Entanglement in bipartite pure states of an interacting boson gas obtained by local projective measurements

Francis N. C. Paraan,1,∗ Javier Molina-Vilaplana,2,† Vladimir E. Korepin,1,‡ and Sougato Bose3,§
1C. N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, NY 11794-3840, USA
2Department of Systems Engineering and Automation, Technical University of Cartagena, 30202 Cartagena, Spain
3Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
(Dated: August 8, 2011)

We quantify the extractable entanglement of excited states of a Lieb-Liniger gas that are obtained from coarse-grained measurements on the ground state in which the boson number in one of two complementary contiguous partitions of the gas is determined. Numerically exact results obtained from the coordinate Bethe ansatz show that the von Neumann entropy of the resulting bipartite pure state increases monotonically with the strength of repulsive interactions and saturates to the impenetrable boson limiting value. We also present evidence indicating that the largest amount of entanglement can be extracted from the most probable projected state having half the number of bosons in a given partition. Our study points to a fundamental difference between the nature of the entanglement in free-bosonic and free-fermionic systems, with the entanglement in the former being zero after projection, while that in the latter (corresponding to the impenetrable boson limit) being non-zero.

PACS numbers: 03.67.Bg, 05.30.Jp, 03.67.Mn

I. INTRODUCTION

In the quantum information and communication community, studies of the properties of quantum entanglement and entanglement measures are mainly motivated by the idea that entanglement is a vital resource for processing quantum information. Of particular current interest is the quantification of the entanglement present in many-body quantum systems [1] for which experimental measurement protocols have been recently proposed [2]. In this paper we will study the entanglement that can be extracted from bipartite projections of the ground state of the integrable repulsive Lieb-Liniger model on a ring [3, 4]. The corresponding hamiltonian describes a continuous one-dimensional gas of bosons with short-range interactions modeled by Dirac delta-functions. Though these one-dimensional systems have long been studied in atomic waveguides with tight axial confinement [5–7], the ring-shaped traps needed to reproduce periodic boundary conditions have only been recently developed [8].

The main objective of our work here is to study the effects of the strength of interactions on the entanglement obtained from projections of the ground state of this continuous many-body system—an aim that is facilitated by the fact that the Lieb-Liniger hamiltonian is exactly solvable by the Bethe ansatz. In fact, the entanglement entropy in other continuous integrable systems, for example the Calogero-Sutherland model [9, 10] and the anyonic Lieb-Liniger model [9, 11, 12], has already been studied under the framework of particle partitioning, but as we explain in the following paragraphs our extraction procedure involves a spatial partitioning of subsystems. More recently, the von Neumann and Rényi block entropies in the ground state of spatially continuous free-fermionic models [13] were obtained from conformal field theory arguments as the appropriate limit of the corresponding lattice model results [14, 15].

Although there is as yet no conventional approach to quantifying the amount of entanglement in multi-particle assemblies of indistinguishable particles [16–18], the type of projections we consider here allows us to give a definite measure of entanglement in the resulting projected states via the von Neumann entropy. In such indistinguishable particle systems, entanglement between two spatial partitions of the system may both arise from the correlation in occupancies of the partitions, as well as the correlation between distributions of the particles in the two partitions. For example, occupancies of two boxes, by a total number of two indistinguishable bosons can be of the form \(|2, 0\rangle + |1, 1\rangle + |0, 2\rangle\),1 and there is entanglement in this state by virtue of the uncertainty of the number of particles in each box. If one can somehow eliminate this form of (somewhat trivial) entanglement, then does one still retain any entanglement between partitions in a system of indistinguishable particles? We will show below that the answer to this question is “no” for free bosons, while it is “yes” for free fermions, providing a striking qualitative difference in the cause of the entanglement in these systems.

∗ Electronic address: fparaan@max2.physics.sunysb.edu
† Electronic address: javi.molina@upct.es
‡ Electronic address: korepin@max2.physics.sunysb.edu
§ Electronic address: sougato@theory.phys.ucl.ac.uk

1 The state ket \(|m, n\rangle\) denotes the state having \(m\) particles in one box and \(n\) in the other.
In this paper, we are interested in quantifying the entanglement in projections of the Lieb-Liniger ground state that are obtained after coarse-grained measurements reveal the number of particles in one of two contiguous partitions A and B that divide the gas into two half-rings. Thus, the projected pure state is spatially partitioned (bipartite) and one can quantify the resulting entanglement by the von Neumann entropy. A similar procedure has been used to quantify the entanglement extractable from stationary and non-stationary states of impenetrable boson gases [19], supersinglet states, and several spin chains [20]. In the spirit of these latter works we study here the notion of a projectively extractable pure state entanglement E_{pp} as defined by

$$E_{pp} \equiv \max_k \{ p(k)S_A(k) \} \equiv \max \{ E_k \},$$

where $p(k)$ is the probability of projecting the ground state into a state $\chi_{AB}(k)$ having the fraction k/N of particles in region A and $S_A(k) \equiv -\text{tr}[\rho_A(k) \log_2 \rho_A(k)]$ is the von Neumann entropy of the reduced density matrix $\rho_A(k) \equiv \text{tr}_B[\chi_{AB}(k)\chi_{AB}(k)\text{]}$. That is, if Π_k is a projector onto the state subspace having k particles in partition A, then the projected ket we are interested in may be expressed as $|\chi_{AB}(k)\rangle = \Pi_k |\chi\rangle$ in terms of the ground state ket $|\chi\rangle$. The entanglement measure above (1) gives the maximum weighted entanglement $E_k \equiv p(k)S_A(k)$ over all possible projection outcomes and consequently captures the probabilistic nature of the preparatory measurements.

Our analysis begins in Sect. II with a brief introduction to the coordinate Bethe ansatz that forms the basis of our exact computations. The probability of obtaining each projection outcome is calculated in Sect. III, while the von Neumann entropy of the projected states and their corresponding weighted entanglement are given in Sect. IV. On the basis of these results we argue that the projectively extractable pure state entanglement E_{pp} is equal to the weighted entanglement $E_{N/2}$ of the balanced case in which exactly half of the bosons are present in both partitions (the total number N is given to be even).

We conclude with a summary and some remarks in Sect. V.

II. BETHE ANSATZ

We briefly review here some of the well-established properties of the Bethe ansatz solution for the ground state of the Lieb-Liniger model [3, 21]. Written in dimensionless form, in which lengths are measured in units of the ring circumference L and energy in natural units $\hbar^2/2mL^2$, the Schrödinger equation for N delta-interacting bosons is

$$\mathcal{H}\chi(x) = \left[-\sum_{j=1}^N \frac{\partial^2}{\partial x_j^2} + 2c \sum_{1 \leq k < j \leq N} \delta(x_j - x_k) \right] \chi(x).$$

The dimensionless interaction constant is taken to be non-negative $c \geq 0$ so that the gas does not collapse. The unique periodic ground state eigensolution of this Hamiltonian is given by the normalized coordinate Bethe ansatz

$$\chi(x) = \frac{1}{\sqrt{N!}} \sum_{\{P\}} (-1)^{|P|} F_P(x) e^{i\lambda_P \cdot x},$$

$$F_P(x) = \prod_{1 \leq k < j \leq N} \frac{\lambda_{Pj} - \lambda_{Pk} - ic \text{sgn}(x_j - x_k)}{\{ N! \prod_{k<j} [(\lambda_j - \lambda_k)^2 + c^2] \}^{1/2}},$$

where the momentum vector λ_P has N components λ_{Pk} that form a permutation \mathcal{P} of the solutions λ_j of the Bethe equations

$$e^{i\lambda_j} = -\prod_{k=1}^N \frac{\lambda_j - \lambda_k + ic}{\lambda_j - \lambda_k - ic},$$

which satisfy $\sum_i \lambda_i = 0$. The quantity $(-1)^{|\mathcal{P}|}$ is the signature of the permutation \mathcal{P} and the normalization factor $N!$ may be obtained by, for example, the quantum inverse scattering method [22]. Explicitly, the absolute square $|\mathcal{N}|^2$ is the determinant of the second derivatives of the Yang action S evaluated at the solutions of the Bethe equations (5):

$$|\mathcal{N}|^2 = \det \left(\frac{\partial^2 S}{\partial \lambda_i \partial \lambda_j} \right)$$

$$= \det \left(j_{jk} + \sum_{l=1}^N \frac{2c \delta_{jk}}{(\lambda_k - \lambda_l)^2 + c^2} - \frac{2c}{(\lambda_j - \lambda_k)^2 + c^2} \right).$$

III. PROJECTION PROBABILITIES

In this section we are interested in calculating the probability $p(k)$ of successfully projecting the ground state χ into the pure state $\chi_{AB}(k)$ having k bosons in partition A and $N-k$ bosons in partition B. For convenience we define the vectors $x_A \equiv (x_1, \ldots, x_k)^T$ and $x_B \equiv (x_{k+1}, \ldots, x_N)^T$. Since the wavefunction $\chi(x)$ is manifestly invariant over any permutation of coordinate indices, we can express the success probability as

$$p(k) = \left(\frac{N!}{k!} \right) \int_A \int_B |\chi(x)|^2 dx_B dx_A.$$
(c = 0) this probability is equal to $N!(N/2)!^{-2}2^{-N}$ (Fig. 2) and vanishes as $\sim 2/(\pi N)$ in the thermodynamic limit $N \to \infty$. This is the expected result because each independent particle may be found in either half-ring with equal probability.

As the interparticle repulsion is turned on, however, correlations arise between the positions of the bosons and the corresponding success probability deviates from the free boson value. These quantum correlations give rise to fluctuations in the number of particles in each partition that result in the probability $p(N/2)$ increasing with repulsion strength c. In the limiting case $c \to \infty$ of impenetrable bosons (also known as the Tonks-Girardeau (TG) limit) this probability reduces to the analogous projection probability in a free spinless fermion gas [23]. The characteristic function of this probability distribution of particle numbers in finite regions of an infinite line [24, 25] and a ring [26] are known. We find that a Gaussian approximation (details are given in the Appendix) to the probability distribution $p(k)$ asymptotically yields a balanced projection probability of

$$p(N/2) \sim \frac{\pi}{2\ln(2Ne^{c+1})}, \quad N \gg 1. \quad (8)$$

This probability decays to zero logarithmically for large $N \to \infty$ (Fig. 2). It is clear that this probability distribution is symmetric about $N/2$ because $p(k) = p(N-k)$, and we further expect it to be unimodal.

For general k the projection probabilities in the free boson limit are equal to

$$p(k) = \binom{N}{k} \frac{1}{2^N}, \quad c = 0, \quad (9)$$

while in the TG limit we expect this distribution to be peaked and centered about $k = N/2$ for a fixed large N. Therefore, at these two extreme limits the most probable result of the projective measurement is the balanced bipartite state $\chi_{AB}(N/2)$. Since there are no critical values of $c \in (0, \infty)$, we do not expect this trend to change for arbitrary finite repulsion strengths and we argue that the balanced projection is the most probable outcome for all non-negative values of c. We confirm this conjecture for $N = 4$ bosons and show in Fig. 1(b) all possible projection probabilities for arbitrary repulsion strengths.

IV. VON NEUMANN ENTROPY AND EXTRACTABLE ENTANGLEMENT

We now calculate the entanglement between the partitions A and B by calculating the von Neumann entropy $S_A(k)$ of region A. The joint density matrix of the projected pure state is $\rho_{AB} = |\chi_{AB}\rangle\langle\chi_{AB}|$ and the relevant reduced density matrix is $\rho_A = tr_B \rho_{AB}$. In the coordinate basis where $|x\rangle \equiv \psi^\dagger(x_N) \cdots \psi^\dagger(x_1)|0\rangle$ with $\psi^\dagger(x)$ a bosonic field creation operator and $|0\rangle$ the vacuum state ket, the joint density matrix may be written as

$$\rho_{AB}(k) = \binom{N}{k} \frac{1}{(p(k))^{1/2}} \sum_{P} (-1)^{|P|+|Q|} \langle P| \langle Q | \times \int_A \int_B \int_B F_P(x) F_Q(x') e^{i(\lambda_P \cdot x - \lambda_Q \cdot x')} \times |x\rangle \langle x'| dx_B dx'_B dx_A dx'_A. \quad (10)$$
FIG. 3. (Color online) The von Neumann entropy between half-rings in the projected balanced pure state increases monotonically with the strength of repulsion. For the case of four bosons the balanced projection \(k = N/2 \) is more entangled than the unbalanced cases for all \(c \) (inset). Black tick marks denote the corresponding values in the impenetrable boson limit.

The signum functions in the amplitudes \(F_P(x) \) evaluate trivially for each case \(\text{sgn}(x_{Bj-x_Ak}) = 1 \) so that it factorizes according to \(F_P(x) = F_{PA}(x_A)F_{PB}(x_B) \). Thus, the integrals over region \(B \) may be evaluated independently and tracing away the degrees of freedom in \(B \) gives the reduced density matrix

\[
\rho_A(k) = \sum_{\{P\}\{Q\}} \int_A \int_A G_P(x_A)\tilde{G}_Q(x'_A) \\
\times e^{i\lambda_{PA}\cdot x_A - i\lambda_{QA}\cdot x'_A} |x_A\rangle\langle x'_A| dxdx'_A, \tag{11}
\]

where the function \(G_P(x_A) \) is

\[
G_P(x_A) = \sqrt{\left(\frac{N}{k}\right)\frac{1}{p(k)N^2}} (-1)^{|P|} F_{PA}(x_A) \\
\times \int_B F_{PB}(x_B)e^{i\lambda_{PB}\cdot x_B} dxdx_B. \tag{12}
\]

and we have introduced the permuted momentum vectors \(\lambda_{PA} \equiv (\lambda_{P1}, \ldots, \lambda_{Pk})^T \) and \(\lambda_{PB} \equiv (\lambda_{P,k+1}, \ldots, \lambda_{PN})^T \). The eigenvalues \(a_i \) of the reduced density matrix \(\rho_A \) may be obtained by diagonalizing the associated homogeneous Fredholm integral equation

\[
\int_A K(x_A, x'_A)\phi_i(x'_A) dA = a_i\phi_i(x_A), \tag{13}
\]

which has a degenerate kernel

\[
K(x_A, x'_A) = \sum_{\{P\}\{Q\}} G_P(x_A)e^{i\lambda_{PA}\cdot x_A} \tilde{G}_Q(x'_A)e^{-i\lambda_{QA}\cdot x'_A}. \tag{14}
\]

Since free bosons condense in the ground state, the kernel reduces to a constant when there are no interactions and the only eigenvalue of the resulting reduced density matrix is unity. Thus, there is no entanglement when \(c = 0 \). For any non-zero contact repulsion between \(N \) bosons, however, there are \(\binom{N}{k} \) distinct ways of choosing the components of the vectors \(\lambda_{PA} \) and \(\lambda_{QA} \). From the observation that the plane waves \(e^{i\lambda_{PA}\cdot x} \) are linearly independent and square-integrable on the support \(A \) we conclude that the reduced density matrix \(\rho_A \) has at most \(\binom{N}{k} \) non-zero eigenvalues. Hence, the reduced density matrix \(\rho_{A}(k) \) is a rank \(\binom{N}{k} \) matrix and we may posit an upper bound for the entanglement entropy extractable from the projected state as \(S_A(k) \leq \log_2 \binom{N}{k} ! \) so that it factorizes according to \(F_P(x) = F_{PA}(x_A)F_{PB}(x_B) \). Thus, the integrals over region \(B \) may be evaluated independently and tracing away the degrees of freedom in \(B \) gives the reduced density matrix

\[
\rho_A(k) = \sum_{\{P\}\{Q\}} \int_A \int_A G_P(x_A)\tilde{G}_Q(x'_A) \\
\times e^{i\lambda_{PA}\cdot x_A - i\lambda_{QA}\cdot x'_A} |x_A\rangle\langle x'_A| dxdx'_A, \tag{11}
\]

where the function \(G_P(x_A) \) is

\[
G_P(x_A) = \sqrt{\left(\frac{N}{k}\right)\frac{1}{p(k)N^2}} (-1)^{|P|} F_{PA}(x_A) \\
\times \int_B F_{PB}(x_B)e^{i\lambda_{PB}\cdot x_B} dxdx_B. \tag{12}
\]

and we have introduced the permuted momentum vectors \(\lambda_{PA} \equiv (\lambda_{P1}, \ldots, \lambda_{Pk})^T \) and \(\lambda_{PB} \equiv (\lambda_{P,k+1}, \ldots, \lambda_{PN})^T \). The eigenvalues \(a_i \) of the reduced density matrix \(\rho_A \) may be obtained by diagonalizing the associated homogeneous Fredholm integral equation

\[
\int_A K(x_A, x'_A)\phi_i(x'_A) dA = a_i\phi_i(x_A), \tag{13}
\]

which has a degenerate kernel

\[
K(x_A, x'_A) = \sum_{\{P\}\{Q\}} G_P(x_A)e^{i\lambda_{PA}\cdot x_A} \tilde{G}_Q(x'_A)e^{-i\lambda_{QA}\cdot x'_A}. \tag{14}
\]

Since free bosons condense in the ground state, the kernel reduces to a constant when there are no interactions and the only eigenvalue of the resulting reduced density matrix is unity. Thus, there is no entanglement when \(c = 0 \). For any non-zero contact repulsion between \(N \) bosons, however, there are \(\binom{N}{k} \) distinct ways of choosing the components of the vectors \(\lambda_{PA} \) and \(\lambda_{QA} \). From the observation that the plane waves \(e^{i\lambda_{PA}\cdot x} \) are linearly independent and square-integrable on the support \(A \) we conclude that the reduced density matrix \(\rho_A \) has at most \(\binom{N}{k} \) non-zero eigenvalues. Hence, the reduced density matrix \(\rho_{A}(k) \) is a rank \(\binom{N}{k} \) matrix and we may posit an upper bound for the entanglement entropy extractable from the projected state as \(S_A(k) \leq \log_2 \binom{N}{k} ! \) so that it factorizes according to \(F_P(x) = F_{PA}(x_A)F_{PB}(x_B) \). Thus, the integrals over region \(B \) may be evaluated independently and tracing away the degrees of freedom in \(B \) gives the reduced density matrix

\[
\rho_A(k) = \sum_{\{P\}\{Q\}} \int_A \int_A G_P(x_A)\tilde{G}_Q(x'_A) \\
\times e^{i\lambda_{PA}\cdot x_A - i\lambda_{QA}\cdot x'_A} |x_A\rangle\langle x'_A| dxdx'_A, \tag{11}
\]

where the function \(G_P(x_A) \) is

\[
G_P(x_A) = \sqrt{\left(\frac{N}{k}\right)\frac{1}{p(k)N^2}} (-1)^{|P|} F_{PA}(x_A) \\
\times \int_B F_{PB}(x_B)e^{i\lambda_{PB}\cdot x_B} dxdx_B. \tag{12}
\]

and we have introduced the permuted momentum vectors \(\lambda_{PA} \equiv (\lambda_{P1}, \ldots, \lambda_{Pk})^T \) and \(\lambda_{PB} \equiv (\lambda_{P,k+1}, \ldots, \lambda_{PN})^T \). The eigenvalues \(a_i \) of the reduced density matrix \(\rho_A \) may be obtained by diagonalizing the associated homogeneous Fredholm integral equation

\[
\int_A K(x_A, x'_A)\phi_i(x'_A) dA = a_i\phi_i(x_A), \tag{13}
\]

which has a degenerate kernel

\[
K(x_A, x'_A) = \sum_{\{P\}\{Q\}} G_P(x_A)e^{i\lambda_{PA}\cdot x_A} \tilde{G}_Q(x'_A)e^{-i\lambda_{QA}\cdot x'_A}. \tag{14}
\]

FIG. 4. (Color online) In the impenetrable boson limit the weighted entanglement \(E(k) \) is a maximum for the balanced case \(k = N/2 \). The extractable entanglement \(E_{FP} \) corresponds to \(E(N/2) \). Connecting lines serve to guide the eye.
projections $k = N/2$ at any given value of the repulsion strength. Thus, according to the definition (1), the projectively extractable pure state entanglement from the Lieb-Liniger ground state is given by the weighted entanglement of the balanced fixed number projections,

$$
E_{PP} = p(N/2) S_A(N/2) = \mathcal{E}_{k=N/2}, \quad \forall c \geq 0.
$$

This statement is trivial for free bosons as we have already shown that the von Neumann entropy vanishes in all possible projections for any even N. In the opposite limit of impenetrable bosons this assertion is verified in Fig. 4 where we give numerically exact results for all possible cases of up to six bosons. Also apparent in this graph is a slower than linear increase in the extractable entropy E_{PP} with respect to the boson number N.

We also observe that although the probability of successful projection becomes smaller with increasing boson number, the von Neumann entropy S_A increases faster with N so that the extractable entanglement E_{PP} increases with both repulsion strength and the number of bosons in the ring (Fig. 5). Furthermore, for the few boson cases we have analyzed here, this increase is monotonically with respect to both N and c. Hence, more entanglement can be extracted from these projections of the Lieb-Liniger gas in the TG limit of impenetrable bosons and we may regard the quantity E_{PP} as a probe of both quantum correlations and interparticle interactions in the ensemble of fixed number projections of the type we considered here.

V. CONCLUDING REMARKS

We have used the projectively extractable pure state entanglement E_{PP} to quantify the entanglement in coarse-grained fixed number projections of the Lieb-Liniger ground state. This entanglement measure quantifies the entanglement present in the set of all projection outcomes by giving the largest von Neumann entropy weighted by the projection probability of a particular measurement result. In our case, this maximum corresponds to the most probable and most entangled projection having an equal number of particles in each half of the ring. We have seen in our numerically exact few particle results indications that the extractable entanglement increases monotonically with the strength of repulsion and with particle number. We have also observed that significant amounts of entanglement can be extracted by this projection procedure only in the strongly repulsive regime $c \gg 1$. This increase and subsequent saturation of entanglement with interaction strength c has also been previously observed numerically in a few-particle Lieb-Liniger gas under the framework of single-particle partitioning of the ground state [11].

As the impenetrable TG limit corresponds to free fermions, our work reveals a fundamental difference in the origin of the entanglement present in bosonic and fermionic systems. When fluctuations in partition occupancies are nullified by appropriate measurements, the entanglement of free-bosonic systems vanish, while for free-fermionic systems they remain non-zero. In the interpolation between the two cases, as is evident from Figs. 3 and 5, the free-bosonic behavior seems to last for c nearly up to unity, before a rapid rise in entanglement is seen. A qualitative explanation of the difference found numerically in this paper is the fact that all bosons are exactly in the same state in the $c = 0$ limit, so that no uncertainty remains as to their state in each partition once their number in the partition is determined. On the other hand, for free fermions, all states are occupied resulting in uncertainties (entropies) of the state in each partition even when the exact number of fermions in the partition is known. We expect these features to be preserved at larger particle numbers N and ultimately present itself as an essential difference between a Bose-Einstein condensate and a Fermi gas from the perspective of quantum information—a suggestion that is supported by our results and the observation that the Lieb-Liniger model has no density-controlled phase transition at any finite positive density.

It is important to remark that the projected states we have described here are not eigenstates of the original Lieb-Liniger hamiltonian (2) and will therefore evolve non-trivially in time. The results we present here are therefore only valid immediately after measurement while the spatial partitioning of particles is meaningful; at arbitrary times after measurement the number of particles in each partition will display quantum fluctuations. The time evolution of these projected states and the quantification of the entanglement in them are left as open problems for future work.

Acknowledgments

F. P. and V. K. acknowledge financial support by the National Science Foundation through Grant No. DMS-
Here, the elements Γ_{ij} of the matrix Γ are

$$\Gamma_{ij} = \delta_{ij} \frac{\ell}{L} + (1 - \delta_{ij}) \frac{\sin[\pi(i-j)\ell/L]}{\pi(i-j)}.$$

The characteristic function may therefore be approximated by the $N \times N$ Toeplitz determinant when $N \gg 1$:

$$f(\alpha) \approx \det(I_N - (1 - e^{i\alpha})\Gamma).$$

The matrix Γ is identical to the single-particle correlation matrix of free fermions on an infinite one-dimensional lattice upon making the replacement $\pi\ell/L \to k_F a$ with k_F the Fermi wavevector and a the lattice spacing [25].

For $|\alpha| < \pi$ the Fisher-Hartwig formulas [27, 28] may be used to obtain the asymptotic result [25, 26]

$$f(\alpha) \sim \frac{e^{i\alpha N\ell/L}}{[2N\sin(\pi\ell/L)]^{\alpha^2/(2\pi^2)}},$$

where $G(z)$ is the Barnes G-function defined functionally through $G(1+z) = \Gamma(z)G(z)$ and $G(1) = 1$, with $\Gamma(z)$ the usual gamma function. Using a small $\alpha \ll \pi$ expansion [25] gives

$$\ln f(\alpha) \sim \frac{iN\ell}{L} \alpha - \frac{\ln[2Ne^{-\gamma+1}]\sin(\pi\ell/L)}{2\pi^2} \alpha^2 + 0\alpha^3 - \frac{\zeta(3)}{(2\pi^2)^3}\alpha^4, \quad 0 < \alpha \ll \pi,$$

where γ is Euler’s constant. We extract the first two cumulants of the probability distribution $p(k)$ from this expression and make a Gaussian approximation for the case of interest $\ell = L/2$ about the central peak $k = N/2$ to obtain

$$p(k) \approx \frac{e^{-(k-N/2)^2/(2\pi^2)}}{\sqrt{2\pi\sigma^2}},$$

with variance $\sigma^2 = \pi^{-2}\ln[2Ne^{-\gamma+1}]$. Physically, the variance σ^2 is the fluctuation of particle number in the half-ring $\ell = L/2$ about the mean value $N/2$. The probability of finding exactly $N/2$ impenetrable bosons (or free fermions) in a half-ring is therefore

$$p(N/2) \sim \sqrt{\frac{\pi}{2\ln[2Ne^{-\gamma+1}]}} = N \gg 1.$$

[1] For reviews see J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82, 277 (2010); L. Amico, R. Fazio, A. Osterloh, and V. Vedral, *ibid.* 80, 517 (2008).

[2] M. Cramer, M. B. Plenio, and H. Wunderlich, Phys. Rev. Lett. 106, 020401 (2011).

[3] E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).

[4] E. H. Lieb, Phys. Rev. 130, 1616 (1963).

[5] A. G"orlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J. R. Abo-Shaeer, A. P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W. Ketterle, Phys. Rev. Lett. 87, 130402 (2001).

[6] B. Paredes, A. Widera, V. Murg, O. Mandel, S. F"olling, I. Cirac, G. V. Shlyapnikov, T. W. H"ansch, and I. Bloch, Nature (London) 429, 277 (2004).

[7] T. Kinoshita, T. Wenger, and D. S. Weiss, Science 305, 1125 (2004).

[8] O. Morizot, Y. Colombe, V. Lorent, H. Perrin, and B. M. Garraway, Phys. Rev. A 74, 023617 (2006).

[9] M. Haque, O. S. Zozulya, and K. Schoutens, J. Phys. A: Math. Theor. 42, 504012 (2009).

[10] H. Katsura and Y. Hatsuda, J. Phys. A: Math. Mech.: Theory Exp. 40, 13931 (2007).

[11] H. Guo, Y. Hao, and S. Chen, Phys. Rev. A 80, 052332 (2009).

[12] R. Santachiara, F. Stauffer, and D. C. Cabra, J. Phys. A: Math. Mech.: Theory Exp. 40, L05003 (2007).
[13] P. Calabrese, M. Mintchev, and E. Vicari, Phys. Rev. Lett. 107, 020601 (2011); P. Calabrese, M. Mintchev, and E. Vicari, arXiv:1107.3985.
[14] M. Fagotti and P. Calabrese, J. Stat. Mech.: Theory Exp. 2011, P01017 (2011).
[15] P. Calabrese, M. Campostrini, F. Essler, and B. Nienhuis, Phys. Rev. Lett. 104, 095701 (2010).
[16] T. Sasaki, T. Ichikawa, and I. Tsutsui, Phys. Rev. A 83, 012113 (2011).
[17] M. R. Dowling, A. C. Doherty, and H. M. Wiseman, Phys. Rev. A 73, 052323 (2006).
[18] H. M. Wiseman and J. A. Vaccaro, Phys. Rev. Lett. 91, 097902 (2003).
[19] J. Molina-Vilaplana, S. Bose, and V. E. Korepin, Int. J. Quantum Inf. 6, 739 (2008).
[20] J. Molina, H. Wichterich, V. E. Korepin, and S. Bose, Phys. Rev. A 79, 062310 (2009).
[21] V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions (Cambridge University Press, Cambridge, 1993) Chap. XIII.
[22] V. E. Korepin, Commun. Math. Phys. 86, 391 (1982).
[23] M. D. Girardeau, J. Math. Phys. 1, 516 (1960).
[24] D. N. Aristov, Phys. Rev. B 57, 12825 (1998).
[25] A. G. Abanov, D. A. Ivanov, and Y. Qian, arXiv:1108.1355.
[26] A. A. Ovchinnikov, Phys. Lett. A 373, 305 (2009). We note that the correct formula Eq. (21) for the characteristic function has both Barnes G-functions squared.
[27] E. L. Basor and K. E. Morrison, Lin. Alg. Appl. 202, 129 (1994).
[28] P. Deift, A. Its, and I. Krasovsky, Ann. Math. 174, 1243 (2011).