THE BOHR PHENOMENON FOR ANALYTIC FUNCTIONS ON SIMPLY CONNECTED DOMAINS

MOLLA BASIR AHAMED, VASUDEVARAO ALLU, AND HIMADRI HALDER

Abstract. In this paper, we investigate the Bohr phenomenon for the class of analytic functions defined on the simply connected domain

\[\Omega_\gamma = \{ z \in \mathbb{C} : |z + \gamma| < \frac{1}{1 - \gamma} \} \text{ for } 0 \leq \gamma < 1. \]

We study improved Bohr radius, Bohr-Rogosinski radius and refined Bohr radius for the class of analytic functions defined in \(\Omega_\gamma \), and obtain several sharp results.

1. Introduction and Preliminaries

Let \(B(\mathbb{D}) \) be the class of analytic functions in unit disk \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \) such that \(f(\mathbb{D}) \subseteq \overline{\mathbb{D}} \). The classical Bohr theorem for functions \(f \in B(\mathbb{D}) \) says that if \(f(z) = \sum_{n=0}^{\infty} a_n z^n \), then its associated majorant series \(M_f(r) \) satisfies the following inequality

\[
M_f(r) := \sum_{n=0}^{\infty} |a_n|r^n \leq 1 \quad \text{for } |z| = r \leq \frac{1}{3}
\]

and the constant \(1/3 \), called Bohr radius for the class \(B(\mathbb{D}) \), cannot be improved. The inequality (1.1) is known as classical Bohr inequality (1.1) for the class \(B(\mathbb{D}) \). The Bohr inequality was first obtained by Harald Bohr [24] in 1914 with the constant \(1/6 \). The optimal value \(1/3 \), which is called the Bohr radius for disk case was later established independently by Weiner, Riesz and Schur. For the proofs we refer to [40] and [42]. The notion of Bohr inequality has been generalized to several complex variables by finding the multidimensional Bohr radius. We refer the reader to the articles [6, 7, 23, 37]. For more information and intriguing aspects on Bohr phenomenon, we suggest the reader to glance through the articles [1]–[5], [8]–[9], and [15]–[18]. Bohr phenomenon for operator valued functions have been extensively studied by Bhowmik and Das (see [21, 22]).

The main aim of this article is to study the Bohr inequality for the class of analytic functions that are defined in a general simply connected domain in the complex plain. Let \(\Omega \) be a simply connected domain containing \(\mathbb{D} \) and \(B(\Omega) \) be the class of analytic

2020 Mathematics Subject Classification. Primary 30C45, 30C50, 30C80.

Key words and phrases. Simply connected domain, bounded analytic functions, improved Bohr radius, Bohr-Rogosinski radius, refined Bohr radius and Bohr inequality.
functions in Ω such that $f(\Omega) \subseteq \overline{D}$. We define the Bohr radius $B = B_\Omega$ for the class $B(\Omega)$ by

$$B := \sup \left\{ r \in (0, 1) : \sum_{n=0}^{\infty} |a_n|r^n \leq 1 \text{ for all } f \in B(\Omega) \text{ with } f(z) = \sum_{n=0}^{\infty} a_n z^n, \ z \in \overline{D} \right\}.$$

In particular, if $\Omega = \mathbb{D}$, then $B_\mathbb{D} = 1/3$, which is the classical Bohr radius for the class $B(\mathbb{D})$. Let $\mathbb{D}(a, r) := \{ z \in \mathbb{C} : |z - a| < r \}$. Clearly, $\mathbb{D} := \mathbb{D}(0, 1)$. Let $0 \leq \gamma < 1$. We consider the disk Ω_γ defined by

$$\Omega_\gamma := \left\{ z \in \mathbb{C} : \left| z + \frac{\gamma}{1-\gamma} \right| < \frac{1}{1-\gamma} \right\}.$$

It is easy to see that Ω_γ always contains the unit disk \mathbb{D}. In 2010, the notion of classical Bohr inequality \cite{Fournier2010} has been generalized by Fournier and Ruscheweyh \cite{Fournier2010} to the class $B(\Omega)$. More precisely,

Theorem 1.2. \cite{Fournier2010} For $0 \leq \gamma < 1$, let $f \in B(\Omega_\gamma)$, with $f(z) = \sum_{n=0}^{\infty} a_n z^n$ in \mathbb{D}. Then,

$$\sum_{n=0}^{\infty} |a_n|r^n \leq 1 \text{ for } r \leq \rho := \frac{1+\gamma}{3+\gamma}.$$

Moreover, $\sum_{n=0}^{\infty} |a_n|\rho^n = 1$ holds for a function $f(z) = \sum_{n=0}^{\infty} a_n z^n$ in $B(\Omega_\gamma)$ if, and only if, $f(z) = c$ with $|c| = 1$.

In this article, we study the Bohr-Rogosinski radius for the class $B(\Omega)$, In 2017, Kayumov and Ponnusamy \cite{Kayumov2017} introduced Bohr-Rogosinski radius motivated from Rogosinski radius for bounded analytic functions in \mathbb{D}. Rogosinski radius is defined as follows: Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be analytic in \mathbb{D} and its corresponding partial sum of f is defined by $S_N(z) := \sum_{n=0}^{N-1} a_n z^n$. Then, for every $N \geq 1$, we have $|\sum_{n=0}^{N-1} a_n z^n| < 1$ in the disk $|z| < 1/2$ and the radius $1/2$ is sharp. Motivated by Rogosinski radius, Kayumov and Ponnusamy have considered the Bohr-Rogosinski sum $R_N^f(z)$ is defined by

$$R_N^f(z) := |f(z)| + \sum_{n=N}^{\infty} |a_n||z|^n. \hspace{1cm} (1.3)$$

It is worth to point out that $|S_N(z)| = |f(z) - \sum_{n=N}^{\infty} a_n z^n| \leq |R_N^f(z)|$. Thus, it is easy to see that the validity of Bohr-type radius for $R_N^f(z)$, which is related to the classical Bohr sum (Majorant series) in which $f(0)$ is replaced by $f(z)$, gives Rogosinski radius in the case of bounded analytic functions in \mathbb{D}. There has been significant and extensive research carried out on Improved-Bohr inequality and Bohr-Rogosinski radius (see \cite{10, 29, 30, 31, 32, 33, 34, 35, 36, 38}).

Lemma 1.4. \cite{Molla2018} Let $a \in \mathbb{D}$ and $f \in B(\mathbb{D})$ with

$$f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n, \ |z-a| \leq 1-|a|.$$
Then,

$$|a_n| \leq (1 + |a|)^{n-1} \frac{1 - |a_0|^2}{(1 - |a|^2)^n}, \quad n \geq 1.$$

Recently, Evdoridis et al. [26] obtained the following coefficient bounds for functions defined in Ω_γ.

Lemma 1.5. [26] For $\gamma \in [0, 1)$, let

$$\Omega_\gamma = \left\{ z \in \mathbb{C} : \left| z + \frac{\gamma}{1 - \gamma} \right| < \frac{1}{1 - \gamma} \right\},$$

and let f be an analytic function in Ω_γ, bounded by 1, with the series representation $f(z) = \sum_{n=0}^{\infty} a_n z^n$ in the unit disk \mathbb{D}. Then

$$|a_n| \leq \frac{1 - |a_0|^2}{1 + \gamma} \text{ for } n \geq 1.$$

2. Main Results

Before we state an improved version of inequality of Theorem 1.2, we prove the following lemma.

Lemma 2.1. Let $g : \mathbb{D} \rightarrow \mathbb{D}$ be an analytic function, $m(\geq 2)$ be an integer, and let $\gamma \in \mathbb{D}$ be such that $g(z) = \sum_{n=0}^{\infty} a_n (z - \gamma)^n$ for $|z - \gamma| \leq 1 - |\gamma|$. Then

$$\sum_{n=0}^{\infty} (|\alpha_n| + \beta |\alpha_n|^m) \rho^n \leq 1 \text{ for } \rho \leq \rho_0 := (1 - \gamma^2)/(3 + \gamma),$$

where

$$\beta = \frac{(1 - \gamma)^m(3 + \gamma) - (1 - \gamma^2)}{8(m - 1)} \text{ for } 0 \leq \gamma \leq \gamma_*, < 1,$$

where γ_* is the smallest root of the equation $(1 - \gamma)^m(3 + \gamma) + \gamma^2 - 1 = 0$.

Using Lemma 2.1, we obtain the following improved version of Theorem 1.2 for the class $B(\Omega_\gamma)$.

Theorem 2.3. For $0 \leq \gamma < 1$, and integer $m (\geq 2)$, let $f \in B(\Omega_\gamma)$ with $f(z) = \sum_{n=0}^{\infty} a_n z^n$ for $z \in \mathbb{D}$, then we have

$$|a_0| + \sum_{n=1}^{\infty} \left(|a_n| + \beta \frac{|a_n|^m}{(1 - \gamma)^{(m-1)n}} \right) r^n \leq 1 \text{ for } r \leq r_0 = \frac{1 + \gamma}{3 + \gamma},$$

where β as in Lemma 2.1. Furthermore, the quantities β and $(1 + \gamma)/(3 + \gamma)$ cannot be improved.

Figure 1 demonstrates values of γ_* in $[0, 1)$ for which $\beta(\gamma) > 0$ with $0 \leq \gamma \leq \gamma_* < 1$. The values of γ_* are $\gamma_*(10) = 0.1083$, $\gamma_*(21) = 0.0519$, $\gamma_*(50) = 0.0219$ and $\gamma_*(100) = 0.011$.
Figure 1. The roots $\gamma_*(m)$ of the equation $(1-\gamma)^m(3+\gamma) + \gamma^2 - 1 = 0$.

Lemma 2.4. Let $g : \mathbb{D} \to \overline{\mathbb{D}}$ be an analytic function, $\lambda \in [0, 512/243]$ and let $\gamma \in \mathbb{D}$ be such that $g(z) = \sum_{n=0}^{\infty} \alpha_n (z - \gamma)^n$ for $|z - \gamma| < 1 - |\gamma|$. Then

$$\sum_{n=0}^{\infty} |\alpha_n| |\rho|^n + \left(\frac{8}{9} - \frac{27}{64} \lambda\right) \left(\frac{S_{\rho}^\gamma}{\pi}\right) + \lambda \left(\frac{S_{\rho}^\gamma}{\pi}\right)^2 \leq 1 \quad \text{for} \quad \rho \leq \rho_0 = \frac{1 - |\gamma|^2}{3 + |\gamma|},$$

where S_{ρ}^γ denotes the area of the image of the disk $D(\gamma; r(1-|\gamma|))$ under the mapping g.

By applying Lemma 2.4, we obtain the following improved version of Theorem 1.2.

Theorem 2.5. For $0 \leq \gamma < 1$ and $0 \leq \lambda \leq 512/243$, let $f \in B(\Omega_{\gamma})$ with $f(z) = \sum_{n=0}^{\infty} a_n z^n$, for $|z - \gamma| \leq 1 - |\gamma|$, then we have

$$\sum_{n=0}^{\infty} |a_n| r^n + \left(\frac{8}{9} - \frac{27}{64} \lambda\right) \left(\frac{S_{r(1-\gamma)}^\gamma}{\pi}\right) + \lambda \left(\frac{S_{r(1-\gamma)}^\gamma}{\pi}\right)^2 \leq 1 \quad \text{for} \quad r \leq r_0 = \frac{1 + \gamma}{3 + \gamma}.$$

Furthermore, the quantities $8/9 - 27\lambda/64$, λ and $(1+\gamma)/(3+\gamma)$ cannot be improved.

Lemma 2.6. For $\gamma \in \mathbb{D}$, let $g \in B(\mathbb{D})$ with $g(z) = \sum_{n=0}^{\infty} \alpha_n (z - \gamma)^n$, for $|z - \gamma| \leq 1 - |\gamma|$, then

$$|g(z)| + \sum_{n=N}^{\infty} |\alpha_n| |\rho|^n \leq 1, \quad \text{for} \quad \rho \leq \rho_N,$$

where ρ_N is the root of

$$2(1+\gamma)\rho^N + (1+\gamma)(1-\gamma)^{N-1}(\rho - 1)(1 - \gamma - \rho) = 0$$

in $(0, 1)$.

Using Lemma 2.6, we obtain the following Bohr-Rogosinski radius for the class $B(\Omega_{\gamma})$.
Theorem 2.7. For $0 \leq \gamma < 1$ and integer $N \geq 1$, let $f \in \mathcal{B}(\Omega_\gamma)$ with $f(z) = \sum_{n=0}^\infty a_n z^n$ for $z \in \mathbb{D}$. Then, we have
\[
|f(\frac{z - \gamma}{1 - \gamma})| + \sum_{n=N}^\infty |a_n| r^n \leq 1 \quad \text{for} \quad r \leq r_0 = \frac{\rho_N}{1 - \gamma},
\]
where ρ_N is the root of the equation
\[(2.8) \quad 2(1 + \rho)\rho^N + (1 + \gamma)(1 - \gamma)^{N-1}(\rho - 1)(1 - \gamma - \rho) = 0.
\]
Furthermore, the constant $\rho_N/(1 - \gamma)$ cannot be improved.

Using Lemma 1.5, we establish the following refined Bohr inequality for the class $\mathcal{B}(\Omega_\gamma)$.

Theorem 2.9. For $0 \leq \gamma < 1$, let $f \in \mathcal{B}(\Omega_\gamma)$ with $f(z) = \sum_{n=1}^\infty a_n z^n$ for $z \in \mathbb{D}$. Then we have
\[
\sum_{n=0}^\infty |a_{n+1}| r^n + \left(\frac{1}{1 + |a_1|} + \frac{r}{1 - r}\right) \sum_{n=2}^\infty |a_n|^2 r^{2(n-1)} \leq 1 \quad \text{for} \quad r \leq r_0 = \frac{1 + \gamma}{3 + \gamma}.
\]
The constant r_0 cannot be improved.

3. Proofs of the Main Results

Proof of the Lemma 2.1. Without loss of generality, we may assume that $\gamma \in [0,1)$. Using Lemma 1.4, we obtain
\[(3.1) \quad \sum_{n=1}^\infty |a_n| \rho^n \leq \frac{1 - |a_0|^2}{1 + \gamma} \sum_{n=1}^\infty \left(\frac{\rho}{1 - \gamma}\right)^n = \frac{(1 - |a_0|^2) \rho}{(1 + \gamma)(1 - \gamma - \rho)}.
\]
Further, we have
\[(3.2) \quad \sum_{n=1}^\infty |a_n|^m \rho^n \leq \frac{(1 - |a_0|^2)^m}{(1 + \gamma)^m} \sum_{n=1}^\infty \left(\frac{\rho}{1 - \gamma}\right)^n = \frac{(1 - |a_0|^2)^m \rho}{(1 + \gamma)((1 - \gamma)^m - \rho)}.
\]
The series in (2.2) contains positive terms for $\beta \geq 0$. Our aim is to find the smallest value of γ in $[0,1)$ for which $\beta \geq 0$. That is
\[
\beta = \frac{(1 - \gamma)^m(3 + \gamma) - (1 - \gamma)^2}{8(m - 1)} := \frac{Q(\gamma)}{8(1 - m)} \geq 0,
\]
where $Q(\gamma) = (1 - \gamma)^m(3 + \gamma) - (1 - \gamma)^2$. Clearly, $\gamma = 1$ is a root of $Q(\gamma)$. Since $Q(\gamma)$ is a polynomial such that $Q(0) = 2 > 0$ and $m \geq 2$, we have
\[
Q\left(\frac{9}{10}\right) = \frac{3.9}{10^m} + \frac{81}{100} - 1 \leq \frac{84.9}{100} - 1 = \frac{15.1}{100} < 0.
\]
Therefore, there exists at least one root of $Q(\gamma)$ in $(0,1)$. Let γ_* be the smallest root of $Q(\gamma)$. Then, it is easy to see that $Q(\gamma) \geq 0$, and hence $\beta \geq 0$ for all $\gamma \in [0,\gamma_*]$.
A simple computation using (3.1) and (3.2) shows that

\[
|\alpha_0| + \sum_{n=1}^{\infty} |\alpha_n|\rho^n + \beta \sum_{n=1}^{\infty} |\alpha_n|^m\rho^n \\
\leq |\alpha_0| + \frac{(1 - |\alpha_0|^2) \rho}{(1 + \gamma)(1 - \gamma - \rho)} + \beta \frac{(1 - |\alpha_0|^2)^m \rho}{(1 + \gamma)((1 - \gamma)^m - \rho)} \\
= 1 + \Psi_\gamma(\rho) \\
\]

provided \(\Psi_\gamma(\rho) \leq 0 \), where

\[
\Psi_\gamma(\rho) = 1 - \frac{|\alpha_0|^2}{1 + \gamma} \left(\frac{\rho}{1 - \gamma - \rho} \right) + \beta \left(\frac{1 - |\alpha_0|^2}{1 + \gamma} \right)^m \left(\frac{\rho}{(1 - \gamma)^2 - \rho} \right) - (1 - |\alpha_0|). \\
\]

Since \((1 - \gamma) - \rho > (1 - \gamma)^m - \rho\), it is easy to see that \(\Psi_\gamma(\rho) \) is an increasing function of \(r \) for \(r < (1 - \gamma)^m \). A simplification shows that

\[
\Psi_\gamma(\rho) \\
= K \left(1 + (1 - |\alpha_0|^2)^{m-1} \left(\frac{2\beta \rho}{(1 + \gamma)((1 - \gamma)^m - \rho)} + \frac{\phi_\gamma(\rho)}{(1 - |\alpha_0|^2)^{m-1}} \right) - \frac{2}{1 + |\alpha_0|} \right), \\
\]

where

\[
K = 1 - \frac{|\alpha_0|^2}{2} \quad \text{and} \quad \phi_\gamma(\rho) = \frac{2r}{(1 + \gamma)(1 - \gamma - \rho)} - 1. \\
\]

Let \(\rho \leq \rho_0 \) be such that \(\Psi_\gamma(\rho) \leq \Psi_\gamma(\rho_0) \), and \(\phi_\gamma(\rho_0) = 0 \). Then, it is easy to see that \(\phi_\gamma(\rho_0) = 0 \) if, and only if, \(\rho_0 = (1 - \gamma^2)/(3 + \gamma) \). Therefore, it is enough to prove that \(\Psi_\gamma(\rho_0) \leq 0 \) for \(|\alpha_0| \leq 1 \). Let \(\beta = \eta ((1 - \gamma)^m(3 + \gamma) - (1 - \gamma^2)) \), then it is easy to see

\[
\Psi_\gamma(\rho_0) = K \left(1 + 2\eta(1 - |\alpha_0|^2)^{m-1} \left(\frac{1 - \gamma^2}{(1 + \gamma)^m} - \frac{2}{1 + |\alpha_0|} \right) \right) \\
:= KG_\gamma(|\alpha_0|), \\
\]

where

\[
G_\gamma(x) = 1 + 2\eta A(\gamma)(1 - x^2)^{m-1} - \frac{2}{x + 1} \\
\]

and

\[
A(\gamma) = \frac{1 - \gamma^2}{(1 + \gamma)^m} > 0 \quad \text{for} \quad \gamma \in [0, 1). \\
\]

It now remains to show that \(G_\gamma(x) \leq 0 \) for \(\gamma \in [0, 1) \) and \(x \in [0, 1] \). Since

\[
A'(\gamma) = -\frac{2(1 + \gamma)\gamma + m(1 - \gamma^2)}{(1 + \gamma)^{m+1}} \leq 0, \quad \text{for} \quad \gamma \in [0, 1) \\
\]

and \(A(0) = 1, \ A(1) = 0 \), it follows that \(A(\gamma) \) is a decreasing function and hence \(A(\gamma) \leq A(0) = 1 \). Since \(x \leq 1 \) and \(0 < A(\gamma) \leq 1 \), we have

\[
-A(\gamma)x(1 + x^2)(1 - x^2)^{m-2} > -4. \\
\]
From (3.4), we have
\[
(G_\gamma(x))' = \frac{2}{(1 + x)^2} (1 - 2\eta A(\gamma)(m - 1)x(1 + x)^2(1 - x^2)^{m-2})
\]
\[
\geq \frac{2(1 - 8(m - 1)\eta)}{(1 + x)^2}.
\]
Clearly, \((G_\gamma(x))' > 0\) for \(x \in (0, 1)\) whenever \(\eta \leq 1/(8(m - 1))\). Therefore, \(G_\gamma(x)\) is an increasing function on \([0, 1]\) for \(\eta \leq 1/(8(m - 1))\). Equivalently,
\[
\beta \leq \frac{(1 - \gamma)^m(3 + \gamma) - (1 - \gamma^2)}{8(m - 1)}.
\]
In particular, \(G_\gamma(x) \leq 0\) for \(\gamma \in [0, \gamma_*]\) and \(x \in [0, 1]\), where \(\gamma_*\) is the smallest root of the equation \((1 - \gamma)^m(3 + \gamma) - (1 - \gamma^2) = 0\). This completes the proof.

Proof of Theorem 2.3. For \(0 \leq \gamma < 1\), let
\[
\Omega_\gamma = \left\{ z \in \mathbb{C} : \left| z + \frac{\gamma}{1 - \gamma} \right| < \frac{1}{1 - \gamma} \right\}
\]
and the function \(f : \Omega_\gamma \to \mathbb{D}\) be given by \(f(z) = \sum_{n=0}^{\infty} a_n z^n\). Then the function \(g\) defined by
\[
g(z) = f \left(\frac{z - \gamma}{1 - \gamma} \right) = \sum_{n=0}^{\infty} \frac{a_n}{(1 - \gamma)^n} (z - \gamma)^n \text{ for } |z - \gamma| < 1 - \gamma
\]
belongs to \(B(\mathbb{D})\). Applying Lemma 2.1 to the function \(g\), we obtain
\[
|a_0| + \sum_{n=1}^{\infty} \left(\frac{|a_n|}{(1 - \gamma)^n} + \beta \left(\frac{|a_n|}{(1 - \gamma)^n} \right)^m \right) \rho^n \leq 1 \text{ for } \rho \leq \rho_0 = \frac{1 - \gamma^2}{3 + \gamma}.
\]
That is
\[
|a_0| + \sum_{n=1}^{\infty} \left(|a_n| + \beta \frac{|a_n|^m}{(1 - \gamma)^{(m-1)n}} \right) \left(\frac{\rho}{1 - \gamma} \right)^n \leq 1 \text{ for } \rho \leq \rho_0 = \frac{1 - \gamma^2}{3 + \gamma}
\]
which is equivalent to
\[
|a_0| + \sum_{n=1}^{\infty} \left(|a_n| + \beta \frac{|a_n|^m}{(1 - \gamma)^{(m-1)n}} \right) r^n \leq 1 \text{ for } r \leq r_0 = \frac{1 + \gamma}{3 + \gamma},
\]
where \(\rho = r(1 - \gamma)\) and
\[
\beta = \frac{(1 - \gamma)^m(3 + \gamma) - (1 - \gamma^2)}{8(m - 1)} \text{ for } 0 \leq \gamma \leq \gamma_* < 1.
\]
Here \(\gamma_*\) is the smallest root of the equation \((1 - \gamma)^m(3 + \gamma) + \gamma^2 - 1 = 0\).

In order to prove the sharpness of the radius, we consider the composition function \(f_a = h \circ H\) which maps \(\Omega_\gamma\), univalently onto \(\mathbb{D}\), where \(H : \Omega_\gamma \to \mathbb{D}\) defined by
Therefore, \(\Phi(z) = (1 - \gamma)z + \gamma \) and \(h : \mathbb{D} \to \mathbb{D} \) with \(h(z) = (a - z)/(1 - az) \), for \(a \in (0, 1) \). A simple computation shows that

\[
f_a(z) = \frac{a - \gamma - (1 - \gamma)z}{1 - a\gamma - a(1 - \gamma)} = C_0 - \sum_{n=1}^{\infty} C_n z^n \text{ for } z \in \mathbb{D},
\]

where \(a \in (0, 1) \) and

\[
C_0 = \frac{a - \gamma}{1 - a\gamma} \quad \text{and} \quad C_n = \frac{1 - a^2}{a(1 - a\gamma)} \left(\frac{a(1 - \gamma)}{1 - a\gamma} \right)^n.
\]

A simple computation shows that

\[
|a_0| + \sum_{n=1}^{\infty} \left(|a_n| + \beta \frac{|a_n|^m}{(1 - \gamma)^{m-1}n} \right) r^n
= \frac{a - \gamma}{1 - a\gamma} + \sum_{n=1}^{\infty} \left(\frac{1 - a^2}{a(1 - a\gamma)} \left(\frac{a(1 - \gamma)}{1 - a\gamma} \right)^n + \beta \frac{(1 - a^2)^m}{(1 - \gamma)^{m-1}n a^n(1 - a\gamma)^m} \left(\frac{a(1 - \gamma)}{1 - a\gamma} \right)^m \right) r^n
= \frac{a - \gamma}{1 - a\gamma} + \frac{(1 + a)(1 - a)(1 - \gamma)r}{(1 - a\gamma)(1 - a\gamma - ar(1 - \gamma))} + \frac{\beta(1 - a)^m(1 + a)m r}{(1 - \gamma)^{mn-n-m}(1 - a\gamma)^m}
= 1 - (1 - a)\Phi_\gamma(r),
\]

where

\[
\Phi_\gamma(r) = \frac{(1 + a)(1 - \gamma)r}{(1 - a\gamma)(1 - a\gamma - ar(1 - \gamma))} + \frac{\beta(1 - a)^{m-1}(1 + a)m r}{(1 - \gamma)^{mn-n-m}(1 - a\gamma)^m} + \frac{1}{1 - a - \frac{1}{1 - a\gamma}} - 1
= \frac{(1 + a)(1 - \gamma)r}{(1 - a\gamma)(1 - a\gamma - ar(1 - \gamma))} - \frac{\beta(1 - a)^{m-1}(1 + a)m r}{(1 - \gamma)^{mn-n-m}(1 - a\gamma)^m} - \frac{1}{1 - 1/a - \frac{1}{1 - a\gamma}} + 1 + \frac{2r_0}{(1 - \gamma)(1 - r_0)} + 1 + \frac{1}{1 - \gamma} = 0.
\]

Thus, \(\Phi_\gamma(r) < 0 \) for \(r > r_0 \). Hence, \(1 - (1 - a)\Phi_\gamma(r) > 1 \) for \(r > r_0 \), which shows that \(r_0 \) is the best possible. This completes the proof.

Proof of Lemma 2.4. Without loss of generality, we assume that \(\gamma \in [0, 1) \). Also let \(z \in \mathbb{D}_\gamma := \mathbb{D}(\gamma, 1 - \gamma) \) if, and only if, \(w = (z - \gamma)/(1 - \gamma) \in \mathbb{D} \). Then we have

\[
g(z) = \sum_{n=0}^{\infty} \alpha_n (1 - \gamma)^n \phi^n(z) = \sum_{n=0}^{\infty} b_n \phi^n(z) := G(\phi(z))
\]

for \(z \in \mathbb{D}_\gamma \), where \(b_n = \alpha_n (1 - \gamma)^n \). A simple computation shows that

\[
(3.5) \quad \frac{S_\gamma}{\pi} = \frac{1}{\pi} \text{Area}(G(\mathbb{D}(0, \rho))) \leq (1 - |b_0|^2)^2 \frac{\rho^2}{(1 - \rho^2)^2} = (1 - |\alpha_0|^2)^2 \frac{\rho^2}{(1 - \rho^2)^2}.
\]
A simple computation shows that
\begin{equation}
\sum_{n=1}^{\infty} |\alpha_n|^2 \rho^n \leq \frac{1 - |\alpha_0|^2}{1 + \gamma} \sum_{n=1}^{\infty} \left(\frac{\rho}{1 - \gamma} \right)^n = \frac{1 - |\alpha_0|^2}{1 + \gamma} \frac{\rho}{1 - \gamma - \rho}.
\end{equation}

In view of (3.5) and (3.6), we obtain
\begin{align*}
|\alpha_0| + \sum_{n=1}^{\infty} |\alpha_n|^2 \rho^n & + k \left(\frac{S_2^\gamma}{\pi} \right)^2 + \lambda \left(\frac{S_\gamma^2}{\pi} \right)^2 \\
& = |\alpha_0| + \frac{(1 - |\alpha_0|^2) \rho}{(1 + \gamma)(1 - \gamma - \rho)} + k \frac{(1 - |\alpha_0|^2)^2 \rho^2}{(1 - \rho^2)^2} + \lambda \frac{(1 - |\alpha_0|^2)^4 \rho^4}{(1 - \rho^2)^4} \\
& = 1 + \Psi_1^\gamma(\rho),
\end{align*}

where
\begin{align*}
\Psi_1^\gamma(\rho) &= \frac{(1 - |\alpha_0|^2) \rho}{(1 + \gamma)(1 - \gamma - \rho)} + k \frac{(1 - |\alpha_0|^2)^2 \rho^2}{(1 - \rho^2)^2} + \lambda \frac{(1 - |\alpha_0|^2)^4 \rho^4}{(1 - \rho^2)^4} - (1 - |\alpha_0|) \\
& \quad \text{which can be written as} \\
& = \frac{1}{2} \left(1 + 2\lambda(1 - |\alpha_0|^2)^3 \left(\frac{\rho^4}{(1 - \rho^2)^4} + \frac{k}{\lambda} \frac{\rho^2}{(1 - \rho^2)^2(1 - |\alpha_0|^2)^2} \right) \right) \\
& \quad + \frac{2\rho}{2\lambda(1 - |\alpha_0|^2)^3} \left(\frac{2\rho}{(1 + \gamma)(1 - \gamma - \rho) - 1} - \frac{2}{1 + |\alpha_0|} \right).
\end{align*}

Let \(\rho \leq \rho_0 \). Then, it is easy to see that \(\Psi_1^\gamma(\rho) \) is an increasing function and hence \(\Psi_1^\gamma(\rho) \leq \Psi_1^\gamma(\rho_0) \), where
\[\frac{2\rho_0}{(1 + \gamma)(1 - \gamma - \rho_0)} = 1, \quad \text{i.e.,} \quad \rho_0 = \frac{1 - \gamma^2}{3 + \gamma}. \]

A simple computation shows that
\begin{align*}
\Psi_1^\gamma(\rho_0) &= \frac{1 - |\alpha_0|^2}{2} \left(1 + 2\lambda(1 - |\alpha_0|^2)^3 A^4(\gamma) + 2k(1 - |\alpha_0|^2)A^2(\gamma) - \frac{2}{1 + |\alpha_0|} \right) \\
& = \frac{1 - |\alpha_0|^2}{2} J(|\alpha_0|),
\end{align*}

where
\[J(x) = 1 + 2\lambda(1 - x^2)^3 A^4(\gamma) + 2k(1 - x^2)A^2(\gamma) - \frac{2}{1 + x} \quad \text{for} \quad x \in [0, 1] \]

and \(A(\gamma) = \frac{(3 + \gamma)(1 - \gamma^2)}{(3 + \gamma)^2 - (1 - \gamma^2)^2} \).

It is enough to show that \(J(x) \leq 0 \) for \(x \in [0, 1] \) and \(\gamma \in [0, 1) \) so that \(\Psi_1^\gamma(\rho_0) \leq 0 \). We note that \(A(\gamma) > 0 \) for \(\gamma \in [0, 1) \). Further,
\[J(0) = 2\lambda A^4(\gamma) + 2kA^2(\gamma) - 1, \quad \text{and} \quad \lim_{x \to 1^-} J(x) = 0. \]
It can be seen that $A(\gamma) = (f_1 \circ f_2)(\gamma)$, where $f_1(\rho) = \rho/(1 - \rho^2)$ and $f_2(\gamma) = (1 - \gamma^2)/(3 + \gamma)$. Since $A'(\gamma) = f_1'(f_2(\gamma))f_2'(\gamma)$, where

\[(3.7)\quad f_2'(\gamma) = -\left(\frac{\gamma^2 + 6\gamma + 1}{(3 + \gamma)^2}\right) < 0\]

which implies that $f_1(\rho)$ is an increasing function of ρ in $(0, 1)$, and f_2 is a decreasing function of γ in $[0, 1)$. Hence, it follows that $A(\gamma)$ is a decreasing function of γ in $[0, 1)$, with $A(0) = 3/8$ and $A(1) = 0$. It can be seen that $A^2(\gamma)$ and $A^4(\gamma)$ are decreasing functions on $[0, 1)$. Therefore, we have

\[A^2(\gamma) \leq A^2(0) = \frac{9}{64} \quad \text{and} \quad A^4(\gamma) \leq A^4(0) = \frac{81}{4096}.\]

Since $x \in [0, 1]$, we have

\[x(1 + x)^2A^2(\gamma) \leq \frac{9}{16} \quad \text{and} \quad x(1 + x)^2(1 - x^2)^2A^4(\gamma) \leq \frac{81}{1024}.\]

As a consequence, we obtain

\[J'(x) = \frac{2}{(1 + x)^2} \left(1 - 2kx(1 + x)^2A^2(\gamma) - 6\lambda x(1 + x)^2(1 - x^2)^2A^4(\gamma) \right) \geq 0, \quad \text{if} \quad k + 27\lambda/64 \leq 8/9.\]

Therefore, $J(x)$ is an increasing function in $[0, 1]$ for $k + 27\lambda/64 \leq 8/9$. Hence, $J(x) \leq 0$ for all $x \in [0, 1]$ and $\gamma \in [0, 1)$. This completes the proof. \qed

Proof of Theorem 2.5. Let $f \in B(\Omega)$ and $g(z) = f((z - \gamma)/(1 - \gamma))$. Then, it is easy to see that $g \in B(\mathbb{D})$ and

\[g(z) = \sum_{n=0}^{\infty} \frac{a_n}{(1 - \gamma)^n}(z - \gamma)^n.\]

Using Lemma 2.4, we obtain

\[\sum_{n=0}^{\infty} \frac{|a_n|}{(1 - \gamma)^n} \rho^n + \left(\frac{8}{9} - \frac{27}{64}\lambda\right) \left(\frac{S^\gamma_\rho}{\pi}\right) + \lambda \left(\frac{S^\gamma_\rho}{\pi}\right)^2 \leq 1 \quad \text{for} \quad \rho \leq \frac{1 - \gamma^2}{3 + \gamma}\]

which is equivalent to

\[(3.8)\quad \sum_{n=0}^{\infty} |a_n| \left(\frac{\rho}{1 - \gamma}\right)^n + \left(\frac{8}{9} - \frac{27}{64}\lambda\right) \left(\frac{S^\gamma_\rho}{\pi}\right) + \lambda \left(\frac{S^\gamma_\rho}{\pi}\right)^2 \leq 1 \quad \text{for} \quad \rho \leq \frac{1 - \gamma^2}{3 + \gamma}.\]

Set $\rho = r(1 - \gamma)$, then in view of (3.8), we obtain

\[\sum_{n=0}^{\infty} |a_n|r^n + \left(\frac{8}{9} - \frac{27}{64}\lambda\right) \left(\frac{S^\gamma_{r(1 - \gamma)}}{\pi}\right) + \lambda \left(\frac{S^\gamma_{r(1 - \gamma)}}{\pi}\right)^2 \leq 1 \quad \text{for} \quad r \leq \frac{1 + \gamma}{3 + \gamma}.\]
To show the sharpness of the result, we consider the following function

\[f_a(z) = \frac{a - \gamma - (1 - \gamma)z}{1 - a\gamma - a(1 - \gamma)} \quad \text{for } z \in \Omega_\gamma \text{ and } a \in (0, 1). \]

Define \(\phi : \mathbb{D} \to \mathbb{D} \) by \(\phi(z) = (a - z)/(1 - az) \) and \(H : \Omega_\gamma \to \mathbb{D} \) by \(H(z) = (1 - \gamma)z + \gamma. \) Then, the function \(f_a = \phi \circ H \) maps \(\Omega_\gamma \), univalently onto \(\mathbb{D} \). A simple computation shows that

\[f_a(z) = \frac{a - \gamma - (1 - \gamma)z}{1 - a\gamma - a(1 - \gamma)} = C_0 - \sum_{n=1}^{\infty} C_n z^n \quad \text{for } z \in \mathbb{D}, \]

where \(a \in (0, 1) \) and

\[C_0 = \frac{a - \gamma}{1 - a\gamma} \quad \text{and} \quad C_n = \frac{1 - a^2}{a(1 - a\gamma)} \left(\frac{a(1 - \gamma)}{1 - a\gamma} \right)^n. \]

A simple computation using (3.9) shows that

\[
\sum_{n=0}^{\infty} |a_n| r^n + \left(\frac{8}{9} - \frac{27}{64} \lambda \right) \left(\frac{S_{r(1-\gamma)}^\gamma}{\pi} \right) + \lambda \left(\frac{S_{r(1-\gamma)}^\gamma}{\pi} \right)^2 \left(\frac{r^4(1-a)^4(1-\gamma)^8}{((1-a\gamma)^2 - a^2r^2(1-\gamma)^4)^4} \right) \\
= \frac{a - \gamma}{1 - a\gamma} + \left(\frac{1 - a^2}{1 - a\gamma} \right) \frac{(1 - \gamma)r}{1 - a\gamma - ar(1 - \gamma)} + \left(\frac{8}{9} - \frac{27}{64} \lambda \right) \frac{r^2(1-a^2)^2(1-\gamma)^4}{((1-a\gamma)^2 - a^2r^2(1-\gamma)^4)^2} \\
+ \lambda \frac{r^4(1-a)^4(1-\gamma)^8}{((1-a\gamma)^2 - a^2r^2(1-\gamma)^4)^4} - \frac{1}{1-a} \frac{a - \gamma}{1 + a\gamma - 1}.
\]

where

\[\Phi_1^\gamma(r) = -\frac{(1 + a)(1 - \gamma)r}{(1 - a\gamma - ar(1 - \gamma))(1 - a\gamma)} - \left(\frac{8}{9} - \frac{27}{64} \lambda \right) \frac{r^2(1-a)^2(1-\gamma)^4}{((1-a\gamma)^2 - a^2r^2(1-\gamma)^4)^2} \\
- \lambda \frac{r^4(1-a)^4(1-\gamma)^8}{((1-a\gamma)^2 - a^2r^2(1-\gamma)^4)^4} - \frac{1}{1-a} \left(\frac{a - \gamma}{1 + a\gamma - 1} \right). \]

It is easy to see that \(\Phi_1^\gamma(r) \) is strictly decreasing function of \(r \) in \((0, 1)\). Therefore, for \(r > r_0 = (1+\gamma)/(3+\gamma) \), we have \(\Phi_1^\gamma(r) < \Phi_1^\gamma(r_0) \). An elementary calculation shows that

\[
\lim_{a \to 1} \Phi_1^\gamma(r_0) = -\frac{2r_0}{1 - \gamma(1-r_0)} + \frac{1 + \gamma}{1 - \gamma} = 0.
\]

Therefore, \(\Phi_1^\gamma(r) < 0 \) for \(r > r_0 \). Hence, \(1 - (1 - a)\Phi_1^\gamma(r) > 1 \) for \(r > r_0 \), which shows that \(r_0 \) is the best possible."
For functions $g \in B(D)$, from Lemma 1.4 we have

$$|a_n| \leq (1 + |\gamma|)^{n-1} \frac{1 - |a_0|^2}{(1 - |\gamma|^2)^n} \quad \text{for} \quad n \geq 1. \quad (3.11)$$

A simple computation using (3.11) gives

$$\sum_{n=N}^{\infty} |a_n| \rho^n \leq \frac{1 - |a_0|^2}{1 + \gamma} \sum_{n=N}^{\infty} \left(\frac{\rho}{1 - \gamma} \right)^n = \frac{(1 - |a_0|^2)}{(1 + \gamma)(1 - \gamma)^{N-1}} \left(\frac{\rho^N}{1 - \gamma - \rho} \right). \quad (3.12)$$

From (3.10) and (3.12) we obtain

$$|g(z)| + \sum_{n=N}^{\infty} |a_n| \rho^n \leq \frac{\rho + |g(0)|}{1 + \rho|g(0)|} + \frac{(1 - |a_0|^2)}{(1 + \gamma)(1 - \gamma)^{N-1}} \left(\frac{\rho^N}{1 - \gamma - \rho} \right) \leq 1 + \frac{\Phi_N(\rho)}{(1 + \rho|a_0|)(1 + \gamma)(1 - \gamma)^{N-1}(1 - \gamma - \rho)},$$

where

$$\Phi_N(\rho) = (\rho + |a_0|)A(\gamma)(1 - \gamma - \rho) + (1 + |a_0|)(1 - |a_0|)(1 + \rho|a_0|)\rho^N - (1 + \rho|a_0|)A(\gamma)(1 - \gamma - \rho) = (1 - |a_0|) \left((1 + |a_0|)(1 + \rho|a_0|)\rho^N + A(\gamma)(\rho - 1)(1 - \gamma - \rho) \right) \leq (1 - |a_0|) \left(2(1 + \gamma)\rho^N + A(\gamma)(\rho - 1)(1 - \gamma - \rho) \right),$$

where $A(\gamma) = (1 + \gamma)(1 - \gamma)^{N-1}$ and $|a_0| \leq 1$. An observation shows that $\Phi_N(\rho) \leq 0$ if $2(1 + \gamma)\rho^N + A(\gamma)(\rho - 1)(1 - \gamma - \rho) \leq 0$, and this holds for $\rho \leq \rho_N$, where ρ_N is the root of

$$F_N(\gamma, \rho) = 2(1 + \gamma)\rho^N + A(\gamma)(\rho - 1)(1 - \gamma - \rho) = 0.$$

The existence of the root ρ_N in $(0, 1)$ follows from the fact that $F_N(\gamma, \rho)$ is continuous and $F_N(\gamma, 0)F_N(\gamma, 1) < 0$. \hfill \Box

Proof of Theorem 2.7 For $0 \leq \gamma < 1$, let $f \in B(\Omega_\gamma)$ such that $f(z) = \sum_{n=0}^{\infty} a_n z^n$ for $z \in D$. Then, it is easy to see that

$$g(z) = f \left(\frac{z - \gamma}{1 - \gamma} \right) \in B(D) \quad \text{for} \quad |z - \gamma| < 1 - |\gamma|.$$

Further, $g(z) = f \left(\frac{z - \gamma}{1 - \gamma} \right) = \sum_{n=0}^{\infty} \frac{a_n}{(1 - \gamma)^n} (z - \gamma)^n.$

An application of Lemma 2.6 shows that

$$|f \left(\frac{z - \gamma}{1 - \gamma} \right)| + \sum_{n=N}^{\infty} \frac{|a_n|}{(1 - \gamma)^n} \rho^n \leq 1 \quad \text{for} \quad \rho \leq \rho_N. \quad (3.13)$$
Since $|z - \gamma| < 1 - \gamma$, we set $z - \gamma = w(1 - \gamma)$ for some $w \in \mathbb{D}$ and $\rho = r(1 - \gamma)$. Then, from (3.13), we obtain

\[
|f(w)| + \sum_{n=N}^{\infty} |a_n|r^n \leq 1 \quad \text{for} \quad r \leq \frac{\rho_N}{1 - \gamma},
\]

where ρ_N as in Lemma 2.6. That is, ρ_N is the smallest root of the equation $2(1 + \rho)\rho^N + A(\gamma)(\rho - 1)(1 - \gamma - \rho) = 0$.

In order to show the sharpness of the result, we consider the following function f_a defined by

\[
f_a(z) = \frac{1 - \gamma - (1 - \gamma)z}{(1 - a\gamma) - (1 - \gamma)z} = B_0 - \sum_{n=1}^{\infty} B_n z^n \quad \text{for} \quad z \in \mathbb{D}.
\]

For $\gamma \in [0, 1)$, $a > \gamma$ and $\rho = r(1 - \gamma)$, we obtain

(3.14)

\[
M := |f_a(-\rho)| + \sum_{n=N}^{\infty} |a_n|\rho^n
\]

\[
= \frac{(a - \gamma) + (1 - \gamma)\rho}{(1 - a\gamma) + (1 - \gamma)\rho} + \frac{1 - a^2}{a(1 - a\gamma)} \left(\frac{a(1 - \gamma)}{1 - a\gamma} \right)^N \rho^N \left(\frac{1 - a\gamma}{(1 - a\gamma) - (1 - \gamma)\rho} \right)
\]

\[
= \frac{(a - \gamma) + (1 - \gamma)\rho}{(1 - a\gamma) + (1 - \gamma)\rho} + \frac{(1 - a^2)B^N\rho^N}{a((1 - a\gamma) - (1 - \gamma)\rho)}, \quad \text{where} \quad B = \frac{a(1 - \gamma)}{1 - a\gamma}
\]

\[
= \frac{(a - \gamma) + (1 - \gamma)\rho)((1 - a\gamma) - (1 - \gamma)\rho) + d\rho^N(1 - a^2)((1 - a\gamma) + (1 - \gamma)\rho)
\]

\[
+ ((1 - a\gamma) + (1 - \gamma)\rho)((1 - a\gamma) - (1 - \gamma)\rho)
\]

From (3.14), it is easy to see that $M > 1$ if $V(\rho) > 0$, where

\[
V(\rho) = ((a - \gamma) + (1 - \gamma)\rho)((1 - a\gamma) - (1 - \gamma)\rho) + d\rho^N(1 - a^2)((1 - a\gamma) + (1 - \gamma)\rho)
\]

\[
- ((1 - a\gamma) + (1 - \gamma)\rho)((1 - a\gamma) - (1 - \gamma)\rho)
\]

\[
= (1 - a)\left((1 + a)((1 - a\gamma) + (1 - \gamma)\rho) d\rho^N
\]

\[
+ \left((1 - a\gamma) - (1 - \gamma)\rho \right) \left(\rho(1 - \gamma) - (1 + \gamma) \right) \right).
\]

Note that $V(\rho) > 0$ if

(3.15) \[W(\rho) := (1 + a)((1 - a\gamma) + (1 - \gamma)\rho) d\rho^N \]

\[
+ \left((1 - a\gamma) - (1 - \gamma)\rho \right) \left(\rho(1 - \gamma) - (1 + \gamma) \right) > 0.
\]

Therefore, $M \leq 1$ for all $a \in [0, 1)$, only in the case when $\rho \leq \rho_N$. Finally, allowing $a \to 1$, from the inequality (3.15), it can be seen that $M > 1$ if $\rho > \rho_N$. Thus, $M > 1$ if $r > \rho_N/(1 - \gamma)$. This proves the sharpness. \qed
Proof of Theorem 2.9. Let \(f \in \mathcal{B}(\Omega_\gamma) \) be given by \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) for \(z \in \mathbb{D} \). Then, \(f \) can be expressed as \(f(z) = zh(z) \), where \(h \in \mathcal{B}(\Omega_\gamma) \) with \(h(z) = \sum_{n=0}^{\infty} b_n z^n \) and \(b_n = a_{n+1} \). Let \(|b_0| = |a_1| = a \), and \(h_0(z) = g(z) - b_0 \). Using Lemma 1.5, we obtain

\[
\begin{align*}
\sum_{n=0}^{\infty} |b_n|^r^n &= \left(\frac{1}{1 + |b_0|} + \frac{r}{1 + r} \right) \sum_{n=1}^{\infty} |b_n|^2 r^{2n} \\
&\leq a + \frac{1 - a^2}{1 + \gamma} \frac{r}{1 - r} + \left(\frac{1}{1 + a} + \frac{r}{1 - r} \right) \left(\frac{1 - a^2}{1 + \gamma} \right)^2 \frac{r^2}{1 - r^2}. \\
\intertext{That is,}
\sum_{n=0}^{\infty} |b_n|^r^n &\leq a + \frac{1 - a^2}{1 + \gamma} \frac{r}{1 - r} + \left(\frac{1}{1 + a} + \frac{r}{1 - r} \right) \left(\frac{1 - a^2}{1 + \gamma} \right)^2 \frac{r^2}{1 - r^2} \\
&\quad - \left(\frac{1}{1 + |b_0|} + \frac{r}{1 + r} \right) \sum_{n=1}^{\infty} |b_n|^2 r^{2n}.
\end{align*}
\]

Since

\[
\sum_{n=1}^{\infty} |a_n|^r^n = \sum_{n=0}^{\infty} |b_n|^r^{n+1} = r \sum_{n=0}^{\infty} |b_n|^r^n,
\]
in view of \((3.17)\) and \((3.18)\), we obtain

\[
\begin{align*}
\sum_{n=1}^{\infty} |a_n|^r^n &\leq r \left(a + \frac{1 - a^2}{1 + \gamma} \frac{r}{1 - r} \right) + \left(\frac{1}{1 + a} + \frac{r}{1 - r} \right) \left(\frac{1 - a^2}{1 + \gamma} \right)^2 \frac{r^2}{1 - r^2} \\
&\quad - \left(\frac{1}{1 + a} + \frac{r}{1 - r} \right) \sum_{n=1}^{\infty} |a_{n+1}|^2 r^{2n+1} \\
&= ra + \left(\frac{1 - a^2}{1 + \gamma} \right) \frac{r^2}{1 - r} + \left(\frac{1}{1 + a} + \frac{r}{1 - r} \right) \left(\frac{1 - a^2}{1 + \gamma} \right)^2 \frac{r^3}{1 - r^2} \\
&\quad - \left(\frac{1}{1 + a} + \frac{r}{1 - r} \right) \sum_{n=2}^{\infty} |a_n|^2 r^{2n-1}.
\end{align*}
\]

Further simplification shows that

\[
\begin{align*}
\sum_{n=1}^{\infty} |a_n|^r^n + \left(\frac{1}{1 + a} + \frac{r}{1 - r} \right) \sum_{n=2}^{\infty} |a_n|^2 r^{2n-1} \\
&\leq ra + \left(\frac{1 - a^2}{1 + \gamma} \right) \frac{r^2}{1 - r} + \left(\frac{1}{1 + a} + \frac{r}{1 - r} \right) \left(\frac{1 - a^2}{1 + \gamma} \right)^2 \frac{r^3}{1 - r^2} \\
&:= \mathcal{T}(a).
\end{align*}
\]

It is easy to see that \(\mathcal{T} \) can be represented as

\[
\mathcal{T}(a) = ar + A(1 - a^2) + B(1 - a)(1 - a^2) + C(1 - a^2)^2,
\]
where

\[A = A(r) = \frac{r^2}{(1 + \gamma)(1 - r)}, \]
\[B = B(r) = \frac{r^3}{(1 + \gamma)^2(1 - r^2)} \quad \text{and} \]
\[C = C(r) = \frac{r^4}{(1 + \gamma)(1 - r)(1 - r^2)}. \]

Clearly, \(B \) and \(C \) are positive. We note that,

\[T'(a) = r - 2Aa + B(3a^2 - 2a - 1) + 4C(a^3 - a), \]
\[T''(a) = -2A + 2B(3a - 1) + 4C(3a^2 - 1) \quad \text{and} \]
\[T'''(a) = 6B + 24Ca. \]

Since \(B \) and \(C \) are positive, it follows that \(T'''(a) > 0 \) for \(a \in [0, 1] \). In other words, \(T'' \) is an increasing function of \(a \) in \([0, 1] \). Therefore, \(T''(a) \leq T''(1) = -2A + 4B + 8C = \frac{2r^2}{(1 + \gamma)^2(1 - r)(1 - r^2)} L(r), \)

where

\[L(r) = 4r^2 + 2r(1 - r) - (1 + \gamma)(1 - r^2) = (1 + r)(r(3 + \gamma) - (1 + \gamma)). \]

It is easy to see that \(L(r) \leq 0 \) for \(r \leq r_0 = (1 + \gamma)/(3 + \gamma) \). Hence, \(T''(a) \leq 0 \) for \(a \in [0, 1] \) which implies that \(T' \) is decreasing in \([0, 1] \). Therefore, for \(r \leq r_0 = (1 + \gamma)/(3 + \gamma) \), we obtain

\[T'(a) > T'(1) = 1 - 2Aa = r \frac{1 + \gamma - r(3 + \gamma)}{(1 + \gamma)(1 - r)}. \]

Clearly, for \(r \leq r_0 \), we have \(T'(1) \geq 0 \) for all \(a \in [0, 1] \). Since \(T'(a) \geq 0 \) in \([0, 1]\), \(T \) is an increasing function in \([0, 1]\), and hence, we have \(T(a) \leq T(1) = r \). A simple computation shows that

\[\sum_{n=0}^{\infty} |a_{n+1}| r^n + \left(\frac{1}{1 + |a_1|} + \frac{r}{1 - r} \right) \sum_{n=2}^{\infty} |a_n|^2 r^{2(n-1)} \leq 1 \quad \text{for} \quad r \leq r_0 = \frac{1 + \gamma}{3 + \gamma}. \]

To show that the sharpness of the radius we consider the function \(f_a \) by

\[f_a(z) = z \left(\frac{a - \gamma - (1 - \gamma)z}{1 - a\gamma - a(1 - \gamma)z} \right) = B_0 z - \sum_{n=1}^{\infty} B_n z^{n+1} \quad \text{for} \quad z \in \mathbb{D}, \]

where

\[B_0 = \frac{a - \gamma}{1 - a\gamma} \quad \text{and} \quad B_n = \frac{(1 - a^2)}{a(1 - a\gamma)} \left(\frac{a(1 - \gamma)}{1 - a\gamma} \right)^n. \]
It is easy to see that $a_1(f_a) = B_0$ and $a_n(f_a) = -B_{n-1}$. For $n \geq 2$, $\gamma \in [0, 1]$, and $a > \gamma$, a simple calculation shows that

$$D(r) := \sum_{n=1}^{\infty} |a_n|r^n + \left(\frac{1}{1 + |a_1|} + \frac{r}{1 - r}\right) \sum_{n=2}^{\infty} |a_n|^2 r^{2n-1}$$

$$= \left(\frac{a - \gamma}{1 - a\gamma}\right) r + \sum_{n=2}^{\infty} (1 - a^2) \left(\frac{a(1 - \gamma)}{1 - a\gamma}\right)^{n-1} r^n$$

$$+ \left(\frac{1}{1 + |B_0|} + \frac{r}{1 - r}\right) \sum_{n=2}^{\infty} \frac{(1 - a^2)^2}{a^2(1 - a\gamma)^2} \left(\frac{a(1 - \gamma)}{1 - a\gamma}\right)^{2(n-1)} r^{2n-1}$$

$$= \left(1 - \frac{1 - a}{1 - a\gamma}\chi(r)\right) r,$$

where

$$\chi(r) := 1 + r - \frac{(1 + a)(1 - \gamma)r}{1 - a\gamma - a(1 - \gamma)r} - \left(\frac{1 - a\gamma}{1 + a(1 - \gamma)} + \frac{r}{1 - r}\right) \frac{(1 + a)(1 - a^2)}{1 - a\gamma} \frac{(1 - \gamma)^2 r^2}{(1 - a\gamma)^2 - a^2(1 - \gamma)^2 r^2}.$$

It is not difficult to show that χ is strictly decreasing function in $r \in (0, 1)$. Hence, for $r > r_0$, we have $\chi(r) < \chi(x_0)$. It is worth to point out that

$$\lim_{a \to 1} \chi(r_0) = 1 + \gamma - \frac{2(1 - \gamma)r_0}{1 - \gamma - (1 - \gamma)r_0} = 1 + \gamma - \frac{2r_0}{1 - r_0} = 0.$$

This shows that $\chi(r) \leq 0$ for $r > r_0$ as $a \to 1$, and hence $D(r) > r$ for $r > r_0$. Therefore

$$\sum_{n=1}^{\infty} |a_n|r^n + \left(\frac{1}{1 + a} + \frac{r}{1 - r}\right) \sum_{n=2}^{\infty} |a_n|^2 r^{2n-1} > 1$$

and hence r_0 is the best possible. This completes the proof. \hfill \Box

Acknowledgment: The first author is supported by the Institute Post Doctoral Fellowship of IIT Bhubaneswar, India, the second author is supported by SERB-MATRICS, and third author is supported by CSIR, India.

References

[1] Y. Abu-Muhanna, Bohr’s phenomenon in subordination and bounded harmonic classes, *Complex Var. Elliptic Equ.* 55 (2010), 1071–1078.

[2] Y. Abu-Muhanna and R. M. Ali, Bohr’s phenomenon for analytic functions into the exterior of a compact convex body, *J. Math. Anal. Appl.* 379 (2011), 512–517.

[3] Y. Abu Muhanna and R. M. Ali, Bohr’s phenomenon for analytic functions and the hyperbolic metric, *Math. Nachr.* 286 (2013), 1059–1065.

[4] Y. Abu Muhanna, R. M. Ali, Z. C. Ng and S. F. M Hasni, Bohr radius for subordinating families of analytic functions and bounded harmonic mappings, *J. Math. Anal. Appl.* 420 (2014), 124–136.
On Bohr Phenomenon for simply connected domain

[5] Y. Abu Muhanna, R. M. Ali and S. Ponnusamy, On the Bohr inequality, In “Progress in Approximation Theory and Applicable Complex Analysis” (Edited by N.K. Govil et al.), Springer Optimization and its Applications, 117 (2016), 265-295.

[6] L. Aizenberg, Multidimensional analogues of Bohr’s theorem on power series, Proc. Amer. Math. Soc. 128 (2000), 1147–1155.

[7] L. Aizenberg, A. Aytuna and P. Djakov, Generalization of theorem on Bohr for bases in spaces of holomorphic functions of several complex variables, J. Math. Anal. Appl. 258 (2001), 429–447.

[8] L. Aizenberg, Generalization of results about the Bohr radius for power series, Stud. Math. 180 (2007), 161–168.

[9] S. A. Alkhaleefah, I. R. Kayumov and S. Ponnusamy, On the Bohr inequality with a fixed zero coefficients, Proc. Amer. Math. Soc. 147 (12) (2019), 5263–5274.

[10] S. A. Alkhaleefah, I. R. Kayumov and S. Ponnusamy, Bohr-Rogosinski inequalities for bounded analytic functions, Proc. Amer. Math. Soc. 128 (2000), 1147–1155.

[11] L. Aizenberg, A. Aytuna and P. Djakov, Generalization of theorem on Bohr for bases in spaces of holomorphic functions of several complex variables, J. Math. Anal. Appl. 258 (2001), 429–447.

[12] L. Aizenberg, Generalization of results about the Bohr radius for power series, Stud. Math. 180 (2007), 161–168.

[13] R. M. Ali and Z. C. Ng, The Bohr inequality in the hyperbolic plane, Complex Var. Elliptic Equ., 63(11)(2018), 1539–1557.

[14] R. M. Ali, Z. Abdulhadi and Z. C. Ng, The Bohr radius for starlike logharmonic mappings, Complex Var. Elliptic Equ., 61(1)(2016), 1–14.

[15] R. M. Ali, R.W. Barnard and A.Yu. Solytn, A note on Bohr’s phenomenon for power series, J. Math. Anal. Appl. 449 (2017), 154-167.

[16] R. M. Ali, N. K.Jain and V. Ravichandran, Bohr radius for classes of analytic functions, Results Math. 74 (2019) 179.

[17] V. Allu and H. Halder, Bhor phenomenon for certain subclasses of Harmonic Mappings, see https://arxiv.org/pdf/2006.11622.pdf.

[18] Vasudevarao Allu and Himadri Halder, Bohr radius for certain classes of starlike and convex univalent functions, J. Math. Anal. Appl. 493(1) (2021), 124519.

[19] Vasudevarao Allu and Himadri Halder, Bohr phenomenon for certain close-to-convex analytic functions, arXiv:2008.00187v2, 2020.

[20] V. Allu and H. Halder, Bohr phenomenon for certain subclasses of Harmonic Mappings, see https://arxiv.org/pdf/2006.11622.pdf.

[21] C. Beneteau, A. Dahlner and D. Khavinson, Remarks on the Bohr phenomenon, Compu. Methods Funct. Theory 4(1) (2004), 1-19.

[22] B. Bhowmik and N. Das, Bohr phenomenon for operator valued functions with fixed initial coefficients, https://arxiv.org/pdf/2003.05810.pdf.

[23] H. P. Boas and D. Khavinson, Bohr’s power series theorem in several variables, Proc. Amer. Math. Soc 125 (1997), 2975–2979.

[24] H. Bohr, A theorem concerning power series, Proc. Lond. Math. Soc. s2-13 (1914), 1–5.

[25] P. G. Dixon, Banach algebras satisfying the non-unital von Neumann inequality, Bull. London Math. Soc., 27(4)(1995), 359–362.

[26] S. Evdoridis, S. Ponnusamy and A. Rasila, Improved Bohr’s inequality for mappings defined on simply connected domains, https://arxiv.org/pdf/2011.02080.pdf.

[27] S. Evdoridis, S. Ponnusamy and A. Rasila, Improved Bohr’s inequality for locally univalent harmonic mappings, Indag. Math. (N.S.) 30 (2019), no. 1, 201–213.

[28] R. Fournier and St. Ruscheweyh, On the Bohr radius for simply connected domains, Centre de Recherches Mathématiques CRM Proceedings and Lecture Notes, Vol. 51 (2010), 165–171.

[29] Y. Hang, M-S Liu and S. Ponnusamy, Refined Bohr type inequalities with area measure for bounded analytic functions, https://arxiv.org/pdf/2009.05476.pdf.
[30] A. Ismagilov, I. R. Kayumov and S. Ponnusamy, Sharp Bohr type inequality, J. Math. Anal. Appl. 489 (2020), 124147.
[31] I.R. Kayumov and S. Ponnusamy, Bohr-Rogosinski radius for analytic functions, preprint, see https://arxiv.org/abs/1708.05585.
[32] I.R. Kayumov and S. Ponnusamy, Bohr’s inequalities for the analytic functions with lacunary series and harmonic functions, J. Math. Anal. Appl. 465 (2018), 857–871.
[33] I.R. Kayumov and S. Ponnusamy, On a powered Bohr inequality, Ann. Acad. Sci. Fenn. Ser. A, 44(2019), 301–310.
[34] I. R. Kayumov and S. Ponnusamy, Improved version of Bohr’s inequalities, C. R. Math. Acad. Sci. Paris 358 (5) (2020), 615–620.
[35] I. R. Kayumov, S. Ponnusamy and N. Shakirov, Bohr radius for locally univalent harmonic mappings, Math. Nachr 291 (2018), 1757–1768.
[36] G. Liu, Z. Liu and S. Ponnusamy, Refined Bohr inequality for bounded analytic functions, priprint, see https://arxiv.org/pdf/2006.08930.
[37] M. S. Liu and S. Ponnusamy, Multidimensional analogues of refined Bohr’s inequality, Proc. Amer. Math. Soc. (2020) (to appear).
[38] S. Ponnusamy and K.-J. Wirths, Bohr type inequalities for functions with a multiple zero at the origin, https://arxiv.org/pdf/2006.06441.pdf.
[39] W. Rogosinski, Uber Bildschranken bei Potenzreihen und ihren Abschnitten, Math. Z. 17 (1923), 260–276.
[40] S. Sidon, Uber einen satz von Herrn Bohr, Math. Zeit. 26 (1927), 731-732.
[41] St. Ruscheweyh, Two remarks on bounded analytic functions, Serdica 11(1) (1985), 731–732.
[42] M. Tomic, Sur un theorem de H. Bohr, Math. Scand. 11 (1962), 103–106.

Molla Basir Ahamed, School of Basic Science, Indian Institute of Technology Bhubaneswar, Bhubaneswar-752050, Odisha, India.
Email address: mba15@iitbbs.ac.in

Vasudevarao Allu, School of Basic Science, Indian Institute of Technology Bhubaneswar, Bhubaneswar-752050, Odisha, India.
Email address: avrao@iitbbs.ac.in

Himadri Halder, School of Basic Science, Indian Institute of Technology Bhubaneswar, Bhubaneswar-752050, Odisha, India.
Email address: hh11@iitbbs.ac.in