Research on Collision Detection Method of Contact On-line Measurement

Hongfang Qi¹* and Runqi Guo²

¹ School of Intelligent Manufacturing, Wuhan Huaxia University of Technology, Hubei, China
² School of Mechanical and Electronic Engineering, Wuhan University of Technology, Hubei, China

*Corresponding author email: qhf1212@hxut.edu.cn

Abstract. In order to avoid collision and improve the safety of on-line measurement, a contact on-line measurement collision detection method is studied. Firstly, according to the structural characteristics of the probe and workpiece, the dynamic collision detection between the probe and workpiece is transformed into static collision detection by using the discrete method, and then the grid division of the collision detection space is carried out by using the space division method. Finally, the dynamic collision detection between the probe and workpiece is transformed into the intersection judgment between simple geometry, and according to different collision accuracy requirements, Hierarchical collision detection combining rough detection and fine detection is carried out. Experimental results show that the hierarchical collision detection algorithm has high detection speed and accuracy.

Keywords: Online measurement; Collision detection; Discrete method; Space division method.

1. Introduction

In the process of planning the measurement path, it is necessary to carry out dynamic collision detection on the moving track of the probe to ensure the safety of the measurement path. In order to solve the problem of dynamic collision detection, it is generally necessary to transform it into static collision detection [1]. The main methods are continuous method and discrete method. Scanning volume method is widely used in continuous method [2,3]. The detection accuracy of scanning volume method is high, but the generated scanning volume is irregular geometry, which makes it difficult to achieve the subsequent geometric intersection interference test. Discrete method [4,5] can transform dynamic collision detection into static collision detection by discrete motion process and ensure detection accuracy by adjusting the spacing between discrete points. Commonly used static collision detection methods are divided into two categories: one is surround box method [6-8], which is based on the shape of the object and surrounds the object with a simple polyhedron. By calculating the distance between the surround boxes, it can determine whether the object collides or not, mainly for objects with regular geometrical characteristics. One kind of [9-11] is space division method, which divides the space required for collision detection into homogeneous simple geometric elements in advance and determines whether an object collides according to whether it belongs to the same space element or not. In order to realize static collision detection, the interference judgment of the relevant geometry is also required. At present, the research on geometric intersection interference at home and abroad mostly focuses on the intersection of triangle pairs [12-14] and the intersection between polyhedrons [15-17].
In this paper, a collision detection method is studied. First, the probe model is simplified, the dynamic collision detection between probe and workpiece is transformed into the judgment of intersection between simple geometries by using discrete method and space division idea, and the relevant intersection detection method is put forward. According to different requirements of collision accuracy, a hierarchical collision detection algorithm combining rough detection with fine detection is designed. Increase the speed of crash detection.

2. Collision Detection Principle
The collision detection between the probe and the workpiece involved in this paper is dynamic collision detection. Therefore, the dynamic collision detection between the workpiece and the probe is converted into static collision detection by using the discrete method. Considering the safety of the workpiece and the probe, the speed change distance is set as discrete interval. During online measurement, collision detection is divided into rough collision detection and fine collision detection according to different collision detection accuracy required for different path planning sections. Rough collision detection is mainly used in the path where the probe moves between the characteristic surfaces. In order to ensure safety, it is necessary to maintain a certain distance between the probe and the workpiece to be measured. Therefore, only the intersection test between the probe and the space-divided grid is required for collision detection during the path planning process of the probe moving between the characteristic surfaces to ensure the feasibility of the grid intersecting with the probe. Rough collision detection mainly carries out two kinds of intersection interference judgment: the intersection test of rectangle and cylinder and rectangle and ball. Fine collision detection is mainly used in the path of interior measuring points of probe traversal characteristics. According to the measurement requirements, when the probe moves on the path traversing the measuring point inside the characteristic, it must contact the surface of the workpiece to be measured to obtain the actual measuring point coordinates. Therefore, in the path planning process of the probe traversing the measuring point inside the characteristic, in addition to rough collision detection, it can quickly delete the parts which cannot be collided. It is also necessary to test the intersection of triangular facets and probes contained in the grid that intersect with the probe in the rough collision detection process, i.e. fine collision detection. Fine collision detection mainly carries out two kinds of intersection interference judgment: triangle and cylinder, triangle and ball. The contact online measurement path planning collision detection process is shown in figure 1.

3. Spatial Division of Collision Detection
3.1. Space and Grid Size Determination for Collision Detection
To simplify static collision detection, a grid with each side parallel to the coordinate axis is used to divide the space. Before space division, it is necessary to determine the space range and grid size of collision detection so as to calculate the number of grids and realize space division. The space range is determined by the AABB (Axis-Aligned Bounding Box) surrounding box of the workpiece to be measured. In this paper, only the direct contact between workpiece and worktable is considered. In order to reduce the calculation of collision detection, the range of probe motion is restricted above the contact surface between workpiece and worktable, so the space of collision detection only considers the upper part of the contact surface. In order to ensure the safety of measurement path, the ABB surrounding box of the workpiece to be measured is extended outwards to obtain the required pre-contact distance and the space range of collision detection. The probe moves fast in the path between the characteristic surfaces, so it is necessary to ensure that the probe has a certain distance from the surface of the part. The planned path of the probe moving between the characteristic surfaces will directly avoid the grid containing the workpiece model to be measured. Therefore, the distance between the probe moving between the characteristic surfaces and the part surface and its length planned in this paper largely depend on the size of the grid. Considering that a pre-contact distance will be set before the probe contacts the measuring point to prevent damage to the probe and the machine tool caused by excessive
impact force when the probe contacts the parts, twice the pre-contact distance is selected as the grid size in this paper.

Figure 1. Flow chart of collision detection process for contact on-line measurement path planning.

3.2. Feasibility Analysis of Grid

In order to reduce the number of subsequent intersection tests, the feasibility of grids will be analyzed in advance in this paper. The grids that are completely inside the model will be marked as 1 (infeasible), the grids on the workpiece surface will be marked as 0.5 (not fully feasible), and the grids that are not intersected with the workpiece will be marked as 0 (feasible).

The steps to determine the feasibility of the grid are as follows:

Step 1: Mark the grid on the surface of the part. Traverse the triangle face, and according to the number of AABB enclosure boxes of the triangle face to reduce the number of grids to be intersected for the test, the grids that intersect the triangle face enclosure box to be intersected with the triangle face are tested. As shown in figure 2, the grids that interfere with the triangle face are marked with 0.5 and the number of the triangle face is recorded.

Step 2: Divide the grids into layers. Determine the boundaries of the grid marked 0.5 in the Z-axis direction, record the boundaries in the Z-axis direction corresponding to the X and Y coordinates, and divide the grid into layers according to the Z-axis coordinates;

Step 3: Mark the grid completely inside the part. Determine the boundary of each layer according to the grid marked 0.5. Mark the grid within the boundary of each layer and within the Z-axis boundary as 1.
Figure 2. Schematic diagram of the process for judging the intersection of grid and triangle.
Step 4: Mark viable grids. Mark the unmarked grid as 0;
Step 5: Output the feasibility analysis results.

4. Probe Model Simplification
As shown in figure 3(a), the probe mainly consists of a measuring base, a cyclone, a measuring pin and a measuring ball. Considering the shape and size of the relevant parts, in order to reduce the amount of calculation in the process of collision detection, a cylinder is used instead of a measuring pin. The measuring ball is modeled by a sphere. The simplified model of the probe is shown in figure 3(c).

Figure 3. Simplified probe model schematic.

5. Intersection Testing of Geometric Elements
5.1. Intersection Test of Cuboid and Cylinders
Define a cylindrical \(C_1 \). The center of the bottom circle is \(v_1, v_2 \). Radius: \(r \); Define a cuboid \(R_1 \) whose sides are parallel to the coordinate axis. Eight vertices are \(v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8 \). When the cuboid \(R_1 \) and cylinder \(C_1 \) intersects, there must be a point inside the cuboid \(R_1 \) whose distance to the cylinder axis is less than \(r \) and the foot point is located between the line segments \(v_1v_2 \), so using the expansion method, the surface of the cuboid \(R_1 \) is expanded outward by the distance \(r \), so that the intersection problem is transformed into judging whether the expanded round edge cuboid \(R_2 \) interferes with the line segment \(v_1v_2 \). Because the intersection test between cuboid and cylinder involved in this paper is mainly used for collision detection of probe moving path planning between characteristic surfaces and rough collision detection of probe traversing feature internal measuring point path planning, the relevant detection is mainly used to ensure safety, but the detection accuracy is not high, so in order to speed up the detection, the expanded circular rectangle \(R_2 \) is used in this paper. Simplified to a straight rectangular \(R_3 \) as shown in figure 4.
Step 2: Judge the end point of line segment fourth: Output judgement.
Step 3: According to the elements in the array P, the distance to the endpoint surface are recorded in the array P. The size of P is the number of points.

The steps to judge whether cuboid R_1 and cylinder C_1 intersect are as follows:
Step 1: find the cuboid R_3 after the expansion distance r of orientation vertex coordinates. The method is shown in Formula (1):

$$
\begin{align*}
\nu_1 &= (x_{\text{max}} + r, y_{\text{min}} + r, z_{\text{min}} + r), \\
\nu_2 &= (x_{\text{max}} + r, y_{\text{max}} + r, z_{\text{min}} + r), \\
\nu_3 &= (x_{\text{min}} - r, y_{\text{max}} + r, z_{\text{min}} - r), \\
\nu_4 &= (x_{\text{min}} - r, y_{\text{min}} - r, z_{\text{min}} - r), \\
\nu_5 &= (x_{\text{max}} + r, y_{\text{min}} - r, z_{\text{max}} + r), \\
\nu_6 &= (x_{\text{max}} + r, y_{\text{max}} + r, z_{\text{max}} + r), \\
\nu_7 &= (x_{\text{min}} - r, y_{\text{max}} + r, z_{\text{max}} + r), \\
\nu_8 &= (x_{\text{min}} - r, y_{\text{min}} - r, z_{\text{max}} + r)
\end{align*}
$$

(1)

Where $x_{\text{min}}, x_{\text{max}}, y_{\text{min}}, y_{\text{max}}, z_{\text{min}}, z_{\text{max}}$ is cuboid R_1. Maximum of vertex coordinates on X, Y and Z aixes; r is the outward collision distance of the cuboid, that is, the radius of cylinder C_1;
Step 2: Judge the end point of line segment v_1v_2 is in cuboid R_3 internal. If there is an end point in the cuboid R_3 internal, then cylinder C_1 and cuboid R_1 intersection, skip to step 5;
Step 3: Determine the line segment v_1v_2 and cuboid R_3 Intersection, the main steps are as follows:
first: End with endpoint v_1 of segment v_1v_2, the ray expression in the direction of line segment v_1v_2 is $R(t) = v_1 + t \cdot \vec{v}_1\vec{v}_2 \ (1 \geq t \geq 0)$, the equations of six planes on the surface of cuboid R_3 are solved together with $R(t)$ in turn. If none of the solutions exists, then the line segment v_1v_2 and cuboid R_1 do not intersect, jump to Step 4, On the contrary, the solution will be recorded in the array T, the size of T is the number of solutions;
second: According to the elements in the array T, substitute the expression $R(t)$ to calculate the coordinates of each intersection point, and judge whether the intersection point is on the surface of cuboid R_3, if all points of intersection are not at the cuboid R_3 Surface, then line segment v_1v_2 and cuboid R_1 does not intersect, jump to Step 4, On the contrary, it will be in the cuboid R_3 Points on the surface are recorded in the array P. The size of P is the number of points.
third: According to the elements in the array P, the distance to the endpoint v_1 is calculated in turn to judge whether the distance is less than or equal to the length of line segment v_1v_2, If all distances are greater than the length of line segment v_1v_2, line segment v_1v_2 does not intersect cuboid R_1, On the contrary line segment v_1v_2 intersects cuboid R_1;
fourth: Output judgement.
Step 4: If the line segment v_1v_2 intersects with the cuboid R_3, the cylinder C_1 intersects with the cuboid R_1. On the contrary, the cylinder C_1 does not intersect with the cuboid R_1;
Step 5: Output judgement.

5.2. Intersection Test of Rectangles and Balls
Define a ball S_1. The ball center is: v. Radius: r; Define a cuboid R_1 whose sides are parallel to the coordinate axis. Eight vertices are $v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8$. When the cuboid R_1 and ball S_1 intersects, there must be a point inside the cuboid R_1 whose distance to the ball center is less than r,
so using the expansion method, the surface of the cuboid R_1 is expanded outward by the distance r, so that the intersection problem is transformed into judging whether the ball center is inside the expanded circular edge cuboid R_2. Because the intersection test between cuboid and ball involved in this paper is mainly used for collision detection of probe moving path planning between characteristic surfaces and rough collision detection of probe traversing feature internal measuring point path planning, the relevant detection is mainly used to ensure safety, but the detection accuracy is not high, so in order to speed up the detection, the expanded circular rectangle R_2 is used in this paper. Simplified to a straight rectangular R_3 as shown in figure 5.

Figure 5. Schematic diagram of expansion method for intersection test of cuboids and balls. Judge whether the cuboid R_1 and the ball S_1 intersect, that is, judge whether the ball center v of the ball S_1 is inside the straight side cuboid R_3 after expansion according to formula (2).

$$ R = \{(x, y, z) \mid x_{\min} \leq x \leq x_{\max}, y_{\min} \leq y \leq y_{\max}, z_{\min} \leq z \leq z_{\max}\} \tag{2} $$

5.3. Intersection Test of Triangle and Cylinder

Figure 6. Schematic diagram of possible conditions of the shortest distance from line segment to triangle.

Define a triangle T_1. The three vertices are: v_1, v_2, v_3. The normal vector is: \mathbf{n}_1, the plane is: Π_1; Define a cylinder C_2. The center of the bottom circle is: v_1', v_2'. Radius: r.

The steps to judge whether triangle T_1 and cylinder C_2 intersect are as follows:

Step 1: Find the intersection of the plane Π_1 where the triangle T_1 is located and the straight line where the line segment v_1v_2 is located, as shown in figure 6 (a). If the intersection exists, and the intersection is located inside the triangle T_1 and on the line segment $v_1'v_2'$ at the same time, that is, when the shortest distance from the line segment $v_1'v_2'$ to the triangle T_1 is 0, the triangle T_1 intersects with the cylinder C_2, jump to step 7;

Step 2: Calculate the foot point and distance from the endpoint of line segment $v_1'v_2'$ to the plane of triangle T_1, as shown in figure 6 (b). If there is a foot point inside triangle T_1 and its corresponding distance is less than or equal to r, triangle T_1 intersects cylinder C_2, jumps to step 7; jump to step 7;
Step 3: Find the foot point (intersection) and distance from the line where the line segment \(\mathbf{v}_1' \mathbf{v}_2' \) is located to the line where the edge of triangle \(T_1 \) is located, as shown in figure 6 (c). If there is a foot point (intersection) on the edge of line segment \(\mathbf{v}_1 \mathbf{v}_2 \) and the corresponding triangle \(T_1 \) at the same time, and the corresponding distance is less than or equal to \(r \), triangle \(T_1 \) intersects cylinder \(C_2 \), jump to step 7;

Step 4: Find the foot point and distance of the line from the endpoint of line segment \(\mathbf{v}_1' \mathbf{v}_2' \) to the edge of triangle \(T_1 \), as shown in figure 6 (d). If there is a foot point on the edge of triangle \(T_1 \) and its corresponding distance is less than or equal to \(r \), triangle \(T_1 \) intersects cylinder \(C_2 \), jump to step 7;

Step 5: Find the foot point and distance from the vertex of triangle \(T_1 \) to the line where line segment \(\mathbf{v}_1' \mathbf{v}_2' \) is located, as shown in figure 6 (e). If there is a foot point on line segment \(\mathbf{v}_1' \mathbf{v}_2' \) and its corresponding distance is less than or equal to \(r \), triangle \(T_1 \) intersects cylinder \(C_2 \), jump to step 7;

Step 6: Find the distance between the endpoint of line segment \(\mathbf{v}_1' \mathbf{v}_2' \) and the vertex of triangle \(T_1 \), as shown in figure 6 (f). If the distance is less than or equal to \(r \), triangle \(T_1 \) and cylinder \(C_2 \) intersect, On the contrary, triangle \(T_1 \) and cylinder \(C_2 \) do not intersect;

Step 7: Output judgement.

5.4. Intersection Test of Triangle and Ball

Define a triangle \(T_1 \). The three vertices are: \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \). The normal vector is: \(\mathbf{n}_1 \), the plane is: \(\Pi_1 \);

Define a ball \(S_1 \). The ball center is: \(\mathbf{v}_1 \). Radius: \(r \). When triangle \(T_1 \) and ball \(S_1 \) intersect, that is, the truncated circle of plane \(\Pi_1 \) where ball \(S_1 \) and triangle \(T_1 \) are located intersects triangle \(T_1 \), as shown in figure 7. In this paper, the intersection test of triangle and ball is transformed into judging whether a circle on the same plane intersects with a triangle.

Figure 7. Schematic diagram of plane and spherical truncated circle.

The steps to judge whether triangle \(T_1 \) and ball \(S_1 \) intersect are as follows:

Step 1: Coordinate conversion. In order to quickly find the truncated circle of plane \(\Pi_1 \) and ball \(S_1 \), the coordinates of plane \(\Pi_1 \) are converted to a position parallel to XOY plane, and the same conversion is performed on ball center \(\mathbf{v}_1 \), as shown in figure 8.

Step 2: Find the truncated circle \(C_1 \) of plane \(\Pi_1 \) and ball \(S_1 \). If \(|z_1' - z_2'| > r \), then the triangle \(T_1 \) does not intersect with the ball \(S_1 \), jump to step 5. On the contrary, find the truncated circle \(C_1 \) of plane \(\Pi_1 \) and ball \(S_1 \). The calculation method of relevant parameters of truncated circle \(C_1 \) is shown in formula (3) and formula (4):

\[
v_1' = (x_1', y_1', z_0')
\]

\[
r' = \sqrt{r^2 - (z_1' - z_0')^2}
\]

Where, \(v_1 \) represents the center coordinate of the truncated circle \(C_1 ; (x_1', y_1', z_0') \) represents the coordinates of the spherical center \(v_1 \) of the ball \(S_1 \) after coordinate conversion; \(r' \) represents the radius of the truncated circle \(C_1 ; z_0 \) represents the z-axis coordinate value of the point on plane \(\Pi_1 \) after coordinate conversion.
Step 3: Judge whether the truncated circle C_1 and triangle T_1 intersect. According to the relative relationship between the center of truncated circle C_1 and triangle T_1 and the relative relationship between the center of truncated circle C_1 and the three sides of triangle T_1, the steps to judge whether truncated circle C_1 and triangle T_1 intersect are as follows:

First: Judge whether the center of truncated circle C_1 is inside triangle T_1. If so, truncated circle C_1 intersects triangle T_1, jumps to third;

Second: Calculate the distance from the center of the truncated circle C_1 to the three sides of the triangle T_1 in turn. If the distance is less than or equal to the radius r_1 of the truncated circle C_1, the truncated circle C_1 and the triangle T_1 intersect. On the contrary, the truncated circle C_1 and the triangle T_1 do not intersect;

Third: Output judgement.

Step 4: If the truncated circle C_1 intersects the triangle T_1, the triangle T_1 intersects the ball S_1. On the contrary, the triangle T_1 does not intersect the ball S_1;

Step 5: Output judgement.

6. Verification and Analysis of Collision Detection Examples

Figure 9 shows the triangular mesh model of the workpiece to be tested and the number of features to be tested. According to the characteristic dimensions of the workpiece to be tested, the safety distance is 50mm, the pre contact distance is 10mm and the speed change distance is 6mm.
out for multiple relative position relationships between spheres with different radii and probes, and the differences in efficiency and accuracy of each method are compared.

Number of model triangular patches / piece	Detection times	Average processing time /ms	Number of misjudgments				
		Algorithm1	Algorithm2	algorithm in this paper	Algorithm1	Algorithm2	algorithm in this paper
2400	10	354.9	302.1	78.6	0	0	0
3660	10	364.5	376.4	181.9	0	0	0
4970	10	481.0	358.2	193.8	0	0	0
6162	10	587.4	443.7	221.9	0	0	0
7482	10	772.1	645.1	317.0	1	0	0

It can be seen from table 1 that algorithm 1 uses the intersection test of triangular patches directly, and the error rate is 2%. Algorithm 2 and the algorithm in this paper use the intersection test method of geometric elements, and the error rate is 0; Comparing the average processing time of algorithm 2 and the algorithm in this paper, it can be seen that the method of space division can improve the efficiency of collision detection; The average processing time of this algorithm is significantly less than that of the other two algorithms. In conclusion, the hierarchical collision detection algorithm proposed in this paper has high detection speed and accuracy.

7. Conclusion
In this paper, the collision detection problem in the path planning process of contact on-line detection is studied. The collision detection between probe and workpiece involved in this paper is dynamic collision detection, which is transformed into static collision detection by discrete method. For static collision detection, in order to improve the efficiency, firstly, this paper uses the method of space division to divide the space to be detected into grids with the same size, then simplifies the probe into a model composed of sphere and cylinder, and finally, with the help of the idea of hierarchical collision detection, according to the different detection accuracy required in each detection stage, The collision detection process is simplified into rough collision detection of intersection interference between cuboid and cylinder and sphere and fine collision detection of intersection interference between triangular patch and cylinder and sphere, and relevant interference judgment methods are proposed. The experimental results show that the collision detection algorithm in this paper is effective and fast.

Acknowledgments
This work was supported by Natural Science Foundation of Hubei Province (2019CFC911); Excellent young and middle-aged scientific and technological innovation team project of colleges and universities in Hubei Province (T201837); School level scientific research fund project of Wuhan Huaxia Institute of Technology (Project No.: 18016).

References
[1] Yang Keqiang. Research on Key Technologies of intelligent CMM path planning and collision inspection based on 3D CAD [D]. Hebei University of science and technology, 2013
[2] Zhang Hu. Research on CMM path planning system based on CAD model [D]. Hefei University of technology, 2019
[3] Yamin L, Long Z, Kai T, et al. Orientation-point relation based inspection path planning method for 5-axis OMI system[J]. Robotics and Computer-Integrated Manufacturing, 2020,61
[4] Pang min. research on collision detection algorithm of five axis NC machining simulation [D]. Southwest Jiaotong University, 2016

[5] Wang Xuewu, Tang bin, Gu Xingsheng. Research on obstacle avoidance strategy of welding robot [J]. Journal of mechanical engineering, 2019, 55 (17): 77-84

[6] Yao W, Yan-juan H, Jiu-chen F, et al. Collision Detection Based on Bounding Box for NC Machining Simulation[J]. Physics Procedia, 2012, 24.

[7] Zhu Y, Yao J, Xu Y, et al. Research and Application of Collision Detection on Steel Structure in Virtual Pre-Assembly Environment[J]. IOP Conference Series: Earth and Environmental Science, 2018, 199(3)

[8] Qi ruolong, Zhou Weijia, Wang Tiejun. An obstacle avoidance trajectory planning method for space manipulator based on genetic algorithm[J]. Robot, 2014, 36 (03): 263-270

[9] Xiaoyan Q, Ling M, Chengzhu Y. Research of collision detection algorithm based on hybrid bounding box for complex environment: 2016 International Conference on Integrated Circuits and Microsystems (ICICIM), 2016[C].

[10] Xingcheng P, Chaowen X, Lianghao J, et al. 3D path planning for a robot based on improved ant colony algorithm[J]. Evolutionary Intelligence, 2020(prepublish).

[11] Wang Jie, Tian Hong'an. UAV integration into non isolated airspace perception and avoidance technology [J]. Command information system and technology, 2017, 8 (01): 27-32

[12] Yu W L. A faster triangle-to-triangle intersection test algorithm[J]. Computer Animation and Virtual Worlds, 2014, 25(5-6):553-559.

[13] Lei X, Gang M, Salvatore C, et al. Comparative investigation of GPU-accelerated triangle-triangle intersection algorithms for collision detection[J]. Multimedia Tools and Applications, 2020(prepublish).

[14] Guan Liwen, Dai Yuxi, Wang Liping. Intersection judgment algorithm of spatial triangular patch pairs [J]. Journal of Tsinghua University (NATURAL SCIENCE EDITION), 2017, 57 (09): 970-974

[15] Xiang C, Xiong Z, Zupeng J. A robust and efficient polyhedron subdivision and intersection algorithm for three-dimensional MMALE remapping[J]. Journal of Computational Physics, 2017.

[16] Xu J, Liu Z, Yang C, et al. A Pseudo-Distance Algorithm for Collision Detection of Manipulators Using Convex-Plane-Polygons-based Representation[J]. Robotics and Computer-Integrated Manufacturing, 2020, 66.

[17] Xu Peng, Luo Heng. Collision detection algorithm based on bounding box in ship maintenance [J]. China water transportation, 2020 (12): 110-113