Environmental quality model to have sustainable environment

S Nuraini1,*, D Safitri2, A Marini3, T Rihatno1, B Budiaman2 and N Ibrahim2

1 Faculty of Sport Science, Universitas Negeri Jakarta Jalan Rawamangun Muka No: 1 Jakarta Timur, DKI Jakarta, Indonesia
2 Faculty of Social Science, Universitas Negeri Jakarta Jalan Rawamangun Muka No:1 Jakarta Timur, DKI Jakarta, Indonesia
3 Faculty of Education, Universitas Negeri Jakarta Jalan Rawamangun Muka No: 1 Jakarta Timur, DKI Jakarta, Indonesia

*srinuraini@unj.ac.id

Abstract. The aim of this study is to propose environmental quality model in order to have sustainable environment. This survey study distributed the questionnaires to 375 persons of local community in Jakarta in Indonesia using Structural Equation Modeling (SEM). The research found that model suggested was good fit for the data. The study result presents that socio-economic domain have significant positive association with of environmental quality. However, the positive associations between ecological domain and meteorological domain was not confirmed in this study. The use intensity of water resources and food production have significant positive association with ecological domain. However, the relationship between waste management and ecological domain was not supported in this study. Air pollutant, water pollution, and earth temperature have significant positive connection with meteorological domain. Water shortages, human health problems, and community environmental awareness have significantly positive relationship with socio-economic domain. It can be concluded that environmental quality model hypothesized can be used for local community in Jakarta in Indonesia in order to have sustainable environment.

1. Introduction
The dimensions of environmental quality consist of ecological domain, meteorological domain, and socio-economic domain [1]. Identification of factors affecting perception of public environmental quality is conducive to environmental protection and risk management [2]. Intensification of human activities including deforestation and urbanization influencing environmental quality [3-7]. Humidity, greenness, heat, and dryness monitor environmental quality changes [8]. Indicators of environmental quality are measured by the emission of waste gas, waste water, and waste solids [9]. Both clean and non-clean technologies affect level of environmental quality [10]. However, most studies don’t give a more detail explanation about indicator measurement of environmental quality.

Environmental quality may be predicted by ecological domain, meteorological domain, and socio-economic domain [1]. However, this research doesn’t give detail indicator measurement of ecological domain, meteorological domain, and socio-economic domain.

Ecological domain, meteorological domain, and socio-economic domain estimate environmental quality [5]. The summary of relationships hypothesized is represented in a model seen in figure 1.
2. Methods
This survey research was done for 375 persons of local community in Jakarta in Indonesia. Data collected in this research were related to environmental quality. Analysis of content was utilized to literature of environmental quality involves ecological domain, meteorological domain, and socio-economic domain [1]. These dimensions were derived into the questionnaire provided to 375 persons of local community in Jakarta in Indonesia.

The three aspects of environmental quality consist of ecological domain, meteorological domain, and socio-economic domain. The three dimensions stimulate ecological domain are waste management, use intensity of water resources, and reduced food production. The indicators of meteorological domain include air pollutant, water pollution, and earth temperature. The dimensions of socio-economic domain involve water shortages, human health problems, and community environmental awareness.

In this study, data analysis used Structural Equation Modeling (SEM) with IBM SPSS Statistics 24 and SPSS AMOS 24 with 2017 Edition. SEM was used to estimate the relationship between ecological domain, meteorological domain, and socio-economic domain with environmental quality. Data collection was done from 375 persons of local community in Jakarta in Indonesia inputted in excel using responses with “strongly agree” scored 5, “agree” scored 4, “neutral” scored 3, “disagree” scored 2, “strongly disagree” scored 1 for positive questions, and “strongly agree” scored 1, “agree” scored 2, “neutral” scored 3, “disagree” scored 4, “strongly disagree” scored 5 for negative questions.

3. Results and discussion
The goodness of fit statistical analysis confirmed that Normed Fit Index (NFI) value reached 0.924 showing that the model proposed in this research is good fit. The value of Comparative Fit Index (CFI) attained 0.968 showing that the model offered is good fit. Incremental Fit Index (IFI) value arrived at 0.969 stating that the model is good fit. Relative Fit Index (RFI) value reached 0.887 showing that the model is good fit. Based on SEM measurement result, the model offered in this study is a fit model.
Table 1. Measurement model test (Regression weights: Group number 1 – Default model).

Label	Estimate	Standard Error	Critical Ratio	Probability	Label
ED	<--- EVQL	6.876	3.937	1.746	0.081
MD	<--- EVQL	6.776	6.092	1.112	0.266
SE	<--- EVQL	1.000			
EQ3	<--- ED	1.000			
EQ2	<--- ED	0.354	0.110	3.221	0.001
EQ1	<--- ED	0.000	0.056	0.002	0.999
EQ6	<--- MD	1.000			
EQ5	<--- MD	0.858	0.112	7.685	***
EQ4	<--- MD	1.637	0.203	8.055	***
EQ9	<--- SE	1.000			
EQ8	<--- SE	0.870	0.128	6.816	***
EQ7	<--- SE	0.976	0.145	6.733	***

Table 2. Measurement model test (Standardized regression weights: Group number 1–Default model).

Estimate	ED <--- EVQL	0.549
	MD <--- EVQL	0.928
	SE <--- EVQL	0.132
	EQ3 <--- ED	0.984
	EQ2 <--- ED	0.334
	EQ1 <--- ED	0.000
	EQ6 <--- MD	0.530
	EQ5 <--- MD	0.514
	EQ4 <--- MD	0.914
	EQ9 <--- SE	0.654
	EQ8 <--- SE	0.564
	EQ7 <--- SE	0.654

Notes:
- EVQL = environmental quality
- ED = ecological domain
- MD = meteorological domain
- SE = socio-economic domain
- EQ1 = waste management
- EQ2 = use intensity of water resources
- EQ3 = food production
- EQ4 = air pollutant
- EQ5 = water pollution
- EQ6 = earth temperature
- EQ7 = water shortages
- EQ8 = human health problems
- EQ9 = community environmental awareness

In Table 1 and Table 2, it can be seen that socio-economic domain has significant positive association with environmental quality of 0.132. However, the positive associations between ecological domain and meteorological domain was not confirmed in this study. Table 1 and Table 2 indicated that use intensity of water resources and food production have significant positive association with ecological domain of 0.334 and 0.984, respectively. However, the relationship between waste management and ecological domain was not supported in this study. In Table 1 and Table 2, it can be pointed out that air...
pollutant, water pollution, and earth temperature have significant positive connection with meteorological domain of 0.914, 0.514, and 0.530, respectively. It can be seen in table 1 and table 2 that water shortages, human health problems, and community environmental awareness have significantly positive relationship with socio-economic domain of 0.654, 0.564, and 0.654, respectively. These findings were similar to the study found that socio-economic domain is positively associated with environmental quality [1]. However, this result is different from the study presented that ecological domain and meteorological domain predicted environmental quality. The structural model is shown in figure 2.

Figure 2. The structural model.

4. Conclusion
Environmental quality model proposed in this research is a fit model. Socio-economic domain has significant positive association with environmental quality. However, the positive associations between ecological domain and meteorological domain was not confirmed in this study. It can be concluded that the environmental quality model offered can be used for local community in order to have sustainable environment in Jakarta in Indonesia specifically for the association between socio-economic domain and environmental quality.

Acknowledgements
This research was funded by Directorate General Higher Education, Ministry of Education and Culture Republic Indonesia.

References
[1] Sruthi K V and Mohammed F C 2020 Journal of Urban Management 1
[2] Zhang J, Cheng M, Mei R and Wang F 2020 Science of The Total Environment 710
[3] Sun R, Wu Z, Chen B, Yan C and Fraedrich 2020 Ecological Indicators 109
[4] Safitri D, Umasih, Yunaz H, Marini A and Wahyudi A 2019 International Journal of Control and Automation 12(4) 4
[5] Safitri D, Umasih, Ibrahim N, Suwarwo, Marini A and Wahyudi 2019 Opcion 35(21) 2899
[6] Safitri D, Nuraini S, Rihatno T, Kaban S, Marini A and Wahyudi A 2020 International Journal
of Advanced Science and Technology 29(8s) 190
[7] Safitri D, Yunaz H, Umasih, Marini A and Wahyudi A 2019 International Journal of Control and Automation 12(4) 37
[8] Guo B, Fang Y, Jin X and Zhou Y 2020 Land Use Policy 95
[9] Wu L, Ma T, Bian Y, Li A and Yi Z 2020 Science of the Total Environment 717
[10] Dong Z, He Y and Wang H 2019 Journal of Cleaner Production 231 196