Plasmacytoid Dendritic Cells Sequester High Prion Titres at Early Stages of Prion Infection

Rocio Castro-Seoane\(^1\), Holger Hummerich\(^1\), Trevor Sweeting\(^2\), M. Howard Tattum\(^1\), Jacqueline M. Linehan\(^1\), Mar Fernandez de Marco\(^1\), Sebastian Brandner\(^1\), John Collinge\(^1\), Peter-Christian Klöhn\(^1\)*

\(^1\) MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom, \(^2\) Department of Statistical Science, University College London, London, United Kingdom

Abstract

In most transmissible spongiform encephalopathies prions accumulate in the lymphoreticular system (LRS) long before they are detectable in the central nervous system. While a considerable body of evidence showed that B lymphocytes and follicular dendritic cells play a major role in prion colonization of lymphoid organs, the contribution of various other cell types, including antigen-presenting cells, to the accumulation and the spread of prions in the LRS are not well understood. A comprehensive study to compare prion titers of candidate cell types has not been performed to date, mainly due to limitations in the scope of animal bioassays where prohibitively large numbers of mice would be required to obtain sufficiently accurate data. By taking advantage of quantitative in vitro prion determination and magnetic-activated cell sorting, we studied the kinetics of prion accumulation in various splenic cell types at early stages of prion infection. Robust estimates for infectious titers were obtained by statistical modelling using a generalized linear model. Whilst prions were detectable in B and T lymphocytes and in antigen-presenting cells like dendritic cells and macrophages, highest infectious titers were determined in two cell types that have previously not been associated with prion pathogenesis, plasmacytoid dendritic (pDC) and natural killer (NK) cells. At 30 days after infection, NK cells were more than twice, and pDCs about seven-fold, as infectious as lymphocytes respectively. This result was unexpected since, in accordance to previous reports prion protein, an obligate requirement for prion replication, was undetectable in pDCs. This underscores the importance of prion sequestration and dissemination by antigen-presenting cells which are among the first cells of the immune system to encounter pathogens. We furthermore report the first evidence for a release of prions from lymphocytes and DCs of scrapie-infected mice ex vivo, a process that is associated with a release of exosome-like membrane vesicles.

Introduction

Transmissible spongiform encephalopathies (TSE) or prion diseases are infectious and fatal degenerative disorders of the central nervous system including Creutzfeldt-Jakob disease (CJD) in humans, bovine spongiform encephalopathy (BSE) in cattle and scrapie in sheep and goats [1]. Prions, the infectious TSE agents, are thought to consist of abnormal forms of host-encoded cellular prion protein (PrP\(^\text{c}\)) and to replicate in a self-perpetuating manner by recruitment of PrP\(^\text{s}\). The disease-associated \(\beta\)-sheet rich conformer of PrP\(^\text{c}\), PrP\(^\text{sc}\), is partially resistant to protease digestion and is argued to represent the infectious TSE agent [3]. More recently, protease-sensitive conformers of PrP\(^\text{c}\) have been identified that showed marked strain- and protease-dependent differences in their sensitivity to proteolysis [4–8].

In most TSEs, prions accumulate in the LRS long before they reach the brain. While prion accumulation in the LRS is not accompanied by any reported adverse effects, propagation of prions in the central nervous system inevitably leads to a rapid and progressive degeneration. Seminal work in the past two decades helped to identify critical cell types involved in prion colonization of the LRS [9–14]. Mobile hematopoietic as well as resident stromal cells play a crucial role in the pathogenesis of prion diseases [9,15–17]. The adoptive transfer of bone marrow from wild type mice into PrP\(^{0/0}\) mice reconstituted the competence of the spleen to accumulate prions [18,19]. However, scrapie histopathology in Prnp\(^{+/+}\) neuroaggregates was not observed under these conditions, implying that prion neuroinvasion is mediated by cells that cannot be reconstituted by bone marrow transfer [18]. There is good evidence that neuronal cells from the parasympathetic and sympathetic nervous system form a physical link between the LRS and the central nervous system [9,10,20]. The use of immuno-deficient mice greatly contributed to our understanding of peripheral prion colonization. The absence of clinical disease in B-cell deficient mice after intraperitoneal inoculation with prions was thought to indicate a direct role of B cells during neuroinvasion [11]. However, clear evidence suggests that the maintenance and differentiation of follicular dendritic cells (FDC) and other stromal cells by B cell-dependent lymphotoxin \(\beta\) receptor (LT\(\beta\)R) signalling may best explain the role of B cells during prion colonization in the LRS and during neuroinvasion [12–14,21,22]. Whilst FDGs were previously...
Author Summary

Prions, rogue proteins that cause the fatal brain disease CJD in humans and BSE in cattle are not only found in the brain, but also in other tissues, particularly in lymphoid organs, long before they are detectable in the central nervous system. It is of great interest to better characterize how prions colonize the periphery after an infection and how they ultimately reach the brain, since such knowledge could help to develop treatments. By taking advantage of a technique called magnetic cell isolation we determined the infectious state of various immune cells, isolated from spleens of prion-infected mice. A high proportion of prions was detected in cells of the innate immune system, particularly in dendritic cells and natural killer cells. We furthermore found that small amounts of prions are released from infected cells, a finding which raises the question whether prions could spread in a similar manner to some viruses. These results suggest that prion-carrying immune cells that reside in the periphery may pose a major risk for the dissemination of prions, once they are mobilized, for example by an activation of the immune system.

considered the prime candidate for the site of prion replication in the LRS, observations of an unimpeded neuroinvasion in absence of FDCs in mice deficient in TNFα signalling [22] suggested that other stromal cells may also be prion-replication-competent. A recently identified stromal cell type in granulomas, presumably mesenchymal or fibroblastic reticular cells, that are dependent on LTβR signalling has been shown to promote prion replication in absence of FDCs [23].

Due to their pivotal role in immune defence against pathogens and their migratory properties, antigen-presenting cells like dendritic cells (DCs) and macrophages are likely candidates for the dissemination of prions. DCs were suggested as mobile carriers for prions from the gut to the LRS after intra-intestinal injection of scrapie-infected cells [24]. Rag-1−/− mice injected intravenously with infected DCs succumbed to scrapie [25], demonstrating that, at least under these experimental conditions, DCs can transmit disease from the periphery to the CNS without prion accumulation in the LRS. Prion infectivity was also found to be associated with macrophages. Early fractionation experiments of splenic cell types based on differences in their buoyant densities identified prions in a macrophage-rich fraction, but an enrichment of this fraction failed to enhance infectivity [26]. Immuno-electron microscopic studies identified PrP deposits associated with tingible body macrophages [27]. The temporal depletion of macrophages in vivo led to increased PrPSc levels in the spleen [28] or Peyer’s patches [29], suggesting a role of macrophages in the clearance of infectivity. After oral infection, prions were detected in Peyer’s patches of the gut-associated lymphoid tissue in different animal species [30–33]. The transport of prions across the intestinal epithelium is believed to be mediated by intestinal membranous or microfold cells (M cells) [34,35].

In contrast to our understanding of molecular factors that promote prion replication in lymphatic organs, the contribution of mobile cells of hematopoietic origin to prion dissemination in the LRS is not well characterized. A comprehensive study to determine the infectious state of candidate cell types during early stages of pathogenesis has not been performed to date due to the prohibitively large number of animals required. The recently established quantitative in vivo infectivity assay, the Scrapie Cell Assay (SCA) [36,37] now renders such experiments feasible. We here established a procedure to isolate various splenic cell types, including B and T lymphocytes, dendritic cells (DC), the DC subtype plasmacytoid DCs (pDC), macrophages and natural killer cells by magnetic-activated cell sorting (MACS) followed by the determination of infectious titers by SCA. Our results characterize the time-dependent accumulation of prions in splenic cell types of 129Sv × C57BL/6 mice during the first four weeks after inoculation with mouse prions, a time interval that yielded maximal prion titers in the spleen, and demonstrate that pDCs and NK cells, two cell types that have previously not been associated with prion dissemination, are highly infected.

A reliable determination of prion titers is fundamental to the study of prion diseases where differences in titers may be critical to assess the efficacy of therapeutic interventions. Where the size of experimental groups in animal bioassays is limited by ethical and economic considerations, in vitro determination of prion titers can overcome these limitations and allow rapid accurate bioassay of large numbers of samples [38]. The estimation of statistically robust titers in this study was obtained by statistical modelling using the generalized linear model [39] along with maximum likelihood estimation.

Molecular events that lead to the dissemination and neuroinvasion of prions are unknown. In vivo, several routes for the transmission of prions, like direct cell-to-cell contact [40], prion transmission via membrane nanotubes [41,42] and the release of prions via exosomes [43] have been suggested. Exosomes, small membrane vesicles secreted by most hematopoietic cells are present in vivo in germinal centres [44] and body fluids [45–51]. Here we present the first evidence that MACS-isolated lymphocytes and DCs from prion-infected mice secrete prions into the cell supernatant when cultured ex vivo, a process that was associated with the secretion of exosome-like particles. We furthermore present experimental evidence that prions are physically associated with exosome-like particles.

Results

Isolation of splenic cell types by magnetic-activated cell sorting

The recent establishment of the SCA, a highly sensitive in vitro infectivity assay [36,52] enables us to examine the kinetics of prion accumulation in splenic cell types at early stages of prion pathogenesis in an unprecedented manner. We used MACS to isolate splenic cell types from a mixed population of splenocytes with purities from about 87% (pDC) to more than 95% (NK, B and T cells) (Figure 1) and then determined infectious titers. MACS isolation is an excellent tool for isolating rare cell types from large pools of mixed cell populations at reasonable processing times. For the isolation of DCs, for instance, 6 × 10^7 splenocytes were processed in about an hour with an average yield of 4% (2.4 × 10^6), as compared to hundred-fold lower rates using fluorescence-activated cell sorting (FACS). Where a surface marker for specific cell types was expressed at low levels, or on more than one cell type, the isolation procedure was adapted accordingly. Three DC subtypes can be distinguished by means of their surface markers: CD11bCD11c myeloid DCs (mDC), CD11cCD8αα plasmacytoid DCs (pDC) and CD11bCD123B220+ plasmacytoid DCs (pDC). Since pDCs express low levels of CD11c which may compromise their quantitative isolation with CD11c microbeads we used microbeads coated with monoclonal antibodies (mAbs) against murine plasmacytoid dendritic cell antigen-1 (mPDCA-1), a protein that is specifically expressed in mouse pDCs [53]. Accordingly, panDCs were isolated with a 1:1 mixture of CD11c and mPDCA-1 microbeads. CD11b, a surface
marker for myeloid cells that is broadly utilized for the isolation of macrophages is also expressed on CD11c^+CD11b^+ mDCs. To avoid an enrichment of mDCs in the macrophage cell population we isolated DCs prior to macrophages. However, despite the depletion of DCs by positive selection with CD11c beads, the macrophage fraction contained a substantial amount of CD11c^+CD11b^+ myeloid DC contaminants (Figure 1B). This prompted us to use fluorescence-activated cell sorting to separate CD11b^+ macrophages from myeloid DC contaminants (Figure 1C).

Quantification of prion titers using a generalized linear model

The SCA is based on the detection of single PrP^Sc-positive cells that are formed by de-novo prion propagation after infection with prion-containing samples [36]. A more sensitive version of the assay, the Scrapie cell assay at endpoint format (SCEPA) exploits the observation that the sensitivity for prion detection can be significantly improved by varying the cell splitting ratio [36,32]. Using SCEPA, infectious titers are determined at limiting dilutions of prion-containing samples [54]. Whilst in animal bioassays prion titers are commonly expressed as simple median lethal doses (LD50 units) and estimated by non-parametric analysis [55], the average number of infectious units in the SCEPA, here termed tissue culture infectious units (TCIU) can be estimated by assuming that the number of PrP^Sc-positive cells at a given dilution follows a Poisson distribution [54]. Inherent to limiting dilution assays, however, the error variance may not be constant over the studied range of dilutions (Figure 2) and thus may lead to inflated errors when ordinary regression analysis is used. To address this problem we here established a generalized linear model (GLM) [39] for the estimation of infectious titers. GLMs overcome restrictions of ordinary linear regression models which are limited to normally distributed response variables with constant variance and unify a wide range of probability distributions, including normal, binomial, Poisson and gamma by the use of a common method for computing maximum likelihood estimates (Text S1).
framework can be equally applied to estimate infectious titers from animal bioassays, where repeated measurements are available.

We first examined whether the number of PrPSc-positive cells in the SCEPA follows a Poisson distribution. At limiting dilutions of infectivity the number of positive wells in \(n_j \) independent infections at the \(j \)th dilution follows a binomial distribution with parameters \(n_j \) and \(P_j \) where \(P_j \) is the proportion of positive wells. If the number of prion-infected cells is assumed to have a Poisson distribution then the proportion of negative wells \((1 - P_j) \) is equal to \(\exp(-nc_j) \), where \(n \) is the mean number of infectious units per volume and \(c_j \) the dilution. A complementary log-log transformation converts this equation to

\[
\log(-\log(1 - P_j)) = \log n + \log c_j
\]

Thus if the number of scrapie-infected cells follows a Poisson distribution then a complementary log-log transformation is linear with a slope of one. To check this hypothesis we prepared multiple dilution series of brain homogenate, infected susceptible cells and determined the number of negative wells. RML brain homogenate I6200 was serially diluted 1:3 from \(10^{-2} \) to \(10^{-9} \) and cell layers of 12 wells per dilution were infected using eight technical repeats per dilution. An initial linear regression analysis resulted in an estimated slope of 1.06 with a slope and \(x_j \) the log dose. An estimated value for \(\beta \) of 0.960 \(\pm 0.096 \) is consistent with the hypothesis of an underlying Poisson distribution for the number of infected cells and the model provides a good fit to the data (Figure 2 and Table S1). GLM regression yielded an estimated titer of 8.71 \(\pm 0.04 \) log TCIU/g brain for eight technical repeats of serially diluted RML I6200 brain homogenate.

Determination of the sensitivity of SCEPA

To determine the relative sensitivity of SCEPA against the mouse bioassay we performed endpoint titrations with RML I6200 in parallel experiments. Titors from eight independent in vitro assays were highly reproducible and yielded an estimated titer of 8.63 \(\pm 0.03 \) log TCIU/g brain for eight technical repeats of serially diluted RML I6200 brain homogenate.

Validation of a cell homogenization method

The dispersion state of prion-infected homogenates is a critical parameter where limiting dilutions are used to determine infectious titers. An increase in dispersion of an infected homogenate will result in an apparent increase of infectivity at limiting dilutions. We therefore sought to establish a standardized method for tissue and cell homogenization. Homogenization by shear force with needles, a method broadly used to generate tissue
Prion accumulation in the lymphoreticular system at early stages of prion disease

To assess the rate of prion accumulation in the lymphoreticular system at early stages of disease we first determined prion titers in spleen tissue and mesenteric lymph nodes after intraperitoneal inoculation of 129SvxC57BL/6 mice and Prnp^{0/0} mice with 1% (w/v) RML I6200. Prion titers of more than 5 log TCIU/g spleen tissue were determined at stages as early as 3 dpi (Figure 3A). In contrast, in Prnp^{0/0} mice, prion titers which are due to residual inoculum [58] were about a thousand-fold lower at the same incubation time, suggesting an exceptional rate of prion replication in wild-type mice and/or differences in the efficiency of trapping prions. Prion titers in mesenteric lymph nodes were significantly lower as compared to spleen titers in accordance to previous reports [59]. At 30 dpi infectious titers in spleens and mesenteric lymph nodes reached 6.63±0.07 log TCIU/g tissue and 6.15±0.10 log TCIU/g tissue, respectively. Given the somewhat lower sensitivity of SCEPA splenic prion titers in agreement with previously published bioassay data using the same mouse strain, infectious dose of SCEPA splenic prion titers are in agreement with previously published data using the same mouse strain, infectious doses [59]. At 30 dpi infectious titers in spleens and mesenteric lymph nodes reached 6.63±0.07 log TCIU/g tissue and 6.15±0.10 log TCIU/g tissue, respectively. Given the somewhat lower sensitivity of SCEPA splenic prion titers in agreement with previously published bioassay data using the same mouse strain, infectious dose and inoculation route (~7 ic LD50 units/g spleen) [60].

To test whether the fast spleenic prion accumulation at early stages of disease is in accord with the detection of abnormal PrP deposits in lymphoid follicles we examined PrP accumulation by PrP immunohistochemistry at 3, 7, 14 and 30 dpi (Figure 3C and Table S2). Deposits of abnormal PrP were detected at low intensity and frequency in follicles at 3 dpi, and both, the number of positive follicles and the PrP intensity increased significantly over the course of the incubation (Fig. 3 and Table S2). At 30 dpi 90% of follicles were PrP^S-positive (Table S2). Abnormal PrP could not be detected in lymphoid follicles of Prnp^{0/0} mice at 3 and 7 dpi (data not shown). Furthermore, PrP^S could not be detected by Western blotting in spleen tissue prior to 14 dpi (Figure 3B).

The kinetics of prion accumulation in splenic cell types

We next determined infectious titers of MACS-isolated cells in a time-dependent manner to assess the propensity of distinct splenic homogenates for prion titer determination failed to homogenize splenocytes as indicated by a high percentage of Trypan blue-negative viable cells. We therefore tested two alternative homogenization methods, sonication and ribolyzation, both of which lead to complete cell homogenization. Infectious titers of B lymphocytes and pDCs were determined using the mouse bioassay and SCEPA in parallel experiments (Table 2). Infectious titers were estimated for the combined two bioassays using a GLM regression with complementary log-log link function and expressed as log LD50 units/g brain for mouse bioassay, respectively.

Infectious titers were calculated using a GLM with binomial family complementary log-log link and expressed as mean log TCIU/g brain ± SE of 8 independent experiments [57]. No significant differences in prion titers as compared to spleen titers in accordance to previous reports [72], [59]. At 30 dpi infectious titers in spleens and mesenteric lymph nodes reached 6.63±0.07 log TCIU/g tissue and 6.15±0.10 log TCIU/g tissue, respectively. Given the somewhat lower sensitivity of SCEPA splenic prion titers in agreement with previously published bioassay data using the same mouse strain, infectious dose and inoculation route (~7 ic LD50 units/g spleen) [60].

Table 1. Sensitivity for prion detection of SCEPA and mouse bioassay.

RML input [LD₅₀ units]	SCEPA[*]	Tga20 mouse bioassay 1	Tga20 mouse bioassay 2		
	PrP^S-positive/total wells	sick/total	Inc. time, days ± SE	sick/total	Inc. time, days ± SE
6 × 10⁷	ND	5/5	75.8±1.2	ND	106.5±6.4
6 × 10⁸	ND	5/5	83.2±3.6	5/5	112.6±5.9
6 × 10⁹	24/24	6/6	106.5±6.4	5/5	123.3±6.3
6 × 10¹⁰	15/24	3/4	110.3±4.0	3/5	123.3±6.3
6 × 10¹¹	2/24	1/5	116	1/5	104
6 × 10¹²	0/24	2/6	159.5±1.0	1/6	136
6 × 10¹³	ND	0/6	>200	0/6	>200

Infectious titers

- Log TCIU/g ± SE
- Log LD₅₀/g ± SE
- Log LD₅₀/g ± SE

Spearman-Karber[†]

8.70±0.19
9.31±0.42
8.99±0.41

GLM[‡]

8.71±0.04
9.02±0.23[‡]

<sup>*The ratio between PrP^S-positive and total wells is shown for one representative out of eight independent experiments.

[†]Infectious titers were calculated with the Spearman-Karber formula [55] and expressed as tissue culture infectious units (TCIU)/g brain for SCEPA and LD₅₀ units/g brain for mouse bioassay, respectively.

[‡]Infectious titers were calculated using a GLM with binomial family complementary log-log link and expressed as mean log TCIU/g brain ± SE of 8 independent experiments for SCEPA and mean log LD50 units/g ± SE for two independent bioassays.

[§]Infectious titers were determined by endpoint titration using RML mouse brain homogenate I6200. Aliquots of I6200 (10% w/v), 9.3 log LD₅₀ units/g brain [72] were serially diluted 1:10 into uninfected C171 brain homogenate (10% w/v) in a range between 10⁻⁴ and 10⁻¹⁰. For mouse bioassay, groups of six Tga20 mice were inoculated intracerebrally with 30 μl of 1% (v/v) RML homogenates and attack rates and scrapie incubation times (Inc. time) were determined. In parallel experiments brain homogenates were diluted 1:1000 into OFCS and cell layers of highly prion susceptible N2aPK1-2 cells were infected with 300 μl aliquots. The input of prion infectivity for bioassay and SCEPA is expressed as mice IC50 units. A 10⁻² dilution of I6200 corresponds to 200 LD₅₀ units/ml or 6 LD₅₀ units per 30 μl inoculum for the mouse bioassay and 60 LD₅₀ units per 300 μl per well for SCEPA, respectively. Infectious titers for SCEPA, expressed as TCIU/g brain represent mean values ± SE of 8 independent experiments. For mouse bioassay, two independent experiments are shown and titers are expressed as LD₅₀/g brain ± SE.

[†]Log TCIU/g ± SE of 8 independent experiments. For mouse bioassay, two independent experiments are shown and titers are expressed as LD₅₀/g brain ± SE.

[‡]Log TCIU/g ± SE of 8 independent experiments. For mouse bioassay, two independent experiments are shown and titers are expressed as LD₅₀/g brain ± SE.

[§]Log TCIU/g ± SE of 8 independent experiments. For mouse bioassay, two independent experiments are shown and titers are expressed as LD₅₀/g brain ± SE.
Table 2. Infectious titers of MACS-isolated cells after homogenization by sonication and ribolyzation.

(A) SONICATION

Cell Types	Cell number equivalents¹	SCEPA	Mouse bioassay	
		PrP^{Sc}-positive/total wells	Attack rate	Incub. time (d) ± SD
pDC				
6 × 10⁷	12/12	5/5	89 ± 1	
6 × 10⁶	5/12	5/5	117 ± 9	
6 × 10⁵	1/12	2/6	131 ± 17	
6 × 10⁴	0/12	0/6	> 200	
control#	6 × 10⁵	0/12	> 200	

Infectious titers

	Log TCIU/10⁶ cells ± SE	Log LD₅₀/10⁶ cells ± SE	
Spearman-Karber[†]	3.21 ± 0.08	4.06 ± 0.25	
GLM[§]	3.13 ± 0.04	-	
B cells			
6 × 10⁷	12/12	5/5	92 ± 4
6 × 10⁶	8/12	6/6	99 ± 2
6 × 10⁵	2/12	5/6	124 ± 7
6 × 10⁴	0/12	1/6	171
control#	6 × 10⁴	0/12	> 200

Infectious titers

	Log TCIU/10⁶ cells ± SE	Log LD₅₀/10⁶ cells ± SE
Spearman-Karber[†]	2.61 ± 0.19	3.72 ± 0.30
GLM[§]	2.53 ± 0.03	-

(B) RIBOLYZATION

Cell Types	Cell number equivalents¹	SCEPA	Mouse bioassay	
		PrP^{Sc}-positive/total wells	Attack rate	Incub. time (d) ± SD
pDC				
6 × 10⁷	12/12	4/4	85 ± 1	
6 × 10⁶	6/12	5/6	105 ± 5	
6 × 10⁵	1/12	4/6	108 ± 8	
6 × 10⁴	0/12	0/6	> 200	
control#	6 × 10⁴	0/12	> 200	

Infectious titers

	Log TCIU/10⁶ cells ± SE	Log LD₅₀/10⁶ cells ± SE	
Spearman-Karber[†]	3.31 ± 0.15	4.22 ± 0.33	
GLM[§]	3.24 ± 0.04 (p < 0.05)*	-	
B cells			
6 × 10⁷	12/12	6/6	88 ± 3
6 × 10⁶	9/12	5/5	100 ± 5
6 × 10⁵	2/12	5/5	107 ± 12
6 × 10⁴	0/12	1/5	174
control#	6 × 10⁴	0/3	> 200

Infectious titers

	Log TCIU/10⁶ cells ± SE	Log LD₅₀/10⁶ cells ± SE
Spearman-Karber[†]	2.70 ± 0.15	3.92 ± 0.29
GLM[§]	2.53 ± 0.03	-

¹Inputs of infectious cell homogenates are expressed as cell number equivalents. Aliquots of 30 μl were inoculated i.c. into groups of six Tga20 mice for mouse bioassay and 300 μl aliquots were layered onto prion-susceptible cells per well for SCEPA, respectively.

²Infectious titers were calculated according to the Spearman-Karber method [55] and are expressed as log LD₅₀/g ± SE for bioassay and log TCIU/g ± SE for SCEPA.

³Infectious titers were calculated using a GLM with binomial family complementary log-log link and expressed as mean log TCIU/g ± SE of two independent experiments with six technical repeats each.

Controls represent MACS-isolated pDCs and B lymphocytes from spleens 129/Sv × C57BL/6 mice inoculated with 1% (w/v) uninfected CD1 brain homogenates and sacrificed at 30 dpi.

[*]Level of significance for maximum likelihood estimates (GLM) between infectious titers of ribolyzed versus sonicated pDCs as determined by SCEPA.

Four 129/Sv × C57BL/6 mice were inoculated i.p. with 100 μl of 1% (w/v) RML and 1% (w/v) uninfected CD1 brain homogenate (control), respectively. At 30 d.p.i spleens were dissected and pDCs and B cells isolated by MACS according to Materials and Methods. To determine infectious titers the cell homogenates were serially diluted 1:10 and inoculated intracerebrally into Tga20 mice or transferred onto layers of susceptible PK1-2 cells in parallel experiments. Infectious titers were determined by non-parametric statistical analysis for bioassay (Spearman and Karber) and GLM for SCEPA and expressed as log LD₅₀ units/10⁶ cells and log TCIU/10⁶ cells, respectively. A 10⁻² dilution of cell homogenates corresponds to 2 × 10¹⁰ cell equivalents/ml or 6 × 10⁵ cell equivalents per 30 μl inoculum for mouse bioassay and 6 × 10⁴ cell equivalents per 300 μl per well for SCEPA, respectively. Infectious titers represent log mean values ± SE of six independent experiments for SCEPA and log mean values ± SE of a single experiment for mouse bioassay.

doi:10.1371/journal.ppat.1002538.t002
Prions have been detected at extremely low titers in blood of rodents at presymptomatic and symptomatic stages and were associated with buffy coat and plasma fractions [63–65]. In a previous report, infectivity was not detected in peripheral blood leukocytes in 129Sv × C57BL/6 mice at early stages of disease regardless of relatively high titers in B and T lymphocytes of the spleen [57]. In marked contrast to lymphocytes, DCs have a cell types to accumulate prions. Whilst prions were detectable in all cell types, including B and T lymphocytes, DCs, NKT cells and macrophages, highest infectious titers were determined in two cell types that have previously not been associated with prion pathogenesis: pDCs and NK cells (Table 3). At 30 dpi mean infectious titers of NK cells were more than two-fold higher than those of lymphocytes, whereas titers of pDC exceeded those of lymphocytes by a factor of seven. Prion titers were significantly higher in pan-DCs as compared to those of lymphocytes (Table 3), in agreement with previous studies [25]. Data were replotted for 30 dpi values in Figure S2. A relative increase of infectious titers for all cell types by 30–50% from 3 dpi to 30 dpi correlated with an increase of splenic prion titers during the same time interval (Figure 3). We next investigated whether infectious inoculum was detectable in splenic cell types of Prnp0/0 mice, i.e. in absence of PrPc (Figure S3). In agreement with previous reports [61] PrP expression in pDCs was undetectable, thus rendering pDCs unlikely candidate cells for prion replication.

Prions have been detected at extremely low titers in blood of rodents at presymptomatic and symptomatic stages and were associated with buffy coat and plasma fractions [63–65]. In a previous report, infectivity was not detected in peripheral blood leukocytes in 129Sv × C57BL/6 mice at early stages of disease regardless of relatively high titers in B and T lymphocytes of the spleen [57]. In marked contrast to lymphocytes, DCs have a

Table 3. Time-dependent accumulation of prion infectivity in isolated splenic cell types.

Cell types	3 dpi	7 dpi	14 dpi (95% conf.int)	30 dpi (95% conf.int)
Splenocytes	11	30	265±64 (147, 480)	544±124 (311, 952)
DC	23	62±14	265±64 (147, 480)	677±87 (518, 885)
pDC	41	106	370±85 (211, 650)	1798±298 (1252, 2579)
Myeloid cells	1	37±9	127±34 (67, 244)	472±57 (365, 609)
Macrophages	3	-	-	243±49 (345, 342)
B cells	9	26±14	130±35 (68, 249)	262±28 (210, 328)
T cells	9	25±2	135±36 (71, 260)	208±28 (156, 279)
NK(T) cells	-	-	183	721±120 (491, 1059)
pDC (blood)	-	-	-	<5
DC (blood)	-	-	-	<5
PBC (blood)	-	-	-	<5

<i>1Myeloid cells were isolated with CD11b magnetic beads after partial depletion of DCs and contain CD11c[−] CD11b[−] macrophages and CD11c⁺ CD11b⁺ mDCs (see Figure 1B).
2CD11b[−] macrophages devoid of mDCs contaminants were isolated by FACS (see Figure 1C).
3Infectious titers are represented as mean values ± SE, as and lower and upper limits of 95% confidence intervals (conf.int).

Groups of ten 129Sv × C57BL/6 mice, inoculated i.p. with 100 μl aliquots of 1% (w/v) RML brain homogenate i6200 were culled at various time points after inoculation as specified above and splenocytes and splenic cell types were serially isolated by MACS after Collagenase digestion and Lympholyte purification according to Figure 1. Infectious titers were determined by SCEPA using a GLM as specified above. Mean values ± SE and 95% confidence intervals for at least three independent experiments are shown at 14 and 30 dpi. Data from a single experiment are shown where no SE is reported. The detection limit of the assay for splenic cell types was 0.15 TCIU/Mio, for MACS-isolated cells from whole blood 5 TCIU/Mio.

doi:10.1371/journal.ppat.1002538.t003
restricted capacity for recirculation, a propensity that may protect the host by retaining a high density of peptide-MHC complexes for improved antigen presentation [69]. Given the high infectious titers of DCs we scrutinized the possibility of prion spread by recirculation. To determine whether prion infectivity is associated with pDCs in blood we isolated pDCs from EDTA-treated whole blood. However, no infectivity was associated with pDCs, lymphocytes and DCs from blood at 30 dpi under our experimental conditions (Table 3, and Materials and Methods).

It has been broadly acknowledged that prions do not mount a humoral immune response in the host [70–72]. However, a recent study showed an abnormal germinal center reaction in the spleen of scrapie-infected mice which was associated with increased maturation and numbers of B lymphocytes and hypertrophy of FDC dendrites at 70 dpi and endstage [73]. A further report showed variations in the number of CD21^hi CD23^- cells or DCs from 129Sv of prion-infected sheep [74]. We therefore examined whether B cells or DCs from 129SvxC57BL/6 mice were activated at preclinical stages. However, the proportions of marginal zone B cells (CD21^hi CD23^-) and follicular B cells (CD21^lo CD23^hi) in scrapie-infected versus age-matched mock-infected mice were unchanged at 80 and 100 dpi and no activation of DCs was detected in scrapie-infected versus age-matched mock-infected mice. We therefore examined whether B cells or DCs from 129SvxC57BL/6 mice were activated at preclinical stages. However, the proportions of marginal zone B cells (CD21^hi CD23^-) and follicular B cells (CD21^lo CD23^hi) in scrapie-infected versus age-matched mock-infected mice were unchanged at 80 and 100 dpi and no activation of DCs was evident at preclinical stages of disease (Figures S4 and S5).

Ex-vivo release of prions from scrapie-infected splenic cells

The molecular underpinnings of prion dissemination in vivo are unknown. Several routes for the horizontal transmission of prions have been suggested, including direct cell-to-cell contact [40], the release of prions via exosomes [43,75,76], and prion transmission via membrane nanotubes [41,42]. The in vivo relevance of these processes has not been demonstrated and poses major experimental challenges. Exosomes are small vesicles of endosomal origin that were detected on the surface of FDCs in vivo [44]. Since hematopoietic cells like reticulocytes, mast cells, B and T lymphocytes, DCs and macrophages release exosomes [77–81], we investigated whether prions are released from scrapie-infected splenic cells ex vivo. Freshly isolated B and T lymphocytes and DCs from scrapie-infected mice were cultured for 38 h and culture supernatants were sequentially centrifuged according to exosome isolation protocols [82–84] (see Material and Methods). After ultracentrifugation, pellets were resuspended in medium and prion infectivity was determined by SCEPA. As evident from preliminary experiments, splenic cells, particularly B and T lymphocytes, showed a limited viability ex vivo which may bias the determination of prion secretion where prions are released by passive leakage from necrotic cells. To account for the contribution of passive leakage of prions from dead cells we cultured isolated cells at atmospheric CO2 at 37°C in parallel experiments, a treatment that led to rapid necrosis of B and T lymphocytes (Table 4). Where exposure of cells to atmospheric CO2 did not suffice to trigger rapid necrosis as in the case of DCs, we added low concentration of Triton X-100 (0.01% final) to the culture medium to permeabilize cells. A more than 50-fold increase of infectivity was detected in supernatants of B lymphocytes and DCs under basal conditions as compared to passive release controls, demonstrating that prions are released from scrapie-infected cells (Table 4). Supplementation of medium with IL-4, a treatment that leads to activation of lymphocytes improved the viability of B cells with a moderate increase in prion titers of supernatants. Incubations of isolated B lymphocytes with bacterial lipopolysaccharide (LPS) which differentiates B cells into plasmablasts lead to a significant decrease of prion release. This may indicate that the pool of secretable prions is reduced by an increased proteolytic activity of DCs under these conditions [85]. The titers of released prions constitute about 1–3% of the cellular infectivity of B lymphocytes and DCs. Similar data have been reported for the in vitro release of PrPSc from cell lines [86]. To examine whether prion secretion in B lymphocytes is associated with a release of exosomes we pelleted cell culture supernatant from cells cultured in basal medium or atmospheric CO2 by ultracentrifugation and resuspended pellets in PBS and absorbed small aliquots onto EM grids for microscopic analysis (Figure 4). The number of exosomes, identifiable by their typical cup-shaped morphology [80,87,88], ranging in diameter from 20 to 100 nm [89], under basal conditions exceeded the number of exosomes during passive leakage by a factor of more than fifteen (1.4±1.2 versus 22.8±6.5 per count area, p<0.001, Figure 4). Microparticles, shed by apoptotic or stimulated cells ranging from 200 to 1000 nm in diameter [89–92] were detected infrequently under our experimental conditions with rates

Culture conditions	B cells	T cells	Dendritic cells			
	Release (TCIU/10^6 cells)	Necrosis (%)	Release (TCIU/10^6 cells)	Necrosis (%)	Release (TCIU/10^6 cells)	Necrosis (%)
atm. CO₂	0.2±0.3	100	<0.1	100	0.2, 0.4	100
basal	5.6±1.0	63	1.1±0.3	48	6.8, 10.8	51
basal+IL4	6.3±1.2	34	1.9±0.4	22		
basal+LPS	4.4±0.8	28		-	-	-
Cellular infectivity	227	188	898			

1Control incubations were performed in basal medium at atmospheric (atm.) CO2 and 37°C. For dendritic cell cultures Triton X-100 was added to a final concentration of 0.01% in basal medium.

Fifteen 129SvxC57BL/6 were inoculated i.p. with 100 μl RML 6200 and culled at 60 dpi. Splenic cell types were isolated by Collagenase perfusion according to the experimental procedure depicted in Figure 1. The levels of cellular infectivity were determined after MACS isolation. MACS-isolated B and T lymphocytes were then cultured at a concentration of 1×10^6/ml in basal medium (IMDM medium, 10% FBS) in absence or presence of LPS (50 μg/ml) and IL-4 (10 ng/ml). DCs were cultured in basal medium, supplemented with 200 ng GM-CSF. To remove cells and debris the conditioned medium was collected after 36 h of culture, centrifuged at 300 g for 10 min, 5,000 g for 15 min and 10,000 g for 30 min and the supernatant was collected at each of the sequential centrifugations. The supernatant was then centrifuged for 2 h at 100,000 g and resuspended in PBS, serially diluted and infectious titers were determined using SCEPA. The detection limit for SCEPA was 0.1 TCIU/10^6 cells. Mean values ± SE of three independent experiments are shown. Data from two independent experiments are shown for the release of infectivity from DCs.

doi:10.1371/journal.ppat.1002538.t004

Table 4. Prions are released from scrapie-infected splenic cell cultures ex vivo.

PLoS Pathogens | www.plospathogens.org 8 February 2012 | Volume 8 | Issue 2 | e1002538

Kinetics of Prion Accumulation

Kinetics	Basal	Basal+IL4	Basal+LPS
Release (TCIU/10^6 cells)	0.2±0.3	5.6±1.0	4.4±0.8
Necrosis (%)	100	63	28

Basal conditions exceeded the number of exosomes during passive leakage by a factor of more than fifteen (1.4±1.2 versus 22.8±6.5 per count area, p<0.001, Figure 4). Microparticles, shed by apoptotic or stimulated cells ranging from 200 to 1000 nm in diameter [89–92] were detected infrequently under our experimental conditions with rates.
below 0.4 microparticles per count area with no significant difference between basal and medium level with passive leakage control. The minute amounts of released exosomes under our ex vivo culture conditions did not allow the detection of exosome-associated proteins by Western blotting. To investigate whether priors are physically associated with exosomes we immunoisolated prions from concentrated cell supernatants of B cell and splenocyte cultures with antibodies against exosome markers CD81 [93–95] and Rab 5B [96] (Material and Methods). A more than 4-fold (8.5 TCIU) and 2-fold (3.8 TCIU) enrichment of prions was determined after immunosolubilation with anti-Rab 5B and anti-CD81, respectively, as compared to isotype controls (1.8 TCIU). A four-fold enrichment of prions from splenocyte cultures was determined after immunosolubilation with anti-CD81 (35 TCIU) as compared to an isotype control (8.5 TCIU).

Discussion

We characterized the rate of prion accumulation in hematopoietic cells of the spleen at early stages of prion disease and identified highest infectious titers in two cell types that have previously not been associated with prion pathogenesis, pDCs and NK cells. We furthermore report the first experimental evidence for a release of prions from lymphocytes and DCs from scrapie-infected mice ex vivo, a process that is associated with the secretion of exosome-like membrane vesicles.

In contrast to the well-defined role of stromal cells during prion colonization in the LRS, the contribution of mobile cells of hematopoietic origin to prion dissemination is not well characterized. Whilst previous studies reported high infectious titers of gradient-enriched cells of low buoyant densities [26,97] and more specifically of MACS-isolated DCs [25] and lymphocytes [60], data were restricted to single time points and a limited number of cell types. The recent establishment of an in vitro infectivity assay, the SCA now enabled us to study the dynamics of prion accumulation in hematopoietic cells of the LRS in a systematic manner. The surge of prions in lymphoid tissues and MACS-isolated cells during the first few weeks after inoculation provides evidence for the exceptional rate of prion colonization. In particular, three days after i.p. inoculation, prion titers in spleens of 129Sv × C57BL/6 mice were three orders of magnitude higher than those of prion replication-deficient Prnp^{0/0} mice, implying highly efficient pathways for prion dissemination and replication. A titer of 2.5 log TCIU/g in spleens of Prnp^{0/0}, on the other hand is indicative of PrP-independent mechanisms of prion sequestration and dissemination from the site of infection to lymphoid organs. Similar titers were detected in spleen tissue after i.c. inoculation of Prnp^{0/0} mice with RML brain homogenate (2.3 log LD50/ml) [58]. In the absence of prion replication in Prnp^{0/0} mice, infectivity accumulated preferentially in DCs and macrophages and at 5 to 10-fold lower rates in lymphocytes which confirms a role for antigen-presenting cells in prion sequestration [27,29,32,98–100].

At 50 dpi, pDCs and NK cells were 7-fold and >2-fold more infectious than lymphocytes, respectively (Table 3 and Figure S2). In agreement with other reports [99] PrP⁺ expression was undetectable in pDCs (Figure S3). Although prion replication-competence of cells cannot be predicted solely on the basis of PrP⁺ expression levels [101,102], pDCs seemed a priori a poor candidate for a role in prion replication. However, that pDCs are instead highly infectious, as shown in this study, underscores the importance of prion sequestration and dissemination by antigen-presenting cells. PDCs are natural type 1 IFN-producing cells, located in the T cell rich periarteriolar lymphoid sheath of lymphoid organs. Their distribution differs from conventional DCs which are predominantly found in the marginal zone and outer PALS, but not in the red pulp of the spleen [103]. Interestingly, in a steady state, NK cells are also found in areas of antigen entry to lymphoid organs, in perifollicular regions, in the paracortex, and especially in the medulla zone within lymphatic sinuses [104]. Whether the distribution of pDCs and NK cells in lymphoid organs is related to their high prion titers has to be further investigated. A bidirectional cross-talk between DCs and NK cells has recently been shown to play a key role in host defense [105,106]. In contrast to highly infected pDCs, macrophages showed about eight fold lower prion titers. Of note, the in vitro depletion of macrophages shortened scrapie incubation times [98], suggesting that macrophages have a protective role on disease progression.

The maturation state of DCs has major implications on antigen processing and cell trafficking and may be critical to better understand the role of DCs in prion pathogenesis. Even though immature DCs are poor in T cell priming, they are efficient in antigen capture and processing [107,108]. Migration is greatly affected by the maturation state of DCs and immature and activated DCs are recruited by distinct chemokines [107]. Upregulation of CCR7 during maturation renders DCs sensitive to the chemoattractants CCL19/CCL21 [109] and are consequently recruited to T-cell rich areas [107]. Accordingly, mice with a recessive loss of CCL21 and CCL19 expression showed defects in the migration of naive T cells and activated DCs [110]. When inoculated with mouse prions, however, these mice only showed marginal effects on disease incubation times, indicating that CCL19/CCL21-dependent DC migration to T-cell zones does not seem to contribute to prion accumulation in lymphoid organs [111].

An important study reported a change of tissue tropism of prion accumulation in otherwise non-permissive tissues during experimental inflammatory conditions of the kidney, pancreas, and liver [112]. Follicular inflammatory foci with FDC networks and discrete B220⁺ areas correlated with the propensity of inflamed tissue to replicate prions [112]. Under these conditions, a
mobilization of prion-infected immune cells to sites of infection is also likely to transport prions from lymphoid to affected organs.

Under certain neurological conditions DCs are recruited into the CNS. PDCs, for example are the major CNS-infiltrating cells during experimental autoimmune encephalomyelitis (EAE) [113]. Of note, prion disease progression was accelerated by induction of EAE in scrapie infected mice [114].

Despite a rapid increase of prion titers in the LRS at early stages of disease, prions were only detected at extremely low titers in blood of presymptomatic and symptomatic animals [63–68]. Four weeks after inoculation DCs and pDCs in blood did not contain detectable infectivity. The limited capacity of DCs for recirculation [69] may greatly restrict the dissemination of prions through the hematogenous route. Recirculation of NK cells is also restricted under steady-state conditions [115]. While restricted recirculation of DCs may protect the host by retaining a high density of particular peptide–MHC complexes for improved antigen presentation [69], inflammatory signals induce tissue-resident DCs to undergo maturation and to migrate into inflamed tissues [116].

Our evidence for a release of prions from scrapie-infected DCs and lymphocytes suggests a potential route for the lateral spread of prions and may contribute to the striking rate of prion colonization in the LRS. Antigen-presenting cells, like DCs, macrophages and B cells are specialized to phagocytose pathogens and to present processed antigen, loaded onto MHC class II molecules to T lymphocytes. While it is a matter of debate whether exosomes bearing MHC class II peptide complexes actively support the immune response of the host [84,117–119], the dissemination of pathogens via exosomes is not a novel concept. Retroviruses were shown to redirect the cellular protein sorting machinery to egress infected cells at the level of the plasma membrane and to usurp the existing cellular machinery for exosomal release, respectively (for recent reviews see [120–123]). Of note, the release of prion-infected exosomes was enhanced by retroviral infection [124], suggesting the existence of synergistic mechanisms during endosomal processing. Irrespective of their sites of conversion, prions will reach the endosomal route, a cellular pathway that renders prion-infected lymphocytes and DCs at risk for a lateral spread of prions. A segregation of prions into the exosomal route would enable a transfer of infectivity between cells without direct cell-to-cell contact. Of note, B cell-derived exosomes bind preferentially to surface receptors on FDCs [44]. Exosome release as a potential dissemination route has also been suggested for other misfolded proteins, like α2-synuclein in Parkinson’s disease and dementia with Lewy bodies, respectively [125,126].

Materials and Methods

Ethics statement

All animal experiments were performed in compliance with United Kingdom Home Office regulations and were approved by both the Home Office and the MRC Prion Unit ethical review committee.

Mice and scrapie infection

Six to eight week old female 129/SvxC57BL/6 mice were purchased from Harlan UK Ltd. (Oxfordshire, UK). Pugh– mice used here were derived from the original Zurich I mice [127] and crossed onto the FVB/N background for 10 generations [128]. Mice were inoculated intraperitoneally (i.p.) with 30 μl inoculum and the incubation time until manifestation of neurological signs of scrapie was recorded. All mice were observed daily for indications of ill-health.

Isolation of splenocytes

Splenocytes were isolated by enzymatic digestion from freshly dissected spleens. To maximize the release of non-haematopoietic stromal cells and other resident cells that are strongly attached to connective tissue, spleens were digested in successive cycles as described previously with minor modifications [129]. Briefly, spleens were cut into small pieces and incubated at 37°C with an enzyme cocktail, containing 2.5 mg/ml collagenase IV (Worthington Biochemical Corp., Lakewook, NJ), 0.05% dispase 2 (Sigma-Aldrich, UK) and 1 mg/ml DNase I (Roche Diagnostics Limited, West Sussex, UK) in Iscove’s Modified Dulbecco’s Media (Invitrogen, Paisley, UK), supplemented with 10% heat-inactivat-
ed FBS, 100 U/ml Pen-strep, 2 mM L-glutamine and 50 μM 2-
mercaptopethanol (complete IMDM) per spleen. After 15–20 min, partially digested tissue was gently dispersed with a serological pipette and released cells were transferred into a tube on ice. Fresh enzyme cocktail was added to the remaining tissue fragments and digested for another three cycles. Pooled cells were washed through a 70 μm nylon mesh and pelleted at 300×g for 10 min. To remove erythrocytes splenocytes were resuspended in 10 ml erythrocyte lysis buffer (155 mM NH₄Cl, 10 mM KHCO₃, 0.1 mM EDTA, pH 7.0) and incubated at room temperature for no more than 1 min. After adding 40 ml complete IMDM medium to stop lysis cells were pelleted. Splenocytes were then layered onto Lympholyte M (Cedarlane Laboratories, Hornby, Ontario, Canada) gradients and centrifuged at 1500×g for 20 min to remove dead cells and debris essentially as described by the manufacturer. Purified splenocytes were washed in complete IMDM and centrifuged for 10 min at 800×g. Cells were resuspended in chilled MACS buffer (0.5% bovine serum albumin (BSA) and 2 mM EDTA in phosphate-buffered saline) and the number of splenocytes was determined using a Coulter counter Z2 (Beckman Coulter) at an upper threshold of 15 and a lower threshold of 5.

Isolation of splenic cell types by magnetic-activated cell sorting

Specific cell populations were enriched from total splenocytes by sequential MACS using antibody-coated magnetic beads (Miltenyi Biotech Ltd., Surrey, UK) as depicted in Figure 1. To block unwanted binding of antibodies to cells expressing Fc receptors (FcR) splenocytes were suspended at a concentration 2×10⁶ cells/ml MACS buffer and incubated with 25 μl FcR blocking reagent (Miltenyi) per 10⁶ cells. Cells were magnetically labelled essentially as specified by the manufacturer (Miltenyi) using the following microbeads: CD11c for DCs, mPDCA-1 for pDCs, CD11b for myeloid cells, CD14b for NK, CD19 for B cells and CD90 for T cells. Splenic DCs comprise three distinct subsets of CD11c⁺ cells, CD11c⁺CD11b⁻ myeloid DCs, CD11c⁺CD8⁺ lymphoid DCs and CD11c⁺CD14⁺CD45R (B220⁺) pDCs. To avoid a loss of pDCs which express low levels of CD11c during panDC isolation a combination of CD11c and murine plasmacytoid dendritic cell antigen-1 (mPDCA-1) beads was used. In murine spleen, bone-marrow and lymph nodes, mPDCA-1 is exclusively expressed on interferon-producing cells which are CD11c⁺CD45R (B220⁺) Ly-6C⁻ [130]. Positive selection of CD11c⁺ dendritic cells prior to isolating CD11b⁺ macrophages did not suffice to deplete CD11c⁺CD11b⁺ myeloid dendritic contaminants (Figure 1). We
therefore purified macrophages by fluorescence-activated cell sorting (FACS) using a MoFlo cell sorter (Dako). Briefly, MACS-isolated CD11b+ cells were incubated with FITC-conjugated anti-CD11c (clone M1/70, 1:50) (BD Biosciences, Oxford, UK) and CD11c+ CD11b+ cells were sorted at a concentration of 5–10 x 10^6 cells per ml. Isolated cells were counted with a Coulter Counter, snap-frozen in liquid N2 and stored at −80 °C until further processing. The purity of isolated cell types was determined by FACS using a FACS calibur (BD Bioscience).

Analytical flow cytometry

Isolated cell types were characterized by flow cytometry using the following fluorescent-conjugated mAbs: anti-B220/CD45R (RA3-6B), anti-CD90/Thy1.2 (30-H12), anti-CD11c (HL3), anti-CD49b (DX5), anti-CD21/CD35 (76G), anti-CD23/FcεRII (B3B4) and anti-CD86 (GL1) were purchased from BD Pharmingen (Oxford, UK). Anti-CD11b (M1/70) and anti-CD49b (DX5) were purchased from eBioscience (Hatfield, UK). All fluorescence- or biotin-conjugated isotype controls (rat IgG2a, rat IgG2b, Armenian hamster IgG1, mouse IgG1, k, rat IgG M) were purchased from eBioscience. Briefly, aliquots of 1–2 x 10^6 cells were resuspended in MACS buffer, incubated for 15 min with FeC blocking reagent (1:20, Milteny) on ice and labeled with fluorescent-conjugated antibodies or isotype controls for 30 min. Data acquisition and analysis was performed using a FACS calibur and CellQuest software (BD Biosciences).

Isolation of lymphocytes and pDCs from blood

Whole blood was obtained from euthanized mice by cardiac puncture and collected in buffered EDTA-containing syringes with a final EDTA concentration of 2 M. Blood samples were diluted one in four into MACS buffer, layered onto Lympholyte M and centrifuged for 20 min at 1500 x g at 22 °C. Cells from the interface were collected and erythrocytes removed as described above. After washing, blood cells were resuspended in MACS buffer and pDCs and lymphocytes were isolated by MACS as described above. To check the efficacy of cell capture from blood samples by MACS whole blood was spiked with 2 x 10^6 prion-infected B lymphocytes (44 TCIU) and cells were isolated as described above. A 82% (36 TCIU) recovery of infectious B lymphocytes confirms the excellent performance of MACS isolation from blood samples.

Isolation of exosome-enriched membrane fractions and analysis by electron microscopy

Exosomes were isolated by differential centrifugations described as previously [82–84]. Briefly, supernatants from cell cultures of splenic cell types were retrieved after 38 h and sequentially centrifuged at 300 x g for 10 min, 5,000 x g for 20 min and 10,000 x g for 30 min, and finally at 100,000 x g for 2 h. Pellets were resuspended in PBS and used immediately or stored at −70 °C until further use. For analysis by electron microscopy, 3 µl aliquots of 1:10 dilutions of resuspended pellets were adsorbed onto glow-discharged carbon-coated grids and negatively stained with 1% uranyl acetate. Grids were examined by electron microscopy at the Bloomsbury Centre for Structural Biology (Birkbeck College, London, UK). To determine the number of exosome-like membrane particles 20 random images were recorded per condition and the number of particles was counted in a blinded manner.

Immunosolation of exosomes

Exosomes from cultured B lymphocytes or splenocytes were enriched with antibodies against exosome markers Rab 5B [96] and CD81 [93–95] using a μMACS streptavidin kit (Miltenyi). Briefly, concentrated cell culture supernatants of 5 x 10^6 cells were obtained by differential centrifugation as described above, resuspended in 150 µl PBS and incubated for 30 min with 10 µg biotinylated antibodies anti-CD81 (clone E2-2, Biologend), anti-Rab 5B (clone A 20, Santa Cruz Biotechnology) or isotype controls (rabbit and Armenian hamster IgG, eBioscience). After addition of 100 µl μMACS beads immune complexes were incubated for 10 min and captured on μMACS columns according to the specifications of the manufacturer. Infectious titers of immuno-isolated fractions were determined by SCEPA.

Preparation of the RML standard dilutions

RML standard dilutions used for in vitro and in vivo infectivity assays were prepared by serial 10-fold dilutions (from 10^-2 to 10^-5) of 10% RML homogenates into 10% uninfected CD1 brain homogenate. Diluted brain homogenates were further diluted 1:10 into 1% normal CD1 for inoculation into Tg20 mice and 1:1000 into OFCS for infection of cells, respectively.

Preparation of tissue and cell homogenates

To determine infectious titers of tissue samples spleens and mesenteric lymph nodes from scrapie-infected and control mice were minced and transferred into 2 ml microtubes (Sarstedt Ltd., Leicester, UK) containing zirconium beads. Ten percent homogenates (w/v) were prepared in PBS-buffered sucrose (0.32 M) in presence of a 1:100 dilution of Protease Inhibitor Cocktail Set I (Pierce, Leicestershire, UK) and 25-50 U benzenzase (Novagen, Madison, WI) using a Ribolyser (Hybaid, Cambridge, UK) at maximum speed for two cycles of 45 s. Aliquots of tissue homogenates were serially diluted 1:10 into 10% uninfected CD1 brain homogenate (w/v) to minimize binding to surfaces and stored at −80 °C until infectious titers were determined in vitro and on mouse bioassay, respectively.

Aliquots of MACS-isolated splenic cells were ribolyzed at a concentration of typically 2 x 10^7 cells/ml complete medium, supplemented with protease inhibitors as described above. All homogenates were kept on ice until further processing. Where sonication was used to homogenize cells, aliquots of MACS-isolated cells were transferred into 0.2 ml Thermo tubes (Thermo Fisher Scientific, West Sussex, UK) and placed beneath the sonication probe in ice water. Cells were homogenized in five cycles of 30 s at 30% power using a Status 200 sonicator (Philip Harris Scientific, Hyde, UK). Brain homogenates were prepared by repeated passing through syringe needles as described elsewhere [131].

Quantification of prion titers by Scapie Cell Assay and mouse bioassay

Infectious titers were determined in vitro by Scapie Cell Assay in endpoint format (SCEPA) as described previously [36,52] with minor modifications. Briefly, 2 x 10^7 PK-1 cells in Opti-MEM-10% FCS (OFCS) were plated into wells of 96-well plates. After 16 h cells were incubated with 300 µl aliquots of serially diluted homogenates. Three days later cells were initially split twice 1:2 every other day and 1:3 two days after the second split. Prior to resuspending cells half the medium was replaced with fresh OFCS for all previous cell passages. After three days cells were split 1:6 every 3–4 d. Aliquots of 25,000 cells were transferred onto Elispot plates after the sixth and seventh split (MultiScreen HTS-IP Filter Plate, Millipore) and the number of PrP^Sc-positive cells was determined by ELISA after incubation with 4.4 mU (1 µg) recombinant PK (Roche Diagnostics, West Sussex, UK) per ml
lization buffer as described previously [36]. The sensitivity of SCEPA was determined from serial dilutions of titered mouse RML brain homogenate I6200 (9.5 log LD50 units/g brain). Infectious titers obtained in vitro were expressed as tissue-culture infectious units (TCIU). Mouse bioassay were performed by intracerebral inoculation of groups of six Tga20 mice [132] with 30 µl of serially diluted samples.

Detection of protease K-resistant PrP
To determine the levels of protease K (PK)-resistant PrP 10% spleen homogenates were prepared by ribolysing freshly dissected spleens in PBS-buffered sucrose (0.32 M) in presence of protease inhibitors as described above. The levels of PK-resistant PrP were determined by Western Blotting after precipitation of PrP with sodium phosphotungstic acid (NaPTA) as described previously [133].

Immunohistochemistry
Spleens were fixed in 10% buffered formal saline for 24 h prior to tissue processing and paraffin wax embedded. All spleen samples were coded prior to sectioning and histological analysis of spleen sections was carried out blinded. Sections were cut at a nominal thickness of 4 µm, and stained with hematoxylin and eosin using conventional methods. To detect abnormal PrP deposition, mounted sections were placed on a Ventana automated immunohistochemical staining machine (Ventana Medical Systems, Tuscon, AZ, USA), heated to 95 °C in a proprietary buffer, for 90 minutes (Ventana Medical Systems), incubated in Superblock for 10 minutes, then exposed to biotinylated ICSM35 and biotinylated mouse IgG2b isotype control. Appropriate controls were used throughout. Photographs were taken using the slide scanner LEICA SCN400 (LEICA Microsystems).

Supporting Information
Figure S1 Initial validation of Poisson distribution. To check whether the experimental data from in-vitro endpoint titrations indicate an underlying Poisson distribution for the number of infected cells serial 1:3 dilutions of RML brain homogenate within a range between 10-7 and 10-9 were prepared and cell layers of 12 wells per dilution were infected. Complementary log-log transformed proportions of negative wells are shown for eight technical assay repeats. Linear regression analysis was performed for dilutions were the proportion of positive wells for all eight repeats were >0 and <12 per total number of wells and a slope factor β of 1.06±0.20 was calculated. (TIF)

Figure S2 Differences in prion accumulation in splenic cells at 30 dpi. Infectious titers of MACS-isolated splenic cell types at 30 dpi were replotted from Table 3 for clarity. Significant differences between distinct cell types and lymphocytes are indicated (*p<0.05; ** p<0.001). Infectious titers of the CD11b+ myeloid cells decreased by about 50% after FACS purification of CD11c– D11b+ macrophages (see Fig. 1). (TIF)

Figure S3 Protein expression levels of PrPc are unde-tectable in pDCs of 129Sv×C57BL/6 mice. pDCs isolated from uninfected 129Sv×C57BL/6 or Prnp–/– mice were labeled with biotinylated monoclonal anti-PrP antibody ICSM 35 followed by aliphophycocyanin (APC)-streptavidin and PrPc expression levels were analysed by flow cytometry. No difference in PrPc expression levels between pDCs from 129Sv×C57BL/6 (wildtype) and Prnp–/– mice was detected. As a control for PrPc expression mouse neuroblastoma cells (N2a) were labeled with biotinylated ICSM35 and biotinylated mouse IgG2b isotype control. (TIF)

Figure S4 DCs are not activated at preclinical stages of Scrapie. 129Sv×C57BL/6 mice were inoculated i.p. with 100 µl 1% RML I6200 or 100 µl 1% uninfected CD1 homogene and culled at 80 dpi (A) and 100 dpi (B). Splenocytes were isolated according to Materials and Methods. To analyse B cell subsets splenocytes were labelled with mAbs against anti-CD19, anti-CD23 and anti-CD21. The CD19-gated B cell population was examined for CD21/35 and CD23 expression. No alterations were detected in the ratios of CD21high D23- marginal zone (MZ) and CD21int D23high follicular (FO) B cells. (TIF)

Table S1 In-vitro endpoint titration of RML 6200 using SCEPA. Serially diluted RML 6200 was transferred onto layers of prion-susceptible PK1 cells and the number of positive and negative wells was determined by SCEPA as described in Materials and Methods. The complementary log-log transformed data were plotted in Figure S1. (RTF)

Table S2 Immunohistological characterisation of scra-pie-infected spleen tissue at early stages after infection. An increase in the number of lymphoid follicles containing follicular dendritic cells containing abnormal prion protein (ICSM35 immunostaining) as well as an increase in the density of PrPSc deposition is seen with increasing incubation time. Positive follicles were determined as the ratio of the number of ICSM35-positive follicles and the total number of follicles (counted on an adjacent H&E section. PrPSc density in follicles was determined semi-quantitatively as weak (shown in Figure 3C, 3 and 7 dpi), moderate (Figure 3C, 14 and 30 dpi) and strong. (RTF)

Table S3 Infectious titers of MACS-isolated splenic cell types in the absence of prion replication at 3 dpi. A group of four Prnp–/– mice were inoculated intraperitoneally with 100 µl 1% (w/v) RML I6200 and spleens were dissected at 3 dpi. Different cell types were isolated by magnetic sorting, infectious titers determined by SCEPA and titers estimated by GLM. (RTF)

Text S1 Determination of infectious titers from SCEPA using GLM regression. (RTF)

Acknowledgments
We thank Mrs. Anna Harvey for technical assistance and Mr Ray Young for graphics.
Author Contributions
Conceived and designed the experiments: RCS PCK. Performed the experiments: RCS MHT MF. Analyzed the data: RCS HH TS JML MF

References
1. Collinge J (2001) Prion diseases of humans and animals: their causes and molecular basis. Ann Rev Neurosci 24: 519–550.
2. Griffith JS (1967) Self Replication and scrapie. Nature 213: 1043–1044.
3. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216: 136–144.
4. Safar J, Wille H, Irvi V, Groth D, Serban H, et al. (1998) Eight prion strains PrPSc with molecules different from Chlamydia. Nat Med 4: 1107–1115.
5. Thackray AM, Hopkins L, Bjoðsø R (2007) Proteinase K-sensitive disease-associated ovine prion protein revealed by confirmation-dependent immunostaining. Biochem J 401: 475–483.
6. Tzaban S, Friedlander G, Schonberger L, Horonchik L, Yedidia Y, et al. (2002) Proteinase-sensitive scrapie prion protein in aggregates of heterogeneous sizes. Biochemistry 41: 12869–12875.
7. Cronier S, Gros N, Tattum MH, Jackson GS, Clarke AR, et al. (2008) Detection and characterization of proteinase K-sensitive disease-related prion protein with thermolysin. Biochem J 416: 297–305.
8. D’Castro L, Wenborn A, Gros N, Joner S, Cronier S, et al. (2010) Isolation of proteinase-sensitive prions using pronase e and phosphotungstic Acid. PLoS ONE 5: e15679.
9. Aguzzi A (2001) Peribacillary prion purush. J Clin Invest 108: 661–662.
10. Glazier M, Hopper FL, Albers KM, Aguzzi A (2001) Sympathetic innervation of lymphohoracic organs is rate limiting for prion neuroinvasione. Neuroin En 31: 35–34.
11. Klein MA, Frigg R, Flechsig E, Raether AJ, Kalinide U, et al. (1997) A crucial role B cells in neuroinvasive scrapie [see comments]. Nature 388: 567–569.
12. Klein MA, Frigg R, Raether A, Flechsig E, Hugyj I, et al. (1998) PrP expression in B-lymphocytes is not required for prion neuroinvasion. Nat Med 4: 1429–1433.
13. Montrasio F, Frigg R, Gros N, Joner S, Lalouet P, et al. (2000) Impaired prion protein replications in spleens of mice lacking functional follicular dendritic cells. Science 289: 1257–1259.
14. Nabatta MA, Mackay F, Manns F, Bruce ME (2000) Temporary inactivation of follicular dendritic cells delays neuroinvasion of scrapie. Nat Med 6: 719–720.
15. Crugnier MC, Kimberlin RH (1984) Pathogenesis of mouse scrapie: distribution of agent in the pulp and struma of infected spleens. Vet Microbiol 9: 215–225.
16. Kimberlin RH, Walker CA (1989) The role of the spleen in the neuroinvasion of scrapie in mice. Virus Res 22: 201–211.
17. Aguzzi A, Sigurdson CJ (2000) Antiprion immunotherapy: to suppress or to stimulate? Nat Rev Immunol 4: 725–736.
18. Blädtner T, Brandner S, Raether AJ, Klein MA, Voiglander T, et al. (1997) PrP-expressing tissue required for transfer of scrapie infectivity from spleen to brain. Nature 389: 69–73.
19. Kaeser PS, Klein MA, Schwarz P, Aguzzi A (2001) Efficient lymphoreticular prion propagation requires PrPc in stromal and hematopoetic cells. J Viral 75: 7097–7106.
20. Kimberlin RH, Walker CA (1980) Pathogenesis of mouse scrapie: evidence for neural spread of infection to the CNS. J Gen Viral 51: 183–187.
21. Montrasio F, Cozzio A, Flechsig E, Rossi D, Klein MA, et al. (2001) B-lymphocytes are not required for prion neuroinvasion. Nat Med 6: 719–720.
22. Kimberlin RH, Walker CA (1989) The role of the spleen in the neuroinvasion of scrapie in mice. Virus Res 22: 201–211.
23. Aguzzi A, Sigurdson CJ (2000) Antiprion immunotherapy: to suppress or to stimulate? Nat Rev Immunol 4: 725–736.
24. Blädtner T, Brandner S, Raether AJ, Klein MA, Voiglander T, et al. (1997) PrP-expressing tissue required for transfer of scrapie infectivity from spleen to brain. Nature 389: 69–73.
25. Kaeser PS, Klein MA, Schwarz P, Aguzzi A (2001) Efficient lymphoreticular prion propagation requires PrPc in stromal and hematopoetic cells. J Viral 75: 7097–7106.
26. Kimberlin RH, Walker CA (1980) Pathogenesis of mouse scrapie: evidence for neural spread of infection to the CNS. J Gen Viral 51: 183–187.
27. Montrasio F, Cozzio A, Flechsig E, Rossi D, Klein MA, et al. (2001) B-lymphocytes are not required for prion neuroinvasion. Nat Med 6: 719–720.
28. Kimberlin RH, Walker CA (1989) The role of the spleen in the neuroinvasion of scrapie in mice. Virus Res 22: 201–211.
29. Aguzzi A, Sigurdson CJ (2000) Antiprion immunotherapy: to suppress or to stimulate? Nat Rev Immunol 4: 725–736.
30. Blädtner T, Brandner S, Raether AJ, Klein MA, Voiglander T, et al. (1997) PrP-expressing tissue required for transfer of scrapie infectivity from spleen to brain. Nature 389: 69–73.
31. Kaeser PS, Klein MA, Schwarz P, Aguzzi A (2001) Efficient lymphoreticular prion propagation requires PrPc in stromal and hematopoetic cells. J Viral 75: 7097–7106.
32. Kimberlin RH, Walker CA (1980) Pathogenesis of mouse scrapie: evidence for neural spread of infection to the CNS. J Gen Viral 51: 183–187.
33. Montrasio F, Cozzio A, Flechsig E, Rossi D, Klein MA, et al. (2001) B-lymphocytes are not required for prion neuroinvasion. Nat Med 6: 719–720.
34. Kimberlin RH, Walker CA (1989) The role of the spleen in the neuroinvasion of scrapie in mice. Virus Res 22: 201–211.
35. Aguzzi A, Sigurdson CJ (2000) Antiprion immunotherapy: to suppress or to stimulate? Nat Rev Immunol 4: 725–736.
Inaba K, Turley S, Iyoda T, Yamaide F, Shimoyama S, et al. (2000) The biogenesis and functions of exosomes. EMBO J 19: 2792–2796.

Bender H, Aguzzi A, Greiner KA, Autenried P, et al. (1999) Mice devoid of PrP are resistant to scrapie. Cell 75: 1339–1347.

Kimberlin RH, Walker CA (1989) The Role of the Spleen in the Neuroinvasion of Scrapie in Mice. Virus Res 12: 201–211.

Raeber AJ, Klein MA, Frigg R, Fleischhacker WU, et al. (1999) PrP-dependent association of prions with spleen but not circulating lymphocytes of scrapie-infected mice. EMBO J 18: 2702–2706.

Bender H, Aguzzi A, Greiner KA, Autenried P, et al. (1999) Mice devoid of PrP are resistant to scrapie. Cell 75: 1339–1347.

Kimberlin RH, Walker CA (1989) The Role of the Spleen in the Neuroinvasion of Scrapie in Mice. Virus Res 12: 201–211.

Raeber AJ, Klein MA, Frigg R, Fleischhacker WU, et al. (1999) PrP-dependent association of prions with spleen but not circulating lymphocytes of scrapie-infected mice. EMBO J 18: 2702–2706.

del Hoyo GM, Lopez-Beavo M, Metheron P, Ardonin C, Auscoustier P (2006) PrP expression by mouse dendritic cells is restricted to the nonprofessional DC subsets and correlates with the maturation state. J Immunol 177: 6137–6142.

Ryburn-Barnier C, Jacqueton C, Cuche C, Dore G, Majlesi L, et al. (2006) Processing of the bovine spongiform encephalopathy-specific prion protein by dendritic cells. J Virol 80: 4656–4663.

Brown P, Rohwer RG, Dunstan BC, MacAuley C, Gajdusek DC, et al. (1998) The distribution of infectivity in blood components and plasma derivatives in experimental models of transmissible spongiform encephalopathy. Transfusion 38: 110–118.

Bons N, Lehrmann S, Mestre-Frances N, Dormont D, Brown P (2002) Brain and Buffy coat transmission of bovine spongiform encephalopathy to the primate Macaca mullata. Transfusion 42: 513–516.

Cerverakova L, Yakovleva O, McKenzie C, Kolinsky S, McShane L, et al. (2003) Similar levels of infectivity in the blood of mice infected with human-derived vCJD and GSS strains of transmissible spongiform encephalopathy. Transfusion 43: 1687–1694.

Castilla J, Saa P, Soto C (2005) Detection of prions in blood. Nat Med 11: 962–983.

Saa P, Castilla J, Soto C (2006) Presymptomatic detection of prions in blood. Science 313: 92–94.

Tattum MH, Jones S, Pal S, Collinge J, Jackson GS (2010) Discrimination between prion-infected and normal blood samples by protein microfluidic cell sorting and amplification. Transfusion 50: 996–1002.

Randolph GJ, Ochando J, Partida-Sanchez S (2008) Migration of dendritic cell subsets and their precursors. Annu Rev Immunol 26: 293–316.

Garfin DE, Stites DP, Zitnik LA, Prusiner SB (1978) Suppression of Polyclonal B-Cell Activation in Scraie-Infected C3H-HeJ Mice. J Immunol 120: 1930–1936.

Kingsley DT, Snellton DA, Gibbs CJ, Gajdusek DC (1981) Evidence for Normal Cell-Mediated Immunity in Scrapie-Infected Mice. Infect Immun 32: 1176–1180.

Kasper KC, Sipes DT, Bowman KA, Panitch H, Prusiner SB (1982) Immunological Studies of Scrapie Infection. J Neuroimmunol 3: 187–201.

McGovern G, Brown KL, Bruce ME, Jeffrey M (2004) Murine scrapie infection causes an abnormal germinal centre reaction in the spleen. J Comp Pathol 130: 181–194.

Honeyfield J, Dewar T, Marchant B, Seiler B, et al. (2007) Kinetics of Prion Accumulation in experimental models of transmissible spongiform encephalopathy agents. J Biol Chem 282: 207–217.

Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C (1987) Vesicle Formation During Reticuloendothelial Maturation - Association of Plasma-Membrane Activities with Released Vesicles (Exosomes). J Biol Chem 262: 9412–9420.

van Giel G, Porto-Carreiro I, Saez S, Raposo G (2006) Exosomes: A common pathway for a specialized function. J Biochem 130: 14–21.

Couzin J (2005) Cell biology - The ins and outs of exosomes. Science 308: 1062–1063.

Sykova V, Kleinhans MJ, Geuze HJ, Raposo G (2002) The biogenesis and functions of exosomes. Traffic 3: 321–330.

Thery C, Zitvogel L, Amigorena S (2002) Exosomes: Composition, biogenesis and function. Nat Rev Immunol 2: 569–579.

Thery C, Regnault A, Garin J, Wolfert J, Zitvogel L, et al. (1999) Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsp72.3 J Cell Biol 147: 599–610.

Johansson SM, Adnyre C, Scheynius A, Gabrielsson L (2008) Different types of in vitro generated human monocyte-derived dendritic cells release exosomes with distinct phenotype. Immunology 123: 491–499.

Wolters J, Louzier A, Raposo G, Regnault A, Thery C, et al. (2001) Tumor-derived exosomes are a source of shared tumor rejection antigens for CTLs. J Exp Med 193: 307–317.

Inaba K, Turley S, Iyoda T, Yamaide F, Shimoyama S, et al. (2000) The formation of immunogenic major histocompatibility complex class II peptide ligands in lysosomal compartments of dendritic cells is regulated by the class I molecule. J Exp Med 191: 927–935.

Ferrier B, Vileite D, Archer F, Loew D, Faigle W, et al. (2004) Cells release prions in association with exosomes. Proc Natl Acad Sci U S A 101: 9683–9688.
115. Gregoire C, Chasson L, Luci C, Tomassello E, Geissmann F, et al. (2007) The trafficking of natural killer cells. Immunol Rev 220: 169–182.

116. Luster AD, Alon R, von Andrian UH (2005) Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 6: 1182–1190.

117. Chaput N, Taieb J, Schartz NEC, Andre F, Angevin E, et al. (2004) Exosome-based immunotherapy. Cancer Immunol Immunother 53: 234–239.

118. Zitvogel L, Regnault A, Louzier A, Wolters J, Flamant C, et al. (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 4: 594–600.

119. Clayton A, Mason MD (2009) Exosomes in tumour immunity. Curr Oncol 16: 167–190.

120. Pornillos O, Garrus JE, Sundquist WI (2002) Mechanisms of enveloped RNA virus budding. Trends Cell Biol 12: 569–579.

121. Geord SJ, Booth AM, Hildreth JEK (2003) The Trojan exosome hypothesis. Proc Natl Acad Sci U S A 100: 10392–10397.

122. Pelchen-Matthews A, Raposo G, Marsh M (2004) Endosomes, exosomes and Trojan viruses. Trends Microbiol 12: 310–316.

123. Booth AM, Fang Y, Fallon JK, Yang JM, Hildreth J, et al. (2006) Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J Cell Biol 172: 923–935.

124. Leblanc P, Alais S, Porto-Carreiro I, Lehmann S, Grassi J, et al. (2006) Retrovirus infection strongly enhances scrapie infectivity release in cell culture. EMBO J 25: 2674–2685.

125. Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, et al. (2010) Cell-Produced alpha-Synuclein Is Secreted in a Calcium-Dependent Manner by Exosomes and Impacts Neuronal Survival. J Neurosci 30: 6038–6051.

126. Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD, et al. (2006) Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A 103: 11172–11177.

127. Bueler H, Agazzi A, Sailer A, Greiner RA, Autenried P, et al. (1993) Mice Devoid of Prp Are Resistant to Scrapie. Cell 73: 1339–1347.

128. Isacs JD, Garden OA, Kaur G, Collinge J, Jackson GS, et al. (2008) The cellular prion protein is preferentially expressed by CD4(+) CD25(+) Foxp3(+) regulatory T cells. Immunology 129: 313–319.

129. Kosco MH, Pflugfelder E, Gray D (1992) Follicular Dendritic Cell-Dependent Adhesion and Proliferation of B-Cells Invitro. J Immunol 148: 2331–2339.

130. Krug A, French AR, Barchet W, Fischer JAA, Dzieniek A, et al. (2004) TL-139-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunology 21: 107–119.

131. Perrier V, Kaneke K, Safar J, Vergara J, Tremblay P, et al. (2002) Dominant-negative inhibition of prion replication in transgenic mice. Proc Natl Acad Sci U S A 99: 13079–13084.

132. Fischer M, Rudicke T, Raebber A, Sailer A, Moser M, et al. (1996) Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J 15: 1255–1264.

133. Wadsworth JD, Joiner S, Hill AF, Campbell TA, Debruslais M, et al. (2001) Tissue distribution of protease resistant prion protein in variant CJD using a highly sensitive immuno-blotting assay. Lancet 358: 171–180.