Genome-wide association meta-analysis of nicotine metabolism and cigarette consumption measures in smokers of European descent

Jadwiga Buchwald, Meghan J. Chenoweth, Teemu Palviainen, Gu Zhu, Christian Benner, Scott Gordon, Tellervo Korhonen, Samuli Ripatti, Pamela A. F. Madden, Terho Lehtimäki, Olli T. Raitakari, Veikko Salomaa, Richard J. Rose, Tony P. George, Caryn Lerman, Matti Pirinen, Nicholas G. Martin, Jaakko Kaprio, Anu Loukola, Rachel F. Tyndale

Abstract

Smoking behaviors, including amount smoked, smoking cessation, and tobacco-related diseases, are altered by the rate of nicotine clearance. Nicotine clearance can be estimated using the nicotine metabolite ratio (NMR) (ratio of 3′hydroxycotinine/cotinine), but only in current smokers. Advancing the genomics of this highly heritable biomarker of CYP2A6, the main metabolic enzyme for nicotine, will also enable investigation of never and former smokers. We performed the largest genome-wide association study (GWAS) to date of the NMR in European ancestry current smokers (n = 5185), found 1255 genome-wide significant variants, and replicated the chromosome 19 locus. Fine-mapping of chromosome 19 revealed 13 putatively causal variants, with nine of these being highly putatively causal and mapping to CYP2A6, MAP3K10, ADCK4, and CYP2B6. We also identified a putatively causal variant on chromosome 4 mapping to TMPRSS11E and demonstrated an association between TMPRSS11E variation and a UGT2B17 activity phenotype. Together the 14 putatively causal SNPs explained ~38% of NMR variation, a substantial increase from the ~20 to 30% previously explained. Our additional GWASs of nicotine intake biomarkers showed that cotinine and smoking intensity (cotinine/cigarettes per day (CPD)) shared chromosome 19 and chromosome 4 loci with the NMR, and that cotinine and a more accurate biomarker, cotinine + 3′hydroxycotinine, shared a chromosome 15 locus near CHRNA5 with CPD and Pack-Years (i.e., cumulative exposure). Understanding the genetic factors influencing smoking-related traits facilitates epidemiological studies of smoking and disease, as well as assists in optimizing smoking cessation support, which in turn will reduce the enormous personal and societal costs associated with smoking.

Introduction

Cigarette smoking persists in part due to the reinforcing properties of nicotine, the major psychoactive compound in cigarettes [1]. The Nicotine Metabolite Ratio (NMR) [2], the ratio of major nicotine metabolites (3′hydroxycotinine (3HC)/cotinine (COT)), is heritable (h2 ~ 80% [3]) and is highly correlated (r = 0.83) with the rate of nicotine metabolic clearance [2] and thus associates with numerous smoking behaviors. Higher NMR is associated with greater cigarette consumption and lower cessation (reviewed in [4]). Genetically variable CYP2A6 metabolically inactivates nicotine to COT; COT is then metabolized to 3HC exclusively by CYP2A6 [5, 6]. A higher NMR indicates faster nicotine inactivation and CYP2A6 activity [2, 7–9]. CYP2A6 also metabolically activates tobacco-specific nitrosamines [10]; thus, the association between the NMR and lung cancer [11] may be influenced by both altered smoking quantity (i.e., carcinogen intake) and procarcinogen activation. Further, CYP2A6 can metabolize many other drugs (e.g., tegafur and letrozole) [12, 13].
The NMR prospectively predicts smoking cessation outcomes; smokers with higher NMR had higher quit rates on varenicline vs. nicotine patch, whereas quit rates were similar in those with lower NMR [14]. Additional tobacco products such as pipe, cigars, and smokeless tobacco contain nicotine, as do newer products (e.g., electronic cigarettes) [15]. The NMR influences nicotine intake across many product types, including commercial smokeless tobacco and iqmik [16].

Virtually all of the genome-wide significant (GWS) SNPs in genome-wide association studies (GWASs) of the NMR [3, 17–19] reside in the chromosome 19 region that contains CYP2A6. Here we assessed five cohorts from Australia [20], Finland [3], and North America [14] to conduct the largest NMR meta-GWAS to date in 5185 European ancestry current smokers. We also ran GWASs of biomarkers of nicotine intake, COT+3HC and COT alone; COT+3HC is more accurate than COT due to the accumulation of COT in slow metabolizers [21]. To directly investigate genetic similarities and differences between objective and self-reported nicotine intake phenotypes, we also performed GWASs for two self-reported measures, cigarettes smoked per day (CPD) and Pack-Years (i.e., cumulative exposure). Finally, we performed a GWAS of a biomarker of smoking intensity, COT/CPD, using COT given its use as a common nicotine intake biomarker. To our knowledge, these represent the first GWASs of COT+3HC and COT/CPD, and the first within-dataset comparison of the NMR and these numerous smoking biomarkers. This work will enhance NMR genomics for studies that include non-, former- and intermittent-smokers (as NMR can only be measured in current, regular smokers [7]), for example in tobacco-related disease risk assessments [22], as well as in precision medicine approaches for smoking cessation [14, 23] and for cancer due to the role of CYP2A6 in chemotherapeutic (e.g., letrozole, tegafur) drug metabolism [12, 13].

Materials and methods

Study samples and phenotypes

European current smokers (n = 5185) with cotinine levels ≥10 ng/ml were studied (see Supplementary information, and Tables S1 and S2 for cohort details; cohort data is available from lead investigators). A power curve is shown in Fig. S1. Individuals with cotinine <10 ng/ml, suggestive of non-daily smoking [24] and thus unstable NMR measurements, were excluded. The six phenotypes are shown in Fig. S2. COT and 3HC were quantified from blood samples using LC-MS/MS or GC-MS (for FINRISK); these previously validated approaches yielded highly concordant results [25]. Self-report variables were acquired from surveys. We set all CPD and Pack-Years values of zero to missing and replaced 3HC values below the limit of detection (LOD) of 1 ng/ml with LOD/√2 [26]. Phenotypes were rank-transformed using the ‘mtransform’ function in the R package ‘GenABEL’ [27] to follow the standard normal distribution N(0, 1).

GWAS Analyses

Contributing sites performed genotyping, post-genotyping quality control, imputation, and GWAS analyses (Table S2). Cohort-specific quality control of GWAS summary results was performed at the University of Helsinki. The variant inclusion criteria were: MAF > 1%, imputation info score (Rsq) > 0.7, call rate > 0.9, and Hardy-Weinberg Equilibrium P > 1 × 10^-6. Base pair positions are reported according to GRCh37 (hg19).

GWAS analyses of the six phenotypes were performed using linear mixed models with Rvtests (http://zhanxw.github.io/rvtests/) or GEMMA [28]. The continuous scale of the effect allele dose (0–2) was used to account for imputation uncertainties. A relatedness matrix, calculated from all variants with MAF > 5% using the Balding-Nichols method in the vcf2kinship package in RVTESTS, accounted for the entire spectrum of genetic relatedness from familial relationships to more distant population structure. Additionally, population stratification was accounted for prior to genotype imputation by restricting the analyses to European ancestry participants (details by study cohort in Table S2). The genomic inflation factor (λ) was calculated with the function ‘estlambda’ from the R package ‘GenABEL’ [27] (Table S3); together with an LD-score regression intercept test using LD Hub [29], we saw no evidence of significant inflation (Table S4). QQ-plots and Manhattan plots were acquired with the R package ‘qqman’ [30].

Covariates for the base analytic model included sex, age, and BMI (in kg/m²) [31], while the main analytic model further controlled for alcohol use (grams/week) (due to high co-use and associations with NMR [31–33]) and birthyear (due to trends in smoking attitudes, social acceptance, regulatory bans, and variation in recruitment years). Because the NMR influences CPD [31], and CPD may influence the NMR (via nicotine/tobacco inhibition of CYP2A6 [34]), we ran additional models for NMR controlling for CPD, and for CPD controlling for NMR. We also ran a model for COT and COT+3HC, controlling for CPD. Missing covariate values (all <10%) were recoded to the median value. Reported results reflect the main analytic model unless otherwise stated; alternative models are found in the supplementary data.

GWAS meta-analysis, fine-mapping, and annotation

Model- and phenotype-specific meta-analyses were performed using GWAMA [35], using fixed effects models,
applying study-specific genomic control correction to adjust for remaining population stratification, and using a GWS association threshold of \(P < 5 \times 10^{-8} \). An association locus was defined as the region extending 2.5 Mb in both directions (none were >2.5 Mb) of the GWS SNP with the smallest \(P \) value. Regional plots were created with LocusZoom [36]; LD data were from 1000 Genomes. We additionally performed the largest COT GWAS (\(n = 8885 \)) by meta-analysing our base model results (as most similar) with those from Ware et al. [37] (\(n = 4548 \)) using non-overlapping samples.

To identify putatively causal SNPs in each GWS region, we performed a shotgun stochastic search with FINEMAP v1.2 [38] and a stepwise conditional regression with GCTA v1.91.3beta [39] (see Supplementary information). For each locus, we calculated the heritability estimate of the causal variants using FINEMAP (see Benner et al. [40]). We report the heritability estimate of the causal variants for each locus as calculated by FINEMAP (see Benner et al. [40]). Variant annotation included assessment of genomic location, functional consequence, and association with RNA expression levels and methylation pattern (see Supplementary information).

Results

Altogether 1885 GWS (\(P < 5 \times 10^{-8} \)) SNPs and six association loci were found on chromosomes 1, 4, 5, 9, 15, and 19 across the six phenotypes (Fig. 1, and Tables 1, S5, and S6). Using a leave-one-out approach, illustrated in cohort-specific plots, the results were largely consistent across the five cohorts (Figs. S3 and S4). Correlations between the phenotypes are found in Table S7.

Associations for the NMR were found on chromosomes 4 and 19

Two association loci on chromosomes 4 and 19 (Fig. 2) were found for the NMR, explaining 38.2% of variation (Table 1). We replicated the top SNP, rs56113850, located on chromosome 19 in an intron of \(CYP2A6 \) (Fig. 2 and Table 1) [3, 18, 19]. The chromosome 19 locus explained 36.4% of NMR variation (Table 1) (vs. ~20–30% previously explained [3, 17, 19]) and consisted of several SNPs residing in previously unreported genes (Table S8). The chromosome 4 locus for the NMR was novel, with most of the GWS SNPs mapping to \(TMPRSS11E \), a transmembrane protein...
Table 1 Number of total and putatively causal GWS SNPs, top SNP, and heritability estimate for each association locus for each phenotype.

Phenotype	CHR	# GWS SNPs	# Putatively causal SNPs	Regional heritability estimate (%)	TOP SNP	BP position	Major/Minor	MAF	Location	EQTL	MEQTL
NMR	4	48	1	1.8	rs34638591	69359223	C/T	0.43	TMPRSS11E (intron)	UGT2B15, UGT2B17, UGT2R29P, RP11-1267H10.2, RP11-1267H10.1	None
NMR	19	1207	13	36.4	rs56113850	41353107	C/T	0.45	CYP2A6 (intron)	EGLN2, CYP2A7, CYP2T2P	Cis, Trans
COT+3HC	4	315	1	0.9	rs10000284	69669183	T/C	0.08	UGT2B10 (12.5 kb 5′)	None	None
COT+3HC	9	1	1	0.7	rs12684930	1821338	G/C	0.08	SMARCA2 (194 kb 5′)	None	None
COT+3HC	15	309	1	2.5	rs2036527	78851615	G/A	0.35	CHRNA5 (6.2 kb 5′)	CHRNA3, CHRNA5, CHRNA4, IREB2, PSMA4, RP11-160C18.2, RP11-650L12.2	Cis
COT	4	286	1	0.8	rs294775	69680933	T/C	0.08	UGT2B10 (0.8 kb 5′)	None	None
COT	15	307	1	2.4	rs2036527	78851615	G/A	0.35	CHRNA5 (6.2 kb 5′)	CHRNA3, CHRNA5, CHRNA4, IREB2, PSMA4, RP11-160C18.2, RP11-650L12.2	Cis
COT	19	5	1	0.8	rs2316205	41346768	C/T	0.49	CYP2A6 (2.7 kb 3′)	EGLN2, CYP2A7	Cis
COT/CPD	4	281	1	0.2	rs294778	69682555	A/G	0.08	UGT2B10 (intron)	None	None
COT/CPD	19	8	1	1.6	rs56113850	41353107	C/T	0.45	CYP2A6 (intron)	EGLN2, CYP2A7, CYP2T2P	Cis, Trans
CPD	1	1	1	0.5	rs860873	95387208	G/A	0.47	CNN3 (intron)	RP11-86077.7, RP4-63920.1, RWDD3	None
CPD	15	84	1	0.6	rs72740955	78849779	C/T	0.35	CHRNA5 (8.1 kb 5′)	CHRNA3, CHRNA5, IREB2, PSMA4, RP11-160C18.2, RP11-650L12.2	Cis
Pack-Years	5	2	1	0.7	rs2337033	16739211	A/G	0.35	TENM2 (intron)	None	None
Pack-Years	15	27	1	0.5	rs72740955	78849779	C/T	0.35	CHRNA5 (8.1 kb 5′)	CHRNA3, CHRNA5, IREB2, PSMA4, RP11-160C18.2, RP11-650L12.2	Cis

The results shown are for the main model that adjusted for population substructure, age, sex, BMI, alcohol use, and birth year.

CHR chromosome, GWS genome-wide significant, SNP single-nucleotide polymorphism, BP base pair, MAJOR the more common allele, MINOR the less common allele, MAF minor allele frequency, eQTL expression quantitative loci, meQTL methylation quantitative trait loci, NMR the nicotine metabolite ratio, COT cotinine, 3HC 3-hydroxycotinine, CPD cigarettes per day.

aNumber of SNPs in the FINEMAP top configuration of putatively causal SNPs.
bObtained with FINEMAP (full results in Table S5).
cBase pair positions reported according to GRCh37 (hg19).
dFull eQTL information is available in Table S5.
eFull meQTL information is available in Table S6.
serine protease (Fig. 2), explaining 1.8% of NMR variation (Table 1). The smallest P value was obtained for three SNPs in an intron of TMPRSS11E (Tables 1 and S5), in perfect linkage disequilibrium (LD) in Europeans from the 1000 Genomes Project. Controlling for CPD did not substantially alter the number of GWS SNPs (Table S5).

FINEMAP analyses of chromosome 19 in cohorts 1–2 showed that nine out of 13 putatively causal SNPs were highly likely causal (probability > 0.5) (Tables 2 and S9). Of these nine, two are known functional CYP2A6 variants (rs1801272/CYP2A6*2, rs28399433/CYP2A6*9; www.pharmvar.org), three were in/near to CYP2A6 (including rs113288603), two were in CYP2B6, one was in ADCK4, and one was near MAP3K10 (Table 2). Notably, only rs113288603 was among the conditionally independent SNPs in prior GWASs that used stepwise conditional analyses [3, 17–19]. We also performed stepwise conditional analysis with GCTA using the meta-GWAS results, yielding six conditionally independent SNPs (Table S9); only one overlapped with the was rs56113850 (C > T) found in intron 4 of CYP2A6. d FINEMAP and GCTA analyses revealed several putatively causal and conditionally independent chromosome 19 signals for the NMR. In plots (b) and (c), the light purple areas represent the genome-wide significant regions, and the linkage disequilibrium values are based on the 1000 Genomes reference panel. The top SNP has been indicated with a purple diamond, the red line represents the genome-wide significance threshold of $P = 5 \times 10^{-8}$, and the blue line represents the suggestive threshold of $P = 1 \times 10^{-5}$. Plots reflect the main analytic model. Base pair positions are provided according to GRCh37 (hg19).

FINEMAP SNPs (Fig. 2 and Table S10). The GCTA-configuration includes by default the top SNP (i.e., rs56113850), which was not found with FINEMAP. Our further comparisons suggested that GCTA may not be appropriate (see Supplementary information). For chromosome 4, FINEMAP and GCTA analyses highlighted only one SNP as being causal or conditionally independent (Table S9). Neither method could distinguish the causal or conditionally independent SNP among the highly correlated SNPs in the area.

Associations for COT+3HC and COT, biomarkers of nicotine intake, were found on chromosomes 4, 9, 15, and 19

For COT+3HC, three association loci on chromosomes 4, 9, and 15 (Figs. S5 and S6) were found, explaining 4.1% of variation (Table 1). The chromosome 4 GWS SNPs mapped to seven UDP-glucuronosyltransferase (UGT) genes (Fig. 1). The top chromosome 4 SNP was rs10000284,
Table 2 FINEMAP top configuration of causal SNPs for the NMR on chromosome 19.

SNP	BP	Major/minor	MAF SNP	PROB	β	SE	P value	Location	NCBI dbSNP functional annotation	eQTL	meQTL
RS11667982	41338761	G/A	0.14	1	−0.42	0.05	1.48e−15	CYP2A6 (10.7 kb 3′)	NA	None	Cis
RS7250713	41355195	C/G	0.37	1	−0.37	0.04	2.05e−25	CYP2A6	Intron variant	None	Cis
RS28399433	41356379	A/C	0.12	0.9995	−0.81	0.04	9.46e−94	CYP2A6 (0.02 kb 5′)	NA (CYP2A6*9)	None	None
RS3181842	41523016	T/C	0.4	0.9621	0.42	0.07	1.28e−10	CYP2B6	downstream variant S00B, utr variant 3′	None	Cis
RS1801272	41354533	A/T	0.02	0.9042	−0.9	0.08	5.81e−29	CYP2A6	missense (CYP2A6*2)	None	None
RS148856862	41204624	C/T	0.01	0.8302	−0.61	0.11	2.17e−08	ADCK4	Intron variant	None	None
RS707265	41452087	G/A	0.4	0.8293	−0.41	0.07	4.99e−10	CYP2B6	utr variant 3′	None	Cis
RS113288603	41362293	C/T	0.15	0.5804	0.39	0.05	5.54e−15	CYP2A6 (5.9 kb 5′)	NA	None	None
RS12972927	40685483	C/T	0.01	0.5311	−0.5	0.1	3.59e−07	MAP3K10 (12.0 kb 5′)	NA	None	Trans
RS11672345	41909719	G/A	0.02	0.3935	−0.57	0.1	3.66e−09	BCKDHA	Intron variant	None	None
RS7248187	41437426	C/G	0.24	0.3430	−0.25	0.03	2.05e−14	CYP2B7P1	Intron variant	CYP2B7P1	Cis
RS2604911	41296117	C/G	0.28	0.3296	0.19	0.03	7.05e−11	MIA-RAB4B/RAB4B-EGLN2/RAB4B	Intron variant	ADCK4	Cis
RS11672809	41344101	T/C	0.03	0.2402	0.83	0.09	2.73e−20	CYP2A6 (5.3 kb 3′)	NA	CYP2A6	Cis, Trans

The results are from the main model. The most probable configuration consisted of 13 SNPs (depicted in the table) and their heritability estimate was 36.7% (95% CI: 32.9–41.0%). All betas listed are from the joint model including the 13 top configuration SNPs, and they are reported for the minor allele. SNP PROB indicates the posterior probability of being a causal SNP. FINEMAP gave a regional heritability estimate of 36.4% (95% CI: 32.6–40.4%) for the main model results and suggested that there are 9–14 causal SNPs within the region. Cis, within 1 Mb of the position of the SNP; Trans, >1 Mb away from the position of the SNP.

SNP single-nucleotide polymorphism, BP base pair, MAJOR the more common allele, MINOR the less common allele, MAF minor allele frequency, SE standard error, eQTL expression quantitative loci, meQTL methylation quantitative trait loci.
located ~13 kb upstream of UGT2B10, encoding the UGT2B10 enzyme involved in nicotine and cotinine glucuronidation [41] (Tables 1 and S5, and Fig. S6). One GWS SNP was detected on chromosome 9 (Tables 1 and S5, and Fig. S6), located ~194 kb upstream of SMARCA2, which putatively regulates transcription via chromatin remodeling [42]. On chromosome 15, the GWS SNPs mapped to IREB2, ADAMTS7, CHRNA4, CHRNA5, HYKK, and PSMA4 (Fig. 1). The top SNP on chromosome 15 was rs2036527, located ~6 kb upstream of CHRNA5 (Table S5 and Fig. S6) encoding the α5 nicotinic acetylcholine receptor (nAChR) subunit. FINEMAP and GCTA analyses revealed only the top SNP from chromosomes 4, 9, and 15 to be putatively causal and conditionally independent (Table S9).

The meta-GWAS of COT revealed association loci on chromosomes 4, 15, and 19 (Figs. S5 and S6); the GWS SNPs explained 4.0% of variation (Table 1). The chromosome 4 and 15 genes were shared with COT+3HC; the chromosome 19 signal mapped to CYP2A6 (Fig. 1). The chromosome 9 COT+3HC GWS SNP (rs12684930) was nearly GWS ($P = 8.1 \times 10^{-8}$) for COT. FINEMAP and GCTA analyses of COT revealed the top SNP from chromosome 4, 15, and 19 to be putatively causal and conditionally independent (Table S9). After meta-analysing our COT results with those from Ware et al. [37] (total $n = 8885$), signals on chromosomes 4, 15, and 19 remained, whereas the chromosome 9 signal disappeared (Fig. S7). The original Ware et al. COT GWAS detected variants on chromosomes 4 and 15, but not on 19 [37]. Controlling for CPD reduced the number of GWS SNPs found on chromosome 15 in the COT+3HC and COT GWASs (Table S5).

Associations for COT/Cpd, a measure of smoking intensity, were found on chromosomes 4 and 19

Two association loci on chromosome 4 and 19 (Figs. S5 and S6) were identified for COT/CPD, explaining 1.7% of variation (Table 1). The chromosome 4 SNPs mapped to five UG Ts (Fig. 1). The top SNP on chromosome 4 was rs294778, located in an intron of UGT2B10 (Tables 1 and S5, and Fig. S6). The GWS SNPs on chromosome 19 mapped to CYP2A6 and CYP2A7; the top SNP was rs56113850 (Figs. 1 and S6, Tables 1 and S5) as for the NMR. FINEMAP and GCTA analyses revealed the top SNP from chromosomes 4 and 19 to be putatively causal and conditionally independent (Table S9). As for the NMR, rs56113850 is unlikely to causally influence COT/CPD; rs56113850 did not remain significant for COT/CPD after conditioning on the 13 SNPs pinpointed by FINEMAP for the NMR (Table S10).

Associations for CPD and Pack-Years, self-reported measures of nicotine intake, were found on chromosomes 1, 5, and 15

For CPD, three association loci on chromosomes 1, 5, and 15 (Figs. S5 and S6) explained 1.1% of variation (Table 1). There were single GWS SNP associations on chromosomes 1 (rs860873, located in an intron of CNN3) and 5 (rs2337033, located in an intron of TENM2), significant only in the base model (Table S5). The top SNP on chromosome 15 was rs72740955, located ~8.1 kb upstream of CHRNA5 (Table S5); rs72740955 is in high LD ($r^2 = 0.9$ and $D' = 0.97$, 1000 Genomes) with the functional CHRNA5 variant rs16969968, which was associated with COT, COT+3HC, and CPD (Table S6), replicating prior associations with smoking quantity [43]. Our FINEMAP and GCTA analyses revealed only the top SNP from chromosomes 1, 5, and 15 to be putatively causal and conditionally independent (Table S9).

For Pack-Years, two association loci on chromosomes 5 and 15 (Figs. S5 and S6) explained 1.2% of variation (Table 1). A single GWS SNP was detected on chromosome 5 (rs2337033, mapping to an intron of TENM2) (Tables 1 and S5, and Fig. S6), which was also GWS for CPD in the base model (Table S6). As for CPD, the top SNP on chromosome 15 was rs72740955, located ~8.1 kb upstream of CHRNA5 (Table S5 and Fig. S6). FINEMAP and GCTA analyses revealed only the top SNP from chromosomes 5 and 15 to be putatively causal and conditionally independent (Table S9).

Many of the GWS SNPs were eQTL and/or meQTL

Many of the GWS SNPs were known expression quantitative trait loci (eQTL) (Table S11 and Fig. S8) and/or known methylation quantitative trait loci (meQTL) (Table S12 and Fig. S9). For instance, the T (vs. C) allele of the intronic UGT2B17 (glucuronidates 3HC [44]) activity in the PNAT2 cohort (Fig. S10). The top chromosome 15 SNPs, rs2036527 (for COT+3HC and COT) and rs72740955 (for CPD and Pack-Years) were associated with altered expression of the α5 nAChR subunit in brain in GTEx (Fig. S11).

Summary of genetic similarities and differences across the nicotine metabolism and smoking phenotypes

There was substantial overlap between the GWS SNPs and association loci found for the NMR and COT+3HC, COT, and COT/CPD (Fig. 3 and Table 1). Although none of the chromosome 4 SNPs were shared, they were found in the
same region containing *TMPRSS11E* and *UGT2* genes (Figs. 3 and S6). In contrast to chromosome 4, all chromosome 19 SNPs that were GWS for COT and/or COT/CPD were shared with the NMR and mapped near to *CYP2A6* (Fig. 3 and Table S6). Compared with the NMR, far fewer overall chromosome 19 SNPs (and within a narrower region) were observed for COT and COT/CPD (Tables S1 and S5). For COT, there were no GWS SNPs in chromosome 19.

Comparing the NMR to the self-reported measures of nicotine intake, there was no overlap: neither of the two significant chromosomes for the NMR (4 and 19) were shared with CPD (1 and 15) or Pack-Years (5 and 15) (Table 1). We were unable to quantify genetic similarity using LD-score regression (LDSC) [45] across all phenotypes, because SNP-heritability estimates from LDSC were highly inaccurate (Table S4); LDSC likely requires a larger sample size and/or higher polygenicity for robust results.

Discussion

The associated loci captured 38% of NMR variation, 4% of variation in nicotine intake measured by objective biomarkers (COT+3HC, COT), 2% of variation in smoking intensity (COT/CPD), and 1% of variation in self-reported nicotine intake (CPD, Pack-Years).

We confirmed the chromosome 19 association locus found in prior NMR GWASs by us [3, 17] and others [18, 19]. The number of NMR GWS SNPs was essentially unchanged after additionally controlling for CPD (Table S5), suggesting altered cigarette consumption does not impact the observed genomic influences on the NMR. The top SNP from the meta-GWAS, rs56113850, was not identified in the FINEMAP top configuration and our additional analyses suggested that rs56113850 is not a causal variant itself but tags multiple causal variants, consistent with its high correlation with four SNPs pinpointed by FINEMAP (Fig. S12). We also identified an entirely novel chromosome 4 signal for the NMR mapping to *TMPRSS11E*, adjacent to *UGT2B17*. According to the GWAS Catalog (https://www.ebi.ac.uk/gwas/; accessed September 24, 2019), *TMPRSS11E* is associated with hematological and blood lipid traits [46–48]. Altered *UGT2B17* expression and activity (Fig. S10) is a possible mechanism underpinning the association with NMR. Prior work in African American smokers, however, showed that
the UGT2B17 gene deletion did not alter NMR [49, 50], suggesting there may be inter-ethnic variation in the relationship between UGT2B17 activity and the NMR.

Understanding NMR genomics permits extensions to epidemiological studies that include non-, former- and intermittent-users of tobacco products where the NMR itself cannot be reliably measured [7]. The NMR is associated with tobacco-related disease [11], thus the assessment of NMR genomics in epidemiological studies could greatly improve our mechanistic understanding of disease risk pathways, and improve prevention efforts. A greater understanding of the contribution of CYP2A6 variation to NMR genomics could also advance precision medicine approaches in nicotine dependence; recently a CYP2A6 weighted genetic risk score was shown to replicate NMR-stratified cessation treatment findings [23]. Moreover, NMR genomic information may be particularly useful in tailoring chemotherapy, as CYP2A6 metabolizes the chemotherapeutic agents letrozole and tegafur [12, 13], and other CYP2A6 substrate drug treatments (reviewed in [51, 52]).

This study was the first GWAS of COT+3HC, an improved biomarker of nicotine intake compared to COT [21]. While the chromosome 9 SNP (rs12684930, located ~194 kb 5’ from SMARCA2) associated with COT+3HC was not previously associated with smoking-related traits, SMARCA2 has been linked in the GWAS Catalog to ADHD, bipolar disorder, MDD, and schizophrenia, which are also associated with smoking [53–55]. Variation in the chromosome 15 CHRNA5-CHRNA3-CHRNB4 cluster, which was significant in our analyses of COT+3HC, COT, CPD, and Pack-Years, has been robustly associated with nicotine phenotypes [37, 56, 57]. The minor alleles of the top chromosome 15 SNPs for the objective nicotine biomarkers (i.e., rs2036527) and self-reported intake measures (i.e., rs72740955) were associated with higher intake and lower α5-nAChR expression, consistent with α5-nAChR knockout mice showing greater nicotine intake [58]. We also found GWS SNPs in ADAMTS7 (for COT+3HC and COT) and IREB2 (for COT+3HC, COT, and CPD). A gene- and pathway-based analysis highlighted ADAMTS7 and IREB2 among the top genes associated with CPD [59], and the recent GWAS of CPD by the GSCAN consortium identified an intronic ADAMTS7 SNP as conditionally independent [43]; additionally these genes are associated with tobacco-related diseases in the GWAS Catalog.

The lack of extensive genomic overlap between phenotypes may be due to poor capture of intake phenotype heritability (1–4%) vs. NMR heritability (~38%) and low power for our CPD analysis. The GSCAN consortium’s CPD GWAS (>330,000 smokers) [43] identified rs56113850 among the conditionally independent SNPs, which was the top SNP for both the NMR and COT/CPD in our study: the rs56113850 T allele was associated with higher COT/CPD (β = 0.16) but lower NMR (β = −0.69), likely due to slower removal of COT, the denominator in NMR [21]. In support of this, a secondary analysis in PNAT2 showed no apparent impact of the rs56113850 T allele on increasing (COT+3HC)/CPD (Fig. S13). Comparing between intake phenotypes, COT+3HC (vs. COT) was more genetically similar to CPD. In contrast, COT (vs. COT+3HC) was more genetically similar to the NMR, likely due to the impact of CYP2A6 activity (i.e., the NMR) on COT formation and metabolism [21].

Strengths of our study include the large sample size for biomarker analyses (e.g., NMR) and the use of biochemical intake measures. We were well-powered to detect variants that explain at least 0.76%, 1.0%, or 1.5% (power >80%, >96%, and >99%, respectively) of phenotypic variance. Fine-mapping of the association loci using a stochastic search allowed for any possible configuration of causal SNPs; this was valuable for the chromosome 19 NMR association locus which was not suited for stepwise conditional analyses. A limitation was that data from only two cohorts were available for the fine-mapping analysis. In addition, all study participants were of European descent, thus limiting the generalizability of our results to other populations. Studies in larger samples are needed to detect more variants with phenotypic impacts below 0.76%.

In conclusion, we identified over 1200 SNPs associated with the NMR, capturing ~38% of phenotype variation. Not surprisingly, the chromosome 19 locus, containing CYP2A6, comprised the majority of the GWS SNPs and explained ~36% of phenotype variation, a substantial increase from the ~20–30% variance previously accounted for [3, 17, 19]. We also identified several novel loci influencing the NMR and nicotine exposure phenotypes, including a novel chromosome 4 region mapping to TMPRSS11E and several UGT2 genes. A greater understanding of the genomic influences on nicotine metabolism and tobacco exposure phenotypes may improve smoking cessation treatments and our understanding of tobacco-related disease risk.

Code availability

All scripts used for statistical analyses are available upon request.

Acknowledgements This work is supported by the NIH (PGRN grant DA020830 and CA197461), CHF (FDN-154294 and P30-159710), a Canada Research Chair, Wellcome Trust Sanger Institute, Broad Institute, European Network for Genetic and Genomic Epidemiology, FP7-HEALTH-F4-2007, grant agreement number 201413, NIAAA (AA-12502/AA-09203/AA15416/K02AA01855), Academy of Finland (100499/205585/118555/141054/264146/308248/312073/288509/312076/285380/312062/286284/134309/...
References

1. Benowitz NL. Nicotine addiction. N Engl J Med. 2010;362:2295–303.
2. Dempsey D, Tutka P, Jacob P, Allen F, Schoedel K, Tyndale RF, et al. Nicotine metabolism ratio as an index of cytochrome P450 2A6 metabolic activity. Clin Pharmacol Ther. 2004;76:64–72.
3. Loukola A, Buchwald J, Gupta R, Palviainen T, Hallfors J, Tikkanen E, et al. A genome-wide association study of a biomarker of nicotine metabolism. PLoS Genet. 2015;11:e1005498.
4. Chenoweth MJ, Tyndale RF. Pharmacogenetic optimization of smoking cessation treatment. Trends Pharmacol Sci. 2017;38 (Jan):55–66.
5. Nakajima M, Yamamoto T, Nunoya K, Yokoi T, Nagashima K, Inoue K, et al. Role of human cytochrome P450 2A6 in C-oxidation of nicotine. Drug Metab Dispos. 1996;24:1212–7.
6. Nakajima M, Yamamoto T, Nunoya K, Yokoi T, Nagashima K, Inoue K, et al. Characterization of CYP2A6 involved in 3’-hydroxylation of cotinine in human liver microsomes. J Pharmacol Exp Ther. 1996;277:1010–5.
7. Lea RA, Dickson S, Benowitz NL. Within-subject variation of the salivary 3HC/COT ratio in regular daily smokers: prospects for estimating CYP2A6 enzyme activity in large-scale surveys of nicotine metabolic rate. J Anal Toxicol. 2006;30:386–9.
8. Mooney ME, Li ZZ, Murphy SE, Pentel PR, Le C, Hatuskami DK. Stability of the nicotine metabolite ratio in ad libitum and reducing smokers. Cancer Epidemiol Biomarkers Prev. 2008;17:1396–400.
9. St Helen G, Jacob P 3rd, Benowitz NL. Stability of the nicotine metabolite ratio in smokers of progressively reduced nicotine content cigarettes. Nicotine Tob Res. 2013;15:1939–42.
10. Rossini A, de Almeida Simao T, Albano RM, Pinto LF. CYP2A6 polymorphisms and risk for tobacco-related cancers. Pharmacogenomics. 2008;9:1737–52.
11. Park SL, Murphy SE, Wilkins LR, Stram DO, Hecht SS, Le Marchand L. Association of CYP2A6 activity with lung cancer incidence in smokers: the multiethnic cohort study. Plos One. 2017;12:e0178435.
12. Yamamiya I, Yoshisue K, Ishit Y, Yamada H, Chiba M. Effect of CYP2A6 genetic polymorphism on the metabolic conversion of tegafur to 5-fluorouracil and its entantoisoes. Drug Metab Dispos. 2014;42:1485–92.
13. Murali K, Yamazaki H, Nakagawa K, Kawai R, Kamataki T. Deactivation of anti-cancer drug letrozole to a carbinol metabolite by polymorphic cytochrome P450 2A6 in human liver microsomes. Xenobiotica. 2009;39:795–802.
14. Lerman C, Schnoll RA, Hawk LW, Cinciripini P, George TP, Wileyto EP, et al. Use of the nicotine metabolite ratio as a genetically informed biomarker of response to nicotine patch or varenicline for smoking cessation: a randomised, double-blind placebo-controlled trial. Lancet Respir Med. 2015;3:131–8.
15. Vardavas CI, Filippidis FT, Agaku IT. Determinants and prevalence of e-cigarette use throughout the European Union: a secondary analysis of 26 566 youth and adults from 27 Countries. Tob Control. 2015;24:442–8.
16. Zhu AZX, Binnington MJ, Renner CC, Lanier AP, Hatuskami DK, Stepanov I, et al. Alaska Native smokers and smokeless tobacco users with slower CYP2A6 activity have lower tobacco consumption, lower tobacco-specific nitrosamine exposure and lower tobacco-specific nitrosamine bioactivation. Carcinogenesis. 2013;34:93–101.
17. Chenoweth MJ, Ware JJ, Zhu AZX, Cole CB, Cox LS, Nollen N, et al. Genome-wide association study of a nicotine metabolism biomarker in African American smokers: impact of chromosome 19 genetic influences. Addiction. 2018;113:509–23.
18. Baurley JW, Edlund CK, Pardamean CI, Conti DV, Krassnow R, Jovitz HS, et al. Genome-wide association of the laboratory-based nicotine metabolite ratio in three ancestries. Nicotine Tob Res. 2016;18:1837–44.
19. Patel YM, Park SL, Han Y, Wilkens LR, Bickeboller H, Rosenberger A, et al. Novel association of genetic markers affecting CYP2A6 activity and lung cancer risk. Cancer Res. 2016;76 (Oct):5768–76.
20. Pergadia ML, Glowinski AL, Wray NR, Agrawal A, Saccone SF, Loukola A, et al. A 3p26–3p25 genetic linkage finding for DSM-IV major depression in heavy smoking families. Am J Psychiatry. 2011;168(Aug):848–52.
21. Zhu AZ, Renner CC, Hatuskami DK, Swan GE, Lerman C, Benowitz NL, et al. The ability of plasma cotinine to predict nicotine and carcinogen exposure is altered by differences in CYP2A6: the influence of genetics, race, and sex. Cancer Epidemiol Biomarkers Prev. 2013;22:708–18.
22. Park SL, Murphy SE, Wilkins LR, Stram DO, Hecht SS, Le Marchand L. Association of CYP2A6 activity with lung cancer incidence in smokers: the multiethnic cohort study. Plos One. 2017;12:e0178435.
23. El-Borai A, Taghavi T, Chenoweth MJ, Fujunaka K, Mushirido T, Kubo M, et al. Evaluation of a weighted genetic risk score for the prediction of biomarkers of CYP2A6 activity. Addict Biol. 2020;25:e12741.
24. Variatiene E, Sappala T, Lillsunde P, Puska P. Validation of self reported smoking by serum cotinine measurement in a community-based study. J Epidemiol Community Health. 2002;56:167–70.
Koga M, Ishiguro H, Yazaki S, Horiuchi Y, Arai M, Niizato K, Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide association studies. Bioinformatics. 2007;23:1294–6.

Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat Genet. 2012;44:821–4.

Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L, Haycock PC, et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics. 2017;33(Jan):272–9.

Turner SD. qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. https://www.biorxiv.org/content/10.1101/005165v1. 2014.

Chenoweth MJ, Novalen M, Hawk LW Jr., Schnoll RA, George TP, Cinciripini PM, et al. Known and novel sources of variability in the nicotine metabolite ratio in a large sample of treatment-seeking smokers. Cancer Epidemiol Biomarkers Prev. 2014;23:1773–82.

McKee SA, Weinberger AH. How can we use our knowledge of alcohol-tobacco interactions to reduce alcohol use? Ann Rev Clin Psychol. 2013;9:649–74.

Gubner NR, Kozar-Konieczna A, Szoltysek-Boldys I, Slodczyk-Mankowska E, Goniewicz J, Sobczak A, et al. Cessation of alcohol consumption decreases rate of nicotine metabolism in male alcohol-dependent smokers. Drug Alcohol Depend. 2016;163:157–64.

Benowitz NL, Hukkanen J, Jacob P, III. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol. 2009;192:29–60.

Magi R, Morris AP. GWAMA: software for genome-wide association meta-analysis. BMC Bioinformatics. 2010;11:288.

Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010;26:2336–7.

Ware JJ, Chen XN, Vink J, Loukola A, Minica C, Pool R, et al. Genome-wide meta-analysis of cotinine levels in cigarette smoking. Cancer Epidemiol Biomarkers Prev. 2011;20:2168–80.

Benner C, Spencer CCA, Havulinna AS, Salomaa V, Ripatti S, Pirinen M. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics. 2016;32(May):1493–501.

Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88:76–82.

Benner C, Havulinna AS, Salomaa V, Ripatti S, Pirinen M. Refining fine-mapping: effect sizes and regional heritability. bioRxiv. 2018:318618. https://doi.org/10.1101/318618.

Chen G, Blevins-Primeau AS, Dellingier RW, Muscat JE, Lazarus P. Glucuronidation of nicotine and cotinine by UGT2B10: loss of function by the UGT2B10 Codon 67 (A>G) polymorphism. Cancer Res. 2007;67:9024–9.

Koga M, Ishiguro H, Yazaki S, Horiuichi Y, Arai M, Niizato K, et al. Involvement of SMARCA2/BRM in the SWI/SNF chromatin-remodeling complex in schizophrenia. Hum Mol Genet. 2009;18(Jul):2483–94.
Affiliations

Jadwiga Buchwald1 · Meghan J. Chenoweth2 · Teemu Palviainen1 · Gu Zhu3 · Christian Benner1 · Scott Gordon3 · Tellervo Korhonen1 · Samuli Ripatti4,5 · Pamela A. F. Madden6 · Terho Lehtimäki7,8 · Olli T. Raitakari9,10,11 · Veikko Salomaa12 · Richard J. Rose13 · Tony P. George14,15 · Caryn Lerman16 · Matti Pirinen1,4,17 · Nicholas G. Martin3 · Jaakko Kaprio1,4 · Anu Loukola1,18 · Rachel F. Tyndale2,14,19

1 Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
2 Campbell Family Mental Health Research Institute, CAMH, and Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
3 QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
4 Department of Public Health, University of Helsinki, Helsinki, Finland
5 Broad Institute of MIT and Harvard, Cambridge, MA, USA
6 Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
7 Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Finland
8 Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
9 Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
10 Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
11 Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
12 Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
13 Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
14 Division of Addictions, Centre for Addiction and Mental Health, Toronto, ON, Canada
15 Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
16 USC Norris Comprehensive Cancer Center at Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
17 Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
18 Department of Pathology, Medicum, University of Helsinki, Helsinki, Finland
19 Department of Psychiatry, University of Toronto, Toronto, ON, Canada