INTRODUCTION

Tomato is one of important vegetables and consumed by almost people around the world. It is grown worldwide, either in tropical and temperate zone. Tomato is consumed in diverse ways, such as; dishes, salads, sauces, and drinks. It is also used as raw material of food industries, such as tomato ketchup, tomato sauce, and seasoning in instant noodle. According to the Food and Agriculture Organization (FAO), tomato is one of the eighth most valuable agricultural products worldwide. The top five of tomato producer countries are China, India, USA, Turkey, and Egypt. Otherwise, in Southeast Asia, Indonesia is one of the most tomato producer countries with the annual average production of 877,729 tones (FAO, 2016).

Damping-off of tomato seedling, caused by Sclerotium rolfsii, is considered as a major constraint in tomato production (Punja, 1988). S. rolfsii is a soil-borne pathogen which has wide host range, including tomato, groundnut, bean, peas, carrot, cotton, wheat, potato, maize, and garpevines (El-Nagar et al, 2013; Keyser et al, 2017; Rangarani et al, 2017. It occurs world wide in the tropics, subtropics, and other warm temperate regions (Punja, 1985). It causes damping-off on seedling, while infection on reproductive stage causes southern blight disease (De Curtis et al, 2010; Mullen, 2001; Flores-Moctezuma et al, 2006). Initial inoculum of S.rolfsii can be hyphae of infected tomato tissues and germinating sclerotia. Direct penetration occurs when hyphae contact with basal stem, root, bulb, fruit or leaf tissues. Disease starts with a small,
water-soaked lesion on the basal stem of plant. The lesion expands rapidly and gridles the stem. Within 2-4 days after infection, symptoms of soft rot are usually apparent (Mullen, 2001).

Several fungicides have been reported effective against S. rolfsii (Keyser et al, 2017; Rangarani et al, 2017; Vineela et al, 2017). However, to date, environmental and food safety issues must be considered to choose a method for controlling the disease. More environmental-friendly efforts should be made to control the disease by using botanical pesticides. Various studies have been carried out to seek potent botanical pesticides which have antimicrobial compounds. Carović-Stanko et al (2010) reported that basil plant in genus Ocimum has to be used as botanical pesticide. The genus is an aromatic plant which commonly used in culinary and medicine (Simon et al, 1999). The plant is widely distributed in the world either cultivated or grow wild.

In medical and agricultural fields, basil extract has been reported to inhibit the growth of fungal pathogens, namely Enterococcus sp., Listeria sp., Staphylococcus sp., Aspergillus sp., Escherichia coli, and Fusarium sp. (Bansod et al, 2008; Bhardwaj, 2012; Carović-Stanko et al., 2010; Dambolena et al., 2010; Kocic-Tanackov et al, 2011; Piyo et al, 2009; Kumar et al, 2010). This is due to antimicrobial compounds contained in Basil. According to Colpas et al. (2009), aqueous extract of Ocimum gratissimum induced the production of phytoalexins in soybean cotyledons and sorghum mesocotyls and also induced systemic resistance in cucumber to Colletotrichum lagenarium, reflected by reduction in disease incidence and an increase in chitinase production. Moreover, previous study reported that aqueous extract of O. basilicum significantly reduced the early blight incidence on tomato, caused by Alternaria solani, under greenhouse and field condition (Nashwa et al, 2012). In addition, Abdollahi et al (2011) reported that essential oil of O. basilicum completely inhibit the growth of Rhizopus stolonifer, a post-harvest fungal pathen, in vapour phase method.

Regarding to the potent utilization of sweet basil on disease control, the study was conducted to evaluate the effectiveness of sweet basil aqueous extract against Sclerotium rolfsii under in-vitro condition and damping-off on tomato seedling, caused by Sclerotium rolfsii, under greenhouse condition.

MATERIALS AND METHODS

Isolation and Cultivation of Sclerotium rolfsii

This research was conducted from January to June 2016. Sclerotium rolfsii was isolated from an infected tomato plant on farm field of Bureau of Plant Industry - National Seed Quality Control Services (NSQCS) - Region 4, Los Baños, Laguna, Philippines (14°10'33.3"N; 121°13'31.6"E). Isolation and cultivation of S. rolfsii was conducted in the Laboratory of Plant Pathology at Institute of Weed, Entomology, and Plant Pathology, University of the Philippines Los Baños. Infected vascular tissue was cut into small pieces and sterilized by using 0.5 % sodium hypochlorite solution for 3-5 minutes, then rinsed twice in sterilized distilled water and blot dried with a sterile tissue paper. The cut tissues were inoculated on 15 ml potato dextrose agar medium (PDA) in petri dishes for 7-10 days at room temperature. Then the mycelia of S. rolfsii that grow on the media were transferred to other PDAs for purification for another 5 - 7 days. The mycelia was identified as S. rolfsii based on its mycelial and sclerotial characters (Barnett et al, 1972). Afterwards, the desired pathogen was determined by pathogenicity test. Preparation of mycelia and sclerotial bodies for in vitro and in vivo assays was carried out by culturing pure cultures on PDAs. Then, harvesting of mycelia and sclerotial body was carried out at the time of treatment. The pathogenicity of each fungal mycelia isolates and sclerotial body were preliminarily assessed on 21days-old tomato seedlings from 5 replications.

Tomato Seedling Preparation for Bioassay

Seedlings of tomato were grown in the greenhouse of Institute of Weed, Entomology, and Plant Pathology, University of the Philippines Los Baños. The seeds were sown in seedling trays which were filled by standard horticultural potting mix. Fourteen days old seedlings were moved into individual pot. Plant materials were maintained by standard cultural practice for tomato plant. Twenty one-days-old tomato seedlings were used for in-vivo bioassay experiment.

Extraction of Sweet Basil

Ocimum basilicum L. leaves were obtained from a commercial market in Los Banos, Philippines and extracted in the Laboratory of Plant Pathology at Institute of Weed, Entomology, and Plant pathology, University of the Philippines Los Baños. Leaves were
rinsed by water to remove dust particles and then air dried. Extraction of sweet basil was based on the method of Wong, Leong, & William Koh (2006) with some modifications. Dried leaves were ground using a domestic blender and 10 g of this material was extracted using 100 ml of sterile distilled water (1:10 w/v) and 0.01 ml absolute methanol. The mixture was allowed to stand for 48 hours at room temperature. The solutions were strained by a Whatman filter paper No. 1 to get aqueous extract to be used for analysis without further treatment. The aqueous extract was then stored at 4°C under refrigerator.

Preparation of Plant Extract Medium for Different Concentration

The standard stock solutions of plant leaves extract were made with the rate of 1 ml aqueous extract/1 ml sterilized distilled water. This formed-standard plant extracts were made in aqueous medium of 25%, 50%, 75%, 100% concentrations.

In vitro Antifungal Assay

The antifungal activities of *Ocimum basilicum* L. leaves extracts were evaluated against mycelia and sclerotal body of *S. rolfsii* by using agar dilution technique (Valencia, Castro, Pascual, & Magdalita, 2011) in the Laboratory of Plant Pathology at Institute of Weed, Entomology, and Plant pathology, University of the Philippines Los Baños. The experiment was arranged in a completely randomized design with six treatments and three replications for each type of inoculum. The treatments were distilled water as negative (-) control, *Ocimum basilicum* L. extracts with the concentrations of 25%, 50%, 75%, 100% and fungicide (active ingredient Benomyl) with the concentration of 300 ppm as positive (+) control.

Standard stock solutions of plants leaves extract 25, 50, 75, 100% concentrations were prepared separately by adding the required quantity of plants extract to the molten PDA medium. One set was made without plant extract and kept as negative control. All these were poured into sterilized Petri plates. Petri plates with plant extract were mixed gently before the medium solidify. A five mm diameter mycelial disc of *S. rolfsii* was taken from 3 – 4 days old mycelial cultures and centrally inoculated onto PDA medium in each of the petri plates containing different leaves extracts concentrations and control under aseptic conditions. All these petriplates were incubated at room temperature. The diameter of the colony was measured in two directions and average was recorded. Observations were carried out until mycelia fully growth in the negative control plates at 60 hours after inoculation.

In vivo Antifungal Assay

In vivo antifungal assay was conducted in the greenhouse of Institute of Weed, Entomology, and Plant Pathology, University of the Philippines Los Baños. The experiment was arranged a factorial design with two factors and five replications. First factor was time of leave extracts application after (A) and before (B) mycelia inoculation; and the second factor was antifungal agents, i.e. 100% *Ocimum* extract, distilled water as negative (-) and 300 ppm of Benomyl as positive control. Five replications were maintained for each treatment. For the treatment before inoculation, the solutions were drenched right before inoculation with volume per pot 100 ml. While, for the treatment after inoculation, the solutions were drenched 24 hours, 48 hours, and 72 hours after inoculation with volume per pot 100 ml for each application. All these pots were stored in a greenhouse. The observations were carried out during 10 days after inoculation.

Statistical Analysis

The effectiveness of *O. basilicum* L. leaves extract under in-vitro evaluation was determined by measuring the percentage of mycelial growth inhibition (MGI), according to the following formula:

\[
MGI (%) = \left(\frac{d_c - d_t}{d_c}\right) \times 100
\]

where: \(d_c\) (mm) = mean colony diameter of pathogen at the negative control; \(d_t\) (mm) = mean colony diameter of pathogen at the evaluated treatments (Yahyazadeh, Omidbaigi, Zare, & Taheri, 2008).

Damping-off incidence on tomato seedlings in in-vivo experiment were calculated using the following formula:

\[
\text{Disease incidence} = \frac{\text{Amount of infected plant in treatment}}{\text{Total amount of plant in treatment}} \times 100
\]
Values of mycelial growth inhibition under in-vitro evaluation and disease incidence on tomato seedling were submitted to Analysis of Variance (Anova) using statistical tool SPSS software version 22 and means were compared by Duncan's Multiple Range Test (DMRT) at \(P \leq 0.05 \).

RESULTS AND DISCUSSION

Effect of Sweet Basil Aqueous Extract on In-vitro Growth of Sclerotium rolfsii

The sweet basil extract exhibited the mycelial growth of *S. rolfsii* on PDA (Fig. 1). Fig. 1 gave the growth of fungal pathogen *S. rolfsii* on PDA during 60 hours incubation, while Table 1 showed the diameter of mycelium and inhibitory effect (%) of sweet basil extract on mycelial growth of *S. rolfsii* after 60 hours incubation.

The growth of *S. rolfsii* mycelium from mycelial inoculum started to grow after 24 hours in all treatments. These conditions inferred that, all treatment did not delay the growth of *S. rolfsii* at 24 hours. After 60 hours incubation, the mycelial growth inhibition under all leaves extract concentrations were significantly lower than the control treatments (Table 1). Moreover, the highest mycelial growth inhibition was observed under leaves extracts treatments with the concentration of 100%. The lower mycelial growth suppression was observed on the treatments of 25, 50, and 75% with insignificant differences. The sweet basil leaves extract with the concentration of 100% gave highest percentage of growth inhibition among the applied treatments. While other concentration of leaves extract treatments showed lesser effectivities with negligible differences with controls.

Table 1. Effect of sweet basil (*Ocimum basilicum*) aqueous extract on *Sclerotium rolfsii* growth from mycelial inoculum after 60 hours inoculation under room temperature

Plant Extract (w/v %)	Diameter of Growth (mm)	Growth Inhibition (%)
Water (negative control)	89.00 a	0.00 a
25	82.33 ab	7.45 b
50	75.33 b	15.34 b
75	75.17 b	15.49 b
100	59.33 c	33.35 c
300 ppm Benomil (positive control)	78.83 b	11.53 b

Remarks: Means in the same column followed by the different letters differ significantly under DMRT (\(\alpha \leq 5\% \)).

Sweet basil aqueous extract tested at various concentrations also showed the capacity to inhibit the growth of *S. rolfsii* derived from the sclerotial body. Fig. 2 shows that mycelial growth of *S. rolfsii* can be observed at 24 hours after sclerotial body was inoculated in PDA media of all treatments.

![Fig. 1. The mycelium growth of Sclerotium rolfsii grown on PDA containing various concentrations of sweet basil (Ocimum basilicum) aqueous extracts during 60 hours incubations.](image-url)
This suggests that the sweet basil extract tested was unable to delay the growth of S. rolfsii during 24 hours after inoculation of sclerotial body. After 48 hours inoculation, sweet basil aqueous extract did not affect sclerotial body of S. rolfsii as indicated by mycelial growth from the sclerotia treated with 25-50% of the extract. However, at higher concentrations, i.e. 75 and 100%, the mycelial growth were slightly suppressed, similar to that of benomyl treatment (Table 2).

Table 2. Effects of sweet basil (Ocimum basilicum) extract on Sclerotium rolfsii growth from sclerotial body inoculum after 96 hours inoculation

Plant Extract (w/v %)	Diameter of Growth (mm)	Growth Inhibition (%)
Water (negative control)	90.00 a	0.00 a
25	87.83 a	2.41 ab
50	87.67 a	2.59 ab
75	77.33 b	14.07 c
100	81.00 ab	10.00 bc
300 ppm Benomil (positive control)	72.50 b	19.44 c

Remarks: Means in the same column followed by the different letters differ significantly under DMRT (α≤ 5%).

Antimicrobial activity of O. basilicum could be related to composition of main compounds, especially phenolic compounds (Nychas, 1995). The antifungal compounds contained in O. basilicum are linalool, methyl-caviicol (eugenol), camphor, and eugenol (Abdollahi, Hassani, Ghiata, Meshkatalsadat, & Shabani, 2011; Caroš-Stanko et al., 2010; Dambolela et al., 2010; Danesi et al., 2008; Hussain, Anwar, Hussain Sherazi, &Przybylski, 2008; Kocic-Tanackov, Dimic, Levec, Tanackov, &Tuco, 2011; Shirazi, Gholami, Kavoosi, Rowshan, &Tafsiry, 2014; Vieira et al., 2014). Nychas (1995) found that phenolic compound in essential oil of Ocimum play an important role on denaturation of enzyme which control spore germination. Furthermore, those antifungal compound affected on inhibition of early fungal development e.g. spore germination, germ tube growth and/or appressorium formation, and inhibited mycelial growth (Amini, Farhang, Javadi, & Nazemi, 2016; Oxenham, Svoboda, & Walters, 2005; Sethi, Prakash, Chandra, Punetha, & Pant, 2013). However, Hasegawa, Tajima, Toi, & Sugimura (1997) suggested that the antifungal activity of essential oil or extract of herbs has to be investigated separately against a particular fungal pathogen. Synergistic and antagonistic effect of certain minor compounds in mixture have to be considered (Daferera, Ziegas, &Polissiou, 2003; Velluti, Sanchis, Ramos, Egido, &Marín, 2003).
Effect of Sweet Basil Aqueous Extract to Damping-Off Incidence, Caused by *Sclerotium rolfsii*, on Tomato Seedling

The effect of sweet basil extract concentration 100% (1:10 w/v), distilled water and 300ppm Benomil to damping-off disease incidence on tomato seedling were ranged from 40% to 66.67% for the application after inoculation and 46.67% to 66.67% for the application before inoculation (Table 3). There were not statistically different between treatments, either on before and after inoculations. However, based on this study, application before inoculation has lower disease incidence than after inoculation. Sweet basil extract has a potential to reduce disease incidence 30% and 10 % in application before and after inoculation respectively.

Table 3. The effect of sweet basil (*Ocimum basilicum*) extract, distilled water and 300 ppm Benomyl with the application after and before inoculation to disease incidence of damping-off on tomato seedling.

Treatment	Disease incidence (%)
After inoculation	
Distilled water	66.67a
Ocimum basilicum extract	60.00a
Benomil	40.00a
Before inoculation	
Distilled water	66.67a
Ocimum basilicum extract	46.67a
Benomil	46.67a

Remarks: Means in the same column followed by the different letters differ significantly under DMRT (α≤ 5%)

The antifungal activities of *O. basilicum* could be related to chemical compounds contained in the aqueous extract. Sanni, Onyeyili, & Sanni (2008) reported that saponin and alkaloids are the most abundant chemical constituent present in aqueous extract of *O. basilicum*, while flavonoids, cardiac glycosides, terpenes and steroids were present in medium quantity. In addition, tannins and carbohydrates present in low quantity. However, flavonoids and tannins could be antifungal compounds which are known to possess antimicrobial activities (Narayana, Reddy, Chaluvadi, & Krishna, 2001). Flavonoids is phenolic compound with one carbonyl group which is synthesized by plant in response to microbial infection and often found effective in vitro as antimicrobial substance against various pathogens (Gurjar, Ali, Akhtar, & Singh, 2012).

Some studies state that leaf extract of *O. basilicum* completely inhibit fungal plant pathogen, such as: *Botrytis fabae* (Oxenham, Svoboda, & Walters, 2005), *Fusarium spp* (Dambolena et al., 2010), *Rizoctonia solani* (Sethi, Prakash, Chandra, Punetha, & Pant, 2013), and *Phytophthora spp* (Amini, Farhang, Javadi, & Nazemi, 2016). In this study, *O. basilicum* aqueous extract completely inhibit mycelial growth of *S. rolfsii in-vitro*. However, the effective concentration of the aqueous extract to *S. rolfsii* is ≥ 75%. This study also reveals that *O. basilicum* aqueous extract on the selected concentration is not effective in reducing the damping-off incidence on tomato seedlings under greenhouse condition. Factor that restricts efficacy of botanical pesticide is short persistence of phytochemical which are caused by rapid biodegradation as well as rapid release (Pavela, 2014). Furthermore, advance investigation is needed to reveal an effective formula of *O. basilicum* leaf extract which is stable and prolonged persistence to control damping-off incidence on tomato seedlings.

CONCLUSION AND SUGGESTION

The effective concentration of *O. basilicum* aqueous extract (≥ 75% w/v) completely inhibit mycelial growth of *S. rolfsii* under *in vitro* conditions. The leaves extracts were not effective in reducing the damping-off incidence on the inoculated tomato seedlings. Further investigation is needed to find out the an effective formula of *O. basilicum* leaf extract which is stable and prolonged persistence to control damping-off incidence on tomato seedlings.

ACKNOWLEDGEMENT

We wish to thank the Director of the Institute of Weed, Entomology, and Plant Pathology (IWE), University of the Philippines Los Baños for allowing the authors to perform *in-vitro* assay in the Laboratory of Plant Pathology and *in-vitro* assay in the greenhouse. The authors are also express gratitude to Demetrio L. Alvares and Ramon R. Cortez for their technical assistance in the laboratory and to Noel M. Lawas for his technical assistance in the greenhouse.

REFERENCES

Abdollahi, A., Hassani, A., Ghosta, Y., Meshkatalsadat, M. H., & Shabani, R. (2011). Screening of antifungal properties of essential oils extracted from sweet basil, fennel, summer savory and thyme.
Cipto Nugroho et al.: Sweet Basil Extract Against Sclerotium rolfsii

against postharvest phytopathogenic fungi. Journal of Food Safety, 37(3), 350–356. http://doi.org/10.1111/j.1745-4659.2011.00306.x

Amini, J., Farhang, V., Javadi, T. & Nazemi, J. (2016). Antifungal effect of plant essential oils on controlling Phytophora species. Plant Pathology Journal, 32(1), 16–24. http://doi.org/10.5423/PPJ.OA.05.2015.0091

Bansod, S. & Rai, M. (2008). Antifungal activity of essential oils from Indian medicinal plants against human pathogenic Aspergillus fumigatus and A. niger. World Journal of Medical Sciences, 3(2), 81–88. Retrieved from https://pdfs.semanticscholar.org/1a9b/b5ee5aaa0298a958c58fa651015494ff241ee.pdf

Bhardwaj, S. K. (2012). Evaluation of plant extracts as antifungal agents against Fusarium solani (Mart.) Sacc. World Journal of Agricultural Sciences, 8(4), 385. Retrieved from http://connection.ebscohost.com/c/articles/88928218/evaluation-plant-extracts-as-antifungal-agents-against-fusarium-solani-mart-sacc

Carović-Stanko, K., Orlić, S., Politeo, O., Strikić, F., Kolak, I., Milos, M., & Satovic, Z. (2010). Composition and antibacterial activities of essential oils of seven Ocimum taxa. Food Chemistry, 119(1), 196–201. http://doi.org/10.1016/j.foodchem.2009.06.010

Colpas, F. T., Schwan-estrada, K. R. F., Stangarlin, J. R., De Lurdes, M., Scapim, C. A., & Bonaldo, S. M. (2009). Induction of plant defense responses by Ocimum gratissimum L. (Lamiaceae) leaf extracts. Summa Phytopathologica, 35(3), 191–195. http://doi.org/10.1590/S0100-54052009000300005

Daferera, D. J., Ziogas, B. N., & Polissiou, M. G. (2003). The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Protection, 22(1), 39–49. http://doi.org/10.1016/S0261-2194(02)00095-9

Dambolena, J. S., Zunino, M. P., López, A. G., Rubinstein, H. R., Zygadlo, J. A., Mwangi, J. W., ... Kariuki, S. T. (2010). Essential oils composition of Ocimum basilicum L. and Ocimum gratissimum L. from Kenya and their inhibitory effects on growth and fumonisin production by Fusarium verticillioides. Innovative Food Science and Emerging Technologies, 11(2), 410–414. http://doi.org/10.1016/j.ifset.2009.08.005

Danesi, F., Elementi, S., Neri, R., Maranesi, M., D’antuono, L. F., & Bordoni, A. (2008). Effect of cultivar on the protection of cardiomyocytes from oxidative stress by essential oils and aqueous extracts of basil (Ocimum basilicum L.). Journal of Agricultural and Food Chemistry, 56(21), 9911–9917. http://doi.org/10.1021/jf8018547

De Curtis, F., Lima, G., Vittullo, D., & De Cicco, V. (2010). Biocontrol of Rhizoctonia solani and Sclerotium rolfsii on tomato by delivering antagonistic bacteria through a drip irrigation system. Crop Protection, 29(7), 663–670. http://doi.org/10.1016/j.cropro.2010.01.012

El-Nagar, A. A. A., Sabry, A. M. B., & Yassin, M. A. 2013. Virulence and host range of Sclerotium rolfsii and S. cepivorum. J. Pure Appl. Microbio. 7(3), 1693-1705

Flores-Moctezuma, H. E., Montes-Belmont, R., Jimenez-Perez, A., & Nava-Juarez, R. (2006). Pathogenic diversity of Sclerotium rolfsii isolates from Mexico, and potential control of southern blight through solarization and organic amendments. Crop Protection, 25, 195-201. https://doi.org/10.1016/j.cropro.2005.04.007

Gurjar, M. S., Ali, S., Akhtar, M., & Singh, K. S. (2012). Efficacy of plant extracts in plant disease management. Agricultural Sciences, 3(3), 425–433. http://doi.org/10.4236/as.2012.33050

Hasegawa, Y., Tajima, K., Toi, N., & Sugimura, Y. (1997). Characteristic components found in the essential oil of Ocimum basilicum L. Flavour and Fragrance Journal, 12(3), 195–200. http://doi.org/10.1002/(SICI)1099-1026(199705)12:3<195::AID-FFJ632>3.0.CO;2-O

http://www.fao.org/faostat/en/#data/OC

Hossain, M. A., Kabir, M. J., Salehuddin, S. M., Rahman, S. M. M., Das, A. K., Singhia, S. K., ... Rahman, A. (2010). Antibacterial properties of essential oils and methanol extracts of sweet basil Ocimum basilicum occurring in Bangladesh. Pharmaceutical Biology, 48(5), 504–511. http://doi.org/10.3109/13880200903190977

Hussain, A. I., Anwar, F., Hussain Sherazi, S. T., & Przybylski, R. (2008). Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chemistry, 108(3), 986–995. http://doi.org/10.1016/j.foodchem.2007.12.010

Keyser, H. A., & Ferreira, J. H. S. (2017). Chemical and biological control of Sclerotium rolfsii in grapevine nurseries. South African Journal of Enology and Viticulture, 9(1), 43–44. http://doi.org/10.21548/9-1-2309
Cipto Nugroho et al.: Sweet Basil Extract Against Sclerotium rolfsii

Kocic-Tanackov, S., Dimic, G., Levic, J., Tanackov, I., & Tuco, D. (2011). Antifungal activities of basil (Ocimum basilicum L.) extract on Fusarium species. *African Journal of Biotechnology*, 10(50), 10186–10195. http://doi.org/10.5897/AJB11.1330

Kumar, A., Shukla, R., Singh, P., & Dubey, N. K. (2010). Chemical composition, antifungal and antiaflatoxigenic activities of Ocimum sanctum L. essential oil and its safety assessment as plant based antimicrobial. *Food and Chemical Toxicology*, 48(2), 539-543. https://doi.org/10.1016/j.fct.2009.11.028

Mullen, J. (2001). Southern blight, Southern stem blight, white mold. *The Plant Health Instructor*. https://doi.org/10.1094/PHI-I-2001-0104-01

Narayana, K. R., Reddy, M. S., Chaluvadi, M. R., & Krishna, D. R. (2001). Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential. *Indian Journal of Pharmacology*, 33, 2–16. Retrieved from http://www.ijp-online.com/article.asp?issn=0253-7613;year=2001;volume=33;issue=1;spage=2;epage=16;aulast=Raj;type=0

Nashwa, S. M. A., & Abo-Elyou, K. A. M. (2012). Evaluation of various plant extracts against the early blight disease of tomato plants under greenhouse and field conditions. *Plant Protection Science*, 48(2), 74–79. http://doi.org/10.17221/14/2011-PPS

Nychas, G. J. E. (1995). Natural antimicrobials from plants. In G. W. Gould (Ed.), *New methods of food preservation* (pp. 58-89). Boston, MA: Springer. https://doi.org/10.1007/978-1-4615-2105-1_4

Oxenham, S. K., Svoboda, K. P., & Walters, D. R. (2005). Antifungal activity of the essential oil of basil (Ocimum basilicum). *Journal of Phytopathology*, 153(3), 174–180. http://doi.org/10.1111/j.1439-0434.2005.00952.x

Pavela, R. (2014). Limitation of plant biopesticides. In D. Singh (Ed.), *Advances in plant biopesticides* (pp. 347-359). New Delhi: Springer. https://doi.org/10.1007/978-81-322-2006-0_17

Piyo, A., Udomsilp, J., Khang-Khun, P., & Thobunluepop, P. (2009). Antifungal activity of essential oils from Basil (Ocimum basilicum Linn.) and Sweet Fennel (Ocimum gratissimum Linn.): alternative strategies to control pathogenic fungi in organic rice. *Asian Journal of Food and Agriculture*, 2(Special Issue), S2–S8. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20123113813

Punja, Z. K. 1985. The biology, ecology, and control of Sclerotium rolfsii. *Ann. Rev. Phytopathol.*, 23:97-127.https://doi.org/10.1146/annurev.py.23.090185.000525

Punja, Z.K. 1988. *Sclerotium (Athelia) rolfsii*, a pathogen of many plant species. In: Sidhu GS, ed. *Genetics of plant pathogenic fungi*. London: Academic Press. 6: 523–534. https://doi.org/10.1016/B978-0-12-033706-4.50039-6

Rangarani, A., Rajan, C. P. D., Harathi, P. N., Bhaskar, B., & Sandhya, Y. (2017). Evaluation of fungicides and herbicides on *Sclerotium rolfsii*, incitant of stem rot diseases in groundnut (*Arachis hypogaea* L.). *International Journal of Pure & Applied Bioscience*, 5(3), 92–97. http://doi.org/10.18782/2320 - 7051.3040

Sanni, S., Onyeyili, P. A., & Sanni, F. S. (2008). Phytochemical analysis, elemental determination and some in vitro antibacterial activity of Ocimum basilicum L. leaf extracts. *Research Journal of Phytochemistry*, 2(2), 77–83. http://doi.org/10.3923/rjphyto.2008.77.83

Sethi, S., Prakash, O., Chandra, M., Punetha, H., & Pant, A. K. (2013). Antifungal activity of essential oils of some Ocimum species collected from different locations of Uttarakhand. *Indian Journal of Natural Products and Resources*, 4(4), 392–397. Retrieved from http://nopr.niscair.res.in/handle/123456789/26039

Simon, J.E., Morales, M.R., Phippen, W.B., Vieira, R.F., & Zhigang, H. 1999. Basil: A Source of aroma compounds and a popular culinary and ornamental herb. Reprinted from: Perspectives on new crops and new uses. J. Janick (ed.), ASHS Press, Alexandria, VA. P: 499-505

Shirazi, M. T., Gholami, H., Kavoosi, G., Rowshan, V., & Tafsiry, A. (2014). Chemical composition, antioxidant, antimicrobial and cytotoxic activities of Tagetes minuta and Ocimum basilicum essential oils. *Food Science and Nutrition*, 2(2), 146–155. http://doi.org/10.1002/fsn3.85

Valencia, L. D. C., Castro, S. D., Pascual, C. B., & Madalita, P. M. (2011). Lemongrass [Cymbopogon citratus (DC.) Stapf.] oil: Potential biocontrol agent against major fungal pathogens of gumamela (*Hibiscus rosasinensis* L.). *Philippine Journal of Crop Science*, 36(3), 70–75. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20123043719

Velluti, A., Sanchis, V., Ramos, A. J., Egido, J., & Marín, S. (2003). Inhibitory effect of cinnamon, clove, lemongrass, oregano and palmarose essential oils
on growth and fumonisin B1 production by *Fusarium proliferatum* in maize grain. *International Journal of Food Microbiology*, 89(2–3), 145–154. http://doi.org/10.1016/S0168-1605(03)00116-8

Vieira, P. R. N., de Morais, S. M., Bezerra, F. H. Q., Travassos Ferreira, P. A., Oliveira, I. R., & Silva, M. G. V. (2014). Chemical composition and antifungal activity of essential oils from *Ocimum* species. *Industrial Crops and Products*, 55, 267–271. http://doi.org/10.1016/j.indcrop.2014.02.032

Vineela, D. R. S., Beura, S. K., Dhal, A., Swain, S. K., & Sethi, D. (2017). Efficacy of chemicals, bioagents and their compatibility in management of stem rot disease of groundnut. *International Journal of Chemical Studies*, 5(5), 443–446. Retrieved from http://www.chemijournal.com/archives/2017/vol5issue5/PartG/5-5-42-122.pdf

Wong, S. P., Leong, L. P., & William Koh, J. H. (2006). Antioxidant activities of aqueous extracts of selected plants. *Food Chemistry*, 99(4), 775–783. http://doi.org/10.1016/j.foodchem.2005.07.058

Yahyazadeh, M., Omidbaigi, R., Zare, R., & Taheri, H. (2008). Effect of some essential oils on mycelial growth of *Penicillium digitatum* Sacc. *World Journal of Microbiology and Biotechnology*, 24(8), 1445–1450. http://doi.org/10.1007/s11274-007-9636-8