Part II. Physical activity of social and professional groups
Dział II. Aktywność fizyczna grup społecznych i zawodowych

IN SEARCH OF THE ASSESSMENT OF THE PHYSICAL ACTIVITY LEVEL OF THE YOUTH WITH THE USE OF THE IPAQ

W POSZUKIWANIU OCEN POZIOMU AKTYWNOŚCI FIZYCZNEJ MŁODZIEŻY Z WYKORZYSTANIEM IPAQ

Małgorzata Wasilewska

1Pope John Paul II State School of Higher Education in Biała Podlaska

Introduction

Widely appreciated suitable physical activity for the sake of a healthy lifestyle is assessed with considerably different methods, which does not contribute to the objectivity of approach to this phenomenon. For this purpose, a team of scientists has developed the International Physical Activity Questionnaire, intended for people aged 15-69 years [1,2] to allow for tracking the tendency of changes and compare the level of physical activity in different countries. Biernat, Stupnicki and Gajewski adjusted the version of this questionnaire to Polish conditions [3]. Research on physical activity among school youth in Poland on a relatively large population are not very common [4,5,6,7,8,9].

References:

1. Biernat K., Stupnicki M., Gajewski P. (2011). Ways to assess the physical activity level of children and adolescents. Health Problems of Civilization, 2011, 10(1): 84-88.
2. Stupnicki M., Biernat K. (2014). Physical activity of Polish children and adolescents based on IPAQ short form. Health Problems of Civilization, 2014, 13(1): 13-18.
3. Gajewski P. (2015). Methods for assessing physical activity in children and adolescents. Health Problems of Civilization, 2015, 14(1): 39-44.
In order to scrutinise the results of the studies with the use of the IPAQ questionnaire, a review of studies from eight electronic databases, i.e. MEDLINE/PubMed, ArXiv, IEEE, CiteSeer, SPORTDiscus, Health Source-Nursing/Academic Edition, Academic Search Complete, MasterFILE Premier, was undertaken, which is the main content of this work.

Method and research material

In order to find original works examining the physical activity of young people with the use of the International Physical Activity Questionnaire IPAQ – long or short form, the following electronic databases were searched: MEDLINE/PubMed, ArXiv, IEEE, CiteSeer, SPORTDiscus, Health Source-Nursing/Academic Edition, Academic Search Complete, MasterFILE Premier. The following keywords and their combinations were applied: IPAQ, youth, adolescents, physical activity. The main selection criteria for this article were: the application of the tool in the form of the IPAQ- long or short form in the study, research conducted among youth, presentation by the authors the analysis of the results regarding the level of physical activity in MET values. Selected articles that met the above criteria include studies from Poland, the Czech Republic, Slovakia, Hungary, Lithuania, Greece, Spain, Mexico, Croatia. For comparison purposes, the decision was made to choose one article from outside the designated search criteria, namely the study on groups of young people from the international research project the HELENA study (Healthy Lifestyle by Nutrition in Adolescence), where validation studies of the IPAQ modified questionnaire - IPAQ-A were conducted. The selected articles are presented in two tables. Table 1 shows the selected studies with the use of the IPAQ-short form, while Table 2 contains the studies using the IPAQ-long form. Studies were analysed in accordance with the following criteria: name and surname of the author, year of research, year of publication, place of study, the additional research tools, age and gender, physical activity level (PAL) in MET-min./week, MET-min./day, or MET-hour/week, adopted manner of data analysis, the objective and conclusions.

In most of the selected international works the research group was formed by only youth attending secondary school [10,11,12,13,14,15,16], but some studies were also devoted to other populations. Cocca A. et al. [17] researched people aged 9-24, starting from the third-grade pupils of primary school and ending with university graduates. Other studies were devoted to the entire population of a given country. Jurakić D. et al. [18] researched the Croatian population aged 15-64 and over 65 years. Knowing that the International Physical Activity Questionnaire (IPAQ) is intended for a population aged 15-69, the decision made by some researchers to select this tool for application to persons below or above the recommended age may be perceived as debatable. The authors of the research form Spain [17] provided the following explanation. Whenever an interview with a child was conducted with their parent present, attempts were made to simplify the words used and provide simple, practical examples. In order to avoid excessive influence of the researchers’ expectations on the children’s opinion, PE teachers previously trained in conducting research using the said instrument, were asked to carry out the interview. The authors have also indicated that the results of the analysis of the physical activity level in the younger age group up to 15 years of age should be treated with the utmost caution. They also recommended the use of an objective measuring method such as an accelerometer, which is increasingly more often applied in the recent years in youth research [19,20,21,22,23,24,25].

Discussion

A summary of 10 articles relating to the years 2008-2016, collected from the eight electronic databases regarding studies on the physical activity of youth that involved the use of the International Physical Activity Questionnaire in the long and short form, does not demonstrate very frequent application of the above mentioned questionnaire. It is possible that one of the reasons for this may be the difficulty in its application, which requires very laborious training of the persons engaged in research, to which attention was drawn in Poland by Gajewski and Biernat [26] and Bergier [27]. The results of total physical activity expressed in metabolic equivalent units - MET were characterised by a very large discrepancy. The short form showed results varying from 2.219 MET min./week for girls, and from 2.640 MET min./week to 5.985 MET min./week for boys (following the analysis of 7 days). It should be noted that the values for boys were higher than for girls. The research conducted with the use of the long form of the IPAQ showed much higher values, which ranged from 2.232 to 7.287 MET min./week for girls, and from 3.074 to 10.280 MET min./week for boys. To standardise the calculation of the total physical activity expressed in the MET min./week units, calculations were made for reporting the data for one day (multiplying by 7 days), and for reporting the data using the hour unit (multiplying by 60 min.). The obtained lower values of the total physical activity in the IPAQ short form compared to the long form serve as indication that the collected results should be compared only within a given version of the questionnaire.
Table 1. A summary of selected international research on the physical activity of young people using the IPAQ – short version

The first Author, year of publication	Place of research	Year of research	Aim of research	PA* in MCET -min./week	The method of data analysis	Age (years)	Conclusions
Bergier B. et al. 2014	Poland (selected regions)	2011	Assessment of the PA* level and the influencing factors (gender, place of residence, sedentary behavior, participation in physical education classes)	**girls** 2.219	**boys** 2.640	***M***	16-18
							• Boys were more active than girls
							• Among boys intensive efforts prevailed while among girls moderate efforts were predominant
							• PA* level was not dependent on the place of residence
							• Teenagers who more often led sedentary lifestyle showed a lower total PA*
Cocca A. et al. 2014	Spain Granada)	school year 2010/2011	Assessment of the PA* level among youth and young adults; determination of the percentage fulfilling international recommendations of HRPA **	**girls** 656.08 ± 386.66	**boys** 855.07 ± 344.10	***M ± SD**	16-17
							• Approximately 50% of high school students fulfilled the recommendations of HRPA **
							• **multiplying the daily value by 7 days, we obtain the result in MET-min./week among girls = 4.592 and among boys = 5.985
Tsioufis C. et al. [2010]	Greece (Athens)	April 2009	Determining the relations between the PA* level and the level of blood pressure	**girls** Low: 372.8 ± 180.1 Moderate: 1.558.1 ± 589.8 High: 4.330.0 ± 2.306.6	**boys** ** ***M ± SD**	12-17	Intensive physical activity among teenagers, especially among boys, was associated with higher levels of systolic blood pressure and pulse pressure than in the case of low and moderate activity

* PA- Physical Activity, ** HRPA Health Related Physical Activity, *** M- Mean ± SD- Standard Deviation
Source: own research
| The first Author, year of publication | Place of research | Year of research | Aim of research | PA* values | The method of data analysis | Age (years) | Conclusions |
|-------------------------------------|------------------|-----------------|----------------|------------|---------------------------|------------|-------------|
| Bergier B. et al. 2012 | Lithuania (Vilnius) | Spring 2010 | Assessment of PA*, determination of BMI and sports interests, self-assessment of physical fitness | The values for the total PA* in MET-min./week | **Mdn** | 17 | The level of total PA* among Lithuanian teenagers was high; this level was higher for boys, especially in the area of intensive efforts. Girls and boys assessed their own free time differently. Boys more often than girls stated that they have enough free time. However, a greater amount of free time did not result in a significant increase of physical activity. Boys assessed their own fitness much more positive than girls. Young people with higher self-assessment of physical fitness were more active, especially in the area of intensive efforts. |
| Kudláček M. [2013] | The Czech Republic | - | The analysis of preferences in the range of sports disciplines among high school students in order to improve programs of PE lessons | The values for the total PA* in MET-min./week | ***Mdn** | 15-18 | Differences in levels of PA* among girls and boys were not as great as it was a few decades ago. It was possible to observe dynamic development of the structure of sports preferences. However, there was a whole spectrum of sports disciplines which are always preferred - football, volleyball, aerobics and swimming. Appropriate use of the results of this research could increase the total PA* of young people at school and improve the effectiveness of school PE lessons. |
In search of the assessment...

Vašíčková J. et al. [2013]

Poland (Katowice)
Assessment of the differences in PA* levels after 4 weeks of using a pedometer between the experimental group and the control group, establishing gender-related differences

The values for the total PA* in MET-min./week
control group
girls
8.510

It was shown that the use of pedometers could significantly reduce the differences in the PA* level between teenage boys and girls during weekdays as well as weekends. The PA* level did not decrease during the use of the pedometer for 4 weeks. Intervention with monitoring PA* with a pedometer was effective in promoting PA* among young boys and girls, stimulating self-awareness of a healthy lifestyle.

Ács P. et al. [2016]

Visegrad Countries: April 2015
Assessment of the differences in PA* in relation to gender among secondary school students in the V4 Countries

The values for the total PA* in MET-min./week
girls
Hungary (Pecs)
Poland (Biała Podlaska)
the Czech Republic (Olomouc)
Slovakia (Presov)

Significant differences in the area of physical activity in the Visegrad countries in relation to gender were shown. In the face of the existence of well-defined measures addressing physical activity in specific risk groups, these differences should have impact on the necessity of their intensification among secondary school students.

Cocca A. et al. [2015]

Mexico (General Escobedo, Monterrey)
Assessment of PA* level of secondary school students. An attempt at analysing models explaining the differences between girls and boys in PA* levels

Total PA* value not shown
Shown values for 3 levels of PA* in MET-min./week
PA* levels
low
moderate
high

PA* levels of Mexican youth were generally low and therefore intervention programs should be applied. In order to create suitable programs, it should be important to explore and understand social and environmental factors and to take into account special needs of the study population.
| Jurakić D. et al. [2009] | Croatia | November 2007 | The assessment of the PA* level of Croatian population in various areas of life | \begin{table}[h]
The values for the total PA* in MET-hours/week			15-24
girls	boys		
37.2 (32.0-42.4); 46.7	52.9 (42.3-63.6); 53.0		
The values shown in MET-hours/week			
Median (95% CI); iQR			
• The lowest PA* level was found among teenagers and young adults, so in these age groups properly developed intervention strategies should be implemented			
** Multiplying the total PA* expressed in MET-hours/week by 60 min we obtain the value of MET-min./week for girls – 2.232 and for boys- 3.174			
Lack of analysis in relation to gender			

Hagströmer M. et al. [2008] | 9 centres of the HEL-ENA study Athens, Rome, Stockholm, Pecs, Lille, Dortmund, Vienna, Ghent, Zaragoza | Examination of the accuracy of the modified version of the IPAQ - IPAQ-A questionnaire by using an accelerometer | \begin{table}[h]
The values for the total PA* in MET-min./day			12-17
aged 12-14	aged 15-17		
709 ± 547	592 ± 438		
** M (SD)			
Lack of analysis in relation to gender			
The results of this study showed that the IPAQ-A had sufficient accuracy attributes for the assessment of the intensity of physical efforts and total physical activity in healthy European teenagers at the age of 15-17. For young people aged 14 and younger the correlations were unsatisfactorily low and the objective methodology, such as accelerometry, might be an appropriate alternative			
**** Multiplying the total PA* expressed in MET-min./day by 7 days we obtain the value of MET-min./week for 12-14-year-olds – 4.963 and 4.144 for 15-17-year-olds			

*PA-Physical Activity, **M-Mean ± SD-Standard Deviation ***MdN - Median **** HRPA - Health Related Physical Activity

Source: own research
The described results represent a significant value due to the authors’ search for a variety of factors determining the physical activity level of youth: place of residence, duration of free time, preferred sport, physical activity self-assessment, HRPA recommendations, pressure level. The presented results of the research on physical activity level and its determining factors among youth from different countries of the world constitute an important addition to their systematisation.

Conclusions

The presented results of the studies on the total physical activity level of youth in different countries showed high diversification, which may serve as indication for carrying out more detailed discussion on the IPAQ questionnaire in use. It appears that the optimum mode of research is direct contact with the study subject. The suggestion of supplementing the IPAQ research on physical activity with an accelerometer becomes apparent.

References:
1. Booth ML. Assessment of Physical Activity: An International Perspective. Res Quart Exerc Sport. 2000; 71:114-20.
2. Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, et al. International Physical Questionnaire: 12-country reliability and validity. Med Sci Sport Exerc. 2003; 35: 1381-1395
3. Biernat E, Stupnicki R, Gajewski AK. Międzynarodowy Kwestionariusz Aktywności Fizycznej (IPAQ) - wersja polska (International Physical Activity Questionnaire – Polish version). Wych Fiz Sport. 2007; 51: 47-54 (in Polish).
4. Biernat E. Aktywność fizyczna mieszkańców Warszawy na przykładzie wybranych grup zawodowych. Warszawa: Szkoła Główna Handlowa, 2011 (in Polish).
5. Piątkowska M, Pec K. Aktywność fizyczna młodzieży w wieku ponadgimnazjalnym, (Physical activity of adolescents attending secondary and post-secondary schools). Wychow Fiz Zdrow. 2007; 8-9: 30-33 (in Polish).
6. Pańczyk W. Aktywność fizyczna mieszkańców południowo-wschodnich regionów Polski u progu XXI wieku. In: Nowocień J, Chelmecki J, editors. Społeczno-edykcyjne oblicza współczesnego sportu i olimpijmu: aktywność fizyczna dzieci, młodzieży i dorosłych na przełomie XX i XXI wieku. Warszawa: AWF; 2010: 130-143 (in Polish).
7. Bergier J, Kapka-Skrzypczak L, Biliński P, Paprzycki P, Wojtyła W. Physical activity of Polish adolescents and young adults according to IPAQ a population based study. Ann Agric Environ Med. 2012; 19(1): 109-115.
8. Bergier J, Niżnikowska E, Bergier B, Junger J, Ács P, Salonna F. Diversity of physical activity among the school youth depending on the type of place of residence. Health Problems of Civilization. 2016; 10(1): 24-31.
9. Rozpara M, Mynarski W, Czapla K. Szacowanie kosztu energetycznego aktywności fizycznej na podstawie badań kwestionariusza IPAQ. In: Mynarski W, editor. Teoretyczne i empiryczne zagadnienia rekreacji i turystyki. Katowice: AWF; 2008. p. 257-281 (in Polish).
10. Bergier B, Bergier J, Wojtyła A. Various aspects of physical activity among Lithuanian adolescents. Annals of Agricultural and Environmental Medicine. 2012; 19(4): 775-779.
11. Tsioufis C, Kyvelou S, Tsiacharis D, Tolis P, Hararis G, Koufakis N. et al. Relation between physical activity and blood pressure levels in young Greek adolescents: The Leontio Lyceum Study. European Journal of Public Health. 2010; 21(1): 63-68.
12. Bergier B, Bergier J, Paprzycki P. Level and determinants of physical activity among school adolescents in Poland. Annals of Agricultural and Environmental Medicine. 2010; 21(1): 75-78.
13. Kudláček M. Increase of the effectiveness of school PE classes through sport preferences survey: Contextual prediction of demanded sport activities. Acta Univ. Palacki. Olomuc., Gymn. 2013; 43(1): 42-48.
14. Ács P, Bergier J, Salonna F, Junger J, Melczer, Makai A. Gender differences in physical activity among secondary school students in the Visegrad countries (V4). Health Problems of Civilization 2016; 10(3): 21-29.
15. Cocca A, Cocca M, Ceballos Gurrola O, Chmelík F, Frömel K. Social and environmental predictors of physical activity in Mexican adolescents. Proceedings of ICERI2015 Conference 16th-18th November 2015, Seville, Spain. [cited 2016 Dec. 10]. Available from: https://www.researchgate.net/publication/304627584
16. Hagströmer M, Bergman P, De Bourdeaudhuij I, Ortega FB, Ruiz JR, Manios Y, et al. on behalf of the HELENA Study Group. Concurrent validity of a modified version of the International Physical Activity Questionnaire (IPAQ-A) in European adolescents: The HELENA Study. International Journal of Obesity. 2008; 32: 42-48.
17. Cocca A, Liukkonen J, Mayorga-Vega D, Viciana-Ramírez J. Health-related physical activity levels in Spanish youth and young adults. Perceptual & Motor Skills: Physical Development & Measurement. 2014; 118(1): 247-260.
18. Jurakić D, Pedišić Ž, Andrijašević M. Physical Activity of Croatian Population: Cross-sectional Study Using International Physical Activity Questionnaire. Croat Med J. 2009; 50: 165-73.
19. Troiano RP. A timely meeting: Objective measurement of physical activity. Medicine and Science in Sport and Exercise. 2005;37(11): 487-489.
20. Garriguet D, Janssen I, Craig CL, Clarke J, Tremblay MS. Physical activity of Canadian children and youth: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep. 2011; 22(1): 15-23.

21. Gutin B, Yin Z, Humphries MC, Barbeau P. Relations of moderate and vigorous physical activity to fitness and fatness in adolescents. Am J Clin Nutr. 2005; 81(4): 746-50.

22. Colley R, Garriguet D, Janssen I, Craig CL, Clarke J, Tremblay MS. Physical activity of Canadian children and youth: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Public Health Reports 2011; 22(1): 7-14.

23. Scheers T, Philippaerts R, Lefevre J. Compliance with different physical activity recommendations and its association with socio-demographic characteristics using an objective measure. BMC Public Health 2013; 13: 136-145.

24. Hamasaki H, Noda M, Moriyama S, Yoshikawa R, Katsuyama H, Sako A, et al. Daily physical activity assessed by a triaxial accelerometer as beneficially associated with waist circumference, serum triglycerides, and insulin resistance in Japanese patients with prediabetes or untreated early type 2 diabetes. J Diabetes Res. 2015; 2015:526201. doi: 10.1155/2015/526201.

25. Mynarski W, Psurek A, Borek Z, Rozpara M, Grabara M, Strojek K. Declared and real physical activity in patients with type 2 diabetes mellitus as assessed by the International Physical Activity Questionnaire and Caltrac accelerometer monitor: A potential tool for physical activity assessment in patients with type 2 diabetes mellitus. Diabetes Research and Clinical Practice. 2012; 98(1): 46-50.

26. Gajewski AK, Biernat E. Zastosowanie Międzynarodowego Kwestionariusza Aktywności Fizycznej (IPAQ) – za i przeciw, czyli kilka rozważań metodycznych i ich konsekwencje. In: Busko K, Charzewska J, Kaczorowski K, editors. Współczesne metody badań aktywności, sprawności i wydolności fizycznej człowieka. (Application of the International Physical Activity Questionnaire (IPAQ) – for and against, i.e. several methodological considerations and their consequences). AWF Warszawa, 2010. p. 20-37 (in Polish).

27. Bergier J. O ocenie aktywności fizycznej z wykorzystaniem polskiej wersji Międzynarodowego Kwestionariusza Aktywności Fizycznej (IPAQ) – udział w dyskusji. Człowiek i Zdrowie 2013; 7(1): 91-94.