Effects of genistein supplementation on genome-wide DNA methylation and gene expression in patients with localized prostate cancer.

Birdal Bilir, Emory University
Nitya V. Sharma, Emory University
Jeongseok Lee, Emory University
Bato Hammarstrom, Oslo University Hospital
Aud Svidland, University of Oslo
Omer Kucuk, Emory University
Carlos Moreno, Emory University

Journal Title: International Journal of Oncology
Volume: Volume 51, Number 1
Publisher: Spandidos Publications | 2017-07, Pages 223-234
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.3892/ijo.2017.4017
Permanent URL: https://pid.emory.edu/ark:/25593/s38m9

Final published version: http://dx.doi.org/10.3892/ijo.2017.4017

Copyright information:
© 2017, Spandidos Publications
Accessed June 15, 2024 10:40 AM EDT
Effects of genistein supplementation on genome-wide DNA methylation and gene expression in patients with localized prostate cancer

BIRDAL BILIR1,5, NITYA V. SHARMA1, JEONGSEOK LEE1, BATO HAMMARSTROM2,7, AUD SVINDLAND3,4, OMER KUCUK5,6 and CARLOS S. MORENO1,6

1Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA; 2Department of Urology, Institute of Cancer Research, Oslo University Hospital; 3Department of Clinical Medicine, University of Oslo; 4Department of Pathology, Oslo University Hospital, Oslo, Norway; 5Department of Hematology and Medical Oncology, and 6Winship Cancer Institute, Emory University, Atlanta, GA, USA

Received December 14, 2016; Accepted March 27, 2017

DOI: 10.3892/ijo.2017.4017

Correspondence to:
Dr Carlos S. Moreno, Department of Pathology and Laboratory Medicine, Winship Cancer Institute, Emory University, Whitehead Research Building, Room 105J, 615 Michael Street, Atlanta, GA 30322, USA
E-mail: cmoreno@emory.edu

Present address: 7Department of Environmental and Occupational Medicine, Oslo University Hospital, Oslo, Norway

Key words: genistein, prostate cancer, DNA methylation, gene expression

Abstract. Epidemiological studies have shown that dietary compounds have significant effects on prostate carcinogenesis. Among dietary agents, genistein, the major isoflavone in soybean, is of particular interest because high consumption of soy products has been associated with a low incidence of prostate cancer, suggesting a preventive role of genistein in prostate cancer. In spite of numerous studies to understand the effects of genistein on prostate cancer, the mechanisms of action have not been fully elucidated. We investigated the differences in methylation and gene expression levels of prostate specimens from a clinical trial of genistein supplementation prior to prostatectomy using Illumina HumanMethylation450 and Illumina HumanHT-12 v4 Expression BeadChip Microarrays. The present study was a randomized, placebo-controlled, double-blind clinical trial on Norwegian patients who received 30 mg genistein or placebo capsules daily for 3-6 weeks before prostatectomy. Gene expression changes were validated by quantitative PCR (qPCR). Whole genome methylation and expression profiling identified differentially methylated sites and expressed genes between placebo and genistein groups. Differentially regulated genes were involved in developmental processes, stem cell markers, proliferation and transcriptional regulation. Enrichment analysis suggested overall reduction in MYC activity and increased PTEN activity in genistein-treated patients. These findings highlight the effects of genistein on global changes in gene expression in prostate cancer and its effects on molecular pathways involved in prostate tumorigenesis.

Introduction

Prostate cancer is the most commonly diagnosed malignancy and the second leading cause of cancer death among men in the United States. It is estimated that approximately 180,890 new cases of prostate cancer and 26,120 deaths from prostate cancer occurred in the USA in 2016 (1). The common risk factors for prostate cancer are age, race/ethnicity, geography, family history and lifestyle (2). Depending on the severity of the disease, current treatment options for prostate cancer include single or a combination of therapies such as active surveillance, surgery, radiation therapy, chemotherapy, hormone therapy or vaccines (3). Although these interventions have significantly improved the quality of life of the patients and the overall survival rates, effective treatment of prostate cancer is still limited due to the major challenges such as genetic heterogeneity, tumor recurrence (~30% of the cases) and resistance to conventional chemotherapeutic drugs (4-6). Therefore, it is crucial to develop novel preventive and therapeutic strategies that have the potential to improve outcomes for prostate cancer patients.

Epidemiological studies have shown that there is a significant disparity in incidence and mortality rates of prostate cancer among different countries, with the highest rates in the USA and European countries and the lowest rates in Asian countries such as Japan and China (7,8). This wide variability in the prostate cancer rates across countries suggests that several factors including genetic, epigenetic and environmental differences play a key role in the etiology of the disease. Notably, it has been shown that Asian immigrants in the USA have an increased incidence of prostate cancer compared to those individuals with the same genetic background who live in Asia, indicating that environmental factors, especially the
diet, are major determinants of prostate cancer incidence (9). One of the remarkable dietary differences between Asian and Western countries is the amount of soy-based food consumption. Asian populations consume high quantities of soy food which is rich in isoflavones (~2 g of isoflavones per kg of fresh soybean) (10). It has been shown that plasma and prostatic fluid concentrations of isoflavones in Asian men are 10 to 100 times higher than those in Western men, with particularly high levels of the isoflavone genistein (11,12). An increasing body of population-based studies has demonstrated that high intake of soy isoflavones are associated with a 25-30% reduced risk of prostate cancer (13,14).

As the major biologically active isoflavone in the soy diet, genistein has been extensively investigated for its chemopreventive potential in various types of cancer, including prostate cancer. The average daily intake of genistein in Asian populations has been shown to be 20-80 mg whereas it is 1-3 mg in the USA, supporting the protective effects of genistein against prostate cancer in Asian men (15). Genistein reaches plasma concentrations of 1-5 μM 6-8 h after intake of soy-rich diet (11,16). The plasma half-life of genistein has been reported as 7.9 h in adults. In addition, concentrations of total soy isoflavones in prostate tissue have been shown ~6-fold higher than serum levels of isoflavones (17). Safety and pharmacokinetic studies of soy isoflavones have demonstrated that minimal clinical toxicity was observed in healthy subjects administered with purified soy isoflavones at doses that exceed normal dietary intakes (18).

Due to its structural similarity to the steroid hormone 17β-estradiol, genistein binds to estrogen receptors, ER-α and ER-β, with a higher affinity to ER-β, and acts as a natural selective estrogen receptor modulator (16,19,20). Genistein exerts its inhibitory effects on prostate cancer cells by upregulating the expression of ER-β, which has anti-proliferative and pro-apoptotic roles in prostate cells (21,22). In addition to its estrogenic activities, genistein regulates androgen receptor (AR)-mediated pathways in prostate cancer (23,24). Of note, it has been shown that the inhibitory effect of genistein on AR expression is also mediated by ER-β (25). Several other molecular mechanisms underlying the preventive effects of genistein on prostate cancer include the inhibition of cell proliferation by inducing G1 and/or G2/M cell cycle arrest (26-28), angiogenesis (29,30) and metastasis (31-33) and induction of apoptosis (34,35). Genistein exerts its pleiotropic effects in the context of prostate cancer through modulation of several cell signal transduction pathways such as IGF-1 (36), TGF-β (37), Wnt/β-catenin (36), NF-κB (38), AKT and MAPK (39) signaling. This modulation could be by direct binding to nuclear receptors or modification of the phosphorylation state of signal transduction proteins. In addition, genistein inhibits tyrosine kinase activities (40) and shows antioxidant properties (41,42) in prostate cells. Swami et al (43) demonstrated that genistein reduces prostate cancer progression by inhibiting prostaglandin synthesis and activity. Genistein has also been reported to have possible effects on DNA damage and repair in prostate cancer cells (42). Moreover, genistein inhibits DNA methylation (44-48) and histone modifications (47,48) and regulates miRNAs (49-52) in prostate cancer. It is of interest that genistein has been shown to enhance the efficacy of radiotherapy and chemotherapy (53,54).

Although numerous in vitro and in vivo studies have been conducted to understand the protective effects of genistein against prostate cancer demonstrated by epidemiological studies, the molecular mechanisms that govern how genistein affects the pathogenesis of prostate cancer still remain elusive. It is noteworthy that a major challenge is the wide variability of the effects of genistein depending on the dose, the form of administration, or the timing and duration of exposure (55). Despite the wealth of studies performed in human cell lines and animal models, only a few prospective randomized clinical trials have been conducted to examine the molecular effects of genistein on prostate cancer. In the present study, to the best of our knowledge for the first time, we investigated the effects of genistein intervention on global methylation and gene expression patterns in patients with localized prostate cancer, and identified novel targets that are differentially modulated by genistein supplementation, providing further mechanistic insights into the effects of genistein on prostate carcinogenesis.

Materials and methods

Subjects. Prostate specimens from a clinical trial of genistein supplementation prior to prostatectomy (56) were analyzed for global changes in DNA methylation and gene expression. Participants were recruited from the outpatient clinic at the Department of Urology, Oslo University Hospital, Oslo, Norway between April 2007 and August 2008. The study was approved by the Norwegian Medicines Agency, the Regional Ethics Committee, the Privacy Ombudsman and the Prostate Biobank at the Oslo University Hospital, Akers.

Genome-wide methylation profiling. Total DNA was isolated from frozen prostate tissues using DNase Blood and Tissue kit (Qiagen, Valencia, CA, USA) according to the manufacturer's instructions. DNA was submitted to the Emory Integrated Genomics Core for DNA methylation analysis using Illumina HumanMethylation450 BeadChip Microarrays. Methylation data are available on GEO (accession number GSE84749).

Genome-wide expression profiling. Total RNA was extracted from frozen prostate tissues using the mirVana miRNA Isolation kit (Life Technologies, Grand Island, NY, USA), followed by RNA clean-up using the RNeasy Mini kit (Qiagen). Total RNA was submitted to the Emory Integrated Genomics Core for gene expression analysis using the Illumina HumanHT-12 v4 Expression BeadChip Microarray. Microarray data are available on GEO (accession number GSE84748).

Quantitative PCR (qPCR) analysis. RNA was reverse-transcribed into cDNA using iScript cDNA Synthesis kit (Bio-Rad Laboratories, Hercules, CA, USA). Primers were designed using Primer3 tool. Sequences of the primers are listed in Table 1. qPCR was performed using iQ SYBR-Green Supermix (Bio-Rad Laboratories) on a Bio-Rad iCycler according to the manufacturer's protocols. Human β-actin gene, which has been shown to be a valid reference gene for normalization of qPCR in human tissue samples of prostate cancer, was used as an internal control in the present study (57). Normal prostate...
tissue sample was used as the calibrator. The relative changes in gene expression data were analyzed by the $2^{-\Delta\Delta CT}$ method. Triplicates were run for each sample. Data are presented as the mean ± standard deviation.

Data analysis. Gene expression analysis was performed using GenePattern ComparativeMarkerSelection module (58) comparing genistein-treated tumors to placebo-treated tumors. Illumina Microarray data were filtered to include genes that were detected ($P<0.05$) in at least one experimental group to result in a dataset of 15918 genes for analysis. The comparative marker selection module of GenePattern was used to compute two-sided Student’s t-tests between groups with 10,000 permutations to compute false discovery rates. The random seed used was 779948241. Hierarchical clustering was performed using Cluster software (59) and Java TreeView (60). Methylation microarray analysis was performed in R using CpGassoc module in Bioconductor (61). Data from the 450K probes was filtered to those in which the maximum - minimum β-value was >0.2 to result in 160K probes for differential methylation analysis. CpGassoc was used to identify 162 significant probes that were differentially methylated. Three probes were differentially methylated between genistein-treated tumor samples and placebo-treated tumor samples, three probes were significant between genistein-treated tumor samples and normal samples and 156 were significantly different between placebo-treated tumor samples and normal samples.

Statistical analysis. Mann-Whitney U test (two-tailed) was used to determine significant differences between two groups of data. $P<0.05$ was considered as statistically significant.

Results

Clinicopathological characteristics. We analyzed prostate tissue samples from a previous study, which was a randomized, placebo-controlled, double-blind Phase 2 clinical trial on Norwegian patients with localized prostate cancer who received 30 mg synthetic genistein or placebo capsules.

Table I. Sequences of the primers used in the quantitative PCR analysis.

Primer name	Primer sequence (5’→3’)
CKS2-FP	TTAGTCTCCGGCGAGTGTGTGT
CKS2-RP	CATAACATGCCGGTACTCTGT
JAG1-FP	AGTCGTGCATGCTCCAATCG
JAG1-RP	CCCACACACCTTGGCTC
NOTCH3-FP	GATGGTGACAGTGCTGGTG
NOTCH3-RP	CAGGGATGTTTGGGGGTC
MMP26-FP	GGACTTCTTTGAGGGCTATTTCCA
MMP26-RP	GGAGGTTGCGGACCCCATCAG
HIF1A-FP	CACCCAGGCAGTAGGGATTG
HIF1A-RP	CTGCTGAATAATACACACCTACA
CDK6-FP	GCTGACCAGCAGTAGCAGA
CDK6-RP	GCACACATCAAACACACCTGAC
CD24-FP	CGCGGACCTTTCCTTTTGGGG
CD24-RP	ACTGGAAATATTGCGTGGGTT
AMACR-FP	CCGTTCTTGCTATGGGTC
AMACR-RP	AGCCTTGGATTTTCGCCTG
MYC-FP	CCTACCTCCTCAAGGACAGC
MYC-RP	TTGTTCTCCTCTCAGAGTCGC
SPP1-FP	CAAACCCGCAGCAAGAAAA
SPP1-RP	GGCACAGACGATCTGGGTATT
NEU1-FP	CGCAGCTATGATGCCGGTGA
NEU1-RP	GTGCAGGTTTCACTCGGAATCT
ADCY4-FP	CCGGGACCCAGGTGCTCAT
ADCY4-RP	CAAGATACAGGCCGAGGACC
β-actin-FP	CACAGACCTCGCCTTTGCCC
β-actin-RP	TGACCCATGCCCCACATCAC
daily for 3-6 weeks before radical prostatectomy (56). The clinical and pathological characteristics of the cases were previously described (56). The availability of frozen tissue limited the sample size in this study and we investigated the DNA methylation and gene expression levels of prostate tumor samples from 10 patients who received genistein and 10 patients who received placebo. Four adjacent normal prostate tissue samples were also analyzed. Clinical data for the 20 patients analyzed here are provided in Table II. There were no statistically significant differences in age, levels of serum PSA and Gleason score between the two treatment groups.

Differential methylation in genistein-treated tissue compared with placebo-treated tissue. The genome-wide DNA methylation profiles of a total of 24 prostate samples from tumor or normal tissues were generated using Illumina HumanMethylation450 BeadChip kit. Methylation status of each sample was analyzed for 485,577 sites, covering 21,231 genes. We compared the methylation profiles of genistein-treated tumor samples with placebo-treated cases. In general, methylation changes were modest, and there was no significantly differentially methylated gene after correction for multiple hypothesis testing. However, uncorrected \(P \)-values indicated that \(RBM28 \) and \(CYTSB \) genes were demethylated in genistein-treated tumor samples compared to placebo-treated samples. The lack of statistical significance was likely due to the small numbers of samples analyzed in this study. We did observe 156 probes with significantly increased methylation in placebo-treated tumor tissues vs. normal tissues that were not significant between genistein-treated tumor tissues and normal tissues, suggesting that genistein may have had some demethylation effects (available upon request). These 156 probes corresponded to at least 92 separate genes including \(ADCY4 \), \(ALOX12 \), \(HAAO \), \(LRRC4 \), \(NEU1 \), \(RAPGEFL1 \) and \(WNT7B \) (Table III).

Gene expression profiling changes after genistein treatment. To identify molecular effects of genistein on mRNA levels in prostate cancer, we compared gene expression profiles of genistein-treated tumors with placebo-treated samples. Once again, there were no differentially expressed probes that remained statistically significant after correction for multiple hypothesis testing. However, there were 628 probes that reached nominally significant \(P \)-values (available upon request). Hierarchical clustering of this dataset showed strong segregation of patients with and without genistein treatment (Fig. 1). The genes with nominally significant \(P \)-values included \(NOTCH3 \), \(JAG1 \), \(CK52 \), \(HIF1A \), \(CDK6 \), \(MYC \), \(CD24 \), \(AMACR \), \(MMP26 \) and \(SPP1 \) genes (Table IV). \(NEU1 \) and \(ADCY4 \) did not reach nominal significance but had a trend towards significance, and integration of the methylation data with the paired gene expression profiling data indicated decreased methylation status and increased expression levels of \(ADCY4 \) and \(NEU1 \) genes in genistein-treated cases.

Validation of microarray data. We investigated the expression levels of 12 selected genes (Table IV) in all 24 samples analyzed
Table III. List of 156 differentially methylated probes (92 genes).

Target ID	Gene name	P-value (GT vs. PT)	P-value (GT vs. N)	P-value (PT vs. N)
cg00353923	LRRC4; SND1	ns	ns	0.000214451
cg00420348	EFCAB4A	ns	ns	0.000247793
cg00459232	CD9	ns	ns	0.000270319
cg00494665		ns	ns	0.000274219
cg00506168	PDXK	ns	ns	0.000515556
cg00578638	RAPGEPFL1	ns	ns	3.67E-05
cg01224366	PDXK	ns	ns	0.000393857
cg01228355	CORIN	ns	ns	0.000881032
cg01233722	NFATC4	ns	ns	1.51E-05
cg01398859		ns	ns	0.000942104
cg01561916	HAAO	ns	ns	0.0015216
cg01684881	FZD2	ns	ns	0.000472597
cg01856645	DMGDH; BHMT2	ns	ns	0.000876054
cg02072400		ns	ns	3.73E-05
cg02131967	ACE	ns	ns	0.000468338
cg02215070	AKR1B1	ns	ns	0.000607743
cg02493798	ALOX12	ns	ns	0.000106934
cg02534363	NBEAL2	ns	ns	0.000263128
cg02659920	EPSL2	ns	ns	0.000565566
cg02665650	ANKS1A	ns	ns	0.000420543
cg02683114	C2orf84	ns	ns	3.28E-05
cg02915422		ns	ns	0.000993538
cg03119308	RBM28	0.000122845	ns	ns
cg03404566	ALOX12	ns	ns	9.44E-05
cg03407747	ALOX12	ns	ns	0.000320776
cg03452174	RAB34	ns	ns	0.000820466
cg03456213	C9orf3	ns	ns	0.000620827
cg03760483	ALOX12	ns	ns	0.000249903
cg03762994	ALOX12	ns	ns	0.000338148
cg03782157		ns	ns	0.000566959
cg03787864	CYBA	ns	ns	0.000360395
cg03955537	TBCD	ns	ns	0.000449056
cg03957885		ns	ns	0.000500821
cg04034767	GRASP	ns	ns	0.000526517
cg04178858	RAPGEPFL1	ns	ns	0.000378136
cg04194674	SRCIN1	ns	ns	0.000665658
cg04332818	FGF2	ns	ns	0.000648814
cg04555220	SEMA5A	ns	ns	0.00094353
cg04621728		ns	ns	0.000680098
cg04797170		ns	ns	0.000729496
cg05209996		ns	ns	0.000724896
cg05897210	DTHD1	ns	ns	0.000252462
cg05950572	SPON1	ns	ns	0.000546993
cg06085985	EFCAB4A	ns	ns	0.000230613
cg06590173	TPM4	ns	ns	0.000778707
cg06607764	CYTH1	ns	ns	0.000254746
cg06749789	THAP4	ns	ns	0.000864909
cg06763054	MTMR7	ns	ns	0.000353509
cg06795971	TET2	ns	ns	0.000140266
cg06835156	C14orf70	0.000524942	ns	7.67E-05
cg06945399	LRRC4; SND1	ns	ns	0.000590044
cg07016556	BAHCC1	ns	ns	0.000661791
cg07235805	PARD6G	ns	ns	0.000689192
cg07251099	CD200	ns	ns	0.000689192
Table III. Continued.

Target ID	Gene name	P-value (GT vs. PT)	P-value (GT vs. N)	P-value (PT vs. N)
cg07522516	ZAR1	ns	ns	0.0006922555
cg07834955	SFRP5	ns	ns	0.000372927
cg07871590	LRRC4; SND1	ns	ns	0.000127567
cg07924363	MGC16121; MIR424; MIR503	ns	0.000320255	ns
cg08194377	ANKS1A	ns	ns	0.000793165
cg08248285	CFL2	ns	ns	0.000346449
cg08298946	ns	ns	0.000455024	ns
cg08330950	ns	ns	0.000195062	ns
cg08421126	HAAO	ns	ns	0.000388824
cg08572315	ns	ns	ns	0.000667361
cg08617833	SMARCA1	ns	ns	0.000373883
cg09088834	NINL	ns	ns	0.000442225
cg09246479	C22orf45; UPB1	ns	ns	0.00010158
cg09456782	TMCO3; DCUN1D2	ns	ns	0.000792285
cg09480054	HAAO	ns	ns	0.000295903
cg09580336	ATP1A1	ns	ns	0.000440859
cg09581551	SOBP	ns	ns	0.000280079
cg09667289	FMN1	ns	ns	0.000712725
cg09737314	ALOX12	ns	ns	0.000653337
cg09920557	ACE	ns	ns	0.000673976
cg09963123	FLJ13197; KLF3	ns	ns	0.000654359
cg10445911	SOSTDC1	ns	ns	0.000375888
cg11417025	ns	ns	ns	0.000826709
cg11942956	EYA4	ns	ns	0.00073108
cg12177793	NFATC4	ns	ns	0.000965995
cg12262378	ALOX12	ns	ns	0.000115607
cg12451530	LOC100302652; GPR75	ns	ns	0.000188564
cg12828075	INSC	ns	ns	0.000784835
cg13616314	HS3ST3A1	ns	ns	2.38E-05
cg13801416	AKR1B1	ns	ns	0.000474669
cg13857811	SLC7A3	ns	ns	0.000228168
cg14032732	ECHDC3	ns	ns	0.000256212
cg14243778	CNTN1	ns	ns	0.00077315
cg14254720	LRRC8C	ns	ns	0.000920384
cg14287235	ADcy4	ns	ns	0.000228476
cg14482902	SRCIN1	ns	ns	0.000344968
cg14500300	ns	ns	ns	8.80E-05
cg14603620	RAPGEFL1	ns	ns	7.94E-05
cg14663984	AGRN	ns	ns	0.000843468
cg14792081	ns	ns	ns	0.000344126
cg15115171	ns	ns	ns	0.000503309
cg15673034	DLGAP1	ns	ns	0.000846318
cg15826437	RAPGEFL1	ns	ns	0.000299995
cg15998779	ns	ns	ns	0.000211956
cg16450577	TBCD	ns	ns	0.000368573
cg16859884	ns	ns	ns	0.000247308
cg16968985	SEZ6	ns	ns	0.000382576
cg17011709	CYP26C1	ns	ns	0.000901702
cg17131553	TRPS1	ns	ns	0.000583708
cg17165580	CRABP2	ns	ns	0.000197886
cg17479501	TBCD	ns	ns	0.000197189
cg17496661	ns	0.000436474	0.000197741	
cg17624073	BAHCC1	ns	ns	0.000526316
Target ID	Gene name	P-value (GT vs. PT)	P-value (GT vs. N)	P-value (PT vs. N)
---------------	----------------	---------------------	-------------------	-------------------
cg17729667	NINL	ns	ns	0.000569462
cg18344652	CNN3	ns	ns	0.000452391
cg19372602				0.000864447
cg19467964	TBCD	ns	ns	0.000196505
cg19499884	LZTS2	ns	ns	0.000537829
cg19929126	TRIL			0.000632594
cg20132775	TRPC1			0.000197515
cg20145692	COL9A2			0.000190537
cg20276377	C3orf26; FILIP1L; MIR548G	ns	ns	6.22E-05
cg20383155	NEU1; SLC44A4			0.000632549
cg20801007	EFCAB4A	ns	ns	0.000259905
cg20987431	ZHX1			0.00053928
cg21079003	RGMA			0.000411886
cg21116447	NEU1; SLC44A4	ns	ns	0.000990119
cg21543859	RUNX2			0.000760409
cg21849932	LIME1	ns	ns	0.000537283
cg21944491	LTBTP4			0.000572287
cg22074576	OSBPL5			0.00073274
cg22092811	C3orf26; FILIP1L; MIR548G	ns	ns	4.30E-05
cg22413388	WNT7B			0.000992683
cg22534145	SSTR4			0.000156886
cg22675801	TRIL			0.000451146
cg22753340	NEU1; SLC44A4	ns	ns	0.000874186
cg22773555	EFCAB4A	ns	ns	0.00025263
cg22773661	ZAR1			0.00033279
cg22871668	EYA4			0.000392704
cg22878441				0.000393322
cg23083315	FIX1			0.000288759
cg23142799	SHISA2			0.000157373
cg23396786	SFXN5			0.000434986
cg23425970	HS6ST1			0.00016049
cg23563927	C10orf93			0.000585909
cg23684878				0.000735566
cg23926436				0.00082097
cg24251193	CRABP2			0.000141885
cg24331301	CDH23			0.000549748
cg24878115	SSBBP4			0.000354342
cg24902339	CASC2			0.000256574
cg25027125	CFL2			0.000978881
cg25117523	CYTH1			0.000297582
cg25387565	NEU1			0.000708206
cg25563256	FGF11			0.000933724
cg25813864	RAPGEFL1			0.000174816
cg25834415	KIF1A			0.000894051
cg26009486	NFATC4			0.000293111
cg26360792	HAAO			0.000297095
cg26558799	TBCD			0.000570916
cg26607748	TPM2			0.000773141
cg26846076	CYTSB	0.000457469	ns	ns
cg27191312				0.00012339
cg27299406	HAAO			0.000380895
cg27347290	NEU1; SLC44A4	ns	ns	0.000429935
cg27573591	SND1; LRRC4	ns	ns	0.000183694
rs10033147		0.00000393	ns	ns

GT, genistein-treated tumor; PT, placebo-treated tumor; N, normal; NS, not significant.
BILIR et al.: GENISTEIN IN DUCED METHYLATION AND GENE EXPRESSION

by microarrays using qPCR, and observed that microarray data were correlated with qPCR results (Fig. 2). The increase in the qPCR expression levels of NOTCH3 and JAG1 genes in genistein-treated tumors compared to placebo-treated tumors was statistically significant by Mann-Whitney U test.

Enrichment analysis. We performed gene enrichment analysis on the 628 nominally significant probes that were differentially expressed between genistein and placebo samples (Table V) using Ingenuity Pathway Analysis (62) and the DAVID Knowledgebase (63). P-value indicates hypergeometric distribution P-values of overlap for gene sets and functional categories. FDR indicates false discovery rate corrected P-values of overlap. Activation z-score is an indication of the consistency of up and downregulated members of a gene set such as a biological function (top table) or targets of an upstream regulator (middle table). Activation z-scores >2 or < -2 are statistically significant for consistency of activation or inhibition. Molecules indicate the number of molecules in the set of 628 analyzed probes that overlap with a given category. Mechanistic network indicates the total number of target genes of an upstream regulator, and the number of overlapping genes is indicated in parentheses. We observed enrichment for terms associated with angiogenesis, apoptosis, epithelial to mesenchymal transition, tumor progression and PDGF binding. Analysis of potential upstream regulators by IPA analysis suggested that PTEN and PDGF were activated, while MYC, β-estradiol, glucocorticoid receptor NR3C1 and interferon-γ were repressed in response to genistein treatment.

Discussion

To the best of our knowledge, the present study is the first highlighting the effects of genistein on global changes in DNA methylation status is correlated with gene expression in NEU1 and ADCY4. qPCR, quantitative PCR.
methyltransferase inhibitor, thereby causing the demethylation of CpG islands in the promoters of genes. For example, genistein has been shown to reactivate the hypermethylated-silenced tumor suppressor genes, including \(p16^{INK4a}\), retinoic acid receptor \(\beta\) (\(RAR\beta\)) and \(O_6\)-methylguanine methyltransferase (\(MGMT\)), in prostate and esophageal cancer cells (46). Moreover, genistein has been implicated in demethylation of \(WNT5a\) promoter in colon cancer cells (64). One of the genes shown to be demethylated by genistein in the present study is \(ADCY4\), which is a member of the family of adenylate cyclases, the membrane-bound enzymes that catalyze formation of the secondary messenger cyclic adenosine monophosphate (cAMP) (65). Consistent with our finding, it has been recently shown that \(ADCY4\) is a DNA methylation marker representing early epigenetic events in prostate tumorigenesis, supporting our hypothesis that genistein may reverse the pattern of DNA methylation in \(ADCY4\) in prostate cancer (66). The other gene that was modulated by genistein intervention in the present study was \(NEU1\), which is a lysosomal sialidase involved in glycoconjugate catabolism and cellular signaling, including immune responses and elastin

Table V. Enrichment analysis of 628 nominally significant probes differentially expressed between genistein and placebo groups.

Analysis	P-value	Activation z-score	No. of molecules	Function
IPA	5.92E-08	0.773	18	Progression of tumor
IPA	4.88E-07	1.01	355	Abdominal neoplasm
IPA	1.09E-06	1.927	28	Differentiation of tumor cell lines
IPA	1.34E-06	-1.017	19	Epithelial-mesenchymal transition
IPA	7.46E-06	2.412	22	Neuroendocrine tumor
IPA	7.98E-05	2.054	28	Necrosis of tumor

Analysis	P-value of overlap	Activation z-score	Mechanistic network	Upstream regulator
IPA	3.85E-08	-0.692	184 (16)	NR3C1
IPA	1.21E-07	1.681	112 (9)	PDGFB
IPA	2.71E-07	-1.385	167 (15)	\(\beta\)-estradiol
IPA	2.15E-06	-0.832	144 (13)	IFNG
IPA	2.17E-06	1.608	141 (16)	PTEN
IPA	4.59E-06	-2.995	133 (13)	MYC

Analysis	FDR	Activation z-score	No. of molecules	Term
DAVID	7.90E-04	NA	17	GO:0005840 ribosome
DAVID	1.19E-02	NA	34	mitochondrion
DAVID	2.00E-02	NA	16	GO:0001568 blood vessel development
DAVID	1.77E-02	NA	10	GO:0019838 growth factor binding
DAVID	3.52E-02	NA	7	GO:0008629 induction of apoptosis by intracellular signals
DAVID	3.16E-02	NA	4	GO:0048407 platelet-derived growth factor binding

It is of interest to note that DNA methylation status was inversely correlated with gene expression for the \(NEU1\) and \(ADCY4\) genes, which had decreased methylation, and increased mRNA expression in the genistein group in comparison with placebo group. Our finding showing the potential of genistein for DNA demethylation is consistent with the previously reported data that suggest genistein acts as a DNMT inhibitor, thereby causing the demethylation of CpG islands in the promoters of genes. For example, genistein has been shown to reactivate the hypermethylated-silenced tumor suppressor genes, including \(p16^{INK4a}\), retinoic acid receptor \(\beta\) (\(RAR\beta\)) and \(O_6\)-methylguanine methyltransferase (\(MGMT\)), in prostate and esophageal cancer cells (46). Moreover, genistein has been implicated in demethylation of \(WNT5a\) promoter in colon cancer cells (64). One of the genes shown to be demethylated by genistein in the present study is \(ADCY4\), which is a member of the family of adenylate cyclases, the membrane-bound enzymes that catalyze formation of the secondary messenger cyclic adenosine monophosphate (cAMP) (65). Consistent with our finding, it has been recently shown that \(ADCY4\) is a DNA methylation marker representing early epigenetic events in prostate tumorigenesis, supporting our hypothesis that genistein may reverse the pattern of DNA methylation in \(ADCY4\) in prostate cancer (66). The other gene that was modulated by genistein intervention in the present study was \(NEU1\), which is a lysosomal sialidase involved in glycoconjugate catabolism and cellular signaling, including immune responses and elastin.
receptor-mediated signal transduction (67). In fact, NEU1 is critical for desialylation of integrin β4 and inhibition of FAK, leading to suppression of liver metastases in colon cancer (68). Kato et al (69) has reported that NEU1 overexpression resulted in suppression of lung metastasis in melanoma. In addition, suppression of NEU1 by miR-125b has been shown to promote migration, invasion and metastasis in gastric cancers (70). However, NEU1 can also have pro-metastatic effects in pancreatic and ovarian cancers (71), and thus it is not entirely clear what the overall impact of increased NEU1 levels might be in prostate cancer. Therefore, it is important to examine the NEU1 expression changes at the protein level, and molecular and cellular studies are required to assess the functional consequences of changes induced by NEU1 upregulation in prostate cancer cells.

Among the differentially expressed genes that were validated by qPCR, only the expression of NOTCH3 and JAG1 mRNAs were significantly higher in the genistein group compared to the placebo group by qPCR. Based on our findings at mRNA level without any confirmation at the protein or functional level, it would be speculative to suggest that Notch signaling may play a role in the mechanism of action of genistein on prostate cancer. NOTCH3 is important for TGFβ-induced EMT in prostate cancer (72), and is induced by hypoxia and contributes to prostate cancer progression (73). The Notch ligand JAG1 is also associated with more aggressive prostate cancer (74,75), EMT and angiogenesis (76). However, a tumor suppressive role of Notch signaling has also been reported in hypoxia-induced neuroendocrine differentiation of prostate cancer cells as well as in other cancer types including bladder cancer, hematological malignancies, glioma, thyroid carcinoma and lung cancer (77-82), indicating the possibility that increased NOTCH3/JAG1 expression by genistein treatment may improve outcomes through its tumor suppressor function. Our data suggest that further studies to delineate the effect of genistein on the Notch signaling pathway in prostate cancer may be warranted.

Enrichment analyses of mRNA changes induced by genistein indicated that subtle changes in gene expression observed between genistein and placebo samples are consistent with many previously reported effects of genistein on critical tumor pathways including PTEN, PDGF, MYC, β-estradiol, glucocorticoid receptor and interferon-γ (41,83-89). Genistein appeared to promote PTEN activity and inhibit MYC activity, consistent with its potential utility in improving outcomes in prostate cancer.

In summary, our results indicate that genistein intervention induces modulation of several genes, including NOTCH3, JAG1, ADCY4 and NEU1, suggesting that these genes may have the potential to be novel molecular targets of genistein in prostate cancer. These genes are involved in many critical biological processes including cell cycle, angiogenesis, cellular immune response and intracellular signal transduction, providing additional insight into the multiple molecular pathways involved in prostate tumorigenesis. However, further mechanistic studies are required to investigate the effects of genistein on the regulation of the expression of these genes at the protein level and cellular functions. These findings may then contribute towards designing novel strategies for prevention and treatment of prostate cancer. One caveat of gene expression profiling studies is the incapability of identification of mechanisms of action that are modulated at post-transcriptional level, suggesting the possibility that genistein may alter additional cellular processes. Another point that needs to be made is timing and duration of exposure to genistein. Case control studies have demonstrated that high consumption of soy early in life (during childhood and/or adolescence) is associated with 25-60% reductions in breast cancer risk (90,91). Similarly, high soy intake at puberty, the period during which prostate undergoes androgen-induced growth, might be more effective in prevention of prostate cancer. A limitation of the present study is the small number of patient samples. Further large randomized controlled clinical trials would provide more definitive results of the effects of genistein on patient prostate tissues.

Acknowledgements

The present study was supported in part by the Emory Integrated Genomics Core (EIGC), which is subsidized by the NCI Cancer Center Support Grant P30CA138292 and Emory University School of Medicine and is one of the Emory Integrated Core Facilities. It was further supported by a Soy Research Award from the Soy Health Research Program of the United Soybean Board.

References

1. Siegel RL, Miller KD and Jemal A: Cancer statistics, 2016. CA Cancer J Clin 66: 7-30, 2016.
2. Prostate Cancer Facts and Figures 2016. American Cancer Society, Inc. Atlanta, GA, 2016.
3. Dunn MW and Kazer MW: Prostate cancer overview. Semin Oncol Nurs 27: 241-250, 2011.
4. Sartor AO: Progression of metastatic castrate-resistant prostate cancer; Impact of therapeutic intervention in the post-docetaxel space. J Hematol Oncol 4: 18, 2011.
5. Skolarus TA, Wolf AMD, Erb NL, Brooks DD, Rivers BM, Underwood W III, Salner AL, Zelefsky MJ, Aragon-Ching JB, Slovin SF, et al: American Cancer Society prostate cancer survivorship care guidelines. CA Cancer J Clin 64: 225-249, 2014.
6. Hieronymus H, Schultz N, Gopalan A, Carver BS, Chang MT, Xiao Y, Heguy A, Huberman K, Bernstein M, Axell M, et al: Copy number alteration burden predicts prostate cancer relapse. Proc Natl Acad Sci USA 111: 11139-11144, 2014.
7. Ferlay J, Bray F, Pisani P and Parkin DM: Globocan 2000: Cancer Incidence, Mortality and Prevalence Worldwide. IARC Press, Lyon, 2001.
8. Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin 61: 69-90, 2011.
9. Kimura T: East meets West: Ethnic differences in prostate cancer epidemiology between East Asians and Caucasians. Chin J Cancer 31: 421-429, 2012.
10. Reini K and Block G: Phytoestrogen content of foods--a compendium of literature values. Nutr Cancer 26: 123-148, 1996.
11. Adlercreutz H, Markkanen H and Watanabe S: Plasma concen-
15. Barnes S, Peterson TG and Coward L: Rationale for the use of genisteen-containing soy matrices in chemoprevention trials for breast and prostate cancer. J Cell Biochem Suppl 22: 181-187, 2000.

16. Takimoto CH, Glover K, Huang X, Hayes SA, Gallott L, Quinn M, Jovanovic BD, Shapiro A, Hernandez L, Goetz A, et al: Phase I pharmacokinetic and pharmacodynamic analysis of unconjugated soy isoflavones administered to individuals with cancer. Cancer Epidemiol Biomarkers Prev 12: 1213-1221, 2003.

17. Gardner CD, Oelrich B, Liu JP, Feldman D, Franke AA and Brooks JD: Prostatic soy isoflavone concentrations exceed serum levels after dietary supplementation. Prostate 69: 719-726, 2009.

18. Bloedon LT, Jeffcoat AR, Lopaczynski W, Schell MJ, Black TM, Dix KJ, Thomas BF, Albright C, Busby MG, Crowell JA, et al: Safety and pharmacokinetics of purified soy isoflavones: Single-dose administration in postmenopausal women. Am J Clin Nutr 76: 1126-1137, 2002.

19. Yildiz F: Phytosterogens in functional foods. CRC Press, Boca Raton, FL, 2005. https://doi.org/10.1201/9781420027594.

20. Morito K, Hirose T, Kinjo J, Hirakawa T, Okawa M, Nohara T, Ogawa S, Inoue S, Muramatsu M and Masamune Y: Interaction of phytosterogens with estrogen receptors alpha and beta. Biol Pharm Bull 24: 351-356, 2001.

21. Chang WY and Prins GS: Estrogen receptor-beta: Implications for the prostate gland. Prostate 40: 115-124, 1999.

22. Kumar R, Verma V, Jain A, Jain RK, Bhuiyan M and Sarkar FH: Synergistic chemopreventive mechanisms of dietary phytosterogens in a select combination against prostate cancer. J Nutr Biochem 22: 723-731, 2011.

23. Wang J, Eltoum IE and Lamartiniere CA: Genisteen chemoprevention of prostate cancer in TRAMP mice. J Carcinog 6: 3, 2007.

24. Davis JN, Kucuk O and Sarkar FH: Expression of prostate-specific antigen is transcriptionally regulated by genisteen in prostate cancer cells. Mol Carcinog 34: 91-101, 2002.

25. Bektic J, Berger AR, Pfeil K, Dobler G, Bartsch G and Klocker H: Androgen receptor regulation by physiological concentrations of the isoflavonoid genisteen in androgen-dependent LNCaP cells is mediated by estrogen receptor beta. Eur Urol 45: 245-251, discussion 251, 2004.

26. Shen JC, Klein RD, Wei Q, Guan Y, Contois JH, Wang TT, Chang S and Hursing SD: Low-dose genisteen induces cyclin-dependent kinase inhibitors and G(1) cell-cycle arrest in human prostate cancer cells. Mol Carcinog 29: 92-102, 2000.

27. Davis JN, Singh B, Bhuiyan M and Sarkar FH: Genisteen-induced upregulation of p21WAF1, downregulation of cyclin B, and induction of apoptosis in prostate cancer cells. Nutr Cancer 32: 123-131, 1999.

28. Raffo AJ, Wang Y, Kucuk O, Forman JD, Sarkar FH and Hillman GG: Genisteen inhibits radiosensitivity-induced activation of NF-kappaB in prostate cancer cells promoting apoptosis and G2/M cell cycle arrest. BMC Cancer 6: 107, 2006.

29. Li Y and Sarkar FH: Down-regulation of invasion and angiogenesis-related genes identified by cDNA microarray analysis of PC3 prostate cancer cells treated with genisteen. Cancer Lett 186: 157-164, 2002.

30. Guo Y, Wang S, Hoot DR and Clinton SK: Suppression of VEGF-mediated autocrine and paracrine interactions between prostate cancer cells and vascular endothelial cells by soy isoflavones. J Nutr Biochem 18: 408-417, 2007.

31. Li Y, Che M, Bhagat S, Ellis KL, Kucuk O, Doerge DR, Abrams J, Cher ML and Sarkar FH: Regulation of gene expression and inhibition of experimental prostate cancer bone metastasis by dietary genisteen. Neoplasia 6: 354-363, 2004.

32. Zhang LL, Li L, Wu DP, Fan JH, Li X, Wu KJ, Wang XY and He DL: A novel anti-cancer effect of genisteen: Reversal of caspase-3 mediated autocrine and paracrine interactions between prostate cancer cells treated with genisteen. Nutr Cancer 60: 225-236, 2007.

33. Kucuk-O, Sanderson NA and Hall A: The mediating role of caspase-3 mediated autocrine and paracrine interactions in the intracellular mechanism of genisteen-induced apoptosis in human prostatic carcinoma cell lines, DU145 and LNCaP. Biochem Cell Biol 92: 595-604, 2000.

34. Li J, Ju J, Park S, Hong SJ and Yoon S: Inhibition of IGF-1 signaling by genisteen: Modulation of E-cadherin expression and downregulation of beta-catenin signaling in hormone refractory PC-3 prostate cancer cells. Nutr Cancer 64: 153-162, 2012.

35. Xu L and Bergan RC: Genisteen inhibits matrix metalloproteinase type 2 activation and prostate cancer cell invasion by blocking the transforming growth factor beta-mediated activation of mitogen-activated protein kinase-activated protein kinase 2-27-kDa heat shock protein pathway. Mol Pharmacol 70: 869-877, 2006.

36. Davis JN, Kucuk O and Sarkar FH: Genisteen inhibits NF-kappaB activation in prostate cancer cells. Nutr Cancer 55: 167-174, 1999.

37. Li Y and Sarkar FH: Inhibition of nuclear factor kappaB activation in PC3 cells by genisteen is mediated via Akt signaling pathway. Clin Cancer Res 8: 2369-2377, 2002.

38. Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh H, Shibuya M and Fukami Y: Genisteen, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 262: 5592-5595, 1987.

39. Carpe P, Yun H, Lee EB, Min BI, Bae H, Choe W, Kang I, Kim SS and Ha J: The antioxidant effects of genistein are associated with AMP-activated protein kinase activation and PTEN induction in prostate cancer cells. J Med Food 13: 815-820, 2010.

40. Raschke M, Rowland IR, Magee PJ and Pool-Zobel BL: Genisteen protects prostate cells against hydrogen peroxide-induced DNA damage and induces expression of genes involved in the defence against oxidative stress. Carcinogenesis 27: 2322-2330, 2006.

41. Park CE, Yun H, Lee EB, Min BI, Bae H, Choe W, Kang I, Kim SS and Ha J: The antioxidant effects of genistein are associated with AMP-activated protein kinase activation and PTEN induction in prostate cancer cells. J Med Food 13: 815-820, 2010.

42. Adjakly M, Bosvriel R, Rabie NV, Boiteux JP, Bignon YJ, Guy L and Bernard-Gallon DJ: DNA methylation and soy phytoestrogens: Quantitative study in DU-145 and PC-3 human prostate cancer cells. Epigenomics 3: 795-803, 2011.

43. Swami S, Krishnan AV, Moreno J, Bhattacharyya RS, Gardner C, Brooks JD, Peethal DM and Feldman D: Inhibition of prosta glandin synthesis and actions by genisteen in human prostate cancer cells and by soy isoflavones in prostate cancer patients. Int J Cancer 124: 2050-2059, 2009.

44. Adjakly M, Bosvriel R, Rabie NV, Boiteux JP, Bignon YJ, Guy L and Bernard-Gallon DJ: DNA methylation and soy phytoestro gens: Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 262: 5592-5595, 1987.

45. Sang MZ, Chen D, Sun Y, Jin Z, Christman JK and Yang C: Reversal of hypermethylation and reactivation of p16Ink4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 11: 7033-7041, 2005.

46. Rajabi M, Trraf HK, Adjakly M, Bosvriel R, Guy L, Fontana L, Bignon YJ, Guy L, et al: Soy phytoestrogens modify DNA methylation of GSTP1, RASSF1A, EPH2 and BRCA1 promoter in prostate cancer cells. Nutr Cancer 64: 393-400, 2010.

47. Fang MZ, Chen D, Sun Y, Jin Z, Christman JK and Yang C: Reversal of hypermethylation and reactivation of p16Ink4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 11: 7033-7041, 2005.

48. Rajabi M, Trraf HK, Adjakly M, Bosvriel R, Guy L, Fontana L, Bignon YJ, Guy L, et al: Soy phytoestrogens modify DNA methylation of GSTP1, RASSF1A, EPH2 and BRCA1 promoter in prostate cancer cells. Nutr Cancer 64: 393-400, 2010.

49. Fang MZ, Chen D, Sun Y, Jin Z, Christman JK and Yang C: Reversal of hypermethylation and reactivation of p16Ink4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 11: 7033-7041, 2005.

50. Rajabi M, Trraf HK, Adjakly M, Bosvriel R, Guy L, Fontana L, Bignon YJ, Guy L, et al: Soy phytoestrogens modify DNA methylation of GSTP1, RASSF1A, EPH2 and BRCA1 promoter in prostate cancer cells. Nutr Cancer 64: 393-400, 2010.
55. Spagnuolo C, Russo GL, Orhan IE, Habtemariam S, Daglia M, Sureda A, Nabavi SF, Devi KP, Loizzo MR, Tundris R, et al: Genistein and cancer: Current status, challenges, and future directions. Adv Nutr 6: 408-419, 2015.
56. Kato T, Wang Y, Yamaguchi K, Milner CM, Shineha R, Satomi S, et al: Notch signaling mediates hypoxia-induced neuroendocrine differentiation of human prostate cancer cells. Mol Cancer Res 10: 230-238, 2012.
57. Rampias T, Vgenopoulou P, Avgeris M, Polyzos A, Stravodimos K, Valavanis C, Scorilas A and Klinakis A: A new tumor suppressor role for the Notch pathway in bladder cancer. Front Pediatr 2: 54, 2014.
58. Hernandez Tejada FN, Galvez Silva JR and Zweidel-McKay PA: The challenge of targeting notch in hematologic malignancies. Front Pediatr 2: 54, 2014.
59. Giachino C, Boulay JL, Ivanek R, Alvarado A, Tostado C, Lugo S, Tcherzov D, Coban M, Mariani L, Bettlei B, et al: A tumor suppressor function for Notch signaling in forebrain tumor subtypes. Cancer Cell 28: 730-742, 2015.
60. Whirledge S, Senbanjo LT and Cidlowski JA: Genistein disrupts glucocorticoid receptor signaling in human uterine endometrial Ishikawa cells. Environ Health Perspect 123: 80-87, 2015.
61. Borsani G, Schauer R and Tettamanti G: Sialidases in vertebrates: A family of enzymes tailored for several cell functions. Adv Carbohydr Chem Biochem 64: 403-479, 2010.
62. http://www.qiagen.com/ingenuity: Qiagen's Ingenuity Pathway Analysis.
63. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC and Lempicki RA: DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4: 3, 2003.
64. Wang Z and Chen H: Genistein increases gene expression by demethylation of WNT5a promoter in colon cancer cell line SW1116. Anticancer Res 30: 4537-4545, 2010.
65. Gao BN and Gilman AG: Cloning and expression of a widely distributed (type IV) adenylyl cyclase. Proc Natl Acad Sci USA 68: 10178-10182, 1991.
66. Brikun I, Nusskern D, Gillen D, Lynn A, Murtaugh D, Feczko J, Nelson WG and Freije D: A panel of DNA methylation markers reveals extensive methylation in histologically benign prostate biopsy cores from cancer patients. Biomark Res 2: 25, 2014.
67. Nelson WG and Freije D: A panel of DNA methylation markers reveals extensive methylation in histologically benign prostate biopsy cores from cancer patients. Biomark Res 2: 25, 2014.
68. Mori R, Wang Q, Danenberg KD, Pinski JK and Danenberg PV: Notch signaling modulates G2/M arrest in gastric cancer cells by increasing the tumor suppressor PTEN expression. Nutr Cancer 65: 1034-1041, 2013.
69. Kato T, Wang Y, Yamaguchi K, Milner CM, Shineha R, Satomi S, et al: Notch signaling mediates hypoxia-induced neuroendocrine differentiation of human prostate cancer cells. Mol Cancer Res 10: 230-238, 2012.
70. Liu YL, Zhang GQ, Yang Y, Zhang CY, Fu RX and Yang YM: A tumour suppressor role for the Notch pathway in prostate cancer cells. Cancer Res 61: 3200-3205, 2001.
71. Brikun I, Nusskern D, Gillen D, Lynn A, Murtaugh D, Feczko J, Nelson WG and Freije D: A panel of DNA methylation markers reveals extensive methylation in histologically benign prostate biopsy cores from cancer patients. Biomark Res 2: 25, 2014.
72. Liu L, Chen X, Wang Y, Qu Z, Zhao J, Yan X, Zhang H and Zhou Y: Notch3 is activated by chronic hypoxia and contributes to the progression of human prostate cancer. Int J Cancer 133: 2577-2586, 2013.
73. Pedrosa AR, Graja JL, Carvalho S, Peleterio MC, Duarte A and Trindade A: Notch signaling dynamics in the adult healthy prostate and in prostate tumor development. Prostate 76: 80-96, 2016.
74. Pedrosa AR, Trindade A, Carvalho C, Graja J, Carvalho S, Peleterio MC, Adams RH and Duarte A: Endothelial Jagged2 promotes solid tumor growth through both pro-angiogenic and angiogenic functions. Oncotarget 6: 24404-24423, 2015.
75. Danza G, Di Serio C, Rosati F, Lonetto G, Sturlì N, Kacer D, Pennella A, Ventimiglia G, Barucci R, Piscazzi A, et al: Notch signaling modulates hypoxia-induced neuroendocrine differentiation of human prostate cancer cells. Mol Cancer Res 10: 230-238, 2012.
76. Rampias T, Vgenopoulou P, Avgeris M, Polyzos A, Stravodimos K, Valavanis C, Scorilas A and Klinakis A: A new tumor suppressor role for the Notch pathway in bladder cancer. Front Pediatr 2: 54, 2014.
77. Hernandez Tejada FN, Galvez Silva JR and Zweidel-McKay PA: The challenge of targeting notch in hematologic malignancies. Front Pediatr 2: 54, 2014.