Влияние гипоксии-гиперкарпии на жирнокислотный склад липидов белых мышц коропа Cyprinus carpio

С.В. Сисолятин*, С.В. Мидик, С.В. Хижняк

Реферат: Дослідження участі жирних кислот тканин риб у процесах реактивності організму за дії екзогенних чинників є необхідною ланкою у вивченні клітинних механізмів гіпобіотичного впливу. Методом газової хроматографії визначено склад та кількісний вміст жирних кислот загальних ліпідів білих м'язів коропа української лускатої породи. Ідентифіковано 28 жирних кислот та виявлено перерозподіл їх кількісного вмісту за гіпоксії-гіперкарпічним впливом з зниженим температурним середовищем (штучний гіпобіоз). Встановлено зниження сумарного вмісту насычених та збільшення вмісту ненасичених жирних кислот переважно за рахунок поліенасичених кислот родин ω-3 та ω-6. Припускається, що підтримання оптимального співвідношення ω-3/ω-6 в умовах експерименту відбувається шляхом участі ацил-ліпідів ω-3 та ω-6-десатураз. Виявлені модифікації вмісту жирних кислот ліпідів білих м'язів коропа, ймовірно, залучені до клітинного механізму дії гіпобіотичних чинників (гіпоксія, гіперкарпія, гіпертермія) на організм риб.

Ключеві слова: жирні кислоти, білі м'язи, короп, штучний гіпобіоз, гіперкарпія, гіпоксія.

Реферат: Исследование участия жирных кислот тканей рыб в процессах реактивности организма при действиях экзогенных факторов — важное звено в изучении клеточных механизмов гипобиотического воздействия. Методом газовой хроматографии определены состав и количественное содержание жирных кислот общих липидов белых мышц карпа украинской лускатой породы. Идентифицировано 28 жирных кислот и установлено перераспределение их количественного содержания при гипоксии-гиперкарпическом воздействии с изменением температурной среды (искусственный гипобиоз). Установлено снижение суммарного содержания насыщенных и рост содержания ненасыщенных жирных кислот преимущественно за счет полиненасыщенных кислот семей ω-3 и ω-6. Предполагается, что поддержание оптимального соотношения ω-3/ω-6 в условиях исследования осуществляется при участии ацил-липидов ω-3 и ω-6-десатураз. Установленные модификации содержания жирных кислот липидов белых мышц карпа, возможно, вовлечены в клеточный механизм действия гипобиотических факторов на организм рыб.

Ключевые слова: жирные кислоты, белые мышцы, карп, искусственный гипобиоз, гипоксия, гиперкарпия.

Abstract: Study of the involvement of fish tissue fatty acids into the organism reactivity caused by an influence of exogenous factors is crucial for investigation of cell mechanisms underlying hypobiotic effect. Gas chromatography was used to estimate the composition and quantities of fatty acids of total lipids in white muscles of the Ukrainian scale carp species. Twenty eight fatty acids were identified and their quantitative redistribution was revealed under hypoxic-hypercapnic action following a decrease in the environmental temperature (artificial hibernation). The decrease in total content of saturated and an increase in the one of unsaturated fatty acids was mainly due to the ω-3 and ω-6 polyunsaturated acids family. The optimum ω-3/ω-6 ratio under the studied conditions was supposedly maintained due to acyl-lipid ω-3 and ω-6-desaturase activity. Modified content of total lipids fatty acids in carp white muscles was likely a part of the cell mechanism of hypobiosis factors action in the fish organism.

Key words: fatty acids, white muscles, carp, artificial hibernation, hypercapnia, hypoxia.

The investigation of adaptation of animal organisms to environmental conditions (low temperature, hypoxia, etc.) has remained an actual problem of theoretical and applied biological studies. During the evolution the fishes acquired the mechanisms of adaptation to the influence of stress factors existing in an aquatic environment at molecular, cell, biochemical, physiological, behavioral and other levels of organization [6, 16]. One of these adaptation mechanisms is the transition of animal organism to a state of a reduced activity.
ниженої життєдіяльності (гіпобіотичний стан, або гіпобіоз), який відрізняється перебудовою фізіологічних функцій і біохімічних процесів [9]. При формуванні гіпобіотичного стану як у гомойотермних, так і пойкіліотермних тварин відбуваються структурно-функціональні модифікації білків та ліпідів [11, 13].

З урахуванням умов існування риб особливе роль у їх біохімічній адаптації виконують ліпіди [5–8], зокрема це стосується жирних кислот (ЖК) – найбільш ліпільного компонента ліпідних молекул, які швидко реагують на екзогенні впливи середовища [7]. Варто зазначити, що залучення жирних кислот до адаптаційних процесів, які відбуваються в організмі риб за впливу зниженої температури (гіпоптермії) [1, 5, 14], призводить, зокрема, до збільшення вмісту поліенових жирних кислот (особливо ω-3- та ω-6-кислот), що спрямовано на забезпечення необхідної в'язкості біологічних мембран клітин та підтримання теплового гомеостазу організму [3, 7]. Проте слід враховувати особливості впливу гіпоксії-гіпергіпоксії на поєднанні з гіпоптермією на ліпідну компоненту клітин різних органів тварин, зокрема, й риб [12].

Оскільки жирні кислоти у якості структурних компонент біологічних мембран та енергетичних субстратів [18] беруть участь у процесах реактивності організму за дії чинників навколишнього середовища [17, 19], то дослідження жирнокислотного профілю тканин риб, які знаходяться в гіпобіотичному стані, є перспективним та актуальним.

Метою роботи було дослідження якісного та кількісного складу жирних кислот загальних ліпідів білків м’язів коропа української лускатої породи за гіпоксії-гіпергіпоксійного впливу при зниженні температури середовища.

Матеріали та методи

Експерименти виконували на коропах української лускатої породи (Cyprinus caprio L.) масою 250–270 г, яких отримували з Іванівського рибокомбінату Київської області. Рибу відловлювали в осінній період і для адаптації протягом трьох діб утримували в басейні об’ємом 2 000 дм³. Тварин розділивали на дві групи (n = 5 у кожній): 1 (контрольна) – риба знаходилась в активному стані життєдіяльності; 2 (дослідна) – риба перебувала у стани штучного гіпобіозу (вплив гіпоксії, гіпергіпоксії при зниженні температури довкілля) [13]. Для проведення експерименту риб поміщували у закритий скляний акваріум із температурую води 8…10°C, до якого подавали газову суміш діоксиду вуглецю та кисню у співвідношенні 1:1 протягом п’ятнадцяти годин при швидкості продування 150–200 см³/хв (на 50–100 дм³ води). В умовах зниженої температури та наростиючої гіпоксії-гіпергіпоксії риби (hypobiosis), which specificity is a re-arrangement of physiological functions and biochemical processes [18]. Development of hypobiotic state is associated with structural and functional modifications of proteins and lipids both in homoiotherms and poikilothers [9, 12].

Taking into account the habitat conditions in fish, the lipids play a significant role in biochemical adaptation [14–17], in particular, this concerns fatty acids (FAs), the most labile component of lipid molecules rapidly responding to exogenous environmental influences [16]. It should be noted that the involvement of fatty acids into adaptation, occurring in fish organism due to the effect of lowered temperature (hypothermia) [20, 14, 1], leads notably to an increased content of polyene fatty acids (especially ω-3 and ω-6 acids), providing thereby the required viscosity of biological cell membranes and maintaining the thermal homeostasis of the body [8, 16]. However, it is necessary to consider the peculiarities of hypoxic-hypercapnic influence jointly with hypothermia on the lipid component of cells of various organs of animals, including fish [10].

Since fatty acids as structural components of biological membranes and energy substrates [7] are involved into the organism reactivity due to the effects of environmental factors [5, 11], the study of the fatty acid profile of fish tissues being in hypobiosis, is perspective and relevant.

The research aim was to study the qualitative and quantitative composition of fatty acids of total lipids of Ukrainian scaly white carp under hypoxic-hypercapnic influences when the environmental temperature was reduced.

Materials and methods

Experiments were carried out in the Ukrainian scaly carps (Cyprinus caprio L.) weighing 250–270 g, which were obtained from Ivanivka Fish Processing Plant of the Kyiv region. The fish were caught in autumn and were kept in a 2,000 dm³ pool for three days to adapt. The animals were divided into two groups (n = 5 each): 1 (control) – active fish; 2 (experimental) – fish under an artificial hypobiotic state (the influence of hypoxia, hypercapnia, with the decrease of environmental temperature) [12]. For the experiment the fish were placed into a closed glass aquarium with a water temperature of 8…10°C, supplied with the gas mixture of carbon dioxide and oxygen in 1:1 ratio for half an hour at a blowing rate of 150–200 cm³/min (at 50–100 dm³ water). Under conditions of lowered temperature and increasing hypoxia-hypercapnia fish gradually switched to a hypobiotic state (suspended animation).

Fish of groups 1 (control) and 2 (at the 6th and 24th hour of exposure to artificial hypobiosis) were dissected and the white muscle tissues were extracted. Homogenization and extraction of lipids were performed...
поступово переходили у гіпобіотичний стан (знижена життєдіяльність).

Риб груп 1 (контроль) і 2 (на 6-і і 24-у години експозиції штучного гіпобіозу) препаратували та вилучали тканини білих м’язів. Проводили гомогенізацію та екстракцію ліпідів хлороформ-метаноловою сумішшю за методом Фолча [16]. Отримували метилові етери жирних кислот за методом W.W. Christi [15] та аналізували їх на газовому хроматографі «Trace GC Ultra» («Thermo Scientific», США). Розділення проводили на високополярній капілярній хроматографічній колонці «SPTM - 2560» («Supelco», США). Для ідентифікації кислот використовували стандартні сукупні метилових етерів жирних кислот «37 Compone FAME Mix» («Supelco») [10] (3). Для кількісної оцінки індивідуальних ЖК застосовували метод нормування площі піка та представляли відносний вміст ЖК у відсотках до їх загальної кількості.

Отримані результати обробляли методом ва- ріаційної статистики з використанням t-критерію Стьюдента та за допомогою комп’ютерної програ- ми «Excel» («Microsoft», США). Зміни вважали статистично значущими за $p < 0.05$.

Результати та обговорення

Методом високочутливої газорідиної хрома- тографії в білих м’язах корона у стані активної жит- тєдіяльності (група 1) ідентифіковано 28 жирних кислот. Виявлено коротко-, середньо- та довголан- цюгові ЖК. Серед насичених жирних кислот (НЖК) домінували пальмітинова ($C_{16:0}$) та стеаринова ($C_{18:0}$) кислоти (22,5 та 5,6% відповідно). Ненасичені жирні кислоти (ННЖК) були неоднорідними: мононасичені жирні кислоти (МНЖК) найбільш представ- лені пальмітозейліновою ($C_{16:1n7}$) та олеїновою ($C_{18:1n9}$) кислотами (4,7 та 19,3% відповідно), серед полінасичених жирних кислот (ПНЖК) переважали лінолева ($C_{18:2n6}$) та ейкозатетраенова ($C_{20:4n6}$), арахідова ($C_{20:4n6}$), ейкозапентаенова ($C_{20:5n3}$), докозагексаенова ($C_{22:6n3}$) кислоти (14,1; 3,70; 3,8; 7,6 та 8,1% відповідно). Інші жирні кислоти містилися у невеликій кількості (табл. 1). Коефіцієнт нена- сиченості (НЖК/ННЖК) дорівнював 0,47.

Під час дослідження ЖК-спектра загальних лі- підів білих м’язів корона за гіпоксі-гіперканнічного впливу (ГТВ) не встановлено якісних змін щодо контрольної, півка ЖК ліпідів, однак відмічене пере- розподіл його вмісту щодо контрольної (табл. 1). Відбу- валося знешкодження сумарної кількості НЖК, зокрема за рахунок зниження вмісту $C_{14:0}$, $C_{15:0}$, $C_{16:0}$, $C_{17:0}$, $C_{18:0}$, $C_{20:0}$, $C_{21:0}$, $C_{22:0}$, $C_{23:0}$, $C_{24:0}$ кислот, на 6- та 24-у години гіпоксі-гіперканнічного впливу у се- редньому на 41,7 та 65,9% відповідно порівняно з контрольом (рис. 1). Можливо, це пов’язано з їх вико- ристанням у якості енергетичного субстрату [9, 17].

with chloroform methanol mixture according to the Folch method [4]. The fatty acid methyl esters were prepared according W.W. Christi [2] and analyzed by means of Trace GC Ultra gas chromatograph (Thermo Scientific, USA). The separation was carried out with a high-polar capillary chromatographic column SPTM-2560 (Supelco, USA). Acids were identified using the standard mixture of methyl esters of fatty acids 37 Compone FAME Mix (Supelco) [3]. For quantification of individual FAs, the method of area normalization was used and the relative content of FAs was represented as the percentage to their total amount. The obtained results were processed by the method of variation statistics using Student’s t-criterion and Excel software (Microsoft, USA). Changes were considered as statistically significant at $p < 0.05$.

Results and discussion

By means of highly sensitive method of gas-liquid chromatography we identified 28 fatty acids in carp white muscles during active vital state (group 1). Short, medium and long chain FAs were found. Among the saturated fatty acids (SFA) palmitic ($C_{16:0}$) and oleic ($C_{18:1n9}$) acids (4.7 and 19.3%, respectively) dominated. Unsaturated fatty acids (UFAs) were heterogenous, e. g. monounsaturated fatty acids (MUFAs) were mostly represented by palmitoleic ($C_{16:1n7}$) and oleic ($C_{18:1n9}$) acids (4.7 and 19.3%, respectively), among the polysaturated fatty acids (PUFAs) the following acids dominated: linoleic ($C_{18:2n6}$), eicosatrienoic ($C_{20:3n3}$), arachidonic ($C_{20:4n6}$), eicosapentaenoic ($C_{20:5n3}$), docosahexaenoic ($C_{22:6n3}$) acids (14.1, 3.70, 3.8, 7.6 and 8.1%, respectively). Other fatty acids were found in small quantities (Table 1). Unsaturation ratio (FAs/UFAs) was 0.47.

Investigation of the FA spectrum of total lipids of carp white muscles under hypoxic-hypcapnic effect found no qualitative changes in respect of the control of a pool of FA lipids, however, there was a redistribution of their content versus the control (Table 1). There was a decrease in total amount of UFAs, in particular due to a reduced content of $C_{14:0}$, $C_{15:0}$, $C_{16:0}$, $C_{17:0}$, $C_{18:0}$, $C_{20:0}$, $C_{21:0}$, $C_{22:0}$, $C_{23:0}$, $C_{24:0}$ acids to the 6th and 24th hour of hypoxic-hypcapnic effect in average by 41.7 and 65.9%, respectively, relative to the control (Fig. 1). This may be due to their expenditure as an energy substrate [18, 5].

Total content of UFAs was increased due to a rise in the level of MUFAs and PUFAs if compared with the control (Fig. 1). Under hypoxic-hypcapnic effect the unsaturation ratio (FAs/UFAs) ratio decreased to the 6th and 24th hour if compared to the control and was 0.23 and 0.12, respectively.

It has been established (Fig. 1) that total content of MUFAs at the 6th and 24th hours of hypobiotic exposure was increased due to a rise in the content of $C_{14:1n7}$, $C_{15:1n7}$, $C_{16:1n7}$, $C_{17:1n7}$, $C_{18:1n9}$, $C_{20:1n9}$, $C_{22:1n9}$, $C_{24:1n9}$ acids.
Сумарний вміст ННЖК збільшувався за радімок підвищення рівня МНЖК та ННЖК порівняно з контролем (рис.1). За гіпоксі-гіперкарбічного впливу коєфіцієнт ненасиченості (величина НЖК/ННЖК) на 6- і 24-гу години зменшився порівняно з контролем і становив 0,23 та 0,12 відповідно.

as compared to the control by 12.0 and 18.0%, respectively, and the level of PUFA increased at the expense of FA families of ω-6 and ω-3 by 24.7 and 39.9%, respectively. Total content of PUFAs of the ω-6 family at the expense of C18:3ω-3, C20:2ω6д, C20:4ω6д increased by 31.6 and 48.6%, respectively, and total PUFA content of the ω-3 family to the 6th and 24th hours of hypoxic-hypercapnic effect enhanced respectively by 16 and 27.8% due to C18:3ω3д, C20:3ω3д, C22:4ω6д acids (Fig. 2).

Among the main PUFAs of the ω-3 family C18:3ω3д, C20:3ω3д acids (Table 1) prevail, which have a high metabolic activity [13]. It has been established that their content increases under hypoxic-hypercapnic effect, and taking into account their importance in thermal stabilization of the lipid component of cell membranes, these changes can be directed to regulation of viscosity of biomembranes and, accordingly, functional activity of membrane-bound enzymes. Similar changes in the content of docosahexaenoic acid were observed under the influence of various factors (temperature lo-
Встановлено, що сумарний вміст МНЖК на 6-і 24-у години експозиції гіпоксії збільшувався за рахунок підвищення вмісту C_{14:1}^\omega-C_{15:1}^\omega-C_{16:1}^\omega-C_{17:1}^\omega-C_{18:1}^\omega-C_{20:1}^\omega-C_{22:1}^\omega. Кислоти по-рівняю з контролем на 12,0 та 18,0% відповідно, а рівень ПНЖК збільшувався за рахунок ЖК родини ω-6 та ω-3 на 24,7 та 39,9% відповідно (рис. 1). Сумарний вміст ПНЖЖК родини ω-6 за рахунок C_{18:2}^\omega-C_{18:3}^\omega-C_{20:2}^\omega-C_{20:3}^\omega-C_{20:4}^\omega кислот зростав на 31,6 та 48,6% відповідно, а сумарний вміст ПНЖЖК родини ω-3 на 6- та 24-у години гіпокси-гіперкапнічного впливу за рахунок C_{18:3}^\omega-C_{20:5}^\omega-C_{22:5}^\omega кислот збільшувався на 16 та 27,8% відповідно (рис. 2).

Серед основних ПНЖЖК родини ω-3 переважають C_{20:5}^\omega-C_{22:6}^\omega кислоти (таблиця), які мають високу метаболічну активність [4]. Встановлено зростання їх вмісту за гіпокси-гіперкапнічного впливу, а враховуючи їх значення в термостабілізації ліпідної компоненти клітинних мембран, ці зміни можуть бути направлені на ре-гуляцію в'язкості біомембран та, відповідно, на функціональну активність мембранов'язних ферментів. По-дібні зміни вмісту докозагексанової кислоти спостерігалися за впливу різних чинників (зниження температури, підвищення соленості або тиску тощо), що дозволяло назвати цю кислотою «кислотою адаптації» [4]. Серед ос-новних ПНЖЖК родини ω-6 найбільших змін зазнала арахідонова (C_{20:4}^\omega) кислота (таблиця), яка, входячи до складу клітинних мембран, взаємодіє з білковими комплексами та впливає на функ-ціонування рецепторів, транспортних і сигнальних систем [5].

Відомо, що ПНЖЖК – попередники біологічно активних речовин [3, 14]. Похідними арахідонової ω-6 ПНЖЖК є ряд тромбоксанів і лейкотриєв, які посилюють проникність мембран та викликають запальні явища, а метаболіти ω-3 ПНЖЖК, які є антагоністами та противідпаловими речовинами, сприяють стабілізації мембран. Тому важливо підтримувати фізіологічне співвідношення ω-3/ω-6 ПНЖЖК.

Результати наших досліджень свід-чать, що на 6- та 24-у години експо-

Жирні кислоти, % FAs	Контроль	Control	Експеримент, годова експозиція	Experiments, exposure hours
			6	24
14:0	0,60 ± 0,13	0,51 ± 0,13	0,48 ± 0,13	
14:1	0,20 ± 0,04	0,29 ± 0,04	0,33 ± 0,03*	
15:0	0,30 ± 0,04	0,22 ± 0,06	0,17 ± 0,05	
15:1	0,30 ± 0,05	0,41 ± 0,05	0,46 ± 0,05*	
16:0	22,50 ± 0,81	11,28 ± 1,25*	4,25 ± 0,48*	
16:1	4,70 ± 0,46	5,70 ± 0,46	6,30 ± 0,42*	
17:0	4,70 ± 0,46	5,70 ± 0,46	6,30 ± 0,42*	
17:1	0,40 ± 0,03	0,49 ± 0,03	0,54 ± 0,02*	
18:0	5,60 ± 0,59	4,60 ± 0,63	4,20 ± 0,63	
18:1ω9	19,30 ± 0,84	20,10 ± 0,84	20,35 ± 0,86	
18:2ω6	14,10 ± 0,67	15,76 ± 0,63*	16,3 ± 0,63*	
20:0	0,40 ± 0,06	0,31 ± 0,07	0,25 ± 0,06	
20:3ω6	0,70 ± 0,06	2,20 ± 0,38*	2,80 ± 0,42*	
20:1ω9	1,30 ± 0,25	2,30 ± 0,33*	2,80 ± 0,29*	
20:3ω3	1,70 ± 0,12	2,40 ± 0,19*	3,30 ± 0,33*	
21:0	1,50 ± 0,25	0,93 ± 0,16	0,87 ± 0,16*	
20:2ω6	0,30 ± 0,07	0,41 ± 0,09	0,48 ± 0,08*	
22:0	0,20 ± 0,04	0,13 ± 0,03	0,10 ± 0,03	
20:3ω6	3,70 ± 0,50	5,81 ± 0,63*	6,83 ± 0,68*	
22:1ω9	0,50 ± 0,08	0,64 ± 0,09	0,70 ± 0,08	
20:3ω3	0,40 ± 0,06	0,90 ± 0,20*	1,40 ± 0,34*	
20:4ω6	3,90 ± 0,42	5,63 ± 0,36*	7,28 ± 0,70*	
23:0	0,30 ± 0,05	0,21 ± 0,04	0,16 ± 0,04	
22:2ω6	0,20 ± 0,04	0,32 ± 0,05	0,35 ± 0,05*	
24:0	0,20 ± 0,02	0,13 ± 0,03*	0,11 ± 0,03*	
20:5ω3	7,60 ± 0,59	8,30 ± 0,59	8,70 ± 0,50*	
24:1	0,50 ± 0,13	0,57 ± 0,13	0,62 ± 0,13	
22:6ω6	8,10 ± 0,41	9,04 ± 0,35*	9,50 ± 0,29*	

Примітка: * – різниця статистично значуща відносно контролю, p < 0,05.

Note: * – the differences are statistically significant if compared with control, p < 0,05.

Жирнокислотний склад загальних ліпідів білих м'язів коропа за гіпоксі-гіперкапнічного впливу, відсоток від загального вмісту жирних кислот, M ± m (n = 5).

Fatty acid composition of total lipids in carp white muscles under influence of hypoxia and hypercapnia, % of total fatty acid content, M ± m (n = 5).
Відомо, що зміна ступеня наенасиченості жирних кислот (особливо за рахунок ПНЖК родин ω-3 та ω-6) може відбувається шляхом участі ацил-ліпідних ω-3- та ω-6-десатураз, які здійснюють реакцію десатурації жирних кислот у положеннях 3 і 6 відповідно [20]. Про їхню активність свідчить зміна величин індексів десатурації (відношення C_{20:4ω6}/C_{18:2ω6} та C_{20:4ω6}/C_{18:3ω3}). Відношення C_{20:4ω6}/C_{18:3ω3}, яке відображає рівень перетворення ліпоївої кислоти в арахідонову, для білків м’язів коропа зросло та на 6- та 24-у години експозиції становило 0,36 та 0,42 відповідно, тоді як у контрольній групі цей показник дорівнював 0,28. Відношення C_{20:4ω6}/C_{18:3ω3}, яке відображає рівень метаболізму кислот родини ω-3, знизилося та на 6- та 24-у години експозиції дорівнювало 3,77 й 2,88 відповідно, тоді як у контрольній групі становило 4,76.

Отже, за гіпоксі-гіперкарбічного впливу в ліпідах білків м’язів коропа спостерігаються зміни активності ацил-ліпідних ω-3- та ω-6-десатураз. Подібні зміни активності десатураз за дії штучного гіпобіозу спостерігаються і в інших органах риб [1, 4, 12]. Ймовірно, активність цих високоспецифічних ферментів за дії зовнішніх чинників спрямована на підтримання оптимального рівня відношення (ω-3/ω-6) за рахунок контролю вмісту ПНЖК.

Таким чином, оскільки ПНЖК безпосередньо беруть участь у регульації більшості клітинних процесів, то виявлені зміни спектрів ПНЖК родин ω-3 та ω-6 за гіпоксі-гіперкарбічного впливу (штучного гіпобіозу) можна розглядати як мобілізацію адаптивних реакцій організму.

Висновки

Проведені дослідження ЖК-спектра загальних ліпідів білків м’язів коропа свідчать про перерозподіл вмісту жирних кислот в умовах гіпоксі-гіперкарбічного впливу при зниженні температури (штучний гіпобіоз), що призводить до зниження вмісту насичених та підвищення ненасичених жирних кислот. Найбільші зміни залишають ПНЖК родин ω-3 та ω-6, а саме: докозагексаенова, ейко-заметановая та арахідонова кислоти, які володіють високою метаболічною активністю. Перебачається, що підтримання оптимальної величини співвідношення ω-3/ω-6 може відбувається шляхом залучення ацил-ліпідних ω-3 та ω-6-десатураз, а це є одним із проявів біохімічної адаптації. Виявлені зміни спектра призводять до збільшення вмісту ненасичених жирних кислот, що дозволяє сформувати адаптивну стратегію витримування."
References
1. Bell M.V., Dick J.R., Porter A.E. Biosynthesis and tissue deposition of docosahexaenoic acid (22:6n-3) in rainbow trout (Oncorhynchus mykiss). Lipids 2001; 36 (10): 1153–1159.
2. Christie W.W. Lipid analysis: isolation, separation, identification and structural analysis of lipids. 2nd edn – Oxford: Pergamon Press, 1982. – 207 p.
3. Fedorchenko C.V., Kurt S. Chromatographic analytic methods. Manual: Ivano-Frankivsk, 2012.
4. Folch J., Lees M., Sloane-Stanley G. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 1957; (226): 497–509.
5. Guschina L.A., Harwood J. L. Mechanisms of temperature adaptation in poikilotherms. FEBS Lett 2006; 580 (23): 5477–5483.
6. Gulevsky A.K., Shchennyaevsky I.V., Relina L.I. et al. Cold adaptation of poikilothermal and heterothermal animals. In: Goltsev A.N., editor. Current Problems of Cryobiology and Cryomedicine. Kharkiv; 2012. – P. 127–164.
7. Hong H., Zhou Y., Wu H. et al. Lipid content and fatty acid profile of muscle, brain and eyes of seven fresh water fish: a comparative study. J Am Oil Chem Soc 2014; 91(5): 795–804.
8. Kogtева G.S., Bezuglov V.V. Unsaturated fatty acids as endogenous bioregulators. Review. Biokhimiya 1998; 63 (1): 6–15.
9. Khyzhnyak S.V., Midik S.V., Sysolyatin S.V., Voitsitsky V.M. Constructions of biochemical adaptation. The revealed modifications of the content of FA lipids of white carp could be explained by the involvement of FAs into systems of reactivity of an organism under the effect of hypobiosis factors, that provided an optimal performance of all metabolic processes.
10. Kovtuna I.A. The lipids of marine organisms. Oceanogr Mar Biol 1964; (2): 169–191.
11. Melnichuk S.D., Melnichuk D.O., Tereshchenko S.V. The method of transfer and storage of fish in a state of artificial hibernation and installation for its implementation. Patent of Ukraine № 37303A, IPC A01K63/02. 2001 May 15.
12. Murzina S.A., Nefedova Z.A., Nemova N.N. Influence of fatty acids (markers of food sources of fish) on the mechanisms of adaptation in the conditions of high twins (review). Proceedings of the Karelian Research Center of Russian Academy of Sciences 2012; (2): 18–25.
13. Nazarov P.E., Groza N.V. Polyunsaturated fatty acids as universal biogenic endoregulators. Vestnik MHTHT 2009; 4 (5): 3–19.
comparative study // J. Am. Oil Chem. Soc. – 2014. – Vol. 91, №5. – P. 795–804.
19.Lovern, J. A. The lipids of marine organisms // Oceanogr. Mar. Biol. – 1964. – Vol. 2. – P. 169–191
20.Tocher D.R. Metabolism and functions of lipids and fatty acids in teleost fish // Rev. Fish. Sci. – 2003. – Vol. 11. – P. 107–184.
15.Popova E.M., Koschey I.V. Lipids as part of adaptation to environmental stress. Fisheries Science of Ukraine 2007; (1): 49–56.
16.Sidorov V.S. Ecological fish biochemistry. Lipids. Leningrad: Science; 1983.
17.Sysolyatin S.V. The lipid composition of tissue of scaly carp (Cyprinus Carpio L.) in the conditions of artificial carbon hibernation. Fisheries Science of Ukraine 2016; 3(37): 111–122.
18.Timofeev N.N. Hypobiosis and cryobiosis. Past, present, future. Moscow, 2005.
19.Tocher D.R. Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 2003; (11): 107–184.
20.Velansky P.V., Kostetsky E.Ya. Lipids of sea cold-water fish. Biologia Morya 2008; 34(1): 53–57.