SEARCHES FOR D^0-\bar{D}^0 MIXING:
FINDING THE (SMALL) CRACK IN THE STANDARD MODEL

A. J. Schwartz
University of Cincinnati, P.O. Box 120011, Cincinnati, Ohio 45221

Abstract

We review results from searches for mixing and CP violation in the D^0-\bar{D}^0 system. No evidence for mixing or CP violation is found, and limits are set for the mixing parameters x, y, x', y', and several CP-violating parameters.

1 Introduction

Despite numerous searches, mixing between D^0 and \bar{D}^0 flavor eigenstates has not yet been observed. Within the Standard Model (SM), the short-distance "box" diagram (which plays a large role in $K^0-\bar{K}^0$ and $B^0-\bar{B}^0$ mixing) is doubly-Cabibbo-suppressed (DCS) and GIM-suppressed; since the D^0 decay width is dominated by Cabibbo-favored (CF) amplitudes, D^0-\bar{D}^0 mixing is expected to be a rare phenomenon. Observing mixing at a rate significantly above the SM expectation could indicate new physics.
The formalism describing D^0-\bar{D}^0 mixing is given in several papers.1, 2) The parameters used to characterize mixing are $x = \Delta m/\Gamma$ and $y = \Delta \Gamma/(2\Gamma)$, where Δm and $\Delta \Gamma$ are the mass and decay width differences between the two mass eigenstates, and Γ is the mean decay width. Within the SM, x and y are difficult to calculate as there are long-distance contributions. For $m_q \gg \Lambda_{\text{QCD}}$, these contributions can be estimated using the heavy-quark expansion; however, m_c may not be large enough for this calculation to be reliable. Current theoretical predictions3) span a wide range: $|x| \sim |y| \sim (10^{-7} \text{ to } 10^{-2})$, with the majority being $<10^{-3}$.

For decay times $t \ll 1/\Delta m, 1/\Delta \Gamma$, which is well-satisfied for charm decay, the time-dependent $D^0(t) \to f$ and $\bar{D}^0(t) \to \bar{f}$ decay rates are

\begin{equation}
R_{D^0} = |A_f|^2 e^{-\Gamma t} \left[1 + |y| \text{Re}(\lambda) - x \text{Im}(\lambda) \right] (\Gamma t) + |\lambda|^2 \frac{(x^2 + y^2)}{4} (\Gamma t)^2 \right] (1)
\end{equation}

\begin{equation}
R_{\bar{D}^0} = |\bar{A}_f|^2 e^{-\Gamma t} \left[1 + |y| \text{Re}(\bar{\lambda}) - x \text{Im}(\bar{\lambda}) \right] (\Gamma t) + |\bar{\lambda}|^2 \frac{(x^2 + y^2)}{4} (\Gamma t)^2 \right] (2)
\end{equation}

where $\lambda = (q/p)(\bar{A}_f/A_f)$, $\bar{\lambda} = (p/q)(A_f/\bar{A}_f)$, q and p are complex coefficients relating flavor eigenstates to mass eigenstates, and $A_f (\bar{A}_f)$ and $\bar{A}_f (A_f)$ are amplitudes for a pure $D^0 (\bar{D}^0)$ state to decay to f and \bar{f}, respectively.

In this paper we discuss five methods used to search for D^0-\bar{D}^0 mixing and CP violation (CPV). These methods use the following decay modes:\textsuperscript{1) semileptonic $D^0 \to K^+\ell^\pm\nu$ decays, decays to CP-eigenstates K^+K^- and $\pi^+\pi^-$, DCS $D^0 \to K^+\pi^-$ decays, $D^0 \to K^0_S\pi^+\pi^-$ decays, and multi-body DCS $D^0 \to K^+n(\pi)$ decays. A newer method based on quantum correlations4) in $e^+e^- \to \psi''(3770) \to D^0\bar{D}^0$ production is not discussed here. The flavor of a D^0 when produced is determined by requiring that it originate from a $D^{*+} \to D^0\pi^+_s$ decay; the charge of the low momentum ("slow") π^+_s determines the charm flavor at $t = 0$. As the kinetic energy released in $D^{*+} \to D^0\pi^+_s$ decays is only 5.8 MeV (very near threshold), requiring that $Q \equiv M_{K\pi\pi_s} - M_{K\pi} - m_\pi$ be small greatly reduces backgrounds.

1Charge-conjugate modes are implicitly included throughout this paper unless noted otherwise.
2 $D^0(t) \rightarrow K^{(*)+}\ell^−\nu$ Semileptonic Decays

Because the $K^{(*)+}\ell^−\nu$ final state can only be reached from a D^0 decay, observing $D^0(t) \rightarrow K^{(*)+}\ell^−\nu$ would provide clear evidence for mixing. In Eq. (1) only the third term is nonzero; integrating this term over all times and assuming $|q/p| = 1$ (i.e., neglecting CPV in mixing) gives

$$\frac{\int R(D^0 \rightarrow K^+\ell\nu) \, dt}{\int R(D^0 \rightarrow K^-\ell\nu) \, dt} \approx \frac{x^2 + y^2}{2} \equiv r_D.$$ (3)

Several experiments $^5, \ 6)$ have used this method to constrain r_D; the most stringent constraint is from the Belle experiment using 253 fb^{-1} of data. $^6)$

Due to the neutrino, the final state is not fully reconstructed; however, at an e^+e^- collider there are enough kinematic constraints to infer the neutrino momentum. Specifically, momentum conservation prescribes $P_\nu = P_{CM} - P_{\pi_sK\ell}$, where P_{CM} is the four-momentum of the e^+e^- center-of-mass (CM) system, π_s, K, and ℓ are daughters from $D^* \rightarrow D^0\pi_s \rightarrow \pi_sK\ell\nu$, and P_{rest} is the four-momentum of the remaining particles in the event. In the Belle analysis the magnitude $|P_{\text{rest}}|$ is rescaled to satisfy $(P_{CM} - P_{\text{rest}})^2 = m_{D^*}^2$, and after this rescaling the direction of \vec{P}_{rest} is adjusted to satisfy $P_{\nu}^2 (= m_{\nu}^2) = 0$.

The $\Delta M \equiv M_{\pi_sK\ell\nu} - M_{K\ell\nu}$ distributions for “right-sign” (RS) $D^0 \rightarrow K^-\ell^+\nu$ and “wrong-sign” (WS) $D^0 \rightarrow K^+\ell^−\nu$ samples are shown in Fig. 1. Sensitivity to mixing is improved by utilizing information on the decay time, which is calculated by projecting the D^0 flight distance onto the (vertical) y axis: $t = (M_{D^0}/c) \times (y_{\text{vtx}} - y_{\text{IP}})/p_y$. This projection has superior decay time resolution, as the beam profile is only a few microns in y and thus the interaction point (y_{IP}) is well-determined. Events satisfying $t > \tau_{D^0}$ are divided into six t intervals, and the event yields $N_{RS}^{(t)}$ and $N_{WS}^{(t)}$, acceptance ratio $\varepsilon_{WS}^{(t)}/\varepsilon_{RS}^{(t)}$, and resulting mixing parameter $r_D^{(t)}$ are calculated separately for each. $N_{RS}^{(t)}$ and $N_{WS}^{(t)}$ are obtained from fitting the ΔM distributions. Doing a χ^2 fit to the six $r_D^{(t)}$ values gives an overall result $r_D = [0.20 \pm 0.47 \text{ (stat)} \pm 0.14 \text{ (syst)}] \times 10^{-3}$, or $r_D \leq 0.10\%$ at 90% C.L. No evidence for mixing is observed. The total number of signal candidates in all t intervals is 90601 ± 372 RS events and 10 ± 80 WS events.
Figure 1: ΔM distributions for RS $D^0 \rightarrow K^-\ell^+\nu$ candidate decays (left) and WS $D^0 \rightarrow K^+\ell^-\nu$ candidate decays (right), from Belle using 253 fb^{-1} of data. The WS plot shows no visible signal above background.

3 $D^0(t) \rightarrow K^+K^-, \pi^+\pi^- \ CP$-Eigenstate Decays

When the final state is self-conjugate, e.g., K^+K^-, there is no strong phase difference between \bar{A}_f and A_f. Assuming $|\bar{A}_f| = |A_f|$ (no direct CPV), $\lambda = -|q/p|e^{i\phi}$ and $\bar{\lambda} = -|p/q|e^{-i\phi}$, where ϕ is a weak phase difference and the leading minus sign is due to the phase convention $CP|D^0⟩ = -|\bar{D}^0⟩$. Inserting these terms into Eqs. (1) and (2) and dropping the very small last term gives

$$R(D^0 \rightarrow K^+K^-) = |A_{K+K^-}|^2 e^{-\frac{\Gamma}{2} t} \left[1 - \frac{|q/p|}{|1 + |q/p|(y \cos \phi - x \sin \phi)|} \right]$$

(4)

$$R(\bar{D}^0 \rightarrow K^+K^-) = |A_{K+K^-}|^2 e^{-\frac{\Gamma}{2} t} \left[1 - \frac{|p/q|}{|1 + |p/q|(y \cos \phi + x \sin \phi)|} \right]$$

(5)

Eqs. (4) and (5) imply that the measured D^0 and \bar{D}^0 inverse lifetimes are $\frac{1}{\Gamma}[1 + |q/p|(y \cos \phi - x \sin \phi)]$ and $\frac{1}{\Gamma}[1 + |p/q|(y \cos \phi + x \sin \phi)]$, respectively. We define $y_{CP} \equiv \frac{\tau_{K^-\pi^+}}{\tau_{K^+\pi^-}} - 1$, which equals $|q/p|(y \cos \phi - x \sin \phi)$ for D^0 decays and $|p/q|(y \cos \phi + x \sin \phi)$ for \bar{D}^0 decays. For $|q/p| = 1$, i.e., no CPV in mixing, $y_{CP} = y \cos \phi$ for equal numbers of D^0 and \bar{D}^0 decays together. If also $\phi = 0$ (no CPV), $y_{CP} = y$. The observable y_{CP} is measured by fitting the $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow K^-\pi^+$ decay time distributions.

To date, five experiments have measured y_{CP}; the most precise
value is from BaBar using 91 fb$^{-1}$ of data.8 To increase statistics, BaBar used both K^+K^- and $\pi^+\pi^-$ decays, and, in addition, the $D^0\to K^+K^-$ analysis used both a large inclusive D^0 sample and a smaller, higher purity sample in which the D^0 was required to originate from $D^{\ast+}\to D^0\pi^+$. The respective decay time distributions are shown in Fig. 2. Doing an unbinned maximum likelihood fit to each sample, combining results for K^+K^- and $\pi^+\pi^-$, and taking the ratio of lifetimes gives $y_{CP} = [0.8 \pm 0.4 \text{ (stat)} \pm 0.5 \text{ (syst)}]\%$. This value is consistent with, but smaller than, the relatively large value measured by FOCUS:9 $y_{CP} = [3.4 \pm 1.4 \text{ (stat)} \pm 0.7 \text{ (syst)}]\%$.

BaBar also measures $\Delta Y \equiv (\tau^+ - \tau^-)/(\tau^+ + \tau^-) \times \tau_{K^-\pi^-}/\tau$, where τ^+ (τ^-) is the lifetime for $D^0\to K^+K^-$ ($D^0\to K^-\pi^+$) and $\tau = (\tau^+ + \tau^-)/2$. For $|q/p| = 1$, $\Delta Y = x\sin \phi$. The result is $\Delta Y = [-0.8 \pm 0.6 \text{ (stat)} \pm 0.2 \text{ (syst)}]\%$, which indicates that either x is small or ϕ is small.

4 $D^0(t) \to K^+\pi^-$ Doubly-Cabibbo-Suppressed Decays

For $D^0 \to K^+\pi^-$, A_f is DCS, \bar{A}_f is CF, and thus $|A_f| \ll |\bar{A}_f|$. In addition, there may be a strong phase difference (δ) between the amplitudes. Defining $R_D \equiv |A_f/\bar{A}_f|^2$ and $\overline{R_D} \equiv |\bar{A}_f/A_f|^2$, $\lambda = |q/p|R_D^{1/2}e^{i(\phi+\delta)}$ and $\overline{\lambda} = |p/q|\overline{R_D}^{1/2}e^{i(-\phi+\delta)}$. Inserting these terms into Eqs. (1) and (2) gives

\begin{equation}
R(D^0\to K^+\pi^-) \propto e^{-\overline{T}_t} \left[R_D + \left| \frac{q}{p} \right| \sqrt{R_D} \left[y' \cos \phi - x' \sin \phi \right] (\overline{T}_t) + \left| \frac{q}{p} \right|^2 \frac{(x'^2 + y'^2)}{4} (\overline{T}_t)^2 \right] \end{equation}

\begin{equation}
R(\overline{D^0} \to K^-\pi^+) \propto e^{-\overline{T}_t} \left[\overline{R_D} + \left| \frac{p}{q} \right| \sqrt{\overline{R_D}} \left[y' \cos \phi + x' \sin \phi \right] (\overline{T}_t) + \left| \frac{p}{q} \right|^2 \frac{(x'^2 + y'^2)}{4} (\overline{T}_t)^2 \right] , \end{equation}

where $x' \equiv x \cos \delta + y \sin \delta$ and $y' \equiv -x \sin \delta + y \cos \delta$. These “rotated” mixing parameters absorb the unknown strong phase difference δ. CPV enters Eqs. (6) and (7) in three ways: $|q/p| \neq 1$ (CPV in mixing), $R_D \neq \overline{R_D}$ (CPV in the DCS amplitude), and $\phi \neq 0$ (CPV via interference between the DCS and mixed amplitudes). Assuming no CPV gives the simpler expression

\begin{equation}
R \propto e^{-\overline{T}_t} \left[R_D + \sqrt{R_D} y' (\overline{T}_t) + \frac{(x'^2 + y'^2)}{4} (\overline{T}_t)^2 \right] . \end{equation}
Figure 2: Decay time distributions for $CF \ D^0 \rightarrow K^-\pi^+$ (upper left), $D^0 \rightarrow K^+K^-$ (upper right), $D^0 \rightarrow \pi^+\pi^-$ (lower left), and $D^0 \rightarrow K^+K^-$ selected without using a D^*^+ tag (lower right), from BaBar using $91 \ fb^{-1}$ of data. \cite{8}) The shaded histograms show the signal component obtained from the fit; residuals from the fit are plotted below each distribution.

To date, six experiments \cite{10, 11, 12}) have done a time-dependent analysis of $D^0 \rightarrow K^+\pi^-$ decays; the most stringent constraints on x^2 and y' are from Belle using $400 \ fb^{-1}$ of data. \cite{12}) The reconstructed $M_{K\pi}$ and Q distributions after all selection criteria are shown in Fig. 3; fitting these distributions yields 1073993 ± 1108 RS signal events and 4024 ± 88 WS signal events. Those events satisfying $|M_{K\pi} - M_{D^0}| < 22 \ MeV/c^2$ and $|Q - 5.8 \ MeV| < 1.5 \ MeV$ (4σ intervals) have their decay times fitted for x^2, y', and R_D. The results are listed in Table 1; projections of the fit are shown in Fig. 4(left).

A 95\% C.L. region in the x^2-y' plane is obtained using a frequentist technique based on “toy” Monte Carlo (MC) simulation. For points $\vec{\alpha} = (x^2, y')$,

\begin{align*}
D^0 \text{Candidates / 0.20 ps} \\
-4 & -2 0 2 4 6 \\
-2 & 2 2 \\
+ p & - K^+ \ K^-
\end{align*}
Table 1: Limits on mixing parameters obtained from fitting the decay time distribution of WS $D^0 \rightarrow K^+\pi^-$ decays, from Belle using 400 fb$^{-1}$ of data.\cite{12}

Fit Case	Parameter	Fit Result	95% C.L. interval
	x'^2	$0.18_{-0.23}^{+0.21}$	<0.72
	y'	$0.6_{-3.9}^{+4.0}$	$(-9.9, 6.8)$
	R_D	3.64 ± 0.17	$(3.3, 4.0)$
	R_M	$-$	$(0.63 \times 10^{-5}, 0.40)$
CPV allowed	x'^2	$-$	<0.72
	y'	$-$	$(-28, 21)$
	R_M	$-$	<0.40
	A_D	23 ± 47	$(-76, 107)$
	A_M	670 ± 1200	$(-995, 1000)$
No mixing/CPV	R_D	3.77 ± 0.08 (stat)	± 0.05 (syst)

one generates ensembles of MC experiments and fits them using the same procedure as that used for the data. For each experiment, the difference in likelihood $\Delta L \equiv \ln L_{\text{max}} - \ln L(\vec{\alpha})$ is calculated, where L_{max} is evaluated for $x'^2 \geq 0$. The locus of points $\vec{\alpha}$ for which 95% of the ensemble has ΔL less than that of the data is taken as the 95% C.L. contour. This contour is shown in Fig. 4(right); projections of the contour are listed in the right-most column of Table 1.

CPV is accounted for by fitting the $D^0 \rightarrow K\pi$ and $\bar{D}^0 \rightarrow K\pi$ samples separately; this yields six values: x'^{\pm}, y'^{\pm}, and R_{D}^{\pm}. Defining $R_{M}^{\pm} \equiv (x'^{\pm 2} + y'^{\pm 2})/2$ and $A_{M} \equiv (R_{M}^{+} - R_{M})/(R_{M}^{+} + R_{M})$, one finds

$$x'^{\pm} = \left(\frac{1 \pm A_{M}}{1 + A_{M}}\right)^{1/4} (x' \cos \phi \pm y' \sin \phi)$$

$$y'^{\pm} = \left(\frac{1 \pm A_{M}}{1 + A_{M}}\right)^{1/4} (y' \cos \phi \mp x' \sin \phi),$$

where there is an implicit sign ambiguity in x'^{\pm} due to Eqs. (6) and (7) being quadratic in x'. To allow for CPV, one obtains separate $1-\sqrt{0.05}=77.6\%$ C.L. contours for $(x'^{+ 2}, y'^{+})$ and $(x'^{- 2}, y'^{-})$; points on the $(x'^{+ 2}, y'^{+})$ contour are
then combined with points on the \((x'^2, y')\) contour and the combination used to solve Eqs. (9) and (10) for \(x'^2\) and \(y'\). Because the relative sign of \(x'\) and \(x'^{-}\) is unknown, there are two solutions (one for each sign); Belle plots both in the \((x'^2, y')\) plane and takes the outermost envelope of points as the 95% C.L. contour allowing for CPV. This contour has a complicated shape [see Fig. 4(right)] due to the two solutions. Projections of the contour are listed in the right-most column of Table 1. In the case of no CPV, the no-mixing point \(x'^2 = y' = 0\) lies just outside the 95% C.L. contour; this point corresponds to 3.9% C.L. with systematic uncertainty included.

Figure 3: WS \(D^0 \to K^+\pi^-\) decays: \(M_{K\pi}\) spectrum for events satisfying \(Q \in (5.3, 6.5)\) MeV (left), and \(Q\) spectrum for events satisfying \(M_{K\pi} \in (1.845, 1.885)\) GeV/c\(^2\), from Belle using 400 fb\(^{-1}\) of data. \([12]\)

5 \(D^0(t) \to K^0_S \pi^+\pi^-\) Dalitz Plot Analysis

In this method one considers a self-conjugate final state that is not a CP eigenstate, e.g., a three-body decay that can have either \(L = 0\) (CP-even) or \(L = 1\) (CP-odd). If CPV is negligible, CP-eigenstates (denoted \(D_-, D_+\)) are mass eigenstates (denoted \(D_1, D_2\)), and the amplitude for \(D^0(t) \to K^0_S \pi^+\pi^-\) is:

\[
A_{K^0\pi\pi} = \frac{1}{2p} \left(\langle K^0_S \pi^+\pi^- | H | D_-(t) \rangle + \langle K^0_S \pi^+\pi^- | H | D_+(t) \rangle \right)
\]

\[
\equiv A_- e^{-(\Gamma_1/2 + i\gamma_1) t} + A_+ e^{-(\Gamma_2/2 + i\gamma_2) t} \tag{11}
\]
\[R_{K^0\pi\pi} = |A_-|^2 e^{-\frac{\Gamma(1-y)}{2}t} + |A_+|^2 e^{-\frac{\Gamma(1+y)}{2}t} + 2e^{-\frac{\Gamma}{2}t} \left[\text{Re}(A_+ A_-^*) \cos(\Delta m t) + \text{Im}(A_+ A_-^*) \sin(\Delta m t) \right], \]

where $A_{+, -}$ is the amplitude for $D_{+, -}\rightarrow K_S^0 \pi^+ \pi^-$ multiplied by $1/(2p)$. Note that $x = (m_2 - m_1)/\Gamma$ and $y = (\Gamma_2 - \Gamma_1)/(2\Gamma)$. For a three-body final state, one can distinguish the A_+ and A_- components via a Dalitz plot analysis; i.e., a $K_S^0 f_0(980)$ intermediate state is CP-even and contributes to A_+, $K_S^0 \rho^0$ is CP-odd and contributes to A_-, $K^+(890)^\pi^-$ is a flavor-eigenstate and contributes to both A_+ and A_-, etc. Thus one models $A_{+, -}$ by separate sums of amplitudes $\sum_j a_j e^{i\delta_j} A_j$, where A_j is the Breit-Wigner amplitude for resonance j and is a function of the Dalitz plot position $M_{K^0\pi\pi}^2, M_{K^0\rho\pi}^2$. Using the probability density function of Eq. (12), one does an unbinned maximum likelihood fit to $M_{K^0\pi\pi}^2, M_{K^0\rho\pi}^2$, and the decay time t to determine a_j, δ_j, x, and y. There is systematic uncertainty arising from the decay model, i.e., one must decide which intermediate states to include in the fit. Unlike Eq. (6), Eq. (12) depends linearly on x ($x \ll 1$) and is therefore sensitive to its sign.

This analysis was developed by CLEO, and their result based on 9.0 fb$^{-1}$ has not yet been superseded. To minimize backgrounds, the D^0 can-
didate is required to originate from $D^+ \to D^0 \pi^+$. The final Dalitz plot sample (Fig. 5) contains 5299 events with only $(2.1 \pm 1.5)\%$ background. 15)

The decay model used consists of $D^0 \to K^{*}(890)^- \pi^+$, $K^{*}(1430)^0 \pi^+$, $K^{*}(1680)^- \pi^+$, $K_S^0 \rho$, $K_S^0 \omega$, $K_S^0 f_0(980)$, $K_S^0 f_2(1270)$, $K_S^0 f_0(1370)$, WS $D^0 \to K^{*}(890)^+ \pi^-$, and a nonresonant component. The fit results are listed in Table 2; the 95% C.L. intervals correspond to the values at which $-2 \ln L$ rises by 3.84 units, where L is the likelihood function. CPV is included in the fit by introducing parameters $\varepsilon \equiv (p - q)/(p + q)$ (in analogy with K^0 decays) and ϕ, the weak phase difference between $A_{K^0\pi\pi}$ and $A_{K^{*0}\pi\pi}$. The results listed are consistent with no mixing or CPV.

![Figure 5: Dalitz plot (lower right) and projections (lower left, upper plots) for $D^0 \to K_S^0 \pi^+\pi^-$ decays, from CLEO using 9.0 fb$^{-1}$ of data. 15)](attachment:figure5.png)
Table 2: Limits on mixing and CPV parameters from a t-dependent fit to the $D^0 \to K_S^0 \pi^+\pi^-$ Dalitz plot, from CLEO using 9.0 fb$^{-1}$. The errors are statistical, experimental systematic, and modeling systematic, respectively.

Fit	Param.	Fit Result (%)	95% C.L. Inter. (%)
No CPV	x	$1.8_{-3.2}^{+3.4} \pm 0.4 \pm 0.4$	$(-4.7, 8.6)$
	y	$-1.4_{-2.4}^{+2.5} \pm 0.8 \pm 0.4$	$(-6.3, 3.7)$
CPV Allowed	x	$2.3_{-3.4}^{+3.5} \pm 0.4 \pm 0.4$	$(-4.5, 9.3)$
	y	$-1.5_{-2.4}^{+2.5} \pm 0.8 \pm 0.4$	$(-6.4, 3.6)$
	ϵ	$1.1 \pm 0.7 \pm 0.4 \pm 0.2$	$(-0.4, 2.4)$
	ϕ	$(5.7 \pm 2.8 \pm 0.4 \pm 1.2) \degree$	$(-0.3^\circ, 11.7^\circ)$

6 $D^0(t) \to K^+\pi^-\pi^0$ and $K^+\pi^-\pi^+\pi^-$ Multibody Decays

Mixing has also been searched for in WS multibody final states $^{10, 16, 17}$ $K^+\pi^-\pi^0$ and $K^+\pi^-\pi^+\pi^-$; the most recent measurement is from Belle using 281 fb$^{-1}$ of data. 17 The final signal yields are 1978 ± 104 $D^0 \to K^+\pi^-\pi^0$ decays and 1721 ± 75 $D^0 \to K^+\pi^-\pi^+\pi^-$ decays. For this analysis no decay time information is used, i.e., Belle measures the time-integrated ratio of WS to RS decays:

$$R_{WS} = \frac{\int R[D^0 \to K^+\pi^-(n\pi)] dt}{\int R[D^0 \to K^-\pi^+(n\pi)] dt} \approx R_D + \sqrt{R_D y'} + \frac{x'^2 + y'^2}{2}, \quad (13)$$

where R_D is the ratio of the DCS rate to the CF rate as previously defined for $D^0 \to K^+\pi^-$ decays. The results are $R_{WS} = [0.229 \pm 0.015 \, \text{(stat)} \, ^{+0.013}_{-0.009} \, \text{(syst)}] \%$ for $K^+\pi^-\pi^0$ and $[0.320 \pm 0.018 \, \text{(stat)} \, ^{+0.018}_{-0.013} \, \text{(syst)}] \%$ for $K^+\pi^-\pi^+\pi^-$. Inserting these values into Eq. (13) allows one to determine R_D as a function of x' or y'. Assuming $x' = 0$ and $|x'| = 0.027$ gives the curves shown in Fig. 6; the latter $|x'|$ value corresponds to Belle’s 95% C.L. upper limit from $D^0 \to K^+\pi^-$ decays (see Table 1). However, the value of x' from $D^0 \to K^+\pi^-$ may differ from that from $D^0 \to K^+\pi^-\pi(\pi)$ due to the strong phase differences (δ) being different.

7 Summary

The 95% C.L. allowed ranges for x' and y' are plotted in Fig. 7; for simplicity we assume negligible CPV. The most stringent constraints are $|x'| < 2.7\%$
and $y' \in (-1.0\%, 0.7\%)$. These ranges are projections of the two-dimensional 95\% C.L. region for x'^2, y' from Belle [Fig. 4(right)].

The results for y_{CP} are plotted in Fig. 8. Here the central values and 1\% errors are shown; combining the results assuming the errors uncorrelated gives $y_{CP} = (1.09 \pm 0.46)\%$. This value differs from zero by 2.4\% and indicates a nonzero decay width difference $\Delta \Gamma$. Assuming negligible CPV, one can combine this value with Belle’s central value for y', $(0.06^{+0.40}_{-0.39})\%$. The result is $y'/y = \cos \delta - (x/y) \sin \delta = 0.05^{+0.30}_{-0.37}$, where the error is obtained from an MC calculation as the fractional errors on y and y' are large. This small central value (albeit with a large error) implies $\tan \delta \approx y/x$; i.e., if $x \ll y$, then δ is near 90\%. Such a strong phase difference would be much larger than expected.

References

1. Z.-Z. Xing, Phys. Rev. D 55, 196 (1997).

2. S. Bianco, F. L. Fabbri, D. Benson, and I. Bigi, Riv. Nuovo Cim. 26N7-8, 1 (2003).

3. A. A. Petrov, Charm physics: theoretical review, in: Proc. of the Second In-
Figure 7: 95% C.L. allowed ranges for x' (top) and y' (bottom) from various experiments assuming no CPV. The CLEO Dalitz results are for x and y.

international Conference on CP Violation and Flavor Physics (ed. P. Perret, Ecole Polytechnique, Paris, June 2003), eConf C030603, hep-ph/0311371. See also: A. A. Petrov, hep-ph/0409130 (2004).

4. D. M. Asner and W. M. Sun, Phys. Rev. D 73, 034024 (2006).

5. E. M. Aitala et al. (FNAL E791), Phys. Rev. Lett. 77, 2384 (1996).
 B. Aubert et al. (BaBar), Phys. Rev. D 70, 091102 (2004).
 C. Cawlfield et al. (CLEO), Phys. Rev. D 71, 077101 (2005).

6. U. Bitenc et al. (Belle), Phys. Rev. D 72, 071101(R) (2005).

7. E. M. Aitala et al. (FNAL E791), Phys. Rev. Lett. 83, 32 (1999).
 S. E. Csorna et al. (CLEO), Phys. Rev. D 65, 092001 (2002).
 K. Abe et al. (Belle), BELLE-CONF-347, hep-ex/0308034 (2003); Phys. Rev. Lett. 88, 162001 (2002).

8. B. Aubert et al. (BaBar), Phys. Rev. Lett. 91, 121801 (2003).
Figure 8: γ_{CP} central values and 1σ errors measured by various experiments, and the combined result assuming the individual errors uncorrelated. The Belle 2002 data sample (23 fb^{-1}) has some overlap with the Belle 2003 data sample (158 fb^{-1}), and thus this result is not included in the average.

9. J. M. Link et al. (FOCUS), Phys. Lett. B 485, 62 (2000).
10. E. M. Aitala et al. (FNAL E791), Phys. Rev. D 57, 13 (1998).
11. R. Barate et al. (ALEPH), Phys. Lett. B 436, 211 (1998).
 R. Godang et al. (CLEO), Phys. Rev. Lett. 84, 5038 (2000).
 J. M. Link et al. (FOCUS), Phys. Lett. B 618, 23 (2005); Phys. Rev. Lett. 86, 2955 (2001).
 B. Aubert et al. (BaBar), Phys. Rev. Lett. 91, 171801 (2003).
12. L. Zhang et al. (Belle), Phys. Rev. Lett. 96, 151801 (2006); J. Li et al. (Belle), Phys. Rev. Lett. 94, 071801 (2005).
13. S. Kopp et al. (CLEO), Phys. Rev. D 63, 092001 (2001).
14. D. M. Asner et al. (CLEO), Phys. Rev. D 72, 012001 (2005).
15. H. Muramatsu et al. (CLEO), Phys. Rev. Lett. 89, 251802 (2002).
16. G. Brandenburg et al. (CLEO), Phys. Rev. Lett. 87, 071802 (2001).
 S. A. Dytman et al. (CLEO), Phys. Rev. D 64, 111101 (2001).
17. X. C. Tian et al. (Belle), Phys. Rev. Lett. 95, 231801 (2005).