Peroxiredoxin 6 promotes upregulation of the prion protein (PrP) in neuronal cells of prion-infected mice

Wibke Wagner¹,³, Andreas Reuter¹, Petra Hüller¹,⁴, Johannes Löwer¹ and Silja Wessler²*

Abstract

Background: It has been widely established that the conversion of the cellular prion protein (PrPC) into its abnormal isoform (PrPSc) is responsible for the development of transmissible spongiform encephalopathies (TSEs). However, the knowledge of the detailed molecular mechanisms and direct functional consequences within the cell is rare. In this study, we aimed at the identification of deregulated proteins which might be involved in prion pathogenesis.

Findings: Apolipoprotein E and peroxiredoxin 6 (PRDX6) were identified as upregulated proteins in brains of scrapie-infected mice and cultured neuronal cell lines. Downregulation of PrP gene expression using specific siRNA did not result in a decrease of PRDX6 amounts. Interestingly, selective siRNA targeting PRDX6 or overexpression of PRDX6 controlled PrPC and PrPSc protein amounts in neuronal cells.

Conclusions: Besides its possible function as a novel marker protein in the diagnosis of TSEs, PDRX6 represents an attractive target molecule in putative pharmacological intervention strategies in the future.

Keywords: Peroxiredoxin 6, Prion protein, Scrapie

Findings

Transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative disorders, which include scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle, and Creutzfeldt-Jacob disease (CID) in humans [1]. The molecular hallmark of these disorders is a structural conversion in folding of the normal cellular prion protein (PrPC) into a disease-associated, protease-resistant isoform (PrPSc) [2]. Neuropathological characteristics of these diseases include neuronal loss, vacuolar degeneration, astrogliosis and amyloid plaque formation caused by accumulation of PrPSc [3]. However, the mechanism whereby PrPC → PrPSc conversion triggers cellular neurotoxicity and neurodegeneration is not well understood.

PrPC is a multifunctional plasma membrane glycosyl-phosphatidylinositol (GPI)-anchored protein on a wide range of different cell types where it is involved in adhesion, signal transduction, differentiation, survival or stress protection [4-6]. Obviously, neurodegenerative disorders interconnect several cellular signal transduction pathways to cause oxidative stress in the brain, including increased oxidative damage, impaired mitochondrial function, defects of the proteasome system, the presence of aggregated proteins, and many more [7]. There are a number of cellular antioxidant defenses to convert reactive oxygen species (ROS) into unreactive compounds, e.g. superoxide dismutase (SOD) and the peroxiredoxin (PRDX) family. Proteins of the PRDX family are widely expressed and exhibit crucial protective functions in neurological disorders such as Parkinson’s and Alzheimer’s diseases [8]. Accordingly, upregulation of PRDX protein was observed in the brain of patients with Parkinson and Alzheimer’s disease, and also during experimental prion infection in mice [9-11]. The PRDX family of mammals comprises six isoforms (PRDX1-6), which are classified into the three subgroups typical 2-Cys PRDX (PRDX1–4), atypical 2-Cys PRDX (PRDX5) and 1-Cys PRDX (PRDX6) [12]. Peroxiredoxin 6 is the only 1-Cys member and exhibits bifunctional activities as a...
glutathione (GSH) peroxidase and calcium-independent phospholipase A2 (PLA2) [13], which might contribute to neurological disorders. In experimental in vivo models for neurological disorders such as Huntington’s disease and scrapie, PRDX1 was slightly enhanced [11]. However, the function of distinct PRDX isoforms in prion diseases has not been investigated.

Upregulation of PRDX6 in scrapie-infected brains

For a better understanding of the proteomic alterations during in vivo prion pathogenesis, C57Bl/6 mice were intracerebrally inoculated with a 10% brain homogenate containing the prion strain 139A (Additional file 1). Mice were sacrificed after 40, 80, 120 and 150 days, and brain homogenates were prepared. To confirm prion infection, PrP expression was analyzed by Western blot (Figure 1A). PrP\(^{\text{Sc}}\) was detected in non-infected brain homogenates in equal amounts 40, 80, 120 and 150 days post infection (p.i.) (Figure 1A, lanes 1, 3, 5, 7), while total PrP of scrapie-infected brain homogenates slightly increased during infection (Figure 1A, lanes 9, 11, 13, 15), caused by the accumulation of PrP\(^{\text{Sc}}\) as demonstrated by proteinase K (PK)-digestion (Figure 1A, lanes 10, 12, 14, 16).

To identify differentially regulated proteins in scrapie-infected mice, equal protein amounts of brain homogenates were separated by two-dimensional gel electrophoresis followed by Coomassie blue staining (Figure 1B). Only two up-regulated protein spots were reproducibly detected in four individual mice infected by scrapie, which were then identified by mass spectrometry (Table 1). Apolipoprotein E was found in three out of four investigated samples, while peroxiredoxin 6 (PRDX6) was identified with an overall sequence coverage of 71.4% in all four tested samples (Table 1). Upregulation of apolipoprotein E has already been described in activated astrocytes in Alzheimer’s and prion disease [14] and is considered as one of the

Figure 1 Upregulation of PRDX6 in scrapie-infected mice. (A) C57Bl/6 mice were inoculated intracerebrally with PBS (not infected, lanes 1–8) or 10% brain homogenate of the prion strain 139A (scrapie-infected, lanes 9–16). 40, 80, 120 and 150 days post infection (p.i.) brain homogenates were prepared and incubated with 20 \(\mu\)g/ml proteinase K (+, PK) or left untreated (–) prior to Western blotting. PrP was detected using the 8H4 monoclonal antibody showing the typical migration pattern of PrP and PK-resistant PrPres. \(\beta\)-actin was shown as a loading control. (B) 150 \(\mu\)g protein of brain homogenates were separated by two-dimensional gel electrophoresis followed by Coomassie blue staining. Enlarged sections indicate differentially expressed proteins (spots 1 and 2) observed in four tested homogenates. (C) 50 \(\mu\)g protein of brain homogenates were separated by SDS-PAGE followed by Western blot. PRDX6, PRDX1-4, PRDX2 and \(\beta\)-actin were detected using specific antibodies. (D) Quantification of protein expression was performed using four independent Western blots detecting PRDX6 (grey bars) and \(\beta\)-actin (black bars) in brain homogenates of four different mice, respectively. PRDX6 expression was by normalized to \(\beta\)-actin (**, \(p < 0.01\), n.s., non-specific).
strongest genetic risk factors in Alzheimer disease [15].
Contrastingly, only marginal information is available on
the expression of peroxiredoxins in prion disease. Peroxiredoxin protein was preferentially upregulated in
astrocytes of prion-infected mouse brains [10], but it
remained unknown whether all PRDX family members
or a single isoform accumulated. Furthermore, PRDX6
protein expression in astrocytes has already been asso-
ciated with Alzheimer disease where it might function
as an antioxidant enzyme [9] suggesting that PRDX6
might be involved in neurological diseases.
To investigate this in more detail, we followed PRDX6
expression during scrapie infection in mice and com-
pared it with PRDX1-4 amounts by Western blot ana-
lyses (Figure 1C). In contrast to non-infected mice
(Figure 1C, lane 1–4), the level of PRDX6 steadily
increased within 150 days post infection (Figure 1C, lane
5–8). This appears to be highly specific, since amounts
of PRDX1-4 or PRDX2 did not change during infection
(Figure 1C, lane 5–8). Although we cannot exclude the
possibility that PRDX1, 3 or 4 of the 2-Cys PRDX sub-
group were slightly regulated, it is obvious that PRDX6
was strongly affected in scrapie-infected mice brains.
Quantification of PRDX6 protein expression in brains of
four individual mice at each time point after infection
indicated that the observed effect was statistically signifi-
"cant and reproducibly observed in scrapie-infected mice
(Figure 1D).

**Expression of peroxiredoxin 6 in PrP deficient and PrP^C
expressing neuronal precursor cells**

To investigate PRDX6 expression in more detail, endogenous PRDX6 expression in PrP-deficient and
PrP^C-expressing cells was analyzed. The immortalized
neuronal precursor cell line PrP^{0/0} ML derived from
PrP^{0/0} Zrchl mice was stably transfected with wild type
murine PrP (PrP A109) [16]. Western blots of these cell
lines were performed for detection of PrP and PRDX6.
As expected, PrP A109 cells expressed PrP^C, whereas the
PrP^{0/0} ML cells did not (Figure 2A, upper panel). Corre-
sponding to in vivo studies, PRDX6 expression was
increased in PrP A109 cells (Figure 2A, middle panel)
while detection of β-actin indicated equal protein load-
ing (Figure 2A, lower panel). Analyzing mRNA synthesis
of prdx6 and prnp, no significant alterations were
observed indicating that PRDX6 protein expression was
not transcriptionally dependent on PrP (Figure 2B).
To clarify whether PrP protein expression led to PRDX6
accumulation, PrP was downregulated using specific
siRNAs and the amount of PRDX6 protein was analyzed
by Western blotting. Interestingly, successful downregu-
lation of PrP (Figure 2C, lane 4) did not result in a de-
tectable decrease in PRDX6 protein amount (Figure 2C,
lane 4). This finding was further supported by the inhibi-
tion of protein translation using cycloheximide. Twenty-
four hours incubation of the cells with cycloheximide led
to a drastic decrease in PrP expression, while leaving
PRDX6 protein amounts unaffected (Figure 2D, lanes 8–
14). Although downregulation of PrP was not complete,
these data imply that enhanced PrP expression does not
induce PRDX6 expression and that PRXD6 is highly stable
in neuronal cells.

PRDX6 induces upregulation of PrP in neuronal cells

Next, we aimed at the investigation of PRDX6 expression
in scrapie-infected neuronal cells. Uninfected PrP^C
expressing N2a58# cells were compared to scrapie-
infected N2a58/22L cells. Correspondingly to scrapie-
infected mice, an upregulation of PRDX6 was observed
in scrapie-infected N2a58/22L cells as shown by Western
blot analysis (Figure 3A, upper panel). Signal intensities
from four independent experiments were quantified and
expressed as fold PRXD6 expression normalized to β-
actin expression (Figure 3A, lower panel). Increased
PRXD6 protein amounts were also detected by immuno-
fluorescence analyses underlining enhanced protein oc-
currence in the cytoplasm, while PrP was mainly
localized at the plasma membrane (Figure 3B).

Since PRDX6 was upregulated in PrP^C-expressing and
PrP^C-infected cells, but not in cells in which PrP^C
expression was downregulated, we tested the hypothesis if
PRDX6 is involved in PrP upregulation in turn. In
N2a58# and N2a58/22L cells PRDX6 was successfully
downregulated using PRDX6 specific siRNA that did not

Table 1 Identification of apolipoprotein E and peroxiredoxin 6 by mass spectrometry

Spot	Mouse	Acc.nr.	Protein name	Score	Peptide	Sequence coverage (%)
1	1	P08226	Apolipoprotein E OS Mus musculus GN Apoe PE 1 SV 2	470.7	5	19.3
1	3	P08226	Apolipoprotein E OS Mus musculus GN Apoe PE 1 SV 2	220.7	3	13.5
1	4	P08226	Apolipoprotein E OS Mus musculus GN Apo E PE 1 SV 2	215.3	4	16.4
2	1	O08709	Peroxiredoxin 6 OS Mus musculus GN Prd x 6 PE 1 SV 3	1023.0	10	59.4
2	2	O08709	Peroxiredoxin 6 OS Mus musculus GN Prd x 6 PE 1 SV 3	1176.2	11	69.6
2	3	O08709	Peroxiredoxin 6 OS Mus musculus GN Prd x 6 PE 1 SV 3	1737.0	11	59.8
2	4	O08709	Peroxiredoxin 6 OS Mus musculus GN Prd x 6 PE 1 SV 3	779.9	7	33.5
affect PRDX1-4 expression. Interestingly, PrPC in N2a58# cells was slightly decreased and PK-resistant PrPSc was strongly reduced in N2a58/22L upon siRNA treatment to inhibit PRDX6 expression (Figure 3C). These data led to the suggestion that there is a functional connection between PrP and PRDX6 expression. Therefore, flag-tagged PRDX6 was overexpressed in N2a58# and N2a58/22L cells and the amount of PrPC and PrPSc was examined. Overexpression of PRDX6-flag had no influence on expression of PRDX1-4 (Figure 3D). However, PRDX6-flag resulted in a slightly increased amount of PrPC in uninfected N2a58# (Figure 3D, lanes 1–4) and subsequently to an obvious accumulation of PK-sensitive PrPC and PK-resistant PrPSc in infected N2a58/22L (Figure 3D, lanes 5–8). PRDX6 exhibits a calcium-independent phospholipase A2 (iPLA2) activity [17]. In N2a58/22L cells, iPLA2 activity was significantly increased compared to N2a58# cells. Importantly the difference was completely diminished after downregulation of PRDX6 in both cell lines (Figure 3E).
In conclusion, these results suggest that the expression level and activity of PRDX6 might be involved in the control of the level of PrPC and subsequently PrPSc conversion.

In this study, enhanced amounts of PRDX6 was selectively identified in brains of prion-infected mice and neuronal cell lines concomitant with an increased amount of PrPC and consequently of PrPSc. This interaction appears very complex, since PrPC expression in PrP knock-out cells has also been observed to increase the amount of PRDX6 in turn, but downregulation of PrP did not alter PRDX6 appearance. This effect could be explained by the observation that the PRDX6 protein was more stable than PrP. Hence, the molecular basis for this phenomenon remains unknown, but might indicate a complex “tandem”-regulation of PRDX6 and PrP.

PRDX6 is a moonlighting protein containing peroxidase and PLA2 activities [18]. Specific pharmacological inhibitors for cellular studies are not available, but it is tempting to speculate whether PRDX6 activities are
involved in PrP regulation. In fact, data are accumulating that PLA₂ contributes to prion diseases. Functionally, PLA₂ is an important promoter of phospholipid metabolism and cleaves membrane phospholipids to produce arachidonic acid and lysophospholipids as major products [19]. Under normal conditions, arachidonic acid is either re-incorporated into phospholipids, converted to inflammatory mediators in the brain or modulates neuronal functions [20]. It has been demonstrated that PrPSc and the neurotropic PrP106-126 prion peptide stimulated the N-methyl-D-aspartate (NMDA) receptor [21], which is accompanied by the release of arachidonic acid, suggesting an involvement of PLA₂ in prion pathogenesis [22]. This has been supported by neuronal cell culture studies showing that PLA₂ is activated by glycosylphosphatidylinositol (GPIs) isolated from PrPSc and PrPSc [23]. Interestingly, treatment of CJD using the non-specific PLA₂ inhibitor quinacrine resulted in an inhibition of PrPSc formation [24] and reduced toxicity of PrP106-126 [25]. Together with our study, those data point to PRDX6 activities as new important players in the pathogenesis of prion diseases.

Additional file

Additional file 1: Wagner et al., Cell Communication and Signaling.

Abbreviations

PRDX6: Peroxiredoxin 6; PrP: Prion protein.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

WW: performed the experiments and wrote the manuscript. AR: conducted and interpreted mass spectrometry analysis. PH: performed the animal experiments. JL: participated in the design of the study and the interpretation of the results. SW: conceived of the study, and participated in experiments. JL: participated in the design of the study and the additional file 1: Wagner et al., Cell Communication and Signaling. experiments. WW: performed the experiments and wrote the manuscript. AR: conducted and interpreted mass spectrometry analysis. PH: performed the animal experiments. JL: participated in the design of the study and the interpretation of the results. SW: conceived of the study, and participated in experiments.

Acknowledgement

We are grateful to Edgar Holznagel for valuable discussions and Kay-Martin Hanschmann for statistical analysis.

Author details

1. Paul Ehrlich Institute, Paul Ehrlich-Straße 51-59, Langen D-63225, Germany. 2. Division of Microbiology, University of Salzburg, Billothstrasse 11, Salzburg A-5020, Austria. 3. Present address: Department of Biology, Division of Neurosensory systems, Technical University of Darmstadt, Schnittschnaße 10, Darmstadt D-64287, Germany. 4. Present address: Chilem International GmbH, Norsk-Datastrasse 1, Bad Homburg v.d.H.D-61352, Germany.

Received: 28 July 2012 **Accepted:** 29 November 2012 **Published:** 4 December 2012

References

1. Prusiner SB. Prions. *Proc Natl Acad Sci USA* 1998, 95:13363–13383.
2. Prusiner SB. Novel proteinaceous infectious particles cause scrapie. *Science* 1982, 216:136–144.
3. DeArmond SJ, Prusiner SB: Etiology and pathogenesis of prion diseases. *Am J Pathol* 1995, 146:785–811.
4. Martins VR, Linden R, Prado MA, Walz R, Sakamoto AC, Izquierdo I, Brentani RR: Cellular prion protein: on the road for function. *FEBS Lett* 2002, 512:25–28.
5. Westergard L, Christensen HM, Harris DA: The cellular prion protein (PrP(Cd): its physiological function and role in disease. *Biochim Biophys Acta* 2007, 1772:629–644.
6. Wagner W, Ahuj P, Lower I, Wessler S: Quantitative phosphoproteomic analysis of prion-infected neuronal cells. *Cell Commun Signal* 2010, 8:28.
7. Halliwell B: Oxidative stress and neurodegeneration: where are we now? *J Neurochem* 2006, 97:1634–1658.
8. Zhu H, Santo A, Li Y: The antioxidant enzyme peroxiredoxin and its protective role in neurological disorders. *Exp Biol Med (Maywood)* 2012, 237:143–149.
9. Power JH, Asad S, Chataway TK, Chegini F, Manavis J, Temlett JA, Jensen PH, Blumbergs PC, Gai WP: Peroxiredoxin 6 in human brain: molecular forms, cellular distribution and association with Alzheimer's disease pathology. *Acta Neuropathol* 2008, 115:611–622.
10. Kopacek J, Sakaguchi S, Shigematsu K, Nishida N, Atarashi R, Nakaoke R, Moruchi R, Niwa M, Katamine S: Upregulation of the genes encoding lysosomal hydrolases, a perforin-like protein, and peroxidases in the brains of mice affected with an experimental prion disease. *J Virol* 2000, 74:411–417.
11. Zabel C, Sagi D, Kaindl AM, Steireif N, Klare Y, Mao L, Peters H, Wacker MA, Kleine R, Klose J: Comparative proteomics in neurodegenerative and non-neurodegenerative diseases suggest nodal point proteins in regulatory networking. *J Proteome Res* 2006, 5:1948–1958.
12. Rhee SG, Chae HZ, Kim K: Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. *Free Radic Biol Med* 2005, 38:1543–1552.
13. Manevich Y, Fisher AB: Peroxiredoxin 6, a 1-Cys peroxiredoxin, functions in antioxidant defense and lung phospholipid metabolism. *Free Radic Biol Med* 2005, 38:1422–1432.
14. Diedrich JF, Minnigan H, Carp RI, Whittaker JN, Race R, Frey W 2nd, Haase K, Kleene R, Klose J: Comparative proteomics in neurodegenerative and non-neurodegenerative diseases suggest nodal point proteins in regulatory networking. *J Proteome Res* 2006, 5:1948–1958.
15. Bate C, Williams A: Role of glycosylphosphatidylinositol in the activation of phospholipase A2 and the neurotoxicity of prions. *Brain Res* 1999, 851:335–344.
16. Buxton R, Prusiner SB: A speculative model of PrPSc formation and propagation. *J Neurochem* 2001, 781:335–344.
24. Korth C, May BC, Cohen FE, Prusiner SB: Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc Natl Acad Sci USA 2001, 98:9836–9841.

25. Turnbull S, Tabner BJ, Brown DR, Allsop D: Quinacrine acts as an antioxidant and reduces the toxicity of the prion peptide PrP106-126. Neuroreport 2003, 14:1743–1745.

doi:10.1186/1478-811X-10-38
Cite this article as: Wagner et al: Peroxiredoxin 6 promotes upregulation of the prion protein (PrP) in neuronal cells of prion-infected mice. Cell Communication and Signaling 2012 10:38.