Figure S1. Transmission electron microscopy (TEM) of α-synuclein secondary nucleation reaction endpoints. TEM images of the endpoint fibrils formed during α-synuclein secondary nucleation when 20 μM monomeric α-synuclein was incubated in the absence (DMSO control (A)) and presence of 0.5 molar equivalents, relative to monomeric protein, of flavone derivatives (flavone (B), 7-hydroxyavone (C), 5,6,7-trimethoxy (D), apigenin (E), baicalein (F), scutellarein (G), morin (H)) with 50 nM preformed seed fibrils at pH 4.8 and 37 °C.
Figure S2. Effects of flavone derivatives on the reactive flux towards α-synuclein oligomers in the secondary nucleation assay. Normalised changes in ThT fluorescence (sigmoidal curves) in α-synuclein secondary nucleation in vitro assays with 50 nM preformed seed fibrils at pH 4.8 and 37 °C when 20 µM monomeric α-synuclein was incubated in the absence (DMSO control, black) and presence of 0.5 molar equivalents relative to the total protein, of flavone derivatives: flavone (red), 7-hydroxyflavone (purple), 5,6,7-trimethoxyflavone (magenta), apigenin (blue), baicalein (light green), scutellarein (tan), morin (dark green). The corresponding normalised reactive fluxes towards oligomers, ϕ (peaked curves, see Eq. 8), are plotted against time and overlaid for each flavone derivative. Each plot represents three experimental replicates, while the three different plots per molecule represent biological replicates.