Acoustic scene analysis using analog spiking neural network

Anand Kumar Mukhopadhyay, Moses Prabhakar Naligala, Divya Lakshmi Duggisetty, Indrajit Chakrabarti and Mrigank Sharad

1 Department of Electronics and Electrical Communication Engineering (E & ECE), Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
2 Rajendra Mishra School of Engineering Entrepreneurship (RMSSoEE), Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India

E-mail: anand.mukhopadhyay@gmail.com, moses.naligala@gmail.com, divyalakshmi4009@gmail.com, indrajit@ece.iitkgp.ac.in and mrigank@see.iitkgp.ac.in

Keywords: acoustic wireless sensor nodes, security surveillance application, spiking neural network, resistive crossbar network, energy efficiency

Abstract
Sensor nodes in a wireless sensor network for security surveillance applications should preferably be small, energy-efficient, and inexpensive with in-sensor computational abilities. An appropriate data processing scheme in the sensor node reduces the power dissipation of the transceiver through the compression of information to be communicated. This study attempted a simulation-based analysis of human footstep sound classification in natural surroundings using simple time-domain features. The spiking neural network (SNN), a computationally low-weight classifier derived from an artificial neural network (ANN), was used to classify acoustic sounds. The SNN and required feature extraction schemes are amenable to low-power subthreshold analog implementation. The results show that all analog implementations of the proposed SNN scheme achieve significant power savings over the digital implementation of the same computing scheme and other conventional digital architectures using frequency-domain feature extraction and ANN-based classification. The algorithm is tolerant of the impact of process variations, which are inevitable in analog design, owing to the approximate nature of the data processing involved in such applications. Although SNN provides low-power operation at the algorithm level, ANN to SNN conversion leads to an unavoidable loss of classification accuracy of ~5%. We exploited the low-power operation of the analog processing SNN module by applying redundancy and majority voting, which improved the classification accuracy, taking it close to the ANN model.

1. Introduction

Wireless sensor networks (WSNs) have applications in a wide range of health care, environment, agriculture, public safety, military, industry, and transportation systems [1]. The sensor nodes in a WSN are designed according to the target application. Acoustic sensor nodes for a security surveillance application to monitor the presence of human beings in restricted zones fall under the category of passive supervision, which senses the data around its environment and requires minimal power to operate. Small-sized static sensor nodes are deployed in large numbers with continuous monitoring. These resource-constrained sensor nodes should be inexpensive and power-efficient (few μW) for serving the purpose [2].

One of the constraints that the WSNs suffer from is limited battery life. The transceiver unit is the most power-hungry component in a WSN [2, 3]. Hence, in-sensor computing is applied in the sensor nodes to minimize the communication power due to compressed data transmission. The sensor nodes having in-sensor computational abilities should consume less energy, preferably much lower than the transceiver unit. Therefore, there is a need for a cross-hierarchy power-efficient system design approach that spans the application-specific computing systems algorithm, architecture, and circuit-level implementation.

With the advancement in the field of energy-efficient brain-inspired neuromorphic computing algorithms, several low-power computing systems have been envisaged and implemented, which are suitable for in-sensor computing and data classification [4–8, 16, 55, 60]. Spiking neural networks (SNNs), considered the 3rd
generation of neural networks [38], are inspired by biological neurons in which communication between neu-
rons takes place in the form of spikes (or events) through interconnecting ‘weights’ called synapses. The neuron
membrane potential (v_{mem}) is affected based on its presynaptic events, i.e., because of the spikes generated by
the preceding layer neurons. A post-synaptic spike is generated whenever v_{mem} exceeds the neuron’s threshold
potential (v_{th}), and communicated to the next layer of neurons connected to it. Such bio-mimicking neural
networks significantly reduce computational complexity, owing to event-driven computing and binary signal
levels [39].

The learning rules for SNN algorithms can be supervised or unsupervised, rate-based, or spike-time based,
which is chosen based on the application [9]. The primary motivation for considering SNN in a real-time applica-
tion involving energy-efficient neuromorphic hardware is to reduce the computations involved in the system
[55, 62]. Generally, the computations during the training of neural network frameworks are compute-intensive
compared to the feedforward inference process. Hence, offline training with online inference is suitable for a
static sensor node and its associated classifier [40, 57]. We have considered a method for training an artificial
neural network (ANN) with the conventional backpropagation algorithm to obtain the trained parameters
using a rate-based SNN for classification [6]. This approach achieves acceptable classification performance
owing to offline supervised training with a more extensive dataset and low-power operation due to lesser
computations involved in the SNN-based classifier.

This work presents a simulation-based integrated system design for a low-power sensor node targeted for a
surveillance application. The node is supposed to spot human presence in restricted areas by analyzing the gen-
erated acoustic audio signals using simple time-domain features, analog-domain processing, and SNN-based
neuromorphic classification [11, 12]. We compare the algorithm level performance of the proposed scheme
with standard techniques, provide architecture and circuit level design for low-power implementation of the
proposed system and compare it with the conventional methods. The strategy for improving the classification
accuracy for the SNN classifier is also explored, which makes it comparable to the traditional ANN classifier,
in terms of performance. The significant contributions of the work are:

• To design and optimize time-domain features extracted from acoustic data for SNN-based processing.
• To design and optimize SNN parameters for improved performance.
• To compare the performance of the proposed method with the conventional method consisting of a
 frequency-domain feature extractor and ANN classifier.
• To propose and implement a low-power mixed architecture scheme and compare it with the digital
 implementation of the same scheme and conventional approaches.
• To assess the variation tolerance of the proposed mixed neuromorphic implantation.
• To improve the SNN inference module’s performance by redundancy scheme and majority voting.

The rest of the paper is organized as follows: section 2 briefly describes the application and reviews some
conventional approaches addressing similar applications. Section 3 presents the methods to explain the pro-
posed scheme based on time-domain feature extraction and SNN-based classification, algorithm level opti-
mization of the feature extraction scheme and the SNN-based classifier, and the proposed scheme’s digital and
mixed architectural implementation. Section 4 discusses simulation results for the proposed solution and its
comparison with conventional approaches. Section 5 concludes the paper by highlighting the key takeaways
and scope for future work.

2. Application overview and related works

This section presents the overview of the application explored in this work: a low-power acoustic sensor node,
with in-sensor computing, for surveillance. The objective is to detect the presence of humans in a restricted
zone. This smart sensor system has importance in military surveillance applications for monitoring human
existence in sensitive areas. A block-level diagram of the neural network-based sensor node is shown in figure 1,
which consists of units for power management, sensor interface, filtering, analog to digital conversion, data
processing, memory, and wireless communication. The sensor node is supposed to capture the surrounding
sound signals within its range, which would be processed on the device using the proposed low-power
computing scheme and communicate the results to a base station.

Conventional audio signal feature extraction methods usually rely on spectral, wavelet, and Mel-frequency
cepstral coefficients (MFCC) features from the frequency domain [41, 42], mean standard deviation, and the
maximum amplitude value from the time domain. These features are the input vectors to a machine learning
or neural network model for classification [33–37].

A detailed review of acoustic signal processing and the stages involved (sound rejection, detection, classifi-
cation, and cancellation) is presented in [33]. In [34], fast Fourier transform (FFT) features from the acoustic
and seismic signals were considered along with baseline classifiers such as K-nearest neighbor (KNN), maximum likelihood (ML), and support vector machine (SVM) for vehicle classification. In [36], spectral features use linear prediction coding and a neural network to classify seismic signals. In [37], both time and frequency domain features were considered and assessed using neural networks and genetic algorithms for classifying seismic signals. In [12], a time-domain signal processing for feature extraction, followed by a neural networks-based classification of acoustic/seismic signals resulting from different types of vehicles, is studied. A review of sound event recognition for audio surveillance describes the importance of sound classification tasks in noisy environments using machine learning and neural network methods [42]. Indoor security monitoring for classifying audio using cepstral-domain-based features and time delay neural network (TDNN) is studied in [44]. A TDNN was used to classify footsteps, fan noise, wind noise, door opening, and door close using MFCC for indoor security monitoring [44]. The TDNN classifier and MFCC feature detector have high complexity and will consume more resources and power. MFCC, energy, pitch range, and linear prediction coefficients feature, along with standard ML models such as KNN, SVM, and Gaussian mixture model, are considered for forensic audio analysis and recognition of criminal suspects using footstep sound signals in [48, 49]. MFCC extracts valuable information from the acoustic signals trained using standard ML models for better results. However, for security surveillance in remote locations, low complexity classifier and feature extractor must be designed due to the limited battery life of the in-sensor systems.

Time-domain, spectral, and cepstral features derived from multiple microphones using SVMs classifier are studied for indoor footstep detection [46, 47]. The multi-channel approach improves the noise robustness. In [46], authors have considered six-time domain features such as peak amplitude, peak power, time to the next event, attack time, decay time, and zero-cross rate; seven spectral features containing information on the amplitude and frequencies for first–third most significant number of peaks; 24 MFCC features. Such systems are robust because it considers extensive feature vectors (FVs) on the input data captured at different angles from multiple microphones; hence, all possible predictors should be used for superior performance for systems with unlimited power access. Both [44, 46] apply to indoor security surveillance systems.

However, it is essential to identify valuable features and classifiers with low complexity for power-constrained portable systems. In [58], authors have shown how SNNs can provide high performance at low energy cost for human activity recognition problems which could be extended to multiple domains involving on-edge artificial intelligence applications. This work aims to design an approximate innovative sensor node system suitable for extracting essential information from the time domain and a low-weight bioinspired analog SNN classifier [5, 8, 12, 30, 45, 67, 71].

This work aims to develop algorithms and the corresponding circuits and architecture for low-power edge computing on miniature, power-constrained sensor nodes. The aforementioned conventional methods suffer from high computational complexity in feature extraction and classification, leading to relatively power-hungry solutions. Therefore, customized, application-specific, energy-efficient techniques for real-time feature extraction and classification would be necessary, leveraging the approximate nature of the processing required for the application of interest. For instance, in this work, we target a classification scheme for making a binary decision: the absence or presence of humans in an acoustic scene through sounds produced due to motion.

The acoustic signals produced by human movement may be limited to specific frequency bands that would be quite distinct from other natural noise sources. We may be able to deploy relatively less complex feature extraction methods and classification schemes rather than adopting compute-intensive frequency transforms [11, 13]. However, the crunching on the gravel has a wideband frequency range for the footstep noise; hence, frequency bands overlap for footstep and background noise in this work. So, we approached the problem considering low-weight time-domain feature extraction and bio-inspired SNN-based classification. This is an approximate computing methodology amenable to low-power, analog implementation.
3. Methods

3.1. Time domain approximate feature extraction and SNN based classification scheme

We propose a scheme involving low complexity time-domain features followed by an SNN classifier as a promising alternative for low-power sensor node design for acoustic applications. The time-domain features reduce computational complexity compared to conventional frequency domain analysis [42]. The feature set used in this work is based on signal length, zero-crossing, and local signal extrema count. It inherently captures an approximate statistic of high and low-frequency components in the target signal. The low-frequency content is expressed by counts of signal samples within consecutive zero crossings, while the high-frequency range is reflected by the counts of signal extrema on either side. In addition, the SNN classifier is employed as an alternative to its counterpart ANN due to the spike (event) based processing of information, aiding low-power hardware realization.

3.1.1. Low complexity time-domain feature extraction

Features derived directly from the time domain would be preferable in terms of lesser computation complexity when compared to frequency domain features. Authors in [12] have earlier shown that time encoded signal processing and recognition (TESPAR) has successfully obtained essential elements for seismic signals and hence is feasible for real-time processing.

TESPAR is inspired by infinite clipping coding of a waveform which represents the duration between the zero crossings of the waveform [12]. The segment between two consecutive real zeroes is termed an epoch. The intelligibility of the waveform is enhanced by introducing the concept of complex zeroes. The complex zeroes represent the shape of the signal waveform in the form of local maxima and minima of the signal waveform. Therefore, a bandlimited signal is approximated by computing the following parameters in each epoch, as shown in figure 2(a).

The D and S contain information about the signal’s fundamental frequency and harmonics [12]. A two-dimensional (2D) (D, S) matrix representing a signal waveform is shown in figure 2(b). Each location in the
2D matrix will have the number of occurrences of the particular \((D, S)\) combination present in the signal during the external time window (ETW). An ETW of 5 s is sufficient to qualify the incoming signal as a data sample (discussed in section 3.2.1). For instance, the value entered in \((D, S) = (2, 1)\) would be the count of the \((d, s)\) pair with the value \((2, 1)\) in the last ETW. The 2D matrix is further expanded to a 1D vector to form the classifier’s final FV. The optimization of different parameters related to it is discussed in section 3.2. Note that the authors in [10] have applied a FV generation scheme involving several \((d, s)\) pairs with counts in different ranges. For instance, a number of \((d, s)\) pairs having count ‘0’ are entered as the 1st element of the FVs, the 2nd element would be the number of \((d, s)\) pairs having count ‘1’, and so on [10]. This would involve significant overhead in memory read–write operations. Hence, in this work, we have employed the \((d, s)\) pair counts directly as FVs for SNN-based classification.

Moreover, we have shown that application-specific optimization further reduces the complexity by selecting only the significant \(D–S\) pairs for the FV. Several other algorithmic parameter optimizations are discussed in section 3.2.

Low-power, analog implementation of the proposed scheme is presented in section 3.4.2.

3.1.2. SNN-based classification scheme

The final FV is fed to an SNN classifier. The general network structure of an SNN is like that of the ANN, as shown in figure 3(a). The difference lies in the functionality of the neurons present in the network.
An illustration of the spike generation process from a FV within a specified time window is shown in figure 3(b). The number of spikes generated in the interval is directly proportional to the FV magnitude and the maximum input firing rate (r), a network parameter. The input layer neurons are processing spikes equivalent to the FV value.

Integrate and fire (IF) neurons are used in the subsequent layers of the SNN to implement the spiking operation, as shown in figure 3(c). The IF neuron receives input from the previous layer neurons whenever there is a presynaptic spike event. The neurons between two-consecutive layers are connected via synapses of different strengths representing the weights. Hence, the input current magnitude is scaled down according to the synaptic strength. After receiving the input, the neuron’s membrane potential (v_{mem}) increases. Whenever v_{mem} exceeds the threshold potential (v_{th}) of the neuron (i.e., $v_{\text{mem}} > v_{\text{th}}$), the neuron is activated. It generates a post-synaptic spike, after which v_{mem} falls to the neuron resting potential (v_{res}). The mathematics depicting the v_{mem} of a simple IF neuron is shown in equation (1)

$$\frac{dv_{\text{mem}}(t)}{dr} = \sum_{i} \sum_{a \in S_i} W_i \cdot \delta(t - a) + v_{\text{res}}. \quad (1)$$

Here, W_i and $\delta(\cdot)$ represent the weight of the ith incoming synapse and delta function, respectively. $S_i = [t_{i0}, t_{i1}, \ldots]$ stores the ith presynaptic neuron spike times.

The optimal choice of network parameters for the ANN and the corresponding SNN network is discussed in section 3.3. The architectural diagram of the SNN classifier is constructed using digital and analog fashion (refer to section 3.4). The model in equation (1) is particularly suitable for low complexity analog implementation, with the help of physical characteristics of devices like transistors, capacitors, and simple sub-threshold circuits [43]. Hence, in this work, we propose an implementation for the SNN classifier, which interfaces well with the analog mode feature extraction module.

3.2. Optimization of feature extraction parameters

Optimization of features is necessary to achieve an acceptable classification accuracy with minimal computational operations in the feature extraction and the subsequent classifier module present on the sensor node. The following subsections describe the feature engineering process on the acoustic signals used in this work.

3.2.1. Choice of running window (R_{WIN}) and ETW

Figure 4 illustrates the running and ETW of 5 s duration. The ETW determines the signal length to qualify it as a data sample, and the running window size (R_{WIN}) is the time step for shifting or sliding the ETW. The length of R_{WIN} determines the throughput of the system. If R_{WIN} is too short, the changes in the FV will be insignificant, leading to redundant results. On the contrary, too large R_{WIN} would lead to insufficient overlap between the two consecutive time segments, which would, in turn, increase the possibility of missing features of interest spanning over two such elements. A smaller ETW will fail to capture a real-time footstep signal occurring in the vicinity. In contrast, a large ETW would include substantial background noise and diminish the effect of a small duration footstep signal. Hence, choosing the best ETW size is highly correlated with the average duration of the footstep signals, and too large or too small ETW adversely affects the classification accuracy. $R_{\text{WIN}} = 500$ ms and ETW = 5 s were decided based on classification accuracy as studied in [59].
3.2.2. Dataset creation

The data samples for our analysis were created considering the sensor nodes in a gravel surface with an ETW = 5 s. The human footstep audio clips were mixed with different background noises like those resulting from heavy rain, chirping birds, blowing of the wind, and crickets stridulating. We created a suitable dataset\(^3\) using data augmentation methods such as rolling the files circularly and adding random noise due to the unavailability of a significant number of data needed to address the problem [14]. The footstep sound on gravel and background noise audio data were taken from online sources sampled at 44.1 kHz. From the frequency spectrum of the audio files, it was understood that a significant portion of the power content lies in the frequency range of (0–5) kHz, both for the background noise and footstep sound. Therefore, a cut-off frequency of \(f_c = 5\) kHz was chosen for filtering out the high-frequency signals, and hence we downsampled the data to a sampling frequency of 11 kHz. The magnitude of power content depends on background noise or footstep intensity, which may vary in different instances. Too high background noise would make the detection difficult, eventually leading to failure. The footstep and background power range is (39.85–44.61) dB and (43.73–45.14) dB, respectively. Hence, the dataset consisted of signals with (SNR) dB as low as \(-5.29\) dB, an acceptable value for our application [44]. It is to be noted that appropriate filters must be used to reject the unwanted noise for lower (SNR) dB due to high noise power in the actual scenario.

The task is to detect human presence on a fixed surface (gravel considered) in the presence of natural environmental sounds; four different background noises were considered, namely, (1) crickets, (2) birds chirping, (3) rain, and (4) wind. Audio files of a single person walking on gravel were acquired for the human presence. The file was divided into 5 s segments, considering it a suitable ETW for real-time analysis. For emulating multiple people (>3) walking on gravel, signals of a single person walking were combined with a random scaling factor (sf) between 0 to 1 to incorporate the effect of distance or intensity from the sensor node location. The final dataset created consisted of 12 352 data samples consisting of two classes, (1) background noises (6176 samples), (2) single person and multiple people walking on gravel in the presence of background noises (6176 samples). The total dataset was divided into a train set (9024 samples), validation set (1664 samples), and test set (1664 samples) for further analysis. The number of a single person and multiple people, including variation in walking speed and the four different background noises, were selected in a balanced manner for incorporating their effects in equal proportion during the network training.

The footstep audio signal is initially filtered with a low pass filter with a passband frequency 5 kHz, and stopband frequency 6 kHz as the footstep audio signal lies within the frequency range (0–5) kHz. Then, different sampling frequencies \(f_s\) were chosen, and their effect on classification accuracy was observed while setting the \((D, S)\) parameters to (20, 5). It is to be noted that the test data samples for different frequencies are duplicate files but resampled to different frequencies. It is observed that the change in test accuracy is insignificant even at lower \(f_s\). Hence, \(f_s = 11 025\) Hz has been chosen to reduce the computational complexity for further analysis.

\(^3\) Dataset will be provided upon request.
3.2.3. Choice of \(D\) and \(S\) matrix dimension

The two-dimensional matrix of the \((D, S)\) combination for \((50, 20)\) and \((20, 5)\), as shown in figure 5, indicates that most of the essential features are concentrated in lower values of \((D, S)\) combinations. The test accuracy observed for different \((D, S)\) combinations at \(f_s = 11,025\) Hz is shown in table 1. It is evident that an acceptable accuracy is obtained even at a lower \((D_{\text{max}}, S_{\text{max}})\) combination. As mentioned earlier, the FV used for classification is simply the elements of the \((D, S)\) matrix. The FV length equals \((D_{\text{max}} \times S_{\text{max}})\), which determines the number of neurons in the neural network’s input layer. A lesser number of input neurons is preferred due to the reduction in the architectural size of the classifier. Therefore, a \((D, S)\) combination of \((10, 5)\), implying a FV of dimension 50, is considered, which provides an accuracy of \(\approx 93.32\%\). Further reduction in the size of the \((D, S)\) matrix led to a decrease in the classification accuracy, so we are considering \((D, S) = (10, 5)\) for further analysis. However, as a future work detailed statistical analysis on the data could be carried out to evaluate the explainability of the features reduction process.

3.2.4. Bit-length of FV

The range of values of the FV elements is shown in figures 6(a) and (b). Some features have a very high value that nullifies the effect of the other components or would require a large number of bits to accommodate it. A more significant number of bits would imply higher computational complexity. One possible solution would be to employ a log scale. Another more straightforward approach is to limit the count for the high-frequency FV elements to a maximum value, provided it does not deteriorate the performance. Simulation-based analysis showed a steep fall in the classification accuracy if the maximum value was reduced below 256 (8 bits), as seen in figure 6(c), as the high-value features approach is closer to the lower magnitude features and reduces the signal’s distinctive characteristics. The effect on test accuracy due to the FV bits is shown in figure 6(d). Henceforth, we represent the FV elements using 8 bits for further analysis.

3.3. Optimal conversion of ANN to SNN

In section 3.1.2, we have explained the SNN-based classification scheme. It is understood that the FV is represented by binary spike trains with random ‘1’s and ‘0’s, and the number of spikes (i.e., ‘1’s) is proportional to the magnitude of the FV element value. Whereas in the case of ANN, the FV values are real-valued. A random number is generated at every step of the SNN operation, compared to the magnitude of the corresponding input FV. A spike event is triggered if the generated random number is less than the input FV element. This process ensures that the magnitude of FV presented as ANN inputs are proportional to the number of input spikes for the corresponding SNN \([5, 6]\). The spike-based operation has two main advantages: (1) it eliminates the multiplication operation between the FV and weights as required in ANN. The synaptic weights are simply added and accumulated whenever a spike is generated in the presynaptic neuron. This accumulated value is the membrane potential \((V_m)\) of the post-synaptic neuron, which produces a post-synaptic spike if, \(V_m > V_t\), \(V_t\) being the neuron firing threshold potential, and (2) the addition of the synaptic weight between the pre and post-synaptic neurons is skipped if the previous layer neuron does not produce a spike. In addition to these algorithm-level benefits, SNN is also suitable for low-power sub-threshold analog implementation.

The mathematical model for the output of neurons in a deep neural network is given by equation (2)

\[
y^{(l)}_i = F \left(\sum_{n=1}^{N} W^{(l)}_{ij} \cdot (FV)^{(l-1)} + b^{(l)}_i \right).
\]

Here \(y^{(l)}_i\) is the output of neuron \(i\) in layer \(l\), where \(l \in [1 \ldots L]\) denotes the \(l\)th layer. \(W^{(l)}_{ij}, b^{(l)}_i,\) and \((FV)^{(l-1)}\) are the weight parameters, bias parameters, and the input FVs which connect neuron \(i\) in the current layer to the neuron \(j\) in the previous layer, respectively. \(F(\cdot)\) is the activation function such as sigmoid, tanh, rectified linear unit (ReLU). Here, ReLU is considered because it helps in faster convergence, is computationally efficient, and is required to map ANN to SNN \([5, 35]\).

For the ANN to SNN conversion, the network is initially trained using a backpropagation training algorithm to minimize the cross-entropy loss function, as shown in figure 7(a) and given in equation (3). The corresponding training and validation accuracy is shown in figure 7(b).

Table 1. Effect on test accuracy for different \((D_{\text{max}}, S_{\text{max}})\) combinations at \(f_s = 11,025\) Hz.

\((D_{\text{max}}, S_{\text{max}})\)	FV dimension (number of input layer neurons)	Test accuracy (%)
(5, 5)	25	92.30
(10, 5)	50	93.32
(20, 5)	100	93.44
(30, 5)	150	93.32
(50, 5)	250	91.40
After choosing the optimum FV parameters (section 3.2), viz, $f_s = 11025$ Hz, $D = 10$ and $S = 5$ we train an ANN with different network configurations. The following parameters were chosen during the training of the ANN model, learning rate, $\alpha = 0.001$ with a categorical cross-entropy loss function suitable for the classification problem, Adam optimizer, and a dropout ($d = 0.5$) is considered for avoiding overfitting. The backpropagation algorithm was used in training to minimize the cross-entropy cost function, as shown in equation (3)
The variation in test accuracy for the trained ANN model by varying the network parameters, viz, (1) the number of hidden layers, (2) the number of neurons in the hidden layer, is shown in figures 7(c) and (d). Henceforth, we choose the optimum network configuration, i.e., ([50(input)-80(hidden)−2(output)] neurons for further analysis.

Here, \(\hat{y}_n \in \{0, 1\} \) is the labels (ground truth) associated with the training data in one hot coding format, and \(y^{(L)} \) is the model’s output.

For the proper conversion of ANN to its corresponding SNN network, certain conditions, namely, (1) setting the bias to zero and (2) using ReLU activation functions, were considered [6]. ReLU provides a better approximation to relate the firing rate of the IF neurons in the SNN model. In contrast, a zero bias will eliminate the effect of external influence on the IF neurons, i.e., only the weights and the neuron threshold potential (\(V_t \)) will matter.

The SNN inference model uses the weights obtained after training the ANN model using backpropagation after conversion. The SNN inference model is optimized further with the SNN parameters: input firing rate (\(r \)) and neuron threshold potential (\(V_t \)). A higher \(V_t \) implies that a neuron is less likely to spike as the neuron membrane potential will need more time to reach \(V_t \). A higher \(r \) is directly proportional to the input firing rate according to equation (4)

\[
I_{\text{spike}} = \begin{cases}
1, & FV_i \geq sf \times \text{rand()} \\
0, & FV_i < sf \times \text{rand()}
\end{cases}
\]

Here, the \(sf \) is equal to \(sf = 1/(dt \times r) \). A smaller simulation time step (\(dt \)) will increase the \(sf \) and reduce the number of input spikes per timestep. \(FV \) and \(\text{rand()} \) are the input FV and random number generator normalized between 0 and 1, respectively. Hence, a proper combination of \(r \) and \(V_t \) will ensure higher accuracy,
as shown in figure 8(a). It is observed that $r = 1000$ Hz and $V_t = 1$ mV with $dt = 1$ ms attains an accuracy of 86.75% within 0.1 s time duration (T_{dur}), as shown in figure 8(a). The number of spikes generated in the hidden layer neurons ($N_{spk,hl}$) based on the different (r, V_t) pairs, is shown in figure 8(b). At firing rates higher than 1000 Hz, it is seen that $N_{spk,hl}$ reduces for a particular V_t. At lower V_t, the $N_{spk,hl}$ increases, but the accuracy falls. This is because the number of spikes in the hidden layer increases significantly at lower neuron thresholds, which will misinterpret the input FV appropriately. Hence, a proper combination of (r, V_t) and other design parameters (dt, T_{dur}) provides the best solution.

The accuracy plot of the SNN network with time for the best case is shown in figure 8(c). The average number of spike occurrences for the IF neurons in the input, hidden, and output layers are shown in figures 8(d), (e) and (f), respectively. From the statistics of spike generation, the number of spikes generated in the input, hidden, and output layers are 343, 330, and 31, which sums up to \sim700 spikes for the SNN operation for 100 iterations (N_{iter}). It is to be noted that the neurons that do not produce a spike during the classification process are in an OFF state and help reduce power consumption, which is not possible using an ANN classifier.

For a network architecture of [50–80], sequential operation of neurons will need $\sim[(50 \times 80) + (80 \times 2) = 4160]$ multiply and accumulate (MAC) operations for computations. Considering the worst case (assuming all the neurons are spiking at every iteration) for SNN, we require $\sim[[(50 \times 80) + (80 \times 2)] \times N_{iter}]$ addition operations. Considering the above statistics of average spike generation for $N_{iter} = 100$ (i.e., $\sim6.86\% (343/5000)$ for input layer neurons and $\sim4.125\% (330/8000)$ for hidden layer neurons), the number of addition operations $\sim[(343 \times 80 + 330 \times 2) = 28100]$ for the duration of 100 iterations.

The floating-point weight coefficients are converted to fixed-point representation to reduce the memory footprint due to the storage of trained parameters. From figure 9(a), the test accuracy falls from 93.26% to 60.87% when the number of fractional bits is reduced from 2 to 1. Apart from the fractional bits, 4 bits are considered for allocating the signed integer part. A drop in accuracy $\sim(3–6)$% for the SNN classifier depends on time steps/iterations (N_{iter}), as shown in figure 9(a). Hence, a significant amount of computation and power
Figure 9. (a) Effect on test accuracy concerning the number of fractional bits in the weight matrix coefficient, (b) spiking accuracy versus time duration (T_{dur}) with 1, 3, and 5 SNN models.

consumption involving the memory is avoided by restricting the number of bits used in the weight’s coefficients. Figure 9(b) shows the effect on accuracy with total time duration with multiple SNN inference models, from which it is noticed that (3–5)% improvement in accuracy is possible with an ensemble of three SNN models. Therefore, it is understood that multiple SNN inference models offer better performance in terms of accuracy, and such an ensemble of SNN will be an attractive choice for low-power analog SNN inference modules, as discussed in section 3.4.2.

3.4. Digital and analog implementation of the proposed scheme

3.4.1. Digital implementation—architectural schemes for DS FV generation

The top-level block diagram of the DS generator with SNN inference unit shown in figure 10(a) consists of sub-blocks, viz, (i) DS FV generator, (ii) slice storage, (iii) spike generator, (iv) spike address generator, (v) weight memory, (vi) IF neuron array.

We implemented the system consisting of (D, S) FV followed by ANN/SNN. Figures 10(b) and (c) show the (D, S) generator and the slice storage scheme. The (D, S) generator computes and stores the (D, S) FV every 0.5 s in a register. The bit width of the register is chosen to be 8 bits which accommodates up to 256 occurrences of a (d, s) combination pair. The slice storage consists of ten slices of 0.5 s FV unit, which are summed up every 0.5 s to generate the input FV of 5 s duration fed to the inference unit.

A zero-crossing is detected by comparing the sign bit of the current and previous samples using the XOR gate. For detecting S, three consecutive samples are compared. Counters calculate the number of d and s present in an epoch. The d_{max} and s_{max} values are fixed to 10 and 5 (refer to section 3.2.4). Therefore the counter freezes after reaching the maximum d and s values. The counters are reset upon detection of zero crossings (new epoch).

Figure 11 shows the spike generator, which converts the FV$_i$ to spike patterns according to equation (4). A pseudo-random number (PN) generator is designed using an 11 bit linear feedback shift register (LFSR) for emulating the random number generation, as shown in figure 11(b). Each FV element value is to be compared with a random number. This is achieved by comparing the outputs of 50 such pseudo-random number generators with FV of dimension 50×1 to get the 50 bit input spike vector in one clock cycle, as shown in figure 11(a). The address location of the weights is accessed based on the spike pattern of the 50 bit FV using a leading zero counter (LZC) [10]. The functioning of an LZC with the highest bit reset logic for an 8 bit spike pattern is shown in figure 11(c), which produces the output as the location of a spike in the FV, then resets it to scan the following location. The output of the LZC is invalid when all the spikes present in the FV are reset.
Figure 10. (a) Top-level block diagram of the hardware architecture, (b) FV generator, and (c) slice storage scheme.

according to the highest bit reset logic. Figure 11(d) shows that the spike address generator uses the LZC to generate the spike address.

The structure of an I & F and MAC neuron is shown in figures 12(a) and (b), respectively. The weight coefficients between the I & F neurons and the neurons in the previous layer producing spikes are added and stored in an accumulator. Suppose the accumulated value exceeds V_t, and the IF neuron generates a spike used by the address generator of the next layer. The structure of the IF neuron array for an SNN is shown in figure 12(c).

3.4.2. Mixed implementation

The mixed implementation has significant benefits in terms of energy efficiency with proper design parameters such as voltages and currents [50]. The SNN can be implemented in a resistive crossbar network (RCN) fashion using a memristor composed of CMOS or ferroelectric devices to store synaptic weights [21, 24, 25, 52–54, 56]. Multi-level analog weights have been implemented using a memristor [52, 53, 61]. The SNN model could be mapped directly using the physical characteristics of nano-scale transistors and memristive devices instead of artificial digital emulation, providing significant energy savings compared to the digital implementations [51, 58].

3.4.2.1. Mixed implementation of feature extraction

The mixed implementation of the FV followed by a multi-bit RCN is shown in figure 13(a). It consists of a differentiator, comparator, counters, decoder, digital to analog converters (DACs), current-controlled oscillators (CCOs), and multi-bit RCN as the major sub-modules.
Low-power implementation of the front-end amplifier and the CCO has been previously studied [31, 32]. We used a CCO with three inverter stages for a frequency range of 1 kHz to 650 kHz, as shown in figure 13(b). The difference between the maximum and minimum frequency levels decides the quantization levels in the binary spike frequency. Hence, the precision of the amplitude of the input FV is captured in the form of binary spike frequency. It can be seen from figure 13(c) that the aforementioned oscillating frequency is achieved with a low input current (<300 nA) range.
The RCN network with the memristive weights and the output neuron circuit is shown in figure 13(d).

3.4.2.2. Variation analysis for the analog design of the RCN

The neural network implemented in an analog fashion considers the memristors for representing the weights. This variation of the resistive weights is inevitable in analog implementations. Hence, the performance of the NN inference module, including the variations, must be assessed. We studied the trained weights’ variation analysis (6 bits taken, excluding sign bit) to determine analog implementation feasibility. It is to be noted that the range of trained weights lies between 10.25 and 0. The histogram of the random Gaussian variation in the trained weights is shown in figure 14(a), which corresponds to a percentage standard deviation of $\sigma = 36.68\%$ [52]. We further analyzed the effect on test accuracy versus the percentage standard deviation and found that both the models tolerate up to $\sigma = 30\%$, as shown in figure 14(b).

3.4.2.3. Crossbar scheme for SNN, using multi-bit memristor weights

The crossbar SNN circuit can be efficiently implemented using multi-bit memristor weights [23, 24, 27–29]. A simple crossbar circuit that used programmable weights in the form of the memristor is shown in figure 14(c). From [26], we know that memristor is compatible with CMOS systems. Hence it will be a viable option for compacting the SNN classifier using...
resistive crossbar memory. The effect of variation with minimal change in the output neuron threshold potential (V_t), as shown in figure 14(d), justifies the scheme’s robustness. The Gaussian variation $\sim 30\%$ in the output neurons (V_t), as demonstrated in figures 14(e) and (f), was incorporated to model the variation in transistors in the neuron and assess its effect on test accuracy.
Figure 14. (a) Histogram of % deviation of weights with standard deviation ($\sigma = 36.68\%$) for incorporating random Gaussian variation, (b) effect on test accuracy versus % standard deviation of trained weights for ANN and SNN, (c) a representation of RCN for computing output current in terms of input voltages and programmable weights, (d) SNN test accuracy versus variation in the threshold potential of the output neuron, (e) the variation in threshold potential of output neurons is shown using boxplot for 30% standard deviation in V_{th}, (f) histogram plot depicting the occurrences are shown using boxplot for 30% standard deviation in V_{th}.
The synapse for the crossbar can be represented using a memristor or multi-bit ReRAMs [21, 52]. The conductance varies from (100 to 900) \(\mu \text{S} \), which supports multi-bit (6 bits) weights [52]. It has been seen that the energy dissipation is restricted if the input bit pattern entering the system is allowed for a short period \((T_{\text{on}} = 50 \text{ ns}) \) [30]. The current flowing through the synapses should be chosen optimally. If the synapse current is too low \((<100 \text{ nA}) \), then a slight variation in the gate voltage at the PMOS synapse will cause a significant fluctuation in its resistance value due to the exponential dependence on the drain to source voltage in the subthreshold region. Also, if it is too high \((>100 \text{ nA}) \), the power dissipation will increase. Hence, an optimal value of \(I_{\text{synapse}} \) should be chosen.

The output neurons store the voltage in a capacitor dedicated to each column, as shown in figure 13(d). Initially, before presenting a new input FV, the capacitors are fully charged. Then based on the input and the conductance of the crossbar junctions, the capacitor is discharged. The winner neuron is the capacitor with the lowest voltage. The capacitance value should be chosen following the maximum amount of charge it will release before the occurrence of the spike. After the spike event, the output neuron returns to its resting potential, i.e., the capacitor is charged back to the maximum value. A capacitor \((C) \) of 2 pF at each column is required to obtain a voltage range of \(V_r = 0.5 \text{ V} \), as calculated from equation (5)

\[
C \cdot V_r = Q_{\text{spike}}.
\]

Here, \(C, V_r, Q_{\text{spike}} = 1 \text{ pC} \) are the capacitance, voltage range across the capacitor, and the amount of charge needed to generate a post-synaptic spike. A 2 pF metal–oxide–metal, metal–insulator–metal, or MOS capacitor could be realized with a proper choice of device dimensions [73].

4. Results and discussions

This section compares the time domain DS features with optimized FFT features in terms of test accuracy, resources consumed, and power dissipation. Then we compare the DS-SNN system with the DS-ANN system to assess its resource utilization on an FPGA. The ANN unit requires DSP blocks for the multiplication operations involved, which is not needed for the SNN unit. Next, we synthesized the DS-SNN (digital) in an ASIC platform to assess its area and power consumption. To obtain further benefits, we estimate the power consumption of the analog DS-SNN and compare it with the digital DS-SNN.

4.1. Conventional methods for audio signal processing

Conventional methods involve selecting frequency-domain features such as FFT and DWT [33–37]. Hence, we compare the performance of the time domain DS FV with the FFT FV scheme regarding classification accuracy. In figure 15, we have compared features derived from FFT, DS, and DWT. We have optimized FFT parameters like the number of points and bit precision and computed it by three different approaches, viz, (1) by computing an \(N = 65,536 \) point FFT over the 5 s duration and then averaging the bins for feature dimension reduction (Case I), (2) by considering a window size (200 ms) with no overlap and computing \(N = 4096 \) point FFT over the segment at each window and selecting the maximum value of PSD among all windows followed by FV dimension reduction by bin averaging (Case II), (3) by considering window size (50 ms) throughout the 5 s segment on which an \(N \) point FFT is performed \((N = 512, 256, 128, 64, 32, 16) \), only the max value of PSD among all windows is considered in the FV (Case III). The FV derived from the FFT (Case III) is convenient compared to the former two cases because \(N < 512\)-point FFT is computed, eliminating the FV dimension reduction process.

![Figure 15](image-url)
Table 2. Comparison of power and resource utilization between D and S and 128 pt FFT FV targeting ZYNQ AP SOC XC7Z020 CLG484-1 FPGA.

FV type	Power (mW)	Resource utilization (%)					
	Static	Dynamic	Total	LUT	FF	BRAM	DSP
D and S	108	116	224	0.8	0.14	3.93	0
FFT	115	531	646	6.38	1.88	6.07	6.36

Table 3. Resource utilization for a parallel implementation of DS FV generator followed by ANN/SNN architecture targeting ZYNQ AP SOC XC7Z020 CLG484-1 FPGA.

Resource	Utilization	Available	% utilised		
	ANN	SNN	ANN	SNN	
LUT	6784	6572	53 200	12.75	12.35
FF	8061	10 811	106 400	7.58	10.16
DSP	82	0	220	37.27	0
IO	23	23	200	11.50	11.50
BUFG	3	3	32	9.38	9.38
MMCM	1	1	4	25	25

Apart from FV derived from FFT, FV is also derived from DS and DWT, derived from the time domain. The comparison is made between the different FVs while keeping the FV dimension similar. The size of the FV decides the number of nodes at the input layer of the neural network. The computational complexity of FVs derived from the frequency domain will be more than those derived from the time domain.

4.2. Comparison between 128-point FFT FV (optimized) and DS FV

The performance of DS FV is more suitable in terms of performance and computational complexity. A comparison of power and resource utilization using DS and 128 pt FFT FV targeting Zynq AP SoC XC7Z020 CLG484-1 FPGA is shown in table 2, from which it is inferred that the FFT FV takes \(\sim 3\times\) more power compared to DS FV and consumes more resources. As the FFT-based scheme’s power consumption is more than DS FV with similar accuracy, we have chosen the low complexity time-domain DS FV for our application. Static power is identical due to the similar memory size used for storing the FVs. Dynamic power is significantly higher, as FFT involves significantly more arithmetic computations.

4.3. Digital schemes for DS-ANN and DS-SNN

System-level architectures of the DS FV generator and ANN/SNN inference unit have been designed targeting a Zedboard with Zynq AP SoC XC7Z020-CLG484-1 FPGA.

The architectural implementation of DS FV, followed by ANN/SNN as explained in section 3.4.1, is a synchronous system operating at a clock frequency of 22 kHz. The input data sampling rate is 11 kHz; hence a higher clock frequency of 22 kHz is good enough to complete the feature extraction and classification operations prior to updating the FV every 500 ms, which determines the system’s throughput.

The format of the trained weight coefficient consists of 10 bits containing 6 fractional bits, 1 sign bit, and 3 integer bits. The weights are stored in distributed ROM memory. The weights of the first layer are stored in 50 address locations, where each location corresponds to the neuron number in the input layer, i.e., the first location contains all the weight coefficients between the first input neuron with the 80 hidden neurons, resulting in 800 bits per address location. Similarly, the weight memory between the output layer neuron and the hidden layer consists of 80 locations with 20 bits per address.

The resource utilization and power consumption distribution for a parallel implementation of DS FV generator followed by ANN/SNN architecture are mentioned in tables 3 and 4, respectively. The input FV for the ANN is the zero crossing (ZX) based representation \((D, S)\) matrix, whereas the input FV for the SNN will be the spike patterns converted from the \((D, S)\) matrix. The trained parameters are stored in a distributed memory, which infers LUTs and FF. In terms of area, for ANN, DSP blocks are inferred for each artificial neuron (refer to table 4) due to the MAC operation in the neurons. In contrast, for SNN, only a comparator is required instead of a DSP block to represent the IF neuron (refer to figures 12(a) and (b)). DS with ANN consumes more power, and the static power is dominant over the dynamic power, as verified from the FPGA-based synthesis results in table 4. It is to be noted that a significant portion of the dynamic power is consumed by the mixed-mode clock manager (MMCM), which converts the inbuilt 100 MHz clock to the desired clock frequency of operation.
Table 4. Power consumption distribution for a parallel implementation of DS FV generator followed by ANN/SNN architecture targeting ZYNQ AP SOC XC7Z020 CLG484-1 FPGA.

Power (mW)	Type	% consumed
ANN	SNN	
Static	125	107
Dynamic C	<1	<1
Signals	<1	<1
Logic	<1	<1
DSP	<1	—
MMCM	101	101
I/O	<1	<1
Total	226	208

Table 5. Comparison between MAC-ReLU and IF neurons in terms of area and power with ASIC-based synthesis results.

Neuron type	Area (μm²)	Power (nW)						
	Combinational	Non-combinational	Total area	Static (leakage)	Dynamic	Total dynamic		
MAC-ReLU.hl	1176	185.6	1362	90	9.8	5.5	15.34	105
MAC-ReLU.ol	2268.7	294.4	2563	174.8	19.1	12.5	31.65	206
IF	195.5	102.5	298	22	3.5	0.76	4	26

To further verify the results in table 4 and explore the area and power distribution, we compared the area and power of a MAC neuron and IF neuron with ASIC-based synthesis results at a 65 nm technology node, as shown in table 5. The IF neuron consumes 26 nW with an area of ~298 μm², which is ~(4.58 × to 7.92 ×) area efficient and ~(5 × to 8.6 ×) power efficient when compared to the MAC neuron with the ReLU activation function for the 1st hidden layer (MAC-ReLU.hl) and output layer (MAC_ReLU.ol). It is to be noted that the MAC neuron for subsequent hidden layers for deeper networks will consume more area and power due to an increase in the size of the input bit width. In contrast, the same IF neuron is used in the output layers as the input bit width depends on the bit size of the trained parameters and the average number of strong connections in the previous layers, which are similar to our network configuration of [50–80]. Also, the static leakage power is dominant compared to the dynamic power. Dynamic power for the MAC-ReLU comprises (60–64)% internal power and (36–40)% switching power. However, 82% internal power and 18% switching power constitute the dynamic power consumption for the IF neurons. A higher percentage of internal power for the IF neuron is expected because the output of the IF neuron will only change when there is an event (V_m > V_t), i.e., the accumulated membrane potential exceeds the firing threshold. Hence, it is understood that the power and area of the digital DS-ANN will be significantly higher than the power of the digital DS-SNN depending on the number of neuron units in the network.

4.4. Synthesis results of DS-SNN (digital)

The estimate of different modules involved in the DS-SNN operated at 22 kHz clock frequency in the 65 nm technology node is shown in table 6. The computational block (refer to figures 10(b) and (c)) updates the DS FV every 0.5 s and produces an output DS FV of 5 s, which is the input to the classifiers. It consumes ~6.9 μW. The input spike generator (refer to figure 11) consists of a PN generator to convert the input FV of size 50 to a corresponding 50 bit spike pattern consumed ~0.78 μW.

The number of weights required for our network is equal to 4160. An SRAM memory for storing the weights consumes ~1.66 μW with an area of ~1915 μm². The logic for selecting the address corresponding to the stored weights based on the spike patterns (figure 11(d)) for the hidden and output layers consumes 1864 μm² area and ~150 nW power. It is concluded that a significant amount of area and power is saved for the SNN inference unit compared to the ANN inference unit when operated at the same clock frequency.

In table 7, we have the distribution of resources and power of the DS-SNN system. The dominant part of the DS FV is the inter FIFO registers (figure 10(c)). Further, the non-combinational and combinational logic
Table 6. Estimation of power/area of the DS-SNN system based on ASIC synthesis results.

Module	Area (μm²)	Power (μW)
Computational block (DS FV generator)	89 066	6.89
IF neuron	298	0.026
PN comparator	8155	0.78
Memory	1915	1.66
Spike address generator	1864	0.15
Control FSM	1050	0.063

Table 7. Estimate of distribution of resources and power of the DS SNN system.

Module	Area (μm²)	Power (μW)
DS FV Computation	39 255	1.81
Storage (register)	49 811	5.1
SNN inference Computation	15 151	0.85
Storage (register + SRAM)	15 073 (13 158 + 1915)	3.12 (1.46 + 1.66)
DS SNN (total)	119 290	10.88

Table 8. Energy distribution for the mixed scheme.

Module	Dynamic Energy (P_D × T) (nJ)
Differentiator, comparator (zero crossing, maxima/minima detector)	3
D counter (4 bit)	0.305
S counter (3 bit)	0.150
7–50 decoder + 30 counters	0.735
8 bit DACs (50)	0.04
CCOs (50)	2.5 (T_eval = 2.5 ms)
Multi-bit RCN 1 (50 × 80)	0.051
Multi-bit RCN 2 (80 × 2)	0.0056
Total	6.8

ratios required in the DS-SNN for the area and power distribution are 1.2 and 2.45, respectively, indicating the dominance of sequential logic in the system. The DS FV and the inference module’s dynamic energy amounts to ∼29 nJ and ∼173 nJ, which does its computation in 23 ms and 132 ms, respectively.

4.5. Estimation of power consumption by the mixed scheme

The breakup of the dynamic power consumed by the different blocks in the mixed scheme (refer to figure 13) is given in table 8. These results have been obtained from SPICE simulations. The energy dissipated by the differentiator and comparator is ∼3 nJ for 500 ms. The time to arrive at a new FV is termed the evaluation time (T_eval), equal to 500 ms. The power dissipation of the digital blocks D counter (4 bit), S counter (3 bit), and the 7 to 50 decoders followed by 50 counters (8 bit) are obtained from synthesis results using Synopsys Design Vision Tool at 65 nm technology. The equivalent energy dissipation during the evaluation time is mentioned in table 8.

The energy consumed by 50 simple binary-weighted current DAC was estimated to be 0.04 nJ from simulations (refer to equation (6))

\[P_{DAC} = C \times V_{DD}^2 \times f_{DAC} \times n_{bits} \times n_I. \]

(6)

Here, \(C = 0.1 \, \text{fF} \), \(V_{DD} = 1 \, \text{V} \), \(f = 2 \, \text{Hz} \), \(n_{bits} = 8 \), \(n_I = 50 \) are the bit capacitance, supply voltage, frequency of conversion, number of bits, and the number of input layer neurons, respectively.

The energy consumed by the CCO is expressed as in equation (7) and is verified through SPICE simulations

\[E_{CCO} = n_{cco} \times I_{cco(avg)} \times V_{DD} \times T_{eval}. \]

(7)

Here, \(n_{cco} = n_I = 50 \), \(I_{cco(avg)} = 20 \, \text{nA} \), \(T_{eval} = 0.5 \, \text{ms} \), are the number of CCOs, the average current through the CCO, and the evaluation time required by the CCO.

The synapses in the SNN crossbar will have variations in conductances. The average number of input spikes generated and the conductance of the synapses will determine the current flowing through each row. The
energy dissipated will depend on the time duration \(T_{on} \) for which the input bit spike is presented and is expressed as given in equations (8) and (9) for RCN1 and RCN2, respectively.

\[
E_{RCN1} = I_{\text{max}} \times V_{DD} \times T_{on} \times \sum_{r=1}^{n_I} \sum_{c=1}^{n_H} n_{\text{spike(avg)_r,c}} \times \left(\frac{G_{\text{syn}_r,c}}{G_{\text{syn(max)}}} \right)
\]

\[
E_{RCN2} = I_{\text{max}} \times V_{DD} \times T_{on} \times \sum_{r=1}^{n_I} \sum_{c=1}^{n_O} n_{\text{spike(avg)_r,c}} \times \left(\frac{G_{\text{syn}_r,c}}{G_{\text{syn(max)}}} \right)
\]

Here, \(n_{\text{spike(avg)_r,c}} \), \(n_I = 50 \), \(n_H = 80 \), \(n_O = 2 \), \(I_{\text{max}} = 300\ \text{nA} \), \(V_{DD} = 1.2\ \text{V} \), \(T_{on} = 50 \times 10^{-9}\ \text{s} \), \(T_p = 5 \times 10^{-6}\ \text{s} \), \(G_{\text{syn}_r,c}, G_{\text{syn(max)}} \) are the average number of spike occurrences in the rth row, input, hidden, output neurons, maximum synaptic current, supply voltage, ON duration of the spike, pulse duration of a spike, the conductance of the synapse, and maximum synapse conductance in the RCN, respectively. The estimated energy dissipation of the rows in the crossbar circuit based on the statistics of the weight distribution and the average number of input spike occurrences is shown in figure 16.

In the idle state (absence of spike), the current source supplying the current will dominate the resistance. The OFF current source will have higher resistance \((R_{CS\text{(off)}}) \) in the order of 100 G\(\Omega \), which is in series with the synaptic resistances. Hence, the leakage power given by \(N_{\text{rows}} \) will be given by equation (10)

\[
P_{\text{leakage(RCN)}} = \left(\frac{V_{DD}^2}{R_{CS\text{(off)}}} \right) \times N_{\text{rows}}.
\]
Table 10. Estimation of energy consumption during SNN inference based on different spike-based methods in the literature.

Year (reference)	Type (analog/digital/device)	Energy (E/spike, (pJ/spike))	Energy dissipated during SNN inference ($E \times N_{spk}$), pJ	Architecture/technology	Hardware implementation
2003 [15]	Analog	2850	1995 000	Analog model of LIF neuron (1.5 μm CMOS)	Yes
2006 [63]	Analog	900	630 000	LIF (0.35 μm CMOS)	Yes
2011 [17]	Digital	45	31 500	LIF neuron (45 nm SOI)	Yes
2012 [18]	Analog	0.4	280	LIF neuron (90 nm CMOS)	Yes
2015 [19]	Analog	9.3	6510	LIF neuron (180 nm CMOS)	Yes
2017 [20]	Analog	0.004	2.8	Morris-Lecar artificial neuron (65 nm CMOS)	Yes
2018 [21]	Analog	0.014–1.4	9.8–980	Memristive synapses (130 nm CMOS)	No
2018 [22]	Analog	4.3	3010	LIF neuron (90 nm CMOS)	No
2019 [64]	Device	0.0063	4.41	LIF neuron (bulk FINFET)	No
2020 [65]	Device	<45	31 500	LIF neuron (partially depleted SOI MOSFET)	Yes
2020 [66]	Device	0.18	126	LIF neuron (90 nm one-shaped gate bipolar impact ionization MOS)	No
2020 [67]	Analog	0.0032	2.24	LIF neuron (32 nm SOI CMOS)	No
2021 [68]	Device	0.07/1.14	49–798	LIF neuron (sub 20 nm double-gate junctionless FET)	No
2022 [69]	Device	8	5600	LIF neuron (Ge-MOSFET)	No
2022 [70]	Device	0.22	154	LIF neuron (multi-domain spintronic device)	No
2022 [71]	Analog	0.0082	5.74	BTBT LIF neuron (45 nm partially depleted SOI)	Yes
This work (a)	Digital	247.6	173 320	LIF for digital SNN (65 nm)	No
This work (b)	Analog	0.081	57	LIF for analog MCA SNN (65 nm)	No
The leakage energy dissipated for the RCN1 ($E_{\text{RCN1 leakage}} = 0.3 \, \text{pJ}$) and RCN2 ($E_{\text{RCN2 leakage}} = 0.48 \, \text{pJ}$) is added to the dynamic (computational) energy as given in equations (8) and (9), respectively. The total energy for RCN1 and RCN2 is $E_{\text{tot-RCN1}} = 0.051 \, \text{nJ}$ and $E_{\text{tot-RCN2}} = 0.0056 \, \text{nJ}$.

4.6. System-level comparison between digital and mixed scheme (DS-SNN)

Table 9 compares the digital and mixed schemes for the DS-SNN system. It is seen that the mixed scheme is $\sim 30 \times$ energy efficient than its digital counterpart. The energy dissipated per spike (E/spike) is estimated using equation (11)

$$E/\text{spike} = \left(\frac{E_{\text{tot}}}{\text{num spikes}} \right).$$

Here, E_{tot} is the total energy dissipated by the SNN, and $\text{num spikes} = 700$ is the average number of spike occurrences during the inference process (refer to section 3.3, figure 8). It is to be noted, num spikes depend on the total number of time steps required for the inference. Hence, applications necessitating less inference time will consume less energy. The energy consumption of the SNN inference unit is estimated by computing the $(E/\text{spike} \times \text{num spikes})$ with other spike-based neurons in the literature, as shown in table 10. It is inferred that analog spiking neurons [18–20, 22, 67, 71] at lower technology nodes are energy efficient than digital neurons [17]. Authors in [21] have simulated a low-power-CMOS-based memristive. Recent studies such as in [64–66, 68–70], revolve around innovative methods at the device level, such as bulk FINFET, partially depleted SOI MOSFET, L-shaped gate bipolar impact ionization MOS, double-gate junctionless FET, Ge-MOSFET, and multi-domain spintronic device for attaining lower E/spike metric for the LIF neurons. Our work conveys energy efficiency from the architectural, circuit, and algorithmic levels. Furthermore, combining the device-level energy benefits to represent the LIF neurons and the memristive synapse along with the architectural, circuit, and algorithmic level benefits will be a prospective approach toward power-constrained applications.

5. Conclusion

This work presented a simulation-based study of human footstep acoustic classification in natural surroundings for WSNs, using simple time-domain features using an SNN classifier. We have considered bio-inspired and approximate computing techniques to design the power-constrained sensor node. An appropriate choice of f_s and input FV, i.e., (D, S), was determined, such as to achieve an acceptable accuracy ($>90\%$) with fewer computations involved in the feature extraction process. A time-domain-based (D, S) FV showed $\sim 3 \times$ power benefits compared to the frequency domain FFT FV. Implementation results of the DS ANN and DS SNN system were carried out targeting Zedboard with Zynq AP SoC XC7Z020-CLG484-1 FPGA to find that the latter requires fewer computational resources (no DSP blocks) compared to the former, which consumed $\sim 38\%$ of the available DSP modules. The proposed spike-based DS-SNN digital ASIC requires $\sim 0.12 \, \text{mm}^2$ area and 10.88 μW dynamic power estimated using the Synopsys Design Vision tool. Moreover, the proposed mixed scheme for the DS-SNN system consisting of low-power analog modules for generating the DS FV followed by a multi-level RCN for inference shows $\sim 30 \times$ energy benefit compared to the digital scheme. Although SNN provides low-power operation, at the algorithm level itself, ANN to SNN conversion leads to the inevitable loss of classification accuracy, which was found to be around $\sim 5\%$. To overcome the loss in accuracy, we exploited the low-power operation of the analog processing SNN module and applied redundancy and a majority voting scheme. We have compared our SNN inference scheme with other spike-based processors. It is inferred that spike-based processors are suitable for energy-efficient applications, provided the performance is within the permissible limits.

The acoustic WSN studied here will act as the 1st stage of the security surveillance system, which will activate the 2nd stage (consisting of cameras capturing videos/images) for further assessment of the scene. In future work, low-power feature extraction schemes on the frame of images captured by the camera data followed by a bio-inspired SNN classifier could be undertaken.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors. One can request access to the dataset following [72].

ORCID iDs

Anand Kumar Mukhopadhyay https://orcid.org/0000-0002-6535-1085
References

[1] Karray F, Imal M W, Abid M, BenSaleh M S and Obeid A M 2014 A review on wireless sensor node architectures 2014 9th Int. Symp. Reconfigurable and Communication-centric Systems-on-Chip (ReCoS) (Piscataway, NJ: IEEE) pp 1–8

[2] Raadt T, Bouabdallah A and Challal Y 2014 Energy efficiency in wireless sensor networks: a top-down survey Comput. Netw. 67 104–22

[3] Popovic E, Magno M and Marinkovic S 2013 Power management techniques for wireless sensor networks: a review 2013 5th IEEE Int. Workshop on Advances in Sensors and Interfaces (IWASI) (Piscataway, NJ: IEEE) pp 194–8

[4] LeCun Y, Bengio Y and Hinton G 2015 Deep learning Nature 521 436

[5] Cao Y, Chen Y and Khosla D 2015 Spiking deep convolutional neural networks for energy-efficient object recognition Int. J. Comput. Vis. 113 54–66

[6] Dichi P U, Neil D, Binaz J, Cook M, Liu S-C and Pfeiffer M 2015 Fast classifying, high-accuracy spiking deep networks through weight and threshold balancing 2015 Int. Joint Conf. Neural Networks (IJCNN) (Piscataway, NJ: IEEE) pp 1–8

[7] Lee J H, Delbruck T and Pfeiffer M 2016 Training deep spiking neural networks using backpropagation Front. Neurosci. 10 508

[8] Han B, Sengupta A and Roy K 2016 On the energy benefits of spiking deep neural networks: a case study 2016 Int. Joint Conf. Neural Networks (IJCNN) (Piscataway, NJ: IEEE) pp 971–6

[9] Ghosh-dastidar S and Adeli H 2009 Spiking neural networks Int. J. Neural Syst. 19 295–308

[10] Sharma S, Mukherjee A, Dongre A and Sharad M 2017 Ultra low power sensor node for security applications, facilitated by algorithm architecture co-design 2017 30th Int. Conf. VLSI Design and 2017 16th Int. Conf. Embedded Systems (VLSID) (Piscataway, NJ: IEEE) pp 101–6

[11] George M and King R 1997 Time encoded signal processing and recognition for reduced data, high performance speaker verification architectures Int. Conf. Audio- and Video-based Biometric Person Authentication (Berlin: Springer) pp 377–84

[12] Mazarakis G P and Avaritisiotis J N 2007 Vehicular classification in sensor networks using time-domain signal processing and neural networks Microprocess. Microsyst. 31 381–92

[13] Guo Y and Hazas M 2011 Localising speech, footsteps and other sounds using resource-constrained devices 2011 10th Int. Conf. Information Processing in Sensor Networks (IPSN) (Piscataway, NJ: IEEE) pp 330–41

[14] Salamon J and Bello J P 2017 Deep convolutional neural networks and data augmentation for environmental sound classification IEEE Signal Process. Lett. 24 279–83

[15] Indiveri G 2003 A low-power adaptive integrate-and-fire neuron circuit Proc. 2003 Int. Symp. Circuits and Systems, 2003 ISCAS’03 (Piscataway, NJ: IEEE) pp IV–IV

[16] Lee Y, Lee J, Kim Y-B, Ayers J, Volokovskii A, Selverston A, Abarbanel H and Rabinovich M 2004 Low power real time electronic neuron VLSI design using subthreshold technique 2004 IEEE Int. Symp. Circuits and Systems (IEEE Cat. No. 04CH37512) (Piscataway, NJ: IEEE) pp IV–IV

[17] Merolla P, Arthur J, Akopyan F, Imam N, Manohar R and Modha D S 2011 A digital neurosynaptic core using embedded crossbar memory with 45 pl per spike in 45 nm 2011 IEEE Custom Integrated Circuits Conf. (CICC) (Piscataway, NJ: IEEE) pp 1–4

[18] Cruz-Albrecht J M, Yung M W and Srivinasa N 2012 Energy-efficient neuron, synapse and STDP integrated circuits IEEE Trans. Biomed. Circuits Syst. 6 426–56

[19] Wu X, Saxena V, Zhu K and Balagopals S 2015 A CMOS spiking neuron for brain-inspired neural networks with resistive synapses and in situ learning IEEE Trans. Circuits Syst. I 62 1088–92

[20] Sourikopoulos I, Hedayat S, Loyez C, Danneville F, Hoel V, Mercier E and Cappy A 2017 A 4 fJ/spike artificial neuron in 65 nm CMOS technology Front. Neurosci. 11 123

[21] Saxena V, Wu X and Zhu K 2018 Energy-efficient CMOS memristive synapses for mixed-signal neuromorphic system-on-a-chip 2018 IEEE Int. Symp. Circuits and Systems (ISCAS) (Piscataway, NJ: IEEE) pp 1–5

[22] Shams J, Mohammadi K and Shokouhi S B 2018 A hardware architecture for columnar-organized memory based on CMOS neuron and memristor crossbar arrays IEEE Trans. Very Large Scale Integr. VLSI Syst. 26 2795–805

[23] Shen S, Kim K and Kang S-M 2009 Memristor-based fine resolution programmable resistance and its applications 2009 Int. Conf. Communications, Circuits and Systems (Piscataway, NJ: IEEE)

[24] Berdan R, Prodromakis T and Toumazou C 2012 High precision analogue memristor state tuning Electron. Lett. 48 1105–7

[25] Sharad M, Fan D and Roy K 2013 Ultra low power associative computing with spin neurons and resistive crossbar memory Proc. 50th Annual Design Automation Conf. (New York: ACM)

[26] Kim K-H, Gaba S, Wheeler D, Cruz-Albrecht J M, Hussain T, Srivinasa N and Lu W 2011 A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications Nano Lett. 12 189–95

[27] Pershin Y V and Di Ventra M 2010 Practical approach to programmable analog circuits with memristors IEEE Trans. Circuits Syst. I 57 1857–64

[28] Hu M et al 2016 Dot-product engine for neuromorphic computing: programming 1T1M crossbar to accelerate matrix–vector multiplication Proc. 53rd Annual Design Automation Conf. (New York: ACM)

[29] Adhikari S P et al 2014 A circuit-based learning architecture for multilayer neural networks with memristor bridge synapses IEEE Trans. Circuits Syst. I 62 215–23

[30] Mukhopadhyay A K, Sharma A, Chakrabarti I, Basu A and Sharad M 2021 Power-efficient spike sorting scheme using analog spiking neural network classifier J. Emerg. Technol. Comput. Syst. 17 1–29

[31] Pathak R, Dash S, Mukhopadhyay A K, Basu A and Sharad M 2017 Low-power implantable spike sorting scheme based on neuromorphic classifier with supervised training engine Proc. IEEE Computer Society Annual Symp. VLSI (VLSI’17) pp 266–71

[32] Harpe P et al 2015 21.2 A 3 nW signal-acquisition IC integrating an amplifier with 2.1 NEF and a 1.5 fJ/conv-step ADC 2015 IEEE International Solid-State Circuits Conf.- (ISSCC) Digest of Technical Papers (Piscataway, NJ: IEEE)

[33] Kaushik B, Nance D and Ahuja K 2005 A review of the role of acoustic sensors in the modern battlefield 11th AIAA/CEAS Aeroacoustics Conf.

[34] Duarte M F and Hen Hu Y H 2004 Vehicle classification in distributed sensor networks J. Parallel Distrib. Comput. 64 826–38

[35] Li Y and Yang Y 2017 Convergence analysis of two-layer neural networks with ReLU activation Advances in Neural Information Processing Systems

[36] Scarpetta S, Giudicepietro F, Ezin E C, Petrosino S, Del Pezzo E, Martini M and Marinaro M 2005 Automatic classification of seismic signals at Mt. Vesuvius Volcano, Italy, using neural networks Bull. Seismol. Soc. Am. 95 185–96
