Carbapenemase Producers among Gram Negative Bacteria from Environmental and Clinical Samples in Makurdi, Nigeria

F. B. Omoregbe¹* and O. E. Fagade²

¹Department of Microbiology, Federal University of Agriculture, Makurdi, Benue State, Nigeria.
²Department of Microbiology, University of Ibadan, Nigeria.

Authors’ contributions

This work was carried out in collaboration between both authors. Author FBO designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Author OEF Supervised the study. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JAMB/2020/v20i330223
Editor(s):
(1) P. Rama Bhat, Alva’s College, India.
Reviewers:
(1) Florence Najjuka, Makerere University College of Health Sciences, Uganda.
(2) Zumaana Rafiq, Dr. M. G. R. Educational and Research Institute, India.
Complete Peer review History: http://www.sdiarticle4.com/review-history/54854

Received 27 December 2019
Accepted 01 March 2020
Published 14 March 2020

ABSTRACT

Carbapenem-resistant Gram negative bacteria in healthcare setting is an important medical problem and a major threat. These Gram negative bacteria are rapidly spreading worldwide. Clinical bacteria isolates were obtained from clinical samples Urine, High Vaginal Swab (HVS), Wound Swab (WS), Stools, Ear Swab (ES), Endocervical Swab (ECS), Sputum and Blood, from two tertiary hospitals. Environmental samples were also collected from both hospitals using standard sampling techniques. Multiple drug resistant (MDR) patterns were determined using disc diffusion technique. Biochemical tests were used in the identification. Antibiotics sensitivity of clinical and environmental isolates was verified using disc diffusion method. Detection of carbapenemase producing bacteria was done using double disc synergy test and modified Hodge test. Data obtained were analysed using descriptive statistics. Clinical bacteria (403) obtained were distributed 271 Federal Medical Centre(FMC) and 132 Benue State University Teaching Hospital (BSUTH) out of which 299 were confirmed Gram negative, 218 (FMC) and 81 (BSUTH), respectively. Thirty-nine Gram negative bacteria were also isolated from the environmental samples. A higher percentage of carbapenemase producers (12.8%) were found in environmental samples.
isolates compared to 2.7% in clinical isolates. Any levels of resistance to carbapenems calls for the need to reduce the indiscriminate use of this group of antibiotics and monitoring both in the hospitals and environment.

Keywords: Gram negative bacteria; antibiotic resistance; carbapenemase.

1. INTRODUCTION

The emergence of resistant bacteria decades after the first patients were treated with antibiotics led to concerns on the efficacy of antibiotics even though its discovery transformed medicine and saved millions of lives [1]. The challenge has been traced to overuse and misuse of medications and slow development of new drugs by the pharmaceutical industries [2,3]. The Centre for Disease Control and Prevention (CDC) classified a number of bacteria based on urgent, serious, and concern they pose to human health leading to coordinated efforts in research to finding solutions to the menace [4,5].

In hospitals, antibiotics are widely used both to treat pre-existing bacterial infections and prevent infection of surgical incisions. Antibiotics can affect the normal, friendly bacterial populations in patients. The population dynamics of the flora changes by chance mutations of drug-resistant bacteria cells when they first entered the hospital. Antibiotic treatment eliminates most or all of the sensitive bacterial cells from these patients. Freed from competition with these sensitive strains, drug-resistant cells can rise to high frequency. For an individual patient, emergence of antibiotic resistance is bad news [6].

A patient with a resistant strain is also bad news for the other patients. Through no fault of her own, but as a result of cross infection which could occur through the hands of care givers and other sources, a hospitalized patient may not keep resistant strains to him/herself. Medical staffs often visit multiple patients without washing their hands, clothing and equipment [7]. As a result, healthcare workers often serve as vectors, carrying resistant strains from infected patients to patients who’s normal, drug sensitive flora have been killed by antibiotic treatment. The resistant strains do not encounter competitors in these flora-free patients, and easily establish new, resistant infections. Transmission of such resistant strains among hospitalized patients accounts for a large fraction of new resistant infections. Patients who would otherwise have recovered from surgery with very few complications sometimes acquire resistant infections that significantly prolong their stay in the hospital. The hospital patients carrying resistant bacteria sometimes transmit those resistant strains to family members which can lead to community infection.

The global spread of carbapenem-resistant Enterobacteriaceae (CRE) is a major challenge in clinical and public health settings. Infections with CRE organisms that are multidrug-resistant (that is, non-susceptible to at least one antimicrobial in at least three antimicrobial classes), extensively drug-resistant, or pan-drug-resistant are difficult to treat resulting in severe infections [8,9]. Examples of the carbapenems are, ertapenem, imipenem, meropenem, and doripenem used often as antimicrobials of last resort to treat infections due to extended-spectrum beta-lactamase (ESBL) or plasmid-mediated Amp C (pAmpC) - producing organisms of the Enterobacteriaceae family. Such pathogens are frequently also resistant to other antibiotic classes including quinolones, aminoglycosides, trimethoprim sulfamethoxazole, and other classes [10]. To ensure their containment, wide dissemination of information and robust multifaceted strategies involving microbiologists, clinicians, and decision makers are essential. Carbapenem-resistant Enterobacteriaceae (CRE) are a group of bacteria that have become resistant to nearly all available antibiotics, including carbapenems.

Phenotypic detection of carbapenemase production in bacteria is achieved by performing either; i) the modified Hodge test (MHT) [11,12,13,14]. Or ii) the modified carbapenem inactivation method (mCIM), a modification of the carbapenem inactivation method (CIM) [15,16,17]. These methods have not only been documented to be simple and cost effective but have also been documented to have high sensitivity [11,12,13,14]. Despite the high sensitivity of MHT, it has been linked to a high frequency of false-positive results especially in carbapenem resistant Enterobacteriaceae that are producers of ESBLs and AmpC β-lactamases and low sensitivity in regards the detection of NDM-1 producing bacteria [18,19]. In
addition to this, the use of E.coli ATCC 25922 has also been implicated with low sensitivity, specificity and repeatability of MHT [18]. However, replacing E. coli ATCC 25922 with Klebsiella pneumoniae ATCC 700603 has been shown to provide high sensitivity, specificity and repeatability of the test [20]. MHT has also been associated with inability to discriminate between the different classes of carbapenemases (i.e. Klebsiella pneumoniae carbapenemase, Metallo β-lactamase and Oxacillinases) and also difficulty in interpretation of results has been reported [21]. Despite these, MHT remains a phenotypic reference method for confirmation of carbapenemase production [21]. The aim of this study was to isolate and characterized β-lactam resistant Gram-negative bacteria from clinical, and environmental sources and to phenotypically determined carbapenemase- producers among them in two tertiary healthcare facilities.

2. MATERIALS AND METHODS

2.1 Sample Site/Collection

This study was conducted to study carbapenemases in Gram negative bacteria from wastewater, sediments and clinical bacterial isolates from two hospitals in Makurdi, Benue State, Nigeria. The two hospitals involved were Federal Medical Centre (FMC) and Benue State Teaching Hospital (BSUTH). Approval was obtained from the two hospitals before the commencement of the study. Ethical approval was obtained from the government of Benue State of Nigeria. Ministry of Health and Human Services with reference number MOH/STA/204/VOL.1/31. During the period of study, these samples were collected between 10 March and 3 June, 2016. Clinical isolates (Stock culture) were obtained from the laboratory benches of the Medical Microbiology Department and samples of wastewater and wastewater sediments were collected from sewers (gutters) from the two tertiary hospitals. Sites selected for the study were drains from various wards which includes; The theatre, Female surgical ward, Pediatric ward, Male and female medical ward, Amenity ward (ward block), Resident doctors hostel and cafeteria, Laboratory (Chemical pathology, Microbiology, Hematology and Histopathology), Administrative block, and Accident and Emergency ward (A and E) BSUTH, FMC samples site include Laboratory, A ward (Male ward 18 yrs and above), Gynecology ward, Theatre and Female ward. Samples were subcultured routinely onto slants prepared from nutrient agar.

2.2 Wastewater and Sediment Samples

Wastewater and sediment samples were collected in the month of September, 2016. The water samples were collected into sterile bottles from the various units aseptically by using disposable micro pipette at each collection unit. Samples were safely transported by road to the laboratory, and immediately analysed.

Sediments were collected by wearing gloves and using clean hand trowel from different wastewater sampling sites to scoop sediments from the bottom of the sewers and introduced into sterile Bijou bottles. The trowel was properly cleaned using alcohol (ethanol 75%) before using in another site to avoid contamination.

2.3 Clinical Bacterial Isolates

Clinical bacterial (Gram-negative multidrug resistant stock culture) isolates were collected from stocks from the laboratory benches of the Department of Medical Microbiology of the hospitals listed above. Collection of clinical isolates was done between 10 March and 3 June, 2016. Samples identities were confirmed using different laboratory synthetic media and biochemical tests. The clinical samples were from samples of body fluid (urine and blood samples), swab (high vaginal, endocervical, wound, ear and sputum samples) and stool samples.

2.4 Isolation of β-lactam Resistant Gram-negative Bacteria from Environmental Sources

Beta lactam resistant Gram negative bacteria were isolated from wastewater and wastewater sediments. This was done by supplementing Peptone water with Ampicillin antimicrobial susceptibility test disc 10 µg (Oxoid) as described by Liu et al. (2010). Stock solution of peptone water was prepared according to manufacturer instructions. 5 ml each was dispensed into an incubating bottle and sterilized at 121°C for 15 minutes and allowed to cool. The sterile ampicillin discs 10 µg was aseptically introduced into the sterile peptone water at 50°C to a final concentration of 60 µg/ml.
Water: For the wastewater samples, 1 ml was introduced into the sterile incubating bottles containing the sterile peptone water supplemented with ampicillin discs 60 µ/ml and incubated for 18-24 h at 37ºC.

Sediments: Serial dilutions were carried out with the sediment samples and 1 ml of 10⁻¹ diluent was introduced into the sterile peptone water supplemented with ampicillin discs 60 µ/ml and also incubated for 18-24 hours at 37ºC.

The 18-24 h incubated water and sediments samples above were subsequently streaked on MaConkey agar with the aid of sterile wire loop and incubated at 37ºC for 18-24 h. This was done for all the wastewater and sediments samples.

2.5 Selection for Carbapenems Resistant Bacteria Isolates Using Disc Diffusion Method

Antibiotic testing was carried out on both β-lactam resistant organisms selected on MaConkey agar and all the Gram negative confirmed clinical bacteria isolates collected from the two hospitals, Benue State University Teaching Hospital and Federal Medical Center Makurdi using the Kirby-Bauer method [22].

The 18-24 hours old culture of each isolate was introduced into a sterile test tube containing normal saline (5 ml) and its turbidity adjusted to match 0.5 MacFarland standards. Sterile cotton swab stick was dipped into the standardized bacterial test suspension and used to evenly inoculate the entire surface of a Mueller-Hinton agar plates (HIMEDIA, INDIA). After the agar surface had dried for about 5 minutes, Imipenem 10 µg, Ertapenem 10 µg, Ceftazidine 30 µg, Ceftriaxone 30 µg, and Ciprofloxacin 5 µg antibiotic discs (Oxoid) were placed on the inoculated plate using sterile forceps. The plates were allowed to remain on the bench for 1 hour for a period of pre-incubation diffusion and incubated at 35ºC. After 16-18 h of incubation, the diameters of the zones of inhibition were measured with meter rule and recorded in millimeter (mm). This was done for all the isolates selected.

The CLSI (2014) standard was used for the interpretation of the zone of inhibition of the selected antibiotic discs used.

2.6 Detection of Carbapenemase Producers Using Modified Hodge Test (MHT)

A typed culture E. coli ATCC 25922 of 0.5 McFarland was prepared. A dilution 1:10 was made by adding 0.5 ml of 0.5 McFarland E. coli suspension to 4.5 ml of sterile normal saline. Mueller-Hinton agar was prepared by dissolving 9.5 g in 250 ml of water and sterilized at 121ºC for 15 minutes. This was then poured into Petri dishes after cooling to about 50ºC. A sterile cotton swab stick was dipped into the 1: 10 dilution of E. coli ATCC 25922 suspension and used to evenly inoculate the entire surface of the Mueller-Hinton agar plate to make a lawn. A 10 µg ertapenem susceptible disc (Oxoid) was placed in the centre of the plate. In a straight line, 18-24 h old cultures of the test isolates (intermediate/total imipenem resistant from 3.3.3 isolates) were streaked from the edge of the disc to the edge of the plates. Four organisms were streaked on a plate containing one ertapenem disc.

The inoculated plates were then incubated overnight at 35ºC in an incubator for 16-24 h after which the plates were brought out and observed for clover leaf shape.

2.7 Statistical Analysis

Data obtained were subjected to frequencies and Chi-square analysis using IBM Statistical Package and Service Solution (SPSS) version 20. The level of significant was defined as p ≤ 0.05.

3. RESULTS

A total of 403 clinical isolates reportedly, multidrug Gram-negative bacteria were collected from two (2) tertiary hospitals; Federal Medical Centre (FMC), and Benue State Teaching Hospital (BSUTH). Two hundred and seventy one (271) Gram-negative bacteria from FMC, and 132 from BSUTH. Two hundred and ninety nine (299) isolates were confirmed to be Gram negative while 104 isolates were Gram positive. Thirty-nine Gram negative bacteria were isolated from the environmental sample.

Out of a total of 338 clinical and environmental Gram negative bacteria from the two hospitals, 56 isolates shown resistance/intermediate resistance to imipenem. Of these 13(23.21%) were positive for carbapenemase production.
Out of a total of 56 isolates comprising of both environmental and clinical isolates (showing resistance/intermediate resistance to imipenem) tested, a total of 13 (23.21%) were positive for carbapenemase production, 5/39 (12.82%) from environmental for both FMC and BSUTH and 8/299 (2.68%) from clinical samples also for both FMC and BSUTH. Percentage of carbapenemase producers is higher in the environmental samples compared to the clinical isolates. From the environmental samples, carbapenemase producers were isolated from both water and sediments samples but more from sediments while from the clinical samples, carbapenemase producers were from urine, ear swab, high virginal swab, and stool specimen.

Table 1. Source and place of isolation of the environmental bacteria isolates from FMC

S/N	Place of isolation	Isolates code	Sources	Gram negative bacterial isolated
1	Laboratory department	S1NLF	Sediment	Providencia stuartii
2	Male Ward (A Ward)	SILF	Sediment	Citrobacter diversus
3	Gynaecology Ward	WINLF	Water	Shigella sonnei
4		WILF	Water	Citrobacter diversus
5		S2NLF	Sediment	Proteus mirabilis
6		S2LF	Sediment	Escherichia coli
7		W2NLF	Water	Proteus vulgaris
8		W2LF	Water	Citrobacter diversus
9		S3NLF	Sediment	Proteus mirabilis
10		S3LF	Sediment	Citrobacter diversus
11		W3NLF	Water	Providencia stuartii
12		W3LF	Water	Klebsiella pneumoniae
13		S4NLF	Sediment	Proteus vulgaris
14		S4LF	Sediment	Klebsiella pneumoniae
15		W4NLF	Water	Serratia liquefaciens
16		W4LF	Water	E. coli
17		S5NLF	Sediment	Providencia stuartii
18		S5LF	Sediment	Citrobacter koseri
19		W5NLF	Water	Proteus mirabilis
20		W5LF	Water	Erwinia chrysanthemi

Table 2. Source and place of isolation of the environmental bacteria isolates from BSUTH

S/N	Place of isolation	Isolates code	Sources	Gram negative bacterial isolated
1	Wards Block	S1NLTH	Sediment	Proteus vulgaris
2		S2LTH	Sediment	E. coli
3		W2NLTH	Water	Proteus vulgaris
4		W2LTH	Water	Citrobacter diversus
5	Residence Doctors Hostel/ Cafeteria	S2NLTH	Sediment	Proteus vulgaris
6		S2LTH	Sediment	Citrobacter diversus
7		W2NLTH	Water	Proteus vulgaris
8	Laboratories	S3NLTH	Sediment	Shigella sonnei
9		S3LTH	Sediment	Citrobacter diversus
10		W3NLTH	Water	Proteus vulgaris
11		W3LTH	Water	Citrobacter diversus
12	Administrative Block	S4NLTH	Sediment	Proteus vulgaris
13		S4LTH	Sediment	Citrobacter diversus
14		W4NLTH	Water	Klebsiella pneumoniae
15	Accident And Emergency Ward	W4LTH	Water	Proteus mirabilis
16		S5NLTH	Sediment	Proteus vulgaris
17		S5LTH	Sediment	Citrobacter freundii
18		W5NLTH	Water	Proteus vulgaris
19		W5LTH	Water	Citrobacter koseri
Table 3. Number/percentage of carbapenemase-producing gram negative bacteria from Environmental and clinical samples

Total No of isolates	Antibiotics tested	No resistant	Carbapenemase producers No. (%)
338	Imipenem	56	13 (3.85)

Table 4. Antibiogram of clinical carbapenemase positive isolates

S/No.	Isolates no	Specimen types	IMP	ETP	CIP	CAZ	CRO	Organisms
1	861	Blood	I	I	R	R	R	E. coli
2	423	Stool	I	R	R	R	R	E. coli
3	Pr4	Stool	I	R	S	R	S	Salmonella sp.
4	508	HVS	I	I	R	R	R	E. coli
5	MB50	Urine	R	S	R	R	I	E. coli
6	467	Urine	I	S	S	R	S	Klebsiella sp.
7	352(2)	E/S	I	R	S	S	R	Pseudomonas sp.

Key: CAZ (Ceftazidime), CRO (Ceftriaxone), CIP (Ciprofloxacin), ETP (Ertapenem), IMP (Imipenem), HVS (High Vagina Swab), E/S (Ear Swab)

Table 5. Antibiogram of environmental carbapenemase positive isolates

S/No.	Isolates code	Specimen types	IMP	ETP	CIP	CAZ	CRO	Organisms
1	1LF	Sediment	I	R	R	R	R	Citrobacter diversus
2	3NLF	Sediment	I	R	S	S	R	Proteus mirabilis
3	5LF	Sediment	R	R	R	R	R	Citrobacter koseri
4	5NLF	Sediment	I	R	R	R	R	Proteus vulgaris
5	5NLT	Water	I	R	S	S	R	Proteus vulgaris

Key: CAZ (Ceftazidime), CRO (Ceftriaxone), CIP (Ciprofloxacin), ETP (Ertapenem), IMP (Imipenem)

Table 6. Frequency and susceptibility profile of carbapenemase positive bacterial

Carbapenemase positive gram negative bacteria	Susceptibility profile	Total		
	S	I	R	
Citrobacter diversus	0	1	4	5
Citrobacter koseri	0	0	5	5
E. coli	2	6	17	25
Klesiella pneumoniae	3	1	1	5
Proteus mirabilis	2	1	2	5
Pseudomonas sp.	2	1	2	5
Proteus vulgaris	1	2	7	10
Salmonella sp.	2	1	2	5
Total	12	13	40	65

\[\chi^2 = 17.656, df = 14, p = 0.22 \] Key: S – Sensitive, I – Intermediate, R – Resistant

4. DISCUSSION

The overall percentage resistance of carbapenemase producers was 3.85%. This was close to the prevalence rate in USA and Lebanon with 4.20% and 2.50 respectively. But at variance with prevalence rate obtained from Germany, Jordan, Nepal and Colombia with 13.80%, 5.60%, 7.40% and 8.80% respectively [23,24,25,26,27,28]. This proportional variance could be attributed to the restrictions imposed on antibiotic use and the time each country started using carbapenems. Antimicrobial therapeutic protocols and practices vary from one hospital to the other, making comparisons and interpretations of carbapenem resistant variations a difficult task. Sample size, sample sources, time when the study took place, laboratory techniques used and other factors may contribute to the variable rates.
Table 7. Frequency of carbapenemase positive gram-negative bacterial to specific antibiotics

Carbapenemase positive Gram negative bacterial	Ceftazi-dime	Ceftriazone	Ciprofloxacin	Ertapenem	Imipe-nem	Total
Citrobacter diversus	1	1	1	1	1	5
Citrobacter koseri	1	1	1	1	1	5
E. coli	5	5	5	5	5	25
Klebsiella pneumoniae	1	1	1	1	1	5
Proteus mirabilis	1	1	1	1	1	5
Pseudomonas sp.	1	1	1	1	1	5
Proteus vulgaris	2	2	2	2	2	10
Salmonella sp.	1	1	1	1	1	5
Total	**13**	**13**	**13**	**13**	**13**	**65**

\[\chi^2 = 0.000, df = 28, p = 1.00 \]
Table 8. Multiple antibiotic resistant pattern of carbapenemase positive bacterial

Number of antibiotic classes	MAR patterns	No. (%)
2	CAZ, IMP	1 (7.69)
3	CAZ, ETP, IMP	1 (7.69)
	CRO, ETP, IMP	2 (15.38)
4	CAZ, CIP, CRO, IMP	1 (7.69)
	CAZ, CRO, ETP, IMP	2 (15.38)
5	CAZ, CIP, CRO, ETP, IMP	6 (46.15)

Key: CAZ (Ceftazidime), CRO (Ceftriaxone), CIP (Ciprofloxacin), ETP (Ertapenem), IMP (Imipenem), MAR (Multiple Antibiotic Resistance)

E. coli was found to be the most resistant to carbapenems and other antibiotics. This varies from the finding of Rawan et al. (2018) who reported that Klebsiella sp. was found to be more resistant to carbapenems. Carbapenemase producing organisms display higher level of resistance to almost all antibiotics and multiple level of resistance to almost all antibiotics. This is also reported by Li and Nikaido. (2009). Multiple resistance increases patient treatment failures and mortality, and health care cost [29].

5. CONCLUSION

Any levels of resistance to carbapenems calls for the need to reduce the indiscriminate use of this group of antibiotics, and monitoring both in the hospitals and environment should be encouraged. Further work should be done using molecular techniques to check for specific resistant genes of the bacteria.

CONSENT

As per international standard or university standard, patient’s written consent has been collected and preserved by the author(s).

ETHICAL APPROVAL

Ethical approval was obtained from the government of Benue State of Nigeria. Ministry of Health and Human Services with reference number MOH/STA/204/VOL.1/31 Not applicable (Submission is not randomized controlled trial).

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Golkar Z, Bagasra O, Pace DG. Bacteriophage therapy: A potential solution for the antibiotic resistance crisis. The Journal of Infection in Developing Countries. 2014;8(02):129-136.
2. Centers for disease control and prevention. Office of Infectious Disease Antibiotic resistance threats in the United States; 2013. Available: http://www.cdc.gov/drugresistance/threat-report-2013 (Accessed January 28, 2015)
3. Sengupta S, Chattopadhyay MK, Grossart HP. The multifaceted roles of antibiotics and antibiotic resistance in nature. Frontiers in Microbiology. 2013;4:47.
4. Lushniak BD. Antibiotic resistance: A public health crisis. Public Health Report. 2014;129(4):314–316.
5. Rossolini GM, Arena F, Pecile P, Pollini S. Update on the antibiotic resistance crisis. Current Opinion in Pharmacology. 2014;18:56–60.
6. Hsu RB, Chu SH. Impact of methicillin resistance on clinical features and outcomes of infective endocarditis due to Staphylococcus aureus. American Journal of Medical Science. 2004;328(3):150-155.
7. Stone SP, Teare L, Cookson BD. The evidence for hand hygiene. Lancet. 2001; 357:479-480.
8. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. Multi drug resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology Infection. 2012;18:268–281. 9. Snitkin ES, Zelazny AM, Thomas PJ, Stock F, Henderson DK, Palmore TN, Segre JA. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome
17. Virginia M, Pierce PJS, David R, Lonsway, Darcie E, Roe-Carpenter DJ, Kristie Johnson, William B, Brasso, April M. Bobenchik, Zubrina C, Lockett A, Charnot-Katsikas, Mary Jane Ferraro, Richard B, Thomson Jr., Stephen G, Jenkins, Brandi M, Limbago, Sanchita Das. The modified carbapenem inactivation method (mCIM) for phenotypic detection of carbapenemase production among enterobacteriaceae. Journal of Clinical Microbiology. 2017;28:565–572.

18. Pasteran F, et al. Controlling false-positive results obtained with the Hodge and Masuda assays for detection of class A carbapenemase in species of Enterobacteriaceae by incorporating boronic acid. Journal of Clinical Microbiology. 2010;48(4):1323-1332.

19. Hrabáč J, Chudáčková E, Papagiannitsis C. Detection of carbapenemases in Enterobacteriaceae: A challenge for diagnostic microbiological laboratories. Clinical Microbiology and Infection. 2014; 20(9):839-853.

20. Pasteran F, et al. Sensitive and specific modified hodge test for KPC and metallo-beta-lactamase detection in Pseudomonas aeruginosa by use of a novel indicator strain: Klebsiella pneumoniae ATCC 700603. Journal of Clinical Microbiology. JCM. 2011;05602-11.

21. Bialvaei AZ, et al. Current methods for the identification of carbapenemases. Journal of Chemotherapy. 2016;28(1):1-19.

22. Kirby WMM, Baurer AW, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single Disc method. American Journal of Clinical Pathology. 1966;45:493-496.

23. Wadi J, Haloub N, Al Ahmad M, Samara A, Romman A. Prevalence of meropenem susceptibility among Gram-negative pathogens isolated from intensive care units in Jordan. Internation Arab Journal Antimicrobial Agents. 2011;1:1-8.

24. Guh AY, Limbago BM, Kallen AJ. Epidemiology and prevention of carbapenem-resistant enterobacteriaceae in the United States. Expert Review Anti-Infective Therapy.2014;12:565–80.

25. Zahedi Bialvaei A, SamadiKafil H, Ebrahimzadeh Leylabadlo H, Asgharzadeh M, Aghazadeh M. Dissemination of carbapenemases producing Gram-negative bacteria in the Middle East. Iran Journal of Micro-biology. 2015;7:226–46.

26. Heudorf U, Böttner B, Hauri AM. Carbapenem-resistant Gram negative bacteria analysis of the data obtained through a mandatory reporting system in the Rhine-Mainregion, Germany, 2012-2015. GMS Hygiene and Infection Control; 2016.

27. Vanegas JM, Parra OL, Jiménez JN. Molecular epidemiology of carbapenem resistant Gram Negative Bacilli from infected pediatric population in tertiary-
care hospitals in Medellín, Colombia: An increasing problem. BMC Infectious Diseases. 2016;16:463.

28. Karn S, Pant ND, Neupane S, Khatiwada S, Basnyat S, Shrestha B. Prevalence of carbapenem resistant bacterial strains isolated from different clinical samples: Study from tertiary care hospital in Kathmandu, Nepal. Journal of Biomedical Science. 2017;3:11–15.

29. Hawkey PM. The growing burden of antimicrobial Resistance. Journal of Antimicrobial Chemotherapy. 2008;62(1):1-9.

© 2020 Omorogbe and Fagade; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/54854