INTRODUCTION

It is evident from the recent scientific and patient literature that an increased interest in novel dosage forms that are retained in stomach for a prolonged and predictable period of time exists today in academic and industrial research groups. One of the most feasible approaches for achieving a prolonged and predictable drug delivery in the gastrointestinal tract (GIT) is to control the gastric residence time (GRT), i.e., gastroretentive dosage form (GRDF or GRDS). GRDFs extend significantly the period of time over which the drugs may be released. They not only prolong dosing intervals but also increase patient compliance beyond the level of existing controlled release dosage forms. Dosage form with prolonged GRT, i.e. GRDFs [1-3].

Mucoadhesive drug delivery systems contain a mucoadhesive polymer that adheres to the gastric mucosal surface and prolongs its gastric retention in the GIT. The capability is adherence to the mucous gel layer makes mucoadhesive polymers very useful excipients in the GRDFs [3-5]. These polymers can be natural such as sodium alginate, gelatin, or guar gum or semi-synthetic polymers such as hydroxypropyl methylcellulose, Carbopol, and sodium carboxymethylcellulose. The adhesion of polymers with mucous membrane may be mediated by hydration, bonding, or receptor. In hydration-mediated adhesion, the hydrophilic polymer becomes sticky and mucoadhesive on hydration. Bonding mediated involves mechanical or chemical bonding. Chemical bonds may involve ionic, covalent bonds or van der Waals forces between the polymer molecule and the mucous membrane [6,7]. Receptor-mediated adhesion takes place between certain polymers and specific receptors expressed on gastric cells [8,9].

MATERIALS AND METHODS

Materials

The following chemicals were used: Atenolol (Gangwal Chemicals Pvt. Ltd., Mumbai), ethyl cellulose (EC) (Loba Chemie Pvt. Ltd., Mumbai), Carbopol 940 (Loba Chemie Pvt. Ltd., Mumbai), liquid paraffin (Arora Pharmaceuticals Pvt. Ltd., New Delhi), and Span 80 (Central Drug House (P) Ltd., New Delhi). Microparticles were prepared by the emulsification solvent evaporation technique using polymers of Carbomer 934p (CP) and EC. Disc formulations were prepared by direct compression technique from microparticles. Microparticles of combined polymers were designed according to 2² factorial central composite design (CCD), taking EC concentration and surfactant concentration as the independent variables. A total of 13 batches were prepared. The dependent variables were percentage of % drug released and % entrapment efficiency.

Methods

Solubility study

The solubility study of drugs was performed in water, methanol, ethanol, acetone, 0.1 N hydrochloric acid (HCl), phosphate buffer pH 6.8, and phosphate buffer pH 7.4, individually by keeping the drug containing test tube on vortex mixture [10,11].

Determination of melting point

All dynamic differential scanning calorimetry (DSC) studies of pure drug were carried out on DSC TA-60 Shimadzu thermal analyzer. The instrument was calibrated using high purity indium metal as standard. The scans were taken in nitrogen atmosphere at the heating rate of 10°C/min [12,13].

Preparation of 0.1 N HCl

A 8.3 ml of concentrated HCl was taken and diluted with distilled water up to 1000 ml in a volumetric flask.

Scanning of Atenolol in 0.1 N HCl

Accurately weight 100 mg of atenolol was dissolved in 100 ml 0.1 N HCl solution. From this solution, 1 ml was pipette out in 100 ml volumetric flask and volume was made up to 100 ml with 0.1 N HCl (pH – 1.2) (conc.10 µg/ml). The solution containing 10 µg/ml of atenolol in 0.1 N HCl was scanned over the range of 200–400 nm against 0.1 N HCl as blank using double-beam spectrophotometer. The maximum absorbance obtained in graph was considered λmax for pure drug [14,15].
Standard Calibration Curve in 0.1 N HCl
Accurately weight 100 mg of atenolol was diluted in 100 ml 0.1 N HCl solution to get a solution containing 1000 μg/ml. From the above solution, 10 ml pipette out in 100 ml volumetric flask and diluted up to 100 ml to obtain a concentration of 100 μg/ml. This stock solution was used to prepare further dilution of standard solution. Aliquots (0.1–10 ml) of stock solution were transferred into a series of 10 ml volumetric flasks. The volume was made up to mark with distilled water to produce the concentration ranging from 1 to 100 μg/ml. The absorbance of each prepared solution was measured at λ_{max} 274 nm using double-beam spectrophotometer against 0.1 N HCl as blank [16,17].

Fourier-Transform Infrared (FT-IR) Spectroscopy
The selected drug and polymers were characterized by FT-IR spectroscopy and the FT-IR spectra of the pure drug atenolol with used polymers such as EC and Carbopol 934 [18]. The spectrum was recorded for pure drug, physical mixture of combination of all the excipients and drug. The scanning range was 4000–500 cm⁻¹ [19,20].

Formulation Development of Microparticles Containing Atenolol Using Central Composite Design (CCD).
The microspheres of combined polymers are designed according to 2³ factorial CCD. EC concentration and surfactant concentration were the two independent variables. The selected variables with the actual and coded levels as per the design are represented in Table 1. The higher, lower, and the intermediate levels of each variable are coded as +1, −1, and 0, respectively [21,22]. Final formulation of all batches with their respective amounts is represented in Table 2.

Preparation of Microparticles
The microparticles were prepared using solvent evaporation technique with polymers such as EC and Carbopol 934. The organic solvent system used was ethanol 20 ml. The polymers were dissolved in the organic solvent with continuous stirring using propeller type agitator. Slowly the drug was added with continuous stirring. The mixture was poured in 250 ml liquid paraffin containing 3% (w/v) Span 80 maintained at a temperature 50–60°C and subsequently stirred at a 900 rpm for 2.5 h. Continuous mixing and evaluated temperature may be employed to evaporate ethanol completely and microparticles were formed. The hardened microparticles were collected by filtration assembly and washed with small portions of 50–60°C and subsequently stirred at a 900 rpm for 2.5 h. Continuous mixing and evaluated temperature may be employed to evaporate ethanol completely and microparticles were formed. The hardened microparticles were collected by filtration assembly and washed with small portions of n-hexane and air dried [23]. Total 13 formulation were prepared AT-1 to AT-13 (Composition shown in Table 3).

Characterization of Formulation
% yield analysis
The prepared mucoadhesive microparticles were collected and weighed. The measured weight was divided by total amount of all non-volatile components, which were used for the preparation of microparticles [24]. The % yield was calculated using following formula:

\[
\% \text{ yield} = \frac{\text{Actual weight of product}}{\text{Total weight of non volatile excipients and drugs}} \times 100
\]

% yield analysis

Particle Size Analysis
Measurements of the particle size distribution of microparticles were carried out with a projection microscope stage micrometer which was used to calculate calibration factor. The particle size was calculated by multiplying the number of divisions of the ocular disc occupied by the particle with calibration factor. Fifty randomly chosen particles were taken to measure their individual size [25].

\[\% \text{ yield} = \frac{\text{Total } y}{v}\]

Where,
\(n \) = number of microspheres observed
\(d \) = mean size range

Drug Entrapment Efficiency
Microparticles (100 mg) were weighed and crushed with mortar and pestle, then were suspended in 10 ml of 0.1 N HCl. After 24 h, the solution was filtered and the filtrate was diluted up to 100 ml with 0.1 N HCl. Next, 2 ml from this solution was picked up; this filtrate was diluted up to appropriate dilution (10 ml); and the drug concentration was measured spectrophotometrically at 274 nm against 0.1 N HCl as a blank. Theoretical drug loading was determined by entire drug present in the polymer solution in the microparticles [26,27]. Entrapment efficiency was calculated by formula:

\[
\text{Drug entrapment efficiency} = \frac{\text{Calculated drug concentration}}{\text{Theoretical drug concentration}} \times 100
\]

Flow Properties
Angle of repose
For the measurement of angle of repose, a glass funnel was secured with its tip at a given height (h) above a piece of graph paper placed on a horizontal surface. Microparticles were poured through the funnel until the apex of the conical pile touched the tip of the funnel [28,29]. The angle of repose was calculated with the formula:

\[
\theta = \tan^{-1}\left(\frac{h}{r}\right)
\]

Where,
\(\theta \) = angle of repose
\(h \) = height of the heap
\(r \) = radius of the heap

Bulk Density
For the determination of bulk density, weight quantities of microparticles were introduced into graduated measuring cylinder and were tapped mechanically or either manually till a constant volume was obtained. The bulk density of microparticles depends on particle size.

Particle Size Analysis

Measurements of the particle size distribution of microparticles were carried out with a projection microscope stage micrometer which was used to calculate calibration factor. The particle size was calculated by multiplying the number of divisions of the ocular disc occupied by the particle with calibration factor. Fifty randomly chosen particles were taken to measure their individual size [25].

\[\% \text{ yield} = \frac{\text{Total } y}{v}\]

Where,
\(n \) = number of microspheres observed
\(d \) = mean size range

Drug Entrapment Efficiency
Microparticles (100 mg) were weighed and crushed with mortar and pestle, then were suspended in 10 ml of 0.1 N HCl. After 24 h, the solution was filtered and the filtrate was diluted up to 100 ml with 0.1 N HCl. Next, 2 ml from this solution was picked up; this filtrate was diluted up to appropriate dilution (10 ml); and the drug concentration was measured spectrophotometrically at 274 nm against 0.1 N HCl as a blank. Theoretical drug loading was determined by entire drug present in the polymer solution in the microparticles [26,27]. Entrapment efficiency was calculated by formula:

\[
\text{Drug entrapment efficiency} = \frac{\text{Calculated drug concentration}}{\text{Theoretical drug concentration}} \times 100
\]

Flow Properties
Angle of repose
For the measurement of angle of repose, a glass funnel was secured with its tip at a given height (h) above a piece of graph paper placed on a horizontal surface. Microparticles were poured through the funnel until the apex of the conical pile touched the tip of the funnel [28,29]. The angle of repose was calculated with the formula:

\[
\theta = \tan^{-1}\left(\frac{h}{r}\right)
\]

Where,
\(\theta \) = angle of repose
\(h \) = height of the heap
\(r \) = radius of the heap

Bulk Density
For the determination of bulk density, weight quantities of microparticles were introduced into graduated measuring cylinder and were tapped mechanically or either manually till a constant volume was obtained. The bulk density of microparticles depends on particle size.
and distribution and particle shape \[30,31\]. Bulk density is calculated by formula:

\[
\text{Bulk density} = \frac{\text{Mass of microparticles}}{\text{Bulk volume of microparticles}}
\]

Tapped Density

The cylinder containing known amount of microparticles was given 100 tabs on tap density apparatus \[32\]. It calculated by formula:

\[
\text{Tapped density} = \frac{\text{Mass of microparticles}}{\text{Volume of microparticles after tapping}}
\]

Hausner’s Ratio

It indicates the flow properties of the granules and is measured by the ratio of tapped density to the bulk density. Hausner value <1.25 indicates good flow, whereas greater than 1.25 indicates poor flow \[33,34\]. Hausner’s ratio is calculated by formula:

\[
\text{Hausner's ratio} = \frac{\text{Tapped density}}{\text{Bulk density}}
\]

Compressibility Index (Carr’s Index)

Compressibility index is an important measure that can be obtained from the bulk and tapped densities. In theory, the less compressible a material the more flowable it is. A material having values of less than 20% has good flow property \[35\].

\[
\% \text{ Compressibility index} = \frac{\text{Tapped density} - \text{Bulk density}}{\text{Tapped density}} \times 100
\]

Results and Discussion

Solubility

Atenolol was found to be soluble in methanol, 0.1 N HCl, water, ethanol, and phosphate buffer pH 6.8.

Melting Point

DSC curve of atenolol showed a sharp endothermic peak near 158.57°C in Fig. 1 that is indicative of its melting temperature.

Analytical Methodology

Determination of absorption maxima (\(\lambda_{\text{max}}\)) of atenolol in 0.1 N HCl

The solution of 20 \(\mu g/ml\) was scanned between 200 and 400 nm. The \(\lambda_{\text{max}}\) was found to be 274 nm which indicates purity of sample drug atenolol. Absorption maxima of atenolol is represented in Fig. 2. The calibration curve of the drug shown in Fig. 3.

The absorbance of the drug solution was estimated at \(\lambda_{\text{max}}\) 274 nm in Shimadzu UV-1700 spectrophotometer of various concentration shown in Table 4 against 0.1 N HCl (1.2 pH) as blank.

In vitro Drug Release Study

Dissolution studies were carried out for all the formulations employing USP XXIII apparatus (paddle method) at 37±0.5°C rotated at constant speed of 50 rpm using 900 ml of 0.1 N HCl as the dissolution medium for 24 h. A sample of 100 mg of microspheres was used in each test. An aliquot of the sample was periodically withdrawn at suitable time interval and the volume was replaced with fresh dissolution medium to maintain the sink condition. The samples were suitably diluted and analyzed at 274 nm using 0.1 N HCl as blank using double-beam ultraviolet (UV)–visible spectrophotometer \[36-39,15\].

Drug Release Kinetics

In the present study, raw data obtained from in vitro release studies were analyzed wherein data were fitted to different equations and kinetic models to calculate the percentage drug release and release kinetics of atenolol from microparticles. Table shows the cumulative percentage drug release, log of cumulative percentage drug release, and remaining at various time points \[39,28,35\]. The results of in vitro release profile of optimized batch were fitted into four models of data treatment as follows:

- Cumulative percentage drug released versus time (zero-order kinetic model)
- Log cumulative percentage drug remaining versus time (first-order kinetics)
- Cumulative percentage drug released versus square root of time (Higuchi model)
- Log cumulative percentage drug remaining versus log time (Korsmeyer–Peppas model).

Scanning Electron Microscopy (SEM)

The surface morphology of the optimized drug-loaded microsphere was investigated by SEM. Studies using SEM provided a better understanding of the morphological characteristics of the microparticles \[40\].

Results and Discussion

Solubility

Atenolol was found to be soluble in methanol, 0.1 N HCl, water, ethanol, and phosphate buffer pH 6.8.

Melting Point

DSC curve of atenolol showed a sharp endothermic peak near 158.57°C in Fig. 1 that is indicative of its melting temperature.

Analytical Methodology

Determination of absorption maxima (\(\lambda_{\text{max}}\)) of atenolol in 0.1 N HCl

The solution of 20 \(\mu g/ml\) was scanned between 200 and 400 nm. The \(\lambda_{\text{max}}\) was found to be 274 nm which indicates purity of sample drug atenolol. Absorption maxima of atenolol is represented in Fig. 2. The calibration curve of the drug shown in Fig. 3.

The absorbance of the drug solution was estimated at \(\lambda_{\text{max}}\) 274 nm in Shimadzu UV-1700 spectrophotometer of various concentration shown in Table 4 against 0.1 N HCl (1.2 pH) as blank.
FT-IR Spectral Studies of Pure Active Pharmaceutical Ingredient (API) and Physical Mixture

The spectra obtained from FT-IR spectroscopy studied at wavelength from 4000 cm\(^{-1}\) to 400 cm\(^{-1}\) are shown in Figs. 4-7. FT-IR analysis revealed that there was no interaction between the drug and polymers; thus, these polymers can be conveniently used in further development of stomach specific mucoadhesive atenolol microparticles. In the present study, it has been observed that there are no chemical and physical interactions because of some bond formation between drug and polymers.

Table 1: Independent variables in CCD

Factor	Coded value	Actual value
EC (mg) \((X_1)\)	Low: -1, Medium: 0, High: +1	Low: 450, Medium: 675, High: 900
Surfactant conc. (%w/v) \((X_2)\)	Low: -1, Medium: 0, High: +1	Low: 2, Medium: 3, High: 4

CCD: Central composite design, EC: Ethyl cellulose

Fig. 4: Fourier transform infrared spectrum of atenolol

Fig. 5: Fourier transform infrared spectrum of Carbopol 940

Fig. 6: Fourier transform infrared spectrum of ethyl cellulose
In vitro Drug Release
The release profiles of all microparticles are illustrated in Fig. 8. Initial drug release for the microparticle formulations is high. As more drugs are release from the microparticles, more channels and pores are probably produced, contributing to faster drug release rates. The reason for the burst release could be due to the presence of some atenolol particles close to the surface of the microparticles. When particles are prepared by O1/O2 method, water-soluble drugs do not have tendency to migrate to the non-polar medium, thereby concentrating at surface of the microparticles and inducing the burst effect. Amount of drug release after 2 h shows 29.5±0.78–35±0.90 (%) and after 24 h of different batches was in the range of 61.32±0.99–89.27±1.57 (%).

Particles Size Analysis
Microparticles were analyzed with calibrated optical microscope, fitted with a stage and an ocular micrometer. The particle size of microparticles was in the range of 240.7–374.1 μm.

The microparticles size depended on the rate of polymer solidification. Deposition of polymer within droplet with the help of ethanol because ethanol is evaporated. The partitioning rate of ethanol from emulsion to external phase could be the main factor controlling the deposition rate of the polymers.

Responses Analysis of Optimization
Statistical validation of polynomial equation generated (Table 5) by Design–Expert at R11 was established on the basis of ANOVA provision in the software. A total of 13 run (AT-1 to AT-13) were generated. The 3-D response surface plots were obtained using this software. The resultant experiment data of response properties were compared with that of the predicted values.

Evaluation of Results
The observed value of responses (% drug entrapment efficiency Fig. 9 and % drug release) Fig. 8 was further analyzed statistically to evaluate effect of various factors and interaction of factors using design of experiments. The optimized formulation was selected using statistical screening.

Optimization Data Analysis
For the design, linear regression analysis method was applied using the Design–Expert software to the full polynomial equation with added interaction terms.

Polynomial equation:
Response 1; Drug release = + 141.28913 – 0.092751A – 14.54967B + 0.018933AB
Response 2; Entrapment efficiency = + 0.212944 + 0.189249A + 7.49470B – 0.000089AB – 0.000127A^2 – 1.74500B^2

Optimization formulation
Final Optimized Formulation Prepared
Final batch of atenolol microparticles was prepared by emulsion-solvent evaporation method. Optimized formulation was prepared by taking 520 mg EC and 2.36 mg surfactant and was evaluated (Fig. 10).

Evaluation of Optimized Batch
Predicted and obtained values of responses of drug release % and Entrapment efficiency % given in Table 6. The obtained value is same as predicted value.

Compression of Microparticles into Disc
Disc formulations were prepared by direct compression technique from microparticles. Each disc contained 100 mg of atenolol microparticles. The disc round and flat with an average diameter of 9.4 mm and disc were compressed with a constant compression force (3.5 tones). Disc form of microparticles of atenolol shown in Fig. 11.

Evaluation of Optimized Batch

Drug entrapment efficiency
The percentage entrapment efficiency was found to be 72.02%. This shows that 72.02% of the drug is entrapped into the microparticles.
Fig. 8: Various plots showing influence of surfactant conc. and ethyl cellulose on % drug release (a) contour plot, (b) predicted versus actual, (c) response surface plot
Table 3: Composition of different microparticles formulations with code using CCD

Formulation code	Drug (mg)	EC (mg)	Carbopol 934 (mg)	Liquid paraffin (ml)	Ethanol (ml)	Span 80 (% w/v)
AT-1	50	450	225	125	20	2
AT-2	50	900	225	125	20	4
AT-3	50	450	225	125	20	2
AT-4	50	900	225	125	20	4
AT-5	50	356.80	225	125	20	3
AT-6	50	993.20	225	125	20	3
AT-7	50	675	225	125	20	1.59
AT-8	50	675	225	125	20	4.41
AT-9	50	675	225	125	20	3
AT-10	50	675	225	125	20	3
AT-11	50	675	225	125	20	3
AT-12	50	675	225	125	20	3
AT-13	50	675	225	125	20	3

CCD: Central composite design, EC: Ethyl cellulose

Fig. 9: Various plots showing influence of surfactant conc. and ethyl cellulose on % entrapment efficiency (a) contour plot, (b) predicted versus actual, (c) response surface plot
The percentage yield of atenolol microparticles was found to be 94.26%. Particle size yield of atenolol microparticles was found to be 292.5 µm. The swelling index of atenolol microparticles was found to be 95.6%. The angle of repose of atenolol microparticles was found to be 18.25°θ. It indicates the good flow property for microparticles. Bulk density of optimized batch was found to be 0.131 g/cm³. True density of optimized batch was found to be 0.156 g/cm³. Carr’s index was found to be 16.02%. This was <20 indicating good flow characterizes. Hausner’s ratio was found to be 1.19. Table 4: Concentration and corresponding absorbance in HCl

S. No.	Concentration (µg/ml)	Absorbance at 274 nm±SD
1.	0	0
2.	2	0.012±0.001
3.	4	0.024±0.002
4.	6	0.035±0.004
5.	8	0.047±0.006
6.	10	0.057±0.005
7.	12	0.068±0.007

Table 5: The composition and observed response from randomized runs in CCD

Run	Factor 1	Factor 2	Response 1	Response 2
	A: EC	B: Surfactant conc.	Drug release	Entrapment efficiency
	Mg	%		%
1.	0.000	0.000	71.09	80
2.	0.000	0.000	69.08	75.56
3.	0.000	0.000	72	74
4.	-1.000	1.000	75.63	58
5.	0.000	0.000	78.2	77.19
6.	1.414	0.000	61.32	70
7.	0.000	1.414	73.55	72
8.	-1.414	0.000	83.56	61
9.	1.000	1.000	67.52	67
10.	0.000	-1.414	76.32	77.8
11.	1.000	-1.000	64.12	75.08
12.	0.000	0.000	72.19	76
13.	-1.000	-1.000	89.27	66

*: Hydrochloric acid

Table 6: Predicted and obtained values of responses

Response	Predicted	Obtained
Drug release %	81.95	81.94
Entrapment efficiency %	72.07	72.07

Table 7: Kinetics of drug release of atenolol microparticles

Plot	R²
Zero order	0.696
First order	0.774
Higuchi	0.837
Peppas	0.989

In vitro Dissolution Study and Kinetic Modeling of Drug Release Studies

The optimized batch prepared mucoadhesive microparticles of atenolol were subjected to in vitro release studies, these studies were carried out...
The objective of this project was formulation and evaluation of mucoadhesive microparticles containing atenolol. Atenolol was selected for the formulation of oral mucoadhesive drug delivery system.

The data obtained for in vitro release were fitted into equations for zero-order, first-order, Higuchi, and Korsmeyer–Peppas release models. The interpretation of data was based on the value of the resulting regression coefficients. From these values, it was observed that the Korsmeyer–Peppas release model was found to be best suited with R² = 0.989.

CONCLUSION
The authors declare no conflicts of interest.

REFERENCES
1. Nayak AK, Maji R, Das B. Gastroretentive drug delivery systems: A review. Asian J Pharm Clin Res 2010;3:1-10.
2. Meenakshi J, Ujjwal N, Jyotsana K, Devendra S. A review: Gastroretentive drug delivery system (grids). Indian J Pharm Biol Res 2015;3:82-92.
3. Havalder VD, Kulkarni AS, Dias RJ, Aloorkar NH, Mali KK. Floating matrix tablets of atenolol: Formulation and in vitro evaluation. Asian J Pharm 2009;3:284-91.
4. Pranati S, Rishabha M, Sharad V. Formulation development and evaluation of atenolol fast disintegrating tablets for treatment of hypertension. J Chronother Drug Deliv 2010;1:36-42.
5. Yadava N, Mohite DD, Pawar KR, Pawar UR, Bhiseb SB, Sande TA. Synthesis and characterization of sustained release atenolol microspheres by solvent evaporation technique. J Pharm Sci Technol 2011;3:559-62.
6. Tadwee IK, Sadhana S, Shekhkar T, Gupta SK, Suhas V, Ashok S. Formulation development and evaluation of spray dried nasal mucoadhesive microspheres of atenolol. Int J Pharm Res All Sci 2011;1:34-40.
7. Shahi SR, Trihubavan SD, Tadwee IK, Gupta SK, Zadabke SN, Shivanikar SS. Formulation of atenolol mucoadhesive microspheres for nasal delivery by spray drying technique: In vitro/ex vivo evaluation. Pharm Sin 2011;2:54-63.
8. Patil PB, Gawai VU, Patil HN, Hardikar SR, Bhosale AV. Preparation and evaluation of mucoadhesive microspheres of atenolol and propranolol. Int J Pharm Tech Res 2009;1:639-43.
9. Sanjay D, Sankha C, Bhaskar M. Formulation and evaluation of fixed-dose combination of bilayer gastroretentive matrix tablet containing atenolol as fast-release and atenolol as sustained-release. Biomed Res Int 2014;2014:396106.
10. Adity B, Sultana NR, Tajin A, Sharmin S. Design and development of atenolol matrix tablet employing natural and synthetic polymers. J Appl Pharm Sci 2013;3:103-8.
11. Badola A, Chakraborty GS. Development and characterization of atenolol and indapamide in their combined dosage form using different polymers. World J Pharm Sci 2014;3:1206-27.
12. Anepu S, Duppala L, Nikhil J, Devi SJ. Formulation and evaluation of gastro retentive matrix tablets of atenolol using melt granulation technique. Int J Pharm Sci Res 2016;7:1081-92.
13. Anepu S, Duppala L, Nikhil J, Devi SJ. Formulation and evaluation of gastro retentive matrix tablets of atenolol using melt granulation technique. Int J Pharm Res 2016;7:1081-92.
14. Jaybir S, Meenakshi B. Formulation and evaluation of atenolol mouth dissolving tablet. Chem Biol Interface 2017;7:323-7.
15. Khonsari F, Zakeri-Milani P, Jelvehgari M. Formulation and evaluation of in vitro characterization of gastro-mucoadhesive microparticles/discs containing metformin. Iran J Pharm Res 2014;13:67-70.
16. Surendranaths B, Mohan VM, Abbulu K. Formulation and evaluation of sustained release microspheres of propranolol. World J Pharm Sci 2017;6:1497-507.
17. Shivpoovan K, Jony G, Shweta S, Narendra PK, Mahendra T. Method development and validation of atenolol drug by spectrophotometric and HPLC technique in forensic application. Int J Sci Res 2013;2013:1731-5.
18. Gite S, Shinkar DM, Saudagar RB. Development and evaluation of...
mucoadhesive tablets of atenolol and its β-cyclodextrin complex. Asian J Biomed Pharm Sci 2014;4:25-32.
19. Venkatalakshmi R, Sasikala C, Yajaman S. Formulation and evaluation of biostable bilayered buccal tablets containing atenolol. J Chem Pharm Sci 2017;10:1170-3.
20. Perumal D. Microencapsulation of ibuprofen and Eudragit RS 100 by the emulsion solvent diffusion technique. Int J Pharm 2001;218:1-11.
21. Kuldip P, Tekade BW, Thakare VM, Patil VR. Formulation and evaluation of atenolol floating microsphere. Pharmatutor 2018;7:1-10.
22. Reddy AP, Shaik US, Moodu M, Gaddam S, Anga M. Development and evaluation of sustained release microparticles of atenolol of gastrointestinal delivery. GSC Biol Pharm Sci 2018;3:1-5.
23. Kumar S, Reddy J, Sekhar PC. Design, development and characterisation of mucoadhesive microsphere of naproxen sodium by HPMC K15M as polymer. J Pharm Res 2011;4:3943-7.
24. Satyanarayana L, Sandeepthi N. Formulation and evaluation of atenolol floating microspheres. Indo Am J Pharm Sci 2018;5:135-40.
25. Mankala SK, Korla AC, Gade S. Development and evaluation of aceclofenac-loaded mucocidehesive microcapsules. J Adv Pharm Technol Res 2011;2:245-54.
26. Tarun P, Nardev S. Formulation and in vitro evaluation of bilayer tablet of atenolol for biphasic drug release. Asian J Pharm Clin Res 2018;11:114-9.
27. Haritha S, Kotla NG, Balaji M, Sima S, Omprakash S, Kumar A, et al. Formulation and evaluation of atenolol floating bioadhesive system using optimized polymer blends. Int J Pharm Invest 2016;6:116-22.
28. Balagani PK, Chandiran IS, Jayaveera KN. Formulation development and evaluation of glibenclamide loaded Eudragit RLPO microparticles. Int Curr Pharm J 2013;2:196-201.
29. Melike U, Karaman EF. Preliminary studies on solid lipid microparticles of loratadine for the treatment of allergic reactions via the nasal route. Trop J Pharm Res 2013;12:287-93.
30. Shih-Mo Y, Tung-Ming Y, Ming-Huei L, Long H, Cheng-Hsien L. Moldless PEGDA-based optoelectrofluidic platform for microparticle selection. Adv Optoelectron 2011;2011:1-9.
31. Abhay K, Sonali D, Ghuttyar SK, Subhashi M. Design and evaluation of progesterone microparticles using biodegradable polymers. IOSR J Pharm 2013;3:26-8.
32. Josephine LJ, Yathish M, Wilson B, Kumari KB. Formulation and evaluation of microparticles containing curcumin for colorectal cancer. J Drug Deliv Ther 2012;2:125-8.
33. Madan JR, Kadam V, Bandavane S, Dua, K. Formulation and evaluation of microparticles containing ropinirole hydrochloride using biodegradable polymers. Asian J Pharm 2014;7:184-8.
34. Gantala V, Ramanathan S, Mansor SM, Nair NK, Sattar MA, Croft SL, et al. Development and validation of RP-HPLC-UV method for simultaneous determination of buparvaquone, atenolol, propranolol, quinidine and verapamil: A tool for the standardization of rat in situ intestinal permeability studies. J Pharm Biomed Anal 2007;43:1546-51.
35. Natarajan R, Elishaba G, Rangapriya M, Rajendran N. Optimization and evaluation of mucoadhesive microspheres of atenolol. Int J Pharm Chem 2011;1:722-9.
36. Nappinnai M, Kishore VS. Formulation and evaluation of microspheres of diltiazem hydrochloride. Indian J Pharm Sci 2007;69:511-4.
37. Reddy JR, Gnanaprakash K, Badarinath AV, Chetty CM. Formulation and evaluation of microparticles of metronidazole. J Pharm Sci Res 2009;1:131-6.
38. Dalu D, Kumar YG. Formulation design and development of gastro retentive floating tablets of atenolol. J Pharm Res 2017;11:479-84.
39. Yagnesh B, Dushyant S. Influence of additives on fabrication and release from protein loaded PLGA microparticles. J Chem Pharm Res 2012;4:1708-15.
40. Ahmed N, Hasan I, Safiuddin M, Chowdhury JA, Reza MS. Formulation and optimization of carbamazepine microspheres by 2 factor 2 level central composite design. Bangladesh Pharm J 2016;19:152-60.