Performance Evaluation and Adaptability Research of Flowing Gel System Prepared with Re-injected Waste Water

Lei Shi, Jing You, Na Liu, Xinmin Liu, Zhiqiang Wang, Tiantian Zhang, Yi Gu, Suzhen Guo, Shanshan Gao

1Engineering Technology Research Institute of Huabei Oilfield Company, Renqiu, Hebei, China
2Petrochina Hebei Marketing Company, Renqiu, Hebei, China
3PetroChina Southwest Marketing Company, Renqiu, Hebei, China
cyy_shil@petrochina.com.cn

Abstract: The crosslinking intensity and stability of flowing gel system prepared with re-injected waste water are seriously affected as the high salinity waste water contains a high concentration of Na+, Fe2+, S2-, Ca2+, etc. The influence of various ions on the flowing gel system can be reduced by increasing polymer concentration, adding new ferric ion stabilizing agent (MQ) and calcium ion eliminating agent (CW). The technique of profile controlling and oil-displacing is carried out in Chanan multi-purpose station, Chabei multi-purpose station and Chayi multi-purpose station of Huabei Oilfield. The flowing gel system is injected from 10 downflow wells and the 15 offsetting production wells have increased the yield by 1770 tons.

1. Introduction
The technique of profile controlling and oil-displacing for flowing gel which is referred to as Indepth Drive Fluid Diversion or Colloidal Dispersion Gel abroad is a new depth regulating and displaying technology and it is developed from a high concentration of identify gel system over the last decade1,2. Mack and Smith were the first to discover and apply the gel technology3. The crosslinking intensity and stability of flowing gel system prepared with re-injected waste water are seriously affected as the high salinity waste water contains a high concentration of Na+, Fe2+, S2-, Ca2+, etc4, so the preparation method of the waste water system can not copy with the clear water system. The performance impacts evaluation experiments of water to phenolic resin flowing gel system which is carried out combining with the implementation of the flowing gel system prepared with re-injected waste water in Huabei Oilfield in 2014. The purpose of these laboratory tests is to optimize formula system and direct field conduct. The factors of the waste water that affect the performance of the phenolic resin flowing gel system are analyzed systematically for the first time.

2. Affecting Factors
Influence of the Na++K+ Concentration on the Gel. Na+ and K+ in the waste water have similar nature and the concentration of Na+ is much more than K+, so different concentrations of NaCl is added to clear water system by converting the content of Na+ to investigate the influence of the Na++K+ concentration on the gel in laboratory experiment.

Experimental method: First, prepare flowing gel system in which the concentration of polymer is 1500mg/L and the phenolic resin crosslinking agent 2000mg/L. Second, add different concentration of
NaCl and stir evenly. Third, place the solution in the oven at 75°C and observe the crosslinking time. Finally, take the sample out after 3 days and measure the gel viscosity using Rheometer MARS at the shear rate of 7.34s⁻¹. The experimental results are presented in Table 1 and Fig.1. It shows that the viscosity retentivity declines faster in the early stage and then decreases slower as the concentration of Na⁺ rises to 1000mg/L. The stability of the gel is deteriorated when the Na⁺ concentration reaches 5000mg/L and starts to dissolve out water in 20 days. The gel becomes fragile as the concentration is 10000mg/L. The results indicate that the content of polymer in the flowing gel system should be higher than 1500mg/L when Na⁺ is more than 5000mg/L.

Table 1 Influence of the concentration of Na⁺ on the gel

concentration of Na⁺[mg/L]	0	100	200	500	1000	5000	10000
crosslinking time[h]	24	24	24	24	24	30	30
viscosity of gel[mPa·s]	1520	1350	1216	1140	1080	987	562(water-precipitated)
viscosity retention rate[%]	100	88.82	80.0	75.0	71.05	64.93	36.97

Fig. 1 The curve of the change in gel viscosity retention rate with the concentration of Na⁺

Influence of the Ca²⁺⁺Mg²⁺ Concentration on the Gel. The concentration of Ca²⁺ is much more than Mg²⁺ in the waste water, so different concentrations of CaCl₂ is added to clear water system by converting the content of Ca²⁺ to investigate the influence of the Ca²⁺⁺Mg²⁺ concentration on the gel in laboratory experiment.

Experimental method: First, prepare flowing gel system in which the concentration of polymer is 1500mg/L and the phenolic resin crosslinking agent 2000mg/L. Second, add different concentration of CaCl₂ and stir evenly. Third, place the solution in the oven at 75°C and observe the crosslinking time. Finally, take the sample out after 3 days and measure the gel viscosity using Rheometer MARS at the shear rate of 7.34s⁻¹. The experimental results are presented in Table 2 and Fig.2. It indicates that the gel becomes fragile as the concentration of Ca²⁺ rises to 400mg/L. The stability of the system is deteriorated when the concentration reaches 200mg/L and starts to dissolve out water in 20 days. Therefore it needs to raise the content of polymer or add additives in the flowing gel system to weaken the influence of Ca²⁺⁺Mg²⁺.

Table 2 Influence of the concentration of Ca²⁺ on the gel

concentration of Ca²⁺[mg/L]	0	50	100	200	300	400	500
crosslinking time[h]	24	24	24	24	30	36	36
Influence of the Fe2+ Concentration on the Gel. Fe2+ can affect the gel property and is mainly derived from the iron corrosion products which exist in the form of ferric iron precipitation and Fe2+ in the waste water[5]. FeSO\textsubscript{4} is added to the gel system to investigate the influence of Fe2+ concentration and oxygen scavenger is also added to prevent Fe2+ being oxidized.

Experimental method: First, prepare flowing gel system in which the concentration of polymer is 1500mg/L and the phenolic resin crosslinking agent 2000mg/L. Second, add different concentration of FeSO\textsubscript{4} and a small amount of oxygen scavenger. Third, place the solution in the oven at 75\textdegree C and observe the crosslinking time. Finally, take the sample out after 3 days and measure the gel viscosity using Rheometer MARS at the shear rate of 7.34s-1. The experimental results are presented in Table 3 and Fig.3. It shows that the gel viscosity decreases significantly with the increase of Fe2+ content. When the Fe2+ concentration reaches 0.5mg/L the gel viscosity declines 12.5% comparing with the clear water system. The stability of the system is deteriorated when the concentration reaches 2mg/L and starts gelout in 15 days. The results indicate that the Fe2+ has great effect on the gel. So it needs to strengthen the waste water treatment and slow down the corrosion to reduce the Fe2+ concentration. Furthermore, shielding agents which can cause complexation reaction or precipitation should also be added to eliminate the influence of Fe2+.

Table 3 Influence of the concentration of Fe2+ on the gel

concentration of Fe2+ [mg/L]	0	0.5	1.0	2.0	5.0	10.0	20.0
crosslinking time[h]	24	24	36	40	60	60	60
viscosity of gel[mPa·s]	1520	1330	1156	970	736	505	460
viscosity retention rate[%]	100	87.50	76.05	63.82	48.42	33.22	30.26

Fig. 2 The curve of the change in gel viscosity retention rate with the concentration of Ca2+
Influence of the S^{2-} Concentration on the Gel. S^{2-} content is an important indicator of waste water and also the reason of stink.

Experimental method: First, prepare flowing gel system in which the concentration of polymer is 1500mg/L and the phenolic resin crosslinking agent 2000mg/L. Second, add different concentration of Na$_2$S to convert the content of S^{2-}. Third, place the solution in the oven at 75$^\circ$C and observe the crosslinking time. Finally, take the sample out after 3 days and measure the gel viscosity using Rheometer MARS at the shear rate of 7.34s$^{-1}$. The experimental results are presented in Table 4 and Fig.4. It shows that the crosslinking time extends with the increase of S^{2-} concentration, but the impact is not so significant. The S^{2-} content in the re-injected waste water of Huabei Oilfield is less than 5mg/L, so the S^{2-} can be viewed as a secondary factor.

Table 4 Influence of the concentration of S^{2-} on the gel

concentration of S^{2-}[mg/L]	0	0.1	0.2	0.5	1	2	5	10
crosslinking time[h]	24	24	24	36	36	40	40	48
viscosity of gel[mPa·s]	1520	1495	1490	1475	1430	1380	1320	1200
viscosity retention rate[%]	100	98.36	98.03	97.04	94.08	90.79	86.84	78.95

Fig. 3 The curve of the change in gel viscosity retention rate with the concentration of Fe$^{2+}$

Fig. 4 The curve of the change in gel viscosity retention rate with the concentration of S^{2-}
3. Solution

Countermeasure of Na\(^{+}\)K\(^{+}\). The concentration of Na\(^{+}\)K\(^{+}\) in Huabei Oilfield is 1500mg/L~10000mg/L. This is quite high and the span is extremely great. Additionally, Na\(^{+}\)K\(^{+}\) is not easy to generate precipitation and be screened by other substances. So it is very difficult to remove these two ions and the cost must be quite high. The simplest method is to increase the polymer concentration.

Countermeasure of Ca\(^{2+}\)Mg\(^{2+}\). Ca\(^{2+}\)Mg\(^{2+}\) affect both the polymer and the phenolic resin crosslinking agent. The approach of complexation shielding or generating precipitation can reduce the impact. Therefore, the first stage is to screen appropriate additives.

The thiocarbamide concentration of 50mg/L~100mg/L can stabilize the gel system according to literatures. A new type of organic acid salt (CW) which can reduce the effects of Ca\(^{2+}\)Mg\(^{2+}\) effectively has been developed on the basis of chelating mechanism and initial screening experiments. So the second stage is to optimize the concentration.

Experimental method: First, prepare flowing gel system in which the concentration of polymer is 1500mg/L, the phenolic resin crosslinking agent 2000mg/L and Ca\(^{2+}\) 200mg/L. Second, add thiocarbamide 100mg/L and different concentration of CW. Third, place the solution in the oven at 75\(^{\circ}\)C and observe the crosslinking time. Finally, take the sample out after 3 days and measure the gel viscosity using Rheometer MARS at the shear rate of 7.34s\(^{-1}\). The experimental results are presented in Table 5. The results indicate that the combination of CW and thiocarbamide can increase the gel viscosity effectively and the optimal concentration is 200mg/L~300mg/L.

Table 5	Influence of the concentration of CW on the gel					
concentration of CW[mg/L]	0	50	100	150	200	500
crosslinking time[h]	60	50	48	40	40	40
viscosity of gel[mPa·s]	1030	1270	1360	1380	1380	1350

Countermeasure of Fe\(^{2+}\). Fe\(^{2+}\) is a main factor that affects the gel property. Converting Fe\(^{2+}\) into Fe\(^{3+}\) or Fe(OH)\(_{3}\) through adding oxidizing agent can reduce the impact significantly. The oxidizing agent can cause the polymer oxidative degradation easily, so it is not available. Stirring to cause the re-injected water aeration can convert Fe\(^{2+}\) into Fe\(^{3+}\) and generate precipitation when the Fe\(^{2+}\) content is low. Moreover, new ferric ion stabilizing agent (MQ) has been developed and the concentration has been optimized.

Experimental method: First, prepare flowing gel system in which the concentration of polymer is 1500mg/L, the phenolic resin crosslinking agent 2000mg/L and Fe\(^{2+}\) 2mg/L. Second, add MQ and stir evenly. Third, place the solution in the oven at 75\(^{\circ}\)C and observe the crosslinking time. Finally, take the sample out after 3 days and measure the gel viscosity using Rheometer MARS at the shear rate of 7.34s\(^{-1}\). The experimental results are presented in Table 6. The results show that MQ can increase the gel viscosity effectively and the optimal concentration is 20mg/L~50mg/L.

Table 6	Influence of the concentration of MQ on the gel				
concentration of MQ[mg/L]	0	10	20	50	80
crosslinking time[h]	60	50	48	40	40
viscosity of gel[mPa·s]	950	1270	1340	1320	1310

4. Application in the Field

The technique of profile controlling and oil-displacing is carried out in Chanan multi-purpose station, Chabei multi-purpose station and Chayi multi-purpose station of Huabei Oilfield in December 2013. New ferric ion stabilizing agent (MQ) and calcium ion eliminating agent (CW) is added to the gel system. The gel is injected from 10 downflow wells. The injection pressure rises steadily and the 15 offsetting production wells have increased the yield by 1770 tons.
5. Conclusion

1) The ions in the waste water including Na\(^+\), Ca\(^{2+}\) and Fe\(^{2+}\) have strong influence on the gel intensity, especially Ca\(^{2+}\) and Fe\(^{2+}\). The stability of the gel are weakened on condition that the concentration of Ca\(^{2+}\) is more than 200mg/L or Fe\(^{2+}\) more than 2mg/L, thus stabilizer is needed.

2) Due to the complexity of the impact factors of the re-injected waste water and superimposed effect of the factors, it is necessary to run experiments to verify and evaluate the formula of flowing gel which is prepared with re-injected waste water. Field application shows that adding new ferric ion stabilizing agent (MQ) and calcium ion eliminating agent (CW) to the profile controlling and oil-displacing system can promote the performance of the gel effectively.

Author information
Lei Shi was born in 1981 and is a mid-level engineer mainly working on the reaserch of EOR now.
Phone: 0317-2756426, E-mail: cyy_shil@petrochina.com.cn.

Acknowledgements
The study was supported by PetroChina Science and Technology Major Project “Study and application of key technologies for production stable and increase to 8 million tons in Huabei oilfield” under Grant No.2014E-3507.

Reference
[1] Y.Z. Ye, X.C. Wu, Z.B. Wang: Petroleum Geology and Engineering Vol. 24 (2010), p. 73-75.
[2] Chauveteau G, et al. Gontroling in situ gelation of polymers by zirconium for water sutoff[Z]. SPE 50 752,1999.
[3] MACK J C, SMITH J E. 1994. In-depth colloidal dispersion gels improve oil recovery efficiency [R]. SPE /DOE 27780.
[4] Gang Wu, JiLiang Yu, Jing You. Research and application of the gel formulation prepared with oilfield waste water [A]. Advances in Energy Science and Equipment Engineering[C]. 2015:925~928
[5] Y.L. Chen, H.M. Wang, Z.L. Tan: Geological Science and Technology Information Vol. 21(2002), p. 61-64.