Double and bordered α-circulant self-dual codes over finite commutative chain rings

Michael Kiermaier and Alfred Wassermann

Abstract. In this paper we investigate codes over finite commutative rings R, whose generator matrices are built from α-circulant matrices. For a non-trivial ideal $I \leq R$ we give a method to lift such codes over R/I to codes over R, such that some isomorphic copies are avoided.

For the case where I is the minimal ideal of a finite chain ring we refine this lifting method: We impose the additional restriction that lifting preserves self-duality. It will be shown that this can be achieved by solving a linear system of equations over a finite field.

Finally we apply this technique to \mathbb{Z}_4-linear double nega-circulant and bordered circulant self-dual codes. We determine the best minimum Lee distance of these codes up to length 64.

1. α-circulant matrices

In this section, we give some basic facts on α-circulant matrices, compare with [4, chapter 16], where some theory of circulant matrices is given, and with [1, page 84], where α-circulant matrices are called $\{k\}$-circulant.

Definition 1.1. Let R be a commutative ring, k a natural number and $\alpha \in R$. A $(k \times k)$-matrix A is called α-circulant, if A has the form

$$
\begin{pmatrix}
 a_0 & a_1 & a_2 & \ldots & a_{k-2} & a_{k-1} \\
 \alpha a_{k-1} & a_0 & a_1 & \ldots & a_{k-3} & a_{k-2} \\
 \alpha a_{k-2} & \alpha a_{k-1} & a_0 & \ldots & a_{k-4} & a_{k-3} \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 \alpha a_1 & \alpha a_2 & \alpha a_3 & \ldots & \alpha a_{k-2} & a_0
\end{pmatrix}
$$

with $a_i \in R$ for $i \in \{0, \ldots, k-1\}$. For $\alpha = 1$, A is called circulant, for $\alpha = -1$, A is called nega-circulant or skew-circulant, and for $\alpha = 0$, A is called semi-circulant.

An α-circulant matrix A is completely determined by its first row $v = (a_0, a_1, \ldots, a_{k-1}) \in R^k$. We denote A by $\text{circ}_\alpha(v)$ and say that A is the α-circulant matrix generated by v.

In the following, α usually will be a unit or even $\alpha^2 = 1$.

We define $T_\alpha = \text{circ}_\alpha(0, 1, 0, \ldots, 0)$, that is

$$
T_\alpha = \begin{pmatrix}
 1 \\
 1 \\
 \ddots \\
 \alpha \\
 1
\end{pmatrix}
$$
Using T_α, there is another characterization of an α-circulant matrix: A matrix $A \in R^{k \times k}$ is α-circulant iff $AT_\alpha = T_\alpha A$. This is seen directly by comparing the components of the two matrix products.

In the following it will be useful to identify the generating vectors $(a_0, a_1, \ldots, a_{k-1}) \in R^n$ with the polynomials $\sum_{i=0}^{k-1} a_i x^i \in R[x]$ of degree at most $k - 1$, which again can be seen as a set of representatives of the R-algebra $R[x]/(x^k - \alpha)$. Thus, we get an injective mapping $\text{circ}_\alpha : R[x]/(x^k - \alpha) \to R^{k \times k}$.

Obviously $\text{circ}_\alpha(1) = I_k$, which denotes the $(k \times k)$-unit matrix, $\text{circ}_\alpha(\lambda f) = \lambda \text{circ}_\alpha(f)$ and $\text{circ}_\alpha(f + g) = \text{circ}_\alpha(f) + \text{circ}_\alpha(g)$ for all scalars $\lambda \in R$ and all f and g in $R[x]/(x^k - \alpha)$. Furthermore, it holds $\text{circ}_\alpha(e_i) = \text{circ}_\alpha(x^i) = T^\alpha_{i}$ for all $i \in \{0, \ldots, k - 1\}$ and $\text{circ}_\alpha(x^k) = \text{circ}_\alpha(\alpha) = \alpha I_k = T^\alpha_0$, where e_i denotes the ith unit vector. So we have $\text{circ}_\alpha(x^i x^j) = \text{circ}_\alpha(x^i) \text{circ}_\alpha(x^j)$ for all $\{i, j\} \subset \mathbb{N}$. By linear extension it follows that circ_α is a monomorphism of R-algebras. Hence the image of circ_α, which is the set of the α-circulant $(k \times k)$-matrices over R, forms a commutative subalgebra of the R-algebra $R^{k \times k}$ and it is isomorphic to the R-algebra $R[x]/(x^k - \alpha)$. Especially, we get $\text{circ}_\alpha(a_0, \ldots, a_{k-1}) = \sum_{i=0}^{k-1} a_i T^\alpha_i$.

2. Double α-circulant and bordered α-circulant codes

DEFINITION 2.1. Let R be a commutative ring and $\alpha \in R$. Let A be an α-circulant matrix. A code generated by a generator matrix

$$(I_k | A)$$

is called double α-circulant code. A code generated by a generator matrix

$$
\begin{pmatrix}
\beta & \gamma & \cdots & \gamma \\
\delta & & & \\
I_k & & & A \\
\delta & & & \\
\end{pmatrix}
$$

with $\{\beta, \gamma, \delta\} \subset R$ is called bordered α-circulant code. The number of rows of such a generator matrix is denoted by k, and the number of columns is denoted by $n = 2k$.

As usual, two codes C_1 and C_2 are called equivalent or isomorphic, if there is a monomial transformation that maps C_1 to C_2.

DEFINITION 2.2. Let R be a commutative ring and $k \in \mathbb{N}$. The symmetric group over the set $\{0, \ldots, k - 1\}$ is denoted by S_k. For a permutation $\sigma \in S_k$ the permutation matrix $S(\sigma)$ is defined as $S_{ij} = \delta_{i, \sigma(j)}$, where δ is the Kronecker delta. An invertible matrix $M \in \text{GL}(k, R)$ is called monomial, if $M = S(\sigma) D$ for a permutation $\sigma \in S_k$ and an invertible diagonal matrix D. The decomposition of a monomial matrix into the permutational and the diagonal matrix part is unique.

Let $\mathfrak{M} = \mathfrak{M}(k, R, \alpha)$ be the set of all pairs (N, M) of monomial $(k \times k)$-matrices M and N over R, such that for each α-circulant matrix $A \in R^{k \times k}$, the matrix $N^{-1}AM$ is again α-circulant. An element (N, M) of \mathfrak{M} can be interpreted as a mapping $R^{k \times k} \to R^{k \times k}$, $A \mapsto N^{-1}AM$. The composition of mappings implies a group structure on \mathfrak{M}, and \mathfrak{M} operates on the set of all α-circulant matrices.

Now let $(N, M) \in \mathfrak{M}$. The codes generated by $(I | A)$ and by $(I | N^{-1}AM)$ are equivalent, since

$$
N^{-1}(I | A) \begin{pmatrix} N & 0 \\ 0 & M \end{pmatrix} = (I | N^{-1}AM)
$$

\footnote{Throughout this article, counting starts at 0. Accordingly, $\mathbb{N} = \{0, 1, 2, \ldots\}$}
and the matrix \(\begin{pmatrix} N & 0 \\ 0 & M \end{pmatrix} \) is monomial. Thus, \(\mathfrak{M} \) also operates on the set of all double \(\alpha \)-circulant generator matrices.

In general \(\mathfrak{M} \)-equivalence is weaker than the code equivalence: For example the vectors \(v = (1111101011011010) \in \mathbb{Z}_2^{16} \) and \(w = (1110010011100000) \in \mathbb{Z}_2^{16} \) generate two equivalent binary double circulant self-dual \([32, 16]\)-codes. But since the number of zeros in \(v \) and \(w \) is different, the two circulant matrices generated by \(v \) and \(w \) cannot be in the same \(\mathfrak{M} \)-orbit.

3. Monomial transformations of \(\alpha \)-circulant matrices

Let \(R \) be a commutative ring, \(k \in \mathbb{N} \) and \(\alpha \in R \) a unit. In this section we give some elements \((N, M)\) of the group \(\mathfrak{M} = \mathfrak{M}(R, k, \alpha) \) defined in the last section. In part they can be deduced from [4, chapter 16, §6, problem 7].

Quite obvious elements of \(\mathfrak{M} \) are \((I_k, T_\alpha)\), \((T_\alpha, I_k)\), \((I_k, D)\) and \((D, I_k)\), where \(D \) denotes an invertible scalar matrix.

For certain \(\alpha \) further elements of \(\mathfrak{M} \) are given by the following lemma, which is checked by a calculation:

Lemma 3.1. Let \(\alpha \in R \) with \(\alpha^2 = 1 \) and \(s \in \{0, \ldots, k - 1\} \) with \(\gcd(s, k) = 1 \). Let \(\sigma = (i \mapsto si \mod k) \in S_k \). We define \(D \) as the diagonal matrix which has \(\alpha^{((s+1)i+[s/k])} \) as \(i \)-th diagonal entry, and we define the monomial matrix \(M = S(\sigma)D \). Then \((M, M) \in \mathfrak{M}\)

More specifically: Let \(f \in R[x]/(x^k - \alpha) \). It holds:

\[
M^{-1} \text{circ}_\alpha(f)M = \text{circ}_\alpha(f((\alpha x)^s))
\]

Finally, there is an invertible transformation \(A \mapsto M^{-1}AM \) that converts an \(\alpha \)-circulant matrix into a \(\beta \)-circulant matrix for certain pairs \((\alpha, \beta)\):

Lemma 3.2. Let \(R \) be a commutative ring, \(\alpha \in R \) a unit and \(\{i, j\} \subset \mathbb{N} \). Let \(A \) be an \(\alpha^i \)-circulant \((k \times k)\)-matrix over \(R \) and \(M \) the diagonal matrix with the diagonal vector \((1, \alpha^j, \alpha^{2j}, \ldots, \alpha^{(k-1)j})\). Then \(M^{-1}AM \) is an \(\alpha^{i-j} \)-circulant matrix. For \(\alpha^2 = 1 \) the matrix \(M \) is orthogonal.

4. The lift of an \(\alpha \)-circulant matrix

If we want to construct all equivalence classes of double \(\alpha \)-circulant codes over a commutative ring \(R \), it is enough to consider orbit representatives of the group action of \(\mathfrak{M} \) on the set of all double \(\alpha \)-circulant generator matrices, or equivalently, on the set of all \(\alpha \)-circulant matrices.

Furthermore, we can benefit from non-trivial ideals of \(R \): Let \(I \) be an ideal of \(R \) with \(\{0\} \neq I \neq R \), and \(\overline{\cdot} : R \rightarrow R/I \) the canonical projection of \(R \) onto \(R/I \). We set \(\mathfrak{M} = \mathfrak{M}(k, R, \alpha) \) and \(\mathfrak{M} = \{(N, M) : (N, M) \in \mathfrak{M}\} \). It holds \(\mathfrak{M} \subseteq \mathfrak{M}(k, R/I, \overline{\alpha}) \). Let \(e : R/I \rightarrow R \) be a mapping that maps each element \(r + I \) of \(R/I \) to a representative element \(r \in R \).

Definition 4.1. Let \(A = \text{circ}_\alpha(v) \) be an \(\overline{\alpha} \)-circulant matrix with generating vector \(v \in R/I \). An \(\alpha \)-circulant matrix \(B \) over \(R \) is called lift of \(A \), if \(B = A \). In this case we also say that the code generated by \((I_k | B)\) is a lift of the code generated by \((I_k | A)\). The lifts of \(A \) are exactly the matrices of the form \(\text{circ}_\alpha(e(v)) + \text{circ}_\alpha(w) \) with \(w \in I^k \). The vector \(w \) is called lift vector.

2To avoid confusion, we point out that \(I^k \) denotes the \(k \)-fold Cartesian product \(I \times \ldots \times I \) here.
To find all double α-circulant codes over R, we can run over all lifts of all double $\bar{\alpha}$-circulant codes over R/I. The crucial point now is that for finding at least one representative all equivalence classes of double α-circulant codes over R, it is enough to run over the lifts of a set of representatives of the group action of \mathfrak{M} on the set of all $\bar{\alpha}$-circulant codes over R/I:

Lemma 4.1. Let A and B be two $\bar{\alpha}$-circulant matrices over R/I which are in the same \mathfrak{M}-orbit. Then for each lift of A there is a lift of B which is in the same \mathfrak{M}-orbit.

Proof. Because A and B are in the same \mathfrak{M}-orbit, there is a pair of monomial matrices $(N, M) \in \mathfrak{M}$ such that $N^{-1}AM = B$. Let $a \in (R/I)^k$ be the generating vector of A and $b \in (R/I)^k$ the generating vector of B. Since $\text{circ}_\alpha(e(a)) = A$ and $\text{circ}_\alpha(e(b)) = B$ it holds $N^{-1}\text{circ}_\alpha(e(a))M = \text{circ}_\alpha(e(b)) + K$, where $K \in I^{k \times k}$. $\text{circ}_\alpha(e(b))$ is of course α-circulant, and $N^{-1}\text{circ}_\alpha(e(a))M$ is α-circulant because of $(N, M) \in \mathfrak{M}$. Thus, also K is α-circulant and therefore there is a $z \in I^k$ with $\text{circ}_\alpha(z) = K$.

Now, let $w \in I^k$ be some lift vector. $N^{-1}\text{circ}_\alpha(w)M \in I^{k \times k}$ is α-circulant and generated by a lift vector $w' \in I^k$. Then $N^{-1}(\text{circ}_\alpha(e(a)) + \text{circ}_\alpha(w))M = \text{circ}_\alpha(e(b)) + \text{circ}_\alpha(z + w')$, and $z + w' \in I^k$. Therefore, the lift of A by the lift vector w and the lift of B by the lift vector $z + w'$ are in the same \mathfrak{M}-orbit. \qed

It is not hard to adapt this approach to bordered α-circulant codes. One difference is an additional restriction on the appearing monomial matrices: Its diagonal part must be a scalar matrix. The reason for this is that otherwise the monomial transformations would destroy the border vectors $(\gamma \ldots \gamma)$ and $(\delta \ldots \delta)^t$.

Circulant matrices are often used to construct self-dual codes. Thus we are interested in a fast way to generate the lifts that lead to self-dual codes. The next section gives such an algorithm for the case that R is a finite chain ring and I is its minimal ideal.

5. Self-dual double α-circulant codes over finite commutative chain rings

We want to investigate self-dual double α-circulant codes. Here we need $\alpha^2 = 1$. This is seen by denoting the rows of a generator matrix G of such a code by $w_0 \ldots w_{k-1}$, and by comparing the scalar products $\langle w_0, w_i \rangle$ and $\langle w_1, w_2 \rangle$, which must be both zero. Furthermore, given $\alpha^2 = 1$, we see that $\langle w_0, w_i \rangle = \langle w_j, w_{i+j} \rangle$, where $i + j$ is taken modulo k. Thus G generates a self-dual code if $\langle w_0, w_0 \rangle = 1$ and for all $j \in \{1, \ldots, [k/2]\}$ the scalar products $\langle w_0, w_j \rangle$ are equal to 0.

Definition 5.1. A ring R is called *chain ring*, if its left ideals are linearly ordered by inclusion.

For the theory of finite chain rings and linear codes over finite chain rings see [2].

In this section R will be a finite commutative chain ring, which is not a finite field, and α an element of R with $\alpha^2 = 1$. There is a ring element $\theta \in R$ which generates the maximal ideal $R\theta$ of R. The number q is defined by $R/R\theta \cong \mathbb{F}_q$, and m is defined by $|R| = q^m$. Because R is not a field, we have $m \geq 2$. The minimal ideal of R is $R\theta^{m-1}$. \mathfrak{M} is defined as in section [2] with with the difference that all monomial matrices M should be orthogonal, that is $MM^t = I_k$.

Thus each \mathfrak{M}-image of a generator matrix of a self-dual code again generates a self-dual code. Now let $I = R\theta^{m-1}$ be the minimal ideal of R. As in section [4] let $e : R/I \rightarrow R$ be a mapping that assigns each element of R/I to a representative in R, now with the additional condition $e(\bar{\alpha}) = \alpha$.

We mention that if \((I_k | B)\) generates a double \(\alpha\)-circulant self-dual code over \(R\), then \((I_k | \bar{B})\) generates a double \(\tilde{\alpha}\)-circulant self-dual code over \(R/I\). So \(B\) is among the lifts of all \(\tilde{\alpha}\)-circulant matrices \(A\) over \(R/I\) such that \((I_k | A)\) generates a self-dual double \(\tilde{\alpha}\)-circulant code. Let \(A = \text{circ}_\alpha(a)\) be an \(\tilde{\alpha}\)-circulant matrix over \(R/I\) such that \((I_k | A)\) generates a self-dual code. So \(AA^t = -I_k\), and therefore

\[
c_0 := 1 + \sum_{i=0}^{k-1} e(a_i)^2 \quad \text{and}
\]

\[
c_j := \sum_{i=0}^{j-1} \alpha e(a_i) e(a_{k-j+i}) + \sum_{i=j}^{k-1} e(a_i) e(a_{i-j}) \quad \text{for all } j \in \{1, \ldots, \lfloor k/2 \rfloor \}
\]

We want to find all lifts \(B = \text{circ}_\alpha(e(a)) + \text{circ}_\alpha(w)\) of \(A\) with \(w \in I^k\) such that \(BB^t = -I_k\). As we have seen, this is equivalent to

\[
0 = 1 + \sum_{i=0}^{k-1} (e(a_i) + w_i)^2 \quad \text{and}
\]

\[
0 = \sum_{i=0}^{j-1} (e(a_i) + w_i)(\alpha e(a_{k-j+i}) + w_{k-j+i}) + \sum_{i=j}^{k-1} (e(a_i) + w_i)(e(a_{i-j}) + w_{i-j})
\]

where the second equation holds for all \(j \in \{1, \ldots, \lfloor k/2 \rfloor \}\). Using \(I \cdot I = 0\), we get

\[
0 = c_0 + 2 \sum_{i=0}^{k-1} e(a_i)w_i \quad \text{and}
\]

\[
0 = c_j + \sum_{i=0}^{j-1} (e(a_i)w_{k-j+i} + \alpha e(a_{k-j+i})w_i) + \sum_{i=j}^{k-1} (e(a_i)w_{i-j} + e(a_{i-j})w_i)
\]

This is a \(R\)-linear system of equations for the components \(w_i \in I\) of the lift vector. Using the fact that the \(R\)-modules \(R/(R\theta)\) and \(I\) are isomorphic, and \(R/(R\theta) \cong F_q\), this can be reformulated as a linear system of equations over the finite field \(F_q\), which can be solved efficiently. Since \(R/I\) is again a commutative chain ring, the lifting step can be applied repeatedly. Thus, starting with the codes over \(F_q\), the codes over \(R\) can be constructed by \(m-1\) nested lifting steps.

Again, this method can be adapted to bordered \(\alpha\)-circulant matrices over commutative finite chain rings.

6. Application: Self-dual codes over \(\mathbb{Z}_4\)

For a fixed length \(n\) we want to find the highest minimum Lee distance \(d_{\text{Lee}}\) of double nega-circulant and bordered circulant self-dual codes over \(\mathbb{Z}_4\). In \([5]\) codes of the bordered circulant type of length up to 32 were investigated.

First we notice that the length \(n\) must be a multiple of 8: Let \(C\) be a bordered circulant or a double nega-circulant code of length \(n\) and \(c\) a codeword of \(C\). We have \(0 = \langle c, c \rangle = \sum_{i=0}^{n-1} c_i^2 \in \mathbb{Z}_4\). The last expression equals the number of units in \(c\) modulo 4, so the number of units of each codeword is a multiple of 4. It follows that the image \(C\) of \(C\) over \(\mathbb{Z}_2\) is a doubly-even self-dual code of length \(n\), which can only exist for lengths \(n\) divisible by 8.

Furthermore, it holds

\[
d_{\text{Lee}}(C) \leq 2d_{\text{Ham}}(\bar{C})
\]

(1)
As a result, we only need to consider the lifts of codes \tilde{C} which have a sufficiently high minimum Hamming distance.

We explain the algorithm for the case of the nega-circulant codes: In a first step, for a given length n we generate all doubly-even double circulant self-dual codes over \mathbb{Z}_2. This is done by enumerating Lyndon words of length n which serve as generating vectors for the circulant matrix. Next, we filter out all duplicates with respect to the group action of \mathcal{M}, where \mathcal{M} is the group generated by the elements given in section 3 which consist of pairs of orthogonal monomial matrices.

A variable d will keep the best minimum Lee distance we already found. We initialize d with 0. Now we loop over all binary codes $C_{\mathbb{Z}_2}$ in our list, from the higher to the lower minimum Hamming distance of $C_{\mathbb{Z}_2}$: If $2d_{\text{Ham}}(C_{\mathbb{Z}_2}) \leq d$ we are finished because of (1). Otherwise, as explained in section 5, we solve a system of linear equations over \mathbb{Z}_2 and get all self-dual lifts of $C_{\mathbb{Z}_2}$. For these lifts we compute the minimum Lee distance and update d accordingly.

Most of the computation time is spent on the computation of the minimum Lee distances. Thus it was a crucial point to write a specialized algorithm for this purpose. It is described in [3].

The results of our search are displayed in the following table. For given length n, it lists the highest minimum Lee distance of a self-dual code of the respective type:

n	8	16	24	32	40	48	56	64
	6	8	12	14	14	18	16	20
	6	8	12	14	14	18	18	20

We see that the results are identical for the two classes of codes, except for length 56. Using (1) there is a simple reason that for this length no double circulant self-dual code over \mathbb{Z}_4 with minimum Lee distance greater than 16 exists: The best doubly-even double circulant self-dual binary code has only minimum Hamming distance 8.

Acknowledgment

This research was supported in part by Deutsche Forschungsgemeinschaft WA 1666/4-1.

References

[1] Philip J. Davis. *Circulant Matrices*. Chelsea publishing, New York, second edition, 1994.
[2] Thomas Honold and Ivan Landjev. Linear codes over finite chain rings. *Electr. J. Comb.*, 7, 2000.
[3] Michael Kiermaier and Alfred Wassermann. On the Minimum Lee Distance of Quadratic Residue Codes over \mathbb{Z}_4. In *Proceedings of the International Symposium on Information Theory (ISIT)*, 2008. to appear.
[4] F. J. MacWilliams and N. J. A. Sloane. *The Theory of Error-Correcting Codes*. North-Holland, Amsterdam, 1977.
[5] Masaaki Harada T. Aaron Gulliver. Extremal double circulant Type II codes over \mathbb{Z}_4 and construction of 5-(24, 10, 36) designs. *Discrete Mathematics*, 194:129–137, 1999.

Michael Kiermaier, Mathematical Department, University of Bayreuth, D-95440 Bayreuth, Germany

E-mail address: michael.kiermaier@uni-bayreuth.de

URL: http://www.mathe2.uni-bayreuth.de/michaelk/

Alfred Wassermann, Mathematical Department, University of Bayreuth, D-95440 Bayreuth, Germany

E-mail address: alfred.wassermann@uni-bayreuth.de

URL: http://did.mat.uni-bayreuth.de/~alfred/home/index.html