Asymptotics for the best Sobolev constants and their extremal functions

G. Ercole* and G. A. Pereira**
Departamento de Matemática, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 30.123-970, Brazil

Received 6 July 2015, accepted 25 October 2015
Published online 7 January 2016

Key words Asymptotic behavior, best Sobolev constants, Dirac delta function, infinity Laplacian, p-Laplacian, viscosity solutions
MSC (2010) 35B40

Let \(\Lambda_1^p(\Omega) = \inf \left\{ \| \nabla u \|_p^p : u \in W_0^{1,p}(\Omega) \text{ and } \| u \|_{L^\infty(\Omega)} = 1 \right\} \), where \(\Omega \) is a bounded domain of \(\mathbb{R}^N \), \(N \geq 2 \), and \(p > N \). We prove that \(\lim_{p \to \infty} \Lambda_1^p(\Omega) = |\rho|^{-1}_\infty \), where \(\rho \) denotes the distance function to the boundary.

Then, we show that, up to subsequences, the extremal functions of \(\Lambda_1^p(\Omega) \) converge (as \(p \to \infty \)) to the viscosity solutions of a specific Dirichlet problem involving the infinity Laplacian in the punctured domain \(\Omega \setminus \{x_0\} \), for some \(x_0 \in \Omega \).

1 Introduction

Let \(p > 1 \) and let \(\Omega \) be a bounded and smooth domain of \(\mathbb{R}^N, N \geq 2 \). It is well known that the Sobolev immersion \(W_0^{1,p}(\Omega) \hookrightarrow L^q(\Omega) \) is compact if

\[
1 \leq q < p^* := \begin{cases} Np \over N-p & \text{if } 1 < p < N, \\ \infty & \text{if } p \geq N. \end{cases}
\]

As consequence of this fact, for each \(q \in [1, p^*) \) there exists \(w_q \in L^q(\Omega) \) such that \(\| w_q \|_q = 1 \) and

\[
\lambda_q(\Omega) := \inf \left\{ \| \nabla u \|_p^p : u \in W_0^{1,p}(\Omega) \text{ and } \| u \|_q = 1 \right\} = \| \nabla w_q \|_p^p.
\] (1.1)

(Throughout this paper \(\| \cdot \|_s \) denotes the standard norm of \(L^s(\Omega), 1 \leq s \leq \infty. \))

The value \(\lambda_q(\Omega) \) is, therefore, the best constant \(c \) in the Sobolev inequality

\[
c \| u \|_q^p \leq \| \nabla u \|_p^p, \quad u \in W_0^{1,p}(\Omega),
\]

and \(w_q \) is a corresponding extremal (or minimizer) function.

The Euler–Lagrange formulation associated with the minimizing problem (1.1) is

\[
\begin{cases}
-\Delta_p u = \lambda_q(\Omega) |u|^{p-2} u \quad & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
\] (1.2)

where \(\Delta_p u := \text{div} (|\nabla u|^{p-2} \nabla u) \) is the \(p \)-Laplacian operator. It turns out that \(|w_q| \) is a nonnegative and nontrivial solution of (1.2), since \(|w_q| \) also minimizes \(\lambda_q(\Omega) \). Thus, the maximum principle (see [21]) assures that \(w_q \) does not change sign in \(\Omega \).
From now on, we denote by w_q any positive extremal function of $\lambda_q(\Omega)$. Therefore, such a function enjoys the following properties

$$
\|w_q\|_q = 1, \quad \|\nabla w_q\|_p = \lambda_q(\Omega) \quad \text{and} \quad \begin{cases}
-\Delta_p w_q = \lambda_q(\Omega) w_q^{q-1} & \text{in } \Omega, \\
w_q = 0 & \text{on } \partial \Omega, \\
w_q > 0 & \text{in } \Omega.
\end{cases}
$$

It can be checked (see [9, Lemma 4.2]), as a simple application of the Hölder inequality, that the function

$$
q \in [1, p^*) \mapsto \lambda_q(\Omega) |\Omega|^\frac{q}{2}
$$

is decreasing for any fixed $p > 1$, where here and from now on $|D|$ denotes the Lebesgue volume of the set D, i.e., $|D| = \int_D dx$.

The monotonicity of the function in (1.3) guarantees that

$$
\Lambda_p(\Omega) := \lim_{q \rightarrow p^*} \lambda_q(\Omega)
$$

is well defined and also that

$$
0 \leq \Lambda_p(\Omega) = \inf_{q \geq 1} \left(\lambda_q(\Omega) |\Omega|^\frac{q}{2} \right) \left(\lim_{q \rightarrow p^*} |\Omega|^{-\frac{q}{2}} \right) \leq \lambda_1(\Omega) |\Omega|^p \left(\lim_{q \rightarrow p^*} |\Omega|^{-\frac{q}{2}} \right).
$$

It is known that

$$
\Lambda_p(\Omega) = \begin{cases}
S_p & \text{if } 1 < p < N, \\
0 & \text{if } p = N,
\end{cases}
$$

(1.4)

where S_p is the Sobolev constant: the best constant S in the Sobolev inequality

$$
S \|u\|_{L^p(\mathbb{R}^N)}^p \leq \|\nabla u\|_{L^p(\mathbb{R}^N)}^p, \quad u \in W_0^{1,p}(\mathbb{R}^N).
$$

It is explicitly given by (see [2], [20])

$$
S_p := \pi^{\frac{N}{2}} N \left(\frac{N - p}{p - 1} \right)^{p-1} \left(\frac{\Gamma(N/p) \Gamma(1 + N - N/p)}{\Gamma(1 + N/2) \Gamma(N)} \right)^\frac{q}{2}
$$

(1.5)

where $\Gamma(t) = \int_0^\infty s^{t-1} e^{-s} ds$ is the Gamma Function.

The case $1 < p < N$ in (1.4) can be seen in [8], whereas the case $p = N$ is a consequence of the following result proved in [18]

$$
\lim_{q \rightarrow \infty} q^{N-1} \lambda_q(\Omega) = \frac{N^{2N-1} \omega_N}{(N-1)^{N-1}} e^{N-1},
$$

where

$$
\omega_N = \frac{\pi^{\frac{N}{2}}}{\Gamma(\frac{N}{2} + 1)}
$$

(1.6)

is the volume of the unit ball B_1. (From now on B_p denotes the ball centered at the origin with radius ρ).

As we can see from (1.4) the value $\Lambda_p(\Omega)$ does not depend on Ω, when $1 < p \leq N$. This property does not hold if $p > N$. Indeed, by using a simple scaling argument one can show that

$$
\Lambda_p(B_R) = \Lambda_p(B_1) R^{N-p}.
$$

In the first part of this paper, developed in Section 2, we consider a general bounded domain Ω and $p > N$ and show that

$$
\Lambda_p(\Omega) = \inf \left\{ \|\nabla u\|_p^p : u \in W_0^{1,p}(\Omega) \text{ and } \|u\|_\infty = 1 \right\}.
$$

(1.7)

Thus, $\Lambda_p(\Omega)$ is the best constant associated with the (compact) Sobolev immersion

$$
W_0^{1,p}(\Omega) \hookrightarrow C(\overline{\Omega}), \quad p > N,
$$

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.mn-journal.com
We also show that there exists $q_s \to \infty$ such that w_{q_s} converges strongly, in both Banach spaces $C(\overline{\Omega})$ and $W_0^{1,p}(\Omega)$, to a positive function u_p satisfying $\|u_p\|_\infty = 1$. Moreover, we prove that this function attains the infimum at (1.7):

$$\|\nabla u_p\|_p^p = \Lambda_p(\Omega) = \min \left\{ \|\nabla u\|_p^p : u \in W_0^{1,p}(\Omega) \text{ and } \|u\|_\infty = 1 \right\}. \quad (1.8)$$

However, our main result in Section 2 is the complete characterization of the minimizers in (1.8), which we call extremal functions of $\Lambda_p(\Omega)$ and denote by u_p. More precisely, we prove that if $u_p \in W_0^{1,p}(\Omega)$ is such that

$$\|u_p\|_\infty = 1 \text{ and } \|\nabla u_p\|_p^p = \Lambda_p(\Omega)$$

then u_p does not change sign in Ω, attains its sup norm at a unique point x_p, and satisfies the equation

$$-\Delta_p u_p = u_p(x_p) \Lambda_p(\Omega) \delta_{x_p},$$

where δ_{x_p} is the Dirac delta distribution concentrated at x_p.

In the particular case where $\Omega = B_R$, a ball of radius R, we show that

$$\Lambda_p(B_R) = \frac{N \omega_N}{R^{p-N}} \left(\frac{p-N}{p-1} \right)^{p-1}$$

and that

$$\lim_{q \to \infty} w_q(|x|) = u_p(|x|) := 1 - \left(\frac{|x|}{R} \right)^{\frac{p-N}{p-1}} ; \quad 0 \leq |x| \leq R,$$

where $w_q(|\cdot|)$ is the positive extremal function of $\lambda_q(B_R)$. Moreover, we prove that the function u_p defined in (1.10) is the unique minimizer of $\Lambda_p(B_R)$. Since $x_p = 0$, our main result in Section 2 implies that

$$-\Delta_p u_p = \Lambda_p(B_R) \delta_0.$$

It is convenient to recall the following consequence of [19, Theorem 2.E], due to Talenti:

$$N(\omega_N) \frac{1}{p} \left(\frac{p-N}{p-1} \right)^{p-1} |\Omega|^{\frac{1-p}{p}} \|u\|_\infty^p \leq \|\nabla u\|_p^p \quad \text{for all } u \in W_0^{1,p}(\Omega). \quad (1.11)$$

We emphasize that, in view of (1.7), this inequality allows one to conclude that

$$N(\omega_N) \frac{1}{p} \left(\frac{p-N}{p-1} \right)^{p-1} |\Omega|^{\frac{1-p}{p}} \leq \Lambda_p(\Omega). \quad (1.12)$$

Note that when $\Omega = B_R$ the left-hand side of (1.12) coincides with the right-hand side of (1.9). Thus, equality in (1.11) holds when Ω is a ball and u is a scalar multiple of the function defined in (1.10), as pointed out in [19]. In this paper we show that if Ω is not a ball, then the inequality in (1.11) has to be strict. This fact was not observed in [19].

We remark that (1.9) provides the following upper bound to $\Lambda_p(\Omega)$:

$$\Lambda_p(\Omega) \leq N(\omega_N) \frac{1}{p} \left(\frac{p-N}{p-1} \right)^{p-1} |B_{R_{\Omega}}|^{\frac{1-p}{p}},$$

where R_{Ω} denotes the inradius of Ω, that is, the radius of the largest ball inscribed in Ω. We use the bounds (1.12) and (1.9) and the explicit expression of S_p in (1.5) to conclude that the function $p \mapsto \Lambda_p(\Omega)$ is continuous at $p = N$.

In the second part, developed in Section 3, we study the asymptotic behavior, as $p \to \infty$, of the pair $(\Lambda_p(\Omega), u_p)$, where $u_p \in W_0^{1,p}(\Omega)$ will denote a positive extremal function of $\Lambda_p(\Omega)$. First we prove that

$$\lim_{p \to \infty} \Lambda_p(\Omega) \frac{1}{\|p\|_{\infty}}.$$
where
\[\rho(x) := \inf_{y \in \Omega} |y - x|, \quad x \in \Omega, \]
is the distance function to the boundary. We recall the well-known fact:
\[\frac{1}{\|\rho\|_{\infty}} = \min \left\{ \frac{\|\nabla \phi\|_{\infty}}{\|\phi\|_{\infty}} : \phi \in W^{1,\infty}_0(\Omega) \setminus \{0\} \right\}. \] (1.13)

Then, we prove that there exist a sequence \(p_n \to \infty \), a point \(x_* \in \Omega \) and a function \(u_\infty \in W^{1,\infty}_0(\Omega) \cap C(\overline{\Omega}) \) such that: \(x_{p_n} \to x_* \), \(\|\rho\|_{\infty} = \rho(x_*) \), \(u_\infty \leq \frac{\rho}{\|\rho\|_{\infty}} \) and \(u_{p_n} \to u_\infty \), uniformly in \(\overline{\Omega} \) and strongly in \(W^{1,p}_0(\Omega) \) for all \(r > N \). Moreover, \(x_* \) is the unique maximum point of \(u_\infty \), this function is also a minimizer of (1.13) and satisfies
\[
\begin{cases}
\Delta_\infty u_\infty = 0 & \text{in } \Omega \setminus \{x_*\}, \\
u_\infty = \frac{\rho}{\|\rho\|_{\infty}} & \text{on } \partial (\Omega \setminus \{x_*\}) = \{x_*\} \cup \partial \Omega,
\end{cases}
\]
in the viscosity sense, where \(\Delta_\infty \) denotes the well-known \(\infty \)-Laplacian operator (see [4], [6], [15]), defined formally by
\[\Delta_\infty u := \sum_{i,j=1}^N \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} - \frac{\partial^2 u}{\partial x_i \partial x_j}. \]

Still in Section 3 we characterize the domains \(\Omega \) for which \(u_\infty = \frac{\rho}{\|\rho\|_{\infty}} \) in \(\overline{\Omega} \) and show that each maximum point of the distance function \(\rho \) gives rise to a minimizer of (1.13). We then use this latter fact to conclude that if \(\Omega \) is an annulus, then there exist infinitely many positive and nonradial minimizers of (1.13).

2 \(\Lambda_p(\Omega) \) and its extremal functions

In this section, \(p > N \geq 2 \) and \(\Omega \) denotes a bounded and smooth domain of \(\mathbb{R}^N \). We recall the well-known Morrey’s inequality
\[\|u\|_{C^{\gamma}(\overline{\Omega})} \leq C \|\nabla u\|_{L^p(\Omega)}, \quad \text{for all } u \in W^{1,p}(\Omega), \]
where \(\gamma := 1 - \frac{N}{p} \) and \(C \) depends only on \(\Omega \), \(p \) and \(N \). This inequality implies immediately that the immersion \(W^{1,p}_0(\Omega) \hookrightarrow C(\overline{\Omega}) \) is compact.

Let us also recall that
\[\Lambda_p(\Omega) := \lim_{q \to \infty} \lambda_q(\Omega) \]
where \(\lambda_q(\Omega) \) is defined in (1.1).

Theorem 2.1 There holds
\[\Lambda_p(\Omega) = \inf \left\{ \|\nabla u\|^p_p : u \in W^{1,p}_0(\Omega) \text{ and } \|u\|_{\infty} = 1 \right\}. \] (2.1)

Proof. Let
\[\mu := \inf \left\{ \|\nabla u\|^p_p : u \in W^{1,p}_0(\Omega) \text{ and } \|u\|_{\infty} = 1 \right\}. \]

Let us take \(u \in W^{1,p}_0(\Omega) \) such that \(\|u\|_{\infty} = 1 \). Since \(\lim_{q \to \infty} \|u\|_q = \|u\|_{\infty} = 1 \) we have
\[\Lambda_p(\Omega) = \lim_{q \to \infty} \lambda_q(\Omega) \leq \lim_{q \to \infty} \frac{\|\nabla u\|^p_p}{\|u\|^p_q} = \|\nabla u\|^p_p, \]
implying that \(\Lambda_p(\Omega) \leq \mu \).
Now, for each $q \geq 1$ let w_q be a positive extremal function of $\lambda_q(\Omega)$. Since

$$\mu \leq \|\nabla (w_q/\|w_q\|_\infty)\|_p = \frac{\lambda_q(\Omega)}{\|w_q\|_\infty^p},$$

in order to verify that $\mu \leq \Lambda_p(\Omega)$ we need only check that

$$\lim_{q \to \infty} \|w_q\|_\infty = 1.$$ \tag{2.2}

Since $1 = \|w_q\|_q \leq |\Omega|^{\frac{1}{q'}} \|w_q\|_\infty$, $\|\nabla w_q\|_p = \lambda_q(\Omega)$ and $\Lambda_p(\Omega) \leq \mu$ we have

$$|\Omega|^{-\frac{1}{q'}} \leq \|w_q\|_\infty \leq \frac{\|\nabla w_q\|_p^p}{\mu} \leq \frac{\lambda_q(\Omega)}{\Lambda_p(\Omega)},$$

which leads to (2.2), after making $q \to \infty$. \hfill \Box

Taking into account (2.1), we make the following definition:

Definition 2.2 We say that $v \in W^{1,p}_0(\Omega)$ is an extremal function of $\Lambda_p(\Omega)$ if and only if

$$\|\nabla v\|_p = \Lambda_p(\Omega) \quad \text{and} \quad \|v\|_\infty = 1.$$

In the sequel we show that an extremal function of $\Lambda_p(\Omega)$ can be obtained as the limit of w_{q_n} for some $q_n \to \infty$, where w_{q_n} denotes the extremal function of $\lambda_{q_n}(\Omega)$.

Theorem 2.3 There exists $q_n \to \infty$ and a nonnegative function $w \in W^{1,p}_0(\Omega) \cap C(\overline{\Omega})$ such that $w_{q_n} \to w$ strongly in $C(\overline{\Omega})$ and also in $W^{1,p}_0(\Omega)$. Moreover, w is an extremal function of $\Lambda_p(\Omega)$.

Proof. Since w_{q_n} is uniformly bounded in $W^{1,p}_0(\Omega)$ and also in $C^{0,1-N/2}(\overline{\Omega})$ there exist $q_n \to \infty$ and a nonnegative function $w \in W^{1,p}_0(\Omega) \cap C(\Omega)$ such that $w_{q_n} \to w$ weakly in $W^{1,p}_0(\Omega)$ and strongly in $C(\Omega)$. Thus, $\|w\|_\infty = \lim \|w_{q_n}\|_\infty = 1$ (because of (2.2)) and hence

$$\Lambda_p(\Omega) \leq \|\nabla w\|_p \leq \liminf \|\nabla w_{q_n}\|_p = \lim \lambda_{q_n}(\Omega) = \Lambda_p(\Omega).$$

This implies that $\Lambda_p(\Omega) = \lim \|\nabla w_{q_n}\|_p = \|\nabla w\|_p$, so that $w_{q_n} \to w$ strongly in $W^{1,p}_0(\Omega)$ and also that w is an extremal function of $\Lambda_p(\Omega)$. \hfill \Box

Remark 2.4 As we will see in the sequel, any nonnegative extremal function of $\Lambda_p(\Omega)$ must be strictly positive in Ω.

We recall a well-known fact: $(-\Delta_p)^{-1} : W^{-1,p'}(\Omega) \mapsto W^{1,p}_0(\Omega)$ is bijective. Thus, if $p > N$ the equation

$$-\Delta_p u = c \delta_y$$ \tag{2.3}

has a unique solution $u \in W^{1,p}_0(\Omega)$ for each fixed $y \in \Omega$ and $c \in \mathbb{R}$. Note that if $p > N$ then $\delta_y \in W^{-1,p'}_0(\Omega)$, since

$$|\delta_y(\phi)| = |\phi(y)| \leq \|\phi\|_\infty \leq \Lambda_p(\Omega)^{-\frac{1}{p'}} \|\nabla \phi\|_p, \quad \text{for all} \quad \phi \in W^{1,p}_0(\Omega).$$

The equation (2.3) is to be interpreted in sense of the distributions:

$$\int_{\Omega} |\nabla \phi|^{p-2} \nabla u \cdot \nabla \phi \, dx = c \phi(y), \quad \text{for all} \quad \phi \in W^{1,p}_0(\Omega).$$

Theorem 2.5 Let $u_p \in W^{1,p}_0(\Omega)$ be an extremal function of $\Lambda_p(\Omega)$ and let $x_p \in \Omega$ be such that

$$|u_p(x_p)| = \|u_p\|_\infty = 1.$$

We claim that

(i) $-\Delta_p u_p = u_p(x_p) \Lambda_p(\Omega) \delta_{x_p}$ in Ω,
(ii) x_p is the unique global maximum point of $|u_p|$,
(iii) u_p does not change sign in Ω, and
(iv) for each $0 < t < 1$, there exists $\alpha_t \in (0,1)$ such that $u_p \in C^{1,\alpha_t}(\overline{E_t})$, where $E_t = \{x \in \Omega : 0 < |u_p(x)| < t\}$.

Proof. For the sake of simplicity, we will assume throughout this proof that \(u_p(x_p) = 1 \) (otherwise, if \(u_p(x_p) = -1 \), we replace \(u_p \) by \(-u_p\).)

Let \(v \in W^{1,p}_0(\Omega) \) be such that

\[
-\Delta_p v = \Lambda_p(\Omega)\delta_{x_p} \quad \text{in} \quad \Omega.
\]

Since \(u_p(x_p) = 1 \),

\[
\Lambda_p(\Omega) = \int_{\Omega} |\nabla v|^{p-2} \nabla v \cdot \nabla u_p \, dx \leq \int_{\Omega} |\nabla v|^{p-1} |\nabla u_p| \, dx. \tag{2.4}
\]

Hence, since \(\Lambda_p(\Omega) = \|\nabla u_p\|_p^p \) and

\[
\|\nabla v\|_p^p = \int_{\Omega} |\nabla v|^{p-2} \nabla v \cdot \nabla u_p \, dx = \Lambda_p(\Omega)v(x_p) \tag{2.5}
\]

we apply the Hölder inequality to (2.4) in order to get

\[
\int_{\Omega} |\nabla v|^{p-1} |\nabla u_p| \, dx \leq \|\nabla v\|^{p-1} \|\nabla u_p\|_p
\]

\[
= (\Lambda_p(\Omega)v(x_p))^{\frac{p-1}{p}} \Lambda_p(\Omega)^{\frac{1}{p}} = \Lambda_p(\Omega) (v(x_p))^{\frac{p-1}{p}}. \tag{2.6}
\]

It follows from (2.4) and (2.6) that \(1 \leq v(x_p) \leq \|v\|_{\infty} \).

On the other hand, (2.1) and (2.5) yield

\[
\Lambda_p(\Omega) \leq \frac{\|\nabla v\|_p^p}{\|\nabla v\|_{\infty}^p} = \frac{\Lambda_p(\Omega)v(x_p)}{\|\nabla v\|_{\infty}^p} \leq \frac{\Lambda_p(\Omega)}{\|\nabla v\|_{\infty}^{p-1}}. \tag{2.7}
\]

Hence, \(v(x_p) \leq \|v\|_{\infty} \leq 1 \) and then we conclude that

\[
1 = v(x_p) = \|v\|_{\infty}. \tag{2.8}
\]

Combining (2.8) with (2.7) we obtain

\[
\Lambda_p(\Omega) = \|\nabla v\|_p^p,
\]

showing that \(v \) is an extremal function of \(\Lambda_p(\Omega) \).

In order to prove that \(u_p = v \) we combine (2.8) with (2.6) and (2.4) to get

\[
\Lambda_p(\Omega) = \int_{\Omega} |\nabla v|^{p-2} \nabla v \cdot \nabla u_p \, dx = \int_{\Omega} |\nabla v|^{p-1} |\nabla u_p| \, dx = \|\nabla v\|_p^{p-1} \|\nabla u_p\|_p. \tag{2.9}
\]

The third equality in (2.9) is exactly the case of an equality in the Hölder inequality. It means that

\[
|\nabla v| = |\nabla u_p| \quad \text{a.e. in} \quad \Omega. \tag{2.10}
\]

(Note that \(\|\nabla v\|_p = \|\nabla u_p\|_p \).)

We still obtain from (2.9) that

\[
0 = \int_{\Omega} |\nabla v|^{p-2} (|\nabla v||\nabla u_p| - \nabla v \cdot \nabla u_p) \, dx.
\]

Since \(|\nabla v||\nabla u_p| \geq \nabla v \cdot \nabla u_p \) this yields

\[
\nabla v \cdot \nabla u_p = |\nabla v||\nabla u_p| \quad \text{a.e. in} \quad \Omega. \tag{2.11}
\]

Note that this equality occurs even at the points where \(|\nabla v|^{p-2} = 0 \).

It follows from (2.11) and (2.10) that

\[
\nabla v = \nabla u_p \quad \text{a.e. in} \quad \Omega,
\]

implying that \(\|\nabla (v - u_p)\|_p = 0 \). Since both \(v \) and \(u_p \) belong to \(W^{1,p}_0(\Omega) \) we conclude that

\[
v = u_p \quad \text{a.e. in} \quad \Omega
\]

so that \(-\Delta_p u_p = \Lambda_p(\Omega)\delta_{x_p} \). Thus, the proof of (i) is complete.
The claim (ii) follows directly from (i). In fact, another global maximum point, say \(x_1\), would lead to the following absurd: \(\Lambda_p(\Omega)\delta_{x_1} = -\Delta_p u_p = \Lambda_p(\Omega)\delta_{x_1}\).

Let us prove (iii). First we observe that \(u_p \geq 0\) in \(\Omega\). This is a consequence of the weak comparison principle since

\[
\int_\Omega |\nabla u_p|^{p-2} \nabla u_p \cdot \nabla \phi \, dx = \Lambda_p(\Omega)\phi(x_p) \geq 0, \quad \text{for all } \phi \in W^{1,p}_0(\Omega), \ \phi \geq 0.
\]

Now, we argue that \(u_p\) is \(p\)-harmonic in \(\Omega \setminus \{x_p\}\). Indeed, for each ball \(B \subset \Omega \setminus \{x_p\}\) and each \(\phi \in W^{1,p}_0(B) \subset W^{1,p}_0(\Omega)\) (here we are considering \(\phi = 0\) in \(\Omega \setminus B\)) we have

\[
\int_B |\nabla u_p|^{p-2} \nabla u_p \cdot \nabla \phi \, dx = \int_\Omega |\nabla u_p|^{p-2} \nabla u_p \cdot \nabla \phi \, dx = \Lambda_p(\Omega)\phi(x_p) = 0,
\]

implying that \(u_p\) is \(p\)-harmonic in \(B\).

Let us consider the following subset \(Z := \{x \in \Omega : u_p(x) = 0\}\). Of course, \(Z\) is closed in \(\Omega\). Moreover, \(Z\) is also open in \(\Omega\). In fact, if \(z \in Z\) then \(z \in B\) for some ball \(B \subset \Omega \setminus \{x_p\}\). Since \(u_p\) is nonnegative in \(\Omega\) we can conclude that \(u_p\) restricted to \(B\) assumes its minimum value 0 at \(z \in B\). Since \(u_p\) is \(p\)-harmonic in \(B\) it must assume its minimum value only on the boundary \(\partial B\), unless it is constant on \(B\) (see [16]). So, we conclude that \(u_p\) is null in \(B\), proving that \(B \subset Z\). Since \(\Omega\) is connected (because it is a domain) the only possibility to \(Z\) to be empty. This fact implies that \(u_p > 0\) in \(\Omega\).

In order to prove (iv) let us take \(0 < t < 1\) and consider the set \(E_t = \{x \in \Omega : 0 < u_p(x) < t\}\), which is open, since \(u_p\) is continuous. We remark that \(u_p\) is constant on \(\partial E_t\). Moreover, by following the reasoning made in the proof of the third claim, \(u_p\) is \(p\)-harmonic in \(E_t\), because this set is away from \(\{x_p\}\) (recall that \(t < u_p(x_p)\)). Thus, \(u_p\) is constant on \(\partial E_t\) and satisfies \(-\Delta_p u_p = 0\) in \(E_t\). This fact allows us to apply the regularity result of Lieberman (see [14, Theorem 1]) to each connected component of \(E_t\) to conclude that there exists \(\alpha_t \in (0, 1)\) such that \(u_p \in C^{1,\alpha_t}(E_t)\).

The next theorem is contained in [19, Theorem 2.E].

Theorem 2.6 Let \(R > 0\). Consider the function

\[
\lambda_p(|x|) := 1 - \left(\frac{|x|}{R}\right)^{\frac{pN}{p-N}} ; \quad 0 \leq |x| \leq R.
\]

One has,

\[
\|\nabla u_p\|_p^p = \frac{N \omega_N}{R^{p-N}} \left(\frac{p-N}{p-1}\right)^{p-1} = \Lambda_p(B_R).
\]

Proof. We have

\[
\|\nabla u_p\|_p^p = \int_{B_R} |\nabla u_p(|x|)|^p \, dx
\]

\[
= N \omega_N \int_0^R r^{N-1} |u'_p(r)|^p \, dr
\]

\[
= N \omega_N \left(\frac{p-N}{p-1}\right)^p R^{\frac{pN}{p-N}} \int_0^R r^{N-1+\frac{pN}{p-N} - 1} \, dr
\]

\[
= N \omega_N \left(\frac{p-N}{p-1}\right)^p R^{\frac{pN}{p-N}} \frac{p-1}{p-N} R^{\frac{pN}{p-N}} = \frac{N \omega_N}{R^{p-N}} \left(\frac{p-N}{p-1}\right)^{p-1},
\]

which gives the first equality in (2.13).

Of course, \(u_p(|\cdot|) \in W^{1,p}_0(B_R)\). Since \(\|u_p\|_\infty = 1\), it follows from Theorem 2.1 that

\[
\Lambda_p(B_R) \leq \|\nabla u_p\|_p^p = \frac{N \omega_N}{R^{p-N}} \left(\frac{p-N}{p-1}\right)^{p-1}.
\]
On the other hand, it follows from (1.11) that if \(v \in W_0^{1,p}(B_R) \) and \(\|v\|_\infty = 1 \) then

\[
\frac{N \omega_N}{R^{p-N}} \left(\frac{p-N}{p-1}\right)^{p-1} = N(\omega_N)^{\frac{2}{p}} \left(\frac{p-N}{p-1}\right)^{p-1} |B_R|^{1-\frac{2}{p}} \leq \|\nabla v\|_p.
\]

Taking into account Theorem 2.1, this means that

\[
\frac{N \omega_N}{R^{p-N}} \left(\frac{p-N}{p-1}\right)^{p-1} \leq \Lambda_p(B_R)
\]

and the proof is complete.

\[\square\]

Corollary 2.7 The following estimates for \(\Lambda_p(\Omega) \) hold

\[
N(\omega_N)^{\frac{2}{p}} \left(\frac{p-N}{p-1}\right)^{p-1} |\Omega|^{1-\frac{2}{p}} \leq \Lambda_p(\Omega) \leq N(\omega_N)^{\frac{2}{p}} \left(\frac{p-N}{p-1}\right)^{p-1} |B_{R_\Omega}|^{1-\frac{2}{p}},
\]

where \(R_\Omega \) is the inradius of \(\Omega \) (i.e. the radius of the largest ball inscribed in \(\Omega \)).

Proof. The lower bound in (2.15) follows from (1.11). Let \(B_{R_\Omega}(x_0) \subset \Omega \) be a ball centered at a point \(x_0 \in \Omega \) with radius \(R_\Omega \). Since (it is easy to see)

\[
\Lambda_p(\Omega) \leq \Lambda_p(B_{R_\Omega}(x_p)) = \Lambda_p(B_{R_\Omega})
\]

we obtain the upper bound in (2.15) from (2.13) with \(R = R_\Omega \).

\[\square\]

Remark 2.8 It follows from (2.15) that \(\limsup_{p \to \infty} \Lambda_p(\Omega)^{\frac{p}{2}} \leq R_\Omega^{-1} \). As we will see in Section 3, \(\Lambda_p(\Omega)^{\frac{p}{2}} \)
increases as \(p \) increases and really converges to \(R_\Omega^{-1} \) as \(p \to \infty \). This shows that the upper bound in (2.15) gets
asymptotically better as \(p \) increases.

Corollary 2.9 The equality in (1.11) occurs for some \(0 \neq u \in W_0^{1,p}(\Omega) \) if, and only if, \(\Omega \) is a ball.

Proof. When \(\Omega = B_R \) the equality holds true in (1.11) for the function \(u_p \) defined in (2.12), as (2.13) shows. On the other hand, if the equality in (1.11) is verified for some \(0 \neq v \in W_0^{1,p}(\Omega) \), we can assume that

\[
\|v\|_\infty = 1. Thus,
\]

\[
N(\omega_N)^{\frac{2}{p}} \left(\frac{p-N}{p-1}\right)^{p-1} |\Omega|^{1-\frac{2}{p}} = \|\nabla v\|_p.
\]

But,

\[
N(\omega_N)^{\frac{2}{p}} \left(\frac{p-N}{p-1}\right)^{p-1} |\Omega|^{1-\frac{2}{p}} = \frac{N \omega_N}{(R^*)^{p-N}} \left(\frac{p-N}{p-1}\right)^{p-1} = \Lambda_p(B_{R^*})
\]

where, as before, \(R^* = (|\Omega|/\omega_N)^{\frac{1}{p}} \) is such that \(|B_{R^*}| = |\Omega| \). It follows that \(\Lambda_p(B_{R^*}) = \|\nabla v\|_p^p \).

Let \(v^* \in W_0^{1,p}(B_R) \) denote the Schwarz symmetrization of \(v \). We have \(\|v^*\|_\infty = \|v\|_\infty = 1 \) and

\[
\Lambda_p(B_{R^*}) \leq \|\nabla v^*\|_p \leq \|\nabla v\|_p^p = \Lambda_p(B_{R^*}),
\]

from which we conclude that \(\|\nabla v^*\|_p = \|\nabla v\|_p \). This fact implies that \(\Omega \) is a ball, according to [5, Lemma 3.2].

\[\square\]

Corollary 2.10 One has

\[
\lim_{p \to N^{-}} \frac{\Lambda_p(\Omega)}{|p-N|^{p-1}} = \frac{N \omega_N}{(N-1)^{N-1}} = \lim_{p \to N^+} \frac{\Lambda_p(\Omega)}{|p-N|^{p-1}}.
\]

In particular, the function \(p \in (1, \infty) \mapsto \Lambda_p(\Omega) \) is continuous at \(p = N \).
\textbf{Proof.} It follows from (1.4), (1.5) and (1.6) that
\[
\lim_{p \to N^+} \frac{\Lambda_p(\Omega)}{|p - N|^{p-1}} = \lim_{p \to N^+} \frac{\pi^\frac{p}{2}}{(p-1)^{p-1}} \left(\frac{\Gamma(N/p)\Gamma(1+N-N/p)}{\Gamma(1+N/2)\Gamma(N)} \right)^\frac{1}{p} \leq \frac{\pi^\frac{p}{2}}{\Gamma(N)} \frac{1}{(N-1)^{N-1}} = \frac{N \omega_N}{(N-1)^{N-1}}.
\]
Now, by using (2.15) we obtain
\[
\frac{N \omega_N}{(N-1)^{N-1}} = \lim_{p \to N^+} \frac{N(\omega_N)^\frac{p}{2}}{(p-1)^{p-1}} |\Omega|^{1 - \frac{p}{2}} \leq \lim_{p \to N^+} \frac{\Lambda_p(\Omega)}{|p - N|^{p-1}}
\]
and
\[
\lim_{p \to N^+} \frac{\Lambda_p(\Omega)}{|p - N|^{p-1}} \leq \lim_{p \to N^+} \frac{N(\omega_N)^\frac{p}{2}}{(p-1)^{p-1}} |B_\delta|^1 \leq \frac{N \omega_N}{(N-1)^{N-1}}.
\]
The continuity follows, since
\[
\lim_{p \to N} \Lambda_p(\Omega) = \lim_{p \to N^+} \frac{\Lambda_p(\Omega)}{|p - N|^{p-1}} \lim_{p \to N^+} \frac{\Lambda_p(\Omega)}{|p - N|^{p-1}} = 0 = \Lambda_N(\Omega).
\]
\(\square\)

Theorem 2.6 says that the function \(u_p(|x|)\) defined in (2.12) is a positive extremal function of \(\Lambda_p(B_R)\). Let us prove that it is the unique.

\textbf{Theorem 2.11} Let \(R > 0\). The function \(u_p(|x|)\) defined in (2.12) is the unique positive extremal function of \(\Lambda_p(B_R)\).

\textbf{P r o o f.} It follows from Theorem 2.5 that
\[-\Delta_p u_p = \Lambda_p(B_R) \delta_0.\]

Now, let us suppose that \(v \in W_0^{1,p}(B_R)\) is an arbitrary, positive extremal function of \(\Lambda_p(B_R)\). Let \(v^* \in W_0^{1,p}(B_R)\) denote the Schwarz symmetrization of \(v\) (see [13]). It follows that \(v^*\) is radial and radially nonincreasing and, moreover, it satisfies \(\|v^*\|_\infty = \|v\|_\infty\) and \(\|\nabla v^*\|_p \leq \|\nabla v\|_p\). Therefore, \(v^*(0) = \|v^*\|_\infty = \|v\|_\infty = 1\) and
\[\Lambda_p(B_R) \leq \|\nabla v^*\|_p \leq \|\nabla v\|_p = \Lambda_p(B_R).\]
Thus, \(v^*\) is also a nonnegative extremal function of \(\Lambda_p(B_R)\). Theorem 2.5 yields \(-\Delta_p v^* = \Lambda_p(B_R) \delta_0 = -\Delta_p u_p\), which implies that \(v^* = u_p\). Since
\[|\nabla v^*(x)| = |\nabla u_p(|x|)| = \frac{p - N}{p - 1} R^{-\frac{N-1}{p-1}} |x|^{-\frac{N}{p-1}} > 0, \quad 0 < |x| \leq R,
\]
the set \(\{x \in B_R : \nabla v^* = 0\}\) has Lebesgue measure zero. Hence, we can apply a well-known result (see [5, Theorem 1.1]) to conclude that \(v = v^* = u_p\). \(\square\)

\textbf{Corollary 2.12} Let \(w_q\) denote the extremal function of \(\lambda_q(B_R)\). We have
\[\lim_{q \to \infty} w_q(|x|) = 1 - \frac{|x|}{|x| / R}^\frac{q}{p-1}, \quad (2.16)\]
strongly in \(C(B_R)\) and also in \(W_0^{1,p}(B_R)\). Moreover, (2.16) holds in \(C^1(B_{\epsilon R})\) for each \(\epsilon \in (0, R)\), where \(B_{\epsilon R} = \{\epsilon < |x| < R\}\).

\textbf{P r o o f.} It follows from Theorem 2.11 that \(1 - (|x| / R)^\frac{q}{p-1}\) is the only limit function of the family \(\{w_q(|\cdot| / q)|, q \to \infty\}\). Therefore, the convergence given by Theorem 2.3 is valid for any sequence \(q_n \to \infty\) and this guarantees that (2.16) happens strongly in \(C(B_R)\) and also in \(W_0^{1,p}(B_R)\).
The convergence in $C^1(B_{r,R})$ is consequence of the following fact
\[
\lim_{q \to \infty} \lambda_q w_q(|x|)^{q-1} = 0, \text{ uniformly in } B_{r,R},
\]
which occurs because of the uniform convergence of $w_q(|x|)$ to $1 - (|x|/R)^{\frac{q}{q-1}}$. (Note that $0 \leq w_q(|x|) \leq k < 1$ for some k, and for all $x \in B_{r,R}$ and all q large enough.) Therefore, we can apply a result of Lieberman (see [14, Theorem 1]) to guarantee that, for all q large enough, w_q is uniformly bounded in the Hölder space $C^{1,q}(B_{r,R})$, for some $\alpha \in (0, 1)$ that does not depend on q. Then, we obtain the convergence (2.16) from the compactness of the immersion $C^{1,q}(B_{r,R}) \hookrightarrow C^1(B_{r,R})$ by taking into account that the limit function is always $1 - (|x|/R)^{\frac{q}{q-1}}$.

\section{Asymptotics as $p \to \infty$}

In this section, $u_p \in W_0^{1,p}(\Omega) \cap C^{0,1-\frac{2}{p}}(\overline{\Omega})$ denotes a positive extremal function of $\Lambda_p(\Omega)$ and $\rho \in W_0^{1,\infty}(\Omega)$ denotes the distance function to the boundary $\partial \Omega$. Thus, $0 < u_p(x) \leq \|u_p\| = 1$ for all $x \in \Omega$, and
\[
\Lambda_p(\Omega) = \min \left\{ \|\nabla u\|_p : u \in W_0^{1,p}(\Omega) \text{ and } \|u\|_\infty = 1 \right\} = \|\nabla u_p\|_p
\]
and
\[
\rho(x) = \inf_{y \in \Omega} |y - x|, \quad x \in \overline{\Omega}.
\]
As shown in Section 2, u_p has a unique maximum point, denoted by x_p, and
\[
\begin{align*}
-\Delta_p u_p &= \Lambda_p(\Omega) \delta_{x_p} \quad \text{in } \Omega, \\
u_p &= 0 \quad \text{on } \partial \Omega.
\end{align*}
\]
It is convenient to recall some properties of the distance function:

(P1) $\rho \in W_0^{1,r}(\Omega)$ for all $1 \leq r \leq \infty$.
(P2) $|\nabla \rho| = 1$ almost everywhere in Ω.
(P3) $\|\rho\|_\infty = R_{1,1}^\rho$ is the radius of the largest ball contained in Ω.
(P4) $1 - \|\rho\|_\infty \leq \frac{\|\nabla \phi\|_\infty}{\|\phi\|_\infty}$ for all $0 \neq \phi \in W_0^{1,\infty}(\Omega)$.

Let us, for a moment, consider $\Omega = B_R$. For this domain
\[
\rho(x) = R - |x|; \quad 0 \leq |x| \leq R,
\]
and, accordingly to (2.13) and (2.12): $x_p = 0$ for all $p > N$,
\[
\lim_{p \to \infty} \Lambda_p(B_R)^\frac{1}{p} = \lim_{p \to \infty} \left(\frac{N \omega_N}{R} \right)^\frac{1}{p} \left(\frac{p - N}{p - 1} \right)^\frac{p - 1}{p} = \frac{1}{R} = \frac{1}{\|\rho\|_\infty} \tag{3.2}
\]
and
\[
\lim_{p \to \infty} u_p(x) = \lim_{p \to \infty} 1 - \left(\frac{|x|}{R} \right)^{\frac{P}{p}} = 1 - \frac{|x|}{R} \left(\frac{\rho(x)}{\|\rho\|_\infty} \right); \quad 0 \leq |x| \leq R. \tag{3.3}
\]
As we will see in the sequel, (3.2) holds for any bounded domain, whereas (3.3) holds only for some special domains.

\textbf{Lemma 3.1} \textit{The function $p \in (N, \infty) \mapsto \Lambda_p(\Omega)^\frac{1}{p} |\Omega|^{-\frac{1}{p}}$ is increasing.}

\textbf{Proof.} Let $N < p_1 < p_2$ and, for each $i \in \{1, 2\}$ let $u_{p_i} \in W_0^{1,p_i}(\Omega)$ denote a positive extremal function of $\Lambda_{p_i}(\Omega)$. The Hölder inequality implies that
\[
\Lambda_{p_i}(\Omega) \leq \int_{\Omega} |\nabla u_{p_i}|^{p_i} \, dx \leq \left(\int_{\Omega} |\nabla u_{p_i}|^{p_i} \, dx \right)^\frac{p}{p_i} |\Omega|^{1-\frac{p}{p_i}} = \Lambda_{p_i}(\Omega)^\frac{p}{p_i} |\Omega|^{1-\frac{p}{p_i}},
\]

so that
\[\Lambda_p(\Omega)^{\frac{1}{p}} |\Omega|^{\frac{1}{p}} \leq \Lambda_p(\Omega)^{\frac{1}{p}} |\Omega|^{\frac{1}{p}}. \]

An immediate consequence of this lemma is that the function \(p \in (N, \infty) \mapsto \Lambda_p(\Omega) \) is increasing. \(\square \)

Theorem 3.2 One has
\[\lim_{p \to \infty} \Lambda_p(\Omega)^{\frac{1}{p}} |\Omega|^{-\frac{1}{p}} = \frac{1}{\|\rho\|_\infty}. \]

Proof. It is enough to prove that
\[\lim_{p \to \infty} \Lambda_p(\Omega)^{\frac{1}{p}} |\Omega|^{-\frac{1}{p}} = \frac{1}{\|\rho\|_\infty}. \]

It follows from (3.1) that
\[\Lambda_p(\Omega)^{\frac{1}{p}} |\Omega|^{-\frac{1}{p}} \leq \frac{\|\nabla \rho\|_p}{\|\rho\|_\infty} |\Omega|^{-\frac{1}{p}} = \frac{1}{\|\rho\|_\infty}, \quad p > N. \]

Hence, the monotonicity proved in Lemma 3.1 guarantees that
\[\Lambda_p(\Omega)^{\frac{1}{p}} |\Omega|^{-\frac{1}{p}} \leq L := \lim_{s \to \infty} \Lambda_s(\Omega)^{\frac{1}{s}} |\Omega|^{-\frac{1}{s}} = \lim_{s \to \infty} \Lambda_s(\Omega)^{\frac{1}{s}} \leq \frac{1}{\|\rho\|_\infty}, \quad \text{for all } p > N. \]

We are going to show that \(L = \frac{1}{|\rho|_\infty} \). For this, let us fix \(r > N \). Since
\[\|\nabla u_p\|_r \leq \|\nabla u_p\|_r |\Omega|^{-\frac{1}{r}} = \Lambda_p(\Omega)^{\frac{1}{r}} |\Omega|^{-\frac{1}{r}} |\Omega|^{\frac{1}{r}} \leq L |\Omega|^{\frac{1}{r}}, \quad p > r, \]
the family \(\{u_p\}_{p > r} \) is uniformly bounded in \(W_0^{1,r}(\Omega) \). It follows that there exist \(p_n \to \infty \) and \(u \in W_0^{1,r}(\Omega) \) such that
\[u_n \to u (\text{weakly}) \text{ in } W_0^{1,r}(\Omega). \]

Thus,
\[\|\nabla u\|_r \leq \liminf_{n} \|\nabla u_n\|_r \leq L |\Omega|^{\frac{1}{r}}. \]

After passing to another subsequence, if necessary, the compactness of the immersion \(W_0^{1,r}(\Omega) \hookrightarrow C(\overline{\Omega}) \) yields
\[u_p \to u (\text{strongly}) \text{ in } C(\overline{\Omega}). \]

Note that \(\|u\|_{\infty} = 1 \) since \(\|u\|_{\infty} = 1 \) for all \(p > N \).

The uniform convergence \(u_p \to u \) implies that, if \(s > r \), then \(u \in W_0^{1,s}(\Omega) \) of a subsequence of \(\{u_n\} \). Therefore,
\[u_\infty \in W_0^{1,s}(\Omega) \quad \text{and} \quad \|\nabla u_\infty\|_s \leq L |\Omega|^{\frac{1}{s}}, \quad \text{for all } s > r, \]

implying that \(u_\infty \in W_0^{1,\infty}(\Omega) \) and
\[\|\nabla u_\infty\|_\infty \leq L \leq \frac{1}{\|\rho\|_\infty}. \]

Combining this fact with Property P4 (recall that \(\|u_\infty\|_\infty = 1 \)) we conclude that
\[\|\nabla u_\infty\|_\infty \leq L \leq \frac{1}{\|\rho\|_\infty} \leq \|\nabla u_\infty\|_\infty, \]
from which we obtain
\[L = \frac{1}{\|\rho\|_\infty} = \|\nabla u_\infty\|_\infty. \]

\(\square \)
It is interesting to notice that $\Lambda_p(\Omega)^{\frac{1}{p}}$ and $\lambda_p(\Omega)^{\frac{1}{p}}$ have the same asymptotic behavior as $p \to \infty$, since

$$\lim_{p \to \infty} \lambda_p(\Omega)^{\frac{1}{p}} = \frac{1}{\|\rho\|_\infty},$$

as proved in [10], [12], where the infinity-eigenvalue problem was studied as the limit problem of the standard eigenvalue problem for the p-Laplacian, as $p \to \infty$.

Theorem 3.3 There exist $p_\infty \to \infty$, $x_\infty \in \Omega$ and $u_\infty \in W^{1,\infty}_0(\Omega)$ such that:

(i) u_{p_n} converges to u_∞ weakly in $W^{1,\infty}_0(\Omega)$, for any $r > N$, and uniformly in Ω;

(ii) $\|u_\infty\|_\infty = \|\rho\|_\infty$;

(iii) $0 \leq u_\infty \leq \frac{\rho}{\|\rho\|_\infty}$ a.e. in Ω;

(iv) $x_{p_n} \to x_\infty$;

(v) $u_\infty(x_{p_n}) = 1 = \|u_\infty\|_\infty$ and $\rho(x_{p_n}) = \|\rho\|_\infty$.

Proof. Items (i) and (ii) follow from the proof of the previous theorem. In particular, (ii) says that the Lipschitz constant of $\|\rho\|_\infty u_\infty$ is $\|\nabla(\|\rho\|_\infty u_\infty)\|_\infty = 1$. Thus,

$$0 < \|\rho\|_\infty u_\infty(x) \leq |x - y|,$$

for almost all $x \in \Omega$ and $y \in \partial \Omega$,

and hence we obtain $\|\rho\|_\infty u_\infty \leq \rho$ a.e. in Ω, as affirmed in (iii). Of course, $\{p_n\}$ can be chosen such that $x_{p_n} \to x_\infty$ for some $x_\infty \in \Omega$, yielding (iv). Since $u_{p_n}(x_{p_n}) = 1$, the uniform convergence $u_{p_n} \to u_\infty$ implies that $u_\infty(x_{p_n}) = 1$. Therefore, (iii) implies that $\|\rho\|_\infty = \rho(x_{p_n})$, what concludes the proof of (v).

Remark 3.4 We will prove in the sequel that x_∞ is the only maximum point of u_∞ and that u_∞ is infinity harmonic in the punctured domain $\Omega \setminus \{x_\infty\}$.

Remark 3.5 Item (ii) of Theorem 3.3 and property (P4) above imply that u_∞ minimizes the Rayleigh quotient

$$\frac{\|\nabla u_\infty\|_\infty^2}{\|u_\infty\|_\infty^2}$$

among all nontrivial functions u in $W^{1,\infty}_0(\Omega)$. This property is also shared with the distance function ρ and the first eigenfunctions of the ∞-Laplacian (see [12]). In the sequel (see Theorem 3.14) we will prove that $u_\infty(\cdot) = \frac{\rho(\cdot)}{\|\rho\|_\infty}$ for some special domains. For such domains u_∞ is also a first eigenfunction of the ∞-Laplacian, according to [22, Theorem 2.7].

In order to gain some insight on which equation u_∞ satisfies, let us go back to the case $\Omega = B_R$. It follows from (3.3) that:

$$u_\infty = \frac{\rho}{\|\rho\|_\infty} = 1 - \frac{|x|}{R},$$

$x_\infty = 0$ and $u_\infty(0) = 1 = \frac{\rho(0)}{\|\rho\|_\infty}$. Moreover, it is easy to check that $u_\infty \in C(\overline{B_R}) \cap C^2(B_R \setminus \{0\})$, $\nabla u_\infty \neq 0$ in $B_R \setminus \{0\}$ and

$$\Delta_\infty u_\infty(x) = 0, \quad x \in B_R \setminus \{0\},$$

where Δ_∞ denotes the ∞-Laplacian (see [1], [4], [6], [7], [15]), defined by

$$\Delta_\infty \phi := \frac{1}{2} \left\{ \nabla \phi, \nabla |\nabla \phi|^2 \right\} = \sum_{i,j=1}^N \frac{\partial \phi}{\partial x_i} \frac{\partial \phi}{\partial x_j} \frac{\partial^2 \phi}{\partial x_i \partial x_j}.$$

After this motivation, let us to show that the function u_∞ given by Theorem 3.3 is ∞-harmonic in $\Omega \setminus \{x_\infty\}$, i.e. that it satisfies $\Delta_\infty u = 0$ in $\Omega \setminus \{x_\infty\}$ in the viscosity sense. First, we need to recall some definitions regarding the viscosity approach for the equation $\Delta_p u = 0$, where $N < p \leq \infty$.

Definition 3.6 Let $u \in C(\overline{\Omega})$, $x_0 \in \Omega$ and $\phi \in C^2(\Omega)$. We say that ϕ touches u at x_0 from below if

$$\phi(x) - u(x) < 0 = \phi(x_0) - u(x_0), \quad \text{for all } x \in \Omega \setminus \{x_0\}.$$
Analogously, we say that \(\phi \) touches \(u \) at \(x_0 \) from above if
\[
\phi(x) - u(x) > 0 = \phi(x_0) - u(x_0), \quad \text{for all} \quad x \in \Omega \setminus \{x_0\}.
\]

Definition 3.7 Let \(N < p \leq \infty \) and \(u \in C(\Omega) \). We say that \(u \) is \(p \)-subharmonic in \(\Omega \) in the viscosity sense, if
\[
\Delta_p \phi(x_0) \geq 0
\]
whenever \(x_0 \in \Omega \) and \(\phi \in C^2(\Omega) \) are such that \(\phi \) touches \(u \) from above at \(x_0 \). Analogously, we say that \(u \) is \(p \)-superharmonic in \(\Omega \) in the viscosity sense, if
\[
\Delta_p \phi(x_0) \leq 0
\]
whenever \(x_0 \in \Omega \) and \(\phi \in C^2(\Omega) \) are such that \(\phi \) touches \(u \) from below at \(x_0 \).

Definition 3.8 Let \(N < p \leq \infty \) and \(u \in C(\Omega) \). We say that \(u \) is \(p \)-harmonic in \(\Omega \), in the viscosity sense, if \(u \) is both: \(p \)-subharmonic and \(p \)-superharmonic in \(\Omega \), in the viscosity sense. We write \(\Delta_{\infty} u = 0 \) in \(\Omega \) to mean that \(u \) is \(\infty \)-harmonic in \(\Omega \), in the viscosity sense.

In Definitions 3.6 and 3.7, we mean
\[
\Delta_p \phi(x_0) := |\nabla \phi(x_0)|^p \left\{ |\nabla \phi(x_0)|^2 \Delta \phi(x_0) + (p - 2) \Delta_{\infty} \phi(x_0) \right\}, \quad N < p < \infty,
\]
and
\[
\Delta_{\infty} \phi(x_0) := \sum_{i,j=1}^N \frac{\partial \phi}{\partial x_i}(x_0) \frac{\partial \phi}{\partial x_j}(x_0) \frac{\partial^2 \phi}{\partial x_i \partial x_j}(x_0).
\]

The following two lemmas can be found in [15].

Lemma 3.9 Suppose \(u \in C(\Omega) \cap W^{1,p}(\Omega) \) satisfies \(\Delta_p u \geq 0 \) (resp. \(\Delta_p u \leq 0 \)) in \(\Omega \), in the weak sense, then \(u \) is \(p \)-subharmonic (resp. \(p \)-superharmonic) in \(\Omega \), in the viscosity sense.

Lemma 3.10 Suppose that \(f_n \to f \) uniformly in \(\Omega \), \(f_n, f \in C(\Omega) \). If \(\phi \in C^2(\Omega) \) touches \(f \) from below at \(y_0 \), then there exists \(y_{n_j} \to y_0 \) such that
\[
\phi(y_{n_j}) - \phi(y_0) = \min_{\Omega} \left\{ f_{n_j} - \phi \right\}.
\]

From now on, \(u_{\infty} \) and \(x_s \) are as in Theorem 3.3.

Theorem 3.11 The function \(u_{\infty} \) satisfies
\[
\begin{align*}
\Delta_{\infty} v &= 0 \quad \text{in} \quad \Omega \setminus \{x_s\}, \\
v &= \frac{\rho}{|\rho|_{\infty}} \quad \text{on} \quad \{x_s\} \cup \partial \Omega,
\end{align*}
\]
in the viscosity sense.

Proof. Since \(u_{\infty} = \frac{\rho}{|\rho|_{\infty}} \) on \(\{x_s\} \cup \partial \Omega \), it remains to check that \(\Delta_{\infty} u_{\infty} = 0 \) in \(\Omega \setminus \{x_s\} \). Let \(\xi \in \Omega \setminus \{x_s\} \) and take \(\phi \in C^2(\Omega \setminus \{x_s\}) \) touching \(u_{\infty} \) from below at \(\xi \). Thus,
\[
\phi(x) - u_{\infty}(x) < 0 = \phi(\xi) - u_{\infty}(\xi), \quad \text{if} \quad x \neq \xi.
\]

If \(|\nabla \phi(\xi)| = 0 \) then we readily obtain
\[
\Delta_{\infty} \phi(\xi) = \sum_{i,j=1}^N \frac{\partial \phi}{\partial x_i}(\xi) \frac{\partial \phi}{\partial x_j}(\xi) \frac{\partial^2 \phi}{\partial x_i \partial x_j}(\xi) = 0.
\]

Otherwise, if \(|\nabla \phi(\xi)| \neq 0 \) let us take a ball \(B_r(\xi) \subset \Omega \setminus \{x_s\} \) such that \(|\nabla \phi| > 0 \) in \(B_r(\xi) \). Let \(n_0 > N \) be such that \(x_{n_0} \not\in B_r(\xi) \) for all \(n > n_0 \). This is possible because \(x_{p_n} \to x_s \neq \xi \). It follows that \(u_{p_n} \) is \(p_n \)-harmonic in \(B_r(\xi) \) in the viscosity sense.

According Lemma 3.10, let \(\{\xi_{n_j}\} \subset B_r(\xi) \) such that \(\xi_{n_j} \to \xi \) and
\[
m_j := \min_{B_r(\xi)} \left\{ u_{p_{n_j}} - \phi \right\} = u_{p_{n_j}}(\xi_{n_j}) - \phi(\xi_{n_j}) \leq u_{p_{n_j}}(x) - \phi(x), \quad x \neq \xi_{n_j}.
\]
The function \(\psi(x) := \phi(x) + m_j - |x - \xi_n|^4 \) belongs to \(C^2(B_\epsilon(\xi)) \) and touches \(u_n \) from below at \(\xi_n \). Indeed,

\[
\psi(x) - u_{n_j}(x) = \phi(x) - u_{n_j}(x) + m_j - |x - \xi_n|^4
\]

\[
\leq - |x - \xi_n|^4 < 0 = \psi(\xi_n) - u_{n_j}(\xi_n), \quad x \neq \xi_n.
\]

Thus, \(\Delta_{n_j} \psi(\xi_n) \leq 0 \), since \(u_{n_j} \) is \(p_{n_j} \)-harmonic in \(B_\epsilon(\xi) \). Hence,

\[
0 \geq \Delta_{n_j} \psi(\xi_n) = \left| \nabla \psi(\xi_n) \right|^4 \left| \nabla \psi(\xi_n) \right|^2 \Delta \psi(\xi_n) + \left(p_{n_j} - 2 \right) \Delta \psi(\xi_n)
\]

from which we obtain

\[
\Delta_{\infty} \psi(\xi_n) = \Delta_{\infty} \psi(\xi_n) \leq - \frac{\left| \nabla \psi(\xi_n) \right|^2}{p_{n_j} - 2} \Delta \psi(\xi_n).
\]

So, by making \(j \to \infty \) we conclude that \(\Delta_{\infty} \phi(\xi) \leq 0 \).

We have proved that \(u_\infty \) is \(\infty \)-superharmonic in \(\Omega \setminus \{ x_\ast \} \), in the viscosity sense. Analogously, we can prove that \(u_\infty \) is also \(\infty \)-subharmonic in \(\Omega \setminus \{ x_\ast \} \), in the viscosity sense. \(\square \)

We recall that \(u_\infty \) is the only solution of the Dirichlet problem (3.4). This uniqueness result is a consequence of the following comparison principle (see [3], [11]):

Theorem 3.12 (Comparison Principle) Let \(D \) be a bounded domain and let \(u, v \in C(\overline{D}) \) satisfying \(\Delta u \geq 0 \) in \(D \) and \(\Delta v \leq 0 \) in \(D \). If \(u \leq v \) on \(\partial D \), then \(u \leq v \) in \(D \).

Theorem 3.13 The function \(u_\infty \) is strictly positive in \(\Omega \) and attains its maximum value 1 only at \(x_\ast \).

Proof. Let \(D := \Omega \setminus \{ x_\ast \} \). Since \(u_\infty(x_\ast) > 0 \) and \(u_\infty \) is nonnegative and \(\infty \)-harmonic in \(D \), it follows from the Harnack inequality for the infinity harmonic functions (see [17]) that \(Z_\infty := \{ x \in \Omega : u_\infty(x) = 0 \} \) is open in \(\Omega \). Since \(Z_\infty \) is also closed and \(Z_\infty \neq \Omega \), we conclude that \(Z_\infty \) is not empty, so that \(u_\infty > 0 \) in \(\Omega \).

Let \(m := \max \{ |x - x_\ast| : x \in \partial \Omega \} \) and \(v(x) := 1 - \frac{1}{m} |x - x_\ast|, x \in \Omega \). It is easy to check that \(\Delta v = 0 \) in \(D \) and that \(v \geq u_\infty \) on \(\partial D = \{ x_\ast \} \cup \partial \Omega \). Therefore, by the comparison principle above, we have

\[
u_\infty(x) \leq v(x) = 1 - \frac{1}{m} |x - x_\ast| < 1 = \| u_\infty \|_{\infty}, \text{ for all } x \in \Omega \setminus \{ x_\ast \}.
\]

\(\square \)

Since \(x_\ast \) is also a maximum point of the distance function \(\rho \), an immediate consequence of the previous theorem is that if \(\Omega \) is such that \(\rho \) has a unique maximum point, then the family \(\{ u_p \}_{p > N} \) converges, as \(p \to \infty \), to the unique solution \(u_\infty \) of the Dirichlet problem (3.4). However, this property of \(\Omega \) alone does not assure that \(u_\infty = \frac{\rho}{\| \rho \|_\infty} \). For example, for the square \(S = \{(x, y) \in \mathbb{R}^2 : |x| + |y| < 1 \} \) the origin is the unique maximum point of the distance function \(\rho \), but one can check from [12, Proposition 4.1] that \(\rho \) is not \(\infty \)-harmonic at the points of \(\Omega \) on the coordinate axes. As a matter of fact, for a general bounded domain \(\Omega \) the distance function fails to be \(\infty \)-harmonic exactly on the ridge of \(\Omega \), the set \(\mathcal{R}(\Omega) \) of all points in \(\Omega \) whose distance to the boundary is reached at least at two points in \(\partial \Omega \). This well-known fact can be proved by combining Corollaries 3.4 and 4.4 of [7], as pointed out in [22, Lemma 2.6]. Note that \(\mathcal{R}(S) \) is set of the points in \(S \) that are on the coordinate axes. As we will see in the sequel, the complementary condition to guarantee that \(u_\infty = \frac{\rho}{\| \rho \|_\infty} \) is \(\mathcal{R}(\Omega) = \{ x_0 \} \), where \(x_0 \) denotes the unique maximum point of \(\rho \).

Theorem 3.14 One has \(u_\infty = \frac{\rho}{\| \rho \|_\infty} \) in \(\overline{\Omega} \) if, and only if:

(i) \(\rho \) has a unique maximum point, say \(x_0 \), and

(ii) for each \(x \in \Omega \setminus \{ x_0 \} \) there exists a unique \(y_x \in \partial \Omega \) such that \(|x - y_x| = \rho(x) \).

Proof. If \(u_\infty = \frac{\rho}{\| \rho \|_\infty} \) then \(x_\ast \) is the only maximum point of the distance function \(\rho \), according Theorems 3.3 and 3.13. It follows from Theorem 3.11 that \(\Delta_{\infty} \rho = 0 \) in \(\Omega \setminus \{ x_\ast \} \). Hence, \(\mathcal{R}(\Omega) = \{ x_0 \} \), which is equivalent to (i).
Conversely, item (i) and Theorem 3.3 imply that \(x_0 = x_* \), whereas item (ii) implies that \(R(\Omega) = \{x_0\} \). It follows that \(\frac{\rho}{\|\rho\|_{\infty}} \) satisfies (3.4). Hence, uniqueness of the viscosity solution of this Dirichlet problem guarantees that \(u_\infty = \frac{\rho}{\|\rho\|_{\infty}} \).

It follows that \(\rho \|\rho\|_{\infty} \) satisfies (3.4). Hence, uniqueness of the viscosity solution of this Dirichlet problem guarantees that \(u_\infty = \rho \|\rho\|_{\infty} \).

\(\square \)

Balls, ellipses and other convex domains satisfy conditions (i) and (ii).

3.1 Multiplicity of minimizers of the quotient \(\frac{\|\nabla \phi\|_{\infty}}{\|\phi\|_{\infty}} \) in \(W_0^{1,\infty}(\Omega) \setminus \{0\} \)

In this subsection we show that each maximum point \(x_0 \) of the distance function \(\rho \) gives rise to a positive function \(u \in W_0^{1,\infty}(\Omega) \setminus \{0\} \) satisfying

\[
\|u\|_{\infty} = 1 \quad \text{and} \quad \|\nabla u\|_{\infty} = \frac{1}{\|\rho\|_{\infty}} = \min \left\{ \frac{\|\nabla \phi\|_{\infty}}{\|\phi\|_{\infty}} : \phi \in W_0^{1,\infty}(\Omega) \setminus \{0\} \right\}. \tag{3.5}
\]

Moreover, such a function attains its maximum value only at \(x_0 \). In particular, we conclude that for an annulus, there exist infinitely many positive and nonradial functions satisfying (3.5).

Proposition 3.15 Let \(x_0 \in \mathbb{R}^N \) and let \(u_\infty \in C(\overline{\Omega}) \) be the unique viscosity solution of the following Dirichlet problem

\[
\begin{cases}
\Delta_\infty u = 0 & \text{in } \Omega \setminus \{x_0\}, \\
u = 0 & \text{on } \partial \Omega, \\
u(x_0) = 1.
\end{cases} \tag{3.6}
\]

Then,

(i) \(0 < u_\infty(x) < 1 \) for all \(x \in \Omega \setminus \{x_0\} \).

(ii) If \(x_0 \) is a maximum point of the distance function \(\rho \), then \(\|u_\infty\|_{\infty} = 1 \) and

\[
\|\nabla u_\infty\|_{\infty} = \frac{1}{\|\rho\|_{\infty}}. \tag{3.7}
\]

Proof. Following the proof of Theorem 3.13, we obtain item (i) by combining the Harnack inequality and the comparison principle in \(D := \Omega \setminus \{x_0\} \).

In order to prove (ii) we first show that

\[u_\infty = \lim_{p \to \infty} u_p, \quad \text{uniformly in } \Omega \]

where

\[
\begin{cases}
-\Delta_p u_p = \Lambda_p(\Omega)\delta_{x_0} & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega.
\end{cases}
\]

It is easy to check that \(-\Delta_p u_p \geq 0 \) in \(\Omega \), in the weak sense. Hence, according the weak comparison principle, \(u_p \geq 0 \) in \(\Omega \).

Since

\[
\Lambda_p(\Omega)\|u_p\|_{p}^{p} \leq \|\nabla u_p\|_{p}^{p} = \Lambda_p(\Omega)u_p(x_0) \leq \Lambda_p(\Omega)\|u_p\|_{\infty},
\]

we conclude that

\[
u_p(x_0) \leq \|u_p\|_{\infty} \leq 1 \quad \text{and} \quad \|\nabla u_p\|_{p} \leq \Lambda_p(\Omega)^{\frac{1}{p}}.
\]

Let \(r \in (N, p) \). Since

\[
\|\nabla u_p\|_{r} \leq \|\nabla u_p\|_{p}\|\Omega\|^{\frac{1}{p}} \leq \Lambda_p(\Omega)^{\frac{1}{p}}\|\Omega\|^{\frac{1}{p}} \leq \frac{\|\Omega\|^{\frac{1}{p}}}{\|\rho\|_{\infty}}, \quad p > r,
\]

www.mn-journal.com © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
the family \(\{u_p\}_{p > p_0} \) is uniformly bounded in \(W^{1,r}_0(\Omega) \). It follows, as in the proof of Proposition 3.2, that there exist \(p_n \to \infty \) and \(U_\infty \in W^{1,\infty}_0(\Omega) \) such that \(u_{p_n} \to U_\infty \) (strongly) in \(C(\overline{\Omega}) \) with

\[
\| \nabla U_\infty \|_\infty \leq \frac{1}{\| \rho \|_\infty} \quad \text{and} \quad U_\infty \leq \frac{\rho}{\| \rho \|_\infty} \quad \text{a.e. in } \Omega.
\] (3.8)

Now we are going to show that \(U_\infty(x_0) = \| U_\infty \|_\infty = 1 \).

Since

\[
\Lambda_p(\Omega) \rho(x_0) = \int_{\Omega} |\nabla u_p|^{p-2} \nabla u_p \cdot \nabla \rho \, dx
\]

\[
\leq \| \nabla u_p \|_p^{p-1} \| \nabla \rho \|_p = (\Lambda_p(\Omega) u_p(x_0)) \frac{\rho}{\| \rho \|_\infty} |\Omega|^{\frac{1}{p}}.
\]

we have

\[
\rho(x_0) \leq \Lambda_p(\Omega)^{-\frac{1}{p}} (u_p(x_0)) \frac{\rho}{\| \rho \|_\infty} |\Omega|^{\frac{1}{p}}.
\]

Hence, after making \(p \to \infty \), we obtain

\[
\rho(x_0) \leq \| \rho \|_\infty U_\infty(x_0).
\]

The second inequality in (3.8) then implies that \(\rho(x_0) = \| \rho \|_\infty U_\infty(x_0) \). Thus, if \(\rho(x_0) = \| \rho \|_\infty \) we conclude that \(U_\infty(x_0) = 1 \). Therefore, (3.7) holds for \(U_\infty \), since

\[
\| \nabla U_\infty \|_\infty \leq \frac{1}{\| \rho \|_\infty} \leq \frac{\| \nabla U_\infty \|_\infty}{\| U_\infty \|_\infty} = \| \nabla U_\infty \|_\infty.
\]

Repeating the arguments in the proof of Theorem 3.11 we can check that \(U_\infty \) is a viscosity solution of (3.6), so that \(U_\infty = u_\infty \) and (3.7) holds true.

The following corollary is an immediate consequence of Theorem 3.15.

Corollary 3.16 Suppose the distance function of \(\Omega \) has infinitely many maximum points. Then, there exist infinitely many positive functions \(u \in C(\overline{\Omega}) \cap W^{1,\infty}_0(\Omega) \) satisfying

\[
0 < u(x) \leq 1 = \| u \|_\infty \quad \text{and} \quad \| \nabla u \|_\infty = \min \left\{ \| \nabla \phi \|_\infty : \phi \in W^{1,\infty}_0(\Omega) \text{ and } \| \phi \|_\infty = 1 \right\}.
\] (3.9)

Moreover, each one of these functions assumes its maximum value 1 only at one point, which is also a maximum point of the distance function \(\rho \).

In particular, there exist infinitely many nonradial functions satisfying (3.9) for the annulus \(\Omega_{a,b} := \{ x \in \mathbb{R}^N : 0 < a < |x| < b \} \).

Acknowledgements The first author thanks the support of the Fundação de Amparo à Pesquisa do Estado de Minas Gerais - Fapemig/Brazil (CEX-PPM-00165) and a Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq/Brazil (483970/2013-1 and 306590/2014-0).

References

[1] G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6, 551–561 (1967).
[2] T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geom. 11, 573–598 (1976).
[3] G. Barles and J. Busca, Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term, Comm. Partial Differential Equations 26, 2323–2337 (2001).
[4] T. Bhatthacharya, E. Dibenedetto, and J. Manfredi, Limits as \(p \to \infty \) of \(\Delta_p u_p = f \) and related extremal problems, Rendiconti del Sem. Mat., Fascicolo Speciale Non Linear PDE’s, Univ. Torino (1989), 15–68.
[5] J. E. Brothers and W. P. Ziemer, Minimal rearrangements of Sobolev functions, J. Reine Angew. Math. 384, 153–179 (1988).
[6] M. G. Crandall, A visit with the \(\infty \)-Laplace equation. In Calculus of Variations and Nonlinear Partial Differential Equations, Lecture Notes in Mathematics Vol. 1927 (Berlin, Springer, 2008).
[7] M. G. Crandall, L. C. Evans, and R. F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. Partial Differential Equations 13, 123–139 (2001).
[8] G. Ercole, Absolute continuity of the best Sobolev constant, J. Math. Anal. Appl. 404, 420–428 (2013).
[9] G. Ercole, On the resonant Lane-Emden problem for the p-Laplacian, Commun. Contemp. Math. 16, 1350023 (22 pages) (2014).
[10] N. Fukagai, M. Ito, and K. Narukawa, Limit as $p \to \infty$ of p-Laplace eigenvalue problems and L^∞-inequality of the Poincaré type, Differential Integral Equations 12, 183–206 (1999).
[11] R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Ration. Mech. Anal. 123, 51–74 (1993).
[12] P. Juutinen, P. Lindqvist, and J. Manfredi, The ∞-eigenvalue problem, Arch. Ration. Mech. Anal. 148, 89–105 (1999).
[13] B. Kawohl, Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Mathematics Vol. 1150 (Springer-Verlag, Berlin, 1985).
[14] G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12, 1203–1219 (1988).
[15] P. Lindqvist, Notes on the Infinity-Laplace Equation, arXiv:1411.1278v2 [math.AP].
[16] P. Lindqvist, Notes on the p-Laplace equation, Report. University of Jyväskylä Department of Mathematics and Statistics 102 (2006), University of Jyväskylä, Jyväskylä, ii+i-80 pp. ISBN: 951-39-2586-2.
[17] P. Lindqvist and J. Manfredi, The Harnack inequality for ∞-harmonic functions, Electron. J. Differential Equations 4, 1–5 (1995).
[18] X. Ren and J. Wei, Counting peaks of solutions to some quasilinear elliptic equations with large exponents, J. Differential Equations 117, 28–55 (1995).
[19] G. Talenti, Inequalities in rearrangement invariant function spaces, Nonlinear Analysis, Function Spaces and Applications Vol. 5 (Prometheus Publishing House, Prague, 1994).
[20] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110, 353–372 (1976).
[21] J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12, 191–202 (1984).
[22] Y. Yu, Some properties of the ground states of the infinity Laplacian, Indiana Univ. Math. J. 56, 947–964 (2007).