A requirement for NF-κB activation in Bcr-Abl-mediated transformation

Julie Y. Reuther,1,2 Gary W. Reuther,4,5 David Cortez,4,6 Ann Marie Pendergast,4 and Albert S. Baldwin, Jr.1,2,3,7

1Lineberger Comprehensive Cancer Center, 2Curriculum in Genetics and Molecular Biology, and 3Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 USA; 4Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710 USA

Bcr-Abl is a chimeric oncoprotein that is strongly implicated in acute lymphoblastic (ALL) and chronic myelogenous leukemias (CML). This deregulated tyrosine kinase selectively causes hematopoietic disorders resembling human leukemias in animal models and transforms fibroblasts and hematopoietic cells in culture. Bcr-Abl also protects cells from death induced on cytokine deprivation or exposure to DNA damaging agents. In addition, the antiapoptotic function of Bcr-Abl is thought to play a necessary role in hematopoietic transformation and potentially in leukemogenesis. The transcription factor NF-κB has been identified recently as an inhibitor of apoptosis and as a potential regulator of cellular transformation. This study shows that expression of Bcr-Abl leads to activation of NF-κB-dependent transcription by causing nuclear translocation of NF-κB as well as by increasing the transactivation function of the RelA/p65 subunit of NF-κB. Importantly, this activation is dependent on the tyrosine kinase activity of Bcr-Abl and partially requires Ras. The ability of Bcr-Abl to protect cytokine-dependent 32D myeloid cells from death induced by cytokine deprivation or DNA damage does not, however, require functional NF-κB. However, using a super-repressor form of IκBα, we show that NF-κB is required for Bcr-Abl-mediated tumorigenicity in nude mice and for transformation of primary bone marrow cells. This study implicates NF-κB as an important component of Bcr-Abl signaling. NF-κB-regulated genes, therefore, likely play a role in transformation by Bcr-Abl and thus in Bcr-Abl-associated human leukemias.

[Key Words: Bcr-Abl; NF-κB; IκB; tumorigenesis; apoptosis]

Received June 16, 1997; revised version accepted January 29, 1998.

In 1960, Nowell and Hungerford identified an abnormally small chromosome in patients with chronic myelogenous leukemia (CML) (Nowell and Hungerford 1960). This abnormal chromosome, which is known as the Philadelphia (Ph1) chromosome, was later identified as the result of a reciprocal translocation between the bcr gene on chromosome 22 and the abl gene on chromosome 9. The fusion of the bcr and abl genes produces a chimeric protein known as Bcr-Abl (Kurzrock et al. 1988; Rosenberg and Witte 1988; Ramakrishnan and Rosenberg 1989). Three different fusion sites result in the formation of different Bcr-Abl protein products named p185, p210, and p230, each differing in the amount of bcr-encoded sequences they contain (Wada et al. 1995; Melo 1996; Pane et al. 1996). p185 Bcr-Abl has been observed in 15%–25% of patients with a very aggressive, short latency leukemia known as acute lymphoblastic leukemia (ALL). The p210 form of Bcr-Abl is the causative mutation in 95% of cases of CML, a less aggressive and longer latency disease (Ramakrishnan and Rosenberg 1989). A 230-kD protein (p230) is the most recent form of Bcr-Abl discovered and is associated with a mild chronic neutrophilic leukemia (Wada et al. 1995; Pane et al. 1996).

The ability of Bcr-Abl to initiate leukemogenesis has been established through extensive studies in cell culture and animal models (Daley et al. 1990; Heisterkamp et al. 1990; Voncken et al. 1995). Bcr-Abl is a deregulated tyrosine kinase that transforms both fibroblasts and hematopoietic cells in culture and cells transformed by Bcr-Abl can form tumors in nude mice (Daley et al. 1990; Pendergast et al. 1993b; Afar et al. 1994; Cortez et al. 1995). Irradiated mice transplanted with bone marrow cells expressing Bcr-Abl produce a myeloproliferative disease resembling CML (Daley et al. 1990). Additionally, animal models have been produced showing that mice expressing p185 Bcr-Abl produce a leukemic disease with a shorter onset than those expressing p210 Bcr-Abl (Kelliher et al. 1991; Voncken et al. 1995).
These observations resemble the clinical differences observed in Ph \(^1\)-ALL and CML.

Bcr-Abl is an inhibitor of hematopoietic cell death normally caused by growth factor removal and DNA damaging agents in vitro (McGahan et al. 1994; Cortez et al. 1995). The inhibition of programmed cell death, or apoptosis, is likely an important component of oncogenesis because its inhibition may provide a selective growth advantage to tumors (Thompson 1995). In fact, the inhibition of apoptosis is thought to play a critical role in Bcr-Abl-mediated leukemogenesis in vivo (Clarkson and Strife 1993). Ras is a necessary component of Bcr-Abl-mediated inhibition of apoptosis in hematopoietic cells and its activation is also necessary for cellular transformation in fibroblasts (Pendergast et al. 1993b; Cortez et al. 1995; Gishizky et al. 1995; Goga et al. 1995; Cortez et al. 1996).

Although the antiapoptotic function of Bcr-Abl plays a role in its ability to transform cells, recent evidence suggests that Bcr-Abl also signals to activate mitogenic signaling pathways (Cortez et al. 1997). In CML, chronic phase cells undergo additional cycles of cell division and in ALL, Bcr-Abl-expressing cells exhibit increased cellular proliferation compared with normal cells (Ribeiro et al. 1987; Clarkson and Strife 1993). Also, Bcr-Abl-expressing hematopoietic cells are able to proliferate in a cytokine-independent manner (Carlesso et al. 1994; Laneuville et al. 1994; Cortez et al. 1995). These observations suggest that Bcr-Abl may not only function to inhibit apoptosis but may also contribute to leukemogenesis by inducing cellular proliferation. A combination of these functions may be necessary for oncogenesis (Cortez et al. 1995).

NF-\(\kappa\)B is a transcription factor that regulates genes involved in immune and inflammatory responses, cell proliferation, and cell differentiation (Grilli et al. 1993; Baeuerle and Henkel 1994; Siebenlist et al. 1994; Baldwin 1996). Presently, there are five members of this family: p50/NF-\(\kappa\)B1, p52/NF-\(\kappa\)B2, RelA/p65, RelB, and c-Rel (Gilmore 1990; Kieran et al. 1990; Neri et al. 1991; Nolan et al. 1991; Ruben et al. 1991; Schmid et al. 1991; Bours et al. 1992; Ryseck et al. 1992). Each of these proteins shares homology in a amino-terminal 300 amino acid region known as the Rel homology domain, which is important for DNA binding and dimerization between family members. This homo- and heterodimerization produces a variety of transcription factors with varying affinities for different NF-\(\kappa\)B DNA binding sites. Classic NF-\(\kappa\)B is a heterodimer composed of a RelA (p65) and p50 subunit (Kawakami et al. 1988; Baeuerle and Baltimore 1989). The regulation of NF-\(\kappa\)B family members is achieved through interactions with a family of inhibitory proteins known as I\(\kappa\)B (Baeuerle and Baltimore 1988). There are multiple members of the I\(\kappa\)B family, including I\(\kappa\)B\(\alpha\) and I\(\kappa\)B\(\delta\), which bind to NF-\(\kappa\)B and sequester it in the cytoplasm (Baldwin 1996). Stimulation of cells with inducers such as tumor necrosis factor \(\alpha\) (TNF\(\alpha\)) and interleukin-1 (IL-1) initiate the activation of a signal transduction cascade that culminates in the phosphorylation of I\(\kappa\)B\(\alpha\) by a recently identified I\(\kappa\)B-specific kinase known as IKK/CHUK (DiDonato et al. 1997; Regnier et al. 1997). Phosphorylation of I\(\kappa\)B\(\alpha\) targets it for ubiquitination and subsequent degradation by the 26S proteasome (Palombella et al. 1994; Traencker et al. 1994; Alkalay et al. 1995; Chen et al. 1995; DiDonato et al. 1995; Lin et al. 1995). Once I\(\kappa\)B\(\alpha\) is degraded, the nuclear localization signal (NLS) of NF-\(\kappa\)B is revealed allowing the translocation of NF-\(\kappa\)B from the cytoplasm into the nucleus where it regulates the transcription of target genes (Beg et al. 1992; Ganchi et al. 1992; Henkel et al. 1992; Zabel et al. 1993). Similar mechanisms are thought to occur for other members of the I\(\kappa\)B family. In addition, recent reports have suggested that an alternative method to NF-\(\kappa\)B activation exists. These data show that NF-\(\kappa\)B-dependent gene expression is regulated not only by nuclear translocation but also at the level of transactivation of NF-\(\kappa\)B in the nucleus (Yozu et al. 1996; Finco et al. 1997; Wesselborg et al. 1997).

Recently, evidence has emerged that NF-\(\kappa\)B plays a role in apoptosis by controlling genes involved in the inhibition of cell death (Arsura et al. 1996). Work from our laboratory and others has shown that inhibition of NF-\(\kappa\)B sensitizes cells to killing by stimuli such as TNF\(\alpha\) and cancer therapy drugs (Beg and Baltimore 1996; Liu et al. 1996; Van Antwerp et al. 1996; Wang et al. 1996). This suggested that NF-\(\kappa\)B may activate genes whose products function to inhibit apoptosis. Additionally, the use of antisense oligonucleotides directed against I\(\kappa\)B to inhibit its activity leads to oncogenic transformation (Beauparlant et al. 1994), and the use of antisense oligonucleotides against NF-\(\kappa\)B results in inhibition of tumorigenesis induced by HTLV-1 Tax (Kitajima et al. 1992). These observations and others have lead to the proposal that NF-\(\kappa\)B may play a fundamental role in controlling oncogenesis (La Rosa et al. 1994; Lee et al. 1995; Baldwin 1996; Finco et al. 1997; Mayo et al. 1997). Together, these data suggest that NF-\(\kappa\)B may be an important target in the signal transduction pathways utilized by the products of oncogenes.

Our data indicates that Bcr-Abl activates NF-\(\kappa\)B-dependent gene expression in a tyrosine-kinase dependent manner. Bcr-Abl signaling leads to an increase in NF-\(\kappa\)B-dependent gene expression by enhancing the nuclear translocation of NF-\(\kappa\)B in 32D myeloid cells as well as by increasing the transactivation function of RelA/p65 in BaF3 pro-B and 32D cells. In addition, Ras is at least partially required for Bcr-Abl-mediated NF-\(\kappa\)B activation. Although NF-\(\kappa\)B has been shown to be antiapoptotic, NF-\(\kappa\)B activity is not a necessary component of the Bcr-Abl mediated antiapoptotic pathway following growth factor deprivation or exposure to DNA damaging agents in 32D cells. These data suggest that Bcr-Abl utilizes an alternative pathway or multiple signaling pathways to protect cells from death. Importantly, tumor challenge studies in nude mice and primary bone marrow transformation assays reveal a requirement for NF-\(\kappa\)B in tumorigenesis and transformation by Bcr-Abl. Therefore, the involvement of NF-\(\kappa\)B in oncogenesis could have important implications for the development of therapies to treat Ph \(^1\)+ leukemias and potentially other cancers.
Results

Bcr-Abl activates NF-κB-dependent gene expression

Activation of NF-κB is associated with its dissociation from IκB molecules in the cytoplasm and subsequent translocation into the nucleus (Finco and Baldwin 1995; Verma et al. 1995). Translocation of NF-κB into the nucleus results in DNA binding at NF-κB-responsive elements, an event that can be monitored through electrophoretic mobility shift assays (EMSA). To address whether Bcr-Abl activates NF-κB, EMSAs were performed on nuclear extracts obtained from 32D myeloid cells stably expressing p185 or p210 Bcr-Abl (32D/p185 or 32D/p210). Parental 32D cells contain little NF-κB DNA-binding activity whereas 32D/p185 or 32D/p210 cells contain increased DNA-binding activity (Fig. 1A). However, Bcr-Abl does not increase NF-κB DNA-binding activity in the pro-B cell line, Baf3 (Fig. 1B). Supershift analyses were performed to identify the components of the induced complexes in 32D cells. Antibodies specific for the p50 and RelA/p65 subunits of NF-κB supershifted the DNA-binding complex activated by Bcr-Abl in 32D cells (Fig. 1A). Therefore, the presence of Bcr-Abl in 32D myeloid cells leads to an increase in authentic NF-κB (p50/p65) DNA-binding activity.

Translocation of NF-κB into the nucleus and subsequent binding to NF-κB-responsive elements leads to an increase in the transcription of NF-κB-regulated genes (Baldwin 1996). Luciferase reporter assays were performed to determine whether the increase in nuclear NF-κB DNA binding found in 32D cells correlates with an increase in NF-κB-dependent gene expression. These assays were performed by use of a luciferase reporter construct fused to a promoter containing three NF-κB binding sites (WT κB luc). Parental 32D cells were transiently cotransfected with WT κB luc and expression constructs for p185 or p210 Bcr-Abl. Expression of either form of Bcr-Abl activates gene expression (Fig. 2A). In addition, 32D/p185 and 32D/p210 stable cell lines also exhibit increased NF-κB-dependent gene expression relative to the parental cell controls (Fig. 2B). A reporter construct with three mutated NF-κB binding sites (mutant κB luc) is not activated by Bcr-Abl expression, indicating that activation of gene expression is NF-κB-dependent (Fig. 2B). Bcr-Abl transforming activity is dependent on the constitutively active tyrosine kinase activity of the Abl portion of the protein (Pendergast et al. 1993b; Afar et al. 1994). Importantly, expression of a mutated form of p210 (p210K-R), which lacks Bcr-Abl tyrosine kinase activity, is unable to activate NF-κB-dependent gene expression (Fig. 2A).

In addition, we tested whether Bcr-Abl could activate NF-κB-dependent gene expression in Baf3 cells. Transient or stable expression of Bcr-Abl in Baf3 cells results in a significant increase in NF-κB-dependent gene expression by use of the luciferase reporter assay (Fig. 2C,D). This result is intriguing because stable expression of Bcr-Abl in Baf3 cells does not lead to an increase in nuclear NF-κB (Fig. 1B). In addition, a kinase inactive form of p185 (p185K-R) is unable to activate NF-κB-dependent gene expression (Fig. 2C). This data suggests that Bcr-Abl may activate NF-κB in Baf3 cells by a mechanism other than nuclear translocation.

v-Abl is the viral transforming counterpart of the cellular gene, c-Abl, and unlike c-Abl it exhibits constitutive tyrosine kinase activity (Rosenberg and Witte 1988). Because Bcr-Abl and v-Abl both exhibit deregulated tyrosine kinase activity and this activity is necessary for NF-κB activation by Bcr-Abl, we were interested in determining whether v-Abl could activate NF-κB activity in 32D myeloid and Baf3 pro-B cells. Transient coexpression of v-Abl and WT κB luc in 32D cells results in an increase in NF-κB-dependent gene expression in both cell types whereas overexpression of c-Abl has no effect on gene expression (data not shown). In addition, coexpression of v-Abl with the mutant κB luc reporter reveals that activation is NF-κB-dependent (data not shown). These experiments indicate that constitutive Abl tyrosine kinase activity results in activation of NF-κB.

Bcr-Abl activates the transactivation domain of RelA/p65 in a Ras-dependent manner

Despite an apparent lack of NF-κB nuclear accumulation in Baf3 cells expressing Bcr-Abl, a significant increase in NF-κB-dependent gene expression is observed. Luciferase reporter assays were performed to determine whether Bcr-Abl can stimulate NF-κB-dependent gene expression by activating the transactivation domain of pre-existing nuclear RelA/p65. Parental Baf3 cells were transiently cotransfected with a luciferase reporter construct fused to a promoter containing five Gal4 DNA-binding sites (Gal–luc), along with expression constructs encoding the Gal4 DNA-binding domain that lacks a transactivation domain (Gal4–DB) or the Gal4 DNA-binding domain fused to transactivation domain 1 (TA1 of RelA/p65 (Gal4–p65) (Schmitz et al. 1995). These transfections were performed in the presence or absence of expression
constructs encoding p185 Bcr-Abl. Transient expression of p185 Bcr-Abl activates the transcription function of Gal4-p65 but has no effect on gene expression in the absence of a transactivation domain (Gal4-DB) (Fig. 3A). In addition, p185K-R is unable to activate Gal4-p65 (Fig. 3A). Also, transient expression of p185 Bcr-Abl does not significantly activate (1.3-fold) Gal4 fused to the transactivation domain of SP1 (Gal4-SP1-B) (data not shown). Whereas 32D cells show an increase in NF-κB nuclear translocation in the presence of Bcr-Abl (Fig. 1A), luciferase reporter assays were performed to determine whether activation of RelA/p65 also plays a role in NF-κB-dependent gene expression by Bcr-Abl in these cells. Expression of p185 Bcr-Abl is able to activate Gal4-p65 in 32D cells without affecting transcription of Gal4-DB (data not shown).

Because Ras activation is a necessary component of Bcr-Abl signaling (Pendergast et al. 1993b; Cortez et al. 1995; Gishizky et al. 1995; Goga et al. 1995; Cortez et al. 1996), we were interested in determining whether the activation of NF-κB by Bcr-Abl also relies on Ras. Parental BaF3 cells were transiently cotransfected with Gal4-luc, Gal4-p65, and an expression construct for p185 Bcr-Abl. This experiment was performed in the presence or

Figure 2. Bcr-Abl activates NF-κB-dependent gene expression. (A) Luciferase reporter assay of 32D cells coelectroporated with a NF-κB luciferase reporter (WT κB luc) and empty expression vector or expression vectors for p185, p210, or p210K-R Bcr-Abl. (B) Luciferase reporter assay of 32D, 32D/p185, and 32D/p210 stable cell lines coelectroporated with WT κB luc reporter or a mutant NF-κB luciferase reporter (mutant κB luc) and a LacZ expression vector. Luciferase results were normalized to β-galactosidase activity. (C) Luciferase reporter assay of BaF3 cells coelectroporated with WT κB luc and empty expression vector or expression vectors for p185 or p185K-R Bcr-Abl. (D) Luciferase reporter assay of BaF3 and BaF3/p185 stable cell lines coelectroporated with WT κB luc or mutant κB luc and a LacZ expression vector. Luciferase results were normalized to β-galactosidase activity. Data shown are from representative experiments where electroporations were performed in triplicate. Fold activation is indicated ±S.D.

Figure 3. Bcr-Abl partially signals through Ras to activate the transactivation domain of RelA/p65. (A) Luciferase reporter assay of BaF3 cells coelectroporated with a Gal4 luciferase reporter (Gal-luc) and empty expression vector (open bar) or expression vectors for p185 (solid bar) or p185K-R (hatched bar) Bcr-Abl along with expression vectors for the Gal4 DNA-binding domain (Gal4) or the Gal4 DNA-binding domain fused to transactivation domain 1 of p65 (Gal4-p65). (B) Luciferase reporter assay of BaF3 cells coelectroporated with Gal-luc, Gal4-p65, and an empty expression vector (open bar) or expression vector for p185 (solid bar) Bcr-Abl in the presence or absence of 10 or 20 ng of Ras A17.
absence of a dominant negative form of Ras that contains an alanine mutation at amino acid 17 (RasA17). Expression of RasA17 blocked the ability of Bcr–Abl to fully activate NF-κB (Fig. 3C). In addition, expression of RasA17 has no effect on NF-κB-dependent gene expression in response to TNFα (data not shown), indicating that RasA17 does not decrease gene expression nonspecifically or inhibit NF-κB in BaF3 cells. Also, β-galactosidase staining revealed that no significant cell death was observed in the presence of RasA17 in BaF3 cells (data not shown). These results support a model in which Bcr–Abl leads to the activation of RelA/p65 by requiring a signaling pathway that, at least in part, utilizes a Ras or Ras-like molecule.

Bcr–Abl does not require NF-κB to protect cells from death following IL-3 withdrawal

To address the role of NF-κB activation in Bcr–Abl signaling, it was necessary to inhibit NF-κB activity in Bcr–Abl expressing cells. To block NF-κB activation, we utilized a super-repressor form of IκBα. This IκBα contains serine to alanine mutations at the sites of inducible phosphorylation (serines 32 and 36). Phosphorylation of these serines is required for IκBα degradation and subsequent NF-κB activation (Brockman et al. 1995; Brown et al. 1995; Traenckner et al. 1995; Whiteside et al. 1995; DiDonato et al. 1996). Therefore, this mutated form of IκBα (IκBα-super-repressor; IκBα-SR) is unable to be inducibly phosphorylated and subsequently degraded and, therefore, continuously sequesters NF-κB in the cytoplasm. Like IκBα, the IκBα-SR not only inhibits nuclear translocation of NF-κB but also enters the nucleus and removes NF-κB bound to DNA (Zabel and Baeuerle 1990).

To test the role that NF-κB plays in Bcr–Abl signaling we introduced the IκBα-SR into Bcr–Abl-expressing 32D cells. 32D/p185 or 32D/p210 cells were infected in the presence of IL-3 with a retrovirus expressing the IκBα-SR. Mass populations and clonal cell lines were obtained by G418 selection that express both Bcr–Abl and the IκBα-SR (32D/p185/SR; 32D/p210/SR) (Fig. 4A). Western blot analysis reveals that these cells show a dramatic loss of endogenous IκBα (Fig. 4A). Loss of endogenous IκBα in cells expressing the highly stable IκBα-SR most likely reflects a decrease in free IκBα (caused by the short half-life of uncomplexed IκBα) and a decrease in IκBα gene expression, which is regulated by NF-κB (Brown et al. 1993; Rice and Ernst 1993; Scott et al. 1993; Sun et al. 1993; Chiá et al. 1994). Therefore, the loss of endogenous IκBα is a good indication of the presence of a functional IκBα-SR. EMSAs were performed to determine whether the IκBα-SR is, in fact, functional in inhibiting NF-κB activity in Bcr–Abl-expressing cells. These analyses revealed that the increased NF-κB DNA binding observed in 32D/p185 and 32D/p210 cells is eliminated in 32D/p185/SR and 32D/p210/SR cells (Fig. 4B).

It has been shown that TNFα treatment of cells ex-

![Figure 4](image-url)
expressing the IκBα-SR or of cells that lack expression of RelA/p65 (p65−/−) results in apoptosis (Beg and Baltimore 1996; Van Antwerp et al. 1996; Wang et al. 1996). Therefore, as an additional test to determine whether the IκBα-SR is functional in 32D/Bcr–Abl cells, 32D, 32D/p210, a 32D/p210/SR mass population (mp), and a 32D/p210/SR clonal cell line (H3) were treated with TNFα. Percent viability and apoptosis were monitored at various times following TNFα treatment. 32D and 32D/p210 cells remained viable and showed little apoptosis whereas the 32D/p210/SR-mp and the 32D/p210/SR clonal cell line (H3) significantly lost cell viability and readily underwent apoptosis following 24 hr TNFα treatment (Fig. 4C). Similar results were obtained in 32D/p185/SR-mp cells and in all clones analyzed (data not shown). Interestingly, the 32D/p210/SR-mp cells did not undergo as extensive apoptosis as the clonal cell lines did. We found, through Western blot analysis, that cells exist in the mass population that express very little or no IκBα-SR (data not shown). These cells would not be expected to die in response to TNFα and the population, as a whole, would exhibit decreased apoptosis as observed in the data obtained above. The difference between the IκBα-SR mass populations and the clonal cell lines will become an important point in a later section (see below). Therefore, the IκBα-SR is functional because it inhibits NF-κB activity by Bcr−Abl and inhibits NF-κB-dependent gene expression that is required to inhibit apoptosis in response to TNFα (Beg and Baltimore 1996; Liu et al. 1996; Van Antwerp et al. 1996; Wang et al. 1996).

32D cells rapidly undergo apoptosis when grown in the absence of IL-3 (Valitieri et al. 1987). However, the requirement for IL-3 is abolished when the cells express Bcr−Abl because apoptosis is blocked by Bcr−Abl in these cells (Daley and Baltimore 1988; Cortez et al. 1995). Coincubation of the IκBα-SR with Bcr−Abl in 32D cells block Bcr−Abl-mediated activation of NF-κB (Fig. 4A–C). To determine the effect of NF-κB inhibition on the ability of Bcr−Abl to inhibit apoptosis, we monitored 32D/p185/SR cell viability following IL-3 withdrawal. Cell death was not observed upon IL-3 withdrawal of 32D/p185/SR cells because Bcr−Abl continued to render the cells IL-3-independent even in the presence of the IκBα-SR (Fig. 4D). Similar results were obtained with 32D/p210/SR cells (data not shown). Significant cell death was observed in 32D parental control cells following IL-3 withdrawal (Fig. 4D). It is important to note that 32D/Bcr−Abl/SR cells can survive in the absence of IL-3 whether the cell lines are obtained by infecting 32D/Bcr−Abl/SR cells can survive in the absence of IL-3 whether the cell lines are obtained by infecting 32D/Bcr−Abl/SR cells can survive in the absence of IL-3 whether the cell lines are obtained by infecting 32D/Bcr−Abl cells with the IκBα-SR or by introducing Bcr−Abl into 32D/SR cells (data not shown). Identical results were also obtained in DAGM/p210/SR myeloid cells (data not shown). In addition, 32D/Bcr−Abl cells expressing the IκBα-SR do not exhibit measurable growth defects compared with controls as shown through growth curve analysis and flow cytometric profiles (data not shown). Bcr−Abl also inhibits apoptosis in response to exposure to DNA damaging agents (Laneuville et al. 1994; McGahon et al. 1994; Cortez et al. 1995). However, 32D/Bcr−Abl and 32D/Bcr−Abl/SR cells respond identically to DNA damage induced by etoposide treatment or exposure to ionizing radiation (data not shown). Therefore, NF-κB activation is not required for Bcr−Abl to inhibit apoptosis of 32D cells following IL-3 withdrawal or in response to various DNA damaging agents (see also Discussion).

32D/Bcr−Abl cells expressing the IκBα-SR are deficient in their ability to cause tumor formation in nude mice

Whereas parental 32D cells are nontumorigenic, expression of Bcr−Abl in these cells generates a cell line capable of forming tumors in nude mice (Daley and Baltimore 1988; Pendergast et al. 1993b; Afar et al. 1994; Cortez et al. 1995). Recent evidence indicates that NF-κB may be involved in oncogenic transformation (Kitajima et al. 1992; Beauparlant et al. 1994; La Rosa et al. 1994; Lee et al. 1995; Baldwin 1996; Finco et al. 1997; Mayo et al. 1997). Therefore, our observations that Bcr−Abl activates NF-κB functional activity led us to examine whether NF-κB is involved in the tumorigenic potential of Bcr−Abl. 32D/Bcr−Abl cells and 32D/Bcr−Abl/SR-mp cells expressing the IκBα-SR were injected subcutaneously into 5- to 6-week-old athymic nude mice and tumor formation was monitored. 32D/p185 and 32D/p210 cells formed tumors which were first observed ~9 days postinjection. The appearance of 32D/Bcr−Abl/SR-mp tumors occurred ~12 days postinjection. Interestingly, at 18 days postinjection, 32D/p185/SR-mp or 32D/p210/SR-mp cells had formed tumors of greatly reduced size as compared with wild-type Bcr−Abl tumors (Table 1, Fig. 5A). Western blot analysis of tumors from 32D/p185/SR-mp/SR cell injections indicate that the cells in these tumors no longer express the IκBα-SR and endogenous IκBα levels are equivalent to those in tumors formed by 32D/p185 (Fig. 5B). Bcr−Abl is still expressed in these tumors (data not shown). Similar results were obtained with 32D/p210/SR

32D cell line	Observation of tumors formed 18 days postinjection	
p210	5/5	510 ±103
p210/SR	12/13	110 ±26
p210/SR clones	0/8	-
p185	5/5	1073 ±323
p185/SR	13/13	209 ±47
p185/SR clones	0/4	-

*Animals with tumors were sacrificed 18 days postinjection, the tumors were removed and weighed; mass of tumors is represented in mg ± s.e.m.

**Bcr−Abl/SR clonal injections represent four clonal isolates: two p210/SR clones and two p185/SR clones. Tumors eventually appeared in 4 of 12 clonal injections (see text).
Expression of the I\(\kappa\)B-SR inhibits transformation of primary bone marrow cells by Bcr–Abl

Although NF-\(\kappa\)B is required for Bcr–Abl-mediated tumorigenicity in an established 32D cell line (Table 1), we were interested in determining whether NF-\(\kappa\)B is also required for Bcr–Abl-mediated transformation of primary pre-B lymphocytes. Expression of Bcr–Abl from a retroviral vector causes transformation of primary mouse bone marrow cells resulting in outgrowth of pre-B lymphocytes in vitro (Rosenberg and Baltimore 1978; Whitlock and Witte 1982; McLaughlin et al. 1987). To determine whether NF-\(\kappa\)B is necessary for Bcr–Abl-mediated transformation of hematopoietic cells, primary bone marrow transformation assays have been used successfully in previous studies investigating downstream requirements of Bcr–Abl-mediated transformation (Sawyers et al. 1992; Dickens et al. 1997; Skorski et al. 1997). To ensure that both p185 Bcr–Abl and the I\(\kappa\)B-SR were simultaneously expressed in each infected cell, we constructed bicistronic retroviral vectors that allow the simultaneous expression of two genes from a single retrovirus. Infection of primary bone marrow cells with control bicistronic retrovirus (empty–empty) does not lead to transformation of the cultures (Table 2). Infection of primary bone marrow cells with a bicistronic retrovirus that contains the gene to express only p185 Bcr–Abl (p185–empty) or a retrovirus that encodes for

Table 2. Growth of primary bone marrow cell cultures following infection with Bcr–Abl or Bcr–Abl/l\(\kappa\)B-SR retroviruses

Virus	Number of infected cell cultures that have reached 1 \(\times\) 10^6 cells/ml	day 15	day 20	day 26
empty–empty		0/9	0/9	0/9
p185–empty		4/9	8/9	8/9
p185–Sense–l\(\kappa\)B–SR		1/9	3/9	3/9\(^a\)
p185–Antisense–l\(\kappa\)B–SR		0/3	2/3	3/3

\(^a\)Cell counts were monitored on a daily basis; cultures reaching >1 \(\times\) 10^6 cells/ml are considered transformed.

\(^b\)Western analysis reveals that these three transformed cultures do not express the I\(\kappa\)B-SR.
both p185 Bcr–Abl and the antisense sequence to the
IκBα-SR (p185–A5-IκBα-SR) leads to the growth of trans-
formed bone marrow cell cultures (Table 2). However,
infection of bone marrow cells with a retrovirus that
encodes both p185 Bcr–Abl and the antisense sequence to the
IκBα-SR (p185-IκBα-SR) results in transformation of only three of nine bone
marrow cell culture samples (Table 2). Importantly,
Western blot analysis of these three transformed samples
reveals that the IκBα-SR is not expressed in these cells
(data not shown). These data resemble results obtained
in the tumor formation assays (Table 1), in which suc-
sessful tumor growth caused by Bcr–Abl/IκBα-SR
was associated with loss of expression of the IκBα-SR
(Fig. 5B). Similar results to those generated with the Bcr–Abl/IκBα-SR
bicistronic virus were obtained when pri-
mary bone marrow cells were infected with two retrovi-
ruses separately encoding p185 Bcr–Abl and the IκBα-SR
(data not shown). It should be noted that we were able to
sustain growth of bone marrow cultures that express the
IκBα-SR under the condition of G418 selection and in the
presence of exogenously added growth factors that allow
growth of primary bone marrow cells without the re-
quirement for transformation (Skorski et al. 1996) (data
not shown). This indicates that the IκBα-SR is not toxic
to the growth of primary bone marrow cells. Together,
this data strongly indicates a positive role for NF-κB in
leukemic transformation by Bcr–Abl.

Discussion

In this study we identify NF-κB as a downstream com-
ponent of a Bcr–Abl-initiated signaling pathway. Utilizing
electrophoretic mobility shift analyses and transcription-
al luciferase reporter assays we show that Bcr–Abl
activates NF-κB functional activity in 32D myeloid and
Ba3 pro-B cells. NF-κB activity is not necessary for nor-
mal IL-3 signaling in 32D cells or in DAGM myeloid
cells (data not shown) and is not necessary for the ability
of Bcr–Abl to inhibit apoptosis in response to IL-3 with-
drawal. However, NF-κB activity is required for tumori-
genesis and transformation initiated by Bcr–Abl.

Whereas the role for NF-κB in tumorigenesis has yet to
be firmly established, recent work has suggested that
this transcription factor may play a role in this process.
The inhibition of NF-κB activity through the use of an-
tisense oligonucleotides to p65 was shown to inhibit
HTLV-1 Tax-induced tumorigenesis (Kitajima et al. 1992).
More recently, NF-κB activation has been shown to be
necessary for tumor formation by Hodgkin’s lymp-
phoma cells in mice (Bargou et al. 1997). Also, an in-
crease in NF-κB levels were identified in breast cancer
cell lines, primary human breast cancer tumors and in
primary rat mammary tumors when compared with non-
transformed controls (Sovak et al. 1997). In addition, NF-
κB transcriptional activity is required for oncogenic Ras-
duced cellular transformation (Finco et al. 1997),
which likely occurs through the inhibition of transfor-
mation-associated apoptosis (Mayo et al. 1997). The role
of NF-κB in Bcr–Abl-mediated transformation is
unknown and is currently under investigation.

The signaling pathway(s) employed by Bcr–Abl to ac-
tivate NF-κB remains to be elucidated. Classically, NF-
κB is activated by extracellular stimulation that utilizes
a signaling pathway that leads to IκBα phosphorylation,
ubiquitination, and degradation by the 26S proteasome
(Finco et al. 1995; Verma et al. 1995). Free NF-κB is then
capable of entering the nucleus to increase the transcrip-
tion of target genes. 32D cells expressing Bcr–Abl show
an increase in nuclear NF-κB (see Fig. 1). Therefore, Bcr–
Abl may utilize a similar signaling pathway in 32D cells
to target IκBα degradation and subsequent NF-κB nuclear
translocation. A hallmark event of this pathway is IκBα
phosphorylation, however, we have not determined
whether IκBα phosphorylation plays a role in Bcr–Abl-
mediated activation of NF-κB in these cells. Also, Bcr–Abl
activates NF-κB-dependent gene expression in Ba3
cells without causing nuclear translocation of NF-κB (see
Figs. 1 and 2), implicating alternative pathways to NF-κB
activation by Bcr–Abl. Recent data from our laboratory
and others have suggested that the activation of NF-κB-
dependent gene expression is not entirely regulated by
the nuclear translocation of NF-κB (Yozu et al. 1996;
Finco et al. 1997; Wesselsborg et al. 1997). Expression of
oncogenic Ras in NIH-3T3 cells results in the activation
of NF-κB-dependent gene expression in the absence
of nuclear translocation. Further investigation revealed
that NF-κB-dependent gene expression by Ras is induced
by activating the transactivation function of p65 (Finco
et al. 1997). Similarly, Bcr–Abl activates RelA/p65 in a
Ras-dependent manner. Bcr–Abl activation of NF-κB in
32D cells may be, in part, caused by the modest increase
in nuclear translocation as well as an increase in trans-
activation potential. Therefore, Bcr–Abl may signal via
multiple pathways to activate NF-κB.

Bcr–Abl signals to NF-κB activation through a Ras-
dependent pathway. Ras has been shown to play a criti-
cal role in the antiapoptotic and transforming signal eli-
cited by Bcr–Abl (Pendergast et al. 1993b; Cortez et al.
1995; Gishizky et al. 1995; Goga et al. 1995). Whereas
the mechanism of Ras-mediated activation of NF-κB is
not known, Bcr–Abl activates PI3K and JNK (Raitano et
al. 1995; Cortez et al. 1997; Skorski et al. 1997), both of
which can function downstream of Ras and may be capa-
bile of stimulating NF-κB transcriptional activity inde-
dependent of inducing nuclear translocation. Inhibition of
Ras function blocks NF-κB activation and also inhibits
Bcr–Abl-mediated transformation.

Although our data clearly show that Bcr–Abl activates
NF-κB, additional data show that Bcr–Abl is able to delay
and reduce NF-κB activation that occurs in response to
TNFα stimulation by negatively regulating the degrada-
tion of IκBα (J.Y. Reuther and A.S. Baldwin, unpubl.). It is
possible that Bcr–Abl is simply affecting signaling down-
stream of the tumor necrosis factor receptor (TNFFR).
However, this data may reveal a dual function for Bcr–
Abl that also appears to occur with v-Abl. v-Abl activates
NF-κB (data not shown) but has also been shown to block
immunoglobulin in light-chain gene rearrangement and
the constitutive NF-κB binding activity present in IL-7 ex-
panded pre-B cells by negatively regulating IκBα degra-
ition (Chen et al. 1994; Klug et al. 1994). It is possible that v-Abl activates the transactivation function of RelA/p65 as does Bcr-Abl and that the inhibition of NF-kB DNA binding by these activated tyrosine kinases is a distinct and separate pathway from that which leads to an increase in the transactivation function of RelA/p65. These different methods of regulating NF-kB may reflect a need to tightly control the expression of genes regulated by NF-kB and may indicate distinct functions for increased nuclear accumulation of NF-kB versus the activation of the transactivation function of RelA/p65 by Bcr-Abl.

Because our laboratory and others have shown a role for NF-kB in the inhibition of apoptosis (Arsura et al. 1994; Beg and Baltimore 1996; Van Antwerp et al. 1996; Liu et al. 1996; Wang et al. 1996) we were surprised to find that NF-kB was not required by Bcr-Abl to inhibit apoptosis in response to IL-3 withdrawal or upon exposure to etoposide and ionizing radiation (data not shown). However, it is possible that Bcr-Abl elicits multiple pathways to inhibit apoptosis (including NF-kB), and the inhibition of any one signal may not induce apoptotic conditions in culture. Bcr-Abl activates phosphatidylinositol-3 kinase (PI-3-kinase) and Akt, which have been shown to mediate the inhibition of apoptosis in hematopoietic cells in response to IL-3 (Skorski et al. 1995, 1997; Kennedy et al. 1997; Songyang et al. 1997). In addition, the antiapoptotic function of Bcr-Abl has been linked to its ability to activate Ras and in some cells to increase Bcl-2 expression (Sanchez-Garcia and Grutz 1995; Cortez et al. 1996). Bcr-Abl may use multiple pathways to block apoptosis and cause deregulated proliferation. Therefore, the inhibition of NF-kB by the IκBα-SR may not be sufficient to demonstrate a potential role for NF-kB as an antiapoptotic factor, at least in 32D cells. In addition, although the inhibition of NF-kB does not lead to apoptosis of Bcr-Abl-expressing cells upon IL-3 withdrawal in vitro, it is possible that the antiapoptotic function of NF-kB may be critical in primary bone marrow cell transformation or during the development of tumors in mice.

Because Bcr-Abl activates NF-kB and because NF-kB is required for Bcr-Abl-mediated tumorigenesis and transformation, it is likely that the products of NF-kB responsive genes play a role in Bcr-Abl-mediated leukemogenesis. In hematopoietic cells, growth factor deprivation results in a decrease in c-myc mRNA and protein. However, cells expressing Bcr-Abl maintain elevated levels of c-myc mRNA and protein following growth factor deprivation. In addition, c-myc is required for transformation by Bcr-Abl (Sawyers et al. 1992). These results may reflect the ability of Bcr-Abl to activate transcription factors that positively regulate the c-myc promoter. The identification of two NF-kB sites in the c-myc promoter/enhancer and the realization that activation of c-myc by IL-1 requires functional NF-kB binding sites led to the discovery that NF-kB regulates c-myc transcription (La Rosa et al. 1994). The regulation of c-myc by NF-kB provides evidence of a role for NF-kB in growth control, and, therefore, Bcr-Abl may, in part, use NF-kB to maintain c-myc expression. However, it has been shown recently that v-Abl can activate the c-myc promoter through E2F in a Ras-dependent manner (Wong et al. 1995; Zou et al. 1997). It is possible that E2F as well as NF-kB play a role in the regulation of the c-myc promoter downstream of activated Abelson tyrosine kinases. The loss of tumorigenesis may also result from a loss in expression of cell surface proteins involved in cell adhesion that are regulated by NF-kB (Baldwin 1996). These cell surface proteins may be required to provide proper cellular interactions for tumor formation. In addition, it still remains that NF-kB may play a role in the inhibition of apoptosis and that these effects can only be realized in tumor formation in nude mice or in transformation of primary bone marrow cells. Therefore, Bcr-Abl/SR cells may be deficient in tumorigenesis or transformation because of an increase in apoptosis.

Future studies will be directed toward addressing the role NF-kB plays in Bcr-Abl-mediated tumorigenesis and transformation. Although the precise mechanism(s) by which inhibition of NF-kB impairs Bcr-Abl-mediated transformation is unclear, the finding that NF-kB is activated by Bcr-Abl and is required for oncogenesis provides new insights into Bcr-Abl signaling. It will be important to conduct further experiments to determine whether NF-kB inhibitors will have therapeutic potential for Ph+ ALL and CML.

Materials and methods

Cell culture

Cells stably expressing Bcr-Abl (p185tkneo or p210tkneo) were obtained by retroviral infection of 32D and DAgM cells or by electroporation of Bcr-Abl (p185pSRα or p210pSRα) followed by IL-3 deprivation. Cells expressing Flag-IκBα352/36A (IκBα-SR) were obtained by retroviral infection of 32D, 32D/p185pSRα, and 32D/p210pSRα cells growing in the presence of WEHI-conditioned medium (WEHI-cm) as a source of IL-3 (32D/32D/p185pSRα, or p210/SR). Helper-free retroviral stocks were produced with the pSRα-MSVTKneo vector as described previously (Muller et al. 1991). Retroviruses were produced in Bosc-23 cells or in 293T cells (Pep et al. 1993). Retroviral infections were performed as described previously (Pendergast et al. 1993a). G418 (0.5 mg/ml, GibCO-BRL, Gaithersburg, MD) was added 48 hr postinfection to select for populations expressing the genes. Clonal cell lines were obtained by limiting dilution. Expression of Bcr-Abl and the IκBα-SR was confirmed by Western blotting.

32D myeloid, DAgM myeloid, and BaF3 pro-B cells were maintained in RPMI-1640 medium supplemented with 10% fetal calf serum (FCS, GibCO-BRL), 10% WEHI-cm, and 100 µg/ml penicillin and 100 µg/ml streptomycin (P/S, Sigma Chemical Co.). 32D/p185tkneo, 32D/p210tkneo, 32D/p185/SR, and 32D/p210/SR cells were maintained in RPMI-1640 medium supplemented with 10% FCS, 32D/p210/SR, and 32D/p210pSRα cells were maintained in RPMI-1640, 10% FCS, and P/S unless otherwise indicated.

Plasmids

The Flag-IκBα-SR expression vector is a gift from D. Ballard (Vanderbilt University, Nashville, TN) and has been described.
previously (Brockman et al. 1995). 3XMHC WT luc (WT X B luc) and 3XMHC mutant luc (mutant X B luc) are gifts from B. Sugden (University of Wisconsin, Madison) (Mitchell and Sugden 1995). Gal4-SP1-B is a gift from X. Wang (Duke University Medical Center, Durham, NC). RasA17 is a gift from C. Der (University of North Carolina, Chapel Hill). To construct the retroviral construct was confirmed by Western blotting of the one described previously in Sawyers et al. (1992). Briefly, 5 × 10^6 freshly isolated bone marrow cells were plated 18–24 hr prior to treatment. TNFα (Promega Corp., Madison, WI) was added to 10 ng/ml and samples were incubated at 37°C for the indicated times. Whole cell extracts of Rat1 fibroblasts followed by indirect immunofluorescence to detect Bcr-Abl. Bone marrow transformation assay was performed as described (McLaughlin et al. 1987, 1989; Sawyers et al. 1992). Briefly, 5 × 10^5 freshly isolated bone marrow cells from BALB/c mice (Charles River Laboratories) were infected with equivalent titers of the bicistronic retroviruses encoding Bcr-Abl and the IκBα-SR in the presence of 4 µg/ml Polybrene for 6 hr. The cells were then plated in 4 ml of IMDM containing 10% FBS, 55 µM β-mercaptoethanol, glutamine, and P/S. Cultures were fed twice weekly and nonadherent cell counts were determined. Cultures reaching a nonadherent cell density of 1 × 10^6 cells/ml were considered transformed.

Acknowledgments

We thank Patricia C. Cogswell for assistance with removing tumors from the animals and for advice on transfections. We also thank Robert C. Quackenbush and Patricia Zipfel for assistance with the bone marrow transformation assay. We thank Dean Ballard for Flag-IκBα-SR expression vector; Bill Sugden for WT and mutant X B luc reporter constructs; Xiao-Fan Fang for Gal4-SP1-B expression vector; and Channing Der for RasA17 expression vector. J.Y.R. was supported by a predoctoral National Institutes of Health (NIH) training grant. G.W.R. was supported by an Environmental Protection Agency Fellowship. D.C. was a Howard Hughes Medical Institute predoctoral fellow. A.M.P. is a Whitehead Scholar and a Scholar of the Leuke-
References

Afar, D.E.H., A. Goga, J. McLaughlin, O.N. Witte, and C.L. Sawyers. 1994. Differential complementation of Bcr-Abl point mutants with c-Myc. Science 264: 424-426.

Alkalay, I., A. Yaron, A. Hatzubai, S. Jung, A. Avraham, O. Gerlitz, I. Pashut-Lavon, and Y. Ben-Neriah. 1995. In vivo stimulation of I kappa B phosphorylation is not sufficient to activate NF- kappa B. Mol. Cell. Biol. 15: 1294–1301.

Arsura, M., M. Wu, and G.E. Sonenshein. 1996. TGFp1 inhibits NF-fB or Rel activity inducing apoptosis of B cells: Transcriptional activation of IxB. Immunity 5: 31–40.

Baeuerle, P.A. and D. Baltimore. 1988. I kappa B: A specific inhibitor of the NF-kappa B transcription factor. Science 242: 540–546.

________. 1989. A 65-kD subunit of active NF-kB is required for inhibition of NF-kB by IxB. Genes & Dev. 3: 1689–1698.

Baeuerle, P.A. and T. Henkel. 1994. Function and activation of NF-kappa B in the immune system. Annu. Rev. Immunol. 12: 141–179.

Baldwin, A.S. 1996. The NF-kappa B and I-kappa B proteins: New discoveries and insights. Annu. Rev. Immunol. 14: 649–681.

Baldwin, A.S. and P.A. Sharp. 1987. Binding of a nuclear factor to a regulatory sequence in the promoter of the mouse H-2Kb class I major histocompatibility gene. Mol. Cell. Biol. 7: 303–313.

________. 1989. Two transcription factors, NF-kappa B and H2F1, interact with a single regulatory sequence in the class I major histocompatibility complex promoter. Proc. Natl. Acad. Sci. 84: 723–727.

Bargou, R.C., F. Emmerich, D. Krappmann, M.Y. Mapara, W. Arnold, H.D. Rojer, A. Grinstein, A. Greiner, C. Schiedereit, and B. Dorken. 1997. Constitutive nuclear factor-kB/RelA activation is required for proliferation and survival of Hodgkin’s Disease tumor cells. J. Clin. Invest. 100: 2961–2969.

Beauparlant, P., I. Kwan, R. Bitar, P. Chou, A.E. Konomilas, N. Sonenberg, and J. Hiscott. 1994. Disruption of I kappa B alpha regulation by antisense RNA expression leads to malignant transformation. Oncogene 9: 3189–3197.

Beg, A.A., and D. Baltimore. 1996. An essential role for NF-kB in preventing TNFalpha-induced cell death. Science 272: 784–782.

Beg, A.A., S.M. Ruben, R.I. Scheinman, S. Haskill, C.A. Rosen, and A.S. Baltimore, Jr. 1992. IxB interacts with the nuclear localization sequences of the subunits of NF-kB: A mechanism for cytoplasmic retention. Genes & Dev. 6: 1899–1913.

Beg, A.A., T.S. Finco, P.V. Nartenet, and J.A.S. Baldwin. 1993. Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of IxB: A mechanism for NF-kB activation. Mol. Cell. Biol. 13: 3301–3310.

Bours, V., P.R. Burd, K. Brown, J. Villalobos, S. Park, R.P. Ryseck, R. Bravo, K. Kelly, and U. Siebenlist. 1992. A novel mitogen-inducible gene product related to p50/p105-NF-kappa B participates in transactivation through a kappa B site. Mol. Cell. Biol. 12: 685–695.

Brockman, J.A., D.C. Scherer, T.A. McKinsey, S.M. Hall, X. Qi, W.Y. Lee, and D.W. Ballard. 1995. Coupling of a signal response domain in IxB to multiple pathways for NF-kB activation. Mol. Cell. Biol. 15: 2809–2818.

Brown, K., S. Park, T. Kanno, G. Franzoso, and U. Siebenlist. 1993. Mutual regulation of the transcriptional activator NF-kappa B and its inhibitor, I kappa B-alpha. Proc. Natl. Acad. Sci. 90: 2532–2536.

Brown, K., S. Gerstberger, L. Carlson, G. Franzoso, and U. Siebenlist. 1995. Control of IxB-proteolysis by site-specific, signal-induced phosphorylation. Science 267: 1485–1488.

Carlesso, N., J.D. Griffin, and B.J. Duker. 1994. Use of a temperature-sensitive mutant to define the biological effects of the p210 BCR-ABL tyrosine kinase on proliferation of a factor-dependent murine myeloid cell line. Oncogene 9: 149–156.

Chen, Y.-Y., L.C. Wang, M.S. Huang, and N. Rosenberg. 1994. An active v-abl protein tyrosine kinase blocks immunoglobulin light-chain gene rearrangement. Genes & Dev. 8: 688–697.

Chen, Z., J. Hagler, V.J. Palombella, F. Melandri, D. Scherer, D. Ballard, and T. Maniatis. 1995. Signal-induced site-specific phosphorylation targets IxB alpha to the ubiquitin-proteasome pathway. Genes & Dev. 9: 1586–1597.

Chiao, P.J., S. Miyamoto, and I.M. Verma. 1994. Autoregulation of I kappa B alpha activity. Proc. Natl. Acad. Sci. 91: 28–32.

Clarkson, B. and A. Strife. 1993. Linkage of proliferative and maturational abnormalities in chronic myelogenous leukemia and relevance to treatment. Leukemia 7: 1683–1721.

Cortez, D., L. Kadlec, and A.M. Pendergast. 1995. Structural and signaling requirements for BCR-ABL-mediated transformation and inhibition of apoptosis. Mol. Cell. Biol. 15: 5531–5541.

Cortez, D., G. Stoica, J.H. Pierce, and A.M. Pendergast. 1996. The BCR-ABL tyrosine kinase inhibits apoptosis by activating a Ras-dependent signaling pathway. Oncogene 13: 2589–2594.

Cortez, D., G.W. Reuther, and A.M. Pendergast. 1997. The Bcr-Abl tyrosine kinase activates mitogenic signaling pathways and stimulates G1 to S phase transition in hematopoietic cells. Oncogene 15: 2333–2342.

Daley, G.Q. and D. Baltimore. 1988. Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia specific p210 BCR/ABL protein. Proc. Natl. Acad. Sci. 85: 9312–9316.

Daley, G.Q., R.A. VanEtten, and D. Baltimore. 1990. Induction of chronic myelogenous leukemia in mice by the P210 bcr/ abl gene of the Philadelphia chromosome. Science 247: 824–830.

Dickens, M., J.S. Rogers, J. Cavanagh., A. Raitano, Z. Xia, J.R. Halpern, M.E. Greenberg, C.L. Sawyers, and R.J. Davis. 1997. A cytoplasmic inhibitor of the JNK signal transduction pathway. Science 277: 693–696.

DiDonato, J.A., F. Mercurio, and M. Karin. 1995. Phosphorylation of I kappa B alpha precedes but is not sufficient for its dissociation from NF-kappa B. Mol. Cell. Biol. 15: 1302–1311.

DiDonato, J., F. Mercurio, C. Rosette, J. Wu-Li, H. Suyang, S. Ghosh, and M. Karin. 1996. Mapping of the inducible IxB phosphorylation sites that signal its ubiquitination and degradation. Mol. Cell. Biol. 16: 1295–1304.

DiDonato, J.A., M. Hayakawa, D.M. Rothwarf, E. Zandi, and M. Karin. 1997. A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 388: 548–554.

Finco, T.S. and A.S. Baldwin, Jr. 1995. Mechanistic aspects of...
NF-kappa B regulation: The emerging role of phosphorylation and proteolysis. Immunity 3: 263-272.

Finco, T.S., J.K. Westwick, J.L. Norris, A.A. Beg, C.J. Der, and A.S. Baldwin, Jr. 1997. Oncogenic Ha-Ras-induced signaling activates NF-kB transcriptional activity, which is required for cellular transformation. J. Biol. Chem. 272: 24113-24116.

Ganchi, P.A., S.C. Sun, W.C. Greene, and D.W. Ballard. 1992. I kappa B/MAD-3 masks the nuclear localization signal of NF-kappa B p65 and requires the transactivation domain to inhibit NF-kappa B p65 DNA binding. Mol. Cell. Biol. 3: 1339-1352.

Gilmore, T.D. 1990. NF-kappa B, KBF1, dorsal, and related matters. Cell 62: 841-843.

Gishizky, M.L., D. Cortez, and A.M. Pendergast. 1995. Mutant forms of growth factor-binding protein-2 reverse BCR-ABL-induced transformation. Proc. Natl. Acad. Sci. 92: 10899-10903.

Goga, A., J. McLaughlin, D.E.H. Afar, D.C. Safran, and O.N. Witte. 1995. Alternative signals to RAS for hematopoietic transformation by the BCR-ABL oncogene. Cell 8: 981-988.

Grilli, M., J.J. Chiu, and M.J. Lenardo. 1993. NF-kappa B and Rel: Participants in a multifornt transcriptional regulatory system. Int. Rev. Cytol. 143: 1-62.

Haskill, S., A.A. Beg, S.M. Tompkins, J.S. Morris, A.D. Yurokho, A. Sampson-Johannes, K. Mondal, P. Ralph, and A.S. Baldwin, Jr. 1991. Characterization of an immediate-early gene induced in adherent monocytes that encodes I kappa B-like activity. Cell 65: 1281-1289.

Heisterkamp, N., G. Jenster, J. Ten Hoeve, D. Zovich, P.K. Pattengale, and J. Groffen. 1990. Acute leukemia in bcr/abl transgenic mice. Nature 344: 252-253.

Henkel, T., U. Zabel, K. Van Zee, J.M. Muller, E. Fanning, and J. Ten Hoeve. 1989. Alternative forms of the BCR–ABL oncogene have different biologic activity. Blood 73: 1121-1133.

Kawakami, K., C. Scheidegger, and R.G. Roeder. 1988. Identification and purification of a human immunoglobulin-enhancer-binding protein (NF-kappa B) that activates transcription from a human immunodeficiency virus type 1 promoter in vitro. Proc. Natl. Acad. Sci. 85: 4700-4704.

Kelliler, M.A., A. Knott, J. McLaughlin, N. Rosenberg, and O.N. Witte. 1991. Differences in oncogenic potency but not target cell specificity distinguish the two forms of the Bcr-Ab1 oncogene. Mol. Cell. Biol. 11: 4710-4716.

Kennedy, S.G., A.J. Wagner, S.D. Conzen, J. Jordan, A. Bellacosa, P.N. Tsichlis, and N. Hay. 1997. The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes & Dev. 11: 701-713.

Kieran, M., V. Blank, F. Logeat, J. Vandenkerckhove, F. Lotts, P. Corradini, A.T. Hudson. 1990. The DNA binding subunit of NF-kappa B, a rel-related polypeptide. Cell 65: 1497–1500.

Kitajima, I., T. Shinohara, J. Bilakovics, D.A. Brown, X. Xu, and M. Nerenberg. 1992. Ablation of transplanted HTLV-I Tax-transformed tumors in mice by antisense inhibition of NF-kappa B. Science 258: 1792-1795.

Klug, C.A., S.J. Gerety, P.C. Shah, Y.-Y. Chen, N.R. Rice, N. Rosenberg, and H. Singh. 1994. The v-Ab1 tyrosine kinase negatively regulates NF-kB/Rel factors and blocks α gene transcription in pre-B lymphocytes. Genes & Dev. 8: 678-687.

Kurzrock, R., J.U. Gutterman, and M. Talpaz. 1988. The molecular genetics of Philadelphia chromosome-positive leukemias. New Eng. J. Med. 319: 990-998.

La Rosa, F.A., J.W. Pierce, and G.E. Sonenshein. 1994. Differential regulation of the c-myc oncogene promoter by the NF-kappa B rel family of transcription factors. Mol. Cell. Biol. 14: 1039-1044.

Laneuville, P., M. Timm, and A.T. Hudson. 1994. BCR-ABL expression in 32D c13(G) cells inhibits apoptosis induced by protein tyrosine kinase inhibitors. Cancer Res. 54: 1360-1366.

Lee, H.M., M. Arsura, M. Wu, M. Duyao, A.J. Buckler, and G.E. Sonenshein. 1995. Role of Rel-related factors in control of c-myc gene transcription in receptor-mediated apoptosis of the murine B cell WEHI 231 line. J. Exp. Med. 181: 1169-1177.

Lin, Y.C., K. Brown, and U. Siebenlist. 1995. Activation of NF-kappa B requires proteolysis of the inhibitor I kappa B-alpha: Signal-induced phosphorylation of I kappa B-alpha alone does not release active NF-kappa B. Proc. Natl. Acad. Sci. 92: 552-556.

Liu, Z.G., H. Hsu, D.V. Goeddel, and M. Karin. 1996. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 87: 565-576.

Mayo, M.W., C.-Y. Wang, P.C. Cogswell, K.S. Rogers-Graham, S.W. Lowe, C.J. Der, and A.S. Baldwin, Jr. 1997. Requirement for NF-kB activation to suppress p53-independent apoptosis induced by oncogenic ras. Science 278: 1812-1815.

McGahon, A., R. Bissonnette, M. Schmitt, K.M. Cotter, D.R. Green, and T.G. Cotter. 1994. BCR-ABL maintains resistance of chronic myelogenous leukemia cells to apoptotic cell death. Blood 83: 1179-1187.

McLaughlin, J., E. Chianese, and O.N. Witte. 1987. In vitro transformation of immature hematopoietic cells by the p210 BCR/ABL oncogene product of the Philadelphia chromosome. Proc. Natl. Acad. Sci. 84: 6558-6562.

———. 1989. Alternative forms of the BCR–ABL oncogene have different biologic activity. Mol. Cell. Biol. 9: 1866-1874.

Melо, J.V. 1996. The diversity of Bcr-Ab1 fusion proteins and their relationship to leukemia phenotype. Blood 88: 2375-2384.

Mitchell, T. and B. Sugden. 1995. Stimulation of NF-kappa B-mediated transcription by mutant derivatives of the latent membrane protein of Epstein-Barr virus. J. Virol. 69: 2968-2976.

Muller, A.J., J.C. Young, A.M. Pendergast, M. Pondel, N.R. Landau, D.R. Littman, and O.N. Witte. 1991. BCR first exon sequences specifically activate the BCR/ABL tyrosine kinase oncogene of Philadelphia chromosome-positive human leukemias. Mol. Cell. Biol. 11: 1785–1792.

Neri, A., C.C. Chang, L. Lombardi, M. Salina, P. Corradini, A.T. Maiolo, R.S. Chaganti, and R. Dalia-Favera. 1991. B cell lymphoma-associated chromosomal translocation involves candidate oncogene lyt-10, homologous to NF-kappa B p50. Cell 67: 1075-1087.

Nolan, G.P., S. Ghosh, H.C. Liu, P. Tempst, and D. Baltimore. 1991. DNA binding and I kappa B inhibition of the cloned p65 subunit of NF-kappa B, a rel-related polypeptide. Cell 64: 961-969.

Nowell, P.C. and D.A. Hungerford. 1960. A minute chromosome in human chronic granulocytic leukemia. Science 123: 1497-1500.

Palombella, V.J., O.J. Rando, A.L. Goldberg, and T. Maniatis. 1994. The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78: 773-785.

Paine, F., F. Frigeri, M. Sindona, L. Luciano, F. Ferrara, R. Revised: 1988.

NF-kB requirement in Bcr-Ab1 transformation.
Cimino, G. Meloni, G. Saglio, F. Salvatore, and B. Rotoli. 1996. Neutrophilic-chronic myeloid leukemia: A distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood 88: 2410–2414.

Pear, W.S., G.P. Nolan, M.L. Scott, and D. Baltimore. 1993. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. 90: 8392–8396.

Pendergast, A.M., M.L. Gishizky, M.H. Havlik, and O.N. Witte. 1993a. SH1 domain auto phosphorylation of p210 BCR/ABL is required for transformation but not growth factor independence. Mol. Cell. Biol. 13: 1728–1736.

Pendergast, A.M., L.A. Quilliam, L.D. Cripe, C.H. Bassing, Z. Dai, N. Li, A. Batzer, K.M. Rabun, C.J. Der, J. Schlessinger, and M.L. Gishizky. 1993b. BCR-ABL-induced oncosogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 75: 175–185.

Raltano, A.B., J.R. Halpern, T.M. Hambuch, and C.L. Sawyer. 1995. The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation. Proc. Natl. Acad. Sci. 92: 11746–11750.

Rao, S.R. and N. Rosenberg. 1989. abl genes. Biochim. Biophys. Acta. 989: 209–224.

Regnier C.H., H.Y. Song, X. Gao, D.V. Goeddel, Z. Cao, and M. Roth. 1997. Identification and characterization of an IκB kinase. Cell 90: 373–383.

Ribeiro, R.C., M. Abromowitch, S.C. Raimondi, S.B. Murphy, F. Behm, and D.L. Williams. 1987. Clinical and biological hallmark of Philadelphia chromosome in childhood acute lymphoblastic leukemia. Blood 70: 948–953.

Rice, N.R. and M.K. Ernst. 1993. In vivo control of NF-κB activation by IκBα. EMBO J. 12: 4685–4695.

Rosenberg, N. and D. Baltimore. 1978. The effect of helper virus on Abelson virus-induced transformation of lymphoid cells. J. Exp. Med. 147: 1126–1141.

Rosenberg, N. and O.N. Witte. 1988. The viral and cellular forms of the Abelson (abl) oncogene. Adv. Virus Res. 35: 39–81.

Ruben, S.M., P.J. Dillon, R. Schreck, T. Henkel, C.H. Chen, M. Maher, P.A. Bauereuer, and C.A. Rosen. 1991. Isolation of a rel-related human CDNA that potentially encodes the 65-KD form of the Abelson (abl) oncogene. J. Exp. Med. 170: 901–910.

Scheinman, R.I., A.A. Beg, and A.S. Baldwin, Jr. 1993. NF-κp100 (Lyt-10) is a component of H-2F1 and can function as an IκB kappa B-like molecule. Mol. Cell. Biol. 13: 6089–6101.

Schmid, R.M., N.D. Perkins, C.S. Dukett, P.C. Andrews, and G.J. Nabel. 1991. Cloning of an NF-κp-kappa B subunit which stimulates HIV transcription in synergy with p65. Nature 352: 733–736.

Schmitz, M., M. dos Santos Silva, and P. Bauereuer. 1995. Transactivation domain 2 (TA2) of p65 NF-κB B. Similarity to TA1 and phorbol ester-stimulated activity and phosphorylation in intact cells. J. Biol. Chem. 270: 15576–15584.

Scott, M.L., T. Fujita, H.C. Liou, G.P. Nolan, and D. Baltimore. 1993. The p65 subunit of NF-κB regulates IκB by two distinct mechanisms. Genes & Dev. 7: 1266–1276.

Siebenlist, U., G. Franzoso, and K. Brown. 1994. Structure, regulation and function of NF-κB. Annu. Rev. Cell Biol. 10: 405–455.

Skorski, T., P. Kanakaraj, M. Niebowarska-Skorska, M.Z. Ratajczak, S.-C. Wen, G. Zon, A.M. Gerwitz, B. Perussia, and B. Calabretta. 1995. Phosphatidylinositol-3 Kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia Chromosome-positive cells. Blood 86: 725–736.

Skorski, T., M. Niebowarska-Skorska, P. Wlodarski, D. Perrotti, R. Martinez, M.A. Wasik, and B. Calabretta. 1996. Blastic transformation of p53-deficient bone marrow cells by p210Bcr-abl tyrosine kinase. Proc. Natl. Acad. Sci. 93: 13137–13142.

Skorski, T., A. Bellacosa, M. Niebowarska-Skorska, M. Majewski, R. Martinez, J.K. Choi, R. Trotta, P. Wlodarksi, D. Perrotti, O.T. Chan, M.A. Wasik, P.N. Tsichlis, and B. Calabretta. 1997. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3/akt-dependent pathway. EMBO J. 16: 6151–6161.

Songyang, Z., D. Baltimore, L.C. Cantley, D.R. Kaplan, and T.F. Franke. 1997. Interleukin 3-dependent survival by the Akt protein kinase. Proc. Natl. Acad. Sci. 94: 11345–11350.

Sok, M.A., R.E. Belias, D.W. Kin, G.J. Zanieski, A.E. Rogers, A.M. Trash, and G.E. Sonenshein. 1997. Abrupt nuclear factor-κB/Rel expression and the pathogenesis of breast cancer. J. Clin. Invest. 100: 2952–2960.

Sun, S.-C., P.A. Ganchi, D.W. Ballard, and W.C. Greene. 1993. NF-κB controls expression of inhibitor IκBα: Evidence for an inducible autoregulatory pathway. Science 259: 1912–1915.

Thompson, C.B. 1995. Apoptosis in the pathogenesis and treatment of disease. Science 267: 1456–1462.

Traencker, E.B.-M., S. Willk, and P.A. Bauereuer. 1994. A pro tease inhibitor prevents activation of NF-κB kappa B and stabilizes a newly phosphorylated form of κB kappa B-alpha that is still bound to NF-κB B. EMBO J. 13: 5433–5441.

Traencker, E.B.-M., H.L. Pahl, T. Henkel, K.N. Schmidt, S. Willk, and P.A. Bauereuer. 1995. Phosphorylation of human IκBα on serines 32 and 36 controls IκBα proteolysis and NF-κB activation in response to diverse stimuli. EMBO J. 14: 2876–2883.

Valtieri, M., D.J. Tewardi, D. Caracciolo, K. Johnson, F. Mavilio, S. Altmann, D. Santoli, and G. Rovera. 1987. Cytokine-dependent granulocytic differentiation: Regulation of proliferative and differentiative responses in a murine progenitor cell line. J. Immunol. 138: 3829–3835.

Van Antwerp, D.J.V., S.J. Martin, T. Kafi, D.R. Green, and I.M. Verma. 1996. Suppression of TNF-α-induced apoptosis by NF-κB. Science 274: 787–789.

Verma, I.M., J.K. Stevenson, E.M. Schwartz, D. Van Antwerp, and S. Miyamoto. 1995. Rel/NF-κB/IκBα family: Intimate ties of association and dissociation. Genes & Dev. 9: 2723–2735.

Voncken, J.W., V. Kaartinen, P.K. Pattengale, W.T.V. Germeraad, J. Groffen, and N. Heisterkamp. 1995. BCR/ABL P210 and P190 cause distinct leukemia in transgenic mice. Cancer Res. 55: 13142.

Wang, C.-Y., M.W. Mayo, and J.A.S. Baldwin. 1996. TNF- and cancer therapy-induced apoptosis: Potentiation by inhibition of NF-κB. Science 274: 794–787.

Wesselborg, S., M.K.A. Bauer, M. Vogt, M.L. Schmitz, and K.
Schulze-Osthoff. 1997. Activation of transcription factor NF-kappa B and p38 mitogen-activated protein kinase is mediated by distinct and separate stress effector pathways. J. Biol. Chem. 272: 12422–12429.

Whiteside, S.T., M.K. Ernst, O. LeBail, C. Laurent-Winter, N. Rice, and A. Israel. 1995. N- and C-terminal sequences control degradation of MAD3/IkBα in response to inducers of NF-κB activity. Mol. Cell. Biol. 15:5339–5345.

Whitlock, C.A. and O.N. Witte. 1982. Long term culture of B lymphocytes and their precursors from murine bone marrow. Proc. Natl. Acad. Sci. 79: 3608–3612.

Wong, K.K., X. Zou, K.T. Merrell, A.J. Patel, K.B. Marcu, S. Chellappan, and K. Calame. 1995. v-Abl activates c-myc transcription through the E2F site. Mol. Cell. Biol. 15: 6535–6544.

Yoza, B.K., J.Y.Q. Hu, and C.E. McCa1. 1996. Protein-tyrosine kinase activation is required for lipopolysaccharide induction of interleukin 1α and NF-κB activation, but not NF-κB nuclear translocation. J. Biol. Chem. 271: 18306–18309.

Zabel, U., and P.A. Baeuerle. 1990. Purified human IκB can rapidly dissociate the complex of the NF-κB transcription factor with its cognate DNA. Cell 61: 255–265.

Zabel, U., T. Henkel, M.S. Silva, and P.A. Baeuerle. 1993. Nuclear uptake control of NF-kappa B by MAD-3, an I kappa B protein present in the nucleus. EMBO J. 12: 201–211.

Zou, X., S. Rudchenko, K. Wong, and K. Calame. 1997. Induction of c-myc transcription by the v-Abl tyrosine kinase requires Ras, Raf1, and cyclin-dependent kinases. Genes & Dev. 11: 654–662.