Performance of CURB-65, PSI, and APACHE-II for predicting COVID-19 pneumonia severity and mortality

Junnian Chen,1* Bang Liu,2* Houwei Du,3* Hailong Lin,4 Cunjrong Chen,1 Shanshan Rao,1 Ranjie Yu,1 Jingjing Wang,1 Zhiqiang Xue,1 Yixian Zhang5 and Yanghuang Xie1

Abstract
No prognostic tools for the prediction of COVID-19 pneumonia severity and mortality are available. We explored whether CURB-65, PSI, and APACHE-II could predict COVID-19 pneumonia severity and mortality. We included 167 patients with confirmed COVID-19 pneumonia in this retrospective study. The severity and 30-day mortality of COVID-19 pneumonia were predicted using PSI, CURB-65, and APACHE-II scales. Kappa test was performed to compare the consistency of the three scales. There was a significant difference in the distribution of the scores of the three scales (P < 0.001). Patients with PSI class \leq III, CURB-65 \leq 1, and APACHE-II-I all survived. The ROC analysis showed the areas under the curve of the PSI, CURB-65, and APACHE-II scales were 0.83 (95% CI, 0.74–0.93), 0.80 (95% CI, 0.69–0.90), and 0.83 (95% CI, 0.75–0.92), respectively. Our findings suggest that PSI and CURB-65 might be useful to predict the severity and mortality of COVID-19 pneumonia.

Keywords
APACHE-II, COVID-19 pneumonia, CURB-65, mortality, Pneumonia Severity Index

Date received: 1 March 2021; accepted: 3 June 2021

Coronavirus disease 2019 (COVID-19) is caused by a novel enveloped RNA beta coronavirus.1 COVID-19 symptoms worsen rapidly and high mortality has been reported globally.2 The World Health Organization (WHO) has declared a public health emergency of international concern over the global outbreak of COVID-19.3 As of 30 May 2021, there were 169,597,415 confirmed patients of COVID-19 and 3,530,582 deaths worldwide.4

It is important to evaluate the severity of COVID-19, since the outcomes of non-severe patients were favorable compared to severe patients. A reliable tool of assessing the severity of pneumonia can help clinicians better estimate the prognosis of their patients and therefore a more suitable treatment approach can be decided. Pneumonia Severity Index (PSI) and CURB-65 (confusion, urea, respiratory rate, blood pressure, age ≥ 65) are commonly used to evaluate the severity of community and hospital-acquired pneumonia.5,6 Moreover, a previous study showed

1 Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
2 Department of Epidemiology and Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
3 Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
4 Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
5 Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
6 These authors contributed equally to this work.

Corresponding author:
Junnian Chen, Department of Critical Care Medicine, Fujian Medical University Union Hospital, 29 Xinquan Road, Gulou District, Fuzhou, Fujian 350001, China.
Email: chenjunnian2020@outlook.com
the CURB-65 scale could predict the mortality of community-acquired pneumonia (CAP). The Acute Physiology and Chronic Health Evaluation (APACHE) II system is widely applied in the intensive care unit (ICU). Several studies have evaluated common intensive care severity scores to assess COVID-19 pneumonia severity and mortality. Artero et al. showed that performance of PSI and CURB-65 were better than quick Sequential Organ Failure Assessment (qSOFA: respiratory rate ≥ 22/min, altered mentation, or systolic blood pressure ≤ 100 mmHg) at predicting mortality in patients with COVID-19 pneumonia. qSOFA score is simple, and qSOFA score ≥ 2 predicted the severity of COVID-19, with a sensitivity of 26.7%. The study by Myrstad et al. showed that National Early Warning Score 2 (NEWS2) score was superior to qSOFA, Systemic Inflammatory Response Syndrome (SIRS) criteria and CRB-65 in predicting COVID-19 pneumonia severe and mortality. The finding from Ji et al. suggested that the CALL (comorbidity, age, lymphocyte, and Lactate Dehydrogenase; LDH) score could predict the progression risk in patients with COVID-19 pneumonia. However, Ihle-Hansen et al. found CRB-65 and qSOFA scoring systems were not suitable for evaluating the severity and mortality of COVID-19. Satici et al. showed that PSI performed better than CURB-65 in assessing the mortality of COVID-19, and adding CRP levels to PSI did not improve the prediction of 30-day mortality. Thus the performance of these scoring systems in evaluating the severity and mortality of COVID-19 pneumonia is controversial. In this cross-sectional study, we aimed to test the hypothesis that PSI, CURB-65, and APACHE-II scales are associated with the severity and 30-day mortality in patients with COVID-19 pneumonia.

Methods

Study population

Patients with confirmed COVID-19 pneumonia who were admitted to Tumor Center of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (Wuhan, China) from February 15, 2020 to March 17, 2020 were included in this retrospective study. A confirmed case of COVID-19 was defined as a positive result on real-time reverse transcription-polymerase chain reaction (RT-PCR) assay of respiratory specimens. Our study was conducted in line with the Declaration of Helsinki. The Fujian Medical University Union Hospital Ethics Committee approved the study protocol (2020XGFKY002) and written informed consent was obtained from a legally authorized representative for each patient. All hospitalized patients were treated according to the COVID-19 Diagnosis and Treatment Protocol issued by National Health Commission of China. Patients who were younger than 18 years, had a DNR (Do Not Resuscitate) order or were pregnant were excluded. The patient flow chart is shown in Figure 1.

Data collection

Clinical records were reviewed and retrospectively collected by J.C and S.R. The epidemiological, demographic, clinical, and laboratory data on admission and during treatment were extracted using a standardized data form. Epidemiological and demographic data included age, sex, profession, and comorbidities (malignant tumors, congestive heart failure, cerebrovascular disease, kidney disease, and liver disease). Clinical profile of the COVID-19 patients included mental status, heart rate, respiratory rate, blood pressure, body temperature, and radiographic signs of pleural effusion. Laboratory findings included arterial pH, blood urea nitrogen, glucose, hematocrit, and partial pressure of arterial O$_2$ within 24 h after COVID-19 diagnosis.

Two physicians (G.L and R.C) reviewed the chest CT images independently. In cases of disagreement, a consensus was reached after discussion with L.C, a senior respiratory physician and H.L, a senior radiologist. We contacted attending doctors and other healthcare providers when data were missing or questionable. Two clinicians (J.C and S.R) assessed the PSI, CURB-65, and APACHE-II scales independently. A consensus was reached by discussion when a disagreement occurred.

PSI is a scale containing 19 different variables, 91 points (risk classes IV–V) is the cut-off value for PSI, which means a poor prognosis. We defined a cutoff value ≥ 91 for severe COVID-19 pneumonia. CURB-65 includes five variables (confusion, BUN >7 mmol/l, respiratory rate 30 bpm, systolic blood pressure <90 mmHg or diastolic blood pressure ≤ 60 mmHg, and age 65 years). Three or more positive variables indicate
a poor prognosis. We defined a cutoff value ≥ 3 for severe COVID-19 pneumonia. APACHE II score is widely applied in ICU. A score ≥ 15 indicates critically ill patients. In the study of Huang et al., APACHE II scores at cutoff values ≥ 10 achieved a higher accuracy in predicting mortality. We divided the APACHE II score into three levels (<10, $10–14$, and ≥ 15).

Outcomes

The patients were divided into non-survivor group and survivor group. In addition, they were divided into non-severe group and severe group. The primary outcome of the study was severe COVID-19 defined as any of the following: respiratory rate >30 bpm; severe respiratory distress; or $\text{SPO}_2 \leq 93\%$ on room air, which was based on the guideline of Clinical Management of Severe Acute Respiratory Infection When COVID-19 is suspected published by WHO. The secondary outcome was 30-day mortality. Patients who were discharged after recovery or transferred to another hospital or treated for more than 30 days were considered as survival.

Statistical analysis

We summarized data with mean value with standard deviations or median value with interquartile range, and categorical data as counts with percentages. We used the T-test or Mann-Whitney test to compare the differences in continuous variables, and the Chi-square test or Fisher’s exact test to compare the differences in categorical variables where appropriate. To compare the consistency of the three scales, we divided the scales into three levels of mild, medium, and severe (Supplemental Table S2). Kappa test was performed to compare the consistency of the three scales. The receiver operating characteristics (ROC) and the area under the curve (AUC) were described to assess the association between the severity of COVID-19 and three scales.

Results

A total of 167 patients with confirmed COVID-19 pneumonia were included in this retrospective study. The difference in the components of three scales between non-survivors and survivors, and non-severe patients and severe patients are shown in Table 1. The overall 30-day mortality rate was 3.59% (6/167). The non-survivors were more likely to have previous cerebrovascular disease, lower systolic pressure, lower arterial pH, lower partial pressure of arterial O$_2$, and blood urea nitrogen ≥ 7 mmol/l. Compared to patients with non-severe COVID-19, patients with severe COVID-19 were more likely to have previous cerebrovascular disease, higher heart rate, higher breathing rate, lower systolic pressure, lower arterial pH, lower partial pressure of arterial O$_2$, and blood urea nitrogen ≥ 7 mmol/l.

Clinical characteristics and laboratory findings of patients with COVID-19 pneumonia are shown in Table 2. Primary onset symptoms were similar between survivors and non-survivors, and between
Table 1. The difference in the components of three scales between non-survivors and survivors, non-severe patients and severe patients.

Characteristic	All Patients (N = 167)	Outcomes	P-value	Disease severity	P-value		
		Survival (N = 161)	Death (N = 6)				
Gender—no./total no. (%)				Non-severe (N = 138)			
Male	84 (50.3)	78 (48.4)	6 (100.0)	64 (46.4)	20 (69.0)	0.04	
Female	83 (49.7)	83 (51.6)	0 (0.0)	74 (53.6)	9 (31.0)		
Age—no./total no. (%)				Severe (N = 29)			
≥65	106 (63.5)	101 (62.7)	5 (83.3)	82 (59.4)	24 (82.8)	0.02	
<65	61 (36.5)	60 (37.3)	1 (16.7)	56 (40.6)	5 (17.2)		
Tumor disease—no./total no. (%)							
Yes	12 (7.2)	12 (7.5)	0 (0.0)	>0.999	9 (6.5)	10.3	
No	155 (92.8)	149 (92.5)	6 (100.0)	129 (93.5)	26 (89.7)		
Digestive diseases—no./total no. (%)							
Yes	6 (3.6)	5 (3.1)	1 (16.7)	0.2	3 (2.2)	3 (10.3)	0.066
No	161 (96.4)	156 (96.9)	5 (83.3)	135 (97.8)	26 (89.7)		
Congestive heart failure—no./total no. (%)							
Yes	7 (4.2)	6 (3.7)	1 (16.7)	0.23	4 (2.9)	3 (10.3)	0.101
No	160 (95.8)	155 (96.3)	5 (83.3)	134 (97.1)	26 (89.7)		
Cerebrovascular disease—no./total no. (%)							
Yes	60 (35.9)	55 (34.2)	5 (83.3)	0.023	42 (30.4)	18 (62.1)	0.002
No	107 (64.1)	106 (65.8)	1 (16.7)	96 (69.6)	11 (37.9)		
Kidney disease—no./total no. (%)							
Yes	11 (6.6)	10 (6.2)	1 (16.7)	0.34	5 (3.6)	6 (20.7)	0.004
No	156 (93.4)	151 (93.8)	5 (83.3)	133 (96.4)	23 (79.3)		
Abnormal mental state—no./total no. (%)							
Yes	13 (7.8)	8 (5.0)	5 (83.3)	<0.001	5 (3.6)	8 (27.6)	<0.001
No	154 (92.2)	153 (95.0)	1 (16.7)	133 (96.4)	21 (72.4)		
Heart rate ≥125 bpm/min—no./total no. (%)							
Yes	5 (3.0)	4 (2.5)	1 (16.7)	0.169	1 (0.7)	4 (13.8)	0.003
No	162 (97.0)	157 (97.5)	5 (83.3)	137 (99.3)	25 (86.2)		
Breathing ≥30/min—no./total no. (%)							
Yes	10 (6.0)	8 (5.0)	2 (33.3)	0.043	2 (1.4)	8 (27.6)	<0.001
No	157 (94.0)	153 (95.0)	4 (66.7)	136 (98.6)	21 (72.4)		
Systolic pressure <90 mmHg—no./total no. (%)							
Yes	2 (1.2)	0 (0.0)	2 (33.3)	0.001	0 (0.0)	2 (6.9)	0.029
No	165 (98.8)	161 (100.0)	4 (66.7)	138 (100.0)	27 (93.1)		

(Continued)
Characteristic	All Patients (N = 167)	Outcomes	P-value	Disease severity	P-value
		Survival (N = 161)	Death (N = 6)		
Body temperature < 35°C or ≥ 40°C—no./total no. (%)					
Yes	0	0	0	---	0
No	167 (100.0)	161 (100.0)	6 (100.0)	138 (100.0)	29 (100.0)
Arterial pH < 7.35—no./total no. (%)					
Yes	2 (1.2)	0 (0.0)	2 (33.3)	0.001	0 (0.0)
No	165 (98.8)	161 (100.0)	4 (66.7)	138 (100.0)	27 (93.1)
Pleural effusion—no./total no. (%)					
Yes	15 (9.0)	15 (9.3)	0 (0.0)	>0.999	12 (8.7)
No	152 (91.0)	146 (90.7)	6 (100.0)	126 (91.3)	26 (89.7)
Blood sodium < 130 mmol/l—no./total no. (%)					
Yes	2 (1.2)	1 (0.6)	1 (16.7)	0.071	1 (0.7)
No	165 (98.8)	160 (99.4)	5 (83.3)	137 (99.3)	28 (96.6)
Blood glucose ≥ 14 mmol/l—no./total no. (%)					
Yes	12 (7.2)	12 (7.5)	0 (0.0)	>0.999	8 (5.8)
No	155 (92.8)	149 (92.5)	6 (100.0)	130 (94.2)	25 (86.2)
Hematocrit < 30%—no./total no. (%)					
Yes	15 (9.0)	15 (9.3)	0 (0.0)	>0.999	11 (8.0)
No	152 (91.0)	146 (90.7)	6 (100.0)	127 (92.0)	25 (86.2)
Partial pressure of arterial O2 < 60 mmHg—no./total no. (%)					
Yes	4 (2.4)	2 (1.2)	2 (33.3)	0.006	1 (0.7)
No	163 (97.6)	159 (98.8)	4 (66.7)	137 (99.3)	26 (89.7)
Blood urea nitrogen ≥ 9 mmol/l—no./total no. (%)					
Yes	8 (4.8)	5 (3.1)	3 (50.0)	0.001	3 (2.2)
No	159 (95.2)	156 (96.9)	3 (50.0)	135 (97.8)	24 (82.8)
Blood urea nitrogen ≥ 7 mmol/l—no./total no. (%)					
Yes	16 (9.6)	11 (6.8)	5 (83.3)	<0.001	6 (4.3)
No	151 (90.4)	150 (93.2)	1 (16.7)	132 (95.7)	19 (65.5)
PSI score—Median [IQR]	69.00 [52.50, 87.00]	66.00 [52.00, 84.00]	154.50 [138.50, 168.25]	<0.001	
CURB-65 score—Median [IQR]	1.00 [0.00, 1.00]	0.00 [0.00, 1.00]	3.00 [3.00, 3.75]	<0.001	
APACHE-II score—Median [IQR]	5.00 [3.00, 6.00]	5.00 [3.00, 6.00]	19.00 [16.75, 19.75]	<0.001	

Table 1. (Continued)
Characteristic	All Patients (N = 167)	Outcomes	p-Value	Disease severity	p-Value	
		Survival (N=161)	Death (N=6)	Non-severe (N=138)	Severe (N=29)	
Respiratory diseases—no./total no. (%)						
Yes	14 (8.4)	13 (8.1)	1 (16.7)	10 (7.2)	4 (13.8)	
No	153 (91.6)	148 (91.9)	5 (83.3)	128 (92.8)	25 (86.2)	
Hypertension—no./total no. (%)						
Yes	50 (29.9)	48 (29.8)	2 (33.3)	>0.999	37 (26.8)	13 (44.8)
No	117 (70.1)	113 (70.2)	4 (66.7)	101 (73.2)	16 (55.2)	
Diabetes—no./total no. (%)						
Yes	32 (19.2)	32 (19.9)	0 (0.0)	25 (18.1)	7 (24.1)	
No	135 (80.8)	129 (80.1)	6 (100.0)	113 (81.9)	22 (75.9)	
Fever—no./total no. (%)						
Yes	116 (69.5)	114 (70.8)	2 (33.3)	96 (69.6)	20 (69.0)	
No	51 (30.5)	47 (29.2)	4 (66.7)	42 (30.4)	9 (31.0)	
Cough—no./total no. (%)						
Yes	109 (65.3)	106 (65.8)	3 (50.0)	90 (65.2)	19 (65.5)	
No	58 (34.7)	55 (34.2)	3 (50.0)	48 (34.8)	10 (34.5)	
Expectoration—no./total no. (%)						
Yes	23 (13.8)	22 (13.7)	1 (16.7)	21 (15.2)	2 (6.9)	
No	144 (86.2)	139 (86.3)	5 (83.3)	117 (84.8)	27 (93.1)	
Dyspnea—no./total no. (%)						
Yes	41 (24.6)	38 (23.6)	3 (50.0)	29 (21.0)	12 (41.4)	
No	126 (75.4)	123 (76.4)	3 (50.0)	109 (79.0)	17 (58.6)	

(Continued)
Characteristic	All Patients (N = 167)	Outcomes	p-Value	Disease severity	p-Value		
		Survival (N = 161)	Death (N = 6)	Non-severe (N = 138)	Severe (N = 29)		
Aspartate aminotransferase (U/l)—Median [IQR]	28.00 [21.00, 37.00]	28.00 [21.00, 37.00]	52.00 [44.00, 57.00]	0.022	27.00 [21.00, 36.00]	35.50 [24.75, 53.25]	0.011
Alanine aminotransferase (U/l)—Median [IQR]	37.40 [33.70, 40.90]	37.60 [34.08, 40.92]	32.90 [29.00, 33.30]	0.012	38.30 [34.90, 41.10]	32.55 [29.62, 36.25]	<0.001
Albumin (g/l)—Median [IQR]	25.00 [19.00, 48.50]	25.00 [19.00, 47.00]	52.00 [27.25, 73.00]	0.219	25.00 [18.00, 44.75]	35.00 [21.00, 61.00]	0.096
Neutrophil count (×10⁹)—Median [IQR]	3.33 [2.55, 4.77]	3.31 [2.55, 4.73]	9.64 [3.01, 11.37]	0.098	3.25 [2.58, 4.35]	3.50 [2.32, 7.18]	0.342
Lymphocyte count (×10⁹)—Median [IQR]	1.35 [0.92, 1.67]	1.35 [0.93, 1.68]	0.30 [0.18, 0.68]	0.003	1.37 [1.06, 1.72]	0.85 [0.64, 1.27]	<0.001
Leukocyte count (×10⁹)—Median [IQR]	5.25 [4.34, 7.19]	5.24 [4.34, 7.05]	12.18 [9.97, 13.58]	0.016	5.27 [4.38, 7.04]	5.09 [3.91, 9.70]	0.801
Monocytes count (×10⁹)—median [IQR]	0.48 [0.36, 0.62]	0.48 [0.36, 0.60]	0.59 [0.30, 0.70]	0.821	0.48 [0.36, 0.60]	0.44 [0.35, 0.65]	0.967
Hemoglobin (g/l)—median [IQR]	123.53 (15.98)	123.60 (16.15)	121.67 (11.55)	0.772	125.12 (14.91)	116.00 (18.87)	0.005
Blood platelet (×10⁹)—mean (SD)	215.00 [166.00, 272.00]	219.00 [173.00, 274.00]	129.50 [99.00, 142.75]	0.001	223.00 [179.00, 274.75]	164.00 [128.00, 217.00]	0.003
Creatinine (mmol/l)—median [IQR]	74.00 [64.00, 87.00]	74.00 [64.00, 87.00]	117.50 [62.50, 261.75]	0.249	73.00 [64.00, 86.00]	84.00 [67.50, 111.00]	0.047
Blood urea nitrogen (mmol/l)—median [IQR]	4.40 [3.50, 5.50]	4.30 [3.45, 5.40]	9.16 [7.35, 11.25]	<0.001	4.30 [3.40, 5.40]	5.15 [4.02, 8.17]	0.017
Glomerular filtration rate—median [IQR]	80.40 [69.20, 94.90]	80.80 [70.20, 94.75]	57.70 [23.97, 112.88]	0.361	80.80 [71.00, 94.90]	74.05 [46.58, 91.65]	0.12
IL-6 (pg/ml)—median [IQR]	7.38 [4.76, 17.23]	7.14 [4.72, 17.05]	17.04 [14.04, 246.06]	0.08	6.41 [4.51, 13.76]	15.22 [11.19, 29.62]	<0.001
IL-4 (pg/ml)—median [IQR]	2.75 [2.02, 3.48]	2.83 [2.11, 3.51]	2.05 [2.01, 2.21]	0.159	2.84 [2.11, 3.58]	2.41 [2.06, 3.08]	0.349
IL-10 (pg/ml)—median [IQR]	4.29 [3.44, 5.01]	4.26 [3.43, 5.00]	5.14 [4.89, 10.38]	0.066	4.20 [3.41, 4.87]	4.61 [3.90, 5.58]	0.13
IL-2 (pg/ml)—median [IQR]	3.14 [2.67, 3.98]	3.18 [2.67, 4.04]	2.81 [2.67, 2.81]	0.259	3.27 [2.70, 3.98]	2.84 [2.50, 4.15]	0.444
TNF-α (pg/ml)—median [IQR]	2.88 [2.25, 5.21]	2.89 [2.25, 5.27]	2.27 [2.15, 2.81]	0.265	2.88 [2.29, 5.25]	2.91 [2.12, 4.55]	0.682
IFN-γ (pg/ml)—median [IQR]	2.79 [2.21, 3.56]	2.83 [2.21, 3.60]	2.21 [2.12, 2.46]	0.259	2.79 [2.23, 3.54]	2.64 [2.05, 3.79]	0.938
Cytokines (pg/ml)—Median [IQR]	24.00 [18.00, 31.00]	24.50 [18.00, 31.00]	18.00 [13.50, 25.50]	0.404	25.00 [18.50, 31.50]	22.00 [16.50, 29.00]	0.237
patients with severe disease and non-severe disease. Compared to survivors, non-survivors were more likely to have higher blood urea nitrogen (mmol/l) (9.16 [7.35, 11.25] vs 4.30 [3.45, 5.40], \(P < 0.001 \)) and lower lymphocyte count (\(\times 10^9 \)) (0.30 [0.18, 0.68] vs 1.35 [0.93, 1.68], \(P = 0.003 \)). Similarly, patients with severe COVID-19 were more likely to have lower blood lymphocyte count (\(\times 10^9 \)) (0.85 [0.64, 1.27] vs 1.37 [1.06, 1.72], \(P < 0.001 \)), higher serum interleukin-6 levels (pg/ml) (15.22 [11.19, 29.62] vs 6.41 [4.51, 13.76], \(P < 0.001 \)), and higher serum interleukin-10 levels (pg/ml) (4.61 [3.90, 5.58] vs 4.20 [3.41, 4.87], \(P = 0.013 \)) compared to the non-severe patients (Table 2).

We found a significant difference in the distribution of the three scales in patients with different outcomes and disease severity (\(P < 0.001 \), Table 3). No patients with PSI class \(\leq \)III, CURB-65 \(\leq \)I, and APACHE-II-I died, while 1 (16.7%) and 3 (83.3%) patients with PSI-IV and PSI-V died, respectively. The mortality rate in patients with a CURB-65 score of 2 and \(\geq 3 \) was 16.7% (1/6) and 83.3% (5/6), respectively. For patients with APACHE-II class II and class III the mortality rates were 16.7% (1/6) and 83.3% (5/6), respectively.

PSI and CURB-65 had substantial consistency in the evaluation of patients’ disease severity (Kappa = 0.69, \(P < 0.001 \)) (Table 4). However, PSI and APACHE-II had moderate consistency (Kappa = 0.54, \(P < 0.001 \)). During the matching process, the results revealed that 5 (83.3%) patients who died during hospitalization had higher scores on all three scale systems.

The performance of PSI, CURB-65, and APACHE-II scales to assess the severity of COVID-19 pneumonia are shown in Table 5. PSI had higher sensitivity but lower specificity than CURB-65. APACHE-II had the lowest sensitivity. The highest Youden index was found at the cut off of IV in PSI (0.62), \(\geq 2 \) in CURB-65 (0.55), and \(\geq 2 \) in APACHE-II (0.36). The receiver operating characteristic (ROC) curves of the three scales are shown in Figure 2. The areas under the curve in the ROC analysis of PSI, CURB-65, and APACHE-II were 0.83 (95% CI, 0.74–0.93), 0.80 (95% CI, 0.68–0.92), and 0.77 (95% CI, 0.67–0.86), respectively.

Table 3. Distribution of three scales in patients with different outcomes and disease severity.

Scales	Outcomes (n/%)	\(P \)-value*	Disease severity (n/%)	\(P \)-value*
	Survival (N=161)		Non-severe (N=138)	
	Death (N=6)		Severe (N=29)	
PSI class				
\(\leq \)I	88 (54.7)	<0.001	83 (60.1)	<0.001
II	43 (26.7)		40 (29.0)	
III	26 (16.1)		14 (10.1)	
IV	4 (2.5)		1 (0.7)	
CURB-65 score				
0	83 (51.6)	<0.001	77 (55.8)	<0.001
1	62 (38.5)		56 (40.6)	
2	14 (8.7)		5 (3.6)	
\(\geq 3 \)	2 (1.2)		0 (0.0)	
APACHE-II class		<0.001	135 (97.8)	<0.001
I	153 (95.0)		135 (97.8)	
II	7 (4.3)		3 (2.2)	
III	1 (0.6)		0 (0.0)	

*Fisher’s exact test.
†the number of cases with PSI-I was 0.

Table 4. Comparison of three scales on the severity of the patients with COVID-19 pneumonia.

Scales	PSI	CURB-65	APACHE-II	Kappa
	Mild	Moderate	Severe	
CURB-65				0.69
Moderate	129	15	1	
Severe	0	0	7	
APACHE-II				0.54
Moderate	130	21	2	
Severe	0	0	6	
0.69–0.90), and 0.83 (95% CI, 0.75–0.92), respectively.

Discussion

In the present study, we found a significant difference in the distribution of the scores of the PSI, CURB-65, and APACHE-II scales in patients with different outcomes and disease severity. Moreover, PSI and CURB-65 both performed well in the evaluation of patients’ disease severity (Kappa=0.69, \(P<0.001 \)). Our results are in consistency with those reported by Artero et al.9 and Satici et al.13 Thus our findings suggest that PSI and CURB-65 might be useful to predict the severity and mortality of COVID-19 pneumonia.

Table 5. The ability of three scales to evaluate the severity of COVID-19 pneumonia.

Scales	Sensitivity (%)	Specificity (%)	+LR	−LR	YI
PSI					
≥III	82.8 (63.5, 93.5)	60.1 (51.4, 68.3)	2.08	0.29	0.43
≥IV	72.4 (52.5, 86.6)	89.1 (82.4, 93.6)	6.66	0.31	0.62
V	27.6 (13.4, 47.5)	99.3 (95.4, 100.0)	38.07	0.73	0.27
CURB-65					
≥1	79.3 (59.7, 91.3)	55.8 (47.1, 64.2)	1.79	0.37	0.35
≥2	58.6 (39.1, 75.9)	96.4 (91.3, 98.7)	16.18	0.43	0.55
≥3	24.1 (11.0, 43.9)	100.0 (96.6, 100.0)	0.76	0.76	0.24
APACHE-II					
≥II	37.9 (21.3, 57.6)	97.8 (93.3, 99.4)	17.45	0.63	0.36
III	20.7 (8.7, 40.2)	100.0 (96.6, 100.0)	0.79	0.21	

+LR: positive likelihood ratio; −LR: negative likelihood ratio; YI: Youden index = (sensitivity + specificity) −1.

Figure 2. Receiver operator characteristic curve (ROC) and area under the curves (AUC) for the severity of COVID-19 pneumonia patient for three scales.
A previous study showed that patients with COVID-19 pneumonia who had compromised respiratory status on admission were at a higher risk of developing severe disease and worse outcomes. Identifying the seriousness of COVID-19 is essential for clinicians to make decisions whether or not to take more intensive supportive treatment for the patients. PSI, CURB-65, and APACHE-II scales have been well certified and widely applied for assessing pneumonia and general critical illness. In our study, we found that no patients with PSI class \(\leq III \) (131/167, 78.4%), CURB-65 \(\leq 1 \) (145/167, 86.8%), and APACHE-II-I (153/167, 91.6%) died, the mortality rate in patients with PSI class IV, CURB-65 = 2, and APACHE-II class II is 16.7%, and the mortality rate in patients with PSI class V, CURB-65 \(\geq 3 \), and APACHE-II class III is 83.3%. There was a significant trend of increasing mortality risk with a higher PSI, CURB-65, and APACHE-II risk class. Thus, our findings suggest that these three scales are useful tools to predict the mortality in patients of COVID-19 pneumonia, and are consistent with previous findings. For example, the PSI and CURB-65 scales could identify low-risk patients with COVID-19 pneumonia. Moreover, the APACHE-II score of the survivors was significantly lower than that of non-survivors. Therefore, the three scales could be reliably applied to identify low-risk and high-risk patients.

The AUCs of PSI, CURB-65, and APACHE-II were 0.83 (95% CI, 0.74–0.93), 0.80 (95% CI, 0.69–0.90), and 0.83 (95% CI, 0.75–0.92), respectively, indicating that the three scales are good predictive tools of the severity of COVID-19 pneumonia. The sensitivity of PSI was higher than CURB-65 and APACHE-II, indicating it could more correctly sort out patients who would develop into severe COVID-19 pneumonia, but the specificity was lower than CURB-65, which means that more non-high-risk patients would be falsely predicted to be severe.

The sensitivity of APACHE-II class \(\geq II \) was only 37.9 (21.3, 57.6). However, the sensitivity of severity assessment for patients with COVID-19 pneumonia is extremely important, so APACHE-II should be used with caution. The result is different from findings reported by Cheng et al. who found that the APACHE-II score was a strong predictor of COVID-19 pneumonia severity and mortality. They included a total of 53 cases. We think APACHE-II score is unsuitable for COVID-19 pneumonia for the following reasons. First, the score is complex, contains many variables and is not easy to manipulate. Second, it is no specific for respiratory system, respiratory failure is the hallmark for COVID-19 pneumonia patients, even absence of accompanying circulatory failure. Third, the proportion of scores in elderly patients is high. Finally, COVID-19 patients are accompanied with various comorbidities, however, there is a lack of scoring for comorbidities in APACHE-II score.

Five of the six non-survivors included in this study had the highest levels in all three scales (PSI-V, CURB-65 score \(\geq 3 \), and APACHE-II-III). However, no patients with PSI class \(\leq III \) (131/167, 78.4%), CURB-65 \(\leq 1 \) (145/167, 86.8%), and APACHE-II-I (153/167, 91.6%) died. Therefore, all three scales performed well in evaluating the mortality of mild and severe patients. A previous study showed a combination of PSI and CURB-65 scales could reliably access CAP. Moreover, PSI and CURB-65 scales were almost equally sensitive and specific for predicting mortality among hospitalized patients with CAP with PSI class \(\geq IV \) and CURB-65 score \(\geq 2 \). Similarly our results showed that PSI is in good consistency with CURB-65.

Due to a very small sample of death in our study, the sensitivity and specificity of the three scales can’t be further compared to predict the mortality of patients with COVID-19 pneumonia. Notably, one non-survivor who was 85 years old, with a previous cerebrovascular disease and abnormal mental state during hospitalization, was rated as medium (PSI-IV, CURB-65 of 2, and APACHE-II-II) on all three scales. This example suggests we should pay more attention and vigilance to old COVID-19 patients with underlying chronic diseases.

There were some limitations in the present study. This is a single-center, retrospective study with small sample size. Our findings need to be validated in further multicenter larger studies. Due to retrospective nature of the present study, we did not have a predefined statistics protocol to calculate the sample size. The parameters of these scales were only a binary variable. They did not fully reflect the severity of COVID-19 pneumonia. Also, we should consider other factors for COVID-19, such as D-dimer, body mass index, IL-6 levels,
which are not included in PSI, CURB-65, APACHE-II. In the study by Zhou et al., D-dimer levels >1 \(\mu g/ml \) were shown to be associated with higher mortality (OR 18.42 (95% CI 2.64–128.55)). In a retrospective study by Nadkarni et al., 31 which included 4389 hospitalized patients with COVID-19, anticoagulant result led to lower mortality and intubation. Finally, the effects of treatments on mortality were not analyzed.

Conclusion

In conclusion, our study provided a preliminary assessment tool of the severity of COVID-19 pneumonia patients using PSI, CURB-65, APACHE-II scales. Our findings suggest that PSI and CURB-65 are useful to assess the severity and mortality of COVID-19 pneumonia; these scales might be used by clinicians to better manage their patients with COVID-19 pneumonia. More external validation studies are needed to verify our findings.

Acknowledgements

We thank all the patients who consented to donate their data for analysis and the medical staff members who are on the front line of caring for patients. We thank Dr. Lianming Liao at the Center of Laboratory Medicine, Union Hospital and Dr. Jin Wei from School of Health Sciences, College of Health and Medicine, University of Tasmania, Australia, for their help in language improvement.

Author contributions

J.C, B.L, and H.D wrote original draft and collected the references. L.H, C.C, S.R, R.Y, J.W, Z.X, Y.Z, and Y.X provided clinical support. H.D and C.C helped to revise the manuscript. Dr. H Du was listed as a co-first author for his substantial contribution to manuscript critical revision, data analysis, interpretation, and drafting responses to reviewers. All co-authors agreed and approved Dr Du’s contribution and authorship. Dr. H Du approved the version to be published.

Availability of data and material

The data in the present study is not publicly accessible. Qualified researchers who are interested in obtaining the data can contact the corresponding author (Email: chenjunnian2020@outlook.com).

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by Natural Science Foundation of Fujian, China (grant numbers.2018J01309).

Ethical approval

Our study was conducted in line with the Declaration of Helsinki. The Fujian Medical University Union Hospital Ethics Committee approved the study protocol (2020XGFKY002), and written informed consent was obtained from the patients for their anonymized information to be published in this article.

ORCID iD

Junnian Chen https://orcid.org/0000-0002-0566-5445

Code availability

Statistical

Analysis of data was performed on R software, version 3.6.3 (R Foundation for Statistical Computing, AT&T Bell Laboratories).

Supplemental material

Supplemental material for this article is available online.

References

1. Lu R, Zhao X, Li J et al. (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. *Lancet* 395: 565-74.

2. Onder G, Rezza G and Brusaferro S (2020) Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. *JAMA* 323(18): 1775–1776.

3. World Health Organisation (2020) Rolling updates on coronavirus disease (COVID-19). https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen (accessed 31 January 2020).

4. World Health Organisation. (2021). WHO coronavirus disease (COVID-19) dashboard. https://covid19.who.int/ (accessed 1 June 2021).

5. Ilg A, Moskowitz A, Konanki V et al. (2019) Performance of the CURB-65 score in predicting critical care interventions in patients admitted with community-acquired pneumonia. *Ann Emerg Med* 74: 60–68.

6. Murillo-Zamora E, Medina-Gonzalez A, Zamora-Perez L et al. (2018) Performance of the PSI and CURB-65 scoring systems in predicting 30-day mortality in healthcare-associated pneumonia. *Med Clin (Barc)* 150: 99–103.

7. Lim WS, Eerden MM, Laing R et al. (2003) Defining community acquired pneumonia severity
on presentation to hospital: an international derivation and validation study. *Thorax* 58: 377–382.

8. Knaus WA, Draper EA, Wagner DP et al. (1985) APACHE II: a severity of disease classification system. *Crit Care Med* 13: 818–829.

9. Artero A, Madrazo M, Fernández-Garcés M et al. (2021) Severity scores in COVID-19 pneumonia: a multicenter, retrospective, cohort study. *J Gen Intern Med* 36(5): 1338–1345.

10. Myrstad M, Ihle-Hansen H, Tveita AA et al. (2020) National early warning score 2 (NEWS2) on admission predicts severe disease and in-hospital mortality form COVID-19. A prospective cohort study. *Scan J Traum Res Emerg Med* 28: 66.

11. Ji D, Zhang D, Xu J et al. (2020) Prediction for progression risk in patients with COVID-19 pneumonia: the CALL score. *Clin Infect Dis* 71(6): 1393–1399.

12. Ihle-Hansen H, Berge T, Tveita A et al. (2020) COVID-19: symptoms, course of illness and use of clinical scoring systems for the first 42 patients admitted to a Norwegian local hospital. *Tidsskr Nor Laegeforen* 140(7): tidsskr.20.0301.

13. Satici C, Demirkol MA, Sargin Altunok E et al. (2020) Performance of pneumonia severity index and CURB-65 in predicting 30-day mortality in patients with COVID-19. *Int J Infect Dis* 98: 84–89.

14. Mao L, Jin H, Wang M et al. (2020) Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. *JAMA Neurol* 77(6): 683–690.

15. National Health Commission of the People’s Republic of China Diagnosis and Treatment Protocol for COVID-19 (trial version 5, revised version, 4 February 2020). http://www.nhc.gov.cn/yzygj/s7653p/202002/d4b895337e19445f8d728cfaf1e3e13a.shtml (accessed 5 February 2020).

16. Marras TK, Gutierrez C and Chan CK (2000) Applying a prediction rule to identify low-risk patients with community-acquired pneumonia. *Chest* 118: 1339–1343.

17. Fine MJ, Hough LJ, Medsger AR et al. (1997) the hospital admission decision for patients with community-acquired pneumonia. *Arch Intern Med* 157: 36–44.

18. Ranzani OT, Prina E, Menéndez R et al. (2017) New sepsis definition (Sepsis-3) and community-acquired pneumonia mortality: a validation and clinical decision-making study. *Am J Respir Crit Care Med* 196(10): 1287–1297.

19. Huang J, Xuan D, Li X et al. (2017) The value of APACHE II in predicting mortality after paraquat poisoning in Chinese and Korean population. *Medicine* 96(30): e6838.

20. World Health Organisation (2020) Clinical management of severe acute respiratory infection when COVID-19 is suspected. https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected. (accessed 5 May 2020).

21. Guan W, Ni Z, Hu Y et al. (2020) China MTEG. Clinical characteristics of coronavirus disease 2019 in China. *N Engl J Med* 382: 1708–1720.

22. Kolditz M, Ewig S, Klapdor B et al. (2015) Community-acquired pneumonia as medical emergency: predictors of early deterioration. *Thorax* 70: 551–558.

23. Fine MJ, Auble TE, Yealy DM et al. (1997) A prediction rule to identify low-risk patients with community-acquired pneumonia. *N Engl J Med* 336: 243–250.

24. Niederman MS. (2009) Making sense of scoring systems in community acquired pneumonia. *Respirology* 2009; 14: 327–335.

25. Cheng P, Wu H, Yang J et al. (2021) Pneumonia scoring systems for severe COVID-19: which one is better. *Virol J* 18(1): 33.

26. Richardson S, Hirsch JS, Narasimhan M et al. (2020) Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. *JAMA* 323(20): 2052–2059.

27. Guan WJ, Liang WH, Zhao Y et al; China Medical Treatment Expert Group for COVID-19 (2020) Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. *Eur Respir J* 55(5): 2000547.

28. Niederman MS, Feldman C and Richards GA. (2006) Combining information from prognostic scoring tools for CAP: an American view on how to get the best of all worlds. *Eur Respir J* 27: 9–11.

29. Varshochi M, Kianmehr P, Naghavi-Bezhad M et al. (2013) Correspondence between hospital admission and the pneumonia severity index (PSI), CURB-65 criteria and comparison of their predictive value in mortality and hospital stay. *Infez Med* 21: 103–110.

30. Zhou F, Yu T, Du R et al. (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. *Lancet* 395(10229): 1054–1062.

31. Nadkarni GN, Lala A, Bagiella E et al. (2019) Anticoagulation, bleeding, mortality, and pathology in hospitalized patients with COVID-19. *J Am Coll Cardiol* 76(16): 1815–1826.