The inertial compensation of the vibroactive force in the oscillating system

Yu A Burian, D V Sitnikov, M V Silkov
Omsk State Technical University, 11, Mira ave., Omsk, 644050, Russia

Abstract. Actuators used in active vibration isolation systems of various types are either installed between the oscillating mass and the base, or next to the elastic-dissipative elements of a passive system. The actuator is usually controlled according to information from force-measuring devices. This significantly complicates the implementation of such systems. An active system is considered in which an electrodynamic drive (actuator) is used to compensate for vibroactive forces transmitted to the base. An electrodynamic drive is mounted on the base and controlled by accelerometers mounted on the passive system moving masses and the actuator. Straight-line controlled vibrations of the actuator moving mass provide inertial compensation of vibroactive forces on the base.

1. Introduction

Active systems of vibration protection and vibration isolation have recently begun to be used in various branches of mechanical engineering. Passive systems with elastic-dissipative elements are not effective in the range of low frequencies 1 - 20 Hz.

The results of research and practice of using active power devices (actuators) of hydraulic, electrodynamic, piezoelectric and other operating principles for the purpose of vibration protection are known. In the review work [1], the history of the development of the field of application and the basic principles of constructing vibration protection systems are considered. In [2], the main schemes and methods of research and calculation of active vibration isolation systems are given for both regular and random influences from vibroactive forces. In [3], [4] various approaches to the construction of active vibration isolation systems are considered. It is assumed that the actuator is mounted between the passive system vibrating mass and the body. This makes it possible to effectively solve the problems of vibration protection in the low frequency range. Unfortunately, this way is unacceptable for vibration isolation, because a decrease in the vibration amplitude of the protected mass leads to an increase in the force on the base from the actuator.

Currently, there is an extensive scientific and technical literature on active vibration isolation and vibration protection systems. For example, in [5] an analysis of the vibration protection system operation of an object using an active hydraulic support was carried out. It is shown in [6] that it is advisable to use piezoelectric accelerometers with a high transmission coefficient for electronic control circuits of active vibration protection systems. In [7], a description and results of theoretical and experimental studies of an active damper for active vibration protection based on magnetorheological elastomers are given. For example, in [8] the original concept of an intelligent system of active vibration protection and high-precision aiming of the “Millimetron” observatory telescope is presented.

The given short list of works shows a wide area of active vibration protection systems application and their effectiveness at low frequencies.

Unfortunately, in the scientific and technical literature, there are practically no works devoted to a promising direction - inertial compensation of vibroactive forces, which will solve the problem of vibration isolation in the low frequency range.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd
The solution to this problem is especially important, for example, for shipbuilding, because the high power-to-weight ratio of modern ships generates vibration and noise. Being transmitted into the aquatic environment, vibrations and noise disrupt the secrecy of the marine objects action. The hydroacoustic field (acoustic portrait) is an important informative feature that makes it possible to detect and classify marine objects at distances of hundreds of kilometers [9], [10]. The main frequency range for early detection is the range of 5 - 40 Hz, so the development of effective low-frequency vibration isolation systems is an urgent task.

In [11], [12], [13], the issues of dynamic compensation of vibroactive forces by an electrodynamic actuator controlled by signals from force measuring devices are considered. The effectiveness of this approach to the construction of active vibration isolation systems is shown.

This paper considers the construction of an active system with inertial compensation of vibroactive forces in which only acceleration sensors (accelerometers) are used to control the actuator.

2. Theory

Preliminary studies have shown that using information only about acceleration leads to an unstable system. It is necessary to form an estimate of the base response from a passive system. One of the options for solving this problem for the case of stationary single-frequency exposure from vibroactive units is considered in this work.

A basic diagram of a fairly simple active system with vibroactive forces inertial compensation and acceleration control is shown in Fig. 1.

![Figure 1. Basic diagram:](image)

- 1 – passive vibration isolation system; 2 – accelerometers; 3 – frequency meter; 4 – multiplication blocks; 5 – magnetic circuit; 6 – permanent magnet; 7 – control winding; 8 – spring; \tilde{R} – base reaction estimate; $F_0 \sin \omega t$ – vibroactive force
When developing the basic diagram, it was taken into account that the signal from the accelerometer in the oscillatory system with mass \(m_0 \) has the opposite sign and practically coincides in frequency and phase with the base reaction \(R(t) \). It is assumed that the values \(c_0 \) and \(b_0 \) of the passive system are known with sufficient accuracy. If the current frequency \(\omega \) is measured by block 1, then an approximate base reaction estimate can be done by the expression

\[
R(t) = x_0(t) = x_{\infty} \frac{c_0}{\omega^2} + x_0(t) b_0.
\]

(1)

The displacement \(x_0 \) in the steady regime:

\[
x_0(t) = x_\infty \sin(\omega t + \epsilon),
\]

where \(\epsilon \) is the phase shift between the disturbing force \(F(t) = F_0 \sin \omega t \) and \(x_0(t) \). Acceleration measured by an accelerometer with a single frequency impact will be determined as the second derivative of \(x_0(t) \)

\[
\ddot{x}_0(t) = -x_\infty \omega^2 \sin(\omega t + \epsilon).
\]

Calculation of the base reaction estimate according to the proposed algorithm is given by:

\[
\tilde{R}(t) = x_{\infty} (c_0 + b_0 \omega \sin(\omega t + \epsilon)).
\]

(2)

The base reaction \(R(t) \) measured, for example, by a force-measuring device, is determined by the dependence

\[
R(t) = x_0(t)c_0 + \dot{x}_0(t)b_0 = \ddot{x}_0 c_0 \sin(\omega t + \epsilon) + \ddot{x}_0 b_0 \omega \cos(\omega t + \epsilon).
\]

(3)

Expression (3) can be represented as:

\[
R(t) = \tilde{R} \sin(\omega t + \epsilon + \phi),
\]

where \(\tilde{R} = \ddot{x}_0 \sqrt{c_0^2 + b_0^2 \omega^2}, \phi = \frac{b_0 \omega}{c_0} \).

Comparing the amplitudes \(\tilde{R}(t) \) and \(R(t) \) it can be noticed that \(\tilde{R}(t) > R(t) \). Also, a phase mismatch at a small angle \(\phi \) is seen.

Fig. 1. also shows a structural diagram of an electrodynamic actuator with a movable niobium magnet (6) and a magnetic circuit (5), forming an inertial mass \(m_1 \). The mass \(m_1 \) can move translationally along the bearing slide. The control winding (7) is located on the actuator body.

When compiling a mathematical model, the following assumptions were made:

– single-frequency and unidirectional oscillations occur in the system;
– the motion of the masses \(m_0 \) and \(m_1 \) are considered relative to the equilibrium positions;
– the frequency meter is a non-inertial link.

Taking into account the assumptions made, the dynamics of the considered electromechanical system is described by the following equations:

\[
\begin{align*}
\sum_{i=0}^{m_0} m_i \ddot{x}_i + L \frac{di}{dt} + R_{Ohm} i + B l \dot{x}_i = u \\
\sum_{i=0}^{m_1} m_i \ddot{x}_i + L \frac{di}{dt} + R_{Ohm} i + B l \dot{x}_i = u \\
\end{align*}
\]

(4)

where

\[
\begin{align*}
\begin{array}{c}
u \text{ is control voltage at the coil winding;} \\
i \text{ is amperage;} \\
B l i \text{ is electrodynamic force;} \\
L, R_{Ohm} \text{ is inductance and active resistance of the coil;} \\
B \text{ is magnetic induction;} \\
l \text{ is conductor total length;} \\
K_0 \text{ is gain.}
\end{array}
\end{align*}
\]

The equations system (1) was analyzed in the Matlab/Simulink software package. The Matlab / Simulink model is shown in fig. 2., the vibration isolation coefficient \(K_{vi} = \frac{\Delta R(i\omega)}{\Delta F(i\omega)} \) frequency-response characteristics are constructed for the following variant of the system parameters: the
frequency meter is a non-inertial link; the values of \(m_0, c_0 \) and \(b_0 \) are known; \(K_0 = 100; \Delta R = \bar{R} - m_1 \ddot{x}_1 \).

Figure 2. Vibration isolation system model

The study of the control system stability for an electrodynamic drive in [14] showed that such a system is stable at any positive values of \(K_0 \). An increase in \(K_0 \) leads to the vibration isolation efficiency and the automatic control system oscillation increase.

Vibration isolation coefficient frequency-response characteristics for values \(m_0 = 100 \) kg; \(m_1 = 1 \) kg; \(c_0 = 3.56 \times 10^4 \) N/m; \(c_1 = 157.75 \) N/m; \(Bl = 10 \) T·m; \(L = 5 \times 10^{-3} \) H; \(R_{Ohm} = 10 \) Ohm; \(b_0 = 400 \) Ns/m; \(b_1 = 5 \) Ns/m; \(F_0 = 2 \) N are shown in Fig. 3.

Fig. 4 shows the values of the calculated estimate \(\bar{R}(t) \) and the base response \(R(t) \) for the external disturbance frequency \(f = 3 \) Hz. This frequency is equal to the natural frequency of the passive system \(f_0 = 3 \) Hz.

\(R(t) \) and \(\Delta R(t) \) graphs for the same values of \(f \) and \(f_0 \) are given in fig. 5. It corresponds to a point of 3 Hz on the frequency-response characteristic (Fig. 3).

Fig. 6 shows the inertial mass \(m_1 \) oscillations development in an electrodynamic drive with a gain \(K_0 = 100 \). Fig. 7 shows the inertial mass movement amplitude-frequency response characteristic.
Figure 3. $K_{\nu}(f)$ frequency-response characteristics

Figure 4. $R(t), \bar{R}(t)$ graphs: 1 - \bar{R}; 2 - $R(t)$; $f_0 = 3$ Hz; $f = 3$ Hz
Figure 5. \(R(t), \Delta R(t) \) graphs: 1 - \(R(t) \); 2 - \(\Delta R(t) \); \(f_0 = 3 \) Hz

Figure 6. Actuator inertial mass \(m_1 \) movement \(x_1(t), f = 3 \) Hz
3. Findings
The study of a sufficiently simple active vibration isolation system with inertial compensation of vibroactive forces showed that acceleration control by an electrodynamic drive is promising when evaluating the base response from the measured values of the passive system mass vibration frequency.

Studies have shown that the system has sufficient robustness, so if an error in setting c_0 and b_0 is 10%, the effectiveness of vibration isolation (K_{vi} value) decreases by 1%.

The use of only accelerometers for control will ensure the introduction of such devices into the practice of vibration isolation. It does not require structural changes in the device of elastic-dissipative suspension of vibroactive units.

References
[1] Kiryuhin A V, Tihonov V A, Chistyakov A G, Yablonskij V V 2011 Active vibration protection - appointment, principles, condition. 1. Designation and principles of development Problemy mashinostroeniya i avtomatizacii [Engineering & Automation Problems] (Moscow) pp 108–111
[2] Frolov K V 1981 Vibrations in technology: Handbook in 6 vols (Moscow: Mashinostroenie) vol 6 p 509
[3] Petrov A A 2014 Stability of a single-mass active vibration isolation system with force feedback Reports of the XXVII RAO Session Spb [Saint-Petersburg] pp 1033–1043.
[4] Rybak L A, Sinyov A V, Pashkov A I 1997 Synthesis of active systems of vibration isolation on space objects (Moscow: Yanus-K) p 160
[5] Shelenok E A 2014 Simulation of a forced vibrations adaptive damping combined system Informatika i sistemy upravleniya [Computer Science and Control Systems] pp 47–55.
[6] Melik-SHahnazarov V A, Strelov V I, Sofiyanchuk D V, Bezbah I Zh 2012 Electronic control circuits for new generation active vibration protection devices Eksperimental'nye issledovaniya. Novye razrabotki. Nauchnoe priborostroenie [Experimental research. New developments. Scientific instrument] vol 6, №3, pp 46–52
[7] Mihajlov V P, Tovmachenko D K, Bazinenkov A M, Stepanov G V 2016 Characteristics of a platform for active vibration isolation based on magnetorheological elastomers Izvestiya vysshikh uchebnyh zavedenij. Mashinostroenie [Proceedings of higher educational institutions. Engineering] №12, pp 51–57
[8] Sayapin S N, Artemenko Yu N, Myshonkova N V 2014 Precision problems of the cryogenic
space telescope of the Millimetron observatory Vestnik MGTU im. N.E.Baumana. Ser. «Estestvennye nauki» [MGTU named after N E Bauman Emerald, "Natural Sciences" series], №2, pp 50–56

[9] Parhomenko V N, Parhomenko V V 2012 Reducing the noise level of domestic nuclear submarines from 1965 to 1995 Fundamental'naya i prikladnaya geofizika [Fundamental and Applied Geophysics] vol 5, №2, pp 52–57

[10] Zyong Min’ Haj 2016 Mathematical methods and models of optimization of acoustic shielding systems for underwater vehicles: Ph.D. thesis Moskva [Moscow] p 215

[11] Kiryuhin AV, Fedorov V A, Mil'man O O 2015 Aktivnaya vibroizoliruyushchaya sistema truboprovodov avarijnoy sistemy raskholazhivaniya yadernogo reaktora podvodnoy lodki [Active vibration isolation system of pipelines of the emergency system of cooling of the nuclear reactor of a submarine] Patent RU 2556867 S1

[12] Burian Yu A, Shalaj V V, Zubarev A N, Polyakov S N 2017 Dynamic compensation of vibroactive forces in an oscillatory system Mekhanotronika, avtomatizaciya, upravlenie [Mechanotronics, automation, control] №3 pp 192–195

[13] Kiryuhin A V, Mil'man O O, Ptakhin A V 2018 Test results of an active system for reducing vibration forces and pressure pulsations Pis'ma v Zhurnal tekhнической fiziki [Letters to the Journal of Technical Physics] vol 44 №24 pp 38–44

[14] Burian Yu A and Sitnikov D V 2020 The active system of vibration isolation with electrodynamic actuator J. Phys.: Conf. Ser. 1441 012089 DOI:10.1088/1742-6596/1441/1/012089

[15] Burian Yu A, Sitnikov D V, Burian A A and Kalashnikov B A 2019 To the issue of the control law influence on the active dynamic vibration damper efficiency J. Phys.: Conf. Ser. 1210 01202 DOI:10.1088/1742-6596/1210/1/012028

[16] Kiryukhin A V, Milman O O, Ptakhin A V et al. 2018 Test Results of an Active System for Reducing Vibration Forces and Pressure Pulsations Tech. Phys. Lett. 44, 1136–1138 DOI: 10.1134/S1063785018120477