Gauge Invariant Overlaps for Classical Solutions in Open String Field Theory\(^1\)

理化学研究所 岸本 功
E-mail: ikishimo@riken.jp

Wittenのcubicな開弦の場の理論におけるゲージ不変量としてon-shell閉弦状態\(|V_c\rangle \equiv c_1 c_2 |V_m\rangle\)を用いて構成される\(O_V(\Psi)\)(gauge invariant overlap)がある。これは開弦場\(\Psi\)について線形で

\[
O_V(\Psi) = \langle \mathcal{I} | V(t) | \Psi \rangle = \langle \tilde{\gamma}(1_c, 2) | V_c \rangle_{10} | \Psi \rangle_2
\]

と表される。ここで\(\mathcal{I}\)はidentity stateで、\(\langle \tilde{\gamma}(1_c, 2) |\)はopen string Hilbert spaceとclosed string Hilbert spaceをつなぐvertexの1種のShapiro-Thorn vertexである。我々は、\(O_V(\Psi)\)を1パラメータ\(\lambda\)を含むSchnabl解\(\Psi_\lambda\)について解析的および数値的に評価した。その結果\(\lambda = 1\)の場合にのみ非自明な値をもつことがわかった。これは、これまでに調べられてきた別のゲージ不変量である作用の値の計算結果と整合する結果である。つまり\(\Psi_{\lambda=1}\)が非自明な非摂動的真空を表す解であり、\(\Psi_{1<\lambda<1}\)はpure gauge解である、という従来の解釈がより確かなものになった。

さらに、Schnabl解が構成される以前にlevel truncationによる数値解として知られていたSiegelゲージの解\(\Psi_N\)に関しても数値的に計算し、Schnabl解\((\lambda = 1)\)とほぼ同一の値を得た：\(O_V(\Psi_{\lambda=1}) \approx O_V(\Psi_N)\)（\(L=\text{level} (10,30)\)近似で97%の精度）。このgauge invariant overlapに関する結果は、従来の作用の値の評価の結果と合わせて、Schnablのタキオン凝縮解\(\Psi_{\lambda=1}\)とSiegelゲージの数値解\(\Psi_N\)が互いにゲージ同値であることを示唆している。また上のgauge invariant overlap \(O_V(\Psi)\)の式の右辺に着目してSchnabl解\(\Psi_{\lambda=1}\)をShapiro-Thorn vertexを用いてclosed string Hilbert spaceに写すと

\[
\langle \tilde{\gamma}(1_c, 2) | \Psi_{\lambda=1} \rangle_2 \mathcal{P} b_0 = \frac{1}{2\pi} |B| + (\cdots)
\]

となる。ここで\(\mathcal{P}b_0\)は開弦の場の理論のprojectionであり、\(|B|\)はD25-braneをあらわす境界状態である。右辺の残りの\((\cdots)\)の項はon-shell閉弦状態\(|V_c\rangle\)と内積をとるとゼロになる部分。これはSchnabl解と境界状態を直接関係づける式であり興味深い。

次にSchnabl/Kiermaier-Okawa-Rastelli-Zwiebachのmarginal解\(\Psi_{\lambda_m}^{\text{S/KOR2}}\)についても\(O_V(\Psi)\)を計算した。その結果得られた公式は、同じmarginal operator\(\lambda_m J\)から構成された別の形のFuchs-Kroyter-Potting/Kiermaier-Okawaによるmarginal解\(\Psi_{\lambda_m}^{\text{FKP/KO}}\)に対する\(\text{Ellwood}\)によって発見された公式と等しい。つまり\(O_V(\Psi_{\lambda_m}^{\text{S/KOR2}}) = O_V(\Psi_{\lambda_m}^{\text{FKP/KO}})\)となっており、この2種類のmarginal解が互いにゲージ同値であるという期待と整合している。

以上、古典解\(\Psi\)に対する\(O_V(\Psi)\)の計算結果は全て\(O_V(\Psi) = A_0^{\text{disk}}(V) - A_0^{\text{disk}}(V) (A_0^{\text{disk}}(V)\)は\(\Psi\)におけるdisk上のclosed stringの1点関数)という\(\text{Ellwood}\)の提言した形になっている。

\(^1\)川野輝彦氏 (東大理)、橋高貴彦氏 (奈良女大理)との共同研究に基づく：
T. Kawano, I. Kishimoto, T. Takahashi, Nucl. Phys. B 803, 135 (2008) [arXiv:0804.1541 [hep-th]]; arXiv:0804.4414 [hep-th]. I. Kishimoto, arXiv:0808.0355 [hep-th].