Does enteral immune nutrition (EIN) boost the immunity of gastric cancer (GC) patients undergoing surgery? A systematic review and meta-analysis

Hongxia Li1, Shaofang Zhang2, Lin Lin3, Sanjay Rastogi4

1Interventional Operating Room, Yantaishan Hospital, Yantai, Shandong, China
2Department of Hepatology Ward I, Yantai Qishan Hospital, Shandong Province, Yantai, Shandong, China
3Department of Urology, Hospital of Traditional Chinese and Western Medicine of Taizhou, Wenling, Zhejiang, China
4Consultant, ESIC Model Hospital, Guwahati, Assam, India

Abstract

Introduction: The main components of enteral immunonutrition (EIN) are ω-3 fatty acids, glutamine, arginine, and nucleotide, which primarily raise the immunity of the host and helps to reduce postoperative infections and non-infectious difficulties. Although the potential benefits of EIN are widely reported, some researchers did not find it to be of much help, and hence valid conclusions about its role are still unclear.

Aim: To evaluate the role of enteral immunonutrition on patients undergoing surgery for gastric cancer (GC).

Material and methods: Appropriate articles were searched from the PubMed, Medline, and Central databases using the appropriate keywords as per the PRISMA guidelines. Randomized controlled trials, and retrospective, prospective, and open-label studies were included as per the predefined PICOS criteria. Demographic summary and event data for the effect of EIN on patients undergoing surgery for GC were extracted from the included studies.

Results: Twelve randomized controlled clinical trials with a total of 10,422 gastric cancer patients were included. We found the odds ratio value of 0.23 (95% CI: 0.09–0.59). The results are heterogeneous with a 𝑡2 value of 2.77, a 𝛳2 value of 1707.96, a df value of 11, an I² value of 99%, a z value of 3.04, and a p-value of less than 0.05. The risk ratio is 0.47 (95% CI: 0.29–0.77) with heterogeneity of 𝑡2 value of 0.73, 𝛳2 value of 1428.34, df value of 11, I² value of 99%, z value of 2.99, and p-value < 0.05.

Conclusions: The present meta-analysis strongly commends the use of EIN to boost the immunity of gastric cancer (GC) patients undergoing gastrectomy.

Key words: gastric cancer, surgery, immunity, nutrition, gastrectomy, enteral immunonutrition.

Introduction

Gastric cancer is the third most deadly cancer worldwide and accounts for around 8.3% of total deaths occurred due to cancer [1, 2]. It is a cancer of the uppermost intestinal tract, and within this, malignant tumorous cells develop in the lining of the stomach due to stomach infections, smoking, age, or dietary factors [3, 4]. Due to this, the patients suffer from indigestion, heartburn, nausea, fatigue, stomach pain, loss of appetite, and vomit blood or pass blood in stools [4, 5]. The survival rate with gastric...
cancer is low, so it must be diagnosed early via endoscopy and once detected immediately treated via surgery, medications, and chemotherapy [6]. Among these treatments, its main restorative treatment is surgical resection or gastrectomy. A minimal invasive and videooscopic surgical procedure is widely used these days to treat benign gastric cancer because surgery is still its only curative treatment; however, during surgery the extent of resection and lymphadenectomy that is needed must be considered carefully [7]. Minimally invasive surgical approaches are preferred because they demonstrate safety, feasibility, and oncologic equivalency more precisely as compared to conventional open gastrectomy [8]. Before surgery, it is essential to boost the immunity of the patient undergoing surgery, to reduce the post-operative infection and non-infectious difficulties and amend the prognosis of patients suffering from gastrointestinal cancer. For this purpose, the use of enteral immunonutrition (EIN), which is the enteral feeding formula of immunity boosting nutrients, is mainly recommended. The main components of EIN are ω-3 fatty acids, glutamine, arginine, and nucleotide, which primarily activates the immune system of the host [9, 10]. For example, Song et al. 2015 [11], Nikniaz et al. 2017 [12], and Cheng et al. 2018 [13] reported in their systematic review and meta-analysis that early administration of EIN in patients was more effective in improving their immunity index and post-surgical nutritional status. Similarly, Fu et al. 2021 [14] and Shen et al. 2022 [15] mentioned in their systematic review and meta-analysis that pre-operative use of EIN was effective and safe in reducing the post-operative infections, overall complications of surgery, and the duration of hospital stay of patients after surgery. These systematic reviews and meta-analysis are based on the results of various randomized controlled trials, and retrospective and prospective studies that were conducted to evaluate the potential benefits of EIN in patients undergoing gastrectomy. For instance, Guo et al. 2002 [16] reported in their prospective study that EIN helped in the fast recovery of patients. Similarly, Farreras et al. 2005 [17], Chen et al. 2005 [18], and Fujitani et al. 2012 [19] reported in their randomized controlled trials that EIN improved the defence mechanism and lowers the morbidity rate. Lee et al. 2016 [20] also reported the benefits of EIN in their retrospective study. Di Renzo et al. 2019 [21] found in their randomized controlled trials that EIN significantly improved the metabolic parameters of patients undergoing surgery. Likewise, Luo et al. 2019 [22], Claudino et al. 2019 [23], D’ Ignazio et al. 2020 [24], Sun et al. 2021 [25], Izumi et al. 2022 [26], and Xiao et al. 2022 [27] reported in their research studies that preoperative use of EIN boosted the immune response and significantly improved the serum prealbumin level and decreased postoperative morbidity in patients undergoing gastrectomy. However, although there are many studies that recommend the use of EIN for gastric cancer patients, still some like the studies of Bertolini et al. 2003 [28] and Mueller et al. 2022 [29] reported that the use of EIN was associated with sepsis and post-operative infections and caused more harm in gastric cancer patients than good. Nakamura et al. 2009 [30] reported that EIN was good only if provided at an optimal dose, otherwise its use was risky and hazardous. Hence, considering these contradictory results, we systematically reviewed the different studies related to the use of EIN for gastric cancer patients to evaluate their success and efficiency in boosting the immunity and improvement of overall survival rate.

Aim

This meta-analysis aims to evaluate the success of EIN in boosting the immunity of gastric cancer (GC) patients undergoing surgery.

Material and methods

In the current investigation, with the registration number YH/IRB/2022/786, we followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) normative criteria.

Search strategy

This meta-analysis is based on an extensive search conducted in the databases of Medline (via PubMed), Cinahl (via Ebsco), Scopus, and Web of Sciences from the year 2000 to 2022 using the following keywords: gastric cancer, gastrectomy, EIN, nutrition, immunity, surgery, randomized controlled trial, open-label study, prospective study, and retrospective study. Articles were included as per the PRISMA guidelines, and studies were selected as per the PI-COS criteria randomly, irrespective of the language or type of study (randomized clinical trial, open-label study, prospective study, or retrospective study). Two
Does enteral immune nutrition (EIN) boost the immunity of gastric cancer (GC) patients undergoing surgery? A systematic review and meta-analysis

Authors (SR and LL) separately scanned the relevant sources for related studies. The full-text articles of the sources were collected, and abstracts were used only if they had sufficient information for the meta-analysis. Obsolete references were excluded, and useful studies were included as per the inclusion criteria. Two researchers (HL and SZ) independently retrieved a demographic description of the patients and event data with meaningful variables from the included studies [16–27].

Inclusion and exclusion criteria

Among the studies were those that reported on the use of EIN for gastric cancer patients undergoing surgery, as well as its comparison to other nutritional supplements. The studies were chosen between the years 2000 and 2022. We only included publications with the entire text and enough data for 2 × 2 tables in our investigation, while abstracts, studies with inadequate data, and relevant studies published before 2000 were eliminated.

Analytical standard evaluation and source of heterogeneity

Two reviewers (HL and SZ) independently assessed the methodological validity of the included papers, and the heterogeneity of the included experiments was estimated. Author LL oversaw mediation of any disagreements between authors (HL and SZ). Cochran statistics were used to study heterogeneity, and the I² index in random bivariate mode was determined using RevMan [31] and MedCalc software [32]. The use of randomized controlled trials vs. open-label studies, retrospective vs. prospective research, varying numbers of patients with different stages of gastric cancer, and the use of different nutritional supplements for cancer patients were the origins of the observed heterogeneity.

Statistical analysis

RevMan and MedCalc software were used to conduct a meta-analysis. The DerSimonian Lair technique was used to generate the diagnostic odds ratio and risk ratio for statistical analysis, using a 2 × 2 table created with the event data. Statistical factors such as odds ratio and risk difference were determined, and forest plots were generated using RevMan software. The χ² value, t² value, df value, I² value, z-value, and p-value were used to assess study heterogeneity. The risk of bias graph and summary were created using RevMan software, and publication bias was analysed using Begg’s test, Egger’s test, and Deek’s funnel plot [33] using MedCalc software.

Results

Literature search results

We found a total of 1139 studies through electronic scans from different databases as per the PICOS criteria [34] shown in Table I. Among these studies, we excluded 143 studies by reading their titles and abstracts, and 996 records were screened. Further, due to invalid references and duplicity, we excluded 717 studies and included only 279 studies for final screening. Out of these 279 studies, 241 studies were excluded based on the inclusion criteria, and the eligibility of the remaining 38 studies was assessed further. The key reasons for omission were inadequate evidence and inappropriate comparison criteria to create 2 × 2 tables for review. Finally, for meta-analysis, 12 studies ranging from the years 2000 to 2022 fulfilled the inclusion criteria, i.e. the use of EIN for gastric cancer patients was used as shown in Figure 1. A total of 10,422 gastric cancer patients of various ages were included in the studies. These patients were chosen randomly and pro-

P (patient, problem, population)	Patient with gastric cancer
I (intervention)	Evaluation of the effect of enteral immunonutrition (EIN) on patients undergoing surgery for gastric cancer (GC).
C (comparison, control, or comparator)	Comparison of different nutritional supplements used for patients of gastric cancer
O (outcome[s])	Enteral immune nutrition (EIN) is good for fast recovery of gastric cancer patients with low risk of morbidity and mortality
S (study type)	Randomized controlled trials, open level study, prospective study, retrospective study

Table I. PICOS search
vided with either EIN or other immunity-boosting supplements before gastrectomy. The demographic details of the studies included in this meta-analysis are shown in Table II. It describes the author of the study, publishing year, type of study, the intervention of the study, total sample size, age of patients, type of supplements used, number of patients selected for the trial, results of the study, and p-value. Later, these event data were used to perform the meta-analysis.

Meta-analysis results

The meta-analysis was performed using RevMan and MedCalc software. The results are discussed below.

Bias risk assessment

The risk of bias for included studies was assessed as shown in Table III. The risk of bias graph (Figure 2) and risk of bias summary (Figure 3) show that the current meta-analysis has a low risk of bias. Publication bias was measured with the help of Egger’s test, Begg’s test, and Deek’s funnel plot. The current meta-analysis has a low risk of publication bias, as is apparent from the funnel plot shown in Figure 4, and the p-values of both tests are significant because they are greater than 0.05 [35]: Egger’s test p-value is 0.365 and Begg’s test p-value is 0.453.

Statistical assessment

The diagnostic odds ratio and risk ratio of the included studies were calculated using RevMan software, and the respective forest plots were designed as shown in Figures 5 and 6, respectively. We obtained an odds ratio value of 0.23 (95% CI: 0.09–0.59). The odds ratio value of less than 1 is suggestive of the high likelihood of EIN boosting the immunity of patients and the overall survival rate with a low risk of morbidity and mortality. The results are heterogeneous with a t^2 value of 2.77, a χ^2 value of 1707.96, a df value of 11, an I^2 value of 99%, a z value of 3.04, and a p-value less than 0.05. The risk ratio is 0.47 (95% CI: 0.39–0.77) with heterogeneity of t^2 value of 0.73, a χ^2 value of 1428.34, df value of 11, I^2 value of 99%, z value of 2.99, and p-value of less than 0.05. The risk ratio value, which compares the risks of supplements used in the 2 groups, is also less than 1, which indicates that the use of EIN for gastric cancer patients undergoing surgery is safe and effective. The p value greater than 50% indicates the high heterogeneity [36] and random effect model for meta-analysis. All these results are statistically significant with a p-value less than 0.05 and are indicative of the high efficiency of EIN in boosting the immunity of gastric cancer patients undergoing gastrectomy.
Does enteral immune nutrition (EIN) boost the immunity of gastric cancer (GC) patients undergoing surgery? A systematic review and meta-analysis

Table II. Demographic summary of included studies

Study ID and year	Journal of publication and type of study	Intervention	Control Intervention group	Sample size	Age of patients	Results	P-value
Guo et al. 2002 [16]	Journal of Gastroenterology and Hepatology - Prospective study	Screening of the nutritional risk of patients with gastric carcinoma	314	30–70 years	Patients receiving the supplemented formula showed significantly better wound healing and low mortality	< 0.05	
Farreras et al. 2005 [17]	Clinical Nutrition and Hepatology - Clinical Nutrition Randomized clinical trial	Effect of early postoperative enteral immunonutrition in patients undergoing gastric cancer surgery	66	18–60 years	Patients receiving the supplemented formula showed significantly better wound healing and low mortality	< 0.05	
Chen et al. 2005 [18]	Asian Journal of Surgery - Prospective randomized clinical trial	Role of enteral immunonutrition in gastric cancer patients undergoing surgery	40	31–75 years	Enteral immunonutrition improved the defense mechanisms and modulated the inflammatory action	< 0.01	
Fujitani et al. 2012 [19]	The British Journal of Surgery - Randomized controlled trial	Effect of preoperative enteral immunonutrition on patients undergoing gastrectomy for gastric cancer	244	26–78 years	Enteral immunonutrition reduced the morbidity rate	< 0.05	
Li et al. 2016 [20]	Medicine - Retrospective analysis	Assessment of the nutritional risk of patients with gastric carcinoma	7781	45–80 years	PNI is a useful predictor for patients at high risk of postoperative morbidity and mortality	< 0.001	
Di Renzo et al. 2019 [21]	European Review for Medical and Pharmacological Sciences - Retrospective study	Evaluation of the effect of an immuno-enhanced formula in gastric cancer patients	50	18–80 years	EIN treatment showed a significant improvement in metabolic parameters in gastric cancer patients	< 0.001	
Luo et al. 2019 [22]	European Journal of Surgical Oncology - Multicentre retrospective study	Prognostic impact of the Prognostic Nutritional Index (PNI) on advanced gastric cancer	50	25–70 years	Low PNI results in poor recurrence-free survival and overall survival of patients	< 0.001	
Claudino et al. 2019 [23]	Nutrition - Retrospective study	Evaluation of the rate and survival of patients with gastric cancer undergoing immunonutrition	164	18–80 years	Study confirmed the benefit of immunonutrition supplementation for overall survival of patients	< 0.001	
D’Ignazio et al. 2020 [24]	Clinical Nutrition - ESPEN prospective pilot study	Impact of enteral immunonutrition on the cell-mediated immune response in gastric cancers	24	44–90 years	Enteral immunonutrition activated the immune response in patients of gastric cancers	< 0.005	
Table II. Cont.

Study ID and year	Journal of publication	Type of study	Intervention	Sample size	Age of patients	Control group	Intervention group	Results	P-value
Sun et al. 2021 [25]	BMC Gastroenterology	Retrospective study	Effect of Controlling Nutritional Status (CONUT) Score in gastric cancer	1479	40–80 years	431/1479	1048/1479	CONUT is an important factor for postoperative complications in both early and advanced stage gastric cancer	< 0.001
Izumi et al. 2022 [26]	World Journal of Surgery	Original scientific report	Change in Serum Prealbumin Level after Preoperative Enteral Nutrition in patients of Gastric Cancer	50	18–70 years	10/50	40/50	Preoperative enteral nutrition improved the serum prealbumin level and decreased postoperative morbidity in gastric cancer patients	< 0.005
Xiao et al. 2022 [27]	European Journal of Clinical Nutrition	Retrospective study	Study of the association between prognostic nutritional index (PNI) on post-operative infection and prognosis of gastric cancer patients	160	40–80 years	633/2352	1719/2352	Low PNI is associated with poorer overall survival	0.001

Table III. Risk assessment for included studies

Study ID and year	Was a consecutive or random sample of patients enrolled?	Did the study avoid inappropriate exclusions?	Did all patients receive the same reference standard?	Were all patients included in the analysis?	Was the sample frame appropriate to address the target population?	Were the study participants sampled in an appropriate way?	Were the study subjects and the setting described in detail?	Were valid methods used for the identification of the condition?	Was the condition measured in a standard, reliable way for all participants?	Was there appropriate statistical analysis?
Guo et al. 2002 [16]	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Farreras et al. 2005 [17]	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Chen et al. 2005 [18]	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Fujitani et al. 2012 [19]	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Li et al. 2016 [20]	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Di Renzo et al. 2019 [21]	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Luo et al. 2019 [22]	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Claudino et al. 2019 [23]	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
D’Ignazio et al. 2020 [24]	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Sun et al. 2021 [25]	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Izumi et al. 2022 [26]	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Xiao et al. 2022 [27]	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Discussion

“Cancer is the most dreadful and fatal disease and accounts for around 10 million deaths a year.” [37]. Among the different cancers, gastric cancer is the most common and third most deadly cancer reported worldwide. Due to failure of genetic control, uncontrolled cell division occurs, and abnormal malignant tumours form in the upper intestinal tract. As cancer has the peculiar characteristic of metastasis, these tumour cells of the uppermost intestinal region spread very fast via blood to all other parts of the body, causing multiple organ failures and, if not treated promptly, death [36, 38]. Because the invasion speed of cancer is very fast, its primary treatment is the removal of the cancerous tumour via resection surgery or gastrectomy [39–41]. Although surgery is the best way to treat a cancer patient, the major risks associated with this are post-operative infections, surgical complications, longer duration of hospital stay, morbidity, and mortality [42, 43]. Currently, endoscopic mucosal resection surgery is commonly preferred because it is an effective treatment modality with comparable results to that of conventional surgery [44]. Uyama et al. 2013 [45] mentioned that endoscopic submucosal dissection (ESD) reduces the local recurrence rate and is the best surgical resection process along with regional lymphadenectomy for radical gastrectomy. Similarly, Zhang et al. 2021 [46] recommended laparoscopic gastrectomy (LG) as an emerging surgical approach that has significant advantages in short-term outcomes as compared to the open surgical procedures for patients of gastric cancer. Robot-assisted (RAGD2) and laparoscopy-assisted gastrectomy with...
Figure 4. Forest plot for publication bias

Study or subgroup	Intervention	Control	Weight (%) random	Odds ratio M-H, 95% CI random		
Chen et al. 2005 [18]	20	40	20	40	8.1	1.00 [0.42, 2.40]
Claudino et al. 2019 [23]	56	164	108	164	8.5	0.27 [0.17, 0.42]
Di Renzo et al. 2019 [21]	13	44	31	44	8.1	0.18 [0.07, 0.44]
D'Ignazio et al. 2020 [24]	8	24	16	24	7.7	0.25 [0.08, 0.83]
Farreras et al. 2005 [17]	30	66	36	66	8.3	0.69 [0.35, 1.38]
Fujitani et al. 2012 [19]	117	244	127	244	8.6	0.85 [0.59, 1.21]
Guo et al. 2002 [16]	125	314	190	314	8.6	0.43 [0.31, 0.59]
Izumi et al. 2022 [26]	10	50	40	50	8.0	0.06 [0.02, 0.17]
Li et al. 2016 [20]	779	7781	7002	7781	8.7	0.01 [0.01, 0.01]
Luo et al. 2019 [22]	13	50	25	50	8.1	0.35 [0.15, 0.81]
Sun et al. 2021 [25]	431	1479	1048	1479	8.7	0.17 [0.14, 0.20]
Xiao et al. 2022 [27]	633	2352	1719	2352	8.7	0.14 [0.12, 0.15]

Total (95% CI): 12608 | 12608 | 100.0 | 0.23 [0.09, 0.59]

Heterogeneity: $\chi^2 = 2.77, \nu = 11 (p < 0.00001); I^2 = 99%$

Test for overall effect: $Z = 3.04 (p = 0.002)$

Figure 5. Forest plot odds ratio

Study or subgroup	Intervention	Control	Weight (%) random	Risk ratio M-H, 95% CI random		
Chen et al. 2005 [18]	20	40	20	40	8.2	1.00 [0.65, 1.55]
Claudino et al. 2019 [23]	56	164	108	164	8.6	0.52 [0.41, 0.66]
Di Renzo et al. 2019 [21]	13	44	31	44	8.0	0.42 [0.26, 0.69]
D'Ignazio et al. 2020 [24]	8	24	16	24	7.6	0.50 [0.27, 0.94]
Farreras et al. 2005 [17]	30	66	36	66	8.4	0.83 [0.59, 1.18]
Fujitani et al. 2012 [19]	117	244	127	244	8.6	0.92 [0.77, 1.10]
Guo et al. 2002 [16]	125	314	190	314	8.7	0.66 [0.56, 0.77]
Izumi et al. 2022 [26]	10	50	40	50	7.8	0.25 [0.14, 0.44]
Li et al. 2016 [20]	779	7781	7002	7781	8.7	0.11 [0.10, 0.12]
Luo et al. 2019 [22]	13	50	25	50	7.9	0.52 [0.30, 0.90]
Sun et al. 2021 [25]	431	1479	1048	1479	8.7	0.41 [0.38, 0.45]
Xiao et al. 2022 [27]	633	2352	1719	2352	8.7	0.37 [0.34, 0.40]

Total (95% CI): 12608 | 12608 | 100.0 | 0.47 [0.29, 0.77]

Heterogeneity: $\chi^2 = 2.99, \nu = 11 (p < 0.00001); I^2 = 99%$

Test for overall effect: $Z = 2.99 (p = 0.003)$

Figure 6. Forest plot risk ratio
Does enteral immune nutrition (EIN) boost the immunity of gastric cancer (GC) patients undergoing surgery? A systematic review and meta-analysis

D2 lymphadenectomy (LAGD2) is specifically preferred for patients with gastric cancer because they reduce operative blood loss and postoperative complications. Hence, to reduce these infections and complications, it is essential to boost the immunity of patients by providing them with immunity-enhancing supplements, and for this, EIN is mostly recommended [47].

As shown in Figure 7, EIN is an enteral feeding formula made up of nutritional supplements such as amino acids arginine and/or glutamine, omega-3 predominant marine oils, nucleic acids, antioxidants, vitamins, and minerals [48]. These supplements are used because amino acids cause immune cell activation by improving cell metabolic reprogramming via receptor ligation and by enhancing the rate of transcription and translation [49]. Similarly, fatty acids and nucleic acids are important for the acquisition of biomass for cell division and cytokine and immune cell production [50]. Antioxidants like selenium, vitamin C, and vitamin E help to prevent the oxidative damage of cells during the immune response to invading pathogens and infectious agents [51]. Due to these beneficial aspects, various studies have recommended the use of EIN as an effective preoperative supplement for patients undergoing gastrectomy; Wong et al. 2016 [52] reported in their systematic review and meta-analysis that the use of EIN enhances the immune defence system and reduces the duration of hospital stay, obtaining a lower risk ratio (RR) of 0.59 with a 95% confidence interval (CI) of 0.40 to 0.88. In the same way, the systematic review of Heyland et al. 2001 [53] recommended EIN for people with gastric cancer.

Similarly to these studies, in our meta-analysis, with statistically significant results ($p < 0.05$) and an odds ratio value of 0.23 (95% CI: 0.09–0.59), i.e. less than 1, and a risk ratio value of 0.47 (95% CI: 0.29–0.77), i.e. less than 1, we conclude that pre-operative and early use of EIN is safe and effective for boosting the immunity of gastric cancer patients undergoing surgery.

The limitations of the present study are the variability of nutritional supplements used and the evaluation of metabolic and immunological parameters via different tests performed by different laboratory technicians, which in turn influences the risk of false-negative results. Data from other relevant studies that show potential benefits of EIN in boosting the defence mechanisms can also include more details about patients’ health status and behaviour to indicate the importance and efficiency of these studies more clearly. To see the variability, detailed data on the patients’ case histories, physical examinations, and pathological tests can further support the safety and efficacy of EIN in boosting the immunity of gastric cancer patients undergoing resection surgery.

Conclusions

Gastric cancer is the most frequently reported cancer of the uppermost intestinal tract and is fatal if not treated promptly. Because its primary and most effective treatment is surgery or gastrectomy, it is essential to boost the immunity of patients undergoing surgery to avoid post-operative infections, complications, morbidity, and mortality and to increase their overall survival rate. For this purpose, EIN is the commonly recommended enteral feeding supplement, but some studies have reported its risks and adverse effects too. Thus, to address these issues, we conducted this systematic review and meta-analysis to assess its safety and efficiency in boosting the immunity of gastric cancer patients undergoing gastrectomy. Based on statistically significant results ($p < 0.05$), we highly recommend the preoperative and early use of EIN for boosting the immunity of gastric cancer patients undergoing surgery.

Acknowledgments

Hongxia Li and Shaofang Zhang are co-first authors, they contributed equally to this work.
Conflict of interest

The authors declare no conflict of interest.

References

1. Thrift AP, Nguyen TH. Gastric cancer epidemiology. Gastrointest Endosc Clin N Am 2021; 31: 425-39.
2. Machlowska J, Baj J, Sitarz M, et al. Gastric cancer: epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int J Mol Sci 2020; 21: 4012.
3. Tsugane S, Sasazuki S. Diet and the risk of gastric cancer: review of epidemiological evidence. Gastric Cancer 2007; 10: 75-83.
4. Ren JS, Kamangar F, Forman D, Islami F. Pickled food and risk of gastric cancer: a systematic review and meta-analysis of English and Chinese literature. Cancer Epidemiol Biomarkers Prev 2012; 21: 905-15.
5. Sitarz R, Skierucha M, Mielko J, et al. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res 2018; 10: 239-48.
6. Takahashi T, Saikawa Y, Kitagawa Y. Gastric cancer: current status of diagnosis and treatment. Cancers 2013; 5: 48-63.
7. Barchi LC, Jacob CE, Bresciani CI, et al. Minimally invasive surgery for gastric cancer: time to change the paradigm. Arq Bras Cir Dig 2016; 29: 117-20.
8. Costantino CL, Mullen JT. Minimally invasive gastric cancer surgery. Surg Oncol Clin N Am 2019; 28: 201-13.
9. Marano L, Porfida R, Pezzella M, et al. Clinical and immunological impact of early postoperative enteral immunonutrition after total gastrectomy in gastric cancer patients: a prospective randomized study. Ann Surg Oncol 2013; 20: 3912-8.
10. Radrizzani D, Bertolin G, Facchini R, et al. Early enteral immunonutrition vs. parenteral nutrition in critically ill patients without severe sepsis: a randomized clinical trial. Intensive Care Med 2006; 32: 1191-8.
11. Song GM, Tian X, Liang H, et al. Role of enteral immunonutrition in patients undergoing surgery for gastric cancer: a systematic review and meta-analysis of randomized controlled trials. Medicine 2015; 94: e1311.
12. Nikniaz Z, Somi MH, Nagashi S, Nikniaz L. Impact of early enteral nutrition on nutritional and immunological outcomes of gastric cancer patients undergoing gastrectomy: a systematic review and meta-analysis. Nutr Cancer 2017; 69: 693-701.
13. Cheng Y, Zhang J, Zhang L, et al. Enteral immunonutrition versus enteral nutrition for gastric cancer patients undergoing a total gastrectomy: a systematic review and meta-analysis. BMC Gastroenterol 2018; 18: 11.
14. Fu H, Li B, Liang Z. Effect of enteral immunonutrition compared with enteral nutrition on surgical wound infection, immune and inflammatory factors, serum proteins, and cellular immunity in subjects with gastric cancer undergoing a total gastrectomy: a meta-analysis. Int Wound J 2022 Mar 29. doi: 10.1111/iwj.13763.
15. Shen J, Dai S, Li Z, et al. Effect of enteral immunonutrition in patients undergoing surgery for gastrointestinal cancer: an updated systematic review and meta-analysis. Front Nutr 2022; 9: 941975.
16. Guo W, Ou G, Li X, et al. Screening of the nutritional risk of patients with gastric carcinoma before operation by NRS 2002 and its relationship with postoperative results. J Gastroenterol Hepatol 2010; 25: 800-3.
17. Farreras N, Artigas V, Cardona D, et al. Effect of early postoperative enteral immunonutrition on wound healing in patients undergoing surgery for gastric cancer. Clin Nutr 2005; 24: 55-65.
18. Chen DW, Wei Fei Z, Zhang YC, et al. Role of enteral immunonutrition in patients with gastric carcinoma undergoing major surgery. Asian J Surg 2005; 28: 121-4.
19. Fujitani K, Tsujinaka T, Fujita J, et al.; Osaka Gastrointestinal Cancer Chemotherapy Study Group. Prospective randomized trial of preoperative enteral immunonutrition followed by elective total gastrectomy for gastric cancer. Br J Surg 2012; 99: 621-9.
20. Li K, Xu Y, Hu Y, et al. Effect of enteral immunonutrition on immune, inflammatory markers and nutritional status in gastric cancer patients undergoing gastrectomy: a randomized double-blind controlled trial. J Invest Surg 2020; 33: 950-9.
21. Di Renzo L, Marchetti M, Cioccoloni G, et al. Role of phase angle in the evaluation of effect of an immuno-enhanced formula in post-surgical cancer patients: a randomized clinical trial. Eur Rev Med Pharmacol Sci 2019; 23: 1322-34.
22. Luo Z, Zhou L, Balde AI, et al. Prognostic impact of preoperative prognostic nutritional index in resected advanced gastric cancer: a multicenter propensity score analysis. Eur J Surg Oncol 2019; 45: 425-31.
23. Claudino MM, Lopes JR, Rodrigues VO, et al. Postoperative complication rate and survival of patients with gastric cancer undergoing immunonutrition: a retrospective study. Nutrition 2020; 70: 110590.
24. D’Ignazio A, Kabata P, Ambrosio MR, et al. Preoperative oral immunonutrition in gastrointestinal surgical patients: how the tumour microenvironment can be modified. Clin Nutr ESPEN 2020; 38: 153-9.
25. Sun F, Zhang C, Liu Z, et al. Controlling Nutritional Status (COS) score as a predictive marker for short-term complications following gastrectomy of gastric cancer: a retrospective study. BMC Gastroenterol 2021; 21: 107.
26. Iizumi D, Ida S, Hayami M, et al. Increased rate of serum prealbumin level after preoperative enteral nutrition as an indicator of morbidity in gastrectomy for gastric cancer with outlet obstruction. World J Surg 2022; 46: 624-30.
27. Yao X, Wei G, Ma M, et al. Association among prognostic nutritional index, post-operative infection and prognosis of stage II/III gastric cancer patients following radical gastrectomy. Eur J Clin Nutr 2022; 76: 1449-56.
28. Bertolini G, Iapichino G, Radrizzani D, et al. Early enteral immunonutrition in patients with severe sepsis. Intensive Care Med 2003; 29: 834-40.
29. Mueller SA, Mayer C, Bojajshi B, et al. Effect of preoperative immunonutrition on complications after salvage surgery in head and neck cancer. J Otolaryngol Head Neck Surg 2019; 48: 25.
30. Nakamura M, Iwahashi M, Takifuji K, et al. Optimal dose of preoperative enteral immunonutrition for patients with esophageal cancer. Surgery Today 2009; 39: 855-60.
Does enteral immune nutrition (EIN) boost the immunity of gastric cancer (GC) patients undergoing surgery? A systematic review and meta-analysis

31. Lorenzetti DL, Ghali WA. Reference management software for systematic reviews and meta-analyses: an exploration of usage and usability. BMC Med Res Methodol 2013; 13: 141.
32. Hanneman SK. Design, analysis, and interpretation of method-comparison studies. AACN Adv Crit Care 2008; 19: 223-34.
33. Simmonds M. Quantifying the risk of error when interpreting funnel plots. Syst Rev 2015; 4: 24.
34. Saaq M, Ashraf B. Modifying “pico” question into “picos” model for more robust and reproducible presentation of the methodology employed in a scientific study. World J Plast Surg 2017; 6: 390-2.
35. Hayashino Y, Noguchi Y, Fukui T. Systematic evaluation and comparison of statistical tests for publication bias. J Epidemiol 2005; 15: 235-43.
36. Sitarz R, Skierucha M, Mielko J, et al. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res 2018; 10: 239-48.
37. Mittlböck M, Heinzl H. A simulation study comparing properties of heterogeneity measures in meta-analyses. Stat Med 2006; 25: 4321-33.
38. Inoue H, Rubino F, Shimada Y, et al. Risk of gastric cancer after Roux-en-Y gastric bypass. Arch Surg 2007; 142: 947-53.
39. Mocan L. Surgical management of gastric cancer: a systematic review. J Clin Med 2021; 10: 2557.
40. Jang Y, Park MS, Park S, et al. Surgeon subspecialty as a factor in improving long-term outcomes for gastric cancer: twenty years of experience in Korea. Arch Surg 2010; 145: 1091-6.
41. Smyth EC, Nilsson M, Grabsch HI, et al. Gastric cancer. Lancet 2020; 396: 635-48.
42. Seo SH, Hur H, An CW, et al. Operative risk factors in gastric cancer surgery for elderly patients. J Gastric Cancer 2011; 11: 116-21.
43. Desiderio J, Sagnotta A, Terrenato I, et al. Gastrectomy for stage IV gastric cancer: a comparison of different treatment strategies from the SEER database. Sci Rep 2021; 11: 7150.
44. Min YW, Min BH, Lee JH, Kim JJ. Endoscopic treatment for early gastric cancer. World J Gastroenterol 2014; 20: 4566-73.
45. Uyama I, Suda K, Satoh S. Laparoscopic surgery for advanced gastric cancer: current status and future perspectives. J Gastric Cancer 2013; 13: 19-25.
46. Zhang X, Zhang W, Feng Z, et al. Comparison of short-term outcomes of robotic-assisted and laparoscopic-assisted D2 gastrectomy for gastric cancer: a meta-analysis. Videosurgery Miniinv 2021; 16: 443-54.
47. Lopez-Delgado JC, Grau-Carmona T, Trujillano-Cabello J, et al. The effect of enteral immunonutrition in the intensive care unit: does it impact on outcomes? Nutrients 2022; 14: 1904.
48. Cao Y, Han D, Yang S, et al. Effects of pre-operative enteral immunonutrition for esophageal cancer patients treated with neoadjuvant chemoradiotherapy: protocol for a multicenter randomized controlled trial (point trial, pre-operative immunonutrition therapy). BMC Cancer 2022; 22: 650.
49. Tomè D. Amino acid metabolism and signalling pathways: potential targets in the control of infection and immunity. Eur J Clin Nutr 2021; 75: 1319-27.
50. Gutiérrez S, Svahn SL, Johansson ME. Effects of omega-3 fatty acids on immune cells. Int J Mol Sci 2019; 20: 5028.

Received: 26.08.2022, accepted: 3.10.2022.