Diffractive Z boson pair production at LHC in the large extra dimensions scenario

V. P. Gonçalves,* W. K. Sauter,† and M. Thiel‡

High and Medium Energy Group,
Instituto de Física e Matemática,
Universidade Federal de Pelotas
Caixa Postal 354, CEP 96010-900,
Pelotas, RS, Brazil
(Dated: May 27, 2014)

Abstract

In this paper we study the diffractive Z boson pair production mediated by the Kaluza-Klein graviton in the large extra dimensions scenario at the CERN Large Hadron Collider energies. Considering the Durham model we estimate the total cross section for the central inclusive and exclusive diffractive production of a Z boson pair in $pp/Pb/PbPb$ collisions. Our results indicate that the experimental analysis of the central inclusive production in pp collisions is feasible at CERN LHC.

PACS numbers: 11.10.Kk,14.80.Rt,12.38.Bx, 14.70.Hp

Keywords: Beyond Standard Model; Large Extra Dimensions; Diboson production; Diffractive processes.

*Electronic address: barros@ufpel.edu.br
†Electronic address: werner.sauter@ufpel.edu.br
‡Electronic address: mauricio.thiel@gmail.com
I. INTRODUCTION

The search for particles beyond the Standard Model (SM) is one of the key issues of the ATLAS and CMS experiments at LHC. In particular, these experiments can test the theories with extra dimensions, which aim to solve the hierarchy problem by bringing the gravity scale closer to the electroweak scale (For a review see, e.g., [1]). Over a decade ago, Arkani-Hamed, Dimopoulos, and Dvali [2] proposed a scenario whereby the SM is constrained to the common 3 + 1 space-time dimensions (brane), while the gravity is free to propagate throughout a larger multidimensional space (bulk). In this Large Extra Dimensions (LED) scenario, \(n \) extra spatial dimensions are compactified on a torus with common circumference \(R \). Then the four dimensional Planck scale \(M_P \) is no longer the relevant scale but is related to the fundamental scale \(M_S \) as follows

\[
M_P^{-2} \approx M_S^{n+2} R^n \quad \text{where} \quad M_S = \mathcal{O}(\text{TeV}).
\]

Moreover, the 4 + \(n \) dimensional graviton corresponds to a tower of massive Kaluza-Klein (KK) modes in four dimensions. The interactions of these spin-2 KK gravitons with the SM matter can be described by an effective theory with the Lagrangian given by [3, 4]

\[
\mathcal{L} = -\frac{\kappa^2}{2} \sum_{\vec{n}=0}^{\infty} T^{\mu\nu}(x) h_{\mu\nu}^{\vec{n}}(x),
\]

where \(\kappa = \sqrt{16\pi}/M_P \), the massive KK gravitons are labelled by a \(d \)-dimensional vector of positive integers and \(T^{\mu\nu} \) denotes the energy-momentum tensor of the SM. In what follows we assume that

\[
\kappa^2 R^n = 8\pi (4\pi)^{n/2} \Gamma(n/2) M_S^{-(n+2)}.
\]

The Feynman rules that follow from Eq. (1) can be found in Refs. [3, 4]. The individual KK resonances have masses equal to \(m_{(\vec{n})} = |\vec{n}|/R \) and thus the mass gap between the neighbouring modes \(\Delta m \propto 1/R \) is small for \(n \) not too large, which allow us to approximate the discrete mass spectrum by a continuum. The individual KK mode couples with a strength \(\propto 1/M_P \) to the SM fields. However, since there are many KK modes, the total coupling strength is of the order of \(1/M_S \) after summing up all of them. Moreover, the excited gravitons preferentially decay into two gauge bosons rather than into two leptons, because the graviton has spin 2, and so fermions cannot be produced in an \(s \) wave.

Searches for the large extra dimensions scenario via virtual-graviton effects were performed at HERA, LEP, the Tevatron, and the LHC (For a recent review see, e.g., [5]).
Recent experimental results from the ATLAS and CMS Collaborations sets lower limits on M_S, being about 3.5 TeV (2.7 TeV) for $n = 2$ ($n = 6$) [6]. From the theoretical side, many studies on the virtual KK graviton effects up to the NLO exist [7]. These include the processes of fermion-pair, multijet, and diboson production. In general the contribution associated to the graviton exchange is mostly undetectable because of the much larger Standard Model background. The lower SM background occurs in the production of Z pairs which have the smallest cross section of all the diboson processes. In contrast, this process have tree-level contributions in the LED scenario, which motivated the study of the Z boson pair production mediated by the Kaluza-Klein graviton in large extra dimensions [8–11]. These studies consider inclusive processes, where the hadrons colliding dissociate after the interaction. In this paper we extend these previous studies for diffractive processes, in which the hadrons colliding lose only a small fraction of their initial energy and escape the central detectors [12]. In the diffractive interaction the hadron can dissociate (inclusive diffractive process) or remain intact (exclusive diffractive process). In what follows we consider the Z boson pair production in central exclusive processes (CEP), $h_1 + h_2 \rightarrow h_1 \otimes ZZ \otimes h_2$, which are characterized by empty regions in pseudo-rapidity, called rapidity gaps (denoted by \otimes), that separate the intact very forward hadron from the ZZ final state produced in the interaction [See Fig. 1(a)]. Exclusivity means that nothing else is produced except the leading hadrons and the central object. Moreover, we consider central inclusive processes (CIP), $h_1 + h_2 \rightarrow X \otimes ZZ \otimes Y$, which also exhibit rapidity gaps but the incident hadrons dissociates in the products X and Y [See Fig. 1(b)]. In general the rapidity gaps present in inclusive processes are smaller than in the exclusive case. A QCD mechanism for the central inclusive and exclusive diffractive production of a heavy central system has been proposed by Khoze, Martin and Ryskin [13–15], denoted Durham model hereafter, with its predictions in broad agreement with the observed rates measured by CDF Collaboration [16] (For a recent review see Ref. [12]). In this paper the Durham model is applied, for the first time, for the Z boson pair production considering the KK graviton exchange. Our main motivation is associated to the fact that in the Standard Model the Z boson pair is not produced at leading order by the gluon fusion. Consequently, the Z boson pair cannot be produced at leading order in diffractive processes. At next-to-leading-order the $gg \rightarrow ZZ$ subprocess via the quark loop contributes [17]. However, as will be demonstrated below for the case of central inclusive processes, the resulting cross section is one order of magnitude smaller.
than the LED prediction. It implies a very low QCD background, making its observation a signature of large extra dimensions.

This paper is organized as follows. In the next section we present a brief review of the formalism necessary for the calculation of the Z boson pair production in diffractive interactions in hadron-hadron collisions. Moreover, we discuss the extension of the survival probability gap for nuclear collisions. In Section III we present our results for the Z boson pair production in pp, pPb and $PbPb$ collisions at LHC energies. Finally, in Section IV we present a summary of our main conclusions.

II. THE Z BOSON PAIR PRODUCTION IN DIFFRACTIVE INTERACTIONS

In the Durham model \[14\] the total cross section for the diffractive production of a Z boson pair reads

$$\sigma(\sqrt{s}) = \int dy \int \frac{dM_{ZZ}^2}{M_{ZZ}^2} L_{gg} \hat{\sigma}_{gg \to ZZ}(M_{ZZ}^2)$$

where L_{gg} is the effective gluon-gluon luminosity for the production of a system with squared invariant mass M_{ZZ}^2 and rapidity y, and $\hat{\sigma}$ is the cross section for the subprocess $gg \to ZZ$.

For the Z boson pair production in central exclusive processes (CEP), $h_1 + h_2 \to h_1 \otimes ZZ \otimes h_2$, the effective gluon-gluon luminosity is given by [See Fig. 1(a)]

$$L_{gg}^{\text{excl}} = \langle S^2_{\text{excl}} \rangle \left[C \int dQ_{t1}^2 \left(f_g(x_1, x_1', Q_{t1}^2, \mu^2) f_g(x_2, x_2', Q_{t1}^2, \mu^2) \right)^2 \right],$$

FIG. 1: (color online) Z boson pair production in (a) central exclusive and (b) central inclusive diffractive processes for h_1h_2 collisions, with $h_i = p$ or Pb. $\langle S^2 \rangle$ is the survival probability gap, which gives the probability that secondaries, which are produced by soft rescatterings, do not populate the rapidity gaps.
where $\langle S_{\text{excl}}^2 \rangle$ is the survival probability gap for exclusive processes, which gives the probability that secondaries, which are produced by soft rescatterings, do not populate the rapidity gaps and $C = \pi/[(N_C^2 - 1)b]$, with b the t-slope ($b = 4.0 \text{ GeV}^{-2}$ in what follows). Moreover, Q_t^2 and x' are respectively the virtuality and longitudinal momentum of the soft gluon needed for color screening, x_1 and x_2 are the longitudinal momentum of the gluons which participate of the hard subprocess and the quantities f_g are the skewed unintegrated gluon densities. Since $(x' \approx Q_t/\sqrt{s}) \ll (x \approx M_{ZZ}/\sqrt{s}) \ll 1$, it is possible to express $f_g(x, x', Q_t^2, \mu^2)$, to single log accuracy, in terms of the conventional integral gluon density $g(x)$, together with a known Sudakov suppression T which ensures that the active gluons do not radiate in the evolution from Q_t up to the hard scale $\mu = 2M_Z$, which we assume to be the renormalization and factorization scales of the process. The choice of this scale introduces roughly a factor of two uncertainty when varying the hard scale μ between $2M_{ZZ}$ and $M_{ZZ}/2$. Following [14] we will assume that

$$f_g(x, Q_t^2, \mu^2) = S_g \frac{\partial}{\partial \ln Q_t^2} \left[\sqrt{T(Q_t, \mu)} xg(x, Q_t^2) \right], \quad (5)$$

where S_g accounts for the single log Q_t^2 skewed effect and is given by

$$S_g = \frac{2^{2\lambda + 3}}{\sqrt{\pi}} \frac{\Gamma(\lambda + 5/2)}{\Gamma(\lambda + 4)}$$

if one assumes a single powe-law behaviour for the gluon distribution, $xg(x, Q_t^2) \approx x^{-\lambda}$, with $S_g \sim 1.2$ for LHC. The Sudakov factor is given by

$$T(Q_t, \mu) = \exp \left\{ - \int_{Q_t^2}^{\mu^2} \frac{dk_t^2}{k_t^2} \frac{\alpha_s(k_t^2)}{2\pi} \int_0^{1-\Delta} dz \left[zP_{gg}(z) \right] + \sum_q \left[zP_{qg}(z) \right] \right\}, \quad (6)$$

with k_t being an intermediate scale between Q_t and μ, $\Delta = k_t/(\mu + k_t)$, and $P_{gg}(z)$ and $P_{qg}(z)$ are the leading order Dokshitzer - Gribov - Lipatov - Altarelli - Parisi (DGLAP) splitting functions [18]. In this paper we will calculate f_g in the proton case considering that the integrated gluon distribution $xg(x, Q_t^2)$ is described by the MSTW2008lo parametrization [19]. In the nuclear case we will include the shadowing effects in f_g^A considering that the nuclear gluon distribution is given by the EKS98 parametrization [20], where $xg_A(x, Q_t^2) = AR_g^A(x, Q_t^2)xg_p(x, Q_t^2)$, with R_g describing the nuclear effects in xg_A. In order to obtain realistic predictions for the exclusive Z boson pair production using the Durham model, it is crucial to use an adequate value for the survival probability gap, $\langle S_{\text{excl}}^2 \rangle$. This
factor is the probability that secondaries, which are produced by soft rescatterings do not
populate the rapidity gaps (For a detailed discussion see [15]). In the case of proton-proton
collisions, we will assume that $\langle S_{excl}^2 \rangle = 3\%$ for LHC energies [14]. However, the value of
the survival probability for nuclear collisions still is an open question. An estimate of $\langle S_{excl}^2 \rangle$
for nuclear collisions was calculated in [21] using the Glauber model. Another conservative
estimate can be obtained assuming that [22]: $\langle S_{excl}^2 \rangle_{A_1A_2} = \langle S_{excl}^2 \rangle_{pp}/(A_1 \cdot A_2)$ (For a discussion about nuclear diffraction see [23]). In what follows we will consider the latter model for
$\langle S_{excl}^2 \rangle_{A_1A_2}$ when considering the central exclusive Z boson pair production.

On the other hand, the effective gluon - gluon luminosity for the Z boson pair production
in central inclusive processes (CIP), $h_1 + h_2 \to X \otimes ZZ \otimes Y$, is given by [14]

$$
\mathcal{L}^{incl}_{gg} = \frac{\langle S_{incl}^2 \rangle}{\alpha_s^4} \left(\frac{N_c^2}{N_c^2 - 1} \right)^2 \int \frac{dt_1}{t_1} \frac{dt_2}{t_2} \exp \left(-\frac{\Delta \eta}{\ln \frac{t_1}{t_2}} \right) \times
T(\sqrt{t_1}, \mu) T(\sqrt{t_2}, \mu) \int_{x_{\text{min}}}^1 \frac{dx_1}{x_1} G(x_1, k_{i\perp}^2) \int_{x_{\text{min}}}^1 \frac{dx_2}{x_2} G(x_2, k_{j\perp}^2),
$$

(7)

where $\langle S_{incl}^2 \rangle$ is the gap survival probability for inclusive processes, $t_i = -k_{i\perp}^2$, $\Delta \eta$ is the
rapidity gap size on either side of the Z boson pair and $Y_1 = Y_2 = \frac{3\alpha_s}{2\pi} \Delta \eta$, with $\alpha_s = 0.2$
[See Fig. 1(b)]. Moreover, $G(x_i, k_{i\perp}^2)$ are the effective parton distributions given by

$$
G(x_i, k_{i\perp}^2) = x_i g(x_i, k_{i\perp}^2) + \frac{N_c^2}{(N_c^2 - 1)^2} \sum_q x_i \left[q(x_i, k_{i\perp}^2) + \bar{q}(x_i, k_{i\perp}^2) \right].
$$

(8)

and

$$
x_{i\perp \text{min}} = \frac{e^g}{\sqrt{s}} \left[M_{ZZ} + k_{i\perp} e^{\Delta \eta} \right].
$$

The basic idea is that the initial hadrons dissociate and the system ZZ with mass M_{ZZ}
is produced with rapidity gaps with size $\Delta \eta$ on either side. This process is characterized
by two rapidity gaps, the central system ZZ and the presence of secondary particles in
the hadron fragmentation regions. An open question is the magnitude of the absorption
corrections for the central inclusive processes which determines $\langle S_{incl}^2 \rangle$, which is expected to
depend on the kinematics of the process [14]. As it is expected that $\langle S_{excl}^2 \rangle \leq \langle S_{incl}^2 \rangle$, we will
assume, for simplicity, in our analysis that $\langle S_{excl}^2 \rangle_{pp} = 0.1$. Moreover, we will also assume
that $\langle S_{excl}^2 \rangle_{A_1A_2} = \langle S_{incl}^2 \rangle_{pp}/(A_1 \cdot A_2)$. However, this subject deserve more detailed studies in
the future.

In contrast to the Standard Model, in the LED scenario, the $gg \to ZZ$ subprocess
contributes at the tree level through the exchange of virtual KK gravitons in the s-channel,
with the cross section being given by [9],

\[\hat{\sigma}_{gg \to ZZ} = \int_{-1}^{+1} d(cos \theta) \frac{d\hat{\sigma}_{gg}}{d cos \theta}, \]

(9)

with

\[\frac{d\hat{\sigma}_{gg}}{d cos \theta} = \frac{\pi s^3 \sqrt{1-4w} F^2(n) (\pi^2 + 4 T^2(n))}{1024} \times \left\{ 3 z^4 (1 - 4w)^2 + 2 z^2 (1 - 4w) (5 + 12w) + (1 + 12w) (3 + 4w) \right\}, \]

(10)

and

\[F(n) = \frac{s^{n/2-1}}{M_s^{n+2}}, \quad T(n) = I(\Lambda / \sqrt{s}), \]

(11)

where \(w = m_Z^2 / s \) and \(z = \cos \theta \). The function \(I(\Lambda / \sqrt{s}) \) is directly related with the graviton propagator in the LED scenario [3], being given by

\[I(\Lambda / \sqrt{s}) = PV \int_0^{\Lambda / \sqrt{s}} dy \frac{y^{n-1}}{1 - y^2}, \]

(12)

where \(PV \) means the principal value of the integral and \(\Lambda \) is identified with the fundamental scale \(M_s \) in 4 + \(n \) dimensions [3, 4].

III. RESULTS

Before to present our predictions for the central exclusive and inclusive \(Z \) boson pair production in diffractive processes, a comment is in order. Our calculations are performed at leading order. Next-to-leading-order (NLO) corrections for the inclusive \(Z \) boson pair production, \(p + p \to ZZX \), where both colliding protons dissociate and rapidity gaps are not present in the final state, were estimated in Ref. [10] assuming that the interaction is mediated by the Kaluza-Klein graviton in the LED scenario and are large (\(\approx 2 \)). Consequently, our predictions for the inclusive production should be considered a lower bound. In contrast, the magnitude of the NLO corrections for diffractive processes still is an open question (For a recent study, see Ref. [25]). Results presented in Refs. [26, 27] indicate that the predictions for central production are strongly influenced by the choice of the parametrization used for the parton distribution functions and by the treatment of the Sudakov form factor and rapidity gap survival probability, which introduces non-negligible uncertainties in the calculations. Such uncertainties also are present in our analysis. In principle, the
uncertainties could be reduced with a possible early LHC measurement of exclusive jets cross section [27].

In Fig. 2 we present our predictions for the inclusive production \((p + p \rightarrow ZZX)\) at \(\sqrt{s} = 14\) TeV. For comparison we also show the SM prediction for this process, which is \(\sigma_{tot} = 17\) pb and was obtained at NLO in Ref. [17] (For recent experimental results see, e.g. Ref. [24]). As already verified in Ref. [9], the Z boson pair production by KK graviton exchange is only competitive for small values of \(M_S\) and number of extra dimensions \(n\). In particular, if we taken into account the recent lower bounds on \(M_S\) set by the ATLAS and CMS Collaborations [6], we have that the LED predictions are at least a factor 20 smaller than the SM one.

In Fig. 3 we present our predictions for the central exclusive production of a Z boson pair, \(p + p \rightarrow p \otimes ZZ \otimes p\), at LHC energies. In the left panel we present the dependence on \(M_S\) of the total cross section for different values of \(n\) at fixed center-of-mass energy (\(\sqrt{s} = 14\) TeV). As expected, it strongly decreases at larger values of \(M_S\) and \(n\). In the right panel, we present our predictions for the energy dependence of the cross section considering \(M_S = 3.5\) TeV and different values of \(n\). We predict very small values for the exclusive cross section in the LHC kinematical range, which makes the experimental analysis of this process a very hard task.

In Fig. 4 we present our predictions for the central inclusive production of a Z boson pair, \(p + p \rightarrow X \otimes ZZ \otimes Y\), at LHC energies obtained from Eq. (3) assuming that \(|y| \leq 2\).
FIG. 3: (color online) Dependence on M_S (left panel) and on the center-of-mass energy (right panel) of the total cross section for the central exclusive double Z production in proton-proton collisions for different numbers of extra dimensions.

and $M_{ZZ} \leq M_S - 10$ GeV. Moreover, initially we assume a fixed value for the rapidity gap size on either side of the Z boson pair: $\Delta \eta = 2$. As in the exclusive case, the cross section decreases at larger values of M_S and n. However, the magnitude is a factor 10^3 larger, which becomes feasible its experimental study. In particular, we predict values of the order of fb at $\sqrt{s} = 14$ TeV, $M_S = 3.5$ TeV and $n = 2$. In Fig. 5 we present the dependence of our predictions on the rapidity size $\Delta \eta$. The cross section decreases by a factor 2.5 when $\Delta \eta$ increases from 2.0 to 3.0. Consequently, our predictions are not strongly modified by the
FIG. 5: (color online) Dependence on M_S (left panel) and on the center-of-mass energy (right panel) of the total cross section for the central inclusive double Z production in proton-proton collisions for different values of the rapidity gap size $\Delta \eta$.

FIG. 6: (color online) Z pair invariant mass M_{ZZ} distribution of the central inclusive cross section in pp collisions at $\sqrt{s} = 14$ TeV. The SM prediction also is presented for comparison.

choice of $\Delta \eta$.

In Fig. 6 we present our predictions for the Z pair invariant mass M_{ZZ} distribution of the central inclusive cross section in pp collisions at $\sqrt{s} = 14$ TeV. For comparison we also present the diffractive SM prediction which consider the next-to-leading-order $gg \to ZZ$ subprocess via a quark loop diagram [17]. The LED predictions dominate the distribution
at larger values of the invariant mass, as expected from previous studies for the inclusive production of different final states \[7\]. In particular, we obtain that the LED prediction for the total cross section in central inclusive processes is one order of magnitude larger than the SM one for \(M_S = 3.5\) TeV and \(n = 2\).

Let us now present our predictions for the double \(Z\) production in \(pPb\) and \(PbPb\) collisions at LHC energies. In Fig. 7 we present our predictions for the energy dependence of the central exclusive (left panel) and inclusive (right panel) cross section assuming \(n = 2\), \(M_S = 3.5\) TeV and \(\Delta \eta = 2\). For comparison the \(pp\) predictions also are shown. We have verified that the \(M_S\), \(n\), \(\Delta \eta\) and \(M_{ZZ}\) dependences for the nuclear cross sections are very similar to the \(pp\) one. In contrast, the magnitude of the cross sections are very different for \(pp\), \(pPb\) and \(PbPb\) collisions. In particular, for central exclusive processes the \(PbPb\) cross section is amplified by a factor \(\approx 10^4\) in comparison to the \(pp\) one. It is directly associated to the strong dependence of the cross section on the nuclear gluon distribution, \(\sigma_{excl}^{A_1A_2} \propto [xg_{A_1} \times xg_{A_2}]^2\), where \(xg_{A_i} = A_iR_g^{A_i} \cdot xg_p\). Consequently, if we consider our conservative model for the nuclear survival probability \(\langle S_{excl}^{2} \rangle_{A_1A_2}\) we obtain that \(\sigma_{excl}^{A_1A_2} \propto A_1R_g^{A_1} \times A_2R_g^{A_2} \times \sigma_{excl}^{pp}\), with \(R_g > 1\) in the kinematical range probed by the double \(Z\) production. On the other hand, in central inclusive processes the difference between the predictions is smaller, since in this case \(\sigma_{incl}^{A_1A_2} \propto R_g^{A_1} \cdot R_g^{A_2} \times \sigma_{incl}^{pp}\). It implies that the predictions for the central exclusive and inclusive productions are of the same order in \(PbPb\) collisions. For \(pPb\) collisions, the central inclusive production dominates.
TABLE I: The events rate/year for the double Z production in pp/pPb/PbPb collisions at LHC energies considering the CEP and CIP mechanisms. We assume $n = 2$, $M_S = 3.5 \text{ TeV}$ and $\Delta \eta = 2$.

\begin{center}
\begin{tabular}{|c|c|c|}
\hline
 & CEP & CIP \\
\hline
$pp (\sqrt{s} = 14 \text{ TeV})$ & 8.0×10^{-5} & 19 \\
p$Pb (\sqrt{s} = 8.8 \text{ TeV})$ & 2.7×10^{-8} & 3.1×10^{-5} \\
 & 1.8×10^{-5} & 0.02 \\
$PbPb (\sqrt{s} = 5.5 \text{ TeV})$ & 2×10^{-8} & 0.1×10^{-6} \\
\hline
\end{tabular}
\end{center}

Finally, now we compute the production rates for LHC energies considering the distinct mechanisms. We assume $n = 2$, $M_S = 3.5 \text{ TeV}$ and $\Delta \eta = 2$. The results are presented in Table I. At LHC we assume the design luminosities $\mathcal{L} = 10^7/150/0.5 \text{ mb}^{-1}\text{s}^{-1}$ for $pp/pPb/PbPb$ collisions at $\sqrt{s} = 14/8.8/5.5 \text{ TeV}$ and a run time of $10^7 (10^6) \text{ s}$ for collisions with protons (ions). Moreover, we also consider the upgraded pPb scenario proposed in Ref. [28], which analyse a potential path to improve the pPb luminosity and the running time. These authors proposed the following scenario for pPb collisions: $\mathcal{L} = 10^4 \text{ mb}^{-1}\text{s}^{-1}$ and a run time of 10^7 s. The corresponding event rates are presented in the third line of the Table I. Our results indicate that for the default settings and running times, the statistics are marginal for $PbPb$ collisions. Consequently, the possibility to carry out a measurement of the double Z production in diffractive interactions is virtually null in these collisions. On the other hand, in pp collisions the event rates for the central inclusive production predicted by the LED scenario is reasonable, with the SM background being one order of magnitude smaller. In comparison to the results for the inclusive double Z production presented in Fig. 1 and Ref. [9], our predictions for diffractive production are a factor $\approx 10^4$ smaller. Despite their much smaller cross sections, the clean topology of the diffractive production implies a larger signal to background ratio. Therefore, the experimental detection is in principle feasible. However, the signal is expected to be reduced due to the event pileup which eliminates one of the main advantages of the diffractive processes. In contrast, in pA collisions it is expected to trigger on and carry out the measurement with almost no pileup [28]. Therefore, the upgraded pA scenario also provides one possibility to detect the
double Z production in central inclusive processes.

IV. SUMMARY

The search for new physics at the TeV-scale is one of the major tasks for the current and future high-energy physics experiments. In particular, models with extra spatial dimensions and TeV scale gravity are expected to provide a plethora of new and interesting signals. In this paper the double Z production in diffractive processes was considered for the first time. As in the Standard Model the Z boson pair is not produced at leading order by the gluon fusion, this final state cannot be produced at leading order in diffractive processes, which implies that a very low QCD background is expected. We have estimated the cross sections and event rates for the double Z production in central exclusive and central inclusive processes considering $pp/pPb/PbPb$ collisions. Both processes are characterized by the presence of two rapidity gaps in the final state, differing by the dissociation or not of the incident hadrons. Our results indicate that the LED predictions for the central inclusive production are larger than the SM one and that the experimental analysis of this process in pp collisions is feasible at CERN LHC. This conclusion motivates a more detailed analysis of the gap survival probability for the double Z production, which is one of the main sources of uncertainty in our calculations, as well as to implement our calculations in a Monte Carlo simulation for diffractive processes. Both subjects will be addressed in the future.

Acknowledgements

This work was partially financed by the Brazilian funding agencies CNPq, CAPES and FAPERGS.

[1] J. L. Hewett and M. Spiropulu, Ann. Rev. Nucl. Part. Sci. 52, 397 (2002).
[2] N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B 429, 263 (1998).
[3] T. Han, J. D. Lykken and R. -J. Zhang, Phys. Rev. D 59, 105006 (1999).
[4] G. F. Giudice, R. Rattazzi and J. D. Wells, Nucl. Phys. B 544, 3 (1999).
[5] J. Beringer et al. [Particle Data Group Collaboration], Phys. Rev. D 86, 010001 (2012).
[6] S. Chatrchyan et al. [CMS Collaboration], Phys. Rev. Lett. 108, 111801 (2012); G. Aad et al. [ATLAS Collaboration], Phys. Rev. D 87, 015010 (2013).

[7] P. Mathews, V. Ravindran, K. Sridhar and W. L. van Neerven, Nucl. Phys. B 713, 333 (2005); M. C. Kumar, P. Mathews, V. Ravindran and A. Tripathi, Phys. Lett. B 672, 45 (2009); Nucl. Phys. B 818, 28 (2009); M. C. Kumar, P. Mathews, V. Ravindran and S. Seth, J. Phys. G 38, 055001 (2011); Nucl. Phys. B 847, 54 (2011); Phys. Rev. D 85, 094507 (2012); N. Agarwal, V. Ravindran, V. K. Tiwari and A. Tripathi, Phys. Rev. D 82, 036001 (2010); R. Frederix, M. K. Mandal, P. Mathews, V. Ravindran, S. Seth, P. Torrielli and M. Zaro, JHEP 1212, 102 (2012); S. Karg, M. Kramer, Q. Li and D. Zeppenfeld, Phys. Rev. D 81, 094036 (2010); P. de Aquino, K. Hagiwara, Q. Li and F. Maltoni, JHEP 1106, 132 (2011); Y. -M. Bai, L. Guo, X. -Z. Li, W. -G. Ma and R. -Y. Zhang, Phys. Rev. D 85, 016008 (2012); N. Greiner, G. Heinrich, J. Reichel and J. F. von Soden-Fraunhofen, JHEP 1311, 028 (2013).

[8] M. Kober, B. Koch and M. Bleicher, Phys. Rev. D 76, 125001 (2007).

[9] J. Gao, C. S. Li, X. Gao and J. J. Zhang, Phys. Rev. D 80, 016008 (2009).

[10] N. Agarwal, V. Ravindran, V. K. Tiwari and A. Tripathi, Nucl. Phys. B 830, 248 (2010).

[11] R. Frederix, M. K. Mandal, P. Mathews, V. Ravindran and S. Seth, Eur. Phys. J. C 74, 2745 (2014).

[12] M. G. Albrow, T. D. Coughlin and J. R. Forshaw, Prog. Part. Nucl. Phys. 65, 149 (2010).

[13] V. A. Khoze, A. D. Martin and M. G. Ryskin, Eur. Phys. J. C 14, 525 (2000).

[14] V. A. Khoze, A. D. Martin and M. G. Ryskin, Eur. Phys. J. C 23, 311 (2002); Eur. Phys. J. C 24, 581 (2002).

[15] A. D. Martin, M. G. Ryskin and V. A. Khoze, Acta Phys. Polon. B 40, 1841 (2009).

[16] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 99, 242002 (2007); Phys. Rev. D 77, 052004 (2008); Phys. Rev. Lett. 102, 242001 (2009).

[17] D. A. Dicus, C. Kao and W. W. Repko, Phys. Rev. D 36, 1570 (1987); E. W. N. Glover and J. J. van der Bij, Nucl. Phys. B 321, 561 (1989); J. Ohnemus and J. F. Owens, Phys. Rev. D 43, 3626 (1991); B. Mele, P. Nason and G. Ridolfi, Nucl. Phys. B 357, 409 (1991); J. Ohnemus, Phys. Rev. D 50, 1931 (1994); L. J. Dixon, Z. Kunszt and A. Signer, Nucl. Phys. B 531, 3 (1998); J. M. Campbell and R. K. Ellis, Phys. Rev. D 60, 113006 (1999); L. J. Dixon, Z. Kunszt and A. Signer, Phys. Rev. D 60, 114037 (1999); 32; J. M. Campbell, R. K. Ellis and C. Williams, JHEP 1107, 018 (2011); J. Baglio, L. D. Ninh and M. M. Weber, Phys.
Rev. D 88, 113005 (2013).

[18] V. N. Gribov and L.N. Lipatov, Sov. J. Nucl. Phys 15, 438 (1972); Yu. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977); G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).

[19] A. D. Martin, W. J. Stirling, R. S. Thorne and G. Watt, Eur. Phys. J. C 63, 189 (2009).

[20] K. J. Eskola, V. J. Kolhinen and P. V. Ruuskanen, Nucl. Phys. B 535, 351 (1998); K. J. Eskola, V. J. Kolhinen and C. A. Salgado, Eur. Phys. J. C 9, 61 (1999).

[21] E. Levin and J. Miller, arXiv:0801.3593 [hep-ph].

[22] V. P. Goncalves and W. K. Sauter, Phys. Rev. D 82, 056009 (2010).

[23] A. B. Kaidalov, V. A. Khoze, A. D. Martin and M. G. Ryskin, Acta Phys. Polon. B 34, 3163 (2003).

[24] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 721 (2013) 190.

[25] T. D. Coughlin and J. R. Forshaw, JHEP 1001, 121 (2010).

[26] J. R. Cudell, A. Dechambre, O. F. Hernandez and I. P. Ivanov, Eur. Phys. J. C 61, 369 (2009).

[27] A. Dechambre, O. Kepka, C. Royon and R. Staszewski, Phys. Rev. D 83, 054013 (2011).

[28] D. d’Enterria and J. P. Lansberg, Phys. Rev. D 81, 014004 (2010).