The Manú Gradient as a study system for bird pollination

Mannfred MA Boehm‡, Micah N Scholer‡, Jeremiah JC Kennedy‡, Julian M Heavyside‡, Aniceto Daza§, David Guevara-Apaza¶, Jill E Jankowski‡

‡ Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
§ Universidad Nacional Agraria La Molina, Lima, Peru
¶ Universidad Nacional San Antonio Abad del Cusco, Cusco, Peru

Corresponding author:
Academic editor: Christopher Heckscher
Received: 13 Nov 2017 | Accepted: 09 Feb 2018 | Published: 02 Mar 2018
Citation: Boehm M, Scholer M, Kennedy J, Heavyside J, Daza A, Guevara-Apaza D, Jankowski J (2018) The Manú Gradient as a study system for bird pollination. Biodiversity Data Journal 6: e22241.
https://doi.org/10.3897/BDJ.6.e22241

Abstract

Background

This study establishes an altitudinal gradient, spanning from the highland Andes (2400 m) to lowland Amazon, as a productive region for the study of bird pollination in Southeastern Peru. The 'Manú Gradient' has a rich history of ornithological research, the published data and resources from which lay the groundwork for analyses of plant-bird interactions. In this preliminary expedition we documented 44 plants exhibiting aspects of the bird pollination syndrome, and made field observations of hummingbird visits at three sites spanning the Manú Gradient: 2800 m (Wayqecha), 1400 m (San Pedro), and 400 m (Pantiacolla). Some of the documented plant taxa are underrepresented in the bird pollination literature and could be promising avenues for future analyses of their pollination biology. The Manú Gradient is currently the focus of a concerted, international effort to describe and study the birds in the region; we propose that this region of Southeastern Peru is a productive and perhaps underestimated system to gain insight into the ecology and evolution of bird pollination.

© Boehm M et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
New information

Observations were made on 11, 19, and 14 putatively bird pollinated plant species found at the high-, mid- and low-elevation sites along the gradient, respectively. Hummingbirds visited 18 of these plant species, with some plant species being visited by multiple hummingbird species or the same hummingbird species on differing occasions. Morphometric data is presented for putatively bird-pollinated plants, along with bill measurements from hummingbirds captured at each of three sites. Voucher specimens from this study are deposited in the herbaria of the Universidad Nacional de Agraria de La Molina (MOL), Peru and the University of British Columbia (UBC), Canada. The specimens collected represent a ‘snapshot’ of the diversity of bird-pollinated flora as observed over 10 day sampling windows (per site) during the breeding season for hummingbirds of Manú.

Keywords

Hummingbirds, elevational gradient, co-evolution, ornithophily, pollination ecology, Andes, Amazon, neotropics

Introduction

Manú National Park is a UNESCO Biosphere Reserve nested within the most biodiverse region in the world: the tropical Andes (Myers et al. 2000). Manú Park, and its surrounding forests encompass a remarkable elevational gradient (hereafter the ‘Manú Gradient’) of over 3000 m, reaching from the lowland Amazon rainforest to the Puna grasslands of the high Andes. The Manú Gradient has a rich history of ornithological research (discussed in Walker et al. 2006), and over the last decade the Manú Gradient has been the focus of numerous ornithological studies as part of the Manú Bird Project (e.g. Merkord 2010, Jankowski et al. 2012a, Jankowski et al. 2012b, Londoño et al. 2014, Londoño et al. 2016, Dehling et al. 2014, Munoz 2016). Along the gradient, tree composition and forest structure have also been described (e.g. Jankowski et al. 2012b, Malhi et al. 2010, Hillyer and Silman 2010). The wide interest in the avian community of Manú make it an ideal system for studying hummingbird pollination: population structure, range limits, and locations of uncommon and understudied hummingbirds are described and published. For example, focused studies of the high elevation Shining Sunbeam (*Aglaeactis cupripennis*) have demonstrated the effectiveness of the Manú Gradient as a study system for bird pollination (Hazlehurst et al. 2016, Hazlehurst and Karubian 2016). Therefore, the objectives of this study were to, 1) document the occurrence of putatively bird pollinated plants with voucher specimens along the Manú Gradient, 2) describe the occurrence and diversity of hummingbirds using mist-net surveys, and 3) record hummingbird visitations to flowering plants.
Materials and Methods

Site Selection

We surveyed three field sites spanning an altitudinal gradient of 2400 m (400 m to 2800 m) in the southeastern Andes (Table 5): La Estación Biológica Wayqecha (Paucartambo Province, Cuzco Region, 2800 m), San Pedro (Paucartambo Province, Cuzco Region, 1400 m), and Pantiacolla (Manú Province, Madre de Dios Region, 400 m). This area is one of the most biologically rich regions in the world with an estimated species pool of nearly 1100 birds (Walker et al. 2006). To our knowledge, a comprehensive survey of the vascular plants of the region does not exist, although an increasing number of plant identification resources for this region are being made available by the Field Museum of Natural History (http://fieldguides.fieldmuseum.org). Wayqecha is characterized as high elevation cloud forest, with a mosaic of mature forest and areas with shorter trees and woody shrubs that transitions into puna grassland above treeline. San Pedro is predominately mid-montane humid rainforest, but also includes the lower extent of the montane cloud forest. Pantiacolla is situated at the interface between the Andean foothills and the lowland Amazon. Detailed environmental characteristics for these sites have been summarized in Malhi et al. (2016). Sampling was carried out between September 4, 2016 and October 13, 2016, falling within the avian montane breeding season. A distinct rainy season occurs from November through April and a dry season from May through August. Annual precipitation for higher elevations (2700-3000 m) ranges from 1700-2000 mm (Girardin et al. 2010) and is generally ≥2000 mm for lowland (100-400 m elevation) sites (Rapp and Silman 2012). Time constraints afforded less than two weeks (10.3 ± 2.1 days) for botanical and avian sampling at each site.

Plant Genus	Specific epithet	Family	Collection number(s) for plant specimens deposited in the herbaria of MOL and UBC	Corolla length (mm)	Corolla width (mm)	Nectar (% sugar, * = not recorded)	Corolla colour(s)	Hummingbird visited	Habitat notes
Besleria L.	sp. 1	Gesneriaceae	MMAB 1	8	1	*	red		Growing along trail's edge in relatively open canopy
Species	Common Name	Family	MMAB, 10, 11	Percentage	Notes				
-------------------------------	-------------------	-------------------	--------------	------------	--				
Heliconia sp. 1	Heliconia	Heliconiaceae	100	19	translucent with pink				
Centropogon granulosus C. Presl	Centropogon	Campanulaceae	40	15	yellow within red bract				
Sanchezia sp. 1	Sanchezia	Acanthaceae	70	5	yellow within red bract				
Columnea guttata Poepp. & Endl.	Columnea	Gesneriaceae	10	1	yellow				
Heliconia subulata Ruiz & Pav.	Heliconia	Heliconiaceae	40	10	bright yellow in dark red bract				
Guzmania weberbaueri Mez	Guzmania	Bromeliaceae	37	7	yellow				
Columnea cf. inaequilatera Poepp. & Endl.	Columnea	Gesneriaceae	44	9	red				

Notes:
- **Lowest point of a bog with little shade.** Pioneering Cecropia and Schefiella are dominating species. Ruellia also abundant.
- **Along ditches of the Manu Road.** Typically at points facing South-East. Relatively dry forest edge.
- **Along the Manu Road.** Typically at points facing South-East. Relatively dry forest edge.
- **Along ditches of the Manu Road.** Typically at points facing South-East. Relatively dry forest edge.
- **Along ditches of the Manu Road.** Typically at points facing South-East. Relatively dry forest edge.
- **Vine growing through dense understory at 1-3 m.** Guaduals abundant. Flowers at breaks in the canopy where sunlight is more abundant.
- **Epiphytic.** Found readily in the same habitats as that of Columnea sp. 1
- **Found in dense stand of Guadua. Little sunlight, relatively dry.**
- **Grows both as an epiphyte and from the ground. Always in high-moisture environments including bogs but less common near river's edge.**
- **Edge of fast-flowing rocky river with little shade.**
| Plant Name | Species | Family | Specimen Sheet | Exposition | Habitat Description | | |
|---|---|---|---|---|---|---|---|
| Thyrsacanthus Moric | sp. 1 | Acanthaceae | MMAB 29, 30 | 10 1 22.5 red-purple | Along ditch of the Manu Road. East-facing, well drained. |
| Gurania eriantha (Poepp.) Endl. | | Cucurbitaceae | MMAB 33 | * * * red | Along ditch of the Manu Road. Growing through dense vegetation, flowers at edge. |
| Drymonia semicordata (Poepp.) Wiehler | | Gesneriaceae | MMAB 34, 35 | 10 2 * yellow within red bract | Hanging over edge of fast-flowing rocky river. Shaded by various Araceae. |
| Besleria L. | sp. 1 | Gesneriaceae | MMAB 36, 37 | 20 8 * bright red | Wet, dark, steep rocky cliff. North facing. |
| Drymonia urceolata (Poepp.) Wiehler | | Gesneriaceae | MMAB 40, 39 | 20 5 * red | Wet, dark, steep rocky cliff. North facing. |
| Erythrina L. | sp. 1 | Fabaceae | MMAB 42, 41 | * * orange-red | Flowers found on ground at the lowest point of a bog with little shade. |
| Passiflora coccinea Aubl. | | Passifloraceae | MMAB 43, 38 | 120 60 22.5 red | Unidentified Growing from 0-12 m through dense stand of Guadua. |
| Centropogon congestus Gleason | | Campanulaceae | MMAB 45 | 32 10 * pink-red | Dense stand of Guadua. Relatively humid and little light. |
| Oreocalis grandiflora (Lam.) R. Br. | | Proteaceae | MMAB 49, 48 | 46 12 * red-purple Aglaeactis cupripenni, Boissonneaua matthewsii | Dominating tree species in dry, scrubby, elfin forest. |
| Siphocampylus scandens (Kunth) G.Don | | Campanulaceae | MMAB 50, 51 | 47 8 16 pink Adelomyia melanogenys | Along ditch of the Manu Road. Grows indiscriminately in sun or shade. |
| Siphocampylus orbignianus A.DC. | | Campanulaceae | MMAB 52, 53 | 54 17 12 pink-red | Coeligena sp. Along ditch of the Manu Road. Grows indiscriminately in sun or shade. |
| Brachyotum rostratum (Naudin) Triana | | Melastomataceae | MMAB 54, 55 | 19 7 13 red with yellow tip Aglaeactis cupripenni | Dry scrubby elfin forest. Dead ferns make up dense mat up to 1 m. |
| Aetanthus nodosus (Desr.) Engl. | | Loranthaceae | MMAB 56, 57 | 70 5 14.5 dark purple | Coeligena sp. Humid transitional forest at where elfin forest diminishes. |
| Species | Family | Observations |
|--------------------|--------------|--|
| Gaultheria ex Kalm | Ericaceae | red with yellow tip, Aglaeactis cupripenii, Metallura tyrianthina. Edge of pond alongside other Ericaceae species. Abundant light, south facing. |
| Micronia Ruiz & Pavón | Melastomataceae | pink, Heliodoxa leadbeateri. 3 m tree mostly shaded by Cecropia and other taller species. |
| Passiflora mixta L.f. | Passifloraceae | white-pink, Ensifera ensifera. Growing through same habitat as Ericaceae gen. sp. 1 and 2. Flowers at breaks in the canopy. |
| Fuchsia L. | Onagraceae | bright pink. Humid, dark understory. Habitat tends to be rocky. |
| Desmodium Desv. | Fabaceae | light red-orange, Metallura sp. Rocky exposed cliffside. Many ferns. Dry. |
| Siphonandra Klotzsch | Ericaceae | pink, Aglaeactis cupripenii. Edge of pond alongside other Ericaceae species. Abundant light, south facing. |
| Bomarea Mirb. | Alstroemeriaceae | red with white tip. Rocky cliff next to slow-flowing river. In dense vegetation including Rubus and Asteraceae spp. |
| Drymonia semicordata (Poeppe) Wehler | Gesneriaceae | yellow within red bract, Glaucis hirsutus, Heliodoxa aurescens, Phaethornis sp. Ubiquitous throughout humid lowland forest. |
| Pachystachys Nees | Acanthaceae | red. In the shade of tall trees at trail's edge. |
| Costus L. sp. 3 | Costaceae | yellow. Relatively common at trail's edge, even in low light. |
| Heliconia densiflora Verl. | Heliconiaceae | orange within red bract. High moisture depression in humid forest. Medium shade. |
| Costus L. sp. 2 | Costaceae | yellow within red bract. Terra firma approx 300 m from Rio Madre de Dios |
| Columnnea | aff. schimpflii Mansf. | Gesneriaceae | MMAB 8, 9 | 30 | 5 | white | Epiphytic. Can be found indiscriminately on any trees from at least 1-8 m. |
|------------|------------------------|--------------|-----------|----|----|-------|---|
| Besleria L. | sp. 4 | Gesneriaceae | MMAB 80, 81 | 22 | 8 | red | Terra firma approx 300 m from Rio Madre de Dios. |
| Heliconia | schumanniana Loes. | Heliconiaceae| MMAB 82, 83 | 44 | 5 | * | Abundant sunlight at clearing in forest. |
| Heliconia | lingulata Ruiz & Pav. | Heliconiaceae| MMAB 84, 85 | 37 | 4 | * | South-facing clay bank of the Alto Madre de Dios. |
| Besleria L. | sp. 2 | Gesneriaceae | MMAB 86, 87 | 19 | 9 | orange| Unidentified Terra firma approx 300 m from Rio Madre de Dios. |
| Besleria L. | sp. 3 | Gesneriaceae | MMAB 88, 89 | 15 | 4 | orange| Unidentified Relatively exposed at trail's edge. Dense cluster of up to 20 individuals. |
| Heliconia | metallica Planch. & Linden ex Hook. | Heliconiaceae | MMAB 90, 91 | 40 | 4 | * | Phaethornis sp. High moisture depression in humid forest. Medium shade. |
| Pentagonia | Benth. sp. 1 | Rubiaceae | MMAB 93, 92 | 31 | 10| * | Unidentified High moisture depression in humid forest. Medium shade. |
| Passiflora | L. sp. 1 | Passifloraceae| MMAB 94, 95 | 80mm long, pre-anthesis | * | red | Phaethornis sp. Growing through dense understory including Melastomaceae. |
| Pachystachys| Nees sp. 2 | Acanthaceae | MMAB 96, 97 | 50 | 17| * | Phaethornis sp. Relatively exposed at trail's edge. |

Table 2.
Records of hummingbird-plant visitation along the Manú Gradient.

Hummingbird Species	Plant visited	Plant Family	Collection number	Site
Adelomyia melanogenys Bonaparte	Siphocampylus scardens	Campanulaceae	MMAB 50	San Pedro
Aglaeactis cupripennis Bourcier	Gaultheria sp. 1	Ericaceae	MMAB 58	Wayqecha
Aglaeactis cupripennis	Siphonandra sp. 1	Ericaceae	MMAB 66	Wayqecha
Species	Genus	Family	Code	Location
---------------------------------------	-------------------------------	-------------------	------	------------
Aglaeactis cupripennis	Brachyotum rostratum	Melastomataceae	MMAB 54	Wayqecha
Aglaeactis cupripennis	Oreocallis grandiflora	Proteaceae	MMAB 49	Wayqecha
Boissonneaua matthewsii Bourcier	Oreocallis grandiflora	Proteaceae	MMAB 49	Wayqecha
Coeligena sp.	Siphocampylus orbignianus	Campanulaceae	MMAB 52	Wayqecha
Coeligena sp.	Aetanthus nodosus	Loranthaceae	MMAB 56	Wayqecha
Colibri thalassinus Swainson	Guzmania weberbaueri	Bromeliaceae	MMAB 25	San Pedro
Doryfera ludovicae Bourcier & Mulsant	Guzmania weberbaueri	Bromeliaceae	MMAB 25	San Pedro
Ensifera ensifera Lesson	Passiflora mixta	Passifloraceae	MMAB 60	Wayqecha
Glaucis hirsutus Gmelin	Drymonia semicordata	Gesneriaceae	MMAB 70	Pantiacolla
Heliodoxa aurescens Gould	Drymonia semicordata	Gesneriaceae	MMAB 70	Pantiacolla
Heliodoxa leadbeateri Bourcier	Miconia sp. 1	Melastomataceae	MMAB 6	San Pedro
Heliodoxa leadbeateri	Guzmania weberbaueri	Bromeliaceae	MMAB 25	San Pedro
Metallura tyrianthina Loddiges	Brachyotum rostratum	Melastomataceae	MMAB 54	Wayqecha
Metallura sp.	Desmodium sp. 1	Fabaceae	MMAB 64	Wayqecha
Metallura tyrianthina	Gaultheria sp. 1	Ericaceae	MMAB 58	Wayqecha
Phaethornis sp.	Pachystachys sp. 2	Acanthaceae	MMAB 96	Pantiacolla
Phaethornis sp.	Drymonia semicordata	Gesneriaceae	MMAB 70	Pantiacolla
Phaethornis sp.	Heliconia metalllica	Heliconiaceae	MMAB 90	Pantiacolla
Unidentified Trochilidae	Besleria sp. 2	Gesneriaceae	MMAB 86	Pantiacolla
Unidentified Trochilidae	Besleria sp. 3	Gesneriaceae	MMAB 88	Pantiacolla
Unidentified Trochilidae	Passiflora coccinea	Passifloraceae	MMAB 43	San Pedro
Unidentified Trochilidae	Pentagonia sp. 1	Rubiaceae	MMAB 93	Pantiacolla

Table 3.
Basic bill morphometrics from birds mist-netted along the Manú Gradient.

Species	Sex (F=Female, M=Male, U=Unknown)	Mean bill length (mm)	Bill length std dev (mm)	Mean bill width (mm)	Bill width std dev (mm)	Bill length sample size	Bill width sample size
Adelomyia melanogenys	F	14.55	1.34	2.7	0	2	2
Adelomyia melanogenys	U	14.56	1.10	2.44	0.18	9	9
The Manú Gradient as a study system for bird pollination

Species	Sex	U/W	3/2	3/2	3/2	3/2	3/2	3/2	3/2	3/2
Aglaeactis cupripennis	U	18.06	1.05	2.64	0.11	5	5			
Boissonneaua matthewsii Bourcier	U	18.4	NA	2.9	NA	1	1			
Chalcostigma ruficeps Gould	F	11.5	NA	2	NA	1	1			
Chalcostigma ruficeps	M	11.9	1.27	2.2	0.14	2	2			
Chlorostilbon mellisugus Linnaeus	F	20.5	NA	2.7	NA	1	1			
Coeligena coeligena Lesson	U	29.47	3.30	2.65	0.21	9	10			
Coeligena torquata Boissonneau	M	32.4	1.9	2.66	0.20	3	3			
Coeligena torquata	F	36.2	NA	3	NA	1	1			
Coeligena violifer Gould	U	31.74	4.78	3.22	0.25	5	5			
Coeligena violifer	M	33.13	0.98	3.26	0.25	3	3			
Coeligena violifer	F	35.5	1.4	3.3	0.35	4	4			
Colibri coruscans Gould	U	24.05	2.89	3.06	0.15	2	3			
Colibri thalassinus	U	21.46	1.72	3	0.17	3	3			
Doryfera johannae Bourcier	F	26.2	NA	3	NA	1	1			
Doryfera ludovicae	U	27.62	7.90	2.75	0.14	7	8			
Doryfera ludovicae	M	30.8	NA	2.6	NA	1	1			
Doryfera ludovicae	F	31.2	1	2.5	0.26	3	3			
Eutoxeres condaminii Bourcier	U	24.23	1.52	3.87	0.68	8	7			
Florisuga mellivora Linnaeus	F	18.1	NA	2.6	NA	1	1			
Florisuga mellivora	M	18.7	0.28	3.45	0.49	2	2			
Glaucis hirsutus	M	28.9	NA	3.3	NA	1	1			
Glaucis hirsutus	U	29.15	1.21	3.82	0.29	4	4			
Heliangelus amethysticollis d'Orbigny & Lafresnaye	M	17.46	0.69	2.46	0.29	6	6			
Heliangelus amethysticollis	U	18.5	NA	2.5	NA	1	1			
Heliangelus amethysticollis	F	18.65	0.21	2.8	0.14	2	2			
Heliodoxa leadbeateri	M	20.56	0.99	2.95	0.05	6	6			
Heliodoxa leadbeateri	U	20.8	NA	3.2	NA	1	1			
Heliodoxa leadbeateri	F	22.27	0.82	3.2	0.16	4	4			
Collection numbers	Site	Latitude	Longitude	Altitude (m a.s.l.)	Date					
-------------------	------------	---------------	----------------	---------------------	----------					
MMAB 1	San Pedro	-13.056864	-71.546146	1347	4-ix-2016					
MMAB 2, 3	San Pedro	-13.057179	-71.546566	1402	4-ix-2016					
MMAB 6, 7	San Pedro	-13.057697	-71.547385	1393	4-ix-2016					
MMAB 8, 9	San Pedro	-13.057311	-71.547086	1411	4-ix-2016					
MMAB 10, 11	San Pedro	-13.058199	-71.547978	1403	4-ix-2016					
MMAB 12, 13	San Pedro	-13.057907	-71.548086	1357	4-ix-2016					
MMAB 20, 21	San Pedro	-13.054945	-71.545872	1378	6-ix-2016					
MMAB 22, 23	San Pedro	-13.056268	-71.546039	1394	6-ix-2016					
MMAB 24, 44	San Pedro	-13.05637	-71.54609	1355	7-ix-2016					
MMAB 25, 26	San Pedro	-13.058848	-71.547884	1330	7-ix-2016					
MMAB 27, 28	San Pedro	-13.059836	-71.54739	1360	7-ix-2016					
MMAB 29, 30	San Pedro	-13.058044	-71.549996	1269	8-ix-2016					
MMAB 33	San Pedro	-13.05773	-71.548458	1439	8-ix-2016					
MMAB 34, 35	San Pedro	-13.057514	-71.543293	1324	8-ix-2016					
Site Code	Location	Latitude	Longitude	Distance	Date					
----------	-----------	------------	------------	----------	----------					
MMAB 36, 37	San Pedro	-13.05634	-71.541812	1547	9-ix-2016					
MMAB 40, 39	San Pedro	-13.054006	-71.539007	1297	9-ix-2016					
MMAB 43, 38	San Pedro	-13.058459	-71.548074	1363	10-ix-2016					
MMAB 42, 41	San Pedro	-13.058199	-71.547978	1403	11-ix-2016					
MMAB 45	San Pedro	-13.191861	-71.588599	1149	16-ix-2016					
MMAB 49, 48	Wayqecha	-13.173428	-71.587187	2727	20-ix-2016					
MMAB 50, 51	Wayqecha	-13.17706	-71.586071	2939	21-ix-2016					
MMAB 52, 53	Wayqecha	-13.179536	-71.585172	2958	21-ix-2016					
MMAB 54, 55	Wayqecha	-13.180133	-71.585235	2955	22-ix-2016					
MMAB 56, 57	Wayqecha	-13.174448	-71.587465	2888	26-ix-2016					
MMAB 58, 59	Wayqecha	-13.176716	-71.581308	2625	26-ix-2016					
MMAB 60, 61	Wayqecha	-13.174771	-71.58345	2866	27-ix-2016					
MMAB 63, 62	Wayqecha	-13.174751	-71.58335	2904	27-ix-2016					
MMAB 64, 65	Wayqecha	-13.191716	-71.586709	2834	28-ix-2016					
MMAB 66, 67	Wayqecha	-13.18732	-71.585754	2979	28-ix-2016					
MMAB 68, 69	Wayqecha	-13.173166	-71.591911	2780	29-ix-2016					
MMAB 70, 71	Pantiacolla	-12.656352	-71.230691	398	6-x-2016					
MMAB 72	Pantiacolla	-12.655418	-71.229373	391	7-x-2016					
MMAB 75, 74	Pantiacolla	-12.656351	-71.230732	396	8-x-2016					
MMAB 76, 77	Pantiacolla	-12.64719	-71.240662	394	8-x-2016					
MMAB 78, 79	Pantiacolla	-12.645874	-71.234135	410	9-x-2016					
MMAB 80, 81	Pantiacolla	-12.65622	-71.231045	404	9-x-2016					
MMAB 82, 83	Pantiacolla	-12.656216	-71.230678	404	9-x-2016					
MMAB 84, 85	Pantiacolla	-12.656545	-71.231864	405	11-x-2016					
MMAB 86, 87	Pantiacolla	-12.656431	-71.231836	396	11-x-2016					
MMAB 88, 89	Pantiacolla	-12.650034	-71.225302	428	12-x-2016					
MMAB 90, 91	Pantiacolla	-12.651347	-71.22389	391	12-x-2016					
MMAB 93, 92	Pantiacolla	-12.65138	-71.223853	397	12-x-2016					
MMAB 94, 95	Pantiacolla	-12.651421	-71.223706	423	13-x-2016					
MMAB 96, 97	Pantiacolla	-12.651113	-71.223842	394	13-x-2016					
Table 5.
Summary information and site descriptions for three sampling points along the Manú Gradient.

Site (Latitude, Longitude)	Period Collected and Netted	Altitudinal Range Sampled (m asl)	Number of Plants Collected	Number of Hummingbirds Netted	Number of Hummingbird Species Netted	Number of Bird Visits Recorded	General Site Description
San Pedro (-13.055387, -71.546832)	4-ix-2016 to 16-ix-2016	1149 - 1547	19	76	14	7	Montane cloud forest, *Cecropia* readily found in disturbed habitats. Dominant palm is Wettinia and canopy is generally composed of Clusiaceae, Rubiaceae, Melastomataceae and Lauraceae (Weng et al. 2004).
Wayqecha (-13.1752615, -71.5884099)	20-ix-2016 to 03-x-2016	2625 - 2979	11	65	15	10	Highland cloud forest and puna grassland of mainly Asteraceae and Poaceae. *Oreocalis grandi flora* is a notable and abundant tree species. Araliaceae, Cunoniaceae, Chloranthaceae, Myrsinaceae, Sabiaceae, and Symplocaceae are readily found (Weng et al. 2004).
Pantiacolla (-12.656544, -71.231862)	07-x-2016 to 13-x-2016	391 - 428	14	31	9	8	Lowland rainforest, includes both seasonally flooded and terra firme forests. Canopy dominated by Fabaceae, Malvaceae, Moraceae and Annonaceae (Weng et al. 2004, Weng et al. 2004)

Data Collection

Pre-cut singletrack trails were used to access sampling areas away from the Manú Road (main access road that runs along the southeastern border of Manú National Park). We sampled hummingbirds using standard (12 x 3 m, 34 mm mesh) mist-nets along trail systems only. Mist-netting sites were sampled during the primary breeding season (August–November) for two consecutive days from approximately 0600–1200 hrs during suitable weather conditions (i.e., no periods of extended heavy rain, high winds, or other situations that could compromise researcher or bird safety). Each site consisted of an array of ten to fifteen nets placed in forested and open habitat and spaced at intervals of 25-50
m. Ten sites were sampled at Wayqecha and San Pedro, and 8 sites were sampled at Pantiacolla. Hummingbird bill length was measured from the bill tip to the nares. Bill width was measured from the anterior edge of the nares. All captured hummingbirds were marked by cutting the terminal 1-2 cm of one rectrix to avoid resampling of individuals.

Both trails and the Manú Road were used to opportunistically collect plants. Plants were considered putatively bird pollinated if they met criteria adhering to typical bird pollination 'syndromes'; namely, dilute nectar and long tubular flowers (Fenster et al. 2004), though we acknowledge the limitations of surveying by these criteria (Ollerton et al. 2009). Plants of interest were photographed, their location marked using a hand-held Garmin 64s global positioning system, and a description of the immediate habitat recorded. We then measured nectar concentration of mature flowers (Sper Scientific no. 66214-988), recorded corolla dimensions and colour (by visual inspection), and processed each plant using standard herbarium techniques (Bridson and Forman 2000) (SERFOR collection permit no. 343-2016). All dried and pressed specimens are deposited at the herbaria of the Universidad Nacional Agraria La Molina (MOL), Peru and the University of British Columbia (UBC), Canada (SERFOR export permit no. 09125-2017).

Results

We identified 44 putatively bird pollinated plants of interest belonging to 16 families (Table 1, Figs 1, 2, 3, 4, 5). Corolla length and width of sampled plants ranged from 8-120 mm ($\bar{x} = 39.7 \pm 27.4$, $n = 42$) and 1-60 mm ($\bar{x} = 11.4 \pm 12.2$), respectively. We measured nectar concentration for 11 of these species. In each case, nectar concentrations fell within a typical bird pollination syndrome (Stiles 1978, Fenster et al. 2004), ranging from 12-25.5% (Table 1). Corolla colour and immediate habitat characteristics were recorded for each plant (Table 1, see also Table 5).

We recorded 23 hummingbird visitations to 18 plant taxa belonging to 12 plant families (Table 2). Bill length and width of sampled hummingbirds ranged from 11.5-39.6 mm ($\bar{x} = 24.3 \pm 7.6$, $n = 41$) and 2.5-3.0 mm ($\bar{x} = 2.9 \pm 0.4$, $n = 40$), respectively (Figs 6, 7, 8, Table 3).

Diversity of plants exhibiting the bird pollination syndrome does not differ across the gradient in the time frame sampled (Table 4).
Figure 1.
Diversity of putatively bird pollinated plants of the Manú Gradient. MMAB collection numbers listed in Table 1.

a: MMAB 1 (Besleria sp. 1) [doi](https://example.com)
b: MMAB 2, 3 (Centropogon granulosus) [doi](https://example.com)
c: MMAB 6, 7 (Miconia sp. 1) [doi](https://example.com)
d: MMAB 8, 9 (Columnea aff. shimpfii) [doi](https://example.com)
e: MMAB 20, 21 (Sanchezia sp. 1) [doi](https://example.com)
f: MMAB 22, 23 (Columnea guttata) [doi](https://example.com)
Figure 2.
Diversity of putatively bird pollinated plants of the Manú Gradient. MMAB collection numbers listed in Table 1.

a: MMAB 24, 25 (*Heliconia subulata*)
b: MMAB 26, 27 (*Guzmania weberbaueri*)
c: MMAB 39, 40 (*Drymonia urceolata*)
d: MMAB 45 (*Centropogon congestus*)
e: MMAB 48, 49 (*Oreocallis grandiflora*)
f: MMAB 50, 51 (*Siphocampylus scandens*)
Figure 3.
Diversity of putatively bird pollinated plants of the Manú Gradient. MMAB collection numbers listed in Table 1.

a: MMAB 52, 53 (*Siphocampylus orbignianus*)
b: MMAB 54, 55 (*Brachyotum rostratum*)
c: MMAB 56, 57 (*Aetanthus nodosus*)
d: MMAB 58, 59 (*Gaultheria* sp. 1)
e: MMAB 60, 61 (*Passillora mixta*)
f: MMAB 62, 63 (*Fuchsia* sp. 1)
Figure 4.
Diversity of putatively bird pollinated plants of the Manú Gradient. MMAB collection numbers listed in Table 1.

a: MMAB 64, 65 (Desmodium sp. 1) doi
b: MMAB 66, 67 (Siphonandra sp. 2) doi
c: MMAB 68, 69 (Bomarea sp. 1) doi
d: MMAB 70, 71 (Drymonia semicordata) doi
e: MMAB 74, 75 (Costus sp. 3) doi
f: MMAB 76, 77 (Heliconia densiflora) doi
Figure 5.
Diversity of putatively bird pollinated plants of the Manú Gradient. MMAB collection numbers listed in Table 1.

a: MMAB 78, 79 (Costus sp. 2) doi
b: MMAB 80, 81 (Besleria sp. 4) doi
c: MMAB 82, 83 (Heliconia schumanniana) doi
d: MMAB 84, 85 (Heliconia lingulata) doi
e: MMAB 86, 87 (Besleria sp. 2) doi
f: MMAB 92, 93 (Pentagonia sp. 1) doi
Figure 6.
Representative hummingbirds captured near San Pedro (Paucartambo Province, Cuzco Region, 1400 m). Photo "b" taken by Meredith Miles, Wake Forest University.

a: Booted Racket-tail (*Ocreatus underwoodii*)
b: Speckled Hummingbird (*Adelomyia melanogenys*)

Figure 7.
Representative hummingbirds captured near La Estación Biológica Wayqecha (Paucartambo Province, Cuzco Region, 2800 m).

a: Shining Sunbeam (*Aglaeactis cupripennis*)
b: Collared Inca (*Coeligena torquata*)
Discussion

Hummingbird pollination is common and well-established in Neotropical montane and lowland environments. Our observations and collected specimens exemplify that bird-plant interactions are readily observed along the Manú Gradient - an area that is relatively accessible has been subject to only a handful of studies on hummingbird pollination (Oreocallis grandiflora, Proteaceae; Hazlehurst et al. 2016, Hazlehurst and Karubian 2016).

Along the gradient, putatively bird pollinated plants were generally characterized by long corollas and were predominantly coloured red, yellow, orange, or some combination thereof. Previous documentation of bird pollination exists for each of the 16 families collected (Cronk and Ojeda 2008, Johnson and Nicolson 2008), but undocumented species-level bird pollination systems may arise from focusing on lesser-studied taxa (e.g. Thyrsacanthus, Pentagonia, Pachystachys). Many putatively bird pollinated plants contained too little nectar to effectively measure sugar concentration at the time of sampling. We suspect that early morning visitations by nectarivorous birds and insects (i.e., both pollinators and nectar robbers) influenced this outcome. Indeed, in some cases inspection of certain plants revealed that the flower had been recently robbed as indicated by punctures at the base of the corolla. In as little as bird pollination has been studied along the Manú Gradient, even less is known of the ecological and evolutionary dynamics of nectary robbery. As this survey was preliminary, time did not allow for multi-day sampling at one locale to isolate nectar. A focus on a specific plant taxon would allow familiarity for nectar phenology and hence, more effective collection of nectar.

We recorded 23 independent visits by hummingbirds to 19 different plant taxa over 33 days. These observations by no means represent a comprehensive list of the total diversity for hummingbirds (Walker et al. 2006), bird-pollinated plants, or the interactions between
these two groups. An estimate of total diversity will come only with an extended sampling effort at each site. Relatively few hummingbirds were captured or observed in the lowlands (Table 3) compared to the other two sites. It is likely that this resulted from differences in foraging behavior between hummingbird species, rather than local abundance. For example, in the lowlands, a higher proportion of hummingbirds (e.g. *Phaethornis*) exhibit traplining behaviour (i.e. repeated visits along a route of flowering locations) compared to territorial guarding of floral resources. In addition, because of the higher canopy, many of the trees, lianas, and epiphytes inhabit canopy heights that are logistically difficult to sample.

The number of plants exhibiting bird pollination syndrome and number of bird visits observed are comparable between sites. That is, at a coarse scale we did not find any indication that elevation affects the absolute diversity of bird pollinated plant taxa (as expected by Cruden 1972), although the Manú Gradient would be an ideal location to test the hypothesis that bird and insect pollinated plants occupy distinct ecological niches. Between species, corolla length and width encompasses a great amount of variation, but hummingbird bill morphology varies less Tables 1, 3. This may speak to the adaptability of flowers relative to bills. It may be that because flowers serve a singular purpose (attraction and exclusion of pollinators and robbers, respectively), whereas bills have many uses (feeding, aggression, preening, balance), that bill evolution is relatively constrained. Bill morphology data will be used to inform phylogenetic tests of bill-flower shape evolution in future studies.

Evaluating the extent to which plants and their pollinators contribute to maintaining local biodiversity, and identifying keystone species within these systems (Ebenman and Jonsson 2005) will be important to maintaining ecological and cultural heritage in the Manú region (Ministerio del Ambiente (Ministry of Environment) 2017). This study provides a baseline for future work in pollination ecology along the Manú Gradient. Any one of the 44 plant species highlighted here warrants closer investigation, and we anticipate that further studies will help clarify the roles of hummingbirds as pollinators for the plant taxa described herein..

Acknowledgements

The authors would like to acknowledge Daniela Olivera (Universidad Nacional de San Antonio Abad del Cusco) for their assistance in the field, as well as the staff of Wayqecha Biological Station, Cock-of-the-Rock Lodge, and Pantiacolla Lodge. We also acknowledge Jenny Muñoz (University of British Columbia), the Asociación para la Conservación de la Cuenca Amazónica (ACCA), and the Servicio Nacional Forestal y de Fauna Silvestre (SERFOR) for assistance in administering research permits, and Prof. Carlos Reynel and the herbarium staff at Universidad Nacional Agraria La Molina for generously providing assistance at all stages of this project. Identification of our Gesneriaceae specimens were greatly improved by Dr. John Clark (University of Alabama). Identification of numerous other specimens were assisted by Dr. Quentin Cronk (University of British Columbia). This
expedition was supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants Program, held by Dr. Quentin Cronk (RGPIN-2014-05820) and Dr. Jill Jankowski (RGPIN-2012-418294), as well as a Walter H. Lewis Award in Plant Biodiversity to MMA Boehm and a Werner and Hildegard Hesse Research Award to MN Scholer.

References

- Bridson D, Forman L (2000) The Herbarium Handbook. Royal Botanic Gardens, Kew, London, 65-89 pp.
- Cronk Q, Ojeda I (2008) Bird-pollinated flowers in an evolutionary and molecular context. Journal of Experimental Botany 59 (4): 715-727. https://doi.org/10.1093/jxb/ern099
- Cruden RW (1972) Pollinators in high-hleivation ecosystems: relative effectiveness of birds and bees. Science 176 (4042): 1439-1440. https://doi.org/10.1126/science.176.4042.1439
- Dehling DM, Fritz S, Töpfer T, Päckert M, Estler P, Böhning-Gaese K, Schleuning M (2014) Functional and phylogenetic diversity and assemblage structure of frugivorous birds along an elevational gradient in the tropical Andes. Ecography https://doi.org/10.1111/ecog.00623
- Ebenman B, Jonsson T (2005) Using community viability analysis to identify fragile systems and keystone species. Trends in Ecology & Evolution 20 (10): 568-575. https://doi.org/10.1016/j.tree.2005.06.011
- Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution, and Systematics 35: 375-403. https://doi.org/10.1146/annurev.ecolsys.34.011802.132347
- Girardin CA, Malhi Y, Aragão LE, Mamani M, Huaraca Huaesco W, Durand L, Feeley KJ, Rapp J, Silva-Espejo JE, Silman M, Salinas N, Whittaker RJ (2010) Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology 16 (12): 3176-3192. https://doi.org/10.1111/j.1365-2486.2010.02235.x
- Hazlehurst J, Karubian J (2016) Nectar robbing impacts pollinator behavior but not plant reproduction. Oikos 125 (11): 1668-1676. https://doi.org/10.1111/oik.03195
- Hazlehurst J, Tinoco B, Cárdenas S, Karubian J (2016) Pollination ecology of Oreocallis grandiflora (Proteaceae) at the northern and southern ends of its geographic range. Journal of Pollination Ecology 19 (10): 71-80.
- Hillyer R, Silman M (2010) Changes in species interactions across a 2.5 km elevation gradient: effects on plant migration in response to climate change. Global Change Biology 16 (12): 3205-3214. https://doi.org/10.1111/j.1365-2486.2010.02268.x
- Jankowski J, Londoño G, Robinson S, Chappell M (2012a) Exploring the role of physiology and biotic interactions in determining elevational ranges of tropical animals. Ecography 36 (1): 1-12. https://doi.org/10.1111/j.1600-0587.2012.07785.x
- Jankowski J, Merkord C, Rios WF, Cabrera KG, Revilla NS, Silman M (2012b) The relationship of tropical bird communities to tree species composition and vegetation structure along an Andean elevational gradient. Journal of Biogeography 40 (5): 950-962. https://doi.org/10.1111/jbi.12041
• Johnson SD, Nicolson SW (2008) Evolutionary associations between nectar properties and specificity in bird pollination systems. Biology Letters 4 (1): 49-52. https://doi.org/10.1098/rsbl.2007.0496

• Londoño G, Chappell M, Castañeda MdR, Jankowski J, Robinson S (2014) Basal metabolism in tropical birds: latitude, altitude, and the “pace of life”. Functional Ecology 29: 338-346. https://doi.org/10.1111/1365-2435.12348

• Londoño G, Chappell M, Jankowski J, Robinson S (2016) Do thermoregulatory costs limit altitude distributions of Andean forest birds? Functional Ecology 31: 204-215. https://doi.org/10.1111/1365-2435.12697

• Malhi Y, Silman M, Salinas N, Bush M, Meir P, Saatchi S (2010) Introduction: Elevation gradients in the tropics: laboratories for ecosystem ecology and global change research. Global Change Biology 16 (12): 3171-3175. https://doi.org/10.1111/j.1365-2486.2010.02323.x

• Malhi Y, Girardin CAJ, Goldsmith GR, Doughty CE, Salinas N, Metcalfe DB, Huaraca Huasco W, Silva-Espejo JE, Del Aguilla-Pasquell J, Farfán Arnezquita F, Aragão LEOC, Guerrieri R, Ishida FY, Bahar NHA, Farfan-Rios W, Phillips OL, Meir P, Silman M (2016) The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. The New Phytologist 214 (3): 1019-1032. https://doi.org/10.1111/nph.14189

• Merkord CL (2010) Seasonality and elevational migration in an Andean bird community. Doctoral Dissertation. University of Missouri.

• Ministerio del Ambiente (Ministry of Environment) (2017) Establece el parque nacional del manu en los Departamentos de Madre de Dios y Cuzco (promulgado el 29 de mayo de 1973). Decreto Supremo nº 0644-73-ag [In Spanish]. URL: http://leyes.legislacionanp.org.pe/parque-nacional-del-manu/

• Munoz J (2016) The role of facilitation in the structure of tropical bird communities: a case study of mixed-species flocks. Doctoral Dissertation. University of British Columbia. https://doi.org/10.14288/1.0303480

• Myers N, Mittermeier R, Mittermeier C, da Fonseca GB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403 (6772): 853-858. https://doi.org/10.1038/35002501

• Ollerton J, Alarcón R, Waser NM, Price MV, Watts S, Cranmer L, Hingston A, Peter CI, Rotenberry J (2009) A global test of the pollination syndrome hypothesis. Annals of Botany 103 (9): 1471-1480. https://doi.org/10.1093/aob/mcp031

• Rapp J, Silman M (2012) Diurnal, seasonal, and altitudinal trends in microclimate across a tropical montane cloud forest. Climate Research 55 (1): 17-32. https://doi.org/10.3354/cr01127

• Stiles FG (1978) Ecological and evolutionary implications of bird pollination. American Zoologist 18 (4): 715-727. https://doi.org/10.1093/icb/18.4.715

• Walker B, Stotz DF, Pequeño T, Fitzpatrick JW (2006) Birds of the Manu Biosphere Reserve. Fieldiana Zoology 110: 23-49.

• Weng C, Bush M, Silman M (2004) An analysis of modern pollen rain on an elevational gradient in southern Peru. Journal of Tropical Ecology 20 (1): 113-124. https://doi.org/10.1017/s0266467403001068