METHAMPHETAMINE PRECONDITIONING CAUSES DIFFERENTIAL CHANGES IN STRIATAL TRANSCRIPTIONAL RESPONSES TO LARGE DOSES OF THE DRUG

Jean Lud Cadet
NIDA/NIH/DHHS, Baltimore, MD, USA

Christie Brannock
NIDA/NIH/DHHS, Baltimore, MD, USA

Bruce Ladenheim
NIDA/NIH/DHHS, Baltimore, MD, USA

Michael T McCoy
NIDA/NIH/DHHS, Baltimore, MD, USA

Genevieve Beauvais
NIA/NIH/DHHS, Baltimore, MD, USA

Recommended Citation
Cadet, Jean Lud; Brannock, Christie; Ladenheim, Bruce; McCoy, Michael T; Beauvais, Genevieve; Hodges, Amber B.; Lehrmann, Elin; Wood III, William H; Becker, Kevin G; and Krasnova, Irina N (2011) “METHAMPHETAMINE PRECONDITIONING CAUSES DIFFERENTIAL CHANGES IN STRIATAL TRANSCRIPTIONAL RESPONSES TO LARGE DOSES OF THE DRUG,” *Dose-Response: An International Journal*: Vol. 9 : Iss. 2 , Article 3.
Available at: http://scholarworks.umass.edu/dose_response/vol9/iss2/3
METHAMPHETAMINE PRECONDITIONING CAUSES DIFFERENTIAL CHANGES IN STRIATAL TRANSCRIPTIONAL RESPONSES TO LARGE DOSES OF THE DRUG

Authors
Jean Lud Cadet, Christie Brannock, Bruce Ladenheim, Michael T McCoy, Genevieve Beauvais, Amber B. Hodges, Elin Lehrmann, William H Wood III, Kevin G Becker, and Irina N Krasnova

This article is available in Dose-Response: An International Journal: http://scholarworks.umass.edu/dose_response/vol9/iss2/3
METHAMPHETAMINE PRECONDITIONING CAUSES DIFFERENTIAL CHANGES IN STRIATAL TRANSCRIPTIONAL RESPONSES TO LARGE DOSES OF THE DRUG

Jean Lud Cadet, Christie Brannock, Bruce Ladenheim, Michael T. McCoy, Genevieve Beauvais □ Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA/NIH/DHHS, Baltimore, MD, USA

Amber B. Hodges □ Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA/NIH/DHHS; Department of Psychology, Morgan State University, Baltimore, MD, USA

Elin Lehrmann, William H. Wood III, Kevin G. Becker □ Gene Expression and Genomics Unit, Intramural Research Program, NIA/NIH/DHHS, Baltimore, MD, USA

Irina N. Krasnova □ Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA/NIH/DHHS, Baltimore, MD, USA

□ Methamphetamine (METH) is a toxic drug of abuse, which can cause significant decreases in the levels of monoamines in various brain regions. However, animals treated with progressively increasing doses of METH over several weeks are protected against the toxic effects of the drug. In the present study, we tested the possibility that this pattern of METH injections might be associated with transcriptional changes in the rat striatum, an area of the brain which is known to be very sensitive to METH toxicity and which is protected by METH preconditioning. We found that the presence and absence of preconditioning followed by injection of large doses of METH caused differential expression in different sets of striatal genes. Quantitative PCR confirmed METH-induced changes in some genes of interest. These include small heat shock 27 kD proteins 1 and 2 (HspB1 and HspB2), brain derived neurotrophic factor (BDNF), and heme oxygenase-1 (Hmox-1). Our observations are consistent with previous studies which have reported that ischemic or pharmacological preconditioning can cause reprogramming of gene expression after lethal ischemic insults. These studies add to the growing literature on the effects of preconditioning on the brain transcriptome.

Keywords: methamphetamine, preconditioning, striatum, BDNF, heat shock proteins

INTRODUCTION

Methamphetamine (METH) is an illicit drug which has become an international public health problem. Specifically, METH abuse is associated with many negative consequences which include altered behavioral and cognitive functions (Murray 1998; Scott et al. 2007; Darke et al. 2008).
Withdrawal from METH causes anhedonia and intense craving for the drug (Zweben et al. 2004; Sekine et al. 2006; Darke et al. 2008). The negative neuropsychiatric consequences of METH abuse are thought to be due to drug-induced neurodegenerative effects in METH addicts (Scott et al. 2007). Patterns of METH abuse are multiple but usually involve the intake of small doses of the drug followed by gradual increases to larger doses of the psychostimulant (Kramer et al. 1967). Neuropsychological tests have revealed that METH addicts who abuse these large doses suffer from cognitive deficits (Simon et al. 2002; Sekine et al. 2003) and structural abnormalities in their brains (Chang et al. 2007; Sekine et al. 2008). METH-dependent patients indeed suffer from decreases in dopamine (DA) (Volkow et al. 2001) and of serotonin (5-HT) transporters (Sekine et al. 2006).

Many of these neuropathological changes have been replicated in animal models (Krasnova and Cadet 2009). Specifically, METH can cause decreases in DA, 5-HT, and DA transporters (DAT) in various brain regions (Cadet et al. 1994; Deng et al. 1999; Ladenheim et al. 2000; Thomas and Kuhn 2005; Cadet et al. 2007). These experiments focused on the use of moderate to large doses of METH injected during single-day binges (Cadet et al. 2003). However, several groups have now experimented with administration of increasing METH doses over several days prior to challenging the animals with toxic doses of the drug and have found that these patterns of drug administration can provide protection against METH toxicity (Johnson-Davis et al. 2003; Danaceau et al. 2007; Graham et al. 2008; Cadet et al. 2009a). Cadet and colleagues (2009a) have recently suggested that this pattern of drug administration is comparable with other models of brain preconditioning (Calabrese 2008; Obrenovitch 2008) and might involve similar molecular mechanisms of protection (Cadet and Krasnova 2009). For example, it has been reported that brain preconditioning by various manipulations is associated with differential gene expression in the presence of ischemic injuries (Dirnagl et al. 2003; Stenzel-Poore et al. 2003; Dhodda et al. 2004; Koerner et al. 2007; Stenzel-Poore et al. 2007). We thus conducted the present study to test if the absence and presence of METH preconditioning might be also associated with METH-induced differential gene expression in the striatum, a brain region which is known to be affected by METH (Krasnova and Cadet 2009).

MATERIALS AND METHODS

Animals.

Male Sprague-Dawley rats (Charles Rivers Laboratories, Raleigh, NC), weighing 330-370 g in the beginning of the experiment were used in the present study. Animals were housed in a humidity- and temperature-con-
trolled room and were given free access to food and water. All animal pro-
cedures were performed according to the National Institutes of Health
Guide for the Care and Use of Laboratory Animals and were approved by the
local Animal Care Committee.

Drug Treatment and Tissue Collection.

Following habituation, rats were injected intraperitoneally with either
(±)-METH-hydrochloride (NIDA, Baltimore, MD) or an equivalent vol-
ume of 0.9% saline for a period of three weeks as described elsewhere
(Graham et al. 2008; Cadet et al. 2009a). The saline- or METH-pretreated
animals received either saline or METH (5 mg/kg x 8 at 1 h intervals)
challenges 72 hours after the preconditioning period. This dose of
METH is known to cause significant decreases in the levels of
monoamines in the rat striatum (Krasnova and Cadet 2009). The four
groups of animals were: saline/saline (SS), saline/METH (SM), METH
preconditioning/saline (MS), and METH preconditioning/METH
(MM). The animals were euthanized 24 h after the injection of the last
dose of METH. Their brains were quickly removed, brain regions were
dissected on ice, snap frozen on dry ice, and stored at -80°C until used in
microarray analyses or quantitative PCR experiments as described below.

RNA Extraction and Microarray Hybridization.

Total RNA was isolated using Qiagen RNeasy Midi kit (Qiagen,
Valencia, CA) according to the manufacturer’s instructions. RNA integri-
ty was assessed using an Agilent 2100 Bioanalyzer (Agilent, Palo Alto, CA)
and showed no degradation. Microarray hybridization was carried out
using Illumina’s RatRef-12 Expression BeadChips arrays (22, 227 probes)
(Illumina Inc., San Diego, CA). In brief, a 600 ng aliquot of total RNA
from each striatal sample was amplified using Ambion’s Illumina RNA
Amplification kit (Ambion, Austin, TX). Single-stranded RNA (cRNA)
was generated and labeled by incorporating biotin-16-UTP (Roche
Diagnostics Corporation, Indianapolis, IN). 750 ng of each cRNA sample
were hybridized to Illumina arrays at 55 °C overnight according to the
Illumina Whole-Genome Gene Expression Protocol for BeadStation
(Illumina Inc.). Hybridized biotinylated cRNA was detected with cya-
nine3-streptavidine (GE Healthcare, Piscataway, NJ) and quantified using
Illumina’s BeadStation 500GX Genetic Analysis Systems scanner.

Microarray Data Analysis.

The raw data for the analyses of the four groups of animals are avail-
able upon request. The Illumina BeadStudio software was used to measure
fluorescent hybridization signals. Data were extracted by BeadStudio
(Illumina Inc.) and then analyzed using GeneSpring software v. 7.3.1
(Silicon Genetics, Redwood City, CA). Raw data were imported into GeneSpring and normalized using global normalization. The normalized data were used to identify changes in gene expression in four group comparisons: MS vs SS, SM vs SS, MM vs SS, and MM vs MS. A gene was identified as significantly changed if it showed increased or decreased expression according to an arbitrary cut-off of 1.7-fold changes at \(p < 0.025 \).

Real-time PCR.

Total RNA extracted from the rat striatum was also used to confirm the expression of genes of interest by real-time RT-PCR as previously described (Krasnova et al. 2007; Krasnova et al. 2008). In brief, unpooled total RNA obtained from 5-7 rats per group was reverse-transcribed with oligo dT primers and Advantage RT for PCR kit (Clontech, Mountain View, CA). PCR experiments were performed using light cycler technology and LightCycler FastStart DNA Master SYBR Green I kit (Roche) according to manufacturer’s protocol. Sequences for gene-specific primers corresponding to PCR targets were obtained using LightCycler Probe Design software (Roche). The primers were synthesized and HPLC-purified at the Synthesis and Sequencing Facility of Johns Hopkins University (Baltimore, MD). Quantitative PCR values were normalized using 18S rRNA and quantified. The results are reported as relative changes which were calculated as the ratios of normalized gene expression data of each group compared to the SS group.

Statistical Analysis.

Statistical analysis was performed using analysis of variance (ANOVA) followed by Fisher’s protected least significant difference post-hoc comparison (StatView 4.02, SAS Institute, Cary, NC). Values are shown as means ± SEM. The null hypothesis was rejected at \(p < 0.05 \).

RESULTS

Identification of genes regulated by METH preconditioning and by METH challenges in the rat striatum.

As reported elsewhere, METH preconditioning caused protection against METH-induced depletion in striatal DA and 5-HT levels (Cadet et al. 2009a). In order to assess transcriptional effects of toxic doses of METH in the rat striatum, we used Illumina RatRef-12 Expression BeadChips arrays that contain 22,523 probes. The results of 3 comparisons between the four groups of rats: MS vs SS, SM vs SS, and MM vs MS are presented in the Venn diagram (Fig. 1). To be identified as changed, the genes had to show 1.7-fold difference with control expression at \(p < 0.025 \). A total of 230 genes were differentially impacted in the three
comparisons, the distribution and overlap of these genes are shown in Fig. 1. Partial lists of these genes are given in tables 1-4.

Effects of METH preconditioning on striatal gene expression.

Table 1 shows that chronic administration of low non-toxic doses of METH caused significant changes in the expression of 42 genes, with 30 being up-regulated and 12 down-regulated (MS vs SS). Of these genes, there were 34 that were found only in the MS vs SS comparison while 3 were found co-localized within the SM vs SS and 5 genes within the MM vs MS comparison. The most up-regulated gene was the predicted gene, Cd97, which showed 27-fold increases. (We are using only abbreviations in the text since the full name of the genes can be found in the tables that provide the list of METH-regulated genes). METH preconditioning caused 18-fold increases in the expression of Gabrr2 which is a receptor in GABA-mediated inhibitory synapses in the brain (Schmidt 2008). Another gene of interest is Fgf3, a member of the Fgf family of trophic factors (Itoh and Ornitz, 2008), which shows about 12-fold increases after repeated injections of non-toxic doses of METH.

Effects of METH challenges on striatal gene expression in the absence of METH preconditioning.

Table 2 shows partial lists of genes affected by binge METH challenge in the striatum in the absence of METH preconditioning (SM vs SS).
TABLE 1. Effects of METH preconditioning alone on striatal gene expression.

Fold Changes	MS/SS Gene Symbol	Common Description
18.32	Adam18	tMDCIII
18.18	Gabrr2	Gabrr2
13.91	Sftpβ	Sp-b
11.89	Fgf3	int2
8.73	Grpca	Grpca
1.89	Fmo2	Fmo2
1.75	E2f1	E2f1
–1.71	Lox	Rattus norvegicus lysyl oxidase (Lox), mRNA.
–2.92	Foxi2	Fkhβ; Foxf1
–16.23	Pcdhac1	Pcdhac1; rCNRc1

Data were obtained from the MS vs SS comparison. Predicted genes are not listed. The genes are listed in descending order according to METH-induced fold changes in gene expression.

TABLE 2. METH-induced increases in striatal gene expression in the absence of METH preconditioning.

Fold Changes	SM/SS Gene Symbol	Common Description
44.60	Hest	Hest
21.13	Il1a	IL-1 alpha
15.80	Lfng	Lunatic fringe gene homolog (Drosophila)
14.83	H19	Rattus norvegicus H19 fetal mRNA (H19), misc RNA.
12.53	Bcl2i10	Bcl2i10
11.22	Mb	Myoglobin
10.88	Timp1	Timp; TIMP-1
8.19	Hspb1	Heat shock 27kDa protein 1
4.83	Cd44	CD44A; META; RHAMM
4.45	Lcn2	Lipocalin 2
4.41	Sl100a3	Sl100a3
3.05	Fmo2	Flavin containing monooxygenase 2
2.82	Gfap	Gfap
2.74	Pdpn	E11; Gp38; OTS-8; RTI40; T1-alpha
2.67	Emp3	Epithelial membrane protein 3
2.64	Serping1	Serine (or cysteine) peptidase inhibitor, clade G, member 1
2.53	Parp3	AdprtL3
2.50	Cdi4	Cdi4
2.34	Chi31l	Chi31l
2.32	Tyrobp	Tyro protein tyrosine kinase binding protein

Continued
METH challenge caused significant changes in a total of 98 genes. Of these, 79 were up-regulated (Table 2) and 19 were down-regulated (not shown). The most significantly changed gene was Hcst which showed about a 45-fold increase. Other up-regulated genes of interest include Bcl2-like 10, Hsp27/HspB1, GFAP, Hmox-1, and caspase 4. GFAP expres-

Fold Changes	SM/SS	Gene Symbol	Common Description
2.28	Gpd1	GPDH; Gpd3	glycerol-3-phosphate dehydrogenase 1 (soluble)
2.25	Tmbim1		transmembrane BAX inhibitor motif containing 1
2.20	Nes		nestin
2.17	Cox6a2	COX6B; COX6AH	cytochrome c oxidase, subunit Vla, polypeptide 2
2.16	Prelp	Prelp	proline arginine-rich end leucine-rich repeat protein
2.13	Plp2	A4-LSB	proteolipid protein 2
2.12	C1qb	C1qb	complement component 1, q subcomponent, beta polypeptide
2.02	Ptnp6	Ptnp6; Shp-1	protein tyrosine phosphatase, non-receptor type 6
1.96	Sv2c		synaptic vesicle glycoprotein 2c
1.95	Prkcdbp	Srbc; DIG-2	protein kinase C, delta binding protein
1.95	Vamp5	Vamp5	vesicle-associated membrane protein 5
1.95	S100a4	CAPL; MTS1	S100 calcium-binding protein A4
1.93	Fxyd5	FXYD	FXYD domain-containing ion transport regulator 5
1.92	Ddit4l	Ddit4l	DNA-damage-inducible transcript 4-like (Ddit4l), mRNA.
1.92	Col5a1	Col5a1	procollagen, type V, alpha 1
1.90	Fgrf1	Fgrf5	fibroblast growth factor receptor-like 1
1.90	Arf6	Arf6	ADP-ribosylation factor 6
1.89	Hla-dma	RT1-DMa; RT1.DMa	major histocompatibility complex, class II, DM alpha
1.89	Pycard	Asc	PYD and CARD domain containing
1.85	Cdo1	Cdo1	cysteine dioxygenase 1, cytosolic
1.84	Clic1	Clic1	chloride intracellular channel 1
1.82	Ccl21b		chemokine (C-C motif) ligand 21b (serine)
1.81	Stat3		signal transducer and activator of transcription 3
1.80	Hmox1	Ho1; Heox; Hmox; Ho-1; HEOXG; hsp32	heme oxygenase (decycling) 1
1.79	Chek2	Chk2; Rad53	CHK2 checkpoint homolog (S. pombe)
1.79	Casp4	Casp11	caspase 4, apoptosis-related cysteine peptidase
1.76	Eif4ebp1	PHAS-I	eukaryotic translation initiation factor 4E binding protein 1
1.74	Tgfb1	Tgfb1	transforming growth factor, beta 1
1.73	Lgals3	gal-3	lectin, galactose binding, soluble 3
1.71	ZnT3	Slc30a3	solute carrier family 30 (zinc transporter), member 3
1.70	Emp1	TMP; CL-20; EMP-1; ENP1MR	epithelial membrane protein 1

The data were generated from the SM vs SS comparison. Predicted genes are not included. The genes are listed in descending order according to fold changes in gene expression.
sion has been shown to be induced by toxic doses of METH (Deng et al. 1999; Krasnova et al. 2010). The members of the Bcl2 family of mitochondrial proteins are also influenced by toxic doses of the drug (Jayanthi et al. 2001) and are involved in METH-induced neuronal apoptosis (Cadet et al. 1997). The expression of Hsp27/HspB1 (Jayanthi et al. 2009) and of Hmox-1 (Cadet et al. 2009b; Jayanthi et al. 2009) is also changed by toxic doses of METH. Some of these genes are similar to those reported by another group (Thomas et al., 2004).

Effects of METH challenges on striatal gene expression in the presence of METH preconditioning.

Table 3 shows a partial list of genes whose expression was affected by the injections of large doses of METH in the presence of METH preconditioning (MM vs MS). Ninety genes were affected in that comparison. Of these, 32 were up-regulated and 58 were down-regulated by the large dose METH challenge. Sixty seven of these genes were changed only after METH challenge in the striata of rats preconditioned with METH while 18 genes were also contained in the MM vs MS comparison (Fig. 1). In addition, 5 genes showed changes in expression in the MS vs SS comparison. The most up-regulated gene was H19. Other up-regulated genes of interest include Timp1, Nes, GFAP, and Vgf. HspB1 which was up-regulated in the absence of METH preconditioning is also up-regulated in the MM vs MS comparison, but to a lesser extent. In contrast, S100a3 and GFAP were up-regulated to similar extent in the absence or presence of METH preconditioning.

Differential METH-induced striatal gene expression in the absence and presence of METH preconditioning.

In order to dissect the effects of METH preconditioning further, we compared the levels of gene expression between the MM and the SM groups (MM vs SM). We found that 77 genes were affected, with 36 being up-regulated and 41 down-regulated. Table 4 shows a partial list of these genes. The most up-regulated gene was Igfs7. Other up-regulated genes of interest include Lif and Egfl6. Down-regulated genes of interest include BDNF and Nurr1.

Quantitative PCR for genes of interest

We examined METH-induced changes in the expression of Hsp27/HspB1 which was up-regulated to differential degrees in both the SM and MM groups in the microarray experiments. METH injections caused about 22- and 7-fold increases in the levels of Hsp27/HspB1 mRNA in the SM and MM groups, respectively (Fig. 2A). The changes observed in the MM were significantly less pronounced than those observed in the SM group. We also measured the expression of HspB2,
TABLE 3. METH-induced changes in striatal gene expression in the presence of METH preconditioning.

Fold Changes (MM/MS)	Gene Symbol	Common Description
13.43	H19	Rattus norvegicus H19 fetal liver mRNA (H19), misc RNA.
11.12	Gys2	GLYSN glycogen synthase 2
5.67	Timp1	Timp; TIMP-1 tissue inhibitor of metallopeptidase 1
4.47	Hspb1	Hsp25; Hsp27 heat shock 27kDa protein 1
3.50	Cd44	CD44A; METAA CD44 antigen
3.30	S100a3	S100 calcium binding protein A3
2.95	Cxcl10	IP-10; Scyb10 chemokine (C-X-C motif) ligand 10
2.20	Nes	Nes nestin
2.19	Gfap	Gfap Rattus norvegicus glial fibrillary acidic protein (Gfap), mRNA.
2.18	Pdpn	E11; Gp38; OTS-8 podoplanin
1.94	Chi3l1	Chi3l1 chitinase 3-like 1
1.83	Tmbim1	transmembrane BAX inhibitor motif containing 1
1.82	Tyrobp	Karap Tyro protein tyrosine kinase binding protein
1.81	Vgf	Vgf VGF nerve growth factor inducible
1.81	Serping1	serine (or cysteine) peptidase inhibitor, clade G, member 1
1.76	Prelp	Prelp proline arginine-rich end leucine-rich repeat protein
-1.72	Slc4a1	SGC; Gucy1b2a; Gucy1b2b
-1.75	Guicy1b2	SGC guanylate cyclase 1, soluble, beta 2
-1.75	Grem1	drm; Cksf1b1 Greenein 1 homolog, cysteine knot superfamily (Xenopus laevis)
-1.79	Ces2	rCES2; CES RL4 carboxylesterase 2 (intestine, liver)
-1.81	Hcn1	Hcn1 hyperpolarization-activated cyclic nucleotide-gated potassium channel 1
-1.86	Str1	Rattus norvegicus somatostatin receptor 1 (Str1), mRNA.
-1.87	Ahr	Rattus norvegicus aryl hydrocarbon receptor (Ahr), mRNA.
-1.94	Rnasel	Rnasel ribonuclelease L (2',5'-oligoadenylate synthetase-dependent)
-1.95	Pnck	Camk1b pregnancy upregulated non-ubiquitously expressed CaM kinase
-2.13	Slt1	Rattus norvegicus slit homolog 1 (Drosophila) (Slt1), mRNA.
-3.37	Rtn4r	Rattus norvegicus reticulon 4 receptor (Rtn4r), mRNA.
-4.18	St8sia6	St8sia6 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 6
-14.21	Arl10	Arl10 ADP-ribosylation factor-like 10
-15.94	Nfatc2ip	nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 2 interacting protein
-20.45	Dnase113	Dnase113 deoxynucleose 1-like 3
-27.30	Cldn3	Cldn3 claudin 3
-30.18	Ntn3	Ntn3 netrin 2-like (chicken)
-42.53	Pla2g1b	Pla2g1b phospholipase A2, group IB
-44.28	Col23a1	Col23a1 procollagen, type XXIII, alpha 1

The data were generated from the MM vs MS comparison. Predicted genes are not included. The genes are listed in descending order according to fold changes in gene expression.
another member of the HspB family of small heat shock proteins (sHSPs) (Hu et al. 2008) which has been shown to exert protection against ischemia-induced damage (Morrison et al. 2004). The METH injections caused significant increases in HspB2 mRNA levels in the absence but not in the presence of METH preconditioning (Fig. 2B).

The PCR experiments also confirmed that the expression of Hmox-1 was up-regulated in the SM but not in the MM group (Fig. 3A). In addition, we also measured the expression of Hmox-2, another member of the Hmox family even though it was not identified as being regulated by METH in the microarray data. As shown in Fig. 3B, there were small decreases in the MM group which were significantly different from the SM group. Because Hmox-1 expression is regulated by NRF2 protein translocation from the cytosol to the nucleus (Surh et al. 2009), we tested the idea that multiple injections of METH might cause increases in Nrf2 mRNA. We found that the METH challenge did cause increases in Nrf2 expression in the absence (SM) but not in the presence of METH pre-

Fold Changes (MM/SM)	Gene Symbol	Common Description
23.64	Igsf7	Igsf7; Mair-II immunoglobulin superfamily, member 7
15.17	Lif	Leukemia inhibitory factor
10.55	Nanog	Nanog homeobox
7.40	Fut11	Fucosyltransferase 11
7.38	Kcnq2	Potassium voltage-gated channel, subfamily Q, member 2
1.88	Chrna7	Cholinergic receptor, nicotinic, alpha polypeptide 7
1.74	Egfl6	EGF-like-domain, multiple 6
-1.72	Lxn	Latexin
-1.75	Bdnf	Brain derived neurotrophic factor
-1.76	Hgfac	Hepatocyte growth factor activator
-1.79	Abcb1b	ATP-binding cassette, sub-family B (MDR/TAP), member 1B
-1.86	Hcn1	Hyperpolarization-activated cyclic nucleotide-gated potassium channel 1
-2.02	Nr4a2	Nuclear receptor subfamily 4, group A, member 2
-2.07	Hs3st2	Heparan sulfate (glucosamine) 3-O-sulfotransferase 2
-2.61	Klk8	Kallikrein 8 (neuropsin/ovasin)
-2.65	Nov	Nephroblastoma overexpressed gene
-2.77	Cnga1	Cyclic nucleotide gated channel alpha 1
-11.10	Npm2	Nucleophosmin/nucleoplasmin 2
-20.75	Neurod1	Neurogenic differentiation 1

Data were obtained from the MM vs SM comparison. Predicted genes are not listed. The genes are listed in descending order according to the METH-induced fold changes.
FIGURE 2. Quantitative PCR validates the effects of large doses of METH on striatal HspB1 and HspB2 mRNA levels. Data were obtained using RNA isolated from 5-6 animals per group and measured individually. The mRNA levels were normalized to 18S rRNA levels. The values are shown as means ± SEM in comparison to the SS group. METH caused substantial increases in (A) HspB1 in both the SM and MM groups and (B) HspB2 only in the SM group. Keys to statistics: *, **, *** $p < 0.05$, 0.01, 0.001, respectively, in comparison to the SS group; #, ### $p < 0.05$, 0.001, respectively, in comparison to the MS group; !!!, $p < 0.001$, in comparison to the SM group.

FIGURE 3. Effects of large doses of METH on striatal Hmox-1, Hmox-2, Nrf2, and DnaJc3 mRNA levels. Data were obtained using RNA isolated from 5-6 animals per group and measured individually. The mRNA levels were normalized to 18S rRNA levels. The values are means ± SEM in comparison to the SS group. METH caused substantial increases in (A) Hmox-1 in the SM group but not in (B) Hmox-2. There were also METH-induced increases in the expression of (C) Nrf2 in the SM group and of (D) DnaJc3 in both the SM and MM groups. Keys to statistics: *, **, *** $p < 0.05$, 0.01, 0.001, respectively, in comparison to the SS group; #, ### $p < 0.05$, 0.001, respectively, in comparison to the MS group; !!, !!!, $p < 0.001$, respectively, in comparison to the SM group.
conditioning (MM) (Fig. 3C). Because Hmox-1 is up-regulated by endo-plasmic reticulum (ER) stress (Gozzelino et al. 2010), we also tested the possibility that DnaJc3 (p58IPK) which is involved in protecting cells against ER stress (Rutkowski et al. 2007) might be induced by METH. Indeed, the large METH doses caused significant increases in DnaJc3 expression in the absence but not in the presence of METH preconditioning (Fig. 3D).

Because the microarray experiments identified BDNF as being down-regulated in the MM in comparison to the SM group and because BDNF has been shown to provide protection against transneuronal degeneration of DA neurons (Canudas et al. 2005), we sought to confirm these data by quantitative PCR. Figure 4A shows that there were significant decreases in BDNF expression in the presence of METH preconditioning (MM group). We also measured the expression of GDNF that has been shown to protect against METH toxicity (Cass et al. 2006). There were some decreases in GDNF mRNA levels in MM group that did not reach statistical significance (Fig. 4B).

DISCUSSION

The main findings in these experiments are that acute injections of large doses of METH caused differential gene expression in the striata of rats depending on whether the animals have been pre-exposed repeatedly to smaller non-toxic doses of the drug or not. The present observations allowed for the creation of differentially expressed genes after exposure to large doses of METH. These results are important because there are very few reports on the effects of chronic METH treatment on large scale gene expression in the rat striatum. We hope that the results of our study
will provide a comprehensive database for future investigations of METH preconditioning, METH toxicity, and drug-induced neuroplastic changes in the rat striatum.

In this study, we found that the vast majority of genes regulated by the single-day binge METH injections are different from those regulated by acute METH injections (Cadet et al. 2001; Jayanthi et al. 2009). These differences might be due to the fact that data reported in the previous studies were obtained from animals euthanized within the first 4 hours after the METH injections (Cadet et al. 2001; Jayanthi et al. 2009). It is important to point out that the genes identified in the striatum are also different from the genes identified in the midbrain after METH preconditioning, indicating that the preconditioning process might be regionally specific in terms of METH-induced gene expression (Cadet et al. 2009b). These regional differences might be secondary to the fact that the data of the former study came from the rat midbrain which is the site of origin for dopaminergic neurons whereas the present data were obtained from intrinsic striatal non-dopaminergic neurons. Nevertheless, our data support the idea that METH preconditioning is associated with significant alterations of the striatal transcriptional responses to large doses of METH. In what follows, we discuss the role of some interesting genes whose METH-induced changes in expression were confirmed by quantitative PCR.

Mammalian HSPs, which include Hsp27/HspB1, are molecular chaperones that participate in the proper folding of proteins and help to maintain their native conformations during stressful events (Arya et al. 2007). Hsp27/HspB1 is a novel regulator of intracellular redox state (Arrigo 2007). HSPs also participate in the transfer of improperly folded proteins to the proteasome for degradation. HSPs are induced by heat shock, hypoxic and ischemic events, and oxidative stress (Arrigo 2007; Arya et al. 2007). Recent studies have documented a role for these proteins in neurodegenerative processes and have demonstrated that HSPs are important in cellular protection against aggregation-prone proteins and in animal models of neurodegeneration (Muchowski and Wacker 2005). Thus, our demonstration of METH-induced expression of the chaperones, Hsp27/HspB1 (Franklin et al. 2005) and HspB2 (Hu et al. 2008), suggests that striatal cells are able to mount adaptive defensive HSP-modulated networks against the toxic effects of the drug. Hsp27/HspB1 appears to exert its protective effects, in part, by inhibiting caspase-dependent apoptotic pathways (Garrido et al. 1999; Voss et al. 2007).

We also found that the METH challenge caused 3-fold increases in Hmox-1 expression in the absence of METH preconditioning and that these increases were attenuated in the striata of the METH preconditioned rats. Because Hmox-1 is an enzyme that can be induced by oxida-
tive stress (Calabrese et al. 2004; Li et al. 2007) and because METH toxicity is mediated, in part, via oxidative stress (Krasnova and Cadet 2009), the present observations suggest that the METH challenge might have caused more oxidative stress in the striata of animals pretreated with saline. However, since saline-pretreated animals do show METH toxicity, these METH-induced increases in Hmox-1 might not be sufficient to protect post-synaptic cells from drug-related damage. It is important to point that overexpression of Hmox-1 can protect against METH toxicity in vitro (Huang et al. 2009). Nevertheless, it appears that a substantial increase in the level of the enzyme might be necessary before protection against METH toxicity can be observed in vivo. This remains to be demonstrated.

The expression of BDNF which is involved in the regulation of cell survival (Canudas et al. 2005) and in synaptic plasticity (Kuipers and Bramham 2006), was significantly decreased by the METH challenge only in the presence of METH preconditioning. These results were unexpected since we had observed increases in BDNF expression in the midbrain where the DA neurons are located (Cadet et al. 2009b). The present observations in the rat striatum suggest that the increases in BDNF in midbrain dopaminergic neurons might cause increases in the release of BDNF in the striatum and compensatory down-regulation of its expression in intrinsic striatal cells via epigenetic changes in the regulation of BDNF through promoter methylation (Dennis and Levitt 2005). These epigenetic changes might also involve decreased recruitment of acetylated histones on BDNF promoters since histone deacetylase (HDAC) inhibitors have been reported to cause increases in BDNF transcription (Wu et al. 2008). In any case, these dichotomous results in the terminal regions and in the cell body area emphasize the need to determine regional effects of toxic agents on the brain.

This discussion also applies to the effects of METH on striatal Hspb2 and Hmox1 mRNA levels which showed increases in response to the challenge with high doses of METH in the absence but not in the presence of METH preconditioning. The situation was reversed in the midbrain of these animals because METH preconditioning enhanced the METH challenge-induced increases in Hspb2 and Hmox-1 mRNA levels in the rat midbrain (Cadet et al., 2009b). These results support our thesis that the brain cannot be thought of as a homogeneous structure when assessing the molecular effects of preconditioning and/or toxic compounds.

In summary, we found that the challenge with large doses of METH is associated with differential transcriptional responses in the rat striatum in the absence and presence of preconditioning with repeated injections of small nontoxic doses of the drug. These results suggest that intrinsic striatal cells exposed to low METH doses develop a certain degree of tolerance to the effects of the drug on the expression of genes that are triggering the nefarious METH effects. Future studies are underway to test
the possibility that METH preconditioning can also protect against METH-induced cell death in the striatum.

ACKNOWLEDGMENTS

The study is supported by Intramural Research Program of the National Institute on Drug Abuse, NIH, DHHS.

REFERENCES

Arrigo AP. 2007. The cellular “networking” of mammalian Hsp27 and its functions in the control of protein folding, redox state and apoptosis. Adv Exp Med Biol 594:14-26
Arya R, Mallik M, and Lakhotia SC. 2007. Heat shock genes - integrating cell survival and death. J Biosci 32:595-610
Cadet JL and Krasnova IN. 2009. Cellular and molecular neurobiology of brain preconditioning. Mol Neurobiol 39:50-61
Cadet JL, Sheng P, Ali S, Rothman R, Carlson E, and Epstein C. 1994. Attenuation of methamphetamine-induced neurotoxicity in copper/zinc superoxide dismutase transgenic mice. J Neurochem 62:380-383
Cadet JL, Ordonez SV, and Ordonez JV. 1997. Methamphetamine induces apoptosis in immortalized neural cells: protection by the proto-oncogene, bcl-2. Synapse 25:176-184
Cadet JL, Jayanthi S, McCoy MT, Vawter M, and Ladenheim B. 2001. Temporal profiling of methamphetamine-induced changes in gene expression in the mouse brain: evidence from cDNA array. Synapse 41:40-48
Cadet JL, Jayanthi S, and Deng X. 2003. Speed kills: cellular and molecular bases of methamphetamine-induced nerve terminal degeneration and neuronal apoptosis. Faseb J 17:1775-1788
Cadet JL, Krasnova IN, Jayanthi S, and Lyles J. 2007. Neurotoxicity of substituted amphetamines: molecular and cellular mechanisms. Neurotox Res 11:183-202
Cadet JL, Krasnova IN, Ladenheim B, Cai NS, McCoy MT, and Atianjoh FE. 2009a. Methamphetamine preconditioning: differential protective effects on monoaminergic systems in the rat brain. Neurotox Res 15:252-259
Cadet JL, McCoy MT, Cai NS, Krasnova IN, Ladenheim B, Beauvais G, Wilson N, Wood W, Becker KG, and Hodges AB. 2009b. Methamphetamine preconditioning alters midbrain transcriptional responses to methamphetamine-induced injury in the rat striatum. PLoS One 4:e7812
Calabrese EJ. 2008. Converging concepts: adaptive response, preconditioning, and the Yerkes-Dodson Law are manifestations of hormesis. Ageing Res Rev 7:8-20
Calabrese V, Stella AM, Butterfield DA, and Scapagnini G. 2004. Redox regulation in neurodegeneration and longevity: role of the heme oxygenase and HSP70 systems in brain stress tolerance. Antioxid Redox Signal 6:895-913
Canudas AM, Pezzi S, Canals JM, Pallas M, and Alberch J. 2005. Endogenous brain-derived neurotrophic factor protects dopaminergic nigral neurons against transneuronal degeneration induced by striatal excitotoxic injury. Brain Res Mol Brain Res 134:147-154
Cass WA, Peters LE, Harned ME, and Séroogy KB. 2006. Protection by GDNF and other trophic factors against the dopamine-depleting effects of neurotoxic doses of methamphetamine. Ann N Y Acad Sci 1074:272-281
Chang L, Alicata D, Ernst T, and Volkow N. 2007. Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction 102 Suppl 1:16-32
Danaceau JP, Deering CE, Day JE, Smeal SJ, Johnson-Davis KL, Fleckenstein AE, and Wilkins DG. 2007. Persistence of tolerance to methamphetamine-induced monoamine deficits. Eur J Pharmacol 559:46-54
Darke S, Kaye S, McKetin R, and Duflou J. 2008. Major physical and psychological harms of methamphetamine use. Drug Alcohol Rev 27:253-262
Deng X, Ladenheim B, Tsao LL, and Cadet JL. 1999. Null mutation of c-fos causes exacerbation of methamphetamine-induced neurotoxicity. J Neurosci 19:10107-10115

Published by ScholarWorks@UMass Amherst, 2014
Dennis KE, and Levitt P. 2005. Regional expression of brain derived neurotrophic factor (BDNF) is correlated with dynamic patterns of promoter methylation in the developing mouse forebrain. Brain Res Mol Brain Res 140:1-9

Dhodda VK, Sailor KA, Bowen KK, and Vemuganti R. 2004. Putative endogenous mediators of preconditioning-induced ischemic tolerance in rat brain identified by genomic and proteomic analysis. J Neurochem 89:73-89

Dirnagl U, Simon RP, and Hallenbeck JM. 2003. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 26:248-254

Franklin TB, Krueger-Naug AM, Clarke DB, Arrigo AP, and Currie RW. 2005. The role of heat shock proteins Hsp70 and Hsp27 in cellular protection of the central nervous system. Int J Hyperthermia 21:379-392

Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, and Solary E. 1999. HSP27 inhibits cytochrome c-dependent activation of procaspase-9. Faseb J 13:2061-2070

Gozzelino R, Jeney V, and Soares MP. 2010. Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 50:323-354

Graham DL, Noailles PA, and Cadet JL. 2008. Differential neurochemical consequences of an escalating dose-hinge regimen followed by single-day multiple-dose methamphetamine challenges. J Neurochem 105:1873-1885

Hu Z, Yang B, Lu W, Zhou W, Zeng L, Li T, and Wang X. 2008. HSPB2/MKBP, a novel and unique member of the small heat-shock protein family. J Neurosci Res 86:2125-2133

Huang YN, Wu CH, Lin TC, and Wang JY. 2009. Methamphetamine induces heme oxygenase-1 expression in cortical neurons and glia to prevent its toxicity. Toxicol Appl Pharmacol 240:315-326

Itoh N and Ornitz DM. 2008. Functional evolutionary history of the mouse Fgf gene family. Dev Dyn 237:18-27

Jayanthi S, Deng X, Bordelon M, McCoy MT, and Cadet JL. 2001. Methamphetamine causes differential regulation of pro-death and anti-death Bcl-2 genes in the mouse neocortex. Faseb J 15:1745-1752

Jayanthi S, McCoy MT, Beauvais G, Ladenheim B, Gilmore K, Wood W, 3rd, Becker K, and Cadet JL. 2009. Methamphetamine induces dopamine D1 receptor-dependent endoplasmic reticulum stress-related molecular events in the rat striatum. PLoS One 4:e6092

Johnson-Davis KL, Fleckenstein AE, and Wilkins DG. 2003. The role of hyperthermia and metabolism as mechanisms of tolerance to methamphetamine neurotoxicity. Eur J Pharmacol 482:151-154

Koerner IP, Gatting M, Noppens R, Kemptsi O, and Brambrink AM. 2007. Induction of cerebral ischemic tolerance by erythromycin preconditioning reprograms the transcriptional response to ischemia and suppresses inflammation. Anesthesiology 106:538-547.

Kramer JC, Fischman VS, and Littlefield DC. 1967. Amphetamine abuse. Pattern and effects of high doses taken intravenously. Jama 201:305-309

Krasnova IN and Cadet JL. 2009. Methamphetamine toxicity and messengers of death. Brain Res Rev 60:379-407

Krasnova IN, Betts ES, Dada A, Jefferson A, Ladenheim B, Becker KG, Cadet JL, and Hohmann CF. 2007. Neonatal dopamine depletion induces changes in morphogenesis and gene expression in the developing cortex. Neurotox Res 11:107-130

Krasnova IN, Li SM, Wood WH, McCoy MT, Prabhu VV, Becker KG, Katz JL, Cadet JL. 2008. Transcriptional responses to reinforcing effects of cocaine in the rat hippocampus and cortex. Genes Brain Behav 7:207-292

Krasnova IN, Justinova Z, Ladenheim B, Jayanthi S, McCoy MT, Barnes C, Warner JE, Goldberg SR, and Cadet JL. 2010. Methamphetamine self-administration is associated with persistent biochemical alterations in striatal and cortical dopaminergic terminals in the rat. PLoS One 5:e8790

Kuipers SD and Bramham CR. 2006. Brain-derived neurotrophic factor mechanisms and function in adult synaptic plasticity: new insights and implications for therapy. Curr Opin Drug Discov Devel 9:580-586

Ladenheim B, Krasnova IN, Deng X, Oyler JM, Poletti A, Moran TH, Huestis MA, Cadet JL. 2000. Methamphetamine-induced neurotoxicity is attenuated in transgenic mice with a null mutation for interleukin-6. Mol Pharmacol 58:1247-1256
