Synthesis of 2,3-Disubstituted Carbazoles, Benzo[c]carbazoles, and Phenanthrenes Through FeCl₃-Mediated Cyclization of Triene Frameworks

Potharaju Raju
Thiyagarajan Mageshwaran
Bose Muthu Ramalingam
Arasambattu K. Mohanakrishnan*

Department of Organic Chemistry, School of Chemical Sciences, University of Madras, Guindy Campus, Chennai-600 025, Tamil Nadu, India
mohan_67@hotmail.com

Received: 11.07.2018
Accepted after revision: 02.08.2018
Published online: 27.08.2018
DOI: 10.1055/s-0037-1609936; Art ID: so-2018-d0042-l

License terms: \(\text{CC BY 4.0} \)

Abstract: A facile synthesis of 2,3-disubstituted carbazoles through electrocyclization of 2,3-divinylindoles using FeCl₃ in DMF at reflux is reported. The methodology was found to be applicable for smooth transformation of 3-aryl-2-vinylindole as well as 2-styrylbiphenyl into the respective benzo[c]carbazole and phenanthrene.

Key words: carbazoles, electrocyclization, Iron(III) chloride, 2,3-divinylindole, benzocarbazole, phenanthrene

Over the years, our research group has exploited electrocyclization of 1-phenylsulfonyl-2,3-divinylindoles as a key step for the syntheses of quinocarbazoles,² staurosporine aglycone,¹ and also for accessing a wide variety of substituted carbazoles.¹ We have also accomplished a Lewis acid mediated electrocyclization strategy for accessing calothrixin B and its derivatives.³ In all these reports, the thermal electrocyclization followed by aromatization of 2,3-divinylindoles could be performed using 10% Pd/C in xylenes at reflux to give the respective carbazoles in good yields. However, the inconsistent quality of 10% Pd-C, difficulty in the aromatization of intermediate dihydrocarbazole, coupled with prolonged reaction time at elevated temperature, makes this protocol unsuitable for performing the reaction on a multi-gram scale. We sought to develop an alternative procedure that avoids the use Pd/C and also overcomes the disadvantages noted above. Hence, in a further continuation of our work on the synthesis of carbazoles,¹⁻³ we report herein the synthesis of a wide variety of carbazole derivatives 2 through FeCl₃-mediated⁴,⁵ electrocyclization as a key step. The synthesis of benzo[c]carbazoles 3 could also be achieved from the respective 2-vinyl-3-arylidynes (Scheme 1).

Scheme 1 Synthesis of carbazoles 2 and 3 using FeCl₃-mediated cyclization

To realize this objective, the required 2,3-divinylindoles 1a–v were prepared (Scheme 2) from the respective phosphonate esters.⁶ As a representative case, thermal electrocyclization of 1a in the presence of anhydrous FeCl₃ in anhydrous DMF at reflux for 6h afforded 2-nitrophenyl carbazole 2a in 74% yield (Scheme 3).

To our delight, FeCl₃-mediated electrocyclization of a wide variety of 2,3-divinylindoles could be smoothly performed to afford the respective carbazoles.

EWG = CO₂Et, CN

EWG/Ar

SO₂Ph

EWG/Ar

SO₂Ph

R1

R3

R2

40–88%

reflux

24 examples

38–82%

R1 = H (62%)

R1 = OMe (65%)

EWG = CO₂Et, CN

EWG/Ar

SO₂Ph

EWG/Ar

SO₂Ph

R1

R3

R2

reflux

38–82%

22 examples

P. Raju et al. Letter Syn Open Synthesis of 2,3-Disubstituted Carbazoles, Benzo[c]carbazoles, and Phenanthrenes Through FeCl₃-Mediated Cyclization of Triene Frameworks

Georg Thieme Verlag Stuttgart · New York — SynOpen 2018, 2, 246–250
The structures of various types of divinylindoles employed and the resulting carbazoles obtained are presented in Table 1. The reaction of 1-phenylsulfonyl-2,3-divinylindoles 1b–d with FeCl₃ in anhydrous DMF at reflux afforded carbazoles 2b–d in 71–78% yields, respectively (entry 1). The FeCl₃-mediated electrocyclization could be smoothly performed with 2,3-divinylindoles 1e–k to afford the expected 4-methylcarbazoles 2e–k in good yields (entry 2). However, the reaction was found to proceed slowly with 2,3-divinylindole 1l/1m, containing a phenyl or p-anisyl unit, yielding the respective carbazole 2l and 2m in 43% and 38% yields (entry 3). The isolation of compounds 2l and 2m in low yields confirms that the electron-donating nature of the aryl unit present in 2,3-divinylindole 1l or 1m is not conducive for the FeCl₃-mediated electrocyclization reaction. As expected, the 2,3-divinylindoles 1n–q, containing a cyanovinyl unit, upon reaction with 50 mol% FeCl₃ in anhydrous 1,2-dichloroethane (DCE) at room temperature or at reflux furnished 2-aryl benzo[c]carbazoles 3a–d in good yields (Scheme 4).

Subsequently, 3-bromo-2-methylindole, upon benzylic bromination followed by hydrolysis and MnO₂ oxidation of corresponding alcohol, led to 3-bromomidoled-2-aldehyde 7. The Suzuki coupling of bromo compound 7 with veratryl boronic acid using Pd(PPh₃)₄ in the presence of K₂PO₄ in DME reflux afforded 2-formyl-3-arylindole 8 as a colorless solid in 87% yield. Indole aldehyde 8, upon Wittig reaction with (carbethoxymethylene)triphenylphosphorane in

The synthesis of benzo[c]carbazole analogues employing the FeCl₃-mediated cyclization was then initiated. Accordingly, Wittig–Horner reaction of phosphonate ester 4 with substituted benzaldehydes in the presence of NaH in tetrahydrofuran (THF) at 0°C for 3 h afforded 3-bromo-2-arylindoles 5a and 5b. As expected, the Suzuki coupling of bromo compound 5a/5b with aryl boronic acid using Pd(PPh₃)₄ and Na₂CO₃ in 1,2-dimethoxyethane (DME) at reflux furnished 3-aryl-2-styrylindoles 6a–d as colorless solids in good yields. As expected, the reaction of 6a–d with 50 mol% FeCl₃ in anhydrous 1,2-dichloroethane (DCE) at room temperature or at reflux furnished 2-aryl benzo[c]carbazoles 3a–d in good yields (Scheme 4).

Subsequently, 3-bromo-2-methylindole, upon benzylic bromination followed by hydrolysis and MnO₂ oxidation of corresponding alcohol, led to 3-bromomidoled-2-aldehyde 7. The Suzuki coupling of bromo compound 7 with veratryl boronic acid using Pd(PPh₃)₄ in the presence of K₂PO₄ in DME reflux afforded 2-formyl-3-arylindole 8 as a colorless solid in 87% yield. Indole aldehyde 8, upon Wittig reaction with (carbethoxymethylene)triphenylphosphorane in
anhydrous CH₂Cl₂ at room temperature, led to 3-veratryl-2-vinylindole 9 in 93% yield. The 2-vinyl ester 9, upon cyclization using 50mol% FeCl₃ in anhydrous 1,2-DCE reflux, furnished benzo[c]carbazole 10 in a moderate yield (Scheme 5). Attempts to improve the yield of the benzo[c]carbazole 10 either by increasing the number of equivalents of FeCl₃ or by prolonging the reaction time was not found to be useful.

Table 1 FeCl₃-Mediated Electrocyclization of 1-Phenylsulfonyl-2,3-divinylindoles 1b–v

Entry	2,3-divinylindole*	Carbazole	Yield (%)b
1	![Image](image1)	![Image](image2)	71/73/78
2	![Image](image3)	![Image](image4)	78/75/76
3	![Image](image5)	![Image](image6)	43/38/78
4	![Image](image7)	![Image](image8)	79/82/78
5	![Image](image9)	![Image](image10)	78/72/72
6	![Image](image11)	![Image](image12)	80/72/74

* Reactions were carried out using 1a–v (1 equiv), FeCl₃ (0.5–2 equiv) in DMF (10 mL) at reflux for 3–12h.

b Isolated yield by column chromatography.
Next, the Wittig–Horner reaction of phosphonate ester 11 with 2-bromo-veratraldehyde 12 in the presence of t-BuOK in toluene at reflux afforded vinyl compound 13. As expected, the Suzuki coupling of 13 with boronic acids furnished the required triene compounds 14a and 14b in 85% and 91% yields. The triene frameworks of 14a and 14b underwent cyclization upon interaction with 50 mol% FeCl3 in anhydrous 1,2-DCE at reflux to give 9-arylphenanthrenes 15a and 15b in 62% and 65% yields, respectively (Scheme 6).

In summary, we have achieved the syntheses of 2,3-disubstituted carbazoles, benzo[c]carbazoles, and phenanthrene derivatives by employing FeCl3-mediated cyclization of the corresponding triene frameworks. For the first time, the FeCl3-mediated cyclization of two vinylic carbons as well as phenyl and vinylic carbons could be achieved in acceptable yields.

Acknowledgment

We thank the CSIR, New Delhi for financial support. P.R. and T.M thank the University Grants Commission (UGC), New Delhi for fellowships. For NMR facilities, the authors thank the Department of Science and Technology Funds for the Improvement of Science and Technology (DST-FIST).

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609936.

References and Notes

(1) (a) Mohanakrishnan, A. K.; Srinivasan, P. C. J. Org. Chem. 1995, 60, 1939. (b) Rajeshwaran, G. G.; Mohanakrishnan, A. K. Org. Lett. 2011, 13, 1418. (c) Raju, P.; Rajeshwaran, G. G.; Mohanakrishnan, A. K. Eur. J. Org. Chem. 2015, 7131.

(2) (a) Dhayalan, V.; Arul, Clement; Jagan, R.; Mohanakrishnan, A. K. Eur. J. Org. Chem. 2009, 11, 531. (b) Sureshbabu, R.; Saravanan, V.; Dhayalan, V.; Mohanakrishnan, A. K. Eur. J. Org. Chem. 2011, 922. (c) Sureshbabu, R.; Mohanakrishnan, A. K. J. Heterocycl. Chem. 2012, 49, 913. (d) Saravanan, V.; Ramalingam, B. M.; Mohanakrishnan, A. K. Eur. J. Org. Chem. 2014, 1266.

(3) (a) Ramalingam, B. M.; Saravanan, V.; Mohanakrishnan, A. K. Org. Lett. 2013, 14, 3726. (b) Ramalingam, B. M.; Dhatchana, Moorthy, N.; Chowdhury, S. R.; Mageshwaran, T.; Vellaichamy, E.; Saha, S.; Ganesan, K.; Rajesh, B. N.; Iqbal, S.; Majumder, H. K.; Gunasekaran, K.; Siva, R.; Mohanakrishnan, A. K. J. Med. Chem. 2018, 61, 1285.

(4) For FeCl3-mediated cyclization of carbocycles and heterocycles, see: (a) Kischel, J.; Jovel, I.; Mertins, K.; Zapf, A.; Beller, M. Org. Lett. 2006, 8, 19. (b) Liang, Z.; Hou, W.; Du, Y.; Zhang, Y.; Pan, Y.; Mao, D.; Zhao, K. Org. Lett. 2009, 11, 4978. (c) Yang, L.; Lei, C.-H.; Wang, D.-X.; Huang, Z.-T.; Wang, M.-X. Org. Lett. 2010, 12, 3918. (d) Yeh, M.-C.-P.; Fang, C.-W.; Lin, H.-H. Org. Lett. 2012, 14, 1830. (e) Kim, H. Y.; Oh, K. Org. Lett. 2014, 16, 5934. (f) Yang, Q.; Xu, T.; Yu, Z. Org. Lett. 2014, 16, 6310. (g) Dethe, D. H.; Murhade, G. M.; Ghosh, S. J. Org. Chem. 2015, 80, 8367. (h) Alkbar, S.; Srinivasan, K. J. Org. Chem. 2018, 81, 1229.
For FeCl₃-mediated cyclization of indole derivatives, see:
(a) Cantagrel, G.; Carné-Carnavalet, B. d.; Meyer, C.; Cossy, J. Org. Lett. 2009, 11, 4262. (b) Han, Y.-Y.; Han, W.-Y.; Hou, X.; Zhang, X.-M.; Yuan, W.-C. Org. Lett. 2012, 14, 4054. (c) Paul, K.; Bera, K.; Jalal, S.; Sarkar, S.; Jana, U. Org. Lett. 2014, 16, 2166.

Representative procedure for 6a: To a stirred solution of 3-aryl-biphenyl compound biphenyl vinylene (0.2 mmol) in anhydrous DMF (10 mL) at r.t., anhydrous FeCl₃ (21 mg, 0.13 mmol) was added and the reaction mixture was stirred at reflux for 3 h. Following a similar work up procedure to that for 1a, 2a, 3a as a colorless solid. Mp 170–172 ºC; 1H NMR (300 MHz, CDCl₃): δ = 8.69 (d, J = 8.4 Hz, 1 H), 8.46–8.40 (m, 2 H), 7.97 (d, J = 8.4 Hz, 1 H), 7.73 (d, J = 7.8 Hz, 2 H), 7.60 (t, J = 7.2 Hz, 1 H), 7.42–7.32 (m, 7 H), 7.24–7.17 (m, 2 H), 7.00 (d, J = 8.4 Hz, 2 H), 3.84 (s, 3 H) ppm. 13C NMR (75 MHz, CDCl₃): δ = 159.2, 140.7, 138.2, 137.9, 136.1, 133.8, 133.0, 131.3, 129.8, 129.1, 129.0, 127.6, 127.1, 127.0, 126.3, 126.1, 124.8, 124.4, 123.7, 122.1, 119.0, 115.6, 115.3, 113.8, 55.4 ppm. Dept-135 (75 MHz, CDCl₃): δ = 133.8, 131.3, 129.0, 127.5, 127.1, 126.3, 126.0, 124.8, 124.4, 123.7, 122.0, 115.6, 115.3, 113.7, 55.3 ppm. HRMS (EI): m/z [M⁺] cacld for C₂₀H₁₄NO₃S: 374.1518; found: 374.1515.

Representative procedure for 15a: To a stirred solution of 2-styrlybenzophenone (62 mg, 0.26 mmol) in anhydrous 1,2-DCE (10 mL) at r.t., anhydrous FeCl₃ (21 mg, 0.13 mmol) was added and the reaction mixture was stirred at reflux for 3 h. Following a similar work up procedure to that for 6a afforded 2,3-dimethoxyphenanthrene 15a (62 mg, 62%) as a colorless solid. Mp 170–172 ºC; 1H NMR (300 MHz, CDCl₃): δ = 8.63 (d, J = 8.4 Hz, 1 H), 8.06 (s, 1 H), 7.97 (d, J = 8.4 Hz, 1 H), 7.68–7.62 (m, 2 H), 7.50 (t, J = 7.2 Hz, 1 H), 7.27 (d, J = 3.3 Hz, 1 H), 7.12–7.02 (m, 3 H), 4.17 (s, 3 H), 4.06 (s, 3 H), 3.93 (s, 3 H) ppm. 13C NMR (75 MHz, CDCl₃): δ = 149.6, 149.3, 148.6, 148.3, 136.9, 133.7, 130.5, 130.0, 127.0, 126.7, 126.5, 126.0, 125.5, 124.4, 122.4, 122.3, 113.5, 111.0, 108.2, 103.2, 56.1, 56.0, 55.9, 55.8 ppm. HRMS (EI): m/z [M⁺] cacld for C₂₂H₁₉NO₅: 374.1518; found: 374.1515.