Energy release from hadron-quark phase transition in neutron stars and the axial w-mode of gravitational waves

Weikang Lin and Bao-An Li*

Department of Physics and Astronomy,
Texas A&M University-Commerce, Commerce, Texas 75429-3011, USA

Jun Xu and Che Ming Ko

Cyclotron Institute and Department of Physics and Astronomy,
Texas A&M University, College Station, Texas 77843-3366, USA

De-Hua Wen

Department of Physics, South China University of Technology, Guangzhou 510641, P.R. China

(Dated: November 30, 2010)

Abstract

Describing the hyperonic and quark phases of neutron stars with an isospin- and momentum-dependent effective interaction for the baryon octet and the MIT bag model, respectively, and using the Gibbs conditions to construct the mixed phase, we study the energy release due to the hadron-quark phase transition. Moreover, the frequency and damping time of the first axial w-mode of gravitational waves are studied for both hyperonic and hybrid stars. We find that the energy release is much more sensitive to the bag constant than the density dependence of the nuclear symmetry energy. Also, the frequency of the w-mode is found to be significantly different with or without the hadron-quark phase transition and depends strongly on the value of the bag constant. Effects of the density dependence of the nuclear symmetry energy become, however, important for large values of the bag constant that lead to higher hadron-quark transition densities.

PACS numbers: 04.40.Dg, 97.60.Jd, 04.30.-w, 26.60.-c

* Corresponding author: Bao-An Li@Tamu-Commerce.edu
Neutron stars (NSs) are among the most mysterious objects in the Universe. With a typical mass of about $M = 1.4M_\odot$ but a radius of only about 12 km, the average density in NSs is several times that in atomic nuclei. Their extreme compactness makes them a natural laboratory to test our knowledge about general relativity and properties of dense neutron-rich nuclear matter. Moreover, their generally large angular momentum and possible quadrupole deformation make them strong candidates among many possible sources to emit gravitational waves (GWs). It is well known that the estimated central density of some NSs may be higher than the predicted hadron-quark phase transition density, and thus there might be a quark core in these so-called hybrid stars, see, e.g., ref. for a recent review. Moreover, some originally hadronic NSs with central densities below but close to the hadron-quark transition density might increase their central densities due to, for example, their spin-downs or the accretion of masses from their binary companions. Therefore, the hadron-quark phase transition may occur in their cores, turning them into hybrid NSs as they evolve. Consequently, a micro-collapse is expected to occur as a result of the softer equation of state (EOS) of quark matter than that of hadronic matter. Because of the difference in the binding energies for the pure hyperonic and hybrid configurations of NSs, some energy will be released from the NS after the hadron-quark phase transition. To understand the mechanism of the hadron-quark phase transition and the associated energy release, their dependence on properties of the dense hadronic and quark matter, the way the energy release being dissipated in NSs or carried away by gravitational waves, and the gravitational wave signatures of the EOS of dense matter and the expected hadron-quark phase transition are among the many interesting questions currently under intense investigations in neutron star physics and gravitational wave astronomy, see, e.g., refs.

In a recent work involving some of us, several model EOSs for hybrid stars were obtained from an isospin- and momentum-dependent effective interaction (MDI) for the baryon octet, the MIT bag model for the quark matter and the Gibbs construction for the hadron-quark phase transition. Since there have been many other studies using similar approaches in the literature, it is especially worth mentioning that while the isospin-symmetric part of the hadronic EOSs used in this work is constrained by the experimental data on collective flow and kaon production in relativistic heavy-ion...
collisions \cite{19}, the symmetry energy term at sub-saturation densities is constrained in a
narrow range by the experimental data on isospin diffusion in heavy-ion collisions at inter-
mediate energies \cite{20}. The obtained EOSs with various bag constants were then used in
studying the main features of the hadron-quark phase transitions and the resulting mass-
radius correlations of hybrid stars. With this paper as a continuation of our recent work in
refs. \cite{13, 21–25}, we make new contributions to the fast growing field of nuclear astrophysics
in two ways. First of all, critical for understanding the physics of the hadron-quark phase
transition are the EOSs of both the hadronic and quark matter. Despite of the great efforts
made by both the astrophysics and the nuclear physics community, our current knowledge
about the EOS of dense matter either in the hadronic or quark phase is still very poor. More
specifically, for the neutron-rich hadronic matter the most uncertain part of the EOS is the
density dependence of the nuclear symmetry energy which encodes the energy associated
with the neutron-proton asymmetry \cite{20}. For the quark matter within the MIT bag model,
the most uncertain part of its EOS is the bag constant which measures the inward pressure
on the surface of the bag to balances the outward pressure originating from the Fermi motion
and interactions of quarks confined in the bag. It is thus of interest and also necessary to
examine the relative effects of the density dependence of the nuclear symmetry energy and
the bag constant on the total energy release due to the hadron-quark phase transition in
NSs. Secondly, a part of the energy release may be carried away by GWs. The maximum
amplitude of the latter can then be obtained by assuming that all the released energy is
available for GWs. Besides testing a fundamental prediction of general relativity, gravi-
tational waves hold the great promises to open up a completely new non-electromagnetic
window into the Universe. On the other hand, if detected in the future, the GWs may also
help probe properties of dense neutron-rich nuclear matter in NSs. Thus, it is important to
examine the imprints of the nuclear symmetry energy and the bag constant on the frequency
and damping time of GWs. In this work, we focus on the first axial w-mode of GWs due to
the disturbance of the space-time curvature \cite{20}. We find that the energy release obtained
using the Gibbs construction for the quark-hadron phase transition is much more sensitive
to the bag constant than the density dependence of the nuclear symmetry energy. Further-
more, the frequency of the w-mode is found to be significantly different with or without the
hadron-quark phase transition and depends strongly on the value of the bag constant B for
a given density dependence of the nuclear symmetry energy. However, when a larger bag
constant is used such that the hadron-quark phase transition happens at a higher baryon density, effects of the density dependence of the nuclear symmetry energy also become very important.

This article is organized as follows. In Section II, we summarize the MDI interaction, the MIT bag model, and the resulting model EOSs for hybrid stars obtained using the Gibbs construction. In Section III, the total energy release from hadron-quark phase transition in NSs and its dependence on the symmetry energy and the bag constant are presented. In Section IV, the frequency and damping time of the axial w-mode of GWs and their dependence on the symmetry energy and the bag constant are studied. Finally, a summary is given in Section V.

II. MODEL EQUATIONS OF STATE FOR HYBRID STARS

Since we are mostly interested in examining the relative effects of the nuclear symmetry energy and the bag constant on the total energy release during the hadron-quark phase transition in neutron stars as well as the frequency and damping time of the w-mode of emitted GWs, we first illustrate their effects on the EOS of hybrid stars by using the model introduced in ref. [13]. For completeness and to facilitate the discussions, we briefly summarize the EOSs for hybrid stars obtained in ref. [13] using the MDI interaction for the baryon octet, the MIT bag model for the quark matter and the Gibbs construction for the hadron-quark phase transition. We refer the reader to ref. [13] for details.

Assuming that the nucleon-hyperon and hyperon-hyperon interactions have the same density and momentum dependence as the nucleon-nucleon interaction with the interaction parameters fitted to known experimental data at normal nuclear matter density, the potential energy density of a hypernuclear matter due to interactions between any two baryons is

$$V_{bb'} = \sum_{\tau_b, \tau_{b'}} \left[\frac{A_{bb'}^{\tau_b}}{2\rho_0} \rho_{\tau_b} \rho_{\tau_{b'}} + \frac{A'_{bb'}^{\tau_b}}{2\rho_0} \tau_b \tau' \rho_{\tau_b} \rho_{\tau_{b'}} + \frac{B_{bb'}^{\tau_b}}{\sigma + 1} \rho_0^{\sigma-1} \left(\rho_{\tau_b} \rho_{\tau_{b'}} - x_{\tau_b} \tau_b \rho_{\tau_b} \rho_{\tau_{b'}} \right) \right] (1)$$

$$+ \frac{C_{\tau_b, \tau_{b'}}}{\rho_0} \int \int d^3p d^3p' \frac{f_{\tau_b}(\vec{r}, \vec{p}) f_{\tau_{b'}}(\vec{r}', \vec{p}')} {1 + (\vec{p} - \vec{p}')^2 / \Lambda^2},$$

where b (b') denotes the baryon octet included in the present study, i.e., N, Λ, Σ, and Ξ. The conventions for the isospin are $\tau_N = -1$ for neutron and 1 for proton, $\tau_\Lambda = 0$ for Λ, $\tau_\Sigma = -1$ for Σ^-, 0 for Σ^0 and 1 for Σ^+, and $\tau_\Xi = -1$ for Ξ^- and 1 for Ξ^0. The total baryon...
FIG. 1: (Color online) Density dependence of nuclear symmetry energy from the MDI interaction with parameter $x = 0$ and -1.

density is given by $\rho = \sum_b \sum_{\tau_b} \rho_{\tau_b}$, and $f_{\tau_b}(\vec{r}, \vec{p})$ is the phase-space distribution function of particle species τ_b. For hyperons in symmetric nuclear matter at saturation density, their potentials are fixed at $U_{\Lambda}(\rho_N = \rho_0) = -30$ MeV, $U_{\Xi}(\rho_N = \rho_0) = -18$ MeV and $U_{\Sigma}(\rho_N = \rho_0) = 30$ MeV for Λ, Ξ and Σ, respectively. The parameter x is used to model the isospin dependence of the interaction between two baryons. Its value can be adjusted to mimic different density dependence of the nuclear symmetry energy and is taken to be 0 or -1 in the present study. Shown in Fig. 1 is the corresponding density dependence of the nuclear symmetry energy $E_{\text{sym}}(\rho)$. It is worth noting that the latest experimental constraints on $E_{\text{sym}}(\rho)$ at sub-saturation densities are consistent with but span a region larger than the one covered by the $x = 0$ and $x = -1$ curves [27]. The experimental constraints on $E_{\text{sym}}(\rho)$ at supra-saturation densities are, on the other hand, still very uncertain. In fact, the high density behavior of $E_{\text{sym}}(\rho)$ is considered the most uncertain part of the EOS of dense neutron-rich nuclear matter [28]. One of the purposes of this work is to study effects of the symmetry energy. As shown in Fig. 1, the choice of $x = 0$ and $x = -1$ allows the variation of the symmetry energy in a large range at supra-saturation densities.

To obtain the complete EOS for hybrid stars, besides the EOS for hyperons described above, the MIT bag model for the quark matter [15, 16] and the Gibbs construction for the hadron-quark phase transition [17, 18] have been used in ref. [13]. As in previous studies, see, e.g., refs. [29, 30], the hybrid star is divided into three parts from the center to the surface: the liquid core, the inner crust, and the outer crust. It is in the liquid core where the matter
FIG. 2: (Color online) The EOSs of pure npeµ matter (nucleonic), hyperonic matter (MDI Hyp-R interaction) and hybrid stars with $B^{1/4} = 180$ MeV and 170 MeV, and symmetry energy parameter $x = 0$ (left window) and $x = -1$ (right window).

can be pure hadrons, quarks or a mixture of the two. In the inner crust, a parameterized EOS of $P = a + b\epsilon^{4/3}$ is used as in refs. [29, 30]. The outer crust usually consists of heavy nuclei and the electron gas, where the BPS EOS [31] is used. The transition density ρ_t between the liquid core and the inner crust has been consistently determined in refs. [29, 30]. Taking the density separating the inner from the outer crust to be $\rho_{out} = 2.46 \times 10^{-4}$ fm$^{-3}$, the parameters a and b can then be determined using the pressures and energy densities at ρ_t and ρ_{out}. Shown in Fig. 2 are the EOSs with $x = 0$ and $x = -1$, respectively, both using the MIT bag constant $B^{1/4} = 180$ MeV and 170 MeV. For comparisons, the pure npeµ (labeled as nucleonic) and hyperonic (labeled as MDI Hyp-R interaction) EOSs are also included. As it is well known, the appearance of hyperons and the hadron-quark phase transition softens the EOS of neutron star matter. Also, it is worth noting that the adiabatic coefficient $\gamma = d\log(P)/d\log(\rho)$ at saturation density is 2.63 and 2.57 for $x = 0$ and $x = -1$, respectively. The EOSs with $x = 0$ and $x = -1$ are thus about the same below and around the saturation density. However, it is interesting to see that the starting point and the degree of softening due to the appearance of hyperons are sensitive to $E_{sym}(\rho)$ at high densities. Moreover, the $E_{sym}(\rho)$ also affects appreciably the starting point of the hadron-quark mixed phase especially with the larger bag constant. Nevertheless, it is obvious that the starting point is much more sensitive to the bag constant B for a given symmetry energy parameter x. These features are consistent with those first noticed by Kutschera et al. [32]. It is also important to emphasize that since the mixed phase is described using the Gibbs instead
of the Maxwell construction, the energy density thus increases continuously with pressure across the mixed phase without a jump \[3^3\]. Consequently, the Sidov criterium that a stable hybrid star must satisfy \[7, 3^4\], i.e.,
\[\frac{\epsilon_q}{\epsilon_H} < \frac{3}{2}(1 + \frac{P}{\epsilon_H}) \]
with \(P\), \(\epsilon_q\) and \(\epsilon_H\) denoting, respectively, the pressure, the energy density of quarks and hadrons at the transition point, is automatically satisfied.

III. TOTAL ENERGY RELEASE DUE TO HADRON-QUARK PHASE TRANSITION IN NEUTRON STARS

The amount of energy release during the micro-collapse of a neutron star triggered by the hadron-quark phase transition is given by the change in its binding energy before and after the phase transition. The binding energy of a neutron star can be obtained from first solving the Tolman-Oppenheimer-Volkoff (TOV) equation with the corresponding EOS \((G = c = 1)\),

\[
\begin{align*}
\frac{dP(r)}{dr} &= -(m(r) + 4\pi r^3 P(r))\left(\epsilon(r) + P(r)\right) / r(r - 2m(r)), \\
\frac{dm(r)}{dr} &= 4\pi \epsilon(r)r^2,
\end{align*}
\]

where \(P(r)\) and \(\epsilon(r)\) are the pressure and the energy density at radius \(r\). The binding energy of a neutron star is then given by \[3^5\]

\[E_b = M_g - M_{\text{bar}},\]

where \(M_g\) is the gravitational mass of the neutron star measured from infinity \[3^6\], i.e.,

\[M_g = \int_0^R 4\pi r^2 \epsilon(r) dr.\]

The \(M_{\text{bar}}\) is the baryonic mass of the neutron star, namely, the mass when all the matter in the neutron star is dispersed to infinity \[3^5\]. It can be calculated from \(M_{\text{bar}} = NM_B\), where \(M_B = 1.66 \times 10^{-24} g\) is the nucleon mass and \(N\) is the total number of baryons \[3^5\], i.e.,

\[N = \int_0^R 4\pi r^2 \left[1 - \frac{2m(r)}{r}\right]^{-1/2} \rho_B(r) dr\]

with \(\rho_B(r)\) being the baryon density profile of the neutron star. While the total energy release \(E_g\) during the phase transition is the difference of Eq. \(3)\) before and after the micro-collapse, it reduces to the difference in gravitational mass for a hadronic (h) and a hybrid...
star (q) as a result of baryon number conservation, namely,

\[E_g = M_{g,h} - M_{g,q}. \]

\[(6) \]

FIG. 3: Total energy release due to the hadron-quark phase transition as a function of the baryonic mass of a neutron star.

TABLE I: The baryon number \((N)\), gravitational masses of hyperonic stars \((M_g(H))\), hybrid stars \((M_g(HQ))\), the quark core including the mixed phase \((M_g(\text{core}))\), the radii of hyperonic \((R(H))\) and hybrid stars \((R(HQ))\) as well as the energy release \((E_g)\) with \(x = 0\) and \(B^{1/4} = 170\) MeV. All masses are in unit of \(M_\odot\) and radii in km.

\(N\)	\(M_g(H)\)	\(M_g(HQ)\)	\(M_g(\text{core})\)	\(R(H)\)	\(R(HQ)\)	\(\log(E_g)(\text{erg})\)
1.4E57	1.0861	1.0798	0.886659	11.2917	10.1679	52.0517
1.5E57	1.1570	1.1491	0.971092	11.3044	10.1256	52.1492
1.6E57	1.2270	1.2173	1.054172	11.3041	10.0691	52.2379
1.7E57	1.2960	1.2843	1.135890	11.2909	9.9935	52.3199
1.8E57	1.3641	1.3501	1.217399	11.2620	9.8796	52.3977

Shown in Fig. 3 is the energy release as a function of the baryonic mass \(M_\text{bar}/M_\odot\) of a neutron star. To be more quantitative, shown in tables I, II, III and IV are detailed comparisons of the baryon number \((N)\), gravitational masses of hyperonic stars \((M_g(H))\),
hybrid stars ($M_g(HQ)$), the quark core including the mixed phase (M_g(core)), the radii of hyperonic ($R(H)$) and hybrid stars ($R(HQ)$) as well as the energy release (E_g). It is seen that the energy release increases with M_{bar}/M_\odot and is higher with the smaller ($B^{1/4} = 170$ MeV) bag constant B but stiffer ($x = -1$) symmetry energy. Effects of varying the bag constant B are obviously more significant than varying the symmetry energy parameter x, especially on the core mass and thus the energy release. The variation of the bag constant B also affects appreciably the radii of hybrid stars. On the other hand, the variation of the symmetry energy parameter x only has appreciable effects on the radii of both hyperonic and hybrid stars. It’s effects on the energy release is much smaller than the bag constant B. It is worth noting that it was first shown in ref. [37] that the binding energies of NSs consisting of pure $npe\mu$ matter depend strongly on the density dependence of the nuclear symmetry energy. It is easily understandable that the difference in binding energies before and after the hadron-quark phase transition becomes less sensitive to the symmetry energy. Some of these features can be better understood from inspecting the gravitational mass-radius and mass-central density correlations with and without the hadron-quark phase transition.

TABLE II: Same as I but with $x = 0$ and $B^{1/4} = 180$ MeV.

N	$M_g(H)$	$M_g(HQ)$	M_g(core)	$R(H)$	$R(HQ)$	log(E_g)(erg)
1.4E57	1.0861	1.0858	0.335018	11.2917	11.0960	50.7137
1.5E57	1.1570	1.1564	0.457409	11.3044	11.0076	51.0370
1.6E57	1.2270	1.2259	0.582411	11.3041	10.8971	51.2965
1.7E57	1.2960	1.2942	0.708860	11.2909	10.7625	51.5124
1.8E57	1.3641	1.3612	0.838033	11.2620	10.5902	51.7018

TABLE III: Same as I but with $x = -1$ and $B^{1/4} = 170$ MeV.

N	$M_g(H)$	$M_g(HQ)$	M_g(core)	$R(H)$	$R(HQ)$	log(E_g)(erg)
1.4E57	1.0911	1.0813	0.865139	12.5570	10.3024	52.2408
1.5E57	1.1632	1.1507	0.953706	12.5975	10.2280	52.3516
1.6E57	1.2346	1.2189	1.040034	12.6178	10.1446	52.4498
1.7E57	1.3052	1.2859	1.124924	12.6185	10.0418	52.5385
1.8E57	1.3749	1.3516	1.209269	12.5998	9.8992	52.6205
TABLE IV: Same as I but with \(x = -1 \) and \(B^{1/4} = 180 \) MeV.

\(N \)	\(M_g(H) \)	\(M_g(HQ) \)	\(M_g(\text{core}) \)	\(R(H) \)	\(R(HQ) \)	\(\log(E_g) \) (erg)
1.4E57	1.0911	1.0904	0.389260	12.5570	11.8321	51.0467
1.5E57	1.1632	1.1616	0.563910	12.5975	11.4949	51.4673
1.6E57	1.2346	1.2314	0.716042	12.6178	11.2027	51.7548
1.7E57	1.3052	1.3999	0.855991	12.6185	10.9207	51.9731
1.8E57	1.3749	1.3670	0.990235	12.5998	10.6140	52.1525

using different bag constants and symmetry energy functionals. Shown in Fig. 4 are the gravitational mass \(M_g \) as a function of radius \(R \) and central density \(\rho_c \) for several relevant cases. It is seen that with \(B^{1/4} = 170 \) MeV the phase transition happens at a significantly lower density, resulting in a smaller maximum mass than the case with \(B^{1/4} = 180 \) MeV. On the other hand, for a given bag constant \(B \), the hyperonic EOS is stiffer with a stiffer symmetry energy, leading to a larger radius and thus a lower central density and a smaller maximum mass. The mass difference before and after the hadron-quark phase transition is therefore also larger.

FIG. 4: (Color online) The mass-radius and mass-central density correlations for pure npe\(\mu \) matter (nucleonic), hyperonic matter (MDI Hyp-R interaction) and hybrid stars with \(B^{1/4} = 180 \) MeV and 170 MeV, and symmetry energy parameter \(x = 0 \) (left window) and \(x = -1 \) (right window).

To see how the total energy release is related to emitted GWs, we add a few comments as follows. They are also useful for explaining why we study in detail in the next section the frequency and damping time of the \(w \)-mode of GWs. Generally, the magnitude of GWs
is denoted by the gravitational strain amplitude in the following wave form:

\[h(t) = h_0 e^{-(t/\tau_{gw})} \sin(\omega_0 t), \]

(7)

where \(h_0 \) is the initial amplitude, \(\omega_0 \) is the angular frequency and \(\tau_{gw} \) is the damping timescale. Assuming all energy release \(E_g \) is available to GW emission, the maximum value of the initial amplitude is then

\[h_0 = \frac{4}{\omega_0 D} \left[\frac{E_g}{\tau_{gw}} \right]^{1/2}, \]

(8)

where \(D \) is the distance of the source from the detector. Thus, the maximum strain amplitude is directly determined by the energy release. However, not all the energy release is available for emitting gravitational waves as the energy can be dissipated by other mechanisms. In fact, most of the energy release from the hadron-quark phase transition would be used to excite radial oscillations. Moreover, the pure radial models do not generate any gravitational waves unless they are coupled with rotation. However, because of angular momentum conservation, rotating neutron stars are more likely to be formed during supernova explosions. If there are some other dissipating mechanisms of timescale \(\tau_d \) during the hadron-quark phase transition in neutron stars, the fraction of energy dissipated by gravitational waves is then approximately \(f_g = 1/(1 + \tau_{gw}/\tau_d) \). Thus, the relative damping timescale of the GWs with respect to that due to other mechanisms determines the fraction of the total energy release that can be carried away by GWs. In the literature, time scales of various GW modes and various energy dissipation mechanisms have been considered, see, e.g., refs. and references therein. As for many other interesting questions in the field, the conclusions so far are still very model dependent.

IV. FREQUENCY AND DAMPING TIME OF THE AXIAL \(w \)-MODE OF GRAVITATIONAL WAVES

GWs from non-radial oscillations of NSs carry important information about their internal structures. One special type of normal modes of oscillations that only exists in general relativity is the so called \(w \)-mode associated with the perturbation of the space-time curvature and for which the motion of the fluid is negligible. While the frequencies of the \(w \)-mode is significantly above the operating frequencies of existing GW detectors, it is
nevertheless useful to further investigate what information about the internal structure of NSs may be revealed from a future detection of the w-mode of GWs.

According to Chandrasekhar & Ferrari [26], the axial perturbation equations for a static neutron star can be simplified by introducing a function $z(r)$ that is constructed from the radial part of the perturbed axial metric components. It satisfies a Schrödinger-like differential equation

$$\frac{d^2 z}{dr^2} + [\omega^2 - V(r)]z = 0 \quad (9)$$

where $\omega(= \omega_0 + i\omega_1)$ is the complex eigen-frequency of the axial w-mode and r_* is the tortoise coordinate defined by

$$\frac{d}{dr_*} = e^{\lambda - \nu} \frac{d}{dr} \quad (10)$$

where the e^ν and e^λ are the metric functions given by the line element for a static neutron star [26]. Inside a neutron star, the potential function V is defined by

$$V = \frac{e^{2\nu}}{r^3} [l(l+1)r + 4\pi r^3(\rho(r) - P(r)) - 6m(r)] \quad (11)$$

with l the spherical harmonics index (used in describing the perturbed metric and only the case $l = 2$ is considered here), $\rho(r)$ and $P(r)$ the density and pressure, and $m(r)$ the mass inside radius r, respectively. Outside the neutron star, Eq. (11) reduces to

$$V = \frac{r - 2M_g}{r^4} [l(l+1)r - 6M_g] \quad (12)$$

where M_g is the total gravitational mass of the neutron star. The solutions to this problem are subject to a set of boundary conditions (BC) constructed by Chandrasekhar & Ferrari [26]: regular BC at the neutron star center, continuous BC at the surface and behaving as a purely outgoing wave at infinity. In a recent work [25] using the continued fraction method [44, 45], some of us have studied the frequency and damping time of the axial w-mode for NSs containing only the $npe\mu$ matter. It was found that the density dependence of the symmetry energy has strong imprints on both the frequency and damping time of the axial w-mode. In this section, we examine how the appearance of hyperons and the hadron-quark phase transition may affect the frequency and damping time of the axial w-mode. As mentioned earlier, we focus on the relative effects of the symmetry energy and the bag constant on the first w-mode.

Shown in Fig. 5 is the frequency as a function of the neutron star compactness M_g/R for the four situations considered, i.e., pure $npe\mu$ star, hyperonic star, and hybrid stars
FIG. 5: (Color online) Frequency of the first w-mode as a function of the neutron star compactness M_g/R with the symmetry energy parameter $x = 0$ (left window) and $x = -1$ (right window).

with two different values for the bag constant. It is interesting to see that the frequency is very sensitive to the EOS used. This is consistent with the earlier findings in refs. [25, 43] where a large ensemble of hadronic EOSs were used to describe the $npe\mu$ matter. Compared to these previous studies, it is seen that as the EOS softens when hyperons appear or the hadron-quark phase transition happens, the frequency increases quickly. It is also seen that the effect of the hadron-quark phase transition is dramatic. Comparing results in the two figures with $x = 0$ and $x = -1$, it is seen that the bag constant B plays a much stronger role than the symmetry energy parameter x.

FIG. 6: (Color online) Damping time of the first w-mode as a function of the neutron star compactness M_g/R with the symmetry energy parameter $x = 0$ (left window) and $x = -1$ (right window).
Shown in Fig. 6 is the damping time as a function of M_g/R for the four situations considered. It is seen that the damping time is longer for more compact NSs. Effects of the EOS on the damping time are appreciable but not as strong as those on the frequency. This might turn out to be an advantage for extracting information about the EOS of neutron star matter from analyzing the GW signals.

![Graph showing damping time versus frequency for hybrid stars.](image)

FIG. 7: (Color online) Damping time versus frequency of the first ω-mode for hybrid stars.

To assess more clearly the relative effects of the symmetry energy and bag constant, we present in Fig. 7 the correlation between the damping time and the frequency for hybrid stars. For the softer EOS with $B^{1/4} = 170$ MeV, the effect of the symmetry energy is small. On the other hand, for the stiffer EOS with $B^{1/4} = 180$ MeV, the density dependence of the symmetry energy can affect the frequency significantly. This is because the hadron-quark transition happens at a higher baryon density when a large bag constant is used as shown in Fig. 2. The symmetry energy in the hadronic phase then also plays an important role in determining the structure of NSs. Nevertheless, comparing frequencies with the same x parameter but different values of B, it is clear that the bag constant has a much stronger effect as it changes the underlying EOS of dense matter more significantly.

V. SUMMARY

Using an isospin- and momentum-dependent effective interaction for the baryon octet and the MIT bag model to describe, respectively, the hadronic and quark phases of neutron
stars, we have investigated the maximum available energy for gravitational wave emission due to the micro-collapse triggered by the hadron-quark phase transition in neutron stars. Moreover, the frequency and damping time of the first axial \(w \)-mode of gravitational waves have been studied for both hadronic and hybrid NSs. Since the most uncertain part of the EOS of a neutron star is the density dependence of the nuclear symmetry energy in the neutron-rich nucleonic matter and the bag constant in the quark matter within the MIT bag model, we have studied effects of the symmetry energy and bag constant on the energy release as well as the frequency and damping time of the first axial \(w \)-mode of GWs from neutron stars. We have found that the energy release is much more sensitive to the bag constant than the density dependence of the nuclear symmetry energy. The frequency of the \(w \)-mode has been found to be significantly different with or without the hadron-quark phase transition and depends strongly on the bag constant. Effects of the symmetry energy and bag constant on the damping time have also been found to be appreciable but not as strong as those on the frequency. We have further found that the effect of the symmetry energy on the frequency becomes stronger with a larger value of the bag constant that leads to a higher hadron-quark transition density. While the predicted frequency of the \(w \)-mode is significantly above the bands of operating frequencies of the existing GW detectors, our results have indicated that the frequency of the \(w \)-mode can indeed carry important information about the internal structure of NSs and the properties of dense neutron-rich matter.

VI. ACKNOWLEDGEMENT

This work was supported in part by the US National Science Foundation Grant Nos. PHY-0757839 and PHY-0758115, the Welch Foundation under Grant No. A-1358, the Texas Coordinating Board of Higher Education Grant No.003565-0004-2007, the Young Teachers’ Training Program from China Scholarship Council under Grant No. 2007109651, the National Natural Science Foundation of China under Grant No.10947023 and the Fundamental Research Funds for the Central University, China under Grant No.2009ZM0193.

[1] J. M. Lattimer and M. Prakash, Science, 304, 536 (2004).
[2] M. Maggiore, *Gravitational Waves Vol.1*, Oxford, 2008.

[3] I. Bombaci, Proceedings of the Eleventh Marcel Grossman Meeting on General Relativity, Eds. H. Kleinert, R.T. Jantzen and R. Ruffini. World Scientific, 2008, p. 605 - 628, arXiv: 0809.4228 [gr-qc].

[4] J.C.N. de Araujo and G.F. Marranghello, Gen. Rel. and Astro. **41**, 1389 (2008).

[5] K. S. Cheng and Z. G. Dai, Astrophys. J. **492**, 281 (1998).

[6] P. Haensel, J. L. Zdunik and R. Schaeffer, Astron. Astrophys. **217**, 137 (1989).

[7] G. F. Marranghello, C. A. Z. Vasconcellos and J. A. de Freitas Pacheco, Phs. Rev. D **66**, 064027 (2002).

[8] N. Andersson, V. Ferrari, D.I. Jones, K.D. Kokkotas, B. Krishnan, J. Read, L. Rezzolla, and B. Zink, review article for Einstein Telescope special issue in Gen. Rel. Grav., arXiv: 0912.0384 [astro-ph.SR].

[9] J.C.N. de Araujo and G.F. Marranghello, Journal of Physics: Conference Series **122**, 012041 (2008), and references therein.

[10] Omar Benhar, Valeria Ferrari, Leonardo Gualtieri, and Stefania Marassi, Gen. Rel. Grav. **39**, 1323 (2007).

[11] J.A. de Freitas Pacheco, Research in Astron. Astrophys. **10**, 1071 (2010).

[12] S. Schettler, T. Boeckel and J. Schaffner-Bielich, arXiv: 1010.4857 [astro-ph.CO].

[13] J. Xu, L.W. Chen, C.M. Ko, and B.A. Li, Phys. Rev. C **81**, 055803 (2010).

[14] C.B. Das, S. Das Gupta, C. Gale, and B.A. Li, Phys. Rev. C **67**, 034611 (2003).

[15] A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf, Phys. Rev. D **9**, 12 (1974).

[16] U. Heinz, P. R. Subramanian, H. Stocker and W. Greiner, Nucl. Phys. **12**, 1237 (1986).

[17] N.K. Glendenning, Phys. Rev. D **46**, 1274 (1992).

[18] N.K. Glendenning, Phys. Rep. **342**, 393 (2001).

[19] P. Danielewicz, R. Lacey and W. G. Lynch, Science **298**, 1592 (2002).

[20] B.A. Li, L.W. Chen and C.M. Ko, Phys. Rep. **464**, 113 (2008).

[21] B.A. Li and A. W. Steiner, Phys. Lett. **B642**, 436 (2006).

[22] P.G. Krastev, B.A. Li and A. Worley, Astrophys. J. **676**, 1170 (2008).

[23] A. Worley, P.G. Krastev and B.A. Li, Astrophys. J. **685**, 390 (2008).

[24] P.G. Krastev, B.A. Li and A. Worley, Phys. Lett. **B668**, 1 (2008).
[25] D.H. Wen, B.A. Li, and P.G. Krastev, Phys. Rev. C 80, 025801 (2009).
[26] S. Chandrasekhar and V. Ferrari, Proc. R. Soc. Lond. A 432, 247 (1991); ibid 434, 449 (1991).
[27] C. Xu, B.A. Li and L.W. Chen, Phys. Rev. C 82, 054607 (2010).
[28] M. Kutschera, Phys. Lett. B340, 1 (1994).
[29] J. Xu, L.W. Chen, B.A. Li, and H.R. Ma, Phys. Rev. C 79, 035802 (2009).
[30] J. Xu, L.W. Chen, B.A. Li, and H.R. Ma, Astrophys. J. 697, 1549 (2009).
[31] G. Baym, C. Pethick, and P. Sutherland, Astrophys. J. 170, 299 (1971).
[32] M. Kutschera and J. Niemiec, Phys. Rev. C 62, 025802 (2000).
[33] A. Bhattacharyya, I. N. Mishustin, and W. Greiner, J. Phys. G 37, 025201 (2010).
[34] Z. Seidov, Ast. Zh. 48, 443, (1971).
[35] Steven Weinberg, page 303 in Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, John Wiley & Sons, Inc., 1972.
[36] James B. Hartle, Gravity, Addison Wesley, 2003.
[37] W.G. Newton and B.A. Li, Phys. Rev. C 80, 065809 (2009).
[38] J. de Freitas Pacheco, Proceedings of the VI International Workshop on Relativistic Aspects of Nuclear Physics, ed. T.Kodama et al., World Scientific, (2001), p.158.
[39] H. Sotani, K. Tominaga and K. Maeda, Phys. Rev. D 65, 024010 (2002).
[40] W.Y. Chau, Astrophys. J. 147, 664 (1967).
[41] K.D. Kokkotas and B.F. Schutz, MNRAS 255, 119 (1992).
[42] N. Andersson and K.D. Kokkotas, MNRAS 299, 1059 (1998).
[43] O. Benhar, Mod. Phys. Lett. A20, 2335 (2005).
[44] M. Leins, H.P. Nollert, and M.H. Soffel, Phys. Rev. D 48, 3467 (1993).
[45] O. Benhar, E. Berti, and V. Ferrari, MNRAS 310, 797 (1999).