The fractal bubble model with a cosmological constant

To my mother Cristina Pergolini

Stefano Viaggiu

Dipartimento di Matematica, Università di Roma ‘Tor Vergata’, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy

E-mail: viaggiu@axp.mat.uniroma2.it

Received 13 September 2011, in final form 20 December 2011
Published 20 January 2012

Abstract

We generalize the fractal bubble (FB) model, recently proposed in the literature as an alternative to the standard ΛCDM cosmology, to include a non-zero cosmological constant. We retain the same volume partition of voids and walls as the original FB model, and the same matching conditions for null geodesics, but do not include effects associated with a nonuniform time flow arising from differences of quasilocal gravitational energy that may arise in the coarse-graining process. The Buchert equations are written and partially integrated and the asymptotic behavior of the solutions is given. For a universe with $\Lambda = 0$, as is the case in the FB model, an initial void fraction with hyperbolic curvature evolves in such a way that it asymptotically fills completely our particle horizon. Conversely, in the presence of a nonvanishing Λ, we show that this does not happen and the voids fill a finite fraction $f_v \alpha < 1$, where the value of $(1 - f_v \alpha)$ is expected to depend on Λ and the initial fraction f_v and also to be small. For its determination, a numerical integration of the equations is necessary. Finally, an interesting prediction of our model is a formula giving a minimum allowed value of present day dark energy as a function of the age of the universe and of the matter and curvature density parameters at our time.

PACS numbers: 98.80.–k, 95.36.+x, 98.80.Es, 98.80.Jk

To my mother Cristina Pergolini

1. Introduction

All the observations of the past decade (see in particular [1–3]) are in agreement with an homogeneous and isotropic universe on large scales which seems to be currently in accelerating expansion. In the standard picture based on the Friedmann–Lemaître models (FRLW), an accelerating universe invokes the presence of so-called dark energy. In the FRLW picture, this dark energy is given in terms of the cosmological constant Λ, leading to the standard cosmological model, i.e. the ΛCDM one. As a result, about 70% of the present universe would be composed of an undetectable non-local vacuum energy. This dark energy represents
a puzzle and perhaps the biggest problem in modern cosmology. In fact, a direct detection of a cosmological constant is still lacking. However, the dark energy is only the outcome of the Friedmann assumptions (homogeneity and isotropy) justified by the Copernican principle. In this respect, the observed inhomogeneities at scales < 200 Mpc give us the possibility of exploring the role of inhomogeneity in cosmological models. In the last decade, many attempts have been made (see, for example, [4–27]) to build physically sensible inhomogeneous models.

One proposed approach (see, for example, [4–8, 10, 11]) showed that large inhomogeneities can mimic an accelerating universe by using Lemaître–Tolman–Bondi (LTB) spacetimes [28, 29], although only under successful completion of several conditions [12]. In this case, the cosmological constant can be mimicked only by supposing that a huge spherically symmetric giant void (or hump, see [30]) of the order of some Gpc is present, a rather unlikely assumption which is not in agreement with the CMB data (see also [31]).

A different approach is averaging the spatial inhomogeneities (see [13–23]). This approach fulfils the Copernican principle, although in a statistical sense. Hence, the Copernican cosmologists introduce inhomogeneities without symmetries and then try to understand the modifications to the average evolution from backreaction. So far, the backreaction from small scales could not be enough to rule out dark energy [32, 33], but the debate on this issue is still open. In this context, Wiltshire [22, 23] recently proposed an interesting model, the ‘fractal bubble’ (FB) or ‘timescape’ cosmology [34], based on the Buchert average scheme [17] with two scales mimicking the voids and walls in the observed web structure of our present day universe. The expansion history, usually attributed to a cosmological constant, is explained by a new physical effect: the different rate of clocks located in typical galaxies which are not expanding where the metric is approximately spatially flat, as compared to the clocks in expanding voids where spatial curvature is assumed to be negative. A uniform Hubble flow is imposed to solve the so-called Sandage–de Vaucouleurs paradox. It is the introduction of this gauge that allows clock effects. According with the estimates of [22, 23], clocks of isotropic observers at a volume-average location in voids presently run at 38% faster than the ones in walls. While this result is perhaps questionable, it is justified by Wiltshire as being the cumulative effect of a relative regional volume deceleration which is calculated [35] to be typically of order 10^{-10} m s$^{-2}$ for most of the life of the universe, well within the expectations of the weak field regime.

In any case, although the cosmological constant remains a mystery for fundamental physics, the standard ΛCDM model remains the most convincing cosmological model, with much astrophysical evidence in its support. The standard cosmological model relies on a universe homogeneous at any scale for any time t, a rather unrealistic assumption.

As a consequence of the reasonings above, it is interesting to study the effects of the observed inhomogeneous structure of the universe in the presence of Λ, as for example the expansion of voids. The standard picture is to use perturbation theory to the standard ΛCDM model. To build an inhomogeneous cosmological model with Λ and without perturbation theory, we use the Buchert formalism. Within this formalism, we can gain advantage from the two-scale model obtained by Wiltshire, composed of walls and voids. However, remember that the model [22, 23] has been built to explain dark energy without Λ. The observed broadly uniform Hubble flow justified the use of the uniform Hubble gauge in [22, 23]. It is this gauge that allows a non-uniform time flow. In [22, 23], the non-uniform time flow is described by the phenomenological lapse function γ. However, as we show in this paper, we can build our inhomogeneous model with $\Lambda \neq 0$ by taking the assumption of a uniform time flow (rather than a uniform Hubble flow) simply by changing in [22, 23] the interpretation of γ, which in our context is no longer a phenomenological lapse function. It is important to stress again that the clock effects depicted in [22, 23] are only the outcome of the uniform Hubble
flow used. However, note that no cosmological evidence of a non-uniform time flow has been observed.

In this paper we use the mathematical structure of [22, 23], but with \(\Lambda \neq 0 \) in the Buchert equations and with a phenomenological lapse function set to unity. In this way, we have at our disposal a nonperturbative model that will permit us to estimate, for example, the fraction of dark energy due to the observed inhomogeneities of our visible universe. Finally, we can study the evolution of voids in the presence of \(\Lambda \) and compare this with future cosmological data and with the same evolution obtained with models without \(\Lambda \).

In section 2, we present the model by writing, step by step, the Buchert equations in a workable form. In section 3, we analyze the solutions of our model. Section 4 collects some final remarks and conclusions. The appendix is devoted to the study of the distance–redshift relation and to the matching conditions underlying our model.

2. The model

In this section, we generalize step by step the calculations made in [22, 23] by introducing a non-vanishing cosmological constant together with a uniform time flow gauge rather than the Wiltshire uniform Hubble flow gauge. As a result, clock effects disappear. Our aim is to build an inhomogeneous model within the cosmological constant paradigm which includes a description of the observed web structure of our visible universe and preserves the universal time flow of the concordance \(\Lambda \)CDM model. We want to mimic the observed web structure of the universe by means of a two-scale model.

2.1. Buchert equations for the two-scale model

As a first assumption, we suppose the existence of an almost uniform time flow. Hence, all the observers in our whole particle horizon, independently of their spatial location, use the same coordinate \(t \) for time measurement. In the Buchert formalism, we can introduce Gaussian coordinates \((t, x')\) which are comoving with the fluid that is assumed to be dust filled and irrotational. The volume average is given to be our present particle horizon. For any scalar quantity \(\psi(t, x') \), the average with respect to the volume horizon \(\mathcal{H} \) is

\[
\langle \psi(t, x') \rangle_{\mathcal{H}} = \frac{1}{V_{\mathcal{H}}} \int_{\mathcal{H}} \psi(t, x') \sqrt{g^{(3)}} d^3x,
\]

where \(g^{(3)} \) denotes the determinant of the three-metric on the slice \(t = \text{constant} \) and

\[
V_{\mathcal{H}} = \int_{\mathcal{H}} \sqrt{g^{(3)}} d^3x.
\]

The dimensionless effective scale factor \(a_{\mathcal{H}}(t) \) is given by

\[
a_{\mathcal{H}}(t) = \left(\frac{V_{\mathcal{H}}(t)}{V_{\mathcal{H}}(t_0)} \right)^{1/3}.
\]

The averaged expansion rate \(\langle \theta \rangle_{\mathcal{H}} \) is defined by

\[
\langle \theta \rangle_{\mathcal{H}} = \frac{V_{\mathcal{H}}}{V_{\mathcal{H}}} = 3 \frac{\dot{a}_{\mathcal{H}}}{a_{\mathcal{H}}},
\]

where a dot indicates the time derivative. For the Hubble flow, we have \(H = \frac{\langle \theta \rangle_{\mathcal{H}}}{a_{\mathcal{H}}} \). In what follows, we drop the subscript \(\mathcal{H} \). The relevant exact Buchert equations (see [17]) are (we use units with \(c = 1 \))

\[
3 \frac{\dot{a}^2}{a^2} = 8\pi G \rho - \frac{Q}{2} + \Lambda - \frac{1}{2} \langle \mathcal{R} \rangle,
\]

where \(\mathcal{R} \) is the Ricci scalar.
\[
3 \frac{\ddot{a}}{a} = -4\pi G \langle \rho \rangle + Q + \Lambda,
\]
(6)

\[
\langle \dot{\rho} \rangle = -3 \frac{\ddot{a}}{a} \langle \rho \rangle,
\]
(7)

\[
Q = \frac{2}{3} [\langle \theta^2 \rangle - \langle \theta \rangle^2] - 2\langle \sigma \rangle^2,
\]
(8)

where \(Q \) is the kinematical backreaction, \(\sigma \) represents the shear and \(\mathcal{R} \) is the curvature of the hypersurface \(t = \text{constant} \). For the partitioning we have in mind, which is similar to the FB one, if we average over sufficiently large regions (see \cite{35}), then the averaged shear \(\langle \sigma \rangle \) can be neglected. The integrability condition for the system (5)–(8) is given by

\[
(6Q + 2\langle \mathcal{R} \rangle)\dot{a} + a[\dot{Q} + \langle \dot{\mathcal{R}} \rangle] = 0.
\]
(9)

Equation (5), in terms of the density parameters, can be put in the form (the so-called cosmic quartet)

\[
\Omega_m + \Omega_\Lambda + \Omega_k + \Omega_Q = 1,
\]
(10)

\[
\Omega_m = \frac{8\pi \langle \rho \rangle}{3H^2}, \quad \Omega_k = -\frac{\langle \mathcal{R} \rangle}{6H^2}, \quad \Omega_Q = -\frac{Q}{6H^2}, \quad \Omega_\Lambda = \frac{\Lambda}{3H^2},
\]
(11)

where \(H \) is the Hubble rate function.

For the partitioning of our visible universe, we follow the two-scale model of the original FB model (see \cite{22, 23} for more details). First of all, we must specify the so-called finite infinity regions. In the universe, there exist regions expanding and contracting. However, there are regions, called finite infinity \(\mathcal{F}_I \) (see \cite{23, 36}) that are the set of timelike boundaries of compact disjoint domains \(I \) for which the average expansion is zero and becomes positive outside, i.e. for any surface \(t = \text{constant} \):

\[
\langle \theta \rangle \bigcup \mathcal{F}_I = 0,
\]
(12)

\[
\exists D_r, \quad \mathcal{F}_I \supset D_I \rightarrow \langle \theta \rangle \bigcup \partial D_I > 0.
\]

In other words, \(\bigcup \mathcal{F}_I \) contains regions which on average are nonexpanding. Our position is within a \(\mathcal{F}_I \) region. The \(\mathcal{F}_I \) regions are well within the wall regions, which are defined as the disjoint regions that have on average a spatially flat metric with expansion factor \(a_w(t) \):

\[
d s^2_w = -dt^2 + a_w^2 \left[d\eta^2_w + \eta^2_w d\Omega^2 \right].
\]
(13)

Outside the wall regions (the region complementary to the walls with respect to the particle horizon), we have the void ones that are defined as expanding regions where the metric is on average hyperbolic with the scale factor \(a_v(t) \):

\[
d s^2_v = -dt^2 + a_v^2 \left[d\eta^2_v + \sinh^2(\eta_v) \ d\Omega^2 \right].
\]
(14)

Another crucial assumption that we make (also in the FB model) is the presence of a scale of homogeneity. This assumption is justified by the fact that statistical analysis of the galaxy distributions from available data seems to indicate a homogenization on scales of order of \((100–200) \ Mpc\). By scale of homogeneity we mean that averages of any variable beyond this scale practically will no longer depend on the scale. For the Hubble function in walls and voids, we have

\[
H_w = \frac{\langle \theta \rangle}{3} = \frac{\dot{a}_w}{a_w}, \quad H_v = \frac{\langle \theta \rangle}{3} = \frac{\dot{a}_v}{a_v}.
\]
(15)
With 'a' we denote the scale factor at the scale of homogeneity. The Buchert equations for $a(t)$ are given by (5)–(8). Moreover, in what follows, we denote with the subscript 'i' an initial early time t_i. Since the main cosmological data (distance–redshift relation) are available starting from the recombination era, we intend with t_i this early time. Furthermore, we denote with V_i the initial volume of the particle horizon at the recombination era. For the average on the volume representing the whole visible universe (particle horizon) defined by $V = a^3V_i$, we have

$$a^3 = f_wi a^3_w + f_{ei} a^3_e, \quad f_wi + f_{ei} = 1,$$

where f_wi and f_{ei} are initial fractions of walls and voids. Formula (16) relates the expansion factors at the two scales (walls and voids) to the average geometry represented by $a(t)$ at the scale of homogeneity. The wall volume is $V_w = V_{wi} a^3_w$ while the void volume is $V_e = V_{ei} a^3_e$, with $f_wi = \frac{V_w}{V_i}$ and $f_{ei} = \frac{V_e}{V_i}$. For a time $t > t_i$, the picture is

$$f_w(t) + f_e(t) = 1, \quad f_w = f_wi a^3_w a^{-3}, \quad f_e = f_{ei} a^3_e a^{-3}.$$

(17)

At the volume horizon for the Hubble rate we have

$$H = f_w H_w + f_e H_e.$$

(18)

Moreover, we define I_w and I_e according to

$$H = I_w H_w = I_e H_e.$$

(19)

In the Wiltshire model we have, instead of I_w, the phenomenological lapse function γ. Differently to the FB model, in our model I_w, I_e are not related to the possible time delay effects. In practice, we adopt the same partitioning present in [23], but in a different context, i.e. with a uniform time flow gauge instead of a uniform Hubble one. As a consequence, in our context I_w is only a measure of the ratio between the averaged Hubble flow at the scale of homogeneity and the one at the wall scale. This choice can be justified by the fact that at present day, no evidence for a non-uniform time flow at cosmological scales has been observed, although the converse cannot be excluded. By derivating $f_e(t)$ given by (17), we have

$$\dot{f}_w = -\dot{f}_w = 3(1 - f_e)(1 - I_w^{-1})H = \frac{3f_w(1 - f_e)(1 - h)H}{h + (1 - h)f_e}.$$

(20)

where h is defined by $I_w = h t_w$. For a general scalar ψ, we have

$$\langle \dot{\psi} \rangle = f_w \dot{\psi}_w + f_e \dot{\psi}_e.$$

(21)

As a consequence of (21), we get

$$\langle \dot{\psi} \rangle = \langle \dot{\psi} \rangle = 9\left(f_w H^2_w + f_e H^2_e\right).$$

(22)

From (8), (18), (20) and (22) and neglecting the possibility of intrinsic backreaction within the walls and voids (see [20, 37]), we obtain

$$Q = 6f_e(1 - f_e)(H_e - H_w)^2 = \frac{6f_w(1 - f_w)(1 - h)^2 H}{h + (1 - h)f_e}.$$

(23)

A useful alternative expression for the backreaction Q is

$$Q = \frac{2f^2_e}{3f_e(1 - f_e)}.$$

(24)

Concerning the mean three-curvature $\langle R \rangle$, we have $\langle R \rangle_v = 6\frac{k_v}{a^2_i}$ and $\langle R \rangle_w = 6\frac{k_w}{a^2_i} = 0$ since by construction $k_w = 0$. Hence, by setting $q^2 = -k_e f_{ei}^2$, thanks to (21), we get

$$\langle R \rangle = -\frac{q^2 f^2_e}{a^2}.$$

(25)
Equation (7) can be easily integrated obtaining \(\langle \rho \rangle = \rho_0 a_0^3 / a^3 \). Finally, the independent equations (5) and (9) become, with \(\dot{f}_e \neq 0 \),

\[
\frac{\dot{a}^2}{a^2} + \frac{\dot{f}_e^2}{9 f_e (1 - f_e)} - \frac{q^2 f_e^3}{a^2} = \frac{8}{3} \pi G \rho_0 \frac{a_0^3}{a^3} + \frac{\Lambda}{3}, \tag{26}
\]

\[
\dot{f}_e + \frac{j_e^2 (2 f_e - 1)}{2 f_e (1 - f_e)} + \frac{3 \dot{a}}{a} f_e - \frac{3 q^2 f_e^4 (1 - f_e)}{2 a^2} = 0. \tag{27}
\]

Equations (25) and (26) are the master equations of our model involving the scale factor \(a(t) \) at the scale of homogeneity and the void fraction \(f_e(t) \). In the following subsection, we obtain from (26)–(27) a function which allows us to reduce the Buchert equations to a workable form.

2.2. A useful function for the model

First of all, equation (6) can be written in the following way:

\[
\frac{\ddot{a}}{a} = -4 \pi G \rho_0 \frac{a_0^3}{a^3} + \frac{2}{9} \frac{j_e^2}{f_e (1 - f_e)} + \frac{\Lambda}{3}. \tag{28}
\]

By considering equations (26), (27) and (28), we obtain

\[
6 \frac{\dddot{a}}{a} + 3 \frac{\dot{a}^2}{a^2} - 2 \frac{\dot{f}_e}{1 - f_e} - 6 \frac{\ddot{a}}{a} \frac{\dot{f}_e}{(1 - f_e)} = \frac{j_e^2}{(1 - f_e)^2} = 3 \Lambda. \tag{29}
\]

From equation (20), we get

\[
I_w = \frac{3 (1 - f_e) \ddot{a}}{3 (1 - f_e) \dot{a} - f_e a}. \tag{30}
\]

Moreover, we have

\[
\Omega_m = \frac{8 \pi G \rho_0 a_0^3}{3 H^2 a^3}, \quad \Omega_k = \frac{q^2 f_e^4}{a^2 H^2}, \quad \Omega_\Omega = \frac{-j_e^2}{9 f_e (1 - f_e) H^2}. \tag{31}
\]

Finally, by multiplying (29) by \(24 \pi G \rho_0 a_0^3 / [\ddot{a} a - 3 (1 - f_e) a \dot{a}]^3 \) and with the help of (31) and (26)–(27), we get

\[
\frac{d}{dt} \left(\frac{\dot{f}_e^2 \Omega_m}{1 - f_e} \right) = -\frac{\dot{f}_e^2 \Omega_m}{(1 - f_e) \ddot{a}} \Lambda. \tag{32}
\]

After integrating and using (19) we have

\[
\frac{(1 - \epsilon_i) \dot{f}_e^2 \Omega_m}{(1 - f_e)} = \Omega_F = e^{\int \rho_0 \frac{\dot{a}}{a} dt}, \tag{33}
\]

where \(\epsilon_i \) is a small integration constant (\(<1\)), which will be determined later. In the original FB model, in the limit \(\Lambda = 0 \), the function \(\Omega_F \) is a constant. Its value is 1. In the FB model, its presence is justified in the sense that if we consider only matter in walls, then there must exist a constant critical density of reference (namely \(\Omega_F = 1 \)). This critical parameter denotes the density at the recombination era within walls. After the recombination, the voids begin to expand and occupy the particle horizon. In our AFB model, this picture is no longer valid. The function \(\Omega_F \) begins with the value 1 at the recombination and it reaches 0 asymptotically. We have denoted this function as a density parameter by recalling the original meaning of this function in the Wiltshire model. However, we are not able to indicate a clear physical interpretation for \(\Omega_F \). In our context, formula (33) is very useful and allows us to reduce, simplify and partially integrate the Buchert equations, as we will see in the next subsection.
2.3. Final form of the equations

We now write down the Buchert equations in a workable form. Combining the equations (26), (27), (30) and (33), one obtains

\[
\frac{a^2}{a^2}(2f_v - 1) + \frac{2f_v a^2}{3a} - \frac{q^2 f_v^3 + 8\pi G \rho_0 a_0^3 \frac{1 - \epsilon_i}{\Omega_F} - f_v = \frac{\Lambda}{3} f_v. \tag{34}
\]

The main Buchert equations become (26) and (34) together with the relation (33). We can further simplify these equations using manipulations similar to those found in [22, 23].

Namely, a first equation is obtained by multiplying equation (26) by \(f_v\) and subtracting equation (34). A second equation is obtained by multiplying equation (26) by \((1 - f_v)\) and adding equation (34). As a result, we get

\[
(1 - f_v) \frac{a}{a} - \frac{f_v}{3} = \sqrt{\frac{8}{3} a^2 \rho_0 a_0^3} \left(\frac{1 - \epsilon_i}{\Omega_F} \right) (1 - f_v), \tag{35}
\]

\[
\frac{a}{a} + \frac{f_v}{3 f_v} = \sqrt{1 + \frac{\Lambda}{3} a^2 f_v^3} + \frac{8\pi G \rho_0 a_0^3}{3q^2 f_v a^3} \left(\frac{1 - \epsilon_i}{\Omega_F} \right). \tag{36}
\]

Thanks to (31), equations (35) and (36) become

\[
(1 - f_v) \frac{a}{a} - \frac{f_v}{3} = \sqrt{\frac{\Omega_{\text{int}} H_0^2 a_0^3}{a^3} \left(\frac{1 - \epsilon_i}{\Omega_F} \right) (1 - f_v), \tag{37}
\]

\[
\frac{a}{a} + \frac{f_v}{3 f_v} = \frac{a_0 H_0}{a f_v^2} \sqrt{\frac{\Omega_{\text{int}}}{f_v^3} + \frac{\Omega_{\text{int}} a^2}{f_v^3 a_0^2} + \frac{a_0 \Omega_{\text{int}}}{a f_v^2} \left(\frac{1 - \epsilon_i}{\Omega_F} \right). \tag{38}
\]

A further manipulation can be done by multiplying equation (37) by \(H_0^{-1}(1 - f_v)^{1/2} a\) and equation (38) by \(a_0^{-1} H_0^{-1} f_v^{1/2} a\). We get

\[
\frac{1}{H_0} \frac{d}{dt} \left[(1 - f_v)^{1/2} a \right] = \sqrt{\frac{\Omega_{\text{int}} a_0^3}{(1 - f_v)^{1/2} a} \left(\frac{1 - \epsilon_i}{\Omega_F} \right), \tag{39}
\]

\[
\frac{1}{H_0} \frac{d}{dt} \frac{u}{\sqrt{f_v^{1/2}}} = \frac{\Omega_{\text{int}}}{f_v^{1/2}} \left[1 + \frac{\Omega_{\text{int}} a_0^3}{\Omega_{\text{int}} f_v^{1/2} a} + \frac{\Omega_{\text{int}} f_v^{1/2} a_0}{\Omega_{\text{int}} u} \left(\frac{1 - \epsilon_i}{\Omega_F} \right) \right], \tag{40}
\]

where \(u = f_v^{1/2} a_0\). Equations (39)–(40) represent the final form of our field equations. We are now ready to analyze the main features of our model.

3. A study of the equations

3.1. The case with \(\Lambda = 0\)

In the limit \(\Lambda = 0\), we formally recover the solution in [22] for the Buchert equations (39) and (40), but without clock effects. It is important to note that we do not use approximations. The absence of clock effects is only the outcome of our chosen gauge, i.e. the uniform time flow, which is different from the one used by the original Wiltshire model. As a consequence, we formally obtain, in the limit \(\Lambda = 0\), the same master equations of [22, 23] expressed in terms of the time \(t\), but with a phenomenological lapse function set to unity (uniform time flow
gauge). This occurs because a different interpretation for the parameter f_v is present in our model due to the different gauge used. Hence, in this limit, the wall factor a_w evolves exactly as an Einstein–de Sitter universe. Furthermore, as is shown in [22, 34], the general $\Lambda = 0$ solution possesses a tracking limit in which the factor a_v evolves approximatively as a Milne universe at late times. For f_v the tracking limit solution is given in [22, 35]:

$$f_v = \frac{3 f_v H_0 t}{3 f_v H_0 t + (1 - f_v)(2 + f_v)}.$$ \hfill (41)

Formula (41) shows that in the absence of a cosmological constant, the voids monotonically expand and asymptotically reach the value 1, i.e. they occupy the full-volume horizon. The deceleration parameter $q = \frac{2(1 - f_v)^2}{(2 + f_v)^2}$ is always positive and reaches asymptotically zero from positive values.

3.2. The case with $\Lambda \neq 0$

3.2.1. Late time behavior of the solutions. First of all, we consider the far-future limit of our model. This behavior can be exactly determined by analyzing the field equations. In this limit, both the wall density ρ_w and the void density ρ_v are negligible and asymptotically become zero. Hence, in this limit, both a_w and a_v are driven only by the cosmological constant. As a result, for $t \to \infty$ we must have

$$a_w(t) \sim e^{\sqrt{\frac{\Lambda}{3}} t}, \quad a_v(t) \sim e^{\sqrt{\frac{\Lambda}{3}} t} \to a \sim e^{\sqrt{\frac{\Lambda}{3}} t}.$$ \hfill (42)

Expressions (42) states that asymptotically, since the universe is dominated by the cosmological constant, both walls and voids must evolve as a de Sitter spacetime. Thus, asymptotically we have

$$H_w(t \to \infty) = H_v(t \to \infty) = H(t \to \infty) = \sqrt{\frac{\Lambda}{3}}.$$ \hfill (43)

As a result, by taking the asymptotic limit in (26), we obtain

$$\lim_{t \to \infty} \frac{f_v^2}{f_v(1 - f_v)} = 0.$$ \hfill (44)

Hence, $f_v(t \to \infty) = 0$ independently of the behavior of f_v. Formula (44) implies that the backreaction Q reaches asymptotically zero. At late times, the Buchert equations for a_w and a_v decouple and the exact GR solutions dominated by the cosmological constant arise. Note that the same phenomenon appears in the original Wiltshire model, where at late times the solutions for a_w and a_v look like the exact GR solutions and Q vanishes. Moreover, from equation (33), for the parameter Ω_F, at early times we have $\Omega_F \approx 1$, while asymptotically $\Omega_F \to 0$. The exact expression for Ω_F will be calculated later.

Another interesting asymptotic limit is the one involving f_v. Its value at early times, to be in agreement with WMAP data, is fixed to be $a priori$ $f_v \ll 1$. From (39) or (40), thanks to (42) and (43), for $f_v \to 0$, we have

$$f_v = 1 - \frac{\Omega_{0m}}{\Omega_0} k_\infty (1 - \epsilon_i),$$ \hfill (45)

where

$$\lim_{t \to \infty} \frac{a^3_0}{a^3 \Omega_F} = k_\infty.$$ \hfill (46)

Concerning k_∞, from equation (39) we have

$$\frac{1}{H_0^2} \frac{a^2_0 a_w}{\Omega_{0m} a^3_0} = \frac{(1 - \epsilon_i)}{\Omega_F}.$$ \hfill (47)
We multiply (47) by $\frac{d^3}{dt^3}$. By performing the limit $t \to \infty$, we get

$$k_\infty = \frac{1}{(1-\epsilon_i)} \lim_{t \to \infty} \frac{f_w a_w^2}{H_0^2 \Omega_{0m} \Omega_{w0}}.$$

(48)

Formula (48), thanks to (42), implies that $k_\infty \neq 0$. As a consequence, differently from the $\Lambda = 0$ case, $f_{v\infty} \neq 1$. For its determination, a numerical integration of the equations is necessary. In any case, some considerations can be made. In the limit $\Lambda = 0$, we must have $f_{v\infty} = 1$ and $f_{v\infty}$ must be a function of f_{wi} and of the adimensional quantity $\sqrt{\Lambda t_i}$. Since $\sqrt{\Lambda t_i} \ll 1$, on general grounds we expect that $(1- f_{v\infty}) \ll 1$. However, it is possible to calculate this value only by a direct numerical computation. We only mention this interesting difference with respect to the FB model.

3.2.2. Explicit expressions for a_w and Ω_F. In this subsection, we integrate directly our field equations obtaining the exact expressions for a_w and Ω_F which allow us to obtain further asymptotic behavior and confirm the ones above. After differentiating (47) and applying again (47), we get the equation

$$2 \dddot{a}_w + \ddot{a}_w \dot{a}_w = \Lambda.$$

(49)

Equation (49) is nothing but the exact Einstein equation for a_w. Hence, the wall factor a_w solution of the Buchert equations is exactly the same as that of the ΛCDM model. This does not represent a surprise. In fact, in the model [22, 23], the wall metric evolves as the exact Einstein solution, while the void metric evolves in a different manner with respect to the decoupled exact Einstein solution. As a result we have

$$a_w = a_{w0} \sinh^\frac{3}{2} \left(\frac{\sqrt{3\Lambda}}{2} t \right).$$

(50)

Moreover,

$$H_w = \frac{\cosh \left(\sqrt{\frac{3\Lambda}{4}} t \right)}{\sinh \left(\sqrt{\frac{3\Lambda}{4}} t \right)} \sqrt{\frac{\Lambda}{3}}.$$

(51)

Expressions (50) and (51) confirm the estimation (42) and (43). Furthermore, we calculate Ω_F. We obtain

$$\Omega_F = \left(\frac{\cosh \left(\sqrt{\frac{3\Lambda}{4}} t_i \right)}{\cosh \left(\sqrt{\frac{3\Lambda}{4}} t \right)} \right)^2.$$

(52)

Equation (39) can be easily integrated to give

$$(1 - f_{vi})^\frac{3}{4} a = a_0 \left(\frac{\Omega_{0m}(1 - \epsilon_i)}{\Omega_{0\Lambda}} \right)^\frac{1}{4} \sinh^\frac{3}{2} \left(\frac{\sqrt{3\Lambda}}{2} t \right).$$

(53)

Finally, for a_{w0} we have

$$a_{w0} = \left(\frac{\Omega_{0m}(1 - \epsilon_i)}{\Omega_{0\Lambda}} \right)^\frac{1}{4} \frac{1}{\cosh^\frac{3}{2} \left(\frac{\sqrt{3\Lambda}}{2} t_i \right)}.$$

(54)

Equation (40) cannot be integrated in an elementary way. For late times, this equation reduces to the exact Einstein equation, i.e. without backreaction. Note that we could gain advantage from this fact to obtain an approximate expression for $f_{vi}(t)$.
3.2.3. Early and late time behavior for a_v, f_v and I_w. Equation (40) can be useful to calculate the early time behavior of our model. At early times, we have

$$a_w = a_{w0} \left(\frac{3\Lambda}{4} \right)^{\frac{1}{3}} t^2, \quad a_v = a_{v0} t^3,$$

where the behavior for a_w has been obtained by evaluating (40) at $t \approx t_i$. By putting again the above expression for a_v in (40), we obtain

$$a_{v0} = a_0 \left(\frac{9}{4} \right)^{\frac{1}{3}} \frac{H_0^2}{f_v} \left(\Omega_{0m} \epsilon_i \right)^{\frac{1}{3}}.$$

After putting (56) in (53), we get the relation $f_{v0} = \epsilon_i$. In this way, all the parameters of the model are specified. With the same technique, we can obtain the asymptotic behavior of a_v. We get $a_v = a_{v\infty} e^{\sqrt{\frac{3}{4}} t}$ where

$$a_{v\infty}^3 = \frac{\Omega_{0m} a_0^3}{\Omega_{0\Lambda} f_v H_0} \left(\frac{f_{v\infty}}{1 - f_{v\infty}} \right).$$

Concerning the asymptotic behavior of f_v from (39) at the leading term in t, we have

$$f_v = f_{v\infty} - 2 H_0 B \frac{H_0}{\Lambda} \sqrt{\Omega_{0\Lambda} f_{v\infty}} e^{-\frac{2}{3\Lambda} t} + o(1),$$

where B is an integration constant. For $B > 0$, f_v reaches its asymptotic value from below, conversely if $B < 0$. Since we expect $(1 - f_{v\infty}) \ll 1$, perhaps $B > 0$.

As an important consequence of (44), we can study the asymptotic behavior of I_w. In fact, from (30) we get

$$I_w = \frac{1}{1 - \frac{m}{3(1 - f_{v\infty})}}.$$

Thus, both at early and asymptotic times $I_w = 1$. This behavior can be understood thanks to (42). Furthermore, the behavior given by (59) can potentially account for the broadly observed Hubble flow, without invoking clock effects. This concludes a preliminary study of our solutions.

3.2.4. A formula for our model and its consequences. We derive a very useful and intriguing formula containing all the cosmological parameters of our model. In fact, by combining equations (37) and (38) and evaluating them at a given present time t_0, we get

$$1 = \sqrt{\Omega_{0m}(1 - f_{v0}) \frac{(1 - f_{v\infty})}{\Omega_{0f}}} + \sqrt{F_{v0}} \sqrt{\Omega_{0\kappa} + \Omega_{0\Lambda} + \Omega_{0m} \left(1 + \frac{f_{v\infty}}{1 - f_{v\infty}} \right)},$$

where Ω_{0f}, given by (52), is also calculated at t_0. This equation is a generalization of a similar relation present in [22]. An important consequence of (60) is provided by its domain

$$\Omega_{0\Lambda} \geq \Omega_{0m} \left(-1 + \frac{1 - f_{v\infty}}{\Omega_{0f}} \right) - \Omega_{0\kappa}.$$

The inequality (61) provides an absolute minimum for $\Omega_{0\Lambda}$ (at least for positive curvatures) in terms of the actual matter and curvature density parameters and of the age of the universe. From (61) and (33), we deduce that $\Omega_{0\Lambda} \geq f_{v0}$ at the recombination era and reaches the asymptotic limit $> (1 - f_{v\infty})$ at late times, i.e. thanks to (10), Ω_{Λ} reaches asymptotically the value 1.

As a first consideration, (61) implies that with Ω_{0m} and $\Omega_{0\kappa}$ held fixed, a higher age of the universe requires a higher value for $\Omega_{0\Lambda}$, i.e. more dark energy. Moreover, formula (61)
also states that in order to mimic dark energy, a large amount of negative curvature is needed. While a large negative curvature seems in disagreement with the analysis of the CMB, this calculation was obtained within the ΛCDM paradigm and is not directly relevant here.

It should be stressed that some studies [38, 39] on the evolution of voids fraction in the ΛCDM context estimate an actual fraction of voids between 40% and 70% of the total particle horizon volume. In these studies, voids are identified as underdense regions. However, it should be noted that an underdense region may not have necessarily a negative curvature on average: a sufficient amount, for example, of dark matter can be enough to make the average curvature non-negative.

In the following numerical examples, we assume that the fraction of voids present in the universe has negative curvature. We calculate the cosmological parameters that allow us to have 40–70% of voids with hyperbolic curvature. We now give some crude numerical examples. As an example, we pose $f_{\text{m}} \simeq 14$ Gyr with $\Lambda \sim 10^{-35}$ s$^{-2}$ and so we have $\Omega_{\Lambda F} \simeq 1/(3.33)$ and we pose $\Omega_{\text{dm}} = 0.3$. Hence, from (60), by setting (remember that t_0 and Ω_{dm} are held fixed) $\Omega_{k0} = 0.1$, $\Omega_{0A} = 0.72$, we have $f_{\text{m}} = 0.4$ and $\Omega_{0Q} = -0.12$. By setting for example $\Omega_{k0} = 0.2$, $\Omega_{0A} = 0.72$, $\Omega_{0Q} = -0.22$, we have $f_{\text{m}} = 0.6$. Finally, by choosing $\Omega_{0A} = 0.72$, $\Omega_{k0} = 0.28$, $\Omega_{0Q} = -0.3$, we obtain $f_{\text{m}} = 0.7$. These crude estimations show that a large (observed) fraction of voids could be in agreement with a relatively small value for Ω_{k0}. Furthermore, in the examples quoted above we have $\Omega_{0Q} + \Omega_{k0} \simeq 0$. As a result, we could have an inhomogeneous model with a fraction of voids $f_{\text{m}} \geq 0.4$ in agreement with the one actually observed and with the same present day values for Ω_{0A} and Ω_{dm} of the ΛCDM model. This suggests that the backreaction Q, rather than acting as a dark energy, could act on void scales as an effective positive curvature, balancing the negative curvature of the voids themselves. By describing a cosmological model where

$$\Omega_{\text{dm}} + \Omega_{0A} \simeq 1, \quad \Omega_{0Q} + \Omega_{k0} \simeq 0, \quad (62)$$

and with a large fraction of voids, we can obtain a model mimicking the relation $\Omega_{\text{dm}} + \Omega_{0A} = 1$ of the flat ΛCDM one with the further constraint $\Omega_{0Q} + \Omega_{k0} = 0$.

As a final consideration for this section, note that inequality (61) can also be seen in terms of the parameter Ω_{0Q}. Thanks to (10) we have

$$\Omega_{0Q} \leq 1 - \frac{\Omega_{\text{dm}}}{\Omega_{0F}} (1 - f_{\text{m}}) \quad (63)$$

and from (61) and (63) we deduce that the density parameter Ω_{dm} plays an important role. For an overview on the backreaction issue, see [40, 32, 33].

4. Conclusions

Many attempts have been made in the literature in order to explain or rule out the cosmological constant in the present day cosmological models. In particular, within the Buchert formalism, the FB model [22, 23] has been recently presented to explain dark energy in terms of the gravitational energy stored in voids. The amount of such gravitational energy sufficient to rule out the presence of Λ is rather huge ($\simeq 38\%$ at present day). Within the formalism used for the FB model, it is possible to build a more realistic model of the universe than the ones obtained with exact solutions as, for example, LTB metrics. In fact, to mimic dark energy, such exact solutions require a single huge void or hump of the order of Gpc. Such a picture is in contradiction with the known ‘geography’ of the universe, where a web structure seems to be more appropriate. An important issue is represented by the calculation of the effects of inhomogeneities on the value of Λ. It is very useful to build a non-perturbative model, within the cosmological constant paradigm, mimicking the present day web structure of the
universe. Our main aim was to present a model allowing us to study, in a non-perturbative framework, the effects of the observed inhomogeneities on the cosmological parameters and on the cosmic evolution. We have generalized the FB model by introducing a cosmological constant but without introducing \textit{ab initio} clock effects. We have written the relevant equations in a simple way. In the limit $\Lambda = 0$ the equations reduce to the form presented in [22, 23]. We partially integrate and study the asymptotic behavior of the solutions. A first difference with respect to the FB model is that the cosmological constant inhibits the voids to fill asymptotically all the visible universe, namely $f_{v \infty} < 1$. Instead, an expected small fraction of space is asymptotically filled by walls. The amount of such a fraction cannot be deduced by an asymptotic study of the equations and can be obtained only by integrating the field equations (a numerical integration will be the subject of a separate paper). The expansion of the voids is different with respect to the FB model and could in principle be detectable. In fact, the role of the cosmological constant is to make the asymptotic behavior of $a(t)$, $a_w(t)$, $a_v(t)$ the same, contrary to the FB model, where the late time limit of $a_v(t)/a_w(t)$ is diverging. In particular, this phenomenon is visible in the behavior of I_w: this approaches the value 1 both at early and late times. The behavior of I_w is also interesting when analyzed in terms of the ΛFB model with clock effects. In fact, we can add clock effects of [23] in our model. In this case, the field equations for f_v, $a(t)$, a_w, $a_v(t)$ remain unchanged, while the parameter I_w becomes a phenomenological lapse function. As a consequence, also in the presence of Λ, clock effects are possible: time delay effects can coexist with a non-vanishing cosmological constant and we can also have cosmic clock effects which are interpreted in terms of quasi-local gravitational energy in the presence of the mysterious Λ. A broadly uniform Hubble flow can thus be obtained with smaller clock effects than in [22, 23] and a non-zero cosmological constant. This reasoning shows that the so-called Sandage–de Vaucouleurs paradox can also be solved with $\Lambda \neq 0$.

As a further consideration, within our model we deduce a rather interesting formula relating all the cosmological parameters of the ΛFB model at a given present time. A remarkable consequence of this formula is the existence of a minimum actual value for Ω_Λ (at least for positive curvatures) expressed in terms of the age of the universe and the actual density parameters Ω_k and Ω_m.

As a final consideration, note that our model predicts the way in which voids expand in the presence of Λ. This behavior could be the object of a cosmological test. In fact, methods to measure the expansion rate of voids are in preparation (see for example [41]). When these methods become available, they will represent a way to distinguish between the inhomogeneous models present in the literature.

\textbf{Acknowledgments}

I would like to thank Alessandra D’Angelo for useful suggestions.

\textbf{Appendix.}

In our model, the observer is located within walls with zero curvature. The metric within the walls can be written as

\begin{align}
\text{d}s_w^2 &= -\text{d}t^2 + a_w^2 \left[\text{d}\eta_w^2 + \eta_w^2 \text{d}\Omega^2 \right] \\
&= -\text{d}t^2 + \left(1 - f_v \right)^\frac{3}{2} \frac{a^2}{f_{w1}} \left[\text{d}\eta_w^2 + \eta_w^2 \text{d}\Omega^2 \right].
\end{align}

(A.1)
The hyperbolic void metric is
\[
ds^2 = -dt^2 + a^2 \left[d\eta^2 + \sinh^2(\eta_v) \, d\Omega^2 \right].
\]

It should be noticed that the scale factors \(a_w, a_v\) are not the ones obtained by solving the exact Einstein equations but instead they are obtained by solving the Buchert equations (26) and (27) with a non-vanishing backreaction. Concerning the metric at the scale of homogeneity with the scale factor \(a(t)\) given by (16), we have
\[
ds^2 = -dt^2 + a^2 \left[d\eta^2 + \frac{1}{f_v} \sinh^2(\eta_v) \, d\Omega^2 \right].
\]

where \(A(t, \eta)\) is an area function satisfying
\[
4\pi \int_0^{\eta_H} A d\eta = a_0^2 V(\eta_H), \quad \text{where} \quad \eta_H \quad \text{is the particle horizon radius.}
\]

The past null cone equation in (A.5) is given by
\[
\eta = \int_0^{t_w} \frac{dt}{a}.
\]

The distance–redshift relation \(d_L(z)\) in terms of the redshift \(z\) is given by
\[
d_L(z) = a_0 (1 + z) \eta_w,
\]

The functions \(f_v, a\) are obviously obtained by solving the Buchert equations.

References

[1] Perlmutter S et al 1997 Astrophys. J. 483 565
[2] Riess A G et al 1998 Astron. J. 116 1009
[3] Perlmutter S et al 1999 Astrophys. J. 517 565
[4] Tanimoto M and Nambu Y 2007 Class. Quantum Grav. 24 3843
[5] Moffat J W 2006 J. Cosmol. Astropart. Phys. JCAP05(2006)001
[6] Enqvist K 2008 Gen. Rel. Grav. 40 451
[7] Alnes H, Amarzguioui M and Gron O 2006 Phys. Rev. D 73 083519
[8] Célérier M N 2000 Astron. Astrophys. 353 63
[9] Viaggiu S 2010 Class. Quantum Grav. 27 155002
[10] Tomita K 2001 Prog. Theor. Phys. 106 929
[11] Kolb E W, Matarrese S and Riotto A 2006 New J. Phys. 8 322
[12] Paranjape A and Singh T P 2006 Class. Quantum Grav. 23 6955
[13] Marra V, Kolb E W, Matarrese S and Riotto A 2007 Phys. Rev. D 76 123004
[14] Buchert T and Carfora M 2008 Class. Quantum Grav. 19 195001
[15] Gasperini M, Marozzi G and Veneziano G 2010 J. Cosmol. Astropart. Phys. JCAP02(2010)009
[16] Räsänen S 2006 J. Cosmol. Astropart. Phys. JCAP11(2006)003
[17] Buchert T 2000 Gen. Rel. Grav. 32 105
[18] Buchert T 2008 Gen. Rel. Grav. 40 467
[19] Zalaletdinov R M 1992 Gen. Rel. Grav. 24 1015
[20] Buchert T and Carfora M 2003 Phys. Rev. Lett. 90 031101
[21] Buchert T and Carfora M 2002 Class. Quantum Grav. 19 6109
[22] Wiltshire D L 2007 Phys. Rev. Lett. 99 251101
[23] Wiltshire D L 2007 New J. Phys. 9 377
[24] Ishibashi A and Wald R M 2006 Class. Quantum Grav. 23 235
[25] Flanagan E E 2005 Phys. Rev. D 71 103521
[26] Marra V and Notari A 2011 Class. Quantum Grav. 28 164004
[27] Buchert T 2011 Class. Quantum Grav. 28 164007
[28] Tolman R C 1934 Proc. Natl. Acad. Sci. USA 20 169
[29] Bondi H 1947 Mon. Not. R. Astron. Soc. 107 410
[30] Célérier M N, Bolejko K and Krasinski A 2010 Astron. Astrophys. 518 A21
[31] Zibin J P and Moss A 2011 Class. Quantum Grav. 28 164005
[32] Larena J 2009 Phys. Rev. D 79 084006
[33] Brown I A, Behrend J and Malik K A 2009 J. Cosmol. Astropart. Phys. JCAP11(2009)027
[34] Wiltshire D L 2009 Phys. Rev. D 80 123512
[35] Wiltshire D L 2008 Phys. Rev. D 78 084032
[36] Ellis G F R and Stoeger W 1987 Class. Quantum Grav. 4 1697
[37] Wiegand A and Buchert T 2010 Phys. Rev. D 82 023523
[38] Hoyle F and Vogeley M S 2004 Astrophys. J. 607 751
[39] Colberg J M, Sheth R K, Diaferio A, Gao L and Yoshida N 2005 Mon. Not. R. Astron. Soc. 360 216
[40] Umeh O, Larena J and Clarkson C 2010 arXiv:1011.3959
[41] Lavaux G and Wandelt B D 2011 arXiv:1110.0345
[42] Räsänen S 2009 J. Cosmol. Astropart. Phys. JCAP02(2009)011
[43] Larena J, Alimi J M, Buchert T, Kunz M and Corasaniti P S 2009 Phys. Rev. D 79 083011
[44] Wiegand A and Schwarz D J 2011 arXiv:1109.4142