SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF S-SUBSTITUTED DERIVATIVES OF 1,2,4-TRIAZOL-3-THIOL

Yevhen Karpun, Nataliia Polishchuk

The aim of the work. 1,2,4-triazole derivatives possess a wide range of pharmacological activity, so they are used for the development of drugs and active pharmaceutical ingredients. Due to the reactivity of 1,2,4-triazoles there are many options for their further structural modification on different reaction centers. Therefore, the aim of the work was to obtain new S-substituted derivatives of 1,2,4-triazole-3-thiols, study physicochemical parameters of the substances synthesized, evaluate the antimicrobial activity of new S-derivatives of the 4-R^1-5-((3-(pyridin-4-yl)-1H-1,2,4-triazol-5-yl)thio)methyl)-4H-1,2,4-triazole-3-thiol series, and study some regularities of the “structure – biological activity” relationship for the synthesized compounds as well.

Materials and methods. The subject of the study was new S-substituted 1,2,4-triazoles containing 2-oxopropan-1-yl and 2-aryl-2-oxoethan-1-yl substituents. The antimicrobial activity was studied by double serial dilutions on test cultures of Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), and Candida albicans (ATCC 885-653).

The results of the biological screening showed that at a concentration of 125 g/mL, all synthesized substances showed activity (MIC – in the range of 31.25 – 62.5 μg/mL, MBCK – in the range of 62.5–125 μg/mL) against strains of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans. Variation of substituents on the sulfur atom did not lead to a significant change in antimicrobial and antifungal activities among derivatives of 4-R^1-5-((3-(pyridin-4-yl)-1H-1,2,4-triazol-5-yl)thio)methyl)-4H-1,2,4-triazole-3-thiols.

Conclusions. Biological screening data indicate the prospects for the search for new antimicrobial substances among the abovementioned derivatives of 1,2,4-triazoles. The most active compounds were 1-((4-ethyl-5-((3-(pyridin-4-yl)-1H-1,2,4-triazol-5-yl)thio)methyl)-4H-1,2,4-triazole-5-yl)thio)propan-2-one and 1-(4-methoxyphenyl)-2-(4-ethyl-5-((3-(pyridin-4-yl)-1H-1,2,4-triazol-5-yl)thio)methyl)-4H-1,2,4-triazole-3-yl)thio)ethanone, which showed the most pronounced antimicrobial activity against the Pseudomonas aeruginosa strain (MIC – 31.25 μg/mL, MBcK – 62.5 μg/mL).

Key words: 1,2,4-triazole, antibacterial activity, antifungal activity
3. Materials and methods

The identity of S-substituted derivatives of 1,2,4-triazole 3a-3f, 4a-4f has been confirmed by gas chromatography via Agilent 7890B GC system connected with Agilent 5977B mass spectrometry detector (USA). The column used for separation was DB-5ms with the following dimensions: 30 m × 250 μm × 0.25 μm. Carrier gas (helium) flow rate was 2.0 mL/min. Injection volume: 0.5 μL. Flow split was 1:20. Temperature of the injection system was programmed as follows: 300 °C → →10 °C/s → 310 °C. Oven temperature: programmable, with the initial temperature of 130°C (1 minute delay) → →20 °C/min → 250 °C (5 min delay). Total time of chromatographic run was 12 min. The temperature of the GC-MS interface was maintained at 280°C; ion source temperature was 230 °C; temperature of quadrupole mass analyzer was 150 °C. Type of ionization: electron impact (EI) with electron energy of 70 eV. Range of scanned mass ratios: 50-500 m/z.

Melting points were determined according to open capillary method using OptiMelt MPA100 apparatus (USA) equipped with platinum RTD sensor and temperature measurement possibility of up to 400°C and 0.1°C resolution.

Elemental analysis of the synthesized compounds was afforded using Elementar Vario L cube multipurpose elemental analyzer (CHNS) produced by Analysen systeme GmbH (Germany) using sulfanilamide as the standard.

1H NMR spectra were recorded on Varian MR-400 spectrometer operating at 400 MHz frequency using DMSO-d6 as a solvent and tetramethylsilane (TMS) as an internal standard. Spectra were processed via ADVASP™ Analyzer software (Umatek International Inc.). Chemical shifts are reported in ppm (δ scale) downfield with the residual protons of the solvent (DMSO-d6) observed at δ=2.49 ppm.

Starting compounds 1, 2 (Scheme 1) are crystalline substances of white colour, insoluble in water and soluble in N,N-dimethylformamide, dimethyl sulfoxide. For analytical purposes, the compounds were recrystallized from water-methanol mixture. The synthesis of the starting thiol 1, 2 have been previously described by other authors [13].

The subject of the research was represented by S-substituted derivatives of 4-R′-5-((3-(pyridin-4-yl)-1H-1,2,4-triazole-5-yl)(thio)methyl)-4H-1,2,4-triazole-3-thiols, where whether methyl or ethyl substituents were attached to the position 4 of the triazole ring (Scheme 1).

The compounds 1, 2, 3a-f, 4a-f were synthesized on the Department of Natural Sciences for Foreign Students and Toxicological Chemistry of Zaporizhzhia State Medical University, according to a known procedure [12]; the compounds were further used in the investigation of their antimicrobial activity [14, 15].

In the literature tautomeric equilibrium of 1,2,4-triazole derivatives was reported [16, 17]. Thione form is usually dominant in neutral and acidic media, whereas in an alkaline solution the equilibrium is shifted towards the formation of thiol form which can easily react with alkyl halides.

General procedure for the synthesis of 4-R′-5-((3-(pyridin-4-yl)-1H-1,2,4-triazole-5-yl)(thio)methyl)-4H-1,2,4-triazole-3-thiol derivatives

A mixture of sodium hydroxide (0.01 mol, 0.40 g) and a starting 4-alkyl-5-(((3-(pyridin-4-yl)-1H-1,2,4-triazole-5-yl)(thio)methyl)-4H-1,2,4-triazole-3-thiols 1, 2 (0.01 mol, 3.05/3.19 g) in methanol was heated until the solid was dissolved, after which one of the alkylating agents (1-bromopropan-2-one, 2-bromo-1-arylethanone) (0.01 mol) was added. After cooling, the precipitate was filtered, dried, and recrystallized from a water-methanol mixture (1:1) (Fig. 1).
Experimental biological part

Antibacterial and antifungal activities were studied on the Department of Microbiology, Virology and Immunology of ZSMU. ATCC 25923 strain of *Staphylococcus aureus*, ATCC 25922 strain of *Escherichia coli*, ATCC 27853 strain of *Pseudomonas aeruginosa*, and ATCC 885653 strain of *Candida albicans* were used as the test cultures. The activities were investigated according to the methodological recommendations [9] using a double serial dilutions method in a liquid nutrient medium considered optimal for the test cultures' growth at the concentration of 10⁶ cells/mL. The evaluated compounds were dissolved in dimethyl sulfoxide (1 mg/mL) prior to the experiment. A minimum inhibitory concentration (MIC) was determined by the absence of a visible growth in a test tube at the minimum concentration of the studied substance sample. Minimum bactericidal or fungicidal concentrations were determined by seeding the contents of the wells of the plate with dilutions on appropriate dense nutrient media (for bacteria - meat-peptone agar, for yeast-like fungi - dense Saburo medium), and then incubated in the thermostat at the optimal temperature for fungi (37 °C) and bacteria (28 °C) growth. Additionally, control tests of growth media and the solvent were performed in accordance with the known procedures [18].

4. Results

The results of the studies on antibacterial and antifungal activities of S-substituted derivatives of 1,2,4-triazole with regard to the test cultures are presented in the Table 1. Chlorohexidine was used as a reference antimicrobial drug.

Table 1

№	R¹	R²	MIC, µg/mL	MBC, µg/mL	MFC, µg/mL					
1	CH₃	C=CH₃	62.5	125	125	125	62.5	125	62.5	125
3a	CH₃		62.5	125	125	125	62.5	125	62.5	125
3b	CH₃		62.5	125	125	125	62.5	125	62.5	125
3c	CH₃		62.5	125	125	125	62.5	125	62.5	125
Continuation of Table 1

1	2	3	4	5	6	7	8	9	10	11	
3d	CH₃	f									
5 6	62.5	125	125	125	62.5	125	62.5	62.5	125	125	125
7 8	62.5	125	125	125	62.5	125	62.5	62.5	125	125	125
9 10	62.5	125	125	125	62.5	125	62.5	62.5	125	125	125
11	62.5	125	125	125	62.5	125	62.5	62.5	125	125	125

Chlorohexidine – 25 – 18.6 – 200 – 10.2

Control solution 2500 5000 2500 5000 2500 5000 2500 5000 2500 5000 2500

1-(4-Methyl-5-((3-(pyridin-4-yl)-1H-1,2,4-triazol-5-yl)thio)methyl)-4H-1,2,4-triazol-3-yl)propan-2-one (3a).
Brown powder in 75 % yield, m.p. 175-177 °C. ¹H NMR δ ppm 2.21 (s, 3H) 3.64 (s, 3H) 3.73 (s, 2H) 5.26 (s, 2H) 7.82 (d, J=5.19 Hz, 2H) 8.56 (d, J=5.19 Hz, 2H) MS (m/z): 361 (M⁺). Calc. for C₁₄H₁₅N₇OS₂: C, 46.52; H, 4.18; N, 27.13, S, 17.74 %. Found: C, 46.59; H, 4.21; N, 27.05, S, 17.70 %.

1-((4-Ethyl-5-(((3-(pyridin-4-yl)-1H-1,2,4-triazol-5-yl)thio)methyl)-4H-1,2,4-triazol-3-yl)thio)propan-2-one (4a).
Brown powder in 77 % yield, m.p. 198-200 °C. ¹H NMR δ ppm 1.36 (t, J=6.2 Hz, 3H) 2.21 (s, 3H) 4.04-4.21 (m, 4H) 5.27 (s, 2H) 7.81 (d, J=5.49 Hz, 2H) 8.49 (d, J=5.49 Hz, 2H), MS (m/z): 375 (M⁺). Calc. for C₁₅H₁₇N₇OS₂: C, 47.98; H, 4.56; N, 26.11, S 17.08 %.

1-((4-Methyl-5-(((3-(pyridin-4-yl)-1H-1,2,4-triazol-5-yl)thio)methyl)-4H-1,2,4-triazol-3-yl)thio)-1-phenylethanone (3b).
White powder in 79 % yield, m.p. 203-205 °C. ¹H NMR δ ppm 3.56 (s, 3H) 4.59 (s, 2H), 4.78 (s, 2H) 7.23-7.27 (m, 2H) 7.79-7.84 (m, 1H) 8.41-8.46 (m, 2H), MS (m/z): 423 (M⁺). Calc. for C₁₉H₁₇N₇OS₂: C, 53.88; H, 4.05; N, 23.15, S 15.14 %. Found: C, 53.81; H, 4.06; N, 23.11, S 15.22 %.

1-((4-Ethyl-5-(((3-(pyridin-4-yl)-1H-1,2,4-triazol-5-yl)thio)methyl)-4H-1,2,4-triazol-3-yl)thio)-1-phenylethanone (4b).
White powder in 81 % yield, m.p. 196-198 °C. ¹H NMR δ ppm 1.59 (t, J=5.80 Hz, 3H) 3.50 (q, J=6.10 Hz, 2H) 4.77-4.81 (m, 2H) 7.50-7.58 (m, 2H) 7.73-7.77 (m, 1H), 7.85-7.89 (m, 4H) 8.44-8.48 (m, 2 H), MS (m/z): 437 (M⁺). Calc. for C₂₀H₁₉N₇OS₂: C, 54.90; H, 4.38; N, 22.41, S 14.65 %. Found: C, 54.94; H, 4.30; N, 22.38, S 14.75 %.

1-(4-Fluorophenyl)-2-((4-methyl-5-(((3-(pyridin-4-yl)-1H-1,2,4-triazol-5-yl)thio)methyl)-4H-1,2,4-triazol-3-yl)thio)ethanone (3c). Yellowish powder in 69 % yield, m.p. 235-237 °C. ¹H NMR δ ppm 3.53 (s, 3H) 3.79 (s, 2H) 3.84 (s, 2H) 7.78 (m, 2H) 7.80-7.84 (m, 1H) 8.03-8.07 (m, 1H) 8.40-8.45 (m, 2H) 8.64-8.70 (m, 2H). MS (m/z): 441 (M⁺). Calc. for C₁₉H₁₆FN₇OS₂: C, 51.69; H, 3.65; N, 22.21, S 14.52 %. Found: C, 51.63; H, 3.69; N, 22.15, S 14.63 %.

1-(4-Fluorophenyl)-2-((4-ethyl-5-(((3-(pyridin-4-yl)-1H-1,2,4-triazol-5-yl)thio)methyl)-4H-1,2,4-triazol-3-yl)thio)ethanone (4c).
Yellowish powder in 79 % yield, m.p. 209-211 °C. ¹H NMR δ ppm 1.73 (t, J=5.49 Hz, 3H) 2.32-2.45 (m, 2H) 4.87 (s, 2H) 6.24 (s, 2H) 6.80-6.85 (m, 2H) 7.60-7.65 (m, 1H) 7.84-7.88 (m, 1H) 7.91-7.95 (m, 2H) 8.50-8.58 (m, 2H), MS (m/z): 455 (M⁺). Calc. for C₂₀H₁₈FN₇OS₂: C, 52.73; H, 3.98; N, 21.52, S 14.08 %. Found: C, 52.61; H, 3.96; N, 21.46, S 14.19 %.

1-(4-Fluorophenyl)-2-((4-methyl-5-(((3-(pyridin-4-yl)-1H-1,2,4-triazol-5-yl)thio)methyl)-4H-1,2,4-triazol-3-yl)thio)ethanone (3d). Yellowish powder in 75 % yield, m.p. 195-197 °C. ¹H NMR δ ppm 3.66 (s, 3H) 3.71 (s, 2H) 4.27 (s, 2H) 7.78-7.82 (m, 2H) 7.90-7.94 (m, 2H) 8.39-8.45 (m, 2H) 8.58-8.62 (m, 2H), MS (m/z): 441 (M⁺). Calc. for C₁₉H₁₈FN₇OS₂: C, 51.69; H, 3.65; N, 22.21, S 14.52 %. Found: C, 51.64; H, 3.62; N, 22.25, S 14.66 %.

1-(4-Fluorophenyl)-2-((4-ethyl-5-(((3-(pyridin-4-yl)-1H-1,2,4-triazol-5-yl)thio)methyl)-4H-1,2,4-triazol-3-yl)thio)ethanone (4d). Yellowish powder in 81 % yield, m.p.
1H NMR δ ppm 1.69 (t, J=6.20 Hz) 4.09 (q, J=6.10 Hz) 2H) 4.29 (s, 2H) 4.80 (s, 2H) 7.33-7.38 (m, 2H), 7.81-7.85 (m, 2H) 8.04-8.09 (m, 2H) 8.45-8.54 (m, 2H) MS (m/z): 455 (M+). Calc. for C$_{24}$H$_{22}$F$_{2}$N$_{3}$O$_{2}$S: C, 52.73; H, 3.98; N, 21.52. Found: C, 52.79; H, 4.00; N, 21.45. 14.03 %.

1-(4-Aminophenyl)-2-((4-methyl-5-(((3-(pyridin-4-yl)-1H-1,2,4-triazol-5-yl)thio)methyl)-4H-1,2,4-triazol-3-yl)thio)ethanone (3e). White powder in 68 % yield, m.p. 184-186 ºC. 1H NMR δ ppm 3.71-3.76 (m, 3H) 4.23 (s, 2H) 4.84 (s, 2H) 7.84-7.89 (m, 2H) 8.25-8.32 (m, 2H) 8.58-8.62 (m, 2H) 8.74-8.79 (m, 2H). Calc. for C$_{24}$H$_{22}$F$_{2}$N$_{3}$O$_{2}$S: C, 52.04; H, 4.14; N, 25.55; S, 14.62 %. Found: C, 52.15; H, 4.03; N, 25.08; S, 14.55 %.

1-(4-Methoxyphenyl)-2-((4-ethyl-5-(((3-(pyridin-4-yl)-1H-1,2,4-triazol-5-yl)thio)methyl)-4H-1,2,4-triazol-3-yl)thio)ethanone (4e). White powder in 72 % yield, m.p. 153-155 ºC. 1H NMR δ ppm 1.85 (t, J=6.20 Hz) 3H) 3.70-3.76 (m, 3H) 3.80 (s, 2H) 4.20 (s, 2H) 7.89-7.93 (m, 2H) 8.22-8.27 (m, 2H) 8.59-8.63 (m, 2H). Calc. for C$_{24}$H$_{22}$F$_{2}$N$_{3}$O$_{2}$S: C, 53.08; H, 4.45; N, 24.76. Found: C, 53.00; H, 4.58; N, 24.78; S, 14.11 %.

1-(4-Methoxyphenyl)-2-((4-methyl-5-(((3-(pyridin-4-yl)-1H-1,2,4-triazol-5-yl)thio)methyl)-4H-1,2,4-triazol-3-yl)thio)ethanone (3f). White powder in 73 % yield, m.p. 172-174 ºC. 1H NMR δ ppm 3.55 (s, 3H) 3.85 (s, 3H) 4.15 (s, 2H) 5.89 (s, 2H) 7.09-7.13 (m, 2H) 7.78-7.81 (m, 2H) 8.00-8.04 (m, 2H) 8.63-8.67 (m, 2H). Calc. for C$_{24}$H$_{22}$F$_{2}$N$_{3}$O$_{2}$S: C, 52.97; H, 4.22; N, 21.62; S, 14.14 %. Found: C, 52.92; H, 4.20; N, 21.75. S, 14.10 %.

1-(4-Methoxyphenyl)-2-((4-ethyl-5-(((3-(pyridin-4-yl)-1H-1,2,4-triazol-5-yl)thio)methyl)-4H-1,2,4-triazol-3-yl)thio)ethanone (4f). White powder in 82 % yield, m.p. 191-193 ºC. 1H NMR δ ppm 1.76 (t, J=7.02 Hz) 3H) 3.64 (s, 3H) 3.76 (q, J=6.12 Hz) 4.14 (s, 2H) 5.80 (s, 2H) 7.82-7.86 (m, 2H) 8.15-8.19 (m, 2H) 8.57-8.62 (m, 2H). Calc. for C$_{24}$H$_{22}$F$_{2}$N$_{3}$O$_{2}$S: C, 53.95; H, 4.53; N, 20.97; S, 13.71 %. Found: C, 53.98; H, 4.48; N, 21.02; S, 13.74 %.

The signals of the NH-protons of triazole fragment and amino groups were not detected in the 1H NMR spectra, probably due to the fast deuteroexchange.

According to the obtained data, all of the S-triazoles were confirmed by GC-MS analysis, elemental analysis and 1H NMR spectroscopy method.

1-(4-ethyl-5-(((3-(pyridin-4-yl)-1H-1,2,4-triazol-5-yl)thio)methyl)-4H-1,2,4-triazol-3-thiol exhibited mild antmicrobial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans.

It is worth noting that the derivatives of 1,2,4-triazole in the research did not significantly differ from each other in terms of growth inhibition of Escherichia coli, Staphylococcus aureus, and Candida albicans strains (MIC values ranged between 62.5 to 125 µg/mL; MBC and MFC between 62.5 to 125 µg/mL).

Study limitations. The serial dilution method is a useful technique in laboratories, but it faces some limitations. Because serial dilution is performed in a stepwise manner, it requires a more extended period. Prepared environments must be deployed immediately, with no storage capability. It is limiting the efficiency of the method.

Prospects for further research. Under these conditions, the fact of finding new promising antimicrobial substances, namely 1-(4-ethyl-5-(((3-(pyridin-4-yl)-1H-1,2,4-triazol-5-yl)thio)methyl)-4H-1,2,4-triazol-3-yl)thio)propan-2-one (4a) and 1-(4-methoxyphenyl)-2-((4-ethyl-5-(((3-(pyridin-4-yl)-1H-1,2,4-triazol-5-yl)thio)methyl)-4H-1,2,4-triazol-3-yl)thio)ethanone (4f), is of considerable interest to be used in further search for and development of new antimicrobial drugs of heterocyclic nature. Our further steps will be to study the synthesized compounds for other types of biological activity.

6. Conclusions

1. We have developed a simple and efficient method for the synthesis of novel S-substituted derivatives of 1,2,4-triazole-3-thiols containing 2-oxopropan-1-yl and 2-aryl-2-oxoethan-1-yl substituents. The structure and purity of new 1,2,4-triazoles were confirmed by GC-MS analysis, elemental analysis and 1H NMR spectroscopy method.

2. The study of S-derivatives of 4-R-5-(((3-(pyridin-4-yl)-1H-1,2,4-triazol-5-yl)thio)methyl)-4H-1,2,4-triazol-3-thiol showed that the synthesized compounds exhibit antimicrobial and antifungal activities.

3. Compounds 1-((4-ethyl-5-(((3-(pyridin-4-yl)-1H-1,2,4-triazol-5-yl)thio)methyl)-4H-1,2,4-triazol-3-yl)thio)propan-2-one (4a) and 1-(4-methoxyphenyl)-2-((4-ethyl-5-(((3-(pyridin-4-yl)-1H-1,2,4-triazol-5-yl)thio)methyl)-4H-1,2,4-triazol-3-yl)thio)ethanone (4f) possess the most potent antimicrobial activity against the strain of Pseudomonas aeruginosa (MIC of 31.25 µg/mL; MBC of 62.5 µg/mL).

4. Certain relationships between the chemical structure and antimicrobial and antifungal activities of the synthesized compounds have been determined. It indicates that the search for compounds expressing bactericidal activity in the studied range of derivatives is relevant for research.
Conflicts of interests
The authors declare that they have no conflicts of interest.

Financing
The study was performed without financial support.

Acknowledgments
The authors would like to thank, the late (recently deceased), Professor, Doctor of Pharmaceutical Sciences, Knysh Yevhenii Hryhorovych

References
1. Serwecnioś, L. (2020). Antimicrobials and Antibiotic-Resistant Bacteria: A Risk to the Environment and to Public Health. Water, 12 (12), 3313. doi: http://doi.org/10.3390/w12123313
2. Boraei, A. T. A., El Ashry, E. S. H., Duerkop, A. (2016). Regioselectivity of the alkylation of S-substituted 1,2,4-triazoles with dihaloalkanes. Chemistry Central Journal, 10 (1). doi: http://doi.org/10.1186/s13065-016-0165-0
3. Safonov, A. A. (2018). Study acute toxicity of 4-(R-amino)-5-(thiophen-2-ylmethyl)-4H-1,2,4-triazole-3-thiol in vivo. Farmatsevtychnyi Zhurnal, 2, 98–101. doi: http://doi.org/10.32352/0367-3057.2.16.06
4. Bihdan, O. A., Parchenko, V. V. (2018). Synthesis and physical-chemical properties of some 5-(3-fluorophenyl)-4-methyl-1,2,4-triazole-3-thiol derivatives. Farmatsevtychnyi Zhurnal, 2, 38–47. doi: http://doi.org/10.32352/0367-3057.2.17.05
5. Chaudhary, P. M., Tupe, S. G., Jourwekar, S. U. et. al. (2015). Synthesis and antifungal potential of 1,2,3-triazole and 1,2,4-triazole thiol substituted strobilurin derivatives. Indian Journal of Chemistry, 54 B, 908–911.
6. Parchenko, V. V., Parkhomenko, L. I., Izdebskyi, V. Y., Panasenko, O. I., Knysh, Ye. H. (2013). Pharmacological and biochemical characteristics of piperidine 2-(5-fluran-2-yl)-4-phenyl-1,2,4-triazol-3-lioacetate. Zaporizhzhya Medical Journal, 1, 39–41.
7. Rao, D. V. N. (2015). Synthesis, Characterization and Antimicrobial Evaluation of Substituted 1,2,4-Triazole Thiones Containing Pyrazole Moiety. Journal of Clinical and Analytical Medicine, 6 (5). doi: http://doi.org/10.4328/jcam.2323
8. Saadeh, H. A., Mosleh, I. M., Al-Bakri, A. G., Mubarak, M. S. (2010). Synthesis and antimicrobial activity of new 1,2,4-triazole-thiol metronidazole derivatives. Chemical Monthly, 141 (4), 471–478. doi: http://doi.org/10.1007/s00706-010-0281-9
9. Metodychni vказувки 9.9.143-2007 «Вyzначеннia чутливостi mikroорганiзмiв до антибактерiальнiх препаратiв» (2007). Kyiv: MOZ Ukrainy, 63.
10. Ding, Y., Zhang, Z., Zhang, G., Mo, S., Li, Q., Zhao, Z. (2015). Green synthesis and evaluation of the antitumor activity of a novel series of 3-[4-(3-fluorophenyl)metethyl(piperazinyl)-4-amino-5-thione-1,2,4-triazole Schiff bases. Research on Chemical Intermediates, 42 (4), 3105–3116. doi: http://doi.org/10.1007/s11164-015-2200-5
11. Perkhodka, L. A. (2014). Assessment of Quantitative Structure-Anticonvulsive Activity Relationships in a Series of Derivatives of 1,2,3-Triazole(1H), 1,2,4-Triazole(4H), 1,3,4-Oxadiazole(1H), and 1,3,4-Thiadiazole(1H). Pharmaceutical Chemistry Journal, 47 (11), 586–588. doi: http://doi.org/10.1007/s11094-014-1012-z
12. Gotsulya, A. S., Mikolaysyk, O. O., Panasenko, O. I., Knysh, Ye. G. (2014). Synthesis and investigation of the physico-chemical properties of 2-[5-(theophylline-7'-ylmethyl)-4-phenyl-4H-1,2,4-triazole-3-ylthio]-acetic acid salts. Zaporizhzhya Medical Journal, 1, 91–94. doi: http://doi.org/10.14739/2310-1210.2014.1.23820
13. Volyanskiy, Yu. L., Grissenko, I. S., Shirobokov, V. P. et. al. (2004). Vivchenna spetsiifichni aktivnosti protimikrobynih likarskikh zasobiv. Kyiv: DFTS MOZ Ukrainy, 38.
14. Hotsulia, A. S., Knysh, Ye. H. (2020). Synthesis, structure and properties of 7-(4-amino-5-thio-1,2,4-triazole-3-yl)methyl-theophylline derivatives. Current Issues in Pharmacy and Medicine: Science and Practice, 13 (2 (33)), 176–184. doi: http://doi.org/10.14739/2409-2932.2020.2.207019
15. Bihdan, O. A., Parchenko, V. V. (2017). Physical-chemical properties of 5-(3-fluorophenyl)-4-amino-1,2,4-triazole-3-thio s-derivatives. Current Issues in Pharmacy and Medicine: Science and Practice, 10 (2 (24)), 135–140. doi: http://doi.org/10.14739/2409-2932.2017.2.103517
16. Zamani, K., Faghihi, K., Sangi, M. R., Zolgharnein, J. (2003). Synthesis of some new substituted 1,2,4-triazole and 1,3,4-thiadiazole and their derivatives. Turkish Journal of Chemistry, 27, 119–125.
17. Davari, M. D., Bahrami, H., Haghighi, Z. Z., Zahedi, M. (2009). Quantum chemical investigation of intramolecular thione-thiol tautomerism of 1,2,4-triazole-3-thione and its disubstituted derivatives. Journal of Molecular Modeling, 16 (5), 841–855. doi: http://doi.org/10.1007/s00894-009-0585-z
18. Datoussaid, Y., Othman, A., Kirsch, G. (2012). Synthesis and antibacterial activity of some 5,5'- (1,4-phenylene)-bis-1,3,4-oxadiazole and bis-1,2,4-triazole derivatives as precursors of new S-nucleosides. South African Journal of Chemistry, 65, 30–35.

Received date 02.02.2021
Accepted date 02.06.2021
Published date 30.06.2021

Yevhen Karpun, Assistant, Department of Natural Sciences for Foreign Students and Toxicological Chemistry, Zaporizhzhia State Medical University, Maiakovskoho ave., 26, Zaporizhzhia, Ukraine, 69035

Natalia Polischuk, PhD, Associate Professor, Department of Microbiology, Virology and Immunology, Zaporizhzhia State Medical University, Zaporizhzhia State Medical University, Maiakovskoho ave., 26, Zaporizhzhia, Ukraine, 69035

*Corresponding author: Yevhen Karpun, e-mail: ekarpun@yahoo.com