Structural stability, elasticity, thermodynamics, and electronic structures of $L1_2$-type Ni_3X ($X =$ Al, Ti, V, Nb) phases under external pressure condition

Y. H. Wu1 · J. S. Chen1,2 · J. Y. Ji1 · Y. Z. Zhang3 · Q. Z. Wang4 · K. Xiong5

Received: 2 September 2021 / Accepted: 22 December 2021 / Published online: 3 January 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
In this paper, the effect of pressure on the structural stability, elasticity, thermodynamics, and associated electronic structure of $L1_2$-type Ni_3X ($X =$ Al, Ti, V, Nb) phases is investigated using a first-principles approach. It is shown that pressure leads to volume compression of the Ni_3X phase and reduction of the lattice parameters. The increase of pressure promotes the increase of elastic constants, bulk modulus, shear modulus, and Young’s modulus. And there is an extremely strong linear correlation between the pressure and the elastic constants. The calculated elastic constants indicate that the pressure leads to strong mechanical stability and ductility of the Ni_3X phase. Mechanical anisotropy of the Ni_3X phase also increases with increasing pressure. The electronic analysis shows that the increase in pressure leads to enhanced Ni-d-orbitals and X-d-orbitals hybridization and increased electron transfer. The order in terms of electron accumulation intensity is $\text{Ni}_3\text{Ti} > \text{Ni}_3\text{Nb} > \text{Ni}_3\text{V} > \text{Ni}_3\text{Al}$. It is more directly reflected in the charge density difference diagram. This is in agreement with the results of the enthalpy of formation (ΔH) and Debye temperature (Θ_D) analysis.

Keywords Ni$_3$X · Elastic constants · Thermodynamic · Electronic structures · First-principles

Introduction
Ni-based single-crystal superalloys are one the most important high-temperature materials, which are widely used for modern aircraft engines owning to high temperature strength [1], thermal stability [2–4], creep resistance [5, 6], and oxidation resistance [7–9] at high temperatures. These excellent mechanical properties of Ni-based single-crystal superalloys at high temperatures depend mainly on the effect of the γ'-Ni$_3\text{Al}$ strengthening phase in the alloy [10]. The large number of investigations on the γ'-Ni$_3\text{Al}$ strengthening phase found that the strengthening effect cannot meet the requirements for the performance of Ni-based single-crystal alloys under high temperature conditions [11–13]. Recent studies have proven the mechanical characteristics of Ni-based single-crystal alloys can be significantly reinforced by adding Ti, V, Nb, and Ta [11–13], and promote the formation of the $L1_2$-type γ^\prime-Ni$_3X$ ($X =$ Ti, V, Nb) phases.

Over the past decades, there are few reports on Ni$_3\text{Ti}$ (hexagonal), Ni$_3\text{V}$ (tetragonal), Ni$_3\text{Nb}$ (tetragonal), and Ni$_3\text{Ta}$ (tetragonal). Li et al. [14] investigated the mechanical properties of γ^\prime-Ni$_3\text{Ta}$ under variable pressure by means of theoretical simulations, and explored the internal mechanisms affecting its stability and mechanical strength. K. Santhy et al. [15] identified the phase of stability of Ni$_3\text{Ti}$ (V) through first-principles calculations. Tomasz Czeppe et al. [16] researched effects of Ti and high cooling rate on the phase equilibrium and properties of Ni$_3$(Ti, V) alloys. Gong et al. [17] analyzed the effect of alloying elements on the
occupation preference, structural stability, and mechanical performance of γ″-Ni₃Nb based on density functional theory.

In recent research, the calculation of phases based on density functional theory mainly focused on under fixed conditions. For example, Hou et al. [18] calculated the structural, elastic, thermodynamic, and electronic behavior of Ni₃Al, Ni₃Ga, and Ni₃Ge under assumed pressures. They found that the elastic properties, thermodynamic stability, lattice anisotropy, and Debye characteristic temperature of Ni₃X increase with increasing external pressure. Mao et al. [19] explored the mechanical stability, microscopic electronic structure, and thermodynamic properties of Mg₂Sr by applying different pressures. Liu et al. [20] investigated the impact of pressure on the microscopic crystal structure, electron distribution properties, and bonding ion configuration of the MgCu₂ Laves phase. Zhao et al. [21] showed that the variation of pressure could improve the mechanical stability, microscopic electronic structure, and thermodynamic properties of Ni₃V intermetallic compound, and the mechanical strength of the alloy. Chen et al. [22] performed first-principles calculations on D0₂₂-type Al₃V and Al₃Nb intermetallic compounds. They found that pressure has a profound effect on the structure, mechanical properties, and electronic properties of Al₃V and Al₃Nb. These studies are reported to provide new ideas and directions for the study of material properties, and they provide new theoretical approaches for the design, development, and stability of new materials.

Based on the above research reports, first-principles calculations was used to investigate the structural stability, elastic constants (C_{ij}), bulk modulus (B), Yong's modulus (E), shear modulus (G), Debye temperature (Θ_D), and electronic structures of LI_2-type Ni₃X (X = Al, Ti, V, Nb) phases under external pressure condition. The aim of this work is to provide theoretical basis for the exploration of material structure, organization, and properties of LI_2-type γ′-Ni₃X, and also provides important theoretical references for subsequent experimental studies and alloy design.

Model and computational details

The LI_2 type γ′-Ni₃X (X = Al, Ti, V, Nb) phase has a face-centered cubic structure [23] (FCC), and the space group is $Pm-3m$ (No. 221). As shown in Fig. 1, the γ′-Ni₃X unit cell contains 3 Ni atoms and 1 X atom. Ni atoms occupy six face center positions of the cubic structure, and X atoms occupy 8 vertices of the cubic structure. The lattice constants of γ′-Ni₃X at 0GPa are shown in Table 1.

In this study, all calculations are performed using the plane wave pseudo-potential method based on density functional theory [32]. The generalized gradient approximation of the Perdew-Burke-Ernzerhof functional [33] is used to express the electron exchange-related potential. The Broyden-Fletcher-Goldfarb-Shanno scheme [34] is used to
optimize the geometry of the original unit cell. The cutoff energy of the atomic wave function is set to 440 eV, and the K point is set to $8 \times 8 \times 8$. The valence electron configurations of Ni-3d84s2, Ti-3d24s2, V-3d44s2, Nb-4d45s1, and Ta-4f145d66s2 are considered. The convergence tolerance is set to 2.0×10^{-6} eV/atom, the maximum residual stress on a single atom is less than 0.03 eV/Å, the stress deviation is less than 0.05 Pa, and the tolerance deviation is less than 0.001 Å. In order to study the influence of pressure on γ'-Ni$_3$X, the equivalent hydrostatic pressure applied ranges from 0 to 100 GPa in the geometric optimization process, with an interval of 20 GPa.

Results and discussion

Structural properties

The stability of a material is closely related to the enthalpy of formation (ΔH) of the crystals that make up the material. The enthalpy of formation is the total energy of the crystal minus the energy of the reactants. When the value of the ΔH is less than zero, it indicates that the crystal structure is thermodynamically stable; otherwise, the crystal structure is unstable. In this research, the ΔH of $L1_2$-type γ'-Ni$_3$X ($X = $ Al, Ti, V, Nb) can be determined by the following expression:

$$\Delta H_m = \Delta H^0_m (\text{product}) + \Delta_j H^0_j (\text{reactant})$$

(1)

where E_{Total}^m represents the total energy of $L1_2$-type γ'-Ni$_3$X; N_A stands for Avogadro’s constant; e is the basic charge; and E_{Total}^m and E_{Total}^X are the energy per atom in the Ni and X crystals, respectively.

The values of the lattice parameters a, b, c, ΔH, and V at 0 GPa and experimental and theoretical data studied by other researchers are listed in Table 1. The calculated results of the lattice constant are consistent with the existing experimental results [24, 26, 28, 30] and theoretical data [15, 25, 27, 29], indicating that the calculated results are credible. In Table 1, the ΔH of Ni$_3$Ti at 0 GPa is -53.05 kJ/mol, which is close to -47.1 kJ/mol and -45.14 kJ/mol reported in the literature. The ΔH of Ni$_3$V at 0 GPa is -20.49 kJ/mol, which is close to -14.9 kJ/mol and -16.27 kJ/mol reported in the literature. The ΔH of Ni$_3$Nb is relatively close to the previous research result of -16.45 kJ/mol [15], which proves the reliability of the calculation. The ΔH of the $L1_2$ type γ'-Ni$_3$X ($X = $ Al, Ti, V, Nb) phase at 0 GPa are -48.15, -53.05, -20.49, and -21.82 kJ/mol, respectively. It shows that the $L1_2$ type γ'-Ni$_3$X phase is thermodynamically stable, and the stability order of γ'-Ni$_3$X is Ti > Al > Nb > V.

Figure 2 shows the curves of lattice constants and cell volume (V) of $L1_2$-type γ'-Ni$_3$X as a function of pressure. It can be seen that a and b decrease with the increase of pressure, indicating that the increase of pressure leads to the compression of cell volume and the atomic distances become smaller. However, as the pressure increases, the decrease in the interatomic distance slows down and the volume change becomes slow. This is due to the fact that the reduction of interatomic distances under high pressure disrupts the balance of interatomic interaction forces and leads to strong repulsion between atoms, which makes it difficult for the crystal to continue to be compressed under high pressure.

Elastic properties

The elastic constant is a physical quantity used to describe the elastic properties of a material. It can be seen from Table 2 that the stability of the Ni$_3$X phase under external pressure satisfies the following constraints on the mechanical stability of the cubic crystal [35, 36]:

$$C_{11} - C_{12} > 0, C_{11} > 0, C_{44} > 0, C_{11} + 2C_{12} > 0$$

(3)

which indicates they are mechanically stable under pressure. The Pearson correlation coefficient R^2 in Fig. 3 is almost
close to 1, indicating that there is a very high linear correlation between the elastic constant and the pressure. The fitting curve between elastic constant and pressure is shown in Fig. 3. It can be seen from Fig. 3 that C_{11}, C_{12}, and C_{44} increase with pressure increasing. C_{11} possesses relatively large values, which means that C_{11} is more sensitive to the change of pressure than C_{12}, C_{44}. Among them, C_{11} represents the elasticity in length, which is used to explain the longitudinal strain characteristics of cubic crystals. C_{12} and C_{44} represent the elasticity of shape of cubic crystals, and are
often used to characterize elastic shear characteristic \[37\]. Under zero pressure, the \(C_{44}\) value of Ni₃Nb is the smallest and close to zero; it shows that Ni₃Nb have almost no shape elasticity at 0GPa. The larger change in \(C_{11}\) is due to the strain on the length, which produces a certain volume change without changing the shape of the crystal. In addition, based on the fitted curves in Fig. 3, the elastic constants at pressures greater than 100GPa can be inferred, and further predictions of the elastic modulus at pressures greater than 100GPa can be made.

The bulk modulus (\(B\)), shear modulus (\(G\)), Yong’s modulus (\(E\)), and Poisson’s ratio (\(\nu\)) of Ni₃X (X = Al, Ti, V, Nb) at 0 to 100GPa can be calculated straightforwardly by the Voigt-Reuss-Hill method \[38–40\]. The calculation equations are as follows.

\[
B = \frac{1}{3}(C_{11} + 2C_{12})
\]

\[\tag{4}
\]

\[
G_{V} = \frac{1}{5}(C_{11} - C_{12} + 3C_{44})
\]

\[\tag{5}
\]

\[
G_{R} = \frac{5(C_{11} - C_{12})C_{44}}{3(C_{11} - C_{12}) + 4C_{44}}
\]

\[\tag{6}
\]

\[
G = \frac{1}{2}(G_{V} + G_{R})
\]

\[\tag{7}
\]

\[
E = \frac{9GB}{3B + G}
\]

\[\tag{8}
\]

\[
\nu = \frac{3B - E}{6B}
\]

\[\tag{9}
\]

According to the methods above, the \(B\), \(G\), \(E\), and \(\nu\) of Ni₃X (X = Al, Ti, V, Nb) at 0 to 100GPa can be obtained, as shown in Table 2 and Fig. 4. It is generally accepted that \(G\) is usually used to measure the resistance of a metallic material to its own deformation, while \(B\) is used to characterize the resistance of the material to volume change. Figure 4 clearly shows that the values of bulk modulus for Ni₃X at the same pressure are much larger than the shear modulus, implying that Ni₃X tends to
resist volume change more than shape change under high pressure. E describes the resistance of a solid material to deformation. The larger the E, the less deformable and more rigid the material. Thus, Ni$_3$Al, Ni$_3$Ti, and Ni$_3$V are much stiffer than Ni$_3$Nb. The hardness decreases in the following order: Ni$_3$Ti $>$ Ni$_3$V $>$ Ni$_3$Al $>$ Ni$_3$Nb. It is clear that the values of B, G, and E in Fig. 4a and c show an increasing trend with increasing pressure, which indicates that pressure can increase the elastic modulus of the material and thus improve the hardness of the metal material itself. Figure 4b, c, and d show G/B, v, and A^U. Pugh [41, 42] proposed a rough method for judging the toughness and tough-brittle transition behavior of materials using the ratio of G/B after an in-depth study. The brittleness of a material is associated with high G/B values, while low G/B values lead to ductility of the material [38]. The critical value of G/B to distinguish between ductility and brittleness of a material is about 0.57 [42]. Figure 4c shows that the calculated G/B values for different pressures are below 0.57, indicating that Ni$_3$Ti, Ni$_3$V, Ni$_3$Al, and Ni$_3$Nb all show ductility. Meanwhile, the increase in pressure leads to smaller G/B values for Ni$_3$Al, Ni$_3$Ti, and Ni$_3$V, indicating that the ductility of Ni$_3$X is improved at high pressure. Conversely, higher pressures resulted in worse ductility of Ni$_3$Nb. Poisson’s ratio furnishes pertinent information.
on bonding capabilities [43], and for metallic materials, \(v \) is usually between 0.25 and 0.5. The calculated values of Ni\(_3\)Al, Ni\(_3\)Ti, Ni\(_3\)V, and Ni\(_3\)Nb at different pressures are between 0.25 and 0.5, and the Poisson’s ratio values of Ni\(_3\)Al, Ni\(_3\)Ti, and Ni\(_3\)V increase correspondingly with increasing pressure, which translates into better ductility of the material. On the contrary, Ni\(_3\)Nb has poor ductility.

Elastic anisotropy is an important property of materials, which reveals the difference in mechanical properties in different directions. The anisotropy of the crystal can be characterized by the universal anisotropy index. It is defined as [44, 45]:

\[
A^U = \frac{5G_V}{G_R} + \frac{B_V}{B_R} - 6 \tag{10}
\]

When the value of universal anisotropy index is not equal to 1, it indicates that the material is anisotropic; otherwise, the crystal is isotropic. Figure 4d shows that the value of \(A^U \) is not equal to 1, which obvious that Ni\(_3\)X phases are anisotropic materials. For the Ni\(_3\)X (X = Al, Ti, V) phase, the value of \(A^U \) increases with pressure, which indicates that the pressure causes anisotropy. On the contrary, pressure causes the anisotropy of Ni\(_3\)Nb to decrease. Moreover, the anisotropy decreases in the following order at 0GPa, Ni\(_3\)Nb > Ni\(_3\)Al > Ni\(_3\)Ti > Ni\(_3\)V, which means Ni\(_3\)Nb exhibits stronger anisotropy at 0GPa than the other phases. This is closely related to its smallness \(C_{44} \) at zero pressure.

Anisotropy of acoustic velocities and Debye temperature

Anisotropy of acoustic velocities

The propagation of sound velocity is anisotropic in solid, which is contingent on the symmetry of the crystal structure and the direction of dissemination. The relationship is shown by the following formula [46, 47].

\[
\left| C_{ijk}n_in_j - \mu w^2 \delta_{il} \right| = 0 \tag{11}
\]

\[
v(k) = \frac{dw}{dk} \tag{12}
\]

In this work, only the pure propagation modes of the cubic structure crystal Ni\(_3\)X in [100], [110], and [111] directions are considered; the sound velocities in Eqs. (11) and (12) can be solved by the elastic constants and phonon frequencies. Equations (13)–(16) denote the sound velocities of crystals in different crystal directions, respectively.

Cubic crystal [47, 48]:

For [100] direction:

\[
[100]v_1 = \sqrt{C_{11}/\rho}; [010]v_{12} = [001]v_{23} = \sqrt{C_{44}/\rho} \tag{14}
\]

For [110] direction:

\[
[110]v_1 = \sqrt{(C_{11} + C_{12} + 2C_{44})/\rho}; [1\overline{1}0]v_{1} = \sqrt{(C_{11} - C_{12})/\rho}; [001]v_{23} = \sqrt{C_{44}/\rho} \tag{15}
\]

For [111] direction:

\[
[111]v_1 = \sqrt{(C_{11} + 2C_{12} + 4C_{44})/3\rho}; [1\overline{1}2]v_{1} = v_{23} = \sqrt{(C_{11} - C_{12} + 3C_{44})/3\rho} \tag{16}
\]

where \(C_{ijkl} \) represents the elastic constant; \(n_i \) and \(n_j \) denote the polarization direction and the propagation direction of sound velocity, respectively; \(w \) is the vibration frequency of the sound wave per unit period; and \(v \) is the propagation velocity of sound \((v_l) \), the propagation velocity of sound in the longitudinal direction; \(v_{l1} \), is the sound velocity of the first transverse wave; and \(v_{l2} \), the sound velocity of the second transverse wave). The calculated results of the sound velocity of Ni\(_3\)X along each direction and at varying pressures are illustrated in Fig. 5. The elastic anisotropy of the crystal can be reflected by the propagation rate of the sound velocity in different directions within the crystal. For example, \(C_{11} \) determines the longitudinal sound velocity along the [100] direction, \(C_{22} \) determines the longitudinal sound velocity along the [010] direction, \(C_{33} \) determines the longitudinal sound velocity along the [001] direction, while \(C_{44} \), \(C_{55} \), and \(C_{66} \) determine the transverse sound velocity of Ni\(_3\)X along the [100], [010], and [001] directions, respectively.

In Fig. 5, the outcome shows that the sound velocity in different directions increases of the \(Li_x \)-type \(\gamma’-Ni_3X \) (X = Ti, V, Nb) phase with the increase of pressure. Moreover, the speed increase rates in the [001], [110], and [111] directions are different, which indicates the existence of anisotropy of sound velocity. Among the three longitudinally propagating sound velocities in Fig. 5, the longitudinal wave velocity along the [111] direction
(111) \(v_r \) is the fastest, which may be due to the difference of \(C_{11} \) and \(C_{12} \), resulting in the difference in sound velocity propagation. This also explains the anisotropic variation of the \(\text{Ni}_3\text{X} \) phase.

Debye temperature

The Debye temperature \(\Theta_D \) is an important physical parameter that reflects the degree of dynamic distortion of the solid lattice and the strength of the interatomic bond. Many physical quantities of matter are connected with it, as elasticity, hardness, specific heat, and melting point, so it is essential to study the Debye temperature. \(\Theta_D \) can be calculated from the data of elastic constants in Table 2 according to the following equation [49–51]:

\[
\Theta_D = \frac{h}{k_B} \left[\frac{3n}{4\pi} \left(N_A \rho \right) \right]^{(1/3)} v_m
\]

\[(17) \]

\[
v_m = \left[\frac{1}{3} \left(\frac{2}{v_l^3} + \frac{1}{v_s^3} \right) \right]^{(-1/3)}
\]

\[(18) \]

\[
v_l = \sqrt{\frac{3B + 4G}{3\rho}}
\]

\[(19) \]
The \(h \) in Eq. (16) represents Planck’s constant, \(k_B \) stands for the Boltzmann’s constant, \(n \) is the number of atoms in a single \(\text{Ni}_3X \) cell, \(N_A \) is Avogadro’s number, \(\rho \) is the density of a single \(\text{Ni}_3X \) cell, \(M \) is the molecular weight of \(\text{Ni}_3X \), respectively. \(v_m \), \(v_l \), and \(v_s \) stand for the average, longitudinal, and shear sound velocities, respectively. Table 3 displays the dependence of \(v_m \), \(v_l \), and \(v_s \) with pressure interval from 0 to 100 GPa. The computed values of Debye temperature (\(\Theta_D \)) of \(\text{Ni}_3X \) at variable pressures are demonstrated in Fig. 6. The Debye temperatures of \(\text{Ni}_3\text{Al} \) and \(\text{Ni}_3\text{V} \) at 0 GPa are 461.45 K and 448.83 K, respectively, which is close to the existing experimental values derived from the measurement of elastic constants at chamber temperature [21], which are in line with the findings of this paper. It can be found that \(\text{Ni}_3\text{Ti} \) has the highest \(\Theta_D \) among the five phases. Debye temperature rises with incremental pressure for \(\text{Ni}_3X \) phases, and the growth rate gradually decreases.

In addition, as mentioned above, the Debye temperature (\(\Theta_D \)) can be utilized to depict the intensity of covalent bonds in solids. The larger the value of \(\Theta_D \), the stronger the covalent bonds. Therefore, the covalent bonds in \(\text{Ni}_3X \) become stronger as the pressure increases.

\[
v_s = \sqrt{\frac{G}{\rho}}
\]

(20)

![Graph](image_url)

Fig. 6 Sound velocity, Debye temperature (\(\Theta_D \)) of \(\text{Ni}_3X (X=\text{Al, Ti, V, Nb}) \) phases

Phase	Pressure	\(v_m (m/s) \)	\(v_l (m/s) \)	\(v_s (m/s) \)	\(\Theta_D (k) \)
\(\text{Ni}_3\text{Al} \)	0	4207.93	6152.01	3162.58	461.45
	20	4470.68	6880.14	3317.77	490.27
	40	4849.46	7584.10	3586.32	531.81
	60	5129.87	8220.99	3775.00	562.56
	80	5340.12	8661.35	3920.81	585.61
	100	5504.08	8937.02	4040.39	603.59
\(\text{Ni}_3\text{Ti} \)	0	4446.32	6132.45	3401.70	487.60
	20	4900.93	7102.18	3692.49	537.45
	40	5135.15	7660.46	3839.26	563.13
	60	5393.67	8182.37	4016.07	591.48
	80	5587.69	8605.96	4046.10	612.76
	100	5749.31	8977.2	4253.29	630.48
\(\text{Ni}_3\text{V} \)	0	4092.86	3053.58	6156.80	448.83
	Other calculation [21]	3835.20	3432.78	6442.70	507.12
	20	4442.07	3288.78	6909.67	487.13
	Other calculation [21]	4196.65	3648.77	7248.24	570.23
	40	4809.94	3551.61	7578.06	527.47
	60	5088.3	3749.84	8094.33	558.00
	80	5300.28	3910.35	8385.85	581.24
	100	5516.44	4054.6	8896.58	604.95
\(\text{Ni}_3\text{Nb} \)	0	2079.96	1466.94	4981.47	228.09
	20	2835.67	2015.41	6005.79	310.97
	40	3263.52	2328.63	6588.92	357.89
	60	3557.53	2542.98	7043.09	390.13
	80	3976.12	2853.68	7563.29	436.03
	100	4302.19	3099.52	7922.38	471.85
Electronic structure

In addition, to recognize the bonding traits and to look into the impact of stress on the digital structure, the whole density of states and partial density of states of Ni$_3$X are calculated in this paper, as proven in Fig. 7. Here, it is solely the TDOS of Ni$_3$X at 0, 40, and 80GPa that it has plotted to describe the hassle extra clearly.

As seen in Fig. 7, many energy states occupy the Fermi level, which means that the Ni$_3$X phase demonstrates metallic properties. In addition, the peak height of TDOS can be significantly reduced by increasing the pressure, and the distribution range of TDOS can be expanded. For Ni$_3$Al, Ni$_3$Ti, Ni$_3$V, and Ni$_3$Nb, the dominant bond-forming peaks in the vicinity of the Fermi level are dominated by the Ni-3d and Al-3p states, the Ni-3d and Ti-3d states, and the Ni-3d and V-3d states. In particular, the hybridization between Ni and X atoms is apparent, which forms a covalent bonding feature.

To reap perception into the chemical bonding homes of Ni$_3$X beneath pressure, Mulliken charges [52] as properly as bond lengths have been analyzed to quantitatively examine the impact of stress on structural, elastic, thermodynamic, and digital properties. The ionic configurations are listed in Table 4. At 0GPa, the charges transferred from X to Ni atoms for Ni$_3$Al, Ni$_3$Ti, Ni$_3$V, and Ni$_3$Nb are 0.25, 0.40, 0.30, and 0.28e, respectively. In addition, the charges transferred from X to Ni atoms expand with growing pressure. But the bond length size decreases with the ascending of pressure. This is the physical root of the impact of pressure on the structure, elastic constants, Debye temperature, etc. This offers an appropriate rationalization for the variant of lattice constant and volume with pressure.

To further analyze the difference interaction between Al, Ti, V, and Nb atoms and Ni atoms, this article studies the charge density (Fig. 8 is the charge density diagram of Ni$_3$X phases) distribution of Ni$_3$X on the [010] crystal plane. From the point of view of electron transfer between atoms, Ni atoms lose more electrons in Ni$_3$X ($X = \text{Ti, V, Nb}$), and the lost electrons are transferred to the space between Ni atoms and Ti, V, and Nb (the red part in Fig. 8). With the pressure increases, the electron transfer tendency increases. The order of electron aggregation strength between doping atoms is Ti > Nb > V > Al; therefore, the interaction between Ti atoms and Ni atoms is the strongest, and the interaction between Ta atoms and Ni atoms is the weakest. This is consistent with the analysis results of the enthalpy of formation, the Debye temperature, and the density of states.

Conclusions

In this paper, the structural stability (ΔH), elastic constants (C_{ij}), bulk modulus (B), Yong’s modulus (E), shear modulus (G), Debye temperature (Θ_D), and electronic structures of $L1_2$-type Ni$_3$X ($X = \text{Al, Ti, V, Nb}$) phases under external pressure condition were systematically studied by first principles calculations. The conclusion is as follows:

(1) The relationship between elastic constant, elastic modulus, G/B value, and Poisson’s ratio under pressure shows that Ni$_3$X has good shear stability and ductility. And the C_{ij}, B, G, and E values increase with the increase of pressure.

(2) All Ni$_3$X phases have the sound velocity anisotropy, and the increase of external pressure leads to the enhancement of anisotropy. The [111] direction has strong longitudinal anisotropy, which is closely related to the large C_{ij} of Ni$_3$X phases.

Table 4 Mulliken charge, bond length of Ni$_3$X ($X = \text{Al, Ti, V, Nb}$) phases at 0 to 100GPa

Pressure (GPa)	Ni$_3$Al	Ni$_3$Ti	Ni$_3$V	Ni$_3$Nb
Bond length (Å)				
Mulliken charge (e)				
0	2.53	2.56	2.53	2.61
	$\text{Ni}^{+0.08}\text{Al}^{+0.25}$	$\text{Ni}^{-0.13}\text{Ti}^{+0.4}$	$\text{Ni}^{-0.1}\text{V}^{+0.3}$	$\text{Ni}^{-0.09}\text{Nb}^{+0.28}$
20	2.46	2.49	2.46	2.54
	$\text{Ni}^{+0.07}\text{Al}^{+0.22}$	$\text{Ni}^{-0.2}\text{Ti}^{+0.59}$	$\text{Ni}^{-0.15}\text{V}^{+0.44}$	$\text{Ni}^{-0.19}\text{Nb}^{+0.58}$
40	2.4	2.44	2.42	2.49
	$\text{Ni}^{+0.06}\text{Al}^{+0.19}$	$\text{Ni}^{-0.26}\text{Ti}^{+0.78}$	$\text{Ni}^{-0.19}\text{V}^{+0.58}$	$\text{Ni}^{-0.29}\text{Nb}^{+0.86}$
60	2.36	2.34	2.38	2.45
	$\text{Ni}^{+0.05}\text{Al}^{+0.16}$	$\text{Ni}^{-0.32}\text{Ti}^{+0.96}$	$\text{Ni}^{-0.24}\text{V}^{+0.72}$	$\text{Ni}^{-0.37}\text{Nb}^{+1.11}$
80	2.33	2.36	2.35	2.42
	$\text{Ni}^{+0.04}\text{Al}^{+0.13}$	$\text{Ni}^{-0.38}\text{Ti}^{+1.14}$	$\text{Ni}^{-0.29}\text{V}^{+0.86}$	$\text{Ni}^{-0.45}\text{Nb}^{+1.35}$
100	2.3	2.34	2.32	2.39
	$\text{Ni}^{+0.03}\text{Al}^{+0.10}$	$\text{Ni}^{-0.44}\text{Ti}^{+1.31}$	$\text{Ni}^{-0.33}\text{V}^{+0.99}$	$\text{Ni}^{+0.53}\text{Nb}^{+1.58}$
The sound velocity and Debye temperature increase of the Ni$_3$X phases with the increase of the applied pressure. The magnitude of the Debye temperature under the applied pressure is Ni$_3$Ti > Ni$_3$Al > Ni$_3$V > Ni$_3$Nb.

Electronic analysis shows that increase pressure results in improving the bond strength and crystal stability of Ni$_3$X phases. The degree of charge hybridization and Ni-X bond strength increases with increasing pressure. In those phases, the charge accumulation of Ni$_3$Ti is the largest and the crystal structure is the most stable.

Author contribution Y H Wu: investigation, methodology, formal analysis, validation, writing (original draft), writing (review and editing). J S Chen: writing (review and editing), validation. J Y Ji: formal analysis, methodology, validation. Y Z Zhang: conceptualization, methodology. Q Z Wang: writing (review and editing). K Xiong: conceptualization, methodology.

Funding This project is supported by the National Natural Science Foundation of China (grant no. 51805316), China postdoctoral Science Foundation (no. 2019M651491), State Key Laboratory of Advanced Welding and Joining (no. AWJ-20-M12), Shanghai Local Universities Capacity Building Project of Science and Technology Innovation Action Program (20030500900), and Shanghai sailing program (no. 21YF1432300). The computations were done on the high perform computers of the Advanced Computing Center of Yunnan University.

Data availability The raw/processed data required to reproduce these findings can be shared upon request.

Code availability The code for the simulations can be provided upon request.

Declarations

Conflict of interest The authors declare no competing interests.

References

1. Reed RC, Tao T, Warnken N (2009) Alloys-by-design: application to nickel-based single crystal superalloys. Acta Mater 57(19):5898–5913
2. Ma SY, Zhang JX (2015) Site preference and alloying effect of Re atoms in the edge dislocation cores in Ni₃Al. Philos Mag Lett 95(5):253–259
3. Tan ZH, Wang XG et al (2020) Oxidation behavior of a novel nickel-based single crystal superalloy at elevated temperature. Vacuum 175:109284
4. Wang Z, Wu W, Liang J, Li X (2020) Creep-fatigue interaction behavior of nickel-based single crystal superalloy at high temperature by in-situ SEM observation. Int J Fatigue 141:105879
5. Li P, Zhang J, Zhang et al (2020) Density functional theory calculations of the double gamma prime Ni₃Ta phase under pressure: structural, mechanical, and electronic properties. J Phys Chem Solids 138:109248
6. Dong C, Yu J, Xu L, Xia Z, Zhang Q (2020) Tension–compression asymmetry of bilayer Ni/Ni₃AlA3 affected by dissolution formation–decomposition and twinning size. Mater Express 10(2):165–176
7. Liu CG, Zhao YS, Jiao et al (2018) The effect of stress aging on the precipitation behavior of TCP phase in DD11 single crystal superalloy. Mater Mech Eng 42(6):36–41
8. Yang ZW, Lian J, Cai XQ et al (2019) Microstructure and mechanical properties of Ni₃Al-based alloy joint transient liquid phase bonded using Ni/Ti interlaye. Intermetallic 109:179–188
9. Sun J, Xiao H, Li W, et al (2020) Microstructure and oxidation behaviour of Pt modified NiCrAlYSi coating on a Ni-based single crystal superalloy. Surf Coat Tech 399:126164
10. Yang FM, Lian LX, Liu Y et al (2020) Mechanism of adding rhenium to improve hot corrosion resistance of nickel-based single-crystal superalloys. Rare Met 42(8):2076–2082
11. Huang Y, Mao Z, Noebe RD, Seidman DN (2019) Effects of tungsten and rhenium additions on phase-separation in a model Ni-Al-Cr-W-Re superalloy: a four-dimensional study. J Alloy Compd 799:377–388
12. Wu X, Wang C (2015) Density functional theory study of the thermodynamic and elastic properties of Ni₃-based superalloys. J Phys: Condens Matter 27(29):295401
13. Yao CY, Chen Z, Zhang J et al (2013) The effect of Ta alloying on the elastic properties and electronic structure of γ-Ni₃Al phase. Rare Metal Mater Eng 42(9):1893–1896
14. Li P, Zhang J, Zhang Y et al (2019) Density functional theory calculations of the double gamma prime Ni₃Ta phase under pressure: structural, mechanical, and electronic properties. J Phys Chem Solids 138:109248
15. Santhy K, Vamsi KV, Karthikeyan S (2020) Modelling of Ni₃(Ti, V) system through first-principle calculations. Mater Today: Proc 26:278–281
16. Czeppe T, Wierzbicka-Miernik A, Sypien A et al (2020) Effects of Ti and high cooling rate on the phase equilibria and properties of Ni₃Al (Al, V) alloys. J Mater Eng Perform 29(3):1502–1508
17. Gong X, Xu WW, Cui C et al (2020) Exploring alloying effect on phase stability and mechanical properties of γ‘-Ni₃Nb precipitates with first-principles calculations-ScienceDirect. Mater Des 196:109174
18. Hou H, Wen Z, Zhao Y et al (2014) First-principles investigations on structural, elastic, thermodynamic and electronic properties of NiₓX (X=Al, Ga and Ge) under pressure. Intermetallics 44(1):110–115
19. Mao P, Yu B, Liu Z et al (2015) First-principles investigation on mechanical, electronic, and thermodynamic properties of Mg₃Sr under high pressure. J Appl Phys 117(11):115903
20. Liu Y, Hu WC, Li DJ et al (2012) First-principles investigation of structural and electronic properties of Mg₃Cu₃ Laves phase under pressure. Intermetallics 31:257–263
21. Zhao Y (2015) The structural, elastic, electronic properties and Debye temperature of DO₁₉-Ni₃V under pressure from first-principles. J Alloy Compd 647:1104–1110
22. Chen Z, Zhang P, Chen D et al (2015) First-principles investigation of thermodynamic, elastic and electronic properties of Al₃V and Al₃Nb intermetallics under pressures. J Appl Phys 117(8):085904
23. Wu Q, Li S (2012) Alloying element additions to Ni₃Al: site preferences and effects on elastic properties from first-principles calculations. Comput Mater Sci 53(1):436–443
24. Rao PM, Suryanarayana SV, Murthy KS, Naidu SN (1989) The high-temperature thermal expansion of Ni₃Al measured by X-ray diffraction and dilation methods. J Phys: Condens Matter 1(32):5357
25. Guo ZQ, Wang YK, Hsu LS (2002) First-principles and experimental studies of the electronic structures and magnetism in Ni₃Al, Ni₃Ga and Ni₃In. J Magn Magn Mater 239(1–3):91–93
26. Mihalisin JR, Decker RF (1960) Phase transformations in nickel-rich nickel-titanium-aluminum alloys. Trans Am Inst Met Min Eng 218(3):507–515
27. Pasturel A, Colinet C, Manh DN et al (1995) Electronic structure and phase stability study in the Ni-Ti system[J]. Phys Rev B 52(21):15176
28. Pearson TWB (1958) A handbook of lattice spacings and structures of metals and alloys. New York and London. Science 128(3330):1000–1000
29. Lin W, Xu J, Freeman A (1990) Relation of phase stability boundary to the fill-up bonding states in Ni₃V, C₃V and F₃V. MRS Proc 213:131
30. Quist WE, Taggart R, Polonis DH (1971) The influence of iron and aluminum on the precipitation of metastable Ni₃Nb phases in the Ni-Nb system. Metall Trans 2(3):825–832
31. Ravindran P, Subramoniam G, Asokamani R (1996) Ground-state properties and relative stability between the L₁₂ and D₀₁₉ phases of Ni₃Al by Nb substitution. Phys Rev B 53(3):1129
32. Zhang WX, Chen JS, Li S et al (2021) Electronic and mechanical properties of monocristalline silicon doped with trace content of N or P: a first-principles study. Solid State Sci 120:106723
33. Yin ZK, Chen JS, Zhang PL et al (2020) Phase stability, brittleductile transition, and electronic structures of the tial alloying with Fe, Ru, Ge, and Sn: a first-principle investigation. J Mol Model 26(11):1–12
34. Zhang Z, Chen J, Zhang W et al (2020) Systematically investigate mechanical and electrical properties of Bi₃O₅Te by Te atom substitution and compare it with homologue Bi₂O₄Te from first-principles calculations. Mater Today Commun 24:101182
35. Zhang HK, Chen JS, Zhang LX et al (2020) Phase stability, elasticity, hardness and electronic structures for binary MnB₃ (m=Ni, Cr, Mo, W, n=23, 5, 3, 1, m=6, 3, 2, 1) borides: a comprehensive study using first principles. Phase Transit 93:1–8
36. Yang M, Chen J, Yang J, Zhang P, Yu Z, Zheng Z, Lu H (2020) Interfacial transfer and phase evolution between Cu and Sn solder doped with minor Cu, Ag and Ni: experimental and theoretical investigations. Appl Phys A 126(8):1–12
37. Li ZB, Xiong K, Jin CC, Sun YJ, Wang BW, Zhang SM, . . . Mao Y (2021) Structural, mechanical, thermodynamic and electronic properties of Pt₃M (M= Al Co, Hf, Sc, Y, Zr) compounds under high pressure. Rare Met 40(5):1208–1218
38. Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc 65:349–354
39. Wang J, Chen J, Zhang Z, Zhang P, Yu Z, Zhang S (2021) Effects of doping trace Ni element on interfacial behavior of Sn/ Ni (polycrystal/single-crystal) joints. Solder Surf Mt Technol. https://doi.org/10.1108/SSMT-08-2021-0053
40. Wang Y, Wu Y, Wang X et al (2021) Insights into structural stability, electronic structure, and elastic and thermodynamic properties of Alₓ₁₋₄ type Moₓ (X= Si, Ge, and Sn) compounds based on first-principles predictions. J Phys Chem Solids 151:109925

(Translated into English from Chinese or other languages)
41. Pugh SFXCII (1954) Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond Edinb Dublin Philos Mag J Sci 45(367):823–843
42. Pan Y (2020) The structural, mechanical and thermodynamic properties of the orthorhombic TMAI (TM= Ti, Y, Zr and Hf) aluminides from first-principles calculations. Vacuum 181:109742
43. Nye J F (1985) Physical properties of crystals: their representation by tensors and matrices[M] Oxford university press 27–69
44. Ranganathan SI, Ostoja-Starzewski M (2008) Universal elastic anisotropy index. Phys Rev Lett 101(5):055504
45. Cao Y, Zhang C, Zhou S et al (2020) First-principles study of stability, electronic properties and anisotropic elasticity of Al3M (M=Ti, Ta, V, Nb, Hf) intermetallic compounds. Phys B Condens Matter 594:412294
46. Fecht HJ, Wunderlich R, Battezzati L, et al (2008) Thermophysical properties of materials. Europhysics News 39(5):19–21
47. Feng J, Xiao B, Chen J et al (2011) Stability, thermal and mechanical properties of Pt3Al compounds. Mater Des 32(6):3231–3239
48. Hearmon RFS, Maradudin AA (1961) An Introduction to Applied Anisotropic Elasticity. Phys Today 14(10):48–48
49. Andersen OL (1963) A simplified method for calculating the Debye temperature from elastic constants. J Phys Chem Solids 24:909–917
50. Huang ZW, Zhao YH, Hou H, Han PD (2012) Electronic structural, elastic properties and thermodynamics of Mg17Al12, Mg3Si and Al3Y phases from first-principles calculations. Physica B 407(7):1075–1081
51. Shang SL, Wang Y, Kim D, Liu ZK (2010) First-principles thermodynamics from phonon and Debye model: Application to Ni and Ni3Al. Comput Mater Sci 47(4):1040–1048
52. Larin AV, Vercauteren DP (1998) Approximations of the Mulliken charges for the oxygen and silicon atoms of zeolite frameworks calculated with a periodic Hartree-Fock scheme. Int J Quantum Chem 70(4–5):993–1001

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.