Intracranial hemorrhage risk factors of deep brain stimulation for Parkinson’s disease: a 2-year follow-up study

Chunhui Yang*, Yiqing Qiu*, Jiali Wang, Yina Wu, Xiaowu Hu and Xi Wu

Abstract
Objective: This study aimed to analyze the risk factors of intracranial hemorrhage (ICH) after deep brain stimulation (DBS) for idiopathic Parkinson’s disease (PD).
Methods: Patients who received DBS from March 2014 to December 2016 were retrospectively analyzed. The hemorrhage index was derived by combining the hemorrhagic volume and clinical manifestations of ICH. All patients with IHC were followed up for 2 years.
Results: Computed tomography showed 13 events of ICH in 11 patients (nine cases in the subthalamic nucleus), including eight cases with symptomatic hemorrhage (seven cases in the subthalamic nucleus). Hemorrhage was characterized by intracranial hematoma in the electrode puncture tract. Male sex and hypertension were significant risk factors for ICH. Hemorrhage in the preferred puncture side was significantly higher than that in the non-preferred puncture side. The mean hemorrhage index was 2.23 ± 0.83 in 11 patients, and no permanent neurological impairment was found during the 2-year follow-up. The effect of DBS on motor symptoms was similar in patients with and without ICH.
Conclusion: Male sex and hypertension are risk factors of ICH after DBS in PD. The risk of hemorrhage on the first puncture site is significantly higher than that on the second puncture site.

Keywords
Parkinson’s disease, intracranial hemorrhage, deep brain stimulation, motor function, hypertension, electrode, neurological symptom

Date received: 11 December 2018; accepted: 22 May 2019

Department of Neurosurgery, Changhai Hospital, Shanghai, China

*These authors contributed equally to this work.

Corresponding author:
Xi Wu, Department of Neurosurgery, Changhai Hospital, No. 168 Changhai Road, Yangpu District, Shanghai, 200433, China.
Email: wuxi_smmu@sina.com
Introduction

The long-term efficacy of deep brain stimulation (DBS) for treatment of Parkinson’s disease (PD) is widely recognized.\(^1\)\(^-\)\(^8\) Approximately 9000 patients with PD have undergone DBS. There have been many surgical technique reports on how to reduce the risk of intracranial hemorrhage (ICH) in patients with PD who received DBS.\(^9\),\(^10\) Therefore, many methods have been used to reduce the incidence and volume of ICH. Problems that need to be addressed are reducing the risk of ICH and neurological outcomes that patients will have after ICH. Therefore, this study aimed to determine risk factors and the long-term prognosis of ICH in patients with idiopathic PD who underwent DBS.

Materials and methods

Patients’ enrollment criteria and clinical data

From 1 March 2014 to 30 December 2016, 352 patients with PD were treated with DBS in Shanghai Changhai Hospital. Idiopathic PD in patients was diagnosed according to the United Kingdom Parkinson’s Disease Society Brain Bank diagnostic criteria,\(^11\) in line with the current consensus of Chinese experts on DBS in PD.\(^12\) This study was approved by the Medical Ethics Committee of Changhai Hospital. All of the patients who participated in this study agreed to sign informed consent.

We collected data, including sex, age, course of disease, and the scores of the preoperative Unified Parkinson’s Disease Rating Scale ([UPDRS] assessed by a qualified physician, and drug onset (med-on) and off (med-off) status were recorded), Mini-mental State Examination, Montreal Cognitive Assessment, Non-motor Symptom Questionnaire, and Hamilton depression scale. An electrocardiogram and blood pressure were monitored during the operation and within 3 days after operation. If systolic pressure was \(>150\) mmHg or/and diastolic pressure \(>100\) mmHg, the patient was diagnosed with hypertension. Intraoperative adjustment of the electrode location was recorded. A cranial computed tomographic (CT) scan was performed 6 days after the operation.

Surgical procedures and follow-up

A 3.0 T magnetic resonance imaging (MRI) scan without a frame was performed before the operation, including T1-weighted, T2-weighted, and susceptibility-weighted sequences. The Leksell G headframe and Surgiplan surgical planning system (Elekta AB, Stockholm, Sweden) were used. The Medtronic 3387 or PINS L302 (Medtronic, Inc., Minneapolis, MN, USA) was selected for the internal globus pallidus (GPi) target and the Medtronic 3389 or PINS L301 was selected for the subthalamic nucleus (STN) target. The subarachnoid space closure technique was used to reduce cerebrospinal fluid loss.\(^13\) After the electrode arrived at the target, bio-glue was used to seal the skull bone hole, and then an external temporary stimulator was connected to perform the intraoperative macrostimulation test. We simultaneously recorded the efficacy of electrical stimulation and the adverse reaction threshold. After fixation of the electrode by Stimloc (Medtronic) or Leadloc (PINS), the scalp was sutured. A 1.5 T MRI scan was performed to confirm whether the electrode position was satisfactory and whether there was any ICH. An extension wire and implantable pulse generator (IPG) were then implanted under general anesthesia. The IPG stimulation parameters were set 1 month postoperation. Clinical motor symptom follow-up data included UPDRS-III scores (med-off, IPG-on [IPG
was used) at 3, 6, and 12 months, and 2 years postoperation.

ICH and hemorrhage index

Hemorrhagic volume was calculated for patients with ICH as follows: hemorrhagic volume (mL) = maximum cross-sectional length width × layer thickness × layer number/2. The hemorrhage index was derived according to the hemorrhagic volume and the severity of hemorrhagic symptoms. The scores were obtained according to the following grades: a hemorrhagic volume of 0 to 5 mL = 1, 5 to 10 mL = 2, 10 to 15 mL = 3, 15 to 30 mL = 4, and >30 mL = 5. Clinical symptoms (e.g., lethargy, limb symptoms, mental symptoms) increased the index by 1 point. Another 1 point was added if surgical intervention was required.

Statistical methods

The paired t test was used for comparison of variables before and after hemorrhage. One-way ANOVA was used for analysis of variables between hemorrhagic and non-hemorrhagic patients. The significance of risk factors was analyzed by Fisher's exact probability test. Statistical analysis was performed using SPSS 21.0 (IBM, Armonk, NY, USA). The value of α was set to 0.05 and thus P < 0.05 (double-tailed) was considered statistically different.

Results

Demographic information of the patients

A total of 352 patients with PD were implanted with 686 electrodes. The baseline information of the patients is shown in Table 1. ICH was confirmed by CT or MRI at 3 to 6 days after the operation in 11 patients (13 events). The mean hemorrhage index was 2.23 ± 0.83 in 11 patients. No anticoagulant and antiplatelet drugs were used before the operation in all patients with ICH, and no abnormal coagulation function was found before the operation. Eight patients had symptomatic hemorrhage and three had asymptomatic hemorrhage. The initial symptoms included headache in two patients, drowsiness in three patients, and hypodynamia or dysesthesia in two patients. Postoperative delirium and manic symptoms were found in one patient.

Risk factors

There were 10 cases of ICH in male patients and one case in female patients (Table 1). The incidence of hemorrhage in men was significantly higher than that in women (P = 0.026). There was no significant difference in the mean age, course of disease, preoperative improvement rate, preoperative UPDRS-III score, and postoperative UPDRS-III score between patients with hemorrhage and patients without hemorrhage. Mean systolic blood pressure was 145 ± 15.52 mmHg (125–170 mmHg) and mean diastolic blood pressure was 89.64 ± 10.65 mmHg (75–108 mmHg). Eight patients had a systolic blood pressure >150 mmHg and/or diastolic blood pressure >100 mmHg, and three of them had a systolic blood pressure >160 mmHg. The risk of ICH in hypertensive patients was significantly higher than that in non-hypertensive patients (P = 0.003). Among the 352 patients, 325 (633 electrodes) were treated with STN-DBS, nine of these patients had ICH, and the rate of hemorrhage was 2.7% (Table 2). Twenty-five patients (53 electrodes) were treated with GPi-DBS, two of these patients had ICH, and the rate of hemorrhage was 7.4%. Although the hemorrhage rate of GPi-DBS was higher than that of STN-DBS, there was no significant difference between these two targets.
Of the 11 patients with ICH, seven had ICH on the preferred puncture side. Two patients had ICH at the non-preferred puncture and two patients had bilateral hemorrhage. The volume of hemorrhage was as follows: 10 to 15 mL in two patients, 5 to 10 mL in four patients, and 0 to 5 mL in five patients. Neurological symptoms occurred in eight patients after ICH (see Table 3 for details). The hemorrhage index in the preferred side was calculated as $0 + 0 + 2 + 2 + 2 + 2 + 2 + 2 + 3 + 3 + 4 = 23$, and that in the non-preferred side was calculated as $0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 2 + 2 + 2 = 7$. Hemorrhage in the preferred puncture side was significantly more harmful than that in the non-preferred side ($P = 0.0174$) (Figure 1). Thirty electrodes were adjusted in 352 patients, and cerebral hemorrhage occurred in two patients. The electrode in Case 2 was pulled out by 2 mm because the electrode tip was too deep and the right electrode in Case 9 was pulled back and adjusted by 1 mm forward. There was no significant correlation between adjustment of electrodes and ICH.

Morphological characteristics of hematomas

In all 11 cases of ICH, the focus of hemorrhage was confined to the periphery of the electrode puncture tract, and there was no hemorrhage caused by subdural hematoma, subarachnoid hemorrhage, epidural hematoma, or venous cerebral infarction. The hematoma did not cause midline deviation, and the brain tissue around the hematoma showed different degrees of brain edema. Six patients

Table 1. Demographic information of the patients.
Males
All patients
Males
Females
Hypertension
Disease duration (years)
Age (years)
Preoperative improvement rate
Electrode number
Single side
Bilateral side
STN
GPI
Motor function
UPDRS-III score postoperatively
UPDRS-III score during on time
Non-motor function
MMSE
MoCA
NMSQ
HAMD

STN: subthalamic nucleus; GPi: internal globus pallidus; UPDRS: Unified Parkinson’s Disease Rating Scale; MMSE: Mini-mental State Examination; MoCA: Montreal Cognitive Assessment; NMSQ: Non-motor Symptom Questionnaire; HAMD: Hamilton depression scale.
Table 2. Clinical data of patients who were treated in the STN.

No.	Sex	Age (years)	Course	Hypertension	Target	Immediate hemorrhage	Detection method	Bleeding position	Pattern of hemorrhage	Hemorrhagic volume	Neurological symptoms	Preferential side	Electrode Adjustment	Hemorrhage index
1	M	64	25	Y	STN	No ICH, MRI	CT, 6th day	Left frontal lobe + tip	2.19 × 2.62-cm high-density shadow	6.5 ± 0.5 mL	Headache, loss of consciousness	L	N	3
2	M	64	12	Y	STN	No ICH, MRI	CT, 5th day	Left frontal lobe + tip	Small high-density shadow	4.8 ± 0.32 mL	None	R	Y (z axis)	2
3	M	68	7	Y	STN	No ICH, MRI	MRI, 6th d	Left frontal lobe + tip	2.7 × 2.2-cm high-density shadow	10.3 ± 3.2 mL	None	L	N	3
4	M	73	9	N	STN	No ICH, MRI	CT, 5th day	Right basal ganglia	Small hematoma in right basal ganglia	1.02 mL	Delirium	R	N	1
5	M	62	19	Y	STN	No ICH, MRI	CT, 6th d	Left frontal lobe + right tip	Irregular peri-electrode High-density shadow	(R) 1 + (L) 10.8 mL	None	L	N	2 & 4
6	F	68	12	Y	STN	No ICH, MRI	CT, 5th day	Right frontal lobe + tip	Right cerebral horns Hematoma	2.42 ± 0.54 mL	Headache	R	N	2
7	M	68	20	Y	STN	No ICH, MRI	CT, 3rd d	Bilateral puncture tract	Small hemorrhage in bilateral puncture tracts	(R) 2 + (L) 0.4 mL	Drowsy	R	N	2 & 2
8	M	66	7	N	STN	No ICH, MRI	CT, 3rd d	Left frontal lobe + tip	Left frontal hematoma	2.94 ± 0.1 mL	None	R	N	1
9	M	62	7	N	STN	No ICH, MRI	CT, 6th d	Left frontal lobe	Small peri-electrode hemorrhage and edema	2.7 mL	Drowsy	L	Y (y axis)	2

M: male; F: female; Y: yes; N: no; STN: subthalamic nucleus; ICH: intracranial hemorrhage; MRI: magnetic resonance imaging; CT: computed tomography; d: day; R: right; L: left.
presented with ICH in the cerebral cortex and in the tip of the electrode, characterized by “dumbbell-shaped” hematomas (Figure 2) (Cases 2 and 3). The hematoma in the electrode tip of GPi targets showed a “shuttle type” high-density shadow (Figure 2) (Cases 10 and 11).

Treatment and follow-up

All hemorrhagic patients were treated conservatively, including absolute bed rest, strict control of blood pressure, oral antiepileptic drugs for 2 weeks, and intravenous application of hemostatic drugs. On the 3rd day after hemorrhage, if cranial CT showed no increase in hemorrhagic volume, the patients were discharged. Case 5 was provided symptomatic antiepileptic treatment after discharge from hospital for 7 months. Patients without ICH received stimulation adaption at the 4th week after the operation and the improvement rate was 51.52%±14.24% with significant efficacy (Table 1). Patients with ICH obtained stimulation adaption at the 6th week after the operation and the improvement rate was 54.32%±15.38%. There was no significant difference in the baseline UPDRS-III score between patients with ICH and those without ICH. There was also no significant difference in the postoperative UPDRS-III score between patients with ICH and those without ICH. After 2 years’ follow-up, four patients without ICH were lost. There was no significant difference in the improvement rate at 1 month, 6 months, 1 year, and 2 years after the operation. This was a heteroscedastic double-tailed result (P = 0.817, P = 0.675, P = 0.392, P = 0.390, respectively). Therefore, bleeding did not affect the postoperative outcome (Table 3).

Discussion

ICH rate and risk factors after DBS

ICH is the most common and dangerous complication after DBS. The rate of

	Preoperative baseline (med-off)	Postoperative baseline (med-off, IPG-off)	3 months (med-off, IPG-on)	6 months (IPG-on, med-off)	1 year (IPG-on, med-off)	2 years (IPG-on, med-off)
ICH group (n = 10)	60.73 ± 16.95	50.18 ± 13.41	26.91 ± 9.33	26.36 ± 7.30	27.73 ± 9.55	29.64 ± 8.99
Non-ICH group (n = 337)	55.45 ± 15.81	54.64 ± 14.28	26.23 ± 9.01	25.40 ± 7.91	25.13 ± 7.85	27.18 ± 7.33
P value	0.518	0.367	0.588	0.528	0.243	0.162

med-off: no drug use; IPG-off/on: implantable pulse generator off/on; ICH: intracranial hemorrhage.
hemorrhage after DBS has been reported as 0.2% to 5.6%,14-16 and the rate of hemorrhage at each electrode is 0.6% to 3.5%.17,18 Meta-analysis has shown that the rate of hemorrhage after DBS ranges from 3% to 4%.19,20 Old age, male sex, PD, and hypertension may be risk factors for ICH after DBS.14,21-23 The mean age of patients with PD in this study was older than 60 years. The incidence of ICH was 3.1% and 1.9% on each side. The incidence of symptomatic hemorrhage was 2.3% and 1.4% on each side. We found no significant correlations between the age at surgery, duration of disease, preoperative UPDRS-III score, and ICH. However, male sex and patients with perioperative hypertension showed a higher probability of postoperative ICH.

This study showed that the preferred puncture side was more harmful in surgery than the non-preferred side. Vascular injury and infarction caused by puncture are causes of delayed ICH after DBS.24,25 With regard to the cause of vascular injury, we speculate that it may be due to damage of the vasculature caused by brain tissue displacement owing to cerebrospinal fluid loss and recovery during the operation.

Intraoperative electrode adjustment, similar to microelectrode recording, can cause secondary puncture damage to brain tissue. Previous studies have suggested that microelectrode recording may increase the risk of hemorrhage,19,26 but there is also controversy on this issue.21,27 In our study, adjustment of the intraoperative electrode position did not increase the risk of postoperative ICH.

Previous studies have shown that GPi-DBS may have a higher probability of ICH than STN-DBS.27 In our study, the rate of hemorrhage in STN-DBS was 2.7% and that in GPi-DBS was 7.4%, but there was no significant difference in this rate. A reason for this non-significance may be due to the insufficient sample size of patients who received GPi-DBS.

Morphological characteristics of hematomas

The morphological features of STN-DBS-related hematomas in this study were as follows. ICH was located in the puncture tract where the electrode was located, and the hematoma along the tract could be divided into two parts: subcortical hematoma and deep brain hematoma (Figure 2; Cases 2 and 3). The total hemorrhagic volume was < 30 mL, and there was no subdural hemorrhage, subarachnoid hemorrhage, or

![Figure 2](image-url). Computed tomographic and magnetic resonance imaging of intracranial hemorrhage in 11 patients.
extensive brain edema. These findings indicated that the source of hemorrhage was small perforating vessels in the cortex, but not injury or occlusion of the middle cerebral artery branches in the cerebral sulcus or cortical and bridge veins.

ICH in two patients with GPI-DBS showed similar morphological features. The hemorrhage was located at the tip of the electrode, and the shape of the hemorrhage was the same as that of the optic nerve. This may be related to the structure of brain tissue around the GPi nucleus. The source of hemorrhage was probably the perforator artery that branched from the posterior communicating artery to the globus pallidus and a deep cerebral drainage vein. Because the electrode is close to the cistern, the brain tissue is weak. Therefore, a small amount of hemorrhage easily forms in this area, forming a long axis along the optic tract with a “spindle” hematoma shape. The high number of perforating vessels around the GPi is also one of the reasons the GPi has a higher hemorrhage rate than the STN in DBS.27

Prognosis of hemorrhage

Eleven patients with ICH in our center were discharged from hospital after conservative treatment. The hemorrhagic volume in 11 patients was mild to moderate, nine had a small amount of hemorrhage (1–10 mL), and two had hemorrhage > 10 mL with a maximum volume of 15 mL. Symptoms of the nervous system caused by hemorrhage were relatively mild in our patients. Eight patients had only mild signs of the nervous system. Three patients were asymptomatic. After conservative treatment, no permanent neurological deficit remained and no death occurred. Case 5 had seizures after discharge and oral antiepileptic drugs were administrated to control the seizures. Our findings suggest that patients with perforating vessel hemorrhage and a hemorrhage index < 4 have a good long-term prognosis.

Overall improvement in patients with ICH was similar to that in patients without hemorrhage. The UPDRS-III (IPG-on, med-off) score at 6 months, 1 year, and 2 years after the operation showed no significant difference between patients with ICH and those without ICH. This lack of finding may have been due to a small hemorrhagic volume in the 11 patients with ICH, relatively mild symptoms of the nervous system, and “micro damage” effects caused by infarction and edema, and non-absorptive hematomas in local tissue. The treatment efficacy of the 11 patients with hemorrhage was not affected after a positive therapeutic effect.

Conclusion

Currently, DBS is a useful technique for treating PD. Postoperative Parkinson’s symptoms have greatly improved and motor complications have been effectively controlled. Although the complications of DBS in minimally invasive surgery are lower than those of other operations, ICH is still unavoidable and is one of the most dangerous complications. Other centers have reported cases of large ICH requiring craniotomy to clear the hematoma and cases of vegetative state or even death resulting from ICH after DBS.28 Our center has a low rate of hemorrhage, less hemorrhagic volume, and a relatively good prognosis compared with other centers. Our study shows that male sex and hypertension are high-risk factors for ICH after DBS. The preferred puncture side is more likely to have hemorrhage than the non-preferred site. Our short-term follow-up results show that a small amount of hemorrhage does not affect the efficacy of DBS after beginning stimulation. DBS surgery is relatively simple and it is well established. However, minor intraoperative errors may lead to
irreparable results. Therefore, control of perioperative risk factors, improvement of surgical methodology, and surgical skills may be effective for reducing the probability of ICH.

Declaration of conflicting interest
The authors declare that there is no conflict of interest.

Funding
This study was supported by the Digital Equipment of Diagnosis and Treatment special program of the National Key Research and Development Plan (2016YFC0105900).

ORCID iD
Xi Wu https://orcid.org/0000-0002-1248-3420

References
1. Fasano A, Romito LM, Daniele A, et al. Motor and cognitive outcome in patients with Parkinson’s disease 8 years after subthalamic implants. Brain 2010; 133: 2664–2676.
2. Janssen ML, Duits AA, Turaihi AH, et al. Subthalamic nucleus high-frequency stimulation for advanced Parkinson’s disease: motor and neuropsychological outcome after 10 years. Stereotact Funct Neurosurg 2014; 92: 381–387.
3. Krack P, Batir A, Van Blercom N, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 2003; 349: 1925–1934.
4. Moro E, Lozano AM, Pollak P, et al. Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson’s disease. Mov Disord 2010; 25: 578–586.
5. Rizzone MG, Fasano A, Daniele A, et al. Long-term outcome of subthalamic nucleus DBS in Parkinson’s disease: from the advanced phase towards the late stage of the disease? Parkinsonism Relat Disord 2014; 20: 376–381.
6. Romito LM, Contarino MF, Vanacore N, et al. Replacement of dopaminergic medication with subthalamic nucleus stimulation in Parkinson’s disease: long-term observation. Mov Disord 2009; 24: 557–563.
7. Schupbach WM, Chastan N, Welter ML, et al. Stimulation of the subthalamic nucleus in Parkinson’s disease: a 5 year follow up. J Neurol Neurosurg Psychiatry 2005; 76: 1640–1644.
8. Zibetti M, Merola A, Rizzi L, et al. Beyond nine years of continuous subthalamic nucleus deep brain stimulation in Parkinson’s disease. Mov Disord 2011; 26: 2327–2334.
9. Hu X, Jiang X, Zhou X, et al. Avoidance and management of surgical and hardware-related complications of deep brain stimulation. Stereotact Funct Neurosurg 2010; 88: 296–303.
10. Wang X, Wang J, Zhao H, et al. Clinical analysis and treatment of symptomatic intracranial hemorrhage after deep brain stimulation surgery. Br J Neurosurg 2017; 31: 217–222.
11. Hughes AJ, Daniel SE, Kilford L, et al. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992; 55: 181–184.
12. Zang Y, Jiang T, Lu Y, et al. Regional homogeneity approach to fMRI data analysis. Neuroimage 2004; 22: 394–400.
13. Coenen VA, Abdel-Rahman A, McMaster J, et al. Minimizing brain shift during functional neurosurgical procedures - a simple burr hole technique that can decrease CSF loss and intracranial air. Cent Eur Neurosurg 2011; 72: 181–185.
14. Gorgulho A, De Salles AA, Frighetto L, et al. Incidence of hemorrhage associated with electrophysiological studies performed using macroelectrodes and microelectrodes in functional neurosurgery. J Neurosurg 2005; 102: 888–896.
15. Park JH, Chung SJ, Lee CS, et al. Analysis of hemorrhagic risk factors during deep brain stimulation surgery for movement disorders: comparison of the circumferential paired and multiple electrode insertion methods. Acta Neurochir (Wien) 2011; 153: 1573–1578.
16. Voges J, Waerzeggers Y, Maarouf M, et al. Deep-brain stimulation: long-term analysis of complications caused by hardware and surgery—experiences from a single centre. *J Neurol Neurosurg Psychiatry* 2006; 77: 868–872.

17. Hamani C, Richter E, Schwalb JM, et al. Bilateral subthalamic nucleus stimulation for Parkinson’s disease: a systematic review of the clinical literature. *Neurosurgery* 2005; 56: 1313–1321; discussion 1321–1314.

18. Kenney C, Simpson R, Hunter C, et al. Short-term and long-term safety of deep brain stimulation in the treatment of movement disorders. *J Neurosurg* 2007; 106: 621–625.

19. Kimmelman J, Duckworth K, Ramsay T, et al. Risk of surgical delivery to deep nuclei: a meta-analysis. *Mov Disord* 2011; 26: 1415–1421.

20. Kleiner-Fisman G, Herzog J, Fisman DN, et al. Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. *Mov Disord* 2006; 21: S290–S304.

21. Sansur CA, Frysinger RC, Pouratian N, et al. Incidence of symptomatic hemorrhage after stereotactic electrode placement. *J Neurosurg* 2007; 107: 998–1003.

22. Seijo FJ, Alvarez-Vega MA, Gutierrez JC, et al. Complications in subthalamic nucleus stimulation surgery for treatment of Parkinson’s disease. Review of 272 procedures. *Acta Neurochir (Wien)* 2007; 149: 867–875; discussion 876.

23. Xiaowu H, Xiufeng J, Xiaoping Z, et al. Risks of intracranial hemorrhage in patients with Parkinson’s disease receiving deep brain stimulation and ablation. *Parkinsonism Relat Disord* 2010; 16: 96–100.

24. Morishita T, Okun MS, Burdick A, et al. Cerebral venous infarction: a potentially avoidable complication of deep brain stimulation surgery. *Neuromodulation* 2013; 16: 407–413; discussion 413.

25. Park CK, Jung NY, Kim M, et al. Analysis of delayed intracerebral hemorrhage associated with deep brain stimulation surgery. *World Neurosurg* 2017; 104: 537–544.

26. Hariz MI and Fodstad H. Do microelectrode techniques increase accuracy or decrease risks in pallidotomy and deep brain stimulation? A critical review of the literature. *Stereotact Funct Neurosurg* 1999; 72: 157–169.

27. Ben-Haim S, Asaad WF, Gale JT, et al. Risk factors for hemorrhage during microelectrode-guided deep brain stimulation and the introduction of an improved microelectrode design. *Neurosurgery* 2009; 64: 754–762; discussion 762–753.

28. Mao G, Gigliotti MJ, Angle C, et al. Craniotomy for subdural hematoma after deep brain stimulation surgery: Outcomes and satisfaction in a case series of two patients. *Clin Neurol Neurosurg* 2018; 170: 53–57.