INTRODUCTION

Obesity is the widespread disease among women all around the world (Ng et al., 2014). The amount of women who are distressed about obesity is increasing rapidly. Recent studies stated that women with excessive body fat are often subjected to a series of reproductive problems, such as infertility, miscarriage, and congenital malformations. The effects of obesity on the pregnancy outcome are partially attributed to the changes in oocyte quality. In particular, we have reported that even the metabolic phenotypes of obesity can be reversed, nevertheless, the adverse impact of high-fed diet on oocyte quality is irreversible (Reynolds et al., 2015). There are emerging data that maternal obesity induces the impaired competence of oocyte, including delayed meiotic progression, mitochondrial dysfunction, and oxidative stress (Hou et al., 2016; Igosheva et al., 2010; Luzzo et al., 2012). Oxidative stress, defined as an imbalance between pro-oxidant and antioxidant capacity (Hou et al., 2016), is closely related with reactive oxygen species.

KEYWORDS
meiosis, metabolism, nicotinamide phosphoribosyl transferase, obesity, oocyte
oxygen species (ROS) synthesis. ROS, a by-product of oxidative phosphorylation, is dramatically elevated in oocyte from obese females (Han et al., 2017). Excessive amount of ROS can cause serious damage to the cell, and also disturb multiple biological processes (Wang et al., 2018).

Nicotinamide adenine dinucleotide (NAD\(^+\)) is a universal and essential coenzyme found in all species. Interestingly, growing evidence has confirmed that NAD\(^+\) function not only as a classic cofactor of key enzymes, but also as a multifunctional regulator controlling diverse cell signaling pathways (Yamaguchi & Yoshino, 2011; Yang & Saufe, 2016). Synthesis of NAD\(^+\) proceeds through multiple pathways. Most tissues synthesize NAD\(^+\) through the salvage of nicotinamide by nicotinamide phosphoribosyl transferase (NAMPT) (Bowlby et al., 2012). NAMPT, also known as pre-B cell colony enhancing factor (PBEF) or visfatin, has been implicated in various biological conditions (Imai, 2009). Especially, NAMPT plays a pivotal role in the regulation of cellular metabolism through affecting the activity of NAD-dependent enzymes (Garten et al., 2015), such as sirtuins and poly(ADP-ribose) polymerases (Bowlby et al., 2012; Kolta et al., 2010; Yang et al., 2007). In mammals, NAMPT exists in both intracellular and extracellularly (iNAMPT and eNAMPT, respectively) (Revollo et al., 2007). iNAMPT function has been clarified clearly as an essential NAD\(^+\) biosynthetic enzyme, while the role of eNAMPT is still obscure. Decline in NAD\(^+\) level is becoming an established feature of several age-associated diseases (Covarrubias et al., 2021). To date, however, little information on the connection between NAMPT/NAD\(^+\) and oocyte quality from obese females is available.

In this study, by employing a high-fat diet (HFD)-based mouse model, we discovered a significant reduction of NAMPT protein and NAD\(^+\) content in oocytes from obese mice. Remarkably, our results show that both in vivo administration and in vitro supplement of nicotinic acid (NA) effectively ameliorate the obesity-associated meiotic defects and metabolic dysfunction in oocytes.

2 | RESULTS

2.1 | Reduced NAMPT expression and NAD\(^+\) content in oocytes from obese mice

It has been widely reported that NAMPT accumulation is altered in obesity and obesity-related disorders (Garten et al., 2015). Hence, we examined whether NAMPT is differentially expressed between oocytes from HFD and normal diet (ND) mice. For brevity, these oocytes are named as “HFD oocytes” and “ND oocytes”, respectively. As shown in Figure 1a, compared to ND oocytes, HFD oocytes displayed a marked reduction in NAMPT protein expression, evidenced by immunoblotting. Consistent with the western blot data, quantitative analysis on the basis of immunostaining also verified that the average fluorescence intensity of NAMPT in HFD oocytes was lower than that in ND cells (Figure 1b-c). In addition, we noticed that NAMPT resides in entire germinal vesical (GV) oocyte, and then some signals accumulated around the spindle region during meiosis (Figure 1b, arrowheads). NAMPT has been reported to co-localize strongly with mitochondria which is the energy source of spindle assembly and migration in cells (Wei et al., 2020). Such a specific distribution pattern of NAMPT in oocytes indicates its potential function during meiosis. NAMPT functions as one of the main enzymes responsible for NAD\(^+\) production. Lastly, we measured the NAD\(^+\) levels in oocytes, and found that the NAD\(^+\) content was significantly decreased in HFD oocytes relative to controls (Figure 1d). Collectively, these findings suggest that NAMPT insufficiency induced NAD\(^+\) reduction may contribute to the compromised quality of HFD oocytes.

2.2 | NAMPT depletion disrupts meiotic progression and metabolic function in oocytes

To test the possibility mentioned above, we first explored the function of NAMPT during oocyte maturation. Fully grown oocytes were microinjected with specifically designed morpholino (MO) in order to sterically block the mRNA translation. About 60% of NAMPT protein was knocked down (NAMPT-KD) in oocytes as confirmed by immunoblot, while control group injected with a sham MO standard was unaffected (Figure 2a). Both control and NAMPT-KD oocytes resumed meiosis after 3 h in vitro culture, showing similar germinal vesicle breakdown (GVBD) rate (Figure 2b). However, the ratio of first polar body (Pb1) extrusion was strikingly decreased in NAMPT-depleted oocytes (Figure 2c). These oocytes exhibited compromised asymmetric division and a high frequency of developmental block (Figure 2d). The failure of meiotic division is often linked with aberrant meiotic apparatus. One of the essential indicators of high-quality oocytes is normal spindle morphology with aligned chromosomes (Zhang et al., 2019). Therefore, an in-depth exploration of meiotic apparatus was carried out by immunostaining. Anti-α-tubulin antibody was utilized to visualize spindle and chromosomes were counterstained with propidium iodide. In most number of cases, NAMPT-KD oocytes were assembled with malformed spindle and displaced chromosomes (Figure 2e). The phenotype was about 4 times more prevalent than that in control oocytes which contained typical bipolar spindle and well-aligned chromosomes (Figure 2f). NAD\(^+\) was maintained by NAMPT through salvage pathway, so we asked whether NAD\(^+\) generation was influenced following NAMPT depletion. Consistent with this conception, NAD\(^+\) levels were reduced by 50% in NAMPT-KD oocytes compared to controls (Figure 2g). NAD\(^+\), by allowing the transfer of electrons to produce ATP, serves as a critical cofactor in oxidative phosphorylation (Braidy et al., 2019). Here, by assessing the DCF fluorescence in live cells, we found that ROS levels were drastically increased in NAMPT-KD oocytes (Figure 2h-i). Therefore, NAMPT deficiency not only severely compromises maturational progression and meiotic apparatus, but also disrupts the metabolic function in mouse oocytes.
2.3 | Supplement of nicotinic acid partially rescues the meiotic defects and oxidative stress in oocytes with NAMPT deficiency

FK866, a low molecular weight compound, could pharmacologically block the enzymatic activity of NAMPT (Hasmann & Schemainda, 2003). To determine the effect of NAMPT activity on meiotic maturation, oocytes were cultured in the M16 medium containing various concentrations of FK866 (25, 50 and 100 µM). At the indicated time points (Figure 3a-b), we checked the ratio of GVBD and Pb1 emission, respectively. Both meiotic resumption and maturation were disrupted by FK866 treatment in a dose-dependent manner. Accordingly, 100 µM was selected as the optimum concentration for subsequent experiments. It is worth noting that such an inhibitory effect of FK866 was partially reversed through washout experiment (Figure 3c). Emerging evidence has shown that nicotinamide mononucleotide (NMN) or nicotinic acid (NA) supplementation could stimulate NAD⁺ generation and ameliorate the relevant phenotypes (Canto et al., 2015). Here, using FK866-treated oocytes as a model, we systematically evaluated their protective effects against defective oocyte development. Although both NA and NMN appeared to be able to promote oocyte maturation when NAMPT activity was inhibited (Figure 3d), 50 µM of NA apparently displayed the most significant responsive effects. Similar to NAMPT knockdown, FK866 treatment also resulted in NAD⁺ reduction, meiotic defects, and ROS elevation during maturation (Figure 3e-i). Of note, all these deficient phenotypes observed in FK866-treated oocytes were partially rescued by NA supplement in comparison to controls (Figure 3e-i). Meanwhile, NA treatment was also capable of reducing the abnormalities observed in NAMPT-KD oocytes, as shown in Figure S1. Together, these results suggest that enzymatic activity of NAMPT is critically required for keeping redox balance and normal meiosis in oocytes. NA, a well-known precursor of NAD⁺, could function as an antidote for poor oocyte quality due to NAMPT deficiency.

2.4 | NAMPT overexpression alleviates defective phenotypes of oocytes from obese mice

Given the reduced levels of NAMPT in HFD oocytes, we hypothesized that introduction of exogenous NAMPT into HFD oocytes may suppress one or more of developmental defects. Toward this goal, we conducted overexpression experiments by injecting Nampt-cRNA into GV oocytes from obese mice. Western blotting verified...
that exogenous NAMPT protein was expressed in oocytes successfully (Figure 4a). It is noteworthy that ectopic expression of NAMPT in HFD oocytes not only elevated the levels of NAD⁺ (Figure 4b), but also prevented the high occurrence of spindle/chromosome disorganization (Figure 4c-d) and the excessive generation of ROS (Figure 4e-f). The results indicate that loss of NAMPT is one of potential factors mediating the effects of maternal obesity on oocyte quality.

2.5 In vitro supplementation of NA improves the developmental potential of oocytes and early embryos from obese mice

As mentioned above, defective phenotypes in oocytes resulted from NAMPT knockdown or inhibition were rescued through NA treatment. Therefore, we asked whether the developmental competence of HFD oocytes could be improved with NA administration. For this purpose, fully grown GV oocytes were isolated from ND and HFD mice, and then matured in vitro with or without NA (Figure 5a). NA boosted NAD⁺ levels nearly twofold in HFD oocytes relative to their counterparts (Figure 5b). In contrast, the frequency of meiotic defects in HFD oocytes is downregulated by NA from ~40% to ~20% (Figure 5c-d). Likewise, ROS in HFD oocytes was reduced to nearly normal level following NA administration (Figure 5e-f). To test whether the developmental capacity of early embryos derived from HFD oocytes could be enhanced via NA supplementation, we next performed in vitro fertilization (IVF) of metaphase II (MII) oocytes, and then early embryos were cultured for further evaluation (Figure 5a). Consistent with previous observation (Han et al., 2018), the formation rate of 2-cell and blastocyst derived from HFD oocytes were significantly lower than that in ND embryos (Figure 5g-i), displaying the developmental delay and cytoplasmic fragmentation. However, NA supplement during oocyte maturation markedly increased the proportion of HFD embryos that reached both developmental milestones compared to control embryos.

2.6 In vivo administration of NA suppresses meiotic defects and metabolic dysfunctions in oocytes from obese mice

Nicotinic acid supplementation in vitro works well. This led us to ask whether artificially replenishing NA in vivo could also exert the protective effects on HFD oocytes. ND or HFD mice were intraperitoneally injected with PBS or NA for 10 days consecutively, and then were received pregnant mare serum gonadotropin (PMSG) on day 8 and human chorionic gonadotropin (hCG) on day 10 for superovulation. Mature oocytes were retrieved to assess the key quality indicators described above (Figure 6a). On the basis of published literatures, we conducted a screening assay (data not shown) to
Determine the optimal dose for in vivo administration of NA, and 540 mg/kg body weight/day was selected. As shown in Figure 6b-f, we noted that intraperitoneal administration of NA partly restored the NAD+ levels, lowered the frequency of meiotic deficiency, and alleviated the oxidative stress in HFD oocytes. Collectively, these findings suggest that both in vitro supplementation and in vivo administration of NA could improve oocyte quality from HFD mice, and thereupon promote the subsequent embryonic development.

3 | DISCUSSION

NAD+ is an obligate cofactor for the catabolism of metabolic fuels in all cell types (Frederick et al., 2016). It is essential to supply dynamic NAD+ turnover permanently for energy-consuming processes (Canto et al., 2015), which is completed by three biosynthetic pathways: the NAD+ de novo pathway, the Preiss-Handler pathway and the NAD+ salvage pathway. Since NAD+ contains a nicotinamide (NAM) moiety that cannot be synthesized by most tissues de novo, the vast majority of mammalian cells must instead rely on a salvage pathway to locally regenerate degraded NAD+ (Frederick et al., 2016). In this pathway, NAMPT is a determinant of NAD+ synthesis and the production of NMN from NAM also relies on NAMPT (Revollo et al., 2007). NAD+ can also be synthesized from NA, acid form of vitamin niacin, via Preiss-Handler pathway in a total of three steps (Fang et al., 2017). A key enzyme of this way is nicotinamide mononucleotide adenyltransferase (NMNAT), which also involved in the NAD+ salvage pathway (Verdin, 2015). Several studies have demonstrated that NA is a more favorable precursor than NAM, in the liver, intestine and kidney (Collins & Chaykin, 1972). Abundant reports about NAMPT physiological functions have recently fueled more enthusiasm to dig potential mechanism in several different fields (Imai, 2009). It has been well documented that NAMPT widely distributes throughout numerous organ systems, in which it plays critical roles in tissue-specific metabolism. For instance, NAMPT is essential for survival of tumor cells, and is considered a rational target in cancer (Bowlby et al., 2012; Fleischer et al., 2010; Hasmann & Schemainda, 2003; Olesen et al., 2008). A systemic regulatory network, mediated by sirtuins and NAMPT, orchestrates physiological responses to internal and external perturbations (Imai & Yoshino, 2013).
A dynamic balance between production and consumption of NAD$^+$ in each subcellular compartment is crucial for pathophysiological process of some diseases (Stein & Imai, 2012). However, the balance can shift during aging when NAD$^+$ degradation outraces the ability of cells to synthesize NAD$^+$ (Covarrubias et al., 2021). Previous studies have demonstrated that NMNAT2-NAD$^+$-SIRT1 is an important pathway mediating the effects of maternal age on oocyte developmental competence (Wu et al., 2019). Loss of NAD$^+$ biosynthesis in skeletal muscle impairs mitochondrial function and diminishes exercise capacity (Nielsen et al., 2018). NAMPT levels will change so as to cope with metabolism stress (Agerholm et al., 2018), for example, in cases of caloric restriction (Song et al., 2014) or exercise training (Costford et al., 2010; Johnson et al., 2015). Based on these observations, we wondered whether long-term feeding with high-fat diet would alter NAMPT expression in germ cells. In the present study, we found that NAMPT accumulation in oocytes recovered from obese mice was markedly declined; and accordingly, the NAD$^+$ content was also reduced in these cells. Interestingly, NAMPT depletion or inhibition induced the similar phenotypes as HFD oocytes. Consistent with this observation, Wei et al. demonstrated that NAMPT is involved in the regulation of spindle length and asymmetric division in mammalian oocytes (Wei et al., 2018). Importantly, forced expression of NAMPT was able to partially rescue the phenotypic defects in HFD oocytes. Therefore, these data support the conclusion that loss of NAMPT is an important factor contributing to the compromised oocyte quality of obese mice.

To improve the management of disease caused by lowered NAD$^+$ levels, supplementation with either NAD$^+$ and its reduced form NADH or its precursors is an ideal therapeutic strategy (Braidy et al., 2019). However, due to a variety of disturbances to absorption and

FIGURE 4 NAMPT overexpression alleviates defective phenotypes of oocytes from obese mice. (a) Immunoblotting showing the overexpression of exogenous NAMPT protein in oocytes (200 oocytes per lane). (b) Quantitative analysis of NAD$^+$ content in oocytes of ND, HFD, and HFD + NAMPT (n = 150 for each group). (c) ND, HFD, and HFD + NAMPT oocytes were stained with α-tubulin antibody to visualize spindle (green) and counterstained with propidium iodide to visualize chromosomes (red). Arrowheads denote the disorganized spindle and misaligned chromosomes. Scale bar: 30 µm. (d) Quantification of ND (n = 102), HFD (n = 119), and HFD + NAMPT (n = 114) oocytes with spindle/chromosome defects. Scale bars: 50 µm. (f) Quantification of the levels of ROS in oocytes. Each data point represents an oocyte (n = 15 for each group). Data are expressed as the mean ± SD from three independent experiments. Statistical analyses were performed with one-way ANOVA with Tukey’s post hoc test. *p < 0.01, **p < 0.001. HFD, high-fat diet; NAMPT, nicotinamide phosphoribosyl transferase; ND, normal diet.
transformation, oral supplementation with NAD⁺ and NADH leads to poor bioavailability (Kimura et al., 2006). Therefore, there is an alternate way, supplementation with NAD⁺ precursors, to get better. Intriguingly, our screening assay clearly showed that, compared to NMN, NA treatment to some extent promoted the assembly of meiotic apparatus and cleared the excessive ROS in HFD oocytes, accompanying with the improved developmental potential of preimplantation embryos. To date, however, the detailed mechanisms triggering the reduced female fertility have recently become a focus of intensive investigation. In this study, we provide novel insights into the role of NAMPT during oocyte maturation. In addition, our data highlight the potential therapeutic use of NA to improve oocyte/embryo developmental capability.

4 | MATERIALS AND METHODS

4.1 | Mice

Female ICR mice were used in all experiments, and 3 weeks mice were housed in specific pathogen-free conditions with a 12 h light-dark cycle. These mice were randomly divided into two diet groups, one group received a HFD (D12492; Research Diets) and the other group received a ND (D1415; Beijing HFK Bioscience) for 16 weeks. After 16 weeks of feeding, body weights (38.3 ± 2.7 g, n = 10 control; 54.3 ± 4.9 g, n = 10 HFD; p < 0.05) and fasting serum glucose were significantly higher in mice fed HFD compared with controls. All experimental protocols involving mice were approved by the Animal Care and Use Committee of Nanjing Agricultural University.
FIGURE 6 In vivo administration of NA suppresses meiotic defects and metabolic dysfunctions in oocytes from obese mice. (a) A timeline diagram of NA administration and hormone injection. (b) Quantitative analysis of NAD⁺ content in ND, HFD, and HFD + NA oocytes (n = 150 for each group). (c) ND, HFD, and HFD + NA oocytes were stained with α-tubulin to visualize spindle (green) and counterstained with propidium iodide to visualize chromosomes (red). Representative confocal sections are shown. Arrowheads indicate the disorganized spindle and misaligned chromosomes. Scale bars: 30 μm. (d) Quantification of ND (n = 131), HFD (n = 149), and HFD + NA (n = 122) oocytes with spindle/chromosome defects. (e) Representative images of CM-H2DCFDA fluorescence (green) in ND, HFD, and HFD + NA oocytes. Scale bar: 50 μm. (f) Quantification of the levels of ROS in oocytes. Each data point represents an oocyte (n = 15 for each group). Data are expressed as the mean ± SD from three independent experiments. Statistical analyses were performed with one-way ANOVA with Tukey's post hoc test. ***p < 0.001, n.s., not significant. (g) A proposed model showing the potential pathway mediating the effects of NAD⁺ generation on the quality of HFD oocytes. Loss of NAD⁺ content and NAMPT protein results in the meiotic defects and oxidative stress in oocytes from obese mice. NA supplement could partly rescue the defective phenotype of these oocytes. HFD, high-fat diet; NA, nicotinic acid; NAMPT, nicotinamide phosphoribosyl transferase; ND, normal diet; ROS, reactive oxygen species.
followed with secondary antibodies for 1 h. For spindle examination, oocytes were stained directly with FITC-conjugated anti-α-tubulin antibody (1:200). To detect chromosomes, oocytes were labeled with propidium iodide for 10 min. Finally, oocytes were transferred to a micro-drop of anti-fade medium (H1000; Vectashield) on glass slides and observed under a confocal microscope (LSM 710; Carl Zeiss). The fluorescence signal was calculated as the mean intensity (measured from total cytoplasmic intensity and normalized to cell area using ImageJ), following the subtraction of background staining.

4.5 Western blotting

Oocytes were washed in ice-cold PBS before lysed in Laemmli sample buffer with protease inhibitor and boiled for 5 min. Samples were electrophoresed on 10% SDS-PAGE gel and transferred to PVDF membrane. The membrane was blocked for 1 h with 5% low fat dry milk diluted by PBST at room temperature, and incubated with appropriate primary antibodies overnight at 4°C. After multiple washes, samples were incubated with HRP-conjugated secondary antibodies. The signal was developed using an ECL Plus Western Blotting Detection System (Thermo Fisher Scientific). GAPDH or Actin was used as a loading control.

4.6 ROS evaluation

In order to assess the ROS levels, CM-H2DCFDA (C6827; Invitrogen) was used. Oocytes were incubated in M16 medium containing with 5 μM CM-H2DCFDA for 30 min at 37°C in 5% CO₂ incubator. Following washing three times, oocytes were mounted on a live cell-imaging dish and covered with mineral oil. Immediately, taking fluorescent images using a Zeiss Laser Scanning Confocal Microscope (LSM 710; Zeiss). The fluorescence signal was calculated as the mean intensity (measured from total cytoplasmic intensity and normalized to cell area using ImageJ), following the subtraction of background staining.

4.7 In vitro fertilization and embryo culture

To evaluate the capability of oocyte developmental, we carried out IVF assays according to our previous protocols (Han et al., 2018). Sperm, collected from aged 10–20 weeks male mice, were left to capacitate for 1 h in HTF fertilization medium (MR070; Millipore) supplemented with 10 mg/ml bovine serum albumin, and then co-incubated with MII oocytes matured in vitro in HTF drops at 37°C for 5 h. Following fertilization, presumptive zygotes were washed in order to remove excess sperm. Finally, zygotes were transferred into KSOM medium (MR106D; Millipore) and cultured up to the blastocyst stage at 37°C in a humidified atmosphere of 5% CO₂, 5% O₂, 90% N₂.

4.8 Plasmid construction and mRNA synthesis

Total RNA was extracted from 50 denuded oocytes using the Arcturus PicoPure RNA isolation kit (KIT0204; Applied Biosystems), and cDNA generation was performed using Quantitect Reverse Transcription kit (205311; Qiagen). The following primers were used to amplify the CDS sequence of Nampt:

- forward primer, 5′-GGGGGCGCCGCCAGCGCGGAGATGAATGCT-3′
- reverse primer, 5′-GGGCTAGAGGCGGGCTAATAGGATCC-3′

Purified PCR products were digested with FseI and Ascl (R0558S and R0588S, NEB), and then cloned into the pCS2⁺ vector with Myc tags. For the synthesis of Nampt mRNA, the Nampt-pCS2⁺ plasmids were linearized by NotI (R0189S; NEB). The Capped cRNA were made using in vitro transcription with SP6 mMESSAGE mMACHINE (AM1340; Themo Fisher) and purified by RNeasy Micro Kit (74004; Qiagen). Synthesized cRNA was aliquoted and stored at −80°C.

4.9 Knockdown and overexpression analysis

Microinjections of morpholino or cRNA were used to knock down or overexpress specific proteins in mouse oocytes, respectively. Ten picoliter cRNA solution (10 ng/µl) was injected into oocyte cytoplasm for overexpression analysis. The same amount of RNase-free PBS was injected as control. For knockdown experiments, morpholino (MO) of NAMPT (Gene Tools) targeting initiation of translation was diluted with water to give a stock concentration of 1 mM, and then 2.5 pl MO solution was injected into oocytes. NAMPT-MO: 5′-CGGCTTCTTGGCGCAGCTCATCCTC-3′; a MO standard control was injected as control. After injections, in order to hinder mRNA translation or facilitate NAMPT overexpression, oocytes were arrested at the GV stage in M16 medium containing 2.5 μM milrinone for 20 h. Following three washes, oocytes were cultured in M16 without milrinone for different time periods to evaluate the cellular events during maturation.

4.10 Measurement of NAD⁺ levels

For the NAD⁺ levels, measurements were conducted by a commercially available kit (MAK037; Sigma) as previously described (Wu et al., 2019). 150 oocytes were harvested for total NAD⁺ extraction and quantified as manufacture’s instruction. The NAD⁺ concentration was calculated by subtracting the NADH values from NADT (NAD⁺ + NADH). The NAD⁺ content of samples was quantified with a plate reader in a colorimetric assay at 450 nm using iMark™ Microplate Absorbance Reader (BIO-RAD).

4.11 Statistical analysis

Data are expressed as means ± SD, unless otherwise stated. All analyses were performed using GraphPad Prism (Version 7.0) for Windows. Statistical comparisons were made with two-tailed Student’s t test, two-way ANOVA, and one-way ANOVA test when appropriate. Changes were considered statistically significant when p < 0.05.
ACKNOWLEDGMENTS
This work was supported by National Natural Science Foundation of China (NO. 31970789 and 31771660 to LG, and NO. 81925014 and 31771657 to QW).

CONFLICT OF INTEREST
The authors have nothing to disclose.

AUTHOR CONTRIBUTIONS
HW, LG, and QW designed research. HW, SZ, XW, YL, and JG performed research. HW, SZ, LG, and QW analyzed data. HW, LG, and QW wrote paper.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Ling Gu https://orcid.org/0000-0002-3368-4053

REFERENCES
Agerholm, M., Dall, M., Jensen, B. A. H., Prats, C., Madsen, S., Basse, A. L., Graae, A. S., Risis, S., Goldenbaum, J., Quistorff, B., Larsen, S., Vienberg, S. G., & Treebak, J. T. (2018). Perturbations of NAD(+) salvage systems impact mitochondrial function and energy homeostasis in mouse myoblasts and intact skeletal muscle. American Journal of Physiology, Endocrinology and Metabolism, 314(4), E377-E395. https://doi.org/10.1152/ajpendo.00213.2017

Bowlby, S. C., Thomas, M. J., D’Agostino, R. B. Jr., & Kridel, S. J. (2012). Nicotinamide phosphoribosyl transferase (Nampt) is required for de novo lipogenesis in tumor cells. PLoS One, 7(6), e40195. https://doi.org/10.1371/journal.pone.0040195

Braidy, N., Berg, J., Clement, J., Khorsheid, F., Poljak, A., Jayasena, T., Grant, R., & Sachdev, P. (2019). Role of nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases: Rationale, biochemistry, pharmacokinetics, and outcomes. Antioxidants & Redox Signaling, 30(2), 251-294. https://doi.org/10.1089/ars.2017.7269

Canto, C., Menzies, K. J., & Auwerx, J. (2015). NAD(+) metabolism and the control of energy homeostasis: A balancing act between mitochondria and the nucleus. Cell Metabolism, 22(1), 31-53. https://doi.org/10.1016/j.cmet.2015.05.023

Collins, P. B., & Chaykin, S. (1972). The management of nicotinamide and nicotinic acid in the mouse. Journal of Biological Chemistry, 247(3), 778-783. https://doi.org/10.1002/s0021-9258(19)45675-5

Costford, S. R., Bajpeyi, S., Pasarica, M., Albarado, D. C., Thomas, S. C., Xie, H., Church, T. S., Jubrias, S. A., Conley, K. E., & Smith, S. R. (2010). Skeletal muscle NAMPT is induced by exercise in humans. American Journal of Physiology-Endocrinology and Metabolism, 298(1), E117-E126. https://doi.org/10.1152/ajpendo.00318.2009

Covarrubias, A. J., Perrone, R., Grozio, A., & Verdin, E. (2021). NAD(+) metabolism and its roles in cellular processes during ageing. Nature Reviews Molecular Cell Biology, 22(2), 119-141. https://doi.org/10.1038/s41580-020-00313-x

Fang, E. F., Lautrup, S., Hou, Y., Demarest, T. G., Croteau, D. L., Mattson, M. P., & Bohr, V. A. (2017). NAD(+) in aging: Molecular mechanisms and translational implications. Trends in Molecular Medicine, 23(10), 899-916. https://doi.org/10.1016/j.molmed.2017.08.001

Fleischer, T. C., Murphy, B. R., Flick, J. S., Terry-Lorenzo, R. T., Gao, Z. H., Davis, T., McKinnon, R., Ostanin, K., Willardsen, J. A., & Boniface, J. J. (2010). Chemical proteomics identifies Nampt as the target of CB30865, an orphan cytotoxic compound. Chemistry & Biology, 17(6), 659-664. https://doi.org/10.1016/j.chembiol.2010.05.008

Frederick, D. W., Loro, E., Liu, L., Davila, A. Jr, Chellappa, K., Silverman, I. M., Quinn, W. J., Gosai, S. J., Tichy, E. D., Davis, J. G., Mourkoti, F., Gregory, B. D., Dellinger, R. W., Redpath, P., Migaud, M. E., Nakamaru-Ogiso, E., Rabinowitz, J. D., Khurana, T. S., & Baur, J. A. (2016). Loss of NAD homeostasis leads to progressive and reversible degeneration of skeletal muscle. Cell Metabolism, 24(2), 269-282. https://doi.org/10.1016/j.cmet.2016.07.005

Garten, A., Schuster, S., Penke, M., Gorski, T., de Giorgis, T., & Kiess, W. (2015). Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nature Reviews Endocrinology, 11(9), 535-546. https://doi.org/10.1038/nrendo.2015.117

Grant, R. S., & Kapoor, V. (1998). Murine Guai cells regenerate NAD, after peroxide-induced depletion, using either nicotinic acid, nicotinamide, or quinolinic acid as substrates. Journal of Neurochemistry, 70(4), 1759-1763. https://doi.org/10.1046/j.1471-4159.1998.70041759.x

Han, L., Ren, C., Li, L., Li, X., Ge, J., Wang, H., Miao, Y. L., Guo, X., Moley, K. H., Shu, W., & Wang, Q. (2018). Embryonic defects induced by maternal obesity in mice derive from Stella insufficiency in oocytes. Nature Genetics, 50(3), 432-442. https://doi.org/10.1038/s41588-018-0055-6

Han, L., Wang, H., Li, L., Li, X., Ge, J., Reiter, R. J., & Wang, Q. (2017). Melatonin protects against maternal obesity-associated oxidative stress and meiotic defects in oocytes via the SIRT3-SOD2-dependent pathway. Journal of Pineal Research, 63(3), e12431. https://doi.org/10.1111/jpi.12431

Hasmann, M., & Schemainda, I. (2003). FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Research, 63(21), 7436-7442.

Hou, Y. J., Zhu, C. C., Duan, X., Liu, H. L., Wang, Q., & Sun, S. C. (2016). Both diet and gene mutation induced obesity affect oocyte quality in mice. Scientific Reports, 6, 18858. https://doi.org/10.1038/srep18858

Igosheva, N., Abramov, A. Y., Poston, L., Eckert, J. J., Fleming, T. P., Duchen, M. R., & McConnell, J. (2010). Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes. PLoS One, 5(4), e10074. https://doi.org/10.1371/journal.pone.0010074

Imai, S. (2009). Nicotinamide phosphoribosyltransferase (Nampt): A link between NAD biology, metabolism, and diseases. Current Pharmaceutical Design, 15(1), 20-28. https://doi.org/10.2174/1381281209787185814

Imai, S., & Yoshino, J. (2013). The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and ageing. Diabetes, Obesity & Metabolism, 15(Suppl 3), 26-33. https://doi.org/10.1111/dom.12171

Johnson, M. L., Irving, B. A., Lanza, I. R., Vendelbo, M. H., Konopka, A. R., Robinson, M. M., Henderson, G. C., Klaus, K. A., Morse, D. M., Heppelmann, C., Bergen, H. R., Dasari, S., Schinke, J. M., Jakaitis, D. R., & Nair, K. S. (2015). Differential effect of endurance training on mitochondrial protein damage, degradation, and acetylation in the context of aging. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 70(11), 1386-1393. https://doi.org/10.1093/gerona/glu221

Kimura, N., Fukushima, N., Takeda, K., & Shibata, K. (2006). Comparison of metabolic fates of nicotinamide, NAD and NADH administered orally and intraperitoneally: characterization of oral NADH. Journal of Nutritional Science and Vitaminology, 52(2), 142-148. https://doi.org/10.3177/jnsv.52.142

Koltai, E., Szabo, Z., Atalay, M., Boldogh, I., Naito, H., Goto, S., Nyakas, C., & Radak, Z. (2010). Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats. Mechanisms of
Ageing and Development, 13(1), 21-28. https://doi.org/10.1016/j.mad.2009.11.002

Liu, Y., Li, X., He, Y., Wang, H., Gao, M., Han, L., Qiu, D., Ding, L., Liu, H., & Gu, L. (2020). ASB7 Is a Novel Regulator of cytoskeletal organization during oocyte maturation. Frontiers in Cell and Developmental Biology, 8, 595917. https://doi.org/10.3389/fcell.2020.595917

Luzzo, K. M., Wang, Q., Purcell, S. H., Chi, M., Jimenez, P. T., Grundler, N., Schedl, T., & Moley, K. H. (2012). High fat diet induced developmental defects in the mouse: Oocyte meiotic aneuploidy and fetal growth retardation/brain defects. PLoS One, 7(11), e49217. https://doi.org/10.1371/journal.pone.0049217

Ng, M., Fleming, T., Robinson, M., Graetz, N., Margono, C., Mullany, E. C., Biryukov, S., Abafati, C., Afera, S. F., Abraham, J. P., Abu-Rmeileh, N. M., Achoki, T., AlBuHairan, F. S., Alemu, Z. A., Alfonso, R., Ali, M. K., Ali, R., Guzman, N. A., Ammar, W., ... Gakidou, E. (2014). Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. The Lancet, 384(9945), 766-781. https://doi.org/10.1016/S0140-6736(14)60460-8

Nielsen, K. N., Peics, J., Ma, T., Karavaeva, I., Dall, M., Chubanava, S., Basse, A. L., Dmytriyeva, O., Trebak, J. T., & Gerhart-Hines, Z. (2018). NAMPT-mediated NAD(+) biosynthesis is indispensable for adipose tissue plasticity and development of obesity. Molecular Metabolism, 11, 178-188. https://doi.org/10.1016/j.molmet.2018.02.014

Niringiyumukiza, J. D., Cai, H., & Xiang, W. (2018). Prostaglandin E2 involvement in mammalian female fertility: Ovulation, fertilization, embryo development and early implantation. Reproductive Biology and Endocrinology, 16(1), 43. https://doi.org/10.1186/s12958-018-0359-5

Olesen, U. H., Christensen, M. K., Bjorkling, F., Jaattela, M., Jensen, P. B., Sehested, M., & Nielsen, S. J. (2008). Anticancer agent CHS-828 inhibits cellular synthesis of NAD. Biochemical and Biophysical Research Communications, 367(4), 799-804. https://doi.org/10.1016/j.bbrc.2008.01.019

Revollo, J. R., Grimm, A. A., & Imai, S. (2007). The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals. Current Opinion in Gastroenterology, 23, 164-170. https://doi.org/10.1097/MOG.0b013e32801b3c8f

Revollo, J. R., Körner, A., Mills, K. F., Sato, A., Wang, T., Garten, A., Dasgupta, B., Sasaki, Y., Wolberger, C., Townsend, R. R., Milbrandt, J., Kiess, W., & Imai, S. I. (2007). Nampt/PBEF/visfatin regulates insulin secretion in β cells as a systemic NAD biosynthetic enzyme. Cell Metabolism, 6(5), 363-375. https://doi.org/10.1016/j.cmet.2007.09.003

Reynolds, K. A., Boudoures, A. L., Chi, M. M., Wang, Q., & Moley, K. H. (2015). Adverse effects of obesity and/or high-fat diet on oocyte quality and metabolism are not reversible with resumption of regular diet in mice. Reproduction, Fertility, and Development, 27(4), 716-724. https://doi.org/10.1071/RD14251

Song, J., Ke, S. F., Zhou, C. C., Zhang, S. L., Guan, Y. F., Xu, T. Y., Sheng, C. Q., Wang, P., & Miao, C. Y. (2014). Nicotinamide phosphoribosyltransferase is required for the calorie restriction-mediated improvements in oxidative stress, mitochondrial biogenesis, and metabolic adaptation. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 69(1), 44–57. https://doi.org/10.1093/gerona/gl122

Stein, L. R., & Imai, S. (2012). The dynamic regulation of NAD metabolism in mitochondria. Trends in Endocrinology and Metabolism, 23(9), 420–428. https://doi.org/10.1016/j.tem.2012.06.005

Verdin, E. (2015). NAD+ in aging, metabolism, and neurodegeneration. Science, 350(6265), 1208–1213. https://doi.org/10.1126/science.aaa4854

Wanders, D., Graff, E. C., White, B. D., & Judd, R. L. (2013). Niacin increases adiponectin and decreases adipose tissue inflammation in high fat diet-fed mice. PLoS One, 8(8), e71285. https://doi.org/10.1371/journal.pone.0071285

Wang, H., Cheng, Q., Li, X., Hu, F., Han, L., Zhang, H., Li, L., Ge, J., Ying, X., Guo, X., & Wang, Q. (2018). Loss of TIGAR induces oxidative stress and meiotic defects in oocytes from obese mice. Molecular & Cellular Proteomics: MCP, 17(7), 1354–1364. https://doi.org/10.1074/mcp.RA118.006200

Wei, Z., Greaney, J., Loh, W. N., & Homer, H. A. (2020). Namp-mediated spindle sizing secures a post-anaphase increase in spindle speed required for extreme asymmetry. Nature Communications, 11(1), 3393. https://doi.org/10.1038/s41467-020-17088-6

Wei, Z., Greaney, J., Zhou, C., & Homer, H. A. (2018). Cdk1 inactivation induces post-anaphase-onset spindle migration and membrane protrusion required for extreme asymmetry in mouse oocytes. Nature Communications, 9(1), 4029. https://doi.org/10.1038/s41467-018-06510-9

Wu, X., Hu, F., Zeng, J., Han, L., Qiu, D., Wang, H., Ge, J., Ying, X., & Wang, Q. (2019). NMNAT2-mediated NAD(+) generation is essential for quality control of aged oocytes. Aging Cell, 18(3), e12955. https://doi.org/10.1111/acel.12955

Yamaguchi, S., & Yoshino, J. (2017). Adipose tissue NAD(+) biology in obesity and insulin resistance: From mechanism to therapy. BioEssays, 39(5), 227–236. https://doi.org/10.1002/bies.201600227

Yang, H., Yang, T., Baur, J. A., Perez, E., Matsu, T., Carmona, J. J., Lamming, D. W., Souza-Pinto, N. C., Bohr, V. A., Rosenzweig, A., de Cabo, R., Sauve, A. A., & Sinclair, D. A. (2007). Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell, 130(6), 1095–1107. https://doi.org/10.1016/j.cell.2007.07.035

Yang, Y., & Sauve, A. A. (2016). NAD(+) metabolism: Bioenergetics, signaling and manipulation for therapy. Biochimica et Biophysica Acta, 1864(12), 1787–1800. https://doi.org/10.1016/j.bbadis.2016.06.014

Ye, L., Cao, Z., Lai, X., Shi, Y., & Zhou, N. (2020). Niacin ameliorates hepatic steatosis by inhibiting de novo lipogenesis via a GPR109A-mediated PKC-ERK1/2-AMPK signaling pathway in C57BL/6 mice fed a high-fat diet. Journal of Nutrition, 150(4), 672–684. https://doi.org/10.1093/jn/nxz303

Zhang, M., ShiYang, X., Zhang, Y., Miao, Y., Chen, Y., Cui, Z., & Xiong, B. (2019). Coenzyme Q10 ameliorates the quality of postovulatory aged oocytes by suppressing DNA damage and apoptosis. Free Radical Biology and Medicine, 143, 84–94. https://doi.org/10.1016/j.freeradbiomed.2019.08.002

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Wang, H., Zhu, S., Wu, X., Liu, Y., Ge, J., Wang, Q., & Gu, L. (2021). NAMPT reduction-induced NAD+ insufficiency contributes to the compromised oocyte quality from obese mice. Aging Cell, 20, e13496. https://doi.org/10.1111/acel.13496