Common variability in oestrogen-related genes and pancreatic ductal adenocarcinoma risk in women

Giulia Peduzzi1, Livia Archibugi2,3, Verena Katzke4, Manuel Gentiluomo1, Gabriele Capurso2,3, Anna Caterina Milanetto5, Maria Gazouli6, Mara Goetz7, Hermann Brenner8,9,10, Roel C. H. Vermeulen11, Renata Talar-Wojnarowska12, Giuseppe Vanella3,2, Francesca Tavano13, Maurizio Lucchesi14, Beatrice Mohelnikova-Duchonova15, Xuechen Chen5,16, Vytautas Küdelis17, Péter Hegyi18,19,20,21, Martin Oliverius22, Hannah Stocker8,23, Caterina Stornello9,2, Ludmila Vodickova24,25,26, Pavel Souček26, John P. Neoptolemos27, Sabrina Gloria Giulia Testoni3, Luca Morelli28, Rita T. Lawlor29, Daniela Basso30, Jakob R. Izbicki7, Stefano Ermini31, Juozas Kupcinskas17, Raffaele Pezzilli32, Ugo Boggi33, Hanneke W. M. van Laarhoven34,35, Andrea Szentesi18,21,36, Bálint Erőss18,20,37, Giovanni Capretili38,39, Ben Schöttker8, Jurgita Skieceviciene17, Mateus Nóbrega Aoki40, Casper H. J. van Eijck41, Giulia Martina Cavestro42, Federico Canzian43,44 & Daniele Campa1,44

The incidence of pancreatic ductal adenocarcinoma (PDAC) is different among males and females. This disparity cannot be fully explained by the difference in terms of exposure to known risk factors; therefore, the lower incidence in women could be attributed to sex-specific hormones. A two-phase association study was conducted in 12,387 female subjects (5436 PDAC cases and 6951 controls) to assess the effect on risk of developing PDAC of single nucleotide polymorphisms (SNPs) in 208 genes involved in oestrogen and pregnenolone biosynthesis and oestrogen-mediated signalling. In the discovery phase 14 polymorphisms showed a statistically significant association (P < 0.05). In the replication none of the findings were validated. In addition, a gene-based analysis was performed on the 208 selected genes. Four genes (NR5A2, MED1, NCOA2 and RUNX1) were associated with PDAC risk, but only NR5A2 showed an association (P = 4.08 × 10⁻⁵) below the Bonferroni-corrected threshold of statistical significance. In conclusion, despite differences in incidence between males and females, our study did not identify an effect of common polymorphisms in the oestrogen and pregnenolone pathways in relation to PDAC susceptibility. However, we validated the previously reported association between NR5A2 gene variants and PDAC risk.

Pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer, will become the 2nd leading cause of cancer-related mortality by 20301. PDAC is a relatively rare disease with a reported incidence which is slightly higher in men compared to women (5.7/100,000 new case every year worldwide in males, while 4.1/100,000 new case every year worldwide in females)2,3. The known disparity in terms of exposure to known risk factors, such as smoking and heavy alcohol consumption can only partially explain this difference4. Therefore, it has been hypothesized that hormonal factors might account for this unbalance.

Sex steroid hormones (oestrogens, progesterone and androgens) exert their effect by binding to specific receptors, the function of which is tissue- and cell type-specific. Two known oestrogen receptors (ESR; estrogen

1Department of Biology, University of Pisa, 56126 Pisa, Italy. 2Digestive and Liver Disease Unit, Sant’Andrea Hospital, Rome, Italy. 3Pancreato-Biliary Endoscopy and Endoscopic Ultrasound, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan, Italy. 4Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. 5Department DISCOG, University of Padova, Padua, Italy. 6Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece. 7Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg Eppendorf,
receptor 1 (Era) and estrogen receptor 2 (Erb)) are expressed in the normal exocrine pancreas and in animal models the growth of pre-neoplastic pancreatic lesions or pancreatic carcinoma is inhibited by oestrogens5. Additionally, hormone replacement therapy (HRT) reduces insulin level, that is a risk factor for PDAC6. However, whether female sex steroid hormones have a role in PDAC onset, is still under debate7.

Previous studies on the association between reproductive factors and exposure to sex hormones and the risk of developing PDAC have shown heterogeneous results. For example older age at menarche, use of oral contraceptives (OC), and the use of hormone replacement therapy (HRT) have been reported to be associated with increased8–10 but also with decreased risk10,11 of developing PDAC. Furthermore several studies have also reported a null association12–14.

There is strong evidence of the role of single nucleotide polymorphisms (SNPs), on PDAC susceptibility15–29. Additionally, SNPs in oestrogen-related genes are associated with the susceptibility of several cancer types, such as breast, gastric, lung and prostate30–35. Therefore, it is surprising that none of the previous reports on female reproductive factors have considered the possible role of polymorphisms in genes involved in female hormone activity as factors contributing to PDAC susceptibility. We considered 36,454 SNPs in 208 genes involved in pregnenolone biosynthesis, oestrogen biosynthesis and ESR-mediated signaling and evaluated their role in PDAC risk. The study was carried out in 5436 female PDAC patients and 6951 women without PDAC in the context of the Pancreatic Cancer Cohort Consortium (PanScan) I, II, III, Pancreatic Cancer Case–Control Consortium (PanC4) and PANcreatic Disease ReseArch (PANDoRA) studies.

Results
To investigate the role of polymorphic variants in oestrogen-related genes in PDAC, we utilized a three-phase (identification, discovery, validation) approach.

As a first step, the identification phase, 208 genes involved in oestrogen and pregnenolone pathways were selected using the reactome database (https://reactome.org/). All common SNPs (minor allele frequency > 0.01) in each gene region were identified. To include regulatory variants, 1000 base pairs were added before the first exon and after the last exon of each gene. A total of 23,569 SNPs, with a minor allele frequency > 0.01, were present in the 208 genes. The list of SNPs was thinned down using linkage disequilibrium (LD), utilizing the procedure are given in the material and methods section of the manuscript). This final list of 12,885 SNPs was analyzed in the discovery phase of the study that consisted of 3986 female PDAC cases and 3218 female controls belonging to PanScan I-III and PanC4 studies. To carry out this analysis the raw genotyping data were downloaded from the database of Genotypes and Phenotypes (dbGaP) (https://www.ncbi.nlm.nih.gov/gap/).
the discovery phase we observed 9 genes (NR5A2, NRAS, ERBB4, PIK3CA, HSD17B11, EGFR, NCOA2, PTGES3, and POLR2A) with at least one polymorphic variant (14 in total) that showed a statistically significant association with PDAC risk (p < 0.05). The results of the discovery phase are reported in Supplementary Table S1. Among these 9 genes, NR5A2 was already reported as a PDAC risk locus, in a genome-wide association study (GWAS) on PDAC susceptibility that was carried out in PanScan II and validated in the context of the PANDoRA consortium. In the validation phase, 1 SNP in each gene was analyzed in PANDoRA. None of the SNPs analyzed in PANDoRA showed allelic and genotypic frequency that deviated from Hardy–Weinberg equilibrium (HWE) and the genotyping concordance between duplicates was higher than 99%. In PANDoRA none of the SNPs showed a statistically significant association with PDAC susceptibility. However, NR5A2-rs2816945 showed a borderline association (OR = 1.16 (95% CI 0.98–1.38), P = 0.091). In the meta-analysis of the two phases, four SNPs showed a statistically significant association. More in detail, the G allele of the NR5A2-rs2816945 SNP and the T allele of the ERBB4-rs11904566 SNP were associated with increased PDAC risk (P = 9.57 × 10^{-5} and P = 1.16 × 10^{-2} respectively), while the A allele of the EGFR-rs138154852 SNP and the T allele of the POLR2A-rs8753 SNP were associated with decreased PDAC risk (P = 5.93 × 10^{-4} and P = 5.25 × 10^{-3}). However, none of the SNPs showed a P-value lower than the threshold of significance adopted considering a correction for multiple testing (P = 3.88 × 10^{-6}). All the results are shown in Table 1.

Chr	Gene	SNP	Position	Alleles (M/m)*	MAF (cases/controls)	Phase	OR (95% CI)	P-value
1	NR5A2	rs2816945	199,992,365	C/G	0.257/0.228	PanScan + PanC4	1.17 (1.08–1.26)	8.39 × 10^{-5}
					0.218/0.219	PANDoRA	1.16 (0.98–1.38)	0.091
					0.248/0.225	Meta-analysis	1.15 (1.07–1.23)	9.57 × 10^{-5}
1	NRAS	rs8453*	115,259,599	G/T	0.156/0.141	PanScan + PanC4	1.15 (1.05–1.27)	2.64 × 10^{-3}
					0.138/0.144	PANDoRA	0.98 (0.81–1.19)	0.86
					0.151/0.143	Meta-analysis	1.12 (0.89–1.42)	0.332
2	ERBB4	rs11904566	212,354,011	A/G	0.028/0.020	PanScan + PanC4	1.41 (1.13–1.76)	2.53 × 10^{-3}
					0.036/0.033	PANDoRA	1.03 (0.78–1.38)	0.788
					0.030/0.027	Meta-analysis	1.25 (1.05–1.49)	1.16 × 10^{-2}
3	PIK3CA	rs61796467*	178,900,596	G/A	0.074/0.059	PanScan + PanC4	1.26 (1.10–1.44)	1.03 × 10^{-3}
					0.083/0.077	PANDoRA	0.98 (0.81–1.19)	0.86
					0.076/0.069	Meta-analysis	1.12 (0.89–1.42)	0.332
4	HSD17B11	rs116113712*	88,295,123	G/A	0.017/0.011	PanScan + PanC4	1.60 (1.17–2.10)	1.43 × 10^{-3}
					0.005/0.010	PANDoRA	0.78 (0.40–1.49)	0.45
					0.014/0.010	Meta-analysis	1.20 (0.62–2.32)	0.596
7	EGFR	rs138154852	55,125,950	G/A	0.054/0.068	PanScan + PanC4	0.78 (0.68–0.90)	4.98 × 10^{-4}
					0.070/0.076	PANDoRA	0.90 (0.70–1.15)	0.381
					0.057/0.071	Meta-analysis	0.81 (0.71–0.91)	5.93 × 10^{-4}
8	NCOA2	rs113654977	71,164,275	T/C	0.031/0.040	PanScan + PanC4	0.72 (0.60–0.87)	4.62 × 10^{-4}
					0.043/0.037	PANDoRA	1.17 (0.95–1.51)	0.255
					0.034/0.039	Meta-analysis	0.94 (0.58–1.45)	0.697
12	PTGES3	rs2950390*	57,055,291	C/T	0.326/0.346	PanScan + PanC4	0.91 (0.85–0.97)	6.28 × 10^{-3}
					0.337/0.339	PANDoRA	1.05 (0.94–1.17)	0.379
					0.329/0.342	Meta-analysis	0.91 (0.85–1.11)	0.656
17	POLR2A	rs8753	7,417,640	C/T	0.015/0.022	PanScan + PanC4	0.66 (0.51–0.85)	1.20 × 10^{-3}
					0.016/0.022	PANDoRA	0.75 (0.51–1.10)	0.140
					0.015/0.022	Meta-analysis	0.69 (0.55–0.83)	5.25 × 10^{-3}

Table 1. Results of the analysis of the nine candidate SNPs selected after the discovery phase of the study. All analyses of PanScan and PanC4 data were adjusted by age, and the first 8 principal components. Analysis of PANDoRA data were adjusted for age and country of origin. The meta-analysis was performed applying the fixed-effects model, or random-effects model for SNPs showing heterogeneity. Statistically significant results (P < 0.05) are in bold. *M stands for major allele, m stands for minor allele. *Shows SNPs with heterogeneity.
NR5A2 is significant after the Bonferroni correction (P < 0.05/208 = 2.40 × 10^−4). a The pathways was identified using the reactome website.

For the 9 SNPs that were analyzed in the validation phase we also performed an analysis conducted in males only and the results show a statistically significant association for NR5A2-rs2816945 and no association for any of the other SNPs, confirming what observed in women and what already reported in the GWAS (Supplementary Table S2).

To further explore the associations between the genetic variability of the 208 estrogen-related genes in female PDAC patients, a gene-based analysis was also performed. The results, that consider the cumulative effect of all the SNPs belonging to the same gene, showed that NR5A2 (P = 4.08 × 10^−3), MED1 (P = 3.14 × 10^−3), NCOA2 (P = 6.38 × 10^−3) and RUNX1 (P = 9.01 × 10^−3), had a statistically significant association with PDAC risk. However, with the exception of NR5A2, none of these findings met the criteria for statistical significance after correction for multiple testing. The results of these analyses are reported in Table 2 (genes with a P-value for association < 0.05) and in Supplementary Table S3 (all genes).

Finally, a pathway-based analysis, combining together all SNPs belonging to the same pathway, was also performed. The analysis did not show any statistically significant association (Supplementary Table S4).

Discussion

The difference in the reported PDAC incidence between males and females has been usually explained by the different exposure of the two sexes to environmental and lifestyle factors, such as pollution, smoking and alcohol consumption. However, several reports have suggested that the difference could be at least partially explained by other factors such as oestrogen exposure. Additionally, SNPs in oestrogen-related pathways have been associated with increased risk of developing several cancer types, such as breast, ovarian, prostate and lung. For this reason, we have identified 12,885 tagging SNPs (tSNPs) in 208 genes belonging to the pregnenolone and oestrogen biosynthesis and ESR-mediated signaling pathways to test whether the genetic variability of these genes is associated with PDAC risk in females. We analyzed 13,371 women (5783 cases and 7588 controls).

Despite several signals in the discovery phase of the study, none of the selected SNPs showed a statistically significant association in the validation phase that consisted of 1450 female PDAC cases and 1128 controls belonging to the PANDoRA consortium. Even though not statistically significant, NR5A2-rs2816945 showed a trend (p = 0.091) with the G allele associated with increased risk. Polymorphic variants belonging to NR5A2 have already been reported to be associated with in PDAC risk. A polymorphic variant of the NR5A2, rs2821357, that is in LD with rs2816945 (r² = 0.57, D’ = 0.99, in 1000 Genomes Europeans) is associated with low density cholesterol levels. This is intriguing since estrogens, in the liver, decrease the total amount of LDL and increase the amount of HDL in the body and LDL is a suggested PDAC risk factor. Therefore, it can be hypothesized that the effect of NR5A2-rs2816945 on PDAC susceptibility might be mediated by its effect on cholesterol level. The gene-based analysis confirmed the association of NR5A2 as a PDAC susceptibility gene. NR5A2 belongs to the fushi tarazu factor-1 subfamily of orphan nuclear receptors and plays an essential role in a variety of biological processes that include endodermal development, cholesterol homeostasis, bile acid synthesis and steroidogenesis.

The reactome database, that was used to select the genes of this study, includes NR5A2 in the ESR-mediated signaling pathway. In adult mammals, this gene is mainly expressed in the exocrine pancreas, ovary, liver and intestine. In the pancreas, NR5A2 cooperates with the pancreas-specific transcription factor 1 (PTF1) to maintain the secretory functions of acinar cells by regulating the expression of specific acinar genes. In vitro, it was observed that the loss of NR5A2 leads to the downregulation of terminal acinar differentiation elements and to an increased chance to undergo acinar-to-ductal metaplasia (ADM). It has been suggested that loss of NR5A2 expression represents a first step in the development of PDAC because provides a permissive environment for KRAS driven ADM and pancreatic intraepithelial neoplasia (PanIN) development. Alongside NR5A2, the other three genes that showed a nominal (P < 0.05) association with PDAC risk (MED1, NCOA2 and RUNX1) are all transcriptional regulators that are expressed in the pancreas and in many other tissues and have a broad range of functions, such as hematopoiesis, adipogenesis and lipid metabolism. It is, therefore, difficult to establish a functional link between the genetic variability of the three genes and PDAC.

Other studies have explored the possible involvement of estrogen-related SNPs and risk of developing gastrointestinal cancers. For example, the study conducted by Park and colleagues, shows that the G allele of the ESR1-rs1801132 SNP was associated with increased risk of developing bile duct cancer (OR = 1.70, 95% CI 1.10–2.80, P = 0.07) compared with C allele. Another example is the study conducted by Lin et al. that investigated...
colorectal cancer risk in women only. In that study the authors report three SNPs, rs10046 in \textit{CYP19A1}, rs2911422 and rs2042429 in \textit{HSD17B2} genes, that were marginally associated with colorectal cancer risk.48

Clear strengths of this study are the large sample size, the novelty of the focused analysis on women only for oestrogen-related genes and using a study design consisting of discovery and validation phases to avoid reporting false positives. A possible limitation consists in the fact that we have analyzed only relatively common SNPs (MAF > 0.01) with a low penetrance and therefore we could not exclude that rare variants in the selected genes might instead influence PDAC risk. Another possible limitation is that we used only the reactome database to select the genes of interest, with the consequence that we could have identified only a part of estrogen-related genes, since the overlap between different databases (e.g. Kyoto Encyclopedia of Genes and Genomes (KEGG) or NCI Pathway Interaction Database) is only partial. However, it is highly unlikely that we missed genes that are central to the pathways of our interest. Finally, data on exposome and gynecological/reproductive factors were not available either in PanScan and PanC4 or in PANDoRA. In conclusion, we have replicated a previously reported association in the \textit{NR5A2} gene considering only women with PDAC and have not identified novel associations, suggesting that common SNPs in oestrogen-related genes do not play a major role in PDAC susceptibility.

Materials and methods
This study was carried out using three phases, identification, discovery, and validation. Figure 1 shows the workflow of the study.

Identification phase. In the identification phase, the reactome (https://reactome.org/) database was used to select genes in three oestrogen and pregnenolone related pathways, namely the pregnenolone biosynthesis (number of genes = 12); the oestrogen biosynthesis (number of genes = 6) and the ESR-mediated signaling (number of genes = 190) for a total of 208 genes.49 Tagging SNPs (tSNPs) were identified in each gene region, defined as the region between the beginning of the first known exon and the end of the last known exon, according to 1000 Genomes, with the addition of 1000 bp on each end of the gene. We performed pairwise tagging using genotype data from Ensembl v80 GRCh37, with the use of the Tagger program within Haploview (http://www.broad.mit.edu/mpg/haploview/; http://www.broad.mit.edu/mpg/tagger/). The following criteria were used: minor allele frequency (MAF) > 0.01 in 1000 Genomes subjects of European descent, \(r^2 \geq 0.8 \). A total of 23,569 SNPs were captured with 12,885 tagging SNPs. Supplementary Table S1 shows all the genes, the number of SNPs and tSNPs, divided by gene, analyzed in the study.

Discovery phase. All SNPs identified were analysed using the genotypes of the PanScan I, II, III and PanC4 GWASs. The genotypes of 9563 PDAC cases and 8073 controls were downloaded from the database of Geno-
quality imputation score (INFO score < 0.7) were discarded, leaving 7,509,345 SNPs in the final dataset. Principal evidence for violations of Hardy–Weinberg equilibrium (P < 1 × 10−6). The genotypes were phased using SHAPEIT v2 software and the imputation was performed, separately for each dataset, using the Michigan Imputation Server (https://imputationserver.sph.umich.edu), and the Haplotype Reference Consortium (HRC) as reference, and merged using PLINK 2.0 software32. Afterwards the SNPs with completion rate and call-rate < 98%, a minor allele frequency (MAF) < 0.01, evidence for violations of Hardy–Weinberg equilibrium (P < 1 × 10−5) and low-quality imputation score (INFO score < 0.7) were discarded, leaving 7,509,345 SNPs in the final dataset. Principal component analysis was carried out to exclude individuals not clustering within Europeans. All male subjects were then removed from the dataset, leaving a total of 7,207 women (3,986 PDAC cases and 3,218 controls). A logistic regression analysis adjusted for sex, age and the top eight principal components was used to test the association between the SNPs and PDAC risk.

Validation phase. The significant SNPs identified in the discovery phase were genotyped in 1450 PDAC female cases and 1128 female controls belonging to the pancreatic disease research (PANDoRA) consortium. The PANDoRA consortium has been extensively described elsewhere52. Briefly, it consist of a multicentric study conducted in 10 European countries (Italy, Greece, Germany, Netherlands, Denmark, Czech Republic, Hungary, Poland, Lithuania and United Kingdom), and Brazil. Cases had a confirmed diagnosis of PDAC and data on age at diagnosis, sex and country of origin was retrospectively collected for each patient. Controls were selected from blood donors, the general population and hospitalised subjects without oncological diseases. In addition to PANDoRA subjects, the genotypes of 55 British and 38 Dutch controls from the European Prospective Investigation into Cancer and Nutrition (EPIC), a prospective cohort study with 519,978 participants (aged 35–70 years) from ten European countries53, and 2,512 German controls from Epidemiologische Studie zu Chancen der Verhütung, Früherkennung und optimierten THerapie chronischer ERkrankungen in der älteren Bevölkerung (ESTHER), a cohort study that includes 9,961 German people aged between 50 and 74 years54, were included. Genotyping was conducted using Taqman assays (Thermo Fisher Applied Biosystems, Waltham MA, USA) in 384 well plates, using 8% of duplicated samples to ensure quality control of the laboratory procedure. In each plate an approximately equal number of cases and controls were used. Genotyping calls were made using QuantStudioTM 5 Real-Time PCR system (Thermofisher, USA) and QuantStudio software. Hardy–Weinberg equilibrium was checked for all SNPs in the controls. The association analysis was performed with logistic regression adjusting for sex, age (at diagnosis for cases and at recruitment for controls) and country of origin (PANDoRA lacks GWAS data, therefore principal component analysis cannot be performed).

Finally, a fixed effect meta-analysis between the results of the two phases was conducted in the 12,387 individuals included in the two study phases using R software package. The p-value threshold for statistical significance for the individual SNPs was set at 0.05/12,885 = 3.88 × 10−6 considering the number of independent SNPs (r² < 0.80) analyzed in the discovery phase.

Gene based analysis. Additionally, a gene-based and pathways-based analysis were also conducted using the Multi-marker Analysis of GenoMic Annotation (MAGMA) software55. These analyses were restricted to PanScan I-III and PanC4, since for PANDoRA GWAS data are not available. The p value threshold to consider an association statistically significant for the gene based analysis was 0.05/208 = 2.40 × 10−4.

Ethics statement. Each participant in the PanScan and PanC4 studies obtained approval from the responsible institutional review board (IRB) and IRB certification permitting data sharing in accordance with the NIH Policy for sharing of Data Obtained in NIH-Supported or NIH-Conducted Genome Wide Association Studies. The PANDoRA study protocol was approved by the Ethics Commission of the Medical Faculty of the University of Heidelberg. In accordance with the Declaration of Helsinki, written informed consent was obtained from each participant.

Data availability

The PanScan and PanC4 genotyping data are available from the database of Genotypes and Phenotypes (dbGaP, study accession numbers phs000206.v5.p3 and phs000648.v1.p1). The PANDoRA primary data for this work will be made available to researchers who submit a reasonable request to the corresponding author, conditional to approval by the PANDoRA Steering Committee and Ethics Commission of the Medical Faculty of the University of Heidelberg. Data will be stripped from all information allowing identification of study participants.

Received: 20 July 2022; Accepted: 21 October 2022
Published online: 27 October 2022

References

1. Rahib, L. et al. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the united states. Cancer Res. 74, 2913–2921 (2014).
2. Ferlay, J. et al. Cancer statistics for the year 2020: An overview. Int. J. Cancer 149, 778–789 (2021).
3. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 71, 209–249 (2021).
4. Poursamans, A. et al. The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. Gastroenterol. Hepatol. 4, 934–947 (2019).
5. Sumi, C., Brinck-Johnsen, T. & Longnecker, D. S. Inhibition of a transplantable pancreatic carcinoma by castration and estradiol administration in rats. Cancer Res. 49, 6687–6692 (1989).
6. Santen, R. J. et al. Postmenopausal hormone therapy: An endocrine society scientific statement. J. Clin. Endocrinol. Metab. 95, s1–s66 (2010).
7. Wahi, M. M., Shah, N., Schrock, C. E., Rosemurgy, A. S. & Goldin, S. B. Reproductive factors and risk of pancreatic cancer in women: A review of the literature. Amm. Epidemiol. 19, 103–111 (2009).
8. Michels, K. A., Brenton, L. A., Pfeiffer, R. M. & Trabert, B. Oral contraceptive use and risks of cancer in the NIH-AARP diet and health study. Am. J. Epidemiol. 187, 1630 (2018).
9. Teng, Y. et al. Female reproductive factors, exogenous hormone use, and pancreatic cancer risk: The Japan Public Health Center-based prospective study. Eur. J. Cancer Prev. 26, 378–384 (2017).
10. Andersson, G., Borgegust, S. & Jirström, K. Hormonal factors and pancreatic cancer risk in women: The Malmö Diet and Cancer Study. Int. J. Cancer 143, 52–62 (2018).
11. Sadr-Azodi, O., Konings, P. & Brusselselaers, N. Menopausal hormone therapy and pancreatic cancer risk in women: A population-based matched cohort study. United Eur. Gastroenterol. J. 5, 1123–1128 (2017).
12. Butt, S. A. et al. Hormonal contraceptive use and risk of pancreatic cancer—A cohort study among premenopausal women. PLoS ONE 13, e0206358 (2018).
13. Kabat, G. C., Kamensky, V. & Rohan, T. E. Reproductive factors, exogenous hormone use, and risk of pancreatic cancer in postmenopausal women. Cancer Epidemiol. 49, 1–7 (2017).
14. Tang, B. et al. Relationship between female hormonal and menstrual factors and pancreatic cancer: A meta-analysis of observational studies. Medicine Baltimore. 94, e177 (2015).
15. Amundadottir, L. et al. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat. Genet. 41, 986–990 (2009).
16. Petersen, G. M. et al. A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat. Genet. 5, 224–228 (2010).
17. Yang, W. et al. Three novel genetic variants in NR2F2 signaling pathway genes are associated with pancreatic cancer risk. Cancer Sci. 20, 32. https://doi.org/10.1111/cas.14017 (2019).
18. Gentililuzo, M., Peduzzi, G., Lu, Y., Campa, D. & Canzian, F. Genetic polymorphisms in inflammatory genes and pancreatic cancer risk: A two-phase study on more than 14,000 individuals. Mutagenesis 34, 395–401 (2019).
19. Campa, D. et al. Genome-wide association study identifies an early onset pancreatic cancer risk locus. Int. J. Cancer 147, 2065–2074 (2020).
20. Gentililuzo, M. et al. Germ line genetic variability in pancreatic cancer risk and prognosis. Semin. Cancer Biol. https://doi.org/10.1016/j.semcancer.2020.08.003 (2020).
21. Corradi, C. et al. Genome-wide scan of long noncoding RNA single nucleotide polymorphisms and pancreatic cancer susceptibility. Int. J. Cancer 148, 2779–2788 (2021).
22. Rizzato, C. et al. ABO blood groups and pancreatic cancer risk and survival: Results from the PAncreatic Disease ReseArch (PANDoRA) consortium. Oncol. Rep. 29, 1637–1644 (2013).
23. Wolpin, B. M. et al. Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nat. Genet. 46, 994–1000 (2014).
24. Childs, E. J. et al. Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer. Nat. Genet. 47, 911–916 (2015).
25. Campa, D. et al. TERT gene harbors multiple variants associated with pancreatic cancer susceptibility. Int. J. Cancer 137, 2175–2183 (2015).
26. Campa, D. et al. Functional single nucleotide polymorphisms within the cyclin-dependent kinase inhibitor 2A/2B region affect pancreatic cancer risk. Oncotarget 7, 57001–57020 (2016).
27. Zhang, M. et al. Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21. Oncotarget 7, 35 (2016).
28. Klein, A. P. et al. Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nat. Commun. 9, (2018).
29. Xu, X. et al. Genetic variants in the liver kinase B1-AMP-activated protein kinase pathway genes and pancreatic cancer risk. Mol. Carcinog. 58, 1338–1348 (2019).
30. Larson, S. C. et al. Serum estradiol and 20 Site-specific cancers in women: Mendelian randomization study. J. Clin. Endocrinol. Metab. 107, e467 (2022).
31. Johnson, N. et al. CYP3A7*1C allele: Linking premenopausal oestrogen and progesterone levels with risk of hormone receptor-positive breast cancers. Br. J. Cancer 124, 842 (2021).
32. Cote, M. L. et al. Tobacco and estrogen metabolic polymorphisms and risk of non-small cell lung cancer in women. Carcinogenesis 30, 626 (2009).
33. Tang, L. et al. Associations between polymorphisms in genes related to estrogen metabolism and function and prostate cancer risk: Results from the Prostate Cancer Prevention Trial. Carcinogenesis 39, 125 (2018).
34. Quan, L. et al. Variants in estrogen-related genes and breast cancer risk in European and African American women. Endocr. Relat. Cancer 21, 853 (2014).
35. Freedman, N. D. et al. Polymorphisms in estrogen- and androgen-metabolizing genes and the risk of gastric cancer. Carcinogenesis 30, 71 (2009).
36. Galeotti, A. A. et al. Polycyclic and multifactorial scores for pancreatic ductal adenocarcinoma risk prediction. J. Med. Genet. 58, 369–377 (2021).
37. Zhang, Y., Coogan, P. F., Palmer, J. R., Strom, B. L. & Rosenberg, L. A case–control study of reproductive factors, female hormone use, and risk of pancreatic cancer. Cancer Causes Control 21, 473 (2010).
38. Lee, E. et al. Reproductive factors, exogenous hormones, and pancreatic cancer risk in the CTS. Am. J. Epidemiol. 178, 1403–1413 (2013).
39. Chen, K. Y. et al. Estrogen receptor gene polymorphisms and lung adenocarcinoma risk in never-smoking women. J. Thorac. Oncol. 10, 1413–1420 (2015).
40. Lee, Y. Liver receptor homolog-1, an emerging metabolic regulator. Front. Biosci. 5950 (2008).
41. Chen, Q. et al. Association between NRSF2 and the risk of pancreatic cancer, especially among Caucasians: A meta-analysis of case–control studies. Onco. Targets. Ther. 11, 2709–2723 (2018).
42. von Figura, G., Morris, J. P., Wright, C. V. E. & Hebrosk, M. Nrs2 maintains acinar cell differentiation and constrains oncogenic Kras-mediated pancreatic neoplastic initiation. Gut 63, 656–664 (2014).
43. Campa, D. et al. Genetic variability of the forkhead box O3 and prostate cancer risk in the European Prospective Investigation on Cancer. Oncol. Rep. 26, 979–986 (2011).
Acknowledgements
The research used the genotyping data provided by the EPIC, we would like to thank the contributors from the UK. The EPIC-Nordfolk study (https://doi.org/10.22025/2019.10.00004) has received funding from the Medical Research Council [MR/N003284/1 and MC-UU_12015/1] and Cancer Research UK [C864/A14136]. We are grateful to all the participants who have been part of the project and to the many members of the study teams at the University of Cambridge who have enabled this research. This work was supported by intramural funding of DKFZ (Federico Canzian), by Fondazione Tizzi (www.fondazionetizzi.it) and by Fondazione Arpa (www.fondazionearpa.it) (Daniele Campa), by the Czech Health Research Council, project no.: NV19-03-00097 (Beatrice Mohelnikova-Duchonova), by AZV, NU21-07-00247 and Operational Programme Integrated Infrastructure for the project: Integrative strategy in development of personalized medicine of selected malignant tumours and its impact on quality of life, IMTS: 313011V446, co-financed by the European Regional Development Fund (Ludmila Vodickova), by National operation Programm: National Institute for cancer research LX22NPO05102 (Ludmila Vodickova). The research leading to these results has received funding from AIRC under IG 2021-I.D. 26201 project-P.I. Gabriile Capuro. This work was supported by Italian Ministry of Health grants (Ricerca Corrente 2022–2024) to Fondazione “Casa Sollievo della Sofferenza” IRCCS Hospital, San Giovanni Rotondo (FG), Italy and by the “5x1000” voluntary contribution.

Author contributions
D.C. and G.C. designed conceived and designed the study, G.P. performed laboratory work, quality controls and statistical analysis G.P., L.A., V .K., M.G., G.C., D.C. and F .C. drafted the manuscript. All the other authors, provided samples and data, contributed in the analysis of the results. All authors critically read, commented and approved the manuscript.

Competing interests
HWML has acted as a consultant for BMS, Daiichy, Eli Lilly and Company, MSD, Nordic Pharma Group/Taiho, and Servier, and has received unrestricted research grants from Amgen, Bayer Schering Pharma AG, BMS, Celgene, Eli Lilly and Company, GlaxoSmithKline Pharmaceuticals, Merck, MSD, Nordic Pharma Group, Philips, and Roche Pharmaceuticals.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-22973-9.

Correspondence and requests for materials should be addressed to D.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022