Spatial disparities in air conditioning ownership in Florida, United States

Yoonjung Ahn a,b, Christopher K. Uejio c, Sandy Wong c,d, Emily Powell e and Tisha Holmes f

aInstitute of Behavioral Science, University of Colorado Boulder, Boulder, CO, USA; bDepartment of Geography & Atmospheric Science, University of Kansas, Lawrence, KS, USA; cDepartment of Geography, Florida State University, Tallahassee, FL, USA; dDepartment of Geography, The Ohio State University, Columbus, OH, USA; eFlorida Climate Center, Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University, Tallahassee, FL, USA; fDepartment of Urban and Regional Planning, Florida State University, Tallahassee, FL, USA

ABSTRACT

This study emphasizes the critical role of air conditioning (AC) in preventing heat-related illnesses such as heat exhaustion and heatstroke. The challenge of limited geographic coverage and outdated AC availability data hampers effective heat risk mapping and prevention efforts. We identified areas with significant AC needs and examined factors related to AC ownership in Florida, U.S. Local Indicators of Spatial Association results displayed distinct AC ownership disparities, with high-high clusters in coastal and metropolitan areas and AC-deficient clusters inland. Vulnerable urban communities, predominantly inhabited by marginalized groups, had limited to no AC availability. The Spatial Durbin Model results revealed a significant correlation between AC ownership and socioeconomic and urban factors. Notably, a higher proportion of AC-deficient households were in predominantly African-American neighborhoods, underscoring racial disparities in AC ownership. These findings provide valuable insights for targeted interventions to mitigate heat-related risks and adapt to evolving climate conditions in vulnerable neighborhoods.

Key policy highlights

- This study evaluated the ability of real estate records to generate neighborhood-level AC data
- This study visualized and identified areas of AC disparities to inform future policy and adaptation actions.

1. Introduction

Extreme heat exposure can cause heat-related illness and exacerbate respiratory, cardiovascular, and renal disease (Dahl et al., 2019). Disparities of heat exposure and sensitivities are influenced by environmental conditions and social and economic status (Kuras et al., 2017; Seema G. Nayak et al., 2017; Ziegler et al., 2019). Extreme heat is an environmental justice concern: the highest mortality and morbidity rates associated with extreme heat occur disproportionately upon socially and economically marginalized groups such as older adults, people with low-income, and racialized minorities (Centers for Disease Control and Prevention, 2020; Harlan et al., 2006; Kuras et al., 2017). Studies show that disadvantaged populations, such as people of color, specifically low-income impoverished African Americans, living in urban areas, might be at higher risks due to limited access to resources, economic duress, and hotter living environments (e.g. White-Newsome et al., 2009; Wilson et al., 2010). Moreover, people living in indoor environments with inadequate climate controls and neighborhoods with less greenspace also face elevated heat exposures and heat risk (Gabbe & Pierce, 2020; Kuras et al., 2017; Madrigan et al., 2015; Ziegler et al., 2019).

Ensuring equitable access to cooling infrastructure (e.g. household air conditioning) can be one of the most important strategies to prevent heat-related illnesses and redress historic heat exposure disparities (Ito et al., 2018). This effort dovetails with broader infrastructure, racial capitalism, economic and energy justice movements (Hernández et al., 2021; Maxim & Grubert, 2021; Ponder, 2021; Purifoy & Seamster, 2021). A large and growing body of literature has investigated factors influencing heat exposure in indoor environments. More specifically, many studies have focused on the temperature difference between the indoors and outdoors according to air

CONTACT Yoonjung Ahn yjahn@ku.edu Department of Geography & Atmospheric Science, University of Kansas, Lawrence, KS, USA

Supplemental map for this article can be accessed at https://doi.org/10.1080/17445647.2023.2253262.

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
conditioning (AC) availability (Quinn et al., 2017; Quinn et al., 2014; Waugh et al., 2021). Waugh et al. (2021) found that daily mean indoor air temperature varies from 10 °C lower to 10 °C higher than the outdoor temperature. Quinn et al. (2017) discovered indoor temperatures are highly associated with cooling system types.

Furthermore, studies have linked limited AC ownership to higher rates of negative heat-related health effects. Several studies confirmed an inverse relationship between mortality rates and AC ownership (Cardoza et al., 2020; O’Neill et al., 2005; Ostro et al., 2010; Semenza et al., 1996). Additionally, some research highlights the racialized dynamics related to accessing AC, wherein marginalized groups were found to have less access to AC. O’Neill et al. (2005) discovered Black/African American households have less AC prevalence. Biddle (2008) also found that the association of lower central AC ownership is associated with higher household income elasticity and non-white families.

An association between AC ownership and residential building characteristics has been suggested in the literature (Barcus, 2016; Biddle, 2008; Gronlund & Berrocal, 2020; O’Neill et al., 2005). Nayak et al. (2018) found a strong relationship between AC prevalence and year of construction. Vant-Hull et al. (2018) suggested that the property’s value and total square footage negatively affect AC ownership, while Gronlund and Berrocal (2020) showed that newer houses tended to have an AC unit, and year of construction was a strong predictor.

Compounding environmental factors and historical policies related to property ownership might be related to ongoing gaps in access to resources and AC ownership. ‘Redlining,’ or historic disinvestment in neighborhoods with historically high proportions of foreign-born populations, is related to contemporary health inequalities and lacking access to resources (e.g., health care facilities, green space) that can improve overall health and well-being (Nardone et al., 2021; Schell et al., 2020).

Level of urbanity is also often used to measure access to resources and health status. Urbanity is also often used to measure access to resources and health status. Kovach et al. (2015) found more Emergency Department visits from rural areas than urban areas in North Carolina in the US, and these tended to be elderly, socially isolated, noncitizens, agricultural laborers, and mobile home residents who are unable to avoid the heat.

The 1980 US Decennial Census was the last nationwide survey to examine neighborhood-level central AC prevalence across the US. Thus, studies applying heat mapping methods to identify disparities and target health interventions have been hampered by limited AC prevalence information (Ahn & Uejio, 2022; Gabbe & Pierce, 2020; S. G. Nayak et al., 2018; Reid et al., 2009; Uejio et al., 2011). Outdated information on AC prevalence constrains the optimal targeting of interventions such as cooling refuges, energy subsidies, and free AC distribution. A few studies incorporated AC information from the US Census Bureau’s American Housing Survey (AHS). However, the data from AHS is only available at the city level for selected metropolitan areas. In the absence of a nationwide census, real estate companies, which collect high-quality property information, could provide reliable AC prevalence information.

As areas all over the world experience more extreme and frequent heat waves, it becomes increasingly important to analyze high-quality, current data on cooling infrastructure in order to identify the most vulnerable populations and implement timely interventions. This study incorporated the real estate data from ‘Estated,’ a private real estate company that provided rich information about properties’ characteristics, including AC ownership, to overcome the limited census data availability.

Numerous studies applied various methods to detect disparities. Common methods include simple comparisons between subgroups (highest group versus lowest group prevalence) (Cheng et al., 2008), relative or absolute disparity indices or thresholds (Harper et al., 2021; Liu et al., 2021), spatial and aspatial regression analysis (Pedigo et al., 2011; Sin, 2011; Wong et al., 2023), and Local Indicators of Spatial Association (LISA) (Bokhari & Sharifi, 2023; Yourkavitch et al., 2018). Among the methods, the study chose LISA since it explicitly considers spatial spatial heterogeneity and disparities and is widely used. For example, Yourkavitch et al. (2018) applied LISA to find areas with a high proportion of people at risk of cancer and geographic inequities in healthcare facilities. Bokhari and Sharifi (2023) examined spatial disparities of urban amenities (transportation, green space, and health care), which are often related to the well-being of older adult populations.

To detect spatial disparities in AC ownership, LISA was used. By using high spatial resolution real estate data and LISA to identify spatial clusters of AC prevalence in Florida as a case study, this study reveals the areas with the most significant AC needs. This study also investigates the relationships between AC ownership and socioeconomic variables with Spatial Durbin Model (SDM). In doing so, this paper draws attention to a useful data source for AC information and generates new empirical insights on one of the states most vulnerable to extreme heat in the U.S.

2. Materials and methods

2.1. Study site

Hotter and more humid air masses influence subtropical and tropical climate areas more than other climates
indoor overheating (Baniassadi et al., 2019). In Florida, statewide average summer temperatures exceed 30 degrees Celsius (86 degrees Fahrenheit), and some residents lack AC units to manage and cool indoor environments. According to the AHS, in 1980, 16% of Florida households had no AC, 55% of households had central AC, 17% had one individual room unit, and 10% of houses had two or more individual room units. Without adequate updated information on AC prevalence, heat-related planning, and adaptation interventions are unlikely to address the actual and disproportionate heat-related health risks across communities or target households most at risk during extreme heat events. Therefore, this study investigated residential AC availability at the census tract level in Florida with records through 2019 using a novel real estate dataset to reflect more current/updated estimates of AC prevalence.

2.2. Data

2.2.1. Property data

‘Estated,’ which has access to more than 150 million properties nationwide, provided housing information for this study (Estated, 2021). The dataset includes detailed information on individual properties, including building structure, market value, taxes and assessment, and historical deeds. The dataset included a total of 72,954,014 residential properties in Florida. We excluded the properties that were missing either the year of construction or AC types, which left 42,679,440 (58.50%) properties for the analysis. Collier County, Putnam County, Sumter County, and Union County had no records of AC ownership. The top three counties with the most missing data on AC ownership were Miami-Dade County (99.5%), Polk County (99.4%), and Leon County (99.3%) (Table 2).

We referred to previous studies that investigated the association between AC ownership and socioeconomic characteristics to identify socioeconomic variables to link to AC ownership in this study (Barcus, 2016; Biddle, 2008; Gronlund and Berrocal, 2020; O’Neill et al., 2005). We collected ten variables such as property value, renter-occupied households, and complete plumbing from the 5-year American Community Survey (ACS) (Cheng et al., 2008) at the census tract level. In Florida, this sample includes approximately 3.54 million housing units.

2.2.2. Contemporary socioeconomic variables

Intuitively, AC ownership and use are related to residents’ socioeconomic position. Biddle (2008) investigated the growth of AC prevalence with historical census data and showed that AC ownership doubled in the 1980s compared to the 1960s due to the development of affordable AC units, declining cost of electricity, increasing household incomes, and new housing developments. O’Neill et al. (2005) mentioned the association between lower AC ownership and African American households.

Gronlund and Berrocal (2020) found that a proportion of rental homes had lower rates of central AC. We included the following socioeconomic variables based on these previous findings: households with no vehicles, over 65 living alone, citizenship status, below poverty, number Hispanic, number Black and African American, construction workers, linguistically isolated, immigration population, agriculture workers, number of vacant housings, and education level (high school).

2.2.3. Historic sociodemographic variables

Historical development and neighborhood characteristics may also influence building amenities such as AC availability (Hillier, 2003). Since historic redlining information is only available for three cities in Florida, we included census tract-level Black/African American population from the U.S. 1970 decennial census (IPUMS NHGIS, 1970). NHGIS provides polygon features that have matched historical census tract information with contemporary census tract codes. We used the code to match the historical Black/African American population information to the 2019 census tract boundary. This date follows the passage of the 1968 Fair Housing Act and likely contains vestiges of past discriminatory practices.

2.2.4. Urbanicity variable

The physical environment and social context shape health and well-being. Urbanicity often represents the availability of facilities (e.g. health care, cooling centers, and fitness centers) related to health and well-being (U.S. Department of Health and Human Services, 2023). For example, rural areas tended to have less investment and low housing quality directly related to household appliances (e.g. AC, heating systems, kitchen stoves, water heaters) ownership and residential environment (Newman & Holupka, 2017). The United States Department of Agriculture (USDA) (2013) classifies census tracts into 11 urban and rural subtypes based on population density, urbanization, and commuting patterns. This study collapsed the ten original urban/rural codes into four classes, as follows: Metro Urbanized Areas (UAs) (Metropolitan area core UA, Metropolitan area high commuting UA, Metropolitan area low commuting UA), Metro Urban Clusters (UCs) Micropolitan area core large UC, Micropolitan high commuting large UC, Micropolitan low commuting large UC), Town UC (Small-town core small UC, Small-town high commuting small UC, Small-town low commuting small UC), and Rural (outside a UA or UC).
We extracted the year of construction, total property square footage, and AC types from the Estated dataset and aggregated the AC dataset with the mean value of the census tract. The Estated dataset provided information on individual properties’ AC types, including central, chilled water, evaporative cooler, geothermal, packaged AC unit, partial, refrigeration, ventilation, wall unit, window unit, yes, none, and others. Some studies have found differential cooling effectiveness among various AC types (Quinn et al., 2017; Waugh et al., 2021). Waugh et al. (2021) indicate that houses with room AC units had a higher indoor temperature of 2 degrees Celsius on average than houses with central AC. Further, Quinn et al. (2017) suggested that a portable AC was closer to not having an AC than to central AC based on room temperature.

Some jurisdictions only reported the presence or absence of AC which constrained the statewide analysis of residential AC types. Thus, the study grouped AC into three: any AC (packaged AC unit, chilled

Table 1. Data summary.

Characteristic (unit)	Mean (SD) at the census tract level	Data source (year)
Over 65 lives alone (count)	202 (180)	ACS (2019)
Black or African American (count)	655 (971)	ACS (2019)
Renter occupied (count)	1,368 (1,115)	ACS (2019)
Hispanic or Latino (count)	1,060 (1,212)	ACS (2019)
Median household income (dollar)	255,177 (174,335)	ACS (2019)
Number of rooms (count)	5.33 (0.96)	ACS (2019)
Complete plumbing (count)	1,837 (833)	ACS (2019)
Median housing value (dollar)	62,473 (27,652)	ACS (2019)

Socioeconomic Characteristics

Characteristics (unit)	Mean (SD) at the census tract level	Data source (year)
Year built (year)	1,984 (21)	Estated
Total area (sq ft)	1,840 (3,269)	Estated
Year built (year)	1,984 (21)	Estated

Historical Demographic Characteristics

Characteristics (count)	Mean (SD) at the census tract level	Data source (year)
Black or African American (count)	392 (865)	NHGIS (1970)

Property Characteristics

Characteristics (count)	Mean (SD or percentage for categorical variables)	Data source (year)
AnyAC Central (count)	30,424,552 (71%)	Estated (2021)
Chilled water (count)	3,199 (<0.1%)	Estated (2021)
Evaporative cooler (count)	651 (<0.1%)	Estated (2021)
Geothermal (count)	1,524 (<0.1%)	Estated (2021)
Other (count)	20,137 (<0.1%)	Estated (2021)
Packaged unit (count)	831,942 (1.9%)	Estated (2021)
Rooftop packaged unit (count)	226 (<0.1%)	Estated (2021)
Ventilation (count)	538 (<0.1%)	Estated (2021)
Wall (count)	161,429 (0.4%)	Estated (2021)
Window unit (count)	288,187 (0.7%)	Estated (2021)
Yes (count)	10,246,944 (24%)	Estated (2021)
NoAC None (count)	700,091 (1.6%)	Estated (2021)
Total area (sq ft)	1,840 (3,269)	Estated (2021)
Year built (year)	1,984 (21)	Estated (2021)

Table 2. Percentage of AC records by county.

County	Central and others	No	NA
Alachua County	91.88	3.31	4.81
Baker County	92.86	1.75	5.39
Bay County	77.44	0.65	15.71
Bradford County	87.87	8.77	2.73
Brevard County	77.24	1.55	21.21
Broward County	51.57	NA	48.43
Calhoun County	83.32	6.04	10.64
Charlotte County	48.67	NA	51.33
Citrus County	80.78	2.53	16.69
Clay County	88.66	3.41	7.99
Collier County	NA	NA	100
Columbia County	93.17	2.07	4.76
DeSoto County	89.9	3.35	6.75
Dixie County	68.09	NA	31.91
Duval County	89.01	0.65	10.34
Escambia County	83.45	0.26	16.29
Flagler County	77.97	0.17	17.21
Franklin County	71.54	10.48	17.97
Gadsden County	89.67	4.8	5.53
Gilchrist County	86.26	5.05	8.69
Glades County	77.97	3.58	18.45
Gulf County	83.11	5.4	11.49
Hamilton County	66.56	14.61	18.83
Hardee County	89.7	0.91	9.4
Hendry County	74.07	9.07	16.86
Hernando County	88.26	NA	11.74
Highlands County	83.98	8.01	8.09
Hillsborough County	95.73	0.67	3.6
Holmes County	77.87	1.55	20.58
Indian River County	66.74	NA	33.26
Jackson County	85.56	8.61	5.82
Jefferson County	79.09	7.34	15.57
Lafayette County	79.58	0.15	20.26
Lake County	87.43	NA	12.57
Lee County	74.48	0.26	25.26
Leon County	0.68	NA	99.32
Levy County	83.01	NA	14.99
Liberty County	76.98	14.29	8.73
Madison County	82.29	NA	17.71
Manatee County	85.3	0.01	14.7
Marion County	90.03	NA	9.97
Martin County	95.16	NA	4.84
Miami-Dade County	0.46	NA	99.54
Monroe County	54.77	16.57	28.66
Nassau County	80.48	2.94	15.68
Okaloosa County	78.1	1.53	20.37
Okeechobee County	76.38	11.03	12.59
Orange County	96.32	1.31	2.37
Osceola County	94.53	NA	5.47
Palm Beach County	42.19	2.32	55.5
Pasco County	78.8	0.96	20.25
Pinellas County	65.45	3.92	30.63
Polk County	0.59	NA	99.41
Putnam County	NA	NA	100
St. Johns County	75.31	0.48	24.22
St. Lucie County	76.45	NA	23.53
Santa Rosa County	91.4	0.06	8.44
Sarasota County	93.92	0.43	5.65
Seminole County	87.36	0.03	12.61
Sumter County	NA	NA	100
Suwannee County	90.79	NA	9.21
Taylor County	89.33	3.26	7.4
Union County	NA	NA	100
Volusia County	81.28	2.73	15.99
Wakulla County	91.52	1.11	7.38
Walton County	77.84	1.43	20.73
Washington County	67.06	2.07	30.87
water, geothermal, commercial unit, central AC, wall unit, window unit, evaporative cooler, and other AC unit), no AC (none and ventilation), and missing data. The study presumed that areas with 100% AC automatically had no households without AC since there were residences with missing AC information across the study area. Next, we calculated the percentage of each AC type at the census tract level by dividing it by the total number of units reporting AC availability.

We calculated the percentage of renter-occupied and the percent of households with complete plumbing facilities divided by the number of total housing units. The contemporary socioeconomic variables were converted to the proportion of the population (Table 1). We calculated the percent of Black and African American population from the historic total population and Black African American and matched it with the contemporary census tract.

To compare the effect of each variable on the dependent variable, we standardized all variables by converting them to Z-scores (subtracting the mean and dividing by the standard deviation). We standardized to avoid over-emphasizing one variable’s effect on the dependent variable.

2.4. Statistical analysis

The analysis was conducted at the census tract level of data. This analysis aimed to identify the spatial autocorrelation of AC availability in Florida. We separately applied Moran’s I test to the percentage of census tracts with anyAC and noAC using the ‘spdep’ package in R (Luc Anselin, 1995) to examine spatial autocorrelation in Florida. Moran’s I statistic is a global spatial autocorrelation statistic designed to test the null hypothesis of complete spatial randomness. To conduct Moran’s I statistic test, we defined the neighborhood of census tract polygons with the queen criterion of contiguity. We applied a binary weights matrix without row standardization, which gives more weight to areas with more neighbors.

Among the total of 5,160 census tracts from 67 counties in Florida, some census tracts contained missing values. We included 4,066 census tracts from 63 counties for anyAC and 2,505 census tracts from 47 counties for the noAC analysis. Due to missing data, the study did not presume that neighborhoods with 100% AC prevalence meant that every household in that neighborhood had some type of AC.

We applied Local Indicators of Spatial Association (LISA) to AC availability in Florida with the ‘spdep’ package in R version 4.1.1 (Luc Anselin, 1995). We operationalized neighborhoods using queen contiguity without row standardization to conduct LISA analysis. The sub-analysis reports specific information for Duval County.

To consider potential multicollinearity between independent variables, we retained explanatory variables when the Variance Inflation (VIF) was less than 5. The percentage of households without AC was the dependent variable. The rest were independent variables which are listed in Table 1. We excluded the following independent variables from the model due to high VIF values: the proportion of no vehicles, the proportion of noncitizens, construction workers, linguistically isolated, agriculture workers, and the proportion of vacant housings from the model.

Spatial error (SEM) and spatial lag model (SLM) are commonly applied to handle residual autocorrelation (Gabbe & Pierce, 2020). The SLM can be used for a diffusion process that looks at how one event increases the likelihood of similar events in neighboring areas (Moraga, 2019).

SEM treats spatial dependence as a nuisance. In other words, SEM controls for the unexplained autocorrelation by adding a spatial residual term as an independent variable (Paynich & Hill, 2011). However, some studies suggested that applying either SEM or SLM can lead to erroneous conclusions (Elhorst, 2010; LeSage & Pace, 2009). For example, the SLM model cannot account for spatial correlation in the error term. SEM cannot provide information about the indirect effects of neighbors (LeSage & Pace, 2009). To capture both error dependence and spatially lagged dependence, we applied the Spatial Durbin Model (SDM) (L. Anselin et al., 1996; LeSage & Pace, 2009). The SDM is considered more robust since it considers both local and global spatial effects with no prior restrictions on the magnitude of potential direct and indirect effects (Elhorst, 2010).

SDM provides direct effect and indirect independent variable effect estimates. The direct effect refers to the changes of dependent variable effects on a census tract, and this also considers how census tract changes affect its neighboring census tract (LeSage & Pace, 2009). The indirect effect or spatial spillover effect refers to the neighboring dependent variable’s impact on their census tracts’ dependent variable, while the total effect sums the direct and indirect effects (LeSage & Pace, 2009). The results report the standardized beta coefficients (one standard deviation change), 95% confidence intervals, and p-values.

3. Results

3.1. Descriptive statistics

A summary of AC ownership is provided in Table 1. According to the summary, 30,424,552 (71%) of houses have central AC, 10,246,944 (24%) of houses indicated Yes to AC, 21,922 (1%) of houses have other types of AC, and 700,091 (1.6%) households had no AC (Table 1). Among the 67 counties in
Florida, AC data were not available in four counties (Collier County, Putnam County, Sumter County, and Union County). There were some counties with a high percentage of no AC, including Monroe County (16.5%), Liberty County (14.2%), Hamilton County (14.6%), Okeechobee County (11.0%), and Franklin County (10.4%) (Table 2).

3.2. Spatial clusters in Florida

We conducted spatial autocorrelation analysis to identify the areas with high and low AC prevalence at the census tract level. Moran’s I statistics and the LISA maps (Figure 1) confirmed the spatial autocorrelation of AC availability. Any type of AC exhibited strong and statistically significant spatial autocorrelation (Moran I statistic 0.74, \(p < 0.05 \)). A high AC prevalence neighborhood geographically adjacent to another high AC prevalence area was found in 204 census tracts. High-High clusters were found in Duval County, Marion County, Lee County, Lake County, Sarasota County, Pasco County, Pinellas County, Broward County, Manatee County, St. Johns County, Okaloosa County, Clay County, Volusia County, and Bay County (Map Map 1). A low AC prevalence neighborhood was geographically adjacent to another low AC prevalence area in 238 census tracts. Low-Low clusters were found in Leon County, Polk County, and Miami-Dade County. A low proportion of neighborhoods with any type of AC, referred to as a Low-High cluster, was found in 13 census tracts spanning the following counties: Sarasota, Duval, Okaloosa, Broward, Walton, Marion, and Volusia (Map Map 1). There were no High-Low clusters.

No AC census tracts also showed statistically significant spatial autocorrelation (Moran I statistic 0.75, \(p < 0.05 \)). A high proportion of neighborhoods without AC geographically adjacent to another high proportion of areas without AC were found in 188 census tracts. These High-High clusters were in Pinellas County, Volusia County, Alachua County, Orange County, Okeechobee County, Monroe County, Clay County, and Palm Beach County (Map Map 2). A low proportion of neighborhoods without AC geographically adjacent to a high proportion of areas without AC was found in 4 census tracts. These Low-High clusters were found in Alachua County, Palm Beach County, and Pinellas County (Map Map 2).

3.3. Relationship between AC availability and socioeconomic variables

Several socioeconomic variables showed statistically significant associations with the percentage of areas without AC. Table 3 reports the effect with tree matrices: direct, indirect, and total. We discovered that the percent of Black and African Americans showed a positive relationship with lack of AC ownership in direct (0.01, 95% CI: 0, 0.01), indirect (0, 95% CI: 0, 0), and total effects (0.01, 95% CI: 0, 0.01). People living in historically Black/African American (1970 Census) areas with lower housing quality were less likely to have any type of AC (direct (0.01, 95% CI: 0, 0.01), indirect (0, 95% CI: 0, 0), and total effects (0.01, 95% CI: 0, 0.01).
Many of the residential property features were significantly associated with no AC. The average number of rooms per residence (i.e. size of household) was negatively related to a percentage of households without AC across all effect categories: direct impact (−0.01, 95% CI: −0.01,0), indirect (0. 95% CI: −0.01,0), and total effects (−0.02, 95% CI: −0.02,0). Older houses tend not to have any AC units. Thus, the year of construction was also negatively associated with the percentage of households without AC in direct effect (−0.01, 95% CI:−0.02,−0.01) and total effect (−0.06, 95% CI:−0.1,−0.03). Metro Clusters showed the largest effect of all variables of direct effect 0.15 (95% CI:0.10,0.19), indirect effect (0.04, 95% CI:0.00,0.07), and total effect 0.18 (95% CI:0.12,0.25) with the percentage of property without AC. Rural Clusters also showed a statistically significant direct effect (0.3, 95% CI:0.25,0.35) and total effect (0.39, 95% CI:0.31,0.47) (Table 3).

4. Discussion

AC availability can considerably vary within a state and a county (Barcus, 2016; Biddle, 2008; Gronlund & Berrocal, 2020; O’Neill et al., 2005). The results from the LISA analysis identified a significant number of spatial clusters of AC ownership in Florida that can be used to provide resources for heat prevention, such as supplying AC units, installing cooling centers, and distributing energy subsidies. This study found clusters of households without any AC in Hillsborough, Palm Beach, Alachua, Volusia, and Orange Counties. The areas with a high percentage of not having AC tended to align with a high concentration of poverty and minority population (Harper et al., 2021; Palm Beach County, 2019; Pinellas County, 2023). This result illustrates that AC ownership is likely to be associated with socioeconomic variables and disproportionate health outcomes.

We applied a SDM to investigate the association between socioeconomic variables, urbanicity, and AC prevalence. The results align with previous studies where Black households had lower rates of central AC ownership (O’Neill et al., 2005). The present study confirmed lower magnitude AC access disparities by race, income, and geographic location. There is limited research investigating AC ownership in rural areas and thus a limited understanding of the factors that contribute to rural residents’ access to AC. However, rural residents are more likely to be lower income, have a lower level of education, and are more likely to be an immigrant. There is some evidence that racial areas have a higher proportion of lower-income, lower-education, and immigrant populations; which may explain lower AC prevalence in rural areas (Bollman & Reimer, 2009; Pew Research Center, 2018).

Moreover, areas with historically Black or African American populations are positively associated with the proportion of not having AC. These results reveal that redlining still affects residential segregation, the disproportional development of contemporary society, and disparities in health and well-being (Mehdipanah et al., 2023). Thus, we believe that redlining contributes to a lack of AC ownership and increased risk of heat exposure.

This study confirms earlier findings that some socioeconomic variables, such as percent renter-occupied households, show a significant association with the lack of AC prevalence (Bock et al., 2021; Klein Rosenthal et al., 2014; Williams et al., 2019). This study also considered property variables that may be associated with AC prevalence. The mean of the built year of property showed a significant inverse relationship with the percentage of households without AC. This result aligns with previous research on AC estimation models with the American Housing Survey data.

Table 3. Beta coefficient with 95% confidence intervals from Spatial Durbin Model.

Variables	Direct (95% confidence interval)	Indirect (95% confidence interval)	Total (95% confidence interval)
Built Year	−0.01*** (−0.02,−0.01)	0 (0.0)	−0.01*** (−0.02,−0.01)
Total area of property (Square ft)	−0.06*** (−0.1,−0.02)	0 (−0.02,0.01)	−0.06*** (−0.1,−0.03)
Urbanicity (Metro UC)	0.15*** (0.10,0.19)	0.04*** (0.00,0.07)	0.18*** (0.12,0.25)
Urbanicity (Rural)	0.3 *** (0.25,0.35)	0.09 (0.04,0.14)	0.39*** (0.31,0.47)
% Over 65-year-old	0 (0.0)	0 (0.0)	0 (−0.01,0.01)
% Black African	0.01 *** (0.00,0.01)	0.00 *** (0.00,0.01)	0.01 *** (0.00,0.01)
% Renter Occupied	0 (−0.01,0.00)	0 (−0.01,0.00)	0 (−0.01,0.00)
Median household income in the past 12 months (in 2019 inflation-adjusted dollars)	0 (−0.01,0.00)	0 (−0.01,0.00)	0 (−0.01,0.00)
% Hispanic or Latino	0 (0.0)	0 (0.0)	0 (−0.01,0.00)
Median property value (dollars)	0 (0.0)	0 (0.0)	0 (−0.01,0.00)
Number of room per resident	−0.01 *** (−0.01,−0.00)	0 (−0.01,0.00)	−0.01*** (−0.02,−0.00)
% Historical Black African	0.01 *** (0.00,0.01)	0 (0.0)	0.01 *** (0.00,0.01)
% Complete plumbing households	−0.01 *** (−0.01,−0.00)	0 (0.0)	−0.01 (−0.01,0.00)

*Significant at 90% intervals.
**Significant at 95% intervals.
***Significant at 99% intervals.
Metro Clusters had the strongest positive relationship with the percentage of properties without AC. Rural Clusters showed the second strongest relationship with the percentage of properties without AC. We believe that this association reflects Florida’s urban development history. Core urban areas tend to have older apartments and houses (Schwartz, 2006) where disadvantaged populations live (Wilson et al., 2010). The Federal Housing Administration refused to pay for AC renovations in inner urban houses, areas with low home values, and areas with a high ratio of foreign-born residents (Nardone et al., 2021; Warner & Tilly, 1995). ‘White flight,’ or the migration of Anglo Americans from urban areas to the suburbs after the passage of the Fair Housing Act of 1968, contributed to lower capital investment and urban housing quality.

To minimize overall health risks associated with heat, policies, and programs such as the Housing Energy Assistance Program and Low-Income Home Energy Assistance Program (LIHEAP) should target neighborhoods with low AC prevalence and/or lower socioeconomic position status (Fraser et al., 2017). Moreover, jurisdictions should consider supporting the installation of central AC since other types of AC, such as a wall, window, and portable AC, are not as effective at mitigating heat-related symptoms and illness (Quinn et al., 2017; Waugh et al., 2021). We will need to consider providing subsidies for installing central AC, electricity bills, or improving housing conditions. Increasing green space and designating cooling centers in neighborhoods with less AC prevalence could be other options.

This study has illustrated several strengths of utilizing real estate data to analyze disparities of AC ownership in Florida. However, there are a few limitations that should be addressed. Cluster analysis is constrained by the data available data, much of which was missing. The number of properties indicating AC type as ‘No’ is relatively less than those indicating AC type as ‘Central, Window, Wall or Others.’ Also, some parts of Florida, such as Leon County, Miami-Dade County, and Union County, have a high proportion of properties without AC information. There may be spatial disparities of AC ownership in these areas, but it was not possible to detect them due to limited data availability. The results should be interpreted with caution. For example, Appendix Figures 1 and 2 illustrate variables data distribution according to urbanity and cluster types. Any significant spatial clusters found in rural areas for yes AC and Metro_UA, and Metro_UC seem to have similar observations (Appendix Figure 1-A). Fewer observations were used in rural areas without AC clusters (Figure 2-A). This indicates that the rural clusters might have been an artifact of the data.

There are limitations to estimating housing characteristics from historical property records. This study aggregated all types of AC due to non-standardized AC reporting practices. For example, some jurisdictions only indicated AC ownership as ‘yes’ instead of reporting a specific type of AC. Moreover, how AC information is coded is unclear. For example, no AC can be recorded as unavailable or not having any AC. However, a few studies showed that wall, window, or portable unit AC is not as effective as central AC (Cardoza et al., 2020; Quinn et al., 2017; Waugh et al., 2021). Additionally, this database did not report the exact dates when housing information was updated and may miss recent improvements that are not reflected in the dataset. Nationwide AC ownership information should be gathered in the future, and it will benefit researchers and governmental decision-makers. In addition, we recognize the limitation of the spatial scale of socioeconomic variables. We applied aggregated sociodemographic information at the census tract level.

To address this study’s limitations, future research should collect fine-scale data that will produce more actionable results for urban planners, housing advocates, and public health officials (Reid et al., 2009). Utilizing AC has been shown to significantly reduce heat-related mortality rates and illnesses, which are important and growing public health concerns under a changing climate (Barreca et al., 2016; Ito et al., 2018; O’Neill et al., 2005). Moreover, providing guidelines for adequate AC utilization and energy subsidies will be helpful for alleviating the financial burdens of economically disadvantaged groups (Ito et al., 2018; Loughnan et al., 2015).

5. Conclusions

This study identified neighborhoods and vulnerable groups across Florida lacking access to residential cooling systems. This study also contributed to gaps in existing research on AC prevalence by applying more recent real estate data on AC ownership at the census tract scale, and utilizing spatial regression analysis to understand disparities across socioeconomic variables. We found variability in AC prevalence by urbanicity and sociodemographic characteristics, particularly race, property size, and year of construction. Based on our findings, we discuss the potential benefits of gathering nationwide fine-scale AC ownership data and recommend heat prevention measures for vulnerable groups that include improving access to services such as LIHEAP, distributing AC units, and installing cooling centers in areas with low AC prevalence.

Software

Software: Arc GIS Pro. Projected coordinate system: World Geodetic System 1984 (WGS84).
Acknowledgment
We want to acknowledge Estated for providing the real estate dataset that we used for research purposes. We sincerely thank Drs Marynia Kolak, Michael Desjardins, Yanjia Cao (special issue editors), Drs Louisa Holmes, Penelope Mitchell, and Yu Lan (reviewers) for their feedback and assistance with this research.

Disclosure statement
The authors declare that they have no known competing financial interests or personal relationships that could reasonably be perceived to have influenced the work reported in this paper.

Funding
This study was partially supported by a grant from the Centers for Disease Control and Prevention [grant number U38EH000942]; National Aeronautics and Space Administration [grant number 80NSSC21K0430].

Data Availability Statement
The archive data are from property data from Estated (Estated, 2021). Socioeconomic variables are available from the American Community Survey of the United States Census Bureau (United States Census Bureau, 2011, 2019). The NHHGIS provides historical demographic information (IPUMS NHGIS, 1970). Urban and rural codes were collected from the USDA (United States Department of Agriculture (USDA), 2013).

Authorship confirmation/contribution statement
YJ and CU conceived the manuscript together and participated in planning the writing, workflow, and timeline. YJ conducted the analysis and wrote the final manuscript. SW, EP, and TH contributed to the discussion and iteratively incorporated it into the third and fourth drafts. All authors read and approved the final manuscript.

ORCID
Yoonjung Ahn http://orcid.org/0000-0001-6960-8637

References
Ahn, Y., & Uejio, C. K. (2022). Spatial analysis of air conditioning ownership in Florida, United States. In American association of geographers.
Anselin, L. (1995). Local indicators of spatial association-LISA. Geographical Analysis, 27(2), 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
Anselin, L., Bera, A. K., Florax, R., & Yoon, M. J. (1996). Simple diagnostic tests for spatial dependence. Regional Science and Urban Economics, 26(1), 77–104. https://doi.org/10.1016/0166-0462(95)02111-6
Baniassadi, A., Sailor, D. J., Scott Krayenhoff, E., Broadbent, A. M., & Georgescu, M. (2019). Passive survivability of buildings under changing urban climates across eight US cities. Environmental Research Letters, 14(7), https://doi.org/10.1088/1748-9326/ab28ba
Barcus, H. R. (2016). Heterogeneity of rural housing markets. In Rural housing, exurbanization, and amenity-driven development: Contrasting the “haves” and the “have nots,” (pp. 51–73).
Barrera, A., Clay, K., Deschenes, O., Greenstone, M., & Shapiro, J. S. (2016). Adapting to climate change: The remarkable decline in the US temperature-mortality relationship over the twentieth century. Journal of Political Economy, 124(1), 105–159. https://doi.org/10.1086/684582
Beach County, P. (2019). An Initiative to increase economic mobility and reduce poverty in palm beach county palm beach county: Demographic barriers to economic mobility.
Biddle, J. (2008). Explaining the spread of residential air conditioning, 1955-1980. Explorations in Economic History, 45(4), 402–423. https://doi.org/10.1016/j.eeh.2008.02.004
Bock, J., Srivastava, P., Jessel, J. M., & Parks, R. M. (2021). Compounding risks caused by heat exposure and COVID-19 in New York city: A review of policies, tools, and pilot survey results. Journal of Extreme Events, 8(2), 2150015. https://doi.org/10.1142/S2345737621500159
Bokhari, A., & Sharifi, F. (2023). Simultaneous inequity of elderly residents in Melbourne metropolitan. Sustainability, 15(3), 1–17. https://doi.org/10.3390/su15032189
Bollman, R., & Reimer, W. (2009). Demographics, employment, income, and networks: Differential characteristics of rural populations. Journal of Agromedicine, 14(2), 132–141. https://doi.org/10.1080/10599240902845120
Cardoza, J. E., Gronlund, C. J., Schott, J., Ziegler, T., Stone, B., & O’Neill, M. S. (2020). Heat-Related illness is associated with lack of Air conditioning and Pre-existing health problems in detroit, Michigan, USA: A community-based participatory Co-analysis of survey data. International Journal of Environmental Research and Public Health, 17(16), 5704. https://doi.org/10.3390/ijerph17165704
Centers for Diseases Control and Prevention. (2020). Preparing for the regional health impacts of climate change in the United States, (3–33). https://www.cdc.gov/climateandhealth/docs/Health_Impacts_Climate_Change-508_final.pdf.
Cheng, N. F., Han, P. Z., & Gansky, S. A. (2008). Methods and software for estimating health disparities: The case of children’s oral health. American Journal of Epidemiology, 168(8), 906–914. https://doi.org/10.1093/aje/kwn207
Dahl, K., Spanger-Siegfried, E., Licker, R., Caldas, A., Abatzoglou, J., Mailloux, N., ... Worth, P. (2019). Killer Heat in the United States.
Elhorst, J. P. (2010). Applied spatial econometrics: Raising the bar. Spatial Economic Analysis, 5(1), https://doi.org/10.1080/17421770903417721
Estated. (2021). Property Data. Retrieved December 30, 2021, from https://estated.com/account/home.
Fraser, A. M., Chester, M. V., Eisenman, D., Hondula, D. M., Pincetl, S. S., English, P., & Bondank, E. (2017). Household accessibility to heat refuges: Residential air conditioning, public cooled space, and walkability. Environment and Planning B: Urban Analytics and City Science, 44(6), 1036–1055. http://doi.org/10.1177/0265813516657342
Gabbe, C. J., & Pierce, G. (2020). Extreme heat vulnerability of subsidized housing residents in California. Housing
Policy Debate, 30(5), 843–860. https://doi.org/10.1080/10511482.2020.1768574

Gronlund, C., & Berrocal, V. (2020). Modeling and comparing central and room air conditioning ownership and cold-season in-home thermal comfort using the American Housing Survey. *Journal of Exposure Science & Environmental Epidemiology*, 30(5), 814–823. https://doi.org/10.1080/15501253.2020.1827808

Harlan, S. L., Brazel, A. J., Prashad, L., Stefanov, W. L., & Larsen, L. (2006). Neighborhood microclimates and vulnerability to heat stress. *Social Science & Medicine*, 63(11), 2847–2863. https://doi.org/10.1016/j.socscimed.2006.07.030

Hernández, D., Yoon, L., & Simcock, N. (2021). Basing “energy justice” on clear terms: Assessing key terminology in pursuit of energy justice. *Environmental Justice*, https://doi.org/10.1089/eq.edj.2021.0049

Hillier, A. E. (2003). Who received loans? Home owners’ loan corporation lending and discrimination in Philadelphia in the 1930s. *Journal of Local History*, 2(1), 3–24. https://doi.org/10.1080/153851320239694

IPUMS NHGIS. (1970). NHGIS Data Finder. Retrieved December 30, 2021, from https://data2.nhgis.org/main.

Ito, K., Lane, K., & Olson, C. (2018). Equitable access to air conditioning: A city health department’s perspective on preventing heat-related deaths. *Epidemiology*, 29(6), 749–752. https://doi.org/10.1097/EDG.0000000000000912

Kalkstein, L. S., Nichols, M. C., David Barthel, C., & Scott Greene, J. (1996). A new spatial synoptic classification: Application to air-mass analysis. *International Journal of Climatology*, 16(9), 983–1004. https://doi.org/10.1002/(SICI)1097-0088(199609)16:9<983::AID-JOC61>3.0.CO;2-N

Klein Rosenthal, J., Kinney, P. L., & Metzger, K. B. (2014). Intra-urban vulnerability to heat-related mortality in New York City, 1997-2006. *Health & Place*, 30, 45–60. https://doi.org/10.1016/j.healthplace.2014.07.014

Kovach, M. M., Konrad, C. E., & Fuhrmann, C. M. (2015). Area-level risk factors for heat-related illness in rural and urban locations across North Carolina, USA. *Applied Geography*, 60, 175–183. https://doi.org/10.1016/j.apgeog.2015.03.012

Kuras, E. R., Richardson, M. B., Calkins, M. M., Ebi, K. L., Hess, J. J., Kintziger, K. W.,… Hondula, D. M. (2017). Opportunities and challenges for personal heat exposure research. *Environmental Health Perspectives*, 125(8), https://doi.org/10.1289/EHP2956

LeSage, J., & Pace, R. K. (2009). *Introduction to spatial econometrics*. CRC Press. https://doi.org/10.1201/9781420064254

Liu, J., Clark, L. P., Bechle, M. J., Hajat, A., Kim, S. Y., Robinson, A. L.,… Marshall, J. D. (2021). Disparities in air pollution exposure in the United States by race/ethnicity and income, 1990-2010. *Environmental Health Perspectives*, 129(12), 1–14. https://doi.org/10.1289/EHP8584

Longman, M., Carroll, M., & Tapper, N. J. (2015). The relationship between housing and heat wave resilience in older people. *International Journal of Biometeorology*, 59(9), 1291–1298. https://doi.org/10.1007/s00484-014-0939-9

Madrigano, J., Ito, K., Johnson, S., Kinney, P. L., & Matte, T. (2015). A case-only study of vulnerability to heat wave-related mortality in New York City (2000–2011). *Environmental Health Perspectives*, 123(7), 672–678. https://doi.org/10.1289/ehp.1408178

Maxim, A., & Grubert, E. (2021). Anticipating climate-related changes to residential energy burden in the United States: Advance planning for equity and resilience. *Environmental Justice*, https://doi.org/10.1089/env.2021.0056

Mehdipanah, R., McVay, K. R., & Schulz, A. J. (2023). Historic redlining practices and contemporary determinants of health in the Detroit metropolitan area. *American Journal of Public Health*, 113(S1), S49–S57. https://doi.org/10.2105/AJPH.2022.307162

Moraga, P. (2019). *Geospatial health data*. Chapman and Hall/CRC. https://doi.org/10.1201/9780429341823

Nardone, A., Rudolph, K. E., Morello-Frosch, R., & Casey, J. A. (2021). Redlines and greenspace: The relationship between historical redlining and 2010 greenspace across the United States. *Environmental Health Perspectives*, 129(1), 1–9. https://doi.org/10.1289/EHP495

Nayak, S. G., Lin, S., Sheridan, S. C., Lu, Y., Graber, N., Primeau, M.,… Hwang, S.-A. (2017). Surveying local health departments and county emergency management offices on cooling centers as a heat adaptation resource in New York State. *Journal of Community Health*, 42(1), 43–50. https://doi.org/10.1007/s10900-016-2224-4

Nayak, S. G., Shrestha, S., Kinney, P. L., Ross, Z., Sheridan, S. C., Pantea, C. L.,… Hwang, S. A. (2018). Development of a heat vulnerability index for New York State. *Public Health*, 161, 127–137. https://doi.org/10.1016/j.puhe.2017.09.006

Newman, S. J., & Holupka, S. C. (2017). *The Quality of America’s Assisted Housing Stock: Analysis of the 2011 and 2013 American Housing Surveys*, 59 pages. https://www.huduser.gov/portal/publications/mdrt/Quality-Assisted-Housing-Stock.html.

O’Neill, M. S., Zanobetti, A., & Schwartz, J. (2005). Disparities by race in heat-related mortality in four US cities: The role of air conditioning prevalence. *Journal of Urban Health: Bulletin of the New York Academy of Medicine*, 82(2), 191–197. https://doi.org/10.1093/jurban/jti043

Ostro, B., Rauch, S., Green, R., Malig, B., & Basu, R. (2010). The effects of temperature and use of air conditioning on hospitalizations. *American Journal of Epidemiology*, 172(9), 1053–1061. https://doi.org/10.1093/aje/kwq231

Paynich, R., & Hill, B. (2011). *Fundamentals of crime mapping: Principles and practice* (Vol. 2011). Jones & Bartlett Publishers. https://books.google.com/books?hl=en&lr=&id=KbKvEDPGt8C&oi=fnd&pg=PR1&q=Fundamentals+of+Crime+Mapping:+Principles+and+Practice+s&ots=3r13uY0NAZ&sig=SLQ4Y62m4SknB55yZ4X_Udxigv=onepage&q=Fundamentals

Pedigo, A., Aldrich, T., & Odoi, A. (2011). Neighborhood disparities in stroke and myocardial infarction mortality: A GIS and spatial scan statistics approach. *BMC Public Health*, 11(1), 4–6. https://doi.org/10.1186/1471-2458-11-4

Pew Research Center. (2018). *What unites and divides urban, suburban and rural communities*. Pew Research Center. (May) 90. https://www.pewsocialtrends.org/2018/05/22/what-unites-and-divides-urban-suburban-and-rural-communities/.
Pinellas County. (2023). Vision - Plan Pinellas. Retrieved January 23, 2023, from https://plan.pinellas.gov/vision/

Ponder, C. (2021). Spatializing the municipal bond market: Urban resilience under racial capitalism. *Annals of the American Association of Geographers*, 1–18. https://doi.org/10.1080/24694452.2020.1866487

Purifoy, D. M., & Seamster, L. (2021). Creative extraction: Black towns in white space. *Environment and Planning D: Society and Space*, 39(1), 47–66. https://doi.org/10.1177/0267377520968563

Quinn, A., Kinney, P., & Shaman, J. (2017). Predictors of summertime heat index levels in New York City apartments. *Indoor Air*, 27(4), 840–851. https://doi.org/10.1111/ina.12367

Quinn, A., TameriusB, J. D., Perzanowski, M., Jacobson, J. S., Goldstein, I., Acosta, L., & Shaman, J. (2014). Heat Events. in *Heat-related deaths during the July 1995 heat wave in Chicago*. New York: Cambridge University Press.

Reid, C. E., O’Neill, M. S., Brines, S. J., Brown, D. G., Diez-Roux, A. V., & Schwartz, J. (2009). Mapping community determinants of heat vulnerability. *Environmental Health Perspectives*, 117(11), 1730–1736. https://doi.org/10.1289/ehp.0900683

Schell, C. J., Dyson, K., Fuentes, T. L., Roches, S. D., Harris, N. C., Miller, D. S., … Lambert, M. R. (2020). The ecological and evolutionary consequences of systemic racism in urban environments. *Science*, 369(6509), 1. https://doi.org/10.1126/science.aay4497

Schwartz, A. F. (2006). *Housing policy in the United States: An introduction*. Routledge.

Sen, S. C. J. (2011). Neighborhood disparities in access to information resources: Mapping and measuring U.S. public libraries’ funding and service landscapes. *Library & Information Science Research*, 33(1), 41–53. https://doi.org/10.1016/j.lisr.2010.06.002

Uejio, C. K., Wilhelm, O. V., Golden, J. S., Mills, D. M., Gulino, S. P., & Samenow, J. P. (2011). Intra-urban societal vulnerability to extreme heat: The role of heat exposure and the built environment, socioeconomics, and neighborhood stability. *Health & Place*, 17(2), 498–507. https://doi.org/10.1016/j.healthplace.2010.12.005

United States Census Bureau. (2011). American Housing Survey.

United States Census Bureau. (2019). American Community Survey (ACS). Retrieved June 29, 2020, from https://www.census.gov/programs-surveys/acs.

United States Department of Agriculture (USDA). (2013). USDA ERS - Rural-Urban Continuum Codes. Retrieved December 30, 2021, from https://www.ers.usda.gov/data-products/rural-urban-continuum-codes.aspx.

U.S. Department of Health and Human Services. (2023). Social Determinants of Health. https://health.gov/healthypeople/priority-areas/social-determinants-health.

Vant-Hull, B., Ramamurthy, P., Havlik, B., Jusino, C., Corbin-Mark, C., Schuerman, M., Keefe, J., Drapkin, J. K., & Glenn, A. (2018). The harlem heat project A unique media-community collaboration to study indoor heat waves. *Bulletin of the American Meteorological Society*, 99, 2491–2506.

Warner, S. B., & Tilly, C. (1995). *The urban wilderness: A history of the American city*. Univ of California Press.

White-Newsome, J., O’Neill, M. S., Gronlund, C., Sunbury, T. M., Brines, S. J., Parker, E., … Rivera, Z. (2009). Climate change, heat waves, and environmental justice: Advancing knowledge and action. *Environmental Justice*, 2(4), 197–205. https://doi.org/10.1089/env.2009.0032

Williams, A. A., Spengler, J. D., Catalano, P., Allen, J. G., & Cedeno-Laurent, J. G. (2019). Building vulnerability in a changing climate: Indoor temperature exposures and health outcomes in older adults living in public housing during an extreme heat event in Cambridge, MA. *International Journal of Environmental Research and Public Health*, 16(13), https://doi.org/10.3390/ijerph16133273

Wilson, S. M., Richard, R., Joseph, L., & Williams, E. (2010). Climate change, environmental justice, and vulnerability: An exploratory spatial analysis. *Environmental Justice*, 3(1), 13–19. https://doi.org/10.1089/env.2009.0035

Wong, S., Ponder, C. S., & Melix, B. (2023). Spatial and racial covid-19 disparities in U.S. nursing homes. *Social Science & Medicine*, 325(April), 115894. https://doi.org/10.1016/j.socscimed.2023.115894

Yourkavitch, J., Burgert-Brucker, C., Assaf, S., & Delgado, S. (2018). Using geographical analysis to identify child health inequality in sub-Saharan Africa. *PLoS ONE*, 13(8), 1–23. https://doi.org/10.1371/journal.pone.0201870

Ziegler, T. B., Coombe, C. M., Rowe, Z. E., Clark, S. J., Gronlund, C. J., Lee, M., … O’Neill, M. S. (2019). Shifting from ‘community-placed’ to ‘community-based’ research to advance health equity: A case study of the heatwaves, housing, and health: Increasing climate resiliency in Detroit (HHH) partnership. *International Journal of Environmental Research and Public Health*, 16(18), 1–19. https://doi.org/10.3390/ijerph16183310
Appendix

Figure 1 and Figure 2 show the comparison of the variables’ distribution according to the cluster types. Figure 1 represents the variables’ distribution of any kind of AC, and Figure 2 illustrates the distribution of variables without AC.

Figure A1. Comparison of variables with any AC according to urbanity and spatial clusters.
Figure A2. Comparison of variables without AC according to urbanity and spatial clusters.