A Brown Dwarf Mass Donor in an Accreting Binary

Littlefair, S. P., Dhillon, V. S., Marsh, T. R., Gaensicke, B. T., Southworth, J., & Watson, C. (2006). A Brown Dwarf Mass Donor in an Accreting Binary. Science, 314(5805), 1578-1580. DOI: 10.1126/science.1133333

Published in:
Science
A Brown Dwarf Mass Donor in an Accreting Binary
S. P. Littlefair, et al.
Science 314, 1578 (2006);
DOI: 10.1126/science.1133333

The following resources related to this article are available online at www.sciencemag.org (this information is current as of May 18, 2009):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/cgi/content/full/314/5805/1578

Supporting Online Material can be found at:
http://www.sciencemag.org/cgi/content/full/314/5805/1578/DC1

A list of selected additional articles on the Science Web sites related to this article can be found at:
http://www.sciencemag.org/cgi/content/full/314/5805/1578#related-content

This article has been cited by 14 article(s) on the ISI Web of Science.

Information about obtaining reprints of this article or about obtaining permission to reproduce this article in whole or in part can be found at:
http://www.sciencemag.org/about/permissions.dtl
A Brown Dwarf Mass Donor in an Accreting Binary

S. P. Littlefair, V. S. Dhillon, T. R. Marsh, Boris T. Gansicke, John Southworth, C. A. Watson

A long-standing and unverified prediction of binary star evolution theory is the existence of a population of white dwarfs accreting from substellar donor stars. Such systems ought to be common, but the difficulty of finding them, combined with the challenge of detecting the donor against the light from accretion, means that no donor star to date has a measured mass below the hydrogen burning limit. We applied a technique that allowed us to reliably measure the mass of the unseen donor star in eclipsing systems. We were able to identify a brown dwarf donor star, with a mass of 0.052 ± 0.002 solar mass. The relatively high mass of the donor star for its orbital period suggests that current evolutionary models may underestimate the radii of brown dwarfs.

The theory of binary star evolution invokes core astrophysics, including stellar models, magnetic braking, and gravitational radiation. Because a large fraction of all stars are found in binaries (1) and because the predictions of binary evolution theory describe some of the most exotic objects in our universe, including the likely progenitors of short γ-ray bursts (2) and type Ia supernovae (3) and how they may evolve with time, the study of binary star evolution has wide-ranging impact throughout astronomy and cosmology. It is therefore a cause of serious concern that the predictions of binary star evolution theory are, in some cases, dramatically out of line with observations. A prime example is the apparent lack of brown dwarf donor stars among the binaries known as cataclysmic variables (CVs). CVs are short-period (typically, with an orbital period (P_{orb}) of less than 1 day) binaries containing a white dwarf primary star and a low-mass donor star. The donor star is so close to the white dwarf that it is tidally distorted and fills a critical surface known as the Roche lobe, which determines the maximum extent of a star in a close binary. The secular evolution of CVs is driven by angular momentum loss due to gravitational radiation, magnetic braking of the donor star, and perhaps circumbinary discs (4). The removal of angular momentum from the binary drives mass transfer from the donor star to the white dwarf, via an accretion disc. The donor shrinks as it loses mass, causing the orbital period to decrease. This continues until the donor’s mass drops below the hydrogen burning limit, at which point the donor star becomes a brown dwarf. The resulting changes in the donor’s internal structure mean that it now expands in response to mass loss, causing the orbital period to increase (5).

Thus, CVs are expected to show a minimum orbital period, and CVs that have evolved past the period minimum (post-period minimum systems) should possess brown dwarf donor stars. Theoretical studies (6, 7) predict that around 70% of the current CV population have evolved past the orbital period minimum. However, despite extensive observational effort (8–15), it may be that the observed lack of post-period minimum systems is a result of selection effects. Post-period minimum systems will have low mass transfer rates and will subsequently be very faint. They may also lack the frequent outbursts that aid in identifying their younger counterparts (18). Even if post-period minimum systems do form part of the known CV population, direct detection of the donor star is extremely difficult against the background of the relatively bright white dwarf and accretion disc (8).

Recent developments have allowed these problems to be overcome. The Sloan Digital Sky Survey (SDSS) (19–23) detects much fainter objects than previous surveys, and because objects are selected on the basis of their spectra, CVs need not show outbursts to be included. The SDSS sample could therefore contain a large number of post-period minimum systems. Although direct detection of the donor star in these systems remains a challenge, it is possible to measure the mass and radius of the donor in eclipsing CVs. By fitting a simple physical model to the eclipse light curve, it is possible to obtain a full solution of the geometrical and physical parameters of the binary, and in particular the masses of the white dwarf and donor (24, 25). Only three assumptions are made: that the matter transferred between the donor and the white dwarf follows a ballistic trajectory until it strikes the outer edge of the accretion disc; that the white dwarf follows a theoretical mass/radius relation; and that the donor fills its Roche lobe.

We applied this method to the short-period CV SDSS 103533.03+055158.4 (hereafter SDSS 1035). After discovery within the SDSS (23), our own follow-up Very Large Telescope spectroscopy (26) found the system to be eclipsing. We obtained high-time-resolution photometry of eight eclipses between 4 and 8 March 2006, using Ultracam on the 4.2-m William Herschel Telescope. Ultracam provides simultaneous photometry in the Sloan $ug'r'i''$ color filters with minimal dead time between exposures. Mid-eclipse times were calculated by averaging the white dwarf ingress and egress times, which are given by the minimum and maximum of the light curve derivative, respectively (25). The orbital ephemeris was found with a linear least-squares fit to the times of mid-eclipse, giving an orbital period of 82.0896 \pm 0.0003 min. The eight eclipse light curves were phased according to our ephemeris, averaged, and then binned by five data points to produce an average light curve for each band (Fig. 1). Sharp steps in the light curves represent the ingress and egress of the white dwarf behind the donor. The white dwarf eclipse is symmetric around binary phase 0, with ingress and egress near phases −0.02 and 0.02, respectively. Also visible is the eclipse of the bright spot, where the gas stream hits the outer edge of the accretion disc. Bright spot ingress is visible near phase 0.01, with egress near phase 0.08. The presence of a bright spot confirms ongoing accretion, validating our assumption that the donor fills its Roche lobe. The average light curves in each band were fitted separately with a geometric model including a limb-darkened white dwarf and a bright spot modeled as a linear strip passing through the intersection of the gas stream and accretion disc (full details are contained in the SOM). The model results are combined with a theoretical white dwarf mass/radius relation to obtain a full solution for the binary parameters (Table 1).

The most important result is the donor’s mass, $M_{\text{d}} = 0.052 \pm 0.002$ solar mass (M_{\odot}). This is comfortably below the hydrogen burning limit of around $\sim 0.072 M_{\odot}$ for solar metallicities (27), making the donor star in SDSS 1035 a confirmed brown dwarf in a CV; only one other is known in any accreting binary system (28). This discovery supports a fundamental and long-standing prediction of binary evolution theory that a population of post-period minimum CVs exists, thus refuting claims that binary evolution may be too slow for such systems to form (16). It also demonstrates that the...
SDSS CV survey is sensitive to post-period minimum systems; the spectroscopic properties of SDSS 1035 are not unusual for the short-period CVs found within the SDSS (23), and therefore, if the population synthesis models (6, 7) are correct, the SDSS CV sample should contain large numbers of post-period minimum systems.

It is possible, though unlikely, that SDSS 1035 could have formed directly from a detached white dwarf/brown dwarf binary similar to WD0137-349 (29). The progenitors of such systems are solar-type stars with brown dwarf companions at separations of a few astronomical units (30); such binaries fall within the “brown dwarf desert” and are very rare (31), and so only a small percentage of CVs should form from binaries such as WD0137-349 (29). It is therefore much more likely that SDSS 1035 is indeed a post-period minimum CV. Even if SDSS 1035 formed from a white dwarf/brown dwarf binary, its existence shows that an accreting white dwarf/brown dwarf binary is a viable configuration.

Because the secular evolution of CVs moves them toward this configuration, this makes the existence of post-period minimum CVs highly probable.

The white dwarf temperature, derived from the colors of the white dwarf eclipse (see the SOM), can be used to determine the long-term average of the mass transfer rate (32). We find a mass transfer rate of \((10 \pm 2) \times 10^{-12} M_\odot \text{ year}^{-1}\), which is in line with the predictions from gravitational radiation but inconsistent with predictions that include a circumbinary disc, in which the mass transfer rate is increased to \(80 \times 10^{-12} M_\odot \text{ year}^{-1}\). Increased angular momentum loss due to circumbinary discs is invoked to explain many problems in binary evolution, including the discrepancy between the observed and predicted values of the minimum orbital period for CVs and the apparent lack of large numbers of post-period minimum systems (4, 17). The low inferred mass transfer rate in SDSS 1035, however, argues against models including circumbinary discs to explain these discrepancies.

A comparison of the donor mass in SDSS 1035 to current evolutionary models (4) is shown in Fig. 2. We can see that the mass of the donor in SDSS 1035 is inconsistent with models where gravitational radiation is the sole source of angular momentum loss. The donor mass is consistent with models including a circumbinary disc, but these models are ruled out by the inferred mass transfer rate. The discrepancy between observed and predicted masses is probably not due to the rapid rotation and/or distortion of the donor (33) but might be due to irradiation from the white dwarf or to nuclear evolution of the progenitor star (34). Alternatively, the source of the discrepancy may lie with current stellar models, which are based on an up-to-date equation of state specifically calculated for very-low-mass stars, brown dwarfs, and giant planets (35). For the donor star in SDSS 1035 to fill its Roche lobe implies that the radius must be larger than predicted by \(\sim 10\%\). If current models do underestimate the radii of brown dwarfs, this implies that the inferred ages and masses of isolated brown dwarfs are in error. Additional theoretical work will be necessary to determine whether any or

Table 1. Derived parameters of SDSS 1035. \(R_{\odot}\), solar radius.

Parameter	Value
Mass ratio \(q\)	0.055 \(\pm\) 0.002
Inclination \(i\)	83.1° \(\pm\) 0.2°
Orbital separation \(a\)	0.622 \(\pm\) 0.003 \(R_{\odot}\)
White dwarf mass \(M_w\)	0.94 \(\pm\) 0.01 \(M_{\odot}\)
White dwarf radius \(R_w\)	0.0087 \(\pm\) 0.0001 \(R_{\odot}\)
White dwarf temperature \(T_{\text{eff}}\)	10,100 \(\pm\) 200 K
Donor star mass \(M_c\)	0.052 \(\pm\) 0.002 \(M_{\odot}\)
Donor star radius \(R_c\)	0.108 \(\pm\) 0.003 \(R_{\odot}\)
Disc radius \(R_d/a\)	0.362 \(\pm\) 0.003

Fig. 1. Eclipse light curves and model fits for SDSS 1035. (A) The phase-folded \(u^*\) light curve. (B) The phase-folded \(g^*\) light curve. (C) The phase-folded \(r^*\) light curve. Each light curve is fitted separately using the model described in the SOM. The data (black) are shown with the fit (red) overlaid and the residuals plotted below (black). Also shown are the separate light curves of the white dwarf (blue), bright spot (green), accretion disc (purple), and donor star (orange). Data points excluded from the fit are shown in red.

Fig. 2. Normalized probability distribution functions (PDFs) of the present-day CV population in the \((M_c, P_{\text{orb}})\) plane [adapted from (4)]. (A) Evolutionary tracks with angular momentum loss driven by gravitational radiation. (B) Evolutionary tracks with additional angular momentum loss from a circumbinary disc. The present-day CV population was obtained by weighting the contribution of each system to the PDF according to the accretion luminosity, as \(L_{\text{acc}}^{1.5}\). In each panel an inset is displayed, showing the location of SDSS 1035 in the \((M_c, P_{\text{orb}})\) plane.
all of these ideas are sufficient to explain the discrepancy between the observed and predicted mass and radius presented here.

References and Notes
1. A. Duquennoy, M. Mayor, Astron. Astrophys. 248, 485 (1991).
2. S. D. Barthelmy et al., Nature 438, 994 (2005).
3. L. Yungelson, M. Livio, Astrophys. J. 497, 168 (1998).
4. B. Willems, U. Kolb, E. L. Sandquist, R. E. Taam, G. Dubus, Astrophys. J. 635, 1263 (2005).
5. B. Paczynski, R. Sienkiewicz, Astrophys. J. 248, L27 (1981).
6. S. B. Howell, S. Rappaport, M. Politano, Mon. Not. R. Astron. Soc. 287, 929 (1997).
7. U. Kolb, Astron. Astrophys. 271, 149 (1993).
8. S. P. Littlefair, V. S. Dhillon, L. Martin, Mon. Not. R. Astron. Soc. 340, 264 (2003).
9. R. E. Menink, M. P. Diaz, C. Tappert, Mon. Not. R. Astron. Soc. 347, 1180 (2004).
10. K. Beuermann, P. Wheatley, G. Ramsay, F. Euchner, B. T. Gansicke, Astron. Astrophys. 354, 49 (2000).
11. V. S. Dhillon et al., Mon. Not. R. Astron. Soc. 314, 826 (2000).
12. S. B. Howell, D. R. Ciardi, Astrophys. J. 550, L57 (2001).
13. S. P. Littlefair, V. S. Dhillon, S. B. Howell, D. R. Ciardi, Mon. Not. R. Astron. Soc. 313, 117 (2000).
14. R. E. Menink, M. P. Diaz, Mon. Not. R. Astron. Soc. 336, 767 (2002).
15. S. Araujo-Betancor et al., Astron. Astrophys. 430, 629 (2000).
16. A. R. King, K. Schenker, Astron. Soc. Pac. Conf. Proc. 261, 233 (2002).
17. R. E. Taam, H. C. Spruit, Astrophys. J. 561, 329 (2001).
18. U. Kolb, I. Baraffe, Mon. Not. R. Astron. Soc. 309, 1034 (1999).
19. P. Szkoły et al., Astron. J. 123, 430 (2002).
20. P. Szkoły et al., Astron. J. 126, 1499 (2003).
21. P. Szkoły et al., Astron. J. 128, 1882 (2004).
22. P. Szkoły et al., Astron. J. 129, 2386 (2005).
23. P. Szkoły et al., Astron. J. 131, 973 (2006).
24. K. Horne, T. R. Marsh, F. H. Cheng, I. Hubeny, T. Lanz, Astrophys. J. 426, 294 (1994).
25. J. Wood et al., Mon. Not. R. Astron. Soc. 219, 629 (1986).
26. J. Southworth et al., Mon. Not. R. Astron. Soc., in press, available at http://xxx.lanl.gov/abs/astro-ph/0609196.
27. G. Chabrier, I. Baraffe, Astron. Astrophys. 327, 1039 (1997).
28. L. Bildsten, D. Chakrabarty, Astrophys. J. 557, 292 (2001).
29. P. L. Naudé, R. Napiwotzki, P. D. Dobbie, M. R. Burleigh, Nature 442, 543 (2006).
30. M. Politano, Astrophys. J. 604, 817 (2004).
31. D. Grether, C. H. Lineweaver, Astrophys. J. 640, 1051 (2006).
32. D. M. Townsley, L. Bildsten, Astrophys. J. 596, L227 (2003).
33. V. Renzo, I. Baraffe, U. Kolb, H. Ritter, Astron. Astrophys. 389, 485 (2002).
34. I. Baraffe, U. Kolb, Mon. Not. R. Astron. Soc. 318, 354 (2000).
35. D. Saumon, G. Chabrier, H. M. von Horn, Astrophys. J. Suppl. Ser. 99, 713 (1995).
36. We thank U. Kolb and I. Baraffe for productive discussions. S.P.L., C.A.W., and J.S. are supported by the Particle Physics and Astronomy Research Council (PPARC). T.R.M. acknowledges the support of a PPARC Senior Research Fellowship. B.T.G. acknowledges the support of a PPARC advanced fellowship. Ultracam is supported by PPARC.

Supporting Online Material
www.sciencemag.org/cgi/content/full/314/5805/1578/DC1
Materials and Methods
SOM Text
References
2 August 2006; accepted 25 September 2006
10.1126/science.1133333

Deep Mixing of 3He: Reconciling Big Bang and Stellar Nucleosynthesis

Peter P. Eggleton,1 David S. P. Dearborn,2 John C. Lattanzio3

Low-mass stars, ~1 to 2 solar masses, near the Main Sequence are efficient at producing the helium isotope 3He, which they mix into the convective envelope on the giant branch and should distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the low observed cosmic abundance of 3He with the predictions of both stellar and Big Bang nucleosynthesis. Here we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone beneath the hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell, where a nuclear reaction lowers the mean molecular weight slightly. Thus, we are able to remove the threat that 3He production in low-mass stars poses to the Big Bang nucleosynthesis of 3He.

The standard evolution of a low-mass star (Fig. 1) takes it from a short-lived pre-Main-Sequence (PMS) state, in which it contracts and heats up but has not yet become hot enough to burn its nuclear fuel, to the long-lived MS state in which slow, steady nuclear reactions keep the star in thermal equilibrium. After several gigayears (but depending strongly on mass), the nuclear fuel is exhausted at and near the center, the star becomes cooler, larger, and more luminous, and it starts to climb the red giant branch (RGB). Its outer layers become turbulent and convective, and this surface convection zone (SCZ) penetrates deeply into the star, but the SCZ is forced to retreat again as the fuel-exhausted core, surrounded by a thin, hot nuclear-burning shell, advances outward. During the growing phase, the SCZ dredges up and homogenizes material that, at the earlier MS phase, was processed by nuclear reactions in the interior.

Along the MS, stars burn hydrogen in their cores by a combination of the proton-proton (pp) chain (in which four protons unite to form a 3He nucleus) and the CNO tri-cycle (in which the same process is catalyzed by carbon, nitrogen, and oxygen). The former is the more important in low-mass stars, $\leq M_{\odot}$, and the latter in more massive stars. However, even in the more massive stars there is still a shell, somewhat outside the main energy-producing region, where the pp chain partially operates. Burning H to 3He but not beyond.

Because the pp chain is less sensitive to temperature than the CNO cycle, cores of low-mass stars are free of convection, but convective cores develop in higher-mass stars because CNO energy production is too temperature sensitive for radiation to stably transport the energy. Above $\sim 2 M_{\odot}$ this convective core is large

1Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94551, USA. 2Physics and Applied Technologies Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94551, USA. 3Centre for Stellar and Planetary Astrophysics, Monash University, Australia.

*To whom correspondence should be addressed. E-mail: ppe@gpp.llnl.gov

Fig. 1. Evolution of a low-mass Pop I star in a luminosity-temperature diagram. The model was computed in 1D, that is, spherical symmetry was assumed, using the code of (20, 21) with updated equation of state, opacity, and nuclear reaction rates (22). Surface temperature is in kelvins, luminosity in solar units.