Global experience of orthopaedic trauma surgeons facing COVID-19: a survey highlighting the global orthopaedic response

Bradley A. Lezak1 · Peter A. Cole Jr2 · Lisa K. Schroder3,4 · Peter A. Cole3,4,5

Received: 15 May 2020 / Accepted: 18 May 2020 / Published online: 13 June 2020
© SICOT aisbl 2020

Abstract
Background The COVID-19 (SARS-CoV-2) pandemic has significantly affected all aspects of healthcare, including orthopaedics. Due to the unique challenges presented by COVID-19 as well as the distinct timeframes that it will surge in different geographies, much can be learned from the experiences of orthopaedic professionals in many global settings. The goal of this project is to characterize the preparations, strategies, lessons, and personal experiences of orthopaedic trauma surgeons and departments across the world in combating COVID-19. In doing so, we will shed light on current practices and challenges, which may help us manage the current pandemic in addition to preparing for future global pandemics that may arise.

Methods A 20-item questionnaire was sent out to 150 orthopaedic trauma surgeons representing 42 countries who were identified based on professional relationships and/or prior involvement in international meetings either led or participated by the senior author.

Results The questionnaire was completed by 63 orthopaedic trauma surgeons representing 28 countries and 14 US states. The results of this study show that orthopaedic trauma departments across the world have been greatly impacted by COVID-19 with 91% of participating hospitals currently having a reduced case load compared with pre-COVID-19 and only 17% of respondents currently performing elective orthopaedic surgery. Furthermore, 30% of orthopaedic departments have deployed orthopaedic personnel to non-orthopaedic floors in order to help mitigate the increased patient load and 86% of respondents noted at least some shortage of PPE. Lastly 73% of participating orthopedic departments including those in LMICs, have incorporated telemedicine into their practice with a majority stating that it would most likely become a permanent change to their practice post-COVID-19.

Conclusion To our knowledge, this is the largest data set characterizing global COVID-19 situations and responses of orthopaedic trauma practices around the world. There is much to be learned from each of the participants’ responses in order to persevere during the current pandemic, as well as to prepare for future pandemics as it relates specifically to orthopaedic trauma practices.

Keywords Coronavirus · COVID-19 · Orthopaedic trauma · Global Health · Global surgery · Telemedicine · Personal protective equipment (PPE)

Introduction

In early December 2019, a novel strain of coronavirus now known as coronavirus SARS (severe acute respiratory syndrome)-CoV-2, or COVID-19, broke out in Wuhan, China. The virus began to disseminate throughout the world, and on March 11, 2020, the World Health Organization (WHO) Director declared the 2019-nCoV outbreak a global pandemic, which classifies the outbreak as an international emergency [1, 2]. COVID-19 has severely altered the day-to-day life and operations for people, economies, and healthcare systems alike. The rapid spread of COVID-19 has created an expeditious implementation of new practices and principles that healthcare leaders have adopted in order to most effectively remain ahead of the curve. Unlike ever before, COVID-19 has
highlighted geographical differences from provider to provider as to which methodologies were developed, how they were employed, and with what efficacy. In large part, these methodologies have been predicated upon characteristics specific to the host environment, such as viral seroprevalence, population density, socioeconomic factors, local governance, and resource limitations. For example, Milan, Italy, representative of a high population density and an overwhelming case load of COVID-19 positive patients, faces challenges distinct from those of Makwasa, Malawi, with lower population density and relatively low incidence of COVID-19.

Because the peak of COVID-19 cases have and will surge at different time points in different geographies, much can be learned about how various global providers have responded to the crisis [2–5]. Currently, there is a growing emphasis on the relevance of observational research in identifying factors, challenges, and responses to this pandemic among orthopaedic practices throughout the world [6–10]. Our team believes that there is value in learning from the experiences of orthopaedic professionals in many global settings, such that localized planning may transition from rapid-fire response to informed expectations and processes. Not only will these lessons allow us to better understand and overcome the current COVID-19 pandemic, but they will help the global orthopaedic community prepare for future outbreaks that may reach a scale such as the one we are living through today.

The goal of this project is to summarize the preparation, actions, lessons, and personal experiences of orthopaedic trauma surgeons and departments across the world in combating COVID-19. In doing so, we will shed light on current practices and challenges, which may help us manage the current pandemic in addition to preparing for future global pandemics that may arise.

Methods

Study population

Survey participation was carried out in the month of April 2020 between April 16, 2020, and April 20, 2020. Participation in this cross-sectional questionnaire was voluntary, and orthopaedic trauma surgeons were included in the study based on voluntary interest.

![Survey Respondents by Country](image_url)

Fig. 1 Countries Represented by Survey Participants. Blue indicates a participating country. Dark Grey indicates a country where a questionnaire was sent, but no response was received.
Country	Hospital	Hospital size (\# of beds)	Urban/rural	\# of Orthopedic surgeons
Argentina	Hospital Italiano de Buenos Aires	750	Urban	60
Argentina	Ramos Mejia Hospital	150	Urban	16
Canada	QE II Health Sciences Centre	1100	Urban	15
Canada	Sunnybrook Health Sciences Centre	1325	Urban	23
Canada	Foothills Medical Center	1200	Urban	19
Colombia	Foundation Santa Fe de Bogota	205	Urban	30
Chile	Las Condes Clinic	253	Urban	42
Chile	Hospital Militar de Santiago	357	Urban	28
China	Nanfang Hospital	2500	Urban	50
Colombia	Instituto Colombiano del Dolor	371	Urban	25
Colombia	IPS Universitaria Sede Clinica León XII	618	Urban	25
Egypt	Assiut University Hospital	358	Urban	85
Ethiopia	Black Lion (Tikur Anbessa) Hospital	800	Urban	11
Ethiopia	Soddo Christian Hospital	133	Rural	2
Gabon	Bongolo Hospital	158	Rural	3
Germany	University of Freiburg Hospital	1600	Urban	51
Greece	Iatriko Kentro	383	Urban	10
Guatemala	El Pilar Hospital	140	Urban	20
Haiti	HUP La Paix University Hospital	300	Rural	6
Hong Kong	Queen Mary Hospital	1706	Urban	55
Hong Kong	Tseung Kwan O Hospital	667	Urban	22
India	Ganga Hospital Coimbatore	486	Urban	107
Italy	Humanitas Research Institute	162	Urban	60
Italy	Azienda Ospedaliera Universitaria Policlinico	600	Urban	14
Italy	Vito Fazzi Lecce	800	Urban	13
Kenya	Tenwek Hospital	361	Rural	2
Malawi	Malamulo Adventist Hospital	275	Rural	4
New Zealand	Waikato District Health Board	600	Urban	18
Pakistan	Aga Khan University Hospital	560	Urban	11
Peru	Amazonico Hospital	120	Rural	3
Singapore	Tan Tock Seng Hospital	1600	Urban	25
South Korea	Kyungpook National University Hospital	951	Urban	35
South Korea	Korea University Guro Hospital	1050	Urban	16
Spain	Vithas Hospital	100	Urban	17
Sweden	Sahlgrenska University Hospital	2000	Urban	80
Sweden	Linköping University Hospital	600	Urban	27
Switzerland	Unispital Zurich	980	Urban	16
Switzerland	Luzerner Kantonspsital	900	Urban	14
Switzerland	University Hospital Basel	670	Urban	25
Switzerland	Kantonspsital Graubünden Hospital	770	Urban	15
Taiwan	Taipei Veterans General Hospital, Taiwan	3100	Urban	25
Thailand	Chiang Mai University Hospital	1400	Urban	20
Thailand	Bangkok International Hospital	580	Urban	25
UK	Leeds General Infirmary University Hospital	1103	Urban	40
UK	University College London hospital	665	Urban	14
USA	University of Missouri - Columbia SOM	247	Urban	35
USA	Central Vermont hospital	122	Rural	4
USA	Johns Hopkins Hospital	1154	Urban	15
USA	Sanford Bemidji	196	Rural	4
Data acquisition

In order to describe the trend of total cases and total deaths due to COVID-19, the Johns Hopkins University Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) and the Institute for Health Metrics and Evaluation (IHME) databases were referenced [11, 12]. Several time points were included throughout this five month span in order to understand the evolution of the case load and death rate.

Questionnaire

A 20-item questionnaire was sent out to 150 orthopaedic trauma surgeons representing 42 countries across the globe who were identified based on professional relationships and/or prior involvement in international meetings either led or participated by the senior author. Each participant was first asked to identify personal demographics including city, country, and hospital of their orthopaedic practice. Participants were then asked a series of specific questions related to their orthopaedic practice in order to understand the setting (urban vs. rural), volume of orthopaedic cases pre- and during COVID-19, and types of procedures currently being performed during COVID-19.

Participants were then asked to delineate how COVID-19 has affected their orthopaedic practice in terms of number of orthopaedic consultations per day, number of orthopaedic cases treated pre- and during COVID-19, as well as how the current orthopaedic injuries presenting during COVID-19 compared with injury presentations prior to the outbreak.

Next, participants were asked to describe their adoption of telemedicine practices. Each participant differentiated between the adoption of telephone-only visits, telephone and video visits, or no adoption of telemedicine visits at all. Furthermore, participants were asked to describe how they believed the rapid changes in medicine that are occurring due to the COVID-19 pandemic would permanently affect their future practices after the global pandemic ends.

Each participant was then asked several questions with regard to the current state of equipment and personal protective equipment (PPE) at their hospital. If their facility was experiencing shortages, participants were asked to identify what was being done to address it. Additionally, participants were asked to identify whether all providers were given the same access to PPE or if certain departments (i.e., anesthesia or emergency medicine) had more access to PPE. Participants were then asked questions to categorize the level of COVID-19 testing currently taking place at their hospital and to describe policy changes at the hospital including restructuring to the staffing model and/or if orthopaedic residents/fellows/attendings at their hospital were tasked with working on non-orthopaedic hospital floors.

Lastly, participants were asked open-ended, free-text questions to identify the most significant challenges to their orthopaedic practice in dealing with COVID-19. This included what they wish they had known prior to the outbreak that would have helped them now; how they are addressing the challenges being presented by COVID-19; and any personal experience, thoughts, or opinions as a medical professional working in the COVID-19 pandemic in their respective country.

Analysis

Statistical analysis was made using JMP Pro 15 by SAS. The data coding was done by a single person and provided by the investigators. Descriptive statistics were reported for continuous variables and percentages for categorical variables.

Results

The questionnaire was completed by 63 orthopaedic trauma surgeons representing 28 different countries and 14 US states.
Of the surgeons who completed the survey, 19% practice in a rural area with an average of five orthopaedic surgeons in their hospital system, while 81% of respondents practice in an urban setting with an average of 29 orthopaedic surgeons in their hospital system. Furthermore, three out of the 28 represented countries are classified as low-income countries, and eight are classified as lower-middle-income countries (39% low- or middle-income countries) by the...
Given the global and regional diversity represented by our sample pool, each participant provides a unique perspective in terms of when and to what extent COVID-19 affected their orthopaedic practice. As seen in Fig. 2–c, several participants began to experience COVID-19 in mid-February with cases continuing to climb through mid-April, while some participants have yet to experience a significant case load of COVID-19 patients.

While countrywide data is widely accessible in terms of total COVID-19 cases, it is difficult to glean specific regional and hospital ramifications of COVID-19 on a global scale. Consequently, each participant in the study was asked to identify the percentage of total patients in their intensive care unit (ICU) filled by COVID-19 (+) patients. Most respondents noted that their ICU was less than 50% filled by COVID-19 positive patients, while only a few respondents noted 100% capacity of their ICU by COVID-19 (+) patients (Table 2). In addition to differences in the number of COVID-19 patients in the ICU of hospitals across the world, the level of laboratory testing at each hospital varied dramatically where 83% reported testing of symptomatic patients only, 56% reported testing of surgical patients, 40% reported testing healthcare workers, and 10% reported no testing at all (Table 3).

The effects of COVID-19 are not only causing significant changes in the ICUs of each of the participating hospitals but greatly impacting orthopaedic trauma departments in terms of the number and type of orthopaedic procedures being performed. Of the respondents, 68% reported their hospital typically performs more than 40 orthopaedic procedures per week prior to COVID-19. However, now, just 5% of participating hospitals are performing more than 40 procedures per week, with 80% performing less than 20 procedures per week (Fig. 3). Additionally, the type of procedures being performed

Table 2 Percentage of ICU occupied by COVID-19 (+) patients

Percentage	# of Hospitals	# of Total
100%	3	4.84%
76–99%	5	8.06%
51–75%	7	11.29%
< 50%	47	75.81%

The majority of respondents noted less than 50% capacity of their ICU beds by COVID-19 (+) patients. One respondent left this question unanswered.

Table 3 COVID-19 (+) laboratory testing by Hospital

Percentage	# of Hospitals	# of Total
No testing	6	9.52%
Symptomatic	52	82.54%
Surgical patients	35	55.56%
Healthcare workers	25	39.68%

The majority of respondents noted testing of symptomatic patients for COVID-19. The specific type of COVID-19 test was not asked.
has been affected with just 17% of participating hospitals currently performing elective orthopaedic surgery (Table 4).

In addition to the number and types of orthopaedic surgery being significantly altered during COVID-19, the actual type and mechanism of injury of patients itself are also different, as reported by 91% of participants (Table 5). When asked, “Have you observed differences in mechanism of injury trends in your practice since the onset of COVID-19?”, 65% of participants answered yes, while 56% identified specific patterns of change in their patient pool. Their responses shed light on how the current crisis affects orthopaedic epidemiological trends across different geographical settings.

Orthopaedic departments themselves are also undergoing massive change during the COVID-19 pandemic. Of the respondents, 30% noted that their orthopaedic department has had to deploy orthopaedic residents, fellows, or attendings to work on non-orthopedic floors in order to help mitigate the overwhelming patient load. Furthermore, changes have been made to the department staffing models including rotating surgical teams with implemented isolation to minimize cross-exposure (56%), reduction of personnel in operating rooms and on site to the minimum necessary to provide coverage, and lastly, the introduction of virtual meetings and case presentations via various video platforms (Table 6).

While orthopaedic departments are undergoing rapid change due to the COVID-19 pandemic, the departments and hospitals alike are experiencing significant shortages in equipment and/or personal protective equipment (PPE). Of the respondents, 85% noted some shortage of PPE, with the most common being N-95 masks (57%), followed by surgical masks (44%), face shields (41%), and hand sanitizer (29%).

Table 4 Types of surgeries performed during COVID-19 pandemic

Type of surgery	# of Hospitals	# of Total
Emergency/trauma (e.g., compartment syndrome, open fracture)	63	100.00%
Urgent trauma (e.g., femur fracture, hip fracture)	62	98.41%
Sub-acute trauma (e.g., ankle fracture, humerus fracture)	57	90.48%
Elective	11	17.46%

Every respondent noted their hospital performing emergency/trauma surgeries, with only a small percentage still performing elective orthopedic surgery.

Fig. 3 Orthopaedic procedures performed prior to COVID-19 pandemic and during COVID-19 pandemic. Many orthopaedic departments who typically performed 40+ surgeries per week are now performing less than 20 per week.
responding to these shortages through the reduction of allotted PPE per day (57%), increased purchasing, and distribution from medical supply companies (51%), as well as donations by community members/businesses (40%). Additionally, the procurement of PPE within each hospital differed slightly in that at 58% of participating hospitals, intensivists/anesthesiologists received PPE first, with 52% of respondents noting equal distribution of PPE throughout all providers (Figs. 4, 5, and 6).

Another remarkable change in orthopaedic departments across the world has been the adoption of telemedicine into their practice. Of the participating orthopaedic departments, 73% reported the adoption of telemedicine, with the majority implementing telephone and video visits (48%) and some only telephone visits (25%) (Fig. 7). Of the respondents representing high-income countries, 78% noted the adoption of telemedicine, while 55% of LMICs adopted telemedicine practices. Furthermore, 54% of total respondents noted that telemedicine would most likely become a permanent change to their practice post COVID-19, with an even greater percentage (74%) of those who have already implemented telemedicine practices in response to COVID-19 recognizing it would likely be a permanent change. Of those that identified telemedicine as a more permanent change to their practice, 80% represented HICs, and 20% represented LMICs.

Discussion

This paper includes the largest sample size of orthopaedic trauma surgeons describing the effects of COVID-19 on their practice to date, which allows us to highlight the environment responding to these shortages through the reduction of allotted PPE per day (57%), increased purchasing, and distribution from medical supply companies (51%), as well as donations by community members/businesses (40%). Additionally, the procurement of PPE within each hospital differed slightly in that at 58% of participating hospitals, intensivists/anesthesiologists received PPE first, with 52% of respondents noting equal distribution of PPE throughout all providers (Figs. 4, 5, and 6).

Table 5 Volume of orthopaedic injuries and changes in mechanism of injury during COVID-19

Volume of cases	# of Hospitals	# of Total
Increased	4	6.35%
Decreased	57	90.48%
No change	2	3.17%
Mechanism of injury	# of Hospitals	# of Total
Change	41	65.08%
No change	22	34.92%

The majority of respondents noted a decrease in total orthopedic volume, many of which noting a specific change in mechanism of injury as well responding to these shortages through the reduction of allotted PPE per day (57%), increased purchasing, and distribution from medical supply companies (51%), as well as donations by community members/businesses (40%). Additionally, the procurement of PPE within each hospital differed slightly in that at 58% of participating hospitals, intensivists/anesthesiologists received PPE first, with 52% of respondents noting equal distribution of PPE throughout all providers (Figs. 4, 5, and 6).

Table 6 Staffing changes during COVID-19

Orthopaedic surgeons working on non-orthopedic floors	# of Hospitals	# of Total
Yes	19	30.16%
No	44	69.84%
Changes to staffing model	# of Hospitals	# of Total
Rotating surgical teams with implemented isolation to minimize cross-exposure	35	55.56%
No changes to organizational structure	18	28.57%
Other	10	15.87%

Many departments have implemented rotating surgical teams to minimize cross-exposure, and some orthopedic departments have had deployed surgeons to work on non-orthopedic floors.
of orthopaedic trauma practices across the world currently combatting COVID-19. This survey includes the responses from 63 surgeons who represent 59 hospitals worldwide who themselves represent a total of 47,309 hospital beds and 1557 orthopaedic surgeons in their facilities (Table 1). While there are still many challenges to overcome, several lessons can be learned from the experiences presented by our study participants.

One of the main issues highlighted by emerging literature on COVID-19 is the shortage of equipment, specifically ventilators, as well as PPE, and what structural changes and policies have been implemented in order to help mitigate this. Many of our respondents echoed this concern, responding to the question, “What do you wish you would have known prior to this outbreak that would have helped alleviate challenges you are experiencing now?, with remarks related to PPE. Respondents noted their wish to know what the limit of PPE was at their facility prior to the pandemic, for the ability to stockpile PPE for their staff prior to the outbreak, and for better storage capacities of PPE in general as well as earlier policies to address the shortages. The results of this survey highlight that the shortages are not unique to one region or country but rather a global issue. Several strategies have worked well for our respondents, including donation of PPE by local community members and businesses as well as reduction in allotted PPE per provider per day. Additionally, prioritizing the types of providers at highest risk of exposure to the virus has allowed hospitals to maintain supplies at a level necessary to continue to function...
and to treat patients during this pandemic. However, future planning must account for the shortages we are facing now through coordinated local and country responses, as well as hospital specific responses to implement the policies noted above earlier, and to a greater extent.

Another rapidly emerging topic in the precipitous spread of COVID-19 across the world has been the swift adoption of telemedicine. There have been many hypotheses about how the current healthcare conditions may affect the operations of clinical care moving forward, one of the main variables in this discussion being the use of telemedicine [14–17]. In the USA, the Centers for Medicare & Medicaid Services (CMS) broadened telehealth indications to allow doctors to provide more services, and private health insurers were soon to follow [18]. As a result, millions of patients and providers in the USA are using telemedicine for the first time. Berkson et al. recently published the first protocol and methods to conduct a virtual orthopaedic examination via telemedicine [14]. However, what is unclear is how these updated guidelines affect orthopaedic practices going forward and whether telemedicine has been embraced in the global orthopedic context.

This sample supports two conclusions in regard to telemedicine adoption: (1) the majority of orthopaedic trauma surgeons worldwide have implemented telehealth capabilities and (2) the majority of orthopaedic trauma surgeons worldwide believe that the use of telemedicine will be a permanent change in their practice moving forward.

Fig. 7 Number of countries implementing telemedicine. Most countries are implementing telemedicine visits in the wake of the COVID-19 pandemic. Six out of 11 low- or middle-income countries (55%) have implemented telemedicine, while 14 out of 18 high-income countries (78%) have implemented telemedicine.

Limitations

Our study has several limitations. First, our sampling technique was specific to academic surgeons who had attended professional meetings or formed professional relationships with our senior author. Our goal was to highlight the environment of orthopedic trauma practices around the world in combating COVID-19 in an efficient and expedient manner, which is why this method was chosen. Second is a lack of knowledge as to specifics of what type of COVID-19 testing participants were referring to as well as what specific types of PPE referenced by respondents. Lastly, there is subjectivity in relying on surgeon’s knowledge for percentage of ICU patients occupied by COVID-19 (+) patients and COVID testing data. However, these numbers were validated with official sources whenever the data was available.

Conclusion

To our knowledge, this is the largest data set characterizing the different COVID-19 situations and responses of orthopedic trauma practices around the world. There is much to be learned from each of these participants’ responses. Furthermore, the distribution and completion of this questionnaire highlight the power of worldwide communication and coordination. In a short period of time, 63 orthopaedic trauma
surgeons from 28 different countries were able to describe their unique challenges as it relates to their orthopaedic practice and hospital combatting the COVID-19 pandemic. It is important that we recognize the power of global communication and coordinated responses, learning from each other’s successes and failures alike, in order to prevent a global pandemic like we are living through now from occurring again in the future.

Compliance with ethical standards

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest for the submitted work. Unrelated to the submitted work, the following disclosures are reported by PA Cole: grants from DePuy Synthes and Stryker; grants from COTA, AONA, and OMeGA; grants from Stryker, Zimmer, Acumed, DePuy Synthes, and KLS Martin; personal fees from AO Foundation, Exactech and J&J; other from BoneFoams Inc., outside the submitted work. LK Schroder also reports personal fees from Exactech and J&J outside of the submitted work.

References

1. McKay B, Calfas J, Ansari T (2020) Coronavirus declared pandemic by World Health Organization. World Health Organization https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10. Accessed 1 May 2020
2. Tharakan S, Gottron F, Lawrence S, Blyther T (2020) COVID-19: global implications and responses. Congressional Research Service https://crsreports.congress.gov/product/pdf/IF/IF11421. Accessed 14 May 2020
3. Ravelo J, Jerving S (2020) COVID-19 — a timeline of the coronavirus outbreak. DevEx https://www.devex.com/news/covid-19-a-timeline-of-the-coronavirus-outbreak-96396. Accessed 1 May 2020
4. Haflajez R, Mello M (2020). Thinking globally, acting locally — the U.S. response to Covid-19. New England journal of medicine. https://doi.org/10.1056/NEJMp2006740
5. Ranney M, Griffith V, Jha A (2020) Critical supply shortages — the need for ventilators and personal protective equipment during the Covid-19 pandemic. N Engl J Med. https://doi.org/10.1056/NEJMp2006141
6. Fauci A, Lane H, Redfield R (2020) Covid-19 — navigating the uncharted. N Engl J Med. https://doi.org/10.1056/NEJMe2002387
7. Wu Y (2020) Survey of COVID-19 disease among orthopaedic surgeons in Wuhan, People’s Republic of China. J Bone Joint Surg Am. https://doi.org/10.2106/JBJS.20.000417
8. Pinto R, Sousa R, Oliveira A (2020) Preparing to perform trauma and orthopaedic surgery on patients with COVID-19. J Bone Joint Surg Am. https://doi.org/10.2106/JBJS.20.00454
9. Halawi M, Wang D, Hunt T (2020) What’s important: weathering the COVID-19 crisis. J Bone Joint Surg Am. https://doi.org/10.2106/JBJS.20.00419
10. Liang Z, Wang W, Murph D, Po Hui J (2020) Novel coronavirus and orthopaedic surgery: early experiences from Singapore. J Bone Joint Surg Am. https://doi.org/10.2106/JBJS.20.00236
11. Johns Hopkins University (2020). Johns Hopkins coronavirus tracker. Johns Hopkins Coronavirus Resource Center. https://coronavirus.jhu.edu/map.html. Accessed 14 May 2020
12. Institute for Health Metrics and Evaluation (2020). IHME COVID-19 Health Data. https://covid19.healthdata.org/united-states-of-america. Accessed 14 May 2020
13. World Bank Country and Lending Groups (2020). High, Low and Middle-Income Country Classification. https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups. Accessed 14 May 2020
14. Tanaka M, Oh L, Martin S, Berkson M (2020) Telemedicine in the era of COVID-19: the virtual orthopaedic examination. J Bone Joint Surg Am. https://doi.org/10.2106/JBJS.20.00609
15. Hollander JE, Carr BG (2020) Virtually perfect? Telemedicine for COVID-19. N Engl J Med. https://doi.org/10.1056/NEJMp2003539
16. Keesara S, Jonas A, Schulman K (2020) COVID-19 and health care’s digital revolution. N Engl J Med. https://doi.org/10.1056/NEJMp2005835
17. Hollander JE, Sites F (2020) The transition from reimagining to recreating health care is now. N Engl J Med Catalyst
18. United States Congress (2020). The Telehealth Services During Certain Emergency Periods Act of 2020, United States Congress. https://www.congress.gov/bill/116th-congress/house-bill/6074?q=%7B%22search%22%3A%5B%22Telehealth+Services+During+Certain+Emergency+Periods+Act%20%5D%7D&rs=1&r=1. Accessed 14 May 2020

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.