Semianalytical structural analysis based on combined application of finite element method and discrete-continual finite element method
Part 3: Plate analysis

Pavel A. Akimova,b,c,*, Oleg A. Negrozova,b

aMoscow State University of Civil Engineering (National Research University), 26 Yaroslavskoye Shosse, Moscow, 129337, Russia
bRussian Academy of Architecture and Construction Sciences, 24, Ulitsa Bolshaya Dmitrovka, Moscow, 107031, Russia
cResearch & Educational Center “StaDyO”, Office 810, 3-ya Ulitsa Yamskogo Polya, Moscow, 125040, Russia

Abstract

This paper is devoted to so-called semianalytical plate analysis, based on combined application of finite element method (FEM) [1,2] and discrete-continual finite element method (DCFEM) [3-11]. Kirchhoff model is under consideration. In accordance with the method of extended domain, the given domain is embordered by extended one. The field of application of DCFEM comprises structures with regular (constant or piecewise constant) physical and geometrical parameters in some dimension (“basic” dimension). DCFEM presupposes finite element mesh approximation for non-basic dimension of extended domain while in the basic dimension problem remains continual. Corresponding discrete and discrete-continual approximation models for subdomains and coupled multilevel approximation model for extended domain are under consideration. Brief information about software and verification sample are presented as well.

Keywords: discrete-continual finite element method; finite element method; semianalytical structural analysis; two-dimensional theory of elasticity

* Corresponding author. Tel.: +7(495)625-71-63; fax: +7(495)650-27-31.
E-mail address: akimov@raasn.ru
1. Formulation of the problem and notation system

Let’s consider problem of analysis of plate loaded by concentrated force with hinged ends (cross-sections) along basic dimension (Fig. 1). Some elements of notation system is presented at Fig. 1 as well.

Let’s Ω be domain occupied by structure, $\Omega = \{ (x_1, x_2) : 0 < x_1 < l_1, \ 0 < x_2 < l_2 \}$, where $\Omega = \Omega_1 \cup \Omega_2$ and $\Omega_1 = \{ (x_1, x_2) : 0 < x_1 < l_1, \ 0 < x_2 < x_{1,i}^b \}$, $k = 1, 2$; x_1, x_2 are coordinates (x_2 corresponds to basic dimension); $x_{2,i}^b = 0, \ x_{2,2}^b = l_{2,1}, \ x_{2,3}^b = l_{2,1} + l_{2,2} = l_2$ are coordinates of corresponding boundary points (cross-sections) along basic dimension; Ω_1 and Ω_2 are subdomains of Ω; ω_1 and ω_2 are extended subdomains, embordering subdomains $\Omega_1 \subset \omega_1$ and $\Omega_2 \subset \omega_2$; $\omega = \omega_1 \cup \omega_2$; $x_{1,i}^k, \ i = 1, 2, ..., N_{1k}^i$ are coordinates (along x_1) of nodes (nodal lines) of discrete-continual finite elements, which are used for approximation of domain ω_1; $(N_{1k}^i - 1)$ is the number of discrete-continual finite elements; $x_{1,i}^k, \ i = 1, 2, ..., N_{1k}^i$ and $x_{2,j}^k, \ j = 1, 2, ..., N_{2k}^i$ are coordinates (along x_i and x_j) of nodes of finite elements, which are used for approximation of domain ω_2; $(N_{2k}^i - 1)$ and $(N_{1k}^i - 1)$ are numbers of finite elements along coordinates x_i and x_j.

Two-index notation system is used for numbering of discrete-continual finite elements. Typical number of has the form (k, i), where k is the number of subdomain, i is the number of element (along x_i). Three-index system is used for numbering of finite elements. Typical number of has the form (k, i, j), where k is the number of subdomain, i and j are numbers of elements (along x_i and x_j). Let’s $N_{1ik}^i = N_{1k}^i = N_i^k$ and $x_{1,i}^k = x_{2,j}^k = x_{ij}^k$, $i = 1, 2, ..., N_1$.

2. Discrete-continual approximation model for subdomain

Discrete-continual approximation model is used for two-dimensional problems. It presupposes mesh approximation for non-basic dimension of extended domain (along x_1) while in the basic dimension (along x_2) problem remains continual. Thus extended subdomain ω_1 is divided into discrete-continual finite elements

$$\omega_1 = \bigcup_{i=1}^{N_1} \omega_{1i} = \{ (x_1, x_2) : x_{1,i} < x_1 < x_{1,i+1}, \ x_{2,i}^b < x_2 < x_{2,i}^b \} .$$

Flexural rigidity, Poisson’s ratio and bedding value for discrete-continual finite element are defined by formulas:

$$\overline{D}_{ij} = \theta_{ij} D_1; \quad \overline{v}_{ij} = \theta_{ij} v_1; \quad \overline{c}_{ij} = \theta_{ij} c_1 ;$$

$$\overline{D}_{ij} = \theta_{ij} D_1; \quad \overline{v}_{ij} = \theta_{ij} v_1; \quad \overline{c}_{ij} = \theta_{ij} c_1 ;$$

Fig. 1. Considering structure (thin plate).
\[\theta_{ij} = \begin{cases} 1, & \omega_{ij} \subset \Omega_i; \\ 0, & \omega_{ij} \not\subset \Omega_i; \end{cases} \quad D_i = \tilde{E}_i h_i^2 /[12(1-\nu^2)]; \]

where \(\theta_{ij} \) is the characteristic function of element \(\omega_{ij} \); \(h_i \) is thickness of plate; \(\tilde{E}_i \) is the modulus of elasticity of material of plate. Let’s \(w_i \) be deflection of plate at subdomain \(\omega_i \).

Basic nodal unknown functions are the following functions:

\[
\begin{align*}
 y_{ij}^{(0)}(x_i, x_j) &= w_i(x_i, x_j); \\
y_{ij}^{(1)}(x_i, x_j) &= \partial_{x_i}^2 w_i(x_i, x_j), \quad i = 2, 3, 4; \\
z_{ij}^{(0)}(x_i, x_j) &= \partial_{x_j} y_{ij}^{(0)}(x_i, x_j), \quad j = 1, 2, 3, 4.
\end{align*}
\]

Thus, \(y_{ij}^{(1)}(x_i, x_j), \quad j = 1, 2, 3, 4 \) and \(z_{ij}^{(1)}(x_i, x_j), \quad j = 1, 2, 3, 4 \) are basic nodal unknown functions (superscript hereinafter corresponds to the number of considered subdomain i.e. \(\omega_i \)). Thus for node \((1, i)\) we have the following unknown functions: \(y_{1,i}^{(1)}(x_1, x_i), \quad j = 1, 2, 3, 4 \) and \(z_{1,i}^{(1)}(x_1, x_i), \quad j = 1, 2, 3, 4 \).

Polynomial (cubic) approximation along \(x_i \) is used for \(y_{ij}^{(1)}(x_2) \), \(j = 1, 2, 3, 4 \) within discrete-continual finite element. Approximation formulas for \(z_{ij}^{(1)}(x_2) \), \(j = 1, 2, 3, 4 \) can be obtained after derivation in accordance with (5).

DCFEM is reduced at some stage to the solution of systems of \(8N_i \) first-order ordinary differential equations:

\[
\begin{align*}
\bar{Y}_i(x_2) &= A_i \bar{Y}_i(x_1) + \bar{R}_i(x_2), \\
\end{align*}
\]

where \(\bar{Y}_i(x_2) \) is global vector of nodal unknown functions (subscript corresponds to the number of subdomain \(\omega_i \)),

\[
\begin{align*}
\bar{Y}_i &= \bar{Y}_i(x_2) = [(\bar{y}_{i,1})^T (\bar{y}_{i,2})^T (\bar{y}_{i,3})^T (\bar{y}_{i,4})^T]^T; \\
\bar{Y}_{i,j} &= \bar{Y}_{i,j}(x_2) = [(\bar{y}_{i,j}^{(0)})^T (\bar{y}_{i,j}^{(1)})^T \ldots (\bar{y}_{i,j}^{(N_i)})^T]^T, \quad j = 1, 2, 3, 4; \\
\bar{Y}_{i,j}^{(0)} &= [y_{i,j}^{(0)} z_{i,j}^{(0)}]^T, \quad j = 1, 2, 3, 4; \\
\end{align*}
\]

\(A_i \) is global matrix of coefficients of order \(8N_i \); \(\bar{R}_i(x_2) \) is the right-side vector of order \(8N_i \).

Correct analytical solution of (6) is defined by formula

\[
\bar{Y}_i(x_2) = \bar{E}_i(x_2) \bar{C}_i + \bar{S}_i(x_2),
\]

where \(\bar{C}_i \) is the vector of constants of order \(8N_i \);

\[
\bar{E}_i(x_2) = \epsilon_i(x_2 - x_{2,i}^{(e)}); \\
\bar{S}_i(x_2) = \epsilon_i(x_2) \ast \bar{R}_i(x_2);
\]

\(\epsilon_i(x_2) \) is the fundamental matrix-function of system (6), which is constructed in the special form convenient for problems of structural mechanics [3]; \(\ast \) is convolution notation.

3. Discrete (finite element) approximation model for subdomain

Discrete (finite element) approximation model for the considering two-dimensional problems presupposes finite element approximation along \(x_1 \) and \(x_2 \). Thus extended subdomain \(\omega_2 \) is divided into finite elements

\[
\omega_2 = \bigcup_{i=1}^{N_1} \bigcup_{j=1}^{N_2} \omega_{2,i,j}; \quad \omega_{2,i,j} = \{ (x_1, x_2) : x_{1,i} < x_1 < x_{1,i+1}, \quad x_{2,j} < x_2 < x_{2,j+1} \}. \]
Flexural rigidity, Poisson’s ratio and bedding value for finite element are defined by formulas:

\[
\overline{D}_{2,i,j} = \theta_{2,i,j} D_j;
\]

\[
\overline{\nu}_{2,i,j} = \theta_{2,i,j} \nu_j;
\]

\[
\overline{\alpha}_{2,i,j} = \theta_{2,i,j} \alpha_j;
\]

\[
\theta_{2,i,j} = \begin{cases} 1, & \omega_{2,i,j} \subset \Omega^j_z; \\ 0, & \omega_{2,i,j} \not\subset \Omega^j_z; \end{cases}
\]

where \(\theta_{2,i,j} \) is the characteristic function of element \(\omega_{2,i,j} \).

Basic nodal unknowns are nodal values of function of deflection of plate and corresponding derivatives with respect to \(x_1 \) and \(x_2 \) (deflection angles), i.e. the following functions

\[
w_2(x_1, x_2) = y_1^{(2)}(x_1, x_2); \quad \theta_{2,1}(x_1, x_2) = \partial_1 w_2(x_1, x_2) = y_1^{(2)}(x_1, x_2); \quad \theta_{2,2}(x_1, x_2) = -\partial_2 w_2(x_1, x_2) = -z_1^{(2)}(x_1, x_2).
\]

Thus for node \((2, i, j)\) we have the following unknown functions:

\[
w_2^*(x_1, x_2) = \alpha_i^{(2, j)} + \alpha_{i1}^{(2, j)} x_1 + \alpha_{i2}^{(2, j)} x_2 + \alpha_{i3}^{(2, j)} x_1^2 + \alpha_{i4}^{(2, j)} x_2^2 + \alpha_{i5}^{(2, j)} x_1 x_2 + \alpha_{i6}^{(2, j)} x_1^3 + \alpha_{i7}^{(2, j)} x_2^3 + \alpha_{i8}^{(2, j)} x_1^2 x_2 + \alpha_{i9}^{(2, j)} x_1 x_2^2 + \alpha_{i10}^{(2, j)} x_2^3 + \alpha_{i11}^{(2, j)} x_1 x_2^2 + \alpha_{i12}^{(2, j)} x_1^3 x_2^2,
\]

where \(\alpha_p^{(2, j)}, \ p = 1, 2, \ldots, 12 \) are polynomial coefficients.

In other words, we find it convenient to use polynomials as form functions, which are defined by 12 coefficients (the fourth-order polynomials with several zero coefficients can be used). It should be noted that formula (15) has certain advantages. In particular, deflection \(w_2(x_1, x_2) \) along line \(x_j = const \) or line \(x_2 = const \) is described by cubic polynomial. All of the external boundaries and boundaries between the elements consists precisely of such lines. Since the third-order polynomial is uniquely defined by four coefficients, displacement along the boundary are uniquely determined by nodal displacements and nodal deflection angles at the ends of this boundary. Function \(w_2(x_1, x_2) \) is continuous along any boundary between elements because values of polynomials at the ends of the boundary are the same for the adjacent elements. Besides, it can be noted that the gradient of function \(w_2(x_1, x_2) \) with respect to normal to any boundary is described by third-order polynomial along this boundary (for instance, function \(\partial_1 w_2(x_1, x_2) \) along line \(x_1 = const \)). Since we have only two given values of deflection angles at these lines, the third-order polynomial is ambiguously determined and deflection angle may be discontinuous (i.e. continuity of the first-order derivatives at boundaries between several finite elements is not provided). Thus, we have so-called nonconforming form function and nonconforming finite elements [12-19].

We should introduce additional nodal basic unknown, i.e. nodal value of function (mixed derivative)

\[
\tau^{(2)}(x_1, x_2) = \partial_1 \partial_2 w_2(x_1, x_2) = z_1^{(2)}(x_1, x_2)
\]

in order to obtain conforming finite elements. Corresponding formula instead of (15) has the form

\[
w_2^*(x_1, x_2) = \overline{w}_2(x_1, x_2) + \alpha_{i1}^{(2, j)} x_1^2 + \alpha_{i2}^{(2, j)} x_2^2 + \alpha_{i3}^{(2, j)} x_1 x_2 + \alpha_{i4}^{(2, j)} x_1^2 x_2 + \alpha_{i5}^{(2, j)} x_1 x_2^2 + \alpha_{i6}^{(2, j)} x_1^3 x_2^2,
\]

where \(\overline{w}_2(x_1, x_2) \) is defined by formula (15); \(\alpha_p^{(2, j)}, \ p = 1, 2, \ldots, 16 \) are polynomial coefficients.

As known, FEM is reduced to the solution of systems of \(4N_iN_j \) linear algebraic equations:

\[
K_{ij} \overline{Y}_z = \overline{R}_z,
\]

where \(\overline{Y}_z \) and \(\overline{R}_z \) are the nodal vectors of unknowns and forces, respectively; \(K_{ij} \) is the stiffness matrix.
where \vec{U}_z is global vector of nodal unknowns (subscript corresponds to the number of subdomain ω_z),

$$\vec{Y}_z = \begin{bmatrix} (\vec{y}_{1}^{(2,1,1)})^T \\ (\vec{y}_{1}^{(2,2,1)})^T \\ \vdots \\ (\vec{y}_{1}^{(2,N_{1},1)})^T \\ (\vec{y}_{2}^{(2,1,2)})^T \\ (\vec{y}_{2}^{(2,2,2)})^T \\ \vdots \\ (\vec{y}_{2}^{(2,N_{1},2)})^T \\ (\vec{y}_{3}^{(2,1,3)})^T \\ (\vec{y}_{3}^{(2,2,3)})^T \\ \vdots \\ (\vec{y}_{3}^{(2,N_{1},3)})^T \end{bmatrix};$$

$$\vec{y}_{1,z}^{(2,i,j)} = [y_{1,i}^{(2,i,j)}, y_{1,j}^{(2,i,j)}, y_{1,k}^{(2,i,j)}, y_{1,l}^{(2,i,j)}]^T, \quad i = 1, 2, ..., N_1, \quad j = 1, 2, ..., N_2;$$

K_z is global stiffness matrix of order $4N_1N_2$; \vec{R}_z is global right-side vector of order $4N_1N_2$ (global load vector).

4. Multilevel approximation model for domain

System (18) can be rewritten for all nodes with indexes $1 < j < N_2$ (i.e. $x_{2,2}^1 < x_2 < x_{2,3}^2$) in the following form (resolving system of $4N_1(N_2 - 2)$ linear algebraic equations):

$$\vec{K}_z \vec{Y}_z = \vec{R}_z,$$

(21)

where \vec{K}_z is reduced global stiffness matrix of size $[4N_1(N_2 - 2)] \times [4N_1N_2]$; \vec{R}_z is reduced right-side vector of order $4N_1(N_2 - 2)$.

Boundary conditions at section $x_2 = x_{2,1}^0$ (hinged edge) has the form (4N_1 equations):

$$y_{i}^{(i,j)}(x_{2,1}^0) = 0, \quad i = 1, 2, ..., N_1; \quad z_{i}^{(i,j)}(x_{2,1}^0) = 0, \quad i = 1, 2, ..., N_1;$$

(22)

$$y_{i}^{(i,j)}(x_{2,1}^0) = 0, \quad i = 1, 2, ..., N_1; \quad z_{3}^{(i,j)}(x_{2,1}^0) = 0, \quad i = 1, 2, ..., N_1.$$

(23)

Equations (22)-(23) can be rewritten in matrix form:

$$B^*_i \vec{Y}_i(x_{2,1}^0) = \vec{g}^*_i,$$

(24)

where B^*_i is matrix of boundary conditions of size $4N_1 \times 8N_1$, which can be constructed in accordance with algorithm presented at Table 1; \vec{g}^*_i is the zero vector of order $4N_1$ (i.e. $\vec{g}^*_i = 0$).

Table 1. Algorithm of construction of matrix B^*_i (All other elements of matrix B^*_i are equal to zero).

Numbers (indexes) of elements	Element value	Corresponding boundary condition
$(i, 2i - 1)$, $i = 1, 2, ..., N_1$	1	The first equation from (22)
$(N_1 + i, 2i)$, $i = 1, 2, ..., N_1$	1	The second equation from (22)
$(2N_1 + i, 4N_1 + 2i - 1)$, $i = 1, 2, ..., N_1$	1	The first equation from (23)
$(3N_1 + i, 4N_1 + 2i)$, $i = 1, 2, ..., N_1$	1	The second equation from (23)

After substitution of (9) into (24) it can be obtained that

$$B^*_i E_i(x_{2,1}^0) \vec{C}_i = \vec{g}^*_i - B^*_i \vec{S}_i(x_{2,1}^0) + 0 \quad \text{or} \quad Q_i \vec{C}_i = \vec{g}^*_i,$$

(25)

where Q_i is the matrix of size $4N_1 \times 8N_1$; \vec{G}_i is the vector of order $4N_1$;

$$Q_i = B^*_i E_i(x_{2,1}^0); \quad \vec{G}_i = \vec{g}^*_i - B^*_i \vec{S}_i(x_{2,1}^0) + 0.$$

(26)
Boundary conditions at section $x_2 = x_{2j}$ (perfect contact) has the form ($4N_i$ equations):

$$y_i^{(1)}(x_{2j}^2 - 0) = y_i^{(1)}(x_{2j}^4 - 0), \quad i = 1, 2, ..., N_i, \quad j = 1;$$

$$z_i^{(1)}(x_{2j}^2 - 0) = z_i^{(1)}(x_{2j}^4 - 0), \quad i = 1, 2, ..., N_i, \quad j = 1; \tag{27}$$

$$y_j^{(2)}(x_{2j}^2 - 0) = y_j^{(2)}(x_{2j}^4 - 0), \quad i = 1, 2, ..., N_i, \quad j = 1;$$

$$z_j^{(2)}(x_{2j}^2 - 0) = \left[\frac{\partial y_j}{\partial x_j}\right]^{(2j)}, \quad i = 1, 2, ..., N_i, \quad j = 1; \tag{28}$$

$$M_{1j}^{(2j)}(x_{2j}^2 - 0) = M_{1j}^{(2j)}, \quad i = 1, 2, ..., N_i, \quad j = 1;$$

$$M_{1j}^{(2j)} = \left[\frac{\partial y_j}{\partial x_j}\right]^{(2j)}, \quad i = 1, 2, ..., N_i, \quad j = 1; \tag{29}$$

$$V_{1j}^{(2j)}(x_{2j}^2 - 0) = V_{1j}^{(2j)}, \quad i = 1, 2, ..., N_i, \quad j = 1;$$

$$V_{1j}^{(2j)} = \left[\frac{\partial y_j}{\partial x_j}\right]^{(2j)}, \quad i = 1, 2, ..., N_i, \quad j = 1; \tag{30}$$

where $M_{1j}^{(2j)}(x_j)$, $V_{1j}^{(2j)}(x_j)$ and $\left[\frac{\partial y_j}{\partial x_j}\right]^{(2j)}(x_j)$ are nodal functions (after corresponding averaging) of bending moment M_{1j}, adjusted shear force V_{1j} and corresponding derivatives with respect to x_j ($\frac{\partial y_j}{\partial x_j}$, $\frac{\partial V_j}{\partial x_j}$) for discrete-continual finite element (i, j). $M_{1j}^{(2j)}$, $V_{1j}^{(2j)}$ and $\left[\frac{\partial y_j}{\partial x_j}\right]^{(2j)}$ are nodal bending moment M_{1j}, adjusted shear force V_{1j} and corresponding derivatives with respect to x_j ($\frac{\partial y_j}{\partial x_j}$, $\frac{\partial V_j}{\partial x_j}$) for finite element $(2, i, j)$; $j = 1$.

Equations (27)-(30) can be rewritten in matrix form:

$$B_{1j}^Y(x_{2j}^2 - 0) = B_{1j}^Z$$

where B_{1j} is matrix of boundary conditions of size $8N_i \times 8N_i$, which can be constructed in accordance with method of basis variations [3-11]; B_{1j} is matrix of boundary conditions of size $8N_i \times 4N_iN_j$, which can be constructed in accordance with method of basis variations [3-11].

After substitution of (8) into (22) it can be obtained that

$$B_{1j}^Y(x_{2j}^2 - 0) - B_{1j}^Y = -B_{1j}^S(x_{2j}^2 - 0) \quad \text{or} \quad Q_{2,1}^Y - Q_{2,2}^Y = \bar{G}_{1j}, \tag{32}$$

where $Q_{2,1}$ is the matrix of size $8N_i \times 4N_i$; $Q_{2,2}$ is the matrix of size $8N_i \times 4N_i$; \bar{G}_{1j} is the vector of order $8N_i$,

$$Q_{2,1}^Y = B_{1j}E_{1j}(x_{2j}^2 - 0); \quad Q_{2,2}^Y = -B_{1j}^Z; \quad \bar{G}_{1j} = -B_{1j}^S(x_{2j}^2 - 0). \tag{33}$$

Boundary conditions at section $x_2 = x_{2j}$ (hinged edge) has the form ($4N_i$ equations):

$$y_i^{(1j)} = 0, \quad i = 1, 2, ..., N_i, \quad j = N_j;$$

$$z_i^{(1j)} = 0, \quad i = 1, 2, ..., N_i, \quad j = N_j; \tag{34}$$

$$[\frac{\partial y_i}{\partial x_j}]^{(1j)} = 0, \quad i = 1, 2, ..., N_i, \quad j = N_j;$$

$$[\frac{\partial y_i}{\partial x_j}]^{(1j)} = 0, \quad i = 1, 2, ..., N_i, \quad j = N_j. \tag{35}$$

Equations (34) and (35) can be rewritten in matrix form:

$$B_{1j}^Y = \bar{G}_{1j}, \tag{36}$$

where B_{1j} is matrix of boundary conditions of size $4N_i \times 4N_iN_j$, which can be constructed in accordance with method of basis variations [3-11]; \bar{G}_{1j} is the zero vector of order $4N_i$ (i.e. $\bar{G}_{1j} = 0$).

Thus, corresponding coupled system of $4N_iN_j + 8N_i$ linear algebraic equations with $4N_iN_j + 8N_i$ unknowns has the form:
\[
\begin{bmatrix}
Q_1 & 0 \\
Q_{2,1} & Q_{2,2} \\
0 & K_2 \\
0 & B_2
\end{bmatrix}
\begin{bmatrix}
C_1 \\
C_2 \\
U_2 \\
R_2
\end{bmatrix}
=
\begin{bmatrix}
G_1 \\
G_2 \\
R_1 \\
R_2
\end{bmatrix}
\].

(37)

It should be noted that boundary conditions (36) can be taken into account automatically within construction of
global stiffness matrix and global right-side vector corresponding to subdomain \(\omega_2\). Then we get (instead of (28)):

\[
\begin{bmatrix}
Q_1 & 0 \\
Q_{2,1} & Q_{2,2} \\
0 & K_2 \\
0 & B_2
\end{bmatrix}
\begin{bmatrix}
C_1 \\
C_2 \\
U_2 \\
R_2
\end{bmatrix}
=
\begin{bmatrix}
G_1 \\
G_2 \\
R_1 \\
R_2
\end{bmatrix}
\],

(38)

where \(\tilde{K}_2\) is corresponding reduced global stiffness matrix of size \([4N_1(N_2 - 1)]\times[4N_1N_2]\); \(\tilde{R}_2\) is corresponding reduced global right-side vector of order \(4N_1(N_2 - 1)\).

Bending moments, torque moments and shear forces are computed according to well-known formulas after
solving of system (38).

5. Software and verification samples

We should stress that all methods and algorithms considered in this paper have been realized in software. The
main purpose of Analysis system CSASA2DPL (DCFEM + FEM) is semianalytical plate analysis (Kirchhoff
model), based on combined application of FEM and DCFEM. Programming environment is Microsoft Visual Studio
2013 Community and Intel Parallel Studio 2015XE with Intel MKL Library [20-22]. Software is designed for
Microsoft Windows 8.1/10.

Corresponding verification samples (ANSYS Mechanical 15.0 [6,7] was used for verification purposes) proved that
DCFEM is more effective in the most critical, vital, potentially dangerous areas of structure in terms of fracture
(areas of the so-called edge effects), where some components of solution are rapidly changing functions and their
rate of change in many cases can’t be adequately taken into account by the standard FEM [1].

Acknowledgements

The Reported study was Funded by Government Program of the Russian Federation “Development of science
and technology” (2013-2020) within Program of Fundamental Researches of Ministry of Construction, Housing and
Utilities of the Russian Federation and Russian Academy of Architecture and Construction Sciences, the Research
Project 7.1.1”.

References

[1] O.C. Zienkiewicz, R.L. Taylor, D.D. Fox, The Finite Element Method for Solid and Structural Mechanics, Butterworth-Heinemann, 2013.
[2] O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, Butterworth-Heinemann, 2013.
[3] P.A. Akimov, Correct discrete-continual finite element method of structural analysis based on precise analytical solutions of resulting
multipoint boundary problems for systems of ordinary differential equations, Applied Mechanics and Materials Vols. 204-208 (2012) 4502-
4505.
[4] P.A. Akimov, A.M. Belostosky, M.L. Mozgaleva, M. Aslami, O.A. Negrozov, Correct multilevel discrete-continual finite element method
of structural analysis, Advanced Materials Research, Vol. 1040 (2014) 664-669.
[5] P.A. Akimov, M.L. Mozgaleva, Method of extended domain and general principles of mesh approximation for boundary problems of
structural analysis, Applied Mechanics and Materials, Vols. 580-583 (2014) 2898-2902.
[6] P.A. Akimov, M.L. Mozgaleva, Mojtaba Aslami, O.A. Negrozov, About verification of discrete-continual finite element method of
structural analysis. Part 1: Two-dimensional problems, Procedia Engineering, Vol. 91 (2014) 2-7.
[7] P.A. Akimov, M.L. Mozgaleva, Mojtaba Aslami, O.A. Negrozov, Local high-accuracy plate analysis using wavelet-based multilevel discrete-continual finite element method, Key Engineering Materials, 685 (2016) 962-966.
[8] P.A. Akimov, M.L. Mozgaleva, O.A. Negrozov, About verification of discrete-continual finite element method for two-dimensional problems of structural analysis. Part 1: Deep beam with constant physical and geometrical parameters along basic direction, Advanced Materials Research, Vols. 1025-1026 (2014) 89-94.
[9] P.A. Akimov, M.L. Mozgaleva, O.A. Negrozov, About verification of discrete-continual finite element method for two-dimensional problems of structural analysis. Part 2: Deep beam with piecewise constant physical and geometrical parameters along basic direction, Advanced Materials Research, Vols. 1025-1026 (2014) 95-103.
[10] M. Aslami, P.A. Akimov, Analytical solution for beams with multipoint boundary conditions on two-parameter elastic foundations, Archives of Civil and Mechanical Engineering, 16(4) (2016) 668-677.
[11] M. Aslami, P.A. Akimov, Wavelet-based finite element method for multilevel local plate analysis, Thin-Walled Structures, 98 (2016) 392-402.
[12] K.J. Bathe, Finite Element Procedures, Prentice Hall, 2007.
[13] R.T. Fenner, Finite Element Methods for Engineers, Imperial College Press, 2013.
[14] J. Fish, T. Belytschko, A First Course in Finite Elements, John Wiley & Sons Ltd, 2007.
[15] P.N. Godbole, Introduction to Finite Element Methods, I K International Publishing House, 2013.
[16] A. Kaveh, Computational Structural Analysis and Finite Element Methods, Springer, 2013.
[17] L. Li, A. Huang, Q. Huai, Finite Element Method and Its’ Applications, Alpha Science Intl Ltd, 2015.
[18] D.S.H. Lo, Finite Element Mesh Generation, CRC Press, 2014.
[19] I.M. Smith, D.V. Griffiths, L. Margetts, Programming the Finite Element Method, Wiley, 2013.
[20] J.C. Adams, W.S. Brainerd, R.A. Hendrickson, R.E. Maine, J.T. Martin, B.T. Smith, The Fortran 2003 Handbook: The Complete Syntax, Features and Procedures, Springer, 2009.
[21] W.S. Brainerd, Guide to Fortran 2003 Programming, Springer, 2009.
[22] R.J. Hanson, T. Hopkins, Numerical Computing with Modern Fortran (Applied Mathematics), SIAM-Society for Industrial and Applied Mathematics, 2013.