On the existence of nontrivial solutions for a nonlinear equation relative to a measure-valued Lagrangian on homogeneous spaces

Abstract. We prove the existence of a non-trivial solution for a nonlinear equation related to a measure-valued Lagrangian. The result is based on a compact embedding theorem of the Lagrangian domain and on the application of the Mountain Pass Theorem joined to a Palais-Smale condition.

1. Introduction and Result

We consider a locally compact separable Hausdorff topological space X endowed with a measure m and a quasidistance d. A quasidistance d on X is a function on $X \times X$ with the usual properties of a metric and a weaker version of the triangle inequality

$$d(x, y) \leq c_T(d((x, z) + d(z, y))), \quad c_T \geq 1.$$

The set

$$B(x, R) = \{y \in X : d(x, y) < R\}$$

will be called a quasi-ball. The triple (X, d, m) is assumed to satisfy the following property: for every $R_0 > 0$ there exists a constant $c_0 > 0$, dependent on R_0, such that for $r \leq \frac{R}{2} \leq R \leq R_0$

$$0 < c_0 \left(\frac{r}{R}\right)^\nu m(B(x, R)) \leq m(B(x, r))$$

(1.1)

for every $x \in X$, where ν is a positive real number independent of r, R, R_0. Such a triple (X, d, m) will be called a homogeneous space of dimension ν. We point out, however, that a given exponent ν occurring in (1.1) should be considered, more precisely, as an upper bound of the “homogeneous dimension”, hence we should better call (X, d, m) a homogeneous space of dimension less or equal than ν. Our setting is given by a couple (X, \mathcal{L}), “a homogeneous space X with a Lagrangian \mathcal{L}”, with the following properties

$$(L1): \mathcal{L} : C \mapsto \mathcal{M}(X)$$ is a map which associates with each function u from a given subspace \mathcal{C} of $C(X)$ a measure $\mathcal{L}[u] \in \mathcal{M}^+(X)$, where $C(X)$ denotes the space of all continuous functions on X and $\mathcal{M}^+(X)$ the space of all nonnegative Radon measures on X.

Universit`a degli Studi di Bergamo, Facolt`a di Ingegneria, Viale Marconi, 5, 24044 Dalmine (Bergamo) Italy.
E-mail: Garattini@mi.infn.it.
We assume that there exists \(k \geq 1 \) such that for a given \(p \geq 1 \), the following family of Poincaré-like inequalities holds on the metric quasi-balls \(B(x,r) \subset X \) [2]:

\[
\int_{B(x,r)} |u - u_{x,r}|^p \, dm \leq c_{p,r}^p \int_{B(x,kr)} d\mathcal{L}[u],
\]

where \(u_{x,r} \) is the average of \(u \) on \(B(x,r) \), for every \(u \in C \) and \(B(x,r) \subset X \).

If \(u \in C \) and \(g \in C^1(\mathbb{R}) \) with \(g' \) bounded on \(\mathbb{R} \), then \(g(u) : x \mapsto g(u(x)) \) belong also to \(C \) and

\[
\mathcal{L}[g(u)] = |g'(u)|^p \mathcal{L}[u]
\]

We are interested in nontrivial solution of the following problem

\[
\int_X d\mathcal{L}[u] v(x) + \int_X V(x) u^p(x) v(x) m(dx) = \int_X f(u(x)) v(x) m(dx)
\]

for every \(v \in C \cap L^p(X, Vm) \) where \(u \in C \cap L^p(X, Vm) \) (\(Vm \) is the Radon measure with density \(V \) with respect to \(m \)). Eq. (1.4) is a generalization of the problem of searching for nontrivial solution for a semilinear equation in the framework of Dirichlet forms as studied in Ref. [2] and in the framework of semilinear equations of the form

\[
\triangle u + u^p = 0
\]

considered in Ref. [3]. Further developments on semilinear equations for Dirichlet forms can be found in Ref. [3] for problems of the type

\[
\int_{\Omega} \alpha(u,v)(dx) - \lambda \int_{\Omega} a(x) u(x) v(x) m(dx) = \int_{\Omega} f(u(x)) v(x) m(dx),
\]

where \(\Omega \) is an open bounded subset of \(X \), \(\alpha(u,v) \) is a uniquely defined signed Radon measure on \(X \), \(\lambda \) is an arbitrary nonvanishing number and \(a \in Lip(\Omega) \) with \(a(x) > 0 \). To analyze Eq. (1.4), we assume that

\[
W = \left\{ u : \int_X d\mathcal{L}[u] + \int_X Vu^p m(dx) < +\infty \right\}
\]

and that

\[
\|u\|_W = \left[\int_X d\mathcal{L}[u] + \int_X Vu^p m(dx) \right]^{\frac{1}{p}}
\]

be a norm in \(W \). Moreover let us assume that \(V \in C(X, \mathbb{R}) \) and

\[
V(x) > 0, \quad \forall x \in X
\]

\[
V(x) \to +\infty, \quad \text{as} \quad d(0, x) \to +\infty
\]

where \(0 \) is an arbitrarily fixed point in \(X \). We assume also that \(f(t) \in C(X, \mathbb{R}) \) satisfies the following conditions

\[
f(0) = 0, \quad f(t) = o(t), \quad \text{as} \quad t \to 0
\]
\[(1.11)\quad f(t) = o\left(|t|^\frac{\nu + \mu}{\nu - p}\right), \quad \text{as } |t| \to +\infty\]

if \(\nu > p\)
or

\[(1.12)\quad f(t) = o\left(|t|^\sigma\right), \quad \text{as } |t| \to +\infty\]

\(\sigma > p + 1\), if \(\nu \leq p\). Finally we assume that

\[(1.13)\quad 0 < \mu F(t) = \mu \int_0^t f(s) ds \leq tf(t)\]

where \(p < \frac{\nu \mu}{\nu - p}\) if \(\nu > p\) or \(p < \mu\) if \(\nu \leq p\). We observe that from the assumption \((1.13)\) it follows that there exists \(m > 0\) such that

\[(1.14)\quad F(t) \geq m |t|^\mu\]

for \(|t| \geq 1\). The result we will prove in the next Section is the following:

Theorem 1. Let the assumptions \((1.8), (1.9), (1.10), (1.13)\) hold together with \((1.11)\) if \(\nu > 2\) or with \((1.12)\) if \(\nu = 2\). Then the problem \((1.4)\) has a nontrivial solution.

Acknowledgments: The Author wishes to thank Marco Biroli for very useful and stimulating discussions on this subject.

2. Preliminary results

We begin the section with a covering Lemma and its Corollary.

Lemma 1. A ball \(B(x, R)\) can be covered by a finite number \(n(r, R)\) of balls \(B(x_i, r)\), \(r \leq R\), such that \(x_i \in B(x, R)\) and \(B\left(x_i, \frac{\pi}{2}\right) \cap B\left(x_j, \frac{\pi}{2}\right) = \emptyset\) for \(i \neq j\). Moreover every point of \(B(x, R)\) is covered by at most \(M\) balls \(B(x_i, R)\) where \(M\) depends on \(r\).

Proof. The first part of the result follows immediately from assumption \((1.1)\). For the second part we observe that if a point \(x\) in \(B(x, R)\) is covered by the ball \(B(x_i, r)\), then \(x_i \in B(x, r)\); so the number \(M\) of the balls \(B(x_i, r)\), that cover \(x\), is estimated by the greatest number \(Q\) of points \(y_k\) in \(B(x, r)\) with \(d(y_k, y_{k+1}) \geq \frac{\pi}{2}\) and we observe that, by \((1.1)\), \(Q\) is estimated by a number \(M\) depending only on \(r\).

From Lemma 1, we obtain the following

Corollary 1. The space \(X\) can be covered by a countable union of balls \(B(x_i, r)\), such that \(B\left(x_i, \frac{\pi}{2}\right) \cap B\left(x_j, \frac{\pi}{2}\right) = \emptyset\) for \(i \neq j\). Moreover every point of \(X\) is covered by at most \(M\) balls, where \(M\) depends only on \(r\).

We prove now a compact embedding result

Lemma 2. Let the assumption related to inequality \((1.2)\) holds. Then every sequence \(\{u_n\}\) in \(C\left[B(x, (k + 1)R)\right]\) such that

\[(2.1)\quad \int_{B(x, kr)} dL[u] \leq C\]

is relatively compact in \(L^p\left(B(x, R)\right)\).
Proof. We have to prove that there is a subsequence of \(\{u_n\} \) convergent in \(L^p (B(x, R), m) \). Taking into account assumption (1.1), the ball \(B(x, R) \) can be covered by a finite number of balls \(B(x_j, r_j), r_j \leq \frac{4}{Q}, j = 1, \ldots, Q \) where \(Q \) depends on \(r, R \), such that every point of \(B(x, R) \) belongs at most to \(M \) balls, where \(M \) does not depend on \(r \). Let \(w_{n,m} = u_n - u_m \) and \(\bar{w}_{n,m} = \int_{B(x_j,r)} w_{n,m} \, m(dx) \). Then

\[
\int_{B(x,R)} w_{n,m}^p m(dx) \leq \sum_{j=1}^{Q} \int_{B(x_j,r)} w_{n,m}^p m(dx) = \sum_{j=1}^{Q} \int_{B(x_j,r)} |w_{n,m} - \bar{w}_{n,m} + \bar{w}_{n,m}|^p m(dx)
\]

(2.2) \[
\leq 2^{p-1} \sum_{j=1}^{Q} \int_{B(x_j,r)} |w_{n,m} - \bar{w}_{n,m}|^p m(dx) + 2^{p-1} \sum_{j=1}^{Q} \int_{B(x_j,r)} (\bar{w}_{n,m})^p m(dx).
\]

Since

\[
\int_{B(x_j,r)} (\bar{w}_{n,m})^p m(dx) = \int_{B(x_j,r)} m(dx) \left(\int_{B(x_j,r)} (w_{n,m}) m(dx) \right)^p
\]

(2.3) \[
= \frac{1}{m^{p-1}(B(x_j,r))} \left(\int_{B(x_j,r)} (w_{n,m}) m(dx) \right)^p,
\]

then inequality (2.2) becomes

\[
2^{p-1} \sum_{j=1}^{Q} \int_{B(x_j,r)} |w_{n,m} - \bar{w}_{n,m}|^p m(dx) + 2^{p-1} \sum_{j=1}^{Q} \int_{B(x_j,r)} (\bar{w}_{n,m})^p m(dx)
\]

\[
\leq 2^{p-1} c_{p^{\nu}} \sum_{j=1}^{Q} \int_{B(x_j,kr)} d\mathcal{L}[u] + 2^{p-1} \sum_{j=1}^{Q} \frac{1}{m^{p-1}(B(x_j,r))} \left(\int_{B(x_j,r)} (w_{n,m}) m(dx) \right)^p.
\]

(2.4) \[
\leq 2^{p-1} c_{p^{\nu}} MCK^\nu + \left(\frac{R}{r} \right)^{\nu(p-1)} \frac{2^{p-1}}{m^{p-1}(B(x,R)) c_0} \sum_{j=1}^{Q} \left(\int_{B(x_j,r)} (w_{n,m}) m(dx) \right)^p.
\]

Choose \(r = r_x \) and \(\varepsilon > 0 \) such that \(2^{p-1} c_{p^{\nu}} MCK^\nu \leq \varepsilon \). Suppose \(\{u_n\} \) is weakly convergent in \(L^p (B(x, (k+1) R), m) \) then

\[
\left(\frac{R}{r_x} \right)^{\nu(p-1)} \frac{2^{p-1}}{m^{p-1}(B(x,R)) c_0} \sum_{j=1}^{Q} \left(\int_{B(x_j,r)} (w_{n,m}) m(dx) \right)^p \leq \frac{\varepsilon}{2}
\]

(2.5)
for \(n, m \geq n_\varepsilon \). This implies
\[
\int_{B(x,R)} w_{n,m}^p \, dx \leq \varepsilon
\]
and \(\{u_n\} \) is a Cauchy sequence in the space \(L^p(B(x,R),m) \) then \(\{u_n\} \) is convergent in \(L^p(B(x,R),m) \).

Lemma 3. Let \(W \subset C \) be the space defined in Eq. (1.6) and let us assume that \(W \) be a Banach space w.r.t. \(\| \cdot \|_W \), then the embedding of \(W \) in \(L^p(X,m) \) is compact.

Proof. Let \(\|u_k\|_W \leq C \). After extraction of a subsequence, we have that \(\{u_k\} \) is weakly convergent in \(W \) to \(u \). We suppose, without loss of generality that \(u = 0 \) and prove
\[
\int_X u_k^p \, dx \to 0 \quad (2.7)
\]
when \(k \to +\infty \). Let \(\varepsilon > 0 \), \(\exists R > 0 \) such that \(V(x) \geq 1 + \frac{Cp}{\varepsilon} \) when \(d(x,0) \geq R \). Since \(\int_{B(0,R)} u_k^p \, dx \to 0 \) when \(k \to +\infty \), then \(\exists k \) such that for \(k \geq k_\varepsilon \)
\[
\int_{B(0,R)} u_k^p \, dx \leq \frac{\varepsilon}{1 + Cp} \quad (2.8)
\]
Then for \(k \geq k_\varepsilon \)
\[
\int_X u_k^p \, dx = \int_{B(0,R)} u_k^p \, dx + \int_{X \setminus B(0,R)} u_k^p \, dx \leq \frac{\varepsilon}{1 + Cp} \left[1 + \int_{X \setminus B(0,R)} V u_k^p \, dx \right] \leq \frac{\varepsilon}{1 + Cp} [1 + \|u_k\|_W^p] \leq \varepsilon. \quad (2.9)
\]

3. Proof of Theorem 1

The function on \(W \) associated to our problem can be written as
\[
\varphi(u) = \frac{1}{2} \|u\|_W^p - \int_X F(u(x)) \, m(dx). \quad (3.1)
\]
It can be proved that \(\varphi \in C^1(W,\mathbb{R}) \) and
\[
\langle \varphi'(u), v \rangle = (u,v)_W - \int_X f(x,u(x)) \, v(x) \, m(dx). \quad (3.2)
\]
The critical points of \(\varphi \) are weak solution of our problem, then to prove Theorem 1 it is enough to prove the existence of nontrivial points for \(\varphi \).

Proposition 1. The functional \(\varphi \) satisfies the Palais-Smale condition under assumption of Theorem 1.
Proof. Let \(\{u_k\} \) be a sequence in \(W \) such that
\[
|\varphi'(u_k)| \leq C, \quad \varphi'(u_k) \to 0,
\]
in \(W^* \) as \(k \to +\infty \), where \(W^* \) denotes the dual space of \(W \). From (3.3) we obtain that there exists \(k_0 \) such that for \(k \geq k_0 \),
\[
\|W^* u\| \leq \mu \|u_k\|_W.
\]
Then
\[
C + \|u\|_W^p \geq \varphi(u_k) - \frac{1}{\mu} \langle \varphi'(u_k), u \rangle
\]
\[
= \frac{1}{2} \|u_k\|_W^p - \int_0^\infty F(u_k(x)) m(dx) - \frac{1}{\mu} \left(\|u_k\|_W^p - \int_0^\infty f(u_k(x)) u_k m(dx) \right)
\]
\[
= \left(\frac{1}{2} - \frac{1}{\mu} \right) \|u_k\|_W^p - \int_0^\infty F(u_k(x)) m(dx) - \frac{1}{\mu} \int_0^\infty f(u_k(x)) u_k m(dx) \geq \left(\frac{1}{2} - \frac{1}{\mu} \right) \|u_k\|_W^p.
\]
Since \(\{u_k\} \) is bounded in \(W \) and from Lemma 3, we know that there exists a subsequence strongly convergent in \(L^p(X, m) \) and weakly to \(u \in W \). We apply now the Lemma 5 if \(\nu \geq p \) or the Lemma 6 if \(\nu < p \) of Ref. [4] to the function \(g(t) = f(t) \) and to the sequence \(\{u_k\} \) and we obtain
\[
\lim_{k \to +\infty} \int_0^{\infty} f(u_k)(u_k - u) m(dx) = 0.
\]
From the assumption we have that
\[
|\langle \varphi'(u), v \rangle| \leq \varepsilon_k \|v\|_W
\]
where \(\varepsilon_k \to 0 \) as \(k \to +\infty \). Then from (3.7) we have
\[
\langle \varphi'(u_k), u_k - u \rangle = \langle u_k, u_k - u \rangle_W - \int_0^{\infty} f(x, u_k(x)) (u_k - u)(x) m(dx)
\]
\[
= \|u_k\|_W^p - (u_k, u)_W - \int_0^{\infty} f(x, u_k(x)) (u_k - u)(x) m(dx).
\]
From (3.6) and (3.7) we obtain
\[
\langle \varphi'(u_k), u_k - u \rangle \to \|u_k\|_W^p - (u_k, u)_W \to 0,
\]
when \(k \to +\infty \). This implies that \(\{u_k\} \) converges to \(u \) strongly in \(W \).

Proof of Theorem 4. First we prove that for \(\rho \leq \min \left(\frac{\mu}{\nu} m(B(0, 1)), \frac{1}{\mu} \right) \) small enough \(\varphi(u) \geq \gamma > 0 \) for \(\|u_k\|_W = \rho \). Consider the case \(\nu \geq p \). As in Lemma 5 of Ref. [4] we obtain that for every \(\varepsilon > 0 \) there exists a constant \(C \) such that
\[
0 \leq F(t) \leq \varepsilon \left(|t|^p + |t|^\beta \right) + C |t|^\beta
\]
where \(\beta = \frac{\nu}{\nu - p} \) if \(\nu > p \) or \(\beta = \sigma + 1 \) if \(\nu = p \). There exists \(C \) such that
\[
\|u\|_{L^p(X, m)} \leq C \|u\|_W, \quad \|u\|_{L^\infty(X, m)} \leq C \|u\|_W.
\]
Choose $\varepsilon < \frac{1}{2\rho}$; then
\[
\int_X F(u) m(dx) \leq \varepsilon \left[\int_X |u|^p m(dx) + \int_X |u|^\beta m(dx) \right] + C_\varepsilon \int_X |u|^\beta m(dx)
\]
(3.12)
\[
eq \varepsilon \left(\|u\|_{L^p(X,m)} + \|u\|_{L^\beta(X,m)} \right) + C_\varepsilon \|u\|_{L^\beta(X,m)} \leq \varepsilon \left(C^p \|u\|_W + C^\beta \|u\|_W \right) + C_\varepsilon C^\beta \|u\|_W
\]
and
\[
\varphi(u) = \frac{1}{2} \|u\|_W^p - \int_X F(u) m(dx) \geq \left(\frac{1}{2} - \varepsilon C^p \right) \|u\|_W^p - C^\beta (\varepsilon + C_\varepsilon) \|u\|_W^\beta
\]
(3.13)
\[
\geq \rho^p - C^\beta (\varepsilon + C_\varepsilon) \rho^\beta
\]
and the result follows from the last inequality. We consider now the case $\nu < 2$. From the assumption we obtain that for every $\varepsilon > 0$ there exists a constant $\delta > 0$ such that
(3.14)
\[
F(t) \leq \varepsilon |t|^p
\]
for $|t| \leq \delta$. We observe that there exists C such that
(3.15)
\[
\|u\|_{L^p(X,m)} \leq C \|u\|_W, \quad \|u\|_{L^\infty(X,m)} \leq C \|u\|_W.
\]
Choosing $\|u\|_W = \rho = \frac{\delta}{C}$, we have $\|u\|_{L^\infty(X,m)} \leq \delta$; then
(3.16)
\[
\int_X F(u) m(dx) \leq \varepsilon \int_X |u|^p m(dx) = \varepsilon \|u\|_{L^p(X,m)}^p \leq \varepsilon C^p \|u\|_W^p
\]
and
(3.17)
\[
\varphi(u) = \frac{1}{2} \|u\|_W^p - \int_X F(u) m(dx) \geq \left(\frac{1}{2} - \varepsilon C^p \right) \|u\|_W^p \geq \rho^p.
\]
The result follows from the last inequality. Let us prove the existence of $u_0 \in X \setminus B_{\rho}$ such that $\varphi(u) \leq 0$. Let $u_0 \in D[a]$ be the potential of the ball $B(0,1)$ with respect to the ball $B(0,2)$. Then u_0 is in W and $\|u_0\|_W \geq \text{am}(B(0,1)) > \rho$; we recall that
(3.18)
\[
F(u_0(x)) \geq m |u_0(x)|^\mu
\]
for $x \in B(0,1)$. Let $\gamma > 1$; we have $u_0(x) = 1$ on $B(0,1)$, so
\[
\varphi(\gamma u_0) = \frac{1}{2} \gamma^p \|u_0\|_W^p - \int_X F(\gamma u_0) m(dx) \leq \frac{1}{2} \gamma^p \|u_0\|_W^p - \int_{B(0,1)} F(\gamma u_0) m(dx)
\]
(3.19)
\[
\leq \frac{1}{2} \gamma^p \|u_0\|_W^p - m\gamma^\mu \int_{B(0,1)} |u_0|^\mu m(dx) \leq \frac{1}{2} \gamma^p \|u_0\|_W^p - m\gamma^\mu \mu (B(0,1)).
\]
Since $\mu > p$ we have for $\gamma > \gamma_0$, γ_0 suitable, we have $\varphi(\gamma u_0) < 0$. The proof is completed with the application of the Mountain Pass Theorem.\]
REFERENCES

[1] Fukushima M., *Dirichlet forms and Markov processes*, North Holland Math. Library (1980).
[2] Biroli M., Mosco U., Ann. Mat. Pura Appl. (IV), **169**, (1995), pp. 125-181.
[3] Malý J., Mosco U., Ric. Mat. **48**, Suppl. (1999), 217-231.
[4] Biroli M., Tersian S., Istituto Lombardo (Rend. Sc.) À **131**, 151-168 (1997).
[5] Falconer K.J., Commun. Math. Phys. **206**, (1999), 235-245.
[6] Matzeu, M., Appell, Juergen (ed.), *Recent trends in nonlinear analysis. Festschrift dedicated to Alfonso Vignoli on the occasion of his 60th birthday*. Basel: Birkhaeuser. Prog. Nonlinear Differ. Equ. Appl. 40, 217-231 (2000).