o = B_o + P$. The system should be regarded as linear in a function space of complex functions over the reals (so that \Im is linear).

Lemma 2.1 Assume that $\alpha \in H^\gamma$ for some $\gamma > 0$ and $0 \leq s < 1$. For λ_0 sufficiently large depending on the α’s only, $(B_o + \lambda_0)(L_o + \lambda_0)^{s-1}(B_o + \lambda_0)^{-s}$ acting in $L^2 \oplus \mathbb{R}$ is defined as a bounded invertible operator.

Proof: We have the following operator estimates (the operators acting in $L^2 \oplus \mathbb{R}$):

$$\left\| \frac{1}{B_o + \lambda_0 + \lambda} \right\| \leq \frac{c(\lambda_0)}{(1 + \lambda)^\gamma},$$

$$\left\| \frac{1}{P(B_o + \lambda_0 + \lambda)(B_o + \lambda_0)^s} \right\| \leq \frac{c(\lambda_0)}{(1 + \lambda)^\gamma^*}$$

with $\gamma^* = \min\{\gamma + s, 1\}$ and with $c(\lambda_0) \to 0$ for $\lambda_0 \to \infty$. By expanding the resolvent for L_o in a geometric series, convergent for $c(\lambda_0) < 1$, one finds from these estimates that

$$(B_o + \lambda_0)(L_o + \lambda_0 + \lambda)^{-1}(B_o + \lambda_0)^{-s}$$

$$= (B_o + \lambda_0)^{1-s}(B_o + \lambda_0 + \lambda)^{-1} + O\left(\frac{c(\lambda_0)}{(1 + \lambda)^\gamma}\right).$$

Using

$$(L_o + \lambda_0)^{s-1} = c_s \int_0^\infty \frac{d\lambda}{(L_o + \lambda_0 + \lambda)^{\lambda^{1-s}}}$$

with c_s a suitable normalizing constant, and integrating the previous equation, we obtain

$$(B_o + \lambda_0)(L_o + \lambda_0)^{s-1}(B_o + \lambda_0)^{-s} = 1 + O(c(\lambda_0)),$$}

which clearly is bounded. By choosing λ_0 large so that $c(\lambda_0)$ is sufficiently small, we see that $(B_o + \lambda_0)(L_o + \lambda_0)^{s-1}(B_o + \lambda_0)^{-s}$ is invertible. \blacksquare
Lemma 2.2 Assume $\alpha \in H^\gamma$, with $\gamma > 0$, $0 < s \leq 1$. There is a constant c_3 depending only on s and the α’s, such that

$$\|e^{tL_0}u(0)\|_{H^s} \leq c_3 \|u(0)\|_{H^s}$$

(16)

for all time t.

Proof: We have that

$$E_o(u) \equiv \frac{1}{2} (\|u\|_{H^1}^2 + r^2)$$

(17)

is a (degenerate) Liapunov function for the linear system Eq. (10). The lemma follows if we can show that for a suitably large constant λ_0, $E_o((L_0 + \lambda_0)^{s-1}u)$ is equivalent to $\|(B_o + \lambda_0)^su\|_{H^s}^2$, which is in turn equivalent to $\|u\|_{H^s}^2$. This is certainly the case if $s = 1$. For $s < 1$, this amounts to showing that $(B_o + \lambda_0)(L_o + \lambda_0)^{s-1}(B_o + \lambda_0)^{-s}$ is a bounded invertible operator, which is the content of the previous lemma.

We now provide an estimate for the linear stochastic evolution u_o.

Lemma 2.3 Assume that $\gamma > 0$, $0 < s \leq 1$ and set $\|u_o(0)\|_{H^s} = \beta$. There exist constants c and C, such that for $\lambda \geq c\beta$,

$$P \left\{ \sup_{t < \tau} \|u_o(t)\|_{H^s} \geq \lambda \right\} \leq C \exp \left(\frac{- (\lambda - c\beta)^2}{c^2 t (1 + t)^2} \right).$$

(18)

Remarks: The estimate is certainly not optimal. It does not account for the rapid dissipation of energy for small k modes of u_o. The lemma provides a global bound on the linear evolution, showing that it doesn’t blow up, almost surely.

Proof: The solution $u_o(t)$ can be written in integral form,

$$u_o(t) = \int_0^t e^{(t-t')L_0}v_o d\omega(t') + e^{tL_0}u_o(0)$$

$$= v_o \omega(t) + \int_0^t e^{(t-t')L_0}L_0v_o \omega(t') dt' + e^{tL_0}u_o(0)$$

(19)

by integration by parts, with L_0 defined as in the deterministic case, Eq. (11), and

$$v_o = \begin{pmatrix} 0 \\ \sqrt{2T} \end{pmatrix}.$$
By Lemma 2.2 there is a constant c_3 such that $\|e^{tL_o}u_o(0)\|_{H^s} \leq c_3\beta$, and $\|e^{(t-t')L_o}v_o\|_{H^s} \leq c_3\|v_o\|_{H^s}$ (which is finite) so that from the integral equation Eq. (19) above, we obtain the estimate

$$\|u_o(t)\|_{H^s} \leq \|v_0\|_{H^s} + c_3t\|L_o v_o\|_{H^s} \sup_{t' \leq t} |\omega(t')| + c_3\|u_o(0)\|_{H^s}.$$ (21)

Thus we can write for a suitable constant c that

$$\|u_o(t)\|_{H^s} \leq c(1 + t) \sup_{t' \leq t} |\omega(t')| + c\beta;$$ (22)

with β the H^s norm of the initial data $u_o(0)$.

Now if at some time t', with $t' \leq t$, we have that $\|u_o(t')\|_{H^s} > \lambda$, then evidently $\frac{\lambda - c\beta}{c(1 + t)} \leq \sup_{t' \leq t} |\omega(t')|$, and so, for $\lambda > c\beta$,

$$P \left\{ \sup_{t' \leq t} \|u_o(t')\|_{H^s} > \lambda \right\} \leq P \left\{ \sup_{t' \leq t} |\omega(t')| > \frac{\lambda - c\beta}{c(1 + t)} \right\} \leq 2P \left\{ |\omega(t)| > \frac{\lambda - c\beta}{c(1 + t)} \right\} \leq C \exp \left(-\frac{(\lambda - c\beta)^2}{c^2t(1 + t)^2} \right)$$ (23)

for yet another suitable constant C depending on the dimension of r. This concludes the proof of the lemma.

For later use, we also note here some simple Sobolev inequalities, all in one-dimension only.

Lemma 2.4 For $s > (1/2 - 1/p)$ and $p \geq 2$ there is a constant $c = c(s,p)$ such that

$$\|\phi\|_p \leq c\|\phi\|_{H^s}.$$ (24)

Also, for $0 \leq \theta \leq (1 - 1/p)$, there is a constant c such that

$$\|\phi\|_{\infty} \leq c\|\phi\|_2 \|\phi\|_{H^s}^{1-\theta}.$$ (25)

Finally, for $s > 1/6$ and $s' \leq \min(0, 3s - 1)$, or $s' = 0$ and $s > 1/3$, there is a constant $c = c(s, s')$ such that for $\phi_1, \phi_2, \phi_3 \in H^s$,

$$\|\phi_1 \phi_2 \phi_3\|_{H^{s'}} \leq c\|\phi_1\|_{H^s} \|\phi_2\|_{H^s} \|\phi_3\|_{H^s}.$$ (26)
Remark: The first inequality of the lemma actually holds with \(s = \frac{1}{3} \) and \(p = 6 \), as can be proved using the Hardy-Littlewood-Sobolev inequality. For convenience we will use this inequality as well, although it isn’t essential for our purposes. But as a consequence of this remark, the last inequality Ineq. \((26)\) holds for \(s' = 0, s = \frac{1}{3} \).

Proof: The first inequality of the lemma is proved by estimating

\[
\| \hat{\phi} \|^p_{\ell^p'} = \sum_n \frac{1}{(1 + n^2)^{sp'/2}} (1 + n^2)^{sp'/2} |\hat{\phi}|^p(n)
\leq \|(1 + n^2)^{-sp'/2} \|_{\ell^r} \| \hat{\phi} \|^p_{H^s},
\]

with \(p' \) conjugate to \(p \) and \(r = \frac{2}{(2 - p')} \), all of which is bounded provided that \(sp'r > 1 \), i.e., \(s > \frac{1}{2} - \frac{1}{p} \). One then applies Hausdorff-Young to obtain the first assertion of the lemma.

The second inequality of the lemma is shown by first noting that

\[
\phi(x) = \frac{1}{2\pi} \sum_n \frac{e^{inx}}{(1 + n^2)^{1/2}} (1 + n^2)^{1/2} \hat{\phi}(n)
\]

which by the Schwarz inequality gives the special case \((\theta = 0) \)

\[
\| \phi \|_\infty \leq c \| \phi \|_{H^1}.
\]

Also, we have that

\[
|\phi|^p(x) \leq p \int_y^x |\phi|^{p-1}|\phi'(t)|dt + |\phi|^p(y).
\]

Estimating the integral by \(\| \phi \|_{2(p-1)}^p \| \phi \|_{H^1} \) and then integrating this inequality \((30)\) with respect to \(y \) over \([0, 2\pi]\), we get

\[
2\pi |\phi|^p(x) \leq 2\pi p \| \phi \|_{2(p-1)}^p \| \phi \|_{H^1} + \| \phi \|_{2(p-1)}^{p-1} \| \phi \|_2,
\]

so that

\[
\| \phi \|_\infty \leq c \| \phi \|_2^{1-1/p} \| \phi \|_1^{1/p}.
\]

The second inequality of the lemma is then obtained by interpolation between Ineqs. \((29,32)\).

To prove the last inequality of the lemma, Ineq. \((26)\), we suppose each of the \(\phi_i \)'s is in \(H^s \) with \(s > 1/6 \). Pick \(p' \) with \(s > \frac{1}{p'} - \frac{1}{2} \) and, for later purposes, \(\frac{6}{5} < p' \leq \frac{3}{2} \). By Ineq. \((27)\) above, each \(\hat{\phi}_i \) is in \(\ell^p' \), and the double
convolution $\hat{\phi}_1 \ast \hat{\phi}_2 \ast \hat{\phi}_3$ is in ℓ^r for $\frac{1}{r} = \frac{3}{p'} - 2$ by Young’s inequality. Note that $2 < r \leq \infty$. It is then easy to check that $(1 + n^2)^{s'/2} \hat{\phi}_1 \ast \hat{\phi}_2 \ast \hat{\phi}_3$ is in ℓ^2 provided $s'r' < -1$ where $\frac{1}{r'} + \frac{1}{r} = \frac{1}{2}$. This is so if $s' < 0$ (r' is positive) and $s' < -\frac{1}{r'} = \frac{1}{r} - \frac{1}{2} = \frac{3}{p'} - \frac{5}{2} < 3(s + \frac{1}{2}) - \frac{5}{2} = 3s - 1$. The special case with $s' = 0$, $s > 1/3$ is an immediate consequence of the first inequality \cite{24}.

\section{Estimates for the Non-linear Equations}

\subsection{Local Existence}

The Duhamel integral representation of the system equations for u, Eq.(6), can be written

$$u(t) = \int_0^t e^{(t-t')L_o} \left(\frac{\mu_r \phi^3(t')}{\sqrt{2T}} dt' \right) + e^{tL_o}u(0).$$

(33)

Fix s with $\frac{1}{6} < s < 1$, and for $R > 1$ let $D_R(\beta, t)$ be the set of functions defined

$$D_R(\beta, t) \equiv \left\{ u(\cdot) \in C([0, t], H^s) \mid \|u(0)\|_{H^s} \leq \beta \right\}$$

and

and

$$\sup_{t' \leq t} \|u(t')\|_{H^s} \leq R\beta,$$

(34)

and let $F_R(\beta, t)$ be the (probabilistic) event that the Duhamel integral equation Eq.(33) has a unique strong solution in $D_R(\beta, t)$. We have the following local existence result.

Proposition 3.1 Assume $\frac{1}{6} < s < 1$. There exist constants c_1, c_2, c_3 and C such that if $u(0)$ satisfies $\|u(0)\|_{H^s} \leq \beta$, $R > 3c_3$ and $t \leq c_1/(R^2\beta^2)$, then

$$P\{F_R(\beta, t)\} \geq 1 - C \exp \left(-\frac{c_2 R^2 \beta^2}{t(1 + t)^2} \right).$$

(35)

Clearly, the sets $F_R(\beta, t)$ are nested, $F_R(\beta, t_2) \subset F_R(\beta, t_1)$ if $t_1 \leq t_2$. The event $F_R(\beta) \equiv \cup_n F_R(\beta, t/n)$ is the event that $u(\cdot)$ exists for some positive time, and, in this time, is no bigger than $R\beta$. An immediate corollary of the above proposition is that $F_R(\beta)$ occurs with probability one.

Corollary 3.2 For $s > \frac{1}{6}$, local existence of the solution $u(\cdot)$ in H^s holds almost surely,

$$P\{F_R(\beta)\} = 1.$$

(36)
Proof of Proposition 3.1. We have
\[\left\| \int_0^t e^{(t-t')L_0} \begin{pmatrix} \frac{\mu}{B} \phi^3(t') dt' \\ 0 \end{pmatrix} \right\|_{L^s} \leq c_3 t \mu \sup_{t' \leq t} \| \phi^3(t') \|_{H^{s-1}} \]
\[\leq c_3 t \mu \sup_{t' \leq t} \| \phi(t') \|_{H^s} \leq c_3 t \mu (R\beta)^3 < \frac{1}{3} R\beta, \] (37)
for a suitable constant \(c \). Here, we have used Lemma 2.2 and the Sobolev inequality Ineq. (26) of Lemma 2.4 to estimate \(\| \phi^3 \|_{H^{s-1}} \), assuming that \(s > 1/6 \) and using \(s - 1 < \min(0, 3s - 1) \). Also, we have chosen \(t < (3c_2 R^2 \beta^2)^{-1} \). Furthermore
\[\left\| \int_0^t e^{(t-t')L_0} \begin{pmatrix} 0 \\ \sqrt{2T} d\omega(t') \end{pmatrix} \right\|_{L^s} < \frac{1}{3} R\beta, \] (38)
using that the left side Ineq. (38) is bounded by \(c(1 + t) \sup_{t' \leq t} |\omega(t')| \) for a suitable constant \(c \) (cf. the proof of Lemma 2.3); this condition holds with probability exceeding
\[P \left\{ \sup_{t' \leq t} |\omega(t')| \leq \frac{R\beta}{3c(1 + t)} \right\} \geq 1 - C \exp \left(- \frac{c_2 R^2 \beta^2}{t(1 + t)^2} \right) \] (39)
for suitable constants \(c_2, C \). Finally, since \(R > 3c_3 \) we have \(\| e^{tL_0} u(0) \|_{H^s} \leq c_3 \beta \leq \frac{1}{3} R\beta \). Together with Ineqs. (37, 38) this implies that the right side of the Duhamel integral equation Eq. (33) is a map of \(D_R(\beta, t) \) into itself.

It remains to check that the right side of the Duhamel equation Eq. (33) is contractive for small \(t \). But clearly for two functions \(u_1, u_2 \in D_R(\beta, t) \), with real field parts \(\phi_1 \) and \(\phi_2 \) respectively, and for \(t_1 \leq t \),
\[\left\| \int_0^{t_1} e^{(t_1-t')L_0} \begin{pmatrix} \frac{\mu}{B} (\phi_1^3 - \phi_2^3)(t') \\ 0 \end{pmatrix} dt' \right\|_{L^s} \]
\[\leq c_3 \mu t \sup_{t' \leq t} \| (\phi_1^3 + \phi_1 \phi_2 + \phi_2^3)(\phi_1 - \phi_2)(t') \|_{H^{s-1}} \]
\[\leq 3c_3 t \mu (R\beta)^2 \sup_{t' \leq t} \| (u_1 - u_2)(t') \|_{H^s} \] (40)
by Ineq. (26) of Lemma 2.4 for a suitable constant \(c \). Thus the Duhamel integral is a contraction for \(t < 1/(3c_3 R^2 \beta^2) \).

In summary, if \(t < c_1 / \mu R^2 \beta^2 \), for a suitably small constant \(c_1 \), and if the stochastic integral estimate Ineq. (38) holds, the right side of the Duhamel expression maps \(D_R(\beta, t) \) into itself and it is a contraction, so that by the contraction mapping theorem, Eq. (3) has a unique strong solution in \(D_R(\beta, t) \). Ineq. (38) holds with probability at least that given in Ineq. (39).
3.2 Global Existence

Finally, in this section we provide a global estimate for the non-linear stochastic evolution $u(t)$. Following Bourgain’s methods for the non-linear wave equation [1], we set

$$\tilde{u}_N(t) = (\tilde{u}_N(t), \tilde{r}(t)) = \left((u(t) - P_{> N} u_o(t)), (r - r_o)(t) \right),$$

with the positive integer N to be chosen later, $P_{> N}$ projection onto the Fourier modes $\{ k : |k| > N \}$. Here, $u(t)$ and $u_o(t)$ (the linear evolution) are assumed to begin with the same initial data, $u(0) = u_o(0)$, and are driven by the same stochastic driving terms, so that they are not independent: they are coupled. The quantity $I_N(t)$ is defined as it would be in the pure deterministic case,

$$I_N(t) = E(\tilde{u}_N(t)),$$

with E the energy defined by equation (4). Set

$$\theta_s \equiv \min \left\{ \frac{1}{3}(4s - 1), \frac{1}{3}(1 - s), \gamma \right\}.$$

(43)

We will assume below that $\alpha \in H^\gamma$ with $\gamma > 0$, and that $1/3 \leq s < 1$.

Our main result is the following:

Proposition 3.3 Let $u(0) = u_o(0)$, with $\beta = \|u(0)\|_{H^\gamma} = \|u_o(0)\|_{H^\gamma}$. Fix $R > 1$, $\theta > 0$ and $\delta > 0$ so that $\theta + \delta < \theta_s$. There exist constants c, C and an $N_o = N_o(R, \beta)$ and $\tau = \tau(R, \beta)$, such that if $N \geq N_o$ and $t \leq \tau N^\delta$, then

$$P \left\{ \sup_{t' \leq t} I_N(t') > R \beta^2 N^{2(1 - s)} \right\} \leq C \exp \left(- c N^{2\delta} \right).$$

(44)

Proof: The stochastic differential of $I_N(t)$ is given by

$$dI_N(t) = \left(3 \langle B\tilde{u}_N, \mu(\Re u)^3 - \mu(\Re \tilde{u}_N)^3 + r_o P_{\leq N} \alpha \rangle - \tilde{r}^2 + \tilde{r} \Im \langle B u_o, P_{\leq N} \alpha \rangle \right) dt.$$

(45)

In particular, there are no $d\omega$ or $d\omega^2 = dt$ terms, hence the differential is the same as if we were just considering a wave equation with dissipation. We proceed to estimate the terms on the right side.

We have that

$$\| (\Re u)^3(t) - (\Re \tilde{u}_N)^3(t) \|_2 \leq c'' \left(\| P_{> N} u_o(t) \|_2 \| \tilde{u}_N \|^3_{\infty} + \| P_{> N} u_o(t) \|_3^3 \right)$$

$$\leq c' \left(\| P_{> N} u_o(t) \|_2 \| \tilde{u} \|_{H^1}^{4/3} \| \tilde{u} \|_{H^1}^{2/3} + \| P_{> N} u_o(t) \|_3^3 \right)$$

$$\leq c \left(N^{-s} \| u_o(t) \|_{H^s} I_N(t)^{2/3} + \| u_o(t) \|_{H^s}^3 \right)$$

(46)
for suitable constants \(c',c'',c\). Here we have used Sobolev inequalities, first Ineq. (25), then Ineq. (24) of Lemma 2.4. The other factors in Eq. (45) are readily estimated, and we get

\[
\frac{dI_N(t)}{dt} \leq c \left(N^{-s} \|u_o(t)\|_{H^s} I_N(t)^{7/6} + (|r_o(t)| + N^{1-\gamma-s} \|u_o(t)\|_{H^s} + \|u_o(t)\|_{H^s}^3 I_N(t)^{1/2}) \right) dt. \tag{47}
\]

Now assuming that \(I_N(t) \leq R\beta^2 N^{2(1-s)}\) and \(|u_o(t)|_{H^s} \leq N^\theta\), with \(0 < \theta < \theta_s \equiv \min\{\frac{1}{2}(4s - 1), \frac{1}{3}(1 - s), \gamma\}\), we obtain

\[
dI_N(t) \leq N^{2(1-s)} \left(N^\theta \mathcal{O}(N^{\frac{1}{2}(1-4s)}) + N^{3\theta} \mathcal{O}(N^{-1-s}) + N^\theta \mathcal{O}(N^{-\gamma}) \right) dt
\]

\[
\leq N^{2(1-s)} \mathcal{O}(N^{\theta-\theta_s}) dt. \tag{48}
\]

It follows that \(I_N(t) \leq R\beta^2 N^{2(1-s)}\) for \(t \leq T\) with \(T = \mathcal{O}(N^\delta)\), \(\delta < \theta_s - \theta\), provided that in this time interval, \(|u_o(t)|_{H^s} \leq N^\theta\). Said more precisely, given \(\beta, R\), there exist an \(N_o(\beta, R)\) and a \(\tau(\delta, \theta, \beta, R)\) such that for \(N \geq N_o\), \(I_N(t)\) remains less than \(R\beta^2 N^{2(1-s)}\) for a time \(t, 0 \leq t \leq \tau N^\delta\), provided that \(|u_o(t)|_{H^s}\) remains less than \(N^\theta\) in this same time interval.

Thus we have that

\[
P \left\{ \sup_{t' \leq t} I_N(t') > R\beta^2 N^{2(1-s)} \right\}
\]

\[
= P \left\{ \sup_{t' \leq t} I_N(t') > R\beta^2 N^{2(1-s)} \text{ and } \sup_{t' \leq t} \|u_o(t')\|_{H^s} \geq N^\theta \right\}
\]

\[
\leq P \left\{ \sup_{t' \leq t} \|u_o(t')\|_{H^s} \geq N^\theta \right\}
\]

\[
\leq C \exp \left(- \frac{(N^\theta - c\beta^2)^2}{c^2 t(1+t)^2} \right) \leq C_1 \exp \left(- \frac{c_1 N^{2\theta}}{t(1+t)^2} \right) \quad \tag{49}
\]

for \(t \leq \tau N^\delta\), by Ineq. (18) of lemma 2.3 and appropriate new constants \(C_1\) and \(c_1\). After renaming of constants and taking \(N_o\) still larger so that \(N^\theta > 2c\beta\), the proof of the proposition is complete.

The proposition 3.3 and the lemma 2.3 give us a global bound:

Corollary 3.4 Let \(\beta, \theta < \theta_s, R \geq 2\) be fixed, as in the above Proposition. There exist constants, \(c, C\) and \(N_1 = N_1(\beta, R, t)\), such that for any time \(t\), and \(N \geq N_1\),

\[
P \left\{ \sup_{t' \leq t} \|u(t')\|_{H^s} > R\beta N^{1-s} \right\} \leq C \exp \left(- \frac{c N^{2\theta}}{t(1+t)^2} \right). \tag{50}
\]
Remark: The same ideas, in particular estimating $I_N(t)$ for any N, can be used to prove global existence almost surely in the energy norm $s = 1$, but we do not write out precise statements here.

Proof: We have that
\[P \left\{ \sup_{t' \leq t} \| u(t') \|_{H^s} > R\beta N^{1-s} \right\} \leq P \left\{ \sup_{t' \leq t} \| \tilde{u}_N(t') \|_{H^1} > \frac{1}{2} R\beta N^{1-s} \right\} + P \left\{ \sup_{t' \leq t} \| u_\alpha(t') \|_{H^s} > \frac{1}{2} R\beta N^{1-s} \right\}. \] (51)

Now the first probability on the right side is bounded by
\[P \left\{ \sup_{t' \leq t} I_N(t') > \frac{1}{2} R^2 \beta^2 N^{2(1-s)} \right\} \leq C \exp \left(-\frac{cN^{2\vartheta}}{t(1+t)^2}\right) \] (52)
for $N > N_\alpha$ by Proposition 3.3. The second probability on the right side of Ineq.(51) is bounded by the estimate given in Lemma 2.3, with $\lambda = \frac{1}{2} R\beta N^{1-s} >> \mathcal{O}(N^\vartheta)$. Thus this probability is negligible compared to the first term on the right side of Ineq.(51). Enlarging C completes the proof of the corollary.

4 Large k Cut-off Systems and an Equilibrium Invariant Measure

4.1 Convergence of Finite Dimensional Cut-off Systems

We consider a cut-off version of our system Eqs.11 where we retain Fourier modes \{k\} with $|k| \leq M$, M a positive integer. Let $u_M(t) = (u_M, r_M)(t) = (\phi_M + \frac{1}{B} \pi_M, r_M)(t)$ denote a solution to the finite dimensional system
\[
\begin{align*}
 i \partial_t u_M(t) &= Bu_M(t) + \frac{1}{B} P \leq M (u_M \phi_M^3(t) + r_M(t)\alpha) \\
 dr_M(t) &= -(r_M(t) - \langle P \leq M \alpha_i, \pi_M(t) \rangle) dt + \sqrt{2T} d\omega(t)
\end{align*}
\] (53)
for initial data $u_M(0) \in P \leq M L^2$. The solution $u_M(t)$ remains in $P \leq M L^2$ and is clearly in H^s (for any s), since all Fourier coefficients $\hat{u}_{M,k} = 0$ for $|k| > M$. We remark that under the same assumptions on the coupling functions α, the conclusions of the previous section, Propositions 3.1, 3.3 and
Corollary 3.4 hold for solutions u_M uniformly in M with respective initial data $u_M(0) = P_M u(0)$ for an initial $u(0) \in H^s$, $s > 1/3$. In particular the arguments used there are equally valid for the cut-off systems.

Fix s and let $\mathcal{D}_R(\beta, t)$ be the set of continuous functions defined in Eq. (53), in particular functions $\{u\}$ bounded in the H^s-norm by $R\beta$ with $\|u(0)\|_{H^s} \leq \beta$, and let $\mathcal{G}_R(\beta, t)$ be the probabilistic event defined

$$
\mathcal{G}_R(\beta, t) \equiv \{u(\cdot), u_M(\cdot) \in \mathcal{D}_R(\beta, t) \text{ for each } M\}
$$

(54)

with $u(\cdot)$ the solution to Eq. (1) and $u_M(\cdot)$ the solution to Eq. (53).

Proposition 4.1 Fix $s > 1/3$, a time $t > 0$, and $s_0 > s$. Then $\{u_M(\cdot)\}$ converges strongly to $u(\cdot)$ in H^s uniformly on $\mathcal{G}_R(\beta, t) \cap \{u \mid \|u(0)\|_{H^{s_0}} \leq \beta\}$.

Proof. For notational convenience we will replace the t of the Proposition statement by t_1, and work on the time interval $t \in [0, t_1]$. We will assume that in this time interval we have the a priori bounds $\|u(t)\|_{H^s} \leq R\beta$ and $\|u_M(t)\|_{H^s} \leq R\beta$, for all M and t. Given these bounds, we will actually show the stronger result that $P_{\leq M} u - u_M \to 0$ strongly in H^1 and $P_{> M} u \to 0$ strongly in H^s, uniformly in t and the initial data with $\|u(0)\|_{H^{s_0}} \leq \beta$.

The quantities u and u_M satisfy the respective Duhamel relations

$$
u(t) = \int_0^t e^{(t-t')B_0} \left(\frac{-i}{\beta}(\mu \phi^3 + r \alpha)dt' \right) + e^{tB_0}u(0)
$$

(55)

and, for u_M with initial data $P_{\leq M} u(0)$,

$$
u_M(t) = \int_0^t e^{(t-t')B_0} \left(\frac{-i}{\beta}P_{\leq M}(\mu \phi^3 + r M \phi^3)dt' \right) + e^{tB_0}P_{\leq M}u(0).$$

(56)

We proceed to estimate $(P_{\leq M} u - u_M)(t)$ in the H^1-norm, for $0 \leq t \leq t_1$.

From the above integral formulae Eqs. (55, 56) one sees that there will be contributions to $(P_{\leq M} u - u_M)(t)$ coming from integrals involving the non-linearity $\phi^3 - \phi_M^3$, $(r - r_M)\alpha$, and $\langle \alpha, (\pi - \pi_M) \rangle$. We first consider the integral of the non-linearity and obtain a contribution to $(P_{\leq M} u - u_M)(t)$

$$
\left\| \int_0^t e^{(t-t')B_0} \left(\frac{-i}{\beta}P_{\leq M}(\phi^3 - \phi_M^3)dt' \right) \right\|_{H^1}
$$

(57)

$$
\leq c(R\beta)^2 \int_0^t \|P_M u(t')\|_{H^s} dt' + c(R\beta)^2 \int_0^t \|u(t')\|_{H^s} dt'
$$
for a suitable constant c by the Sobolev inequality Ineq.26 with $s' = 0$, $s > 1/3$. Next, the contribution to $(P_{\leq M}u - u_M)(t)$ from the integral of $(r - r_M)\alpha$ is bounded by
\[
\left\| \int_0^t e^{(t-t')B_0} \left(\frac{-i(r - r_M)}{B} P_{\leq M} \alpha \, dt' \right) \right\|_{H^1} \leq c\|\alpha\|_2 \int_0^t \left\| P_{\leq M}u - u_M(t') \right\|_{H^1} \, dt'.
\] (58)

Finally, the contribution to $(P_{\leq M}u - u_M)(t)$ from the integral of $(\pi - \pi_M)$ is bounded by
\[
\left\| P_M \alpha \right\|_2 \left[\int_0^t \left\| P_M \tilde{u}(t') \right\|_{H^1} \, dt' + \left| \int_0^t e^{-i(t-t')} \langle \alpha, BP_M u_0(t') \rangle \, dt' \right|
\right. \\
+ \left. \|\alpha\|_2 \int_0^t \left\| (P_{\leq M}u - u_M)(t') \right\|_{H^1} \, dt' \right],
\] (59)
where u_0 is the solution to the linear equations (with dissipation and noise), and $\tilde{u} = u - u_0$. The second of these integrals is bounded by
\[
\left\| P_M \alpha \right\|_2 \left[\left\| e^{L_0 - e^{-t}L_0} \, u(0) \right\|_{H^1} \right] \leq c\|P_M \alpha\|_2 \left\| u(0) \right\|_2
\]
\[
\leq c\|P_M \alpha\|_2 \beta
\] (60)
by Lemma21 (with $s = 0$). Adding these contributions, Ineq.57,58,59, and using the last estimate, we arrive at
\[
\left\| (P_{\leq M}u - u_M)(t) \right\|_{H^1} \leq c(\alpha, R\beta) \int_0^t \left\| (P_{\leq M}u - u_M)(t') \right\|_{H^1} \, dt' \\
+ c(R\beta)^2 \int_0^t \left\| P_M u(t') \right\|_{H^s} \, dt' + \|P_M \alpha\|_2 \int_0^t \left\| P_M \tilde{u}(t') \right\|_{H^1} \, dt' \\
+ cR\beta^2 \|P_M \alpha\|_2,
\] (61)
where $c(\alpha, R\beta)$ is linear in $\|\alpha\|_2$ and quadratic in $R\beta$.

The inhomogeneous terms on the right side of this inequality 61, i.e., the second, third, and fourth terms, each go to zero, $M \to \infty$ uniformly in t and the data. Second term of 61: Consider the projection of the integral formula of Eq.55 above onto $P_M H^s$. To control the non-linear contribution to $\|P_M u(t')\|_{H^s}$, we use
\[
\left\| \frac{1}{B} P_M \phi^3 \right\|_{H^s} = \|P_M \phi^3\|_{H^{s-1}} \\
\leq M^{s-s''} \|P_M \phi^3\|_{H^{s''-1}} \\
\leq M^{s-s''} \|u\|_{H^s} \leq M^{s-s''}(R\beta)^3
\] (62)
by the Sobolev inequality \(M \), with \(s'' \) chosen, \(s < s'' < 1 \). The \(\alpha \)-contribution presents little difficulty and is \(O(M^{-\gamma}R\beta\|\alpha\|_{H^s}) \), while the inhomogeneous term is estimated \(\|P_{>M}e^{tB_0u(0)}\|_{H^s} \leq c_3M^{s-s_0}\|P_{>M}u(0)\|_{H^{s_0}} \leq c_3M^{s-s_0}\beta \), by Lemma 2.2 Third term of (61): We have that

\[
\|P_{>M}\tilde{u}(t)\|_{H^s} \leq \int_0^t \left\| P_{>M} \left(\frac{u}{B} \phi(t')^3 + \frac{(r - r_o)(t')}{B} \alpha \right) \right\|_{H^s} dt' \\
\leq \int_0^t \|P_{>M}(u(t')^3)\|_2 dt' + 2R\beta t\|P_{>M}\alpha\|_2.
\]

Here, \(P_{>M}(u(t')^3) = P_{>M}((P_{\leq[M/3]}u(t') + P_{[M/3]}u(t'))^3) \), where \([M/3]\) denotes the greatest integer \(\leq M/3 \). Expanding this out, one sees that terms containing a factor \(P_{>M}[M/3]u(t') \) go to zero uniformly for \(M \to \infty \) as in our analysis of the second term of (61), and the term \(P_{>M}(P_{\leq[M/3]}u(t')^3) \) is identically zero. The \(\alpha \)-term is \(O(M^{-\gamma}R\beta\|\alpha\|_{H^s}) \). It follows that \(\|P_{>M}\tilde{u}(t)\|_{H^s} \) goes to 0 uniformly. Fourth term of (61): This term, proportional to \(\alpha \), is also \(O(M^{-\gamma}R\beta\|\alpha\|_{H^s}) \).

Thus Ineq.(61), with each of its inhomogeneous terms going to zero uniformly, \(M \to \infty \), implies via Gronwall’s inequality that \((P_{\leq[M/3]}u - P_{>M}u)(t) \) goes to zero in \(H^1 \) uniformly in \(t \) and the data. Since \(P_{>M}u(t) \) goes to zero uniformly in \(H^s \) as we have seen above, we have that \(u(t) \) converges to \(u(t) \) uniformly in \(H^s \), provided that \(\|u(t)\|_{H^s} \) and \(\|u_M(t)\|_{H^s} \) stay less than \(R\beta \) for \(t \leq t_1 \), i.e., are in \(\mathcal{G}_R(\beta, t_1) \), and the data \(u(0) \) satisfies \(\|u(0)\|_{H^{s_0}} \leq \beta \).

4.2 Equilibrium Invariant Measure

We proceed now to show the existence of an invariant measure for the complete system Eqs. (1), but in equilibrium where all temperatures are equal to a common \(T \). Let \(\nu^0 \) be the Gaussian measure referred to in the introduction, which at least formally is the invariant measure for the linear problem with the \(f \phi^4 \)-term turned off. With respect to \(\nu^0 \), \(\|u\|_{H^s}^2 \) has finite expectation for \(s < 1/2 \),

\[
\int \|u\|_{H^s}^2 d\nu^0 = 2T \sum_k (1 + k^2)^{s-1} < \infty,
\]

hence \(\|\phi\|_{H^s} \) is finite, \(\nu^0 \)-a.s. By Sobolev inequality \(M \) of Lemma 2.4 \(\|\phi\|_4 \leq c\|\phi\|_{H^s} \) for \(s > 1/4 \), so that as random variables \(\|\phi\|_4 \) and \(P_{\leq M}\phi \)
are also finite \(\nu^0\)-a.s. (Actually \(\nu_0\) is supported on continuous functions, but we do not need this here.) Set

\[
d\nu_M(\pi, \phi) = Z_M^{-1} \exp \left(-\frac{\mu}{4T} \int \phi_M^4 \, dx \right) d\nu^0(\pi, \phi)
\]

\[
d\nu(\pi, \phi) = Z^{-1} \exp \left(-\frac{\mu}{4T} \int \phi^4 \, dx \right) d\nu^0(\pi, \phi)
\]

with appropriate normalizations

\[
Z_M = \int \exp \left(-\frac{\mu}{4T} \int \phi_M^4 \, dx \right) d\nu^0, \quad Z = \exp \left(-\frac{\mu}{4T} \int \phi^4 \, dx \right) d\nu^0
\]

and \(\phi_M = P_{\leq M} \phi\). Since \(\|\phi\|_4\) and \(\|P_{\leq M} \phi\|_4\) are finite a.s., the Radon-Nikodym factors \(\exp \left(-\frac{\mu}{4T} \int \phi_M^4 \, dx \right)\) and \(\exp \left(-\frac{\mu}{4T} \int \phi^4 \, dx \right)\) are bounded and positive a.s., and the normalizations \(Z\) and \(Z_M\) are positive. The measures \(\nu_M\) and \(\nu\) are absolutely continuous with respect to \(\nu^0\).

The semigroup associated with the cut-off system Eq. (53) acts invariantly on functions \(\{f(u)\}\) of the form \(f(u) = g(\hat{u}_{-M}, \ldots, \hat{u}_M, r)\), with \(g\) integrable. The measure \(\nu_M\) is an invariant measure for this semigroup, as can be checked by computing the generator of the process and showing that its adjoint annihilates \(\nu_M\); we leave this exercise to the reader.

We also have that \(\lim_{M \to \infty} Z_M = Z\). This is the case by the bounded convergence theorem: Clearly the exponentials are bounded by one, and

\[
\|\phi\|_4 - \|\phi_M\|_4 \leq \|\phi - \phi_M\|_4 \leq c \|\phi - \phi_M\|_{H^s} \to 0, \quad M \to \infty \text{ a.s.} \quad (67)
\]

so that

\[
\exp \left(-\frac{\mu}{4T} \int \phi_M^4 \, dx \right) \to \exp \left(-\frac{\mu}{4T} \int \phi^4 \, dx \right), \text{ a.s.} \quad (68)
\]

Let \(f\) be a function in the norm closure \(\mathcal{X}\) of functions depending continuously on only a finite number of modes,

\[
\mathcal{X} \equiv \cup_M \{f \mid f = g(\hat{u}_{-M}, \ldots, \hat{u}_M, r), \text{ } g \text{ bounded continuous}\}. \quad (69)
\]

Then again we have by bounded convergence that

\[
\int f \exp \left(-\frac{\mu}{4T} \int \phi_M^4 \, dx \right) d\nu^0 \to \int f \exp \left(-\frac{\mu}{4T} \int \phi^4 \, dx \right) d\nu^0 \quad (70)
\]

and so

\[
Z_M^{-1} \int f \exp \left(-\frac{\mu}{4T} \int \phi_M^4 \, dx \right) d\nu^0 \to Z^{-1} \int f \exp \left(-\frac{\mu}{4T} \int \phi^4 \, dx \right) d\nu^0. \quad (71)
\]
Thus, ν_M converges to ν in a weak-* sense.

For later use, we also note a kind of tightness for the measures $\{\nu_M\}$; for $s < 1/2$,

$$\int_{\{\|u\|_{H^s} > \beta\}} d\nu_M \leq \frac{1}{Z_M} \int \frac{\|u\|_{H^s}}{\beta} \exp \left(-\frac{\mu}{4T} \int \phi_M^4 \, dx \right) \, d\nu^0 \leq \frac{1}{\beta Z_M} \left(\int \|u\|_{H^s}^2 \, d\nu^0 \right)^{1/2}$$

which is arbitrarily small for β large, uniformly in M, by Ineq. (64).

Finally, we address the invariance of ν. Define the semigroups

$$S^t f(u) \equiv E_u[f(u(t))], \quad S^t_M f(u) \equiv E_u[f(u_M(t))],$$

where $f \in \bar{X}$. (We will assume here for definiteness that the Fourier modes $\hat{u}_{M,k}(t)$ are simply constant in time for modes $|k| > M$.)

Proposition 4.2 (Equilibrium case) The measure ν is invariant with respect to the semigroup S^t in the sense that for $f \in \bar{X}$,

$$\int S^t f \, d\nu = \int f \, d\nu.$$ \hspace{1cm} (74)

Proof. Choose s, $1/3 < s < 1/2$, and let $G_R(\beta, t)$ be the event defined in Eq. (54) (using the H^s-norm). By Corollary 3.4 we have that for an initial u with $\|u\|_{H^s} \leq \beta$,

$$P_u\{G_R^c(\beta, t)\} \leq \frac{C}{\beta} \exp \left(-\frac{c R^{2\theta/(1-s)}}{t(1+t)^2} \right);$$ \hspace{1cm} (75)

we identify the R here with $2N^{1-s}$ in the corollary statement (the R of the corollary being chosen equal to 2) and appropriately redefine the constant c.

Now let s_o be chosen, with $s < s_o < 1/2$ and let $f(u)$ be a bounded function continuous in the H^s-norm of u. (Such functions are dense in \bar{X}). For $\|u\|_{H^{s_o}} \leq \beta$ and any $\epsilon > 0$,

$$|S^t f(u) - S^t_M f(u)| \leq \left| E_u[\chi_{G_R(\beta,t)}(f(u(t)) - f(u_M(t)))] \right| + 2\|f\|_{\infty} P_u\{G_R^c(\beta,t)\}$$

$$< \epsilon$$ \hspace{1cm} (76)

for R and then M chosen sufficiently large, by the above probability estimate, and by the uniform convergence of u_M to u on $G_R(\beta, t) \cap \{u \mid \|u(0)\|_{H^{s_o}} \leq \beta\}$,
Proposition 4.1. Consequently, \(S^t_M f(u) \to S^t f(u) \), for \(M \to \infty \) uniformly in \(u \), \(\|u\|_{H^{s_0}} \leq \beta \).

Finally,

\[
\left| \int S^t f d\nu - \int S^t_M f d\nu_M \right|
\leq \left| \int S^t f (d\nu - d\nu_M) \right| + \int \chi_{\{\|u\|_{H^{s_0}} \leq \beta\}} \left| S^t f - S^t_M f \right| d\nu_M \\
+ 2\|f\|_\infty \int_{\{\|u\|_{H^{s_0}} > \beta\}} d\nu_M . \tag{77}
\]

The first term on the right side goes to zero by weak-\(\star \) convergence of \(\{\nu_M\} \) to \(\nu \), the last term can be made arbitrarily small for \(\beta \) suitably large by tightness Ineq.(72), and the middle term then goes to zero by uniform convergence of \(S^t_M f \) for \(\|u\|_{H^{s_0}} \leq \beta \). Thus

\[
\int S^t f d\nu = \lim_{M \to \infty} \int S^t_M f d\nu_M = \lim_{M \to \infty} \int f d\nu_M = \int f d\nu . \tag{78}
\]

by the above Ineq.(77), by invariance of \(\nu_M \) under \((S^t_M)^\ast \), and again by weak-\(\star \) convergence of the \(\{\nu_M\} \). This completes the proof of invariance of \(\nu \) for functions depending continuously on \(u \) with respect to the \(H^s \)-norm and, by density, invariance for all \(f \in \mathcal{X} \).

Remarks: We emphasize that the question of ergodicity for this equilibrium measure \(\nu \) remains open, as does the existence of non-equilibrium invariant measures for differing temperatures.

Acknowledgments: L.E.T. wishes to thank the Department of Mathematics, U. Mass Amherst, for the hospitality extended to him. L.R-B. was supported in part by NSF Grant DMS-0306540, L.E.T. by NSF Grant DMS-0245511.

References

[1] Bourgain, J.: Global solutions of nonlinear Schrödinger equations. American Mathematical Society Colloquium Publications, 46. American Mathematical Society, Providence, RI, (1999). See chapter IV, section 2.

[2] Bourgain, J.: Periodic nonlinear Schrödinger equation and invariant measures. Comm. Math. Phys. 166, 1–26 (1994).
[3] Bourgain, J.: Invariant measure for the non-linear Schrödinger equation, in infinite volume. Commun. Math. Phys. 210, 605-620 (2000).

[4] Bricmont, J., Kupiainen, A., and Lefevere, R.: Exponential mixing of the 2D stochastic Navier-Stokes dynamics. Comm. Math. Phys. 230, 87–132 (2002)

[5] Brydges, D.C. and Slade, G.: Statistical Mechanics of the 2-dimensional focusing non-linear Schrödinger equation, Commun. Math. Phys. 182 485-504 (1996).

[6] Colliander, J., Keel, M., Staffilani,G., Takaoka,H., Tao, T.: Local and global well-posedness for non-linear dispersive and wave equations. http://www.math.ucla.edu/~tao/Dispersive/

[7] E, W., Mattingly, J. C., and Sinai, Ya.: Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation. Comm. Math. Phys. 224, 83–106 (2001)

[8] Eckmann, J.-P. and Hairer, M.: Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators. Commun. Math. Phys. 212, 105–164 (2000)

[9] Eckmann, J.-P. and Hairer, M.: Spectral properties of hypoelliptic operators. Commun. Math. Phys. 235 233–253 (2003)

[10] Eckmann, J.-P. and Hairer, M.: Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise. Comm. Math. Phys. 219, 523–565 (2001)

[11] Eckmann, J.-P., Pillet C.-A., and Rey-Bellet, L.: Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures. Commun. Math. Phys. 201, 657–697 (1999)

[12] Eckmann, J.-P., Pillet, C.-A., and Rey-Bellet, L.: Entropy production in non-linear, thermally driven Hamiltonian systems. J. Stat. Phys. 95, 305–331 (1999)

[13] Keel, M. and Tao, T.: Local and global well-posedness of wave maps in \mathbb{R}^{1+1} for rough data. Int. Math. Res. Not. 21, 1117-1156 (1998)

[14] Kuksin, S. and Shirikyan, A.: Ergodicity for the randomly forced 2D Navier-Stokes equations. Math. Phys. Anal. Geom. 4, 147–195 (2001)
[15] Lebowitz, J.L., Rose, H., and Speer, E.: Statistical mechanics of the non-linear Schrödinger equation, J.Stat.Phys. 50, 657-687 (1988). See also, Statistical mechanics of the non-linear Schrödinger equation II, Mean field approximation, J.Stat.Phys. 54, 17-56 (1989).

[16] McKean, H.P. and Vaninsky, K.L.: Statistical mechanics of non-linear wave equations, in Stochastic Analysis, Ithaca, NY (1993) 457-463, Proc. Symp. Pure Math 57, Amer. Math. Soc., Providence, R.I. (1995).

[17] Masmoudi, N. and Young, L.-S.: Ergodic theory of infinite dimensional systems with applications to dissipative parabolic PDEs. Comm. Math. Phys. 227, 461–481 (2002)

[18] Rey-Bellet, L.: Statistical Mechanics of anharmonic lattices. In Advances in Differential Equations and Mathematical Physics, Contemporary Mathematics 327, Providence, R.I.: AMS, 2003.

[19] Rey-Bellet, L. and Thomas, L.E.: Asymptotic behavior of thermal non-equilibrium steady states for a driven chain of anharmonic oscillators. Commun. Math. Phys. 215, 1–24 (2000)

[20] Rey-Bellet, L. and Thomas, L.E.: Exponential convergence to non-equilibrium stationary states in classical statistical mechanics. Commun. Math. Phys. 225, 305–329 (2002)

[21] Rey-Bellet, L. and Thomas, L.E.: Fluctuations of the entropy production in anharmonic chains. Ann. H. Poinc. 3, 483–502 (2002)

[22] Zhidkov, P. E.: An invariant measure for a nonlinear wave equation. Nonlinear Anal. 22, 319–325 (1994)