EUCLID’S THEOREM ON THE INFINITUDE OF PRIMES: A HISTORICAL SURVEY OF ITS 200 PROOFS (300 B.C.–2022)

ROMEO MEŠTROVIĆ

“The laws of nature are but the mathematical thoughts of God.”

Euclid (circa 300 B.C.)

“If Euclid failed to kindle your youthful enthusiasm, then you were not born to be a scientific thinker.”

Albert Einstein

Abstract. In the fourth extended version of this article, we provide a comprehensive historical survey of 200 different proofs of famous Euclid’s theorem on the infinitude of prime numbers (300 B.C.–2022). The author is trying to collect almost all the known proofs on infinitude of primes, including some proofs that can be easily obtained as consequences of some known problems or divisibility properties. Furthermore, here are listed numerous elementary proofs of the infinitude of primes in different arithmetic progressions.

All the references concerning the proofs of Euclid’s theorem that use similar methods and ideas are exposed subsequently. Namely, presented proofs are divided into the first five subsections of Section 2 in dependence of the methods that are used in them. 14 proofs which are proved from 2012 to 2017 are given in Subsection 2.9, and 18 recent proofs from 2018 to 2022 are presented in Subsection 2.10.

In Section 3, we mainly survey elementary proofs of the infinitude of primes in different arithmetic progressions. Presented proofs are special cases of Dirichlet’s theorem. In Section 4, we give a new simple “Euclidean’s proof” of the infinitude of primes.
Contents

1. Euclid’s theorem on the infinitude of primes 3
 1.1. Primes and the infinitude of primes 3
 1.2. Euclid’s proof of Euclid’s theorem 4
 1.3. Sequences arising from Euclid’s proof of IP 6
 1.4. Proofs of Euclid’s theorem: a brief history 7

2. A survey of different proofs of Euclid’s theorem 9
 2.1. Proofs of IP based on Euclid’s idea 9
 2.2. Proofs of IP based on Goldbach’s idea on mutually prime integers .. 11
 2.3. Proofs of IP based on algebraic number theory arguments .. 15
 2.4. Proof of IP based on Euler’s idea on the divergence of the sum of prime reciprocals and Euler’s formula 18
 2.5. Proof of IP based on Euler’s product for the Riemann zeta function and the irrationality of π^2 and e 22
 2.6. Combinatorial proofs of IP based on enumerative arguments 23
 2.7. Furstenberg’s topological proof of IP and its modifications . 25
 2.8. Another proofs of IP ... 26
 2.9. 14 proofs of IP (2012–2017) 29
 2.10. 18 recent proofs of IP (2018–2022) 31

3. Proofs of IP in arithmetic progressions: special cases of Dirichlet’s theorem 34
 3.1. Dirichlet’s theorem ... 34
 3.2. A survey of elementary proofs of IP in special arithmetic progressions .. 35
 3.3. Elementary proofs of IP in arithmetic progressions with small differences ... 39

4. Another simple Euclidean’s proof of Euclid’s theorem 40

References 41

Appendixes 57
 A) External Links on Euclid’s theorem and its proofs 57
 B) Sloane’s sequences related to proofs of Euclid’s theorem 57
 C) List of papers and their authors arranged by year of publication followed by the main argument(s) of related proof given into round brackets .. 58
 D) Author Index ... 66
 E) Subject Index .. 70
1. Euclid’s theorem on the infinitude of primes

1.1. Primes and the infinitude of primes. prime number (or briefly in the sequel, a prime) is an integer greater than 1 that is divisible only by 1 and itself. Starting from the beginning, prime numbers have always been around but the concepts and uniqueness was thought to be first considered during Egyptian times. However, mathematicians have been studying primes and their properties for over twenty-three centuries. Ancient Greek mathematicians knew that there are infinitely many primes. Namely, circa 300 B.C., Euclid of Alexandria, from the Pythagorean School proved (Elements, Book IX, Proposition 20) the following celebrated result as rendered into modern language from the Greek ([91], [327]):

If a number be the least that is measured by prime numbers, it will not be measured by any other prime number except those originally measuring it.

Euclid’s “Elements” are one of the most popular and most widely printed mathematicians books and they are been translated into many languages. Elements presents a remarkable collection of 13 books that contained much of the mathematical known at the time. Books VII, VIII and IX deal with properties of the integers and contain the early beginnings of number theory, a body of knowledge that has flourished ever since.

Recall that during Euclid’s time, integers were understood as lengths of line segments and divisibility was spoken of as measuring. According to G. H. Hardy [126], “Euclid’s theorem which states that the number of primes is infinite is vital for the whole structure of arithmetic. The primes are the raw material out of which we have to build arithmetic, and Euclid’s theorem assures us that we have plenty of material for the task.” Hardy [126] also remarks that this proof is “as fresh and significant as when it was discovered—two thousand years have not written a wrinkle on it”. A. Weil [316] also called “the proof for the existence of infinitely many primes represents undoubtedly a major advance, but there is no compelling reason either for attributing it to Euclid or for dating back to earlier times. What matters for our purposes is that the very broad diffusion of Euclid in latter centuries, while driving out all earlier texts, made them widely available to mathematicians from then on”.

Sir Michael Atyah remarked during an interview [243]: Any good theorem should have several proofs, more the better. For two reasons: usually, different proofs have different strenghts and weaknesses, and they generalize in different directions - they are not just repetitions...
of each other. For example, the *Pythagorean theorem* has received more than 360 proofs [171] of all sorts as algebraic, geometric, dynamic and so on. The *irrationality of \(\sqrt{2} \) is another famous example of a theorem which has been proved in many ways ([295]; on the web page [31] fourteen different proofs appear). C. F. Gauss himself had 10 different proofs for the *law of quadratic reciprocity* [103, Sections 112–114]. Surprisingly, here we present 183 different proofs of *Euclid’s theorem on the infinitude of primes*, including 44 proofs of the infinitude of primes in special arithmetic progressions.

1.2. Euclid’s proof of Euclid’s theorem. Even after almost two and a half millennia ago Euclid’s theorem on the infinitude of primes stands as an excellent model of reasoning. Below we follow Ribenboim’s statement of Euclid’s proof [248, p. 3]. Namely, in Book IX of his celebrated *Elements* (see [91]) we find Proposition 20, which states:

Euclid’s theorem. There are infinitely many primes.

Elegant proof of Euclid’s theorem runs as follows. Suppose that \(p_1 = 2 < p_2 = 3 < \cdots < p_k \) are all the primes. Take \(n = p_1p_2\cdots p_k + 1 \) and let \(p \) be a prime dividing \(n \). Then \(p \) cannot be any of \(p_1, p_2, \ldots, p_k \), otherwise \(p \) would divide the difference \(n - p_1p_2\cdots p_k = 1 \). □

The above proof is actually quite a bit different from what Euclid wrote. Since ancient Greeks did not have our modern notion of infinity, Euclid could not have written “there are infinitely many primes”, rather he wrote: “prime numbers are more than any assigned multitude of prime numbers.” Below is a proof closer to that which Euclid wrote, but still using our modern concepts of numbers and proof. An English translation of Euclid’s actual proof given by D. Joyce in his webpages [145] also can be found in http://primes.utm.edu/notes/proofs/infinite/euclids.html. It is a most elegant proof by *contradiction* (reduction ad absurdum) that goes as follows.

Euclid’s theorem. There are more primes than found in any finite list of primes.

Proof. Call the primes in our finite list \(p_1, p_2, \ldots, p_k \). Let \(P \) be any common multiple of these primes plus one (for example \(P = p_1p_2\cdots p_k + 1 \)). Now \(P \) is either prime or it is not. If it is prime, then \(P \) is a prime that was not in our list. If \(P \) is not prime, then it is divisible by some prime, call it \(p \). Notice \(p \) cannot be any of \(p_1, p_2, \ldots, p_k \), otherwise \(p \) would divide 1, which is impossible. So this prime \(p \) is some prime that was not in our original list. Either way, the original list was incomplete. □
The statement of Euclid’s theorem together with its proof is given by B. Mazur in 2005 [180, p. 230, Section 3] as follows.

“If you give me any finite (non-empty, of course!) collection of prime numbers, I will form the number \(N \) that is 1 more than the product of all the primes in the collection, so that every prime in your collection has the property that when \(N \) is divided by it, there is a remainder of 1. There exists at least one prime number dividing this number \(N \) and any prime number dividing \(N \) is new in the sense that it is not in your initial collection.”

Remarks. Euclid’s proof is often said to be “indirect” or “by contradiction”, but this is unwarranted: given any finite set of primes \(p_1, \ldots, p_n \), it gives a perfectly definite procedure for constructing a new prime. Indeed, if we define \(E_1 = 2 \), and having defined \(E_1, \ldots, E_n \), we define \(E_{n+1} \) to be the smallest prime divisor of \(E_1E_2 \cdots E_{n+1} \), we get a sequence of distinct primes, nowadays called the Euclid-Mullin sequence (of course, we could get a different sequence by taking \(p_1 \) to be a prime different from 2). This is Sloane’s sequence A000945 whose first few terms are 2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, The natural question - does every prime occur eventually in the Euclid-Mullin sequence remains unanswered. Note that D. Shanks [267] conjectured on probabilistic grounds that this sequence contains every prime. This conjecture was supported by computational results up to 43rd term of the sequence \((E_n) \) given in 1993 by S. S. Wagstaff, Jr. [309]. For a discussion on this conjecture, see [37, Section 2], where it was noticed that N. Kurokawa and T. Satoh [157] have shown that an analogue of this conjecture for the Euclidean domains \(\mathbb{F}_p[x] \) is false in general. Notice that the sequence \((E_n) \) and several related sequences were studied in [123].

Moreover, Mullin [201] constructed the second sequence of primes, say \((P_n) \) similarly as the above sequence \((E_n) \), except that we replace the words “smallest prime divisor” by “largest prime divisor”. This is the sequence A000946 in [278]. It was proved in 2013 by A. R. Booker [37, Theorem 1] that the sequence \((P_n) \) omits infinitely many primes, confirming a conjecture of C. D. Cox and A. J. Van der Poorten [68]. Notice that in 2014 P. Pollack and E. Treviño [236] gave a completely elementary proof of this conjecture.

Notice also that Euclid’s proof actually uses the fact that there is a prime dividing given positive integer greater than 1. This follows from Proposition 31 in Book VII of his Elements [91, 20, 128, p.2, Theorem 1]) which asserts that “any composite number is measured by some prime number”, or in terms of modern arithmetic, that every
integer $n > 1$ has at least one representation as a product of primes. Of course, he also used an unexpressed axiom which states that if a divides b and a divides c, a will divide the difference between b and c. □

The unique factorization theorem, otherwise known as the “fundamental theorem of arithmetic,” states that any integer greater than 1 can, except for the order of the factors, be expressed as a product of primes in one and only one way. This theorem does not appear in Euclid’s Elements ([91]; also see [20]). However, as noticed in [20, page 208], in fact, the unique factorization theorem follows from Propositions 30-31 in Book VII (given in Remarks of Section 4). More generally, in 1976 W. Knorr [152] gave a reasonable discussion of the position of unique factorization in Euclid’s theory of numbers. Nevertheless, as noticed in [20], Euclid played a significant role in the history of this theorem (specifically, this concerns to some propositions of Books VII and IX). However, the first explicit and clear statement and the proof of the unique factorization theorem seems to be in C. F. Gauss’ masterpiece Disquisitiones Arithmeticae [103, Section II, Article 16]. His Article 16 is given as the following theorem: A composite number can be resolved into prime factors in only one way. After Gauss, many mathematicians provided different proofs of this theorem in their work (these proofs are presented and classified in [2]). In particular, the unique factorization theorem was used in numerous proofs of the infinitude of primes provided below.

Notice also that for any field F, Euclid’s argument works to show that there are infinitely many irreducible polynomials over F. This follows inductively taking $p_1(t) = t$, and having produced $p_1(t), \ldots, p_k(t)$, consider the irreducible factors of $p_1(t) \cdots p_k(t) + 1$.

1.3. Sequences arising from Euclid’s proof of IP. As usually, for each prime p, $p^#$ denotes the product of all the primes less than or equal to p and it is called the primorial number (Sloane’s sequence A002110; also see A034386 for the second definition of primorial number as a product of primes in the range 2 to n). The expressions $p^# + 1$ and $p^# - 1$ have been considered in connection with variants of the Euclid’s proof of the infinitude of primes.

Further, nth Euclid’s number E_n (see e.g., [303]) is defined as a product of first n consecutive primes plus one (Sloane’s sequence A006862). Similarly, Kummer’s number is defined as a product of first n consecutive primes minus one (Sloane’s sequence A057588). Euclid’s numbers were tested for primality in 1972 by A. Borning [40], in 1980 by M. Templer [294], in 1982 by J. P. Buhler, R. E. Crandall and M. A. Penk
and in 1995 by C. K. Caldwell. Recall also that two interesting conjectures involving the numbers E_n are quite recently proposed by Z.-W. Sun. Namely, for any given n, if $w_1(n)$ is defined as the least integer $m > 1$ such that m divides none of those $E_i - E_j$ with $1 \leq i < j \leq n$, then Sun conjectured that $w_1(n)$ is a prime less than n^2 for all $n = 2, 3, 4, \ldots$. The same conjecture is proposed in relation to the sums $E_i + E_j - 2$ instead of $E_i - E_j$ (cf. Sloane’s sequences A210144 and A210186).

The numbers $p^# \pm 1$ (in accordance to the first definition given above) and $n! \pm 1$ have been frequently checked for primality (see [49], [115], [279] and [248, pp. 4–5]). The numbers $p^# \pm 1$ have been tested for all $p < 120000$ in 2002 by C. Caldwell and Y. Gallot. They were reported that in the tested range there are exactly 19 primes of the form $p^# + 1$ and 18 primes of the form $p^# - 1$ (these are in fact Sloane’s sequences A005234 extended with three new terms and A006794, respectively). It is pointed out in [248, p. 4] that the answers to the following questions are unknown: 1) Are there infinitely many primes p for which $p^# + 1$ is prime?). Are there infinitely many primes p for which $p^# + 1$ is composite?

In terms of the second definition of primorial numbers given above, similarly are defined Sloane’s sequences A014545 and A057704 (they also called primorial primes).

Other Sloane’s sequences related to Euclid’s proof and Euclid numbers are: A018239 (primorial primes), A057705, A057713, A065314, A065315, A065316, A065317, A006794, A068488, A068489, A103514, A0166266, A066267, A066268, A066269, A088054, A093804, A103319, A104350, A002981, A002982, A038507, A088332, A005235, A000945 and A000946.

1.4. Proofs of Euclid’s theorem: a brief history. Euclid’s theorem on the infinitude of primes has fascinated generations of mathematicians since its first and famous demonstration given by Euclid (300 B.C.). Many great mathematicians of the eighteenth and nineteenth century established different proofs of this theorem (for instance, Goldbach (1730), Euler (1736, 1737), Lebesgue (1843, 1856, 1859, 1862), Sylvester (1871, 1888 (4)), Kronecker (1875/6), Hensel (1875/6), Lucas (1878, 1891, 1899), Kummer (1878/9), Stieltjes (1890) and Hermite (1915). Furthermore, in the last hundred years various interesting proofs of the infinitude of primes, including the infinitude of primes in different arithmetic progressions, were obtained by I. Schur (1912/13), K. Hensel (1913), G. Pólya (1921), G. Pólya and G. Szegő (1925), P.
Erdős (1934 (2), 1938 (2)), G. H. Hardy and E. M. Wright (1938 (2)), L.
G. Schnirelman (published posthumously in 1940), R. Bellman (1943,
1947), H. Furstenberg (1955), J. Lambek and L. Moser (1957), S. W.
Golomb (1963), A. W. F. Edwards (1964), A. A. Mullin (1964), W.
Sierpiński (1964, 1970 (4)), S. P. Mohanty (1978 (3)), A. Weil (1979),
L. Washington (1980), S. Srinivasan (1984 (2)), M. Deaconescu and
J. Sándor (1986), J. B. Paris, A. J. Wilkie and A. R. Woods (1988),
M. Rubinstein (1993), N. Robbins (1994 (2)), R. Goldblatt (1998),
M. Aigner and G. M. Ziegler (2001 (2)), Š. Porubsky (2001), D. Cass
and G. Wildenberg (2003), T. Ishikawa, N. Ishida and Y. Yukimoto
(2004), R. Crandall and C. Pomerance (2005), A. Granville (2007 (2),
2009), J. P. Whang (2010), R. Cooke (2011), P. Pollack (2011) and
by several other authors. We also point out that in numerous proofs
of Euclid’s theorem were used methods and arguments due to Euclid
(“Euclidean’s proofs”), Goldbach (proofs based on elementary divisibility
properties of integers) or Euler (analytic proofs based on Euler’s
product). Moreover, numerous proofs of Euclid’s theorem are based
on some of the following methods or results: algebraic number
theory arguments (Euler’s totient function, Euler theorem, Fermat little
theorem, arithmetic functions, Theory of Finite Abelian Groups etc.),
Euler’s formula for the Riemann zeta function, Euler’s factorization,
elementary counting methods (enumerative arguments), Furstenberg’s
topological proof of the infinitude of primes and its combinatorial and
algebraic modifications etc. All the proofs of the infinitude of primes
exposed in this article are divided into 8 subsections of Section 2 in
dependence of used methods in them. In the next section we mainly
survey elementary proofs of the infinitude of primes in different arith-
metic progressions. These proofs are also based on some of mentioned
methods and ideas. Finally, in Section 4, we give a new simple proof of
the infinitude of primes. The first step of our proof is based on Euclid’s
idea. The remaining of the proof is quite simple and elementary and
it does not use the notion of divisibility.

In Dickson’s History of the Theory of Numbers [76, pp. 413–415] and
the books by Ribenboim [246, pp. 3–11], [248, Chapter 1, pp. 3–13],
Pollack [233, pp. 2–19], Hardy and Wright [128, pp. 12–17], [129, pp.
14–18], Aigner and Ziegler [6, pp. 3–6], and in Narkiewicz’s monograph
[210, pp. 1–10] can be found many different proofs of Euclid’s theorem.
Several proofs of this theorem were also explored by P. L. Clark [59,
Ch. 10, pp. 115–121] and T. Yamada [324, Sections 1-6, 10-12]. In
Appendix C) of this article we give a list of all 168 different proofs of
Euclid’s theorem presented here (including elementary proofs related
to the infinitude of primes in special arithmetic progressions), together
with the corresponding reference(s), the name(s) of his (their) author(s) and the main method(s) and/or idea(s) used in it (them). This list is arranged by year of publication. We also give a comprehensive (Subject and Author) Index to this article.

The Bibliography of this article contains 291 references, consisting mainly of articles (including 47 Notes and Articles published in Amer. Math. Monthly) and mathematical textbooks and monographs. It also includes a few unpublished works or problems that are available on Internet Websites, especially on http://arxiv.org/, one Ph.D. thesis, an interview, one private correspondence, one Course Notes and Sloane’s On-Line Encyclopedia of Integer Sequences. Some of these references does not concern directly to proofs of the infinitude of primes, but results of each of them that are cited here give possibilities to simplify some of these known proofs.

We believe that our exposition of different proofs of Euclid’s theorem may be useful for establishing proofs of many new and old results in Number Theory via elementary methods.

2. A survey of different proofs of Euclid’s theorem

To save the space, in the sequel we will often denote by “IP” “the infinitude of primes”.

2.1. Proofs of IP based on Euclid’s idea. Ever since Euclid of Alexandria, sometimes before 300 B.C., first proved that the number of primes is infinite (see Proposition 20 in Book IX of his legendary Elements in [91] (also see [128, p. 4, Theorem 4]) where this result is called Euclid’s second theorem), mathematicians have amused themselves by coming up with alternate proofs. For more information about the Euclid’s proof of the infinitude of primes see e.g., [67], [76, p. 414, Ch. XVIII], [77], [80, pp. 73–75], [127] and [180, Section 3].

Euclid’s proof of IP is a paragon of simplicity: given a finite list of primes, multiply them together and add one. The resulting number, say N, is not divisible by any prime on the list, so any prime factor of N is a new prime. There are several variants of Euclid’s proof of IP. The simplest of them, which according to H. Brocard [42] is due in 1915 to C. Hermite, immediately follows from the obvious fact that the smallest prime divisor of $n! + 1$ is greater than n. Another of these proof, due to E. E. Kummer in 1878/9 [156] (also see [248, page 4] and [324]) is in fact an elegant variant of Euclid’s proof. In a long paper published in two installments 120 years ago ([228], [229]) J. Perott noticed that Euclid’s proof works if we consider $p_1 p_2 \cdots p_k − 1$ instead of $p_1 p_2 \cdots p_k + 1$. Stieltjes’ proof in 1890 given in his work
10 ROMEO MEŠTROVIĆ

(10 ROMEO MEŠTROVIĆ) C. O. Boije af Gennäs’ proof in 1893
(10 ROMEO MEŠTROVIĆ) Braun’s proof in 1899
(10 ROMEO MEŠTROVIĆ) Lévi’s proof in 1909/10
(10 ROMEO MEŠTROVIĆ) Métrod’s proof in 1917
(10 ROMEO MEŠTROVIĆ) Thompson’s proof in 1953
(10 ROMEO MEŠTROVIĆ) Mullin’s proof of 1964
(10 ROMEO MEŠTROVIĆ) Trigg’s proof in 1974
(10 ROMEO MEŠTROVIĆ) and Aldaz and Bravo’s proof (10 ROMEO MEŠTROVIĆ) in 2003

present refinements of Euclid’s proof on IP. For example, supposing
that the set of all primes is a finite \(\{p_1, p_2, \ldots, p_k\}\) with their product

\[P = p_1 p_2 \cdots p_k \]

we find that

\[a/P > 1/2 + 1/3 + 1/5 = 31/30 > 1. \]

Therefore, Braun (10 ROMEO MEŠTROVIĆ) concluded that

\[a \] must have a prime divisor, say \(p_j\), but then \(p_j\) must divide

\[P/p_j, \]

which is not possible.

Using algebraic number theory, in 1985 R. W. K. Odoni (10 ROMEO MEŠTROVIĆ) investigated the sequence \((w_n)\) recursively defined by R. K. Guy and R. Nowakowski (10 ROMEO MEŠTROVIĆ) as

\[w_1 = 2, \quad w_{n+1} = 1 + w_1 \cdots w_n \quad (n \geq 1) \]

and observed that \(w_n \to \infty\) as \(n \to \infty\) and the \(w_n\) are pairwise relatively prime. Clearly, this yields IP.

Furthermore, Problem 62 of (10 ROMEO MEŠTROVIĆ) whose solution uses Euclid’s idea, asserts that if \(a, b\) and \(m\) are positive integers such that \(a\) and \(b\) are relatively prime, then the arithmetic progression \(\{ak + b : k = 0, 1, 2, \ldots\}\) contains infinitely many terms relatively prime to \(m\). This together with Euclid’s argument (i.e., assuming \(m\) to be a product of consecutive primes) immediately yields IP. A proof of IP quite similar to those of Braun is given in 2008 by A. Scimone (10 ROMEO MEŠTROVIĆ).

If \(p_n\) denotes the \(n\)th prime, then by (10 ROMEO MEŠTROVIĆ) (Problem 47; pages 8 and 55, Problem 92) solved by A. Mąkowski, \(p_{n+1} + p_{n+2} \leq p_1 p_2 \cdots p_n\) for each \(n \geq 3\). This shows that for each \(n \geq 3\) there are at least two primes between the \(n\)th prime and the product of the first \(n\) primes. This estimate is in 1998 improved by J. Sándor (10 ROMEO MEŠTROVIĆ) who showed that \(p_n + p_{n-2} + p_1 p_2 \cdots p_{n-1} \leq p_1 p_2 \cdots p_n\) for all \(n \geq 3\).

In 2008 B. Joyal (10 ROMEO MEŠTROVIĆ) proved IP using the sieve of Eratosthenes, devised about 200 B.C., which is a beautiful and efficient algorithm for finding all the primes less than a given number \(x\).

Recently, using Euclid’s idea and a representation of a rational number in a positive integer base, in (10 ROMEO MEŠTROVIĆ) the author of this article obtained
an elementary proof of IP. The second similar author’s proof of IP is given here in Section 4.

We see from Euclid’s proof that $p_{n+1} < p_1p_2 \cdots p_n$ for each $n \geq 2$, where p_k is the kth prime. In 1907 H. Bonse [36] gave an elementary proof of a stronger inequality, now called Bonse’s inequality [300, p. 87]: if $n \geq 4$, then $p_{n+1}^2 < p_1p_2 \cdots p_n$. In 2000 M. Dalezman [70, Theorem 1] gave an elementary proof of stronger inequality $p_{n+1}p_{n+2} < p_1p_2 \cdots p_n$ with $n \geq 4$. J. Sondow [282, Theorem 1] exposed a simple proof based on the Euler formula $\zeta(2) := \sum_{n=1}^{\infty} 1/n^2 = \pi^2/6$ (suggested by P. Ribenboim in 2005), that for all sufficiently large n, $p_{n+1} < (p_1p_2 \cdots p_n)^{2\mu}$, where μ is the irrationality measure for $6/\pi^2$ (for this concept and related estimates see e.g., [247, pp. 298–309]). Recall also that Bonse’s inequality is refined in 1960 by L. Pósa [242], in 1962 by S. E. Mamangakis [179], in 1971 by S. Reich [244] and in 1988 by J. Sándor [257].

Remarks. Euclid’s proof of IP may be used to generate a sequence (a_n) of primes as follows: put $a_1 = 2$ and if $a_1, a_2, \ldots, a_{n-1}$ are already defined then let a_n be the largest prime divisor of $P_n := a_1a_2 \cdots a_{n-1} + 1$ (Sloane’s sequence A002585). This sequence was considered by A. A. Mullin in 1963 [201] who asked whether it contains all primes and is monotonic. After a few terms of this sequence were computed (in 1964 by R. R. Korfhage [153], in 1975 by R. K. Guy and R. Nowakowski [123] and in 1984 by T. Naur [212]) it turned out that $a_{10} < a_9$. It is still unknown whether a sequence (a_n) contains all sufficiently large primes. Moreover, it can be constructed the second sequence of primes, similarly as the above sequence (a_n), except that we replace the expression “$P_n := a_1a_2 \cdots a_{n-1} + 1$” by “$Q_n := a_1a_2 \cdots a_{n-1} - 1$”. This is the sequence A002584 in [278].

2.2. Proofs of IP based on Goldbach’s idea on mutually prime integers. Goldbach’s idea consists in the obvious fact that any infinite sequence of pairwise relatively prime positive integers leads to a proof of Euclid’s theorem. C. Goldbach’s proof presented in a letter to L. Euler in July 20, 1730 (see Fuss [101, pp. 32–34, I], [248, p. 6], [98, pp. 40–41], [233, p. 4] or [9, pp. 85–86]) is based on the fact that the Fermat numbers $F_n := 2^n + 1, n = 0, 1, 2, \ldots$ are mutually prime (that is, pairwise relatively prime). Indeed, it is easy to see by induction that $F_{m-2} = F_0F_1 \cdots F_{m-1}$. This shows that if $n < m$, then F_n divides F_{m-2}. Therefore, any prime dividing both F_m and F_n ($n < m$) must divide the difference $2 = F_m - (F_{m-2})$. But this is impossible since F_n is odd, and this shows that Fermat numbers are pairwise relatively
Finally, assuming a prime factor of each of integers F_n, we obtain an infinite sequence of distinct prime numbers.

It seems that this was the first proof of IP which essentially differed from that of Euclid. In 1994 P. Ribenboim [245] wrote that the previous proof appears in an unpublished list of exercises of A. Hurwitz preserved in ETH in Zürich. A quite similar proof was published in the well known collections of exercises of G. Pólya and G. Szegő [240, p. 322, Problem 94] in 1925 (see also [128, p. 14, Theorem 16]).

Clearly, Goldbach’s idea is based on the fact that, in general the prime divisors of a sequence of integers greater than 1 form an infinite sequence of distinct primes if the integers in the sequence are pairwise relatively prime. In other words, Goldbach’s proof of IP will work with any sequence of positive integers for which any two distinct terms of the sequence are relatively prime.

Notice that Fermat numbers F_n are Sloane’s sequence A000215; other sequences related to Fermat numbers are A019434, A094358, A050922, A023394 and A057755 and A080176. Today, the Fermat and Mersenne numbers $M_n := 2^n − 1$ which are considered in the next subsection, are important topics of discussion in many courses devoted to elementary number theory. For more information on classical and alternative approaches to the Fermat and Mersenne numbers see the article [143].

In 1880 J. J. Sylvester (see e.g., [305] and Wikipedia) generalized Fermat numbers via a recursively defined sequence of positive integers in which every term of the sequence is the product of the previous terms, plus one. This sequence is called Sylvester’s sequence and it is recursively defined as $a_{n+1} = a_n^2 − a_n + 1$ with $a_1 = 2$ (this is Sloane’s sequence A000058) and generalized by Sloane’s sequences A001543 and A001544. Clearly, choosing a prime factor of each term of Sylvester’s sequence yields IP.

Goldbach’s idea is later used by many authors to prove Euclid’s theorem by a construction of an infinite sequence of positive integers $1 < a_1 < a_2 < a_3 < \cdots$ that are pairwise relatively prime (i.e., without a common prime factor). In particular, in 1956 V. C. Harris [130] (see also [233, p. 6, Exercise 1.2.5], [321]) inductively defined an increasing sequence of pairwise relatively prime positive integers (cf. Sloane’s sequence A001685). This is the sequence (A_n) recursively defined as $A_n = A_0A_1 \cdots A_{n−3}A_{n−1} + A_{n−2}$, for $n ≥ 3$ (A_0, A_1 and A_2 are given pairwise coprime positive integers, and A_n is the numerator of approximants of some regular infinite continued fraction).

Euclid’s argument and Goldbach’s idea are applied in solution of Problem 52 [275, pages 5 and 40] to show that there exist arbitrarily long arithmetic progressions formed of different positive integers such
that every two terms of these progressions are relatively prime; namely, for any fixed integer \(m \geq 1 \) the numbers \((m!k + 1)\) for \(k = 1, 2, \ldots, m \) are relatively prime (cf. Sloane’s sequence A104189). This yields IP. This proof was later communicated to P. Ribenboim by P. Schorn [248 pp. 7–8].

Several other sequences leading to proofs of IP were established in 1957 by J. Lambek and L. Moser [160] and in 1966 by M. V. Subbarao [286]. Furthermore, in 1964 A. W. F. Edwards ([82], [248, page 7]) indicated various sequences, defined recursively, having this property (two related sequences are Sloane’s sequences A002715 and A002716). Similarly, in 2003 M. Somos and R. Haas [281] proved IP using an integer sequence defined recursively whose terms are pairwise relatively prime (cf. Sloane’s sequences A064526, A000324 and A007996). All these sequences (excluding one defined by Harris) and several other sequences of pairwise relatively prime positive integers are presented quite recently by A. Nowicki in his monograph [221, pp. 50–53, Section 3.5]. For example, if \(f(x) = x^2 - x + 1 \), then for any fixed \(n \in \mathbb{N} \), a sequence \(n, f(n), f(f(n)), f(f(f(n))), \ldots \) has this property [221, p. 51, Problem 3.5.4]. This is also satisfied for the following sequences \((a_n)\) defined recursively as:

\[
a_{n+1} = a_n^3 - a_n + 1; \quad a_1 = a, a_2 = a_1 + b, \ldots, a_{n+1} = a_1 a_2 \cdots a_n + b, \ldots
\]

with any fixed \(a, b \in \mathbb{N} \) such that \(b > a \geq 1; \quad a_1 = 2, a_{n+1} = 2^{a_n} - 1 \), and also for the sequence \(a_n := 1 + 3^n + 9^n \) given in [221 pp. 51–52, Problems 3.5.5, 3.5.6, 3.5.7, 3.5.10 and 3.5.15, respectively]. Furthermore, by a problem of 1997 Romanian IMO Team Selection Test [10, p. 149, Problem 7.2.3]), for any fixed integer \(a > 1 \), the sequence \((a^{n+1} + a^n + 1)\) \((n = 1, 2, \ldots)\) contains an infinite subsequence consisting of pairwise relatively prime positive integers. By a problem of the training of the German IMO team [85, pp. 121–122, Problem E3], using the factorization \(2^{2n+1} + 2^{2n} + 1 = (2^n - 2^n - 1)(2^n + 2^n - 1) \), it was proved that \(2^{2n+1} + 2^{2n} + 1 \) has at least \(n \) different prime factors for each positive integer \(n \).

In 1965 M. Wunderlich [321] (also see [210 p. 9, eleventh proof of Theorem 1.1]) indicated that every sequence \((a_n)\) of distinct positive integers having the property that \((m, n) = 1\) implies \((a_m, a_n) = 1\) leads to the proof of IP ((\(m, n\)) denotes the greatest common divisor of \(m\) and \(n\)). In particular, M. Wunderlich [321] noticed that Fibonacci’s sequence \((f_n)\) (defined by conditions \(f_1 = f_2 = 1, f_{n+2} = f_{n+1} + f_n \) with \(n = 1, 2, \ldots \); Sloane’s sequence A000045) has this property (proved in 1846 by H. Siebeck [272; also see 307 p. 30]). Notice that the sequence \((2^n - 1)\) also satisfies this property because of the well known fact that
\((2^n - 1, 2^m - 1) = 2^{(m,n)} - 1\) for all \(n, m \in \mathbb{N}\) (cf. \[233\] 5]). Using Wunderlich's argument indicated above, in 1966 R. L. Hemminiger \[134\] established IP by proving that the terms of the sequence \((a_n)\) defined recursively as \(a_1 = 2, a_{n+1} = 1 + \prod_{i=1}^{n} a_i\), are mutually prime. However, it is easy by induction to show that \(a_{n+1} = a_2^n - a_n + 1\) for each \(n \in \mathbb{N}\) (cf. Granville's proof in \[233\] p. 5, Exercise 1.2.3), i.e., \((a_n)\) coincides with Sylvester's sequence.

Further, IP obviously follows from Problem 51 of \[275\] pages 4 and 39 solved by A. Rotkiewicz which asserts that Fibonacci's sequence contains an infinite increasing subsequence such that every two terms of this sequence are relatively prime. This means that the set of all prime divisors of Fibonacci sequence is infinite. It was shown in 1921 by G. Pólya \[239\] that the same happens for a large class of linear recurrences (also cf. related results of H. Hasse \[133\] in 1966, J. C. Lagarias \[159\] in 1985, P. J. Stephens \[285\] in 1976, M. Ward \[310\] and \[311\] in 1954 and 1961, and H. R. Morton \[197\] in 1995).

Proof of IP due to S. P. Mohanty \[194\] Theorem 1 and Corollary 1; also see \[195\], \[233\] pp. 5–6, Exercise 1.2.4) in 1978, uses sequences that generalized Sylvester's sequence. By a problem of Polish Mathematical Olympiad in 2001/02 \[232\] Problem 6], see also \[221\] p. 51, Problem 3.5.3]), for any fixed positive integer \(k\), all the terms of a sequence \((a_n)\) defined by \(a_1 = k + 1, a_{n+1} = a_n^2 - ka_n + k\), are pairwise relatively prime. Notice that this sequence is a generalization of Sylvester's sequence and a particular case of a sequence from mentioned Mohanty's proof. Motivated by the same idea, in 1947 R. Bellman \[31\] (see also \[248\] page 7]) gave a simple “polynomial method” to produce infinite sequences with the mentioned property. In 1978 S. P. Mohanty \[194\] Theorem 3] proved that for any prime \(p > 5\), every prime divisor of Fibonacci number \(f_p\) is greater than \(p\). This immediately yields IP. IP also follows from Problem 42 of \[275\] pages 4, 35 and 362 which asserts that there exists an increasing infinite sequence of pairwise relatively prime triangular numbers \(t_n := n(n + 1)/2\), with \(n = 1, 2, \ldots\) (Sloane's sequence A000217). The same statement related to the tetrahedral numbers \(T_n := n(n + 1)(n + 2)/6\), with \(n = 1, 2, \ldots\), was given by Problem 43 of \[275\] pages 4 and 362 (Sloane's sequence A000292).

Goldbach's idea is later also applied by some authors. Firstly, notice that IP is indirectly proved by S. W. Golomb in 1963 (\[112\] the sequence (1)), also see \[3\] Section 2.5) which was constructed a recursive sequence whose terms are pairwise relatively prime and it present a generalization of Fermat numbers. (cf. Sloane's sequence A000289).
Analyzing the prime factors of $a^n - 1$ for given integer $a > 1$ and different integer values $n \geq 1$, in 2004 T. Ishikawa, N. Ishida and Y. Yuki-moto [138, Corollary 3] proved that there are infinitely many primes. Further, in 2007, for given $n \geq 2$ M. Gilchrist [108] constructed the so-called *-set of positive integers a_1, a_2, \ldots, a_n satisfying $a_j \mid a_i - a_j$ for all distinct i and j with $1 \leq i, j \leq n$, and showed that the numbers $b_k := 2^{a_k} + 1$, $k = 1, 2, \ldots, n$ are mutually prime. Consequently, the set of primes is infinite. In a similar way, using the fact that for any integer $n > 1$, n and $n + 1$ are mutually prime, and repeating this to $n(n + 1)$ and $n(n + 1) + 1$ etc., in 2006 F. Saidak [254] (for a generalization of this proof, see [196, pp. 26–27]) proved the infinitude of primes. Recently, J. M. Ash and T. K. Petersen [19, Examples 4a)-4e)] proved IP by presenting similar recursively defined sequences of positive integers. For a construction of some infinite coprime sequence see the paper [172] of N. Lord in 2008.

2.3. Proofs of IP based on algebraic number theory arguments. In 1736 L. Euler was derived second proof of Euclid’s theorem (published posthumously in 1862 [93] (also see [96, Sect. 135] and [76, p. 413]) by using the totient function $\phi(n)$, defined as the number of positive integers not exceeding n and relatively prime to n (Sloane’s sequence A000010); for a proof also see [46, pp. 134–135], [233, page 3]. As noticed by Dickson [76, p. 413] (see also [258, page 80]), this proof is also attributed in 1878/9 by Kummer [156] who gave essentially Euler’s argument. The proof is based on the multiplicativity of the ϕ-function. Namely, if p_1, p_2, \ldots, p_n is a list of distinct $n \geq 2$ primes with product P, then

$$\phi(P) = (p_1 - 1)(p_2 - 1) \cdots (p_n - 1) \geq 2^{n-1} \geq 2.$$

This inequality says there exists an integer in the range $[2, P]$ that is relatively prime to P, but such an integer has a prime factor necessarily different from any of the p_k with $k = 1, 2, \ldots, n$. This yields IP.

Euler’s idea is in 2009 applied by J. P. Pinasco [230]. Assuming that p_1, p_2, \ldots, p_n are all the primes and using the Inclusion-Exclusion Principle, Pinasco derived the formula for number of integers in the interval $[1, x]$ that are divisible by at least of one of primes p_i, which yields

$$[x] - 1 = \sum_i \left[\frac{x}{p_i} \right] - \sum_{i<j} \left[\frac{x}{p_ip_j} \right] + \sum_{i<j<k} \left[\frac{x}{p_ip_jp_k} \right] - \cdots + (-1)^{n+1} \left[\frac{x}{p_1p_2 \cdots p_n} \right]$$

($[\cdot]$ denotes the greatest integer function), whence letting $x \to \infty$ easily follows that $1 > 1$; a contradiction. Using the identity $\sum_{n=1}^{\infty} \mu(n) \left[x/n \right] =$
1 established in 1854 by E. Meissel \[182\] (cf. also \[270\], the formula (3.5.14)), in 2012 the author of this article \[186\] presented a very short “Pinasco’s revisted” proof of IP. Furthermore, the author \[186, Remark\] noticed that a quite similar proof of IP also follows using Legendre’s formula stated in the modern form \[210\] p. 33, Theorem 1.17 as

\[
\pi(n) - \pi(\sqrt{n}) = \sum_{d \mid \Delta} \mu(d) \left\lfloor \frac{x}{d} \right\rfloor - 1
\]

(\(\pi(n)\) denotes the number of primes not exceeding \(n\)).

Using Theory of Commutative Groups, in 1888 J. Perott \([228\), \([229, pp. 303–305]\); also cf. \([65]\) showed that, if \(p_1, p_2, \ldots, p_n\) are primes, then there exist at least \(n - 1\) primes between \(p_n\) and \(p_1 p_2 \cdots p_n\).

Using Euler theorem which asserts that \(a^{\varphi(n)} \equiv 1 \pmod{n}\) with relatively prime integers \(a\) and \(n \geq 1\), in 1921 G. Pólya \([239\) pp. 19–21] (also see \([240\) pp. 131, 324, Problem 107]) proved that the set of primes dividing the integer values of the exponential function \(ab^x + c\) (\(x = 0, 1, 2, \ldots\)) with integer coefficients \(a \neq 0, c \neq 0\) and \(b \geq 2\) is infinite.

Another proof of IP, based on the divisibility property \(n \mid \varphi(a^n - 1)\) (\(a, n > 1\) are integers), is given in 1986 by M. Deaconescu and J. Sándor \([71\] (see also \([237]\)). Notice that the \(\varphi\)-function is applied by G. E. Andrews \([12\) p. 102, Theorem 8-4] to give an elementary proof that \(\lim_{x \to \infty} \pi(x)/x = 0\), where \(\pi(x)\) is the prime-counting function defined as the number of primes not exceeding \(x\) (\(x\) is any real number). In other words, the “probability” that a randomly chosen positive integer is prime is 0. Using the Inclusion-Exclusion Principle, this result is by an elementary way also proved by A. M. Yaglom and I. M. Yaglom \([322\) pp. 34, 209–211, Problem 94]

It was noticed in \([233\) p. 4, Exercise 1.2.1] that adapting Euclid’s proof of IP, it can be proved that for every integer \(m \geq 3\), there exist infinitely many primes \(p\) such that \(p - 1\) is not divisible by \(m\). This result is generalized by A. Granville \([233\) p. 4, Exercise 1.2.2], \([132\) p. 168]; also cf. \([118\) p. 4, Exercises 1.3 a\]) to prove that if \(H\) is a proper subgroup of the multiplicative group \(\mathbb{Z}/m\mathbb{Z}^*\) of elements \((\mod m)\), then there exist infinitely many primes \(p\) with \(p \pmod{m} \notin H\).

Similarly, considering order of \(a\pmod{p}\) in the multiplicative group modulo \(p\), in 1979 A. Weil \([315\) p. 36, Exercise VIII.3] proved that if \(p\) is an odd prime divisor of \(a^{2n} + 1\), with \(a \geq 2\) and \(n \geq 1\), then \(p - 1\) is divisible by \(2^{n+1}\). This immediately yields IP.

Using Euler’s theorem, it can be proved by induction that the sequence \(2^n - 3, n = 1, 2, \ldots\) contains an infinite subsequence whose
terms are pairwise relatively prime (Problem 3 proposed on International Mathematical Olympiad (IMO) 1971 [79, pages 70 and 392–393]). Another less known proof is based on Lagrange theorem on order of subgroup of a finite group and Mersenne number $2^p - 1$ with a prime p as follows. Namely, using Lagrange theorem it can be shown that each prime divisor q of $2^p - 1$ divides $q - 1$, and so $p < q$, which implies IP; using this fact, we can inductively obtain an infinite increasing sequence (p_n) of primes assuming that $p_{n+1} | 2^{p_n} - 1$ for each $n = 1, 2, \ldots$. This proof can be found in [6, p. 3, Second proof], [11, p. 32, Proposition 1.30 and p. 72, Theorem 1.50] and at webpage [72]. Mersenne numbers ([248, pp. 75–87, Ch. VII], [115, pp. 109–110]) $2^n - 1$, $n = 1, 2, \ldots$ and the numbers $2^p - 1$ with p prime form Sloane’s sequences A000225 and A001348, respectively; also see related sequences A000668, A000043, A046051 and A028335).

Similarly, in 1978 Mohanty [194, Theorem 2] proved that for any prime $p > 3$, every prime divisor of $(2^p + 1)/3$ is greater than p, and this together with the previous argument yields IP.

Using the Theory of periodic continued fractions (cf. related Sloane’s sequence A003285) and the Theory of negative Pell’s equations $x^2 - dy^2 = -1$, in 1976 C. W. Barnes [25] proved IP. Namely, supposing that $p_1 = 2, p_2, \ldots, p_k$ are all the primes with a product $2Q$, Barnes proved that $Q^2 + 1$ cannot be a power of two; but T. Yamada [324, p. 8] noticed that this fact is obvious since $Q^2 + 1 \equiv 2 \pmod{4}$.

A proof of D. P. Wegener [314] of 1981 based on a study of the sums of the legs of primitive Pythagorean triples also contains Euclid’s idea (these triples are triples (x, y, z) of positive integers such that $x^2 + y^2 = z^2$ and x and y are relatively prime; cf. [59, Ch. 2, pp. 31–34]).

We also point out an interesting result established as a solution of advanced problem in [11] pp. 110–111, Problem 37 (a)]; namely, this result (with two solutions) asserts that if a and b are relatively prime positive integers, then in the arithmetic progression $a + nb, n = 1, 2, \ldots$ there are infinitely many pairwise relatively prime terms, which yields IP.

Washington’s proof of Euclid’s theorem from 1980 ([312], [248 pp. 11–12]) is via commutative algebra, applying elementary facts of the Theory of principal ideal domains, unique factorization domains, Dedekind domains and algebraic numbers, may be found in [256]. Namely, using the fact that $(1 + \sqrt{-5})(1 - \sqrt{-5}) = 2 \times 3$ in the ring of algebraic integers $a + b\sqrt{-5}$ ($a, b \in \mathbb{Z}$) (i.e., in the field of numbers $a + b\sqrt{-5}$ ($a, b \in \mathbb{Q}$)), it follows that this ring is not a unique factorization domain. Hence, it is not a principal domain, whence Washington deduced
The algebraic arguments applied in this proof are exposed and well studied in 2001 by B. Chastek [54].

Quite recently in 2011, applying two simple lemmas in the Theory of Finite Abelian Groups related to the product of some cyclic groups \mathbb{Z}_m, R. Cooke [65] modified Perott’s proof noticed above, to establish that there are at least $n - 1$ primes between the nth prime and the product of the first n primes.

A “dynamical systems proof” due to S. Srinivasan ([283], also see [324]) in 1984 uses a polynomial method and Fermat little theorem. Srinivasan constructed the sequence (a_n) of positive integers satisfying $a_i | a_{i+1}$ and $a_i | a_{i+1}/a_i$ for each $i = 1, 2, \ldots$. Then we immediately see that the sequence (a_{n+1}/a_n) contains no two integers which has a nontrivial common divisor. This yields IP.

In 2011 P. Pollack [235] considered a M"obius pair of arithmetic functions (f, g); that is, functions satisfying $f(n) = \sum_{d|n} g(d)$ for all $n = 1, 2, \ldots$, and hence, one can express g in terms of f by the M"obius inversion formula [218]. Then Pollack deduced IP by proving the uncertainty principle for the M"obius transform which asserts that the functions f and g that become M"obius pair cannot both be of finite support unless they both vanish identically. The strategy of Pollack proof goes back to J. J. Sylvester [288] in 1871, who using certain identities between rational functions, gave an argument in the same spirit for IP of the form $p \equiv 3(\text{mod } 4)$ and $p \equiv 5(\text{mod } 6)$ (cf. Remarks (ii) in [235]).

In 2011 R. M. Abrarov and S. M. Abrarov [4, p. 9] deduced IP applying Euclid’s idea to the identity $\mu(n) = -\sum_{i,j=1}^{\sqrt{n}} \mu(i)\mu(j)\delta\left(\frac{n}{ij}\right)$ ($n \geq 2$) obtained in their earlier paper [3, the identity (11)] (also see [4, p. 2, the identity (3)]), involving the M"obius function $\mu(n)$ (defined so that $\mu(1) = 1$, $\mu(n) = (-1)^k$ if n is a product of k distinct primes, and $\mu(n) = 0$ if n is divisible by the square of a prime), and the delta function $\delta(x)$ (defined as $\delta(x) = 1$ if $x \in \mathbb{N}_0 := \{0, 1, 2, \ldots\}$, and $\delta(x) = 0$ if $x \not\in \mathbb{N}_0$). In the same paper, the authors proved IP [4, p. 9] as an immediate consequence of [4, the formula (26)] for the asymptotic density of prime numbers. Their third proof [4, pp. 9–10] follows from [4, p. 2, the formula (4)] related to the prime detecting function.

2.4. Proof of IP based on Euler’s idea on the divergence of the sum of prime reciprocals and Euler’s formula. Notice that the proofs of Euclid’s theorem presented in the previous subsections are mainly elementary. On the other hand, there are certain proofs of Euclid’s theorem that are based on ideas from Analytic Number Theory. A more sophisticated proof of Euclid’s theorem was given...
many centuries later by the Swiss mathematician Leonhard Euler. In
1737 Euler in his work [94, pp. 172–174] (also see [92]) showed that
by adding the reciprocals of successive prime numbers you can attain
a sum greater than any prescribed number; that is, in terms of modern
Analysis, the sum of the reciprocals of all the primes is divergent (cf.
[248, page 8], [98, pp. 8–9]). For more information on Euler’s work on
infinite series see [304]. Briefly, Euler considered the possibly infinite
product \(\prod_{p \leq x} \left(1 - \frac{1}{p} \right)^{-1} \), where the index \(p \) runs over all primes. He
expanded the product to obtain the divergent infinite harmonic series
\(\sum_{n=1}^{\infty} \frac{1}{n} \), concluded the infinite product was also divergent, and from
this concluded that the infinite series \(\sum \frac{1}{p} \) also diverges. This can be
written symbolically as
\[
\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \frac{1}{13} + \frac{1}{17} + \frac{1}{19} + \cdots = +\infty.
\]
A result related to this divergence was refined in 1874 by F. Mertens
[184] (see also [128, p. 351, Theorem 427]); namely, by Mertens’ second theorem,
as \(n \to \infty \) the sum \(\sum_{p \leq n} 1/p - \log \log n \) (taken over all
primes \(p \) not exceeding \(n \)) converges to the Meissel-Mertens constant
\(M = 0.261497\ldots \) (also known as the Hadamard-de la Vallée-Poussin constant).

Using the Euler’s idea, in 1888 J. J. Sylvester [290] (also cf. [210, p.
7, Sixth proof of Theorem 1.1]) observed that
\[
\prod_{p \leq x} \left(1 - \frac{1}{p} \right)^{-1} = \prod_{p \leq x} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \cdots \right) \geq \sum_{n \leq x} \frac{1}{n} \geq \log x,
\]
(where the product runs over all primes \(p \) not exceeding \(x \)), and since
\(x \) may be arbitrarily large, the set of primes must be infinite. Using
the above estimate and the convergence of the series \(\sum_{n=1}^{\infty} 1/n^2 \), in the
same paper J. J. Sylvester [290] (also cf. [210, pp. 11–12, Second proof
of Theorem 1.4]) easily proved that the product \(\prod_{p \leq x} (1 + 1/p) \) tends
to infinity as \(x \to \infty \). This implies IP.

A correct realization of Euler’s idea was presented by L. Kronecker
in his lectures in 1875/76 ([154]; also see [132, pp.269–273] and [76, p.
413, Ch. XVIII]). Kronecker noted that “Euler’s” proof also follows
from the Euler’s formula
\[
\sum_{n=1}^{\infty} \frac{1}{n^s} = \prod \left(1 - \frac{1}{p^s} \right)^{-1} (s > 1),
\]
where the product on the right is taken over all primes \(p \) (the first
formula in the next subsection), and the fact that the series \(\sum_{n=1}^{\infty} 1/n^s \)
diverges for each \(s > 1 \). For some discussion of the history of this
formula in relation to the infinitude of primes, see [64]. As noticed by Dickson [76, p. 413], in 1887/8 L. Gegenbauer [104] proved $\sum_{n=1}^{\infty} 1/n^s$. Dickson [76, p. 413] remarked that in 1876 R. Jaensch [141] repeated Euler’s argument, also ignoring convergency.

Other elementary proofs of the fact that the sum of reciprocals of all the primes diverges were given in 1943 by R. Bellman [29], in 1956 by E. Dux [81], in 1958 by L. Moser [199], in 1966 by J. A. Clarkson [61] and in 1995 by D. Treiber [298]. A survey of some these proofs was given in 1965 by T. Salát [292]. Furthermore, in 1980 C. Vanden Eynden [303] considered Euler’s type product of all expressions of the form

$$
\left(1 + \frac{1}{p}\right) \sum_{k=0}^{\infty} \frac{1}{p^{2k}} = \sum_{j=0}^{\infty} \frac{1}{p^j},
$$

where p ranges over the set of all primes not exceeding x. This equality together with the divergence of the series $\sum_{n=1}^{\infty} 1/n$ and the convergence of the series $\sum_{n=1}^{\infty} 1/n^2$ easily yields the divergence of the sum of the reciprocals of all the primes.

It is interesting to notice that in actual reality, Euler never presented his work as a proof of Euclid’s theorem, though that conclusion is clearly implicit in what he did. Euler’s remarkable proof of $\sum_{n=1}^{\infty} 1/n$ amounts to unique factorization, and it is also discussed at length by R. Honsberger in his book [137] and modified in 2003 by C. W. Neville [213, Theorem 1(a)]. In 1938 P. Erdős ([88]; also see [6, pp. 5–6, Sixth proof], [128, p. 17, Theorem 19] and [233, pp. 12–13]) gave an elementary “counting” proof of the divergence of the sum of reciprocals of primes, and consequently, the set of all primes is infinite. P. Pollack [233, p. 11] pointed out that it is remarkable that this method of proving $\sum_{n=1}^{\infty} 1/n$ (in contrast with Euclid’s proof, for instance) is independent of the additive structure of the integers.

Remarks. Notice that the asymptotic behavior of the product of

$$
\prod_{p \leq n} (1 - 1/p) \sim e^{-\gamma}/\log n,
$$

where the product runs over all primes p not exceeding n, and $\gamma = 0.577216 \ldots$ is Euler-Mascheroni constant. An elementary geometrical proof of Mertens’ third theorem with another constant c instead of $e^{-\gamma}$, was given in 1954 by A. M. Yaglom and I. M. Yaglom [323, pp. 41; 194–196, Problem 174]. Using Mertens’ third theorem (with the constant $e^{-\gamma}$), in [323, p. 42] the authors also derived the curious formula

$$
\prod_{p \leq n} (1 + 1/p) \sim (e^\gamma \log n)/\pi^2,
$$

as $n \to \infty$.

Furthermore, using the classical Chebyshev’s argument based on the well known de Polignac’s formula (attributed by Dickson[p. 263, Ch. IX]d to A.-M. Legendre [167, p. 8] in 1808) for the exponent $\nu_p(n!)$
of prime p dividing the factorial $n!$ given as $\nu_p(n!) = \sum_{k=1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor$, a short proof that the sum $\sum_p \log p/p$ diverges due to P. Erdős is presented in [324, 8th proof] and this yields IP. Similarly, using de Polignac’s formula, in 1969 [62, pp. 613–614, Remark 6] (cf. also [69, p. 54, Exercise 1.21]) E. Cohen gave a short simple proof that the series $\sum_p \log p/p$ diverges (the sum ranges over all the primes), which yields IP. This result also follows from Mertens’ first theorem obtained in 1874 by F. Mertens [184], which asserts that the quantity $|\sum_{p \leq n} \log p/p - \log n|$ is bounded, in fact < 4 (for an elementary proof, see [323, pp. 171, 183–186, Problem 171]). Notice that this result immediately follows from Mertens’ second theorem.

Further, combining the Euler’s idea with the geometrical interpretation of definite integral $\int_1^x \left(1/t\right) \, dt = \log x$ with $n \leq x < n + 1$ in their Problems book [6, p. 4, Fourth proof] A. M. Yaglom and I. M. Yaglom proved the inequality $\log x \leq \pi(x) + 1$, where $\pi(x)$ is the prime-counting function. This inequality immediately yields IP.

Another modification of Euler’s proof, involving the logarithmic complex function, can be found in book [69, p. 35] of R. Crandall and C. Pomerance.

Remarks. Notice that from Euclid’s proof (see e.g., [128, p. 12, Theorem 10]) easily follows that $\pi(x) \geq \log_2 \log_2 x$ for each $x > 1$, and the same bound follows more readily from the Fermat numbers proof. Of course, this is a horrible bound. From the Erdős’s proof [88] given above it can be easily deduced the bound $\pi(x) \geq \log x/(2 \log 2) = \log_3 x/2$ for each $x \geq 1$ [128, p. 17, Theorem 20]. This estimate can be improved using Bonse’s inequality presented above. Namely, applying induction, it follows from this inequality that $p_n \leq 2^n$; so, given $x \geq 2$, taking $x = 2^n + y$ with $0 \leq y < 2^n$, we find that $\pi(x) \geq \pi(2^n) \geq n \geq \log_2 x - 1$. □

Remarks. Recall that an extremely difficult problem in Number Theory is the distribution of the primes among the natural numbers. This problem involves the study of the asymptotic behavior of the counting function $\pi(x)$ which is one of the more intriguing functions in Number Theory. For elementary methods in the study of the distribution of prime numbers, see [74]. Studying tables of primes, C. F. Gauss in the late 1700s and A.-M. Legendre in the early 1800s conjectured the celebrated Prime Number Theorem: $\pi(x) = |\{p \leq x : p \text{ prime}\}| \sim x/\log x$ ($|S|$ denotes the cardinality of a set S). This theorem was proved much later ([69, p. 10, Theorem 1.1.4]; for its simple analytic proof see [215] and [326], and for its history see [26] and [110]). Briefly, $\pi(x) \sim x/\log x$ as $x \to \infty$, or in other words, the density of primes $p \leq x$ is $1/\log x;$
that is, the ratio $\pi(x) : (x/\log x)$ converges to 1 as x grows without bound. Using L'Hôpital's rule, Gauss showed that the logarithmic integral $\int_2^x dt \log t$, denoted by $\text{Li}(x)$, is asymptotically equivalent to $x/\log x$. Recall that Gauss felt that $\text{Li}(x)$ gave better approximations to $\pi(x)$ than $x/\log x$ for large values of x. Though unable to prove the Prime Number Theorem, several significant contributions to the proof of Prime Number Theorem were given by P. L. Chebyshev in his two important 1851–1852 papers ([55] and [56]). Chebyshev proved that there exist positive constants c_1 and c_2 and a real number x_0 such that $c_1 x/\log x \leq \pi(x) \leq c_1 x/\log x$ for $x > x_0$. In other words, $\pi(x)$ increases as $x \log x$.

Using methods of complex analysis and the ingenious ideas of Riemann (forty years prior), this theorem was first proved in 1896, independently by J. Hadamard and C. de la Vallée-Poussin (see e.g., [233, Section 4.1]).

2.5. Proof of IP based on Euler's product for the Riemann zeta function and the irrationality of π^2 and e. Proofs of IP presented in this subsection involve the Riemann zeta function (for $\Re(s) > 1$, to ensure convergence) defined as $\zeta(s) := \sum_{n=1}^{\infty} 1/n^s$. Riemann introduced the study of $\zeta(s)$ as a function of a complex variable in an 1859 memoir on the distribution of primes [249]. However, the connection between the zeta function and the primes goes back earlier. Over a hundred years prior, Euler had looked at the same series for real s and had shown that [94, Theorema 8]

$$\sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_p \frac{1}{1 - \frac{1}{p^s}} \quad (s > 1).$$

This is the Euler's factorization which is often called an analytic statement of unique factorization (this is a consequence of a well known standard uniqueness theorem for Dirichlet series [15, Theorem 11.3]).

Dickson [76, p. 414] (also see [233, p. 10]) noticed that in 1899 J. Braun attributed a proof of IP by means of the Euler’s formula $\sum_{n=1}^{\infty} 1/n^2 = \pi^2/6$ (for elementary proofs of this formula see [58], [107] and [170]) and the Euler’s factorization $\prod 1/(1 - p^{-s}) = \sum_{n=1}^{\infty} 1/n^2$ (Sloane’s sequence A013661) and the irrationality of π^2 proved in 1794 by Legendre [166] (also see [128, p. 47, Theorem 49], [247, p. 285]). Namely, if there were only finitely many primes, then $\zeta(2)$ would be rational; a contradiction. Notice also that this proof was reported in 1967 in the reminiscences of Luzin’s Moscow school of mathematics 100 years ago by L. A. Lyusternik [177, p. 176] (also cf. [64, p. 466]) which ascribed this proof to A. Y. Khinchin. Such proofs attract interest because they make unexpected connections. According
to Lyusternik, “exotic” proofs of IP were a routine challenge among Luzin’s students, and many such proofs were found. But apparently no one thought of publishing them. The previous equality is in fact, the well known Euler’s formula (or Euler’s product) [128, p. 245] for the Riemann zeta function \(\zeta(2) := \sum_{n=1}^{\infty} \frac{1}{n^2} \) [128, p. 246, Theorem 280]. The same proof of IP was also presented in 2007 by J. Sondow [282]. Notice that, applying the same argument for the product formula \(\prod_{1 < p} \left(\frac{1}{1 - \frac{1}{p^2}} \right) = \sum_{n=1}^{\infty} \frac{1}{n^3} := \zeta(3) \) together with a result of R. Apéry in 1979 [13] that \(\zeta(3) \) is irrational, we obtain IP.

Further, using the Euler’s formulas for \(\zeta(2) \) and \(\zeta(4) = \sum_{n=1}^{\infty} \frac{1}{n^4} = \pi^4/90 \) [128, p. 245] (Sloane’s sequence A0013662), it can be easily obtained that 5/2 = \(\prod_{p} \left(\frac{1}{1 - \frac{1}{p^2}} \right) \), where the product is taken over all the primes [233, p. 11]. In 2009 P. Pollack [233, p. 11] observed that if the set of all primes is finite, then the numerator of the ratio on the right of this formula is not divisible by 3, but its denominator is divisible by 3. This contradiction yields IP. We recall Wagstaff’s (open) question [122, B48] as to whether there exists an elementary proof of the previous formula.

Notice that \(\zeta(2) \) and \(\zeta(4) \) are two special cases of the following classic formula discovered by Euler in 1734/35 [92], which express \(\zeta(2n) \) as a rational multiple of \(\pi^{2n} \) involving Bernoulli number \(B_{2n} \): \(\zeta(2n) = (-4)^{n-1}B_{2n}\pi^{2n}/(2 \cdot (2k)!) \) \((n = 1, 2, 3, \ldots)\). An elementary proof of this formula for \(n = 1 \) is given by I. Papadimitriou [224] in 1973 and for arbitrary \(n \) by T. M. Apostol [14] in the same year (for another elementary evaluations of \(\zeta(2n) \) see [32] and [223]). For instance, since \(B_2 = 1/6 \) and \(B_4 = 1/30 \), we find that \(\zeta(2) = \pi^2/6 \) and \(\zeta(4) = \pi^4/90 \), respectively. □

2.6. Combinatorial proofs of IP based on enumerative arguments. Several combinatorial proofs of IP involve simple counting arguments. More precisely, these proofs are mainly based on counting methods which are used in them to count the cardinality of integers
less than a given integer \(N \) and which satisfy certain divisibility properties. The first such proof, given by J. Perott in 1881 ([227], [248, p. 10] and [210, p. 8]) is based on the facts that the series \(\sum_{n=1}^{\infty} 1/n^2 \) is convergent with the sum smaller than 2 and that there exist exactly \(2^n \) divisors of the product of \(n \) distinct primes. In his proof Perott also established the estimate \(\pi(n) > \log_2(n/3) \), where \(\pi(n) \) is the number of primes less than or equal to \(n \). Perott’s proof was modified in [233, pp. 11–12] by eliminating use of the formula \(\zeta(2) = \pi^2/6 \). Using Perott’s method, in 2006 L. J. P. Kilford [148] presented a quite similar proof of IP based on the fact that for any given \(k \geq 2 \), the sum \(\sum_{n=1}^{\infty} 1/n^k \) converges to a real number which is strictly between 1 and 2.

A classical proof of IP which is combinatorial in spirit and entirely elementary, was given by Thue in 1897 in his work [297] (also see [76, 414] and [248, page 9]). This proof uses a “counting method” and the fundamental theorem of unique factorization of positive integers as a product of prime numbers as follows.

Choose integers \(n, k \geq 1 \) such that \((n + 1)^k < 2^n \) and set \(m = 2^{e_1} \cdot 3^{e_2} \cdots p_r^{e_r} \), where we assume that \(2 < 3 < \cdots < p_r \) is a set of all the primes and \(1 \leq m \leq 2^n \). Suppose that \(m \leq 2^n \). Since \(m \leq 2^n \), we have \(0 \leq e_i \leq n \) for each \(i = 1, 2, \ldots, r \). Then counting all the possibilities, it follows that \(2^n \leq (n + 1)n^{r-1} < (n + 1)^r \leq (n + 1)^k < 2^n \). This contradiction yields \(r \geq k + 1 \). Now taking \(n = 2k^2 \), then since \(1 + 2k^2 < 2^{2k} \) for each \(k \geq 1 \), it follows that \((1 + 2k^2)^k \leq 2^{2k^2} = 4^k \), and so there at least \(k + 1 \) primes \(p \) such that \(p < 4^k \). Thus, letting \(k \to \infty \) yields IP.

Applying a formula for the number of positive integers less than \(N \) given in [47, Ch. XI], in 1890 J. Hacks [124] (see also [76, p. 414]) proved IP.

In order to prove IP, similar enumerating arguments to those of Thue were used in a simple Auric’s proof, which appeared in 1915 [21, p. 252] (also see [76, 414], [248, page 11]), as well by P. R. Chernoff in 1965 [57], M. Rubinstein [252] in 1993 and M. D. Hirschorn [136] in 2002. A proof of IP similar to that of Auric is given in 2010 by M. Coons [66].

Using a combinatorial argument, the unique factorization theorem and the pigeonhole principle, IP is recently proved by D. G. Mixon [193].

A less known elementary result of P. Erdős [87, p. 283] (also see [86]) in 1934, based on de Polignac’s formula (actually due to A.-M. Legendre), asserts that there is a prime between \(\sqrt{n} \) and \(n \) for each positive integer \(n > 2 \). In the same paper Erdős proved that if \(n \geq 2k \), then \(n \choose k \) contains a prime divisor greater than \(k \). In particular, this fact for \(n = 2k \) obviously yields IP. Notice also that IP follows by two
EUCLID’S THEOREM ON THE INFINITUDE OF PRIMES . . . 25

results of W. Sierpiński from his monograph in 1964 [273]. Namely, if we suppose that there are a total of \(k \) primes, then by [273, page 132–133, Lemmas 1 and 4], we have \(4^n/2\sqrt{n} \leq (2n)^k \) for each positive integer \(n > 1 \). This contradicts the fact that \(4^n/(2\sqrt{n}) \geq (2n)^k \) for sufficiently large \(n \).

In 2010 J. P. Whang [318] gave a short proof of IP by using de Polignac’s formula.

2.7. Furstenberg’s topological proof of IP and its modifications. A proof of Euclid’s theorem due to H. Furstenberg in 1955 ([100]; also see [248, pp. 12–13], [233, p. 12] or [6, p. 5]) is a short ingenious proof based on topological ideas. In order to achieve a contradiction, Furstenberg introduced a topology on the set of all integers, namely the smallest topology in which any set of all terms of a non-constant arithmetic progression is open. Here we quote this proof in its entirety: “In this note we would like to offer an elementary “topological” proof of the infinitude of prime numbers. We introduce a topology into the space of integers \(S \), by using the arithmetic progressions (from \(-\infty \) to \(+\infty \)) as a basis. It is not difficult to verify that this actually yields a topological space. In fact under this topology \(S \) may be shown to be normal and hence metrizable. Each arithmetic progression is closed as well as open, since its complement is the union of other arithmetic progressions (having the same difference). As a result the union of any finite number of arithmetic progressions is closed. Consider now the set \(A = \bigcup A_p \), where \(A_p \) consists of all multiples of \(p \), and \(p \) runs though the set of primes \(\geq 2 \). The only numbers not belonging to \(A \) are \(-1 \) and \(1 \), and since the set \(\{-1, 1\} \) is clearly not an open set, \(A \) cannot be closed. Hence \(A \) is not a finite union of closed sets which proves that there are an infinite of primes.”

In 1959 S. W. Golomb [111] developed further the idea of Furstenberg and gave another proof of Euclid’s theorem using a topology \(D \) on the set \(\mathbb{N} \) of natural numbers with the base \(B = \{\{an + b\} : (a, b) = 1\} \) \((a, b)\) denotes the greatest common divisor of \(a \) and \(b \), defined in 1953 by M. Brown [43]. In the same paper Golomb proved that the topology \(D \) is Hausdorff, connected and not regular; \(\mathbb{N} \) is \(D \)-connected, and the Dirichlet’s theorem (on primes in arithmetic progressions) is equivalent to the \(D \)-density of the set of primes in \(\mathbb{N} \). Moreover, in 1969 A. M. Kirch [149] proved that the topological space \((\mathbb{N}, D)\) is not locally connected.

In 2003 D. Cass and G. Wildenberg [51] (also cf. [150]) have shown that Furstenberg’s proof can be reformulated in the language of periodic functions on integers, without reference to topology. This is in
fact, a beautiful combinatorial version of Furstenberg’s proof. Studying arithmetic properties of the multiplicative structure of commutative rings and related topologies, in 2001 Š. Porubsky \[241\] established new variants of Furstenberg’s topological proof. Notice also that Furstenberg’s proof of IP is well analyzed in 2009 by A. Arana \[17\], in 2008 by M. Baaz, S. Hetzl, A. Leitsch, C. Richter and H. Spohr \[22\], and also discussed in greater detail in 2011 by M. Detlefsen and A. Arana \[73\]. Furthermore, C. W. Neville \[213, Theorem 1(a)\] pointed out that this proof has been extended in various directions, for example, to the setting of Abstract Ideal Theory see \[151\] and \[241\].

More than 50 years later, in 2009 using Furstenberg’s ideas but rephrased without topological language, I. D. Mercer \[183\] provided a new short proof that the number of primes is infinite. Finally, notice that Furstenberg’s proof is an important beginning example in the Theory of profinite groups (see book reviews by A. Lubotzky \[173\] in 2001).

2.8. Another proofs of IP. Euclid’s proof of IP was revisited in 1912/13 by I. Schur \[260\] (see also \[240\] pp. 131, 324, Problem 108]) who showed that the set of primes dividing the integer values of a nonconstant integer polynomial is infinite. Suppose that Q is a polynomial with integer coefficients such that \{p_1, p_2, \ldots, p_k\} is a set of all primes with this property is finite. Then assuming that $Q(a) = b \neq 0$, we will consider the integer value $c = (Q(a + bp_1 p_2 \cdots p_k))/b$. Then obviously $c \equiv 1 \pmod{p_1 p_2 \cdots p_k}$ and therefore, c has at least one prime divisor, say p, distinct from every element of the set \{p_1, p_2, \ldots, p_k\}. It follows that the value $Q(a + bp_1 p_2 \cdots p_k) = bc$ is also divisible by p; a contradiction. In particular, for $Q(x) = x + 1$ the previous proof is a copy of Euclid’s proof of IP. If $Q(x) = \Phi_m(x)$ is the mth cyclotomic polynomial, then the above proof yields that there are infinitely many primes which are congruent to 1(mod m) (cf. Section 3).

Remarks. In 1990 P. Morton \[198\] considered a related problem for an integer sequence (a_n) for which there is an integer constant c such that for all $i \in \mathbb{Z} = \{\ldots -2, -1, 0, 1, 2, \ldots\}$ $a_n = i$ holds for almost c values of n. If for such an integer sequence (a_n), the so called almost-injective, define the set $S(a_n) = \{p$ prime : $p \mid a_n$ for at least one $n \in \mathbb{N}\}$, then Morton \[198\] proved that $S(a_n)$ is infinite if (a_n) has at most polynomial growth, i.e., $|a_n| \leq an^d$ for some positive constants a and d. This result is extended quite recently in 2012 by C. Elsholtz \[83\] for almost-injective integer sequences of subexponential growth, i.e., for almost-injective integer sequences (a_n) for which $a_n = o(\log n)$. As noticed in \[83\] p. 333, another way to look at this theorem is to study
“primitive divisors” of integer sequences. Given an integer sequence \((a_n)\), a divisor \(d\) is called primitive if \(a_i\) is divisible by \(d\), but \(a_j\) is not divisible by \(d\) for any \(j < i\). For a good survey of this topic, see Chapter 6 of the book [97].

However, it is not known whether there are polynomials of degree greater than 1 with integer coefficients representing infinitely many primes for integer argument. Using Chebyshev’s estimate \(\pi(x) \geq x/\log x\) and a simple counting argument, in 1964 W. Sierpiński [274] (also see [233, p. 35, Theorem 1.6.1]) proved that for every \(N\) there exists an integer \(k\) for which there are more than \(N\) primes represented by \(x^2 + k\) with \(x = 0, 1, 2, \ldots\). In 1990 B. Garrison [102] (cf. [233, p. 36, Exercise 1.6.2]) generalized Sierpiński’s result to polynomials \(x^d + k\) of degree \(d \geq 2\) and proved that for any such \(d\) and any \(N\) there exists a positive integer \(k\) such that \(x^d + k\) \((x = 0, 1, 2, \ldots)\) assumes more than \(N\) prime values. P. Pollack [233, p. 36, Exercise 1.6.2 b)] noticed that the previous assertion remains true if “positive” is replaced by “negative”. This obviously implies IP. Modifying Garrison’s proof, in 1992 R. Forman [99] extended Garrison’s result to a large class of sequences. Forman [99, Proposition] proved that if \(f(x)\) is a nonconstant polynomial with positive leading coefficient (the coefficients need not be integers), then for any \(N\) there are infinitely many nonnegative integers \(k\) such that the sequence \([f(n)] + k\) \((n = 0, 1, 2, \ldots)\) contains at least \(N\) primes ([\(\cdot\)] denotes the greatest integer function). Furthermore, in 1993 U. Abel and H. Siebert [1] also extended Garrison’s result. They proved that if \(f(x) \in \mathbb{Z}[x]\) is a polynomial of degree \(d \geq 2\) with positive leading coefficient, then for every \(N\) there exists an integer \(k\) for which \(f(x) + k\) \((x = 0, 1, 2, \ldots)\) assumes more than \(N\) prime values. Their argument of proof depends on counting the number of solutions of certain inequalities and shows that no arithmetical properties of polynomials are needed other than rate of growth. In particular, in [1] p. 167, proof of Theorem] it was applied the well known Sylvestre’s version of the Chebyshev inequalities \(0.9 \leq \pi(x) \log x/x \leq 1.1\) (for sufficiently large \(x\) \([289],\) see also [74, p. 555, (1.7)]).

However, the problem of characterizing the prime divisors of a polynomial of degree \(> 2\) is still unsolved, except in certain special cases. We see that if \(p\) is any prime that does not divide \(a\), then \(p\) divides each polynomial \(Q_1(x) = ax + b\) with arbitrary \(b \in \mathbb{Z}\). Similarly, the set of all prime divisors of \(Q_2(x) = x^2 - a\) can be determined by using law of quadratic reciprocity. Some known and new related results for various classes of integer polynomials were presented by I. Gerst and J. Brillhart [106].
By Problem 3 proposed on International Mathematical Olympiad (IMO) 2008 [79, pages 336 and 776], there exist infinitely many positive integers \(n \) such that \(n^2 + 1 \) has a prime divisor greater than \(2n + \sqrt{2n} \). This immediately yields \(IP \).

In [52] (see also [53] and [59, page 118, Section 10.1.5]), in 1979 the computer scientist G. J. Chaitin gave a proof of \(IP \) using algorithmic information theory. If \(p_1, p_2, \ldots, p_k \) are all the primes, then for a fixed \(N = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k} \) Chaitin defines algorithmic entropy
\[
H(N) := \sum_{i=1}^{k} a_i \log p_i
\]
of \(N \), and uses various properties, such as subaddivity of algorithmic entropy expressed as
\[
H(N) \leq \sum_{i=1}^{k} H(n_i) + O(1).
\]
In order to prove this property, Chaitin estimates how many integers \(n \) with \(1 \leq n \leq N \), could possibly be expressed in the form \(p_1^{b_1} p_2^{b_2} \cdots p_k^{b_k} \). In order for this expression to be at most \(N \), every exponent has to be much smaller than \(N \); precisely, we need \(0 \leq b_i \leq \log_{p_i} N \); the latter quantity is at most \(\log_2 N + 1 \) choices for each exponent, or \((\log_2 N + 1)^k\) choices overall. However, this latter quantity is much smaller than \(N \) for sufficiently large \(N \); a contradiction which implies \(IP \).

We also notice that Chaitin’s proof is quite similar to those of \(IP \) due to L. G. Schnirelman’s book [259, pp. 44–45] published posthumously in 1940. Moreover, a more sophisticated version of Chaitin’s proof which uses an obvious representation \(n = m^2k \) of a positive integer \(n \) where \(k \) is squarefree, can be found in the book [128, pp. 16–17] of Hardy and Wright (which was first written in 1938). A similar idea is used in 2008 by E. Baronov [139, pp. 12–13, Problem 6] to show that if a sequence of positive integers \((a_n)\) satisfies \(a_n < a_{n+1} \leq a_n + c \), with a fixed \(c \in \mathbb{N} \) and for each \(n \in \mathbb{N} \), then the set of prime divisors of this sequence is infinite. This immediately yields \(IP \). Similarly, the same author [139, pp. 12–13, Problem 6] proved that if \(m \) and \(n \) are positive integers such that \(m > n^{a-1} \), then there exist distinct primes \(p_i, i = 1, 2, \ldots, n \) such that \(p_i \mid m + i \) for each \(i = 1, 2, \ldots, n \). This also implies \(IP \).

Remarks. The argument in Chaitin’s proof also shows that the percentage of nonnegative integers up to \(N \) which we can express as a product of any \(k \) primes tends to 0 as \(N \) approaches infinity. Notice that this proof gives a lower bound on \(\pi(x) \) which is between \(\log \log x \) and \(\log x \) (but much closer to \(\log x \)). Using the same method, the lower bound \(\pi(x) \geq (1 + o(1)) \log x / (\log \log x) \) was established in [233, p. 15, Proof of Lemma 1.2.5] (cf. also [135, pp. 15–17, Lemma 0.3 and Exercise 0.5]). In revisited Chaitin’s proof H. N. Shapiro [270, pp.
34–35, Theorem 2.8.1] obtained the estimate $\pi(x) > \log x/(3 \log \log x)$ for each $x > e^2$.

In his dissertation, in 1981 A. R. Woods \[320\] proved IP by adding $PHP\Delta_0$ to a *weak system of arithmetic* $I\Delta_0$, where $PHP\Delta_0$ stands for the pigeonhole principle formulated for functions defined by Δ_0-formulas. ($I\Delta_0$ is the theory over the vocabulary $0, 1, +, \cdot, <$ that is axiomatized by basic properties of this vocabulary and induction axioms for all bounded formulas). In 1988 J. B. Paris, A. J. Wilkie and A. R. Woods (\[226\]; also see \[16, pp. 162–164\] and \[225\]) replaced Woods’ earlier proof with one using an even weaker version of the pigeonhole principle. They showed that a considerable part of elementary number theory, including IP, is provable in a weak system of arithmetic $I\Delta_0$ with the *weak pigeonhole principle* for Δ_0-definable functions added as an axiom scheme. It is a longstanding open question \[319\] whether or not one can dispense with the weak pigeonhole principle, by proving the existence of infinitely many primes within $I\Delta_0$. Studying the problem of proving in *weak theories of Bounded Arithmetic* that there are infinitely many of primes, in 2008 P. Nguyen \[216\] showed that IP can be proved by some “minimal” reasoning (i.e., in the theory $<\text{Emphasis Type="Bold"} I\Delta < /\text{Emphasis}> <\text{Subscript} i\text{Emphasis Type="Bold"} > 0 < /\text{Emphasis}> <\text{Subscript} >$) using concepts such as (the logarithm) of a binomial coefficient.

Euclid’s revised proof of IP via methods of nonstandard Analysis was given by R. Goldblatt \[109\] in 1998 (also see \[233\] p. 16, Section 1.2.6)).

2.9. **14 proofs of IP (2012–2017).**

1) In 2012 the author of this article by \[187\] Theorem 1] improved Cooke’s result \[65\] Theorem] (see page 17 of this article), refining the Euler’s proof of IP by the following result: “Let α be a real number such that $1 < \alpha < 2$ and let $x_0 = x_0(\alpha)$ be a (unique) positive solution of the equation

$$x^{\alpha-1} - \frac{\pi}{e^2 \sqrt{3}} x + 1 = 0.$$

Then for each positive integer $n > x_0$ there exist at least \([n^\alpha]\) primes between the $(n+1)$th prime and the product of the first $n+1$ primes, where \([a]\) denotes the greatest integer less than or equal to a.

Moreover, for each positive integer n there are at least n primes between the $(n+1)$th prime and the product of the first $n+1$ primes.”

2) In 2015 L. Alpoge \[8\] establihed IP as the amusing consequence of the following (called by Khinchin \[147\] beautiful) theorem of van der Waerden \(302); also see \[8\] Theorem 1\]): “Suppose the positive integers
are colored with finitely many colors. Then there are arbitrarily many arithmetic progressions containing integers all of the same color."

More formally, if \(f : \mathbb{Z}^+ \to S \) is any function to a finite set \(S \), then for each \(k > 0 \), there are \(n \) and \(d \) for which

\[
f(n) = f(n + d) = \cdots = f(n + kd).
\]

3) Motivated by the previous Alpoge’s proof of \(IP \), in 2017 A. Granville \[120, \text{Theorem 1}\] proved \(IP \) combining van der Waerden’s theorem with a famous result of Fermat which asserts that \(\text{there are no four-term arithmetic progressions of distinct integer squares} \) (see, e.g., \[277\]).

4) Proceeding in a similar way as in Saidak’s proof of \(IP \) (see Subsection 22, p. 14 of this article), in 2015 B. Maji \[178\] constructed an infinite sequence of pairwise relatively prime positive integers. This fact immediately yields \(IP \).

5) Assuming that the set of all primes is finite, in 2015 S. Northshield \[219\] proved \(IP \) by considering the product

\[
\prod_p \sin \left(\frac{\pi}{p} \right),
\]

where \(p \) runs over all primes (“a one-line proof”).

6) In 2016 A. R. Booker \[38\] considered a generalization of Euclid’s proof of \(IP \) and showed that it leads to variants of the Euclid-Mullin sequence that provably contain every prime number. Namely, given a finite set \(\{p_1, \ldots, p_k\} \) of primes, let \(p_{k+1} \) be a prime factor of \(1 + p_1 \cdots p_k \). Then, as Euclid showed, \(p_{k+1} \) is necessarily distinct from \(p_1, \ldots, p_k \). Iterating this procedure, we thus obtain an infinite sequence of distinct primes. For instance, beginning with \(k = 0 \) (with the convention that the empty product is 1) and choosing \(p_{k+1} \) as small as possible at each step, one obtains the Euclid-Mullin sequence given as the Sloane’s sequence A000945 in \[278\] (cf. Remarks on pages 5 and 11 of this paper). Following \[38\], any sequence resulting from this construction is called a \emph{generalized Euclid sequence with seed} \(\{p_1, \ldots, p_k\} \) (for such a particular sequence, see the sequence A167604 in \[278\]; for related sequences, see \[37\] and \[39\]). More precisely, Booker in \[38\] considered a generalization of Euclid’s construction described as follows. If \(\{p_1, \ldots, p_k\} \) is a set of primes, then for any \(I \subseteq \{1, \ldots, k\} \), the number \(N_I := \prod_{i \in I} p_i + \prod_{i \in \{1, \ldots, k\} \setminus I} p_i \) is coprime to \(p_1 \cdots p_k \) and has at least one prime factor. Iteratively choosing a set \(I \) and a prime \(p_{k+1} | N_I \),
we obtain an infinite sequence p_1, p_2, \ldots of distinct primes, as in Euclid’s proof. It was proved in [38, Theorem 1] that for any finite set P of primes, there is a generalized Euclid sequence with seed P containing every prime. Notice that in 2016 A. R. Booker and S. A. Irvine [39] introduced the so-called the Euclid-Mullin graph which encodes all instances of Euclid's proof of IP.

7) In 2016 P. L. Clark [60] recast Euclid’s proof of IP as a Euclidean Criterion for a domain to have infinitely many atoms. It is showed that there is a connection with Furstenberg’s topological proof of IP (see Subsection 2.7 of this article, p. 25) and that the presented criterion applies even in certain domains in which not all nonzero nonunits factor into products of irreducibles.

8), 9) In 2017 A. Sadhukhan [253] introduced a partition of the positive integers and used it to give two proofs of the infinitude of primes. The first proof is a slight variant of the various known combinatorial proofs. The second is similar to Euler’s proof but it makes no use of Euler’s product formula.

10), 11) In 2017 S.-I. Seki [263] gave two proofs of IP via valuation theory and gave a new proof of the divergence of the sum of prime reciprocals by Roth’s theorem and Euler-Legendre’s theorem for arithmetic progressions.

12), 13) In 2017 S. Northshield [220] presented two new proofs of IP. The first proof uses the basic idea of Furstenberg’s celebrated topological proof of IP (see Subsection 2.7 of this article, p. 24) but without using topology. Namely, while Furstenberg’s proof is in terms of topological space, this proof is in terms of the continuous functions on the space. The second proof in [220] uses probability theory. Namely, this proof is built on the difficulty of defining a random integer.

14) Finally, in 2017 the author of this article in the short note [188] supposed that $\{p_1, p_2, p_3, \ldots, p_k\}$ is a set of all primes with $p_1 = 2$. Then by considering the set of all positive integers that are relatively prime to the product $p_2 p_3 \cdots p_k$, we easily obtain a contradiction which implies IP.

2.10. 18 recent proofs of IP (2018–2022). 1) In 2018 S. Silwal [277, Theorem 1] proved that the following inequality holds for sufficiently large n:

$$\sum_{p \leq n} \frac{1}{\log p} > \frac{1}{3} \log n,$$

where the summation ranges over all primes p such that $p \leq n$. Clearly, the above inequality implies IP.
2) In 2018 K. Saito [255] gives a short proof of IP by using the upper box dimension, which is one of fractal dimensions.

3) In 2020 V.J.-Vera and C.S.-Ávila [306, Theorem 2] gave a new proof of the divergence of the sum of the reciprocals of primes using the number of distinct prime divisors of a positive integer n, and the placement of lattice points on a hyperbola given by $n = pr$ with a prime p. This immediately yields IP.

4) By applying a geometric approach, in 2020 H. Göral [113] provided a proof of IP via p-adic metrics. Notice that this is a novel approach to a well-known and quite old result.

5), 6, 7) In 2020 H. Göral and H.B. Öczan [114] provided three proofs of IP by considering the properties of the Jacobson radical of the ring of integers \mathbb{Z}. In all of these proofs, the authors supposed that the set \mathbb{P} of all primes is finite, i.e., $\mathbb{P} = \{p_1, p_2, \ldots, p_n\}$. Let $P = p_1p_2\cdots p_n$ be the product of all primes. Then by considering the sum $aP^2 + P$ with a fixed integer $a \geq 0$, it is proved in [114, Theorem 2.2] that the fundamental theorem of arithmetic implies that $aP^2 + P = P$, i.e., $a = 0$. This contradiction implies IP.

Recall that the Jacobson radical of a commutative ring R, denoted by $J(R)$, is defined as the intersection of all maximal ideals of R. Since all maximal ideals of the ring of integers are of the form $p\mathbb{Z}$ for a prime p, the Jacobson radical $J(\mathbb{Z})$ is the intersection of maximal ideals $p_1\mathbb{Z}, \ldots, p_n\mathbb{Z}$, and hence,

$$J(\mathbb{Z}) = \prod_{i=1}^{n} p_i\mathbb{Z} = (p_1p_2\cdots p_n)\mathbb{Z}.$$

The second proof and the third proof of IP given in [114, Theorem 2.2] are based on consideration of Jacobson radical $J(\mathbb{Z})$. The authors noticed that there are similarities between Furstenberg’s topological proof of IP [100] and their second proof and third proof of IP.

8) In 2020 F. Lemmermeyer [168] provided a short simple proof of IP. This proof is a simplification of the proof of IP using continued fractions given in 1976 by Barnes [25]. Assume that there are only infinitely many primes, namely, 2, $p_1 = 3, \ldots, p_n$. Let $q = p_1\cdots p_n$ be the product of all odd primes. Then $q^2 + 1$ is not divisible by any odd prime, hence must be a power of two. Since $q^2 + 1 \equiv 2 \pmod{4}$, must be $q^2 + 1 = 2$ and therefore, $q = 1$, which is a contradiction. Since no odd prime $p \equiv 3 \pmod{4}$ can divide $q^2 + 1 = 2$, the proof actually shows that there are infinitely many primes $p \equiv 1 \pmod{4}$.

9), 10) By considering the notion of a realizable integer sequence, in 2020 P. Moss and T. Ward [200, Lemma 1] proved that the set of primes
dividing a denominator of $\frac{1}{n} \sum_{d|n} \mu \left(\frac{n}{d} \right) f_d$ for some positive integer n is infinite, where $\mu(n)$ is the classical Möbius arithmetic function and (f_n) is the well known Fibonacci’s sequence defined by the conditions $f_1 = f_2 = 1$, $f_{n+2} = f_{n+1} + f_n$ with $n = 1, 2, \ldots$. This implies IP.

Furthermore, P. Moss and T. Ward [200, Corollary 3] proved that if j is an arbitrary odd positive integer, then the set of primes dividing denominators of $\frac{1}{n} \sum_{d|n} \mu \left(\frac{n}{d} \right) f_d$ j. This implies IP.

11) Let $p_1, p_2, \ldots, p_{\pi(n)}$ be all the primes less than or equal to n. Using the inclusion-exclusion principle, in 2020 S. Laad [158] proved the inequality

$$n \prod_{i=1}^{\pi(n)} \left(1 - \frac{1}{p_i} \right) < 1 + 2^{\pi(n) - 1}.$$

Assuming that there are only k primes, then clearly, the left hand side of the above inequality is unbounded, while the right hand side is a constant. This contradiction impies IP.

12), 13, 14) In 2021 C. Elsholtz [84, Theorem 1] showed that Fermat’s last theorem and a combinatorial theorem of Schur on monochromatic solutions of $a + b = c$ (Lemma 1 in [84]) implies IP. In particular, since there exist elementary proofs of Fermat’s last theorem for $n = 3$ $n = 4$ and $n = 5$ (concerning the Diophantine equations in positive integers $x^3 + y^3 = z^3$, $x^4 + y^4 = z^4$ and $x^5 + y^5 = z^5$, respectively; (see [247]), Theorem 1 in [84] implies the elementary proof of IP.

It follows from Theorem 2 of [84] that Roth’s theorem (Lemma 2 in [84]) implies IP.

It was also proved in [84, Theorem 3] that Hindman’s theorem (Lemma 4 in [84]) implies IP.

15) In 2021 L. Haddad [125] simplified the above mentioned proof of IP due to C. Elsholtz [84, Theorem 1]. Namely, this proof is greatly simplified, making no use at all Fermat’s last theorem, and using only a weak form of the theorem of Schur on monochromatic solutions of $a + b = c$.

16) In 2022 J. Mehta [181, Theorem 1] generalized Métrod’s proof of IP given in 1917 [192] (also see [248, p. 11]). Assume that p_1, \ldots, p_n are distinct primes whose product is P, and choose any factorization of P into $k \geq 2$ terms, say $P = d_1 \cdots d_k$, and put [181, Proof of Theorem 1]

$$M = \frac{P}{d_1} + \cdots + \frac{P}{d_k}.$$

Then it is easy to show that there exists a prime $p \not\in \{p_1, \ldots, p_n\}$ dividing M. This implies IP.
Notice that Stieltjes’ proof of IP given in his work in 1890 ([285, p. 14]; also see [210, p. 4]) is a particular case of Theorem 1 of [181] with \(k = 2 \). Furthermore, Métrod’s proof of IP is recovered by taking \(k = n \) and \(d_i \) for \(i = 1, 2, \ldots, n \), i.e., by considering the divisors of \(M = p_1 p_2 \cdots p_n \left(\frac{1}{p_1} + \frac{1}{p_2} + \cdots + \frac{1}{p_n} \right) \).

17) Using prime factorization theorem of a positive integer, in 2022 R. Meštrović [190] gave a short proof by contradiction of IP (this is in fact the proof in Section 4 of this article, pp. 40–41).

18) Using Möbius inversion formula [218], in 2023 R. Meštrović [191] gave a very short proof of the formula due in 2009 to J. Pinasco [230] which is applied in his proof of IP. Consequently, using a simpler argument than those of Pinasco’s proof, it follows IP.

3. Proofs of IP in arithmetic progressions: special cases of Dirichlet’s theorem

3.1. Dirichlet’s theorem. In 1775 L. Euler [95] (also cf. [76, p. 415], [293, p. 108, Section 3.6]) stated that an arithmetic progression with the first term equals 1 and the difference \(a \) to be a positive integer, contains infinitely many primes. More generally, in 1798 in the second edition of his book A.-M. Legendre [167] (cf. [76, p. 415] and [293, p. 108, Section 3.6]) conjectured that for relatively prime positive integers \(a \) and \(m \) there are infinitely many primes which leave a remainder of \(m \) when divided by \(a \). In other words, if \(a \) and \(m \) are relatively prime positive integers, then the arithmetic progression \(a, a + m, a + 2m, a + 3m, \ldots \) contains infinitely many primes. The condition that \(a \) and \(m \) are relatively prime is essential, for otherwise there would be no primes at all in the progression. However, Legendre gave a proof that was faulty. In 1837 Peter Gustav Lejeune Dirichlet, Gauss’s successor of Göttingen and father of analytic number theory, gave a correct proof. Namely, Dirichlet [78] proved the following theorem which is a far-reaching extension of Euclid’s theorem on the infinitude of primes and is one of the most beautiful results in all of Number Theory. It can be stated as follows.

Dirichlet’s theorem. Suppose \(a \) and \(m \) are relatively prime positive integers. Then there are infinitely many primes of the form \(mk + a \) with \(k \in \mathbb{N} \cup \{0\} \).

Dirichlet’s proof is derived by means of \(L \)-functions and analysis. The main strategy is, as in Euler’s proof of IP (which in fact shows
that the sum of reciprocals of primes diverges), to consider the function

\[P_m(s) := \sum_{p \equiv a \pmod{m}} \frac{1}{p^s}, \]

(where the sum is only over those primes \(p \) that are congruent to \(a \pmod{m} \)) which is defined say for real numbers \(s > 1 \), and to show that \(\lim_{s \to 1^+} P_m(s) = +\infty \). Of course this suffices, because a divergent series must have infinitely many terms. The function \(P_m(s) \) will in turn be related to a finite linear combination of logarithms of Dirichlet \(L \)-series, and the differing behavior of the Dirichlet series for principal and non-principal characters is a key aspect of the proof. Dirichlet used an ingenious argument to show that the sum \(\sum_{p \equiv a \pmod{m}} 1/p \) diverges, where the sum ranges over all primes \(p \) that are congruent to \(a \pmod{m} \).

Remarks. As it is pointed out by P. Pollack [234], there exist proofs of Dirichlet’s theorem which minimize analytic prerequisites (e.g., those of A. Selberg [264] in 1949, A. Granville [116] in 1989 and H. N. Shapiro ([268] and [269]) in 1950). For example, Selberg [264] gave a proof that is, he wrote “more elementary in the respect that we do not use the complex characters mod \(k \), and also in that we consider only finite sums.” An “elementary proof” of Dirichlet’s theorem in the sense that it does not use complex analysis is given by M. B. Nathanson [211, Ch. 10]. Nevertheless, all these “elementary” proofs exhibit at least as complicated a structure as Dirichlet’s original argument. This is well discussed and considered in 2010 by A. Granville in his expository article [119, Sections 2 and 3].

3.2. A survey of elementary proofs of IP in special arithmetic progressions. For many arithmetic progressions with small differences one can obtain simple elementary (i.e. not using analytic means) proofs of Dirichlet’s theorem. Several of them are listed by Dickson [76 pp. 418–420, Chapter XVIII] and Narkiewicz [210, pp. 87–96, Section 2.5]. In [206] M. R. Murty and N. Thain asked “how far Euclid’s proof can be pushed to yield Dirichlet’s theorem”. The existence of such a “Euclidean proof” (precised in [206]) for certain arithmetic progressions is well known. For example, considering the product \(k(2 \cdot 3 \cdot \cdots \cdot p_n) \), Euclid’s elementary proof can be used to prove that for any fixed positive integer \(k > 2 \) there are infinitely many primes which are not congruent to \(1 \pmod{k} \). This result was proved in 1911 by H. C. Pocklington [231] (also see [59 p. 116, Theorem 114] and [76 p. 419]).
Further, we expose other proofs of IP in special arithmetic progressions of the form $1(\text{mod } k)$ and $-1(\text{mod } k)$. An excellent source for this subject is Narkiewicz’s monograph [210, pp. 87–93, Section 2.5]. An elementary proof of IP in every progression $1(\text{mod } 2^p)$, where p is any prime, was established in 1843 by V. A. Lebesgue ([162, p. 51], [76, p. 418]) who showed the fact that $x^{p-1} - x^{p-2}y + \cdots + y^{p-1}$ has besides the possible factor p only prime factors of the form $2kp+1$ ($k = 1, 2, \ldots$). Using a quite similar method, in 1853 F. Landry ([161], [76, p. 418]) considered prime divisors of $(n^p + 1)/(n + 1)$ to prove IP for the same progressions. This proof can be found in [18, p. 121, Ch. 24, Exercise 24.1]. By a quite similar method, the same result can be obtained using the fact that for any prime q every prime divisor p of $(n^q - 1)/(n - 1)$ coprime with q satisfies $p \equiv 1(\text{mod } q)$ (see e.g. [140, p. 34, Section 2.3] or [10, pp. 151–152, Problem 7.3.3]). The analogous method is also applied by Lebesgue in 1862 ([165], [76, p. 418]) for the progression $-1(\text{mod } 2^p)$ with a prime p. Using the rational and irrational parts of $(a + \sqrt{b})^k$, in 1868/9 A. Genocchi ([105], [76, p. 418]) proved IP in both progressions $1(\text{mod } 2^p)$ and $-1(\text{mod } 2^p)$, where p is an arbitrary prime. Furthermore, in lectures of 1875/6 L. Kronecker ([154], [132, pp. 440–442]) gave another proof of IP in the progression $1(\text{mod } 2p)$ with a prime p. Another simple proof of the same result based on Euler’s totient function and Fermat little theorem is recently given in [189].

Using the fact that $(2^{mp} - 1)/(2^m - 1)$ (p a prime and m a positive integer) has at least one prime divisor of the form $p^n k + 1$ ([266, p. 107, proof of Theorem 47]; also cf. [89, pp. 178–179, Theorem 11] or [204, p. 209, Exercise 1.5.28]), in 1978 D. Shanks [266] proved that for every prime power p^n there are infinitely primes $\equiv 1(\text{mod } p^n)$. Another elementary proof of IP in the progression $1(\text{mod } p^n)$ for any prime p and $n = 1, 2, \ldots$ was given in 1931 by F. Hartmann [131].

Using divisibility properties of cyclotomic polynomials, in 1888 J. J. Sylvester [291] proved IP in the progressions $-1(\text{mod } p^n)$, where p^n is any prime power. In 1896 R. D. von Sterneck [308] (cf. [210, p. 90]) considered a product $F(n) := \prod_{d|n} f(n/d)^{\mu(d)}$, where μ is the Möbius function, $f(n)$ is an integer-valued function satisfying $f(1) = 1$ and two divisibility properties. Then every prime dividing $F(n)$ divides $f(n)$ but does not divide $f(i)$ for each $i = 1, 2, \ldots, n-1$. Von Sterneck remarked that a recursive sequence $f(n)$ defined as $f(n) = f(n-1) + cf(n-2)$ with $f(1) = 1$ and a positive integer c, satisfies these conditions, and used this it can be obtained an elementary proof of infinitely many primes $\equiv -1(\text{mod } p^n)$ for any fixed prime power p^n.
The same result for powers of odd primes and the infinitude of primes \(\equiv -1(\mod 3 \cdot 2^n) \) were proved in 1913 by R. D. Carmichael [50].

As remarked by Dickson [76, p. 418], using cyclotomic polynomials \(\Phi_m(x) \), in 1886 A. S. Bang ([23], [76, p. 418]) and in 1888 Sylvester ([291], also cf. [76, p. 418]) obtained proofs of IP in arithmetic progressions \(1(\mod k) \), where \(k \) is any integer \(\geq 2 \). Both these proofs are based on the fact that if \(p \) is a prime not dividing \(m \), then \(p \) divides \(\Phi_m(a) \) if and only if the order of \(a(\mod p) \) is \(m \). (Here \(\Phi_m(x) \) is the \(m \)th cyclotomic polynomial). Such a simple classical proof of IP in arithmetic progressions \(1(\mod k) \) which is in spirit “Euclidean” can be found in ([121] and [59, pp. 116–117]; also cf. [146, pp. 97–99] and [313, pp. 12–13]). Considering the least common multiple of polynomials \(\{x^d - 1 : d | n\} \), in 1895 E. Wendt [317] (cf. [210, p. 89]) gave a simple proof of the same result. Moreover, Narkiewicz [210, p. 88] noticed that, according to a theorem of Kummer [155] (also see [209, Theorem 4.16]), a rational prime \(p \) splits in the \(k \)th cyclotomic field \(\mathbb{Q}(\zeta_k) \) (where \(\zeta_k \) denotes a primitive \(k \)th root of unity) if and only if it is congruent to \(1(\mod k) \). Using this and the fact that in any given finite extension of \(\mathbb{Q} \) there are infinitely many splitting primes, we obtain IP in every arithmetic progression \(1(\mod k) \) with \(k \geq 2 \). Studying the existence of primitive prime divisors of integers \(a^n - b^n \), where \(n \in \mathbb{N} \) and \(a \) and \(b \) are relatively prime integers, in 1903/04 G. D. Birkhoff and H. S. Vandiver [33] gave an elementary proof of this result. A variation of this proof has been given in 1961 by A. Rotkiewicz [251], whose proof was simplified in 1962/3 by T. Estermann [90] and in 1976 by I. Niven and B. Powell [217]. In their proof Niven and Powell use only elementary divisibility properties and the fact that the number of roots of a non-zero polynomial cannot exceed its degree. Applying Birkhoff-Vandiver theorem (see e.g., [210, p. 88]), the same result was proved in 1981 by R. A. Smith [280] (see also [208, Chapter 1] and [210, pp. 88–89]). Another two elementary proofs were given in 1984 by S. Srinivasan [283] and in 1998 by N. Sedrakian and J. Steinig [262]. An elementary proof of this assertion was provided in 2004 by J. Yoo [325] without using cyclotomic polynomials. Another two old proofs of this result are due to K. Th. Vahlen [301] in 1897 by using Gauss’ periods of roots of unity and É. Lucas [176, p. 291, Ch. XVII] in 1899 applying his (Lucas) sequence \(u_n \).

A short but not quite elementary proof of IP in the progressions \(-1(\mod k) \) for each \(k \geq 2 \) was given by M. Bauer [28] in 1905/6. In 1951 T. Nagell [207, pp. 170–173] gives an elementary proof of IP in arithmetic progression \(-1(\mod k) \) with \(k \geq 2 \).
Applying a similar argument to those of Niven and Powell for IP in the progressions \(\equiv 1(\text{mod } k) \), in 1950 by M. Hasse \[132\] proved IP in the progressions \(-1(\text{mod } k)\) for each \(k \geq 2 \).

Euclidean’s proofs of IP in various arithmetic progressions can be found in Problems book of Murty and Esmonde \[205\] Section 7.5] in 2005. For example, the known facts that every prime divisor of the Fermat number \(F_n := 2^{2^n} + 1 \) is of the form \(2^{2^n} + 1 \) (see e.g., \[205\] p. 8, Exercise 1.2.8) and that \(F_n \) and \(F_m \) are relatively prime if \(m \neq n \) (see Subsection 2.2) yield that there are infinitely primes \(\equiv 1(\text{mod } 2^n) \) for any given \(n \) (\[205\] p. 11, Exercise 1.4.13, also cf. \[10\] p. 151, Problem 7.3.2)).

As noticed by K. Conrad \[63\], a Euclidean proof of Dirichlet’s theorem for \(m(\text{mod } a) \) involves, at the very least, the construction of a nonconstant polynomial \(h(T) \in \mathbb{Z}[T] \) for which any prime factor \(p \) of any integer \(h(n) \) satisfies, with finitely many exceptions, either \(p \equiv 1(\text{mod } a) \) or \(p \equiv m(\text{mod } a) \), and infinitely many primes of the latter type occur. For example \[63\], Euclidean proofs of Dirichlet’s theorem exist for arithmetic progressions \(1(\text{mod } a) \) with any \(a \geq 2 \), \(3(\text{mod } 8) \), \(4(\text{mod } 5) \) and \(6(\text{mod } 7) \).

A characterization of arithmetic progressions for which Euclidean proof exist is given by I. Schur \[260\] and M. R. Murty \[203\]. In 1912/13 I. Schur \[260\] proved that if \(m^2 \equiv 1(\text{mod } a) \), then a Euclidean proof of Dirichlet’s theorem exists for the arithmetic progression \(m(\text{mod } a) \). In particular, Schur extended Serret’s approach based on law of quadratic reciprocity to establish proofs of IP for the progressions \(2^{m-1} + 1(\text{mod } 2^m) \), \(2^{m-1} - 1(\text{mod } 2^m) \) \((m \geq 1) \), and \(l(\text{mod } k) \) for \(k = 8m \) (with \(m \) being an odd positive squarefree integer) and \(l = 2m + 1 \), \(l = 4m + 1 \) or \(l = 6m + 1 \) (cf. \[210\] p. 91). A similar method was used in 1937 by A. S. Bang \[24\] (cf. \[210\] p. 91) who proved IP in the progressions \(2p^m + 1(\text{mod } 4p^m) \) with prime \(p \equiv 3(\text{mod } 4) \), \(2p^{2n+1} + 1(\text{mod } 6p^{2n+1}) \) with prime \(p \equiv 2(\text{mod } 3) \), and \(4p^{2n} + 1(\text{mod } 6p^{2n}) \) with prime \(p \equiv 2(\text{mod } 3) \).

Remarks. In 1988 Murty \(\{203; \text{ also see } 206\} \) proved the converse of Schur’s result, i.e., he showed that a Euclidean proof exists for the arithmetic progression \(m(\text{mod } a) \) only if \(m^2 \equiv 1(\text{mod } a) \). This means that it is impossible to prove Dirichlet’s theorem for certain arithmetic progression by Euclid’s method. The proof due to Murty is not difficult, but involves some Galois Theory. For example, since \(2^2 \equiv 4 \not\equiv 1(\text{mod } 5) \), there is no proof of Dirichlet’s theorem for \(2(\text{mod } 5) \) which can mimic Euclid’s proof of IP. Notice also that Dirichlet’s theorem can be proved by Euclidean’s methods for all the possibilities modulo \(a = 24 \).
(cf. 27). Recently, P. Pollack 234 discussed Murty’s definition of a “Euclidean proof” and Murty’s converse of Schur’s result. Finally, we point out an interesting expository article of A. Granville 117 in 2007 in which are compared numbers of primes in different arithmetic progressions with the same small difference.

3.3. Elementary proofs of IP in arithmetic progressions with small differences. In this subsection, we expose several Euclidean proofs of IP in different arithmetic progressions with small differences. Dickson’s History records several further attempts at giving Euclidean proofs for particular progressions (see the listing on 76 pp. 418–420)). Considering the product $2^2 \cdot 3 \cdot 5 \cdot p_n - 1$, Euclid’s idea is used by V. A. Lebesgue 163 in 1856 (also cf. 128, p. 13, Theorem 11)) for the progression $3(\text{mod } 4)$. A. Granville 118, p. 3, Section 1.3] remarked that a similar proof works for primes $\equiv 2(\text{mod } 3)$. The same idea that involves the product $2 \cdot 3 \cdot 5 \cdot p_n - 1$ was also used by V. A. Lebesgue in 1859 (164; also see 128 p. 13, Theorem 13 and 76 p. 419) for the proof of IP in the progressions $5(\text{mod } 6)$ and $1(\text{mod } 2^n)$ with a fixed $n = 1, 2, \ldots$. The situation is more complicated for the progression $1(\text{mod } 4)$ and related proof is based on the consideration of the product $N := (5 \cdot 13 \cdot 17 \cdots p_n)^2 + 1$ and the fact that if integers a and b have no common factor, then any odd prime divisor of $a^2 + b^2$ is congruent to $1(\text{mod } 4)$ 128, Theorem 13]. In fact, using this property of quadratic residues and Euclid’s idea, Hardy and Wright proved in his book (128, Theorem 14] which was first written in 1938 that the progression $5(\text{mod } 8)$ contains infinitely many primes. Dickson 76 p. 419] noticed that this result and proofs of IP in progressions $1(\text{mod } 8)$, $3(\text{mod } 8)$ and $7(\text{mod } 8)$ were firstly proved in 1856 also by A. V. Lebesgue 165. Using some properties of Fermat and Fibonacci numbers, two constructive proofs of IP in progression $1(\text{mod } 4)$ were presented in 1994 by N. Robbins 250.

Dickson 76 p. 419] pointed out the proofs of IP also in the following arithmetic progressions: $9(\text{mod } 10)$ due to J. A. Serret 265 in 1852, $2(\text{mod } 5)$ and $7(\text{mod } 8)$ due to É. Lucas 171, p. 309] in 1878, $1(\text{mod } 4)$, $5(\text{mod } 6)$ and $5(\text{mod } 8)$ due to É. Lucas 175, pp. 353–354] in 1891, $1(\text{mod } 4)$, $1(\text{mod } 6)$ and $5(\text{mod } 8)$ due to E. Cahen 174, pp. 318–319] in 1900 and also 132 pp. 438–439] in 1875/6, $1(\text{mod } 4)$, $1(\text{mod } 6)$, $3(\text{mod } 8)$, $7(\text{mod } 8)$, $9(\text{mod } 10)$ and $11(\text{mod } 12)$, due to K. Hensel 132] in 1913. Furthermore, using law of quadratic reciprocity 103, Sections 112–114], in 1852 J. A. Serret 265 (also cf. 210, pp. 90–91, Theorem 2.19)] proved IP in the progressions $3(\text{mod } 8)$, $5(\text{mod } 8)$ and $7(\text{mod } 8)$.
Considering divisors of integer \((11 \cdot 31 \cdot 41 \cdot 61 \cdots p_n)^5 - 1\), it was proved in 1962 [271, pages 60, 371–373, Problem 254(c)] \(IP\) in the progression \(1 \pmod{10}\). The analogous idea was used in 2007 by A. Granville [118, p. 4] to show \(IP\) in the progression \(1 \pmod{3}\).

There are also elementary arguments in spirit of Euclid’s idea showing that there are infinitely many primes in other arithmetic progressions with small differences, such as \(4 \pmod{5}\), \(1 \pmod{8}\) and \(3 \pmod{8}\). In 1965 P. Bateman and M. E. Low [27] give a proof similar to Euclid’s that for every coprime residue class \(a \pmod{24}\) there are infinitely many primes in progression \(a \pmod{24}\). Their proof makes use of the interesting fact that every integer \(a\) relatively prime to 24 has the property \(a^2 \equiv 1 \pmod{24}\). Using a couple of observations about the polynomial \(f(x) = x^4 - x^3 + 2x^2 + x + 1\) and the law of quadratic reciprocity, a Euclid-type proof for the progression \(4 \pmod{15}\) is presented in 2005 by M. R. Murty and J. Esmonde [205, pp. 92–64, Example 7.5.4].

When considering the linear second order recurrence \(u_n = u_{n-1} + 3u_{n-2}\) with \(u_0 = 1\), \(u_1 = 1\), in 2005 R. Neville [214] gave a simple proof of \(IP\) in progression \(1 \pmod{3}\). The author [214, Remarks] also noticed that if \(q \geq 5\) is a given prime, then considering the Lucas sequence \(u_n = u_{n-1} + 3u_{n-3}\) with \(u_0 = 0\), \(u_1 = 1\), similarly one can prove that there are infinitely many primes \(p\) such that \((\frac{-q}{p}) = 1\) (\((\frac{\cdot}{p})\) denotes the Legendre symbol). In particular, for \(q = 5\) this yields \(IP\) in all progressions \(a \pmod{20}\) with \(a \in \{1, 3, 7, 9\}\). In book [247, p. 15] P. Ribenboim noticed that in 1958 D. Jarden [142] proved \(IP\) in the progression \(1 \pmod{20}\).

4. Another simple Euclidean’s proof of Euclid’s theorem

Proof of Euclid’s theorem. Suppose that \(p_1 = 2 < p_2 = 3 < \cdots < p_k\) are all the primes. Take \(n = p_1p_2 \cdots p_k+1\) and let \(p\) be a prime dividing \(n\).

The first step is a “shifted” first step of Euclid’s proof. Suppose that \(p_1 = 2 < p_2 = 3 < \cdots < p_k\) are all the primes. Take \(n = p_1p_2 \cdots p_k\). Then \(n-1 = p_1^{e_1}p_2^{e_2} \cdots p_k^{e_k} (\geq 5)\) for some \(k\)-tuple of nonnegative integers \((e_1, e_2, \ldots, e_k)\), and so taking \(s = \max\{e_1, e_2, \ldots, e_k\}\), we find that

\[
n - 1 = p_1^{e_1}p_2^{e_2} \cdots p_k^{e_k} = \frac{p_1^s p_2^s \cdots p_k^s}{p_1^{s-e_1} p_2^{s-e_2} \cdots p_k^{s-e_k}} = \frac{n^s}{a}.
\]
where $a = p_1^{s_1-1}p_2^{s_2-1} \cdots p_k^{s_k-1}$ and s are positive integers. The above equality yields
\[
a = \frac{n^s}{n-1} = \frac{(n^s-1)+1}{n-1} = \sum_{i=0}^{s-1} n^i + \frac{1}{n-1},
\]
whence it follows that $1/(n-1) = a - \sum_{i=0}^{s-1} n^i$ is a positive integer. This contradicts the fact that $n - 1 \geq 4$, and the proof is completed. \(\square \)

Remarks. Unlike most other proofs of the Euclid’s theorem, Euclid’s proof and our proof does not require Proposition 30 in Book VII of *Elements* (see [327], [128], where this result is called “Euclid’s first theorem”; sometimes called “Euclid’s Lemma”) that states into modern language from the Greek [91]: *that if two numbers, multiplied by one another make some number, and any prime number measures the product, then it also measures one of the original numbers*, or in terms of modern Arithmetic: if p is a prime such that $p \mid ab$ then either $p \mid m$ or $p \mid b$. It was also pointed in [128, page 10, Notes on Chapter 1] that this result does not seem to have been stated explicitly before Gauss of 1801 who gave the first correct proof of this assertion [103, Sections 13–14]. The only divisibility property used in our proof and Euclid’s proof is the fact that every integer $n > 1$ has at least one representation as a product of primes. This is in fact, Proposition 31 in Book VII of *Elements* (see above Remarks).

In order to achieved a contradiction, in the second step of his proof Euclid take a prime that divides a product P of all the primes plus one, and further consider two cases in dependence on whether P is prime or not. But in the second step of our proof we obtain directly a contradiction dividing n^s by $n - 1$. \(\square \)

References

[1] U. Abel and H. Siebert, Sequences with large numbers of prime values, *Amer. Math. Monthly* **100** (1993), 167–169.

[2] A. G. Ağargün and C. R. Fletcher, The fundamental theorem of arithmetic dissected, *Math. Gazette* **81** (1997), 53–57.

[3] R. M. Abrarov and S. M. Abrarov, Formulas for positive, negative and zero values of the Möbius function, preprint, arXiv:0905.0294v1 [math.NT], 2009.

[4] R. M. Abrarov and S. M. Abrarov, Sieve procedure for the Möbius prime-functions, the infinitude of primes and the Prime Number Theorem, preprint, arXiv:1004.1583v2 [math.GM], 2011.

[5] A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, *Fibonacci Quart.* **11** (1973), 429–437.

[6] M. Aigner and G. M. Ziegler, *Proofs from THE BOOK*, Springer-Verlag, New York, Second edition, 2001.
[7] J. M. Aldaz and A. Bravo, Euclid’s Argument on the Infinitude of Primes, *Amer. Math. Monthly* **110** (2003), 141–142.

[8] L. Alpoge, Van der Waerden and the primes, *Amer. Math. Monthly* **123**, (2015), No. 8, 784–785.

[9] M. Andič, *Introduction to Number Theory-Theory and Examples* (Serbian), Grafos Crna Gora, Podgorica, 2005.

[10] T. Andrica and D. Andrica, *Number Theory - Structures, Examples, and Problems*, Birkhäuser, Boston, 2009.

[11] T. Andrica, D. Andrica and Z. Feng, 104 *Number Theory Problems From the Training of the USA IMO Team*, Birkhäuser, Boston, 2007.

[12] G. E. Andrews, *Number Theory*, W. B. Saunders Company, Philadelphia-London-Toronto, 1971.

[13] R. Apéry, Irrationalité de \(\zeta(2)\) et \(\zeta(3)\), *Astérisque* **61** (1979), 11–13.

[14] T. M. Apostol, Another elementary proof of Euler’s formula for \(\zeta(2n)\) *Amer. Math. Monthly* **80** (1973), 425–431.

[15] T. M. Apostol, *Introduction to Analytic Number Theory*, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976.

[16] D’Aquino, P., Weak fragments of Peano arithmetic, in *The Notre Dame Lectures*, Vol. **18** of *Lecture Notes in Logic*, pp. 149–185, Association for Symbolic Logic, Urbana, IL, 2005.

[17] A. Arana, On Formally Measuring and Eliminating Extraneous Notions in Proofs, *Philosophia Mathematica* **17**(2) (2009), 189–207.

[18] S. Arun-Kumar, *Algorithmic Number Theory*, 2002, available at http://www.artofproblemsolving.com.

[19] J. M. Ash and T. K. Petersen, Many proofs that the primes are infinite, to appear in *J. Recreational Math*.

[20] A. G. A˘ garg˘ un and E. M. ¨Ozkan, A historical survey of the fundamental theorem of arithmetic, *Historia Mathematica* **28** (2001), 207–214.

[21] A. Auric, Suite illimitée des nombres premiers, *L’intermédiaire des Math.* **22** (1915), p. 252.

[22] M. Baaz, S. Hetzl, A. Leitsch, C. Richter and H. Spohr, Ceres: an analysis of Furstenberg’s proof of the infinity of primes, *Theoretical Computer Science* **403** (2008), 160–175.

[23] A. S. Bang, Taltheoretiske undersøgelser, *Tidsskrift for Math.* (5) **4**, 1886, 61–62; Cf. Fortschritte, 1886, 134–135.

[24] A. S. Bang, *Elementaere Beviser for specielle Tilfælde af Dirichlets Saetning om Differensrakker*, Ph.D. thesis, København, 1937.

[25] C. W. Barnes, The infinitude of primes; a proof using continued fractions, *L’Enseignement Math.* (2) **22** (1976), 313–316.

[26] P. T. Bateman and H. G. Diamond, A hundred years of prime numbers, *Amer. Math. Monthly* **103** (1996), 729–741.

[27] P. Bateman and M. E. Low, Prime numbers in arithmetic progressions with difference 24, *Amer. Math. Monthly* **72** (1965), 139–143.

[28] M. Bauer, Über die arithmetische Reihe, *J. Reine Angew. Math.* **131** (1906), 265–267; transl. of *Math. és Phys. Lapok* **14** (1905), 313.

[29] R. Bellman, A note on the divergence of a series, *Amer. Math. Monthly* **50** (1943), 318–319.

[30] R. Bellman, Problem 4072, *Amer. Math. Monthly* **50** (1943), 124–125.
[31] R. Bellman, A note on relatively prime sequences, *Bull. Amer. Math. Soc.* 53 (1947), 778–779.

[32] B. C. Berndt, Elementary evaluation of $\zeta(2n)$, *Math. Magazine* 48 (1975), 148–154.

[33] G. D. Birkhoff and H. S. Vandiver, On the integral divisors of $a^n - b^n$, *Ann. of Math.* (2) 5 (1903/1904), 173–180. [G. D. Birkhoff, *Collected Mathematical Papers* III, 145–155, Dover, New York, 1968.]

[34] A. Bogomolny, Square Root of 2 is Irrational, Interactive Mathematics Miscellany and Puzzles, available at http://www.cut-the-knot.org/proofs/sq_root.shtml.

[35] C. O. Boije af Gennäs, Trouver un nombre premier plus grand qu’un nombre premier donné, *Öfversigt K. Sv. Vetenskaps-Akad. Förhand.*, Stockholm 50 (1893), No. 7, 469–471.

[36] H. Bonse, Über eine bekannte Eigenschaft der Zahl 30 und ihre Verallgemeinerung, *Arch. Math. Phys.* 12 (1907), No. 3, 292–295.

[37] A. R. Booker, On Mullin’s second sequence of primes, *Integers* 12 (2012), 1167–1177; preprint [arXiv:1107.3313v2v2 [math.NT]], 2013.

[38] A. R. Booker, A variant of the Euclid-Mullin sequence containing every prime, *Journal of Integer Sequences* 19 (2016), Article 16.6.4; preprint [arXiv:1605.08929v1 [math.NT]], 2016.

[39] A. R. Booker and S. A. Irvine, The Euclid-Mullin graph, *J. Number Theory* 165 (2016), 30–57.

[40] A. Borning, Some results for $k! \pm 1$ and $2 \cdot 3 \cdot 5 \cdots p \pm 1$, *Math. Comp.* 26 (1972), 567–570.

[41] J. Braun, Das Fortschreitungsgesetz der Primzahlen durch eine transzendentale Gleichung exakt dargestellt, *JBer. Gymnasium Trier, Wiss. Beilage*, 1899, 1–96.

[42] H. Brocard, *L’Intermédiaire des Math.*, 22, 1915, p. 253.

[43] M. Brown, A countable connected Hausdorff space, *Bull. Amer. Math. Soc.* 59 (1953), p. 367.

[44] R. C. Buck, Solution to Problem 4072, *Amer. Math. Monthly* 51 (1944), p. 410.

[45] J. P. Buhler, R. E. Crandall and M. A. Peik, Primes of the form $n! \pm 1$ and $2 \cdot 3 \cdot 5 \cdots p \pm 1$, *Math. Comp.* 38 (1982), 639–643. Corr.: *ibidem*, 40, 1983, p. 727.

[46] D. M. Burton, *Elementary Number Theory*, Sixth edition, McGraw–Hill, 2007.

[47] E. Cahen, *Éléments de la théorie des nombres*, Gauthier-Villars, Paris, 1900 (E. Cahen, 318–319; J. Hacks, pp. 319–322).

[48] C. K. Caldwell, On the primality of $n! \pm 1$ and $2 \times 3 \times 5 \times \cdots \times p \pm 1$, *Math. Comp.* 64 (1995), 889–890.

[49] C. Caldwell and Y. Gallot, On the primality of $n! \pm 1$ and $2 \times 3 \times 5 \times \cdots \times p \pm 1$, *Math. Comp.* 71 (2002), 441–448.

[50] R. D. Carmichael, On the numerical factors of the arithmetic forms $\alpha^n \pm \beta^n$, *Ann. of Math.* (2) 15 (1913), 30–70.

[51] D. Cass and G. Wildenberg, Math Bite: A Novel Proof of the Infinitude of Primes, Revisted, *Math. Magazine* 76 (2003), p. 203.
[52] G. J. Chaitin, Toward a mathematical definition of life, in *The Maximum Entropy Formalism*, R. D. Levine and M. Tribus, eds., MIT Press, Cambridge, 1979, 477–498.

[53] G. J. Chaitin, *Meta Math! The Quest for Omega*, Vintage Books, New York, 2005.

[54] B. Chastek, Two proofs of the infinitude of primes, *REU summer 2001 by Professor Garrett*, 2001, available at http://www.math.umn.edu/~garrett/students/reu/benChastek.pdf

[55] P. L. Chebyshev, Sur la fonction qui détermine la totalité des nombres premiers inférieurs à une limite donnée, *Mémoires présentés à l’Academie Impériale des Sciences de St. Pétersbourg par divers Savants* 6 (1851), 141–157.

[56] P. L. Chebyshev, Mémoire sur les nombres premiers, *Journal de Mathématique pures et appliquées* 17 (1852), 366–390.

[57] P. R. Chernoff, A “Lattice Point” Proof of the Infinitude of Primes, *Math. Magazine* 38 (1965), p. 208.

[58] B. R. Choe, An elementary proof of $\sum_{n=1}^{\infty} 1/n^2 = \pi^2/6$, *Amer. Math. Monthly* 94 (1987), 662–663.

[59] P. L. Clark, *Introduction to Number Theory* (notes from an undergraduate number theory course taught at UGA in 2007 and 2009), 2009, available at http://math.uga.edu/~pete/4400FULL.pdf

[60] P. L. Clark, The Euclidean criterion for irreducibles, *Amer. Math. Monthly* 124 (2017), No. 3, 198–216; preprint arXiv:1605.01298v1 [math.AC], 2016.

[61] J. A. Clarkson, On the series of prime reciprocals, *Proc. Amer. Math. Soc.* 17 (1966), p. 541.

[62] E. Cohen, Legendre’s Identity, *Amer. Math. Monthly* 76 (1969), 611–616.

[63] K. Conrad, Euclidean proofs of Dirichlet’s theorem, Unpublished expository note available at http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/dirichleteuclid.pdf

[64] R. Cooke, Life on the mathematical frontier: legendary figures and their adventures, *Notices of the Amer. Math. Soc.* 57 (2010), 464–475.

[65] R. Cooke, A Remark on Euclid’s Theorem on the Infinitude of the Primes, *Amer. Math. Monthly* 118 (2011), 355–358.

[66] M. Coons, Yet another proof of the infinitude of primes, I, https://www.math.uwaterloo.ca/~mcops/CoonsInfPrimes1.pdf, 2010.

[67] J. B. Cosgrave, A Remark on Euclid’s Proof of the Infinitude of Primes, *Amer. Math. Monthly* 96 (1989), 339–341.

[68] C. D. Cox and A. J. Van der Poorten, On a sequence of prime numbers, *J. Austral. Math. Soc.* 8 (1968), 571–574.

[69] R. Crandall and C. Pomerance, *Prime numbers: a computational perspective*, Second edition, Springer-Verlag, New York, 2005.

[70] M. Dalezman, From 30 to 60 is not twice as hard, *Math. Magazine* 73 (2000), 151–153.

[71] M. Deaconescu and J. Sándor, A divisibility property (Romanian), *Gazeta Mat.*, Bucureşti, XCI (1986), No. 2, 48–49.

[72] “Dedekind Paradise”, *Infinitude of primes via Lagrange’s theorem and Mersenne numbers*, 2011, http://dedekindsparadise.wordpress.com/

[73] M. Detlefsen and A. Arana, Purity of Methods, *Philosophers’ Imprint* 11 (2011), No. 2, 1–20.
[74] H. G. Diamond, Elementary methods in the study of the distribution of prime numbers, *Bull. Amer. Math. Soc.* 7 (1982), 553–589.
[75] L. E. Dickson, Finiteness of the odd perfect and primitive abundant numbers with \(n \) distinct prime factors, *Amer. J. Math.* 35 (1913), 113–122.
[76] L. E. Dickson, *History of the Theory of Numbers*, Vol. I. Divisibility and Primality, Carnegie Institution of Washington, 1919, 1920, 1923. [Reprinted Stechert, New York, 1934; Chelsea, New York, 1952, 1966, Vol. I]
[77] K. Dilcher, Remark on Euclid’s Proof of the Infinitude of Primes, *Amer. Math. Monthly* 96 (1989), 239–241.
[78] P. G. L. Dirichlet, Beweis des Satzes, dass jede unbegrenzte arithmetische progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält, *Abh. der Königlichen Preuss. Akad. der Wiss.* (1837), 45–81.
[79] D. Djukić, V. Janković, I. Matić and N. Petrović, *The IMO compendium: A Collection of Problems Suggested for the International Mathematical Olympiads*: 1959–2009, Second edition, Springer-Verlag, New York, 2009.
[80] W. Dunham, *Great Theorem: The infinitude of Primes*, pp. 73–75, *Journey through Genius: The Great Theorems of Mathematics*, Wiley, New York, 1990.
[81] E. Dux, Ein kurzer Beweis der Divergenz der unendlichen Reihe \(\sum_{r=1}^{\infty} \frac{1}{p_r} \), *Elem. Math.* 11 (1956), 50–51.
[82] A. W. F. Edwards, Infinite coprime sequences, *Math. Gazette* 48 (1964), 416–422.
[83] C. Elsholtz, Prime divisors of thin sequences, *Amer. Math. Monthly* 119 (2012), 331–333.
[84] C. Elsholtz, Fermat’s last theorem implies Euclid’s infinitude of primes *Amer. Math. Monthly* 128, No. 3 (2021), 250–257; preprint [arXiv:2009.06722v2 [math.NT]], September 2020.
[85] A. Engel, *Problem-solving strategies*, *Problem books in mathematics*, Springer-Verlag, New York, 1998.
[86] P. Erdős, Egy Kürschák-féle elemi számelméleti tétele általánosítása (in Hungarian; translation in English: Generalization of an elementary number-theoretic theorem of Kürschák), *Mat. Fiz. Lapok* 39 (1932), 17–24.
[87] P. Erdős, A theorem of Sylvester and Schur, *J. London Math. Soc.* 9 (1934), 282–288.
[88] P. Erdős, Über die Reihe \(\sum_{p} \frac{1}{p} \), *Mathematica* (Zutphen) B7 (1938), 1–2.
[89] P. Erdős and J. Surányi, *Topics in the Theory of Numbers*, Undergraduate Texts in Mathematics, Springer Science+Business Media, Inc., New York, 2003.
[90] T. Estermann, Note on a paper of A. Rotkiewicz, *Acta Arithmetica* 8 (1962/3), 465–467.
[91] Euclid (circa 300 B.C.), *Elementa*, I–XIII. [Euclidis Opera Omnia, edited by J. L. Heiberg, Teubner, Leipzig 1883–1885; English translation: T. L. Heath, *The Thirteen books of Euclid’s Elements*, Cambridge, 1926, reprint: Dover, 1956; French translation: *Les Éléments*, CNRS, Paris, 1978; German translation: C. Thaer, *Die Elemente*, Akademische Verlagsgesellschaft, Leipzig, 1933–1937; reprint: Wiss. Buchgemeinschaft Darmstadt, 1973; Russian translation of books VII-IX: Mordukhai-Boltovskii, D.D., GITL, Moskva, 1949.]
46 ROMEO MEŠTROVIĆ

[92] L. Euler (1734/35), De summis serierum reciprocarum Comment. Acad. Sci. Petropol. 7 (1740), 123–134. [In Opera omnia I.14, 73–86, Teubner, Lipsiae et Berolini, 1924.]

[93] L. Euler (1736), Inventio summae cuiusque seriei ex dato termino generale (posthumous paper), Comment. Acad. Sci. Petropol. 8 (1741), 9–22. [In Opera omnia I.14, 108–123, Teubner, Lipsiae et Berolini, 1924.]

[94] L. Euler (1737), Variae observationes circa series infinitas, Comment. Acad. Sci. Petropol. 9 (1744), 160–188. [In Opera omnia I.14, 216–244, Teubner, Lipsiae et Berolini, 1924.]

[95] L. Euler (1775), De summa seriei ex numeris primis formatae \(\frac{1}{3} - \frac{1}{5} + \frac{1}{7} + \frac{1}{11} - \frac{1}{13} - \frac{1}{17} + \frac{1}{19} + \frac{1}{23} - \frac{1}{29} + \frac{1}{31} - \ldots\) etc. ubi numeri primi formae \(4n-1\) habent signum positivum, formae autem \(4n+1\) signum negativum, Opuscula analytica 2 (1785), p. 240. [In Opera omnia 4, 146–162, Genevae, 1941.]

[96] L. Euler (1849), Tractatus de numerorum doctrina, Commentationes Arithmeticae Collectae II, 504–575, Petropoli. [In Opera omnia I.5, 182–283, Genevae, 1844.]

[97] G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Mathematical Surveys and Monographs, 104, American Mathematical Society, Providence, RI, 2003.

[98] G. Everest and T. Ward, An Introduction to Number Theory, Springer-Verlag, 2005.

[99] R. Forman, Sequences with many primes, Amer. Math. Monthly 99 (1992), 548–557.

[100] H. Furstenberg, On the Infinitude of Primes, Amer. Math. Monthly 62 (1955), p. 353.

[101] P.-N. Fuss, Correspondance mathématique et physique de quelques célèbres géomètres du XVIIIème siècle, St. Pétersbourg, 1843. [Reprint: Johnson Reprint Co. 1968]; available at http://eulerarchive.maa.org/correspondence/correspondents/Goldbach.html

[102] B. Garrison, Polynomials with large numbers of prime values, Amer. Math. Monthly 97 (1990), 316–317.

[103] C. F. Gauss, Disquisitiones Arithmeticae, G. Fleischer, Lipsiae [Werke, 1, 1–474, Kgl. Ges. Wiss. Göttingen, 1863; 1801; English translation: Yale Univ. Press, 1966; French translation: Courcier, Paris, 1807; German translation: Springer, Berlin, 1889. [Reprint: Chelsea, 1965]; Russian translation: Trudy po teorii chisel, 7–583, Izdat. AN SSSR, Moskva, 1959.]

[104] L. Gegenbauer, Note über die Anzahl der Primzahlen, Sitzungsber, SBer. Kais. Akad. Wissensc. Wien (Math.) 95, II (1887), 94–96; 97, Abt.IIa (1888), 374–377.

[105] A. Genocchi, Intorno ad alcune forme di numeri primi, Annali di Mat. Pura Appl. (2), 2, 1868/9,256–257.

[106] I. Gerst and J. Brillhart, On the prime divisors of polynomials, Amer. Math. Monthly 78 (1971), 255–266.

[107] D. P. Giesy, Still another elementary proof that \(\sum_{k=1}^{\infty} 1/k^2 = \pi^2/6\), Math. Magazine 45 (1972), 148–149.

[108] M. Gilchrist, A Proof that there are an infinite number of rational primes, Amer. Math. Monthly 114 (2007), p. 622.
[109] R. Goldblatt, Lectures on the hyperreals: An introduction to nonstandard analysis, Graduate Texts in Mathematics, Vol. 188, Springer-Verlag, New York, 1998.

[110] L. J. Goldstein, A history of the prime number theorem, Amer. Math. Monthly 80 (1973), 599–615.

[111] S. W. Golomb, A connected topology for the integers, Amer. Math. Monthly 66 (1959), 663–665.

[112] S. W. Golomb, On certain nonlinear recurring sequences, Amer. Math. Monthly 70 (1963), 403–405.

[113] H. Göral p-adic metrics and the infinitude of primes, Math. Mag. 93 (2020), No. 1, 19–22.

[114] H. Göral and H.B. Öczan, Several novel proofs of the infinitude of primes, Mathematics Student 89, Nos. 3–4 (2020), 91–95; available at researchgate.net/publication/357528932_Several_novel_proofs_of_the_infinitude_of_primes.

[115] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley Publishing Company, 1989.

[116] A. Granville, On elementary proofs of the Prime Number Theorem for arithmetic progressions, without characters, Proceedings of the Amalfi Conference on Analytic Number Theory, Universitá di Salerno, Italy (September 1989), 1993, 157–194.

[117] A. Granville, Prime Number Races, Amer. Math. Monthly 113 (2006), 1–33.

[118] A. Granville, Prime Numbers, Part 1: Infinitely many primes; non analytic methods, Course Notes, 2007, available at http://dms.umontreal.ca/~andrew/.

[119] A. Granville, Different approaches to the distribution of primes, Milan J. Math. 78 (2009), 1–25.

[120] A. Granville, Squares in arithmetic progressions and infinitely many primes, American Mathematical Monthly 124 (2017), No. 10, 951–959, preprint arXiv:1708.06951v1 [math.NT], 2017.

[121] S. Gueron and R. Tessler, Infinitely many primes in arithmetic progressions: the cyclotomic polynomial method, Math. Gazette 86 (2002), 110–114.

[122] R. K. Guy, Unsolved problems in number theory, second ed., Problem Books in Mathematics, Springer-Verlag, New York, 1994, Unsolved Problems in Intuitive Mathematics.I.

[123] R. K. Guy and R. Nowakowski, Discovering primes with Euclid, Delta (Waukesha) 5 (1975), 49–63.

[124] J. Hacks, Einig Anwendungen der Function $[x]$, Acta Math. 14 (1890), 329–336.

[125] L. Haddad, A combinatorial theorem of Schur implies infinitude of primes, preprint arXiv:2106.03550v1 [math.NT], 2021, 3 pages.

[126] G. H. Hardy, A Mathematician’s Apology, Cambridge University Press, 1940.

[127] M. Hardy and C. Woodgold, Prime simplicity, Math. Intelligencer 31, (2009), No. 4, 44–52.

[128] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fourth edition, Oxford University Press, 1959.
[129] G. H. Hardy and E. M. Wright, revised by D. R. Heath-Brown and J. Silverman, An Introduction to the Theory of Numbers, Sixth edition, Oxford University Press, 2008.

[130] V. C. Harris, Another proof of the infinitude of primes, Amer. Math. Monthly 63 (1956), p. 711.

[131] F. Hartmann, Missellen zur Primzahltheorie, I, Jahresber. Deutsche Math. Ver. 40 (1931), 228–232.

[132] H. Hasse, Vorlesungen über Zahlentheorie, Second edition, Springer-Verlag, New York, 1964 (L. Kronecker, 269–273; 440–442; K. Hensel, 438–439; Lectures of 1875/6; K. Hensel, 1913, 304–305. [First edition 1950.]

[133] H. Hasse, Über die Dichte der Primzahlen p, für die eine vorgegebene rationale Zahl $a \neq 0$ von gerader bzw. ungerader Ordnung mod p ist, Math. Ann. 168 (1966), 19–23.

[134] R. L. Hemminiger, More on the infinite primes theorem, Amer. Math. Monthly 73 (1966), 1001–1002.

[135] A. J. Hildebrand, Introduction to Analytic Number Theory, Math 531 Lecture Notes, Fall 2005, available at http://www.math.uiuc.edu/hildebr/ant (Version 2006.09.01.)

[136] M. D. Hirschorn, There are infinitely many of prime numbers, Austral. Math. Soc. Gaz. 29, (2002), No. 2, p. 103.

[137] R. Honsberger, Ingenuity in Mathematics, MAA, New Mathematical Library, 1970.

[138] T. Ishikawa, N. Ishida and Y. Yukimoto, On Prime Factors of $A^n - 1$, Amer. Math. Monthly 111 (2004), 243–245.

[139] A. Ivanov, E. Baronov, E. Kolev et al., Olimpiiski temi 2008 (Bulgarian), UNIMAT SMB, Sophie, 2008.

[140] H. Iwaniec and E. Kowalski, Analytic Number Theory, Colloquium Publications, Vol. 53, American Mathematical Society, 2004.

[141] R. Jaensch, Die Schwierigeren Probl. Zahlentheorie, Progr. Rastenburg, 1876, p. 2.

[142] D. Jarden, Recurring Sequences, Riveon Lematematike, Jerusalem, 1958; revised and enlarged by J. Brillhart, Fibonacci Assoc., san Jose, CA, 1958.

[143] J. H. Jaroma and K. N. Reddy, Classical and Alternative Approaches to the Mersenne and Fermat Numbers, Amer. Math. Monthly 114 (2007), 677–687.

[144] B. Joyal, On a proof of the infinitude of primes using the sieve of Eratosthenes, available at http://www.mymathforum.com/viewtopic.php?t=53668p=20073 2008.

[145] D. Joyce, http://aleph0.clarku.edu/~djoyce/java/elements/bookIX/propIX20.html

[146] H. L. Keng, Introduction to Number Theory, Springer-Verlag, New York, 1982.

[147] Ya. A. Khinchin, Three Pearls of Number Theory, Dover, Mineola NY, 1998.

[148] L. J. P. Kilford, An infinitude of proofs of the infinitude of primes, preprint arXiv:math/0610066v2 [math.NT], 2006.

[149] A. M. Kirch, A countable, connected, locally connected Hausdorff space, Amer. Math. Monthly 76 (1969), 169–171.

[150] M. Klazar, On Furstenberg’s topological proof of the infinitude of primes, http://kam.mff.cuni.cz/~klazar/furst_topo.pdf, 2010.
[151] J. Knopfmacher and Š. Porubsky, Topologies related to arithmetical properties of integral domains, *Expositiones Math.* 15 (2) (1997), 131–148.

[152] W. Knorr, Problems in the interpretation of Greek number theory: Euclid and the “fundamental theorem of arithmetic”, *Studies in Hist. and Philosophy of Science Part A* 7 (4) (1976), 353–368.

[153] R. R. Korfhage, On a sequence of prime numbers, *Bull. Amer. Math. Soc.*, 70 (1964), 341–342. Errata: *ibidem*, p. 747.

[154] L. Kronecker, Vorlesungen über Zahlentheorie, I, Teubner, Leipzig, 1901.

[155] E. E. Kummer, Theorie der idealen Primfaktoren der complexen Zahlen, welche aus der Wurzeln der Gleichung $\omega^n = 1$ gebildet sind, wenn n eine zusammengesetzte Zahl ist, *Abhandl. Kgl. Preuss. Akad. Wiss.*, 1856, 1–47. [Collected Papers, I, 583–629, Springer, Berlin-Heidelberg, 1975.]

[156] E. E. Kummer, Neuer elementarer Beweis des Satzes, dass die Anzahl aller Primzahlen eine unendliche ist, *Monatsber. Preuss. Akad. Wiss.*, Berlin 1878/9, 777–778. [Collected Papers, II, 669–670, Springer, Berlin-Heidelberg, 1975.]

[157] N. Kurokawa and T. Satoh, Euclid prime sequences over unique factorization domains, *Experiment. Math.* 17 (2008), No. 2, 145–152.

[158] S. Laad, On the infinitude of primes: an elementary approach through an inequality, *Resonance - Journal of Science Education* 25 (2020), No. 10, 1407–1417.

[159] J. C. Lagarias, The set of primes dividing the Lucas numbers has density $2/3$, *Pacific J. Math.* 118 (1985), 449–461. Errata: *ibidem* 162 (1994), 393–396.

[160] J. Lambek and L. Moser, On relatively prime sequences, *Math. Gazette* 41, (1957), 287–288.

[161] F. Landry, Deuxième mémoire sur la théorie des nombres, Paris, 1853, p. 3.

[162] V. A. Lebesgue, *Jour. de Math.* 8 (1843), p. 51, note; Exercises d’analyse numérique, 1859, p. 91.

[163] V. A. Lebesgue, Remarques diverses sur les nombres premiers, *Nouv. Ann. Math.* 15 (1856), 130–134, 236–239.

[164] V. A. Lebesgue, *Exercices d’analyse numérique*, Paris, 1859, 91–95, 103–104, 145–146.

[165] V. A. Lebesgue, *Jour. de Math.* (2) 7 (1862), p. 417.

[166] A.-M. Legendre, *Elements de Géométrie*, Didot, Paris, 1794.

[167] A.-M. Legendre, *Essai sur la théorie des nombres*, Courcier, 2nd ed., Paris, 1808.

[168] F. Lemmermeyer, A simple proof of the infinitude of primes, *Elem. Math.* 75 (2020), No. 2, p. 80.

[169] A. Lévy, *Bull. de Math. Élémentaire* 15 (1909/10), 33–34, 80–82.

[170] F. M. S. Lima, An elementary proof of $\sum_{n=1}^{\infty} 1/n^2 = \pi^2/6$ and a recurrence formula for even zeta values, preprint, arXiv:1109.4605v3 [math.HO], 2012.

[171] S. E. Loomis, *The Pythagorean Proposition*, Washington, DC: National Council of Teachers of Mathematics, 1968.

[172] N. Lord, A uniform construction of some infinite coprime sequences, *Math. Gazette* 92 (2008), No. 523, 66–70.

[173] A. Lubotzky, Book reviews, *Bull. Amer. Math. Soc.* 38 (2001), 475–479.

[174] É. Lucas, Théorie des fonctions numériques simplement périodiques, *Amer. J. Math.* 1 (1878), 289–321.
[196] V. H. Moll, *Numbers and Functions: From a Classical-Experimental Mathematician’s Point of View*, American Mathematical Society, 2012, 26–27.

[197] H. R. Morton, Fibonacci-like sequences and greatest common divisors, *Amer. Math. Monthly* 102 (1995), 731–734.

[198] P. Morton, Musings on the prime divisors of arithmetic sequences, *Amer. Math. Monthly* 97 (1990), 323–328.

[199] L. Moser, On the series $\sum 1/p$, *Amer. Math. Monthly* 65 (1958), 104–105.

[200] P. Moss and T. Ward, Fibonacci along even powers is (almost) realizable, *Fibonacci Quart.* 60 (2022), No. 1, 40–47; available at preprint [arXiv:2011.13068v1 [math.NT]], November 2020.

[201] A. A. Mullin, Recursive function theory, *Bull. Amer. Math. Soc.* 69 (1963), p. 737.

[202] A. A. Mullin, On a new proof of the infinitude of the primes, *Trans. Illinois State Acad. Sci.* 57 (1964), 116–117.

[203] M. R. Murty, Primes in arithmetic progressions, *J. Madras Univ., Section B* 51 (1988), 161–169.

[204] M. R. Murty, *Problems in Analytic Number Theory*, Springer-Verlag, New York, 2001.

[205] M. R. Murty and J. Esmonde, *Problems in Algebraic Number Theory*, 2nd edition, Graduate Texts in Mathematics, Springer-Verlag, New York, 2005.

[206] M. R. Murty and N. Thain, Prime numbers in certain arithmetic progressions, *Funct. Approx. Comment. Math.* 35 (2006), 249–259.

[207] T. Nagell, *Introduction to Number Theory*, Wiley, New York, 1951.

[208] W. Narkiewicz, *Classical Problems in Number Theory*, Państwowe Wydawnictwo Naukowe, Warszawa, 1986.

[209] W. Narkiewicz, *Elementary and Analytic Theory of Algebraic Numbers*, Second edition, Springer, Berlin-Heidelberg & Państwowe Wydawnictwo Naukowe, Warszawa, 1990. [First edition Państwowe Wydawnictwo Naukowe, 1974.]

[210] W. Narkiewicz, *The Development of Prime Number Theory: from Euclid to Hardy and Littlewood*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000.

[211] M. B. Nathanson, *Elementary Methods in Number Theory*, Graduate Texts in Mathematics, Vol. 195, Springer-Verlag, New York, 2000.

[212] T. Naur, Mullin’s sequence of primes is not monotonic, *Proc. Amer. Math. Soc.* 90 (1984), 43–44.

[213] C. W. Neville, New results on primes from an old proof of Euler, preprint, [arXiv:math/0210283v2 [math.NT]], 2003.

[214] R. Neville, On the infinitude of primes of the form $3k+1$, *Fibonacci Quart.* 43 (2005), 29–30.

[215] D. J. Newman, Simple analytic proof of the Prime Number Theorem, *Amer. Math. Monthly* 87 (1980), 693–696.

[216] P. Nguyen, Proving infinitude of prime numbers using binomial coefficients, *Proceedings of the 22nd International Workshop on Computer Science Logic (Bertinoro, Italy)*, of *Lecture Notes in Computer Science*, Vol. 5213, pp. 184–198, Springer-Verlag Berlin, Heidelberg, 2008.

[217] I. Niven and B. Powell, Primes in certain arithmetic progressions, *Amer. Math. Monthly* 83 (1976), 467–469.
I. Niven, H. S. Zuckerman and H. L. Montgomery, *An Introduction to the Theory of Numbers*, Fifth Edition, John Wiley & Sons, Inc, 1991.

S. Northshield, A one-line proof of the infinitude of primes, *Amer. Math. Monthly* 122 (2015), No. 5, p. 466.

S. Northshield, Two short proofs of the infinitude of primes, *College Math. J.* 48 (2017), No. 3, 214–216.

A. Nowicki, *Podróże po Imperium Liczb. Część 06. Podzielność w Zbiórce Liczb Całkowitych (Rozdział 3)* (Polish), University of Torun, Poland, 2012; also available at http://www-users.mat.umk.pl/~anow/imperium/pd03.pdf.

R. W. K. Odoni, On the prime divisors of the sequence \(w_{n+1} = 1 + w_1 \cdots w_n \), *J. London Math. Soc.* 32 (1985), 1–11.

T. J. Osler, Finding \(\zeta(2p) \) from a product of sines, *Amer. Math. Monthly* 111 (2004), 52–54.

I. Papadimitriou, A simple proof of the formula \(\sum_{k=1}^{\infty} k^{-2} = \pi^2 / 6 \), *Amer. Math. Monthly* 80 (1973), 424–425.

J. B. Paris and A. J. Wilkie, Counting Problems in Bounded Arithmetic, *Methods in Mathematical Logic, Lecture Notes in Mathematics* 1130 (1985), 317–340.

J. B. Paris, A. J. Wilkie and A. R. Woods, Provability of the pigeonhole principle and the existence of infinitely many primes, *J. Symbolic Logic* 53 (1988), 1235–1244.

J. Perott, Sur l’infinité de la suite des nombres premiers, *Bulletin de la Société Mathématiques et Astronomiques de France* (2) 5 (1881), 183–184.

J. Perott, Remarque sur le théorème d’Euclide sur l’infinité du nombre des nombres premiers, *Amer. J. Math.* 11 (1889), 99–138.

J. Perott, Remarque sur le théorème d’Euclide sur l’infinité des nombres premiers, *Amer. J. Math.* 13 (1891), 235–308.

J. P. Pinasco, New Proofs of Euclid’s and Euler’s Theorems, *Amer. Math. Monthly* 116 (2009), No. 2, 172–173.

H. C. Pocklington, *Proc. Cambr. Phil. Soc.* 16 (1911), 9–10.

Polish Mathematical Olympiad 2002, 3rd round, available at http://cage.ugent.be/~hvernaev/Olympiade/PM0023.pdf.

P. Pollack, *Not Always Burried Deep: Selections from Analytic and Combinatorial Number Theory*, American Mathematical Society, 2009; available at http://www.princeton.edu/ppollack/notes/.

P. Pollack, Hypothesis H and an impossibility theorem of Ram Murty, *Rend. Sem. Mat. Univ. Politec. Torino* 68 (2010), No. 2, 183–197.

P. Pollack, The Möbius transform and the infinitude of primes, *Elem. Math.* 66 (2011), No. 3, 118–120.

P. Pollack and E. Treviño, The primes that Euclid forgot, *Amer. Math. Monthly* 121 (2014), No. 5, 433–437.

P. Pollack, Euler and the partial sums of the prime harmonic series, *Elem. Math.* 70 (2015), 13–20.

P. Pollack, An easy generalizations of Euler’s theorem on the series of prime reciprocals, *Amer. Math. Monthly* 122 (2015), 159–163.

G. Pólya, Arithmetische Eigenschaften der Reihenentwicklungen rationaler Funktionen, *J. Reine Angew. Math.* 151 (1921), 1–31.
[240] G. Pólya and G. Szegő, *Aufgaben und Lehrsätze aus der Analysis*, Springer, Berlin-Heidelberg, II, 1925. [Reprint: Dover, New York, 1945]; English translation: G. Pólya and G. Szegő, *Problems and Theorems in Analysis* II, Springer-Verlag Berlin-Heidelberg-New York, 1976.

[241] Š. Porubsky, Arithmetically related ideal topologies and the infinitude of primes, *Quaestiones Math.* 24 (2001), 373–391.

[242] L. Pósa, Über eine Eigenschaft der Primzahlen (Hungarian), *Mat. Lapok* 11 (1960), 124–129.

[243] M. Raussen and C. Skau, Interview with Michael Atiyah and Isadore Singer, *Notices Amer. Math. Soc.* 52 (2005), No.2, 225–233.

[244] S. Reich, On a problem in number theory, *Math. Magazine* 44 (1971), 277–278.

[245] P. Ribenboim, *Nombres premiers: mystères et records*, Presses Universitair-es de France, Paris, 1994.

[246] P. Ribenboim, *The new book of prime number records*, Springer-Verlag, New York, 1996.

[247] P. Ribenboim, *My Numbers, My Friends: Popular Lectures on Number Theory*, Springer-Verlag, New York, 2000.

[248] P. Ribenboim, *The little book of bigger primes*, Second edition, Springer-Verlag, New York, 2004.

[249] B. Riemann, Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, *Monatsber. Kgl. Preuss. Akad. Wiss. Berlin* (1859), 671–680. [English translation in Edwards (1974); Werke, 145–155, Teubner, Leipzig, 1892; reprint: Dover, 1953.]

[250] N. Robbins, On Fibonacci numbers and primes of the form $4k + 1$, *Fibonacci Quart.* 32 (1994), 15–16.

[251] A. Rotkiewicz, Démonstration arithmétique d’existence d’une infinité de nombres premiers de la forme $nk + 1$, *Enseign. Math.* (2) 7 (1961), 277–280.

[252] M. Rubinstein, A Formula and a proof of the infinitude of primes, *Amer. Math. Monthly* 100 (1993), 388–392.

[253] A. Sadhukhan, Partitioning the natural numbers to prove the infinitude of primes, *College Math. J.* 48 (2017), No. 3, 217–218.

[254] F. Saidak, A New Proof of Euclid’s theorem, *Amer. Math. Monthly* 113 (2006), 937–938.

[255] K. Saito, A fractal proof of the infinitude of primes, *Lith. Math. J.* 59 (2019), No. 3, 408–411; preprint arXiv:1810.05955v1 [math.HO], October 2018.

[256] P. Samuel, *Théorie Algébrique des Nombres*, Hermann, Paris, 1967; English translation published by Houghton–Mifflin, Boston, 1970.

[257] J. Sándor, Über die Folge der Primzahlen, *Mathematica (Cluj)* 30 (1988), No. 1, 67–74.

[258] J. Sándor and B. Crstici, *Handbook of Number Theory* II, Kluwer Academic Publishers, Dordrecht, 2004.

[259] L. G. Schnirelman, *Prime numbers*, Gosudarstvenoe izdateljstvo tehniko-teoreticheskoi literaturi (Russian), Moskva-Leningrad, 1940.

[260] I. Schur, Über die Existenz unendlich vieler Primzahlen in einigen speziellen arithmetischen Progressionen, *Sitzungsber. Berliner Math. Ges.* 11 (1912/13), 40–50. [Also in: *Gesammelte Abhandlungen* Vol. 2, 1–11, Springer-Verlag, Berlin–Heidelberg, 1973.]
[261] A. Scimone, A short and elementary proof of the infinitude of primes. _Teaching Mathematics and its Applications_ 27 (2008), No. 4, 218–219.

[262] N. Sedrakian and J. Steinig, A particular case of Dirichlet’s theorem on arithmetic progressions, _Enseign. Math._ 44 (1998), 3–7.

[263] S.-I. Seki, Valuations, arithmetic progressions, and prime numbers, preprint arXiv:1708.08085v1 [math.NT], 2017.

[264] A. Selberg, An elementary proof of Dirichlet’s theorem about primes in an arithmetic progression, _Ann. of Math._ 50 (1949), 297–304. [In Collected Papers, vol. I, pp. 371–378, Springer-Verlag, Berlin, 1989.]

[265] J. A. Serret, Note sur un théorème de la théorie des nombres _J. math. pures appl._ 17 (1852), 186–189.

[266] D. Shanks, *Solved and Unsolved Problems in Number Theory*, Second edition, Chelsea Publishing Company, New York, 1978.

[267] D. Shanks, Euclid’s primes, _Bull. Inst. Combin. Appl._ 8 (1993), 23–32.

[268] H. N. Shapiro, On primes in arithmetic progressions I, _Ann. of Math._ 52 (1950), 217–230.

[269] H. N. Shapiro, On primes in arithmetic progressions II, _Ann. of Math._ 52 (1950), 231–243.

[270] H. N. Shapiro, *Introduction to the Theory of Numbers*, John Wiley & Sons, New York, 1983.

[271] D. O. Shklarsky, N. N. Chentzov and I. M. Yaglom, *The USSR Olympiad Problem Book. Selected Problems and Theorems of Elementary Mathematics*, Courier Dover Publications, New York, 1993 (translated from Third Russian Edition of 1962).

[272] H. Siebeck, Die recurrenten Reihen, von Standpunkte der Zahlentheorie aus betrachtet. _J. Reine Angew. Math._ 33 (1846), 71–77.

[273] W. Sierpiński, *Elementary Theory of Numbers*, Monografie Matematyczne, Tom 42, Państwowe Wydawnictwo Naukowe (Polska Akademia Nauk), Warszawa, 1964.

[274] W. Sierpiński, Les binômes $x^2 + n$ et les nombres premiers, _Bull. Soc. Roy. Sci. Liège_ 33 (1964), 259–260.

[275] W. Sierpiński, 250 Problems in Elementary Number Theory, American Elsevier Publishing Company, New York, 1970 (copyright by Państwowe Wydawnictwo Naukowe, Warszawa, 1970).

[276] J. H. Silverman, *The arithmetic of elliptic curves*, Springer Verlag, New York, 1986.

[277] S. Silwal, Infinitely many primes using generating functions, preprint arXiv:1811.12441v3 [math.HO], December 2018.

[278] N. J. A. Sloane, *On-Line Encyclopedia of Integer Sequences*, published electronically at www.research.att.com/~njas/sequences/

[279] N. J. A. Sloane and S. Plouffe, *The Encyclopedia of Integer Sequences*, Academic Press, 1995.

[280] R. A. Smith, A note on Dirichlet’s theorem, _Canad. Math. Bull._ 24 (1981), 379–380.

[281] M. Somos and R. Haas, A linked pair of sequences implies the primes are infinite, _Amer. Math. Monthly_ 110 (2003), p. 539.

[282] J. Sondow, Primes, π, and Irrationality Measure, http://arxiv.org/ftp/arxiv/papers/0710/0710.1862.pdf, 2007.

[283] S. Srinivasan, On infinitude of primes, _Hardy–Ramanujan J._ 7 (1984), 21–26.
[284] P. J. Stephens, Prime divisors of second order linear recurrences I, II, *J. Number Theory* 8 (1976), 313–332, 333–345.

[285] T. J. Stieltjes, Sur la théorie des nombres, *Ann. Fac. Sci. Toulouse* 4 (1890), 1–103. [Oeuvres complètes, 2, 265–377, P. Noordhoff, Groningen, 1918. Reprint: Springer, Berlin-Heidelberg, 1993.]

[286] M. V. Subbarao, On relatively prime sequences, *Amer. Math. Monthly* 73 (1966), 1099–1102.

[287] Z.-W. Sun, On functions taking only prime values, *J. Number Theory* 334 (2013), No. 8, 2794–2812, preprint, [arXiv:1202.6589v14 [math.NT]] (2012).

[288] J. J. Sylvester, On the theorem that an arithmetical progression which contains more than one, contains an infinite number of prime numbers, *Proc. London Math. Soc.* 4 (1871), 7–8. [Collected Math. Papers 2, 712–713, Cambridge, 1908.]

[289] J. J. Sylvester, On Thchebycheff’s theorem of the totality of of prime numbers comprised within given limits, *Amer. J. Math.* 4 (1881), 230–247.

[290] J. J. Sylvester, On certain inequalities relating to prime numbers, *Nature* 38 (1888), 259–262. [Collected Math. Papers 4, 592–603, Cambridge, 1912.]

[291] J. J. Sylvester, Preuve élémentaire du théorème de Dirichlet sur les progressions arithmétiques dans le cas où la raison est 7 ou 12, , *C. R. Acad. Sci. Paris* 106 (1888), 1278–1281, 1385–1386. [Collected Math. Papers 4, 592–603, Cambridge, 1912.]

[292] T. Šalát, Rad prevrátencých hodnôt všetkých prvčísel aniektoré výsledky o konvergenci čiastočných radov harmonického radu (Czech), *Pokroky matematiky, fyziky a astronomie* 10, (1965), No. 3, 168–178; also available at http://dml.cz/bitstream/handle/10338.dmlcz/138240/PokrokyMFA10-1965-3_4.pdf

[293] J. J. Tattersall, *Elementary Number Theory in Nine Chapters*, Cambridge University Press, Cambridge, 1999.

[294] M. Templer, On the primality of $k! + 1$ and $2 \cdot 3 \cdots p + 1$, *Math. Comp.* 34 (1980), 303–304.

[295] V. G. Tikekar, *Seven Different Proofs of the irrationality of $\sqrt{2}$*, Bangalore: Resonance, Indian Academy of Sciences, 2007, 31–39.

[296] J. G. Thompson, A method for finding primes, *Amer. Math. Monthly* 60 (1953), p. 175.

[297] A. Thue, Mindre meddeleler, II; Et bevis for at printallens antal er nendeligt., *Arch. for Math. og Natur.*, Kristiania, 19 (1897), No. 4, 1–5. [Reprinted in *Selected Mathematical Papers* (edited by T. Nagell, A. Selberg and S. Selberg), 31–32. Universitetsforlaget, Oslo, 1977.]

[298] D. Treiber, Zur Reihe der Primzahenziproken, *Elem. Math.* 50 (1995), 164–166.

[299] C. W. Trigg, The Infinitude of Primes, *Math. Magazine* 47 (1974), p. 162.

[300] J. V. Uspensky and M. A. Heaslet, *Elementary Number Theory*, McGraw-Hill Book Company, New York, 1939.

[301] K. Th. Vahlen, *Schriften phys.-ökön. Gesell. Königsberg* 38 (1897), p. 47.

[302] B. L. van der Waerden, Beweis einer Baudetschen Vermutung, *Nieuw Arch. Wisk.* 15 (1927), 212–216.

[303] C. Vanden Eynden, Proofs that $\sum 1/p$ diverges, *Amer. Math. Monthly* 87 (1980), 394–397.
[304] V. S. Varadarajan, Euler and his work on infinite series, Bull. Amer. Math. Soc. 44, 515–539.
[305] I. Vardi, Are All Euclid Numbers Squarefree In Computational Recreations in Mathematica, Reading, MA: Addison-Wesley, Redwood City, CA, 82–89, 1991.
[306] V.J. Vera and C.S. Ávila, New proof that the sum of the reciprocals of primes diverges Mathematics 8 (2020), Article No. 1414, pages 9.
[307] N. N. Vorobljev, Fibonacci Numbers, Blaisdell, New York, 1961.
[308] R. D. von Sterneck, Über einige spezielle zahlentheoretische Functionen, Monatsh. Math. Phys. 7 (1896), 37–48.
[309] S. S. Wagstaff, Jr., Computing Euclid’s primes, Bulletin Institute Combin. Applications 8 (1993), 23–32.
[310] M. Ward, Prime divisors of second order recurring sequences, Duke Math. J. 21 (1954), 178–188.
[311] M. Ward, The prime divisors of Fibonacci numbers, Pacific J. Math. 11 (1961), 379–386.
[312] L. C. Washington, The infinitude of primes via commutative algebras, unpublished manuscript, 1980.
[313] L. C. Washington, Introduction to Cyclotomic Fields, Springer–Verlag, New York, 1982.
[314] D. P. Wegener, Primitive Pythagorean triples and the infinitude of primes, Fibonacci Quart. 19 (1981), 449–450.
[315] A. Weil, Number theory for beginners, Springer-Verlag, New York, 1979.
[316] A. Weil, Number theory, an approach through history from Hammurapi to Legendre, Birkhäuser, Boston, Inc., Cambridge, Mass., 1984.
[317] E. Wendt, Elementarer Beweis des Satzes, dass in jeder unbegrenzt arithmetischen Progression $my + 1$ unendlich viele Primzahlen vorkommen, J. Reine Angew. Math. 115 (1895), 85–88.
[318] J. P. Whang, Another Proof of the Infinitude of the Prime Numbers, Amer. Math. Monthly 117 (2010), p. 181.
[319] A. J. Wilkie, Some results and problems on weak systems of arithmetic. In A. Macintyre, L. Pacholski and J. Paris, editors, Logic Colloquium ’77, 237–248. North-Holland, 1978.
[320] A. R. Woods, Some problems in Logic and Number theory and their connections, Ph.D. thesis, University of Manchester, 1981.
[321] M. Wunderlich, Another proof of the infinite prime theorem, Amer. Math. Monthly 72 (1965), p. 305.
[322] A. M. Yaglom and I. M. Yaglom, Challenging mathematical problems with elementary solutions. Volume I: Combinatorial Analysis and Probability Theory, Dover Publications, INC., University of Chicago, 1964 (translated from Russian Edition of 1954).
[323] A. M. Yaglom and I. M. Yaglom, Challenging mathematical problems with elementary solutions. Volume II: Problems from Various Branches of Mathematics, Dover Publications, INC., University of Chicago, 1967 (translated from Russian Edition of 1954).
[324] T. Yamada, Proofs of the infinitude of primes, available at http://www.pmath.kyoto-u.ac.jp/~tyamada/files/infprime.pdf
EUCLID'S THEOREM ON THE INFINITUDE OF PRIMES ... 57

[325] J. Yoo, Infinitely many primes of the form \(An + 1\): another elementary proof, Commun. Korean Math. Soc. 19, (2004), No. 2, 205–210.

[326] D. Zagier, Newman's Short Proof of the Prime Number Theorem, Amer. Math. Monthly 104 (1997), 705–708.

[327] S. Zhang, Euclid's number-theoretical work, preprint, arXiv:0902.2465v2 [math.GM], 2010.

APPENDICES

A) External Links on Euclid's theorem and its proofs

Wikipedia http://en.wikipedia.org/wiki/Euclid’s_theorem
http://mathworld.wolfram.com/EuclidsTheorems.html from MathWorld.

http://primes.utm.edu/notes/proofs/infinite/eulids.html
http://mathforum.org/
http://aleph0.clarku.edu/~djoyce/java/elements/elements.html
http://planetmath.org/encyclopedia/
http://mathoverflow.net
http://tech.groups.yahoo.com/group/primenumber/

B) Sloane's sequences related to proofs of Euclid's theorem

A000040, A002110, A034386, A210144, A210186, A006862, A005234, A006794, A014545, A057704, A057713, A065314, A065315, A065316, A065317, A018239, A057588, A057705, A06794, A002584, A002585, A051342, A068488, A068489, A103514, A066266, A066267, A066268, A066269, A088054, A093804, A103319, A104350, A002981, A002982, A038507, A007917, A007918, A088332, A05235, A000945, A000946, A005265, A005266, A0084598, A0084599, A005266; A000215, A019434, A094358, A050922, A023394, A057755, A080176, A002715; A000668, A001348, A000225, A000043, A046051, A028335; A002716; A104189; A001685; A000045; A000217; A000292; A064526, A000324, A007996; A000289; A000058, A001543, A001544, A126263; A005267; A0013661, A0013662; A003285; A000010; A000984; A167604.

In “The On-Line Encyclopedia of Integer Sequences.” (published electronically at www.research.att.com/~njas/sequences/) [278].
C) List of papers and their authors arranged by year of publication followed by the main argument(s) of related proof given into round brackets

1 For brevity, into round brackets after a reference in the following list we denote the method(s) and/or idea(s) that are used in related proof by:

- AP—an arithmetic progression/arithmetic progressions;
- C—a combinatorial method;
- CM—a counting method, based on some combinatorial enumerating arguments;
- CS—an idea based on a convergence of sums $\sum_{n=1}^{\infty} 1/n^s$ with $s > 1$ etc;
- DS—Euler idea, that is an idea based on the divergence of reciprocals of primes and related series;
- E—Euclid’s idea of the proof of the infinitude of primes, that is, a consideration of product $P := p_1p_2\cdots p_k+1$ or some analogous product;
- FT—a factorization (not necessarily to be unique) of a positive integer as a product of prime powers;
- MPI—the idea based on a construction of sequences consisting of mutually prime positive integers;
- T—a topological method;
- UFT—the unique factorization theorem of a positive integer as a product of prime powers.

1* denotes that a related proof of IP concerns a particular arithmetic progression

[91, ~ 300 B.C.], [128, p. 4, Theorem 4], Euclid of Alexandria (E)
[101, 1730, pp. 32–34, I], [248, p. 6], [98, pp. 40–41], [233, p. 4] C. Goldbach, (MPI, especially Fermat numbers $F_n := 2^{2^n} + 1$)
[93, 1736] (posthumous paper), [46, pp. 134–135], [76, p. 413], [233, p. 3] L. Euler (multiplicativity of Euler’s totient function φ)
[94, 1737, pp. 172–174], [92, [248, p. 8], [98, pp. 8–9], L. Euler (UFT, DS; especially, the series of the reciprocals of the primes is divergent)
*[162, 1843], [76, p. 418] V. A. Lebesgue (prime factors of $x^{p-1} - x^{p-2} y + \cdots + y^{p-1}$, Fermat little theorem, and IP in AP 1 (mod 2p) with a p a prime)
*[265, 1852] J. A. Serret (E, and IP in AP 9 (mod 10))
*[265, 1852] [210, pp. 90–91, Theorem 2.19] J. A. Serret, (law of quadratic reciprocity, and IP in AP 3 (mod 8), 5 (mod 8) and 7 (mod 8))
*[161, 1853], [76, p. 418], [140, p. 34, Section 2.3] F. Landry (prime divisors of $(n^p + 1)/(n + 1)$, Fermat little theorem, and IP in AP 1 (mod 2p) with a prime p)
*[163, 1856], [128, p. 13] V. A. Lebesgue (E, and IP in AP 3 (mod 4))
EUCLID’S THEOREM ON THE INFINITUDE OF PRIMES... 59

[164], 1859], [76], p. 418], [128], p. 13], V. A. Lebesgue (E, IP in AP 5(mod 6) and IP in AP 1(mod 2^n k) with some fixed k, n ∈ N)

∗ [165], 1862], [76], p. 418] V. A. Lebesgue, (prime factors of an integer polynomial in two variables, Fermat little theorem, and IP in AP −1(mod 2p) with a p a prime)

∗ [105], 1868/9], [76], p. 418] A. Genocchi (rational and irrational parts of (a + √b)^k, and IP in AP ±1(mod 2^p), with a p a prime)

∗ [184], 1874], [323], pp. 171, 183–186] F. Mertens (DS, the boundedness of the quantity \(|\sum_{p \leq n} \log p/p - \log n| \) as n → ∞)

[132], 1875/6, pp. 438–439] K. Hensel (E, and IP in AP 1(mod 4), 1(mod 6) and 5(mod 8))

∗ [132], 1875/6, pp. 438–439] K. Hensel (E, and IP in AP 1(mod 4), 1(mod 6) and 5(mod 8))

∗ [228], 1878] J. J. Sylvester (E, Lucas sequences, and IP in AP 2(mod 5) and 7(mod 8))

[156], 1878/9], [248], p. 4], [324] E. E. Kummer (E and Euclid’s proof revisited with \(p_1p_2 \cdots p_n - 1 \) instead of \(p_1p_2 \cdots p_n + 1 \))

[227], 1881], [324] J. Perott (CS, UFT, CM, the fact that \(\sum_{n=1}^{\infty} 1/n^2 < 2 \), the estimate of upper bound of number of integers ≤ N by some square)

∗ [23], 1886], [76], p. 418] A. S. Bang (E, cyclotomic polynomials, and IP in AP 1(mod k) with k ≥ 2)

[104], 1887/8], [76], p. 413] L. Gegenbauer (CS and the the convergent series \(\sum_{n=1}^{\infty} 1/n^s \))

[228], 1888], [76], p. 414] J. Perott (Theory of Commutative Groups)

[290], 1888], [210], p. 7] J. J. Sylvester, (evaluation of Euler’s product \(\prod_{p \leq x} (1 - 1/p)^{-1} \) and the estimate \(\sum_{n \leq x} 1/n \geq \log x \))

[290], 1888], [210], pp. 11–12] J. J. Sylvester (DS, the series \(\sum_{n=1}^{\infty} 1/n \) is divergent and the series \(\sum_{n=1}^{\infty} 1/n \) is convergent)

* [291], 1888], [76], p. 418] J. J. Sylvester (E, cyclotomic polynomials, and IP in AP 1(mod k) with k ≥ 2)

* [291], 1888] J. J. Sylvester (E, and IP in AP −1(mod p^n) with p any fixed prime)

[228], 1889], [229] J. Perott (E, Euclid’s proof revisited, with \(p_1p_2 \cdots p_k - 1 \) instead of \(p_1p_2 \cdots p_k + 1 \))

[124], 1890], [76], p. 414] J. Hacks (formula for the number of positive integers less than N from [47], Ch. XI)

[285], 1890, p. 14], [76], p. 414], [246], [324] T. J. Stieltjes (E and the fact that the sum \(p_1p_2 \cdots p_k + p_{k+1}p_{k+2} \cdots p_{k+r} \) is not divisible by any \(p_i \) (i = 1, 2, ..., k + r))

* [175], 1891] É. Lucas (E, Lucas sequences, IP in AP 1(mod 4), 5(mod 6) and in AP 5(mod 8))
The representation $Q = P/a - a > 1$, where a and P/a are relatively prime factors of $P := p_1^{e_1}p_2^{e_2} \cdots p_n^{e_n}$.

* 1896, p. 89] E. Wendt (the factorization $x^n - 1 = f(x)g(x)$, where $g(x)$ is the least common multiple of polynomials $\{x^d - 1 : d \mid n\}$, common divisors of integers $f(x)$ and $g(x)$ with $x \in \mathbb{Z}$, and IP in $AP 1(\mod k)$)

* 1896] R. D. von Sterneck (E, and IP in $AP -1(\mod k)$ with $k = 2, 3, \ldots$)

* 1897, p. 9] A. Thue (CM and UFT)

* 1897] K. Th. Vahlen (Gauss’ periods of roots of unity, and IP in $AP 1(\mod k)$ with $k \geq 2$)

* 1899, p. 414] 233, p. 3], 324 J. Braun (E and a prime divisor of $\sum_{i=1}^{k} (p_1p_2 \cdots p_k)/p_i$)

* 1899, p. 414], 252 J. Hacks (Euler’s formula $\prod 1/(1 - p^{-2}) = \sum_{n=1}^{\infty} 1/n^2 = \pi^2/6$ and the irrationality of π^2)

* 1899, p. 291] É. Lucas (Lucas sequence, and IP in $AP 1(\mod k)$ with $k \geq 2$)

* 1900, pp. 318–319] E. Cahen (E, and IP in $AP 1(\mod 4), 1(\mod 6)$ and $5(\mod 8)$)

* 1903/04] G. D. Birkhoff and H. S. Vandiver (the existence of primitive prime divisors of integers $a^n - b^n$, where $n \in \mathbb{N}$ and a and b are relatively prime integers)

* 1905/6] M. Bauer (E, and IP in $AP -1(\mod k)$ with $k \geq 2$)

* 1907], 300 p. 87] H. Bonse (E)

* 1909/10], 76 p. 414] A. Lévy (E)

* 1911], 59 p. 116, Theorem 114], 76 p. 419]) H. C. Pocklington (E, and IP which are not congruent to $1(\mod k)$)

* 1912/13], 240 pp. 131, 324, Problem 108] I. Schur (E, and IP of primes dividing the integer values of a nonconstant integer polynomial)

* 1913] R. D. Carmichael (IP in $AP -1(\mod p^n)$ with p any fixed odd prime, and IP in $AP -1(\mod 3 \cdot 2^n)$)

* 1913] K. Hensel (E, and IP in $AP 1(\mod 4), 1(\mod 6)$ and $7(\mod 8), 3(\mod 8), 9(\mod 10)$ and $11(\mod 12)$)

* 1915], 76 p. 414], 248 p. 11] A. Auric (CM, FT and the estimate of number of positive integers $m = p_1^{e_1}p_2^{e_2} \cdots p_r^{e_r}$ less than N)

* 1917], 76 p. 415], 248 p. 11] G. Métrod (E and a prime divisor of $\sum_{i=1}^{n} N/p_i$, where $N = p_1p_2 \cdots p_n$)
EUCLID’S THEOREM ON THE INFINITUDE OF PRIMES . . . 61

G. Pólya and G. Szegő (1921), pp. 131, 324, Problem 107

F. Hartmann (1931) F. Hartmann (IP in AP \(1 \equiv 1 (mod p^n)\))

G. Pólya and G. Szegő (1934, p. 283), P. Erdős (C and de Polignac’s formula)

F. Hartmann (1931) F. Hartmann (IP \(\equiv 1 (mod p^n)\))

P. Erdős (1934), P. Erdős (de Polignac’s formula and inequalities for central binomial coefficients)

A. S. Bang, (1937), A. S. Bang, \(E\), and IP in AP \(2p^n + 1 (mod 4p^n)\) with prime \(p \equiv 3 (mod 4)\), \(2p^{2n+1} + 1 \mod 6p^{2n+1}\) with prime \(p \equiv 2 (mod 3)\), and \(4p^{2n} + 1 \mod 6p^{2n}\) with prime \(p \equiv 2 (mod 3)\)

P. Erdős (1938), 8th proof P. Erdős (Chebyshev’s argument, de Polignac’s formula and DS)

G. H. Hardy and E. M. Wright (1938, pp. 16–17) G. H. Hardy and E. M. Wright \(FT\), a representation \(n = m^2 k\) where \(k\) is squarefree and CM

G. H. Hardy and E. M. Wright (1938, p. 13) G. H. Hardy and E. M. Wright \(E\), prime divisor of \(a^2 + b^2\), and IP in AP \(5 (mod 8)\)

L. G. Schnirelman (1940, pp. 44–45) (published posthumously) L. Schnirelman (the estimates \(\lim_{x \to \infty} (\sum_{p \text{ prime}} 1) x^{-k} = 0\) for \(a > 1\) and \(k > 0\) and an enumerative argument)

R. Bellman (1943) R. Bellman \(DS\) and the sum of prime reciprocals

R. Bellman (1947), p. 7 R. Bellman \(MPI\) and a polynomial method

T. Nagell, (1951) \(IP\) in AP \(1 (mod k)\) for all \(k \geq 2\)

J. G. Thompson (1953) J. G. Thompson \(E\)

E. Dux (1956) E. Dux \(DS\) and the sum of prime reciprocals

V. C. Harris (1956), \(\mu(d)\) with relatively primes integers \(n\) and \(m\), the order of \(k\) modulo a prime \(p\), and IP in AP \(1 (mod 10)\)

S. W. Golomb (1957) S. W. Golomb \(MPI\)

D. Jarden (1958) D. Jarden (recurring sequences and IP in AP \(1 (mod 20)\))

S. W. Golomb (1959) S. W. Golomb \(T\)

A. Rotkiewicz (1961) A. Rotkiewicz (Birkhoff-Vandiver theorem, the order of \(k\) modulo a prime \(p\), and IP in AP \(1 (mod k)\))

D. O. Shklarsky, N. N. Chentzov and I. M. Yaglom (1962, pp. 60, 371–373) D. O. Shklarsky, N. N. Chentzov and I. M. Yaglom \(E\), divisors of \(a^5 - 1\), Fermat little theorem, and IP in AP \(1 (mod 10)\)

T. Estermann (1962/3) T. Estermann (prime divisors of \(nm\), where \(n/m := \prod_{d|n} (k^{d/n} - 1)^{\mu(d)}\) with relatively primes integers \(n\) and \(m\), the order of \(k\) modulo a prime \(p\), and IP in AP \(1 (mod 10)\)

S. W. Golomb (1963) S. W. Golomb \(MPI\)
Inequality for central binomial coefficient, mathematical induction, \textit{UFT}, de Polignac's formula

* \cite{27} 1965 P. Bateman and M. E. Low (E, law of quadratic reciprocity, and IP in AP \(1 \pmod{24}\))

\cite{57} 1965 P. R. Chernoff (CM, FT, the estimate of upper bound of number of \(k\)-tuples \((e_1, e_2, \ldots, e_k)\) satisfying \(p_1^{e_1}p_2^{e_2}\cdots p_k^{e_k} \leq N\))

\cite{321} 1965, \cite{210} p. 9, M. Wunderlich (MPI, Fibonacci sequence \((f_n)\), the property \((m, n) = 1 \implies (f_m, f_n) = 1 \) and the factorization \(f_{19} = 113 \cdot 37\))

\cite{134} 1966 R. L. Hemminiger (MPI, a sequence \((a_n)\) with the property: \((m, n) = 1 \implies (f_m, f_n) = 1\), the sequence \((a_n)\) defined recursively as \(a_1 = 2\), \(a_{n+1} = 1 + \prod_{i=1}^{n} a_i\))

\cite{286} 1966 M. V. Subbarao (MPI)

\cite{62} 1969 E. Cohen (de Polignac's formula and DS)

\cite{275} 1970, Problems 47 and 92] A. Mąkowski (E and relatively prime numbers)

\cite{275} 1970, Problem 50] A. Rotkiewicz (MPI and Fibonacci numbers)

\cite{275} 1970, Problem 52] W. Sierpiński (attributed to P. Schorn by P. Ribenboim [248 pp. 7–8]) (E, MPI and AP \((m!)k + 1\) for a fixed \(k = 1, 2, \ldots, m\))

\cite{275} 1970, Problem 62] W. Sierpiński (E, MPI and AP)

\cite{275} 1970, Problem 36] W. Sierpiński (MPI and triangular numbers)

\cite{275} 1970, Problem 36] W. Sierpiński (MPI and tetrahedral numbers)

\cite{79} 1971 Problem 3 on IMO 1971 (FT and Euler’s theorem)

\cite{299} 1974] C. W. Trigg (E)

\cite{25} 1976 C. W. Barnes (E, Theory of periodic continued fractions and Theory of negative Pell’s equations \(x^2 - dy^2 = -1\))

* \cite{214} 1976 I. Niven and B. Powell (the induction, the order of \(k\) modulo a prime \(p\), a polynomial equation, and IP in AP \(1 \pmod{k}\))

\cite{194} 1978, Theorem 1], \cite{195}, \cite{233} pp. 5–6] S. P. Mohanty (MPI and the induction)

\cite{194} 1978, Theorem 2], S. P. Mohanty (MPI and Fermat little theorem)

\cite{194} 1978, Theorem 3], S. P. Mohanty (MPI and prime divisors of Fibonacci numbers \(f_p\))

* \cite{266} 1978, p. 107], \cite{89} pp. 178–179], \cite{204} p. 209], D. Shanks (a prime divisor of \((2^{mp} - 1)/(2^m - 1)\) of the form \(p^\alpha k + 1\), and IP in AP \(\equiv 1 \pmod{p^\alpha}\))

\cite{13} 1979 R. Apéry (Euler’s formula \(\prod 1/(1 - p^{-3}) = \sum_{n=1}^{\infty} 1/n^3 \equiv \zeta(3)\) and the irrationality of \(\zeta(3)\))

\cite{52} 1979], \cite{59} p. 118, Section 10.1.5] G. Chaitin (algorithmic information theory and an enumerative argument)

\cite{315} 1979, p. 36], A. Weil (E and Group Theory)
[303] 1980] C. Vanden Eynden (DS, the divergence of the series $\sum_{n=1}^{\infty} 1/n$ and the convergence of the series $\sum_{n=1}^{\infty} 1/n^2$)
[312] 1980], [238] pp. 11–12], [54] L. C. Washington (Theory of principal ideal domains, and the factorizations $(1 + \sqrt{-5})(1 - \sqrt{-5}) = 2 \times 3$ of 6 in the ring $\mathbb{Z}[a + b\sqrt{-5}]$)
* [250] 1981] R. A. Smith (Birkhoff-Vandiver idea, the solvability of the congruence $x^k \equiv 1 \pmod{p}$ with an integer of order k modulo a prime p, and IP in AP $1 \pmod{k}$)

D. P. Wegener (E and primitive Pythagorean triples)

[280] 1981] R. A. Smith (Birkhoff-Vandiver idea, the solvability of the congruence $x^k \equiv 1 \pmod{p}$ with an integer of order k modulo a prime p, and IP in AP $1 \pmod{k}$)

[314] 1981] D. P. Wegener (E and primitive Pythagorean triples)

[320] 1981] A. R. Woods (weak system of arithmetic $I \Delta_0$, Δ_0-definable functions, the pigeonhole principle PHPΔ_0 formulated for functions defined by Δ_0-formulas)

[283] 1984], [324] S. Srinivasan (MPI, “dynamical systems proof” and the sequence $\left(\frac{2^{2^{n+1}} + 2^{2^n} + 1}{(2^{2^n} + 2^{2^n-1} + 1)}\right)$)

[283] 1984], [324] S. Srinivasan (MPI, ”dynamical systems proof”, Fermat little theorem and the sequence $\left(\frac{2^{p^{n+1}} - 1}{(2^{p^n} - 1)}\right)$)

[222] 1985] R. W. K. Odoni (E, MPI and a sequence w_n recursively defined as $w_1 = 2$, $w_{n+1} = 1 + w_1 \cdots w_n$ ($n \geq 1$))

[71] 1986], [257] M. Deaconescu and J. Sándor (divisibility property $n | \varphi(a^n - 1)$, $a, n > 1$)

[226] 1988], [225] J. B. Paris, A. J. Wilkie and A. R. Woods (weak system of arithmetic $I \Delta_0$, weak pigeonhole principle, Δ_0-definable functions)

[252] 1993] M. Rubinstein (CM, UFT and the asymptotic formula for the cardinality of a set $\{(e_1, \ldots, e_k) \in \mathbb{N}^k : x_1 \log p_1 + x_2 \log p_2 + \cdots + x_k \log p_k \leq \log x\}$)

* [250] 1994] N. Robbins (MPI, prime divisors of Fermat numbers, and IP in AP $1 \pmod{4}$)

* [250] 1994] N. Robbins (MPI, prime divisors of Fibonacci numbers, and IP in AP $1 \pmod{4}$)

[298] 1995] D. Treiber (DS and the sum of prime reciprocals)

[10] 1997, Problem 7.2.3] Problem on 1997 Romanian IMO Team Selection Test, (MPI, the induction, Euler theorem and a subsequence of the sequence $(a^{n+1} + a^n + 1)$ for a fixed integer $a > 1$)

[85] 1998, Problem E3] Problem of the training of the German IMO team, (MPI, the induction, the factorization $2^{2^{n+1}} + 2^{2^n} + 1 = (2^{2^n} - 2^{2^{n-1}} + 1)(2^{2^n} + 2^{2^{n-1}} + 1)$ and $2^{2^{n+1}} + 2^{2^n} + 1$ has at least n different prime factors for each $n = 0, 1, 2, \ldots$)

[109] 1998], [233] p. 16] R. Goldblatt (E and nonstandard Analysis)

* [262] 1998] N. Sedrakian and J. Steinig (a prime divisor of $(k^k-1)/[k^k/p_1 - 1, \ldots, k^k/p_s - 1]$, where p_1, \ldots, p_s are all distinct prime divisors of k and $[a_1, \ldots, a_s]$ denotes the greatest common divisor of a_1, \ldots, a_s, and IP in AP $1 \pmod{k}$)

[70] 2000] M. Dalezman (E, CM)
2001, p. 4] M. Aigner and G. M. Ziegler (CM, definite integral of the function $1/t$, DS, UFT)
2001, p. 3, [11] p. 72, [72] M. Aigner and G. M. Ziegler, (Lagrange’s theorem of Group Theory and Mersenne numbers)
2001] Š. Porubský (T and Theory of commutative rings)
2001/2, Problem 6], [221] p. 51, Problem 3.5.3] Problem on Polish Mathematical Olympiad (MPI and recursive sequence)
2001, [241] M. D. Hirschorn (CM and FT)
2003], [7, 2003], [233, p. 6] J. M. Aldaz and A. Bravo (E, a sequence $(P − 2^n)$ with $P = \prod_{i=1}^r p_i$ and MPI)
2003], [51] D. Cass and G. Wildenberg (C, periodic functions on integers)
2003, p. 2] C. W. Neville (DS)
2003] M. Somos and R. Haas (MPI)
2004] T. Ishikawa, N. Ishida and Y. Yukimoto (MPI)
2005, p. 35] R. Crandall and C. Pomerance (DS, the harmonic sum)
*2005, pp. 92–64, Example 7.5.4] M. R. Murty and J. Esmonde (E, properties of polynomial $f(x) = x^4 − x^3 + 2x^2 + x + 1$, law of quadratic reciprocity, and IP in $AP \{4(mod 15)\}$)
*2005, p. 11] M. R. Murty and J. Esmonde (prime divisor of Fermat number $F_n = 2^{2^n} + 1$ is of the form $2^{n+1}k + 1$, F_n and F_m are relatively prime if $m \neq n$, and IP in $AP = 1(mod 2^n)$)
*2005] R. Neville (sequence $u_n = u_{n-1} + 3u_{n-2}$, the induction, and IP in $AP \{1(mod 3)\}$)
*2005, [254] 2006] F. Saidak (MPI)
2006] L. J. P. Kilford (CS)
2007] M. Gilchrist (MPI)
2007, pp. 110–111] T. Andreescu, D. Andrica and Z. Feng (first proof via induction; the second proof due by Sherry Gong via induction using Euler’s theorem)
*2007, p. 4] A. Granville (E, divisors of $a^2 + a + 1$, Fermat little theorem, and IP in $AP \{1(mod 3)\}$)
*2007, p. 2] A. Granville (E, FT and Chinese remainder theorem)
2008] Problem 3 on IMO 2008 (quadratic residues modulo a prime and infinitely many positive integers n such that $n^2 + 1$ has a prime divisor greater than $2n + \sqrt{2n}$)
E. Baronov [139] 2008, p. 12, Problem 5] E. Baronov (UFT and an enumerative argument)
E. Baronov [139] 2008, pp. 12–13, Problem 6] E. Baronov (UFT and an enumerative argument)
2008] B. Joyal, (sieve of Eratosthenes and the formula for the proportion of the positive integers which are divisible by one of the first n primes)

2008] P. Nguyen (weak theories of Bounded Arithmetic "minimal" reasoning using concepts such as (the logarithm) of a binomial coefficient).

2009] I. D. Mercer (C)

2009] J. P. Pinasco (Inclusion-Exclusion Principle, CM and DS)

2009, p. 11] P. Pollack (the formula $\sum_{ \infty }^{ \infty } (1 - x^n) e^{n(n)/n} = e^{-x}$ with $|x| < 1$ and the irrationality of e)

2012] (E, FT and the formula $n^s - 1 = (n - 1)(\sum_{i=0}^{s-1} n^i)$)

2012] R. Meštrović (Euler’s totient function, and IP in AP 1(mod p) with a p a prime)

2012] (C, CN and UFT)

2015] L. Alpoge (C and UFT)

2015] B. Maji (MPI)

2015] S. Northshield (the estimates of the product $\prod_p \sin \left(\frac{\pi}{p} \right)$)

2016] A. R. Booker (analytic number theory, UFT and C)
P. L. Clark, (the Euclidean criterion for irreducibles, T and UFT)
A. Granville (C and UFT)
A. Sadhukhan (C)
S.-I. Seki (valuation theory and approximation theorem)
A. Sadhukhan (C)
S. Northshield (UF T and the idea of Furstenberg’s proof)
R. Meštrović (E and UFT)

The following Author2 and Subject Indices contain names of all authors of references of this article related to the proofs of IP, and mathematical concepts (notions) and notations that appear in this article, respectively.

D) Author Index

Abel, N. H. (Norway, 1802–1829), 8, 18, 61; Abel, U., 27(2); Abrarov, R. M. 18(7), 61(2), 58; Abrarov, S. M., 18(7), 61(3); Ağargün, A. G., 6; Aho, A. V., 14; Aigner, M. (Austria, born 1942), 8, 16, 19(2), 23, 24, 53, 54, 56(2); Aldaz, J. M., 9, 56; Alppoge, L. Andjić, M. Andescu, T. (Romania/USA, born 1956), 13, 16, 17, 31, 56(2), 57; Andrica, D., 13, 16, 17, 31, 56(2), 57; Andrews, G. E. (USA, born 1938), 11, 16; Apéry, R. (France/Greece, 1916–1994), 22, 55; Apostol, T. M. (USA/Greece, born 1923), 22, 23; D’Aquoion, P. Arana, A., 25; Arun-Kumar, S. Ash, J. M., 14, 58; Ağargün, A. G., 3, 3, 3; Auric, A. (France, 18??-19??), 24, 53.

Baz, S. Bang, A. S., 31, 33, 52, 53; Barnes, C. W., 16, 55; Barovov, E., 28(2), 57(2); Bateman, P. T., (USA, born 1919), 21, 33, 34, 54; Bauer, M. (1874–1945), 32, 53; Bellman, R. E. (USA, 1920–1984), 14, 19, 22, 54(2); Berndt, B. C. (USA, born 1939), 23; Bernoulli, J. (Switzerland, 1654–1705) 23; Birkhoff, G. D. (USA, 1884–1944), 32, 53; Bogomolny, A. Boije of Gennäs, C. O. (Sweden, 18??-19??), 9, 52; Bonse, H. , 10, 53; Booker, A. R. Borning, A., 6; Braun, J., 9(2), 22, 52(2); Bravo, A., 9, 56; Brillhart, J. (USA, 7), 27; Brocard, H. (France, 1845–1922), 9, 53; Brown, M. (USA, born 1931), 25; Buck, R. C. (USA, 1920–1998), 22; Buhler, J. P., 6; Burton, D. M., 15, 51.

Cahen, E., 24, 34, 52, 53; Caldwell, C. K., 6(3); Carmichael, R. D. (USA, 1879–1967), 31, 53; Cass, D., 25, 56; Chaitin, G. (USA/Argentina,
born 1947), 27(2), 55; Chastek, B., 17, 55; Chebyshev, P. L. (Russia, 1821–1894), 21(2); Chentzov, N. N., 34, 54; Chernoff, P. R., 24, 54; Choe, B. R., 22; Clark, P. L., 8, 17, 27, 30, 31, 53, 55; Clarkson, J. A., 19; Cohen, E., 20, 54; Conrad, K., 33(2); Cooke, R., 15, 17, 19, 22, 58; Coons, M., 24, 57; Cosgrave, J. B. (Ireland, born 1946), 9; Coz, C.D. Crandall, R. E., 6, 20(2), 21, 56; Crstici, B., 15.

Dalezman, M., 10, 56; Deaconescu, M., 16, 56; Dedekind, R. (Germany, 1831–1916), 17, 59; Detlefsen M., 15.

Edwards, A. W. F. (Britain, born 1935), 12, 54; Edwars, A. W. F. (Britain, born 1935), 12, 54; Elsholtz, C.

Feng, F.; de Fermat, P. (Basque Country/France, 1601–1655), 8, 11(5), 12(2), 14, 17, 20, 31, 32, 34, 51(4), 54, 55(2), 56, 57; Fibonacci (Leonardo of Pisa) (Italy, circa 1170–1250), 13(3), 14, 34, 54, 55, 56; Fletcher, C. R. Forman, R., 26(2); Fourier, J. B. J. (France, 1768–1830), 23; Furstenberg, H. (USA/Israel, born 1935), 24, 54; Fuss, P.-N.

Gallot, Y., 6(2); Galois, É. (France, 1811–1832), 33; Garrison, B., 26; Gauss, C. F. (Germany, 1777–1855), 4, 6, 34, 36; Gegenbauer, L. (Austria, 1849–1903), 19, 52; Genocchi, A. (Italy, 1817–1889), 31, 51; Gerst, I., 27; Gisys, D. P., 22; Gilchrist, M., 14, 57; Goldbach, C. (Germany, 1690–1764), 7, 11(5), 12(2), 14, 51; Goldblatt, R. (New Zealand, ?), 29, 56; Goldstein, L. J., 21; Golomb, S. W. (USA, born 1932), 14, 25, 54(2); Gong, S. (USA, ?), 16, Graham, R. L. (USA, born 1935), 6, 16; Granville, A. (Britain, born 1962), 10, 16, 30(2), 33, 34(2), 57(2); Gueron, S., 31; Guy, R. K. (England/Britain, born 1916), 10, 11, 22.

Haas, R., 12, 56; Hacks, J., 24, 52; Hadamard, J. (France, 1865–1963), 18, 21; Hardy, G. H. (England, 1877–1947), 3(2), 5, 8(2), 9, 11, 18, 19, 20(2), 21, 22(4), 28, 34(4), 35, 36, 51(3), 53, 54(2); Harris, V. C., 12, 54; Hartmann, F., 31, 53; Hasse, H. (Germany, 1898–1979), 13, 16, 19, 31, 32, 34(2), 51(2), 53; Hausdorff, F. (Germany, 1868–1942), 25; Heath, T. L. (Britain, 1861–1940), 3, 4, 5(2), 9, 35, 51; Heaslet, M. A., 10, 53; Hemminiger, R. L., 13, 54; Hermite, C. (France, 1822–1901), 9, 53; Hetzl, A. Hildebrand, A. J., 28; Hirschorn, M. D., 24, 56; Honserberger, R., 19; de l’Hôpital, G. (France, 1661–1704), 21; Hurwitz, A. (Germany, 1859–1919), 11.

Irvine, S. A. Ishida, N., 14, 56; Ishikawa, T., 14, 56; Ivanov, A. Iwaniec, H., (Poland, born 1947) 31, 51.
Jaensch, R., 19; Janković. V. Jarden, D., 35, 54; Jaroma, J. H., 12; Joyal, B., 10, 57; Joyce, D., 4.

Keng, H. L., 31; Khinchin, A. Y. (Russia/Soviet Union, 1894–1959), 22; Kilford, L. J. P., 23, 57; Kirch, A. M., 25; Klazar, M., 25, 56; Knopfmacher, K., 25, 43; Knorr, W. (USA, 1945–1997), 5; Knuth, D. E. (USA, born 1938), 6, 16; Kolev, E. Korfhage, R. K., 11; Kowalski, E., 31, 51; Kraus, L., 43; Kronecker, L. (Germany, 1823–1891), 19, 31, 43; Kummer, E. E. (Germany, 1810–1893), 9, 15, 32, 52; Kurokawa, N.

Lagarias, J. C. (USA, born 1949), 13; Lagrange, J. L. (France, 1736–1813) 16(2), 56; Lambek, J. (Germany/Canada, born 1922), 12; 54; Landry, F., 12, 13, 56.

Legendre, A.-M. (France, 1752–1833), 20, 22, 29; Lebesgue, V. A. (France, 1875–1941), 31(2), 34(3), 51(4); Levesque, A. (France, 1875–1941), 31(2), 34(3), 51(4); Leitsch, F.

Maji Mąkowski, A., 10, 55; Mamangakis, S. E., 11; Matić, I. Mazur, B., (USA, born 1937), 5, 9; Meissel, D. F. E. (Germany, 1826–1895), 15; Mercer, I. D., 25; Mersenne, M. (France, 1588–1648), 11, 12, 16(2), 56; Mertens, F. (Germany, 1840–1887), 18, 20(2), 51; Mietrod, G. (18??-19??), 9, 53; Mixon, D. G., 24, 58; Möbius, A. F. (Germany, 1790–1868), 17(4), 18, 22, 31, 58(2); Mohanty, S. P., 14(3), 16, 55(3); Moll, V. H. Morton, H. R., 14; Morton, P., 26(2); Moser, L. (Canada, 1921–1970), 12, 19, 54(2); Mullin, A. A., 9, 11, 54; Murty, M. R., 30(2), 31, 32(2), 33, 35, 57(2).

Nagell, T. (Norway, 1895–1988), 33, 54; Narkiewicz, W., 8, 9(2), 13, 15, 19(2), 23, 30(2), 31, 32(4), 33(2), 34, 51, 52(3), 53(2), 54; Nathanson, M. B. (USA, ?), 30; Naur, T., 11; Neville, C. W., 19, 25, 56; Neville, R., 35(2), 57(2); Newman, D. J. (USA, 1930–2007), 21; Nguyen, P., 29, 57; Northshields, S. Niven, I. M. (Canada/USA, 1915–1999), 32, 55, 57; Nowakowski, R., 10, 11; Nowicki, A., 12, 13(2), 13, 56.

Odoni, R. W. K., 10, 56; Osler, T. J.

Papadimitriou, I., 23; Paris, J. B. (Britain, born 1944), 28, 29, 56(2); Patashnik, O., 6, 16; Pell, J. (Britain, 1611–1685), 3, 16, 55; Penk, M. A., 6; Perott, J. (France, 1854–1924), 9, 10, 15, 16, 23, 52(4); Petersen, T. K., 14, 58; Petrović, N. Pinasco, J. P., 15, 57; Plouffe, S. (Canada, born 1956), 6; Pocklington, H. C. (England, 1870–1952), 31, 53; de Polignac, A. (France, 1817–1890), 20(2), 24(2), 54(2); Pollack, P., 8, 9(2), 11, 12, 13(2), 14, 15, 16(2), 17, 18, 19, 20, 21, 22(3), 23, 24, 26(3), 28, 29, 30, 33, 51(2), 52, 54(2), 56(2), 58; Pólya, G. (Hungary, 1887–1985), 11, 13, 15(2), 25, 53(3); Pomerance, C. (USA, born 1944), 20(2), 21, 56; van der Poorten, A. (Netherlands/Australia, 1942–2010), 26; Porubský, Š., 25(3), 43, 46, 56; Pósa, L. (Hungary, born 1947), 10; Powell, B., 32, 55; Pythagoras (Ancient Greece, circa 585–501 B.C.), 3, 4, 17, 55.
Reich, S., 11; Reddy, K. N., 12; Ribenboim, P. (Brazil/Canada, born 1928), 4, 6, 7, 8(2), 9(3), 10, 11, 12(2), 14, 16, 17, 18, 22, 23(2), 24(2), 35, 51(2), 52(3), 53(2), 54(3), 55(2); Richter, C. Riemann, B. (Germany, 1826–1866), 21; Robbins, N., 34, 56(2); Rotkiewicz, A., 13, 32, 54, 55; Rubinstein, M., 24, 56.

Saidak, F., 14, 57; Šalát, T. (Slovakia, 1926–2005), 19; Samuel, P. (France, 1921–2009), 17; Sándor, J., 10, 11, 15, 16(2), 56(2); Satoh, T. Schnirelman, L. G. (Soviet Union, 1905–1938), 27, 54; Schorn, P., 5; Schur, I. (Germany, 1875–1941), 25, 33(2), 53(3); Scimone, A., 10, 57; Richter, C. Riemann, B. (Germany, 1826–1866), 21; Robbins, N., 34, 56(2); Rotkiewicz, A., 13, 32, 54, 55; Rubinstein, M., 24, 56.

Puškin, J. V. (Russia, 1883–1947), 10, 53.

Vahlen, K. Th. (Germany, 1869–1945), 32, 52; de la Vallée-Poussin, C. J. (Belgium, 1866–1962), 18, 21; Van der Poorten, A. J. Vandend Eynden, C., 19, 55; Vandiver, H. S. (USA, 1882–1973), 32, 53; Varadarajan, V. S. (India/USA, born 1937), 18; Vardi, I., 6, 12; Vorob’ev, N. N., 13.

van der Waerden, B. L. (Netherlands, 1903–1996) Wagstaff, Jr., S. S. (USA, 1944), 22; Ward, M. (USA, 1901–1963), 11, 13(2), 18, 26, 51(2); Ward, T., 26; Washington, L. C., 17, 32, 55; Wegener, D. P., 17, 55; Weil, A. (France, 1906–1998), 3, 16, 55; Wendt, E., 32, 52; Whang, J. P., 24, 57; Wildenberg, G., 25, 56; Wilkie, A. J. (England, born 1948), 28(2), 29, 56(2); Woods, A. R., 28(2), 55, 56; Wright, E. M. (England, 1906–2005), 5, 8(2), 9, 11, 18, 19, 20(2), 21, 22(4), 28, 34(4), 35, 36, 51(3), 53, 54(2); Wunderlich, M., 13(2), 54.

Yaglom, A. M. (Soviet Union, 1921–2007), 16, 20(3), 51; Yaglom, I. M. (Soviet Union, 1921–1988), 16, 20(3), 34, 51, 54; Yamada, T., 8, 9(2), 12, 17(2), 20, 52(5), 53, 55(2); Yoo, J., 32; Yukimoto, Y., 14, 56.

Zagier, D. (USA, born 1951), 21; Zhang, S., 3, 35; Ziegler, G. M. (Germany, born 1963), 8, 16, 19(2), 23, 24, 53, 54, 56(2).
E) Subject Index

Abelian group, 8; abstract, 25; Abstract Ideal Theory, 26; additive, 20; additive structure, 20; additive structure of the integers, 20; Algebra, 17; algebraic, 4; algebraic argument, 17; algebraic integer, 17; algebraic number, 17; algebraic number theory, 15; algebraic modification, 8; algebraic number, 17; Algebraic Number Theory, 8; algebraic number theory argument, 8; algorithm, 10; algorithmic, 28; algorithmic entropy of a positive integer \((H(N))\), 28; “Algorithmic Information Theory”, 28; almost-injective integer sequence, 26; alternate proof, 9; Analysis, 19; analytic, 8; Analytic Number Theory, 19; analytic proof, 8; Ancient Greek mathematicians, 3; approximant, 12; approximation, 22; argument, 23; arithmetic, 3; arithmetic function, 8; arithmetic progression \((AP)\), 4; arithmetic property, 26; arithmetical, 27; asymptotic, 18; asymptotic behavior, 20; asymptotic density of prime numbers, 18; asymptotic formula, 59; asymptotically, 22; asymptotically equivalent, 22; axiom, 6; axiom scheme, 29.

Behavior, 20; Bernoulli number \((B_n)\), 23; better approximation, 22; binomial coefficient \(\binom{n}{k}\), 29; Bonse’s inequality, 11; Book VII (of “Elements”), 3; Book VIII (of “Elements”), 3; Book IX (of “Elements”), 3; bound, 21; bounded, 21; Bounded Arithmetic, 29; bounded formulas, 29; boundedness, 55.

Cardinality of a set \(S\) \(|S|\), 21; central binomial coefficient, 57; character, 32; Chebyshev’s argument, 20; Chebyshev inequalities, 27; Chinese remainder theorem, 10; class, 14; closed, 25; closed set, 25; coefficient, 16; collection, 15; combination, 32; combinatorial, 8; combinatorial argument, 24; combinatorial modification, 8; combinatorial method, 54; combinatorial proof, 23; combinatorial version, 26; common divisor, 13; common factor, 34; common multiple, 4; common prime factor, 12; commutative, 16; commutative algebra, 17; commutative group, 16; commutative ring, 26; complement, 25; Complex Analysis, 22; complex characters mod \(k\), 32; complex function, 21; complex variable, 22; composite, 5; composite number, 5; concept, 3; congruent, 26; conjecture, 5; connected, 25; connected set, 25; connected topological space, 25; connected topology, 25; consecutive, 6; consecutive primes, 6; consequence, 18; constant, 19; construction, 12; continued fraction, 12; contradiction, 4; convergence, 19; convergence of the series, 19; convergent, 24; convergent series, 23; coprime, 12; coprime residue class, 37; counting argument, 23; counting method, 8; cyclic, 18; cyclic group \((\mathbb{Z}_m)\), 18; cyclotomic field \((\mathbb{Q}(\zeta))\), 34; cyclotomic polynomial, 26.

Dedekind domains, 17; delta function \(\delta(x)\), 18; definite, 21; definite integral, 21; degree of a polynomial, 27; delta function \((\delta(x))\), 18; denominator, 23; density of primes, 21; density of the set, 25; Dickson’s lemma, 15.

Dirichlet \(L\)-function, 32; Dirichlet \(L\)-series, 32; Dirichlet series, 22; Dirichlet’s theorem, 32; Disquisitiones Arithmeticae, 6; distribution of the primes, 21; divergence of the sum, 18; divergent, 19; divergent infinite series, 19; divergent series, 19; divergent sum, 19; divisibility, 3; divisibility property,
EUCLID’S THEOREM ON THE INFINITUDE OF PRIMES

8; divisible, 4; divisor, 5; domain, 5; dynamic, 4; dynamical, 18; dynamical systems proof, 18.

e (the constant), 20; elementary, 8; elementary argument, 34; elementary number theory, 12; elementary proof, 8; “Elements” (of Euclid), 3; entire function, 61; entropy, 28; enumerating arguments, 24; equality, 20; equation, 17; equivalent, 22; estimate, 10; Euclidean Criterion, 31; Euclidean domain \(\mathbb{F}_p[x] \), 5; Euclid’s argument, 6; Euclid’s first theorem, 38; Euclid’s idea, 8; Euclid’s Lemma, 38; Euclid’s method, 33; Euclid’s number \((E_n)\), 6; Euclid’s proof (of \(IP \)), 4; Euclid’s second theorem, 9; Euclid-Mullin graph, 31; Euclid-Mullin sequence \(((E_n))\), 5; Euclid sequence, 31; Euclid’s theorem, 3; Euclid’s theory of numbers, 6; Euler-Legendre’s theorem, 31; Euler-Mascheroni constant \((\gamma)\), 20; Euler theorem, 16; Euler’s factorization, 22; Euler’s formula for \(\zeta(2) \), 11; Euler’s formula for \(\zeta(4) \), 22; Euler’s formula for \(\zeta(2n)(n = 1, 2, \ldots) \), 23; Euler’s product, 19; Euler’s product for the Riemann zeta function, 19; Euler’s product formula, 31; Euler’s proof of \(IP \), 19; Euler’s second proof of \(IP \), 15; Euler’s totient function \((\varphi(n))\), 15; evaluation, 23; exponent, 20; exponent of prime, 20; exponential function, 16;

Factor, 5; factorial \((n!)\), 20; factorization, 5; factorization theorem, 5; Fermat little theorem, 8; Fermat numbers, 11; Fibonacci’s sequence \(((f_n))\), 13; field, 6; finite, 8; finite Abelian groups, 8; finite continued fraction, 58; finite extension of \(\mathbb{Q} \), 34; finite group, 8; finite linear combination, 29; finite set, 30; finite support, 18; finite union, 25; formal identity, 20; formula, 8; fraction, 8; fundamental theorem of arithmetic, 6; function, 8; function of a complex variable, 22; functions defined by \(\Delta_0 \)-formulas, 29; fundamental theorem of unique factorization of positive integers, 24; Furstenberg’s ideas, 26; Furstenberg’s proof, 25; Furstenberg’s topological proof, 25.

Galois Theory, 36; Gauss’ periods of roots of unity, 35; generalization of Fermat numbers, 14; generalization of Sylvester’s sequence, 12; generalized Euclid sequence, 30; generated, 61; geometric, 4; geometrical, 20; geometrical interpretation of definite integral, 21; geometrical proof, 20; Goldbach’s idea, 12; greatest common divisor, 13; greatest integer function \((\lfloor x \rfloor)\), 16;

Hadamard-de la Vallée-Poussin constant \((M = 0.261497 \ldots)\), 19; harmonic series, 19; harmonic sum, 60; Hausdorff topology, 25; l’Hôpital’s rule, 22.

Ideal, 17; identity, 16; Inclusion-Exclusion Principle, 15; increasing infinite sequence, 14; indirect proof, 5; induction, 11; induction axioms, 29; inductively, 6; inequality, 11; infinite, 3; infinite collection, 15; infinite continued fraction, 12; infinite coprime sequences, 15; infinite product, 198; infinite sequence, 12; infinite series, 19 infinite subsequence, 13; infinitely, 3; infinitely many primes, 3; infinitude, 3; infinitude of primes \((IP)\), 3; infinity, 4; injective, 26; integer, 3; integer argument, 27; integer coefficient, 16; integer constant, 26; integer function, 27; integer polynomial, 26; integer square, 30; integer-valued function, 34; integer sequence, 9; integer value, 15; integral, 22; International Mathematical Olympiad (IMO 1971 and 2008),
17, 28 60, 61; irrational number, 23; irrational part, 33; irrationality, 4; irrationality measure (μ), 11; irrationality of $\sqrt{2}$, 4; irrationality of π^2, 22; irrationality of e, 22; irreducible, 6; irreducible factor, 6; irreducible polynomial, 6; isomorphism, 58; isomorphism of the rings, 61.

kth cyclotomic field ($\mathbb{Q}(\zeta_k)$), 34; Kummer’s number, 6; k-tuple of, 38.

Lagrange theorem, 17; law of quadratic reciprocity, 4; leading coefficient, 27; least common multiple, 34; least common multiple of polynomials, 34; Legendre’s formula, 16; Legendre symbol ($\left(\frac{\cdot}{p} \right)$), 37; leg, 17; length, 3; L-function, 32; line segment, 3; linear, 14; linear combination, 32; linear recurrence, 14; linear second order recurrence, 37; locally connected topological space, 25; logarithm to the base e ($\log x$), 27; logarithm of a binomial coefficient, 29; logarithmic integral ($\text{Li}(x)$), 22; logarithmic complex function, 21; lower bound, 28; Lucas sequence (u_n), 35.

Mathematical induction, 58; measured, 3; measuring, 3; Meissel-Mertens constant ($M = 0.261497 \ldots$), 19; Mersenne number, 12; Mertens’ first theorem, 21; Mertens’ second theorem, 19; Mertens’ third theorem, 20; metrizable topology, 25; Möbius function ($\mu(n)$), 18; Möbius inversion formula, 18; Möbius pair, 18; Möbius transform, 18; monomial, 15; monotonic sequence, 11; Moscow school of mathematics, 22; multiple, 4; multiplicative, 26; multiplicative group ($\mathbb{Z}/m\mathbb{Z}^*$), 16; multiplicative group modulo a prime, 16; multiplicative structure, 26; multiplicativity, 15; mutually prime, 11; mutually prime integers, 11.

Natural number, 21; negative Pell’s equation, 17; nonconstant, 26; nonconstant polynomial, 27; nonnegative integer, 27; nonprincipal character, 32; nonstandard Analysis, 29; nonunits factor, 31; non-zero polynomial, 35; normal topology, 25; not regular topology, 25; Number Theory, 9; numerator, 12;

Odd, 11; odd prime, 16; open set, 25; order of $a(\text{mod}p)$, 16; order of subgroup, 17;

Pairwise relatively prime, 10; partition, 31; partition of the positive integer, 31; Pell’s equation, 17; period, 35; periodic continued fraction, 17; periodic functions on integers, 25; π (the constant), 11; pigeonhole principle, 24; pigeonhole principle for functions defined by Δ_0-formulas ($\text{P}HP\Delta_0$), 29; pole of a rational function, 61; de Polignac’s formula, 20; Polish Mathematical Olympiad (2001/02), 14, 56; polynomial, 6; polynomial growth, 26; polynomial in two variables, 55; polynomial method, 14; polynomial over the field F, 6; positive integer, 5; positive integer base, 10; positive constant, 22; primality, 6; prime, 3; prime-counting function ($\pi(x)$), 16; prime detecting function, 18; prime divisor, 9; prime factor, 6; prime number, 3; Prime Number Theorem, 21; prime power, 34; prime value, 27; primitive kth root of unity (ζ_k), 34; primitive divisor, 27; primitive prime divisor, 27; primitive Pythagorean triples, 17; primorial number, 6; primorial prime, 7;
principal character, 32; principal ideal domains, 18; probability, 16; probability theory, 31; product of cyclic groups, 18; proof by contradiction (reduction ad absurdum), 4; proper subgroup, 16; Proposition 20 (of “Elements”), 3; Proposition 30 (of “Elements”), 5; Proposition 31 (of “Elements”), 5; Pythagorean school (at Croton), 3; Pythagorean theorem, 4; Pythagorean triples, 17.

Quadratic residue, 36.

Random integer, 31; randomly, 16; range, 6; rational function, 18; rational multiple, 23; rational part, 33; rational prime, 34; reciprocal, 18; recurring sequence, 58; recursive sequence, 34; recursively defined sequence, 10; reduction ad absurdum, 4; regular infinite continued fraction, 12; relatively prime, 10; relatively prime positive integers, 10; representation as a product of primes, 5; representation of a rational number in a positive integer base, 10; residue, 36; residue class, 37; Riemann zeta function ($\zeta(s)$), 8; ring, 17; ring of algebraic integers, 17; ring of polynomials with integer coefficients ($\mathbb{Z}[T]$), 35; Romanian IMO Team Selection Test (1997), 13, 60; Roth’s theorem, 31; roots of unity, 35.

Second order recurrence, 37; seed, 30; sequence (a_n), 5; series, 19; set of integers (\mathbb{Z}), 15; set of natural numbers (positive integers) (\mathbb{N}), 25; set of nonnegative integers (\mathbb{N}_0), 27; *-set of positive integers, 15; set of primes, 19; set of rational numbers (\mathbb{Q}), 10; sieve of Eratosthenes, 10; Sloane’s On-Line Encyclopedia of Integer, 9; Sloane’s sequence, 5; sophisticated proof, 19; square of a prime, 18; squarefree, 28; squarefree integer, 36; subadivity, 28; subadivity of algorithmic entropy, 28; subexponential growth, 26; subgroup, 16; subsequence, 13; successive prime numbers, 19; Sylvester’s sequence, 12; Sylvester’s version of the Chebyshev inequalities, 27;

Tetrahedral number, 14; Theory $I\Delta_0$, 29; Theory of commutative groups, 16; Theory of commutative rings, 60; Theory of algebraic numbers, 17; Theory of Dedekind domains, 17; Theory of finite Abelian groups, 8; Theory of negative Pell’s equations, 17; Theory of periodic continued fractions, 17; Theory of principal ideal domains, 17; Theory of profinite groups, 26; Theory of unique factorization domains, 17; topological, 8; topological ideas, 25; topological method, 54; topological proof of IP, 25; topological space, 25; topology, 25; totient function ($\varphi(n)$), 15; training of the German IMO team, 13, 60; triangular numbers, 14.

Uncertainty principle for the Möbius transform, 18; unique factorization, 6; unique factorization domains, 17; unique factorization theorem, 6; uniqueness theorem for Dirichlet series, 22; upper bound, 55.

Value of a polynomial, 26; van der Waerden’s theorem, 29; vocabulary 0, 1, +, ·, <, 29.

Weak pigeonhole principle for Δ_0-definable functions, 29; weak system of arithmetic ($I\Delta_0$), 29; weak theories of Bounded Arithmetic, 29; Wikipedia, 12.
ROMEO MEŠTROVIĆ
MARITIME FACULTY KOTOR,
UNIVERSITY OF MONTENEGRO
DOBROTA, 85330 KOTOR, MONTENEGRO
E-mail address: romeo@ucg.ac.me