Multiplicative duality, q-triplet and (μ, ν, q)-relation

derived from the one-to-one correspondence

between the (μ, ν)-multinomial coefficient and Tsallis entropy S_q

Hiroki Suyari

department of Information and Image Sciences,
Chiba University, Chiba 263-8522, Japan

Tatsuaki Wada

department of Electrical and Electronic Engineering,
Ibaraki University, Hitachi, Ibaraki 316-8511, Japan

(Dated: March 23, 2022)

Abstract

We derive the multiplicative duality “$q \leftrightarrow 1/q$” and other typical mathematical structures as the special cases of the (μ, ν, q)-relation behind Tsallis statistics by means of the (μ, ν)-multinomial coefficient. Recently the additive duality “$q \leftrightarrow 2 - q$” in Tsallis statistics is derived in the form of the one-to-one correspondence between the q-multinomial coefficient and Tsallis entropy. A slight generalization of this correspondence for the multiplicative duality requires the (μ, ν)-multinomial coefficient as a generalization of the q-multinomial coefficient. This combinatorial formalism provides us with the one-to-one correspondence between the (μ, ν)-multinomial coefficient and Tsallis entropy S_q, which determines a concrete relation among three parameters μ, ν and q, i.e., $\nu (1 - \mu) + 1 = q$ which is called “(μ, ν, q)-relation” in this paper. As special cases of the (μ, ν, q)-relation, the additive duality and the multiplicative duality are recovered when $\nu = 1$ and $\nu = q$, respectively. As other special cases, when $\nu = 2 - q$, a set of three parameters (μ, ν, q) is identified with the q-triplet $(q_{\text{sen}}, q_{\text{rel}}, q_{\text{stat}})$ recently conjectured by Tsallis. Moreover, when $\nu = 1/q$, the relation $1/(1 - q_{\text{sen}}) = 1/\alpha_{\text{min}} - 1/\alpha_{\text{max}}$ in the multifractal singularity spectrum $f(\alpha)$ is recovered by means of the (μ, ν, q)-relation.

*Electronic address: suyari@faculty.chiba-u.jp, suyari@ieee.org
†Electronic address: wada@mx.ibaraki.ac.jp
I. INTRODUCTION

In the last two decades the so-called Tsallis statistics or \(q \)-statistics has been introduced \cite{1} and studied as a generalization of Boltzmann-Gibbs statistics with many applications to complex systems \cite{2,3}, whose information measure is given by

\[
S_q(p_1, \ldots, p_n) = \frac{1 - \sum_{i=1}^{n} p_i^q}{q - 1} \tag{1}
\]

where \(p_i \) is a probability of \(i \)th state and \(q \) is a real parameter. This generalized entropy \(S_q \) is nowadays called Tsallis entropy which recovers Boltzmann-Gibbs-Shannon entropy \(S_1 \) when \(q \to 1 \). The above entropic form (1) was first given in \cite{4} and \cite{5} from a mathematical motivation, but in 1988 \cite{1} Tsallis first applied the above form (1) to a generalization of Boltzmann-Gibbs statistics for nonequilibrium systems through the maximum entropy principle (MaxEnt for short) along the lines of Jaynes approach \cite{6}. Since then, many applications of (1) to the studies of complex systems with power-law behaviors have been presented using the MaxEnt as a main approach \cite{7}. In fact, the \(q \)-exponential function appeared in the MaxEnt plays a crucial role in the formalism and applications \cite{2,3}.

For all many applications of the MaxEnt for Tsallis entropy (1), there have been missing a combinatorial consideration in Tsallis statistics until recently \cite{8}, whose ideas originate from Boltzmann’s pioneering work \cite{9} (See \cite{10} for the comprehensive review). By means of the \(q \)-product uniquely determined by the \(q \)-exponential function \cite{11,12} as the \(q \)-exponential law, the one-to-one correspondence between the \(q \)-multinomial coefficient and Tsallis entropy is obtained as follows \cite{8}: for \(n = \sum_{i=1}^{k} n_i \) and \(n_i \in \mathbb{N} \) if \(q \neq 2 \),

\[
\ln_q \left[\frac{n}{n_1 \cdots n_k} \right] \simeq \frac{n^{2-q}}{2-q} \cdot S_{2-q} \left(\frac{n_1}{n}, \cdots, \frac{n_k}{n} \right) \tag{2}
\]

where \(\left[\frac{n}{n_1 \cdots n_k} \right]_q \) is the \(q \)-multinomial coefficient and \(\ln_q \) is the \(q \)-logarithm. The above correspondence (2) obviously recovers the well-known correspondence:

\[
\ln \left[\frac{n}{n_1 \cdots n_k} \right] \simeq n \cdot S_1 \left(\frac{n_1}{n}, \cdots, \frac{n_k}{n} \right) \tag{3}
\]

when \(q \to 1 \). Moreover, the additive duality “\(q \leftrightarrow 2 - q \)” in Tsallis statistics is revealed in (2). In the MaxEnt formalism for Tsallis entropy, two kinds of dualities “\(q \leftrightarrow 2 - q \)” and
“$q \leftrightarrow 1/q$” have been observed and discussed [7][13][14][15][16], but in the combinatorial formalism the multiplicative duality “$q \leftrightarrow 1/q$” is still missing.

In this paper, we derive the multiplicative duality “$q \leftrightarrow 1/q$” along the lines of the above correspondence (2), which introduces the (μ, ν)-factorial as a generalization of the q-factorial. We apply the (μ, ν)-factorial to the formulation of the (μ, ν)-multinomial coefficient and the (μ, ν)-Stirling’s formula, which results in the following correspondence: for $n = \sum_{i=1}^{k} n_i$ and $n_i \in \mathbb{N}$ if $q, \nu \neq 0$,

$$\frac{1}{\nu} \ln_{\mu} \begin{bmatrix} n \\ n_1 \cdots n_k \end{bmatrix}_{(\mu,\nu)} \simeq \frac{n^q}{q} \cdot S_q \left(\frac{n_1}{n}, \cdots, \frac{n_k}{n} \right)$$

(4)

where $\begin{bmatrix} n \\ n_1 \cdots n_k \end{bmatrix}_{(\mu,\nu)}$ is the (μ, ν)-multinomial coefficient and three parameters μ, ν, q satisfy the relation:

$$\nu (1 - \mu) + 1 = q$$

(5)

which is called “(μ, ν, q)-relation” throughout the paper.

Using the additive duality “$q \leftrightarrow 2 - q$” in (2), (2) is rewritten by

$$\ln_{2-q} \begin{bmatrix} n \\ n_1 \cdots n_k \end{bmatrix}_{2-q} \simeq \frac{n^q}{q} \cdot S_q \left(\frac{n_1}{n}, \cdots, \frac{n_k}{n} \right).$$

(6)

Hence the above generalized correspondence (4) is found to recover (6) when $\mu = 2 - q$ and $\nu = 1$. As will be shown later,

$$\begin{bmatrix} n \\ n_1 \cdots n_k \end{bmatrix}_{(\mu,1)} = \begin{bmatrix} n \\ n_1 \cdots n_k \end{bmatrix}_\mu.$$

(7)

The (μ, ν, q)-relation (5) among three parameters μ, ν, q yields the additive duality “$q \leftrightarrow 2 - q$” when $\nu = 1$ and the multiplicative duality “$q \leftrightarrow 1/q$” when $\nu = q$, respectively. As other special cases of the (μ, ν, q)-relation, when $\nu = 2 - q$, it is shown that the q-triplet $(q_{\text{sen}}, q_{\text{rel}}, q_{\text{stat}})$ recently conjectured by Tsallis [17] is identified with the (μ, ν, q)-relation (5) in the following sense:

$$\mu = \frac{1}{q_{\text{sen}}}, \quad \nu = \frac{1}{q_{\text{rel}}}, \quad q = q_{\text{stat}}.$$

(8)

Moreover, when $\nu = 1/q$, the relation [18]:

$$\frac{1}{1 - q_{\text{sen}}} = \frac{1}{\alpha_{\text{min}}} - \frac{1}{\alpha_{\text{max}}}$$

(9)
in the multifractal singularity spectrum \(f(\alpha) \) is recovered by means of the \((\mu, \nu, q)\)-relation in the following sense:

\[
\mu = q_{\text{sen}}, \quad \nu = \frac{1}{\alpha_{\text{max}}}, \quad q = \alpha_{\text{max}}
\]

with \(\alpha_{\text{max}} - \alpha_{\text{min}} = 1 \). The above new results are derived in detail in the following sections.

This paper consists of the 5 sections including this introduction. In the next section, we briefly review the fundamental formulas such as the \(q\)-product, the \(q\)-factorial, the \(q\)-multinomial coefficient and the \(q\)-Stirling’s formula which are applied to the derivation of (2). In Section III, the correspondence (2) is modified to derive the multiplicative duality “\(q \leftrightarrow 1/q \)” in our combinatorial formalism. In this derivation, a slight generalization of the \(q\)-factorial is required, which is called “\((\mu, \nu)\)-factorial”. As similarly as Section II, we formulate the \((\mu, \nu)\)-multinomial coefficient and the \((\mu, \nu)\)-Stirling’s formula based on the \((\mu, \nu)\)-factorial, and apply them to finding the generalized correspondence (4). In Section IV, we derive the additive duality and the multiplicative duality as special cases of (4). Moreover, when \(\nu = 2 - q \) and \(\nu = 1/q \), each interpretation of the \((\mu, \nu, q)\)-relation shown in (8) and (10) is respectively presented. The final section is devoted to our conclusion.

II. ADDITIVE DUALITY DERIVED FROM THE \(q\)-MULTINOMIAL COEFFICIENT

The MaxEnt for Boltzmann-Gibbs-Shannon entropy \(S_1 \) yields the exponential function \(\exp(x) \) which is well known to be characterized by the linear differential function \(dy/dx = y \). In parallel with this, the MaxEnt for Tsallis entropy \(S_q \) yields a generalization of the exponential function \(\exp_q(x) \) which is characterized by the nonlinear differential function \(dy/dx = y^q \). In Tsallis statistics, the fundamental functions are the \(q\)-logarithm \(\ln_q x \) and the \(q\)-exponential \(\exp_q(x) \), respectively defined as follows:

Definition 1 (\(q \)-logarithm, \(q \)-exponential) The \(q \)-logarithm \(\ln_q x : \mathbb{R}^+ \to \mathbb{R} \) and the \(q \)-exponential \(\exp_q(x) : \mathbb{R} \to \mathbb{R} \) are defined by

\[
\ln_q x := \frac{x^{1/q} - 1}{1 - q},
\]

\[
\exp_q(x) := \begin{cases}
[1 + (1 - q) x]^{1/q} & \text{if } 1 + (1 - q) x > 0, \\
0 & \text{otherwise}.
\end{cases}
\]
Then a new product \otimes_q to satisfy the following identities as the q-exponential law is introduced.

\[
\ln_q (x \otimes_q y) = \ln_q x + \ln_q y, \quad (13)
\]
\[
\exp_q (x) \otimes_q \exp_q (y) = \exp_q (x + y). \quad (14)
\]

For this purpose, the new multiplication operation \otimes_q is introduced in [11][12]. The concrete forms of the q-logarithm and q-exponential are given in (11) and (12), so that the above requirement (13) or (14) as the q-exponential law leads to the definition of \otimes_q between two positive numbers.

Definition 2 (q-product) For $x, y \in \mathbb{R}^+$, the q-product \otimes_q is defined by

\[
x \otimes_q y := \begin{cases}
[x^{1-q} + y^{1-q} - 1]^{\frac{1}{1-q}}, & \text{if } x > 0, y > 0, x^{1-q} + y^{1-q} - 1 > 0, \\
0, & \text{otherwise}.
\end{cases} \quad (15)
\]

The q-product recovers the usual product such that $\lim_{q \to 1} (x \otimes_q y) = xy$. The fundamental properties of the q-product \otimes_q are almost the same as the usual product, but

\[
a (x \otimes_q y) \neq (ax) \otimes_q y \quad (a, x, y \in \mathbb{R}). \quad (16)
\]

The other properties of the q-product are available in [11][12].

By means of the q-product (15), the q-factorial is naturally defined in the following form.

Definition 3 (q-factorial) For a natural number $n \in \mathbb{N}$ and $q \in \mathbb{R}^+$, the q-factorial $n!_q$ is defined by

\[
n!_q := 1 \otimes_q \cdots \otimes_q n. \quad (17)
\]

Thus, we concretely compute the q-Stirling’s formula.

Theorem 4 (q-Stirling’s formula) Let $n!_q$ be the q-factorial defined by (17). The rough q-Stirling’s formula $\ln_q (n!_q)$ is computed as follows:

\[
\ln_q (n!_q) = \begin{cases}
\frac{n \ln_q n - n}{2 - q} + O (\ln_q n) & \text{if } q \neq 2, \\
n - \ln n + O (1) & \text{if } q = 2.
\end{cases} \quad (18)
\]
The above rough \(q \)-Stirling’s formula is obtained by the approximation:

\[
\ln_q (n!_q) = \sum_{k=1}^{n} \ln_q k \simeq \int_1^n \ln_q x \, dx. \tag{19}
\]

The rigorous derivation of the \(q \)-Stirling’s formula is given in [8].

Similarly as for the \(q \)-product, \(q \)-ratio is introduced from the requirements:

\[
\ln_q \left(\frac{x}{y} \right) = \ln_q x - \ln_q y, \tag{20}
\]

\[
\exp_q \left(\frac{x}{y} \right) = \exp_q(x) \cdot \exp_q(y) = \exp_q(x - y). \tag{21}
\]

Then we define the \(q \)-ratio as follows.

Definition 5 \((q\text{-ratio})\) For \(x, y \in \mathbb{R}^+ \), the inverse operation to the \(q \)-product is defined by

\[
x \cdot_q y := \begin{cases}
[x^{1-q} - y^{1-q} + 1]^{\frac{1}{1-q}}, & \text{if } x > 0, y > 0, x^{1-q} - y^{1-q} + 1 > 0, \\
0, & \text{otherwise}
\end{cases} \tag{22}
\]

which is called \(q \)-ratio in [12].

The \(q \)-product, \(q \)-factorial and \(q \)-ratio are applied to the definition of the \(q \)-multinomial coefficient [8].

Definition 6 \((q\text{-multinomial coefficient})\) For \(n = \sum_{i=1}^{k} n_i \) and \(n_i \in \mathbb{N} \) \((i = 1, \cdots, k)\), the \(q \)-multinomial coefficient is defined by

\[
\begin{bmatrix} n \\ n_1 & \cdots & n_k \end{bmatrix}_q := (n!_q) \cdot_q \left((n_1!_q) \cdot_q \cdots \cdot_q (n_k!_q) \right). \tag{23}
\]

From the definition (23), it is clear that

\[
\lim_{q \to 1} \begin{bmatrix} n \\ n_1 & \cdots & n_k \end{bmatrix}_q = \begin{bmatrix} n \\ n_1 & \cdots & n_k \end{bmatrix} = \frac{n!}{n_1! \cdots n_k!}. \tag{24}
\]

Throughout the present paper, we consider the \(q \)-logarithm of the \(q \)-multinomial coefficient to be given by

\[
\ln_q \begin{bmatrix} n \\ n_1 & \cdots & n_k \end{bmatrix}_q = \ln_q (n!_q) - \ln_q (n_1!_q) \cdots - \ln_q (n_k!_q). \tag{25}
\]

Based on these fundamental formulas, we obtain the one-to-one correspondence (2) between the \(q \)-multinomial coefficient and Tsallis entropy as follows [8].
Theorem 7 When $n \in \mathbb{N}$ is sufficiently large, the q-logarithm of the q-multinomial coefficient coincides with Tsallis entropy [1] in the following correspondence:

$$
\ln_q \left[\begin{array}{c} n \\ n_1 \cdots n_k \end{array} \right]_q \simeq \begin{cases} \frac{n^2 - q}{2 - q} \cdot S_{2-q} \left(\frac{n_1}{n}, \ldots, \frac{n_k}{n} \right) & \text{if } q > 0, \ q \neq 2 \\ -S_1 (n) + \sum_{i=1}^{k} S_1 (n_i) & \text{if } q = 2 \end{cases} \quad (26)
$$

where S_q is Tsallis entropy (1) and $S_1 (n) := \ln n$.

Straightforward computation of the left side of (26) by means of the q-Stirling’s formula (18) yields the above result (26). (See [8] for the proof.)

Clearly the additive duality “$q \leftrightarrow 2 - q$” is appeared in the above one-to-one correspondence (26). In the following sections these fundamental formulas are generalized for the derivation of the multiplicative duality “$q \leftrightarrow 1/q$” in the similar correspondence as (26).

III. ONE-TO-ONE CORRESPONDENCE BETWEEN THE (μ, ν)-MULTINOMIAL COEFFICIENT AND TSALLIS ENTROPY

In this section the correspondence (26) is generalized for the multiplicative duality “$q \leftrightarrow 1/q$”. For this purpose, replace q in (26) by $1/q$ at first. Then we obtain

$$
\ln_{1/q} \left[\begin{array}{c} n \\ n_1 \cdots n_k \end{array} \right]_{1/q} \simeq \frac{n^2 - 1}{2 - 1/q} \cdot S_{2-1/q} \left(\frac{n_1}{n}, \ldots, \frac{n_k}{n} \right) \quad (27)
$$

where we consider the case $q > 0$ and $q \neq 1/2$ only. The left side of (27) is computed as

$$
\ln_{1/q} \left[\begin{array}{c} n \\ n_1 \cdots n_k \end{array} \right]_{1/q} = \ln_{1/q} \left(n!_{1/q} \right) - \ln_{1/q} \left(n_1!_{1/q} \right) \cdots - \ln_{1/q} \left(n_k!_{1/q} \right). \quad (28)
$$

Using this formula (28), we will represent the left side of (27) by means of the forms such as \ln_q or \ln_{2-q} to find the multiplicative duality. The important relation for this purpose is the following identity:

$$
\ln_{1/q} \left(\frac{1}{x^q} \right) = -q \ln_q x. \quad (29)
$$

Each term $\ln_{1/q} \left(n!_{1/q} \right)$ on the right side of (28) is equal to

$$
\ln_{1/q} \left(n!_{1/q} \right) = \ln_{1/q} \left(\frac{1}{\left(n!_{1/q} \right)^{-1}} \right). \quad (30)
$$
\((n!_q)^{-1}\) is expanded in accordance with the definition of the \(q\)-product \((15)\).

\[
(n!_q)^{-1} = (1 \otimes q^1 \cdots \otimes q^n)^{-1} = \left[1^{1-q} + 2^{1-q} + \cdots + n^{1-q} - (n-1)\right]^\frac{1}{q}
\]

\[
= \left[\left((\frac{1}{1})\right)^{1-q} + \left((\frac{1}{2})\right)^{1-q} + \cdots + \left((\frac{1}{n})\right)^{1-q}\right] - (n-1)\right]^\frac{1}{q}
\]

\[
= \left[\left((\frac{1}{1})\right)^{\frac{1}{q}} \otimes_q \left((\frac{1}{2})\right)^{\frac{1}{q}} \otimes_q \cdots \otimes_q \left((\frac{1}{n})\right)^{\frac{1}{q}}\right]^q
\]

Then \(\ln_q (n!_q)\) is given by

\[
\ln_q (n!_q) = \ln_q \left(\frac{1}{\left[\left((\frac{1}{1})\right)^{\frac{1}{q}} \otimes_q \left((\frac{1}{2})\right)^{\frac{1}{q}} \otimes_q \cdots \otimes_q \left((\frac{1}{n})\right)^{\frac{1}{q}}\right]^q}\right) \quad (\because (30) \text{ and } (33))
\]

\[
= -q \ln_q \left[\left((\frac{1}{1})\right)^{\frac{1}{q}} \otimes_q \left((\frac{1}{2})\right)^{\frac{1}{q}} \otimes_q \cdots \otimes_q \left((\frac{1}{n})\right)^{\frac{1}{q}}\right] \quad (\because (29))
\]

\[
= -q \sum_{j=1}^{n} \ln_q j^{-\frac{1}{q}}. \quad (36)
\]

Thus, substitution of \((36)\) to \((28)\) yields

\[
\ln_q \left[\begin{array}{c}
\frac{n}{n_1} \\
\vdots \\
\frac{n}{n_k}
\end{array}\right] = q \left(- \sum_{j=1}^{n} \ln_q j^{-\frac{1}{q}} + \sum_{j_1=1}^{n_1} \ln_q j_1^{-\frac{1}{q}} + \cdots + \sum_{j_k=1}^{n_k} \ln_q j_k^{-\frac{1}{q}}\right). \quad (37)
\]

Applying the general formula:

\[
- \ln_q j^{-\frac{1}{q}} = \ln_q j^{\frac{1}{q}} \quad (38)
\]

to the above result \((37)\), we have

\[
\frac{1}{q} \ln_q \left[\begin{array}{c}
\frac{n}{n_1} \\
\vdots \\
\frac{n}{n_k}
\end{array}\right] = \sum_{j=1}^{n} \ln_{q^{-2}} j^{-\frac{1}{q}} - \sum_{j_1=1}^{n_1} \ln_{q^{-2}} j_1^{-\frac{1}{q}} - \cdots - \sum_{j_k=1}^{n_k} \ln_{q^{-2}} j_k^{-\frac{1}{q}} \quad (39)
\]

\[
= \ln_{q^{-2}} \left[\left(1^{\frac{1}{q}} \otimes_{q^{-2}} 2^{\frac{1}{q}} \otimes_{q^{-2}} \cdots \otimes_{q^{-2}} n_{1}^{\frac{1}{q}}\right) \otimes_{q^{-2}} \left(1^{\frac{1}{q}} \otimes_{q^{-2}} 2^{\frac{1}{q}} \otimes_{q^{-2}} \cdots \otimes_{q^{-2}} n_{1}^{\frac{1}{q}}\right) \otimes_{q^{-2}} \cdots \otimes_{q^{-2}} \left(1^{\frac{1}{q}} \otimes_{q^{-2}} 2^{\frac{1}{q}} \otimes_{q^{-2}} \cdots \otimes_{q^{-2}} n_{k}^{\frac{1}{q}}\right)\right]. \quad (40)
\]
On the other hand, from (25) the q-logarithm of the q-multinomial coefficient is given by

$$
\ln_q \left[\begin{array}{c} n \\ n_1 \cdots n_k \end{array} \right] = \sum_{j=1}^{n} \ln_q j - \sum_{j=1}^{n_1} \ln_q j_1 - \cdots - \sum_{j=1}^{n_k} \ln_q j_k
$$

where

$$
\ln_q [(1 \otimes_q 2 \otimes_q \cdots \otimes_q n)]
$$

$$
\otimes_q (1 \otimes_q 2 \otimes_q \cdots \otimes_q n_1)
$$

$$
\cdots
$$

$$
\otimes_q (1 \otimes_q 2 \otimes_q \cdots \otimes_q n_k)].
$$

Comparing the argument of \ln_{2-q} on the right side of (40) with that of \ln_q on (41), a generalization of the q-factorial (17) is found to be required for our purpose.

Definition 8 ((μ, ν)-factorial) For a natural number $n \in \mathbb{N}$ and $\mu, \nu \in \mathbb{R}$, the (μ, ν)-factorial $n!_{(\mu, \nu)}$ is defined by

$$
n!_{(\mu, \nu)} := 1^\nu \otimes_\mu 2^\nu \otimes_\mu \cdots \otimes_\mu n^\nu.
$$

where $\nu \neq 0$.

Clearly when $\mu = q, \nu = 1$ the q-factorial (17) is recovered.

$$
n!_{q} = n!_{(q, 1)}
$$

Moreover, when $\mu = 1$, the (μ, ν)-factorial $n!_{(\mu, \nu)}$ is equal to $(n!)^\nu$ because the μ-product recovers the usual product.

$$
n!_{(1, \nu)} = 1^\nu 2^\nu \cdots n^\nu = (n!)^\nu
$$

Thus, throughout the paper we consider the case $\mu \neq 1$ only.

Using the (μ, ν)-factorial, we have

$$
\frac{1}{q} \ln_{\frac{1}{q}} \left[\begin{array}{c} n \\ n_1 \cdots n_k \end{array} \right] = \ln_{2-q} \left(n!(2-q, \frac{1}{q}) \otimes_{2-q} n_1!(2-q, \frac{1}{q}) \cdots \otimes_{2-q} n_k!(2-q, \frac{1}{q}) \right)
$$

Then we define the form of the argument of \ln_{2-q} on the right side of (46) by the (μ, ν)-multinomial coefficient as a generalization of the q-multinomial coefficient (23).
Definition 9 \((\mu, \nu)\)-multinomial coefficient) For \(n = \sum_{i=1}^{k} n_i\) and \(n_i \in \mathbb{N}\) \((i = 1, \cdots, k)\), the \((\mu, \nu)\)-multinomial coefficient is defined by

\[
\begin{bmatrix}
n \\
n_1 & \cdots & n_k
\end{bmatrix}_{(\mu, \nu)} := \left(n!_{(\mu, \nu)} \right) \otimes_{\mu} \left(\left(m_1!_{(\mu, \nu)} \right) \otimes_{\mu} \cdots \otimes_{\mu} \left(n_k!_{(\mu, \nu)} \right) \right).
\]

(47)

where \(n!_{(\mu, \nu)}\) is the \((\mu, \nu)\)-factorial defined in (42).

Clearly when \(\mu = q\) and \(\nu = 1\) the \(q\)-multinomial coefficient (23) is recovered.

Using the \((\mu, \nu)\)-multinomial coefficient, (46) becomes

\[
\frac{1}{q} \ln_q \left[\begin{bmatrix}
n \\
n_1 & \cdots & n_k
\end{bmatrix}_{(\mu, \nu)} \right] = \ln_{2-q} \left[\begin{bmatrix}
n \\
n_1 & \cdots & n_k
\end{bmatrix}_{(q,1)} \right].
\]

(49)

Moreover, the \((\mu, \nu)\)-Stirling’s formula is computed as the following form:

Theorem 10 \((\mu, \nu)\)-Stirling’s formula) Let \(n!_{(\mu, \nu)}\) be the \((\mu, \nu)\)-factorial defined by (42). The \((\mu, \nu)\)-Stirling’s formula \(\ln_{\mu} \left(n!_{(\mu, \nu)}\right)\) is computed as follows:

\[
\ln_{\mu} \left(n!_{(\mu, \nu)}\right) = \begin{cases}
\frac{n \ln_{\mu} n^\nu - \nu n}{\nu (1 - \mu) + 1} + O \left(\ln_{\mu} n \right) & \text{if } \nu (1 - \mu) + 1 \neq 0, \\
\nu (n - \ln n) + O \left(1 \right) & \text{if } \nu (1 - \mu) + 1 = 0.
\end{cases}
\]

(50)

This formula is computed by the approximation:

\[
\ln_q \left(n!_{(\mu, \nu)}\right) = \sum_{k=1}^{n} \ln_{\mu} k^\nu \simeq \int_{1}^{n} \ln_{\mu} x^\nu dx.
\]

(51)

Based on these results, we obtain the one-to-one correspondence between the \((\mu, \nu)\)-multinomial coefficient and Tsallis entropy as follows.

Theorem 11 When \(n\) is sufficiently large, the \(\mu\)-logarithm of the \((\mu, \nu)\)-multinomial coefficient coincides with Tsallis entropy (7) as follows:

\[
\frac{1}{\nu} \ln_{\mu} \left[\begin{bmatrix}
n \\
n_1 & \cdots & n_k
\end{bmatrix}_{(\mu, \nu)} \right] \simeq \begin{cases}
n^q/q \cdot S_q \left(\frac{n_1}{n}, \cdots, \frac{n_k}{n}\right) & \text{if } q \neq 0 \\
-S_1 \left(n\right) + \sum_{i=1}^{k} S_1 \left(n_i\right) & \text{if } q = 0
\end{cases}
\]

(52)
where \(\nu \neq 0 \),

\[
\nu (1 - \mu) + 1 = q, \tag{53}
\]

\(S_q \) is Tsallis entropy \((1)\) and \(S_1 (n) := \ln n \).

The proof is given in the appendix A.

The generalized correspondence \((52)\) between the \((\mu, \nu)\)-multinomial coefficient and Tsallis entropy includes some typical mathematical structures such as the two kinds of dualities and the \(q \)-triplet as the special cases, shown in the next section.

IV. MULTIPLICATIVE DUALITY AND OTHER TYPICAL MATHEMATICAL STRUCTURES DERIVED FROM THE COMBINATORIAL FORMALISM

We consider the case \(q \neq 0 \) only. Then, the generalized correspondence \((52)\) is given by

\[
\frac{1}{\nu} \ln_{\mu} \left[\begin{array}{c} n \\ n_1 \cdots n_k \end{array} \right]_{(\mu, \nu)} \simeq \frac{n^q}{q} \cdot S_q \left(\frac{n_1}{n}, \cdots, \frac{n_k}{n} \right). \tag{54}
\]

In this paper, we call the above relation \((53)\) “\((\mu, \nu, q)\)-relation” which provides us interesting features in Tsallis statistics. In particular, we consider the following four cases.

A. \(\nu = 1 \)

In this case, from the \((\mu, \nu, q)\)-relation \((53)\) \(\mu \) is given by

\[
\mu = 2 - q. \tag{55}
\]

Then the generalized correspondence \((54)\) becomes

\[
\ln_{2-q} \left[\begin{array}{c} n \\ n_1 \cdots n_k \end{array} \right]_{2-q} \simeq \frac{n^q}{q} \cdot S_q \left(\frac{n_1}{n}, \cdots, \frac{n_k}{n} \right) \tag{56}
\]

which is equivalent to \((6)\) or \((26)\) revealing the additive duality “\(q \leftrightarrow 2 - q \)”.

B. \(\nu = q \)

In this case, from the \((\mu, \nu, q)\)-relation \((53)\) \(\mu \) is determined as

\[
\mu = \frac{1}{q}. \tag{57}
\]
Then the generalized correspondence (54) becomes
\[
\ln_{\frac{1}{q}} \left[\frac{n}{n_1 \cdots n_k} \right] \simeq n^q \cdot S_q \left(\frac{n_1}{n}, \cdots, \frac{n_k}{n} \right)
\]
which reveals the multiplicative duality “\(q \leftrightarrow \frac{1}{q} \).

Aside from the above representation (58), the multiplicative duality in Tsallis statistics is easily derived from the definition of the escort distribution. See the appendix B for the detail.

C. \(\nu = 2 - q \)

In this case, from the \((\mu, \nu, q)\)-relation (53) \(\mu \) is obtained as
\[
\mu = \frac{3 - 2q}{2 - q}.
\]
Then the generalized correspondence (54) becomes
\[
\frac{1}{2 - q} \ln_{\frac{3 - 2q}{2 - q}} \left[\frac{n}{n_1 \cdots n_k} \right] \simeq \frac{n^q}{q} \cdot S_q \left(\frac{n_1}{n}, \cdots, \frac{n_k}{n} \right)
\]
where the \((\mu, \nu, q)\)-relation for this case is equivalent to the \(q\)-triplet \((q_{\text{sen}}, q_{\text{rel}}, q_{\text{stat}})\) recently conjectured by Tsallis [17][24] in the following sense. In [17], Tsallis first conjectured the three entropic \(q\)-indices \((q_{\text{sen}}, q_{\text{rel}}, q_{\text{stat}})\), respectively for \(q\)-exponential sensitivity to the initial conditions, \(q\)-exponential relaxation of macroscopic quantities to thermal equilibrium and \(q\)-exponential distribution describing a stationary state. More concretely, based on his recent results in [23], he conjectured the concrete \(q\)-triplet \((q_{\text{sen}}, q_{\text{rel}}, q_{\text{stat}})\) satisfying the following relation [24]:
\[
q_{\text{rel}} + \frac{1}{q_{\text{sen}}} = 2, \quad q_{\text{stat}} + \frac{1}{q_{\text{rel}}} = 2.
\]
From this relation, we immediately obtain
\[
\frac{1}{q_{\text{sen}}} = \frac{3 - 2q_{\text{stat}}}{2 - q_{\text{stat}}}
\]
which is the same form as \(\mu \) obtained in (59). Therefore, when \(\nu = 2 - q \), the present \((\mu, \nu, q)\)-relation is identified with the \(q\)-triplet \((q_{\text{sen}}, q_{\text{rel}}, q_{\text{stat}})\) in the following sense:
\[
\mu = \frac{1}{q_{\text{sen}}}, \quad \nu = \frac{1}{q_{\text{rel}}}, \quad q = q_{\text{stat}}.
\]
As shown in this paper, the above identification (63) is derived from the mathematical discussion only. Besides our analytical derivation, the q-triplet $(q_{\text{sen}}, q_{\text{rel}}, q_{\text{stat}})$ has been already confirmed in the experimental observations in [25]. Therefore, Tsallis’ conjecture on the q-triplet $(q_{\text{sen}}, q_{\text{rel}}, q_{\text{stat}})$ in [24] is correct in both theoretical and experimental aspects.

Note that in our theoretical derivation of (63) we never use the definition of the three entropic q-indices $q_{\text{sen}}, q_{\text{rel}}, q_{\text{stat}}$, which may be remained as a future work from the theoretical points of view in this case $\nu = 2 - q$. However, the present identification (63) is just an interpretation of the (μ, ν, q)-relation. In fact, in our formulation the additive duality, the multiplicative duality and the q-triplet are derived as special cases of the (μ, ν, q)-relation (53). For example, we present other possible interpretation of the present (μ, ν, q)-relation (53) for the case $\nu = \frac{1}{q}$, shown in the next subsection.

D. $\nu = \frac{1}{q}$

As an other special case of the (μ, ν, q)-relation, we consider the case $\nu = \frac{1}{q}$. For this case, we obtain

$$\frac{1}{1-\mu} = \frac{1}{q-1} - \frac{1}{q}. \quad (64)$$

This identity reminds us of the following relationship [18]:

$$\frac{1}{1-q_{\text{sen}}} = \frac{1}{\alpha_{\text{min}}} - \frac{1}{\alpha_{\text{max}}} \quad (65)$$

where q_{sen} is the same entropic q-index as the case C for the q-exponential sensitivity to the initial conditions, α_{min} and α_{max} are the values of α at which the multifractal singularity spectrum $f(\alpha)$ vanishes (with $\alpha_{\text{min}} < \alpha_{\text{max}}$). These α_{min} and α_{max} are given by

$$\alpha_{\text{min}} = \frac{\ln b}{z \ln \alpha_F}, \quad \alpha_{\text{max}} = \frac{\ln b}{\ln \alpha_F} \quad (66)$$

where b stands for a natural scale for the partitions, α_F is the Feigenbaum universal scaling factor and z represents the nonlinearity of the map at the vicinity of its extremal point [18].

A choice of the nonlinearity z to satisfy

$$\left(\frac{b}{\alpha_F}\right)^z = b \quad (67)$$

implies $\alpha_{\text{max}} - \alpha_{\text{min}} = 1$. In other words, (67) means a rescaling of $\alpha_{\text{max}} - \alpha_{\text{min}}$ to be 1. Therefore, if the nonlinearity z is determined by the above requirement (67), we have the
following identification:
\[\mu = q_{\text{sen}}, \quad \nu = \frac{1}{\alpha_{\text{max}}}, \quad q = \alpha_{\text{max}}\] (68)
which is one of the interpretations of the \((\mu, \nu, q)\)-relation. Note that the above identification (68) implies (67).

All results in cases A-D mean that the \((\mu, \nu, q)\)-relation is found to be a more general nature in Tsallis statistics to recover these specific mathematical structures.

V. CONCLUSION

We present the one-to-one correspondence between the \((\mu, \nu)\)-multinomial coefficient and Tsallis entropy \(S_q\) to represent both the additive duality “\(q \leftrightarrow 2 - q\)” and the multiplicative duality “\(q \leftrightarrow 1/q\)” in one unified formula (54). In this derivation, \((\mu, \nu)\)-factorial, \((\mu, \nu)\)-multinomial coefficient and \((\mu, \nu)\)-Stirling’s formula are concretely formulated as a generalization of \(q\)-factorial, \(q\)-multinomial coefficient and \(q\)-Stirling’s formula, respectively. In the present one-to-one correspondence (54), when \(\nu = 2 - q\), the \((\mu, \nu, q)\)-relation among three parameters \(\mu, \nu, q\) is shown to be identified with the \(q\)-triplet \((q_{\text{sen}}, q_{\text{rel}}, q_{\text{stat}})\) in the sense of (63). In addition, as other interpretation of the \((\mu, \nu, q)\)-relation, the multifractal structure \(1/(1 - q_{\text{sen}}) = 1/\alpha_{\text{min}} - 1/\alpha_{\text{max}}\) is recovered.

Acknowledgement The first author is grateful to Jan Naudts for a short discussion in Trieste conference 2006, which inspires the author to find the ideas in this paper. The authors acknowledge the partial support given by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (B), 18300003, 2006.
APPENDIX A: PROOF OF THEOREM 11

When \(\mu = 1 \), \(\mu \)-product recovers the usual product regardless of \(\nu \). Thus, we consider the case \(\mu \neq 1 \) only.

If \(\nu (1 - \mu) + 1 \neq 0 \),

\[
\ln_{\mu} \left[\frac{n!}{n_1! \cdots n_k!} \right]_{(\mu, \nu)} = \ln_{\mu} n_1!_{(\mu, \nu)} - \ln_{\mu} n_1!_{(\mu, \nu)} - \cdots - \ln_{\mu} n_k!_{(\mu, \nu)} \tag{A1}
\]

\[
\approx \frac{n \ln_{\mu} n^\nu - \nu n}{\nu (1 - \mu) + 1} - \frac{n_1 \ln_{\mu} n_1^\nu - \nu n_1}{\nu (1 - \mu) + 1} - \cdots - \frac{n_k \ln_{\mu} n_k^\nu - \nu n_k}{\nu (1 - \mu) + 1} \quad \left(\because \begin{align*}
\end{align*} \right) \tag{A2}
\]

\[
= \frac{n \ln_{\mu} n^\nu}{\nu (1 - \mu) + 1} - \frac{n_1 \ln_{\mu} n_1^\nu}{\nu (1 - \mu) + 1} - \cdots - \frac{n_k \ln_{\mu} n_k^\nu}{\nu (1 - \mu) + 1} \quad \left(\because n = \sum_{i=1}^{k} n_i \right) \tag{A3}
\]

\[
= \frac{n \left(n^\nu (1 - \mu) - 1 \right)}{(1 - \mu) (\nu (1 - \mu) + 1)} - \frac{n_1 \left(n_1^\nu (1 - \mu) - 1 \right)}{(1 - \mu) (\nu (1 - \mu) + 1)} - \cdots - \frac{n_k \left(n_k^\nu (1 - \mu) - 1 \right)}{(1 - \mu) (\nu (1 - \mu) + 1)} \tag{A4}
\]

\[
= \frac{n^\nu (1 - \mu) + 1}{(1 - \mu) (\nu (1 - \mu) + 1)} - \frac{n_1^\nu (1 - \mu) + 1}{(1 - \mu) (\nu (1 - \mu) + 1)} - \cdots - \frac{n_k^\nu (1 - \mu) + 1}{(1 - \mu) (\nu (1 - \mu) + 1)} \tag{A5}
\]

\[
= \frac{n^\nu (1 - \mu) + 1}{(1 - \mu) (\nu (1 - \mu) + 1)} \left(1 - \left(\frac{n_1}{n} \right)^{\nu (1 - \mu) + 1} - \cdots - \left(\frac{n_k}{n} \right)^{\nu (1 - \mu) + 1} \right) \tag{A6}
\]

\[
= \frac{n^\nu (1 - \mu) + 1}{\nu (1 - \mu) + 1} \left(1 - \sum_{i=1}^{k} \left(\frac{n_i}{n} \right)^{\nu (1 - \mu) + 1} \right) \tag{A7}
\]

\[
= \frac{\nu n^\nu (1 - \mu) + 1}{\nu (1 - \mu) + 1} \left(1 - \sum_{i=1}^{k} \left(\frac{n_i}{n} \right)^{\nu (1 - \mu) + 1} \right) \tag{A8}
\]

\[
= \nu \frac{n^\nu (1 - \mu) + 1}{\nu (1 - \mu) + 1} S_{\nu (1 - \mu) + 1} \left(\frac{n_1}{n}, \cdots, \frac{n_k}{n} \right) \tag{A9}
\]
if \(\nu (1 - \mu) + 1 = 0 \),

\[
\ln_{\mu} \left[\begin{array}{c}
\frac{n}{n_1} \\
\vdots \\
\frac{n}{n_k}
\end{array} \right]_{(\mu, \nu)} = \ln_{\mu} n!_{(\mu, \nu)} - \ln_{\mu} n_1!_{(\mu, \nu)} - \cdots - \ln_{\mu} n_k!_{(\mu, \nu)} \quad (A10)
\]

\[
\simeq \nu (n - \ln n) - \nu (n_1 - \ln n_1) - \cdots - \nu (n_k - \ln n_k) \quad (\therefore \Box)
\]

\[
= \nu (- \ln n + \ln n_1 + \cdots + \ln n_k) \quad \quad (\therefore n = \sum_{i=1}^{k} n_i)
\]

\[
= \nu \left(-S_1 (n) + \sum_{i=1}^{k} S_1 (n_i) \right) \quad \quad (A13)
\]

APPENDIX B: THE MULTIPLICATIVE DUALITY DERIVED FROM THE DEFINITION OF THE ESCORT DISTRIBUTION

The escort distribution was first introduced in [26] to scan the structure of a given distribution by using similarities as thermodynamic equilibrium distribution.

Definition 12 (escort distribution) For any given probability distribution \(\{p_i\} \), the escort distribution \(\{P_i\} \) is defined as

\[
P_i := \frac{p_i^q}{\sum_{j=1}^{n} p_j^q} \quad (q > 0) . \quad (B1)
\]

Note that a given distribution \(\{p_i\} \) in the above definition is not necessarily normalized, but in our formulations we require \(\{p_i\} \) to be a normalized distribution, that is, a probability distribution.

Until now, the multiplicative duality "\(q \leftrightarrow 1/q \)" in Tsallis statistics is based on the following property derived from the above definition of the escort distribution:

\[
p_i = \frac{P_i^q}{\sum_{j=1}^{n} P_j^q} . \quad (B2)
\]

However, the escort distribution \(\{P_i\} \) is originally associated with Tsallis entropy in the following sense:

Theorem 13 For any given probability distribution \(\{p_i\} \) and its associated escort distribution \(\{P_i\} \), the next identity is satisfied.

\[
\exp_q (S_q (p_i)) = \exp_{\frac{1}{q}} \left(S_{\frac{1}{q}} (P_i) \right) \quad (B3)
\]
where $S_q(p_i)$ is Tsallis entropy \([7]\).

Proof. Using the definition of the escort distribution \([21]\), we have

$$
\sum_{i=1}^{n} P_i^{\frac{1}{q}} = \sum_{i=1}^{n} \left(\frac{p_i}{\sum_{j=1}^{n} p_j^q} \right)^{\frac{1}{q}} = \sum_{i=1}^{n} \frac{p_i}{\left(\sum_{j=1}^{n} p_j^q \right)^{\frac{1}{q}}} = \left(\sum_{j=1}^{n} p_j^q \right)^{\frac{1}{q}}.
$$

(B4)

Both sides to the power $\frac{1}{1-q} = -\frac{q}{1-q}$ is

$$
\left(\sum_{j=1}^{n} P_j^{\frac{1}{q}} \right)^{\frac{1}{1-q}} = \left(\sum_{i=1}^{n} p_i^q \right)^{\frac{1}{1-q}}
$$

(B5)

which is equivalent to

$$
\left(1 + \left(1 - \frac{1}{q} \right) \frac{1 - \sum_{j=1}^{n} P_j^{\frac{1}{q}}}{\frac{1}{q} - 1} \right)^{\frac{1}{1-q}} = \left(1 + (1 - q) \frac{1 - \sum_{i=1}^{n} p_i^q}{q - 1} \right)^{\frac{1}{1-q}}.
$$

(B6)

Clearly, this is identical to the simple form

$$
\exp_{\frac{1}{q}} \left(S_{\frac{1}{q}} (P_j) \right) = \exp_q \left(S_q (p_i) \right).
$$

(B7)

Note that the above result \((B3)\) obviously reveals the multiplicative duality \(q \leftrightarrow \frac{1}{q}\) of Tsallis entropy, which is derived from the definition of the escort distribution only.

The above relation \((B3)\) provides us a key to unify several entropies such as Boltzmann-Gibbs-Shannon entropy, Rényi entropy \([27]\), Tsallis entropy \([1]\), Gaussian entropy \([28]\), Sharma-Mittal entropy \([29]\) and Supra-extensive entropy \([30]\). Among these entropies, Sharma-Mittal entropy and Supra-extensive entropy are the two-parameterized entropies including the other entropies as special cases. For these two entropies, the similar identities as above are satisfied in the forms:

$$
\exp_{r} \left(S_{q,r}^{\text{Sharma-Mittal}} \right) = \exp_q \left(S_q^{\text{Tsallis}} \right),
$$

(B8)

$$
\exp_q \left(S_{q,r}^{\text{Supra-extensive}} \right) = \exp_{r} \left(S_q^{\text{Rényi}} \right)
$$

(B9)
where

\[
S_{q,r}^{\text{Sharma-Mittal}} (p_i) := \frac{\left(\sum_{i=1}^{n} p_i^q \right)^{\frac{1-r}{1-q}} - 1}{1 - r}, \tag{B10}
\]

\[
S_{q,r}^{\text{Supra-extensive}} (p_i) := \frac{\left(1 + \frac{1-r}{1-q} \log \sum_{i=1}^{n} p_i^q \right)^{\frac{1-r}{1-q}} - 1}{1 - q}. \tag{B11}
\]

The above identities (B8) and (B9) are respectively simple mathematical modifications of (2.9) and (2.10) in [30].

[1] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52, 479-487 (1988).
[2] S. Abe and Y. Okamoto, eds., Nonextensive Statistical Mechanics and Its Applications (Springer-Verlag, Heidelberg, 2001).
[3] M. Gell-Mann and C. Tsallis, eds., Nonextensive Entropy: Interdisciplinary Applications (Oxford Univ. Press, New York, 2004).
[4] J.H. Havrda and F. Charvát, Quantication method of classication processes: Concept of structural \(\mu\)-entropy, Kybernetika 3, 30-35 (1967).
[5] Z. Daróczy, Generalized information functions, Inf. Control 16, 36-51 (1970).
[6] E.T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106, 620-630 (1957); E.T. Jaynes, Information theory and statistical mechanics. II, Phys. Rev. 108, 171-190 (1957).
[7] C. Tsallis, R.S. Mendes, A.R. Plastino, The role of constraints within generalized nonextensive statistics, Physica A 261, 534-554 (1998).
[8] H. Suyari, Mathematical structures derived from the \(q\)-multinomial coefficient in Tsallis statistics, Physica A, 368, pp.63-82 (2006).
[9] L. Boltzmann, Über die Beziehung zwischen dem zweiten Hauptsatze des mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung, respective den Säzen ier das Wämegleichgewicht.(in English: On the relationship between the second main theorem of mechanical heat theory and the probability calculation with respect to the results about the
heat equilibrium), Sitzungsberichte der kaiserlichen Akademie der Wissenschaften mathematisch-naturwissenschaftliche Classe, Abteilung II, 373-435 (1877). (See http://www.essi.fr/~leroux/)

[10] R.K. Niven, Combinatorial information theory: I. Philosophical basis of cross-entropy and entropy [LANL e-print cond-mat/0512017].

[11] L. Nivanen, A. Le Mehaute, Q.A. Wang, Generalized algebra within a nonextensive statistics, Rep. Math. Phys. 52, 437-444 (2003).

[12] E.P. Borges, A possible deformed algebra and calculus inspired in nonextensive thermostatistics, Physica A 340, 95-101 (2004).

[13] G.A. Raggio, Equivalence of two thermostatistical formalisms based on the Havrda-Charvat-Daroczy-Tsallis entropies [LANL e-print cond-mat/9908207].

[14] J. Naudts, Dual description of nonextensive ensembles, Chaos Solitons Fract. 13 (3), 445-450 (2002).

[15] J. Naudts, Generalized thermostatistics based on deformed exponential and logarithmic functions, Physica A 340, 32-40 (2004).

[16] T. Wada and A.M. Scarfone, Connections between Tsallis' formalisms employing the standard linear average energy and ones employing the normalized q-average energy, Phys. Lett. A 335, 351-362 (2005).

[17] C. Tsallis, Dynamical scenario for nonextensive statistical mechanics, Physica A 340, 1-10 (2004).

[18] M. L. Lyra and C. Tsallis, Nonextensivity and multifractality in low-dimensional dissipative systems, Phys. Rev. Lett. 80, 53-56 (1998).

[19] T. Wada and A.M. Scarfone, A non self-referential expression of Tsallis' probability distribution function, Eur.Phys.J.B 47 557-562 (2005).

[20] H. Suyari, The unique non self-referential q-canonical distribution and the physical temperature derived from the maximum entropy principle in Tsallis statistics, Prog. Theor. Phys. Suppl., 162, pp.79-86 (2006).

[21] C. Tsallis, What should a statistical mechanics satisfy to reflect nature ?, Physica D 193, 3-34 (2004).

[22] H. Suyari and T. Wada, Scaling property and the generalized entropy uniquely determined by a fundamental nonlinear differential equation [LANL e-print cond-mat/0608007].

[23] L.G. Moyano, C. Tsallis and M. Gell-Mann, Numerical indications of a q-generalized central
limit theorem, Europhysics Letters 73, 813-819 (2006).

[24] C. Tsallis, M. Gell-Mann, Y. Sato, Asymptotically scale-invariant occupancy of phase space makes the entropy \(S_q \) extensive., Proc. Natl. Acad. Sciences 102, 15377-15382 (2005).

[25] L.F. Burlaga and A.F. -Viñas, Triangle for the entropic index \(q \) of non-extensive statistical mechanics observed by Voyager 1 in the distant heliosphere, Physica A 356, 375-384 (2005).

[26] C. Beck and F. Schlogl, Thermodynamics of Chaotic Systems: An introduction (Cambridge Univ. Press, Cambridge, 1993).

[27] A. Rényi, On measures of entropy and information, Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, 547-561 (1960); A. Rényi, Probability Theory (North-Holland, Amsterdam, 1970).

[28] T.D. Frank and A. Daffertshofer, Exact time-dependent solutions of the Renyi Fokker–Planck equation and the Fokker–Planck equations related to the entropies proposed by Sharma and Mittal, Physica A 285, 351-366 (2000).

[29] B.D. Sharma and D.P. Mittal, New nonadditive measures of inaccuracy, J. Math. Sci., 10, 122-133 (1975).

[30] M. Masi, A step beyond Tsallis and Rényi entropies, Phys. Lett. A 338, 217-224 (2005).