The epigallocatechin gallate derivative Y₆ reverses drug resistance mediated by the ABCB1 transporter both in vitro and in vivo

Yan Wenᵃᵇᶜ,†, Ruiqiang Zhaoᵃᵈ,†, Pranav Guptaᵃ, Yingfang Fanᵃᵉ, Yunkai Zhangᵃ, Zhenguang Huangᵇ, Xiaohui Liᵇ, Yuangang Suᶜ, Lijuan Liaoᶠ, Yu-An Xieᵍ, Donghua Yangᵃ, Zhe-Sheng Chenᵃ*, Gang Liangʰ*

ᵃDepartment of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
ᵇDepartment of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
ᶜGuangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Nanning 530021, China
ᵈDepartment of Biochemistry and Molecular Biology, School of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
ᵉDepartment of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
ᶠDepartment of Biotechnology, School of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
ᵍThe Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
ʰCollege of Pharmacy, Guangxi Medical University, Nanning 530021, China

Received 21 June 2018; received in revised form 16 August 2018; accepted 6 September 2018

KEY WORDS
Epigallocatechin gallate (EGCG);
5,3′,4′,3″,4″,5″-6-O-ethyl-EGCG (Y₆);
Drug resistance; Resistance reversal; ABCB1; P-gp

Abstract Previously, we reported that Y₆, a new epigallocatechin gallate derivative, is efficacious in reversing doxorubicin (DOX)–mediated resistance in hepatocellular carcinoma BEL-7404/DOX cells. In this study, we evaluated the efficacy of Y₆ in reversing drug resistance both in vitro and in vivo by determining its effect on the adenosine triphosphate-binding cassette protein B1 transporter (ABCB1 or P-glycoprotein, P-gp). Our results showed that Y₆ significantly sensitized cells overexpressing the ABCB1 transporter to anticancer drugs that are ABCB1 substrates. Y₆ significantly stimulated the adenosine triphosphatase activity of ABCB1. Furthermore, Y₆ exhibited a higher docking score as compared with epigallocatechin gallate inside the transmembrane domain of ABCB1. In addition, in the nude mouse...
The epigallocatechin gallate derivative Y\textsubscript{6} reverses drug resistance mediated by the ABCB1 transporter

1. Introduction

The resistance of cancer cells to different structural classes of anticancer drugs is termed multidrug resistance (MDR), which is a major clinical obstacle in the treatment of cancer1,2. The mechanisms of MDR are complex and have been extensively discussed previously3-8. The most common cause of MDR is the overexpression of adenosine triphosphate (ATP)-binding cassette (ABC) transporters, which use ATP to efflux their substrates (including a wide spectrum of anticancer drugs) and thereby decreasing their intracellular concentrations9-8. The ABC transporters superfamily is divided into 7 subfamilies, ABCA to ABCG9-11. The human ABCB1 (P-glycoprotein, P-gp), the first identified ABC transporter2,3, has a molecular weight of 170 kDa. ABCB1 has two nucleotide-binding domains (NBDs) and two transmembrane binding domains (TMDs)14,15. The NBDs are responsible for binding and extruding physiological and xenobiotic substrates from the cytoplasm to the extracellular environment. The substrates of ABCB1 include anthracyclines (e.g., doxorubicin and daunorubicin), taxanes (e.g., paclitaxel and docetaxel), vinca alkaloids (e.g., vincristine and vinblastine), epipodophyllotoxins (e.g., teniposide and etoposide), among others1,2,11,14. The ABCB1 transporter has been reported to have multiple sites that bind and efflux different substrates from cells6-20.

MDR in cancer cells can be surmounted via a number of mechanisms. This can occur when compounds block the efflux function of certain ABC transporters, and increase the intracellular concentration of certain anticancer drugs21. Epigallocatechin gallate (EGCG), a compound from green tea polyphenols, is unstable due to rapid oxidation, low lipid solubility, low bioavailability, and short duration of action due to its many phenolic hydroxyl groups in the structure (Fig. 1A). Y\textsubscript{6} (5,3',4',3',4',5'-6-O-ethyl-EGCG) is an ethylated product of EGCG with better stability (Fig. 1B). We have reported that Y\textsubscript{6} was efficacious in reversing doxorubicin (DOX)-resistance in BEL-7404/DOX cells in vitro via decreasing the expression of the ABCB1 transporter22. Other previous studies have demonstrated that EGCG could reverses resistance to doxorubicin in BEL-7404/DOX hepatocellular cancer cells23, and EGCG could increase the accumulation of rhodamine 123 and daunorubicin via the inhibition of P-gp function in KB-C2 cells22. The results of these studies suggest that EGCG may reverse ABCB1-mediated MDR. However, it is unknown whether Y\textsubscript{6} can also reverse MDR mediated by the ABCB1 transporter, and whether the reversal mechanisms are mediated by blocking the efflux function of the ABCB1 transporter.

Therefore, in the present study, we determined whether Y\textsubscript{6} is efficacious in reversing drug resistance in ABCB1-transfected HEK293/ABCB1 cells. We also conducted in vitro experiments to ascertain whether the reversal mechanism of Y\textsubscript{6} is associated with inhibiting the efflux function of the ABCB1 transporter. In addition, using an in vivo model, we also investigate the therapeutic effect of Y\textsubscript{6} in mice xenografted with BEL-7404/DOX cells that overexpress ABCB1 transporters.

2. Materials and methods

2.1. Materials

EGCG (purity 97\%) was purchased from Hangzhou Hetian Biotechnology Co., Ltd. (Hangzhou, Zhejiang, China). Y\textsubscript{6} (purity 96.87\%) was synthesized in our laboratory as previously described23. Doxorubicin, verapamil (VER), dimethylsulfoxide (DMSO) and 3-(4,5-dimethylthiazol-yl)-2,5-diphenyltetrazolium-bromide (MTT) were purchased from Sigma–Aldrich (St. Louis, MO, USA). The ATPase assay kit and membrane vesicles were purchased from BD Biosciences (San Jose, CA, USA). Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), trypsin 0.25\% and penicillin/streptomycin were purchased from Hyclone (Thermo Scientific, Logan, UT, USA).

2.2. Cell culture

HEK293/pDNA3.1 and HEK293/ABCB1 cells were established by transfecting HEK293 with either the empty pcDNA3.1 (HEK293/pDNA3.1) DNA or vector containing the full length ABCB1 (HEK293/ABCB1), and were cultured in a medium containing 2 mg/mL of G41825. The doxorubicin-selected, ABCB1-overexpressing BEL-7404/DOX cells were kindly provided by the Department of Physiopathology, Guangxi Medical University (Nanning, Guangxi, China), and were cultured in a medium containing 2 mg/mL of doxorubicin22. All cells were cultured in flasks with DMEM supplemented with 10\% (v/v) fetal bovine serum and 1\% (v/v) penicillin/streptomycin at 37 °C in a humidified incubator containing 5\% CO\textsubscript{2}. The cells were harvested using 0.25\% trypsin once they reached 80\% confluence.

2.3. Cell viability assay

The viability of HEK293/pDNA3.1 and HEK293/ABCB1 cells to anticancer drugs was measured using the MTT assay. Cells (5000 cells/well) were seeded in 96-well plates (160 \mu L/well) and cultured for 24 h. For the cytotoxicity experiment of Y\textsubscript{6}, 40 \mu L of varying concentrations of Y\textsubscript{6} were added into each well to the final concentrations of: 100, 30, 10, 3, 1, 0.3, 0.1, 0.03 \mu mol/L. They were incubated for 48 h at 37 °C. For the reversal
experiment, Y₆, EGCG, and the control modulator (verapamil) (20 μL/well) were added 1 h prior. Then, twenty microliters of different concentrations of chemotherapeutic drugs (doxorubicin or cisplatin) were added into the designated wells and incubated for 48 h at 37 °C. Subsequently, 20 μL of the MTT solution (4 mg/mL) was added to each well and incubated for an additional 4 h. The solution was discarded and 100 μL of DMSO were added to dissolve the formazan crystals. Finally, light absorbance was determined at 490 nm using the OPSYS microplate reader (Dynex Technology, Chantilly, VA, USA). Verapamil (1 μmol/L) was used as positive control inhibitors of ABCB1.

2.4. ABCB1 ATPase activity assay

The ATPase assay was performed as previously described. The vanadate-sensitive ATPase activity of ABCB1 was measured in the presence of Y₆ by an ATPase assay kit from BD Biosciences (San Jose, CA, USA). The membrane vesicles (20 μg protein/reaction) were incubated in the ATPase buffer with or without 400 μmol/L vanadate, at 37 °C for 5 min. Different concentrations of Y₆ or EGCG (0–40 μmol/L) were separately added to the membrane vesicles. The membrane vesicles were incubated at 37 °C for 5 min. Ten microliters of a 25 mmol/L Mg-ATP solution were added to the membrane vesicles. The reaction was incubated at 37 °C for 20 min and then mixed with 100 μL of 5% SDS solution. Two hundred microliters of detection reagent were added to detect and quantify the amount of inorganic phosphate. The mix was incubated for 10 min at room temperature. The light absorption was detected at 880 nm using a spectrophotometer.

2.5. Molecular docking analysis

The human ABCB1 homology model, based on refined mouse ABCB1 (RCSB ID: 4M1M), was kindly provided by S. Aller and prepared as previously described. The structures of the ligands Y₆ and EGCG were built and prepared using our previous molecular modeling protocols. The Suflex-dock docking algorithm and scoring functions have been previously described in detail. Briefly, Suflex-dock generates a ‘Protomol’ using a surface shape-based method. The Protomol consists of a series of molecular fragments that characterizes the surface properties of the target active site, including steric effects and hydrogen bonding interactions. The ligands are aligned to the Protomol and each pose is scored based on hydrophobic and polar interactions between atoms. The best-scored pose of Y₆ and EGCG was used for further analysis and graphic representation in Maestro (Schrödinger, Cambridge, MA). All computations were run on a 6-core Intel Xeon processor running the Linux operating system.

2.6. Animal experiments

Male athymic nude mice (BALB/CN-nu/nu, 4–6 weeks old, 16–20 g) were purchased from the experimental animal center of Guangxi Medical University (Nanning, China, license No. SCXK 2014-0002), and maintained under specific-pathogen-free conditions. All animals were maintained on an alternating 12 h light/12 h dark cycle with water and rodent chow available ad libitum. The BEL-7404/DOX cell mouse xenograft model was used, with a slight modification, as reported previously. Briefly, BEL-7404/DOX cells (1.0 × 10⁷ cells) were injected into the mice subcutaneously under the armpits. When the size of the subcutaneous tumors reached approximately 5 mm × 5 mm, mice were randomized into four experimental groups with 8 mice per group. Group 1 was given Y₆, 110 mg/kg p.o., every day, in combination with doxorubicin, 2 mg/kg i.p., every 4 days. Group 2 was given EGCG, 80 mg/kg p.o., every day, in combination with doxorubicin, 2 mg/kg i.p., every 4 days. The other three groups received either doxorubicin, 2 mg/kg i.p., every 4 days, an intragastric dose of Y₆, 110 mg/kg, every day or an i.p. injection of a 0.9% solution of NaCl. The two perpendicular diameters (W and L, respectively) of the tumors were measured with a caliper every two days, as well as the weight of each mice. The tumor volume was calculated and determined using the equation:

\[\text{Tumor volume (mm}^3\text{)} = \pi \times (W^2 \times L)/6 \]

where \(L \) represents the long diameter; \(W \) represents the diameter perpendicular to \(L \).

The tumor growth curve was drawn according to the tumor volume and the time of implantation. All the mice were sacrificed by decapitation after 20 days of treatment.

2.7. Statistical analysis

The data were analyzed using a t-test method. All values represent the mean ± SD. The a priori P value for significance was \(P < 0.05 \).

3. Results

3.1. \(Y_6 \) improves the chemosensitivity of HEK293/ABCB1 cells to doxorubicin treatment

The chemical structure of EGCG and \(Y_6 \) is shown in Fig. 1. The MTT cytotoxicity assay was performed using HEK293/pcDNA3.1 and ABCB1-transfected HEK293/ABCB1 cells in order to select a...
non-toxic concentration of Y_6 (Fig. 2A). The IC$_{50}$ value of doxorubicin was 8.80 μmol/L in ABCB1-transfected HEK293/ABCB1 cells, which was significantly higher than the IC$_{50}$ value for the parental HEK293/pcDNA3.1 cells (0.34 μmol/L, Table 1).

To determine the reversal effects of Y_6 on the ABCB1 transporter, we measured drug cytotoxicity in the HEK293/pcDNA3.1 and ABCB1-overexpressing HEK293/ABCB1 cells, using doxorubicin in the presence of Y_6 at the non-toxic doses of 1 and 2 μmol/L, as well as verapamil (1 μmol/L) and EGCG (1 μmol/L). At 1 or 2 μmol/L, Y_6 had no significant effect on the viability of HEK293/pcDNA3.1 cells (Fig. 2B). However, 1 or 2 μmol/L of Y_6 significantly increased the cytotoxicity of HEK293/ABCB1 cells to doxorubicin, a substrate of the ABCB1 transporter (Fig. 2C). The reversal efficacy of Y_6 was similar to verapamil and EGCG and was concentration-dependent (Fig. 2C). Y_6 was significantly more efficacious than EGCG in increasing the cytotoxicity of doxorubicin (Fig. 2C). Cisplatin, which is not an ABCB1 substrate, was equally cytotoxic in HEK293/pcDNA3.1 cells and drug-resistant HEK293/ABCB1 cells (Table 1). In contrast, EGCG, Y_6, and verapamil did not significantly alter the IC$_{50}$ values of cisplatin in HEK293/pcDNA3.1 and HEK293/ABCB1 cells (Table 1). These results indicate that Y_6 significantly reverses ABCB1-mediated drug resistance in HEK293/ABCB1 cells in a concentration-dependent manner, and its efficacy was greater than that of EGCG.

3.2. Y_6 stimulates ABCB1 ATPase in a concentration-dependent manner

The ABCB1 transporter effluxes its substrates against a concentration gradient by using energy from ATP hydrolysis and thus, ATP consumption is an indicator of its ATPase activity. To determine the effect of EGCG and Y_6 on the ATPase activity of ABCB1, we measured ABCB1-mediated ATP hydrolysis in the presence of EGCG and Y_6 at various concentrations ranging from 0 to 40 μmol/L. The results showed that ATPase activity increased.

![Figure 2](https://via.placeholder.com/150)

Figure 2 Cytotoxicity of Y_6 in HEK293/pcDNA3.1 and HEK293/ABCB1 cell lines. (A) Cytotoxicity of Y_6 was evaluated in pair of parental and MDR cell lines: HEK293/pcDNA3.1 and HEK293/ABCB1. (B) and (C) The concentration-response curves of HEK293/pcDNA3.1 and HEK293/ABCB1 treated with doxorubicin alone and doxorubicin combined with verapamil, EGCG, or Y_6. Points with error bars represent the mean ± SD. Three independent experiments were performed in triplicate.

Table 1 Reversal effects of Y_6 to ABCB1-mediated MDR in HEK293/pcDNA3.1 and HEK293/ABCB1 cell lines.

Treatment	HEK293/pcDNA3.1	HEK293/ABCB1		
	IC$_{50}$±SD ($μmol/L$)	RFa	IC$_{50}$±SD ($μmol/L$)	RFa
Doxorubicin	0.34±0.03	[1.0]	8.80±0.32	[25.9]
+ EGCG (1 μmol/L)	0.30±0.08	[0.9]	1.43±0.08	[4.2]a
+ Y_6 (1 μmol/L)	0.35±0.01	[1.0]	1.03±0.05	[3.0]a
+ Y_6 (2 μmol/L)	0.29±0.05	[0.9]	0.62±0.09	[1.8]
+ Verapamil (1 μmol/L)	0.39±0.05	[1.1]	0.77±0.03	[2.3]
Cisplatin	1.07±0.07	[1.0]	1.05±0.05	[1.0]
+ EGCG (1 μmol/L)	0.92±0.01	[0.9]	1.01±0.01	[1.0]
+ Y_6 (1 μmol/L)	0.96±0.04	[0.9]	1.05±0.06	[1.0]
+ Verapamil (1 μmol/L)	0.91±0.02	[0.8]	0.92±0.07	[0.9]

aP < 0.05 versus no reversal agent group.

bP < 0.05 versus doxorubicin–EGCG group

aIC$_{50}$ values are represented as mean ± SD of three independent experiments performed in triplicate.

bValues represent the resistance fold (RF) calculated by dividing IC$_{50}$ values of anticancer drug in HEK293/pcDNA3.1 and HEK293/ABCB1 cells in presence or absence reversal agent by the IC$_{50}$ value of HEK293/pcDNA3.1 cells without reversal agent.
with increasing concentrations of \(Y_6\), indicating that \(Y_6\) increased the ATPase activity of ABCB1 in a concentration-dependent manner (Fig. 3A). EGCG increased ATPase activity when its concentration changed from 0 to 10 \(\mu\)mol/L, and no further obvious increase in ATPase activity occurred when the concentration of EGCG was \(> 10\) \(\mu\)mol/L (Fig. 3B).

3.3. Docking analysis of \(Y_6\) in human ABCB1 homology model

To determine whether \(Y_6\) and EGCG directly interact with ABCB1, we performed a molecular docking simulation analysis. The best-scored \(Y_6\) exhibited a total Surfflex-dock score of \(-10.545\). The docked pose of \(Y_6\) into the drug-binding cavity of human ABCB1 is shown in Fig. 4A and B. \(Y_6\) was stabilized by the nearby hydrophobic residues Met 69, Tyr310, Phe336, Ile340, Phe343, Phe728, Phe732, Phe983, Met986, and Ala 987. Two hydrogen bonding interactions were observed between the phenolic groups and nearby residues (\(\pi\)-\(\pi\) interaction between the ligand and the phenyl ring of Phe 983 with \(Y_6\) and residues Phe 343 and Gln 990 (\(-\text{OH} - \text{OC} - \text{Phe} 343, 1.94 \AA; -\text{OH} - \text{CO} - \text{Gln} 990, 2.02 \AA\)). One phenyl group of \(Y_6\) formed a \(\pi\)-\(\pi\) interaction with a side-chain phenyl group of Phe 983 residue.

The best-scored EGCG exhibited a total Surfflex-dock score of \(-6.707\). The docked pose of EGCG into the large-binding cavity of human ABCB1 is shown in Fig. 4C and D. Four hydrogen bonds were formed between the ligand phenolic groups and nearby residues (\(-\text{O} - \text{HO} - \text{Tyr} 310, 2.35 \AA; -\text{OH} - \text{Tyr} 307, 2.96 \AA; -\text{OH} - \text{Gln} 990, 1.97 \AA; -\text{OH} - \text{OC} - \text{Met} 986, 2.02 \AA\)). The same \(\pi\)-\(\pi\) interaction between the ligand and the phenyl ring of Phe 983 with \(Y_6\) was formed with EGCG.

3.4. The efficacy of \(Y_6\) combined with doxorubicin on the growth inhibition in BEL-7404/DOX cell tumor xenograft mouse model

To determine the effect of \(Y_6\) combined with doxorubicin on cell proliferation on doxorubicin-resistant BEL-7404/DOX cells. In this study, we showed that the non-toxic concentrations of \(Y_6\) resensitized the treatment of doxorubicin in ABCB1-transfected HEK293/ABC1 cells, indicating that \(Y_6\) was effective in reversing resistance on HEK293/ABC1 cells. In addition, the reversal effect of \(Y_6\) was stronger than that of EGCG.

4. Discussion

Our previous study showed that \(Y_6\) was effective in inhibiting cell proliferation on doxorubicin-resistant BEL-7404/DOX cells. In this study, we showed that the non-toxic concentrations of \(Y_6\) resensitized the treatment of doxorubicin in ABCB1-transfected HEK293/ABC1 cells, indicating that \(Y_6\) was effective in reversing resistance on HEK293/ABC1 cells. In addition, the reversal effect of \(Y_6\) was stronger than that of EGCG.

The mechanisms of drug resistance are complex in tumor cells not only down-regulating expression of ABCB1 but also inhibiting the transport function of ABCB1 can reverse the resistance to chemotherapeutic drugs. In the previous experiment, \(Y_6\) was proven to down-regulate the expression of ABCB1. But no published data reported whether \(Y_6\) affects efflux of drug substrates from cytoplasm to extracellular matrix by utilizing ATP-driven energy.

The substrate transport process of ABCB1 was described in previous studies. Substrate enters into the internal drug-binding pocket, then ATP binding and hydrolysis at the NBDs causes

Figure 3 Effect of EGCG and \(Y_6\) on the Vi-sensitive ABCB1 ATPase activity. The Vi-sensitive ATPase activities of ABCB1 in membrane vesicles were determined with different concentrations of EGCG and \(Y_6\) (0–40 \(\mu\)mol/L). Experiments were repeated for three times.
ABCB1 conformational change and discharges the substrate and the drug-binding sites to the outer leaflet.20,31,32 In this process, the anticancer drugs or reversing agents, such as ATP modulators, could bind to ATP-binding in NBD as a non-competitive inhibitor or bind to the drug-binding pocket in TMD as a competitive inhibitor. ATP modulators are divided into three classes: Class I compounds stimulate ATPase activity at low concentrations but inhibit the activity at high concentrations; Class II agents stimulate ATPase activity in a concentration-dependent manner; Class III agents inhibit ATPase activity.33 Interestingly, Y6, as a derivative of EGCG, had a distinct stimulatory effect on ATPase activity from that of EGCG. Y6 strongly stimulated the ATPase activity of ABCB1 in a dose-dependent manner and therefore is a Class II agent. Meanwhile, in the case of EGCG, the ATPase activity was stimulated by EGCG in a dose-dependent manner at a low concentration, and then leveled off when EGCG reached a certain concentration. This result indicated that Y6 had a stronger stimulatory efficacy on ATPase activity of ABCB1 than EGCG. When drugs bind to the drug-substrate-binding site in TMD of the ABCB1 transporter, it would stimulate ATPase hydrolytic activity to support energy. A stronger stimulatory efficacy was likely to mean strong competitive substrate bind to drug-substrate-binding site.

Molecular docking analysis is a tool used to calculate the binding affinity of a protein–ligand complex. In the molecular docking study, Y6 exhibited a much higher docking score (−10.545) than that of EGCG (−6.707). The binding cavity in the transmembrane domain of human ABCB1 consists of many hydrophobic and aromatic residues. A positive correlation between ABCB1 inhibitory activity and lipophilicity of the compounds has already been suggested.34 Therefore, although more hydrogen bonds can be formed between EGCG and ABCB1, an excess of polar phenolic groups in EGCG may hinder the binding of ligand inside the binding cavity. Based on the above, Y6, unlike EGCG, was a competitive substrate, as it interacted with drug–substrate-binding site of the ABCB1 transporter and stimulated the ATPase activity of ABCB1. This could explain why the reversal effect of Y6 was significantly greater than EGCG \textit{in vitro}. Overall, the results demonstrate that reversal of MDR by Y6 is likely due to its interactions with the ABCB1 transporter, similar to other known typical competitive substrates, such as doxorubicin, that reverse resistance.

Figure 4 Molecular modeling of the binding of Y6 and EGCG to ABCB1 homology. (A) A two-dimensional ligand-receptor interaction diagram with important interactions observed in the docked complex of Y6 with human ABCB1 is shown. The residues within 4 Å are shown as colored bubbles, cyan indicates polar, and green indicates hydrophobic residues. Hydrogen bonds are depicted by purple arrows, while π-stacking aromatic interactions are indicated with green lines. (B) A portion of the transmembrane region of the homology modeled human ABCB1 is shown in a ribbon presentation. Selected residues are depicted as tubes with the CPK coloring except carbon atoms are represented in blue, whereas the ligand is shown with the same color scheme as above except carbon atoms are represented in purple. (C) Two-dimensional ligand-receptor interaction diagram with important interactions observed in the docked complex of EGCG–ABCB1. (D) The docked conformation of EGCG. Color scheme is the same as panel (B) except carbon atoms of EGCG are presented in purple.
In the xenograft mice implanted with BEL-7404/DOX cells, the \textit{in vivo} anti-MDR efficacy of Y6 was determined by measuring the volume and weight of the tumors. The results indicated that Y6, in combination with doxorubicin, significantly decreased tumor growth compared to treatment with saline, doxorubicin, or EGCG plus doxorubicin. Furthermore, along with the increased weight in mice after finishing treatment, Y6 alone, or in combination with doxorubicin, did not produce significant observable toxicity or body weight loss during the experimental period. This result indicated that the effect of Y6 in reversing MDR also works \textit{in vivo}. This result provides the rationale for using Y6 in future clinical trials.

In conclusion, this study demonstrated that Y6 reversed ABCB1-mediated MDR both \textit{in vitro} and \textit{in vivo}. The mechanisms of Y6 in reversing MDR involved the inhibition efflux function of ABCB1 and being a typical competitive substrate of ABCB1. These results suggest that Y6 may have the potential to be a reversal agent when combine with conventional anticancer drugs to re-sensitize tumor chemotherapy.

Acknowledgments

The authors would like to acknowledge Dr. Xiaocong Kuang (College of Basic Medicine, Guangxi Medical University, Nanning, China) for providing the BEL-7404/DOX cells. We thank Dr. Stephen Aller (The University of Alabama at Birmingham, Birmingham, US) for kindly providing human ABCB1 homology model. We thank Dr. Tanaji T. Talele (St. John’s University, Queens, NY, US) for providing the computational resources for molecular modeling, and Drs. Charles R. Ashby Jr. (St. John’s University, Queens, NY, US) and Yangmin Chen (MediMedia Managed Markets, an ICON company, Yardley, PA, US) for reviewing and editing the paper. This work was supported by the National Natural Science Foundation of China (No. 81160532), the Open Project of Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research (No. GXBMR201602, China), the Young and Middle-aged Teachers Foundation Ability Enhancement Project of Guangxi Colleges and Universities (No. 2018KY0102, China), and US NIH (No. 1R15CA143701).

References

1. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer. Role of ATP-dependent transporters. \textit{Nat Rev Cancer} 2002;2:48–58.
2. Sodani K, Patel A, Kathawala RJ, Chen ZS. Multidrug resistance associated proteins in multidrug resistance. \textit{Chin J Cancer} 2012;31:58–72.
3. Gottesman MM. Mechanisms of cancer drug resistance. \textit{Ann Rev Med} 2002;53:615–27.
4. Fan YF, Zhang W, Zeng L, Lei ZN, Cai CY, Gupta P, et al. Daonmitinib antagonizes multidrug resistance (MDR) in cancer cells by inhibiting the efflux activity of ABCB1 and ABCG2 transporters. \textit{Cancer Lett} 2018;421:186–98.
The epigallocatechin gallate derivative Y6 reverses drug resistance mediated by the ABCB1 transporter

5. An X, Sarmento C, Tan T, Zhu H. Regulation of multidrug resistance by microRNAs in anti-cancer therapy. Acta Pharm Sin B 2017;7:38–51.
6. Borths EL, Locher KP, Lee AT, Rees DC. The structure of Escherichia coli BtuF and binding to its cognate ATP binding cassette transporter. Proc Natl Acad Sci U S A 2002;99:16642–7.
7. Locher KP. Structure and mechanism of ABC transporters. Curr Opin Struct Biol 2004;14:426–31.
8. Locher KP, Borths E. ABC transporter architecture and mechanism: implications from the crystal structures of BtuCD and BtuF. FEBS Lett 2004;564:264–8.
9. Dean M, Allikmets R. Complete characterization of the human ABC gene family. J Bioenerg Biophys Acta 2001;131:475–9.
10. Dean M, Annino T. Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu Rev Genom Hum Genet 2005;6:123–42.
11. Schinkel AH, Jonker JW. Mammalian drug efﬂux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 2003;55:3–29.
12. Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 1976;455:152–62.
13. Ueda K, Cornwell MM, Gottesman MM, Pastan I, Roninson IB, Ling V, et al. The mdr1 gene, responsible for multidrug-resistance, codes for P-glycoprotein. Biochem Biophys Res Commun 1986;141:956–62.
14. Tiwari AK, Sodani K, Dai CL, Ashby Jr CR, Chen ZS. Revisiting the multidrug-resistant Chinese hamster lung cell lines. Mol Cell Biol 2004;24:3476–87.
15. Wu CP, Hsieh CH, Wu YS. The emergence of drug transporter-mediated multidrug resistance to cancer chemotherapy. Pharm Med 2011;2:1996–2011.
16. Roninson IB, Chin JE, Choi KG, Gros P, Housman DE, Fojo A, et al. Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc Natl Acad Sci U S A 1986;83:4538–42.
17. Van der Blik AM, Biedler JL, Vorst P. Differential amplification and disproportionate expression of ﬁve genes in three multidrug-resistant Chinese hamster lung cell lines. Mol Cell Biol 1986;6:4717–22.
18. Gros P, Raymond M, Bell J, Housman D. Cloning and characterization of a second member of the mouse mdr gene family. Mol Cell Biol 1988;8:2770–8.
19. Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, et al. Structure of P-glycoprotein reveals a molecular basis for poly-speciﬁc drug binding. Science 2009;323:1718–22.
20. Wu CP, Calcagno AM, Ambudkar SV. Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells: evaluation of current strategies. Curr Mol Pharmacol 2008;1:93–105.
21. Wen Y, Zhao RQ, Zhang YK, Gupta P, Fu LX, Tang AZ, et al. Effect of Y6, an epigallocatechin gallate derivative, on reversing doxorubicin drug resistance in human hepatocellular carcinoma cells. Oncotarget 2017;8:29760–70.
22. Liang G, Tang A, Lin X, Li L, Zhang S, Huang Z, et al. Green tea catechins augment the antitumor activity of doxorubicin in an in vivo mouse model for chemoresistant liver cancer. Int J Oncol 2010;37:111–23.
23. Kitagawa S, Nabekura T, Kawai S. Inhibition of P-glycoprotein function by tea catechins in KB-C2 cells. J Bioenerg Biomembr 2004;36:62.
24. Kitagawa S, Nabekura T, Kamiyama S. Inhibition of P-glycoprotein function by tea catechins in KB-C2 cells. J Bioenerg Biomembr 2004;36:62.
25. Zhang H, Zhang YK, Wang YJ, Kathawala R, Patel A, Zhu H, et al. WHI-P154 enhances the chemotherapeutic effect of anticancer agents in ABCG2-overexpressing cells. Cancer Sci 2014;105:1071–8.
26. Li J, Jaime LA, Aller SG. Reversal of ABC drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 2003;55:3–29.
27. Zhang YK, Zhang GN, Wang YJ, Patel BA, Talele TT, Yang DH, et al. Bafetinib (INNO-406) reverses multidrug resistance by inhibiting the efflux function of ABCB1 and ABCG2 transporters. Proc Natl Acad Sci U S A 2004;101:3–5.
28. Zhang YK, Zhang H, Zhang GN, Wang YJ, Kathawala RJ, Si R, et al. Semi-synthetic ocolambil analogues as selective ABCB1-mediated drug resistance reversal agents. Oncotarget 2015;6:24277–90.
29. Jain AN. Surfex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem 2003;46:499–511.
30. Wang YJ, Kathawala RJ, Zhang YK, Patel A, Kumar P, Shukla S, et al. Motesanib (AMG706), a potent multikinase inhibitor, antagonizes multidrug resistance by inhibiting the efflux activity of the ABCB1. Biochem Pharmacol 2014;90:367–78.
31. Sauna ZE, Ambudkar SV. Evidence for a requirement for ATP hydrolysis at two distinct steps during a single turnover of the catalytic cycle of human P-glycoprotein. Proc Natl Acad Sci U S A 2000;97:2515–20.
32. Sauna ZE, Ambudkar SV. Characterization of the catalytic cycle of ATP hydrolysis by human P-glycoprotein the two ATP hydrolysis events in a single catalytic cycle are kinetically similar but affect different functional outcomes. J Biol Chem 2001;276:11653–61.
33. Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM. Biochemical, cellular, and pharmacological aspects of the multidrug transporter 1. Annu Rev Pharmacol Toxicol 1999;39:361–98.
34. Pajeva IK, Globisch C, Wiese M. Combined pharmacophore modeling, docking, and 3D QSAR studies of ABCB1 and ABCG1 transporter inhibitors. Chem Med Chem 2009;4:1883–96.