Air pollution with oil products in the area of railway tank stops

A V Zvyagintseva1,5, A S Samofalova2, S A Sazonova3 and V V Kulneva4

1 Department of Chemistry and Chemical Technology, Voronezh State Technical University, 84 October 20th Anniversary Street, Voronezh, 394006, Russia

2 Department of Graduate Studies, Voronezh State Forestry University named after G F Morozov, 8 Timiryazeva street, Voronezh, 394087, Russia

3 Department of Technosphere and Fire Safety, Voronezh State Technical University, 84 October 20th Anniversary Street, Voronezh, 394006, Russia

4 Department of training and certification of scientific and pedagogical personnel, Voronezh State Technical University, Voronezh State Technical University, 84 October 20th Anniversary Street, Voronezh, 394006, Russia

5 E-mail: zvygincevaav@mail.ru

Abstract. The problems of ensuring safety in the process of fulfilling technical regulations on railway transport at the stop points of tanks with oil products are stated. A basic list of polluting components discharged into the air at the parking of railway tank cars is presented, while priority pollutants are identified. The components that determine the pollution of the railway parking area have been regulated, and the gross emissions have been quantitatively established. The practical implementation of the protection of the air environment of the city of Voronezh is proposed, which implies the removal of stopping points of railway rolling stock, realizing the transit of oil and oil products, outside the residential zone of an industrial city with a million population. This applies to the points of technical stopping of railway tank cars with oil products, both short-term and long-term deployment. It is shown that the inspection and control of specific tank washing points is coordinated by the safety data sheet of the facility itself, which should be included in the category of potentially hazardous facilities.

1. Introduction

Accidents on railway transport (railway) during the petroleum products transit cause immeasurable damage to the environment. In this regard, the optimization of the oil and oil products transportation by railway is an urgent engineering and environmental task, the solution of which will help to reduce the total number of emergency situations. The choice of research objects is conditioned, on the one hand, by the danger and toxicity, and on the other hand, by the frequency of accidents associated with spills and destruction of tanks, and vapors from them during parking in which they are transported.

The monitoring of the Ministry of Transport of the Russian Federation recorded that in the total amount of freight traffic transported on the territory of Russia by possible transport structures, the quota of potentially unsafe transits is 20\%, otherwise it is approximately 800 million tons. Figure 1 illustrates the state structure of multi-purpose freight transportation by rail according to [1].
The share of oil freight traffic reaches 18%. Despite the fact that a part is transported by road and pipeline transport.

We selected oil and petroleum products as objects of study for freight transportation by rail. The main mode of transport for the supply of oil products for export is railway, for example, in 2010, it exported 83.5% of oil products. The dynamics of the transit of oil cargo is gradually changing with the methodical progression of the pipeline supply quota by 2020. Given the unchanging geopolitical environment and the lack of development of alternative and competitive efficient tariff adjustments, the current focus is likely to remain.

The railway transport is the most often source of accidents (~ 80% of cases and incidents, here the number of dead and injured people in an accident is not taken into account, the leadership in this hierarchy is clearly held by road transport) for a number of reasons, the analysis of which is not considered in this article. In the vicinity of railway transport stops, there is a violation of the quality of the air and an excess of the MPC standards [2-4] for a number of volatile compounds, which is associated with the migration of contaminants from the tanks surface into the gas phase. The most important environmental and analytical task is to control air quality in the event of emergency releases of toxic substances. The height of the emission source (tank) does not exceed 10 m above ground level, therefore emissions are considered low and the most dangerous in case of accidents (when the concentration of polluting components is many times higher than the MPC (maximum permissible concentration). In this regard, it is necessary to calculate the surface concentrations of pollutants from emergency sources, including their gross emission. Based on the results of the calculation, it can be concluded that it is expedient and ecological safety of the parking of railway tanks carrying oil products near large settlements. The calculation was carried out according to [5].

The aim is to improve the guarantee of the reliability and stability of the oil and oil products railway transit safety.

To optimize the transportation of oil products, it is necessary to solve the following tasks:

- calculation of atmospheric pollution by emissions from emergency sources during the railway tanks parking;
- construction of maps-schemes of the pollutants movement in all directions.

2. Engineering calculations of pollutant emissions during railway tanks with oil products parking

Non-observance of the atmosphere characteristics and exceeding the maximum permissible concentrations (MPC) in accordance with the normative data [2-4] for individual easy volatile compounds (EVC) are often recorded around the railway stopping point of the rolling stock. This is associated with the diffusion of contaminants from the exterior of the tanks into the gaseous state (table 1). The use of information technologies is noted in works [6-11].
Table 1. The list of components that diffuse into the air, due to their outflow from the tanks for the transit of oil and oil products at the railway rolling stock stopping points. Designation: MPC d.a. - the maximum permissible daily average concentration of harmful substances in the air; MPC m.o. - the maximum one-time concentration of impurities in the air; MPC w.z. - the maximum permissible concentration of harmful substances in the air of the working zone [2-5].

Component	Hazard Class acc. to [2]	MPC m.o., mg/m³	MPC d.a., mg/m³	MPC w.z., mg/m³
Alkanes: C₅H₁₂−2				
CH₄	4	300	75	25
C₂H₆	4	200	50	17
C₃H₁₂	4	100	25	8
C₄H₁₄	4	60	15	5
Alkenes: C₆H₁₄				
C₂H₄	3	3	3	1
C₃H₆	3	3	3	1
C₄H₈	4	3	3	1
C₅H₁₀ (a mixture of isomers)	4	1.5	1.5	0.5
Aromatic hydrocarbons C₆H₁₆				
C₆H₆	2	1.50	0.100	0.020
C₇H₈	3	0.60	0.600	0.200
C₈H₁₀(ethyl benzene)	3	0.02	0.020	0.006
C₈H₁₀(a mixture of ortho-, meta-, and paraxylene isomers)	3	0.20	0.200	0.070
C₆H₅CH(CH₃)₂ (cumol or isopropyl benzene)	4	0.014	0.014	0.009
Solvents				
C₃H₄O (propanone-2 or acetone)	4	0.350	0.350	0.110
C₄H₈O (butanone-2)	4	0.200	0.040	0.001
C₆H₁₂O₂ (2-hydroxypropane-2-yl-benzene)	2	0.007	0.007	0.002
C₇H₈O₂ (1,2-ethanediol)	2	0.100	0.030	0.010
Mixture of liquid hydrocarbons C₆-C₁₅ (kerosene)	2	0.010	0.030	0.010
Nefras-S4-155 / 200 (Stoddard solvent - a mixture of aliphatic and aromatic hydrocarbons)	3	0.050	0.050	0.010
Solvent naphtha is a mixture of aromatic hydrocarbons with naphthenes, paraffins and unsaturated cyclic hydrocarbons	4	0.100	0.100	0.030
Turpentine - a mixture of terpenes and terpenoids.	4	2	1	0.300
Saturated C₁₂-C₁₅ hydrocarbons: dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nonadecane (solvent RPK-265P, etc.) [12]	4	1	0.500	0.130
Additives. Preservatives				
SO₂ (additive)	3	0.500	0.050	0.007
H₂S (additive)	2	0.080	0.004	0.002
CH₃O (preservative)	2	0.035	0.003	0.001
Petroleum oils - a mixture of high molecular weight hydrocarbons (preservative)	3	1	0.500	0.130

A parking point for railway tanks in Voronezh was considered as an object of technical stopping of rolling stock with oil products (figure 2), and the subsequent calculation of gross emissions and surface concentrations of polluting components (PC) was made for it [13]. The particular object under
consideration is the Voronezh-Kurskiy locomotive depot located to the west of the Voronezh-II (Kurskiy) railway station, on one of the short branch lines (figure 2, 3).

In accordance with sanitary and epidemiological standards [3, 4] which regulate the hazard class of pollutants fixed in oil and petroleum products. Due to their volatility and accumulation in the human body, which negatively affects the well-being of the population living in the area where the stopping points of tanks for the oil products transit are located. The components that determine the contamination of the railway parking area have been regulated: H2S, CH2O, C6H6, C7H8 and hydrocarbons in total: C1-C10 - alkanes in terms of pentane, C2-C5 alkenes in terms of pentene. These pollutant components (PC) are among those that are monitored, verified, regulated and controlled.

Based on a quantitative assessment of the PC accumulation when they flow out of the tank, it is possible to make some conclusions about the rationality, relevance and nature-saving function of the parking points of the tanks for oil and oil products transit, primarily in the zone of cities and industrial centers (table 2). To assess the potential threat to the residential area, a model scenario of destruction or explosion of a tank with oil products was taken.

The amount of abnormal bulk PC outbursts (H2S, CH2O) from the tank for storage and transit of oil and oil products is diagnosed according to the expression in accordance with [5]:

$$M = 0.001 \cdot B \cdot K_{HI} \cdot Q^P_H.$$ \hspace{1cm} (1)

Designation: B – the operational fuel consumption, g/s; K_{HI} - the multiplier that takes into account the PC splash when 1 MJ of heat is released, kg/MJ; Q^P_H - the lowest temperature point of fuel burnout (calorific value is the lowest heat of fuel combustion per 1 kilogram of fuel), MJ/kg; 0.001 is the conversion factor "g" to "kg". Let us quote [14]: "The specific heat of fuel combustion is a physical quantity that shows how much heat is released during the complete combustion of fuel weighing 1 kg", the calculation was carried out using the smallest value [5]. It should be noted that the calculation of gross PC emissions in emergency situations was carried out according to formulas (1-3), according to [5], with some assumptions.

The amount of abnormal bulk outbursts of PC (C6H6, C7H8) from the tank for oil and oil products storage and transit is diagnosed according to the expression [5]:

$$M_{C_6H_6} = B \cdot A_p \cdot f.$$ \hspace{1cm} (2)

Designation: B – the operational fuel consumption, g/s; A_p - the ash content of anhydrous fuel in relation to the initial amount of fuel, %; f - the multiplier fixing the rate of modification of aromatic compounds in air, %.

We quote [15]: "Ash content is the mass fraction of ash, the percentage of non-combustible (on anhydrous mass) residue, which is created from mineral impurities of the fuel during its complete
combustion"; "The working mass is the mass and composition of the fuel that is supplied to the consumer." For \(C_6 \text{H}_6 \), \(A_p = 30\% \) and \(f (C_6\text{H}_6) = 0.021\% \); for \(C_7 \text{H}_8 \), \(A_p = 40\% \) and \(f (C_7\text{H}_8) = 0.014\% \).

The amount of abnormal bulk PC outbursts (y/d in total) from the tank for storage and transit of oil and oil products is diagnosed according to the expression [5]:

\[
M_{y/d\ in\ total} = g \cdot m \cdot \chi.
\]

Designation: \(g \)- the ash content of fuel, \%; \(m \)- the operational fuel consumption, g/s; \(\chi \) - the multiplier fixing the rate of hydrocarbon modification in air, \%. For \(h/c \) \(g=20\% \); \(\chi=0.11\% \).

The final results of calculations by expressions (1-3) were performed for the \(i \)-th PC (\(H_2\text{S} \), \(\text{CH}_2\text{O} \), \(\text{C}_6\text{H}_6 \), \(\text{C}_7\text{H}_8 \) and \(h/c \) in total) and are described in table 2. The calculation was made for oil products.

Table 2. Basic information for the purpose of fixing the total number of abnormal PC emissions of the ZK from the tank for oil and oil products storage and transit.

PC	\(B_m \), g/s	\(Q^p \), MJ/kg	\(A_p \), g%	\(K \), \(\chi \), \(f \), %	\(M \), g/s
\(H_2\text{S} \)	125.0	300	-	2.0	75
\(\text{CH}_2\text{O} \)	78.1	290	-	1.6	36
\(\text{C}_6\text{H}_6 \)	833.3	-	30	0.021	55
\(\text{C}_7\text{H}_8 \)	1062.5	-	40	0.014	595
\(h/c \) in total	625.0	-	20	0.110	1375

3. Conclusion and findings

3.1. Conclusion

The environmental audit and inventory carried out at the point of cleaning tanks for the oil and petroleum products transit have stated that this object belongs to the Corporation "Russian Railways". The inspection and monitoring of specific points of tank washing is coordinated by the safety passport and the object itself. The analyzed tank washing point is included in accordance with the regulatory criteria, according to [16, 17] in the category of PDO (potentially dangerous objects).

The state control over compliance with environmental standards and environmental regulations in the operation, in addition to the Corporation "Russian Railways" regulations (containers for transit washing), is implemented independently and individually, and is listed under the supervision and inspection of State Fire Supervision of the Ministry of Emergency Situations of Russia.

Various audits and inspections at the facility are carried out with the permission of the prosecutor's office. Subject to coordinated regulatory control, they are implemented by the bodies of the Office of the Federal Service for Supervision of Natural Resources (Rosprirodnadzor) in the Voronezh Region (Address: 394087, Voronezh, Lomonosova st., 105). If there are appeals from residents of the city the municipal verification takes place.

Based on the above-mentioned facts we can conclude that the practical implementation of the protection and safety of the air environment of Voronezh is rational and reasonable in the absence of stopping points for railway rolling stock that implement the oil and oil products transit, both short-term and long-term dislocation, in the residential zone of an industrial city with a million population. Povorino station can serve as a conceptual and perspective post for regulated maintenance of rolling stock transporting oil and OP (refueling, inspection and verification of technical and operational indicators), with the construction of a whole complex for cleaning and recycling of solid waste (liquid household waste) in order to return valuable components to industrial circulation. In the event of an accident, the number of objects that have been negatively affected, and therefore the population will be significantly less. The proposed parking point is located on the South-Eastern Railway, 232 km from Voronezh.
3.2. Findings
The components that determine the pollution of the railway transport parking area: H₂S, CH₂O, C₆H₆, C₅H₁₀ and hydrocarbons in total: C₁₋C₁₀-alkanes in terms of pentane, alkenes C₂₋C₅ in terms of pentene (designation – h/c in total) have been regulated. The gross emissions for them have been quantified. Environmental audit and inventory control carried out at the point of oil tanks stopping and has stated that this point is assigned to the JSC “Russian Railways”. The inspection and control of specific points of tank washing is coordinated by the safety data sheet and is classified as a potentially dangerous object.

References
[1] Review 2018-2019 Dynamics of indicators of the rail transportation market in 2018-2019 (Electronic resource) https://digitalrzd.ru/f/obzor_perevozok_sentyabr_2019.pdf
[2] Hygienic standards 2.2.5.3532-18 Maximum permissible concentration (MPC) of harmful substances in the air of the working area (Electronic resource) http://docs.cntd.ru/document/557235236
[3] Hygienic standard 2.1.6.3492-17 Maximum permissible concentrations (MPC) of pollutants in the atmospheric air of urban and rural settlements (Electronic resource) http://docs.cntd.ru/document/556185926
[4] Hygienic requirements for ensuring the quality of atmospheric air in populated areas 2001 On the introduction of sanitary rules SanPiN 2.1.6.1032-01 (Electronic resource) http://docs.cntd.ru/document/901787814
[5] Method of conducting an inventory of pollutants emissions into the atmosphere at railway transport enterprises (calculated method) 1992 Date of actualization 01.02.2020 (Electronic resource) https://meganorm.ru/Index2/1/4293852/4293852049.htm
[6] Zvyagintseva A V, Sazonova S A and Kulneva V V 2020 Measures to Improve Working Conditions and Reduce Dust and Gas Emissions in the Quarries of the Mining and Processing Plant IOP Conference Series: Earth and Environmental Science. International science and technology conference "FarEastCon-2019" 459 052047
[7] Zvyagintseva A V, Sazonova S A, Kulneva V V and Panteleev I N 2020 Justification of methods for reducing ground-level gas pollution from operating aircraft engines IOP Conference Series: Materials Science and Engineering I International conference "CAMSTech-I 2020" 919 062034
[8] Zvyagintseva A V, Sazonova S A, Kulneva V V and Panteleev I N 2020 Modeling of metalwork and welding technological processes IOP Conference Series: Materials Science and Engineering. I International conference "CAMSTech-I 2020" 919 062036
[9] Zvyagintseva A V, Kulneva V V and Sazonova S A 2020 IOP Conference Series: Materials Science and Engineering. I International conference "CAMSTech-I 2020" 919 062053
[10] Zvyagintseva A V 2020 Potential possibilities of hydrogen accumulation in Nickel based solid-state materials IOP Conference Series: Materials Science and Engineering I International conference "CAMSTech-I 2020" 919 062054
[11] Zvyagintseva A V 2020 Mathematical model for process of the hydrogen permeability management of metals with internal stresses taking into account the formation and decay of motionless complexes Bulletin of the Russian Academy of Sciences: Physics 9(84) 1097-9
[12] Hydrocarbons. Saturated hydrocarbons C₁₂-C₁₉ (Electronic resource) https://xumuk.ru/kov/1482.html
[13] http://vrn-6.ucoz.ru
[14] Specific heat of combustion (Electronic resource) ru.wikipedia.org
[15] Ash content (Electronic resource) https://ru.wikipedia.org
[16] Federal law of 21.07.1997 N 116-FZ 2015 On industrial safety of hazardous production facilities (Electronic resource) http://programs.safety.ru/BTP/2013_4/13_04_22-30.pdf
[17] Zvyagintseva A V Shalimov Y N 2011 Increase of solubility of hydrogen in electrolytic alloys Ni-B NATO Science for Peace and Security 2 519-28