Affective Keys: Towards Unobtrusive Stress Sensing of Smartphone Users

Marc Exposito*
MIT Media Lab
75 Amherst St.
Cambridge, MA 02142, USA
exposito@mit.edu

Javier Hernandez*
MIT Media Lab
75 Amherst St.
Cambridge, MA 02142, USA
javierhr@mit.edu

Rosalind W. Picard
MIT Media Lab
75 Amherst St.
Cambridge, MA 02142, USA
picard@media.mit.edu

* Both authors contributed equally to this work

Abstract
This work explores the use of pressure-sensing to capture cues of the stress of smartphone users while typing. In a controlled laboratory study, 11 participants were asked to write about a recent stressful and relaxing experience in counterbalanced order. Preliminary results show a significant positive correlation between the increase in typing pressure and self-reported stress across the two conditions ($r=0.75$, $p=0.0081$). In addition, we observed a significant negative correlation between the typing pressure baseline and the self-reported stress ($r=-0.74$, $p=0.0093$). These findings can help inform the development of less invasive methods for stress measurement.

Author Keywords
Stress measurement; Pressure-sensitive keyboard; 3D Touch; Affective computing.

ACM Classification Keywords
H.5.2. Information interfaces and presentation: User Interfaces

Introduction
The average adult smartphone user interacts with the device more than 100 times a day [1][2]. Most of these interactions involve typing with the keyboard – to
search, to message someone, to post on social media, and so on [3]. Monitoring these interactions offers a unique opportunity to evaluate the possibility of passively sensing relevant information about the user such as her/his emotional state [4]. This work explores the possibility of using smartphone interactions in the context of stress. In particular, we focus on the stress associated with re-experiencing a stressful past memory. In contrast to other standardized stressors (e.g., arithmetic tasks, public presentations), this type of stressor is more subjective and occurs more frequently while communicating over the phone. By detecting early indicators of stress, we hope to inform the design of novel stress reduction interventions (e.g., [5]) that help reduce some of the adverse health conditions associated with chronic stress [6].

The paper is organized as follows. First, we describe relevant work considering stress sensing and keyboard behavior. Second, we describe the study design and the methods. Third, we review some of the main findings. Finally, we provide some discussion and concluding remarks.

Related Work

Stress is regularly described as an evolutionary response that helps us face life-threatening situations [7], but it often occurs in non-life-threatening everyday activities. While there exist several methods to monitor stress and other emotional states, they usually require expensive and invasive analysis (e.g., hormone testing), wearing of additional devices (e.g., physiological devices), or demanding the cognitive attention of users (e.g., self-reports). To help minimize some of these challenges, less invasive methods such as monitoring typing behavior have been explored (e.g., [8], [9], [10]). For instance, Lv et al. [8] used pressure sensors on keyboards to recognize several emotions. While they obtained a classification accuracy of 93.4% for 6 different emotions, they did not consider stress. In a separate study, Epp et al. [11] showed the feasibility of detecting up to 15 emotional states with an accuracy between 77% to 88%. Nevertheless, their study focused on the analysis of typing patterns instead of typing pressure. In a more recent study, Hernandez et al. [12] used a computer keyboard and a mouse to monitor early cues of stress. Among other findings, their study showed that the stress associated with re-experiencing a stressful memory significantly increased keystroke pressure. However, this and previous studies have mostly considered stationary desktop conditions which may provide more limited sensing opportunities (e.g., only in the office) and may pose less challenges that mobile real-life scenarios (e.g., different types of body posture and activities, several phone handling behaviors). There are, however, some recent efforts that consider emotion recognition in other mobile settings [13][14][15]. For instance, Gao et al. [15] conducted a study to identify user emotions from touch interactions while playing a video game. Among other findings, their study showed that the number of pixels activated on the screen strongly discriminated frustration from other emotional states. However, no direct measurement of pressure was provided.

Motivated by these studies, this work focuses on stress measurement of smartphone users while typing recent life experiences. To the best of our knowledge, we believe our work is the first to use pressure sensing in this context.
Methodology

This section provides details about the input device, tasks, and data collection procedure.

Input device

To perform the data collection, we use the iPhone 6S Plus (Apple, Inc.) with iOS 11.1. One of the capabilities of this device is the 3D Touch, which provides pressure estimates for each touch interaction. This technology uses a combination of microscopic changes detected by the capacitive sensors and the accelerometer sensors of the device. The range of possible pressure values is 0 (no pressure) to a maximum pressure determined by the system (6.7 in our dataset). To collect the data, we built a custom QWERTY keyboard (see Figure 1) that logged the timing, position, and pressure values associated with each keyboard interaction.

Experimental Protocol

To study whether mobile typing pressure changes during stress, we designed a within-subject laboratory experiment in which participants performed an expressive writing task under relaxed and stress conditions in randomized order.

In particular, we requested participants to re-experience a relaxing and a stressful recent past memory and write about it for a recommended time of 5 minutes. To help avoid adding other sources of stress, participants had the possibility of submitting their responses as soon as they felt they had written all that they could about the event. In addition, participants were allowed to make spelling, grammar, and sentence errors. Before each of the tasks, participants were requested to watch a short video of relaxing paradise beaches and/or to close their eyes for two minutes to help elicit a neutral state. After each of the tasks, participants were requested to self-report their emotional valence, arousal, and stress levels on a 7-point Likert scale (see Figure 2).

Participants of the study were instructed to sit on a chair, hold the phone with both hands, and use their thumbs for typing. To help minimize potential biases, they were told that the goal of the experiment was to better understand interactions with smartphones but were debriefed at the end of the experiment. They were also told the content of the writing was not collected due to privacy reasons. In addition, participants had to perform a short tutorial to help minimize the novelty effect of the device. In particular, they had to transcribe a short piece of text and complete a self-report survey. Figure 3 shows an overview of the whole experimental protocol. The total duration of the experiment was around 20 minutes and participants received a $5 Amazon gift card compensation.

Data Overview

Twelve participants (6 females and 6 males) participated in this study. However, one of the male
participants requested to end the experiment halfway through due to high-stress levels associated with his memory during the stressful EW. Thus, the data that was analyzed corresponds to N=11 participants (6 females and 5 males). The average number of keystrokes across participants was 593.64 (Standard Deviation=245.73) and 666.73 (STD=223.87) during the calm and stressed conditions, respectively. The average number of minutes was 3.79 (STD=1.31) and 4.18 (STD=0.94) during the calm and stressed conditions, respectively. All participants were fluent in English, had previous experience using smartphones (mainly iOS and Android devices), and did not suffer any tremors or have past history of upper extremity musculoskeletal disorders. These participants were recruited through e-mail sent to several mailing lists inside the academic institution. All participants except two of them had a background in computer science or related field. The average age for these 11 participants was 26 with a minimum of 19 and a maximum of 35 years old.

Results

Figure 4 shows the average self-reported ratings of emotional stress (top), valence (middle), and arousal (bottom) after the relaxed (blue) and stressed (red) conditions. Using the Wilcoxon signed rank test, we observe that the stressed condition was associated with significant increases in self-reported stress (Z=2.588, \(p=0.010\)) and arousal (Z=2.232, \(p=0.026\)), and a significant decrease of valence (Z=-2.850, \(p=0.004\)) which is consistent with the protocol expectations. When considering stress reports, these differences were consistent for 8 out of the 11 participants but the remaining 3 participants provided the same stress report for both conditions. Overall, these findings seem to support that the different tasks elicited the intended emotions for the majority of participants. However, clearer instructions and/or longer expressive writing tasks would be recommended to better elicit the intended emotions in all the participants.

Figure 5 shows the average typing pressure and self-reported stress in the relaxing (blue) and stressed (red) conditions for all the participants (dotted lines).
nature of stress. The three participants who provided unchanged stress self-reports can be easily identified by the straight lines along the vertical axis (i.e., P5, P7, P10). By contrast, two participants (i.e., P3, P6) show a relatively large variety on stress levels. We believe the differences between these previous two clusters are associated with the effectiveness of the stressor and how it varied across people. Overall, we can observe an increase for both stress self-reports and typing pressure for most of the participants after the stressed condition. To help assess the consistency of these changes, we computed the difference in typing pressure and self-reported stress for each of the participants and computed their Spearman’s Rank-order correlation. As hypothesized, we found a significant positive correlation ($r=0.75$, $p=0.0081$) which indicates that an increase of self-reported stress is usually associated with an increase of typing pressure and vice versa. In addition to these differences, we can also observe that participants seem to cluster into two different groups: one with lower stress self-reports and higher typing pressure baseline (i.e., P2, P3, P5, P6, P8), and another one with higher stress self-reports and lower typing pressure baseline (i.e., P1, P4, P7, P9, P10, P11). These differences become even more apparent when only considering the values associated with the relaxed condition (due to large self-report increase of P6). Similarly, we use Spearman’s correlation between the two variables and found a significant negative correlation ($r=-0.74$, $p=0.0093$) which indicates that participants with lower stress ratings may have higher typing pressure baselines and vice versa. These two clusters seem to be independent to the ordering of the conditions, the gender of the participants, the amount of inputted text, and the self-reported valence and arousal. While we did not control for all the variables in this experiment, we believe these differences may be associated with different body postures during the typing task. For instance, participants with higher self-report stress levels may prefer a tenser upright seated posture and type with less overall pressure. In contrast, participants with lower self-reported stress levels may prefer a more relaxed slumped seated posture and type with more overall pressure.

Discussion

In a small controlled laboratory experiment, we found significant correlations between typing pressure and self-reported stress. In particular, we observed that differences in typing pressure across relaxed and stressful expressive writing tasks are correlated with differences in self-reported stress. While the sample size is limited both in number of participants and duration of the tasks, these findings are consistent with previous research considering similar activities in controlled desktop scenarios [12]. Thus, these preliminary findings seem to support that the same differences observed in more static desktop environments are generalizable to more dynamic and challenging smartphone interactions. As in previous work, we believe the increase of pressure is mainly associated with the increase of muscle tension of the stress response. However, more research is needed to identify if there are other influencing sources (e.g., distance between keystrokes and hands, changes of body posture during stress, different device handling behaviors). In addition, we have observed that overall typing pressure baseline is negatively correlated with self-reported stress. This finding is important as stress is very subjective and could be used to help develop person-specific models that automatically measure stress, as suggested by prior work [16][17]. Finally,
this work only considers pressure sensing but other
metrics (e.g., keystroke duration, distribution of
keystrokes) could be used to help build more robust
stress sensing methods and better understand some of
the observed differences. For example, we would like to
analyze the error rate for both conditions in future
studies. Future work will consider expanding the
number of participants as well as study real-life settings
in which the context of users is less constrained. It will
also propose potential designs that leverage the
findings of this work in meaningful ways.

Conclusions
This work shows results that support the possibility of
using relative changes in pressure to capture cues of
stress of smartphone users during typing. We are
looking towards a future in which smartphones will
offer a comfortable and passive sensing platform that
helps support and promote our emotional well-being.

Acknowledgements
This material is based upon work supported by the MIT
Media Lab Consortium and the NTT Data Corporation.

References
1. Hossein Falaki, Ratul Mahajan, Srikanth Kandula,
Dimitrios Lymberopoulos, Ramesh Govindan, and
Deborah Estrin. 2010. Diversity in smartphone
usage. In Proceedings of the 8th international
conference on Mobile systems, applications, and
services (MobiSys ’10). ACM, New York, NY, USA,
179-194. DOI=http://dx.doi.org/10.1145/1814433.1814453
2. Steven Van Canneyt, Marc Bron, Andy Haines,
and Mounia Lalmas. 2017. Describing Patterns and
Disruptions in Large Scale Mobile App Usage Data.
In Proceedings of the 26th International
Conference on World Wide Web Companion (WWW
’17 Companion). International World Wide Web
Conferences Steering Committee, Republic and
Canton of Geneva, Switzerland, 1579-1584. DOI:
https://doi.org/10.1145/3041021.3051113
3. Jie Yang, Yuanyuan Qiao, Xinyu Zhang, Haiyang
He, Fang Liu, and Gang Cheng. Characterizing user
behavior in mobile internet. IEEE transactions on
emerging topics in computing 3, no. 1 (2015): 95-
106.
4. Rosalind W. Picard. 1997. Affective Computing. MIT
Press, Cambridge, MA, USA.
5. Pablo Paredes and Matthew Chan. 2011.
CalmMeNow: exploratory research and design of
stress mitigating mobile interventions. In CHI ’11
Extended Abstracts on Human Factors in
Computing Systems (CHI EA ’11). ACM, New York,
NY, USA, 1699-1704. DOI:
https://doi.org/10.1145/1979742.1979831
6. Bruce S. McEwen, and Teresa Seeman. Stress and
affect: Applicability of the concepts of allostasis and
allostatic load. (2003).
7. Robert M. Sapolsky. Stress hormones: good and
bad. Neurobiology of disease 7, no. 5 (2000): 540-
542.
8. Hai-Rong Lv, Zhong-Lin Lin, Wen-Jun Yin, and Jin
Dong. Emotion recognition based on pressure
sensor keyboards. In Multimedia and Expo, 2008
IEEE International Conference on, pp. 1089-1092.
IEEE, 2008.
9. Philippe Zimmermann, Sissel Guttormsen, Brigitta
Danuser, and Patrick Gomez. Affective computing—a
rationale for measuring mood with mouse and
keyboard. International journal of occupational
safety and ergonomics 9, no. 4 (2003): 539–551.
10. Lisa M. Vizer, Lina Zhou, and Andrew Sears. 2009.
Automated stress detection using keystroke and
linguistic features: An exploratory study. Int. J.
Hum.-Comput. Stud. 67, 10 (October 2009), 870-
886.
11. Clayton Epp, Michael Lippold, and Regan L. Mandryk. 2011. Identifying emotional states using keystroke dynamics. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’11). ACM, New York, NY, USA, 715-724. DOI: https://doi.org/10.1145/1978942.1979046

12. Javier Hernandez, Pablo Paredes, Asta Roseway, and Mary Czerwinski. 2014. Under pressure: sensing stress of computer users. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’14). ACM, New York, NY, USA, 51-60. DOI: https://doi.org/10.1145/2556288.2557165

13. Matteo Ciman, Katarzyna Wac, and Ombretta Gaggi. 2015. iSenseStress: assessing stress through human-smartphone interaction analysis. In Proceedings of the 9th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth ’15). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium, 84-91.

14. Matthew K. Miller and Regan L. Mandryk. 2016. Differentiating In-Game Frustration from at-Game Frustration using Touch Pressure. In Proceedings of the 2016 ACM International Conference on Interactive Surfaces and Spaces (ISS ’16). ACM, New York, NY, USA, 225-234. DOI: https://doi.org/10.1145/2992154.2992185

15. Yuan Gao, Nadia Bianchi-Berthouze, and Hongying Meng. 2012. What Does Touch Tell Us about Emotions in Touchscreen-Based Gameplay?. ACM Trans. Comput.-Hum. Interact. 19, 4, Article 31 (December 2012), 30 pages. DOI: https://doi.org/10.1145/2395131.2395138

16. Lisa M. Vizer and Andrew Sears. 2017. Efficacy of personalized models in discriminating high cognitive demand conditions using text-based interactions. Int. J. Hum.-Comput. Stud. 104, C (August 2017), 80-96. DOI: https://doi.org/10.1016/j.ijhcs.2017.03.001

17. Agata Kolakowska. A review of emotion recognition methods based on keystroke dynamics and mouse movements. In Human System Interaction (HSI), 2013 The 6th International Conference on, pp. 548-555. IEEE, 2013.