EMERGENT BEHAVIOR OF CUCKER-SMALE FLOCKING PARTICLES WITH TIME DELAYS

YOUNG-PIL CHOI AND ZHUCHUN LI

Abstract. We analyze Cucker-Smale flocking particles with delayed coupling, where different constant delays are considered between particles. By constructing a system of dissipative differential inequalities together with a continuity argument, we provide a sufficient condition for the flocking behavior when the maximum value of time delays is sufficiently small.

1. Introduction

Let \((x_i(t), v_i(t)) \in \mathbb{R}^d \times \mathbb{R}^d, i = 1, \ldots, N\) be position and velocity at time \(t\) of the \(i\)-th agent. Then the delayed Cucker-Smale particle system can be described by

\[
\frac{dx_i(t)}{dt} = v_i(t), \quad i = 1, \ldots, N, \quad t > 0,
\]

\[
\frac{dv_i(t)}{dt} = \frac{1}{N} \sum_{j \neq i} \psi(|x_j(t - \tau_{ji}) - x_i(t)|) (v_j(t - \tau_{ji}) - v_i(t)),
\]

subject to the initial data:

\[
(x_i(s), v_i(s)) = (x_0^i(s), v_0^i(s)), \quad i = 1, \ldots, N, \quad s \in [-\tau, 0].
\]

Here, \(\psi : \mathbb{R}_+ \to \mathbb{R}_+\) is a communication weight function, \(\tau_{ji} > 0\) denotes the interaction delay between \(i\)-th and \(j\)-th agents.

The main purpose of this paper is to study the effect of time delays in Cucker-Smale flocking particle system. For the proof, inspired by [1, 7], we construct a system of dissipative differential inequalities by using diameters of position and velocity. Using that together with a continuity argument, we provide a sufficient condition for the flocking behavior estimate under a smallness assumption on the time delays.

It is worth mentioning that there are a few literature on the flocking of Cucker-Smale type models with time delays. For example, a sufficient flocking condition for the Motsch-Tadmor variant of the model with processing delay is obtained in [8], see also [10] for that model without time delays. In [6], sufficient flocking condition for the Cucker-Smale model with noise and delay is derived in terms of noise intensity and delay length. In [4] the first author and his collaborator analyzed a Cucker-Smale model with delay and normalized communication weights where the communication weights received by any agent sum to 1. In another recent paper [9], the authors considered the Cucker-Smale model with processing time-varying delays only in velocities, in which the velocity is governed by

\[
\frac{dv_i(t)}{dt} = \frac{1}{N} \sum_{j \neq i} \psi(|x_j(t - \tau(t)) - x_i(t - \tau(t))|) (v_j(t - \tau(t)) - v_i(t)).
\]

Acknowledgments. YPC was supported by National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No. 2017R1C1B2012918 and 2017R1A4A1014735). The authors warmly thank Professor Seung-Yeal Ha for helpful discussion and valuable comments.

Date: October 10, 2018.
In comparison, in this paper we will consider the Cucker-Smale model with processing delays in velocities and positions. We also emphasize that the strategy used in requires the strictly positive lower bound assumption for the weight function ψ, which is not needed in our framework. We refer to and references therein for recent surveys on Cucker-Smale type flocking models.

We now introduce the main assumptions and state the main result.

Assumption on ψ - The communication weight ψ is bounded, positive, non increasing and Lipschitz continuous on \mathbb{R}_+, with $\psi(0) = 1$.

Assumption on τ_{ji} - The interaction delays are strictly positive and symmetric, i.e., $\tau_{ji} = \tau_{ij} > 0$ for all $i, j \in \{1, \cdots, N\}$ and $\tau := \max_{1 \leq i,j \leq N} \tau_{ji} < \infty$.

Theorem 1.1. Let $\{(x_i, v_i)\}_{i=1}^N$ be a global solution to the system (1.1). Suppose that there exist some constants $\tau_0 > 0$ and $\alpha > 0$ such that

$$\frac{d\nu(0)}{\alpha \psi(dX(0) + R_v\tau_0 + \alpha)} < 1.$$

Then there exists $\bar{\tau} \in (0, \tau_0)$ such that for all $\tau \in (0, \bar{\tau}]$ we have

$$\sup_{-\tau \leq t \leq +\infty} dX(t) < +\infty \quad \text{and} \quad d\nu(t) \leq C_0 e^{-c_1 \psi(dX(0) + R_v\tau_0 + \alpha)t}, \quad \forall t \geq 0,$$

where C_0 and c_1 are some positive constants.

Remark 1.1. The communication weight ψ introduced in the seminal paper by Cucker and Smale is of the form

$$\psi(r) = \frac{1}{(1 + r^2)^{\beta/2}} \quad \text{with} \quad \beta > 0.$$

Thus for the long-range communication weight, i.e., $\beta < 1$, we can always find positive constants τ_0 and α satisfying the assumption (1.3).

In the next section of this note, we will present the details for the proof of main result.

2. Emergent behavior: Proof of Theorem 1.1

2.1. Global existence and uniqueness of solutions to the system (1.1). In this part, we first prove the global-in-time existence and uniqueness of solutions for the system (1.1) so that all computations for the emergent behavior are justified. We notice from the above assumption on ψ that the right-hand-side of (1.1) is locally Lipschitz continuous as a function of $(x_i(t), v_i(t))$. Thus, by the Cauchy-Lipschitz theorem, the particle system (1.1) admits a unique local-in-time C^1-solution. On the other hand, that local-in-time solution can be a global-in-time solution once we can show the uniform-in-time boundedness of the velocity since ψ is bounded and Lipschitz.

In the lemma below, we show the uniform-in-time boundedness of the velocity which guarantees the global-in-time existence of the unique solution to the system (1.1). We are also going to use this estimate for the large-time behavior.

Lemma 2.1. Let $\{(x_i, v_i)\}_{i=1}^N$ be a solution to the system (1.1)-(1.2). Suppose that the initial velocity $v_{i0}, i = 1, 2, \cdots, N$ are continuous on the compact time interval $[-\tau, 0]$ and denote

$$R_v^\tau := \max_{s \in [-\tau, 0]} \max_{1 \leq i \leq N} |v_i(s)| > 0.$$

Then we have

$$R_v(t) := \max_{1 \leq i \leq N} |v_i(t)| \leq R_v^\tau \quad \text{for} \quad t \geq -\tau.$$

Proof. Although the proof is very similar to [3, Lemma 2.2], we provide the details here for the completeness of this paper. For any $\varepsilon > 0$, we set $R_v^{\tau, \varepsilon} := R_v^\tau + \varepsilon$ and $S^\varepsilon := \{t > 0 : R_v(t) <$
$R_v^{\tau,\varepsilon}$ for $s \in [0, t)$. By the continuity of $R_v(t)$ together with $R_v^\tau < R_v^{\tau,\varepsilon}$, we get $S^\varepsilon \neq 0$, and $T_*^\varepsilon := \sup S^\varepsilon > 0$ exists. We now claim $T_*^\varepsilon = \infty$. If not, it holds
\[
\lim_{t \to T_*^\varepsilon^-} R_v(t) = R_v^\varepsilon, \quad \text{and} \quad R_v(t) < R_v^{\tau,\varepsilon} \quad \text{for} \quad t < T_*^\varepsilon. \tag{2.1}
\]
On the other hand, it follows from (1.1) that
\[
\frac{1}{2} \frac{d |v_i(t)|^2}{dt} = \frac{1}{N} \sum_{j \neq i} \psi(|x_j(t) - x_i(t)|)(|v_j(t) - v_i(t)|) \leq \frac{1}{N} \sum_{j \neq i} \psi(|x_j(t) - x_i(t)|)(|v_j(t)|) |v_i(t)|
\]
This further yields
\[
\frac{1}{2} \frac{d |v_i(t)|^2}{dt} \leq \frac{1}{N} \sum_{j \neq i} \psi(|x_j(t) - x_i(t)|)(R_v^\varepsilon - |v_i(t)|) \leq R_v^\varepsilon - |v_i(t)|, \quad \text{a.e. on} \quad (0, T_*^\varepsilon),
\]
due to $R_v^\varepsilon \geq R_v(t)$, i.e., $R_v^\varepsilon \geq |v_i(t)|$ for all $1 \leq i \leq N$ and $t < T_*^\varepsilon$, and $0 \leq \psi \leq 1$. Applying Gronwall’s inequality to the above, we have
\[
\lim_{t \to T_*^\varepsilon^-} R_v(t) \leq (R_v(0) - R_v^{\tau,\varepsilon}) e^{-T_*^\varepsilon} + R_v^{\tau,\varepsilon} < R_v^{\tau,\varepsilon},
\]
since $R_v(0) < R_v^{\tau,\varepsilon}$. This contradicts (2.1), and thus $T_*^\varepsilon = \infty$. We finally pass to the limit $\varepsilon \to 0$ to conclude our desired result.

2.2. Construction of a Lyapunov functional. In this part, we construct the system of dissipative differential inequalities. For this, we introduce position and velocity diameters as
\[
d_X(t) := \max_{1 \leq i,j \leq N} |x_i(t) - x_j(t)| \quad \text{and} \quad d_V(t) := \max_{1 \leq i,j \leq N} |v_i(t) - v_j(t)|.
\]

Lemma 2.2. Let $\{(x_i, v_i)\}_{i=1}^N$ be a global solution to the system (1.1)-(1.2). Then the diameters functions $d_X(t)$ and $d_V(t)$ satisfy
\[
\frac{d}{dt} d_X(t) \leq d_V(t), \tag{2.2}
\]
for almost all $t > 0$, where $\Delta_N^\tau(t)$ is given by
\[
\Delta_N^\tau(t) := \frac{1}{N} \max_{1 \leq i,k \leq N} \sum_{k \neq i} |v_k(t) - v_i(t)|
\]
and satisfies
\[
\Delta_N^\tau(t) \leq C_{N,1} \int_{t-\tau}^{t} d_V(s) \, ds + \int_{t-\tau}^{t} \Delta_N^\tau(s) \, ds, \tag{2.3}
\]
for $t \geq \tau$, where $C_{N,1} := (N - 1)/N$.

Proof. We first easily find from (1.1) that
\[
\frac{d}{dt} d_X(t) \leq d_V(t).
\]
Next we derive the differential inequality for $d_V(t)$. Note that there exist at most countable number of increasing times t_k such that we can choose indices i and j such that $d_V(t) = |v_i(t) - v_j(t)|$
on any time interval \((t_k, t_{k+1})\) since the number of particles is finite and continuity of the velocity trajectories. This allows us to estimate the time evolution of \(dv(t)\) as
\[
\frac{1}{2} \frac{d}{dt} dv(t)^2 = \frac{1}{2} \frac{d}{dt} |v_i(t) - v_j(t)|^2
\]
\[
= \left< v_i(t) - v_j(t), \frac{dv_i(t)}{dt} - \frac{dv_j(t)}{dt} \right>
\]
\[
= \frac{1}{N} \left< v_i(t) - v_j(t), \sum_{k \neq i} \psi(|x_k(t - \tau_k) - x_i(t)|)(v_k(t - \tau_k) - v_i(t)) \right>
\]
\[
- \frac{1}{N} \left< v_i(t) - v_j(t), \sum_{k \neq j} \psi(|x_k(t - \tau_k) - x_j(t)|)(v_k(t - \tau_k) - v_j(t)) \right>
\]
\[
=: I_1 + I_2.
\]

Before estimating the terms \(I_i, i = 1, 2\), we notice that
\[
|x_k(t - \tau_k) - x_i(t)| = |x_k(t) - x_i(t) + \int_t^{t-\tau_k} v_k(s) ds| \leq d_X(t) + R_v \tau.
\]

Using the above inequality, we estimate \(I_1\) as
\[
I_1 = \frac{1}{N} \sum_{k \neq i} \psi(|x_k(t - \tau_k) - x_i(t)|)(v_i(t) - v_j(t), v_k(t) - v_i(t))
\]
\[
+ \frac{1}{N} \sum_{k \neq i} \psi(|x_k(t - \tau_k) - x_i(t)|)(v_i(t) - v_j(t), v_k(t - \tau_k) - v_k(t))
\]
\[
\leq \psi(d_X(t) + R_v \tau) \sum_{k \neq i} \langle v_i(t) - v_j(t), v_k(t) - v_i(t) \rangle + \frac{d_V(t)}{N} \sum_{k \neq i} |v_k(t - \tau_k) - v_k(t)|,
\]
where we used \(\psi \leq 1\) and \(\langle v_i(t) - v_j(t), v_k(t) - v_i(t) \rangle \leq 0\) for \((i, j)\) with \(d_V = |v_i - v_j|\). Similarly, we can obtain
\[
I_2 \leq -\psi(d_X(t) + R_v \tau) \sum_{k \neq j} \langle v_i(t) - v_j(t), v_k(t) - v_j(t) \rangle + \frac{d_V(t)}{N} \sum_{k \neq j} |v_k(t - \tau_k) - v_k(t)|.
\]

This yields
\[
\frac{1}{2} \frac{d}{dt} dv(t)^2 \leq -\psi(d_X(t) + R_v \tau) dv(t)^2 + \frac{2d_V(t)}{N} \max_{1 \leq i \leq N} \sum_{k \neq i} |v_k(t - \tau_k) - v_k(t)|,
\]
for almost all \(t \geq 0\). Thus we have
\[
\frac{d}{dt} dv(t) \leq -\psi(d_X(t) + R_v \tau) dv(t) + 2\Delta_N(t),
\]
for almost all \(t \geq 0\). We next estimate the term \(\Delta_N(t)\). Note that
\[
|v_k(t - \tau_k) - v_k(t)| = \left| \int_{t-\tau_k}^{t} \frac{dv_k(s)}{ds} ds \right| \leq \int_{t-\tau}^{t} \left| \frac{dv_k(s)}{ds} \right| ds.
\]
This gives
\[
\Delta_N(t) \leq \frac{1}{N} \sum_{k=1}^{N} \int_{t-\tau}^{t} \left| \frac{dv_k(s)}{ds} \right| ds \text{ for } t \geq 0.
\]
(2.4)
On the other hand, it follows from (1.1) that
\[
\left| \frac{dv_k(s)}{ds} \right| = \left| \frac{1}{N} \sum_{\ell \neq k} \psi(|x_\ell(s) - x_k(s)|)(v_\ell(s) - v_k(s)) \right|
\leq \frac{dV(s)(N-1)}{N} + \frac{1}{N} \sum_{\ell \neq k} |v_\ell(s) - v_k(s)|
\leq C_{N,1}dV(s) + \Delta_N(s),
\] for \(t \geq 0 \). Combining the above estimates (2.4) and (2.5) concludes the desired result. \(\square \)

Remark 2.1. If there is no time delay, i.e., \(\tau = 0 \), then the differential inequality in Lemma 2.2 becomes the standard system of dissipative differential inequalities in \[.\]

Remark 2.2. It follows from Lemma 2.1 that
\[
\left| \frac{dv_k(s)}{ds} \right| = \left| \frac{1}{N} \sum_{\ell \neq k} \psi(|x_\ell(s) - x_k(s)|)(v_\ell(s) - v_k(s)) \right| \leq 2R^*_N.
\]
This gives the following estimate:
\[
\sup_{0 \leq t \leq \tau} \Delta_N(t) \leq \frac{1}{N} \sum_{k=1}^{N} \int_{t-\tau}^{t} \left| \frac{dv_k(s)}{ds} \right| ds \leq 2R^*_N \rightarrow 0 \quad \text{as} \quad \tau \rightarrow 0.
\]

2.3. **Proof of Theorem 1.1.** We are going to use the differential inequalities (2.2) together with a continuity argument to complete the proof of Theorem 1.1.

Set \(\mathcal{T} := \{ t \in [0, \infty) : d_X(s) < d_X(0) + \alpha \quad \text{for} \quad s \in [0, t) \} \).

It is clear from the continuity of the function \(d_X(t) \) that \(\mathcal{T} \neq \emptyset \), thus we can set \(T^\infty := \sup \mathcal{T} \).

- **Step A.** (Time-decay estimate of \(d_V(t) \) and \(\Delta_N(t) \)): According to (1.3), we first choose some positive constants \(\beta > 0 \) and \(0 < c < 1 \) such that
\[
\frac{dV(0)}{\psi(d_X(0) + R_e \tau_0 + \alpha)} + \frac{2\beta}{1-c} < \alpha.
\]
Then we set \(T_* := \{ t \in [0, T^\infty) : d_V(s) < \left(d_V(0) + \frac{2\beta \psi^\infty}{1-c} \right) e^{-c\psi^\infty s} \quad \text{and} \quad \Delta_N(t) < \beta(\psi^\infty)^2 e^{-c\psi^\infty s} \quad \text{for} \quad s \in [0, t) \} \)
where we denoted \(\psi^\infty := \psi(d_X(0) + R_e \tau_0 + \alpha) \) for notational simplicity. Note that \(T_* \neq \emptyset \) for \(\tau \) small enough. Indeed, we find
\[
d_V(0) < d_V(0) + \frac{2\beta \psi^\infty}{1-c} \quad \text{and} \quad \sup_{0 \leq t \leq \tau} \Delta_N(t) < \beta(\psi^\infty)^2 e^{-c\psi^\infty \tau}
\]
for \(\tau > 0 \) small enough such that \(2R^*_N \tau e^{-c\psi^\infty \tau} < \beta(\psi^\infty)^2 \) due to Remark 2.2. Thus by continuity of functions \(d_V(t) \) and \(\Delta_N(t) \) there exists \(\tau_1 > 0 \) such that \(0 < T_*^\infty := \sup T_* \) for all \(\tau \in (0, \tau_1) \). Then in the rest of this step we are going to show \(T_*^\infty = T^\infty \). Suppose that \(0 < T_*^\infty < T^\infty \). Then we have either
\[
\lim_{t \rightarrow T_*^\infty} d_V(t) = \left(d_V(0) + \frac{2\beta \psi^\infty}{1-c} \right) e^{-c\psi^\infty T_*^\infty} \quad \text{or} \quad \lim_{t \rightarrow T_*^\infty} \Delta_N(t) = \beta(\psi^\infty)^2 e^{-c\psi^\infty T_*^\infty}.
\]
On the one hand, it follows from Lemma 2.2 that
\[
\frac{d}{dt} d_V(t) \leq -\psi^\infty d_V(t) + 2\beta(\psi^\infty)^2 e^{-c\psi^\infty t}, \quad \text{a.e.} \quad t \in [0, T_*^\infty).
Applying Gronwall’s inequality yields
\[d_V(t) \leq d_V(0)e^{-\psi t} + \frac{2\beta \psi}{1-c} \left(e^{-\psi t} - e^{-\psi t} \right), \quad t \in [0, T_\infty). \]

Taking the limit \(t \to T_\infty \) to the above inequality gives
\[\lim_{t \to T_\infty} d_V(t) \leq d_V(0)e^{-\psi T_\infty} + \frac{2\beta \psi}{1-c} \left(e^{-\psi T_\infty} - e^{-\psi T_\infty} \right) < \left(d_V(0) + \frac{2\beta \psi}{1-c} \right) e^{-c\psi T_\infty}. \]

On the other hand, we find from (2.3) together with (2.6) that
\[T \quad \text{Taking the limit} \quad \text{Applying Gronwall’s inequality yields} \]

\[
\Delta_N^\tau(t) \leq \left(C_{N,1} \left(d_V(0) + \frac{2\beta \psi}{1-c} + \beta(\psi)^2 \right) \right) \int_{t-\tau}^{t} e^{-c\psi s} ds
\]

\[
= \left(C_{N,1} \left(d_V(0) + \frac{2\beta \psi}{1-c} + \beta(\psi)^2 \right) \right) \left(\frac{e^{c\psi \tau} - 1}{c\psi} \right) e^{-c\psi t}
\]

for all \(t \in [0, T_\infty) \). We then now choose \(0 < \tau_2 < \tau_1 \) such that
\[
\left(C_{N,1} \left(d_V(0) + \frac{2\beta \psi}{1-c} + \beta(\psi)^2 \right) \right) \left(\frac{e^{c\psi \tau} - 1}{c\psi} \right) < \beta(\psi)^2
\]

for \(\tau \in (0, \tau_2) \). This together with taking the limit \(t \to T_\infty \) yields
\[
\lim_{t \to T_\infty} \Delta_N^\tau(t) < \beta(\psi)^2 e^{-c\psi T_\infty}. \]

Hence both equalities (2.7) do not hold, and this concludes \(T_\infty = T_\infty \).

Step B. (Uniform-in-time bound estimate of \(d_X(t) \)): We are now ready to show that \(T_\infty = \infty \) when \(\tau > 0 \) is small enough. Note that for \(t \in [0, T_\infty) \) and \(\tau \in (0, \tau_2) \) it holds
\[
d_X(t) < d_X(0) + \alpha,
\]
\[
d_V(t) < \left(d_V(0) + \frac{2\beta \psi}{1-c} \right) e^{-c\psi t},
\]
\[
\Delta_N^\tau(t) < \beta(\psi)^2 e^{-c\psi T_\infty}. \]

Suppose not, i.e., \(T_\infty < \infty \), then we get
\[
\lim_{t \to T_\infty} d_X(t) = d_X(0) + \alpha.
\]

On the other hand, it follows from Lemma 2.2 together with the above estimate that
\[
d_X(t) \leq d_X(0) + \int_{0}^{t} d_V(s) ds
\]
\[
\leq d_X(0) + \left(d_V(0) + \frac{2\beta \psi}{1-c} \right) \int_{0}^{t} e^{-c\psi s} ds
\]
\[
= d_X(0) + \left(d_V(0) + \frac{2\beta \psi}{1-c} \right) \frac{1}{c\psi} \left(1 - e^{c\psi t} \right)
\]

for \(t \in [0, T_\infty) \). This gives
\[
\lim_{t \to T_\infty} d_X(t) \leq d_X(0) + \left(d_V(0) + \frac{2\beta \psi}{1-c} \right) \frac{1}{c\psi} \left(1 - e^{c\psi T_\infty} \right) < d_X(0) + \alpha.
\]

This is a contradiction and yields \(T_\infty = \infty \).
• **Step C.** (Exponential decay estimate of $d_V(t)$): By the discussion in Step A and Step B, we find $T^*_s = T^\infty = \infty$, that is, the following inequalities hold for $t \geq 0$:

$$d_X(t) \leq d_X(0) + \alpha \quad \text{and} \quad d_V(t) \leq \left(d_V(0) + \frac{2\beta \psi^\infty}{1-c} \right) e^{-c\psi^\infty t},$$

where ψ^∞, β, and c are appeared in Step A. This completes the proof.

References

[1] S.-H. Choi and S.-Y. Ha, Interplay between the unit-speed constraint and time-delay in Cucker-Smale flocking, preprint.

[2] J. A. Carrillo, Y.-P. Choi, and S. Pérez, A review on attractive-repulsive hydrodynamics for consensus in collective behavior, in N. Bellomo, P. Degond, and E. Tamad (Eds.), Active Particles Vol.I: Advances in Theory, Models, and Applications, Series: Modelling and Simulation in Science and Technology, Birkhäuser Basel, (2017), 259-298.

[3] Y.-P. Choi, S.-Y. Ha, and Z. Li, Emergent dynamics of the Cucker-Smale flocking model and its variants, in N. Bellomo, P. Degond, and E. Tadmor (Eds.), Active Particles Vol.I: Advances in Theory, Models, and Applications, Series: Modelling and Simulation in Science and Technology, Birkhäuser Basel, (2017), 299–331.

[4] Y.-P. Choi and J. Haskovec, Cucker-Smale model with normalized communication weight and time delay, Kinetic and Related Models, 10 (2017), 1011–1033.

[5] F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Contr., 52 (2007), 852–862.

[6] R. Erban, J. Haskovec and Y. Sun. On Cucker-Smale model with noise and delay. SIAM J. Appl. Math., 76 (2016), 1535–1557.

[7] S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Comm. Math. Sci., 7 (2009), 297–325.

[8] Y. Liu and J. Wu, Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, J. Math. Anal. Appl., 415 (2014), 53–61.

[9] C. Pignotti and E. Trélat, Convergence to consensus of the general finite-dimensional Cucker-Smale model with time-varying delays, preprint (2017).

[10] S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923–947.

(Young-Pil Choi)

DEPARTMENT OF MATHEMATICS AND INSTITUTE OF APPLIED MATHEMATICS

INHA UNIVERSITY, 402–751, INCHEON, REPUBLIC OF KOREA

E-mail address: ypchoi@inha.ac.kr

(Zhuchun Li)

DEPARTMENT OF MATHEMATICS

HARBIN INSTITUTE OF TECHNOLOGY

E-mail address: lizhuchun@hit.edu.cn