Personalized recommendation with corrected similarity

Xuzhen Zhu¹, Hui Tian*, Shimin Cai²
¹State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, 100876, P.R.China
²Web Sciences Center, University of Electronic Science and Technology of China, Chengdu, 610054, P.R.China
E-mail: tianhui@bupt.edu.cn

Abstract. Personalized recommendation attracts a surge of interdisciplinary researches. Especially, similarity based methods in applications of real recommendation systems achieve great success. However, the computations of similarities are overestimated or underestimated outstandingly due to the defective strategy of unidirectional similarity estimation. In this paper, we solve this drawback by leveraging mutual correction of forward and backward similarity estimations, and propose a new personalized recommendation index, i.e., corrected similarity based inference (CSI). Through extensive experiments on four benchmark datasets, the results show a greater improvement of CSI in comparison with these mainstream baselines. And the detailed analysis is presented to unveil and understand the origin of such difference between CSI and mainstream indices.

Keywords: Personalized recommendation, user-object network, corrected similarity

* Corresponding author
1. Introduction

With the revolutionary development of technology of Internet [1, 2], World Wide Web [3, 4] and smart mobile devices [5, 6], information bursts out explosively and inconceivably changes lifestyle of human beings [7]. Different from traditional lifestyle, people are gradually accustomed to acquiring information through an online way, such as reading news in web portals, watching movies in video websites, shopping in E-commerce platform, etc. While information is continuously growing day by day, billions of objects, involving with millions of movies, songs and books, and numerous news, become overloaded and severely challenge personal processing abilities. It leads people to an awkward and painful situation that they cannot find favorite objects due to their limited searching abilities, in contrary, numerous objects are unknown to the needed people, that is so-called long-tail effect [8]. Facing such situation, the personalized recommendation technology [9] comes out to break the dilemma, which captures peoples’ habits through historical records of visiting and browsing activities in websites and further based on the habits recommend objects to the needed people. For examples, Amazon.com uses purchase records to recommend books [10], AdaptiveInfo.com uses reading histories to recommend news [11], and TiVo recommends TV shows and movies on the basis of users’ viewing patterns and ratings [12].

Driven by the great significance in economy and society [13, 14], a large quantity of studies on recommendation systems are ever-lastingly achieved in various fields, from science analysis to engineering practice and from computer science to physics community (see the review articles [15, 16] and the references therein). Fruitful personalized recommendation technologies [17] are come up with and applied in real environments, including content-based analysis [18, 19], knowledge-based analysis [20], context-aware analysis [21], time-aware analysis [22, 23], tag-aware analysis [24, 25], social recommendation analysis [26, 27], constraint-based analysis [28], spectral analysis [29], iterative refinement [30], principle component analysis [31], etc. Besides, some similarity based recommendation algorithms due to high simplicity and effectiveness obtains widespread applications in personalized recommendation systems, such as collaborative filtering [32], network based inference [33, 34, 35], diffusion-based algorithms [36, 37, 38, 39], and hybrid spreading [40, 41].

In an unweighted undirected object-user bipartite network (BN), the basic theory in these similarity based methods has supposed that two objects are believed to be similar if they are simultaneously selected by a user, and the more users they are selected by, the more similar they are believed to be. However, because of sparsity and complexity in BN, in fact, some similarities among pairs of objects/users are overestimated or underestimated outstandingly, which generates many fake similarities leading to a lower recommendation accuracy. Here we take a specific example to explain the origin of problem, Figure 1(a) describes a BN, with the same condition that object o_1 and o_2, o_1 and o_3 are only selected by user u_2 at the same time, so that the similarity from o_1 to o_2 is expected to the same as the one from o_1 to o_3. Nevertheless, it deviates from this
expectation, that is, the statistical sums of similarities between each object and others are the same to be set as 1, and bidirectional similarities are essentially the same. In total five users selecting o_2, only one also selects o_1 and for o_3 it is one in two. For o_2, the most likely similarity only accounts for $\frac{1}{5}$ of the original, and for o_3 it accounts for $\frac{1}{2}$. Thus, it suggests that the original similarity is overestimated between o_1 and o_2 or underestimated between o_1 and o_3. In further, the discussed difference of similarities implies the existing drawback of the basic theory in these similarity based methods. To solve this drawback, a new method that can sensitively find and represent this difference is urging to be well designed.

To fairly handle the drawback of existing similarity estimation, herein we leverage the forward and backward similarity proportions to correct it, and according to that propose a new personalized recommendation index named as corrected similarity based inference (CSI) based on BN to enhance recommendation performances. Through extensive experiments on four benchmark datasets (MovieLens, Netflix, Amazon and RYM), the results showing a great improvement of CSI in comparison of these mainstream baselines suggests its effectiveness.

The rests of paper are organized as follows: in section 2, the new model based on corrected similarity is introduced; in section 3 and 4, the experimental materials of four
benchmark datasets and methods including metrics and four mainstream baselines are described respectively; we present the results and discussions in section 5 and finally make a conclusion.

2. The corrected similarity based inference model

A recommendation system commonly consists of users and objects, in which each user has collected some objects. By denoting the object-set as $O = \{o_1, o_2, \cdots, o_n\}$ and user-set as $U = \{u_1, u_2, \cdots, u_m\}$, the recommendation system can be fully described by an $n \times m$ adjacent matrix $A = \{a_{ij}\}$, where $a_{ij} = 1$ if o_i is collected by u_j, and $a_{ij} = 0$ otherwise. Thus, a recommendation system can be also described as a BN $G(O, U)$. The personalized recommendation index according to BN based similarity shows lower complexity, higher effectiveness and more outstanding personality than traditional ones, achieving a lot of significant applications and continuously attracts widespread attention [16]. Here, we take BN based similarity to build our corrected similarity based inference model.

2.1. Bipartite network based similarity

First, we introduce the personalized recommendation index according to BN based similarity. In Ref. [33], it builds an object based relation network and defines object-similarity weight between object o_i and o_j as below:

$$w_{ij} = \frac{1}{k(o_j)} \sum_{l=1}^{m} \frac{a_{il}a_{jl}}{k(u_l)}$$

wherein w_{ij} denotes the similarity between o_i and o_j and points out that how much probability a user will be recommended o_i if he/her has selected o_j. Furthermore, if such user’s selections can be represented by a vector f, the coming recommendations are $f' = Wf$, with $W = \{w_{ij}\}$ denoted as the similarity matrix.

Then taking figure 1 for example, G contains user-set $O = \{o_1, o_2, o_3\}$ and user-set $U = \{u_1, u_2, u_3, u_4, u_5, u_6\}$, and all selections are exhibited together. According to Equ. (1), all similarity weights between pairs of objects are obtained in matrix W in Fig. 1(b). Generally, a user wouldn’t be recommended the objects he/she has selected, so we just emphasize the similarities between two different objects via different circles. Belonging to similarity based recommendation, this network based recommendation index also suffers the formerly discussed fake of similarity estimation which can be found in w_{21} and w_{31} holding the same weights surrounded by blue solid circle, even though the similarities in other circles are fairly distinguishably estimated. Consequently, the decision cannot be made to recommend which one of o_2 and o_3 to user u_1 marked blue in Fig. 1(a). This dilemma is urgent to be solved by correcting the computation of similarity.
2.2. Corrected similarity

The reason resulting in the fake similarity is sparsity and asymmetrical estimation that only considers the unidirectional similarity directly used in recommendation, such as from o_1 to o_2 via w_{21} of W in Fig. 1(b). Much more practically, two objects are believed to be similar only if the forward similarity proportion is coherent with the backward similarity proportion. And the more coherent, the more similar they are. We give the definitions of the forward and backward similarity proportions as follows:

Definition 1 Given BN $G(O, U)$, similarity weight matrix $W = \{w_{ij}\}$ denotes the similarity between o_i and o_j. The element r^{FSP}_{ij} of forward similarity proportion matrix R^{FSP} can be defined by the ratio between w_{ij} and $\sum_{i=1}^{n} w_{ij}$ and can be delivered as below, since $\sum_{i=1}^{n} w_{ij} = 1$.

$$r^{FSP}_{ij} = \frac{w_{ij}}{\sum_{i=1}^{n} w_{ij}} = w_{ij}$$ (2)

Likewise, backward similarity proportion matrix $R^{BSP} = \{r^{BSP}_{ji}\}$ can be defined as follows:

$$r^{BSP}_{ji} = \frac{w_{ji}}{\sum_{j=1}^{n} w_{ji}} = r_{ji},$$ (3)

where r^{BSP}_{ji} is simplified as r_{ji}.

Definition 2 Then, based on r^{FSP}_{ij} and r^{BSP}_{ji}, the corrected similarity s^{CSI}_{ij} can be defined as:

$$s^{CSI}_{ij} = \sqrt{r^{FSP}_{ij} \times r^{BSP}_{ji}},$$ (4)

where the similarity can be comprehensively corrected by forward similarity proportion r^{FSP}_{ij} and backward similarity proportion r^{BSP}_{ji} at the same time and the greater the corrected similarity is, the more similar the two objects identically are.

If an user has selections denoted by vector f, the recommendations f' using corrected similarity matrix S^{CSI} can be derived from the equation $f' = S^{CSI} f$. In Fig 1(b), R^{FSP} and R^{BSP} are illustrated. The original fake similarity estimations of w_{21} and w_{31} in blue solid circle, through the corrections via r_{12}, r_{13} and definition of r^{BSP}_{ji}, are corrected as s_{21} and s_{31}, between which the clear difference is embodied and confirms our formally expectation. Meanwhile, other similarity weight w_{ij} are transformed into s_{ij} with the same circle marker, keeping the existing distinguishability, such as w_{13} and w_{23} into s_{13} and s_{23} surrounded by green dash circles.

3. Experimental data

For demonstrating the excellent effectiveness and efficiency of CSI, we introduce four real benchmark datasets, Movielens†, Netflix‡, Amazon§ and RYM∥, as experimental data.

† http://www.grouplens.org/
‡ http://www.netflix.com/
§ http://www.amazon.com/
∥ http://rateyourmusic.com/
Personalized recommendation with corrected similarity

materials the first two are from famous movie recommendation websites, the third is from a well-known online shopping store, and the last is from a music recommendation website. To recommend the appropriate objects, they all leverage ratings to capture users’ preferences, with rating from 1 to 5 stars in Movielens, Netflix and Amazon and from 1 to 10 in RYM. User is believed to like the object as a user-object link, if the ratings ≥ 3 in Movielens, Netflix, Amazon and ≥ 5 in RYM. After deleting the ‘dislike’ links, we obtain the experimental datasets with detailed information in Tab. 1.

Data	Users	Objects	Links	Sparsity
Movielens	943	1682	1000000	6.3 × 10⁻¹
Netflix	10000	6000	701947	1.17 × 10⁻²
Amazon	3604	4000	134679	9.24 × 10⁻³
RYM	33786	5381	613387	3.37 × 10⁻³

In the experiments, all the possible user-object links constitute a total link-set \(E^A \). The existed link-set \(E \) should be divided into, training set \(E^T \) including 90% links of the total and testing set \(E^P \) containing the rest 10% links, with \(E^P \setminus E^T = \emptyset \), obviously. Notice that the links in testing set are regarded as unknown information and forbidden from using in training process. The difference between \(E^A \setminus E \) contains all the ultimately unrealized user-object links.

4. Experimental methods

4.1. Metrics

A personalized recommendation index is always focused on three classes of performances: accuracy, diversity and popularity [16]. The accuracy is usually assessed by three metrics, including averaged ranking score, precision and AUC, which are described as follows:

(1) Averaged ranking score \(\langle r \rangle \): Ranking score evaluates the extent the entire user-object links in the testing set \(E^P \) are ranked ahead to in the user-object link set \(E^A \setminus E^T \). If \(o_i \) is selected by \(u_j \) in the \(E^P \) and has the position \(p_{ij} \) in \(u_j \)’s uncollected objects set \(O_j \) according to the recommendation score, we have \(\text{rank}_{ij} = \frac{p_{ij}}{|O_j|} \) as the ranking score of \(o_i \)-\(u_j \) link \(l_{ij} \). Eventually, the averaged ranking score \(\langle r \rangle \) over all the links in \(E^P \) equals to:

\[
\langle r \rangle = \frac{\sum_{l_{ij} \in E^P} \text{rank}_{ij}}{|E^P|}
\]

(5)

Where \(|O_j| \) and \(|E^P| \) all indicate the number of elements in a set.
(2) Precision (P): Precision measures the ratio in which how many links in the E^P are eventually selected in every user’s recommendation list with length L, so the precision $P_j(L)$ of user u_j equals to $\frac{N_j}{L}$ with N_j standing for the number of the recommended testing links. Therefore, the definition of the whole system, averaged on individual precisions over all users, looks as follows:

$$P = \frac{1}{m} \sum_{j=1}^{m} P_j(L) \quad (6)$$

(3) AUC: AUC (Area Under ROC Curve) attempts to measure how a recommender system can successfully distinguish the relevant objects (those appreciated by a user) from the irrelevant objects (all the others). The simplest way to calculate AUC is by comparing the probability that the relevant objects will be recommended with that of the irrelevant objects. For n independent comparisons (each comparison refers to choosing one relevant and one irrelevant object), if there are n' times when the relevant object has higher score than the irrelevant and n'' times when the scores are equal, then

$$AUC = \frac{n' + 0.5n''}{n} \quad (7)$$

Clearly, if all relevant objects have higher score than irrelevant objects, $AUC = 1$ which means a perfect recommendation list. For a randomly ranked recommendation list, $AUC = 0.5$. Therefore, the degree of which AUC exceeds 0.5 indicates the ability of a recommendation algorithm to identify relevant objects.

The diversity is usually evaluated by intra-similarity and hamming distance, of which the details are shown as below:

(1) Intra-similarity (I): A good algorithm should also make the recommendations to a single user diverse to some extent [42], otherwise users may feel tired for receiving many recommended objects under the same topic. Therefore, for an arbitrary target user u_l, denoting the recommended objects for u_l as $\{o_1, o_2, ..., o_L\}$, Using also the Sørensen index[13], the similarity between two objects, o_i and o_j, can be written as:

$$s_{ij} = \frac{1}{\sqrt{k(o_i)k(o_j)}} \sum_{l=1}^{m} a_{il}a_{jl} \quad (8)$$

$k(o_i)$ means the degree of item i. The intra-similarity of u_l’s recommendation list can be defined as:

$$I_l = \frac{1}{L(L - 1)} \sum_{i \neq j} s_{ij}^n \quad (9)$$

The intra-similarity of the whole system is thus defined as:

$$I = \frac{1}{m} \sum_{l=1}^{m} I_l \quad (10)$$

(2) Hamming distance (H): The algorithm should guarantee the diversity of recommendations, viz., different users should be recommended different objects.
Personalized recommendation with corrected similarity

It is also the soul of personalized recommendations. The intra-diversity can be quantified via the Hamming distance \([37]\). Denoting \(L\) the length of recommendation list (i.e., the number of objects recommended to each user), if the overlapped number of objects in \(u_i\) and \(u_j\)'s recommendation lists is \(Q\), their Hamming distance is defined as:

\[
H_{ij} = 1 - \frac{Q}{L}
\]

(11)

Generally speaking, a more personalized recommendation list should have larger Hamming distances to other lists. Accordingly, we use the mean value of Hamming distance,

\[
H = \frac{1}{m(m - 1)} \sum_{i \neq j} H_{ij}
\]

(12)

averaged over all the user-user pairs, to measure the diversity of recommendations. Note that, \(H\) only takes into account the diversity among users.

The popularity is closely related to personality, and estimated by average degree over recommended objects:

(1) Average degree \((\langle k \rangle)\): Given \(o_{ij}\) is the \(jth\) recommended item for user \(i\), \(k(o_{ij})\) represents the degree of item \(o_{ij}\), so the popularity is defined as the average degree of all recommended items for all users as follows:

\[
\langle k \rangle = \frac{1}{mL} \sum_{i=1}^{m} \sum_{j=1}^{L} k(o_{ij})
\]

(13)

4.2. Baselines

For demonstrating the greater improvement compared with classical similarity based methods, four mainstream indices, global ranking method (GRM), cooperative filtering (CF), network based inference (NBI), initial configuration of NBI (IC-NBI), are introduced below:

(1) GRM \([32]\): Supposed the user-set is \(\{u_1, u_2, ..., u_m\}\), the object-set is \(\{o_1, o_2, ..., o_n\}\) and the degree-set of all items is \(\{k(o_1), k(o_2), ..., k(o_n)\}\). In GRM, it sorts all the objects in the descending order of degree and recommends those with the highest degrees, i.e., we list the degrees in the descending order as \(k(o_{i1}) \geq k(o_{i2}) \geq ... \geq k(o_{im})\). At last, after eliminating the objects that have collected from the descending order, the top-\(L\) objects in the rest are the recommended items.

(2) CF \([32]\): Collaborative filtering measures the similarity between users or objects. For two users \(u_i\) and \(u_j\), their cosine similarity is defined as (for more local similarity indices as well as the comparison of them, see the Refs. [44, 45]):

\[
s_{ij} = \frac{1}{\sqrt{k(u_i)k(u_j)}} \sum_{i=1}^{n} a_{ii}a_{lj}
\]

(14)
For any user-object pair $u_i - o_j$, if u_i has not yet collected o_j (i.e., $a_{ji} = 0$), the predicted score, v_{ij} (to what extent u_i likes o_j), is given as

$$v_{ij} = \frac{\sum_{l=1, l \neq i}^{m} s_{il} a_{jl}}{\sum_{l=1, l \neq i}^{m} s_{il}}$$

(15)

For any user u_i, all the nonzero v_{ij} with $a_{ji} = 0$ are sorted in a descending order, and those objects in the top-L are recommended.

(3) NBI [33]: NBI is an algorithm based on network structure, and also uses the the Sørensen index. For a general user-object network, the similarity weight between o_i and o_j reads:

$$w_{ij}^{NBI} = \frac{1}{k(o_j)} \sum_{l=1}^{m} \frac{a_{il} a_{jl}}{k(u_l)}$$

(16)

where w_{ij}^{NBI} belongs to similarity weight matrix W^{NBI}, and $k(o_j) = \sum_{i=1}^{m} a_{ji}$ and $k(u_l) = \sum_{i=1}^{m} a_{il}$ respectively denote the degrees of object o_j and user u_l. The recommendation list of user u_l is $f'_l = W^{NBI} f_l$, with $f_l = a_{li}$ representing the historical record of u_l.

(4) IC-NBI [37]: IC-NBI is a modified NBI algorithm dependent on initial resource configuration with weight $w_{ij}^{IC-NBI} = k(o_j) w_{ij}$. w_{ij} is referred in Eq. (16) and $W^{IC-NBI} = \{w_{ij}^{IC-NBI}\}$. With selection history f_j of u_j, the recommendation list of u_j is $f'_j = W^{IC-NBI} f_j$.

5. Results and discussions

The experiments results on the above-mentioned four benchmark datasets are averaged over ten independent random divisions. For convenient exhibition of differences, table 2 organizes all related performance indices, and furthermore figure 2 depicts the precision-recall curves on four datasets for more intuitively demonstrating the performance.

As shown in Tab. 2, the optimal values of each index on six metrics are presented, and we can clearly find that the best ones emphasized in boldface are almost obtained through CSI. Concretely speaking, CSI surpasses GRM the most in all aspects, especially even with $\langle r \rangle$ reduced by more than 71% in Movielens, P increased by more than 4 times, H increased by more than 15 times and $\langle k \rangle$ reduced by more than 63% in Amazon. Although being better than GRM, CF is still worse than CSI in all metrics, and outstandingly, CSI exceeds it overwhelmingly with $\langle r \rangle$ reduced by more than 38% in RYM, P increased by more than 31%, I reduced by more than 37% and H reduced by 33% in Netflix, and $\langle k \rangle$ reduced by more than 40% in Amazon. Obtained further more improvement than CF, NBI is still defeated by CSI. CSI transcends NBI on six metrics, distinctively, with $\langle r \rangle$ reduced by more than 31% in RYM, P increased by more than 23%, I reduced by 31% and H increased by more than 24% in Netflix, and $\langle k \rangle$ reduced by more than 40% in Amazon. At last, IC-NBI considering more factors is the
Table 2. Performance comparison table. The $\langle r \rangle$ for ranking score, P for precision and AUC of IC-NBI are adopted at the optimal β of each metric, and other metrics—I for intra-similarity, H for hamming distance, $\langle k \rangle$ for popularity—take the values corresponding to the optimal β of $\langle r \rangle$. The recommendation list $L = 50$, and the sampling number n in AUC is one million. All the values are obtained by averaging over ten independent runs with different data set divisions and numbers in brackets stand for the standard deviations.

Movielens	(r)	P	AUC	I	H	(k)
GRM	0.1486(0.0020)	0.0508(0.0007)	0.8569(0.0023)	0.4085(0.00010)	0.3991(0.0007)	259(0.4410)
CF	0.1225(0.0020)	0.0638(0.0011)	0.8990(0.0020)	0.3758(0.00008)	0.5796(0.0016)	242(0.3724)
NBI	0.1142(0.0018)	0.0670(0.0011)	0.9093(0.0016)	0.3554(0.00008)	0.6185(0.0013)	234(0.3925)
IC-NBI	0.1074(0.0017)	0.0693(0.0011)	0.9145(0.0014)	0.3392(0.00009)	0.6886(0.0011)	219(0.4725)
CSI	0.0963(0.0014)	0.0738(0.0009)	0.9276(0.0012)	0.2892(0.00008)	0.7601(0.0006)	186(0.4286)
Netflix	(r)	P	AUC	I	H	(k)
GRM	0.2046(0.0004)	0.0160(0.0002)	0.8101(0.0028)	0.3580(0.0021)	0.1627(0.0004)	520(1.3402)
CF	0.1755(0.0004)	0.0235(0.0003)	0.8714(0.0021)	0.3106(0.0009)	0.6787(0.0010)	423(1.2803)
NBI	0.1661(0.0004)	0.0251(0.0003)	0.8858(0.0019)	0.2819(0.0008)	0.7299(0.0006)	398(1.0763)
IC-NBI	0.1537(0.0004)	0.0270(0.0004)	0.8877(0.0020)	0.2405(0.0006)	0.8790(0.0011)	312(0.6855)
CSI	0.1437(0.0003)	0.0310(0.0004)	0.9063(0.0016)	0.1937(0.0012)	0.9063(0.0003)	256(0.7554)
Amazon	(r)	P	AUC	I	H	(k)
GRM	0.3643(0.0017)	0.0036(0.0008)	0.6409(0.0029)	0.0709(0.0006)	0.0584(0.0001)	133(0.3)
CF	0.1212(0.0010)	0.0156(0.0001)	0.8810(0.0017)	0.0927(0.0001)	0.8649(0.0008)	81(0.1988)
NBI	0.1169(0.0011)	0.0161(0.0001)	0.8844(0.0018)	0.0899(0.0001)	0.8619(0.0006)	81(0.1775)
IC-NBI	0.1169(0.0011)	0.0163(0.0001)	0.8844(0.0018)	0.0896(0.0001)	0.8652(0.0006)	81(0.1689)
CSI	0.1036(0.0011)	0.0190(0.0001)	0.8930(0.0018)	0.0880(0.0002)	0.9667(0.00007)	48(0.0479)
RYM	(r)	P	AUC	I	H	(k)
GRM	0.1581(0.0009)	0.0034(0.0001)	0.8786(0.0001)	0.1334(0.0003)	0.0071(0.00007)	1343(0.4268)
CF	0.0753(0.0001)	0.0129(0.0003)	0.9548(0.0001)	0.1604(0.0006)	0.8216(0.00001)	1114(0.5895)
NBI	0.0673(0.0007)	0.0131(0.0006)	0.9611(0.0001)	0.1580(0.0001)	0.7912(0.0008)	1195(0.7061)
IC-NBI	0.0587(0.0007)	0.0135(0.0005)	0.9644(0.0001)	0.1548(0.0008)	0.8113(0.00001)	1154(0.5654)
CSI	0.0462(0.0001)	0.0156(0.0003)	0.9714(0.0001)	0.1467(0.0009)	0.8922(0.00005)	869(0.5121)

best in all baselines, but CSI still stands on top of it, remarkably, with $\langle r \rangle$ reduced by more than 21% in RYM, P increased by more than 16%, H increased by more than 11%, $\langle k \rangle$ reduced by more than 40% in Amazon and I reduced by more than 19% in Netflix. From statistical analysis of results in Tab. 2 we argue that CSI obviously outperforms the four mainstream baselines in accuracy, diversity and personality, even though there exist different degrees of improvement from GRM to IC-NBI. Especially, CSI acquires considerable improvement in contrast to NBI according to the corrected similarity theory illustrated in Fig. 1.

The corresponding precision-recall curves of CSI and baselines on four datasets are plotted in Fig. 2. Given a recommendation list length L, a precision via Equ.(6) and recall via $l|E_P|$ can be obtained, respectively. Note that l and $|E_P|$ denotes the number of all hitting links in testing set and the size of testing set, respectively. When L varies from 1 to the size of testing set $|E_P|$, we achieve the whole precision-recall curve (referenced in [46]). According to the above method, in Fig. 2 labeling x-axis as precision and y-axis as recall, precision-recall curves on four datasets are plotted, of which the identically descending order from the bottom left to the upper right in four subgraphs suggests that the great difference of performance between CSI and baselines and CSI absolutely outperforms all baselines. It further confirm the statistical results in Tab. 2.

To unveil the underlying origin of more considerable performance improvement
Personalized recommendation with corrected similarity

Figure 2. Demonstration of precision-recall curves on four datasets. Given a recommendation list length L, a precision and recall can be respectively achieved via Equ. (6) and $\frac{\mid E^p \mid}{\mid E \mid}$, with l and $\mid E^p \mid$ denoting the number of all hitting links in testing set and the size of testing set, respectively. When L varies from 1 to the size of testing set $\mid E^p \mid$, we obtain the whole precision-recall curve (referenced in [46]). GRM, CF, NBI, IC-NBI and CSI are identically in four subgraphs plotted from the bottom left to upper right. CSI outstandingly outperforms others.

of CSI than baselines, we compare the recommendation processes of these similarity based methods. Generally, GRM tends to recommend the most popular objects to the user with the poorest similarity consideration, undoubtedly leading to the worst performance of all mentioned metrics; CF reasonably based on similarity between users obviously improves performances on six metrics but still ranks with the second worst compared with CSI because of neglecting the similarity between objects and unidirectional uncorrected similarity; NBI, based on network-projected object-similarity, distinctively performs better than CF but also shows severe shortage in contrast to CSI, primarily still due to the unidirectional defective similarity representation between two objects; IC-NBI considers not only the similarity between objects but also penalization on the high degree of popular objects to further improve the performances, but inspite of complementary consideration of degrees of objects and inheriting the uncorrected unidirectional defective similarity representation from NBI. In a word, these traditional similarity based algorithms indeed contains the similar drawback of similarity estimation, while CSI simultaneously considers the forward and backward similarity proportions to correct the originally fake similarity estimations, surely achieving the considerable improvements in accuracy, diversity and personality.

Besides, the low computation complexity is another important concern in the design
of prediction algorithm. As we known, the time complexity of product of two $N \times N$ matrices is $O(N^3)$. From the definitions of CF, NBI, IC-NBI, their time complexities are all $O(N^3)$. In contrast, although with same time complexity of $O(N^3)$, our index shows stronger performances than them. On the contrary, CF, using sorting algorithm with less time complexity of $O(N^2)$ approximately, exhibits the extremely worst performances. Above all, our index achieves best performance with no increase in complexity.

6. Conclusions

In conclusion, we have studied the similarity based recommendation algorithms (mainly involving with baselines) and find that there are fake similarity estimations including underestimation and overestimation in them due to only considering unidirectional similarity representation for recommendations. After investigating the relation between forward and backward similarity estimations, a corrected similarity based inference model (i.e., CSI) is proposed to make up the drawback of traditional similarity based ones. Through experimental verifications on four representative real datasets, CSI indeed achieves great and impressive improvement in accuracy, diversity and personality (e.g., RYM), compared with baselines. Because of high effectiveness and low complexity, CSI can be applied in various kinds of recommendation environments, such as online news recommendation, online books recommendation, online movies recommendation, online songs recommendation, and so on. Although obtained great improvement, CSI still has weaknesses, for example, the lack of consideration on node degrees which to some extent impacts the effectiveness of personalized recommendations. In future, we will continue our research to further enhance the performances of personalized recommendation.

Acknowledgments

This work was supported by National Major Science and Technology Special Project of China (No. 2012ZX03005010-003), National Natural Science Foundation of China (No. 61231009), National High Technology Research and Development Program of China (863 Program) (No. 2014AA01A706), and Funds for Creative Research Groups of China (No. 61121001).

References

[1] Zhang G Q, Zhang G Q, Yang Q F, Cheng S Q and Zhou T 2008 New J. Phys. 10 123027
[2] Pastor-Satorras R and Vespignani A 2007 Evolution and structure of the Internet: A statistical physics approach (Cambridge University Press)
[3] Broder A, Kumar R, Maghoul F, Raghavan P, Rajagopalan S, Stata R, Tomkins A and Wiener J 2000 Comput. netw. 33 309
[4] Doan A, Ramakrishnan R and Halevy A Y 2011 Comm. ACM 54 86
[5] Goggin G 2012 Cell phone culture: mobile technology in everyday life (Routledge)
[6] Zheng P and Ni L 2010 Smart phone and next generation mobile computing (Morgan Kaufmann)
Personalized recommendation with corrected similarity

[7] Schafer J B, Konstan J and Riedi J 1999 Recommender systems in e-commerce Proceedings of the 1st ACM Conf. Electro. Commer. (ACM) p 158
[8] Anderson C 2008 The long tail: Why the future of business is selling less of more (Hyperion Books)
[9] Resnick P and Varian H R 1997 Comm. ACM 40 56
[10] Linden G, Smith B and York J 2003 IEEE Int. Comput. 7 76
[11] Billsus D and Pazzani M J 2007 Adaptive news access (Springer)
[12] Ali K and Van Stam W 2004 Tivo: making show recommendations using a distributed collaborative filtering architecture Proceedings of the 10th ACM SIGKDD Int. Conf. (ACM) p 394
[13] Huang Z, Zeng D and Chen H 2007 IEEE Intel. Syst. 22 68
[14] Wei K, Huang J and Fu S 2007 A survey of e-commerce recommender systems Proceedings of the Service Systems and Service Management Conference (IEEE) p 1
[15] Adomavicius G and Tuzhilin A 2005 IEEE Trans. Knowl. Data Eng. 17 734
[16] Lü L, Medo M, Yeung C H, Zhang Y C, Zhang Z K and Zhou T 2012 Phys. Rep. 519 1
[17] Shapira B 2011 Recommender systems handbook (Springer)
[18] Ansari A, Essegaier S and Kohli R 2000 J. Market. Res. 37 363
[19] Pazzani M J and Billsus D 2007 Content-based recommendation systems (Springer)
[20] Trewin S 2000 Encyclopedia Libr. Inf. Sci. 69 69
[21] Adomavicius G, Sankaranarayanan R, Sen S and Tuzhilin A 2005 ACM Trans. Inf. Syst. 23 103
[22] Petridou S G, Koutsonikola V A, Vakali A I and Papadimitriou G I 2008 IEEE Trans. Knowl. Data Eng. 20 653
[23] Campos P G, Diez F and Cantador I 2013 User Model User-Adap Inter. 24 67
[24] Zhang Z K, Zhou T and Zhang Y C 2011 J. Comput. Sci. Technol. 26 767
[25] Tso-Sutter K H, Marinho L B and Schmidt-Thieme L 2008 Tag-aware recommender systems by fusion of collaborative filtering algorithms Proceedings of the 2008 ACM Int. Symp. Comput. (ACM) p 1995
[26] Liu H, Hu Z, Mian A, Tian H and Zhu X 2014 Knowl-Based Syst. 56 156
[27] Guy I and Carmel D 2011 Social recommender systems Proceedings of the 20th Int. Conf. companion on World wide web (ACM) p 283
[28] Felfernig A and Burke R 2008 Constraint-based recommender systems: technologies and research issues Proceedings of the 10th Int. Conf. on electronic commerce (ACM) p 3
[29] Maslov S and Zhang Y C 2001 Phys. Rev. Lett. 87 248701
[30] Ren J, Zhou T and Zhang Y C 2008 EPL 82 58007
[31] Goldberg K, Roeder T, Gupta D and Perkins C 2001 Inf. Retrieval 4 133
[32] Herlocker J L, Konstan J A, Terveen L G and Riedl J T 2004 ACM Trans. Inf. Syst. 22 5
[33] Zhou T, Ren J, Medo M and Zhang Y C 2007 Phys. Rev. E 76 046115
[34] Zhou T, Su R Q, Liu R R, Jiang L L, Wang B H and Zhang Y C 2009 New J. Phys. 11 123008
[35] Kleinberg J 2007 Algorithmic Game Theory 24 613
[36] Zang W, Medo M, Ren J, Zhou T, Li T and Yang F 2007 EPL 80 68003
[37] Zhou T, Jiang L L, Su R Q and Zhang Y C 2008 EPL 81 58004
[38] Pei S and Makse H A 2013 J. Stat. Mech.: Theory Exp. 2013 P12002
[39] Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E and Makse H A 2010 Nat. Phys. 6 888
[40] Burke R 2002 User Model. User-Adap. Inter. 12 331
[41] Zhou T, Kuscsik Z, Liu J G, Medo M, Wakeling J R and Zhang Y C 2010 Proc. Nati. Acad. Sci. 107 4511
[42] Ziegler C N, McNee S M, Konstan J A and Lausen G 2005 Improving recommendation lists through topic diversification Proceedings of the 14th Int. Conf. on World Wide Web (ACM) p 22
[43] Sørensen T 1948 Biol. Skr. 5 1
[44] Liben-Nowell D and Kleinberg J 2007 J. Am. Soc. Inf. Sci. 58 1019
[45] Zhou T, Lü L and Zhang Y C 2009 Eur. Phys. J. B 71 623
[46] Powers D M 2011 J. Mach. Learn. Technol. 2 37