CERTAIN SUBCLASSES OF BI-UNIVALENT
FUNCTIONS ASSOCIATED WITH HORADAM POLYNOMIALS

K. Dhanalakshmi1, D. Kavitha2§, A. Anbukkarasi3

1K. Dhanalakshmi PG
and Research Department of Mathematics
Theivanai Ammal College for Women (Autonomous)
Villupuram 605602, Tamilnadu, INDIA

2Department of Mathematics
Audisankara College of Engineering and Technology (Autonomous)
Gudur-524101, Nellore District
Andra Pradesh, INDIA

3A. Anbukkarasi Department of Mathematics
IFET College of Engineering (Autonomous Institution)
Villupuram 605 108, Tamilnadu, INDIA

Abstract: In this present paper, our goal is to introduce two new subclasses of analytic bi-univalent functions defined by means of Horadam polynomials in the open unit disc U. Also we find initial estimates on Taylor-Maclaurin coefficients and provided the relevant Fekete-Szegö theorem using coefficient estimates for the defined new subclasses.

AMS Subject Classification: 30C45, 30C50, 11B39

Key Words: univalent function; starlike and convex functions; subordination; Horadam polynomials; Fekete-Szegö problem

Received: July 18, 2020

§Correspondence author
1. Introduction and preliminaries

Let \mathcal{A} denote the family of normalized analytic functions f of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \quad (z \in \mathbb{U})$$

in the open disc $\mathbb{U} = \{z : z \in \mathbb{C} : |z| < 1\}$. Further, let \mathcal{S} denote the class of functions in \mathcal{A} which are also univalent in \mathbb{U}.

The well-known Koebe one-quarter theorem [4] ensures that the image of \mathbb{U} under every univalent function $f \in \mathcal{A}$ contains a disc of radius $1/4$. Hence every univalent function f has an inverse f^{-1} satisfying $f^{-1}(f(z)) = z, (z \in \mathbb{U})$ and

$$f^{-1}(f(w)) = w, (|w| < r_0(f), r_0(f) \geq 1/4),$$

where

$$g(w) = f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2 a_3 + a_4)w^4 + \ldots .$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. Let Σ denote the class of bi-univalent functions in \mathbb{U} given by (1). For example, functions in the class Σ are given below [16]:

$$\frac{z}{1-z}, \quad -\log(1-z), \quad \frac{1}{2} \log \left(\frac{1+z}{1-z} \right).$$

In 1967, Lewin [12] introduced the class Σ of bi-univalent functions and shown that $|a_2| < 1.51$. In 1969, Netanyahu [14] showed that $\max_{f \in \Sigma} |a_2| = 4/3$ and Suffridge [18] have given an example of $f \in \Sigma$ for which $|a_2| = 4/3$. Later, in 1980, Brannan and Clunie [1] improved the result as $|a_2| \leq \sqrt{2}$. In 1985, Kedzierawski [11] proved this conjecture for a special case when the function f and f^{-1} are starlike. In 1984, Tan [19] proved that $|a_2| \leq 1.485$ which is the best estimate for the function in the class of bi-univalent functions.

Recently, many authors have introduced and studied various subclasses of analytic and bi-univalent functions. For some of the recent analysis in this topic, see e.g. [5, 6, 20, 17]. Brannan and Taha [3] introduced certain subclasses of the bi-univalent function class Σ for the familiar subclasses $\mathcal{S}^*(\alpha)$ and $\mathcal{C}(\alpha)$. Ali et al. [2] widen the result of Brannan and Taha using subordination.

Let the functions f and g be analytic in \mathbb{U}. Then we say that f is subordinate to g, if there exits a Schwarz function $\omega(z)$, analytic in \mathbb{U} with $\omega(0) = 0$ and $|\omega(z)| < 1$ in \mathbb{U}, such that $f(z) = g(\omega(z)), z \in \mathbb{U}$. We denote this subordination by $f \prec g$.

The recurrence relation for the Horadam polynomials $h_n(x)$ was studied by Horzum and Koçer [9], as
\[h_n(x) = px h_{n-1}(x) + q h_{n-2}(x); \quad (n \in \mathbb{N} \geq 2) \]

(3)

with

\[h_1(x) = a, \quad h_2(x) = bx, \quad h_3(x) = pbx^2 + aq, \]

(4)

where \(a, b, p \) and \(q \) are some real constants. Taking various values of \(a, b, p \) and \(q \) leads to various polynomials:

- When \(a = b = p = q = 1 \), we obtain the Fibonacci polynomials,

 \[F_n(x) = x F_{n-1}(x) + F_{n-2}(x), F_1(x) = 1, F_2(x) = x. \]

- When \(a = 2, b = p = q = 1 \), we have the Lucas polynomials,

 \[L_{n-1}(x) = x L_{n-2}(x) + L_{n-3}(x), L_0 = 2, L_1 = x. \]

- When \(a = q = 1, b = p = 2 \), we attain the Pell polynomials,

 \[P_n(x) = 2x P_{n-1}(x) + P_{n-2}(x), p_1 = 1, p_2 = 2x. \]

- When \(a = b = p = 2, q = 1 \), we get the Pell-Lucas polynomials,

 \[Q_{n-1}(x) = 2x Q_{n-2}(x) + Q_{n-3}(x), Q_0 = 2, Q_1 = 2x. \]

- When \(a = 1, b = p = 2, q = 1 \), we obtain the Chebyshev polynomials of second kind sequence,

 \[U_{n-1}(x) = 2x U_{n-2}(x) + U_{n-3}(x), U_0 = 1, U_1 = 2x. \]

- If \(a = 1, b = p = 2, q = 1 \), we have the Chebyshev polynomials of First kind sequence,

 \[T_{n-1}(x) = 2x T_{n-2}(x) + T_{n-3}(x), T_0 = 1, T_1 = x. \]

One can refer to [7],[8] and [13] for more details related to these polynomials’ succession. Also, we can refer to [10] and [15] for the Horadam polynomials connected with bi-univalent functions.

Remark 1. ([9]) Let \(\Omega(x,z) \) be the generating function of the Horadam polynomials \(h_n(x) \). Then

\[\Omega(x, z) = \frac{a + (b - ap)xz}{1 - pxz - qz^2} = \sum_{n=1}^{\infty} h_n(x) z^{n-1}. \]

(5)
We use the Horadam polynomials $h_n(x)$ and the generating function $\Omega(x,z)$, given by the recurrence relation (3) and (5), respectively. Motivated by this result, we now introduce the new subclasses of bi-univalent function class.

Definition 2. A function $f \in \Sigma$ of the form (1) is said to be in the class $\mathcal{N}_\Sigma(\lambda, \delta; x)$, for $\lambda \geq 1$ and $\delta \geq 0$, if the following conditions are satisfied:

$$
\left(1 - \lambda \right) \frac{f(z)}{z} + \lambda f'(z) + \delta zf''(z) \prec \Pi(x, z) + 1 - a \quad (z \in \mathbb{U}) \quad (6)
$$

and for $g(\omega) = f^{-1}(\omega)$,

$$
\left(1 - \lambda \right) \frac{f(\omega)}{\omega} + \lambda f'(\omega) + \delta zf''(\omega) \prec \Pi(x, \omega) + 1 - a \quad (\omega \in \mathbb{U}), \quad (7)
$$

where the real constants a and b are as in (4).

Now, we can define how the subclass of the above defined bi-univalent analytic function $\mathcal{N}_\Sigma(\lambda, \delta; x)$ are lead to the new subclasses of analytic bi-univalent functions with suitable choice of parameters λ and δ.

Remark 3. Let $\delta = 0$ and $\lambda \geq 1$, one can easily see that the function $f \in \Sigma$ is in $\mathcal{N}_\Sigma(1, 0; x)$ if the following conditions are satisfied:

$$
\left(1 - \lambda \right) \frac{f(z)}{z} + \lambda f'(z) \prec \Pi(x, z) + 1 - a \quad (z \in \mathbb{U})
$$

and

$$
\left(1 - \lambda \right) \frac{f(\omega)}{\omega} + \lambda f'(\omega) \prec \Pi(x, \omega) + 1 - a \quad (\omega \in \mathbb{U}),
$$

where $g(\omega) = f^{-1}(\omega)$ defined by (2).

Remark 4. For $\lambda = 1$ and $\delta \geq 0$, we get the bi-univalent function class $f \in \Sigma$ is in $\mathcal{N}_\Sigma(1, \delta; x)$ if the following conditions are satisfied:

$$
\left(f'(z) + \delta zf''(z) \right) \prec \Pi(x, z) + 1 - a \quad (z \in \mathbb{U})
$$

and

$$
\left(f'(\omega) + \delta zf''(\omega) \right) \prec \Pi(x, \omega) + 1 - a \quad (\omega \in \mathbb{U}),
$$

where $g(\omega) = f^{-1}(\omega)$ defined by (2).
Remark 5. Let $\delta = 0$ and $\lambda = 1$, we have the bi-univalent function class $f \in \Sigma$ is in $\mathcal{N}_\Sigma(1, 0; x)$ if the following conditions are satisfied:

$$f'(z) \prec \Pi(x, z) + 1 - a \quad (z \in \mathbb{U})$$

and

$$f'(\omega) \prec \Pi(x, \omega) + 1 - a \quad (\omega \in \mathbb{U}),$$

where $g(\omega) = f^{-1}(\omega)$ defined by (2).

Definition 6. Let $\alpha \geq 0$, a function $f \in \Sigma$ is said to be in the class $\mathcal{F}_\Sigma(\alpha; x)$ if the following conditions hold true:

$$\frac{(zf'(z) + \alpha z^2 f''(z))'}{f'(z)} \prec \Pi(x, z) + 1 - a \quad (z \in \mathbb{U}) \quad (8)$$

and for $g(\omega) = f^{-1}(\omega)$

$$\frac{(\omega f'(\omega) + \alpha \omega^2 f''(\omega))'}{f'(\omega)} \prec \Pi(x, \omega) + 1 - a \quad (\omega \in \mathbb{U}), \quad (9)$$

where the real constants a and b are as in (4).

It can be clearly seen that the parameter $\alpha = 0$, the above subclass of bi-univalent function reduced to the subclass of bi-convex function $f \in \Sigma$ and defined as follows:

Remark 7. Let $\alpha = 0$, then the class $\mathcal{F}_\Sigma(\alpha; x)$ is reduced to $\mathcal{C}_\Sigma(x)$ and defined by

$$\frac{(zf'(z))'}{f'(z)} \prec \Pi(x, z) + 1 - a \quad (z \in \mathbb{U})$$

and for $g(\omega) = f^{-1}(\omega)$

$$\frac{(\omega f'(\omega))'}{f'(\omega)} \prec \Pi(x, \omega) + 1 - a \quad (\omega \in \mathbb{U}).$$
2. A set of main results

We begin this section by establishing the coefficient estimates $|a_2|$ and $|a_3|$ followed by the classical result of Fekete-Szegö problem for the function classes $N_{\Sigma}(\lambda, \delta; x)$ and $\mathfrak{F}_{\Sigma}(\alpha; x)$, respectively.

Theorem 8. Let the function $f \in \Sigma$ given by (1) be in the class $N_{\Sigma}(\lambda, \delta; x)$, then

$$
|a_2| \leq \frac{|bx| \sqrt{|bx|}}{\sqrt{|[(1 + 2\lambda + 6\delta)b - p(1 + \lambda + 2\delta)^2]bx^2 - qa(1 + \lambda + 2\delta)^2|}} \quad (10)
$$

and

$$
|a_3| \leq \frac{|bx|}{(1 + 2\lambda + 6\delta)} + \frac{b^2x^2}{(1 + \lambda + 2\delta)^2} \quad (11)
$$

For $\nu \in \mathbb{R}$,

$$
|a_3 - \nu a_2^2| \leq \begin{cases}
\frac{|bx|}{(1 + 2\lambda + 6\delta)}; & |\nu - 1| \leq \mathcal{B}, \\
\frac{|bx|^3|\nu - 1|}{|[(1 + 2\lambda + 6\delta)b - p(1 + \lambda + 2\delta)^2]bx^2 - qa(1 + \lambda + 2\delta)^2|^2}; & |\nu - 1| \geq \mathcal{B},
\end{cases}
$$

where

$$
\mathcal{B} = \sqrt{\frac{|[(1 + 2\lambda + 6\delta)b - p(1 + \lambda + 2\delta)^2]bx^2 - qa(1 + \lambda + 2\delta)^2|}{b^2x^2(1 + 2\lambda + 6\delta)}}.
$$

Proof. Let $f \in N_{\Sigma}(\lambda, \delta; x)$. It is well known that there are two analytic functions $u, v : U \to U$ given by

$$
U(z) = |u_1z + u_2z^2 + u_3z^3 + \ldots| < 1 \quad (12)
$$

and

$$
V(\omega) = |v_1\omega + v_2\omega^2 + v_3\omega^3 + \ldots| < 1, \quad (13)
$$

for all $z, \omega \in \mathbb{U}$ with $U(0) = V(0) = 0, |U(z)| < 1, |V(z)| < 1$ such that

$$
\left((1 - \lambda) \frac{f(z)}{z} + \lambda f'(z) + \delta zf''(z) \right) = \Pi(x, U(z)) + 1 - a
$$
and
\[
\left((1 - \lambda) \frac{f(\omega)}{\omega} + \lambda f'(\omega) + \delta z f''(\omega) \right) = \Pi(x, V(\omega)) + 1 - a.
\]
Equivalently the above equation can be written as
\[
\left((1 - \lambda) \frac{f(z)}{z} + \lambda f'(z) + \delta z f''(z) \right) = 1 + h_1(x) - a + h_2(x)U(z) + h_3(x)[U(z)]^2 + \ldots.
\]
and
\[
\left((1 - \lambda) \frac{f(\omega)}{\omega} + \lambda f'(\omega) + \delta z f''(\omega) \right) = 1 + h_1(x) - a + h_2(x)V(\omega) + h_3(x)[V(\omega)]^2 + \ldots.
\]
Making use of (12) and (13), we have
\[
\left((1 - \lambda) \frac{f(z)}{z} + \lambda f'(z) + \delta z f''(z) \right) = 1 + h_2(x)u_1z + [h_2(x)u_2 + h_3(x)u_1^2]z^2 + \ldots.
\]
and
\[
\left((1 - \lambda) \frac{f(\omega)}{\omega} + \lambda f'(\omega) + \delta z f''(\omega) \right) = 1 + h_2(x)v_1\omega + [h_2(x)v_2 + h_3(x)v_1^2]\omega^2 + \ldots.
\]
It is fairly known that
\[
|u_i| \leq 1, \quad |v_i| \leq 1, \quad (i \in \mathbb{N}).
\]
Now comparing the corresponding coefficients of (14) and (15), we have
\[
(1 + \lambda + 2\delta)a_2 = h_2(x)u_1
\]
(17)\[
(1 + 2\lambda + 6\delta)a_3 = h_2(x)u_2 + h_3(x)u_1^2
\]
(18)\[
-(1 + \lambda + 2\delta)a_2 = h_2(x)v_1
\]
(19)\[
(1 + 2\lambda + 6\delta)(2a_2^2 - a_3) = h_2(x)v_2 + h_3(x)v_1^2.
\]
From (16) and (18), we can observe that
\[
u_1 = -v_1
\]
and

$$a_2^2 = \frac{[h_2(x)]^2(u_2^2 + v_1^2)}{2(1 + \lambda + 2\delta)^2}.$$ (21)

Adding (17) and (19), we get

$$2(1 + 2\lambda + 6\delta)a_2^2 = h_2(x)(u_2 + v_2) + h_3(x)(u_2^2 + v_2^2).$$ (22)

Substituting (21) in (22), we have

$$a_2^2 = \frac{h_2(x)^3(u_2 + v_2)}{2(1 + 2\lambda + 6\delta)[h_2(x)]^2 - 2h_3(x)(1 + \lambda + 2\delta)^2}.$$ (23)

Using (4), the above equation yields,

$$|a_2| \leq \frac{|bx|\sqrt{bx}}{\sqrt{[(1 + 2\lambda + 6\delta)b - p(1 + \lambda + 2\delta)^2]bx^2 - qa(1 + \lambda + 2\delta)^2}}.$$ (24)

Similarly, upon subtracting (19) from (17) and in view of (20), we obtain

$$2(1 + 2\lambda + 6\delta)a_3 - 2(1 + 2\lambda + 6\delta)a_2^2 = h_2(x)(u_2 - v_2) + h_3(x)(u_1^2 - v_1^2),$$

$$a_3 = \frac{h_2(x)(u_2 - v_2)}{2(1 + 2\lambda + 6\delta)} + a_2^2.$$ (25)

In view of (21), equation (25) becomes

$$a_3 = \frac{h_2(x)(u_2 - v_2)}{2(1 + 2\lambda + 6\delta)} + \frac{[h_2(x)]^2(u_1^2 + v_1^2)}{2(1 + \lambda + 2\delta)^2}.$$ (26)

Applying (4), we deduce that

$$|a_3| \leq \frac{|bx|}{(1 + 2\lambda + 6\delta)} + \frac{b^2x^2}{(1 + \lambda + 2\delta)^2}.$$ (27)

For any $\nu \in \mathbb{R}$,

$$a_3 - \nu a_2^2 = \frac{h_2(x)(u_2 - v_2)}{2(1 + 2\lambda + 6\delta)} + (1 - \nu)a_2^2.$$ (28)

Substituting (23) in (27), we have

$$a_3 - \nu a_2^2 = h_2(x) \left\{ \left(\Omega(\nu, x) + \frac{1}{2(1 + 2\lambda + 6\delta)} \right) u_2
ight.$$

$$+ \left(\Omega(\nu, x) - \frac{1}{2(1 - 2\lambda + 6\delta)} \right) v_2 \right\},$$ (29)
CERTAIN SUBCLASSES OF BI-UNIVALENT...

where
\[\Omega(\nu, x) = \frac{(1 - \nu)[h_2(x)]^2}{2[(1 + 2\lambda + 6\delta)h_2(x)^2 - (1 + \lambda + 2\delta)^2h_3(x)]}. \]

Hence, in view of (4), we conclude that
\[
|a_3 - \nu a_2^2| \leq \begin{cases}
\frac{|h_2(x)|}{(1 + 2\lambda + 6\delta)}; & 0 \leq |\Omega(\nu, x)| \leq \frac{1}{2(1 + 2\lambda + 6\delta)} \\
2|h_2(x)|\Omega(\nu, x); & |\Omega(\nu, x)| \geq \frac{1}{2(1 + 2\lambda + 6\delta)}
\end{cases}
\]

which completes the proof of Theorem 8.

\[\square \]

Corollary 9. Let \(f \) be given by (1) in the class \(N_\Sigma(\lambda, 0; x) \). Then,
\[
|a_2| \leq \frac{|bx|\sqrt{bx}}{\sqrt{|(1 + 2\lambda)b - p(1 + \lambda)^2|bx^2 - qa(1 + \lambda)^2|}}
\]
and
\[
|a_3| \leq \frac{|bx|}{(1 + 2\lambda)} + \frac{b^2x^2}{(1 + \lambda)^2}.
\]

For any \(\nu \in \mathbb{R} \),
\[
|a_3 - \nu a_2^2| \leq \begin{cases}
\frac{|bx|}{(1 + 2\lambda)}; & |\nu - 1| \leq \frac{[(1 + 2\lambda)h_2(x)^2 - (1 + \lambda)^2h_3(x)]}{b^2x^2(1 + 2\lambda)} \\
\frac{|bx|}{3(1 + 2\delta)}|\nu - 1|; & |\nu - 1| \geq \frac{[(1 + 2\lambda)h_2(x)^2 - (1 + \lambda)^2h_3(x)]}{b^2x^2(1 + 2\lambda)}
\end{cases}
\]

Corollary 10. Let \(f \) given by (1) be in the class \(N_\Sigma(1, \delta; x) \). Then,
\[
|a_2| \leq \frac{|bx|\sqrt{bx}}{\sqrt{|3(1 + 2\delta)b - 4p(1 + \delta)^2|bx^2 - 4qa(1 + \delta)^2|}}
\]
and
\[
|a_3| \leq \frac{|bx|}{3(1 + 2\delta)} + \frac{b^2x^2}{4(1 + \delta)^2}.
\]
For any $\nu \in \mathbb{R}$,

$$|a_3 - \nu a_2|^2 \leq \begin{cases}
\frac{|bx|}{3(1 + 2\delta)}; \\
|\nu - 1| \leq \frac{[3(1 + 2\delta)h_2(x)^2 - 4(1 + \delta)^2h_3(x)]}{3b^2x^2(1 + 2\delta)} \\
|bx|^3|\nu - 1| \\
\frac{|3(1 + 2\delta)b - 4p(1 + \delta)^2|}{|3b - 4p|bx^2 - 4qa(1 + \delta)^2}; \\
|\nu - 1| \geq \frac{[3(1 + 2\delta)h_2(x)^2 - 4(1 + \delta)^2h_3(x)]}{3b^2x^2(1 + 2\delta)}.
\end{cases}$$

Corollary 11. Let f given by (1) be in the class $N_\Sigma(1, 0; x)$. Then,

$$|a_2| \leq \frac{|bx| \sqrt{bx}}{\sqrt{|3b - 4p|bx^2 - 4qa}}$$

and

$$|a_3| \leq \frac{|bx|}{3} + \frac{b^2x^2}{4}.$$

For any $\nu \in \mathbb{R}$,

$$|a_3 - \nu a_2|^2 \leq \begin{cases}
\frac{|bx|}{3(1 + 2\delta)}; \\
|\nu - 1| \leq \frac{[3h_2(x)^2 - 4h_3(x)]}{b^2x^23} \\
\frac{|bx|^3|\nu - 1|}{|3b - 4p|bx^2 - 4qa}; \\
|\nu - 1| \geq \frac{[3h_2(x)^2 - 4h_3(x)]}{b^2x^2}.
\end{cases}$$

Theorem 12. Let the function $f \in \Sigma$ given by (1) be in the class $\Sigma_\Sigma(\alpha; x)$, then

$$|a_2| \leq \frac{|bx| \sqrt{bx}}{\sqrt{2}|[(1 + 5\alpha)b - 2p(1 + \alpha)^2|bx^2 - 2qa(1 + 2\alpha)^2|}}$$

and

$$|a_3| \leq \frac{|bx|}{6(1 + 3\alpha)} + \frac{b^2x^2}{4(1 + 2\alpha)^2},$$

and for $\nu \in \mathbb{R}$,

$$|a_3 - \nu a_2|^2 \leq \begin{cases}
\frac{|bx|}{6(1 + 3\alpha)}; \\
|\nu - 1| \leq B_1, \\
\frac{|bx|^3|\nu - 1|}{2|[(1 + 5\alpha)b - 2p(1 + 2\alpha)^2|bx^2 - 2qa(1 + 2\alpha)^2|}, \\
|\nu - 1| \geq B_1,
\end{cases}$$
where
\[B_1 = \frac{[(1 + 5\alpha)b - 2p(1 + 2\alpha)^2]bx^2 - 2aq(1 + 2\alpha)^2}{3b^2x^2(1 + 3\alpha)}. \]

Proof. Let \(f \in \mathfrak{F}_\Sigma(\alpha; x) \) be given by Taylor-Maclaurin expansion (1). Then for all \(z, \omega \in U \) with \(U(0) = V(0) = 0, |U(z)| < 1, |V(z)| < 1 \) such that
\[
\frac{\left(zf'(z) + \alpha z^2f''(z)\right)}{f'(z)} = \Pi(x, U(z)) + 1 - a
\]
and
\[
\frac{\left(\omega f'(\omega) + \alpha \omega^2 f''(\omega)\right)}{f'(\omega)} = \Pi(x, V(\omega)) + 1 - a.
\]
Equivalently the above equation can be written as
\[
\frac{\left(zf'(z) + \alpha z^2f''(z)\right)}{f'(z)} = 1 + h_1(x) - a + h_2(x)U(z) + h_3(x)[U(z)]^2 + \ldots
\]
and
\[
\frac{\left(\omega f'(\omega) + \alpha \omega^2 f''(\omega)\right)}{f'(\omega)} = 1 + h_1(x) - a + h_2(x)V(\omega) + h_3(x)[V(\omega)]^2 + \ldots.
\]
Using (12) and (13), we have
\[
\frac{\left(zf'(z) + \alpha z^2f''(z)\right)}{f'(z)} = 1 + h_2(x)u_1z + [h_2(x)u_2 + h_3(x)u_1^2]z^2 + \ldots \quad (31)
\]
and
\[
\frac{\left(\omega f'(\omega) + \alpha \omega^2 f''(\omega)\right)}{f'(\omega)} = 1 + h_2(x)v_1\omega + [h_2(x)v_2 + h_3(x)v_1^2]\omega^2 + \ldots, \quad (32)
\]
it is clear that
\[
|u_i| \leq 1, \quad |v_i| \leq 1, \quad (i \in \mathbb{N}).
\]
Now comparing the corresponding coefficients of (31) and (32), we have
\[
2(1 + 2\alpha)a_2 = h_2(x)u_1 \quad (34)
\]
\[6(1 + 3\alpha)a_3 - 4(1 + 2\alpha)a_2^2 = h_2(x)u_2 + h_3(x)u_1^2 \quad (35)\]
\[-2(1 + 2\alpha)a_2 = h_2(x)v_1 \quad (36)\]
\[4(2 + 7\alpha)a_2^2 - 6(1 + 3\alpha)a_3 = h_2(x)v_2 + h_3(x)v_1^2. \quad (37)\]

From (34) and (36), we can observe that
\[u_1 = -v_1 \quad (38)\]
and
\[a_2^2 = \frac{[h_2(x)]^2(u_2^2 + v_1^2)}{8(1 + 2\alpha)^2}. \quad (39)\]

Adding (35) and (37), we get
\[4(1 + 5\alpha)a_2^2 = h_2(x)(u_2 + v_2) + h_3(x)(u_2^2 + v_2^2). \quad (40)\]

Substituting (39) in (40), we have
\[a_2^2 = \frac{h_2(x)^3(u_2 + v_2)}{4(1 + 5\alpha)[h_2(x)]^2 - 8(1 + 2\alpha)^2h_3(x)}. \quad (41)\]

Using (4) the above equation yields,
\[|a_2| \leq \frac{|bx|\sqrt{bx}}{\sqrt{2} \left[(1 + 5\alpha)b - 2p(1 + \alpha)^2 \right] b^2x^2 - 2qa(1 + 2\alpha)^2}. \quad (42)\]

Similarly, upon subtracting (37) from (35) and in view of (38), we obtain
\[2(1 + 2\lambda + 6\delta)a_3 - 2(1 + 2\lambda + 6\delta)a_2^2 = h_2(x)(u_2 - v_2) + h_3(x)(u_1^2 - v_1^2), \quad a_3 = \frac{h_2(x)(u_2 - v_2)}{12(1 + 3\alpha)} + a_2^2. \quad (43)\]

In view of (39), equation (43) becomes
\[a_3 = \frac{h_2(x)(u_2 - v_2)}{12(1 + 3\alpha)} + \frac{[h_2(x)]^2(u_1^2 + v_1^2)}{8(1 + 2\alpha)^2}. \quad (44)\]

Applying (4), we deduce that
\[|a_3| \leq \frac{|bx|}{6(1 + 3\alpha)} + \frac{b^2x^2}{4(1 + 2\alpha)^2}. \quad (44)\]

For any \(\nu \in \mathbb{R}\),
\[a_3 - \nu a_2^2 = \frac{h_2(x)(u_2 - v_2)}{12(1 + 3\alpha)} + (1 - \nu)a_2^2. \quad (45)\]
Substituting (41) in (45), we have
\[
a_3 - \nu a_2^2 = h_2(x) \left\{ \left(\rho(\nu, x) + \frac{1}{12(1+3\alpha)} \right) u_2 + \left(\rho(\nu, x) - \frac{1}{12(1+3\alpha)} \right) v_2 \right\},
\]
(46)
where
\[
\rho(\nu, x) = \frac{(1 - \nu)[h_2(x)]^2}{4[(1 + 5\alpha)h_2(x)^2 - 2(1 + 2\alpha)^2h_3(x)]}.
\]
Hence in view of (4), we conclude that
\[
|a_3 - \nu a_2^2| \leq \begin{cases}
\frac{|h_2(x)|}{6(1 + 3\alpha)}; & 0 \leq |\rho(\nu, x)| \leq \frac{1}{12(1 + 3\alpha)} \\
2|h_2(x)|\rho(\nu, x)|; & |\rho(\nu, x)| \geq \frac{1}{12(1 + 3\alpha)}
\end{cases}
\]
which completes the proof of Theorem 12.

Corollary 13. Let \(\alpha = 0 \) and \(f \) be in the class \(C_\Sigma(x) \). Then,
\[
|a_2| \leq \frac{|bx|\sqrt{bx}}{\sqrt{2|(b - 2p)bx^2 - 2qa|}}
\]
and
\[
|a_3| \leq \frac{|bx|}{6} + \frac{b^2x^2}{4}.
\]
For \(\nu \in \mathbb{R} \),
\[
|a_3 - \nu a_2^2| \leq \begin{cases}
\frac{|bx|}{6}; & |\nu - 1| \leq \frac{(b - 2p)bx^2 - 2aq}{3b^2x^2} \\
|bx|^3|\nu - 1|; & |\nu - 1| \geq \frac{(b - 2p)bx^2 - 2aq}{3b^2x^2}
\end{cases}
\]

References

[1] D.A. Brannan, J. Clunie, *Aspects of Contemporary Complex Analysis*, Academic Press, New York-London (1980).

[2] R.M. Ali, L.S. Keong, V. Ravichandran, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, *Appl. Math. Lett.*, 25, No 3 (2012), 344-351.
[3] D.A. Brannan, T.S. Taha, On some classes of bi-univalent functions, *Studia Univ. Babes, Bolyai Math.*, **31**, No 2 (1986), 70-77.

[4] P.L. Duren, *Univalent Functions*, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York (1983).

[5] B.A. Frasin, Coefficient bounds for certain classes of bi-univalent functions, *Hacet. J. Math. Stat.*, **43**, No 3 (2014), 383-389.

[6] T. Hayami and S. Owa, Coefficient bounds for bi-univalent functions, *Pan Amer. Math. J.*, **22**, No 4 (2012), 15-26.

[7] A.F. Horadam and J.M. Mahon, Pell and Pell-Lucas polynomials, *Fibonacci Quart.*, **23**, No 1 (1985), 7-20.

[8] A.F. Horadam, Jacobsthal representation polynomials, *The Fibonacci Quart.*, **35**, No 2 (1997), 137-148.

[9] T. Horzum and E.G. Kocer, On some properties of Horadam polynomials, *Int. Math. Forum*, **4**, No 25-28 (2009), 1243-1252.

[10] D. Kavitha, K. Dhanalakshmi and N. ArulMozhi, Coefficient estimates for certain subclasses of analytic functions associated with Horadam polynomial, *Adv. Math. Sci. J.*, **9**, No 12 (2020), 1-12.

[11] A. Kedzierawski, J. Waniurski, Bi-univalent polynomials of small degree, *Complex Variables Theory Appl.*, **10**, No 2-3 (1988), 97-100.

[12] M. Lewin, On a coefficient problem for bi-univalent functions, *Proc. Amer. Math. Soc.*, **18** (1967), 63-68.

[13] A. Lupas, A guide of Fibonacci and Lucas polynomials, *Octogon Math. Mag.*, No 7 (1999), 2-12.

[14] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $z < 1$, *Arch. Rational Mech. Anal.*, No 32 (1969), 100-112.

[15] H.M Srivastava, S. Altunkaya and S. Yalçın, Certain subclasses of bi-Univalent functions associated with the Horadam polynomials, *Iran J. Sci. Technol Trans. Sci.*, **43**, No 4 (2019), 1873–1879.

[16] H.M. Srivastava, D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, *J. Egypt. Math. Soc.*, **23**, No 2 (2015), 242-246.
[17] H.M. Srivastava, S. Bulut, M. Caglar and N. Yagmur, Coefficient estimates for general subclass of analytic and bi-univalent functions, *Filomat*, **27**, No 5 (2013), 831-842.

[18] T.J. Suffridge, A coefficient problem for a class of univalent functions, *Michigan Math. J.*, **16**, (1969), 33-42.

[19] D.L. Tan, Coefficient estimates for bi-univalent functions, An English summary appears in: *Chinese Ann. Math. Ser. B*, **5**, No 5 (1984), 559-568.

[20] Q.-H. Xu, Y.-C. Gui and H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, *Appl. Math. Lett.*, **25**, No 6 (2012), 990-994.
