General structure of Thomas–Whitehead gravity

Samuel Brensinger
Department of Mathematics
The University of Dayton,
Dayton, OH 45469, USA

Kenneth Heitritter and Vincent G. J. Rodgers
Department of Physics and Astronomy
The University of Iowa, Iowa City, IA 52242, USA

Kory Stiffler
Brown Theoretical Physics Center and Department of Physics
Brown University, Providence, RI 02912-1843, USA

(Dated: September 16, 2020)
Abstract

Thomas-Whitehead (TW) gravity is a projectively invariant model of gravity over a d-dimensional manifold that is intimately related to string theory through reparameterization invariance. Unparameterized geodesics are the ubiquitous structure that ties together string theory and higher dimensional gravitation. This is realized through the projective geometry of Tracy Thomas. The projective connection, due to Thomas and later Whitehead, admits a component that in one dimension is in one-to-one correspondence with the coadjoint elements of the Virasoro algebra. This component is called the diffeomorphism field D_{ab} in the literature. It also has been shown that in four dimensions, the TW action collapses to the Einstein-Hilbert action with cosmological constant when D_{ab} is proportional to the Einstein metric. These previous results have been restricted to either particular metrics, such as the Polyakov 2D metric, or were restricted to coordinates that were volume preserving. In this paper, we review TW gravity and derive the gauge invariant TW action that is explicitly projectively invariant and general coordinate invariant. We derive the covariant field equations for the TW action and show how fermionic fields couple to the gauge invariant theory. The independent fields are the metric tensor g_{ab}, the fundamental projective invariant $\Pi^a_{\ bc}$, and the diffeomorphism field D_{ab}.

* sbrensinger1@udayton.edu
† kenneth-heitritter@uiowa.edu; vincent-rodgers@uiowa.edu
‡ Department of Physics and Astronomy
§ kory_stiffler@brown.edu

The University of Iowa, Iowa City, IA 52242, USA

2
I. INTRODUCTION

The Virasoro algebra [1] is usually considered at the heart of string theory through its relationship with conformal symmetry, where two copies of the Virasoro algebra define the conformal algebra. However, the relationship between string theory and the Virasoro algebra also has an even more primitive origin through its identity as a one dimensional vector space [2] and projective structure [3–5]. Since the coadjoint orbits admit a natural symplectic structure, their geometric actions provide an avenue to the two dimensional field theories that can be associated with quantum gravity [6–8]. Furthermore, when married with an affine Lie Algebra (Kac-Moody algebra), one finds that the coadjoint elements appear as background sources for the two-dimensional gravitation (Virasoro sector) and gauge (Kac-Moody sector) theories. The background fields in the Kac-Moody sector correspond to the vector potentials which serve as the gauge connections, A_a, for Yang-Mills theories. It was suggested in [9] that the coadjoint elements of the Virasoro sector also could be put on an equivalent footing with the Kac-Moody sector if the coadjoint elements of the Virasoro algebra could also have an associated “gauge” field in higher dimensions. The posited field was dubbed the diffeomorphism field, D_{ab}. This realization was recently established in [10], when Kirillov’s observation [4, 5] that the coadjoint elements of the Virasoro algebra are in one-to-one correspondence with Sturm-Liouville [11, 12] operators, was reexamined. The authors were able to use the one dimensional projective structure to provide a bridge between the Virasoro algebra and projective geometry in higher dimensions. Thus the analogous “gauge” symmetry due to reparameterization invariance in the Virasoro sector is projective invariance and the diffeomorphism field corresponds to projective connections. With this, the diffeomorphism field that appears in two dimensions through the geometric action as a background field has a different interpretation than that of expectation values of external energy-momentum tensors, as in conformal field theories. Furthermore the diffeomorphism field can acquire dynamics as a fundamental field through the projective curvature squared terms. Some of the entangled relationship between conformal geometry and projective geometry has been studied in [13–17]. For a good review see [18].

So far, discussions of dynamical projective connections [10, 19] have been restricted to particular metrics that are focused on the 2D Polyakov metric [20, 21] or Einstein geometries in four dimensions where compatibility has been enforced. In this paper we generalize those
considerations for any space-time dimensions and exhibit a Lagrangian that is explicitly
projectively invariant and general coordinate invariant, i.e. gauge invariant. We will briefly
review the salient features of the study of geodesics through the Thomas-Whitehead connec-
tion, the Thomas Cone and tensor and fermion representations on the Thomas Cone. Then,
by using the Palatini formalism, we explicitly construct the gauge invariant Thomas -
Whitehead gravitational action (TW), the gauge invariant Dirac action and covariant
field equations, its coupling to arbitrary Yang-Mills theories, and the energy-momentum
tensor. This work can be extended to include higher-order interactions, using the projective
version of Lovelock Gravity to classically maintain an initial value formulation. We
will conclude with remarks on geodesic deviations as it is there that contributions through
gravitational radiation may become manifest.

II. FROM GEODESICS TO PROJECTIVE CURVATURE

In its most pragmatic form, string theory can be thought of as regulating the Feynman
diagrams in gravitational theories by adding a small space-like curve to the point particle.
This activity already endows the string with a projective structure. The curves are param-
eterized by vector fields, say $\zeta^a = \frac{dx^a}{d\sigma}$, which allows one to take the intrinsic or absolute
derivative of any vector field along these curves. In one-dimension the Virasoro algebra is
the algebra of centrally extended vector fields on a line or circle and a projective structure
emerges.

A. Geodetics

In any dimension, the intrinsic (or absolute) derivative of a vector field v^a along a curve
C parameterized by σ is given by,

$$\frac{Dv^a}{d\sigma} \equiv \frac{dv^a}{d\sigma} + \Gamma^a_{bc} v^b \zeta^c,$$

where Γ^a_{bc} are connection coefficients associated with a connection ∇_a and ζ^a is the tangent
vector $\frac{dx^a}{d\sigma}$ along the curve C. An affine geodesic generalizes the notion of a straight line
and ζ^a is said to be geodesic if the change of ζ^a along the curve C parameterized by σ is be
proportional to itself, i.e.

$$\frac{D\zeta^a}{d\sigma} = f(\sigma)\zeta^a,$$
where \(f(\sigma) \) is the proportionality function. This yields the affine geodesic equation,
\[
\frac{d^2 x^a}{d\sigma^2} + \Gamma^a_{bc} \frac{dx^b}{d\sigma} \frac{dx^c}{d\sigma} = f(\sigma) \frac{dx^a}{d\sigma}.
\]
(3)

One may change the parameterization from \(\sigma \) to \(u(\sigma) \) by writing
\[
\frac{d}{du} = \frac{d\sigma}{du} \frac{d}{d\sigma}
\]
and for a suitable choice \(u(\sigma) \) we can eliminate the right hand side of Eq. (3) to write the geodetic equation
\[
\frac{d^2 x^a}{du^2} + \Gamma^a_{bc} \frac{dx^b}{du} \frac{dx^c}{du} = 0.
\]
(5)

Here the parameter \(u \) is said to be an affine parameter with respect to the connection \(\nabla_a \) as
\[
\frac{dx^b}{du} \nabla_b u = 1.
\]

Although the parameterization may have changed, the curves remain the same. Furthermore different connections, say \(\hat{\nabla}_a \) and \(\nabla_a \) can sometimes admit the same geodesics. If so, then \(\hat{\nabla} \) and \(\nabla \) belong to the same projective equivalence class. Thomas showed how one can write a gauge theory over this projective symmetry \[25, 26\]. We discuss this gauge theory presently.

B. Projectively equivalent paths

Consider a d-dimensional manifold \(\mathcal{M} \) with coordinates \(x^a \) where italic latin indices \(a, b, c, m, n, \cdots = 0, 1, \ldots, d - 1 \). Let \(\hat{\nabla}_a \) be a connection on \(\mathcal{M} \) where \(\zeta^a \) is geodetic, i.e.
\[
\zeta^b \hat{\nabla}_b \zeta^a = \frac{d^2 x^a}{d\tau^2} + \hat{\Gamma}^a_{bc} \frac{dx^b}{d\tau} \frac{dx^c}{d\tau} = 0.
\]
(6)

Now consider another connection whose coefficients are defined as
\[
\Gamma^a_{bc} = \hat{\Gamma}^a_{bc} + \delta^a_b v_c + \delta^a_c v_b,
\]
where \(v_b \) is an arbitrary one form. The geodesic equation for this connection is then
\[
\zeta^b \nabla_b \zeta^a = \frac{d^2 x^a}{d\tau^2} + \Gamma^a_{bc} \frac{dx^b}{d\tau} \frac{dx^c}{d\tau} = f(\tau) \frac{dx^a}{d\tau},
\]
(8)

and where \(f(\tau) = 2v_b \frac{dx^b}{d\tau} \). Since Eq. (8) can also be made geodetic by a suitable reparameterization of \(\tau \) to \(u(\tau) \) both Eq. (6) and Eq. (8) admit the same geodesic curves. Eq. (7) is called a projective transformation and establishes the projective equivalence relation, \(\hat{\Gamma}^a_{bc} \sim \Gamma^a_{bc} \).
In [25, 26], Thomas presents a “gauge” theory of projectively equivalent connections that is projectively invariant and general coordinate invariant. This begins by defining the fundamental projective invariant Π_{abc}

$$\Pi_{abc} \equiv \Gamma_{abc}^a - \frac{1}{(d+1)} \delta^a_b \Gamma_{cm}^m,$$

which is traceless by construction

$$\Pi_{ba} = \Pi_{ab} = 0$$

and invariant under a projective transformation, Eq. (7), for an arbitrary one form ν_a. Using the fundamental projective invariant Π_{abc} one can write a geodetic equation

$$\frac{d^2 x^a}{d\tau^2} + \Pi_{abc} \frac{dx^b}{d\tau} \frac{dx^c}{d\tau} = 0,$$

that is projectively invariant. However this equation is not covariant as Π_{abc} transforms as

$$\Pi'_{abc} = J^a_f \left(\Pi_{def} J^d_b J^e_c + \frac{\partial^2 x^f}{\partial x^e \partial x^c} \right)$$

under a general coordinate transformation from $x \rightarrow x'(x)$ with $J^a_b = \frac{\partial x^a}{\partial x'^b}$, the Jacobian of the transformation. We will denote the inverse Jacobian as $J_b^a = \frac{\partial x^b}{\partial x^a}$. The last summand spoils the covariance and can be related to volume, as it involves the determinant of the Jacobian of the transformation $J = \det(J^a_b)$. Thomas then constructs a line bundle over \mathcal{M} which is a $d + 1$-dimensional manifold \mathcal{N} referred to as the Thomas Cone [27] [28]. The coordinates on the Thomas Cone are $(x^0, x^1, \ldots, x^{d-1}, \lambda)$, where λ is denoted the volume coordinate. Since the volume coordinate, λ, takes values $0 < \lambda < \infty$, \mathcal{N} is called a cone. The coordinates transform as

$$x'^a = (x'^0(x^d), x'^1(x^d), \ldots, x'^{d-1}(x^d), \lambda' = \lambda |J|^{-\frac{1}{d+1}}).$$

From here on, we refer to transformations in Eq. (13) as TC\mathcal{N} -transformations. Here, Greek indices are over \mathcal{N} coordinates and take values $\alpha, \beta, \mu, \cdots = 0, 1, 2, \ldots, d$ and italic latin indices are over coordinates on \mathcal{M} and take values $a, b, m, n, \cdots = 0, 1, 2, \ldots, d - 1$. We reserve the index λ and the upright letter d to refer to the volume coordinate $x^d = x^\lambda = \lambda$. For every coordinate transformation on \mathcal{M} there is a unique coordinate transformation on \mathcal{N}.

6
C. Thomas projective connections

Thomas was able to find a connection on \mathcal{N} that transforms as a connection by extending the fundamental projective invariant to a $d + 1$-dimensional projective connection $\tilde{\Pi}^\alpha_{\mu\nu}$. It is defined as follows \[25, 29, 30\]

\begin{align}
\tilde{\Pi}^\alpha_{\lambda\beta} &= \tilde{\Pi}^\alpha_{\beta\lambda} = -\frac{1}{d+1}\delta^\alpha_\beta \\
\tilde{\Pi}^a_{bc} &= \tilde{\Pi}^a_{cb} = \Pi^a_{bc} \\
\tilde{\Pi}^\lambda_{ab} &= \tilde{\Pi}^\lambda_{ba} = -\frac{d+1}{d-1}\mathcal{R}_{ab},
\end{align}

where \mathcal{R}_{ab} is constructed from the *equi-projective curvature “tensor”* $\mathcal{R}^m_{\ abn}$

\[\mathcal{R}^m_{\ abn} = \Pi^m_{\ a[n,b]} + \Pi^p_{\ a[n}]\Pi^m_{\ b]p},\]

with an associated *equi-projective Ricci “tensor”*

\[\mathcal{R}_{ab} = \mathcal{R}^m_{\ amb}.\]

With this, $\tilde{\Pi}^\alpha_{\mu\nu}$ transforms as a connection under a TC\mathcal{N}-transformation as

\[\tilde{\Pi}^\alpha_{\mu\nu} = \frac{\partial x^\alpha}{\partial x^\rho} \frac{\partial x^\rho}{\partial x^\alpha} \tilde{\Pi}^\nu_{\sigma\beta} + \frac{\partial^2 x^\beta}{\partial x^\mu \partial x^\nu} \frac{\partial x^\alpha}{\partial x^\beta},\]

so that one may construct a projective curvature tensor

\[\tilde{\mathcal{R}}^\alpha_{\mu\nu\beta} = \tilde{\Pi}^\alpha_{\mu[\beta,\nu]} + \tilde{\Pi}^\rho_{\mu[\beta]\tilde{\Pi}^\alpha_{\nu]\rho},}\]

whose non-vanishing components are

\begin{align}
\tilde{\mathcal{R}}^\lambda_{\ abn} &= \frac{d+1}{d-1}(\mathcal{R}_{a[b,n]} + \Pi^m_{\ a[n]}\mathcal{R}_{n|m}) \\
\tilde{\mathcal{R}}^m_{\ abn} &= \mathcal{R}^m_{\ abn} - \frac{1}{d-1}\delta^m_{\ n}\mathcal{R}_{n\ a}.
\end{align}

The projective Ricci tensor is defined as the trace of the projective curvature tensor and vanishes identically

\[\tilde{\mathcal{R}}_{\alpha\beta} \equiv \tilde{\mathcal{R}}^\mu_{\alpha\mu\beta} = 0.\]

This construction is only a specific example of a projective connection but it laid the groundwork for the more general setting we now present.
III. THOMAS-WHITEHEAD PROJECTIVE GEOMETRY

A. The general projective connection

The original Thomas projective connection, $\Pi^\alpha_{\mu\nu}$, can be generalized to a connection $\tilde{\Gamma}^\alpha_{\beta\gamma}$, where explicitly

\[
\tilde{\Gamma}^\alpha_{\beta\gamma} = \begin{cases}
\Gamma^\lambda_{\alpha\lambda} = \tilde{\Gamma}^\lambda_{a\lambda} = 0 \\
\Gamma^\alpha_{\lambda\lambda} = 0 \\
\Gamma^\alpha_{\lambda\beta} = \tilde{\Gamma}^\alpha_{b\lambda} = \alpha_{\lambda} \delta^\alpha_b \\
\Gamma^a_{bc} = \Pi^a_{bc} \\
\tilde{\Gamma}^\lambda_{ab} = \Upsilon^\lambda D_{ab}
\end{cases}
\] (22)

and where

\[
\Pi^a_{bc} = \Gamma^a_{bc} + \delta^a_{\langle c} \alpha_{b \rangle} \\
\alpha_a = -\frac{1}{d+1} \Gamma^m_{am} \\
\Upsilon^\alpha = (0, 0, \ldots, 0, \lambda) \\
\alpha_{\alpha} = (\alpha_a, \lambda^{-1})
\] (23-26)

Here the connection Γ^a_{bc} is any representative member of the equivalence class $[\Gamma^a_{bc}]$ of projectively equivalent connections, related via Eq. 7, and α_a is that chosen member’s trace component. However, keep in mind that Π^a_{bc} exists in its own right in that it is traceless and transforms like a traceless part of an affine connection. Notice also that only the λ component for α_μ appears in the projective connection $\tilde{\Gamma}^\mu_{a\beta}$. On \mathcal{M}, the transformation laws are

\[
\Gamma'^{\mu a}_{mn} = \frac{\partial x'^a}{\partial x^m} \frac{\partial x^p}{\partial x^m} \frac{\partial x^q}{\partial x^p} \Gamma^b_{pq} + \frac{\partial^2 x^b}{\partial x^m \partial x^n} \frac{\partial x'^a}{\partial x^b} \\
\alpha'_a = \frac{\partial x'^m}{\partial x'^a} \alpha_m + \frac{\partial \log |J|}{\partial x'^a}
\] (27-28)

In the above, D_{ab} generalizes the work of Thomas and transforms in such a way that $\tilde{\Gamma}^\alpha_{\beta\gamma}$ transforms as an affine connection on \mathcal{N}. This is the origin of the diffeomorphism field D_{ab}. In this construction, Υ is the fundamental vector on the Thomas cone and satisfies the compatibility relation

\[
\tilde{\nabla}_a \Upsilon^\beta = \delta^\beta_a
\] (29)
so Υ^β satisfies the fundamental geodesic equation with unit proportionality

$$\Upsilon^\beta \nabla_\beta \Upsilon^\alpha = \Upsilon^\alpha .$$

For functions on \mathcal{N}

$$\Upsilon^\beta \nabla_\beta f = \lambda \partial_\lambda f ,$$

showing that Υ generates scaling in the λ direction. One-forms β^α on \mathcal{N} are uniquely defined by $\beta^\alpha \Upsilon^\alpha = 1$ and the Lie derivative with respect to Υ vanishes i.e, $L_{\Upsilon} \beta_\rho = 0$, so that it is scale invariant. Under a TCN$^\lambda$-transformation, Eq. (13), Υ^α and the covariant derivative transform as

$$\Upsilon'^\alpha = \frac{\partial x'^\alpha}{\partial x^\alpha} \Upsilon^\beta$$

$$\nabla'^\alpha = \frac{\partial x'^\beta}{\partial x^\alpha} \nabla_\beta .$$

Demanding that $\tilde{\Gamma}^\alpha_{\mu\nu}$ transforms as an affine connection

$$\tilde{\Gamma}'^\alpha_{\mu\nu} = \frac{\partial x'^\alpha}{\partial x^\mu} \frac{\partial x^\sigma}{\partial x'^\nu} \tilde{\Gamma}_\sigma^\rho_{\beta} + \frac{\partial^2 x'^\beta}{\partial x^\mu \partial x^\nu} \frac{\partial x'^\alpha}{\partial x^\beta} ,$$

and using the transformation laws of Υ^α and $\tilde{\Gamma}^\lambda_{ab}$, one finds that D_{ab} transforms under a coordinate transformation on \mathcal{M} as

$$D'_{ab} = \frac{\partial x'^m}{\partial x^m} \frac{\partial x'^n}{\partial x^n} (D_{mn} - \partial_m j_n - j_m \partial_n + j_c \Pi^{c}_{mn}) ,$$

where we define $j_a = \partial_a \log |J|^{-\frac{1}{d+1}}$. One can show that the coordinate transformation law of D_{ab} as stated by Eq. (35) is an action of the general linear group on the components of D. This property holds despite the presence of the coordinate-dependent object Π^a_{bc} in the transformation law [32]. This transformation law will become important later in the correspondence with coadjoint elements of the Virasoro algebra in one-dimension.

A general tensor on \mathcal{M} with m-contravariant and n-covariant indices we express as

$$T^{a(m)}_{b(n)} = T^{a_1 a_2 ... a_m}_{b_1 b_2 ... b_n} .$$

In what follows we refer to (m, n)-tensor on \mathcal{M} as objects that transform as

$$T'^{a(m)}_{b(n)} = \frac{\partial x'^{a_1}}{\partial x^{a_1}} \cdots \frac{\partial x'^{a_m}}{\partial x^{a_m}} \frac{\partial x'^{b_1}}{\partial x^{b_1}} \cdots \frac{\partial x'^{b_n}}{\partial x^{b_n}} T^{p(m)}_{q(n)} .$$
under coordinate transformations. Similarly, we refer to objects as \((m, n)\)-TC tensors on \(N\) that transform as

\[
T^{\alpha(m)}_{\beta(n)} = \frac{\partial x^\alpha_{\mu_1}}{\partial x_{\nu_1}} \cdots \frac{\partial x^\alpha_{\mu_m}}{\partial x_{\nu_m}} \cdots \frac{\partial x^\alpha_{\nu_n}}{\partial x_{\mu_n}} T^\mu(m)_{\nu(n)}
\]

(38)

under a \(N\)-transformation. This will allow us to build actions that are invariant with respect to \(N\)-transformations.

B. Geodetics revisited

Before discussing projective curvature relations, we now revisit geodesics and geodetics to illuminate the projective connection. Consider a geodetic on \(N\) associated with the vector field \(\zeta^\alpha = \frac{dx^\alpha}{du}\). The parameter \(u\) is an affine parameter for \(\tilde{\nabla}\) such that

\[
\zeta^\alpha \tilde{\nabla}_\alpha \zeta^\beta = 0.
\]

(39)

Separating the \(\mathcal{M}\) coordinates from \(\lambda\), we have the expressions

\[
\frac{d^2 x^a}{du^2} + \Pi^a_{bc} \frac{dx^b}{du} \frac{dx^c}{du} = -2 \frac{\lambda}{\lambda} \left(\frac{d\lambda}{du} \right) \frac{dx^a}{du},
\]

(40)

\[
\frac{d^2 \lambda}{du^2} + \lambda \mathcal{D}_{bc} \frac{dx^b}{du} \frac{dx^c}{du} = 0.
\]

(41)

Together, these equations are covariant and projectively invariant. Let us consider a reparameterization that can render Eq. (40) geodetic. In other words, does there exist a parameter \(\tau\) that is affine with respect to the projective invariant \(\Pi^a_{bc}\)? Let \(u \rightarrow \tau(u)\) so that

\[
\frac{d^2 \tau}{du^2} = -2 \left(\frac{1}{\lambda} \frac{d\lambda}{du} \right) \frac{d\tau}{du}.
\]

(42)

This will eliminate the RHS of Eq. (40) and we can use this to eliminate \(\lambda\) in Eq. (41) with

\[
\frac{d^2 \lambda}{du^2} = \frac{\lambda}{4} \cdot \frac{3(\frac{d\tau}{du})^2 - 2(\frac{d\tau}{du}) \frac{d\tau}{du}}{(\frac{d\tau}{du})^2}.
\]

(43)

With this, one finds that the reparameterization is viable if

\[
\mathcal{D}_{bc} \frac{dx^b}{du} \frac{dx^c}{du} = \frac{1}{2} \cdot \frac{dx}{du} \left(\frac{d^3 \tau}{du^3} \right) - \frac{3}{2} \left(\frac{d^2 \tau}{du^2} \right) \frac{d\tau}{du} \equiv \frac{1}{2} S(\tau : u),
\]

(44)

where \(S(\tau : u)\) is the Schwarzian derivative of \(\tau\) with respect to \(u\). For example, if the kinetic term \(\mathcal{D}_{bc} \frac{dx^b}{du} \frac{dx^c}{du}\) vanishes, then requisite reparameterizations that render \(\tau\) affine are
the Möbius transformations \(\tau = \frac{au+b}{cu+d} \), where \(a, b, c, \) and \(d \) are real numbers. Another familiar example is when \(\mathcal{D}_{bc} \frac{dx^b}{du} \frac{dx^c}{du} = \frac{(m-1)(m+1)}{2ud^2} \) and the requisite transformation are the exponential Möbius transformations \(\tau = \left(\frac{au^m+b}{cu^m+d} \right) \). This corresponds to the coadjoint orbits of the Virasoro algebra denoted by \(\text{Diff}(S^1)/\text{SL}(2, m) \), where the isotropy group is generated by \(L_m, L_0, L_{-m} \). A Möbius transformation is a one-dimensional projective transformation, so we see that the preferred class of parameters for \(\Pi_{ab} \) is preserved by projective transformations rather than affine transformations. This motivates the description of \(\Pi_{ab} \) as a projective connection. The inclusion of \(\Pi_{ab} \) in the TW connection, which incorporates the field \(\mathcal{D}_{bc} \), allows us to apply techniques that are typically available for affine connections.

C. Projective geometry

One constructs the projective curvature tensor in the usual way

\[
[\tilde{\nabla}_\alpha, \tilde{\nabla}_\beta]V^\gamma = K^\gamma_{\rho\alpha\beta}V^\rho \tag{45}
\]

\[
[\tilde{\nabla}_\alpha, \tilde{\nabla}_\beta]V_\gamma = -K^\rho_{\gamma\alpha\beta}V^\rho \tag{46}
\]

from connections that transform as in Eq. (34). In terms of the connections, the curvature can be written explicitly as

\[
K^\alpha_{\mu
u\beta} = \tilde{\Gamma}^\alpha_{\mu\beta,\nu} + \tilde{\Gamma}^\rho_{\mu[\beta}(\Gamma^\alpha_{\nu]\rho] + . \tag{47}
\]

This transforms as a (1,3) TC tensor on \(\mathcal{N} \). Using Eq. (22) to expand \(\tilde{\Gamma}^\alpha_{\mu\nu} \) we find the only non-vanishing components of the projective curvature tensor to be

\[
K^a_{bcd} = R^a_{bcd} + \delta^a_{[c} \mathcal{D}_{d]b} \\
K^\lambda_{cab} = \lambda \partial_{[a} \mathcal{D}_{b]c} + \lambda \Pi^d_{[b} \mathcal{D}_{a]d}. \tag{48}
\]

By contracting the first and third indices of the projective curvature tensor, we can write the projective Ricci tensor whose only non-vanishing components are

\[
K_{bd} = R_{bd} + (d - 1) \mathcal{D}_{bd}. \tag{49}
\]

\(\mathcal{R}_{bd} \) is the equi-projective Ricci tensor from Eq. (16). The expressions in Eq. (48) are precisely of the form seen in conformal geometry

\[
R^a_{bcd} = W^a_{bcd} + \delta^a_{[c} P_{d]b} \\
C_{cab} = \partial_{[a} P_{b]c} + \Gamma^d_{[b} P_{a]d}, \tag{50}
\]
where W^a_{bcd} is the Weyl tensor, P_{db} is the Schouten tensor, and C_{cab} is the Cotton-York tensor. In the above, W^a_{bcd} is analogous to K^a_{bcd} in Eq. (48). If we consider the contraction of the projective curvature tensor with a volume one-form g_μ, that transforms as Eq. (28) and is also invariant under projective transformations, we can form the projective Cotton-York tensor, $K(g)_{\nu\alpha\beta} \equiv g_\mu K^\mu_{\nu\alpha\beta}$. Then we can write

$$K(g)_{nab} = g_\mu K^\mu_{nab} = P_{[b|n|a]} - \Delta_n P_{[ab]} + \Delta_{[a} P_{b]n} + R^m_{nab} \Delta_m,$$

(51)

where $\Delta_a \equiv g_a - \alpha_a$ is a one form on \mathcal{M}. $K(g)_{\nu\alpha\beta}$ is now explicitly seen as a (0,3)-TC tensor on \mathcal{N} and K_{nab} is a (0,3)-tensor on \mathcal{M}. When we introduce a metric tensor g_{am} on \mathcal{M} in the next section, we will find that $g_\mu = (g_a, \frac{1}{\chi})$, where $g_a \equiv -\frac{1}{d+1} \partial_a \log \sqrt{|g|}$, is a suitable volume one-form, Eq. (59). This also introduces the projective Schouten tensor P_{ab}, which is a (0,2)-tensor on \mathcal{M}. The form of $\tilde{\Gamma}^\alpha_{\mu\nu}$ in Eq. (22) allows for D_{ab} to become dynamical as $K^\alpha_{\mu\alpha\beta} \neq 0$, relaxing the Ricci flat condition in [25, 26, 31]. This allows us to extend the Einstein-Hilbert action to projective geometry as in [10, 19].

If we choose a member of the equivalence class $[\Gamma^c_{ab}]$, then we may express Π^c_{ab} in terms of a specific connection and its associated trace α_μ. With this, one may write P_{ab} in terms of D_{ab} as

$$P_{bc} = D_{bc} - \partial_b \alpha_c + \Gamma^e_{bc} \alpha_e + \alpha_a \alpha_c.$$

(52)

The above is a generalization of [10, 19], where constant volume coordinates were used and Γ^e_{bc} was regarded as Levi-Civita so $\alpha_a = 0$. Then, in that case, $D_{ab} = P_{ab}$ and is a tensor in the volume preserving coordinates. As stated above, P_{ab} transforms as a tensor on \mathcal{M}

$$P'_{ab} = \frac{\partial x^m}{\partial x'^a} \frac{\partial x^m}{\partial x'^n} P_{mn},$$

(53)

which we may call the projective Schouten tensor in analogy with conformal geometry.

IV. COVARIANT METRIC TENSOR ON \mathcal{N}

In projective geometry, a vector field χ on \mathcal{M} may be lifted to a vector field $\tilde{\chi}$ on \mathcal{N} by writing

$$\tilde{\chi}^\alpha \partial_\alpha = -\left(\lambda \chi^a \kappa_a\right) \partial_\lambda + \chi^a \partial_a,$$

(54)
where κ_a is some object that transforms as j_a in Eq. (35), i.e.

$$
\kappa_a' = \frac{\partial x^m}{\partial x'^a} \kappa_m - \frac{1}{d+1} \frac{\partial \log J}{\partial x'^a}
$$

under a general coordinate transformation on \mathcal{M}. We write the components of $\tilde{\chi}$ as

$$
\tilde{\chi}^\alpha = (\chi^a, -\lambda x^b \kappa^b).
$$

Similarly, if a one form v on \mathcal{M} can be related to a projective one form \tilde{v} via

$$
\tilde{v}_\beta = (v_b + \kappa_b, \frac{1}{\lambda}).
$$

It is clear that $\tilde{\chi}^a \tilde{v}_a = \chi^a v_a$. A generic vector on \mathcal{N}, which has components η_\perp that are unrelated to vectors on \mathcal{M}, may be written as

$$
\tilde{\eta}^\beta = (\eta_\parallel^b, \lambda (\eta_\perp - \kappa_a \eta_\parallel^a)).
$$

The fundamental vector field Υ in Eq. (26) has no component parallel to \mathcal{M}, for example.

We are interested in building an invariant action using the projective curvature. This will require a soldering metric which transforms as a tensor on \mathcal{N} and which is projectively invariant. Taking a metric g_{ab} on \mathcal{M}, one may view this soldering metric as the local tensor product of two one-forms and write

$$
G_{\mu\nu} = \begin{bmatrix}
 g_{ab} - \lambda_0^2 g_a g_b & -\frac{\lambda_0^2}{\lambda} g_a \\
 -\frac{\lambda_0^2}{\lambda} g_b & -\lambda_0^2
\end{bmatrix}.
$$

Here we have replaced κ_a with $g_a \equiv -\frac{1}{d+1} \partial_a \log \sqrt{|g|}$ as it is naturally built from the metric degrees of freedom and does not introduce a connection. The constant λ_0 has units of length (like λ), and ensures that $G_{\mu\nu}$ remains dimensionless when g_{ab} is dimensionless. Since $G_{\mu\nu}$ depends only on the spacetime metric g_{ab}, it is indeed projectively invariant. One can check that $G_{\mu\nu}$ satisfies the transformation law

$$
G'(y)_{\mu\nu} = \frac{\partial x^\alpha}{\partial y^\mu} \frac{\partial x^\beta}{\partial y^\nu} G(x)_{\alpha\beta}
$$

when $(x^a, x^\lambda) \to (y^a, y^\lambda) = (y^a, x^\lambda | J |^{-\frac{1}{d+1}})$. Furthermore, under this coordinate change the volume form on \mathcal{N} remains invariant, i.e.

$$
\sqrt{|G(x^a, x^\lambda)|} \, dx^\lambda d^a x = \sqrt{|G(y^a, y^\lambda)|} \, dy^\lambda d^a y.
$$
Here $G(x^a, x^b)$ and $G(y^a, y^b)$ are the metric determinants in the different coordinates. This follows since from Eq. (59), we see that
\[|G| = |g| \cdot \frac{\lambda^2}{\lambda^2}, \] (62)
where g is the determinant of g_{ab} on M. Since $y^\lambda = x^\lambda |J|^{-\frac{1}{d+1}}$ and $\frac{1}{\lambda} \rightarrow \frac{1}{\lambda} |J|^{\frac{1}{d+1}}$, these terms exactly conspire in Eq. (61) to maintain the invariant volume on N. Again, this motivates why λ is called the volume coordinate. Lastly, the inverse of $G_{\mu\nu}$ is given by
\[G^{\mu\nu} = \begin{bmatrix} g^{ab} - \lambda g^{am} g_m & -\lambda g^{am} g_m \\ -\lambda g^{bm} g_m & \frac{\lambda^2}{\lambda^2 - 1 + g^{mn} \lambda^2 g_m g_n} \end{bmatrix}, \] (63)
where g^{ab} is the inverse of the spacetime metric g_{ab}. This metric generalizes the work in [10, 19], allowing TW gravity to be used in any coordinates. We can succinctly write the metric and its inverse as
\[G_{\alpha\beta} = \delta^a_{\alpha} \delta^b_{\beta} g_{ab} - \lambda^2 g_{a\alpha} g_{b\beta} \] (64)
\[G^{\alpha\beta} = g^{ab}(\delta^a_{\alpha} - g_{a\alpha} \Upsilon^a)(\delta^b_{\beta} - g_{b\beta} \Upsilon^b) - \lambda^{-2} \Upsilon^{\alpha} \Upsilon^{\beta}, \] (65)
where we have defined $g_{a} \equiv (g_{a}, \frac{1}{\lambda})$. In TW gravity, the metric g_{ab}, the projective invariant Π^a_{bc}, and the diffeomorphism field D_{ab} will be treated as independent degrees of freedom in the spirit of the Palatini formalism [22].

V. $\tilde{\gamma}^\mu$ ON N

Now we seek the $\tilde{\gamma}^\alpha$ matrices associated with the projective metric $G_{\mu\nu}$ given by Equation (59). The gamma matrices, γ^m, on a d-dimensional spacetime are defined by
\[\{\gamma^m, \gamma^n\} = 2g^{mn}I_N, \] (66)
where $\{\cdot, \cdot\}$ is the anti-commutator, $g_{\mu\nu}$ is the spacetime metric, $N = 2^{[d/2]}$, and I_N is the $N \times N$ identity matrix.

Let $\tilde{\gamma}^\mu$ be the gamma matrices for the metric $G_{\mu\nu}$ on N. These matrices satisfy
\[\{\tilde{\gamma}^\mu, \tilde{\gamma}^\nu\} = 2G^{\mu\nu}I_N \] (67)
as in Eq. (66). We will stay in even space-time dimensions. In this case, the gamma matrices $\tilde{\gamma}^\mu$ for $G_{\mu\nu}$ will have the same dimension as the gamma matrices γ^m for g_{mn}.
Using the inverse of $G_{\mu\nu}$, Eq. (63), we immediately must have $\tilde{\gamma}^\mu = \gamma^\mu$ if μ is a spacetime coordinate index, say m, and where γ^m are the gamma matrices for the spacetime metric g_{mn}. The remaining gamma matrix is $\tilde{\gamma}^\lambda$. This matrix must satisfy

\[
\{ \tilde{\gamma}^\lambda, \gamma^m \} = -2\lambda g^{mn}g_n I_N, \quad m = 0, \ldots, d - 1, \tag{68}
\]

\[
2(\tilde{\gamma}^\lambda)^2 = \{ \tilde{\gamma}^\lambda, \tilde{\gamma}^\lambda \} = 2\frac{\lambda^2}{\lambda_0^2}(-1 + g^{mn}\lambda_0^2 g_m g_n)I_N. \tag{69}
\]

Recall the chiral matrix γ^5 in four-dimensional spacetime. We will refer to it as γ^{d+1} in the general even dimensional case. It satisfies

\[
\{ \gamma^{d+1}, \gamma^m \} = 0 \quad (70)
\]

\[
(\gamma^{d+1})^2 = I_N. \tag{71}
\]

Comparing Eqs. (68) and (69) to Eqs. (70) and (71), we see that we should have

\[
\tilde{\gamma}^\lambda = -\frac{\lambda}{\lambda_0} (i\gamma^{d+1} + \lambda_0 g_m \gamma^m) \tag{72}
\]

as the final gamma matrix for $G_{\mu\nu}$. Explicitly, the chiral gamma matrix γ^{d+1} has the following construction in terms of the other gamma matrices in d-dimensions

\[
\gamma^{d+1} = i\frac{d-2}{d!} \epsilon_{a_1 \ldots a_d} \gamma^{a_1} \ldots \gamma^{a_d}, \tag{73}
\]

where $a_i = 0, \ldots, d - 1$ and ϵ is the totally antisymmetric Levi-Civita tensor on \mathcal{M}. Specifically, for $d = 4$, the gamma matrices for $G_{\mu\nu}$ are

\[
\tilde{\gamma}^m = \gamma^m \quad \text{when} \quad m = 0, 1, 2, 3
\]

\[
\tilde{\gamma}^\lambda = -\frac{\lambda}{\lambda_0} (i\gamma^5 + \lambda_0 g_m \gamma^m). \tag{74}
\]

The fifth gamma matrix γ^5 is crucial in discussions about chirality, which we will see when we apply the TW connection to spinor fields. Eq. (74) shows that the volume bundle metric $G_{\mu\nu}$ explicitly builds in γ^5. Thus, we will expect our dynamical theory for D_{mn} to be chiral in nature when interacting with fermions.

Eqs. (72, 73, 74) also serve to further establish the relationship between the projective gauge field D_{mn} and the notion of volume on \mathcal{M}. Any Lagrangian for D_{mn} will involve the metric $G_{\mu\nu}$ on \mathcal{N}, which in turn can be constructed from gamma matrices. Eq. (72) says that one of these gamma matrices includes a rescaling of γ^{d+1} by λ, where γ^{d+1} is itself
related to volume due to the presence of the epsilon tensor $\epsilon_{a_1...a_d}$. The epsilon tensor is alternating in its indices and transforms as a tensor density that is used to construct volume forms on \mathcal{M}. Therefore, we can again, view λ as a parameter which determines a rescaling of the volume element on \mathcal{M}.

VI. THE VIRASORO ALGEBRA AND PROJECTIVE GEOMETRY

Here we will review three ways in which there is a correspondence between the projective connection’s reduction to one dimension and the coadjoint elements of the Virasoro algebra. The Virasoro algebra \[4, 33, 34\] may be regarded as the centrally extended algebra of vector fields in one dimension. Let (ξ, a) and (η, b) denote centrally extended vector fields in one dimension where a and b are elements in the center. Then the Lie algebra of these centrally extended vector fields is given through the commutator

$$[(\xi, a), (\eta, b)] = (\xi \circ \eta, ((\xi, \eta))_0), \quad (75)$$

where $\xi \circ \eta$ is defined via

$$\xi \circ \eta \equiv \xi^a \partial_a \eta^b - \eta^a \partial_a \xi^b. \quad (76)$$

Here we explicitly expose the valence of the one dimensional vectors. The symbol $((\xi, \eta))_0$ is called the Gelfand-Fuchs two-cocycle \[35\] and is defined explicitly as

$$((\xi, \eta))_0 \equiv \frac{c}{2\pi} \int (\xi \eta'''') d\theta \quad (77)$$

$$= \frac{c}{2\pi} \int \xi^a \nabla_a (g^{bc} \nabla_b \nabla_c \eta^m) g_{mn} d\theta^m, \quad (78)$$

where g_{ab} is a one-dimensional metric. Eqs. (77) and (78) demonstrate an invariant pairing between ξ and η'''. The Gelfand-Fuchs two-cocycle is an example of an invariant pairing between a vector and a quadratic differential B

$$< (\xi, a) | (B, c) > \equiv \int (\xi B)d\theta + ac = \int (\xi_i B_{ij})d\theta^j + ac. \quad (79)$$

In the Gelfand-Fuchs two-cocycle, the pairing is between a vector ξ and a one-cocycle of η, where this one-cocycle is a projective transformation \[4, 5\] that has mapped the vector field η into a quadratic differential. Explicitly,

$$\eta \partial_\theta \rightarrow \eta''' d\theta^2 = \nabla_a (g^{bc} \nabla_b \nabla_c \eta^m) g_{mn} d\theta^a d\theta^n. \quad (80)$$
The invariant pairing in Eq. (79) follows if the action of another centrally extended algebra element, say \((\eta, d)\), leaves the pairing invariant, i.e.

\[(\eta, d)^* < (\xi, a)|(B, c) >= 0. \tag{81}\]

This defines the coadjoint representation of the Virasoro algebra \([5, 34]\).

\[ad^*_{(\eta, d)}(B, c) = (\eta B' + 2\eta'B - c\eta''', 0). \tag{82}\]

Then, a more general invariant two-cocycle relative to the centrally extended coadjoint element \(B = (B, c)\) can be written as

\[(\xi, \eta)_{(B, c)} = \frac{c}{2\pi} \int (\xi \eta''' - \xi''' \eta) \, dx + \frac{1}{2\pi} \int (\xi \eta' - \xi' \eta) B \, dx. \tag{83}\]

One sees that the Gelfand-Fuchs case lives in the pure gauge sector, i.e. \(B = (0, c)\), of the space of coadjoint elements. It was also observed \([5]\) that this action is the same as the action of the space of Sturm-Liouville operators on vector fields. Thus there is a correspondence

\[(B, c) \leftrightarrow -2c \frac{d^2}{dx^2} + B(x) , \tag{84}\]

where on the left side \((B, c)\) is identified with a centrally extended coadjoint element of the Virasoro algebra and on the right side is a Sturm-Liouville operator with weight \(c\) and \(B(x)\) as the Sturm-Liouville potential.

\section*{A. Correspondence through the transformation laws}

Here, we show how the relation between a coadjoint element of the Virasoro algebra and the Sturm-Liouville operator is reconciled by Thomas-Whitehead projective connections. We will evaluate the connection in one-dimension where one can construct a Laplacian even though curvature is unavailable.

Consider the transformation of the diffeomorphism field \(D_{ab}\) in one dimension. One can show that in one dimension, Eq. (35), i.e.

\[D'_{ab} = \frac{\partial x'^m}{\partial x^a} \frac{\partial x'^n}{\partial x^b}D_{mn} - \frac{1}{(d + 1)^2} \frac{\partial \log J}{\partial x^a} \frac{\partial \log J}{\partial x^b} + \frac{1}{d + 1} \frac{\partial^2 \log J}{\partial x^a \partial x^b} + \frac{1}{d + 1} \frac{\partial \log J}{\partial x^c} \Pi^{ec}_{ab}, \tag{85}\]
under an infinitesimal coordinate transformation. We may let \(D = qD \) where \(q \) is an arbitrary constant. Then

\[
\delta(qD) = \delta D
= 2\xi' D + D' \xi - \frac{1}{2} \xi''
\]

or equivalently

\[
\delta D = 2\xi' D + D' \xi - \frac{1}{2q} \xi'' .
\]

Choosing \(q = \frac{1}{2\lambda} \), we see a correspondence between the one-dimensional Thomas projective connection and the coadjoint element in Eq. (82). This improves the argument made in [10].

B. Correspondence through two-cocycles

The covariant metric allows us to improve upon another correspondence between the projective connection and coadjoint elements discussed in [10]. We consider a projective 2-cocycle on \(\mathcal{N} \) for a path \(C \) as

\[
< \xi, \eta >_{(\zeta)} = q \int_{C(\zeta)} \xi^\alpha (\tilde{\nabla}_\alpha G^{\mu\nu} \tilde{\nabla}_\rho \tilde{\nabla}_\nu \eta^\beta G_{\beta\mu}) \zeta^\mu d\sigma
- (\xi \leftrightarrow \eta),
\]

where \(\sigma \) parameterizes the path. The vector \(\zeta^\mu \equiv \frac{dx^\mu}{d\sigma} \) defines the path \(C \). Here, the coordinates on \(\mathcal{N} \) are \(x^\alpha = (x, \lambda) \). We choose the vector fields as \(\xi^\beta = (\xi^b, -\lambda \xi^a g_a) \) and \(\eta^\beta = (\eta^b, -\lambda \eta^a g_a) \). Consider a path given by a fixed value \(\lambda = \lambda_0 \) along the vector \(\zeta^\mu_{\lambda_0} = (\frac{dx}{d\sigma}, 0) \). The metric used to construct the projective Laplacian is the one-dimensional version of Eq. (68). Setting the metric to a constant \(g_{11} \) and the components of the vector fields to \(\xi_1 \) and \(\eta_1 \), respectively and keeping in mind that \(\Pi^a_{bc} = 0 \) in one dimension, one finds that

\[
< \xi, \eta >_{(\zeta_{\lambda_0})} = q \int \xi_1 \left(2D_{11} - g_{11} \frac{1}{\lambda_0^2} \right) \eta_1 dx
+ q \int \xi_1 \eta_1'' dx - (\xi \leftrightarrow \eta).
\]
Comparing this to Eq. (83), we make the observation that the projective connection and the coadjoint element \((B, q)\) are in correspondence through

\[
2q \mathcal{D}_{11} - \frac{q}{\lambda_0} = B ,
\]

which recovers Eq. (83) for \(q = \frac{i}{2\pi}\).

C. Correspondence through gauge invariant action

Using the action in [10], we write the invariant projective Einstein-Hilbert terms as

\[
S_{PEH} = \int d^2 x \ d\lambda \sqrt{|G|} \mathcal{K}_{\alpha\beta} G^{\alpha\beta} = \int d^2 x \ d\lambda \sqrt{|G|} \mathcal{K} = \lambda_0 \left[\int d\lambda \frac{1}{\lambda} \right] \int d^2 x \sqrt{|g|} \left(R + g^{ab}(2\mathcal{P}_{ba} - \mathcal{P}_{ab}) \right)
\]

\[
= \beta \left(S_{EH} + \int d^2 x \sqrt{|g|} g^{ab}(2\mathcal{P}_{ba} - \mathcal{P}_{ab}) \right),
\]

where we have used the projective Schouten tensor to write this in terms of the Riemann scalar curvature for familiarity. In two-dimensions, the Einstein-Hilbert term is the Gauss-Bonnet topological invariant. The Polyakov metric has constant volume and \(\mathcal{D}_{ab}\) and \(\mathcal{P}_{ab}\) are equivalent. Evaluating this on the Polyakov metric in two dimensions gives the coupling to the coadjoint element

\[
S_{\text{Polyakov Coupling}} = \int d^2 \theta \mathcal{P}_{++} h_{--}.
\]

Again, the importance of this is to show dimensional universality of the interaction term in the Polyakov action as \(\sqrt{|G|} \mathcal{K}\) has meaning in any dimension. Thus, \(\mathcal{D}_{ab}\) is to the Virasoro algebra of one-dimensional centrally extended vector fields as the Yang-Mills gauge field \(A_a\) is to affine Lie algebras in one-dimension. Furthermore, the projective curvature \(\mathcal{K}^{\alpha}_{\mu\nu\beta}\) can be used to build dynamical theories for \(\mathcal{D}_{ab}\) just as the gauge curvature \(F_{ab}\) can provide dynamics for the gauge fields related to external gauge symmetries.

VII. SPINOR FIELDS ON \(\mathcal{N}\)

To this point, we have discussed the representation theory for the Thomas-Whitehead connection as related to tensors. Now we examine the relation among projective connections, spinors, and their associated Dirac equation. We will focus on spin \(\frac{1}{2}\) spinors throughout.
A. The spin covariant derivative

To construct the spin connection for the generalized metric $G_{\alpha\beta}$ we will need the frame fields that make contact with the Minkowski space metric on the Thomas Cone. There are several types of indices involved. First, there is a distinction between spacetime indices and the extra λ coordinate on N. Second, there is a distinction between curved indices and flat indices. To make calculations clear, we will adopt the following conventions for indices:

1. Greek indices μ, ν – curved coordinates on N
2. Latin indices m, n – curved coordinates on M
3. Underlined indices a, α – flat coordinates on M, N
4. λ – volume bundle coordinate
5. $\bar{5}$ – flattened volume bundle coordinate

We use the number $\bar{5}$ to represent the extra coordinate in flat space, due to the case of four-dimensional spacetime, where the gamma matrices are commonly labeled $0, 1, 2, 3, 5$ for historical reasons. For the metric g_{mn} on M, e^m_a (with inverse e^a_m) are the associated frame fields satisfying

$$g_{mn} = e^a_m e^b_n \eta_{ab} \quad \eta_{ab} = e^m_a e^n_b g_{mn}.$$ \hfill (93)

Similarly, the frame fields denoted \bar{e}^μ_a will be associated with the metric $G_{\mu\nu}$ on N, and the indices range over all dimensions, including λ for the curved coordinates on N

$$G_{\alpha\beta} = \bar{e}^\mu_m \bar{e}_\beta^n \bar{\eta}_{\mu\nu} \quad \bar{\eta}_{\alpha\beta} = \bar{e}^\mu_a \bar{e}^\nu_b G_{\mu\nu}.$$ \hfill (94)

We may also use the frame fields to write the components of the Dirac matrices in curved spacetime coordinates

$$\tilde{\gamma}^\mu = \bar{e}^\alpha_a \tilde{\gamma}^a_{\alpha}.$$ \hfill (95)

For the metric $G_{\mu\nu}$ given by Eq. (59), the frame fields are listed as follows:

$$\begin{align*}
\bar{e}^m_a &= e^m_a \\
\bar{e}^m_5 &= 0 \\
\bar{e}^\lambda_a &= -\lambda e^m_5 g_m \\
\bar{e}^\lambda_5 &= \frac{\lambda}{\lambda_0}.
\end{align*}$$ \hfill (96)
The inverse frame field components are then given by:

\[
\begin{align*}
\tilde{e}^a_m &= e^a_m \\
\tilde{e}^\lambda_5 &= \lambda_0 g_m \\
\tilde{e}^a_\lambda &= 0 \\
\tilde{e}^\lambda_5 &= \frac{\lambda_0}{\lambda}
\end{align*}
\]
(97)

Let \(\tilde{\Gamma}^\mu_{\nu\rho} \) be the components of the TW connection, and call \(\tilde{\nabla}_\mu \) the corresponding covariant derivative operator that acts only on the curved indices as opposed to flat indices. Define

\[
\bar{\omega}^\mu_{\nu\rho} = \tilde{\nabla}_\nu \tilde{e}^\mu_\rho = \partial_\nu \tilde{e}^\mu_\rho + \tilde{\Gamma}^\mu_{\nu\rho} \tilde{e}^\rho_\lambda .
\]
(98)

We use the geometric object \(\bar{\omega} \) of Eq. (98) to define a new \emph{spin covariant derivative}

\[
\tilde{D}_\mu V^\alpha = \partial_\mu V^\alpha + \bar{\omega}^\alpha_{\beta\mu} V^\beta ,
\]
(99)

which recognizes tensorial objects, such as the vector \(V^\alpha \), written in flat coordinates. We can take the full covariant derivative of a geometric object with curved and flat spacetime indices by using the ordinary connection coefficients \(\tilde{\Gamma}^\mu_{\nu\rho} \) for curved indices and the spin connection coefficients \(\bar{\omega}^\mu_{\nu\rho} \) for flat indices. From now on, we will denote this full covariant derivative operator by \(\tilde{\nabla}_\mu \). By construction, the frame fields are covariantly constant, satisfying

\[
\tilde{\nabla}_\nu \tilde{e}^\mu_\rho = 0 = \tilde{\nabla}_\nu \tilde{e}^\alpha_\rho .
\]
(100)

Then for any vector \(V^\mu \), we have

\[
\tilde{\nabla}_\nu V^\alpha = \tilde{e}^\alpha_\mu \tilde{\nabla}_\nu V^\mu ,
\]
(101)

so that the frame fields can be used to change indices without having to introduce an extra derivative term.

With the frame fields on hand, we can calculate the coefficients of the TW spin connection using Eq. (98). Recall the TW connection coefficients originally presented in Eq. (22):

\[
\begin{align*}
\tilde{\Gamma}^a_{bc} &= \Pi^a_{bc} \\
\tilde{\Gamma}^\lambda_{bc} &= \lambda D_{bc} \\
\tilde{\Gamma}^a_{\lambda b} &= \tilde{\Gamma}^a_{b\lambda} = \frac{1}{\lambda} \delta^a_b
\end{align*}
\]
(102)
We simply need to plug these coefficients and the frame fields into Eq. (98) to get the TW spin coefficients that we desire. For example, if \(a, b \neq 5 \) and \(\mu \neq \lambda \) (which aligns with our chosen index conventions), we have

\[
\tilde{\omega}_{abm} = \left(\partial_m \tilde{e}^\mu_b + \tilde{\Gamma}^\mu_{\rho m} \tilde{e}^\rho_b \right) \tilde{e}_n \eta_{ac}
+ \left(\partial_m \tilde{e}^\lambda_b + \tilde{\Gamma}^\lambda_{\rho m} \tilde{e}^\rho_b \right) \tilde{e}_n \eta_{\lambda c}
+ \left(\partial_m \tilde{e}^n_b + \tilde{\Gamma}^n_{\rho m} \tilde{e}^\rho_b \right) \tilde{e}_\lambda \eta_{a\lambda}
+ \left(\partial_m \tilde{e}^\lambda_b + \tilde{\Gamma}^\lambda_{r m} \tilde{e}^r_b \right) \tilde{e}_5 \eta_{a\lambda},
\]

(103)

and since \(\eta_a^5 = 0 \) and \(\tilde{e}^5 = 0 \), this reduces to

\[
\tilde{\omega}_{abm} = \left(\partial_m \tilde{e}^\nu_b + \tilde{\Gamma}^\nu_{\rho m} \tilde{e}^\rho_b \right) \tilde{e}_\nu \eta_{ac}
= \left(\partial_m \tilde{e}^\nu_b + \Pi^\nu_{\rho m} \tilde{e}^\rho_b \right) \tilde{e}_\nu \eta_{ac}
= \left(\partial_m \tilde{e}^n_b + \Gamma^n_{\rho m} \tilde{e}^\rho_b + \delta^r_{\nu} \alpha_m \tilde{e}^r_b + \delta^5_{\nu} \alpha_m \tilde{e}^5_b \right) \tilde{e}_\nu \eta_{ac}
= \omega_{abm} + \alpha_m \eta_{ab} + \tilde{e}^\rho \tilde{e}_\nu \epsilon_m \alpha_p \eta_{ac},
\]

(104)

where \(\omega_{abm} \) (without a tilde) is the coefficient of the spin connection for the underlying spacetime connection \(\Gamma^n_{\rho m} \). Thus, we see how the TW spin connection coefficients \(\tilde{\omega}_{abm} \) are offset from the spacetime spin connection coefficients \(\omega_{abm} \) for \(a, b \neq 5 \). Below, we present the full list of independent TW spin connection coefficients:

\[
\tilde{\omega}_{abm} = \omega_{abm} + \alpha_m \eta_{ab} + \tilde{e}^\rho \tilde{e}_\nu \epsilon_m \alpha_p \eta_{ac}
\]

\[
\tilde{\omega}_{ab\lambda} = \frac{1}{\lambda} \eta_{ab}
\]

\[
\tilde{\omega}_{a5m} = 0
\]

\[
\tilde{\omega}_{55m} = -\lambda_0 \tilde{e}_\lambda \left(\mathcal{D}_{pm} - \partial_m \gamma_p + \Gamma^n_{\rho m} \gamma_n + \alpha_m \gamma_p + \alpha_p \gamma_m \right)
\]

\[
\tilde{\omega}_{a5\lambda} = \tilde{\omega}_{55\lambda} = \tilde{\omega}_{55m} = 0
\]

\[
\tilde{\omega}_{55\lambda} = -\frac{1}{\lambda}.
\]

(105)

In Eqs. (103) and (105), we have explicitly written out \(\Pi^\nu_{\rho m} \) in terms of a member of the equivalence class, \(\Gamma^n_{\rho m} \) and its trace \(\alpha_a \). This allows us to see the relationship to the spin connection on \(\mathcal{M} \). It is clear that \(\tilde{\omega}_{ab\rho} \) is not anti-symmetric in \(a \) and \(b \).
B. The spinor connection

Let $\Psi(x)$ and $\bar{\Psi}(x)$ be a spinor field and its Pauli adjoint, respectively representing a fermion and its anti-partner on the manifold N. Then the covariant derivative acting on the spinor is

$$\tilde{\nabla}_\mu = \partial_\mu + \tilde{\Omega}_\mu ,$$

(106)

where

$$\tilde{\Omega}_\mu = \frac{1}{4} \tilde{\omega}_{\alpha\beta\mu} \tilde{\gamma}^\alpha \tilde{\gamma}^\beta$$

(107)

and

$$\tilde{\nabla}_\mu \Psi = \partial_\mu \Psi + \tilde{\Omega}_\mu \Psi = \partial_\mu \Psi + \frac{1}{4} \tilde{\omega}_{\alpha\beta\mu} \tilde{\gamma}^\alpha \tilde{\gamma}^\beta \Psi .$$

(108)

Similarly,

$$\nabla_\mu \bar{\Psi} = \partial_\mu \bar{\Psi} - \bar{\Psi} \tilde{\Omega}_\mu = \partial_\mu \bar{\Psi} - \frac{1}{4} \tilde{\omega}_{\alpha\beta\mu} \bar{\Psi} \tilde{\gamma}^\alpha \tilde{\gamma}^\beta .$$

(109)

The spin connection in Eqs. (107) and (108) have in general both symmetric and antisymmetric components in their flat indices a, b. This is because the connection $\tilde{\Gamma}_\nu^\rho$ on N is not a metric compatible connection, since $\tilde{\nabla}$ cannot be made metric compatible. The enveloping algebra of the gamma matrices is thus

$$\tilde{\gamma}^\alpha \tilde{\gamma}^\beta = -i \sigma^{\alpha\beta} + \tilde{\eta}^{\alpha\beta} I_4 ,$$

(110)

where the Sigma matrices generate the local $SO(4,1)$ Lorentz algebra on the Thomas cone, i.e.

$$[\sigma^{\alpha\beta}, \sigma^{\mu\nu}] = -2i(\eta^{\alpha\mu} \sigma^{\beta\nu} + \eta^{\beta\nu} \sigma^{\alpha\mu} - \eta^{\alpha\nu} \sigma^{\beta\mu} - \eta^{\beta\mu} \sigma^{\alpha\nu}) .$$

(111)

The $\tilde{\omega}_{[\alpha\beta]\mu}$ therefore correspond to gauge fields for the local Lorentz transformation, while the $\tilde{\omega}_{(\alpha\beta)\mu}$ generate a translation on the fermions to their tensor densities. Let us write $\Omega_\mu = \Omega_\mu^S + \Omega_\mu^A$, such that the symmetric component is

$$\tilde{\Omega}_\rho^S = \tilde{\omega}_{(\alpha\beta)\rho} \tilde{\gamma}^\alpha \tilde{\gamma}^\beta = (d + 1)\tilde{\omega}_\rho$$

(112)

and the expected $SO(4,1)$ connection is

$$\tilde{\Omega}_\rho^A = -i \tilde{\omega}_{[\alpha\beta]\rho} \sigma^{\alpha\beta} .$$

(113)

In Eq. (112), the space-time component of this Abelian connection is $\Gamma^a_{\rho\mu} \equiv \Gamma_\rho$. In differential geometry, such a term appears in the presence of weighted spinors that transform
relative to an unweighted spinor ϕ as

$$\phi_{vw} = \det(g) \left(\frac{(vI_4 + w\gamma^5)}{2} \right)^{\frac{d+1}{2}} \phi$$ \hspace{1cm} (114)$$

in four-dimensions. The spinor ψ_{vw} is said to have weight $(vI_4 + w\gamma^5)$. For these weighted spinors, the spin connection is augmented to be

$$\Omega_m \rightarrow \Omega_m + (vI_4 + w\gamma^5)\Gamma_m .$$ \hspace{1cm} (115)$$

We use this to define spinor representations ($\frac{1}{2}$ integer spin) on the Thomas Cone. First, we remark that on the Thomas Cone γ^5 is an invariant tensor since

$$\lambda \partial_\lambda (\frac{\lambda}{\lambda_0})^M = e^{\log(\frac{\lambda}{\lambda_0})} M$$ \hspace{1cm} (118)$$

for a matrix M and

$$\lambda \partial_\lambda \left(\frac{\lambda}{\lambda_0} \right)^M = M \left(\frac{\lambda}{\lambda_0} \right)^M .$$ \hspace{1cm} (119)$$

C. The gauge invariant TW Dirac action

Eq. (108) is the general expression for the covariant derivative of a spinor field. For the TW connection, we will use the spin connection coefficients given by Eq. (105) and decompose the connection into its chiral and non-chiral parts. This will illuminate the nature of the TW spinor connection on \mathcal{M}. With this, Ψ becomes

$$\tilde{\nabla} \Psi = \tilde{\gamma}^\alpha \tilde{\nabla}_\alpha \Psi = \tilde{\gamma}^m \partial_m \Psi + \tilde{\gamma}^\lambda \partial_\lambda \Psi$$

$$+ \frac{1}{4} \left(\tilde{\gamma}^m \tilde{\omega}^{abm} \tilde{\gamma}^a \tilde{\gamma}^b + \tilde{\gamma}^\lambda \tilde{\omega}^{ab\lambda} \tilde{\gamma}^a \tilde{\gamma}^b \right)$$

$$+ \tilde{\gamma}^m \tilde{\omega}^{5abm} \tilde{\gamma}^5 \tilde{\gamma}^b + \tilde{\gamma}^\lambda \tilde{\omega}^{55\lambda} \tilde{\gamma}^5 \tilde{\gamma}^5 \right) \Psi .$$ \hspace{1cm} (119)$$
And for Ψ,
\[
\tilde{\nabla} \Psi = (\tilde{\nabla}_\alpha \Psi) \gamma^\alpha = \partial_m \Psi \gamma^m + \partial_\lambda \Psi \gamma^\lambda
- \frac{1}{4} \Psi \left(\tilde{\omega}_{abm} \gamma^a \gamma_b \gamma^m + \tilde{\omega}_{ab\lambda} \gamma^a \gamma_b \gamma^\lambda
+ \tilde{\omega}_{5bm} \gamma^5 \gamma^m + \tilde{\omega}_{5\lambda} \gamma^5 \gamma^\lambda \right).
\tag{120}
\]
Evaluating these with the coefficients from Eq. (105) yields
\[
\tilde{\nabla} \Psi = \nabla \Psi - i \frac{\lambda}{\lambda_0} \gamma^5 (\partial_\lambda \Psi) - \gamma m \gamma^m (\partial_\lambda \Psi)
+ \frac{1}{4} \left[d(\alpha_m - g_m) + d\alpha_m - g_m \right] \gamma^m \Psi
- \frac{1}{4} i \left[\lambda_0 \left(D_{rm} - \partial_m g_r + \Gamma_{rn} g_m + \alpha_m g_r + g_m \alpha_r \right) g^{mr}
+ \frac{1}{\lambda_0} (d + 1) \right] \gamma^5 \Psi,
\tag{121}
\]
whilst
\[
\tilde{\nabla} \Psi = \nabla \eta - i \frac{\lambda}{\lambda_0} \gamma^5 (\partial_\lambda \eta) + \gamma m (\partial_\lambda \eta) \gamma^m
- \frac{1}{4} \left[d(\alpha_m - g_m) + d\alpha_m - g_m \right] \eta \gamma^m
+ \frac{1}{4} i \left[\lambda_0 \left(D_{rm} - \partial_m g_r + \Gamma_{rn} g_m + \alpha_m g_r + g_m \alpha_r \right) g^{mr}
+ \frac{1}{\lambda_0} (d + 1) \right] \eta \gamma^5.
\tag{122}
\]
Here, ∇_m (without a tilde) is the spinor covariant derivative operator associated with the space-time connection Γ^m_{nr}. Using this decomposition, we write Eq. (121) as
\[
\tilde{\nabla} \Psi = \nabla \Psi - i \frac{\lambda}{\lambda_0} \gamma^5 (\partial_\lambda \Psi) - \gamma m (\partial_\lambda \Psi)
+ B_m \gamma^m \Psi - i \frac{1}{4} \Xi \gamma^5 \Psi,
\tag{123}
\]
where we’ve defined B_m and Ξ as
\[
B_m \equiv \frac{1}{4} \left(d(\alpha_m - g_m) + d\alpha_m - g_m \right) \tag{124}
\]
\[
\Xi \equiv \lambda_0 \left(D_{rm} - \partial_m g_r + \Gamma^m_{rm} g_n + \alpha_m g_r + g_m \alpha_r \right) g^{mr}
+ \frac{1}{\lambda_0} (d + 1). \tag{125}
\]
The **TW Dirac Lagrangian Density** that yields the Dirac equation

\[i\tilde{\nabla}\Psi - (M + iM_\chi \gamma^5)\Psi = 0, \]

(126)

for a mass \(M \) and a chiral mass \(M_\chi \), may be written explicitly in covariant and self conjugate form as

\[\mathcal{L}_{TW D} = \frac{\text{i}}{2} \sqrt{|G|} G^{\mu \nu} \left(\tilde{\Psi} \tilde{\gamma}_\mu (\partial_\nu + \tilde{\Omega}_\nu) \Psi
ight. \]

\[\left. - (\partial_\mu \tilde{\Psi} - \tilde{\Psi} \tilde{\Omega}_\mu) \tilde{\gamma}_\mu \Psi \right) \]

\[- \sqrt{|G|} (M \tilde{\Psi} \Psi + iM_\chi \tilde{\Psi} \gamma^5 \Psi) \]

\[- \frac{\text{i}}{2} \tilde{\Psi} \tilde{\nabla}_\mu (\sqrt{|G|} \gamma^\mu) \Psi. \]

(127)

The last term arises because the metric and covariant derivative operator are not compatible since

\[\tilde{\nabla}_\mu \tilde{\gamma}^\mu = \partial_\mu \tilde{\gamma}^\mu + \tilde{\Gamma}^\mu_{\mu\alpha} \tilde{\gamma}^\alpha + [\tilde{\Omega}_\alpha, \tilde{\gamma}^\alpha] \]

(128)

does not vanish. The commutator term is precisely where the field \(D_{mn} \) resides. We can rewrite this so that the field equations on \(\Psi \) (or \(\bar{\Psi} \)) are explicit if we integrate by parts the derivative term on \(\bar{\Psi} \). Then

\[- \frac{\text{i}}{2} \sqrt{|G|} G^{\mu \nu} (\partial_\nu \bar{\Psi}) \tilde{\gamma}_\mu \Psi \]

\[= - \partial_\nu \left(\frac{\text{i}}{2} \sqrt{|G|} G^{\mu \nu} \bar{\Psi} \tilde{\gamma}_\mu \Psi \right) \]

\[+ \bar{\Psi} \partial_\nu \left(\frac{\text{i}}{2} \sqrt{|G|} G^{\mu \nu} \tilde{\gamma}_\mu \Psi \right) \]

\[= - \partial_\lambda \left(\frac{\text{i}}{2} \sqrt{|G|} G^{\lambda \nu} \bar{\Psi} \tilde{\gamma}_\lambda \Psi \right) \]

\[- \partial_\lambda \left(\frac{\text{i}}{2} \sqrt{|G|} G^{\nu \lambda} \bar{\Psi} \tilde{\gamma}_\lambda \Psi \right) \]

\[+ \bar{\Psi} \partial_\nu \left(\frac{\text{i}}{2} \sqrt{|G|} \gamma^\nu \Psi \right). \]

(129)

The total space-time derivative may be eliminated on the boundary. However the total \(\lambda \) derivative will in general be finite and could contribute to the field equations. Let us examine
this term more carefully. One sees that

\[
\partial_\lambda \left(\frac{i}{2} \sqrt{|G|} G^{\lambda \bar{\lambda}} \tilde{\Psi} \gamma_\lambda \Psi \right) = \partial_\lambda \left(\frac{i}{2} \sqrt{|G|} \tilde{\Psi} \gamma_\lambda \Psi \right) \quad (131)
\]

\[
= - \partial_\lambda \left(\frac{i}{2} \frac{\lambda_0}{\lambda} \sqrt{|g|} \frac{\lambda}{\lambda_0} \left(i \gamma^5 + \lambda_0 g_m \gamma^m \right) \Psi \right) \quad (132)
\]

\[
= \frac{i}{2} \sqrt{|g|} \partial_\lambda \left(i \Psi \gamma^5 \Psi + \lambda_0 g_m \Psi \gamma^m \Psi \right) \quad . \quad (133)
\]

From the spinor projective representations in Eqs. (116) and (117), this will vanish when \(w = 0 \), eliminating any chiral density terms. We also observe that the term, \(g_m \tilde{\Psi} \gamma^m \Psi \), would vanish if the coordinates were gauge fixed so that \(g_m = 0 \) (constant volume). Had we used a constant volume metric, this condition would have gone unnoticed. This also guarantees that the action is a scalar. The remaining term in Eq. (130) leads to the last summand in the covariant Lagrangian density, Eq. (127). With this, we write the Lagrangian which realizes the Dirac equation on \(\Psi \) as

\[
\mathcal{L}_{TWD} = \frac{\lambda_0}{\lambda} \sqrt{|g|} \left(i \tilde{\Psi} \nabla \Psi + \frac{\lambda}{\lambda_0} \Psi \gamma^5 \partial_\lambda \Psi - i \lambda g_m \Psi \gamma^m \partial_\lambda \Psi \right)
\]

\[
+ \frac{\lambda}{\lambda_0} \sqrt{|g|} \left(i B_m \Psi \gamma^m \Psi + \Xi \Psi \gamma^5 \Psi \right)
\]

\[
- \frac{\lambda_0}{\lambda} \sqrt{|g|} \left(M \tilde{\Psi} \Psi + i M_{\lambda} \tilde{\Psi} \gamma^5 \Psi \right) \quad . \quad (134)
\]

Had we wished to add a Yang-Mills potential to the action, we would have a term

\[
\mathcal{L}_{YM} = \sqrt{|G|} \left(\tilde{\Psi} \gamma^\mu \tilde{A}_\mu \Psi \right)
\]

\[
= \sqrt{|G|} \left(- i \frac{1}{\lambda_0} \tilde{\Psi} \gamma^5 \Psi + \tilde{\Psi} \gamma^a A_a \Psi \right) \quad , \quad (135)
\]

where a chiral mass term \(M_{\lambda} = \frac{1}{\lambda_0} \) is induced. This follows since the corresponding projective one-form for the matrix valued potential is

\[
\tilde{A}_\mu = (A_a + g_a \cdot 1) \frac{1}{\lambda} \quad , \quad (136)
\]

where \(1 \) is in the center of the algebra. Then, using Eq. (72), we have the result

\[
\tilde{\gamma}^\mu \tilde{A}_\mu = - i \frac{1}{\lambda_0} \gamma^5 \cdot 1 + \gamma^a A_a \quad . \quad (137)
\]

In the Lagrangian density, Eq. (134), we have left terms with explicit \(\lambda \) dependence of \(\Psi \). Following Eqs. (116) and (117), along with the requirement that the action be a scalar,
we have

\[\Psi(x, \lambda) = \left(\frac{\lambda}{\lambda_0} \right)^{(d+1)} \bar{\phi}(x^a) \]

\[\bar{\Psi}(x, \lambda) = \left(\frac{\lambda}{\lambda_0} \right)^{-\frac{(d+1)}{2}} \bar{\phi}(x), \]

where \(v \) is the density weight which determines precisely how \(\Psi \) will transform under \(\lambda \to \lambda' \). In the TW Dirac Lagrangian \(L_{TW} \) of Eq. (134), this representation of \(\Psi \) will only affect the terms

\[\frac{\lambda}{\lambda_0} \bar{\Psi} \gamma^5 (\partial_\lambda \Psi) - i\lambda g_m \bar{\Psi} \gamma^m (\partial_\lambda \Psi) \]

\[= \frac{v(d+1)}{2\lambda_0} \bar{\psi} \gamma^5 \psi - i\frac{v}{2}(d+1)g_m \bar{\psi} \gamma^m \psi. \]

(139)

so that the TW Dirac Lagrangian can be reduced to a Lagrangian on \(\psi \) with \(v \) a weight parameter

\[L_{TW} = \frac{\lambda_0}{\lambda} \sqrt{|g|} (i\bar{\psi} \gamma^5 \phi - M \bar{\phi} \phi) \]

\[= \frac{\lambda_0}{\lambda} \sqrt{|g|} (i\bar{\psi} \gamma^5 \phi - M \bar{\phi} \phi) \]

\[+ \frac{\lambda_0}{\lambda} \sqrt{|g|} \left[-2g_m v(d+1) \bar{\psi} \gamma^m \phi \right. \]

\[+ \frac{1}{4} \left[\lambda_0 (D_m - \partial_m g_r + \Gamma^a_{rm} g_n + \alpha_m g_r \right. \]

\[+ g_m \alpha_r) g^{mr} + \frac{1}{\lambda_0}(d+1) \]

\[+ \left. 2\frac{v(d+1)}{\lambda_0} \right] \bar{\phi} \gamma^5 \phi \right). \]

(140)

A special choice of the weight \(v = -\frac{1}{2} \) eliminates the induced chiral mass term (in the absence of gauge fields) and also eliminates the metric density contribution in the coupling to \(i\bar{\phi} \gamma^m \phi \).

The only \(\lambda \) dependence is in the overall coefficient \(\frac{\lambda_0}{\lambda} \sqrt{|g|} \). As we will discuss in Section VIII, we may write \(\ell \equiv \lambda/\lambda_0 \) to be a dimensionless scale. By writing \(\sqrt{|G|} = \frac{1}{\ell} \sqrt{|g|} \), we have

\[\int d\lambda \frac{\lambda_0}{\lambda} = \lambda_0 \int d\ell \frac{1}{\ell} = \lambda_0 \log(\ell_f/\ell_i), \]

28
where \(\ell_i \) and \(\ell_f \) are original and final length scales. With this, we can make a field redefinition of the fermions \(\phi \) and define \(\psi = \phi \sqrt{\lambda_0 \log(\ell_f/\ell_i)} \) so that the fermions \(\psi \) have the dimensions of four-dimensional fermions. The four-dimensional TW Dirac action becomes

\[
S_{TWD} = \int d^4x \sqrt{|g|} \left(i\bar{\psi} \nabla \psi - M \bar{\psi} \psi \right)
\]

\[
+ \int d^4x \sqrt{|g|} \left(\frac{1}{4} \left[d(\alpha_m - g_m) + d\alpha_m - g_m \right.
ight.
\]

\[
- 2g_m v(d + 1) \bigg] i\bar{\psi} \gamma^m \psi
\]

\[
+ \frac{1}{4} \left[\lambda_0 \left(D_{rm} - \partial_m g_r + \Gamma^n_{rm} g_n + \alpha_m g_r + g_m \alpha_r \right) g^{mr} \right.
\]

\[
\left. + \frac{1}{\lambda_0} (d + 1) + 2 \frac{v(d + 1)}{\lambda_0} \right] \bar{\psi} \gamma^5 \psi \bigg).
\]

(142)

We see that \(\lambda_0 \) still sets the chiral scale due to its presence in the last two summands of the action.

In the discussion following Eq. (74), we noted that we should expect a dynamical theory of \(D_{mn} \) to be sensitive to chirality of fermions. This expectation is realized by the TW Dirac Lagrangian, Eq. (134), due to the presence of \(\gamma^5 \). The theory is therefore chiral in this sense. We remark that one can still eliminate \(d \) degrees of freedom by using a coordinate gauge choice. For example, we could set \(g_a = 0 \) (constant volume gauge for the metric), \(\alpha_a = 0 \) (constant volume for the connection) or even \(g_a = \alpha_a \) (compatibility of condition) in Eq. (141). However, no gauge choice will eliminate the \(D_{ab} \) fermion interaction.

VIII. GAUGE INVARIANT TW ACTION

The TW Action was introduced in [10] in order to give dynamics to the diffeomorphism field. There, the correspondence with the coadjoint orbits of the Virasoro algebra was determined in the background of the gauged fixed 2D metric of Polyakov[21] that had constant volume. Similarly in [19], the interest was to study the diffeomorphism field as a primeval source for dark energy in a Friedman-Lemaitre-Robertson-Walker background in constant volume coordinates. As we have just seen in the Dirac action, writing the TW action in a gauge invariant form reveals physically interesting structure. From [10] the TW dynamical action is:

\[
S = S_{PEH} + S_{PGB}
\]

(143)
where the projective Einstein-Hilbert action is

\[S_{\text{PEH}} = \frac{1}{2\tilde{\kappa}\lambda_0} \int d\lambda \, d^4x \sqrt{|G|} K^a_{bcd}(\delta^c_a g^{bd}) \]

(144)

and the projective Gauss-Bonnet action is

\[S_{\text{PGB}} = \frac{j_{bc}}{\lambda_0} \int d\lambda \, d^4x \sqrt{|G|} \left(K_{\alpha\beta\gamma\rho} K_{\alpha}^{\beta\gamma\rho} - 4K_{\alpha\beta}K_{\alpha\beta} + K^2 \right). \]

(145)

We remark that both terms are generalized Gauss-Bonnet terms and one could presumably continue adding generalized Gauss-Bonnet terms for higher interaction without compromising causality in the metric field equations [23].

Recall that the components of the TW curvature tensor \(K_{\alpha\beta\gamma\rho} \) are given by

\[K_{bcd}^a = R_{bcd}^a + \delta^a_c D_{db} - \delta^a_d D_{cb} \]

\[= R_{bcd}^a + \delta^a_c P_{db} - \delta^a_d P_{cb} - \delta^a_b P_{[cd]} \]

\[K_{bcd}^\lambda = \lambda \left(\partial_c D_{[db]} + \Pi_{b[d}^{\alpha} D_{c]a} \right) \]

\[= \lambda \left(\partial_c P_{[db]} + \Gamma_{b[d}^{\alpha} P_{c]a} + \alpha_{[d} P_{c]b} \right) \]

\[+ \alpha_b P_{[cd]} - R_{bcd}^a \alpha_a \]

(146)

where again

\[\alpha_a = -\frac{1}{d+1} \Gamma_{ea}^e \]

\[\Pi_{bc}^a = \Gamma_{bc}^a + \delta^a_c \alpha_c + \delta^a_d \alpha_b \]

\[R_{bcd}^a = \partial_c \Pi_{db}^a - \partial_d \Pi_{cb}^a + \Pi_{ce}^e \Pi_{db}^a - \Pi_{de}^e \Pi_{cb}^a \]

(147)

\[R_{bcd}^a = \partial_c \Gamma_{db}^a - \partial_d \Gamma_{cb}^a + \Gamma_{ce}^e \Gamma_{db}^a - \Gamma_{de}^e \Gamma_{cb}^a \]

\[\mathcal{P}_{bc} = D_{bc} - \partial_b \alpha_c + \Gamma_{bc}^{\alpha} \alpha_e + \alpha_b \alpha_c \]

for any affine connection \(\Gamma_{bc}^a \). The non-zero components of the TW Ricci tensor \(K_{\alpha\beta} \) are

\[K_{bd} = R_{bd} + (d-1)D_{bd} \]

\[= R_{bd} + dP_{db} - \mathcal{P}_{bd}. \]

(148)

Then the projective Gauss-Bonnet action \(S_{\text{PGB}} \) may be decomposed as

\[S_{\text{PGB}} = S_{\text{PGB1}} + S_{\text{PGB2}} + S_{\text{PGB3}}, \]

where
\[S_{PGB1} = \frac{\dot{\tilde{J}}_c}{\lambda_0} \int d^4 x \ d\lambda \sqrt{|G|} \ \mathcal{K}^a_{bcd} \mathcal{K}^e_{fgh} \ (B_{ae}^{bf} c_{ghd} - \lambda_0^2 g_{a} g_{b} g_{c} g_{d} g_{e} g_{f} g_{g} g_{h}) \]

\[S_{PGB2} = -\dot{\tilde{J}}_0 c_0 \lambda_0 \int d^4 x \ d\lambda \sqrt{|G|} \ \frac{1}{\lambda^2} \mathcal{K}^\lambda_{bcd} \mathcal{K}^\lambda_{fgh} \ (g_{b} g_{c} g_{d} g_{h}) \]

\[S_{PGB3} = -2 \dot{\tilde{J}}_0 c_0 \lambda_0 \int d^4 x \ d\lambda \sqrt{|G|} \ \frac{1}{\lambda} \mathcal{K}^\lambda_{bcd} \mathcal{K}^\lambda_{fgh} \ (g_{a} g_{b} g_{c} g_{d} g_{h}) \]

and we have defined the Gauss-Bonnet operator as

\[G^{\alpha\beta\gamma\rho\bar{\beta}\bar{\gamma}\bar{\rho}} = G^{\alpha\beta\gamma\rho} G^{\bar{\beta}\bar{\gamma}\bar{\rho}} - 4 \delta^{\gamma}_{\beta} \delta^{\rho}_{\rho} G^{\alpha\gamma} G^{\beta\rho} + \delta^{\gamma}_{\alpha} \delta^{\rho}_{\gamma} G^{\beta\rho} G^{\bar{\beta}\bar{\rho}} \]

and for convenience, in terms of the metric on \(M \),

\[B_{a\bar{a}}^{b\bar{b}g\bar{g}r^\bar{r}} = g_{a\bar{a}} g^{b\bar{b}} g^{g\bar{g}} g^{r^\bar{r}} - 4 \delta^{g}_{a} \delta^{r}_{\bar{g}} g^{b\bar{b}} g^{r^\bar{r}} + \delta^{g}_{a} \delta^{r}_{\bar{g}} g^{b\bar{b}} g^{r^\bar{r}} . \]

Finally, we can write the full dynamical action as

\[S = S_{PEH} + S_{PGB1} + S_{PGB2} + S_{PGB3} \]

This form of the action is convenient for computing field equations. The curvature components \(\mathcal{K}^a_{bcd} \) and \(\mathcal{K}^\lambda_{bcd} \) carry all of the \(\Pi^a_{bc} \) and \(\mathcal{D}_{bc} \) (equivalently \(\Gamma^a_{bc} \) and \(\mathcal{P}_{bc} \)) dependence, while the metric tensor \(g_{ab} \) appears elsewhere in each part of the action, including in the Gauss-Bonnet operator \(B \).
To illustrate explicit general coordinate invariance, it is also possible to decompose the action as

\[
S = \left(\int \frac{1}{\lambda} \, d\lambda \right) \left[\frac{1}{2k_0} \int d^dx \sqrt{|g|} \mathcal{K} \right. \\
+ \tilde{J}_0 c \int d^dx \sqrt{|g|} \left(\mathcal{K}_{bcd}^a \mathcal{K}_a^{bcd} - 4\mathcal{K}_{ab} \mathcal{K}^{ab} + \mathcal{K}^2 \right) \\
+ \tilde{J}_0 c \lambda_0^2 \int d^dx \sqrt{|g|} \left(g_a \mathcal{K}_{bcd}^a + \frac{1}{\lambda} \mathcal{K}_{bcd}^\lambda \right) \left(g_e \mathcal{K}_{fgh}^e + \frac{1}{\lambda} \mathcal{K}_{fgh}^\lambda \right) g^{bf} g^{cg} g^{dh} \bigg].
\]

Eqs. (146) and (148) demonstrate that \(\mathcal{K}_{bcd}^a, \mathcal{K}_{ab}, \) and \(\mathcal{K} \) are tensors on the spacetime manifold \(\mathcal{M} \). Furthermore, we introduce \(\mathcal{K}_{bcd} \) as the following rank-three tensor on \(\mathcal{M} \)

\[
\mathcal{K}_{bcd} \equiv g_a \mathcal{K}_{bcd}^a + \frac{1}{\lambda} \mathcal{K}_{bcd}^\lambda
\]

\[
= (g_a - \alpha_a) \mathcal{P}_{bcd} + (g_c - \alpha_c) \mathcal{P}_{db} - (g_d - \alpha_d) \mathcal{P}_{cb}
\]

\[
+ \left(\mathcal{K}_{bcd}^{\lambda} \right) - \left(g_b - \alpha_b \right) \mathcal{P}_{[cd]} + \nabla_c \mathcal{P}_{db} - \nabla_d \mathcal{P}_{cb},
\]

where \(\nabla_a \) is the covariant derivative operator associated with the spacetime connection \(\Gamma^a_{bc} \). Since \(g_a \) and \(\alpha_a \) have the same coordinate transformation law, we see that \(\mathcal{K}_{bcd} \) is indeed a tensor on \(\mathcal{M} \). This demonstrates that the action is a scalar as well as projectively invariant.

Owing to Eq. (154), all the \(\lambda \) dependence appears as overall coefficients. We will use the interpretation of the coupling constants as in [19] to write them in terms of scale dependent quantities. Let \(\ell \equiv \lambda/\lambda_0 \) be a dimensionless scale. Since only \(\int d\lambda \frac{1}{\lambda} \) appears in the overall coupling, we again write \(\sqrt{|G|} = \frac{1}{\ell} \sqrt{|g|} \). Then by integrating over \(\ell \), we can rewrite the action in terms of coupling constants that have familiar interpretations

\[
\frac{1}{k_0} \int_{\ell_i}^{\ell_f} d\ell \frac{1}{\ell} = \frac{\log(\ell_f/\ell_i)}{k_0} \Rightarrow \kappa_0 \equiv \frac{\tilde{\kappa}_0}{\log(\ell_f/\ell_i)}
\]

\[
\tilde{J}_0 \int_{\ell_i}^{\ell_f} d\ell \frac{1}{\ell} = \tilde{J}_0 \log(\ell_f/\ell_i) \Rightarrow J_0 \equiv \tilde{J}_0 \log(\ell_f/\ell_i).
\]

Thus a natural scaling of the gravitational coupling constant \(\kappa_0 \) and angular momentum parameter \(J_0 \) occurs as we move from one length scale to another. In this way, projective geometry has a potential renormalization group interpretation. This link is under further investigation. The characteristic projective length scale (inverse mass scale) is set by \(\lambda_0 \).
With this, we can rewrite the TW action as

$$S = \frac{1}{2\kappa_0} \int d^4x \sqrt{|g|} K + cJ_0 \lambda_0^2 \int d^4x \sqrt{|g|} K_{bcd} K^{bcd}$$

$$+ cJ_0 \int d^4x \sqrt{|g|} \left(\mathcal{K}_{a}^{cd} \mathcal{K}_{a}^{bcd} - 4K_{ab}K^{ab} + K^2 \right)$$

(157)

where K_{bcd} has indices raised by the inverse metric on \mathcal{M}

$$K^{bcd} = g^{bf} g^{cg} g^{dh} K_{fgh}.$$

(158)

IX. THE COVARIANT FIELD EQUATIONS

In the spirit of Palatini [22], we will treat the metric tensor g_{ab} and $\tilde{\Gamma}_{\alpha\beta\gamma}$ as independent degrees of freedom. This fits the framework of TW gravity, since the TW connection is to be thought of as a connection over the space of equivalence classes of connections and is not naturally tied to a particular metric. The metric $G_{\mu\nu}$ serves only to maintain general coordinate invariance on \mathcal{N}, just as D_{ab} exists in order to make the connection $\tilde{\nabla}_\mu$ covariant.

The covariant derivative is a projective invariant that is constructed only from projectively invariant quantities such as Π_{a}^{bc} and λ. However, as one sees in Eq. (22), the only degrees of freedom that are allowed to fluctuate are D_{ab} and Π_{a}^{bc}. Therefore we will only need the field equations for Π_{a}^{bc}, D_{ab}, and g_{ab}. We note that λ does not fluctuate and only sets the volume scale.

A. Equations of motion for Π_{a}^{bc}

In order to simplify the computation of the field equations, we will use \mathcal{F} to denote an object with the correct valence to form a scalar with another given object. For example, we might write an expression such as $\mathcal{K}_{a}^{bcd} \mathcal{F}$, where we would understand that \mathcal{F} is an object with components \mathcal{F}_{a}^{bcd} such that \mathcal{F} forms a scalar upon tensor multiplication with \mathcal{K}_{a}^{bcd}.
With this, we compute the field equations for Π^{a}_{bc} as:

$$S = \int K^{a}_{bcd} \mathcal{F}$$

$$\implies \delta S = \int (\delta K^{a}_{bcd}) \mathcal{F}$$

$$= \int \delta (R^{a}_{bcd} + \delta^{a}_{c} D_{db} - \delta^{a}_{d} D_{cb}) \mathcal{F}$$

$$= \int \delta (\partial_{a} \Pi^{a}_{db} - \partial_{d} \Pi^{a}_{cb} + \Pi^{a}_{ce} \Pi^{e}_{db} - \Pi^{a}_{de} \Pi^{e}_{cb}) \mathcal{F}$$

(159)

$$= \int \left(-\delta^{a}_{d} \delta^{m}_{b} \partial_{c} F + \delta^{a}_{b} \delta^{m}_{c} \partial_{d} F + \left(\delta^{a}_{d} \delta^{m}_{c} \delta^{n}_{e} \Pi^{e}_{db} + \delta^{e}_{d} \delta^{m}_{c} \delta^{n}_{b} \Pi^{a}_{ce} - \delta^{e}_{d} \delta^{m}_{c} \delta^{n}_{b} \Pi^{a}_{de} \right) \delta \Pi^{l}_{mn} \right) \delta \Pi^{l}_{mn}$$

and

$$S = \int \frac{1}{\lambda} K^{\lambda}_{cab} \mathcal{F}$$

$$\implies \delta S = \int \frac{1}{\lambda} (\delta K^{\lambda}_{cab}) \mathcal{F}$$

$$= \int \delta (\partial_{[a} D_{b]c} + \Pi^{d}_{c[|a} D_{a|d]} \mathcal{F}$$

$$= \int \left(\left(\delta^{d}_{[a} \delta^{m}_{b} D_{ad} - \delta^{d}_{a} \delta^{m}_{c} \Pi^{a}_{de} \right) \mathcal{F} \right) \delta \Pi^{l}_{mn} .$$

These two variations lead to the full equations of motion for Π^{a}_{bc} that are associated with the appropriate object \mathcal{F}. We have

$$\delta S_{PEH} = \frac{1}{2\kappa_{0}} \int d^{4}x \left[-\partial_{l} \left(\sqrt{|g|} g^{nm} \right) + \delta^{m}_{n} \partial_{n} \left(\sqrt{|g|} g^{nm} \right) \right.$$

$$+ \sqrt{|g|} \left(\delta_{l}^{n} \Pi^{m}_{ab} g^{ad} + \Pi^{a}_{dl} g^{mn} - \Pi^{n}_{lb} g^{bm} - \Pi^{m}_{ad} g^{nd} \right) \delta \Pi^{l}_{mn} ,$$

(161)

where the struck-out terms vanish because Π^{a}_{bc} as well as its variation $\delta \Pi^{a}_{bc}$ are traceless. The remaining contribution to the field equations would vanish if Π^{a}_{bc} were the traceless Levi-Civita connection of the metric g_{ab}, consistent with the original Palatini equations [22].
The next contributions are

\[
\delta S_{PB1} = 2J_0 c \int d^4 x \left[\partial_e \left(\sqrt{|g|} \kappa^a_{\ bced} (B_{la}^{nbced} - B_{la}^{nbecd}) \right) \\
+ \lambda_0 g_{la} g_{nb} g_{ec} g_{md} - \lambda_0 g_{la} g_{nb} g_{mc} g_{ed} \right] \\
+ \sqrt{|g|} \kappa^a_{\ bced} \left(\Pi^n_{\ e f} (B_{la}^{fmbcde} - B_{la}^{fbcmd}) \right) \\
+ \lambda_0^2 g_{la} g_{mbf} g_{ec} g_{md} - \lambda_0^2 g_{la} g_{mb} g_{mc} g_{ed} \right] \delta \Pi^l_{\ mn} \tag{162}
\]

\[
\delta S_{PB2} = -2J_0 c \lambda_0^2 \int d^4 x \left[\sqrt{|g|} \frac{1}{\lambda} \kappa^\lambda_{\ fgil} D_{de} g_{fg} g_{il} \right] \delta \Pi^l_{\ mn} \tag{163}
\]

\[
\delta S_{PB3} = -2J_0 c \lambda_0^2 \int d^4 x \left[\partial_d \left(\sqrt{|g|} \frac{1}{\lambda} \kappa^\lambda_{\ fgil} d_{ef} g_{mg} g_{dh} \right) \\
+ \sqrt{|g|} \kappa^\lambda_{\ fgil} g_{la} g_{mbf} g_{ec} g_{md} \Pi^n_{\ db} + g_{la} g_{mbf} g_{ec} g_{md} \Pi^n_{\ de} \right] \delta \Pi^l_{\ mn} \\
+ \sqrt{|g|} \kappa^\lambda_{\ bced} g_{la} g_{mb} g_{ec} g_{md} D_{gl} \right] \delta \Pi^l_{\ mn} . \tag{164}
\]

By defining

\[
\hat{\kappa}^a_{\ bcd} = \kappa^a_{\ bcd} G_{ab} G_{cd} \text{ and } g_{b \beta} = (g_b, \frac{1}{\lambda}) , \tag{165}
\]

where the sums are restricted to \(M \) coordinates, the field equations for \(\Pi^l_{\ mn} \) may be written as

\[
- \frac{1}{2\kappa_0} \tilde{\nabla}_l \left(\sqrt{|g|} g^{mn} \right) + 2J_0 c \tilde{\nabla}_d \left(\sqrt{|g|} \hat{\kappa}^m_{\ [dn]} \right) \\
- 2J_0 c \lambda_0^2 \tilde{\nabla}_d (\sqrt{|g|} \frac{1}{\lambda} \kappa^\lambda_{\ mn} g_l) \\
- 2J_0 c \lambda_0^2 \sqrt{|g|} \kappa^\beta_{\ mcn} g_{b \beta} D_{cl} = 0 . \tag{166}
\]

Here, \(\tilde{\nabla}_a \) is the derivative operator with respect to the fundamental projective invariant \(\Pi^l_{\ mn} \). We note that if the connection were chosen to be compatible with the metric \(g_{ab} \), then in the language of Tractor Calculus [18], Eq. (166) would imply that the projective curvature is Yang-Mills [16].
B. Equations of motion for D_{bc}

To find the field equations for D_{bc}, we proceed in the same manner as we did for Π_{bc}^a. The contributions are of the form:

$$S = \int K_{bcd}^a F$$

$$\Rightarrow \delta S = \int (\delta K_{bcd}^a) F$$

$$= \int \delta (R_{bcd}^a + \delta_c^a D_{db} - \delta_d^a D_{cb}) F$$

$$= \int [(\delta_c^a \delta_b^d \delta_b^d - \delta_d^a \delta_d^c \delta_b^d) F] \delta D_{pq}$$

and

$$S = \int \frac{1}{\lambda} K_{bcd}^\lambda F$$

$$\Rightarrow \delta S = \int \frac{1}{\lambda} (\delta K_{bcd}^\lambda) F$$

$$= \int \delta (\partial_c D_{db} + \Pi_{bd}^e D_{ce}) F$$

$$= \int \left[-\delta_d^p \delta_b^q \partial_c F + \delta_c^p \delta_b^q \partial_d F
ight. + (\Pi_{bd}^q \delta_c^p - \Pi_{bc}^q \delta_d^p) F \right] \delta D_{pq}$$

Again, by assigning the appropriate object F to each term we have:

$$\delta S_{PEH} = \frac{1}{2 \kappa_0} \int d^4 x \sqrt{|g|} \left[(m - 1) g^{qp} \right] \delta D_{pq}$$

$$\delta S_{GB1} = 2 J_0 c \int d^4 x \sqrt{|g|} \left[k_{fg} \left[\mathcal{B}_{ce} qf_{gph} - \mathcal{B}_{ce} qf_{gch} + 2 \kappa_0^2 g_{ef} g^{ef} g^{pq} g^{ch} \right] \delta D_{pq} \right]$$

$$\delta S_{GB2} = -4 J_0 \kappa_0^2 \int d^4 x \left[\partial_c \left(\sqrt{|g|} \frac{1}{\lambda} k_{fg} g^{qp} g^{ch} \right) + \sqrt{|g|} \frac{1}{\lambda} k_{fg} \Pi_{ce} qf_{gph} g^{pq} g^{ch} \right] \delta D_{pq}$$

$$\delta S_{GB3} = -4 J_0 \kappa_0^2 \int d^4 x \left[\sqrt{|g|} \frac{1}{\lambda} k_{fg} g^{qp} g^{ph} + \partial_p \left(\sqrt{|g|} k_{bcd} g^{aq} g^{pb} g^{dc} \right) + \sqrt{|g|} k_{bcd} g^{ap} g^{bp} g^{dq} g^{pq} \right] \delta D_{pq}$$
Then the variation with respect to δD_{pq} yields
\[
\frac{1}{2\kappa_0} \sqrt{|g|} (d - 1) g^{pp} + 2 J_0 c \sqrt{|g|} \hat{\mathcal{K}}^q_{\alpha} \delta g^{[\alpha} = 0 \, .
\] (173)

Note the partial derivatives of $\mathcal{K}_{bcd}^\lambda$, which make the field equations second-order differential equations in D_{bc}.

C. Equations of motion for g_{bc}

Finally, we will find the field equations for the spacetime metric tensor g_{bc}. These equations will define the energy-momentum tensor Θ_{pq} from the variation of the action with respect to the inverse metric g^{pq}, i.e.
\[
\delta S = \int \sqrt{|g|} d^4x \left(\frac{1}{\sqrt{|g|}} \frac{\delta (\sqrt{|g|} \mathcal{L})}{\delta g^{pq}} + \frac{1}{2\kappa_0} \left(\frac{\delta R}{\delta g^{pq}} + \frac{R}{\sqrt{|g|}} \frac{\delta \sqrt{|g|}}{\delta g^{pq}} \right) \right) \delta g^{pq} = 0 \, .
\] (174)

One recognizes that this implies the Einstein equations
\[
R_{pq} - \frac{1}{2} R g_{pq} = \kappa_0 \Theta_{pq} \, ,
\] (175)
with $\kappa_0 = \frac{8\pi G}{c^4}$, and where the energy-momentum tensor is defined in the usual way, i.e.
\[
\Theta_{pq} = \frac{-2}{\sqrt{|g|}} \frac{\delta (\sqrt{|g|} \mathcal{L})}{\delta g^{pq}} \, .
\] (176)

With this in mind, we will be able to extract the energy-momentum tensor by subtracting out the Einstein tensor from the action. First, let us consider the Einstein-Hilbert part of the action S_{PEH}. It has the variation
\[
\delta S_{PEH} = \frac{1}{2\kappa_0} \int d^4 x \mathcal{K}^a_{bcd} \delta c_\alpha \delta \left(\sqrt{|g|} g^{bd} \right)
= \frac{1}{2\kappa_0} \int d^4 x \sqrt{|g|} \mathcal{K}^a_{bcd} \delta c_\alpha \left(\delta^b_i \delta^d_j - \frac{1}{2} g_{ij} g^{bd} \right) \delta g^{ij}
= \frac{1}{2\kappa_0} \int d^4 x \sqrt{|g|} \left(\mathcal{K}_{ij} - \frac{1}{2} g_{ij} \mathcal{K} \right) \delta g^{ij}
= \frac{1}{2\kappa_0} \int d^4 x \sqrt{|g|} \left(R_{ij} - \frac{1}{2} g_{ij} R \right)
- (d - 1) (P_{ij} - \frac{1}{2} P g_{ij}) \right) \delta g^{ij} \right) .
\] (177)
We recognize that the variation of S_{PEH} has the form of the Einstein field equations, with $\mathcal{K}_{\text{bcd}}^a$ taking the place of R_{bcd}^a. This is expected. For the S_{PGB1} term, we first find

$$
\delta \left(\sqrt{|g|} B_{ae}^{bfcgbd} \right) \mathcal{F} = \int \sqrt{|g|} \left[-\frac{1}{2} g_{ij} B_{ae}^{bfcgbd}
+ \delta^c_a \delta^a_{e} \delta^b_{i} \delta^d_{j} g^{fh} + \delta^c_a \delta^a_{e} \delta^f_{i} \delta^d_{j} g^{bd}
- 4 \delta^c_a \delta^a_{e} \delta^b_{i} \delta^f_{j} g^{dh} - 4 \delta^c_a \delta^a_{e} \delta^d_{i} \delta^h_{j} g^{bf}
- g_{ai} g_{ej} g^{bf} g^{cg} g^{dh} + g_{ae} \delta^b_i \delta^f_j g^{cg} g^{dh}
+ g_{ae} \delta^c_i \delta^a_j g^{bf} g^{dh} + g_{ae} \delta^d_i \delta^h_j g^{bf} g^{cg} \right] \mathcal{F}(\delta g^{ij}) .
$$

(178)

We can get part of the variation of S_{PGB1} by putting a constant in front of Eq. (178) and plugging in the appropriate $\mathcal{F} = \mathcal{K}_{\text{bcd}}^a \mathcal{K}_{\text{fg}}^e$. The other part of the variation of S_{PGB1} can be found separately. Altogether, we have

$$
\delta S_{\text{PGB1}} = J_0 \int d^4 x \sqrt{|g|} \left[-\frac{1}{2} g_{ij} B_{ae}^{bfcgbd} K_{\text{bcd}}^a K_{\text{fg}}^e
+ 2 K_{ij} \mathcal{K} - 8 K_{ib} \mathcal{K}_{jb} g^{bd} - K_{iabd} K_{\text{ab}}^d
+ K_{\text{cd}}^i K_{cj}^d + K_{\text{ic}}^a K_{\text{ca}}^j + K_{\text{ca}}^a K_{\text{cd}}^j
+ \lambda_0^2 \left\{ \frac{1}{d+1} g_{ij} \partial_a \left(g_{ae} g^{bf} g^{cg} g^{dh} K_{\text{bdec}}^a K_{\text{fgh}}^e \right)
- g_{ai} g_{ej} g^{bf} g^{cg} g^{dh} \left(\frac{1}{2} g^{bf} g_{ij} K_{\text{bdec}}^a K_{\text{fgh}}^e + K_{\text{ic}}^a K_{\text{ca}}^e \right)
+ K_{\text{cd}}^a K_{\text{eg}}^e \right\} \right\} (\delta g^{ij}) .
$$

(179)

Similarly, variation of S_{PGB2} is given by

$$
\delta S_{\text{PGB2}} = -J_0 \lambda_0^2 \int d^4 x \delta \left(\sqrt{|g|} g^{bf} g^{cg} g^{dh} \right) K_{\text{bcd}}^a K_{\text{fg}}^e
= -J_0 \lambda_0^2 \int d^4 x \sqrt{|g|} \left[\frac{1}{2} g_{ij} g^{bf} g^{cg} g^{dh} + \delta^c_i \delta^a_j g^{dh} g^{bf}
+ \delta^d_i \delta^b_j g^{cg} g^{bf} + \delta^b_i \delta^f_j g^{cg} g^{dh} \right] \frac{1}{\lambda^2} K_{\text{bcd}}^a K_{\text{fg}}^e (\delta g^{ij})
= -J_0 \lambda_0^2 \int d^4 x \sqrt{|g|} \frac{1}{\lambda^2} g^{cg} g^{dh} \left(\frac{1}{2} g^{bf} g_{ij} K_{\text{bdec}}^a K_{\text{fgh}}^e
+ K_{\text{cd}}^a K_{\text{eg}}^e \right) \left(\delta g^{ij} \right) .
$$

(180)

Finally, the variation of S_{PGB3} is given by
\[
\delta S_{\text{GB}} = -2J_0\lambda_0^2 \int d^4x \, \delta \left(\sqrt{|g|} g^{bf} g^{cg} g^{dh} \right) \frac{1}{\lambda} K^a_{bcd} K^\lambda_{fgh} \\
= -2J_0\lambda_0^3 \int d^4x \sqrt{|g|} \left[g_a \frac{1}{\lambda} g^{cg} g^{dh} \left(K^a_{i\cd i} K^\lambda_{jgh} \right) \right. \\
\left. + \mathcal{K}^a_{cdi} \mathcal{K}^\lambda_{ghj} + \mathcal{K}^a_{die} \mathcal{K}^\lambda_{hij} \right] \\
- \frac{1}{2(d+1)} g_{ij} \partial_a \left(g^{bf} g^{cg} g^{dh} \frac{1}{\lambda} K^a_{bcd} K^\lambda_{fgh} \right) \left(\delta g^{ij} \right).
\]

(181)

Putting this all together defines the TW energy-momentum tensor \(\Theta_{ij}^{\text{TW}} \) as

\[
\Theta_{ij}^{\text{TW}} = \frac{1}{\kappa_0} (d - 1) (\mathcal{P}_{ij} - \frac{1}{2} g_{ij} \mathcal{P}) \\
- J_0 c \left(- \frac{1}{2} g_{ij} B_{ae}^{bf} c_{gh} K^a_{bcd} K^e_{fgh} \right. \\
\left. + 2 \mathcal{K}^c_{ij} \mathcal{K} \right. - 8 \mathcal{K}^c_{id} \mathcal{K}^a_{j} g^{bd} - \mathcal{K}^a_{iab} \mathcal{K}^{cd}_{j} \\
\left. + \mathcal{K}^c_{id} \mathcal{K}_{j} + \mathcal{K}^c_{a} b_{i} \mathcal{K}^a_{bcd} + \mathcal{K}^c_{a} d_{i} \mathcal{K}^a_{bcd} \right) \\
- J_0 \lambda_0^2 \left(\frac{1}{d+1} g_{ij} \partial_a \left(g^{bf} g^{cg} g^{dh} K^a_{bcd} K^\lambda_{fgh} \right) \right. \\
\left. - g^{cg} g^{dh} \left(\frac{1}{2} g_{ij} \left(g_a \mathcal{K}^a_{bcd} g_e \mathcal{K}^e_{fgh} \right) + \frac{1}{\lambda} \mathcal{K}^\lambda_{bcd} \frac{1}{\lambda} \mathcal{K}^\lambda_{fgh} \right) \right) \\
\left. + \mathcal{K}^a_{i} \mathcal{K}_{jgh} + \mathcal{K}^a_{cdi} \mathcal{K}_{ghj} + \mathcal{K}^a_{dci} \mathcal{K}_{hij} \right) \right) \right)
\]

(182)

where \(\mathcal{K}_{bcd} = g_a \mathcal{K}_{bcd}^a + \frac{1}{\lambda} \mathcal{K}_{bcd}^\lambda \). This demonstrates that the energy-momentum tensor is indeed a tensor on \(\mathcal{M} \). Since we have used the Gauss-Bonnet action to describe dynamics for \(\mathcal{D}_{ab} \), the field equations are second-order differential equations in \(g_{ab} \).

X. GEODESIC DEVIATION

To complete this study of the gauge covariant field equations and gauge invariant action we examine the **geodesic deviation** equations on the Thomas Cone and their image on the manifold \(\mathcal{M} \). Not only does geodesic deviation have importance in tidal forces, it can also provide a mechanism to study radiative degrees of freedom in \(\mathcal{D}_{ab} \). Here, we will examine
the modification to geodesic deviation that results from the presence of the projective gauge field \mathcal{D}_{bc}. A review of geodesic deviation and its derivation in general relativity can be found in textbooks such as [37].

A. The geodesic deviation equation

Let \mathcal{M} be the spacetime manifold equipped with a metric g_{ab}. Recall the geodesic equation for any connection Γ^a_{bc} on \mathcal{M}

$$\frac{d^2 x^a}{d\tau^2} + \Gamma^a_{bc} \frac{dx^b}{d\tau} \frac{dx^c}{d\tau} = f(\tau) \frac{dx^a}{d\tau}, \tag{183}$$

where τ is some parameter. Here $f(\tau) = 0$ if and only if τ is an affine parameter for Γ^a_{bc}. In the presence of a gravitational field where the connection Γ^a_{bc} is compatible with the metric, freely moving objects will travel along geodesics specified by Eq. (183).

Consider the space of geodesics $x^a(s, \tau)$, where for each fixed value $s = s_0$, we have that $x^a(s_0, \tau)$ is a geodesic with affine parameter τ. This gives us a one-parameter family of geodesics which allows us to examine geodesics that are close to each other. The geodesic tangent vector $T^a(s, \tau)$ and geodesic deviation vector $X^a(s, \tau)$ are given by

$$T^a(s, \tau) = \frac{\partial x^a(s, \tau)}{\partial \tau},$$
$$X^a(s, \tau) = \frac{\partial x^a(s, \tau)}{\partial s}. \tag{184}$$

Eq. (184) leads to an immediate relation between derivatives of T^a and X^a

$$\frac{\partial X^a}{\partial \tau} = \frac{\partial T^a}{\partial s}. \tag{185}$$

For a vector field V^a on \mathcal{M}, the intrinsic derivative of V^a along a curve $x^a(\tau)$ is given by

$$\begin{align*}
\frac{DV^a}{d\tau} &= \nabla_{T^b} \frac{\partial}{\partial x^b} V^a = T^b \cdot \nabla_b V^a.
\end{align*} \tag{186}$$

Using Eq. (186), we can find an acceleration by taking the second intrinsic derivative of a vector field. If we do this with the geodesic deviation vector $X^a(s, \tau)$ with respect to τ, we
find
\[
\frac{D^2 X^a}{\partial \tau^2} = T^c \nabla_c (T^b \nabla_b X^a)
\]
\[
= \frac{\partial^2 T^a}{\partial s \partial \tau} + (\partial_c \Gamma^a_{bd}) T^c T^b X^d + \left(\nabla_c (T^b \nabla_b X^a) \right)
\]
\[
\left(\frac{\partial T^d}{\partial \tau} \right) + \left(\frac{\partial X^d}{\partial \tau} \right) + \Gamma^a_{cd} \left(\frac{\partial X^d}{\partial \tau} \right) T^c .
\]
Eq. (187) can be simplified since \(x^a(s, \tau) \) is a geodesic curve for all fixed \(s \). Due to this fact, we know that
\[
T^b \nabla_b T^a = 0
\]
\[
\implies X^c \nabla_c (T^b \nabla_b T^a) = 0 .
\]
Expanding Eq. (188) and rearranging terms yields
\[
\frac{\partial^2 T^a}{\partial s \partial \tau} = - (\partial_d \Gamma^a_{cb}) T^c T^b X^d
\]
\[
- \Gamma^a_{bd} \left(\frac{\partial T^b}{\partial s} T^d + \frac{\partial T^d}{\partial s} T^b \right)
\]
\[
- \Gamma^a_{cd} \left(\frac{\partial T^d}{\partial \tau} + \Gamma^c_{bd} T^b T^e \right) X^c .
\]
Using Eq. (189), we eliminate \(\frac{\partial^2 T^a}{\partial s \partial \tau} \) from Eq. (187) and find
\[
\frac{D^2 X^a}{\partial \tau^2} = (\partial_c \Gamma^a_{db} - \partial_d \Gamma^a_{cb} + \Gamma^a_{ce} \Gamma^e_{db} - \Gamma^a_{be} \Gamma^e_{cb}) T^c T^b X^d
\]
\[
= R^a_{bcd} T^b T^c X^d .
\]
This is the geodesic deviation equation. Note we did not use metric compatibility to arrive at this expression. The full Riemann curvature tensor \(R^a_{bcd} \) appears in the geodesic deviation equation, including the Weyl term which does not usually appear in Einstein field equations. Gravitational radiation can influence geodesic deviation directly making it a useful observational tool. We will now explore the projective modifications of the geodesic deviation equation and insights on how the diffeomorphism field may be observed.

B. Projective geodesic deviation

We turn our attention to the diffeomorphism field which we also may consider as the projective gauge field \(D_{bc} \). To compute the resulting geodesic deviation on the spacetime
manifold \mathcal{M} for a general connection, we first must find the geodesic deviation of the TW connection on \mathcal{N}, and project this deviation down onto \mathcal{M}.

From Eq. (190), the geodesic deviation $X^\alpha(\tau)$ of the TW connection on \mathcal{N} is given by

$$\frac{D^2 X^\alpha}{d\tau^2} = \mathcal{K}^\alpha_{\beta\sigma\rho} \frac{dx^\beta}{d\tau} \frac{dx^\sigma}{d\tau} X^\rho,$$

where the Greek indices range over all coordinates on \mathcal{N}. Now, as in Eq. (58) let $X^\alpha = (X^a, -\lambda X^a g_a + X^5)$ define the projective geodesic deviation vector. We have included a perpendicular component as physical vectors such as $X^\alpha = \Psi \tilde{\gamma}^\alpha \Psi$ might arise. However, for simplicity we will ignore the X^5 component in this discussion. We have used g_a defined via a metric on \mathcal{N} so as not to spoil the projective covariance of the equation. Let us first consider the geodesic deviation X^a where a is a spacetime manifold coordinate specifically (not λ). Since the only non-vanishing components of $\mathcal{K}^\alpha_{\beta\sigma\rho}$ are the components $\mathcal{K}^\lambda_{bcd}$ and \mathcal{K}^a_{bcd}, then Eq. (191) reduces for $\alpha = a$ to

$$\frac{D^2 X^a}{d\tau^2} = \mathcal{K}^a_{bcd} \frac{dx^b}{d\tau} \frac{dx^c}{d\tau} X^d = (R^a_{bcd} + \delta^a_{[c} \mathcal{D}_{d]b}) \frac{dx^b}{d\tau} \frac{dx^c}{d\tau} X^d.$$

(192)

Here R^a_{bcd} is the Riemann curvature tensor for a connection Γ^a_{bc} which is not necessarily compatible with the metric defining g_a. Now the parameter τ is an affine parameter for the TW connection on \mathcal{N}, not for the Γ^a_{bc} connection on \mathcal{M}. If we make a change of parameterization $\tau \to u$ so that u is an affine parameter for the spacetime manifold connection, we get using Eq. (42)

$$\frac{D^2 X^a}{du} - \left(R^a_{bcd} + \delta^a_{[c} \mathcal{D}_{d]b} \right) \frac{dx^b}{du} \frac{dx^c}{du} X^d = \left(\frac{2 d\lambda}{\lambda du} \right) \frac{DX^a}{du}.$$

(193)
If we consider the λ component, we find
\[
\frac{D^2 X^\lambda}{d\tau^2} = K^\lambda_{bcd} \frac{dx^b}{d\tau} \frac{dx^c}{d\tau} X^d
\]
\[
\frac{D^2 (-\lambda X^a g_a)}{d\tau^2} = (\partial_{[b} \mathcal{D}_{c]a} + \Pi^d_{a[c} \mathcal{D}_{b]d}) \frac{dx^b}{d\tau} \frac{dx^c}{d\tau} X^d
\]
\[
= (\nabla_{[c} \mathcal{P}_{d]b} + \alpha_{[d} \mathcal{P}_{c]b} + \alpha_{[b} \mathcal{P}_{c]d} - R^a_{bcd} \alpha^a) \frac{dx^b}{d\tau} \frac{dx^c}{d\tau} X^d.
\]
If we take $g_a = 0$ as a gauge choice, the left hand side of the above expression vanishes, leaving
\[
(\nabla_{[c} \mathcal{P}_{d]b} + \alpha_{[d} \mathcal{P}_{c]b} + \alpha_{[b} \mathcal{P}_{c]d} - R^a_{bcd} \alpha^a) \frac{dx^b}{d\tau} \frac{dx^c}{d\tau} X^d = 0.
\]
This illustrates the complexity of \mathcal{D}_{bc} (or equivalently, \mathcal{P}_{bc}) as a dynamical field, since it has its own field equations and energy-momentum tensor. \mathcal{D}_{bc} will interact with the spacetime geometry and have an effect on R^a_{bcd}. Thus geodesic deviation is a valuable resource for observation, and the projective gauge field could explain defects in these observations via Eq. (193).

XI. CONCLUSION

String theory may be thought of as originating from regulating Feynman diagrams in gravitational theories, by adding a tiny dimension to the point particle as initial data. This regulator quickly takes on a life of its own through the Virasoro algebra, which maintains the reparameterization invariance. It has been shown [10] that projective structure and subsequent projective geometry are the ubiquitous concepts that give meaning to this reparameterization in any dimension. Affine geodesic lines, whether space-like, time-like, or even null, enjoy reparameterization invariance irrespective of the underlying metric. The projective geometry of Thomas and later Whitehead [25, 26, 29] allows us to form a gauge theory for unparameterized paths which induces a dynamical field called the diffeomorphism field. These dynamical projective connections get their dynamics from the Thomas-Whitehead Gravitational Action defined in [10]. However, those and subsequent results [19] used specific coordinates such as constant volume coordinates and background metrics. In this note, we present the full gauge invariant Thomas-Whitehead action. There are many advantages of having a gauge invariant theory, including the understanding of spontaneously broken symmetry and the constraints that arise in classical and quantum field theories. The results
here show precisely how any Dirac fermion will interact with the diffeomorphism field and how chiral masses become manifest due to a volume scale. These gravitationally induced chiral masses are affected by the dimension of the manifold, the number of gauge fields and the spinor’s tensor density.

The use of geodesics extends far beyond gravitational theories and these results may be of value in fluid dynamics, optimization, other gauge theories and even quantum computing. Several projects applying the general TW theory presented in this paper are currently underway including the quantization of the fully covariant TW theory, sourcing of cosmological inflation, constraints imposed by affects on gravitational radiation, and applications to the understanding of dark matter.

ACKNOWLEDGMENTS

The research of K. S. is supported in part by the endowment of the Ford Foundation Professorship of Physics at Brown University. K. S. would like to thank Kevin Iga and Konstantinos Koutrolikos for helpful discussions. V.R thanks S. Gallon for discussions. The research of K. H. and S.B. is supported by fellowships from the Graduate College at The University of Iowa.

Appendix A: Units, Conventions, and Helpful Calculations

The units of the various constants used throughout this paper for $d = 4$ are

$$[J_0] = \frac{ML^2}{T}, \quad [D_{ab}] = [R_{ab}] = L^{-2},$$

$$[\ell] = \text{dimensionless}, \quad [\kappa_0] = \frac{T^2}{ML}$$

(A1)

We may at times set $c = 1$ but expose factors of c when calculating numerical values. Latin indices take values $a, b, \cdots = 0, 1, 2, \ldots, d - 1$ and Greek indices take values $\mu, \nu, \cdots = 0, 1, 2, \ldots, d$, with the exception of the Greek letter λ, which refers to the projective coordinate $x^d = \lambda = \lambda_0 \ell$. A coordinate transformation and corresponding Jacobian matrix over the d-dimensional space is given as

$$x'^m = x'^m(x^n) \quad , \quad J^m_n = \frac{\partial x'^m}{\partial x^n}$$

(A2)
A useful property of the determinant of the Jacobian matrix is its derivative in terms of the coordinates:

$$\frac{\partial \log |J|}{\partial x^a} = \frac{\partial x^m}{\partial x'^a} \frac{\partial x'^m}{\partial x^a}.$$ \hfill (A3)

Our conventions for the Riemann curvature tensor R^a_{bcd} are the same as for the projective curvature $\mathcal{K}^\mu_{\nu\alpha\beta}$. The Riemann curvature tensor is written in terms of Γ^m_{ab} where as the projective curvature is written in terms of $\tilde{\Gamma}^\mu_{\nu\alpha\beta}$:

$$\mathcal{K}^\mu_{\nu\alpha\beta} \equiv \tilde{\Gamma}^\mu_{\nu[\beta,\alpha]} + \tilde{\Gamma}^\rho_{[\nu[\beta,\alpha]} \tilde{\Gamma}^\mu_{\alpha\rho]}.$$ \hfill (A4)

Here and throughout, brackets mean anti-symmetrization and parenthesis mean symmetrization

$$\mathcal{K}^\alpha_{\beta[\mu\nu]} = \mathcal{K}^\alpha_{\beta\mu\nu} - \mathcal{K}^\alpha_{\beta\nu\mu}, \quad \mathcal{K}_{(\mu\nu)} = \mathcal{K}_{\mu\nu} + \mathcal{K}_{\nu\mu}.$$ \hfill (A5)

Eq. (A4) means the following must be true

$$[\tilde{\nabla}_\alpha, \tilde{\nabla}_\beta] V^\gamma = \mathcal{K}^\gamma_{\rho\alpha\beta} V^\rho,$$ \hfill (A6)

$$[\tilde{\nabla}_\alpha, \tilde{\nabla}_\beta] V_\gamma = -\mathcal{K}^\rho_{\gamma\alpha\beta} V_\rho.$$ \hfill (A7)

The d-dimensional metric g_{ab} is promoted to the Thomas cone metric $G_{\alpha\beta}$ by adding the appropriate projective contributions to the components. An easy way to see this is by writing:

$$G_{\alpha\beta} = \begin{cases}
 g_{ab} - \lambda_0^2 g_a g_b - \frac{\lambda_0^2}{\lambda} g_a, \\
 -\frac{\lambda_0^2}{\lambda} g_b - \frac{\lambda_0^2}{\lambda},
\end{cases}$$ \hfill (A8)

$$G^\alpha_{\beta\gamma} = \begin{bmatrix}
 g^{ab} & -\lambda g^{am} g_m \\
 -\lambda g^{bm} g_m & \frac{\lambda^2}{\lambda^0} (-1 + g^{mn} \lambda_0^2 g_m g_n)
\end{bmatrix},$$ \hfill (A9)

$$G_{\alpha\beta} = \delta^a_{\alpha} \delta^b_{\beta} g_{ab} - \lambda_0^2 g_a g_b,$$ \hfill (A10)

$$G^\alpha_{\beta\gamma} = g^{ab} (\delta^\alpha_a - g_a \Upsilon^\alpha) (\delta^\beta_b - g_b \Upsilon^\beta) - \lambda_0^{-2} \Upsilon^\alpha \Upsilon^\beta.$$ \hfill (A11)

where the d-dimensional metric g_{ab} has signature $(+, -, -, \cdots, -)$ and the dimensionless parameter $\ell = \lambda/\lambda_0$. The function $g_a \equiv \frac{1}{d+1} \partial_a \log \sqrt{|g|}$ is chosen as it transforms like the trace of a connection and depends only on the metrics determinant. The d-dimensional Riemann Curvature tensor R^a_{bcd} satisfies the same relation as the (d + 1)-dimensional tensor
\[\mathcal{K}^{\alpha_{bcd}}, \text{Eq. (III C)}, \] but in terms of the d-dimensional covariant derivative \(\nabla_a \). The commutator of covariant derivatives on an arbitrary rank \(m \)-covariant, rank \(n \)-contravariant tensor is equivalent to the following action of \(\mathcal{R}^{\alpha}_{bcd} \)

\[
[\nabla_a, \nabla_b] T_{c_1...c_m}^{d_1...d_n} = - \mathcal{R}^{\alpha}_{c_1a} T_{c_2...c_m}^{d_1d_2...d_n} - ... - \mathcal{R}^{\alpha}_{c_mab} T_{c_1c_2}^{d_1d_2...d_n} + \mathcal{R}^{d_1}_{eab} T_{c_1...c_m}^{e...d_n} + ... + \mathcal{R}^{d_m}_{eab} T_{c_1...c_m}^{d_1...e} \tag{A12}
\]

We list all non-vanishing connections and curvatures below:

\[
\tilde{\Gamma}^{a}_{bc} = \Pi^a_{bc}; \quad \tilde{\Gamma}^{\lambda}_{ab} = \lambda \mathcal{D}_{ab}, \tag{A13}
\]

\[
\tilde{\Gamma}^{a}_{ab} = \lambda^{-1} \delta^a_b, \tag{A14}
\]

\[
\Pi^a_{bc} = \Gamma^a_{bc} + \delta^a_{(c} \alpha_{b)} \tag{A15}
\]

\[
\mathcal{P}_{bc} = \mathcal{D}_{bc} - \partial_b \alpha_c + \Gamma^e_{bc} \alpha_e + \alpha_b \alpha_c. \tag{A16}
\]

\[
\mathcal{K}^{a}_{bcd} = \mathcal{R}^{a}_{bcd} + \delta^a_{[c} \mathcal{P}_{d]b} - \delta^a_b \mathcal{P}_{[cd]} \tag{A17}
\]

\[
\mathcal{K}^{a}_{bcd} = \mathcal{R}^{a}_{bcd} + \lambda \mathcal{D}_{db} \tag{A18}
\]

\[
\mathcal{K}^{\lambda}_{cab} = \lambda \partial^c_{[a} \mathcal{D}_{b]d} + \lambda \Pi^d_{c[b} \mathcal{D}_{a]d} \tag{A19}
\]

\[
\mathcal{K}^{\lambda}_{bcd} = \lambda (\partial^d_{[c} \mathcal{P}_{d]b} + \Gamma^a_{b[d} \mathcal{P}_{c]a} + \alpha_a \mathcal{P}_{d]b} \tag{A20}
\]

\[
\mathcal{K}^{\mu}_{b\mu d} = \mathcal{K}_{bd} = \mathcal{R}_{bd} + (d-1) \mathcal{D}_{bd} = \mathcal{R}_{bd} + d \mathcal{D}_{db} - \mathcal{P}_{bd} \tag{A21}
\]

\[
\mathcal{K} = \mathcal{G}^{\alpha_\beta} \mathcal{K}_{\alpha_\beta} = \mathcal{R} + (d-1) \mathcal{D} = \mathcal{R} + (d-1) \mathcal{P}, \tag{A22}
\]

\[
R = g^{ab} R_{ab}, \quad \mathcal{P} = g^{ab} \mathcal{P}_{ab}. \tag{A24}
\]

[1] M. Virasoro, Phys. Rev. D 1, 2933 (1970).

[2] A. Pressley and G. Segal, LOOP GROUPS (CLARENDON (OXFORD MATHEMATICAL MONOGRAPHS), 1988).

[3] E. Cartan, Annales Sci. Ecole Norm. Sup. 40, 325 (1923).

[4] O. V. and S. Tabachnikov, Cambridge tracts in mathematics ; 165 (2005).
[5] A. A. Kirillov, *Proceedings, IV Bulgarian School on Elementary Particles and High-Energy Physics: Mathematical Problems of Quantum Field Theory: Primorsko, Bulgaria, September 16-25, 1980*, Lect. Notes Math. 970, 101 (1982).

[6] B. Rai and V. G. J. Rodgers, *Nucl. Phys. B341*, 119 (1990).

[7] A. Alekseev and S. L. Shatashvili, *Nucl. Phys. B323*, 719 (1989).

[8] A. Alekseev, L. D. Faddeev, and S. L. Shatashvili, *J. Geom. Phys. 5*, 391 (1988).

[9] V. Rodgers, *Phys. Lett. B 336*, 343 (1994).

[10] S. Brensinger and V. G. J. Rodgers, *Int. J. Mod. Phys. A33*, 1850223 (2019).

[11] R. Liouville, *Comptes rendus hebdomadaires des seances de l'Academie des sciences* 105, 1062 (1887).

[12] R. Liouville, *Jour. de l'Ecole Politechnique* Cah. 59, 7 (1889).

[13] A. Cap, A. R. Gover, and H. R. Macbeth, *Geometriae Dedicata* 168 (2014).

[14] S. N. Curry and A. R. Gover, “An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity,” in *Asymptotic Analysis in General Relativity*, London Mathematical Society Lecture Notes Series (Cambridge University Press, 2018) p. 86?170.

[15] A. R. Gover and H. Macbeth, *Differential Geometry and its Applications* 33 (2014).

[16] A. R. Gover, E. Latini, and A. Waldron, *Commun. Math. Phys. 341*, 667 (2016); arXiv:1409.6778 [hep-th].

[17] T. Bailey, M. Eastwood, and A. Gover, *Rocky Mountain J. Math.* 24, 1191 (1994).

[18] M. Eastwood, *Math. Appl.* 144, 41 (2007).

[19] S. Brensinger, K. Heitritter, V. G. J. Rodgers, K. Stiffler, and C. A. Whiting, *Class. Quant. Grav.* 37, 055003 (2020).

[20] A. M. Polyakov, *Phys. Lett.* 103B, 207 (1981).

[21] A. M. Polyakov, *Mod. Phys. Lett.* A2, 893 (1987).

[22] A. Palatini, *Rend. Circ. Mat. Palermo* (1919).

[23] D. Lovelock, *J. Math. Phys.* 12, 498 (1971).

[24] E. Cartan, *Bull. Soc. Math. France* 52, 205 (1924).

[25] T. Y. Thomas, *Proc. of the Nat. Acad. of Sciences of the USA* 11, 588 (1925).

[26] T. Y. Thomas, *Proc. of the Nat. Acad. of Sciences of the USA* 11, 199 (1925).

[27] Our extra direction λ is related to Thomas’ original extra direction in 25, 20 through an ex-
ponential as in \[31\]. Furthermore, Thomas referred to this extra direction as the 0-th direction where we refer to it as the d-th direction, reserving the index 0 for time as is common in the physics literature.

[28] M. Eastwood and V. S. Matveev, Math. Appl. 144, 339 (2007).
[29] J. Whitehead, Annals of Mathematics 32, 327 (1931).
[30] C. Roberts, Differential Geometry and its Applications 5, 237 (1995).
[31] M. Crampin and D. Saunders, Journal of Geometry and Physics 57, 691 (2007).
[32] S. J. Brensinger, Projective Gauge Gravity, Ph.D. thesis, The University of Iowa (2020).
[33] G. Segal, Commun. Math. Phys. 80, 301 (1981).
[34] E. Witten, Commun. Math. Phys. 114, 1 (1988).
[35] I. M. Gelfand and D. B. Fuchs, Functional Analysis and Its Applications 3 (1969).
[36] V. Ogievetsky and I. Polubarinov, Sov. Phys. JETP 21, 1093 (1965).
[37] M. Hobson, G. Efstathiou, and A. Lasenby, General relativity: An introduction for physicists (Cambridge, 2006).