Supplementary Material

An efficient and convenient synthesis, characterization and antimicrobial evaluation of some new tetracyclic 1,4-benzothiazines

Satbir Mor, Savita Nagoria

Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar-125001, Haryana, India

Address correspondence to: Satbir Mor, Email: satbir_mor@yahoo.co.in

Phone No. +91-1662-263397

Fax No.+91-1662-276240

Experimental detail, Characterization data, and NMR (1H and 13C) spectra of \textbf{4a–4t} and 2D-NMR spectra of \textbf{4b}

Contents

Experimental detail ... S2
Characterization data .. S4
General Procedure for antimicrobial activity S15
1H and 13C NMR Spectra of \textbf{4a–4t} ... S16
2D-NMR Spectra of \textbf{4b}... S56
Commercial reagents were utilized as received from suppliers without additional purification. 2-Aminothiophenol was purchased from Sigma-Aldrich. All the synthesized compounds were characterized by 1H NMR, 13C NMR, IR, ESI-MS and microanalysis. All the melting points (°C) were recorded on electrothermal apparatus in open capillary tubes and are uncorrected. Thin layer chromatography was used for monitoring the progress of the reaction and ascertaining the purity of the synthesized compounds on pre-coated TLC plates (Merck Keiselgel F_{254}) using hexane-ethyl acetate solvent system of different polarity and visualization was achieved by exposure to UV light. Columns were packed as slurry of silica gel (60–120 mesh) in hexane. Initially, compounds were adsorbed on silica gel in appropriate solvent and then loaded on column as slurry in hexane. The FTIR spectra were scanned on IR Affinity-1 FTIR (Shimadzu) spectrophotometer in KBr and wave numbers (ν) are reported in cm$^{-1}$. Nuclear Magnetic Resonance spectra (1H at 400 MHz and 13C at 100 MHz) were recorded on 400 MHz Bruker AVANCE-III spectrometer using CDCl$_3$ as solvent and tetramethylsilane (TMS) as internal standard. DEPT (Distortionless Enhancement by Polarization Transfer) and 2D-NMR viz. COSY (correlation spectroscopy), HSQC (heteronuclear single-quantum coherence) and HMBC (heteronuclear multiple bond correlation) spectra of compound $4b$ were also recorded on 400 MHz Bruker AVANCE-III spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) and coupling constants (J) are expressed in Hertz (Hz). Multiplicities in NMR signals are designated as s (singlet), d (doublet), dd (doublet of doublet), t (triplet), q (quartet) and m (multiplet, for unresolved signals). Mass spectra were scanned on Waters Quardropole Detector (TDQ), Waters gtof micro Mass spectrometer and Agilent 6410B Triple Quad LCMS spectrometer. Microanalyses were performed on Thermo Scientific FLASH-2000 CHN analyser.
All the synthesized compounds were found in good agreement with the elemental analysis. Analytical results for C, H and N were found to be within ± 0.4 % of the theoretical values. Nomenclature of the compounds was assigned with the help of Chem Draw Ultra 12.0.

General procedure for the synthesis of 2-aryl-1H-indene-1,3(2H)-diones (1)

Condensation of equimolar quantities of phthalide and appropriate benzaldehyde under the influence of sodium methoxide and ethylacetate led to the formation of 2-aryl-1H-indene-1,3(2H)-diones (1).

General procedure for the synthesis of 2-aryl-2-bromo-1H-indene-1,3(2H)-diones (2)

The 2-aryl-1H-indene-1,3(2H)-diones (1) upon bromination in Br₂/chloroform furnished the corresponding 2-aryl-2-bromo-1H-indene-1,3(2H)-diones (2) according to the procedure as illustrated in literature.\[41\]

General procedure for the synthesis of 5-substituted-2-aminobenzenethiols (3)

The reaction of potassium thiocyanate and bromine (generating thiocyanogen, [(SCN)₂], \textit{in situ}) on appropriate aniline yielded the corresponding 6-substituted-2-aminobenzothiazoles, which upon subsequent base catalyzed hydrolytic fission afforded the corresponding 5-substituted 2-aminobenzenethiols (3) in good yields.\[42–44\]

General procedure for the synthesis of benzo[b]indeno[1,2-e][1,4]thiazin-11(10aH)-ones (4)

A solution of equimolar quantities of 2-aryl-2-bromo-1H-indene-1,3(2H)-dione (2) and 2-aminobenzenethiol/5-substituted 2-aminobenzenethiol (3) in dry ethanol (30 mL) was heated at reflux on a water bath for 8–13 h. Thereafter, the reaction mixture was cooled to room temperature and solid thus obtained was filtered, dried and purified on silica gel (60–120 mesh).
column prepacked in hexane. Elution of the column with hexane:ethylacetate (19:1, v/v) gave a homogeneous residue, which upon crystallization from chloroform furnished benzo[b]indeno[1,2-e][1,4]thiazin-11(10aH)-ones (4) in high yields (82–95%).

Characterization data

10a-(4-Nitrophenyl)benzo[b]indeno[1,2-e][1,4]thiazin-11(10aH)-one (4a)

Orange solid, yield 85%; mp 250–252 °C; IR (KBr, cm⁻¹): νmax 3113, 3065 (aromatic C–H), 1684 (C=O), 1647 (C=N), 1512 (asymmetric N–O stretch.), 1346 (symmetric N–O stretch.); ¹H NMR (400 MHz, CDCl₃): δ 9.14 (d, 1H, J = 8.44 Hz, H-6), 8.41 (d, 2H, J = 8.20 Hz, H-3', H-5'), 7.97 (d, 1H, J = 7.52 Hz, H-1), 7.73 (d, 2H, J = 8.20 Hz, H-2', H-6'), 7.55–7.09 (m, 5H, H-2, H-3, H-7, H-8, H-9), 6.48 (d, 1H, J = 7.92 Hz, H-4); ¹³C NMR (100 MHz, CDCl₃): δ 165.13 (C-11), 148.69 (C-4'), 141.47 (C-1'), 133.73 (C-5a), 131.87 (C-3), 131.09 (C-2', C-6'), 130.36 (C-4b), 129.03 (C-2), 128.56 (C-4a), 128.14 (C-7), 127.67 (C-11a), 125.77 (C-8), 125.61 (C-9), 124.93 (C-3', C-5'), 123.51 (C-1), 121.46 (C-4), 119.51 (C-6), 119.15 (C-9a), 115.32 (C-10a); ESI-MS m/z: [M+H]⁺ calcd. for C₂₁H₁₂N₂O₃S, 373.06; found, 373.14. Anal. calcd. for C₂₁H₁₂N₂O₃S: C, 67.73; H, 3.25; N, 7.52; found: C, 67.92; H, 3.48; N, 7.24.

8-Methyl-10a-(4-nitrophenyl)benzo[b]indeno[1,2-e][1,4]thiazin-11(10aH)-one (4b)

Orange crystals, yield 87%; mp 252–254 °C; IR (KBr, cm⁻¹): νmax 3076, 3045 (aromatic C–H), 2947, 2855 (aliphatic C–H), 1686 (C=O), 1647 (C=N), 1516 (asymmetric N–O stretch.), 1348 (symmetric N–O stretch.); ¹H NMR (400 MHz, CDCl₃): δ 9.03 (d, 1H, J = 8.60 Hz, H-6), 8.41 (d, 2H, J = 8.80 Hz, H-3', H-5'), 7.96 (d, 1H, J = 7.60 Hz, H-1), 7.73 (d, 2H, J = 8.80 Hz, H-2', H-6'), 7.45–7.49 (m, 1H, H-2), 7.28–7.32 (m, 1H, H-3), 7.09 (dd, 1H, J = 8.60 Hz, 1.44 Hz, H-7), 6.90 (d, 1H, J = 1.44 Hz, H-9), 6.47 (d, 1H, J = 8.00 Hz, H-4), 2.31 (s, 3H, CH₃); ¹³C NMR
(100 MHz, CDCl$_3$): δ 164.98 (C-11), 148.65 (C-4'), 141.59 (C-1'), 135.71 (C-5a), 131.70 (C-3), 131.20 (C-8), 131.11 (C-2', C-6'), 130.33 (C-4b), 128.96 (C-2), 128.74 (C-7), 128.64 (C-4a), 127.62 (C-11a), 125.84 (C-9), 124.91 (C-3', C-5'), 123.41 (C-1), 121.44 (C-4), 119.35 (C-6), 118.79 (C-9a), 115.29 (C-10a), 20.68 (CH$_3$); TOF MS ES m/z: [M+Na]$^+$ calcd. for C$_{22}$H$_{14}$N$_2$O$_3$S 409.0623; found, 409.0620. *Anal.* calcd. for C$_{22}$H$_{14}$N$_2$O$_3$S: C, 68.38; H, 3.65; N, 7.25; found: C, 68.34; H, 3.34; N, 7.43.

8-Methoxy-10a-(4-nitrophenyl)benzo[b]indeno[1,2-e][1,4]thiazin-11(10aH)-one (4c)

Yellow solid, yield 82%; mp 246–248 °C; IR (KBr, cm$^{-1}$): ν_{max} 3107, 3051 (aromatic C–H), 2882 (aliphatic C–H), 1687 (C=O), 1647 (C=N), 1518 (asymmetric N–O stretch.), 1347 (symmetric N–O stretch.); 1H NMR (400 MHz, CDCl$_3$): δ 9.14 (d, 1H, $J = 8.60$ Hz, H-6), 8.40 (d, 2H, $J = 8.76$ Hz, H-3', H-5'), 7.95 (d, 1H, $J = 7.60$ Hz, H-1), 7.72 (d, 2H, $J = 8.76$ Hz, H-2', H-6'), 7.50–6.76 (m, 3H, H-2, H-3, H-7), 6.61 (d, 1H, $J = 2.40$ Hz, H-9), 6.46 (d, 1H, $J = 8.00$ Hz, H-4), 3.80 (s, 3H, OCH$_3$); 13C NMR (100 MHz, CDCl$_3$): δ 165.02 (C-11), 156.58 (C-8), 148.67 (C-4'), 141.56 (C-1'), 131.60 (C-3), 131.10 (C-2', C-6'), 130.33 (C-4b), 129.05 (C-2), 128.67 (C-4a), 127.64 (C-11a), 127.23 (C-5a), 124.92 (C-3', C-5'), 123.48 (C-1), 121.49 (C-4), 121.18 (C-9a), 120.65 (C-6), 115.30 (C-10a), 112.64 (C-9), 110.72 (C-7), 55.66 (OCH$_3$); ESI-MS m/z: [M+H]$^+$ calcd. for C$_{22}$H$_{14}$N$_2$O$_4$S, 403.08; found, 413.12. *Anal.* calcd. for C$_{22}$H$_{14}$N$_2$O$_4$S: C, 65.66; H, 3.51; N, 6.96; found: C, 65.98; H, 3.23; N, 7.23.

8-Bromo-10a-(4-nitrophenyl)benzo[b]indeno[1,2-e][1,4]thiazin-11(10aH)-one (4d)

Yellow solid, yield 84%; mp 290–296 °C; IR (KBr, cm$^{-1}$): ν_{max} 3111, 3067 (aromatic C–H), 1688 (C=O), 1647 (C=N), 1522 (asymmetric N–O stretch.), 1346 (symmetric N–O stretch.); 1H NMR (400 MHz, CDCl$_3$): δ 9.04 (d, 1H, $J = 9.08$ Hz, H-6), 8.42 (d, 2H, $J = 8.76$ Hz, H-3', H-5'), 7.96
(d, 1H, J = 7.64 Hz, H-1), 7.73 (d, 2H, J = 8.76 Hz, H-2', H-6'), 7.51–7.31 (m, 3H, H-2, H-3, H-7), 7.21 (d, 1H, J = 2.16 Hz, H-9), 6.48 (d, 1H, J = 8.00 Hz, H-4); 13C NMR (100 MHz, CDCl3): δ 165.06 (C-11), 148.78 (C-4'), 140.97 (C-1'), 132.78 (C-5a), 132.12 (C-3), 131.10 (C-2', C-6'), 130.88 (C-7), 130.31 (C-4b), 129.31 (C-2), 128.35 (C-4a), 127.84 (C-9), 127.61 (C-11a), 125.03 (C-3', C-5'), 123.59 (C-1), 121.56 (C-4), 121.39 (C-8), 120.70 (C-6), 118.30 (C-9a), 114.52 (C-10a); ESI-MS m/z: [M+H]+ calcd. for C21H11BrN2O3S, 450.98 ([79Br]), 452.98 ([81Br]); found, 451.02 ([79Br]), 453.01 ([81Br]). Anal. calcd. for C21H11BrN2O3S: C, 55.89; H, 2.46; N, 6.21; found: C, 55.57; H, 2.74; N, 6.52.

8-Chloro-10a-(4-nitrophenyl)benzo[b]indeno[1,2-e][1,4]thiazin-11(10aH)-one (4e)

Orange solid, yield 86%; mp 284–286 °C; IR (KBr, cm⁻¹): νmax 3105, 3054 (aromatic C–H), 1686 (C=O), 1647 (C=N), 1517 (asymmetric N–O stretch.), 1347 (symmetric N–O stretch.); 1H NMR (400 MHz, CDCl3): δ 9.15 (d, 1H, J = 9.12 Hz, H-6), 8.40 (d, 2H, J = 8.72 Hz, H-3', H-5'), 7.96 (d, 1H, J = 7.64 Hz, H-1), 7.73 (d, 2H, J = 8.72 Hz, H-2', H-6'), 7.51–7.17 (m, 3H, H-2, H-3, H-7), 7.05 (d, 1H, J = 2.32 Hz, H-9), 6.48 (d, 1H, J = 8.00 Hz, H-4); 13C NMR (100 MHz, CDCl3): δ 165.01 (C-11), 148.72 (C-4'), 141.21 (C-1'), 132.52 (C-5a), 132.07 (C-3), 131.09 (C-2', C-6'), 130.49 (C-8), 130.32 (C-4b), 129.26 (C-2), 128.32 (C-4a), 127.63 (C-9), 127.21 (C-11a), 125.01 (C-3', C-5'), 124.88 (C-7), 123.57 (C-1), 121.72 (C-9a), 121.55 (C-4), 120.39 (C-6), 115.18 (C-10a); ESI-MS m/z: [M+H]+ calcd. for C21H11ClN2O3S, 407.03 ([35Cl]), 409.03 ([37Cl]); found, 407.04 ([35Cl]), 409.05 ([37Cl]). Anal. calcd. for C21H11ClN2O3S: C, 62.00; H, 2.73; N, 6.89; found: C, 61.78; H, 2.97; N, 6.57.

10a-(4-Ethylphenyl)benzo[b]indeno[1,2-e][1,4]thiazin-11(10aH)-one (4f)
Light yellow crystals, yield 83%; mp 190–194 °C; IR (KBr, cm⁻¹): νmax 3109, 3063 (aromatic C–H), 2966, 2870 (aliphatic C–H); 1693 (C=O), 1649 (C=N); 1H NMR (400 MHz, CDCl₃): δ 9.18 (d, 1H, J = 8.48 Hz, H-6), 7.93 (d, 1H, J = 7.64 Hz, H-1), 7.43–7.06 (m, 9H, H-2, H-3, H-7, H-8, H-9, H-2', H-3', H-5', H-6'), 6.55 (d, 1H, J = 8.00 Hz, H-4), 2.77 (q, 2H, J = 7.60 Hz, CH₂), 1.34 (t, 3H, J = 7.60 Hz, CH₃); 13C NMR (100 MHz, CDCl₃): δ 165.22 (C-11), 146.24 (C-4'), 133.88 (C-5a), 131.14 (C-1'), 130.89 (C-4b), 129.33 (C-2', C-6'), 129.09 (C-3', C-5'), 128.29 (C-4a), 128.17 (C-2), 127.63 (C-7), 126.67 (C-11a), 125.44 (C-8), 125.37 (C-9), 122.97 (C-1), 121.93 (C-4), 120.13 (C-9a), 119.36 (C-6), 118.66 (C-10a), 28.79 (–CH₂CH₃), 15.36 (–CH₂CH₃), ESI-MS m/z: [M+H]⁺ calcd. for C₂₃H₁₇NOS, 356.11; found, 356.10. Anal. calcd. for C₂₃H₁₇NOS: C, 77.72; H, 4.82; N, 3.94; found: C, 77.43; H, 4.65; N, 4.28.

10a-(4-Ethylphenyl)-8-methylbenzob[1,2-e][1,4]thiazin-11(10aH)-one (4g)

Light yellow crystals, yield 90%; mp 186–188 °C; IR (KBr, cm⁻¹): νmax 3119, 3057, 3026 (aromatic C–H), 2972, 2936, 2870 (aliphatic C–H); 1682 (C=O), 1647 (C=N); 1H NMR (400 MHz, CDCl₃): δ 9.08 (d, 1H, J = 8.60 Hz, H-6), 7.93 (d, 1H, J = 7.64 Hz, H-1), 7.43–7.04 (m, 7H, H-2, H-3, H-7, H-2', H-3', H-5', H-6'), 6.90 (d, 2H, J = 1.48 Hz, H-9), 6.54 (d, 1H, J = 8.00 Hz, H-4), 2.77 (q, 2H, J = 7.60 Hz, CH₂), 2.29 (s, 3H, CH₃), 1.33 (t, 3H, J = 7.60 Hz, CH₃); 13C NMR (100 MHz, CDCl₃): δ 165.09 (C-11), 146.21 (C-4'), 135.26 (C-5a), 131.96 (C-1'), 131.40 (C-8), 131.30 (C-3), 130.89 (C-4b), 129.39 (C-2', C-6'), 129.10 (C-3', C-5'), 128.42 (C-4a), 128.30 (C-2), 128.14 (C-7), 126.68 (C-11a), 125.72 (C-9), 122.91 (C-1), 121.94 (C-4), 119.82 (C-9a), 119.25 (C-6), 118.67 (C-10a), 28.82 (–CH₂CH₃), 20.68 (CH₃), 15.41 (–CH₂CH₃), ESI-MS m/z: [M+H]⁺ calcd. for C₂₄H₁₉NOS, 370.13; found, 370.68. Anal. calcd. for C₂₄H₁₉NOS: C, 78.02; H, 5.18; N, 3.79; found: C, 78.34; H, 5.42; N, 3.45.
10a-(4-Ethylphenyl)-8-methoxybenzo[b]indeno[1,2-e][1,4]thiazin-11(10aH)-one (4h)

Yellow solid, yield 92%; mp 166–168 °C; IR (KBr, cm⁻¹): νmax 3123, 3073, 3040 (aromatic C–H), 2968, 2934, 2839 (aliphatic C–H), 1676 (C=O), 1649 (C=N); ¹H NMR (400 MHz, CDCl₃): δ 9.16 (d, 1H, J = 9.28 Hz, H-6), 7.91 (d, 1H, J = 7.60 Hz, H-1), 7.42–6.76 (m, 7H, H-2, H-3, H-7, H-2', H-3', H-5', H-6'), 6.62 (d, 1H, J = 1.92 Hz, H-9), 6.54 (d, 1H, J = 7.96 Hz, H-4), 3.79 (s, 3H, OCH₃), 2.77 (q, 2H, J = 7.60 Hz, CH₂), 1.33 (t, 3H, J = 7.60 Hz, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 164.87 (C-11), 156.53 (C-8), 146.25 (C-4'), 131.82 (C-1'), 131.21 (C-3), 130.82 (C-4b), 129.44 (C-2', C-6'), 129.10 (C-3', C-5'), 128.47 (C-4a), 128.19 (C-2), 127.28 (C-5a), 126.79 (C-11a), 122.82 (C-1), 121.92 (C-4), 121.43 (C-9a), 120.60 (C-6), 117.92 (C-10a), 112.48 (C-9), 110.66 (C-7), 55.54 (OCH₃), 28.82 (–CH₂CH₃), 15.40 (–CH₂CH₃); ESI-MS m/z: [M+H]⁺ calcd. for C₂₄H₂₉NO₂S, 386.12; found, 386.14. Anal. calcd. for C₂₄H₂₉NO₂S: C, 74.78; H, 4.97; N, 3.63; found: C, 74.43; H, 4.64; N, 3.95.

8-Bromo-10a-(4-ethylphenyl)benzo[b]indeno[1,2-e][1,4]thiazin-11(10aH)-one (4i)

Yellow solid, yield 95%; mp 227–230 °C; IR (KBr, cm⁻¹): νmax 3109, 3059 (aromatic C–H), 2968, 2930 (aliphatic C–H), 1680 (C=O), 1649 (C=N); ¹H NMR (400 MHz, CDCl₃): δ 9.09 (d, 1H, J = 9.04 Hz, H-6), 7.92 (d, 1H, J = 7.56 Hz, H-1), 7.45–7.27 (m, 7H, H-2, H-3, H-7, H-2', H-3', H-5', H-6'), 7.19 (d, 1H, J = 2.28 Hz, H-9), 6.55 (d, 1H, J = 8.00 Hz, H-4), 2.78 (q, 2H, J = 7.60 Hz, CH₂), 1.33 (t, 3H, J = 7.60 Hz CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 165.20 (C-11), 146.50 (C-4'), 132.99 (C-5a), 131.71 (C-3), 131.38 (C-1'), 130.88 (C-4b), 130.40 (C-7), 129.34 (C-2', C-6'), 129.22 (C-3', C-5'), 128.47 (C-2), 128.14 (C-4a), 127.67 (C-9), 126.65 (C-11a), 123.09 (C-1), 122.51 (C-8), 122.04 (C-4), 120.63 (C-6), 117.91 (C-9a), 117.88 (C-10a), 28.83 (–CH₂CH₃), 15.38 (–CH₂CH₃); ESI-MS m/z: [M+H]⁺ calcd. for C₂₃H₁₈BrNOS, 434.02 (⁷⁹Br),
436.02 (81Br); found, 434.00 (79Br), 436.01 (81Br). Anal. calcd. for C\textsubscript{23}H\textsubscript{16}BrNOS: C, 63.60; H, 3.71; N, 3.22; found: C, 63.28; H, 3.93; N, 3.56.

8-Chloro-10a-(4-ethylphenyl)benzo[b]indeno[1,2-e][1,4]thiazin-11(10aH)-one (4j)

Yellowish orange solid, yield 84%; mp 230–232 °C; IR (KBr, cm-1): \(\nu_{\text{max}}\) 3113, 3061, 3024 (aromatic C–H), 2970, 2934, 2876 (aliphatic C–H), 1680 (C=O), 1649 (C=N); \(^1\)H NMR (400 MHz, CDCl\textsubscript{3}): \(\delta\) 9.16 (d, 1H, \(J = 9.04\) Hz, H-6), 7.93 (d, 1H, \(J = 7.60\) Hz, H-1), 7.43–7.17 (m, 7H, H-2, H-3, H-7, H-2', H-3', H-5', H-6'), 7.05 (d, 2H, \(J = 2.44\) Hz, H-9), 6.56 (d, 1H, \(J = 8.00\) Hz, H-4), 2.78 (q, 2H, \(J = 7.60\) Hz, CH\textsubscript{2}), 1.33 (t, 3H, \(J = 7.60\) Hz, CH\textsubscript{3}); \(^{13}\)C NMR (100 MHz, CDCl\textsubscript{3}): \(\delta\) 165.16 (C-11), 146.47 (C-4'), 132.49 (C-5a), 131.66 (C-3), 131.39 (C-1'), 130.87 (C-4b), 130.36 (C-8), 129.33 (C-2', C-6'), 129.19 (C-3', C-5'), 128.43 (C-2), 128.14 (C-4a), 127.42 (C-9), 126.68 (C-11a), 124.86 (C-7), 123.06 (C-1), 122.18 (C-9a), 122.02 (C-4), 120.34 (C-6), 117.77 (C-10a), 28.80 (–CH\textsubscript{2}CH\textsubscript{3}), 15.34 (–CH\textsubscript{2}CH\textsubscript{3}); TOF MS ES \(m/z\): [M+H]+ calcd. for C\textsubscript{23}H\textsubscript{16}ClNOS, 390.0719 (35Cl), 391.0735 (37Cl); found, 390.0747 (35Cl), 392.0738 (37Cl); [M+Na]+ calcd. for C\textsubscript{23}H\textsubscript{16}ClNOS, 412.0539 (35Cl), 414.0605 (37Cl); found, 412.0536 (35Cl), 414.0608 (37Cl). Anal. calcd. for C\textsubscript{23}H\textsubscript{16}ClNOS: C, 70.85; H, 4.14; N, 3.59; found: C, 70.52; H, 4.39; N, 3.83.

10a-(4-Fluorophenyl)benzo[b]indeno[1,2-e][1,4]thiazin-11(10aH)-one (4k)

Light yellow crystals, yield 87%; mp 160–163 °C; IR (KBr, cm-1): \(\nu_{\text{max}}\) 3069, 3059, 3044 (aromatic C–H), 1690 (C=O), 1649 (C=N); \(^1\)H NMR (400 MHz, CDCl\textsubscript{3}): \(\delta\) 9.17 (d, 1H, \(J = 8.88\) Hz, H-6), 7.95 (d, 1H, \(J = 7.64\) Hz, H-1), 7.50–7.06 (m, 9H, H-2, H-3, H-7, H-8, H-9, H-2', H-3', H-5', H-6'), 6.50 (d, 1H, \(J = 8.00\) Hz, H-4); \(^{13}\)C NMR (100 MHz, CDCl\textsubscript{3}): \(\delta\) 165.20 (C-11), 163.52 (d, \(J = 249\) Hz, C-4'), 133.83 (C-5a), 131.62 (d, \(J = 8\) Hz, C-2', C-6'), 131.60 (C-3), 130.87 (C-4b), 130.36 (C-8), 129.33 (C-2', C-6'), 129.19 (C-3', C-5'), 128.43 (C-2), 128.14 (C-4a), 127.42 (C-9), 126.68 (C-11a), 124.86 (C-7), 123.06 (C-1), 122.18 (C-9a), 122.02 (C-4), 120.34 (C-6), 117.77 (C-10a), 28.80 (–CH\textsubscript{2}CH\textsubscript{3}), 15.34 (–CH\textsubscript{2}CH\textsubscript{3}); TOF MS ES \(m/z\): [M+H]+ calcd. for C\textsubscript{23}H\textsubscript{16}ClNOS, 390.0719 (35Cl), 391.0735 (37Cl); found, 390.0747 (35Cl), 392.0738 (37Cl); [M+Na]+ calcd. for C\textsubscript{23}H\textsubscript{16}ClNOS, 412.0539 (35Cl), 414.0605 (37Cl); found, 412.0536 (35Cl), 414.0608 (37Cl). Anal. calcd. for C\textsubscript{23}H\textsubscript{16}ClNOS: C, 70.85; H, 4.14; N, 3.59; found: C, 70.52; H, 4.39; N, 3.83.
130.72 (C-4b), 130.62 (d, $J = 4$ Hz, C-1'), 128.48 (C-2), 128.42 (C-4a), 127.84 (C-7), 127.18 (C-11a), 125.51 (C-8), 125.48 (C-9), 123.19 (C-1), 121.72 (C-4), 119.80 (C-9a), 119.42 (C-6), 117.13 (C-10a), 116.93 (d, $J = 22$ Hz, C-3', C-5'); ESI-MS m/z: [M+H]$^+$ calcd. for C$_{21}$H$_{12}$FNOS, 346.09; found, 346.60. Anal. calcd. for C$_{21}$H$_{12}$FNOS: C, 73.03; H, 3.50; N, 4.06; found: C, 73.38; H, 3.18; N, 4.32.

10a-(4-Fluorophenyl)-8-methylbenzo[b]inden[1,2-e][1,4]thiazin-11(10aH)-one (4l)

Yellow solid, yield 91%; mp 238–242 °C; IR (KBr, cm$^{-1}$): ν_{max} 3119, 3067, 3028 (aromatic C–H), 2874, 2793 (aliphatic C–H), 1684 (C=O), 1649 (C=N); 1H NMR (400 MHz, CDCl$_3$): δ 9.05 (d, 1H, $J = 8.60$ Hz, H-6), 7.92 (d, 1H, $J = 7.64$ Hz, H-1), 7.50–7.03 (m, 7H, H-2, H-3, H-7, H-2', H-3', H-5', H-6'), 6.87 (d, 1H, $J = 1.40$ Hz, H-9), 6.48 (d, 1H, $J = 8.00$ Hz, H-4), 2.28 (s, 3H, OCH$_3$); 13C NMR (100 MHz, CDCl$_3$): δ 164.97 (C-11), 163.50 (d, $J = 249$ Hz, C-4'), 135.35 (C-5a), 131.64 (d, $J = 8$ Hz, C-2', C-6'), 131.39 (C-3), 131.31 (C-8), 130.71 (d, $J = 3$ Hz, C-1'), 130.66 (C-4b), 128.49 (C-4a), 128.41 (C-2), 128.36 (C-7), 127.11 (C-11a), 125.68 (C-9), 123.05 (C-1), 121.67 (C-4), 119.43 (C-9a), 119.24 (C-6), 117.05 (C-10a), 116.87 (d, $J = 22$ Hz, C-3', C-5'), 20.64 (CH$_3$); ESI-MS m/z: [M+H]$^+$ calcd. for C$_{22}$H$_{14}$FNOS, 360.09; found, 360.10. Anal. calcd. for C$_{22}$H$_{14}$FNOS: C, 73.52; H, 3.93; N, 3.90; found: C, 73.21; H, 4.23; N, 3.65.

10a-(4-Fluorophenyl)-8-methoxybenzo[b]inden[1,2-e][1,4]thiazin-11(10aH)-one (4m)

Greenish yellow solid, yield 94%; mp 206–210 °C; IR (KBr, cm$^{-1}$): ν_{max} 3111, 3042 (aromatic C–H), 2961, 2840 (aliphatic C–H), 1686 (C=O), 1647 (C=N); 1H NMR (400 MHz, CDCl$_3$): δ 9.15 (d, 1H, $J = 9.32$ Hz, H-6), 7.92 (d, 1H, $J = 7.64$ Hz, H-1), 7.50–6.77 (m, 7H, H-2, H-3, H-7, H-2', H-3', H-5', H-6'), 6.62 (d, 1H, $J = 2.88$ Hz, H-9), 6.48 (d, 1H, $J = 7.96$ Hz, H-4), 3.80 (s, 3H, OCH$_3$); 13C NMR (100 MHz, CDCl$_3$): δ 164.82 (C-11), 163.53 (d, $J = 249$ Hz, C-4'), 156.60...
8-Bromo-10a-(4-fluorophenyl)benzo[b]indenol[1,2-e][1,4]thiazin-11(10aH)-one (4n)

Green solid, yield 92%; mp 234–236 °C; IR (KBr, cm\(^{-1}\)): \(\nu_{\text{max}}\) 3113, 3061 (aromatic C–H), 1684 (C=O), 1647 (C=N); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 9.07 (d, 1H, \(J = 9.04\) Hz, H-6), 7.93 (d, 1H, \(J = 7.60\) Hz, H-1), 7.50–7.22 (m, 7H, H-2, H-3, H-7, H-2', H-3', H-5', H-6'), 7.19 (d, 1H, \(J = 2.20\) Hz, H-9), 6.50 (d, 1H, \(J = 8.00\) Hz, H-4); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 165.13 (C-11), 163.62 (d, \(J = 249\) Hz, C-4'), 132.90 (C-5a), 131.85 (C-3), 131.64 (d, \(J = 8\) Hz, C-2', C-6'), 130.68 (C-4b), 130.57 (C-7), 130.14 (d, \(J = 3\) Hz, C-1'), 128.75 (C-2), 128.23 (C-4a), 127.70 (C-9), 127.13 (C-11a), 123.27 (C-1), 122.12 (C-8), 121.81 (C-4), 120.64 (C-6), 118.03 (C-9a), 117.06 (d, \(J = 21\) Hz, C-3', C-5'), 116.33 (C-10a); ESI-MS m/z: [M+H]^+ calcd. for C\(_{22}\)H\(_{14}\)BrFNOS, 423.98 (\(^{79}\)Br), 426.02 (\(^{81}\)Br); found, 424.32 (\(^{79}\)Br), 426.57 (\(^{81}\)Br). Anal. calcd. for C\(_{22}\)H\(_{14}\)BrFNOS: C, 59.45; H, 2.61; N, 3.30; found: C, 59.72; H, 2.34; N, 3.65.

8-Chloro-10a-(4-fluorophenyl)benzo[b]indenol[1,2-e][1,4]thiazin-11(10aH)-one (4o)

Greenish yellow solid, yield 89%; mp 240–242 °C; IR (KBr, cm\(^{-1}\)): \(\nu_{\text{max}}\) 3117, 3063, 3022 (aromatic C–H), 1684 (C=O), 1607 (C=N); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 9.14 (d, 1H, \(J = 9.08\) Hz, H-6), 7.94 (d, 1H, \(J = 7.52\) Hz, H-1), 7.50–7.18 (m, 7H, H-2, H-3, H-7, H-2', H-3', H-5', H-6'), 7.05 (d, 1H, \(J = 2.40\) Hz, H-9), 6.50 (d, 1H, \(J = 8.00\) Hz, H-4); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 165.11 (C-11), 163.62 (d, \(J = 249\) Hz, C-4'), 132.42 (C-5a), 131.82 (C-3), 131.64 (d, \(J = 8\) Hz,
C-2', C-6'), 130.68 (C-4b), 130.51 (C-8), 130.16 (d, J = 3 Hz, C-1'), 128.74 (C-2), 128.24 (C-4a), 127.61 (C-9), 127.18 (C-11a), 124.90 (C-7), 123.26 (C-1), 121.86 (C-9a), 121.80 (C-4), 120.37 (C-6), 117.04 (d, J = 21 Hz, C-3', C-5'), 116.24 (C-10a); ESI-MS m/z: [M+H]⁺ calcd. for C₂₁H₁₁ClFNOS, 380.01 (³⁵Cl), 382.03 (³⁷Cl); found, 380.03 (³⁵Cl), 382.04 (³⁷Cl). Anal. calcd. for C₂₁H₁₁ClFNOS: C, 66.40; H, 2.92; N, 3.69; found: C, 66.18; H, 3.25; N, 3.32.

10a-(4-Bromophenyl)benzo[b]indeno[1,2-e][1,4]thiazin-11(10aH)-one (4p)

Yellow solid, yield 93%; mp 196–198 °C; IR (KBr, cm⁻¹): νmax 3123, 3088, 3055, 3028 (aromatic C–H), 1691 (C=O), 1647 (C=N); ¹H NMR (400 MHz, CDCl₃): δ 9.15 (d, 1H, J = 8.52 Hz, H-6), 7.93 (d, 1H, J = 7.44 Hz, H-1), 7.67 (d, 2H, J = 8.52 Hz, H-3', H-5'), 7.44–7.03 (m, 7H, H-2, H-3, H-7, H-8, H-9, H-2', H-6'), 6.56 (d, 1H, J = 8.00 Hz, H-4); ¹³C NMR (100 MHz, CDCl₃): δ 165.14 (C-11), 133.77 (C-5a), 133.62 (C-1'), 133.00 (C-3', C-5'), 131.66 (C-3), 131.29 (C-2', C-6'), 130.61 (C-4b), 128.55 (C-2), 128.38 (C-4a), 127.81 (C-7), 127.04 (C-11a), 125.52 (C-8), 125.48 (C-9), 124.23 (C-4'), 123.20 (C-1), 121.74 (C-4), 119.64 (C-9a), 119.40 (C-6), 116.85 (C-10a); ESI-MS m/z: [M+H]⁺ calcd. for C₂₁H₁₂BrNOS, 405.99 (⁷⁹Br), 407.98 (⁸¹Br); found, 406.02 (⁷⁹Br), 408.07 (⁸¹Br). Anal. calcd. for C₂₁H₁₂BrNOS: C, 62.08; H, 2.98; N, 3.45; found: C, 62.36; H, 2.63; N, 3.72.

10a-(4-Bromophenyl)-8-methylbenzo[b]indeno[1,2-e][1,4]thiazin-11(10aH)-one (4q)

Yellow solid, yield 90%; mp 224–226 °C; IR (KBr, cm⁻¹): νmax 3088, 3049, 3032 (aromatic C–H), 2972, 2947, 2920 (aliphatic C–H), 1684 (C=O), 1645 (C=N); ¹H NMR (400 MHz, CDCl₃): δ 9.05 (d, 1H, J = 8.60 Hz, H-6), 7.94 (d, 1H, J = 7.56 Hz, H-1), 7.68 (d, 2H, J = 8.52 Hz, H-3', H-5'), 7.47–7.05 (m, 5H, H-2, H-3, H-7, H-8, H-9, H-2', H-6'), 6.89 (d, 1H, J = 1.36 Hz, H-9), 6.56 (d, 1H, J = 7.96 Hz, H-4), 2.29 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 165.02 (C-11),
135.44 (C-5a), 133.75 (C-1'), 132.98 (C-3', C-5'), 131.51 (C-3), 131.32 (C-2', C-6'), 131.23 (C-8), 130.62 (C-4b), 128.51 (C-2), 128.49 (C-7), 128.42 (C-4a), 127.08 (C-11a), 125.74 (C-9), 124.18 (C-4'), 123.13 (C-1), 121.73 (C-4), 119.33 (C-9a), 119.28 (C-6), 116.82 (C-10a), 20.66 (CH$_3$); ESI-MS m/z: [M+H]$^+$ calcd. for C$_{22}$H$_{14}$BrNOS, 420.01 (79Br), 422.03 (81Br); found, 420.02 (79Br), 422.05 (81Br). Anal. calcd. for C$_{22}$H$_{14}$BrNOS: C, 62.87; H, 3.36; N, 3.33; found: C, 62.51; H, 3.62; N, 3.64.

10a-(4-Bromophenyl)-8-methoxybenzo[b]indenol[1,2-e][1,4]thiazin-11(10aH)-one (4r)

Yellow solid, yield 83%; mp 176–180 °C; IR (KBr, cm$^{-1}$): ν_{max} 3086, 3028 (aromatic C–H), 2965, 2941 (aliphatic C–H), 1682 (C=O), 1649 (C=N); 1H NMR (400 MHz, CDCl$_3$): δ 9.13 (d, 1H, $J = 9.28$ Hz, H-6), 7.92 (d, 1H, $J = 7.64$ Hz, H-1), 7.67 (d, 2H, $J = 8.40$ Hz, H-3', H-5'), 7.45–6.76 (m, 5H, H-2, H-3, H-7, H-2', H-6'), 6.60 (d, 1H, $J = 2.88$ Hz, H-9), 6.55 (d, 1H, $J = 7.96$ Hz, H-4), 3.79 (s, 3H, OCH$_3$); 13C NMR (100 MHz, CDCl$_3$): δ 164.80 (C-11), 156.63 (C-8), 133.63 (C-1'), 133.00 (C-3', C-5'), 130.43 (C-3), 131.38 (C-2', C-6'), 130.19 (C-4b), 128.77 (C-4a), 128.06 (C-2), 127.18 (C-11a), 127.15 (C-5a), 124.24 (C-4'), 123.04 (C-1), 121.73 (C-4), 120.93 (C-9a), 120.64 (C-6), 116.08 (C-10a), 112.66 (C-9), 110.74 (C-7), 55.56 (OCH$_3$); TOF MS ES m/z: [M+H]$^+$ calcd. for C$_{22}$H$_{14}$BrNOS, 436.0007 (79Br), 438.0013 (81Br); found, 435.9982 (79Br), 438.0025 (81Br); [M+Na]$^+$ calcd. for C$_{22}$H$_{14}$BrNOS, 457.9826 (79Br), 459.9859 (81Br); found, 457.9824 (79Br), 459.9857 (81Br). Anal. calcd. for C$_{22}$H$_{14}$BrNOS: C, 60.56; H, 3.23; N, 3.21; found: C, 60.23; H, 3.51; N, 3.49.

8-Bromo-10a-(4-bromophenyl)benzo[b]indenol[1,2-e][1,4]thiazin-11(10aH)-one (4s)

Greenish yellow solid, yield 85%; mp 236–240 °C; IR (KBr, cm$^{-1}$): ν_{max} 3059, 3113 (aromatic C–H), 1697 (C=O), 1651 (C=N); 1H NMR (400 MHz, CDCl$_3$): δ 9.07 (d, 1H, $J = 9.08$ Hz, H-6),

S13
7.95 (d, 1H, J = 7.64 Hz, H-1), 7.70 (d, 2H, J = 8.44 Hz, H-3', H-5'), 7.50–7.32 (m, 5H, H-2, H-3, H-7, H-2', H-6'), 7.21 (d, 1H, J = 2.28 Hz, H-9), 6.58 (d, 1H, J = 8.00 Hz, H-4); 13C NMR (100 MHz, CDCl$_3$): δ 165.14 (C-11), 133.16 (C-1'), 133.12 (C-3', C-5'), 132.90 (C-5a), 131.94 (C-3), 131.26 (C-2', C-6'), 130.66 (C-4b), 130.63 (C-7), 128.86 (C-2), 128.26 (C-4a), 127.74 (C-9), 127.09 (C-11a), 124.47 (C-4'), 123.33 (C-1), 121.99 (C-8), 121.85 (C-4), 120.67 (C-6), 118.08 (C-9a), 116.07 (C-10a); ESI-MS m/z: [M+H]$^+$ calcd. for C$_{21}$H$_{11}$Br$_2$NOS, 483.90 (79Br and 79Br), 485.88 (79Br and 81Br), 487.92 (81Br and 81Br); found, 483.93 (79Br and 79Br), 485.91 (79Br and 81Br), 487.95 (81Br and 81Br). Anal. calcd. for C$_{21}$H$_{11}$Br$_2$NOS: C, 51.98; H, 2.29; N, 2.89; found: C, 51.62; H, 2.58; N, 3.15.

10a-(4-Bromophenyl)-8-chlorobenzo[b]indeno[1,2-e][1,4]thiazin-11(10aH)-one (4t)

Greenish yellow crystals, yield 87%; mp 214–216 °C; IR (KBr, cm$^{-1}$): ν_{max} 3074 (aromatic C–H), 1697 (C=O), 1651 (C=N); 1H NMR (CDCl$_3$): δ 9.14 (d, 1H, J = 9.08 Hz, H-6), 7.95 (d, 1H, J = 7.68 Hz, H-1), 7.70 (d, 2H, J = 8.44 Hz, H-3', H-5'), 7.48–7.19 (m, 5H, H-2, H-3, H-7, H-2', H-6'), 7.07 (d, 2H, J = 2.00 Hz, H-9), 6.58 (d, 1H, J = 8.00 Hz, H-4); 13C NMR (100 MHz, CDCl$_3$): δ 165.13 (C-11), 133.16 (C-1'), 133.12 (C-3', C-5'), 132.39 (C-5a), 131.92 (C-3), 131.26 (C-2', C-6'), 130.61 (C-4b), 130.56 (C-8), 128.86 (C-2), 128.24 (C-4a), 127.67 (C-9), 127.11 (C-11a), 124.95 (C-7), 124.47 (C-4'), 123.31 (C-1), 121.85 (C-4), 121.68 (C-9a), 120.40 (C-6), 116.00 (C-10a); ESI-MS m/z: [M+H]$^+$ calcd. for C$_{21}$H$_{11}$BrClNOS, 439.95 (79Br and 35Cl), 441.98 (81Br or 37Cl), 443.89 (81Br and 37Cl); found, 439.93 (79Br and 35Cl), 441.92 (81Br or 37Cl), 443.74 (81Br and 37Cl). Anal. calcd. for C$_{21}$H$_{11}$BrClNOS: C, 57.23; H, 2.52; N, 3.18; found: C, 57.54; H, 2.18; N, 3.47.
General procedure for *in vitro* Antimicrobial evaluation

All the newly synthesized twenty tetracyclic 1,4-benzothiazines (4a–4t) were screened for their *in vitro* antimicrobial activity against two Gram-positive bacteria *viz.* *B. subtilis* (MTCC 441) and *S. epidermidis* (MTCC 6880), two Gram-negative bacteria *viz.* *E. coli* (MTCC 1652) and *P. aeruginosa* (MTCC 424), and two fungi *viz.* *A. niger* (MTCC 8189) and *C. albicans* (MTCC 227) by employing serial dilution technique.\[^{45}\] Initially, stock solutions were prepared by dissolving weighed amounts of synthesized compounds in DMSO (1.0 mg of the test compound in 10 mL DMSO) to get a final concentration of 100 µg/mL. Fresh cultures were obtained by inoculation of respective microorganisms in suitable media *viz.* nutrient broth for bacterial strains and potato dextrose broth for fungal strains, followed by incubation at 37 ± 1 ºC for 24 h (all bacteria), 25 ± 1 ºC for 7 days (*A. niger*) and 37 ± 1 ºC for 48 h (*C. albicans*). The stock solutions of the test compounds were then serially diluted in test tubes containing 1 mL of sterile medium to get the concentrations of 50–0.39 µg/mL. Then 100 µL of the respective microorganism in sterile saline was inoculated to different dilutions of test compounds (each dilution in triplicates). The inoculated test tubes were incubated at 37 ± 1 ºC for 24 h (bacteria), 25 ± 1 ºC for 7 days (*A. niger*) and 37 ± 1 ºC for 48 h (*C. albicans*). Ciprofloxacin and Fluconazole were used as standard antibacterial and antifungal drugs, respectively which were also assessed under similar conditions for comparison with the tested compounds. After incubation, microbial growth was monitored visually and spectrophotometrically and the results were recorded in terms of Minimum Inhibitory Concentration (MIC, µmol/mL). The data for the antibacterial activity are presented in Table 1 and Fig. 2, and results of antifungal activity are depicted in Table 2 and Fig. 3.
1H and 13C NMR Spectra of 4a–4t

Fig. S1 1H NMR spectra of compound 4a
Fig. S2 13C NMR spectra of compound 4a
Fig. S3 1H NMR spectra of compound 4b
Fig. S4 13C NMR spectra of compound 4b
Fig. S5 1H NMR spectra of compound 4c
Fig. S6 13C NMR spectra of compound 4c
Fig. S7 1H NMR spectra of compound 4d
Fig. S8 13C NMR spectra of compound 4d
Fig. S9 1H NMR spectra of compound 4e
Fig. S10 13C NMR spectra of compound 4e
Fig. S11 1H NMR spectra of compound 4f
Fig. S12 13C NMR spectra of compound 4f
Fig. S13 1H NMR spectra of compound 4g
Fig. S14 13C NMR spectra of compound 4g
Fig. S15 1H NMR spectra of compound 4h
Fig. S16 13C NMR spectra of compound 4h
Fig. S17 1H NMR spectra of compound 4i
Fig. S18 13C NMR spectra of compound 4i
Fig. S19 1H NMR spectra of compound 4j
Fig. S20 13C NMR spectra of compound 4j
Fig. S21 1H NMR spectra of compound 4k
Fig. S22 13C NMR spectra of compound 4k
Fig. S23 1H NMR spectra of compound 4I
Fig. S24 13C NMR spectra of compound 4l
Fig. S25 1H NMR spectra of compound 4m
Fig. S26 13C NMR spectra of compound 4m
Fig. S27 1H NMR spectra of compound 4n
Fig. S28 13C NMR spectra of compound 4n
Fig. S29 1H NMR spectra of compound 4o
Fig. S30 13C NMR spectra of compound 4o
Fig. S31 1H NMR spectra of compound 4p
Fig. S32 13C NMR spectra of compound 4p
Fig. S33 1H NMR spectra of compound 4q
Fig. S34 13C NMR spectra of compound 4q
Fig. S35 1H NMR spectra of compound 4r
Fig. S36 13C NMR spectra of compound 4r
Fig. S37 1H NMR spectra of compound 4s
Fig. S38 13C NMR spectra of compound 4s
Fig. S39 1H NMR spectra of compound 4t
Fig. S40 13C NMR spectra of compound 4t
2D NMR Spectra of 4b

Fig. S41 DEPT-135 spectra of compound 4b
Fig. S42 DEPT-135 spectra of compound 4b
Fig. S43 COSY spectra of compound 4b
Fig. S44 COSY spectra of compound 4b
Fig. S45 HSQC spectra of compound 4b
Fig. S46 HSQC spectra of compound 4b
Fig. S47 HMBC spectra of compound 4b
Fig. S48 HMBC spectra of compound 4b
Fig. S49 HMBC spectra of compound 4b
Fig. S50 HMBC spectra of compound 4b