LETTER

Evaluation of protocol amendments to the Environmental Determinants of Islet Autoimmunity (ENDIA) study during the COVID-19 pandemic

The Environmental Determinants of Islet Autoimmunity (ENDIA) Study is an Australia-wide observational pregnancy-birth cohort of children at genetic risk on account of a first-degree relative with type 1 diabetes. A total of 1511 participants were recruited from all Australian States and Territories from 2013 to 2019 with 1473 live-born infants in follow-up. The standard protocol involves 3-monthly face-to-face visits from pregnancy until the child is 2 years of age, then 6-monthly visits. Study staff across nine centres in five States collect biospecimens (blood, urine, stool, swabs) and administer lifestyle and dietary questionnaires. Approximately 10% of the cohort are engaged in a Regional Participant Program that requires self-collection of sample types except for venepuncture performed at local pathology services.

As COVID-19 case numbers increased across Australia from March 2020, hospitals and institutions placed varying degrees of restriction on interactions with research participants. Concurrently, the introduction of early and high-level social distancing measures correlated with a markedly lower frequency of respiratory infections in Australian children. This abrupt change is relevant to ENDIA as respiratory and other viral infections have been implicated in type 1 diabetes development.

We rapidly used a COVID-19 framework for the conduct of study visits commencing 23 March 2020 when the median age of the cohort was 2.5 (IQR 1.3, 3.8) years. Here, we outline these protocol amendments and evaluate their efficacy in the 9 months before and after implementation. The amendments were approved by the lead HREC (project HREC/16/WCHN/66).

The COVID-19 framework provided seven increasing risk-based levels of operation ranging from standard pre-COVID practices (Levels 1 and 2 for clinic and home visits) to a complete shutdown (Level 7). A copy of the framework can be located: https://doi.org/10.25909/14544636. Sites were able to independently escalate or de-escalate operations according to local epidemiological risk as assessed by the Principal Investigator and/or institutional directives.

We evaluated the impact of these protocol changes on the numbers of conducted study visits with biospecimen collection over an 18-month period. The numbers of theoretical visits were determined according to age and included projected pregnancy, birth and child visits. A Poisson regression allowing attendance rate to be modelled was fitted using R (V3.6.3). The response was the actual number of visits with a log offset of the theoretical number of visits. Differences between pre-COVID and COVID were determined by including a categorical variable in the model. From March to May 2020, all study sites across Australia were operating between Levels 5 and 7 of the COVID-19 framework. At Level 5, venepuncture was limited to children known to have islet or coeliac autoimmunity and performed using full personal protective equipment. The majority of visits were at Level 6 with self-collected stool and skin, nasal and oral swabs and no blood samples. When restrictions reduced, visits were opened to Level 1–2 (no restrictions at home or clinic) at sites with no community transmission and to Levels 3–4 (blood sample taken) at sites where transmission was low. The level rose again in Victoria during the second wave of COVID-19 from June to November 2020.

Actual visit attendance across the pre-COVID period was 82% of theoretical (2598/3166 overall visits) versus 78% during COVID (2015/2589 overall visits). An early drop in visit attendance recovered and was maintained during the second wave of COVID-19 cases that peaked in Victoria in late July (Figure 1a). Weekly visit attendance rates did not differ significantly pre-COVID versus during COVID (p = 0.07). With respect to biospecimen
collection (Figure 1b), compliance with stool collection was unaffected and averaged 70% across the pre-COVID and COVID time spans ($p = 0.83$). Blood collection rate pre-COVID versus COVID reduced by 44% [incidence rate ratio = 0.56 (95% CI 0.51–0.61), $p < 0.001$]. Compliance with nasal swabs reduced with self-collection and improved with increasing coordinator contact. Between pre-COVID and COVID, there was a 9% reduction in the overall swab collection rate [incidence rate ratio = 0.91 (95%CI 0.86–0.97), $p = 0.003$].

FIGURE 1 (a) Environmental Determinants of Islet Autoimmunity (ENDIA) study visit attendance rate each week between 24 June 2019 and 20 December 2020 is shown with overlaying of the number of COVID-19 cases reported in Australia. (b) The proportion of study visits at which collection of blood, stool and nasal swabs occurred are shown over the same time period. Values may exceed 100% where sample collection was incongruent with the reported visit date such as for swabs that were collected the week before or after the visit to the clinic. The dashed vertical line indicates when the modified protocol was implemented defining the ‘pre-COVID’ and ‘COVID’ periods.
In conclusion, changes to the ENDIA protocol in response to the COVID-19 pandemic were rapidly and successfully rolled out across the network. As different Australian States and Territories had different restrictions at any given time, this flexibility was essential. Our evaluation showed that visit numbers did not significantly differ in the 9 months before versus after implementation. Overall, the capacity to modify practice with evolving epidemiological risk enabled staff to maintain data collection and a majority of biospecimen collections. Moreover, we kept families engaged when the risk of loss-to-follow-up was high. Our framework may be helpful for other observational cohort studies that have been impacted by COVID-19 restrictions.

ETHICS APPROVAL STATEMENT
The ENDIA study has been approved by the Women's and Children's Hospital Network Human Research Ethics Committee (HREC) as the lead HREC in South Australia, Queensland, New South Wales, Victoria and regional Australia under the Australian National Mutual Acceptance Scheme (reference number HREC/16/WCHN/066). Conduct in Western Australia has been approved by the Women and Newborn Health Service Ethics Committee (reference number RGS0000002639). The ENDIA study is registered on the Australia New Zealand Clinical Trials Registry (ACTRN1261300794707).

FUNDING INFORMATION
Leona M. and Harry B. Helmsley Charitable Trust; Juvenile Diabetes Research Foundation Australia; National Health and Medical Science Foundation Australia

ACKNOWLEDGEMENTS
Prepared on behalf of the ENDIA Study Team. ANZCTR registration number: ACTRN1261300794707. This research was supported by JDRF Australia, the recipient of the Commonwealth of Australia grant for Accelerated Research under the Medical Research Future Fund, and with funding from the Leona M. and Harry B. Helmsley Charitable Trust (grant key 3-SRA-2020-966-M-N) and The National Health and Medical Research Council of Australia. We wish to thank the Women’s and Children’s Health Network HREC and its Chair, Dr Tamara Zutlevics, for rapid and effective decision making in response to the COVID-19 pandemic. We also acknowledge our coordinators, laboratory staff, project management team and, especially, the ENDIA families for their dedication to continuing this important research.

CONFLICT OF INTEREST
None declared.

AUTHOR CONTRIBUTIONS
JJC and LCH conceived the study. MASP, AJA, RLT, KM, SCB, PGC, MEC, EAD, MH, AH, GM, WDR, ROS, GS, PJV, JMW, LCH and JJC designed the protocol amendments. MASP, AA, RT and KM disseminated and evaluated the amendments. PGC, MEC, EAD, MH, AH, GS, PIV, JMW, LCH and JJC oversaw implementation of the protocol at clinical sites. MASP compiled and interpreted the data. HO performed the statistical analysis. MASP and JJC wrote the manuscript. All authors provided critical revision of the manuscript and approved the final version. JJC is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Megan A. S. Penno1
Amanda J. Anderson1
Rebecca L. Thomson1
Kelly McGorm1
Simon C. Barry1
Peter G. Colman2
Maria E. Craig3,4
Elizabeth A. Davis5,7
Mark Harris5,7
Aveni Haynes5
Grant Morahan8
Helena Oakley1
William D. Rawlinson9,10
Richard O. Sinnott11
Georgia Soldatos12,13
Peter J. Vuillermin14,15
John M. Wentworth2,16
Leonard C. Harrison16
Jennifer J. Couper1,17

1Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
2Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, VIC, Australia
3School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
4Institute of Endocrinology and Diabetes, The Children’s Hospital at Westmead, Sydney, NSW, Australia
5Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, Perth, WA, Australia
6The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Wooloongabba, QLD, Australia
7Queensland Children’s Hospital, South Brisbane, QLD, Australia
8Centre for Diabetes Research, Harry Perkins Institute of Medical Research, The University of Western Australia
Australia, Perth, WA, Australia

9 Virology Research Laboratory, Serology and Virology Division, South Eastern Area Laboratory Services Microbiology, Prince of Wales Hospital, Sydney, NSW, Australia

10 School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia

11 Melbourne eResearch Group, School of Computing and Information Services, University of Melbourne, Melbourne, VIC, Australia

12 Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia

13 Diabetes and Vascular Medicine Unit, Monash Health, Melbourne, VIC, Australia

14 Faculty of Health, School of Medicine, Deakin University, Geelong, VIC, Australia

15 Child Health Research Unit, Barwon Health, Geelong, VIC, Australia

16 Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia

17 Department of Diabetes and Endocrinology, Women’s and Children’s Hospital, Adelaide, SA, Australia

Correspondence
Jenny J. Couper, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia.
Email: jennifer.couper@adelaide.edu.au

REFERENCES
1. Penno MA, Couper JJ, Craig ME, et al. Environmental determinants of islet autoimmunity (ENDIA): a pregnancy to early life cohort study in children at-risk of type 1 diabetes. *BMC Pediatr*. 2013;13:124.
2. Penno MA, Thomson RL, Couper JJ. Bunbury to Bundaberg, Darwin to Dover: establishing a successful Regional Participation Program for the ENDIA type 1 diabetes cohort study. *Med J Aust*. 2016;205:486.
3. Price DJ, Shearer FM, Meehan MT, et al. Early analysis of the Australian COVID-19 epidemic. *Elife*. 2020;9.
4. Britton PN, Hu N, Saravans G, et al. COVID-19 public health measures and respiratory syncytial virus. *Lancet Child Adolesc Health*. 2020;4:e42-e43.
5. Lonnrot M, Lynch KF, Elding Larsson H, et al. Respiratory infections are temporally associated with initiation of type 1 diabetes autoimmunity: the TEDDY study. *Diabetologia*. 2017;60:1931-1940.
6. Scott N, Palmer A, Delport D, et al. Modelling the impact of relaxing COVID-19 control measures during a period of low viral transmission. *Med J Aust*. 2021;214:79-83.
7. O’Brien J. Coronavirus (COVID-19) in Australia. https://www.covid19data.com.au/states-and-territories Accessed May 10, 2021.

How to cite this article: Penno MAS, Anderson AJ, Thomson RL, et al; the ENDIA Study Group. Evaluation of protocol amendments to the Environmental Determinants of Islet Autoimmunity (ENDIA) study during the COVID-19 pandemic. *Diabet Med*. 2021;38:e14638. https://doi.org/10.1111/dme.14638