Time-dependent Changes of Atherosclerotic LDL Complexes after Smoking Cessation

Maki Komiyama¹, Sayaka Shimada¹, Hiromichi Wada¹, Hajime Yamakage¹, Noriko Satoh-Asahara¹, Akira Shimatsu¹, Masaharu Akao¹, Tatsuya Morimoto², Yuko Takahashi³ and Koji Hasegawa¹

¹Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
²Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
³Health Care Center, Nara Women’s University, Nara, Japan

Aim: The a1-antitrypsin–low-density lipoprotein complex (AT-LDL) and serum amyloid A-LDL complex (SAA-LDL) are oxidatively modified LDL complexes that promote atherosclerosis. The serum levels of AT-LDL and SAA-LDL are suggested to be increased by obesity and smoking. We have previously demonstrated that larger weight gain after smoking cessation (SC) perturbs a decrease in the serum level of AT-LDL at 3 months after SC. However, changes of these atherosclerotic makers >3 months after SC are unknown. This study investigated post-SC time-dependent changes in two atherogenic lipoproteins, AT-LDL and SAA-LDL, and in the extent of abdominal obesity.

Methods: In 50 outpatients who had continued SC for 1 year, we measured serum AT-LDL and SAA-LDL levels by the enzyme-linked immunosorbent assay before SC, and at 3 months and 1 year after SC.

Results: Both body mass index and waist circumstance significantly increased from pre-SC to 3 months after SC and from 3 months after SC to 1 year after SC. Although the serum levels of AT-LDL and SAA-LDL were unchanged from pre-SC to 3 months after SC, these levels decreased significantly from 3 months after SC to 1 year after SC.

Conclusions: The extent of abdominal obesity and levels of two atherogenic lipoproteins time-dependently change after SC. Although abdominal obesity progressively worsened after SC, the beneficial effect of non-smoking overcomes the potential vascular risks by cessation-associated obesity at 1 year after SC.

See editorial vol. 23: 1257-1258

Key words: Smoking Cessation, Obesity, Oxidative stress, Atherosclerosis, Prevention

Copyright©2016 Japan Atherosclerosis Society
This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License.
that promote atherosclerosis. Serum AT-LDL and SAA-LDL levels are closely associated with inflammation. The serum SAA-LDL level reflects intravascular inflammation directly and can be a more sensitive prognostic marker than CRP in patients with stable coronary artery disease. Serum AT-LDL and SAA-LDL levels have also been suggested to be associated with obesity and smoking. We have previously reported that the serum level of AT-LDL is higher in current smokers than in both former smokers and non-smokers. This fact indicates that AT-LDL has a close relationship with smoking states and that it may be a useful indicator of oxidative stress in smokers. In addition, we have found a significant decrease in serum AT-LDL values among patients with a BMI increase smaller than the median. However, no significant changes in serum AT-LDL values were found in patients with a BMI increase greater than the median. Thus, large weight gain after SC perturbs the decrease in AT-LDL at 3 months after cessation. However, it is unknown how the relationship between the beneficial SC effect (the decrease in cardiovascular risk) and vascular risk increase by post-SC weight gain will change over a longer period of time. This study investigated time-dependent changes for two atherosclerotic LDL complexes, AT-LDL and serum SAA-LDL, at 1 year after SC as well as the relationships of these changes with weight gain.

Aim

This study investigated post-SC time-dependent changes in two atherogenic lipoproteins, AT-LDL and SAA-LDL, and in the extent of abdominal obesity.

Methods

Participants

This is a prospective study which was conducted at the National Hospital Organization, Kyoto Medical Center during the period of September 2009 to January 2014. Patients who consulted the SC clinic to receive treatment and successfully quit smoking for 1 year were enrolled in this study. Various parameters were evaluated in these patients at the time of initial consultation and after SC (at 3 months and 1 year after the initial consultation). Informed written consent was obtained from all participants. They were not coerced into taking part in this study. The study data was anonymized with no personal identifiers. The Ethical Review Board, National Hospital Organization, Kyoto Medical Centre approved the study protocol.

SC Clinic and Data Collection

Anti-smoking treatment was conducted according to the Standard Procedures for Anti-Smoking Treatment (originally issued in March 2006 by the Japanese Circulation Society, Japan Lung Cancer Society, and Japanese Cancer Association). The patients were examined on their first visit and 2, 4, 8, and 12 weeks (3 months) thereafter and treated with transdermal nicotine patches or oral varenicline. On their repeated visits, maintenance of SC was checked, and specific advice regarding the continuation of cessation was given by a nurse and a doctor. At the end of the 3-months anti-smoking treatment, whether or not SC had been maintained was evaluated. In addition, 1 year after SC treatment, the maintenance of SC was re-evaluated. Abstinence was confirmed by an expired carbon monoxide (CO) concentration of <7 parts per million (ppm) and by the patient’s affirmation of no smoking. The attempt to quit smoking was judged to have been unsuccessful when the patient stopped visiting during the treatment period or continued visiting but failed to quit smoking.

BMI was calculated as the weight in kilograms divided by the square of the height in meters. The waist circumference (WC) was measured at a level midway between the lowest rib and iliac crest by the study staff at each visit. Systolic blood pressures (SBP) and diastolic blood pressures (DBP) were measured in a sitting position after resting for more than 5 min using an automatic electronic sphygmomanometer (BP-103iII; Nippon Colin, Komaki, Japan). The regular-sized cuff that is appropriate for Japanese (the arm length: 17 – 32 cm) was used as recommended. At each visit, a nurse measured expiratory CO concentration with the EC50 Micro Smokerlyzer® (Bedfont Scientific Ltd., Kent, UK), which measures the end-tidal CO electrochemically, with a reported precision of <2%.

On initial consultation, nicotine dependence was assessed with the Fagerström Test for Nicotine Dependence (FTND), a world standard test to assess physical dependence of nicotine. Scores range from 0 to 10, with higher scores indicating more severe nicotine dependence. The number of cigarettes smoked per day was determined by asking the smoker the following question: “On average, in the past month, how many cigarettes did you smoke per day?” The Brinkman index was calculated as the daily number of cigarettes multiplied by smoking years.

Blood Sampling

Blood tests were conducted three times at their first consultation as a screening and at 3 months and 1 year after their first visit to assess the change of the biochemical and hematological profile of patients.
Blood samples were taken from their antecubital vein 2-3 h after lunch to determine hemoglobin A1c (HbA1c), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and high sensitivity C-reactive protein (hsCRP) levels. Blood samples were immediately centrifuged at 3,000 revolutions per minute (rpm) for 10 min at 4°C. Plasma levels of HbA1c and serum levels of HDL-C, LDL-C and hsCRP were measured using an automatic analyzer (LABOSPECT 008; Hitachi High-Technologies Co., Ltd., Tokyo, Japan), and the details are provided elsewhere. Serum levels of AT-LDL and SAA-LDL were measured using specific sandwich enzyme-linked immunosorbent assays (Ikagaku Co., Ltd., Kyoto, Japan), with enzyme-based reagents (Kyowa Medex Co., Ltd., Tokyo, Japan). The intra-assay and inter-assay coefficients of variation of SAA were 7.4% and 7.8%, respectively. The inter-assay coefficients of variation at low and high levels of SAA-LDL were 5.0% and 6.7%, respectively. The inter-assay coefficients of variation at low and high levels of AT-LDL were 1.8% and 1.6%, respectively. The intra-assay coefficients of variation at low and high levels of AT-LDL were 4.1% and 7.0%, respectively. These assays were performed by an investigator blinded to the sources of the samples.

Statistical Analysis

All statistical analyses were performed by a professional statistician using the Statistical Package for Social Sciences (SPSS) Statistics 17.0 statistical software package (SPSS Inc., Chicago, IL, USA). The hsCRP values were logarithmically transformed in the statistical analysis. The normality was assessed using the Shapiro–Wilk test. Clinical data were compared between all time points (pre-, 3 months, and 1 year after SC therapy) using one-way repeated measures ANOVA for parametric data or the Friedman test for non-parametric data. In cases where statistically significant differences were observed between time points using ANOVA or the Friedman test, pairwise comparisons using paired t-tests (parametric data) or Wilcoxon signed rank test (non-parametric data) were conducted to identify specific differences between time points.

Results

Participants

Among the 99 patients who successfully quit smoking, 49 patients were excluded because of the lack of blood sampling data. Therefore, we analyzed the findings of 50 patients [31 males and 19 females, aged between 35 and 80 years, (mean 61 ± 13 years)]. During the SC program, four patients (8%) received anti-hypertensive agents, two (4%) received statins and two (4%) received medications for diabetes mellitus. Various parameters were evaluated in these patients at the time of initial consultation and at 3 months and 1 year after the initial consultation. The average FTND score of participants was 6.2 ± 2.5, the daily number of cigarettes smoked was 22.0 ± 4.9, and the Brinkman index was 870 ± 20.

Expired CO concentrations significantly decreased from the initial visit to 3 months after SC (from 16.2 to 1.4, P<0.0001).

Time-dependent Changes of AT-LDL and SAA-LDL and Metabolic Parameters

Table 1 compares data collected at the time of first examination and 3 months and 1 year after the first examination. Compared with their baseline values, 3 months after SC, patients experienced a significant increase in BMI (from 22.8 to 23.0 kg/m², P=0.046), WC (from 85.9 to 87.6 cm, P<0.001), HDL-C (from 55.3 to 58.4 mg/dL, P=0.047), and TG (from 148 to 187 mg/dL, P=0.010). Serum AT-LDL and SAA-LDL levels did not change significantly 3 months after cessation (AT-LDL: from 1.8 to 1.8 µg/mL, SAA-LDL: from 9.0 to 9.0 µg/mL).

BMI and WC further increased from 3 months to 1 year after SC (BMI: from 23.0 to 23.8 kg/m², P=0.028; WC: from 87.6 to 89.2 cm, P=0.019). In contrast, both AT-LDL and SAA-LDL levels significantly decreased from 3 months to 1 year (AT-LDL: from 1.8 to 1.5 µg/mL, P=0.006; SAA-LDL: from 9.0 to 7.5 µg/mL, P=0.008). HDL-C and TG did not change significantly from 3 months to 1 year. No significant change was found in LDL-C level throughout the 1 year, from baseline to 1 year after SC.

The serum hsCRP levels demonstrated no significant differences between baseline and 3 months after SC and between 3 months and 1 year after SC.

Discussion

Smoking is the largest preventable cause of death and disease worldwide, and SC is one of the most
effective ways to reduce the likelihood of diseases such as stroke and cardiovascular diseases22. However, body weight gain and abdominal obesity generally occur after quitting smoking23, 24. The increase in oxidative stress from obesity results in an increase in various inflammatory markers that are linked with an increased cardiovascular risk25. Therefore, it is hypothesized that body weight gain after SC could perturb the merits of SC9. However, the relationship between body weight gain after SC and cardiovascular risk is intricately intertwined, and how the relationship will change over time is not well known.

Serum AT-LDL and SAA-LDL levels have been postulated to be increased by obesity and smoking5, 11, 12, 22, and the elevation of these markers is reported to predict prognosis in patients with stable coronary artery disease5. The serum level of AT-LDL, an oxidatively modified LDL that promotes atherosclerosis, accurately reflects current smoking states6-8. We have previously reported that body weight gain may attenuate the decrease (improvement) in AT-LDL at 3 months after SC9. This study followed up patients for a longer period (1 year). As a result, at 3 months after SC, BMI and WC increased significantly, and the decrease (improvement) in serum AT-LDL and SAA-LDL levels was unclear. However, during the period of 3 months to 1 year after SC, a further increase was observed in both BMI and WC; nevertheless, serum AT-LDL and SAA-LDL levels significantly decreased. These results indicate that cardiovascular risks by weight gain may outweigh the beneficial effects of SC during an early period after cessation, e.g., during 3 months. In contrast, at 1 year after SC, the beneficial effect of SC certainly overcomes the potential vascular risks through cessation-associated obesity. The prevention of abdominal obesity may lead to a further decrease in cardiovascular risk. However, the results of this study suggest that the benefits of SC increase over time and outweigh the risks associated with body weight at least at the time of 1 year after SC. Thus, the continuation of SC is very important.

No significant differences in the serum hsCRP levels were observed between baseline and 3 months after SC or between 3 months and 1 year after SC. The CRP levels reportedly gradually reduced over a 5-year period after cessation of smoking26. Thus, inflammatory markers may slowly improve over a long period. The number of cardiovascular events is reportedly reduced by continuation of SC for 4 years despite increases in body weight40. We believe further studies evaluating the association between changes in inflammatory markers and weight gain after SC in individuals who maintain SC are required in the future.

There are a few limitations to this study. First, the focus of this study was AT-LDL and SAA-LDL, modified LDL complexes that promotes atherosclerosis. However, no investigation was made to examine the endpoints of cardiovascular diseases per se. Second, we employed blood samples obtained 2-3 h after a meal. Serum levels of most markers of lipids and adipocytokines can be affected by a meal. However, in our previous report employing similar blood samples,
we showed that the AT-LDL level sensitively reflected smoking states. Third, this study included only 50 patients. In the future, it will be necessary to increase the number of participants and to conduct long-term observations on cardiovascular events.

In addition, the baseline values of metabolic parameters, such as BMI, TG, and oxidized LDL, in this study were better than those in our previous study\(^9\). This difference may be attributable to variations in the patient background between the two studies because the participants in this study included those who had successfully maintained SC for >1 year. That is, all patients who completed 3 months of SC program were asked to revisit our SC clinic for medical examinations at 1 year after the initial visit. Unfortunately, a proportion of patients did not return to our clinic. Patients who revisited the SC clinic at 1 year after their initial examination may be considered to have good self-management skills. Differences in patient background may explain the varying results of the two studies.

Conclusions

BMI and the levels of two atherogenic lipoproteins, AT-LDL and SAA-LDL, change time-dependently after SC. BMI progressively increases until 1 year after quitting smoking. In contrast, a decrease in AT-LDL and SAA-LDL levels is obvious at 1 year after SC. These findings suggest that the beneficial effect of SC overcomes potential cardiovascular risks by cessation-associated obesity, 1 year after SC.

Acknowledgments

We thank Yuko Iida and Sachiko Terashima for technical assistance and Noa Nagaoka for secretarial assistance. This work was supported in part by a Grant-in-Aid for Clinical Research from the National Hospital Organization. The funders played no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of Interest Statement

The authors declare that there are no conflicts of interest.

References

1) Iso H, Date C, Yamamoto A, Toyoshima H, Watanabe Y, Kikuchi S, Koizumi A, Wada Y, Kondo T, Inaba Y, Tama-koshi A: Smoking cessation and mortality from cardiovascular disease among Japanese men and women: the JACC Study. Am J Epidemiol, 2005; 161: 170-179

2) Fröhlich M, Sund M, Löwel H, Imhof A, Hoffmeister A, Koenig W: Independent association of various smoking characteristics with markers of systemic inflammation in men. Results from a representative sample of the general population (MONICA Augsburg Survey 1994/95). Eur Heart J, 2003; 24: 1365-1372

3) Flegal KM, Troiano RP, Pamuk ER, Kuczmarski RJ, Campbell SM: The influence of smoking cessation on the prevalence of overweight in the United States. N Engl J Med, 1995; 333, 1165-1170

4) Cope C, Rigotti NA, Porneala B, Fox CS, D’Agostino RB, Pencina MJ, Msigs JB: Association of smoking cessation and weight change with cardiovascular disease among adults with and without diabetes. JAMA, 2013; 309: 1014-1021

5) Ogasawara K, Mashiba S, Wada Y, Sahara M, Uchida K, Aizawa T, Kodama T: A serum amyloid A and LDL complex as a new prognostic marker in stable coronary artery disease. Atherosclerosis, 2004; 174: 349-356

6) Mashiba S, Wada Y, Takeya M, Sugiyama A, Hamakubo T, Nakamura A, Uoguchi N, Nishi K, Izumi A, Kobayashi M, Uchida K, Kodama T: In vivo complex formation of oxidized alpha(1)-antitrypsin and LDL. Arterioscler Thromb Vasc Biol, 2001; 21: 1801-1808

7) Moraga F, Janciauskiene S: Activation of primary human monocytes by the oxidized form of alpha1-antitrypsin. J Biol Chem, 2000; 275: 7693-7700

8) Kotani K, Satoh N, Kato Y, Araki R, Koyama K, Okajima T, Tanabe M, Oishi M, Yamakage H, Yamada K, Hattori M, Shimatsu A: Japan Obesity and Metabolic Syndrome Study Group: A novel oxidized low-density lipoprotein marker, serum amyloid A-LDL, is associated with obesity and the metabolic syndrome. Atherosclerosis, 2009; 204: 526-531

9) Komiyama M, Wada H, Ura S, Yamakage H, Satoh-Asahara N, Shimada S, Akao M, Koyama H, Kono K, Shimatsu A, Takahashi Y, Hasegawa K: The effects of weight gain after smoking cessation on atherogenic alpha1-antitrypsin-low-density lipoprotein. Heart Vessels, 2015; 30: 734-9. doi: 10.1007/s00380-014-0549-9

10) Kosuge M, Ebina T, Ishikawa T, Hibi K, Tsukahara K, Okuda J, Iwahashi N, Ozaki H, Yano H, Kusama I, Nakats T, Umemura S, Kimura K: Serum amyloid A is a better predictor of clinical outcomes than C-reactive protein in non-ST-segment elevation acute coronary syndromes. Circ J, 2007; 71: 186-190

11) Kotani K, Satoh-Asahara N, Kato Y, Araki R, Himeno A, Yamakage H, Koyama K, Tanabe M, Oishi M, Okajima T, Shimatsu A: Japan Obesity and Metabolic Syndrome Study Group. Serum amyloid A low-density lipoprotein levels and smoking status in obese Japanese patients. J Int Med Res, 2011; 39: 1917-1922

12) Kotani K, Asahara-Satoh N, Kato Y, Araki R, Himeno A, Yamakage H, Koyama K, Tanabe M, Oishi M, Okajima T, Shimatsu A: Japan Obesity and Metabolic Syndrome Study (JOMS) Group. Remnant-like particle cholesterol and serum amyloid A-low-density lipoprotein levels in obese subjects with metabolic syndrome. J Clin Lipidol, 2011; 5: 395-400. doi: 10.1016/j.jclnl.2011.08.001

13) Wada H, Ura S, Satoh-Asahara N, Kitaoka S, Mashiba S
1) Rustin TA: Assessing Nicotine Dependence. Am Fam Physician, 2000; 62: 579-584

2) Sepper R, Konttinen YT, Ingman T, Sorsa T: Presence, activities, and molecular forms of cathepsin G, elastase, alpha 1-antitrypsin, and alpha 1-antichymotrypsin in bronchiectasis. J Clin Immunol, 1995; 15: 27-34

3) van Berkel TF, Boersma H, Roos-Hesselink JW, Erdman RA, Simoons ML: Impact of smoking cessation and smoking interventions in patients with coronary heart disease. Eur Heart J, 1999; 20: 1773-1782

4) Williamson DF, Madans J, Anda RF, Kleinman JC, Giovino GA, et al: Smoking cessation and severity of weight gain in a national cohort. N Engl J Med, 1991; 324: 739-745

5) Komiyama M, Wada H, Ura S, Yamakage H, Satoh-Asahara N, Shimatsu A, Koyama H, Kono K, Takahashi Y, Hasegawa K: Analysis of factors that determine weight gain during smoking cessation therapy. PLoS One, 2013; 8: e72010. doi: 10.1371/journal.pone.0072010. eCollection 2013

6) Wannamethee SG, Lowe GD, Shaper AG, Rumley A, Lennon L, Whincup PH: Associations between cigarette smoking, pipe/cigar smoking, and smoking cessation, and haemostatic and inflammatory markers for cardiovascular disease. Eur Heart J, 2005; 26: 1765-1773

(2012) α1-Antitrypsin low-density-lipoprotein serves as a marker of smoking-specific oxidative stress. J Atheroscler Thromb 19: 47-58

14) Japanese Circulation Society, Japan Lung Cancer Society and Japanese Cancer Association: Standard procedures for smoking cessation therapy, second edition, 2007. www.waseda.jp/sem-fox/memb/06s/sekine/sekine/tezyunnsyo. pdf (Accessed 20 September 2015)

15) Han T, Van Leer E, Seidell J, Lean M: Waist circumference action levels in the identification of cardiovascular risk factors: prevalence study in a random sample. BMJ (Clinical research ed.), 1995; 311: 1401-1405. doi: 10.1136/bmj.311.7017.1401

16) McManus RJ, Mant J, Hull MR, Hobbs FD: Does changing from mercury to electronic blood pressure measurement influence recorded blood pressure? An observational study. Br J Gen Pract, 2003; 53: 953-956. PMID: 14960220

17) Hald J, Overgaard J, Grau C: Evaluation of objective measures of smoking status—a prospective clinical study in a group of head and neck cancer patients treated with radiotherapy. Acta Oncol, 2003; 42: 154-159. doi: 10.1080/02841860310005020

18) Fagerström KO, Heatherton TF, Kozłowski LT: Nicotine addiction and its assessment. Ear Nose Throat J, 1990; 69: 763-765. PMID: 2276350

19) Heatherton TF, Kozłowski LT, Frecker RC, Fagerström KO: The Fagerstrom test for nicotine dependence: a revision of the Fagerstrom tolerance questionnaire. British Journal of Addiction, 1991; 86: 1119-1127. doi: 10.1111/j.1360-0443.1991.tb01879.x

20) Rustin TA: Assessing Nicotine Dependence. Am Fam Physician, 2000; 62: 579-584

21) Sepper R, Konttinen YT, Ingman T, Sorsa T: Presence, activities, and molecular forms of cathepsin G, elastase, alpha 1-antitrypsin, and alpha 1-antichymotrypsin in bronchiectasis. J Clin Immunol, 1995; 15: 27-34

22) van Berkel TF, Boersma H, Roos-Hesselink JW, Erdman RA, Simoons ML: Impact of smoking cessation and smoking interventions in patients with coronary heart disease. Eur Heart J, 1999; 20: 1773-1782

23) Williamson DF, Madans J, Anda RF, Kleinman JC, Giovino GA, et al: Smoking cessation and severity of weight gain in a national cohort. N Engl J Med, 1991; 324: 739-745

24) Komiyama M, Wada H, Ura S, Yamakage H, Satoh-Asahara N, Shimatsu A, Koyama H, Kono K, Takahashi Y, Hasegawa K: Analysis of factors that determine weight gain during smoking cessation therapy. PLoS One, 2013; 8: e72010. doi: 10.1371/journal.pone.0072010. eCollection 2013

25) Wannamethee SG, Lowe GD, Shaper AG, Rumley A, Lennon L, Whincup PH: Associations between cigarette smoking, pipe/cigar smoking, and smoking cessation, and haemostatic and inflammatory markers for cardiovascular disease. Eur Heart J, 2005; 26: 1765-1773