MONODROMY OF THE SL_2 HITCHIN FIBRATION

LAURA P. SCHEPOSNIK

Abstract. We calculate the monodromy action on the mod 2 cohomology for $SL(2, \mathbb{C})$ Hitchin systems and give an application of our results in terms of the moduli space of semistable $SL(2, \mathbb{R})$ Higgs bundles.

Let Σ be a Riemann surface of genus $g \geq 3$, and denote by K the canonical bundle. An $SL(2, \mathbb{C})$ Higgs bundle as defined by Hitchin [7] and Simpson [8] is given by a pair (E, Φ), where E is a rank 2 holomorphic vector bundle with $\text{det}(E) = \mathcal{O}_\Sigma$ and the Higgs field Φ is a section of $\text{End}_0(E) \otimes K$, for End_0 the bundle of traceless endomorphisms. A Higgs bundle is said to be semistable if for any subbundle $F \subset E$ such that $\Phi(F) \subset F \otimes K$ one has $\deg(F) \leq 0$. When $\deg(F) < 0$ we say the pair is stable.

Considering the moduli space \mathcal{M} of S-equivalence classes of semistable $SL(2, \mathbb{C})$ Higgs bundles and the map $\Phi \mapsto \text{det}(\Phi)$, one may define the so-called Hitchin fibration [7]:

$$h : \mathcal{M} \to \mathcal{A} := H^0(\Sigma, K^2).$$

The moduli space \mathcal{M} is homeomorphic to the moduli space of reductive representations of the fundamental group of Σ in $SL(2, \mathbb{C})$ via non-abelian Hodge theory [7, 8, 4, 5]. The involution on $SL(2, \mathbb{C})$ corresponding to the real form $SL(2, \mathbb{R})$ defines an antiholomorphic involution on the moduli space of representations which, in the Higgs bundle complex structure, is the holomorphic involution $\sigma : (E, \Phi) \mapsto (E, -\Phi)$. In particular, the isomorphism classes of stable Higgs bundles fixed by the involution σ correspond to $SL(2, \mathbb{R})$ Higgs bundles $(E = V \oplus V^*, \Phi)$, where V is a line bundle on Σ, and the Higgs field Φ is given by

$$\Phi = \begin{pmatrix} 0 & \beta \\ \gamma & 0 \end{pmatrix}$$

for $\beta : V^* \to V \otimes K$ and $\gamma : V \to V^* \otimes K$.

We shall denote by \mathcal{M}_{reg} the regular fibres of the Hitchin map h, and let \mathcal{A}_{reg} be the regular locus of the base, which is given by quadratic differentials with simple zeros. From [7] one knows that the smooth fibres are tori of real dimension $6g-6$. There is a section of the fibration fixed by σ and this allows us to identify each fibre with an abelian variety, in fact, a Prym variety. The involution σ leaves invariant $\text{det}(\Phi)$ and so defines an involution on each fibre. The fixed points then become the elements of order 2 in the abelian variety. Hence, the points corresponding to $SL(2, \mathbb{R})$ Higgs bundles give a covering space of \mathcal{A}_{reg}. This covering space is determined by the action of $\pi_1(\mathcal{A}_{\text{reg}})$ on the first cohomology of the fibres.

November 11, 2011.

This work was funded by the Oxford University Press through a Clarendon Award, and by New College, Oxford.
with \(\mathbb{Z}_2 \) coefficients. In this paper we study this action, and thus obtain information about the moduli space of \(SL(2, \mathbb{R}) \) representations of \(\pi_1(\Sigma) \). Our main result is the following:

Theorem 1. The monodromy action on the first mod 2 cohomology of the fibres of the Hitchin fibration is given by the group of matrices acting on \(\mathbb{Z}_2^{6g-6} \) of the form

\[
\begin{pmatrix}
I_{2g} & A \\
0 & \pi
\end{pmatrix},
\]

where

- \(\pi \) is the quotient action on \(\mathbb{Z}_2^{4g-5}/(1, \cdots, 1) \) induced by the permutation action of the symmetric group \(S_{4g-4} \) on \(\mathbb{Z}_2^{4g-5} \).
- \(A \) is any \((2g) \times (4g-6)\) matrix with entries in \(\mathbb{Z}_2 \).

Finally, we give an application of our result in terms of geometric properties of the moduli space of semistable \(SL(2, \mathbb{R}) \) Higgs bundles. In particular, we show the following:

Corollary 2. The number of connected components of the moduli space of semistable \(SL(2, \mathbb{R}) \) Higgs bundles is \(2^{2g} + g \).

These connected components are known to be parametrized by the Euler class of the associated flat \(\mathbb{R}P^1 \) bundle. From our point of view this number \(k \) relates to the orbit of a subset of \(1, 2, \ldots, 4g - 4 \) with \(2g - 2k - 2 \) points under the action of the symmetric group. In a later work we shall extend this approach to the group \(SU(p, p) \).

Acknowledgements. The author is thankful to Prof. Nigel Hitchin for suggesting this problem, and for many helpful discussions.

1. THE REGULAR FIBRES OF THE HITCHIN FIBRATION

Let us consider the Hitchin map \(h : \mathcal{M} \to \mathcal{A} \) given by \((E, \Phi) \mapsto \det(\Phi)\). From [7, Theorem 8.1] the map \(h \) is proper and surjective, and its regular fibres are abelian varieties. Moreover, for any \(a \in \mathcal{A} - \{0\} \) the fibre \(\mathcal{M}_a \) is connected [6, Theorem 8.1]. For any isomorphism class of \((E, \Phi)\) in \(\mathcal{M} \), one may consider the zero set of its characteristic polynomial

\[
\det(\Phi - \eta I) = \eta^2 + a = 0,
\]

where \(a = \det(\Phi) \in \mathcal{A} \). This defines a spectral curve \(S \) in the total space of \(K \), for \(\eta \) the tautological section of \(\rho^* K \) where \(\rho : S \to \Sigma \) is the projection. Note that the curve \(S \) is non-singular over \(\mathcal{A}_{reg} \), and the ramification points are given by the intersection of \(S \) with the zero section. The curve \(S \) has a natural involution \(\tau(\eta) = -\eta \) and thus we can define the Prym variety \(\text{Prym}(S, \Sigma) \) as the set of line bundles \(M \in \text{Jac}(S) \) which satisfy

\[
\tau^* M \cong M^*.
\]

Proposition 3. [7, Theorem 8.1] The fibres of \(\mathcal{M}_{reg} \) are isomorphic to \(\text{Prym}(S, \Sigma) \).
To see this, given a line bundle L on S one may consider the rank two vector bundle $E := \rho_* L$ and construct an associated Higgs bundle as follows. Given an open set $U \subset \Sigma$, multiplication by the tautological section η gives a homomorphism

$$\eta : H^0(\rho^{-1}(U), L) \to H^0(\rho^{-1}(U), L \otimes \rho^* K).$$

By the definition of a direct image sheaf, we have

$$H^0(U, E) = H^0(\rho^{-1}(U), L).$$

Hence, equation (2) can then be seen as

$$\Phi : H^0(U, E) \to H^0(U, E \otimes K),$$

defining the Higgs field $\Phi \in H^0(\Sigma, \text{End}_0 E \otimes K)$. Note that the map Φ is traceless as it satisfies its characteristic equation, which by construction is $\eta^2 + a = 0$.

Any line bundle M on the curve S such that $\tau^* M \cong M^*$ satisfies $\text{Nm}(M) = 0$. From [1] one has that

$$\Lambda^2 E = \text{Nm}(L) \otimes K^{-1}.$$

For $K^{1/2}$ a choice of square root, $M = L \otimes \rho^* K^{-1/2}$ is in the Prym variety and hence the vector bundle E has trivial determinant:

$$\Lambda^2 E = \text{Nm}(M \otimes \rho^* K^{1/2}) \otimes K^{-1} = \mathcal{O}.$$

2. A COMBINATORIAL APPROACH TO MONODROMY

The Gauss-Manin connection on the cohomology of the fibres of $\mathcal{M}_{\text{reg}} \to \mathcal{A}_{\text{reg}}$ defines the monodromy action for the Hitchin fibration. As each regular fibre is a torus, the monodromy is generated by the action of $\pi_1(\mathcal{A}_{\text{reg}})$ on $H^1(\text{Prym}(S, \Sigma), \mathbb{Z})$. The generators and relations of the monodromy action for hyperelliptic surfaces were studied from a combinatorial point of view by Copeland in [3, Theorem 1.1]. Furthermore, by [9, Section 4] one may extend these results to any compact Riemann surface:

Theorem 4 ([3, 9]). To each compact Riemann surface Σ of genus greater than 2, one may associate a graph Γ with edge set E and a skew bilinear pairing $< e, e' >$ on edges $e, e' \in \mathbb{Z}[E]$ such that

1. the monodromy representation of $\pi_1(\mathcal{A}_{\text{reg}})$ acting on $H_1(\text{Prym}(S, \Sigma), \mathbb{Z})$ is generated by elements σ_e labelled by the edges $e \in E$,
2. one can define an action of $\pi_1(\mathcal{A}_{\text{reg}})$ on $e' \in \mathbb{Z}[E]$ given by
 $$\sigma_e(e') = e' - < e', e >,$$
3. the monodromy representation of the action of $\pi_1(\mathcal{A}_{\text{reg}})$ on $H_1(\text{Prym}(S, \Sigma), \mathbb{Z})$ is a quotient of this module $\mathbb{Z}[E]$.

In order to construct the graph $\bar{\Gamma}$ Copeland looks at the particular case of Σ given by the non-singular compactification of the zero set of $y^2 = f(x) = x^{2g+2} - 1$. Firstly, by considering $\omega \in A$ given by
\[
\omega = (x - 2\zeta^2)(x - 2\zeta^4)(x - 2\zeta^6)(x - 2\zeta^8) \prod_{9 \leq j \leq 2g+2} (x - 2\zeta^j) \left(\frac{dx}{y} \right)^2,
\]
for $\zeta = e^{2\pi i/2g+2}$, it is shown in [3, Section 7] how interchanging two zeros of the differential provides information about the generators of the monodromy. Then, by means of the ramification points of the surface, a dual graph to $\bar{\Gamma}$ for which each zero of ω is in a face could be constructed. Copeland’s analysis extends to any element in A_{reg} over a hyperelliptic curve [3, Section 23]. Moreover, by work of Walker [9, Section 4] the above construction can be done for any compact Riemann surface.

Remark 5. Following [3, Section 6], we shall consider the graph $\bar{\Gamma}$ whose $4g - 4$ vertices are given by the ramification divisor of $\rho: S \to \Sigma$, i.e., the zeros of $a = \det(\Phi)$.

As an example, for genus $g = 3, 5,$ and 10, the graph $\bar{\Gamma}$ is given by:

![Graphs](image)

For $g > 3$ the graph $\bar{\Gamma}$ is given by a ring with 8 triangles next to each other, $2g - 6$ quadrilaterals and $4g - 4$ vertices. In this case, we shall label its edges as follows:

![Labeled Graph](image)

Figure 1.

Considering the lifted graph of $\bar{\Gamma}$ in the curve S over Σ, Copeland could show the following:
Proposition 6. [3, Theorem 11.1] If E and F are respectively the edge and face sets of $\tilde{\Gamma}$, then there is an induced homeomorphism

$$\text{Prym}(S, M) \cong \frac{\mathbb{R}[E]}{\left(\mathbb{R}[F] + \frac{1}{2}\mathbb{Z}[E]\right)},$$

where the inclusion $\mathbb{R}[F] \subset \mathbb{R}[E]$ is defined by the following relations involving the boundaries of the faces:

$$\bar{x}_1 := \sum_{i=1}^{2g-2} l_i ; \quad \bar{x}_2 := \sum_{i=1}^{2g-2} u_i ;$$

$$\bar{x}_3 := \sum_{\text{even} \geq 6} u_i - \sum_{\text{odd} \geq 5} l_i + \sum_{i=1}^{2g+2} b_i ;$$

$$\bar{x}_4 := l_1 + l_3 - u_2 - u_4 + \sum_{\text{odd}} u_i - \sum_{\text{even}} l_i + \sum_{i=1}^{2g+2} b_i .$$

Note that $\mathbb{R}[F] \cap \frac{1}{2}\mathbb{Z}[E]$ can be understood by considering the following sum:

$$\bar{x}_3 + \bar{x}_4 + \bar{x}_1 - \bar{x}_2 = 2 \left(l_1 + l_3 - u_2 - u_4 + \sum_{i=1}^{2g+2} b_i \right) = 2\bar{x}_5 .$$

Although the summands above are not individually in $\mathbb{R}[F] \cap \frac{1}{2}\mathbb{Z}[E]$, when summed they satisfy

$$\bar{x}_5 \in \mathbb{R}[F] \cap \frac{1}{2}\mathbb{Z}[E] .$$

Remark 7. For $g = 2$ it is known that $\pi_1(A_{reg}) \cong \mathbb{Z} \times \pi_1(S^2_6)$, where S^2_6 is the sphere S^2 with 6 holes (e.g. [3, Section 6]).

3. THE FIXED POINTS OF $(E, \Phi) \mapsto (E, -\Phi)$

The direct image of the trivial bundle O in $\text{Prym}(S, \Sigma)$ is given by $\rho_* O = O \oplus K$. So for $L = \rho^* K^{-1/2}$ one has

$$\rho_* \rho^* K^{-1/2} = K^{-1/2} \otimes \rho_* O = K^{-1/2} \oplus K^{1/2} .$$

It follows from Section 4 that the line bundle $O \in \text{Prym}(S, \Sigma)$ has an associated Higgs bundle $(K^{-1/2} \oplus K^{1/2}, \Phi_a)$, where the Higgs field Φ_a is obtained via Proposition 3:

$$\Phi_a = \begin{pmatrix} 0 & a \\ 1 & 0 \end{pmatrix} , \quad \text{for} \quad a \in H^2(\Sigma, K^2) .$$

Note that the automorphism

$$\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

conjugates Φ_a to $-\Phi_a$ and so the equivalence class of the Higgs bundle is fixed by the involution σ. Thus, this family of Higgs bundles defines an origin in the set of fixed points on each fibre.
An infinitesimal deformation of a Higgs bundle is given by \((A, \dot{\Phi})\) where \(A \in \Omega^0(\text{End}_0E)\) and \(\dot{\Phi} \in \Omega^0(\text{End}_0E)\). The holomorphic involution \(\sigma\) on \(\mathcal{M}\) induces an involution on the tangent space \(T\) of \(\mathcal{M}\) at a fixed point of \(\sigma\). Moreover, there is a natural symplectic form \(\omega\) defined on the infinitesimal deformations by

\[
\omega((A_1, \dot{\Phi}_1), (A_2, \dot{\Phi}_2)) = \int_\Sigma \text{tr}(\dot{A}_1 \dot{\Phi}_2 - \dot{A}_2 \dot{\Phi}_1).
\]

As the trace is invariant under \(\sigma\) and \(\sigma(\Phi_1) = -\Phi_1\), the induced involution on the tangent space maps \(\omega \mapsto -\omega\). It follows that the ±1-eigenspaces \(T_{\pm}\) of this involution are isotropic and complementary, and hence Lagrangian. Let us denote by \(Dh\) the derivative of the map \(h\), which maps the tangent spaces of \(\mathcal{M}\) to the tangent space of \(A\). As \(h\) is invariant under the involution \(\sigma\), the eigenspace \(T_-\) is contained in the kernel of \(Dh\). Since the derivative is surjective at a regular point, its kernel has dimension \(\dim(\mathcal{M})/2\) and thus it equals \(T_-\). Then, \(Dh\) is an isomorphism from \(T_+\) to the tangent space of the base. Since \(h\) is a proper submersion on the fixed point set, it defines a covering space. The tangent space to the identity in the Prym variety is acted as \(-1\) by the involution \(\sigma\) and as the Prym variety is connected, by exponentiation the action of \(\sigma\) on the regular fibres corresponds to \(x \mapsto -x\). Hence, the points of order two in the fibres of \(\mathcal{M}_{\text{reg}}\) over the regular locus \(\mathcal{A}_{\text{reg}}\) correspond to stable \(SL(2, \mathbb{R})\) Higgs bundles.

By Proposition 6 one may describe the Prym variety as \(\text{Prym}(S, \Sigma) \cong \mathbb{R}^{6g-6}/\wedge\), where

\[
\wedge := \frac{\mathbb{Z}/[E]}{\mathbb{R}[E] \cap \frac{1}{2}\mathbb{Z}[E]}.
\]

In particular, one has \(\wedge \cong H_1(\text{Prym}(S, \Sigma), \mathbb{Z})\). Let us denote by \(P[2]\) the elements of order 2 in \(\text{Prym}(S, \Sigma)\), which are equivalent classes in \(\mathbb{R}^{6g-6}\) of points \(x\) such that \(2x \in \wedge\). Then, \(P[2]\) is given by \(\frac{1}{2}\wedge\) modulo \(\wedge\) and as \(\wedge\) is torsion free,

\[
P[2] \cong \wedge/2\wedge \cong H_1(\text{Prym}(S, \Sigma), \mathbb{Z}_2).
\]

Moreover, \(H^1(\text{Prym}(S, \Sigma), \mathbb{Z}_2) \cong \text{Hom}(H_1(\text{Prym}(S, \Sigma), \mathbb{Z}), \mathbb{Z}_2)\) and thus

\[
H^1(\text{Prym}(S, \Sigma), \mathbb{Z}_2) \cong \text{Hom}(\wedge, \mathbb{Z}_2) \cong \wedge/2\wedge \cong P[2].
\]

The monodromy action on \(H^1(\text{Prym}(S, \Sigma), \mathbb{Z}_2)\) is equivalent to the action on \(P[2]\), the space of elements of order 2 in \(\text{Prym}(S, \Sigma)\). Note that over \(\mathbb{Z}_2\), the equations for \(\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{x}_4\) and \(\bar{x}_5\) are equivalent to

\[
x_1 := \sum_{i=1}^{2g-2} l_i; \quad x_2 := \sum_{i=1}^{2g-2} u_i;
\]

\[
x_3 := l_1 + l_3 + u_2 + u_4 + \sum_{\text{even}} u_i + \sum_{\text{odd}} l_i + \sum_{i=1}^{2g+2} b_i;
\]

\[
x_4 := l_1 + l_3 + u_2 + u_4 + \sum_{\text{odd}} u_i + \sum_{\text{even}} l_i + \sum_{i=1}^{2g+2} b_i;
\]

\[
x_5 := l_1 + l_3 + u_2 + u_4 + \sum_{i=1}^{2g+2} b_i.
\]
Proposition 8. The space $P[2]$ is given by the quotient of $\mathbb{Z}_2[E]$ by the subspace generated by x_1, x_2, x_4 and x_5.

4. THE ACTION ON $\mathbb{Z}_2[E]$

It is convenient to consider $\mathbb{Z}_2[E]$ as the space of 1-chains C_1 for a subdivision of the annulus in Figure 1. The boundary map ∂ to the space C_0 of 0-chains (spanned by the vertices of Γ) is defined on an edge $e \in C_1$ with vertices v_1, v_2 as $\partial e = v_1 + v_2$. Let $\Sigma^{[4g-4]}$ be the configuration space of $4g-4$ points in Σ. Then, there is a natural map $p : A_{reg} \to \Sigma^{[4g-4]}$ which takes a quadratic differential to its zero set. Furthermore, p induces the following maps

$$\pi_1(A_{reg}) \to \pi_1(\Sigma^{[4g-4]}) \to S_{4g-4},$$

where S_{4g-4} is the symmetric group of $4g-4$ elements. Thus there is a natural permutation action on C_0 and Copeland’s generators in $\pi_1(A_{reg})$ map to transpositions in S_{4g-4}. Concretely, these generators are defined as transformations of $\mathbb{Z}_2[E]$ as follows. The action σ_e labelled by the edge e on another edge x is

$$\sigma_e(x) = x + <x, e>e,$$

where $<\cdot, \cdot>$ is the intersection pairing. As this pairing is skew over \mathbb{Z}, for any edge e one has $<e, e> = 0$. Let G_1 be the group of transformations of C_1 generated by σ_e, for $e \in E$. Then, one can see the following:

Proposition 9. The group G_1 acts trivially on $Z_1 = \ker(\partial : C_1 \to C_0)$.

Proof. Let us consider $a \in C_1$ such that $\partial a = 0$, i.e., the edges of a have vertices which occur an even number of times. By definition, $\sigma_e \in G_1$ acts trivially on a for any edge $e \in E$ non adjacent to a. Furthermore, if $e \in E$ is adjacent to a, then $\partial a = 0$ implies that an even number of edges in a is adjacent to e, and thus the action σ_e is also trivial on a. □

We shall give an ordering to the vertices in Γ as in the figure below, and denote by $E' \subset E$ the set of dark edges:

![Figure 1: Annulus with vertices labeled and dark edges indicated.](image)

For (i, j) the edge between the vertices i and j, the set E' is given by $e_{4g-4} := (4g-4, 1)$ together with the natural succession of edges $e_i := (i, i + 1)$ for $i = 1, \ldots, 4g-5$.
Proposition 10. The reflections labelled by the edges in $E' \subset E$ generate a subgroup S'_{4g-4} of G_1 isomorphic to the symmetric group S_{4g-4}.

Proof. To show this result, one needs to check that the following properties characterizing generators of the symmetric group apply to the reflections labelled by E':

(i) $\sigma_{e_i}^2 = 1$ for all i,
(ii) $\sigma_{e_i}\sigma_{e_j} = \sigma_{e_j}\sigma_{e_i}$ if $j \neq i \pm 1$,
(iii) $(\sigma_{e_i}\sigma_{e_{i+1}})^3 = 1$.

By equation (6), it is straightforward to see that the properties (i) and (ii) are satisfied by σ_{e_i} for all $e_i \in E$. In order to check (iii) we shall consider different options for edges adjacent to e_i and e_{i+1} when $e_i, e_{i+1} \in E'$. Let $c_1, c_2, \cdots, c_n \in E$ be the edges adjacent to e_i and e_{i+1}, where n may be 5, 6 or 7. Taking the basis $\{c_1, \cdots, c_n, e_i, e_{i+1}\}$, the action $\sigma_{e_i}\sigma_{e_{i+1}}$ is given by matrices B divided into blocks in the following manner:

$$B := \begin{pmatrix}
I_n & 0 & 0 \\
\vdots & \vdots & \vdots \\
0 & 0 & 0 \\
n & a_1 & a_n \\
b & b_1 & b_n
\end{pmatrix},$$

where the entries a_i and b_j are 0 or 1, depending on the number of common vertices with the edges and their locations. Over \mathbb{Z}_2 one has that B^3 is the identity matrix and so property (iii) is satisfied for all edges $e_i \in E'$.

The subgroup S'_{4g-4} preserves $\mathbb{Z}_2[E']$. Furthermore, the boundary $\partial : C_1 \to C_0$ is compatible with the action of S'_{4g-4} on C_1 and S_{4g-4} on C_0. Thus, from Proposition 10, there is a natural homomorphism

$$\alpha : G_1 \longrightarrow S_{4g-4},$$

which is an isomorphism when restricted to S'_{4g-4}. For $N := \ker \alpha$ one has

$$G_1 = N \ltimes S'_{4g-4}.$$

Any element $g \in G_1$ can be expressed uniquely as $g = s \cdot h$, for $h \in N \subset G_1$ and $s \in S'_{4g-4} \subset G_1$. The group action on C_1 may then be expressed as

$$\left(h_1s_1 \right) \left(h_2s_2 \right) = h_1s_1h_2s_1^{-1}s_1s_2,$$

for $s_1, s_2 \in S'_{4g-4}$ and $h_1, h_2 \in N$. In order to understand the subgroup N, we define $E_0 := E - E'$ and let $\Delta_e \subset C_1$ denote the boundary of the square or triangle adjacent to the edge $e \in E_0$ in \hat{G}. Note that each edge $e \in E_0$ is contained in only one of such boundaries. We shall write $\hat{E}_0 := \{\Delta_e \text{ for } e \in E_0\}$. From Proposition 9 the boundaries Δ_e are acted on trivially by G_1.

By comparing the action labelled by the edges in E_0 with the action of the corresponding transposition in S'_{4g-4} one can find out which elements are in N. We shall denote by $\sigma_{(i,j)}$ the action on C_1 labeled by the edge (i, j). Furthermore, we consider $s_{(i,j)}$ the element in S_{4g-4} such that $\alpha(\sigma_{(i,j)}) = \alpha(s_{(i,j)}) \in S_{4g-4}$, where $\alpha(s_{(i,j)})$ interchanges the vertices of (i, j). Then, we have the following possibilities:
Theorem 11. The action of \(\sigma_e \) labelled by \(e \) is given by
\[
\sigma_e(x) = h_e \cdot s_e(x),
\]
where \(s_e \in S_{4g-4}' \) is the element which maps under \(\alpha \) to the transposition of the two vertices of \(e \), and the action of \(h_e \in N \) is given by
\[
h_e(x) = \begin{cases}
 x & \text{if } e \in E', \\
 x+<e,x> & \text{if } e \in E_0.
\end{cases}
\]

Proof. For \(e \in E' \), one has \(\sigma_e \in S_{4g-4}' \). Furthermore, one can see that the action of \(\sigma_e \) labelled by \(e \in E_0 \) on an adjacent edge \(x \) is given by
\[
\sigma_e(x) = x+<e,x> \in \Delta_e.
\]
From Proposition 9 the boundary \(\Delta_e \) is acted on trivially by \(G_1 \) and thus the above action is given by \(h_e \cdot s_e(x) = h_e(\sigma_e(x) + \Delta_e) = h_e(x') + <e,x'> \in \Delta_e = \sigma_e(x) \).

Remark 12. Note that for \(e,e' \in E_0 \), the maps \(h_e \) and \(h_{e'} \) satisfy
\[
h_e h_{e'}(x) = x+<e',x'> \Delta_e' + <e,x> \Delta_e.
\]

In order to construct a representation for the action of \(\pi_1(\mathcal{A}_{reg}) \) on \(C_1 \), we shall begin by studying the image \(B_0 \) and the kernel \(Z_1 \) of \(\partial : C_1 \to C_0 \).

5. THE REPRESENTATION OF \(G_1 \)

For \(y = (y_1, \ldots, y_{4g-4}) \in C_0 \), we define the linear map \(f : C_0 \to \mathbb{Z}_2 \) by
\[
f(y) = \sum_{i=1}^{4g-4} y_i.
\]

Proposition 13. The image \(B_0 \) of \(\partial : C_1 \to C_0 \) is formed by elements with an even number of 1's, i.e., \(B_0 = \ker f \).

Proof. It is clear that \(B_0 \subset \ker f \). In order to check surjectivity we consider the edges \(e_i \in C_1 \) given by \(e_i = (i,i+1) \in E' \), for \(i = 1, \ldots, 4g-5 \). Given the elements \(R^k \in B_0 \) for \(k = 2, \ldots, 4g-4 \) defined as
\[
R^2 := \partial e_1 = (1,1,0,\ldots,0),
\]
\[
\vdots
\]
\[
R^k := R^{k-1} + \partial e_{k-1} = (1,0,\ldots,0,1,0,\ldots,0),
\]
one may generate any distribution of an even number of 1’s. Hence, \(B_0 = \text{span}\{R^k\} \) which is the kernel of \(f \).

Proposition 14. The dimensions of the image \(B_0 \) and the kernel \(Z_1 \) of \(\partial : C_1 \rightarrow C_0 \) are, respectively, \(5g - 5 \) and \(2g + 3 \).

Proof. From Proposition 13 one has that \(\dim(B_0) = \dim(\ker f) = 4g - 5 \). Furthermore, as \(\dim C_1 = \dim Z_1 + \dim B_0 \), the kernel \(Z_1 \) of \(\partial \) has dimension \(2g + 3 \). \(\square \)

Note that \(x_1, x_2, x_4 \in Z_1 \) and \(x_5 \notin Z_1 \). From a homological viewpoint one can see that \(x_4 \) and \(\Delta_e \) for \(e \in E_0 \) form a basis for the kernel \(Z_1 \). We can extend this to a basis of \(C_1 \) by taking the edges

\[\beta' := \{ e_i = (i, i + 1) \text{ for } 1 \leq i \leq 4g - 5 \} \subset E' , \]

whose images under \(\partial \) form a basis for \(B_0 \), and hence a basis for a complementary subspace \(V \) of \(Z_1 \). We shall denote by \(\beta := \{ \beta_0, \beta' \} \) the basis of \(C_1 \) where \(\beta_0 = \{ \tilde{E}_0, x_4 \} \).

In order to generate the whole group \(G_1 \), we shall study the action of \(S'_{4g-4} \) by conjugation on \(N \). Considering the basis \(\beta \) one may construct a matrix representation of the maps \(h_{e_i} \) for \(e_i \in E = \{ E_0, E' \} \).

Proposition 15. For \(e \in E \), the matrix \([h_e] \) associated to \(h_e \) in the basis \(\beta \) is given by

\[
[h_e] = \begin{pmatrix}
I_{2g+3} & A_e \\
0 & I_{4g-5}
\end{pmatrix},
\]

where the \((2g + 3) \times (4g - 5)\) matrix \(A_e \) satisfies one of the following:

- it is the zero matrix for \(e \in E' \),
- it has only four non-zero entries in the intersection of the row corresponding to \(\Delta_e \) and the columns corresponding to an adjacent edge of \(e \) for \(e \in E_0 - \{ u_5, l_6 \} \),
- it has three non-zero entries in the intersection of the row corresponding to \(\Delta_e \) and the columns corresponding to an adjacent edge of \(e \) for \(e = u_5, l_6 \).

Proof. As we have seen before, for \(e \in E_0 \) the map \(h_e \) acts as the identity on the elements of \(\beta_0 \). Furthermore, any edge \(e \in E_0 - \{ u_5, l_6 \} \) is adjacent to exactly four edges in \(\beta' \). In this case \(h_e \) has exactly four non-zero elements in the intersection of the row corresponding to \(\Delta_e \) and the columns corresponding to edges in \(\beta' \) adjacent to \(e \). In the case of \(e = u_5, l_6 \), the edge \(e \) is adjacent to exactly 3 edges in \(\beta' \) and thus \(h_{e} \) has only 3 non-zero entries. \(\square \)

Let us recall that \(S'_{4g-4} \) preserves the space spanned by \(E' \), hence also the subspace \(V \), and acts trivially on \(Z_1 \). In the basis \(\beta \) the action of an element \(s \in S'_{4g-4} \) has a matrix representation given by

\[
[s] = \begin{pmatrix}
I_{2g+3} & 0 \\
0 & \pi_s
\end{pmatrix},
\]

where \(\pi \) is the permutation action corresponding to \(s \). Hence, for \(f \in E_0 \) we may construct the matrix for a conjugate of \(h_f \) as follows:

\[
[s][h_f][s]^{-1} = \begin{pmatrix}
I_{2g+3} & 0 \\
0 & \pi_s
\end{pmatrix} \begin{pmatrix}
I_{2g+3} & A_f \\
0 & I_{4g-5}
\end{pmatrix} \begin{pmatrix}
I_{2g+3} & 0 \\
0 & \pi_s^{-1}
\end{pmatrix} = \begin{pmatrix}
I_{2g+3} & A_f \pi_s^{-1} \\
0 & I_{4g-5}
\end{pmatrix}.
\]
Proposition 16. The normal subgroup $N \subset G_1$ consists of all matrices of the form

$$H = \begin{pmatrix} I_{2g+3} & A \\ 0 & I_{4g-5} \end{pmatrix}$$

where A is any matrix whose rows corresponding to Δ_e for $e \in E_0 - \{u_5, l_6\}$ have an even number of 1’s, the row corresponding to x_4 is zero and the rows corresponding to $\Delta_{u_5}, \Delta_{l_6}$ have any distribution of 1’s.

Proof. Given $e_i \in E_0 - \{u_5, l_6\}$, we know that the matrix A_{e_i} has only four non-zero entries in the row corresponding to Δ_{e_i}. Thus, for $g > 2$, there exist elements $s_1, s_2 \in S_{4g-4}'$ with associated permutations π_1 and π_2 such that the matrix $\tilde{A}_{e_i} := A_{e_i} \pi_1^{-1} + A_{e_i} \pi_2^{-1}$ has only two non-zero entries in the row corresponding to Δ_{e_i}, given by the vector R^5 defined in the proof of Proposition 13. Furthermore, by Remark 12, we have

$$[s_1 h_{e_i} s_1^{-1} s_2 h_{e_i} s_2^{-1}] = \begin{pmatrix} I_{2g+3} & A_{e_i} \pi_1^{-1} \\ 0 & I_{4g-5} \end{pmatrix} \begin{pmatrix} I_{2g+3} & A_{e_i} \pi_2^{-1} \\ 0 & I_{4g-5} \end{pmatrix} = \begin{pmatrix} I_{2g+3} & \tilde{A}_{e_i} \\ 0 & I_{4g-5} \end{pmatrix}.$$

Considering different $s \in S_{4g-4}'$ acting on $s_1 h_{e_i} s_1^{-1} s_2 h_{e_i} s_2^{-1}$, one can obtain the matrices $\{A^k_{e_i}\}_{k=2}$ with R^5 as the only non-zero row corresponding to Δ_{e_i}. Thus, by composing the elements of N to which each $A^k_{e_i}$ corresponds, we can obtain any possible distribution of an even number of 1’s in the only non-zero row.

Similar arguments can be used for the matrices corresponding to u_5, l_6 which in this case may have any number of 1’s in the only non-zero row. Recalling Remark 12 we are then able to generate any matrix $A \in N$ as described in the proposition. \qed

From the decomposition of G_1 and the results obtained previously, we have the following theorem:

Theorem 17. The representation of $\sigma \in G_1$ in the basis β is given by

$$[\sigma] = \begin{pmatrix} I & A \\ 0 & \pi \end{pmatrix},$$

where π represents a permutation on \mathbb{Z}^{4g-5}_2 and A is any matrix whose rows corresponding to Δ_e for $e \in E_0 - \{u_5, l_6\}$ have an even number of 1’s, the row corresponding to x_4 is zero and the rows corresponding to Δ_{u_5} and Δ_{l_6} have any distribution of 1’s.

6. THE MONODROMY ACTION OF $\pi_1(\mathcal{A}_{reg})$ ON $P[2]$

As seen previously, $P[2]$ can be obtained as the quotient of C_1 by the four relations x_1, x_2, x_4 and x_5. It is important to note that these relations are preserved by the action of $\pi_1(\mathcal{A}_{reg})$. Furthermore, $x_1, x_2, x_4 \in Z_1$ and $\partial x_5 = (1, 1, \cdots, 1) \in B_0$. Hence, we have the following maps

$$\mathbb{Z}_2^{2g} \cong \frac{Z_1}{< x_1, x_2, x_4 >} \to P[2] \to \frac{B_0}{< (1, 1, \cdots, 1) >} \cong \mathbb{Z}_2^{4g-6}. \quad (12)$$
The monodromy group G is given by the action on the quotient $P[2]$ induced by the action of G_1 on C_1. Note that $x_1, x_2, x_4 = 0$ imply

$$
\Delta_{l_6} = \sum_{l_i \in E_0 - \{l_6\}} \Delta_{l_i}; \quad \Delta_{u_5} = \sum_{l_i \in E_0 - \{u_5\}} \Delta_{u_i}.
$$

Moreover, as $x_1 + x_2 + x_4 + x_5 = 0$, one can express the edge u_6 in terms of elements in $\beta' - \{u_6\}$. For $\tilde{\beta}_0 := \beta_0 - \{x_4, \Delta_{l_6}, \Delta_{u_5}\}$ and $\tilde{\beta}' := \beta' - \{u_6\}$, let $\tilde{\beta} := \{\tilde{\beta}_0, \tilde{\beta}'\}$. Then one obtains the following:

Proposition 18. The elements in $\tilde{\beta}_0$ generate $Z_4/\langle x_1, x_2, x_4 \rangle$ and $\tilde{\beta}'$ generates a complementary subspace in $P[2]$.

From the previous analysis, one has the following explicit description of the monodromy action on $P[2]$:

Theorem 1. The representation of $\sigma \in G$ in the basis $\tilde{\beta}$ is given by

$$
[\sigma] = \begin{pmatrix} I_{2g} & A \\ 0 & \pi \end{pmatrix},
$$

where

- π is the quotient action on $\mathbb{Z}_2^{4g-5}/(1, \cdots, 1)$ induced by the permutation representation on \mathbb{Z}_2^{4g-5},
- A is any $(2g) \times (4g - 6)$ matrix with entries in \mathbb{Z}_2.

Proof. From the above analysis, the action of G on $B_0/\langle \partial x_5 = (1,1,\cdots,1) \rangle$ is given by the quotient action of the symmetric group. Furthermore, replacing Δ_{u_5} and Δ_{l_6} by the sums in (13), one can use similar arguments to the ones in Proposition 16 to obtain any number of 1’s in all the rows of the matrix A. \qed

Remark 19. We have seen in Proposition 9 that the action of G_1 is trivial on Z_1. Moreover, the space $\mathbb{Z}_2[x_1, x_2, x_4, x_5]$ is preserved by the action of G_1, and thus one can see that the induced monodromy action on the $2g$-dimensional subspace $Z_1/\mathbb{Z}_2[x_1, x_2, x_4, x_5]$ is trivial. Geometrically, there are 2^{2g} sections of the Hitchin fibration given by choices of the square root of K. These sections meet each Prym in 2^{2g} points which also lie in $P[2]$. Since we can lift a closed curve by a section, these are acted on trivially by the monodromy.

7. AN APPLICATION

The bundle of $P[2]$ is a finite covering of \mathcal{A}_{reg} of degree 2^{6g-6} and hence each of its connected components corresponds to a maximal integrable submanifold. Considering two points p and q which are in the same orbit under the monodromy action, there is a path in \mathcal{A}_{reg} whose action connects them. The horizontal lift of the path in \mathcal{A}_{reg} is a path in $P[2]$ which connects these two points. Hence p and q are in the same connected component of the fixed point submanifold of $\sigma : (V, \Phi) \mapsto (V, -\Phi)$.
7.1. The orbits of the monodromy action. We shall study now the orbits \(G(s, x) \) of each \((s, x) \in P[2] \cong \mathbb{Z}_2^{2g} \oplus \mathbb{Z}_2^{4g-6} \) under the action of \(G \). Note that for \(g \in G \), its action on \((s, x)\) is given by

\[
g \cdot (s, x)^t = \begin{pmatrix} I & A \\ 0 & \pi \end{pmatrix} \begin{pmatrix} s \\ x \end{pmatrix} = \begin{pmatrix} s + Ax \\ \pi x \end{pmatrix}.
\]

Proposition 20. The action of \(G \) on \(P[2] \) has \(2^{2g} + g - 1 \) different orbits.

Proof. The matrices \(A \) have any possible number of 1’s in each row, and so for \(x \neq 0 \) any \(s' \in \mathbb{Z}_2^{2g} \) may be written as \(s' = s + Ax \) for some \(A \). Hence, the number of orbits \(G(s, x) \) for \(x \neq 0 \) is determined by the number of orbits of the action in \(\mathbb{Z}_2^{4g-6} \) defined by \(\xi : x \rightarrow \pi x \). The map \(\xi \) permutes the non-zero entries of \(x \) and thus the orbits of this action are given by elements with the same number of 1’s.

From equation (12), the space \(\mathbb{Z}_2^{4g-6} \) can be thought of as vectors in \(\mathbb{Z}_2^{4g-4} \) with an even number of 1’s, modulo \((1, \ldots, 1)\). Thus, for \(x \in \mathbb{Z}_2^{4g-6} \) and \(x \neq 0 \), each orbit \(\xi_x \) is defined by a constant \(m \) such that \(x \) has \(2m \) non-zero entries, for \(0 < 2m \leq 4g - 4 \). Let us call \(\bar{x} \in \mathbb{Z}_2^{4g-6} \) the element defined by the constant \(\bar{m} \) such that \(2\bar{m} = (4g - 4) - 2m \). With this notation, we can see that \(\bar{x} \) and \(x \) belong to the same equivalence class in \(\mathbb{Z}_2^{4g-6} \). Note that for \(m \neq g - 1, 2g - 2 \), the corresponding \(x \) is equivalent to \(\bar{x} \) under \(\xi \) and thus in this case there are \(g - 2 \) equivalent classes \(\xi_x \). Then, considering the equivalence class for \(m = g - 1 \), one has \(g - 1 \) different classes for the action of \(\xi \). From equation (15), the action of \(G \) on an element \((s, 0) \in P[2] \) is trivial. Thus, in this case one has \(2^{2g} \) different orbits of \(G \). \(\square \)

Let us recall that the fixed point set in \(\mathcal{M} \) of the involution \(\sigma \) is given by the moduli space of semistable \(SL(2, \mathbb{R}) \) Higgs bundles. We shall now check that no connected component of the fixed point set of \(\sigma \) lies entirely over the discriminant locus of \(\mathcal{A} \).

7.2. Connected components of the fixed point set of \(\sigma \). We shall study the connected components corresponding to stable and strictly semistable \(SL(2, \mathbb{R}) \) Higgs bundles.

Note that for a stable \(SL(2, \mathbb{C}) \) Higgs bundle \((E, \Phi)\) whose isomorphism class is fixed by the involution \(\sigma : (E, \Phi) \mapsto (E, -\Phi) \), there is an automorphism \(\alpha : E \rightarrow E \) whose action by conjugation on \(\Phi \) is given by

\[
\alpha^{-1} \Phi \alpha \mapsto -\Phi.
\]

As \(\alpha^2 \) commutes with \(\Phi \), by \cite{7}, Proposition 3.15 it acts as \(\lambda^2 \) for some \(\lambda \in \mathbb{C}^* \). Furthermore, \(\alpha \) has constant eigenvalues \(\pm \lambda \) and thus \(E \) can be decomposed into the corresponding eigenspaces \(V \) and \(V^* \). Then, the Higgs field can be expressed as

\[
\Phi = \begin{pmatrix} a & \beta \\ \gamma & -a \end{pmatrix} \in H^0(\Sigma, \text{End}_0(E) \otimes K).
\]

From this decomposition and the action of \(\alpha \), one has that necessarily \(\lambda = \pm i \) and \(a = 0 \). In particular, \(\sigma \) acts on \(E \) via transformations of the form

\[
\pm \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}.
\]

In the case of strictly semistable Higgs bundles, the following Proposition applies:
Proposition 21. Any point representing a strictly semistable Higgs bundle in \mathcal{M} fixed by σ is in the connected component of a Higgs bundle with zero Higgs field.

Proof. The moduli space \mathcal{M} is the space of S-equivalence classes of semistable Higgs bundles. A strictly semistable $SL(2, \mathbb{C})$ Higgs bundle (E, Φ) is represented by $E = V \oplus V^*$ for a degree zero line bundle V, and

$$\Phi = \begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix} \text{ for } a \in H^0(\Sigma, K).$$

If V^2 is nontrivial, only automorphisms fix Φ so this is an $SL(2, \mathbb{R})$ Higgs bundle only for $\Phi = 0$, and corresponds to a flat connection with holonomy in $SO(2) \subset SL(2, R)$. If V^2 is trivial then the automorphism $(u, v) \mapsto (v, -u)$ takes Φ to $-\Phi$, corresponding to a flat bundle with holonomy in $\mathbb{R}^* \subset SL(2, \mathbb{R})$. By scaling Φ to zero this is connected to the zero Higgs field. The differential a can be continuously deformed to zero by considering ta for $0 \leq t \leq 1$. Hence, by stability of line bundles, one can continuously deform (E, Φ) to a Higgs bundle with zero Higgs field via strictly semistable pairs. \square

In the case of stable $SL(2, \mathbb{R})$ Higgs bundles we have the following result:

Proposition 22. Any stable $SL(2, \mathbb{R})$ Higgs bundle is in a connected component which intersects \mathcal{M}_{reg}.

Proof. Let $(E = V \oplus V^*, \Phi)$ be a stable $SL(2, \mathbb{R})$ Higgs bundle with $d := \deg(V) \geq 0$ and

$$\Phi = \begin{pmatrix} 0 & \beta \\ \gamma & 0 \end{pmatrix} \in H^0(\Sigma, \text{End}_0(E) \otimes K).$$

Stability implies that the section $\gamma \in H^0(\Sigma, V^{-2}K)$ is non-zero, and thus $0 \leq 2d \leq 2g - 2$. Moreover, the section β of V^2K can be deformed continuously to zero.

The section γ defines a divisor $[\gamma]$ in the symmetric product $S^{2g-2-2d}\Sigma$. As this space is connected, one can continuously deform the divisor $[\gamma]$ to any $[\tilde{\gamma}]$ composed of distinct points. For $a \in \mathcal{A}_{reg}$ with zeros x_1, \ldots, x_{4g-4}, we may deform $[\gamma]$ to $[\tilde{\gamma}]$ given by the points $x_1, \ldots, x_n \in \Sigma$ for $n := 2g - 2 - 2d$, and such that $\tilde{\gamma}$ is a section of $U^{-2}K$ for some line bundle U.

The complementary zeros $x_{n+1}, \ldots, x_{4g-4}$ of a form a divisor of U^2K. Any section $\tilde{\beta}$ with this divisor can be reached by continuously deforming $[\beta]$ from zero to the set $x_{n+1}, \ldots, x_{4g-4}$. Hence, we may continuously deform any stable pair $(V \oplus V^*, \Phi = \{\beta, \gamma\})$ to $(U \oplus U^*, \Phi = \{\tilde{\beta}, \tilde{\gamma}\})$ in \mathcal{A}_{reg}. \square

The above analysis establishes that the number of connected components of the fixed point set of the involution σ on \mathcal{M} is less than or equal to the number of orbits of the monodromy action in $P[2]$. From [7, Section 10], a flat $SL(2, \mathbb{R})$ Higgs bundle has an associated \mathbb{RP}^1 bundle whose Euler class $0 \leq k \leq g - 1$ is a topological invariant. In particular, $SL(2, \mathbb{R})$ Higgs bundles with different Euler class lie in different connected components of the fixed point set of σ. Moreover, for $k = g - 1$ one has 2^{2g} connected components corresponding to the so-called Hitchin components. Hence, the lower bound to the number of connected components of the fixed point set of the involution σ is $2^{2g} + g - 1$. As this lower bound
equals the number of orbits of the monodromy action on the fixed points of \(\sigma \) on \(\mathcal{M}_{\text{reg}} \), one has that the closures of these orbits can not intersect. Hence, the number of connected components of the fixed points of the involution \(\sigma : (V, \Phi) \mapsto (V, -\Phi) \) on \(\mathcal{M}_{\text{reg}} \) is equal to the number of orbits of the monodromy action on the points of order two of the regular fibres \(\mathcal{M}_{\text{reg}} \), i.e. \(2^{2g} + g - 1 \). Note that for \(\Phi = 0 \) there is a connected component (namely the moduli space of stable bundles) which does not intersect any non-singular fibres and hence does not appear in the description of the orbits of the monodromy action. From the above analysis, one has the following:

Corollary 2. The number of connected components of the moduli space of semistable \(SL(2, \mathbb{R}) \) Higgs bundles is \(2^{2g} + g \).

The construction of the orbits of the monodromy action provides a decomposition of the \(4g - 4 \) zeros of \(\det \Phi \) via the \(2m \) non-zero entries in Proposition 20. An element \(M \) of order two in the Prym variety has the property that \(\tau^* M \cong M \). Considering the notation of Section 4, the distinguished subset of zeros correspond to the points in the spectral curve \(S \) where the action on the line bundle \(L \) is trivial.

Remark 23. While the monodromy action for the \(SL_2 \) Hitchin fibration was considered previously when studying the singular fibres [2], Theorem 7 and Corollary 2 provide information about the global topology of the moduli space by means of the regular fibres of the Hitchin fibration.

References

[1] A. Beauville, M.S. Narasimhan and S. Ramanan, *Spectral curves and the generalised theta divisor.* J. reine angew. Math. 398 (1989), 169-179.

[2] M.A. de Cataldo, T. Hausel and L. Migliorini, *Topology of Hitchin systems and Hodge theory of character varieties: the case \(A_1 \).* To appear in Annals of Math.

[3] J. Copeland, *Monodromy of the Hitchin map over hyperelliptic curves.* IMRN (2005), 1743-1785.

[4] K. Corlette, *Flat \(G \)-bundles with canonical metrics,* J. Differential Geom. 28 (1988), 361-382.

[5] S. K. Donaldson, *Twisted harmonic maps and the self-duality equations,* Proc. London Math. Soc. (3) 55 (1987), 127-131.

[6] P.B. Gothen and A. Oliveira, *The singular fibre of the Hitchin map,* arXiv:1012.5541v2, (2011)

[7] N.J. Hitchin, *The self-duality equations on a Riemann surface.* Proc. LMS 55, 3 (1987), 59-126.

[8] C.T. Simpson, *Higgs bundles and local systems,* Publ. Math. I.H.E.S. 75 (1992), 595.

[9] K. Walker, *Quotient groups of the fundamental groups of certain strata of the moduli space of quadratic differentials.* Geometry and Topology, 14 (2010), 1129-1164

Mathematical Institute, 24-29 St. Giles’, Oxford, UK OX1 3LB.
E-mail address: schaposnik@maths.ox.ac.uk